From 43fba18e743cd450b5b0c38864793d5a761aa6ed Mon Sep 17 00:00:00 2001 From: Kai Aeberli Date: Sun, 3 Dec 2017 15:01:01 +0000 Subject: [PATCH] first commit --- .gitignore | 3 + README.md | 1 + boston_housing/boston_housing.html | 14167 +++++++++++ boston_housing/boston_housing.ipynb | 741 + ... slice by integer example-checkpoint.ipynb | 187 + ... spot prediction notebook-checkpoint.ipynb | 2140 ++ .../example 3d surface plot-checkpoint.ipynb | 1247 + .../kaggle_bm-checkpoint.ipynb | 1864 ++ ..._spot_prediction_notebook-checkpoint.ipynb | 3605 +++ .../500_epoch_lookback_40.weights.best.hdf5 | Bin 0 -> 141008 bytes .../500_epochs_40_lookback.weights.best.hdf5 | Bin 0 -> 141008 bytes ...0_lookback_better_errors.weights.best.hdf5 | Bin 0 -> 140152 bytes ...0_epochs_40_lookback_pca.weights.best.hdf5 | Bin 0 -> 141008 bytes ..._lookback_pca_unshuffled.weights.best.hdf5 | Bin 0 -> 140976 bytes ...ck_pca_unshuffled_binary.weights.best.hdf5 | Bin 0 -> 254592 bytes ...Learning Capstone Project Proposal V1.docx | Bin 0 -> 32134 bytes ...Learning Capstone Project Proposal V2.docx | Bin 0 -> 26568 bytes ...hine Learning Capstone Project Report.docx | Bin 0 -> 21028 bytes ...aws_v1 - fx spot prediction notebook.ipynb | 2140 ++ capstone_project/bm_kaggle.weights.best.hdf5 | Bin 0 -> 137168 bytes capstone_project/chromedriver.exe | Bin 0 -> 8510976 bytes .../add_row_number_to_existing_query.sql | 12 + .../convert types to datetime.sql | Bin 0 -> 1162 bytes .../data preparation/feature creation.sql | 68 + .../data preparation/get_data.sql | 89 + .../data preparation/get_data_1y.sql | 54 + .../import csv to sql server.sql | 71 + .../data preparation/screenscraper_fx_spot.py | 192 + capstone_project/kaggle_bm.ipynb | 1864 ++ capstone_project/log_results.xlsx | Bin 0 -> 7487 bytes .../main_fx_spot_prediction_notebook.ipynb | 3605 +++ .../mine_initial.weights.best.hdf5 | Bin 0 -> 141112 bytes capstone_project/proposal.pdf | Bin 0 -> 542836 bytes capstone_project/sim_log.xlsx | Bin 0 -> 5586 bytes customer_segments/customer_segments.html | 20007 ++++++++++++++++ customer_segments/customer_segments.ipynb | 1821 ++ deep_learning_examples/__init__.py | 0 deep_learning_examples/cross_entropy.py | 26 + .../XOR_neural_network.py | 50 + .../example_keras_neural_networks/__init__.py | 0 .../basic_examples.py | 45 + .../logistic_regression_algo/__init__.py | 0 .../logistic_regression_algo/data.csv | 100 + .../logistic_regression_algo.py | 105 + .../perceptron_algorithm/__init__.py | 0 .../perceptron_algorithm/data.csv | 100 + .../perceptron_classification.py | 70 + deep_learning_examples/softmax.py | 16 + examples/testdb_kai.sql | Bin 0 -> 7162 bytes finding_donors/finding_donors.html | 15124 ++++++++++++ finding_donors/finding_donors.ipynb | 1382 ++ git commit and push with dummy message.bat | 2 + git pull.bat | 2 + git rebase fetch.bat | 3 + smartcab/agent.py | 406 + smartcab/logs/sim_default-learning.csv | 31 + smartcab/logs/sim_default-learning.txt | 256 + smartcab/logs/sim_improved-learning.csv | 1462 ++ smartcab/logs/sim_improved-learning.txt | 292 + smartcab/logs/sim_improved-learning_ref.csv | 4617 ++++ smartcab/logs/sim_improved-learning_ref.txt | 292 + smartcab/logs/sim_no-learning.csv | 31 + smartcab/report.html | 19184 +++++++++++++++ smartcab/smartcab.ipynb | 690 + titanic_survival_exploration/titanic_data.csv | 892 + .../titanic_survival_exploration.html | 13379 +++++++++++ .../titanic_survival_exploration.ipynb | 865 + 67 files changed, 113300 insertions(+) create mode 100644 .gitignore create mode 100644 README.md create mode 100644 boston_housing/boston_housing.html create mode 100644 boston_housing/boston_housing.ipynb create mode 100644 capstone_project/.ipynb_checkpoints/Pandas multilevel column slice by integer example-checkpoint.ipynb create mode 100644 capstone_project/.ipynb_checkpoints/aws_v1 - fx spot prediction notebook-checkpoint.ipynb create mode 100644 capstone_project/.ipynb_checkpoints/example 3d surface plot-checkpoint.ipynb create mode 100644 capstone_project/.ipynb_checkpoints/kaggle_bm-checkpoint.ipynb create mode 100644 capstone_project/.ipynb_checkpoints/main_fx_spot_prediction_notebook-checkpoint.ipynb create mode 100644 capstone_project/500_epoch_lookback_40.weights.best.hdf5 create mode 100644 capstone_project/500_epochs_40_lookback.weights.best.hdf5 create mode 100644 capstone_project/500_epochs_40_lookback_better_errors.weights.best.hdf5 create mode 100644 capstone_project/500_epochs_40_lookback_pca.weights.best.hdf5 create mode 100644 capstone_project/500_epochs_40_lookback_pca_unshuffled.weights.best.hdf5 create mode 100644 capstone_project/500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5 create mode 100644 capstone_project/Machine Learning Capstone Project Proposal V1.docx create mode 100644 capstone_project/Machine Learning Capstone Project Proposal V2.docx create mode 100644 capstone_project/Machine Learning Capstone Project Report.docx create mode 100644 capstone_project/aws_v1 - fx spot prediction notebook.ipynb create mode 100644 capstone_project/bm_kaggle.weights.best.hdf5 create mode 100644 capstone_project/chromedriver.exe create mode 100644 capstone_project/data preparation/add_row_number_to_existing_query.sql create mode 100644 capstone_project/data preparation/convert types to datetime.sql create mode 100644 capstone_project/data preparation/feature creation.sql create mode 100644 capstone_project/data preparation/get_data.sql create mode 100644 capstone_project/data preparation/get_data_1y.sql create mode 100644 capstone_project/data preparation/import csv to sql server.sql create mode 100644 capstone_project/data preparation/screenscraper_fx_spot.py create mode 100644 capstone_project/kaggle_bm.ipynb create mode 100644 capstone_project/log_results.xlsx create mode 100644 capstone_project/main_fx_spot_prediction_notebook.ipynb create mode 100644 capstone_project/mine_initial.weights.best.hdf5 create mode 100644 capstone_project/proposal.pdf create mode 100644 capstone_project/sim_log.xlsx create mode 100644 customer_segments/customer_segments.html create mode 100644 customer_segments/customer_segments.ipynb create mode 100644 deep_learning_examples/__init__.py create mode 100644 deep_learning_examples/cross_entropy.py create mode 100644 deep_learning_examples/example_keras_neural_networks/XOR_neural_network.py create mode 100644 deep_learning_examples/example_keras_neural_networks/__init__.py create mode 100644 deep_learning_examples/example_keras_neural_networks/basic_examples.py create mode 100644 deep_learning_examples/logistic_regression_algo/__init__.py create mode 100644 deep_learning_examples/logistic_regression_algo/data.csv create mode 100644 deep_learning_examples/logistic_regression_algo/logistic_regression_algo.py create mode 100644 deep_learning_examples/perceptron_algorithm/__init__.py create mode 100644 deep_learning_examples/perceptron_algorithm/data.csv create mode 100644 deep_learning_examples/perceptron_algorithm/perceptron_classification.py create mode 100644 deep_learning_examples/softmax.py create mode 100644 examples/testdb_kai.sql create mode 100644 finding_donors/finding_donors.html create mode 100644 finding_donors/finding_donors.ipynb create mode 100644 git commit and push with dummy message.bat create mode 100644 git pull.bat create mode 100644 git rebase fetch.bat create mode 100644 smartcab/agent.py create mode 100644 smartcab/logs/sim_default-learning.csv create mode 100644 smartcab/logs/sim_default-learning.txt create mode 100644 smartcab/logs/sim_improved-learning.csv create mode 100644 smartcab/logs/sim_improved-learning.txt create mode 100644 smartcab/logs/sim_improved-learning_ref.csv create mode 100644 smartcab/logs/sim_improved-learning_ref.txt create mode 100644 smartcab/logs/sim_no-learning.csv create mode 100644 smartcab/report.html create mode 100644 smartcab/smartcab.ipynb create mode 100644 titanic_survival_exploration/titanic_data.csv create mode 100644 titanic_survival_exploration/titanic_survival_exploration.html create mode 100644 titanic_survival_exploration/titanic_survival_exploration.ipynb diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..5175b92 --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +/.idea/*.iml +capstone_project/eurusd_features.csv +capstone_project/data/eurusd_features.csv diff --git a/README.md b/README.md new file mode 100644 index 0000000..5b10aa1 --- /dev/null +++ b/README.md @@ -0,0 +1 @@ +# kai_code \ No newline at end of file diff --git a/boston_housing/boston_housing.html b/boston_housing/boston_housing.html new file mode 100644 index 0000000..1aaf064 --- /dev/null +++ b/boston_housing/boston_housing.html @@ -0,0 +1,14167 @@ + + + +boston_housing + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+
+

Machine Learning Engineer Nanodegree

Model Evaluation & Validation

Project: Predicting Boston Housing Prices

Welcome to the first project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

+

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

+

Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

+
+ +
+
+
+
+
+
+
+
+

Getting Started

In this project, you will evaluate the performance and predictive power of a model that has been trained and tested on data collected from homes in suburbs of Boston, Massachusetts. A model trained on this data that is seen as a good fit could then be used to make certain predictions about a home — in particular, its monetary value. This model would prove to be invaluable for someone like a real estate agent who could make use of such information on a daily basis.

+

The dataset for this project originates from the UCI Machine Learning Repository. The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. For the purposes of this project, the following preprocessing steps have been made to the dataset:

+
    +
  • 16 data points have an 'MEDV' value of 50.0. These data points likely contain missing or censored values and have been removed.
  • +
  • 1 data point has an 'RM' value of 8.78. This data point can be considered an outlier and has been removed.
  • +
  • The features 'RM', 'LSTAT', 'PTRATIO', and 'MEDV' are essential. The remaining non-relevant features have been excluded.
  • +
  • The feature 'MEDV' has been multiplicatively scaled to account for 35 years of market inflation.
  • +
+

Run the code cell below to load the Boston housing dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported.

+ +
+
+
+
+
+
In [6]:
+
+
+
# Import libraries necessary for this project
+import numpy as np
+import pandas as pd
+from sklearn.cross_validation import ShuffleSplit
+
+# Import supplementary visualizations code visuals.py
+import visuals as vs
+
+# Pretty display for notebooks
+%matplotlib inline
+
+# Load the Boston housing dataset
+data = pd.read_csv('housing.csv')
+prices = data['MEDV']
+features = data.drop('MEDV', axis = 1)
+    
+# Success
+
+print "Boston housing dataset has {} data points with {} variables each.".format(*data.shape)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Boston housing dataset has 489 data points with 4 variables each.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Data Exploration

In this first section of this project, you will make a cursory investigation about the Boston housing data and provide your observations. Familiarizing yourself with the data through an explorative process is a fundamental practice to help you better understand and justify your results.

+

Since the main goal of this project is to construct a working model which has the capability of predicting the value of houses, we will need to separate the dataset into features and the target variable. The features, 'RM', 'LSTAT', and 'PTRATIO', give us quantitative information about each data point. The target variable, 'MEDV', will be the variable we seek to predict. These are stored in features and prices, respectively.

+ +
+
+
+
+
+
+
+
+

Implementation: Calculate Statistics

For your very first coding implementation, you will calculate descriptive statistics about the Boston housing prices. Since numpy has already been imported for you, use this library to perform the necessary calculations. These statistics will be extremely important later on to analyze various prediction results from the constructed model.

+

In the code cell below, you will need to implement the following:

+
    +
  • Calculate the minimum, maximum, mean, median, and standard deviation of 'MEDV', which is stored in prices.
      +
    • Store each calculation in their respective variable.
    • +
    +
  • +
+ +
+
+
+
+
+
In [7]:
+
+
+
# TODO: Minimum price of the data
+minimum_price = np.min(prices)
+
+# TODO: Maximum price of the data
+maximum_price = np.max(prices)
+
+# TODO: Mean price of the data
+mean_price = np.mean(prices)
+
+# TODO: Median price of the data
+median_price = np.median(prices)
+
+# TODO: Standard deviation of prices of the data
+std_price = np.std(prices)
+
+# Show the calculated statistics
+print "Statistics for Boston housing dataset:\n"
+print "Minimum price: ${:,.2f}".format(minimum_price)
+print "Maximum price: ${:,.2f}".format(maximum_price)
+print "Mean price: ${:,.2f}".format(mean_price)
+print "Median price ${:,.2f}".format(median_price)
+print "Standard deviation of prices: ${:,.2f}".format(std_price)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Statistics for Boston housing dataset:
+
+Minimum price: $105,000.00
+Maximum price: $1,024,800.00
+Mean price: $454,342.94
+Median price $438,900.00
+Standard deviation of prices: $165,171.13
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 1 - Feature Observation

As a reminder, we are using three features from the Boston housing dataset: 'RM', 'LSTAT', and 'PTRATIO'. For each data point (neighborhood):

+
    +
  • 'RM' is the average number of rooms among homes in the neighborhood.
  • +
  • 'LSTAT' is the percentage of homeowners in the neighborhood considered "lower class" (working poor).
  • +
  • 'PTRATIO' is the ratio of students to teachers in primary and secondary schools in the neighborhood.
  • +
+

Using your intuition, for each of the three features above, do you think that an increase in the value of that feature would lead to an increase in the value of 'MEDV' or a decrease in the value of 'MEDV'? Justify your answer for each.
+Hint: Would you expect a home that has an 'RM' value of 6 be worth more or less than a home that has an 'RM' value of 7?

+ +
+
+
+
+
+
+
+
+

Answer: higher RM should lead to an increase in MEDV, as more rooms means higher price. Higher LSTAT should lead to a decrease in MEDV, as more lower class people means less purchasing power so lower home prices. Higher PTRATIO should lead to a decrease in home prices, as richer people may go to neighbourhoods with more advantageous, lower student to teacher ratios.

+ +
+
+
+
+
+
+
+
+
+

Developing a Model

In this second section of the project, you will develop the tools and techniques necessary for a model to make a prediction. Being able to make accurate evaluations of each model's performance through the use of these tools and techniques helps to greatly reinforce the confidence in your predictions.

+ +
+
+
+
+
+
+
+
+

Implementation: Define a Performance Metric

It is difficult to measure the quality of a given model without quantifying its performance over training and testing. This is typically done using some type of performance metric, whether it is through calculating some type of error, the goodness of fit, or some other useful measurement. For this project, you will be calculating the coefficient of determination, R2, to quantify your model's performance. The coefficient of determination for a model is a useful statistic in regression analysis, as it often describes how "good" that model is at making predictions.

+

The values for R2 range from 0 to 1, which captures the percentage of squared correlation between the predicted and actual values of the target variable. A model with an R2 of 0 is no better than a model that always predicts the mean of the target variable, whereas a model with an R2 of 1 perfectly predicts the target variable. Any value between 0 and 1 indicates what percentage of the target variable, using this model, can be explained by the features. A model can be given a negative R2 as well, which indicates that the model is arbitrarily worse than one that always predicts the mean of the target variable.

+

For the performance_metric function in the code cell below, you will need to implement the following:

+
    +
  • Use r2_score from sklearn.metrics to perform a performance calculation between y_true and y_predict.
  • +
  • Assign the performance score to the score variable.
  • +
+ +
+
+
+
+
+
In [8]:
+
+
+
# TODO: Import 'r2_score'
+
+def performance_metric(y_true, y_predict):
+    """ Calculates and returns the performance score between 
+        true and predicted values based on the metric chosen. """
+    
+    from sklearn.metrics import r2_score
+    # TODO: Calculate the performance score between 'y_true' and 'y_predict'
+    score = r2_score(y_true, y_predict)
+    
+    # Return the score
+    return score
+
+ +
+
+
+ +
+
+
+
+
+
+

Question 2 - Goodness of Fit

Assume that a dataset contains five data points and a model made the following predictions for the target variable:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
True ValuePrediction
3.02.5
-0.50.0
2.02.1
7.07.8
4.25.3
+

Would you consider this model to have successfully captured the variation of the target variable? Why or why not?

+

Run the code cell below to use the performance_metric function and calculate this model's coefficient of determination.

+ +
+
+
+
+
+
In [9]:
+
+
+
# Calculate the performance of this model
+score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3])
+print "Model has a coefficient of determination, R^2, of {:.3f}.".format(score)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Model has a coefficient of determination, R^2, of 0.923.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer:yes, because r squared is high and thus 92.3 % of the dependent variable is explained by the independent variable.

+ +
+
+
+
+
+
+
+
+

Implementation: Shuffle and Split Data

Your next implementation requires that you take the Boston housing dataset and split the data into training and testing subsets. Typically, the data is also shuffled into a random order when creating the training and testing subsets to remove any bias in the ordering of the dataset.

+

For the code cell below, you will need to implement the following:

+
    +
  • Use train_test_split from sklearn.cross_validation to shuffle and split the features and prices data into training and testing sets.
      +
    • Split the data into 80% training and 20% testing.
    • +
    • Set the random_state for train_test_split to a value of your choice. This ensures results are consistent.
    • +
    +
  • +
  • Assign the train and testing splits to X_train, X_test, y_train, and y_test.
  • +
+ +
+
+
+
+
+
In [10]:
+
+
+
# TODO: Import 'train_test_split'
+from sklearn.cross_validation import train_test_split
+
+# TODO: Shuffle and split the data into training and testing subsets
+X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size=0.2, random_state=5)
+
+# Success
+print "Training and testing split was successful."
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Training and testing split was successful.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 3 - Training and Testing

What is the benefit to splitting a dataset into some ratio of training and testing subsets for a learning algorithm?
+Hint: What could go wrong with not having a way to test your model?

+ +
+
+
+
+
+
+
+
+

Answer: It helps to prevent overfitting ensuring the trained model generalizes well to out of sample data.

+ +
+
+
+
+
+
+
+
+
+

Analyzing Model Performance

In this third section of the project, you'll take a look at several models' learning and testing performances on various subsets of training data. Additionally, you'll investigate one particular algorithm with an increasing 'max_depth' parameter on the full training set to observe how model complexity affects performance. Graphing your model's performance based on varying criteria can be beneficial in the analysis process, such as visualizing behavior that may not have been apparent from the results alone.

+ +
+
+
+
+
+
+
+
+

Learning Curves

The following code cell produces four graphs for a decision tree model with different maximum depths. Each graph visualizes the learning curves of the model for both training and testing as the size of the training set is increased. Note that the shaded region of a learning curve denotes the uncertainty of that curve (measured as the standard deviation). The model is scored on both the training and testing sets using R2, the coefficient of determination.

+

Run the code cell below and use these graphs to answer the following question.

+ +
+
+
+
+
+
In [11]:
+
+
+
# Produce learning curves for varying training set sizes and maximum depths
+vs.ModelLearning(features, prices)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 4 - Learning the Data

Choose one of the graphs above and state the maximum depth for the model. What happens to the score of the training curve as more training points are added? What about the testing curve? Would having more training points benefit the model?
+Hint: Are the learning curves converging to particular scores?

+ +
+
+
+
+
+
+
+
+

Answer: The max depth is 3, after that overfitting occurs. As more examples are added, the training score will decline a bit as it gets harder to fit all examples. But testing also gets better, until the two almost converge. Adding more training point would benefit the model a bit, as training and testing curves would converge even more. However, additional points are not always helpful, as at some point no new information becomes available, so the model predictions on the test set will not improve in accuracy further, so the testing score doesnt improve more. The reason why the training score is high initially is that it is easy to fit the data as there are few examples. As more examples becomes available, it gets more difficult to fit so testing score drops.

+ +
+
+
+
+
+
+
+
+

Complexity Curves

The following code cell produces a graph for a decision tree model that has been trained and validated on the training data using different maximum depths. The graph produces two complexity curves — one for training and one for validation. Similar to the learning curves, the shaded regions of both the complexity curves denote the uncertainty in those curves, and the model is scored on both the training and validation sets using the performance_metric function.

+

Run the code cell below and use this graph to answer the following two questions.

+ +
+
+
+
+
+
In [12]:
+
+
+
vs.ModelComplexity(X_train, y_train)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 5 - Bias-Variance Tradeoff

When the model is trained with a maximum depth of 1, does the model suffer from high bias or from high variance? How about when the model is trained with a maximum depth of 10? What visual cues in the graph justify your conclusions?
+Hint: How do you know when a model is suffering from high bias or high variance?

+ +
+
+
+
+
+
+
+
+

Answer: At max depth 1, it suffers from high bias - r^2 is generally low for both training and validation, so it has low predictive power. At max depth 10, it suffers from high variance, as r^2 for training goes to 1, but validation remains low, meaning model is overfitting and does not generalise well. These conclusions are based on the fact that the training and validation scores diverge at higher max depth, with training improving, whereas validation is dropping off and even declining.

+ +
+
+
+
+
+
+
+
+

Question 6 - Best-Guess Optimal Model

Which maximum depth do you think results in a model that best generalizes to unseen data? What intuition lead you to this answer?

+ +
+
+
+
+
+
+
+
+

Answer: It seems to be max depth of 3, as afterwards validation declines whereas training continues to rise, showing the model cannot generalise well anymore, so there is no benefit to increasing max depth.

+ +
+
+
+
+
+
+
+
+
+

Evaluating Model Performance

In this final section of the project, you will construct a model and make a prediction on the client's feature set using an optimized model from fit_model.

+ +
+
+
+
+
+
+
+
+

What is the grid search technique and how it can be applied to optimize a learning algorithm?

+ +
+
+
+
+
+
+
+
+

Answer: The grid search space is a space occupied by parameters to a model. The grid search technique will try all possible points on this space (combination of parameters) The output of grid search are many models, each using different parameters. This is a selective search, as only points on the parameter grid will be used. The search is guided by chosing a range of values for each parameter dimension picking a step size large enough to expect the output to vary in some interesting way. In case of enum parameters, we could earch across several different classifiers for example, to get an idea which works best.

+ +
+
+
+
+
+
+
+
+

Question 8 - Cross-Validation

What is the k-fold cross-validation training technique? What benefit does this technique provide for grid search when optimizing a model?
+Hint: Much like the reasoning behind having a testing set, what could go wrong with using grid search without a cross-validated set?

+ +
+
+
+
+
+
+
+
+

Answer: The K Fold cross validation technique splits the dataset into training and cross validation sets. More specifically, it splits the data into K subsets, using one of the subsets as validation and the k-1 others combined as the training set. It then trains and evaluates the ML algorithm. In the next iteration it will pick a different training and cross validation set and repeat the previous step. Once all K combinations have been explored, an average performance estimate is computed across the outputs of each of the k steps run. The benefit of this technique to grid search is that you get a more reliable, stable estimate for each point on the parameter grid, as it will be run using several splits of training / testing data, eliminating potential bias in the dataset and given stable values no matter how the dataset is divided into training and testing. This K fold validation is useful for grid search as each point on the grid will get a more reliable estimate of model performance than not using K folder validation. If we limit grid search to a single dataset (no K fold validation) overfitting would be an issue, as the specific choice of model function might lead to lack of generalisation to out of sample data. Applying this generalisation inside the dataset, many times over, make the estimate more stable.

+ +
+
+
+
+
+
+
+
+

Implementation: Fitting a Model

Your final implementation requires that you bring everything together and train a model using the decision tree algorithm. To ensure that you are producing an optimized model, you will train the model using the grid search technique to optimize the 'max_depth' parameter for the decision tree. The 'max_depth' parameter can be thought of as how many questions the decision tree algorithm is allowed to ask about the data before making a prediction. Decision trees are part of a class of algorithms called supervised learning algorithms.

+

In addition, you will find your implementation is using ShuffleSplit() for an alternative form of cross-validation (see the 'cv_sets' variable). While it is not the K-Fold cross-validation technique you describe in Question 8, this type of cross-validation technique is just as useful!. The ShuffleSplit() implementation below will create 10 ('n_splits') shuffled sets, and for each shuffle, 20% ('test_size') of the data will be used as the validation set. While you're working on your implementation, think about the contrasts and similarities it has to the K-fold cross-validation technique.

+

Please note that ShuffleSplit has different parameters in scikit-learn versions 0.17 and 0.18. +For the fit_model function in the code cell below, you will need to implement the following:

+
    +
  • Use DecisionTreeRegressor from sklearn.tree to create a decision tree regressor object.
      +
    • Assign this object to the 'regressor' variable.
    • +
    +
  • +
  • Create a dictionary for 'max_depth' with the values from 1 to 10, and assign this to the 'params' variable.
  • +
  • Use make_scorer from sklearn.metrics to create a scoring function object.
      +
    • Pass the performance_metric function as a parameter to the object.
    • +
    • Assign this scoring function to the 'scoring_fnc' variable.
    • +
    +
  • +
  • Use GridSearchCV from sklearn.grid_search to create a grid search object.
      +
    • Pass the variables 'regressor', 'params', 'scoring_fnc', and 'cv_sets' as parameters to the object.
    • +
    • Assign the GridSearchCV object to the 'grid' variable.
    • +
    +
  • +
+ +
+
+
+
+
+
In [13]:
+
+
+
# TODO: Import 'make_scorer', 'DecisionTreeRegressor', and 'GridSearchCV'
+
+def fit_model(X, y):
+    """ Performs grid search over the 'max_depth' parameter for a 
+        decision tree regressor trained on the input data [X, y]. """
+    
+    # Create cross-validation sets from the training data
+    # sklearn version 0.18: ShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None)
+    # sklearn versiin 0.17: ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None, random_state=None)
+    cv_sets = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.20, random_state = 0)
+
+    # TODO: Create a decision tree regressor object
+    from sklearn.tree import DecisionTreeRegressor
+    regressor = DecisionTreeRegressor(random_state =1)
+
+    # TODO: Create a dictionary for the parameter 'max_depth' with a range from 1 to 10
+    import numpy as np
+    params = {"max_depth": np.arange(1,11)}
+    print("params", params)
+
+    # TODO: Transform 'performance_metric' into a scoring function using 'make_scorer' 
+    from sklearn.metrics import make_scorer
+    scoring_fnc = make_scorer(performance_metric)
+
+    # TODO: Create the grid search object
+    from sklearn.grid_search import GridSearchCV
+    grid = GridSearchCV(estimator=regressor, param_grid=params, scoring=scoring_fnc, cv=cv_sets)
+
+    # Fit the grid search object to the data to compute the optimal model
+    grid = grid.fit(X, y)
+
+    # Return the optimal model after fitting the data
+    return grid.best_estimator_
+
+ +
+
+
+ +
+
+
+
+
+
+

Making Predictions

Once a model has been trained on a given set of data, it can now be used to make predictions on new sets of input data. In the case of a decision tree regressor, the model has learned what the best questions to ask about the input data are, and can respond with a prediction for the target variable. You can use these predictions to gain information about data where the value of the target variable is unknown — such as data the model was not trained on.

+ +
+
+
+
+
+
+
+
+

Question 9 - Optimal Model

What maximum depth does the optimal model have? How does this result compare to your guess in Question 6?

+

Run the code block below to fit the decision tree regressor to the training data and produce an optimal model.

+ +
+
+
+
+
+
In [14]:
+
+
+
# Fit the training data to the model using grid search
+reg = fit_model(X_train, y_train)
+
+# Produce the value for 'max_depth'
+print "Parameter 'max_depth' is {} for the optimal model.".format(reg.get_params()['max_depth'])
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+
+
+
+ +
+
+ +
+
C:\Anaconda3\envs\udacity\lib\site-packages\sklearn\grid_search.py:43: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. This module will be removed in 0.20.
+  DeprecationWarning)
+
+
+
+ +
+
+ +
+
Parameter 'max_depth' is 4 for the optimal model.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: The max depth of the optimal model is 4. My guess would have been 3, as it seems with 4, training accuracy goes up, but much more so than test accuracy, which almost flatlines.

+ +
+
+
+
+
+
+
+
+

Question 10 - Predicting Selling Prices

Imagine that you were a real estate agent in the Boston area looking to use this model to help price homes owned by your clients that they wish to sell. You have collected the following information from three of your clients:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FeatureClient 1Client 2Client 3
Total number of rooms in home5 rooms4 rooms8 rooms
Neighborhood poverty level (as %)17%32%3%
Student-teacher ratio of nearby schools15-to-122-to-112-to-1
+

What price would you recommend each client sell his/her home at? Do these prices seem reasonable given the values for the respective features?
+Hint: Use the statistics you calculated in the Data Exploration section to help justify your response.

+

Run the code block below to have your optimized model make predictions for each client's home.

+ +
+
+
+
+
+
In [16]:
+
+
+
# Produce a matrix for client data
+client_data = [[5, 17, 15], # Client 1
+               [4, 32, 22], # Client 2
+               [8, 3, 12]]  # Client 3
+
+
+
+# Show predictions
+for i, price in enumerate(reg.predict(client_data)):
+    print "Predicted selling price for Client {}'s home: ${:,.2f}".format(i+1, price)
+    
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Predicted selling price for Client 1's home: $411,931.58
+Predicted selling price for Client 2's home: $235,620.00
+Predicted selling price for Client 3's home: $922,740.00
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: Client 1's home: around \$410k, Client 2's home: around\$235k, Client 3's home: around \$920k. Prices seem reasonable, as Client 3's home has low neigbourhood poverty, low student teacher ratio and a lot of bedrooms. C2 home should be the lowest, as least rooms, worst student teacher ratio, and highest neighbourhood poverty. C1 works too and is in between C3 and C2, as better student teacher ratio, half the poverty level, and 1 extra room compared to C2. More generally, prices are in the range of the dataset and a large house in a good neighborhood is close to the maximum prices which is expected

+ +
+
+
+
+
+
+
+
+

Sensitivity

An optimal model is not necessarily a robust model. Sometimes, a model is either too complex or too simple to sufficiently generalize to new data. Sometimes, a model could use a learning algorithm that is not appropriate for the structure of the data given. Other times, the data itself could be too noisy or contain too few samples to allow a model to adequately capture the target variable — i.e., the model is underfitted. Run the code cell below to run the fit_model function ten times with different training and testing sets to see how the prediction for a specific client changes with the data it's trained on.

+ +
+
+
+
+
+
In [17]:
+
+
+
vs.PredictTrials(features, prices, fit_model, client_data) # predicts client 1
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 1: $391,183.33
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 2: $419,700.00
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 3: $415,800.00
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 4: $420,622.22
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 5: $413,334.78
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 6: $411,931.58
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 7: $399,663.16
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 8: $407,232.00
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 9: $351,577.61
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 10: $413,700.00
+
+Range in prices: $69,044.61
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 11 - Applicability

In a few sentences, discuss whether the constructed model should or should not be used in a real-world setting.
+Hint: Some questions to answering:

+
    +
  • How relevant today is data that was collected from 1978?
  • +
  • Are the features present in the data sufficient to describe a home?
  • +
  • Is the model robust enough to make consistent predictions?
  • +
  • Would data collected in an urban city like Boston be applicable in a rural city?
  • +
+ +
+
+
+
+
+
+
+
+

Answer: Data from 1978 may not be that relevant, as underlying factors may have changed, such as the distribution of wealth across neighbourhoods, or the number of teachers and students in schools. However, if there were no such trends, the dataset could be a good proxy, as price was corrected for inflation. The number of features are probably not sufficient to describe a home - condition, size of land, age and other features may have additional or more important predictive power. The model does not seem very robust - a range of around 70k in predictions on just 10 iterations would be unacceptable to a prospective seller. Finally, urban data may apply to rural settings as there are less neigbourhoods, prices are generally lower, and properties illiquid so not many transactions so price discovery may not follow the same pattern as in a city. Thus the model's use should be restricted to an urban setting, additional features should be added to control the variance of predictions, and ideally updated data would give a better price estimate that may come closer to a real transaction as of today.

+ +
+
+
+
+
+
+
+
+

Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
+File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

+
+ +
+
+
+
+
+ + + + + + diff --git a/boston_housing/boston_housing.ipynb b/boston_housing/boston_housing.ipynb new file mode 100644 index 0000000..8ff5536 --- /dev/null +++ b/boston_housing/boston_housing.ipynb @@ -0,0 +1,741 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Model Evaluation & Validation\n", + "## Project: Predicting Boston Housing Prices\n", + "\n", + "Welcome to the first project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!\n", + "\n", + "In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. \n", + "\n", + ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started\n", + "In this project, you will evaluate the performance and predictive power of a model that has been trained and tested on data collected from homes in suburbs of Boston, Massachusetts. A model trained on this data that is seen as a *good fit* could then be used to make certain predictions about a home — in particular, its monetary value. This model would prove to be invaluable for someone like a real estate agent who could make use of such information on a daily basis.\n", + "\n", + "The dataset for this project originates from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Housing). The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. For the purposes of this project, the following preprocessing steps have been made to the dataset:\n", + "- 16 data points have an `'MEDV'` value of 50.0. These data points likely contain **missing or censored values** and have been removed.\n", + "- 1 data point has an `'RM'` value of 8.78. This data point can be considered an **outlier** and has been removed.\n", + "- The features `'RM'`, `'LSTAT'`, `'PTRATIO'`, and `'MEDV'` are essential. The remaining **non-relevant features** have been excluded.\n", + "- The feature `'MEDV'` has been **multiplicatively scaled** to account for 35 years of market inflation.\n", + "\n", + "Run the code cell below to load the Boston housing dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Boston housing dataset has 489 data points with 4 variables each.\n" + ] + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.cross_validation import ShuffleSplit\n", + "\n", + "# Import supplementary visualizations code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the Boston housing dataset\n", + "data = pd.read_csv('housing.csv')\n", + "prices = data['MEDV']\n", + "features = data.drop('MEDV', axis = 1)\n", + " \n", + "# Success\n", + "\n", + "print \"Boston housing dataset has {} data points with {} variables each.\".format(*data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Exploration\n", + "In this first section of this project, you will make a cursory investigation about the Boston housing data and provide your observations. Familiarizing yourself with the data through an explorative process is a fundamental practice to help you better understand and justify your results.\n", + "\n", + "Since the main goal of this project is to construct a working model which has the capability of predicting the value of houses, we will need to separate the dataset into **features** and the **target variable**. The **features**, `'RM'`, `'LSTAT'`, and `'PTRATIO'`, give us quantitative information about each data point. The **target variable**, `'MEDV'`, will be the variable we seek to predict. These are stored in `features` and `prices`, respectively." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Calculate Statistics\n", + "For your very first coding implementation, you will calculate descriptive statistics about the Boston housing prices. Since `numpy` has already been imported for you, use this library to perform the necessary calculations. These statistics will be extremely important later on to analyze various prediction results from the constructed model.\n", + "\n", + "In the code cell below, you will need to implement the following:\n", + "- Calculate the minimum, maximum, mean, median, and standard deviation of `'MEDV'`, which is stored in `prices`.\n", + " - Store each calculation in their respective variable." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Statistics for Boston housing dataset:\n", + "\n", + "Minimum price: $105,000.00\n", + "Maximum price: $1,024,800.00\n", + "Mean price: $454,342.94\n", + "Median price $438,900.00\n", + "Standard deviation of prices: $165,171.13\n" + ] + } + ], + "source": [ + "# TODO: Minimum price of the data\n", + "minimum_price = np.min(prices)\n", + "\n", + "# TODO: Maximum price of the data\n", + "maximum_price = np.max(prices)\n", + "\n", + "# TODO: Mean price of the data\n", + "mean_price = np.mean(prices)\n", + "\n", + "# TODO: Median price of the data\n", + "median_price = np.median(prices)\n", + "\n", + "# TODO: Standard deviation of prices of the data\n", + "std_price = np.std(prices)\n", + "\n", + "# Show the calculated statistics\n", + "print \"Statistics for Boston housing dataset:\\n\"\n", + "print \"Minimum price: ${:,.2f}\".format(minimum_price)\n", + "print \"Maximum price: ${:,.2f}\".format(maximum_price)\n", + "print \"Mean price: ${:,.2f}\".format(mean_price)\n", + "print \"Median price ${:,.2f}\".format(median_price)\n", + "print \"Standard deviation of prices: ${:,.2f}\".format(std_price)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1 - Feature Observation\n", + "As a reminder, we are using three features from the Boston housing dataset: `'RM'`, `'LSTAT'`, and `'PTRATIO'`. For each data point (neighborhood):\n", + "- `'RM'` is the average number of rooms among homes in the neighborhood.\n", + "- `'LSTAT'` is the percentage of homeowners in the neighborhood considered \"lower class\" (working poor).\n", + "- `'PTRATIO'` is the ratio of students to teachers in primary and secondary schools in the neighborhood.\n", + "\n", + "_Using your intuition, for each of the three features above, do you think that an increase in the value of that feature would lead to an **increase** in the value of `'MEDV'` or a **decrease** in the value of `'MEDV'`? Justify your answer for each._ \n", + "**Hint:** Would you expect a home that has an `'RM'` value of 6 be worth more or less than a home that has an `'RM'` value of 7?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** higher RM should lead to an increase in MEDV, as more rooms means higher price. Higher LSTAT should lead to a decrease in MEDV, as more lower class people means less purchasing power so lower home prices. Higher PTRATIO should lead to a decrease in home prices, as richer people may go to neighbourhoods with more advantageous, lower student to teacher ratios." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "\n", + "## Developing a Model\n", + "In this second section of the project, you will develop the tools and techniques necessary for a model to make a prediction. Being able to make accurate evaluations of each model's performance through the use of these tools and techniques helps to greatly reinforce the confidence in your predictions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Define a Performance Metric\n", + "It is difficult to measure the quality of a given model without quantifying its performance over training and testing. This is typically done using some type of performance metric, whether it is through calculating some type of error, the goodness of fit, or some other useful measurement. For this project, you will be calculating the [*coefficient of determination*](http://stattrek.com/statistics/dictionary.aspx?definition=coefficient_of_determination), R2, to quantify your model's performance. The coefficient of determination for a model is a useful statistic in regression analysis, as it often describes how \"good\" that model is at making predictions. \n", + "\n", + "The values for R2 range from 0 to 1, which captures the percentage of squared correlation between the predicted and actual values of the **target variable**. A model with an R2 of 0 is no better than a model that always predicts the *mean* of the target variable, whereas a model with an R2 of 1 perfectly predicts the target variable. Any value between 0 and 1 indicates what percentage of the target variable, using this model, can be explained by the **features**. _A model can be given a negative R2 as well, which indicates that the model is **arbitrarily worse** than one that always predicts the mean of the target variable._\n", + "\n", + "For the `performance_metric` function in the code cell below, you will need to implement the following:\n", + "- Use `r2_score` from `sklearn.metrics` to perform a performance calculation between `y_true` and `y_predict`.\n", + "- Assign the performance score to the `score` variable." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# TODO: Import 'r2_score'\n", + "\n", + "def performance_metric(y_true, y_predict):\n", + " \"\"\" Calculates and returns the performance score between \n", + " true and predicted values based on the metric chosen. \"\"\"\n", + " \n", + " from sklearn.metrics import r2_score\n", + " # TODO: Calculate the performance score between 'y_true' and 'y_predict'\n", + " score = r2_score(y_true, y_predict)\n", + " \n", + " # Return the score\n", + " return score" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2 - Goodness of Fit\n", + "Assume that a dataset contains five data points and a model made the following predictions for the target variable:\n", + "\n", + "| True Value | Prediction |\n", + "| :-------------: | :--------: |\n", + "| 3.0 | 2.5 |\n", + "| -0.5 | 0.0 |\n", + "| 2.0 | 2.1 |\n", + "| 7.0 | 7.8 |\n", + "| 4.2 | 5.3 |\n", + "*Would you consider this model to have successfully captured the variation of the target variable? Why or why not?* \n", + "\n", + "Run the code cell below to use the `performance_metric` function and calculate this model's coefficient of determination." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model has a coefficient of determination, R^2, of 0.923.\n" + ] + } + ], + "source": [ + "# Calculate the performance of this model\n", + "score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3])\n", + "print \"Model has a coefficient of determination, R^2, of {:.3f}.\".format(score)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer**:yes, because r squared is high and thus 92.3 % of the dependent variable is explained by the independent variable." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Shuffle and Split Data\n", + "Your next implementation requires that you take the Boston housing dataset and split the data into training and testing subsets. Typically, the data is also shuffled into a random order when creating the training and testing subsets to remove any bias in the ordering of the dataset.\n", + "\n", + "For the code cell below, you will need to implement the following:\n", + "- Use `train_test_split` from `sklearn.cross_validation` to shuffle and split the `features` and `prices` data into training and testing sets.\n", + " - Split the data into 80% training and 20% testing.\n", + " - Set the `random_state` for `train_test_split` to a value of your choice. This ensures results are consistent.\n", + "- Assign the train and testing splits to `X_train`, `X_test`, `y_train`, and `y_test`." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training and testing split was successful.\n" + ] + } + ], + "source": [ + "# TODO: Import 'train_test_split'\n", + "from sklearn.cross_validation import train_test_split\n", + "\n", + "# TODO: Shuffle and split the data into training and testing subsets\n", + "X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size=0.2, random_state=5)\n", + "\n", + "# Success\n", + "print \"Training and testing split was successful.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3 - Training and Testing\n", + "*What is the benefit to splitting a dataset into some ratio of training and testing subsets for a learning algorithm?* \n", + "**Hint:** What could go wrong with not having a way to test your model?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** It helps to prevent overfitting ensuring the trained model generalizes well to out of sample data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "\n", + "## Analyzing Model Performance\n", + "In this third section of the project, you'll take a look at several models' learning and testing performances on various subsets of training data. Additionally, you'll investigate one particular algorithm with an increasing `'max_depth'` parameter on the full training set to observe how model complexity affects performance. Graphing your model's performance based on varying criteria can be beneficial in the analysis process, such as visualizing behavior that may not have been apparent from the results alone." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning Curves\n", + "The following code cell produces four graphs for a decision tree model with different maximum depths. Each graph visualizes the learning curves of the model for both training and testing as the size of the training set is increased. Note that the shaded region of a learning curve denotes the uncertainty of that curve (measured as the standard deviation). The model is scored on both the training and testing sets using R2, the coefficient of determination. \n", + "\n", + "Run the code cell below and use these graphs to answer the following question." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAIKCAYAAAAK1y/8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYFdX5xz/vvVvuVmDZXXaXKkgREUhARUTFqBGiYGLB\n2I1dk2hETYixkljSSAyKWGJDo0b9GSG22GKJKGJBEBSVXpa2sL3ccn5/nJnd2bt3K7tsez/PM8/M\nnDlz5ky558533ve8R4wxKIqiKIqiKIqidAd87V0BRVEURVEURVGUfYUKIEVRFEVRFEVRug0qgBRF\nURRFURRF6TaoAFIURVEURVEUpdugAkhRFEVRFEVRlG6DCiBFURRFURRFUboNKoCUDoWInC8ixjOV\nisg6EXleRGaIiLThsW8RkWbFhReR/4rIf9uoSrGO90jU9alvmryv6tRAXe+MqlOFiKwQkavb8j52\ndZzrGmrvejQHEQk4z8Csdjj2B55nMCIiW0TkRREZ1wbHukVENopIWEQ+aO3yFUVRlNYhrr0roCj1\ncBqwCUgEBgAnAE8Cl4jINGNMeRsc80HglWbuc0Ub1KMhfgvM96xfBFwITALCnvSV+7JSDRDG1g2g\nN7a+c4Aq4J72qpSyz6kEDgM2tNPxPwKuBATYD7gReEdExhhjvmmNA4jIkcDNwG3AS0Bha5SrKIqi\ntD4qgJSOymdRLyYLROQZ4BngD8DPW/uAxphNWNHVnH32qdAwxnwLfOuui8gUZ/FDY0yjVgERSTTG\nVLZV/WJhjKn+Ei4irwKrgYvZxwKoPc69pXT0uoqIH5CmPHMAxo643Z4WkSLPc7hYRJYCXwGXAL/c\nm4I99+oAJ2meMWbL3pQZVa6iKIrSyqgLnNJpMMY8B7wAXCwiyW66iCSLyO9FZK2IVDnz34hIredb\nRLJEZJ7jolLpzBeISKKzvY4LnIhcJSKrRKRcRHaLyFIR+ZFnex0XOBEZ7rjs7XH2+8AjVNw8tzgu\nOUMdd5wSEVkvIjdF17uliMgU5xjTHNe5XcB6z/ZxIvJvTz3fEZHDYpRzrHOeJc70oogcEJ2vKTgv\nzMuxVr3o4zS1PteJyAYnz2IROVhE8kVkvifPZc65H+bci0Lg7eack4ic6Ny7IifPKq8Ll4iMFJGF\nIrLDce/bICJPR5UxUkQWiUihU9//icgxUXnuFJGQiIwSkTdEpAR4rPlXt851Ol1ElohImfPsPiUi\nfaPynCsibzvnUCwiH4vImVF5XPe1m0TkRhFZj7XgDfU8Y1NE5D4RKRCR7c7zlh6jDO/1c897qIi8\nKtbdda2I/FqktoukiBwiIu97rvO1zv4VLbk2xpjVQDGwv+cYfUTkARHZKrZ9WCkiP4mqR8znSqy7\nm/v8bfaeq4j0FJF7nWe0SkS+FJGfRZVb72/Vc51GiMjrzv1cJyJnO9svEJHVzjP6uogMjCq7Off4\nBhG5RmxbVOw8j8Ojr59Yd+QPnHtW5CxP9WyPd56V1c613CS2jU6IynOHiKxx7utOEXlXRA5t+p1U\nFEVpGWoBUjobLwE/BMZjXVjigFeBkVj3sOXABKyLSwZwDYCI9ALed9J+B3wOZAMnAQlYF51aiMhZ\nwJ+B2cC7QBIw2ikjJiKSB7yHfbn6GdYN5qfAiyJyojHm5ahdngceBv4CTANuBTY6aa3FfGARcAYQ\ncOo5AXgL+1X+QqDCqe+bInKIMWa5k+9krNXteeBMwA/8GnvtRxtjtragPoPwWLGaWZ+fYS2A84F/\nAcOc+qXWc6yngCeAu526N+mcRGQE8H/AP7BuTSFgKNDfKUOAl7EWw0uBXUA/rKume04Dgf8BO4DL\ngRLgKuBVEfm+MeZN7yXAivv7sc+n152x2YjIL7Cuhg849e+JfY7fEpGxxpgyJ+tg51p8DUSAo7HW\n1gRjzCNRxV6KtZr8Ant/tgPuy/Y87P04HRgF3In9TV3aWFWx1/nvwB+Bk4HbgXVYl1dEJBd4HVgL\nnI29NtcBfesW1zREJAtIA/Y4672Axc7mG7CueicAfxeROGPMA1FFRD9Xm4GfYNubE4ACYENU+3QD\n8CW2zZkrIhnGmNlR5db5rbpVxt6n+djn/0rgMRE5EJjoXI8k4C5gAXCkZ9/m3OOLgC+wv71k4E/A\n8yIyyhgTca7Vtdh79Qzwe6AcGEfNswDwT+A47L1cgn0mZmN/I2c5eW7Cto2/BlYAPYBDaKB9VRRF\naTWMMTrp1GEm4HzAAPvXs/14Z/vpzvo5zvqRUfl+g/1Kne2sz8a+OH2ngWPfguOt46zfDXzSSH3/\nC/zXs/4n7Mvy/p40P/bF8ZPoYwE/iSpvOfCfZlwvt5y4GNumONuejLHtf8Ay735APFaYPOWs+7Bi\n7KWofTOwL453NlK3O51rEedMfZz6BoGpLahPPJAP/F/Uvmc65znfk3aZk3ZHVN4mnRP2RTsCJNZz\nbv2c8r/fwPnfjRUBA6LOaS3wftR1MsClTbzndwKhBrb3BEqxrlje9GHO/bisnv18zn1agHWpdNMD\nTv3WAQn1PGP3RaU/iHU7iy5jVozzPsOTJlgXyYWetDnYl+w+nrRUrMioaML1+gB4wzm3eOc6vOQc\ne4qT5zbnmg2K2ncBsAXwNfRcOdt+5mzL8aSd6qT9OCrv40AZ0KMJv1X3Os3wpGU7aduAFE/6L530\nPvVci8bu8ReA35N+tpP+XWe9t3Mv/tHA9T4uur5O+oVO+gHO+usNlaOTTjrp1JaTusApnQ3XNcZ1\nVZuCdRV5X0Ti3An4D/ZlZ4KT7/vAR8aYT5txrI+AsSIyV6zLVHKje9gvrx8YT/8lY0wY+zV7rHjc\nghxejFpfQQz3sL3kee+KU4fDgKeddfeaGeBNar4eH4h90X886toWYa+N9ytzffixgieIFS83A9cY\njyWsGfXZDyuinok6xnPUPA8NnnszzukTrAB6RkROFpHMqHLysdafP4nIhSIyJMaxjwTeNcZUd/w3\nxgSd8zxERAJR+aPr2lKOwH69fyLqHNc4U/V9c9yq/ikiW7DiKIh96a3j9oQVjVX1HDP6OV4OpIlI\nzybUt3pfY4z7Eu79DUwA3jHGbPPkK6F5AUu+hz23KuzHiO8CFxpj3DKmYC23m6Ku2atALh5XOYem\n3qsjnWNGP7OPYy02hzSj3OrfjDFmO7AbeM8YU+rJ86Uz7+8mNPMev+q0Vy7Lnbl7P47AiqX7G6jn\nFKyYfCFGm+yWAfb39kMRmS0iE0UkvoEyFUVRWhUVQEpnw/1jd12vsrGuF8GoaYmzvbdn3qwAB9h+\nGJcDh2JfhApE5P9EZFAD+2R46uYlHyveekWlF0StV1Lb9aU1iK5PllOX26h73S6i5pplO/MnYuQ7\n1pOvIcLAwdgXvVOwrodzpHbfnqbWJ9eZb/cewNiO4vVF3Io+9yadk7HBLaZi78U/gG1i++8c7mwP\nYV+qP8e6A30jIt+IyIWeYzX0LPixLj8uEeeltjVwz/E96p7jUJxzdMTJ68AIrAvVJOy9eoLYz2BD\n7o6xnmPqKcdL2BhTFGNf7365RN1zh20x0upjCfbcxmEFcK4x5iHP9mzsR5Lo67XA2R79rDfV9TMD\n2B4lKsA+A+72ppQbNsYUR6VVYUVQdBrUuLo29x43dh/d69BQW5oNpGDdJL3X0v0Q4JZxC/Y3fyrW\nArxTbB+s6DZSURSl1dE+QEpn4wTsH+vHzvourEvRjHryr3PmO2lmnwHna/R9wH3On/L3sX2CnsaK\nolgUADkx0nOwVoroF5Z9QbR1xH3J+TO2L0N9+Xc582uAd2Lka1IHdGPMUmfxIxF5H/uVei62H1dz\n6uMVvdWIDWLRg9hEn3uTz8kY8xrwmmOpmYQT3lhEBhhjCo0xXwNniw1aMRbbN+ZBEVljjHmLhp+F\nMLVFW7PGn2oE9xzPxPb7iMYVHEdgfxM/9NwjGvgS35p1bA5bibrnDn2aUUax9xxjsAv4BisSYvFl\n1HpTr0UBkCUiPuP0oXHI8WxvSblNpbn3uDF2OvO+2OsVi13YPpDfq2f7Zqj+cHEbcJvTz2s6tg1I\nAM5rYf0URVGahAogpdMgIqdg/yTvMjWduF/BWhZKjDHRLyle/gPcIHbcj2XNPbYxZjfwtBOhqKGO\n3W8DvxCRQcaYdU69/djO4Z/G+Nq9zzHG7BaRD7EBHa5zhF4slmP7PxxgjJnTSsfOF5Hbgd+LHc9p\nUTPqsxb71f80nA7yDqdS4xrZGM0+J2NMBfC6iGRgxe8AalyDcF5sP3E6h5+D7fD9FvZZuFhE8owT\nFtlxBZqB7X/RoghmTeAdbD+NwcaYJxvI57p0Bt0EEckGftBG9WopHwCXi0gf1w1ORFKxrlatxSvY\n/odrjDHRomRveBsbsv9HWFdNl7Ow92hJrJ1akda+x+9i630JnqiKUbyCDfaRaIz5X1MKNTaYyn0i\nchL296MoitKmqABSOipjnX4XCdgXzhOxL76vYaMGuTyBjb70hoj8GduRPgEYghVLP3TE0l+wX8Rf\nF5HfYV9gM7ERmS6L4V6CiNyP/ZK5GOuCMwz7gvuf6Lwe/oJ9kXpNRG7Gfm2/wtn3hAb229f8Atu/\n5iUReQTrkpOFtcoEjTE3GmPCTtS1Z5z+T89hv+7mAIcDq40xd7fg2HcDM7GR+hY1oz5B597NFZF7\nsf0lhgHXYvscRGiEpp6TiFyJdRV6BevukwVcj3Xj+VJEDsFGuPonNlBDPNZdrwobGANsQIyzsc/m\nrU4dr8Q+zxc185pFIyJyaoz0TcaYD8SGYP6z2KiEr2Kf477YCGAvG2Oexb7MlmJfPGcD6djIXNuw\nbmIdhT9ix436j4j8FtuP5ZfYqHqt5S76B6yQfk9E/ooNxJCGHdvnUGPMKS0s9wWsyHnIuRdfYdul\ns4GbjTFtPVhqq95jY0yBiNwE/NGxfD6NDebwHaDQGDPfGPOKiPwftg/QHMC1PO2HbQN/boxZLyIv\nAx8Cn2IDkIzHWo3+0vLTVRRFaRoqgJSOittp2A23+wnwY+BZr4XAeSk+HpiF/Sq5H/YP/1ts5+oq\nJ98ep//G75y8vbEvAW9S4zcfzf+w4uocrIvVFmzn5Zvrq7QxZouITMKGh70XSAQ+A07wdLhud5yX\n5EOxL0N3Y1+MtmNfVu715HteRI7Gvvz/HdtxeytWFD7ewmOXOVagu0RkqjHm5WbU525HuPwce2+W\nYUMGv0H9/YCij9+Uc/oUG83q91jxswv7xdsVYpudfdxwzOXY/kA/ME7IbuclbxI2itf9WJH0KTby\nmDcEdkvwUbdjPVhBd6ox5m9ix+uZCZxLTajmt3GsV86zegr25f85rNCbg+1T94u9rF+rYWxY8mOB\nv2I/eGzHDqI7CPsBozWOUeA8fzdjI0jmYt1Vv8QJztHCckNO+3SnU24GNhDFz1v48aC5x2/1e2yM\n+ZPz/M/EWmKrsIErbvVkm+GUfz72N12BteC+So2L5jvYIQ2uxArZDdj2+Y6W1EtRFKU5SP3eJoqi\nKB0fR2S8iw27G0sUKF0Mpw/L51iXtY5kWVUURVE6AWoBUhSl0yAiw7DuY+5gs6OwlpzVwMJ2rJrS\nhojIHcAqrJUgE9sPbzh2IE1FURRFaRYqgBRF6UyUYyOu/QQ74GcBtk/Wr5yoUkrXxIcNm5yHjaD3\nGXBiK7gSKoqiKN0QdYFTFEVRFEVRFKXboAOhKoqiKIqiKIrSbVABpCiKoiiKoihKt0EFkKIoiqIo\niqIo3QYVQIqiKIqiKIqidBtUACmKoiiKoiiK0m1QAaQoiqIoiqIoSrdBBZCiKIqiKIqiKN0GFUCK\noiiKoiiKonQbVAApiqIoiqIoitJtUAGkKIqiKIqiKEq3QQWQ0i0QkckisqmNyh4kIkZE4tqifEVR\nlK6CtsWKonQEVAApSjMRkXUicmw7HHeGiLwvImUi8t99fXxFUZSORDu2xX8QkY0iUiQi60Xk+n1d\nB0VR9g4VQIrSeSgA/grc2d4VURRF6cY8BBxojEkHJgJnicjJ7VwnRVGagQogpU1wvsxdJyKfi0ip\niPxdRPqIyMsiUiwir4tIL0/+Z0QkX0QKReQdETnQSU8Qkc9E5OfOul9E/iciNzVy/CQReUREdovI\nSuDgqO15IvKciOwQkbUicqVn2y0i8qyIPO3U9RMRGeNsWwAMABaJSImI/NJT7FkiskFEdorIb/b2\nGkZjjHndGPNPYEtrl60oStdE2+I2aYu/NMYUeZIiwP6tfRxFUdoOFUBKW3IKcBwwDJgGvAxcD2Rh\nn70rPXlfBoYC2cAnwBMAxpgq4GxgtogcAMwC/MBtjRz7ZmCIMx0PnOduEBEfsAhYBvQFjgF+ISLH\ne/Y/CXgGyAD+AfxLROKNMecAG4BpxphUY8wfPPtMAoY75d3k1LcOIjJLRPbUNzVyXoqiKM1F2+IY\n7E1b7OxbAmwCUpy6KYrSSVABpLQlc40x24wxm4F3gQ+NMZ8aYyqA54HvuBmNMQ8ZY4qNMZXALcAY\nEenhbFsB/A74F3AtcI4xJtzIsWcAtxljCowxG4G/ebYdDGQZY2YbY6qMMWuAB4Afe/J8bIx51hgT\nBOYAAWBCI8e81RhTboxZhv1DHxMrkzHmTmNMz/qmRo6hKIrSXLQtjsHetMXGmDuBNOC7wAKgsJE6\nKYrSgVABpLQl2zzL5THWU6HaleJOEflWRIqAdU6eTE/+R4GBwEvGmK+bcOw8YKNnfb1neSCQF/Wl\n73qgjydP9b7GmAj2K19eI8fM9yyX4ZyfoihKO6NtcRtgLJ9ir+GtbXEMRVHaBhVASkfgTKybw7FA\nD2CQky6ePPOAfwPHi8ikJpS5FejvWR/gWd4IrI362pdmjPmBJ0/1vo6bRj9q+t6YJhy/XkTkesdn\nPea0N2UriqLsBdoWt6wtjsO6+CmK0klQAaR0BNKASmAXkAzc7t0oIucA44Dzsb7qj4pIY1/0/gn8\nWkR6iUg/4OeebUuAYhH5ldNB1y8io0TE2zl3nIicLHY8iV849fvA2bYNGNySEwUwxtzu+KzHnOrb\nz6lnAPtn6xORgIjEt7QeiqIoUWhb3EhbLCI+EbnUOR8RkUOAnwJvtLQeiqLse1QAKR2Bx7BuEZuB\nldT8uSEiA7Chn881xpQYY/4BLAX+0kiZtzplrgX+g/XRBsDxWT8RGOts3wk8iP3i6fICcDqwGzgH\nONnxQQe4A7jBcdm4tiUn3ELOwbpa3Asc4Sw/sA+PryhK10bb4qbxI+BboBh4HJjrTIqidBLEmL2y\nICtKl0NEbgH2N8ac3d51URRF6a5oW6woSluhFiBFURRFURRFUboNKoCUTovYgfxidV69vr3rpiiK\n0l3QtlhRlM6GusApiqIoiqIoitJtUAuQoiiKoiiKoijdhrj2rkBzyczMNIMGDWrvaiiKojSbjz/+\neKcxJqu969EaaFusKEpnpCu1w0rL6XQCaNCgQSxdurS9q6EoitJsRGR9e9ehtdC2WFGUzkhXaoeV\nlqMucIqiKIqiKIqidBtUACmKoiiKoiiK0m1QAaQoiqIoiqIoSrdBBZCiKIqiKIqiKN2GNhNAIvKQ\niGwXkRX1bBcR+ZuIfCMin4vId5tU8PLl4PPBoEHwxBOtWWVFUZQuh7bFiqIoilKbtrQAPQJMaWD7\nVGCoM10C3NukUquqwBhYvx4uuUT/eBVFURrmEbQtVhRFUZRq2kwAGWPeAQoayHIS8JixfAD0FJHc\nZh2krAx+85u9qKWiKErXRttiRVEURalNe/YB6gts9KxvctLqICKXiMhSEak76MSGDW1TO0VRlO6B\ntsWKoihKt6JTBEEwxtxvjBlvjBlfZ+OAAe1QI0VRlO5Hg22xMTBjBixeDMFgO9ROURRFUZpGewqg\nzUB/z3o/J63pBAJw222tWSdFUZTuRuu0xePHw8KFMHEiHH00PPww5Odb9zhjWrO+iqIoirJXtKcA\nWgic60QgmgAUGmO2NrpXQgKI2OWxY+Gss9q0koqiKF2cvWuLBw6EBx+E996Dd96Biy+GlSvhggus\nEJozBz76yLrIFRVBONzmJ6QoiqIoDSGmjb7MiciTwGQgE9gG3AzEAxhj5ouIAHdjoxOVAT8xxtT1\nK49i/PjxZunSpXDRRfDoo/DppzBqVJucg6IoSmsiIh/HdB9r22O2bVscTVGRFUALF8JTT8HatZCX\nBz/+MZxwAqSkQEaGnVJTITGxtU5VURSlUdqjHVY6Hm0mgNqK6j/djRthyBCYPh3++U87HoWiKEoH\npiv98dYrgMBaebZtsyGyP/wQ/vEPawVKS7NC6LTTID3d5g0EIDvbricn11j4FUVR2oCu1A4rLSeu\nvSvQYvr3h/POs37mH38MBx/c3jVSFEVRAPx+a/VxLT0TJsCaNbBgAfz97/DII3DiifCTn8B++9kP\nWsbY/TIyoHdvaymK67x/UYqiKErHpfNagKDGCjRlCjz7rPVJVxRF6aB0pS+PDVqAvBgDe/ZYV7hQ\nyLrIPfaYbbPLy2HSJLjwQjjsMIhEbFowaC1BaWmQlWVd5QKBtj8pRVG6PHvTDn/88cfZcXFxDwKj\n6CSRlLspEWBFKBS6aNy4cdtjZejcn9f694dzz7VWoMWL4aij2rtGiqIoihcR6NXLipmtW63ImTkT\nfvYz20dowQJrCTrgABs4YepUK3iMgcpKazkyxvYVysyEnj2tq5y6PSuKso+Ji4t7MCcn54CsrKzd\nPp+vc1kQuhGRSER27NgxMj8//0Fgeqw8nf8f5OabrZvEH/4ApaXtXRtFURQlFnFx9qPV6NHWWh+J\nWMvPW2/Z4QyqquC66+DYY+Ghh2x7HghYwdOrF8TH27DaX3xh3Z6/+QZ279YxhxRF2ZeMysrKKlLx\n07Hx+XwmKyurEGupi51nH9anbejfH845B155xYZg7WQufYqiKN2K5GRr7Rk61Lq7lZfDKafAv/8N\n999vw2r//vfWov/731urEVgBlJ5eY00qLobVq+GTT6wo2rZNxxxSFKWt8an46Rw496lendP5BRDA\njTfaP8e5c+0XQUVRFKXjImIDHYwZY93aCgqsu9tRR9n+Qc89B5Mn26EOjj3WWoZWrarZ3+ezQRJ6\n9bJTJGIjzi1fbodGWLMGdu6EkhK1ECmK0mXIz8/3jxgxYuSIESNGZmZmjsnOzh7trldUVDQphOap\np546aNmyZQ2OP3DHHXdk3XvvvRmtUefHH3+854gRI0YOHz585JAhQw6cM2dOZmuUu7d07iAIXi64\nwP5ZPvccTJtmowkpiqJ0ILplEISmUFJiRUt5ubXyuO335s22XX/mGWvdmTjRtvWTJtUfLjsUsmKq\nqqomLT7eWo3S0yEpyfYn8g6qrShKt2Fv2uFly5atGzNmzM4m7zB/fgazZ/clPz+BnJwqbrppM5dd\nVtCSY0czc+bMvNTU1PDs2bO3edMjkQjGGPwd4D24vLxcBg4ceNCSJUtWDRo0KFheXi5ff/11wujR\noytbWmZzzm/ZsmWZY8aMGRRrW9ewAAHccIP9k7v/fusKoSiKonQOUlPtgNb77Wdd24qKbHrfvnD9\n9fDf/8I118DXX9tBsKdPh+efry1yXOLialuHevWyoqeszFqJVq2CZctg6VL48ksrsvbsseIrEtmn\np60oShdm/vwMrr56IFu3JmAMbN2awNVXD2T+/FaxrHhZsWJF4pAhQw6cPn36fkOHDj1ww4YN8Wec\nccbAUaNGHbD//vsfeO211+a6eceNGzf8/fffTwoGg6SlpY294oor+g4fPnzk2LFjR2zevDkO4Mor\nr8ybPXt2tpv/iiuu6HvQQQcdMGjQoFGvvfZaCkBRUZHv+OOPHzJkyJADp0yZMnjUqFEHvP/++0ne\nehUUFPiNMWRnZ4cAkpKSjCt+NmzYEHfMMccMGTZs2Mjhw4ePfPPNN1MAbrjhhj5Dhw49cOjQoQfe\ndttt2fWd3z//+c/0sWPHjhg5cuQBJ5xwwuCioqJmaZrOHQXOy+DBcOaZ9mvhe+/BSSfpCOOKoiid\nBZ/PDojao4cd4mDHDiuMEhNt2iWXwPnnw4sv2iAJs2bBnDk2Eujpp1vrzqJFNm3rVsjNtdHmXI+A\npCQ7uUQi1j1u61Y7cKuI7T+UkmKtRWlp9tiBgHoUKIpSlwsu6M+KFcn1bl+2LIWqqtpm5ooKH1dd\nNYiHHsqKuc+oUWU89NDGllRn7dq1gYcffnjtkUceWQbw17/+dVOfPn3CwWCQCRMmDP/44493jxs3\nrsK7T0lJiX/y5MnF8+bN23zRRRf1u+eeezJvv/32/OiyjTEsX7581RNPPNFj9uzZeccdd9zXd955\nZ3Z2dnbw1Vdf/Xbx4sVJkyZNGhm9X9++fUNHHnlkUf/+/UdPnDix6MQTTyy86KKLCvx+PxdffPHA\nY445puj666/fEQwGKS4u9r355pspzzzzTO9PP/10ZTAYlHHjxh1w3HHHFScnJ0e857d58+a4P/7x\nj7nvvvvu6rS0tMivfvWrnNtvvz37zjvvrFP3+ug6FiCA3/zGujU88oj9A1UURVE6F4mJsP/+cOCB\nVpjs2WPnYNv3H/0IFi6EBx+0+f70J9t36KKL7H/Ali1WyGzZYj0DFi2KfRyfzx7LDazQs6edAHbt\nstamFStsxLlly+Dbb60oKy6ObXlSFEXxEi1+GkvfS/r371/pih+Ahx56KGPkyJEHHHjggSPXrFkT\n+Pzzz5Oi9wkEApEZM2YUAYwbN65s3bp1MQfUPO200/YATJw4sWzTpk0JAIsXL04966yzCgAOO+yw\n8iFDhpTH2ve5555b99JLL60eN25c2Zw5c3LOPPPMgQAffvhh2jXXXLMTID4+noyMjMjbb7+dOm3a\ntN2pqammV69ekalTp+558803U6PP780330z95ptvAgcffPCIESNGjHz22Wd7r1+/vllWj65jAQJr\nBTr9dDuuxEcfQZ8+9iueoiiK0rlIT4eDDrIuzZs2Wde21FS7TQSOOMJOq1ZZi9DChXXLqKiAP//Z\nWoGagogVWdGDarsDuO7aVZPm99dYipKTraVI+xUpSvehMUtNXt5BbN1aV1Dk5laxZMlXrV2dpKSk\nah/e5csy75qEAAAgAElEQVSXJ9533319li5duiozMzN80kkn7VdeXl6ncYqLi6sOBOD3+004HI7Z\ngAUCgUhjeRri0EMPLT/00EPLL7jggl2jRo0aBayH6khtTcJ7fsYYjjrqqKJ//etfa5tbF5euZQES\ngV//2n7VW7DAjjzeyYI8KIqiKA5+P+Tl2bGDUlKsAIm2vhxwAPzxj/ULj61bbfCEGTOsS9xf/mKD\nKixebD0FQqHG6+H2K3KtRO5grOXlVpx99ZW1En30EaxcadN277b9jrRfkaJ0T266aTOOcKgmEIhw\n002b2/rQe/bs8aekpIR79eoVXr9+ffw777yT3trHmDBhQsmTTz7ZC2DJkiVJa9asqWNhKigo8L38\n8sup7vqSJUuS8/Lyqpz9i/74xz9mAYRCIQoKCnyTJ08ufvHFF3uVlJRIYWGh75VXXun5ve99ryS6\n3KOPPrrkww8/TF25cmUC2P5Iy5cv78YWILAuEaedZgXQOefYP8/MDhFxT1EURWkJgQAMH25Fxdq1\nVlikp1s3NpfcXOv2Fk1aGhxzjBU7n38Or75aW/T4/ZCTA/362XHl+vWrvdy7d2xxFatfkTFWoG3b\nVuO2Z4zNk5pqLUTx8Xby++tOPp9akBSlq+BGe2ujKHANcfjhh5cNHTq0YsiQIaPy8vIqx40bV0dE\n7C2zZs3aftppp+03ZMiQA4cOHVo+ePDg8oyMjLA3jzFG7rjjjtzLL788MRAIRFJSUsIPPvjgOoD7\n779/w/nnnz/okUceyfL7/cybN2/d0UcfXXbKKafs+s53vjMS4IILLthxyCGHlK9YsaKWuOnfv39o\n3rx562fMmDEkGAwKwK233rr5oIMOanJ0ua4TBtvLihVw6KFw5JHw29/C2LH2C56iKEo7omGwW4FQ\nCPLzrZUlMdFaZsD29bnhBuv25hIIwO9+V9sFzru/O23caKPBbdpk+/l4SUqqEUWxptRUGmTRIuuG\nl59v3bIvvxyOPz620DHGiqS4uNpzVzipaFKUvWafhsHuwgSDQYLBoCQnJ5vly5cnTpkyZdi6deuW\nx8fHt3fVqmkoDHbXVAXDhlkr0GOPwXnn2T+d/v3bu1aKoijK3hIXZ4VHRgasW2fd4tLTa0ROrChw\nsfbv1y92+eXlNWJo48baImnJEigtrZ2/V6+6ViN3+eOP4ZZbakRZfj7ccYcVbfX1SwqH7VRZWeNC\n5071iab4+BqxFB+voklRlDansLDQf9RRRw0LhUJijGHu3LnrO5L4aYyuKYASEuDKK+HZZ21Y7EGD\nrBtcUh33REVRFKUzkpxs+/8UFNS4xZ14YtMDHtRHUpJ1pd5//7rbjLFR6aLF0aZNtu/P66/b0NoN\nUVFhRdG2bVYIpabWP09ObppQcUVTVZUtPxKx6w2Jptdeg3nzrCjLzbX9Z884wwqkuLjac1/X6i6s\nKMrek5mZGf7iiy9WtXc9WkrXFEAAI0ZYK9Ajj9ixI3r1sj7kiqIoStdAxPbRSU+3Vpv8/Lr9clr7\neO7gqgcdVHd7OAzbt9eIo1//OnY5JSU2cENj+P11hZE7NSScYs0TE2vE0KJFcNttNZapLVvguuus\nNW3KlJoxkdx5XJy1JgUCNXPXRS9aMKllSVGUTkDXFUDJyXDppdYK9NBD9otbYaEdUE9RFEXpOsTH\n11j61661wRKg5mU8Eqlx/xKpsWr4fDVprYHfb60publwyCEwd27swAx5eXZA15IS61JX39ydvOnF\nxdbFz5velL68biS7lBQr0qKj31VU2Ah52dlWVGZk2CklxZYfCtk8JSU1FqZooeQeJzHRCiTvPJZl\nScWSoijtRNcVQAAjR1or0MMPw8UX26+Co0erOV9RFKUrkpoKo0bZ/jPuS7rrChYMWhexqqoad7HK\nSvti7w1V7b6Uuy/0rlByxVJzhNPMmbEDM8ycaT/SJdc/iHyTMca6/zVHSD3/fOyyCgvhiitqpyUm\n1oghrzDq3bvuekaGFTz1iaXoerv9lbxCaeFCG7hi0ybbl+rWW+34fiI1ZXjnDaV70xRFUTx0bQGU\nlgY/+Ym1At13n21Ud+ywQREURVGUroeIFRnNwdtnxiuawmErnLxTVZWdl5bW7mPjWkK8y5MnWwF0\nzz3WPS8nB666CqZOrREF3pf1lp6va9nJzm7aPh9+GNsy1aeP7Re0a5ftW1VQUHf5m2/svLKeaLPJ\nyU0TShkZNfeprMxatl58EW6/vUYwbtxoBdnGjdY1rz6ir3007kdPV7x600RqgkJEL7vTokXwpz9Z\ny1teHlx/vRVl9Ynj1rYsKorS6nRtASRirUAzZsDf/w6XXVbjwx090reiKIrSPfG+GDcHY2oEU7SA\ncq1MZ55p/4OCwZpobt5ld4qmsZfnWC/60S/uXiuI98X+yitrR6cDK0auu85a0Jpy3mVltQVSLNGU\nnw9ffGGX6xtwNj29Rhh98UXtOoFdnzOnpt+RN9JddMS7+pa99XavW6xl935601980Q6n4dZr82a4\n5hr7MdUVZbGsW2Cvudftz53cqH3eIBPRAsorpBTFIT8/3z958uThADt37oz3+XwmIyMjBPDZZ5+t\nCgQCTRrb5q9//Wvvk08+uXDAgAEhgFNPPXXQjTfeuHXMmDFNHkenPq699trcf/3rXxk+n8/4/X7m\nz5+/7qijjirb23Jbm64tgMCO2H3WWXbk73nz4Pe/tw3Yfvu1d80URVGUzoxIzYvs3mKMFULel/GG\nplh5o0WVO7mCzM3jRsq7666a8YkuuwwmTbL9p6ItWdEv6X5/jdWpKUNMGGMtPLt22Wn37pplr2iK\nFj8uhYXwq1+1/Nq6g8/WJ5QaSnv55dii7C9/secfCNSdkpKsO18gUCNkIhEbYt29b+69ccVSfSIK\naoslr3hatKjmnaZvX7jpphp3QVfwxrJudccw6E88Ab/5DWzYwGiIEcGkbZj/0fyM2e/M7ptfkp+Q\nk5pTddORN22+7OCWD4Sak5MT/vLLL1cCzJw5My81NTU8e/bsbc0tZ8GCBZmHHHJImSuAnn322XUt\nrZOXV155JfWtt95KX7FixcpAIGC2bNkS5w5U2lKCwSBtEV676wsgv99GhPvxj+H++2H9evslKju7\nZgA9RVEURWlPXKGxrxg5sraoiLZeuVMoVNN3ynUBrKiw8/rczmKJppQUa+1p6OPj0UfX75r3+ON1\n6+Ht19XctFjbCwvrppXV8+G6sNBazJqC328FUVJSbMHkboueu9sTEmrmiYlWBH38sQ3wVFVlj7Fp\nE/z853b+gx/UFbGx3AS940K5czeSX1xczbq73XXrixZS0fOnnoIbb7Sui/372+4HZ5xRc+yGrHAt\nXXatqF6Lqrv8/PMwa5YVoEA87BMXoPkfzc+4+j9XD6wIVfgAtpZsTbj6P1cPBNgbEVQfc+fO7X3/\n/fdnB4NBGT9+fMmjjz66IRKJcNppp+23cuXKJGOMnHfeeTv69OkTXLVqVfKZZ545JBAIRD777LNV\nhx9++LC5c+duOPjgg8szMjLGnnPOOTveeOONHklJSZEXX3zxm759+4aWL1+eeNZZZ+1XUVHhO/74\n4wsfeeSRrOLi4s+8ddi0aVN8RkZGyLVE5eXlVZt+33zzzZSZM2f2Ly8v9yUmJkb+97//rRYRc+65\n5w5csWJFclxcnPnzn/+8cerUqSVz5szJfOmll3oUFxf7fT4fixcvXn399dfnLFq0qFdlZaVMnz59\n95/+9Kete3O9ur4AAhsZ6PTT4emnrS/2nDlWCB1wQPf7CqIoiqIo0biWiuZ8aY0lmGKJpmCwrmjy\nYow99hVX2JflaNe8a66xL9Lt8X/dkCh77DFb18am8vL6t5WW1li/oqfmUlkJs2fbybVoxXILjGXt\n8g6kGz0lJNRYn9x93Wh/bprr2rdkCTzwQI0w27DBBqH66COYONE+G+4z0tDzU1+e6LSGynHdUt94\no2XXsxEueOGC/iu2r6g3ksmy/GUpVZGqWg9tRajCd9UrVw166LOHsmLtMyp7VNlDJz20sbl1+eij\njwIvvPBCz08++WRVfHw8Z5xxxsAHHnggY9iwYZUFBQVxq1evXgmwc+dOf2ZmZnj+/PnZc+fO3TBx\n4sTy6LJKSkr8kydPLp43b97miy66qN8999yTefvtt+dfccUVA37xi19su+CCC3bffvvtMet/8skn\nF/7hD3/IHTRo0Kgjjjii6KyzziqYMmVKSVlZmZxzzjmDn3766W8nTZpUtmvXLn9SUlLk5ptvzklM\nTDSrV69euXTp0sD06dOHrlmzZgXAypUrk5ctW7YyKysr/PTTT/fYsGFDwrJly1YZY5g8efLQ1157\nLeW4444rjVWPptA9BFB8PAwZYn2x773XduLs18+a4TMy2rt2iqIoitL5cK0CTcX9Uh/rRTUYhHPP\ntUEU3IADOTnw059aEbJnT+2yoq0Z9Qkrb/5YAQ6iXcKiXcbqi+R33XU29HpbYYwVNOXldecVFXZ8\nw/q44ooaAeqdYlm39uyJbR1zp6aEWG+MykobEn7u3L0vKxbx8TXPousq6F1uA/HTFKLFT2Ppe8PL\nL7+c/vnnn6ccdNBBIwEqKip8/fr1q/rhD39YuGbNmsD555/ff9q0aYU/+tGPihorKxAIRGbMmFEE\nMG7cuLJ33303FWDZsmUp55133tcAF154YcEdd9zRN3rfjIyMyBdffLHylVdeSXvjjTfSzjrrrCGz\nZ8/eOHbs2PK8vLyqSZMmlQH07t07DLB48eLU6667Lh9g/PjxFdnZ2cEvvvgiEeDII48sysrKCgO8\n+uqr6W+99VaPkSNHjgQoKyvzrVq1KtBhBZCITAHuAvzAg8aYO6O29wAeBwY4dfmTMebhNqlMdjac\ncgo8+STcfbed1q2z4wJpJ0NFUbooHaodVro3rmtcQ/+5V18NV19NxEQQBPEKm/r6P3nX61v2WgTc\n0OfePlKxAlSEQrZf1KxZMH8+bNtmLT+XXw5HHFHTXypWBMDoZe85eMdNir4+0aG8XctKampNOtix\nprbG8ADKzbX1q6/M+tJi4Y7/VJ84iiWsfvrT+sv7619rC5RYwiVawHj7P9U3lpT3esZykTvuuNjX\nai9pzFKT9+e8g7aWbK3jbpebmlu15OIlX7VmXYwxnHHGGTvvuuuuOubKL7744ovnnnuuxz333JP9\n7LPP9nryySfXN1RWXFxc9cPp9/tNOBxulmCLj49n2rRpxdOmTSseOXJk+TPPPJMxduzYOpamxkhO\nTq6ODmOM4dprr9169dVX72xuOfXRZgJIRPzAPcBxwCbgIxFZaIxZ6cn2U2ClMWaaiGQBX4nIE8aY\nqlavUFKSNaGffbYVP6tWwYABtkHLy2v1wymKorQ3Ha4dVhTsy0woEiIYCdp5OEh5qJzyYDkVoQoq\nQhVEjH338YmPOF8cPp8PP37ifHH4fX784sfvs+tums/nw+f34RMfgg+fxNllEXziq57qCKuGKwsH\nH2ytQG7fkob6ojS2vaH9HOFlHPEWCdvuEyYStpMx1XPfzKuIv/EWxGPdMIEAwSt/ijEhxBgk4ohI\nwIcPie4r4517iR7g1r1WrvtbQ8IuJ8cG1ogmJwcOOyx2ubGueaw8riALhWrCsHutdRA7zPlVV9WN\nergPuOnImzZ7+wABBOICkZuOvGlzax9r6tSpxTNmzBgya9as7bm5uaH8/Hx/cXGxPyUlJZKUlBS5\n4IILdo8YMaLikksuGQSQkpISKSoqatbX/9GjR5cuWLCg5/nnn7/n4Ycfjuk+9cknnwQSEhLMqFGj\nKgE+++yz5P79+1d997vfrdiyZUvCe++9lzxp0qSygoICX3p6emTixInFCxYs6D116tSSTz75JLBj\nx474Aw88sPLtt99O9ZY7ZcqUojvvvDP3wgsvLEhPT498++238cnJySY3N7ee8JKN05YWoEOAb4wx\nawBE5CngJMD7x2uANLEtUSpQALT4ZBolNxd++EPbmXLuXBsUYePG2uMRKIqidB06XjusdHmMMbXE\nTVW4iopQhRU5oXIqQ5UYY6wIMWAwtYRMemJ6tUAxxhAxESImgsGWWxmurF73bgcQBIOpJXCMMY4M\nsMeC+oWVmx4ttFzh5B7TLct7/IYmN68xhggRIpEIESIx96/GNdL4xb6tGSfNAGccTUZiJf1/fy8J\nW7ZRldeHjbMup+CHx4FUVV/XWmUZPEKwRhz6xY8fHz4RRzgKPnz4BCfdh198TpogBsSZ2+uCTUOI\nu/UmEn5xDVJe88HfJCUR+e1sOGCErYrPEaFe18OmWKlibWsKo0fbbg9OFLjgPvq44wY6aM0ocPVx\nyCGHlM+aNWvL0UcfPSwSiRAfH2/mzZu33u/3c/HFFw9yf2+33XbbJoBzzz1352WXXTbIDYLQlGPc\nc889G84+++zBt99+e97RRx9dlJaWFo7OU1xc7LvqqqsGlJSU+H0+nxk8eHDFo48+uj4pKck89thj\na6644ooBlZWVvkAgEHnvvfdWz5o1a/s555wzcNiwYSPj4uLMgw8+uDZWKO/TTz+9cNWqVYHx48eP\nACvgnnrqqTW5ubktvmbi/pBbGxE5FZhijLnIWT8HONQY8zNPnjRgITACSANON8a8GKOsS4BLAAYM\nGDBu/foGrXf1YwwsXw4PP2xNsU89Bfvvb93g9t+/ZWUqiqI0ERH52Bgzfh8er9XaYSdv67TFSqcm\nYiIEw8FqK05VqKqWBacyUgnOCzFiBUi8Px6/1FhsmmyBaSOihZW7bnDmnvVqAeWcSzQiUm1V8lqX\nYi03lNYsy9RenHe1GHPONVZ6Q3On8rj6yhWyblrG8y/T//fzo4TZlNrXz8nrnne0dU5cEeaKJaRm\nOWofV8jFKse7Daxg65nUs8Xt8LJly9aNGTOm1dywOhNFRUW+1NTUiM/nY968eRkvvPBCr1dfffXb\n9q5XQyxbtixzzJgxg2Jta+8gCMcDnwHfA4YAr4nIu8aYWp20jDH3A/cDjB8/vuWKTcR+BZg2DR59\n1LrC/f3vdkCzPn0gLa3lZ6IoitI5aVI7DK3YFisdmnAkXMuCUxmupDxorTcVoQqC4SBgX17dL8tx\nvjjiffEkxCWQ7Ks3MFaHocby0b36AFeLgTbUWZEzz2D9mWfUSutZT95oa5prtfIKtOo8kdh5GisH\nqDlfU2tNaQbvvPNOyrXXXts/EonQo0eP8KOPPrq2veu0N7SlANoMeEdI6+ekefkJcKexT+g3IrIW\n+xVySZvVqmdPO11wAfz5z/DJJ3Y8hLVr7QjYLRkNXFEUpWPSMdvhbkYoEqIsWBbTetBUarkztWT/\neo5tMFQEK2pZcFzXLEEwYvBR4xaWFJdEakJqzLKUfcuirxYx54M5bC3eSm5aLjMnzGTa8GntXa1m\n1ctrDdsXsmRP+Z7GMykxOfHEE4tPPPHElY3n7By0pQD6CBgqIvth/3B/DJwZlWcDcAzwroj0AYYD\na9qwTlbg9O0LJ54Ijzxi+wI9/HDNaNSZmW16eEVRlH1Ix2yHuwlV4Sp2lu5kc/FmG9WsBe5N9QkX\nacHbYp0+ITaxVjCB1MRUfKIfAjs6i75axA1v3UBFyHbs31K8hRveugGgXUVQR62XokTTZgLIGBMS\nkZ8Br2LDrz5kjPlCRC5zts8Hfgs8IiLLsc3xr4wxbe9bmZFhxxq48EL4wx9g6VIYO7YmLHZzBoJT\nFEXpoHTodrgLUxGqYFvJNvJL8hGEtMQ0/L7u5WqltD6lVaXkl+azvWQ7v3v3d9Uiw6UiVMGNb93I\nh5s/rNWXpro/DL7aaU6fGYSafjP1pFX3y4mVRk0/m3lL58Ws1+3v3U6vpF4E4gIk+BMIxAVI9Cfa\neVwiif5EEuMS20x8e61S9GHUXhQViUQi4vP51AW4gxOJRASIEebQ0mZBENqK8ePHm6VLl+59QRs2\n2OlHP7KDpD72mB0QLCfHhsdWFEVpZfZ1EIS2pNXa4i5EaVUpW0q2UFBWgN/nJy0hrd07+3c2Oqpb\nV1tijGFPxR62lVrRvK1kG/ml+eSXWLGTX2rTiquKm1Redkp2raAFbjAHDLUiz7kWQW/QB6BW35u9\ndb1sLvG+eAJxgdpCySOQAn5nvYFlV1i5+3+69VMeWfYIVWEn+Nt9YLaYFv0wly1btjAnJ2dkVlZW\noYqgjkskEpEdO3b0yM/PXzlmzJjpsfK0dxCE9iM72w6MdfHFcMcdsGSJjfW/ZYt1g0vu+J04FUVR\nlPbFGENxVTFbirewp2IPCf4EegZ6qvBpAR3VfWpvRFk4EmZn2c5qcZNfkl9L6Gwr3ca2km1Uhitr\n7ecTH5nJmeSk5rBfz/04rN9hZKdkk5OaQ05qDtf85xq2l26vc7y8tDzeOu+tVjlvl+iABNFR5Lxp\nJz55IvkldccBykrO4q6pd1EZqqQyVElFuKJ6uTJcaaMHepbd0One5cpwJcWVxdXL0fn3BaFQ6KL8\n/PwH8/PzRwHqK9pxiQArQqHQRfVl6L4CKBCAXr1sRLgHH7R9gRYssIN8bdwIw4e3dw0VRVGUDkrE\nRCisKGRj0UbKqsoIxAfISIo5NqBSDxWhCnaU7mBb6TZ2lO1g9juzY7pP3fzfm/l297ckxiWS4Euo\n/sof74+vsQ74E0nw220J/gS77K+xCLhpzRWmDYmy7w/5PttLt9cSNfkl+dVp+SX57CzbSdjUHi4l\n3hdPn9Q+5KTmMDp7NNmDrbDpk9KnWuBkJmcS56v/Fe2XE39Zq14AgbgAMyfMbNb5NQVviOnGuPaw\na2PW61eH/4pxueNavW4uEROpEUqOMKoMWXF06jOnttpxxo0btx2IaVFQOhfdVwCBHRi1oAAuuQRu\nuw0++AAmTIBdu6Cw0PYHUhRFURSHcCTM7vLdbCzaSFW4iuT4ZDKSVfh4iRY220u3s710OztK7bKb\nVlRZJ9J6TEqDpcxfOr9V3LFcYdQUsZQYl8jr374eU5T98rVfcu1r19YpPyU+xYqZ1D4c3v9w+qT2\nsWInJac6vVeg115bCF0LVEdzF2yvevnEV+06F01eWh5bire06fGVzkf37QPksnw5VFbCCSfYvj+P\nPw7BIIRCcNBB4NeOq4qitA7aB6jzEgwH2Vm2k81FmwmbMCkJKST4E9q7Wi2mJW5dXmHjFTKusHHT\nYgmbeF88WSlZZCdn23lKNtkp2WQl2+WslCwuXXQp+aV13afy0vJ489w37aCr4SqqwlVUhirt3PnS\nXxWpoirkWXe3hSvtWEaOVaDWPm5ZMdbdY2ws2ljv9bjq0KtqWW76pPbREOEdkGgr3t70AVK6Dt3b\nAgR2YNTVq+HSS+G3v7VWoMMOg9JS2LnTDpCqKIqidEsqQ5VsL93O1pKtAKQmpDbomtQZiOXW9Zs3\nf8Oa3WsY2ntos4WNK2SG9BrChH4TYoqbplg9rp0Y231q5oSZiEi1ZWZfcvSjR8e0HuSl5XHFwVfs\n07p0NLx9f4A6y0C165xPfO3WLy7aKmUiZt90GFI6NGoBikTgs8/s8g9+YMcI+sc/bHpxsQ2PndB5\nv/IpitJxUAtQ56EsWMbW4q3sLNuJX/ydbnwcYwyFlYXsKN3BzrKdbC/bzs7Snewo28FTK56iPFTe\n4P6usIkWMt717JTsVg/40NGiwNWxHmBF2e+O/l27u5uFIiGqwlUEw8Fa4gMAATGCwdj7Y6g19hNC\n9WC3iE2LzuvdXl22kxeoFja1lsURPU58gAgRwpEwoUioOsqcO4ZV9fHcannqXyvkttSIqOjjNfc3\nuad8D4f2P/QTY0zbdUhSOgWd+zNWa+AOjLpunbUCzZ4N778Phx9ut23aBIMHt3ctFUVRlH1AcWUx\nW4u3UlBeQEJcx4voVhWuYlfZLnaU7bCTK3BKt7OzzAqcnWU72VG6g2AkWGf/QFygTp8WLwt/vLBN\nhE1TmTZ8WrsLCy8dpa9NMBysdudzRUq8P560xDTSEtLqWFmqx+lxxEas5ei89S3Xt19z8UaOcyc3\n/Hb1urPdFU1hE661HIqEiEQiBCNBQpEQoUioum7e47j1r07zhPxWFFABZOndG9avh1NOgQcesBHh\nJk6EtDTYts26waWktHctFUVRlDbAGENRZREbizZSUlVCoj+x1QIbNMWi4YbS3lG6o5aAcUWOd31P\nxZ6Yx8lIyiAzOZPs5GwG9xxMVkoWmcmZZCVnVS9np2STEp/C9x77Xr1uXcMzNQJqNPtSlBljqvs6\nBSPBamtLID5Ar0Av0hLSCMTbzv6dzRWzOdHkmkN9Iqo+oQWtEE1D6fR0rl9PWxEXZyPCbdtmrUC3\n3ALvvQdHHAFJSdY6NHIkdKCvgIqiKMreEY6E2VOxh42FG6kIV9iIbq0YyjpWX5tZb8ziuVXPkZqQ\nWkvwRI8DAzZiWVZyFlnJWQzqOYjxeePJSsmqTnNFTUZSBvH++CbXa+aEmfsshLJSPxETqbbshCNh\nBMGIISUuhcykTNIS06oj0/l9GpCpPkQEv/jxo9dIaToqgFyysmDzZjj5ZLj/fmsFmjTJDoi6a5cN\nl927d3vXUlEURdlLQpEQu8p2saloE6FIiJSEFDISWjeU9fbS7THHtQlFQnyw6QP2z9ifzORMxuWN\nq7bcZCZn1giclCzSEtLaxA2to7h1dSfCkXB1lDnXDcsnPlITUslIyiAlIaU6FHdn6mumKJ0VFUAu\ngYAVOMXFcNllcNNN8M47cNRR1hVu3To7LlCcXjJFUZTOSFW4ykZ0K95KhAhpCWmt6kZUWlXKa2te\nY9FXi3h/0/sN9jf495n/brXjtoSO1temKxGKhKgM2f46YPufxPniSE9Mp09qH5Ljk6vHG+pI/csU\npTuhb/NecnOttedHP4L77rNWoCOPtFHgSkuti1zfvu1dS0VRFKUZlAfLyS/JZ3vp9uqv7q3lUhSK\nhFi8cTELVy/ktW9fozxUTt+0vlw67lKeW/kc28u219knNy23VY6ttD+uVccVOyJCgi+B9MR00hPT\nq4ViUHAAACAASURBVAfnbI6LoqIobY8KIC+pqXaKRODyy+GGG+Dtt2HyZGv92bTJWokCdUcaVhRF\nUToWJVUlbC3Zyq6yXcT54lotspkxhlU7V7Hwq4X8e/W/2VG2g/TEdKYPn8704dP5bu538YmPIb2G\naF+bGLhRviImQtiEa61Xh2EmKiwz1ArjHL3NiKm9X1Q0M6gbCc1Lffm924wxVIWrCEfC1VHFkuKT\nyEjKID0xvdqFrbMFJ1CU7oj+SqPp1w++/BJ++ENrBfrb36wbnM8H8fGwYQMMG9betVQURVFi4EZU\n21S4icLKQhLjElstsMHW4q0sWr2IhV8t5OuCr4n3xXPUoKM4afhJHDXwKBLjEmvl7w59bWKJGTfN\nO8ZM9VgzYoiTOOL98ST4Ekj2J1cPcBrvj7ed2X1+fOKrM6imG0bZXY7e5q67y64LonceK62+bW5Z\nxhgiRPCJj56BnqQmpJIYl0ggLqD9dRSlk6ICKJr0dEh0/sQuvxyuvx7efBOOOcZah3btgqIim09R\nFEXpUOws28nXu74mJSGF3sl7H7impKqEV755hYVfLWTJ5iUYDN/J+Q63TL6FqftPpWegZ4P7d6a+\nNsaYWhYZ73J9YsaPn/g4K2aS/EnE++KrBY3f568WNN659ntRFKW9UQEUjXdg1JNOgvnz4e674Xvf\ns2GwU1Jg7Vo46CCbV1EURekQGGPYUryF9EA6Cf6EFpcTDAf538b/8cJXL/DGmjeoDFcysMdAfnbI\nz5g+fDoDegxoxVrvW7zRyFxLCWKvnU981ZaYxPjEaiGjYkZRlK6GCqBYZGTYgVFF4IorYNYseOMN\nOPZY2/9n927YuROys9u7poqiKIpDabCU8lB5i1zejDEs376chV8t5MWvX6SgvICegZ6cOvJUThp+\nEqP7jO50L/vBcLBWB303GllaYlp1NLIEf0IttzNFUZTugAqgWLgDo27dCtOmWSvQ3LnWCuTz2bDY\n69dDr162X5CiKIrS7mwr2dZsy8/Goo0s+moRL3z1Auv2rCPBn8D39vseJw0/iUkDJu2VJWlfYYwh\nGHHETiSIGOuuluhP1GhkiqIoMVABVB/uwKh+v+0L9Ktfweuvw/e/XzMW0JYtMHBg+9ZTURRFIRgO\nsqt8Fz0SezSat7CikFe+eYUXvnqBj7d+DMAheYdw0Xcv4vghx5Oe2HH7eEZMhGA4SGW4srpvjhFD\nSlwKvZN6k5aYRqLfdtBvrVDfiqIoXQ0VQPWRmAiZmVBYCCeeCPfea61Axx5rrUDp6dZClJUFycnt\nXVtFUZRuzZ6KPTWhkWNQFa7infXv8MKXL/DWurcIRoIM7jWYqydczbRh0+ib3vHGeHP761SGKzGm\nJrRzakIqGUkZpCSkVIdeVvc1RVGUpqMCqCFycmDHDhv97ac/heuug//8B6ZMsf2DEhNtWOzhw+26\noiiKss9xgx/8d+1/+duSv1WHnL56wtX0S+/HC1+9wMtfv0xhZSG9k3pz5kFnMn34dA7MOrDD9Otx\n++tUhauq0+L98aQlpJGTmkNSfBKJfhuYoKPUWVEUpbOiAqghUlKspaeiAk44wVqB7rnHusH5fHZ7\nQYG1EvVsOBSqoiiK0jaUBkv515f/4s7/3Vk96OiW4i388rVfYjAE4gIcO/hYpg+fzuH9D2/XgSqj\n++u4g3cG4gP0SOxh++vEB0j0J2p/HUVRlDZCBVBj9O0Lq1bZyHA//Slccw288gr84Ad2e2qqDYs9\nerTtL6QoiqLsU7aVbGP+x/OrxY+LwdAz0JM3zn2D1ITUdqlbKBKiIlRBKBKyYacFUuJSyEzKtP11\n4hJJ9Cdqfx1FUZR9iAqgxkhPt6Gvq6pg6lSYN89agY4/3gqehAQoK4Pt223kOEVRFGWf4QY/2Fay\nLeb2worCfSp+wpEw5aHy6tDTif5EMpMySQ/YSGwJ/gTtr6MoitLOaCvcGCLWClRWZgXPz34G33xj\nrUAuaWmwcSNUVrZfPRVFUbohbvCD3LTYH6DqS28tIiZCWbCM3RW72V2+m7JgGT0TezKs9zDG5oxl\nbO5YBvQcQM9ATwJxARU/iqIoHYA2bYlFZIqIfCUi34jIrHryTBaRz0TkCxF5uy3r02J69bLzcNgG\nQBg6FO6+266DFUZ+P2zaBMFg+9VTURQlii7TDsfAGMOWki2kxKdw9YSr62wPxAWYOWFmqx+zPFjO\n7nIreEqqSkhNSGX/XvszJmcM3839LoMzBtMrqReJcYmtemxFURSldWgzFzgR8QP3AMcBm4CPRGSh\nMWalJ09PYB4wxRizQUSy26o+e0VcHOTl2bDXPXpYK9BVV8FLL9mBUsH2Bdq1y069ekF2trUM+fRr\nn6Io7UOXaodjUBospTxYTkZSBqP7jAagR2IPiiqLyE3LZeaEmUwbPm2vjmGMoSpcRXmo3IaiFqFH\nYg/y0vJISUghKS5Jo7IpiqJ0MtqyD9AhwDfGmDUAIvIUcBKw0pPnTOD/jDEbAIwx29uwPnuHOzCq\nMTYK3PDhti/QD35grT8iNhKcMVBSYqPD+XzQpw/07m3HCtI/SUVR9i1dqx2OYnvJdhL8CQC8v/F9\nAJ457RkG9ty7AaqrwlWUB8uJmAgAaYlpDOwxkNSEVJLik9SNTVEUpZPTlgKoL7DRs74JODQqzzAg\nXkT+C6QBdxljHmvDOrUc78CoqanWCvTzn8O//w0nnVSTT8SGx05JsS5y27fDli02kEJurhVJieoW\noSjKPqFrtcMeguEgO8t30iOxBwCLNy6mb1pfBvQY0KKy3EhtAMnxyfRN60taYhrJ8ckaoU1RFKWL\n0d5R4OKAccAxQBKwWEQ+MMas9mYSkUuASwAGDGj+n1ur4Q6MCnDssTBihI0Kd8IJ1k0uGr/fRpED\nG0Vu/XpYt866xvXpY93pYu2nKIqy72hSOwwdqC2mJviBiPD/7N15nFxVnf//16e23pck3QnZIAJB\nFmUNq6ioKJsMIo7L18Fdxv3r4Diu46i/cXTGGcdRxwV3RxQZ4oig4KgDg34TlgARJCwGCGRPJyFJ\nb7Xe8/vj3ltd1V1VXb1Ud3XX+/l4XOrWvbeqTl06p+pT53M+N+fluHP7nbzsqJdVlY42ujR1c6yZ\n3tZeupq7aI236vo7IiLzXC2/fW8HVhbcXxFsK7QN2OecGwQGzewO4CSg6IPXOXcNcA3AmjVrXM1a\nPJ7wwqjDw9DS4o8AvfvdcNNNcPnllR+bSPgL+BdW3bzZHy1atMhPr2tv13whEZlu09YPQ/30xYXF\nDwAe6nuIQ6lDnLPinJLH57wcyWySdC4NQDwaZ2HLQrqbu2mNt+bT6EREpDHUMgC6B1htZs/C/8B9\nLX6ueaEbga+YWQxI4Kdm/GsN2zR14YVRW1rgJS+B44/3R4EuvbT60ZzmZn9xzk+p27vXHy067DD/\ngqutrbV9DyLSKOZlP1xY/AD89DeAs1acBfgBUjKbzF8YNRqJ0t3czcKWhbTGW2mONc9Ow0VEpC7U\nLAByzmXN7D3Ar4Ao8B3n3ENm9o5g/9edcw+b2a3AA4AHfMs598datWlaFF4YNZHw5wK9613wvOf5\nwczSpXD11SPV4Sox80d+wJ8vtHOnX0q7pWVkvlBCv0yKyOTM1364sPgBwLpt6zi251gWtS5iMD1I\nxsuwoHkByzuW05ZooznWrEptIiKSV9MJKM65XwK/HLXt66Pufx74fC3bMa3MYMUKePxxPzgZHPS3\nHTjg79+xAz7+cX+9miAoFI36c4LAD66efNJf7+ry5wt1dvrHiIhMwHzrh0cXPxjODHPvjnu58sQr\nAb+C27E9x9LV3DWbzRQRkTqmSSeTsWCBP18nl4N//Vc/la1QMglf+MLknz+R8F9jwQJIpeCxx+De\ne/2gqL9/7OuJiDSIwuIHAPftvI+Ml+HslWcDYGa6AKmIiFRUdQBkZuea2ZuD9d4gp7wxRaP+XKD+\nfj9trZQdO+CnP/Urv00lYGlp8QOhzk545hnYtAk2bvSff3h48s8rInNOo/fDo4sfgJ/+Fo/EWbNs\nDS7oa5uiCoBERKS8qlLgzOzvgDXAs4HvAnHgh8Dzate0OtfTA1u3+nN1duwYu98MPvKRkWNPOw1O\nPdW/Pe64iZe/jkRG5gtls/5FWZ9+2q9Mt3SpnyoXV+lWkflK/fDY4gfgF0A45bBTaI23ksqm6Eh0\naL6PiIhUVO238MuBU4D7AJxzO8yso2atmgsSCVi8GN75TvjMZ/y0t1BzM3z603DCCX7qWrj86lf+\n/tZWOPlkPxg67TQ48UQ/kKlWLDYyXyiV8ucjgV9BbvFiP1DSfCGR+abh++HRxQ/2D+9nU98m3nfm\n+wBI5VIsalk0W80TEZE5otoAKO2cc2bmAMxsAt/W57ElS/wLora0+HN+du4cWwXu6KPhNa/x13ft\ngvvuGwmIvvIVPz0uGvVHhU47Ddas8UeKenqqa0NTk7845xdkeOQRf7Ro8WL/GkNtbf5o1FSEKXyj\nb8utVzqucFsk4gdzCtZEqtHQ/fDo4gcAd22/C4fjnJX+9X9yXo62REOdFhERmYRqA6DrzewbQLeZ\nvR14C/DN2jVrjmht9UtVv+Ql1VV8O+wwuPhifwF/DtHGjSMB0XXXwfe/7+9btWokZW7NGjjiiMqB\njJnfntZW8Dz/2kK7dvkjVfG4vw2KA5HR66W2VXq98LiJBFiljjfz29nUNHLb3OwHRrHYSJAUi009\nmBOZuxq6Hx5d/AD89Lf2RDvPWfwcQAUQRESkOlUFQM65fzazlwKH8PPPP+Gc+3VNWzZXLFvmFyaY\nzMVLOzrg+c/3F/DLX2/aNBIQ/c//+IUUwB/NCVPmTj3VHzEqN+cnEvGfG/z5Qp7nbwu/OIy+HW9b\nrTnnV9TLZPzCDp7nt7uwDWEwFouNjHolEn6glEiMBEiFtyLzSCP3w6WKHwCs27qOM5efSSwSUwEE\nERGp2rgBkJlFgd84514ENMSH7YR0dPgpcOGFUacikfDnBp18Mrz1rX4g8OSTxfOI/vu//WNbWuCk\nk/zRodNO89cL5xHddFP5tLzZVK5d4UhP0zhfXnI5fxka8kfQcjn/PI0ekdKokswjjd4Plyp+sPXg\nVrYe2sqbTn4T4F//RwUQRESkGuMGQM65nJl5ZtblnDs4E42aU8ILo27ePPUAaLRIBI46yl9e/Wp/\n2+7dfiAUziX66lf9ACAahWOP9YMh5+D66/0CCTD5i7NORjia43kjwUq4fsst8LnPTa1d0Wh1ozvV\njCqFx5UaVYrHi4MkjSrJLGr0fnh08QOA9dvWA+Sv/5PKpYoCJBERkXKqnQM0ADxoZr8GBsONzrn3\n1aRVc013t//lOJudeHnriVqypHge0cBA8Tyi668vrkgXSibhYx/zU+o8byQoKRWoVHs7epvnTfya\nR8mkXy7817/2CzcsWeIv4frixROrkBcym55RpXBEKbxtavKDo8JgafSIUizmB68i06sh++FSxQ/A\nT39b0raEI7uPBMBzngogiIhIVar9tv7TYJFSwgujPv20f9HSmdTeDuee6y/gp+KdeGLJQMSlUnhD\nAxCJQjQCsShE4/79SMTfFglGWIL7lr8fLdpv+WNK3I9ERpZowfN95jOl30MmA3/6E/z+934lu1Lv\nsTAoKrXe0zP54HOio0qe5wdK4ajS6CDJOf/9hql3hcGSUvBk8hqyHz6QPIBzxcUPPOexftt6XrTq\nRfntzjmaY82z1UwREZlDqi2C8H0zSwDHBJsedc5latesOWjRIj+l65lnRraFoxDhF+wajgykc2lS\nXprhXIoFS3qJ79oz9pglPfzh3z+OAwz8WzP/ywXmV1iC4NbK3hI81n+PwW2wIRJ8GTEMMyNCJH//\n+G/3ktjVN7Zdh/Wy+cdfwsyIDg0T69tPvG8fsb59I+t79hHbu4/oE5uJ7d2P5XJFz+EiEXILF+D1\nLiK3uJfc4h683h5yi3vxFvfi9fbglizGdXRgFsl/aTLz25b4xa20funrRHbtxh22hPT73wuXXkrM\nokQt6h8f/v+E8dMdnfODo3IpeIXBUjhKNXrOUqnCDgqWGlYj9sP54gejRnYe2fsIB5IH8ulvYYCk\nAggiIlKNqgIgMzsP+D6wBf8r70oze6Nz7o7aNW2OSST8QgSZjP9FN5v1R2OSSX/OSyrlp6vlcmPn\noBQGSOF6mS+6zjnSXoZkLsVwLsmhzAD92UGynv/l2ogw9I7Xc/jnvkokmco/zmtuYv+730J3orOm\npyGsxOQYdetgzzvfyLLPfnlMu3a/40o85/kxQ3OC1MrDcCuXFD0+fA7/QR7RAweDIGk/ib59xPv2\nE9+7n3jffhLbttK88QFiB/vHtC/XlCDTs4B070IyPQtJ9y4gtu8AbbfdSSQTnMOdu4h/4lM8ObSL\nfS87FzMjYQkSkRhN0SaaInGaok3EI7F8gBSLRIlZbORXarORKn3jpeCFwVEyOfI3EpYtrxQshal4\nYbA0+m9Ic5bmlUbsh0sVPwA//Q3g7BV+AKQCCCIiMhHV5gz9C/Ay59yjAGZ2DPBj4LRaNWxOClOb\nKgnnm4RBUjbrB0ejAyXn8JznBztemsHsMIdIMeBSeBHDgrSzRCROa7SZaGzky276kgvYHYnT89Xv\nEdvdR3ZJL3vf9Sb6L3pxjU8AIyMrjPoiYjB08fnstsiYdg1f9GImXD5icSssXooHJINlTFtSaWJ9\n+4juDUaQ+vYS69sf3O6j+ZEniP1uH5FUesxjo6k0R33qy6z68g/x2lvJtbeRbWsh195Ktq2FTHsr\nqbbW4H4rufYWcu1t0NFBtLOLaOcC4p3dNDW1kojG/SApXCIxIlYwEhimy41WqmLexRf7fz9hsBTO\nwSoMlKA4DS8e95ewZHg8PjZYUireXNBw/XCp4gfgX/9n9cLVLG5bDPgFEBa0zHD6sYiIzFnVBkDx\n8EMXwDn3mJmVuQiNVBR+4Rz1hTfn5UjlUqSyKfqTh+hPHmRg+CBkc5hnRHLNNOWa6cw4LJPxR5fS\nWbAMEGTBhF+Ao1H6X/w8+l/6guJRABdeDJWR40vdwtj75fZV+9jgfv+5p9N/7un+9nCOUCbjz0ey\n6U0PdE0JMiuWklmxtMJBjtVnXoyVKd4w8IKziA4MEhkYJDY4SGLvM/n7keFSYVexXFOCXHsruSBY\nGm5rJdvRitfmB0vW0YF1dBLt6CLa1Y11dhLt7CJ2z33EvvglbCoV8wrnLA0OFhd4gNLXWIrHi1Px\nEoniOUu6ztJsaqh+uFzxg1Q2xYadG3j1Ca/Ob/OcR3uifaabKCIic1S1AdAGM/sW8MPg/uuBDbVp\n0vyX9bKksilSuRSHUoc4lDrEcGY4Px8nHo2TiCbo7lxcOaUjTJ3yPMhlIRuUfU6l/AAplfLnn4TC\n+Uejb0PhPJdwnz9BJtgXGTmm8LHhMYX7C5dSjwlvwzamUjA4VPqLefhlOxKpzSiFGdkyc6ayhy1m\nz8f+b/nHZrNEBob8gGgwCIoGhogMDI4ESf2DRfsTA0M09z0zckxBOuC4kkm8j36EgVtvJNfVidfV\nidfV5d92d+K6u3DBfTo7iUSj/lwsjIhFiMQiEPPnaYUjdGaGhfO0PA/zhrHBQejPYZ7Dcl7BcYBz\n/hwq/BS/WDxBNBp8B8//zVjxhXfDghjVrJf626m0XurivoVtCJ9zflTla6h+uFTxA4D7d91PMpvk\nnBXn5LepAIKIiExEtQHQO4F3A2G51d8BX61Ji+aZTC5DKpdiODPModQhBtIDpHKp/FyZMNiZVPpG\nudSpuaowPTBXEMyFKYIDAyPHFqZ7Fc55mUShgL3vehNL/uHfxsxN2vuuN1V+YCyG1+0HH5OWzRYH\nTEEAteyDnx6dRAiApTM0PfYE0YOHiPYPYmHQOIqLRMh1tJHtbCfb2UG2a+Q22RXc72gn29VBrrOD\nTFc7ue5OvKaCv6cwDgXMr5iBw7HoV79n5dd/RGLPXtKLe3jq7a9h6MKX0BJtpjXaRHOkiRgR4hYl\nHokRJVI0Cug/acHIYan1ojc9Kr2v6I0WbL/1Vvja1/xrZS1ZAu98J1x4YfEIV2EwXbheqlhJqSCq\n1P3xXHutX4L+6ac5EZ47/gPKaph+uFzxA/DT36IW5fTlp+ePVQEEERGZiGoDoBjwb865L0D+quT6\ntBklk8swnB3OBzv96X4yOT89zTDi0ThNsSZa4i2z3NI6VSY9sEjh/KkwSEomi0e8Rs+FCdICx3y5\nDYRzo2ZjzpQfRHXhdRen+WQPW1x2VOqptd/273ieHzwd7PcDooOHiBw8RPRAcP9QP5FgX/O+g0Sf\n2OYfUyF1z2tK+KNLne3kujqDpSM/4hR/ahudv/gNkYz/d920ey+r/umb7D44xDPPX8MQHjmAiPmZ\nlmZEI1Gao800xZppiTWTiCX8AhLRBPFo3J8PFY7ahAHsmJHIcZabb4bPfnbkGli7dvn329pGUgYL\nr1VVOHoaBl6F+0Kj/45ChYFaYUBVuMRi8POf+9e5CkZi40x8uluBhumHBzODJDPJkj8Mrdu2jpMO\nOymf8pbOpWlPtKsAgoiIVK3aAOi3wPn4F+IDaAH+Gzin7CMazHBmmIf2PISH/+UpEU3QEmtRXvp0\nC79cVqqsFgZH2UxxWmAqCelg/lT4BTYYXeg/93T6zzu7+At4YcU+C/4zQ1+yqhqVikTwOjvwOjvI\nrFxW9XNbOk3kUP9IoHTwENGD/X7wFARO4f3Ek0/n948uPZ5vRjrN0i9/l6Vf/u5k325tJJPwwQ/C\n3//92JGfSksYJBfeFu4vta0wyC4cJfrxj4vTUKemYfrhPQN7iEfHTm86mDzIH/f8kXeteVd+WzqX\nZknLkplsnoiIzHHVBkDNzrl8/pFzbsDMWmvUpjnHcx5PPPME0UiUzhqXmZYqhClN5YKk8Bo9uZw/\ndyoTlCxPB3OnskEqHoyMGoSjAoW//E8kGCpTZKHoeQpGNPpfeBZk0vRccy2xPXvJLu5h7zveQP/L\nXlg+HazapiQS5HoWketZNKH2RwaHOOrFV/jpcKN3A7s+9UF/zfnzifwhIJcfYTHP5ffntzmH5+Xw\nPI+cy+G83MiIjPOPjWJ+Oh0x4hYlahGiDiL415mKAHzlK2XbzSWXjKRXllrCkaDC27CMfeG2Ss9R\n6nnKBIxT0BD9cLniBwB3b78bz3n56/+AP6dSPzSJiMhEVBsADZrZqc65+wDMbA0wbT9rznV7BvYw\nkB5QGda5IrxGT3ySBbSKvqAXLOX2FX7ph+JgqjD9qjAFy/Pov+Ll9F9+SXA/5wdm4RfzwmsDjU7T\nCl+n1HyVicxdGXXOvPY2skvKp+b1X/ySCZ/KauRcjqyXI+OyZL1c/oK9AM6gyRKccMP1JdvlLV1K\n9mMf9otABMuMcQ5e9CK/jPn0aIh+uFzxA/DT31rjrZy05KSi7SqAICIiE1FtAPR+4D/NbEdwfynw\nmto0aW4Zzgzz1MGn6GzSyE/DsJlLhSsrDJRyuYKgKQdeQTCVyYydMxVed6pwdKLUPBfPKw6agjSv\nvX95JUv+8SvVF4wYM/Llim5KHjdqPYo/CtREHMKqz27kebK5HDvf9hqWf/4bRAuu6ZRrSvDkmy5j\n/8778jEoOKIu4hdnMCPmokQjEWIuSswi+Ws1RQsCpghGJBINRpysaHvZIDRcf8c7iucmTc2874cr\nFT8A/wKoZyw7I58epwIIIiIyGRUDIDM7HdjqnLvHzI4F/hJ4JXAr8OQMtK+uOed44pknSEQTRCO6\nLorMoMI5J5M1OoAavR4umUyQ1pWj/4LzwMvR840fEuvbR7Z3EXvf+jr6n7cGDh0q3c5ChSNP5dbL\nHV94v6BEe4wYycsuYU+ipbiQxXvegnfJ+XQXlmmPRPDMT1v1gEwEUs7hmT+a5G93fuU78MvfmRcs\nFpTEM1xYgDASIxaJEYvGiFqMWHjR22icWCRK7L1voXVZDy2f/iyRbdvJODf2qrvjaKR+uFLxgx39\nO9hyYAuve87r8ttUAEFERCZjvBGgb+BPugU4G/go8F7gZOAa4FW1a1r92zOo1Lf54qZHb+ILd36B\nnf07WdqxlKvPuppLn13lBUfnqsmkwgE/co/yhe4EO/thaXuCq89ayaXPPnHkgFn6Mtr/rrfS/663\njntcJFimg+e8/JJ1jrTL4bkMLjeMl/W3uwtPI/3SH7F60Woe6Fj64CRepmH64b7BvpLFD8Avfw3w\nvJXPy29TAQQREZmM8QKgqHNuf7D+GuAa59xaYK2Zbaxt0+rbcGaYLQe2KPVtHvj5oz/nb2/7W5JZ\nP01pR/8OPn7bxwHmfxA0QTc9ehMfv+3jI+dqYAcfv/0TYJGGPFfVzis6lDqUv/bXJDREP5zJZegb\n6itZ/AD8+T+9rb0cvfDo/DYVQBARkckYNwAys5hzLgu8BLhqAo+dt5T6Nnm1HGlJ59IcSh3iYPIg\nB1MHR26D9UOpQxxIHsgfcyDlr+8f3j/muZLZJB/+7Yf52SM/Y3HbYha3L2Zx22KWtC3J3y5qXUQs\nMv/+GTjnGMwMsndob9HSN9THDzb+IB/8hJLZJH93+9+xe3C3f64KlrZ4m9KTpq4h+uGDyYN+BcES\nfy/OOdZvXc/zDn/emP2a/yMiIhM13ofnj4H/NbO9+NWGfgdgZkcDB8d7cjO7EPg3IAp8yzn3uTLH\nnQ6sB17rnLuh+ubPjj2De+hP97OwZeFsN6WsekzpGjN6UGKkxTnHQHrAD06ShziYOlgUtBQGNIWB\nzcHUQYYyQxVfvyPRQVdzF11NXXQ1d7G0YymdTZ385KGflDw+62U5mDrIn/b/ib1De8m54rLGhtHT\n2jPmS38+SGr3b7ubuydVfWy6/x8ms8kxQU0Y2Owb2le0PpwdW1wsYhE855V4Zn/uxufXfX7M9tZ4\nK4tbR85Nb1vvmPPV29pbdtK7AA3QDzvn2D6wndZE6arej+17jH3D+zhnxTlFj8FUAU5ERCauzTNz\n5QAAIABJREFUYgDknPuMmf0Wv9rQf7uRHI4Ifg56WcFVyv8deCmwDbjHzH7unNtU4rh/xL+gX90L\nU9/KpWnUg2oCjZyXC8oLZ4uWnJcj67Jkc9mi/TkvR8bL+Pu9LFmXHVkf/ViveF/42O9u/G7J0YOP\n/PYjfOXur+RHZMp9yQb/ArNdTV10N3fT2dTJ8s7lnNB0Ap1NnUXBTWdTJ93N3XQ1+eudTZ1lR+t+\n9/Tv2NG/Y8z2ZR3LuOHVN+TP1/7h/ewe3M2ewT35Jby/c2Anf9j9h5KjSfFI3P/i3zoSFI0Olha3\nLS6azF3N/0Pw04b2D++nb6ivZHATBjV7h/YykB4Y0zaABc0L6Gntoae1h1MOO4Xe1l4WtS6ip7Un\nv97b2kt3czfn/8f5Zc/VTa+7qejc7BncQ99gH3uG/PUH9jzAnsE9Y/4GANribcVBUVtv0bkJA6WW\neEvJ9xCes3oL+sN2/fP6f2b3wG5YwnMn+vhG6IcrFT8Av/obUHT9n3QuTXtcBRBERGTixk2fcM7d\nWWLbY1U89xnAZufcEwBmdh1wGbBp1HHvBdYCp1fxnLPKOceTzzxZV6lvnvPoG+xjR/8OdvTvYHv/\ndr624WslA40P/vqDfOS3HyHrZYM6V/Uh42U4YfFIENPd1D0moAlva/Fr79VnXV0UbID/q/LVZ12d\nvx+NROlt66W3rbfic6Vzaf9L/6hAIAyUNu/fzLqt6+hP9495bEusJR8UPbjnwZL/D//2tr9l7cNr\n84HNgeSBku3oSHTkg5rjeo7Lr4dBTbi+sGVh2UnnEz1X7Yl22hPtHLngyLKPD0f4Cs9L31Dx+bp/\n1/3sGdxDOje2YFpHoqPkaNLTB5/m+oeuzz8mDBiT2SQXrb5oTBuAon8Do7eVOqaa40bP8/n147/m\nn9b9E6lcUDY8QqLsyalgvvfDlYofgD//58gFR3JY+2H5belcmiXtKoAgIiITV8v88eXA1oL724Az\nCw8ws+XA5cCLqPDBa2ZXEeS9H3744dPe0GrtGdzDofShGU19S+fS7BrYxfb+7ew4tKMo0NnRv4Nd\nA7vIeJmqnsvhePPJbyYaifqlewsWv3RvjJgF9wuOya9brPxjC+8XPtaixIPSwOf/4Hx2DJQePfjC\nBV+Y7lNXtXCUYDpGDxLRBMs7l7O8c3nF4wbTg2O++O8e2J0fLSmVggYwnB0mmU2yqnsVa5atGRPY\nhCM3tUoLmuq5MjM6mjroaOrgqIVHlT3OOceh1KHi0aRR5+veHfeyZ3BP2b//ZDbJx2/7eH7krEFN\nWz8cHDvtfXHWy1YsfpDOpbln+z1ccdwVYx6nAggiIjIZsz2B9ovAh5xzXqU0BufcNfjlXlmzZs2s\nDF1USn2bSurNQHpgTFCzo38HO/t3sr1/O32DfUW/QhtGb1svyzuWc+KSE7ng6AtY1rGM5R3LWdax\njGUdy7j0x5eWTVP6wDkfmPxJmKKrzx5/pGW2XPrsS2c0Xaot0UZboo1V3atK7n/R919U9v/hda+6\nrsatq2wmzpWZ+SN/zV2sXrS67HHOOQ4kD3D2t88uO6r5N+f8TT5NyoKLB5Xqb8YcM+rY8P7ITen9\n+eOAT9z+iXHeaV2oqh+G2vTFB4YPlC1+APCHXX9gODtclP4G/nlWAQQREZmMWgZA24GVBfdXBNsK\nrQGuCz74eoCLzSzrnPtZDds1YZVS3yrN1Xj5MS9n//D+osBm9HIwVTyHOR6Js7RjKcs6lnHu4eey\nrN0PapZ1+kHOYe2HkYhWzqKpJqVrNkznSMt8V6//D+uNmbGgZQFLO5aWDRjfeur41waqla/f+/WS\n7ZpBdd0Pj1f8APz0t4hFOHP5mUWPc+ZoiikAEhGRiatlAHQPsNrMnoX/gfta4P8UHuCce1a4bmbf\nA26ut+AHKqe+feHOL5Scq/Gh33xozBdY8Cd7h6M1pyw9haXtS4tGb3rbeidVMaxQPQcaMz3SMlfV\n8//DelSvAWOpds2wuu6HBzODDKeHWdhaPq14/db1nLj4RDqaOvLbMl6G9nj7lPtKERFpTDULgJxz\nWTN7D/Ar/PKr33HOPWRm7wj2f71Wrz2dhjPDPHXgqbL56Tv7d5bcnnM53vicN+ZHc8Igp7Opc0aq\nFinQmPv0/7B69Rowhq8fVoFznhtb2aGG6r0f7hvsIxErP6Ldn+rngd0PcNVpVxVtT2VTLG5bXOvm\niYjIPFXTOUDOuV8Cvxy1reQHrnPuTbVsy2SEqW/xaLxs1bdKqTcfOvdDtW6iiATqNWC89NmX8sJV\nL/R/BPnksgdn+vXrtR8er/gBwN077ibncpyz8pyi7SqAICIiU6H8gQrC1LdKF2m8+qyrx6Rh1EPq\njUitOefGlH0WqdZ4xQ/AT39ribVw8mEnj9mnC6CKiMhkzXYVuLo1Xupb6HmHPw+cP7dnKDNUN6k3\nItPJOUc6lyadS5NzOZxzmBmG5S9ca2bg8KukOb/sejQSJWIRIhYhav56uG0+85xXtGRy1ZWqbxTV\nFD8A/wKoa5atKSr84pwDQwUQRERk0hQAlVBN6lvoxkduxMPjJ6/6ScVyvSJzhXOOjJchlU2R9bIY\nhjNHR6KDJS1LaE+00xxrpinahJkfAOW8nH/rcuS8XP42DJoyXoZsLkvaS5NMJ8m6rP/rP5YPmDD/\ntcMgybB8sBS16IxcfLgwaHHO5d9TuO45D7/Jlj9XhWWvw1Lc4XWw4tE4iWiCtnhb0ST+RldN8YPd\nA7t5/JnHedXxryrargIIIiIyVQqASqj2gqfOOW54+AZOWnKSgh+Zs/JBSjhKYdAeb2dx22I6mjpo\nijbRHGsum6oUsQiR6MS+jDrnioKlMIjKuRyZXCbfnoyXIZPLkMwlSefSmFk+7S4ccXLmByFRi2Lm\n34IfzDhc/rnzjynRllDRBXwj/g8g8WiceCSe3xeOaOVHtgpGucJFKhuv+AHA+m3rAcbM/1EBBBER\nmSoFQKMks8mqUt8AHtj9AJv3b+bT5316BlomteQ5j6yXJZPL5L/Uhl9255PCEZnwuqGt8VZ6Wnro\naOrwR3ZiTTV/32ZGzPyAYiIKR5cKR5yyXjb/3rJeFhgJZvJBTSSaT8Mrt8xEhcZGV03xA/DT3xa2\nLOSYRccUbc95ORVAEBGRKVEAVCBMfYtFY1Wl26x9eC0tsRYuOeaSGWidTFWY2pXJZch6WRwun8Jk\nZrQl2uhu7ibrZUllUwymB0dSwCgeJQgDpJlKzZqMTC5DKpcik8vk30NLvIWFLQvpbOrMp7HVa/tL\niUaiRIn6BZ1lTqqm+IFzjnVb13H2irPHBOMOpwIIIiIyJQqACuwZ3MPB1MFxU98AhjJD3PzYzVx4\n9IX6NbLOhAFOxsuQ83JFX7RaY610NnXSnminKdZEIpogEU2UHYkoHBnKelmyXpZkNkkymySVS5HM\nJkl76eJ5IAXzWMI0qjA9q1bCoC2d8y8zY2Y0xZpY0LyAruaufBrbXAp2ZP6ptvjB4888Tt9QH2ev\nPHvM41UAQUREpkoBUCCZTbLlwJaqUt8AfrX5VwxmBrniuCtq3DIpJQxGwsAkP0pjfnnc1ngrbfE2\nWuItJKKJ/DyOiQYhEYvkg6RynHP59oSBVyrrB0epbIpULsVAbgBGV4w2ikaRqm1fPt0rm86PTDVF\nm+hq6qKzqZOWeAtNsaYJp5eJ1Fo1xQ/AT38DOGdF8fyfjJehLdY271JTRURkZukbEhOr+hZa+/Ba\nVnWtYs2yNTVuXeMK53aEFcTCKmGAX1kr0cbCloW0xlv9ICfiV9ya6XkcZuYHWNF42WPCSf+FgVI6\nm2Y4O5wfSTqUOlSUahc+LhaJkXO5fGnpRDRBR1MHXR1dtMRbaI41K9iROaGa4gfgB0BHdB3B8s7l\nRdtT2RS9rb21ap6IiDQIfWtiYqlvAFsObOGeHffwgbM/oEnTUxTOywknr4fXlwm/+LfF2+hs6qQt\n3kYilsgHOnMtlavaSf9h0Fc4wpXMJUlEEvlgp1KgJVKvqi1+kMlluHv73SWvpZbzcionLiIiU9bw\nAdBEU98A1m5aS8QiXPbsy2rYsvpXeK2UsNxwuK3wvue8/EUzgaIgJ2IRWmItLGheQHuiPZ9uFo/G\nG3JUIxrx0+Ga0BwHmV+qKX4A8OCeBxnMDI5JfwMVQBARkenReN8wC0wm9S3rZfmvR/6LFx7xQpa0\nL6lxC6dPYTBS6X7hNVEKv6gUXvAxTNOKWKSoIlrhhP/C8sPlyg3HI5XTxkRkfqi2+AH46W+GceaK\nM8c8hwogiIjIdGjoAKhvqG9CqW8Av3vqd/QN9dW0+EG5kZVSwUo4+b+aCzxGLUok4gctiWgiH6iE\ngUwYzBhWMmDRxR5FZDKGMkNVFT8A/wKoJyw+ge7m7qLtKoAgIiLTpWEDoGQ2yZPPPDmh1Dfwix8s\nalnEeavOG7Mvk8uQc7mywUthGlio1MhKWBUsHFkJg5XRoyvhFeirCVhERGbLnsE9VRU/GEwPsnHX\nRt5y8lvG7Evn0vS09NSieSIi0mAaMgCaTOobwN6hvdy25TbecNIbxqRuZb0sA+kBupu7q04D08iK\niMx31RY/ANiwYwNZL8s5K8fO/8nmsiqAICIi06IhA6C+oT4OJg9WlY5R6MZHbiTrZXnVca8asy+Z\nTXJY+2Ec0X3EdDVTRGTOq7b4Afjzf5qiTZy69NQx+xxO839ERGRaNNxwQz71rXliqW/OOdY+vJZT\nDjuFoxYeNWZ/JpcZk7MuItLIJlL8AGDdtnWctuy0MYFOWDlSFeBERGQ6NFQANNnUN4CNuzby+DOP\nVyx+0Bqv7kNeRKQRhMUPEtHx5//0Dfbx2L7HOHvF2WP2ZbwMrbFWpQiLiMi0aKhPkzD1rT3RPuHH\nrn14La3xVi5afdGYfelcmrZ4m0o6i4gUqLb4AcCd2+4EKDn/J51L09nUOa1tExGRxtUwAdBkU9/A\nr0z0iz/9gguPvrBk8DScGWZR66LpaKaIyLwQFj+odmR83bZ1dDd1c1zPcWP2ZXIZFUAQEZFp0xAB\n0FRS3wBu3XwrQ5mhsulvnvP04SwiUiAsflBN2ppzjvVb13PmijNL9tFmpgIIIiIybRoiAJpK6hv4\n6W+ruldx2tLTxuwLJ+dq/o+IiG+ixQ+2HNjCzoGdJdPfwudTAQQREZku8z4ASmaTbDmwhc7myeWP\nP/HME9y7816uOO6KkmVck9kkC5oXaHKuiEhgIsUPwE9/g/Lzf1rjKoAgIiLTZ15/ooSpb+HFSCdj\n7cNriVqUy4+9vOT+ZM4PgERExLdncM+EisKs37qe5R3LWdm5csw+FUAQEZHpNq8DoKmmvmVyGX72\nyM944aoX0tvWW/ogB+1Nk3t+EZH5Jix+0JZoq+r4nJfjzm13cs7Kc0qOsqsAgoiITLeaBkBmdqGZ\nPWpmm83swyX2v97MHjCzB81snZmdNF2vPdXUN4A7nr6DvUN7yxY/yHk5YpEYTVFNzhWR+jTT/fBE\nih8APNT3EP3p/rLzf3QBVBERmW41C4DMLAr8O3ARcDzwOjM7ftRhTwIvdM49F/j/gGum47WnI/UN\nYO2mtfS09vDCI15Ycv9w1i9/XepXSxGR2TYb/fBEih8ArNvqz/85a8VZJfc75/Qjk4iITKtajgCd\nAWx2zj3hnEsD1wGXFR7gnFvnnHsmuHsnsGI6XniqqW/gX5X89i2384pjX1E2lz2Ty9Dd3D3p1xAR\nqbEZ7YcH04MTKn4AfgB0XM9xLGxZOGZfWABhMpcvEBERKaeWAdByYGvB/W3BtnLeCtxSaoeZXWVm\nG8xsQ19fX8UXnY7UN4CfPfozci7HK497ZcXj2uLV5bmLiMyCaeuHYfy+eKLFD4Yzw9y38z7OXnl2\nyf0qgCAiIrVQF0UQzOxF+B+8Hyq13zl3jXNujXNuTW9vmWIE/nFsObBlyqlvzjnWblrLqUtP5agF\nR5U8JvxlciIf9iIi9Wq8fhgq98UTLX4AcO/Oe8l4Gc5ZUXr+T8ZTAQQREZl+tQyAtgOFNU1XBNuK\nmNmJwLeAy5xz+6bygn1DfRwYPjCl1DeA+3bdx5MHnixb/AD8Xy4XtSya0uuIiNTYjPXDEy1+AH76\nWzwSZ82yNaUPcKgAgoiITLtaBkD3AKvN7FlmlgBeC/y88AAzOxz4KXClc+6xqbzYdKW+gV/8oDXe\nykVHX1T2GM95+mVSROrdjPXDEy1+AH4AdOrSU2mJt5Q9RgUQRERkutUsAHLOZYH3AL8CHgaud849\nZGbvMLN3BId9AlgEfNXMNprZhkm+Fk8deGrKqW8AA+kBbtl8CxevvrhsKodzDjOjNT6xD3sRkZk0\nU/3wZIof7B/ez8N7Hy5b/loFEEREpFamFi2Mwzn3S+CXo7Z9vWD9bcDbpvo6fUN97B/ez6LWqaek\n3bL5FoYyQxXT35LZJF1NXfpgFpG6NxP98ESLHwDcue1OgIoBkNKMRUSkFuqiCMJUpLIpthzYQldz\n17Q839pNazlywZGcctgpZY9JZpMlS7aKiDSayRQ/AD/9rSPRwQm9J5TcrwIIIiJSK3M6AJquqm+h\nx/c/zv277ueK464Y9+KmUy20ICIyH0ym+IFzjnVb13HWirPKj6SrAIKIiNTInA6A9g3tY//w/mkL\nRm54+AZikRivOPYVZY/JeTlikZg+mEVEgB0DOyZc/GDroa1s799e9vo/IRVAEBGRWpizAVAqm+KJ\nA09MW+pbJpfhxkdu5LxV59HT2lP2uOHsMAuaF4w7QiQiMt8NpgcZSg9NqPgB+OlvQNnr/6RzaVri\nLZpnKSIiNTEnA6DpTn0D+N+n/pd9w/sqFj8AP999Yavm/4iI9A31Tepi0Ou2rmNp+1JWda8quT+d\nS9PZNPVLGoiIiJQyJwOg6U59A7hh0w30tvbygiNeUPE455zKX4tIw3M49gzumXDxg5yX465td3H2\nyrPLjqRnvIwCIBERqZk5GQBNZ9U38Eu43vHUHVx+7OUVR5TSuTTN8eYJp3uIiMw3nvNwzk2o+AHA\nw3sf5kDqQNn0N0AFEEREpKbmZACUIzdtqW8AP3vkZ+Rcjlce98qKxyWzSV2XQkQkYEx8LmQ4/0cF\nEEREZLbMyQBoOjnnWLtpLWuWreFZC55V8VjP8+hqmr6RJxGRRrN+23qOWXRM2WIzKoAgIiK11vAB\n0L0772XLwS3jFj9wzuHQ/B8RkclKZpNs2LGhYvqbCiCIiEitNXwAtHbTWtribVx49IUVj0vlUnQ2\ndepXSRGRSbp/5/2kc2nOWVk+AFIBBBERqbWGDoAG0gPcsvkWLll9ybgjO8lMsuL1gUREpLJ1W9cR\ni8RYs2xN2WPMmeb/iIhITTV0APTLP/2S4ewwVxxfOf0N/JKvEy33KiIiI9ZtW8fJh51csS91OFWA\nExGRmmroAGjtprUcvfBoTlpyUsXjPOcRjURpibXMUMtEROaXA8kDPLTnIc5eUb76W3ipAaUai4hI\nLTVsALR5/2Y27t7IFcddUfZifKHhzDALmheMe5yIiJR217a7cLiK83/SubQqbYqISM01bAB0w6Yb\niEViXPbsy8Y9Np1Ls7Bl4Qy0SkRkflq3bR1t8Taeu/i5ZY/J5FQAQUREaq8hA6B0Ls2Nj97Ii1e9\nmEWt1V3YVOWvRUQmb/3W9Zyx/Azi0XjZYwwVQBARkdpryADo9i23s394f1XFDzK5DM2xZppi+lAW\nEZmMbYe28dTBpyqmv4EKIIiIyMxoyABo7aa1LG5bzLmHnzvusclssupRIhERGWv9tvUAla//k8uo\nAIKIiMyIhguAdg/s5o6n7+DyYy8nFomNe3zWyyonXURkCtZvXU9vay9HLTiq7DGpXIrOhPpaERGp\nvYYLgP7rkf/Ccx5XHDd++huAmWn+j4jIJHnOY/229Zyz8pyKlTRVAEFERGZKQwVAzjnWPryWM5ad\nwRHdR4x7fCqboiPRUdVIkYiIjPXYvsfYP7x/3Pk/gOb/iIjIjGioAOieHffw9MGnqyp+AP78H5W/\nFhGZvHVb1wFUvABqSAGQiIjMhIYKgNZuWkt7op0LjrqgquM959GeaK9xq0RE5q91W9dx1IKjWNK+\npOwxKoAgIiIzqWECoP5UP7c+fiuXrL6ElnjLuMd7ziNiEc3/ERGZpHQuzYYdG8ZNf1MBBBERmUk1\nDYDM7EIze9TMNpvZh0vsNzP7UrD/ATM7tVZt+cWffkEym+RVx7+qquOT2SQLWhZUnLQrIlLvZrMf\n3rhrI8PZYc5eWTn9TQUQRERkJtUsADKzKPDvwEXA8cDrzOz4UYddBKwOlquAr9WqPWsfXssxC4/h\nuYufW9XxqWxK839EZE6b7X543dZ1RC3KGcvOGPdYzf8REZGZUssRoDOAzc65J5xzaeA64LJRx1wG\n/MD57gS6zWzpdDfksX2P8cDuB7ji+CsmNKLTFm+b7qaIiMykWe2H129dz4lLTqSjqaPicWZGU6xp\nOl5SRERkXLUMgJYDWwvubwu2TfSYKbth0w3EI3H+7Nl/VtXxWS9LU7RJH8giMtfNWj/cn+rngT0P\nVJX+1hRr0uUGRERkxsyJIghmdpWZbTCzDX19fRN6bDqX5sZHb+TFz3px1Sltw5lhpb+JiIxS2Bfv\n7dtb8di7tt+F5zzOWTF+AYSOeOURIhERkelUywBoO7Cy4P6KYNtEj8E5d41zbo1zbk1vb++EGvE/\nT/4PB5IHqr72D/gjQF3NXRN6HRGROjRt/TAU98U9vT0VX3j91vW0xFo46bCTKh6nAggiIjLTahkA\n3QOsNrNnmVkCeC3w81HH/Bx4Q1CF6CzgoHNu53Q2Yu3Da1nStoRzV547oce1JTT/R0TmvFnrh9dt\nW8fpy08nEU2Me2w1lyYQERGZLjVLunbOZc3sPcCvgCjwHefcQ2b2jmD/14FfAhcDm4Eh4M3T2YZd\nA7v4/dO/56rTrqr6AnvpXJr2RLvy0UVkzputfnjXwC6eeOYJXn38q8c9VgUQRERkptX0W75z7pf4\nH66F275esO6Ad9fq9X/68E/xnMerjqvu2j8AQ5khDu86vFZNEhGZUbPRD6/fuh6gugIIURVAEBGR\nmTUniiBMhuc8fvrwTzlz+Zms7Fo5/gMCzjk6EpqQKyIyWeu2rWNRyyKOWXRMxePSubT6WxERmXHz\nNgC6e/vdbD20dULFD5xzRCyifHQRkUlyzrF+63rOXnE2Eav8EZPOpVUAQUREZty8DYDWPryWjkQH\nFxx1QdWPGc4O093cPe6HtoiIlLZ5/2b6hvrGTX8LNceba9wiERGRYuanf88dZtZPgq145Kb9ySNE\nyZKawnP3AJUvjjF76rVt9douUNsmS20r7wjn3MRq+dcpMxsgwdNT6osjREkzNI3NCs32/+dy6rVd\noLZNVr22rV7bBbPftnnTD8vkzcWZp4+6lFsz240oxcw2OKe2TUS9tgvUtslS2xrGI+qLJ6Ze2wVq\n22TVa9vqtV1Q322TxqFcLxERERERaRgKgEREREREpGHMxQDomtluQAVq28TVa7tAbZssta0x1PO5\nrNe21Wu7QG2brHptW722C+q7bdIg5lwRBBERERERkcmaiyNAIiIiIiIik6IASEREREREGsacCoDM\n7EIze9TMNpvZh2e5LVvM7EEz22hmG4JtC83s12b2p+B2wQy15TtmtsfM/liwrWxbzOwjwTl81Myq\nv1Ls9LXtk2a2PTh3G83s4plum5mtNLPbzGyTmT1kZv832D7r561C2+rhvDWb2d1m9oegbZ8KttfD\neSvXtlk/b/NJPfXDQXvUF0++bbP+b0N98aTbVpd9sfphmTOcc3NiAaLA48CRQAL4A3D8LLZnC9Az\nats/AR8O1j8M/OMMteUFwKnAH8drC3B8cO6agGcF5zQ6w237JPDXJY6dsbYBS4FTg/UO4LHg9Wf9\nvFVoWz2cNwPag/U4cBdwVp2ct3Jtm/XzNl+WeuuHgzapL55822b934b64km3rS77YvXDWubKMpdG\ngM4ANjvnnnDOpYHrgMtmuU2jXQZ8P1j/PvCKmXhR59wdwP4q23IZcJ1zLuWcexLYjH9uZ7Jt5cxY\n25xzO51z9wXr/cDDwHLq4LxVaFs5M9k255wbCO7Gg8VRH+etXNvKmdF/C/PEXOiHQX1xtW0rpx76\nu1k/b+qLp7Vd5agfllkxlwKg5cDWgvvbqNwR1ZoDfmNm95rZVcG2Jc65ncH6LmDJ7DStYlvq5Ty+\n18weCNIywiH6WWmbma0CTsH/paquztuotkEdnDczi5rZRmAP8GvnXN2ctzJtgzo4b/NEPZ4z9cVT\nUzf/NtQXT7hNddkXqx+WuWAuBUD15lzn3MnARcC7zewFhTudc47Kv3rMmHpqS+Br+Ck0JwM7gX+Z\nrYaYWTuwFni/c+5Q4b7ZPm8l2lYX5805lwv+9lcAZ5jZc0btn7XzVqZtdXHepGbUF09e3fzbUF88\ncfXaF6sflrlgLgVA24GVBfdXBNtmhXNue3C7B/gv/CHb3Wa2FCC43TNb7avQllk/j8653UEH6QHf\nZGS4e0bbZmZx/A+1a51zPw0218V5K9W2ejlvIefcAeA24ELq5LyValu9nbc5ru7OmfriyauXfxvq\ni6emXvti9cNSz+ZSAHQPsNrMnmVmCeC1wM9noyFm1mZmHeE68DLgj0F73hgc9kbgxtloX6BcW34O\nvNbMmszsWcBq4O6ZbFjYOQcuxz93M9o2MzPg28DDzrkvFOya9fNWrm11ct56zaw7WG8BXgo8Qn2c\nt5Jtq4fzNo/UTT8M6ounqh7+bagvnnTb6rIvVj8sc4arg0oM1S7AxfhVWB4HPjaL7TgSv2rJH4CH\nwrYAi4DfAn8CfgMsnKH2/Bh/SDmDnz/71kptAT4WnMNHgYtmoW3/ATwIPIDf+S2d6bYB5+KnBjwA\nbAyWi+vhvFVoWz2ctxOB+4M2/BH4xHh/+3XQtlk/b/NpqZd+OGiL+uKptW3W/22oL55JgG6yAAAg\nAElEQVR02+qyL1Y/rGWuLOZcPaUji4iIiIiI1M5cSoETERERERGZEgVAIiIiIiLSMBQAiYiIiIhI\nw1AAJCIiIiIiDUMBkIiIiIiINAwFQFLEzJyZ/UvB/b82s09O03N/z8xeNR3PNc7r/LmZPWxmtxVs\ne66ZbQyW/Wb2ZLD+mwk+96/C645UOOYzZvaiybZ/1HNtM7MHzewBM7vVzBZPQ/veYmaHTUf7RGT6\nqR8e97nVD4vIlCgAktFSwCvNrGe2G1LIzGITOPytwNudc/kPP+fcg865k51zJ+Nfg+CDwf3zJ/I6\nzrkLnHP94xzzMefcbZWOmaDnO+dOxL9+woen2j7gLYA+eEXql/rhCtQPi8hUKQCS0bLANcBfjd4x\n+pdDMxsIbs8zs/81sxvN7Akz+5yZvd7M7g5+NTuq4GnON7MNZvaYmb08eHzUzD5vZvcEv7D9ZcHz\n/s7Mfg5sKtGe1wXP/0cz+8dg2yfwL173bTP7fDVv2MzON7Pbzexm/Au1YWY3mdm9ZvaQmb2t4Nht\nZtZtZkcHr/vt4JhbzKw5OOaHZvaKguM/aWb3B+/tmGD7YjP7bfDYb5jZ9vDq2RXcARwdPP4vCt77\nP1TbPjN7DXAy8JPgl9dEcO43Be37x2rOmYjUlPph1A+LSO0oAJJS/h14vZl1TeAxJwHvAI4DrgSO\ncc6dAXwLeG/BcauAM4BLgK8HH1ZvBQ46504HTgfebmbPCo4/Ffi/zrljCl/MzJYB/wi8GP+D5HQz\ne4Vz7tPABuD1zrkPTqD9a4B3OeeOC+6/0Tl3WtCeq81sQYnHPBv4onPuBGAYeEWZ597tnDsF/1xc\nHWz7NHBr8NibgGWVGmdmBrwceNDMVgB/D7wIOAV4XvglZrz2Oed+gn8189cEv8IuwL+y+QnBr5uf\nrdQOEZkx6ofVD4tIjSgAkjGcc4eAHwDvm8DD7nHO7XTOpYDHgf8Otj+I/2Ebut455znn/gQ8ARwL\nvAx4g5ltBO4CFgGrg+Pvds49WeL1Tgdud871OeeywLXACybQ3tHWO+eeLrj/V2b2B2A9sAI4qsRj\nNjvnHgzW76X4fRb6aYljzgWuA3DO3QxUSpf4Hf6HZQv+l40zgf9xzu11zmWAH1H6vVfTvv2AB3zT\nzC4HBiu0Q0RmiPphQP2wiNTIRPJ5pbF8EbgP+G7BtixB0GxmESBRsC9VsO4V3Pco/jtzo17HAQa8\n1zn3q8IdZnYeM/dBkH8dMzsf/4PsLOfcsJn9Hmgu8ZjC95yj/L+nVBXHVPJ859yBgvZV+7hx2+ec\ny5jZGuClwJ8D78T/IiQis0/9sPphEakBjQBJSc65/cD1+GkRoS3AacH6nwHxSTz1n5tZJMhHPxJ4\nFPgV8E4ziwOY2TFm1jbO89wNvNDMeswsCrwO+N9JtKeULmB/8KF7Av6vnNPt/wGvBjCzi4GKFYNG\nuQt4kZktMn+y8GuZ2HvvD1/P/EpFncGvn3+Fn8ohInVA/bD6YRGpDY0ASSX/Aryn4P43gRuDlIRb\nmdyvgk/jf2h2Au9wziXN7Fv4aQH3BTnWfZTP4wbAObfTzD4M3Ib/y+UvnHM3TqI9pfwCuMrMNuF/\nMbhrmp630N8BPzKzNwO/B/ZQ5fl0zm0zs78Fbsd/7zc5534xgdf+LvAtMxvG/wJ1g5k14f8gcnXF\nR4rITFM/rH5YRKaZOTd6JFxEai2YdJx1zmXN7Fz8SbJrZrtdIiKNQv2wSOPSCJDI7FgF/DhIG0kB\nfzm7zRERaTirUD8s0pA0AiQiIiIiIg1DRRBERERERKRhKAASEREREZGGoQBIREREREQahgIgERER\nERFpGAqARERERESkYSgAEhERERGRhqEASEREREREGoYCIBERERERaRgKgEREREREpGEoABIRERER\nkYahAEgagpmdZ2bbavTcq8zMmVmsFs8vIjJXqe8VkXqkAEhkgsxsi5mdP0uvfb6Z3Wdmg2a2zcxe\nPRvtEBGZabPV95rZq81snZkNmdntJfafbGb3BvvvNbOTZ7qNIjIxCoBE5ggzOx74EfAxoAs4Cbh3\nVhslIjL/7Qe+CHxu9A4zSwA3Aj8EFgDfB24MtotInVIAJDUR/FL3QTN7IBit+LaZLTGzW8ys38x+\nY2YLCo7/TzPbZWYHzewOMzsh2J4ws41m9t7gftTM/p+ZfWKc128xs++Z2TNmtgk4fdT+ZWa21sz6\nzOxJM3tfwb5PmtkNZvaToK33mdlJwb7/AA4HbjKzATP7m4Knfb2ZPW1me83sY1M9hyV8HPiGc+4W\n51zWObfPOfd4DV5HROYo9b3T3/c6537jnLse2FFi93lADPiicy7lnPsSYMCLp7sdIjJ9FABJLV0B\nvBQ4BrgUuAX4KNCL/7f3voJjbwFWA4uB+4BrAZxzaeAvgE+b2XHAh4Eo8JlxXvvvgKOC5QLgjeEO\nM4sANwF/AJYDLwHeb2YXFDz+MuA/gYX4oy4/M7O4c+5K4GngUudcu3Punwoecy7w7OD5PhG0dwwz\n+7CZHSi3VHhPZwWPf9DMdprZD81s4TjnQUQaj/reEqbQ91ZyAvCAc84VbPtDsF1E6pQCIKmlLzvn\ndjvntgO/A+5yzt3vnEsC/wWcEh7onPuOc67fOZcCPgmcZGZdwb4/An8P/Az4a+BK51xunNd+NfAZ\n59x+59xW4EsF+04Hep1zn3bOpZ1zTwDfBF5bcMy9zrkbnHMZ4AtAM0EAUsGnnHPDzrk/4H8AnlTq\nIOfc55xz3eWWCs+/ArgS/8vNaqAF+PI4bRKRxqO+t4Qp9L2VtAMHR207BHRM8vlEZAYoAJJa2l2w\nPlzifjvkUys+Z2aPm9khYEtwTE/B8d8HjgB+6Zz7UxWvvQzYWnD/qYL1I4Blo375+yiwpOCY/GOd\ncx6wLXjOSnYVrA8RvL9pNAx81zn3mHNuAPgH4OJpfg0RmfvU986cAaBz1LYuoH8G2yAiE6QASOrB\n/8FPezgf/4NjVbDdCo75KnAzcIGZnVvFc+4EVhbcP7xgfSvw5Khf/zqcc4XBRP6xQdrGCkbyvwtT\nHSbMzD4a5LCXXCo89IFRrz2ldohIw1PfW13fW8lDwIlmVnjOTgy2i0idUgAk9aADSAH7gFb8kY08\nM7sSOA14E37u+vfNbLxf+K4HPmJmC8xsBfDegn13A/1m9qFgwm7UzJ5jZoWTdU8zs1eaf32J9wft\nuzPYtxs4cjJvFMA59w9BDnvJpcJDvwu82cyONLNW/Jz8myfbDhFpeOp7q+h7g3Y24xc7iJhZs5nF\ng923AzngfWbWFBR1cMD/TLadIlJ7CoCkHvwAP01iO7CJkQ87zOxw/PKjb3DODTjnfgRsAP51nOf8\nVPCcTwL/DfxHuCPIYX85cHKwfy/wLfxfQEM3Aq8BnsGfd/PKICcd4LPAx4MUjr+ezBueDOfcd/DP\n1V347y1F8WRmEZGJUN9bnSvxUwe/Bjw/WP8m5ItFvAJ4A3AAP1h8RbBdROqUFRcuEREz+yRwtHPu\nL2a7LSIijUJ9r4jMFI0AiYiIiIhIw1AAJHOW+Rf2KzWZ9aOz3TYRkflKfa+IzHVKgRMRERERkYah\nESAREREREWkYsdluwET19PS4VatWzXYzREQm7N57793rnOud7XZMB/XFIjIXzad+WCZvzgVAq1at\nYsOGDbPdDBGRCTOzp2a7DdNFfbGIzEXzqR+WyVMKnIiIiIiINAwFQCIiIiIi0jAUAImIiIiISMOo\nWQBkZt8xsz1m9scy+83MvmRmm83sATM7tVZtERFpVOqLRUREitVyBOh7wIUV9l8ErA6Wq4CvVfWs\nDz4IkQisWgXXXjvFJoqIzHvfo1H64muv9dtTT+2qxzZB/bZLRGQG1KwKnHPuDjNbVeGQy4AfOP9K\nrHeaWbeZLXXO7az4xOm0f/vUU/D2t4PnwZVXTk+jJ+vaa+FjH4Onn4bDD4fPfAZe//rZbZOICDPU\nF7/tbbBtG7z85dPT6Mm4+Wb45CchmSxu165dcNllYOZ/2S+8rcW2QtdeC1ddBUNDI2266ip/fTY/\nI+q1XVCfn6f12CYRmRLzP/Nq9OT+h+7NzrnnlNh3M/A559zvg/u/BT7knKtYV3WN2dgDmpqgrQ3a\n26G11b9taxu7hNvb2yuvh/fj8bCxIx9s433Agd+Ga65RBykiRczsXufcmll43VXMRF8sxcFRNlv6\nmEgEFi6EaNRfzEbWo1F//+j7pbZN5H7hth//GAYGxrarqws+8AGIxfwlHh9ZL3V/upfrrqu/z9N6\n/oyv18CsXtsVmK1+WOrLnLgOkJldhZ+awWmlDnj96/3OfHAQhof9jurAAdixw19PJv3tw8MwkYAv\nkYCWluKltRWam/3blhb49a+LO0bw7//VX8Hq1dDb6x8fixV/kBV+oBXeHx1giYjUiXH74i9+cUbb\nU+T97y+/73Of8/t+zxu5DdcLl3L7Pc9/nlyu+P7ox4x+nu99r3R7PA+e//yR1/E8/7nD2/A5wm2F\nx2SzY7c5N/bY0c9beEyp4Afg4EH4xCcm/b+gJoaG/CyPd797JLAsHHGb6ujdeMfcf//IaGdhm972\nNvjP/xwJDAuXwmAxvE0k/M/7RKL0vlLPE4+P3Rc+/qab4G/+xv9eA/Uzilevo4sFQdmJ8NzZa4jU\ni9kcAfoGcLtz7sfB/UeB88ZLuxjzq+MRR8CWLf562NmPXrJZyGQglfI7/oMH4dAhfxkc9AOkoaGR\nICkMmsLAKZUa2RfuD5e+vvFPRGen/8tad7e/FK4XLl1d/q+C3d3FnWM0WvzLWzWB1I9+VNe/wIg0\nojodAZr+vng2rFrlf9kabTbbVa5Nhx8Ojz/ur4dBU7geKtw2ev9Ub08+2U9ZHG35crjjDv/zMvzc\nLLdeuC28X7iEn72Ft6O3jd7+7W+XP5evfGXlYHP0eqngFsYGr4XbCm/Dx23cWL5NK1dWfr/lRgBr\nLfyeEC7h/cLthd8nCu8XHjt6CbfH42O/l4Tbr7nG/2412oIF8NnPlg7qCreFAV54W7ieSBRvLwxg\nKxkVlK0BNjinX5sb3GyOAP0ceI+ZXQecCRwcN+d8tNZW/4t9KPzyH6auVaNS0JRO+0smM3KbyRR/\nSL3i/2fvzqPcuO470X8vdnQ3eiObZC9cRVIitVCWKFLU5kVSLPtYluPYiR0fJZM8W6OcyElGzkyU\n2Md2PIllZ+yc8ZvnWFEyTpxkTvwsy36RPYo9orwIrcUitZuSKFFcmkt3c+kNe233/VEodAEorA00\nqoHvRwcHQFU1cBti38Kv7r2/3wfMOeaF+vuBT37SHImanV28nT8PvPkmMDNTfFXJ4vMtBkkDA4vB\nkXUrDKQGBsxRJsu//7t5xdM+F/4TnzADv49+tLhT46gTUSdrfF/cCn/5l85TlVrZrlJt+uIXzb63\nVb70Jed2ffnLwJYtzXvfwmCu8PFjj5kX7QqtXw/88z8vPSisFBQ53d9wgzmbpNDICPDjHxe/jvV+\n9tE36/uDU7Bk/85RuE9VzZ93ChrL/bv+zd90fo9qbul0/khjqdcpta2U2Vng7rtL769HqUCtcMrm\nW2+ZnyWRTdN6YCHEvwJ4B4DVQohTAD4HwA8AUsoHADwK4L0AjgBIAvidql44EDD/ITdqVKOeoMn6\nYzcMsw333LM4DA2Ywch99wG33JLfIQhhdo7We6rq4kiUFSDZA6aZGfP+2LHFfVZHWygcNgOhgQHg\nyBFz1MoulQI+8xnz8+vtBSIR89664hIImGupQiHz3mmuNxGtOCumL14q6/3dNPLtxja1sl2VrtZ/\n8YvOgdn995v3rfBXf+Xcpr/6K2DHjtpfr1IQV+3+f/on4OTJ4tcfGwO+9rXin7cHaU4jXdWMpDm9\nRuH+973P+aLw0BDwwAOLQZwVENoDO6fn9mDQadTQ6fjC2+uv1/7/idpeU6fANcPu3bvlwYMuW3pb\nbsGfdfXG/oeqKOZVlkxm8d4w8k8MUuYPTVtBkz1YKnX72c+qb3s4vBgQWbeenuJtvb3AqlXA6tVm\nR7ZmzWIAZb95KmRWd/niSKJmaqfFt67si2nlc+M5wq1tcmNyhlLteuABcwZKYVAFlJ62WGp/4Tq3\nctsNA3jXu4DJxUFtToEjgAGQezhdzbAHSNZNyuJAqXC+7623Og/Zr15tXklbWMhfB2U9LtyWSJRv\nczBYHCj19S2ORFkB06pV5u3ZZ80Th320zA0dNtEyYQBERA3jxsDMje3iGiBywABopXEa7rUSNmQy\n5ujSI4+YgY61Bggwp7b96Z8C73734jb7AkL71AQrC46um0kjYjEzKCq8t98Kg6hSWYac+HzAzp2V\n05b39JhBltO2nh7zd3TK5FPqZue2DpvaEgMgIqIWsJ3jd0mpvCRlsNVNotbiwo6VxhrlCZb52921\nC9i82fxjP3XKnBP82c8CH/pQ6WFkewpW+/BxV5c5ilM4pGxPrQoUBxSaZo4g2QOmP/xD5/ZqmjkV\nL5Ewk0TYs+3ZR4uq+Wzs6crt906Pu7rMYOrwYeDhhxcXSVoFFM+cMYfsrfVQTtn27Fn4Gp1MgkEZ\nERHR0n3sY7nz58tCvNLi1pALcASIlqbc3N3C244dzos2R0eBaDR/caS14NEwzJEtKxgqvLfXeLI/\nLkxXnkjkPy+VTKJQYVDV3b0YSNkfW/us0Shr3VRvr5mpz0qFHonkFyR0CqaEcO/8bloSjgAREbVW\nO/XDVD+OANHSVJOD33L//aVTr27e7PwzhSNT9nsrM4w9YFIUc7s9xbiVfc+6l3JxumA6DdxxR35q\nc7tPfMIMnqybFUydPbv4OJEozrpXiseTPwJVGExZt3/7N+cCu3/0R2YgZR0XCpk/b92Hw8WFAp2m\nBS6FW0em3NouIiIichUGQLR86km9ak35qyVNuaVU4GTPzKcowPCwc9KIdeuA3ynICGxPQmEPqqyk\nFYUjUE6jUalUcUB1/nz+81JT/86fB26/vfzvHQwupja30psXPrfSnVuPrVswuBhQWcGZ9TgUAp55\nBvgf/2Mx4LOmC547B3z4w/lF6+w1puyBV6nHS+HW6uMAK5ATERG5DKfAEZWabva3f2uuASpc/2Rf\nP2V/bC8eZ2X0sx4X7rem4NlHp4DFx+9/PzA9XdzWwUHgz//cDNysUSynm7XPfox9mz27oLUtk2ls\n5XIhSheoK1fAzl6DqvCx9bywkvg3v+lcfby/31z/Zq3Rckotb5+SaN2sfVZbnY61rwsrfA3r+B/+\n0KwJlg1o2yn7EPtiIlqJOAWOAI4AEVUemfJ6G/+ehcFUYVD1F38B/MEf5I8EhcPAF74AfOADxfUO\nCl+j3DaL08iLNX2wVPBkjao4ufde54rlTttUtXQBu3g8/7m9AJ7TrZy5ObNdRERERFkMgIiAvAwx\ny8IajSjl4x83A55mrGmpJXFF4e0LXzAzCxYaHTUDjUqF6gr3ldpe+FlZ7bY/t7bpOvDBDzqPmA0N\nAd/4RnGGQ10v3R6n4LLSvlLHfvWrS///RURERA3FAIjIrZoVlC1l3c2XvlQ6kcXoaGPaB5SvEO60\n/YtfBO65p3jE7ItfBG6+ufTPlqokDpQO0px+1ul4wzCnV05NNe5zISIioiVjAERE1asnkUU97EkS\nqvG7v2smcHBbFrivfKU4YCQiIqKWYgBERLVZ7umC1XJjuwoCRlVKpfwPEBERUbN5Wt0AIqK29rGP\nAcePA4aBlwFWICciImoxBkBERERERNQxGAAREREREVHHYABEREREREQdgwEQERERERF1DAZARERE\nRETUMRgAERERERFRx2AAREREREREHYMBEBERERERdQwGQERERERE1DEYABERERERUcdgAERERERE\nRB2DARAREREREXUMBkBERERERNQxmhoACSFuE0IcFkIcEULc57C/TwjxAyHES0KIQ0KI32lme4iI\nOg37YSIiony+Zr2wEMIL4OsAbgVwCsABIcQjUspXbYf9PoBXpZS3CyGGABwWQvwvKaXSrHYRuZmU\nEoY0im4SMrc/d2zBtmqPsR4b0si7l1Ii918Nx7iVEAICIvfcI/Kv99if2x+X+7m84yAghPNx9u3W\nsV3+rnp+jSVhP0xERFSsaQEQgD0AjkgpjwKAEOLbAO4AYD/xSgARYX5b6AEwA0BrYpuIGsYKViRK\nBC22YEYztNxNN3ToUodu6OZzuXgvIfO+fNuDjNx2a7e07iSEEJBy8WelkMXHZPdZX87t71O4rfAL\nvNM++8+7kRX85Z47BIaOP1cQ2NmPLfcahfvsn4+iK9g6uLXKljcU+2EiIqICzQyARgGctD0/BWBv\nwTH/D4BHAJwBEAHwG1JmLzXbCCHuAnAXAGzYsKEpjaX25hSU2AOXwpEXe8CSF7TYAhdrVMQpEMh9\nORYApDk64BGe3OiC/bnf40fQFywaUaD2sZBZaNVbN6wfBtgXExFRe2hmAFSNdwN4EcC7AFwE4DEh\nRFRKmfdtQUr5IIAHAWD37t3unndDdSsMQkoFKBKyeBSl4LkBw9yW3W6xAoy80RJrBCU7rcsKTjzC\nkwtWhDDvvcILv8+f20bUBqrqhwH2xURE1B6aGQCdBrDe9nwsu83udwB8SZpzR44IIY4BuATAs01s\nFy0zzdCg6ipUQ0VGyyCpJpFUk1ANFYZh5KaAQdhGU2xfrawABVicZmQfSXEaVfHCDFSswIWoQ7Ef\nJiIiKtDMAOgAgG1CiM0wT7gfAfCbBcdMALgZQFQIsRbAxQCONrFN1CS6oUPRlaIgJ6kmzbUt2REX\nCQm/1w+/xw+v8MLn8+UCFyJqOPbDREREBZoWAEkpNSHEPQB+DMAL4JtSykNCiLuz+x8A8F8B/KMQ\n4hWYqyX+REp5vlltoqWpJ8jp8nfB6/G2uunUQD84/AP89TN/jcnYJIYjw7j32ntx+8W3t7pZ5ID9\nMBERUbGmrgGSUj4K4NGCbQ/YHp8B8CvNbAPVxinISakpJNSEuZbGllWMQU7n+cHhH+AzP/0M0loa\nAHAmdgaf+elnAKDlQRADM2fsh4mWxp7x00pWw6Q1RCtbq5MgUAvohg7VUKHoChRNWRzJ0ZJQdTU3\niiMg4PP6OiLIceOX5+Vok5QSaS2NuBJHQk2Y90oCcTV7n91uPf7uq9/NBT+WtJbGZ376GTx+7HEE\nvIG8m9/jL97m9Rc/9xRvd/p5n8fn+KXDzYEZES2vUtk+C2+FpQis7J727J9WUh0BYV4AFNm1qNkM\nn17hhdfjXUyWAw98Hh88nsUkOj6PLy+5jvUz9kDKSrpTy7ZKn4GV2KfSPWCr9VbimFKfYWHiorzP\nXkoEfUEEvAGEfCEEvAF4PV74PL7cjdPfqVUYALUpKSUUXUFGz0DVVSSURMUgJ+wLoyfQ0+qmLzs3\nfnku16b3bX8fUloqL0ApCmBsgUtCSZQNbgznjMd5PMKDbn83UlrKcX9aS+P186+bQbWuQNVVKIaS\nS37RKALCMVA6EztjJtIoaNPnfvY5nI6dRl+oD31B89Yb7EV/qB+9wV5EghGegIlcwPrirEu9qoDF\nKXgpLFEAlK5XZiXXKcz0aQ9SKmX8LBVUqIYKaSw+LywkbQUH2QZCSLGY7McWZAkzM1B+4JX9Gau8\ngtfjhQeeokDPOsb+mkWvY1P4XpDZenLWW9qCMHsAZt8GLBaEFsJ8vaSaREyJQTf0XCBpny7vFV4E\nfGaAFPQGcwGTFSB5hRkwtfMFWGoN4fZq7oV2794tDx482OpmuIqqq8joGSi6glgmlvtia+/srOlq\n7EjMz+N88jxOzJ/A8bnjuD96P+JqvOg4j/BgTfeaog4ecDgZZE8e9mKhpfaXOnHYf+a1c685Bg7W\n/lqClp5AD7oD3ejxZ+8DPej2d6M70F303Hqcdx/oRtgXhhAC7/zWO3EmdqbovUYiI/jpb//UsR2G\nNMyAyAqOjMXHeQFTwbZSxzpt/+EbP6z4eTgREOgN9qIvlA2Mgv3oDfXmgqXc9mzAZG3rC/Yh5AtV\nNQXmB4d/gK88/RVMx6chvyEVOSWDdTXWZdgXk8V+1b8wgNENPW9URdGVvGBFNdTcKAtk/QFLYSbQ\nTtAOU/OsfxvWvfXvJa8gOMzyFEFfEEHv4ohS0BfMBUi5gKmK7zdCiOeklLub+XuR+3EEaAXRDT0X\n6CQV86pKXIlDMzSzjk020Al4A+gL9q2oTrDRpJSYTc/i+NxxnJg7gePz5v2J+RM4MXfCDBArMKSB\n69ZfZ14Jy14Gy13ps13ts/YXHSOdfwZAxf2lRk0kJP7j1f+xKEApDG56Aj1Vf0Gvxb3X3ps3MgUA\nIV8I9157b8mfyZ24fM373v/85PMlA7MffexHmM/MYz49b95n5rGQXsg9zm1Pz2Mhs4BTC6dy+8oF\nmn6PfzEwso0w2YOmIzNH8PBrD0PRFfOHPAg06zMgqpf1pbNUEKPpi4GKaqjQdC03+qLqKnToi3XV\nbDXWgMW+M69MgVicMhbyhToqaGkk67NcyTzCg4C3crcopYRmaMjomdzMBd3QF2ez2C4sBryB3GiS\ndW8PkogABkCuJKXMBTopNYWYEkNCSSCtpXOBjtfjRcAbaPu1OZXMpmbNoCYb2NiDnZgSyx3nFV6M\n9o5iY99GXD18NTb2bcTG/o3Y1L8Jv/X938JkfLLotUciI7j/5vuX89fJKTfS8p+u/U8taJHJmhLo\ntvVS5QKzoC+INb41WNO9pqbXlFIioSYwl57DQmYhL1ByCqSm4lN448IbmEvPVRVgE5Viv7JvTZcq\n9di+9sIq/Gx9ObQHMtYUJM3Qcj9nny5mD0CcCkV7hTevILQQAn6PH0FfkNNIqemEMKc/++Eve5yU\n0gzMDRWpdCo3XdIeIAElhhmpozAAajFrCk9aTSOuxhHPxJHQEnkLLq11DmF/uNXNXbJ6FvYvZBZy\nIznWtDUr4JnPzOeO8wgPRiIj2NS3Cbsu3oWN/RvNQKdvI8Z6x+D3Onecn9r3qd2b47cAACAASURB\nVJpHNZqtnpGW5XL7xbe3POAp1IzATAiBnkBPXeviVF1FTInhuv95Xe4KOLU/68uXfYqXLnVkNHMt\nZi44kXquCLRVQsD6omat37DOAfa1IXnrRIDFtRpYLBDttHC+aNqYbYE+R16onQgh4BPmSE8QxbMO\n5lJzLWgVuREDoGVizX3OaObwbTwTR0yJ5U17sqav9Qf72/KkVG5h/zs3vzM/wLE9nk3P5l5DQGA4\nMoyNfRvxnm3vwaa+TWag078R63vXVzWUXsiNoxpubJPbuSkw83v9GAwPYjgy7DiSRyuHPTixL7pX\ndRVpLZ3r11XDTPxhX9Bu9e3WYnWngMQrvBAegQACDEjgzoycRNR+mAShwQxp5E6IKS2VS0qgGmru\nSp3P48ul/+2kqQPv+Md3OE418whP0VqLdT3rcqM31lS1jX0bsaFvQ1PXkhA1UmHQj78F5BnZFt9w\n3d4XV1IY0OiGnksoY01BVjQFiqGYU8JEfvYqK6ixUhpb91S/or8XmCPff/HOv2AQ5IDBYu3mUnPY\nu37v81LKq1vdFmotjgA1iCENvHnhTcxl5nJXAK3FfUFfEN2e7lY3cdnoho5TC6fw5sybODJzJHfv\nFPwA5mf3qX2fygty2mG6H5H1ZSSXBc6QSoub1PaklEhpqVyAYy2czmiZvMyB1ui7FdBY086s2iQ+\njw8BXwBhEe74UZlGSqpJnImdyd0mY5M4HTuNyfgkXph8wSy4bZPW0vjPj/1nfPXpr+ampNqzVjrd\nChPCWI9LTYOuxI2BhhvLNxCtJAyAGiSWiWE2NYvBrsFWN2XZGNLA6YXTRYHOWzNvIaNncseNREaw\ndXArTs6fdFwcPhIZwV1X37WcTaclsBZX64b5RcUpJS0tuv3i2/H2TW/HaGQUI58feaXV7Wl3ZxNn\ncXT2KLweb27kxj5K4/f6m5Ihkczg80LqQl6Akwt04pM4s3AGc5n8NRhe4cW6nnUYjgwXBT+514XE\nvrF9iCtxxNU4FpQFnImfyatnVo2QL2QGRLasmfaAqcdfHES9PP0y/vHFf8yd087EzuDTP/k0ziXP\n4R2b3lFU/BNAfj2eMs+dkl1U+/wvo3/pWJT6y09+GVeuuzLX/nqmhS+VGwNGokIMgBpkOj6NkD/U\n6mY0hSENnImdWQxyLpj3R2eP5hXGXNezDlsHt2Lv5XuxdXArtg1uw0WDF+UWkZea3uCGhf2drrAW\nQy7FqPUlMTtTVgqJgCcAv8ePLn8XABTV87AKkpaq52G+nMwLmgpreDCYonpIKTEZm0QkGGnJF7+V\npJ4vqYquYCo+ZY7YxCaLRnLOxM8spnzP6vJ3mcF/ZARXrL0CIz0jGImMYDgyjNHIKIa6h3Kpictl\nv7z/ltIZOQ1pIKkmzQCp4GYVf857btt/OnY673lhQWUnGT2DLz/5ZXz5yS9XPHa5nUuewy3/fEvu\necAbyB8hKwj+So6g+fO31VL3jCNTtBIwAGoARVcwl55DX6iv1U1ZEiklJuOTuSDHCnjemn0LSTWZ\nO25N9xpsG9yGX7/017FtcBu2Dm7F1sGtiAQjZV/frQv7DWkgraWR0cwrfIXpYK1tK+3LeuHibSu4\nyQUmYvE4ezVuq4ZCXjVujzdXlbuak2CpSu5OVd2tBeX2tRi5Yom2K8K5qUqFv6e1HqMgTS+L/nae\nhJpAWk9jMNA5I/H1KPUlNakmsWvdrlyAUxjonE+eL/obHOoawkhkBDuGduBdW96F0choLrgZ7hlG\nb7C36tG2erNfeoSn7oyNdlJKKLqSFxB98DsfLHn8V279St55wKlIq5X4otRzq/3VPBdCwAPz/s7v\n34mzibNFbRoIDeC+G+5zDAatAHA6MY23Zt/KbSsMWp14hTcvQLJPL7TfvvXStxxHpr769Fdbfq4n\nsmMA1ABz6TlIIV01paLc1T0pJaYT03jzQv7UtSMzR/KmEgx1DWHr4Fb82o5fMwOdVVuxdWDrkgI9\nN2Tq0g3dzN5kKIAEvB4v+kP9GIuMoSvQBQFRVBTQ/mXdulnb7F/Wy/0bcMoIVU8gZZ+CZgUNViVw\ne3pce0G4Ln9XLrjxe/151bO9Hm/Dg7dGBYT2KR+6oefuC4Opwv83iq4gpaWg6upiCmEhi6qGuy1o\npaU5lzjHkZ8yDGlgKj6F+8fvd/yS+tmffTZvW8AbMEdsekdw08abMBLJH71Z17OuoZ93qy+SCSFy\nRZtXda0CYI4+lRqVauW57L9c918cg8VP3/jpmttlBX2Fo2PWlMNSo2dz6TmcWjiVm4Zov1BaaDI+\niT1/tweD4UHH26rwKgyGBzEQHsCq8CoMhAdYtJSaiv+6lsgaNen2uyfJgdPVvfsevw/fOfQdqIaK\nIzNH8oqEDoYHsXVwKz5wyQdyU9e2Dm7FQHigVb9CQ2mGhrSWhqZrgDCvZPWH+jEQHkDYF27YegD7\nPPCSox7ZyulOgZRqqLmREIvVrlxhQoFc8cGgP4iQL4SgN2gGNR5bUNMmGanslc7rORkWfrZpLY2k\nmjQLDGdieUUgpZR5wZHP43PVRQ0qTzM0nEueQ2+wt9VNabmUmsLxueM4OnsUx+aO4ejsURydPYrj\nc8fzpi07+dptX8sFOqvCq5b9b8ANF8ns3FqTrZHBYsAbyAUiS6EZGm7+p5sxFZ8q2hcJRPC+7e/D\nTGoGF1IXcHzuOJ6ffB6z6dmiLLCWvmBfXoA0EB7IC5bst0oBk/2iMNbisiX9otQWGAAtUVJNIqWk\nXJX84CtPf6Xo6p5maDhw5gB2j+zG+7a/LxfkbFu1bcmdnttYAY+qqxAwq0f3B7MBjz+MoDfYlJN6\nbrE1lhZ4OAVSQoiapqCRyesxA0GngngActPvrAAppaWQUlNIaSkkMgkUlgnwe/15ARK5x0J6AVLK\njhnVk1KaCR/mzODm2OwxHJs9hqNzR/NGLAQERntHsWVgC/aO7sWWgS342i++hgupC0WvORIZwW1b\nb1vOX8P1Wj0qVY7bgkWfx4c/3vfHjgHj597+Oce26oaO+cw8ZlOzuJC6gJnUTNHtQuoCjs0dw3OT\nz5UNmKzzfGHANBmbxP9+83+b5UgAwAMOExMDoKW6kLxQd2rNRpJS4sCZA/jOoe84Xn2x/MsH/2UZ\nW7U8rNodqm52bkFvEIPhQfSH+hH2hVdc3aBGBVJUmRXIhFGcdl1KmTd6pOgKkmoSaS1tjiAZMQhp\njspBZv+/ebzwe/xcf9QCU/Gptkyfn9EyODF/omg059jssbwpy13+Lmzu34yrh6/Gh3d+GJsHNmNL\n/xZs7N+IkC8/QU+Xv8uVoxqGNHJ/a7rUF2vmefwtvfDjtkDDzWoNGL0eb24U5yJcVPH1rYCpMECa\nTc3mHs+kZnBs7hgOTh7EXHquZMBEnY0B0BLoho7pxHTFxf/NdCF5Ad9//ft46NWHcHzuOCKBCLr8\nXY5zcYcjwy1oYeNZhWatbD0hXwirw6vRG+pFl7+LawCoIYQwRw/9Xj/gcI3DWntkjSBltIw5Iqyl\nkFSTednw7GnhqfHSWhoxJebKabvVZFuTUmImNbMY3NgCndOx03lf4IZ7hrFlYAs+uOOD2Ny/GVsG\ntmDLwBas6V5TdZDghlENRVfMvx1dzSVWsJIZDIQHEPAEkFATSCgJzGfm80ZjrcCIFxrcqZkBoz1g\nqoZu6Lj0by51TKBDnY0B0BLElBh0qS/7lAtDGnhy4kk89OpDePzY49AMDVcPX43f2/17ePdF78b+\no/tdeXWvXoquIK2lc3UQQv4Q1vasRSQQQdgfZsBDLWEVOi7170839NzokWqoCPvab3TCLWaSM66c\n+ua0HvPTP/k0Xjn7ClZ3rTanrM0exdG5o1jILOR+LugNYvPAZly+9nK8/+L354KcTf2bcunnl2q5\nRjWsrI6qoZqBnDQzN4b9YfQF+xAJRsy1jL5gyZEeKSVUQ80VsU0oZmCUUBO5zJYSMjcCa01VJfJ6\nvBiODDsmsqDOxh5iCabiU8v6pWYqPoWHX3sYD7/6ME7HTqM/1I87r7gTH975YVw0uDh07Iare0uR\n0TK5gEcIgbAvjOGeYUSCEYR9YVdMOSSqxFp/VDj9iBpLSomp+BS6A+5JRGNxWo+Z0TP41kvfAmBm\n2twysAXv3fZeM8jp34LNA5sxEhlxZUBXjj1IsWdf9Hq8iAQjWBNYkxuhD/qCNf1+Qoi8iw32q/9W\n1kdFV5BSU7lsZTE9lpfy3wqMWj2djpafUyILIgZAdcpoGcyn55s+5UIzNPz8xM/x0KGH8PMTP4ch\nDewb24c/vu6PccuWW0pefV4pc5atugspLZWb4tAT6MFoZNQMePxhXskjopJiSgyqoaLHs7QaMI0y\nHZ/G/mP7sf/o/pLrMQUEDnziQEunTy+FPeiQcrEERJevC6vCqxAJRnK1xJp9wcpax9fl70J/qD+3\n3RqBVXQFaTWdS9U8n5lfLOwMmQuK/F6/q4NOawaEVRag8DmTs5RWeFFYGrJy4SNqe/xLqdNceq6p\nr39y4SS+++p38b3XvoezibMY6hrCJ676BD6080PY0Lehqe/dTLkTp6bk5uT2BnuxoW8DegI9CPvC\nnNNNRFU7mzjb8lHht2bfwv639mP/sf14efplAMCm/k3o8fcgrsaLjh+ODK+I4CcvKUG2DhdgTtHr\nCfbkpiFbwY6bRlbsI7C9wV6swRoAixfd8qbTqYm8tPjWz9cznc6exVNCln0OYHGUCmZA5lSIG0Cu\ntIFV7sDvMQM2q56Zlb0ypsdK1j7r5NEv66LwXGoOez+/95etbg+1HgOgOkgpMRmbXHLV6UKKrmD/\n0f347qvfxZMnn4RHeHDThpvwubd/Dm/f+PaWn+RrZc/OZtVZsU6cfZE+hP1hBjxEVDdVVzGTmkFf\nsP7izPUwpIFXpl/B/qP78djRx3Bs7hgA4PI1l+Pea+/FLVtuwUWDFxWtAQLcux7TnpQAML+Me4QH\nkUAEA+EBdPu7zfpj3uCK7rPtxU4B5AqeAsgFe1bGRysJQ0yP5f28JVefDchL5JArMA0P/J7FGm3W\nPnudMXsBbHtx7MIC2dWygtZcan81haRm1j4rTCZhlVdg5krqRAyA6pBQE0jraXQFGrMY9ejsUTx0\n6CF8//XvYzY9i5HICD6555P4tR2/tiIyt+XN/TbU3PSCkD+EgdAAIoEIQv4QQr4Qh+eJqGHm0/N5\nU7CaSdVVPHv6WTx29DE8fuxxnE2chVd4sWd0D+684k7cvOVmrOtZl/czbl2PKaVEWksjradz/XXY\nH0Z/qB89gZ6KSQnalZX1sRvdedPb7Ykc7EGKUwDT6s/LIzxmgJetfWb/PUql9reCJCv4tbAwNLUz\nfhutw7nEuSVnHktrafzoyI/w0KsP4eCZg/B5fHjXpnfhw5d+GNevv961V2Ls0wdy2XeERLevG6vD\nq9ETzJ48V/hVQiJyvzPxM01NfpBQEhifGMdjRx/Dz47/DDElhrAvjBs33Iibt9yMd256J/pC5Uef\n3LIe00oSYCWXGQgNYDQyiu5Ad81JCTqN1+NF2BN2rBe2klRK7V+YuTKlpnKp/RMZs+aUNYJkHz1y\n+/opIicMgGqkGRrOJc+hN9hb18+/fv51PHToITzyxiNYyCxgY99GfGrfp/DBHR/E6q7VDW7t0hjS\nQEbL5Ba6WvOTrSkRPYEeBL1BnjyJaNkl1SSSarLqeiDVmknN4CfHfoL9R/fjyZNPQtEV9If6ceuW\nW3HLRbfg+vXXr4jMfrqhI6Wlclf1u/xdGOsdQyRo1opjn02FijJX2uI9a/TIGgmz1z1LKAnoUjdH\nE4V5rDVq5PV4IWAWiea/OXKTpgZAQojbAHwNgBfA30spv+RwzDsA/HeY1yPOSynf3sw2LVUsE4OU\nsqY/5ISSwKNvPorvvPodvDz9MgLeAH7lol/Bh3d+GHtH97piWLkwqw9gDn9HghGs6TbTl4Z8Idct\ndCWi8tqxHwbMItCNmlJ7auEU9h81M7c9N/kcDGlgJDKCj1z2Edyy+RZcPXK166fv5qa1Zdcb+Tw+\nrOpahf5QP7r93StuDSm5S97okYPC0SNrap21La2loUlz1ohVC8paG2zVcfIIT1HA5BEeeIWX3zuo\n4ZrWowshvAC+DuBWAKcAHBBCPCKlfNV2TD+AvwFwm5RyQgixplntaZTJ2CTC/vxhcKdK3+/b/j68\ncvYVPHToIfzwzR8iqSaxbXAb/uzGP8P7t7+/pRXL7Qs9ATMLjd/rRyQYQSRgXh0M+oIsMEq0wrVr\nP2xIA1PxqboT0UgpcfjC4VzQ89r51wAA21dtx92778atW27FjtU7XP+lyyoSrRs6AKA/1I+RyEhu\nHY/b20/to3D0yGlk1sqAp0vdvDf0vMf2tUm61KFoSl4RXStQymW5gwQEcvWmCgMmr/Dm1moRFWrm\nJa09AI5IKY8CgBDi2wDuAPCq7ZjfBPA9KeUEAEgpzzaxPUuW1tKIKbG84MWp0vefPv6n+OrTX8Vk\nfBJhXxjv2fYe/PrOX8eV665c9j/EXCY2Q4WQZucR8ofQF+xDb7AXIb+5XodXB4naUtv1wwByKYtr\nWWeoGzpemHohF/ScXDgJAYG3Db8Nf3L9n+DmzTdjY//GJrZ66QqntYX8IQz3DKM32IsufxfXXZKr\nWUGJF7X/O7VSh+uGnguirMeaoeVNz9N0DYqh5IIp672XK2EKrQzNDIBGAZy0PT8FYG/BMdsB+IUQ\nPwMQAfA1KeU/Fb6QEOIuAHcBwIYNrauBM5uazcvZD5jZfQqrC6uGivPJ8/j8Oz6P27ff3vB02dUw\npIH5zDz8wo9VXYuF6UK+EE+SRJ2jYf0w4J6+eCo+lUtjbFc4Gv/JPZ/EYHgQ+4/ux0+O/QQXUhfg\n9/hx3frrcNfVd+Fdm9/lurWXdlJKZPQM0moaEhJejxeDoUEzLXWgm6P01DGs0Z16pqLaR5uyU/xl\npZ+h9tfqSc0+AFcDuBnmcrunhRDPSCnfsB8kpXwQwIMAsHv37pb8w5VSmlMugvnBzGRs0vF4zdDw\n0cs+uhxNKxJX4lA0BWN9YxjuGWbAQ0TlVNUPA+7oizNaBnPpuaJpxKVG4wGg29+Nd2x6B27Zcgtu\n2nhTSy5KVUvVVaS0VG5aW2+wF8MDw+gOdCPsC/MKNlGNPMIDj9cDv1PqO+pYzQyATgNYb3s+lt1m\ndwrABSllAkBCCPEEgF0Aik68rRZX4shomaKUq8ORYZyJnSk6vhX1e1RdRUyJoS/Yhx2rdxStVSKi\njtNW/TAAzKXnHLc7jcYD5lqEn/+Hn7t2tMSQhrlYXFfNKcq+ENb1rENvsBfd/m5ewCIiaoJm5iQ8\nAGCbEGKzECIA4CMAHik45t8A3CCE8AkhumBOzXitiW2q29nEWQR8xSfQe6+9F35P/lWF5a70LaXE\nXGoOaS2N7YPbccnqSxj8EBHQZv2wlBKTsUnH2j+lRuNnU7OuC34yWgZzqTnMpmYRV+KIBCPYtmob\nrlx3JXat24Wx3jH0BnsZ/BARNUnTRoCklJoQ4h4AP4aZfvWbUspDQoi7s/sfkFK+JoT4EYCXARgw\nU7T+slltqpdmaLiQuoC+YHHBu9svvh3/8OI/4PXzr8OQxrJX+k6pKaTUFIYjwxjtHXV9qlYiWj7t\n1A8DQEJNIK2nMRgozjDlptH4QoY0kFASZvFoIdAT6MHG/o3oCfSgy9/FaW1ERMusqd+WpZSPAni0\nYNsDBc//G4D/1sx2LNV8er5k9hBVV3F87jg+tPND+MI7v7BsbdIMDQuZBfQEenD52subWg2diFau\ndumHAeB88nzJ0Zx79tyDP3v8z/K2LfdofCEpJWJKDLqhY13POgyEB9Dl7+KFKiKiFqu6FxZC3ABg\nm5TyH4QQQwB6pJTHmtc095iMT6LL3+W478WpF5FQE7hxw43L1p5YJgZd6tgysAVDXUO8ekjUITq5\nH9YMDWcTZ9Eb7HXcv6bLLF80GB7EbGp22UfjC8WVOBRdwdrutRiJjDhmrSMiotaoKgASQnwOwG4A\nFwP4B5jVwv8FwPXNa5o7pNQU4pk4BruKp1wAQHQiCp/Hh2vHrm16WzJaBnEljqHuIWzo2+C6ee1E\n1Dyd3A8DwEJ6AVKa1eKdRCeiCHqD+Olv/zRXjLEVUmoKSTWJVV2rMNY7VvLiGRERtU61I0C/CuBt\nAJ4HACnlGSFEpGmtcpHZ1GzZhajjE+O4ct2ViASb93EY0sBCegFBXxCXrrm05BVQImprHdsPA2bt\nn3LJXaITUVwzek3Lgp+MlkFCSaA32IvL1lzW1HMCEREtTbVZ4BRpVo+SACCE6IgFJ4Y0MBl3zjgE\nABeSF3Do3CHcsOGGprUhrsSxkF7AWO8YLltzGYMfos7Vkf0wAKS1NBaUhZLBzamFUzg6exQ3bbxp\nmVsGKLqC2dQsDBjYMbQDO4Z2MPghInK5akeAviOE+FsA/UKITwD4XQB/17xmuUNciUM1VEQ8ziez\n8ZPjANCU9T+KriCeiWMgPICNQxtbOqWDiFyhI/thAJhJzsAryo/EA83pi0vRDA2xTAx+jx9bB7di\nIDxQcnoeERG5S1UBkJTyK0KIWwEswJx//lkp5WNNbZkLTCemEfSWXrg6PjGOwfAgdg7tbNh7Sikx\nn5mHT/hw8eqL0R/qZ5IDIurYflhKian4VNlMl9GJKEYjo9jcv7np7TGkgfn0PDzCg039m7C6azXr\n9RARrTAVAyAhhBfAfinlOwG0/cnWouoqZpIz6A/1O+43pIHxiXFcv/76hl31S6pJpLU0RiOjGI4M\nM1UqEQHo3H4YAGJKDKqhosfT47hf0RU8dfIpvP/i9zf1YpGUMpeBc7R3FOt61rGPJiJaoSr23lJK\nXQhhCCH6pJTzy9EoN5hPm79qqRPqa+dew0xqpiHrfzRDw0J6AZFgBNvXbmfWICLK06n9MACcTZyF\n3+svuf+FyReQVJNNnf4WV+JQdRVrutcwpTURURuo9vJVHMArQojHACSsjVLKP2hKq1ygXPIDwJxy\nAWBJAZB1RVFCYuvgVqzqWsXpbkRUSsf1w6quYiY1g75gX8ljmlmKwBqVX9W1CmORsbJZ6IiIaOWo\nNgD6XvbWEZJqEgk1gcGwc+0fwFz/s3NoJ1Z3ra7rPdJaGkk1iTXdazDWO8aaPkRUSUf1w0B2JF6W\nHokHzADoquGr0BNwniJXD6vmWn+oH1sHtzb0tYmIqPWqTYLwLSFEAMD27KbDUkq1ec1qrZlU+YxD\ncSWOF6ZewO9e+bs1v7Zu6FjILCDkD+HSoUuZLpWIqtJp/TBgjsR3BUpPCZ6OT+P186/jU/s+1ZD3\ns7JvdgW6sHNoJ3qDvRyVJyJqQ1UFQEKIdwD4FoDjAASA9UKI35ZSPtG8prWGIQ1MxafKXvF75tQz\n0AwNN26sbc65tYB2U/8mDHUPMWUqEVWtk/phoLqR+CdPPgkAS67/Y6W0DngD2L5qOwbCAwx8iIja\nWLVT4L4K4FeklIcBQAixHcC/Ari6WQ1rlVgmBk3X4A2WHgGKTkTR5e/CleuurOo1FV1BLBPDqq5V\n2Ni3kQtoiageHdMPA2ah6UpZ1qITUQx1DeHiVRfX9R66oSOmxOCBB5sHNmNVeBVTWhMRdYBqAyC/\nddIFACnlG0KI0ml5VrDp+DRC/tJFR6WUiJ6IYt/YvorrdgxpYD4zj4AngJ1DO9EXKr2Ql4iogo7p\nh6sZidcMDU9OPImbt9xc82iNlBILmQVISIxFxrCmZw1TWhMRdZBqe/yDQoi/B/Av2ecfA3CwOU1q\nHUVXMJueLVn7BwCOzx3H6dhpfPyqj5d9rYSSQEbLYKxvDMM9w7yqSERL1RH9MGCOxBvSKNtvvjL9\nCuYz8zWlv5ZS5lJaD0eGMRwZZgIaIqIOVG0A9HsAfh+AlW41CuBvmtKiFppLzwGifMah8YlxACh5\n0lV1FTElhr5gHy5ZfQnTphJRo3REPwwAU/GpilOFoxNReIQH162/rqrXtC5Kre5ejbHeMYR8pUf6\niYiovVUbAPkAfE1K+ddArip5Wy1kkVKatX/8pWv/AOZJd1PfJqzvW1+0bz49DwGBbYPbMBge5CJa\nImqktu+HAXMkfi49h4HwQNnjohNR7Fq7q+yIPWCWHEgoCQyEB7B91fay9d2IiKgzVJuG7HEA9qGM\nMID9jW9O6yTVJFJKqux0iIyWwbOnn3UsfqrqKvweP3at28WCpkTUDG3fDwPAbGq24jEzqRm8Mv1K\n2ULUiq5gJjUDAYFL11yKS1ZfwuCHiIgAVD8CFJJSxq0nUsq4EKJ0cYYV6ELyAvze8uuJn5t8Dikt\n5Zj+OqNnMBgerPgaRER1avt+WEqJydhkxUDlqZNPQUI6pr+2aq0FvUFsH2RKayIiKlbtCFBCCHGV\n9UQIsRtAqjlNWn66oWM6MV3xpBudiMLv8WPP6J6ifZquoS/ILG9E1DRt3Q8DQEJNIK2nKyYmiJ6I\nYiA0gMvWXFa0byGzgLHeMVyx7goMdnEqMhERFat2BOiPADwkhDiTfT4M4Dea06TlF1PMAqWVCpOO\nnxjH1SNXo8vvfNGVi2qJqInauh8GgPPJ8/B7yo+iG9LA+MlxXL/hesc+W0CgP9TPQtNERFRS2TOE\nEOIaIcQ6KeUBAJcA+H8BqAB+BODYMrRvWUzFpxD2lc/WNh2fxhszbzhmf5NSAoIBEBE1Xqf0w5qh\n4WzibMWR+NfOvYbzyfMl+2IJyb6YiIjKqnSJ7G8BKNnH+wD8GYCvA5gF8GAT27VsMloGc6m5iumq\nrfTXTotuM3oGfcE+TrUgomZo+34YMGv/SCkrjtxEJ6IAnPti1VDRE+hh3TUiIiqr0hQ4r5RyJvv4\nNwA8KKV8GMDDQogXm9u05TGXnqsqcIlORDHUNYSLV11ctC+jZbCme00zmkdE1Pb9MABMxiarqpsW\nnYji0qFLsbprddG+tJbGcM9wM5pHRERtpNIIkFcIYQVJNwP4iW1fteuHjVy5FAAAHuVJREFUXMvK\nONQT6Cl7nG7oeOrkU7hxw42OwZIhjYr1g4iI6tTW/TBgBi4LykLFqWuxTAwvTL5QshC1YRgV+3Mi\nIqJKAdC/Avi5EOLfYGYbigKAEGIrgPlKLy6EuE0IcVgIcUQIcV+Z464RQmhCiA/V0PYlszIOVUpd\n/crZVzCfmXdMfw2Yi24555yImqSt+2EAmEnOwCsqT1t7+tTT0KVesi+WkFWNIhERUWcre/VQSvmX\nQojHYWYb+j9SSpnd5QHwyXI/m61S/nUAtwI4BeCAEOIRKeWrDsd9GcD/qe9XqN+5xLmK6VYBc/2P\ngMC+sX1F+1RdRcAbYP0fImqKdu+HpZSYik9VVaQ0eiKKnkAPdq3dVbRPN3T4vf6q+nQiIupsFadP\nSCmfcdj2RhWvvQfAESnlUQAQQnwbwB0AXi047pMAHgZwTRWv2TCaoeFc8hx6g70Vjx2fGMflay/H\nQHigaF9Gz2AgVLydiKhR2rUfBswyBKqhosdTfuqalBLRiSiuX3+94wWntJZmLTYiIqpKMwsljAI4\naXt+KrstRwgxCuBXAXyjie1wVG3Gofn0PF6afqnknHPVUNEX4kmXiFzJ1f0wAJxNnK1qBP2t2bcw\nGZ8s2RcrusIAiIiIqtLqSnH/HcCfSCmNcgcJIe4SQhwUQhw8d+5cQ9642oxDT516CoY0HFOuAgAk\nKtYQIiJysar6YaDxfbGqq5hJzVSVROaJE08AcE5/bekKOBepJiIismtmBqHTANbbno9lt9ntBvDt\nbGa11QDeK4TQpJT/n/0gKeWDyNa72L17t8QSpbU0YkrMcUpboeiJKHqDvbhi7RVF+6SUEIIJEIjI\ntRrWDwON74vn0/OARNWlCLYNbsNwpDjNNftiIiKqRTMDoAMAtgkhNsM84X4EwG/aD5BSbrYeCyH+\nEcAPnU66jTabmq049Q0wT6rjE+PYN7YPPk/xR5XRM4gEIiyASkRu5dp+GAAm45NVjdok1SQOnD6A\nO6+403G/oivoCfRU1a8TERE17WwhpdQA3APgxwBeA/AdKeUhIcTdQoi7m/W+VbSr6oxDb868ienE\ndMk55xktg/5Qf6ObSETUEG7thwEzqEmoiaqytj17+lmohloy/XVGz6A/yL6YiIiq09QielLKRwE8\nWrDtgRLH/odmtsUSV+LIaJmqAqDxiXEApeecS8iqXoeIqFXc2A8DwExqxnFk3Un0RBRhXxhXD1/t\nuF83dPQEWQCViIiq03HzBc4mziLgq65OxPjEOLYObnWccw6Yo0lMgEBEVBtDGuZIfBXJDwBz/c/e\n0b0I+oKO+7n+h4iIatFRAZBmaLiQulDVSTelpnDgzIGS0980Q0PQG2QBVCKiGsUyMeiGDq/HW/HY\nE3MncGL+BG7aeJPjfs3Q4PewACoREVWvowKg+fR8LltQJc+eeRaKrpSc/pbW0lUVUSUionzT8emS\nozmFohNRACi9/kfLsP4PERHVpKMCoMn4JLr81dWJiJ6IIugNYvfIbsf9qqGiP8xFt0REtVB0BbPp\n2aqnD0dPRLGxbyM29G1wfj1DYV9MREQ16ZgAKKWmEM/Eq77qOD4xjj2je0rOKxfgnHMiolrNpmYB\nVFf7J6Nl8IvTvyg5FRlgX0xERLXrmABoNjVbdcahUwuncGzuWOnsb9Ks/8eTLhFR9aSUmIxNVp09\n87nJ55DSUiWnv0kpISHZFxMRUU06IgAypFF1wT1gMf11qZOuoiuIBCIsukdEVIOEmkBGz1SdsCB6\nIgq/x489o3sc9yu6gt5AL/tiIiKqSUecNeJKHKqhVj0CND4xjpHICLb0b3Hcn9bSXHRLRFSj88nz\nVffDgJkA4ZrRa0qu3UxraRajJiKimnVEADSdmEbQW93aH1VX8dTJp3DjhhtLzlE3pMGie0RENdAN\nHWcTZ6ue/jYZm8SbM2+WXf/DYtRERFSPtg+AVF3FTHKm6uxvL02/hISaKLn+B2DRPSKiWi1kFiCl\nrHq6mjUVuVT9H4DFqImIqD5tHwDNp+cBVJdxCDDnnHuFF/vG9jnuZ9E9IqLaTcYmEfZXH6w8ceIJ\nDPcM46KBixz3sxg1ERHVq+0DoDPxMzVNkYhORHHluisRCUYc97PoHhFRbdJaGgvKQtUj56qu4qlT\n5acip7U0+kLsi4mIqHZtHQAl1SSSarLq0ZoLyQs4dO5Q2elviq6gN9jbqCYSEbW9meQMvMJb9fEv\nTb+EuBIvmYkTMItRMwAiIqJ6tHUANJOaqSnj0JMnnwSAsotuAVSdTpuIqNNJKTEVn6ptJL7CVGTz\nhcH1P0REVJe2DYAMaZgnXX/1J93xiXEMhAZw6ZpLHfdLKZkAgYioBjElVlMZAsCcivy24beVnIps\n9cVBX3XZPYmIiOzaNgCKZWLQdA1eT3XTLgxpYHxiHNevv75kliJFV9AT6GHRPSKiKp1NnK0pUcH5\n5HkcOneo7Eh8Rs+wACoREdWtbc8e0/FphPzVj9S8fv51XEhdKDvnPKNn0B9k0T0iomqouoqZ1EzN\nI/FA+anIGS2D/jD7YiIiqk9bBkCKrmA2PVvT/PDoiSgA4Pr115c8Rjd0Ft0jIqrSfHoekNWXIQDM\n6W+ru1Zjx9COkscY0qgpqCIiIrJrywBoLj0HiNpOuuMT49ixegeGuofKHldLHQsiok42GZ+sKWmM\nbugYnxjHDetvKDu9TYBrMYmIqH5tFwBJKTEZn6zp6mBcieP5qefLpr/WDR1+LwugEhFVI6kmkVAT\nNfWZh84dwlx6rnz6a11F0McCqEREVL+2C4CSahIpJVXTSfeZU89AM7SyAVBaS7MAKhFRlWZStdX+\nAYAnTjwBAYHr1l9X8piMnmH9HyIiWpK2C4AuJC/UfGVwfGIcXf4uXDV8VcljFF1hAEREVAWrDEFP\noKemnxufGMflay/HYHiw5DGqrrIvJiKiJWmrAEg3dEwnpmtKVCClRHQiir2je8uOGgkIrv8hIqpC\nrWUIAHPt5kvTL1UsRM31P0REtFRtFQDFlBh0qddUG+LE/AmcWjhVds65lBISkiddIqIq1FqGAACe\nOvkUDGmUDYCklIAA+2IiIlqStgqApuJTNaW+BqqrOaEaKnoCPTVdzSQi6kT1lCEAzPTXfcE+XLH2\nipLHZPQM+oJ9NWX4JCIiKtQ2AVBGy2AuNVfzNLXoiSg29m3Ehr4NJY9Ja2n0h1h0j4ioktnULIDa\nyhBIKRE9EcX1G64ve6GJfTERETVCUwMgIcRtQojDQogjQoj7HPZ/TAjxshDiFSHEU0KIXfW+11x6\nruargoqu4Benf1E2+xtgri2qdTEvEZEbLGc/LKXEZGyy5oLRhy8cxrnkuYrrfyCBLn/1dYWIiIic\nNC0AEkJ4AXwdwHsA7ATwUSHEzoLDjgF4u5TycgD/FcCD9byXddKtNUh57sxzSGmpigEQF90S0Uq0\nnP0wACTUBDJ6puZ6aU+ceAIAKvbFEpLJaIiIaMmaOQK0B8ARKeVRKaUC4NsA7rAfIKV8Sko5m336\nDICxet4ooSaQ1tM1p7+OTkTh9/ixd3RvyWN0Q4fX40XQF6ynaURErbRs/TAAnE+eh8/jq/nnohNR\nXLL6EqzpXlPyGFVXEfKH6np9IiIiu2YGQKMATtqen8puK+X/AvDvTjuEEHcJIQ4KIQ6eO3euaP+5\nxLmarzgC5kn3quGryk7XYNE9IlrBGtYPA+X7Yt3QcTZxtubpb3Eljucnn684/S2jZ9Af5PofIiJa\nOlckQRBCvBPmifdPnPZLKR+UUu6WUu4eGhrK26cZGs4lz9U8L3w6Po03LrxRNv01YCZXYNE9Imp3\nlfphoHxfvJBZgJSypjIEAPDMqWegGVrFAEjTNfQGe2t6bSIiIifNnEtwGsB62/Ox7LY8QogrAPw9\ngPdIKS/U+iaxTKyuk+6TJ58EUD79tYWLbolohVqWfhgAJmOTda3PiU5E0eXvwtuG31b2OK7/ISKi\nRmnmCNABANuEEJuFEAEAHwHwiP0AIcQGAN8DcKeU8o163mQpJ92hriFcvOriiscyAQIRrVDL0g+n\ntTQWlIWa+0or/fW+sX1lpzEb0oBHeBD0ci0mEREtXdMCICmlBuAeAD8G8BqA70gpDwkh7hZC3J09\n7LMAVgH4GyHEi0KIg7W8R70nXd3Q8dTEU7hhww1lU2cruoJufzcLoBLRirQc/TAAzCRn4BW195NH\n547idOw0btp4U9njMloGvcFeFkAlIqKGaGo6HSnlowAeLdj2gO3xxwF8vN7Xr/ek+8uzv8RcZq5i\nytWMlsHanrX1No+IqOWa3Q9LKTEVn6o5+QFgFqIGKqe/zugZrOtZV1f7iIiICrkiCUI9pJSYTkzX\nd9KdiEJA4Lr115U9TjM0RAKReptIRNT24kocqqHWnf56y8AWjPWWz7wtpayrryciInKyYgOguBJH\nRsvUddIdnxjHZWsuw2B4sOKxXP9DRFTadGK65hpsgDmF+cDpA1UlohGCxaiJiKhxVmwAdDZxFgFf\n7bV/5tPzeGn6pYpTLnRDh8/jq6u+EBFRJ1B1FTOpGXT7ax+defb0s8jomYoBkKIrCPqCLIBKREQN\nsyIDIM3QcCF1oa6T7tOnnoYhjcr1f3QuuiUiKmc+PQ9I1NVPRieiCHqDuGb0mrLHKbqCgeBAvU0k\nIiIqsiIDoPn0PKSUdZ90I4EIdq3dVfY4RVPQH2LVcSKiUibjk+gK1FcnLXoiij2jeypObVN1Fb0h\nFkAlIqLGWZEB0GR8sq7ipFJKjE+M47r111WcTiEhWQCViKgEQxpIqIm6pgmfXDiJY3PHKo7EA1z/\nQ0REjbciA6CEmkDQV3tBvCMzRzAVn6q4/sfCky4RkTMJCU+dpxAr/fVNG8rX/2EBVCIiaoYVGQDV\na3xiHEDlmhOKrqDL38UCqERETRCdiGKsdwyb+jeVPS6jZdAX7ONaTCIiaqiOC4AuGrgII5GRssdl\ntAzX/xARNYGiK3jm1DO4ccONFQMbKwAiIiJqpI4JgFJqCs+eebaq6W+61BEJsgAqEVGjPT/5PJJq\nsqr1PxCoO8kCERFRKR0TAB04cwCKrlRVdE9KibAvvAytIiLqLNGJKPweP/aO7q3qePbFRETUaB0T\nAFVbc8KQBrweLwugEhE1QfREFFcNX4WeQE/Z4xRdQdgX5lpMIiJquI4JgMYnxnHN6DUVM7tx0S0R\nUXNMx6dx+MLhqqa/cf0PERE1S0cEQKcXTuPo7NGqpr8xAQIRUXNEJ8z019X0xbrUWQCViIiaoiMC\noGrTXwNmbYuwn3POiYgaLToRxZruNbh41cUVj+VaTCIiapaOCYCGe4Zx0cBFFY9l1XEiosbTDA1P\nnXyqqvTXhjTg8/i4FpOIiJqi7QMgVVfx1KmncMOGGyqedBVdQcgXgs/jW6bWERF1hpenX8ZCZqGq\n9T9pLY3eYC/XYhIRUVO0fQD00vRLiCvxquacK7qC/iDX/xARNVp0IgqP8OC6sesqHqtoCtdiEhFR\n07R9ABSdiMIrvNi3fl/FY1Vd5aJbIqImiJ6IYtfaXegLVc7sJiHR5WcBVCIiao62D4DGJ8Zxxdor\n0BusLrDh+h8iosaaSc3gl2d/WdX0Nwv7YiIiapa2DoBmUjM4dPZQVSddqwBq0BtchpYREXWOJyee\nhISseipyl7+LBVCJiKhp2joAquWkm9EyXHRLRNQET0w8gYHQAC5bc1nFYzNaBgPhgWVoFRERdaq2\nDoDGJ8bRH+rHpUOXVjw2o7PqOBFRoxnSwPjEOG7YcAM8ovIpRzM0RAKRZWgZERF1qrYNgAxpYPzk\nOK5ff31VUymklOgOdC9Dy4iIOser517FTGqm6vU/AqzFRkREzdW2AdDh84dxPnm+qulvFp50iYga\nKzoRBQDcsP6Gisfqhm6uxfRxLSYRETVPUwMgIcRtQojDQogjQoj7HPYLIcT/nd3/shDiqka9t3XS\nvX7D9RWPVXQFIT8LoBJR+2llPwyY6a8vHboUq7pWVTw2o2eqSpNNRES0FE0LgIQQXgBfB/AeADsB\nfFQIsbPgsPcA2Ja93QXgG416/+hEFBevuhhrutdUPJYFUImoHbW6H17ILODFqRernv6W0bgWk4iI\nmq+ZI0B7AByRUh6VUioAvg3gjoJj7gDwT9L0DIB+IcTwUt84rsTxwuQLVZ90NV2ruk4QEdEK0rJ+\nGACePvk0dKnXNBWZBVCJiKjZmhkAjQI4aXt+Krut1mMghLhLCHFQCHHw3LlzFd/4F6d/AdVQccOG\nynPOAbPqeNgfrupYIqIVpGH9MJDfF58/d77im0cnoogEIrhy3ZUVj5VSAuBaTCIiar4VkQRBSvmg\nlHK3lHL30NBQxePHJ8bR5e/C1cNXVzzWkAY8wsMCqEREFdj74tVDqysdiydOPIHr1l9X1fpK1VDR\n7e9mAVQiImq6ZgZApwGstz0fy26r9ZiaRU9EsXd0LwLeQMVjFV1hAVQialct64ffnHkT04npqqci\np7U0+sNci0lERM3XzADoAIBtQojNQogAgI8AeKTgmEcA/FY2C9G1AOallJNLedMTcydwcuFk1dPf\n0loa/SGedImoLbWkHwbMC1EAql7/oxs6C6ASEdGyaFreZymlJoS4B8CPAXgBfFNKeUgIcXd2/wMA\nHgXwXgBHACQB/M5S33d8YhxA9SddSC66JaL21Kp+GDDX/2wf3I51Peuq/hmu/yEiouXQ1MI3UspH\nYZ5c7dsesD2WAH6/ke8ZnYhife96bOzfWF0bmQCBiNpYK/rhhJLAwTMHceeuO6s6Xjd0+Dw+FkAl\nIqJlsSKSIFRL0RX84vQvqp5zruoqQj4WQCUiaqRnTz8L1VBx04abqjo+raVZAJWIiJZNWwVAz00+\nh6SarHr9D6uOExE1XnQiirAvjKtHKmfiBFiMmoiIlldbBUDjE+PweXzYO7q3quM1XWPVcSKiBotO\nRHHt2LVVZeK0cCoyEREtF2EVn1sphBAxBHASBvQlv5gHXqhIQaJRH8JqAJWrA7aGW9vm1nYBbFu9\n2LbSNkopKxczWwGEEHEEMNGwvlhBsgHNsrT6/3Mpbm0XwLbVy61tc2u7gNa3rW36YarfSlz8clhm\n5O5WN8KJEOKglGxbLdzaLoBtqxfb1jFeZ19cG7e2C2Db6uXWtrm1XYC720ado62mwBEREREREZXD\nAIiIiIiIiDrGSgyAHmx1A8pg22rn1nYBbFu92LbO4ObP0q1tc2u7ALatXm5tm1vbBbi7bdQhVlwS\nBCIiIiIionqtxBEgIiIiIiKiujAAIiIiIiKijrGiAiAhxG1CiMNCiCNCiPta3JbjQohXhBAvCiEO\nZrcNCiEeE0K8mb0fWKa2fFMIcVYI8UvbtpJtEUL8afYzPCyEeHcL2vZ5IcTp7Gf3ohDivcvdNiHE\neiHET4UQrwohDgkh/jC7veWfW5m2ueFzCwkhnhVCvJRt259nt7vhcyvVtpZ/bu3ETf1wtj3si+tv\nW8v/NtgX1902V/bF7IdpxZBSrogbAC+AtwBsARAA8BKAnS1sz3EAqwu2/RWA+7KP7wPw5WVqy00A\nrgLwy0ptAbAz+9kFAWzOfqbeZW7b5wH8scOxy9Y2AMMArso+jgB4I/v+Lf/cyrTNDZ+bANCTfewH\n8AsA17rkcyvVtpZ/bu1yc1s/nG0T++L629byvw32xXW3zZV9Mfth3lbKbSWNAO0BcERKeVRKqQD4\nNoA7WtymQncA+Fb28bcAfGA53lRK+QSAmSrbcgeAb0spM1LKYwCOwPxsl7NtpSxb26SUk1LK57OP\nYwBeAzAKF3xuZdpWynK2TUop49mn/uxNwh2fW6m2lbKsfwttYiX0wwD74mrbVoob+ruWf27sixva\nrlLYD1NLrKQAaBTASdvzUyjfETWbBLBfCPGcEOKu7La1UsrJ7OMpAGtb07SybXHL5/hJIcTL2WkZ\n1hB9S9omhNgE4G0wr1S56nMraBvggs9NCOEVQrwI4CyAx6SUrvncSrQNcMHn1ibc+JmxL14a1/xt\nsC+uuU2u7IvZD9NKsJICILe5QUp5JYD3APh9IcRN9p1SSonyVz2WjZvakvUNmFNorgQwCeCrrWqI\nEKIHwMMA/khKuWDf1+rPzaFtrvjcpJR69t/+GIA9QojLCva37HMr0TZXfG7UNOyL6+eavw32xbVz\na1/MfphWgpUUAJ0GsN72fCy7rSWklKez92cBfB/mkO20EGIYALL3Z1vVvjJtafnnKKWcznaQBoC/\nw+Jw97K2TQjhh3lS+19Syu9lN7vic3Nqm1s+N4uUcg7ATwHcBpd8bk5tc9vntsK57jNjX1w/t/xt\nsC9eGrf2xeyHyc1WUgB0AMA2IcRmIUQAwEcAPNKKhgghuoUQEesxgF8B8Mtse347e9hvA/i3VrQv\nq1RbHgHwESFEUAixGcA2AM8uZ8OszjnrV2F+dsvaNiGEAPA/Abwmpfxr266Wf26l2uaSz21ICNGf\nfRwGcCuA1+GOz82xbW743NqIa/phgH3xUrnhb4N9cd1t+//bu/dQOco7jOPfx1sVQWsj0op/pF5S\nJdRGTaxgrEbSFlMpqZjaEG2p8VqqJUFBCF4QqwYR/KfQ1oilF60ihRhDk2KaeEMSbzFHI2lqUiQi\n1RLqjXjIMY9/zHtkst3sOXtuu+k+HxjOzuz7vvOb4exv9p15d6Yrc3HycOw33AV3YhjuBMyhugvL\nm8CSDsZxPNVdS14FXh+MBZgErAG2Ak8CX5qgeB6muqS8m2r87MJWsQBLyj7cAlzQgdj+APQBm6iS\n31cmOjZgJtXQgE3AxjLN6Yb91iK2bthvpwKvlBheA24Z6n+/C2Lr+H77f5q6JQ+XWJKLRxdbxz8b\nycUjjq0rc3HycKb9ZZLdTcORIyIiIiIixs/+NAQuIiIiIiJiVNIBioiIiIiInpEOUERERERE9Ix0\ngCIiIiIiomekAxQRERERET0jHaDYiyRLurc2f4Ok28ao7d9Jungs2hpiPfMkvSFpbW3Z1yVtLNNO\nSdvL6yfbbHv14HNHWpT5paRZI42/oa0dkvokbZK0StIxYxDf5ZK+PBbxRcTYSx4esu3k4YgYlXSA\nolE/cJGkozsdSJ2kg9oovhC40vbnBz/bfban2Z5G9QyCG8v87HbWY/u7tj8coswS22tblWnTObZP\npXp+wk2jjQ+4HMiBN6J7JQ+3kDwcEaOVDlA0GgB+CyxqfKPxzKGkj8rf8yQ9JWm5pG2S7pa0QNKG\nctbshFozsyW9KOkfki4s9Q+UdI+kF8oZtqtr7T4j6XFgc5N45pf2X5O0tCy7herhdQ9Iumc4Gyxp\ntqR1kp6gelAbklZIeknS65KuqJXdIemLkk4s632glPmrpENLmT9Kmlsrf5ukV8q2TSnLj5G0ptT9\njaS3B5+e3cLTwIml/qW1bb9zuPFJugSYBjxSzrweUvb95hLf0uHss4gYV8nDJA9HxPhJByia+RWw\nQNKRbdT5BnANcApwGTDF9pnAMuC6WrnJwJnA94Bfl4PVQuB92zOAGcCVkr5ayp8O/ML2lPrKJB0L\nLAXOpzqQzJA01/btwIvAAts3thH/dOBntk8p8z+xfUaJZ7Gko5rU+Rpwn+2pwC5g7j7a/rft06j2\nxeKy7HZgVam7Aji2VXCSBFwI9Ek6DrgDmAWcBpw9+CVmqPhsP0L1NPNLylnYo6iebD61nN28q1Uc\nETFhkoeThyNinKQDFP/D9gfA74Hr26j2gu13bPcDbwJ/K8v7qA62gx61vcf2VmAbcDLwHeDHkjYC\n64FJwEml/Abb25usbwawzvZ7tgeAPwHfaiPeRs/bfqs2v0jSq8DzwHHACU3q/NN2X3n9EntvZ91f\nmpSZCfwZwPYTQKvhEs9QHSwPo/qy8U3g77b/Y3s38BDNt3048e0E9gD3S/oB8HGLOCJigiQPA8nD\nETFO2hnPG73lPuBl4MHasgFKp1nSAcAhtff6a6/31Ob3sPf/mRvWY0DAdbZX19+QdB4TdyD4fD2S\nZlMdyM6yvUvSs8ChTerUt/lT9v156h9GmVbOsf3fWnzDrTdkfLZ3S5oOfBuYB1xL9UUoIjoveTh5\nOCLGQa4ARVO2dwKPUg2LGPQv4Izy+vvAwSNoep6kA8p49OOBLcBq4FpJBwNImiLp8CHa2QCcK+lo\nSQcC84GnRhBPM0cCO8tBdyrVWc6x9hzwQwBJc4CWdwxqsB6YJWmSqh8L/4j2tv3DwfWpulPREeXs\n5yKqoRwR0QWSh5OHI2J85ApQtHIv8PPa/P3A8jIkYRUjOyv4FtVB8wjgGtufSFpGNSzg5TLG+j32\nPY4bANvvSLoJWEt15nKl7eUjiKeZlcBVkjZTfTFYP0bt1t0KPCTpp8CzwLsMc3/a3iHpZmAd1bav\nsL2yjXU/CCyTtIvqC9Rjkr5AdUJkccuaETHRkoeThyNijMluvBIeEeOt/Oh4wPaApJlUP5Kd3um4\nIiJ6RfJwRO/KFaCIzpgMPFyGjfQDV3c2nIiInjOZ5OGInpQrQBERERER0TNyE4SIiIiIiOgZ6QBF\nRERERETPSAcoIiIiIiJ6RjpAERERERHRM9IBioiIiIiInvEZDniPQcqS9l8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Produce learning curves for varying training set sizes and maximum depths\n", + "vs.ModelLearning(features, prices)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4 - Learning the Data\n", + "*Choose one of the graphs above and state the maximum depth for the model. What happens to the score of the training curve as more training points are added? What about the testing curve? Would having more training points benefit the model?* \n", + "**Hint:** Are the learning curves converging to particular scores?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The max depth is 3, after that overfitting occurs. As more examples are added, the training score will decline a bit as it gets harder to fit all examples. But testing also gets better, until the two almost converge. Adding more training point would benefit the model a bit, as training and testing curves would converge even more. However, additional points are not always helpful, as at some point no new information becomes available, so the model predictions on the test set will not improve in accuracy further, so the testing score doesnt improve more. The reason why the training score is high initially is that it is easy to fit the data as there are few examples. As more examples becomes available, it gets more difficult to fit so testing score drops. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Complexity Curves\n", + "The following code cell produces a graph for a decision tree model that has been trained and validated on the training data using different maximum depths. The graph produces two complexity curves — one for training and one for validation. Similar to the **learning curves**, the shaded regions of both the complexity curves denote the uncertainty in those curves, and the model is scored on both the training and validation sets using the `performance_metric` function. \n", + "\n", + "Run the code cell below and use this graph to answer the following two questions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAFNCAYAAACUvLFdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8XFX5/9/PrNmXNk2btEn3lrYgW9lRBERRQcTl64KK\n8NUKCi6gINsPlVVBEAUElEWggihu9YuCIDsWKMhiWbq36Z40+2T2Ob8/zr0zkzRpkiaT9Xm/Xvc1\ndz333Htn7mee55znOWKMQVEURVHGA57hroCiKIqiDBUqeoqiKMq4QUVPURRFGTeo6CmKoijjBhU9\nRVEUZdygoqcoiqKMG1T0xggi8ncROb0P+7WLyKyhqJMy/hCRr4jIU4NQzmUictsgVGnQEZGFIvK6\niLSJyNeHuz5K/1DRG0JEZIOIhJ0fS7OIvCAiZ4nIgJ+DMebDxpjf9GG/ImPMuoGeLxtHSN0p5Vyj\nu3zaYJ6rh/NvzjrndhG5S0QKc33ekYSITBWRu53rbxWRt0XkchHJH+667Q3GmCuMMWcBiMgcEdnr\ngGJHiJPO96NVRP4jIh8ZQPUuBB4zxhQbY24dQDnKMKCiN/ScbIwpBqYD12J/QHcOb5UGhiOkRcaY\nImAT9hrddUu77i8ivhxU48PO+Q8CDgUuyME5EBFvLsrtx/l3u3ciUgH8G/ABhxljSoATgQpArXrL\ns873oxy4F/i9iJT2p4Csez8dWLk3lcjRd1/pByp6w4QxpsUY81fgM8DpIrIvgIgEReR6EdkkIjtE\n5Lbsf+sicoqIvOb8Y10rIic6658Ska8483NE5GkRaRGRBhH5XdbxRkTmOPOlInKviNSLyEYRudS1\nOkXkyyLynFOXJhFZLyIf3ptrFZErReR3IvKAiLQBXxARj4hc7FxDg4g8KCLlWcccJSLLHYv4NRF5\nXx/v61bgMeCArLLyROQGEalz7umtIpKXtf0ix0LaIiJfde7RDGfb/SJyi4j8Q0RCwHv3VJ6IVIrI\nI069G0XkmazzXCwiW51n946IvD+rfj8XkW1OHW4QkYCz7QNiPQQXi8h24FfdXPZ3gV3Al4wxG537\nsNEYc64xZqVTztEissL5TrwkIodl1es5EfmRc79DIvJnEZnoPK9WEXlRRGqdfX3O/TnX+U40iMi1\n0oO3Qqwr8HHnXrwjIp901gdF5E0ROTur3OUicrGzfKWI3OMU84yzzvUevNe5vwuyzlMlIh0iMrGX\n70cSuAsoAGY6x35MrLuy2bkX+2aVu1lEvicibwIh53m+F7jNqcssESlzvif1zrO6SETEOf4rIvKM\n83wbgUuddU8765pFZI2IHCYi/5v1nfpCVh0+Jpnf/CYRuSxr2xzneXzJqWu9iHw/a7tPrKt4rXP8\nChGp3tOzGfMYY3QaognYAHygm/WbgLOd+RuBvwITgGJgGXCNs+1QoAU4AfuHZSqwj7PtKeArzvwD\nwCXOPnnA0VnnMsAcZ/5e4C/OeWYAq4D/dbZ9GYgDXwW8wNnAVkD6e43AlUAMONmpUz5wPvC8cw15\nwK+B+5z9a7Av8Q85+58INAATezjnZuD9Wce+Bfw0a/svgD9h/+WXAI8AVzjbTnKuawFQ6Nw7A8xw\ntt8PNAFHOHUJ9lLedcDNgB8IAO9z1i8CNgJTnOWZwCxn/mrgBWASUAm8CFzubPsAkHD2CQD53Vz/\nCuCyPTyTCud78zmsNfhF5/6WO9ufA97FWoXlwDvO8rHO/r8FfuXs63Puz+POvtOBNcCXne1fAZ5y\n5ouALcCXnOMOds4739m+v3Nv5wGXO98Hb9Z35h5nfg5gulzTHcBVWcvnA3/q4fqz6+QDzgNasd/7\nQ4AdzqcXOBNYCwSyvluvANPce+/cry9nlf9b4I9OebOc+3F61rkT2N+PF/vd/wr2t/VFZ921znfj\n59jv10ec51XglHGc8/3xOPesATgp+94At2F/RwcBUWCus/0i4HVgrnP8Adh3yx6fzViehr0C42mi\nZ9FbjhUpAULA7KxtRwDrnfnbgRt7KPspMqJ3r/NSmNbNfsb5oXixQrQwa9vXsl4OXwbWZG0rcI6d\n0t9rxL7A/tVl3WrgmKzlGiDi/DAvAe7usv8TwGk9nHMz0A60OXV8DCh1tnmccqdn7f9eYHXWvboi\na9s+7C56d2Vt7628q7EvwNld6jgf+3I9HvB12bYR+GDW8kfde48VvQjOS7iH61/vPvsetp8BvNBl\n3cvAF5z554ALs7bdBCzLWj4VWOHMu6L3gazt3wQedeazBeY04Mku570TuCRr+ULgbaAR509A1nfm\nHme+O9E7yrlucZZfAz7Rw/W7wtOMFYwXgOOcbb/C+YORtf9a4Kis79aXumxPix72z00CmJe1/RvA\n41nnXtdNfd7OWj7QuacTs9a1APv2cD03A9dl3xuyfpfAq8Cnsq7lo92U0euzGauTujdHBlOxP/pJ\nWHF5xXF7NAP/cNaDFYa1fSjvAqyAviQiK0XkzG72qcD+YDdmrdvo1MVluztjjOlwZov6cP7uqOuy\nXAssy7rON531lVjr4XPuNmf74UD1Hso/ydi20uOBhdh/swBTsP+eX88q62/OeXDKzK5b13p2Xddb\nee6/9iccl9L3AIwx72KtkR8BOx3X4ZSsOuzpOewwxsT2cO27gKo9bO9afrfnyJoPd7Pc9bln35ON\ndP9spgNHdXmOn+lS13uA2ViR7XMHK2PM81ixOdpxR9YC/7eHQ54zxpQZYyqMMUcaY/6VVccLu9Sx\nis73prvvhEsl9g/knp5fd8d3vb9JY8yuLuuKAETkCLHNF/Ui0oIVzYrswowx27MWO8g8r57eGX15\nNmMSFb1hRkQOwf5AnsP+Cw0Di5wfaJkxptTYBniwP57ZvZVpjNlujPmqMaYaa73dKk47XhYNWBfL\n9Kx1tViXRy7o2vtuM3BC1nWWGWPynB9vHdbSy95WaIy5rteT2JfZUqybEezLJYZ122TfU7cTwzas\n68qlppe677E8Y0yrMeY7xpgZwMexL9RjnG33G2OOwro2vcA1Tplb2fNz6HrvuvI4cKrbjtQNXcvv\n7hz9Jfs+1Trn6Eod8ESX51hkjDkna59fAn8GThKRw3s4V0/Xfy/wBayb8CFjTLR/l5Cu4w+71LHA\nGPNQH84PsBNIMrDn1xsPAg8DNc737NfYP7V9oad3Rl+ezZhERW+YEJESETkJ+4W+3xjzpjEmhXW3\n3Cgilc5+U0XkQ85hdwJniMjxYjuCTBWRfbop+9Mi4r7Im7A/ulT2PsY26D8EXCUixSIyHdvWcX8O\nLrc7bgOulkwHiUoR+Ziz7T7sS/wEEfGK7ehxrNsA3wduBD4iIvs61/lr4GciMkks00Tkg86+DwH/\nKyLzRaQAuKynQiF933osT0ROFpHZjgC1YF+IKRFZ4FxDEPvHJkzmmTwA/D8RqRCRSU4d+vMcrsf+\n8787635OE5GbRGQR1hJdJCKfcTo2fB7rFtuTZdQbF4jtwFGLdW/+rpt9/uqc9/Mi4nemQ0VkvlPH\nM4B9sa707wD3SfehJjsBI7vHl94HfAr4PFYA94ZfAd8QkUOcZ1nkPMM+hbwYY+LAH7Df5SIRmelc\ny2D+joqBRmNMxPlj8Nl+HPtr4Er3OykiB4jIBHp5NmMZFb2hZ5nYHox12LarG7BtLi4XYhvCl4tI\nK/Zf/HwAY8xLzr43Yl+oT7P7P3iwjfIvikg79sv9rR5cR+di2xDXYS3N32J7tg0FN2Bdt0849+MF\nbL0xxmzAtiNdBtRjO/qcTx+/r461uJSMgJ2PdTm9hL1vj2Eb9jHGLMNaG89g2xmfd47Zk9XQY3nY\nZ/UvbBvj88BNxphnsS7Rn2At7O3YTiCXOMf8ENvZ4L/AG9iOLK4V2JfrbcC2/QK87NzPfzrnWmeM\nqQc+hv1u7cK+lE8yxjT19RzdsAzbjvYfbKeee7qpVwu2M9IXsBb1dux1BcX2jv0ptr2swxhzL/ba\nr++mnDbnuBcdV9xiZ/0GrFs8aox5YW8uwhizHNvJ5JfYP4irnPr2h69jrf8N2N/kb9h7Ee6Os4Fr\nnOd6MfaPWl+5DmtJP4HtvHMHkLenZzOI9R6RuI3AiqIAIrIftiNA0LG8lSzExpnFgZmO6AwrInIv\nVth/MNx1UUYHaukp4x4ROVVEAo7b51rgLyp4Ix/H3XkKQ+edUMYAKnqKYruYN2DdyhFnWRnBiMg1\nWJfw1caYTcNdH2X0oO5NRVEUZdyglp6iKIoyblDRUxRFUcYNoy7jd0VFhZkxY8ZwV0NRFEUZQbzy\nyisNxphJve036kRvxowZrFixYriroSiKoowgRKRrqr1uUfemoiiKMm5Q0VMURVHGDSp6iqIoyrhB\nRU9RFEUZN6joKYqiKOMGFT1FURRl3KCipyiKoowbciZ6InKXiOwUkf/2sF1E5OciskZE3hCRg3JV\nF0VRFEWB3Fp69wAn7mH7h7EDb84FlmAHcVQURVGUnJEz0TPGPAM07mGXU4B7jWU5UCYiVbmqj6Io\niqIMZ5veVKAua3mzs243RGSJiKwQkRX19fVDUjlFURRl7DEqOrIYY+4wxiw2xiyeNKnXfKKKoiiK\n0i3DKXpbgJqs5WnOOkVRFGWss3QpzJgBHo/9XLp0SE47nKMs/BU4R0QeBA4DWowx24axPoqiKMpg\nYgykUpnJXX7wQTjnHAiH7X4bN8KSJXb+tNNyWqWciZ6IPAC8H6gQkc3A5YAfwBhzG/AI8BFgDdAB\nnJGruiiKooxLli6FSy6BTZugthauuqp7UckWpK4C5c4nk1akWlo6T62t0N5uP1tbIRSCtja7rqPD\nLnd0dJ5vbt69Dh0dtq45Fj0xxuT0BIPN4sWLjY6npyiKQkaUksnO88kkPPQQfOc7GWsKIBiE00+H\nRYusALmC1ZM4ZX+GQrbcvlBQAIWFnaeiosz8gw92f5yIvYa9QEReMcYs7m2/UTeIrKIoyoihr5bU\nnuhOsNzlRMJO0agVqPp6aGyEXbugqSljaXU3rV+/u4BEo3DHHbvXQSQjVNniVFnZWbTcfQoKMlNe\nnv3Mz7dTXh74sqTFGFt+9vzTT8O2blqzamv7d+/2AhU9RVGUvWHpUtsO1dFhl912qWgUPv3pjHjF\n41a4YjE739RkRaux0U6uSLW0WLdg9nK2iCUSPdclGISyMigttZ+zZsHatT3v/8ADGcHKz7fHQ2eB\n6rrsegX9fvB67afPZ6fsea/XTh5PZuq6fN11ne8d2PpcdVX/n0M/UdFTFEXpCdfyci0u1+qKROB7\n3+v80ga7/K1vwaOPdm99tbXt2UVYUGCFyxWvqqqMmGWvLymB4mI7FRVZ0XEtRVek3nwTtm/f/RxV\nVfCe92QEyu/PiJYrTnsSrcHAtYYHaiXvBdqmpyjK+CPbdZhIWLGIxayYhcNWLLZsgZ07rVXW0GCn\n+vrM/M6dPZdfVJQRqOzPrvOlpRkBKyqywuNaiNkC5uK+rz0eCAQyghUIZJZdS+sPf4Bzz93dmrrj\njiERl6FG2/QURRkb9KfdzJjOYpZIWJdiNGrFrL4eNm+GHTsy4tVVzBoauncllpXZNq7KSthnH3js\nMdsJpCtVVdbSyxYvV8C6E7FsaytbwAKBjIBluwzdz94480zrthwGa2oko6KnKMrIpbt2s69+1S5/\n/OMZMWtstJbZtm27i1h9vbXW6uutNdeVkpKMmM2enZnPnsrLrSC5VmEiYV2E115rrUOXvDxrXfn9\ntq0sW8S6Cpg7dRXCweS008a9yHVF3ZuKogw/bhxYPJ6ZwmE47DDYunX3/fPyYMGCjKhlC49LYSFM\nmtRZvCZP7rw8YYIVpGwxc8kWI1e4gkF77mDQCtrDD8MPfmCtx5oauPpqFZlhQt2biqKMHHoStXDY\nuhrXrbOW2tatu0/dEYlYK2m//bq3zCZOtOLUVcy665no8dg2tby8TLuY2xPR7dzRkzV25pl2UkYN\nKnqKogwObvtZV1FzY8ZcEduyJeOK3LLF9mjMprQUpk2DhQut27KndrPbbtu9J6TruXLbvYqLrVXm\nWmZ9FTNlzKKipyhK3+hJ1Do6MlZa9ue2bXZ+x46MGIEVn6lTrTvwoIOswNXU2M+pU21bmBvb9ve/\nwzXX7N5u9t3vWldlVzHzeu2nipnSAyp6ijLeye4dOW0a/L//B6eemhE1t6NIT6K2devubWqVlbas\nww7LiJorbBMnZoK243G7f1eRKi213eu/+U17zA9/CHV12gNRGTDakUVRxhvJpO31GIvB/ffbIOts\n0fL54IgjrMXlilpjY+cyCgszItb1c+pUW4ZrrSUSVtSyM3rk52fSWLntaIFA5/RVitIPtCOLoox3\nUqmMuIXDtu0sFLJB1WvXwurVtl2sq5WWSMCzz2ass4ULM4LmTmVluwd3gxW3cDiT3srNyZgdSO31\nDv29UBQHFT1FGe2kUlbY3Iwi7rAu7e3WZbl6tRW5tWthzRrbxtYbIjb42s0ZmUh0zsPY2mqFzU1C\n7MakudNgpatSlEFGRU9RRgvGdBY3V9hCIet+XLPGCtz69XZ+3bpMm5nfb5MQH3YYzJ+fmT7zme7D\nAiZPtmUXFNjA7IIC22kku0u/dhZRRiEqeooyEnHFLRrtLG6RSGdRW7sWVq2ymftdJk+2gva+92XE\nbcYMK1bxeCbbvwh87Wu7947Mz4ef/AQW99o8oiijDhU9RRlOXBGKRq2ouQKXSlkLbO1aK3JuG9yG\nDZkx0vLyYN48OP74jLjNm2cts2yXZzJpywbbAaWiwrol8/Lg4INt6i3Nz6iME7T3pqIMBffdZ4Vl\n82aoroZvfxuOPda2lYVCncVtzRprvWUHZdfUdHZLzp9v13m9meFusvNK+nxW2EpKMq7JYFBdksqY\nRXtvKspw4FpY7phrra3w+9/DFVdkXIhbtsBFF1mrrLXVCqFLcbEVtFNOyVhuc+daATOms3vSzWQS\nDFpxKynJ5IUMBIb+2hVlFKCipyh7gytArri5bkl3NIB43I4IsHq1HSW6u7CAVavggx+0o2y71ltV\nlbXGst2T7mjbYN2TEyd2Tq+lsW2K0mf016IovZHtPnTFzW13E7GCtmGDdUu+8w689ZYVNLfnZE8k\nk3DjjZmwgGgUmpvtNtc9WVFhhc613jQUQFEGhIqeorhkB3N3dGTELRbLZBSJRm3b26pV8PbbsHKl\nbYdzg7PLymww9+mnw6JFdv6MM3oOC2hutoJWXGwzmah7UlFyioqeMv7oGu/W1manSCTT0cO14LKt\nt5UrrUXndv6qqLDCdvzxGYGrrs6UkUjYMpYs2X2w0fx820vyoIPUPakoQ4j+2pSxTXZIQLZr0sUY\na1W1tmasN1fgsjuYVFdbUTv55IzAVVZmtrtWYktLRhSDQWv5nXOODQX4wQ80abKiDDMasqCMDZYu\nhYsvtqKSHRKQTHZOdOz3w65dVtjcaeVKm4/SZfp0K2oLF1qBW7DAjrCdjSukbjJlEdt7sqzMhgjk\n5dlzKYoyJGjIgjI+SCbh7rvh3HM7hwRcdpkdjuagg6yoZQuc2xPS47GpuQ4/PGO9LVhg29eycWPp\nsuPgCgutpeeOuK0xcIoyKlDRU0YfyaRtg2tosFbbZZftHhIQicD3v5+x8nw+G+923HEZgZs/31pl\n2aRS9thoNJP5JBCw47uVlNi2uLw8HSlAUUYpKnrK6CCRsG1x9fU2ubIx1rqKxWD79u6PMcYGhS9c\naIO8u+sRme2mBGv9lZRYK66wUN2UijLGUNFTRi5dhQ6scEUidtibRx+FV1/t+fjqavif/+lcXtd0\nXQUF6qZUlHGEip4yskgkMq7LpqaMRRcKwT//aYXuP/+x+86bZ3tGBoNw882dXZx5eXab25vS7aVZ\nUmJdleqmVJRxiYqeMvzE49ai27kzI1LBoA0jcC26N96w+y5YYHtmfuhDthOKy5Qp8NOfWlfn5Mlw\n9tlw6qlW4Fw3pQZ8K8q4R0VPGR7chMn19ZnUW8Ggte5coVu50q7fd184/3wrdNOnZ8owBiIRTCRC\n9IhDCP/9j7QWB6GwkPyCUgL+IH6PH5/Hh9/rQxN4KYqioqcMHfG4td7q661FB9YCa2y0Ivfoozb7\nCcD++8MFF9iEzDU1mTKMIRkOEQm10pGM0JwvtBT7SOYHEb8Hn9dAqp1EazPGGEQEDBgMAW+APF8e\neb48CvwFBLwB/F5HFD1+vB51dSrKWEdFT8ktsZi16HbutIInYt2M9fXWovvHP+xIBAAHHmiH3Png\nB20nFLeIRJRwqJn2jhaaEm2E8nwwoQwpKCEYLKTIF8QjvdtxyVSSRCpBc6SZho4GUiaFICBgjMHn\n8XUSxaDPWoquMPo8+nNRlNGO/oqVwScWy1h0rtAFg7BjhxW5Rx+Fdevs+sWL4dJLrdBNnowxhkgy\nSjjSREtbA82hXcRJYoqL8E6eSF7JNMqDBb3XoRu8Hi9ej5cgwW63p0yKRCpBW6yNpkgTyVSyk6Xo\nEU8nUczz5eH3+tMuVJ/HZ/dXFGXEoqKnDA7RaMaicwc3zcuzowu4rssNG2wc3CGHwBe+ACecQLJi\nIuFkhFAiTHPLWlraGjBOSIG/fCJ5s+dRWFQyJEmZPeIh4A0Q8Hbf4cUYQzwVJxQP0RptJZGysX0i\nknalBn1B8n355PvyyfPl7eZCVVFUlOFFRU/Ze6JRa8nt3JlJ4pyXZ/NfukJXV2fDAg47DM48k9ix\n7yNcVkRbvJ2meBMdDVsgEkGSKYIePyUTKvFMrLAhBSNs9AER6VUUE6kE4XiY9lg78aQdTy/tQsUQ\n9ATxeXwEfcF0WQFvwFqh4t3tU0VSUQaXkfVWUUY22Umdp0yBr30NTjzRCt3GjRmh27IFfD7MEUcQ\n++qZdBxzJE2FXlribcRSO6B5O75YnGDKQ7k3ABXTMomaR3HcnIhYd6e35wwuiVSClEnREe+gLdZG\nyqSsG9URRteVagsEn/g6iaM7+Ty+boWyL22bijKe0VEWlL5x//12XLhwOLMuEIBDD7Vjzm3fjvH7\nSB5xOKHj38fOow+gKT+T+jIgXoLRFL6UsW155eV2ys8f1UKXa5KpJEmTTItjyqRImiQGg5hMJxwX\nj3gI+AIEPJ1F0u/1d2tJao9VZaygoywog0drqw0fyBY8gFgM89xzRI45ivqzPkf94e8hUVyA4CHP\nG6AUH5Iefidlh+dxLTqPWiR9wevx4qXvwuSKYyKVIJqMdhLL7E45Lh7xpHuoBrwB8v35FPgLOq1T\n61EZS+RU9ETkROAmwAv82hhzbZftpcD9QK1Tl+uNMXfnsk5KP+jogE2bbPB4T0mdBd665jyC3gDF\nHr8dmSAchnDEWnDl5VBeBvkqdEOBRzx4vH2/z8aYtCXZEe9Id9BxO+cABLwBCvwF6ckVQ41tVEYj\nORM9EfECtwAnAJuBl0Xkr8aYt7J2+wbwljHmZBGZBLwrIkuNMbFuilSGimjU9rrcvh2SScz994Mx\ndNelIjG5kmJPHnSEIRW2wjZxIpSWqNCNAkQEnzivgR70K5lKEk1GCcVDxJPxThaj3+unwFeQthDd\n2Ea3c46ijDRyaekdCqwxxqwDEJEHgVOAbNEzQLHYLmpFQCOQyGGdlD2RSNiemHV14PFgnnwSc+MN\neBp20brffIpWrccTzfwfSQUDNJzxPzbRc0WFTeZcUKCjFIwx3PjG7kimksRTcTrCHWxv344gtr1R\nBK94yffnU+gvTGfAyQ7hUJThIJffvKlAXdbyZuCwLvvcDPwV2AoUA58xxqRyWCelO1Ipmwps40ZI\nJEitWkXqmqvwvf0u7YvmsuPa75Pafz+K//4vKm65G9/OBhKVFTR852u0ff6TtjOKCt24ZE8B/ymT\nIp6Msyu8ix2hHZ3SwokIhYFC8n1WFIO+YDrQf0+9X5WxhTGGlEkNqVdguP9ufQh4DTgOmA38U0Se\nNca0Zu8kIkuAJQC1tbVDXskxTUuLDRoPh0k2N5K48acEH/sX8ckT2faj8wmf+AEraIkEbUceTNsH\n3gtTq6GgUIVO2SMe8RD0BXsURDclXH1HPZDpheoRD/k+6y4tDBSmXaaudZjdESf7uK7bBrI+e1tP\n67tu84hHw0gcEqlEukNV0jgdqxJRYskY0WSUWMJ+JlIJ/F4/B045cMhiUnMpeluArEzBTHPWZXMG\ncK2x35w1IrIe2Ad4KXsnY8wdwB1gQxZyVuPxRChk3ZhNTSRMkuidt5N//+/weTzsXHIaLV/8NCYv\nD0wK2tpt29z06bb3pYqdMkD2lP3GzXzTEm1hV3gXKcf5474UjTE2rhHSrtTMwXS7PvuY7Mbpnsrq\nuj59TNbbx5BVplOuG0aCIR1O4l6ra8mO1qQE7h8VV8zcKZKIdBKzWCqWserp/GfG6/Hi8/jwiIfC\nQCEe8dAUbtr9XuaQXIrey8BcEZmJFbvPAp/vss8m4HjgWRGZDMwH1uWwTko0aoPHd+4k7jGE/vFn\nCm++ncLGFpo/cjyN3ziDRGWF3bejw46MMHkyTJo04jKkKGOT3jLfjDa69pDtKSlBOjmBGHzis71k\nPYF0b9lcxFu6desqZrFkrJOYRRPRTgna3WPdtltXzAK+APmSPyJF2yVnbzFjTEJEzgEexfYLu8sY\ns1JEznK23wZcAdwjIm9ib+WFxpiGXNVpXJNI2N6YW7YQJUnLmy9ReP3PKVu1no73LGDbDT8ismi+\n3Tcet5ZgaSnMnm0zriiKslf0pYdsV1xRjKfiRJKRbuMtu1qUbhhJwBfoZFG6buF4Mk40GSWSiBBP\nxa27MRWz1il0ErOuolocLB4zbtqc/nU3xjwCPNJl3W1Z81uBD+ayDuOeVAp27YKNG4nEw9TvWE/h\nTbdS+dSLxKdMYutVF9F+wvusyzKVsmLn88GcOVBcPNy1V5RxSX/jLSGTvSeSiBBKhTpl7wGbA9bn\n8aXFLM+XR6GnMBfVH9Gov2qsYozNpLJhAx2hZrZHdpF3971M/d3/gddLw1lfoum0T2LynE4GoZAV\nvSlTbJydpgZTlFFFf7P3jFdU9MYioRBs2kT7rm1sNa14/+/v1N7xO/xNLbR89AM0fOMMkpMm2n2j\nUZtBZcIBjapKAAAgAElEQVQEqKqy+TQVRVHGKCp6Y4loFFNXR9u2DWw2rfD668z4xb0UrN5AeP+F\nbP3ZFUQXzrP7JpN2OKC8PJg3FwqLhrXqiqIoQ4GK3lggkcBs20brxlVsijeQqN/OzFsfpOzp5cSr\nKtl69cW0f+C9tt3OmMzYdzU1NjempgpTFGWcoKI3mkmlSNXvpHntSupC24gl40y/fxkVD/0NfF4a\nvv5lmj53aqbdLhKxU2Wlnfya+UJRlPGFit5oxBiSTY00rX6DupY6on4PNf/6N5NvX4q3uZXWk06g\n4eunk6xw2u3icRtzV1RkA8wLCoa3/oqiKMOEit4oI9HazK41b7C5fi2JvCCVa+qo/tmdBFevp+PA\nfan/zteILphrd3azqfh8MGOGjbsbwUGjiqIouUZFb5QQD7VRv+YNtmx7l1TAz8S2BFOu+RVFT/+b\nePVktl57Ce3HHZ0RtY4OG5A+ebIdAWGMZ1NZ9u4yblh+A9vatlFVXMV5h5/HyfNPHu5qKYoywhjb\nb8IxQDTczs4NK9m2aSXG46XMX8iku35P+e/+ggn4qf/GGTR/7lRM0Ak1iMWs4JWVQXU1BHdP9jvW\nWPbuMi598lIiiQgAW9u2cumTlwKo8CmK0gkVvRFKJNbB9k1vsWPdG3gQSoorKP/b40z85b14W1pp\n/dgHaTjrdJIVE+wBqZTtlRkMwty5tv1ujOPmMrzuhevSgucSSUS4YfkNKnqKonRCRW8Esm37Gja+\n9QK+RIqykskUvPomlTf+iOCaDXQcuB/153+N6Pw5dmdjbDC6MTB1qg0yz1EIwmC6EBOpBO2xdtpi\nbbRHnc++LsfaaYvaz67DzGSztW0rlz91OXPK5zBnwhxmT5jNpIJJIzoZrqIouUVFbySxdCmpiy5i\nyuY6Kion0fTZUyj4z38pemY5seopbP3xpbQfe1Sm3c7NplJRYdvucphNpTsX4iX/uoRNLZs4sOrA\ntAh1EqV4e/frY+2EE+FezxnwBigKFFEcKLafwWJqS2s7LRf5i7j9ldtpibbsfrwnwN9X/73TtpJg\nCbPLZzNnwpxO0+TCySqGijIOkK4DJI50Fi9ebFasWDHc1Rh8li7FLFmCdHSkVxnABPzsWvJFmj/7\n8Uy7XSJhrbuCAmvdFeY+aeyxvzmWrW1b+7x/gb8gLVjFgWKKgkW7LafFq5vl4mBxn4eW6SrIAHm+\nPK489kpOmncSDR0NrGlaw9rGtaxpdD6b1tAYbkzvX+gvTFuDrmU4Z8Icqoqrxkx2eUUZiTSFmzhk\n6iED/p2JyCvGmMW97aeW3kjhkks6CR7YkT4SZaU0nf4/doWbTUVkSAd0jSaiexS8pZ9YSlGgqJNV\ntrfje+0Nrou1J9frpMJJTCqcxBHTjuh0XGO4kTWNazoJ4bMbn+WPb/8xvU+Bv4BZ5bOYU+4IoiOG\nU4unDuk1KooyOKilN0IwHg/SzbMwIqx+6e/WjRmP20wqQzig61v1b3HBPy9gdePqbrdXF1fz5OlP\nDkldhormSDNrm9ayZteaThbijtCO9D55vjxmlc/q5CqdXT6bmtKa9Phl2WhIhaJ0j1p645CUSZGY\nMonAtp27bUtUVkBLC5QUw8yZkJ8/JHVKpBLc/srt3PryrUzIn8D/Hvi/LH1z6W4uxPMOP29I6jOU\nlOWVcXDVwRxcdXCn9W3RNiuGjmW4unE1r2x7hWWrlqX3CXgDzCyb2clVWtdSxy9e/oWGVCjKCEBF\nbwRQX7+R6IlHU3P3H8l2VqaCARqWnAazZtkBXYeoo8XaprVc+M8LeXPnm5w09yQuO+YyyvLKWFCx\nYFxbK8XBYg6YcgAHTDmg0/r2WDvrmtalXaRrG9fy+o7XeWT1Iz32Lo0kIvzg6R+wM7ST0rxSSoOl\nlOaVUhIsoSyvjJJgCfm+fO1coyiDjLo3h5lwNMQbzz3Me755JcH1dSSLi/DV7yIxaSIN559N25c/\nN2QDuqZMivveuI+fvvBT8v35/OD9P+DDcz48JOcei3TEO1jftJ5PPPSJvTre7/GnBTAtjN2IY2le\nKWXBzHxJsKRbF2tPqOtVGU7UvTmOMMawfvXLTH34MfLfWs22H11A2wePsRlV5s2zY90NEVtat3DR\nExfx4pYXOXbGsVxx7BVMKpw0ZOcfixT4C1hUuYjq4upuOwJVF1Wz7PPLaI220hJpoTnaTGuklZZo\ni50izuQs7wjtYNWuVTRHmgnFQ3s8d1GgKC2QpcGeRXJl/Uruee0eoskooK5XZeyjojeM1O/aRPSV\nF6m++w+EjjyEthOPhdZW2zNziATPGMMf3/4jVz17FQbDVcddxScXfFLdaoPIeYef121IxXlHnJfu\n9VpdXN2vMuPJOG2xtowodv105lujrTRHmtkR2pEW13gqvseyI4kIlz91OW2xNmaVz2JW+SwN6lfG\nDCp6w0QkHmb9yudYdMsD4PGw46JzbQ/N4mIbijAE1IfquezJy3hyw5McWn0o13zgGqaVTBuSc48n\negup2Bv8Xj8T8icwIX9Cv44zxhBOhNPieMqDp3S7Xyge4odP/zC9XOgvTAugO80sm8n0sul9jqdU\nlJGAit4wYIxh/dpXmLzsKYpefp2d3/u67aXZ3m6DzYfgH/U/1vyDy5+6nHA8zEVHX8SX9v+SBmHn\nkJPnnzwi3IUiQoG/gAJ/AVXFVXt0vT7wqQdY17SOdU3rWN+0nnXN63hxy4v85d2/pPfziIeakhor\nguUzmVXmfJbP6rcgK8pQoKI3DDQ0b6HjtZeZ96sHCe+/kOZPnQRtbXZUhBy7NVsiLfzomR/xt1V/\nY9/KffnJB37C7Amzc3pOZeSyJ9frlKIpTCmawpE1R3Y6pj3WzobmDWkhdIXx+brniSVj6f3K8srS\nFmG2hTitZFq/OtooymCi37whJhqPsP7tF5h/+++RcJTtl37HBp3n5dkcmjnk2Y3PcvG/LqYx3Mi5\nh57L1w7+Gn6vP6fnVEY2e+N6LQoUsW/lvuxbuW+n9clUkq3tWzOWoSOGT298mofffji9n9/jp7a0\ndjdX6azyWRQHi3c730juXTqS66Z0j4reEGKMYcPG15j42POUPvVvGs76EvHpU6G1zfbWzNHoCKFY\niJ+88BMe/O+DzJkwh19+9Je7vbCU8ctguV69Hi81JTXUlNRwzPRjOm1ribSwvjkjhOub17O2aS1P\nbniSRCqR3m9SwaS0e3Rm2Ux2hnZy/xv3j8jepTqO4+hE4/SGkF3N21j35MMcuORykmUlbLz3F7bz\nyuTJMGVKTs65YusKvv/499ncupkzDjyDbx/2bYK+sT+wrDI6iCfj1LXWpYXQtRLXNq2lNdra43Ee\n8VBRUIFHPHjEgyB4xINXvIhIZn32PJn5Ttvw7HaMV7y97vPEuie6HS1kUsEk/vnFf5LvH5rsSaMd\njdMbo0QTUda+8wJz7/oL3sZmtlx/uU0gHQjYXJo5ON9NL97EXf+5i6klU7n/E/ezuLrX74OiDCl+\nrz/t4szGGENjuJEj7zqy2+NSJsUx048hZVKdJmMMKbLm+7DNGEPSJIklY3vcx13vLvc0PFZ9Rz0H\n3H4AkwomUVNaQ21JLTWlNXYqqaG2tJaJ+RM1BGSYUNEbAowxbKx7k9JnXqL8b4/TeNoniS6cZ3Nq\nzp076BlXspNEf2bRZ7jgqAsoCoz9kdSVsYOIMLFgYs+9S4urufK4K4ehZhl6Gm6rPK+c0w84nU0t\nm9jcspnlW5bzl3f/0iklXYG/gGkl09IiWFNSw7TSadSW1DK1ZOq4CAPJbg+tKa3h6uOv5rT9Tsv5\neVX0hoDGtp00rXyFA39xH7GpVew664s2PGFSBRQNnhglUgnueOUObnn5Fsrzyrnj5Dt2a1tRlNFE\nj71LR0Ci857qdsl7L9mtTS+aiLK5bTObWzazqWUTda111LXWsallE8/XPd+pDEGoKq5iWsm0tCDW\nltaml0uDpX22EkdqR5uu7aGbWjaxZNkSgJwLn4pejoklY6x7dzmz7n+EwOZt1N1yDcbrhWQSplQN\n2nnWNa3jwscv5I0db3RKEq0oo5lcBPYPFv2pW9AXZHb5bGaX7x4eZIyhvqPeCmGLnTa1bqKupY6n\nNjxFQ0dDp/2LA8WdRDAtiqXTqCqqSoeDDFZHG2MMsWSMjngH4USYcDzcaT4UDxGOhwknwj3uE46H\n6Uh0pOc3tW4iZVKdztMR7+CSJy7JuehpR5Ycs2bja8SW/ZkF376C1o9+gB2XnQfNzXbkhNLSAZef\nMinuf+N+rn/hevJ9+Vz+/sv5yNyPDELNFUUZCXTEO6wYuqLoWIh1rXVsad3SKa2cz+Ojuria2pJa\nXt3+Kh3xjt3KKw4Uc9p7TttdjLoRK3e+q0D1Rr4vn3x/Pvm+fAr8BbvNP7L6kW6PE4TU5f07V/pY\n7cgy/DS21dPw7isc8PN7SZaVUv+tr1q3Znn5oAhedpLo909/P1ccdwWVhZWDUHNFUUYKBf4C5lfM\nZ37F/N22JVNJdoR2ZFymWaLYneABtMXauH3F7eT7HRFyBKrAZwWpPL88PZ+93p1Pi1g32/L9+eT5\n8nrtifna9te6bQ+tLa3du5vUD1T0ckQ8GWfd6peY8dDj5K1ez9YfX0qqsMCOoFDdv+TCXemaJPrK\n467kUws+pb3BFGWc4fV4qS6uprq4msM5vNO2njraVBVV8eTpTw7r+6K79tACfwFXHX9Vzs+tyRZz\nxKZt7xB89XUq73uYtmOPov24o22qsZoaG6awl9SH6jn7/87m4n9dzKJJi/jr5/7Kpxd+WgVPUZRO\nnHf4eeT5Oqc1zPPlcf4R5w/7++Lk+Sdz5bFXUl1cjSDUltZyx8l3aO/N0UpzRyM7332V/W/5LSYY\nZOcFX7cWXmnJgEZQcJNEd8Q7hi1JdCQRIRwPI+4Y72LbEdzJDQ5WFGV4GcmdgCCTCWiwgtP7iore\nIBNPxlm7+kVq//oMBa+tZPul3yY5oRxCIZg6ba9GUGiJtHDFM1ewbNWyYU0S3R5rBwMLJy1ERIgn\n48SSMSKJSHpqT7bjdo4SEYwxeD1evOLNCKNnaEaCV5TxzkgZ3WMkoaI3yNTtXI33zbeYcucDdCw+\ngNaPfci6NadOhWD/0389u/FZLvnXJewK7xrWJNGtkVYCvgDzJ87fYxozYwyJVCI9xVNxooko4XiY\naDJKJBEhloqBIW0tGkxaDF1h1GGOFEXJBSp6g0hLuJkdq//Dfr98EEmk2HHJtyAahfx8mND72GLZ\ngaRTiqYwvWw6yzcvZ86EOdz60VuHLUl0U6SJkkAJcybM6VVwRQS/17/H/YwxxFPxjDAm49ZtmggT\niUcIxULpJMSutQg2ZZVXvHg9Xvwev7pRFUXpNyp6g0QilWDtuhVMfXQ5RS+soP5bXyU+dbIdQWH+\n/F5HUOgaSLqtfRvb2rdxTO0x/OIjvxiWJNHGGJoiTVQUVDCzbOaguSVFhIA3sMdUS8lUspO12EkY\nExFao63p2CFBMBibcNjj7bVsRVHGLyp6g8Tm+nXw9ttU//I+Igvm0vTZj0Nbux09Ib/3bOs3LL+h\nU/ddl9VNq4dF8FImRVO4yQa6ltYOuVXl9ViLLkjP197Jjeq0L4YTYdqj7TSFm+xOYsdvC3qDOnag\noii5FT0RORG4CfACvzbGXNvNPu8Hfgb4gQZjzKhLFtkaaWHb6ldZ+KuH8ba2s/mWayCVtG14fRxB\nYVvbtn6tzyWJVIKWSAvTS6dTXTKwmMJc4rb/dUcylUy3IbZEWmiNtRKKhNKu0oA3QNAX1BG8FWWc\nkbNfvIh4gVuAE4DNwMsi8ldjzFtZ+5QBtwInGmM2icioSyeSSCVYu+FVpjz9CqWPPc2uMz9HbM5M\nO4LCvL6PoFBVXNV9IGnx4OXn7AuxZIz2WDvzJs5jYsHEIT33YOL1eCnw2OwRE/Jte2oilUiHXLRG\nW2mNttKWbAOsyzXoDRLwBrR3qaKMYXL5N/dQYI0xZh2AiDwInAK8lbXP54E/GmM2ARhjduawPjlh\nS8MGku++w7Sbf0N0Rg2N//s5ZwSFSVDY9xEUvnrQV/nh0z/stG6os8m7grBw0kJKgiVDdt6hwufx\nURQooihQxKRCa4G7bYUd8Y60ELqdaDziIeizQqi9SRVlbJBL0ZsK1GUtbwYO67LPPMAvIk8BxcBN\nxph7c1inQaUt2sbWta+yz2+W4dvRQN2vrseIWOuunyOhr6xfiQc7GnR9R/2QB5KGYiFSJsW+lftS\nGCgcknOOBNyepsXBYiYXTQZIxx6GYiFaIi20RdvSY6F5JdNRRnuPKsroY7gbNHzAwcDxQD7wbxFZ\nboxZlb2TiCwBlgDU1uY+IWlfSKaSrNv0GpXL/0vZn/9By6dOIrL/IjuCwuzZ4Ov7rX2r/i0efuth\nvnzAl/n+0d/PYa27pz3ajtfrZcHEBbulLRqPuKJWEiyhqrgKY0y6fbA91k5LpIXmaHM61tDn9WmP\nUUUZJeRS9LYANVnL05x12WwGdhljQkBIRJ4B9gc6iZ4x5g7gDrBDC+Wsxv1ga/MmoqvfZZ+f30Oi\nsoL6b5xhs65MmAAlfXcNGmO4+tmrKcsr4+uHfD2HNe6e5kgzhf5C5k2cp70be0BEyPPlkefLoyyv\njGkl00iZFNGEFcK2aBst0ZZMj1GsBak9RhVl5JFL0XsZmCsiM7Fi91lsG142fwFuFhEfEMC6P2/M\nYZ0GhfZYO1vW/Ic5Dz5KcEMdm392BSYYgHAYqvrX8eTRtY/y8taX+eH7fzik7WjGGJrCTUwomMDs\n8tnaeaOfeMSTHlKlPL8csNZ/JBEhmozaHqPRVtpj7dYNaiDgC+D3+PF6vNpGqCjDRM5EzxiTEJFz\ngEexIQt3GWNWishZzvbbjDFvi8g/gDeAFDas4b+5qtNgkEwlWVv3BhNefYeJD/yZ1hOPpeOoQ2xv\nzenT+zWCQjQR5SfP/4T5E+fz6YWfzmGtO+PG4FUVVVFbVqsv4EHC6/FSGCikkMJue4y2RFsIxUNE\nYpFMxpmsVGzZbYQGA8aKq0c8iAhe8abn3fX67BSlf+S0Tc8Y8wjwSJd1t3VZvg64Lpf1GEy2tWwm\nun41837xG5JFhew8/yw7gkJJ/0dQuPu1u9nStoXffPw3Q2ZpJVNJmiPNTC+dTlVxlXbGyDHd9Rh1\nSZlUekqmkp2W3Sk7I00ilUhnqnHXJU0SoMfnaIzpJJKC9CikijIeGO6OLKOKUCzE5nX/YebDT5D/\n1iq2XXEhqZJiG6IwdWq/RlDY0b6D21+5nRNmncDh0w7v/YBBIJ6M0xptZc6EObu9gJWhp5Oltpf/\neYwx3YplWkxNslNKt65TJGmtzhQpm87NEUnBporze/0awK+MKfTb3EdSJsXarf+l9L9rmXTPQ7Qf\nfShtH3o/tLbCtGn9HkHhxuU3Ek/GueCoC3JT4S5EE1E64h0sqFhAWf7ej+mnjCxca827t6rp4Ipn\nLBlLp3Nri7YRioVoS7Z1GibK7/FrEL8yalHR6yPbW7YSXreK2Tffh/F62XnhuXYEhcJCmNi/zCVv\n7HiDP73zJ75y0FeoLc19CEZHvIN4Ms6iykUUBfoeMK+MH1zxzPfYzjmllDKlyMaauindYskYHbEO\n2uPttMfaiSfj6WTfPo8Pv9evgfzKiEdFrw90xDvYtOE1pv/9BQpXvM6OC75BYvJEO4LCjBn9cmu6\nIQoVBRWcvfjs3FXaoT3WjgcP+03eT2PwlL0iO6VbWV7GS5BIJYgmrBiG4iHao+3pYaFErBj6PX47\nef0qhsqIQEWvF1Imxbptb1H07noqb7+fjgMW0fLJj0J7yIYn9GEEhWweWf0I/9n+H6487sqcW10t\nkRby/fnMmzhPA6eVQcfn8eEL+CikMB22AaRHvIgmo4RiIdpj7emsNtljIwa8AR0XURlyVPR6YUfb\ndto3rmLRbQ8gkSg7Lvk2xOM2NKGiol9lheNhrnvhOhZOWsgn9vlEjmpsaQo3UZZXxuwJs7UjgjKk\nuKndskM33IGDY8kY0USU9ph1kbZEW7DRGaZTdhsVQyVX6NtwD4TjYTZtfJ2p/3qF4qf+TcPXv0x8\n+jRnBIV5fR5BweXO/9zJtvZtXP/B63PWCcANOq8sqmRG2Qx1KSkjguyBg4sCRekRPIwx6c4zbpq3\n9lg7zdHmTr1JXRcp2NhGt4dp9qei9AUVvR4wxrBuxzvkr91I1c33EJk7i8YvfsqGJ1RW2g4s/WB7\n+3Z+/eqvOXHOiSyuXpyTOrsxeDWlNUwtnqovAmXEIyIEfUGCviDFweJ0KI0rhtFklGgiSmu0lWgy\nSiqVIkkSk9o9VGO3shEQwNDrp5tQvLv6dSeu2evAhp/4PD7t0ToK6LPoicjRwFxjzN0iMgkoMsas\nz13Vhped7Tto27iKBb9+GG9jM1t++gMwxlp3kyf3u7zrX7iepEnyvSO/N/iVJRODN3vCbCoLR92w\nhIrSiWwxJEif4kqNMel2Q1fEuq7r66d77J5iIN3JYEilUoTiIZsswNFPv9evAxWPQPr0NETkcmAx\nMB+4GzvK+f3AUbmr2vARSUTYuOkNql54k9L/e5zGL3yS6MJ5dgSFOXP6NYICwGvbX2PZqmWctfgs\nppVMG/T6xpIx2qPt7FOxT6cOBYoynkhbXsPo4HDbLCOJiB2kONpGe6p9tw482rFs+Ojr2/tU4EDg\nVQBjzFYRKc5ZrYYRYwzrd67Cv24TVTfdRWxaFbu+9kXr1pw4EYr7d9kpk+KqZ69iUsEklhy0ZNDr\nG46HiSajLKpcRHFwTD4SRRk1uIKW7ap1QzuiyWhaCN0ROQTB69ExGoeSvopezBhjRMQAiMiYHWW0\nvqOe5o3vMP+3fyOwZRt1v/wxxueDRKLfIygA/PXdv/LGjje49vhrB31w1vZYOxjYr3I/8v39C51Q\nFGVoyA7tcHuzZg9NFYqHaI222p6s2D/eHvEQ8AYI+oLaGW2Q6avoPSQitwNlIvJV4EzgV7mr1vAQ\nSUTYUPcmU15ZRflDy2g55UTCi/e3bs0ZM8Dfv7HROuId/PTfP2W/yv04ZZ9TBrWurZFWAr4A8yfO\nt+0eiqKMGrobmsodrNhNGegOTZU0yXQvVtci1HbCvadPd84Yc72InAC0Ytv1/p8x5p85rdkQY4xh\nQ8MafBvrqL7pTpITyqj/1lfsCAqlpf0eQQHgV6/+ip2hndx04k2D+m+tKdJESaCEuRPn6pdfUcYI\n2YMVl+aVUlVsPUvZ7YQt0Rbao+20JdvSx2k7Yf/o9Y0pIl7gcWPMscCYErpsdnXsomnju8z9/WME\n12xg608uI1VYYEdDnzatX6nGALa0buHOV+/kpLkncVDVQYNSR2MMTZEmKgoqmFU+S90eijIO2FM7\nYSQRoS3WRmu0laZwU3rAYq/HS9AX1CD/buhV9IwxSRFJiUipMaZlKCo11EQTUdZt+S+TVq5nwn1/\noO34o2k/9igbhF5T06+BYV2u//f1iAjfPfK7g1LHlEnRGG6kpqSGaSXT9IusKOOYdDthoDAd6O8m\nBncz3rTF2tLthG4YRdfBintbD2DEdL/eyaLjkn18f9cPJX31jbUDb4rIP4GQu9IY882c1GoIMcaw\nYddafJu3UH3T3Zi8IDu/+3UIh6GoCCZM6HeZK7au4JHVj3DOIeekXRQDIZFK0BJpYWbZzEEpT1GU\nsUd2YvCu7YSJVCK9nE12UH72tr1Z7y5nxzoC6cQBPa33eXxD6rXqq+j90ZnGHI3hRpo2r2bmX56k\n4I232H7ZeSQnltkRFGbN6rdbM2VSXP3s1UwpmsJXDvrKgOsXS8Zoi7Yxf+J8JhT0X4AVRRm/uO2E\nSoa+dmT5jYgEgHnOqneNMfHcVWtoiCVjrNu6kgnvbGLSr39L6NADaT35BGhrs+EJef3/svzp7T+x\nsn4l151w3YDDCCKJCJFEhEWViygJlgyoLEVRFKXvGVneD/wG2IDNd1AjIqcbY57JXdVyizGGDY3r\n8WzeTPWt90Iqxc6LvgmxmB0FfVLvaY+60h5r58blN3LA5AM4ed7JA6pfe8xmcdi3cl8K/AUDKktR\nFEWx9NW9+VPgg8aYdwFEZB7wAHBwriqWa5rCTezasooZj79I0Qsr2PmdJcSnToHWVpg7Fzz99zHf\nvuJ26jvqufWjtw6okTYUC+H1eNln4j4ag6coijKI9PXN7ncFD8AYswqbf3NUYoxh/Y63KV+7lUm3\n3EN40XyaP3OKTTU2eXK/R1AAqGut4+7X7uaU+afwnsnv2eu6pUyKWDKmgqcoipID+mrprRCRX2OT\nTAOcBqzITZVyj8GQ2FxH9e2/xdsWYvOl34ZUyiaS3gu3JsB1z1+Hz+Pj/CPOH1Dd2qJtVBdXq+Ap\niqLkgL6K3tnANwA3ROFZ4Nac1CjXLF2KXHwxh27ahABtxxxBbPYMm2ps3rx+j6AA8NKWl3h07aN8\n67BvMbmo/8MOubjDlAykDEVRFKVn+vqG9wE3GWNugHSWltFniixdCkuWIB0d6VWFy1+l+C9/p+1T\nH7Nxef0kmUpy1bNXMbV4KmceeOaAqtcaaaW6pFrTCSmKouSIvrbpPQFk97/PBx4f/OrkmEsusbk0\ns/BEo1T8+rcwZcpeFfnw2w/zTsM7fPfI7w4oHiaZSoLA5EK18hRFUXJFX0UvzxjT7i4486OvH/2m\nTd2u9u3c1e8RFMC2v924/EYOrjqYD8/58ICq1hZtY1rxNPzeUds/SFEUZcTTV9ELiUg6a7KILAbC\nualSDqmt7XZ1Yurepfa6dcWtNIWbuPi9Fw8oRMG18txksoqiKEpu6KvofRv4vYg8KyLPAg8C5+Su\nWjniqqugoLOBmsrPo+HS8/pd1IbmDdz3+n2cuuBU9q3cd0DVaouplacoijIU7FH0ROQQEZlijHkZ\n2Af4HRAH/gGsH4L6DS6nnQZ33IGprcUIxKsns+PGK2n7VP+zp/zk+Z/g9/o57/D+C2Y2yVQSQags\nqk5UPd8AABzdSURBVBxQOYqiKErv9Gbp3Q7EnPkjgIuBW4Am4I4c1it3nHYaZv06Xnr9Eda//vRe\nCd6/6/7NE+uf4OzFZw/YJdkaa2VayTQdDFZRFGUI6O1N6zXGNDrznwHuMMY8DDwsIq/ltmo5RATK\nJ/R7BAWww/xc/ezVTCuZxun7nz6gaiRTSTx4tC1PURRliOjN0vOKiCuMxwP/yto2Lk2Th1Y+xKrG\nVVx41IUDzprSGmultrRWrTxFUZQhore37QPA0yLSgO2t+SyAiMwBxuQo6nuiJdLCTS/exKFTD+WE\nWScMqKxEKoEXb3rUY0VRFCX37FH0jDFXicgTQBXwmMkMlesBzs115UYat7x8Cy2RFi4+emAhCgDt\n0Xaml01XK09RFGUI6fWNa4xZ3s26VbmpzshlbdNalr65lE8v/DQLJi0YUFmJVAKvx0tFQcUg1U5R\nFEXpC/0fNG6c8uPnfkyeL49vH/7tAZfVFm2jprQGr8c7CDVTFEVR+oqKXh94ZuMzPL3xab6++OsD\nboOLJ+P4PD4m5mtbnqIoylCjotcL8WSca5+7luml0/ni/l8ccHntsXZqS2vVylMURRkGtBdFLzz4\n3wdZ27SWWz9664CH/Ikn4/g9fibkTxik2imKoij9QS29PdAUbuIXL/2CI2uO5LgZxw24PLXyFEVR\nhpecip6InCgi74rIGhH5/h72O0REEiLyqVzWp7/c/NLNtMXauOjoiwYcohBLxgh4A0woUCtPURRl\nuMiZ6Dmjq98CfBhYCHxORBb2sN+PgcdyVZe9YfWu1Tzw3wf4zKLPMG/ivAGXF4qFqC2txSNqXCuK\nogwXuXwDHwqsMcasM8bEsMMRndLNfucCDwM7c1iXfmGM4drnrqUwUMg3D/vmgMtzrbzy/PJBqJ2i\nKIqyt+RS9KYCdVnLm511aURkKnAq8Msc1qPfPLXhKZ6re45vHPKNQel0olaeoijKyGC438I/Ay40\nxqT2tJOILBGRFSKyor6+PqcViiVjXPv8tcwsm8lp+502KOUFvUG18hRFUUYAuQxZ2ALUZC1Pc9Zl\nsxh40OkkUgF8REQSxpg/Z+9kjLkDZ/y+xYsXG3LIb9/8LRuaN3DHSXcMykjm7dF25k2cp1aeoijK\nCCCXovcyMFdEZmLF7rPA57N3MMbMdOdF5B7gb10FbyhpDDdy80s3897a93LMjGMGXF4sGSM/kK9W\nnqIoygghZ6JnjEmIyDnAo4AXuMsYs1JEznK235arc+8tN714Ex3xDi46+qJBKS8UCzG/Yv6Awx0U\nRVGUwSGnGVmMMY8Aj3RZ163YGWO+nMu69MY7De/w0MqHOG2/05g9YfaAy4smouT58ygNlg5C7RRF\nUZTBQBuasCEK1zx3DSWBEs459JxBKTMUDzG9dLpaeYqiKCMIFT3gifVPsHzzcs497FzK8soGXF40\nEaXAX6BWnqIoyghj3IteLBnjx8//mDkT5vDZfT87KGWGYmrlKYqijETG/SgL975+L5taNnHnx+7E\n5xn47YgkIhQGCikJlgxC7RRFUZTBZFxbeg0dDdz68q0cO+NYjq49elDK7Ih1ML1MrTxFUZSRyLgW\nvZ8t/xmxZIwLj7pwUMoLx8MUBYsoDhQPSnmKoijK4DJuRe/dhnf5w1t/4Avv+QIzy2f2fkAfCCfC\n1JbWqpWnKIoyQhl3bXpL31zKxU9czKaWTXjwDJ7gxcOUBEq0LU9RFGUEM64svaVvLmXJsiVsatkE\nQIoUVz97NcveXTbgsjviHdSU1vS+o6IoijJsjCvRu+SJS+iId3RaF0lEuGH5DQMqtyPeQWmwlOKg\ntuUpiqKMZMaV6LkWXle2tW0bULmReEStPEVRlFHAuBK92tLabtdXFVftdZkd8Q7K8svUylMURRkF\njCvRu+r4qyjwF3Ral+fL47zDz9vrMiOJCNNKpg20aoqiKMoQMK56b7ojoV/8xMXUtdRRVVzFeYef\nx8nzT96r8kKxEOV55RQFigazmoqiKEqOGFeiB1b4Prfv53h5y8sDHtw1mowyb+K8QaqZoiiKkmvG\nlXtzMGmPtTMhbwKFgcLhroqiKIrSR1T09pJYIsbUkqnDXQ1FURSlH6jo7QXtsXYmFk5UK09RFGWU\noaLXT4wx1sorVitPURRltKGi109C8RAVhRW7hT4oiqIoIx8VvX5gjCGWVCtPURRltKKi1w/a/397\n9x5dVXnue/z75KIhBAggFwFJ2D0oCbkR0ihYCpGK6DlKURAQtwJqkHrZ0uM4pe4O2+0eVEbbYcHL\n4aKC1R3heCmF7oqXUqnlsEUuO1w0sqEa2ggo4ikQAoEkz/ljraQJJCEmWawk6/cZIyNzzjXnO585\nM5In77y8z+lSesX3olNsp3CHIiIizaCk10TuTkVVBf269At3KCIi0kxKek1UerqU3p17q5cnItKO\nKek1gbtzpvJMiwamFhGR8FPSa4Ljp4/TJ6EPcTFx4Q5FRERaQEnvPNydyqpK3csTEekAlPTO43j5\ncfom9OXimIvDHYqIiLSQkl4jqryKSq+kb0LfcIciIiKtQEmvEaXlpVyacKl6eSIiHYSSXgOqe3l9\nEvqEOxQREWklSnoNOF5+nH5d+qmXJyLSgSjp1aPKq3BcvTwRkQ5GSa8ex04do1+XflwUfVG4QxER\nkVakpHeWKq8Cg96de4c7FBERaWVKemdRL09EpONS0qulsqoSDPp01r08EZGOSEmvluOnjzOgywBi\no2PDHYqIiISAkl5QZVUlhtGrc69whyIiIiGipBd07PQxBnRVL09EpCMLadIzs/FmtsfM9pnZvHo+\nn25mO81sl5ltMrPMUMbTkMqqSqKIUi9PRKSDC1nSM7No4BngeiAVmGZmqWet9ikw2t3TgX8FloUq\nnsZU9/JiomLCsXsREblAQtnTywX2ufsn7n4aWAVMqL2Cu29y9/8XnH0fGBDCeOpVUVVBNNHq5YmI\nRIBQJr3+wF9rzZcElzXkLmBdCOOpV2l5KZd1u0y9PBGRCNAm/tKbWR6BpPetBj7PB/IBBg4c2Gr7\nraiqIDoqmkviL2m1NkVEpO0KZU/vM+CyWvMDgsvqMLMM4Dlggrsfqa8hd1/m7jnuntOrV+tdhjxe\nfpzLul1GdFR0q7UpIiJtVyiT3hZgsJkNMrOLgKnA2tormNlA4NfAP7r7f4UwlnO4OzFRMfTs1PNC\n7lZERMIoZJc33b3CzO4H3gKigeXu/qGZ3Rv8fAnwKNAT+N9mBlDh7jmhiqm26Kho9fJERCJMSO/p\nufsbwBtnLVtSa/pu4O5QxlAfw+gZ31O9PBGRCNMmHmS50MyMf+j+D+EOQ0RELjANQyYiIhFDSU9E\nRCKGkp6IiEQMJT0REYkYSnoiIhIxlPRERCRiKOmJiEjEUNITEZGIoaQnIiIRQ0lPREQihpKeiIhE\nDCU9ERGJGEp6IiISMZT0REQkYijpiYhIxFDSExGRiKGkJyIiEUNJT0REIkZMuAMQEQmVM2fOUFJS\nwqlTp8IdirSSuLg4BgwYQGxsbLO2V9ITkQ6rpKSELl26kJycjJmFOxxpIXfnyJEjlJSUMGjQoGa1\nocubItJhnTp1ip49eyrhdRBmRs+ePVvUc1fSE5EOTQmvY2npz1NJT0QkRI4cOUJWVhZZWVn07duX\n/v3718yfPn26SW3MnDmTPXv2NLrOM888Q0FBQWuEzJo1a8jKyiIzM5PU1FSee+65Vmm3rdA9PRGR\nagUF8M//DH/5CwwcCPPnw/TpzW6uZ8+eFBYWAvCTn/yEhIQEHn744TrruDvuTlRU/X2QFStWnHc/\n9913X7NjrK28vJw5c+awdetW+vXrR3l5Ofv3729Rm+c7vgutbUQhIhJuBQWQnw/794N74Ht+fmB5\nK9u3bx+pqalMnz6doUOHcvDgQfLz88nJyWHo0KE89thjNet+61vforCwkIqKChITE5k3bx6ZmZmM\nGDGCL774AoAf/ehHLFy4sGb9efPmkZubyxVXXMGmTZsAOHHiBLfccgupqalMmjSJnJycmoRc7ejR\no7g7PXr0AODiiy/m8ssvB+DQoUNMmDCBjIwMMjMz2bx5MwA/+9nPSEtLIy0tjaeeeqrB41u3bh0j\nRowgOzubKVOmcOLEiVY/r02hnp6IRIaHHoKz/sjX8f77UF5ed1lZGdx1Fzz7bP3bZGVBMNl8XR9/\n/DEvvvgiOTk5ACxYsIAePXpQUVFBXl4ekyZNIjU1tc42R48eZfTo0SxYsIDvf//7LF++nHnz5p3T\ntrvzwQcfsHbtWh577DHefPNNnnrqKfr27cvrr7/Ojh07yM7OPme73r17c91115GUlMTYsWO58cYb\nmTJlClFRUdx3331ce+213H///VRUVFBWVsbmzZspKChgy5YtVFRUkJuby5gxY+jUqVOd4/viiy9Y\nsGAB69evJz4+nvnz57No0SIeeeSRZp27llBPT0QEzk1451veQt/4xjdqEh7AypUryc7OJjs7m6Ki\nIj766KNztunUqRPXX389AMOHD6e4uLjetm+++eZz1tm4cSNTp04FIDMzk6FDh9a77QsvvMA777xD\nTk4OCxYsID8/H4ANGzYwe/ZsAGJiYujatSsbN27klltuoVOnTnTp0oXvfve7/OlPfzrn+DZt2sRH\nH33EyJEjycrKoqCgoMHYQ009PRGJDOfrkSUnBy5pni0pCTZsaPVwOnfuXDO9d+9eFi1axAcffEBi\nYiK33357vY/lX3TRRTXT0dHRVFRU1Nv2xRdffN51GpORkUFGRga33XYbKSkpNQ+zfJ0nJ2sfn7sz\nfvx4Xnrppa8dS2tTT09EBAIPrcTH110WHx9YHmLHjh2jS5cudO3alYMHD/LWW2+1+j6uvvpqXnnl\nFQB27dpVb0/y2LFjvPfeezXzhYWFJCUlAZCXl8eSJUsAqKys5NixY4waNYrVq1dz8uRJSktLWbNm\nDaNGjTqn3ZEjR/LHP/6RTz75BAjcX9y7d2+rH2NTqKcnIgJ/f0qzFZ/ebKrs7GxSU1MZMmQISUlJ\nXH311a2+jwceeIA77riD1NTUmq9u3brVWcfdefzxx7nnnnvo1KkTCQkJLF++HICnn36ae+65h6VL\nlxITE8PSpUvJzc1l2rRpfPOb3wRgzpw5pKens2/fvjrt9unTh+eff54pU6bUvKrx05/+lMGDB7f6\ncZ6PufsF32lL5OTk+NatW8Mdhoi0A0VFRaSkpIQ7jDahoqKCiooK4uLi2Lt3L+PGjWPv3r3ExLS/\nvk99P1cz2+buOQ1sUqP9Ha2IiHxtpaWljB07loqKCty9pscWaSLviEVEIlBiYiLbtm0LdxhhpwdZ\nREQkYijpiYhIxFDSExGRiKGkJyIiEUNJT0QkRPLy8s550XzhwoXMmTOn0e0SEhIAOHDgAJMmTap3\nnTFjxnC+17cWLlxIWVlZzfwNN9zA3/72t6aE3qg9e/YwZswYsrKySElJqRmqrD1Q0hMRCSrYVUDy\nwmSi/iWK5IXJFOxqWYWFadOmsWrVqjrLVq1axbRp05q0fb9+/Xjttdeavf+zk94bb7xBYmJis9ur\n9uCDDzJ37lwKCwspKirigQceaHGblZWVLW6jKZT0REQIJLz83+az/+h+HGf/0f3k/za/RYlv0qRJ\n/O53v6sZhaS4uJgDBw4watSomvfmsrOzSU9PZ82aNedsX1xcTFpaGgAnT55k6tSppKSkMHHiRE6e\nPFmz3pw5c2rKEv34xz8G4Mknn+TAgQPk5eWRl5cHQHJyMl9++SUATzzxRE1JoOqyRMXFxaSkpHDP\nPfcwdOhQxo0bV2c/1Q4ePMiAAQNq5tPT04FA4nr44YdJS0sjIyOjptTQ+vXrGTZsGOnp6cyaNYvy\n4CDeycnJ/OAHPyA7O5tXX32VP//5z4wfP57hw4czatQoPv7442af+4aE9D09MxsPLAKigefcfcFZ\nn1vw8xuAMmCGu28PZUwiEpkeevMhCg81XFro/ZL3Ka+sW1Gh7EwZd625i2e31V9aKKtvFgvHNzyQ\ndY8ePcjNzWXdunVMmDCBVatWceutt2JmxMXFsXr1arp27cqXX37JVVddxU033dTgoM6LFy8mPj6e\noqIidu7cWac00Pz58+nRoweVlZWMHTuWnTt38uCDD/LEE0/w7rvvcskll9Rpa9u2baxYsYLNmzfj\n7lx55ZWMHj2a7t27s3fvXlauXMmzzz7Lrbfeyuuvv87tt99eZ/u5c+dyzTXXMHLkSMaNG8fMmTNJ\nTExk2bJlFBcXU1hYSExMDF999RWnTp1ixowZrF+/nssvv5w77riDxYsX89BDDwGBQrvbtwf+7I8d\nO5YlS5YwePBgNm/ezPe+9z3+8Ic/NHh+myNkPT0ziwaeAa4HUoFpZpZ61mrXA4ODX/nA4lDFIyLS\nmLMT3vmWN1XtS5y1L226O4888ggZGRl85zvf4bPPPuPzzz9vsJ333nuvJvlUV0Go9sorr5Cdnc2w\nYcP48MMP6x1MuraNGzcyceJEOnfuTEJCAjfffHNNSaBBgwaRlZUFNFy+aObMmRQVFTF58mQ2bNjA\nVVddRXl5Ob///e+ZPXt2zUgvPXr0YM+ePQwaNKimGO2dd95ZZ1DrKVOmAIERYzZt2sTkyZPJyspi\n9uzZHDx4sNHjaI5Q9vRygX3u/gmAma0CJgC1fxoTgBc9MADo+2aWaGaXunvrH6mIRLTGemQAyQuT\n2X/03NJCSd2S2DBjQ7P3O2HCBObOncv27dspKytj+PDhABQUFHD48GG2bdtGbGwsycnJ9ZYTOp9P\nP/2UX/ziF2zZsoXu3bszY8aMZrVTrbosEQRKE9V3eRMC9xtnzZrFrFmzSEtLY/fu3c3aX3UJoqqq\nKhITE8+p5t7aQnlPrz/w11rzJcFlX3cdzCzfzLaa2dbDhw+3eqAiIvPHzic+tm5pofjYeOaPbVlp\noYSEBPLy8pg1a1adB1iOHj1K7969iY2N5d1332V/fbX8avn2t7/Nyy+/DMDu3bvZuXMnECgH1Llz\nZ7p168bnn3/OunXrarbp0qULx48fP6etUaNG8Zvf/IaysjJOnDjB6tWr6y0J1JA333yTM2fOAHDo\n0CGOHDlC//79ufbaa1m6dGlNDb+vvvqKK664guLi4prKCy+99BKjR48+p82uXbsyaNAgXn31VSDQ\nE96xY0eTY2qqdvEgi7svc/ccd8/p1atXuMMRkQ5oevp0lt24jKRuSRhGUrcklt24jOnpLS8tNG3a\nNHbs2FEn6U2fPp2tW7eSnp7Oiy++yJAhQxptY86cOZSWlpKSksKjjz5a02PMzMxk2LBhDBkyhNtu\nu61OWaL8/HzGjx9f8yBLtezsbGbMmEFubi5XXnkld999N8OGDWvy8bz99tukpaWRmZnJddddx89/\n/nP69u3L3XffzcCBA8nIyCAzM5OXX36ZuLg4VqxYweTJk0lPTycqKop777233nYLCgp4/vnnayq7\n1/dwT0uFrLSQmY0AfuLu1wXnfwjg7o/XWmcpsMHdVwbn9wBjGru8qdJCItJUKi3UMbWktFAoe3pb\ngMFmNsjMLgKmAmvPWmctcIcFXAUc1f08EREJlZA9yOLuFWZ2P/AWgVcWlrv7h2Z2b/DzJcAbBF5X\n2EfglYWZoYpHREQkpO/pufsbBBJb7WVLak07cF8oYxAREanWLh5kERFprlA9tyDh0dKfp5KeiHRY\ncXFxHDlyRImvg3B3jhw5QlxcXLPbCOnlTRGRcBowYAAlJSXo/d6OIy4urs64n1+Xkp6IdFixsbEM\nGjQo3GFIG6LLmyIiEjGU9EREJGIo6YmISMQI2TBkoWJmh4HGR2Zt/y4Bvgx3EO2Uzl3z6dw1n85d\n87XWuUty9/MOztzukl4kMLOtTRlDTs6lc9d8OnfNp3PXfBf63OnypoiIRAwlPRERiRhKem3TsnAH\n0I7p3DWfzl3z6dw13wU9d7qnJyIiEUM9PRERiRhKem2ImV1mZu+a2Udm9qGZ/VO4Y2pvzCzazP7T\nzP493LG0J2aWaGavmdnHZlZkZiPCHVN7YWZzg7+vu81spZk1fzTkDs7MlpvZF2a2u9ayHmb2jpnt\nDX7vHsoYlPTalgrgf7p7KnAVcJ+ZpYY5pvbmn4CicAfRDi0C3nT3IUAmOodNYmb9gQeBHHdPI1Aw\ne2p4o2rTXgDGn7VsHrDe3QcD64PzIaOk14a4+0F33x6cPk7gD0//8EbVfpjZAOC/A8+FO5b2xMy6\nAd8Gngdw99Pu/rfwRtWuxACdzCwGiAcOhDmeNsvd3wO+OmvxBOBXwelfAd8NZQxKem2UmSUDw4DN\n4Y2kXVkI/C+gKtyBtDODgMPAiuCl4efMrHO4g2oP3P0z4BfAX4CDwFF3fzu8UbU7fdz9YHD6ENAn\nlDtT0muDzCwBeB14yN2PhTue9sDM/gfwhbtvC3cs7VAMkA0sdvdhwAlCfImpowjef5pA4B+HfkBn\nM7s9vFG1Xx54nSCkrxQo6bUxZhZLIOEVuPuvwx1PO3I1cJOZFQOrgGvM7N/CG1K7UQKUuHv1VYXX\nCCRBOb/vAJ+6+2F3PwP8GhgZ5pjam8/N7FKA4PcvQrkzJb02xMyMwH2VInd/ItzxtCfu/kN3H+Du\nyQQeJPiDu+s/7iZw90PAX83siuCiscBHYQypPfkLcJWZxQd/f8eih4C+rrXAncHpO4E1odyZkl7b\ncjXwjwR6KYXBrxvCHZREhAeAAjPbCWQBPw1zPO1CsHf8GrAd2EXgb6pGZ2mAma0E/gO4wsxKzOwu\nYAFwrZntJdBzXhDSGDQii4iIRAr19EREJGIo6YmISMRQ0hMRkYihpCciIhFDSU9ERCKGkp5IA8zM\na7/gbmYxZna4uRUczOwmMwvbSCdmtsHM9pjZzmA1hafNLLEF7c0ws3615ovN7JLWiVYkNJT0RBp2\nAkgzs07B+WuBz5rbmLuvdfeQvoPUBNPdPQPIAMpp2YvAMwgMvSXSbijpiTTuDQKVGwCmASurPzCz\nXDP7j+AgzZuqRzQJ1ldbHpxOD9ZZiw/2jJ4OLn/BzBab2ftm9omZjQnWGisysxdq7aO01vSk6s+a\nun1D3P00gcG5B5pZZrDN283sg+CgCEvNLLo6BjP7ZbBm3Hoz62Vmk4AcAi+0F9b6x+ABM9tuZrvM\nbEgzzrdISCnpiTRuFTA1WBg0g7pVLz4GRgUHaX6Uv49isgj4b2Y2EVgBzHb3snra7g6MAOYSGIrp\nl8BQIN3MspoQW4u2d/dKYAcwxMxSgCnA1e6eBVQC04Ordga2uvtQ4I/Aj939NWArgZ5jlrufDK77\npbtnA4uBh5twDCIXVEy4AxBpy9x9Z7DM0zQCvb7augG/MrPBBEaGjw1uU2VmM4CdwFJ3/78NNP9b\nd3cz2wV87u67AMzsQyAZKDxPeC3dHsCC38cCw4EtgSEk6cTfB/6tAv5PcPrfCAyq3JDqz7YBNzdh\n/yIXlJKeyPmtJVAzbQzQs9byfwXedfeJwcS4odZng4FSGr/nVR78XlVrunq++nez9jiBcc3YvkHB\ny5fpBAZI7g38yt1/eL7taLz0S3UclU2JQeRC0+VNkfNbDvxLdU+qlm78/cGWGdULg5XInyRQjbxn\n8P5Xc31uZilmFgVMbEE7dQRLWD0O/NXddwLrgUlm1jv4eQ8zSwquHgVUH8NtwMbg9HGgS2vFJHIh\nKOmJnIe7l7j7k/V89DPgcTP7T+r2an4JPOPu/wXcBSyoTibNMA/4d2ATgcrcLVVdSWE3gXt1EwDc\n/SPgR8Dbwc/fAS4NbnMCyDWz3cA1wGPB5S8AS856kEWkTVOVBRFplJmVuntCuOMQaQ3q6YmISMRQ\nT09ERCKGenoiIhIxlPRERCRiKOmJiEjEUNITEZGIoaQnIiIRQ0lPREQixv8HMh8ccssjyxAAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vs.ModelComplexity(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5 - Bias-Variance Tradeoff\n", + "*When the model is trained with a maximum depth of 1, does the model suffer from high bias or from high variance? How about when the model is trained with a maximum depth of 10? What visual cues in the graph justify your conclusions?* \n", + "**Hint:** How do you know when a model is suffering from high bias or high variance?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** At max depth 1, it suffers from high bias - r^2 is generally low for both training and validation, so it has low predictive power. At max depth 10, it suffers from high variance, as r^2 for training goes to 1, but validation remains low, meaning model is overfitting and does not generalise well. These conclusions are based on the fact that the training and validation scores diverge at higher max depth, with training improving, whereas validation is dropping off and even declining. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6 - Best-Guess Optimal Model\n", + "*Which maximum depth do you think results in a model that best generalizes to unseen data? What intuition lead you to this answer?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** It seems to be max depth of 3, as afterwards validation declines whereas training continues to rise, showing the model cannot generalise well anymore, so there is no benefit to increasing max depth." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "\n", + "## Evaluating Model Performance\n", + "In this final section of the project, you will construct a model and make a prediction on the client's feature set using an optimized model from `fit_model`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7 - Grid Search\n", + "*What is the grid search technique and how it can be applied to optimize a learning algorithm?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The grid search space is a space occupied by parameters to a model. The grid search technique will try all possible points on this space (combination of parameters) The output of grid search are many models, each using different parameters. This is a selective search, as only points on the parameter grid will be used. The search is guided by chosing a range of values for each parameter dimension picking a step size large enough to expect the output to vary in some interesting way. In case of enum parameters, we could earch across several different classifiers for example, to get an idea which works best." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8 - Cross-Validation\n", + "*What is the k-fold cross-validation training technique? What benefit does this technique provide for grid search when optimizing a model?* \n", + "**Hint:** Much like the reasoning behind having a testing set, what could go wrong with using grid search without a cross-validated set?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The K Fold cross validation technique splits the dataset into training and cross validation sets. More specifically, it splits the data into K subsets, using one of the subsets as validation and the k-1 others combined as the training set. It then trains and evaluates the ML algorithm. In the next iteration it will pick a different training and cross validation set and repeat the previous step. Once all K combinations have been explored, an average performance estimate is computed across the outputs of each of the k steps run. The benefit of this technique to grid search is that you get a more reliable, stable estimate for each point on the parameter grid, as it will be run using several splits of training / testing data, eliminating potential bias in the dataset and given stable values no matter how the dataset is divided into training and testing. This K fold validation is useful for grid search as each point on the grid will get a more reliable estimate of model performance than not using K folder validation. If we limit grid search to a single dataset (no K fold validation) overfitting would be an issue, as the specific choice of model function might lead to lack of generalisation to out of sample data. Applying this generalisation inside the dataset, many times over, make the estimate more stable." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Fitting a Model\n", + "Your final implementation requires that you bring everything together and train a model using the **decision tree algorithm**. To ensure that you are producing an optimized model, you will train the model using the grid search technique to optimize the `'max_depth'` parameter for the decision tree. The `'max_depth'` parameter can be thought of as how many questions the decision tree algorithm is allowed to ask about the data before making a prediction. Decision trees are part of a class of algorithms called *supervised learning algorithms*.\n", + "\n", + "In addition, you will find your implementation is using `ShuffleSplit()` for an alternative form of cross-validation (see the `'cv_sets'` variable). While it is not the K-Fold cross-validation technique you describe in **Question 8**, this type of cross-validation technique is just as useful!. The `ShuffleSplit()` implementation below will create 10 (`'n_splits'`) shuffled sets, and for each shuffle, 20% (`'test_size'`) of the data will be used as the *validation set*. While you're working on your implementation, think about the contrasts and similarities it has to the K-fold cross-validation technique.\n", + "\n", + "Please note that ShuffleSplit has different parameters in scikit-learn versions 0.17 and 0.18.\n", + "For the `fit_model` function in the code cell below, you will need to implement the following:\n", + "- Use [`DecisionTreeRegressor`](http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) from `sklearn.tree` to create a decision tree regressor object.\n", + " - Assign this object to the `'regressor'` variable.\n", + "- Create a dictionary for `'max_depth'` with the values from 1 to 10, and assign this to the `'params'` variable.\n", + "- Use [`make_scorer`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html) from `sklearn.metrics` to create a scoring function object.\n", + " - Pass the `performance_metric` function as a parameter to the object.\n", + " - Assign this scoring function to the `'scoring_fnc'` variable.\n", + "- Use [`GridSearchCV`](http://scikit-learn.org/0.17/modules/generated/sklearn.grid_search.GridSearchCV.html) from `sklearn.grid_search` to create a grid search object.\n", + " - Pass the variables `'regressor'`, `'params'`, `'scoring_fnc'`, and `'cv_sets'` as parameters to the object. \n", + " - Assign the `GridSearchCV` object to the `'grid'` variable." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# TODO: Import 'make_scorer', 'DecisionTreeRegressor', and 'GridSearchCV'\n", + "\n", + "def fit_model(X, y):\n", + " \"\"\" Performs grid search over the 'max_depth' parameter for a \n", + " decision tree regressor trained on the input data [X, y]. \"\"\"\n", + " \n", + " # Create cross-validation sets from the training data\n", + " # sklearn version 0.18: ShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None)\n", + " # sklearn versiin 0.17: ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None, random_state=None)\n", + " cv_sets = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.20, random_state = 0)\n", + "\n", + " # TODO: Create a decision tree regressor object\n", + " from sklearn.tree import DecisionTreeRegressor\n", + " regressor = DecisionTreeRegressor(random_state =1)\n", + "\n", + " # TODO: Create a dictionary for the parameter 'max_depth' with a range from 1 to 10\n", + " import numpy as np\n", + " params = {\"max_depth\": np.arange(1,11)}\n", + " print(\"params\", params)\n", + "\n", + " # TODO: Transform 'performance_metric' into a scoring function using 'make_scorer' \n", + " from sklearn.metrics import make_scorer\n", + " scoring_fnc = make_scorer(performance_metric)\n", + "\n", + " # TODO: Create the grid search object\n", + " from sklearn.grid_search import GridSearchCV\n", + " grid = GridSearchCV(estimator=regressor, param_grid=params, scoring=scoring_fnc, cv=cv_sets)\n", + "\n", + " # Fit the grid search object to the data to compute the optimal model\n", + " grid = grid.fit(X, y)\n", + "\n", + " # Return the optimal model after fitting the data\n", + " return grid.best_estimator_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Making Predictions\n", + "Once a model has been trained on a given set of data, it can now be used to make predictions on new sets of input data. In the case of a *decision tree regressor*, the model has learned *what the best questions to ask about the input data are*, and can respond with a prediction for the **target variable**. You can use these predictions to gain information about data where the value of the target variable is unknown — such as data the model was not trained on." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 9 - Optimal Model\n", + "_What maximum depth does the optimal model have? How does this result compare to your guess in **Question 6**?_ \n", + "\n", + "Run the code block below to fit the decision tree regressor to the training data and produce an optimal model." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\envs\\udacity\\lib\\site-packages\\sklearn\\grid_search.py:43: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. This module will be removed in 0.20.\n", + " DeprecationWarning)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameter 'max_depth' is 4 for the optimal model.\n" + ] + } + ], + "source": [ + "# Fit the training data to the model using grid search\n", + "reg = fit_model(X_train, y_train)\n", + "\n", + "# Produce the value for 'max_depth'\n", + "print \"Parameter 'max_depth' is {} for the optimal model.\".format(reg.get_params()['max_depth'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The max depth of the optimal model is 4. My guess would have been 3, as it seems with 4, training accuracy goes up, but much more so than test accuracy, which almost flatlines." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 10 - Predicting Selling Prices\n", + "Imagine that you were a real estate agent in the Boston area looking to use this model to help price homes owned by your clients that they wish to sell. You have collected the following information from three of your clients:\n", + "\n", + "| Feature | Client 1 | Client 2 | Client 3 |\n", + "| :---: | :---: | :---: | :---: |\n", + "| Total number of rooms in home | 5 rooms | 4 rooms | 8 rooms |\n", + "| Neighborhood poverty level (as %) | 17% | 32% | 3% |\n", + "| Student-teacher ratio of nearby schools | 15-to-1 | 22-to-1 | 12-to-1 |\n", + "*What price would you recommend each client sell his/her home at? Do these prices seem reasonable given the values for the respective features?* \n", + "**Hint:** Use the statistics you calculated in the **Data Exploration** section to help justify your response. \n", + "\n", + "Run the code block below to have your optimized model make predictions for each client's home." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predicted selling price for Client 1's home: $411,931.58\n", + "Predicted selling price for Client 2's home: $235,620.00\n", + "Predicted selling price for Client 3's home: $922,740.00\n" + ] + } + ], + "source": [ + "# Produce a matrix for client data\n", + "client_data = [[5, 17, 15], # Client 1\n", + " [4, 32, 22], # Client 2\n", + " [8, 3, 12]] # Client 3\n", + "\n", + "\n", + "\n", + "# Show predictions\n", + "for i, price in enumerate(reg.predict(client_data)):\n", + " print \"Predicted selling price for Client {}'s home: ${:,.2f}\".format(i+1, price)\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** Client 1's home: around \\$410k, Client 2's home: around\\$235k, Client 3's home: around \\$920k. Prices seem reasonable, as Client 3's home has low neigbourhood poverty, low student teacher ratio and a lot of bedrooms. C2 home should be the lowest, as least rooms, worst student teacher ratio, and highest neighbourhood poverty. C1 works too and is in between C3 and C2, as better student teacher ratio, half the poverty level, and 1 extra room compared to C2. More generally, prices are in the range of the dataset and a large house in a good neighborhood is close to the maximum prices which is expected" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sensitivity\n", + "An optimal model is not necessarily a robust model. Sometimes, a model is either too complex or too simple to sufficiently generalize to new data. Sometimes, a model could use a learning algorithm that is not appropriate for the structure of the data given. Other times, the data itself could be too noisy or contain too few samples to allow a model to adequately capture the target variable — i.e., the model is underfitted. Run the code cell below to run the `fit_model` function ten times with different training and testing sets to see how the prediction for a specific client changes with the data it's trained on." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 1: $391,183.33\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 2: $419,700.00\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 3: $415,800.00\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 4: $420,622.22\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 5: $413,334.78\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 6: $411,931.58\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 7: $399,663.16\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 8: $407,232.00\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 9: $351,577.61\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 10: $413,700.00\n", + "\n", + "Range in prices: $69,044.61\n" + ] + } + ], + "source": [ + "vs.PredictTrials(features, prices, fit_model, client_data) # predicts client 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 11 - Applicability\n", + "*In a few sentences, discuss whether the constructed model should or should not be used in a real-world setting.* \n", + "**Hint:** Some questions to answering:\n", + "- *How relevant today is data that was collected from 1978?*\n", + "- *Are the features present in the data sufficient to describe a home?*\n", + "- *Is the model robust enough to make consistent predictions?*\n", + "- *Would data collected in an urban city like Boston be applicable in a rural city?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** Data from 1978 may not be that relevant, as underlying factors may have changed, such as the distribution of wealth across neighbourhoods, or the number of teachers and students in schools. However, if there were no such trends, the dataset could be a good proxy, as price was corrected for inflation. The number of features are probably not sufficient to describe a home - condition, size of land, age and other features may have additional or more important predictive power. The model does not seem very robust - a range of around 70k in predictions on just 10 iterations would be unacceptable to a prospective seller. Finally, urban data may apply to rural settings as there are less neigbourhoods, prices are generally lower, and properties illiquid so not many transactions so price discovery may not follow the same pattern as in a city. Thus the model's use should be restricted to an urban setting, additional features should be added to control the variance of predictions, and ideally updated data would give a better price estimate that may come closer to a real transaction as of today." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/capstone_project/.ipynb_checkpoints/Pandas multilevel column slice by integer example-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/Pandas multilevel column slice by integer example-checkpoint.ipynb new file mode 100644 index 0000000..d16910a --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/Pandas multilevel column slice by integer example-checkpoint.ipynb @@ -0,0 +1,187 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd, numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],\n", + " ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]\n", + "tuples = list(zip(*arrays))\n", + "index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])\n", + "df = pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first bar baz foo \n", + "second one two one two one two\n", + "first second \n", + "bar one -0.318200 0.178610 0.028051 1.686810 -0.894416 0.288034\n", + " two 2.550545 -0.149372 -0.219050 -0.655504 2.841000 -0.284396\n", + "baz one 0.011945 1.588152 -0.024538 -0.488825 0.014111 1.452298\n", + " two -0.756507 0.798701 -0.057006 1.253656 -0.674178 -0.207080\n", + "foo one -0.768974 -1.127536 0.358538 -1.231684 -0.149561 -1.597307\n", + " two 0.088282 1.052544 0.518868 -1.152717 0.211445 -0.269728\n" + ] + } + ], + "source": [ + "print(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first bar\n", + "second one\n", + "first second \n", + "bar one -0.318200\n", + " two 2.550545\n", + "baz one 0.011945\n", + " two -0.756507\n", + "foo one -0.768974\n", + " two 0.088282\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
firstbar
secondonetwo
firstsecond
barone-0.3182000.178610
two2.550545-0.149372
bazone0.0119451.588152
two-0.7565070.798701
fooone-0.768974-1.127536
two0.0882821.052544
\n", + "
" + ], + "text/plain": [ + "first bar \n", + "second one two\n", + "first second \n", + "bar one -0.318200 0.178610\n", + " two 2.550545 -0.149372\n", + "baz one 0.011945 1.588152\n", + " two -0.756507 0.798701\n", + "foo one -0.768974 -1.127536\n", + " two 0.088282 1.052544" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(df.loc[:,(slice(\"bar\"), slice('one'))])\n", + "\n", + "df.loc[:,slice(df.columns.levels[0][0])]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "toc_cell": false, + "toc_position": {}, + "toc_section_display": "block", + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/.ipynb_checkpoints/aws_v1 - fx spot prediction notebook-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/aws_v1 - fx spot prediction notebook-checkpoint.ipynb new file mode 100644 index 0000000..b0f4034 --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/aws_v1 - fx spot prediction notebook-checkpoint.ipynb @@ -0,0 +1,2140 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To run on EC2:\n", + "Enter the repo directory: cd aind2-cnn\n", + "Activate the new environment: source activate aind2\n", + "Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "Find this line in output and copy url to browser: \n", + "Copy/paste this URL into your browser when you connect for the first time to login with a token: \n", + "http://0.0.0.0:8888/?token=3156e...\n", + "\n", + "change the 0.0.0.0 with EC2 IP.\n", + "\n", + "you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# get data from mongodb\n", + "import io\n", + "import pymongo\n", + "from pymongo import MongoClient\n", + "import datetime\n", + "\n", + "#client = MongoClient(connect=False) #Makes it \"good enough\" for our multi-threaded use case. \n", + "\n", + "# mng_client = pymongo.MongoClient('localhost', 27017)\n", + "# mng_db = mng_client['fx_prediction'] # Replace mongo db name\n", + "# collection_name = 'fx_tick_data_typed' # Replace mongo db table name\n", + "# db = mng_db[collection_name]\n", + "\n", + "#print(db.count())\n", + "#min_date = datetime.datetime(2016, 1, 1, 0)\n", + "#max_date = datetime.datetime(2016, 12, 1, 0)\n", + "min_date = \"1Jan16\"\n", + "max_date = \"1Feb16\"\n", + "\n", + "#https://bitbucket.org/djcbeach/monary/wiki/Home use to speed up" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"mine\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1Jan16\n", + "1Feb16\n" + ] + } + ], + "source": [ + "print(min_date)\n", + "print(max_date)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# # each of these is a stage in the pipeline - match, project, group, project.\n", + "\n", + "# cursor_group = db.aggregate(\n", + "# [\n", + " \n", + "# {\"$match\":{\n", + "# \"date\": {\n", + "# \"$gte\": min_date\n", + "# , \"$lte\": max_date\n", + "# }\n", + "# } \n", + "# },\n", + " \n", + "# {\n", + "# \"$project\": {\n", + "# \"_id\" : 0\n", + "# , \"bo_spread\": {\"$subtract\": [\"$ask\", \"$bid\"]}\n", + "# , \"bid\": 1\n", + "# , \"ask\": 1\n", + "# , \"date\": 1\n", + " \n", + "# }\n", + "# },\n", + " \n", + " \n", + "# {\n", + "# \"$group\" : {\n", + "# #\"_id\" : \"null\",\n", + "# \"_id\": {\n", + "# \"dateAgg\": { \"$dateToString\": { \"format\": \"%G/%m/%d %H:%M\", \"date\": \"$date\" } }\n", + "# },\n", + "# #\"high\": { \"$sum\": { \"$multiply\": [ \"$price\", \"$quantity\" ] } },\n", + "# \"dateSample\": {\"$first\": \"$date\"},\n", + "# \"high\": { \"$max\": \"$bid\"},\n", + "# \"low\": { \"$min\": \"$bid\"},\n", + "# \"open\": { \"$first\": \"$bid\"},\n", + "# \"close\": { \"$last\": \"$bid\"},\n", + "# \"avg_bo_spread\": { \"$avg\": \"$bo_spread\" },\n", + "# \"max_bo_spread\": { \"$max\": \"$bo_spread\" },\n", + "# \"min_bo_spread\": { \"$min\": \"$bo_spread\" },\n", + "# \"count\": { \"$sum\": 1 }\n", + "# }\n", + "# },\n", + " \n", + "# {\n", + "# \"$project\": {\n", + "# \"_id\" : 0\n", + "# , \"date\": \"$dateSample\"\n", + "# , \"high\": 1\n", + "# , \"low\": 1\n", + "# , \"open\": 1\n", + "# , \"close\": 1\n", + "# , \"avg_bo_spread\": 1\n", + "# , \"max_bo_spread\": 1\n", + "# , \"min_bo_spread\": 1\n", + "# , \"count\": 1\n", + "# }\n", + "# }\n", + " \n", + "# ], allowDiskUse=True\n", + "# )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# cursor_group = db.aggregate(\n", + "# [\n", + "# {\"$match\":{\n", + "# \"date\": {\n", + "# \"$gte\": min_date\n", + "# , \"$lte\": max_date\n", + "# }\n", + "# } \n", + "# },\n", + " \n", + " \n", + "# {\n", + "# \"$group\" : {\n", + "# #\"_id\" : \"null\",\n", + "# \"_id\": {\n", + "# #\"month\": {\"$month\": \"$date\"}, \n", + "# #\"day\" : {\"$dayOfMonth\": \"$date\"}, \n", + "# #\"year\" : {\"$year\": \"$date\"},\n", + "# \"time\": { \"$dateToString\": { \"format\": \"%G/%m/%d %H:%M\", \"date\": \"$date\" } }\n", + "# #\"date\": { \"$dateFromParts\": {\"year\": \"$date\", \"month\": \"$date\", \"day\": \"$date\", \"hour\": \"$date\", \"minute\": \"$date\"}}\n", + "# },\n", + "# #\"high\": { \"$sum\": { \"$multiply\": [ \"$price\", \"$quantity\" ] } },\n", + "# \"high\": { \"$max\": \"$date\"},\n", + "# \"low\": { \"$min\": \"$date\"}, \n", + "# \"count\": { \"$sum\": 1 }\n", + "# }\n", + "# }\n", + "# ], allowDiskUse=True\n", + "# )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "strConnDef = \"DRIVER={ODBC Driver 13 for SQL Server};SERVER=localhost,1433;DATABASE=kai_dw;uid=kai_ta;pwd=tenpen12\"\n", + "def getQueryRaw(strQuery, params=None, strConn=strConnDef, commitOn=None):\n", + "\n", + " if commitOn is None:\n", + " commitOn = False\n", + "\n", + " if params is None:\n", + " params = []\n", + "\n", + " pypyodbc.lowercase = False\n", + " conn = pypyodbc.connect(strConn)\n", + " cursor = conn.cursor()\n", + " cursor.execute(strQuery, params)\n", + "\n", + " if commitOn:\n", + " conn.commit()\n", + " return \"sql insert was successful.\", \"sql insert was successful.\"\n", + " try:\n", + " rows = cursor.fetchall()\n", + " #print(\"rows\", rows)\n", + " # print(\"PARAMS:\", params)\n", + " description = cursor.description\n", + " conn.close()\n", + " return rows, description\n", + " except:\n", + " # print(\"THE QUERY: \" + strQuery) TODO: add query\n", + " conn.close()\n", + " raise ValueError(\"There was an error fetching a sql query. Make sure the index exists for your selected dates. THE PARAMS: \", params)\n", + "\n", + "\n", + "\n", + "\n", + "def getQueryDataframe(strQuery, params=None, strConn=strConnDef, columnMustAlwaysExist=None, commitOn=None):\n", + "\n", + " rows, cursorDescription = getQueryRaw(strQuery, params, strConn, commitOn)\n", + " if commitOn:\n", + " return \"sql insert was successful.\"\n", + "\n", + " if len(rows) == 0:\n", + " print(\"No rows were returned.\")\n", + " print(\"THE PARAMS: \", params)\n", + " print(\"THE QUERY: \" + strQuery)\n", + " print(\"Rows length is zero. No records returned\")\n", + "\n", + " if columnMustAlwaysExist is None:\n", + " columnMustAlwaysExist = \"Empty\"\n", + "\n", + " columns = [\"Information\", columnMustAlwaysExist]\n", + " rows = [\n", + " [\"No results were returned.\", \"There is no data.\"]\n", + " , [\"No results were returned.\", \"There is no data.\"]\n", + " ]\n", + "\n", + " else:\n", + " # bytes conversion needed because of the linux pypyodbc bug\n", + " columns = [column[0].decode(\"cp1252\") if type(column[0]) == bytes else column[0] for column in\n", + " cursorDescription]\n", + "\n", + " results = pd.DataFrame(data=rows, columns=columns)\n", + "\n", + "\n", + " return results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekdaydatebid_priceask_pricebo_spreadhighlowavg_bo_spreadcountopenclose
020161317102016-01-03 17:00:15.4931.087011.087510.000501.087231.086610.0001651421.087011.08701
120161317102016-01-03 17:00:38.9931.087031.087490.000461.087231.086610.0001651421.087011.08703
220161317102016-01-03 17:00:41.4931.087131.087490.000361.087231.086610.0001651421.087011.08713
320161317102016-01-03 17:00:41.9931.087131.087450.000321.087231.086610.0001651421.087011.08713
420161317102016-01-03 17:00:44.7431.087031.087450.000421.087231.086610.0001651421.087011.08703
\n", + "
" + ], + "text/plain": [ + " year month day hour weekday date bid_price \\\n", + "0 2016 1 3 17 1 0 2016-01-03 17:00:15.493 1.08701 \n", + "1 2016 1 3 17 1 0 2016-01-03 17:00:38.993 1.08703 \n", + "2 2016 1 3 17 1 0 2016-01-03 17:00:41.493 1.08713 \n", + "3 2016 1 3 17 1 0 2016-01-03 17:00:41.993 1.08713 \n", + "4 2016 1 3 17 1 0 2016-01-03 17:00:44.743 1.08703 \n", + "\n", + " ask_price bo_spread high low avg_bo_spread count open \\\n", + "0 1.08751 0.00050 1.08723 1.08661 0.000165 142 1.08701 \n", + "1 1.08749 0.00046 1.08723 1.08661 0.000165 142 1.08701 \n", + "2 1.08749 0.00036 1.08723 1.08661 0.000165 142 1.08701 \n", + "3 1.08745 0.00032 1.08723 1.08661 0.000165 142 1.08701 \n", + "4 1.08745 0.00042 1.08723 1.08661 0.000165 142 1.08701 \n", + "\n", + " close \n", + "0 1.08701 \n", + "1 1.08703 \n", + "2 1.08713 \n", + "3 1.08713 \n", + "4 1.08703 " + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "str_query = \"\"\"\n", + "\n", + "\n", + "select\n", + " --distinct\n", + " const.year, const.month, const.day, const.hour, const.weekday, round(const.minute/15,0) * 15\n", + " , const.snaptime 'date'\n", + " , const.bid_price\n", + " , const.ask_price\n", + " , const.ask_price - const.bid_price 'bo_spread'\n", + "\t, max(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0))'high'\n", + "\t, min(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'low'\n", + " , avg(const.ask_price - const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'avg_bo_spread'\n", + "\t--, min(const.snaptime) 'open_datetime'\n", + "\t--, max(const.snaptime) 'close_datetime'\n", + "\t, count(*) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'count'\n", + " , first_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime) 'open'\n", + " , last_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime) 'close'\n", + "from dbo.fx_spot_data_features const\n", + "where\n", + " const.snaptime >= '\"\"\"+min_date+\"\"\"'\n", + " and const.snaptime <= '\"\"\"+max_date+\"\"\"'\n", + " \n", + "--group by const.year, const.month, const.day, const.hour, round(const.minute/15,0)\n", + "--order by const.year, const.month, const.day, const.hour, round(const.minute/15,0)\n", + "order by const.snaptime\n", + "\n", + "\"\"\"\n", + "res = getQueryDataframe(str_query)\n", + "print(res.count())\n", + "res.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'date'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2441\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2442\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2443\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'date'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#cursor = list(cursor_group)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mdf_res\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdf_res\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'date'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;31m#df_res.rename(columns={\"_id\": \"date\"}, inplace=True)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdf_res\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/data/eurusd_features.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mset_index\u001b[0;34m(self, keys, drop, append, inplace, verify_integrity)\u001b[0m\n\u001b[1;32m 2828\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2829\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2830\u001b[0;31m \u001b[0mlevel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2831\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2832\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdrop\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1962\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1963\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1964\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1965\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1966\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1969\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1970\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1971\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1972\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1973\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1643\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1644\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1645\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1646\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1647\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 3588\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3589\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3590\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3591\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3592\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2442\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2443\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2444\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2445\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2446\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'date'" + ] + } + ], + "source": [ + "#cursor = list(cursor_group)\n", + "df_res = pd.DataFrame(res)\n", + "df_res.set_index('date', inplace=True)\n", + "#df_res.rename(columns={\"_id\": \"date\"}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "df_res.to_csv(\"eurusd_features.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df_res = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df_res.set_index('date', inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# load kaggle reference dataset for comparison\n", + "#df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + "df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + "# Rename bid OHLC columns\n", + "df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open', 'Close' : 'close', \n", + " 'High' : 'high', 'Low' : 'low', 'Close' : 'close', 'Volume' : 'volume'}, inplace=True)\n", + "df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + "df_kaggle.set_index('date', inplace=True)\n", + "df_kaggle = df_kaggle.astype(float)\n", + "\n", + "simname = \"bm_kaggle\"\n", + "\n", + "df_res = df_kaggle" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAIUCAYAAAAnl0eaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QHXd95/v3J5INJjyYYMGCJF8rRODICWadwTYPN9hL\nANnAKrBkyyYbFi+sYgrzcLeSiza7CeRyqy4PYZclGBSFFcY3KbwEHKKAsCEEwi0cZyXA2JZBMJGN\nLcEG8RADdoIj/L1/nBYcH8+MRppzuvuM3q+qLp/+9e90f/vMb8YfdffpTlUhSZLUhZ/ougBJknT8\nMohIkqTOGEQkSVJnDCKSJKkzBhFJktQZg4gkSepML4NIku1JvpHk5nmWJ8nbk8wmuTHJWW3XKEmS\nlq6XQQS4Ati4wPILgPXNtBl4Vws1SZKkMetlEKmqTwPfXqDLJuDKGrgeODnJo9upTpIkjUsvg8gi\nrAbuGJrf37TdT5LNSXYn2X3GGWcU4OQ0OnXCsem0yKkTjk+nRUxjMa1BZNGqaltVzVTVzEknndR1\nOdKPODbVZ45PtWVag8gBYO3Q/JqmTZIkTZFpDSI7gBc33545F7izqr7edVGSJOnorOy6gLkkeR9w\nHnBKkv3A64ATAKpqK7ATuBCYBe4GLummUkmStBS9DCJVdfERlhfwipbKkSRJEzKtp2YkSdIy0Msj\nIm07bctHjqr/bW98zoQqkSTp+OIREUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhE\nJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkz\nBhFJktQZg4gkSeqMQUSSJHWml0EkycYke5PMJtkyx/KHJfnzJF9IsifJJV3UKUmSlqZ3QSTJCuBy\n4AJgA3Bxkg0j3V4B3FJVZwLnAW9NcmKrhUqSpCXrXRABzgZmq2pfVd0DXAVsGulTwEOSBHgw8G3g\nULtlSpKkpepjEFkN3DE0v79pG/YO4GeBrwE3Aa+uqnvnWlmSzUl2J9l98ODBSdQrHRPHpvrM8am2\n9DGILMazgRuAxwBPBN6R5KFzdayqbVU1U1Uzq1atarNGaUGOTfWZ41Nt6WMQOQCsHZpf07QNuwS4\nugZmgVuB01uqT5IkjUkfg8guYH2Sdc0FqBcBO0b63A48AyDJo4DHA/tarVKSJC3Zyq4LGFVVh5Jc\nBlwLrAC2V9WeJJc2y7cCbwCuSHITEOC1VfXNzoqWJEnHpHdBBKCqdgI7R9q2Dr3+GvCstuuSJEnj\n1cdTM5Ik6ThhEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQ\nkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqzMpJrTjJ7wM13/KqetWkti1JkqbDJI+I\n7AY+CzwQOAv4SjM9EThxgtuVJElTYmJHRKrqvQBJXg48raoONfNbgf9vUtuVJEnTo41rRB4OPHRo\n/sFNmyRJOs5N7IjIkDcCn0/ySSDALwKvb2G7kiSp5yZ+RKSq3gOcA/wpcDXw5MOnbeaTZGOSvUlm\nk2yZp895SW5IsifJX42/ckmSNGltHBEB+AHwdQYXrj4uyeOq6tNzdUyyArgceCawH9iVZEdV3TLU\n52TgncDGqro9ySMnvgeSJGnsJh5EkrwMeDWwBrgBOBf4a+BfzPOWs4HZqtrXvP8qYBNwy1CfFwFX\nV9XtAFX1jclUL0mSJqmNi1VfDTwJ+GpVnQ/8c+DvF+i/GrhjaH5/0zbsccDDk3wqyWeTvHi+lSXZ\nnGR3kt0HDx48tj2QJsCxqT5zfKotbQSRf6yqfwRI8oCq+hLw+CWucyXwC8BzgGcDv53kcXN1rKpt\nVTVTVTOrVq1a4mal8XFsqs8cn2pLG9eI7G+u6fgQ8PEk3wG+ukD/A8Daofk1Tdt91gl8q6ruAu5K\n8mngTODL4ytbkiRN2sSDSFU9v3n5+uYrvA8DrlngLbuA9UnWMQggFzG4JmTYnwHvSLKSwV1azwH+\n61gLlyRJE9fKt2aSPA1YX1XvSbKKwTUft87Vt6oOJbkMuBZYAWyvqj1JLm2Wb62qLya5BrgRuBd4\nd1Xd3Ma+SJKk8WnjWzOvA2YYXBfyHuAE4I+Ap873nqraCewcads6Mv8W4C3jrleSJLWnjYtVnw/8\nS+AugKr6GvCQFrYrSZJ6ro0gck9VFVAASX6yhW1KkqQp0EYQeX+SPwBOTvLvgb8A/rCF7UqSpJ5r\n41szv5fkmcB3GVwn8jtV9fFJb1eSJPXfRINI89yYv2juqGr4kCRJ9zHRUzNV9UPg3iQPm+R2JEnS\ndGrjPiLfB25K8nGab84AVNWrWti2JEnqsTaCyNXNJEmSdB9tXKz63iQnAqcz+Arv3qq6Z9LblSRJ\n/dfGnVUvBP4A+FsgwLokv15VH530tiVJUr+1cWrmvwDnV9UsQJLHAh8BDCKSJB3n2rih2fcOh5DG\nPuB7LWxXkiT1XBtHRHYn2Qm8n8E1Ir8C7EryAoCq8kJWSZKOU20EkQcCfwc8vZk/CJwEPI9BMDGI\nSJJ0nGrjWzOXTHobkiRpOk38GpEkb07y0CQnJPlEkoNJ/s2ktytJkvqvjYtVn1VV3wWeC9wG/Azw\nmy1sV5Ik9VwbQeTw6Z/nAH9SVXe2sE1JkjQF2rhY9cNJvgT8A/DyJKuAf2xhu5IkqecmfkSkqrYA\nTwFmquqfgLuBTYeXJ3nmpGuQJEn91MapGarq21X1w+b1XVX1v4YWv2m0f5KNSfYmmU2yZb71JnlS\nkkNJXjiBsiVJ0oS1EkSOIPeZSVYAlwMXABuAi5NsuN+bBv3eBHysjSIlSdL49SGI1Mj82cBsVe1r\nntJ7FUOncoa8Evgg8I0J1ydJkiakD0Fk1GrgjqH5/U3bjyRZDTwfeFeLdUmSpDHrQxC57Rje8zbg\ntVV175E6JtmcZHeS3QcPHjyGTUmT4dhUnzk+1ZY27qx6QpJXJflAM70yyQmHl1fVC0becgBYOzS/\npmkbNgNcleQ24IXAO5P88lzbr6ptVTVTVTOrVq1a8v5I4+LYVJ85PtWWNu4j8i7gBOCdzfyvNW0v\nm6f/LmB9knUMAshFwIuGO1TVusOvk1wBfLiqPjTesiVJ0qS1EUSeVFVnDs3/ZZIvzNe5qg4luQy4\nFlgBbK+qPUkubZZvnWy5kiSpLW0EkR8meWxV/S1Akp8GfrjQG6pqJ7BzpG3OAFJVLxlTnZIkqWVt\nBJHfBD6ZZF8zfxpwSQvblSRJPdfGt2Y+A/wBcC/w7eb1X7ewXUmS1HNtBJErgXXAG4DfB34a+H9b\n2K4kSeq5Nk7N/FxVDd+i/ZNJbmlhu5IkqefaOCLyuSTnHp5Jcg6wu4XtSpKknpvYEZEkNzF4jswJ\nwHVJbm/m/zfgS5PariRJmh6TPDXz3AmuW5IkLQMTCyJV9dVJrVuSJC0PfXjonSRJOk4ZRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLU\nGYOIJEnqTC+DSJKNSfYmmU2yZY7lv5rkxiQ3JbkuyZld1ClJkpamd0EkyQrgcuACYANwcZINI91u\nBZ5eVT8PvAHY1m6VkiRpHHoXRICzgdmq2ldV9wBXAZuGO1TVdVX1nWb2emBNyzVKkqQx6GMQWQ3c\nMTS/v2mbz0uBj863MMnmJLuT7D548OCYSpSWzrGpPnN8qi19DCKLluR8BkHktfP1qaptVTVTVTOr\nVq1qrzjpCByb6jPHp9qysusC5nAAWDs0v6Zpu48kTwDeDVxQVd9qqTZJkjRGfTwisgtYn2RdkhOB\ni4Adwx2SnApcDfxaVX25gxolSdIY9O6ISFUdSnIZcC2wAtheVXuSXNos3wr8DvAI4J1JAA5V1UxX\nNUuSpGPTuyACUFU7gZ0jbVuHXr8MeFnbdUmSpPHq46kZSZJ0nDCISJKkzhhEJElSZwwikiSpMwYR\nSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzvXzoXd+dtuUjR9X/\ntjc+Z0KVSJI03TwiIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqTC+DSJKN\nSfYmmU2yZY7lSfL2ZvmNSc7qok5JkrQ0vQsiSVYAlwMXABuAi5NsGOl2AbC+mTYD72q1SEmSNBa9\nCyLA2cBsVe2rqnuAq4BNI302AVfWwPXAyUke3XahkiRpafp4i/fVwB1D8/uBcxbRZzXw9dGVJdnM\n4KgJwPeT7G1enwJ8cxwFH0neNNHVt7YfE9blflxTVRvb3ugCY3PYcvn5jlqO+zWpferD+PxBkpvb\nrmFEX8aMdfzYzVX1c0tdSR+DyFhV1TZg22h7kt1VNdNBSWPlfkyv+cbmsOX6uSzH/Vpu+zQ8Pvuw\nb32owTruX8M41tPHUzMHgLVD82uatqPtI0mSeq6PQWQXsD7JuiQnAhcBO0b67ABe3Hx75lzgzqq6\n32kZSZLUb707NVNVh5JcBlwLrAC2V9WeJJc2y7cCO4ELgVngbuCSY9jUgofEp4j7sbwt189lOe7X\nctynw/qwb32oAaxj2FhqSFWNYz2SJElHrY+nZiRJ0nHCICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzvQyiCTZnuQbSW6eZ3mSvD3J\nbJIbk5zVdo2SJGnpehlEgCuAjQssvwBY30ybgXe1UJMkSRqzXgaRqvo08O0FumwCrqyB64GTkzy6\nneokSdK49DKILMJq4I6h+f1N2/0k2Zxkd5LdZ5xxRgFOTqNTJxybToucOuH4dFrENBbTGkQWraq2\nVdVMVc2cdNJJXZcj/YhjU33m+FRbpjWIHADWDs2vadokSdIUmdYgsgN4cfPtmXOBO6vq610XJUmS\njs7KrguYS5L3AecBpyTZD7wOOAGgqrYCO4ELgVngbuCSbiqVJElL0csgUlUXH2F5Aa9oqRxJkjQh\n03pqRpIkLQMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYR\nSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktQZg4gkSeqM\nQUSSJHWml0EkycYke5PMJtkyx/KHJfnzJF9IsifJJV3UKUmSlqZ3QSTJCuBy4AJgA3Bxkg0j3V4B\n3FJVZwLnAW9NcmKrhUqSpCXrXRABzgZmq2pfVd0DXAVsGulTwEOSBHgw8G3gULtlSpKkpepjEFkN\n3DE0v79pG/YO4GeBrwE3Aa+uqnvbKU+SJI1LH4PIYjwbuAF4DPBE4B1JHjpXxySbk+xOsvvgwYNt\n1igtyLGpPnN8qi19DCIHgLVD82uatmGXAFfXwCxwK3D6XCurqm1VNVNVM6tWrZpIwdKxcGyqzxyf\naksfg8guYH2Sdc0FqBcBO0b63A48AyDJo4DHA/tarVKSJC3Zyq4LGFVVh5JcBlwLrAC2V9WeJJc2\ny7cCbwCuSHITEOC1VfXNzoqWJEnHpHdBBKCqdgI7R9q2Dr3+GvCstuuSJEnj1cdTM5Ik6ThhEJEk\nSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhE\nJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkz\nvQwiSTYm2ZtkNsmWefqcl+SGJHuS/FXbNUqSpKVb2XUBo5KsAC4HngnsB3Yl2VFVtwz1ORl4J7Cx\nqm5P8shuqpUkSUvRxyMiZwOzVbWvqu4BrgI2jfR5EXB1Vd0OUFXfaLlGSZI0Bn0MIquBO4bm9zdt\nwx4HPDzJp5J8NsmL51tZks1JdifZffDgwQmUKx0bx6b6zPGptvQxiCzGSuAXgOcAzwZ+O8nj5upY\nVduqaqaqZlatWtVmjdKCHJvqM8en2tK7a0SAA8Daofk1Tduw/cC3quou4K4knwbOBL7cTomSJGkc\n+nhEZBewPsm6JCcCFwE7Rvr8GfC0JCuTPAg4B/hiy3VKkqQl6t0Rkao6lOQy4FpgBbC9qvYkubRZ\nvrWqvpjkGuBG4F7g3VV1c3dVS5KkY9G7IAJQVTuBnSNtW0fm3wK8pc26JEnSeE301EySFUk+Oclt\nSJKk6TXRIFJVPwTuTfKwSW5HkiRNpzZOzXwfuCnJx4G7DjdW1ata2LYkSeqxNoLI1c0kSZJ0HxMP\nIlX13klvQ5IkTaeJB5EktwI12l5VPz3pbUuSpH5r49TMzNDrBwK/AvxUC9uVJEk9N/E7q1bVt4am\nA1X1NgbPiJEkSce5Nk7NnDU0+xMMjpD08kZqkiSpXW0EgrcOvT4E3Ab86xa2K0mSeq6Nb82cP+lt\nSJKk6TTxa0SSPCzJf0myu5ne6p1WJUkStBBEgO3A9xicjvnXwHeB97SwXUmS1HNtXCPy2Kr6V0Pz\nv5vkhha2K0mSeq6NIyL/kORph2eSPBX4hxa2K0mSeq6NIyIvB947dF3Id4B/28J2JUlSz7URRL4I\nvBl4LHAycCfwy8CNLWxbkiT1WBtB5M+Avwc+BxxoYXuSJGlKtBFE1lTVxha2I0mSpkwbF6tel+Tn\nW9iOJEmaMhMLIkluSnIj8DTgc0n2JrlxqH2h925s+s8m2bJAvyclOZTkheOuX5IkTd4kT80891je\nlGQFcDnwTGA/sCvJjqq6ZY5+bwI+ttRCJUlSNyYWRKrqq8f41rOB2araB5DkKmATcMtIv1cCHwSe\ndMxFSpKkTrVxjcjRWg3cMTS/v2n7kSSrgecD7zrSypJsPvycm4MHD461UGkpHJvqM8en2tLHILIY\nbwNeW1X3HqljVW2rqpmqmlm1alULpUmL49hUnzk+1ZY2vr57tA4Aa4fm13D/+4/MAFclATgFuDDJ\noar6UDslSpKkcehjENkFrE+yjkEAuQh40XCHqlp3+HWSK4APG0IkSZo+vQsiVXUoyWXAtcAKYHtV\n7UlyabN8a6cFSpKkseldEAGoqp3AzpG2OQNIVb2kjZokSdL4TevFqpIkaRkwiEiSpM4YRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLU\nGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktSZXgaRJBuT7E0y\nm2TLHMt/NcmNSW5Kcl2SM7uoU5IkLU3vgkiSFcDlwAXABuDiJBtGut0KPL2qfh54A7Ct3SolSdI4\n9C6IAGcDs1W1r6ruAa4CNg13qKrrquo7zez1wJqWa5QkSWPQxyCyGrhjaH5/0zaflwIfnW9hks1J\ndifZffDgwTGVKC2dY1N95vhUW1Z2XcBSJDmfQRB52nx9qmobzambmZmZaqk06YimdWyetuUjR9X/\ntjc+Z0KVaJKmdXxq+vQxiBwA1g7Nr2na7iPJE4B3AxdU1bdaqk2SJI1RH0/N7ALWJ1mX5ETgImDH\ncIckpwJXA79WVV/uoEZJkjQGvTsiUlWHklwGXAusALZX1Z4klzbLtwK/AzwCeGcSgENVNdNVzZIk\n6dj0LogAVNVOYOdI29ah1y8DXtZ2XZIkabx6GUQkLR9e3CppIX28RkSSJB0nDCKSJKkzBhFJktQZ\ng4gkSeqMF6tKy4wXh0qaJh4RkSRJnTGISJKkznhqRuqxoz3NcrzydJQ0vQwi0nHOsCOpSwYRSb1i\nMJKOL14jIkmSOuMREUkas2M5quN1KzpeGUQk6Qg8XSRNjqdmJElSZwwikiSpMwYRSZLUGYOIJEnq\njBerSjruePGp1B8eEZEkSZ3pZRBJsjHJ3iSzSbbMsTxJ3t4svzHJWV3UKUmSlqZ3QSTJCuBy4AJg\nA3Bxkg0j3S4A1jfTZuBdrRYpSZLGondBBDgbmK2qfVV1D3AVsGmkzybgyhq4Hjg5yaPbLlSSJC1N\nHy9WXQ3cMTS/HzhnEX1WA18fXVmSzQyOmgB8P8ne5vUpwDfHUXDH3I+lu6aqNra90QXG5rDl8vMd\ntRz3a0n7lDfNu6gP4/MHSW5uu4YRfRkz1vFjN1fVzy11JX0MImNVVduAbaPtSXZX1UwHJY2V+zG9\n5hubw5br57Ic92u57dPw+OzDvvWhBuu4fw3jWE8fT80cANYOza9p2o62jyRJ6rk+BpFdwPok65Kc\nCFwE7BjpswN4cfPtmXOBO6vqfqdlJElSv/Xu1ExVHUpyGXAtsALYXlV7klzaLN8K7AQuBGaBu4FL\njmFTCx4SnyLux/K2XD+X5bhfy3GfDuvDvvWhBrCOYWOpIVU1jvVIkiQdtT6empEkSccJg4gkSeqM\nQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmS\nOtPLIJJke5JvJLl5nuVJ8vYks0luTHJW2zVKkqSl62UQAa4ANi6w/AJgfTNtBt7VQk2SJGnMehlE\nqurTwLcX6LIJuLIGrgdOTvLodqqTJEnj0ssgsgirgTuG5vc3bfeTZHOS3Ul2n3HGGQU4OY1OnXBs\nOi1y6oTj02kR01hMaxBZtKraVlUzVTVz0kkndV2O9COOTfWZ41NtmdYgcgBYOzS/pmmTJElTZFqD\nyA7gxc23Z84F7qyqr3ddlCRJOjoruy5gLkneB5wHnJJkP/A64ASAqtoK7AQuBGaBu4FLuqlUkiQt\nRS+DSFVdfITlBbyipXIkSdKETOupGUmStAwYRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYg\nIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmd\nMYhIkqTOGEQkSVJnDCKSJKkzBhFJktSZXgaRJBuT7E0ym2TLHMsfluTPk3whyZ4kl3RRpyRJWpre\nBZEkK4DLgQuADcDFSTaMdHsFcEtVnQmcB7w1yYmtFipJkpasd0EEOBuYrap9VXUPcBWwaaRPAQ9J\nEuDBwLeBQ+2WKUmSlqqPQWQ1cMfQ/P6mbdg7gJ8FvgbcBLy6qu6da2VJNifZnWT3wYMHJ1GvdEwc\nm+ozx6fa0scgshjPBm4AHgM8EXhHkofO1bGqtlXVTFXNrFq1qs0apQU5NtVnjk+1pY9B5ACwdmh+\nTdM27BLg6hqYBW4FTm+pPkmSNCZ9DCK7gPVJ1jUXoF4E7BjpczvwDIAkjwIeD+xrtUpJkrRkK7su\nYFRVHUpyGXAtsALYXlV7klzaLN8KvAG4IslNQIDXVtU3OytakiQdk94FEYCq2gnsHGnbOvT6a8Cz\n2q5LkiSNVx9PzUiSpOOEQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmD\niCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1\nxiAiSZI6YxCRJEmdMYhIkqTO9DKIJNmYZG+S2SRb5ulzXpIbkuxJ8ldt1yhJkpZuZdcFjEqyArgc\neCawH9iVZEdV3TLU52TgncDGqro9ySO7qVaSJC1FH4+InA3MVtW+qroHuArYNNLnRcDVVXU7QFV9\no+UaJUnSGEw8iCR5UJLfTvKHzfz6JM9d4C2rgTuG5vc3bcMeBzw8yaeSfDbJixfY/uYku5PsPnjw\n4LHuhjR2jk31meNTbWnjiMh7gB8AT27mDwD/9xLXuRL4BeA5wLOB307yuLk6VtW2qpqpqplVq1Yt\ncbPS+Dg21WeOT7WljSDy2Kp6M/BPAFV1N5AF+h8A1g7Nr2nahu0Hrq2qu6rqm8CngTPHV7IkSWpD\nG0HkniQnAQWQ5LEMjpDMZxewPsm6JCcCFwE7Rvr8GfC0JCuTPAg4B/ji+EuXJEmT1Ma3Zl4PXAOs\nTfLHwFOBS+brXFWHklwGXAusALZX1Z4klzbLt1bVF5NcA9wI3Au8u6punvB+SJKkMZt4EKmqjyX5\nLHAug1Myr25Opyz0np3AzpG2rSPzbwHeMuZyJUlSi9r41swnqupbVfWRqvpwVX0zyScmvV1JktR/\nEzsikuSBwIOAU5I8nB9foPpQ7v91XEmSdBya5KmZXwdeAzwG+NxQ+3eBd0xwu5IkaUpMLIhU1X8D\n/luSV1bV709qO5IkaXq18a2ZO+e682lVXdnCtiVJUo+1EUSeNPT6gcAzGJyqMYhIknSca+Pru68c\nnm+enHvVpLcrSZL6r4un794FrOtgu5IkqWcmfkQkyZ/T3N6dQfDZALx/0tuVJEn918Y1Ir839PoQ\n8NWq2t/CdiVJUs+1cY3IX016G5IkaTq1cYv3FyT5SpI7k3w3yfeSfHfS25UkSf3XxqmZNwPPq6ov\ntrAtSZI0Rdr41szfGUIkSdJc2jgisjvJ/wA+BPzgcGNVXd3CtiVJUo+1EUQeCtwNPGuorQCDiCRJ\nx7k2vjVzyaS3IUmSptPEgkiS/7Oq3pzk9/nxDc1+pKpeNaltS5Kk6TDJIyKHL1DdzRxBRJIkaWJB\npKr+vHl5C/BbwGlD2yt8+q4kSce9Nr6++0fAe4AXAM9tpuct9IYkG5PsTTKbZMsC/Z6U5FCSF461\nYkmS1Io2vjVzsKp2LLZzkhXA5cAzgf3AriQ7quqWOfq9CfjYOIuVJEntaSOIvC7Ju4FPsLj7iJwN\nzFbVPoAkVwGbGJziGfZK4IPAk8ZesSRJakUbQeQS4HTgBODepm2h+4isBu4Ymt8PnDPcIclq4PnA\n+RwhiCTZDGwGOPXUU4+ydGlyHJvqM8en2tJGEHlSVT1+zOt8G/Daqro3yYIdq2obsA1gZmbGb++o\nNxyb6jNOoAD0AAANjklEQVTHp9rSRhC5LsmG0Ws8FnAAWDs0v6ZpGzYDXNWEkFOAC5McqqoPLbla\nSZLUmjaCyLnADUluZXCNSICqqifM038XsD7JOgYB5CLgRcMdqmrd4ddJrgA+bAiRJGn6tBFENh5N\n56o6lOQy4FpgBbC9qvYkubRZvnUCNUqSpA608ayZrx7De3YCO0fa5gwgVfWSY6tMkiR1rY0bmkmS\nJM3JICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQ\nkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTO\n9DKIJNmYZG+S2SRb5lj+q0luTHJTkuuSnNlFnZIkaWl6F0SSrAAuBy4ANgAXJ9kw0u1W4OlV9fPA\nG4Bt7VYpSZLGoXdBBDgbmK2qfVV1D3AVsGm4Q1VdV1XfaWavB9a0XKMkSRqDPgaR1cAdQ/P7m7b5\nvBT46EQrkiRJE7Gy6wKWIsn5DILI0xbosxnYDHDqqae2VJl0ZI5N9ZnjU23p4xGRA8Daofk1Tdt9\nJHkC8G5gU1V9a76VVdW2qpqpqplVq1aNvVjpWDk21WeOT7Wlj0FkF7A+ybokJwIXATuGOyQ5Fbga\n+LWq+nIHNUqSpDHo3amZqjqU5DLgWmAFsL2q9iS5tFm+Ffgd4BHAO5MAHKqqma5qliRJx6Z3QQSg\nqnYCO0fatg69fhnwsrbrkiRJ49XHUzOSJOk4YRCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktQZ\ng4gkSeqMQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIk\ndcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpM70MIkk2JtmbZDbJljmWJ8nbm+U3Jjmrizol\nSdLS9C6IJFkBXA5cAGwALk6yYaTbBcD6ZtoMvKvVIiVJ0lj0LogAZwOzVbWvqu4BrgI2jfTZBFxZ\nA9cDJyd5dNuFSpKkpVnZdQFzWA3cMTS/HzhnEX1WA18fXVmSzQyOmgB8P8ne5vUpwDfHUXDH3I+l\nu6aqNra90QXG5rDl8vMdtRz3a1L71Ifx+YMkN7ddw4i+jBnr+LGbq+rnlrqSPgaRsaqqbcC20fYk\nu6tqpoOSxsr9mF7zjc1hy/VzWY77tdz2aXh89mHf+lCDddy/hnGsp4+nZg4Aa4fm1zRtR9tHkiT1\nXB+DyC5gfZJ1SU4ELgJ2jPTZAby4+fbMucCdVXW/0zKSJKnfendqpqoOJbkMuBZYAWyvqj1JLm2W\nbwV2AhcCs8DdwCXHsKkFD4lPEfdjeVuun8ty3K/luE+H9WHf+lADWMewsdSQqhrHeiRJko5aH0/N\nSJKk44RBRJIkdWaqg8hSbgU/33uT/FSSjyf5SvPfhw8t+49N/71Jnj1t+5DkmUk+m+Sm5r//Yhz7\n0PZ+DC0/Ncn3k/zGuPajT470mU6DJNuTfGP4HhRH+rn2XZK1ST6Z5JYke5K8ummfuv2axO/thOr4\n1Wb7NyW5LsmZQ8tua9pvyBK+TrqIGs5LcmeznRuS/M5i3zvmOn5zqIabk/wwyU81y8b1Wdzv93Zk\n+XjHRVVN5cTgQta/BX4aOBH4ArBhpM+FwEeBAOcCf3Ok9wJvBrY0r7cAb2peb2j6PQBY17x/xZTt\nwz8HHtO8/jngwDT+LIbW+QHgT4Df6Ho8djG+p2ECfhE4i8GNjw63Lfhz7fsEPBo4q3n9EODLzd+H\nqdqvSf3eTqiOpwAPb15fcLiOZv424JQWPovzgA8fy3vHWcdI/+cBfznOz6JZz/1+byc5Lqb5iMhS\nbgW/0Hs3Ae9tXr8X+OWh9quq6gdVdSuDb+ycPU37UFWfr6qvNe17gJOSPGCJ+9D6fgAk+WXg1mY/\nlqPFfKa9V1WfBr490jzvz3UaVNXXq+pzzevvAV9kcGfnaduvSf3ejr2Oqrquqr7TzF7P4N5R47SU\n/Wn1sxhxMfC+Y9zWvOb5vR021nExzUFkvtu8L6bPQu99VP34niT/C3jUUWzvaLW9D8P+FfC5qvrB\nsZW+qBoX0+eo9yPJg4HXAr87htr7ahLjrS8WMz6nQpLTGBxp/Bumb78m9Xs7iTqGvZTBv8YPK+Av\nmtPNm+d5z7hqeEpzKuKjSc44yveOsw6SPAjYCHxwqHkcn8VijHVc9O4+In1SVZVkqr/fPNc+NL9A\nbwKe1U1VR29kP14P/Neq+n6SDqvSUk3z71gTiD8IvKaqvjs8Fqd5v/osyfkMgsjThpqfVlUHkjwS\n+HiSLzX/oh+3zwGnNn93LgQ+xOAJ8F15HvCZqho+ctHWZzFW03xEZCm3gl/ovX/XHGKi+e83jmJ7\nR6vtfSDJGuBPgRdX1d8usf4j1biYPseyH+cAb05yG/Aa4LcyuAnecrKcH2Mw7/icFklOYBBC/riq\nrm6ap22/JvV7O4k6SPIE4N3Apqr61uH2qjrQ/PcbDP62Hcsp8yPWUFXfrarvN693AickOWWx9Y+r\njiEXMXJaZkyfxWKMd1ws9aKWriYGR3P2Mbhw9PBFMWeM9HkO972g5n8e6b3AW7jvBWdvbl6fwX0v\nVt3H0i9WbXsfTm76vWCafxYj6309y/Ni1SN+ptMyAadx34tVj/hz7fPUjOErgbeNtE/Vfk3q93ZC\ndZzK4Lq8p4y0/yTwkKHX1wEbJ1TDP+PHNwE9G7i9+Vxa/Syafg9jcA3HT477sxha331+byc5Ljr/\nZVjKxODK3S8zuEr3PzVtlwKXNq8DXN4svwmYWei9TfsjgE8AXwH+AvipoWX/qem/F7hg2vYB+M/A\nXcANQ9Mjp20/Rrb7epZhEFnoc5mmicG/2L4O/BOD88UvXczPtc8Tg9MCBdw49Ht04TTu1yR+bydU\nx7uB7wx93rub9p9m8D+7LzC4cP2Y61hEDZc12/gCgwtmn7LQeydVRzP/EgZfnhh+3zg/i7l+byc2\nLrzFuyRJ6sw0XyMiSZKmnEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQktSLJafM9zVPqiyT/cilP\n0E3ymub261okg0gPTfsf7CQvSfKOruvQ8pfEx1RorKpqR1W9cQmreA1gEDkKBhHdh3/YNWErkvxh\nkj1JPpbkpCRPTHJ98zCxP03ycIAkn0oy07w+pbml/+GguyPJXzK4gZi0KM0/8r6U5IokX07yx0l+\nKclnknwlydnD/5Bq+r09yXVJ9iV5YdN+XpIPD633Hc37XgU8Bvhkkk82y56V5K+TfC7JnzTPKNIQ\ng0h/rWx+Sb6Y5ANJHpTkGUk+n+SmJNuTPGC+Nyd5Y5Jbmj/uv9e0XZFka5LdzS/hc5v2+/1hT/Kb\nSXY17//dofV+qHmy457hpzsmuaRZ5/8EnjqpD0VTbz1weVWdAfw9g6dAXwm8tqqewOAuja9bxHrO\nAl5YVU+fWKVarn4GeCtwejO9iMHdcn8D+K05+j+6Wf5cYMEjJVX1duBrwPlVdX7zLJr/DPxSVZ0F\n7Ab+w5j2Y9nwX7/99XjgpVX1mSTbGQzeXweeUVVfTnIl8HLgbaNvTPII4PnA6VVVSU4eWnwag+ck\nPJZBav+Zpv0s4AlV9e0kz2LwP4yzGdzKd0eSX6zBUxz/XdPnJGBXkg8yeKbA7wK/ANwJfBL4/Fg/\nDS0Xt1bVDc3rzzIYhydX1V81be8F/mQR6/l43fepo9Ji3VpVNwEk2QN8ovk7eRODv4+jPlRV9wK3\nJHnUUW7rXGAD8Jnm6cwnAn99zJUvUx4R6a87quozzes/Ap7B4Bfoy03be4FfnOe9dwL/CPz3JC8A\n7h5a9v6qureqvsLg4USnN+3Df9if1UyfZ/Do69P58eOuX5Xk8LMW1jbt5wCfqqqDVXUP8D+Odae1\n7P1g6PUPGTyIcT6H+PHfqAeOLLtrnEXpuDI8Bu8dmr+Xuf9xPtw/zX+Hxybcf3wO9/94VT2xmTZU\n1UuPoeZlzSDSX6MPAfr7Rb+x6hCDoxkfYHA48ZoF1nt4fvgPe4D/Z+iX52eq6r8nOQ/4JeDJVXUm\ng6Ay3y+gtBh3At9J8r83878GHD46chuDo2wAL2y5LmkhXwU2JHlAc8T5GUPLvgc8pHl9PfDUw0ee\nk/xkkse1W2r/GUT669QkT25ev4jBucXThk6lDP/Bvo/mYqiHVdVO4P8Azhxa/CtJfiLJYxk8rXHv\nHKu4Fvh3hy+qSrI6ySMZPHr6O1V1d5LTGRx2BPgb4OlJHpHkBOBXjnGfdXz6t8BbktwIPBH4v5r2\n3wNenuTzwCldFSeNqqo7gPcDNzf/HT4VvQ24Jsknq+oggyflvq8Z33/Nj49Cq+HTd3soyWkMjmLs\nZvAvwlsYBI8nM/jjvBLYBby8qn4wx/sfDfwZg6MVAX6vqt6b5AoGp2xmgIcC/6GqPpzkJQwe43zZ\n0DpeDbysmf0+8G8YPA76QwzOo+5lcFj99VX1qSSXAP+RwZGbG4B7htcnSdJcDCLHkSaIfLiqPtB1\nLZIkgadmJElShzwiMuWS/CmwbqT5tVV1bRf1SJJ0NAwikiSpM56akSRJnTGISJKkzhhEJElSZwwi\nkiSpM/8/Q2Ep4tIP3CQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAIUCAYAAADMoPyZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX24HWV99/v9zXrZOzsJxMTIoUAMb+KFApskYGl7+diq\ngLYPWLzQpEBCS4nl1IdYq1WfPtU8nPYSK20NrSeSKJCoTdCjVU5FAW0t5TQCCUReVCSE8BpJsjc7\nyd5rr5dZc58/1twr95p1z6yZ9bJnr72/n+uaa611v/5m9mTmzlq/73dEKQVCCCGEkKnGSTsAQggh\nhMxOuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQQlKBixBCCCGEpAIXIYQQQghJBS5CCCGE\nEJIKXIQQQgghJBVm3SLk0ksvVQC4cQtuqcNzk1vEljo8P7mFbB0x6xYhhw4dSjsEQqzw3CTTGZ6f\npBfMukUIIYQQQqYHXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEIIIamQTTsAEbkUwAYAGQBf\nVkrdHKgXv/69AAoArlVKPSoipwDYCuAE1GRCm5RSG7oR09JPfi9R+303/243piWEEEJmFal+EyIi\nGQBfBPAeAGcDWCUiZweavQfAmf62FsBGv9wF8OdKqbMB/DqAP7X0JYQQQsg0Je2fYy4EsEcptVcp\nVQawHcDlgTaXA9iqavwEwAIROVEptV8p9SgAKKWOAvg5gJOmMnhCCCGEtE/ai5CTALxofH4JzQuJ\nlm1EZCmA8wE8ZJtERNaKyE4R2Xnw4MEOQyake/DcJNMZnp+k16S9COkYEZkH4FsAPqKUOmJro5Ta\npJRaoZRasXjx4qkNkJAIeG6S6QzPT9Jr0l6EvAzgFOPzyX5ZrDYikkNtAfJ1pdS3exgnIYQQQrpM\n2ouQRwCcKSKnikgewEoAdwfa3A1gtdT4dQCHlVL7fdXMVwD8XCn191MbNiGEEEI6JVWJrlLKFZEP\nA7gXNYnu7Uqpp0TkT/z6LwG4BzV57h7UJLp/6Hf/TQDXAHhCRHb7Zf9TKXXPVO4DIYQQQtojdZ8Q\nf9FwT6DsS8Z7BeBPLf0eBCA9D5AQQgghPSHtn2MIIYQQMkvhIoQQQgghqcBFCCGEEEJSgYsQQggh\nhKQCFyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQ\nQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIKXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEII\nIanARQghhBBCUoGLEEIIIYSkAhchhBBCCEkFLkIIIYQQkgpchBBCCCEkFVJfhIjIpSLytIjsEZFP\nWupFRG716x8XkWVG3e0ickBEnpzaqAkhhBDSKakuQkQkA+CLAN4D4GwAq0Tk7ECz9wA409/WAtho\n1N0J4NLeR0oIIYSQbpP2NyEXAtijlNqrlCoD2A7g8kCbywFsVTV+AmCBiJwIAEqpBwCMTmnEhBBC\nCOkKaS9CTgLwovH5Jb8saZtIRGStiOwUkZ0HDx5sK1BCegHPTTKd4flJek3ai5ApQSm1SSm1Qim1\nYvHixWmHQ0gdnptkOsPzk/SatBchLwM4xfh8sl+WtA0hhBBC+oy0FyGPADhTRE4VkTyAlQDuDrS5\nG8BqXyXz6wAOK6X2T3WghBBCCOkuqS5ClFIugA8DuBfAzwF8Qyn1lIj8iYj8id/sHgB7AewBsBnA\n/6n7i8g2ADsAnCUiL4nIdVO6A4QQQghpm2zaASil7kFtoWGWfcl4rwD8aUjfVb2NjhBCCCG9Iu2f\nYwghhBAyS+EihBBCCCGpwEUIIYQQQlKhZU6IiPwjABVWr5S6sasREUIIIWRWEOebkJ0AdgEYBLAM\nwDP+Ngwg37vQCCGEEDKTaflNiFJqCwCIyA0AfsuX1UJEvgTgP3sbHiGEEEJmKklyQl4H4Djj8zy/\njBBCCCEkMUl8Qm4G8JiI/DsAAfB2AOt7ERQhhBBCZj6xFyFKqTtE5PsA3uYXfUIp9avehEUIIYSQ\nmU5SiW4JwH4ArwF4k4i8vfshEUIIIWQ2EPubEBH5YwDrUHuK7W4Av47ac1t+pzehEUIIIWQmk+Sb\nkHUALgDwvFLqtwGcD2CsJ1ERQgghZMaTZBFSVEoVAUBEBpRSvwBwVm/CIoQQQshMJ4k65iURWQDg\nOwDuF5HXADzfm7AIIYQQMtNJoo75ff/tel+mezyAH/QkKkIIIYTMeJJ8EwIR+S0AZ/py3cUATgLw\nXE8iI4QQQsiMJnZOiIh8BsAnAHzKL8oB+FovgiKEEELIzCdJYurvA7gMwAQAKKVeATC/F0ERQggh\nZOaTZBFSVkopAAoARGRub0IihBBCyGwgySLkGyJyG4AFInI9gB8C2NybsAghhBAy00mijrlFRN4N\n4Ahq/iCfVkrd37PICCGEEDKjibUIEZEMgB/6TqlceBBCCCGkY2ItQpRSVRHxROR4pdThXgdFCJne\nuK6HSbeKuQNZTJRczMlmAKCpLJtN+ozM3s2bVszETrXqwa16AICypxL/DWx/z0m3Wn/V5QOOIJvN\nwHGkYe5Cxeiby2CyUuvreh4qlng8T6FQqWIon0GhXMWcrIPJShVDA1kUSlU4gtoGoGT0H3AEHprL\nc47AU7U+AOApIJ9xkM06cF0Pnuc1tLftlwKQcRwU3SocEQzkHExWPAzlGvd3OpPEJ2QcwBMicj98\nhQwAKKVu7CQAEbkUwAYAGQBfVkrdHKgXv/69AAoArlVKPRqnLyEzhSQ30LhtOynzPK8hvuBnXea6\n02fe0UIZ67bvxiP7RnHB0oW449oVTUlxvYg5yd9kJiyAPE+h6FYBBWT9+6Drvy95yriJZyColc3J\nZjBRcjGUz6DqeiiXm/+uJsp/HXAEbqWKAUdQrnq1G77n1csBIJvL1I9v1fNQ9ucz+3pGX/0X8KoK\nAsDJCMaLLvJObSFRKFUxNJBBoeTCEfHjURjIZTBZri0GzIWGAiB+HKWSC6+q6vsxmG/c70m3ijlA\nfTGVUR4Kpdo5UtALGq8Wlz4Onuch7y90ShUPeQHKbm3f9SIn6y9UzAVTVo4dmwFH4Cog4w+cyTgo\nVmr7ohdGvSLJIuTb/tY1/J95vgjg3QBeAvCIiNytlPqZ0ew9AM70t7cB2AjgbTH7EtL3uK6H0cky\n1m07dgPdcu2Kpnb6Bhr3Rj1WdBtuymFjxikLI24svZ530q1i3fbd2LF3BACwY+8IHMB6DOIe67hl\nSf4mrou+XIjo/7kDwKTrAQLMyRzbD70YGXAEVffYDV+XjRbK2PX8KN551hsAoH7jDqNqLHB0e/Oz\n/uahYaHheRC/rNW5pNvk/f5559h+lJRqmFOPX3Vr7YFjZQ3HyIhjINCu6noN8+rXrNQORC2GWh+v\nemwe80xxcOxbFV1e/5bFsi/BOBuOnzFHr8/LJImpW0QkD+DNqB3/p5VS5Q7nvxDAHqXUXgAQke0A\nLgdgLiQuB7DVlwf/REQWiMiJAJbG6EtI3zPpVrFuW+MNFGi+gW5YOYwFg1nrjTVYtmn18qabsm1M\nW99+LPv69W/DI/tGG45ryVNNx6DkqVjHOu68Sf4mum0y0WL6mAuQsqdQdD28bjD+/29LnsL2h1/A\nmt84FSXv2LcEGRFkpXazMRcdJU813eAlMF6w3jYngJbtgoT/zWY2vVyIxD56IvJeALcBeBa1v/mp\nIvIhpdT3O5j/JAAvGp9fQu3bjlZtTorZl5C+Z+5ANtYNdN323dbFha1t3DFnStlEycUFSxfWy8KO\na7ePS5K/iW6bt58G05ZJ/6t/oHb8AGlYTLRi7kAWl7z1RMwbzEKMNUGhVK1/6yCQ+nv9U0fUeFH1\nx+JEy3ZBwv5mswKvivlpLkIA/D2A31ZK7QEAETkdwPcAdLIImRJEZC2AtQCwZMmSlKMh5Bhxzs1C\nqRrrBvrIvtHYN9ZObsr9WDbgCDasHG74X6ztGMQ91nHLkvxNdNvpRJzz04xZ50skYbzo4ow3zMOe\nA+M4acEcKBxbbNiYKLmRx0nnUEShFx9Jj3c//M36jSTLmqN6AeKzF8DRDud/GcApxueT/bI4beL0\nBQAopTYppVYopVYsXry4w5AJ6R5xzk1HgM9feS4uOm0Rso7gotMW1W+gJuaN1cRWpm/KrcacKWUA\nsGAwi02rl+OXf/MebFq9HDnLMYh7rOOWJfmb6LbTiTjn50TJrW+O1BYVZlmr7dmDRzFRcnHvk/vh\nSO3czDuCQkj7vCOR4zmClnPmHMFAi3FsW9jfbLZsvSDJImSniNwjIteKyBoA/y9qyaBXiMgVbc7/\nCIAzReRUP99kJYC7A23uBrBaavw6gMNKqf0x+xLS9+QzDuYNZPHZK87B03/9Hnz2inOsi4gNK4cx\nJ5tpKre1BZpvyrZ2M6XMhgNgKJ/BxquX4Zd/8x5svHoZsoJYxzpuWZK/iW7bb2ilyYBTy+EYzEj9\nc5zt5NcN4dB4ESvftgSAQtlXf+RD2uvk0rAtK9H1A47Ub3xJ4gz7myUdo1+3Xp2bolS83+5E5I6I\naqWU+qO2AqjlmnwBNZnt7UqpvxGRP/EH/ZIv0f0nAJeiJtH9Q6XUzrC+reZbsWKF2rlzZ2SbpZ/8\nXqJ92Hfz7yZqT6YlqYvqo87N6SbRZdmUS3Sn/fmZRL0UpOwpzDGku+WqB08Bg1mno3F7QdADZDbg\nOJEy3Y4OQuxFyEyBixASQupXkzjnJpm18Pwk05WOzs3YP8eIyN+KyHEikhORH4nIQRG5upPJCSGE\nEDJ7SZITcrFS6giA3wOwD8AZAD7ei6AIIYQQMvNJsgjROqTfBfBNPkOGEEIIIZ2QROD8ryLyCwCT\nAG4QkcUAir0JixBCCCEzndjfhCilPgngNwCsUEpVUFOqXK7rReTd3Q+PEEIIITOVRB6sSqlRpVTV\nfz+hlPqVUf25rkZGCCGEkBlNN43gU5eQEUIIIaR/6OYiZHYZjhBCCCGkI/rrmdGEEEIImTF0cxGy\nr4tjEUIIIWSGE1uiKyI5ADcAeLtf9B8AvuQrZaCUavchdoQQQgiZhSTxCdkIIAfg//Y/X+OX/XG3\ngyKEEELIzCfJIuQCpdR5xud/E5GfdjsgQgghhMwOkuSEVEXkdP1BRE4DUO1+SIQQQgiZDST5JuTj\nAP5dRPb6n5cC+MOuR0QIIYSQWUGSb0L+PwC3AfAAjPrvd/QiKEIIIYTMfJIsQrYCOBXA/wXgHwGc\nBuCrvQiKEEIIITOfJD/HvFUpdbbx+d9F5GfdDogQQgghs4Mk34Q8KiK/rj+IyNsA7Ox+SIQQQgiZ\nDbT8JkREnkDtuTA5AP8lIi/4n98I4Be9DY8QQgghM5U4P8f8Xs+jIIQQQsiso+UiRCn1/FQEQggh\nhJDZBZ+iSwghhJBU4CKEEEIIIamQ2iJERBaKyP0i8oz/+rqQdpeKyNMiskdEPmmUXykiT4mIJyIr\npi5yQgghhHSDNL8J+SSAHymlzgTwI/9zAyKSAfBFAO8BcDaAVSKivUqeBHAFgAemJlxCCCGEdJM0\nFyGXA9jiv98C4H2WNhcC2KOU2quUKgPY7veDUurnSqmnpyRSQgghhHSdNBchJyil9vvvfwXgBEub\nkwC8aHx+yS9LhIisFZGdIrLz4MGDySMlpEfw3CTTGZ6fpNf0dBEiIj8UkSct2+VmO6WUQs0ArSco\npTYppVYopVYsXry4V9MQkhiem2Q6w/OT9Jokz45JjFLqXWF1IvKqiJyolNovIicCOGBp9jKAU4zP\nJ/tlhBBCCOlz0vw55m4Aa/z3awB819LmEQBnisipIpIHsNLvRwghhJA+J81FyM0A3i0izwB4l/8Z\nIvJrInIPACilXAAfBnAvgJ8D+IZS6im/3e+LyEsALgLwPRG5N4V9IIQQQkib9PTnmCiUUiMA3mkp\nfwXAe43P9wC4x9LuXwD8Sy9jJIQQQkjvoGMqIYQQQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIK\nXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEIIIanARQghhBBCUoGLEEIIIYSkAhchhBBCCEkF\nLkIIIYQQkgpchBBCCCEkFbgIIYQQQkgqcBFCCCGEkFTgIoQQQgghqcBFCCGEEEJSgYsQQgghhKQC\nFyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVMimNbGILARwF4ClAPYB+IBS\n6jVLu0sBbACQAfBlpdTNfvnnAfx3AGUAzwL4Q6XU2JQEH2DpJ78Xu+2+m3+3h5EQQggh/UOa34R8\nEsCPlFJnAviR/7kBEckA+CKA9wA4G8AqETnbr74fwFuVUucC+CWAT01J1IQQQgjpCmkuQi4HsMV/\nvwXA+yxtLgSwRym1VylVBrDd7wel1H1KKddv9xMAJ/c4XkIIIYR0kTQXIScopfb7738F4ARLm5MA\nvGh8fskvC/JHAL4fNpGIrBWRnSKy8+DBg+3GS0jX4blJpjM8P0mv6ekiRER+KCJPWrbLzXZKKQVA\ntTnHXwJwAXw9rI1SapNSaoVSasXixYvbmYaQnsBzk0xneH6SXtPTxFSl1LvC6kTkVRE5USm1X0RO\nBHDA0uxlAKcYn0/2y/QY1wL4PQDv9BcyhBBCCOkT0vw55m4Aa/z3awB819LmEQBnisipIpIHsNLv\np1UzfwHgMqVUYQriJYQQQkgXSXMRcjOAd4vIMwDe5X+GiPyaiNwDAH7i6YcB3Avg5wC+oZR6yu//\nTwDmA7hfRHaLyJemegcIIYQQ0j6p+YQopUYAvNNS/gqA9xqf7wFwj6XdGT0NkBBCCCE9hY6phBBC\nCEkFLkIIIYQQkgoy20QlInIQwPMh1a8HcGgKw+kmjL0zDimlLk0zgBbnpmY6HKtuMVP2ZSr2Yzqe\nn/309+uXWPslTuBYrB2dm7NuERKFiOxUSq1IO452YOyzg5l0rGbKvsyU/UhKP+13v8TaL3EC3YuV\nP8cQQgghJBW4CCGEEEJIKnAR0simtAPoAMY+O5hJx2qm7MtM2Y+k9NN+90us/RIn0KVYmRNCCCGE\nkFTgNyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQ\nQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIKXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEII\nIanARQghhBBCUmHWLUIuvfRSBYAbt+CWOjw3uUVsqcPzk1vI1hGzbhFy6NChtEMgxArPTTKd4flJ\nesGsW4QQQgghZHrARQghhBBCUoGLEEIIIYSkAhchhBBCCEkFLkIIIYQQkgrZtAOYTriuh0m3ijnZ\nDCbdKuYOZOFWqih5ql42J5fBZKVWN1FyMeAIsrkMJkpuva6hzBhrouQi7whyuQwK5SqGchk4jgAA\nPE+hUKliKN9cRwghMxXX9eB5HkqeariuOo6DbLa7/08Om8vEvN7b2oT11df84HhBouYGAMep7bPn\neQ3t3Uo10Ti2cSdd//6UnT73F34T4uO6HkYLZew5cBSjhTLWbt2FkaNFjBXdetmDzxzE6ESt7k1/\n+X2s3boLY0UXbqWKtVt3YXSi1mas6OLnrxyulRXKyAjq7Q8XXTzwywO4fstOjEyU4XkKnqcwMlHG\n9Vt24k1/+f2GOkIImanoRcFY0W26rnqeB9f1pmQukwFH6veAN/3l9xtu8FF99X1grOgiLOpWcwO1\nxYdegOj2wQWIbZxWdwvP8zDgSO2e5Vanzf2FixCfSbeKddt34/TF87Fu+27s2DuCwXy2oeyi019f\nr3M9hR17R7Bu+26UjPe6zZJFc+tlVYWG9suWLMSOvSO4cdtjKFSqKFSquHHbYw3j6jpCCJmpTLq1\nb5rDrquTbveuga3mMjezTVi5ra8uqwT6xe0f1j7OOOWIcYJ9S/4379MB/hzjM3cgi0f2jWLeYO3V\nVnbcnFy9TvPIvlHMHcjW3+s2Zpl+rz/PGzxWN5TP1N8Hx9V1hBAyEzGvkybB6+ZUz2W2CV6/4/QN\niz3pfpr3ok7GabftVMBvQnwmSi4uWLoQ48Xaq63syGSlXqe5YOlCTJTc+nvdxizT7/Xn8eKxukK5\nikK5ah23UJ4eK1VCCOkFEyW3fp010ddN89o5FXPZ2oSV2/qGjZdkblv7TscJ9p0oudPm/iJKTY/f\nhaaKFStWqJ07dzaV65yQl8cKOGnBENZt341bV54HBamX7Xp+FMvfuBDrtu/GI/tGccHShdiwchgL\nBrNYc+dObFg5XG9z8GgRf/29X2DDymHMG8jg3P99f739z/Yfxm3/8RxuXTWMufks8hkHo5NlrNt2\nbFxdlxEgm3VQKB9LkhrKZZDJcP3YZVLP0go7NwnBDD0/zTwN23XVRrsJq0nmMtv8bP3F1nJbX30f\nOG4wa/0fvquAbBf+krY4jh/MxjpJxoouFgxmu5mc2tEgXIT4mFnTvVTH5BxBLpvBi6MFLBjKYSjr\nYMxfWBwaL+OUhUP1uucOjeOkBUMYzDn40FcfbTjhFs3NcyHSXWbkRZ7MGGbk+amvu0AytUfShYg5\nT6u5bPeAYL2tr6k+sVFwPQx1Ue0zjdQxHQ00fX4YSplJt5bZvGn1clxz+8PYsXcEuz/9btzwtUex\n8epl9TLNRactwqbVy7Hmzp3YtHo5zll/X1PdOevvw0WnLcJt1yzHVZsfwm3XLMebP31vU7t123bj\ns1ecg3fc8uOGutuuWY4PfXUXNl69rD63TkLatHo55nMRQgjpY/R113ZtjcSrYn6CG7qZ4NpqPn3d\n3rR6ufXnoND+XhVK1b4NsdWPFSrIzMvHjrkVVU/hqs0Phe6L7Z4E1BYv+WkizwW4CKmjk1D1K4B6\nkmlUQmqrxCQzsXXeoL3dI/tGccrCoaY6MyE2bHxCCOlXzOutppdJqXr8VvN1klwaVj+Uz0K6fO+P\ne+ym8z1jekaVAmbCzgVLaxJanWSqX80Vp9k2uFoOJqbqxNbxor3dBUsX4sXRQlOdmRBr6zd/sHFx\nQggh/YR5vdXYrqk2klz/guKAVvNFxRDVX6nw+pHxMhZ1+ZuQuMcuWD6d7h38Pt9nTjaDDSuHkRFg\nw8phXHTaInx398vYsHIYO549VC/LOoKLTlvU0HbALzPrPM+rv3/24FFsWDlcrzfbDTiCDauGsWAo\n11Sn+zmCprqhHOW7hJD+Rl93bdfFqG1ONtn1b042U+/bar5WMUT1z0bULxjKtdyvJFvUXLZ7UrvH\nrtcwMdXAZtterlRR8VRTQqpuEzcxdU42A9fzUDGSicy6ctWDpxSGAnV5R6iOmRpS/5GUiakkghl7\nfurrbpIkS6B1cmowGdUkLKkzk3VQjeHSGpUUqgCUQ+q7pY7ReEDDPSUYS9BKvhdW+Ojw3OSdzEdL\ndNdu3YU3f/oHWLt1FwolF0d8e9w3/1Wt7KXRSdzx4HMYLZQxUaqE2rYXy27dtl3bAHtKYbJcxXix\n0jDPK4eL+PJ/7kWhXMVXd+yr93vwmYM4XHShvNrXZ44I5g/muAAhhMwYslmn4fqWz2frz08ZK7pY\nc+dOnL3+Pqy5c2eDzXmUrXvYAkSPd/5N9+OqzQ9hMuCVEWUTb8aydusuHDpaarJ0X3PnTrwlUL/m\nzmMLN70AidqvuHhA/f4UZgPvVVX9mObz2V4sQDpm+kWUEtq23bTC9RSayj7xrcdxyVtPxLrtuzF3\nIBdq215VaLDl1WXrtu+G59fZxrx8+KSmsbppXUwIIdOduBbrYddG3T+pbXqU9XmrvlGP9OjUvt22\nVTo4PtMJJqb62LK0TQt3zSP7RnHGG+ZZ1TFRtu3mq03tosfUdbaxCCFkNtCpnXu3bNOT9I2q76bt\nei/GSRN+E+Jjs8I1Ldw1FyxdiD0Hxq3qmCjbdvPVpnbRY+o621iEEDIbSGJPHtW/23bnUX2jHunR\nzTiSjjPd6YvEVBE5BcBWACeglvezSSm1QUQWArgLwFIA+wB8QCn1WtRYrWzbTSvczauXo1CuNpR9\n7v3n4juPvYSVFy6Bpzw44lht2+cNZHDdll11C9+s6VYXSFrNOYJND+zFyguX4PtP7scPnny1YayF\nQ3lMulUM5TMolGuvkxUPQ7muut7NdlI/kExMJRHMqPMzKmnUJImdexxajacQfqBb9Q2rX3PnTmy5\ndkXX90vnhLQap0fJqCYz37ZdRE4EcKJS6lERmQ9gF4D3AbgWwKhS6mYR+SSA1ymlPhE1Vhzb9roK\nJZ+B63oNmc56IRBHHXNksoKsI8g7UvfrHyu6Dc+VmZN3MFn2sGAwCw9APjBW3hHseG4Et/3Hc/UF\n0PvOPxnfeewlrHrbG7Fobp4Lke6Q+kHkIoREMGPOz7gLEE1Se/Jejteqr61el8W1f+/F/vR4ITLz\nbduVUvsB7PffHxWRnwM4CcDlAN7hN9sC4McAIhchYWj74PWXvQXr736qwQDmifUX46rND1nrghbt\nus2m1csxfNP9x6zZfat1/Wrar+vXtVtrFu2638arl+Harbtw2zXLsWPvTnziW49j/WVvqb/euO0x\nbF6zAvP67DdAQsjsJW6yZFt27gnHKnmN/wk/Z/19eMJ/YF1YH/0Th+4bZY+u68zyOPulHyFi2w9b\neZR9O4DENvdTSd/dvURkKYDzATwE4AR/gQIAv0Lt5xpbn7UA1gLAkiVLrOPqpFGdIBq3LpiEaiat\nmvVhiaxhSatmYqq2ezfH169D+ellPEOSEefcJCQtenF+disRNAlJxuokKTaObXontvFR5UljnS5M\nz6VRCCIyD8C3AHxEKXXErFO135Wsvy0ppTYppVYopVYsXrzYOrZO8tEJonHrgkmoZtKqWR+WyBqW\ntGompmq7d3N8/VooT38JFgknzrlJSFr04vzsZtJlt8cy40vSJ6yNrTzOuGFzRZW3GnO60jeLEBHJ\nobYA+bpS6tt+8at+vojOGznQ7vjaPvjeJ/fjc+8/t8HyNu/b49rqTNv2z73/XNz75H5sWDmMF0Ym\nGq3ZjVeDT7fFAAAgAElEQVSzDlANr9/d/XK9TtvFP/rCaMP4+vXWVefTvp0Q0leYFupRWzt27p2O\nlXUEE6VKoj5RbWzlccYNmyuqPGrM6WbVbtIviamCWs7HqFLqI0b55wGMGImpC5VSfxE1Vhzbdp18\nqpN9MiLIZxxrnZmYquvCbNvD1DGmSsaWmJoLjE91TE9I/UAyMZVEMKPOz7jJqd1MSm1nrDh9oto4\nhiqy01jMvnOymabjFzbmdFfH9Ms3Ib8J4BoAvyMiu/3tvQBuBvBuEXkGwLv8z21h2raf9b9qduoH\nj5ZQ9RQyAowWyrjjwefw8mvFJpvcn79yGGu37sLIeBkZQaOVu2Hbri3dtZWutivWr4P5bN26OJup\nlQ0YZRnHqb/OG8hyAUII6Wta2ZfPyWYS27mH1Q84AtdXL+pxWjFZruKqzQ/h/Jvub5qnlQU8ULOW\n19btZl8dy2S5Gtu+Xc834Ag8z2vax8lytb5/milYgHTM9I7ORyn1oFJKlFLnKqWG/e0epdSIUuqd\nSqkzlVLvUkqNth7Njs22/SPbd2OsUEHZt8e95K0n4hPferzJJnfJorn199qavRSw0aUNOyGE1GjX\nlj1uvzjjxrFGjxonifV6WH2SMXTbJH374V7TH+mzU4DNtv2RfaM4ZeEQRBqVKcE2YWqXYBlt2Akh\npH0FStx+U2GLnnSOMBVM3DF0204t7acbffFNyFQQlmH84mghkTomSgFDG3ZCCGnflj1uv6mwRU8y\nR1h9kjF0207UO9MRLkJ8tDrGzDD+wsphLBjKtVTHmGqXjKBBMWOqYrTaZTpnKhNCSK/RCpmkqo64\n/eKM26mqJol6J0oFE3cM3TZJ33641/SFOqabxFHHmBbtVderZyO3UsfEUcA01PkKmKh+pjqm3t5/\nzYhgMN/Yfu5AFsVyFZ5SGApYzetXs58ua1Dh5DLIZGbd+jT1LF+qY0gEM+78tD0qI47teNx+YfWZ\njAOlENs6PjhONpepW7B3Q72TZIygBXy3Le3bTGSdFeqYnmOqY7TyZaLs1p/1ElTHPPDLA5gsV/Gl\nB/bipdFJrN26C2/+9A+aFDOmOmbAkUblzERNMTNaKANQTaqajACHiy4e+OWBxvZGv4/etRt7Dhyt\nx/7Ru3ZjtFDG9cZ+vPxasR77HQ8+V+9n1pnzjEyUUa3Gf7YDIYQkJZt1kM9nMSebaakU8TwPruvV\nFyBjRbfhWh3EVXZli+PYFyAK4YobU1UDAG6l2qCMSapyCRJHKRNU+JixHTpawtqtu9qaO4g+zlMJ\nFyE+NnWM59WULovnDzapY5YtWRhbMaMzmc1XXacVM4A01WmlzbIlC5vaX3T66/Hxbz6OG95xBk5f\nPL8e+w3vOAMf/2ZjPJ/41uP1OC9564n1fmZdcJ5CZfpnVRNC+p8kSpmwtkFViBsynjmGuZVjzB+m\nakmqcmlHiWNT5rSjsImzTbWipv9SaXuETR1jqlmC6ph5g/GfJxP17JjgHLZ+5rNjdHv9esYb5tXV\nOwBC4wk+c+aMN8xrqjPn6ccsa0JI/9GO2sP2fK9WbeKoV9qZP0xZmfQaGkfxE7w/JI17OsJvQnxs\n2cammiWojhkvtqeYCdYF57D1M58do9vr1z0HxuuxAAiNJ/jMmT0HxpvqzHn6IauaENL/dKIUCY6h\nN/OaGGe8Tubvlhonaozg53ZVOnG3qYSJqT46J2Td9t14ZN8oLli6ELetXoZi2cN4qYJ5Azlsf/gF\nvO/8k/GJbz2OD/23U3H2icc3lOl+G1YO4+DRIv76e7/AhpXDWDCYxVjRbXhdc+dObFg5jF3Pj2L5\nGxdiTt7BZNnDwqF8LZHVTz4dcAROxsFk5VgybFSSaxzr+GBCa7nqoapU0/imbf1AzmlIyNX9PKUw\nGGjfkEwbqLPtj47ZtK03k2ld10PZa47Pto86MbeqVNPcc7KZqKSrGZf4R2YUM+78rFY9uFWvvmNj\nRbfh+quvnRrtcqpzQsy2W65d0TC2q4DxUvN4C4fy9TFMFGr5d1Hzm5jz/2z9xS1jj0PUGPp+oT/r\n+0ic45aUNpJTOzo3uQjxsWVct1LHVCpVlD0VSzETVx1z9vr76ieSXqDoRYt5kumFUXBB85ZfW4Dv\nPPYSVl64pKFOt89lgImyh1vufRqvHilhw8phzBvM4rrA+AsGs/VY/u4D5yHnCG4MnOiDOQfPHhzH\nSQuGmv4R/Gz/YRw/J9dUt/HqZahUPdy47VjZ595/bj3m7z+5Hz948tV62R/91qkolKtN4788VsBJ\nC4YgULhx+0/rZVv+63l87JKz8Ia5ees/zoVD+bB/YDPuIk9mFDPq/KxWPZRcD9nAXrV6/on5zJlW\nyhAFNPznRdu1B8dpNX/ZU8iHqG/MZ7j0SikT9vyZVv3aIQ11DBchPkeLFazdugu3XbMcH/rqLuzY\nO4In1l+MtVt3Yf1lb8H6u5/Cjr0j9fYXnbYIn73iHCwYyuGGrz3aVLf+srfgki88UH+//u6nGl6D\ndZ+94hy845YfN4yx8epluOFrj2LT6uU4Z/19DXWbVi/H2q276nVmez2mWWe21/ukYwgbX5fpfbXF\n54jUj5dZd9s1ywGgqe7HH3sHPvXtJ6zHa/3dT2Hj1cswfNP99bITjx8MHf9DX23c/9uuWY79h4v1\nfV+7tbnfptXLMX8wZzs1ZtRFnsw4ZtT5ebRYgVKABPYq7N8sAMwfzNWv02FtWo2hx7HFE9Z349XL\nkDFu7GabJ9ZfHDv+VkT1Na/FtvHizhty7euUjs7N/sle6TFmEqhpjxuVfGpaugfrbImfUUmhpywc\nahojzOa9VZKrHjMqOdaMIWz84L7a4tPvg3VmkqvJKQuHIhNnzTGDSbfB8YP7OG8wizMG5jXsZ9R+\nEULSIW7CafDfbJx/1+38u49K8tTXJNv4ndiwB4nTN2y8fr7WMTHVx0wCNe1xo5JPXxwt1BNEg3W2\nxM+opNAXRwtNY4TZvLdKctVjRiXHmjGEjR/cV1t8YQlg40V7ctiLo4XIxNkjk5WGsqjxg/s4XnQb\n9j0qYZgQkh46eTRpcmacRMxW9WHxhPU9MlmJTEptN7k16b5HjdfPFu5chPho2/ZnDx6t2+F6nhdp\n175gKFe3YjfrPn/ludj44z246LRF+Nz7z633v/fJ/da6DatqYwXH12Nr21+z7uDRYpM9/I5nDx0b\nM1Cn27vVakMMG1YOI2MZf8CR+ue/+8B5mJvPNLVxBA3Hy6x79IVRa92CoRxuXdVYZsb83d0vN5Q5\nvg1+cHw9drHsNpRt/PEefP7Kc0NtjfvBxpiQmc5QLoNsApt0/e/W9niNJJbtYf/+o+zgg3GabTqx\nYU/St9V4tr65PrFwZ06IgbZtNxNN3UrN2CaYfNqQtOonmJpqkqAtepRl+pxsBq7noWIqQKa5OmYo\nn0HFrcUcbB+mjglVreQyKLv2GMKOTbVqV8zozzlHkLUcN6pjSJ8y487PoDpGE0yyDCZLBh+vkcSy\nHQCy2QwcSx+bOCHnSP1/6o7jxLJ6b5Uk6io0JeRG9Y2bdBrVrs2E07jQtr0bmLbtZ/2vmv36S6OT\n+NIDezFZruJrP3kea7fuwqGjJTz4zEH8+Td+igMTNSv3V8aKDRbCpi36yHitjR5T193x4HMYGa/N\n9/SrR3Ck6GKiVKlb8H7smz/F4ckK1ty5E2/+qx/gjgefO1b3/xyrq8850TjPgYlj8+j9+vrDz2Oy\nXMV1W3Y2xPqrI5OYLFfx1R37GtrrNuWqhwP+fusYvvaT53Gk6Nb2/3Cxbhl/eLKCa/24zLG0nXxG\n0DT+axNljE1Wmo7hngNHMV52cThg0XykWMHh0rEyW8xHii6+/tDz9b+jbjPVlsSEEDuZjIOM4+Bw\nqdEu/fBkBUcmK/UbadBKPJt1MCebibQrt1m2a1y3Cs+z/+c7aAd/JGAdH4eqp/DK2GRDbIf9n0IK\nhiLIZhNvWsTr8slytcE2PoyofU7Djj0uXIT42GzbTUvzy4dParBO1/boNtt20xZdW7sH6/S4O/aO\nYMmiuVi3fTfmDuRC7dfN9jZr9jjzXD58ktXiV9vSXz58UkN73WasUMFH7/pp3TLeHMvc/zgxayt6\nc/yJchV//o2fNsV1+uL5GCtU8JFA+yOTLtZt222dx+yv/2bm33GqLYkJIeFMulXcuG130/VzrFCJ\ntBK3Xa+TWJnbHkvRasy421ih0nR9vnHb7npd3BiTxhDH9n460h/ps1NAWNa1TbVx3Jwc5g82KlFs\n/YLvbXXm3GYMwXHNz63mDJtHq2eC/fS85n6ZaEWL2T+oxIkbs+04hylm5g1mY7UPOx5BpU0/ZYwT\nMhsIu+5q5WHSfp1YmXdLUTeUDx9nKJ+t71fcueLG0K8KGX4T4hOWYWxTbRyZrDQpXmz9gu/Nz2a/\noHIFaLZfNz+3mjNsnjAlj57X3C8TrWgx+weVOHFjth3nMMXMeNG11gXLwo5HUGlDdQwh04uw6+6L\no4VIZUcrRUgrtUih3PytQKfqFr2FXc90XVIVT9wY4sQ+HemLRYiI3C4iB0TkSaNsvYi8LCK7/e29\nncxhy7q2qTa0CkWrMGzKmaD65N4n9zfV6XEvOm0RXhiZwIaVw5goVeplenw9rtk+WBd3nu/uftma\nRa2VM9/d/XJDe1PR8vcfPK9BCaTHMvc/TswZi9plbj6Dv/vAeVYFzIKhHL4QaH/cnCw2GAobW8w2\npQ3VMYRMH1zXw4AjTWq5z195LhYM5SKVHbbr9ZZrV8RWqQzlmq8DcZQ3cbYFQ7mm6/Otq4brdXFj\n/OVNl+CXN13SsF/tqmv0Vi67KJfdaZUf0hfqGBF5O4BxAFuVUm/1y9YDGFdK3ZJkrKS27cFnmtjU\nHkHlTFB9ElSa2Oq0Cic4vqcUhiwKED23TR1SKLlwzHkM9U65Um1Umvj9wvZRZ4jnsjV1jG0sc/+j\n4gpTxwzlMyhVwtUxQfVO1PNkzJiDz6GhOob0MTPq/Azappe92nWuUKrCkUb1iE3ZEbxeu5Ycj1YW\n8GHxdMMC3VWAp4ChgQwKvmLQrNP71y27dU2S8bqomJn5jqlKqQdEZGkv55h0q00W7UHb9k2rl+Oa\n2x/Gjr0juPcjb7dauW9avRxnf+beprLTPnVPw2dtNb55zQo4Isjns8j7feZnHYyXXFy/ZWfT+Lr9\nkPFbn7bine+fUPMMa956XaZWN5jPYjCkn61sfsNYTsRYtbKouBrqAuMPDYTHkLXEl8k7GIgVc64h\nPkJI+tiSJK/a/JDdetyrNlyjgv1tPzNE2pi3GC8yFgtRc+nYSoYap+opVB3pyOLdRtVT1keIhI5p\nOQ5p0BeLkAj+h4isBrATwJ8rpV6zNRKRtQDWAsCSJUusA9ks2oNlUYmjQHwLdDN5aihv/3lgKJ+x\njh/WnvQncc5NQtKiV+dnp9bjrRIukyZpdmK/3m5CaC8SSfsxOTX9ZVD7bARwGoBhAPsB/F1YQ6XU\nJqXUCqXUisWLF1vb6MQeW8KoLakyLBkyuCq3WaDrzxcsXWhNkAKAQrlqHT+sPelP4pybhKRFr87P\ndm3Lo/onSdJsNV6SBNWkyazaBr4bSbDBcZOOOR3o20WIUupVpVRVKeUB2Azgwk7G00lJZqJlzk/2\n0WU6gTMqOdRmsR603c0I/GSl860JUkDN1vjWVecHkpvC2xNCSL+gbdKTWLa36h83STMsKbVd+/Wk\nyazZNvu12rIJx5wuSfp9kZgKAH5OyL8aiaknKqX2++//DMDblFIrW43TqW17q+TQVhboVht2P9nT\nTAC1JaYGY7Aluc7JZlD17EmbZqKtaWnelABrJJ827aNRVyhV4TjAgBGzLhvM6VgdTLreMft6/wJQ\nMCzmh3LHbJQ930jIVhdF0MpZ/wMLljExlfQpfX9+BpNRTRSAqn8rCrM0T4otSTOTcZDJOPA8BbeF\neVe3k0anYg4PaBAexB2zwyTVmW/bLiLbAOwAcJaIvCQi1wH4WxF5QkQeB/DbAP6skzm0bfuDzxys\n26l/9K7ddWv2l1+rWZO/+dPHLN2//J81S/cHfnmgbjWeFdRtdnXZgCN1G+CxoouiX2darj/4zEEU\n3Zo9uq67bstOFMpVFEpug538aKGMg0eLDfbw2uZ8tFBGxVNNFuiAwsuvFXHHg8+haFjUazv16wPx\n3PHgc/W6Bnv0iWOfr9+6E2OFCkbHG8tGfcv467fsxMhEGbf/595a3ZadOFqsYGSihOt963jdxvMU\nPE9hZKJsrYvztzP32fOay2jbTkg6hC1ACq6HilKYdD0UKm59AdLuf41NK3T9mA3zRqwUQhcgQRv1\nKLt03VbjBV7jYtq022Iwrdc1rlKh9Y5lzDjjpmnr3heLEKXUKqXUiUqpnFLqZKXUV5RS1yilzlFK\nnauUukx/K9Iu2rLXtCaPsmY3rcCXLVnYYJOrX80y00pXvzfLLjr99XV79GCdrf3i+YNN9vCnL54f\n2h6QesxjhUrd9jzKAj7Khl23/fNv/BQT5Wps2/rXCpUmm+Ybtz2GQqWKQqWKG7c9Zq2L87cz+4XZ\nGE9X62JCZjKTbjXU4rzqAWOFCsaLx9qUE1qlJ7EuL1TssSSxbNdt9edK4LXdLU4MVYWuW7qnaes+\nvdNmpxDTujyogImySdf24rrMtGA3y8x+2k48WGazTA9rbyp3dNm8wWyi9uY+2vbNbBfV9pSFQ5H9\nTTv5MIt2rfppRxFks1vulgUzIaRzwv7daRtzXR9l1R6HTv7Nt6OI6fb1JGn8M8HSvS++CZkKdLay\nmWEcx5pd24vrMj2OqYAJqmO0nXiwLMzu19beVO7osvGiG6u9OU/UvkXZsJttXxwtWPsH3wPhFu2F\ncrVtRZAt0zwq+5wQMrWEqTNeHC3UH89gs2pPusVRhxTK1Y5VLqaCsptb3BjixNjJuFMJFyE+Wh1j\nWpNHWbObVuCPvjDakIl8x7UrMHcgiyfWX4w7fctdM1tZvzfLdjx7qG6PHqyztT94tNhkD//swaOh\n7QFVj3nBUK5uex5lAR9lw67b/t0HzsPcfCa2bf3rhnJNNs1a9dOuIshmtxyWfT5dMsIJmU2EqVkW\nDOWQcYAFQznMGzzWJt+mQiSOOiQv6FjlsuXaFfXrzIAjyAVe293ixtALS/e0ro19o47pFnFs223q\nkKA1u/6cdwQ53x7cTC76/pP78YMnX8WGlcNYMJhF1m+TdwSZmOqYuprGcZpUHt1Wx4QpYPpZHRO0\n4dfHMiQLvO/VB2RG09fnp+t6qHqedSdcBWSke+qYThQnSftmcxmrZXwn9EqVE2fcNlUyM9+2fSqw\n2bZrLjptEdZf9hZc8oUH6u/X3/1U/XXj1cswfNP9dYvcddt3Y+PVy/CZu3+Gddt3Y9Pq5Viz+SGs\nv+wtGMg6+NS3nwid57NXnIN33PJjPP6Zi/Ghrzbb+q6/7C044bgB3PC1R7Hx6mW4bvNObLx6Wd1O\nvlXMn73iHJRcL9RyPmjzbrVhz2h7eLOuuWye33eebj9gqQv8Luk4EloXRTbrNNi2Hy1WQm2Rp4NV\nMSGziUm3GmkrXjX+L3zdlnh25ubjGTRHi7Wfoo9MVpJZmKOF1XsIpYifMNoZT6laXoz+aeRNn763\nYzt3kwlfaZnE0r7XTOkiREQyAH6olPrtqZw3Djbbdo0t0dJ81YmgZgKorcw2RnAeneSpk0xtcYgc\nS1gNJtO2ilmPP50TlboBE1MJmT6YifomYY+6aNWm1TztjNPt60W3xuv2dWu6XRendMmjlKoC8ETk\n+KmcNw5m4mZYoqb53nzViaBmAqitzEwKbZXkqZNMbXHo5Nnga5yYXxwtxLac72eYmErI9GGiFN9W\nvJMkSl3XjoV5t23U2xlvvNi8j53GkTSuqSaN76XHATwhIl8RkVv1lkIcDdhs222Jljq500xM/e7u\nlxuSfYJlE6VKvf28wQxuufI86zxmkuejL4w2JRPpMbQ9r06iNZNpo2K+5crzMG8wY517w8rhGWUJ\nb0tWZWIqIekwJ5uJbSveSRKlToBNamGeNDE1asv5WzvjZQOfu2HnnmQ/07g+TnliqoissZUrpbZM\nxfxJbdsnSm5DAmg9YdJI8sznGpNDbWW6fUYEAzmnYQxzHl03dyCLSqXakGBq2rbr5FOdKGomjEbF\nXHI9eB4wJ9+YADuUyyCTmVm5ErZkVdq2kz6l789P1/Xgel4sW/GoJMpWyZNaZNCOhXm3k0KTjKfQ\n+EfOBgQP3SRxAm42UiDQX7btSqkttm2q4wgSZtt+eLKC63wb8YlSpV6nLdSPFF38/JXDDRbtR4ou\nRo4WG8pGxsuYk81gaCCLjONg/mCu/uqIYP5grqHOEcFAPttQr+uyWadel804Da/mWMF+GcfBUD6L\neYPZprln2gIE8JNVjX3s4NkIhJAOqFZrCwObrbhpge75n83HLdisy6PIZh3k81lkHadpruB8QWzt\nzT5Rduq29uffdD+u2vwQJi1eR+aYQPOdvN04bG2Chuxh+xmG61ZbPj6jXab8qiwiz4nI3uA21XEE\nibJt13a3cwdyVvvbJYvmNtm2D+azTWW0DCeEzEbCrNKDFuiVmNbrcQizig9arnfL9jxpe7NNN+Ow\ntenUTr7kWyf0gjRSYlcY7wcBXAlgYUjbKSPKtj3YxsRm0d6qjBBCZhNxVClJFDSdzNmO5XovlDbB\ne0u34phu6pdWTHlkSqmRQNEXRGQXgE9PdSwmpqrlgqW1B9JpFYnWVOs2psbaZtEeVWbTthNCyEwm\nSnWhr6nmNTPsGquJcx0NmzM4XxzixJS0ffDe0q04ksYaFxFJ5N0Ue9wUElOXGR8d1L4ZuUEpdd5U\nzB/lmDpaKGPX86NY/saFWLd9N044bgAfu+QsfPybj+ORfaN48BPvgCMO1m3fjUf2jeKCpQvrFup/\n/b1f1N1Rx4ouBAo3bv8pbl01jOMHamULBrMoe8DQQDI3UDIlpP6HYGIqiaCvzk+dHJoUD8CRott0\njV1gmCCaiantzpOUsRYxddq+m3HY2hw3mO049yIiObWjczONRci/Gx9dAPsA3KKUenoq5m/Xtj1o\ngW5mFmcDSpgBR5DNZvDCaAELhnIYyjq1hKtJF39217GT49ZV52PR3DwXItOD1P8IXISQCPrm/OzG\nwiCOOmaqFiBxYupG+27G0e25e6mOSePnmGnnlgocs23fePUyXPOVmgW6tk7fePUyXLX5Iast+vq7\nn8Km1ctxzvr76va3a+6sWam/45Yf18tGxsv41LefqI+xY+8Ibtz2GDavWdGTr7gIISQNupWAb7vm\n3nbNcohvLd6rRP8oW/OJkotzfDWLzU49rG8pgbIkjt27+dO+tqoP0tKiHWi4b2mmOmVgyu9+vlvq\nZwC83S/6DwA3KaUOT3UsJrbEVG2dHmWLHpaEGrRtH8rbk1qH8jTPIoTMHLqVBGm7XprPpupVsmXc\nxM5eJYUmHaMbCbJpJq6mMfPtAJ4E8AH/8zUA7gBwRQqx1LElpmrrdLNMY1qh25JQg7btI+Nl6xiF\ncpXfhBBCZgzdsv62XS/Hiy5Eav9b75XFeNzEzl4lhcYdQ39j0Y0EWbNsqr8JScO96XSl1GeUUnv9\n7X8DOC2FOBrQNt+mBbq2TrfZopu27aa9LqCabNtzjmDBUA7/8MHGMW5ddf6MskonhBBtnd4Le/Gs\nYS3erXmS2rd3ajnf6fxBe/Wo49BqrNlq274DwMeVUg/6n38TtcTUiyL63A7g9wAcUEq91S9bCOAu\nAEtRS279gFLqtVbzx7FtNxNTtXV60BZdW6HbElNttu1zshkU3SocEeSzTsNYc3IZlF0PVdU8T94R\n5HLhlvG5bMB+3bCHb7Jtz2UgIihUqg1lTIwF0EeJf2RWMq3Pz14liZoJlnlH6geh18mprRJjtQAh\nad9uzN+tsYK28K3s8CPoL9t2ADcA+KKI7BORfQD+CcCHWvS5E8ClgbJPAviRUupMAD/yP7eNluiu\n3boLb/6rmiX7oaMl/NvTB1Byq3j1SKnBSnhkvAxA4cBEGR+9a3eTbfvRyXK97MFnDmK0UMYzB47i\nSNHFeKnRlnh0ooyK59XaTZQb6g4XXTzwywNYu3UXXn6tiDsefK7+WnQ9HDjaGJeuGy0ci0uXjRTK\nOFqs4Hrfhv76LTsxMlHumR0vIWTmY1sIaPv1OFbnUe1Me3HzTud5HlzXq1u02zbHcXC4xU8hYXNH\n2Zp7nocBR0L3a7JcxVWbH8L5N90fy+IdAFylGsYT2G3bO9mXoAV+0vF7RRqLkJ8D+FvUckO+DeA7\nAN4X1UEp9QCA0UDx5QD0M2e2tBqjFdq2PWh3e9Hpr8d4sYqPffOnTXWA4OPffBw3vOOMJot2x3Ea\nxli3fTdOXzwff3bXbowVKk1jKYUGy3izbtmS2u96n/jW47jkrSfWX8cKFXz0rsa4dJ0Zly5bt203\nXgvMfeO2x3pmx0sImfnY7NHj2K+3a4ke17590q3ixm2d26uHbWF92hmzqtDQPomVe9x5W8WS1mNF\n0siI/C6AMQCPAni5g3FOUErt99//CsAJYQ1FZC2AtQCwZMkSa5swS/bj5uQwf9CujtF9znjDvKYy\nUzGj1TVabXPKwiHrPPp9sE5nhJuKHHPOYHtbG11mm5sKnfSIc24SkhZxr502kqhM4rRLSpzHZXRL\nzWL26XRM836QNI5W86athLGRRjQnK6WCP610hFJKiUjobwpKqU0ANgG13zVtbcIs2Y9MVjBWsKtj\ndJ89B8abykzFjFbXaLXNi6OFhrmDahpbRrh+rxU5ew6MYyDrRKp2zLh0mW1uKnTSI865SUhaxL12\n2kiiMmlXURKl5AheizuJMYpgn07H1PeDTMKfStpRwgRJ47Eiafwc818ick4XxnlVRE4EAP/1QCeD\naXVMMJN4x7OHMG8wg1uuPK+pDlD4/JXnYuOP9zRkGW9YOQzP8xrG2LByGM8ePIp/+OAwFgzlmsYS\ngZOCs1oAACAASURBVFWFs2HlMB59YbRBkaNfFwzl8PcfPM+q2jHjqit5Vg3jdYG5qdAhhHSCTZ2R\nS6AUaVdR0krJMSebwa2rosfqRM0S1qedMTOCJhVQt1U1rWJJQxkDTKE6RkSeAKBQ+/blTAB7AZRQ\ny6xVSqlzW/RfCuBfDXXM5wGMKKVuFpFPAliolPqLVnHEUceYqpVipaZoGcg1qlC06sVUodjUMUFF\nS0P7gBIm5wiyGSeROibrZ2rHUcfok6xhH7OZdjOiZxqpZ2hRHUMimNbnZ5hKJa7KI6kaxHFq16xu\nKGM6VaJ4SOd/8zbiKmHCaFMh0zfqmN8D8N8BvAfAGQAu9j/r8lBEZBuAHQDOEpGXROQ6ADcDeLeI\nPAPgXf7nttHqmAefOYhDvuLkzX/1A1y/dRfKVQ8jAdXKK4dripPxklvPPB4tlHHwaBGHJpqVKTbV\nyuhEGXc8+Fx9zCNFFw/uOYi1W3ehUHIxWa7i2jt3NihyHnzmIEbGyyi7Hv796QN1RY/ZJiOC67bs\nbFLMlKteU/vRQhmuO3XPXyCEzDzCVCrzB3NwpPX/sk01ylipUeVxYKKMSdeD4xybA+h8AaLVJJFK\nGLRW+TgAygkUhnFVQ+30DdsXt1L7j2mr/lp1NJVM2SJEKfV81Nai7yql1IlKqZxS6mSl1FeUUiNK\nqXcqpc5USr1LKRVUzyRCq2NsCpWxQgXrtu22qlB0trHOPF48f9CqTLGpVtZt341L3nqiVQnjhmQ7\n6/iOFt1QNY1+H4w1bMy0sqIJIbMDm4ImVOURuNZ+/JuP47VCpeE6lWS8VmqSqDZxVT5J1CydKHI6\nVfPE6T/V9wNmI/rYnh2jOWXhUOJnx9iUKWGqFXNMrYQJe16NLj9l4RBEWj9fwZwnrP10y5YmhMws\nkqpDgp/19a6d8VrN02qsbl8zOxmvG8qbTvr3At59fGzPjtG8OFpI/OwYmzIlTLVijqmVMGHPq9Hl\nL44WsGAoF6mmCcZ64vGDoRnUaWRFE0JmB0nVIcFr1IujBSyal4/1vJSk87QaK47qpOqp2GqWTtQz\nnfRVKvlzaaaCKbdtT5uw5CqdE7Lr+VEsf+NCrNu+G4/sG8UFSxdi49XLUK56WLftWNnn3n8uvvPY\nS1h54RIsGMxizZ07sWHlMMZLFeSzGdxy79N49Uip3u5955+M7zz2Eq5YfnK9bsPKYWx/+AXc+m97\ncMHShdiwchgL5+Yx6f+m5/oGNvMGsxgvushnBEdLLhbNG8BEyYXn102Uqpg3mMWRyQqyfmZ62UhQ\n0gmzYcmuVddrSGjS7VsluXpeoJ9hPx9MlJ2Ty8Cteqh4zXVD+QwmK16ohXxTwnDMZNqE/aZ14h+Z\n9fTN+el5CmW32vZv/WMlt+Fa+/krz8X8gSzm5rP1f7+9smsP4gE4UnQb7gcbVg5jQeDb5rKnkE/B\nfXSs6DbFEoargPFS632x0SJhtaMd5yLER5/UJa/5+S1RKhTbs2Osz22JoY558JmD+B/bdtdOjlXD\nyGcc3PC1RxtOmJfHCrjySz/BBUsX4h//YBilisLHvvnThjZzBzL44y278Mi+Udz4O2dg5YVLmk68\nn+0/jNv+4zl8Zc0K64npKQ9lF00LJ72oWv0bS5sWZhtWDiPjCD78z481Ldb+6LdORaFcbZgnuEBb\n9bY3YtHcfMNCRC8Og/EtHMpHLkTa6Nc3F3kyK+mL89PzFAplt+Mbsv7PTaFUhSNAPuNM+QLEFo9N\nYRJHHaMwDf6AqMVRjtiXKCIWIn2jjpnWTLpVrLlzJ6qewjVfeRjnrL8P48XaM16eH53ENbc/jFfG\nirhq80M4Z/19OP1/fh/n+BnGEyUX56y/D9fc/jAA4Lotx8qu/nKtTLc36675Sm3MI5MVrN26Czd8\n/bFjCUPb7Pbupy+eX/8cZidf9VAv08mzYVbwVWVPVpo7kIu0gLcl6+qE2bhJscGkXZuFfJidfhzL\nZibhEjK1FCrVWEmaa+7ciTd9+t76tubOnQ31QO0nFwWFqlItk1JfOVJCyVMoVttPVI2KSccDoKHP\nc6OTqMTZpw7i6samYzvr0/finPX34arNDzXtS6utV9dO5oT42BJTtc16MLHUJCwxNVgW1j4qYdRm\nsW4mnYYlzJptwmLWbcLs6s0E27Bk2rgxR+1j8NgGLeSj4oui3X6EkPap/fttbXrVyb9NW7uhfLYh\ncbUd2olJX9va7T9VTOfYpkcU0wBbYqq2WQ8mloYl9oTZtgctfc26PQfGccJxA6HJWCbBpNOwhFmz\nTVjMuk2YXb2ZYGtLpg2zjLfFHLWPwWMbtJCPii+OZTOTcAmZOgrlKtyq1zJJs50Ey6ik1JHxMhbN\ny0MptL0YaSemV8aK+LUFgy37dxJXN+iGPT3Qm4RV/hzjo23bTev0R18YxYaVww1W6Z97/7lWa9yg\nbftrE6WGMrP9CyMTDXbqAjRb7q6y27s/e/Bo/XOYnXzGQb3s3if3R1rBZ8Ru9ztRqkRawC8YymHD\nquZ+8wezVhv5rMVWOGhDb7OQD7PTj2PZ3E4/Qkj7DOUysSzHk1qbm/9ubTbxrxvK1a+zSe3OO7Fb\nv/fJ/RhwBPkW/TuJqxtbVGy5mGP06trJxFQDraYwE0YrlSrKnmpKMDUTe4KJqbYyW3tzzIrbqByx\nqk8CY2VC7OTL1UaFSifqGNf1rEqbMHVMUAGjj+WcXAbVamAsv85UxwC135XrxyaXgef/HmlTuXie\namqvxxjMNlrgUx1D+pi+OT/jqmOikj2jCLNsdxWQlc6SQJPElMk6dXFCVP/pkpTa7vEGequO4c8x\nPlpNsf3hF/C+80/GJ771OD70307F2Scej5fHCjhpwVCT0mLeQKYmkQKwduuuutxprOhinlINZW/6\ny+/jgqULsWn1cowdLTXMo8e8ddUwqp7CDV97FJ97/1sxmMs2zaljGS9V8H8cPwcj480KkDn5DNZu\n3dVQZkqB//EPhlGaqDSqaoy5ddk/fHAYg7lmhc4xhYmDvH/85g/m4HkKR0tV3LjtMWOfzseiubVW\nr4XUOY5g3oADz1MYmShb2+ivAc2vA23tv+TLqW8MkVO3UtUQQjrDcQSD+fBbS7XqoVr1kBHBoaOl\nxJJRzztm4W6SD2kfpqYx5a1x5atnr7+voS54M7fZpgfv0GMxJL+2WJP0sS0azGv1dIJXYx+tptBq\njR17R7BsycK6IsWmtKgqNNm2a2vdqkJDme5X9evNeXTdjYYi5nVzB6xz6lgWzx+sj9WsjlFNZaY9\nvFVVY1Hj/NlddoVOWJZ0oVJbZDTuU03xElUXp3/c+V4rVHBjhMU+1TGEpEuhUk1kI96pUiPM4t2c\nK24s7dil2+ZNus9J+/TTdY7fhPgE1SDAMXWMfjWJUsJEqWO0+iZMtaLVJWHqDh2LOX6wzXFzck1l\npj18mKrGpmyxlYVlVQ/lM9ZxteIlqi5O/zjzxbXYJ4SkQ1AtaNKLf6Nh49mUi3Fj6STOdvZ5Oqtb\nOoXfhPgE1SAA6uoY/WoSpYSJUsdo9Y05jzmmVpfocYL1OpaJkhva5shkpanMtIfXqpqwuVuVhWVV\nF8pV67iFcjWyLk7/uPOF7VvQYp8Qkg762hV1XY2zJZ0vuJlzxY2lnTht8ybd53b69AtchPhoNYWp\ngNHqmGcPHrVmF2cEoeqYjMCqjsn49Talza2GIua1iZJ1Th3LwaPF+ljN6hhpKtMKlVBVjUWN8w8f\ntCt0wrKkh3IZ3Lrq/MA+1RQvUXVx+sed73VDOdy6yq7CoTqGkPRwXQ/lstugGGlHkaK3uI+ct6lp\n9HU6aSy/vOkS/PKmS7Dl2hVTqsJpp0+57MY+RmlCdYyPadtuKmC0OiaoMLEpYcxkJJs6plBy4Ygg\nn3Eans0ydyBrVYK4/m+nNmWKtofXYwXVMZ5SGAqoUKJUNaaqxLSmt6ljohI7bWoVbcMeVRenf9z5\n9H4MWZ53Q3UM6VP6+vwMSw7txEYcaKnaaDl/N2NJQjtKlU7URD1Oxqc6phtMulWs3bqrwdDlotMW\nYePVy5BxBNfc/jBuu2Y5rtr8EHbsHcG9H3k71t/9VFP7TauXY+3WXVh/2VtwyRceqJc5IphnZCXP\n90+K+YO1V23Q5ThSr8vns00ZzfV+xkl1bKxaG/OEq/fLNLYx524oC7TL5B0MBMaKoqZ0yTbsU5y6\nJG3itNfvj6lq+KUfIWnRKlFSX1c1+roJ1JSH+n0TXrXhWhiGVvMdLVas9bZrf+icFpQCPNX4JN2R\n8TI+9e0nQsc1beDDCIsrrI/1WMU8RmnBRYhPWCKoTvIMJqhGWbgHrc1nSgIRIYS0QyeJl928hkYl\nmobN3y5D+c4fHZG0fz/eb/or2h4SZvN9ZLKCjCMNSaE79o5EWrgHbc5pFU4Imc20SpSM8ziMMJJc\nW8PG6dTWPOybkE7HTdo/rH4633/6PidERPYBOAqgCsBVSq2Iah+VE2J79Puu50fxzrPegLGi22Ba\ndsJxA/jYJWfh4998vKH9gsEsDkyUccu9T+PVI6VYj50n04K+/s2dzHj6+vxslZMRZcZlmooFSZrv\nEGVcltRArGFcfxGSNxYhBdfDeMltuEfcumoYr5uTb5mf0m5ctmM13XNCZsoiZIVS6lCc9nFs201b\n8WKl2pBMaiaaFstVqz16RgSDflJknKTQYDKpTrBUqjHpsiEu12uZtEkSkfqB5CKERNCX52echFBN\nMPHScZx68n8Som66UfG0myyqH2Fhs2evLU6AoYEMCv4jM5LSQ7v1bsHE1G5g+ybkttXLUCx71m9H\nlr9xYf2bkQFHGmzSP3/lubjlX57Gaa+fi5UXLmno/49/MIzXCqrRMn3lMIYGMrjeGGPz6uUolKtW\ne3cdw4qli+q254QQMp2w3fCj/mc/J5uBI9Lw08Ec1Gzak3wj4HkeXBdNN18znuB4W65dgclytelx\nF62+DRlwpD6mvgrbYs07aGsB0sk3NFO0AOmY6R9haxSAH4rILhFZ2+4g2rbdtMb1PFjtci86/fUN\nFuratl23+fg3H8cN7zijbhVu1lkt07fvhuehoUzbCNvs3XUMUZbmhBCSJja79Cj7cZuCRo/RDdty\nM57geO3aqXfLlr0XY/WLdftM+Cbkt5RSL4vIGwDcLyK/UEo9YDbwFydrAWDJkiXWQWzqGG2xbqIV\nMzYLdbONqY4xCbMVnxdY3bayd9f1YZbmpD+Ic24SkhadnJ82lUZStUfU4ymSqkCiLNrD1JHtKE26\nqbSZyXbtmr7/JkQp9bL/egDAvwC40NJmk1JqhVJqxeLFi63j2KxxtcW6iVbMBC3Ug232HBi3WrOH\n2YqPFxvHaGXvruvDLM1JfxDn3CQkLTo5P9uxHw8boxu25VFxtDtHtyzWezVWP9DXixARmSsi8/V7\nABcDeLKdsbRtu2mN6ziw2uXuePZQg4W6tm3XbT5/5bnY+OM9datws85qmb5yGAMZweOfuRh7P/te\nPP6ZizEn64Tau+sYbl01jMFszYDHUwpHixW41VpGthdhgEMIIb3Edb3E9uO2Rypoy/V2bcvNLSqO\ndufolsV6r8YKHoOwLU17975Wx4jIaah9+wHUflr6Z6XU30T1iWPbbtqWV93GMq12MW3bM9lGtUvF\n9XD8UB7jJRdz8/HUMTZ58MKhfJO9+3ixZrH+0tgkFgzlUPUUPvzPjzFptXNSP1BUx5AI+ub8bKWI\nsak94ihaOlGJxI2jW3N0M9Zu73cYHSSyzl51jFJqL4DzujGWtm1ff9lbmuzYH//Mxbhq80PYePUy\nXPOVh7Fj7wieWH9xk6Xu7k+/Gzd87dF6WZi1u2npvvHqZQ1JsQDqCUibVi83MsWrVmvjz15xTlO/\njVcvww1fexSb16yIZX1OCCHdIiohMtQePcJaXFuul4qVSHv3JETZtJt26u3auSsVbUWfNKarNj8U\nadfeFVKyd+cdyse0Ww8mA+kEVDNRNU4ia1hSqZm0atrCB9uZCUhhiVOnLBxqKmPSKiEkLVrZigc/\nx020TCN5tJP52rFcD2s/ExNSNX2dE9JNTLv1YDKQTkA1E1XjJLKGJZWalu5HJiuRCUjB+IJtXhwt\nNJUxaZUQkhbtJlrGGXeqk0fbnU/fM5L0jWrfSXLrdE9k5SLERyem2hJBM36Cqk5Ivei0Rchbkoay\ngTJbYqpOWjUTTF8YmbAmIJmJWkO55sTZDauGMX8wG5K0en79sfaEEDJV6GTSJImWtqRU27hTnTza\n7nzBe0GcvlHt486bbzMBNu7foBf0dWJqO8Sxbf//2Tv3OCuqK9//VlWdR59+gN3iC0RAfEQUm4ca\novE6SUbUuRe9OkSYKGJyQ3SSgNfoNYl5tEbHMRBHmORjxMTgayAajSGfqJjMaIyJo4I2Lw3aCiJI\neLVAd58+j6ra9496dFWdXafrdJ/u06dZ38+nP92nateuXXWq91619lq/7Q0ETWd1v2y7R4Zdzxv+\noFVNhW6ayEsCWb2Bqa6ku0cCXlYXEZDO+wNYvbLycYWgBYJiWdK9z1T8ZnFgKlOEqno++yqPrmnF\n+61SZOB7I2rA52AFhg72uYpRYpDq4RuYWk5ksu13XzEZT7+5A5dPG+NbkK4zm0d3LlYg2+5I6gal\nf2viCna0d+PpN3dgztljsXVfJ+743V/dTJY1m3cXLIZ331VTkTNMLFrpz5hZ9dp2LPuvNnsxpClo\n0lQ3eNX5Xaeyg4sZeMZ983clld/2r/8wQC1hhhqapkDXEUm2vSGpuS55XTdCDZG+GiDC/gn2igmF\noOd71qaRtW1EUnPLdecMLFjViofmh6+R6tRRrIxD2AJ3jmciyDUr1hbIthdb3K+3NhaTgg+Tvh8I\neLSykcm23/LkBsw8/VhXht3JPhlVn5TKtssk3BetagVAbl2LVrVibFOtT379+gsm4uYn/NLsB9J5\nLFpZKNk78/Rj3c8s284wzFAlqmx7PlAmrE+T1RflJ2eKgnNElUjPSfZHqSNKuw6k8wX9/sKV4bLs\nMtn2vkjCR5WCHyzZd/aE2IRFXjsZLt6MFqdsULY9TMI9mHnjLd9QE0N9slAePkze3WmH85kzYBiG\nGYqUO9tkoLNDemubNzOytzqitDUVLz3bR9amUu/LUJOCZyPExolA9uZpe7NlvBktTtmgbHuYhHsw\n88Zb/lB3HrsPZQvO7ci7y9rj/ZzOGawFwjDMkEOWbSHr04LliEjapw109kZvbXP2F2tHlDIO+ztz\nke5HsP5gm0q9L6Wc07ui8UDB0zE2ssjru6+YjDWbdhVktOztyEhl22US7kvnNAMQWDL7TDdbZvv+\nLl8my30vtmHxbH9GzshUDEvnFkZLr9m0y/3MGTAMwww1TFMUyKQXywCJBTM8CFIZ8WJZN71ljATP\nEbVtccn+3up45/aZkdo1MhUr6Pe9MSHBn3dun4mH5k/3bQt+Lmdm0GBly3B2jE2YbHs6Z0gzWryy\n7VqsZ1/OMGEKgZQnoyWjGzBMgZiqQCP4yjvZLpmcAUP0kh3jybRJ5wzOgCkvFb+R1ZYdU2pgaqlw\nIKuPqng+TVNA7yWWIGoGiCxDo5zZMaW2TVEUXzZjOdAFYAoglVCRtjMeB4PevgPOjqkAxWTbX7zp\nAnzrqY24/+ppuPrB16TSume0PO/+veDhdQXbrnv0Dbdurxy7I5Ob8rgfvS6wejvTxS1vf+YpGIZh\nhhrpvAHZi22YJHlRGXKJjLgj4Q4AHZl80bqLEUW2/eTvrfHvMw3f/igEz7Ox5cJIbbn/6mmgEof2\nUu+DV55+MKZdwuCRzKaYbLsTJOoEonqRBaaGbQsGpjIMwwwnwgLlByIY0tvHllp3Kcf0p63B80QN\n1q0rMe02rJ5qGGuGfgsHiWDwqCxI1AlEDQvq8QahyrZ5A1MraXkyDMMMBOmc3BNSagCmQ7F+0tvH\nllp3Kcf0Jfgz7DxRg3U7M3rJnpC+3mNgcAJQw+DAVJtisu0jUzH825U9gaiyoB5vEKosWNUJcg3K\nsTMMwwwXUjF58Ghf5M976yedQNW+1B3lmP5Kw8vOE7UtWhnOFbXdlR6PODDVg0y2PSiPHpRODwam\nyoJVvYGsNZo6KCp0TMlUReBfqQykqikHpg4qVfN8hgWn9lWSvFiQpCyhIGrdxY4pp3x6lLq8ZeIK\n9fnL7ku7SwxClcGBqeVAJtu+bE4z8qbANx5fHyqdvnROM97auh/3/3GrK9Ge1gXyWR0LA5Lr6z5o\nx/RxTWiqjXNWC8MwwxJFIcTjhUNL3P7tuP4dA6I3GfFiEuJOoGqwbi/FzuN4A4J4l94Ik2Dvrd3S\n84XEeiQUvzR8MUn13trgeDecLKL+3N/BgF/JbWSy7V05A994fH1R6fRFq1oxdWyjT6L9QDqPhRLJ\n9RknHslS6wzDMOiRYY8iI94fCfFSzuOVSHfK9VX+vJTz9fWYsPJeifuBvr/9hT0hNjLZ9qjS6U4k\nsxONHCbH21ATY6l1pl8M9BRItcKL6VUf/cluGczzFMuaKVbfQGftRC0/1LNmhk5LKoxMtj2qdHpn\nxp8JEybHe6g7z1LrzJCGjRxmsCg1u6WvGRz9yaLxHh8kqsx7Kefri4x7b+UH+v72l6oPTCWiiwAs\nBaAC+JkQ4l+LlS+mmNrnmJBdB30xIYYJ5A2TY0Kqi4p/IVEC/9hIKA9V6AmpiuezFKLGhAD9C54s\n5TwO16xYOyAxIcXiO/pyTFh5RVEix4QA/Q5O7dezWdVGCBGpAN4B8PcAdgB4HcBcIcRbYcdEyY7x\nyrZn86ZfTt0jne5EMsck2TGqnU3jlWHPGCZLrQ9dKv6lsBEyeLARUjoDZYQAvcul9zdostQsmnKV\nK3fWThiOpHxCIWiaNcYM4v09rLNjzgbQJoR4HwCIaBWASwGEGiFhOJ6QhqSGfR1ZLFrViqMbErhp\n5inYuOMApp3QiFWvbcdlU8bglic3uFblj/9pCoyApbl49mQsWbMFuw9lXauzPZ1DY4o9IAwz3OH4\nlN4pmrHieUsvhwECWJkfug4kYELPW4N1MQ+Bkx3zlkdm3Vve2Z5QyB0vZPU4WS/OwB92Tsfz8lbL\nhT2ZMnkDC1b6x5W6hIaU5H6YpumTf5B59qN4YirB0GtRaYwG8KHn8w4A5/SlIic7Zvm8aW408Zob\nzsfNT2zAfVdNxfX22i+3PLnBnV975f396Mjo+NZTG33bbn5iA1pmTcLMe1/y1bl83rSCtRAYhhna\nsPep/DjZGE5fC8DN3PCtdyJZP6a/53Qodm5nu3dtG2/5sO3Sa4hwTmm9K1sLxpW7Lj8Dal28sGLA\nd6+82Z69tquM97gvVLsREgkiWgBgAQCMHTtWWsa75osTTeys9eJktRRbV8aLN4NGtp4MwzhEeTYZ\nplIM1PM5WJkxsnN6z9XbucOyXfqaBdNb2d7qPb4xFUnOXZbtOVTHoGp/Ld8J4HjP5zH2Nh9CiOVC\niOlCiOmjRo2SVuRd8+WscY0A4K714mS1OJ+9OBk0XrwZNLL1ZBjGIcqzyTCVYqCez66s7utrHZx+\n0vtT7nNGObfsGG/5qPVEPWfUej9sT4fWHaynlHZVkmo3Ql4HcBIRjSeiOIA5AFb3pSJn7ZiYR4P/\nvhfbsHj2ZLzy3r7QdWXqk1qBZv/i2ZNx34ttPv1+XjOGYRjGIuq6L+XsM51zRllrxdkeVr6va7YU\nW3usoN65hePKyFQs0howzngWpV2VHpeqOjsGAIjoEgD3wkrRfVAIcWex8lGyY7zrw2RyBgwh3KyY\n4LoyKhHimuLLmFGJkIwXrh3Da8YMaSoeMczZMYNHFa6RUxXPZyn0lrFSrqBU2Tkdws5dju3eNFkv\nsrK91ZvOGlAI0EKeAtm9CmZ7yjJtynSPD+vsGAghngHwTDnq0jTFDdBxfqc8c2j1qr0v6fyOSfZ5\nttl/czAqwwwt2JirPFHWfRmoczqEnbtc22WTDbKyvdVb14esFt94ViEhsijw6MgwDMMwTEVgI4Rh\nGIZhmIrARgjDMAzDMBWBjRCGYRiGYSpC1WfHlAoR7QXwQcjuIwHsG8TmlBNue//YJ4S4qJIN6OXZ\ndBgK96pcDJdrGYzrGIrPZzV9f9XS1mppJ9DT1n49m4edEVIMIlorhJAvmTjE4bYfHgynezVcrmW4\nXEepVNN1V0tbq6WdQPnaytMxDMMwDMNUBDZCGIZhGIapCGyE+Fle6Qb0A2774cFwulfD5VqGy3WU\nSjVdd7W0tVraCZSprRwTwjAMwzBMRWBPCMMwDMMwFYGNEIZhGIZhKgIbIQzDMAzDVAQ2QhiGYRiG\nqQhshDAMwzAMUxHYCGEYhmEYpiKwEcIwDMMwTEVgI4RhGIZhmIrARgjDMAzDMBWBjRCGYRiGYSoC\nGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMR2AhhGIZhGKYisBHCMAzDMExFOOyMkIsuukgA4B/+\nCf5UHH42+afIT8Xh55N/Qn76RcWNECJ6kIj2ENGmkP2nEtErRJQlops8248noheI6C0i2kxEi6Kc\nb9++feVqOsOUFX42maEMP5/MQFBxIwTACgAXFdnfDmAhgCWB7TqAbwghTgPwSQBfJaLTBqSFDMMw\nDMOUnYobIUKIl2AZGmH79wghXgeQD2zfJYR4w/67A8DbAEYPZFsZhmEYhikfFTdCygERjQMwBcCr\nIfsXENFaIlq7d+/ewWwawxSFn01mKMPPJzPQVL0RQkR1AJ4EcIMQ4pCsjBBiuRBiuhBi+qhRowa3\ngQxTBH42maEMP5/MQFPVRggRxWAZII8JIZ6qdHsYhmEYholO1RohREQAfg7gbSHEPZVuD8MwDMMw\npaFVugFEtBLABQCOJKIdAL4PIAYAQoifEtExANYCaABgEtENAE4DMBnA1QA2ElGrXd23hRDPDPIl\nMAzDMAzTBypuhAgh5vay/28Axkh2vQyABqRRDMMwDMMMOFU7HcMwDMMwTHXDRgjDMAzDMBWBqDkB\nKgAAIABJREFUjRCGYRiGYSoCGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMR2AhhGIZhGKYisBHC\nMAzDMExFYCOEYRiGYZiKwEYIwzAMwzAVgY0QhmEYhmEqAhshDMMwDMNUBDZCGIZhGIapCGyEMAzD\nMAxTEdgIYRiGYRimIrARwjAMwzBMRWAjhGEYhmGYisBGCMMwDMMwFYGNEIZhGIZhKgIbIQzDMAzD\nVAQ2QhiGYRiGqQhshDAMwzAMUxHYCGEYhmEYpiKwEcIwDMMwTEVgI4RhGIZhmIrARgjDMAzDMBWB\njRCGYRiGYSoCGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMRKm6EENGDRLSHiDaF7D+ViF4hoiwR\n3RTYdxERbSGiNiL65uC0mGEYhmGYclBxIwTACgAXFdnfDmAhgCXejUSkAvgJgIsBnAZgLhGdNkBt\nZBiGYRimzFTcCBFCvATL0Ajbv0cI8TqAfGDX2QDahBDvCyFyAFYBuHTgWsowDMMwTDmpuBHSD0YD\n+NDzeYe9jWEYhmGYKqCajZDIENECIlpLRGv37t0bWk7XTXRk8tAN67cpBNJZ3f3bu88pm8vpPfv0\nnn0ME4Woz2Y14Dz/3v+HoVQfUzrD6flkhibVbITsBHC85/MYe1sBQojlQojpQojpo0aNklam6yZM\ns7CTM4SASlR4gGSTW5dpcofJRCLKs1kOBnpAl/3/mP34Pyh3fUzfGKznkzl8qWYj5HUAJxHReCKK\nA5gDYHVfK/N1eMK/T/EaHPY+RfFbIfs7c+jK6YgphLwpoKiEjkwehsGdJlNZBmNAlxnwzva+GD/F\n6htoTFOgM2t5ODuzOkxT9H4QwzB9Qqt0A4hoJYALABxJRDsAfB9ADACEED8lomMArAXQAMAkohsA\nnCaEOEREXwOwBoAK4EEhxOZytElRCdCtzsgxKmJC+PYJ+7PTPTXVxVGjqejWDSQUghCWYWKkYkhq\nCjRFQc4wYQqBVEJDOmcgFVMLjBmGKTfFDQQDtQkNXVkdNZoKTRvY9xLL+AG6df95Af+2RJH/i45M\nvuix/bkO0xTQdaPn/1tYnzWN/1cZZiCouBEihJjby/6/wZpqke17BsAzA9AmAJa3I5+3pmOEGSzT\nSx2mcMsZAujozqE2ruFP7+7F11e24qxxjVg2txm1cQ3JuMpGCVMUXTd7HbidwTdYttiA7sUxEAbD\nECn2uT91Odv6eh26boRuj8cr3l0yzLCjmqdjBoW4QjCENb0C9Bgojgsk2L07n03TxLee2oisboIA\nLFzZCkMI/I+Tj8LP5k1Dy6xJaKxNIGeYuPGXrfjyQ2uxvyvHrl+mgLDplLApFtnAfCCjY8HD63Dy\nrc9iwcPrQs9V7umOqOctd319nQYaTDjwlmHYCOkVw7YJHOOA7CBVktw50zTx7p4OHMjoAICWWZPw\n+OvbYQqBi04/GrUJDZ05Hc1jj0DL6s045TvP4vpH38CNf38KRtUnsHDlm0jn5W9izOFLmGEQHJAP\nZHRp2awpsGhVK155fz90U+CV9/cPSDuD7Sn3ecPqi2KYVDqoVWZwcOAtw7AREp2Ag0IIQCVCzuO5\nUBQFpxzdgFRchRZTcdzIJL5y/gTUxFVcfPqxyOUNLFrZigPpvK8jveXJDbj90kk4uiGBVFx1Oykn\nKM4JlDMCb3cc9Hr4oIueKUAh5APyolWt0mNrExpe3xaqB1gWZO0JO6/MaIhiSMjqK8XQkXlHgsZB\nKUT1ZIQZHGFtZJjDCZ7k9JAzBUwBX/yHRpY3JBiQCv8vF0MIvOyJ+1g6pxkjkxoaU3F06wYemj8d\nqqZgY8uF7px9Kq4imzdxx2Wn++pyg+JiKgxToCuro70rj1Rcc4Ne6+IaunUDKTuuxKlTJUIyrrqx\nAt264f6OKwRVUXxxA9LyMRXdeWNQAhaZcASAzqyORata8fq2dpw1rhGPffmcggE5zNDoyuo4a1xj\nnz0RsniU4PMgMxBk582aAiOTGpbPm+bW5zUkAPg8HN5rXj5vWkF9/TGwSh3wgwGxck9GYSyKaZoF\n1/LQ/Ol9ajPDDDd4ZLExYcV/KOSfatGDHhC733FiRGR85pSj8M6dF2P5vGloTMWRNT0xJeiZ0jEN\nAWG/4XbmdHzZ8ybY3p0DICwXuyGgEJCKaWiqi0OYAo11cSQ1paAd+zsy1vHpHG78ZSsWPLwOGd2A\n8LRZt40qw/ay7O/MIZ3X3fKdOR2GKaAohEzeQGdOl771ZXN6wbZgSqNhFHpvOAWyNHKSt31ngPfi\nfA56FRIKYemcZsyY0ARNIcyY0FT0fFGnDbzlZO2JS85bo6kF7Yvq4ZBdh+y8snsQtq2vlJKS7DW8\nnH6BYRgL9oTYeK0xrydEtT0hbkyIp2CYkJlzuGEKZHQDbXs6MPun/+16Rt7auh/3/3Grmx2Tsadp\nvG+Ci1a2Yvm8aVi0yvq94OF1WDqnGTsPpDF6ZMr97dR19xWT8fSbOzDn7LFYNudMLFy1Hi2zJuGV\n9/YhnTN8b2GLZ0/Grb/egt2Hsrj7islY3boTl08bg5tnnoK7n9uCzqyOm5/Y4Jb/0efPBABc/+gb\n7rZlc5sRU5WCbQ0JDV05HbUJDbm8gUOBN8Clc5rRWBu3ppkMAd0wIWIKOjI64gohFistUyj4lu54\nlQwhXI/OYKagDgSyQdoZkIP3NsyrEPQ+RCXqtEFCITw0fzqypnDPQZLzdutGQftkHpMwD0ewPtl9\nkN2DqN6Wh+ZPj+y1iFLONE2p14RhGIvq65EHAcdjYJoCOdMyNJwB0TFQTDtiVZOMk6rzWyHEFcKp\nxzT45u2njrU6XCdjJiXpcF/f1u52xLUJzT32xFH1vt9OXbc8uQEzTz8Wi1a1Ihm3jpt4VB0umzK6\n4I3y5ic24PoLJvqOu/mJDRhRE8dX/24ibn5ig6/8Nx5fXxDHslAS27JwZSuyhnDfNjO6KY1b6MoZ\naO/KQVEJqn1fTQHkTQEhrB/TFKHS+U5sTDqrFwQIC9P2Nkm+12oN/OvK6nir5UJsbLkQ7991CTa2\nXAgABW/XI5PaoMR/9IdiBlUUD4eM4H2QnSOqtyVq8GvUck6wsMwLE/T/sT+QORxhT0gvJBRCVjJd\n4MSIyAiWVj1/v76tHXVJzf27NqGhI1P4JnjWuEZ0ZXUs/MxE983VOTb429k38ag6t86zxjWiO2eg\noSYmNXAmHlVXcFwqoeKko+uk5Y9vTEXaVpfQ0DJrEk46qg6gwjiF17e1oz6p4eOunKWhYt/bdFZH\nTVzFgXQOj/33dsw5eywWrWrF0Q0J3HbpJDco0zAFOjM6/vLePpw7cRSSRNjfmcN3n96E3YeyWDqn\nGXUJDTGFkNENt37DFMgBiMNEtdnepbxJOwaL1yMxlAiLT4ni4ejPOaJ6W3ozVgCEBt3KyjmeTJkX\n5qDESzgyyV0yc3hRXb3xIOEVKwvGhDhv3qYhCrJjZCiqgqwp8P5dl2DD9y/EE9d9Ep12Cu9Z4xqR\nzhqojalYOtf/JrhsbjMUAq49bzxqExo2fP9C/PX2i1zDpNM2XLx1te3pdI2XpXObkdSU0NiBtj2d\nBcels0Zo+Q/b05G2deV0nNBYAwERWldXVkdTXRyAgEKE7pyBJ9Z+iM6sjpqY5np0Xnl/P777Pz+B\nbN7E9Y++gZNvtVKas7qJvzvlKJj29zQyFcO//O8z8NOrpuHI+gQAK44iqamup8XxSlWfH6S0AMqo\nwmSDSV/jU0qJozij5XlM+NYzOKPleek5YhG9LbJtxYJueyvn9Wh6Cctukr3wMMxwhs1uCU7gqBCi\nJybE8OuEAFZMSEIhnHzrs+6bTGc2j/pkDI1O7IGnT2nvymH8kXXI5nXMmNCExbMnQyHg4+4cRiYK\n3wSDc85L5zRj3QftmHP2WOzrzGDpnGa8sb0dMyY0uTEhS+c0I6EQ2j5OAwJY90F7wRvl4tmTsWTN\nFt9xi2dPxnee3ogJR9YWxhrMbUZCVTBjQlNBTEhwm0oEBcDB7jyI5HELNXbchzABEJBKaLj2vPFQ\niJCIKThuZBKPffkc9y1+wcPrpG+Xiue7MIXAQ3/Zivf3deGmmafgqNo42tM5ftMsA/2JmwBQ4AEo\nJT7ljJbn3b/fuX1maDlvtpnsHAqAVFzFfVdNRUNNDIe681Jvi2ybzIsStVzY9mIGC8McTpCbcnqY\nMH36dLF27dqC7bmc1XllzcKARpUIcVUpCIBM5wz3zfPk763BjAlNbhDpv//TFHz9P97E0rnNWPXq\ndiz7rzbXAGhMxaGbAnVJDemsjj+9uxfTxjVi0Ur/wL/q1e245w/vum2cMaEJ9101Fdc/+gaWz5vm\nBnJ626MbBmKqCgH4AjLD0nFTcRUftnfjnt+/g9XrPwIA3Pi5k1wPTFdWt4wDyfXndRN5j9vfSen1\n1u9MZzllurJ5nHf3i/j3uc2YdkKjrxP/0efPREwhLAykop5867PQPW+ImkJ4586L8YUHXvUZGKoC\n7OvMo2X1Zvd78Hb8zvdTn4zJHo2KuxCKPZthg7733nq9ILLtUbbJ0mKD93Fjy4UF2xwDQXaOk7+3\nJlI577YaTcWp33vO971HPXYgtkW9/7IXh5FJLdJ9rdbnkzns6dezydMxMiS31A1WlXhEtJiKjS0X\n4oF5U903nMbauJvlcuVZY31Boaaw3tyFAPZ15nDuxFFudozrml3ZipmnH+trw+vb2tFQE8MjXzob\nAKAqCm78ZSs+OpABQPjoQAa3/fZtpBIafvHyVpx867P4xctb0d6d8wfLdefddFwiwufu+aNrgADA\nsv9qQ21CwyOvbIMphJWuq1qL8qWzVoDdNx5fj31d/no/OpCxzmenB//i5a0FAXkKKfjZvGmYceKR\nBe7obzy+Hl05I1Iq6qHufIErO66pvriY4fKmWUoQZLnPEzVuohx4r6VbNyLHgZSSetvXFN2oU0Oy\nYGHZdtmUkePFZJjDierrkQcBb9at86cbJ+JZYTdITFGg5w03vgKwBr5RDQm3jBMA+oUH1vYqPOUE\njzqcNa4R2/enkYqrWPdBO6ad0IjbL52ErzzSkya7ePZkZHIGvnjeBHz17yYinTdQG7eCRX/yQhtW\nr/8I33h8PX74j5Px6R++gO3701IX8vb9aVxyxrEQArju0XW+N7uZk47GjBOPdLNoALiZNj/8x8nQ\nDYF7rmzGoe48Hv7LtoKplPuvnuYG1gavecwRNVhzw/mYeFQd2vZ0okZTpVM6v2ndCQCYdeZx+Orf\nTcTEo+rQnTPwt4PdbjDvljsu8gm4xRRCV1YPe9McspQSBPnQ/OkF6qphBN/OZc9h1CDPYnin7Irh\nvZaogalhqbdhBKeB+jvV1B9kwbgMc7jBRogEr05IWB8ukQdxWTx7srvfa5A4n53UVsDqNMMMgc6s\n7uvA775iMpY8vwV7O7LutMx9V0311XXzExtw/9XT0J03kDMIX33sTV/Mxg8unQQQoS6hYsP3L0Rt\n3AqK9U4FLZvbjJxuYuWr2zGrebQ0HiPM0zD6iBrfNMn986b6pnaAnmmiv/7gIry3t8s1jhZ+ZiLa\nu3JoWb3Z15Y6T7yMFYgr8Nym3Zh15nG46cJTcMuTPZomP/6nKZhzzlj84uWt+OJ5432DsSmGZuBm\nb5QSUyBTV5UNrLKMjaixD6VmrvRFnwSIFjvSH69Mf/VEGIbpP2U1QoioBsBYIcSWctY72Hgl2p2Y\nBhFIUPAZKvZIF4upyOQMjKiJoSam4sWbLkBdUgUgoCnkDqq3/3azr657//AOls1txsKAIfD0mzvw\nwLzpqImraNvTiSXPb8Hq9R9BU8hNvW2o8b/VO2m7X3lkHe66/AxfZ7pwZSvunzcNK17eisumjHEH\n74WfmYifXj0N9UkN2/encefv3naFzI4bmSyo3zEGZIbT7oMZtMyahIlH1aG9K4tM3vTHutjBteOa\n6jC2KYWGpIbv/sMnMHFULeafOx4r/rzVPb5tTydWvrod15w7Htc90uONWTL7TPz7PzWjM2Pglict\nb8yK+dMx9YRG1CWtti04f4I77eX73vryQFSYUoIgcxEH1qgCaIDcGOir+FkY16zoW6xBmFcmiodD\n5vmJ6nUKIywmhGEYOWWLCSGi/wWgFcBz9udmIlpdrvorgRA96qeyVXNVsgwUrwy7bgor88MuoykK\nYnYgZcusSTAFsPtQ1lfP7kNZqERomTUJW+6wytXEVDy3aTd2HujGVT97FTPvfcmN23BiIpzfXhzP\nSzEdj5mnH+sO3ropcM8f3sV1j6zD9v1pXLDkRTzd+pE7vdIZGGCcAbA7b2Dx7MkFacWaQu4KwV1Z\nozDWZVUrpoxtxLee2oiTb30WNz6+HlnDxP/59ATUJlRcNmWMe3zL6s24bMoY1MZVXx03PbEeCU3F\n2KYUXt/WjhXzp+O040bgK49Y8/1feWQdTGF5BLzbgtdSLSiKEjmmIGoMR5gYWKXkxR+aPz2yrLwX\n2X2IKkLWnxRdIJqAWdiigg7ljOlhmGqknIGpLQDOBnAAAIQQrQDGl7H+QcMJPlUUQt4UiClUMLdO\nSk+KrnucaWJfZ8aeihEYmYpBtSPmT77VGlRVBVgy+8xCTRDP4N2y2vKULJ3TjDWbduHuKyYXDDav\nvLcPS+c0u9uc34tnT8bB7lyojkc6a7jBm15e39aOsU0prLnhfMw68zh3W0NNDDd+7iTfuWtiKo6s\nS2DJmi2u4XTfVVNRG9ew0NMJH9+Ykp6nzlaADQbrpnOGzzgKM4Qcb4wzYEy1s2y8x+mmwM4Dadx/\ntTWg3n/1NOw8kO5V12Uo0q0b0u2yIMioA2up68l4UZSBiWfvq/HTV8VU2T2Iqt4aNYi3t6ki1glh\nDnfK6SfMCyEOkj9Yoir/o7xej7hiCZLFAncqOD0DWF6TMSNqYKIne4YAjEhqeOfOi9302CNSittZ\nHurO43u/2YzLpxznBmx2ZnS8u6cDnzimAfM+NQ71Add3TUzFeSeNQkIhqJriHrf7YAaaQlj52nYs\nndMMRfEHBS6ePRmAcMXJgq78d3d3omX1Ztx9xWQAwN6OLNJZHfPPHY+vffaknnTfvBXsectFp0JT\nCc7XnIyrvgDYsPM4QmkOTrCu83dwX0MgkNQJnK1Lqlgy+0xpkGsqpmLSMQ1up04ETDqmYcAG0IGk\nNqEVpCmHaWaUEsNRypTKgod7psMcT0wlyJnCp4ILSTtKCaaNMtUku39RVw0uRem1WrO3GKY/lPOJ\n30xE/wRAJaKTACwE8Jcy1l8RerJjei+rKQoyuuEaIAfSeYxMxaAphP0dWax8bTsunzYGS9ZscSXG\nV722Hc9s3IW9HVksnTMCv35zB57btBuLZ0/G/q4cbnpiA+67aiqab/+9ex5HT0AXgAay032tNWhq\n4ypmNY9GKq5CNwXuuvwMHN+YwoftadQlNBhCuN4Vb0CnE/TqeB/uu2oq6pMa9nf2CH4t/MxEV07d\nq+3R3pnzaXs4RsxPXmjD4tmTfYvhOfonXpxYEt0UoQG6L950gXsdtXEVP/jd29jbkcWS2ZOlnb9s\n+fSe+fnqMkRk15c1BV5+dy9mnHgkAGtA/s939+KzpxxV9hiOa1as9cVDxIroZkTFa9REXSDuF/On\nFyzGKDu2HMG0QYL3L2oQ79I5zZHP4Ux1Vlv2FsP0h3IaIV8HcCuALICVANYA+EEZ668IzgJ2cLMs\n/Km6gEc7xB7buvM6bv31Ruw+lMXi2ZMRV+NorIvj2vPGQyXCPVc2u16Fa8/r8TLEFMLVnxyH/3Hy\nUUioiuvRcNzCBcqkBIAsSXJhWi+FikJoqovjV+t2AAAumzIaREBTXRw1moqMbuCac8ej1qMe+e7u\nnqBXwFnfJYa2PZZnxOlovXLqAFxtj2AA7C1PbkDLrEloWb0ZdQnN9dQ41zj3nLF45f123/Xc+bu3\nYQprquqmJ9b79plC4FtPbfQFpjrtPGZEDf70zp5IK6k6mT3xgXtcBoSwN/Gvr2wtEHH76+0X9WvF\nVq/BAQDv33VJwRu/TH0UKC2DpLfsE1n2Tr6EANGBDqaN6l3qzWPk/b9mnRDmcKRsRogQIg3LCLmV\niFQAtUKITLnqH0y8su0C9uDuZMzY/btXadbZl9dN/OndvfjUxFG458pmvLu7E0+t24EvnjcBRASV\nyJet4V2HpmejZTCk4paB8tQbO/CFc07wZYzc+bu3cc+VzTj51mex5Y6LcUbL866K6Mm3PmsFwf72\nLQBAy2/fcvftaO/Gkue34N+ubMYp37Hc+2tuON9naAA9UybB2JGwWBJZAOxJR9ehZdYkPPyXbZh5\n+rFoecRSMV3+0vu48uyxvutxgnWdNjj7OjJ5ZHVr3RjvwHPTE+vRMmsS9nZk0banE/NXrMWv/3mG\nr/MfTmJlQLQ38bPGNaJbN0oayLyy6DKDI2waI66QO9eq2hlkpeh1eImavVNqOq7X2/LYl8+Bni+M\nrQkaXe/cPjOyMRXVqFE1BUbI6s2sE8Ic7pQzO+Y/iKiBiGoBbATwFhHdXK76BxOvKmrCDk51DQW7\nnyCJUIimKvj0SaPw0J+3uoGol00Zg5q4dZsNYaXqmqYoqEMl6zwOhm4irhCe27QbOz7uxsx7X8KJ\n334GM+99CbsPZd3BwbsQnZM2K8uY6crqrrfjw/a0++b2kxfaCgJf775iMn7yQpsb0+EQ/OzULQuA\nfXd3J2be+xKW/Vdbj4ppXMPnzxqLhKb4gnAVAD/6vBWs+8zGXWhZvRk7P+7Gw3/ZhlH1iVAht8Wz\nJ+O+F9swY0ITRo9MoW1PB/Z35lAblwdoOveh2pAFKxZT3CxFQdRLfwJY+6PXETV7JyyjJ4xgJsw1\nK9b6FrrTYmrRdNxi6rSybVpMLWgDAGTz0T1THJjKHG6U87XwNCHEISL6AoBnAXwTwDoAi8t4jgHl\nQEbHzgNpjB6ZwqJVrVg250wIkLvNUSktiDOA9dblaGDMPWcsvvqZiUjnDADCVe10DI14rMfTAgAg\ny9tiuFM+gC6sYMqlc5sRDywUt3ROM/Z2ZHwL0S2d04z39nZIp2+seWmBZzbuwowJTRiZirkCZc9s\n3IWJo2p9QbEr/rzVnZrxxo6s2bSrwAXtrPciE1UDAqv75nQ0JDXENcX3BpiKq8jmzYJt1543PvSN\nP53TcUQqjnuubEZnRscbH7Rj/oq1mDGhCQ9cMz10fr4a3zZlgakbWy4Mdf1HfUM/kPGL4fUngLU/\nKqph8RUPzZ9esDZLcFtUomqtRNUJyZqi4L7IPC0AoFE03ZKlc5rRmKq2yUKG6R9lW8COiDYDaAbw\nHwB+LIT4IxGtF0KcWZYTlImwRZg6MnkseHgd7r96Gr7yiLWwlLNQl7PNUSmVLTp1RsvzBQvMOYZJ\nQ1KDplgLwMUUcv/2DrhdWQOaYi38dqg7D00haAqBYK0R4y3vLEjnXSjO2VajqTBME7lA553WTTTU\nxNCR0RFXCTFFQTpvuLEaCgE1MQ2ZvIH2dM4NJl34mYm45tzxqE9amTx1cQ2dOR0NNTHs78wiFdeQ\n0BR0ZnU0JK36H/rLVnfBPmeV3sumjMHoI5IgooIB9f27LgldpM40Bdq7ClfDbayN49TvPoctd1yM\nE7/9TMFxAKDnjYJBTIupvtV3PVTcOunt2QzGasju2VstFwLo+wJs/dnWn3OUIp8etX1RFs6LsrDc\n+3ddUvAs1WgqTNOMtIBdTVyNtAggL2DHVCn9ejbL6Qm5H8A2AOsBvEREJwA4VMb6BxTnDcib7hnc\n5qiUevHGGXjL1NpaGE4wpG4arvpqMN0XAOKqPe1jCqgKIZWwVthViCB38lpvWEFIAXK6o21iDVBa\nTIVqTykpBKRzOkam4q60vEoEQwiArCmjo2rjblzGRwe60ZnJoy6hQlEIikpQyJpS6soaaKpL+AZD\nZy0XJ9g2FVMx8/Rj8fSbOzDvU+OgEBW8fe4+mJF6OzoyOgjAqte2+2JIVr22HfPPHR+uhZIzIIQo\ntZMfspSimBpGuRVOo56jr/EV/YkxcdjYcmGv1xslHVfPG5GuIywYOqoyazXHLDFMXylnYOoyAMs8\nmz4gor8rV/0DjdOpe+XIg9scldJgx+90ct4y3gXsahMa9nVkoSWtKRlv4Cvg1xxR7Lc407SCYjU7\nA6ZXAmUUwKfk6qUmprn7drR3QVEUfxrtnGaMb6wBESzBNY/mCWBNExEBxzQkrDVgbr/I56mJe6Y8\nhACOG5nE1z57EjI5A4YQeOSLZ/s9OzEVP79mOgwhCrw9NZqKL3xyLDRFBRFw7Igk/vmCiTDMnumb\njS0XuuW9i9U98qWzXU0TZ4CpRp0Qr2JqscGylHRQB29gapj2SF/pj9y5bOAuhf6kEEc1iKK0+fVt\n7ZF1SzhFlzkcKWdg6ggiuoeI1to/PwJQW676BxqnU3fiKmZMaEImp/u2OSqlsmBAr5Lp4tmTXQ0l\np2NZtKoVeVNA9RgLXuMjbwq07elwg9zau3J4+d29OJDRYRqmLwCuPZ3D3o4MDmSseWhv+Z0fZ/CL\nl7f699nl29M56IY13XLjL1ux4OF1SMY05HRDqtzoykl359HemfO1YU9HFhnddOv17juY0fHSO3vw\ni5e3uvtu/GUr2tM5xBQqKN/elUO33VbvNbbt6UBGN2CY1kq+jvx6e3cO3XrPPfGexzlet6dxhoMs\ndimKqVFRFAWneQwQh74GtcqIGqwaVVI9Kv0JLo16HVHb7I216U2ZtVpjlhimP5TztfBBAB0APm//\nHALwizLWP+CMTGqYeFQ9GlNxLJ83DU31Sd+2804ahcbaeEHHryiWamljbRzTxzWiLqEBEG7HElPI\n9Yj4uhj7Q0Y30JXNY/TIFH42b5prCMw48UjXIAgaCaPqk759Tvlbntzg6nlkJeU1VcXNT2zA9RdM\n9O3z4rTVOd83Hl+PrpzfULnxl+txIJ136w22b+rYRp+uyPUXTMTNT2zwaT14y3dk9IKiK304AAAg\nAElEQVRtJ46qhy4rv7LVXYlYN4XvPF7Zdtl5wgb0oUx/Ml4cgsd360bBgNnfwTu4LaohEVVSPep5\noxoNUa836noyYYYFIF+Tpz9GJMMMF8r51J8ohLjC8/k2Iiq+etMQRbZYnaMF4sRROGm2zj6yX7KT\nMdUNgLzvqqnQFIKCHo8IAYD91u9k00w7oREja+K4dsVat4MKxpd4cbaFxaO4KbGefd7yThnvPi/B\nVNYwLZDjG1Mgkkut1yU1TEz06Ip42xRVa6Qu2dP+YuVl+iW9xe9UE7LpmFKQZXJElSKPuty9bFtY\nto0sGDSKpHrU80bNeol6vVFjcmRtLtWz0XeZOYapTsrpCekmovOcD0R0LoDuMtY/aMjWhSks1POn\nM+3x0QFrKuRgVocQVoBpXCHsONjtulrTOQMmeoLWHG9H3hS+QdIbXxIcdLydoCwexU2J9ezzlg/q\ni3Rl9aJu4bAA0A/b06Eu6M6M7tMV8bYpqtZIZ0Z3r6lYeZl+Sdhx1agTUqr3RuYZOK3leZ9GBlD4\nJh71jb8UIbHgOWTeh3g/tEiieiT6u2JulFWMixHVk1V9EUsM0z/K+cxfD+AnRLSNiD4A8GMA1/V2\nEBE9SER7iGhTyH4iomVE1EZEG4hoqmff/yWizUS0iYhWElFSVkd/CNojjoGieII7tJiK5fOmYfQR\nSVx73niMSPQEfiqKglH1Saz7oN3tgB1RsqC3w2sQeGNQnJgTr5GwtyMjjUe5+4rJrp5HQlJeNwyf\nyJdTLugWvmbFWvd8P/r8maiNq7423HPlmRiZirn1Btv3xvYeXZEZE5pw34vWOjKxEJd1fVIr2Pbe\n3g5osvJzmzEyFXO3ec/jXVV4uMy5hxkRwYHtQEaPHKsQVQAt6uDdn6kXAlx5f2fFYxmlnDeK0RD1\nesOQTbHIiDrtU60xSwzTH8qmE+JWSNQAAEKISOm5RHQ+gE4ADwshTpfsvwTWujSXADgHwFIhxDlE\nNBrAy7BE0rqJ6HEAzwghVhQ7X1iuey5ndQBZU/gyLXJ5A3mvPkCsZxXZ4D5HdMu0F5PzumNPa3ne\nJ6s+4VvP+HRF7p83DZmcgRFJDTlTuOdJKARFVXxZHk77nGkfb7tScRXpXGCfJ9MkTF8kphBimoJ0\nzvBdo7PybyKmuKJrzrXmdRP5wP1ysmNigXPXJjQ3OyZYviamIqebodkxHTkdCgj1NZaYWipWqIUi\ny47RAvctk9PRVJ8cFjohYToTj335HOmKu7JMjmC5tjsujqR9EabhEUXXA0BBu8M0PGTbyq0nogQ0\neErVO7lmxdqiGiNh3wnrhDDDiMrqhBDRjSHbAQBCiHuKHS+EeImIxhUpciksA0UA+G8iGklEx9r7\nNAA1RJQHkALwUWmt70EXPbobTvyHaYpCV5HHZnP6FK/MuyGEm9LqJTglEvR2xBWCltCgKgpgGj2p\nurBEqAD/ejUqWZojwS+QiGAKa209xbSWPVdUQmenjpxm4rbfvoWJo2oLVsN11Fd3H8piRSCdUaZH\nAsDO9rG0Q8iwdEmm3P576KbAivnTMfWExp57aViGmUO9psAwLLeSolj3LebxUpDS8wzldROLVrXi\notOPxqXNo6GohG69pzwRQVHI7bzrkzF0ZPK4dsVrw1YnJCy2Jmqsgqxc2LozUReDixK3Uu7VbKOe\nFwDSuokD6TxScWt16OMaEtLF/qLWF1xduJTvhHVCGMaiHE98vf1boNAiKoebZTSADz2fdwAYLYRY\nS0RLAGyHFXvyvBCiMOcwIhpZnVR3zvImCGENjt15a6ANam2E4Qp/BXCmApbOaUaNPX1TE1Nx3kmj\nfJ6N9nShOuizaz/Ec5t2u+qjc84ei9qE6luga+mcZqx6bburVLp0bjOSmoID6TzqkzHUxFXUJzXc\ncdnpUBXC/3mopwP9yvnj0ZCMuav7dtuLxjl133fVVOQCb4dOWy6fNgZLfm0ZL0vnNmPhZyZi8pgR\nOO24EfjKI/72Nabi0DR7HR3DxH6JEmrwWueeMxZ1CQ0r5k/HwYzua5e3/LK5U9BUG3eNt1RMlepo\npELW9xjqRF3ALuogH7bcfX/0Nfp6LaUgW3AuSNYsFKp767aZ6MzqvtWYi3lRZPRlsb+w74R1QhjG\not8xIUKI24QQtwE4EdZUifN5GYBx/a0/DCI6ApaXZDyA4wDUEtFVIWUXOPole/fuDa0zpSluRkaB\nmqhbWYS2ef5WFAVZU6AxFUfGENh5II339nbhjJbncfXPX4MQQGfOmhuWzR0vWtWKS5tH45X39/vS\nbw0TBeVmnn6sL41VgPCtpzbilO88i+sffQM7P85gxZ+3Ip3TcXRDAgCwYv5012Bw5qY7szpG1Sfc\nug6k8wXtctriS/dd2Yr5547HVHt9nWLpsem8EelaF65sxZ6OLHIh9+Z/TxmDV97fj4Ur30Tas3aH\nqipoCqRTN9XGoapDK/QvyrMpE1grNR1URpS00bDzVwLZgnNAtBRdUwA3P7Gh1xRd2SJ0Mk0VWexI\nKd9JWNkabWgZyVH7TobpK+X0/U0WQhxwPgghPiaiKWWodyeA4z2fx9jbPgdgqxBiLwAQ0VMAPgXg\n0WAFQojlAJYD1rxmbyf02hzONIGTtuudaXH2eaccDGGJjqXiMcy89yV3CmDid54FYE2tbLnDWtsk\nmIYa5qJtqIm5fzvpqM5x3nJO2q1bty0dD8Ad2FtmTcLCla246/Iz8HTrR5h6QqO7Vo5T7uYnrHLO\nInbHN6ak7XLa4k33LZZWW5vQoNtLmpdyrb2lAjt/p+JWrEg6Z0g78zKHP5WFKM+mpinQdQBmj5EV\npqI6UHinunTdlE5jDDQy70HUFN1UotCACVu9VxZ/E6wv6mJ/znei2NOsDoqiuHpE3rgmx1M4VCi1\n72SYUinnE6/Y3gkAABE1ojxGzmoA8+wsmU8COCiE2AVrGuaTRJQiK3jgswDeLsP5fJNIzsq3boxL\noO9V0BMTYpomEgphVH2yIPvEIZge601DDUtfPdSd9x3rHBcs59Qr+wz4B/axTSnMmNDkWysnWM7h\nw/a0tF1OW4LX48jcB8t3ZnW0p3MwTTM0hVZ2rW17OkPvjTcNefv+tKsYa5pmoTJrOucaQdWGpimo\nT8agkBX7omlKgYfC8boFl6zvL0GDQ3buwUDmPZAZErKU36iZNVGzaIDoHidFUaTfn2wbwxxulPOp\n/xGAV4joB0T0AwB/AfDD3g4iopUAXgFwChHtIKIvEdF1ROSk9z4D4H0AbQAeAPDPACCEeBXArwC8\nAWCjfS3Ly3EhXrEyx35wDA0nNdcbI+Js80693HNlM5bPm4aGpIYdB7vdziuYHutNQ+3K5qUu2t+0\n7sSMCU2+9FtVQUG5NZt2+dJY12za5bsu78C+91AWLbMmFdXtcOoamYoVtMtpS/B6Vvx5K974oF3u\nlhbCVXJ9+s2dka717ism4ycvtEE3hbR8zNOee37/jjuNEza1VY2KqWHIBrGoUukOUVVYOzJ5mEKg\nI5OHrpsF5x4MvN6fYtomspTfhEJYOrfvxkVUg0Pe7oontjDMkKWsKbpEdBqAz9gf/0sI8VbZKi8T\nUVJ0nTRXb7pn3E45dfaFpcLmjMIUXW9qnyw91rssuCzVNHhu5zy6KVCXLEwddtJkD2V1LFwpDyYl\nAOfe/QJWXDsdpx07wh/AObcZdXHNbaemEOKago6MjoZkDF05qy2dWQM53UBjbQJtezpx4qhanPrd\n53zZMU771n3Qjk+fdBRO+U5PinLL/zoNl00ZjYaamPRaP2zvxr1/eAe7D2Xx06umQlUIuinQUBPD\noe48NIWQ1FS8t68LP3mhDavXf+ROdxFButT9O3deXHUpuqUgS+ctlgIbXO4+anqqLLU17Bzl2uZM\nsfUnpbZS24L3qw9TL8Pi+WSGJf16Nsvq/xNCvCWE+LH9M+QMkKh4V7lNKNZ0jDcN19rXU94x5BTV\nCmINDnLe6RhTCOzvyLjTA3GF8NhrH0DVVEy5/fcAAR8dyAAA9nfm8P+e3IgJ33oGtQkN33h8PT46\nkAEphKxuuvEpQgAvt+1FbULDybc+i1Rcw6SW53FEKo6WWZOw5Y6Lcd9VU3HcyCS+eN4ELFmzBceM\nqAEA3P/HrRiR9L817vw4DUMIfOGBVyEE8MUVa9G2pwvNt/8eX/jZqzBMgQ/bu3HdI+tw1p3/iRO/\n/Qxm3vsSdnzc7b6Vzl+xFpNvex5feOBVfHQgg/v/uLVAybXlt29ZdT7wKgAgGdfcN2sC4cj6BO65\nshkPXDMd9ckYkpoK1b6Xjhrt1Q++hpn3vuTGr0Sdvhmu1GhqSUqeXsJEtWSUOyYkiqKoacpjUaJ6\nKYLTVLIg1HIgEyALtts0zaqdGmSYcsKTkBIco4KIoNvGRnAaxnGxCvQYJsXSeJ19cYXQVJ/E8nnT\nsLcjg1O+twbPbdrtDtDpnIGW1ZvxyCvbkIqr2NuRhaYQOjM6dh/KYua9L+HEbz+DKT/4vbu41uTb\nnsf9f9xaINu+4+Nut3zz7b+3snEgsPtQFm17Ot0pjY+7c8jkDeTzBr7yyDqMHpmCSnCni4JTLq+8\ntw+1cRU/+vyZvsFuZCpW4PL2TqsElVyLZQUoCqEuYRkldQkNikKS6QcVy+ZOkZ6vWrIPoqLrZsGU\niGybpvUEPJY6dVDqVE65KMX4OZDt+0J+sjgRWfxMX1fbdQhOAYZhmoXfH8McbpRdMXWoU6piqqPy\nGZyiScVVdOcMKIHplaCSZ0IhXLNirU/3YkRC8yktuvof54xFXVxDzjDRUBNDJm/AsOvK5w0cDLid\nl85pRkIjXPfom+5ieJOOG+lqicQ1pUBXwxQmFMVKX3WmdgrUV4sprHqUWbP5gMppTIVumAUqssHp\nq1Jd04ZhIu2ZakrFVDfV1jQF0nZ7glNWAEo5z5B1dzvZKFEVQIHC6w47vjfFz1LUTGXbdCFgCBQt\n53jwelN5fWDeNHy5zO0biKkc7xSXphDearkw8vFOEKuEIft8Moc9lVVMHe4oBHgdHM7quUQEAb+a\nKClAzlbydIw7Z12ZVFzFteeNdzuf+6+e5sZLpGIqrjl3PDozecRrFFeXxDCtukxTIGcHvAbT/7SA\n8JlzHpUIcVUpSAF8b18XRqYUXPWzQjXR+6+ehsm3Pe/bdt9VU7Hg0XX44T9Oxv/71QbXYLpi2vFI\nxAhf/4+eDnzZ3GbEVAUP/2UbLpsyBrc8uaFg3zUBgbWgdofXqEjnDCRVRSrg5hzneEwAbxqpAtMU\n2N+V9cXELJvbjKbaRNUFCoZNfQQH0KVzmqXLwZumKU0RBdDryrqy80QVMNNiKk6LYFzIVtGVpd6m\n+hB0W0yYzFknqa/CaTKuWeEfpIvdw/Dvjx3UzOEDP+294PSf5AZg+Pfrwm+YANZNDZuiyZkC3brp\nEwfb35XDQ3/einPvfgETv/MszmixYikIhNNbngcRYcHD6/C3jgwIwPb9acs1/L01rhv56p+/hv2d\nOez8OINbf70JiZiKU7/3HG799SbsaO/GgofX4dTvPYeW1ZuR1BQsmX1mwTRGbcI/VeFdYG/0ETU+\nEbGbnliPzozhcz0vXNmKA+k8Zp5+LG55coN0X9BV7RUYswyHHL780FqcfOuz+PJDa9Gty0XNvMfJ\nSOesoNxgG9K56owJCU4HhGX/hCGLSQgiyz6JuviaDFlcjqy+qKm36axRksx7b8JksoUBtZgaabHA\nsG2yKUDZucO+P9nCggwznGFPiAfn398RH9vR3oWn3/wI888d31PI8xKtEsEUwidgRrDXoXE+22ae\noy+iKYSauOq+fW3fn0YqruLzZ43FK++3+9ZyOdidw1njGtGdM9AyaxKWrNmCez7fjLFNcm2PsU0p\n3LCqFavXf4Qb//5knDWu0Q3YbJk1CROPqkNHJo/OrI4n1+1wt7Xt6cTTb+7AvE+N89Xp6HacNa4R\n6azhnscrIhZsg7NN1j5Zee9aGem8gYUr34y0Hkdva2zI3ppf39buW7+mWpB5BcLuSxiyN/GMbk33\nAZbXzTRN6UJ3wXpl7Qk7R5Q1b4BosvQKAYtnT8bNT/R42KISJkwWPEdUQTQAGBFos5BcR42mQlEp\nklAarx3DHI6wJ8SDY0s4UyljGmtx7XnjEVepICDV8X6Ywi9gFnyPcfY5ga3duglh9pRrqosjGbPW\ndVk+bxq23HEx7rr8DCRUBU+u24Glc5rxq3UfYua9L2H3oSy6cjrSIZkf2/en8czGXW6Q6DI7SPSZ\njbvQsnoz/nYwA9008eS6Hbhsyhi0rN6MU77zLFpWb8acs8eCUKg98sp7+1yDyDmPE/j6YXu6oA0f\ntqfd/bJ9wW1eF3gqXqhqGSZq1pvrXPbW7DWmqoliA6gX53PwGZS9dZsA0jkD1z/6Bk6+1ZL1l5WT\nnUfWnjCPSRRdDxky74hGlv7HXZef4f6fRKU/wmRhhlNwUs/5HNRuiSqUdjhkbzFMEDZCJHhTdAHL\n0FBUgkqE/Z1Za2rju8/hSw+tRUY3XG+HaQh05w18yZ5OWPDwOnzcncOh7jxuWNWK7fu7oNky7wQg\nndWxvzMHIsKh7jyIrO2NtXE01sVx7Xnjse6Ddtzxu7ddo0AIgT+9u7ego/y3K5txVH3C7eyTmoLu\nnI77rppqpd7Om4ZjGhJIxjTMPWcsRh+RdAeH+21RtbrAgNGYiuMTx45AMqZg8ZotvuyTJbPPRF1S\n9bVh2dxmjEzF3GwY2b6gkeNdUC6dKzQcnFWGix0nw3lr9h63ePZkVFk4CIDS1yk5GGEtlXzI9ESw\nnOw8UQ0TGWECYTJkqbcpTUFTXRxElgEfhgB6NS7CztHQR8MpDFna9HDL3mKYvsLZMTZh2TF63vAL\nJgVEwZzg0O3707j3D+9gwpG1mH/ueNQlNOw+lEFNXPVlqPzo82ciphAWrmrF0Q0J3PC5kzG2KYXd\nBzO469m/utMnMyY04d45zTiQzrtTJms27cK8T41DzjCRiqnY15nD8Y0pfNiexshUDElNQUxTkM4Z\niCuEWCDbJSzbJ50z3EE9nTdQE1N8mUDe7BhvtktWN2Ga1rocTh2mKdCtG9L6hRChWS5AT0zIwpVv\neoJJp+CImpgv2yN4nAxdN9GZ03Egnffdo7q4VnXZB7puFgTnhmVxyFaQ3dhyYcG29++6pCAjRVYu\nLPtEFuRZ7sya4LawLBoBFGSkyeqTZWXJsoZk5aLefwCIxwunVHTdLKgTGB7ZW8xhD2fHDCZO/Ic3\n4FTPGxiZiuGeK5td5U8QUJfUUBNTfXPEed3EiFQM9101FfXJGLpzBoQQ+PQPX/B1rq9va8eRdQmc\n8y//6W7TFMLXPnsSvvDAq7jr8jNwwZIX3X0zJjThgWumI6koqE/2dGRuxojduXljIpxydZ5tPZkm\niu94X132vlRcKThOUcg9V2H9hHq1sF4HRSE01cbxwDXTe4ydmBqoM5pEuKYpqIMGVSH3rXkoLhAW\nBa/2h/McuWu3BDJeamOF8QdRl5IPy46RIVuoLeqxfUXWZiBaD+iu3xJ4jmQLA8rKye5/WHCvDFmd\nAEp+rhlmuMFGiAxPr5Y1BeK9+PBPa3neTQFNxTXopoCSN3yLhznprropkNdNNN/+e9dw6M6bBZ1r\nWAzFoe58aJBnKl79rlxvyq3XOOoLYR1/NRJ1EOvI5KUDdVSjoSFiyqqiKKiP95w7l9NLSnf1/m84\nHpPeKMXQCbYvjKjPSCkGDMMw0WEjREZghorgV1F1NqpEyJkC79x5sW/awzFaZkxo8mkAxFUFmkLY\n05Gx4ySmuNMgy+ZOCUxDWLoawTqefnNnqIGSzhn9HriZ6qY/3gxAHiQm0xjpz2Ab1NKIiqJE9wgN\nhjEwnIxchqkUPGLZmOjpgCnQf+kC0AK6H4pipefKFkMjAKoWEAqzY0kSCmFMY6015WBPNQAomIZQ\nCPjjlj346VXTUF+j4VB3Hr9p3Yk1m3dj2VzLoPEaKF6Dhjm86Y8AV5jB0Z/Btmcaz/KY9NebwdMa\nDDN8YCPERoEV3GaYAkQEwxRI26vR5kIEhBRbJ8RLzA4OrHUybEzR0wl7gimDHovgNIRpCkwf14Tr\nHl3nBrBePWMcrph6vDvtIoudYA5visYqSBRTy2VwqKoCwyg8ryyAOIqRxFMbDHN4wEaIjaIoiMN0\nZ2JUhZCMqW7H6q6i6+kXDXuVXdPoMTQ0KEja+/vzViYL0oSwgl0dyhU7wQwfNE2JHGwJlM+D4Bob\nnvOqqlJghBQzkqLEcDAMM7zg0ctG1nlDWN6RhK3tAb1HfKxnWmbg3tjKGaTJHD5UKlZBVZWi2U9O\n2zigk2EYBx7ZPMg673pP5xjcVs8dJ8OUDAd0MgzjwKMowzAMwzAVgY0QhmEYhmEqAhshDMMwDMNU\nBDZCGIZhGIapCGyEMAzDMAxTEdgIYRiGYRimInCKLsMwDMMMIOO++bvIZbf96z8MYEuGHuwJYRiG\nYRimIrARwjAMwzBMRWAjhGEYhmGYisBGCMMwDMMwFYGNEIZhGIZhKgJnxzAMwzBMCZSS7cIUh40Q\nhmEY5rCGjYrKUfHpGCJ6kIj2ENGmkP1ERMuIqI2INhDRVM++kUT0KyL6KxG9TUQzBq/lDMMwDMP0\nh4obIQBWALioyP6LAZxk/ywAcJ9n31IAzwkhTgVwJoC3B6iNDMMwDMOUmYpPxwghXiKicUWKXArg\nYSGEAPDftvfjWABpAOcDmG/XkwOQG9jWMgzDMAxTLoaCJ6Q3RgP40PN5h71tPIC9AH5BRG8S0c+I\nqFZWAREtIKK1RLR27969A99ihokIP5vMUIafT2agqQYjJAwNwFQA9wkhpgDoAvBNWUEhxHIhxHQh\nxPRRo0YNZhsZpij8bDJDGX4+mYGmGoyQnQCO93weY2/bAWCHEOJVe/uvYBklDMMwDMNUARWPCYnA\nagBfI6JVAM4BcFAIsQsAiOhDIjpFCLEFwGcBvFXBdjIMwzBMvyg1XbjaV92tuBFCRCsBXADgSCLa\nAeD7AGIAIIT4KYBnAFwCoA1WMOq1nsO/DuAxIooDeD+wj2EYhmGYIUzFjRAhxNxe9gsAXw3Z1wpg\n+kC0i2EYhmGYgaUaYkIYhmEYhhmGsBHCMAzDMExFYCOEYRiGYZiKwEYIwzAMwzAVgY0QhmEYhmEq\nAhshDMMwDMNUhIqn6DIMwzBMuSlV9IupDOwJYRiGYRimIrARwjAMwzBMReDpGIZhGIapUkqZdhqK\n68ywJ4RhGIZhmIrARgjDMAzDMBWBjRCGYRiGYSoCx4QwDMMwFaHa4xmY/sOeEIZhGIZhKgJ7QhiG\nYZghD4uPDU/YE8IwDMMwTEVgTwjDMAxTFthbMbQp9fsZjDgc9oQwDMMwDFMRSAhR6TYMKkS0F8AH\nIbuPBLBvEJtTTrjt/WOfEOKiSjagl2fTYSjcq3IxXK5lMK5jKD6f1fT9VUtbq6WdQE9b+/VsHnZG\nSDGIaK0QYnql29EXuO2HB8PpXg2Xaxku11Eq1XTd1dLWamknUL628nQMwzAMwzAVgY0QhmEYhmEq\nAhshfpZXugH9gNt+eDCc7tVwuZbhch2lUk3XXS1trZZ2AmVqK8eEMAzDMAxTEdgTwjAMwzBMRWAj\nhGEYhmGYijCsjBAiuoiIthBRGxF9U7KfiGiZvX8DEU3t7VgiaiSi3xPRu/bvIzz7vmWX30JEM6ul\n7UT090S0jog22r8/Uy1t9+wfS0SdRHRTf9peTfR2n4cyRPQgEe0hok2ebUW/46EIER1PRC8Q0VtE\ntJmIFtnbq+5awpB9V4H90v9nIjqFiFo9P4eI6Iah2FZ73/+1v8NNRLSSiJJDtJ2L7DZuHuj7GbGt\npxLRK0SUDfa/feqjhBDD4geACuA9ABMAxAGsB3BaoMwlAJ4FQAA+CeDV3o4F8EMA37T//iaAu+2/\nT7PLJQCMt49Xq6TtUwAcZ/99OoCd1XLfPXX+CsATAG6q9LM3VJ7vofwD4HwAUwFs8mwr+h0PxR8A\nxwKYav9dD+Aduy+oumsp5bsK7Jf+PwfKqAD+BuCEodhWAKMBbAVQY39+HMD8IdjO0wFsApCCtczK\nHwBMrPA9PQrAWQDu9Pa/fe2jhpMn5GwAbUKI94UQOQCrAFwaKHMpgIeFxX8DGElEx/Zy7KUAHrL/\nfgjAZZ7tq4QQWSHEVgBtdj1Dvu1CiDeFEB/Z2zcDqCGiRDW0HQCI6DJYHcjmPra5Golyn4csQoiX\nALQHNod+x0MVIcQuIcQb9t8dAN6GNaBV3bWEEfJdeQn7f/byWQDvCSF6UwDuF/1sqwar79NgDfIf\nhVVSwXZ+ApZBkhZC6AD+CODygWpnlLYKIfYIIV4HkA/s6lMfNZyMkNEAPvR83mFvi1Km2LFHCyF2\n2X//DcDRJZxvqLbdyxUA3hBCZPvW9MFtOxHVAbgFwG19bG+1Us7nbagQ5fkcshDROFhexVdR5ddS\nIlGexTkAVg5ai8KRtlUIsRPAEgDbAewCcFAI8XwF2ucQdk83Afg0ETURUQqWx+T4CrQvCn3qo4aT\nETLgCMvnVJU5zbK2E9EkAHcD+EpFGhWRQNtbAPybEKKzci1iyk21/W/ZxvCTAG4QQhzy7qu2ayk3\nRBQHMAvWdOmQxI7ZuRTWVPpxAGqJ6KrKtqoQIcTbsPro5wE8B6AVgFHRRpWZ4WSE7ITfQhxjb4tS\nptixux33nf17TwnnG6ptBxGNAfBrAPOEEO/1sd2VaPs5AH5IRNsA3ADg20T0tX60v1oo5/M2VAh9\nPocyRBSDZYA8JoR4yt5cldfSR3p7Fi+G5V3dPaitkhPW1s8B2CqE2CuEyAN4CsCnKtA+h9B7KoT4\nuRBimhDifAAfw4pDGor0qY8aTkbI6wBOIqLxtiU+B8DqQJnVAObZkcifhOWC29XLsasBXGP/fQ2A\n33i2zyGiBBGNB3ASgNeqoe1ENBLA72AF0v25j22uSNuFEJ8WQowTQowDcC+Af3x5wEIAAAWQSURB\nVBFC/Lif11ANRLnP1UbY/9aQhYgIwM8BvC2EuMezq+qupR+E/T87zMXQmIoBwtu6HcAniShlf6ef\nhRXfM9TaCSI6yv49FlY8yH9UrplF6Vsf1VvkajX9wJovewdWhO6t9rbrAFxn/00AfmLv3whgerFj\n7e1NAP4TwLuwIpMbPftutctvAXBxtbQdwHcAdMFy7Tk/R1VD2wPnbcFhkh1T7F5Vww+sQWkXrGC2\nHQC+FOU7Hmo/AM6DNdWywfO/c0k1XkuJ31XU/+daAPsBjKiCtt4G4K+w4i4eAZAYou38E4C3YGWb\nfHYI3NNj7O2HAByw/26w95XcR7FsO8MwDMMwFWE4TccwDMMwDFNFsBHCMAzDMExFYCOEYRiGYZiK\nwEYIwzAMwzAVgY0QhmEYhmEqAhshQxQiGhe2imE1QETziehw0O9gSqDan2vm8IGIWoKrxDLlh40Q\npgB7QSeGqQr4eWWY6oWNkKGNRkSPEdHbRPQrW93vs0T0JhFtJKIHi61+S0T/SkRv0f9v735CtKrC\nOI5/f0pgaSnZJiKxbEgTUxuRRNJy4UZblEoQZekijGqiIEYwqKhokYsIiokorAxKAysq0mAaV07+\nKZ2QsCClFm0iFVIstKfFeUYvwzs2aDN33pnfBwbue865l3OG572cuefOeaQeSRuzbJOkDkl7Jf0o\naXmWPyjpU0mdlE2XkPSUpD15/nOV634saZ+kg5IeqpSvyWvuBhYO1i/Fmt5YSW9m/OyQdKmkOZK6\nM9a2qeT2QFKXpHl5fFVu198wXs0uhqTVGX8HJL3Xp66/+Gyr3GM/yLLxeW/enffqpsl2XQdPQoa3\nG4HXI2IGZXe6J4FNwD0RMYuSivrhRidKmgzcBcyMiJuBFyrVUylpl5cBHZLGZfktwMqIWCxpKWUr\n+vnAHKBV0qJstzYiWoF5QJtKhserKTsQLqTsKnnT/zB+G5lagNciYiZlx8UVwLtAe8bq98AzA7jO\n2XgdtJ7aqKCSzPNpYElEzAYe79Okv/hcD8zN8nVZtgHojIj5wB3Ay5LGD/YYmpUnIcPbr3Eut8tm\nSn6DwxHRm8DoHWBRwzPhOHAKeEvS3cDJSt2WiPgnIn4CfgamZ/lXEfFHHi/Nn++Ab7NNS9a1SToA\ndFMSFrVQEst1RUkI9Tfw4YUO2ka8wxGxP4/3AdOASRGxM8vOF9dV1Xg1uxhLgK0R8TtANa4kTaT/\n+OwB3lfJwHs6y5YC6yXtB7qAccCUQR9Bk/Ja6vDWd0/9Y5QcFf99YsRpSfMpE5eVwKOUL1qj6/Z+\nPlEpE/BSRLxRbSjpdkoGygURcVJSF+VLZjZQf1WOzwCTztP2NOf+WOobZycwq9cyyoTkTmCDpFmU\ne+eKiDhUa8+ahJ+EDG9TJC3I43uBvcBUSTdk2f3AzkYnSppASSL1BfAEMLtSvUrSGEnTgOspCfj6\n2g6szesg6ZrM5jgROJoTkOnArdn+G2BxLs1cAqy6wDHb6HMcOCrptvxcjesjQGserxziftno0Um5\nL04GkHRlb0VENIxPSWOAayPia6Cdcm+cQLl3PpbZeZE0d+iG0Xz8JGR4OwQ8IultShbFNsoSyNb8\nj4A9QEc/514OfJLve4jyPkmvX4DdwBWUzIin8vtyVkTskDQD2JV1fwL3AV8C6yT9kP3rzva/SXoW\n2EV5YrMfs4F7gPJ+0mWUJcI1Wb4R2JIvQH9eV+dsZIuIg5JepEwuzlCWoY9UmjSKz7HA5lyuEfBq\nRByT9DzwCtCTE5XDwPKhG01zcRbdUUbSJuCziPio7r6Ymdno5uUYMzMzq4WfhIwAkrYB1/Upbo+I\n7XX0x8zMbCA8CTEzM7NaeDnGzMzMauFJiJmZmdXCkxAzMzOrhSchZmZmVgtPQszMzKwW/wJHcOPn\nk2csnAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#df_res.date = pd.to_datetime(df_res.date.dateAgg, format='%Y%m%d %H:%M')\n", + "df_res.head()\n", + "sns.pairplot(df_res.loc[:,[\"bo_spread\", \"hour\", \"close\"]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "year 2081682\n", + "month 2081682\n", + "day 2081682\n", + "hour 2081682\n", + "weekday 2081682\n", + "Unnamed: 6 2081682\n", + "bid_price 2081682\n", + "ask_price 2081682\n", + "bo_spread 2081682\n", + "high 2081682\n", + "low 2081682\n", + "avg_bo_spread 2081682\n", + "count 2081682\n", + "open 2081682\n", + "close 2081682\n", + "avg_price 2081682\n", + "range 2081682\n", + "ohlc_price 2081682\n", + "oc_diff 2081682\n", + "period_return 2081682\n", + "pca 2081682\n", + "dtype: int64\n", + "2016-01-03 17:00:15.493 2016-01-31 23:59:41.170\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekdayUnnamed: 6bid_priceask_pricebo_spreadhigh...avg_bo_spreadcountopencloseavg_pricerangeohlc_priceoc_diffperiod_returnpca
date
2016-01-03 17:00:15.49320161317101.087011.087510.000501.08723...0.0001651421.087011.087011.086920.000621.0869650.000001.000000-1322.240112
2016-01-03 17:00:38.99320161317101.087031.087490.000461.08723...0.0001651421.087011.087031.086920.000621.086970-0.000021.000018-1322.160522
2016-01-03 17:00:41.49320161317101.087131.087490.000361.08723...0.0001651421.087011.087131.086920.000621.086995-0.000121.000110-1322.161377
2016-01-03 17:00:41.99320161317101.087131.087450.000321.08723...0.0001651421.087011.087131.086920.000621.086995-0.000121.000110-1322.161865
2016-01-03 17:00:44.74320161317101.087031.087450.000421.08723...0.0001651421.087011.087031.086920.000621.086970-0.000021.000018-1322.161011
\n", + "

5 rows × 21 columns

\n", + "
" + ], + "text/plain": [ + " year month day hour weekday Unnamed: 6 \\\n", + "date \n", + "2016-01-03 17:00:15.493 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:38.993 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:41.493 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:41.993 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:44.743 2016 1 3 17 1 0 \n", + "\n", + " bid_price ask_price bo_spread high \\\n", + "date \n", + "2016-01-03 17:00:15.493 1.08701 1.08751 0.00050 1.08723 \n", + "2016-01-03 17:00:38.993 1.08703 1.08749 0.00046 1.08723 \n", + "2016-01-03 17:00:41.493 1.08713 1.08749 0.00036 1.08723 \n", + "2016-01-03 17:00:41.993 1.08713 1.08745 0.00032 1.08723 \n", + "2016-01-03 17:00:44.743 1.08703 1.08745 0.00042 1.08723 \n", + "\n", + " ... avg_bo_spread count open close \\\n", + "date ... \n", + "2016-01-03 17:00:15.493 ... 0.000165 142 1.08701 1.08701 \n", + "2016-01-03 17:00:38.993 ... 0.000165 142 1.08701 1.08703 \n", + "2016-01-03 17:00:41.493 ... 0.000165 142 1.08701 1.08713 \n", + "2016-01-03 17:00:41.993 ... 0.000165 142 1.08701 1.08713 \n", + "2016-01-03 17:00:44.743 ... 0.000165 142 1.08701 1.08703 \n", + "\n", + " avg_price range ohlc_price oc_diff \\\n", + "date \n", + "2016-01-03 17:00:15.493 1.08692 0.00062 1.086965 0.00000 \n", + "2016-01-03 17:00:38.993 1.08692 0.00062 1.086970 -0.00002 \n", + "2016-01-03 17:00:41.493 1.08692 0.00062 1.086995 -0.00012 \n", + "2016-01-03 17:00:41.993 1.08692 0.00062 1.086995 -0.00012 \n", + "2016-01-03 17:00:44.743 1.08692 0.00062 1.086970 -0.00002 \n", + "\n", + " period_return pca \n", + "date \n", + "2016-01-03 17:00:15.493 1.000000 -1322.240112 \n", + "2016-01-03 17:00:38.993 1.000018 -1322.160522 \n", + "2016-01-03 17:00:41.493 1.000110 -1322.161377 \n", + "2016-01-03 17:00:41.993 1.000110 -1322.161865 \n", + "2016-01-03 17:00:44.743 1.000018 -1322.161011 \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#plt.savefig(\"test.png\")\n", + "print(df_res.count())\n", + "print(df_res.index.min(), df_res.index.max())\n", + "df_res.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['year', 'month', 'day', 'hour', 'weekday', 'Unnamed: 6', 'bid_price',\n", + " 'ask_price', 'bo_spread', 'high', 'low', 'avg_bo_spread', 'count',\n", + " 'open', 'close', 'avg_price', 'range', 'ohlc_price', 'oc_diff',\n", + " 'period_return', 'pca'],\n", + " dtype='object')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#df.drop([\"vol\"], axis=1, inplace=True)\n", + "df_res.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "df = df_res\n", + "# all these should refer to the price prediction period, so for tick it doesnt exist\n", + "#df['low'] = df.bid.min()\n", + "#df['high'] = df.bid.max()\n", + "#df['open'] = df.bid.iat[1]\n", + "#df['close'] = df.bid.iat[-1]\n", + "\n", + "# to include seasonality as a feature\n", + "#df['hour'] = df.index.hour\n", + "#df['day'] = df.index.weekday\n", + "#df['week'] = df.index.week\n", + "#df['month'] = df.index.month\n", + "\n", + "#df['momentum'] = df['volume'] * (df['open'] - df['close'])\n", + "df['avg_price'] = (df['low'] + df['high'])/2\n", + "df['range'] = df['high'] - df['low']\n", + "df['ohlc_price'] = (df['low'] + df['high'] + df['open'] + df['close'])/4\n", + "df['oc_diff'] = df['open'] - df['close']\n", + "#df['bo_spread'] = df.ask - df.bid\n", + "df['period_return'] = df.close / df.open" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2081682\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAELCAYAAADQsFGkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xt0nFd57/HvMzfdLEuyrTi+JU6I\nQ+OkIQRDoJwCJQVMaEnaBS3QghvSlQWE3ji0De1ah9OeZhUWbaGUAiclKUlLAoHCIS1JQxoCKZc4\ncUJutnNxQuJ7fJElW9cZzTznj3ePPbYlS5oZaUbv+/usNUvv7Peddx5JM/PM3vvde5u7IyIiyZNq\ndAAiItIYSgAiIgmlBCAiklBKACIiCaUEICKSUEoAIiIJpQQgIpJQSgAiIgmlBCAiklCZRgdwKkuW\nLPHVq1c3OgwRkXnloYceOuDuvVMd19QJYPXq1WzatKnRYYiIzCtm9sJ0jlMTkIhIQk2ZAMzsRjPb\nZ2ZPVJR9ysyeNLPHzOxbZtZdse9jZrbNzJ4ys7dUlK8PZdvM7Nr6/yoiIjIT06kBfBlYf0LZ3cAF\n7n4h8DTwMQAzWwu8Czg/PObzZpY2szTwj8BbgbXAu8OxIiLSIFMmAHe/D+g7oey77j4e7t4PrAzb\nlwNfdfcxd/8ZsA14Vbhtc/fn3D0PfDUcKyIiDVKPPoD3A3eG7RXAjop9O0PZZOUnMbOrzWyTmW3a\nv39/HcITEZGJ1JQAzOzPgXHgK/UJB9z9endf5+7renunvIpJRESqVPVloGb2O8CvAJf6sWXFdgGr\nKg5bGco4RbmIiDRAVTUAM1sP/Anwdncfrth1O/AuM2sxs7OANcADwIPAGjM7y8xyRB3Ft9cWuoiI\n1GI6l4HeCvwEeKmZ7TSzq4DPAZ3A3Wb2iJl9EcDdNwO3AVuA/wSucfdi6DD+MHAXsBW4LRwrInNs\nz8AI6z9zH7v7RxodijTYlE1A7v7uCYpvOMXx1wHXTVB+B3DHjKITkbp7au8Rntx7hCd2DbC8u63R\n4UgDaSSwSMIM54sAHBrONzgSaTQlAJGEKSeAvqFCgyORRlMCEEmY4Xw0hlM1AFECEEmYYzUAJYCk\nUwIQSZjhsVADUAJIPCUAkYQ5WgNQE1DiKQGIJMxQ+Sog1QASTwlAJGFGQiew+gBECUAkYco1gMOj\n4xSKpQZHI42kBCCSMCMhAYAuBU06JQCRhBnKjx/dPqTBYImmBCCSMCP5Ip2t0TRg6gdINiUAkYQZ\nyo+zsqcdUBNQ0ikBiCTMSL7IijALqGoAyaYEIJIwQ2NFVvZECUBjAZJNCUAkQUolZ6RQZGFbls6W\njEYDJ5wSgEiCjBSiS0A7cml6OnKqASScEoBIgpQvAW0PCaBvWJeBJpkSgEiClAeBtecyLO7I0Tc0\n1uCIpJGUAEQSZGgsNAG1pOlpz2kgWMIpAYgkyEghagJqy2VY1JHVZaAJpwQgkiBHawChD2CkUDxu\nbiBJFiUAkQQpLwbTlkuzqD0HaDRwkikBiCRIeUH4jlyGno4oAagZKLmUAEQSZPjoVUBpFnWoBpB0\nSgAiCVKuAbS3ZOhpVw0g6aZMAGZ2o5ntM7MnKsoWmdndZvZM+NkTys3MPmtm28zsMTO7uOIxG8Lx\nz5jZhtn5dUTkVI72AWQragBKAIk1nRrAl4H1J5RdC9zj7muAe8J9gLcCa8LtauALECUM4OPAJcCr\ngI+Xk4aIzJ3hfJHWbIp0yuhqy2KGRgMn2JQJwN3vA/pOKL4cuCls3wRcUVF+s0fuB7rNbBnwFuBu\nd+9z90PA3ZycVERklg3nx2nPRYvBpFNGd1tWNYAEq7YPYKm77wnbe4GlYXsFsKPiuJ2hbLJyEZlD\nw2NF2nPpo/cXdeTUB5BgNXcCu7sDXodYADCzq81sk5lt2r9/f71OKyJETUBKAFJWbQJ4MTTtEH7u\nC+W7gFUVx60MZZOVn8Tdr3f3de6+rre3t8rwRGQiQxVNQEA0H5AuA02sahPA7UD5Sp4NwLcryt8X\nrgZ6NTAQmoruAt5sZj2h8/fNoUxE5tCIagBSITPVAWZ2K/AGYImZ7SS6mucTwG1mdhXwAvAb4fA7\ngMuAbcAwcCWAu/eZ2f8BHgzH/aW7n9ixLCKzbChfpDtc/w9Ei8IM53F3zKyBkUkjTJkA3P3dk+y6\ndIJjHbhmkvPcCNw4o+hEpK5G8uN0tFTUANpzFIrO4Ng4na3ZBkYmjaCRwCIJMnRCE1DP0cFgGguQ\nRFPWAEQkPqI+gOhtf8vG7Ty59zAAtz6wnVWL2gF4zyVnNCw+mVuqAYgkhLuHq4CO1QA6QjIorxUs\nyaIEIJIQY+Ml3DnuMtC2bJQMtChMMikBiCTE0FiYCbSiBtCSjT4CRsdLDYlJGksJQCQhKtcCKGsN\nNYCxgmoASaQEIJIQxxLAsSagbDqaGXS0oBpAEikBiCTE0NHFYNLHlbdmUoyOqwaQREoAIglR7uht\nzx6fAFqyaUbVBJRISgAiCVHuBO5oOX74T2s2xZiagBJJCUAkIUbCt/y23IlNQGk1ASWUEoBIQgyN\nRR/yHbkTawBp1QASSglAJCGGQyfwSTWAbEp9AAmlBCCSEBONA4DQCawmoERSAhBJiOF8kVwmRTZ9\n/Nu+NRN1Ape8biu7yjyhBCCSEMMnTARX1ppN40Be00EkjhKASEIM54sndQBDdBUQRJPFSbIoAYgk\nxHB+/KQOYKiYEE4dwYmjBCCSEFENYOImIFACSCIlAJGEGB4rTlgDaM2UawBqAkoaJQCRhBgujE/Y\nB9BSrgHoUtDEUQIQSYhJawBH1wRQDSBplABEEmLSq4DUCZxYJ78aRCRWbtm4HYD+kTzbDw0fvV+W\nS6dImZqAkkg1AJEEcHfy4yVa0ie/5c2MlkxancAJpAQgkgDFklNyyGUmfsu3ZFNaFziBakoAZvZH\nZrbZzJ4ws1vNrNXMzjKzjWa2zcy+Zma5cGxLuL8t7F9dj19ARKaWL0bf7idLAK0ZrQqWRFUnADNb\nAfw+sM7dLwDSwLuATwKfdvdzgEPAVeEhVwGHQvmnw3EiMgfK8/zkJmgCgjAltKaCSJxam4AyQJuZ\nZYB2YA/wRuAbYf9NwBVh+/Jwn7D/UjOzGp9fRKahPM/PpDWAbFpNQAlUdQJw913A3wDbiT74B4CH\ngH53Hw+H7QRWhO0VwI7w2PFw/OJqn19Epq8wVRNQNq0aQALV0gTUQ/St/ixgOdABrK81IDO72sw2\nmdmm/fv313o6EaGiBjBJE1BLRquCJVEtTUC/DPzM3fe7ewH4JvBaoDs0CQGsBHaF7V3AKoCwvws4\neOJJ3f16d1/n7ut6e3trCE9EygrTaAIaLRRxLQqTKLUkgO3Aq82sPbTlXwpsAe4F3hGO2QB8O2zf\nHu4T9n/P9WoTmRPl5p2WzMlTQUA0IVzJYbykt2SS1NIHsJGoM/dh4PFwruuBPwU+YmbbiNr4bwgP\nuQFYHMo/AlxbQ9wiMgMjkywIX9aiKaETqaapINz948DHTyh+DnjVBMeOAu+s5flEpDoj4YO9LTtJ\nDeBoAlBHcJJoJLBIAozki7RkUqRTE195rQnhkkkJQCQBhvMTTwVdVu4b0IRwyaIEIJIAI4Ui7ZM0\n/0BlDUBNQEmiBCCSACP5Iq2nqAEcWxRGNYAkUQIQSYDhqWoAR5uAVANIEiUAkQQYnaoPQJ3AiaQE\nIBJz7s5woUhbdvKrvlNm5DJaEyBplABEYq5QdIolp/0UNQCIRgOrEzhZlABEYm6qQWBl0YygqgEk\niRKASMwNTzENRFm0JoBqAEmiBCAScyP5UAOYMgGkVANIGCUAkZibbhNQi9YFThwlAJGYK9cApuwE\nzqoTOGmUAERibni6TUCqASSOEoBIzI0UiqRs8uUgy1qyacZLTl6jgRNDCUAk5kbyRdpyGaKF+yZX\nnhBucGx8LsKSJqAEIBJzU80DVFaeEO7IaGG2Q5ImoQQgEnNTzQNU1hoWjD8yqhpAUigBiMTccGF8\nyktA4di6wIdVA0gMJQCRmBvJF6e8BBSONQENqgaQGEoAIjE3Ujj1YjBlagJKHiUAkRgbL5YYLZSm\n1Qlc7ifoH1ETUFIoAYjE2OHR6U0EB1ETkAH9w/lZjkqahRKASIwNhG/z0+kETpnRnkvTN6QEkBRK\nACIxVv42P51OYID2lgyHVANIDCUAkRgrt+e35SZfDrJSh2oAiVJTAjCzbjP7hpk9aWZbzew1ZrbI\nzO42s2fCz55wrJnZZ81sm5k9ZmYX1+dXEJHJHJ5BExBAey7DoSF1AidFrTWAvwf+091/DngZsBW4\nFrjH3dcA94T7AG8F1oTb1cAXanxuEZlC/3C5BjC9BNDRkqZPTUCJUXUCMLMu4HXADQDunnf3fuBy\n4KZw2E3AFWH7cuBmj9wPdJvZsqojF5EpHU0AM6oB5HH32QxLmkQtNYCzgP3AP5vZT83sS2bWASx1\n9z3hmL3A0rC9AthR8fidoUxEZsnASIGWTIp06tQzgZZ15KIpoY9oRtBEqCUBZICLgS+4+8uBIY41\n9wDg0deIGX2VMLOrzWyTmW3av39/DeGJSP9IftrNPxBdBQRwSB3BiVBLAtgJ7HT3jeH+N4gSwovl\npp3wc1/YvwtYVfH4laHsOO5+vbuvc/d1vb29NYQnIgPDhWk3/0BUAwB0JVBCVJ0A3H0vsMPMXhqK\nLgW2ALcDG0LZBuDbYft24H3haqBXAwMVTUUiMgsGRgozqwGEy0U1FiAZpndx8OR+D/iKmeWA54Ar\niZLKbWZ2FfAC8Bvh2DuAy4BtwHA4VkRmUf9IYVrzAJV1hCagPl0Kmgg1JQB3fwRYN8GuSyc41oFr\nank+EZmZ/uECZy1pn/bx5RHD6gNIBo0EFokpd+fwSIG27PS/57VkUmTTprEACaEEIBJTI4Ui+WJp\n2vMAAZgZPe051QASQglAJKZmOgisbFFHTlcBJYQSgEhMHZ0KegY1ACCqAagJKBGUAERiaqbzAJWp\nBpAcSgAiMTUwEn2Iz7QJqKcjy6FhXQaaBEoAIjFVbRPQovYc/cN5iiVNCBd3SgAiMXUwNON0THMx\nmLKejhwlP7aWgMSXEoBITB0czNOeS5PLzOxtvqgjB6CxAAmgBCASUwcHx1i8IDfjx/W0R4/RWID4\nUwIQiamDQ3kWdbTM+HFHawBKALGnBCASUwcH8yzpqKIGEB6jsQDxpwQgElN9Q/mj3+ZnYlF7uQag\nTuC4UwIQiSF35+DQGIsXzLwJqC2XpjWbUg0gAZQARGLoyNg4haKzpIpOYIhqAeoDiD8lAJEYOjgY\nfXhX0wQEUT+ArgKKPyUAkRg6ODgGUFUTEIT5gNQEFHtKACIxVB4FvLjaGoDWBEgEJQCRGCo3AVUz\nEAw0I2hSKAGIxFDfUNQEVHUfQHuOw6PjFIqleoYlTUYJQCSGDgzm6WzJ0JKZ2UygZYs6ssCxNQUk\nnpQARGLo4FC+6uYf0GjgpFACEImhvqGxqpt/oHI0sBJAnCkBiMTQwcF81ZeAwrEaQL9qALGmBCAS\nQweH8lVfAgqVM4KqDyDOlABEYqZUcvpq7APobo86gQ+EAWUSTzNbK05Emt7h0QLFkle1FgDALRu3\nA9CRS/PDZw6wJDQlveeSM+oWozSHmmsAZpY2s5+a2X+E+2eZ2UYz22ZmXzOzXChvCfe3hf2ra31u\nETnZgTAIrNqJ4Mq62rJHF5aXeKpHE9AfAFsr7n8S+LS7nwMcAq4K5VcBh0L5p8NxIlJnR+cBqrIG\nUKYEEH81JQAzWwm8DfhSuG/AG4FvhENuAq4I25eH+4T9l4bjRaSOypdu1nIZKEBXe5b+EV0FFGe1\n1gA+A/wJUB4vvhjod/fxcH8nsCJsrwB2AIT9A+H445jZ1Wa2ycw27d+/v8bwRJLnwFCdmoBas4wW\nSoyNF+sRljShqhOAmf0KsM/dH6pjPLj79e6+zt3X9fb21vPUIonQF/oAeupQAwDUDBRjtVwF9Frg\n7WZ2GdAKLAT+Hug2s0z4lr8S2BWO3wWsAnaaWQboAg7W8PwiMoGDQ2N0tWXJpmur4He1RQlkYKTA\naZ2t9QhNmkzVCcDdPwZ8DMDM3gB81N1/y8y+DrwD+CqwAfh2eMjt4f5Pwv7vubtXH7qIVCpfvvnT\n7f1k03b0frW62qIawGHVAGJrNgaC/SnwETPbRtTGf0MovwFYHMo/Alw7C88tkniDY+N0tNQ+xGdh\na3SOfiWA2KrLQDB3/z7w/bD9HPCqCY4ZBd5Zj+cTkckNjY3T21nbJaAAmXSKBS0ZBjQldGxpKgiR\nmBkaG6cjV59B/hoLEG9KACIxUnJnOF+sSxMQKAHEnRKASIwM54s40NFS3UpgJ1ICiDclAJEYGRqL\nxmAuqGMNYGy8xGhBg8HiSAlAJEYGQwKoWxOQBoPFmhKASIwM1TsBtCoBxJkSgEiM1L0JSDWAWFMC\nEImRvqE8mZTRnqtPJ/DC1iyGEkBcKQGIxMiu/lGWdbWSqtNM6+mU0dmqwWBxpQQgEhMld/YMjLC8\nu62u513YlmVgVAkgjpQARGKibzDP2HiJFXVOAF1tWdUAYkoJQCQmdvWPANS9BtAdBoNp8t74UQIQ\niYnd/SNkUsbShfWdu39hW5Z8scTh0fGpD5Z5RQlAJCZ29Y9welcr6VR9l9ourwuwZ2CkrueVxlMC\nEIkBd2f3wAjLu+rb/ANRExDAnv7Rup9bGksJQCQGtvcNM1qofwcwQFd7tDTkbtUAYkcJQCQGHt81\nAMDynvongAUtGVKmGkAcKQGIxMATuw6TNmNpHVYCO1E6ZSzqyPH0i0fqfm5pLCUAkRh4YtcAS7ta\nyKRn5y29rKuNLXsOz8q5pXGUAETmOXfn8V0Ds9IBXLa8u42dh0Y0ICxmlABE5rmdh0YYGCmwYhba\n/8uWdUVjCzbvGZi155C5pwQgMs89ETqAZ+MKoLLy6OItu9UMFCdKACLz3BO7B2ZlBHClBS0Zli5s\nUQKIGSUAkXluy+7DnHPaArKz1AFctnbZQjYrAcSKEoDIPLdlz2HWLl84689z/vIutu0f1ALxMaIE\nIDKPHRgc48XDY6xdNhcJYCHFkms8QIxUnQDMbJWZ3WtmW8xss5n9QShfZGZ3m9kz4WdPKDcz+6yZ\nbTOzx8zs4nr9EiJJtTVcmz8XNYDyc6gZKD5qqQGMA//T3dcCrwauMbO1wLXAPe6+Brgn3Ad4K7Am\n3K4GvlDDc4sIx67KmYsawKqedjpbMuoIjpGqE4C773H3h8P2EWArsAK4HLgpHHYTcEXYvhy42SP3\nA91mtqzqyEWELXsOs6K7je4wYdtsSqWM85YvZPNujQWIi7r0AZjZauDlwEZgqbvvCbv2AkvD9gpg\nR8XDdoYyEanS5t2HOW8Ovv2XrV22kK17jlAsaXWwOKg5AZjZAuDfgD909+Pqhh6tITejV4qZXW1m\nm8xs0/79+2sNTyS2RvJFnts/OCft/2XnL1/ISKHI8weH5uw5ZfbUlADMLEv04f8Vd/9mKH6x3LQT\nfu4L5buAVRUPXxnKjuPu17v7Ondf19vbW0t4IrH21ItHKPnctP+Xnb+8C1BHcFzUchWQATcAW939\n7yp23Q5sCNsbgG9XlL8vXA30amCgoqlIRGao3Bl7/hzWAKIBZ6Z+gJjI1PDY1wLvBR43s0dC2Z8B\nnwBuM7OrgBeA3wj77gAuA7YBw8CVNTy3SOJt2TNAZ0uGlbM4CVylWzZuB+D0ha3c8dgezlzUAcB7\nLjljTp5f6q/qBODuPwQmW3360gmOd+Caap9PRCLlD+L7nj7A4gUt3PrAjikeUV/nLu3ke0/uY3hs\nnPaWWr5DSqNpJLDIPFRyZ+/AKMu6Z28CuMmcu7QTB57ZPzjnzy31pQQgMg/1DebJF0ss75r7BLCi\np422bJpnNCXEvKcEIDIP7R4YAaKlGudayow1Sxfw9IuDlFzjAeYzJQCReWjPwCgpg9NmYRH46Th3\naSeDY+PsHRhtyPNLfSgBiMwz7s7WPYdZ2dM+a4vAT2XNaQsA1Aw0zykBiMwzO/qG2XdkjFec2dOw\nGDpbsyzvauXpfeoIns+UAETmmU0vHCKXTnHhiq6GxrFmaScvHBziyGihoXFI9ZQAROaRwbFxHts5\nwM+v7KIlm25oLOcu7aTk8KNtBxsah1RPCUBkHvnOY7vJF0usa2DzT9kZi9ppyaS498l9Ux8sTUkJ\nQGQe+dqDO+jtbOGMRe2NDoV0yjh/eRe3P7qbvqF8o8ORKigBiMwTz7x4hIe397PuzB6iuRgb7xfX\nLGGkUOTLP36+0aFIFZQAROaJWx7YTjZtvPyMxjf/lC1d2Mqb1i7lph8/z9DYeKPDkRlSAhCZB54/\nMMRX7t/Or75sOQuabAK2D77hJQyMFLj1ge2NDkVmSAlApMm5O3/x75vJZVJcu/7nGh3OSS4+o4dX\nn72If/rv5xgbLzY6HJkBJQCRJvdfW/dx71P7+cNfXsNpC+d+8rfp+NAbzuHFw2P8v5+etMifNLHm\nqkuKyHFGC0X+4t83c+7SBWz4hdWNDmdCt2zcjruzvLuVT9z5JCP5ErlMSgvFzAOqAYg0qVs2bueD\n//owOw+N8Lo1vXx9086ji8E0GzPjsp9fxqHhAj94WuMC5gslAJEm9dyBQX7w9D4uWtXN2b0LGh3O\nlM5esoCXr+rmvmcOcODIWKPDkWlQAhBpQvsOj/K1B3awqCPH21+2vNHhTNv6C04nmzZuf2w3rrUC\nmp4SgEiTGS+W+PCtP2V0vMh7LjmT1gbP+TMTna1Z3nTeUrbtG+Q7j+9pdDgyBSUAkSbzN999mgd+\n1scVF63g9Ca96udULjl7Mcu7W/nIbY/y13duZWBEs4U2KyUAkSZy1+a9fPEHz/KeS85oqhG/M5Ey\n432vWc2vXLiM6+97jtd/6l6++INnOaT5gpqOEoBIk3j+wBAfve1RLlzZxcd/dW2jw6nJwtYs685c\nxDVvOIfeBS184s4neeV1/8Xln/shP952gEKx1OgQBY0DEGkKI/kiH/jXh0injc//1sW0ZOZPu/+p\nLO9u48rXnsWegREefP4Qj+w4xHu+tJHO1gyvO7eX9eefztt+fhmpVHNMbpc01sw99evWrfNNmzY1\nOgyRWePufOqup/jek/t4au8RNvzCas5d2tnosGZNfrzE0y8e4akXj/DU3iMMjo2zqqeNyy9awUff\n8tJGhxcbZvaQu6+b6jjVAETm2ODYOJue7+Mnzx3kzsf3sr1vmLQZ6y84PdYf/gC5TIoLVnRxwYou\nSu48uqOfO57Yyz/eu43BsXF+85Wr+LnTO5tmuuu4m/MagJmtB/4eSANfcvdPTHasagASF4dHC9z+\nyG6++fBOHtnRT8khkzJe85LFnNbZwtplXbTl4tHsM1Mj+SJ3bdnLpuf7KDmcubidXz5vKecvX8jZ\nvQs4u7eDha3ZRoc5r0y3BjCnCcDM0sDTwJuAncCDwLvdfctExysByHzh7owWShwZLXB4tED/cIFd\n/SPs6BvmqRcHuXvLXkYLJU5f2Mp5yzo5a8kCzljUTi6j6zDKjowWeHLPETbvGeDZ/UMUS8c+m5Ys\naOHsJR2sXtLOyp52VnS3saKnjdZsGiO68qi7PctpC1ti039Si2ZtAnoVsM3dnwMws68ClwMTJgCR\nueDuuEPlVyEDSu7kiyXy4yXGxkuMFUqMjRfZf2SMB58/xIPP97Flz2GGxsYZG5/8qpbOlgwXruhm\n3eoeVnS3qXljEp2tWV551iJeedYiiiWnbyjP/iNj7B8c4+DgGPuOjLF1z2GOTLHwzKKOHMu7W1nZ\n3c6qRW2c1tlKV3uWnvYc7bk0KTPSKSObNlqzaVoyKXKZFGaGAWYcfT2kzVjQmqEjl47l/22uE8AK\nYEfF/Z3AJfV+kkNDea74/I8m3HeqCo+HjwD38s0peVSeOvriOPYiKO8vhZ9UPn6iY0rHtt0Bi15g\nKeOkF1e5ZpYyI5UyMinDgWLJj34zSqeiF3LKOO453KHox47JplOkU8de3IaFn5GpXtjl3eW/nXv0\nl/Lwt6n8m5px9G9VeW6zk89z4vmPPepYWVR+ssq/xdGbO8WiU/Jou+SQMsikwu9vx/9fC8UShWKJ\n0ileE6f6m5y+sJWX9HbQmk2TTafIplO0ZlO0ZtO0ZdN0tUUfOvqWP3PplNHb2UJvZ8tJ+wrFEgPD\nBfpHCoyXSuDR6384P87h0QKHR8bpH8nz0AuH+K+tLzJezT/4BCmD9lzmuM+EbCpFJn3s/RW9V489\npvw5Em0fH0P5fZGa4KVRfn+uXbaQL/z2K2qO/VSarhPYzK4Grg53B83sqRpPuQQ4UOM5ZlMzx9fM\nsUGD43t+6kP096tNouO7D/jie6t++JnTOWiuE8AuYFXF/ZWh7Ch3vx64vl5PaGabptMW1ijNHF8z\nxwaKr1aKrzbNHt90zHXd9EFgjZmdZWY54F3A7XMcg4iIMMc1AHcfN7MPA3cRXQZ6o7tvnssYREQk\nMud9AO5+B3DHHD5l3ZqTZkkzx9fMsYHiq5Xiq02zxzelpp4KQkREZo+uTxMRSah5lQDMbL2ZPWVm\n28zs2gn2n2lm95jZY2b2fTNbWbHvk2b2RLj9ZkX5WWa2MZzza6Fzupni+0o45xNmdqOZVT0mfjbi\nq9j/WTMbrDa22YrPIteZ2dNmttXMfr/J4rvUzB42s0fM7Idmdk6Vsd1oZvvM7IlJ9lv4H20L8V1c\nsW+DmT0Tbhsqyl9hZo+Hx3zWphowMofxmVm7mX3HzJ40s81mNumUMo2I74TH3j7ZeRsuGgXZ/Dei\nTuNngbOBHPAosPaEY74ObAjbbwT+JWy/DbibqM+jg+hqpIVh323Au8L2F4EPNll8lxGNhTLg1maL\nL+xfB/wLMNiE/98rgZuBVLh/WpPF9zRwXtj+EPDlKuN7HXAx8MQk+y8D7gyvo1cDG0P5IuC58LMn\nbPeEfQ+EYy089q01/H/rGh/QDvxSOCYH/HczxVfxuF8HbpnsvI2+zacawNFpJNw9D5Snkai0Fvhe\n2L63Yv9a4D53H3f3IeAxYH34RvNG4BvhuJuAK5olPog6zT0gekOupDqzEp9F8zt9CviTKuOa1fiA\nDwJ/6e4lAHff12TxObAwbHcIPHYTAAAF4klEQVQBu6sJzt3vA/pOccjlwM3hpXQ/0G1my4C3AHe7\ne5+7HyJKVOvDvoXufn947d1M9e+Nusfn7sPufm84dx54mOrfG3WPD8DMFgAfAf6q2rhm23xKABNN\nI7HihGMeJcq4AL8GdJrZ4lC+PlQblwC/RDQgbTHQ7+7jpzhnI+M7KjT9vBf4zyaL78PA7e5e6wrg\nsxXfS4DfNLNNZnanma1psvh+F7jDzHYS/X9rasqoIv5Tle+coHy2zDS+o8ysG/hV4J4mi+//AH8L\nDM9iXDWZTwlgOj4KvN7Mfgq8nmiUcdHdv0t06emPiZpRfgIU51l8nyf6FvnfzRKfmS0H3gn8wyzG\nVHV84TEtwKhHIzb/CbixyeL7I+Ayd18J/DPwd7MYX+yYWYbob/pZD5NMNgMzuwh4ibt/q9GxnMp8\nSgDTmUZit7v/uru/HPjzUNYffl7n7he5+5uI2vGeBg4SVeUyk52zwfEBYGYfB3qJqpPVmo34Xg6c\nA2wzs+eBdjPb1kTxQfSN7Jth+1vAhc0Sn5n1Ai9z943hFF8DfqHK+KqN/1TlKycony0zja/seuAZ\nd//MLMZWTXyvAdaF98UPgXPN7PuzHOPM1btTYbZuRB1ozwFncawT7vwTjlnCsc6+64jafiHqwFsc\nti8EngAy4f7XOb4T+ENNFt/vEn1zbGvGv98Jj6+lE3i2/n6fAN4ftt8APNgs8YXbAeDcsO8q4N9q\n+BuuZvJOzLdxfCfmA6F8EfAzog7MnrC9KOw7sRP4shpfg/WO76+Afyv/zWu91Tu+6Zy30beGBzDD\nf9BlRN/sngX+PJT9JfD2sP0O4JlwzJeAllDeSrTmwBbgfuCiinOeHV7o24iSQUuTxTcezvdIuP2v\nZorvhPNXnQBm8e/XDXwHeJyo6eVlTRbfr4XYHgW+D5xdZWy3AnuAAlGt5yrgA8AHwn4D/jHE/jiw\nruKx7w+v/23AlRXl64iS1bPA5wgDR5shPqJv2g5srXhv/G6zxHfCuVfTpAlAI4FFRBJqPvUBiIhI\nHSkBiIgklBKAiEhCKQGIiCSUEoCISEIpAYiIJJQSgCSSmX3AzN43g+NX12NKXzPrNrMP1XoekXpQ\nApDEMbOMu3/R3W+erfOfYnc30bTPMz1nuvqIRCamBCDzUvhG/qRFC+ZsNbNvhNk2X2FmPzCzh8zs\nrjBlLxYt0PIZM9sE/IGZ/W8z+2jYd5GZ3R8W+viWmfWE8leY2aNm9ihwzRTx/E5Y+ON7hFkpzeyP\nzezBcN6/CId+AniJRQvAfMrM3mBm/1Fxns+Z2e+E7ectWkjmYeCd4Xf4pJk9YNECN79Y1z+qJI4S\ngMxnLwU+7+7nAYeJPqT/AXiHu7+CaObP6yqOz7n7Onf/2xPOczPwp+5+IdEw/4+H8n8Gfs/dXzbN\neC4Oz/16M3szsIZoHYGLgFeY2euAa4FnPZoY7o+ncc6D7n6xu3813M+4+6uAP6yIU6Qqp6qqijS7\nHe7+o7D9r8CfARcAd0dr/ZAmmt+l7GsnnsDMuoBud/9BKLoJ+HqYY77bo4VCIFrx7K1TxHO3u5cX\nFXlzuP003F9AlBC2T/N3myzm8symDxHNMSNSNSUAmc9OnMjqCLDZ3V8zyfFDsxxP5fkN+Gt3/7+V\nB5jZ6hMeM87xNfHWU5wTYCz8LKL3r9RITUAyn51hZuUP+/cQzbTZWy4zs6yZnX+qE7j7AHCooj39\nvcAPPJrHv9/M/kco/60ZxnYX8P6wLCBmtsLMTiNKUp0Vx70ArDWzllDruHSGzyNSNX2DkPnsKeAa\nM7uRaKrlfyD64P1saNrJAJ8BNk9xng3AF82snWjO/ytD+ZXAjWbmwHdnEpi7f9fMzgN+EpqjBoHf\ndvdnzexH4ZLSO939j83sNqJpl3/GsSYjkVmn6aBlXgpNKf/h7hc0OBSReUtNQCIiCaUagMgMmNlb\ngE+eUPwzd/+1RsQjUgslABGRhFITkIhIQikBiIgklBKAiEhCKQGIiCSUEoCISEL9f4tOzVoPcWjQ\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# create ohlc prices\n", + "df_res.head()\n", + "print(df.high.count())\n", + "sns.distplot(df.period_return)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "#df.drop([\"_id\"], axis=1, inplace=True)\n", + "df.head()\n", + "#df.to_excel(\"df_res.xlsx\")\n", + "import dill as pickle\n", + "with open(simname+'_fx_features.pkl', 'wb') as file:\n", + " pickle.dump(df, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "dataset = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFUXwOHf2VBFepMqIL2pgBQFO2JB7NhBsYOgKCD6\nqWBBUaSJFRVsIGBFRRCkCdIElC49SC/SQkhIu98fM7s725IN2WSzcN7nwdm50+4ESU5uOVeMMSil\nlFJKqdjginYFlFJKKaVU+DR4U0oppZSKIRq8KaWUUkrFEA3elFJKKaViiAZvSimllFIxRIM3pZRS\nSqkYosGbUipPiMinIvJqJseNiNTOw/o8JyIf59XzlFIqUgpEuwJKKRUNxpjXol0HpZQ6GdryppQ6\n7YiI/uKqlIpZGrwppSJGRBqIyBwROSwia0Skk98ppUVkiogkiMhiETknxH2KishQEdkmIkdEZL6I\nFM3kuTXsbteHRWSXiOwWkT6O4wNF5BsR+VJEjgL32WVfOs5pKyIL7LpvF5H77PLCIvKWiPwrIntF\n5INgdbHPOywijR1l5UUkSUQqiEg5EfnZPuegiMwTkaDfg+136SUiW0TkgIgMcZ4rIg+JyDr767hW\nRJrZ5f1FZLOj/KZQXzOlVOzS4E0pFREiUhD4CZgOVAB6AuNEpJ7jtDuAl4DSwCZgUIjbvQU0By4E\nygD9gIwwqnEZUAe4CnhGRK50HLsB+AYoBYzzq/vZwFRgFFAeOA/42z48GKhrl9UGqgAv+j/YGHMC\n+A6401HcGZhrjNkHPA3ssO9fEXgOyGx9wpuAFkAzu+7d7LreBgwEugAlgE7Af/Y1m4F2QEmsr/OX\nIlIpk2copWKQBm9KqUhpDZwJDDbGpBhjZgE/4xvMfG+MWWKMScMKoM7zv4ndwtQNeMIYs9MYk26M\nWWAHR1l5yRiTaIxZBYz1e/ZCY8wPxpgMY0yS33V3Ab8ZY74yxqQaY/4zxvwtIgI8DPQ2xhw0xiQA\nr2EFocGM9zt2l10GkApUAs62nzHPZL649Bv2M/8FRjje5UHgTWPMn8ayyRizDcAY87UxZpf9jhOB\njUDLTJ6hlIpBGrwppSKlMrDdGONsIduG1VLltsfx+ThWsOevHFAEqxUpu7b7PbtyiGP+qoV4Xnng\nDGCZ3d15GJhmlwczGzhDRFqJSA2s4PR7+9gQrNbG6XZ3aP+TfJdQdUVEuojI3466Nsb6eiqlTiEa\nvCmlImUXUM1vHFd1YGc273MASAaCjofLQjW/Z+9y7GfWyrU9xPMOAElAI2NMKftPSWNMsKATY0w6\nMAmrlexO4Ge7tQ5jTIIx5mljTC2srs6nROSKk3iXoHW1u34/Ah4HyhpjSgGrAcnkGUqpGKTBm1Iq\nUhZjtab1E5GCInIpcD0wITs3sVvuxgDDRKSyiMSJSBsRKRzG5S+IyBki0gi4H5gY5mPHAVeKSGcR\nKSAiZUXkPLsuHwHDRaQCgIhUEZEOmdxrPHA7cDfeLlNEpKOI1La7Yo8A6WQ+jq+viJQWkWrAE453\n+RjoIyLNxVLbDtyKYQWo++3n3Y/V8qaUOsVo8KaUighjTApWsHYNVovVe0AXY8w/J3G7PsAq4E/g\nIPAG4X2/movVNTkTeMsYMz2ch9njyq7FmlRwEGuywrn24Wfsey6yZ6r+BtQLdh/7XouBRKxuzqmO\nQ3Xsa48BC4H3jDGzM6nWZGCZXZcpwCf2/b/GmugxHkgAfgDKGGPWAkPte+8FmgB/hPP+SqnYIpmP\nl1VKqfzPHl+2FShoT4aIaSJigDrGmE3RrotSKv/RljellFJKqRiiwZtSKiaIyN0icizInzXRrptS\nSuUl7TZVSimllIoh2vKmlFJKKRVDNHhTSimllIohBaJdgZwqV66cqVGjRrSroZRSSimVpWXLlh0w\nxoRapSUsEQveRCQOWArsNMZ0FJEyWEklawDxQGdjzCH73GeBB7CSVPYyxvxqlzcHPgWKAr9grW2Y\n6aC8GjVqsHTp0ki9hlJKKaVUrhGRbTm9RyS7TZ8A1jn2+wMzjTF1sBJm9gcQkYZYCzc3Aq4G3rMD\nP4D3gYewklnWsY8rpZRSSilbRII3EakKXIe1bIvbDcBn9ufPgBsd5ROMMSeMMVuxMpe3FJFKQAlj\nzCK7te1zxzVKKaWUUorItbyNAPrhu05fRWPMbvvzHqCi/bkK1sLKbjvssir2Z/9ypZRSSilly3Hw\nJiIdgX3GmGWhzrFb0iKWUE5EHhaRpSKydP/+/ZG6rVJKKaVUvheJlreLgE4iEg9MAC4XkS+BvXZX\nKPZ2n33+TqCa4/qqdtlO+7N/eQBjzGhjTAtjTIvy5XM0YUMppZRSKqbkOHgzxjxrjKlqjKmBNRFh\nljHmHuBHoKt9Wldgsv35R+AOESksIjWxJiYssbtYj4pIaxERoIvjGqWUUkopRe7meRsMTBKRB4Bt\nQGcAY8waEZkErAXSgB7GmHT7mu54U4VMtf8opZRSSilbzK9t2qJFC6N53pRSSikVC0RkmTGmRU7u\noctjKaWUUkrFkJhfHksppWJVUnIyrb56mxZFyzIr6QAI1h/cW0fPiL0vnuOGRwrUoP/td+VhjZVS\n+YEGb0oplYXzRw3lsGPfCCB2YGUHU3VLlmT63Q9l677dZ//AUWBW0n+Om9v3dG99Dvj6MC3eWrpG\nKXVa0eBNKaWykJ71KZCR/fHDY6+5I9vXKKWUBm9KKZWFlT2fjnYVlFLKQycsKKWUUkrFEA3elFJK\nKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkoppVQM0eBNKaWUUiqGaPCmlFJKKRVDNHhTSimllIoh\nGrwppZRSSsUQDd6UUkoppWKIBm9KKaWUUjFEgzellFJKqRiiC9MrpVSMqTnudcAggPUf71bEgMC3\nl97HeRWrRKeCSqlcpS1vSikVYxoVONP6IL7l4tivXbJs3lVIKZWntOVNKaVizM+394x2FZRSUaQt\nb0oppZRSMUSDN6WUUkqpGKLBm1JKKaVUDNExb0qpfK/eK8MBMO4C5wxL8SsX2Ni/d15WTyml8pS2\nvCmllFJKxRBteVNK5XvrX9CWNKWUctOWN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhmjwppRSSikV\nQzR4U0oppZSKIRq8KaWUUkrFEA3elFJKKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkoppVQM0eBN\nKaWUUiqGaPCmlFJKKRVDchy8iUgREVkiIitEZI2IvGSXlxGRGSKy0d6WdlzzrIhsEpH1ItLBUd5c\nRFbZx94WEclp/ZRSSimlTiWRaHk7AVxujDkXOA+4WkRaA/2BmcaYOsBMex8RaQjcATQCrgbeE5E4\n+17vAw8Bdew/V0egfkoppZRSp4wcB2/GcszeLWj/McANwGd2+WfAjfbnG4AJxpgTxpitwCagpYhU\nAkoYYxYZYwzwueMapZRSSilFhMa8iUiciPwN7ANmGGMWAxWNMbvtU/YAFe3PVYDtjst32GVV7M/+\n5UoppZRSyhaR4M0Yk26MOQ+oitWK1tjvuMFqjYsIEXlYRJaKyNL9+/dH6rZKKaWUUvleRGebGmMO\nA7OxxqrttbtCsbf77NN2AtUcl1W1y3ban/3Lgz1ntDGmhTGmRfny5SP5CkoppZRS+VokZpuWF5FS\n9ueiQHvgH+BHoKt9Wldgsv35R+AOESksIjWxJiYssbtYj4pIa3uWaRfHNUoppZRSCigQgXtUAj6z\nZ4y6gEnGmJ9FZCEwSUQeALYBnQGMMWtEZBKwFkgDehhj0u17dQc+BYoCU+0/SimllFLKJtZwtNjV\nokULs3Tp0mhXQymllFIqSyKyzBjTIif30BUWlFJKKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkop\npVQM0eBNKaWUUiqGaPCmlFJKKRVDIpHnTSmlcqT+gOHeHbE2RryfPWX27uI+j1K6aNE8qp1SSuUv\n2vKmlIq688oUsT74BWuhaOCmlDqdacubUirqJjzxWLSroJRSMUNb3pRSSimlYogGb0oppZRSMUSD\nN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhmjwppRSSikVQzRViFJKZUP7d4ayEexcdMYnN11VYP5j\nfaJVNaXUaUJb3pRSKhs2eT6ZgGM78rIiSqnTlra8KaVUNmx9/OloV0EpdZrTljellFJKqRiiLW9K\nKQX8unYtj02fZu2I1SVq/NZafa3NJdzZokXeV04ppRy05U0ppYBqYSx236RMmTyoiVJKZU5b3pRS\nCmhYsyZbnnwq2tVQSqksacubUkoppVQM0eBNKaWUUiqGaPCmlFJKKRVDNHhTSimllIohGrwppZRS\nSsUQDd6UUkoppWKIBm9KKaWUUjFE87wppVQQtd4e6l16XrzlW3vq2qZKqejSljellMqGxTu2RbsK\nSqnTnLa8KaVUEFt6aQubUip/0pY3pZRSSqkYosGbUkoppVQM0W5TpdQp4Y1fZ/Lx8pUY9+QCx3ZT\nv97RqpZSSkWctrwppU4Jz3S4AvCZGArA1M435X1llFIqF2nLm1LqlLHxWW1hU0qd+rTlTSmllFIq\nhuQ4eBORaiIyW0TWisgaEXnCLi8jIjNEZKO9Le245lkR2SQi60Wkg6O8uYisso+9LSL+PSBKKaWU\nUqe1SLS8pQFPG2MaAq2BHiLSEOgPzDTG1AFm2vvYx+4AGgFXA++JSJx9r/eBh4A69p+rI1A/pZRS\nSqlTRo6DN2PMbmPMcvtzArAOqALcAHxmn/YZcKP9+QZggjHmhDFmK7AJaCkilYASxphFxhgDfO64\nRimllFJKEeExbyJSAzgfWAxUNMbstg/tASran6sA2x2X7bDLqtif/cuVUkoppZQtYrNNReRM4Fvg\nSWPMUedwNWOMERET8uLsP+th4GGA6tWrR+q2SimVqZqjhgJYueTc39IE4rv3iV6llFKnnYgEbyJS\nECtwG2eM+c4u3isilYwxu+0u0X12+U6gmuPyqnbZTvuzf3kAY8xoYDRAixYtIhYUKqVUZrb21PVO\nlVLRl+PgzZ4R+gmwzhgzzHHoR6ArMNjeTnaUjxeRYUBlrIkJS4wx6SJyVERaY3W7dgFG5bR+SqnI\naPL0cO+OgLG3AKuHaH41pZTKK5FoebsIuBdYJSJ/22XPYQVtk0TkAWAb0BnAGLNGRCYBa7FmqvYw\nxqTb13UHPgWKAlPtP0qpfOZ0b+6u8e5Q+5PxWYbLfxv/iHanKqUiL8fBmzFmPoEr0rhdEeKaQcCg\nIOVLgcY5rZNSKvJWDdXWNV9Zh7Cp6ekUjIvL8jyllMoOXR5LKaWyKb6Hjn1TSkWPLo+llFJKKRVD\ntOVNKXVaefbXX/lp7TrSgRST4TPxwru1ukSNf7nNP1VIqG27KtV48oK2nFu+En/t20WNEqW4fvIX\n7D6eQIdqtahbtiIbDx2gecXKXFjpbBqXO4vktFQ++2c5Z5cozcGkRO6qdz7/HjvMN5tWkZhygjEb\n/vSpo/g9N04MGX7H3JmaShUsxEMN2vJwvYtO4iunlMovxFrMIHa1aNHCLF26NNrVUErFiOTUVI6d\nOEFaRgapKSl8NnMm9WvX5p9t21jybzwbgRMCYOwgzbquLPAfUFjgrrKVOatqVSqULEn1UqXY9t9/\nTF80j9qVz6ZpnTpUL1MGAaqXKUOhggVxiZBhDC4RDiUlcSwlhQrFiuHCGhdXKC6OuLg43PkxU9PT\ncYlggAIuF8YYUtPTMcDGAwd48bexHBdDa6lKh/NasD0xEVdGBhVLlqRB5cokpKay/eBBdh85Qipw\nWe3a7D1+nJqlSlG8SBEKuLTTRaloEZFlxpgWObqHBm9KqXB9/8efvPjd/IBUIc4g5wLg0zd0coNS\nSgUTieBNf/1SSoXtxe/mAyHmWdqFf+ZZbZRS6vSkY96UUmHTdCFKKRV9GrwppcJy+Ggi7V4abe0E\n6zZ17PuXz37mASqWKpE3FVVKqVOcdpsqpcKy90iC53N2R8ruO5qQ9UlKKaXCoi1vSqmw1Kt2lnab\nKqVUPqAtb0oppZRSMUSDN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhuiEBaViwA9z/ub1L2aRbgiS\nnkO8+yFSdSDQpkEV3uvZOW8qHIYGLwwHgqcZqVS4ALOf7RmVeimlVH6nLW9KxYB/tu23Arcc2LB9\nX2Qqkwd2n0ij3kvDqffy8GhXRSml8h1d21QpFVXzVq/moa9neAv81ktd/6KmJzlVfffPPN7e+QMA\nItbPIpdj6xIA4y0j8Byxr729/HVMPzCXBBIAw31VO3Nd9cvz8nWUCksk1jbVblOlVFS1a9yYfxo3\njnY1VBT8tHdBpsczjDuAC809kmD2gXkcsQM3F/D7gQUavKlTlgZvSqmoafzicNLcO8HG6wn0v6w1\n97drk/eVi4Aao4dYHzzLiRnPvnPrbnWKv/+ZvKxe1I295PR6X6UiRYM3pVTUhDNo4/PZixg8ZxGt\ngFe73sJTn3/LN8/HcFdqFi1JOdV04iAS7a+s+AWHbze9gWvqNc3dCiilcp2OeVNK5Sv1X7JnoUJg\na5y9W0RgZSwHcLmo9sRBmBDB2/lx5bmoeg2W79zJovSdnAEkAVUxPFa3A+9unMZhsb7cyWJ1P7pb\nC0WM435gjUWztlcXqUvVkuV4tNk1uETnwSmVmUiMedPgTSmlTgNL9m7lnnlfWjviF9xhPAGef8Dn\ncgRv/sf9j33X9mnOLl42V99D5Y258bUBcJEBQJz9dxznmTSSQRwAhjiqIBxEJI4m1dZFobaxRScs\nKKWUCkvLijXZcOsL0a6GOqW4G392Et4gCBUpGrwppZRSysclNTZFuwoqExq8KaVUhL0051fGrl9p\n7fjMnvXONt32QL+o1E3FruTUo2xOmM7iAyPA051pbd058OIkgzj7mMs+FgecV/x1alW4Os/rrHKH\nBm9KqVyzaeceOr37lbVjBzGL+j9MieLFwro+KSmJ84Z84DNhwSVwda1qXHNuI3r+MM0q91sazD3Z\noUeLpvS+4ooIvU34Lqlcwxu8KRUh4nIR5yoKFAKSs3l14VyokYoWnbCglMo1X85ezGsz7ESsdnA1\npsuNtK5XM6zrbxz1EesOHQuYbYpYQVyGvetcH9V/rdQN/Z7E5R5lr5RSUaazTdHgTanT0UNjP2fu\nzv8CEvoCbHz21EghYoyh/9yfmPjvWqvAb7Zn4L71Jdh853N5Wk+lVPbobFOlTiEjv5jBuBmrrB07\nGHHmOvNvUfLui2e/YYXCfPlq97ypcBTN3flfYKF7naRThIhQNK5gtKuhlMqHNHhTKp/YeyjBt+Ak\ngpEDh05ErD752YbTJEHvwHbXMLDdNdGuhlJZSkk5zvq9dQBvLrg4+5hLvPvuFM5x9ve2OPubXOUq\nu/KopqcGDd6Uyide63Uzr0W7EuqUlJiYyPlTh3kL/Lpc19z4PAVcujLCqeZI0r/M3HU7kEwcZ4Ok\nADsciXe9iXatv/0MR1CVDpxFk7IjKVO8eZbPKlTojEyPx2V6tEqW91e+NHhTMSkpKYWUlDREhAIF\nXHw1/g/+3baXpudWZ83aHcyZuwVrVDsULAAp6eBuxqpetRiPP9aBvi98ByJBl2H64v37qF69Qp6/\n16lu+sp1PDHJmiEaqjvYuf37uccpUjDvuw5rjRwKBKmb/TmzRebxG5Pm3u/TvA2PN2+bG9XNUrFi\ngbN73YHbeYgGbqeo1Qc/JJ1k4jCkE+9JIeKUjjuw8kz/cRzdw5r/boP/rBUWPIGeWOfH0ZNm1ft6\nzm5SbWeuvIcKpBMWVEz6bfoqtm7ZzxlnFCKuoIuPPpzjM/YL8O67/PadaSUAIxLwg7dq1ZKM+/CR\n3HyFU8KJEyk0f/5dz9f80fPPpkCJsuw4fJhBd98QcP4DH09kQbzdPZJF8GYEBnW8lEPJxzmxezdN\natTgkhY5GuMbtkgHb3HAiEs7cn3dBrlUY0tiagpvLpvOxkP72Z1wmO0kWlXIZLKD/a/Cc87SDv0o\ndkbmrSiRcPHMPoA3P5n/clzW1goU3GUVCpbkQOphz34p1xmUKFyMtmXO55s904gjjgltRur6qhEQ\n7vJYzar/G5X6xTKdbYoGb0pF06BvfuOrxauCBmBrBoc3Lq3+i8MDrnVv/e+7/oXTY6zbydqblMA9\nM75gZ9JBUhwBZ2bBG/iubTrx4m40LVs91+s6eO5XTEtbBkAlhD2SDliBmnvBe+e2KmcysNnjrPsv\nnu0Ht1OlZBXqlqtBkQIFKVGwBBsOb6BQgUI0LF0/1+uuVE5o8IYGb0oppVROHDlyhCUHBwPf2WPe\n3F2kj+NihGccXBVmc/bZZ0ermqcMTRWilFK5oPnIoRwiq25T6FChEh/edlee10+pSFpysDWBY94y\ngLcBSDdWt+lOLuVstkahhsqfBm9KqXwhPT2dRq+87dn3X/IKfPPe+ZQ7zxPY2D9n3auHMjvoSOHy\n677dOXrOyZq3agVdVk4B/JL0CjQoUoqfbzz1c/2pyGlfc120q6CySYM3pVRIn/86jyG/+g1LCJJA\nePWQkw+WVm/YwK3jpvjePwQBTB4k493yxNO5+4Ac+nxT8HVTjYF/kg/ncW2UUnktIsGbiIwBOgL7\njDGN7bIywESgBhAPdDbGHLKPPQs8gDVLuZcx5le7vDnwKVAU+AV4wsT6oDylYti89cFnkkXyH+Wa\nw0lhnxv0uQKVgN0CzYvF8fqdd0aqavnWRzfdG+0qRMXL895jsVnnNyM1yAxVrNmQVhn4TH5wzJZ0\nXxPnOZbhdz94rfEoShUqnfsvp1Q2RGTCgohcDBwDPncEb28CB40xg0WkP1DaGPOMiDQEvgJaApWB\n34C6xph0EVkC9AIWYwVvbxtjpmb2bJ2woFTea9zHd4ZoZuk+3PvLBvagaKFCYd2/25iv+GP7nuDd\npsAGnXV6Wrr7974cJjnM4A2u4EKuqN2WPUf2UrZ4OWbHz6EEJXAJJJFIvMRzJsVoUKg+ZV1l+PTE\nx0AGLoH+NV/hRFoS9SrkbnoXdfrJV7NNRaQG8LMjeFsPXGqM2S0ilYA5xph6dqsbxpjX7fN+BQZi\ntc7NNsbUt8vvtK/PNNmWBm9K5Z6mTw0PbO0KksIj0+BNoOYZBZjyfM+I1m37/v1cMfrLwOdHYMxb\nJDQZPQTngmfOMXzbHuwb7JJT0vTtyxiwbpL1VyMmMJ8b3rQlFYCJlw+NUk2Vyhv5fbZpRWOMezTv\nHqCi/bkKsMhx3g67LNX+7F+ulMqHBFiVg7Fup7p3Lr6Wrr//Yu1EeIzewaTjNP9uJFZyXTzPELv7\nz53HrZTEUclVlPXGCiM33vZCZCsShsS08NfbTcj6FJVDxhg2/fcpuxJ+J5HFjuWx/JPx2l3I9rai\nayB1q3eJQo1VMHkyYcEYY8T961YEiMjDwMMA1avnfjJJpU5XK4dZwdnl/3uX/UkpPscM0Livt/u0\njAt+DzMxbyRUK1+eDf/Lv8HjJfUbEV+/Ua7c+88dwdM1GOOYfQocIZ0jGcd8yvLaTTUv5KaaF+b6\nc+Zt/pMRe8fYa3R6l3CqIuXpe+7jVCpaKdfrEAsyMtJJTt/DCfZk67pksymXaqRORm4Gb3tFpJKj\n23SfXb4TqOY4r6pdttP+7F8ewBgzGhgNVrdppCuulPI1a1CPaFdBOXSo04itdXInMIxVI/aOBSDD\nscg6wG728+OO6TxSp2vU6pZfnEg7yoY93xKfMgEX6X5BvUtThsSQ3AzefgS6AoPt7WRH+XgRGYY1\nYaEOsMSesHBURFpjTVjoAozKxfopdVr65o+/efWr2UDgWLGAMsd+8YIw99WeFCwY2W8b0/5ewZPf\nz/IW+KUi6daiMc9c2z6iz4wV3adO5Jf9diubY0mrrfc8G971M75k+qH4LNc2Pa9YRSZ0yN21fC+a\n8QzONVS9Y94IXh5kbdMyFGPcxa8Hvf+3F76Xi7XP/4wxfLXZSrbrXmjeJVCcQaSRRjq/UkjKksZ3\nQAYZWGvuehemh93711CpvP5SEAsilSrkK+BSoJyI7AAGYAVtk0TkAWAb0BnAGLNGRCYBa4E0oIcx\nJt2+VXe8qUKm2n+UOu1t33OQm5/71Ce3WufLGnN5iwY8MvQbIHhS2+UfBHYrVil5pm9BFl1qxQpC\nWipULFGCAgXiMj85TBv37KXTu+OBEKsYOHK5jV26+rQN3hKyMV4smOmH4rM8xwB/J+7N0XNyi0sE\nZ4KYwxzjut97hj3bFGDUeYOoULRsHtY6OqzAzS3Ds03gWc9i8inA5VV+oXjhqv6XqxgTkeDNGBMq\nsdIVIc4fBAwKUr4UaByJOil1Ktn4776AWZ9zl2+kTKni2b5Xm8a1+fud6I4VS0gOPyjJ6biI9PR0\n6g0b6b1PkNbGzU89lcOn+Npx8CBtv/7E51newNsw4sKruKnheVne54vrczZAfFPn53N0fST90f6N\nXLnvTX/4dum7/I4XdPmXnJruqr042lVQeUhXWFAqBlzesj5LW9YPeuzBjm1y/fm3vvkp6/ccyrJr\n1b/lD4FPHriZ1rV9F7NuVqM6617JmwDyeFpa6IPGqrsxBongqP62X4/x3B9xbO0Q8smF08MK3npN\nnciPQbpNg+1Xk4LMvTNnKUga/jDQ89m/G9O/63VQo5voWLNZjp6XGzKwArjKlGd4m1eCntN1yQOA\nM0mvtwv3DIqTLIc9x8Ax81IMF5Roxz3n5M8xoOM3dQJ2O+przyC1/7+Lkwyf8YDX11qd95VUERGx\nPG/RonnelMp9aWlpvPz+x6yMT2IzeFqSmheDZcdDB29NK5Xiix5dItbdGqv+3b+fdj98yvkCD1x8\nFQlHkzmSkMhV9RvwxLQvqEBhZkkyl1GKey+7hFFzf+Yv0vFpd7SDv6DBm8DnF91EoaKFaFn+nJOu\n52sLJ/Pl3r8AK1AxBA/eRGDRVc9TpGDhk36WirzExAQm777cZ8ybNQYuMHirL29Sp+a1Uarp6S1f\nJemNFg3elIp99QcM9+74JfgFOFNgWT5bVWHl3r2sio/ns2XzeO7yjrwz+2eWgiOAtb+3+ryP8Rnb\nJ3YQLH6moJyLAAAgAElEQVTnBtzD8TlUy5v7GhETcMwZeG24Ne9zvWVH+znuv+fACQvepa38t/D9\nRe/63Of2hY/Y1/ueGwd83urjXH2H/O5gwj8sOnAr7ha4uCB53s4t+TVlS58brSqe0vJ7kl6lVAwY\n9cMcPp71l0/gsGJE9gKl48kpXDDA8cPTca81r/em4f98gzPnxIugExb8ZIQ+FBUfLF3M4MXzrB2B\n+2b9HLr+4rdjIr/CwsB5P/P5jpWO1A++A/3delTLf92c/mZcOjzrk8JQnjLs57+A8trUjsj9Y1np\nM+vBAeuzt03chfNfmgZu+ZsGb0qd5hau3x5QlpSUTNGiRcK+xxlFHGuWOoKxla/2Cn5BiEDnm243\n0/jss4MfzEcebdGKR1u0inY1PAa268hAOka7GtwzbRjrzQGf8XLuVR/cC8OLwINV21OyUBFGbp2M\nO8gMnioExrcaQPmi2V8Y/p02wVOK5JUjxw8yfMv9uN/PRQZx4rvwvTtw6tcwbxMriAjX1tTxbrFM\ngzelTnPjn7kXgMOHD3PJgLEYoNWz7/sEYYNvvZJrL2wS8h5b9x/07jjSfDR5/m3PPRCoWaY4va5q\nx6+r1zN17eaA+9w65jsQ+ObBzjSuqqvjxZpkUsM670T6CW6q1d4O3gK503y4BMoXLc2rS8bwR/Lf\nQbpNwb9r1AVMaPUOcXHRHWd5LOVQVJ+vTm0avCmlALhz2ISg5QZ45pvfMg3eChcILx1D2TOKUKxQ\nYUqeUTTT84oVyj8D4WuOCrJQusDWx5/O+8pkQ+tJb3DADqYyS9I7tMmN7Eo9wsMN2530s5pPfQ4I\nTNMB1pJdlxasw+DLHww4NueKt8K6/8LkFSGOBHYNZwD7kg9QqVjFwNPzUJVS5zCwVPDgVKmc0uBN\nKQXA1JcfPelrK5cuxZo3go+Ta/TccM+P2KU79rP0i+99xry5rXiuB4ULFyIcdV/1rqnq3pogY+i6\nNm3EC9dcFeZbBNekQGFWOZPlCmR3ReWHPxrBr6R604UIPFK7Cc9dck2O6paZA2G2gvVZ9QNgGL5+\nJhA4ycF/tunK64On38jM9rT9AWUHjx/m5oWvklm3qcuny9Xrca7ngkYXMGztMNbKIXtWLDSnGlcW\nuJKzzqiQ7ToGszNhG3/v/JMlx//gsOzx1NVKL+JeuN1dZu2/2OBzzih4ZtD7KRUpGrwppbK0dede\nOg0dHyLpbOhUIWsG9w47yW5yRjqRbm9LSA0vgMnMj489nqPrdx05wnRPIOX9any4aVWuBm/hJuht\n8d3LHANCTXIAb0D39FkXBz2+7JrXwq7XkROJ3Dx/IKmesWChZRhvAOf0Dj/Bmp+sQM9YgVuGgWWy\nnWVpY+mxN43Lz7ow7DqF8t2ur9hwfBWQkWk93YQCuRK4JaYe5MstNwA4ctJ5Z4cWoy231hmS5X2O\np+xh5o6r8MwyFedsU2h11gxKFNXVF2KBpgpRSmWpyVN+s0XDTNI7/38PUbp47rZCLIvfzh3jv/E+\nV2Bj/+zNlu01cQI/79oVkKIj6ExYT+AaKr0HxD/aJ1vPj4ZvNy3juZVTABDH2qL+LW/FBRZ1eili\nz80wGTy79FMWHl0LeFuuMl/bFKZePBKAF+a9zd9sCDjX3TrXulAj+rbIn0l0oy0jI40p8c1wBm/W\nyECDi8pcWWMGIt4wdV58bce5xnMuWC2NnvxxfmMR42hOw2o/5vr7xCpNFaKUyhOrhuWvHGtOd7oD\nN4c6g4cHDeD2HU2gzeiPrJ0g+eTC4piQEctKFgxvNnHJCD/XJS7euKDbSV9/SbWW/L19Q0B5hrGC\nhyIpZ+Skeqc0l6sA19damQdPCuwmV5GlwZtSp7Fze/m2qH3x4JU0bRJ6YkJuqz/QO5bNZ1ycvV2f\nWaJeR0AVKrFEhRLFfXsHHdf8r3VrHmiT8642p5S0NOqOsd7Jk6TX+VyfxLqOC52teF2eiWid3K48\nuxHrz24UsfulZ6RzzfQXOWRM0PFyLoGCwF1VL6ZMoeK8Hf8TAL9dMohCBYKPdUxOTmb9+vWMOzKO\nVSTbXZeBY+Cc5rCE5AUH6FS2E/Xq1cvWO2w6uJ43t7waJLGvb4oPa8wbvNn0K1xy6q6d2q7GJs/n\njIwMdu78nV0ZA3DJNrvU+sd0BsOoU72zz7XHjq9h53/tAd/UKO6vVpz9dxhn/8/uohdnVemfS29y\n6tHgTSnlcf/Hv7FsZHSCN58hHCFat9bu2k3DypV8yjY8l71Wwc1Pn9wi9M5Zp/6BWHz34N2khQoU\nYFanu+n/03gW2y/VWgzt6rXij63/0KJ6dWZsWcWFVRoyZtdaz/3c258vuT1kfWqNe81encF7vjun\nmvseFaQA+0kNMtsUNtwS2ZUW0kwGhzMZhpNhIFVgxeF4yhYubpcajqckBwRv1ioLgSsshBqT58uw\nhM0sPTicAYeeomHpumG/w57k7LUYZWRk4Io7dYM3p/3HJrMr4ynA2K2c4P77OM7TQGe/KzKfUR6o\nbI7reDrRMW9KqaCaPjXcE0R5vkuEmLCAwOo380fX6u7Dh2n3wVhP3c4S2GMHNP517lCxAtP27Qu5\nLFWwMW+jr+3EQ9N+xP1VOdPlYvVjJxcQ5kTNcdYkgewuj+U+d377HlQoUSaidTLG8NBvo1iZvhsI\nbHmDwFa5zMa8OWebPsJltGvUjlKlSkU9h1sw01ZPZE7GRMf4L+9YMfd6ok3lam5sFHoCzPB1V/pe\n62hl7F5vdm5VXeUxHfN2mjLGkHQsmeSkZP7be5hel7/hPegSrunWilp1q/LvzgP89K69hI/L+vYx\nZftIXK7T4zdFlUPBfq/Lg/Fe9V8a7n18kOAp065TsAI3hz2ZnPvePfdQa9iwsOs24677qFW6NBM6\ndWbj7t0sX7GCIfffH/b1kbT17uei8lyA86a8gDM5rifwso/LSf4/Uhh8Epx4Z5vCjRffeHI3zaYe\ny+4n3a6Ff7fp0KafhezinZMxMeQ9M7C+NmuYxo2EDt58F6hSKjRteYtBhw8cZe53f7J5zXZmfLMA\nY6egEnFZbdneX7e9F9kBW+N2NRgyIX8nF40lk6b8ycgxc60dzwB48e67W3vsn2rP3HcRl7U+l5Il\ns9ulkD817usYzwUBwZZPeZCyZlXKM+7Re3zu2fql4RwmePDmjh2dAdwLP05hwuoNnvOc99/0TPBA\n75yh3oDNZ8KCz9Z47lVMIBHY2lP/7eTENb/9jwRSAG9gNKFZfyqXLhfW9RO2TGHczmk48625t95u\nPKuly+VZigq+aj067Do+uuzegPu7g7fBjT6mWOFiYd9LqWAi0fKmwZtSOTD+h0W8+8V8aydY8IYj\nmHBZnwVYOD42g4AmTwcP1k42eBt5+7Vc1ThwULkxhvovjwgavLn3NzxvBWYrtm7l1q9+8HmOO/AL\nFrylpqZS/+1R3mf5BW9d69RhwHXXB33//CTcbtNZHXpQvWT21wbNj9LS0vjonwlMO7TIas0KlV4E\nb/DWu9IDtK6Rf9ahVUqDNzR4Uyfv7gfeZueu5OAtPC5vADbj6yfCzvx/qvv81zkMmf5XwPixR9ud\ny+OdLgegUX/vDFZnoLb2tazHxHlmm+INqsoXLMD+tDSrzH3QEbydrvYkJHDhT3YQan+dqwkcwpAo\nVu62G6U6b3Xukqv1aD71f3gXX7er41h79LfLXuDMQt70HUdOJHL9/IGOa3y7XmdfHn439vAlH/N7\n6l84W8qcM1K7l7uPS+q0Pqn3yq6BK+8jmaOZjnk7R5pzd6OX8qQ+Kv/SMW8qZnQ4f4B3x29gjPHr\n5i1UtACXdWjE08/dkKt12rkrOazzDh1J4qwKGrwBdOlwKdXKVaDnV7/6lL8/fwXvz1/hEwSP7noj\nFzWoGfa9e48dH7R8f2oa/7zwJOI3kKruoOBB4sZn8yaoazvmfXYkJfoG/vbnrY88HVDfSDureHG2\n3JV7494aTbb+zfqPaxPHrFaX/0QIP60KVPcJ3ABKZtLt2JbwZ4YCduDmKwPj+Rbz64HZeRa8SRhr\nMLgomAc1UacDDd5UvlLmrAK0aduES9s3zvVnzZnaL1fuO2DoJGYs3u7ZNwILJjyV6z/MAaYsXM0L\nn87ItDvzr3dzFtzsTkgI67wdhw4HLR/w9XQmrViTZZerU9+vf+Ktzp18ypY8+TAtR4z2nF9Q4MFz\nG4ZVt0h44vwL6LtgTkB5CUBEqPGhvVyR8z0zy/MWpNx9fnyXvM9/1ZoiLCKZrnEt+Tx9ic8xY9wB\nmwAm5PJYc3ev5qLp/fGmLzE+rXIW4Y7K7Xi0QfZ/Wfv+onfDPjch+RjdVzwJfi1jVs42b8vhB83G\nhjWpq8+K2+xrfO9nfbaOvNLk+7Drp1R2aLepUhF2YeehPvtG4PdxT1CwQO7/rrRwTTw9Rnl/YGQ2\nNm3xsMcpXCjvWwK27N7Hde+OCz4G7rqL6NCyZY7u/93K1aQkHef5OX947osY33Qnjmd+2LEjT035\nmWNAE4GtQBGBczAsFvj5trtoWKkS2ZGWkUHtj4Z6n0feBW8jls1i1KYF9n19719CYNmt2c/vNmXK\nFPZl7GOEbHHc19BVynI2ZzNIlgGG84GVnokD4acKEcc1XatfyX21r812HbNijKHLkocIHrxZz3cB\no1t8Ftb9+qy4HWvNU79uUk96D2+3KVhrkbrXEn2u4ZQc/zI3ZsOF9v3t93AvVSUZjqTC3joB1Cz8\nIOdXzdlavSrndMwbGrxFkjGG0YO/44ePFloFnnFfnn4Spm54I8TV4Vu/die9unzkfa7/7Fj7l96x\nEx+jytnlc/y8002zR4N3J/rvT3rmbupWq5CndcuJY4mJNBtmzxr0e6+HGtWl743XAdBkyNskZaR7\nLwyVs82xDTzme83WXjmbYFLjoyGZroc65+YHqFmqLKv27uT6aV8G1N17rvH8M9l6z7NBn5Walkb9\nb9/wOdcdMP1+RQ8qlclebrd3/5zGh3sWgGdsmveeoVOFBAZv7n3/Y7WlAlvZi3/A595ObPUSZYqG\nXqTrpj96+F3rnrAAkIFL4KPmwzgzFxaMDyU1/QQvr7WS1gYL3vrU/o7ChcNbniwU3+DNZd+/GhBv\nr0FaBJccB9xrkArXVllAkSLZn+m+Zd8I9iRZa8s6g1Pv2qYAVTi3+qIcvdPpQoM3NHiLpP27D9Hl\nokHeAp/gDUAiErxt27qPh297z7NvHPe3nmttxk7qTpXq4aUQUKe+eq8MD5osGILPas3u4vRunUYO\nY7V1V4zAd9fewPm1awNw75iPmH/8qGOyhgmoS/xjJ78ofXJqKvXHD3PcLzB4ixO4uWo9hlx680k/\nJzsOJx7j4llv4gzevGPe3IHZyQRv8PsVQ0hNT+Wquf0JHrz5rrDgwlAlrjyjL3oxaF1vW/CY/cn4\ntKz5bEO0vN1W8Ha+TZ2AFfD5XvNes3HZ+6JF0HvrLwG86Uq8weCZdKs7LU/qkJi4lxUHWtv1cAZv\nANaC9RULfcRZZ12dJ/WJdRq8ocFbXnjqnndZt2QbeNff8QR2zlazxq2r8NYn3aNTSXVaqP/KcOtH\nmDtgsqMFZ1DnDOSeaHMBPS9um+V9k1NSaPjeO94Cv5a3MgLLej5NzXeGep8XsqvT9x6eoO7hvlnW\nI1oafP+S/Smwtc4l8F27x7j1D+/4Mv8JC8uvHcTQ5T8wYe8Sv2u9wZsANQqUZvzlgV3Al816msxy\nt3kDL+hZ8w6urhZ8DVoreAsMzny2mY55C37N4zX60bDMuUGfmdtCB2/Qre78qNRJ5YwGb2jwlheu\nqfuMc4SytQ0SvAFMWzMo2C2UiohDSUm0GvqBt8BuaXOmLQnePWq1kLmAmd26Uq2s7zqKuxMSuOjj\nj0J2myKxn6D3nl/HsiRhh0+LnqfR2zEWzT94O1vgl04v8dXq3xkcP8NxTpBxbPhe6xJY1OH1LOsW\nKngD6Fb2Ku5sEpkxcPcufpBgwZ0zIAp3zFt+t2rreP7JsCbNeLo3BTrV/CtPJk/lthO7a3k+x4n1\nf54LF1Jxfb5/Pw3e0OAtGub/9jeDelpLwQQbr/bV3Ge489I3veUiGBHaXFaXhXM3eMpLlS3K4f+S\nAu7x4YSHqVnrrLx6HZWJpk8Nx/87xKphOU/FsWjzVu7/1Eqs6w6QGpcuzDe9M2+5TUlPp/Hrb3sL\nHAFbhaIF+aP346Skp9PwLf9zjCfI++au2zm/SpUcv8OppsH3AwG/MW3Aqhte8pxz7s8vOM4JZ8wb\nLLhqEC45+SX5Zm1ZypAdn9v3t+77ev3HaVohMLlzLHh97bW4uxrdY/LcAaVzokHzIt1oW+OegOsT\nExOZuPNqwBrXGScZuICq3MJu+QarOzP4hIU4gRYlxlKl3Plh1XVefG38J17EAS2rb7ZW9ImiUMEb\n5dfiisvfiTQ0z5uKit27jmZ6/M5L3vD+BACr1Q74c/5Gx1mGY0eD51k7cii8/Gsq9zTt7Z304J+6\no8nTw0Fg1VsnH8SNnTEnoGz14RNBz633imMChqNOrcqX5ItHugWcXyguLuSyWDlx36efMDfBSn/i\nTiA89uKruKxJk4g/K9/w+7tf0fGViN7+0pl98LYCelvc7qlwOfc3sla5uLxWCy6vlaOfc/lMAXxX\ncA2uUomaQctn7OyH/8LDGcAOvqUsF3GYeXhXSXVvrb/IG2oF5sXLTPW4Ufyb3iOgPNqBG0DhSlui\nXYWo0pY3lSuubvq89cExU3Xa3y9HsUYqO57/+Gd+XGMH2+IbNBUBxj11B3WrBKbPaP38CBLSvN9T\n3K1qa1/PfjBV76XhgRMTHPUYe9PVXNSoAQB1Xg+cYbvpJCcs/Bkfz+2Tv/XeK0gPjLu8BLCyR2x3\np7oFtrzBmhsGBpyXkp5Ky2kv499tWo0i/HDNi2RkZNB6+v8AKxCrJaXYyqFMU4VYz8tqzJsw9eKR\nkX5tpfKctrypfGvaylejXQWVA68+2JGT+Ru864Jz+XDh3zl+fqhfKgXfRendfn/sfi5+f6znHAN0\nfGM415UowtCEZDb1Cz+Q23r4UNjnZt4GnbdqfeVe69Q7A3bz7f8L+/p1Nw0M67zP1s1y7Hn/nrZj\ntZgnpPu2nG/Faq3MMM7EvE7CdcWa8svxwP9vMoxxXOP7/8TWwzt5cvVr1ChcicpFytGiXFPmbf2D\nNWwGvF2G7Yu25cHzcr5E2BN/3YlzXF6cOxUJUJxKPNVwEMUKFs/xc5QKh7a85QMditzt3XE3R1tz\n8Glz07kM/OKpXHnuoF4fM/+H1b4pQYC+797F5deeSt0U0XXjYyPZe9hemzMgxYX47VufO7Suw50d\nWtCwVvDksMkpqVzU3b2upQQM2ndvl3+Q/9b/vHrgcLalETDB4J+Xc1bXDGOoN3hE0AkL8x7smu38\nZpmp8a47EXNgqhDP7NJHvSlDvHneAq+Jv79vRAZYXz9hBGs57rn/kMYduLlR7v47HjXrZ8YmL/SM\ngWtCCdZwlDZSgRTiGHJZN4pnshyW0xWzn7IDPO94uRmXDg95/sJdKxi8ZTQl5AzKFi5Fq3JNmb1r\nPoc4Yl9vBW+1pQqDWg/I0XumpKXQd1VXfIM3d3JcS5szrmJp0lTHOf6zQ1282PiHHNUjVqWmHmL7\nXmv1E/fXK87+Xz7O/sfgLXfvi+e4C0GKr6J48dD5/mKJtrzFiPau27w7dnAmLmFc/CjKV8k8CW1G\nau4F1/N/XB20fOLbMzR4i6B2LerzzW/Bv9Y+7G9mRQsJzetVp1zp8H7oRVvjfuHnX1s7qLcVuAVR\nf8DwwGsFlj/TnWKFC2dZj3qDR4Q4Ymj38af0at2SXmGkDQlHISAlG+cv7HgPrX+2ku8OjCvPwIz9\nFAB6U5Kanw7B06rkDOq6PpOtOv10x5PZOj+nmv3yPN7WMGu7xm6LXMReANrPeSVgZmphcTHtspcp\nFOe7XvDMy8JfkB6gTeVzmVzZd3msO2tcH/b1iYmJPL72cazceZmnCnFPAHiz0ViKFvZNcrtg42/8\ncPwDFidNtc/1ihM4k6acTwOaVLgk7LqdagoWLA38gDXWrxhxUgTYRxwHgR5BAreHgVb21/0RoM4p\nE7hFira85YFQwdsHywdTq0mN6FRK5Uh6ejovD/uBmQu3Bm1N63RZPfp37xi1+sWaZgOGc9y94xe8\nOcuCdZk2f224t/tSsl4tAYHNfXLWmn3w+HGajX3P7znWJv6xPnT78Rtm7d7qU+5+n20PevO9paSn\nU/fzoUQieMuOut9a40+dqUL+uTl7rVPO4C07KyyUlSJ8f9kA4uLiCNc1v/ey7x88ncjktuGvceo2\n6s9RLGc52QneRjX7KuA+/Vbcap/rO7PTJeS7tU1/2nILGWz0vKe1lNaZuEgAhMJUIE7OJI0NuGeZ\nus+9sPo64lxZ/xKlsqYtbzFiRsbXUXnu9OnzGN51AhSCum1KsWF+AnIOmC1C1dZF+XDia2EtwOwv\nLS2N29u9wvHDKVYaEPB0uU5Z+XK2vikD3HLlYBKOnPBJNwLulRe83YrnNavEkFEPZLu+uWHmvLXM\nXLg15PEfZ6/PNHjbvXsfN/X5IqDbtFH1AowZ1CuSVc11/i1va94Ir/uz8QvDSSdIsOX/2aHuK97W\nubYVSzLmoW74/zhxj3nLTaWKBF/aqCFWa9K1Nc7xBm+ZKBQXR/z9/SJat+yypgLAhH+W8PI/v3jK\nRQy1KU63xpfxybrfiDfHfCYzXFKyLiPb+o4liz+6j84LgreAVpZifNved2WE5XvX89Tq0Z7ngRUw\nFUFIkQy8Kyxk/g43/dHdc60L+PrC97N8754X9MzynHC8ee43Pvv/Hd7BiO09gQxeWHUDcQIDG0+O\nyLNyqlnxZ1me4DtDu2bhp9h/YhaFpSzli11AocLF2HDQ/2tTRAO3fEaDt1NUctIJK3ADSIEN86y2\nCbPZ+tG2Y1ES97Z6kXF/Zn9YesLRJCtwI/CH5OYNu6nboGq27peUGDxFhL/9+xKzdd/cdNWlTbjq\n0pNPEXFT3y+Dlq/enkbLrsMQYPFnuTPWMdKWvdKd5i+8hwFuysY69/dc0JjP/gzenfzPgN40fnl4\npgkVKp1ZAoAFzwUGi7XfCBwrtbmv79fznKFWN51/C9+WJ7P+urtcLuJ7hF4G69am53Nr0/ByaUXD\nhlsCl5fyn20KsIkEnl8z2VPuztVtDMw9sjHgHr/tCD1ZZZcJ/PdbpljwrrBkn/VJsycDuG3Boz5r\nm37VenT2b+TQc/mdgG+LnHfCglV2hpRlYNMPWX1gcWCdMjICflFOS0vjow0vkcASnxY+n0XtHct8\n3VJuDBXLnpOj96hSvgVVyq8MKK/LHZ7Ps+Lr2s92SmbBtpqeOgE0KD2DEiXq5Kg+6uRpt6lSUZKU\nnMqlD7onHVgbZyvU+bXK8OGA+6JRtbA17msFSc56h9vyFo56L/uOg1v/Qm8mL/+bvr/M9inf8L/s\nP3Py5Mm8snkzB4E6AruBmffcS/nymY9DjaS+n49hUtoBT6uTc23Wr1p1ok39BgHXbPpvD+2njcV/\noXjv6nWGFTf35cxChQKuzcyuY4e4csZIz/NDdX061za9vnwTphxY6dlfds1rtJr2HIbg11prm8L8\nK9/0PvfIfu5eNtjzPs4JC971Tb3dsu4y33OdW3fgl+G5T06CtxMnTtBnzX0Bz/FOWPDWd3DTb4Le\nI5iha28n3Z6J69896xLvuqHuYK57vbknVf+UlGP8vN0a6+mu8wUlP6Fy2QuCnu8N3ny7TePEeOok\nQKNyayhWLDbG5eY32m2qouqahs85usuEi9rX5YURXaNZpRz5atIcPvjMWpvReGbgWhsjULF8AfYe\nSOPmqxrSu/t1OX5e0SIFWfxldFvXvl+wgoET7NQPQQLImQMepHyp7KU/uPiFkfz+yhMB5Z2GjWXT\nwcM+XayTe9xN3bMqhLzX+hcDg7ILz6kJzM5WndzWbNtGp6+/9Wlp+7RjRy6uWzfb96rx7luee7i3\n2V2UflLagcBCux/zzsU/Eh8kePtkyR8h7+duGTv3eys48l/qqkHBMvx4ozfp6vLdu7hr4cf4LI+F\n1eriXFnhUPIxLpnxRsBzphxY5ag0HD2RSOfyrZi4f1HmL+5QuWR5Zl8+NOsTHa6f97jn80PSmU+Y\n6GmlcyG0oSm9Wz8achZvjyVPcMweKRnO2qbeVihh5PmB4978JZ9IYtAGqzUrzj1hgwwggzi7G/jZ\nhr9kdouIKVToTPwHE4QK3Cy9gLdxJvotJpNodnaz3KymyiZteVMnpfdd7/DPXzuDLo8FcEu31jzU\nO/yZX/nBJdd5WwOCBW/OcVjzfsh/i4wfPJrIlX3tFgZHQFGwAKRYK+l4ArNGFYoxbsDDJCWn0Lrf\nuz7XBE7A8H1OsOWxGvXztpDN7teVCmUD03KMnDaPPzZsYtW+wwF1LACsyiRViHuVhWCzWt+95Tra\n1w8v+DrnLceMRucEhqeyH0RHIngDqDH2TYJNWLC2ju/PfmuPBu57W8T8j7kDs1Ii/Hnr8z7Pr/+d\nlXA3cG3T4El6Q+nzx2fMPbre53kuxz0XXjU47Hv5G/3Pt3y/b65PK1c9qvFWu5MfL9h1yf2eGbC+\nAVboCQvBWt561BzEh/HP4ezqtM6xArUG3MV6lgNrPF2t7WUgLRu2POm655Z58ZeQym4gsOXtoupr\ncbmCj/VU2aNrm6LBW7Rc0+BZIPjapu79WE/UuyV+L/f1stZUdAcwk0Z3o1JF76Lm13Z5iyPuoTye\nYMc38GvTrDJD+9+Z6/Xd+O8+bh80zufZ/vnf3O/hElj+TvBgqWnv4d5R7PgGb1880IHzGjWMSH1H\nTpnFB4tWgMCMJ7tSNZM8bPd/+DEL9iUEDd4WP/EQLd/+yLMfarbp+j5PEncSE3SCmbdxHfdOnxJQ\nF/d2wW33U7lsWZ9rkpOTqffl2z7nbrj3SeK3bqXDgsmeevaRYrxFIp6ccG5BgjfxfzZ24OQ4t1yB\nokdFVS8AACAASURBVCy6OfQqEBM2LGXg6imewC+z4K3Fzy+Q6qmD8QnOIPRqCeLoAnWue2oFTNb+\nnCu8rW/t5/TGmV7EJfBkldvpcM6FXD+vp+frEthtCt9e+F7Id3XruuQBcARkceKue2CQJgRvkXMH\nYm82mchzqzsTLHgDb563PjU/4cxiwbvkk1KP8cGmmx3P996rtNTh7no5G7OXFWMy+C2+gU99vcGb\npV2NTblah9PJKRm8icjVwEisluqPjTGZ/rp2KgdvHc60uiDF/QNHhDd/7UfT1vWjWKvTx+sjfmLq\nrH8Ab0DQqUMD+jpmkaampnLZHSMxQNOq0LRFNb78cYdPALFg4qmxfJI/93g3AARWv3lyY92uffNd\ntiQ6sqbZX7t1A570dHt9/+ff9J82OyB4m/loF6qVK0ud17wtf+GkCvFs/YJbn4kLT4RujTt06BDn\nj/8k8H6O7ZpuvWj06UhvvTzHjOecbQ+cfMvR+JWLeH61Y7UDZyub/Tk7Kyz4azTZSh0SbMybe983\neDN82eYxGpSqBsDx48e5fN7LAXnewlkey7tYu+9s06kXj2T+v3/xxrZPfO9hX3MlbXjswnuzfLfA\n4C10t6l7AXln+fDzxuMSF/1W3IZ/Ut6CntZS3+DtmXMmULToGSHrNHzdVRAw5g2uLvkGtStl1s0Z\nGTO2PgD8Q5wcALzv7QKalJpPqVJn5XodThen3Jg3EYkD3gXaAzuAP0XkR2PM2ujWLP+oWrditKsQ\nVO+732fdyh3eAhGu7NSEPq/eHr1K5dCzT17Ps09m3vVbsGBB5n/r21X2WNY/O5TDG3fdwG0f+aXT\nEXzGKx1KOhb0Wncr58YgM04BNuzYwbXjJ4V+uKOFMSs1Rw311M0Alxc6k4SC8GeIurUc6x3873zO\ntgcDA7ZO349h5ZH93gL73AU3P0Ll4qWC3n//8YSQdQ0VtD39zXB+kmO4W9hGNOxM77WTCNVtGj7r\n2i4LrRQdJaQwZcWaMOEeH+ddHst3/FUwma2s0Lb6+bSt/k5A+Q8rfuGLxJ+YtWABOGZplpHivN/a\nd0zdZy0/Ye2/axmyd4jfXdzjvCzvNRtHz+V3408y+Z/m2uKP0abGVQxcdQPpjvIhmzt7JznYY97e\nWncjGSYpyNg6SMdqeZt+tB/Tj0L3eic3zjNc7Wt+kqv3V5GVr1reRKQNMNAY08HefxbAGPN6qGtO\n5Za3/OSauo6EoeL9VXjqOuuvJjExiVtav+o9Tuysb3r1zUNJSra/zdrfk885pxxj3u4W+qIcuvKB\ntzmWnBrQxbo4l5ZCC9e3f/zNS1/7zuR0t1jNGfggZUt4Jy+06jscT/IHgTn97qVcuXLZfmb710aw\n/YSze9DavHhNW+5qlbMWh9pvDscdKLjf45d77uTa8d5B587xjFt6B//6r9u3j2snfhFwzdy77+eS\n8WN86u3edqnTgJevCG9iy/ZDe2k3+VNvgUBBgdRMuk233vNsWPd2S0lPp/H3rwW9lwQN3rxdkZ/X\nvJWu8ZP8AjsT0CrnGDXBkqtfy7JOzyz4gMVJG/2eZ21vP+tiHm5wU9Dr3BMW3C1u7aUVM1mEp7WO\nyM02DUf/lbeSVbepi4yA4G3qundYY37y/H3EBek2dQlU5CpuqZe9v2+Vf51yLW9AFWC7Y38H0CpK\ndVFhcOcvKlasKNNWDYp2dU7Ke8Pu5v7un/uUffDWPbn6zN8+yZ+JeNdt3xvy2NHjqZQt4d33z9p1\n6ZtfnHTXaW4JtSD95qcDg7QBU36m1gh7QoMjdUfLAoWY0L0nW3v6dn/XeHcol4wbE9By1xL4slsv\nCmUjVUe10hWJvy/3VlQAKyHwhltfCCjvOHk4m9KPBrnCzdBl69cBed4yb5kztJz2LC6BRR0Cf/f+\ncuaXjGYF7kArmPXHdgQtt8a8eWUYmIE1u9XbsgcT23gDtmFr32NZwl84x9h5ujldjtQjft2jraUt\n9zV7NLMXBaAjD/Azn+BstXPyvmMBulR7k2olrKEvZxQpQ0aS87i75U9wYShPY/5jNXuZxofr/+SR\net9lWZfsmLrVvd6od7JGRVdXmp79XESfoyIvv7W83QpcbYx50N6/F2hljHnc77yHgYcBqlev3nzb\ntm15XlelImHUZzP48rdVnn3/tUCDjcdynrP049hI5JsX9h85woXvjQk55q2wwJq+wb9etYYPC3qN\n+17jb7qZNtVqes7v9t0EZu3e4XeNd3tx5ap83smb+BQgOTWVep8ND3qNu9WpnsTx631WN3yNz9/A\nd8ICFAQ23ts/6Du4nTNxkOc6Z0vZso5PU6Ko77qc1kxTCN5t6j/pwHBt4XOYmrI5jJY3b6udf/Bm\njOGSWf3wBkx2q5PL/a7O5zrHvDkDL2tbQQwHHWPqXiz1COc2PDfgazLqnw9ZdGQpwYK3zMe8wXvN\nvAm1e/91h2fconNh+tebTCDOZXV6frbqFTaxHP8xb76pQpzdpBlB9t0tbwVxSYp1HfDISeZ6CyVY\n8FZc2tC6xqcRfY7ydSq2vO0Eqjn2q9plPowxo4HRYHWb5k3VlIq8+Ws2hh53FaT8ylY1WL1hF7sP\nZ2dZ9JPX9qnhHHEWOIIOAzQuBh/0fZSLXv4g4Piawd5Wr4b/845hcgdEfw94nMIFs7EkQw7Ne+TB\nkMc+bd6C+5Z5h18svqtLpsl6x9x8R8hjwbT/8j02JCUG/3t2ePKiaz2fKwD7/I6v7uzbknjixAme\n+PYjpovVctbW0QXsb91/e2hVtWbwg4B7LNqSjv0Zt2kxb6+fFXDGLyc2h9ny5ma4/dfXmdjB2+Un\nIvx+hf9YM3hjyedMT/RdocG7wkLwb/MH7EMue0zdy4c/xLXA2zXpspfYsvbD/1HRoeh1zEieAhi6\nL7/b0Z1pvbxVL3crWSFP4AbQtUlg6+bLq28BThAnvmPqAPo1/DXsekXaNTV1OHmsym8tbwWADfB/\n9s4yMIqrjcLPbJCgH+6SIMEJHrwUtwItLVpcWtyhuLtb0Ra3Foc2uLu7hiQ4xYpLbL4f4zuzyUaQ\ntnt+kJ2Ze997Z0l2z7xyXiogkbbjQCNRFC86muPKeXPBhZhBUFAwRXvPMFV02uu82Vd0nh/XlXx9\nppi8hHry1nDMZM6+1OwJwKURzodYK06ew+1XbyylQhSbZ3t2IH6cOGQbY+/dMnrRevgUpX3ZMpbr\n2IdNlTk3OnXHJghS0YLOIxrYwblK4sLzJvOYEEM49stkGVj4dSMqLhiHn64CVbkeS4AQHWkJbPoT\noiiSZdkYEKAQcNqgAyf/sJMKAWiXtgizHxw3acTFF+BUnQFq66bc64do5nTep/O1huK9eaDhgcK+\n2nR+4dYUTGVNDu++ekK9w5KenTPVpgCxdJ44+7GOGtO/fPOSlmd6q+d9hHwc54xpPRuAILWiqk99\nVgsr5GsSsWqWojXLns5DIX4aeYPJ3suw2Wz0PFsffXsshWgOyrGI+HFjpvPA6is9eCicwo3kwCMk\nz520XmuvAzGyBsCtW7e4GnoMN56CsBQ33gI/4J3kW84/W4+bsAgYQtF0JYn9ER+4/q34t0qFVAem\nIHmQfxVFMdxEKhd5+/hQNN4A7BvTe+RKzuzVrlDePxGv3wRRst9Mp8ibcu3EyI7EjRub0NAw8veb\nahwjz02XIC47BrQ3rZdrkFl498pQM6G7ducOXy343TTWfp3DnduQImFCdV5IaCg5J0wzETH7uRUy\npGdufakqeu3Fi/TcoXhCRJM4swJRgAk+Jfm2aAk8fjaK9V5s0ZEEFo3rM88fr92BVdjUjrxJP+3J\nmWgiYPZab1bkzT4kqr++pFQTiqWWSJcj8gaQ1ubOX7zR2TGStzVFO+ORwlwNX2LbT0RWKkT5abNb\nxxF5U/TY9OFbmxBqOXZpsXkOOy8o+PFkE8O6evLWP/skUiVMS8+z9TCGYQHC6J51BqkSpAvXvjMI\nDnnLHL/quhCqMQybiKrU9xrgcL6zCBOD2BnojX2Y16o9FkDJzAHRXvO/jn8leYssXOQtZvD04XMa\n+wyVDgQ5c0XtMmD3002XYmxH3nIUTsvUxYYUxX80ho1dzI5DfxlJg3zPu1ZFLin9n4L8XY2eK0fk\n7fwEI9HK08eo+6bM7VCuEB2qfGFa55J/AHUXrlff21QCPNQRkQ7FctKpWjXGbdrCL2cuS/Z09q8N\niFxxRL81a1gVcNO0x/6lStKyeHHT+JtPnlBu+ULT+cyCG3s6diU4OJjs88yE1UC8BGj8v3SMrN+Y\nsLAwPH+diF7nzT7nzdIGxtcxQd6UwoW/37yhxJYJhJ/zhnq9ZtI8jCrtOGTs49tPSre3yJdTjo26\nbxo5sCJvWs6bY/LWnCo8EO6yQzgPiFSnCFs44ZC82YAlPvMt9/865CU9zrbHPtSq77BQJlllvs38\n4SrRXfj3w0XecJG3mEQ1T9ljJpO30l9nIWWajKRKnZg5I6Q+fIN/aUbxMjGjsP9PQNna40E0em0U\nstqgdh46Nq8WoY0S9WWNKZsWMjy8/J8j3Juvu53mlgPyFh0UHzWdZ+9DNPsYJTwQYGXTuhTMnAmv\nEWaSqPy/VPTIwKxG3zlc58W7dxScaVTgt19H+ilq/9fA5R864h43Lp4zpP9LURmD1VydDfk4sK2x\nnVrmX8YZxlqSN0FdyWDPOfImzU0kwJl6A8j++3DTXKNKjXPkLS3x2fqVtWTFl779UBTvwidvMiES\nYK+c+3b/yUManR2DTQAvBPyEMAqShtfCG97xglAhMX/xd7ieN+WnDVhVYiYNj/xoOSYVSZnsM54W\nx1vIu3Wut+n0Qsss7zs8hIWFMexSHbmQQypW6J9ns2nchMuV5XU0qZDEZKdFzjmRXtOFzx8u8oaL\nvH1O6NR4OtfPPdB9Q0D+YpkZN7/NJ9zVp0eJ+hN1ZXiQKiFsmPvPIW8fCz+tWs/6y1pIxp5UFcuY\njiXN61uSNwO51r326yMRzMrzfuHGs+eGOeFV9NqTt2PN25AycWI2nT5F54O7zd0SLEKePTPloGN1\no8hz5vlG0haR5y2WIBJisCuSToD79iFUe1uCtVCv1+rh2v2hI2oRkLfztYYa7BT4YyD6UOip6iNZ\neGUnMwN22s11TN5sAswp0IF2Z6ZbzrHpcuq0alPNI2c/Vp1jUU1q+IlsS855C5+8GatNI4udd5az\n/9lKg+1BeZ0jb7FJTvucv5vGfkzsD8wmvwrDTeiAG4eA2NiEa8RjHEF0BF6TPekREiVK/wl3+s+C\ni7zhIm8A1VLqdIjsQp2FKuRi5LJOFrNiHlXz9Tesrbzecnb4R1nfhX8Wcg2Uc950hMUq580K+69c\np9Ua3ZegANcsuixYifQiwPXuXdUk/ZjAw9evKbZ4lmpf+qkjZAIEtunFzv37aXn1sImk3WwZtTZZ\nWZbrhHDDDZuCnuwJNtFumnStT6KShMZPwKSH21QbegJWzj0LwUHBHOY2+pywJmmK0a1Q7SjdQ7td\no7ksPo5y2FT6ibof+xw0M3kzk7sPRd6cxYTLVQBwQwn1GkV6JakQe+kRqJVqMSmSZPkge7pxZw33\nQvqgz4UTkAs+1D1pnsn8GW8iCDH3N/Vvxr9RKsSFKOC7buX5fbJc1p8C6reryaoRUtPsoYvafbR9\nfCyR3vZt53DtymNAa4+k5KLt3P3PUCEv3lgOv9l1WFAIxsLBjcid9cP2EhRFkQKdp2jrC3B2qvOh\n0OfPX1NqxFx1fueKhWlbuWy4c876B9Dg1/XamlFEmZzZDcezvywBQOFJM3geFGy0b7HOkxcvSJnE\nuu1UlqmTsCd8FVKnYX79xrx8+ZL8i+aaPW8O1tEj87zxGHLYYgD+jTQx1eorR3FVPRLQh1ybJcrO\n4lfXwrWVjfg0r1gJgPR+CelxcY1pTOJ3oWwSbptkQo4/iXoS+6hi7fjmWFQf8AQ2lDa3ytJjzJGJ\nnOUKIKjErZWtCeWKlgOg9YnmUVw7phH5340XoXdIQeTI2yb//GiEDKp7XrAclzVDXbJSN9J7cuHj\nwOV5+w9i9erV/NJtPwgCeerF4smTUKZOHUrixIkjnvwZoGJZjSTak5+de/4ZyuAVWk7i9XvRIXn7\nY1JrUqaImf+PtuNXcDzggcE+AszvUIdWP683kY9lbSqRN2/eCO0W6zVZrj3U5m7u1YIaExeoY/Tr\nXRrVjaUHDzPS94hhzpTvqlElf86o3JoBoijiNWaKKRTq16cb2cZPMhQ73OjpuCLairztrtuAL9eu\nNN6XMzlvOpKjhYFFmmbNw/AvnWudpaDLkjFssKg27eiWiZniLXVcZAoWootCf/Y32DeL9Iq0y1CB\nZnkqxch6etQ+0BFz+BTWlPw5nFlmSORN239RitOmiOOH3jlnxnKFUwaRXoBx3s6FOC882Memp5Jw\nsZudp0857pZrR6TuITI47n+cB7TATYDC8XeSOvXn2S/73wxX2BQXeYssAq/epV3FcdoJfZ/SQMfN\noCODqvnl8nVB/UciKYLA1tNDHc5z4cNgxII/WHNc8rroyVS5XOnZfeWueqwnH8fHdSZOHDd7UxHi\n/ftgyg+ZwTP5Y0VZr3uZHLSuXt3hvCVLljDS7zEI0MgGISKsAr4RYPQgozdwzpw5THz0RgqV9teu\nPXj5kjIz5jvssKA/f6Blc9ImSxbh/Tx//ZoCv842nc/qHg+/oDd261iva1+A4d+yB25yyNZjwThZ\n8NaaCJ7+tgNJEyTEY8kY7LsmxJRUiDRVDpvmrEDzXKXDe0sMaLl1JmdC74VL3uyP9Tlviljvl7t6\nYCZimvyHTQDfsrrKXhyRNznUij5sCkr4dZnPPKfvzRHGnxnIPa7pyJsWhpX+YrTj9OThx3zGHq8T\nLzUgSJa+/hTkTY9Hf1/k1LPvUN4zgEqelz/K2v9luMgbLvIG8PeT5zTKKfdF1OW8LT4/NFyV+JjG\n8QNXGNhuibq+/qcoCFSqm5ueA61lBioXG6YdyJ8iq7f0InGSeJbjXfi4MFScCnBidEfixjGKdd57\n9JRKExapY8BOW033WgS+8UrJyKbfs/XsRbqs3Wawr84VYHC1cjQqWlC9HF7BwnW7vLeN5y7Qfcs2\n816A5fW+xSdTpnDv++Hr1/hYkDdjMUUElaKCds+OvHWC3pNnZUM315KACeDf0Oh1rrN2OhdCnstj\ntLGjC9ak75lN6rH8F4ogwL4qPUgZP6HBTv6NgyRtXgtCGHF7LFE3VllHOjckfT0q5ioKOCZv5pw3\n5GsOihGcKljQjrt7dMM7VT4iix1XNrDl/VI7e2byBjA834ZI249pvA95xpZb5cCk3abLrdOFUkHU\n6bx1pozH59mL+Z8KV86bCwDcD3hieb5pvsHaJ62SnC0I9J7ehC+/Lhrj+0iRIrFEHsOMDwRZ8sfh\n5yXhh2m+b12KpfMP6j/9nSJuQUHBVKs8Xp0DsHxlW1KnTh7p/dtj7i87WbrhFGD84t+/vpfjSTGI\nYs0nGcJ/9uTj6NyuuLnFfIJwhDpvwPN370llR95+3X/cKfvKb8fa648YCVTxzsMV7zymcTmGSvsY\n6ruHoVv2qOevDZQI2s+79zHl0EltgsU+a+XPS638eRFFkWwTjKTPJ1MmSs6YwYOgIAOZ8u+qhVRT\nJUhA1UTJ2PLyaTh3AoHte4Zzx/Dy7VuKLJ3BuBI1uHjrFgU8PBh+eBP35OuX6nckfvz4eCwcazRv\ncU96CAIkBs40NKcLLK7WmkKbJhrOeQJ1sxakbtaCpvGOEL3He0HtbVpqex/1XDVyq8QNYHf5iXy5\nyyqULUR6B3GIQ4jgXPu4jO5Rq5CsmLM2FXG+QGPYhVpIFZvWnjbzcRjJ8KJJTvODQ2Rw9cZRLvIj\naqcI9ffJJhc+tMeNXXjSnpv0AV5hfr+ncDRwAz4eO6O1FxdiFi7P2z8EVf+nE4XUEbEk6RKz8oL0\nAV0ttS5Pw15YVzdn1aWRJE6c6APvOPqoVHKEdiDfxrYD/Q3q6BXK6avt1BgQO3dFv3AhNDSML79W\nCgukc6N+qk2ZEl7Rtv3k2StqdJzrsJtB3DgC++dHXUft9LWbtJq01kD4Tv/snL2vBk7m5kvjntb2\n+J7s6c1eXFEUtdZY8jrHB3cgfvzoiReHhYWRa/hUk4dKT2b1xCaDm8Bt+bPs+zxeDK7lXD7ZurNn\n6bFzp8OQp3+XHhwMDOT7TbrkfQsvmp68dd+8jrV3byi7RRAgoK1zhF8lb7p9pIkTnyMNHHs+1IpT\nQ9hUeg4S7TxjghBz+W72KOqrEUh7z1tr95IsCDqI4uH7NqUPXb2tk+HvP/uLpmeUMLF1tenmMtPC\n7ZIw8fAMjnHOsAe9jRxxsjOg4E+RvsfN/ivZ+WI9kryIfdgUxuRfbTlvwoXuvOGaTJ60CtiuniuI\nF8+6cCYmsPZGK0ROIajkLQyITe0sJ8OdtzfQC72XLgWtyeXxz8gn/ifAFTblv0PeJnadxfYFsmdD\nR8SGbu6MT0nJ7b998wEmtVqmXgNI5OlOmlQpGDy3HclTJzXY/Cpbd0KCwkzyIr4Bk9QxXetO4eq5\ne+r1pCndWH7QmMNhhaqFBkCIZlPJeZP2D1tPDg13fuUSww2dGzQiIb3YccCsYdW2zRxu+D3VERaB\nXTsj/wH9MSCKIr3G/c6B83fM3jUBfu5ZhyL5oi4BMG/DXmb5njJ560QBmpfPT9e6FaKxeyPy9p5s\nIG8Xx0ZPvDfnUF3bLHnfE2qU56vC3lLIVPFI6b677TXhrv9k3MPLt2+ZsmcfSy5elMUYNBuWhFBH\n3vRwRqQ3r82NC4SiejDs1imRJA2Hn983zLHKeXMX4EpTxVul28Oy0fJ7EF7Om86mzr59yPVa3UEm\n+/Y4+tCPNkcXoyejik2bAKeqj+DUk2v8cGyhaT2FpBSwJeM8T1DIW5H4nkwp2Y5yO3uqdvdUkN5b\nv79v0+6sVjRiaJNlEVpVrgFkFlIzpeRgdR8Nj7Q12AErqRBYUHRBhO8DgN/Di8y8Nxxr8qaFIPXH\nHztseuXx75x9NsZuT1Ajwy7ixk0azkwXPhZc5I3/Dnn7VKiWXac/JSfI+F4dS7U8fSFMIlMC4HvJ\nSOjevHnD1KlT8fb2Zlq/I3gUh4Cj0qf+qt3dSOJApkFBVMhbhS9Hy2O0/X6u5O1jomB7LVwoCjCs\nQTlqlXEubDZl8z5+2WV8Sj89rjOxYhmLGYKDgykwQCfZoCOLbUrkoVutyoSGhpJv8DR1iKPG9Fbk\nLWkcgSM/dXVqz1Y46B9I0zVrDXuzJ8z211IjklCAb7zy0K5qVYM9j5m6cKQd8fL/obuqIffwxTOK\nrZxnt45oWs9Rh4VAC/K2+foFOh3dFAF5i6hgATILCdhUuxMlNozmbTgivYfKdafVvoVc47FJN07f\n29SGmSwO8KrNz37rea4jUMq1xQW60vKspsOnkDd7LLi8nt8e7ZbtW+XFOSpYMOe8JSEh04tOosWJ\nNijFDPnIR/ei3Wl7opm8olkbTt/btLhQjYYFmpr2eej8bjaK003kzaghJ3VZsAnQN/eflvcbXVx/\nvJFTz4Ya94CLvH1OcJE3XOTtU0FpTi8aP83ZcvHjaL258HEQEhLCpYD7NJ4lh4MEOD9RI10zNm1n\n9r4LDpu+iwJ8552NoQ2+IigolALDzOTt+xkLOPHwmWnuF2mTM+cH6Usyx3BjJfTVgZH37k3evJkZ\nV65Z7vNGdynfKsuUSbrzonpfAZ3NHTGWnj7JgEO7LYlfGuDIj+HnwdljzLHtzL50ys6WkwULujkR\nkbf/Acfl0OmLoHcU2zwOwiFvS0o0p1AqTwAKbx6odnwIr2AhrS0xr3nOa7RepmAkb709a5MjThp+\nuDbLaEP+6Vt2LLFtsam+v6s2Xxei3FRG6sywJWAnc+6tsfDOaYRrRfG5RATnyJt03DH9IObcHyqN\nRVo3tZCBzrnGEzt2bAae/xr7Ru82mbgppPFDkbeIcPh2Fx4H75T3Ju2xuuelaNkMDnnGlft5UXPr\ngAz/O0rixBmiZfffClfBggsmqHlvelKlC7MiQM+pTajwTfQKFhbu6E1zveSIHap6D0TWQCB2XDeC\ng8I0oidvJ0/hVEya2yFa+4gORFHky+rjrcNmNoG9mz5OYcLnjFixYpE/e0bOT7ImSw1KFWH2PmuR\nT4CVTaqRP3dOcvc3Fgs0L5RDPTzx8Jnl3D0PnpBjmLF4AmBEhRLO34AO3WrWpFvN8MfoixUAPKdN\nBAFqTZ+IBzC+bUdyzpthDJtaIH3sBOprj3lSQY1+zrqaDSiUxljpmj2hMacwsFkf7jx/RukNjpLW\nBfwb/WTI/QoTRbL/Fn5aw3FdzlviOO5c+Sbi0KmCEgk92f8qwCTSa48HolTlahPUjwHDvkGkVlZZ\nkkSnHayQPy8hAXHcpLzJsTk70ufKdIP9smie4zn3JI9qmCjXS6GI8dqQCJRI46NtMBNAxx0WlH06\n6q4w+GxbUMdKcx9xi4GX6+s8b/oCAaibuh95Upa0tBdVLLpeEi03Tctr82IagdylsFthToStxI3f\nkEK9NbGRA9ip7i1/7FXR3kfsWEmAvsBolLwGF3H7sHCRt38B2pbuz+2rcsWpzeJTNSxMInCi9Efl\nu+xAtMlb6vRJ8b082uH1BMnh9RNpL982LcGtW484sP26YczFU4+oUmQIq3f3JlGi+NHaT1QgCAIp\nU8Tm4eNg07X2LYp99P18aHSZuZq9l25LB4pnTFesGluAE3YdFrYePUvPVbu0E3aet3KjFxrGHxvU\ngQQJIi5WWHjqKr2/qY7/o0fWAxyQg6h43OzRe9Mm1ly7rq5jRd79u3anxKyZ0oEI5wU4D2yaOyPc\n/QEE2nvclBw9HeK4GSt1AVLENX8cH3kQ6HghRLIsH01AYy2R3BYRq4oitlw/Se8r61USphEyiYhF\nDtL4sjul9ykpCVhaqheJ3K2LqPKnyo5vqmmW1wDWlZL+n+oeam+wj46IKcQuYiiEL3wM9ZY8upFt\n4gAAIABJREFUeSduHuK3Z5McjgsVNQIniiEOxzmDw7dnc+7NMhPR1BNE6bWNG3QGwjgRZiSYsJEw\nwCvOQHJlqB/hmqcCZ/CaSbJtxatWlXwpxxPfTlImX8YOwKd7GP+vwRU2/Rdg18Z9jG+1XDqwKz6w\nrzb1vTudiBAcFEKt3LpqTaWQ4bpjT5s9NKFeaa6+YMHbJzVnj/+lHg8cU5vSFZ2XLnAhaijaYTIq\nTbUgb3oCIwJdqxVn1tYjvLM3JGAiPUp48eK4iMlVrgGaN6101vTs99cJBdvb1J2LLHGrs2ApFx4+\nMuSkuQNdSxVn9GGpy0McAd5brK33wN179oxSS35RjyeUKUePA3vk90Ef1oRMghv7fuyGx5wJGAoW\n5PtJI8DR1pHz6D5+85oiq6c7FTbV9OLsQ6CgFAtYzQ2vMf3F2kM5cd+PlicWmT5WTlcfZvD8KRWn\nzon0Gj1hjnLe7HH/xV+0lfslKzbqJC9P5vhpmHl3KY5z3jSR3nEnJnIx7IJ6XSFA84ssBODHk98b\n5upz3gblnE7yeCkAGH22E39zX76m5ZdJx1JpjJ5spSInz2zXEQmysyuN6ZlLp3doh7/+vsqGh611\n75s0t6XXISfetahBakxvDP+6Aanjt8YjpTnv2AXn4Aqb/kcRGhrK0CZTObblskrW1tycTIIEUqim\nWpr24c51c7NWzh/eZQGHNp4Hpbmw7lF10C/NLOc4BU0JFIBhU1rh7h436vZkVPxilFFqQxDIkjU5\n8+a3jbbtfyOOzzSTn5GLNvHbST/L8XWK5qdlFSlEaRDpxexrsSJtLef8xpFAiZgJglmnbmuXpmRK\noenxVRk6mZuicUxkMW/fAcYdOm70pun2PL5yRap556d1SefDV+mSJCGgk5bzVniGQjJEk1ftlhiK\nx+wJ0oHFPTyIYK2Gfyzl8OO72glDIUPEXi5R1A3VoWLyLOx4ciOC1R2jSNpsnPsq4v6jvdJVYvy9\n7U5aVe5HYGURqTCqwu7uoAs7bi9n/L0LCwuj7dkR2GPr012szDWT8plLMeXoPA6GmqUwuqXpqL7u\nUagrLU+01n3ESWu+D3pP3Dhx+R+pec5fhvkJhDT4UFglbgB9vR0/DA88r+nAKc9IT4QrIIbJHlJ9\naFfAk/BbiKVOmoO2SfdbXgsLC2XZDel32k0IIxfDKJitWrj2nEEZD+vPBhc+PVyet38gBn0/hWN/\nXtRO2ARSZkzCktPOe8as8ODBY1qUGGUmb4IQKa+bgicPX9K4kjRP8byt2tmHJMmkEGlYWBjVfIar\nX0fbjg+OlH2VvKmkQGDWnCZ4ef03ci0Kt1aS61X3CSfnRj+sGBnk7SVXhuqIWTpg+9hudFy0nl1X\nAgA5F8nOS2fpadMdz6pfjS9zOe55euvWLZovWcMdnRfQM0lC/J+/srMvqvYFwK+X476mUUXfWTNZ\nwVu7dWFB+Rq02L1ZXT+gVQ+1EtUK79+/59y5c3x3aRdqZaoCO89YwPeSd9xa500b2zBzAYb7RJDs\nJyNUDCPfhmHq3HTA9tpDDGNWHNrN2L93oWiwgUhRIRXN89emRHoPdVzxrX3RPICiXNkpckdw4xkh\nhq4JO74YQ6xYsezIm/ZzVq4eZEkl5Qh+tb+TacyiIiNJ4i5VsDc61JFgQkyet+qJKtAkj7HDS4vj\nLZBywaRjxfMWXQw734ZgHgKax6qt50QWBHaR9ySNi6mihaCQV6wKqCCvJ3V6qJ/NOdFsBQGPlxHw\nagYgpeBoHRagZMaLuLlF/4HbBQmualP+m+Ttc0TVPLILXf5eWrmvL0mSJqRqgYGgSETa9TZ99y6Y\n2mVGRZm8uWDEk6fPqNR3gXQgfzlM+KEm5QtmD3feqzfvKdVXa+atkJyzUzQiePDSVX6c/6dmW4Bj\nozpQtP9MdY5+3fC03l6+fEmHcfNRvlqWff0FHh4e9Fv7B3vuPDbsY8o3laiWLy+hoaHkHjXNJGps\nT/wOtm9BKp0MTf1fF3Py8WN17O/ffk1BT89w3w+ALFN14sz2HjQdWexftDgjTxy23JPeaxYb2FCl\nHtW2S4njCOBbqha5czompwo8Fo8x2ItKtWl8AdIhsuW7gdx+9TcVtk5Xr2cmPrd4bQqbZnRPxNaq\nmsdx/72rdDylJfAbq01BCVeqe0AXdjTsyTpsqj+vabdZi/T+Udbs8QoJDaH+0U6GitQhnt3JlcYs\nqt3z2E9AKMFCEK95rhJlGzC3yCLT+MjCqtr0+/RDyJa0ULRtxwQ2+ecFpBw5N5JSxXM/t59uwO/F\ndERuSdcM5O0Sbm6Oc1lFUeTCnYzoq01zZ7zrcPx/Ha6wqQufBaweAF6/eEuSpAnp2L8aM0ZuUc9X\nKTiYBm1L0KJdVdzdY7PVRdgihSKtdMnRAvRu5EO98qUA2Hfltmn8mRt3IiRvCePH5ezU8D12Pl5Z\nTefixYnDhfHdyKcT6XVGoDdRokQsHu68h/CHxb+x56ZzXwSlZi0AAQalT0GTJk1Y1bIpXddsYPON\nG4jAt6vXEU+ACz3D9751yZWXP65c4BXIGU1QNE583ge/4RyQBEhHLCYrxE2HOeVr8MPuPwzngkEj\nbjKqHdzITSfIW0zgLSI3AK/VcuhT0Ejatm+kwoFc64ao4wUBssdPZbBRJl0OOGVvWaB5mpJ0LlSd\nir795HbrGo5UkYin1Bor4rCvYnN7uUlU2uNY1+/2swdkTJLGcC6WWyyZPGrrpEucmku3LzH87mRr\nkV65kMFN3VcYbU80Ucc2T9KO4llLObFnDUPONSMMzbs2JO/GSM0HmHGlvPxKNOTSVU03hsyJolZt\nrSAsTF+gFUao7GnLmKw2GZOZW36FhYVx5HY2QFR7txbL5I8gR2jO3tJIm00QiE8rsmYcarLjQszC\n5Xn7j+DVq9d8l9NYhLDRfyJzhvzOH8uOqecAhNg2/rw2IUbWbf31eO4EvDQI7rongg37ovbHXbG0\nrCMnP+Ir8iPLf+tI6tSJo7nbzx/25M0GHJsfM2HAHSfO0WPJTpMXbcfA1qRKZqwEzNdzsmXBAgKs\nbl2XXNnDb/huj5yDtdymPhWKM3b3EWsJF6TCBbU5vcX6yutptapQPXduso+fhCgax9yIgLwZPG92\n6+vz3+wxbIcvv/rJKQ12wrt6L95NJ4oWeu7dzOqbOhkWR543XRT2f8Bpiz6noCNuwIVafYgTx/kW\nZt9sGoEfQXbeOckrdrjCQOLG1UJq796/o+xu6e/bvhm9VcHCvgrSZ83Gm/uY6i+1nlLHInnkCgge\nnCPAosMCbCitE4e2w/b7e/j15jLjHCekQpSx/xOSMLaQY/tWGHjua5m8fT6N6aODe/f2EBjcEs2r\nJlI001VsgvR/fvbWl4Afyu9D+gQHSZYs86fa7j8CLs+bC04jYcIEpnOxY8fiwR2zxpYYInnTwusd\n6Czmr4tZrbSMmRNw++Zr9Vh5xo4scZs1Zyer1kmkX5QLKvb+2TuCWZ8eJ36J+XwtBVtOXrQ8f//p\ncwN5C3jwxOg/EYw+lUgTt0FGIrZg15FwCxY2njcLil7v59iTdz0KOW5ZBPDX3WQyQGlN7zl9okzE\njOQssH1PSqXPpJE3S0hzMv8yzjD3Zsvexqb08vmGGb1JFdfGVP/TOPRc6Yo8srqnIuuqkepJ5U/4\nYp3eDnua5lw7DH0l6uWvzd5wP4IAUZUI0aRCRErsHGYS6dU+OrT9asUBxvsot7Mn7VNX5cIjneCb\nbnaTBOVpUqQ2NfZZ9XcVqX2gAzZBkwzRo1LaclRKW850/nXQazqe6aj7PbN/bwWSk5yRhaZYrBk+\nhudfx+jzrXmDJIMz5EItQCOGg/JuNs0JCgpi5o2aKKHWbrl2WNqef62M/Eo0SIUkJjNfZ18R4d42\n+OeX9wIQxhcp9pM4cfhdF9KlK0c6/B1e9860O8J1XYh5uMjbfwi+d8xaSSMWtbMY+WFRpbD85aCX\nEZGPtx4dGC5pXLAs6i2S9ChdMqNE3j6QLlbJeprswYafW5IyxefflmbXJa0WUgDOTrYmRJ5pknNh\nwocrjHgIUlqYAFcGmdd5HxzM6A1b5WAP1PHMaBqTc+xktRMAAvj1jtx+d1h0VJg4fSIzgOICHFYM\ny1/4g70K4DHLvspUYEDRsiy6fJLbb145XEvJ0Lv4XUcuXbokFSsAfxSpSZ48eQDoVqqKOv5dSAi5\nVo23tHX6/UO7PUjIu0Eihsqv+6Yv25AjuTHsCJADd3KvHwLApTrSzzsvH5vGReXPJjyttYrpC+NO\nHA4+MlY32gSIFSR5CP8oK31+SQULUcPQoyPxk4mITYBSCUvQNpd1dfqAU91of6oxIIUsayatRxVP\nc1jRChVi1WdTiNlj5yaYH6IBTjxeazh+/PY2KeKZf68l2BP4VJRL41hrzhoS8Xv59hqJE/tEcm74\nuHQ7PfrctxwZ78WofRckuMKmnzHWz9nCrB4rEOTqtNjJBDYF/vrR97Fo2kZWzjionRAE9VM4PKFe\nRwiPvG07ZlR7373zNKMG/qF+GW0/OCDS630K6Mlbi6+L0KbhF59wN2YU6GTsH7pzWGsqDJ4vndOF\nCk+N70SsWB/3GS/nEF0Fq24vjnTevpu7gDOPn6njrvftxiE/P5qu2SSf0zxkvUoW54dSJck6Ufuy\nU9bJHCcOuzt0JKpQyJuk8i/ZvNS8E3sDrtNuv68uDCyq9xXYsleEHu579+5RcsdiEGBTgRrky5dP\nak5v513TChbgRgMpdHrs4U0a711iGlssSTqWVmxluZ49edPj3N3bNDk91xA2NYRFla3IxzmFZFwX\nnhjG2gTYb9Gd5did8/S9vkDdq1bsoNhTCiJEbPZFDw48b/ZocrS1zn4Y8YS4zC5q3cGi/anv0UiI\nRHamF4rYuxVV3Hh8jI2P+ql7k9bV57ylwE14qO0/ijpvlx4s4sYbifzHVHssg/3bwwGp5ZmLvFnD\nFTb9l+PhfaP6fPD76NmrlkEXdhAEfG9PdWqed8lsRvLmJPyu3qNjvVkgSNWmXQbWonrdImw96Xy+\nm9+VO4bjoKCgSOXqfCoc+s1xXtSHQqEftLyxU3OMROfmw0fUGbrUrH8mvz508YZatNB+1GQOPISE\n8MGI25s3byg8eg4AxQRYNCxiz1iO4VphBAJc7d8VQRBwt+tWkG2MuaWWgtbFfQgKCrK0/zbEsQL+\nrb//5oul2oOTfdg0PVLY1Art9vnq9mN8WL7/6jnpEiUxzRm69w8W3LxgN17kqzOb6fH2qWl8Ore4\nHKjfg6wrRwEiWVeNZGeVHymWKjPXvzM+8HitGc6x53fxWjPMoHOmF/K1Im4ALU5LnQWksKnAqepS\nHl1R336WfQmu8UT1oiqeNxGR0jt6mXLetj4wVUPIOxOVenXMXieB9aWmO53iscRnvlPjALU11rJL\n8znyTuoF2uV0A9IIGelbwNrz6SzWXJrENbabRHrdMHsn09CJR6zlhxzLo7Wmglypm3IjYLwqj+JG\nOdMYURTZd1MqdLIBpTNfUwsUIkLujAMB6xC9CzEHl+ftX4btq/cxqcMK7RFb/vn79XEc8L3I1DFL\n4aFA7Eyw8aBz5O2fgPfvQ6heVf5AlW99566+jid8QhRvrHnlFK9jlZJeDGvvnBaXIzTtOJkLciGZ\nPXk7fiWAttPXm8ibvXcL4OREyds2dslalp2+iQgkd3djzyirnKOoIddAY6/Tyw7Im31vUz15uzbA\nOGf6rv1MO3rCVGTg10cb12HhIrY8fmK0KUBcm43LXa1D8qIokmWGMSxlT9565fJm/JWz2nF+HzqU\nlPKTPOaON8252Tr8/Mp+e/9guT150xULKBpvekjEDWmOg24J178biNea4apdTT/bSN60uebm80qz\nlG/JR7tSlUieJCnnH96k+ck52JDtRaLDgkLePjaaHWuhegMrCOX5vkhTy3GdTjUGHckSgCkFV0Zr\n7dGXqiNVb9qTt/Bz3j4WbtzZxJ0Q6e/GBuRK8SspEpb9pHv6N8Gl84aLvNmjWpp2smi5kbwNXdae\nYuXzaOMy6b6obAK+gUYl84+NysWGaQc2qNesMK3b1XB6/p+bTzBxoqTsrnx579jxEzbnGhp+VFiR\nNwQomTcjhy7e1jTEWn9B7TKFo7yOKIoUaj9Fta/83D2uLTsuXGfE0t0a0dGN0cuG5O8uebscNab/\nUMg51FjNigCHOrdk6t7DrDx3WR3n7S7we08j6fL/6y8qL1gu5br1+Xj7/mHxfLa+fgaCRX/TGEDO\nJaN5h7naNIkApxv1c5q8KcixVvubC689lhV5U47dBDhZfQSF5bZYim/meDVlL5GDlUjv9nKRLxrQ\no/GRNnL1pxbaXeIzn2bHWqjruAkwMs9YUsdL7bTdnme/k+1p+81Ibjrkj7gThT0mXK4M6NtlSUK7\nHXPuCmeWsTF9s+xHIr2uC58GLvKGi7xFFd8V/YlXf0ldKz2KJmTWGnPLmY+JI0eOMKjzNvXT/+v6\nhVn72yn1myJdhrgs+i1mK1c/R/y2/QATlkrSLccWRb+y9OdVW5i357KBBJ22aJPlDLrOWcPOa7dU\nO3riF27XBAGO9W9HwgTuTq+1d98+2u4+abDnnTYlv7X+XpMJsVvnYu9OxIkVyxA2HVq2BI1LFKfD\nyt/YcvuOwetY4H+JWdOmtXqcZYrkXcsDbOoatfe+9YZV7Lgv6+0JInVsiZjS5kf1eub5xirThZXq\n8GUms4isFc79dZfa2xbr3hPps3trxWZ4pU6PKIpkWyXnwil9Sb/ujbuTaQaKzpuz5M3NJuWhGcYq\nWxPgYMWhxI5lDGmX3tEbe3JmA9aXGkwS90Qm8mYTYOsXjsnb3Ud36XhNChXHF2BZSUlsuv7hH8HO\nq6X8zER6Rvs4n7rhCCvPzuIEu3R5eNAr2wySxzcWgoSGhjLysiTaK4Uqw1SPn5teiBgRQUfeALpE\nSN5GARuxAU3CIW8PX5zg8OPWoBPe/SrLOdO4sLAw9tyStAeVJopfeJirgF2IHlzkDRd5i2kEBwdT\nK4cckrEJVGiYm57DW3z0fVy+cIvObRerxx26l6fOt873o/y3YMmGHUxbL33IKgTpxK8fTi4kPKj9\nTWVCVjN/Zjadv6mes/Li6UndpVGRI41qyFSenyJeXB69fW+wr19n+4/N8EiWzJTz5tenG6UmT+OB\nktOmkA8BrvWQ3sug0FByTtfSCPyjSN7UvqagEqjAH6SHjlzzx/NGCYPKe7jZKmJ5mtyLx/BGnuPf\nuDdZl4812D/+TRdSxJOqGFesXMEA/E2etzZpvOlT9ivVpt7rJpmOnOdtuMe3DLn1O+GRt70VBxEv\nljvfbxvNDZ7pihukn1tKDiZh/ISW99xg70CeiC8xd1jQqk4Bvj7YQX5lTwi1RH+bACuKz7Vc57+E\nDf4F5FdhDskbwK7AHGiCvGWxsUcubPgJnwytHPbGdsF5uMgbLvIW01g3dxtzx2yTDpSKUr/oJeeG\nhypFh+rymMzVpi7ArJW7+HXrGZN3Szk+NLMTcePGNhQsIMDPXepQPJfnB9uX0tdUWe+CRXP6yEKp\nNAXratNF+w8zco+kA3e2x4/Eixcv2mvGNDxmTzAWJ9h5IfXVptgRpVPfdSBZQiOh0dpjwQjvcnyf\nv3i464uiSI7fRhKKRsQ6ZyzGjLtHtUGCjowBGXHnjvBG3os0pGH83AysXM9k/9nbV5TbNRarfDg9\neTtWVQqdltj2E3pypdg/YFdx2uLAKAKDHltUkmqeKc0ObCqjtcja7L+DBQ/WArKwbzTI248nm6jr\nzCywCDc3N0RRpOuZRuirZpVKTX07rjH5Vzu9TlQg6bzpq01ttPQ6ECkbm/wrAfdVLyBAyZRbSZJQ\nkyY5f3cwT4NXIBE9rc2XO2UplHlRtO/jvw4XecNF3qyw/Nf1LOknEzBBoN+qlpQpG/XcqQ+Jw4cv\nMLjzGhAEOvetQc2vP899fmjsPHiFfnP+NCTkH/61C25ubhRtOUnOY5QuiTZA1Mjb8bldsdlsBAUF\nUbzTTHX+qdndOH72Om1nb1bnHp3SIUardVUCJ8Dxoe2IF08Kjeb5ydyw3hnPW9khkyWdN0GTMQGp\n60LLUlFrC7T67HnmHT+O39+anIjys14OL0bXjF6hiB4lZ0/gnrqGjryp92MkdPbk7WrjbsR14v/n\n9bt35F0zGX2BAQLEFiAbblwRQgCRllkL0r9IDY4+8KfJgWWaAX3xAUAkPG/7K/Xhi50KeTPOVchb\nDfecPI/1nsNvbqhzC7ilY1aFLqZ76bJzKGd5Ye55Kv8sHD8LY4p15vt9/fibl/I1I3lzhIZH2qIn\nfMt85kU4R0/eJuaZQwL3BHQ53VC+Kp33ipeHgPfndPcsvRfVkjTni0wx9/v0IfD8+SMOPqkFwksg\nDDdSUcVzz6fe1n8KLvKGi7xZoVqa9tqB/Ensez9iDaTPFdW+GIES8VIS/EeOr4tPCXNfyFGj1rBj\nh5yjIQjs2vnTx9omzTpNxO++qHZsiBsHdi91TjLEp4mUb2XwrtkRGHvP2+HZnYgd25hTZI+C7Ywh\nxJQJY7NtXNS1zOyhJ2+zm39F6dzZAGvyhgCXRkZM4JYfPcmwLftMBQtgrDYFqeI0ODiY3ONnOHyf\nOvoUZdGZ07wIDjacR4CiqVMxvUoVfJYuUc+FFzL1nDFR24eFFy2jezz2t+hgOTfzfMWDrc2pmzIj\na5/cxkD0gMDmfSxtBIeG4rVCyZszki0DETSEKFFDlVZN7TXyZj8n4oIF5dqp6iPVPY478DurX51S\n5woClMeNkZW1MXqU29nDYH93+UlU2tNNfU8yCsn59YuoSU8o5M0mQFW+pIlPoyjZsSdvVVJ8Q9Y3\n3sx7NwAb4Eke4gmJaJ4/4r/3+Ze68YQbQLAux02y2zPXtijt70Nhf2A2FO9cHKEjPpnNfxtnb+UF\nniO9z/XIlzGygsH/Pbh03lywhO+Dn2Pc5rWzt+nynawYLov0RkWg1wrNGg/l/nVIl0WgmE9Bduw8\nTbZcSRk3XlJSt5LfevL3W0tbadP8L0b2FBX4PTAev7eWE7PE0SXmD8VizSdpxMAOzrbJOj0r8qHM\nM4G3aTpltbr2OV2nhZr9JnPzPZJnb3QnLoy3tn9xTDcqDp/OvTeOtdMcYdiWfSAtYaHqZTy3+uQ5\n+m2VNLj03kk9upYrjU/GtHy/VuoxmRA4G0Fv06ji9ru3Wt6bnZdNEEAUjHcUxz0ujrDi/DH6ntYl\nrNuTNQQCGvcly3Krys6IH8oX5v+Gktnzqse51g1x9Otmgr2sWmHfftiAo1VG8Mer06bxuwihzPY+\n7K80ltkXfVl6f5cuP834v1phtyxRIZPJuzxm3KH59C7Z2mQ3IkQ3123bqY1sYpW6n2zkp1NBrXfs\nBH6P0MbDh9eZ/bAHUsGCFsoFrSjgn4BQ1gFWfzcScZPwG+Aibx8DLvLmglNI65lMevEB2kndlx1l\n9/xhvf9psMGZ/X/z14OXpE6TKFJdFVq0rEiLlhVjfI/O4ODvMSvMe2yh9kHZcdxyjlx5EM7omMOU\ndXstz999+kwibjIGLN3M2BZ1HNrZMTD8NkZdf1nG1psP1Y/9K04I9Spjrw3oxsOXLyk93U501eLX\nM9u4SYZrSqOqrJMmaTad/LUO6Kj9Hz99+pRCK35lWMJUJEqUiG4Pbji1dz1W3PHj29RZmVijrula\nw3zFmHJ6F38hEc7XJhuigbj5yw3ppd6mEa/e/NxahPNrEYCLtfuro7S3QqBPti9omudLAEpuHshr\nkxUNYcDW2+fYK+e6Fd8qFT4pfVBD5C08fWtut6WsKjggnbtDzvOxOg/rw6ZVheqGay8wCyRHBIm4\nmVHCrSHlclhryzmLRdcrgPy/El7F6ZkHY7j5ZiVatamNr7KcidB+GQ+pXdmhmwWAOxy66SlXyEIi\noQm5Mw3HO9PtaN2DC1GDK2zqgiVuBTzgh0qyHplM2L5t/yWtulVTx1TL3U/7qI0nQAj4nhnhtNr5\nPxH7T/jRb+R66fW6mNPyUsKmCHB0ccx7hdYdPs+wpTtMROXMjA+ng1Zn4gKu6dpW2ee8rTh2kmGb\n95lCoeYEf925cMbqm9O/fPuWgtPktkeyh0cJp97o1Z0qEyfhJ8+3Cs+6CXC9i/b/EBYWxv4zZ9h8\n5gyVCxdm+P4d3LJoTG8Fj7nj1TGra9Snrq9O4NUuRIkA/fKXp22hoiY7L16/5urjx7Tfv5zWmUrx\n19OnvHxznxP8TTnBg8ENzSHBbL+NMNi3CpsCzC/yHW1PrjKcEwSomdCLsRUku96bjaFLQRBVD5Ig\nSF0QBKCwzYPZVaR+oaO3jmaj8JzDlcdQansflLCsfbGCAnupkM4pv+KrPBUsx+rR5lAfnogvEQRY\nUzJ6kQc9eZtdeGm0bOkx8qLWeN4mQN/cf1qOCwkNZuZ1qZdtRFpvi663ACTdw4jkQqRq0zDi05MS\nqb4mYcJETu/90M0sKO+Jm/r/40HRTHuctuGCBlfY1IUYQ7taowg8Lz8RK21Q7ARufcp6sXTONpZN\n2oXuU1v6+Q6wwd9PXpEsRcQfClWKDFFf/7z8R7J6adpI634/yKxJu+QvVcl+k1YladqqfBTuLGZR\nunDWT72FKOGL3J7qaxvSV0gGix7ZQUFBFO09ExFII8A2B83prXDo0g3aLNooHQgw7rtK9Fq9Xb2e\nu785D65VCW96Vi9PWFgYuYdG3PFD0M+3g/+9+2RJlxaQyJZ+VrnUKZnf7Hv1jNr+3EGoNRSRLFMn\n4t9F8pr8ef0anQ7uBmD1/h0G/1Bc4KodcfOYMwFDHpu8Tvtdm/j9yzp03L2evxzcY2YHbsDECRJQ\nNEECjmfWuiuUXz6Nm8AiMZBFK0bRI2txOhTT/k786hm91g3WTuWU+EI9vvqNrrr7pHnNZgXKqa+V\n53ylw0JCkCRM7HAyLJBiW6Q92gQRRCixrY/h40QURcuHvB5xazDx/Wb5SHCKuAE8lQvvY5ZFAAAg\nAElEQVQZFNsNDreT/1/D1PDscp+5pjW7HO/CC57jpiu4mFtkiVNr9jxbDxDValPPuHlol3OoU3PD\nw8zr1XRHIndenyZDgoKWY5tlX+C03dpOeNocoWRmf0RR5NitLID08Z835boo23Mh+nB53v6jGNVj\nKvvXBEAYNO1dkYYdnauQevv2Ld8UGAo2gTYDK/NNoy8jvXZISCg1imsq5J5eqZi9XCuymDJ2HX+u\nv2Agb30GVaZi1WIGOxW/GKV+ia7Z0JkkSaw1o6IDURT5os4Eg8dn//oPKxY8YMZ6th33l9YXIG3S\n+Gyc/GMEs2IG5X6axtN3odKBoOW7VRsykzsvpCS+LMkSsWFAa4NUiKVIr+zV6lutBE3KmuUtjh07\nRu9NB8kmQHIBNigX5GcHZwoWlHUArvUzE81s4yajJ1F+vSRvWpnZs7n3+o22dwHaexfg53Nn1GT/\nIy3aMHTHFv68axcWku9rSKlynH9wmzUBfoY9TSpcmu6nD6AvTLjWoitxYscm+/zxBFlKhUBy4GQL\nLTjosXis/o4lspu1IANLVlFPFVo+lmdo/1/fpPFiwpffmt4HgAdvnlH2T7lC08mCBSXvTDlW5gCc\nrWnsJFDWdxBvCTGMtenmTPFuRu7/ZaTagWEoMiMDs9SnkqfZyxgdbL21m/l3VumkQqQ9JBbcecVb\nlWy5CTDNezJ7z+1lg7AGEMmMJwN1D5ZW6HamAdZSIUoDeaibsgeF0pbi+bunTPZrLo8LI6WQlXZ5\npIeU0ZeqUYOx5M+d32D/1q1bbHwjzUlAdZrn6PGvjmb8F+GqNsVF3qKKz609VlSgJ2+/re1I8uSJ\nP8g6ZWuPN5CGX8Y3xCt7hhhdw6fpJE3+Q/c5XSoFjBj2IwkSxKdIS2PulkKYTs6Pepj1+fO3lB2o\nhBehULrELOjTyuH4fD206lKHlbD67xkBLo42k6qxG7az8MQFy7mtvL345dy1CMmbfW9Te2Qbq+xV\nFzaV7Zxu9wOJE0iux8sPHlBjxXLV7urv6lMofXqyTJtoJoto95tNgDoFCjDh7GnjGF3/7sAfjB45\n+w4LevK2uGwtymbVKqityNvi0t9S1jNbuPdthRfv3lJks1lAWOvOZiUVAoVipeNM6B2V2Cnntb6n\ncKq6dXcWKedNm3O48hgGnVjMrmfnAaPw7p4P1N9ULxXiJoiIGHXZFhX7JdI2J54ZyB2uhUve6qXq\nhXeaEgQFBTHq2rfyuDB84tTiVMh6bU8WvU1tssdQKWbQh03nXyuLEnrNG7sdxT0bR3r/0cHrd35c\n+EvKKbYJUDRT4Edd/98CV9jUhSjD91b0+gV+Dtixt1/Eg2IA+zZ8mrZch37pTKxY0p9o0ZYfpoIr\nXjxjvVuCeFr14+Blm1h3UvIq/dzmK0rnyqZGABVKYV9t2mnOcnYFaAFB7/TW1b99aleiT+1KtJq/\nnIO3pPFXhmq2en1dgzoTJ3NZzpC/OtBM1LxGag8chzu1InlijbwHKbIg9pDDl8vOnGHCEUm01p4w\nH/D3p1D69IAW8bSCHzDhzGlz2FWE8uk9+KVmXeovncfRN8/MuXUyKqfxYF51sxAuQGBTs1yI59LR\ncFCzE9DY3KDeCi/e2ZcaCJyr/RPusWLTY+8K/nhi1QJJ5FTIXWyCFDLdXaE3FXZL5FMpQvBx04Rd\n34W8p8x2KWwoyA3cFSKYVB4zrEhThgFld/Yi/Hc35rHUZ37Eg+zQ/pREjvQkKy/FmFxwFX3PtiWY\nv9WxY/KvNc2PEycOQ/JuVI9FMYz7l28QTBDxiMM97hNfiMc7AhAw8H5CkfLLfr4qRTfa59iN/v36\nK/gYEHXy9mdAXhSS+GX6E8SJEz/COfHjSmkjEsH8PtyxLnxYRMvzJgjCd8AQIBdQTBTFE7prfYFW\nSL+DnUVR3CqfLwwsBOIBfwJdRFEUBUGICywGCgNPgPqiKAZGtAeX5y3yaF9tNAEX5MpFRfbjE3ve\nQkJCqV5SrpJTwmbaI776ZaVUnlYsO1IbA+z8SETuU6Foy0nqx/aHbI/l3XWyus6UFlXpumgLADsH\ntiZlUimXMV9PbcyFCd347fAJhq7bb/ImrezUkHzp05C7n+atW9+hIV7p0lBm4GQe68aOrFKCb0pJ\noVXfc5fotm6ryfNmT+D05O1c746422nevXj7lkLTZ6N84YlyiFAJnWadpHk7kwhwqpv2vj58/Zri\nv8w2ed6a5c7PkAqVAFh29hT9D+wy3bf201jQ4EyHhRRCLE40t65OPBB4mSYH1msnBLhSrydxI9D6\nA8j++3B5Hem4dOI0/Fq5jWFMZHubCoJII6EwWVNlxBYnDrXz5cVnywCHc20ClE2Wm9GFm6lrltvZ\nE/uw7O7y2oNKlb1dUTx8gxO3oHiBAsQU3gS/ocOZDkghUKR1HPRD1ZO3JCRjaMGYl2OywuPHj/nt\nyXcycYtZKOQNIGus/uTI+HG9eP9lfA6etwvAN8Ac/UlBEHIDDZB6PKcDdgiC4CWKYigwC2gDHEUi\nb1UBXySi97coitkEQWgAjAXqR3N/Lligx4zv6VhugvopnDpjkkjbOLb/NIPb/qaSJwSBxKngt93W\nQpwRwZTSYZHjUbZSdvV10uSx+fuJ5F3Jk98i8/4zQ4mGSuWu9OPw8sjJihz/BP1Mi2Tz5NwkjTDp\ne5sKApyf0E3NexNk74w+Ob/B9BVcHNMN79hwNhhyAF7ppMIUVSxCJk/9th7m3N2HDKlXizI5zEUh\nzQuZBZmv9Q8/bJo4Xjz8ejsec6O79p5mmTyJLJMnOSReDRMmY8Wrpyy6dI5Fl87h174rjb0L0di7\nkKVtqWBBBwHOftcG79XzmJMhPz/cte8rKb1xCyp853C/pT1yEeCRiwWXDjPs9B5AJOdv4wlobHxw\nmXpiJ9NuHEHJX2tlkVN24OV9vNYMU3Pe1GrXSGIlJ+DhCQQB4iYIIitJ8OcZIKjEB+Bw5bGW8yMT\nLh3xYgGb0Ypaah/oiL57wrpSkRMid3dzJy1puS/1xJChlPM4xrMoyIU4g92XF3EGqVgid5yaVMna\nlRQpUtA+RcwTN4DqnhcMx9sDcgBSLmByfsLbo8UHWdeFmEGM5LwJgrAH6Kl43mSvG6IojpaPtyJ5\n6AKB3aIo5pTPNwTKiaL4gzJGFMXDgiDEAh4AKcUINujyvH08jOyziAPrpbJ0pXRMT94AtlzUyFtV\nb01aQO9F23p66EfYbdTxxVdajtu8SY3JkT0dAG/evKFKo5kgCGRLDwtmOC8VEl3y9jnAvjG9nrw5\nktxQ8tlOD+tE3NjmZ8VcgzQvnjM6bx8CJwL8qbde9mjZkTdTIYb8OqBjD+rPn83R969M9/xLpZpU\nyGYmm1KHBY0Ulk6RnmW1Y97bIem8aV6yOAhcqtefhqtHclIhJnZeNKXq9NrtQOqcXChfM3vP9M9U\n+g4Lynmbbt20xGNDVevOCGV39qIUiTjIC5IBibCRRciIIIQx5EtzCy0rND3Qi+dyvetErz5kS5XJ\nqXn2aH2iufxKlKtNFxmui6JI19ONpE6i8v1OLbiS6OD9+/dMvSFpJPbO7QvA5MuV0UuJdMm5I1pr\nRBbbA3IhCQlDeY+rH3Xt/xo+B8+bI6QH9IIzd+RzwfJr+/PKnNsAoiiGCILwHKkAy0rR0YVPgB5D\n63Ng/RDLa3rSFh7WHujN3JkbWfPrSRAElm/t/sEKDaKKvZusc9z2Hb0uvRBF/O6aPYPh4fCKfw5Z\ny9/V2FLLI3k8Ng74kfOTzOTqwvhu5O09OcLMpYKDp6v2SmXNwLyWZg9TaFgYeYZpnpXy2TLz8/ff\nGMZ4DTfu7cJPnYgj5wVmH61du/5TxERQEekF8Nd74aZq5083bUXBJXZJ7SIM2r2do++tJWtb7dhM\noEzePOaON+xXYjnSu3Xg8V2K/jqJNgWLMerMQQCyxUvMjgbtVFsNFo9RP0iv1OuKu7t7hPdljyBE\n3rx7xyu3hBD6wnJMzrVD+SJRFvKkSu3Qzq4Kfaiwy9qDBpCK+PhW609oaCgltg/gPm8ovlVqT6cU\nLOhxEGkvzxB5Rih3CAARjjy4QPE0eU327bG49PgIxziD+UUWhntdEASmFlqhHnc704BuZ+qrjd1H\n511ObLeIQ9d6XLq7X3394tU9EidMJx9F7PlT8Ou1kgC6wonwdd4iQiXPy1Ge68LHR4TkTRCEHUAa\ni0v9RVHcYHH+g0MQhLZAW4BMmaL2tOVC5FDNS06eFgQGzG3AiB9XmcZUzddfO5AfxZOlScjybcb+\noqcOaE91fz149tmRNwXv3wdT6TupsMM+qd3LI+VH2UPRFrpCBZ13y9n2WDGBgKdvydd9MsdHdcLd\n3fyRcWFcN/L0tsiZdMBvD/jfIfeAyVwa0Y3LOm/b9QcPDeMGf1WBHMM0QnZ1YDfa++Tj56NStWJG\nAZW4AVzvGznPXSNgOdDSy4thO7az8Px5A8na0qgJj0Ose5wtvngOBAjsoHlfPWZpIUCP2RMk75Zi\nT68np3tfHhLCqDOH1GO/dy/YEXCNip5ehIaGGp6Ac/4uvRe1MudkWtmvybF8FEpZxtCspWji8wVZ\nV44yrQHgvWm8clsOse+VP5U8c3Ch1iDybRqmuyJwvpbkLT9bczj9/ljDn5yhNG7MqC6dL+Lbj4e8\npqhvP7t1BI5UGY3f47uqSO+20oPZVyFmiJczWHhtCdv/3icfibgTm198ZsWAZYk09b/QiDRkpLt3\nxEVFp27uwPfVJGwCtEu3hCRJUqjXukWyr2lLr0MRD4oAfwbklqtaRYqn/YP/uWeJtk0XPg4iJG+i\nKEal19BdIKPuOIN87q782v68fs4dOWz6P6TCBas9zQXmghQ2jcL+XIgE7gY+0g5EkSmDVuJ7eYxp\nXMK08Oq+8VzsWFL1QZWCg7WTckHC1hNDYninMYu4cbWnaQHY94H13T4XnJsikaD83ScbigF/6j+d\nncD5iWaSdHGc+VyevkYv2dmhnfAeMt3hutnTpOLKkPAJWNfKFfkidy7qL/yN26JWtNA4SwaWBt4h\nHnDOSRI3vHt3FKWyl69eSeRNh7rLl3Dgh/bmiQ4wq3gFph/dyWsBbionRQj8oRce8zSykkEUONha\n+l16HxJCjiWTUHLevsCdip5eALi5uRHY9Ce6bVnFuocB8mwB31tXpKpTXT3P4BsHGe1/UEfaJHuH\na3Sl5J/GyvLLX/cj9wbNU76kZCOaHV4GiAw8/yeDLkjK/3qil3/TIPQacAAHZI+Pb8Apk+f1WFWp\n73Gb7ZMose0n9LlpjQ+OYX3F4cQUvj4oFR38j9gsLGUWem6arTHbj+9T9xBEEM2OSXI4i4r9QpgY\nxuiTI3nJc57yCE+y0qfQAGw2m6Ha1CbApPzWHReSkNapvb5F68kcwisghePBOjx98Re/35ckRxRB\n4eZZ9qjV6FHBoQCp+laqaoW7L1fyP/d/d+HXvwkfKuctD9JDbTGkgoWdQHZRFEMFQTgGdEYrWJgu\niuKfgiB0APKJovijXLDwjSiK1jX0Orhy3j4NquWSJQoEAd9LVo2xjbAkbyc/79w3F4xQct6mNa/B\nl/m91PN5dV63CxYkLiaQQw6XWon0NvDMwIqbWjZGZD1w9lDCpv5duuM5zZirqEDxxKYFDncwhsT3\nXr1Csz2b1d0GtO2J53xZ6NmuEMK+2lQ5bpE6M4OrNeDKk0dU/UMO25paXEGDxB6sehmgHiv6az2y\nFKF9MUnMN+fvIwjV5aL1y1OB0ZeN+VTWOm+Oq00FAQoSjwU1+nHj2X3qHZZIuSJ14WiuTdDEgG0C\nVImfj/4lotffUyFvrRJ/Q8181r6GVX7r2PjkD3l/WluvRcV+4fLfl5l4Y4y8f4mQphXSM7TwGNqf\naix7pqTz1VLVpXoGaxFkeww8XxuQyJb06yLlk/XPszn8iRYIDQ1mvl951Z60V8hARyp7NYi0PRc+\nLT65SK8gCF8D04GUwDPgjCiKVeRr/YGWQAjQVRRFX/l8ETSpEF+gkywV4g4sAQoCT4EGoij6R7QH\nF3mLOdTI2ZMwXZTI199cCfbkyUu+L62RtQ5Dv6VmvcIfY3ufFNeu3adVb+2pW+myULqu9B6JwME1\n0e91WqypRBzyZE3JxYBHapj0+IKPX23qDPQFC/DhyNutx4+pNGuJ+n6kj2tjdy/nEtujA0vyZlec\nEdjB+XzGMvMncYsQE3m72bI3Hgt1+WQCBDaTUhU8Fstebj25kucFNO6rNafXka4sgjvb6zve1937\n9yl/eJ5uWuTIm/LzTA2zBy0kJISSOwZazpXIm+aFa/g/H9oVCZ8Mfb2vB+/kALEN+KPsNNOY0w8v\nMsJvJooKoQ34veTscO06g06nlIISo4RI0wyd8E7uQyybY8/XrPN9uMcV3ARRJbXuQjJ651kY7X39\neq20+rql14Fo23Ph4+KTFyyIorgOsGxwJoriSMCUxS5750zZqKIovgMc18m78MFhs0WcKtu66kjk\nsisAatYrTNU8Wq5b8swJeHJH1/FQEFjg25Nnj57TtbnsQbCB7/HB2Gx6ScrPG56euvCGXeLQh4jb\nj+nwFd0mr+T6XavukR8e+bvpNNSc7G/6oYgbQKYUuvdfJMaJ25+nT9Nxz24Q4GjL1qSUBX8DOksE\nqPicn/kr6K26viBAgI60hYWFkWWORLxrpfVgWh2JkKgFCyjeOum35eC3bcnwP02i59wDvVwFzEol\ntUwqslhLT5hWrDq1cnib9u7fyDrUNeTQRpbekSRJHDWmv1Z3ED5rh/FcOgnA2a8GENvNKN4cGUQU\nykuKQHkK062CpARVe9dAnotvVC24Nh7VaeCpedDaZ67LpJur5EpWkRr7OvFHWWP4PY6gFXLYnBD/\nlcKm0qddv4w/ce3FVTa8XIONMARgjtzfdGrBJXQ53cQ03//1JXInLRgueWuXz1zcIYoioy9VV/fX\nV6401ePuqwusvtMZG1A+Xn/yZJb6u955cIEtL6RiltYuwvafh6vDggsqNl2KWHNp3fExDO+2kENb\npKKDqrnlLw75W+HJ7deGY4C06f5HLLvvAivitmLZHhZMlxKLO/WuxFfflIjsLXwwxI4d29DT9OjJ\na/QYKSmnCwIciAGvG8CxxZqHbfnIj9PP1BmoMiHAuYld1V6L9h0WHEFpSg+a/MblERHPLTJsMi8F\niFj7PXoYsXeP+vrk3btU1XVr8Jw+0ThYkO7BY+YE9Vj/c+ODQMy+ISMSx45jOK7lu8Rgo93Dc7Do\nnMHjd+b+bZW87blyiRYnJXmTaSW+4qss+UxrrLhjryUnIQ8JuMgrBAFyrB1muAUQ8d6kCPqKjM1Y\nm5qFNC27Nf5HGHbpD2m8INIrV1UaZ5G8QMuu7maK/3Z5rqM7F9hU0UhqeudqSP9LWkVvnfRlDNcr\nZS5JpcwlHRmU7illVtakjFg4d+nVlWx9Ju1RCZ1mSp6JHGlzsOHEGsBGZiGzOt4m2JheaJl6vMJ/\nFsde7OXQsx0cfb6DCd7mwq3wIAgCVRnJlv+3d9/RUVVrA4d/OyEoRSU0lSaRD0IEC1UUCxApAQED\nAnKNiooiTQVZAiJFQRQXfngvouD1Ij1SBBUlFFERc6WICBJCJzRpAooxCoTs+8c+05LJJJNMySTv\ns1ZWJufsmTnzZq+Zd3ZlFJWJdzmXfakQc8Pxxnn8z61ePZco3mRvU+GVuGhr5qi7dd6sfKxGnSs5\neuACZa5RLFuf/4HJvxw7RZ/upqtjYdILREYW3cV3n3hhFnsOWqvY+DB5K4gmT5vE6IMB7Wl0201+\neY5XZyeyeNsJ2sdUZfJTOdcmazx8ChecZlSmTHJNzNwlb290a82IT8wCpF/0782N15tJ7YdPn6bd\nu/PYNXaIy2zTqV070O6WGN++MCeHz56l1ZxZ1vOZ98XeNWqw4JejOcq62y2hbvmrmdaxK+2WzCVO\nRfB4s7tp7pT4xH7wNvsw4xIOPjHM5QtM7Q9NQvPqTS0ZsyvZfjyp02PEVHY32R+i5k/kg+tuJzY2\ntkCvd1nqFkakfmFeLs6tc66/U7qasamLdyczYe9K+/3D7bNpNY0jrmNbpmO2UniYtmbYuu6wsLTp\ncK6NrFig63Wn63cDAWtdtNqP0Kp6i1zLPryxrynrNHlCkcXE+q9R7epqOcoP+DEBxx6kMLXxfGtT\negDN/epJYm9t57PXMiO1PxnsJ0xl8UT1pVx1Vc5Z+OcvHmdRmumgqkocXeqNylFGFH1B7zYVJdCV\nwAVzc9CrnXhn7ApHB0UW3FC/IjM+LtiaZtWqV2X1hjG+uEq/uHw5i1bdTSuMVoqV8wdRvqz3627l\n16FjZ3hw1GxQ0DfuVvr1zOVD2voHPPveKtbP8E/yNuax3nj6z8x9Op6eM8wIinpulryKqRJJ6mmz\nD2TKq88RFhbGhOWOpRE6vpfo2oKl4Ksff6bH9ZVYfPwM9QAVpokeP4Vu0bV5sVM7IsuVo95ER1K4\n56XCddvO/ilny8aCY0cd1wRUBM4q+KLzg5zJyuTRFY5RI3v/PE+7xXNBQZK+RNLmr0hzSt7W9n0+\n1+dOe9yMb3t781qX43ErZgGwtcdzNFpiZo0qBVvv759jZwVv2RI3m9T4sSzYkcyEfWusI2aXhJs/\nG8v2zuNcyl4LVFKR7Lb29tyaabbbCwM2x5kxeB1XjecsrmvhbfhtD10jc0+w8pKw/iXO6T8IU7D8\n7ql8etc0hiW/wn5O5UjczvxxhlEpY/idS7xVaxx9whOYdXke5SnNtGbT7Mnzsz8MIoN0ylCOqU3z\nu0uD8mniBtAvJu/lS64ufT22mcSSuJVskrwJryRtc10ipFOPu8jIyKBbMzO8MWHgfXS45WVHAaWY\n+lE/6sbUINRl7woKU3mP2ft2088Mf8skKcmJQ7wa53fopGOlnO9Tj9Avl3Jb/h2cnQmcNahT2+1y\nITa2xA3gYuZlEr/7jvmbUswBBTMT7ueJ+Y5ZeLvGDuHvzEz6f25mRe4BBln7nX68O40M9TX/7HG/\nT1/D6DaxjG5jEuQb//mW2zJbBrt+MbGt8/bGN18yPfUnxwmrrhz/9VfuWPqhY3LDU56Xm3m+WSzP\nN4sl48IFblroWOIj/ZLrenPPJX/O7E5mY/BjZ85w9+oZ7IwfmucivvWWjLdfn60+z7r9Ee6oHgVA\nZER5e9ky2L+noZSiR3RLekS3zPGYTZJG4TzGrFnSS4y6sRNncR6vqUhum3N5IYBRayfzX47zxR3j\nKVvWcwf5XzrnunuTW451UxIGpYwkS5sWthcOjyOxxfu0pVWOchk6HZTmL9JZkpLI6r9W2Lstw6xF\nlcOsj8opt3m/s8LR8/uYeXgott0LoGAzTm361lufdyFR7Em3qfC5TxKTmf56kv3T4ZaWtXjzXbMJ\ndvsmjjfaerdUZOqH/p8x6K0+A9/nwGEzhJsw7AusznmnD48MngVKEQasW+a+q3Tc2x+z+r9p9r9t\n3YTfLwydXRb8KeZl1xmqKEh9dQj1x5rj1yjYmMd6b8ES9Y5J6vpHN+TFtu1zLWff29Rpf0+t4Ntu\nfbihUu4LPLeZPZkDXLbuC6B5sEYMk9t0zfU+zrNNbQnZvl4j7eMSAU78cZ64Vf/iT1s3oILU7qNd\nxrzt6lbwVu8m1uK8tq8mj1Vuxryzm3DedF4Ba1qNoVxp1+EQrda+YJWBr9u4T5p94eGNT2GbiWpm\njZrxZd0j4+lStwsAa1OTWPjnAit50/bfzhvThymIUOG0juxCXK28t9/Oyspizs7RHGUbSkFDOtK1\nQf7XDwT4LeMEC4+Y7tJwJQlcqJNuU1EkPdC7JQ/0zvkNPbtuve4JwNV4b9DTbRn68pIcx68o7egP\nvMrDcLzboq+1J29lS8Oq2c8TXojZe0WZ81Ihla5QrBufs2vwbPpf3DVxOijY+doQ5j/amYfnLGfF\nMz2Jql7dXm7XK0UrYUs7cYLWi+aDMqMFUp1a3Vbt3sG7e3awosMD3FSnTr4e777ranpM3ADi6tzM\ntP0/EQH23RNiq9Xjy23b6LvdzExMe8R1xxLbbFP77grA0T/PUbO8Y2zZ5lNp9sQNYHWHgfm65tzc\n9sVobMnNjx0nsCXO8dxdvp7EnDObAKeB95YLlzPJ70jW9uscdWnVvW97KAnxyQMIU2Y8WwThLLjz\nHTel3DdURFeMtt+OjYkjljiX82v2LOez9AX2v7M0XCKTcuqqfLwKMzmrT8P8bR+Ym7+zzuVdSJQo\n0vImgq5dMzMgevVm990fouhyTt563hrFmIfNZtuNRk7hIubjMkJZiYiVvGVveatWoTxrX3jK5XHr\nvzLFZS21JY8/yM01axJIa/bu5umkzx1rqjklb7WnOVqIvFnnraC01kTNM5MasidvzrK0pu7CiaAg\nvnI0k2Pzt6Cst2zJ27AKrUho6VjWo3nSS6ahWtla+MykhjdjEmhRvT6tvzKJ5pXAl/e9Cfim5S0+\neYBTixosvjPn+DHbhIWbS8UwoknB/2dm0oLmzQbziIjwbk/TgvrhwEK2XDKzaftFrwvIcwr/kZY3\nIYqB8+l/szJ5B2/NN8ukTBwQR2wL/82q9KXclgrZ+voQBo+cQufWDWjbtq1LF15tIA1IHe/+vpv2\n7s1xbPevvwU8eWtbNxqSPrd3m/+ekcE11pisvBK29IsXafih2aqpVbVazOqcd/eaJ0opj0mbTZhT\nnHvVzbl8iK+4W5wXYNIN3Xnx0MfWtcBXseMoU+pKNqZtp9VaM8BeKbivdAP7fb6JLXxX6bKWeS8T\nMv/2Dwr9PFCwcW+F1SSqJ1v2vEs9+gf8uUXRJC1vwqemT17BJ3PMhskrt08I8tWEhg3bDjD63eWc\n/8tsYlSn2jUkvvFksC9L4LrDwoFBQ12S0Lw88/5UDvA3q54a5tX9Qs3tSaPIBLpUacRYa7eEQ+mn\n6ZVsFi2Or9qYT06b9+gwBd2vb8HQhq5rnB374zQJm82EBn+OexOiKAj69lhFgXkjFowAAAd2SURB\nVCRvRcuG9SmMG5gISPJWGM37mA8+DUwf+SBNomsF94KCKEtrJi1bzqyU/S57m+55ObBj5GyL9R4c\nnL8ut9ozzO4Kaf08zzD11o5TR+iyZh49b2jIosM/Uz+8PCt6PevT5/BGx6TRnLQmWYQBGzpMINxp\nJvbIzXP45pyZWfxhowH03WbGow2s3YEZh8w4vm9i814gXIjiQrpNRVAtnbWe5K9TSNl8GJRiZcpr\ntLi7gSRtPlShbBjR1X23qGko+nT7Tmal7A/2ZXjNm6TtP5u+Y/xOszhvWp/hHssqzKKx5axtqMqW\nKu2xvL8taDOCJVuTWXpuHfNaj+TX387SeeP/k1C5Kc827cbrzVw3nq9PBLu4RMvrbuGrQ98yoq60\nMgvhLWl5EwV25OBpfjl6grHPfAThsHJ74WZUCVfTF33NinVbeSiuBf+43/P2QCK0vbdpHZN2bgDc\nJ2/f7NlJn42fYTaQh7uq1GZu+94Bvsq8aa25fZVj3bdNHV63n9t18ghPbp/K3AaD2H3+JK8fW8SC\nJi9So4LnGbhCFDfS8iaCqmZUFWpGVWFliv8GRpdkM1dsRQNTPt4gyVsx17/5vfRvfm+u54f/uNrl\n70yVRUbmxaC3urlTnnDSyaRm+DUux4dvfx+AR3dOpZaKBGDZoe8YXCE+x2MIITyTljchhAgBly5d\not7CyZQBEmKa8mKjWEp5sWNHIOzatYuoqCiuuOKKYF+KEEWWtLwJIUQJERERwcGEkcG+DI8eOTgH\nDjr2NxVC+Ickb0IIIXxCkjYhAqNotbkLIYQQQgiPJHkTQgghhAghkrwJIYQQQoQQSd6EEEIIIUKI\nJG9CCCGEECFEkjchhBBCiBAiyZsQQgghRAiR5E0IIYQQIoRI8iaEEEIIEUIkeRNCCCGECCGSvAkh\nhBBChBCltQ72NRSKUuo0cKiAd68M/OrDyxHuSZwDQ+IcGBLnwJA4+5/EODCyx/kGrXWVwjxgyCdv\nhaGU+kFr3TTY11HcSZwDQ+IcGBLnwJA4+5/EODD8EWfpNhVCCCGECCGSvAkhhBBChJCSnry9H+wL\nKCEkzoEhcQ4MiXNgSJz9T2IcGD6Pc4ke8yaEEEIIEWpKesubEEIIIURIKTbJm1JqplLqlFJqRy7n\nlVLqX0qpfUqp7UqpxtbxaKXUT04/55VSz1vnKiql1iil9lq/IwP5mooiP8V5nFLqmNO5joF8TUVR\nQeNsnRuilEpRSu1QSiUqpa60jkt9duKnGEtdzqaQcX7OinGK7f3COi51ORs/xVnqczb5iHN9pdT3\nSqkLSqlh2c51UErttv4HI5yOe1+ftdbF4ge4B2gM7MjlfEcgCVBAC2CjmzLhwAnMGiwAbwIjrNsj\ngEnBfp3B/vFTnMcBw4L92orST0HjDFQHDgJlrL8XAX2s21Kf/R9jqcu+i3NDYAdQFigFfAn8n3VO\n6nJg4iz12fs4VwWaAa85x8763NsP3AiUBrYBN1nnvK7PxablTWv9LXDWQ5GuwBxtbAAqKKWuz1Ym\nFtivtT7kdJ/Z1u3ZwAO+vOZQ5Kc4i2wKGedSQBmlVCnMG/IvTveR+mzxU4xFNoWIcwwmwcjQWmcC\n64BuTveRuuzET3EW2eQVZ631Ka31ZuBStlPNgX1a6wNa64vAR5j/CRSgPheb5C0fqgNHnP4+ah1z\n9hCQ6PT3tVrr49btE8C1/ru8YqMgcQYYbDXlz5QukHxxG2et9TFgMnAYOA78rrVebZWR+uydgsQY\npC57K7f3jB3A3UqpSkqpspiWo5pWGanL3itInEHqs694+mz0uj6XpOTNI6VUaaALsNjdeW3aM2Vq\nbiHlEuf3ME3Jt2E+DN8KwqUVC9aba1cgCqgGlFNKJWQvJ/W54PKIsdRlH9FapwKTgNXASuAn4LKb\nclKXCyGPOEt9DrD81ueSlLwdw/XbRA3rmE0c8KPW+qTTsZO2bhLr9ym/X2Xo8zrOWuuTWuvLWuss\n4N+Y5mXhWW5xvg84qLU+rbW+BCwF7rTKSH32jtcxlrpcILm+Z2it/6O1bqK1vgc4B+yxykhd9p7X\ncZb67FOePhu9rs8lKXn7DHjUmnHTAtPVcdzpfG9yduV9Bjxm3X4M+NT/lxnyvI5ztjFx8ZhmfOFZ\nbnE+DLRQSpVVSinM+MJUp/tIfc4/r2MsdblAcn3PUEpVtX7XwozDWuB0H6nL3vE6zlKffWozUFcp\nFWX1QD2E+Z9AAepzsVmkVymVCLQCKgMngbFABIDWerr1JvsO0AHIAB7XWv9g3bcc5g35Rq31706P\nWQkzk6wWcAjoqbX2NCC02PNTnOdimuU1kAb0y5bwlTiFjPMrQC8gE9gK9NVaX5D67MpPMZa6nE0h\n47weqIQZ/D1Ua73WOi51ORs/xVnqczb5iPN1wA/A1UAWkI6ZVXpemaVW3sbMPJ2ptX7Nekyv63Ox\nSd6EEEIIIUqCktRtKoQQQggR8iR5E0IIIYQIIZK8CSGEEEKEEEnehBBCCCFCiCRvQgghhBAhRJI3\nIYQQQogQIsmbEEIIIUQIkeRNCCGEECKE/A+zhXSpwiKKCgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAE/CAYAAADPHl79AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cXVV56PHfc84MIYJBkRQR0ECBFtCiMKVUq1UQZ8Za\nQdsqlgsICip4fUHknSteQUFAKCpaWqmEqoje3spVh4HyYm0FMbGgAoIRQYgoQVtQioHMee4fe0/m\nzGReAjkzZ+/M7/v5nM/ss/bbs87OnDyz9lp7RWYiSZKk+mp0OwBJkiRtGBM6SZKkmjOhkyRJqjkT\nOkmSpJozoZMkSao5EzpJkqSaM6GT1FUR8dmIOKPbccyF+VRXSXPLhE6SJKnmTOgkaRJR8DtSUi34\nZSVpnIg4MSJ+HBG/jojbI+J1ZfmCiPiviHh+27aLI+KxiPid8v3xEfFARPwsIt4aERkRO63HabeK\niGvKc34jIp7Xdo4XR8R3IuLh8ueL16MOb46Iu8vj/SQiDm4r//eI+ER5vB9GxH5t+90QEWdGxL8D\n/w3sGBFbRMRnynqtjIgzIqJZbv+7EXFdRPwyIh6KiM9FxDPajveiiPhuGccXgU2niHfazzYitoqI\nr5bb/CoivjlVsll+5u8q6/9QRJzTvm1EHBkRd7Rd3z3L8kmvu6R6MKGTNNGPgZcCWwAfBP4xIrbJ\nzNXAPwFvatv2DcA3MvPBiBgAjgVeCewEvPxJnPNg4EPAVsAtwOcAImJL4GvAhcCzgI8BX4uIZ011\noIjYrNx+MDOfDry4POaoPyrruBXwAeCfyvOMOgQ4Cng6cC/wWWBNWacXAa8C3jp6OuAjwHOAXYHt\ngdPLODYB/hm4DNgS+BLwF5PFPNNnC7wPuB9YDGwNnAxMN2/j64A+YE/gAOCIMqa/KuM7FFgEvBb4\nZbnPpNd9mnNIqhATOknjZOaXMvNnmdnKzC8CPwL2Lld/HjiobfO/LsugSED+ITNvy8z/pkxs1tPX\nMvNfy8TmFOCPI2J74M+AH2XmZZm5JjO/APwQ+PMZjtcCnh8RCzPzgcy8rW3dg8AFmflEWb87y/OM\n+mxZhzUUidirgfdk5qNlcnX+6GeQmSsy85rMXJ2ZqygSzj8tj7MP0Nt2ri8D35km5uk+2yeAbYDn\nlcf6Zk4/EffZmfmrzPwpcAFjieJbgY9m5neysCIz7y3rMt11l1RxJnSSxomIQyPilvL23n8Bz6do\nzQK4HnhaRPxRRCwBXgj833Ldc4D72g7VvjyTtdtm5m+AX5XHew5FK1m7e4FtpzpQZj4KvBF4O/BA\nRHwtIn6/bZOVE5Khe8vzTBb38yiSsgfaPo+/BUZvMW8dEZeXt2IfAf6Rsc/qOVOcayrTfbbnACuA\nq8tbqSdOc5yJdWiv3/YULXHrmOG6S6o4EzpJa5V91/4OeCfwrMx8BvADiluLZOYIcAVFi8+bgK9m\n5q/L3R8Atms73PZP4tRrt42IzSlaxn5Wvp43YdvnAiunO1hmDmfm/hStWj8s6zRq24iICcf7Wfvu\nbcv3AauBrTLzGeVrUWbuXq7/cLn9CzJzEfA/KD8ris9jsnNNFfOUn21m/joz35eZO1LcJj22ve/f\nJNo/+/b63Qf87sSNZ7rukqrPhE5Su80oEpRVABFxOEVLTbvPU7SAHczYLUEokpHDI2LXiHgacNqT\nOO+rI+JPyn5nHwJuysz7gK8Du0TEX0dET0S8EdgN+OpUBypbzQ4o+9KtBn5DcQt21O8A74qI3rJP\n2a7ledaRmQ8AVwPnRcSiiGiUAyFGb6s+vTz+wxGxLfD+tt1vpOh7N3qu1zPzLcxJP9uIeE1E7FQm\nhw8DIxPqNNH7I+KZ5W3rdwNfLMv/HjguIvaKwk5lMrc+111ShZnQSVorM28HzqNIRn4BvAD49wnb\nfBt4lOI23lBb+RDFYITrKW4P3lSuWr0ep/48xQCFXwF7UbR0kZm/BF5DMSjgl8DxwGsy86FpjtWg\nGJzxs/J4fwq8o239t4GdgYeAM4G/LM8zlUOBTYDbgf8EvkzR8gfF4IE9KZKsr1EMbKCM/XHg9cCb\nyzje2L5+MlN9tmW8/0KRPN4IXJSZ109zqK8AyykGg3wN+Ex5/C+Vdf488GuKQRtbrs91l1RtMX2/\nWkl6aiJiV4rbdgvKAQZdFxFvBt6amX/S7VhmS0QksHNmruh2LJLmji10kjomIl5XPlPtmcDZwP+r\nSjInSRszEzpJnfQ2iseC/Jiin9c7ACLitoj4zSSvg5/qiaY43m8i4qWdqYok1Ye3XCVJkmrOFjpJ\nkqSaM6GTJEmquZ5uB7Chttpqq1yyZEm3w5AkSZrR8uXLH8rMxZ0+bscSuohoAssoprp5TTnZ9ReB\nJcA9wBsy8z/LbU8C3kLRafpdmTlclu9FMRH2QooHfb57hvkKWbJkCcuWLetUNSRJkmZNREw3BeBT\n1slbru8G7mh7fyJwbWbuDFxbvicidqOYgHp3YAC4qEwGAT4FHEnxEM2dy/WSJEmaRkcSuojYDvgz\nimllRh0AXFouXwoc2FZ+eWauzsyfUDxRfu+I2AZYlJk3la1yS9v2kSRJ0hQ61UJ3AcWUPO1zC25d\nzoMI8HNg63J5W4oJokfdX5ZtWy5PLJckSdI0Njihi4jXAA9m5vKptilb3Dr2wLuIOCoilkXEslWr\nVnXqsJIkSbXUiRa6lwCvjYh7gMuBfSPiH4FflLdRKX8+WG6/Eti+bf/tyrKV5fLE8nVk5sWZ2ZeZ\nfYsXd3ygiCRJUq1scEKXmSdl5naZuYRisMN1mfk/gCuBw8rNDgO+Ui5fCRxUzve4A8Xgh5vL27OP\nRMQ+ERHAoW37SJIkaQqz+Ry6s4ArIuItwL3AGwAy87aIuAK4HVgDHJOZI+U+RzP22JKh8iVJkqRp\n1H4u176+vvQ5dJIkqQ4iYnlm9nX6uE79JUmSVHMmdJIqrX/hId0OQZIqz4ROUmWNJnMDiw7vciSS\nVG0mdJIqa/ixy4je2Ry7JUkbB78pJVXaVY/8Q7dDkKTKs4VOkiSp5kzoJEmSas6ETpIkqeZM6CRJ\nkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoRO\nUqX1b34Y/Zsf1u0wJKnSTOgkSZJqrqfbAUjSdIZ/c2m3Q5CkyrOFTpIkqeZM6CRJkmrOhE6SJKnm\nTOgkVVr/Zod2OwRJqjwTOkmSpJozoZNUacOPLu12CJJUeSZ0kiRJNWdCJ0mSVHMmdJIkSTVnQidJ\nklRzJnSSJEk1Z0InSZJUcyZ0kiRJNWdCJ0mSVHMmdJIkSTVnQidJklRzJnSSJEk1Z0InSZJUcxuc\n0EXEphFxc0TcGhG3RcQHy/ItI+KaiPhR+fOZbfucFBErIuLOiOhvK98rIr5frrswImJD45MkSdrY\ndaKFbjWwb2buAbwQGIiIfYATgWszc2fg2vI9EbEbcBCwOzAAXBQRzfJYnwKOBHYuXwMdiE+SJGmj\ntsEJXRZ+U77tLV8JHABcWpZfChxYLh8AXJ6ZqzPzJ8AKYO+I2AZYlJk3ZWYCS9v2kSRJ0hQ60ocu\nIpoRcQvwIHBNZn4b2DozHyg3+Tmwdbm8LXBf2+73l2XblssTyyVJkjSNjiR0mTmSmS8EtqNobXv+\nhPVJ0WrXERFxVEQsi4hlq1at6tRhJUmSaqmjo1wz87+A6yn6vv2ivI1K+fPBcrOVwPZtu21Xlq0s\nlyeWT3aeizOzLzP7Fi9e3MkqSJIk1U4nRrkujohnlMsLgf2BHwJXAoeVmx0GfKVcvhI4KCIWRMQO\nFIMfbi5vzz4SEfuUo1sPbdtHkiRJU+jpwDG2AS4tR6o2gCsy86sRcSNwRUS8BbgXeANAZt4WEVcA\ntwNrgGMyc6Q81tHAZ4GFwFD5kiRJ0jSi6N5WX319fbls2bJuhyFJkjSjiFiemX2dPq4zRUiSJNWc\nCZ0kSVLNmdBJkiTVnAmdJElSzZnQSZIk1ZwJnSRJUs2Z0EmqtP7ND6N/88Nm3lCS5jETOkmVN/yb\nS7sdgiRVmgmdpEozmZOkmZnQSZIk1ZwJnSRJUs2Z0EmSJNWcCZ0kSVLNmdBJkiTVnAmdJElSzZnQ\nSaq0gUWHM7Do8G6HIUmVZkInSZJUcz3dDkCSpnPVI//Q7RAkqfJsoZMkSao5EzpJldW/8BD6Fx7S\n7TAkqfJM6CRJkmrOPnSSKmv4scu6HYIk1YItdJIkSTVnQidJklRzJnSSJEk1Z0InSZJUcyZ0kiRJ\nNWdCJ0mSVHMmdJIkSTVnQiep0ga2OIKBLY7odhiSVGkmdJIkSTXnTBGSKu2qhy/pdgiSVHm20EmS\nJNWcCZ0kSVLNmdBJqjQHRUjSzEzoJEmSas5BEZIqzUERkjQzW+gkSZJqboMTuojYPiKuj4jbI+K2\niHh3Wb5lRFwTET8qfz6zbZ+TImJFRNwZEf1t5XtFxPfLdRdGRGxofJIkSRu7TrTQrQHel5m7AfsA\nx0TEbsCJwLWZuTNwbfmect1BwO7AAHBRRDTLY30KOBLYuXwNdCA+SZKkjdoGJ3SZ+UBmfrdc/jVw\nB7AtcABwabnZpcCB5fIBwOWZuTozfwKsAPaOiG2ARZl5U2YmsLRtH0mSJE2ho33oImIJ8CLg28DW\nmflAuernwNbl8rbAfW273V+WbVsuTyyXJEnSNDqW0EXE5sD/Ad6TmY+0rytb3LKD5zoqIpZFxLJV\nq1Z16rCSKqh/88Po3/ywbochSZXWkceWREQvRTL3ucz8p7L4FxGxTWY+UN5OfbAsXwls37b7dmXZ\nynJ5Yvk6MvNi4GKAvr6+jiWKkqpn+DeXzryRJM1znRjlGsBngDsy82Ntq64ERv+sPgz4Slv5QRGx\nICJ2oBj8cHN5e/aRiNinPOahbftImscGtjySgS2P7HYYklRZnWihewlwCPD9iLilLDsZOAu4IiLe\nAtwLvAEgM2+LiCuA2ylGyB6TmSPlfkcDnwUWAkPlS9I8tnbar2Zz+g0laR7b4IQuM/8NmOp5cftN\nsc+ZwJmTlC8Dnr+hMUna+Fz1q7/rdgiSVFlO/SWp0pz6S5Jm5tRfkiRJNWdCJ6m2+vtOp7/v9G6H\nIUldZ0InSZJUc/ahk1R5A1seOemgiOFlp899MJJUQbbQSaoFn0MnSVOzhU5S5fnIEkmani10kmpl\ncMfjGNzxuG6HIUmVYkInSZJUc95ylVQrQ3ef2+0QJKlybKGTJEmqORM6SZKkmjOhkyRJqjkTOkmS\npJozoZNUaQNbHMHAFkeMKxvc7WQGdzu5SxFJUvWY0EmqFZ9BJ0nr8rElkirtqocvWads6PYPj3u/\n/5+cCcA1/3bKnMQkSVVjC52kWvE5dJK0LlvoJNXC4HbvKhYaDYZ+esG4dbbMSZrvbKGTVHkDWx3V\n7RAkqdJM6CTVQv72twDrtM5N5qUHnjPb4UhSpZjQSaqNofsvXO9tTeokzSf2oZO00fnmP7+/2yFI\n0pwyoZNUeVc9dHG3Q5CkSjOhk1R5g1u/o1hYsABYv350kjSfmNBJqrx8Yg00guh2IJJUUSZ0kuqh\nlbbMSdIUHOUqqdL6Nz+Mq371d8QmvQw+++huhyNJlWRCJ6ny+jc/rNshSFKlmdBJqrRoNolmk6Gf\nXwQ99hKRpMn47SipFga3OabbIUhSZdlCJ6nSrnr4Eq56+BJotSBzbfnAC07pYlSSVC220EmqvIGt\njiKaTQAGdzyuKNxsQRcjkqRqMaGTVAs5MkJsuikAQ3ef2+VoJKlaTOgkVd5VD13M4OK3M3T/hd0O\nRZIqyYROUmW9apO/BqC5xaIuRyJJ1eagCEnV1whoBIPb/s9uRyJJlWRCJ6nycmSEHBmBVovB576n\n2+FIUuV0JKGLiEsi4sGI+EFb2ZYRcU1E/Kj8+cy2dSdFxIqIuDMi+tvK94qI75frLowI5+KW5rGr\nH/880dsDI6312v4V/Wfziv6zZzkqSaqeTrXQfRYYmFB2InBtZu4MXFu+JyJ2Aw4Cdi/3uSgimuU+\nnwKOBHYuXxOPKWk+GhkpZot44JMM/fSCbkcjSZXTkUERmfmvEbFkQvEBwMvL5UuBG4ATyvLLM3M1\n8JOIWAHsHRH3AIsy8yaAiFgKHAgMdSJGSfU0+vy5HBmZcdvrh0+Y7XAkqZJmsw/d1pn5QLn8c2Dr\ncnlb4L627e4vy7YtlyeWS5rHcmQENuntdhiSVGlzMigiMxPIGTdcTxFxVEQsi4hlq1at6tRhJVXV\nE2u6HYEkVdpsJnS/iIhtAMqfD5blK4Ht27bbrixbWS5PLF9HZl6cmX2Z2bd48eKOBy6pOqLHx2VK\n0kxmM6G7EjisXD4M+Epb+UERsSAidqAY/HBzeXv2kYjYpxzdemjbPpLmqasevgSaTWh1rJFfkjY6\nHfnTNyK+QDEAYquIuB/4AHAWcEVEvAW4F3gDQGbeFhFXALcDa4BjMnO0t/PRFCNmF1IMhnBAhDTP\nDSw6vFiwpU6SptSpUa5vmmLVflNsfyZw5iTly4DndyImSRuHbBXPoPOhlJI0NWeKkFR9ZnOSNC0T\nOkmVFs0m0WgWc7lu965uhyNJlWSnFEmVNvpA4dEHDEuS1mULnaTK6l94CIy0iN7iwcJD91/Y5Ygk\nqZpM6CRV1vBjl61TNrjLCQzu4hRfktTOhE5SpQ0/dhlEEM0mg88+utvhSFIl2YdOUqX1b3YosWAB\nOTLCVas+3e1wJKmSTOgkVd/ICDSbDG7/bhjtT3f3uV0OSpKqw4ROUj00Ap54AiIY+ukF3Y5GkirF\nPnSSKi1Gp/wq53I1mZOkdZnQSaqHRjFdhKNcJWldJnSSKqt/4SHk409Alq1zP79o7brB3U7uVliS\nVDkmdJJqY/DZRzN019nQ46wRktTOhE5SZa19sHDE+J8jLYZu/3B3gpKkCjKhk1RZ/QsPAcr5XMtB\nEZKkdZnQSaqs4ccuI3p7iMbYV9XgTu+HTPvQSVIbn0MnqbJGW+hoNgiAtY8waQH2o5OkUSZ0kuqh\nEQzd9zfdjkKSKslbrpIqa/ixy6DZdrv12UczuOS9XYxIkqrJhE5S5UWj4aAISZqGCZ2kSmsfEFEU\nRHcCkaQKM6GTVGnZajGubW7NCIO7nsTgrid1KyRJqhwTOknV12qtnct1dJaIBAZecEr3YpKkCjGh\nk1QPo33o1owwdMdHoKfBVd8/s7sxSVJF+NgSSZUWvb2TlpvMSdIYEzpJlTX6YOHo7Rl7qLCDIiRp\nHd5ylVR5GUAATWeHkKTJmNBJqq5GQCMIohgF0Wp1OyJJqiQTOkn1MfGZdJIkwD50kiosn1gDQDSb\nRWvdyAhDKz/e5agkqXr8c1dSPZSPLRnc4dguByJJ1WMLnaTKitGHCY8OhoiAHD+n6/4vPgOAa751\n6lyGJkmVYgudpMoa/u3noNkkWyNFQdmHbnCXExj8vRO7GJkkVYstdJIqq3+zQ4uFVkJvFKNcy1uv\nQ3eeBdgyJ0lgC52kCht+dCnRbBIRY1N/AUN3nd3FqCSpekzoJFVajoyMzQ6RCY1gcNeTGNz1pO4G\nJkkVYkInqbLW3nIdNaGlTpJUsA+dpNoZuuMj3Q5Bkiqlci10ETEQEXdGxIqIcBibNI8NP7oUGL3t\nSnHLtdlgYMfjGNj9lO4GJ0kVUqkWuohoAp8E9gfuB74TEVdm5u3djUxSN/RvenCx0NP2VTXSIjZp\nkkD/H34QgDWb9QJw7Q0nz3GEklQNVWuh2xtYkZl3Z+bjwOXAAV2OSVKXRaMxfmAEcNVtZ65dbyIn\nab6rVAsdsC1wX9v7+4E/6lIskrps+LefY2DR4cWb0RkiIhhacU6x/jsfWLutSZ2k+axqLXTrJSKO\niohlEbFs1apV3Q5H0izpX3gI+cQaEsZa6Hp6GNz5+G6GJUmVU7WEbiWwfdv77cqycTLz4szsy8y+\nxYsXz1lwkrojYOxxJWvWwEirm+FIUuVULaH7DrBzROwQEZsABwFXdjkmSV0y/NhlRG/ZMyRoa6Vr\nMvAHpzLwB8W0X/u/+IyOnG+ns89np7PP78ixJGkuVaoPXWauiYh3AsNAE7gkM2/rcliSuihHRohm\ns3yTY33pgKu+dwb77/O/uxSZJFVHpRI6gMz8OvD1bschqWLaJogYuutsBvY4DShvx3bIihPe28Gj\nSdLcqVxCJ0njRJDZKu62RkCzUQyKeNoCBvY4jatv/VC3I5SkrqtaHzpJWtfE6VsjuOrWD5G9Tfr7\nTu9GRJJUKSZ0kqqv/aHCrYnZnSTJW66SKi8ixid1EQz+3okM33lWdwOTpIqwhU5SPbTGZoqQJI1n\nC52kyupfeAgAGTF+NGsmQ3ed3ZWYJKmKbKGTVH0R6zyfZHA3526VpFEmdJIqa/ixy6DZgFbbVF+Z\n0NMkgYEX/q+uxSZJVeItV0nVlkn09IzrOzd0+4e7GJAkVY8tdJIqq3+zQwHIdECEJE3HhE5S5UVE\nMcq1fGSJJGk8EzpJlTX86NKxBK4xlsgN7nhclyKSpGoyoZNUWf0LD4GRFtk+KKIRDN197pzG8bxL\nPjqn55OkJ8uETlIl7d/4K1qrfwuUt1xH+9G1koFdTmBg91Om3PdlB5zTsThM5iTVgQmdpGobvdXa\nNvVXwPhHmUyiU0ndvUccz71HHN+RY0nSbPGxJZIq6ZrWlwDo3/wwkhx7rnAENBsTnzM8zr9+5f2z\nHZ4kVYoJnaTKGn1sSdAYu+XaCFj9xKT96F7RX0wHdv3wCXMWoyRVgbdcJVXW8KNLJ1/R05xyH5M5\nSfORLXSSKi16yq+p0T50rVzbf67/RR8AYPg/PgiYzEmav0zoJFVajoxAo0GM3nId/clYIjeTvrd8\nDIBlnzm24/FJUhWY0EmqrNE+dEwx9Vf/Xh+gBbCgl2u+deqcxiZJVWIfOknVlwnZ9r4x9tXVmJDk\nvey15/Cy13buOXSSVAcmdJKqq5XQSmI0gRttqVszUvwskzlb5yTNd5GZM29VYX19fbls2bJuhyFp\nFvQvPKRYaDaITRcUAyR6e8neXli4AJpBa7MFAFx942ldjHRmn/jhvgC88/ev63IkkropIpZnZl+n\nj2sLnaTKGn7sMmhO+JoKirLM4i7s42s26By7nXr+Bu0vSVXgoAhJlTbudmsELFiwdpaI7G0SwHCH\nW+d2vPA8AO5+1/s6dkxb5iTNJlvoJFVW/6YHk48/XryJKJK6kVbROjfSYnj5BxleXjy6ZL+Xf/gp\nneP2M97bqXAlqWtsoZNUeZlZPIcuAtasITfpnXa2iA3VyZY5SZoLttBJqq5oQDSI0UeTlIO4IgIa\nMPCCU9Zums0G++53VjeilKSuM6GTVHnZahXPoRtN7EZa62400qI10uLlA2dPeow933Y+e77NARCS\nNk4mdJIqL9oeJExmMcp1TQsi2P/FZ7D/i88oBkpsun63Yfd4z7qJ3S5nnM8uZ5jwSaonEzpJ9VHe\ncs2yhe6q752xdtW1N5xctOBNmDli1Hf/9r1892+LARC3XuBACEkbFwdFSKq8BNrTtPac7Zpvncor\nX3Ymr3zZmfC0p/6VdtepJnmS6ssWOknVlS3IVpHMtSVxGUE2GvT3nc7+fafDSNFy1xhJshH86as/\nusGnXvLJ81jyyfM2+DiSNBdM6CRVVrayGOnaLPvGTbyl+sTI2PIUt1qfqnuOGXt0yZJ/2PAEUZJm\nkwmdpErLkRFojRT3XTMhk2g0yGb5oOFNeoiEVk8DWvCNrx/PN75+fEfOPV1St9s/n96Rc0hSJ5jQ\nSaqs6O0henuKlrpGW+tc5tgd2MeemHTfP3n9uTMef/eTzmf3k9Yd2brjheetnf4L4J7Dj+eew8eS\nRJM5SVXjoAhJlTX86FIGFh0+VlCOcgVg9RrYtJcGMPytU4upvxpFmrc+yRzAbR8ZPxBi57PK5O5p\n0+93+4Gnr9fxJWmubFBCFxF/BZwO7ArsnZnL2tadBLwFGAHelZnDZflewGeBhcDXgXdnZkbEAmAp\nsBfwS+CNmXnPhsQnqf6yVTyiZFwPud7yqysCmlGMcG3zb/903KTH2vMd5/PdT00/mvVHJ67/aNc9\nv34qAN999RkzbClJs2tDb7n+AHg98K/thRGxG3AQsDswAFwUEaNP/PwUcCSwc/kaKMvfAvxnZu4E\nnA9M/rh3SfNONJvjWufy8eI2a2TS2qQH1hS3YK+94eQZj7XnO6Z+ePCTSeYkqUo2qIUuM+8AxuZZ\nHHMAcHlmrgZ+EhErgL0j4h5gUWbeVO63FDgQGCr3Ob3c/8vAJyIiMtvvsUiab6J9hOuEnwk0Vj/B\n8PIPAvCK/uLvwOuHT5j0WDO1zj1ZtsxJqorZGhSxLXBf2/v7y7Jty+WJ5eP2ycw1wMPAs2YpPkk1\n0L/wkLWtcUz82y4TetbvK+wPj/gYf3jEx9a+n2zqL0mqsxlb6CLiX4BnT7LqlMz8SudDmllEHAUc\nBfDc5z63GyFImkPZahHZLFrnMqFVJndPjNDapIf9X3wGrQVlS16vg/clzT8zfvNl5isz8/mTvKZL\n5lYC27e9364sW1kuTywft09E9ABbUAyOmCymizOzLzP7Fi9ePFMVJNXU8GOXFSNXM8d+NhvFa9SE\nLh/XXz12u3Wfg89jn4PPI1rQasFeRz25lrkln1q/0bKS1G2z9afslcBBEbEgInagGPxwc2Y+ADwS\nEftE0fHuUOArbfscVi7/JXCd/eek+a1/4SHQSqLZGGuVazSJkdbaW7CNVotsBPFEC3obvOJV646n\nuvmzx8ImY4nfrRcUfemmeg5dO5M6SXWwoY8teR3wcWAx8LWIuCUz+zPztoi4ArgdWAMck5mjc/Qc\nzdhjS4bKF8BngMvKARS/ohglK0nFLBGj1qwhe3qY+NdeAqxpjetXF62x9csvfvIDIu55x+SPP5lN\nrZ/vAkDj2XfN+bkl1VfUvRGsr68vly1bNvOGkmrlVb3F33SNp5VP+W02iQWbQE8P2dtL9vaQT1sA\nzeDqZaez374fAeDa605ae4w/ftN5jCwoWuZu/uyxALzwnedzyyc2fLTrC678AADff+0HN/hY7Uzo\npI1bRCwitY56AAAKOUlEQVTPzL5OH9eZIiRV2+gfnTG2HFG8Heltrt2sPZEbdeMXirlY937zx8aV\ndyqpmw0mcpKeChM6SZV09ROX07/ZoeTICDQaYzNFRDmna2Od51+u7T83OjDij99UzMd6c5nYAR1L\n5DrdMidJG8Lx/ZIqLxqNsdGsmdBo0ALiiaJr7qv++ENrt73+6hN42WvPKXdkwpxh69rtlPGDInY6\nZ6w1b8mnznVQhKRaMKGTVH3tfX0jYM3I2JdXs8jY9tv3I7CmxctedTa5Jnnp687lxs+/jxs/P9Y6\n96Kjz+dFR48lcLuddD6UAyd+70M+bFhSfXnLVVJlDT+6lIFFh48vLJO7BKLVYvjG04AioWsArZ5i\nSrB1ZpaY4PnHn08ArSb8/mnnQ0+R1K047Vh2vKBopbvnPXM/ylWSngoTOkmV1b/wEABi4abjE7S2\n59Lt/+JiPtVrv3Xq2tUvPfCcSY/3HxeN7z8XsPZbMIAfnlbNgRKSNBMTOknVlW0PkhsdDAHFIIlG\nMLKgd+2z5/bb9yPF3dPeBt8cPmGdQ+11ZHFLdfnfjU/a7vjQuknc3e85dtz7JZcWgy3uOWzd40pS\nFdiHTlL1NYOIBvT0MHTf3xQtdGVyF8A1ba1zU0kgm1Ov3+XM89nlTPvRSaonW+gkVdbwbz8HwODi\nt68tG9z+3Qzd9zcM7nYyV9/8v9aWJ0Vyd90krXN/eMTHaAIjzbEhrz/46PrfXrVlTlLV2UInqfKG\nVn2aoVWfHleWPQ0G/qBomdv/JWdw3XUncd11J/Gy154z9tiSNi3GTwU20V2nvJdWD+x09lgr3ZJP\nn8uST5/LsUvPZsnS4rbr737xzA2vkCR1mAmdpPpo60e3w0vgqu+dUQyKaBsvsWiTdXf7ziXHQk+x\n3wvfuf63VbcBXt32vkjmWuzy5Q9NsYckdYcJnaT6aLUY+ukFnH3SpfzkW8HAHqets8lXv/x+sgEv\nOfAc3nbiJ8etG9xjq2kPv+KE90Ij+fjHPw7AjW8/jovefhwfO/QE7jn0BH78xlNoTtMPT5K6xT50\nkmrhsssuW7t8w1fuLBZ6m9MOiPjBj3877v3QrQ9xy8XT951b8f5ihOsOHz+P87f/XQ488MBx6+/6\ny3WTSEnqtsgZHr5ZdX19fbls2bJuhyGpi2699Vb22GOPjh5zh4+fx0/+5/tm3lCSnoSIWJ6ZfZ0+\nrrdcJdXeccd8lSP++qKOHtNkTlKdeMtVUu1d82+ndDsESeoqW+gkSZJqzoROkiSp5kzoJEmSas6E\nTpIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM6CRJkmouMrPbMWyQ\niFgF3NvtOGbRVsBD3Q6iC+ZrvWH+1t16zy/We36x3mOel5mLO32i2id0G7uIWJaZfd2OY67N13rD\n/K279Z5frPf8Yr1nn7dcJUmSas6ETpIkqeZM6Krv4m4H0CXztd4wf+tuvecX6z2/WO9ZZh86SZKk\nmrOFTpIkqeZM6GZZRGwZEddExI/Kn8+cYruBiLgzIlZExInrs39EnFRuf2dE9JdlT4+IW9peD0XE\nBeW6N0fEqrZ1b91Y6l2W31CWjdbvd8ryBRHxxXKfb0fEko2l3hHxtIj4WkT8MCJui4iz2raf1es9\nVR3a1kdEXFiu/15E7Nnp+pfle0XE98t1F0ZEdLKek5nLukfE/hGxvKzj8ojYt22fSf/NbyT1XhIR\nj7XV7dNt+8zpNZ/jeh8c47/DWxHxwnLdxnC9/yqK76pWRPRNOF4lfsfnst4d/f3OTF+z+AI+CpxY\nLp8InD3JNk3gx8COwCbArcBu0+0P7FZutwDYody/OcmxlwMvK5ffDHxiY603cAPQN8l5jgY+XS4f\nBHxxY6k38DTgFeU2mwDfBAZn+3pPV4e2bV4NDAEB7AN8e5au+83l8aM83+As/9ue67q/CHhOufx8\nYGXbeSb9N7+R1HsJ8IMpYpmzaz7X9Z5w3BcAP97IrveuwO9NrAsV+R3vQr079vttC93sOwC4tFy+\nFDhwkm32BlZk5t2Z+ThwebnfdPsfAFyemasz8yfAivI4a0XELsDvUPwnP9e6Vu8ZYvkysN8s/oU3\np/XOzP/OzOsBymN9F9iuw3WazHR1GHUAsDQLNwHPiIhtZtj3SdW/PN6izLwpi2/ApUz+mXfSnNY9\nM/8jM39Wlt8GLIyIBbNVuWnM9TWfVBeueTfr/aZyn26YlXpn5h2Zeeck56vK7/ic1ruTv98mdLNv\n68x8oFz+ObD1JNtsC9zX9v7+smy6/afbZ9Roa1T7yJe/KJt2vxwR2z+5qjwp3ar3pWXT9GltSdva\nfTJzDfAw8KwnX6X10rXrHRHPAP4cuLateLau9/r8+5tqm07Wf9tyebo4Om2u697uL4DvZubqtrLJ\n/s3Phm7Ue4eybt+IiJe2nWMur3k3r/cbgS9MKKv79X6y59tYrvf62KDf754ncSJNISL+BXj2JKtO\naX+TmRkRT3lY8VPY/yDgkLb3/w/4Qmaujoi3UfxVuO+ke66HCtb74MxcGRFPB/4PRd2XPtXzTqWC\n9SYieii++C/MzLvL4o5e77m2oZ9fnU1W94jYHTgbeFVb8Zz8m58rE+r9APDczPxlROwF/HP5GWx0\nprjefwT8d2b+oK14o7reGtOJ328Tug7IzFdOtS4ifhER22TmA2WT7IOTbLYSaG892a4sA5hq/+n2\nISL2AHoyc3lbnL9s2/7vKfpwPGVVq3dmjv78dUR8nqL5e2nbPveXic8WQPtn8aRUrd6li4EfZeYF\nbXF29HpPMFM8023TO82+T7b+Kxl/i3myODptrutORGwH/F/g0Mz88Wj5NP/mZ8Oc1rtspVhdLi+P\niB8DuzD313zOr3fpICa0zm0k1/vJnm9jud5T6tjvd85B58r5/ALOYXzH149Osk0PcDdFR9DRjpS7\nT7c/sDvjO5DeTdugCOAs4IMTzrNN2/LrgJs2lnqXx9qq3KaXoq/c28v3xzB+UMQVG0u9y3VnUPz1\n1pir6z1dHdq2+TPGdxy+eZbqP7HD9Ktn6/p2qe7PKLd7/SRxTPpvfiOp9+K2a7wjxX+MW871NZ/r\nepfvG2V9d9zYrnfbvjcwfnBAJX7Hu1Dvjv1+z8oH4mvcRXkWRZ+mHwH/0vaF9Bzg623bvRq4i2KE\nzCkz7V+uO6Xc/k4mjPop/1H9/oSyj1B0urwVuH7i+jrXG9iMYkTv98o6/k3bl8GmwJcoOtneTNuX\n5EZQ7+2ABO4Abilfb52L6z1ZHYC3M5ZIB/DJcv33Gf8l1rF/70Af8INy3ScoH5g+y7/Xc1Z34FTg\n0bbrewvFYKcp/81vJPX+i7Jet1AM9vnzbl3zLvxbfzkT/gDbiK736yj6lq0GfgEMt62rxO/4XNab\nDv5+O1OEJElSzTnKVZIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM\n6CRJkmru/wNh7xHC3s7IPwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHVW1sPF3dTphljEgkwYUZVJBIiIIl9EMigG5Kjgw\nXAZRQEBFQERQUQGFYC4KwgUBB0QBlSvEAJFB/UQJgwwiEBCEECACgoo3pLvX90dVJ6c7PSan+9Tp\nvL/nOU+fql21a+1zOpXVe++qisxEkiRJzaGl0QFIkiRp4EzeJEmSmojJmyRJUhMxeZMkSWoiJm+S\nJElNxORNkiSpiZi8SepTRFwSEac1Oo7h0Oi2RsTNEXFIL2XjIiIjonUY4zk/Ik4eruNJGphhOwlI\nkppLZh7e6BgkLc6eN0lNKQqew4ZIRIxqdAySeuaJT2oyEXFCRDwSEf+IiD9FxN7l+uUi4u8RsWXN\ntmMj4t8RsXa5/NmImBsRT0XEIeUw3OsHcNi1IuKG8pi3RMRra46xfUTcHhEvlj+3H0AbDoyIR8v6\n/hIRH65Z/9uIOLes788RsVvNfjdHxFci4rfAy8DGEbFqRFxUtmtORJzWmXhExOsi4lcR8VxE/C0i\nfhARq9XUt3VE3FnGcQWwfC/x9vnZRsRaEfGLcpvnI+LXvSWWA/i8Xlt+Bv+IiOsjYq1e6lkjIr5b\nfpcvRMTP+vnMd46IJyPic+Vn8Vjn516WXxIR50XEdRHxL2CX7sPIETElIu6OiJfK38GJ5fpevwNJ\n9WfyJjWfR4AdgVWBLwLfj4h1M3M+cDWwX822HwBuycxny/9oPwXsDrwe2HkQx/ww8GVgLeBu4AdQ\nJBDAtcA0YE3gbODaiFizt4oiYqVy+0mZuQqwfVlnp7eXbVwLOAW4ujxOp48ChwGrAI8DlwBtZZu2\nBt4FdM4bC+BrwHrAZsCGwKllHGOAnwHfA9YAfgLs01PM/X22wKeBJ4GxwDrA54DFnj04wM/rQ8BB\nwNrAGOAzPcVUxr0isEW57dRetqv1aorPdX3gAOCCiHhjt2N/heKz/U232LcFLgOOA1YDdgIeK4sv\noffvQFKdmbxJTSYzf5KZT2VmR2ZeATwMbFsW/xDYt2bzD5XroEg2vpuZ92fmy5RJzABdm5m3lknM\nScA7ImJD4N3Aw5n5vcxsy8zLgT8De/ZTXwewZUSskJlzM/P+mrJngXMyc0HZvgfL43S6pGxDG0XS\nNRk4JjP/VSZSUzs/g8ycnZk3ZOb8zJxHkSz9R1nPdsDommNdCdzeR8x9fbYLgHWB15Z1/Tp7fnD0\nQD6v72bmQ5n5b+DHwFbdK4mIdYFJwOGZ+UJ5zFv6iL3WyeXncQtFIvmBmrKfZ+Zvy9+t/+u238HA\nxeXn2ZGZczLzzxGxDn18B5Lqz+RNajIRsX85dPX3iPg7sCVFbwrATcCKEfH2iBhH8R//T8uy9YAn\naqqqfd+fhdtm5j+B58v61qPo/ar1OEXPTo8y81/AB4HDgbkRcW1EbFqzyZxuic/j5XF6ivu1FAnY\n3JrP4zsUPVFExDoR8aNyKO8l4Pss+qzW6+VYvenrs/06MBu4vhwOPqGXOgbyeT1d8/5lYOUe6tkQ\neD4zX+gj3p68UH7+tcfu7bPt6ZiP9LC+z+9AUv2ZvElNpJxrdiFwJLBmZq4G3EcxPEhmtlP01uxX\nvn6Rmf8od58LbFBT3YaDOPTCbSNiZYoer6fK12u7bfsaYE5flWXmjMzcg6K36s9lmzqtHxHRrb6n\nanevef8EMB9YKzNXK1+vyswtyvKvltu/KTNfBXyE8rOi+Dx6OlZvMff62WbmPzLz05m5MfBe4FO1\nc/VqLNHn1YMngDVq5+8N0OrlsHXtsXv7bHs65ut6Wd/XdyCpzkzepOayEsV/sPMAIuIgip63Wj+k\n6Nn6MIuG9aBIPA6KiM0iYkVgMPfvmhwR7yzniX0ZuC0znwCuA94QER+KiNaI+CCwOfCL3ioqe8Om\nlEnEfOCfFMOondYGPhkRoyPi/RRz1a7rqa7MnAtcD5wVEa+KiJbyIoXOodFVyvpfjIj1KeZrdfod\nxTytzmO9j0XDz73p8bONiPdExOvLRPBFoL1bmzoN+vPqo93TgW9HxOpl/DsNcPcvRsSYiNgReA/F\nXL+BuIji92e38nNePyI2HcB3IKnOTN6kJpKZfwLOokg8ngHeBPy22za/B/5FMRw2vWb9dIqJ8jdR\nDPHdVhbNH8Chf0hx8cDzwDYUPVhk5nMUCcCngeeAzwLvycy/9VFXC8WFE0+V9f0H8PGa8t8DmwB/\no5g8/5/lcXqzP8XE/j8BLwBXUvToQXFBx1spEqprKS46oIz9FeB9wIFlHB+sLe9Jb59tGe+NFIni\n74BvZ+ZNPey/JJ9Xbz5KMdfuzxTzBI8ZwD5PU3xGT1FcdHJ4Zv55IAfLzD9QXEgxleLzvIVFvYh9\nfQeS6ix6nlMraaSLiM0ohlyXKyf/N1xEHAgckpnvbHQsI01E7Ax8PzM36G9bSdVmz5u0DImIvaO4\nZ9nqwBnA/1YlcZMkDYzJm7Rs+RjFENsjFPOyPg4QEfdHxD97eH24r8r60kt9/yznWmkIRHED3p4+\n8+n97y2pWThsKkmS1ETseZMkSWoiJm+SJElNpLXRAQzGWmutlePGjWt0GJIkSf264447/paZY+td\nb1Mlb+PGjWPWrFmNDkOSJKlfEdHXI/eWmMOmkiRJTcTkTZIkqYmYvEmSJDURkzdJkqQm0m/yFhEX\nR8SzEXFfL+WbRsTvImJ+RHymW9nEiHgwImZHxAk169eIiBsi4uHy5+pL3xRJkqSRbyA9b5cAE/so\nfx74JPCN2pURMQr4FjAJ2BzYLyI2L4tPAGZm5ibAzHJZkiRJ/eg3ecvMWykStN7Kn83M24EF3Yq2\nBWZn5qOZ+QrwI2BKWTYFuLR8fymw12ADlyRJWhYN5Zy39YEnapafLNcBrJOZc8v3TwPrDGEckiRJ\nI0bDL1jIzASyt/KIOCwiZkXErHnz5g1jZJIkSdUzlMnbHGDDmuUNynUAz0TEugDlz2d7qyQzL8jM\n8Zk5fuzYuj9hQpIkqakMZfJ2O7BJRGwUEWOAfYFryrJrgAPK9wcAPx/COCRJkkaMfp9tGhGXAzsD\na0XEk8ApwGiAzDw/Il4NzAJeBXRExDHA5pn5UkQcCcwARgEXZ+b9ZbWnAz+OiIOBx4EP1LdZkiRJ\nI1O/yVtm7tdP+dMUQ6I9lV0HXNfD+ueA3QYYoyRJkkoNv2BBkiRJA2fyJkmS1ERM3iRJkpqIyZsk\nSVITMXmTJElqIiZvkiRJTcTkTZIkqYmYvEmSJDURkzdJkqQmYvImSZLUREzeJEmSmojJm6RKaW9v\nb3QIklRpJm+SKuOQQw7l3WMPb3QYklRpJm+SKuPJqxsdgSRVn8mbJElSE2ltdACS1OmXz1/IVRdN\nb3QYklRp9rxJqpR9Dp7EpPWPYtL6RzU6FEmqJJM3SZKkJmLyJkmS1ERM3iRVj/d6k6ReecGCpMqY\nuOp/ARDLL9fgSCSpuux5kyRJaiImb5Iq6dK7Tm10CJJUSSZvkipp7bXXbHQIklRJJm+SKunFF19s\ndAiSVEkmb5KqpyPZd9PPNToKSaokkzdJ1ZHZ6AgkqfJM3iRVTpLQ0vX0dOwh3+LEYy5qUESSVB3e\n501SU/jT3fMaHYIkVYI9b5KqI6L4WQ6ftvukBUlajMmbpGrq6OA9G3260VFIUuWYvElqGh3AHtuf\n1ugwJKmh+k3eIuLiiHg2Iu7rpTwiYlpEzI6IeyLirTVlR0fEfRFxf0QcU7P+1IiYExF3l6/J9WmO\nJEnSyDaQnrdLgIl9lE8CNilfhwHnAUTElsChwLbAW4D3RMTra/abmplbla/rliB2SSNNZvEq575N\n/+s5C4uOPnmPRkUlSZXSb/KWmbcCz/exyRTgsizcBqwWEesCmwG/z8yXM7MNuAV4Xz2ClrTsmTxl\nB1pW8AJ5SarHnLf1gSdqlp8s190H7BgRa0bEisBkYMOa7Y4qh1kvjojV6xCHpCY2YYWPkm1txUIv\nN+vt8OJTSRq6CxYy8wHgDOB64JfA3UDnqfc8YGNgK2AucFZv9UTEYRExKyJmzZvnfZ6kEc0HLEhS\nv+qRvM2ha4/aBuU6MvOizNwmM3cCXgAeKtc/k5ntmdkBXEgxL65HmXlBZo7PzPFjx46tQ7iSKq3z\nXm+SpB7VI3m7Bti/vOp0O+DFzJwLEBFrlz9fQzHf7Yfl8ro1++9NMcQqaRk249/fI8aM7nObfT68\nNe/cZaNhikiSqqnf2b8RcTmwM7BWRDwJnAKMBsjM84HrKOazzQZeBg6q2f2qiFgTWAAckZl/L9ef\nGRFbUQySPAZ8rB6NkTSyHX7EuxsdgiQ1XL/JW2bu1095Akf0UrZjL+s/OqDoJC1bWrxvuCT1xzOl\npOrpSGhpYa83f6rRkUhS5Zi8Saqe8pqF+f/ouvrdu57m47EkLfO846WkyomWUQvfT9ziJACytYWO\n0aNgTHHaOuPM73H8Z5d8Bsb3r76arTbfnC033XTpgpWkYWbPm6TKyAULyAULioWOjq5l3W7c+8sb\nnwJgx72+zo57fX3h+m0PPHtAxzr14cfZ6+fTlyJaSWoMkzdJ1dXLkxb6s82hU9nm0Kl1DkaSqsHk\nTVLlZPui52BFWzuMCgK4YdapdIxpYbedv8pN1x8PwEbrr8Bxn9h94fZ/uKS4yOGOC48d1pglabg4\n501SpcTobjfqbW+HljG9bn/Zt45cbJ2Jm6SRzORN0jJp9vFFgvetm2fy8vw2jpswocERSdLAOGwq\nqXJiVHm1aUdC+b6eTzx9w2lTecNpxZy4s+65m/Me9Al9kpqHPW+SqqnzYoXMxa48laRlmT1vkioj\nRo0qE7UOiJq+trYOEph2xs+YefPnuPCi/wLgPyafycsvvzygun/+h7u7LL99dC8bSlLFmbxJqozO\nq0wz6XKbkABYbjTXXvlHADZ+3avZ5V1nQFsy6T/PHVDdn/vpTWxxYjFUOgo48aMfrGPkkjR8HDaV\nVAkTVtp/0UJ0neE2/U9fZcLbvtjjfrdc99lBH+uBzy+6GvXRT3560PtLUiOZvEmqnvYOGN3/6Wkw\nQweXHvw+xr/+tX1uk5n8e8ECVhzT+61JJKnRHDaVVAkrb9zDypbgw0ftCsAHD34bY5ZbVLTuq1dc\neKPegegvcQMY992vs9n3zxlwnZLUCCZvkirhqnsvKy5Y6Jzr1lH8/MG0mQA8cM9fufSaoxc+4/SH\nlx3VkDglqdEcNpVULb3c0O2ePzzNB991DoxpZdX1Wnn+BfjVzBPqeuhTt96RS+6/o651SlK92fMm\nqZpqLlr48aW3UPuI+udfWPJq33LaN7l/7tweyw7a+h3c8pHFH7c1VDoWPEnHP64dtuNJGhlM3iRV\nR2fC1hLQ0lJcuAB894wZxXLL0p+y5rd3MO3qiiRMz+0K//I5rJIGx2FTSRVTJnAdHdDSUvS4ZXL9\nH75A8TaJWLqHZd3yt38sXYiS1ED2vEmqln7yss7EbbdJZ3Di53+0RIe44P2Dfwh9e/qILknVYPIm\nqToy6TK5LQJaR/U4XNrRAbfd/vigD/HnU45lp80377Ju/vz5jDvvG33u97bpX+Ct131+0MfrS8ur\nH6Ll1Q/VtU5JI5/Jm6Rq6rxlyIK2Qe027fu/YNuDzx7UPm+8+L8Htb0kNZLJm6RqqR02zRzQkxZq\nXXbTQwx2gHO7AW637iDrlaSh4AULkqqldth0VAu0tUHr0J6qfvTxz3D33Kf63W7SBjsOaRySNBAm\nb5KqKaJ4ykLCDlNey1c//xPu+N1DXDXzpD53+4+N1uCWvzw/4MNsPO0soP8H1N8x6ctLfZWrJNWD\nw6aSqiWzyw16o6WFk08/nFtm/Il/vrRo/luWr52mfL3L7md9/kBmXfSpJT78uO+eSXt7+2LrTdwk\nVYXJm6RqqUCO9LrLzmp0CJLUK4dNJTWFGbefAsAe7/wKO+6+Ud3q7W+4VJKqxuRNUsXEotuEtCx6\nP2H8qcVVpMu18usb/0KsVJy+zjvzw3WP4BNrvrHudUpSvZi8SaqeQcwv2+KN6wHwjv3O4neXF71o\n2xw2FYA7Lhj8c0MfO+izg95HkoaTc94kVUtn3pYJLaMWrp4x61SuvumzXRK712zQddd37OdcNUkj\nX789bxFxMfAe4NnM3LKH8gC+CUwGXgYOzMw7y7KjgUMpTscXZuY55fo1gCuAccBjwAcy84U6tEdS\ns+vIRcOm7W0wagy3/+bPvO2dm7LKKisu3OymGcd32W2vHTbg+CM/CCxZj5skNYuB9LxdAkzso3wS\nsEn5Ogw4DyAitqRI3LYF3gK8JyJeX+5zAjAzMzcBZpbLkpZx2VHzbISWFkjICE7++Pf63bczcZOk\nka7f5C0zbwX6uuPlFOCyLNwGrBYR6wKbAb/PzJczsw24BXhfzT6Xlu8vBfZa0gZIGmE6h0U7E7kI\n6ICJW32hy2Y7TzyDnSeeMczBSVLj1WPO2/rAEzXLT5br7gN2jIg1I2JFimHVDctt1snMueX7p4F1\n6hCHpGaXNc/G6kziatdJkobugoXMfAA4A7ge+CVwN7DYbcszs/NG6T2KiMMiYlZEzJo3b95QhSup\nwSastH+f5ZP33brfOu598K9se+DZ9QpJkiqpHrcKmcOiHjWADcp1ZOZFwEUAEfFVil45gGciYt3M\nnFsOsT7bW+WZeQFwAcD48eP9E1xaxgTFXLhPnrB3l/U3//L4xbY9+GtXDlNUktQ49eh5uwbYPwrb\nAS92DolGxNrlz9dQzHf7Yc0+B5TvDwB+Xoc4JI0UEYsNl0588+cbFIwkVctAbhVyObAzsFZEPAmc\nAowGyMzzgeso5rPNprhVyEE1u18VEWsCC4AjMvPv5frTgR9HxMHA48AH6tIaSSNDt4fTE0EHMGWX\nL7H2Oqvy3xceAsBO7y0eSn/rNcfxjv3OYodNXsXULx3agIAlafj0m7xl5n79lCdwRC9lO/ay/jlg\nt4EEKGnk26Pl/QC0rLDC4g+m7+yBi+Df/4Kf33R0r/Xc9vBLfR7n2rvuZYc3vo7VVlyxz+0kqcp8\nPJakSkuKm/a2AB3A7v/xVQBuvOVz3HrNcYOq6zNX3wjcyANf9ia+kpqXj8eSVB21T1eA4sH0PW0G\n7LrH6QD87413AfC7yz+98Nmmnb51zS1DEqYkNZLJm6RqK3O5jgjo6GDs2ouKbr7515w57UamfOjr\ndHR0sGDBorsRTf7kVC68/s4uVT3w5WPtdZPU9EzeJDXcDR0/oWW55YuF6NbbVi5Ga3G6+tvcJFqC\naE++cPZtADz/Mmz/0anseOA5fO+623nssTlcN+3YQc0LGXf+Nxh3/jeWsiWSNPRM3iRVymI3c6x9\n6AJww29OAmDmr07scf9pV/6a93/pCgBmnWsvm6SRxwsWJFXCkT8+kHP3vbRr9tZRLrR0/Ttz5k1F\n4nbrNcex417F7UJu+0Ex3+3X985mo9VXHvTxr3zvvmy6xlqDD1yShpk9b5IqYc89dyuTtUW3BqnV\n2gqve8Na7L7TV9h9p6/0Ws+Ob3o9G2zw6kEff/x6G7Dy8ssPej9JGm4mb5IqYcLyH6ZI3GoeSN8S\nC3vf2l9uY9plhzcsPkmqCpM3SdWRNT1vAB1ZpHKjggQmvf3LRFty460nNSY+SaoAkzdJFROLnm3a\ny33e+jL+4LMZf/DZQxCXJFWDyZukSpjxfz+A1lZi8etNu/jEMT5ZT9KyzatNJVXCRz5yALR3wKiW\n8ueoLuUB3HDHF/utZ9ZFn+px/ReuuJYr732IP53m7UMkNTd73iRVwryrOnou6DZ02tbWtkT1X3nv\nQ0u035I498+7cu6fdx2240lattjzJqnyoq2DC6Z/ij22Pw2A9hWKU9evZp4w4DrO3HtnPvvTm5fo\n+I8+9xQbr7neEu0rSfVmz5ukSvjvP57ctZet86KF0iH7nAsdHcWrm122G9dv/e/ZZuslHjKd8tvv\nLNF+kjQU7HmTVAlHbV30qi28OW9mcdeQ0a1kJixoL24b0tr1b86rLjyUtceuNpyh9uvITX/V6BAk\njWAmb5KaTu1w6UASty0/OxWA+85csp63e9/b/4USkjRcHDaVVC0di98qJABGF1ef/nTmZ4Y3Hkmq\nGJM3SdVUPoz+Q8fswvQHvgYUSdxKK63Ibjt/tYGBSVJjOWwqqSISOoBRFBculBcrfPRj71q4RQew\n2/anwZjB/d05mOHScZedAcBj+x8/qGNI0nCx501SNZQXkS4cNM2ETPZ624n85td31f1wmckOXz+b\nV155hd3+5/y61y9JQ8XkTVK1dN4upLzqdP4/4SuH/bjLJh1tyS7vOoMbb7y1xyq2OWwqZ176v30e\n5tBzz+UZYMaMGTz6738tXH/W+Ams6KCEpAozeZNULW3ti24XAsWjsoD9P74LjB5F1Nz77Utn/o6d\n3vv1Hqu54rez+zzM/xx1FEdtszV77rknK9as32fzrfjT/p9e4vAlaaj556Wk6ulM0FZYHoDpD3yN\nW66/j6AYVo2WmuHVtuLd9Jv+yE7bvp6VVlqJWd85hojoXutijt51FwDuP8pkTVLzsOdNUjVlwiuv\nLFycO+d5oDhp/erWk/jPvTaB1kUJ2pcuvJHdDy3mrkUEWx05la2OnDqsIUvScDB5k1QN2QHZQbTU\nnJY6kukPFVd/7jrxzWRHBxnBrnuczlU/fYhbr/sst1732T6rfcsxJnCSRhaTN0nV0tJ1uHPSJkVy\ndsgHv0lL++I38O30ux9+mt/9cNHw593ndr09yBYnTmWLE03kJDU/57xJqqZuSdz8l4vELVuDlvnt\n3HjrSb3u+taPFUlartB79ZucXmzz8AlL9sgsSWoUkzdJ1RDFQEBm+Tgs+r/gYDDu/5pJmqSRweRN\nUiX874sXseeqB/dY9se7ZnPq1P143SavZu1XrwrAzpPOBODm6b3PefvjOcfy2DPPLbb+jV+eCqOL\neSMbf/NsAB49+lNL2QJJGh7OeZNUCXuucSiMKk9J5dMVoLglyPEfvpipX7mcxx97ekB13fmdY6EF\nXnrpJcats2aP2zx8wrE86JCppCZk8iapYrLrTXpLLz7VxuePvByA3Xb9GhN22rjPXjeAnY+/qMf1\nD568KGl79OhP2esmqamYvEmqlMXStpaWIpkb03WWx403PNxvXXeeZ8+apJGn3+QtIi6OiGcj4r5e\nyiMipkXE7Ii4JyLeWlN2bETcHxH3RcTlEbF8uf7UiJgTEXeXr8n1a5KkptQ5VJrdloG37Thu0NWZ\nuEkaqQbS83YJMLGP8knAJuXrMOA8gIhYH/gkMD4ztwRGAfvW7Dc1M7cqX9ctQeySRpBc0Ea2ty92\ni5AAbr/tCWjr6HG/d77vG7zzfd8YhgglqRr6vdo0M2+NiHF9bDIFuCwzE7gtIlaLiHVr6l8hIhYA\nKwJPLWW8kka6zp63ct5bto6CBe0wKuj8e/OII3dh0qS39ry/JI1w9Zjztj7wRM3yk8D6mTkH+Abw\nV2Au8GJmXl+z3VHlMOvFEbF6b5VHxGERMSsiZs2bN68O4UqqtpqnKHQmcOViB7DHDqfxvvdtxwor\njOm1hhde+DvHTPvB0IUoSQ00ZBcslAnZFGAjYD1gpYj4SFl8HrAxsBVFYndWb/Vk5gWZOT4zx48d\nO3aowpVUGeWwaSYf++K7e9xit12/xm67fg2A31z9GX5z9We6lp/4XW7907NDGqUkNUo9krc5wIY1\nyxuU63YH/pKZ8zJzAXA1sD1AZj6Tme2Z2QFcCGxbhzgkNbuOrs8u/c4p1/KLP36xHDItTlg3/Pbz\n/VZz+K5vHoroJKkS6vGEhWuAIyPiR8DbKYZH50bEX4HtImJF4N/AbsAsgIhYNzPnlvvvDfR4Jauk\nZVwmra2tBF0GU5n5qxP73O2wD+zGYR/YbUhDk6RG6Td5i4jLgZ2BtSLiSeAUYDRAZp4PXAdMBmYD\nLwMHlWW/j4grgTuBNuAu4IKy2jMjYiuK8/FjwMfq1iJJTSlGjSrfdK7odse3MT7NT5JgYFeb7tdP\neQJH9FJ2CkWy1339RwcaoKRlREsUw6a1XWxlAvfLe05jwvhTGxKWJFWNT1iQVA2d890ye91k5TU8\nZUmS4xCSqiHLm/C2LP5cU4A99nwT2+7whmEMSJKqyeRNUrX00vH2mVP2Gd44JKmiHIOQVB0RfQ6b\nSpJM3iRVRbQAsehq09KkzU7k2h/+piEhSVIVmbxJqpSErjfrbWvj3C9fC0BHR88Pp5ekZYlz3iRV\nQ+2FCqMW/V2Z7QljWpiwzSlFYjemlet/d/KwhydJVWHPm6SKKee9deZyKyw3JEc57LuXccqll/a7\n3UV/+C2HT79wSGKQpCVhz5ukSsgFbdASi5600MOFCwHMqFOv26+e/RsAX+xjm0deeJaznrqhLseT\npHqx501SddQ+Eispkrn5r/DL+79Cy5jgTePXBuCRR+by97//X7/VPfroo7zlmKkAbH7SVDY/aeqi\nwhZ6PAPeNucxHp73DK+74iu863p73CRVjz1vkqqr7H371fW/5drffoGWliLbOuzQSwCY/N638Olj\nJve6+97Tft5r2ezjPtXj+n1vvKL4uep6/GT+U/zgTR/l1mf+tATBS9LQsOdNUrV06X0rkrczj/sl\nk7fu+pjkDuAX0+/ts6o/nnMsO7xmLAAn7Pq2QYVx+l4H8cgHT2Lr172Oo7ffc1D7StJQimyiG2KO\nHz8+Z82a1egwJA2Bd435UDFMutxyxOhWorUVRo+G5ZejY8XiooUZf/zywu13mXAGq64CP7vy+EaF\nLEl9iog7MnN8vet12FRSJcTo1uL+bp1/UAZde+F68OI/hj4uSaoakzdJ1dDeDtFS3CGkIxdesDD9\n4TMbHJgkVYtz3iRVR3Z9gsL0x6YycYuTmLjFSQ0KSJKqx543SdXSeZ+3foZMP7Tvtrx/77pPJZGk\nyjN5k1QNUQ4EdHQsTOAmjTuWT377Q0yevPiVoocetMtwRidJlWHyJqnS/vvIK5j86NuYMP5UALab\nvD6/uXXNG4ZuAAAS00lEQVQeM2/+XGMDk6QGcc6bpGrKhJZRi63+za3zGhCMJFWHyZskSVITcdhU\nUjWsAvwDIKGl54sVNt50dc77/tHDGZUkVY7Jm6RKmPHs95j4qoMWrYiAtjZoLU5TM2ad2pjAJKli\nHDaVVC2dtwjp51YhkrSsMnmTVAkTNtmfbG8vnqyQNY/JGuVpSpJqeVaUVAn5eNuihZby1NTL3DdJ\nWpaZvEmqjFxQJnCdvW4d6bNNJakbkzdJlRGjFr+vmySpK5M3SZWwMHFbOGTawvS/ntO4gCSpokze\nJFVPRzY6AkmqLJM3SdXQEsUrYuGFCpNec0yDg5Kk6jF5k1Qt2bXXbdLmn2PS5j6EXpI69Zu8RcTF\nEfFsRNzXS3lExLSImB0R90TEW2vKjo2I+yPivoi4PCKWL9evERE3RMTD5c/V69ckSc1oxr8uI8aM\nASDCvyslqTcDOUNeAkzso3wSsEn5Ogw4DyAi1gc+CYzPzC2BUcC+5T4nADMzcxNgZrksSYuk894k\nqSf9Jm+ZeSvwfB+bTAEuy8JtwGoRsW5Z1gqsEBGtwIrAUzX7XFq+vxTYa0mClyRJWtbUY2xifeCJ\nmuUngfUzcw7wDeCvwFzgxcy8vtxmncycW75/Glint8oj4rCImBURs+bNm1eHcCU1hY4ODj9790ZH\nIUmVM2QTS8p5bFOAjYD1gJUi4iPdt8vMpHiaYY8y84LMHJ+Z48eOHTtU4UqqoPOP+xW0tS9VHd/9\nxc31CUaSKqIeydscYMOa5Q3KdbsDf8nMeZm5ALga2L7c5pnOodXy57N1iEPSSNJ5096lmPv2lmOm\ncs6Nd9UpIEmqhnokb9cA+5dXnW5HMTw6l2K4dLuIWDEiAtgNeKBmnwPK9wcAP69DHJJGmj563eb9\n7cVhDESSqmMgtwq5HPgd8MaIeDIiDo6IwyPi8HKT64BHgdnAhcAnADLz98CVwJ3AveWxLij3OR3Y\nIyIepuihO71+TZI0kuSY0WREl3W7vOsMPvCh8xcu7/D+s9jh/WctXH7HYVO5+Lr/x+1nHslGr1p+\n2GKVpOHQ2t8GmblfP+UJHNFL2SnAKT2sf46iJ06SFpPZQUDxtIXShK1PYcZdXwTgmqs+wXv3+Xav\n+78CfOtnv+e/Jm/Pz7708aENVpKGWb/JmyQ1RGfi1tZOto7qUrTKKqtw0/XHL1z+7U8+vdjukzft\n/d7fb/jKVAAeOunYOgQqScPL5E1SdbS3QwCjlm467h0XmJRJGrlM3iRVU8TCJC4y+WU5ZFoP39iz\nr4fGSFK1mbxJqqZyqDTa25e6J6679755s7rWJ0nDyac/S6qMX770XRjVCh3J9L+cDT6gXpIW45lR\nUmVMfNVB0N7W6DAkqdJM3iRVSwLLB5M2+GTNuiV/yoIkjTQmb5IqJ1rKG+u2RN8bStIyyAsWJFXH\nqFE9r+/2hIXddv0aADN/deJQRyRJlWPPm6TqaWtj+pPTGh2FJFWSPW+SKmv67K9z7Y9v47WbrM2E\nbU7h2t+fTGtrfU9bG59zNh2jE0h+/f792XDttetavyTVmz1vkqonk0lv/wQA557yc4770IUAvPvt\nXwaK4dLBDpluceJUtjhxas+FC4ofO1512ZLFK0nDyORNUuXkgjaO+dKURcsAbR1ccPV/DcnxHjum\neDbqH/bZf0jql6R6MnmTVEm77LLLYuuOPvS7S1XnCTss/mSFR4/5FACPHfEZ1nbIVFITcM6bpOpo\nby9+LjeGKa89lulzv7WobFTw7+eXvOr7v+bD6iWNDPa8SaqeTH7y8BnF2851LZ6uJAnseZNUERNW\nKuabRXmvt5VXXrlL+YxZpw53SJJUSSZvkqqt1R43SarlWVFSNbyh+HHM+Qcyfd53Fq5+9cYNikeS\nKsqeN0mVMOOunu+x9vSjwxyIJFWcPW+SJElNxJ43SZUxcfVDAIgxo5n+zHkNjkaSqsmeN0mVk533\newM22mq5BkYiSdVj8iapMrb/yBbQ0dFl3YbrjWtMMJJUUSZvkirj/11272LrjvjcPqy21goNiEaS\nqsnkTVIlTRp3BAARLWy51bjGBiNJFWLyJqkSJqy0P9nWBqPL66jmFz9e9aoV+PzUjzQuMEmqGJM3\nSdXSkf1vI0nLMJM3SZV1ySWXNDoESaockzdJlZILXln4/oqT72LS649rYDSSVD3epFdSNUQUP7O4\nSIHW4vT0vkO2bGBQklQ99rxJqobM4lUrgkNPOICJbzmZiW85eUDVXD/rj9x85wNDEKAkVUO/yVtE\nXBwRz0bEfb2UR0RMi4jZEXFPRLy1XP/GiLi75vVSRBxTlp0aEXNqyibXt1mSmlpLLOyJ+9mlNw9q\n15O+PZPjzp0+BEFJUjUMpOftEmBiH+WTgE3K12HAeQCZ+WBmbpWZWwHbAC8DP63Zb2pneWZetyTB\nSxo59v3KhIVXmuaCNliwAIDvfPWXPW7/97//e9hik6Qq6XfOW2beGhHj+thkCnBZZiZwW0SsFhHr\nZubcmm12Ax7JzMeXKlpJI9aPTqxJ0lpi4Zw3YNF8uBp7f3AaADfNOL7L+tsv/hQAL7z0T1ZeYXlG\nj3Zqr6SRpR5ntfWBJ2qWnyzX1SZv+wKXd9vvqIjYH5gFfDozX+ip8og4jKJHj9e85jV1CFdS1bxr\n9L4AROvoInGDYv5bBNMfPB2Atra2QdW56wkXAnDXt4+tX6CSVAFDfsFCRIwB3gv8pGb1ecDGwFYU\nSd5Zve2fmRdk5vjMHD927NghjVVSBfTQywbQ2rr435pHHb7DUEcjSZVTj563OcCGNcsblOs6TQLu\nzMxnOlfUvo+IC4Ff1CEOSU3qm/ecwtFv/mLXlS0ti3rhetB9uLS726cd1WPCNxj3Pvs0r19lVVZY\nYYWlqkeS6qkeyds1wJER8SPg7cCL3ea77Ue3IdNuc+L2Bnq8klXSsmGzzTYrhkyBoEjYpv/1nKWq\nc2kTN4B9bi2GXh/6z4HdpkSShkO/Z7eIuBzYGVgrIp4ETgFGA2Tm+cB1wGRgNsUVpQfV7LsSsAfw\nsW7VnhkRWwEJPNZDuaRlVXmvt0nrHsH0ud9qcDCwaqMDkKRuIrvfFLPCxo8fn7NmzWp0GJKGwIQV\nPgpAjG6FMaOJ0aOhtZXpT3yzYTH985X/Y7nW0YxuGdWwGCQ1r4i4IzPH17ter6GXVA2jul0/1dL4\nB8CsPGb5RocgSYtp/NlRknrS0bF4QidJMnmTVDGjHKKUpL44bCqpGppo/q0kNZI9b5KqpZeb9EqS\nCiZvkqqppYXpj01tdBSSVDkOm0qqhg6HTSVpIOx5k1QtnY/EcvhUknpk8iapWjp74NrbGxuHJFWU\nyZukamlra3QEklRpJm+SJElNxORNUiX97LGzGx2CJFWSyZukSpjx7+91eRzWY4/9tYHRSFJ1mbxJ\nqowZ/7wUWlsh4Zidz2l0OJJUSSZvkipjwsoHFG98VJYk9cqb9Eqqlhbv7yZJfbHnTVIlvGvMh7os\nT5/7rQZFIknVZvImqTLylQUcesoHuOpxn2kqSb1x2FRSpexz1O6NDkGSKs2eN0mSpCZiz5ukSoiW\n8M9JSRoAT5WSqqOj0QFIUvWZvEmSJDURkzdJkqQm4pw3SZUw4/9+0OgQJKkp2PMmSZLUREzeJEmS\nmojJmyRJUhMxeZMkSWoiJm+SJElNxORNkiSpiZi8SZIkNZF+k7eIuDgino2I+3opj4iYFhGzI+Ke\niHhruf6NEXF3zeuliDimLFsjIm6IiIfLn6vXt1mSJEkj00B63i4BJvZRPgnYpHwdBpwHkJkPZuZW\nmbkVsA3wMvDTcp8TgJmZuQkws1yWJElSP/pN3jLzVuD5PjaZAlyWhduA1SJi3W7b7AY8kpmP1+xz\nafn+UmCvwYUtSZK0bKrHnLf1gSdqlp8s19XaF7i8ZnmdzJxbvn8aWKe3yiPisIiYFRGz5s2bV4dw\nJUmSmteQX7AQEWOA9wI/6ak8MxPI3vbPzAsyc3xmjh87duwQRSlJktQc6pG8zQE2rFneoFzXaRJw\nZ2Y+U7Pumc6h1fLns3WIQ5IkacSrR/J2DbB/edXpdsCLNUOiAPvRdci0c58DyvcHAD+vQxySJEkj\nXmt/G0TE5cDOwFoR8SRwCjAaIDPPB64DJgOzKa4oPahm35WAPYCPdav2dODHEXEw8DjwgaVtiCRJ\n0rKg3+QtM/frpzyBI3op+xewZg/rn6O4AlWSJEmD4BMWJEmSmojJmyRJUhMxeZMkSWoiJm+SJElN\nxORNkiSpiZi8SZIkNRGTN0mSpCZi8iZJktRETN4kSZKaiMmbJElSE4ni6VbNISLmUTwLdaRaC/hb\no4NoANu9bFlW2w3Lbttt97LFdi/y2swcW+8DNVXyNtJFxKzMHN/oOIab7V62LKvthmW37bZ72WK7\nh57DppIkSU3E5E2SJKmJmLxVywWNDqBBbPeyZVltNyy7bbfdyxbbPcSc8yZJktRE7HmTJElqIiZv\ndRIRa0TEDRHxcPlz9V62mxgRD0bE7Ig4YSD7R8SJ5fYPRsSEct0qEXF3zetvEXFOWXZgRMyrKTtk\nJLW9XH9zua6zjWuX65eLiCvKfX4fEeNGSrsjYsWIuDYi/hwR90fE6TXbD+l33lsbasojIqaV5fdE\nxFvr3f5y/TYRcW9ZNi0iop7tbGS7I2KPiLijbN8dEbFrzT49/r6PkHaPi4h/17Tt/Jp9RvL3/eHo\neg7viIityrJh/b6HsO3vj+Jc1RER47vVN5L/jffY7rr+G89MX3V4AWcCJ5TvTwDO6GGbUcAjwMbA\nGOCPwOZ97Q9sXm63HLBRuf+oHuq+A9ipfH8gcO5IbjtwMzC+h+N8Aji/fL8vcMVIaTewIrBLuc0Y\n4NfApKH+zvtqQ802k4HpQADbAb8fou/9D2X9UR5v0hB+v8Pd7q2B9cr3WwJzao7T4+/7CGn3OOC+\nXmIZsd93t3rfBDzSiO97iNu+GfDG7u1h5P8b763ddfs3bs9b/UwBLi3fXwrs1cM22wKzM/PRzHwF\n+FG5X1/7TwF+lJnzM/MvwOyynoUi4g3A2hT/mTdCw9reTyxXArsN4V9uw9ruzHw5M28CKOu6E9ig\nzm3qSV9t6DQFuCwLtwGrRcS6/ew7qPaX9b0qM2/L4mx3GT1/5vUyrO3OzLsy86ly/f3AChGx3FA1\nrg/D/X33aKR/393sV+7TKEPS9sx8IDMf7OF4I/rfeG/true/cZO3+lknM+eW758G1ulhm/WBJ2qW\nnyzX9bV/X/t06uxhqr36ZJ+ya/bKiNhwcE0ZtEa1/dKye/nkmgRt4T6Z2Qa8CKw5+CYNSMO+84hY\nDdgTmFmzeqi+84H8Dva2TT3bv375vq846mm4211rH+DOzJxfs66n3/eh0Ih2b1S27ZaI2LHmGMvK\n9/1B4PJu64br+4aha/tgjzdSvvOBWKp/462DONAyLyJuBF7dQ9FJtQuZmRGxxJfxLsH++wIfrVn+\nX+DyzJwfER+j+Gtv1x73HKAKtv3DmTknIlYBrqJo/2VLetzeVLDdREQrxYl+WmY+Wq6u+3c+nJb2\n82tWPbU7IrYAzgDeVbN6WH7fh0u3ds8FXpOZz0XENsDPys9gxOnl+3478HJm3lezekR93+qqHv/G\nTd4GITN3760sIp6JiHUzc27ZpfpsD5vNAWp7RDYo1wH0tn9f+xARbwFaM/OOmjifq9n+fyjmXCyV\nqrU9Mzt//iMifkjRhX1ZzT5PlknOqkDt5zEoVWt36QLg4cw8pybOun/nNfqLp69tRvex72DbP4eu\nw8Q9xVFPw91uImID4KfA/pn5SOf6Pn7fh8KwtrvseZhfvr8jIh4B3sAy8H2X9qVbr9swf98wdG0f\n7PFGynfeq7r9G89hmhA50l/A1+k6KfXMHrZpBR6lmKDZOcFxi772B7ag68TOR6m5YAE4Hfhit+Os\nW/N+b+C2kdT2sq61ym1GU8xtO7xcPoKuFyz8eKS0uyw7jeKvspbh+s77akPNNu+m66TePwxR+7tP\nZp48hN/vcLd7tXK79/UQR4+/7yOk3WNrvt+NKf4DXGOkf9/lckvZ3o0b9X0PZdtr9r2ZrhP3R/S/\n8T7aXbd/40P2y7CsvSjmVc0EHgZurDn5rAdcV7PdZOAhiqtUTupv/7LspHL7B+l25U35y7Npt3Vf\no5gM+Ufgpu7lzd52YCWKq2vvKdv5zZp/+MsDP6GYAPsHak6KI6DdGwAJPADcXb4OGY7vvKc2AIez\nKGkO4Ftl+b10PWHV7XceGA/cV5adS3mj8SH8joet3cDngX/VfLd3U1yI1Ovv+whp9z5lu+6muAhn\nz2Xh+y7LdqbbH1qN+L6HsO17U8wFmw88A8yoKRvJ/8Z7bDd1/DfuExYkSZKaiFebSpIkNRGTN0mS\npCZi8iZJktRETN4kSZKaiMmbJElSEzF5kyRJaiImb5IkSU3E5E2SJKmJ/H+R2oE1UwVndAAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAE/CAYAAADL647AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XVWd///XO0nT0hulbSi90hYKUhCr1IKORQa8AMNM\nBW/l64AwIHYEL6M//aHOPBwdGVHHn18dUcSRrzAKha+IoqKgIqAO0IsUbCmFtlzaUkppaek1aZLP\n74+9ku6mJ8kJTXMueT8fj0POWWvttT/rnOTw6dp77a2IwMzMzMwqX02pAzAzMzOz3uHEzszMzKxK\nOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjixM7N9SPqBpC+WOo6+UIljlbRd0tRXsN1k\nSSGp7mDEZWblwYmdmVkFiYihEbG61HG0kXSRpD+WOg4zyzixM7OKoEy//c4qxUxbX7znnkE06139\n9kvSrFJIulLSKknbJD0m6dxUPlDSFkkn5No2SNol6fD0+lOS1kt6TtKl6VDc0UXsdrSk36R93ifp\nyNw+3ihpoaSt6ecbixjDRZJWp/6ekvS+XPmfJH0r9fe4pDNy290r6SpJfwJ2AlMlHSrp+2lc6yR9\nUVJtan+UpHskbZL0oqQfSRqR6++1kv6c4rgFGNRJvF2+t5JGS/pFarNZ0h86S4DSe/6RNP4XJX01\n31bSP0haLuklSXd1eK9D0uWSngSezJUdnZ4fKulGSRslPSPpn9v6llQr6T/SPlcDf9Pd59TT91zS\nccC1wBvSIeItuT4u7fD5/zH3urNxzZP0ZHpfr5GkYmI2s72c2JmVv1XAbOBQ4PPADyWNjYhG4CfA\n+bm27wHui4gXJJ0JfBx4C3A0cFoP9vk+4N+A0cAS4EcAkkYCvwS+CYwC/j/gl5JGddaRpCGp/VkR\nMQx4Y+qzzclpjKOBzwE/SftpcwFwGTAMeAb4AdCcxvRa4G1AWxIh4EvAOOA4YCLwrymOeuCnwH8D\nI4H/C7yzUMzdvbfAJ4C1QAMwBvgM0NX9Gc8FZgKvA+YA/5BimpO2PS/19Qfg5g7bviO9R9ML9Puf\nZL8XU4E3AxcCF6e6DwDnkL1HM4F3dRFfR0W95xGxHJgHPJAOEY8o3F1BhcZ1DvB64ESy9/vtPejP\nzAAiwg8//KigB1lSNCc9fwuwKlf3J+DC9Px64Eu5uqPJko+ju+n/B8D83OuhQAtZknQBsKBD+weA\ni7robwiwhSyJOqRD3UXAc4ByZQuAC9Lze4Ev5OrGAI35fsiSr993su93AA+n56cW2Nf/AF/sZNuu\n3tsvAD/r7r1MbQM4M/f6Q8Dv0vNfAZfk6mrIZsmOzG17eoH+jgZqgSZgeq7ug8C96fk9wLxc3dvS\ntnXdxNuj9zx9hn8s0MelHT7nP3YYQ6FxvSn3+lbgylL8jfnhRyU/PGNnVuYkXShpSTo8tQU4gWx2\nC+D3wGBJJ0uaDMwAbk9144A1ua7yz7vT3jYitgObU3/jyGZw8p4BxnfWUUTsAN5LNrOzXtIvJb0q\n12RdRORnu55J+ykU95HAgNRP2/vxXaDt0PMYSfPT4cKXgR+y970a18m+OtPVe/tVYCVwdzrEemUX\n/XQcQ358RwLfyI1lM9ms4/hOts0bTfZe5MeQ/yw6fv5djbWreLt8zw9AoXE9n3u+k+wfFWbWA07s\nzMpYOt/qe8AVwKjIDnUtJfufPxHRQjazcX56/CIitqXN1wMTct1N7MGu29tKGkp26PK59DiyQ9tJ\nwLquOouIuyLircBY4PE0pjbjO5xLNSntp33z3PM1ZLNHoyNiRHoMj4jjU/2/p/avjojhwN+T3iuy\n96PQvjqLudP3NiK2RcQnImIq8HfAx/PnBhaQf+/z41sDfDA3lhERcUhE/E8n4897EdjDvp9H/rNY\nX2C/xerJe14ovh3A4NzrI7rZh5n1Eid2ZuVtCNn/ADcCSLqYbMYu7yayGbH3pedtbgUulnScpMHA\nv/Rgv2dLelM6L+3fgAcjYg1wJ3CMpP8lqU7Se8nOkfpFZx2lWbQ56Vy7RmA70JprcjjwEUkDJL2b\n7Ny4Owv1FRHrgbuBr0kaLqkmLZh4c2oyLPW/VdJ44JO5zR8gO0+sbV/nAbO6eR8KvreSzpF0dEoS\nt5Idqm4t3AUAn5R0mKSJwEeBW1L5tcCnJR2f+j00vQfdyiWeV0kalv4R8HGyWUpS3UckTZB0GNDd\nrGJn++nuPd8ATEi/K22WAOdJGpwWelzySvZtZj3nxM6sjEXEY8DXyJKSDcCryc71yrd5iGyGZBzZ\nOVtt5b8iW7Twe7LDhg+mqsYidn0T2UKGzcBJZDNfRMQmshPcPwFsAj4FnBMRL3bRVw1ZwvFc6u/N\nwD/m6h8CppHNQF0FvCvtpzMXAvXAY8BLwI/JZgIhW1zyOrJk65dkCyBIsTeRLVK4KMXx3nx9IZ29\ntyne35IlkQ8A346I33fR1c+AxWQJzy+B76f+bwe+DMxPh46XAmd1FVMHH07xrQb+SPa5XZ/qvgfc\nBTwC/JluxtqNrt7ze4BlwPOS2n4Pvk52/t8G4AbS4hszO/i07+kmZlat0qUplgIDI6K51PFAdhkM\nspPs31TqWA4WSQFMi4iVpY7FzKqfZ+zMqpikc5Vdk+0wspmhn5dLUmdmZr3PiZ1Zdfsg8ALZdeJa\nSIdAJS1LF5Tt+HjfK91RJ/1tlzS7d4ZivcWflVn18qFYMzMzsyrhGTszMzOzKuHEzszMzKxK1JU6\ngN4wevTomDx5cqnDMDMzM+vW4sWLX4yIhoPRd7eJnaTrya5b9UJEdLwwKukCnd8Azia7BcxFEfHn\nVHdmqqsF/isirk7ltwDHpi5GAFsiYka6bc9yYEWqezAi5nUX4+TJk1m0aFF3zczMzMxKTlJPbvHX\nI8XM2P0A+BZwYyf1Z5FdrHMacDLwHeBkSbXANcBbgbXAQkl3RMRjEfHeto0lfY3sYqJtVkXEjJ4O\nxMzMzKy/6/Ycu4i4n+wq7Z2ZA9wYmQeBEZLGkt2qZ2VErE5XfJ+f2rZLs33vAW5+pQMwMzMzs0xv\nLJ4YT3aT6DZrU1ln5XmzgQ0R8WSubIqkJZLu8zWVzMzMzIpX6sUT57PvbN16YFJEbJJ0EvBTScdH\nxMsdN5R0GXAZwKRJk/okWDMzM7Ny1hszduuAibnXE1JZZ+UASKojuyH3LW1lEdHYdvPviFhMdrX8\nYwrtNCKui4iZETGzoeGgLCwxMzMzqyi9kdjdAVyozCnA1ohYDywEpkmaIqkemJvatnkL8HhErG0r\nkNSQFl0gaSrZgozVvRCjmZmZWdUr5nInNwOnAaMlrQU+BwwAiIhrgTvJLnWykuxyJxenumZJVwB3\nkV3u5PqIWJbrei77L5o4FfiCpD1AKzAvIrpauGFmZmZmSVXcK3bmzJnh69iZmZlZJZC0OCJmHoy+\nfUsxMzMzsyrhxM7MzMysSjixMzMzM6sSTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTMzMzOrEk7s\nzMzMzKqEEzszMzOzKuHEzszMzKxKOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjixMzMz\nM6sSTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTMzMzOrEk7szMzMzKqEEzszMzOzKuHEzszMzKxK\nOLEzMzMzqxJO7MzMzMyqRLeJnaTrJb0gaWkn9ZL0TUkrJT0q6XW5ujMlrUh1V+bK/1XSOklL0uPs\nXN2nU/sVkt5+oAM0MzMz6y+KmbH7AXBmF/VnAdPS4zLgOwCSaoFrUv104HxJ03PbfT0iZqTHnWmb\n6cBc4Pi0z2+nfszMzMysG90mdhFxP7C5iyZzgBsj8yAwQtJYYBawMiJWR0QTMD+17cocYH5ENEbE\nU8DK1I+ZGQDf+H/ns/mFraUOw8ysLPXGOXbjgTW512tTWWflbT6cDt1eL+mwbvoyMwPg97c/xBNL\nny11GGZmZalUiye+A0wFZgDrga/1tANJl0laJGnRxo0bezs+MytTE6cdwdiJo0odhplZWeqNxG4d\nMDH3ekIq66yciNgQES0R0Qp8j72HWzvdpqOIuC4iZkbEzIaGhl4YhplVgtraOmoH+NRbM7NCeiOx\nuwO4MK2OPQXYGhHrgYXANElTJNWTLYq4AyCdg9fmXGBprq+5kgZKmkK2IGNBL8RoZlViy6Zt7Ni6\nq9RhmJmVpbruGki6GTgNGC1pLfA5YABARFwL3AmcTbbQYSdwcaprlnQFcBdQC1wfEctSt1+RNAMI\n4Gngg2mbZZJuBR4DmoHLI6KlV0ZqZlVhwzObeeh3f+HY10wudShmZmWn28QuIs7vpj6Ayzupu5Ms\n8etYfkEX/V0FXNVdXGbWfzXu3F3qEMzMypLvPGFmFWdUw8hSh2BmVpac2JlZRampEyMnOLEzMyvE\niZ2ZVZShwwcxZuzwUodhZlaWnNiZWUVpamxm8+adpQ7DzKwsObEzs4py+nmv55jjJ+5XvuG5l1j+\nmO9IYWb9mxM7M6so9/98Eeuf3rBf+T9e8n3+6UP/XYKIzMzKhxM7M6sorS3QQgBw03fvYdUTzwHZ\nuXf19f5KM7P+zd+CZlZRdm5r4tkns2TuJ//9R+67O7txzfp1W9m1s7WUoZmZlZwTOzOrONs2ZbcU\n2761kb8seLzE0ZiZlQ8ndmZWMXbvbARg6+Zt7WXLH07n26kUEZmZlZdubylmZlYuPnL2lwAYNf7Q\n9rLhI7Ovsc98bg5bX95VkrjMzMqFZ+zMrGKsefwFACYcOaa9bNuWZgB++IP7+dH195ckLjOzcuHE\nzswqS3Mzd9zwh/aXkdZLjG4YzvCRw9rLW1uD1tbo6+jMzErKh2LNrLLU1bH1xRf3K371ayaxaeP2\n9tdPP7sZgKmTR/VZaGZmpebEzswqS0szOxub9it+29tOZFtaXAHwpW/9nJqaGr77lQv7Mjozs5Jy\nYmdmFefFp/ZfJLF12y62bdvd/nr985v7MiQzs7Lgc+zMrLIEjJpyyH7F13z913z9K79of71nj9jT\n7GugmFn/4hk7M6ssEnt2738o9rFlzxG5tRJ/dcpU5LzOzPoZJ3ZmVjlS5vby+pb9qgYPgR17106w\nYNEqnNmZWX/jxM7MKl5zcwu7du5btnXH/smfmVm18zl2ZlbRAnjwvhW0tpY6EjOz0nNiZ2YVr35Q\nHeMmDGfYsAGlDsXMrKR8KNbMKsKu7Z3fB/beu5fy3NqX+zAaM7Py5Bk7M6sI5068vNO6Y48f34eR\nmJmVr24TO0nXS3pB0tJO6iXpm5JWSnpU0utydWdKWpHqrsyVf1XS46n97ZJGpPLJknZJWpIe1/bG\nIM2ssv12/h+hFSIK3/v1tz9/uI8jMjMrT8XM2P0AOLOL+rOAaelxGfAdAEm1wDWpfjpwvqTpaZvf\nACdExInAE8Cnc/2tiogZ6TGvB2Mxsyr19Y99P7vUSaEVEgMH8Owz+9871sysP+o2sYuI+4Gu7s0z\nB7gxMg8CIySNBWYBKyNidUQ0AfNTWyLi7ohoTts/CEw4kEGYWXVrabuUifb9yjr21WM5//1vYPYZ\nx/d9UGZmZag3zrEbD6zJvV6byjor7+gfgF/lXk9Jh2HvkzS7F+Izs2oR+87YvfOiN3PMiRM4ZHB9\niQIyMysvJV0VK+mzQDPwo1S0HpgUEZsknQT8VNLxEbHfcjdJl5Ed+mXSpEl9FbKZlVLrvufYrX36\nRYYeOpBNL3hFrJkZ9E5itw6YmHs9IZUN6KQcAEkXAecAZ0Q6IzoiGoHG9HyxpFXAMcCijjuNiOuA\n6wBmzpxZ+IxqM6tqt3z/94yZNJL167fiqzeZmfXOodg7gAvT6thTgK0RsR5YCEyTNEVSPTA3tUXS\nmcCngL+LiPYbAUlqSIsukDSVbEHG6l6I0cyqQYdbvzbubOGZp7bQtNv/tjMzgyL+iSvpZuA0YLSk\ntcDnyGbjiIhrgTuBs4GVwE7g4lTXLOkK4C6gFrg+Ipalbr8FDAR+o+wm3Q+mFbCnAl+QtAdoBeZF\nRFcLN8ysPymQv9XXQ1MT2WHaGu3fwMysH+k2sYuI87upD6DglUMj4k6yxK9j+dGdtL8NuK27mMzM\n2jQ1NePDsGZmGX8bmlllSRcpvujsq6Ale17g6nZmZv2SbylmZhVpw6pt0NKalluZmRk4sTOzCtHZ\n7cTAX2RmZm38fWhmZS8K3Uosp3ZAHwViZlbmnNiZWflrn60rPGvX0tJ3oZiZlTMndmZWOQrldQPh\n8LFD+zwUM7Ny5MTOzMpfa4GMbk8zAMOH1tPU1NTHAZmZlScndmZW0YYNG8QR49OMna9PbGb9nBM7\nM6to27fu4s2nz8xe+M5iZtbPObEzs8qifaflRo47jN/f/RffTszMDN95wswqSYekTsCu7U2seWYL\n1PrrzMzMM3ZmVrECaGzcwZRpR5Q6FDOzsuB/4ppZWdu9e3eX9S89v4dtO9ZDzYFfpXjxmnUAnDRx\n/AH3ZWZWCp6xM7Oy9h8f+07XDQQ16p1/o55/w62cf8OtvdKXmVkpOLEzs7J2/38vJAreWiLaf7Q0\nNxfV168eXE5zc+Hbk33ytl+8wgjNzMqHEzszK297um9S7C3FbrhzAXv2FO7w8fUv9CAoM7Py5MTO\nzMrWC2tfJJr3dH3h4dy32IABXV/yZOW6Tfz5sacL1l38V7N6HqCZWZlxYmdmZetz7/5y1w0iyL7G\nAiJ4w5umddvnR7/9y4LlJ0+e0OV2v3tqBX96ZlW3/ZuZlZITOzMrWysferr7Rq2t0AJI3P/7J2ht\nDZqaOj/nrvAZdvDJ237ZXn/Ml7++X/0l9/6M991zW/fxmJmVkC93YmYVL38nsUcffZYHF+6dWdu+\no4nGliZGDR/aXtbc0kpd7b7/rt3euDcZbPWtycysQnnGzswqUnvu1TYFlxKzBxY8yT33Lm9v99ZL\n/5NzPvjdfbb9/I137dff4cMP2a9sT7GrMszMyoQTOzOrePkJtsFDBrDxxe1dtv/Fwsfbn3/wv27j\nXV//AX9cvS47pJt6XLd5Myd/91tsa+r6AslmZuXEh2LNrPLlFsP+n+/9CeprCzYrdIT1j6ueJYBB\nddA0EJrSt+L1CxewZU8zb7nxe7zj2OOyjbtedGtmVnKesTOz8tfZOW8dEq29CyOCoYP2/Xpb98KW\nzvsBdgc0t9A+a/fb5U8AsGFPI/+1dAkBRGQdfOqBnwHwznuu4csPH5wLG7c2PkBEZ0s9zMwK6zax\nk3S9pBckLe2kXpK+KWmlpEclvS5Xd6akFanuylz5SEm/kfRk+nlYru7Tqf0KSW8/0AGaWZWrAYh9\nEq8I2L5736To3E9dT7RmuV0Af1n9XJfdrsldyDh/pl1rayu3PbuUo265iie2v8AP1yyg5WAkYI0L\niFaf42dmPVPMjN0PgDO7qD8LmJYelwHfAZBUC1yT6qcD50uanra5EvhdREwDfpdek+rnAsenfX47\n9WNm/dCxbziq+0bRyfOmKNhMAK3w99+8hbsffqw9a6sB6PLbJuvhG3/6bXrdSktr9vP+55d3ttEr\nN+QCamoH9H6/ZlbVuk3sIuJ+YHMXTeYAN0bmQWCEpLHALGBlRKyOiCZgfmrbts0N6fkNwDty5fMj\nojEingJWpn7MrB9a8WAnFwRW7hhsPn/reGi2FWjucAQ21+aTN9zV3kUrZElefvIt8q+zDX/41MP7\nx9N6EE6+2/g3tG5/qff7NbOq1hvn2I0H1uRer01lnZUDjImI9en588CYbvoys/6o03Pien6huejw\nkw7XMBbs940Ybf/JJXvfPP1d+7QZUAefeOSmomJobGzkW4+fXlRb2Ak+x87MeqjkiyciOymmx9/S\nki6TtEjSoo0bNx6EyMysYvTkG0TFz66p/T97nTBqHJMHj2DywMH7V3bj50/9vAetW6C+vkf9m5n1\nRmK3DpiYez0hlXVWDrAhHa4l/Xyhm772ExHXRcTMiJjZ0NBwwIMws/IzYEiHKzJ1zKOKSOjGjhq0\nz+b5vK7TpQkSFDi9TYhD6uu56YwL+MRJXZ16XNiRHNmD1k3w0q96vA8z6996I7G7A7gwrY49Bdia\nDrMuBKZJmiKpnmxRxB25bd6fnr8f+FmufK6kgZKmkC3IWNALMZpZBbpz282otmfrp7JZtr3Z24ZN\nu6Em+7IrdLi1M6eOHL1f2/818RgARg4awimHT+lRXAALWdiD1jNg5Dk93oeZ9W/FXO7kZuAB4FhJ\nayVdImmepHmpyZ3AarKFDt8DPgQQEc3AFcBdwHLg1ohYlra5GnirpCeBt6TXpPpbgceAXwOXR4TX\n+5v1d69gpq7NP//j25h8xDAA3nva8YX7S2X/Z+47GD8kO/w5bswRWXlN9njX1Onc++IzrNyyke17\nGlmxZQP1QD01HNL1ctp2rfy4+MAPvQRqBxbf3syMIu48ERHnd1MfwOWd1N1Jlvh1LN8EnNHJNlcB\nV3UXl5n1E+rBgYUO588JOOv0V3PW6a/muz/+A+e/7XXc/NBj7fW17F1DMVhw8lFHsn5XE9TBaRPH\nMX/FUkYPPIRzph7Fy2ph3a7d3P/MSt553Ay27WmkCfjlaR9FRZ5rd+G4n3Ljc+/oviFA8x4Y6Ftd\nmFnP+JZiZlb+ipihE0BdlgjVAK11+yZFH3zX7C633xlQV1NDa/pWrE8LF3583vmMHjyUhzc+x7+9\n4S0MqR9IawRvHJMdil3y4jPUSowbPLLbGIcPH84Vw+/pfjAAOz4OO+rgiJ6fy2dm/VfJV8WamR0o\n1RQ/s/Wrz3+g/ULEl5x+YvttZf/xlOymOZ95Y3bpzOEpsZs8YiRD6+uZPX4yQ+qzQ6M1EkMHZM+/\nveK3XPtEkclajzV338TMLMczdmZWWaLD9F1n/zztJNcbc/hQvnP5uTyw4hne8YYTef2xR7Ps+Q1c\n+uYsobvn6WcAGFEzoNsz504YdgQvN75EjXp+Xb3i/BbwAgozK55n7Mys8kgFrzHXMZfrbB7vDcdN\n5pjxoxg8oJ6xI4dyylF7r7L0vbnv5otvO4MFGzd0fjmU5NYz5lFXW0Nt7cH6Kh1xkPo1s2rlxM7M\nKkdrFzNjtQWyvC6O0P7Lj37Dt3/1ByY3jOKECWPbyw8ZMIC5rz2RV40eXVRIW1saeal5d1Fte6zu\nQwenXzOrWj4Ua2YVaP8ETx1ejBjW9V0bWoElTz7Taf0jz28oKpIdNBXVrseGfhoGHXZw+jazquXE\nzswqW7rEScdUb8rE0dDNoopVm3d2Wjd+xPCidj+qbjB1PbkkS5Fqhl7c632aWfVzYmdmla2Te782\nNbd0m9h15a+POoZfzO1+xuxfT3wnNQewHzOz3uTEzswqW1pIETX7zppFQHeLVRu6OFpbW1PDhEO7\nX7zw7RW/oZYa3nD4MUUEa2Z2cHnxhJlVroDT/vZ4kBg5akhWlu7CVVer/dZTdNTdVeKGD+z+ll4r\ndjzPih3PdR+rmVkf8IydmVWeNBMnoC798/SWn/8TZ5z27+1Nnl67udtu/ur4ow84lP98/fupPQjn\n2JmZvRJO7MyssnQ4p+6+e5d3aJBdVvikGZOp6eJ6J0eMGMpxk4444HCmHzr+gPswM+stTuzMrKKN\nHFXLhh0t6flgxkw4lJWrNvKF/2dOl9vd9In3ceghgw54/4fWDz7gPszMeosTOzOrHPusPs2eq6YW\n0j0iduzYTfOewbQWuM5dR6OGOSEzs+rjxM7MKlsuh2vc3cqTq16itXTRmJmVlBM7M6toNXX7zs69\n6ujhvHrGsSWKxsystLyUy8wq2nOr9rQ/f+Mbp1E3aAi3/XRhCSMyMysdJ3ZmVjmiw7lzdbXU5k6V\n+7d/fzdPPb2R5u4uUGdmVqWc2JlZ5Shw+7Dvz/8Y4ycd2v66ts639zKz/suJnZmVtelvyl1EuOOM\nHTB23Aiu/8k/tb8eNHBAX4RlZlaWnNiZWVn7+u8+DzU10FrcWteLLngzr5sx6SBHZWZWnrwq1szK\nmiTUfghWBWft8o6ZdgS7djUd/MDMzMqQZ+zMrPIUONeuzcrVL/DAQ6v6MBgzs/LhxM7MKosEAzo/\nj+5/HnyChx95uu/iMTMrI0UldpLOlLRC0kpJVxaoP0zS7ZIelbRA0gm5uo9KWippmaSP5cpvkbQk\nPZ6WtCSVT5a0K1d3bW8M1Mz6h8NHDefQ4b5dmJn1T92eYyepFrgGeCuwFlgo6Y6IeCzX7DPAkog4\nV9KrUvszUoL3AWAW0AT8WtIvImJlRLw3t4+vAVtz/a2KiBkHOjgzqyI1NR3uFZt58YWXWfn4ek45\nNbvbxNQpDTz1zIt9HZ2ZWVkoZsZuFrAyIlZHRBMwH5jToc104B6AiHgcmCxpDHAc8FBE7IyIZuA+\n4Lz8hsrOin4PcPMBjcTMqppqCn9djWoYxoxZU9tfjxlzGEceObqvwjIzKyvFJHbjgTW512tTWd4j\npIRN0izgSGACsBSYLWmUpMHA2cDEDtvOBjZExJO5sinpMOx9kmYXPRoz63f2NDbz0qbt7a9XP/U8\nS5etK2FEZmal01uLJ64GRqTz5D4MPAy0RMRy4MvA3cCvgSVAS4dtz2ff2br1wKR0KPbjwE2Shnfc\noaTLJC2StGjjxo29NAwzK1sDsjNHLvrndMBgUD0AL23ZwYpla9ubDR9+CMOGDurz8MzMykExid06\n9p1lm5DK2kXEyxFxcUrGLgQagNWp7vsRcVJEnAq8BDzRtp2kOrKZvltyfTVGxKb0fDGwCjimY1AR\ncV1EzIyImQ0NDUUN1swq19BxA5BqeGnjlqygObtW3aBBAxg5amh7u3v/uIKFi58uQYRmZqVXTGK3\nEJgmaYqkemAucEe+gaQRqQ7gUuD+iHg51R2efk4iS+Juym36FuDxiFib66shLdhA0lRgGilJNLP+\n66/ePhOAn333vqygOfvRtHsPW7fsam+38sn1fR2amVnZ6DaxS4sergDuApYDt0bEMknzJM1LzY4D\nlkpaAZwFfDTXxW2SHgN+DlweEVtydXPZf9HEqcCj6bDuj4F5EbH5FYzNzKrEvK9dwFvfPRtqa3jt\nX09rLx8U1upTAAAU8UlEQVQ4qI5hIwZz5FF7Z+23b99ZihDNzMpCUbcUi4g7gTs7lF2be/4ABQ6X\nprpOFz9ExEUFym4DbismLjPrH8790NtY8NtHAdjywrb28po60dLcyp6m5vayHc7rzKwf850nzKwi\nvO604wF4fu2m9rJd2/cgiQEDfNtrMzNwYmdmFaKurhZqYNzUMe1ltQPEgPpahg7buwp2UH2hrc3M\n+gcndmZWOVph3ZPPt788/ZzXsn7tZu67e2l72e6mUgRmZlYenNiZWcU4ZNhAXn3K0e2vNzy3hfpD\n6hky3NetMzODIhdPmJmVgy/88HLGTBrFj/7zbo6ePo6/fsdM7v7Fw/zi1kW87ZzXljo8M7OSc2Jn\nZhXjhJOz2bqP/ft728te87qpbH1pd6lCMjMrKz4Ua2YVrbZWDB48oNRhmJmVBSd2ZlbRtm9v5Pl1\nL5U6DDOzsuDEzswq2pSjD+fv3ntKqcMwMysLPsfOzCra4CGDmHyUV8WamYFn7MzMzMyqhhM7MzMz\nsyrhxM7MKtqunY2sefrFUodhZlYWnNiZWUUbdEg9Y8Ye2v66YXRtCaMxMystJ3ZmVtEkUT9w73Xs\nLnjfGZz46okljMjMrHS8KtbMqsrfnv1a/ubMGaUOw8ysJDxjZ2ZVp6ZGpQ7BzKwknNiZWUXbvauJ\n9Ws3lzoMM7Oy4MTOzCragPo6Dj1sSKnDMDMrC07szKyi1dbWMHjIwFKHYWZWFpzYmVlF27plB8se\nebbUYZiZlQUndmZW0Xbv3sP6tS+VOgwzs7LgxM7MKtpzT2/i4QWrSh2GmVlZcGJnZhVt245dvPD8\nllKHYWZWFopK7CSdKWmFpJWSrixQf5ik2yU9KmmBpBNydR+VtFTSMkkfy5X/q6R1kpakx9m5uk+n\nfa2Q9PYDHaSZVa8VS9ey8on1pQ7DzKwsdJvYSaoFrgHOAqYD50ua3qHZZ4AlEXEicCHwjbTtCcAH\ngFnAa4BzJB2d2+7rETEjPe5M20wH5gLHA2cC304xmJntp66ullr54IOZGRQ3YzcLWBkRqyOiCZgP\nzOnQZjpwD0BEPA5MljQGOA54KCJ2RkQzcB9wXjf7mwPMj4jGiHgKWJliMDPbz3EnTuL41/jesGZm\nUFxiNx5Yk3u9NpXlPUJK2CTNAo4EJgBLgdmSRkkaDJwN5L+BP5wO314v6bAe7M/MDIBhIw5h1JhD\nSx2GmVlZ6K3jF1cDIyQtAT4MPAy0RMRy4MvA3cCvgSVAS9rmO8BUYAawHvhaT3Yo6TJJiyQt2rhx\nY++MwswqzgP3Lef+u5eWOgwzs7JQTGK3jn1n2SaksnYR8XJEXBwRM8jOsWsAVqe670fESRFxKvAS\n8EQq3xARLRHRCnyPvYdbu91f2v66iJgZETMbGhqKGIaZVaPmpj3sbmwsdRhmZmWhmMRuITBN0hRJ\n9WQLG+7IN5A0ItUBXArcHxEvp7rD089JZIdrb0qvx+a6OJfssC2p77mSBkqaAkwDFrySwZlZ9bvr\njsXscV5nZgZAXXcNIqJZ0hXAXUAtcH1ELJM0L9VfS7ZI4gZJASwDLsl1cZukUcAe4PKIaLvg1Fck\nzQACeBr4YOpvmaRbgceA5rRNC2ZmBRx19Dj+smS/SX0zs36p28QOIF2K5M4OZdfmnj8AHNPJtrM7\nKb+gi/1dBVxVTGxm1r+NGnsoOLEzMwN85wkzq3AP3PdYqUMwMysbTuzMrKJFlDoCM7Py4cTOzCpa\nw+hhpQ7BzKxsOLEzs4r2mpOPpa6os4XNzKqfEzszq2hSK6pRqcMwMysLTuzMrKLt2rmLlhafaGdm\nBk7szKzCTT16HA2H+16xZmbgxM7MKlz94AEMHFzffUMzs37AiZ2ZVbRnVz7P+mdfLHUYZmZlwYmd\nmVW0Deu3sGePz7EzMwMndmZW4Y6aNpYhw30o1swMnNiZWYVb/fgGdrzcVOowzMzKghM7M6toGuRr\n2JmZtXFiZ2YVbcvmnaUOwcysbDixM7OKtmvbrlKHYGZWNpzYmVlFe3mLZ+zMzNo4sTOzirZ7z55S\nh2BmVjac2JlZRfM17MzM9nJiZ2YVrWV3qSMwMysfTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTOz\niqbaUkdgZlY+nNiZWUWLllJHYGZWPopK7CSdKWmFpJWSrixQf5ik2yU9KmmBpBNydR+VtFTSMkkf\ny5V/VdLjaZvbJY1I5ZMl7ZK0JD2u7Y2BmpmZmVW7bhM7SbXANcBZwHTgfEnTOzT7DLAkIk4ELgS+\nkbY9AfgAMAt4DXCOpKPTNr8BTkjbPAF8OtffqoiYkR7zXvHozMzMzPqRYmbsZgErI2J1RDQB84E5\nHdpMB+4BiIjHgcmSxgDHAQ9FxM6IaAbuA85L7e5OZQAPAhMOeDRmZmZm/Vgxid14YE3u9dpUlvcI\nKWGTNAs4kixRWwrMljRK0mDgbGBigX38A/Cr3Osp6TDsfZJmFzUSMzMzs36urpf6uRr4hqQlwF+A\nh4GWiFgu6cvA3cAOYAmwz6nOkj4LNAM/SkXrgUkRsUnSScBPJR0fES932O4y4DKASZMm9dIwzMzM\nzCpXMTN269h3lm1CKmsXES9HxMURMYPsHLsGYHWq+35EnBQRpwIvkZ1PB4Cki4BzgPdFRKT2jRGx\nKT1fDKwCjukYVERcFxEzI2JmQ0NDseM1MzMzq1rFJHYLgWmSpkiqB+YCd+QbSBqR6gAuBe5vm2GT\ndHj6OYnscO1N6fWZwKeAv4uInbm+GtKCDSRNBaaRkkQzMzMz61y3h2IjolnSFcBdQC1wfUQskzQv\n1V9LtkjiBkkBLAMuyXVxm6RRwB7g8ojYksq/BQwEfiMJ4MG0AvZU4AuS9gCtwLyI2NwLYzUzMzOr\nakWdYxcRdwJ3dii7Nvf8AQocLk11BRc/RMTRnZTfBtxWTFxmZmZmtpfvPGFmZmZWJZzYmZmZmVUJ\nJ3ZmZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXCiZ2ZmZlZlXBiZ2ZmZlYlnNiZ\nmZmZVQkndmZW0WoHlDoCM7Py4cTOzCra8OEDSx2CmVnZcGJnZhXt9bOPpbau1FGYmZUHJ3ZmVuFE\nTY2/yszMwImdmVW4upoaWltaSx2GmVlZcGJnZhXtyeVraGkpdRRmZuXBiZ2ZVbQNz28udQhmZmXD\niZ2ZVbRRDcNKHYKZWdlwYmdmFW3m7BMYdqgveWJmBuCLBJhZRTv5lGns2Lyr1GGYmZUFz9iZWUUb\nOmwgY8aNKHUYZmZlwYmdmVW0uro66uprSx2GmVlZcGJnZhVt3ZqX+Muip0sdhplZWXBiZ2YVbcDA\nGgbU+3RhMzMoMrGTdKakFZJWSrqyQP1hkm6X9KikBZJOyNV9VNJSScskfSxXPlLSbyQ9mX4elqv7\ndNrXCklvP9BBmln1GjJ4EKPH+JInZmZQRGInqRa4BjgLmA6cL2l6h2afAZZExInAhcA30rYnAB8A\nZgGvAc6RdHTa5krgdxExDfhdek3qey5wPHAm8O0Ug5nZflQDtTX+ijAzg+Jm7GYBKyNidUQ0AfOB\nOR3aTAfuAYiIx4HJksYAxwEPRcTOiGgG7gPOS9vMAW5Iz28A3pErnx8RjRHxFLAyxWBmth9RQ02t\nzyoxM4PiErvxwJrc67WpLO8RUsImaRZwJDABWArMljRK0mDgbGBi2mZMRKxPz58HxvRgf2ZmABwx\nYQRvOPXYUodhZlYWeuuM46uBb0haAvwFeBhoiYjlkr4M3A3sAJYA+92uOyJCUvRkh5IuAy4DmDRp\n0gGGb2aVavjwwUx/jb8DzMyguBm7deydZYNsJm5dvkFEvBwRF0fEDLJz7BqA1anu+xFxUkScCrwE\nPJE22yBpLED6+UKx+0v9XhcRMyNiZkNDQxHDMDMzM6tuxSR2C4FpkqZIqidb2HBHvoGkEakO4FLg\n/oh4OdUdnn5OIjtce1Nqdwfw/vT8/cDPcuVzJQ2UNAWYBix4JYMzMzMz60+6PRQbEc2SrgDuAmqB\n6yNimaR5qf5askUSN6TDqcuAS3Jd3CZpFLAHuDwitqTyq4FbJV0CPAO8J/W3TNKtwGNAc9pmv8O3\nZmZmZrYvRfTo1LayNHPmzFi0aFGpwzAzMzPrlqTFETHzYPTtawSYmZmZVQkndmZmZmZVwomdmZmZ\nWZVwYmdmZmZWJZzYmZmZmVUJJ3ZmZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXC\niZ2ZmZlZlXBiZ2ZmZlYlnNiZmZmZVQkndmZmZmZVwomdmZmZWZVwYmdmZmZWJZzYmZmZmVUJJ3Zm\nZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXCiZ2ZmZlZlXBiZ2ZmZlYlikrsJJ0p\naYWklZKuLFB/mKTbJT0qaYGkE3J1/yRpmaSlkm6WNCiV3yJpSXo8LWlJKp8saVeu7treGqyZmZlZ\nNavrroGkWuAa4K3AWmChpDsi4rFcs88ASyLiXEmvSu3PkDQe+AgwPSJ2SboVmAv8ICLem9vH14Ct\nuf5WRcSMAx2cmZmZWX9SzIzdLGBlRKyOiCZgPjCnQ5vpwD0AEfE4MFnSmFRXBxwiqQ4YDDyX31CS\ngPcAN7/iUZiZmZlZUYndeGBN7vXaVJb3CHAegKRZwJHAhIhYB/wH8CywHtgaEXd32HY2sCEinsyV\nTUmHYe+TNLvo0ZiZmZn1Y721eOJqYEQ6T+7DwMNAi6TDyGb3pgDjgCGS/r7Dtuez72zdemBSOhT7\nceAmScM77lDSZZIWSVq0cePGXhqGmZmZWeUqJrFbB0zMvZ6QytpFxMsRcXFKxi4EGoDVwFuApyJi\nY0TsAX4CvLFtu3R49jzgllxfjRGxKT1fDKwCjukYVERcFxEzI2JmQ0NDUYM1MzMzq2bFJHYLgWmS\npkiqJ1v8cEe+gaQRqQ7gUuD+iHiZ7BDsKZIGp3PpzgCW5zZ9C/B4RKzN9dWQFmwgaSowjSxJNDMz\nM7MudLsqNiKaJV0B3AXUAtdHxDJJ81L9tcBxwA2SAlgGXJLqHpL0Y+DPQDPZIdrrct3PZf9FE6cC\nX5C0B2gF5kXE5q5iXLx48YuSnul2tJVtNPBiqYMoAY+7f/G4+xePu3/xuPc68mDtTBFxsPq2XiRp\nUUTMLHUcfc3j7l887v7F4+5fPO6+4TtPmJmZmVUJJ3ZmZmZmVcKJXeW4rvsmVcnj7l887v7F4+5f\nPO4+4HPszMzMzKqEZ+zMzMzMqoQTuz4gaaSk30h6Mv08rJN2Z0paIWmlpCuL2V7Sp1P7FZLensqG\npVuytT1elPS/U91Fkjbm6i6tlnGn8ntTWdv4Dk/lAyXdkrZ5SNLkahl3uk7kLyU9LmmZpKtz7Q/6\n593ZOHL1kvTNVP+opNf19nuQyk+S9JdU901J6u2xlmrckt4qaXEa32JJp+e2Kfg7XyXjnixpV25s\n1+a2qebP+33a9zu8VdKMVFcNn/e7lX1XtUqa2aG/av77LjjuXv/7jgg/DvID+ApwZXp+JfDlAm1q\nye6yMRWoJ7v/7vSutgemp3YDyW7btgqoLdD3YuDU9Pwi4FvVOm7gXmBmgf18CLg2PZ8L3FIt4wYG\nA3+d2tQDfwDO6ovPu6tx5NqcDfwKEHAK8NBB+uwXpP6V9ndWFY37tcC49PwEYF1uPwV/56tk3JOB\npZ3EUrWfd4d+Xw2sqrLP+zjg2I5jofr/vjsbd6/+fXvGrm/MAW5Iz28A3lGgzSxgZUSsjogmYH7a\nrqvt5wDzI7sN21PAytRPO0nHAIeT/c++r5Vs3N3E8mPgjIP4L74+HXdE7IyI3wOkvv5Mduu/vtDV\nONrMAW6MzINk95Ue2822PXoPUn/DI+LByL4Nb6Tw+95b+nTcEfFwRDyXypcBh0gaeLAG14W+/rwL\nqvbPu4Pz0zalcFDGHRHLI2JFgf1V9d93Z+Pu7b9vJ3Z9Y0xErE/PnwfGFGgzHliTe702lXW1fVfb\ntGmbncqvknlnmvL9saSJHDylGvcNacr6X3LJW/s2EdEMbAVG9XxIRSnZ5y1pBPC3wO9yxQfz8y7m\nd7CzNr35HoxPz7uKozf19bjz3gn8OSIac2WFfucPhlKMe0oa232SZuf20V8+7/ey/x2aKv3z7un+\nquXzLsYB/313e0sxK46k3wJHFKj6bP5FRISyW6+9Iq9g+7nABbnXPwdujohGSR8k+1fi6QW3LEIZ\njvt9EbFO0jDgNrKx3/hK99uZMhw3kurI/gfwzYhou79yr37epXCg72GlKjRuSccDXwbelivuk9/5\nvtJh3OuBSRGxSdJJwE/Te1B1Ovm8TwZ2RsTSXHFVfd62V2/9fTux6yUR8ZbO6iRtkDQ2ItanqdoX\nCjRbB+RnUyakMoDOtu9qGyS9BqiLiMW5ODfl2v8X2Tker1i5jTsi2n5uk3QT2bT4jblt1qYE6FAg\n/170SLmNO7kOeDIi/ncuzl79vAvoLqau2gzoYtuevgfr2Pfwc6E4elNfjxtJE4DbgQsjYlVbeRe/\n8wdDn447zVo0pueLJa0CjqEffN7JfvdTr5LPu6f7q5bPu1O9+vcdfXACZn9/AF9l3xNkv1KgTR2w\nmuyE0bYTLo/vanvgePY90XQ1ucUTwNXA5zvsZ2zu+bnAg9Uy7tTX6NRmANm5dPPS68vZd/HErdUy\n7lT3RbJ/zdX05efd1Thybf6GfU8yXnCQ3oOOJ1effRA/474e94jU7rwCcRT8na+ScTfkPt+pZP+D\nHFntn3d6XZPGO7XaPu/ctvey7yKCqv777mLcvfr3fVDeFD/2+yUZRXbO05PAb3NfTOOAO3Ptzgae\nIFtR89nutk91n03tV9BhlVD65XpVh7IvkZ2c+Qjw+471lTxuYAjZCuBH0xi/kftSGAT8X7KTcReQ\n+7KsgnFPAAJYDixJj0v76vMuNA5gHnuTagHXpPq/sO8XWq/9zgMzgaWp7lukC7AfxM+5z8YN/DOw\nI/f5LiFbFNXp73yVjPudaVxLyBYF/W1/+LxT3Wl0+IdYFX3e55Kde9YIbADuytVV8993wXHTy3/f\nvvOEmZmZWZXwqlgzMzOzKuHEzszMzKxKOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjix\nMzMzM6sSTuzMzMzMqsT/DwTnGDSgc8FCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAE/CAYAAADL647AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXVV9///Xe2YyCbmHZAjkRhJIkIAQJQ1oC7WiCJQa\nQauhVISCiAWr1W/7Q+33Z7VFwdavYkUpCgVUbpViEbGAoKB+uSSRAAkkkIRLEpIQciW3uX6+f+w1\nk53JXM4kkzmXeT8fj/OYc9Zae+3POmfm5JO199pbEYGZmZmZlb+qYgdgZmZmZr3DiZ2ZmZlZhXBi\nZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdWYSTdJOmfix1HXyjHsUraJmnqPmw3WVJI\nqjkQcZWC7sYo6QuSfpB7fbaklek9fVvfRWpWupzYmZn1oYgYGhErih1HK0kXSPptseMoRER8NSIu\nzhX9K3B5ek+fkvSypPcUKz6zUuDEzsz6hDL99junGDNtffGeF3kG8XBgcRH3b1Zy+u2XrFlfkXSF\npOWS3pT0nKSzU/lASZslHZtrWydpp6RD0uu/l7RG0muSLk6HqY4sYLdjJD2Y9vmIpMNz+3inpHmS\ntqSf7yxgDBdIWpH6e0nSebny30n6TupviaRTc9v9WtKVkn4H7ACmShoh6YY0rtWS/llSdWp/hKSH\nJW2Q9IakH0samevvbZJ+n+K4AxjUSbxdvreSxki6N7XZKOk3nSVA6T3/mzT+NyT9S76tpL+S9Lyk\nTZLub/deh6TLJL0IvJgrOzI9HyHpFknrJb0i6R9a+5ZULelf0z5XAH/a3efU0/dc0tHAdcA70uHM\nzbk+Ls71ucesXhfjulTSi+l9vVaSOolxtqT5krZKWifp/7Rrcp6kV9PYv5jb7h8l/Sh9vtuAauBp\nZX9fPwQmAT9LY/n7Qt4vs0rjxM7swFsOnAyMAL4M/EjSYRFRD/wXcG6u7YeBRyLidUmnA58F3gMc\nCbyrB/s8D/gnYAywEPgxgKSDgZ8D3wZGA/8H+Lmk0Z11JGlIan9GRAwD3pn6bHViGuMY4EvAf6X9\ntPoocAkwDHgFuAloSmN6G3Aa0JpECPgaMA44GpgI/GOKoxb4KfBD4GDgP4EPdhRzd+8t8DlgFVAH\njAW+AHR1f8WzgVnA24E5wF+lmOakbc9Jff0GuK3dth9I79GMDvr9N7Lfi6nAHwPnAxemuo8DZ5G9\nR7OAD3URX3sFvecR8TxwKfBYOpw5suPuOtTRuM4C/gA4juz9fl8n214DXBMRw4EjgDvb1f8RcBRw\nKvD/pwS0TUTUR8TQ9PL4iDgiIj4KvAr8WRrL13swFrOK4cTO7ACLiP+MiNcioiUi7iCb4Zidqm8F\n5uaa/0Uqg+wfxv+IiMURsYOU4BTo5xHxaEpwvkg2IzORbNbnxYj4YUQ0RcRtwBLgz7rprwU4VtJB\nEbEmIvKHv14HvhURjWl8S9lzdummNIYmsoTsTOAzEbE9JVnfbH0PImJZRDyY/uFeT5Z4/nHq5yRg\nQG5fPwHmdRFzV+9tI3AYcHjq6zfR9Y2zr46IjRHxKvAtdieMlwJfi4jn0/i+CszMz9ql+o0RsTPf\nYZqlnAt8PiLejIiXgW+QJWWQff7fioiVEbGRLOEtVMHv+X7oaFxXRcTm9D79CpjZybaNwJGSxkTE\ntoh4vF39lyNiZ0Q8DTwNHL+fsZr1G07szA4wSedLWpgOT20GjiWb3YLsH7/Bkk6UNJnsH8K7U904\nYGWuq/zz7rS1jYhtwMbU3ziyGZy8V4DxnXUUEduBj5AlMWsk/VzSW3JNVrdLil5J++ko7sPJkrM1\nuffj34HWQ89jJd2eDhduBX7E7vdqXCf76kxX7+2/AMuAB9Ih1iu66Kf9GPLjOxy4JjeWjWSzjuM7\n2TZvDNl7kR9D/rNo//l3Ndau4u3yPd8PHY1rbe75DmBoB20ALgKmA0uUnQ5w1j72Y2btOLEzO4DS\nzM33gcuB0elQ1yKyf/yJiGayw1Dnpse9EfFm2nwNMCHX3cQe7LqtraShZLM2r6XH4e3aTgJWd9VZ\nRNwfEe8lm+VaksbUany7c6kmpf20bZ57vhKoB8ZExMj0GB4Rx6T6r6b2b02H6f6S9F6RvR8d7auz\nmDt9b9MM2eciYirwfuCzyp0b2IH8e58f30rgE7mxjIyIgyLi/3Yy/rw3yGau8p9H/rNY08F+C9WT\n97yj+LYDg3OvD+1mHz0SES9GxLlkyeXVwE/SIf/9tc8xmVUKJ3ZmB9YQsn9s1gNIupBsxi7vVrIZ\nsfPYfagQsqTkQklHSxoM/O8e7PdMSX+Uzkv7J+DxiFgJ3AdMl/QXkmokfYTsHKl7O+sozaLNSf/w\n1gPbyA7NtjoE+BtJAyT9Odm5cfd11FdErAEeAL4habikKmULJloPtw5L/W+RNB74u9zmj5GdJ9a6\nr3PYfUi7Mx2+t5LOknRkShK3AM3txtTe30kalQ5nfxq4I5VfB3xe0jGp3xHpPehWLvG8UtKw9J+A\nz5LNUpLq/kbSBEmjgO5mFTvbT3fv+TpgQvpdabUQOEfSYGULPS7al313RtJfSqqLiBZgcyru6v0v\n1Dqy8xXN+i0ndmYHUEQ8R3be1GNk/+i8FfhduzZPkM2QjAN+kSv/BdmihV+RHTZsPQ+pvoBd30q2\nkGEjcALZzBcRsYHsBPfPARuAvwfOiog3uuiriizheC3198fAJ3P1TwDTyGagrgQ+lPbTmfOBWuA5\nYBPwE7KZQMgWl7ydLNn6OdkCCFLsDWSLFC5IcXwkX9+Rzt7bFO8vyZLIx4DvRsSvuujqv4EFZAnP\nz4EbUv93k8043Z4OHS8CzugqpnY+leJbAfyW7HO7MdV9H7if7Byz39PNWLvR1Xv+MNklQ9ZKav09\n+CbQQPY7ezNp8U0vOh1YnFa2XgPMbX8O4j76GvAP6ZDz/+qF/szKjro+X9jMSkVaGbgIGJhOii86\nSReQra78o2LHcqBICmBaRCwrdixmZt3xjJ1ZCVN2y6SB6VDc1cDPSiWpMzOz0uPEzqy0fYLsciLL\nyc4D+ySApMXpIqztH+ft64466W+bpJN7ZyjWW/xZmVlnfCjWzMzMrEJ4xs7MzMysQjixMzMzM6sQ\nNcUOoDeMGTMmJk+eXOwwzMzMzLq1YMGCNyKi7kD03W1iJ+lGsutevR4R7S+sSrrA5zVk9yLcAVwQ\nEb9PdaenumrgBxFxVSq/g+wGzwAjgc0RMTPd9ud5sntNQnZR1Uu7i3Hy5MnMnz+/u2ZmZmZmRSep\nJ7cI7JFCZuxuAr4D3NJJ/RlkF/ucBpwIfA84Md3g+lrgvcAqYJ6keyLiuYj4SOvGkr5BdjHSVssj\norMbR5uZmZlZJ7o9xy4iHiW7yntn5gC3ROZxYKSkw8hu9bMsIlakK8bfntq2SbN9HwZu29cBmJmZ\nmVmmNxZPjCe7yXSrVamss/K8k4F1EfFirmyKpIWSHvE1mczMzMwKV+zFE+ey52zdGmBSRGyQdALw\nU0nHRMTW9htKugS4BGDSpEl9EqyZmZlZKeuNGbvVwMTc6wmprLNyACTVkN3Q+47Wsoiob715eEQs\nILva/vSOdhoR10fErIiYVVd3QBaWmJmZmZWV3kjs7gHOV+YkYEtErAHmAdMkTZFUC8xNbVu9B1gS\nEataCyTVpUUXSJpKtiBjRS/EaGZmZlbxCrncyW3Au4AxklYBXwIGAETEdcB9ZJc6WUZ2uZMLU12T\npMuB+8kud3JjRCzOdT2XvRdNnAJ8RVIj0AJcGhFdLdwwMzMzs6Qi7hU7a9as8HXszMzMrBxIWhAR\nsw5E376lmJmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZ\nVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJnZmZmVmFcGJnZmZmViGc\n2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdm\nZmZWIZzYmZmZmVUIJ3ZmZmZmFaLbxE7SjZJel7Sok3pJ+rakZZKekfT2XN3pkpamuity5f8oabWk\nhelxZq7u86n9Uknv298BmpmZmfUXhczY3QSc3kX9GcC09LgE+B6ApGrg2lQ/AzhX0ozcdt+MiJnp\ncV/aZgYwFzgm7fO7qR8zMzMz60a3iV1EPAps7KLJHOCWyDwOjJR0GDAbWBYRKyKiAbg9te3KHOD2\niKiPiJeAZakfMzMArvn/bmfj61uKHYaZWUnqjXPsxgMrc69XpbLOylt9Kh26vVHSqG76MjMD4Fd3\nP8ELi14tdhhmZiWpWIsnvgdMBWYCa4Bv9LQDSZdImi9p/vr163s7PjMrUROnHcphE0cXOwwzs5LU\nG4ndamBi7vWEVNZZORGxLiKaI6IF+D67D7d2uk17EXF9RMyKiFl1dXW9MAwzKwfV1TVUD/Cpt2Zm\nHemNxO4e4Py0OvYkYEtErAHmAdMkTZFUS7Yo4h6AdA5eq7OBRbm+5koaKGkK2YKMJ3shRjOrEJs3\nvMn2LTuLHYaZWUmq6a6BpNuAdwFjJK0CvgQMAIiI64D7gDPJFjrsAC5MdU2SLgfuB6qBGyNicer2\n65JmAgG8DHwibbNY0p3Ac0ATcFlENPfKSM2sIqx7ZSNPPPQsRx0/udihmJmVnG4Tu4g4t5v6AC7r\npO4+ssSvfflHu+jvSuDK7uIys/6rfseuYodgZlaSfOcJMys7o+sOLnYIZmYlyYmdmZWVqhpx8AQn\ndmZmHXFiZ2ZlZejwQYw9bHixwzAzK0lO7MysrDTUN7Fx445ih2FmVpKc2JlZWXn3OX/A9GMm7lW+\n7rVNPP+c70hhZv2bEzszKyuP/mw+a15et1f5Jy+6gb/96x8WISIzs9LhxM7MykpLMzQTvLF2Cz++\n7iGWv/AaAMNHHsTAgb4jhZn1b91ex87MrJTseLOBV198jQlTDuW/fvhb6puaOWL6OFav3Fzs0MzM\nis4zdmZWdt7csJO6Q0eyfWsDzz65pNjhmJmVDCd2ZlY2du2oB2DLxjfbyp5/Kp1vp2JEZGZWWnwo\n1szKxt+c+TUARo8f0VY2/ODsa+wLX5rDlq07ixKXmVmp8IydmZWNlUteB2DC4WPbyt7c3ATAj256\nlB/f+GhR4jIzKxVO7MysvDQ1cc/Nv2l7GS3ZzzF1wxl+8LC28paWoKUl+jo6M7Oi8qFYMysvNTVs\neeMNIvZM2t56/CQ2rN/W9vrlVzcCMHXy6D4Nz8ysmJzYmVl5aW7ize3bWbVi/R7Fp512HG+mxRUA\nX/vOz6iqquLfv35+X0doZlY0TuzMrOxsWtnExCMO2aNsy5s7efPNXW2v16zd2NdhmZkVnc+xM7Py\nEjBm6uC9iq/95v/wza/f2/a6sVE0NvkaKGbWv3jGzszKTsPO+r3Knlv8GvnT7v7wpKnIeZ2Z9TNO\n7MysfESAxNY1zXtVDR4C23evneDJ+ctxZmdm/Y0TOzMre01NzezcsWfZlu17J39mZpXO59iZWVkL\n4PFHltLSUuxIzMyKz4mdmZW92kE1jJswnGHDBhQ7FDOzovKhWDMrCxvXbiIiUAfnzf36gUW8tmpr\nEaIyMystnrEzs7LwF0d/rtO6o44Z34eRmJmVrm4TO0k3Snpd0qJO6iXp25KWSXpG0ttzdadLWprq\nrsiV/4ukJan93ZJGpvLJknZKWpge1/XGIM2svP3y9t9CF+fQ/fJnT/VdMGZmJayQGbubgNO7qD8D\nmJYelwDfA5BUDVyb6mcA50qakbZ5EDg2Io4DXgA+n+tveUTMTI9LezAWM6tQ3/rbG7JLnTR3sNJ1\n4ABefeWNvg/KzKwEdZvYRcSjQFf35pkD3BKZx4GRkg4DZgPLImJFRDQAt6e2RMQDEdGUtn8cmLA/\ngzCzyta0PT2pqt6j/Ki3Hsa5H3sHJ596TN8HZWZWgnrjHLvxwMrc61WprLPy9v4K+EXu9ZR0GPYR\nSSf3QnxmVili9/HY7dt2cfJpxzH9uAkcNLi2iEGZmZWOoq6KlfRFoAn4cSpaA0yKiA2STgB+KumY\niNhruZukS8gO/TJp0qS+CtnMiqll9z3DhgwdRENDM2+s3cKG170i1swMeiexWw1MzL2ekMoGdFIO\ngKQLgLOAUyOyOzxGRD1Qn54vkLQcmA7Mb7/TiLgeuB5g1qxZ0b7ezCrfHTf8irGTDmbNmi346k1m\nZr1zKPYe4Py0OvYkYEtErAHmAdMkTZFUC8xNbZF0OvD3wPsjou1GQJLq0qILJE0lW5CxohdiNLNK\n0O4SdvU7mnnlpc007PL/7czMoID/4kq6DXgXMEbSKuBLZLNxRMR1wH3AmcAyYAdwYaprknQ5cD9Q\nDdwYEYtTt98BBgIPpouNPp5WwJ4CfEVSI9nFDS6NiK4WbphZf9JB/lZbCw0NZIdpq/a+eLGZWX/S\nbWIXEed2Ux/AZZ3U3UeW+LUvP7KT9ncBd3UXk5lZq4aGJnwY1sws429DMysv2Sm5XHDmldCcPe/i\n2sVmZv2KbylmZmVp3fI3obklLbcyMzNwYmdmZSItnu+Qv8jMzDL+PjSzkhctXR9srR7QR4GYmZU4\nJ3ZmVvpaZ+s6mbVrbuqw2Mys33FiZ2alr4vDsAyEMYcO6btYzMxKmBM7Myt9HeV1jdk03fChtTQ1\nNfZtPGZmJcqJnZmVtWHDBnHo+KHZC1+f2Mz6OSd2ZlbWtm3ZyR+/e1b2wncWM7N+zomdmZUX7Tkt\nd/C4UfzqgWd9OzEzM3znCTMrJ+2SOgE7tzWw8pXNUO2vMzMzz9iZWdkKoL5+O1OmHVrsUMzMSoL/\ni2tmJW3Xrl1d1m9a28ib29dA1f5fpXjBytUAnDBx/H73ZWZWDJ6xM7OS9q+f+V63barUO/9HPffm\nOzn35jt7pS8zs2JwYmdmJe3RH84jmps7qNm9BLa5qbBbT8xfspKWlo6Xzn7hp7/Yl/DMzEqKEzsz\nK21dXXs43ZGiw7yvA9+649c0NHTc4XOvrethYGZmpceJnZmVrNdXvUE0NXZ+4WFpj2+xAQO6vuTJ\nklfXs2DxSx3Wnf+OWfsYpZlZ6XBiZ2Yl60t/fnXXDSLIvsYCInjHH03rts9Pf/fnHZafOHlCl9s9\n9NJSfvfK8m77NzMrJid2Zlaylj3xcveNWlqIZkDi0V+9QEtL0NDQ+Tl3LZ2U/91dP2+rn371N/eq\nv+jX/815D9/VfTxmZkXky52YWenrwa3Cfv/7l5j31Mttr7dtb6C+uYHRw4e2lTU1t1BTvef/a7fV\np2RQ0BLQ3NLC8k0bmT56zP5Evs+iZSOqOrgo+zaz8uUZOzMrS225XusUXErMfvmrRTz08HNt7d57\n8b9x1if+neWr32jb6Mu33L9Xf4cMP2iPjqurqhhz0ODeD7xQLZuJ8M1vzaxnnNiZWenr5jaw+fTn\nsHEj2LBx+15txo8Z0dbPvfOWtJV/4gd38aFv3sRvV6yGttW1weqNG3nPTd/nzYauL5B8oKhmKpLv\nf2tmPeNDsWZW/nL5z398/3dQW71Xk0EDB3R4RPe3y18lgIMGQH0tNKRvxRvnPcnmxibe+8MfMGf6\nW7LssYM8qyVaEHISZmYlwTN2Zlb6OjsiqT2btOReDR2059fbyrWbujxXb2cLNDXTNmv30JIXAFjb\nsIsbFi0koO3Q6BefuBeA8x65nque+hmv79pa2DAieG3HswW1bal/jIjOlnqYmXWs28RO0o2SXpe0\nqJN6Sfq2pGWSnpH09lzd6ZKWprorcuUHS3pQ0ovp56hc3edT+6WS3re/AzSzClcFrRlba+IVAdt2\n7ZkUffCK/yBaspYBPLvitS67fTV3IeP8GtuWlhZuf/lpjrjjSp7ZsprbVi1gzKBhBYUqiXGD31pQ\nW+qfJFoKvPKymVlSyIzdTcDpXdSfAUxLj0uA7wFIqgauTfUzgHMlzUjbXAE8FBHTgIfSa1L9XOCY\ntM/vpn7MrB866h1HdN8oOnneEB1WCaAF/vLbd/DAU8+1zdBVAeS+bfY+sJr1cM3vfplet9Dckv18\ndO3z3cfZU0M+SlX1gN7v18wqWreJXUQ8Cmzsoskc4JbIPA6MlHQYMBtYFhErIqIBuD21bd3m5vT8\nZuADufLbI6I+Il4ClqV+zKwfWvp4JxcEVrtjsG3lezaLFqCp3RHYXJu/u/n+ti5aIEvyWnLd7nF8\nN9vwRy89tXc8LQfg/Lr1f0rLtk2936+ZVbTeOMduPLAy93pVKuusHGBsRKxJz9cCY7vpy8z6o07P\niev5ZUCi3U/aXcNYsNc34l6XVAG+/e4P7dFmQA187ulbC4qhvr6e7yx5d0FtYUfKTM3MClf0xROR\nnRTT429pSZdImi9p/vr16w9AZGZWNnryDdKDybWOmh47ehyTB49k8sDBPesM+NlLP+tB62aore1R\n/2ZmvZHYrQYm5l5PSGWdlQOsS4drST9f76avvUTE9RExKyJm1dXV7fcgzKz0DBjS7opM7fOoAhK6\nw0YP2mPzfBedLk2QoIPT24Q4qLaWW0/9KJ87oatTjzt2OIf3oHUDbPpFj/dhZv1bbyR29wDnp9Wx\nJwFb0mHWecA0SVMk1ZItirgnt83H0vOPAf+dK58raaCkKWQLMp7shRjNrAzd9+ZtqLpn66fa535r\nN+wCZV92AqguZJYt+MNRo/f6hvyLidMBOHjQEE46ZEqP4gKYx7wetJ4JB5/V432YWf9WyOVObgMe\nA46StErSRZIulXRpanIfsIJsocP3gb8GiIgm4HLgfuB54M6IWJy2uQp4r6QXgfek16T6O4HngP8B\nLosIr/c36+/2Yaau1RUfP5XxdUMA+Mi7julyHz/48Ps5dGCWSE4Ye2hWXpU9PjR1Bo9seJVlm9ez\nrbGepZvXUQvUUsVBFJZ8tvCTwgMfcRFUDyy8vZkZBdx5IiLO7aY+gMs6qbuPLPFrX74BOLWTba4E\nruwuLjPrJ9SDAwutCWBaNSvg/afN5P2nzeTff/Ibzj3t7dz2xO77yFazew3FYGDKIWN4vbEZasSf\nTBrPHS8sZszAgZw1dRpDhw5h1c6d/G7lCj5w1HG82VhPA/Dzd30aFXiu3fnjfsotr32g+4YATY0w\n0HezMLOe8S3FzKz0FTBDlz/MKoCaPZOiT3zo5C633wFMHDWClvStWJsWLvzknPMYM3goT61/jU8e\n9xmG1A6kJYJ3js0OxS584xWqJcYNPrjbGIcPH87lwx/ufjAA2z8L22vg0J6fy2dm/VfRV8Wame0v\nVaUkLjdT15lffPnjbRcivujdxzEgfQt+8qTspjlfeGd26czhKbGbPPJghtbWcvL4yQypzQ6Nbti1\nnaEDsuffXfpLrnuhwGStx5q6b2JmluMZOzMrL9Fu+q6z/552kt2NPWQo37vsbB5b+gpzTnor48eO\npZFm5p54PAAPv/wKACOrBlAN7GxspLa6mgA21e+k7qAh7GhuJCKYNXIir+94nSr1/Lp6hfkl4AUU\nZlY4z9iZWflRx2e1qV3SJ2D1us1s2Lx9j/J3HD2Z6eNHM6R2IO+YPpFZk3dfB/37c/+cfz7tVJ5c\nv45mYP3O7exsaiIIGtO9W8cMGsLzW9Zxy7suoqa6iurqA/VVOqr7JmZmOU7szKx8tLSbGctnd9Xa\n81Zj6aJ1h9WN4OARg/fq6n//+EG++4vfMG7UCI4cO6at/KABA5j7tuN4y5isbNLwkQytrWVAVTXj\nhgwHYEhNLTNGZqtmtzY3sKWpvleGt5eaTx6Yfs2sYvlQrJmVob0Pfardi5HDsnPkqqo6PibbAjyz\n/NVO9/D02nUFRbKNA5TUDf08DPKMnZn1jBM7MytvaZaufao3ZeIY6CSpa/XiG9s7rRs/cnhBux9d\nM5ianlySpUBVQy/s9T7NrPI5sTOzitTQ1NxtYteVPzliOvfO7X7G7B+P+2Cns4JmZn3NiZ2Zlbe0\nkCKq9pw1i4DuFqvW1XZeV11VxYQRI7vd/XeXPkg1VbzjkOkFBGtmdmB58YSZla+Ad73/WJA4eHR2\n2zDSXbhqqtXtbWG7u0rc8IHd39Jr6fa1LN3+Wvexmpn1Ac/YmVn5STNxAmrSf0/v+Nnfcuq7vtrW\n5OVVG7vt5g+POXK/Q/m3P/gY1QfgHDszs33hxM7Myov2nIZ75NfPt2uQ3VbihJmTqeriHhSHjhzK\n0ZMO3e9wZowY330jM7M+4sTOzMrawaOrWbe9OT0fzNgJI1i2fD1f+V9zutzu1s+dx4iDBu33/kfU\n7n2NPDOzYnFiZ2blY4/Vp+m+sFXVQJbYbd++i6bGwbR0cJ279kYPc0JmZpXHiZ2ZlbdcDle/q4UX\nl2+ipXjRmJkVlRM7MytrVTV7zs695cjhvHXmUUWKxsysuLyUy8zKS+yZyL22vBGAxc+u5J3vnEbN\noCHc9dN5xYjMzKzonNiZWfmI2HNVbE011elUuaOPmcA/ffXPeenl9TR1d4E6M7MK5cTOzMqH9r58\nyQ23f4bxk0a03darusa39zKz/suJnZmVtBl/lLuIcOy92vWwcSO58b/+tu31oIED+iIsM7OS5MTO\nzEraNx/6MlRVQUtha10v+Ogf8/aZkw5wVGZmpcmrYs2spElCbYdg1eGsXd70aYeyc2fDgQ/MzKwE\necbOzMpPB+fatVq24nUee2J5HwZjZlY6nNiZWUnbuX0XkZ+lk2BA5+fR/d/HX+Cpp18+8IGZmZWg\nghI7SadLWippmaQrOqgfJeluSc9IelLSsbm6T0taJGmxpM/kyu+QtDA9Xpa0MJVPlrQzV3ddbwzU\nzMrTru31PWp/yOjhjBju24WZWf/U7Tl2kqqBa4H3AquAeZLuiYjncs2+ACyMiLMlvSW1PzUleB8H\nZgMNwP9IujcilkXER3L7+AawJdff8oiYub+DM7PyN+qQEdk5dlVV7e4Vm3nj9a0sW7KGk07J7jYx\ndUodL73yRl+HaWZWEgqZsZsNLIuIFRHRANwOzGnXZgbwMEBELAEmSxoLHA08ERE7IqIJeAQ4J7+h\nsrOiPwwLbuqyAAAXIElEQVTctl8jMbOKpqqqDhdOjK4bxszZU9tejx07isMPH9OXoZmZlYxCErvx\nwMrc61WpLO9pUsImaTZwODABWAScLGm0pMHAmcDEdtueDKyLiBdzZVPSYdhHJJ1c8GjMrN9prG9i\n04Ztba9XvLSWRYtXFzEiM7Pi6a3FE1cBI9N5cp8CngKaI+J54GrgAeB/gIVAc7ttz2XP2bo1wKR0\nKPazwK2ShrffoaRLJM2XNH/9+vW9NAwzK1kDakDign9IBwwG1QKwafN2li5e1dZs+PCDGDZ0UDEi\nNDMrukISu9XsOcs2IZW1iYitEXFhSsbOB+qAFanuhog4ISJOATYBL7RuJ6mGbKbvjlxf9RGxIT1f\nACwHprcPKiKuj4hZETGrrq6uoMGaWfkaPHYAUhWb1m/OCpqya9UNGjSAg0cPbWv3698uZd6Cl4sQ\noZlZ8RWS2M0DpkmaIqkWmAvck28gaWSqA7gYeDQitqa6Q9LPSWRJ3K25Td8DLImIVbm+6tKCDSRN\nBaaRkkQz67/edlK22P6///2RrKAp+9Gwq5Etm3e2tVv24pq+Ds3MrGR0uyo2IpokXQ7cD1QDN0bE\nYkmXpvrryBZJ3CwpgMXARbku7pI0GmgELouIzbm6uey9aOIU4CuSGoEW4NKI2LhvwzOzSnDpNz7K\nIZPr+N29zzD7tLcw77evAjBwUA3DRg7m8CN2z9pv27ajWGGamRVdQbcUi4j7gPvalV2Xe/4YHRwu\nTXWdLn6IiAs6KLsLuKuQuMysfzj7r0/jd/f9HoANr+2+MlJVjWhuaqGxoamtbLvzOjPrx3znCTMr\nCyeedjySWLNy9zXqdm5rRBIDBvi212Zm4MTOzMpETU01VMG4qWPbyqoHiAG11QwdtnsV7KDajrY2\nM+sfnNiZWflogdUvrm17+e6z3saaVRt55IFFbWW7GooRmJlZaXBiZ2Zl46BhA3nrSUe2vV732mZq\nD6plyHBft87MDApcPGFmVgq+8qPLGDtpND/+twc4csY4/uQDs3jg3qe49875nHbW24odnplZ0Tmx\nM7OyceyJ2WzdZ776kbay498+lS2bdhUrJDOzkuJDsWZW1qqrxeDBA4odhplZSXBiZ2Zlbdu2etau\n3lTsMMzMSoIPxZpZWZty5CG8/yMn0VDfRHNLS7HDMTMrKid2ZlbWBg8ZxOQjBrF1606aGpuLHY6Z\nWVE5sTOzijB8+EHFDsHMrOh8jp2ZmZlZhXBiZ2ZlbeeOela+/Eb3Dc3M+gEndmZW1gYdVMvYw0a0\nva4bU13EaMzMisuJnZmVNUnUDtx9HbuPnncqx711YhEjMjMrHi+eMLOK8mdnvo0/PX1mscMwMysK\nz9iZWcWpqlKxQzAzKwondmZW1nbtbGDNqo3FDsPMrCQ4sTOzsjagtoYRo4YUOwwzs5LgxM7Mylp1\ndRWDhwwsdhhmZiXBiZ2ZlbUtm7ez+OlXix2GmVlJcGJnZmVt165G1qzaVOwwzMxKghM7Mytrr728\ngaeeXF7sMMzMSoITOzMra29u38nrazcXOwwzs5JQUGIn6XRJSyUtk3RFB/WjJN0t6RlJT0o6Nlf3\naUmLJC2W9Jlc+T9KWi1pYXqcmav7fNrXUknv299BmlnlWrpoFcteWFPsMMzMSkK3iZ2kauBa4Axg\nBnCupBntmn0BWBgRxwHnA9ekbY8FPg7MBo4HzpJ0ZG67b0bEzPS4L20zA5gLHAOcDnw3xWBmtpea\nmmqq5YMPZmZQ2IzdbGBZRKyIiAbgdmBOuzYzgIcBImIJMFnSWOBo4ImI2BERTcAjwDnd7G8OcHtE\n1EfES8CyFIOZ2V6OPm4Sxxzve8OamUFhid14YGXu9apUlvc0KWGTNBs4HJgALAJOljRa0mDgTCD/\nDfypdPj2RkmjerA/MzMAho08iNFjRxQ7DDOzktBbxy+uAkZKWgh8CngKaI6I54GrgQeA/wEWAs1p\nm+8BU4GZwBrgGz3ZoaRLJM2XNH/9+vW9MwozKzuPPfI8jz6wqNhhmJmVhEISu9XsOcs2IZW1iYit\nEXFhRMwkO8euDliR6m6IiBMi4hRgE/BCKl8XEc0R0QJ8n92HW7vdX9r++oiYFRGz6urqChiGmVWi\npoZGdtXXFzsMM7OSUEhiNw+YJmmKpFqyhQ335BtIGpnqAC4GHo2IranukPRzEtnh2lvT68NyXZxN\ndtiW1PdcSQMlTQGmAU/uy+DMrPLdf88CGp3XmZkBUNNdg4hoknQ5cD9QDdwYEYslXZrqryNbJHGz\npAAWAxflurhL0migEbgsIlovOPV1STOBAF4GPpH6WyzpTuA5oClt04yZWQeOOHIczy7ca1LfzKxf\n6jaxA0iXIrmvXdl1ueePAdM72fbkTso/2sX+rgSuLCQ2M+vfRh82ApzYmZkBvvOEmZW5xx55rtgh\nmJmVDCd2ZlbWIoodgZlZ6XBiZ2ZlrW7MsGKHYGZWMpzYmVlZO/7Eo6gp6GxhM7PK58TOzMqa1IKq\nVOwwzMxKghM7MytrO3fspLnZJ9qZmYETOzMrc1OPHEfdIb5XrJkZOLEzszJXO3gAAwfXdt/QzKwf\ncGJnZmXt1WVrWfPqG8UOw8ysJDixM7Oytm7NZhobfY6dmRk4sTOzMnfEtMMYMtyHYs3MwImdmZW5\nFUvWsX1rQ7HDMDMrCU7szKysaZCvYWdm1sqJnZmVtc0bdxQ7BDOzkuHEzszK2s43dxY7BDOzkuHE\nzszK2tbNnrEzM2vlxM7MytquxsZih2BmVjKc2JlZWfM17MzMdnNiZ2ZlrXlXsSMwMysdTuzMzMzM\nKkRNsQMwM9sX9bsaeXX568UOw8yspHjGzszK0sBBA5h2zPhih2FmVlKc2JlZWVN1sSMwMysdTuzM\nrKxFc7EjMDMrHQUldpJOl7RU0jJJV3RQP0rS3ZKekfSkpGNzdZ+WtEjSYkmfyZX/i6QlaZu7JY1M\n5ZMl7ZS0MD2u642BmpmZmVW6bhM7SdXAtcAZwAzgXEkz2jX7ArAwIo4DzgeuSdseC3wcmA0cD5wl\n6ci0zYPAsWmbF4DP5/pbHhEz0+PSfR6dmZmZWT9SyIzdbGBZRKyIiAbgdmBOuzYzgIcBImIJMFnS\nWOBo4ImI2BERTcAjwDmp3QOpDOBxYMJ+j8bMzMysHysksRsPrMy9XpXK8p4mJWySZgOHkyVqi4CT\nJY2WNBg4E5jYwT7+CvhF7vWUdBj2EUknFzQSMzMzs36ut65jdxVwjaSFwLPAU0BzRDwv6WrgAWA7\nsBDY41RnSV8EmoAfp6I1wKSI2CDpBOCnko6JiK3ttrsEuARg0qRJvTQMMzMzs/JVyIzdavacZZuQ\nytpExNaIuDAiZpKdY1cHrEh1N0TECRFxCrCJ7Hw6ACRdAJwFnBcRkdrXR8SG9HwBsByY3j6oiLg+\nImZFxKy6urpCx2tmZmZWsQpJ7OYB0yRNkVQLzAXuyTeQNDLVAVwMPNo6wybpkPRzEtnh2lvT69OB\nvwfeHxE7cn3VpQUbSJoKTCMliWZmZmbWuW4PxUZEk6TLgfuBauDGiFgs6dJUfx3ZIombJQWwGLgo\n18VdkkYDjcBlEbE5lX8HGAg8KAng8bQC9hTgK5IagRbg0ojY2AtjNTMzM6toBZ1jFxH3Afe1K7su\n9/wxOjhcmuo6XPwQEUd2Un4XcFchcZmZmZnZbr7zhJmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZm\nZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmVlZqx5Q\n7AjMzEqHEzszK2vDhw8sdghmZiXDiZ2ZlbU/OPkoqmuKHYWZWWlwYmdmZU5UVfmrzMwMnNiZWZmr\nqaqipbml2GGYmZUEJ3ZmVtZefH4lzc3FjsLMrDQ4sTOzsrZu7cZih2BmVjKc2JlZWRtdN6zYIZiZ\nlQwndmZW1madfCzDRviSJ2ZmAL5IgJmVtRNPmsb2jTuLHYaZWUnwjJ2ZlbWhwwYydtzIYodhZlYS\nnNiZWVmrqamhpra62GGYmZUEJ3ZmVtZWr9zEs/NfLnYYZmYlwYmdmZW1AQOrGFDr04XNzKDAxE7S\n6ZKWSlom6YoO6kdJulvSM5KelHRsru7TkhZJWizpM7nygyU9KOnF9HNUru7zaV9LJb1vfwdpZpVr\nyOBBjBnrS56YmUEBiZ2kauBa4AxgBnCupBntmn0BWBgRxwHnA9ekbY8FPg7MBo4HzpJ0ZNrmCuCh\niJgGPJRek/qeCxwDnA58N8VgZrYXVUF1lb8izMygsBm72cCyiFgREQ3A7cCcdm1mAA8DRMQSYLKk\nscDRwBMRsSMimoBHgHPSNnOAm9Pzm4EP5Mpvj4j6iHgJWJZiMDPbi6iiqtpnlZiZQWGJ3XhgZe71\nqlSW9zQpYZM0GzgcmAAsAk6WNFrSYOBMYGLaZmxErEnP1wJje7A/MzMADp0wknecclSxwzAzKwm9\ndcbxVcA1khYCzwJPAc0R8bykq4EHgO3AQmCv23VHREiKnuxQ0iXAJQCTJk3az/DNrFwNHz6YGcf7\nO8DMDAqbsVvN7lk2yGbiVucbRMTWiLgwImaSnWNXB6xIdTdExAkRcQqwCXghbbZO0mEA6efrhe4v\n9Xt9RMyKiFl1dXUFDMPMzMysshWS2M0DpkmaIqmWbGHDPfkGkkamOoCLgUcjYmuqOyT9nER2uPbW\n1O4e4GPp+ceA/86Vz5U0UNIUYBrw5L4MzszMzKw/6fZQbEQ0SbocuB+oBm6MiMWSLk3115Etkrg5\nHU5dDFyU6+IuSaOBRuCyiNicyq8C7pR0EfAK8OHU32JJdwLPAU1pm70O35qZmZnZnhTRo1PbStKs\nWbNi/vz5xQ7DzMzMrFuSFkTErAPRt68RYGZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdm\nZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJnZmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZ\nhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJ\nnZmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhSgosZN0uqSlkpZJuqKD+lGS7pb0\njKQnJR2bq/tbSYslLZJ0m6RBqfwOSQvT42VJC1P5ZEk7c3XX9dZgzczMzCpZTXcNJFUD1wLvBVYB\n8yTdExHP5Zp9AVgYEWdLektqf6qk8cDfADMiYqekO4G5wE0R8ZHcPr4BbMn1tzwiZu7v4MzMzMz6\nk0Jm7GYDyyJiRUQ0ALcDc9q1mQE8DBARS4DJksamuhrgIEk1wGDgtfyGkgR8GLhtn0dhZmZmZgUl\nduOBlbnXq1JZ3tPAOQCSZgOHAxMiYjXwr8CrwBpgS0Q80G7bk4F1EfFirmxKOgz7iKSTCx6NmZmZ\nWT/WW4snrgJGpvPkPgU8BTRLGkU2uzcFGAcMkfSX7bY9lz1n69YAk9Kh2M8Ct0oa3n6Hki6RNF/S\n/PXr1/fSMMzMzMzKVyGJ3WpgYu71hFTWJiK2RsSFKRk7H6gDVgDvAV6KiPUR0Qj8F/DO1u3S4dlz\ngDtyfdVHxIb0fAGwHJjePqiIuD4iZkXErLq6uoIGa2ZmZlbJCkns5gHTJE2RVEu2+OGefANJI1Md\nwMXAoxGxlewQ7EmSBqdz6U4Fns9t+h5gSUSsyvVVlxZsIGkqMI0sSTQzMzOzLnS7KjYimiRdDtwP\nVAM3RsRiSZem+uuAo4GbJQWwGLgo1T0h6SfA74EmskO01+e6n8veiyZOAb4iqRFoAS6NiI1dxbhg\nwYI3JL3S7WjL2xjgjWIHUQQed//icfcvHnf/4nHvdviB2pki4kD1bb1I0vyImFXsOPqax92/eNz9\ni8fdv3jcfcN3njAzMzOrEE7szMzMzCqEE7vycX33TSqSx92/eNz9i8fdv3jcfcDn2JmZmZlVCM/Y\nmZmZmVUIJ3Z9QNLBkh6U9GL6OaqTdqdLWippmaQrCtle0udT+6WS3pfKhqVbsrU+3pD0rVR3gaT1\nubqLK2XcqfzXqax1fIek8oGS7kjbPCFpcqWMO10n8ueSlkhaLOmqXPsD/nl3No5cvSR9O9U/I+nt\nvf0epPITJD2b6r4tSb091mKNW9J7JS1I41sg6d25bTr8na+QcU+WtDM3tuty21Ty532e9vwOb5E0\nM9VVwuf958q+q1okzWrXXyX/fXc47l7/+44IPw7wA/g6cEV6fgVwdQdtqsnusjEVqCW7/+6MrrYH\nZqR2A8lu27YcqO6g7wXAKen5BcB3KnXcwK+BWR3s56+B69LzucAdlTJuYDDwJ6lNLfAb4Iy++Ly7\nGkeuzZnALwABJwFPHKDP/snUv9L+zqigcb8NGJeeHwuszu2nw9/5Chn3ZGBRJ7FU7Ofdrt+3Assr\n7PM+Gjiq/Vio/L/vzsbdq3/fnrHrG3OAm9Pzm4EPdNBmNrAsIlZERANwe9quq+3nALdHdhu2l4Bl\nqZ82kqYDh5D9Y9/XijbubmL5CXDqAfwfX5+OOyJ2RMSvAFJfvye79V9f6GocreYAt0TmcbL7Sh/W\nzbY9eg9Sf8Mj4vHIvg1voeP3vbf06bgj4qmIeC2VLwYOkjTwQA2uC339eXeo0j/vds5N2xTDARl3\nRDwfEUs72F9F/313Nu7e/vt2Ytc3xkbEmvR8LTC2gzbjgZW516tSWVfbd7VNq9bZqfwqmQ+mKd+f\nSJrIgVOscd+cpqz/dy55a9smIpqALcDong+pIEX7vCWNBP4MeChXfCA/70J+Bztr05vvwfj0vKs4\nelNfjzvvg8DvI6I+V9bR7/yBUIxxT0lje0TSybl99JfP+yPsfYemcv+8e7q/Svm8C7Hff9/d3lLM\nCiPpl8ChHVR9Mf8iIkLZrdf2yT5sPxf4aO71z4DbIqJe0ifI/pf47g63LEAJjvu8iFgtaRhwF9nY\nb9nX/XamBMeNpBqyfwC+HRGt91fu1c+7GPb3PSxXHY1b0jHA1cBpueI++Z3vK+3GvQaYFBEbJJ0A\n/DS9BxWnk8/7RGBHRCzKFVfU52279dbftxO7XhIR7+msTtI6SYdFxJo0Vft6B81WA/nZlAmpDKCz\n7bvaBknHAzURsSAX54Zc+x+QneOxz0pt3BHR+vNNSbeSTYvfkttmVUqARgD596JHSm3cyfXAixHx\nrVycvfp5d6C7mLpqM6CLbXv6Hqxmz8PPHcXRm/p63EiaANwNnB8Ry1vLu/idPxD6dNxp1qI+PV8g\naTkwnX7weSd73U+9Qj7vnu6vUj7vTvXq33f0wQmY/f0B/At7niD79Q7a1AAryE4YbT3h8piutgeO\nYc8TTVeQWzwBXAV8ud1+Dss9Pxt4vFLGnfoak9oMIDuX7tL0+jL2XDxxZ6WMO9X9M9n/5qr68vPu\nahy5Nn/KnicZP3mA3oP2J1efeQA/474e98jU7pwO4ujwd75Cxl2X+3ynkv0DeXClf97pdVUa79RK\n+7xz2/6aPRcRVPTfdxfj7tW/7wPypvix1y/JaLJznl4Efpn7YhoH3JdrdybwAtmKmi92t32q+2Jq\nv5R2q4TSL9db2pV9jezkzKeBX7WvL+dxA0PIVgA/k8Z4Te5LYRDwn2Qn4z5J7suyAsY9AQjgeWBh\nelzcV593R+MALmV3Ui3g2lT/LHt+ofXa7zwwC1iU6r5DugD7Afyc+2zcwD8A23Of70KyRVGd/s5X\nyLg/mMa1kGxR0J/1h8871b2Ldv8Rq6DP+2yyc8/qgXXA/bm6Sv777nDc9PLft+88YWZmZlYhvCrW\nzMzMrEI4sTMzMzOrEE7szMzMzCqEEzszMzOzCuHEzszMzKxCOLEzMzMzqxBO7MzMzMwqhBM7MzMz\nswrx/wBqQ1b+/IecaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFXawPHfMzNpkEAooYUuTZoirGLB3vvuq666tl17\n73UtuIriuoJlbeiKvbAWbIuKIq4NEVakKUUJQuglIT1TzvvHvTNzp6VOysDz/XzCzD23nZkJyZNT\nniPGGJRSSimlVGpwtXQFlFJKKaVU3WnwppRSSimVQjR4U0oppZRKIRq8KaWUUkqlEA3elFJKKaVS\niAZvSimllFIpRIM3pVKQiDwvIvfWsN+IyIBmrM9tIvJsc92vuYlIbxEpFRF3A8+/VEQ22tfolOz6\nKaV2LRq8KaUazRhznzHmgua+r4hMEZFlIhIQkfOi9p0nIn47YAp+HdyQ+xhjfjPGZBtj/A2oYxow\nCTjSvsbWWo4/T0S+akg9lVK7Bg3elFKNIiKeFrz9j8BlwP8S7P/WDpiCX7Obr2ohXYFMYElz3KyF\nPw+lVDPQ4E2pVkpEdheR2SJSJCJLROTEqEM6iMiHIlIiIt+JyG4JrpMlIg+JyGoRKRaRr0Qkq4b7\n9rW7XS8SkXUisl5EbnDsHy8ib4rIyyKyAzjPLnvZccwBIvKNXfc1wVYxEckQkX+IyG92N+JTNdWl\nNsaYx40xnwGV9T1XRApE5EYRWSgiZSLyLxHpKiIz7Pf0UxHpEPWeeOzt2SJyj4h8bR/7iYh0jnOP\nQcAye7NIRGZFX8txvQtEZHfgKWBfu6WwyLnfcXxE65x9vctFZAWwwi4bIiIzRWSb3Tp5WoL34Y8i\nMi+q7FoRec9+fqyILLVfZ6HzeyHqnPPs9+Of9vfZzyJymGN/RxGZan9PbReR6XZ5BxH5QEQ22+Uf\niEjPhB+cUkqDN6VaI7ur7X3gE6ALcCXwiogMdhx2OnA30AFYCUxIcLl/AKOB/YCOwE1AoA7VOAQY\nCBwJ3Cwihzv2nQS8CeQCr0TVvQ8wA3gMyAP2BBbYuycCg+yyAUA+cGcd6tJQo0Rki4gsF5E74rRK\n/R9whF2nE+x632bX2wVcVcO1zwT+jPX5pAMxQY0xZjkwzN7MNcYcWlNljTE/AZcQbjHMre0FOpwM\n7AMMFZG2wEzgVbt+pwNPiMjQOOe9DwwWkYFRr+1V+/m/gIuNMTnAcGBWDXXYB/gF6AzcBbwtIh3t\nfS8BbbDejy7AZLvcBUwF+gC9gQrgn3V8zUrtkjR4U6p1GgtkAxONMdXGmFnAB8AZjmPeMcbMNcb4\nsAKoPaMvIiIu4C/A1caYQmOM3xjzjTGmqg51uNsYU2aMWYT1y9V572+NMdONMQFjTEXUeWcCnxpj\nXjPGeI0xW40xC0REgIuAa40x24wxJcB9WIFFU/gvVrDRBStIOwO4MeqYx4wxG40xhcCXwHfGmB+M\nMZXAO8CoGq4/1Riz3H7904jz/jez++33tQI4Higwxkw1xviMMT8AbwGnRp9kjCkH3sX+fO0gbgjw\nnn2IFysgbGeM2W6MSdRFDbAJeNj+3N/AanU8TkS6A8cAl9jX8BpjvrDvv9UY85Yxptz+npgAHNT4\nt0OpnZcGb0q1Tj2ANcYYZwvZaqyWqqANjuflWMFetM5Y461+aUAd1kTdu0eCfdF6JbhfHlbLy3y7\nO7UI+Mguj2F3FQcnGoyrX9XBGPOrMWaVHWAuAv4GnBJ12EbH84o42/He06C6vP/NyfmZ9AH2Cb7P\n9nv9J6BbgnNfJRycnwlMt4M6sALfY4HVIvKFiOxbQx0KjTHGsR38vukFbDPGbI8+QUTaiMjTdrf+\nDqygO1caOLNXqV2BBm9KtU7rgF52y1lQb6CwntfZgjUeLO54uFr0irr3Ose2IbE1Ce63BSsgGmaM\nybW/2htj4gY9xphhjokGX9a38vEuCUgSrtNYZfZjG0eZM6iK996W1XB8vPPWAF843udc+328NEGd\nZgJ5IrInVhAX7DLFGPO9MeYkrBbM6VitjInk2y2sQcHvmzVARxGJ1w18PTAY2McY0w440C5vDZ+V\nUq2SBm9KtU7fYbXm3CQiaWKluDgBeL0+F7Fb7p4DJolIDxFxi8i+IpJRh9PvsFtFhmGN7Xqjjrd9\nBThcRE4TEY+IdBKRPe26PANMFpEuACKSLyJH1ec1OYlIuohkYv2iTxORzGDAKyLHiEhX+/kQ4A6s\n7sEWZYzZjBWEn2V/Hn8hMtjdCPQUkXRH2QLgD/bnMQA4v5bbfAAMEpGz7e+fNBH5nT0hIl6dvMC/\ngQexxkXOhND7+ycRaW8fs4Oax0t2Aa6y73cqsDvwH2PMeqzxhE/YExTSRCQYpOVgBfVF9vi4u2p5\nbUrt8jR4U6oVMsZUYwVrx2C1WD0BnGOM+bkBl7sBWAR8D2wDHqBu//e/wJoI8RnwD2PMJ3W5mTHm\nN6xutuvt+y0A9rB332xfc47dRfYpVqtLQ32C9Yt/P2CK/TwYFBwGLBSRMuA/wNtYY+xagwuxxt9t\nxRrA/41j3yystCIbRGSLXTYZqMYK7F4gapJINHvs2JFY4wnXYXXxPgDUFLS/ChwO/NseRxl0NlBg\nf16XYHW/JvId1iSXLVhj105x5LU7G2v83M9YY+OuscsfBrLsc+ZgdaUrpWogkcMTlFK7OhHpC6wC\n0qJ+iSuVkFjpYC4wxhzQ0nVRamenLW9KKaWUUilEgzeldkH2OKbSOF/NsgqAUkqphtNuU6WUUkqp\nFKItb0oppZRSKUSDN6WUUkqpFBK9zl/K6dy5s+nbt29LV0MppZRSqlbz58/fYoyJu7JMXSUteLOX\nMpmHtTzK8XayxTeAvkABcFpwaRQRuRUryaQfuMoY87FdPhp4Hivnz3+w1mOscVBe3759mTdvXrJe\nhlJKKaVUkxGR1Y29RjK7Ta8GfnJs3wJ8ZowZiJXk8xYAERmKlThyGHA0Vsbt4Bp2T2Ilrxxofx2d\nxPoppZRSSqW8pARvItITOA541lF8ElYmcOzHkx3lrxtjqowxq7Cyre8tIt2BdsaYOXZr24uOc5RS\nSimlFMlreXsYuInINe+62uvZgbU0S1f7eT7WIsVBa+2yfPt5dLlSSimllLI1OngTkeOBTcaY+YmO\nsVvSkpZQTkQuEpF5IjJv8+bNybqsUkoppVSrl4yWt/2BE0WkAHgdOFREXgY22l2h2I+b7OMLgV6O\n83vaZYX28+jyGMaYKcaYMcaYMXl5jZqwoZRSSimVUhodvBljbjXG9DTG9MWaiDDLGHMW8B5wrn3Y\nucC79vP3gNNFJENE+mFNTJhrd7HuEJGxIiLAOY5zlFJKKaUUTZvnbSIwTUTOB1YDpwEYY5aIyDRg\nKeADLjfG+O1zLiOcKmSG/aWUUkoppWwpv7bpmDFjjOZ5U0oppVQqEJH5xpgxjbmGLo+llFJKKZVC\nUn55LKWUSlUVlZWMfe1RRmd1YlbFFhB7h9hfzkn6Yj0XCW9f7OnLLX88EwBvwE+ay41SauenwZtS\nStVi1GMPUWQ/NxAOrEJBFgxq355P/nRhva57+efTKQ7ArIqtsTuNCQdzCTztK7CWrgGWFW1mcG6e\nBnBK7QI0eFNKqVr4az8EAvUfPzzlqNPYUl5Gt+ycep8bbXjHbo2+hlIqNWjwppRStVh45fVNcl2P\ny5WUwE0ptWvRCQtKKaWUUilEgzellFJKqRSiwZtSSimlVArR4E0ppZRSKoVo8KaUUkoplUI0eFNK\nKaWUSiEavCmllFJKpRAN3pRSSimlUogGb0oppZRSKUSDN6WUUkqpFKLBm1JKKaVUCtHgTSmllFIq\nhejC9EoplWQby0vI8qTRLj2zSa7f75X7AYMA1j/BR4PY228dch57ds1vkvsrpVqWtrwppVSSZadl\nkOlOa7LrD/NkW08k8TED2ndqsvsrpVqWtrwppVSStU1Lb9Lrf/DHK5v0+kqp1k1b3pRSSimlUogG\nb0oppZRSKUSDN6WUUkqpFKJj3pRSrd7geyYDYIIFzhmWElu+4tZrm61uSinV3LTlTSmllFIqhWjL\nm1Kq1Vt2h7akKaVUkLa8KaWUUkqlEA3elFJKKaVSiAZvSimllFIpRIM3pZRSSqkUosGbUkoppVQK\n0eBNKaWUUiqFaPCmlFJKKZVCNHhTSimllEohGrwppZRSSqUQDd6UUkoppVKIBm9KKaWUUilEgzel\nlFJKqRTS6OBNRDJFZK6I/CgiS0Tkbru8o4jMFJEV9mMHxzm3ishKEVkmIkc5ykeLyCJ736MiIo2t\nn1JKKaXUziQZLW9VwKHGmD2APYGjRWQscAvwmTFmIPCZvY2IDAVOB4YBRwNPiIjbvtaTwIXAQPvr\n6CTUTymllFJqp9Ho4M1YSu3NNPvLACcBL9jlLwAn289PAl43xlQZY1YBK4G9RaQ70M4YM8cYY4AX\nHecopZRSSimSNOZNRNwisgDYBMw0xnwHdDXGrLcP2QB0tZ/nA2scp6+1y/Lt59HlSimllFLKlpTg\nzRjjN8bsCfTEakUbHrXfYLXGJYWIXCQi80Rk3ubNm5N1WaWUUkqpVi+ps02NMUXA51hj1TbaXaHY\nj5vswwqBXo7Tetplhfbz6PJ495lijBljjBmTl5eXzJeglFJKKdWqJWO2aZ6I5NrPs4AjgJ+B94Bz\n7cPOBd61n78HnC4iGSLSD2tiwly7i3WHiIy1Z5me4zhHKaWUUkoBniRcozvwgj1j1AVMM8Z8ICLf\nAtNE5HxgNXAagDFmiYhMA5YCPuByY4zfvtZlwPNAFjDD/lJKKaWUUjaxhqOlrjFjxph58+a1dDWU\nUkoppWolIvONMWMacw1dYUEppZRSKoVo8KaUUkoplUI0eFNKKaWUSiEavCmllFJKpRAN3pRSSiml\nUogGb0oppZRSKSQZed6UUqpRhtw1Obwh9lp6Et6OKAe+u+ESOmRlNVv9lFKqNdGWN6VUi9uzY6b1\nRCIeYgM4mwZuSqldmba8KaVa3OtXX9rSVVBKqZShLW9KKaWUUilEgzellFJKqRSiwZtSSimlVArR\n4E0ppZRSKoVo8KaUUkoplUI0eFNKKaWUSiGaKkQpperhiH8+xAqwc8+ZiFx0PYGvLr2hpaqmlNpF\naMubUkrVw4rgE2Ni9q1t1poopXZV2vKmlFL1UHDF9S1dBaXULk5b3pRSSimlUoi2vCmldhqby8to\n40mjbXp6vc/9eOlSLv3kI2tDrC5RE7W26n37HsQZY8YkoaZKKdVw2vKmlNppZLjdeFwN+7HWqw6L\n3Y/o2LFB11ZKqWTSljel1E6jXUZmg88d2q8fv15zXRJro5RSTUNb3pRSSimlUogGb0oppZRSKUSD\nN6WUUkqpFKLBm1JKKaVUCtHgTSmllFIqhWjwppRSSimVQjR4U0oppZRKIZrnTSml4uj/6EOElp6X\ncPmqK3VtU6VUy9KWN6WUqofv1q5u6SoopXZx2vKmlFJx/HqVtrAppVonbXlTSimllEohGrwppZRS\nSqUQ7TZVSrV6pVXVrNuxg0F5nRMe88DHn/Hs/xZakwyCEwzE+lp507XNUEullGoe2vKmlGr1sjPS\n6d+pY43H3HzUYQCIRJbPOO33TVUtpZRqEdryppRKCR5X7X9rrrhVW9iUUjs/bXlTSimllEohjQ7e\nRKSXiHwuIktFZImIXG2XdxSRmSKywn7s4DjnVhFZKSLLROQoR/loEVlk73tUJLoDRCmllFJq15aM\nljcfcL0xZigwFrhcRIYCtwCfGWMGAp/Z29j7TgeGAUcDT4iI277Wk8CFwED76+gk1E8ppZRSaqfR\n6ODNGLPeGPM/+3kJ8BOQD5wEvGAf9gJwsv38JOB1Y0yVMWYVsBLYW0S6A+2MMXOMMQZ40XGOUkop\npZQiyWPeRKQvMAr4DuhqjFlv79oAdLWf5wNrHKettcvy7efR5UoppZRSypa02aYikg28BVxjjNnh\nHK5mjDEiYhKeXP97XQRcBNC7d+9kXVYppWrU77GHHHnkTCiP3PT/+xN7du3eonVTSu06khK8iUga\nVuD2ijHmbbt4o4h0N8ast7tEN9nlhUAvx+k97bJC+3l0eQxjzBRgCsCYMWOSFhQqpVRNVl2p650q\npVpeo4M3e0bov4CfjDGTHLveA84FJtqP7zrKXxWRSUAPrIkJc40xfhHZISJjsbpdzwEea2z9lFLJ\nMeL6yaHnodYnu4F98YM151czxlBWVU12ZkaT1U8ppXYVyWh52x84G1gkIgvsstuwgrZpInI+sBo4\nDcAYs0REpgFLsWaqXm6M8dvnXQY8D2QBM+wvpVRrZQgvRVUDnz/A5h1lKRe8VXi9pLvduKMSBPd9\n/CHsEDZyKa6ox4KLb2iGWiqldjWNDt6MMV+R+Mf3YQnOmQBMiFM+Dxje2DoppZJv0UMNX70gzeOm\nX5eal7dqjTaXl9EhK4uc9BqCzhoCWK/fT5rbHX+nUko1kC6PpZRSCfRunxu3vOByHfumlGo5ujyW\nUkoppVQK0ZY3pdQu5daPP+b9pT/hB6oCgQRj1gzGue3oFo1JFQKx3ab2n8Xjevbimt8dwB553Vmw\naR192uVywvSXWF9RwtG9+jGwUzeWb9/CmC492K9HH4Z37kalz8sLP/2PPu07sK2ijDMHj+K3kiL+\nvXIRZdVVTF3xfcS9IxYRFINbIOAYjycCwUxNuWnpXLj7AVw0eP+Gvn21Kq6qYFNlGQPbd26yeyi1\nqxNrMYPUNWbMGDNv3ryWroZSKkVUer2UVlXhCwTwVlfzwmefMWTAAH5evZq5vxWwAqiygyNnANcJ\n2ApkAGd27kG3nj3p0r49vXNzWb11K5/M+ZIBPfowcuBAenfsiAC9O3YkPS0NlwgBY3CJsL2igtLq\narq0bYsLa1xcutuN2+0mmB/T6/fjEsEAHpcLYwxevx8DrNiyhTs/nUq5GMbSk6NGjWFNWRmuQICu\n7duze48elHi9rNm2jfXFxXiBQwYMYGN5Of1yc8nJzMTjatpOl+BrVUrFEpH5xpgxjbqGBm9KqboI\nBAzTv/6eu6Z/bQU2EGr9MY7Wqd8Bzz/Q8MkNSim1M0tG8KZj3pRSdbK1tMwK3IC4f/PZZd83X5WU\nUmqXpGPelFJ1ktcuu1HpQpRSSiWHBm9KqTop2lHGuLunAHG6TB3bzgH+wX2f33w+XXPbNU9FU9DW\n0nI6Zbdp6WoopVKEdpsqpepkY3FJg8/dtKPh5+4KSiqqWroKSqkUohMWlFJKKaWaiU5YUEoppZTa\nxWjwppRSSimVQjR4U0oppZRKIRq8KaWUUkqlEE0VolQKmD57Afe/NAu/Pb/IxF1v0y4I/knmXAVB\nYN/d83niytOarI7ri0vwuFzk5bSt0/G73zEZiJ9qpHuGh89vvTL5lWykbSXldMzRlB5KqZalLW9K\npYCfV28OBW4NtXzNpuRUJoG87LZ0bJuVlGutr/Ix+O7JDL57co3HlVVXU1rVPGk2AgGjKT2UUq2C\npgpRSrWoLxcv5sJ/zwwXRK2buuyuxKs67KisJGAgNyuzSeuomsbby77k0bXTARCxfhe5Ih4NLnGU\nES6Lfjyl89F8tvVLdlCCAOf1PI3jeh/azK9IqdolI1WIdpsqpVrUuOHD+Xn48Aad2y5Tg7ZU9v6G\nb6JKTNRj9HNHkUQWfbb1K4opBXvXf7d8o8Gb2mlp8KaUqlV5tZcqn48ObZLTLRo0/M7J+IIbjjFv\nzpa3Ww4dy5/H7ZvU+ybLhrISsjxptM+IH0T2nfKg9ST0mkxk0GE/D7Y6Ffz55iara2s09aBd6/Uq\nlSwavCmlWkxdBm28+PkcJs6ewz7Avef+H9e98BZv3pG4K7U5tc/IxC3NM3S40uel0u8jN6PmAHrk\nGxMoc7yzIuHg8NGRJ3HM4JFNWk+lVNPTMW9KqVZlyN2TI4M650L3dlGmwMLbr+W3bUVkpaeRl123\nGa6prNxXTbnPS+fMml/rgDcmYBzdj1bwZm2Ncuexf+++/K+wkDm+QtoIVAA9MVw66CgeX/ERRWK9\n3ZVirBltduAnocfgdYP74ejMQfRs35lL9joGVzMFs0qlqmSMedPgTSmldlLbq8op8VbSO7sjczeu\n4qwvXwaMo7sWwFjxsUQGfMH9wYkD4ujuFTGOCQbhc98+4Hr65HRq+hemmtwXBQMAcBEAwG1/xm6C\nn3sANwAGF/kI23CJmxG9fmqB2qYWnbCglFIqoQ4ZbeiQYeWl27trP5afckcL10jtHKwAzo/BDQQo\nDAV1qnlo8KaUUkqpCAf1XdnSVVA10OBNKaWS7O7ZHzN12UJrI2L2rAmN4Vt9/k0tVj9VszLvZjI9\nubglraWrEqHSu4NfSz5hzpaHIdSdGcDqugQI4Barq9P6NgsgAm5gz5z76d/l6JaqukoyDd6UUk2i\n2u/ntw2bOfHx18KFAnNuuYh2OW2pqPYiImSmJf4xVFFRwZ4PPhU612CNsTq6fy+O2WMYV07/CIhc\nYsuZZuTy343k2sMOS/ZLq9VBPfqGgzcniS1SrY9L3Egr/LDE5cLlygLSgcp4R5B4DndGk9VLNT+d\nsKCUSrqAMSzdsIkFPxdw30xHIlaB5845mbGD+7GttBwRoUMNS2qd/Ngz/LS9NHRu6KeVWEFcwN50\nruHqDN4QWH7TNbik9f0iVkrtmnS2KRq8KbUrunDqi3xRuDWcQsSRTmTZLddgjMHtSu2UFcYYbvni\nfd74balVIJG524hI3UHo9f96xm0x1yr3VVPh89KpljQjSqmmp7NNldqJPPLSTF6ZucjaiNOCZJyN\nR85tkdCxQ7tk8PK9lzVTjVvOF4VbYwvtJZO2lpVT7feT375ds9crmUSELHdyxly5EG19VGonosGb\nUq3Exu0ljb7Glu1VSahJ67f89taxwkJTGz/uGMaPO6bR18n0pJHpaV2D71XTqvQuI8MzEGmmpMnV\n1eUs2zgQCOeCC+WBs/9ucNvHuuwvazKFtbNH/rpmqefOQoM3pVqJ+676A/e1dCXUTunnTWs58b9T\nwwVRXa5LTr4dT4p3M6tIae5u7Khcy2fr/ghU4KYvSDWw1k68a3DZyZfdwUTNBBxBVQDoyohOj9Ax\nZ3St90tPt/IJGmM3gocaeiMnUTg6DBzyG/FKd00avKkWZ4zB7w/g8bhrP9hWUVFNdbUPEcHjcfHa\nq1/z2+qNjNyjN0uWrmX2F79ijWqHNA9U+yH4Y6N3z7ZccelR3HjH23bXo8QsFv7Sk+fRu3eX5L3I\nnVx5tZd0txuPu+YA4JOFP3H1NGuGaMR4Nce283HBbVeQmVZ7i5HX72djWRk92yWnq7T/Iw/Fr1tE\nmYmpb/jRxJTfMHpfrhh9QFLqV1+D8hL/ctwT0cBtJ+R2tWfxtr/jpxIX4KfADsiCgVQAZ2Bl7PQi\nxg7krMcNLNl6KmyNXmHB4BKDmyvZq/eNoXuO6FVIlW8TYMjwdG2ul7pL0gkLqsWVllSyvaiMXr3q\nvqzOpzMXseqXzbRpk447zcUzT8+2djjGfwEYsQK4EJGIwe3GLsNxDgI9e7bnlacvbuAr2nVUVVUz\n+vbHCbgAA5eO6oOnXSfWFhUx4U8nxRx//rNv8E2B3T1SQ/AW/AwnHH8w2yvLqVq/nhF9+3LQmMgx\nvsGfXwFjKKqqpFNWm6S8rpqCt3D96h68uYGHDz6eEwbtnpT6RSvzVuNxufAFAvx9/ies2L6Z9SVF\nrKHMqkLM5IaodUqxHwXmHXUTbdsk532syYGf3QCAi8i1U12hx4D9aNXNJZDnac9WX1HomFxXG3LS\n2zKu8yj+ve4jPOLm9X0fqdP6qmvLN5Cb3o5sT9O/1tbGmABl1T+SnTEq4THxl8cyjuDNOu53vX9r\n4trufHS2KRq8KdWSJrz5Ka99tyhuALZkYvxxaT+t28RuXTqRbre0DrlzcuS5wedxJm0suyPymoVF\nO/C4XHRtl934F5PCNleUkuH2UOH3ctbMlyis2EZ11Fqk1mOwIHHw9saBf2Fkp95NXueJX7zKR77/\nAdANYaP4ASt4c9l1DK65Khh6Sg7jR13Bz9sK+G3rGvJz8xnSuS9p7jRy09uxrGg5GZ50hnYYUqf7\n+40fFy5EJ3KoZqbBGxq8KaWUUo1RXFzM3G0Tgbcd3aMAV+DiYWtbIJ/P6d27twa8jaSpQpRSqgmM\nfuQhthOZ/Ncp2PV+VJfuPH3qmc1eP4Cy6mrapqe3yL3VzmXutrEEU14HTLCrOgA86jjKUMjBdPHN\nwuNqR5q77sNcVPJp8KaUahX8fj9D77F+WQg1j4ULidO1CjDvmkvJzkhvcKLe7TXsM44nH29a36Dr\nO22rKqdjRv3GXX2xcAHnLpiBuE1Mkt6hWbl8cPLOn+tPJc8R/X5q6SqoetLgTSmV0Isff8mDH0cN\nS4gTMC1+sOF51xYvX84pr3wYe/1oxjE3TsJlEcGcAVywo7KKrDRPnYK38movq7cXsXvXvFDZr1df\nX89X0XDbGxC8vfzLIsQdf8jLz5VFyaiWUqoVS0rwJiLPAccDm4wxw+2yjsAbQF+gADjNGLPd3ncr\ncD7gB64yxnxsl48GngeygP8AV5tUH5SnVAr7clnTzyRbUlQRCtacMVkEO2ozcYbaCNANWA+MznZz\n/xln0KtD+zrfv016GoPyWq4LaLd2net9zjO/P7sJatL63fPlE8wxPzlmpDofwxMcrJA9gMvOAiRi\nwrNWcc5mdSSQFYMQQELXsboP7xv+GLnpHRpc51Vlv9CnTb86zYBVqq6SMmFBRA4ESoEXHcHb34Ft\nxpiJInIL0MEYc7OIDAVeA/YGegCfAoOMMX4RmQtcBXyHFbw9aoyZUdO9dcKCUk1n/fYdpLnddG4X\nuSbm8BsiZ4jW2sUpMH/85WQlGKO1eO1GcrLS6dPJ+iX5l+de4+s1G8LXdKZ2AZbfsWussKAinfXf\nG9lOZYLgLRzEWWGS4WAZy9EDDmJD8UY65XTm84LZtKMdLoEKyiiggLbSlqHpQ+jk6sjzVVMAEAy3\n9r+XKl8Fg7s0Lr1LwAQ0cFMRWtVsUxHpC3zgCN6WAQcbY9aLSHdgtjFmsN3qhjHmfvu4j4HxWK1z\nnxtjhtibll1WAAAgAElEQVTlZ9jn15hsS4M3pZrOyOsmx20Fix7Ib4L9mRKnHOjX1sOHt1+Z8D7V\nPh/pnvp1BKzZvJnDprwcd8zbiltbPrgbOeVBdtjPo+u4+oIb45/UQrwBH2W+SnLTk59y5ZM18xn/\n0zQM4dYvq1XLDrjsvGEiQhfgjUMfSnodlGpNWvts067GmOBo3g1AMN1yPjDHcdxau8xrP48uV0q1\nQgIscox18wcCbCoupXuH+q9yUN/ALRU8ftBxnP2FNZZP4k22aIRtFeWMefsRKwt+VOAqdusTArni\nprsri2XGWjd3xal3xL2eAXwm0OD6VPi8uETIcMd+jmW+qvhjGONo/Oq+qjb+gJflW6ewqXQeZXwX\nXn80Ihkv9lJZ4W7mrq7xDOp9TstUWsVolp+YxhgjwSyRSSAiFwEXAfTu3fTJJJXaVS2cZAVnh/71\ncTZXVEfsM8DwG8Pdpx1d8N8EiXmLyirYWlrObl2TN7asV14ey//a8i1siYwbPJSCwUOb5NrzCwsS\nBESRpcX4KQ6UUltarnSXh84ZDV9arNRXRZrLHTd4+32//fh9v/0afO1ovoDfWntTIpfT+/KX73l4\n479CDb/BFRryJY8b97iC7lndk1aHVOYPeKnwraeKDRHlwYZzY4j7/VJpVjZL/VTdNGXwtlFEuju6\nTTfZ5YVAL8dxPe2yQvt5dHkMY8wUYApY3abJrrhSKtKsCZc36vzctlnkts1KUm3UEQOGsmpA0wSG\nDZGX2XwrXOzwlSAIHdIjJ6U8svE5IByEWPnKDOvMZt5d+wmXDDy32erYWlX5ilm+4W0Kq9/HhRUE\n+zG4sdrejtSUISmjKYO394BzgYn247uO8ldFZBLWhIWBwFx7wsIOERmLNWHhHOCxJqyfUiltzeYi\neuXl1vu8N79ewL2vfR47VizO5APnMe3Thc/vuYK0tOT+2PhowY9c886scIFEzio9f+8R3HTM4Um9\nZ1PzBQJ4A36yPGkx+9aX7aB727q1cl024w3+s3mVteFY0mrVWbfW7fyZL/PJ9oJalseCUW278vpR\nTbuW7/4zb8Ya2xY1yQDilwcnHzjWNs0hg9fHPRB3AsCb+z3ZpPVv7YwxvPaLlWzXapMM2O/ZBHz4\n8PMxGdIJL28DAQJ20Oa0btNienQZ3txVVw2QrFQhrwEHA51FZC1wF1bQNk1EzgdWA6cBGGOWiMg0\nYCngAy43xvjtS11GOFXIDPtLqV3emg3b+MNtz0cEUyfsP5jj9hvJxQ+9GXfQPgL/eyq2WzG/ff1a\nSdqmgd8H3dq3w+OJ/nHfMCs2bOTEx18F4i/+LsG0IALPfb8o5YK3Cr+XHdUV5Htig+v6jC0r8VU1\nqh6fbC+IUxrbWbGgbGOj7lM31n0TdcvVJHh4CZWc8OXVUYFdZKoQMLhD5fDYnhPoktW47vqACbC1\nejt5Ga13VQErcLPeY78dwBkToERutReThyrg0Pz/kJPRM+b8Ct9m/KZx32+q+SQleDPGnJFg12EJ\njp8ATIhTPg/QsF+pKCt+2xTzK3fu4gJ6dulY72vtO3wAC/5Z+1ix4rJKfH4/naLShCRDSWUdf0kk\nyO1WH36/n8GTHgm/f3GC3F+uuy7mvIAxlFVXk5ORUe977igtZ/9pz4auHw6urYkED+93JL8fumfC\n832BAB6Xi5dOaNwA8ZWn3d6o85Pp6yP+3iTX/f3X4S79eEFhWgNX2XASBHcrT/dx5oDvGnV+liev\n9oNUq7HzTfFSaid06N5DmLf3kLj7zj9+3ya5Z/u2mQAsK9zMra98yIoN2yPzrSXoao1+/Nf5f2Ds\ngD4R196rb2/euuRMBnbrTJo7Oa15iZT7fAn3hQdpm5jFtr1+P1vKyxsUvO0/7V817r/m208SBm+V\nPi+/Fm9naKcuXDXjDd6L020ab7uXpPHFGYlTkJT5qthSWUqf7MStR0Onjw89j+7GjO56nTDs9xzf\nb6+E12pp+ZLHw/veE9reXLUZj3jokN6Bc+eej7V2p7ET+VpdjC6ENuRQKdYqFa7QIu2B0PaYduM4\ne7fGjQFtKq+uPBErXXVk12mw5c0tgVACY4AT+i9OeK1S71rSXNlkuOs/NEM1vaTleWspmudNqaYV\nCBgCAT9/e/JZFhZU8AuEWpNGt4X55YmDt5Hdc3np8nPidrdW+/ykJ6kbtr78gUCD1z1tiN82b2bc\n9OcZJXD+gUdSsqOS4pIyjhyyO1d/9BJdyGAWlRziyuXsgw/isS8+4AfjDwVoobXBSBy8vXjA70nP\nSmfvvN3i1iFgAlT5fWR5Ei9mf9+37/Lyxh8AK2VEgPjBmwjMOfJ2MtPqH9iqplNWVsK76w+1gzUT\nmnEbL3jbXSYxoN+RCa8VMD4EF9LKWxxTUatK0ttSNHhTKvUNuWtyeCPO6gzZAvOTuKrCoi0bGdSh\nE2kuN676DsCyLdy4kfcX/8gXyxZy26HH88/PP2CeXV8gHHhFd5s6fhcG87+J41icx4aqFh28xQvm\nrPL4+00o6Fp+Svxcb8m2omQNvdt0JcMdGSwuK1lNv7b5pLvid/wcMftawuPyIicshJe2inx0i+Ht\n/Z+IuM4fv70IsFZLcCYFdgMv7vNso19fqgmYasq9BWSnD2Jbyc/M2fJ/YAd5oVY6rPfLJbBH+3/T\nqcMeLVnlnVZrT9KrlEoBj02fzbOzrNaWYFfojw/HBkrFZZXkZGXgskeJ/7h6PcN7dcXtclFeWc3v\n7no8fLAjoFhw71WMvPPRcBwSFZzFm7AQreHpY+Mb0dnKGb5s6xZ65OSQk16/FqSn5n3HxO++tDYE\nzpv1QeL6S9SGSd4KC8YYfCbA/d98xPNrfrRvFiews13eq/m6OQfm9IpbPjinT9zyoJkHT65xfzw7\nvLHpffPoxGa2xrwHAxhQ7+vvDFySTpbH+kw6ZA+GLdb3SvBvidCj/X5p4Na6afCm1C7u22VrYsoq\nKirJysqMKCupqKRNRhoul/V3+ohe3UKBXJtMR+uKIxhbeO9VeANxWvcTBDpv/uUPDO9T8y/3ZBrc\nqf6LwgNcMmYfLhmzT5JrU38iQpq4ufOA47iT45rlnusrtpLpTqdDek7MvrM+msQysyVivFz02DmA\ni3sfSaeMtjz4y1sEW9kkbooQeHWfu8jLqnlh+HZp4boEjJ8Kfyn/3Pf+hr7EpCgu38bkX/+M9frC\n3ZVuiUyTIsBNQ5snsYLbZeVaFBGO7Zd4vJtq/TR4U6oVWrutmJ4d29d+YBK8evPZABQVFXHQXVMx\nwD63PhkRhE085XCO3W8EPn+4DSwYuAGs2rwtfMHgLABgxO2PWpewW/T6dczhqqPG8fGiZcxY+ktM\nXU557m0QePOC0xjeU1fHa43yMnITdjVX4q3TNar81RzX93A7eItlXd8K4PKyOjDh+6l8VfFDqNs0\n3BUKwUH5zi7WZ/YaT1tP8/z/SaS0envCfQ1Jl6KUkwZvSrVCTT0DM54zJr1uPXEEX8HNm9/8lGP3\nG8HSNRsZ0adbzMzMDE/dBjV3apNJ27QM2repebWFtvXsxmxK/R6Ls1C6wKorrq/xvNLqarZWlNOn\nfcvM1hs77QG22MFUTUl6HxpxMuu8xVw0dFydrutxxX5vjp5xGxAxnC/EGOHgtAFMPPSCmH2zD/sH\nW6q2k+nOINvTJmLfjupK2qVbrb/fVizAmZ/Ob6yxa0icVl2EKn/LR0b5ubsxPvfd2g9UqgE0eFOq\nFepaz0S6yTDjb5fUeszIvvHXh+zRIZclD8SfUDDstsnWr10D89ZuZt5L78RdpP3H2y4nIyP+TMjN\nJWXk5YTzzQ26N7ymavAxOHbOee1z9xjGHccknlEXVFJVhSBkx7n/CE8Gi6KS5SZaUdk5i7VNWhpu\nsep80TMP8zHeiIkIFw8YwW0HHVNr3RpqS8JWsMiA5/pF7yDApJ8/CwV31uSG6FQhAUBYeMI91Nca\n3+aYsgVblnPNj0+HtiWqu9QfENLd/ojJBkHnuQ5lv8FjeXr5EyxlOwaDS4TR9ORwz+F0a9Ol3nUM\ncqaNKSxZzYLC75lb/jVFsj54RKhr1x1s8cNKNyICd+7+Im3Smv//r9q1aPCmlKrVT6sLOe2RadaG\nc6JBLXnelky8NsEC6rEqA34StbeVV9etOy5aibdu5wWMQRLU9L1Lr6jzNRZu2cCoLj0Aq+svKy2N\ndcXFVuAGdn+Z9fTplYuaNHira4LeMW//jVLHa4/XnSdicIvhmq4Hxb3G/GPuq3O9iqvK+MNX4/Ha\nTbyumPfdKk9zBxzrlAbTXliB8YtmFi/9PAu3yw74MAQMzJc1zPdN5fKNPg7ttl+N9agOeCms2EC/\ntuGJFduri6kKVNMt00pY+/a611hevghrzJo9GcR6R4gOgq1ST50Dty2Vy8hN74vHVXsrc5l3Gy//\nehIRq0fY03jcYmjLAZwy8MFar1NevYHP1h4JoXPDqUQEGNttJu2yYldfUK2PpgpRStVqxHU1p/KI\nTtobfPzqrxfSIafhrRD/W7uOPfO715jOY37BGk5/9c2I+664tW5pRSp9XjI9aVw97Q3eLyyMSfMR\nbyZs9GoJ8RITf/B/Z7NbbgfcLjfpSeoCL/NWUR3w0SEjOStevLVyPrct/BDnslLBdCIQbnnLEZhz\n4t1JuSdY+eZunfc83+5YCoTTf0S3vDknLrgEZhz4CAB3fPkoP5jlAHbw5kwdAmPTh3HjmLol0fUF\n/HG7gXcm1b6NpHus2dWBgI8PC/YifvDWgyP6zozI6/ZlwQDHscGUIvYEDAnnjxO79TGcjmU0Q3u9\n1/QvLkVpqhClVLNYNCl5OdbqY1R+95jxddFCgZvDwImTWXj9FWSlRS4Mv2lHCftOeQawAjMT7BJE\nwo0pzttFb9fR0M5dqPB6WVtcxMCOyVkP0yXJXaKpfVpm7QcByR727xIXD/zuL/U6xxvwUuorJ9vT\nhoN67c2CNcsde03EY2Z1m5jzE9nZAzdjDAFTHdp2uTyc0H9hM9w5tptcJZcGb0rtwva4KrJF7aUL\nDmfkiBGhIq/PD9J8EyiGjA/Xx8Rp1Vp021V4XK6Ilrh4HVi5QIYn9sdbl3Y5kanQjIRaz/46dizn\n71tzV5sxhmq/P+61nYoqK9haWUGfdu3pO+XBWlvrRExkkOjYX3DOzQBkedKpeZpH/RzeZxjL+gxr\n0Lk7vOW09WRGBJP+gJ9jP7mTbcbEtKIFW/EyBM7seSAd03N4tOB9AD49aALpCVZ9qKysZNmyZbxU\n/DJLqIzJRRbPbOZS9s0Gft/pDwwePLher2vltmX8/dd7Yxe+NwHH2LtgwmB4cI/XcLXiFQhEhMy0\n+Pn26mJc35Wh54FAgMLC/7IucBcuWQ0ECNjd3tlMYmDv0wDw+dbg8fSitHwJhVuPsOpht+q6CX/7\nu8Aus95kF1fRLf+WBtd1V6PBm1Iq5C/Pfsq8R8LBW1FZBSJC5yZYnD5a3CEcUS1fX/y8nH1260e7\nzHCr0fLb6tcq+Mv1sYvQB81bX8jobj3itvYFZ53GC8QKLrsh4tjczCzaZWTiEmHWiX/ilvdf5Tv7\n+LEC4wbvw9erfmZM797M/HUR++UP5bl1S2Pu+eHBpyesa/9X7rNXZ7AL7Do5t7uIh81448w2heX/\n1/CVFsp8lWS60yOCN2/Az/a44wbDZV7gx6ICOmXkhPaVV1fGBG+HfX6dPQHAucJCbJhupdyILjfM\nZzXztkzmwuw/cVR+3WbRAmyojN9iFLDHBkRPnAgEArjcrTd4S6bNpe+yLnAdYAgYq9vU2O97OdcD\nVvAmEvxDz/pTwxgwIqEu1sSS00K9q9Axb0qpuEZeNzkUPEX8lIgzYQGBxX+vWxBljGFraTnGBeVe\nL31yk5tKY31REeOemhqqWzeBDXbgFD1W76iuXfho06bQdq1j3gxMOe5ELvzoPYLvSrbLxeJLEweE\nTaXfK9YkgYg4U+IvjxUvePvPQeczoHOPpNXHG/CzumQbE+e+xkK/NTMz2FIloQCM0HZoFqs95s45\nu9UYe8F4CY95u5hDGDdsHLm5ubjr2BLsnDna1D5a/DqzA9PsICWARwIEcOEOJeQNMFKO5uRhiSfA\nTP7pcOtYCRBetsp6/ZcN/rxpX4BqNjrmbRdljKGitJLKikq2biziqkMfCO90Ccf8ZR/6D+rJb4Vb\nef/x/9rl1l+HH655BFcSFuQ2xhDwB3C30MLiqhk04u+6NduL6JnbPu4vTmOgvMpL7865cVvbhtw9\nOW6wGHxcVssap+OemmrfyDpnQw3j1p446yz6T5pU53Ftjx91PIf27c/rJ57GLxs2MG/BAh7885/Z\nUFpCm7R02mU0X366VX+6rdnuFW3PD4MzWcNBFoTj38iP3WoZk+CjHcAFAyvnoRlYrXPOiRNBJx94\ncr3r2ZDA7fL5f8aPF2e3qdsetP/QyBdiWgl9AR9VgUpmB6ZFlJuIV2adv9h8xMkkDt5cJH8pOLVz\n0pa3FFS0ZQdfvPM9vyxew8w3v8HYKahCs4SCzfjOH1x2wDZ8XF8efL3m5KJ1sWNbKaVF5fTo3/B8\nSq1NIGAiVg0I8nr9lJRV0jE3tutw2off88hzX1gboRYpCW2HWm7sj+Tm8/bnkLF70L59MkcvtZxh\nN8bmW4PwULJ4KUScM1P3ys/jlUvOirjmfndPZquzIOpcITKAu+O9D3l98fJwK2EogoCVN19LwBh+\n3bqNAZ3D3TK7PTTJqmecuociEGNC12orUAasujL+/52y6mrS3MmbWbqzOubTv1KCNYA+OA7q9b1u\nIa99LsXeMjpnJJ4esaVqG++vnsXbG78g+JdF5Ng0g3PZKZc9k9Il8NrYKXWu4yXzzya4YHt08DZx\n2LO0jZrtWx2ootxXTm56zUt4KRWUjJY3Dd6UAnw+P8sKNjFsQGwSWq/XT3FpBZ07xKa8eHX6HB5/\n6StrI17w5igPjbYW+PbVxgfQLWHE9Vaw5gzAIn6C2K8xbt634Pvj2H7kj8dy5PDYQeXlVdWMmvh4\nbFBIeHv57VYA9+OqVZzy2vSEwRtAcWUl7e1xcl6vlyGPPhZZF8fjeYMHceexx1NUWYHH5SY7Pf5g\n+ub2646t5GZk0THDmk0Z023qHPPm6CadddTl9G6f+oFFwATw+Xz8a9k0Pto+hwCJgzfr47fGZV3b\n/XzG9m35dWiVCtLgDQ3eVMP96fxHWbuuMlzgDDBc4QBs5r+vTpj5f1fz4sezefCTH2Lyul18wB5c\nctxBpHncDLslasaofezS+2ofExecbeoMqvLSPWz2+cLl9r5g8LarsBLVhluGN5SUsN/7j4UPEOgl\nsB1DmVgtW7+XPjx42tlNWq/RM/5KqCUsWBVH3rVPD7mD7PQ2rCrdQH5WJyp81Zzw1XjHOcFxcdb2\n54dOpq4mz32W/3p/ILKlLJhzDC7rfB4HDRzb2JdYJ+MXnkclO0ID84Mtf24x1uQLoL+M4qxh9V+h\nQu1cdMybSgnGGI7ea3xkYXCeOM6WKusxPcvNIUcN5/rbTmrSehU6A7cabC+uoFuXXSN4215WQVW1\nj7aZ6eRkxY7fOueog+nVuQtXvvZxRPlTX/3IU1//GNGKNeXck9l/9351vve1U1+NW77Z6+PnO64J\njV9aV7wDj9vFoAmxgR5S9wS9jXXAc0+ytqIsdF9nHVZdfD0/b93C7p3zkna/6ETF3XJy+PXM21hW\nvIFebTvSJkG6jYYa9u5d9n2dSXQjJ0C4oidCRBmb1ofsdKulMD+rE+nuNNLdaXGPFWBfBtarjlbg\nFl/AwMdbPm+24E3iruwayUX8165UfWnwpppczKDhGn7GdezmYd8DRnDwEcObtlLA7Bk3Ncl173po\nGjO/WxPaNgLfvH5do2e9FZdU0D6n5rFyH367mDuen2ltRI0vC5b98Hji4Kba5yfN4yK9hoko60tK\n6lTfwqLiuOXj3/yENxYsiZy1Gqynk2P7lrc+5IFTjgega042IsLcay5i74enhPK8pQlcsMfQOtUt\nGa4e9Ttu/GZ2TL3bYX3PH/PW81ZBxOusIc+b81j73+Aw1oJzEue/GtCuS8LkvZsrysjLalial7Fk\nModKznXvzYv+uRH7rBQdVoDkksTLY32xfjH7f3IL1uuODALDw0uFE7vux3XD/6/edXxn/8frfGxJ\nZSmX/XgNRLSMhVvr3GL9aJq8xz8Rge3eHXTN6IrHFf/X5A0/nmo/c65t6nxtLu4Z8U69X5NSdaHB\nm2oWH/9wd0tXodk4A7cgn99PWi2JXWuzvbi81uCtY7tsQtFMHAbY8/LJIDB38pV4/QHaZoZbbLq2\nr30pqzMP3oczD274GKJz9t/TCt7ieOS4/Tl41F64XJIwMbAvECDD4yG3bVuW/zU2EH174WKqK8q5\nffbXVoE40oRATOD09AnHc92HH1AKjBBYBWQK7IbhO4EPTj2Tod0jx0IGjOHoYSM4dVT8ng9fwDFn\n0ARXcmhc8J5IdOD28PxZPLbyG+vWAbAWEbDGwrUTmH9K3fK7/eukW0PPd/9Q2BTYxMPyKxD8g8xw\ntnSiP/0YM+M2DIZRCAuDQWpEkt7w32zBwC/4CIb3N33D+7Osz+vc3odz3oBjG/BO1Cw77rJi1utw\nOz4at8sDGDqld0wYuDnPTSzAHYtOslOFBOzXH8AtcNvQDxv9x9xzy4MJpa11Z4PLjFlLXgXshLgB\nOxGuta9fxgWM6lm3tXqjVfuLqQ4Uk53Wu1H1VsmhY95UiDGGKRPfZvoz31oFzp+89g+aGcuttCTV\nVV7SM8JdABvXF9G1e93ydS1bWshV5zwTvm9Ut2nwp/zUNy4lv0/yup12FXtdEn/MWfT2O7edgx9D\nv24dcSchfUxT8vr9VFVWstcke9Zg1Ou6ePhgrj/J+oU/4sFHqQj4wycnytnmeIxtoQy2fVllq66K\nnGBS6fOyqaKM3jk1f8+XVFWxrrSEI9+205c48q857zf7D+fTL7cTizYWcsJHL8ceG6pvuJty1Vm3\nEo/X52PIWxMjylz2GqD/PexyunfsWGOdV5Vspnd2p1BQ+Pj3H/H0hm8i7h1+HkwVYs/stCsc2a1a\nc563Qa6u/GI2hNLGRK9X+sY+d9MxKzwLdVXpOvq2DS+b9vuvLyfRmLfgGpzPjJ5Edh0WjF9fsZE2\nnizap7Wr9diaeP1V3LP0NAzEDd5uGPA2GRl1W54skeeW74ex/ybwiJVHzkUvRArs/HCZuKTcuqc9\nm+fY/G/IzKz/TPdfNz3M+nJrbVlPcAxfsMUSexQM+ezRe06jXtOuQicsoMFbMm1ev51z9p8QLogI\n3gAkFLytXLyW/kN7hHLGbd5YTF7Xuq2CuHrVJi469YnQtnFc37qv9TB12mXk9+7c8BekdgrGGBau\n28hpz72WsPXMBBtBJPy14paGjX078ZFJLCYc8L197EmMGjAAgLOfe4avynfYQV1kV2fwseDSyNUW\n6qPS62XIq5PCBc6M/o7uvT/0HMyDB/+h1uv5AwF8JkCGu+6tvsXV5bRPD68PWlRWyoGz/k508Bb8\nb2sFhs7JB45jsAI5Z/Dm7Fp8b9xdVPu9/PHbe6OCtzjpP+zWu+6uTjx7wF1x637qN5eG6xJKFRIZ\nDLoi9odbB09P/yNveV+NODa4/4m9XrFXFWjeP3L8xsvTy63EvW7HAvEALrL5y6CPmqUeZWUb+XHL\nWLsewc81EGrRcwNd05+hW7ejm6U+qU6DNzR4q011lRcgopWsvq4763F+mrsaxwAd69ElEa1mw8fm\n849/XdaI2ipVsyH3TLZ+hQUDpmBqEvsf47IW7Am2yly93++48sADQuev2V5MhzaZZEcl062srmbo\nE/8MF0S11nUUmH/l9fT750OhJYEI1iNhi15kcFdw0Y31fbmNUli+nQyXh86ZObUeu/s7wWEN4eW1\nnEHW2+Mu5ZSvnePLjN31aQU3Pxw3gYf+N53XN86NOjdynFs/TwdePTQ8fs8b8GEwHDXbHhdHuLUu\nGLx5JBD6484FXNnvdI7uFbkGbamvFMHFeXOvp27BWyAiKAx3nQbsVrvI4O2KvjfRJiObXm364Jbm\nG21U6S/iuZXWxK3Y4A3+MuirZquLSh6dbapqVVZSibikUcHbT3N/C7dq1GDxnMIG30OpRIwx+I3B\n43Lx7Q2XsM9DTzl22o/OIMpF6Pv1kW+/55Fvvw+NexNg5nlnk50X2R2/vrTMSm2foGFlm/246orW\nl59vwda1DO/QA09U13f3rMiW8LM+nsrckrX2+xQAxG49Cwcq8YZh9QIGdujGLX2PYGKBNRnG8fcb\nAKNnWKs9xL59wpyj7k9Y97Qax5RZ55/T8RjOGFHzGDg3bkSEf+/3ZI3Hnf3dBaHrhhnHt46LKWNe\nqKVOzSfTnctlg79o0LmLVr3Kz4EHCXZtArgFTuz3Az5TRpqr9m7k5mQCJSAeROrWrVu1vn/oebCL\n34UL6bqs2ZZEa0na8qbqpGRHBRkZHtIz0vjq0wVMuPINIDgmSBw/zeGZd6/iwpPt/FNit86JsO8h\ng/j2i+Wh8txOWRRtrYgZ8/b06xfRr3+35ntxKqGR10UtVQUsmpS4O7K0sopNxaX071rzItNzflnF\nn5+fDoRbt4Z3yODNa2Nbbksqq9hUWsZunTtS7fcz/P5Hwzsd3aZdstL4+torqPb7GfqPRyMv4pi0\n8OaZf2RUfn7kPaqqqPb76dSmDbuCn4rXMSCnK2mu8KSQ3d8ZH3oeTAfiAhaddHeofI8P7rD3B5Ph\nmsjUIaHzw61a3xw5oc7djT/tWMWgnD4RkzBm/TqPB9e+aF/fuu79Q65gZJfY5M5NqcS7lUx3W9Jc\njRurdv/SYwkHVIFQy59VFmx1NIzO/AsH9I1cfcRvvJSXVvLv9ccC1rhOt93C2IdTWSdvWOfbeeWi\n10h1C4xpN5XsnGzape8WXpUngS8LBkBUi58b2Lv3L7WeW18msBVIQ1x1G2+YKHgjbymuegwTaAna\n8mAHs2IAACAASURBVKaaRcHKjbjcLrrYY9rWr9tR4/EXnvQoEX/C238gfP/ViojjSkvi51kr3l63\n/Guq4Zau3cjAbp1JS5ASZOS1jkSpUX/EBldZWPRQbBCXnZlBRlrtP1amzpwdU7a4qCrusWMedIyP\ndNRpTG42r15xYczx6W53aGWFusqpZU1SfyDAGf+awveVZRGTG6YeeCSHjBhRr3u1Bru3r9uC9NEN\nGAuO+xubKkvommX9gg2YAAFj8LgatizYwZ/dgHPyA1hdlmd1OZQ/DzsBgEP7j+HQ/o36PZcUHlc6\nLknG8mcerBVca9a9Xb+Ysm2VK/h6/ePgaC0NWsO/6cQBFPFl1H/Z8NZJ/RPnxYunt/sxfvNfHlUq\nSQ/cAMRV8x980TK6/5r0OqQSbXlTTeLokfbC1Y5WtY8W/K3lKqQi+PwBPO7EP4Bvf/YD3ltiB9tC\nROtbpsAr153OoPzYpcT2veMRdnjDaTKCrWpL778WYwwrN25lYLfaJ6H4AwGG3vNI7MQEwtvPnnwU\nBw638roNvN8xw9bev7KGCQvbKyrITk+Pm47k+4IC/vjuW+H6RwUwzqTA7QQWXt76ulLrq9xXxej3\nre5NZ0P4kpPGxxxb7fey90d/w+putAMul6EXmUw/5k4CgQBjP7FWXXCJoY+05zeKI8aRhWebmjit\ndbFj31x2qpUZBz7SBK9eqealLW+q1fpo4b0tXQVVg5oCN4B7LziehnyCf/rdHjz5Tfy/7kWEbrm1\nD54HqLKXw4oeaylELkof9N9L/8yBT06172OddvwDkzmuXSYPlVSy8qbIcyp9PtqkxR8Huqpoe53q\nCFBzG3Tz6v/afUSMWxP45Y9/rdO5W6p28MOJfyUzweoHTi/8NAtnOB/M2bZGrBbzEr+z5Vz4DStZ\nczChbySr4Li2I/lP+QKI6aS3WDnhIvetKirkmsX30TejOz2y8hjTaQRfrvqaJfwChCcsHJF1ABfs\neU7c6wZMAG+gmgx37V2hV/9wBs6UJO5QehTIoTvXDZ1A27S6fX8r1Vja8tYKHJX5p/BGsDna/im3\n7x/2ZPxL1zX42pvWbqVLz/jN0ROuepavpi8O38/+qX/j42dy6LGJ/ygwxlBeWkXbnMaN/UglBYVb\n6Ztfv2b9oJMvfYSNRfbanDEpLiS07eyOO/Ww4Rx3wAiG9o9t3QKorPay/2XOcYWOnY7Wov891TLr\nfwYChpKqKtpnxX6PHD1+Mqvt2AwJvyc//61xdQ0Yw+CJD8ddVeLLC86tNb9ZffR9/CH7mWNGadRn\nUHBJOGVIn2cedOyLzPVW8OcbERGMMczbVMjvuvZsUJ1OeP1hlphyK8gReGjE0Zw8dHSDrlVXj836\ngKmV34YCqxG0Ywk72Fe6UIWLfxxyPjlRyXGNMWyo3EL3rMhJI4d9fp29fqu17RKYeXDidU6/Xfcj\nE3+dQjtpQ+fMXPbuNJLP133FdjtYDOYiG0A+E/aNn1qkyl9Jia+Yzhlda3yd1b5qblwUDADt1sBQ\nrjMrgNu3zZHMq5hB9GzX8OxQF3cOn17jfVq7quoFpKftjkjNwwyieb3bWbPRaiUP/tkYTIzstv8z\nhMuD2xKx352zmJyc2HRUft8viHTA5U7e/++mpi1vKeII16nhDTs4E5fwSsFj5OVbP8CCQXT0GJOA\nt3HBtQkkPv+r9xbHLX/j0Zk1Bm8+r5/tm3bsUsFbbi0rG9Rk3JghvPlp/Pc6gv3ZZ6ULew7sRecO\nDVvWqLkNv2lyRHem89EZrBpg9i0XhgM3iJgtOuSuyRHHhgLQWy6jrT0mrbzaS5XPR4c2sZ/H4IkP\nRxaEWu0M4559nqvG7s1VjrQhjZEBhEboRbcmxZnoNuf4sxj7wcsgMN6dx/jAZjzAtbSn3/MPEnwj\nrDQn1jUKzr25xjrsqK6iyu8LLX/1/unXNPj1JLKpspgumfHzN+71n9uJbilbYrdFzmEjYDhi9j0x\n3aEZ4uKjQyKHUBhj+OyQSdTHvj324N0ekctjjesykq6ZPUhz1d6CWFZWxhVLryDY/esSO+AjPAM3\nmDDYbc/O/fuw58jKiPze+3blZ7xT9iTfVcywj42UzUhGsTsjuhyUsC7VgSrSXfULiFpCetoeDZrJ\nmZbWAZiONdavLW7JBDbhZhsQHlMnwSTPXATsY7/vF+NiUNzADcDl7r9LzC6Npi1vzSBR8PbU/ybS\nf0RfALZtKCKzbQZtGhEkqObj9/v526TpfPbtqohAw2pJEk48ZDC3XHZ8jdfw+fy4XC5csX1JO4Ut\npWV4/QG6t7e6knz+AFvLyunaLjZFwV53TaY8uBEVvDlbtX64+YqY4G3P/2fvzON8qv4//jyfZfYN\nY+yMfd/JEqWFQvuqVCgpa/aiEH1TKWRLSslS0S+VJAptKISyb8MYZJkx+/7Z7u+Pu3+WmSEqNa/H\ng/u5957zPufcz2fufd33OnUmuYCEJGuwfPqac7Yh4NjoS9dmpxfkk5yTwy0rDCklDHM8MXA0j3/5\nKd+dTfS7nqQn5Xxv2Y5C0gvyuW7lO5g0eMq2OPJW4HLi9HiIDLr4h369lTJ50hW/Eofu8dVOnc5L\no2qYf42Gkbz5jzY1V1RQ98uJED6/YRJWxd8w3+XgZN4F6kcFDqLo/tMwbZ4quTJWaVjVSSZxLo/L\nb0mrdEcWUfZwrIaAgzm/zmEXO5U9Oc9b0eQN5rT62Ef22N33yWtXNW2a5o0S1zY9lZdEldBqJYrK\ndXsKyHedISKoVrFtvbH6+D14SMCCUkJLgJUILGQBFoKJwyoicElHkIR6LeRtx+oHsV4FBPNqQKnm\n7SrBes//FdumbMWSlZa6GHz77SZm9lkOQVCvQwxHNmUh6gik41C1fRgLVkzVKiQAeDwe034guN1u\nHuz8ErnphbLJDrSnwJo9U7Sbcm52QYm0c/d3e02OMPUqj2VKISKgRatKvD7niRKv/0pAkiTcbg/f\nbT7Axl8SA7b78vvDRZK3s2eTuXvUEi2NivrQblzdxvsvD7vc0/5T2HPyLI2qVAjoJ+etedv/mmz+\njAkLxfhyaLNaTMStyYSZuPFTtsr42YvXtnhtrna8Q/koFj/1hEHToby1e5O/y4xQm52qkf7TGTRC\nrhPbI762Tt6MMMwpxGajbEgYJ/qNvaR5hNjsXB7dt/wdLT+0nSmHvtaOCiFRh0geb3ID7x3cwAkp\nxxTMcH10Paa2f4Awa7Cm+TiRlcwDP6saUIGu/pSoTAQru040jfxt0jamJnyizUMlZCEIHF4VECzC\nv6LBI8FdmwdppboswNJ2bxJi1YmGW3JrpaRUDG079GIvlF9Ma/6paT814zRvnhqKXtsUXmyyqkgZ\n1cJq4JE85LtzCLUWnX/NIoIJtfl3pygOrSLHsyv7cVUS4KFm8EhSCr8jWJSjfHhbgoLDOZI21OtP\nMKSUuP3DUEre/qUoyC+UiRuAA45sks0ZkuzLy+mt+TzafiIfbpfd0iVJ4tCuJBq1qVms7Py8Qpm4\n4etefOzIWeo1rIrH4yHlXGaJyFtejv8UEd5ISc4tUbsribx8BykZuXTr0pRuXS49RcTdY5Zhyo+H\nfC33nXJxzWMzEAK2Lb407ZBugr887KVptYpFytr50iBaT3gLCbjbYK3yThrrjUfaNGHxDv/m5N/H\nDaHtq3NxYs7Da0RlhUDtHD+CPIeTkxkZNIiT3RDqvOYVfQocG2O+nrWnz/Cr4Ts+vOjrHmKzgc3G\nicGBy2Dd16wl9zVrWaQcu8WKPehypJ7wj/P5WdgtVmKCQn00OkfunejTvtHnL+pmWwUJZPPCfpl4\nGIvJSxL8mHmU1MJs7KE2gpSqAxtO/+5nJvI3cAbfv99KEeV92oFEgSEK1QjtqxLmY5Ik97YIOSvZ\no9ueMVRYgI/bv+NHWskxdNdDiizdBCyUHG1q7rkwUY4Xmy1g34VtPv39vRi7XC7ePTKZbLZjEZJ8\nbfFgF5KiLTbngrs39n0qlKuNEAJrCRPZqihwncNmiaBK+TZUKb/H53w9emmfvztRD/A2/+bzc1JN\n5bi83oZl1hMVVfei5lGKy4dSs2kpSvE3Ib/ASZf+atCBvDFqoVrWKsuCSX0vWu651CwEggrlrnzk\nW5MxMkkyzlvVvF0O1J+i+8GBHGn60dbtvLhhi+n4kef1MZOzcwi22bRgCUmS/JLPVatW8dKxY6QB\ndQWcBTY+8ijlvaovXEmMWfI+n7gu6JGUhuv4cbs76NCgoU+fhNRzdF23CN1kqfdR5ey+Zwx2q8At\nSSTmpFAzojw2YSXIT2oUFWdy0rl5vZ6eJVCJK2P5rB6xTViXulczi+7sPpX268bj8Sp1ZS5MD1u6\nTtPHzUyh985XseDBg4RFdVgXxhJXeuF7VaZpbmqSW4syDqCSnkshbwnZx4kPr47NYqOwsJDR+/ua\n1qMWvbcayJtFwKvNdC2cJHk4k3+YKmG+3yHA9AMP4ibDtA6rYs60KMp4C5I2ZlGVFgrd6Tg92UTY\nq/ucczhy+OqU7OupRsi2jX6PyuXa+pWlkzf1muuBF/KvR55rk9j9hIdfHX65/zSUmk1L8beie6Px\nBnOZoFO3+rww039IvorTiSlUrfnXPRwvBh9/8gNvL5ZrM0rqU8ZAqiqUt3H+gov7uzdh2FPdffrn\nFzgIDQkq8XihIXa2Lbt036tAqFiuZBnKAT7/eTcvLv9OPyDMROyrcX2oHld8FJemHZPgugmz+Oml\nZ3za3DFjEQlpGSYT66rBvalXMS6g3MMTfYlg14b1dfLmBxHBwdgMfoRG4rY/KYk7/k/N4SZHZX5w\n2+1cV69e4MUZIEmSouERxM97Q1uHur3YovSfuC54DaDLe2jbl5zwQ97e2x547apmrPnnMjnSly5f\n9UZBZfnyLt1BfNfZMzz8y7taG6FYOm1Cr6xwoSCH8/mZPLTZUJZMkbcudZ9pP6swl4fiOvJhcuA5\neqNydHm+v3F6kW1cHhcuyUOIVf77un3TEO3ck+IB3mOFQvokLAg60IwRHZ72Ie1Oj4Mz+X8wbf+b\n5JCF0S9PJmKB6qFqRnlmtVxe7JoKCvN5+YiszbKqxNXgZ2YRMK7R10WJuCgEWWIIClCZICjI1wwb\niLjJGAbMRjWrgoVwPqFVjVaXYaaluFwo1byV4qLhKHQy7vF3ObDrlE9pK9XWce/j7XlyxO0+fTPS\ncogp+8+qqafi+p66NsBI3nxSTwCbvvAtMp6QmEytGuX/tgCEtKxcbh6jaBgMhMJuA4dcSUcjZo3j\nwvlw0gDyCxy0HzvP1Efymr7kZb9Sy2NJksTupLO0iK9Mo7GyhkwI+H5sH9KcbmqXL2tKgjtr3Sa2\nHElgb3KGzxxtwN4pIzidkUl0SAiRIWb/mvoveZXpMvSdd29PujYoGfmq/YYe0ShZZFubEIJjI0tG\nopNzcnC43VSNji6WvBW4nITYio96jF80DTV/mCGCQNk3NBTKfC2GfQw+fihkQ5jPyVt5P0YIfr3v\nBdP4DT6brHxSS12h9VWT9PrTXibnZ1E+JJIsZz7RQWGM3rKYH7MOm8azGObxS7dXi70WgfDOoZV8\nnvyjSctVn2q80Vn2F8xwZBBtjy6Rq4C6lj7b+xryzvkjb6rWSyjlpnSiZ0wVMrjmyyw4MR6tjBQS\nHklgE24sAhqJhznETgQHFCLnoat4kWsaXXPJ1+NKYdOJ63FyFvDVvF1b/QCWP1karBQyLofmrZS8\nleKicf6PdPreLBMdLVjBi7whxFWfqPf4ifP0HSbXVFQJzSfvPE4lQ93OHo+9QabqyqORH7PWrkOr\nykx/TvaZ2XfkDI3qVLoiBO/oyWQefPlD/YBCOI1+Xeo6LAJ2zTVrtVKzcykXGS6XxpJ8+wAsfeIW\nWjRupO17PJLftThcLoJsRSv2Z635jre37gYB64f3oWrZsuQ7nQRZrVi9/IP6LVjIluRs89qU7bZn\nnuSa2e9q+7553uR73OHRw33kXio2HT3Io9+u8ZmLul1/V2+kEBvVI8sQotRZLCgooP4yc13WI48O\n50RiIt22fAEWOZJytIjgDXK1eetQiFAA8qaaJoUXeYu1hbL1nsBVIJYf2cGkvWtkYiIkv+RNRZuv\nJmiFnYSQEF6ETyVXwuBvpsqyCI+WbFcIdCKk9PnhJl371vWHEejkSb60QyvdQ7Oq9Ri0c6p2LXw0\nZAJWdtTLqQVCn+1PoNYGVfvaFWKlH5PHtyEhGUijel4lYtOarmD8vgcwkjdJkvRIVUX+mFqLCA/z\nnysy35nD2wn3GMbXZZWhLr0b6GbfTMcZQq3RBFkvn8lSkjxsOCFreS3Kd6qTNxmd4xMu23gqHO4U\nPJ4CQuzVLrvsfzL+leRNCHErMAvZX3KhJElFvq5dreTt1NGzVKtbdMTQLRF9tM/CYgEhmPbNWJq1\nb3Clp1cK4JU3V7P2u0OATmDuuKUhYwxRpE6nky695JI9zapC87bVWbrqlMn0+PMK/cEZiOxcjVD9\n3QB5nZMHEuUnKa83cgodpObkUaOcHGHdY9o8juc6TLIADk4armlSPv/1d55b971PPrmZd9xCz2aN\nqDvVkCPOh0z5pgrRtgatlZnwwfFn5KSxSZkZ1IwpY1pDeno6LT96z1eetpXY228YTRfrZE0vtaVr\n1JKekDVH/oJM8lwO7BYLdj+pLwA+2rOVF/aZTd66f5mMY71KVmHhSGYK1cJjCDVoChuvklOHePu8\nqZ+9/diEkFjWYSANY6qR4cghMzeLB7fPNvQ1OPsLQFJIgpd8i9BJmznaFL7sNJ3NJ3cw49Qy09zk\nAALoKjowsOOjPuvLceUQYgnBZrHh8DgYsOMpLbOe5m+mkDHZRKqnClGDBozjzWzxERZhYdTvD2ga\nOJVw2bW5m5P0PldnBSEhgQMNZh7shi95g1ujX6NOJd3M6fQUYBX2y1RnVcf6xCeAg1jFBW1s9Xo0\njdlMTEzFyzoeqL976YrUSv0n41/n8yaEsALzgK7AaeBXIcSXkiQd+HtndvkReYkJWKvWKzoT+N+F\nEb3nc3DPaf2AENx8RxNG/69X4E4KDu05Rb0mVUqUpuSvxLjhtzNuuK/p1wi73c6WlWY/p6cfCdz+\n30Lc/CE0qHgTIUCY3Y7NkDLktYfv5P53fdPpGIlMen6OX1mNK8t/D0fH+w+SOHL6ND0++sTvOSTZ\nR8xvWKM6ByBKSRBcc8507aAEXGcPoSDYzva8bE2e0cx5zQezde2lQWZSf9/UIPd9uYSd6efMAwPr\nbu9Lg7Lmv/ndF87SPLYSKXnZBMLOu0f61TKO+nQmq8nRNGxvNnqAEQc+UWaoVgwQJm2a6kdXNOQV\nPvbLfACiRDDlhLf/p9CJGxgz5PiMs77Lmzg9LtySB7uwYjUUvr8hvj3X17jGJ4L2i91fszR3NRt/\n3iI7+ysEqKyIZGqrFwiyyPOxYGFeq9kknTnF6+fVyhfGmGZJi6h9q9WHDN3VG2+oyWQtXmQZoEfk\nQDrEd+PFvXcquj0AD9MS7kclQ1YB4xp/zRsH78Ij5WuaPiNR1PwKM8diyYKn623AIqzYr5DpsmvN\n966I3KIg1IzUpbho/KM0b0KIDsCLkiTdouyPA5Ak6ZVAfa5WzdvVhu71DAlDdZsHaw/KX01ubj73\ntv+fqU1JzaYlzS93pXDrPdPJL1Bus8p9pHbtWN6f/XjgTiXEkaRkqlaIIcwrkOHm/rPJyXf6mFi3\n/YlSaJcDK7f8zuT/+17e8TKb/vBif8pF6RGs7cbM1JM/CPhh7KPExhZfdN4bXae+yalCw31IGW9i\n90483K4ox2pfFLpc5BQ6KBceBkCdaTNRH4LqOr5+5CF6fPSxTN7AYOqH4yP8X//f/viDez6THdWN\nZtkfe/fj+o/eN81b3T5WtyFTbupZonmfyUih4xfv6wcE2JFwGp9rJs0XJD4yDqfbjcPjJtxefKCM\nw+2myedTTbI0UyvgS97k9BUWAe/F382TJ1ca+pjNppq/nPwRiwW23zqVDEcukfZQrAE0K8/+/Dbb\n8o8qe+bEuw9WvI4BDe/226/HT0OxKho6i4Cuoh0b2YrqO2jBGKn651OFAGQ6kokO8h9c89ye+zCa\nTY0aPZngefQIWHTytvbgXPZJqzWtozHaVCVzFgFl6EKvehMvW/qfUvy9+NeZTYUQ9wG3SpLUX9l/\nFGgnSdKQQH1Kydtfg0Dkbc3+l/9xGrOLxfET5+g3SPZtUx+86z8fTlBQySNH/y343/Jv+GSrouj2\nIm9fju1DzYp65Km32RRg37SLTxNyJcnbxeDFr9ew5MhhZQ6SNpdrbEEsHyQndJVrbwo8kkStt2Zg\nCipQttcIWPb4sKvm93PbqpkkuOXIS9BdWAOnCpE0LZlFmMmbucKCbDLccOOLhNvN2qJlG5fxDnJO\nON1PTt7aLG48koUWEbWY7ieR7u2bhmpzNafuMJhYgf/rOF/rM+/QQn7O3IbRx04zc1p0k65aTUBd\ncwfRmT6tngp47TySB4uwsHnPWr5C9ru0esnXa5t6sAorj1V7jWpRsuvLj4kfsjVviaGSA8jkTZ5T\nRRpzgX0I4cFKOZ6q/1nAuZQUha4Ugm1yxP/axEaYUqsAFSx9aFZj/J8epxSB8Z8lb0KIAcAAgOrV\nq7dOSkr6y+dailJcDsxbuoEl38pJM42BBSZfLDDmKjD5bu1YWLymLq/AwYXMXKpXKFNs238qsgoK\nsAgLEcGBCVFKZiYd33rf9zoqD88QAfvH+L9etWbO0NrLkEz+cx/dfQ+N4ypzPjebumVjeXDFUral\nnPfxk1O311WuypI7enEoLYWa0WUIttoocDqpv9iL8Bq0WAANhJ11feU5xi/xcvcVYAeOPvocGYX5\nxAT795+qveJlvHPACQE7bxtFVKjeJ8dZSJvVr6H/0ryjTX3JW4/g2qx1JCgETjYxqrnVhNA5r8Wi\nO/h/0H4YtSPjsCumT0mSuP67sdq4KpmyaiRKriNqJGRCGd9iIG2SpBAvQ7uJMU/RvFFzn2vyzpFF\n/Jj+szxfPEgmwqeYLIXwkyoE3mq1TJMz4rdeBg2oRympBa82Xa6ZdhfvfYkEdmH2eVPnrqYKMZM1\n1cfOpvrdaT5vdgQOTXP3dBG53kqKXOcJwu3xgH/yFik60D7+gz89TikC41/n8wb8ARjDTqoqx0yQ\nJOkd4B2QNW9/zdRKUYrLj837jvr4SqmQH43mcze3i2ffkTOczXD4dgiAkCA7cWUuLT1Lp5EzyVQ+\na15BBlLTJBzeHvM01055W5+0st3/qq6Fa/S8oeKB0ub3SUMItst+cofOptCgUuD8fx7J7DB/MVCv\n448DApdW+6B1G/ru1DX423o/5jdZr+r/tuJBX6d4f4iPkolb12VvcSQ/V59QAOvX8E56/sAKCM6b\nKTz7HhiBR5JILcwlJjgUh8PBM5++yzdC/pY6FSH7YOo52lWtqe3/kZfht932257jw4RtzD78nc+5\nrwuPIYTQNG/a1x3QmicxaesHrLhlHH/kpRFiDaJccAQ/3fS6T8vXf13Kupzf0PV3ukZM/RMRWtyn\nPKZb4W4WIf9GpmQsQPysa8/8JfTV41clbWtB7o8i65bQnqwvWANIDNrVG4ukkCmL/FZlLNUlCDL5\n5PVpOgGQS3JlOFIpFxzHlH33AoV+3SvHNvqGAnc2IdYrn1Qb0IgbQPea/zp38v8M/mmaNxtwBLgJ\nmbT9CjwsSdL+QH1KzaalKMXlgcPhpO3YuT4RncZUIRLoecUUorDj5SG0eWGuj8bLSN4eenUmu7N1\neQI48D/9fG6hg/AAWrVzWTn0WriUs7kFZipjICqSgN2jBxMWFESdV721W7JzmxrtOapdWwZd19ln\nnDNZWXR6b6Hex7D2Y0NHcvhCCj2WLzWtc+cTA4kJDik2BUnrhTO5ILnQzKwCbixXjUV3PcTNi14j\nwXjtlM82AS7Dik889hySJFFz2auARFML7PchTZKSSkQ35woBAyu15u1zO7R9dX3hAnbe9QJHsy5Q\nKSyK9l/r2j5h0D7tvWMyzb+aYHjRMEebCgELW/enZZxODgEK3U4ynLm4XG4e+MUo25gA12yOVU2I\nNouk5GQztlW1cmZCpham/y35EFMTZmmkrb1oznZ+M7X1Nps+JB7kUyEXnBeS7PfXJ7Y/H6a9i0b8\nNPIGM5t/iMViYfTu+5WvStIIJMDE+osJCw7HI3lILTxPueC4EkWGuiUXVmHWp3x6aBTJYhdWygHn\n5Tko6+hfb3OxMlUEqjKi4uTJkxx2b8dKKogPsZIPPEXzmPvYm7EKq/gAmEzbyh2w20sWmFSKwPjX\nmU0BhBA9gDeRNcrvS5L0clHtS8nbX4/uDcfpO8JcmD6+YTne/vTvdbovxaUhN89Bx/HziiRvxuMq\ncbParBw+m8wDcz72aSMJqBwezIYXBvmM13CiUlrLcOzQFJ3Q7T9znoYV49iflMR9yz73aWtK9SHg\nl2FPEhsRwcm0DKqWicbj8dDgjdk+RMzbzHlT1Sq88+CDpOblsebwYV786XttJD29hw4JWe30Yutr\naBRfkwc+W24ikvv7DSE8xDcisMbC180r0Oah5mbD7zn9mHH1kpbvTZjWo5MqI3nT/NRA7qcQWgQs\n6fgI7SvVIstREJC8AVSyhHCePH18L/K2su0w4mPNkbEuj5vOG2T/KUnyaG39kTf12qjmU2NONV/i\n5bsVygJV3zuLcPttu+yad4t1/H9656OY0oigBz88W2sqlaNrauRND5AA8DCy9lziwisDkO5IJsIW\ng91SvP/j+fz9VAhtrO07XfksSOiBGsCgzkFNFhzJrTxY74UA0nQ43Gk43ZmEB9X0e94jOdh4ojne\nqU38lccC6FgjsdgxS1E0/pXk7WJRSt4uD9KSM+ndbrK8oz4VjBk2jVurQcvgRd7qt67ErCUB40uu\nOkyZtoQNW86bCI263u9WyE7pefkOwkKvDuf0QMjKLyDMHsSp1AzufGWxfLAY8rZ3uk60cgoKoCxH\n5wAAIABJREFUaTfpLZ82koDBXVox+JbrTSI8HolDJ05w7wdfaNc2TkCygYg81bIOI+64nWmr1/He\n7wdleQb5R14oWXBEnlNOK/u/L79kRWKSzxyfv7Yjj7dvT47DgUUIwhTNQlJqKl0++sBHXhVhYWW/\nJ4my2Wn43hwfed7Eq3dMZV5+sDcej4ea700H4TEQNaEQDsmPDAkzoTP6sUkmy59O/sxJeuX25nQW\nQsCR+yaQVpgHLomO3yiVIvBK42EibxJCSHSNrs8rnXpxOOsMDaOqYLOYNUrt1o5XHvVmIuYvJ5we\nXODRjsnjGcmb6vOmBkQY2iim9H7iFs6JP1jPXiQkmooKHOR8QPJmAZa2W4g/JOYc57XDk7T5+5I3\niRYR7elTZ5hPqpJSlKKkKCVvlJK3y4nuNRWNmXJT6nR3LcpXrEZchSgWvLQGhGDSe31o37mRqZ/L\n6cZmv7wJI/8puO7O13WTG5jIW687GzPosVs5npRCnZqB63N2eFDJD2bRzY6/fCQn7s0vcHI+NYv4\nKv4zr/9VOHUhgwoxEX6rIjQdOdN8wA95uxhk5BWQlptHrfJ65Gr7l+eQ4XCZ5Js0ZQKW97mPltWr\nUe9/vlGu6vdyc3xV5j8sa0Q8kkSuw0FksF5qK6uggJbzdJKp6XyEqrVR2YVkIq0HnxpCSHAwNedO\nN/STTOObCZfAGLF6YoBcTi2rsJCMwnw6/98C+YRSoguMBMxblnrMTMiM53zIm9I3UsDXtw3l+jWz\n9XYGWUIhRurVKI68xUmhrOk5hmCrr+nsxrXjydaujswq/ZM3NTkv/HjT60iSxOHzJ3h6/xwsAsoK\niUwBLalIrsijkGzcIpJzpPto3jRS55Ws95MO8+j1y9OAboZV28RRhpntXqffr/0wBmvIwQduBMJH\nrhWY00qvXpJSmEz54MB/8yo8Hg9TDtylBQRYBTxTbzERdvPf+xsHu8lzMJh0o6hLvwYLih2jFFcf\nSskbpeTtn4QhvWaRsD8Z42t+83bxvPZu/79xVn8/OvSabnoox0XAqndk8iZJEg6nm+Cgf1rs0F+L\nzPwCJn62hm+OngR8I28R0LxSHB/260XjV8wlpsAfuZZ3Nz7VjxplYujx3iIOp6Wb+mh9MZA3RRPm\nTd62932S8lFRrP5tF8O2KJUejNoyra1O3sbUaMDg7no1DoAaC/X6uUbfOmGYC+jKb5uQdL83uSwB\nlQScMxE143r0Y/6qK9T79CWlrVmLJ9D76gRO1TYJdt02kaNZKTRSsuy3WDMBo1lxUfun+S35CPMS\nN6ISPRCaX5k/8mYRsKDFYJ7+bY6pj5Fs+dOaGYMQvEmWQNLMeyhpP7zJmyTJGjyrxWNau0WADTfa\nT0D4RpuqyHCkExNUfPT2xtMfsSljOXq0KfSuMZnaka1N7fyRNzvlGNTAN3n1XwVJcrM5qb6y58Eq\nBmPhZwR2LOIIoUzDwRAgl7plthIZWeVvm+vVhlLyxn+HvOVm5XPhbAY16vuW1Ope/mnzAYO5s9VN\nDXn5Q99cSVcCtzZ9XhtXgxCs2/3SXzJ+Ka4uNJyg+LwZyNShySXT5v1y5Bh9/u9L/YCAI+NHIEkS\nB8+n0KiirBXxl6QXAUdHDr+s+QmTc3O5Zsl8Tb68NZO7E0+OYeOmTTx++BcfApn0uP8yWQUuF+fy\nsgmz24kLjaDQ7aLA7SQ6KJQ8l4Mmn6gmT12WrJUzk0JjLjYAYTFo8dDbPhvZEXdYODOSvwWf+qQS\nXUJq4XQ4+YWTyjmFkFS8hlGt7ryoa5bmyCbEYmfgT6+SJGWjltCyeBE9i1GzZtC8yQmEzXVSjeRN\nJmAePwRQJ0j6+pXC9MKjfF263Fkt3scluQm1Bi5t9WfxxsFbALBq9Vb1hL+qLx14sGLMGwd3xC0h\nNqaWj7x8Vzqhtj+XGujAiZmkMg9fXzj9+mmfgebVkvivlbm6VPwbU4WUIgDCo0IJjQj2e+7+ETfy\nfzOVsP44wYMDb2PFS18BMHnxwL9qiqzbW2RsSZHIySkgIqJkZV8GDVjAkUNy/T3vCgUbf7g6kku2\n762Y37zmrxKMDyY9TKPal7+WoBGSJNFi2Jum8XfPLrkpNDMzl2v/947mdzWsa2sGdLsOp8uN3WYl\nI6+A8GA7dqtuUt99PJFe739hGvNS0KFebdP+2zd0AKDNzHlkFjrN2jA/46RmZVE+Jsav7FqzlOS7\n6N/HDXFxvN/rUbKzs2m2+B3dbAqmCg0BIUGNd5WAhSLaeTvSW4Qg0h5MuVA56bBL8uD0yA/4MFsQ\nxx/Wf+89l0/lkC5Jnx/QJ7IuS3KOFDFBqEs4fW/uCkCVhAhG7V+pT15BVIGb1eKURgI9kkxwdqZe\nvBN7kLBhE1bGN+vD03vm+p13UZC1hIJVneaS6yogxGrH6ieq87Wt0/mdQ6CYQwGesDxKl7ZdAOi/\no6/WVjJsVUkuyY3DU3hFyZt5dDPUa+wPWe7TxOJL3go9OYTin7ytPt4MnZBB1xpbyXedISqonqld\no/gRwKW5RpTiyqNU8/YvRqDw8JUrV7Jw+E8gBI0fsJGa6mbWrMlERUX9DbOUkZiYQnx8bLFRYAA3\nX6eTxKuVvN30+AxyC6WA5G3NjP6Uj70838fT05ez7dhZk3wELBx8F0+89YUPyVnYpwttW7UsVu41\nY2bKsYcKeUPAV2P60fONRZo843gHpo5g2ZZfeHntVtN4bz10Ozc0qoPD5eJMRjbxsZemMZAkiXqv\nvukTVbp/1FAaz5xtCnY4NjpwRLQ/8vZJ99t5YN1qfSwBevgm/smil1+aZDj2QPV6vN7tLtO4u1JO\n07xcZZ+0I+rf8TNLX2WV0VSqaEKG2mow15Okzdno8+ajcVO2R+6bEHD9xeF8fgaR9lDCbMG0+vp5\nRa6ugTHtC4mh1brRu9GN5LoKCbf5fwEtCjmuPIItduwWs5/dnZuHoPrXGYvXr+z4lo+MoiCTN33+\nzWjFU60G+YynYsHvr3FIScJrFfqapzX3b+LMdKYSZg3Hbgkhw3GWP9KO8WWafA+zeiUFVvdHNNxw\nUWu4GPx6/FfO0Q+rgDbh3xEXF1dsKpFSXF6Umk0pJW9F4cjuk8Q3qExQsK5gPZVwlgE3GDK3C/2u\nt/aEl2O6F5LPZhAUZCOmXNEJX29tpoSvK74/qoM/QvDNb5Mveh2l+HN4ZfHXfLJNLvtkJDZdGlbh\n+0N/aPtG8vHF+D6EBdmpEHNxiUMLC53cNHku6UptbXW8kZ3r079Hj4D9li5dyssJsjb1YaucfHU5\ncI+AqROGmx4sCxYsYHpKnmwqfV7XDJzLzqbz3IW6z5vWRSFiBg3Z5sf7UqmsHjABkO0oJDIomAKn\nkxyHg9jwcDJzc2nx/ts+860dEkqCI8980EcDp5M7ox/e0X4jsFutCCGIX/Saxn1NfZXtb/cN5kxh\nLj3XLMJbM6OaPv0FIXiTN22KFv9tVRHPNbyJvg07+azXiFxXAemF+YTZghj9wwf87j6j+8cpkswm\nUKP/nDKeYpJUk/Xe8N0obZ7GaFNJ0uuXruk8kzRHNpH2UEKswX7Jm1B85yzGzwbz6/xWM7EKK+E2\nsxYtz5VPmNcxj+TBI7mxeZG413+fwBmOoJM3oxlRv94W4aEKjbmn7iAswkVscDw5zlTeOTqEQuQE\nycb0H0L8NeTNiJT0/ezKuF+ZswcLFm6osQOrCCslc1cQpeSNUvIGkJ6aycMNDLVHlWRKS/ZO9skS\nL0kSORl5RJYJv+hxXE43wiKwWv37Nfy6+RATBi6Vd4RQHtxCNoQIQdd7GzF6Qi8AUs5lEl0mjKBg\n+cbY7ZophvnLm0/XjSEq5kqbKkpREpgiTgXseGUIwUHmh9qZlDS6vrFYawP4EimDhrFDGLw/fgTr\ndu9n+GffmuQbyc6Adi0Y3u16TSPlL9pUJYlHx+tkbs/ZcxxPTmH0N+tNbdQ+Hz1wH+2qV9faH05N\noW7ZWJxuNzkOB+XCwkjOzaWdF3nzCabQzKeGwALjcSOBMxA6Y39hrC1lumbG+7NZk2f0WwNI7G3W\nOt/12Rz2uTKVKelk7ZWWtzHut9WKDGV8pc0P3UZRIdxM2Jt/OVFOjWuQoSbPVcmRSs6EcpEtXkEC\nQvUlM5C3l6r24oYGsuP+Dd+NMiTk1YmeTN7kcQQoRd7VQAhzLjh9q5I3jylQQvWTsxrajoofQbO4\npvyWvpuGUfVJc6RTOVT2K85zZVPgzqVssK/7woZDq1hXqAYyqHnefMkbwEtNV/n0/6tR6Mpg3cku\n4JO7Tb6OWk1V1NuvhE37TgfQqsp9RAT5mmdLcWko9XkrBQBnE1N9D0oSjzWdZNCs6Rk9n3jhTu57\n+qaLHqe4dCCxsVGyE4VbeagoKoVazYJ4a6nZTBMcYjc5jD/S/1qWLdyiNxDCh7h5PBIWL+cPh8NJ\n926va30APlo+gAoV/nzqjcXLfuS9T7bLSzE8bDd9McZv+5zcQjKy8qha6eLNfvmFTk6eS6d+DT39\nQNu+M/QGwpd8/LpwxBV5O242fKZpHJ88b0BmQSFxXuTt/U2/lki+Ku+XfHnbuFoVvn2mH+XCwwgP\nDkKSJPKcTlq9ImfNf2f777zz6+9a/yMTZII2ff1GFmzfE3CchnHlaVapInc1b4okSdR5w6xZble9\nOh3nzuWcw2Fa7/ERIwlWUqbEhYdza2RZ1mWnGUJBtZVo+ycGjdaK1vtDdn4+bZbNZVrHnuw/eZIW\n8fG89MtqzigCDjw4hLCwMOI/eM1wobz847xMn+rnKGDXQ4bE2QqWdO9Pq9XTTcdqAvfWbsm9tVvi\ncLsIshq08rlphPqJevb4WY8xKtU0Od+WbL3lFRxuFzd8N1471p1GGnEDWN9lGjd/P0Y7L0OPfjVL\nN34R3soHiWDsuIVTO6LeMtSSXkZUDZEjJOtG1CZIBFHWEEEaZoskzOZf83xzgzu5mZIHaEzZdzuq\ndstc29RMQnUzqoey1OO2ms8TbI0kzObfP7M4HD62jf08jdEsDICwYBUeBPdg4QA1GUQSzwI5eJeh\nE+Jt9v2xjvY1fculleLvQ6nm7SrBrdGP6zsGIhZTOYrl++QbdPcKcnCCFrFmsfiSN2DFwalERf01\ndfRKguysfBwOF+VizXPq2vF/pn1JwBffjDYFNtzUZarewHBn3vi978PsYiFJEtff+YY2NsDU5+6k\nc4d6ftt7PBIut5sge/HvRKkZOfQc8o7+6PEiSkFBgs0LAzsLp+fkUyYisFbytyNJPDHjMxPh++2t\nkjkf3z5hJknZ5jl9NuoRqpUvQ4jXw12SJJo++6ZpHb9OGkxY2KUnLXa43SRdSOO2t5dpWi5TKg0v\nEgtQ1SY4pRSnfKRxPSbd0bNEY32+ezejNm7U5XmZII8/M4otJ07wyOqVGk/QzK8GLdqJQaM1mSO/\n+pzP/kjQ9i0Cjg/QCX9SZgZVI6P8ltTSyJvB9FklOJwtD5ojxg+np1C/THmSstO5YfV8fS6g5Xyz\nAB7FdGj0efsz/m7e8EgeTuelUT08lrZrdc2ft9n0ydBrea9gkzaHe8u3pV+jWykTpP/NpztyiLKH\nkZyZwmO/yyXAvKNN1VJUX3We7ffFpcBdQLAlmBlb57Edmdj7izatH1SHF1pe/D3iq+PL2Zj1uTIX\nj26SRb78rzX/1G+/l/cNxM0pvMnbsPhlhIdduRyPnx17AoldWqCGrGmzc2etnUX2+/FEPYxaulj6\n0zD+6vAnvhpQajblv0Pepg+fz/pFimbDQN4mfzWMdh2bArD+q83MeOJD7RxAeLVg4srH8tKiQURG\nRxAUomtL7qg7CmehW5GpPyHXJuoan+H3vsnhPWc0mWXjbHy4ufio0u4tn0dyyXPVfN4MW6Pvm8Ph\nwu32EGqoUtCtw0sGQqA5tGgO/t/8MI7MzDzKGvzvBjy5gGMJaQZTneC7jc8VOc/8fAdWq4WgvzjP\nmiRJjH39UzbtOWUiJCrZemvMXbRpGthMcTI5naqxMT6aSBXvrvqR+Wt3+WjrJAF9b2zG8HsvXvMa\nCE3GzjSRt/2vXVqEWp7DSajdRsMpOhlUr82wjq0ZeGMnGk6dZQqQUOFdxuroOPMcsvLzmfXDTyzb\nvx+XYa4+ff2QNyNqzplu0ERK5n7K5yYWK/v0UXxMyG2i49iRdd7UR9V2aDolC4QAh/oY3CEUxC97\nRXEnVXOo6X8fmiyFVEiSfLsQJh83fX1H7p3oIx/k36cHCauwsC05gSe3LdFm5x0EsbzTIPJcOTy1\n/QN9yV6EqaWlHLulFK1f67CaTGzTm/s2v6TJXX7tC8QGRXEi8wwDd+tBIxaj35ofvzj9nIfyohyz\n208iSClH9dDWASY54JsqxCJgUdtFfq+DNxKS9zPvzBRFjsEsi26mtXrJf6npKhyeQgSiRGWyLha5\nzjOE2Sppv4NDF/6P3RmvmuZgBXpW/Y7g4D+XPqQUlwel5I3/Dnn7qyBJEo5CF8EKyeted6x+UrFf\nrD38Gt0bjwOPTKYEsPbAVJOcE0fPsGz5B7Rq3YLZ47cS3x4St8k3lxXfjyAmQJoGFV07GHLDGewm\nKnlb98NzZKTnEltej8i86YZX5DZQYvKWlpaDzWYlKurf6VuXV+Dg2pHztH1JwJReXbijc9HRpLtP\nnKVp9YrM/noT731nfkv/bdowbDazCd3pdNLihbn6AQMxerJDY0bc0Q23203TSXqCXWNheoDjF9Ko\nHB1Fi6lzzMYwATF22Dbu0tMWbDl+gsdWfmaenwigyVPOVUAiQsA99Roz8NZbATiYkkJMSAgdlrxj\nkCWZ+h9/aqTmEpCclcE1y981r8diaO+HvBkrLZzwIm8eSWLhnq28svcHE3mTJHT/NSHPSTUTGsmW\nMKyxhghn9Z1D6bBqKvmobSQkScj50ZQXg5+7jOSJnz7gCBeU8fT5ovqpWSSMekT1/Av17uSthM/J\nVOSrpEsIwZIWw3l8t56H74ebZAtCpiOX84UpVAqJJdOZw/qkrXyS8p3miwV+fNxUEuWHTBnbliGS\n2W2n02/Hk6iapeaiKSPbjmTAjj7qVfbR1lnxICFrMztYuvNQi8dM30uhO49N+9exgWVYvHz3rJof\nntFsCuMafc3lQJ4rmTCb7m5x9MKX7MqYrMy/lLz9E1FK3iglb5cbjkInZ0+lUaNOhSLbdW84zo9m\nTLBuv66VcznduN0ejQiW4uqB6l/ocrk4kHiW3vMVc5Awl8Wau3o9b/+0L2DRd0nA/c3rMLjHDeTk\nObht7mKtr0reHpm7iB3JGea+ErQoG8aSIf0Jslqp/5LBX02CraOfpkzYxRHumV99xdxDhlxnBpJ0\nbKScOqTWmzMM89erLCQO0zVwielphNuD+P54As9u2uCX/FUEtj49mpNZGVSLjC6Rb+Kr29fz9oFd\npvHNPm9FRZeqkDQSZzQ3GzVv0cCviuk0y1HANV+9pvfVaoaiVXlY2qEvreJqAtD6qwmKTtF/ySuV\nwFUSkVwQWQrlMbbVydvYmncSbyvLsISFgPAxtb7TZixxwVE8sHU8us+WSqpgdWe5ruy6xI0sOLNS\nOa5r59SC7gJY3sFAthXkuvLIc+dTPlg2W5aMvMlrGVJlIgvOTpbbKmusIKoysP5U0tzJLDg2Eu/k\nthY8mqn1cpK3i8Uvp57hgnOjMjd5jj1qHkCSJDId+4gJbmpqn+/YTYi9IUIE1ho6XRkcOtsE9Xuy\nAlWjtxEVVfWKrOFqRyl5o5S8qcjNzic8MlTzezOZKQ1mVoRg3Py+XHdb8Xm8ikJOVj73tZviM5ZK\n3m5tPgE8HhACe4gNp8Ojm0+V6TRuHceQMfdSo1ZcwAjWKwlJkrihx+tmvzP1QWgR/Ljaf2BCKXRc\nSEunyysfBCRvy/v0oGnD+jR63hwh2rdVfcbeI6cOaTBxpm9fSXkMWM3yACZ1acd1jRtT6HZRu/yV\n8xc6l5NNh/flh34zATWAaU8OpuHCeYEjRxX1TGt7OCufGEhybg7XfDRfbQ3IRek/v+0hWlXUI11P\nZWey/VQio7Z/o8lKfGws+1LOcfs6lfCaCRkCEh561uQ755Ek6n7ysm5axqwp8+fzlu0sIMtRQOWw\naFySB4fHZcrHdjL3AmWCIoi0hzDkh/fZlJOIRtY053Zz4Xg9A5G67wGEUhFB/rz5ZjnQqMvGUUob\nRXsnJOqJcGZ1noTdYmNvSgLPHpKJmiq/i2jJmM6yH/DdWwajBgOoASMWJINZVCeYRhnG86DWNpWj\nYi1Kqa43ms8nwuabGmnS7gHkkq7IM8tR/d8sQtayqePeX+E5Gpfv6CPrz2Dx0Y7ovmm6X1t95pDI\naVpbW7PDsxwrnyjz6IKVWliE7G9rEx6a2VdQtapM2DySE4swv2xLkoeSVE7Ye2oeIFtgrAgaVTt9\nmVb570NptOl/HKeOnqNyzfIM7DKRU4cNEafeflAej0zgFKK+7uMtf5q8RUSFsu7gKwHPh5eD3FT5\nD/6+xzpw8mQKm9cfNbXZvyuFgb3m8+kPz2IRFsJLWGHhckEIQVz5IM6nOMwaDmBQv2v+0rlcSWTl\nFRAREsyI+Sv58cAp+aBqMrSgPehtAra8PtQUlPDNtt2MXmGOMts7Q9e8dXnlA9O57RMHEx6uv6FL\nkkSh04U3Pth1mLH39OB4Sor/SavPCgMJATg8QR87p7DQf98ikJGfz4vr1rH6eKIs3iDbWN/0+PCR\n3LlE94Pao/xb/a5igi5CkXa4/3AtWjU2LFwmol7tg7wKu9ssFmKDzbdjIQSH088XsRqJOh+/qqUI\n2Zt2hiZlKsmT84oYLAqR9hBswsLhrLM0iK6M3WLFI3k4l59F5bAYKoXGsD5hN88d/sJHy6fPVftk\nOu49X0Axy8J1G+Ugj2gpjHfaD6NSRHm/vZrF1WVt3Gy/5wrdDqY3f5aqoRV5eNswnVQbR5VkeuN9\nW/QXfaqGeeir8f9FT24uk/odST/zSYasrfVIutZQnYFbQiFwIEny34HTI0c3F+f/lu08S4g1BrtF\n1jD/fHIBe/OXmTR5oMvXP1tIYCjg4Ve3bDqWUFOtfAfiO6paRlKvSjfC7WbNmDdx23ViLrnMUGSr\nWrWuNC0/g7AwM6ltWm0wMLjINZXi8qFU83YVI/VsBmUrRvP96k28/sRH8kGB0dHF8AosPw2X732V\nvJwCKlX3r7FwFDoRQnBHI0MklhrIcHSa3z4qPB4PfySlUq1meUOiXnOSXoDm7Sqw+9fz2v74l28n\nvm51atTyf/MuxZ/DyeQMKpWLpOOw2Tjx8vMykDeVYAjkz8O7t2f+N1sp8BZoaOsdaLF/mtkvLd/h\n5ExmlqYhO5eZzQ2vL9T6dqpdhU3H/zDJ8uuLJszErSS4a9Ey9iWnmHzS7MDQDu2Yvm0bAHYBSqIQ\nH/KmpizJzMvj2qXvaXLf6NyFUZt/ACTMjl5QXVj56ekRxC94A+0RblhPRWDbk7pGN7OwgPO5OdQr\nGxtwHSm5ObRdOTeg2VQ7pmiL0EyTRo2b0I4Z++qxDhLmoAYJ9Ydx4K7J7DibwOM7FhvIjmz6/K3H\nFM0kfC4/g9t/mKbIMJsdveuWym6synwkmVj8eLM5rUkgnM06zwClXrIq/65yN1I7oiqzTn2Aqv0y\na9Zk8vZhu3cBmLZjOvvc+wAJq0Wei0XAwjaylvPpnY+Y+uopPGBigzmUC5W/rym7B5FDshLN6UEI\noSmLLcKNqtFTfd7iaECaOIqEA4vwrbAwsO4K3JKTKHscDk8eNhGERcik/nz6Ib5MflK/tkrfx+v9\nXKLrdinYdKIOvrVNoUJYf+LLP3/Fxv23o9Rsyn+HvLndHs206Ha7mfTQTHZskLPmYxGsTJpJeLic\neLd7xUF6Ry/y9uWJGQgsfnO2vfTMIn7+Yo8anqa/qgrBxPf60OG6xsXOMysjj6iYMDN580oKteqX\n8YSEXHyZHG/cfP1UL5OnoFbtcowZewd16lQIGIn5X0dugYN8h5PYqHCmLvmKFTsUjahJCwU/TBxA\nmTJh5DtctBtnDkbwJm/7XvclVoPe/4wfjibJzQwERlLkf/PMo9Qor5OWWybPJEn1g/djhi0JeVvw\n0ybe+HmHF/mTNJlzu91M9+bNipUDcsqSk5kZ1ClrftFpPXc6sp7bj9nUz7jeZDTJQN7O5+YQFRxM\nqE3WeDy0Zhm/XFDIrNHnzUCaQLmekjyGRtKM72teROzG2Fp8n3r8IsibPtaBuyZr88105JPuyKV6\neFksXqY0j+Thk90/Mv3ser9kTd0XBjKlEq3lbcZSMTqOm74fqY1rEbC0/fOEWoKJVlKKZBRm8+h2\ngw+cIitEwHvXTCPCHs6sbe+y2b3TJ5HvqEpDqFC+LBVDKmLBwuM7+pvMvlYB85q9Q3BQMM/uHEUm\n503kLZyKtBOtubvlI6Z1S5KER9GqWQ3VGCbslfPAGTVlqo+ZXlEBVN+8mnTlngYjkZCw+KnRWhQ8\nHjcfHuuojOehIVNoWae7qY3LU4BAYLX8+XtvKf4cSskb/x3ylrDnJNXrVSIoxM7ER95k+9f79ZMC\nylcvw9LfitaMFYdz5y7Qr8NUNE9lA3krTutWkO/g7Ol0atbVAx1Sk7Pp3XWaSfO2YuOzxJSVi2x7\nPB66t9NTgnz766Ri55iXW4g9yIbdbvVL3uYveJT4+Ip/eeqPvwLn07JxezxUjo0GoHV/1bleV5nt\nfOevLSTdZIzsr2Y0C1YWsP61EYz5eA1r9sgBAhahvL8byJvwIibehO3dh3pSv3JlCpwuqpf1jU4+\nefIk/Zau5JQmU6J6ZAQnc3L1RgYiIwl5N2FM4LqmF4uj6ReoE1OO8W+/xcdKzKaRcC26sSf9vv9K\nI2+JT4wyJafOKMgnzB5EkFV+WBcWFrJnzx7uP/Cdr+nTi1xtumsQVSOiqfXRVIxEz5u89a3Vhhfa\n3Fqi9bglD01XTdH6Vkaw/k797zLbWcDn2zczI+NHjOSsrYjj4SY9qVOuLFXCyuLyuOltWJSSAAAg\nAElEQVS0/gV0sin7fzUBTgjI0YIXZF+tDde/hs1m8yJvqh8bzG84mlpx1clzFfDgL2PwJm/vtZqM\nxwJxIbE8/PMQnLh8NG89Im+iV8N7TTVL+/3aD81PTcDCNh+U6DoVhyl7n8RJMqBHm/aPf53FSfJv\nT7ldXbagBYcrhxWJN6FGs4Lg4TrbTW0KXKkIYSXY6j/SP/HChyTmzAXl1UTTCgIdq+3Hai0lfZcL\npeSN/w55+yciIzWH6LLhCCG4tbGiQleeS8t/GkdMmQhubTEB0E2nxvxuBQVO7uw89aLIW8r5LMLC\ngwmPKL2ReCM1LYOu4xQ/LeVB/sZTt3Fjy7pF9tuZcJLH56zU9lWSs/tNnQhuOXCYpxd+bZK9/ZXB\ntH1+ntmnS9FE/fjCAELtdsJDfP16srOzGTJtIeqj5cO7ryc+Pp7xn63hh9NyOgqV7My+txvdGjfC\n4/HQaKq5uLwRkkX26/nhqT5ULSdrytLz8un/8Qp2p6ZpfVbcexcta9YMWAlBRa1Z07Vr4TOWYX9E\ny9bM3L3DPCejdksJYLBK8EW3+7ht46eoRGtNx9tp0rChz9guj4cjGSk0Kiu/CMUveVWXh5dmzDAX\nuVyWHrVpDG4IE1AJiW/un8CpnHRu+maOJqsGYZwkF2NmfSGgVmg0X90yghM5qYTbgjmU9gdDdukl\noeSSVbL5VB7Ho/z5C8y1TBUCYzKhGh38jfP2DjDQy2pZhO6Uv+a6Ob7Xze3iwW1D5Dkp3mrP1xhM\nldgqxAab69iO3v4c4MYpHOSSqVxHmcS9o5hO/wwm7L0bb3Nj32pTiY9u8qdlXw6sPi7PQ67NWoab\na3zDmfRvOZY9F4mT8jkTeTuA1RrYR0+SJPadroYx2rRRtT8Ctv+vozRgoRR/K/LzHETGhOEnUTy5\nWfnElIlgyPPdmfPyOu34LS0n0WtAB/oNvJWQEDvfKIQtOyu/RGOWrxBVfKN/Mdo8YS6ZNfbhdjxw\n47UA/HjwpO6Frbg//X7sdLHkrUWtqnw5vi81KgTOAdWuXm3zAQGhQUHse30ETcfM1MiW6vOWnV+I\nLUAEcWRkJItfKpmG0Onx8ND8RfyWmllsW4HghgVLQMDEqrHcdu99vP9wL15Ys5a1xxORgAdWfkGQ\ngIOji9a+PdOwCWsO7SMHOKscaxsURqEzjz1ADFBZ2Hlrt++L44Ibe/LU92tMfvNugU7ckDc9f15N\nkh/ydjInnagg75cTXZh/R/uikY/EcaDep0r+REP/b++RAwcafv6idkwIqBuukMcImQyXr1wfdnnP\nStCv4rUMa9WDm9eOx/tb2nqLTDyvXe+bbFhfh/diBOu7zKDrD8O1fWG8mMCpjHNUizHXHLVZbXj/\n4qpGV+HE2SSGnnvWf5JeSclPLunVEgbseFRr2zdmIO1rX+szd28UugtJLjxPtbDqTN7T1xQg8WKT\nL7V2bslFoTuPMFvR97G5h25E/86V9CJA59ixxEd3INxWtojeRcPjcRr38JBKgescVcp0p3q5u3C5\nM7FZow3tPWw9Jf/9qwmIr6l+XItA3X1SJ20WIQjjCapU6HXJ8ytFyVCqefsXIuVMOvZgOzGG6gM5\nObnc38AchPDpwVeZP2klG1fu1I4BWIIsrDn8xmWZS/+7X+dUYrZp3JBIWPXTZFO7E8eSqVGrPMXl\nw7q5k5JHTrlLq0l733izN3XrVjCVzvo3wpu8WYDtC2Ui4nS5OZ2cQc3Kl5Y+Y8OOPYxautHHfLlh\nQn+iIkM5kZJGg8pyMtAmo82pP4zaqE/630PjejVIy8mjbERYicZuMEmXN+y61szevNNXy6ZsD08Y\nIRenVwiq9/gSgAVm33ELnWrVotWct3y0g8eKIW8mzZtxDkDi0FE+7R1uN0FWK1M2rOX9BMWlwZ/P\nmyInqX/RaWjO5WXz0pb1rDmr5qUzaq5U+6iyb2As0cBvD/mWMcpxFtJqle76sO+OZwkKKjra0S15\n8EgSdouVe1b/jwQcGIMe1KL0v9w0geBgnWym5KTTc7M8lu7zpgRRKGuxWHS/r59uku81Xyb9xKzj\nX+BtErUIiRYinj1SotbHGISwqpPBH9ML3575jkUnP1bGVoraG8mbZvpVkud6jR0tYnitlVm+0+Mg\nx5VDmSAzgfJIHizCwoQ9dyvkzbcwvdPjIM+VSXTQPzc4K8+ZQKitlkbOzpz5gRPOfspZuYh92+qH\nsQj5O9998kbgKOq1rBK+heiYMlgt/+0X7aJQqnkrhV9El4vEajWToIiIcJ92FmEh+Uy6z3GPU1aD\nX46i5ws/L1mutPjaccU3AqrXjOBkYo62L5Bv9Y0bVfEbhBEI8xdsZMXnqmO7vM4VHzxFxQrRRfb7\nu7HjvcCkw26zXjJxA1i3c7/5gEKOzqZlElc2kroV5eCCxHOp5nZeP5M6NasgSRJZeYUlIm/eed4+\n3LTTJ7WGERsPJ/gcOzo+sCbvUnzcagk4bnivLQsoxlfi50zXzGxGQjbzph60iKsECV7XEf13qv5f\n471p+gkg6fGx5qL0yvGHqjUnLtjCrOO/oWtivCDpfWqHxFF7xcvaQfVPeP9dY/n21sHYhKBquFnD\n2uAz/UVKCDh4t6wNz3TkU+hxUik0RiNu3oN6JIkOG6cglIoOqu+Yd9CDPD35KujRrDK6bBxNr7Kd\nOZlxSpcuSfLPT8Aj4TfyaJs76fnTMEWOeR53bh6MRcDn187DG90q30i3yjfiVLRNqr9briOXIb8P\nUSYqYdF+xPrFLEc5Xm71po9Mi7CY/OaMxwFeavY5r+ztTx5yGpwX992Bbh6GiU2+8unrcDiYd+w2\nVFPriIYbfNoALDzSWZunMVVIFDW4u+7HfvsYseq4HKwjz9RDx7JrKRdTzdQmzF5H+5ztOE25Ci2p\nbE0MKLN59dKC9X8HSsnbvxBBwf6/1rWnfXMlTft4qJ+WVxa3tFZ825Q7vKSGzgnBN9snIoTA6XST\nmpJNxcpm59r3lz5zWebQqWM1Vnxu1tiGh18+P7qOD+hpD1a99TjlY80PzNx8B+Ghl7/O4aXA7ZGT\nm3534Jx2zNvnDdCSwdasWI59bxRv9oyPu7RSPKmgZb04NGkELreHhJRUGlSUtRUOl4tY4IJCnO6q\nqT98EtPSKR8eTps355lqmCaMvbhAjg3DfLVrM+bMYA4SHQT8AtqDH2By/ZaM2Pi1icyB4IW217H4\n4E5O5uaYSJYR6lXaf/8QDhw4IAcrAGva3EbjxnKEd982ncl1OqgaEUOBy0XDFXKCW28T6q6CZCVg\nwTxGk1Wvmcplrb7hSeqXU82OQknECvUJpdEXLwJw4C55ezr7AnrqEJAkoblKGAO65fQfZqiGHTXX\nmFzxwEjiZPSseg27bDFsu3Dc0F6Wl5frwOVxs+Y6+f51+6YhXCxUsjV528skcBxVS3RdZCeeaPCE\nT/t8dz4v/z6eQbt6A7IP121lHuCWmndiFTYibJFFjneT7UFWu4waO3nNVuH7Eg2w48Jnpv0L+aeI\nDa3mt60viY+jS8UZflsGhkz80nP3+pA3I8LtFRE+xuiiceBUFW2OVqB+tTMXObdSlASlZtN/ML5Y\nsI75oz5GKHfKoHIWvkx8r8g+aecziS4XgdV2caHm3sjNLqCwwEnZ8pEsnv0ly+du0U8a0oisLSJR\nbyAURd7UoAW320NOdgG/7TrCyy98pT0V1m954dIX9RfCSN763d2GJx+63nT++KkLVK9UxqdG6F+F\nFkOVKFEAAV88/xh3TV1iOoaAXa8PxaYknD2TloXNaiEu2jfj/OVEgxe9IliVB/mecUPxSBJhQWat\nx/3vLOL3Cxlan6PPDeeXY8d4bOVqpb9uvhzYphW927Tm2nfkfF/aWoEawUGsfeop8p0uyoRefK3b\n+Pmy+c8YWXug71B+TDzKwJ/WKuZc8/32xBNjitVwnzlzho4bZF++1S160rRpU7k4vU/eN7T9Iw88\nh9Vi4dfkJB7+cam6Uq3tNTGVWXJTP9ySB7vFxoGMswRZbNSJKu9D3lQUup38evo4g/cu80n3oece\nU+cg79chhuMi3ScYYdPNvtHr20/vZdzRRahEUa9XKkzVCzBGqhrm8fm188h25hFpD6ztfXRbf4N8\niTARyvy2b/m0O1+QzIv7R2jXS3Xen9OqeO1WIEiSRK4rlQi7/5x+xy5s58uU8cp6ZJOuMZWIlfJY\nxXk0s/Il5nk7cG4xx/Jk8m8sj2WE21NAriuJqKD6FyUb4MCpF4D3ZfmUkjd/KDWb/suRfNacfd5R\nWDzR9rg9BCLk3asO03eEYO2pWQHl2IOs2kOlecc6ZvLmBwX5Dk4npVKnQSXtWMLhMwx5YL7ml/bM\nhDvocW8bvtk5OZAYDVarheiYMBIOmUusOByOYn11/gn4+RNfzY0RtaoFTsp6KUjPyefGUW9rmo+l\n4x6iYXU9111Scgp3TV5mIivGz8dOnWP3rBEcO5vKG+8tYcsFiACNuAFUjIm8aEd5I9R6qQB5eXm0\nfmUBAO0EfDDFj2ZMVb0oaPaKEmGoEMtfRz5NdFgoVkNOLAHUfe1NfccLQzpdi9vt9ju/fJcLSQK3\nn7+fk+npXLdMfXFSVEwGUlgFODFotKlPrtNBjtPBwJ/W6vMxrklInM3JpHKkb+qGyT+uYVHSXvNB\nSeL2379iVH6auqt9H5WtwWx+cBS1l0/F45Gos+IVvu/+NC1jq3H0fv2FJ8tRQJvV09ie+QcNPnvJ\nEHVrNmcevPtFnzkFW+0M37tMGVvut+mWFwi3BdN27XhDXQJJuQcJjgvdLUPOhyandOm0YYxGvL7p\nMpVQaxDfnDNGQwj0Sge61s9X6yT44to5CCHwSB7SndlFkrel7Rb6Pe7yOHFLboKtss9shZA45rf+\nEIAPDyxka4FcC/SZ33pRkWqMa/l6wDGKggf5t7fywAyOsN4nSa8VmYhqP0EBlRlKCp/zVP0PL2lM\nbzSs8BjHEvX5W+ni08Yigtn1R0/5PR3oVOOI5gPn9hRgtQT2LW5U7X/A/y7LXEsRGKWat38Z1n/6\nEzMGf6zf1ZXt/x2dxua1+5n1ylJIFthrCL7cEpi8XS2QJAmXy4PHI9HjVsWUpDxbN343rujOfxPa\n99a1ciqxvaVjPaYMuu2SZZ6+kMG4SYvYr9gKt701DLvVytm0LEKC7CScPseAOV+YCJs8vmFf2e6c\nPpSDf1zgq++38PGek0hAuRArP0w1kP+LRFZ+AeezcqhbQSatDSeYAx4OKuRNdfxXUX+K2R/OGMTw\n66iniQ4N5WxWNmVCQ3l30y/M3rYDSTHRqS8fCc/qxHDwB4tZdyFVkyEhk4kQq5WDzwzHHyRJotbc\nGUiq9gqhaAV1n7cxDZvz+qHdmtwxzdrxxDUdKHS7aL5YJp2SgfAl9R/L6ZxMqkb497Ec/+MaPtLI\nm8r45PGEgMRHxlHgcuJBIswmv8zUXi7ne5MkvZ0xuABgUefePL5lmTaOSti0n4BBm6cn1pX8nrtd\nasSA9jdSLbYCe5OT6LtzgY/mzaLNWfaJU5MBWyw6YVndeTLRQbo5Ma0wm3y3gyphV65uLUCf7f00\n7d71ojN3N7+baLtvFOfQXb3Bi2TNarn8kseVJA+vHuyJrFkzaxCtxfi8/VVI/OMbTjrlUlcWoGHs\n+8RGXCdrDx37iQj+Z6Q8uVpRmueNUvLmje4VB6J5+qoQgskfDqJV5wb8cTyZGvUr0b264UFlgbUn\nZG1FTmYeLqebmNiifTouBYcP/EHdBpX9Vj7ods0U03we6NOa/gN7FiszL6+QCxdy2LcnkenT1wO6\nRmnDhuf+kVUW/JE3BHRsUo2f95/S5v/8E9dz53Wt2X/sLPVrxF20iVWSJFoN8tJCCfh+2gA27DvK\n/5Z9bw4MUD7vnjVC05I1GymnATHWM72SOJJ8geplYmg+1ZDHSyFIPw97nFk//sLyPQe1U81DBP83\n2ky6Tl24wA0Ll8q+bs+O4GxWNpWiLv/vGeScbDbFreGpJQv5JjcDBJx4enQxPS8eDZb+f3vnHR5F\n8cfhd+7SE0IPvffem6AivQgoP0GwAApYKApIUVCqFJGiYEHEgiAIoqAoXaVKkd5Beq+BhJB2uZvf\nH7t7u5dLQgIhgMz7PJq73Z3Zubll77Pf+ZaxxGJdJtXu3VkE7HhusFu8uSVuEuJtx1MDCfH1J97l\npMIiPXJbF2+Jl2ET52NLvF0IzVl+W4v3qbZUX+7Te1zeYDDZ/JNfXj8TfZkw/yxeNV7NJL1mZYSV\n9b2DBtLC85u647L0J4DZtWbQectL7vMIYGz5D8gVmCvZfs7FnCBXQH7sermq/rvaAZ4RqgUoS8+K\no245puvx5wiwZSJA952bcKAJYC2XpeXM61066WCAm46LIGwsON4GQ1h2LrHpludV3B8o8YYSb7dL\nuxpvE3VRq1pZuEYIn/+kmbnjYuNxJrgIugspNxwOJ77JRIRu2rSJoW+s0N7Y4Olnq/Hz/O3uX5K8\n+f2ZOT91kasPMj+u2sCHs7S6m1tmalGS1uXGtPLZvGV8ufqAh3jb8WnSQsyR4MQ3BYHYb/rPrDx0\nEsAreW1S5aysx20Z8johweY15XA6EQivXHAOp5MbsXHs3b6N7n9u9eivSt4wfuj6vJYmBHO7IXb3\nDeyNn48PxceZ1rr369elbqlSjFu2nGWnz3iMuXLmUH7q3s39vuhHmtN3OWBxn7RFqBoWw26/zGPV\neT1qUkja2kN56ak2lMiSnQAfXwrN8Iwy/a7J0zxeIOU8fAa7L56lzYrvPJZdkbC4wfOUz1sIKSXF\n543Rd2oWrz1PDSDIP3WBOFqeN0OkCfdrw1qWWLxpX52nVc60vMGGRiPw9THF2W9ntzDugJHrzrDo\nae7wi+oOI0tApiQqLHiLN6d0YdeX8M5ePkuvw1p0bbAQzH5E8197duNrJLaWGX8Lko+xtTxdN6IT\nognySTky2uGK9ygmP2/XNP7hD4t4gwHFPyF7kGf+OZfLxfv7n8JM2utyi2WrT5sNibCIN4A3kxBv\nZ6P3kSegNEIIvjsyDtDyyKUk3i5FbmXjlW7mnACNCmr320Cf3MQ6zmCzBeAjsrH6VGltnHrbxwsf\n9u5QcUco8YYSb+mBIz4BX72clMPhoHUpfbnRJmjYsSz9R72UIeNwOl3ExjoIDvbnwN5TvPHKd+59\nPfs14KlnHsmQcdxPzPplFVMW7QZMgbT16/Qr72TlwJlLFM+THV970gKuQj9TFEmgVaVCLN5z0iuH\nmXGMdcwI2D/GFI0XIm5gt9nImckz+i4+IYHw6Bhyh2Yyl0z19jmDArgUHevRP+DO67bytc4UzpbN\nQ7yBZn2rO3kKFxISPLbbBRx+S5vLeKeT0lNNN4JjaRRvOy+ep3KuPBSeZuRHlO7znHhVe+goM+ND\noi1WMYCTXQcm2V+Cy4VEy7FW9rtxROttjj0/kGJz9JQiuhhZ3eo1XAKKZMrG3B/m8i7HSFyNoXvu\nSgx6rBWgpfcos9BqHTLzr2kiTehtk7O8weB8T/LB+cVYxVviVCFrGg0l0CeAF1aM5SjXsVrThJAs\ne2QYIUGmde5mQiz+Nl98bHaeWzuUy65ITMuYdPtfTazch9KhRQFos74nApdbcFoT8dosVR7m1p6e\n5DwDnI05T77APMnu/6/wy7HK+ivNqvdkkV1o36sNKZ2AQAgbf54ohRks8Rg2VqPlwRtErfzdsCdz\nf1CkHiXeUOLtTnHEJ3D66CWKlskLwMLpK5g+zrCAaXfapUduzzk3NTStMcLixyRYsWUoAOfPXMMv\nwIfsd2H59kEiOjaez+b9xbzV+7ysW8b7vz/tjb+/L1Vf9RQ7n735FKFBQZTInyNZQXYnGHVNjfPt\nHX/nS6tGpCngVXLr0Ht9mbluI6NXbwIBu956DbuvL34+GR935ZISp8uV5LwWnjYBaYgn9/8sPm+G\nC1viYvLA9nY9yRYSwpWYm8S7nOQNDjXLYwHDyj/KS1W9M/5fiY0iR4AmhKSUlJo/Gqel336F6vDR\naUtUojDFGUBhAjnJTQ8/uY5BZXmvSXuP8xyKuECwzYcn135MYn84KcFu+Txbmo0hOiGOhn8O0wMY\nJIahVQhYnyji9IV173MmPhy7LXG0qbU0lmnlWvyoubT+27FVfHPhZ3N/KsTblTgt8MPP5kuor3mf\neW3bi+5+plb6hlgZQ4hPJvrsfM7jMxuRmlbL27iKC7zOczvEOiOJSbhKVv8iHtu1PG/WaFMbL5dc\nn6o+bzrO4CMCWXGqA3Be/660z/BIzuVkCTFThhw4N5lL8Z+jCT098lWAH3WpXmh2Er0r0oISbyjx\nlhRzvl7ErMG6ABOCIfO7Uu/Rqvd2UMmwceNehr2h1dV8Y/CTPPl0NQB3xGx6JAp+EPh99W5Gfr3K\nwyF/0zd9SHC6eOTVKWaNcgHSBkhT3PwzvQ82m434+Hhq9/7Ufdz2aX3Zsuswr0773S0SNn/U0yta\n1+lyuXO4pRYpJdFxDmq9Z57vnxGvExioLY2We9ssmWXst1reDC5H3SQ0wB9/XYA9Nnwyl7AEJujD\nGtCgFt3q3Z7l9afde/l661YOXgn3tBAKaF+qJGOffBKny8W12FhyBKWuIsS12BhuxMdRMNQzUvSR\naRM4h3EOi5VNaEEU7nNLtLQhicTboef74p9CNPW+qxcpky2MvZfP0WblTI+2CPAFigs7B0UCIHmp\nSGUGVGvGwfDztFvzrXlyy3lNq5vL3ZGwiDub++LTrF/rGg/i8T8+wCqwPAIUgJYBZYjwiWNj9FH9\nPJIqPvn4rIF30Mubf4xgF5GmL50R1KCPsbx/ASbXeYsX1g7mGjf0MXmKN4BYZyxX4695WNE6bnoF\nq+D7vtaXyc6tgVW8jS/7KQ6bg5H7jXyY2vaSgeU4Hrdb/8y456J5li48XlALPIpwhOOSTrL45uBy\n3AXCAu6tdU9KFyCIjLzChqutQdwAXNgJo2mR1fd0bA8bSryhxFtSNM/dw3yj39mXnvfOPn4/ExMT\nj8vpIjgkgOaPv4+x4mU4+I/+8H/UqlPaq90HHyxk+fKD2hsh+POPtzNqyHTuPZEj56U2RgH+fvDX\n7JRThhjUelHzt/LIbWa1PEldtBnvgY3TeuPr68vh05fJlyNzkkl/q7zuuYSYM8SXFePNJKdOl4sD\npy5RvnBur7Yp4Uhwcjo8gtYfznT3P61LK+qV1bKzJyXeELB/tKeAO371GrEOB2VymxU25mzexshl\na5NNa2L9PGvf6IavgNpTZ3gfq7/vXbsGs3bu5FpcvCmk9DQbNXKHMbVpU2rNnuXu91ifftyIj0NK\nSai/p+9nkU8meiarsFjPEJDTx491L/UgwGINdLpcxDkTKDPzI892wP9yFuTnq6fxEHrAiS5mLdCD\n1y6RNziUUL8AHE4nJeeOJ7EAM9takt9aLGs2m7HPOnqJsJl1QzXrme6HZktevBnHWstUbW8x2t3r\nB+vm89PNHe62QkBDfHi/SdLpI+r/8Za7T4AvavSjx9aJ7vcFRHa+fvy9JNtakVKSIBM8qh8Y4s0m\noBlP8GKt527ZT1K8uaOjcRYAGmRtSYnYKnwdNwIbUITyBIoQulQ0/71rVSIkNmEjyhFJiK9WLmrG\n/r6EcxRw4ELzf7Ppc9u/zIrbGt/dYt2J4hjWOT/Ri6r5X8bX7vnAsutUeUDLs2gT7alQIK0Jgx8+\nVJ43RZIsveCddPJOObzrNG+20zOGG4Lw0LgUWqSezs+P4Py/kLeooGatKqz6YwdFSmRh6DDNmTwh\nwbvN5avRSfaVJ/e9K2915ILn+7j41LfdPMvbx6pml0l62gs8hQueZbJKFki+TuKOz1NeyrTbbF7C\nbeeJ03T6aIH7nLsna31IKWk5+CNOx2vj2T62N3s/NPtPcJqZvvaN60v9EVO4FGvJqZbEc2KR7FmR\nUnL40hVKhmlpREYuWwu4Nav2WngkzHCz8uC/jFq5xhS4SRhq33y8HtXz5abTQs2xOxOw9LXu5A4J\nSdGym/xzrSG0vNteToin9IyPsIorN1oFdMsGQVBQoFZSwqNvreHcPVt4Z4fFYd3Dj0075vjz71B0\njhFlmsQYvTDUl2Ro4cdoX/lR/Ozaz0CZhcNTnI9EAezaWXQRXG3pYGzA5qbvs+TmTvc+YxR/CAdr\nVgxiXZMPmLZvKbPP/4nNvdTq+a2+vnUiUkrdf05yliuM/3sGPWo+x5W4CAoHJ23BEkLgKzyjV1Py\ndUsNK7b/ymLmAdrXV5yK9K4ymKiEcAJsmZhg+zHZtkIIBIILFw8y/fJANL8xM2DAQ2g/ADhZiMPZ\nGh9b5kTXSYTl9XxAibeMQIk3RarIUyRR/qN0vOkYtbfPHYNFx3aADfZcuU5srJPMJF1V4diRi8RE\nxxMY5Glt6tS5AZ06N0i/waWBDT+mzsqWWrZ8qwm0G9GxDJzyI/8cvnyLFunDlEVrk9x+8ko4p+Nw\nC6Wh3//O2C5ttDHGxHE5MoqiuczcXKuHpZwXrs9X37P85CXzB75fV/JlSbmYtXHs9gE9uBEby+Of\nfu1xLRoiz32wgOLjJ7mFnRBwA7gQeYN607/EGq1qPUEmv6QjNI/30r7jyLg4Em7epOrcrxkZEoYz\nKJARl08mGmVKaCecdeowVYNCmd32JYL9/HFJ6U6c27FCTT7a8ScX0RIm30xiNjThpnGg/SD87T56\nbVNzPpIb08gTaxl1ch0A+9sMSaKNYFDxx6lToDRhAZlpvmJsEmMwcQHLT+9mTTNtTLWXG3kWtXMb\nz2BXY65oWz1NmOCOthTu9wZ/OvYw0CeIkFtEhKYFl3ThcMW7E/MaWJdNm4kWHvsi9Qq3IT7e+eCS\nwxBuHgioI56nfpkX0zxuKzP/bYhxZdiA54uvx6anMol3XifOeY1MfkXYeWEcJ6N/wIw2tdGq6M5b\n9v9oYa2O8N8nKwNn2Hm+sTs3XSbxImULjqJSwdO4ZCwuGYeP7f6uDf1fQi2bKpoWODYAACAASURB\nVJLk3OnLdH3CSGug3c2f6fEEXfs25+rFSAKC/Xim5kjTMhIkkAmwdMf7/2k/tXVbjzB49CLt9cL0\ny+VlLJsiYOHEruTNefs3wRsxcUTHxpMrq+mEvXDjHkbOXuVlxdv5Sfrnb4uJd3AxMoo+MxdxWC9b\nlZTP29wt2xj521oPPz/jr8fink3bltjqBrh94qTwLE5/IyaGKlOm6f1prVx6/8cG9KPpxEkcAe88\nd/pJbAKOWCJOXS4X63bu5LedO2lavToj167klKXCApgVFrTlOxe7Ll6gep58FJ7+ofuYBS2f5X9L\nf/A8p9YKoyZpr9KP0LJkKXxsNkpkMStxRN68yaErV+ixbg7dCtblYng4N6LPs41rPC4KM6yj55Jg\ndEI8FX/W/g17l9IyIki1DTOqt+OVbfM8jhECWgQV5/lqj1E5W0Eq/WZdujTSiGDxj9OsZZXIx4zm\nWoLXMSvG8KuMZFPTcdRdOcjdLnGwgkHiVCFv5GxFq3INkzzWSte/3+KajEEI+OmR1K08xDpjiEq4\nQQ7/MI/tVvE2rVr6OeeP3mcWngcYUm6Jx/4bjqv42wK5Hneeuae6A1q6jl7J5HoDmPnvS4CW91AT\nbxuwWSqOSGl+x1q0qYsg+lMn7GlCQlIfDPb3yaIYc2ImFi5EjYJrAHC6onHJKHztYcl1obCglk0V\nt42Ukv3bTlCuehEAXm89hhN7tCdiRBJVp4Faj5Xki7ELWfSNnk/IbnPf6WUMYINrV6PIlooI0abV\nh7tfT5/fk0JFzaW/hT9u4LNJ+g1L7//Fro/Qqeu9sahZqVet2F0/R+LcZ2klwM9HX4oyebxsEfdr\nG+AECiaRQzU+Pp4aAz9FArkFrJicenH39/6jdJ+pLU0iYHy7xgxYsNK9v+xgS81S/b+nKxTnlYb1\nyB4cSI2xn3v1meSjZVLPBhKOnTtP0bzakprL5fJoUDdndqZ0bM/ZyEg2nznNEesJEvcnwIWk6McT\nOfamZmlb8u9hem/4C4AFa1dq49Lb+gOHLKWxhBCUmD7ZHL0wj+3x52J+fOIpev61iEvWU1rGUMEv\nkDLZwnC6PK01ocHB1AgO5p9CZuWQxnOnckLCCXmCmXPH8Gqhqgx6pBkAQT5+HGnvabV+9ueP2SEj\n3R/0UNuh5s5teNGx8mPk8Nf+PVuLzAOESLiZxHexi7PUXKaN0fCJq7NikPu1lKaocEkXJ29epkiI\nlhz3Lf+WTIz7zT2+1Ag3KSXXiXG/dzgTeGFzL7BGgwqYU2u6x4NlgD2QQdvfJpIIjGhKGzC9+iyv\nc0QlRBGVcIPclqADI0mvIVqL+Jfj9dIjbjneZD8HkmvxZ/jhVA/3FoAzN3eQP7hKkm06l/gmxT6t\nn7dNKixtyfFIoWNIKdlyqqh7W/mci9yv7bYg7KSfVVRxa5Tl7SFlbP8prP3pGDih08BGdOzlXZrJ\n5XJhSxSFGBERRYea74NN0P29JrR97ok0nzshwUnL2maeqVIV8jLlm1fc7z/6YCG/L9qrvdFvPoOG\nNqFRs5oe/TR6fIz7x/3Lb16mcOFc6V5RQUrJ409N8LAOrVuU/smCExKcHD51mbJFc/PuJ4tY8c8x\nt5UsT9Ygfp38Wrqe7/jFcLKFBJE52HPJqP7bUwg3/NQELB7cheAAPzpNmsnpiDgACmYLYU6/F6k7\nzBRbSSXpNba907wOLz5W28MKALBlyxYGLt5AcQE5BLh/CmyJRJsh9sDje0i8//BgT6EZHe+g4kef\nYBVRRwb0wyUlDaZP53TUTbNPAT0qV+bT3TvcVr5NL3VnxKplLDl72nPydMvg8Lr12XPhND8dP+Ix\npglV69J/xwbTv03A6HqN6FimMqW/mkCc2x/O+KtFd2YHfvpfd/KFhOJrs1P4uw/wmAkBXYtV4b1H\nmro3VZ8znnDM/HVNsxbm82ZJO+VfiL7OY0uM+rBWS5xnhQXDj81mM6NJsew3vsLFT/QhLCCUGGcc\nWf1CeHzpMKJxeBxrs7T5qFJnSofmp+WGUZpPm5AMLfYstfOXJ5NvYJJjTis3HFH8fvIvfrr0uztV\niBGwECoCiCLGHRFrFzCl0mTW7l7LIqElD85HfkZUH02cMw4hBH6WpLwu6cImbPTd2UGfE5eebkMT\nb0YxeR+gbc7+VM1Tl4jYcCYf6aIfI8lJMV4vr+UTHLu/OU8yngplK7j/bUjp4vTpM/wa3QWAYFrQ\npdRb/+nVjIcRFW2KEm+3i0d5LGDpKc8s5vGxDk79e4HiFQpwv2IVb59+0YUSJXJjv0OrVVI81uZD\nD9Hw+Zh22Hz8KVsy/UL/a3Uy/bKMaEgE1M4G495/jeDgIKq/bC6tgimOts24/aS9ERExPPaesbwI\nVfOGMmPAS1yOuEnurN4W1ApvTfYUUFZRZXlv/btvbF+2HDtNjkzBFM2p+Qp98MtKvt2qCXRjOdNY\nNnyhbBFmHzjunoPkxNved97g30tXKJfHs6SRw+lEAmUnTNGP1UWJpZ8dr79KaHAwZyMiORF+lRcX\nLdSPkfzUrgNhmUJ49NsZpmXO8ttp1DgtbhO0rVKF8Tu3e35myyW4pkM3CoRmJjbBQZCvn1eFBfQq\nA0LAd4+1plL+wmTy88cmhEd+N6PNd/We4bEixUkrkbExVP9tgrkhCfFmLGkaPwl2O1T1yctO5xn3\ncR5thGac397CM4rUECKaz5vZZladN/n8wGI2R/6rfxwz8e7qhhNIT6ISbhJsD+K5za+6x+AjpJ4Z\nzRCWMLPmV+42sc4YfIQvPjYfIh2R2ISNEB9v8/SYnYO4zHF3hKjZn54PDWgfNpBKuesQHx/PmMPP\nYIi3Wn6t2Z6wyD0mG06Py8suXO78awJtboxlU5dM4KvDT2DMfXnf16ld5Pn0nLZbcjP2CHsvNtLG\nLqBGwRM4nFdwyTj8ffJl6FgeZNSyqeK2SSzWEuMX4HtfCzeAVWsGZ8h51v6S8WW5hIDlU18hODAA\nP18farx8dyK4AgM9k8wGB2qO+jabYNj3i1m4TbMqfda9FbVKaEuvxiog4BFtCtD7izn8efyi+32l\nfJrvXvn8uQnyMyMBB7VpzKA2jek6Yw4bTmnHHxxh9vUu0PSDyZzQCyoces97+bbkaDOh74IX21Gx\nYH4ArsfEEudIJtRXF2Pf79zJhE2bvdKZCClYcegQrz1Sx/ysSS2tAkckjN+x3XufhFph+ZjWvA2v\n/fQ9m6Ove/vW6RPYKE9hvmrxbJJDPdHJO81NkdljYYM5nuPPv+N1TFJExiYONRDsbvM2AT6+9F/7\nA79dOeTh62YItO0JZ7Hpgu6vhgNp+Nd4d3uQ1LTl50TUJQqHhBGbEMejK0fofRjWPO3orEDh4DAm\n1nyFOKeDxqsHe05EOnPDEUWAzTPoZFatGSm2CbCb1r9QPa1Hj+2aOLJbSm2VpQoDK73Pe3t64uCa\nu824ij979enn58fw8r+630vp4vyBoziIJxA/znGWIIKJFccRmCWpzEcE+PTgEwgBr5RY5tH3RccW\n4PbEm5SSpScqYPjgNcq3FT+/Wy97BvlrbiOaRfYFAHxsWZGJAzIUd507srwJIdoBw4EyQE0p5VbL\nvneArmjuNW9IKZfr26sB3wKBwBLgTSmlFEL4A98B1dCC55+VUp641RiU5S3t9Gg+luN79bwW+uPz\n0hOTU250l0lIcNLiET1Kzlg2s/6aAAiYtaAXufNkodFj2rFG3rc/dCEXEx3PlSs3KFAwO/8larw8\nyX0zv1vlsQAq9TEta592a0HPrzWn6j/e60bmTIFERsfxxMjppnib0Jf5G7cyYuE6L6vbD707UiFf\nbrevG8CiXh0Jy5KFVmM/54rl2NFN69C2bm0Alu7eT9+Fy72CKw4N9RRwVvG24rUuFM6e1WN/ZEwM\nVadOwxAIUl8OPTJAm79ik0xrZ1YB2/r2I8ahLfvdiI+n9lfTvJZpO5etyPCGjQH4atsWRm1cayno\nmfivZ0CDafmTHn5wAMKmHZtD+LC1ixm1HJPg4GxUBMWz5GD9iQO8uN70M0LAwfb98ff1TI9hcC46\ngrxBmngu8aPmpmD8U6oXmpuvm2hO8RdiIvERNh5dOsHjGGvSXNCWUaXu7GfT3V2fE9XIkyOMTIGh\ntC5fjlrL3k2yrZF0t07WEvQt14b8QZqPa/0/+pN4WfavBpOIToglyCeApmv6YCx7Ds/8MrUqVUry\ns94O0Y5oeu7U/MsMK5rAZX5eYS77WsVbFrIxtPJU7OLulomSUhIeHs68K8/Qo9Rf6dq30xXH8pPV\nMMRbMZ8hlCqQsVa8h5n7wfK2F2gLfGHdKIQoC3RAq/GcF1glhCgptQJqnwPdgc1o4q0ZsBRN6F2T\nUhYXQnQAPgCSfiRV3BFvffICvepPcN+lcxfKeosW3vz8w598OWKlWzwhBKG5YP6foz2Oi49z4Oef\n9I+LFS+XjsTCDXi0YXEyZ9aeDrPl8Cf8iuaDVa6iWR8zINCXXLnufbi60+XiWkQ0ObJqyy51Ok7U\ndugfZ+OctKUV+ecuCrbkqFqsCLsnmYLJWttUAL8M6kz5/pO195alXkOUdJg6l33j+lLRDrudUEpA\nyby5OXn1OleMTnXxNHj5RnafvcTw9q15tJR3UEiXat4JmQ8PSTmYIjQwkCMDkz/maD9zTotOnkTR\nyZO8hZf+eZ8Nzsq8qGvM3L+bmft3c6RHH7pWq8kz5SoSHhtDkSye/4YKf+G9DLirXXcqLfiSL/JX\n5NWzuxNZ7LSJ+6ZhO482AXYf8odoSVHrFS7D8cJl+Gb/RkbuWA1ISs//kOPPaw8uZ29q+bYWHNjK\nlKMbMaJJXylay2ss62+cp+RPI93fmzuYALM+qcfoPJZNtbFKCXPYiu2Ktt8v6GmKkYVjXAfMOqMA\ns+r0oUBwDgLsnveC5JZLz8depVhIPvOcSN6P+IrFTHEf02Z9L/d+m4CFddOWiDzAHkAe8nKec5bn\nQy2cJyUPs+uEczn2ArkD03eZcPWBWexgJgCl7M1pUfItsmfPTo/s6SvcAOw2f1oU2euxbeXxUto+\nAdkZRKXCL6f7eRXpR7r4vAkhVgP9DcubbnVDSjlWf78czUJ3AvhLSlla394RqC+lfNU4Rkq5UQjh\nA1wAcspbDFBZ3tKfyGs3iYmOJ1c+zx+k0YNmsn6RFpZurInIRCJr6o89KVQsJ37+vjSrqD2FS2vB\nRCFYvmNERnyM2+bxVpqPmwS+nfIiTpegQL6sSFcCTZ/TfiCK5xd880nyqUISnC7Cr98kLLvmN3an\n4u1+wCreAJYOfplmY792+4QlXoIE0y9vx8je+Pt6Pis6nE4qDp/iPubgyPRPW5KYyLg4YhMchAWb\nvkxbjx+j/SLdopVIvHnVk0UiEGzo0p1+8+eyKeaGl1/eV42fpGFxT7F59Ho4DRZ8hTV44tGc+Znd\n+vYy/l+N1Wqf5gwIIdbpIMTXXCLU8ryZvmb+2NjXfjAdFrzPdvf5PYMPDrUdyrEbVzhw5hj9Dy6x\npP+wBh2YBeBJZFEz+rHpok4IyCeCWNTsXaSUHIg4S8nQPPjY9HLnfwygLpnYQCTZgRBsFBUFEMLF\n8Cfe9Pq8CS6nu61Bp/UDiEBL1j2x5CCKhxW8rbnstrWL/kpb6v2y+kz3Pocrnkuxlxh/cIDmL6fP\nxcdVfkjcTZqIi4vj46NPATCw7FIAJu1vArjcvoRvll51R+dIKyuPl8aIum1Q+FCGnvth436wvCVH\nPmCT5f0ZfZtDf514u9HmNICUMkEIEYEWgHUFRYYSHBpIQLB3ktK3RjzL+kXDtTeJHs2X7dOXMa0R\nhUlESP28fiDTP/2Vn77eBkIwZ3k/smdPOTFrRrNmsebjdupsOHnCMuPrq/1orFhz0H3MkbMp9+Fj\nt7mFG8DGuQ+OWKvYx1OkFc0RxKIhr7Jnkre42juhL+UHWoIYEqPvqDLMiHKEusXy8+XL7Th8wfOf\ndoLTSflRpmWlQfFCfPZCW49jSo7yXN7f+05vd2H6EmPNff++k7QQ9Lfb3Ulwi00y/QiP6VY4l5QU\nn2L2s6NTV6rM+sqjD4lk2tbNbIqN8hBtBl1X/cYJXbwVnv6h1/KvoX3WXT5Dza8n061KDcbs3KB9\nvqDMrHjWjCzu8N049410c5vXyJVZs8JlD9CszdEJ8VyLi/YQb4mJw0V0bCw37ZnAGZnEEZLSP4/g\nidBi5AoJwbOElhl9+mfDt2n45wfmx0j0uXMRzJLmg4mKi+GJP0dyjpvUXm767W1q6hmAsQFtLNeQ\nhEsnpziODdh0YS+1c5f3ODaxcAP4rt6HyX7mtDCj+rfJ7vO1+ZEvKD8fV53r3tZ3Zwf67nzWHVgw\ntvwcfO23Xl2wsv/sOvfryKhzhIbk1d/Z8EromwxfH9Zq/VqrNrxYYlMKLVKmcZGDtz5Icd9wS/Em\nhFgFJFX4cIiU8pf0H9KtEUK8ArwCULDg7T1tKZLHbrd5RW02L2nWWhz0aXs+6K2XhdHv4PFxDlpb\ncrcZ27PlDuHb3/pz5MA5ylbSvqvt682nuosXrt934g0gNs5B5I0YXnhd++FO7HBerkTaaoHeLjVe\nsgQqCLcWYuXHryEQZMmUPikWUuLo1Wgq9JvMP2N6ExDgfcvYO74v5QaagscYY3LZDdYfO0PZdyez\ne8SbHBhliqx/L1zyOG5Yq4aUGmkKye2DevJcheLM2aMFURSy4RZukLxgs+Lv44Mhc54D5gAvlyzJ\nyFUr+XbPHsuyr2DRsx24EB/r0d6oBPrdPm3Z84/nXiaTnz/Bvr6UmzHFLdIKT5uAte6pcEcSC/2N\ndp6LwsGYnX+7+z8cE8Gak0d5vFAxnE6n5QlYUuuXz0FA64JlmPhoK8r+8AFONHH1btHadK3TgGI/\njHbPl5VKizWhY13+tCKB1TeO8mrO2ux48l2q/m5GkAoh2NNas5bvenIUg35fwHJ28Sh2prYcDkD1\npYO5SBQ1lg726FULdBjO9otH3Ul6V9QbxtqG6SO8UsO3h2ex8ppRNUQSgC9f1fLOKXgrzkQfJ39Q\nEYz5c0otMvSdvc+RlwL0q+QZVBTrjMbPFoBNmPfS7SdXsTRqEjYBncM+JSxbfnz0dCT9yqatrunL\nJf++9UG3YMnxsnqQhKRO3mWE+he64z4VGcMtxZuUstFt9HsWsIYq5te3ndVfJ95ubXNGXzbNTKKq\nf5YxTQemg7ZsehvjU6SBsyc8yzJ9+v6PLNw+kvArN8hrCQwIzA0xiep7+vrYEAL6dp5hXVsBYPnW\n4Xdx1HdGgL8v5UubPi0CWLOoP7FxDgIDvAvAZzSBfr5eP9Dpxe6P+hLnSKDGoKkeJYxaDpnKJWDP\nRG+RtG+8ue1SZBQOp5Mm47/WNujj3DWyN5WGT3UflzgZcYncYRwcnrwA87Pb6d+8Ca2rVaHDzB85\nKc2gheeL5mf2iTMEATvf7kO804m/T8q3t1H9+mFkG7wRFaWJN8t4O877gU9aP5ViH0WzZHVbmj+t\n3YBPt/xJpIAzxrxJOPnqAAp/aYqVPFKwqtObhPj5EZeQQKlZkzBU4+MEUCm3ZoWx2+2c6PQ2fZfN\nY+Gl4xjOhEtPHWDxnP1uX0MhYPTxTUw8sUn/N2Z+aRtavkm9JR97jPnA00Mo+4vpmzqtejte3zof\ngC+ObWT68Y3uwRufreLioRgpKgzWCS0f4OIjW7zk4JL67xDhuMngTd/Q4M9hbtFoE9BhwzhmP/Y2\nmf2CuVPC467TdasmGEPxY2Zd7yj6TsWfZ+U/azHmJZ54Om/pCmipQlzSxdhto7lBBOFcpCglGVh1\nCDabjR7bn9fqr+rLmR9Vmo2UAiG05UWXrs+zCO+0QTcTbmD39cEmzPtFjDWZMJGpjtIMj7zIj+ef\nAcCuW0Zb5/2KLIH58LMnkW07FWw4rqUIcqJFuZ6P+plQ/7vvuqBIH+6Wz1s5tIfammgBC38AJaSU\nTiHEFuANzICFqVLKJUKInkAFKeVresBCWyll+1udW/m8ZTyXz1+nUwN9+UQIlu4fk3IDoGmVYeYb\nQ7xtu7993xRw5moEfj52wjKHuH3epnRpyRMVSwKa31qVd8ylzr3j787Nv5S+XJo4+hMB7QvnY94p\ncx1751s9uXAjimLZU19/0krRjzULyrE3+1Hk44mePn36qQ1LrF3APy+/TrZAM83Civ17eWXdMvdo\nj7/SnyIzjETPlgjURP50IN3FTZ4MysXkZ15kzeljdFvzk3u/VbALG7TLVJAFUSct/WgC662i1elR\nsynRCfFUWjgew9QnBAwp35gx+83KF0ZOMUgcJ+RCCOFOdpvYG6IyAcx8cgiHw8/QcbNWksodeOv2\nl7O2NZL+aq/tNmgaVIEhdTpxu8S7HDy7UYtI7RralicrJG1rmHdkIb9e/d0jxxto4u3AtQNMPDpO\nH7823ry2/AyvOpYe25/X3QNd2AS0zt2RMlkqkisgL742P3fi3qR4b08bDB8yo28bMLDsAvxsAUm2\nSQ6n08GMI1qFGUO82YDcdKdFyc5p6ktx77nnSXqFEE8DU4GcwHVgp5Syqb5vCPAyWj3iPlLKpfr2\n6pipQpYCvfVUIQHALKAKEA50kFIeu9UYlHhLP1qW7o/Lkh5r6THvSLCrV2/wQj1TrPUc8QxPtq+W\nEcO7pxw+fJ6uA806h+sWDeD0uWt07KVZFCWw4SczgCE2zkFAKqJsrdyMieeJVz8BoFyxnOw9rls8\nBfzzTcZHm6aG8gM8/eMM8XYzNh5hEx653e6EU1eu0PjzWW7/sfwBdv7sn3Lh+/SgyBQz0MTjTmkR\nXid6pt6f8bEZkzmJw8sH7nCnfpSaPdFj24nOg7geF0PleYblTHqIPiG0PG/u4vQW8VZUBLDyWc9x\nSSk5HxNJnsBQzl24QIONX+rNTDOhZ2xRUgIMM0LVBjtbmpVSohJiSXA5CbH588iq99DEmpGEWGKK\nNzPBb8fMtXi9+jPJzte5mMv0+GcMcWhWPhvw+2NTvI7bcWkf7x/5FEOk2oAfH9EsS7HOGMLjIsgT\nmIuLcVfI6Z8dezKCy8AlXZyLOckHB43yYp7VGjrl702l7LXwsSVv3f1izzucYb+H2PITWRhY9huP\n+qNpIcEVxw3HWRaeNAXvyyXX31ZfinvHPQ9YkFIuBBYms280MDqJ7VuB8klsjwXaJd6uyDhstlu7\nynZrNlo7SPffebJ9NZqVG+Len71QMFfPRGuBC3qnQz9+gaxZA+nT5Sv9rg9Ltw73Kr11P1OkSA6v\nbZkzaU/PiR9/4h0JnLt4naIFc3q1SQnrg9S4nq3oO/kH/j0bneaxpgcV+5o+bLsn9+XU5euEZQ4h\nwC/5W4bV6hbvdGJzCbhD8WZUSyiYwzL/knQXbkt27KDX6r9AwJau3cmRSQs2Of6GJoBqf/EZF+Nj\nPNqseK4LRfUUIS6Xi6JfaBa71nkKM+UpTZAUnv6hMWS3uELAhmdewdfXh1A/f6SULD/h6Sz+eVhF\nABrPM4XKhBpNaFqsPJn8PIMTjj2XdLLq4X//yuwzu3GLMn0MRvpXIeDw/4ZS6+eRRFiWSHe1ehdf\ne9rFhR0bCPBxL1d7LuEaZBVQi/K811CzGLX58z0iZLQ7crV74RZ0KKJZ0HL4Z6VHwf8x+dR83aon\nabm2N78/NtWjTz+RvCUr0hFBREIEeUVuAu0B2BD6sql2txtc4G0ORx7ilxs/YdOtkF9Un4VTwoeV\nvmLALu+UGcdu7qds1iopirdXK4z12ialZNyBlu55eUePNAU4G32QPIElOBr5N0vOD0MADQOHUK6Q\nVt/1zIW9LIt8HYBuSrA99KjyWIo0M6rvt/y9TAs6SJwqxFg3cecftdn4betwroVH8UKzSRg/Xsu3\njwTg5s04bkbFEpYrM/PmruGrj9cA0HtgY1q1rZNhnyktOBxO/tlxmIHjftc2CFj/U/JpQx5ErOJt\n1psdeOFjPTWCgN0T+5gRxamk7BBLQIPe9MD7t15irTJyMtECgoGbmFLgcBIVF+6ERz6azAWpXZtf\nNG9J41Kl3PuKTJ3ocawE7TqXnpYwD2vca9r14CXedCvMnud64bIJAn198bf7UPibD7z6sJwNBLyQ\nryS96zQmV1Am1h46QOet2nPzsCqN6FLWs+4vQKn57+v2KulhNStDEPu56VFJwVw2tfq1SSYUeooW\nVcyi6AuObmTUgSWatU7AgDLNeL5oPSIdMfx0ZD2fnfjL3Q9Y04yYy5XrG43DIZ346cJnw/n9DNn/\nlVu8/V53LAF+yUfPppUEVwLxrniCfIKYd3gBv11bqo9FE2/TKn9GoF8g3bZ2xoaLghTh3eojcbji\n8bXUNr0Ue44/zv3Clsg1GNa9iZXnpXk8O/bvYBlDyMHTdC/b3b190v4mCCNyVP/bKHgo5QrUB+Cf\no9+xy6lZS7uVXIfiweWeL5veDyjxlrE0L6WH/utOI9qPkv4roAu3vAX9OHcqnsAsgoXr3k+yH4OE\nBCeOeCeBQX6cP3eZzm21KLB5S98ia9Y7d2i+G1wJj+Kt4fM4ekYvjXOPxFtsfAIBfj5Ue2UySJjR\nsylVKpdN9/M4XS7GzJ7P/J3naVomjAndvTOxVxk0mXi3Yod9H3iKq6TE24fPNGTAz38A8HP39pQp\noAWInL5yhcafzmL/0D6UGaU7oAuY2qYZTSqWSd8PZ+FUeDj1v/tWH6MmaDrmz8+cc3p2I2kZv0WI\nGeMrGhLC+AYteea3ebQQfnSqXpdaVau6hW6jrz7mX6kllj7+cn8Py7Mh3l4vWonPT+xyb1/c/EVK\nZc+FXxKWsCLfj2FG7lo0aNAgzWIa4Mf9//DuwaXG8DGXTT2XUfe10XxTv93zJ5NPmglj7e5oWkkR\nezZOuq6gxeOC3aZH1FrEm03AohpvkzNL2pOCJ0eb9T0B7XbUOW9bnshfk8y+mZBScvDGMcqEmgmf\nn9/cTTvWw+/NxdjSo8kbmtd93PGoY+Twz8GgPT0wvnQ7MLnyTAbsfsE96cyryQAAEjRJREFUN0/Q\nlsfLNSaz7+35ViZm+oEe3OQI4KJb/p8JCgnCLjwtezcdV5h7XAuiCaM5rUsOSaInxf3OPV82VTyE\nBAC6X1yvkS35ZNgSc2HEBflLZmXER13InT9bqorE+/jY8fHRfpjy5M3Jik1D78qw0wOn00X9/010\nC9Zl3/fShGdg+kefxjsSOHLqCp1HzQGgW4tKvNq+occxpy9dp3DurG5R8cbny1n3RfqLN7vNxnud\nOvBeCn7lY9o9Qf/52g97SctKaXxCAhHRsZTNmZX9lzWxu2/km9hsNsb+biYhffrL+Z5WJwFz122i\nVVhWFl+6RknAZtcCF9qWKszAlk2Id0kenfqlu4/Dg+/MGvfZP5sxbMbGgt+cs2fMMQFZ0Jx7f2v1\nDJFC0vHXBe59x25G8czieSBgiYxnyda/2FKmNGFB2kPIqq7eyWcNTrykpeIZv3mlx/ZWy74DYEGT\n53hmxffaUGyw48nX3ZUVbhdNuJlhGAfbDmPO3g28f2QlVr+0Cr8OY3er4QRbrGGZgXwiK4f02p4n\nXFcx5u2PRu8RlRBLt3WfEC6t9lLYfP1fnszibSVMDRHxN+i1+QPCZQQ2AYsfncov9T5lwIaRHOEi\nrQrX10egpTcJE1l4bVNPInAwseBwuthf4JuE2QQLXyZVnUSQrxZk8sbWXkRzgyAyMaX6J+QJzItL\nOr3O77lEKniyUvp6+bxS5rNbHhPsmwNjOVoJt4cbJd4UaWLpLs9Emy3b1eP6tUg61NMsBy/2bEjX\nVpZwfSGY+sOrlCiTnwedxMYNm7AhbGakXlKs3bKHQRO1/E2/fv4KoSGB+KfgN2YQn+Dk37Nm3rON\nB07zaqJjSuTX/MC2fXnvw/ubV69M8+qVvbZHxMRxITLKLdxA+2xz16/nu01mao4Zz7ek2/e/u4XQ\nwWF9iU1IYORqLdPZYQk9f16GBH46dIJo8RfvNn8iXT/DiIaNGdWoCb52O0U/nujtsSVgR2/PIIBd\n3Xphswk+Wr+arw7pnwfpvlic0TEUnv2Zu/2J7gNSHMPAWo0ZWKsx0XFxlJ1nWisTl5V6c8NvzGyp\nWYFOX7nC4yuns//pfgQEpBzFWHLBKPdYDKZUbUezIproz+prpp0IQhBrKYnVrlRd2pWqS4LLyQ1H\nLFn9NVFabakhIjRrZcNVI+lfsIku3MyTbWjsee8wePuP8WzmIr/XGUVQUPLF0Z24iNYtl1Y+rJv0\nA1+vfe/gkpoAfevUcD6rOp7KrvKE+mbimiPcLd6iZRQuJNEikgX75rAiZqk7GtWmp16x6T+VEyrN\n5mbCTUJ9U1+C70zkEb4+1UfrD+3SGFLut1S3T4xaMlWAWjZVpAMXzl4jOFMAmUK1hLGL5m5g2ljd\nEVcIKj5SgPGfvwJA02pmypCSFbMx9Zs3OXv6KjnDQlNVAzUj6NJzOsdOaXUi3b/gNvh2Shc6v/Et\nWn4twdqFSS+VjpzyM8vWH3e/N5YJl3z5OsGBfvj5PrzPTHGOBCqPMKstGH93vNebyqOmgoAsAjal\nkO8to4lzJhAd7yBrYCBFPtH833qWrkD/Rk08jjOqi1yKjqLmLC3S0UjIa/jJrW3bhULZvQNZjkZc\npWhoNhp+N5FjuqeaseTYJFdRpjdNOmtSvNNJ6Xmmv5zxgLH96b5k9jcTOF+4EUmL5VOJ0p30fQT8\n/WR/av72oTuYYf/T77mrT6QFh8tJ7eV6dKk+kGezVmFBxHasZbQAVtUfSrBfMFfiIsnul4kYZxwt\n1gzRj4G/GkxM6hTpwvObu7vHqEXYarnb/pf1aRoXbQzA34f/Yt7Nue6oWOOvUZhe6BG0/jZfGmZ7\niiYFtMCUSEcEvjZfAu3e4tPlcvHd/vc4wy6EgPK0oE25Hmka+/XoC8w7rVn67EIJuAcdtWyquC/I\nnagG6lMd6/JUx7q3bNf22ccAyJI1GB/f2wudvxv0eqUx/d5d4LU9wN/85xKagoGjUslcbvEW5Ae/\nfdWbeIeT0JC7Xw0ho7GmCsnuL1gzqo/XMeFRMdQbo4mZNW93Z2q7hvT+8Q+WvNaeIvnMRMgZUds0\nLZy4cIEn5n8PAgIEHOhlWt2WHdzDJ4f2sLT505QpWhTA7XcWFuSdNFUADXMXSFK4AWTzD0IIQfNi\nFfj06E58AYf+5PC/whVZtWsX3XZrD0QnXjRLTvnZ7e5o02I/mCl8dlw5Rf18ZtDF1ssn3cINYHmz\nnoT4+ntYkyMdsWTxS901Wvn3d92fa0fL99nW3Dz306s/ZP717QBu8WMQ50wgGIh3JQAQ5OP5D8la\nXq/pGvNaWv64d/Jdg6iEaF7c3B+b0PzZ/PDh+0fMaFSndGIXdtxlLRLZyktlK0WgXfvcDcu0oCEt\nPPavPLyYX6M09wUhtB7ipYMAaS4j+9p8vfzTDGw2G13KeyVeSBOxrmu3PkjxUKEsb4p7TpMamkP0\n0o3vcerEZYoUz3WPR6RILVbx1rZCITo2rEeZvGFUeWcy8Wg/dH5Cd5MU8GOP53jm8znuNgCFsmdm\nWR/PdAylR1jqpQpY8NIzVCigFW2RUuKUEp+7nGpm5b+HeGXpb+5xHrcsmRb+1LQQpSXP2+0ipaTI\nbM3CZhVviXFJSYl5mpB6OmcpJjTULEM3HHFEOeLIE5Q+pegq/65Z2vpnqc8Ldc3EuDWXDtari2lC\n0a77L04s24kaeUvyxJ+a0AwAVjUaD0D9P7T5u13LW4TjBl22DMKGGd364yNm+auzMefI5puVbtt6\na2P3Lc+Aqt4PGaml784OgGRc2e/wT8eo2JTYemwe2xza8nvn4ouJd0YR6pf3Fq0U9yvK8qb4T2H3\nsXlZ8R4GIqNiWbZhLxO/1+ovjunRnIa1k46qjI6NJ+g+KM9lsPdDT2uZ8TC4Y2xfer8zmdYNytOo\nUSO3NcXhdFIYOAEedU2tbPn3X09fMwnHr0dRQS+4FxEbx/XoGApnv7vXSuMSpWDpb25jzanwq9h8\nfMnk53dLwRYVH0/5b7TkurVy5GFik1bkz5R6P6nECCFSFG0G7mVPAc+WqODeHmD3wZaO9dSsyXmt\ndMv6CF9e+9sYAn82HE6gTwCbT+ym/h/m8mgjv3LuNqsb3tlSaWbfTCysm7yzf75ATeR8X2vGHZ3H\nYHLlH9Kln7RQrUh7th3+jJK8jr8tBF/bf8+Kr0gbyvKmSFemTVjCou+0m/evW4fjlwrn/IedTbuO\n8d5ni4mM0RLSFsubmbnjuiZ57OGTlyhZKCxjB/gQY62wcOj1N4l1OgmPiaZwKtJdvD79E44Sw7Ju\nb4EQt+VP9iBQe+kQHEDTLOUYU+c5AE5GXebZDVrS4vpZS7Pm+n5AW0ZtkL0so6p6lnRadWYHow9r\nFUzupt+bQnE/oPK8ocTb/camdfsY3nMuAEt2jnygqijca85ejiBrpkCCAvyo2WWS2/o07Z1nqFaq\n4D0d273EJSVD58xn/rFz5kYBh9/NOB+567ExVPlSs+4c733rZdJ4p5OSMzTxcuLVlCNM08r+y2do\ntWIW7QqVZ97JPZTxCWHJs3e/VFhytFw6lAtoPmwC2NzsfY/yU+9unc0f4XsQSMaX7cTbB2cC0CFv\nPRac1xzvVzf0LsWnUPxXUcuminvKz9+uY8Nf+9j3zykt79m+0dR+tBzLdnsn5j1/OpzM2YIJCs4Y\nH5EHkayZvNOIZAmyUSpf+iQBfVD5Zfd+frQKt3tAbEJCmo73s9vTJNq+37aJIXvWAHCiyyCPfRdu\n3iAsKMRtuRNoSWOD9TJUQT73dhn9+waD+Gnn3/wUvprZT7zDlevhtNo8iRdyVOeN6m0ZVrUDI4Vm\nkbMJG6UP+nIQB43y1mDX+e0MLtntno5foXgQUZY3xW1z+vhlzp25wLDXfgAfWLYr+Yiq2Oh4fP19\nUpW4V6ExfcFqflu9nXZNavJi63r3ejiKu8g32zYwYo9WrzKxeDt3M5LDZ8/QZfOvGJGbj4YVZlbT\njhk9zFsipaTW8iEY49zSbCxno8MJ8Qng/LWrdN09ldnle7Mv/AzjL/zMnGoDyZ4pM77Cjo/t/ok4\nVyjuJsryprinFCiSkwJFcrJsX4VbHhsQdP842T8ozPhtOxKYsnCLEm//cV6qVpeXqiWdXidvcCj/\n2+FZeeFmQizRCfH33OqWFJnw4QYO8tu1AI18QZrluNNurVD7i/umkEtoDvcLT66nfan6BPsEEKKc\n8BWKVKMsbwqFQvEA4HA4KDlvAkHA/4pXYmjNZnc9XUpaOXToEIUKFcLf3/+26q0qFA8DyvKmUCgU\nDwm+vr4cf+Gdez2MFHnh2Ew4BovrDyR3YJZ7PRyF4j+LEm8KhUKhSBf+sVRaUCgUd4/7y+auUCgU\nCoVCoUgRJd4UCoVCoVAoHiCUeFMoFAqFQqF4gFDiTaFQKBQKheIBQok3hUKhUCgUigcIJd4UCoVC\noVAoHiCUeFMoFAqFQqF4gFDiTaFQKBQKheIBQok3hUKhUCgUigcIJd4UCoVCoVAoHiCUeFMoFAqF\nQqF4gBBSyns9hjtCCHEZOHmbzXMAV9JxOIqkUfOcMah5zhjUPGcMap7vPmqOM4bE81xISpnzTjp8\n4MXbnSCE2CqlrH6vx/FfR81zxqDmOWNQ85wxqHm++6g5zhjuxjyrZVOFQqFQKBSKBwgl3hQKhUKh\nUCgeIB528Tb9Xg/gIUHNc8ag5jljUPOcMah5vvuoOc4Y0n2eH2qfN4VCoVAoFIoHjYfd8qZQKBQK\nhULxQPGfEW9CiK+FEJeEEHuT2S+EEFOEEEeEELuFEFX17aWEEDst/0UKIfro+7IJIVYKIf7V/2bN\nyM90P3KX5nm4EOKsZV+LjPxM9yO3O8/6vr5CiH1CiL1CiLlCiAB9u7qeLdylOVbXciLucJ7f1Od4\nn3G/0LerazkRd2me1fWciFTMc2khxEYhRJwQon+ifc2EEIf07+Bty/a0X89Syv/Ef8BjQFVgbzL7\nWwBLAQHUBjYncYwduICWgwVgPPC2/vpt4IN7/Tnv9X93aZ6HA/3v9We7n/673XkG8gHHgUD9/Xyg\ni/5aXc93f47VtZx+81we2AsEAT7AKqC4vk9dyxkzz+p6Tvs8hwE1gNHWudN/944CRQE/YBdQVt+X\n5uv5P2N5k1KuBcJTOKQN8J3U2ARkEULkSXRMQ+ColPKkpc1M/fVM4Kn0HPODyF2aZ0Ui7nCefYBA\nIYQP2g35nKWNup517tIcKxJxB/NcBk1gREspE4A1QFtLG3UtW7hL86xIxK3mWUp5SUr5D+BItKsm\ncERKeUxKGQ/8gPadwG1cz/8Z8ZYK8gGnLe/P6NusdADmWt7nklKe119fAHLdveH9Z7ideQborZvy\nv1ZLIKkiyXmWUp4FJgCngPNAhJRyhX6Mup7Txu3MMahrOa0kd8/YCzwqhMguhAhCsxwV0I9R13La\nuZ15BnU9pxcp/Tam+Xp+mMRbiggh/IDWwI9J7ZeaPVOF5t4hyczz52im5MpoP4YT78HQ/hPoN9c2\nQBEgLxAshHgh8XHqer59bjHH6lpOJ6SUB4APgBXAMmAn4EziOHUt3wG3mGd1PWcwqb2eHybxdhbP\np4n8+jaD5sB2KeVFy7aLxjKJ/vfSXR/lg0+a51lKeVFK6ZRSuoAv0czLipRJbp4bAcellJellA7g\nZ+AR/Rh1PaeNNM+xupZvi2TvGVLKr6SU1aSUjwHXgMP6MepaTjtpnmd1PacrKf02pvl6fpjE269A\nJz3ipjbaUsd5y/6OeC/l/Qp01l93Bn65+8N84EnzPCfyiXsazYyvSJnk5vkUUFsIESSEEGj+hQcs\nbdT1nHrSPMfqWr4tkr1nCCHC9L8F0fyw5ljaqGs5baR5ntX1nK78A5QQQhTRV6A6oH0ncBvX838m\nSa8QYi5QH8gBXASGAb4AUspp+k32E6AZEA28JKXcqrcNRrshF5VSRlj6zI4WSVYQOAm0l1Km5BD6\nn+cuzfMsNLO8BE4AryYSfA8ddzjPI4BngQRgB9BNShmnrmdP7tIcq2s5EXc4z+uA7GjO3/2klH/o\n29W1nIi7NM/qek5EKuY5N7AVCAVcQBRaVGmk0FKtfIQWefq1lHK03mear+f/jHhTKBQKhUKheBh4\nmJZNFQqFQqFQKB54lHhTKBQKhUKheIBQ4k2hUCgUCoXiAUKJN4VCoVAoFIoHCCXeFAqFQqFQKB4g\nlHhTKBQKhUKheIBQ4k2hUCgUCoXiAUKJN4VCoVAoFIoHiP8DKNsV7qFGMyIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.colors as colors\n", + "import matplotlib.cm as cm\n", + "import pylab\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price vs pca')\n", + "plt.show()\n", + "\n", + "if simname != \"bm_kaggle\":\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs pca')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['ohlc_price'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs ohlc_price')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return shift')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['bo_spread'].values.min(), df['bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['bo_spread'].values))\n", + " plt.scatter(df['bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('bo_spread vs period_return shift')\n", + " plt.show()\n", + "\n", + "#plt.figure(figsize=(10,5))\n", + "#norm = colors.Normalize(df['volume'].values.min(), df['volume'].values.max())\n", + "#color = cm.viridis(norm(df['volume'].values))\n", + "#plt.scatter(df['volume'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "#plt.title('volume vs pca')\n", + "#plt.show()\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price - 15min future vs pca')\n", + "plt.show()\n", + "\n", + "#plt.figure(figsize=(10,5))\n", + "#norm = colors.Normalize(df['volume'].values.min(), df['volume'].values.max())\n", + "#color = cm.viridis(norm(df['volume'].values))\n", + "#plt.scatter(df['volume'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "#plt.title('volume - 15min future vs pca')\n", + "#plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# this creates a training dataset for the model\n", + "def create_dataset(dataset, look_back=20):\n", + " dataX, dataY = [], []\n", + " for i in range(len(dataset)-look_back-1):\n", + " a = dataset[i:(i+look_back)]\n", + " dataX.append(a)\n", + " dataY.append(dataset[i + look_back])\n", + " return np.array(dataX), np.array(dataY)" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAANKCAYAAAAdrnZ5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeUFFXax/Hv08NEZoDJgCRBQAUkgwQBMaxpzRlcM2sW\nc87ouq6r6+oa0PV1VcxpTasiCgqKBAWUnDOTBwYm99z3j+oZJgMDTNPy+5zDYbrqVt1QXdX99L11\ny5xziIiIiIiIyL7NF+wCiIiIiIiIyI4peBMREREREQkBCt5ERERERERCgII3ERERERGREKDgTURE\nREREJAQoeBMREREREQkBCt5ERERERERCgII3ERERERGREKDgTUREREREJAQ0CXYBRERERERk/+Jn\nggt2GeoTxigLdhlqo543ERERERGREKDgTUREREREJAQoeBMREREREQkBuudNREREREQaVVmZP9hF\nqFfYPtrFtY8WS0RERERERCpT8CYiIiIiIhICNGxSREREREQalXOlwS5CSFLPm4iIiIiISAhQ8CYi\nIiIiIhICNGxSREREREQalXP79myT+yr1vImIiIiIiIQABW8iIiIiIiIhQMGbiIiIiIhICNA9byIi\nIiIi0qjK9KiABlHPm4iIiIiISAhQ8CYiIiIiIhICNGxSREREREQaldOwyQZRz5uIiIiIiEgIUPAm\nIiIiIiISAjRsUkREREREGpWGTTaMet5ERERERERCgII3EfndMLP7zcxV+rfBzN43s07BLpuAmXUI\nHJeTdnG7s83solqWTzaz9/ZYAfcQM7vXzNabWZmZvVJPusvNbKWZlZrZ5D1chlrbTEREQpuGTYrI\n781m4LjA3x2Bh4BJZtbNObcteMWS3XA2kAS8Um35VUBJo5emHmbWD3gAuBOYDKTXka4l8BzwDPAu\nkLOHi1JXm4mI7BNcmYZNNoSCNxH5vSl1zk0P/D3dzFYDU4Hjgb3aS2Nm0c65gr2ZR7DUVTczCwPC\nnHPFjV0m59yCxs5zJxwc+P9fzrkt9aQ7CAgDXnbOzdv7xdo9v+f3tohIKNGwSRH5vfs58P+B5QvM\n7Agzm2Jm+WaWZWYvmllcpfWtzOxlM1thZgVmtsTMxplZRKU05UMAR5nZq2aWC3wSWHeymc02s21m\nlmNmP5nZ8ErbxpjZP81sk5kVmtlMMzu2cqHLhwSa2flmtszMtpjZ/8yszY4qbGbtzexNM8sM1HGe\nmZ1faX2Smf0nUPf8QF79qu1jlZn93czuMbN1wJbA8lfMbJaZnWpm84FCYGBgXTsze8vMsgP7/dLM\nuu6grH8ys6mBbXLM7NvKZQkMOzwDGF5pOOz9lduo2v5GBtq70MzSzOxZM4uttH5EYB8jzOxdM9sa\nOM5X7US7hgWG5q4xsyIzm1+tXV8BXgu83FyeTy37uR/4PvBybiDdRYF1UWb2mJmtDeQx18xO2INt\ntsrMHq+2v4sCaWKrtdEfzOxjM9uK10OImfnM7PbAe7IocG5cWG1/Q83s+8B7douZzTGzs3bUviIi\nsmPqeROR37sOgf83AZjZEOBr4CPgTCAReBSID7wGb7hZLnALkAl0Ae4HkoE/V9v/48AHwFmA37z7\n694DngpsHwX0BRIqbfMicDLe0LplwOXAZ2Z2pHNuaqV0A4HWwE1AdGCf44EqX+YrM7MU4EcgH7gZ\nWAt0B9pWSvYRXs/PzYH63QJ8a2a9nXPLKqU7H5iPNzyx8udFB+Ax4EG8dl1pZgl4PZxZwBWB/G8H\nvjazLvX02hwITACWAuHAecD35g1zXYE37LUd0CJQDoB1ddS9G/AFMBEveGmLd2w7sn0obbkXgf/g\nted5wL/MbJZzbkYd5SRQ31vxhkXODOQxwcycc+7NQFnXAncDI4ECoLbewZfwhlP+CxgFrACWB9a9\nBwwA7gssOxv42Mz6OefmBNLssTbbgX8D/wf8Ay9IB3gauDDQFj8DxwAvm1mWc+5TM2sGfAr8N5DG\ngB6BsoiIbKfZJhtEwZuI/O6YWfm1rSPefUV5wKTAskeBH5xz51RKvx7vvrjuzrnfnHO/AjdWWj8N\n2Ib3JfXaakMEpzvnrq6U9kwgzzl3S6U0n1dafwjel+2LnXP/CSz7EpgH3AP8odJ2zYATnXM5gXQt\ngSet/iFsNwDNgb7OuY2BZeV1x8yOA4YAI5xzUwLLvgFW4QVx1YPTk5xzhdWWJQJHVwomMLOHgKZA\nL+dcdmDZtMB+L8ELVGpwzj1QaR8+vMBrADAaeNA5t9zMsgFfpeGwdbkHWA2c7JzzB/aZDbxtZoOc\ncz9WSvumc25cIM1k4I/A6UCtwVsgOB0LjCvfDvjSvJ7Q+wP7W25m5UHYTOfc1jrqvM7MyoO6ec65\n3wJ5HAWcSKVjA3xlZl2Au/B+INjTbVafd51z91TK6yDgSiq9d/GC81Z4weaneD90NAeucc7llddh\nN8ogIiKVaNikiPzeJOJNYlECLMbrpTjHObfBzGKAQcA7Ztak/B9ej1EJXg8Z5hlrZgvMrCCwbgIQ\nidejUdln1V7/CjQ3b1jisWbWtNr6/ni9Ee+WL3DOlQVeD62WdmZ54BZQ/oX/gHrqPxL4olLgVt0A\nIL1ScEBgIpdPa8l/Ui2BG8D6yoFbwNF4QcSWSu2aB8wG+lXfQTkzO8TMPjSzNMCP19Zd8YKAXTUA\n+LA8cAt4HyilZt0qAgrnXAleL1Z9Q1K7AzFUOm4BbwNdzCy5AeWt7mi8nsxp1d6fk6jUhnu4zepT\n/b19FFAGfFhL+XqZd//jcmAr8IaZnWJm6nETEdmDFLyJyO/NZrwAqR/el/EOzrn/BdbF400S8Szb\nA7wSoAhv+Fn50MKxeMMhPwROwQsKynvXoqrll1b5hXNucWCbjng9bplm9kalL/etgK3Oufxa9hNj\nZpGVluVWS1Pe41e9DJUlAnUFbuX51zYDYhpVh3aWL6tNbcuTgHOo2q4lwJFUHbJZwbz7DL8KrL8R\nOALv2M2l/jrWpVX1sgUCuSxq1q22tq0vz1aB/6vXvfx19f03RBLQkppteD+BNtwLbVaf6nVNwjt/\nNlcr3yt4I3laBX5sOAbvfHoHyDCzz8ys4x4um4jIfknDJkXk96bUOTerjnW5gMP7Mvx5Les3BP4/\nC3jPOXdX+QozO7SOfboaC5z7DO8etuZ4w+D+gXev0Ll4gVWsmcVUC+BSgXznXFFdFdtJWWwPNGqz\nEUipZXkqkF1tWY261bM8G/gY736r6vJqWQZeL2gb4Bjn3KLyhYF2a4gadQv0BiVSs24N2TeB/WdV\nWp4a+H9391++j/XAqfWk2d02KwQiqi2LryNt9eOcjdeLOQSvB666dIDAUM3jzCwarzfxCeAN4PCd\nLKOI7Aec7nlrEAVvIrLfcM5tM7PpQFfn3IP1JI3G642rbFQD8tuMN3xsON6XbvAmunB4k6O8Ct4w\nzcDrqbXtZxdNAq4zs1TnXG09ZD8BD5jZMOfcd4H8Y/CCzA93M9+zgfm7MKV8dOD/irY2s8F4E6LM\nrpRuR71i5X4CTjOzOysNnTwd77Nud9v2N7xJWM7Cm4ij3NnAEudcxm7uH7w2vAmvZ3ZRHWl2t83W\nAYdUW3ZsLelq8w1ez1tz59zEHSUOvA8+MbPuwB07mYeIiNRDwZuI7G9uxZucpAxvZr88vPvYTgTu\ncs4twbt36zoz+wnvHp5ReLMz7pCZ/RkvUPsCryevM94X/lcBnHMLzexN4JnAELjleLNNHow3GcTu\nehL4E97sgw/jzX54CNDUOfeYc+5LM/sBbxKP2/F6kW7GCwr+thv5PoE3YcY3ZvY0Xg9SKjAcmBqY\njbG66Xj3R71oZo/h9SjdH9i2skXAKWZ2Kl7wscE5t4GaxgG/AB+Z2XOB/f0V+LLaZCW7zDmXbWb/\nAO42s1JgFl5geALeBDR7wkTgS2Cimf0Vb6bPZkAvIMo5dwe732YfAk+b2Z1snzGz284Uzjm32Mye\nB94K5D0LL0DsBnRxzl1mZifiTVDzEbAG7/7MP+MFfiIispsUvInIfsU5N9XMhuFN9/4aXk/Carxg\nq7yn6kG8xwKUzyr4AXAdgee47cA8vMcAPIF3H9RGvGnp762U5nK8oOJevCnUf8Wb1XG3e96ccxmB\nxyE8hjdcMxJvMo6/VEp2KvD3wPoovBkWR1Z7TMCu5ptpZocDD+MFkC3w6j4Vr01q2yYt8Pyvx/Gm\nll+K95iBW6slfRboDbyMN8TvAbyApfr+5pvZ8cAjeMdsC/BmLftrqHvxhg1eiReYLgNGO+fe2hM7\nd845Mzsd7xESY/F+VMgG5uANu90TbTYe6IT3fo7E+1FhHPDCThbzamAJ3nv4Qbw2XoD3WAHw2sTh\nHYMUIANvMpw7d3L/IrK/KCsJdglCkjlX1y0NIiIiIiIie15e3r37dBASF/egBbsMtdFskyIiIiIi\nIiFAwyZFRERERKRRabbJhlHPm4iIiIiISAhQ8CYiIiIiIhICNGxSREREREQaV5mGTTaEet5ERERE\nRERCgII3ERERERGREKBhkyIiIiIi0rg0bLJB1PMmIiIiIiISAhS8iYiIiIiIhAAFbyIiIiIiIiFA\n97yJiIiIiEjjcrrnrSHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBERERGRRmV6VECDqOdNREREREQk\nBCh4ExERERERCQEaNikiIiIiIo1LwyYbRD1vIiIiIiIiIUDBm4iIiIiISAjQsEkREREREWlcGjbZ\nIOp5ExERERERCQEK3kREREREREKAhk2KiIiIiEijMqdhkw2hnjcREREREZEQoOBNREREREQkBGjY\npIiIiIiINK4yf7BLEJLU8yYiIiIiIhICFLyJiIiIiIiEAAVvIiIiIiIiIUD3vImIiIiISKOyMj0q\noCHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBERERGRxqVHBTSIet5ERERERERCgII3ERERERGREKBh\nkyIiIiIi0rg022SDqOdNREREREQkBKjnrXG4YBdARERERPYLFuwCyN6j4E1ERERERBqVabbJBtGw\nSRERERERkRCg4E1ERERERCQEaNikiIiIiIg0Lg2bbBD1vImIiIiIiOwiMzvOzBab2TIzu72W9c3N\n7BMzm2tm883s4t3NU8GbiIiIiIjILjCzMOBfwPHAocB5ZnZotWRXAwuccz2BEcDfzSxid/JV8CYi\nIiIiIrJrBgDLnHMrnHPFwFvAKdXSOCDOzAyIBbKB3Xo6ue55ExERERGRRvU7eFTAAcDaSq/XAQOr\npXkG+BjYAMQB5zjnynYnU/W8iYiIiIiIVGJmY8xsVqV/Yxqwmz8Ac4DWQC/gGTNrtjvlUs+biIiI\niIhIJc658cD4epKsB9pWet0msKyyi4FHnXMOWGZmK4GDgRkNLZeCNxERERERaVyhP2xyJtDZzA7E\nC9rOBc6vlmYNcBTwvZmlAl2BFbuTqYI3ERERERGRXeCcKzWza4AvgTDgZefcfDO7IrD+eeAh4BUz\n+xUw4DbnXObu5GteL57sZWpkEREREWkMFuwC7IyCBUfv09+Pow/9ep9sR/W87QFmFuacC/m+XxER\nERGRxvA7mG0yKPa72SbN7EEzG1vp9cNmdr2Z3WJmM81snpk9UGn9R2Y2O/BU9DGVlm81s7+b2Vxg\nUCNXQ0RERERE9jP7XfAGvAz8CcDMfHg3F24COuM9bK8X0NfMhgXSX+Kc6wv0A64zs8TA8qbAT865\nns65qdUzqTy96Pjx9U1UIyIiIiIismP73bBJ59wqM8sys95AKvAL0B84NvA3eE9A7wx8hxewnRZY\n3jawPAvwA+/Xk0/l6UX36TG9IiIiIiKNSsMmG2S/C94CXgIuAlri9cQdBfzFOfdC5URmNgI4Ghjk\nnMs3s8lAVGB1oe5zExERERGRxrI/DpsE+BA4Dq/H7cvAv0vMLBbAzA4wsxSgOZATCNwOBg4PVoFF\nRERERGT/tl/2vDnnis3sWyA30Hv2lZkdAvxoZgBbgdHAF8AVZrYQWAxMD1aZRURERER+LzTbZMPs\nl895C0xU8jNwlnNuaSNkuf81soiIiIgEwz75fLLqiuYM2ae/H0f2mrZPtuN+N2zSzA4FlgGTGilw\nExERERER2W373bBJ59wCoGOwyyEiIiIist/SsMkG2e963kREREREREKRgjcREREREZEQoOBNRERE\nREQkBOx397yJiIiIiEhwWVlZsIsQktTzJiIiIiIiEgIUvImIiIiIiIQADZsUEREREZHGpUcFNIh6\n3kREREREREKAgjcREREREZEQoGGTIiIiIiLSuDRsskHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBER\nERGRRmVOD+luCPW8iYiIiIiIhAAFbyIiIiIiIiFAwyZFRERERKRxabbJBlHPm4iIiIiISAhQ8CYi\nIiIiIhICFLyJiIiIiIiEAN3zJiIiIiIijatMjwpoCPW87YCZtTCzqyq9HmFmnwazTCIiIiIisv9R\n8LZjLYCrdphKRERERERkL/pdBW9m1sHMFpnZK2a2xMwmmNnRZjbNzJaa2QAzSzCzj8xsnplNN7PD\nAtveb2Yvm9lkM1thZtcFdvso0MnM5pjZ3wLLYs3svUBeE8zMglJhEREREZFQVFa2b//bR/0e73k7\nCDgLuASYCZwPDAVOBu4E1gK/OOdONbORwKtAr8C2BwNHAnHAYjN7Drgd6O6c6wXesEmgN9AN2ABM\nA4YAUxujciIiIiIisn/6XfW8Bax0zv3qnCsD5gOTnHMO+BXogBfIvQbgnPsGSDSzZoFtP3POFTnn\nMoF0ILWOPGY459YF8pgT2G8VZjbGzGaZ2azx48fvweqJiIiIiMj+6PfY81ZU6e+ySq/L8OpbspPb\n+qm7fXaYzjk3HiiP2lw9eYqIiIiI7FeszB/sIoSk32PP2458D4yCiiGQmc65LfWkz8MbRikiIiIi\nIhI0v8eetx25H3jZzOYB+cCF9SV2zmUFJjz5Dfgf8NneL6KIiIiIiEhV5t0OJnuZGllEREREGkNI\nzIJeOqnjPv39uMlRK/bJdtwfh02KiIiIiIiEHAVvIiIiIiIiIWB/vOdNRERERESCaR9+EPa+TD1v\nIiIiIiIiIUDBm4iIiIiISAhQ8CYiIiIiIhICdM+biIiIiIg0Lt3z1iDqeRMREREREQkBCt5ERERE\nRERCgIZNioiIiIhI4yrzB7sEIUk9byIiIiIiIiFAwZuIiIiIiEgI0LBJ2ev8TAha3mGM4osB5wYt\n/+NmvMXiPw4PWv5dP5nCxIFnBy3/Y356h/RLugct/5SXfwt6/lOGnB6UvIdP+wCAtIsPC0r+qf83\nj8zLDw1K3gBJLy5g6tBTg5b/0Kkf8d8+o4OW/yk/v07GZd2Cln/yS/ODfu4FO/+3e14UtPzPmftK\n0I5/8kvzAfhuyGlByX/YtA/5rN/5Qckb4MRZbwT93A8VptkmG0Q9byIiIiIiIiFAwZuIiIiIiEgI\n0LBJERERERFpXBo22SDqeRMREREREQkBCt5ERERERERCgIZNioiIiIhI49KwyQZRz5uIiIiIiEgI\nUPAmIiIiIiISAjRsUkREREREGpeGTTaIgjfZZ911x8dMmbyEhMSmfPzplXtsv4fcdCFJg3tTVljE\nrw8+x5bFq2qkiW6dTM9x1xPePJYti1Yy775ncKV+mrZvTY97r6BZ1wNZ8tzbrJrwKQBN27Wi5yPX\nV2wf0zqFpePfrbccMX0GkHr5teDzsXniZ2S/90aV9RFt2tHy+tuJ7NSZzNdeIufDtwEIP6AtrW+9\nryJdeMvWZE14mZyP36szr643XkzS4N74C4uY/9Cz5C1eWSNNVKtkDhs3lvDmcWxZtILf7n8aV+qv\nd/tD776S5CF9KM7ZzI/n31xr3ikv/0bGdUNxW3Or1q/7EGLPvx0sjMLv3yf/839XWR95+Ik0Pf5S\nMHCF+eS99hClaxcDEH30aKKHnQFmFHz3HgUTX6+z7nVp7PzjB/bmoLGXYD4fGz/5mrWvf1gjTaex\nl5I4qA/+wiIWP/wMW5esIDIlkYPvuY7w+BaAY+N/J7L+3c8AOOTBm4hp1xqAJrFNKd26jdkX3bRT\ndY87/zbw+Sj47gPyP3+5yvqow08g5oRLwAxXuI28V8dRunaJV/djRhEz7AwwKJjyAfkNaPvwbkNp\neu4dmC+Mwu/fo+CLl6qWr+dIYk69FpzD+UvZ9vajlC77GYDYC8cRcdhwyvKyyb3/lJ3Os8XA3nS8\n/jLM5yPt04mse/2DGmk6Xn8Z8YP6UlZYxJJH/sm2JSu2r/T56PXS4xRnZLHgtocB6HDVhSQM6Y8r\nKaVwwyaWPPI0/q3b6ixDj1suIGVoL/yFRfxy33g2L1pVI01M62T6/eVqwlvEsXnhSmbf/Ryu1E9i\n30MY+MQN5G/IAGDDNzNZ8uJHXrlHHUf7U0eAc2xZto5f7h+/0+0S3m0osefdjvnCKPj+fQr+V+1Y\n9DqSpqdeC2UOV1bK1rf+WnEsGirY5/6ulCWi15HEnnYtzpVBmZ+tbz5KydJfdjmf3reNotXQw/AX\nFjPjnpfIWbS6RpqmByQx6K9XEtE8lpyFq/jpzvGUlfoJj4thwIOXEtsmBX9xCTPv+zebl60H4KTP\nH6ckvwDndzi/n4nnP7BL5WqM4x8/sDedxl6K+Xxs+uRr1tZy7nUaeykJg/riLyxiycNPs3XJCiwi\nnJ7/ehhfeBOsSRiZ3/7I6n+/BUD7y88jcegAcI6SnM0sfvifFGfm1FmGQ2/+EylDeuEvLGbu/c/X\n+bnf+5FriWgey+aFK5lz77O4Uj+pw/vS5YqzcGVlOH8ZC/7+GjlzF+OLCGfQi/d65QsLY+Okn1g6\n/v1a898Xz30JXQreqjGz+4GtzrnHg12W/d1pp/dk1Oj+3H7bR3tsn0mDexHTthXfnzGW5t0P4tDb\nLmP6JXfXSNflmvNZ9eZnbJr4I4fefiltThnJ2vcnUrJlKwsef4XUEf2rpN+2ZiM/jL7de+Ezjvzs\nOdImz+SQGy+svSA+H6lXjGXdPTdRkpVB+ydeYOtP0yheu/0D3Z+3hfTx/yT28KFVNi1Zv5bV119W\nsZ9Or7xH3o/f11Pn3sS0bcm0M6+jeffOHHLrZcy49K4a6TpfM5rVb31G2sQfOOS2yzng5JGs+2Bi\nvdtv+HQya9/9gu73XV1jf5EpiV49MjfULJT5iBt9Nzl/v5yy7E3E3/s2RXO+xb9h+5dlf8Z6cv56\nES5/CxE9hhJ34X3kjDufsAMOInrYGWSPOw9KS2hx4/MUz52CP31tnW0Q9Px9PjrfdDnzxj5AUXoW\nfV56jKypM8lfta4iScKgPsS0acWMc64mrlsXOt88hl/G3I7zl7H86f+wdckKwmKi6PPvx8mZOZf8\nVetYeO/fK7bveM1F+LfVHThUqfsFd5L7+Bj82Wkk3PsmRXMmV6175npyHr0Yl59HRI+hNLvwPrLH\njSLsgIOIGXYGWQ+dH6j7cxQ1oO1jz7+bzU9eRllOGi3uepviud/i37i8IknxoukUP/ANAGEHdCHu\nz0+Qe+9JABT+8CEF304g7pJHdz5Pn49ON/6Z3264j+L0LHq99Deyps6goFL7xx/el6i2rZh97pXE\ndevCQTdfwdwxt1asb33WSeSvXkeTmOiKZbkz57LqhdfAX0aHK/9E2wvOYNVzr9ZahJQhPWnariWT\nTrmJ+B6d6HnHRXx34f010h163bksn/AF67+azmF3Xkz7U0ew6r1JAGTNWcxP1/+9Svqo5Hg6nnss\n35x5G2VFJfR79FoO+MPhO9cu5iNu1F3kPnE5ZTlpxN/9NsVzqh2LhT9RPOdbAMLadKHZn/9Ozj1/\n3Ln915VnMM/9XSxLycLpZFeqf/MrHyf7rpN3KZtWQw8jrl0qn//xNhJ7dKLv3X/i69EP1Uh32PVn\ns/j1r1j7xU/0vftCDjxtGMvf/ZZDL/sjuYvWMO2Gp4nr0Iq+d17A5DGPVWz37WV/pTh3a8Pqv7eP\nv8/HQTeN4dex91OUnkXvlx4ja+qMKte++EF9iG7TmpnnXBU49/7MnDG34YpLmHfdvZQVFGJhYfR8\n7hGyp/9M3vwlrJvwEatffBOA1meeSLuLz2HZ356vtQjJQ3rRtG1LJp92Iy26H0T3Oy7hh4vurZHu\n4GvPY+Ub/2PjVz/S/Y5LaHvKkax5/2syZ/xG2pTZAMQd1JY+j17PlDNvpqy4hOlXjMNfUISFhTHo\n3/eR8cPcGvvdJ899CWm65032Wf36t6d58+gdJ9wFqcP6seHz7wDY/NsywuNiiExsUSNdYr9upH3z\nEwAbPvuO1OH9ACjO2cKWhSsqeqRqk9i/B/nr0ijclFlnmqjOh1CycT0laRuhtJS8774hdmDVIM2/\nOZfCpYtwpaV17iemZx9KNm6gNCOtzjTJw/qx8X/ldV5Kk7imRNRS54R+3Uj/ZnqgzpNJHt5/h9vn\nzllIyZbavzR0vaE8cHU11jXp2IPS9DWUZawDfylFP/2PyF4jq6QpXT4Hl78FgJLl8/DFp3rbtupI\nycpfobgQyvwUL55FZJ+j66x/bRo7/2aHHETBuo0UbkjDlZaSPmkqiUcMqJImcegANn0xGYC8+UsC\n7RxPcVYOWwM9QP78QvJXryMyObFGHskjB5M+ceoO6x7esTv+9DX4M9aDv5TCGV8Q2fvIKmlKls3F\n5ecF6j4XX0JKoO4HUrJiXkXdSxbPIrLvLrb9gT3wZ6yhLHMd+Esomvk/Iqq1PUX5FX9aZDSV30Ol\nS2fjtm3epTzjDulM4bqNFAXaP+PrqSQOHVglTcIRA0iv1P5hsU0JT4wHICI5kYRB/Uj7ZGKVbXJn\nzgF/WWCbxUTUclzKtRrRl7Wfescn59flhMc1JTKp5nmY1P9QNkyaAcDaT7+n1ZF9d1g/X1gYYZER\nWJiPsOgICjPq7oGorMmBPfCnr604FoUzPieiV9X3QpVjEVH1WDREsM/9XS2LKyqo+NsioxtU/QOO\n7M2qT6YBkPXrcsLjYohKal4jXeqAQ1g3cSYAqz6eygEj+wDQrGNr0mYsBCBv1Uaatk4iMqHZrhek\nmsY4/nEL7p8SAAAgAElEQVSHdK5y7cuo5dqXNHQAaV94AWLlax9AWUGhl3eTMKxJGDgvf3/+9uMS\nFh1Zsbw2qcP7sv5z7wfO3Ho+95P6d2PTJO9zf92n39NyhPe57y8oqpRXVJW8ytdZkzB8lcpX2b54\n7ktoU88bYGZ3ARcC6cBaYLaZXQ6MASKAZcAFQBgwD+jinCsxs2bA3PLXQSm87JLIlAQK0rIqXhem\nZxOZkkBR1vYhfeHN4yjJy8cFvpQVpmUTmZyw03m0OmYQG7/6od40TRKTKMlMr3hdmpVBVJdDdjqP\ncs2OOIot302qN01kcgKFadsDycL0LKKSEyiuVufSynVOzyYqUOed2b665GH9KMrIrnN9WIsUyrI3\nVbwuy0mjSccedaaPOuJ0in/1PvxK1y+j6enXYU2b40qKiOxxBCWr5te57b6Qf0RyIkXp2993RelZ\nNOvWuUqayOQEitIzq6SJSE6gOGv7h3Fky2RiOx/IlvlLqmzbvOehlOTkUrBuY73lAPDFp1KWvT3Y\nL8tOI7xT3XWPHnY6xb96XzxL1y8j9oxrK+oecdgRlO5i2/tapFZr+000OfCwGukieh9FzGk34GuW\nyJZ/XrFLedTYV/W2zcgi7tBq7Z+UQHGlNMXpWUQmJVCSlUPH6y5l5XP/qdLrVl3qiUeTManu4Dkq\nJb7KtacgPZvo5HiKMrefRxEtYinZuv08LEjLJio5vmJ9wmGdGfH2IxSm5zD/yTfIW7Gewowclr32\nOcd+/hT+omLSf/yVjOm/7USreO8Ff87290xZThrhHWs/Fk1PH4uvWSKbn9q9IezBPvcbUpaIPkcR\ne8b1+OISyX3qql3OJzolnvy07dfDgrQcolPiKczc/iNERItYiitdg/PTcohJ8Y597pI1tDmqL5m/\nLCGh+4HEtEokJjWeouwtOBwjXrgVV1bG8ve+ZcX7U3a6XI1x/Gu7rsV161J1/7VcHyuufT4ffV5+\nnOgDWrLhg/+Rt2BpRboOY0aRetwISrflM+/ae+osQ1RyPAWbtrd/YVo2USnxtXzub6v0GZhFVMr2\ncy91RD8OvuZcIuKbMXPs37bv3GcMfe1hmrZtyep3vyJ3/vZey4r898Fzf59Rtns/Bu2v9vvgzcz6\nAucCvfDa42dgNvCBc+7FQJpxwKXOuafNbDJwIvBRYLsPFLhJOWsSRsqwvix59q29n1mTJjQdOJiM\nV/etMe6+yAgOvPA0fr5uHO3OOWG39xd+cH+ijzidnL9cAIB/4wry//cyLW4ajysqoGTtYnB776bn\nYOdfzhcdRbeHb2X5P1+u8qszQMoxQ3eq121XeXU/jexHvF5U/8aVbPv8/4i/+QVcUQGlaxbj9tIN\n58W/TKL4l0k06dyXmFOuY8uTl+6VfHYkfnA/SnI3s23xcpr37l5rmjZ/OhPn95Px1c5/cd5Vmxet\n4qsTrsdfUETKkJ4MeOIGJp16M+FxMbQc0YeJJ91AydZ8+v/1WtqcMGSP5l1+LMI796Xpqdey+YnL\n9uj+67KvnHvFP08i++dJhHfpS+xp15D7+OV7Pc/KFr78GX1uG8Wxbz/I5mXryF20Ghf40vvNRQ9T\nkJ5LZEIcI56/hbyVG8n4eckO9rhrgnX8ASgr4+eLbiQsNoZuf7mdmAPbkb9yDQCrxk9g1fgJtL3g\ndFqfcULF/XB7Q9rkWaRNnkVC74PpesVZ/HT1I4HyOaaOupMmsTH0e/wGYju12eN5B/Pcl33Tfh+8\nAUcAHzrn8gHM7OPA8u6BoK0FEAt8GVj+EnArXvB2MVDrVdzMxuD13PHCCy8wZsyYvVYBqV+7M4+l\nzaneUJjNC5YTnZpI+e9dUSkJFKVX7SEq2ZxHeFwMFubD+cuISk2otxepsuTBvdiyaBXF2fUP6yrN\nyiQ8KaXidZPEZEqz6h5mWZvYvgMpWr4Uf27NYRItTjiV5n/w7hEqyswlKjUJ8G74j0pJpDCjZp2b\nVK5zSkJFmqKM7B1uX1lMm1SiW6dw+Over5O++FQS7nuXnIfOpWyL9+ujPzcdX0LLim188amU5aTX\n2FdYmy40u+hBcp+8ospQucLvP6Dwe++m96anX09ZzqYa29ansfMvzsiquAcQvPsBq7+nijKyiUxJ\nqpKmOJDGwsLo9vAtpH/1HZlTfqpWSB9Jww9n9iW37KDWnrKcNHwJqRWvfQmp+Gupe5M2nWl28f3k\nPnFVtbp/SOH33mQrsWdchz+77iG7teafm1at7VtSllsz/3KlS2cTltwGi21RY9KbnVVcvW2Tt7dt\nuaLMbCIqpYlISaQoM5vEEYNIGNKf+MP74osIJ6xpDF3uGcuSh/4BQMrxI0kY3I/frq95D82BZx9N\n+9O8YWg581cQnbr9PRCdkkBBtSFOxblbCY/dfh5GpyZUDIMq3bY9YE+fNhffHRcR0SKWpH6Hkr8+\ng+Jcb5jrxm9mkXBY1V7FupTlpBEW36ritdcTU/fxLNkDxyLY535DylKuZMmu1f/Ytx8EIHv+SmJS\nt4/eiE6NpyC95rGPqHQNjkmNJz+9/NgXMuPe7ROpnPT542xd55WzIN0rR1F2Huu++ZmE7h13Onhr\njONf+3Utq0qa2q6P1c9P/9Z8cn/+jYTDe1cEb+XSv/qO7o/fUyV4a3/WMbQ91Tv3Ni9YQXTLBHIC\nt6NFpSZQWK39vc/9ppU+AxNrpAHI/mURMQekeD11m/MqlpduzSdz1gJSBvUE9v1zX0Kb7nmr2yvA\nNc65HsADQBSAc24a0MHMRgBhzrla+6idc+Odc/2cc/0UuAXXmve+4ofRt/PD6NtJnzKL1icMA6B5\n94Mo2ZpfZehEuezZC0gd6d0T0/rEYaRNmbVTebU6dggbv5q2w3SFSxcR3roN4aktoUkT4oaNZOuM\nHW9XWdywo9gypfYhk7mff1QxqUnGdzNodXx5nTtTujW/1iGPObPnkzLSu9m59YkjyPjOq3PG97N2\navtyW5evZcrxlzP1tGsA7wtC9gNnVQRuAKUrf6NJajt8SQdAWBMiBx5PUeCm+HK+hJY0v/ofbH7x\nDvxpVWdms7iEijSRfY+icPrndZanNo2d/5ZFy4hu04qoVilYkyakHDWUrKkzq6TJmjqTlseNACCu\nW5dAO3sf3l3uuJr81etZ9/YnNfYd368n+avX1/hCVJeSlfMJS2lfUfeoAcdR9MvkmnW/5km2vHjn\nnm/7Vb9Vyj+cyP7HUzy3Wtsnt6v4O6zdIdAkosHBAkDeoqVEt21FZKD9k48eSva0GVXSZE+dQUql\n9vdv3UZJVg6rX3idmadfxqyzxrD4/r+zefa8isCtxcDetDn/NBbc/ghlRcU18l35ztdMPu8uJp93\nF5smz6btSd59rfE9OnnXnsyadcqctYDWR3n3BLU96Qg2TvZm9otM3H6PVItuHcGM4tytFGzKIr7H\nQYRFRQCQNKAbeSvX71S7lK76jbCK8yCcqAEn1DwWKduPRZM9cCyCfe7valnCUtpW/L2r9f/qnHv5\n6px7Wf/tz3T4o9cjktijEyVbC6oMmSyXPnMRbY7x7jXucPJQNnzrzWoZHhfj3U8FdDx9OBk/L6Z0\nWyFh0RE0iYnyyhkdQctB3Spmodyp+jfC8c9btLTKtS+5jmtf6nFeoFP52hfeohlhsTFeOSIiiO/v\nXesAotpsDzoTjxhA/up1Vfa5+t2JTB11J1NH3Una5FkccMIRALTofhClWwtq/dzPmrWAlkd5n/tt\nTjqi4nM/ps32H7uade2AL6IJJZvziGgRR5Py8kWGkzywB1tXeRN07evn/j6jrGzf/rePUs8bfAe8\nYmZ/wWuPPwIvAHHARjMLB0YBlc+IV4E3gJrTRckec/ON7zNjxmpyc/I5ctiTXHPtCM44q/du7TNj\n2i8kDe7FsA+ewl9YxK8PbZ+dqu+Tt/Hbw+Mpysxh8dNv0PPh6+h8xTnkLVnFuo+9D7SIxOYMfuUR\nmjSNxjlHh3OP5/tzb8a/rYCwqEgSB/Zg/l9e3HFByvykP/8P2jzwuPeogK8/p3jNKpof581itvmL\njwlrkUD7J1/AF9MUysqIP/lMVl11IWUF+VhkFE179SPtX3/fQUaQOe0Xkgb3Ycj7/8RfWMyCh56t\nWNf7ydtZ8PALFGXmsPSZCfQYN5aD/nwueUtWsv7jb3a4fY+Hrie+z6GEt4jjiE+eY/n4d9jwybc1\nylBb/fNef4QWN77gTVE99UP8G5YTNeJsAAonv0PTk6/EF9ucuAvurtgm58FzAGh+9ZP4Ylvg/KXk\nvf4wriCvrpz2jfz9ZSx78iV6PHEvFuZj06eTyF+5llanHgvAxo++IvvH2SQM6sOAd571HhXwyDMA\nNDvsYFoeP4Kty1bR9xXveK98YQLZP3of7ClHDyH967pnG6217hMeIf6m58AXRuH3H+HfsJzoEWcB\nUDD5XWJPuQJfbAviLgjMSur3k/3geQC0uOYJfE2be3V/7ZEGtf3WNx6m+dgXwXwUTvsQ/4ZlRA33\n2rZwyttE9j2GyEGngL8UV1xI3vjtjz+Iu/xvhHcZgMW2IP6xb8j/+BmKptacerwKfxnLn3iR7k/c\nB74w0j77mvyVa2l5yh8A2PTfL8n5cTbxg/rS9+3nKSssYukj/9xhVTrdMAZfeDjdn/SmZ8+bv5jl\nj9c+413a1DmkDu3J0f/9O/7C4ipTeh/+z5uZ8+BLFGbmsuCfb9HvL9dw8NVnsXnRKtZ8NBmA1kcP\noMOZR+H8fvxFJcy6418A5Py2nA2TZjB8wjic38/mxatZ/cG3HHZbHTPdVlZxLMZjvvJjsZyo4YHz\nYMo7RPY5hqhBJ3vHoqSQLS/U/kiQnRbsc38XyxLZ9xiiBp+M85dCcSFbnt/1+m/8fi6thh7GiZ8+\nRmlhUZVetCOeuYGZD/wfhRm5zP3HOwx67Ep6XH06uYvWsOJDb6KoZge2YuC4y3HOsWX5embc5z3a\nIyqhOUOfvBbwhuyv/nw6m374dZfqv9ePv7+MZU96517Va5937m386MvAta8v/d95jrLCIhY/8jQA\nEYnxdL37OvD5MJ+PjG+mkf2DF1AdeOUFxLQ7AFdWRtGmDJbWMdMkQPq0OSQP6cWIj57EX1jEvAde\nqFjX/6lbmffQeIoyc1n49Jv0eeRaul55FlsWr2btfycD0PKoAbQ54QjKSkspKyrh5zu88kUmtaDn\nA1diPh/mMzZMnE761JqPkdgnz30JaebqmaFnf1FtwpI1ePe9bcMbHpkB/ATEOecuCqRvCawEWjnn\nduYnqP26kf1MCFreYYziiwHnBi3/42a8xeI/Dg9a/l0/mcLEgWcHLf9jfnqH9Etqv0+oMaS8/FvQ\n858y5PSg5D18mhfQpF1ccwKCxpD6f/PIvPzQoOQNkPTiAqYOPTVo+Q+d+hH/7TM6aPmf8vPrZFzW\nLWj5J780P+jnXrDzf7vnRUHL/5y5rwTt+Ce/5E0i892Q04KS/7BpH/JZv/ODkjfAibPeCPq5D1jQ\nCrAL/O+22Ke/H4edlbtPtqN63gDn3MPAw7Wseq6OTYYC7+1k4CYiIiIiIpXtw0MT92UK3naRmT0N\nHA/s/jR6IiIiIiIiO0nB2y5yzl0b7DKIiIiIiMj+R8GbiIiIiIg0Lj2ku0H0qAAREREREZEQoOBN\nREREREQkBGjYpIiIiIiINC6n2SYbQj1vIiIiIiIiIUDBm4iIiIiISAhQ8CYiIiIiIhICdM+biIiI\niIg0Lj0qoEHMOTVcI1Aji4iIiEhjsGAXYGf4X4/Zp78fh43O3yfbUcMmRUREREREQoCGTcpe98WA\nc4OW93Ez3sLPhKDlH8Yonu5yZdDyv3bJc0wceHbQ8j/mp3f4ZtCZQct/5I/vBT3/RSeNCEreB386\nGSBox/+Yn95h8uAzgpI3wIgf3mfDBb2Dln/r137h2a5XBC3/qxY/H/T3/v6e/5uHXRy0/M+b939B\nq//IH98DgnvtmXT4WUHJG+Co6e8G/dwPGRo22SDqeRMREREREQkBCt5ERERERERCgIZNioiIiIhI\n49KwyQZRz5uIiIiIiEgIUPAmIiIiIiISAjRsUkREREREGpUrC3YJQpN63kREREREREKAgjcRERER\nEZEQoGGTIiIiIiLSuDTbZIMoeJNGd8hNF5I0uDdlhUX8+uBzbFm8qkaa6NbJ9Bx3PeHNY9myaCXz\n7nsGV+qnafvW9Lj3Cpp1PZAlz73NqgmfAtC0XSt6PnJ9xfYxrVNYOv7d3SrnXXd8zJTJS0hIbMrH\nn165W/uqy7C7z6b98G6UFhTz9e2vkrFgbY00xz5+MSnd21NW6idt3iq+vXcCZaVlxHdM5ai//ImU\nbm358YmP+eXlr+vMp+uNF5M0uDf+wiLmP/QseYtX1kgT1SqZw8aNJbx5HFsWreC3+5/Glfp3vL3P\nGPjKoxRlZDPnpr8C0OnP55B8RD8Aev3jHhaMe4bizJwq+SUc3ovOYy/Gwnxs/HgSq1/7qEaZOt9w\nCYmDe1NWWMyCh55h6xIv34PvuoqkwX0pztnMjNE37qCV915+ySMHceClZ9O0wwHMuvQO8hYt36my\nADTtM4CUMddgvjByv/qM7PfeqLI+ok07Wo29jchOncl89d9kf/h2xTpf01haXncLke0OBBwbn/or\nhYsW1JrP3jr2iYf3pOuNF2M+H+s/nsSqV/8LVD32h/3jHhYFjn3CwF4cNPYSr/0/mcSa1z6sUY6D\nbriExEF98BcWs2jc0xXt3/XOq0gc0o+SnM3MHH3D9jY8qD1dbv0zYdFRFG7MYOH9/8CfX7DDto/s\nMZjmF9wCPh/5kz9i66f/V2V99ODjiT3xIjDDFeaT+8ojlK5ZAoDFxNLi0vto0qYTOEfuSw9Qsmze\nDvOsbuhdZ9N+eHdKC4uZdPt/yKzl3O8+agQ9LxxJ8/YpvHz4TRTmbPPK3yyGIx/5E83bJVFaVMq3\nd75K9tINNbbfnfd8XdvGHtSerreOISzGa/P59z1Vpc0jU5MY+MaT9da9sc79gW89FZS6r/z3jj97\n+tx2Pq2POAx/YTHT7/k3OQtX1yzfuUfRdfQxxLVL5f1h11KcuxWAuA4tOfyhS4k/pD3znv6ARf/5\nIqj1j2qZzMC3/kH+6qrvwb1x7fFFhNPv+QfwRTTBwsJI+2Y6K1702ju2c3sOue1yAA57/Dbm3/tP\n/PkFJBzeiy43eNeqDXW0RZcbL/auPUVFLHzoXxVl3dG27c4/ic7XXch3f7iEks15tR6H6hrj3Jff\nt/1u2KSZdTCz34Jdjv1V0uBexLRtxfdnjOW3v7zIobddVmu6Ltecz6o3P+P7M8ZSkreVNqeMBKBk\ny1YWPP4KKwNBW7ltazbyw+jbvX9/ugN/UTFpk2fuVllPO70n418atVv7qE/74d1o0SGF1465j2/u\neYMRD5xXa7rFn8zg9ePu542THqJJVDiHnjUUgMLcfL4b9w4//7vuoA0gaXBvYtq2ZNqZ17Hw0fEc\ncmvtbd75mtGsfuszpp15HaV52zjg5JE7tX27c05g26r1VZatev1jpo++BYDMabM58JKzqmbm89H1\npsuYe+PD/HTeDaQcM5SYDm2qJEkc1JuYtq2Yfta1LHr0ebreOqZi3abPvmXODePqrXdj5Ldt+Rp+\nu+Nv5M5ZuPNlCZQn9crrWXffbay46kKaDR9JRNv2VZL487aQ9sI/yf7g7Rqbp465hm2zZ7Dyyj+x\n8tpLKV67ps6s9sqx9xkH33Ipv4x9hB/OvYGWxw6h6YEHAFWPfda02XS4+Czw+eh88+XMu+lhZpw/\nlpSja7Z/wqA+RLdpxU9nX8OSvz5Hl1sqtf/nk5l3w0M1yt31jqtY8ezrzLrgRjKn/ETbUafU2Q4V\nzEfzC28n62/XkH7bGUQPOo4mrTtWSVKasYHMhy8j486zyfvoRVpccnfFuuajb6Vo3g9k3HY6GXed\nQ+mGFTvOs5p2w7rTvEMKE469l8n3TGD4/efXmm7Tz8v5+OKn2LIuq8ryPlccR+bCtbx98jgm3fZ/\nDL3r7Fq3b/B7vp7z5eA7rmT5cxOYMfomMqbMoN3oqm3e+boLyZ4+p+7KN8a57/O+2uxzdQ9oNfQw\n4tqn8ulJtzPjwVfod/cFtabLnLOUb8f8ja3rM6ssL96yjdmPvlFn0GY+a/T6F6xLY+aFtzDzwlsq\nlu2Na09ZcQmzr36A6aNvZfroW0k6vBfNu3cG4NA7/8yyf00AIGPyDNqPPtmrz82XMueGh5l+3g2k\nHjuEprW0RXTbVvx41rUs+ssLdL318u1tUc+2kSmJJAzoScHGjFrrVpvGOvfl922/C972BjNTD+ZO\nSh3Wjw2ffwfA5t+WER4XQ2RiixrpEvt1I+2bnwDY8Nl3pA73fskvztnCloUrKn6Zq01i/x7kr0uj\ncFNmnWl2Rr/+7WnePHq39lGfjkf1ZOGH0wFIm7uSyLgYYpKb1Ui3esr8ir/T5q0itqXXXgXZeaT/\nupqyetoCIHlYPzb+r7zNl9IkrikRtbR5Qr9upH/jlWfDZ5NJHt5/h9tHpiSQNKQP6/87qcq+/Nu2\n/xodFh2Jc1WHRjQ79CDy122icEM6rrSU9K+nkTysf5U0ScP6s+l/kwHYMn8pTWJjKvLNnbOQ0i1b\n6613Y+SXv3o9+Wt2/VfPqC4HU7xxPSVpG6G0lC3ffUPs4UOqpPFvzqVw6WLwVz2+vpimRHfryeav\nPvMWlJZStq3uttgbx755oD0LNqTjSv1smvhDRXtWOfZRkTjntX/Buk0UbkgLtP9Uko6o1v5H9Cft\niylAeftvL+vmOQtqbf+Ytq3YPMfrccyZOZfkEYfX2Q7lwjt1pzRtLf6M9eAvpWD6l0T1HVElTcnS\nubh871f04mXzCItPBcCiY4k4uA/5UwK9hv5SXP7Ovw/LHXjUYSz+aPu5H9EsutZzP3PhWvLWZ9VY\nntCpFeunLwYgd0UacQckEp0YVyNdQ9/z9Z0vMe1akfuL1+bZM+aSMmJglf0VbExn24qaPQnlGuPc\nb3boQQD7XN3LtTmyN6s++QGArHkriIiLISqpeY10OYvWsG1DzeNflJ1H9vyVdV77E7p3bPT612Zv\nfe74C4oAsCZhWJOwis+XmHatyfllYaB880g58vBK1x6vPmkTp5E0rF+VMiQP68+mz2tee3a0bZex\nF7HsmdeBnR/611jnfsgo28f/7aP21+AtzMxeNLP5ZvaVmUWbWS8zm25m88zsQzOLBzCzyWbWL/B3\nkpmtCvx9kZl9bGbfAJPqzkoqi0xJoCBt+wWpMD2byJSEKmnCm8dRkpeP83tnTmFaNpHJVdPUp9Ux\ng9j41Q97psB7UdPUFmzdtH0o4da0HGJTa364lfM18dH1lIGs+b724XF1iUxOoDBteyBbmJ5FVHLN\nNi+t3Obp2RVp6tu+6w0XsfSZ18HV/PDqdMW5AKQeewQrX6zaexSZnEBR+vZ9FqVn1TjGkcmJFFZ6\nrxRlZBOZnLjzFQ9ifjsSnphMacb2X2tLMzMIT0zeuW1TW+HfkkursbfT4akXaXntLVhkVJ3p98ax\nj0xJoKhyW1Vrz4pj/4dhrHrpLa/9K+2ntratmSZrh+2/beVakoYNACB55GAiU5LqTQ8QFp+CPzut\n4rU/O42w+LrbPmbEqRTOm+Ztm9yasi05tBjzAMkPvUnzS++tt+3rUv3c37Ypl6b1nPvVZS5aR8dj\newOQ0qMDca0TiG0ZXyNdQ9/z9Z0v21auIynwZT5l5KCKNg+LjqL96FNZtYMhg41xLlbf375S93LR\nKS3Ytim74nV+Wg4xKTWPX0PFpFbd196uP0B06xT6/+dv9H72gYple+tzB59x+GuPMfyLl8ia8Stb\n5i/zyrdibUWgmXLUICJTEolKTqAwvfK1qvZrT9U0Xp3r2zbpiH4UZWSzdVnN4a71aaxzX37f9tfg\nrTPwL+dcNyAXOAN4FbjNOXcY8Ctw307spw9wpnNu+F4rqewSaxJGyrC+bJo0PdhF2eNG3H8eG2Yu\nY8OsZcEuCgBJQ/pQnL2ZvEU172MAWP78WwCkffU9bc48rjGL9rtmYWFEdepCzuf/ZdX1l1NWVEDi\nWbUPvQmWimP/5XcccMbxey2fxY88S+vT/0Dflx8jLCYKV1q6R/cfcUg/Yoadypa3nwLAwpoQ3uFg\ntk16l4x7zsMVFRB70iV7NM+d8fP4L4mIi+bsj+6ixwUjyFy4ljJ/4/xMvPDhf9Hm9OPo939/JSwm\nuqLND7zsbNa+/Sn+gsJGKUcw7M91h7rrX5SVw7RTr2Dmhbew7Kn/7P2ClDmmX3Ar3//xCpp360TT\njm0BmD/uOdqeeSwATfbC9aCcLzKCDhedzvLxNYe0723BPPdl37G/Dvdb6ZwrH5g+G+gEtHDOTQks\n+w+wMz+hTXTOZde2wszGAGMAXnjhBcaMGVNbsv1CuzOPpc2p3jj2zQuWE52aSG5gXVRKAkXpVZuw\nZHMe4XExWJgP5y8jKjWBooxam7mG5MG92LJoFcXZm/dkFfaYHqOG0+1sb3hc+q+rq/xiFpsaz9a0\n3Fq3G3DNiUQnxPLNPeN3OZ+izFyiUpMAb6hFVEoihRk127xJ5TZPSahIU5SRXev2KSMHkjysH0mD\ne+OLjKBJ02i63///7N13eBRV28Dh32w2PYH0BqGGjlJCD02KFQUVbAgCIop0BKXZAfVVsaKA6Pt+\nKjawgIBKM3QIvRNaQknvfTfZ3fn+2LDJplCTbALPfV25YGfOmWfOmTkze2bOzE7g6BufWS07/p+t\ntPlwFlFLf7FM0yelWl21dfTzLrWN9UkpOPl7c3lLOvp6oU8qPYzkWlR1vKspSElC61t0t0fr40tB\nyrU9N1GQnIQhOQndKfPwoKztm/EeXNR583hgEB73DLB8roxtr2jtcPQvunpdVn2CueN+54ezSd19\nAEf/YvVfRt3qk1JLpPG+av3nno/h8GTzs3DOwYF4dwu9YnoAY1oidl7+ls92Xv4Y00rXvTa4CR7P\nvtx/KRsAACAASURBVEbKB+NRs817hTE1AWNqIgVnzY9N6yI24PbgyKvGBGj9VC9aPmZ+XrVk23cN\n8CCnnLZfloIcHf/O+tby+emN88i8WHqY+I3u84rWrty8uedjOViszn3C2gNQq2UTfO/qQuNxw9C6\nuQJQZ/C9xKywfi6rKtpiyeVVednL+OXhJo/3ofGj5uu8KceicA3w4vIWc/H3JDcxrVSeG5WbYL2s\nyi6/WmDAUJBNnUfvJeihvpa8lXHsKc6QnUvavmP4dG1LzrmL5J6PZf/EefTf/Qvx67bj3S0UXVIq\nTn7Fj1VlH3uc/IrVRWGZFa22zLzOdQNwDvSj8/fvF9adN53+7z/sGTWT/NTS7dgWbV/c2m7XO2/6\nYv83Ale6Z22gqJ5Kjo/JKS+TqqpLVFXtoKpqh9u54wZwYcU6y8tEEjfvJej+ngDUbh1CQXYu+pTS\nB67Ufcfx72MeTx/0QE8SNu+9pliBd4cRt257xa18BTuybDM/DZzPTwPnc27DIVo8bH5Gx79NQ/Kz\n88hNyiyVp+WQMOp1b8HfU74pc3jileIAJG2JIPC+y3XeBEN2Lvll1HnavmP49TGvT9ADvUnaYq7z\npK17y8x/5osf2frgWLY9PJ4jcz4mde9RS8fNJTjAslzfHh3JPW/9QpOsE2dwCQ7EKdAPRavFr18Y\nyVutXzCTvHUvAff1BqBWqyYYc8pe72tR1fGuRncqEoegutj7B4BWS62efcjefW1DfY3pqRQkJ+JQ\nx3y12bVNKPoLRUN30tf8QfTEopcDVMa2zzxxtrA+fVG0dgT072bJU3zb+xRu+6wTZ3CuW7z+u5O8\nzbpNJ2/bg/+95i+3tVo1wXAN9W/vWfisiKJQf8RgYn9fd5Xag4Jzx9AG1MPONwjstDh3uQfd/nCr\nNHbeAXhN+oC0xa9ijC96GYwpIwVjajx2AeaXyzi26oQh5tpeWHL0h838MmgevwyaR9SGgzQbVKzt\nZ+nKbPvlcXB3RmNvB0CLId2J23uagpzSd31udJ+/UnspXucNRg4m5vf1AOwf+yo7H3mRnY+8yKWf\nzc9jluy4QdW0xawT5tEJtip79P+VfpPq6Z838fdjr/P3Y68Ts2k/DR7sBoD3nY0oyMpDl1xxFxxT\nj0VVafntPWqBRkPMr39zZOb7lhiVceyx93BH6+YCgMbRHq9Od1pemGVZP6DhyEeJ+X1dqfL49w8j\neav1sSdp614C7i927Mkuuy4u5805e4Gt949mx8Pj2PHwOPRJKUQ883KZHTewTduvMWz9TFsNfebt\ndr3zVlIGkKYoSg9VVbcCw4DLd+GigVAgAhhsm9W7dSRtP4BPt7b0/O0TjDo9R95eZJkX+tErHJ23\nBH1yGpGf/UCbeRNp8sLjZJ2K5tKqfwFw8K5Nt//NR+vqjKqqNHjiPrY+MQ1jTh52To54d76DY+98\nVSHrOm3qr0REnCc9LZe7en7E+Am9eXRIuwpZNkB0+FHq92rN8A1vUZCXz8aZRVfTHvxqHJtmf09O\nYgZ3vfkkWbGpDPnF/Bavs+sOsmfhWlx8avH4bzNwcHNCNam0HdGH7+97q9SBPHn7AXy6tSfs108x\n6vI5/vYXlnntPprB8XmL0SencfrzZdwxdzIhzz9B1qkoYlZtumr+8oSMG4prvUAAvDq34eR/rO8Y\nqkYTpz5cStuP55hfwbx6EzlRlwh62DzkJfb3daTs2I93t/Z0Xf65+fXNc4vitnpzMh7tW2Hv4U63\nlYuJWvozcX9uKnd9KiueT69ONJ36LA4etWjz4UyyTkVz6FregmkykrDoE4Lfeh80GjLW/0X+hWg8\n7nsIgPS/VmHn4UWDjxejcXEBk4rnwMFEjX0GU14uCYs+JXDaHBStloL4OOI+frfcUHmxiRW+7VWj\nicgPvqH9p7PN9fnnv+REXQKst71np7ac+s9iVKOJ0wuWcudHr5pfP756E7lRFwkaVFj/f6wjdcd+\nvLu2p/PyhRh1eiLnLbSsa4s3p+DRzlz/Xf9YQtTSn4lfvRG//j2o84h5SG7y5t3Eryl/Hyhe9xnf\nvof39C/MPxWwZSWGmHO49DEf3nM3rcBt0Bg0bh54PDOzsLxGkl83v3k249v38Bw7H0WrxZAUQ/qS\naxlhb+385qPU69WaoevfxpCXz6ZZRUPNHlgynn/nfEduYgZ3DLuLdqPvNrf1Va9yfvNRwud8j2fj\nAPq+OwIVlbTTcfw7+7sy49zoPl9eewHw79+duo+a6zwpfDdxq6+hzoupirZ/+Rmq6lb2y2K3Hiaw\nx50MWPMeRl0+u1/92jKv18IpRLzxX/KS0mn6VD9ajLwPJ+/a3LfiLeK2HSHijf/i5F2Le356HXtX\nZ1STSrOn+7Nm0GwMhcf+qi6/R9sWNHzuCfMwxWIXGCvj2OPo40mr18ahaDQoGoWEjTtJ3r4fgIC7\nwwgefA8A+uQ04labvzdEfvA17T6ZDRoNcavNx6o6D/cHIOb39aTs2I9Pt3Z0XfGZ+WcT5i601EVZ\neW9GVbV9cWtTSr4F7lanKEoDYLWqqq0LP08D3IA/gEWAC3AOGKmqapqiKM2BXzDfoVsDPK2qagNF\nUUYAHVRVHX8NYW+vSi7h705P2Cz2vRE/YWSZzeLbMZTPmlbOb8RdiwmnvmR9Z9u9Srj/7l/Y1NV2\n1zz67Fxh8/gnB/S2Sezmq8MBbLb9++/+hfBuj9okNkDvHb8SO6ziLrZcr6DvDvBFsxdsFv/FyEU2\n3/dv9/g/3nltQ2orw5OH/2uz8vfZuQKw7bFnY5chV09YSfruWm7ztg8oNluB62BY5Fitvx9rX9BX\ny3q87e68qaoaDbQu9vmDYrNLvWdaVdWTwJ3FJs0pnP4/4H+VsY5CCCGEEELc0qp11636ul2feRNC\nCCGEEEKIGkU6b0IIIYQQQghRA9x2wyaFEEIIIYQQtqWaquUjZdWe3HkTQgghhBBCiBpAOm9CCCGE\nEEIIUQPIsEkhhBBCCCFE1arGP4RdncmdNyGEEEIIIYSoAaTzJoQQQgghhBA1gAybFEIIIYQQQlQt\nedvkDZE7b0IIIYQQQghRAyiqqtp6HW4HUslCCCGEEKIq1IhbWgWfOFfr78f2k/KqZT3KsElR6SIf\n7GWz2M3+3MxnTcfaLP6EU19iZJnN4tsxlI1dhtgsft9dyzk5oLfN4jdfHW7z+Gs6PGWT2A/s/QGA\nUw/1tEn8pqu2cOy+vjaJDdDqr42sbP+0zeIP3P89Fx7vZLP49X6OsPm+f7vHP/dImM3iN/ptu83K\n33x1OADrOj1uk/h3R/zMpq6DbRIboM/OFTZv++LWJp03IYQQQgghRJVS5Zm3GyLPvAkhhBBCCCFE\nDSCdNyGEEEIIIYSoAWTYpBBCCCGEEKJqybDJGyJ33oQQQgghhBCiBpDOmxBCCCGEEELUADJsUggh\nhBBCCFG1VBk2eSPkzpsQQgghhBBC1ADSeRNCCCGEEEKIGkCGTQohhBBCCCGqlPxI942RzpuwGZf2\nnfB/bgJoNGSsX0Pqih+s5jvUrUfApBk4Nm5C8ndLSfv9ZwDs6wQT9PLrlnT2AUGkLPuGtFUrrnsd\nes55jPq9WmHIy2fDjG9JOn6xVJq7PxiJX+v6mAxGEg5H8+9ryzAZTHg28qfvO8PxaxXMzgWrOPDN\nhuuOX57ZM1exOfwUXt6urFo99qaW5dWlLU2njETRaIhdtZHz3/1RKk3TqSPx7toeo17PibcXkhUZ\ndcW8DUcPIeihfhSkZwJw9ssfSNl5gFotQ2g+43nzQq9yTHZt3wm/MeNRNHakryt7+wdOfsW8/b/9\nmtTC7Q+gcXUjYOJ0HOs1BFTiPnkP3cnj11Uvtojfctpw/MLaYtTlc+iNRWRGRpdK4xzkS7v5E3Co\n7UbGiSgOvvYFqsGIf69Qmr4wBNVkQjWaOP7hd6QdigRA6+bCna8+h3vjYFBVDr215Irr4dK+E36j\nJ4Kdhox1a0j7dZnVfPs6l9teU1K+W0raHz9Z5nk8NITadw8AVUV//hwJn7yLWpB/1bIX5xbakYAX\nxoFGQ/rfa0le/pPVfIe6wdSZ+jJOISEk/t83pPy63HoBGg2NPv0CQ3IKF96Yfc1x75g+DL/ubTHq\n9Bx4fQkZJ6NLpXEJ8qXDO+Ow93An40QU++Z8iWow4h3ags4LppAbmwRA7KY9nPrqD9zqB9Lh3fFF\n+ev4cXLRlY9FTm264DniJdBoyNm0ksyV31qvQ/d7qPXQcFAU1LxcUr9+j4Lzp8HeAf83FqPYO4DG\njrzdG8lY/tU1l/+y27HtVaf4xTm364z3qMkoGg2ZG/4k4/fvrea79byb2oOGoigKprxckpd8QH70\nmRuOB1VX/mYvjcC3WzuMOj1H3/rScl6xKn+QL3fOnYR9bXcyT57jyOufoxqMV8xf78n7qTuwD6iQ\ndeYCx97+ElN+AU0nDMW3RygA7RfPxcGzNigQV855r8mUUXh3a4dJl8/xtz8n+1TRea/J5JEodhqr\nvG5NGtDs5TFoHOxRjSYiP/iKrONncG8ZQvNXLp/3rnzis3XbF7eG26bzpihKODBNVdW9V0gzAuig\nqur48tKICqLR4P/CZC69+hIFKUnUX7CY7N3byb943pLEmJVJ4pJPcevS3SprQcxFzk8abVlO4/+t\nIGvn1utehfq9WuHRwI/v+r+Of5uG9H7zSZYP+U+pdJF/RrBu2n8BuGfBKFoO6c7RH7egS89ly9xf\naNSvzXXHvpqHH2nD0Kc7MuOV0iec69Vs2rMcmPg2+sRUOv73HZK37iUn+pJlvnfXdjgHB7JzyARq\ntWpCs5efY++zs0CjuWLeiz+t5sIPf1rFyj57gT0jX0E1mnDw9qDHmq9AYwcmo/VKaTT4j53ExTnT\nKEhJosFHi8rc/gmLS29/AP8x48nZF0HsO6+DVovG0en6KsUG8X3D2uIaHED4w1PxaB1C65mj2DHi\ntVLpmk94kqgf/iJu3U5azxxF8MC7uPDrBpIjjpKweR8A7iHBtH93EpsHTwOg1bThJO04xP5XPkHR\n2mHn5HjFsvs9P4WY16aa296HS8iJ2GZVdlN22W1P6+WD54ODiR43DDU/n8CX38C9Rx8yN/191fIX\njx84biLRs17GkJxEo0++IGv3TvQXitd9FnGLPqdW17AyF+E98BH0Fy5g5+J6zWH9wtrgWi+AjQNf\nwvOOxrSZOYItz7xRKl3LiU9wdtnfxKzbxZ2zRlJ/UG+iV2wEIOVgJLsnfWiVPvt8HOFPFnYgNQr3\n/P0Zcf/u5Y5pw8peEUWD56iXSZw3HmNKIgHv/B+5e7diiCn6YmtIjCXhzRdQc7JwatsVr+dmkjBn\nFBTkk/jWi6j6PLCzw//Nr8g7uJP800evuR5ux7ZXreKXWBef514i7s3JGFISqfOfpeTu2UbBpWhL\nkoKEWOJeHY8pJwvndl3weeFlYmeMuamYVVV+1+AAtj06idqtm9DylWfZPWpOqTRNxg/l/I9riV+/\ngxYzRlNnYB8u/boen25ty8zv6OtJ/cfvY/vjUzHpC7hz/mQC+ncjds1mUiKOcPqLH+m/80dcGwaT\nuGE7pxZ8Q4dv3iVp615yS5z3XIID2WU5741h3+iZ5vPeS6M5MOkt9ImpVnlDxg0j6uvlpO46gHfX\ndoSMG8aBca+Tc/YCe0cVnfe6r15a9nnP1m1f3DLkmTdhE05NWlAQF0NBQhwYDGRt2YRbZ+sThTEj\nHd3pk6gGQ7nLcWnTnoK4WAxJCde9Do36tuHE77sASDgUhaO7Cy6+tUqlO7/5mOX/CYejcQvwACAv\nNYvEI+cxGYyl8tysDh3rU7u2c4UsK+9SPLrYRFSDgYT12/Hp2cFqvm/PjsSv3QxA5rHTaN1ccfD2\noFbLkKvmLcmkz0c1mgDQODiUm86paXPyi23/zC2bcOti/UXdvP0jwWhdvxoXV5xbtSFj3RrzBIMB\nU072NdWFLeP79wolZq35IkP60TPYu7vg6O1RKp1Px1bEb9wNwKXVWwnoba5zY57eksbO2QlUFQCt\nqzNe7ZpzcWU4AKrBiCE7t/yyl2h7mVs34lpG29OfOVmq7OYKsENxcDT/6+iEITXlqmUvzrlpc/Jj\nYyiIj0M1GMjY/C/uXbqViq87FVlm29f6+ODWqTPp/6y9rriBvUO5uHobAGlHzmLv7oqjT1n135LY\njREAXFy9lcC7Qq85hm+nVuRcSiQvrvw6cQhphSHhEsbEWDAayN2xDpeOPa3S5J86gpqTBYD+9FHs\nvP0s81R9HgCKnRZFq7XsB9fqdmx71Sl+cY4hLSiIu4QhIRYMBnK2bcS1Uw+rNPrIo5gu7wunjqEt\nti/ciKosf+zaLQBkHD2N1t18XinJq0MrEjaZz8Oxazbj16sjYD4vlZdfsdOgcXRAsdNg5+SAPjkN\ngJTdhy3nH11cInYuzqgGA4kbtuPbs6NVXJ+eHYn/Kxy4fN5zsZz3coud94rnVVUVrav5vKx1c0Gf\nnApc+3nP1m2/WjJpqvdfNVVt77wpijId0Kuq+qmiKB8BbVRV7aMoSh/gWeD/gDcBR+AsMFJV1WxF\nUUKBBYAbkAyMUFU1rthyNcA3wCVVVecoijISmAmkA4cAfWG6B4E5gAOQAgwFkoBIoJuqqkmFyzoF\ndFVVNamSq+SWovX2oSA50fLZkJKEU9MW172cWj36krll4w2tg6u/B9nxaZbP2QlpuPl7kJuUWWZ6\njVZDs4Gd2TpveZnzqytdYtEXSX1iKrVaNbGa7+jrVSJNCo6+XjiVmm6dt+6Q+wi4vxdZJ85y+tNv\nMWTlAFCrVQgtZr+IU4CvOWHJq4+AvbcvhqSiJmNITsK5WctrKo+9fyDGzHQCJ8/AsWFjdGdOkbDk\nM1S97pry2yq+k68nefGpls+6hFSc/DzRp6QXLbu2OwVZOUVfQBJTcPLztMz3792B5uOfwMGzFnsm\nvw+Yh+nlp2dx5+vPU6tpfTJORHH8A+uhOMVpvX0wFG9711F2Q2oyaX/8RKOvl2PKzyf3wB5yD+65\npryWMvr4UFCs7guSk3Budu1tP+D5cSR8vQSNs8t1xXXy8yQvoWh/zktMxdnXE31yUf07eLhRkJ1r\nqf+8hFScfIvq3+vOJvT+eT66xDSOffQDWedirGLUuacrMf/svOJ62Hn5YkwputhkSEnEMaRVuend\n7noI3cFiy1Q0BLz7LdqAumT/s4L8M8fKzVuW27HtVaf4xWm9fTGkFD8PJuLYpPx9wb3fAHIP7Lqh\nWJdVZfl1xdqb+VjmRX6J450hq6i96RJScfL1Aszttaz8mSfOEf39anqu+gKTPp+U3YdJ2X249LrW\nciNl537AfE4rfd7ztlq+PikVR19vHH290CcmF00vlvf0x/+l7cdzCJkwHEWjsG9M0ZDtWi2b0Hz2\nizgF+JgnlHHes3XbF7eO6tuthK3A5UtQHQA3RVHsC6cdxtyx6qeqantgLzC1cP5nwGBVVUMxd9Lm\nFVumFlgGnC7suAVi7gCGAd2B4kewbUAXVVXbAT8BL6uqagK+x9yRA+gHHJKOm41otbh27kbW9vAq\nCdf7jSeJ3XOG2L0397zBrSDmt3XseHQ8EcOmo09Jp8nE4ZZ5mcfOsPupqewZNQPAPEa/Ail2djg1\nbkra2pVET3oOkz4P7yFPVWiM6ho/IXwvmwdPY9+0BTR7YUjh+mio1awBF1ZsYNvQWRjz9DQe8VCl\nxNe4uuHWuTtRzz3OuREPo3Fywr13/0qJVRa3Tl0wpqehO3O6ymJelnEymnX3TyL88Vmc+2kdnRZM\nsZqvaO0I6Nme2PW7KyymY6tQ3Po8RPqyz4smqibiX3mamLEDcAhpiX1wowqLdzW3c9uzdXyn1u1x\n7zuA1G+/qJJ4ZbF1/QNo3V3x69WBrYPGs/n+F7BzdiTw3tLDO1VVJeGf63+c4krqPHIPpz/5HzsG\nvcDpT/5H81kvWuZlHj9NxNAp7C0873GT573q1vZF9VKdO2/7gFBFUWphvhu2E3MnrgeQh7mjtV1R\nlIPAM0B9oBnQGlhfOH0OULfYMhcDR1VVvdyh6wyEq6qapKpqPvBzsbR1gX8URTkCTAcuXx75Brj8\nTXUU8N+yVl5RlDGKouxVFGXvkiVXfnnA7ciQkoy9T9FwAPMVyOQr5CjNLbQz+rOnMaanXT1xoTuG\n9uKJlbN4YuUscpMycAsouqru5u9JdkJ6mfk6jX8AZy83tr5z/S9FsTUnP2/L/x39vNAnWQ/p0iel\nlkjjjT4pFV2p6UV581MzwGQCVSV25QZqtQwpFTc32nxXwrF+w1LzClKS0Pr6Wj5rfXwpSLm2ayAF\nyUkYkpPQnToBQNb2zTg1bnKVXLaL333ZfLovm48+OR3nAC/LdCd/L3SJ1vtuQUYW9u6uKHbmQ7OT\nn3epNACpB07iUscP+9ru6BJT0SWmkn7sLABxG3dTu3mDctfHkJKMtnjbu46yu7TtQEFCHMbMDDAa\nydq5Befmra8p72UFycnYF6t7e59rb/suLVvh3qUbTf63jLoz5uDapi11ps8sN33Dx/rR+8d59P5x\nHrqkdJz9i/ZnZz8v8pKs6zY/PRt7NxdL/Tv7e6ErTGPIybMMXU3cfgiN1g4HDzdLXv+wNmScjEaf\nWvad+8uMqUnYeftbPmu9/TCmla5/+3oheI2ZTdL70zFlZ5Sar+Zmozu2D6c2Xa8Yr6Tbqe1Vx/jF\nGVKSrIZBar39MKaWXheH+o3xfXEGCe/MwJR95f3raiqz/B4PDKLBp0stn52KtTfzsaxo5AGYj3da\n96L25uTvhS7JnEaXmFZmfu9Od5Abm0hBehaq0UjCvxF43NnMki7ogV4A5F2Mt0y7fE4rTp+UYrV8\nR1/z+U2flIqjn0+ZeQPv70VSuPniTOLGnWWf986bz3sOwY1LzbN12xe3jmrbeVNVtQCIAkYAOzDf\nibsLCCmcvl5V1baFfy1VVX0W8/vtjhWbfoeqqncXW+wO4C5FUa7lCePPgM9VVb0DeB5wKlyvi0BC\n4fDNTsBf5az/ElVVO6iq2mHMmJt4uPgWpTt9Evugutj7B4BWi3vPPmRHbL+uZbj37Evm5usbMnlk\n2WZ+GjifnwbO59yGQ7R4uAsA/m0akp+dV+aQyZZDwqjXvQV/T/mmRo4xdwkOxCnQD0Wrxb9/GMlb\nrd/Zk7R1LwH3m094tVo1wZCdS35KOlknzpSbt/izC769OpFzzvyWTqdAv6ITceHwkYLEeErSnYrE\nodj2r9WzD9m7d1xTeYzpqRQkJ+JQJxgA1zahVi+7uBZVGX/b0FlsGzqLhPC91LnfPJjAo3UIhuw8\nqyGTl6XsPU5A384A1B3Qg4TN5jp3qVt00q/VrAEaBy0FGVnoUzLQJaTgWj8QAJ9OrUsN57Mqe2Hb\n0/oHmsveoy85u6+t7RmSEnBq1tL8zBvg0ibU6kUH1yLv1Ekcgupg7x+AotVSu9ddZO26trpP/N/X\nnBr2BKdHDOXSu3PJOXSQmPffKTd91C8bCH9yNuFPziY+fB/BA8xX6D3vaExBdq7VkMnLkvceJ6hv\nJwCCB/QgLtw89MrRu7YljUerRqAo5KcXPe9T596rD5kEyD97HPuAYOx8g8BOi0u3u8nba32HwM7b\nH5+X3iNl4esY4i5YpmvcPVBczB1Gxd4Rpzs6UxBbffd9iX9l+jMnsQ+si9bP3BZdu/clZ882qzR2\nPv74vzyfxE/eoiCu9NuQr1dllj99zR9ETxxt+Rx0v/l5rtqti84rJaXuO45/H/N5OOiBXiQVHu+S\ntu4tM78uPhmP1k3QOJrvbHl3bE124YVC7y5taDDMPOrAuY6/5dzl1y+M5K3Ww7uTt+4l4L7egPm8\nZ8wp+7xXPK8+OQ2Pdubr+J4d7iD3ovmJnLLOe4ak2FJltXXbr5ZMSvX+q6aq7TNvhbYC0zDf4TqC\n+Vm2fcAuYKGiKCGqqp5RFMUVqIP5eTRfRVG6qqq6s3AYZVNVVS8PDP4a6An8oijKI8Bu4BNFUbyB\nTGAI5ufeAGoDl78BPVNivZZiHj75naqqFf+2ituByUjioo+p++YH5p8K2LCW/AvR1L7XfODN+HsV\ndh5e1P9oMRoXVzCZ8HxoMNEvPoMpLxfF0QnXth1IWPjhVQKVLzr8KPV7tWb4hrcoyMtn48yi54Qe\n/Gocm2Z/T05iBne9+SRZsakM+WU6AGfXHWTPwrW4+NTi8d9m4ODmhGpSaTuiD9/f9xYFOTf2/ENx\n06b+SkTEedLTcrmr50eMn9CbR4e0u6FlRX7wNe0+mQ0aDXGr/yUn6hJ1HjYPdYv5fT0pO/bj060d\nXVd8Zn5l8tyFAIWvQi6dFyBk/DDcmzRARUUXl8TJdxcD4NGmOfWHD0I1GDGPMsZ8l6Ykk5GERZ8Q\n/Nb7hT8V8Rf5F6LxuM+8/dP/Mm//Bh8vRuPiAiYVz4GDiRpr3v4Jiz4lcNocFK2Wgvg44j5+9/oq\nxQbxE7cfxDesLb3/+AijTs/hNxdb5nX85GUOv70EfXI6Jz77kfbzJ9Bs7BAyI89bXkQS0LcTde/v\ngclgwKQvYP/Mzyz5j73/f7R9exwaey25MYkcenMxjYcPKLfsSYs/pu4b5raXuWEt+RdLt716C5ZY\n2p7HQ4M5P244ulMnyN4eTv2Pl6IajejPnSbjnz/LjlNu3ZuI+/Iz6s99D8VOQ9q6v9BfOI/n/eb1\nTVu7Gq2nJ40+/dJS996DHuXM86Mw5Zb/IparSdh2EP/ubei38kOMunwOvFE0IqLLp9M4+NZSdMnp\nHP/0Jzq8M57m44aQcTKaC3+EAxDUrxMNBvdFNRox6gvYO3OhJb+dkyN+nVtzaN4311B+I6nfvI/f\nrE/NrwsP/5OCS+dw6/cIANkbfqP24NHYudXG69lXAMx3GGY9g52nD94vvg4aDWg05O7cgG7/titF\nKzP+7db2qlX8EuuSvPQjAl5bgKKxI2vjagouRuF+9yAAstb9gedjI9G418JnjPnNshiNxLz8byQt\nmQAAIABJREFU7E3FrKry58Yk0v23TzDq8jn29peW6e0+msHxeYvRJ6dx+rNl3DlvEiEvPE7mqWgu\nrdoEQPL2A/h0a1cqf8axMyRs3E3X795FNZrIjIzi0u/mn+lpMX0UGgfz11oVlU7fvk9BehaxqzeR\nE3WJoIfN1/Jjf19Hyo79eHdrT9fln5t/ImeueTiqajRx6sOltP14jvkncgrzApx8ZxFNpoxEsbPD\nlF9AZLHzXr1hD5tfsFR4gdeUVfZ5z6ZtX9wyFLUa30lQFKUv8DfgoapqjqIop4BFqqouKLzz9R7m\nF5YAzFFVdZWiKG2BTzF3vrTAx6qqflX8pwIURXkTaIr52bVnKHphyUEgX1XV8YqiDAQ+AtKATUBH\nVVV7F66XPeaXmHRSVfXkNRSl+lZyFYh8sJfNYjf7czOfNb2530m7GRNOfYmRZVdPWEnsGMrGLkNs\nFr/vruWcHNDbZvGbrw63efw1Har2mZDLHthr/u2mUw/1vErKytF01RaO3dfXJrEBWv21kZXtn7ZZ\n/IH7v+fC451sFr/ezxE23/dv9/jnHin7py6qQqPfttus/M1XhwOwrtPjNol/d8TPbOo62CaxAfrs\nXGHzts9Vf2m1etDP96jW348dZ6VXy3qs1nfeVFXdCNgX+9y02P83AR3LyHMQ8921ktN7F/v/68Vm\n/ZcynltTVXUlsLKcVWuD+UUl19JxE0IIIYQQQhSjqtWyb1TtVevOW3WkKMoMYCxFb5wUQgghhBBC\niEpXbV9YUl2pqvquqqr1VVWVwcZCCCGEEEKIKiN33oQQQgghhBBVyyT3kG6E1JoQQgghhBBC1ADS\neRNCCCGEEEKIGkCGTQohhBBCCCGqlFqNfwi7OpM7b0IIIYQQQghRA0jnTQghhBBCCCFqABk2KYQQ\nQgghhKhaMmzyhsidNyGEEEIIIYSoARRVVW29DrcDqWQhhBBCCFEVasQtrbzXfav192PnN5OqZT3K\nsElR6dZ3fsxmsfvv/sXm8Td2GWKz+H13LcfIMpvFt2Oozct/u8bvu2s5gE3j3651fzn+6tChNos/\nYN8ym5f/do//V8cnbRb/vj0/2vzYs637IJvE777tD5u3PVvHrylUtVr2jao9GTYphBBCCCGEEDWA\ndN6EEEIIIYQQogaQzpsQQgghhBBC1ADyzJsQQgghhBCiapnkHtKNkFoTQgghhBBCiBpAOm9CCCGE\nEEIIUQPIsEkhhBBCCCFElVJN8lMBN0LuvAkhhBBCCCHEdVIU5V5FUSIVRTmjKMqMK6TrqCiKQVGU\nwTcbUzpvQgghhBBCCHEdFEWxAxYC9wEtgScVRWlZTrr3gHUVEVeGTQohhBBCCCGqlKrW+GGTnYAz\nqqqeA1AU5SdgIHC8RLoJwK9Ax4oIKp03USWaTR2JT7d2GHV6jr39BVmRUaXSOAX6cufcydjXdifz\n5DmOvvEZqsF4xfwt54zFN6w9+WkZ7HxqWpmx++/+hUt/bMArtHWFxwdAo9D5f++iT0rl4EvvAdD4\n+cfx7dEBgI7/ew+tmwuoELtqI+e/+6NU7KZTR+LdtT1GvZ4Tby+0LN+rS1uaThmJotFY5W04eghB\nD/WjID0TgLNf/kDKzgPUahlC8xnPmxd6E8fE2TNXsTn8FF7erqxaPfbGFwR0+fmTUutf3PWW3a9P\nFxqOfgzXBnXYM2omWSfPAeB/T3fqDx1oWa5bSD2bxLdzccbJzwvFvvzD6/XG1NZyo/XcKTgH+pIX\nl8TR2QswZOWUWebID76h3hP3W6Z1/mEBydv2cfaLZRUev+T+FrV0OUmbIyxxwlYuwsGzFgDnv1/J\nuSU/33RdlLfve3W6k8YvDkWj1WIyGK64jMrY/tpabtz5zku4twghbk14mdu91fTh+IW1wajL5+Ab\ni8k8GV0qjXOQL+3fGY9DbTcyTkRz4NUvLMchgNotGxH23zc4MOtz4jZG4Fo/kPbvTLDMd6njx6lF\nKyqt/K3nTsGlXpC5zO4uGLJyiRg+vdS+CNDt94WoBtMt0/ZDxg/Dp3soJoOBvEsJnJi7EEN2Loqd\nHS1mvYB7s0YoWg1xazeXitXipWfwDWuLUZfPkTe/JDMyulQa5yBf2s6biH1tNzJPRnHotYWoBiNB\n94bRcPhDKAoYcnUce/drsk5fwLV+IG3nT7Tkdwny4/SSFUT/+FellL/RmMfx6dkRTCr5aRkcf3sh\n+clpZW774jw6t6PRpNEoGg0Jq9dz6fvfSqVpNGk0nl1DMen0nJr/KTmnzhXN1Ghou/QD8pNSOP7K\nPAAavPgMXmEdUQsM6GLjOTX/M4zZOeWuQ2W0PSd/L9q+NRZHr9qgqlz4fRNRP/5TZfGv1PZFlakD\nXCz2+RLQuXgCRVHqAA8Dd1FBnTcZNikqnU+3drgEB7B98EROvLuEFi+PLjNdk/FPc/6nNWwfPBFD\nVg51Hupz1fyxq8PZP3l+mctz9PMGQJ+agXMd/0qJD1Dv8fvJiY6xmhb9/Sp2PT0dAKcAHzKOnmbX\nk1PwvzsM1wZ1rdJ6d22Hc3AgO4dM4OQ7i2n28nPmGRoNzaY9y8Ep88rMe/Gn1UQMn07E8Omk7DwA\nQPbZC+wZ+QoRw6dzcPK8wpTX34t7+JE2LFk69LrzWTPHLW/94cbKnn3uIkdmfED6wRNWy0r4Z5ul\nPo69+Rl5sYlVH3/EK4DKoZf/Q15MAkCFxGwwfBBpe46wc8hE0vYcof7wQeWWud5TAzj08n8s8Y6+\n9gkedzbDu2vbCo9fcn9r/soYFLtipxUFdj4xmfA+w/Hp0aFS9/389EwOTXuX3U+/xPG3Pge44jIq\nevub8gs4u+Rnznz2LWXxC2uDa3AA/w56icNzv+aOmSPLTNdi4hNELfuLfwe9REFmDvUG9S6aqVFo\nMfEJkncdsUzKOR/H1qdmmf+eno1Rpyf+372VVv6jcz6y1H3iv7tJCt8NlNgXC+t//7g3b6m2nxpx\niN1DpxLx9DRyL8ZS/5mHzdu2b1c0DvbsfvolIp55hToP97eK5dutLa71AtjyyBSOzf+KVjOeLXPb\nNxv/FNE/rGXLI1MoyMwheOBdAOTGJrL7+bfY9uQrnPn6N1rPes6y7bcPnWn+GzYLoz6f+H/3gKZy\njr3nv19FxNPTiBg+neTt+2g4anCZ9W9Fo6Hx1Oc5Nu0t9j89Ad9+PXAusS6eXUJxCg5k3xNjOfP+\nF4RMe8FqftCQAeSev2Q1LX3PIfYPn8iBEZPJuxhL8LBHy6xTqLy2pxpNHP9oGZuHvMy2Ea9Tf0h/\n3BrWqbL4V2r7omIoijJGUZS9xf7G3MBiPgZeUVXVVFHrJZ03Uel8e3Yg7q8tAGQcPY3W3RUHb49S\n6bw6tCJx0y4AYteE49ur41Xzpx88QUFmdplxm015BgA7RwcS1u+olPiOfl74hLUnZuVGq2UZc/Is\n/zdkZmPMzUM1GEhYvx2fnh1K1E9H4guv1GYeO43Wzbz8Wi1DyLsUjy42sdy8JZn0+ahG8/FB4+Bw\nxbRX0qFjfWrXdr7h/GbmzvOV1v9Gyp4bHUPuhdgrRg7oH0b6oZNVHv9yPs+2LUjYYN7nKiKmT4+O\nxK0NByBubTi+PTuVW+a8S/HkFruY4NOtHVmRUZaLGRUZv/T+plqtkz4hpcLrvzzZp6LJT04DIOec\n+UJoXmxClW1/k05PxqGTmPILylw//16hXFqzFYD0o2ewd3PB0af0ccinYyviNprvXl5cvQX/3kXr\n3PDxe4jbuAd9WmaZMXw6tSb3UiJ58cnm8l+lDm+2/v37diV+/bZS0+s/OQC49dp+asRhy/6eefQ0\nToVtClVF4+yIYqdB4+iAWmCwiuXXK5SYYtte6+6CYxnnIO+OrYjfZO4Mx6zZgl8vc9z0w6cxZJnv\nKqUfOYOTn1epvD4dW5N7KQFdfDIerUIqpfzG3KLzmp2TY7n1X5x7iyboLsWhj01ANRhI2rAN7+5W\nNybw6tGJxL/DAcg6dgo7N1fsvT0BcPD1xqtrBxL+XG+VJ33PQSjcFlnHInHw9S5zfaDy2p4+Od1y\nB82YqyM7KhYnP88qi2+Vt0TbrzFMmmr9p6rqElVVOxT7W1KiBDFAcLHPdQunFdcB+ElRlGhgMPCF\noiiDbqbapPMmKp2jrxe6hKIDii4xBSdf65OPfW13DFm5lhOjLjHVkuZa8pfk27MD+qRUABQ7jeX/\nFR2/2ZQRnP78e1Ctv7QCNH7hCfOyPWpZhovpE1NxLHGScfT1QpeYYvmsT0zB0dcLp1LTrfPWHXIf\nnb7/gBazx6J1d7VMr9UqhM4/LKDzsg8Lp5Ret6ph3fmryLJfjV+/bmSfjq7y+Jfz+fXrRsK6bYUx\nbj6mg1dt8lPSAchPScfBq3a5ZS6+DADnIH98uoeSuudIpcQvvr+dfO8rSxsCcKkfRKdv36fByEer\nZN+31MVdXQDQFfsiU5X7X1mc/LzISyhapvkYY/1Fz97DjYKsnBLHIXMaJ19PAu7qwPkVG8qNEXR3\nF2L/2VEsxpXLcDPl92jbgvzUDPIuxpdaD68ubaw+34ptP/DBuyx3fRM37cKUp6f76q/ovvJLzi/7\n0yqtk68XuhLb3tGv9DnIetunlNlJCx7Ym6QdB0uvz93dLNu+5H5VkeVv9MKThK38koB7epQ5DNqv\nXzerzw6+XugTi7XDpBQcSpx/HX28yC+WJj8xBUcfc5pGE58l6sv/K/Mce5n/A/1I27W/3PlV0fac\nA32o3bw+6UfP2iR+ybYvqsweoImiKA0VRXEAngBWFU+gqmpDVVUbqKraAFgBvKiqaulxzNdBOm/i\nlqNxdKDhMw9zdnHpE0tF8glrT35qBlknSz8/B3B20U8A5F6Kp+7geys0dsxv69jx6Hgihk1Hn5JO\nk4nDLfMyj51h91NT2TPq8htrb69mXqtVCCZdPvqElKsnrgQOHrUw6fItd38qRYkvMlcqs1eXNlz8\nZS26wqFkFR2/+P5Wf/jDaBzsLfMSw3ez74VX8WjbgtptmlVI6Cvt+wCuDevSeNzNDvmtflpOG8aJ\nT38q90usorUjoFcosRt2V8n6+N/dnYQy7rrVahWCKd9QRo7KV1Vtv8GIR1ANJuL/3mqJq5pMbBsw\nhu2PjKPeUw9WSlyv0JbUfeguIj//0Wq6orXDr2co8Rsrf9ufW/Qj2weOJf6fraXOa5frv6J4dutA\nQXoGOZGlO0SX1R0+GNVoJGld6ecMK8rV2p6dsyOh70/m2AffYSg26qaq4ld12xdFVFU1AOOBf4AT\nwC+qqh5TFOUFRVFeuHLuGycvLKkkheNixwAsXryYMWNuZJjsrUGfnI6Tvw8QCYCTnze6YnfCAAoy\nstC6u6DYaVCNJpz8vCxp9EmpV81fnEtdf1wb1qXXP0sB0DjY0+r1cex88iXyUzMqLL5fn8749uyA\nT7d2aBwd0Lo60/qNCRx9w3rMv0mfj99dnYla+guOfl7ok6y/WOiTUnHy8yaj8LOjnzf6pFQUrbZo\nWA5Y5c1PzbBMj125gTYflP5pkaKhcx5A+fVVeaxPYhVV9qvx7xdG/PptpbZxVcTXJaXi1qQ+MX8U\nXSGtqO3t4O1hvuvl7UF+iaEzxctcfBlgvnJ+8ee1lRofzPubMU+Ha6Ngy4sknPy8MebqSFi3jaBB\n/UneuqdC6uKykvu+o68Xd743neNvfU6HJXOvug0rY/8rrv6Q/tR72PzcUsbxczj7e5NWOM98jEmz\nSl+Qno29u2uJ45A5jUeLhrR/ZzwADh7u+IW1wWQ0khC+DwC/sLZknIwmP7Vo21RW+RU7DX69OxHx\nzCulyuzfL4yUnQeo+8jdlRL7Sqqi7Qc+0BufsFD2j3/TMi3g7u6k7DyIajRSkJZJxuGTuNYPImzZ\nO4B52zv5Fy3Tyc8LfWLpc5D1tvdGVyyNe0g97pgzhj2T3qUgw/pRAd9ubck8GWVpGyX3q8qo//h/\nttF2wUyilv5imXa5/kNCnrJMy09KxdHPp2h5vt7kl9g++uRUHIqlcfDzRp+cinfvrniFdcSzSyga\nB3vsXF1o+upkTr39MQB+9/XBq1sHjk56rdT6VVXbU7R2hL4/mZi/tls9b2brtl9T3Ao/0q2q6lpg\nbYlpi8pJO6IiYt5el+SrUPFxsrdzxw0gaUsEgff1BKB26yYYsnMtQ7CKS9t3DL8+5uFOQQ/0JmmL\n+UCYtHXvNeW/LPvsRf7t8wwbu5uvvuenZZJ1+jz5qRkVGv/MFz+y9cGxbHt4PEfmfEzq3qOWjptL\ncIBlua4N66JLSEHRavHvH0byVusHipO27iXg/l4A1GpVtPysE2dwCQ7EKdCvVN7iz+z59upkucvj\nFOhneWGEU8Dlk2H5b+CqXClF61SBZb8iRcGvbzcS1m8n68SZKo+fdfIsjn7epB86iaI1XxuriJjJ\nW/cSeH9vAALv723dCSpR5svLuOzku4srLX7J/c21fhC6uCTLNJfgQJzrBuDTvQNO/t6Vuu9r3Vxo\ns2AmZ75YRsbhSEv8Kt3/Sji/fL3lhQLx4Xup+0APADxah2DIzkOfXPo4lLz3OIF9zc8UBg/oScJm\n8xe0TQ9NYdODk9n04GTiNkZw9N3/Wb68AQTd05WYv62HTVVW+T073klOdKzVcHTAsi+e/8E8bPBW\na/teXdpS/+mBHJr+HiZ90R0mXUIynh1aA6BxcqR266YAlpeJJITvpY7Vts9FX8Y5KGXvMQL6mJ8H\nq/NATxK3mLevk7837f4zhUOvLyT3QulhqoH3dCN2XdG2zzh+tlLK71zsvObbswO554s9f1is/ovL\nOnka5+BAHAuX59uvO6nbI6zSpG6LwO/e3gC4t2qKMTuHgpQ0zi/+nj2PjGbvkDFEvvEhGfsOWzpu\nHp3bUfephzk+Y77Vtrisqtpem1efIzsqhqhlf9kkPpTd9sWtTe68iUqXvP0APt3aE/brpxh1+Rx/\n+wvLvHYfzeD4vMXok9M4/fky7pg7mZDnnyDrVBQxqzZdNf8db0/Cs31L7D3c6fHnl5xd8guxf/5r\nFd+kz0cXl1Qp8csTMm4orvUCAciLScC1fhBdfvqIuNX/khN1yfI2spjf15OyYz8+3drRdcVnmHT5\nHJ+7EDC/ySryg69p98ls0GgsecH8ymr3Jg1QUdHFJVm+oHu0aU794YNQDUaKXmykv+Ztddm0qb8S\nEXGe9LRc7ur5EeMn9ObRIe2ucynmIR4l1/9my+7bqxNNXxqFg0ct2i6YSdapaMubNT3atUCfmGw1\nRLAq49e+sxl5F+NpOesF0Jg7MBURM/rb37lj3lSCHuqDLj6JI7M/spSvZJkjP/ia9p8XXYlu9cZE\n7Gu7k7b/KMff/LxC45fc306+v5SCjCw0hS8zUBXo8sMCTPn5nF/2Z6Xu+3WH3ItL3QAajhpCw1FD\nADiz+Mcq3f7dfl+I1sXF8jMRbg3rkB1lvgOeuO0gfmFtuWvlAoy6fA69UdSp7vTJdA69/RX65HRO\nfvoj7edPoNmLQ8iIPM/FP8K5GjsnR3w7t+bI/K+tppdVhpstP4B//7Ayh0xa9sVL5g7Grdb2m730\nLBoHLe0+fRWAjKOniPzPV1xa8Q8t5rxI5x8WoCgKsav/pcmEYZb1SNp+AN+wtvT6/WOMOj2H3yra\n9qEfv8zRuV+hT04j8vMfaTtvAk3GPkZmZDSXVprPZSGjH8GhthutXhllXkeDiR3PzLZse59Od3Bs\n/lLLMi8/N1XR5Q95cSgu9YJQVRVdfBKR731VetuXHJ5tNHF2wVe0XvA6aOxIWLOB3KiLBAy8B4D4\nlf+QtnMfnl1DCf15ESadntPzPy21b5XUeMoYNPb2tP7IfAc061gkZz8o82ZHpbU9z7ZNqTugB5mn\nL9DjB/NbryMXln5cwxZtX9zaFPUKD4GKCnNbV/L6zo/ZLHb/3b/YPP7GLkNsFr/vruUYWXb1hJXE\njqE2L//tGr/vruUANo1/u9b95firQ2337N2AfctsXv7bPf5fHZ+0Wfz79vxo82PPtu439UK9G9Z9\n2x82b3u2js9N/dJr1cmaHlytvx+7v3+xWtaj3HkTQgghhBBCVClVrZZ9o2pPnnkTQgghhBBCiBpA\nOm9CCCGEEEIIUQPIsEkhhBBCCCFE1TLJPaQbIbUmhBBCCCGEEDWAdN6EEEIIIYQQogaQYZNCCCGE\nEEKIKqWa5G2TN0LuvAkhhBBCCCFEDSCdNyGEEEIIIYSoAWTYpBBCCCGEEKJKyY903xi58yaEEEII\nIYQQNYCiqqqt1+F2IJUshBBCCCGqQo24pZU+qVG1/n7s8cm5almPMmxSVLrEUa1tFtvvm6Ns6jrY\nZvH77FzByQG9bRa/+epwNnYZYrP4fXctx8gym8W3Y6jN4+/s+ZBNYnfdsgqAAtO3Nolvrxlu87rf\n2+d+m8XvsGmtzduerbY9VI/tb+v427oPsln87tv+sFn57RgKwKrQoTaJ/9C+ZWzvMdAmsQHCtq60\neduvMeRHum+I1JoQQgghhBBC1ADSeRNCCCGEEEKIGkCGTQohhBBCCCGqlPxI942RO29CCCGEEEII\nUQNI500IIYQQQgghagDpvAkhhBBCCCFEDSDPvAkhhBBCCCGqlKrKM283Qu68CSGEEEIIIUQNIJ03\nIYQQQgghhKgBZNikEEIIIYQQokrJTwXcGOm8CZtxaB2G21MzQLFDt/VXctd+bTXfscsDuN73LCig\n6nLJ+u5tDBcjAXDu9zTOPR8FRSFvywry1n9/3fG9urSlyeSRKHYa4lZt5Px3f5RK02TKKLy7tcOk\ny+f425+TfSoKgOazX8SnWyj5aRlEPD31BkoPru074TdmPIrGjvR1a0hd8YPVfIe69Qic/AqOjZuQ\n/O3XpP7+s2WextWNgInTcazXEFCJ++Q9dCePl1vOplNGomg0xJZTzqZTR+LdtT1GvZ4Tby8kKzLq\ninn9+nSh4ejHcG1Qhz2jZpJ18hwA/vd0p/7QgSWW7gmkXVfdzJ65is3hp/DydmXV6rHXlbciVEZ8\nj07taTBxNIrGjoQ164hd9mupNA0mPodnlw4Y9XrOvvMxOafM9dru568w5eWhGk2oRiNHxrwEQJM3\npuMcXAcAOzdXjNk5HH528lXXZdvWs7w7fx1Gk8qjg9sy+rluVvMzMvJ4dfZqLl5Mx9HRjrfnDqBJ\nUz8Avvs2gl+XH0RVVQYPacewZzpdd11s3XKGd+b9g9FkYvCQdjw3pnup+HNmreLihTQcHbXMnf9Q\nUfz/283y5ftRVRgypB3DR3S5ppi1OoZSb/zzoNGQvPYf4n9cXipN8Pjnqd25Iyadnuj/LCD39FkA\n/B4ZiO8D94CikLTmbxJ/XQlA3edHUbtrZ9QCA/q4OKLf+whjTo5leZXR9gDqDrmXuo/ei2oykbJj\nP2c+Nx//3ELq0fyV57FzdS5MqQFMpWLaevtfyS3Z9ju3o9Gk0SgaDQmr13Pp+99KpWk0aTSeXUMx\n6fScmv+ppe0DoNHQdukH5CelcPyVeVb56jwxkIbjR7LrgWEYMrJuel0rq/5bTx+Of1gbjLp8Dryx\nmIyT0aXSuAT5EvrOeBxqu5F+Ipr9r36BajDiHdqCTgumkhuTBEDcv3s49dXvRRk1Cr2+m0teUhoR\nkz8otVyPTu1oNOk5KKz/mDKOvQ0nPYdnl1BMej2n539iqf/QX5ZgzM1DNZnAaOLQcy9Z5Qt6fCAN\nx49i94Cnrerf9m0fJ0BXKqi4JciwSWEbigb3p+eQ/tFYUuc8hGPn+7ELamSVxJgUQ9p7I0h97RFy\n/lyE+zOvA2BXJwTnno+SOvdJUl9/FMc2vbDzC76++BoNzV4azaGp89j95BT8+nfHpUFdqyTeXdvh\nEhzIriETOPnuIpq9PMYyL37NvxycMvfGyl4Y33/sJC69/grnXnyGWr364BBc3yqJMSuThMWfkvrb\nz6Wy+48ZT86+CKLGDidqwrPkX7xQbqhm057l4JR57HpyCv53h+FaRjmdgwPZOWQCJ99ZTLOXn7Os\nY3l5s89d5MiMD0g/eMJqWQn/bCNi+HQihk/n2JufFU69vo4bwMOPtGHJ0qHXna+iVHh8jYaGU57n\nxPQ3OTh8HD59e+Jc33qf9egSilPdIA489Tzn3l9Iw6nWX5yOTZrN4WcnWzpuAKffeJ/Dz07m8LOT\nSd2yk9QtO6+6Kkajiblv/82XS55g1Z/Ps3bNMc6eSbJK89WSHTRv4c/vK59j/rsP8e47683xTiXy\n6/KD/PjLSH794zk2h5/mwvnU66oKo9HE3Lf+YvHSp/hzzYusXX2MMyXiL1m0jeYtAvjjzxd4571B\nzJ/3tyX+8uX7+Xn5aH5f+Tzh4ac5fy3xNRrqTXqRUzNe49jIF/Dq0wunEvVfu3MHnOrU4eiw0Zxf\n8Cn1Jo8HwKlBfXwfuIcTL07h2OhxeHTphGNQIACZ+w5wbNRYjj83Dt3FGAKeesxqmZXR9jzbt8K3\nZ0d2D5vG7qemcn7ZKgAUOw0t35jIyfeWsPupyxeU1LLr34bb/2puxbbfeOrzHJv2FvufnoBvvx44\nl9gPPLuE4hQcyL4nxnLm/S8ImfaC1fygIQPIPX+p1KId/Hzw6NgWXXxiha1uZdS/X1gbXIMD2Djo\nJQ7N/Zo7Z44sM12LiU9wdtlfbBz0EgWZOdQf1NsyL+VAJJufmsXmp2ZZd9yARk/eS1Z0bNnBNRoa\nTX2eY9Pe5MCw8YX1b932PbuE4lw3kP1PvsCZ/yyk8UvWx96jk+ZwaNSUUh03Bz8fPDq1K7P+bd/2\nKSi7QsStoNp23hRFaaAoytEypi9VFKVlGdNHKIryeQXEDVIUZcXNLkdcmbbRHRgSL2BKugRGA/rd\nf+HYto9VGsPZg6i5mQAUnD2MxtPfnDewEQVRRyBfByYj+ZF7cWzf77ri12oZQu6leHSxiagGA4kb\ntuPbs6NVGp+eHYn/KxyAzGOn0bq54ODtAUD6wRMYMrNvpOgAODVtTn5cDAUJcWAwkLkI9YNuAAAg\nAElEQVRlE25dwqzSGDPS0Z2OBKPRarrGxRXnVm3IWLfGPMFgwJRT/rrkFStnwvrt+PTsYDXft2dH\n4tduLlZOVxy8PajVMqTcvLnRMeReKOdkWSigf9gV519Jh471qV3b+eoJK0lFx3dr0QRdTBz6uARU\ng4HkjVvx7N7ZKo1X984k/fMvANnHI9G6uWLv7XnNMbzvCiN545arpjtyOJZ69bwIDvbE3uH/2Tvv\n+Car9YF/T9I23XQlbYECQsuwIKPsLeDALcJ1L5YLZAgqigsQ9HevgDgB9XpVrnrRq6KAlyVThmXL\nXm0pXUnadCdpkvf3R9q0aVpakJKi5/v59PNp3jzPec55zvuc8573jKgZftPVbNhw3E3m1Ek9vXq1\nAqB16yjOnTNhMBRx+rSRTtc0JSDAFx8fFd17tGDd2mP1zqPT/jlatAwnLi4cPz81w29OZMN69zRO\nndLTq3e5/TZRZJzLx2Ao4tQpA9dc08xlv0ePlqxbc6QGK+4EtW+L5VwG1swsFJuN3A2bCevbx00m\nrG9vjGvXA1B8pNz/EeEEtIyj6MgxHBYLOBwU7v+d8AHOe7sgeS84HOU6R/HTRrml2RCx12zE9aR8\n9j1KmQ2AsjxnGxnRszNFJ1MpOplaxYLn4M3b9V8Xf7bYD+mQgDk9E0uGM/b167YSWT32B/Qk5+eN\nABQeOo66Suz7aSOJ6NOd7B/XeqTdeuJoUj74V03VfNE0hP9jBiWRvnILAHm/n8Q3OBBNVJiHXFSP\nRDLX7wLg7E+biRnc3UOmOv66CKL7dyHt+19q/D6kQwLmc1mutle/fgsR/d1niyP69yTn54q293i9\n296rJo4h5f1PQfGsAO/HPu4PDo0URVE16r/GSuPNWS0oijJWUZSa14f9QYQQPoqiZCiKMrIh0pdU\nog7T4cjNcn125GWjCtfVKu8/YATWg1sBsJ07iW9CN0RQE/DzR9NpAKqImAuyr9FGYMkxuD5bcoxo\ntBHVZCIxZxsrZfS5aLSRF2SnNnwjtdj0lW+7bQY9vpHa+ulGx2IvMBE7+Xlavb2UmInTERr/WuXN\nOVXKkONZBo02opqM0xf+HtcvrPy6YX3rFvqL4BcV6Xa/WfUGD1/6RUVizdFXkTHiF1Upc/X82XRa\nOh/drTd4pB/SOZGyXBPm9Mw685KTU0hMTIjrc3R0KDnZ7sut2rWPdj2UHzxwjsyMfLKzC4lP0LJn\n91lMeSWUlpaxZfMpsrIK6rRZlezsQmJimrg+x9Rmf81RAA4cOEdGhonsrAIS2mrZvTvNZX/z5hNk\n1sO+07dV/G8w4FfN/75RUdX8b8A3KorSM6mEdOqIOjQElUZDk17d8dW5D9IAooZfT/6uZLdrDRF7\ngS2aEta5A90/nku3918jpEOb8uuxoECXhS/S419v1uoLb9f/Xw2/6n2N3ohf9b4mKsL9/swxooly\nyrR+egxnPviXxwAhon9PrAYjxSdTGi7zlwh/XQSlVfrS0pxc/LXugyO/sGBshcUodkeNMhHXJDD4\nq3n0WvQsIa2bua53fOZBDr/9JYqj5hGsn7Za7OuNaKIiPWTc68hQKaNA4oJZdP7oLaJvvb4yP/17\nYtUbKTmVUqPdxhj7kj8PjX3Pm48QYhnQDTgEPASsAqYpipIshHgUmAGYgP2ApbaEhBCf4lz/2x0I\nBaYqivKTEOIRYAQQDKiFEA8DPymK0lEIoQbeBG7EuXFgqaIo7wghkoD55ToG4BFFUep+apJcFL7t\nexAwYAR58x4EwJ55mpLVnxD2zBIUSyllZ4+B4rmv48+KUKvxb9OW7A8XYT5+BN34CUSOug/DF594\nO2suQhPjcZit3s7Gn4ZDTz2H1ZCLT1gTrp4/i9K0dAr3H3J9HzV0IIb1Wy6ZvbHj+vLG3DXcdedS\nEhJ0tO8Qg1olaNMmitFj+zB+7JcEBPjSrn00KtWl33A+bnx/5r7+M3fevpi2bXV06BCLSq2iTRst\nY8f2Y+yYZQQE+NK+fQxqVcO+gzSnnSXrq+W0/b85OMwWSk6dds22VRB7/90odju562p++38pEWoV\nvk2CSR7zAqFXx9Pp9an8OuIphFpNWOf2/Pbo89jNFq7dtAxBDApZdSdaDW/Xv8RJeN/ulJnyKT52\niiZdO7quqzR+xD00kt+nvOq9zF1G8o+msPbmp7GXWtD160yPt6ay4c5niB7QFUtePvlHU4hM6tAg\ntg8+9TxWQy6+YU1IXPAapWnpFB09SfMHR3Fo6isNYrM2LiT2gaHA+suaQcllo7EP3toBYxRF2SaE\n+AR4suILIUQs8BqQBOQDvwB760ivFdATaAP8IoSIL7/eDbhGUZRcIUSrKvLjy3W6KIpiE0JECCF8\ngXeA2xVF0Qsh7gZeB0ZXNSSEGF+uz+LFixk/fjySSuymHLfZMlV4NI48z3Xj6uZtCX1kFqYFj6MU\n57uum7f8F/MW56bvoBGTcORd2AOKRZ+Lpsrbc40uEos+t5qMEf/oSCqsarQRWPRGLgVlRj0+2sqZ\nNp8oLWVG/Xk0quga9NgMeszHncvFCrdtInLkfbXK++sq3/hpdJ5lsOhz8ddVKWe5L4SPT526tRE9\nrB9Za7cSH197vv5KWA1Gt/vNTxvl4UurwYifTgscKZeJxGowln/nvDdtpnxyt+wguENC5eBNrSJi\nYB8OjptSr7zodCFkZVXOtGRnF6CLDnGTCQ7WMGfurQAoisINw96jeZzzLfhdI7tw18guACxc8Asx\n1XTrIjo6hKysyljOqsX+3Hm3u+xfN3QRcRX2R3XlrlFdAVgwfz0x0aF12nT6tor/o6KwVvN/mcFQ\n7v9yGW0UZQbn23jD6jUYVq8BoNmYh7HqK9/SR94wjCa9e3J82gsedhsi9iw5ueh/2QlAweGTKA4H\nvmGhWHKMmPYepqzKoQmCSI/Bm7fr/6+GtXpfo43EWr2vMeS635+6SCyGXCIH9yGiXw/Ceyeh8vNF\nHRRI25cmk77sOzSxOrp+utCVZpdP5rN/3HTKck2Xp2D1YNC/5wJgOnyagOjK+zlAF4FZ774X2moq\nwickCKFWodgdbjK24lKXXM62/aieV+MXFkxE57bEDEwiul8XVH6++AQH0G22+341q75a7GsjsRiM\nHjIaXRQVUaHRRrlkKtreMlM+xs07CO7QFlthMZpYHV3+udAl3+XjBewfP83lf2/HPs7n2sY/eJOn\nTV4UjX3Z5FlFUbaV//8FUPVIsl7ARkVR9IqiWAHPUx08+Y+iKA5FUU4Ap4H25dfXKopS067rYcBi\nRVFsAOUy7YCOwFohxD5gJtC8uqKiKEsURemuKEp3OXDzxHbmd3yiW6CKagZqHzS9hmPZ5/7WWhUR\nQ5OnFpK/dAb2bLe13IiQCJeMJmko5h2rLsh+4ZGTBMbF4h+rQ/j4oBvWD8OW39xkDFuSiRk+GIDQ\nxATsxSVYjZemYzQfP4Zf0+b4RseAjw+hA4dQtPPXeunaTbmUGXLwa+bcdB3UOQlLWmqt8lXLGX1d\nPwxb3Jd26bckE3PTIMBZTluRs5zVfVSTbo0IgW5oX7LXbqtb9i9C0dET+DdviiY2GuHjQ9TQAeRt\n2+kmk7t1F9obrgUg+Op22ItLKDPmofLXoApw7kFR+WsI69GF0tOVB9SEJXXBnJbuMRipjY6dmpKW\nmkt6uokyq53Vqw5z7bVt3WQKCsyUWZ1bJr5dvo+k7i0IDtYAYDQ6T1PMzMhn/dpj3HRLRy6Ejp2a\nkZqSS/rZPKxWO6tXHuLaIZ72reX2v1m+l+7dW3rYz8jIZ92ao9x8a6c6bRYfPY5/s6b4xTj9HzFk\nIKbtO9xkTL/uJPK6oQAEdWiHvbiYslznw6NPmHOZp59OS9iAvuSu3wg4T7CMuXskJ2e+5twTV42G\niD395l2EJzl9HhAXi8rXhzJTAcad+wmKb4FK44dQO7t2Bc/2ytv1/1ej8OgJAuJi0ZTXpXZYf3K3\n7XKTyd26C92NgwEISWyLvaiYMmMeqYu/4LcRY0keNZ5jr75F/u4DHJ+9kJLTqey69RGSR40nedR4\nLHoj+0ZPbVQDN8B1wEjmxmSa3zwAgPCO8ZQVlWIxeObVmHyY2KHO/Whxtwwka9NuADSRlcuswxJb\ng0pgNRVx5N2vWXvTRNbdOpndL7yL4bfD7HnpA7c0C4+eIKB5Ff8PHUDu1mr+37YL3Y0VbW9bbOX+\nV/lrULu1vV0pOZ1KyelUfrvtYXb/bTy7/zYei97AvjFT3Pzv7dgHGmR7kaRx0Nhn3qovYv6j23Jr\nS6+4uuB5EMAhRVH61CkpqR2HncIv5hI2dTFCpaZ063fYM07hP9h5Wpt5438Iuu0JVMFNCHlwpksn\nb9bdADR5agGq4DAUu43CL15HKb2wI5IVu4Pjb31El4Uzncfx/rSB4jPpNL3TuaY947s1GH/dQ2Tf\nbvRZ/q7zKN8577v0E1+bTFi3RHzDQuj7w2LOfPQ1mT9uuKDyZ3/4NnGz/g4qFflrV2NNSyFs+G0A\nmFavQB0WQauFi1EFBoJDIfz2kZx54mEcpSVkf7iI2GkzET4+lGVlkrnwjVpNHfvHx3R9+0VQqcj8\n6ReKz6TT7M7rADj33VqMv+4hqm9X+nzzjvMnEea85/JRTboA2kE9afvMaPzCQukyfwaFx1PYN9l5\nhHVY1w5YcgyYMy7+BLRpU79l165UTHklXDtwARMmDnbNtlwOLrl9u4MzCxfT4R+vIlQqclatozTl\nLNG33QhA9oqfMe1IJrxPEl2/XIzDYuHkvEUA+IaH0e5156yOUKsxrNuEadceV9KRQwdgWFf3QSUV\n+PioeGHmDTw29kvsDgd3juhMfIKWr79yPijdfU8Sp08ZeHHGjwgBbeK1zJpzs0t/yqRvMZlK8fFR\n8eJLNxAaWvt+y9rsv/jycMaNXYbDrnDnXV1ISNDx1ZfOB5R77u3O6VN6Zjz/AwJBfIKW2a/f6tKf\nNPE/mEyl+PqomfnK8PrZdzhIe+cD2r45B9QqjKvXYE5JQ3vrTQDof1xF/s7faNKrBx2/+Lj8pwIW\nuNTbvPoiPqGhKHYbaW+/7/o5gBZPP4HK15e2f3fe+0WHj5G2sPLcrIaIvYwff6HDzCfotewtHDYb\nh2c5dWyFxZz98id6/PMN1/4ohXM1+t+b9V8Xf8bYPzV/KR3nvwIqNdkr11Fy5iwxtzv3rmb98D/y\ntu8mvE8SSV9/iMNs4cTcRZeoNBdOQ/g/Z+s+ovt1YegP810/FVBBr7ens2/2UiwGE4cXfUnS3Il0\neHIU+cdSSft+IwCxQ3vSauQwFLsdu6WM3TMu4Gw6u4PTC5aQ+NaroFKRs3I9pSlnibnd2fZm/fCz\n0/+9u9PtK6f/T85znpTsGx5Gh7kzAGfbq1+7GdOuuhZ4OfF27AMr6+8kyZWGUGo4JacxUL588QzQ\nV1GU7UKIj3CuJ7oVmAacA3bgnBouADYA+xVFmVBLep8COuAW4CpgExAP3AN0r9Art1ux5+1xnLNv\n91QsmwSKcL7ReLA8X75AW0VRDlE7jdPJl4mc0d57M6v75Hc29PHe+TNDtn/D0VsGe81++582sr73\nKK/ZH7pjOXaWec2+mvu9bn/7wNu8YrvPZucx0mWOz7xi31f1kNd9nzzkJq/Z775hlddjz1t1D42j\n/r1tf2v/O7xmv//W771WfjXOnxpYkeSdn3y4bfcytg2o/nujl49+W37weuzjnGho9OjHJjbq52Pt\nR4capR8b+7LJY8BTQogjOH/p1zUfXn5AyKvAdmAbFRtFzk8asAtYDTyuKEpdP2D4UbnOASHEfuC+\n8iWaI4E3y6/tA+SxehKJRCKRSCQSiaRBabTLJhVFSaFyT1pVBleR+SfwzwtIdp2iKG6/fqkoyqfA\np9Xsdiz/3wZMLf+rqrMPGHgBdiUSiUQikUgkEonkD9HYZ94kEolEIpFIJBKJREIjnnm7WIQQLwLV\nFxsvVxTlES9kRyKRSCQSiUQikVRDkT8VcFH86QZviqK8jvN31yQSiUQikUgkEonkT4NcNimRSCQS\niUQikUgkVwB/upk3iUQikUgkEolE0rhRFDmHdDFIr0kkEolEIpFIJBLJFYAcvEkkEolEIpFIJBLJ\nFYBcNimRSCQSiUQikUguK/K0yYtDzrxJJBKJRCKRSCQSyRWAUBTF23n4KyCdLJFIJBKJRCK5HFwR\nU1pZD3du1M/HMf/a3yj9KJdNShqcnNEdvWZb98nvbOgz0mv2h2z/hqO3DPaa/fY/bWR97+q/WX/5\nGLpjOXaWec2+mvu9bn/7wNu8YrvP5hUAlDk+84p9X9VDXvf97qHDvWY/af1qr8eet+oeGkf9e9v+\n1v53eM1+/63fe638au4HYEXS/V6xf9vuZWwbcLtXbAP02/KD12P/SkFRGuXYqNEjl01KJBKJRCKR\nSCQSyRWAHLxJJBKJRCKRSCQSyRWAXDYpkUgkEolEIpFILity2eTFIWfeJBKJRCKRSCQSieQKQA7e\nJBKJRCKRSCQSieQKQA7eJBKJRCKRSCQSieQKQO55k0gkEolEIpFIJJcVxSH3vF0McuZNIpFIJBKJ\nRCKRSK4A5OBNIpFIJBKJRCKRSK4A5LJJiUQikUgkEolEcllRFDmHdDHIwZvEa/h17Efwfc+DUGPe\n8i0lqz52+17T+2aCho8BAYq5hMLPZ2M7ewyAgGEPEDDwLhCC0s3fULr2i3rZjOjdhYTJjyLUKjJX\nrCf18+89ZBKmjCayb1ccZiuHZ79L0fEzALR/8Umi+iZhzctn1wNTXfLaIX24aszfCGrVjOQxMyg8\neqpeeQnq1hPd+AkIlRrTmpXkfvNvd/80b0Hs5OfQtEnA8NnH5H73tes7VVAwMU9PR9PiKkAh8+03\nMR89XGuZ2055FKFSkVFLmdtOfZTIPt2wWywcmf0ehcfOnFdXN6Q3V411lvm30TMoPHoagOgb+tPy\n/turpR4O5NXLJxW8OGMFmzYeJyIyiBU/PXFBupeChrAf1rMbrZ4ei1CpyV65hoxl33rItHp6HOG9\nu2O3WDg1byHFx51+VQcH0ebZCQRe1RIFhVNvLKLo0DEiBvcj7tF7CWjZnIOPTaP42Ml65WXrllO8\nMXcNdofCXSO7MHZcX7fv8/NLeenFnzh71oRGo2b2nFtIaKsD4PPPdvHt8n0oisLIUV158OGeF+yL\nLZtPMu/1/2F3OBg5qivjxvf3sD/zhRWcTctDo/FhztzbKu3/ayfLl+9BUWDUqK489EjvetkM7ZFE\n3FOPg0qFYdXPZH+13EMm7qnHCe3VA4fFQsr/vUXpCWcs60bcTtRNN4IQGFb+TM5/nXEQ+9D9RN18\nIzZTPgDnPv4XBbt+c6XXELEH0HzUjTS/60YUhwPjr3s4+e4X+IQGc828ZwjpEE/myo3n9YW36/98\n/Cljv1dXWk8ai1CpyP5pLelf/NdDpvWksYT3ScJhtnB87iJX7AOgUtHlo39g1Rs5/NzrbnrN7rmd\nqyY8yo6bH8SWX/iH89pQ/u84/SGi+3XGbray99XF5B9N8ZAJbKolad4E/JoEYzqSwp6X3kex2YlM\n6kDP+VMpOacHIPOX3zi+9LtKRZVg0OdzKNXnsWvyPzzSDevZldaTxkG5/8/V0PZeNWkc4b2TcFgs\nnJj7tsv/Sf9Zgr2kFMXhALuD/eOecdNrevftXDVhNDtveaBW/1/OdkDy10AOeSXeQagIeWAmpgVP\nkDvzNjS9bkLdtLWbiF1/jrw3HyH35REU//ghIQ+/AoC6WTwBA+8id8695L5yF5rOg1Dr4uq2qVLR\n7pmx7J/6OjvvnYLuuv4EtmruJhLZpyuBcbHsGDWRo298SLtnx7u+y1r5C/umzPFItvhUGr/P+Dum\nfUfqX36ViugnJpH+ynOcfvJhQgcNwS+upXv5CwvIXryI3P9+7aEePX4Cxbt3ceaJhzgzcQzWs2m1\nmmo3bQz7przOjnunEH19P4JqKHNAXCzbR03k6LzFtHt2nCuPtekWnT7Lwef/4VHm7P9tZddD09n1\n0HQOvfZO+dULG7gB3DmiM0s+uv+C9S4Vl9y+SsVVUx7jyPTX2PfQU0QNHUhAS/d7Nqx3Ev7Nm7L3\nvsc4/ff3uGpq5YNTq6fHYdq5h30PPsmBRydRmpoOQOmZVI7NnEfB/kP1zord7mDO7J/5YMk9rPjx\nMVatPMSpk3o3maVLfqV9h2i++2Ecc9+4jTfmrQXgxPEcvl2+jy//8yjffj+OTRtPkJaae0GusNsd\nzJm1msUf3cePK59k1U+HOFnN/pIPt9K+Qwzf//g48968g7mv/+yyv3z5Hr5ePpbvfniMjRtPkFof\n+yoVLZ5+ihMzXuLw6MeIGDIY/5Yt3ERCe/ZA07wphx4aQ9r8RbScNAEA/1YtibrpRo48NZnD456k\nSe+eaJrGuvRyvvmeI49N4MhjE9wGbtAwsRfeLRHtwB7sfHAaO++bSuqyFQA4rGWcWvI1J9/5rG7/\ne7H+6+LPGPttpj7GoWmz2PPARLTDBhBQ7T4I752Ef1wsu+95gpN/f5/4aY+7fd901C2UlMd8Vfx0\nUYT16II5K+eSZbch/K/r15mguBjW3/EM++d8zDUzHq1RrsPT93Bq2WrW3/EMZQXFtLxjsOs7495j\nbLrvBTbd94L7wA1ofe+NFKZk1GxcpaL11Mc4NO019j44odz/7m1veO8kAprHsufexzn5f+/R5hn3\nQevvk2ayf/QUj4Gbny6KsJ5dz+//88RyBZeyHZD8NbiiB29CiI1CiO6XOM3HhRAPXco0JZ74tO6E\nLScNhz4d7DYsO1ej6TLETcZ2ah9KSQEAZacOoAqPdurGtqbszEGwmsFhx3osGU23YXXaDL06npL0\nLMwZOSg2GznrtqEd2MNNJmpgD7JWbwSg4NAJfIID8YsMA8C07wi2giKPdEtSz1GSVkvHUQv+bdtj\nzTxHWXYm2GwUbN5AcO9+bjL2fBPmE8fAbne7rgoMIiCxM/lrVjov2Gw4ij3zVUFplTJnr91G1ED3\nkNEO7EHWqk1VyhyEX2QYoVfH16pbklJ3mWOu63fe789H9x4tadIk4KL1/yiX2n5whwTM5zKxZGaj\n2GwY1m8hvH8vN5mI/r3Q/+8XAIoOH8MnOAjfyHDUQYGEdk4kZ6XzAVqx2bAXFQNQmpqO+ey5C8rL\nwQMZtGgRQVxcOL5+aobfdDUbNhx3kzl1Uk+vXq0AaN06inPnTBgMRZw+baTTNU0JCPDFx0dF9x4t\nWLf22AXaP0eLluHExYXj56dm+M2JbFjvnsapU3p69S633yaKjHP5GAxFnDpl4Jprmrns9+jRknVr\n6n5pEtS+LeZzGVgzs1BsNvJ+2URYX/cZu7B+vTGuWQ9A8ZGjqIOD8YkIx79FHMVHj6FYLOBwUHjg\nIGED6ndvN0TsNRtxPSmffY9SZgOgLM/ZRjrMFvL3H8VhLTtvnrxd/3XxZ4v9kA4JmNMzsWQ4Y1+/\nbiuR1WN/QE9yft4IQOGh46jLYx/ATxtJRJ/uZP+41iPt1hNHk/LBv0C5ZNltEP/HDEoifeUWAPJ+\nP4lvcCCaqDAPuageiWSu3wXA2Z82EzO47sc7f10E0f27kPb9LzV+H9IhAfO5LFfbq1+/hYj+7rPF\nEf17kvNzRdt73NX21sVVE8eQ8v6noNReAeeL5QouZTtwpaE4RKP+a6xc0YO3S40QwkdRlA8VRTn/\nq0vJH0YdpsORm+X67MjLRhWuq1Xef8AIrAe3AmA7dxLfhG6IoCbg54+m0wBUETF12tRoI7DkGFyf\nLTlGNNqIajKRmLONlTL6XDTayHqXq774Rmqx6SvfdtsMenwjtfXTjY7FXmAidvLztHp7KTETpyM0\n/rXKm3OqlCfHszwabUQ1Gadf/D2uX5gvdMP61i30F8EvKtLt3rPqDR6+9IuKxJqjryJjxC8qEk1s\nNDZTPm1mTOKajxbS+tkJqPw1F52XnJxCYmJCXJ+jo0PJyXZf7tOufbTrofzggXNkZuSTnV1IfIKW\nPbvPYsorobS0jC2bT5GVdWEPDdnZhcTENHF9jqnN/pqjABw4cI6MDBPZWQUktNWye3eay/7mzSfI\nrId936goyvRVfWvANyqymkwkVr17HflFRWFOSSW4UyLq0BCERkOTXj3w01bGqvbOW+mw9H1aTpuC\nOjjYLc2GiL3AFk0J69yB7h/Ppdv7rxHSoU2d5a+Kt+v/r4Zf9X5Hb8Sver8TFYG1avuQY0QT5ZRp\n/fQYznzwL48BQkT/nlgNRopPpjRc5i8R/roISqv0q6U5ufhr3QdHfmHB2AqLUeyOGmUirklg8Ffz\n6LXoWUJaN3Nd7/jMgxx++0sUR80DKD9tpLtv9UY01WLfTxtZrY4MlTIKJC6YReeP3iL61usr89O/\nJ1a9kZJTKecvez36UW+0A5Irm0Y5eBNCfC+E2C2EOCSEGC+EUAshPhVC/C6EOCiEmFJNXlX+veea\ntkqZIiHEgvI01wshtOXXNwohFgohkoFJQohXhRDTyr+LF0KsE0LsF0LsEUK0Kb8+XQjxmxDigBDi\ntVrsjRdCJAshkpcsWXLJfPNXxLd9DwIGjKBo+XwA7JmnKVn9CWHPLCFsyoeUnT0GisPLubx8CLUa\n/zZtyVv1AymTxuGwlBI56j5vZ8uN0MR4HGart7Pxp0Co1QQltCH7+9UcGDsZh9lMs/tHNqjNseP6\nUlho5q47l7Lsi2Tad4hBrRK0aRPF6LF9GD/2Sx4f9yXt2kejUl36t5PjxvenoNDMnbcvZtnnu+jQ\nIRaVWkWbNlrGju3H2DHLGD92Ge3bx6BWNWw3Zk47S9ZXy0l483US3phN6cnTzv0vgP7Hlfz+wGiO\njH+Kstxcmj8+rkHzAiDUKnybBJM85gVOvvs5nV6fWrfSBeLt+pc4Ce/bnTJTPsXH3PdRqzR+xD00\nktSPvvRSzi4v+UdTWHvz02y8ZwZnvv4fPd5y3vPRA7piycuvcf/cpeLgU8+zf5fLl0sAACAASURB\nVPQUDk+bReyImwjtfDUqjR/NHxxF2sf/rjuBBuJytAOSxktjPbBktKIouUKIAOA3YDfQTFGUjgBC\niKrz7T7AMuB3RVFe90zKRRCQrCjKFCHEy8ArwITy7/wURelenvarVXSWAW8oivKdEMIfUAkhrgcS\ngJ6AAFYIIQYqirK5qjFFUZYAFaO2S7io4c+B3ZTjNlumCo/Gkee5blzdvC2hj8zCtOBxlOJ813Xz\nlv9i3uLc9B00YhKOvCwP3epY9LlodFGuzxpdJBZ9bjUZI/7RkVRY0mgjsOiNXGrKjHp8qry994nS\nUmbUn0ejiq5Bj82gx3zcuVyscNsmIkfWPnjz11W+5dPoPMtj0efir6tS5nK/CB+fOnVrI3pYP7LW\nbiU+vnENKr2F1WB0u/f8tFEevrQajPjptMCRcplIrAYjKAoWvYGiI86lbcaNv9Ls/rsuOi86XQhZ\nWZUzLdnZBeiiQ9xkgoM1zJl7KwCKonDDsPdoHud8C37XyC7cNbILAAsX/EJMNd26iI4OISurMpaz\narE/d97tLvvXDV1EXIX9UV25a1RXABbMX09MdGidNssMBnyrxJufNooyg7GajBE/bRTFVWSsBufb\neOPqNRhXrwGg6ZiHKSufobPlmVz6hpWriX/d/V1eQ8SeJScX/S87ASg4fBLF4cA3LJQyU/1mwLxd\n/381rNX7HW0k1ur9jiEXv6rtgy4SiyGXyMF9iOjXg/DeSaj8fFEHBdL2pcmkL/sOTayOrp8udKXZ\n5ZP57B83nbJcE42FQf+eC4Dp8GkCoivv5wBdBGa9+15oq6kIn5AghFqFYne4ydiKS11yOdv2o3pe\njV9YMBGd2xIzMInofl1Q+fniExxAt9nu+9WseqO7b7WRWKrFvlXvbJ8rokKjjXLJWA3Ouioz5WPc\nvIPgDm2xFRajidXR5Z8LXfJdPl7A/vHTPPxvLo/xChpLO9BYUBT58udiaJQzb8DTQoj9wA4gDvAD\nWgsh3hFC3AhUvTsXU/fADcABVJz88AVQ9XgzjxMhhBAhOAeM3wEoimJWFKUEuL78by+wB2iPczAn\nuQBsZ37HJ7oFqqhmoPZB02s4ln3ua9ZVETE0eWoh+UtnYM9OdftOhES4ZDRJQzHvWFWnzcIjJwmM\ni8U/Vofw8UE3rB+GLe4HDBi2JBMzfDAAoYkJ2ItLsBovfWdoPn4Mv6bN8Y2OAR8fQgcOoWjnr/XS\ntZtyKTPk4NfMuek6qHMSlrTUWuWrljn6un4YtiS7fa/fkkzMTYMAZ5ltRc4yV/dXTbo1IgS6oX3J\nXrutXuX5K1B09AT+zZuiiY1G+PgQNXQAedt2usnkbt2F9oZrAQi+uh324hLKjHmU5Zqw5hjwj3Mu\nFWqS1JnSlLMXnZeOnZqSlppLerqJMqud1asOc+21bd1kCgrMlFmdey2/Xb6PpO4tCA52LtU0Gp3D\nm8yMfNavPcZNt3S8QPvNSE3JJf1sHlarndUrD3HtEE/71nL73yzfS/fuLT3sZ2Tks27NUW6+tVOd\nNouPHse/WVP8Ypz+D792EKZfd7jJmH7dQeT1QwEI6tAee3Extlznw6NPmHOZp69OS3j/fuSu3+i8\nHlG5rCusf19KU9zjsCFiT795F+FJTp8HxMWi8vW5oAc2b9f/X43CoycIiItFU16X2mH9yd22y00m\nd+sudDcOBiAksS32omLKjHmkLv6C30aMJXnUeI69+hb5uw9wfPZCSk6nsuvWR0geNZ7kUeOx6I3s\nGz21UQ3cANcBI5kbk2l+8wAAwjvGU1ZUisXgmVdj8mFihzr3o8XdMpCsTbsB0ERWLrMOS2wNKoHV\nVMSRd79m7U0TWXfrZHa/8C6G3w6z56UP3NIsPHqCgOZV/D90ALlbq/l/2y50N1a0vW2xlftf5a9B\nHeDc/6fy1xDWoyslp1MpOZ3Kb7c9zO6/jWf338Zj0RvYN2ZKjf6vTz/qjXZAcmXT6GbehBCDgWFA\nH0VRSoQQGwEN0Bm4AXgc+BswulzlV+BaIcRbiqKYL8BU1dmw4lqlasgiME9RlMUXoCOpjsNO4Rdz\nCZu6GKFSU7r1O+wZp/Af/DcAzBv/Q9BtT6AKbkLIgzNdOnmz7gagyVMLUAWHodhtFH7xOkpp3Uck\nK3YHx9/6iC4LZzqP3f1pA8Vn0ml6p3Mde8Z3azD+uofIvt3os/xd55G9c9536Se+Npmwbon4hoXQ\n94fFnPnoazJ/3EDUoJ60nToGv7BQOr81g8LjKeyv4VTK6uXP/vBt4mb9HVQq8teuxpqWQtjw2wAw\nrV6BOiyCVgsXowoMBIdC+O0jOfPEwzhKS8j+cBGx02YifHwoy8okc+EbtZo69o+P6fr2i6BSkfnT\nLxSfSafZndcBcO67tRh/3UNU3670+eYd588jzHnP5a+adAG0g3rS9pnR+IWF0mW+s8z7Jjvfn4R1\n7YAlx4A54+JPQJs29Vt27UrFlFfCtQMXMGHiYNdsy+Xgktu3OzizcDEd/vEqQqUiZ9U6SlPOEn3b\njQBkr/gZ045kwvsk0fXLxTgsFk7OW+RSP/P2EhJemorw9cWSkcXJeW8DEDGgN60mjcc3rAnt33yZ\nkpOnOTLt1fNmxcdHxQszb+CxsV9idzi4c0Rn4hO0fP2V80Hp7nuSOH3KwIszfkQIaBOvZdacm136\nUyZ9i8lUio+PihdfuoHQ0Nr3W9Zm/8WXhzNu7DIcdoU77+pCQoKOr750PpTcc293Tp/SM+P5HxAI\n4hO0zH79Vpf+pIn/wWQqxddHzcxXhtfPvsNB2jsfkPDmHIRKjWH1GsypaUTdchMAhp9WUbDzN5r0\n6kHHzz/BYTaT8vcFLvXWr87EJzQUxWYjbdH72IudXUbz8WMIbNMaBbBmZZO6YJGb2YaIvYwff6HD\nzCfotewtHDYbh2e957LX97v38AkMRPhWdO1NgPyqWfJ6/dfFnzH2T81fSsf5r4BKTfbKdZScOUvM\n7TcAkPXD/8jbvpvwPkkkff0hDrOFE3MX1ZFow9EQ/s/Zuo/ofl0Y+sN8108FVNDr7ensm70Ui8HE\n4UVfkjR3Ih2eHEX+sVTSvt8IQOzQnrQaOQzFbsduKWP3jHfrb9zu4PSCJSS+9SqoVOSsXE9pylli\nbne2vVk//Oz0f+/udPvK6f+T85wnJfuGh9Fh7gzAuXxdv3Yzpl17L6jstcVyQ7YDkj8/QjnPKTne\nQAhxOzBWUZRbhRDtgX3AA8AaRVEKhBAdgS8URelSPrCbBgwEBgMjFEWx1ZKuAtyrKMpXQoiZQLSi\nKBMr0lAUJblc7lWgSFGUfwghduBcNvm9EEIDqHHO2M0GhiqKUiSEaAaUKYpyvifVxuXky0zOaO+9\nmdV98jsb+jTs/qDzMWT7Nxy9ZbDX7Lf/aSPre4/ymv2hO5ZjZ5nX7Ku53+v2tw+8zSu2+2x2Hh1d\n5vDO+Uu+qoe87vvdQ4d7zX7S+tVejz1v1T00jvr3tv2t/e/wmv3+W7/3WvnVOH9qYEWSd37y4bbd\ny9g2oPrvjV4++m35weuxj3OiodGT+rdejfr5uOV/djZKPza6mTfgZ+BxIcQR4BjOpZPNgI1CiIpl\nnjOqKiiKMl8I0QT4XAhxv6LUeHpFMdCzfOCWA9xdj7w8CCwWQswCyoBRiqKsEUJ0ALYLIQCKcA4u\nL90PrUgkEolEIpFIJBJJNRrd4E1RFAtQ0+vSt2uQHVzl/1fqkbbHcTxV0yj//GqV/08AQ6qpoCjK\n2zXlRyKRSCQSiUQikUgaikY3eJNIJBKJRCKRSCR/bhrzD2E3Zv50gzchxE6cB5xU5UFFUYJrkpdI\nJBKJRCKRSCSSK4E/3eBNUZRe3s6DRCKRSCQSiUQikVxqGuvvvEkkEolEIpFIJBKJpAp/upk3iUQi\nkUgkEolE0rhRFLnn7WKQM28SiUQikUgkEolEcgUgB28SiUQikUgkEolEcgUgl01KJBKJRCKRSCSS\ny4qiyDmki0F6TSKRSCQSiUQikUiuAISiKN7Ow18B6WSJRCKRSCQSyeXgijgJ5PSIfo36+bj1f7c1\nSj/KZZOSBmdTvxFesz1o2385estgr9lv/9NGVna/z2v2b07+N+t7j/Ka/aE7lrN94G1es99n8wqv\n27ezzCu21dwP4LXyNwrffxvhNfvqu3L5otNor9l/4OAnXvf/X93+hj4jvWZ/yPZvvBr7ABv73uUV\n+4N//Zafe97jFdsAN+76yuuxf6XgkKdNXhRy2aREIpFIJBKJRCKRXAHIwZtEIpFIJBKJRCKRXAHI\nZZMSiUQikUgkEonksqI45LLJi0HOvEkkEolEIpFIJBLJFYAcvEkkEolEIpFIJBLJFYBcNimRSCQS\niUQikUguK4o8bfKikDNvEolEIpFIJBKJRHIFIAdvEolEIpFIJBKJRHIFIAdvEolEIpFIJBKJRHIF\nIPe8SSQSiUQikUgkksuK3PN2ccjBm+SyEt6rK/GTRyNUKjJ/XMfZL77zkGkzeQyRfbphN1s49vq7\nFB0/jUYXSfuXnsY3PAxQyPxhLeeWrwSgw6xnCGzRFACf4CBsRcXsfuSZOvMS1K0nuvETECo1pjUr\nyf3m327f+zVvQezk59C0ScDw2cfkfve16ztVUDAxT09H0+IqZ37efhPz0cP18sHV0x5C168LdrOV\n/a9+SMGxFA+ZgKZaus6diF+TYPKPnGHfy++j2OxED0qi7eOjUBwOFLuDw299Tt7+Y+VlD+Sal8YR\n1jEeTXgolryCWvPQduqjTh9bLByZ/R6Fx84AENG7C22nPIpQqchYsZ7Uz793ph0aTMc5UwiI1VKa\nqef3F+djKywm+ob+tLz/dle6wfEt2PXwc5SkZdBprrMOOv/rXfJ+3UXa4s8I69mNVk+PRajUZK9c\nQ8aybz3y1urpcYT37o7dYuHUvIUUHz8NQNevl+IoLUWxO1Dsdg6Od6af8Op0AuKaAaAODsJeVMyB\nMZM90v0jttXBQbR5dgKBV7VEQeHUG4soOnSMiMH9iHv0XgJaNufgY9MoPnayVp9fCC/OWMGmjceJ\niAxixU9PXJI0G8L3gW1a0fqZJ1EH+mPOzOHk7Lewl5RePvvxV9H6mSdR+fmi2O2cWfAhRUdO1OmL\nLcd9mfdTMHaHYGSPUsYN8szzrtO+zFsZjM0O4YEOPhufj6UMHloahtUmsDng+o4WJg4rqdNeTXR/\n/j6aDeiEzWxl+8yPyT2S5iHT9t4hdHjgOkJaRLN8wNNYTEVOP93cm8TRw0EIbMVmds7+HNPxs/W2\n3RCx0JA2/2jsN5T9+t5/Eb27kDD5UYRaRWaVdrUqCVNGE9m3Kw6zlcOz36Xo+Jnz6gbHt6Tds+PL\nY0/PoVfevryxdwGxH9Gri7PfV6vI/HE9aZ979vvxU0aX9/tWjs55h6LjZ1z9vl9EE1AgY8Vazv3H\n2e9rr+1DqzF3E9iqGXvGPk/h0VM12q6gwzMPE9W3Kw6zhYOzPqi13+08ZxK+TYIpOHqGA6+8i2Kz\nE3tDP1o/dJsz3krMHH7zIwpPOOO148zH0PbvhjWvgG33Tj9vHirwZuxL/hzIwZvk8qFSkfDMOA5M\nfg1LjpFuH/0fxq2/UZKS7hKJ6NONwOax7Lr7KUIS25IwbTx7xz+PYndw6p1/UXT8NOpAf7p9/A/y\nfttPSUo6R15+y6XfesIj2IuL65WX6CcmcXbmNMqMelot+JCinduwnk11idgLC8hevIjg3v091KPH\nT6B49y4y5r0CPj6oNP71coG2XxeC4mLYeOdUwjrG03HGaH595GUPufYT7+XMv1eTuWY7HWeMJu72\na0n7dh2GXb+TvWk3ACHxcXR7YxKbRk4DIHHaQ+i3HyC0XSs23fMcZQXFXL9uMUGtmlNcxceRfboS\nEBfL9lETCU1MoN2z40ge8wKoVLSbNoa9T8/GkpNLj3/Ow7AlmeKUdFo9dAd5vx1k3+ff0/LBO2j5\n0B2cem8Z2f/bSvb/tgIQ1KYF17w5naITKag0fqQtW0FUv24cGDOZqxfMJqx3EldNGs/hqS9j1Rvp\ntOQt8rbuojS1suMJ652Ef/Om7L3vMYKvbsdVU5/g98crO8RDk17Ell/o5qsTr/7d9X/Lp0ZjL6qh\n/lUqrpry2EXbbvX0OEw793D85TcRPj6o/DUAlJ5J5djMebSe9mS96r++3DmiM/c/0IPnn/N8yLso\n/mD5oWbft3l2Iqnvf0LB/kNobxpG03tHcPbjZZfNfssnHiH90y8x7dxDWO8kWjz+CIcnvXheV9gd\nMGdFCB+NNhEd6uDu98O5tr2V+Gi7S6agVDDrh2CWPJpP0zAHxiLn22E/H/hkjIkgDZTZ4YHFYQxs\na6VzC9t5bVan6YBOhLSM5oebZxB1TWt6znyIn++f4yGn33uSc5v2c90nz7ldL0rXs/bRN7EWlNC0\nfyd6v/Jwjfo10kCx0JA24Q/EfgPar9f9p1LR7pmx7J00C0tOLt0/eQP9lmS3fi+yT1cC42LZ4WqT\nx7N77Izz6raf8QQn3/0M097DxN4yhBYP3M6ZJV9dtrJfSOwnTBvH/kmzsOQYSfr4TQxbPPv9gOax\n7PzbBEITE2g7fTx7xs1Asds59c6nFB0/gzrQn6RP/k7eLme/X3w6jd9f+D/aPftYzXVehai+XQiM\ni2XLXZNp0jGeq58by47RMz3k2k64j5QvV5K1djtXPz+G5rcP4ey3aynN0LPz8VnYCouJ6tOFxBnj\nXfrnVm4ibfn/6PTqU3XmA7wc+5I/DV7d8yaEaCWE+N2befgjCCEeEUK86+18XCmEdoinND0Tc0Y2\nis1GzvqtRA7o6SYT2b8nWT9vBKDw0HF8QoLwiwzHasyjqPxNoL3ETElqOhptpIcN7ZC+5KzdWmde\n/Nu2x5p5jrLsTLDZKNi8geDe/dxk7PkmzCeOgd3udl0VGERAYmfy1zjfAGKz4SguqpcPogclcW7V\nFgBMv5/ENyQQTWSYh1xUj0Sy1u8EIP2nLcQM7u7MU6nFJaMO8AdFAcAnKICIru0pPJVOydlsStKy\nKDM5O9uogd3d0tYO7EHWqk0AFBw6gU9wEH6RYYReHU9pehbmjBwUm43stdtculEDepC5aiMAmas2\noh3oXm8AMdf1I3vdrwA4LFby9hwCQLHZKD5xipBrEjGfy8SS6ax/w/othPfv5ZZGRP9e6P/3CwBF\nh4/hExyEb2R4vXwLEHltPwzrN3tcD+6QcNG21UGBhHZOJGflWld5Kh4SS1PTMZ89V+/81ZfuPVrS\npEnAJUvvj5T/fPjHNaVgv7Oe85P3ETGoz2W1j6KgDgoEQB0URJkh9/zywMF0H1pE2omLcODnA8Ov\nMbPhiJ+bzMr9Gq5LtNA0zAFAZLAzzoSAoPKxis0ONgdwEat+4q7typkVzlgxHDiNX0ggAVFNPOTy\njqZRnGH0uG7YfwprQUm5/ikCo+sfIw0VCw1ls77UFvsNar8e91/o1fGUVGlXc9ZtQzuwh5tM1MAe\nZK3eCFS0yYGuNrk23cAWsZj2Old75O7aj26we3kauuz1jf3KfqW831+3lagB1co/oAfZP3v2SVaj\nyTUDWdnvRwBQknqO0rSM8+axguiB3clY5bw38s/T70Z2TyR7g7PfzVi5mehBzv7PdPA4tkLnfW76\n/QT+ugiXTt7eo5QV1OOFcTnejP3GiKKIRv3XWPnLHlgihJCzjpcZP20klpzKxsiSY3Q1xBVotBFY\ncgxuMn7VZWK0BCdcRcGh427Xm3S+mrI8E6XpmXXmxTdSi02vd322GfT4RmrrVQ7f6FjsBSZiJz9P\nq7eXEjNxOqKeM2/+2nBKsyo7eHN2Lv4698bXt0kIZYXFKHbng6M5x+gmEz24O4O++Qc9Fk5n/6wl\nAAQ202E1FdLuqb/RpMNVdJo5DnX5G/Hqg1yNNgJzDfXg73E916XrF9EEq9EEgNVoci5jqYZuWF+y\n13gOnNXBQYT37Yk1R+9Wt1a9wSNvflGRWHP0VWSM+EVVylw9fzadls5Hd+sNHnZCOidSlmvCXEP9\n+0VFXrRtTWw0NlM+bWZM4pqPFtL62Qn1m21oRPyR8ldQk+9LU9JcD4KRg/uh0UVdVvsp73xEyyce\npds3H9PqyUdJXfLZ+R0BZOeriGlS+UImpomDnAK1m0yKQU1BqYqHlzZh5Lth/LCnsr7tDrjznXD6\nz42ib3wZneMubNYNIEAXTnGVdqA4O5cA3cU9hLW5cwAZWw/WW94bsdBQ9V/B+WK/Ie3X5/6rqU/z\n7PciMWdXaXv1zrb3fLrFZ9KJKh/I6Yb0ueyxV9/Y12gjsGRXKYM+t8Y+yV3G6CHj7+r3614W7ZEH\nXQSlVfxrzslFo3OvA2e/W1LZ72bnetQTQPPbrkW/fd8F56ECb8a+5M9DYxi8+QghlgkhjgghvhFC\nBAohhgoh9gohDgohPhFC1No7CCHeEEIcFkIcEEL8o/zap0KID4UQyUKI40KIW8qvPyKEWCGE2ACs\nL782XQjxW7n+a1XS/V4IsVsIcUgIMb7K9UfL09wFuE/VuOdrfLn95CVLlvxxL0kAUAX4k/j6s5xa\n9InH+nrddf3rNev2RxFqNf5t2pK36gdSJo3DYSklctR9DW63guyNyWwaOY3d0+bT7vFR5XlSEdqu\nFYbtB8namIy91EKbR25ruEyUz/hVEJoYj8Nspfi059r7hJenkfntT5Tl5f8hk4eeeo4DYyZzZPpr\nxNx5EyGdE92+jxo6EMP6LX/IRk0ItZqghDZkf7+aA2Mn4zCbaXb/yEtupzFTm+9PvrGImDtvotPS\n+agDA3CUXfhA5o/Yj759OCnvfsSekWNIefcj2jw38ZLYszsEhzJ8+ODhfJY+ms8HvwSSYnAO8NQq\n+G5iHr88Z+TgWR9OZKnrSK3hiO7RnvgRA9izYPllseetWPBW7Ndlv6Huv/pw5PX3aD7iRrr/803U\ngQEotssbe5cr9sG5yiRx7nROvv3PWvfVXQ4ikq6m+W3Xcvzdf9ct3MBc7tiXNC4aw+xTO2CMoijb\nhBCfAFOBx4ChiqIcF0J8BjwBLKyuKISIBO4E2iuKogghqs6DtwJ6Am2AX4QQ8eXXuwHXKIqSK4S4\nHkgolxPACiHEQEVRNgOjy2UCgN+EEN8CfsBrQBKQD/wC7K2pUIqiLAEqRm1KTTJ/Nax6Ixpd5ds0\njS4Si959mYlFn+v2Bk+ji8RaLiPUahJfn07Oms0YNu10T1ytImpQb3aPrt+G4TKjHh9t5UybT5SW\nMqP+PBpVdA16bAY95uNHACjctonIkbUP3lqOuo64O64FIP/waQJiIsjb7/zOPzoCc06ee/r5hfiG\nBCHUKhS7A39dpIcMQO7eowQ20+HbJARzTi7mnFyMe44Q2f1qTnz8HfHlgzeL3n3phUWfi78ukoqh\nVEU9CB8f/N3qJ8Kla83Ndy1j8YsMw1rtMJToYf3IqmXgbE7PIGv5CoIT27nVrZ82yiNvVoMRP50W\nOFIuE4nVUJ6H8iVJNlM+uVt2ENwhgcLyZTuoVUQM7MPBcVNqzIPVYLx424qCRW+g6Ihzpte48Vea\n3X9XjXYaK3+o/NTue3PaOY488woA/s2bEt7HfYluQ9vX3jiElEVLATD+so3Wz9b98BzdxEFWfuWA\nKytfhS7UXk3GTpNAB4F+EOin0L1VGUcz1bSKqpQLDVDo2bqMLSf8SIip+4Gy7T1DiL9roDOvv58h\nKCaCihYnKDqC0hpi/HyEtW1O79ceYcMTC7Dm13/ZljdioaHqH6gz9hvSfn3uv5r6NM9+z4h/dJU2\nWetse4WPulbdktQM9k2eDUBAXCxR/bpd1rLXN/Yt+lw00VXKoI2osU9yl4l0yQi1msS508les8Wz\n3z8PLUZeT/M7hgCQf/gUAdGRmMq/89dFYMlxrwNnvxtY2e9GR7jVU3B8Czq++BjJk9+gLL9+2yQq\naCyx3xhxKI1hDunKozF47ayiKNvK//8CGAqcURSlYk3cv4CBtejmA2bgYyHECKDqsV//URTFoSjK\nCeA00L78+lpFUSoi8vryv73AnnKZhPLvnhZC7Ad2AHHl13sBGxVF0SuKYgUqjx+U1EnB0ZMENI/F\nP1aH8PFBN7Q/xq2/uckYt/5GzI2DAQhJbIutqASr0dmwtZ3xFCWp50j/+kePtMO7d6Yk9RxWveca\n8ZowHz+GX9Pm+EbHgI8PoQOHULTz13rp2k25lBly8GsWB0BQ5yQsaam1yqcuX8vW+19g6/0vkL0x\nmWY3DQAgrGM8tqJSLEaTh44x+TAxQ51LUprfMoDsTckABDaPdsmEtmuFys+HsvxCLMZ8zNlGbEUl\nBMXFEDO0J4Upzv0Ahi3JbmnrtyQTc9MgZxqJCeU+NlF45CSBcZX1E31dP5euYUsysTcNBiD2psEY\ntlSpNyHQDe1L9tptbnZaP3YP4FxaBFB09AT+zZuiiY1G+PgQNXQAedvcO+PcrbvQ3uAc6AZf3Q57\ncQllxjxU/hpUAc49YCp/DWE9ulB6uvKErrCkLpjT0mut/z9iuyzXhDXHgH/5qXZNkjpTmnJlne7V\nUL73CStfPisEzR/6G1k//HxZ7VuNuYR26QhAaLdrMKfXvQemYzMbqQY16bkqrDZYfcCfaztY3WSG\ndLCyJ8UXmx1KrXDgrC9ttHZyiwQFpc59EOYy+PWkH6219prMeHD8qw2sGvUqq0a9SvqGvVx1W18A\noq5pjbWohFJD/WemA2MiGLTgKbbNWEphana99cA7seDN2G9I+/W5/6q3q7ph/dzbT5zta8zwwc50\nEhOwF9fcJlfV9Q0PdSoLQatHR3Luu7WXtez1jf3CI9X6/WH9MWx175MMW38j+sYqfVJ5+QHavfAk\nJSnppH/l2e+fj7Rv1vDrA8/z6wPPk7MpmaY3OR8jm3SMp6yopMZ+N3f3YaKHOPvdpjcPdPW7/tGR\ndH1zKgdeeY+StLq3ZVSnscS+5M9DY5h5qz4rZQI8T6KoSVFRbEKInjgH1aGZBgAAIABJREFUfCOB\nCcCQWtKt+Fz1NYUA5imKsriqoBBiMDAM6KMoSokQYiNQv01NktqxOzi54CM6zX8ZoVaR9dN6Ss6c\nJfaO6wHI/H4Nudt3E9GnGz3/877zpwLmOs+DCb2mPTHDB1N0MoWkT52nS55ZvIzc7XsA0A3rR866\nC1g247CT/eHbxM36O6hU5K9djTUthbDhztkq0+oVqMMiaLVwMarAQHAohN8+kjNPPIyjtITsDxcR\nO20mwseHsqxMMhe+US+zOdv2oe3XhcHfL8ButnDgtcpbr8fbz3Jg9hIsBhNH3vmSbnMn0u6JURQc\nS+XsD//P3n2HR1H8Dxx/76WHhPRCQuihdwKhgyAqoCgCiiIoCIKCCCgqon5Rmqg/UMQCYhdBAVGk\nSTP0IiC9BAgESL/0dpfc3f7+uHjJpRBQyCXyeT0PD8ntzH5mZneyO7uzexEABPbuQM1+3TAZDJj0\n+RyZ9pEl/6n3vqHVW8+CArUevMtydyz70jWCB/YBIGbNFpL3HsG3cxs6rfrI/FrqWR8DoBpNnHv/\nC9p8OB00GuLW/UH2JfMbwS5/u4YWs6cQNKAXuvgkTkxfYInr2aYJ+kQtuthEy2dOft7UHWm+It9y\nqTlt/M/rufTBYpq8PwNFoyFxw1ZyL18lYMB9ACSs3UTa/kN4dWpHm+WLMen1XJi7EAAHL08azX4N\nMF+J1W7dQdrBI5Z4Pr27od1a+ssKADCa/nFsgEsfLiH0jSkoDg7oY+O5MPdDALy7daTOC8/g4OlB\n43lvknMhijMvzSi7HDfopSmrOXgwmrTUHO7qvoAJz/dk0JA2/3yF/6L+12t737u7EziwHwApO/eR\ntGFrhcaPencRdSaOQbGzw5SXR9R7H5fbFPZ2MH1AFmO+8sCkKgxspyM0wMiKA+Y/8UPDddT3N9K1\nYR4PLfRCo8Dg9jpCA42ci7Nj2ip3TKqCyQT3tdDTs3FeORFLitl1nKDuLXlwwzsFrwv/0rLsrk8m\nsf9/X5OblEajx++m6aj7cPHxoP/qt4nddZz9M76m5bgBOHq60eH14YC5724c+vaNBb9NfeF2xfzX\nff82xr+R/U81moj8v6W0/uB181ewrNtO9qVrBA00H/di12wmee8RfDq3pdPKReavb5n1yXXzAgT0\n6UrNQebyJ0UcIG7d9gqt+432fdVo4vz8pbRc8Ib5qwLWbSfn0lWCCo77sb9sJmXvEXw6tSV85ccF\nXxFkbkcPy3E/mrCv3ze3+eIfSNl3BN/uHQidMhoHz+q0eP81ss5f5vjkmaWWIWnPX/h2bk33nz/E\nqNNzYuZnlmXtFrzCydlL0GtTOffRD7SaPZHQcY+SGXmZa2vNL3GpP3oQjh5uNH1lVEGdjOx70vxW\n0VYzn8erXVMcPd3p+dvHnP98VenboYBN+774z1BU1XYz+hRFqQNcAjqrqrpPUZSlBb+PBXqpqnpB\nUZSvgb9UVS1xhFAUxQ1wVVU1UVEUDyBKVVWfgjz+wP1AXWAH0AAYCoSpqjqhIP89wEzMUzSzFEUJ\nBvKBTsBoVVUfUBSlMXAUuA84h/lOXFsgA9gOHPt7fddxR0+b3NHlYZvF7rHnZ87e39Nm8Ruvi2B9\nWMU9D1dc/0M/sK3jEJvF771/Jfu638Zn78rRaedam8c3UsrrsyuAHcMAbFb/StH2q0u+cKCi2A1K\n4fsWo2wW/4kTX9q8/e/0+Ns72e7Z2F77Vtm07wNEdLbN9PKee1ezqcNQm8QGuO/gCpv3ff7Re3Ar\n3qm+vSv1+XGzjdsqZTtWhjtv54DxBc+7nQYmYh4grSx4I+SfwGdl5HUHflUUxRnzjjqlyLIrwEGg\nOjBOVVWdolhvA1VVNyuK0gTYV7AsC3gC2ASMUxTlDIUDNlRVjVMUZQawD/Mdwn/+yiEhhBBCCCGE\nuAk2HbypqnqZwmfRitoGlDtHSFXVOMwvGynNVlVVxxVL/zXwdbHPPgRKm/fRt4yYXwFflVc2IYQQ\nQgghhLiVKsOdNyGEEEIIIcQdpDJ/EXZlVmUGb4qirMH8/FpRr6iq+nvxtKqqPlUhhRJCCCGEEEKI\nClJlBm+qqg60dRmEEEIIIYQQwlaqzOBNCCGEEEII8d8g0yb/mcrwJd1CCCGEEEIIIcohgzchhBBC\nCCGEqAJk8CaEEEIIIYQQVYA88yaEEEIIIYSoUCZ55u0fkTtvQgghhBBCCFEFKKqq2roMdwJpZCGE\nEEIIURGqxC2tY/fcU6nPj1tt3lwp21GmTYrbLmFkS5vFDvjqOFvCH7FZ/D4HfiJyQHebxW+4difb\nOg6xWfze+1eSb/rWZvEdNCNsHn9f9wE2id1p51oAjCyzSXw7hpFn/NImsQEc7UZxqFc/m8UP277B\nZtsezNvf1vu+rePbat8H8/5/qm9vm8VvtnGbTfs+wPZOg20Sv9e+VWzu8KhNYgPcc/BHm/f9qkK+\nKuCfkWmTQgghhBBCCFEFyOBNCCGEEEIIIaoAmTYphBBCCCGEqFAybfKfkTtvQgghhBBCCFEFyOBN\nCCGEEEIIIaoAmTYphBBCCCGEqFDyJd3/jNx5E0IIIYQQQogqQAZvQgghhBBCCFEFyLRJIYQQQggh\nRIWSt03+M3LnTQghhBBCCCGqALnzJmzGsXkX3B9/BTQacnf+TM6GL62WO3fsh2u/UaAoqLpsMr+d\nheFqJAAufYbh2n0QKJC742dytnx/3ViNpozEt3MbjDo9p2Z+Qua5SyXSONfwo+WsSTh4uJNxNoqT\nMz5CNRivm9+nYysaTRmJotEQs3Ybl7/9FYD6Yx/Fr1sYAMFv/R/xH87BmJJsFc+1bQf8R08EOw3p\nm9eTunqZ1XKH4FoEvvAqTvUbkvzdUlJ/WWFZ5jlgCB733A+qij46ioQP30HNzyux3rI0nDISn05t\nMer1nJn5saU+3h1b03CyuT6xa7cR/d0vANhXd6P5rMm41PAjNy6Jk9PnY8jMpnrTBjR+dax5pQpc\nWrqSpB0HAWj7yQxzXuV+AAzqVkBnKcPuXRd5Z85mjCaVQYNbM3pMZ6sypqfn8sb0dVy9moaTkx0z\nZ91PaEN/AL779iCrVx5FVVUGD2nD8Cc7lFnXslR0fM8ObakzcTSKxo6E9ZuJXba6RJo6E8fg1TEM\no17PxbkfkB0ZBUCbHz/HlJuLajShGo2ceOZFAFzr16Hei89h5+qMLi6RCzP/D2NO7k23RXHTp61l\nR0Qk3j7VWLvu2X+9vuJ274pi3txtGI0mHh7citFjOlotT0/X8ebrGwra3p63Z/UlNNQPgG+/+ZOf\nVx1DURRCG/oxc3Y/nJzKP5RVb9+OWhPGgkaDdsPvxC9fWSJNyISxeIS3x6TTc/nd+eScvwiA/8MP\n4tf/XlAUktZvInG1uZ8HjRyOZ+eOoJrIT0vn8rz55CenlBq/Mm3/O63v3Yzbve8DuLVrT+C48aDR\nkLZpA9qVK6yWO9YMIXjKyzg3aEDiN1+SvLrYvqrRUG/hJxi0yVyZMf2Wlu121N+7Y2tCJ41EsdMQ\nV+S4UlTo5FH4dG6DSZfH6ZmLyIo0H5MaT38O387tyEtN5+ATUyzp608Yjm/XMNR8A7kx8ZyZ9TGG\nrJwyy9DoxafwKziGn3z701LPAVyC/Gg56wXLOcCJ/y1CNRhxrR1E8zefpXqjupz/dAXRy9YB4OTv\nQ4sZ43H09gBUrq3ZxpUfN5ZYb2Xq++K/4Y6886YoSh1FUU6W8vnbiqLcXU7eGYqivHT7SneHUDS4\nD3+NtAXPkjz9IZzD+2IXVM8qiVEbQ+o7I0l5YxDZa5dQ/cn/AWAX3ADX7oNInvk4yW8OwbFVd+z8\nQ8oM5du5Da4hgewZPJEz7yyhycujS00XOuEJolesZ8/giRgyswke0Ov6+TUKjac+zV+T5rB36GQC\n7+lCtbrBAFz+fi37n5gKQPafe/F59CnrYBoN/mMnE/PWVC6PH0H17r1xDKltlcSUlUHikoWkrrE+\nsNt7++L1wGCuTBlD9PNPoWg0uHfrVep6AarVqWmV36dTG1xCarBvyPOcnbuYRi+PseRt9NLTHJ08\nm/2PTSbgni6WvHVGPETqnyfYN2QiqX+eoPaIhwDIuniFP0e+wsERUzk6aTaNX3kGpdig0aCuw6Cu\no+jAzWg0MWvmJj5dMpS1v41lw/pTXLyQZJXv8yV7adwkgDW/jmHOOwN4Z+4WAM5HJrJ65VGW/zSS\n1b+MYUfEea5El37CXJYKj6/RUHfyWM5MfYujI8bj27s7LrWt91nPju1wrhnEX4+PJeq9j6k7xfrE\n6dQL0zn+9CTLwRug/svPc2XxNxx7aiIpu/YT9NjDN9UOZRn4cCuWLB12S9ZVnNFoYvasLXyyeAi/\n/jaajRtOc/GC1irN0iX7aNzYn59/GcXsuf2ZN2cbAAkJmfzw/WFWrHySNWufxmg0sXHDmfKDajTU\neuE5Il99k1Mjx+HdqwfOxdrfIzwM5+BgTg4fTfT8hdSaNAEA5zq18et/L2eem8yp0ePx7NgBp6Aa\nAMT/uIrTY8Zz+pnnSd93kBrDHy8zfmXZ/ndc37tJt3PfB0Cjocb4iUS/MY2LY0fh0bMXTrWs//Yb\nMzOJ+2xRyUFbAZ8HH0Z/5cptKd4tr79GQ6MXR3NsymwOPDYZ/z5dcS3lmOQaUoP9Q57n7Duf0ejl\nZyzL4tf/wdHJs0qsNvXgcQ4Om8zB4S+ScyWO2iPK3vd9O7emWkgguwe9wOm5n9P0ladLTRc6YRjR\nyzewe9AL5GdmE/yg+bhqyMji7Ptfc3nZb1bpVaORcx9+x96hL3Jg1OuEDLnHcg5QtP6Vpe+L/447\ncvBWFlVV31RVdauty3EncKjXHGPiFYxJMWA0oDu4Cac2d1mlyb9wDDUn0/zzxWNovM1XXu1r1CU/\n6jjk6cBkJP/cIZzalT3m9useRtzGnQCknzyPvXs1HH08S6TzDmtG4vb9AMSuj8CvR/vr5vdo2oCc\na/HkxiaiGozEb9mLX3dzHmN24RUwxdkZUK1iOYc2IT8uhvyEODAYyNi1jWrhXa3SGNPT0F84C0Zj\nyUpp7FAcncz/OzljKLirV3y9AL7dw4q1R3viN+wAIOPUeezdzPWp3rQBudfi0cUmohoMJGzZY8nr\n2609cRsiAIjbEIFfd/PVbpM+D9VoMhfJ0bFEPcty4ngstWp5ExLihYOjHX37NWX79kirNBcvJBEe\nXgeAevV8iYlJQ6vNIioqmRYtg3BxccDeXkNY+1ps3XLuhuLaKr5bk1B0MXHo4xJQDQa023bh1TXc\nKo1313CSfv8DgKzT57B3q4aDj9d11+scEkTGsVMApB86inePTjfTDGUKa18bDw+XW7Ku4k6ciKNW\nLU9CQjzNbd+3CX9sP2+V5uJFLR3CzSe09er5EBObjlabDYDBaEKvM2AwmNDpDPj7u5Ubs1rjhuhj\nYsmLi0c1GEjZvhPPztZt5dm5I8lbzIPE7DMF7e/thUvtELLOnMOk14PJROaxk3h16wKAqciVbk0p\n/fxvlWn732l972bdzn0fwKVhY/JiY8iPj0M1GEjf8QfuHa3vPBrT09BFnkMt+BtelL2vL24dwkn7\nfcNtKd+trn/1guPk38eVxK17LMfJv/l2b0/8xgjg72OSq+UYnXb0DIaMrBLrTTl4zHLsST8ViZO/\nT5ll8OventgNN3YOkGA5B9iBf8E5QF5qBhlnLlpm4vwtLznNcgfPmKMj+1IMTn7eVmkqU9+vjFRV\nqdT/Kqs7efBmpyjK54qinFIUZbOiKC6KonytKMpgAEVR+imKclZRlMOKoixUFGVdkbxNFUWJUBQl\nSlGUiTYqf5Wm8QrAlJJg+d2UkoCdl3+Z6V26P0zeiT0AGGIu4NCwLUo1D3B0xrFlN+y8A8rM6+Tn\njS6h8Mq+LjEZ52J/YB083DFk5lgOBrrEFEuasvI7+XujTyicCqlPTLb6w11/3FAAqvfoQ/KyL6zi\n2fv4YtAmWn43aJNw8PErsw5FGVK0pP6ygnpfrKTeN2swZWeTc/TPUtdrLr9Psd+90SWWLLdzic9T\nLHkdvT3IS04DzAcs8zQRs+rNGhD+w3zCl/0fZ+d9bmlDS12V+9HQwuqzxMRMAgPdLb8HBFQnMSHT\nKk2jxgGWE7MTx2OIi00nISGTBqF+HDl8lbTUHHJz89m18yLx8Rk30HK2i+/o64M+sXAfykvSltgu\njr4+5CUmFUmTjKNvYZqm82fS4vP5+D9wr+Wz3MtXLCcCPj274OTve6NNYDOJCZkEBla3/B4Q6E5C\novXJWaNG/mzdaj6hP3E81tL2AQHuPDWyA316f0qvHotwc3Oic5e65cY0t22R9tdqcSzW/g6+vsXa\nX4uDry+5l6Jxb9Ecu+ruaJyc8AgPw6FIOwePGkHLFd/gc3dPYr/6rsz4lWX732l9r7Jx8PUlP6lw\nO+drk7D3ufF+Gzh2PAlfLEE13diFMltz8vO22veLHyfNaXzQFT2WJqWU6B/XE3R/L5L3HSlzubO/\nl9X6dYnJOPuXcw6QkFLiPOF6nGv44d6oLumnLlh9Xpn6vvjvuJMHb6HAx6qqNgPSgEF/L1AUxRlY\nDPRVVbUdUPysujFwL9AB+J+iKA7FV64oyjOKohxSFOXQkiVLblcd7ggOjdvj0m0gmT8tAMAYd4ns\nDV/h9dJivKZ8iuHKOVSTqZy1VLyLn5mnO2bs2IJn/1s3pUFTzQ238K5cGvMoUU8NROPsjHvPPrds\n/TdELTxxyDh1gQOPT+HPUa9Se8RANI7m7nDqfwsBMKibUJQAFOqVuqqyjB7TmcxMHYMGfs6y7w/R\nuEkgdhqF+vV9GTW6E8+MXs64Mctp1DgAjebWXyGzdfyiTo1/heNPT+LM1LcIHNgP91bNALjwzkIC\nB/ajxefzsXN1wZRf8kp9VfT0mI5kZugYPPArflh2hMZNArDTKKSn6/hj+3k2bRnHtojx5Obm89va\nU7e1LLorV4lfsZKG784idN5Mci5GQZG/NzFffsvxoU+SvDUC/4ceuC1lqOjtb+t939bxKyu3Dh0x\npqWiu3C+/MR3iNpPPoxqNJLw+y6blcHOxYnW70zh3PxvrGbd3Ap32t9+cWPu5BeWXFJV9WjBz4eB\nOkWWNQaiVFX9+4nW5cAzRZavV1VVD+gVRUkEAoBrRVeuquoS4O9RW9W4RFaBTKkJaIrcLdN4B2BM\nTSyRzr5mKNVHziBt/nOo2emWz3W71qDbtQYAt0ETMRa5iwfg0utRXHqYx+N6bRrOAb6A+Uqus78P\nuiTr5yTy0zOxd3dFsdOgGk04+3tb0uiTUkrNr9jb4RRQeHXMyd8HfVLJ5y8yI7YQ/L93SV7+leUz\nQ7IWe9/CO432vn7kJyeVyFsa19Zh5CfEYcwwt0fmvp24NG5OZsSWEus1lz+52O8pOPv78Hdr/l1u\nxd4eZ/+i9fG25M1LScfRx9N8183Hk7zUkle7cy7HYMzVUa1eCJlno4q0hQGTeglF8UVVzQ9h+/u7\nEx9feLU9ISED/wB3q/W5uTkxa475ZFhVVe69+2Nqhpinkgwa3JpBg1sD8MGCPwgslrc8FR0/T5ts\ndWXU0c+3xHbJ0ybj6O8HnClI40OetqD9tea2NKSlk7JrP25NQsk8dgrdlRjOvGh+FtS5ZhBenayn\nyFZG/gHuVndLEuIzCSg29dHc9v0Bc9vf1+czaoZ4smf3JYKDPfD2dgXg7j4NOXY0hgcGNLtuTHPb\nFml/X1/yirV/vlZb0P4Fafx8ydear5hrN25Gu3EzAMFPP0lekvUzegAp2/4gdO5bxH6zrMSyyrT9\n77S+V9nka7U4+BXuZw6+fhiSS+5PpXFt2gz3jp1xax+O4uCInasrwVOnEfPe3NtV3H9Nn5Rite+X\ndpzUJyXjHFDkmOTnXaJ/lCawX098u7Tjr+ffKrEsZPA9BD/UG4CM0xdxLnKsdvb3QZdYzjlAgHeJ\n84TSKHZ2tJr3InG/7yYx4mCJ5ZWp71dGpko8NbEyu5PvvOmL/Gzk5gay/yavAPIvncLOvzYa32Cw\ns8e5w33o/4qwSqPxDsRjwgIyPn8NY0K01TLF3duSxqldb3T7ref/527/kZT/PQJA0s6D1OjbHQCP\n5qEYsnIsUwCLSj18Cv9e5rfeBfXvSdLOQ+b8uw6Vmj/jzEVcQ2rgXMMPxd6OwD6dLXlcQwIt63UL\n70reNeuHy3Xnz+IQVBP7gBpgb0/1br3JPrDnhtrOkJSAc6Om5mfeANdW7ci7Gl3qegG0uw5Z5U/a\ndYjAfj0AqN6ssD6ZZy4U1Mcfxd6egD5dLHm1uw5Ro19PAGr064l2l3mapnMNf8sLSpwDfalWOwhd\nXBKKnQYHj79PqhQ0Sk1QC9u8eYsgrkSncO1aGvl5RjZuOM1ddzW0KmdGho78PPMzBqtXHqVdWC3c\n3Mx1Tk42P/8UF5vOti3n6Hd/8xtqO1vFzzp7HueaQTjVCECxt8e3dzdS9xywSpOy+yB+95qf+3Rr\n2ghjdg75yalonJ3QuJifQdE4O+HZvjW5Ueb9yd6zYPqqolBzxCPE/7rpptrBFpo3r0F0dGph2288\nQ8+7GlilsWr7VcdoFxaCm5sTNWpU5/ixWHJz81FVlQP7o6lbr/zpVdlnI3EODsIx0Nz+3r26k7Zv\nv1WatL0H8OljPtmr1qQRxuxs8lNSgcJ2dvT3w7NbZ1K2RQDgFBxkye/ZpSO5V6yu4VlUpu1/p/W9\nyiY38iyOQcE4BASi2Nvj0eMuMvfvvaG8iV9/QeTwoZx/ahjX3plF9rGjlXrgBpQ4rvjf3cVy/Pib\ndtchAvv2BMzHJGN26cfoorw7tqb2Ew9y/OV5mPR5JZZfXbWZ/U+8wv4nXiFxx58E9Sv/HCDl8GkC\nLOcAPUjacahEmuKavTGO7EsxRP+wvtTllanvi/8OGXSU7hxQT1GUOqqqXgYetXF5/ntMRjKXzcHr\nxU9BY4du1y8YYy/i0nMIALkRK3F7cBwaN0/chxe8CtloJOXtxwDwnDAfTTUPVKOBzO/moOZmlhUJ\n7Z6/8O3cli6rF2LU5XF65ieWZW0WvMrp2YvRa1M5v2gZLWZNosHYoWRGXiJm7fbr5leNJs69/yVt\nF043v1r/tz/IvmQ+eWswfhjVapnfSOfapj2Jn/xfifonLf6AmjPeB42GjK0byLt6GY/7BgCQvmkt\ndp7e1Jq/BI1rNTCZ8BwwmOjxI9BFniFrTwS1P1iKajSijzpP+u+/lbpegOxL1wgeaJ5WGbNmC8l7\nj+DbuQ2dVn1kfi3zrI+L1OcL2nw4HTQa4tYV1ufyt2toMXsKQQN6oYtP4sR08xRWz1aNqT3iIVSD\nEVU1cfa9peSnZ6JxdqL1h68DYK88gIk4TBRO9bG31/Da6/cydvRyjCYTAx9uRYNQP35ccRiAR4e2\nI+qilunTfkNRoH4DP96e1d+Sf/ILq0lLy8XeXsP0N+6lenXnMrd/aSo8vtHEpQ8W0+T9GSgaDYkb\ntpJ7+SoBA+4DIGHtJtL2H8KrUzvaLF+MSa/nwlzztFMHL08azX4NMF/l1W7dQdpB8/Mdvnd3J3Bg\nPwBSdu4jacOted/SS1NWc/BgNGmpOdzVfQETnu/JoCFtbsm67e01vDa9D+PG/ITRpDJwYAsahPrx\n04q/AHhkaBuiopJ5fdp6FEWhfgNf3prZF4CWrYLoc08jHhn8NfZ2Gho3CWDII63KD2oyceWjT2k4\nbxbYaUjeuBnd5Sv4PWBuu6TfNpB+4E88wtvT/PsvCr4qYIEle/0Z07GvXh3VaODKh59gzDYPIGqO\nGYlzSDCqSSUvMZHoBYtKj1+Jtv8d1/du0u3c9wEwmYj79CNqz5qHYqchdfNG9Fei8epn/kqV1A3r\nsPfyot7CT9G4uoJJxeehQVwYOwpTTtmvwr9VbnX9VaOJyP9bSusPXjcfJ9dtJ/vSNYIG3gNA7JrN\nJO89gk/ntnRaucj89TWzCo/Rzd6ahGfbZjh4utP518VcWvojcb9tp+GLT6NxcKD1h28A5hednHu3\n9EdUzMfwNnT9+UOMujxOzfzUsszqHOCjZbSc/QINxj1KRuRlrhWcAzj6eNDx67nYV3NBVVVqD+3H\nnqEv4t6gFkH9upN5PpqO388D4MIny62DV6K+L/47FFW982b0KYpSB1inqmrzgt9fAtwwT51cp6rq\nKkVRHgDeA7KBPwF3VVWHKYoyA8hSVfX9grwngfsLBnllufMauYiEkS1tFjvgq+NsCX/EZvH7HPiJ\nyAHdbRa/4dqdbOs4xGbxe+9fSb7pW5vFd9CMsHn8fd0H2CR2p51rATBSchpfRbBjGHnGL8tPeJs4\n2o3iUK9+Nosftn2DzbY9mLe/rfd9W8e31b4P5v3/VN/eNovfbOM2m/Z9gO2dBtskfq99q9jcwXbX\n3O85+KPN+z5QJeYj7u/xQKU+P+6447dK2Y535J23goFW8yK/v19Ksj9UVW2sKIoCfAwcKkg7o9i6\nqtacDSGEEEIIIUSVdCc/81aeMYqiHAVOAR6Y3z4phBBCCCGEEDZxR955uxGqqi4AFpSbUAghhBBC\nCHFTKvMXYVdmcudNCCGEEEIIIaoAGbwJIYQQQgghRBUg0yaFEEIIIYQQFUq+pPufkTtvQgghhBBC\nCFEFyOBNCCGEEEIIIaoAGbwJIYQQQgghRBUgz7wJIYQQQgghKpR8VcA/I3fehBBCCCGEEKIKUFRV\ntXUZ7gTSyEIIIYQQoiJUiVtau7s+VKnPj7vu/qVStqNMmxS3nXZMU5vF9v38NBGdB9ksfs+9qznV\nt7fN4jfbuI1tHYfYLH7v/Ssxssxm8e0YZvP4+7oPsEnsTjvXApBn/NIm8R3tRtm87Q/16mez+GHb\nN7Cu3TCbxb//8DLyTd/aLL6DZoTNt7+t468Pe9xm8fsf+sFm9bfDvN9vCX/EJvH7HPjJ5sc9W/f9\nqkK+KuCfkWmTQgghhBBCCFEFyOBNCCGEEEIIIaoAmTYphBBCCCEFYG+QAAAgAElEQVSEqFBq1Xg0\nr9KRO29CCCGEEEIIUQXI4E0IIYQQQgghqgCZNimEEEIIIYSoUPIl3f+M3HkTQgghhBBCiCpABm9C\nCCGEEEIIUQXItEkhhBBCCCFEhZIv6f5nZPAmbMahWVeqDZ2GorFDt2sVuZuWWi13bNUL14eeB1VF\nNRrI/vEdDBeOAOD25CwcW/bAlJlC2owHbzimd3hrGkwahWKnIe63bVz5bk2JNA0mj8KnU1uMujzO\nzvqIrMhLADR67Tl8uoSRn5rOn09MtqSv1qA2DV8ei52LM7q4JM7M+ABjTm65ZXFr157AceNBoyFt\n0wa0K1dY179mCMFTXsa5QQMSv/mS5NUrrVeg0VBv4ScYtMlcmTG97Dp3bE3DySNRNBpi124j+rtf\nSqRpOGWkuc56PWdmfkzmuUvXzVt39BCCBtxNfloGABc//YHkfX/h3aEl9Z8bhsbeHpPBcN3679p5\ngbmzf8doMjF4SBvGPNPVanl6ei6vv7aWq1dScXKyZ9acAYQ29Afgu28OsHLlEVQVhgxpw4inOl43\nVmWI79mhLXUmjkbR2JGwfjOxy1aXSFNn4hi8OoZh1Ou5OPcDsiOjAGjz4+eYcnNRjSZUo5ETz7wI\ngGuDutR78Tk0jg6oRiOXFnxG1pnz5ZZl964o5s3dhtFo4uHBrRg9xrr86ek63nx9A1evpuHkZM/b\ns/oSGuoHwLff/MnPq46hKAqhDf2YObsfTk639lAyfdpadkRE4u1TjbXrnr0l66zevh21JowFjQbt\nht+JX76yRJqQCWPxCG+PSafn8rvzyTl/EQD/hx/Er/+9oCgkrd9E4upfAfDq0ZWgJ4fhXCuEM89N\nJify+m3fbOoI/Lu0wqjL4+iMxWScvVwijUuQH23nTsDRw430M5f5641PUA1Gy3KPpvXo8tUM/npt\nEXHbDgJg7+ZKqzfG4N6gJqqqcuytJdctx+5dF3lnzmaMJpVBg1szekxnq+Xp6bm8MX1dwfa3Y+as\n+wv3/W8PsnrlUVRVZfCQNgx/ssN1Y5XG1n3/em7HvgfQ9KUR+HdpjVGXx7EZn5Fx7nKJNC5BfrSZ\n83zBtr/E0TfN2z6gRzsajhuCajKhGk2c/r/vSD12DoA6Q++j1sC7AIUrv2zn8vJN/6qct7L+jaaM\nxLdzG4w6PadmfmI5rhTlXMOPlrMm4eDhTsbZKE7O+Miyv183v0Yh/Ot30CelcPTFeQDUH/soft3C\nAGj/9Tzs3VxB5ZYd9+o98yi+3duDSSUvNZ3TMz8mT5uKYm9P41efoXrj+qiqqdS2qCx9X/w3yLTJ\nAoqiZNm6DHcURYPb46+T8eFYUt98AKcO/bCrUd8qSd7Z/aS9NZC0tx8m6+vXcRvxtmWZbu8a0j98\n5uZiajSEvjSG4y/O5uDjk/C/uyuudWpaJfHu1BaXmjU48MgEIud9SsOphTHiN0RwfPLMEqttNO05\noj75nkPDp6DdcYCQYTcwmNRoqDF+ItFvTOPi2FF49OyFU63aVkmMmZnEfbao5KCtgM+DD6O/cqXc\nUI1eepqjk2ez/7HJBNzThWrF6uzTqQ0uITXYN+R5zs5dTKOXx1jKeL28V1es4+CIqRwcMZXkfX8B\nkJeWwbGX3uHAEy9y+u1FZZbJaDQx6+2NLF76OL+tf44N605x4UKSVZoln+2mcZNAfvltHHPnPcSc\n2eaTkvORiaxceYQfV45mza9jiYg4T3R0SrntYNP4Gg11J4/lzNS3ODpiPL69u+NSO8QqiWfHdjjX\nDOKvx8cS9d7H1J1ifeJ06oXpHH96kmXgBlD72ae49vVyjj89iatf/kCtcU/dUN1nz9rCJ4uH8Otv\no9m44TQXL2it0ixdso/Gjf35+ZdRzJ7bn3lztgGQkJDJD98fZsXKJ1mz9mmMRhMbN5wpN+bNGvhw\nK5YsHXbrVqjRUOuF54h89U1OjRyHd68eOBdrf4/wMJyDgzk5fDTR8xdSa9IEAJzr1Mav/72ceW4y\np0aPx7NjB5yCagCQeymaC/+bRdbxk+UWwb9LK6qFBPLHQy9yfNYXtJg2stR0TSYO5dKyjfzx0Ivk\nZ2RT66GeReqh0GTiULT7T1jlaTZ1OIn7jhExaCo7h04j61JsmeUwGk3MmrmJT5cMZe1vY9mw/hQX\ni+37ny/ZS+MmAaz5dQxz3hnAO3O3AOZ9f/XKoyz/aSSrfxnDjojzXKnsfe8m3fJ9D/Dr0ppqIYFE\nDJzCidlLaT5tVKnpGj//GJd+2EjEwCnkZ2YT8uBdAGgPnmTXY6+ye9hrHH97MS3fMP+Ndqtfk1oD\n72L3iDfY9firBHRti2vNgH9V1ltZf9eQQPYMnsiZd5bQ5OXRpaYJnfAE0SvWs2fwRAyZ2QQP6AWA\nb+c2181f69F+ZF+Osfrs8vdr2f/EVACcA31JP3n+lh73or9fy8EnXuLgiKlo9xym7qjBAAQ/2BuA\nA0+8yF8TC84RlMI7SpWl74vbQ1GU+xRFOacoygVFUV4tZbmiKMrCguXHFUVp+29jyuBN2IR93RYY\nk65g0l4DYz76Pzfi2LqXdSJ9juVHxckFUC2/G84fRs1Ov6mY1Zs2IPdaPLrYBFSDgcStu/Ht1t4q\njW+39iRs2gFAxqnz2LtVw9HHE4D0o6cxZJQc47uG1CD96GkAUv88hl/P8q8EuzRsTF5sDPnxcagG\nA+k7/sC9o/XVb2N6GrrIc6il3MGy9/XFrUM4ab9vKDeWuc6JqAYDCVv24Ns9zGq5X/f2xG8oWefC\n9io7b3FZkZfJ06YCkB11teDTkn9mThyPoVZtL0JCvHB0tKNv/2Zs33bOKs3Fi0mEd6wDQL36vsTG\npKPVZnHxopaWLYNxcXHA3l5D+/a12br55gYQFR3frUkoupg49HHmfU+7bRdeXcOt0nh3DSfp9z8A\nyDp9Dnu3ajj4eF2/IqqKXTVXAOyqVSNfW/6J7IkTcdSq5UlIiCcOjnb07duEP7Zb3zG6eFFLh3Dz\nxYR69XyIiU1Hq80GwGA0odcZMBhM6HQG/P3dyo15s8La18bDw+WWra9a44boY2LJi4tHNRhI2b4T\nz86drNJ4du5I8hbzIDX7TEH7e3vhUjuErDPnMOn1YDKReewkXt26AKC7chX91ZgS8UoT0KMd19bv\nAiDt5AUc3Fxx8vUskc63fTPLVfWr63YS0LOwz9V99F7itv2JPjXD8pm9mws+bRpz9ZcIAFSDEUNW\nDmU5cTyWWrW8CQnxMm//fk3Zvj3SKs3FC0mEh9cBoF49X2Ji0tBqs4iKSqZFyyDLvh/WvhZbt5wr\nJUrZbN33y3Or9z0wb/uYDUW2vbsrTj6lb/v4bQcAuLZuF4EF296Yq7eksXNxBtV8LHSrE0zayQuY\n9HmoRhPJR84Q2Kt9ifXejFtZ/7iNOwFIP3kee/fCY2lR3mHNSNy+H4DY9RH49TCX3697WJn5nfy9\n8e3Slphft1mty5hdOOPFkJGFMSf3lh73is6osXN2svxcrW5NUg+ZL+DkF/RNz6Z1LcsrS9+vjFRV\nqdT/yqMoih3wMdAXaAo8pihK02LJ+gKhBf+eAT79t+0mg7diCkbI7ymKclJRlBOKojxa8PnHiqIM\nKPh5jaIoXxb8PEpRlNm2LHNVpPEMwJQSb/ndlBqPxtO/RDrHNr3xfHsd1Sd+RtbXr/+rmE5+3ugT\nCu8w6JNScPLzKSdNcok0xWVfuopvd/PUIb9enXHy9y23LA6+vuQnFV5tztcmYe9Tfr6/BY4dT8IX\nS1BNarlpdYnJlp/1iaXX2TpNMk5+3jiX+Nw6b80hfenw/fs0mf4s9u7VSsT1v+vvQWzJaSQJCZkE\nBnoU1iegOokJmVZpGjUOYOvmswAcPx5DbGwaCfEZhDb04/DhK6Sl5pCbm8/OneeJi8/gZlR0fEdf\nH/SJhftVXpK2xHZw9PUhLzGpSJpkHH0L0zSdP5MWn8/H/4F7LZ9d/mgptZ8dSdtVX1DnuZFEL/m2\n3LonJmQSGFjd8ntAoDsJidYXJRo18mfrVvMJ/YnjscTFppOQkElAgDtPjexAn96f0qvHItzcnOjc\npS6Vnblti7S/VotjsfZ38PUt1v5aHHx9yb0UjXuL5thVd0fj5IRHeBgON9DHi3P29yY3obA/6RJT\ncPazHpw7eLqRn5mNajSVSOPs50XgXWFEr9pqlcc1yJ+81ExazRhLt2WzafnGaKsTy+ISEzMJDHS3\n/B5Q1r5fMCg7cTzGsv0bhPpx5PBVy76/a+dF4it536sMnP28yI0vvLCiS0jB2b/YtvdwL7btk63S\nBPQMo8eq92n/wVSOvW2eGpd18SperRvj4OGGxskR/y6tcQm4/vGqIumKHEt1ick4+3lbLXfwcMeQ\nmVNsfzencfLzLjN/o8lPcX7R95ZBbFH1xw01r9uzOlFLfgRu7XGv3rjH6PLrpwTe282y/szz0fh2\nC0Ox0+Bcw3we41xkO1SWvi9uiw7ABVVVo1RVzQNWAMWnXz0IfKua7Qc8FUWp8W+CyuCtpIeB1kAr\n4G7gvYJG3gV0K0gTjHmETcFnOyu6kHeKvL+2kfbm/WR8PAHXByfaujilOjfnE4Ievpd2X76Lnatz\nqXfKbiW3Dh0xpqWiu1D+s023S8zPm9k7aAIHh09Fn5xG6MQRVsur1a1J/fH/burNmGe6kpGpY+CD\ni1n23UGaNKmBxk5D/fp+jB7dhdFPL+OZ0cto3DgQO82t/1Nm6/hFnRr/CsefnsSZqW8ROLAf7q2a\nARDwYF8uL1rKkcFPc3nRUuq/8vwtiff0mI5kZugYPPArflh2hMZNArDTKKSn6/hj+3k2bRnHtojx\n5Obm89vaU7ckZmWlu3KV+BUrafjuLELnzSTnYhSYSn+u5XZq+tJwzixcUeKEVbHTUL1xHaJXbWXX\nsOkYc/XUH/nAv4o1ekxnMjN1DBr4Ocu+P0TjJoHYaRTq1/dl1OhOPDN6OePGLKdR4wA0mlv/woHK\n1Pcqi4SIQ+wY/BKHX5pPo3FDAMi6HEvUt78RvmgaHT56hYzIaMvJ/3+Vb5e25KWkk3m25PNzABc/\nMz87nnMtnpqD77vl8aM+W86eB58l/vddlvXHrduOPjGZ9l/No+HkpwBQb+HfiIrs++KmBQNXi/x+\nreCzm01zU+SFJSV1BZarqmoEEhRF2QG0xzx4m1RwO/Q04FUwqOsElBhVKIryDObboyxevJhnnrnJ\n57P+40xpCWi8Ay2/a7wCMaUllpnecP4wdn41Udw8UbPS/lFMfVIKTgGFV8yd/LzRJyWXk8anRJri\ncqJjOD7JPM/dJaQGPp3blVuWfK0WBz8/y+8Ovn4YkrXXyVHItWkz3Dt2xq19OIqDI3aurgRPnUbM\ne3NLTe/sX3gF0Mm/9Do7+/uQbknjgz4pBcXevsy8eSmFU1Zjf91Kq/cLp3k7+XnTct5UTr+9iLAl\ns0otU0CAO/HxheuIT8jAP8DdKo2bmxNz5povYKmqSp/eCwkJMV+JHDSkDYOGtAFgwfxtBAZU52ZU\ndPw8bbLVHVlHP98S2yFPm4yjvx9wpiCND3nagvYumA5pSEsnZdd+3JqEknnsFH739eLyws8BSP5j\nD/VeLn/w5h/gbnW3JCE+k4BiUx/d3JyYNae/pe739fmMmiGe7Nl9ieBgD7y9zVM17+7TkGNHY3hg\nQLNy49qSuW2LtL+vL3nF2j9fqy1o/4I0fr7ka819UrtxM9qNmwEIfvpJ8pJurK/WHtKn4GUSkH46\nCpcAH1ILljn7e6NLSrVKn5+WhYN7NRQ7DarRZJXGs0ld2s41P4fn6OmOf5dWmIxG0k5cQJeYQtpJ\n88tV4rYevO4JnL+/O/HxhXe6EsrY92fNMa9DVVXuvftjav697w9uzaDBrQH4YMEfBBbLWx5b9/2K\n1HXZHKBg2wd6k3rM/LlzgDe6xGLbPj2z2Lb3KZEGIOWvs7gG+5vv1KVncvXXCK7+GgFAo+cetbpr\nVNEUGqJQ+Oy6c4AvYL6D6+zvgy7Jelp3fnom9u6uxfZ3cxp9Ukqp+f17hePXPQzfzm3QODliX82F\n5jOe5+SMj6zWbdLn4X9XOJeW/nTLjntFxf++m9bzp3Fp6U+oRhPnP/zGsqz3/pV4NKlLw2cGAZWn\n74ubV/RcvsASVVVt/laYO+OS1S2gqmoM4Anch/lO2y7gESBLVdXMUtIvUVU1TFXVMBm4lWS4fBI7\n/9pofIPBzgGn9n3JO/aHVRqNXy3Lz3a1moC94z8euAFknrmAS80aONfwR7G3x//urmh3H7JKo939\nJwH39QCgerNQDNk55CVfP6aDV8HJg6JQ+6nBxK7ZXG5ZciPP4hgUjENAIIq9PR497iJz/94bqkfi\n118QOXwo558axrV3ZpF97GiZAzcwP5P3d50D+nRBu8u6zkm7DhHYr0ids8x1zjxzocy8RZ9d8OvR\nwfJ8m72bK63mT+PCJ8tIP172szDNWwQTfTmFa1dTycszsnH9Ke7q1dAqTUaGjrw885u2Vq38i7Cw\n2ri5maeEJCebn7+KjU1n6+az9H+gxQ21na3iZ509j3PNIJxqBKDY2+Pbuxupew5YpUnZfRC/e80n\n+m5NG2HMziE/ORWNsxMaF/MzKBpnJzzbtyY3yvyimrzkFKq3bg5A9bYt0V0r/2H15s1rEB2dyrVr\naeTnGdm48Qw972pQou75BXVfveoY7cJCcHNzokaN6hw/Fktubj6qqnJgfzR161WeaVplyT4biXNw\nEI6B5vb37tWdtH37rdKk7T2ATx/ziweqNWmEMTub/BTzyZO9p3man6O/H57dOpOyLeKG4kav3MKu\nx19j1+OvER9xiJr9zZM3PJs3wJCVi15b8m+L9tBpavQ2T8MOub87CTsOA7B9wGS2PzCJ7Q9MIm7b\nQU6+8zUJEYfRJ6eTm5BMtdrmWTi+HZqRFVX2c3jNWwRxJTqlcPtvOM1dd5Xc9y3bf+VR2oXVKrHv\nx8Wms23LOfrd3/yG2qIwvm37fkXaPew1dg97jYSIQwT3K7btSzmuJB86TWBv87OwNe/vRsIO89/b\noi8hqd6oDhpHe/LTzacdjgXHH+cAHwJ7tSdm040dR24HlUhMbLT8XqNvdwA8mhceV4pLPXwK/17m\nKfZB/XuStNNc56Rdh0rNf+GT5ex64Fl2D5zAidc/IOXQScvAzTWk8IJwtbo10SUk39LjnkuR9ft1\nDyMn2vz3VuPkiKZguqJ3h5YARH66qtL1/crIpCqV+l/Rc/mCf8UHbjFA0bdf1Sz47GbT3BS581bS\nLmCsoijfAN5Ad2BqwbL9wCSgF+ADrCr4J26WyUjWD7PxmPQ5KBp0e9ZgjL2Ac49HAdDt+BGndn1w\n6vQgGA2oeToylxS+Zc99zHs4NOyA4uaJ17vbyVm7CP3un68bUjWaOD9/KS0XvGH+qoB128m5dJWg\nh+4BIPaXzaTsPYJPp7aEr/wYo07PudkfW/I3eWsynm2a4eDpTqdflnBp6Y/Er9uGf59uBD9snj6h\n3XGA+PXbb6D+JuI+/Yjas+ah2GlI3bwR/ZVovPrdD0DqhnXYe3lRb+GnaFxdwaTi89AgLowdhSnn\n5h5IPvf+F7T5cDpoNMSt+4PsS9cIHtgHgJg1W0jeewTfzm3otOojTLo8Ts/62NJepeUFaDBhOO6h\ndVBR0cUlcfadxQDUHHIfrjUDqTtqCHVHDSkogROgtyqTvb2G6W/2ZczoZZiMKgMHtSY01J8Vy80H\nyaGPhRF1MYlpr/6KgkKDUD9mzi68ovjC8z+RlpaLg70dr/+vL9WrO99Um1R4fKOJSx8spsn7M1A0\nGhI3bCX38lUCBpj3m4S1m0jbfwivTu1os3wxJr2eC3MXAuDg5Umj2a8BoNjZod26g7SD5q/MiHp3\nEXUmjkGxs8OUl0fUex+XHr9Y3V+b3odxY37CaFIZOLAFDUL9+GmF+Y2hjwxtQ1RUMq9PW4+iKNRv\n4MtbM/sC0LJVEH3uacQjg7/G3k5D4yYBDHmk1U20/I15acpqDh6MJi01h7u6L2DC8z0td1v+EZOJ\nKx99SsN5s8BOQ/LGzeguX8HvgX4AJP22gfQDf+IR3p7m339R8FUBCyzZ68+Yjn316qhGA1c+/ARj\ntnkA4dm1E7WefxZ7Dw9C58wg52IU5195o9QiJO4+in+X1tz16/yC18Uvtizr8OFUjs38HL02jbML\nl9N2zvM0em4I6eeiLS8juJ5T735Lm1nPoXGwJycmkWMzFlN/xP2lprW31/Da6/cydvRyjCYTAx9u\nRYNQP35cYT5RfHRoO6Iuapk+7TcUBeo38OPtWf0t+Se/sJq0tFxzH3rj3srf927SLd/3gMQ9R/Hr\n0pqevyzAqNNz/K3Cbd/+w5c5PnMJem0aZz4q2PbPDiHjXLTljlpg7w7U7NcNk8GASZ/PkWmFd5na\nvTsJBw83VIORk/O++tcvrLiV9c+NTaTL6oUYdXmcnvmJ5fM2C17l9OzF6LWpnF+0jBazJtFg7FAy\nIy8Rs9Z8/NTu+Qvfzm1LzV+WBuOHUa1WwZtgYxKoVjuIjisW3Lrj3nPDcK0VhKqq6OKTODfPPOvB\n0duD1h+8DqoJfVLJl0ZVlr4vbos/gVBFUepiHpANBR4vlmYtMEFRlBVAOJCuqmrcvwmqqKU88Hkn\nUhQlS1VVN0VRFOBdzG+HUYFZqqr+WJDmaWCmqqpBiqI4AGnAcFVVrz9qKPqaxDuQdkzxF+9UHN/P\nTxPReZDN4vfcu5pTfXvbLH6zjdvY1nFI+Qlvk977V2Jkmc3i2zHM5vH3dR9gk9iddq4FIM/4pU3i\nO9qNsnnbH+rVz2bxw7ZvYF27W/vK+Ztx/+Fl5JvKf4HN7eKgGWHz7W/r+OvDip/DVZz+h36wWf3t\nMO/3W8IfsUn8Pgd+svlxz9Z9H6gS3369JfyRSn1+3OfAT+W2o6Io/YAPADvgS1VVZyuKMg5AVdXP\nCsYVizDP3MsBRqqqeqjMFd4AufNWQFVVt4L/Vcx32qaWkuYL4IuCn/OBkq/YE0IIIYQQQlzXjbyO\nv7JTVXUDsKHYZ58V+VkFxt/KmPLMmxBCCCGEEEJUATJ4E0IIIYQQQogqQKZNCiGEEEIIISqUqWo8\nmlfpyJ03IYQQQgghhKgCZPAmhBBCCCGEEFWATJsUQgghhBBCVKj/wtsmbUHuvAkhhBBCCCFEFSCD\nNyGEEEIIIYSoAmTapBBCCCGEEKJCmWTa5D8id96EEEIIIYQQogqQwZsQQgghhBBCVAGKqqq2LsOd\nQBpZCCGEEEJUhCoxH3F92OOV+vy4/6EfKmU7yjNv4rbb3fUhm8XuuvsXYoe3sVn8oO/+4te2T9gs\n/oNHvmdbxyE2i997/0oO9epns/hh2zdwuHdfm8Vvt20jxtXeNoltNygFwGbtH7Z9g823vZFlNotv\nxzAWNRpns/gTzn1m833f1tvf1vG3dxpss/i99q2yad8HiOg8yCbxe+5dzaYOQ20SG+C+gyts3ver\nCvmqgH9Gpk0KIYQQQgghRBUggzchhBBCCCGEqAJk2qQQQgghhBCiQplsXYAqSu68CSGEEEIIIUQV\nIIM3IYQQQgghhKgCZNqkEEIIIYQQokLJ2yb/GbnzJoQQQgghhBBVgAzehBBCCCGEEKIKkGmTQggh\nhBBCiAplkmmT/4gM3kSF8gxvQ70XRqNoNCSs28K1738ukabeC6Px6tQOk05P5JyFZEdGFS7UaGi9\n9H3ykpI5/cpsAOo89yTeXdqj5hvQxcYTOecjjFnZ5ZbFqUVnPIZPBY2GnIhfyFr3ldVyl859cev/\nFCgKqi6HtK/nYLgSCYDi6obn0//DvmZ9UFXSlr5F/oXjN9QGLaYOx79ra4w6PX/9bwnpZy+XSOMa\n5EfY3PE4eLqTfuYSh1//FNVgxKddE8LnTyYnNgmA2O1/Evn5L7jVrkHYOxMK8wf7c/azVQB4d2xN\nw8kjUTQaYtduI/q7X0rEazhlJD6d2mLU6zkz82Myz126bl7/Xh2pO/oRqtUJ5s9R08g8a95G9tXd\naDn3RdybNCBufUSJONXbt6PWhLGg0aDd8Dvxy1eWSBMyYSwe4e0x6fRcfnc+OecvmmM+/CB+/e8F\nRSFp/SYSV/8KQM2xo/DoFI6ab0AfF8fleQswZpfc/tXbtyNk/LiC2JtIWFFK7PHjqB7eHpNez+V3\n/4/cIrF9+90HioJ2/SYSfza3Q40Rw/Dtfx+GtHQAYr74hoyDf5ZYb2l2RTowd50bRpPC4Pa5jOmR\nWyLNwSgH5q53w2AEL1cT3z6Tjj4fRnzuSZ5BwWCCe5rref7unHLj3Y62Dxo5HM/OHUE1kZ+WzuV5\n88lPTqmw+F49uhL05DCca4Vw5rnJ5ESeL7cdbsT0aWvZERGJt0811q579pas83q6TX+E2j2aY9Dl\nse3Vb0g6fbVEmj7vj8K/eS1M+UYSTlwm4s1lmAw3/qJtW+//tuz7tyv+je7/3h1bEzppJIqdhrgy\n/gaHTh6FT+c2mHR5nJ65iKxI89/gxtOfw7dzO/JS0zn4xJSSZX7sAUInPsmu+0aSn55Z6eoO4B3e\nmgaTRpnr/9s2rny3pkSaBpNHmY9BujzOzvqIrMhLOPn70PiNiTh6e4AKsWu3EPPTegD87upEnacf\nxbVOMEdGv0rm2Yulxv5bkxefxLdzG0w6PSfe/pSMc5dLpHEJ8qPVrBdw8HAj4+wljv9vEarBSI17\nu1BvxABQFAw5Ok7PW0rm+SsANH99LH5d25KXmsGex6ZetwylqYi+L/57ZNqkqDgaDfWnjOXUS29z\n5Inn8bu7Gy51alol8erYDueQGhwe+iwX3vuEBi+Ns1oeNOR+cqKvWX2W9ucxjoyYyF9PTSL3aiwh\nwweVXxZFg8eTr5L83gQSXxmES6f7sA+qZ5XEkBSLdvZokl57hMxfPsdz1OuWZR5PvIz++F6SXnmY\npOmPYoiNKh6hVP5dWlGtViDbHnyRY7O+oNW0p0pN13TiULFS7a4AACAASURBVC4u28S2B18kLyOb\n2g/1tCxLPnqOiMemE/HYdCI/N58EZEXHWT6LGPY6Rp2euD8OAdDopac5Onk2+x+bTMA9XahWrM19\nOrXBJaQG+4Y8z9m5i2n08hjzAo2mzLxZUVc58er7pB09Y7UuU14+F5f8yIWPvi1ZKY2GWi88R+Sr\nb3Jq5Di8e/XAuXaIVRKP8DCcg4M5OXw00fMXUmuSeUDqXKc2fv3v5cxzkzk1ejyeHTvgFFQDgIzD\nf3Fq1LOcHjMe3dUYAh9/pPTYE8dzftobnB41Fu9ePXGuXcsqSfUO7XGqGcSpEU9zZf5Car9QGNu3\n332cGT+J02Oew6NIbOD/2Tvv8Kaq/4+/TpKmK91tWgpll7333i5coOAARWWJbBVUnCiC46e4B6g4\ncXzFzVD2XrL3pmV0pnslaZL7++OGtmlaWpASquf1PD7Sez/nvM8593zuuWeGlEW/cvjhiRx+eGKl\nO252B7z8ewDzHszij6npLN3rw4lkrYtNdoHgpd8MfHB/Fn9MzeCtYdkA6HWwYFQmv0zO4OdJGWw8\npmfvmQrG4aqo7JN+WMShMRM4NHYSWVu2U+P+YVdVv+B0PCdeeJncfQcqLvRLYPAdrZn/6fArGmd5\n1OnVguC6Rr65/nnWPLeQ3jPLLsNjv29n4Y0z+e7WWei89TQb2qPyIp6u/570/SrUr1T912ho/Pho\n9j42m233Porxuh74lfEO9oupwdahkzjy6sc0fmJs0b2kJWvY8+jLZWbL2xhGaKfWmBNTy863p/Pu\n1I+dNoZ9j89m+7CpGAe45z+0azt8a9Vg210TOfbaRzSaruZfsds5+d4X/D18KrvGPkXNO24sCpt3\n6gwHnn6drD2Hys+7k/BubfCLqcGGO6dy4JVPaPbk6DLtGk0cRtx3S9hw51QKc3KpdXs/AAoSUtk2\n7iU2DXuCk5/9TPMZxc/n/JJ17JzySoVpKIur4vuSfyUe7bwJIdYKITp4Mg3/FCFErqfTUF0IaBqL\n+VwiloRkFJuN1JUbCevR2cUmtGcnUv5cC0DOwWNoDf54hYUAoI8II7RrB5L/WOESJvPvPerXMJBz\n8Cj6iLAK0+LVoAW25LPYU8+D3UbB1r/wad/Hxabw+F6UfHUk03piH9qQSACErwF9k3bkr3OOHtpt\nKPmVqwY1+rTn7OKNAGTsP4lXgD/e4cFuduEdm5GwajsAZxdvoEbf9pWKHyCiU3PyzqVQkJgGQMG5\nJMwJKSg2G8krNhHey9XlInp1JGnpOgCyDx5HZ/BHHxZMYLOG5YbNjztP/pkEN22H2ULW3iM4rIVu\n9/ybNMJyPgFrYhKKzUb66vUEd+vqYhPcrQtpK1YBkHf4KDqDP16hIfjWiSH38FEcFgs4HOTsPUBI\nz+5qmnfsBofDGeYI+ojwMrXNJbQz1qxTR41LanfvQtryVUXxaA0GdKEh+NSOIe/IUZQL2vv2E+zU\nvlz2n9NRO8xOTKgDvQ5uamVm9WG9i82Svd5c19xCdLCatzCDAoAQ4O+t2tjsYHMAFaw8qaqyd+QX\nzxZqfHwA5arqm8+cxXL2/MUzfxl06FiHoCDfKx5vWdTr34ojv24FIHnvabwDffGLCHSzi19f3EFN\n3heHITKk0hqerv+e9P2q1K9M/Q9s1pD8Eu/RlJWbiOjV0cUmvFdHkpatVfN08Dg6gx/6MLVdyNxz\nGFt22e1L7JQHOfnB1yjl+J2n834h/2o7kuzM/0bCe5bKf8+OJP/p3gZZ0zKLZiDt+Wby48/hHREK\nQH78eQrKaIPKIrJXBxKWrgcg68AJvAL88A5zb3fDOjQnefU2ABKWrCeyt9reZe4/hi1HndHNPHAc\nH2NoUZiM3UcozK54pU9ZXA3fv9ZRENf0f9cq/+mZNyGEtmIryZVCHxGKJcVU9LclNQ19RKiLjXd4\nKNYSNtaUNLzDVZv6k0dx+qMvQSm/oYq8eQAZW3dVmBZtiBF7enLR3/b0ZLQhEeXa+/UZhHnfJjVs\nRDSO7AyCx75IxKzvCBr1PMLbp0JNAB9jCAXJaUV/F6Sk4xvh+iLWBxsozM1HcXZIC5LT8SlhE9oq\nlj4/zKHLe9MJqF/TTaPmDV05/9eWor/NKcV6lpR0vEt1br0jQkvZpOEdEYqP23X3sJeCPjzM9dma\nTG4dba/wcKwpxaPI1lQTXuHhFJyOJ6BlC7SBAWi8vQnq3AEvo/uHWvhN15O1fYfbda/wcApTS8db\nWjsMa6rJxUYfHo45Lh5Dy+ZoAwMQ3t4Ede6IPqK4rkQMvpWmn3xInWmPojUYKlUWyVkaooLsRX9H\nBTlIyXZ9HcWZtGQXaHjgkyCGvB/Mb7u8i+7ZHTD4vRB6zAmnW8NCWsfYLqpXlWVfc+QIWn3/JWED\n+pDw+ddXXb+6Y4gMJjcpo+jv3KRMDJHuH5YX0Og0NL69M/EbDlZaw9P135O+X9X6FdV/79LtnvP9\n6moThrlEu2BJrfhdG96zI5bUdHJPxF/UztO+7x0RiiW5ZLtfdhvkapPmZuMTFYEhth7ZBy99abS3\nMdSl3TWnpONtdH0GXkEBFOYUt7vm5HS35wRQ67a+pG7Zc8lpKIur4fuSfyeV2vMmhPgViAF8gHdQ\nO30NFEWZ7rz/INBBUZSJQojngPuAVOAssFNRlDcuEv39QohPnWkZqSjKdiFEKLAAqA/kA2MVRSlz\nQ5EQorczTaAO/fQC2gMvATlAQ2ANMF5RFIdzpmweMACYIIQoAOYCBsAEPKgoSqIQYgwwFtADJ4D7\nFUXJF0LUA7512v9WmfKT/HNCunWgMDOLvKMnCWrbokybWiOGoNjtpC5fd0W19U074NdrEKaXRwIg\ntDq86jYh6+vXKDx5gMD7pmO4ZSQ5P314RXXLIutIHMsHTsFeYMHYvTWd5j7KqkHTiu4LnZaoXu04\n/N4PVZ6Wq4n5zFmSvv+RRq+/jMNsIf/kqaIR9wvUGH43it1O+so1VaId+9psHGYzBSdOoTi1U/9Y\nQuI334GiEP3QCGqNG0P8G29dEV27Q3AwQceCUZlYCgX3fhxM69o26obb0Wrgl0kZZBcIJn8TyPEk\nLbFR9oojvQwqKvvzC77i/IKviLr3LoyDbiXhy4VXVf+/Ru8XhpGw4ziJO09cFT1P1f/S+p7w/cro\nV3X9LwuNt546D9zBnimzqlTnWsm71teH5nOmc+Kdz7Hnu+8NvlqEtm9Grdv6sm3sCx7Rv9q+L7l2\nqeyBJSMVRUkXQvgCfwP9gU3Ahd2ZdwOzhRAdgTuB1oAXsAvYWUHcfoqitBFC9ELtsLUAXgR2K4oy\nSAjRD/gKaFNO+GnABEVRNgkhDIDZeb0T0AyIB/4E7gAWAf7ANkVRHhdCeAHrgNsVRUkVQtwNzAZG\nAj8rivIJgBDiZWAU8B5qR/EjRVG+EkJMKC9TQoixqJ0/5s2bx9ixY8sz/c9gTU3Hu8SonXdEGNZU\n1w3OFlM6+hI2emMYFlM6YX26Etq9IyFd2qPRe6H196PRc1M5NuttAIw39SO0WwcOTHm+UmmxZ6Sg\nDY0s+lsbGok9w33fgC4mluBRz5P2xkSUXHVTvj09GXt6CoUn1aUM5u0rMdz6ULla9e4aQJ3BfQHI\nOHgK38jiEUVfYygFqRku9tbMXLwMfgitBsXuwDcyFLPTxpZX3HClbNqLZsaD6IMNWDPVZTWR3VuT\ndSQOS3p2kZ2PsVjP2xiKJbV4BBLUkVAfYxhZRTZhWFLTETpdhWEvBaspzfXZhodjLRVfocmE3lg8\nqq+PCKfQpI7ImpYtx7RsOQA1Rz3gMksQdsMAgrp04ti0p8vULjSZ8IooHW9p7TT0EeHklbCxOrXT\nli0nzakdPeoBCp3atozMovCmJctoOPvFigsCiAxykJRVPNOWlKXBGGgvZWMnyM+Bnx789Aod6hZy\nJFFL3fBiu0BfhU71C9lwXE9sVPkfNVVZ9hdIX7WG2FdeLPMD7mroVydaDutNs7vUfSsp++MxRBXP\nrBuigslNziwzXMcJN+MbamDNxEv7SPZ0/fek71e1/gXKq/+W0u2e8/3qapOGT2SJd3DExd+1vrWi\n8K1hpNPXbzjtw+j4xevsGDUDa7pr3fG071tS0/GOLNnul90GudqEFdkIrZbmc6aTvHwDpnXbyi2T\n0tQecj21Bql71rIOncQ3MowLJeNjDMWS4voMCrNy8Aoobnd9IkNdnpOhYW1aPPMwO6a+SmHW5e+W\nudq+f60jT5u8PCq7bHKyEGIvsBV1Bq4ecEoI0UUIEQY0Qe3MdQd+UxTFrChKDvBHJeL+DkBRlPVA\noBAiGOgBfO28vhoIE0K4LwRW2QTMFUJMBoIVRbmwfmi7oiinFEWxOzUu7PC0Az85/90YtbO4Qgix\nB3gWuLCTtoUQYoMQYj8wHGjuvN79QpovpLEsFEWZryhKB0VROsiOm0rOkeP4xtTAu4YRodMRMaAH\n6Zu2u9ikb9yO8cY+AAQ0b4Q9N4/CtAzi533D33eMZsfQsRyd+SZZO/cVddyCO7el1rDBHHpqDg6L\ntVJpKTx1EF1UbbQR0aDV4dvlBsy71rrYaMOiCJ3yBhnznsOedKbouiMrDXt6EtqoOgB4N++E7Xz5\nB5ac/t/KosNEktbuJOYWtSqGtGxAYW4+FpP7y9q04xDR/TsBEHNLTxLXqktBvcOCimyCm9cHIYo6\nbgA1b3RdMgngF1MDH2eZR17XHdMG16VFqRt2EDWwNwCBzWOx5eZjTcsk5/CJCsNeCnlHjuFTMxp9\nVCRCpyO0Xy8yt2x1scncvI2w6/oD4N+0Mfa8PArT1Y6rLljNu94YQXDPbqSvWqumuWN7ou4ewoln\nX1T3ZlRCO6RvbzI3l9beStj1F7SbYM/Lw1ZK28sYQUiP7kXautDihje4RzcK4i6+hOkCLWraiDdp\nOZeuwWqDZft86NvUte72a2plV5wXNjsUWGHfWS8aRNhJzxVkF6gNnrkQNp/QUz/i4rNuVVX23jWj\ni/PfvQsFZ1wPE6pq/erK/m/X8cOg2fwwaDanVu6hySB1/1lk63pYc8zkp2a7hWk2pDu1ezTjr8c+\nu+jS8bLwdP33pO9XpX5l6n/p96hxQHdMG1wPdjFt2EHUTX3UPDWPxZ6nvoPLzc/JM2y8eRRb7hjP\nljvGY0lN4+8Hn3DruHk67xfy71urZP57YNro2o6YNv5N5I0l2qAS+W/89Hjy485x7vvKfE4Wc2bR\ncjbf9xSb73uKlHU7iB7YC4CgFg3VdreM8k3feYjIfuo+/Oibe5G8Tk2nT2QYbV97jH0vfED+mcRL\nSkdprrbvS/6dVDjzJoTog7rEsKtz2eBa1OWT3wN3AUeAXxRFUYS4rB506Zp4STVTUZRXhRBLgIHA\nJiHEDRXEa3Z26EDd5n9QUZSuuPMFMEhRlL3OZaF9LjeNEid2ByfnfkKLuS+ARkvykpXknz5L1O3q\nI0v67S8ytuwkpGt72v/wMQ6zheNz3q0w2gaPjkXj5UWLt9RR35yDRzn5xscXD+Swk/XVa4RN/1D9\nqYD1v2E7fwq/fkMAyF+9CMOgsWgMwQQ/MANQT74yvaCeQJf11WuEPDIHodNhSz1P5vzKLaNI3riH\nyB6tGfDbm9jNVnbPnF90r8u709jz0qeYTZkcevd7OrwykSYThpJ1JI4zv64FIHpAJ+oO6Y9it2O3\nFLJjxgdF4bU+3hg7t2Dv7AUumkff+Iy27zwDGg2Ji9eQd/ocNQdfB8D5X1aQtnkX4d3a0nXRe+ox\n1S9/4Myvo8ywABG9O9Ho8ZHogwNpM3cGOcfi2DNV/emGbr98gM7PD+Glvl586sRgjj8LDgdn3vuI\nRq+9DFoNacuWY447Q8StAwFI/WMpWdv+JqhzR1p885nzyOriJVgNZj6DLjAQxW7jzDsfFh0JXnvy\nI2i8vGj0f6p+7qGjnHn7/VLPW9WOfe1lhEaLadlyzPFnCL9F1TYtXkr2Be2vF+Awm4n7v2Lt+jOf\nVbVtNs68W6xda+wo/BrURwGsScnEv1VxfQXQaeGZ23IZ83kQDkUwuL2Z2Eg7329T907e09lMA6Od\nHo2sDHo3BI2AIR3NxEbZOZqoZcaiAByKwOGAG1ta6NOkgkGLKir7WmMewiemJopDwZqSQvxb75cp\nX1X6wT26UnvSI+iCgoidM5P8k6c4/uRzlXoGF2PaYz+xfXs8mRn59O31FhMn9eHOoW3/cbxlEb/u\nAHV6t+D+FbOwFVhZ9fSXRfdumT+RNc9+TV5KFn1eHEZOQjpDfngCgFMrdvP3B0srJ+Lp+u9J369C\n/crUf8Xu4Nibn9Lm7WfVn1xZvJq80+eIHnw9AAm/LCdt8y7CurWj64/vqz/X8nLxEvzmL04luF1z\nvIID6PbbPE5/+gOJf6wu/1lfQ3m/kP/jcz+l1VvPqT8VsHg1+afPEj3Imf9fl5O+eRdhXdvR+ccP\nsJstHJ2ttkFBrZoQdVMfck/E0+ELdZbx1LxvSd+yi/BenYh9bDRewYG0fONpco/Hse/RspeRpm7a\nTXi3NvT6+R3sZgv7ZxV/H7R/60kOzJ6PxZTB0fe+pfXsycSOu5ucY3Gc+11dhttg9J3ogww0e3Kk\nM092tjzwDACtZ00ipH0z9MEB9PnjA45/sqjSj+aq+L7kX4lQKujFCyFuB0YrinKrEKIJsAe4EdgL\n7ADOAE8696p1RN1P1g21Y7gLmF/enjdnR/CIoijjhBA9UJcjthRCvAukKooyy9l5fEtRlDJbTiFE\nA0VRTjr/vQj4BsgEllG8bHKZMx0/CSFyFUUxOO31wCHU/WxbnMsoGymKclAIYXKGzwCWAucVRXlQ\nCPE78D9FUb4RQjwC/N+F+C7Cf7qzt7HHII9p99j4Kwn3V81HV2WI/no3v7W7z2P6t+/6hlVdhnpM\nv//WH9nRb6DH9DusXsrO/jd5TL/9qmXYf3Lf9H410N6pLvnxVPl3WL3U48/ejueWGGkZzvuNx1Vs\nWEVMPPqxx+u+p5+/p/VXdx3iMf1+WxZ51PcB1narxM/2VAF9Nv/En53u8Yg2wI3bv/e471PhGcTX\nBovaPHBNfx8P2fPlNVmOldnz9icwTghxGDiKunQSRVEynNeaKYqy3Xntb2fnZh+QDOyHomXc5WEW\nQuxG3SM30nltJrBACLEP9cCSBy4SfqoQoi/gAA6idtS6ou7Ne5/iA0vcfhVSURSrEGII8K4QIgi1\nPN52xvMcsA314JVtQIAz2BTgWyHEk8gDSyQSiUQikUgkkkvGcU133a5dKuy8KYpiAcocvlMU5ZYy\nLr+hKMpMIYQfsJ6LHFiiKEqfcq6nA5WarlEUZVLpa87lm9llpa/0LJmiKHtQT6gsbfcR8FEZ10+j\ndg4v8GxpG4lEIpFIJBKJRCK50lT2tMlLYb4QohnqvrgvFUWp+Ee3JBKJRCKRSCQSiURyUa54501R\nlGGlrwkhPkA9pbEk7yiK8nll4xVCPIS6ZLEkmxRFcTuuX1GUtcDaysYtkUgkEolEIpFIrh5K9dia\nd81RFTNvbpTVwbqMOD4HKt3Zk0gkEolEIpFIJJJ/E5X9nTeJRCKRSCQSiUQikXiQqzLzJpFIJBKJ\nRCKRSCQXcChy2eTlIGfeJBKJRCKRSCQSiaQaIDtvEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVVF\nkT/SfVnImTeJRCKRSCQSiUQiqQYIRXZ7rwaykCUSiUQikUgkV4NqcRLIty0fuqa/j4ft//yaLEe5\nbFIikUgkEolEIpFcVRzVo495zSE7b5Iq57d293lM+/Zd3/Bh43Ee0x9/9GPO3N3JY/q1f9jO4vbD\nPaZ/y86FrOoy1GP6/bf+6HH9b1qO9Ij2ffsXALCl120e0e+6/neP1733Pej7E49+jJ2FHtPXMtzj\ndf+/rm//wsdj+toHzR7Lf/+tPwKwpMMwj+jfvONb1ncf7BFtgF6bfvG470v+3cg9bxKJRCKRSCQS\niURSDZCdN4lEIpFIJBKJRCKpBshlkxKJRCKRSCQSieSqoihyz9vlIGfeJBKJRCKRSCQSiaQaIDtv\nEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVXFIZdNXhZy5k0ikUgkEolEIpFIqgGy8yaRSCQSiUQi\nkUgk1QC5bFIikUgkEolEIpFcVRRPJ6CaIjtvkqtOy+n3Y+zRBrvZwu4X5pN1JM7Nxi86gg6vTMAr\nOICsw6fZ+exHKDY7Ye2b0nnuo+QnpAKQsPpvjn3yKwD1h99InUF9QFHIPnGO3TPnV5iWHs/cRZ3e\nLbCZrax66ktMh8662bQY3ofWD/QjqI6RBV0ex5yRB4B3oB9954wgqHY4NouNNU9/RfrxhEqXg0/r\nLoQ8+DhoNOSt/o3s375yLYMeNxB42wgQAqUgn/TPXqMw/jh46YmcOQ/hpQeNloJtq8j68ZNK6zaf\nPgJj99bYzVb2zJxHdhnl7xsdQbtXJqIPMpB1OI7dz32IYrMX3Q9qVp/un89k99Pvk7hqO/51atDu\nlUnFaa9p5NjHiwDo8sM7CI2GhN9XEf/1r25ajR57iLCu7bBbLBye9QE5R08DENqlDY0efajMsLWG\n3kitO29EcThI27yLE+9/A4ChYW2aPPkwWn9fcChXVV8XaKDVK48T0LQhiUvWcuzNzyp8Fh2eGkbN\nni2xma1sefYz0g+fcU/fvf1oet91BNSO5Meek7Fk5gJQ9+YuNB95EwiBLc/Mtllfk3nMvf5eILhT\nO+pOHo3QaElespyEhT+52dSdPIaQLh2wWyycfOVt8o6dAqDtD5/gKChAsTtQ7Hb2j30cAL8Gdan/\n+Hi0fj6YE1M4MetN7PkF5aahKuoegM7gR+vnxhDQsBaKorD3xYp9vyQ9S70HUst4D1z3xkiMLWrj\nKLSTvD+Otc8vxGFzXJJOZXlmxu+sW3uM0DB/fl/8yGXHc7E6fIFLrf/Gfl2oN/ou/OvW5O+RM8g5\notaR0vUf/ju+X55+eWw46cMrK0OxO2BIm1zGdM12ub893puJPxmpGWQD4LrG+YzvkcXpNB2P/RpR\nZHcuU8eknpmM6JRTps6Vzn+90UOJvm0AhZlqek9+9C1pW3YT2qkVDcYPR6PT4bDZykxLs2kjMHZv\ng91sZe/Mj8k+Gudm4xsdQds5k5y+f5o9z6u+H9m7PY3GDUVxOFDsDg69+TUZe4+qaRp2EzG39wUU\nsk+cZd+L89ziDenclgZTRyE0GpL+WMnZb352s2kwdRShXdtjN1s4Nvs9co+dQui9aP3BbDReOoRO\ni2nNFuI/+x4A/9i6xE4fh0avR7HbOfHGfHIOHy8z75fClfJ9yb8b2Xm7TIQQU4H5iqLkezot1Qlj\n99b4145i1e2PE9KyAa1nPMj6B2a62TWbfA8nF/7J+eVbafX0Q9QZ1Ie4RasASNtzlG1T3nSx94kI\nof4917N6yJM4LIV0eHUSNW/octG01O7VgqC6RhZe/zyRrevRe+YwfrrrNTe7pF0niV+7n9u/eszl\nertxN2I6fJY/J35McP1Iej1/L78/+HblCkJoCBn5BCmzJ2JPSyHqlS/J37EB2/nTRSa2lASSXxyH\nkpeDT5uuhI6ZQfKzI6HQSspL41EsBaDVEvniJxTs2YL1+IEKZY3dW+MfE8WaQY8T3KIhLWc8xKYH\nXnCzazr5Hk4vXEbC8q20nDGS2oP6EO8sfzSCppPvwbR1f5F9XnwiG4Y9XXR/wLL3SVq3k+bT7mfP\no7OxpKTT8fNXMG3YQV7cuaJwYV3b4htTgy1DJxHYPJbGT4xhx6inQaOh8bRR7J48yy1sSLvmRPTq\nyLb7p6EU2vAKCVSLVKuh2czJHJr5Hrkn4tEFB9D7zwVXTd9hLeTk/B8w1I/Bv37tCp9FdM+WBNSJ\n5LebZxDeqj6dnh3Bn8NfdrNL3X2C8+v2ct2CJ12u555LZcVDr2HNzie6R0u6vPBAmeHVZ6Kh3qMP\nc+ix57GmptFy/ptkbNxOQXxxJyW4S3t8akWze9jDGJo1pt5jj3Bg3PSi+wenPIMty/UjscETk4j/\ncAHZew8SMXAA0ffewdnPFpaZhKqqewDNp99Pypa97HzyHYROi9bHu+xyKIM6vVoQXNfINyXeA4vK\neA8c+307K6YtAOD6N0fRbGgPDny3vtI6l8LgO1oz/L6OPPWk+wf3pVBeHb7A5dT/3FNn2f/UGzR5\naqyLVln1/7/i+276gQZ6L/+8zGdid8DLy0P59J4UIgNt3P1FDfrGFtAwvNDFrn0tMx/dlepyrV6Y\njV9GJRbF0+f9WvRvXMYniNBUSfkDnP1+MWe+/cNFzpqZzd5pr2I1ZeBfP4Yu3851uR/RvQ3+MVGs\nHfwYwS0a0mLGSDY/+LxbsptMupfT3y4jcfkWWswYScztfTnz00pM2w+QvG4nAAENY2j36hTWDZmG\nd0QIde++gXV3TcdhKaTtK5OJvr6ra6QaDQ0fH8v+qTOxpKTR9tPXSdu4nfwSZRHStR2+taL5++7x\nBDRvRMNpD7Nn7JMo1kL2TX4eR4EZodXS+qM5pG/dRc7BY9Qf/wDxC/5HxtZdhHRtR73xI9g36Tn3\nZ3GJXCnfl/y7kXveLp+pgJ+nE1HdqNGnPWcXbwQgY/9JvAL88Q4PdrML79iMBOeo+tnFG6jRt32F\ncWu0WrTeeoRWg9ZXjzk146L29fq34uivWwFI3nsafaAvfhGBbnamw2fJOZ/mdj20QQ3Ob1VH/zJP\nJRNQMwzfsIAK0wmgb9gcW/I57CkJYLeRv3k5fh17udhYj+1HyVM/li3HD6ANMxbdUyzq7IbQ6hA6\nHSiVW3wQ2bs955ZsUNN84AReBr9yyr950azG2cXriezToehevbtvIHHV31gyst3CAYR3akH+uRS8\nw4IAMCekoNhsJK/YRHivDi62Eb06krR0HQDZB4+jM/ijDwsmsFlDCs4llRm25h3XE/fVryiF6ghv\noTMdoZ1ak3sintwT8QD41apxVfUdZgtZe4/gsLp+n5ttMwAAIABJREFUhJVHTN+2nP59MwCmfafQ\nB/jhGx7kZpdx5Ax5Ce71z7T3JNbsfGf4k/hFhpSrZWgai/l8IpbEZBSbDdOqDYT06OxiE9qjM6l/\nrQEg99BRdAZ/vMLKjxPAJyaa7L0HAcjasYfQ3l3Lta2quqcz+BLWtglnf10LgGKzY8ut/Jhavf6t\nOFLiPeBdznsgfn3x4EjyvjgMFynvf0qHjnUICvL9x/GUV4cvcDn1Pz/uPPln3FcYlKz/+lD1uf5X\nfL+0vi07t9xnsj9BT+0QGzEhNvRauKlpHquPXfqz3hrnQ+3gQmoG2d1vhneskvyXR+6xOKwmtb3N\nO+U+ax3Zuz3nl5bw/QA/vMPK9v2kVdsAOLd4A1FO37cXWIpstL4+Lu2dKNnu+7i3+wFNYyk4l4g5\nQX33pa7aSFjPTq66PTqR/Kf67ss5eAxdgD9657vPUWBWdXRahE5bpK0oCjp/9bnp/P2wmtIvWkaV\n5Ur5fnXBoYhr+r9rlX/1zJsQYgQwDXVZ7T7gOWABEA6kAg8pinJGCPEFsFhRlEXOcLmKohiEEH2A\nmYAJaAHsBO4DJgHRwBohhElRlL5XM1/VGR9jCAXJxR+iBSnp+EaEYDFlFl3TBxsozM1HsatLkgqS\n0/GJKP5QCm0VS58f5mBOyeDgW9+Sc+o85tQMTny9lOuXvoPdYiVly35St158Jso/MpjcpOIXfV5S\nJv6RweSnlt0pKY3pyDnqX9+WxJ0nMLasS0B0KIaoEArSyl7CUhJtaAT2tOSiv21pKXg3bF6uvaHv\nbZj3bCm+IDREvfoVuqha5P61COuJg5VKs48x1KX8zSlq2ZYsf69gA4U5eUXlf8EG1BnOqL4d2PLw\nbIKbu468XyD6+i4k/LUZX2Ooy3VLSjqBzWNdrnlHhGJOSSthk4Z3RCg+bteLw/rVjia4dVMajLsX\nh6WQ4+99Rc7hk/jVrgEKtHn7GbxCAt0+Iqpa/1LxNYaQl1Tc4Oclp+NrDKHAlHXJcTUY3JOEjfvL\nva8PD8OSYir625pqIqBZYzcba0pqCZs09OFhFKapPtJs7iwUh4Pk3/8i5Y+/ACiIO0NIj85kbNxG\nWJ/ueBvDy01DVdU9v2gj1owcWs98mMDY2mQdOc3B//u6/MIqhaHUeyA3KRPDRd4DGp2Gxrd3ZsPs\n/1Vaw1OUV4cvcDn1vzJofV1nPv/tvl9aP3nFpnLLJjlXR1Rg8dLCqAA7+xL0bna7z3sz6NMaGAPs\nTO+XQWyE66DQ0sP+DGxWziCFX3SV5B+g1tCbiBrYm5zDJzn+7lfYcvJc4jX2dV/x4hMRQkGJd505\nOR0fYwiWtBK+HxRQyvfT8DEWt/uRfTrQZOI96EMC+Xvq/6lpS83g1DdL6Lf4PewWK6at+zFtc30P\nekeEurz7LClpBDRv5GKjjwjDUqos9BGhWNMyQKOh3YI38K0ZRcLPy8g5pC6NPPnOAlrOfZ76Ex4E\njWDPwzPc8i2RVBX/2pk3IURz4Fmgn6IorYEpwHvAl4qitAIWAu9WIqq2qLNszYD6QHdFUd4FEoC+\nsuN2dck6EsfygVNYe/fTnPp+OZ3mPgqAV4AfUX3aseKWR/nrhknofL2pNbB7laZl1/y/0Af4ctev\nz9Dy/j6YDp/FYb/ye2C8m7fH0O82Mhe+X3xRcZD05H2cf+QW9A2b4RVT/4rrlkWzafdz+N3vy53p\nEzotUb3bk7ByW5WlQWg1eAUZ2DHqaU68/zUtZz/mvK4luHUTDr7wLjvHPkdgs8p/bF4JfU8R2bEJ\nDe/oya63fqwyjYMTnmTfqKkcnv4iUYMHEtBaHWg48eq7RA0eSMtP5qL188VRWPZ+lytBeXVPaDUE\nNqlL/KKVbBj+DPYCCw0eurXK0tH7hWEk7DhO4s4TVaYhKZtr1fdL6xt7d64gpovTLMrKqgnn+XV0\nIsPbZzPppwiX+1Y7rDnuyw1N88qJoWo4//NyNt85ke33T8eSlkns5BEu9/3r1aLBhOFVop28dgfr\nhkxj57S5NB43FABdgD+Rvduz5rYprLpxAlpfb2redIXbfYeDXQ8+xtbBowloFotfPXVJcPTgGzj1\n3gK23TGGk+8uoNGMCVdWVyK5CP/mmbd+wI+KopgAFEVJF0J0Be5w3v8aeL0S8WxXFOUcgBBiD1AX\n2FhRICHEWGAswLx58xg7tuxZiv8C9e4aQJ3Bah834+ApfCPDiu75GkMpKLXMwZqZi5fBD6HVoNgd\n+EaGFi2FsOUVH4aQsmkvmhkPog82EN6hGfnnU7FmqrNeiat3ENrKvQFvMaw3ze7qoYbfH48hqnhk\nzz8qmLzkTLcw5VGYZ2bN08WHjNy3ajbZZ00XCVGMPT0VbVhk0d+6MCP2jFQ3O6/aDQkd+wypr07F\nkes+I6Pk52I+uBOf1l0pPHuqTK06Q6+jtrP8sw6p5X+hxH2MoW7LTAozc/EK8C8q/5I2wU3r0e6V\niQDogwMwdm+Nw24nea26H8HYvQ1ZR+KwpmdTkOK6jMTbGIol1XX5nyU1HR9jGFlFNmFYUtMROh0+\nxrAyw1pS0kldo3YOsw+dQHE48AoOxJKSRubuQxQ692Vl7D6If53oMuOoCv0Lm/gvRqN7+tHwTnV5\nbNqB0/hHhXLhqftHhlKQcvGlvqUJblSLLi8+yOpH3sKaVf6HnNWU5jIrpo8IdysLqykNvTECOOy0\nCcNqSnPeU5+lLTOL9A1bMTSNJWfvQcxnznP4cXXfmk+taEK6ui6vuhp1L3P/Ccwp6WQeUGc/E1du\nr7Dz1vIi7wFDVDC55bwHOk64Gd9QA2smlr2v71qjvDp8gcup/5Wh5DK3K6l9rfp+aX3T5l0EtXSd\n3blApMFGUnbxp1dSjhZjgOvSR4N38QBF74ZmZi0XZORrCPFTBwc3nPSlWaSVcP9yBgvzXZe1Xqn8\nW9OL26CE31bS+o2niu0iQmn12nQOvfQ+Heare297LJwDOH0/KpSMvaqtT2Qo5lLvusKsnFK+H+Zm\nA5C++wh+NY14BQUQ1qEZBQkpRe1+0pq/CWnlWu6W1HSXd5+3MQxr6XdfahreLnkOw5rq2n7Zc/PJ\n3HWA0C5tyT99hsib+nLybfVQKtPqzTR6SnbeLoeqOfLp38+/dubtErHhLAshhAYouYahZCtkp5Id\nXkVR5iuK0kFRlA7/5Y4bwOn/rWTtvc+w9t5nSFq7k5hb1I+mkJYNKMzNd1k2dQHTjkNE91fXpcfc\n0pPEtbsAivZRAQQ3rw9CYM3MpSApjZCWDdH6qI8uvFNzck6fd4v3wLfr+N+g2fxv0GxOr9xD40Hq\nEo/I1vWw5pgrvWQSQB/gi8ZLC0DToT1I3HGcwjxzpcJaTx7CKyoGbUQ0aHX4dbuegh0bXGy0YZGE\nP/4aaR+8gC2x+BRCTUAwws8AgPDyxqdlZwoT4svViv9xBRuGPc2GYU+TtHYHtW7uCUBwi4bYcgvK\nLf8aReXfq2iz+OrbHmX1rVNZfetUEldt58CrXxR13ACib+jK+T/VfVxZh9TOpE8NI0KnI/K67pg2\n7HDRSd2wg6iBvQEIbB6LLTcfa1omOYdP4BdTo8ywqeu3E9K+BQC+MTXQeOkozMwmbdte/BvWRuPc\n/+BXM/Kq6leGY9+vZunQmSwdOpNzq3dT77ZuAIS3qo81N/+Slkz6RYXS+60JbJrxCTnxyRe1zT1y\nHJ9a0XjXiETodIT370nGJtfZ0fSN24m4Qe1oGZo1xp6XT2FaBhofbzS+6h4MjY83wR3bUHBKrY+6\nYKc/CkGtEXeR9NufLnFejbpnScuiIDkN/zrqPqfwTs3JPeXu+yXZ/+06fhg0mx8GzebUyj00qcR7\noNmQ7tTu0Yy/Hvus0ntMPU15dfgCl1P/K4M1Q63H/xXfL60f0q5ZuWXTItpKfIaOc5k6rHZYdtif\nvrGuJ7Sm5mqKqti+BD0OBYJ9iz9zlx7yZ2Dzi8y6mXZUSf71JfapRfTuVLQ8VWfwo/XcGZz4cCFZ\n+44W2Wwc/jQbhz9N8tod1BxYyvfT3H0/bcchovqrs5a1bulJ8jpV169W8UBnYOO6aPQ6CrNyMCeZ\nCG4Ri8bb2e53bE5unKvv5xw5jm+t4vxE9O9B2sa/XXU3/k3kjeq7L6B5I2dZZOAVHIjWoB5toNHr\nCenYmvx4NX6rKYOgtuoKhOD2LSk4m1ju45BIrjT/5pm31cAvQoi5iqKkCSFCgc3APaizbsOBC1/L\ncUB74H/AbYBXJeLPAQJQ98NJKknyxj1E9mjNgN/exG62uhzn3+Xdaex56VPMpkwOvfs9HV6ZSJMJ\nQ8k6EscZ52EE0QM6UXdIfxS7HbulkB0zPgAg48BJElZtp/fCl1HsdrKOxhP/8xpaPflAuWmJX3eA\n2r1bMHzFLGwFVlY//WXRvZvnT2TNs1+Tn5JFy/v70nb09fiFB3L3788Rv+4Aa5/9hpAGUfR/9UEU\nFDKOJ7Lmmcrvs8FhJ33B/2F8+l31pwLW/kHhuVMYBqgTw7krfyZoyGi0hiBCR6mnDCp2O8lPP4A2\nJJyw8S+ARgMaDflbVmLeVeFkMAApG/dg7N6Gvr/NdR7ZXHyscqd3prN31idYTJkcefc72s2ZROPx\nQ8k6Gl90GMTF0Pp4E9G5BfvnfOZMr/qx0fadZ0CjIXHxGvJOn6Pm4OsAOP/LCtI27yK8W1u6LnoP\nh9nKoZc/KAp79I3P3MICJPyxhqbPPkLnhW/isNk49JIaxpaTx9nvFtPx81dBUdQjrDu2umr6AN1+\n+QCdnx/CS0dE744XLa/zG/YR3asVty991flTAQuK7vX9cCpbX/iCgtRMGg8bQLORN+IbFsTNP71E\nwoZ9bJ35Ba3G3YY+2ECnZ+8vSvOye14qW8zu4PTb82j6xkyERkPK0pUUxJ0l8rYbAUj+/U8yt+4g\npGt72n43D4fFwolX1FXlXiHBNJ6tniQqtFpMK9eRuV0dTAkf0IuowQMBSF+/hdSlK8vNb1XWvYOv\nf0Xbl8ej8dKRfz6FvTPn0WDELRWGA/U9UKd3C+53vgdWlXgP3OJ8D+SlZNHnxWHkJKQz5IcnADi1\nYjd/f7C0UhqXyrTHfmL79ngyM/Lp2+stJk7qw51D215yPGXV4X9a/yN6d6LR4yPRBwfSZu4Mco7F\nsWfqbMC1/gO0+/AFFLvjX+/75emXhU4Dz1yXzpjvjTgUGNwql9iIQr7fpQ7I3dMul+VH/Pl+twGd\nBrx1Cm/ebkI4z07Itwo2n/Zh5o0XmQlV1Jm8K53/hhPvJyC2LgoK5sRUjryq+nCtoTfiVyuKeiOH\nUm/kULfkpGzaQ0T3NvT59S3sZovLcf4d33mCfbPmYzFlcvg9p+8/MpTso/Gc/W0tAFH9O1FrYE8c\nNhsOSyG7ZrwHQObBkySu2kbPhXOc7X4cZ35eTfPpDxaL2x2ceOsTWsx9AaHVkLR4Ffmnz1Jj0A0A\nJP76F+lbdhLatT0d//cRDrOFo3PU+PVhITR+djJoNAiNhtTVm0jfrHYoj732IQ2mjEJoNTishRx/\n/cPyn8clcKV8X/LvRijVZATxchBCPABMR50x2w28AHyO+4ElkcBvgC/wJzChxIEl0xRFucUZ3/vA\nDkVRvhBCTAImAgmV2Pf27y3kSvBbu/s8pn37rm/4sPE4j+mPP/oxZ+7uVLFhFVH7h+0sbl81exAq\nwy07F7Kqi3tjfrXov/VHj+t/03KkR7Tv2692Brf0us0j+l3X/+7xuve+B31/4tGPseO55ZVahnu8\n7v/X9e1f+HhMX/ug2WP5779V3X+7pMMwj+jfvONb1ncf7BFtgF6bfvG47wPX7lGJJfi02Zhr+vt4\n9KFPrsly/DfPvKEoypfAl6Uu9yvDLhkoeUTSk87ra4G1Jewmlvj3e6gHoEgkEolEIpFIJJJLQLmG\nj+O/lpF73iQSiUQikUgkEomkGiA7bxKJRCKRSCQSiURSDfhXL5uUSCQSiUQikUgk1x4OuWzyspAz\nbxKJRCKRSCQSiURSDZCdN4lEIpFIJBKJRCKpBshlkxKJRCKRSCQSieSqck3/TsA1jJx5k0gkEolE\nIpFIJJJqgOy8SSQSiUQikUgkEkk1QC6blEgkEolEIpFIJFcVedrk5SFn3iQSiUQikUgkEomkGiAU\nRW4XvArIQpZIJBKJRCKRXA2qxZTWh43HXdPfx+OPfnxNlqNcNimpclJHN/eYdsSnB1nddYjH9Ptt\nWcSRW/p4TL/J4rWs6jLUY/r9t/5IoeMrj+l7aUZ4XH9Lr9s8ot11/e8AHsv/tVD2O/vf5DH99quW\nedz37Cz0mL6W4R5//p7Ov6d8H1T/91T+tQwHYEe/gR7R77B6Kf9r/YBHtAHu2vulx32/uuDwdAKq\nKXLZpEQikUgkEolEIpFUA2TnTSKRSCQSiUQikUiqAXLZpEQikUgkEolEIrmqKPK0yctCzrxJJBKJ\nRCKRSCQSSTVAdt4kEolEIpFIJBKJpBogO28SiUQikUgkEolEUg2Qe94kEolEIpFIJBLJVUX+VMDl\nIWfeJBKJRCKRSCQSiaQaIDtvEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVVF/lTA5SE7b5JrAq/m\nPTDc+xRCo6Vgw08ULPvU5b6+TV/8B00Ch4LisJH7/WvYTuyqVNyhXdoQO/UhhFZD4u+riP/6Vzeb\n2EdHEtatLQ6zlUOz3if32OmLhjU0rEPjJ8ai9fPBnJjKwRfewZ5fUBSfd2Q4nb9966Lp8m/XCePY\niQiNlszlS0hf9K1rnmvVpsbUJ/FuEIvpq89I/+WHonsafwNRk6fjXbseoJD4zmuYjxwqN/+NHn0I\nodGQUE7+Gz32EGFd22G3WDg86wNyjp6+aNgWLz+KX+1oAHQBfthy8tk+YjqRN/SgzvDbS8UeAmS4\naW7ccJJX5yzH7lC4c0gbRo/p5nI/K6uA555ZzNmzmXh7a5n18i3ENjIC8PVX2/npxz0oisKQoW25\n/4FO5ZZzeXhaP7hTO+pOHo3QaElespyEhT+52dSdPIaQLh2wWyycfOVt8o6dAkBr8KfBExPxq1cH\nBYWTr75L7sGj1SbvntAP7NiemAnjQKPBtPRPkr//0c0mZsI4Ajt3xGGxEPf6mxQcPwmA8Y7bCR94\nIwiBacmfpPys+kGNEcMJv/lGbJlZAJz/7Euyt/9dFF9V+J6xXxfqjb4L/7o1+XvkDHKOqHVCF2ig\n1SuPE9C0IYlL1laqTMrimRm/s27tMULD/Pl98SOXHc/F8HT927D+BK/M/gu7w8GQoW0ZM7aHm/6z\nT//O2TMZeHvreHnObcX6X27jxx93oSgwdGhbRjzYpUK9f+LrbX/4BEdBAYrdgWK3s3/s4wDEzpyO\nb0xNQH0f2HPz2Ddq6iWXRWmq4vkHdmxP7YkPO33vL5K+K8P3Jj5MUOeOOMwW4l6fS77T9yKHDCJ8\n4A2gKOSfjiPutbdQCgvxrV+POo9OROPrizU5mVOzX8dRog0uTdsnhxPVozV2s5Xtz31C5pF4Nxv/\nmuF0eW08+iADGYfj2P70PBw2O14GXzrPeRi/qDCETsvRL5cR99sGAGKHXUf9O/uAEJz6aS3HFy4H\nqqfvS6oPctmkxPMIDQHDnyHr7XGkP3cbPp0Goq3RwMXEengbGTPvIOOlO8n54jkCHnix0tE3fnw0\nex+bzbZ7H8V4XQ/86tZyuR/WtS1+MTXYOnQSR179mMZPjFVvaDTlhm0y4xFOfrSQ7fc9Tuq67dS+\nz7XDEjv5AdK37ik/URoNkY9M4dwLT3Jq/AME9u6HPqaOi4k9J5vkee+S/vMPbsEjx04kb+d2Tj8y\ngtOTRmE9e6b8/E8bxZ5HZ7P13keJvL47/mXk3zemBluGTuLIK/No/MSY4vyXE/bAs2+xfcR0to+Y\nTsqabaSu3QZA8l8bi64ffPE9p4J7x81ud/DyrD/5aP49/P7HwyxdcpCTJ1JdbD6Zv5kmTSP55bcx\nzHn1Nl59ZQUAx4+l8NOPe/jufw/x069jWLf2OGfi08sv6zLwtD4aDfUefZjD019kz4gJhPfvhW+d\nGBeT4C7t8akVze5hD3Pq/z6g3mPFH1J1J48hc9su9tw/nn0PTaEg/ly1ybtH9DUaak+ewPEZz3Fo\n5MOE9uuDT53aLiaBnTriXSuagyNGcWbuu9SZMhEAn7p1CB94I4cnTOXQmPEEdemEd3SNonApi37l\n8MMTOfzwRJeOG1SN7+WeOsv+p94gc89hl7gc1kJOzv+BE+99VXF5XITBd7Rm/qfD/1EcF+OaqH8v\nLWPep8P4Y8l4li4+yIlS+vM/3kiTplH8+sc4XnltEHNm/1mk/+OPu/jhx9H88tvDrF17nPiK9P+h\nrwMcnPIM+0ZNLeq4ARyf+X/sGzWVfaOmkr5+C+nrt1xSOZTHFX/+Gg21p4zn2FPPc/ChcYT2641P\nqfwHde6AT82aHLh/NPFz36X2VNX3vMLDMA6+jUPjpnBw1HiERktov94A1J02hXOffM6h0ePJ2LCZ\nqLuHlJuEqB6tMNSOYtmtT7Djpc9p/+wDZdq1mnI3x775i2W3PkFhdh71BqtaDe/uT/apBJbf9Rxr\nR71C68fvQaPTEtiwJvXv7MPK4S+yfOizRPdqgyFG7eRXR9+XVB9k503icXT1WmJPOYvDdA7shZi3\nL0Xfpq+rkSW/6J9C7wsolY4//1wS5oQUFJuNlJWbiOjV0eV+eK+OJC1bC0D2wePoDH7ow4IJbNaw\n3LB+tWuQuVud6Urfvhdjn84u8RUkppB36my5afJp1ARr4nkKkxPBZiN7/WoMXbq72NizMjEfPwp2\nu8t1jZ8/vs1bk7V8iXrBZsORl1uuVkGJPCSv2ER4rw4u9yN6dSRp6boS+fcvyn9FYQEi+3clacVG\nt+tR13V3u3aB/fsSqF07lJiYELz0Wm4a2IzVq4+52Jw8kUrnznUBqF8/nPPnMzGZcjl1Ko2WraLx\n9fVCp9PQoWNtVq6o/KzTtaBvaBqL+XwilsRkFJsN06oNhPTo7GIT2qMzqX+tASD30FF0Bn+8wkLQ\n+vsR2Lo5KUvUD1rFZsOem1dt8u4Jff8mjTCfT8CamIRis5GxZh3B3VxnTIK7dyFt+SoA8g4fQWsw\noAsNwad2DHlHjqJYLOBwkLNvP8E9y6/bJakK38uPO0/+mQQ3LYfZQtbeIzishZVKW3l06FiHoCDf\nfxTHxfB8/TtP7TohxMSEoNdruenm5qxe5RrHyZOpdO7i1G8QTsL5LEymXE6eNNGqVc0i/Y4d67By\n+eEyVIr5J75eWcL6dse0an2l7S/GlX7+/k0aYSnhe+mr1xPcrauLTXC3LqStuOB7zvyHqvkXWi0a\nbz1oNGi8vSlMSwPAu1ZNcvcdACB7525CLuKTNfu2I+6PTQCk7z+JV4AfPuFBbnbGTk05t0IdgIn7\nfSM1+7UDQFFA5+cDgM7PG2tWHg67g8B60aTtP4ndbEWxO0jdeYSa/VU/rY6+7wkcyrX937XKf6rz\nJoR4TAhxwPnfVCFEXSHEESHEQiHEYSHEIiGEn9O2vRBinRBipxDiLyFEDef1tUKI14QQ24UQx4QQ\nPT2bq+qPJiQSe0Zi0d+OjGS0IZFudvq2/QmZ9QdBUz4i5/PnKh2/JcVU4t9peEeEutz3jgjDnJxW\nbJOajndEGN4RoeWGzTt9jnBnR87YryvexnAAtL4+1LlvEHGfuS8LKYlXWAS21OLRXpspFa+wiErl\nxyuyBvbsTGpMfYq673xC1KTpCG+fcu3NKSXylqLmrSTeEaGlbNR8+rhddw8b3KYp1vQsCs4mueka\nB3Rzu3aBlJQcoqICiv6OjAwkJTnHxaZxk8iiD7P9+86TmJBFcnIODWMj2LXzLJkZ+RQUFLJh/UmS\nkrLL1boW9fXhYS51y5pqcitbfXgY1pTUEjZp6MPD8K4RiS0ziwYzptDq07ep/8REND7e1SbvntD3\nCg+nMLVkWZrwCg8rZROGNdX1mejDwzHHxWNo2RxtYADC25ugzh3RRxT7asTgW2n6yYfUmfYoWoPB\nJc6q9L3qiqfrX3JyDlFRxR/uUeXpLz8CwL5950lIyCQ5KZvYRhHs3HmmSH/9+uMkVqD/T3z9As3m\nzqLlJ3Mx3nqDW/wBrZtTmJ6J+Vyi271rATVvJfJvMqGPKO174aXyb1J91pRG0v9+ptX3X9J60ULs\neXlk79gNgDk+nuDuaicwtHdP9M42uCx8jSEUlGjjC5LT8TW6do71wQasOfkodvXw+vzkjCKbE9+v\nJLB+NLeufIfrF81mz+sLQVHIOnGOiHaN0Qf5o/XRE9WjNX5R6jeC9H1JVfKf2fMmhGgPPAR0BgSw\nDVgHNAZGKYqySQixABgvhHgHeA+4XVGUVCHE3cBsYKQzOp2iKJ2EEAOBF4ABVzk7/0msu1dh3b0K\nr9j2+A+aRNbc0R5Ly+HZH9Do0VHUfWgIpg07UGw2AOqNvouzPyzGXmCuMm2h1eLToBHJH7+L+dhh\njGMnEjZ0GKZvFlSZZnlEXt+D5DJm3QKbN8Rhtv6juEeP6carc5Zz5+BPiI010qRpFFqNoEGDcEaO\n7srY0d/h6+tF4yaRaDRXftOzp/XLQ2i1+Mc24PTb88k9fIy6k0dTc/gQzn628IppeDrvntYvifnM\nWZK+/5HY12bjMJspOHEKxaF+4KX+sYTEb74DRSH6oRHUGjeG+DcuvtdVUjGefv5jxvZgzuw/GXz7\nPBo1MtK0aQ00Wg0NGkQwenR3Ro9aiK+vF02aRKHVVO0Y+MEJT2I1paMLDqLZ3JcoOHOOnL0Hi+6H\n9++FadWGKk2Dp9AaDAR378L+YQ9hz82j/gtPEzqgL+kr1xD3+tvETBpHjfvvIXPzNpRCW5WlI6pb\nCzKPnGHt6FcxxBjpNe8JUncdJed0Ikc+X0Kvj5/AXmAh8+iZos6fRFKV/Gc6b0AP4BdFUfIAhBA/\nAz2Bs4qibHLafANMBv4EWgArhBAAWqDksNa+UI0VAAAgAElEQVTPzv/vBOqWJSaEGAuMBZg3bx5j\nx469knn5V6HOtBXvIVFn4pLLtS88vhNtRC2EIRglN7PC+L1LjMh5G8OwpLruUbCkpuETGUbWBZuI\nUCypaQidttyw+fEJ7Jk6CwDfmBqEd1eXVwQ2iyWibxcaTLgfncEfgOBbBpO5+BfXPKSloisxeq8L\nj6AwzXXfRbn5N6ViM6ViPqYu18nZtI6wIcPKtfcxFo/aeRvVvLnmPx0fY4n8O/MpdLqLhhVaDcY+\nndj+wJNumpEDupO0YiMNG5adLqMxgKSk4tHu5ORsjJEBLjYGgzcvz7kVAEVRuGHAB9SKUUdC7xzS\nhjuHtAHg7bfWEFUqbEV4Wt9qSnOpW/qIcLfnYjWloTdGAIedNmFYTWmgKFhSTeQeVpeapa3dTM3h\nd1Za29N594R+ocmEVwl/00eoo/quNmnoI8LJK2FjNakzBmnLlvP/7N13eFTF+sDx7+ymQgjphd4C\nBFAICRCqCKKCCoJgwU4VpIsVvKI0O0UsYPldr3JR0YsgRelVIAIC0msIJW3TIG2T7M7vjw1JNkWK\nwCbwfp6Hh+w5M+edmT2z58yeOWeTVtgeRFBt4NPk5l+hy0sp/PwxLVtBg6n29+Jer75XkTl6/wsM\nrEJcXFrB67gy4k+b3qsgfreus6l5MX6/MB7qFwbAjA/XEBTo+bfx/lFfB3JMtmNOXmoayZu24REa\nUjh4Mxrw6dSWvwaPvZImuKFsdStSfz8/chKL9z1Tfv3z0/j7kWsy4RneAnNsHHlptqubqZu24NE0\nlOTV68g+fYajL00EbFMovSLtb4do8EhX6vax3bOWsv8k7oG+wFEA3AN9yEqwvxc7JzUdlyqVUEYD\n2mKlUqB3QZo6vTpy6CvbbQrppxPIOJuIZ91qJO87wclFGzm5yDZl9baRfcmMt71f0vcvTzmemViu\n3VLTJstQfN/R2K7M7ddat8j/d5vW+u4iacz5/1soYwCstZ6ntY7QWkfIwO3v5UXvwxhYC4NfdTA6\n49a6Bzl71tmlMQQUPlzAqVYoOLlc1sANoFLNYNyCA1BOTgTc1R7TJvuHCpg27SCoe2cAPJuGYMnI\nJCcplQsHj5WZ19k7/4CtFHWe7cvZRbb7j3YNe52tfYaztc9wznxv+7AvPnADyD5yGJdqNXAODAIn\nJzw7dSF9+++XVR9LajK5pgRcqttu+q7cPBxzTMknZ5VW/8Bu7TFt2mG3PnHTDoJ63FFQ/7z00utf\nPK93q9vJiD5XYjCMUgR0bUf8qi2Updlt1Yg5lcyZM6nk5lhYsfwAd97Z0C7N+fPZ5ObY7vf7aeFu\nwiNq4eFhmx6YlGQ7xY49l8aaVYfpcX+zv2uychc//dBR3GpUwzU4EOXkhF/XjqRs2W6XJnlzFP73\n2O799GjSCEtGJrlJKeQmp5KTYMIt/0lzVcObkxVd9v2V5a3ujoifcegIbtWr4RJka2/vO+8g9fdt\ndmlSf9+G791dAagc2hhLRgZ5ybaTNycv2zQ75wB/vDu0J3nNettyn8KpV14d2pEVbd8Pr1ffq8gc\nv/9V51R0MmdOp5CTY2HFsv3c2aVk/Jz8+D8u/JOIiNol4p87l8bqlYe474Hb/jbeP+nrBjdXDO62\n+88Mbq54tWpB1onCh1N5hbcgO+ZMicFQeVK87/l06UTq1uJ9bzu+3S72vUZYMjLITU4hJz4RjyaN\nMbja2r5KyxZkx9g+6y72SZQi+IlHSViy3G6bx75fw6pH/sWqR/7F2XW7qPOA7Z44n9vqk5ueRbYp\njeIS/jhIjW62QWCdnh04u872ROvMuGQC2zQBwNXHkyp1gkk/k5D/2jbwrxTkQ/Wu4cSssNVN+r64\nnm6lK2+bgH8rpd7GNjjrDTwJzFJKtdVabwX6A5uBw4D/xeVKKWegodZ6f1kbF/+A1UL6f6dSdcw8\nlMFA9pZFWM4dx+2OhwHI3vADri274da2J1jy0LnZnJ87/rI3f+SDL2gxc6LtsbtL15Jx8gzVetvG\n4ucWrSTp9134tmtJ24VzbI/snfIJANpiLTUvQGC3DtR46F4AEtdvJ3bp2iuuc/xns6j51ntgMJC2\nagU5MdF4de8JQOqKJRi9fKgzcy6GSpXAqvHu1ZeTw57GmpVJ/GezCR4/EeXkRG5cLLEz3y4z1OH3\nvyRs1gQwGIhduo6Mk2eo3rsbAGcXrSLp9134tQuj7Y8f2X4qYcrHBfUvLe9Fgd3alzpl0issFHOC\niexzCWWWycnJwGsT72HooAVYrFZ692lOgxB/vv9uJwCPPBrOieMmJrz6C0pB/Qb+vDXlvoL8Y0f/\nRGpqFk5OBia8fg+enmXf81ce42OxcnLmXELfn4QyGEhYvpqs6NME9rTtU/FLfiV12w6824YTtmAu\nVrOZY9NnF2Q/OWseIa+PQzk7Yz4Xx7HpsypM3R0S32ol5qNPCXlnCspgxLRiJdmnYvC7vwcApqXL\nOb/9D6q2aUWzb77Cmp1N9HuF0x/rTZqIk6cnOi+PmNmfYMmwncDXGDKQSvXroYGcuHhOzZhtF/Z6\n9D3/O1rT8IUBuHh50uLDV7lwJJrdY6YC0G7RxzhVqoRyvnho9wSu7J6w8eN+IirqFKkpmdzZaQYj\nRnYuuNJ0LZSH/W/Cv7ozeNB8rBZN74daEBISwHcLbCfIjz4WwYnjibz6ymIUigYh/kye+kBB/tEj\nfyA1NQtnJyMT3+h+6fj/oK87e3vRaOprgG26tGn1BlKjCn8ix7drR0yrr82DSi665u9/ft9r+M4U\nMBpIWrGS7OgY/B+w9b3EX5aTdrHvfftl/k8F2PpexqHDpGzYTOjc2WCxkHnsBIlLVwDg06UzAb3u\nByBl8xaSfl1VZhFiN+0huMPt9Fj6HnnZZv74V+FPEXWcM44/3vyK7MRU9s78gch3h9Ps+YdIPXSq\n4IragXmLaT15MHf/OAWlFHtn/kBOqu0hYe0+GIlLVQ90noVd074h94Lt4WqO7/s0AUr//SBR4Smt\nb52LlkqpcRTet/YF8DO2KZI7gHBsO/qTWutMpVQLYDZQFdsgd6bW+nOl1HpgvNZ6h1LKD9ihta5z\nidC3TiOXInFQU4fF9v9iP2vblv0I4euty9YfOXR/Z4fFb7x0PWsi+zksftdtC8m1Ou7xxc6Gpxwe\nf2unng6J3XbjEgCH1b88tP3Ort0dFj98zQqH9z0L1+4+yCtl5HGHv/+Orr+j+j7Y+r+j6m/E9lMD\nO7r0cEj8iLXL+aF56T8HcCM8vOdrh/d9bBcpyr336j9frs+PXzz+cblsx1vpyhta6w+BDy++VkrV\nAfK01k+UknY30KmU5Z2L/G2ijHvehBBCCCGEEOJaknvehBBCCCGEEKICuKWuvBWntY7G9lRJIYQQ\nQgghhCjXbunBmxBCCCGEEOLGk1/FuzoybVIIIYQQQgghKgAZvAkhhBBCCCFEBSDTJoUQQgghhBA3\nlNbl8kn85Z5ceRNCCCGEEEKICkAGb0IIIYQQQghRAci0SSGEEEIIIcQNJU+bvDpy5U0IIYQQQggh\nKgCltXZ0GW4F0shCCCGEEOJGqBBPAplWb0S5Pj9+7cScctmOMm1SXHcJA5o5LHbAV/tY27avw+J3\n2fojh+7v7LD4jZeuZ01kP4fF77ptIRbmOyy+kccdHn9rp54Oid124xIAcq3/cUh8Z8NTDm/7HV16\nOCx+xNrlDu97jnrvoXy8/46Ov7nDgw6L32Hzzw6rv5HHAVgS/rhD4vfcOZ8tHXs5JDZA+02LHd73\nKwq5fnR1ZNqkEEIIIYQQQlQAMngTQgghhBBCiApApk0KIYQQQgghbihrxbg1r9yRK29CCCGEEEII\nUQHI4E0IIYQQQgghKgCZNimEEEIIIYS4oazytMmrIlfehBBCCCGEEKICkMGbEEIIIYQQQlQAMngT\nQgghhBBCiApA7nkTQgghhBBC3FBa7nm7KjJ4Ew7j0qw9Hv1fAWUke9NPZC7/0m69a+R9VO4+EBTo\n7EwufDOZvNOHAXC/6wncOz0ESpG18UeyVn17xfF9IlsQMuZZlNFA7JI1nPrm5xJpQsYOwLddGNbs\nHA5MnkP6kZMANJ4wHL924eSkpBH1xLirqD1UbtmagCEjUAYjqSuXkfzjf+3Wu9SoRfCYl3GtH4Lp\nP1+SvOj7gnWGyh4EjXoR11p1AU3srHfIPnSgzHo2HPssymDgXBn1bDjuWXzbtsRiNnNw8sdcOHzy\nb/MGdImk7qCHqVynOn8MeJULh04AEHhPB2o/3qvY1r2BlCtqmwmvLmHD+iP4+FZmydJhV5T3Wrge\n8b1at6TOqEEog5H4ZSs5N/+nEmnqjBqMd2QEFrOZ49NnknHE1q5h33+ONSsLbbGiLRb+GvICACGT\nXsS9ZnUAjB6VsaRnsHfgmEuWZfOm47w9bSUWq+ahvi0YNLid3fq0tCxen7CU06dTcXU1MnnK/YQ0\nDADgm/9E8dPC3Wit6dsvjCefbn3FbbFp4zGmT/0Ni9VK335hDB7SoUT8ia8t4XRMCq6uTkyZ1rMw\n/tfbWbhwF1pDv35hPPVM5GXF9GwVTq0RQ8FgwLT8N+IWLCyRpuaIoVRt0wprtpnodz8k8+hxAAL6\n9ML/vntAKRKX/UrCT4sBqDF0AFXbtkHn5mGOjSX6nRlYMjIKtnc9+h5AjX73UuOhe9FWK0m/7+LY\nHNvnn0eDWjR+eSjGyu75KQ2AtURMR7//f+em7Pttwqg3ehDKYCB+6SrOfPu/EmnqjR6Ed9twrNlm\njkybXdD3ATAYaPHF++QkJnHg5al2+ao/2ou6I55l231Pkpd24R+X9Xq1f7MXnyKwfXMs2Tn8OWku\naYeiS6SpVM2f8OkjcKnqQerBaHa9/gk6z4JveCitPxxH5tlEAGLX/cGRzxcVZjQo7vhmClmJKUSN\neb/Edr1ah1Fv9GDIb/+zpXz21h09GO/IcKxmM0enzSpo//Af5mHJzEJbrWCxsmfwC3b5qj3Si7oj\nBrD9/ifs2t/xfR83ILtEUHFTuGWnTSqlJimlxju6HLcsZaDKExNJnTGM5Ik9cW3TA2O1enZJLIln\nSXnnGZL/1YeMXz6jytNvAGCs3gD3Tg+RPOUxkt94CNfmd2AMqHll8Q0GGr0wiD3jprL9sbEEdOtA\npTo17JL4tg2jUs1gtvUbyaG3P6PRS0MK1sUtW8fusVOuru758QOHjebMGy9zYvjTeN7RBZeate2S\nWC6cJ37ubJL/932J7IFDRpCxM4qTw57i5MiB5JyOKTNUo/ED2T12KtseG0vg3e2pXEo93WsGs7Xf\nSA5Nn0ujlwYXlLGsvOknTvPXK++Tuvug3bbif9tM1FMvEvXUi+x/86P8pVc2cAPo3ac58754/Irz\nXSvXPL7BQN2xQzn44pvsfup5/Lp2wr22/T7rFRmOW41q/Nl/KCfe+5i64+xPnPaPnsDegWMKBm4A\nRye9x96BY9g7cAzJG7eSvHHrJYtisViZMvlXPp33KEt+GcryZfs5fizRLs3n836ncWggixYPZtrb\nPXl7+ipbvCMJ/LRwNwt+eJaffh7MhvVHiTmVfEVNYbFYmfLWCuZ+0Z9flg1n+dL9HCsWf95nm2kc\nGsTPvzzH9HceZNrUXwviL1y4i+8XDmLR4qGsX3+UU5cT32Cg1ujhHHnlX+x/9jl8utyBW7H2r9om\nArfq1dn35CBOfTibWmNGAOBWpzb+993DweFj2T/oebwiW+NaLRiA8zv/ZP+AYRwY/DzZp88S1P9h\nu21ej77n3bIp/p1asf3J8WzvP45T85cAoIwGmkwaxaF35rG9/8UvlEp+re3o9/9Sbsa+X3/cUPaP\nf4tdT4zE/66OuBfbD7wjw3GrGczOR4dx7L1PaDD+Obv11frdT+apMyU27RLgh1erFmTHJVyz4l6P\n9g9o35zKNYNY8+AL7JnyJbe/+myp6UJHPcrx+StY8+AL5J7PoPaDnQvWJf15mA39X2ND/9fsB25A\nvcfu5UL0udKDGwzUGzeU/ePf5M8nR+S3v33f944Mx71GMLsee45j735M/RfsP3v3jZ7IngFjSwzc\nXAL88GodVmr7O77vk1t6g4ibwS07eBOO5VTvNvISYrAmngFLHubtK3Bt0cUuTd7x3ejM8wDkHt+L\nwTvQlje4Hrkn/4KcbLBayDm8A9eWd11RfM8mDcg8E0f2uQR0Xh4Jq7fg36mVXRq/Tq2IW7EegPP7\nj+LkUQkXXy8AUncfJO98+tVUHQC3ho3JiT1Lbnws5OVxfuNaPCLb26WxpKWSffQwWCx2yw2VKuPe\ntDlpK5fZFuTlYc0ouyxZReoZv2oLfp0i7Nb7d2pF3PINRepZGRdfLzybNCgzb2b0WTJjyjhY5gvq\n1v5v1/+diFa1qVrV/dIJr5NrHd8jNITss7GYY+PReXmY1mzCu0MbuzQ+HdqQ+Ns6ANIPHMbJozLO\nvt6XHcP3zvaY1my8ZLq/9p6jVi0fatb0xtnFSPceTVi79ohdmuPHEmnTpg4A9er5cfZsKiZTOidO\nJHHb7dVwd3fGyclARKtarF51+LLLaIt/llq1valZ0xsXFyPd72vK2jX22zh+PJE2kfnx6/tx7mwa\nJlM6x4+buP326gXxW7WqzeqVB0uJYq9y44aYz54jJzYOnZdH8tqNeLVra5fGq10kSavWAJBxML/9\nfbxxr12T9IOHsZrNYLVyYc8+vDva9u3zO/4EqzU/zyFc/P3stnk9+l71PncT/Z+f0bl5AOSm2D4j\nfVo3J/3YKdKPnSoSoeTgzdHv/6XcbH2/SmgI2WdiMZ+z9f3E1ZvxLd73O7Ym4df1AFzYfwRjkb7v\n4u+LT9sI4n9ZVWLb9UYOIPrTr0t7m6/a9Wj/oDvCObNsEwAp+47h7FEJVz+vEun8WjUldk0UAKeX\nbiSoc0SJNMW5BfgQ2KEFMT+vK3V9ldAQss/GFXz2Jq7ZhE8H+6vFPh1ak/Drxc/eI5f92Vt35ECi\nP/l3qXP/HN/3sT9xKKesqHL9r7y6ZQZvSqmnlFJ7lVJ7lFLfFFvXQim1LX/9IqWUd/7yUUqpA/nL\nv8tfVlkp9ZVSKkop9adSqvgcMXEZjF4BWJPjCl5bU+IxeAeUmd6tYx9y/toMQN7ZYziHtERVrgou\nbrje1hGDT9AVxXf198GcYCp4bU5IwtXfp1gaX7LjkwrTJCbj6u97RXHK4uzrT15i4bfdeaZEnH39\nLy9vYDCW86kEj3mFOrM+J2jkiyhXtzLTZycUqUNCyTq4+vsUS2NrC7cSy6+s/gF3tbt0oluEi5+v\n3f6Wk2gq0ZYufr7kJCQWSZOEi19hmiYfTua2zz8k4IF7Smy/SvOm5Cankn0m9pJlSUi4QFBQlYLX\ngYGeJMTbT7dq1Diw4KT8r71niT2XRnz8BRqE+LNr52lSUzLJyspl08bjxMWdv2TMouLjLxAUVLXg\ndVBZ8VceAmDv3rOcO5dKfNx5Qhr6s3NnTEH8jRuPEnsZ8W1tW6T9TSZcirW/s59fsfY34eznR9bJ\nU1S5rRlGzyoYXF2p2iYC5wD7QRqAX/e7SYvaYbfsevS9SrWq4dU8lIgvp9HykzepElo/f3kwaGgx\ncwKtvn6nzLZw9Pt/q3EpfqxJTMKl+LHGz8d+/0xIwtXPlqbeqIGc/PTrEgMEnw6tyTElkXEs+voV\n/hpxC/Ahq8ixNCshGTd/+8GRi5cHeRcy0BZrqWl8bg+h83fTaTP7JarUq16wvNkLT3Jg1gJ0GT8Y\n5uJfrO8nJuHq51sijf17ZCpMo6HpjLdo/sUHBD5wd2F5OrQmJzGJzOPRpcYtj31f3DxuiXvelFJN\ngYlAO621SSnlA4wqkuQ/wEit9Qal1FvAG8AY4BWgrtbarJS6+DXRBGCt1npA/rIopdRqrXUG4rpw\nbtwK9459SJn+JACW2BNkrvgKrxfmoc1Z5J4+DLrkfR03K2U04la/IfGfzSb7yEEChozAt19/TN9+\n5eiiFfBs2gBrdo6ji3HT2P/8y+SYknHyqkqTD98iK+YMF/bsL1jv17UTpjWbrlm8QYPb8fa0lTzU\n+3NCQgJoHBqE0aCoX9+PAYPaMmTQAtzdnWnUOBCD4dp/Ozl4SAemTf2V3r3m0rBhAKGhwRiMBurX\n92fQoPYMGjgfd3dnGjcOwmi4vt9BZsecJu67hTR8dwrWbDOZx08UXG27KPjxR9AWC8mrS//2/1pS\nRgPOVT3YMfA1PJs04Lap4/i9z/MooxGv5o3549lXsGSbuXPDfBRBaOIuvdFiHP3+CxvvdhHkpqaR\ncfg4VcOaFSw3uLpQ86m+7Bs7yXGFu4HSDkWz6r5RWLLMBLRvTqsPxrG29wsEdgzDnJJG2qFofMND\nr0vsv55/hRxTMs5eVWk6402yYs6QfugYNZ7sx/5xb1yXmGW5kr4PdAXW3NACihvmlhi8AV2AhVpr\nE4DWOlkp2wFHKVUV8NJab8hP+zVw8U72vcB8pdTPwMU7Ru8Geha5X84NqAXYzd1RSg0BhgDMnTuX\nIUOGIApZUhPsrpYZvAOxppScN26s0RDPZ94idcZz6Iy0guXZm/5H9ibbTd+V+4zGmnJlJyjmxGRc\ni3x77hrgizkxuViaJNwCfbkY1dXfB3NiEtdCblIiTv6FV9qc/PzJTUr8mxxF8poSyTMlkn3Etstd\n2LIB3779y0zvFlD4jZ9rQMk6mBOTcQsoUs/8tlBOTpfMW5bAu9oTt2ozDRqUXa5bSY4pyW5/c/H3\nK9GWOaYkXAL8ufhR4uLvS44pKX+dbd/MS00jedM2PEJDCgdvRgM+ndry1+Cxl1WWgIAqxMUVXmmJ\njz9PQGAVuzQeHq5MmfYAAFpr7rnrY2rUtH0L/lDfFjzUtwUAM2esI6hY3ksJDKxCXFxhX44rI/60\n6b0K4nfrOpuaF+P3C+OhfmEAzPhwDUGBnpeMaWvbIu3v50dOsfbPNZny2z8/jb8fuSbbt/GmFSsx\nrVgJQPWBT5OTWPgtve89d1E1sjVHxr9WIu716HvmhGQS120H4PyBY2irFWcvT8wJSaT+eYDcIg9N\nUPiWGLw5+v2/1eQUP9b4+5JT/FhjSrbfPwN8MZuS8e3cFp/2rfCODMfg4oyxciUavj6GM/MX4Roc\nQNi/ZxZss8VXH7Jn8IvkJqfemIpdhjv+Ow2A1AMncA8s3J/dA3zITrS/FzonNR2nKpVRRgPaYrVL\nk5eRVZAuYcseDK8YcfHywKd5Q4I6hRPYvgUGF2ecPNxpOdn+frWcxGJ9398XsympRBrXAD8u9gpX\nf7+CNBc/e3NT00jauA2P0IbkXcjANTiAFv83syB9iy9nsGfI+IL2d3TfB1pSAQZv8rTJq3PLTJu8\nSvcBH2PrBH8opZwABTyktW6R/6+W1rrETRda63la6witdYQM3ErKO7kPp8BaGPyqg9EJ1zbdMe+2\n/9ba4BNE1ednkvb5q1ji7eZyo6r4FKRxDe9K9rblVxT/wsFjVKoZjFtwAMrJiYC72mPa9IddGtOm\nHQR17wyAZ9MQLBmZ5CRdmwNj9pHDuFSrgXNgEDg54dmpC+nbf7+svJbUZHJNCbhUt910Xbl5OOaY\nU2WmL1rPwG7tMW2yn9qVuGkHQT3uAGz1zEu31bN4G5WWt1RKEdC1HfGrtlxWfW4F6YeO4lajGq7B\ngSgnJ/y6diRly3a7NMmbo/C/504APJo0wpKRSW5SCgY3VwzutntQDG6ueLVqQdaJwgfUeIW3IDvm\nTInBSFma3VaNmFPJnDmTSm6OhRXLD3DnnQ3t0pw/n01uju2WiZ8W7iY8ohYeHq4AJCXZJhnEnktj\nzarD9Li/GVei2W3VORWdzJnTKeTkWFixbD93dikZPyc//o8L/yQionaJ+OfOpbF65SHue+C2S8bM\nOHQEt+rVcAmytb9Pl06kbt1mlyb19+34dusKQOXQRlgyMshNtp08OnnZpnm6BPjj1bEdyWvWA7Yn\nWAY90pdjE9+03RNXzPXoe4kbo/AOt7W5e81gDM5O5KaeJ2n7Hio3qIXB1QVltB3aNSU/rxz9/t9q\nLhw6invNYFzz30v/uzqQvCXKLk3y5igC7u0MQJWmDbGkZ5CblMKpud/yR59B7Og3hMOTPiBt516O\nTJ5J5olTRD3wDDv6DWFHvyGYE5PYPWBcuRq4AQUPGIldv4Ma93UEwLtZA3LTszCbSpY1accBgrva\n7kereX8n4jbsBMDVt3CatVfTemBQ5KSmc3DO96zqMZLVD4xh52tzMP1xgF2vf2q3zQuHjuJeo0j7\nd+1I8uZi7b8lioB7L372NiQvv/0Nbq4Y7T57w8g8cYrME6f4o+fT7Hx4CDsfHoI50cTugWPt2t/R\nfR8o/fHT4qZwq1x5WwssUkp9qLVOyp82CYDWOk0plaKU6qi13gQ8CWxQShmAmlrrdUqpzcCjgAfw\nGzBSKTVSa62VUmFa6z8dUakKzWrhwrfT8Bo3F2UwkrV5EZZzx3HrbHtaW/b6H6jccxgGj6pUeXJi\nQZ6Utx4BoOrzMzB4eKEteVz4dio668oekawtVo588AUtZk60PY536VoyTp6hWm/bnPZzi1aS9Psu\nfNu1pO3CObZH+U75pCB/0zfH4NWyKc5eVWi3eC4nv/ie2F/WXlH94z+bRc233gODgbRVK8iJicar\ne08AUlcswejlQ52ZczFUqgRWjXevvpwc9jTWrEziP5tN8PiJKCcncuNiiZ35dpmhDr//JWGzJoDB\nQOzSdWScPEP13t0AOLtoFUm/78KvXRhtf/zI9pMIUz4uaKPS8gL439Gahi8MwMXLkxYfvsqFI9Hs\nHmN7hLVXWCjmBBPZ567+CWjjx/1EVNQpUlMyubPTDEaM7FxwteVGuObxLVZOzpxL6PuTUAYDCctX\nkxV9msCe9wIQv+RXUrftwLttOGEL5mI1mzk2fTYAzt5eNJpqu6qjjEZMqzeQGrWrYNO+XTtiWn3p\nB5Vc5ORk4LWJ9zB00AIsViu9+zSnQdCqkpYAACAASURBVIg/339nO1F65NFwThw3MeHVX1AK6jfw\n560p9xXkHzv6J1JTs3ByMjDh9Xvw9Cz7fsuy4k/4V3cGD5qP1aLp/VALQkIC+G6B7QTl0cciOHE8\nkVdfWYxC0SDEn8lTHyjIP3rkD6SmZuHsZGTiG90vL77VSsxHn9LwnSlgNJC0YiXZ0TH4P9ADgMRf\nlpO2/Q+qtmlFs2+/zP+pgBkF2etPmoCTpyfakkfMrE8Kfg6g1qhhGJydafiebd9PP3CYmJlzCvJd\nj7537pd1hE4cRpv5H2DNy+PAW7Y8eRcyOL1gKa3+7+2Cr7M1Z0ttf0e+/5dyM/b94x9+TrMP3wCD\nkfhlq8k8eZqgXrZ7V+MW/0bK1p14tw0n/PvPsGabOTpt9jWqzZW7Hu2fsHk3ge1b0HXxhwU/FXBR\nm1kvsnvy55hNqRyYvYDwaSMJHd6PtMOniPl5PQDBXVtTp+9daIsFizmXna/OKSNSKSxWTsyYR9MP\nJoHBQMKyNWRFnyaol+2zN27xr7b2j4yg5Xe29j823fakZGdvL0KnvQrYPnsTV20kNeryTvcc3feB\nZZffSKKiUfoWuWaplHoaeBHbE3j+BKKBdK31+0qpFsBnQCXgBPAskA6sA6piu9r2rdb6baWUOzAT\naIftyuVJrfX9lwh/azRyGRIGOO6b2YCv9rG2bV+Hxe+y9UcO3d/ZYfEbL13Pmsh+DovfddtCLMx3\nWHwjjzs8/tZOPR0Su+1G22Okc63/cUh8Z8NTDm/7HV16OCx+xNrlDu97jnrvoXy8/46Ov7nDgw6L\n32Hzzw6rvxHbTw0sCXfMTz703DmfLR0d9yy59psWO7zvQzl+VGIRE2qNKtfnx1NjZpfLdrxVrryh\ntf4a2/1spa3bDZT2S68dSkmbBQy9tqUTQgghhBBCiL8n97wJIYQQQgghRAVwy1x5E0IIIYQQQpQP\nZfw8n7gEufImhBBCCCGEEBWADN6EEEIIIYQQogKQwZsQQgghhBBCVAByz5sQQgghhBDihpJb3q6O\nXHkTQgghhBBCiApABm9CCCGEEEIIUQHItEkhhBBCCCHEDWXVytFFqJDkypsQQgghhBBCVABKa7ld\n8AaQRhZCCCGEEDdChbik9VKN0eX6/PjdM7PKZTvKtElx3SUMaOaw2AFf7WNt274Oi99l648cur+z\nw+I3XrqeNZH9HBa/67aFWJjvsPhGHnd4/K2dejokdtuNSwAcVv/y0PY7uvRwWPyItcul793i8bd0\n7OWw+O03LXZo3wcctv933baQVW0edkhsgG7bf3B4368o5PrR1ZFpk0IIIYQQQghRAcjgTQghhBBC\nCCEqAJk2KYQQQgghhLihrI4uQAUlV96EEEIIIYQQogKQwZsQQgghhBBCVAAybVIIIYQQQghxQ8nT\nJq+OXHkTQgghhBBCiApABm9CCCGEEEIIUQHI4E0IIYQQQgghKgC5500IIYQQQghxQ8lPBVwdGbyJ\ncsGlWXs8+r8Cykj2pp/IXP6l/foWd+LReyRaW8FqIX3B2+Qe/fOytu0T2YKQMc+ijAZil6zh1Dc/\nl0gTMnYAvu3CsGbncGDyHNKPnPzbvB4NatPopSEYK7mRHZvI/jdmYcnMKtiea6Afbf4742/LVbll\nawKGjEAZjKSuXEbyj/+1r3ONWgSPeRnX+iGY/vMlyYu+L1hnqOxB0KgXca1VF9DEznqH7EMHyqx/\nw7HPogwGzpVR/4bjnsW3bUssZjMHJ3/MhcMn/zZvgxFP4tchHGteHlln4jk45WPy0jNRRiOhrz1H\nlUb1UE5Xf2F/wqtL2LD+CD6+lVmydNhVb6c8xfdq3ZI6owahDEbil63k3PyfSqSpM2ow3pERWMxm\njk+fScaREwCEff851qwstMWKtlj4a8gLAFRqUJd6LwzH4OKMtlg4OeMz0g8e/cdlvRnb37NVOLVG\nDAWDAdPy34hbsLBEmpojhlK1TSus2Wai3/2QzKPHAQjo0wv/++4BpUhc9isJPy0GoNqzT+LVLhK0\nldzUNKLf+ZDcpOSC7V2PvgdQo9+91HjoXrTVStLvuzg251sAPBrUovHLQzFWds9PaaC006NNG48x\nfepvWKxW+vYLY/CQDnbr09KymPjaEk7HpODq6sSUaT0JaRgAwDdfb2fhwl1oDf36hfHUM5GX+Q5c\nnptx3/NqHUa90YPBYCB+6SrOltL3644ejHdkOFazmaPTZhX0/fAf5mHJzEJbrWCxsmewre/XGtgf\nn45t0FYruSlpHJs2m5wi+97Vupb1j/x+1jXd9+sNeQS/Tq3AqslJSePA5I/JMaWUedxpNO5Z/NqF\nYck2s3/yJwXbL8ot2J/bp4zBuWoVzh86wb5JH6HzLJfOb1C0+ffbmBOT2f3COwAEdImk/uB+QH4f\n7dvdgX0fNyD7Mt4mUQHJtEnheMpAlScmkjpjGMkTe+LapgfGavXskuQe3EbyG31ImdSX81+9TpVn\n3rzszTd6YRB7xk1l+2NjCejWgUp1atit920bRqWawWzrN5JDb39Go5eG2FYYDGXmbfzqMI5/Op+o\nJ14gcUMUtZ7oZbfNkFFPk7xtd9mFMhgIHDaaM2+8zInhT+N5Rxdcata2S2K5cJ74ubNJ/t/3JbIH\nDhlBxs4oTg57ipMjB5JzOqbs+o8fyO6xU9n22FgC725P5VLq714zmK39RnJo+lwavTS4sP5l5E2O\n2sP2x8cR9cR4Mk+fo/bTvQEI6NoWg4sz2594gainX86PULnsdihD7z7NmffF41ec71q55vENBuqO\nHcrBF99k91PP49e1E+61a9ol8YoMx61GNf7sP5QT731M3XH2J077R09g78AxBQM3gNrDnuHMvxew\nd+AYTn/1X2o998w1Ke7N2P61Rg/nyCv/Yv+zz+HT5Q7cirV/1TYRuFWvzr4nB3Hqw9nUGjMCALc6\ntfG/7x4ODh/L/kHP4xXZGtdqwQDEff8jBwY/z4EhI0nbGkXwk/3ttnk9+p53y6b4d2rF9ifHs73/\nOE7NXwKAMhpoMmkUh96Zx/b+4/IjlHyUm8ViZcpbK5j7RX9+WTac5Uv3c+xYol2aeZ9tpnFoED//\n8hzT33mQaVN/BeDokQQWLtzF9wsHsWjxUNavP8qpU/98wFDUzbjv1Rs3lP3j3+TPJ0fgf1dH3OvY\n73vekeG41whm12PPcezdj6n/gn3f3zd6InsGjC0YuAGcXbCI3c+MZs+AsaT8voOazzxyTYp7Let/\nrff9U98uIeqJ8UQ99SKmLTupO6AvUPpxJ/j+zlSqGcSWvqM4+PY8Ql8aVGoZQ0Y8wanvlrGl7yjy\nLmRQvWcXAPzahf1t/lqP9CAj+qzdsowTp9nz8vsA1H7yQQf3fXIv9f6IiksGb0UopSKUUrMdXY5b\njVO928hLiMGaeAYseZi3r8C1RRe7NNpceFVLubqXdk5SpswzcWSfS0Dn5ZGwegv+nVrZrffr1Iq4\nFesBOL//KE4elXDx9cKzSYMy81aqFUzqn7YrXclRewjo3MZue1mxCWScOF1mmdwaNiYn9iy58bGQ\nl8f5jWvxiGxvl8aSlkr20cNgsdgtN1SqjHvT5qStXGZbkJeHNSO9zFhZReoQv2oLfp0i7Nb7d2pF\n3PINRepfuaD+ZeVNjtqLtti+0T+/7yhuAb62jWmNwd0VZTRgcHXJj3Dlx5CIVrWpWtX90gmvk2sd\n3yM0hOyzsZhj49F5eZjWbMK7Qxu7ND4d2pD42zoA0g8cxsmjMs6+3n+/Ya0xVq4EgLFyZXJN1+ZE\n+mZr/8qNG2I+e46c2Dh0Xh7Jazfi1a6tXRqvdpEkrVoDQMbB/Pb38ca9dk3SDx7GajaD1cqFPfvw\n7mjrq9YiV9sNbm4U/2C6Hn2vep+7if7Pz+jcPAByU84D4NO6OenHTpF+7FSRCCU/KP/ae5Zatb2p\nWdMbFxcj3e9ryto1h+3SHD+eSJvIOgDUq+/HubNpmEzpHD9u4vbbq+Pu7oyTk4FWrWqzeuXBSzX/\nFbnZ9r0qoSFkn40r6PuJazbh06G1XRqfDq1J+PVi3z9yWX2/6EwPg7sr+koOin/jWtb/Wu/7Rets\ndHMt3Fgpxx3vsCbErtgIQNq+ozhVsW2/OJ+IpiSs3QbAuWXr8b+jVX75IsrM7xrgg1/7lpxdvMZu\nWxnRZ8mMiQXAHJ/k4L6P/YlDOWXV5ftfeSXTJvMppZy01juAHY4uy63G6BWANTmu4LU1JR6nereV\nSOfSsiseD43GUMWX1FnDL3v75gRTkb+T8GwaYrfe1d+X7PikwjSJybj6++Lq71Nm3oyTZ/Dr1ArT\nxj8I6NIW1wA/W13c3aj9xIPsHj2ZWv17llkmZ19/8hILv+3OMyXi3qjJZdXHOTAYy/lUgse8gmvd\n+mQfO0L8vI/Q5tJnSGQnFKlbQnIp9fcpliYJV38f3EosL5kXIPiBO0lY/TsACWu34d+pFR2Wfo7R\n7eLgLeey6nUzc/HztduXchJNVGnSqESanITEImmScPHzJTcpBYAmH05GW63EL/mNhF9+AyD6oy8I\nff9Nag9/FqUM/DX8pRtQm4rH1rZF2t9kwiPUvv2d/fyKtb8JZz8/sk6eovqApzF6VkGbc6jaJoKM\nI4VTU6sPeArfu7tiycjg8LhX7LZ5PfpepVrV8GoeSv3nHsNqzuXoR//hwsHjVKoVDBpazJyAs7dn\nmW0RH3+BoKCqBa+DAj3Zu9f+CkKjxoGsXnmIiIja7N17lnPnUomPO09IQ39mzVxLakomrm7ObNx4\nlKbNqpUZS4CLf7F9LzGJKqENS6SxO9YkmnC92Pc1NJ3xFlitxC3+jfhfVhakqzX4CQLuuZO8jAz2\njZ54/Stzla7lcafec48R3L0TeemZ7HreNgOntOOOi1cVsuML2zQ7IQk3fx9yklILljlXrULehcyC\nLyKzE5Jx8/cpLF8Z+RuNfYajc77FqVLZg1xzcmGc8tL3xc2jXF15U0r9rJTaqZTar5QaopR6Tin1\nXpH1zyil5uT//bpS6rBSarNSaoFSavzfbHe9UmqWUmq3UmqfUqp1/vJJSqlvlFJbgG+UUp2VUkvz\n13kopf5PKfWXUmqvUuqh/OV3K6W2KqV2KaUWKqU8rmujiAI5u9aQPKEnaXNG4dF7hEPLcnDqx9To\ncy8R//cOxkru6DzbN2F1Bz3M6e+XYsm6flPNldGIW/2GpCxfTPTowVjNWfj263/pjNdBnWf6oPOs\nxP26CQDPpg3QViub7x/Clj7P56eSLvJP7X/+ZfYOHMPBF98kqHcPqjRvCkBgr+5Ez/mCXX0HEj3n\nC+q/PNLBJb35ZMecJu67hTR8dwoh70wm8/gJsBbeR3b2q/+w99GnSVq9noAHH7ju5VFGA85VPdgx\n8DWOzfmG26aOy19uxKt5Y/a/MZudQ17PTx14VTEGD+nA+QvZ9O41l/nfRBEaGozBaKB+fX8GDWrP\noIHzGTJoPo0bB2E0lKvTiJvOX8+/wp4BYzkw/i2C+/TAs3nhl3wxn3/Ljr4DSVy1geA+9zmwlDfO\nic8WsKXXMOJ+20SNvvcCpR937K7MXUN+7VuSk5zGhUMl75+73q6s79P1hhdQ2FFK+SilVimljub/\nX+bldKWUUSn158UxyKWUt0/dAVrrcCACGAUsAnoXWf8I8J1SqhXwENAc6J6f/lIqaa1bAMOBr4os\nbwLcpbV+rFj614E0rfVtWuvbgbVKKT9gYn76ltiu0o2jFPmDzx1KqR3z5s27jOLduiypCRh8ggpe\nG7wDsaYklJk+98hOjP41UB4lp0CU5uJVMdvfvpgT7aeWmROTcAv0LUzj74M5Mcl2Ba6MvJmnzrF7\nzGR2PPsy8as2k3XWduXQs0kI9Z9/krb/+4Qaj9gOpl73F92F8+uQlIiTv3/Bayc/f3KTEkukK02u\nKZE8UyLZR2zTlS5s2YBb/ZJXxC4qmNKIbbqHOTHJbr05MblYGls9s0sst88bfF9n/NqHs/+NWQXL\ngu7uQNLW3WiLpWBKh8Lnsup1M8sxJdntSy7+fiXehxxTEi4B/kXS+JJjSspfZ9vv8lLTSN60DY9Q\n2/vtf28XkjdsBSBp3RY8in2jL2xsbVuk/f38yCnW/rkmU7H29yPXZPvm3bRiJQefG83hMS9huZBO\n9mn7K1UAyWvW4d3Jfurz9eh75oRkEtdtB+D8gWNoqxVnL0/MCUmk/nmA3LQLWM22q92l9b3AwCrE\nxaUVvI6LP09AYBW7NB4erkyb3otFi4fy9rsPkpySQc2atvOOh/qF8eP/BvPN/GfwrOpGnTrSv/9O\nTmKxfc/fF7MpqUQau2ONv19Bmot9Pzc1jaSN20rt44krN+B7R9sSy8uLa3ncuSjut80E3Gmben7x\nuFP9wbsIm2UbvGitcQssbFO3AF+yix37c9Mu4FSlEspoyE/jU5DGnJhcan6v5o3w7xRBh0VzuG3K\nGHwimtFsUskvzVx9Cs9PHNH3gZYlClUO6XL+7x96BVijtQ4B1uS/Lsto4LLnoJe3wdsopdQeYBtQ\nE6gLnFBKRSqlfIHGwBagPbBYa52ttb4A/HIZ214AoLXeCHgqpS72rCVa66xS0t8FfHzxhdY6BYjE\nNtjbopTaDTwN1C4lL1rreVrrCK11xJAhQy6jeLeuvJP7cAqshcGvOhidcG3THfPudXZpjAGFN3g7\n1QoFJxd0emrxTZWqUs1g3IIDUE5OBNzVHtOmP+zWmzbtIKh7ZwA8m4ZgycgkJymVCwePlZm3YGqC\nUtR5ti9nF60CYNew19naZzhb+wznzPe2e9JSly4qUabsI4dxqVYD58AgcHLCs1MX0rf/fln1saQm\nk2tKwKW6rU0qNw/HHHOqzPRF6xDYrT2mTfYzgxM37SCoxx0F9c9LL73+RfP6RLag9hO92PPiO0UP\nFmTHm/COaAaAIf+bT835y6rXzSz90FHcalTDNTgQ5eSEX9eOpGzZbpcmeXMU/vfcCYBHk0ZYMjLJ\nTUrB4OaKwd02Pcfg5opXqxZknbA9oCYnKRnPFrb29mx5O9lnzt3AWlUcGYeO4Fa9Gi5Btvb36dKJ\n1K3b7NKk/r4d3262L6srhzbCkpFBbrJtyqqTl22aoUuAP14d25G8Zj0ArtULpwx6tY8kK+aM3Tav\nR99L3BiFd7jtPXevGYzB2Ync1PMkbd9D5Qa1MLi6FJyMatIortlt1TkVncyZ0ynk5FhYsWw/d3ax\nHxCcP59NTo7tlpkfF/5JRERtPDxs/TkpKQOAc+fSWL3yEPc9UHKKuyh04dBR3GsE45r/Xvp37Ujy\n5ii7NMlbogi492Lfb0heekZB3zfa9f0wMk/YPuvdagQX5Pft2IasmJJfKDjatd733WsWfsnr3ymC\nzFO2z7uLx50zP/3GjiG26aMJ66MI7t4JgKrNCrdfXMrO/QR0sT0xtdp9nUncuKOgfKXlP/bJAjY9\nMIzNvUfw18SZJO/Yx75JH5XYrmugr0P7PlD646fFjdQL+Dr/76+BB0tLpJSqAdwHfHG5Gy4397wp\npTpjGzC11VpnKqXWY3vU6XfAw8AhYJHWWiulriZE8UH0xdcZV1JMYFUpV+nEP2G1cOHbaXiNm4sy\nGMnavAjLueO4dX4YgOz1P+Aa3g23dj3RljzIyeb8Z2XOki3hyAdf0GLmRNtjd5euJePkGar1vhuA\nc4tWkvT7LnzbtaTtwjm2R/ZO+QQAbbGWmhcgsFsHajxkm7KRuH47sUvXXnGd4z+bRc233gODgbRV\nK8iJicaru+0+udQVSzB6+VBn5lwMlSqBVePdqy8nhz2NNSuT+M9mEzx+IsrJidy4WGJnvl1mqMPv\nf0nYrAlgMBC7dB0ZJ89QvXc3AM4uWkXS77vwaxdG2x8/sv1UwpSPC+pfWl6ARi8MxODiRNhs27ec\nafuOcPjdzznz42+EThxOm/9+SGE/vbxBdlHjx/1EVNQpUlMyubPTDEaM7MxD/cKueDtX65rHt1g5\nOXMuoe9PQhkMJCxfTVb0aQJ72vah+CW/krptB95twwlbMBer2cyx6bZnJzl7e9Fo6muAbXqMafUG\nUqN2AXDi3TnUGTUYZTRizcnhxHsflx7/Ct107W+1EvPRpzR8ZwoYDSStWEl2dAz+D/QAIPGX5aRt\n/4OqbVrR7Nsv838qoPCnPupPmoCTpyfakkfMrE+wZNgOGzUGP4tbzepoqyYnIYFTM+bYhb0efe/c\nL+sInTiMNvM/wJqXx4G3bHnyLmRwesFSWv3f26AvHt5KDuadnAxM+Fd3Bg+aj9Wi6f1QC0JCAvhu\nge0E8dHHIjhxPJFXX1mMQtEgxJ/JUwung44e+QOpqVk4OxmZ+EZ3PD3drv59KcVNt+9ZrJyYMY+m\nH0wCg4GEZWvIij5NUC9b349b/CspW3fiHRlBy+8+w5pt5th022DA2duL0GmvAra+n7hqI6lRtp/I\nqT30KdxrVQetMcclcPz9T/9RvS+6lvW/1vt+g+GPU6lWNbTWZMclcvidzwFKPe6c+fE3POrWoP1P\ns7Fk53Bg8ieF5ZrxCgemzsVsSuHonPncNmUMDYY+yoUjJzm7xHYsN235E792LUvNXxb/O1rRePwA\nAIzurkT+9wPMSakO6vssu6o3TVxLgVrr2Py/4yh7HvtM4CWgShnrS1BaX4MLg9eAUqoXMEhr/YBS\nqjGwG7gX2INtemIM8LLWOip/2uRcoB22AeguYJ7W+v0ytr0eOKS1fk4p1QH4VGt9m1JqEpB+MV/+\nAHK81vp+pdTbgJvWekz+Ou/8WDuBLlrrY0qpykB1rfWRS1SvfDSygyQMaOaw2AFf7WNt274Oi99l\n648cur+zw+I3XrqeNZH9HBa/67aFWJjvsPhGHnd4/K2dyn5wzfXUdqPtMdKOqn95aPsdXXo4LH7E\n2uXS927x+Fs69rp0wuuk/abFDu37gMP2/67bFrKqzcMOiQ3QbfsPDu/72C42lHvPB40u1+fHn8TP\nHgoUnT43T2tdcC+UUmo1EFQiI0wAvtZaexVJm6K1trvvTSl1P9BDaz286BjkUuUqN1fegF+B55RS\nB4HD2KZOorVOyV/WRGsdlb/sD6XUEmAvEA/8BaXMD7GXrZT6E3AGBlxGeaYAHyul9mF75OqbWuv/\nKaWeARYopS7eDTsRuNTgTQghhBBCCFFB5A/Uynxwhdb6rrLWKaXilVLBWutYpVQwUNrDHNoDPZVS\nPbDNNvRUSn2rtX7i78pVbgZvWmsztoePlLautFHo+1rrSUqpSsBGbFfE/s63F6+iFdnupGKv1wPr\n8/9Ox3ZPW/GyrAVaFV8uhBBCCCGEEMASbOOIt/P/X1w8gdb6VeBVsJv997cDNyhHg7erME8p1QTb\nSPVrrfUuRxdICCGEEEIIcWnl5M6t6+Vt4Ael1EDgFLbnd6CUqgZ8obW+6nn9FXbwprUu8cNWSqmP\nsV2CLGqW1rrzDSmUEEIIIYQQ4pamtU6ilN/b01qfA0oM3IrO/ruUCjt4K43W+vlLpxJCCCGEEEKI\niuemGrwJIYQQQgghyj+rowtQQZW3H+kWQgghhBBCCFEKGbwJIYQQQgghRAUggzchhBBCCCGEqADk\nnjchhBBCCCHEDWW9uX8q4LqRK29CCCGEEEIIUQEofZP/Ql45IY0shBBCCCFuBOXoAlyOIQGjy/X5\n8byEWeWyHWXapLjuvm/+jMNiP7Ln3yy4/VmHxX9s7/9xok/x342/cer9bwsrWj3msPjd/1jA5g4P\nOix+h80/Ozz+2rZ9HRK7y9YfAdjfvcRvhN4QTVesYVlEf4fEBrhvx38d1vZga3/Lv90cFt/4TDZb\nO/V0WPy2G5c4vO9t6djLYfHbb1qMhfkOi2/kcYfVv/2mxQDs6FLid4hviIi1y/mh+dMOiQ3w8J6v\nHd73K4pyPXIrx2TapBBCCCGEEEJUADJ4E0IIIYQQQogKQKZNCiGEEEIIIW4oedrk1ZErb0IIIYQQ\nQghRAcjgTQghhBBCCCEqAJk2KYQQQgghhLih5NfKro5ceRNCCCGEEEKICkAGb0IIIYQQQghRAci0\nSSGEEEIIIcQNZXV0ASooufImhBBCCCGEEBWAXHkTN1zYy48T3OF2LNk5RL3+BSmHTpVIU7m6H23f\nGYZLVQ9SDkaz/bV5WPMsOFepROu3BuJRIwBLTi5/vPElacfOAnD/8vfJzcxCWzTaYmFV/zcvWZaW\nL/enWkdbWba9/iUpB0uWJeTRrjR6ohtVagXyU6eR5KSmA1ClThCRkwfiHVqbvR/9j0Nf/3rVbeIe\n1gbfAWNQBgPnV/9C2qJv7dZ7dLqbqg8+jlIKa1YmpnnvkxN97Kpihb7wNP7tW2DJzuGvNz/l/OHo\nkuWp5k+LqaNwrurB+UMn2fOvj9F5Fqrd2566T/VEKcjLzGb/219y4WgMlWsH02LaqIL8laoFcHTe\njyW269UmjHqjB6EMBuKXruLMt/8rkabe6EF4tw3Hmm3myLTZZBw5UbjSYKDFF++Tk5jEgZen2uWr\n/mgv6o54lm33PUle2oVyFRvAJ7IFIWOeRRkNxC5Zw6lvfi6RJmTsAHzbhWHNzuHA5DmkHzn5t3k9\nGtSm0UtDMFZyIzs2kf1vzMKSmVVq/KI8wlsR9NzzYDCQ+utyTAu/s1vvUqMm1ce9hFuDBiR8/RVJ\nPy2034DBQL3Zn5BnSiJm0oRLxruoyfinCMjf9/ZM+qzMfS9s2khcqnqQdvAku//1CTrPQuAd4TR8\nrh/aakVbrBz44BtS9hwGoM6j91Kr952AIubntUQvKNkX/0n7N54wHL924eSkpBH1xLgS+Wo+9gAh\no55m073PklvG+1/UpuNuTF/tg8UKfVukM7jtebv1UadcGfFTANWr5gHQrVEmwzukcTLJiXE/+xek\nO5PqxMiOqTzV+tIxvVq3pM6oQSiDkfhlKzk3/6cSaeqMGox3ZAQWs5nj02cW7P9h33+ONSsLbbGi\nLRb+GvKCrb0mvYh7zeoAGD0qp4i55QAAIABJREFUY0nPYO/AMaXHd3D/82odRr3RgyE//tlS6l93\n9GC8I8Oxms0cnTarIH74D/OwZGahrVawWNkz2Fb/WgP749OxDdpqJTcljWPTZpOTlFxq/Ms14dUl\nbFh/BB/fyixZOuwfbeui61H3OsOfwbtdK3ReHtln4zg6fTaW9IxS43u2CqfWiKFgMGBa/htxCxaW\nSFNzxFCqtmmFNdtM9Lsfknn0OACBfR/Er8c9oDWZJ6OJfmcGOjcX9/r1qD12BAYXZ7TFSsysj8k4\ndKTMNgh7+XGCOjTPP+/4nNQyzjsi3xlecN4R9dpc23mHhzttpg2lUpAvysnI4a9XEL14E1VqBxH5\n7vCC/B41Atj3Scn9uihH9H1x85HBm7ihgjvcTpVagSx/4GV8b6tP+MSnWP3E5BLpbh/9MIe/Xcnp\nX7cTPvFp6vbuxPGF62gy6AFSD8WwZexHVKkTTPhrT7J+yLsF+dYNeqdgcHVZZakdyNL7X8H39npE\nTHySVY9PKZHOtPso5zbupsuXr9gtzzmfwc63/0uNLmFX2ArFGAz4DX6B2DfH8P/snXd8U9X7x983\nHUkXtM1oC2Uvochqy16COHCCIiqoDBkiyBBQ9OsE3CAqigx/7q1fvyqggiBToJQpe7ZAZ5IOupI0\nyf39cdO0aVpApKTgefviZXrvc87nnOeeJ/eee0bs5mzqv7aM4u2bKD2T4jYpzUon45mJOIsKCOrY\nFd34maQ/OfZvS+m7dyCkYTQbBk8lvG1z4p4czZaRz3jZtZp4PylfrCRj9RbinhxNgzuu49T3v1Oc\nns22cS9iLyhC1709bZ8aw5aRz1CUmsHmYbNc9ZHot/I9Mv/YTutpD3rUs9m0ceyb+hy2bDMdlr2O\neVMSJSln3CYRXePRNIhhx72PEBbXkubTx7Nn7Ez3+XpDbqU49Qz+wUEe5Q006AhP7IAlM7taH/tM\n26Xf6vGH2TX5RazZOST83ysYNyZTXEFf260jwQ1i2DpkEnXiWtBq5lh2PDzrnGmvmfUIxxZ+Qt6u\nA8Tc2o+Gw+/g5JKvqi+Hqywxjz5GylMzsZuMNH3rPQq2bcF6qvxhxlFQQMb7C6nTrUeVWWjvGIz1\n1Cn8gkPOrVUBfY8OhDSIZt2gaYS3bU7bWaP4c8SzXnbXTLqPk1/8QsaqLbSdNcrd9kxJ+8havwOA\nsOYN6PTKZNbfPZ3QZrE0HHQdmx58Btlup/PbT5K9cZdXnS/a/0Dmij848+0vtHl2kld51QYtkZ3b\nY8kwXpAfHE6YsyqSZfdmE1XHztCPYriuRQnNdaUedvGxFhbd45lnE62dH0ZnuPPpuzCW/q2Kzy+q\nUtFk6jgOTHsWm9HMtUvmkbspiZLU026T8K7xaGLrsev+cYS2aUWTaY+wb/wM9/n9k5/26hgdff51\n9+dGj46q9uG9NsRf02nj2D/1OWxGM+2XvkHO5iRKUsrrH9E1nqDYGHbeN57QNi1p9vgj7B1XXv99\nk//jVf+0L3/g1AdfABBz1600GDGU4/MWVV+OC2DQ4PYMG57Ik094v1y4KGqo7nnbd5Oy+BNwOGk0\n/kFih99F6vufVKnfcPIEjsx4mlKjidaLFpD351YsFdpe3S4JaOrXZ98DDxPSuhUNp0zk0KNTCdBp\nMQy6nX0jxyPbbDR9dhaR/fpg/u13YseNIv2TLziblEzdLgnEjh3F4WlPeusD0T3bEdowml9um0nk\ntc2I/89DrBn+opddu8lDOfLZbxWeO/pw/Nu1NB/an7Mn0tn02ALUEWHc9OMrnFrxJwWpmaweqnyH\nSSqJW1cvIG3tDjrOHFZlOXwS+4Krkn/FtElJ4V9R19pO/es6kvLzZgDMfx0nICwYja6ul11U59ac\nWb0dgJSfNlG/XycA6jStR1bSQQAKUjIIqadDHVnnosoSe11HUn7+UynL3hMEVlOW3EOnKEo3ex23\n5hSQs/8kTrvjovTLUDdvTWnGGexZ6WC3U7RpDSGde3lqHd6Hs0i5eVqP7Mdfa7goLUOfeNJWbAQg\nb98x/MOCUWvDvey0iXFkrt0GQNqKDRj6JChp9h7FXqA8oOX9dQyNIdIrrS6xLcVnsrBkmjyOh7Vu\ngeVMBtb0LGS7HePvm9D27OJhE9mrM9m/rgOgYP8R/EJDCNBGABCo1xLZLYGsn1d7aTadNIqURR9D\nNdsO+1IboE6b5hSfycSSno1st5P9+2b0vRM9bHS9E8n8RdE/u/8o/qHBBGrDz5k2uGEMebsOAJCT\ntAdDX886VUVQy2uwpadRmpmBbLeTv/4Pwrp297Bx5OdhOXIY2W73Su+v0xHauQt5v608r1ZFovrE\nk7ayvO0FVNP2dIlxZK5R2t6Z5RuJ7qu0PUeJ1W3jF6Rx7zEd2rg+efuO4bTakB1OzDsPEt3P07f/\nxP8AebsPYj9b9UuhFpNHcPzdT5HP1QAq8Fd6IA0j7DSIsBPoBze3LmLtkaDzJ6zE1hQNDcNLqV/3\n/N8/oa1bYEnLwJqhtH/Tmo1EVG7/Pbtg/O0PAAoPHMa/Qvu/ELTX9cC0ZkOV53wdf2GtW2BJy3TX\n37hmI5E9O3vq9+xM9q9l9T9yQfWvOMqtClJfcBs4FwmJjahb9++3h+qoqbrnbd+t9CJQrpdar6vS\nLuSalljT0rFlZCLb7eSs3UB4924eNuHdu2JevQaAooOuthep6Et+fqjUgaBSoVKrKTW77sWyjF9w\nMAB+ISHnHPGsf10n93NHzjmeOwzVPHfIMvgHawDwD1Zjyy/C6fBcrWXoEkfRaSPFGd7PCmX4IvZr\nO065dv+rrVy1HRpJkhpLknRYkqRPgH3AB5IkJUuStF+SpBcq2KVIkvSCJEk7JUn6S5Kka1zH9ZIk\nrXbZL5MkKVWSJJ3r3HBJkpIkSdotSdJiSZL8fFPLK48gQwTFWeVfsiVZuQQZPG8SgeGh2AqKkV1f\njsVZuQS7bPKOnCK2fzwAkW2bEByjJThKOScj03fxTAZ8+TxN7+pzAWUJpyizvCwVdS4n/lo9dnP5\nW2O7ORu/SH219mHX30rxrq0XpaXRR2LJKr+5WLJzUFfqgAXUDaO0oMjtf0u2ucpOWoM7+mL8c7fX\n8ZgbupP+259exwP1kVizyzt0VqOZQL1nvmpdJLYKNrZsM2qdYtP0sdGcXPSx1w/DRPbsjM1kpuhY\nSnXV9qk2gLqyfrYZdWV9vdbj2liNOaj12nOmLTp5Bp2rE2Lo1w21oeoHqIoE6HSUGsvf6paajPhr\nz5+ujOhxj5L1wRLkv3ln0+gjKKkQb5asHDSV4q3qtlduE9U3gT7fvUHighnseXEJAIXHTxPR4RoC\n6oaiUgdi6NGBoCitR77/xP/nQtcrEasxh8Jj3lOwqiOr0J/oOuWd4ugwB9kF3reQXWlq7lwWw9iv\nDRw1BnidX3kwhIFtLuzNe6BO61F/m9HkVbdAnRZbtrGCjZlAXblNm/mzuXbpfAy33eiVf1j7OEpz\n8rCcyaha38fxF6jXeuZtNKPWab1sPMtoKreRIe7NF2m/bB5Rt93gka7hmOEkfPcB+gF93KNwtYma\nrHsZUbf0J3fbjqr1dZX0TSYCK7W9AJ2uUtszKd9TJjOZ3/yXdl99TPvvPsdRVMTZZGVU/fS7S4gd\nN4p2X31M7PjRpC37qFofBBkiKKkQ2yVZORf03FFmc+yr36nTtB63/f4WN3w3l92vfe7VFhve1IVT\nv577vuyL2BdcnVy1nTcXLYD3ZFmOAx6XZTkBaAf0kSSpXQU7kyzLnYBFwHTXseeAta603wENASRJ\nag0MBXrIstwBcABeY+SSJI11dRaTlyxZUkPV+/dx8P9WEFgnmBu+fpEW9w0g71Cq+yFy7Yi5rBr6\nLBsenUeLof3Rd2rp49JeejRtOxHW/1ZyPnnPp+WIjG9D7O3XcXjhlx7HJX8/DL3j3SMnl4qI7gmU\n5uVTdPi4x3GVOpAGD95N6rIvq0l5ZWufj4Nz3yV28E0kfPgqfsFBVY6UXUpCO3fFkZeL5djRGtWp\njqx1yay/ezo7ps+n1fghABSmpHPik5/psnAWnd95grNHUt0PYDWJSh1Io4cGc2Lp15c87zbRNtY8\nmsb/Hs5gWPxZJn3v+TLH5oA/jgZxY+tqpileYvY/+gR7R0/h4IwXiB40kLD2cR7ndf17Y1qzsUa0\na0P8/fXok+wZNZUD018kZvBA6rRv4z53aulnJN89GuPq9cQMvqXGy3K5OVfdAWIfGILscGJctf6S\na/uFhhLeoyt/3T+SvUOGo9JoiLz+OgD0tw/k9HtL2XvvQ5x+dymNp0++5PplRHdvS96hU/x8/WRW\n3/MMHWc9gH+Ixn1e5e9HvT4dOb0q6R9r1bbYF9ROrvY1b6myLJe9CrlHkqSxKHWOAdoAe13nylaY\n7gAGuz73BAYByLL8qyRJua7j/YF4YLskSQBBgNdke1mWlwBlvbZaPPha8zQf2p+mg5WRsJz9JwmO\nKn/jGhQVQUl2roe9La+QwLBgJD8VssNJcFQExS4be5GFpGc/cNveuvINCs8o7i/JzgOU6Yxn1u4k\nsm1Tr7K0GNqPZq5ROfP+k4RER1L2TrCizuXEbjZ6TIP01xpw5Hivnwls1Az9hCfJnP04zsKzXuer\no+GQATS4sx8A+QdOoKkwKqExRGLN9pxuUppfQEBYiNv/GoMWSwWbsOYNufY/Y9k++RVK8z2nkum7\nd+DsoZPYcvK9ymEz5niMDKn1WmxGT22rKYfACjaBBi1WUw7avt2I7JFIRNd4VIEB+IUE0/KZKZz5\n/AfUMQY6frTAnWeH/5vPnjEzKM3JqxXa4BrFqahv0GKtrG80o4nSUuY5tT4Sq9GM5O9Xbdri1HR2\nT1HWjAY1iEHXo5OX3ytTajIRoC9/IAjQ6bGbTedIUU5wmzjCunYnNLELUkAgfsHB1J8xi7TXX67S\nvtGQATS4U3nYyj9wgqDoSHL3KOc0UZFYKsVb1W3POyZzdh0iuL5BGanLL+D0j+s4/eM6AFpNGIol\n23Pq0j/xf3UExUYTFGOg86dvuOy1JH70GsmjZ2GrdP0rEhVqJ/Ns+a03s8APQ5jn9KdQdfkto09z\nC7NXSeQWq4gIVjqlG48H0SbKhi7kwjqpNpPZo/6Bep1X3WwmM4EGPXDQZaPFZjK7zim+suflk7Nx\nK6GtW1CwZ7+S0E9FZO9u/DVmavX6Po4/m9Hsmbdei9Vk9rJRG3SUrexS63Vum7L6l+blY96wldDW\nLTm754BHeuOq9bR5/VlO/5/vXuZURU3W3XBzPyK6J7B/ive6aXfepkr6Oh22Sm2v1GRytb2yMuoo\nNZmoE98Ba0Ym9nzlfpe3cTOhca3J+f0PtDdcz+mFiwHIXb/Rq/PWfGh/mrieO3L3n3SNxisvnYKi\nIi/ouaPMpvEdvTj0fysAKDydTVGakTpN6pGzT9nUJbpnO3IPpWLNOfd92RexX9v5Vz8c/wOu9pG3\nIgBJkpqgjKj1l2W5HbAC0FSwK1tM4eD8HVoJ+FiW5Q6uf61kWX7+0hb76uLY12tYNfRZVg19lrQ/\ndtL4NmUTBO21zSgtLMFi8n7Qz95+iNgBynSwxrf3JP0PZapEQFgwKn9lmkHTwX0w7jyMvciCX1Cg\ne066X1Ag0d3i3LtQVuTo12v59Z7n+PWe50hbu5PGtylrfbTtmlJaUHVZahrrsUMExMTib4gBf39C\nevanaPsmDxs/XRRRM18i+60XKc04XU1OVXPq29VsHjaLzcNmkbUumfq3KOvpwts2x15YjNXs/aBp\nTt5PdD9lTUr9W3qTvUGZEqOJ0tLxtansee5dik9leqWLubE76au8p0wCFBw6SlCDGNQxBiR/f/TX\n9yRns+ebypxNSRhu6gtAWFxLHIVFlJpzSV38GdsHP0zykLEcfn4e+Tv2cmT2AopPpJJ02wiSh4wl\nechYrEYzu0dN83p486U2QMHBYwQ3iEHj0jdc3wPTxu0eNqaNyUTfrOjXiWuBo6gYmznvnGkDIlzr\nPSWJxiPvJu0H7zVBlSk5cojAevUJiIpG8venbp/rKNha9TWrTPZHH3DkgXs5OmIYZ16ZQ9Ge3dV2\n3ABSv13NpmFPsWnYU0rbG1ix7ZVU0/YOEN1faXuxt/Yia30yAMGxUW6bOq0aowr0d+/sGOjygyZK\nS3S/RNJ+9azPP/F/dRQdP8WmW0azZfAEtgyegNVoZvuImefsuAG0rWcjNdefM3n+2Bzwy8EQrmvh\nuUOosVDlnpW1Nz0QpwzhQeUPaysPhDAw7sLfvBceOoomth7qmCgkf390/XuRu9lzdDxnUxL6G5WO\ndmibVjiKiik156LSqFEFKetyVBo14YkdKDlxyp0uPL4DllNnvB7IK+Lz+Dt0lKDYCvr9e5GzqZL+\n5iQMN5XVvyV2l75Ko8bPo/4dKT6hTJPVxMa402t7daHklPc9x9fUVN3DO3ek/v2DOThrLk6rrVr9\nokNH0NSvR2C00vYi+/Umb4vn9MK8P7ehHdAfgJDWrXAUFVGak4sty0hom2tQqdUAhHXqgOWUcv8r\nNZsJa3+tcrxjeyxpnr4/9vUaVg99ltWVnjsiz/nccdDjuSPtj50AFGfmENVFGXFUR9YhrHGM+6Ux\nQMObu3Lql/MvZfBF7AuuTq72kbcy6qB05PIlSYoCbgbWnSfNZuAe4FVJkm4AyiZIrwF+lCTpTVmW\nsyVJigTCZFm+8EUP/2IyNu4hpmc7bln+GnaL1WMUrdfCqWx/4UMsxjz2LPiGbq89wrWPDibv0ClO\n/KAshK/TJIYuc8YgyzJnj6eR9Nz/AaCJrEvPN5Wd4CR/P1JXbiXzz7/OWZb0jXuJ6dWOW1e8isNi\nY9sz5WXp8+5Ukp7/kBJjHi3vv57WI29Go63Lzd+9SMamv0h6/kM02jrc+NVzBIQEITtlWg0fwIo7\nn8ZeZPl7TnE6MC17k+hn5yOp/ChYs5zS0ycJu+FOAApW/Y+Ie0aiCquDbqxrVq/DQdrM0X9PBzBu\n3oW+Rwf6/LAAh8XK3hcXu8/FL5jJvjlLsZpyObzwSzrMnUSLR+7h7OEUzvyoLGZv/vBgAuuGEvfE\nKABku5M/H1K2ivfTqNF1vpb9Ly2rWtzh5Pj8pbSd/xyo/Mha8TvFJ08TfYeyhibzx9/I3bKDiG7x\nxH/9Pk6LlaMvvf2361jrtAHZ4eTIvGV0WPAfJJWK9OVrKTp5hnqDlDUk6T+swvznTrTdO9Ht24U4\nrFYOznnvnGkBogb0JPaumwAwrttGxvK15y+M00nGondoNOdVJD8Vuat+wXoqlYiBtwKQu3I5/hER\nNH17EargYHDKaO+8i2PjRuEsvvh1Ftmbd6Pv0YG+/3tTaXsvlLe9xLdmsnf2EqymPA6+8yWdXppE\nq0eGcPZwqntELbp/Z2IH9sJpt+O0lrJz1jvu9PGvTSGgbiiy3cG+Vz/EXuhZzn/if4C4F6YQ3imO\ngPAwuv+4mJPLvibj5wvwdRX4q+DpATmM+cqAU4ZB7QppoS/lq52hANzbqZBVh0L4alco/ipQ+8vM\nu8OEMtEDim0Sf57U8PxN1XeWvHA4OblgMa3feB5JpSJ75e+UpJwm6nal7WT99Ct5W5OJ6BZPxy8X\n47RaOfay0v4DIsJpNfcpQNk8wvT7evKSdrqz1vbvhen3qjcqqajvy/jD4eTEm0uIm/c8qFRkr1hD\nScppou+4yaX/q6LfNYFOXyn6x15+x13/1i/NctffuHoDeUnKy8RG4x4kqGF9kGWsmdkcf+Of7TQJ\nMH3a9yQlpZKXW8x1vd9k4qS+3DXkH+xoXEN1bzp1HKqAAOLmK1sIFO4/UvVOm04np95ZRMtX54Cf\nCvMvq7CknEJ/20AAjD+vJH/bdup2SaTtZx+4firgTQCKDh0md/0mWi9+GxwOio+dwLj8FwBS571N\ng4njkPz8cNpKSZ33jre2i7LnjoHLX8dusbL92fJ7VK+F09j+wv9hMeaxd8E3dH1tAm0fvYu8Q6mc\ndD13HFjyI51nj+GG7+YgSRJ7F3zj3tXaLyiQqK5t2TH7o/NeCp/EvuCqRJLlq3PQUpKkxsByWZbb\nuv7+COgOnAbygZ9kWf5IkqQUIEGWZZMkSQnAG7Is95UkyQB8CUQBW4BbgcayLFslSRoKzEIZuSwF\nHq0wPbMqrk4nXyBftx/hM+2hez7iy3YjfaZ/394POTG46u3WLwdN/7uZXxLv85n+zdu/ZFPPO32m\n33PT/3yuv7bb3T7R7rdF+Z29/Tf394l+3C9rWJFwv0+0AW5J/sJnvgfF/46PNOc3rCH8RljY0vt2\nn+l32/CTz2Nvc687fKbfY+OPOPjcZ/p+DPNZ/Xts/BGA5H4DfaKfsHYl37R/yCfaAPfs+djnsY8y\nS6zWMyxycq1+Pv48561a6cerduRNluUUoG2Fv0dUY9e4wudkoK/rz3zgRlmW7ZIkdQMSZVm2uuy+\nBi79KnWBQCAQCAQCgUAgqIartvN2CWgIfOP6fTgbMMbH5REIBAKBQCAQCAT/YkTnrRpkWT4K/IOJ\n5gKBQCAQCAQCgaAqrtKVWzXO1b7bpEAgEAgEAoFAIBBcFYjOm0AgEAgEAoFAIBBcAYhpkwKBQCAQ\nCAQCgeCycnX81PjlR4y8CQQCgUAgEAgEAsEVgOi8CQQCgUAgEAgEAsEVgJg2KRAIBAKBQCAQCC4r\nTrHd5EUhRt4EAoFAIBAIBAKB4ApAdN4EAoFAIBAIBAKB4ApAksWQ5eVAOFkgEAgEAoFAcDmQfF2A\nC+Ge8Mdq9fPxN3lv10o/ijVvghrH+HCcz7T1y/azttvdPtPvt+U7Dt3a12f61yxfx5quQ3ym33/r\ntzj43Gf6fgzzuf6W3rf7RLvbhp8AfFb/2uD75H4DfaafsHaliL1/uf7mXnf4TL/Hxh99GvuAz+69\n/bZ8x6rOQ32iDXBD0tc+j/0rhVrdc6vFiGmTAoFAIBAIBAKBQHAFIDpvAoFAIBAIBAKBQHAFIKZN\nCgQCgUAgEAgEgsuKU8ybvCjEyJtAIBAIBAKBQCAQXAGIzptAIBAIBAKBQCAQXAGIaZMCgUAgEAgE\nAoHgsiKL/SYvCjHyJhAIBAKBQCAQCARXAKLzJhAIBAKBQCAQCARXAGLapEAgEAgEAoFAILisiN0m\nLw4x8iYQCAQCgUAgEAgEVwBi5E1QKwiI60nofU8iqfwo2fg9Jb8s8zgf2OE6Qu6cBE4Z2Wmn8KtX\nsR/beUF5R3btQIspI5H8VGT8tIbUT//nZdNi6ii03TvitNg4MHshhUdOnjNtaPNGtJo5Fr9gDZYM\nI/ufewtHcQmaaD1dvlpAcWr6ecsV0qkzhrETkVR+5K1aQc53X3jWObYhMVOeQN2sBaZPPiDnh6/d\n51QhoUQ/NgN1wyaATMZbr2I5dKDa+recOhJJpSK9mvq3nDYSbbdOOKxWDs5+l4LDJ8+ZtunYoeh6\nJ4JTxpabz4HZ72Iz5RJ1Y08aDbujUu4RQO55/VGRp2f9xPp1R4jUhvDT8kf+VtpLQU3oh3fuROPH\nHkZS+ZG1YhXpn3/vZdP4sTFEdE3AYbVy/OUFFB05AUDHr5fiLClBdjiRHQ7+Gvs4AMHNGtP08Qmu\ndpjNsdnzcBSX/OOyXo3+r5MYT8OJ40ClwrTyNzK//NbLpsHEcdTtkojTYiXltfkUHz0OgGHwHehv\nuREkCeOKX8n+/kcA6o18gPDuXUF2UpqXT8qr8yk157jzq4nYa/LwEOrdfj2leWcBOL7oC8xbdhHZ\nuR3NJgxD5e+P026/aD9djdfe1/rhnTvSdPIYUKnIWr6atCpiv8nkMUR0jcdptXL0pbfcsR//zRIc\nxSXITic4nOwZo8R+4wkjiOieiGy3Y0nL5OjLb+MoLPrHZa2J+v+Te/A1T09A1z0eW24+ScOnue31\n/brRZPQ9hDSuT/LoWRQcOn7OMrR6fAT67h1xWKzse3GRO84qElRPT7s5kwmoG8bZQyf467mFyHYH\nwY3q0fbZR6jTqglHF31F6ufL3Wni/jMefc9O2HLP8ud90z3qfKXFvuDKQYy8CXyPpCJs2NPkLxhP\nzjO3o+k8EL+YZh4mtoPbyH1+MLkv3kXBR88Q9tALF5x9q8cfZs+0uWy7byqGAT0JbhzrcV7brSPB\nDWLYOmQSh155n1YzxyonVKpq014z6xGOL/qcpOGPY1yfRMPh5R2WkjNZbH9oBtsfmlF9oVQqoh6Z\nzJnnnuDEhIeo06cfgQ0aeZg4Cs6Stfhtcv77tVfyqLETKdqRxMlHHuTkpNHYTp+qvv7TR7N76ly2\n3jeVqBt6EFJF/YMaxLBlyCQOvbyYVjPHlNe/mrSpn/1E0vDpJD04A9PmHTQZdTcAWb9tIunBGSQ9\nOIP9L7zjUvh7HTeAQYPbs2TZsL+d7lJxyfVVKppMHcfBGS+w+8FH0fXvTVCjBh4m4V3j0cTWY9f9\n4zjx+rs0meb54LR/8tPsHT3F3XEDaDZzEqcWf8yeEY+Rs3Er9e4bfEmKezX6v+HkCRx58ln2jxxP\nZL8+aCr5v26XBDT167PvgYdJnf82DadMBEDTuBH6W27k4ISp7H/4UcK7dkZdLwaAzK+/48CYRzkw\ndhL5W5KIeeB+jzxrIvYATn+13B1n5i27ALDlnWXP9FfYNvxxDry48KJdddVde1/rq1Q0nTaO/dNf\nYNcDE9Ff34ugxp5tL6JrPEGxMey8bzzHXnuXZo97xv6+yf9hz6ip7o4bQN723ex6aBK7R0ym5HQa\nscPvuiTFrYn6X/Q9GMhc8Qe7p87xyrbo+Cn2zXqdvN0Hz1sEXfcOhDSIZtNdkznw8lLaPDG6SrsW\nE4eR+uVKNt01mdKCIurf0Q8A+9lCDr3xESmf/+yVJn3FenZMftnr+JUY+77AWcv/1VZqZedNkqTG\nkiTtq+bcR5Ik3V2D2islSQqvqfwF3vg3uRZH9mmcpjPgKMWStJLADtd5GlmL3R+lwCD4G9vLFp/J\nxJKejWy3k/37ZvS9Ez1yE+qZAAAgAElEQVTO63onkvnLOgDO7j+Kf2gwgdpw6rRpXm3a4IYx5O1S\nRrpykvZg6Nvlb9VZ0/IabBlplGZlgN3O2Q1rCe3aw8PGkZ+H5ehhcDg8jquCQwiKa0/+qhXKAbsd\nZ1FhtVolFeqQtXozut4JHuf1vRPJXLm+Qv1D3PWvLm3F0R0/jbpK3egBPao8fiEkJDaibt2gi07/\nT7nU+qGtW2BJy8CakYVst2Nas5GInp5tJrJnF4y//QFA4YHD+IeGEKCNOGe+mgb1OLtnPwD5ybuJ\n7NPtkpT3avN/yDUtsaalY8vIRLbbyVm7gfDunr4K794V8+o1ABQddPk/MoKgRg0oPHgYp9UKTicF\ne/YR0Utp284KcaDSaKj8vVQTsVcdhUdSsJmUFyVFJ06Xlepv+Qmuvmvva/2w1i2wpGW6Y9+4ZiOR\nPTt72ET27Ez2r2Wxf+SCYj9v+25wKI+XBfuPoNbrLkl5L3X9z3UfLaO6ezBA3u6D2M9639+KU9Mo\nPnX+GS6gxFn6yg0A5O87in9YiDv/ikQmxJG1diugdMoMfZRy2nLPcvbgcWS7wytN7q6DlFZRPt/H\nPlXfmAVXBbWy8+YLJAWVLMsDZVnO83V5/k2oIqJw5Ga4/3bmZuEXEeVlF9ixPxGzf6bu5EUUfPjM\nBedvzTZV+GxGrY/0OK/Wa7FkmcttjDmo9VrU+shq0xadPKNMGwQM/bqhNpTfOIPqGUj8+HU6vlf9\n6GCAVo/daHT/bTcZCdDqL6g+AVExOM7mETPlSRq/tZToSTOQ1Jpq7S3ZFeqWrdStImp9ZCUbpZ4a\nr+OeaZuOv48ePy4i+sZenFjiPTpouL77BdXn30CgTuvRlmxGk9d1CNRpsWUbK9iYCdSV27SZP5tr\nl87HcNuN7mMlKafcnUBt3x4e7VBQjuLbCv43mQis5P8Ana6S/00E6HSUnEwl7Nq2+NUJQ6VWU7dL\nAgEV/Fx/1IO0++pjtNf3Jf3DTz3yrKnYix1yM50/e4PWTz+Cf1iIV30N13V1farN747/HQTqK7U9\noxm1Tutl43GvMZrKbWSIe/NF2i+bR9RtN1SpEXVLf3K37bj0hb8EnOs+Wm5T9T34UqExRHjkb8k2\nozF4liGgbhj2gmJkV4fYkpWDplI5/w6+j32sF114Qa2nVnTeJEmaJknSPte/Ka7DfpIkLZUkab8k\nSaskSfJ6FSRJUqIkSX9KkrRHkqQkSZLCqsl/hCRJP0qStE6SpKOSJD3nOt5YkqTDkiR9AuwDGkiS\nlCJJks51/kFJkva68v/UdUwvSdL3kiRtd/2rcnhBkqSxkiQlS5KUvGTJkkvgJYFt1xpyn7mNswsn\nKevffMjBue8SO/gmEj58Fb/gIGTXPHOrOZfNd45n+0MzOPbWxwCogoIvqbbk54emWUtyV/5IyuQx\nOK0laIfcf/6El5gT73/J5jseIfO3jcTefZPHuTpxzXFabJe9TFcr+x99gr2jp3BwxgtEDxpIWPs4\nAI698jbRgwZy7dL5+AUH4SwV6x0uNZZTp8n86ltavjaHFq/Opvj4CXCWd4rS/u8T9t77EObf12G4\n87YaL0/af1fx510TSXpgBlZzHi0ee9DjfEiTWJo96rtph4JLy1+PPsmeUVM5MP1FYgYPpE77Nh7n\nYx8YguxwYly13kclFFwuROwLyvB5502SpHhgJNAF6AqMQdnhoAXwrizLcUAecFeldIHA18BkWZbb\nA9cD51qp39mVRztgiCRJZePQLYD3ZFmOk2U5tUL+ccB/gH6u/Ce7Tr0FvCnLcqIrP8+dNVzIsrxE\nluUEWZYTxo4dW5WJwIUy0hbj/lsZicuq1r706A789LFIoRc2u7XiaITaoMVqzPE4bzWa0USVv9lS\n6yOxGs3K279q0hanprN7ymySRz5B1upNlKRlAiCX2t1TPAoOKwvOA+t7rm8AKDUb8deXj7T56/SU\nmo1edlVRajJiNxmxHFHm+hdsXo+mWYtq7TWGCnUzKHXzrH9OJRulnhav495pATJ/24ThOs8pgFHX\n9yBz9aYLqs+/AZvJ7NGWAvU6L1/aTGYCDfoKNlpsJrPrnNLu7Hn55GzcSmhr5XpbTqVx8PHn+GvM\nNEy/b8CanlnTVbkiUXxbwf86HbZK/i81mSr5X0epSRkxMP2yioPjJ3N4ykwcBYVYTqd5aeSs+YOI\n3p7v8moi9mw5+UrnUZZJ//F36rRpXm6nj6TdqzOuuHUvVzM2Y6W2p9diNZm9bDzuNXqd26Ys9kvz\n8jFv2Epo65ZuO8PN/YjonsCRF+fVZBX+Eee6j5bbVH0P/ic0uPsGun72Kl0/exWrKc8jf41BiyXb\nswyl+QX4hwUj+SmPxZqoSCyVyvl3ELF/YciyXKv/1VZ83nkDegI/yLJcJMtyIfBfoBdwUpbl3S6b\nHUDjSulaARmyLG8HkGX5rCzL53rtvFqWZbMsyyUujZ6u46myLG+twr4f8K0syyZX/mVRfD2wUJKk\n3cBPQB1JkkL/Rn0FlbCn7MMvqiEqXX3wC0DTeSC2PX942KgMDd2f/Ru2Bv9A5MILm90a3CAGTYwB\nyd8fw/U9MG3c7nHetDGZ6Jv7AlAnrgWOomJs5jwKDh6rNm1ARB0lsSTReOTdpP2wWjkeXgdUri//\negYAbJne8/ItRw4TWC+WgKho8PenTu9+FG7784Lq48jLodSU7e4UhrSPx3oqtVr7inWIGtAD08Zk\nj/PGjclED+zjrr+9sOr6V0wb1CDanV7fO8Fzd01JwtC/O1mrN19Qff4NFB46iia2HuqYKCR/f3T9\ne5G7eZuHTc6mJPQ3Kms9Q9u0wlFUTKk5F5VGjSpImXig0qgJT+xAyQllgxr/8LpKYkki9sF7yPzx\n18tXqSuIokNH0NSvR2C04v/Ifr3J2+L5tZ/35za0A/oDENK6FY6iIkpzlHUkZX4ONOgJ79WdnDXr\nAFDXr+dOH96jKyWnznjkWROxV3Gtjr5PZ/caF//QYNrPn8Wx9z4nf+/hf+QvwaWj4NBRgmJjULuu\npb5/L3I2JXnY5GxOwnBTWey3xF5Y5I59P4/Y70jxCeW7PrxzR+rfP5iDs+bitNbeWQ7nuo+WUd09\n+J9w+rtVbB3+BFuHP0H2+u3UG9gbgLpty+OsMjk7DhDVT5l2WO+WPhjXJ3vZXCgi9gU1SW3+qYCK\n83UdwD9dQVu5C13299/dW1cFdJVl2fIPyyMow+mg8Iu51J2yBEmlwrL5Bxzpx9H0uQcAy/pvUHca\ngKbb7eCwI5daOLt4+nkyLefIvGV0WPAfZdvd5WspOnmGeoOUtQPpP6zC/OdOtN070e3bhcqWvXPe\nA0B2OKtMCxA1oCexdylTBY3rtpGxfC0A4R1a02TMvco0StdbG2dhQZV1znr/LRq8+DqoVOSv/gXb\nqRTCb74dgLxffsIvPJLGCxajCg4Gp0zEHXdz8pGHcJYUk/X+28RM/w+Svz+lmRlkLHil2voffuMD\nOr71NKhUZCz/g6KTZ6g/aAAAaT+sxvznTnTdO9Ltu3eUbZrnvOuuf1VpAZpPGEZww3rIsowl08jh\nV5e69cI7tsaabcKSnn3B16gy06d9T1JSKnm5xVzX+00mTurLXUM6XnR+Ptd3ODm5YDGt33geSaUi\ne+XvlKScJup2pQ1l/fQreVuTiegWT8cvF+O0Wjn28tsABESE02ruU4AyZdb0+3rykpSfydBd35vo\nQQMByNmwBePK3/9Brcu56vzvdHLqnUW0fHUO+Kkw/7IKS8op9LcpvjP+vJL8bdup2yWRtp994Pqp\ngDfdyZs9/zT+deogO+yceus9HEXKbSN2zEg0DeojO2Vs2dmkvun51rtGYm/iA4S1aIyMjCXDyKFX\nFitlGXITwbHRNBk1hCajhrhKoObvLn256q69r/UdTk68uYS4ec+DSkX2ijWUpJwm+g4l9jN//JXc\nLTuI6JpAp6/ex2mxcuxlZafegIhwWr80C1Bi37h6A3lJyg6DTaeOQxUQQNx8ZW114f4jHJ+36OLL\n6eJS17+6++iF3IMB4l6YQninOALCw+j+42JOLvuajJ/XouvTmZbTRhMYXof282ZRcCSFPVXsSglg\n2rwLXfeO9PzvWzgsNvbPLvdTxzef5MDcxVhNuRx953PazZ1M8/FDOXskhTM/Kff1QG1dun70Mv4h\nQciyTKN7B7L53sdxFJVw7ezHiIxvQ0B4GL1/fo/jS5WfIPF97GMALv4mLKjVSL4eFpQkqRPwEcqU\nSQnYBjwAfCrLcluXzXQgVJbl5yVJ+ghYjjLqdQgYKsvydtd6t5KqRt8kSRoBvAS0RZlauQ0YBZiA\n5WU6LtsUIAGIAn4AusmybJYkKVKW5RxJkr4Adsmy/LrLvkOFEcLqqL1jr5cB48NxPtPWL9vP2m41\ntjnpeem35TsO3drXZ/rXLF/Hmq5Dzm9YQ/Tf+i0OPveZvh/DfK6/pfftPtHutuEnAJ/Vvzb4Prnf\nQJ/pJ6xdKWLvX66/uVfl37y8fPTY+KNPYx/w2b2335bvWNV5qE+0AW5I+trnsY/yPF3ruSVsYq1+\nPl5RsLBW+tHn0yZlWd6J0nlLQulULeMCfhhKlmUbMBR4R5KkPcBqoPot95T8vwf2At/LsnzO8XBZ\nlvcDc4H1rvznu049BiS4NjI5AIw/X1kFAoFAIBAIBAKB4J9SK6ZNyrI8n/LOURltK5x/o8LnERU+\nb0cZsbsQzsiyfGcl3ZSKOq5jjSt8/hj4uNJ5E0qnUSAQCAQCgUAgEAguG7Wi8yYQCAQCgUAgEAj+\nPfh66daVylXVeZMk6Ubg1UqHT8qyPAhlaqZAIBAIBAKBQCAQXJFcVZ03WZZ/A37zdTkEAoFAIBAI\nBAKB4FJzVXXeBAKBQCAQCAQCQe3H6esCXKH4fLdJgUAgEAgEAoFAIBCcH9F5EwgEAoFAIBAIBIIr\nADFtUiAQCAQCgUAgEFxWnGK3yYtCjLwJBAKBQCAQCAQCwRWA6LwJBAKBQCAQCAQCwRWAJH4g77Ig\nnCwQCAQCgUAguBxIvi7AhXBDyIRa/Xy8qui9WulHseZNUONs6DHIZ9q9N//A6i73+Ex/wLZvWNV5\nqM/0b0j6mk097/SZfs9N/+On+GE+0799x+c+11/X/S6faPf983sA1na72yf6/bZ85/PY85XvQfH/\nioT7faZ/S/IXJPcb6DP9hLUrfR57a7oO8Zl+/63f+tz/vox9AAef+0Tfj2FIUoBPtAFkudTnsX+l\nIIuxjYtCTJsUCAQCgUAgEAgEgisA0XkTCAQCgUAgEAgEgisAMW1SIBAIBAKBQCAQXFacvi7AFYoY\neRMIBAKBQCAQCASCKwDReRMIBAKBQCAQCASCKwAxbVIgEAgEAoFAIBBcVpxit8mLQoy8CQQCgUAg\nEAgEAsEVgOi8CQQCgUAgEAgEAsEVgJg2KRAIBAKBQCAQCC4rTllMm7wYROdNcFmJ6NKRZlNGI6lU\nZP78O6c/+6+XTbMpo4nsFo/DYuXI3HcoPHICKTCA9u/ORRXgj+Tvh+mPLaR+8BUAjcbch7ZnZ5Bl\nSnPzOTz3bWymXI88W00bia57RxwWK/tnv0fB4ZNeupoYPe3mTCGgbhhnD51g3/PvINsd1aZXBQaQ\n8P4LqAL9kfz8yFq7lRNLvwUgtEUjWj8xBoCO82ZiMeagTbwWh8XKvhcXVakfVE9PuzmT3fp/Pbew\nXP/xEehd+hXTN7xvILF39AMZCo6dYv/sRThtpbScNAx9r3gAWr/0JEdeegdHYRHhXTrSdPLDSCoV\nWctXc6YK/zed/DAR3eJxWqwceeltio6cKD+pUtFh2RvYjGYOPDEXgMYTHiKyRyJyqR1LeqZbqzra\nzniQqB7tcVhs7Hp+MfmHUrxsguvpiX95IoF1Q8k7mMLOZ95DtjvQxrem8/xpFKcZAcj4YztHlv5Q\noXwSfT6dQ4kxl6Qpb9Qq/cguHWg+ZRSSn4qMn9dw6tMfqEzzqaPQduuEw2Lj0Jx3KDxyErVByzXP\nPEZgZF2QIf2n1aR9swIA/XXdaDx6KMGN67Pz4ScpOHS8Wr9Hdu1AiykjFf2f1pD66f+8bFpMHYW2\ne0ecFhsHZi+k8IjSzq55egK67vHYcvNJGj7Nbd9s4gPoeiYgl9opScvk4Jx3sRcWe+RZE7FX0d9d\nPnoFqzGH3Y+/qpRp3FD0vRIAaLfgGQ7NWYjNlOtz/wO0mf4ghh4dcFhs7Hn+fc4eTvGyCaqnp+NL\nkwisG0r+wZPsflZpe1F94mk5fgiy04nscHJg3qfk7jkMQJP7b6bBHdcBMmePnWbvC4u98q2TGE/D\nieNApcK08jcyv/zWy6bBxHHU7ZKI02Il5bX5FB9V6hN1953oBt4IskzxyRRSXn0TubSUoKZNaDR1\nIqqgIGxZWZyY+xrO4pJq63+5Y6/r128hqVSkV9PeW04bqVxvq5WDs991t63Irh1oOXWkV9qmY4ei\n650IThlbbj4HZr+LzZSL5OdH66fGE9aqKZK/ioyV62ve982aKr4PDEB2ODn11rsUHTpSpd9rIvb1\n/brRZPQ9hDSuT/LoWedt+xfK07N+Yv26I0RqQ/hp+SOXJM+/Q6tWrfjww2V06tSRp59+hnnz3rwk\n+foy9gVXH2LapODyoVLR/PGx7Ht8NsnDHkN/fU+CG8d6mER060RQbD22D53A0dcW0Xz6OABkWyl7\nH3uWnSOmsfOhaUR06UhYXEsAznz+P3Y+NJWdI6Zh3pxMw5FDPfLUde9IcINoNt/9GAdfWULrmQ9X\nWbwWE4eT+tUKNt/9GPaCIurf3u+c6Z22UnY8+gJbh89k6/CZ6Lp2oG7bFgC0eWocx979HICiM5lo\nE69l012TOfDyUto8Mboa/WGkfrmSTXdNprSgiPp3lOl3IKRBtFd6tT6CRkNvZutDs/jzvulIfiqi\nB3QHwJz0F3/eNx2AktPpNHjgLlCpaDZtHPunv8jO4ZPQX9+LoMr+7xqPpkEMO+59hGOvv0fz6eM9\nztcbcivFqWc8juVt38POBx9j14gp5VrVYOjRnpAG0ay583H2zPmAdrNGVmnX+rF7Of75L6y583FK\nzxbR6M6+7nPmXYdZf/9TrL//Kc+HN6DpfTdRkJJe+/RVKlpMH8Pex+eSdP8UDFW0/chunQiKjWHb\nPRM58uoiWs4YC4DscHD8nY/YPmwKO8c+Sf3BN7nTFp04xb6nXiN/94Fq61ym3+rxh9kzbS7b7puK\nYYC3vrZbR4IbxLB1yCQOvfI+rWaOdZ/LXPEHu6fO8co2N2kvScOmkvTA4xSfyqDRg4M9ztdU7JXR\ncOhAilLSPI6lfPYTW4fPAMC8eQeNRw7xvf8BfQ8ljtcNmsZfc5fRdtaoKu2umXQfJ7/4hXWDplFa\nUOR6MANT0j423vckm4Y9xd4XF9PuGeXlkFofQeOhN7LpwafZMPQJJJWKejd088xUpaLh5AkcefJZ\n9o8cT2S/PmgaNfAwqdslAU39+ux74GFS579NwykTAQjQaTEMup0D4yezf/QEJJUfkf36ANB4+mTO\nLP2QAw9PIHfjn0QPvbva+l/W2FNJAOyeOpet900l6oYehFTR3oMaxLBlyCQOvbyYVjPHuH3Vavro\nKtOmfvYTScOnk/TgDEybd9BklFJfQ/9uqAID2Db8cZIeeoL6gwbUuO9jx40i/ZMvODB2EukffUrs\n2KrbU03FftHxU+yb9Tp5uw9WrXuRDBrcniXLhl3SPP8OOTk5PPbYVN54Y/4ly9OnsS+4KhGdt2qQ\nJKnQ9f96kiR9V+H4l5Ik7ZUkaaokSddIkrRbkqRdkiQ1811prwzCWreg5EwGlvQsZLsd45pNaHt1\n9rDR9exM1q9/AFCw/wj+YSEEaiMAcJZYAJD8/ZD8/cA13O6o8KbXL0jtPl6GvncCGb9sACB/31FX\nnuFe5YtMiCN77VYA0lesQ98n8bzpHSVWjzLJLu3ghvXI3aXc1ALD66AKDLgg/Sy3/noMbv1E0ldW\nrS/5qVCpA5H8VPhpArG6RhzN2/YiO5wuPx4mUK8lrHULLGcysJb5//dNaHt28SxDr85k/7rO7X+/\n0BACXP4P1GuJ7JZA1s+rPdLkbd8NlbSqI7pPPGdWbAQgd98xAkKDUeu8faFLjCNjTRIAp5dvILpv\nQrV5lqExRBLVswOn/vdHrdOv06Y5JWcy3W0/+/dN6Holemr2SiTrV+WN/dn9R/EPVa6zzZznfgvu\nKLZQnHoGtT4SgOLUNEpOVd9ZrahffCYTS3q2S38z+t6V9HsnkvnLugr6we52lrf7IPazhV755iTt\ncbez/P1HUBs8r31Nxp7aEImuRyfSflzjkZejqML3gUaNLPve/wBRfeJJW6m0vbx9xwgIC0ZdhS90\niXFkrtkGwJnlG91tr+y7BsAvSOPxPSf5+eFX4XvAYvSceRByTUusaenYMjKR7XZy1m4gvLvnQ154\n966YVyu+LDp4GP/QEAIiI9z5q9SBoFKhUqspNZsBUMfWp3DvPsVnO3YR0atHtfW/nLEXEafcjsva\ne9bqzeh6e+aj751I5krv613eVrzTetxrNOryzGQZVZDa/X0sl9rdp2rK98gyfsHBSllCQrCZc6r0\nTU3FfnFqGsUX2Pb/DgmJjahbN+iS53uhGI1GkpOTKS0tvWR5+jL2aztyLf+vtiI6b+dBluV0WZbv\nBpAkKRpIlGW5nSzLbwJ3At/JstxRluVLM2fgKkatj8SabXL/bc02ez3oB+q1WLPNlWyUByVUKjp9\nNJ9uyz8ib/seCg4cdds1HjuMLv9diuGGPqQu+9JL15JVrmvJNqMpy9NFQN0w7AXF7gdRS3aO2+ac\n6VUSXT99jT6/LsOc9Bdn9x8DoOjEafcNsk6rJvjXCfVMbziPfla5vsYQgSXL7JXeaswl5bPl9P7p\nPfqsXIy9sATztr1UJuqW68ndupPAyv43VvBtma90kdgq2Niyzah1ik3Tx0ZzctHHXp3jqrSqQ2OI\npKRCXUqyc9DoIzxsAsNDsRcUuX1R2SayXQv6fvUyXd6eSVjT+u7jbR9/gANvfYnsrL58vtJX6yOx\nZlX0fQ7qSm3f28bsZaOJ1hPaogln9x/l71BV7KkrX3u91qOdVVXGc1Hv1n6Yt3he+5qMvVZTR3B0\n4WdVtsdm4+8FIOrG3qQs+8rn/gfQ6CMoySx/wLZk5aAxeLa9gLphlFZoe0qsl9tE9U2gz3dvkLhg\nBnteXOIqZy4nPltBv+Xv0P/X97AXlmDa9pdHvoE6rWdcm0xe370BOh22bGO5jdFEgE5HqclM5jf/\npd1XH9P+u89xFBVxNnmXUr7UVMJ7KB2RyD69CDToqq//ZYy9yt+v1uyqr7el0r1GrY9E43XcM23T\n8ffR48dFRN/YixNLvgYge+1WnCVWei5fSs8fF5H6+c/ldaoh359+dwmx40bR7quPiR0/mrRlH1EV\nlyP2BefGl7EvuDq5qjpvkiRNkyRpn+vfFNexB10jZXskSfr0HGmbSJK0RZKkvyRJmlPheGNJkva5\n/lwF1HeNtj0HTAEekSSp+lf9gkuH08nOEdPYOuhhwtq0ILhJQ/eplCWfs23wGLJXrafeXQMvY5lk\ntj4wk423jaduXDNCmirTYfbPWUSDu28AlNEx2eG45NL+YSEY+iSw8c6JrB84Hr8gNTE39fSykx0O\njKvWV5HDhRPRPYHSvHyKDlf/jiL2wbsvida5yD+UwupbHmPdvbM4+fVvJM5T1mBE9eqINTe/yjU0\nV4u+X5CGuJdmcOytDz1GAGoDjR4ajOxwkPXbxsuip+vRCVtOPgWHvNfPARx/X1kPm/XbBurfdfMl\n0awN/s9al8z6u6ezY/p8Wo0fAijfA1F94vnj9smsuelR/ILU1L+5+hGwv4tfaCjhPbry1/0j2Ttk\nOCqNhsjrlelcKa8tQH/HLbR+/y1UwUEeI06XGl/Hfhkn3v+SzXc8QuZvG4m9+yYA6sQ1R3Y62XTr\nWDYPfpSG9992SbTO5Xv97QM5/d5S9t77EKffXUrj6ZMviaagduKL2BfUXq6aDUskSYoHRgJdAAnY\nJknSduA/QHdZlk2SJEWeI4u3gEWyLH8iSdKj1djcDiyXZbmDS1MCCmVZ9toZQZKkscBYgMWLFzN2\n7NjKJv86rMYc1BXezKoNWmxGs4eNzWj2mHql2HhOB3EUFpO3cx+RXTtSfPKUx7nsVRto+8Yz2HLz\nibldWXdgNeWhidIBygJfjUGLpVKepfkF+IcFuzpaTjSGSLeN1Zhz3vT2wmJyd+xH160DRSdOE5l4\nLYERdQEoOJpKHVX5exKNQYsl+zz6UeX6luxcNFFar/TaztdSnJ5NaV4BAFl/JBHerhUZv24CoN4t\nytqIwy/Md/m2kv/13r61mnI83p4HGrRYTTlo+3YjskciEV3jUQUG4BcSTMtnpnBk9gIADDf3I7J7\nAvsmP0tlGg8ZQKNBygNH3oETBFWoS5Ah0muahy2vEP+wELcvKtrYK0yJy968B9WTfgSGhxLZviXR\nveOJ6tEBVWAA/qFBdJr9SK3QB1fbj6ro+0isldq+t43WbSP5+RH30gyyVm3EtH6bl4/PR1WxZ618\n7Y1mNFFa8s9RxqqIHtgXXY94dk16AYD6d91Evdv7K3nWUOwZ+nVB3zsBXfeOqNSB+IcE0fb5Sex7\n/h2PvLNWbaTdvKfJ2bbLJ/5vNGQADe5U2l7+gRMERUeSu0c5p4mKxJLt2fZK8wsIqND2lFj3ngaV\ns+sQwfUNBNQNQ5vQhpL0bGyu74HMP7YT0a6lh73NZPaMa53O67u31GQi0KAvt9HrKDWZqBPfAWtG\nJvb8swDkbdxMaFxrcn7/A8vpMxyd+R/FX7H1Ce/qOR3PV7Gn8vN8L602VH29NYYK7d0VE5K/PxqP\ne1DVcZD52yY6zJ/FyWXfEH1DT8xbdiM7HJTmniV/7yFCGtWrUd9rb7ie0wuVzSly12+stvNWk7F/\ntTBhwiOMGaOsJT09EY4AACAASURBVB848DYyMjL+cZ61JfZrO+JHui+Oq2nkrSfwgyzLRbIsFwL/\nBRKAb2VZNgHIslz1pHCFHkDZfLtqR+guFFmWl8iynCDLcoLouCkUHDpKUGwMmhgDkr8/+v49MW/a\n7mFj3rSdqJuUL7ywuJbYC4uxmXMJCK+DX6gyv18VGEhEYnuKU5WNCjSxMe702l6dKU49Q8Z/f2Hn\nCOXNrHFDEjE39wagbtsWrjzzvMqXu2M/hn5dAah3S1+MG5KV9BuTq0wfEB6Gf1mZ1AFEdm7n3jwh\na80Wtj4wE1CmQzistvPq5+w4QJRbvw/G9eX69QZ661syTYS3baGshwC0iW0pdOlru7an8QO3A+B0\naRccOkpQgxjUZf6/vic5m5M8y7ApCcNNfd3+dxQWUWrOJXXxZ2wf/DDJQ8Zy+Pl55O/Y6+64hXfp\nSOz9gzjw5EturYqkfLvavclAxrpkYm/pBUBE2+aUFpZgNXn7wpx8gJj+ynrIBrf2JnP9DgDU2rpu\nm/C4pqCSsOUVcnDh16weOInfb5vCjqcWYtp+gJ3PLKoV+gAFB495tH3D9T0xbUr20DRt2k7UTUqH\nu05cC+xF5e2k1VMTKE45w5mvfuZiKDh4jOAGFfV7YNroGXumjclE39zXre8oqrqdViSyawcaDb+D\nvTNfdV/7tO9/ZftDyoYhNRV7x977ko23PcKmQRP56z8LyEne5+64BTeIduer65VIcWqaz/yf+u1q\nNg17ik3DniJrXTL1ByptL7xtc+yFJVir8IU5+QDR/ZW1qLG39iLL9T0QHBvltqnTqjGqQH9K8wu8\nvgd0iXHu74Eyig4dQVO/HoHRUUj+/kT2603elq0eNnl/bkM7QOl0h7RuhaOoiNKcXGxZRkLbXINK\nrazxCuvUAcup0wD4h7viQZKIGX4v2T+t9MjTV7G3zbXbZNn1jhrQA9NGz+tt3JhM9MAK19vVtirH\nSsW0QRXalr53AsWpypovS5aJiIS2AKg0auq2LX+Arinfl5rN/D979x0fRdE/cPwzl94gPaFKR2oI\nhN5F1AcrjyIKKoiKSJOqgqgoIuhPQUSRYn0Ee0Ox0XsNvdcQWkgP6e1ufn/skeRyCSCSXMDv25ev\nF7mbne/s3Mzezs7snk9YM+P18DCyz9p+5heVVd+/kcyZ8yHh4RGEh0dck4EbVJy+L25MN8zM2zUi\nlwDKktnCsZkLaDrjFZSTifNLVpAZdZoq990OQMzPf5G0aTv+7VvR+tsPsWTncPgN44TMNcCPhpNG\ngsmEMpmIX7mBpI3Gga32M4/iWbMa2mIh53w8R/9vrk3YhA07CezQko4/vIc5O5cDU+YUvBc+8wUO\nTJ1HTkIyR99fRLPXR1Hv6YdIOxLF2V9WXnJ7t0A/mrw8DGUyoUyK2BWbSNhg3PMTeltHajxg7Ffq\ngWM4eXrQ6cdZmLNz2T/lw5Ljz15E86nPUm9IX1KPnOSMTfxwu+0v7D9G7IottP9iOtpsIfVwFGd+\nWg5Ao/GDMLka3bvFpzNJ23+Y42/P5fgMo/4xORH723Iyo04Teq9RzvOL/yJ503b82rei1TdzsWTn\ncPSN9y77sdYdPRiTiwtNZxozLxdjlSRu/S5COragx+IZBY8Lv6jtrPHsmrKAnIQUDrz3Fa3eGEGj\noX24cDiaUz+vBqBKjzbUeuBWtNmMOSeP7RPev2z5KkJ8bbZwdMZHNJ/5kvG47iUryYw6TdX7jKW1\n535eStLGHQS0b0nb7z7AnJ3D4akfAFC5+c2E/qcb6ceiifjMOCk9Me9LkjbtILBLG+qPeRIX30o0\ne3si6UdPsmf0lBLjH3nnI1q8O8l4/PmSlWREnaFqb2v8n5aSuHEHAR1a0v67941Hp79e2E+avDoK\n35ZNcPH1ocPieUR99A0xv66kwdgnMLm40GLWS4DxsIPDb80v2K6s+t6l1BvWH6+axgUdvzYtOPLW\nPIfXP0Dchl0EdWxBt59nYs7OsXmkd+tZz7FnynxyElI4OPsrWr4xgobP9CH1cDSnF68GILRHG6r3\n6owlPx9LTh47JhjHxpT9x4lZsYXOi95Am81cOHySUz+upMn4gYXBLRZOzf6QBm++Dk4mEv9YSvbJ\nUwTdbSwxj//1dy5s2Ubltq1puvBj6+PqjUekZxw6TPKa9TSa9x6YzWQeO0H8kj8A8L+lG8H33gVA\n8voNJP5p+zAjm/0vx7538b6h8FkvgslEzJJVZESdKXgK5NmflpG4cQeBHcJp//1s4/H4r39QsO3h\ntz+22xag3tD+eNasitaa7PPxHH5zAQBnvv+LRpOG0vbLGSilOLdkFfVHPFqmdR/9znvUGP40yskJ\nS24e0e/YzjoXrYuy6PuBXdvQYMwTuPpWIuydCaQdOcnuEp5K+XeNG/MDW7dGk5KcSfcuMxk+ohv3\n9wn/x/leqZCQECIjN1OpUiUsFgujRo2kcePmpKWlXXWeDu374oak9A3yA3lKqZbAZ0A7rMsmgaeB\nT4H2WutEpZR/abNvSqlfgG+11guVUs8A/6e19lZK1cJYKtm06L+t20ymlGWTxdwYlXyV1nbs7bDY\nXTb8xLK2Dzosfs8t37K0Td/LJywjt239hvWd7nNY/E7rf+aXVo577PM92xc5PP7qDqX/dEJZ6rbx\nBwBWti/98e1l6ZZN3zu87zmq7sGo/98i+jks/p2RXxJ5Szne/1tMxMrfHd73VrTr47D4PTZ/5/D6\nd2TfBzCzyCHxneiPUi4OiQ2gdZ7D+z7GeXCF18nzqQp9frw+c0GFrMcbZuZNa71DKfUZcHEd2Eda\n6w1KqanAGqWUGdgJDCwli2eBL5VSzwOLy7q8QgghhBBC/FvJPW9X54YZvAForWcAM4q99jnw+RVs\nGwUU/fGVSdbXTwJNi//b+vfkf1hkIYQQQgghhLgiN9IDS4QQQgghhBDihnVDzbxdCaXUi0DxhfDf\naa2nOqI8QgghhBBC/NtoWTZ5Vf51gzfrIE0GakIIIYQQQojriiybFEIIIYQQQojrwL9u5k0IIYQQ\nQgjhWPK0yasjM29CCCGEEEIIcR2QwZsQQgghhBBCXAdk2aQQQgghhBCiXFmUxdFFuC7JzJsQQggh\nhBBCXAdk8CaEEEIIIYQQ1wGltTzppRxIJQshhBBCiPKgHF2AK9HKa0CFPj/envF5haxHuedNlLnf\nIvo5LPadkV+yol0fh8Xvsfk7VrZ/wGHxb9n0PUta9XdY/Lu2L2JD53sdFr/jusUOj/9nm4ccEvuO\nrV8DsLRNX4fEv23rNw7ve46qezDqf23H3g6L32XDT3wbNsBh8R/c/bnD+96ytg86LH7PLd86vP4d\n2fcBlHJxSHyt8zCzyCGxAZzo7/C+L25ssmxSCCGEEEIIIa4DMngTQgghhBBCiOuALJsUQgghhBBC\nlCuN/FTA1ZCZNyGEEEIIIYS4DsjgTQghhBBCCCGuA7JsUgghhBBCCFGuLPJLWldFZt6EEEIIIYQQ\n4joggzchhBBCCCGEuA7IskkhhBBCCCFEubIoedrk1ZDBmyh3jcc9RnDHFpizc9k9eS6ph0/apfGo\nGkT4GyNwrezNhYNR7Hp5DjrfTEjXVjQY0gdtsaDNFg688wXJuw9jcnWh/YKXMbk4o5yciFmxhaPz\nf7DL179dCxqMfhxlMnHulxVEf/GzXZoGYx4noH1LzDk5HJzyAWmHo65o25r97qL+yAGsvX0QeRfS\nbGLWH/U4yslETCkx648eRECHcCzZuRyY8j7pR6Iuua13/Vo0fG4wJlcXtNnC4bcXkHbgGD6N63Hz\n808bmSpVYv03Gf8YwR3DMGfnsmvyPFIPlVz/LacNt9b/SXa+ZNT/RZUb16Hjp5PZOfF9YlZsxT3E\nnxavPYObf2XQmlM/rSTqq7/s8vVtE06dZ58Ck4nYJcs4u8j+M6r97FP4tWuFJSeHo2/MIuPICQBa\nfTsfc2YW2mIBs4XdT4212a5q33upPXwQW+56hPwi9V8RYl/UaOwAAjuEY8nOYe9rH5ba9sNefxaX\nyt6kHopizyvvo/PNVLm9I3UeuweUIj8zmwNvfkTa0VMANJ30NEGdWpKbnMqGh8eXGr/h2IEEdQjH\nnJ3Dvtc+LGjbxeM3f/1ZXCr7kHroBHut8T1vqkrTl5+hUsPaHP3wa6IXLQHALTiAZpOH4epfGdCc\n+WkFp775Ayib/lZncF8Cu7QGiyY3+QIHpnxAbkIyytmZm18YTKWb66J1yScEjqx/v7bh1B31BMpk\n4vyvyzm98Ee7NHVHPYF/+1aYs3M4MnU26UdOoFxdCPtgqnFsc3YiYdUmoj/+GgCv+rWoP34IJldX\ntNnMsbfnk3bwaInxAcKf709oJ6Pvb31pASmHou3SeFULpN2bQ3Gt7E3ywZNsnTgPS74ZF28P2r7x\nNJ6hAShnJw5//gcnF68DoH6/ntS5vxsoxYkfVnN00VK7fB3R/xqOeZxAa3vfP2VOie3dvUoQzV8f\nVdDe902eXXCsu+T2JkXbz6aTE5/ErrFvAhB8SzvqPtUHr1rVyqXufW4Kpd1bQwu2964ezL45P5ZY\n/2XR9wGaTBpS0PY3PjzOLs+/q2HDhnz66Ue0bBnOiy++xDvvzPzHef4dL074hTWrj+Af4MUvS565\nJnlWhL4vbiyybFKUq6COLfCqEcrq3mPYO/Ujmk4YVGK6m0c8TNSXf7C69xjy0jKocW93ABK27mPd\nwy+wvv9E9rw2j+YvPQWAJTePzUNeZ12/CazrN4GgDmH4Nq1nm6nJRMNxT7Br9FQ2PzyakNs64lWr\nuk2SgPbheNSowqY+Izg0bR4Nn3vqirZ1Cw7Av00YWTHxdvvScOyT7B4zlS0Pjya4Zyc8S4jpWaMK\nm/uM4ND0uTR8bnBhzFK2rTfsUaI+/o5tA8YTteBr6g17FICM46eIHPQ82waMZ/fo1wFQToXdPLhj\nGF41Qll131j2vP4xzSY8XmL9Nxr5EFGL/mDVfWPJS82g5n3ditSjotHIh0jYvLfgJW22cGDmItb0\neY71A1/hpj498a5d7ATGZKLOmKfZP+5Vdj46nKBbO+NRq4ZNEr92rfCoXoUdDw/h2FsfUHes7Zfn\nvmcnsXvQaLuTN9fgQHzbhJN9Pq7E/XFobKvADi3wrFGFdfePYt+0BTR+/skS0zUY3o+TX/3GuvtH\nkZeWTvV7bwEg61w8W4a8xoZ+z3H84x9pMmFwwTZnf1vD9menXTa+V41Q1t//LAemLaDx80+UmK7+\n8P5Ef/U76+9/lry0DKpZ4+enpnPo7c84uehXm/TabObwrC/Y+NBYtgyaRI0+t+Fl/ezLor9FL/yF\nrY+MY+tj40nYsJ3agx4AoNq9PQDY8shYdo6cYuRT5AKGQ+vfZKLe2MHsGzuFyP4jCbrV/jjg174l\nHtWrsq3vUI6+9SH1xhkXYXRuHntGvsyOgWPYMWAMfm3D8WnSAIA6QwcQ/cm37Bg4hpMffUXtoY+V\nWoTQTs3xrhnKH3c/R+Rrn9Jq0oAS0zV/ti9HFv7FH3c/R15qBrV7dwWgXt8epJ44x9IHX2L1E9MI\nG/sQJmcnKtWrRp37u7G8/6ss7TOJql1a4F0j2G7/HdH/PGuEsuGBkRycPp9Gz5X8edcf/gjRX//G\nhgdGkp+WQbV7jM87sEP4Jbev2bcXGSfP2ryWceI0u59/m+SdB21eL6u6T4s+z7K+L7Os78ssf/gV\n8rNzOLtyu12+ZdX3Ac5dwbHn70hKSmLkyNG8/faMa5bn39H7v2HM/6j/tcuwAvR9ceNx6OBNKTVE\nKXXFLU4pVUspte8axPVVSg29fEpxrYV0bcXZ342rtSn7juHi44lbgK9dusDWTTi/YgsAZ5asI7Rb\nBADmrJyCNE4e7qALn1R08T3l7ITJ2cnmPYBKjeuRdeY82efi0Pn5xC7bQGCXCJs0QV1ac/73NQCk\n7j+Ks7cXrgG+l922waiBHHt/IZTw5KTMItvFLd9AUJfWtvvapTXn/1hdJKZnQczSttVa4+zlAYCz\ntyc5CUkAWHJy0WZj1sHk6mpXlpCurTjzW5H69/bELbDk+o9ZsRWA00vWEtKtcF9r972dmBXbyElO\nLXgtJyGlYAbPnJlNetQ53IP9bPL0aVSf7LPnyYmJRefnE79iHf6d2tik8e/Uhrg/VwGQfuAIzt5e\nuATY5lOS2iOe4OScz+w+84oQ+6KQLhGc+30tABcu0fYDIpoQu9Jo++d+W0tIV6PuU/YeIT8tw/j3\nvqO4B/sXbJO88xB5qRmXjB/UpXWR+Edx9jHadnH+EU2IXbnZGn8NwV2NNpebnErqweM2M7AAuYkp\nBVfxzZnZZESdxS3IKFtZ9DdzZlbB9k7ubgX/9qpdneRI4+shz9o2KzeqU/C+I+vfp1F9ss7EkH3u\nYvtbT0Bn2/YX2KkNsdb2l7b/iPXzMdqfJSsbMI5tqsixzeY44OVJrvU4UJJq3Vty8tcNACTtPY6L\njyfugZXt0gW3acSZZdsAOPnLeqrd0tIaC5w93Y1Ynm7kXsjAYrZQqXZVEvcex5xtHHvitx+iWg/b\nz9lR/S/mjytr73EF7X01Qdb2HtQlotTt3YL9CezYkrOLV9jklXHyLJmnYuxilFXd22zbtgkZp+PJ\njEm0y7es+j5A8s6D5KWm271+teLj44mMjCQvL++a5fl3RLS+icqVPa5ZfhWh71dklgr+X0XlsMGb\nUspZaz1Xa/2/ssr/Em/7An978KaUcrr6EgkA9yA/ss4XHmSyY5PsTvJdKvuQl5ZRMAjJjku0SRPS\nLYKu379N63fHs/u1+YUbmhSdFr1Bz2VzSdiyl5T9x4vF9ic7rvCLLScuCbegAJs0bnZpEnEL8r/k\ntoGdI8iJTyL9mP0yGCNtgl1+tjEDyI4tkne8kbdbkH+p2x5991PqDX+UDj/Ppd6Ixzjx4aKCdJUa\n16fNopm0WfgOQEE9ArgH+5NVJFZ2XBLuQcXq39e7WP0XpnEP8iO0ewTR3y8vcV8BPKoEUvnmm0jZ\nZ1v/rkEB5BbZn9z4RNwCA+zS2OxzfEJhGg1NZr5G2EfvEHL3bQVp/Du1ITc+kczjJ0stkyNjX+RW\nQt27Bdu2BaPtZxbWfWySXXsBqH5Pd+I37bpszKLcg/1s2pnRr+zj5xeL715C/FJjVAnCp2FtLuw/\nVhDjomvV3wDqDHmYjos/JPT2zpyY/w0AaUejCewcgXIy4V7FmPlxDyncxpH1X1Jfdg0qqf0lFktj\njW0y0fKzGbRf8hkp23aTdsBYHnV81ifUHjqAtj8uoM7wgUTNXVhqGTyC/Wz2Pys2CY9ix15XX29y\ni+x/ZmxyQZpjXy+nUp2q3L18Frd9P5Vdby0Crblw7AxBLRviWtkLJ3dXQjuF4RlqW2eO6n/ZsYX5\nZccl2rVlu/YeV9je3YL8S92+4eiBHH1/4WUv2FxUVnVfVM072nLqz80lxi+Pvi9KVhH6vrjx/KN7\n3pRStYA/ge1AS2A/8BjQCJgBeAMJwECtdYxSajWwC+gEfKWU8gHStdZvK6VaAHMBT+A4MEhrnayU\nagV8Yg1pv5DbtjwDgf9a4zoBXZVS44EHATfgJ631K8B0oK5SahewDPgNGKe1vsuaz/tApNb6M6XU\nSeAboCfwllJqCLAF6I4xCHxCa73uqipQXJXY1ZHEro7EP/xmGg7pw5ZhbxhvWDTr+0/E2duTiLdH\n4123+qUzugZMbq7UGvhfdo58vcxjFVXtv7dzdNZnxK/eQnCP9tw8cSi7Rr4GQOqBo2ztPxrPm6rR\n7utZmFxdsORem6uYjcc9ysH3vi71pMXJw41W/zeK/W9/QX5GVolprtbeYS+Qm5CEi29lmsx8laxT\nZ0g/dIzqj/Zh/5hXrmmsihS7OP9Wjal+T3e2DC7fuJfj5OFGi+ljODzjc8zX+LMv7sTcrzgx9ytu\neuw+qj9wB1EffUvMkpV41apG60/fJPu8sXxZW679lVOH1L/Fwo6BY3Dy9qTJtBfwrF2TzKhTVO19\nOydmf0LC6s0E3tKBBhOGsXfU5DIpQmiHpqQcOsXqJ6fjXSOYLvOeI37HYdKiYjj06W90mfsc5qwc\nUg6fsrlgdC1UpP4X2LEluUkXSDsUhV/LxuUSs7S6z88wZmVMzk5U7RrOnlnflUt5RDmqAH1fVDzX\n4oElDTEGMBuUUp8Aw4DewL1a63ilVF9gKnDx5iZXrXUEgFJqcpF8/geM0FqvUUq9BrwCjAI+BYZr\nrdcqpf7vCsrTEmiutU5SSt0G1AfaAAr4RSnVBXgBaKq1bmEtR7fL5JmotW5pTTsEcNZat1FK9bKW\n89biGyilBgODAebNm8fgwYOLJ/nXuKlPT2rcZ9yzduHACTxC/UnebbznHuJPdlyyTfq8C2m4+Hih\nnExoswX34AC7NABJOw/hWS3YuFpe5Cb1/PRMEiIPENw+zCZ9dnwS7sG2V+Jz4m2XmORY01woSBNA\nTnwSytm5xG09qofiUSWYtguNpukWFECbz99i26AJ5CalWNMGFtnOyM82ZiLuIUViBhl5K2enUret\n0qsrR2ca1zTiVmzi5gn2N1ZnRhv3YzR4+n6C2jcHrPUfEsDF2nQP9ic7vlj9p6QXq//CNL6NatNy\n2nAAXH19CO4YhsVsJnb1dpSzE63+bxRn/9jA+VWRduXJjU/Etcj+uAYFkJOQaJfGLTiQi5+mW1Bg\nQZqLy0LyUi6QuHYz3o0akJ+WgVuVYFp8+m5B+hYfz2T34HHkWevf0bE7LJxurfvjeIQEcPEd92B/\ncuJs24LR9j0L6z7E36a9eNerSdMXnyZy1HTyLlzZUqV2C42HKaQeOG4zE2X0K/v4zsXiZ8dffjmO\ncnIi7M2xxPy1nrjVW21iXHQt+ltx5/9aT4sZE4j66Fu02cLRWZ8XvNdj83dUurkO9Z4y7olzVP1f\n3M/ifTk3vqT2F1AsjW35zOmZpOzYh3+7cDKjThHyn+4cf/djABJWbqTBC8Ns0tfr24Pa/zXum0re\nH4VHSABgXLn3CPEnq9hxNTclHdci++8Z4leQpta9nTn0yW8ApJ+OI+NsPJVqVyVp3wmiflpL1E/G\nsrxmIx4gM9a23OXV/1p++SG5CUlos7G8zz0kEDhs/Ds4wK4t27X34ML2nhOfVOL2wbe0JahLBIEd\nwjG5ueLs5UHTySPYN3k2xfX85rUyr3sw7qlLPhRNTlKqTZ7l0fevhaFDn+Gpp4z78Hr1upuYGPul\np9crR/X960VFXppYkV2LZZOntdYbrP9eCNwONAWWWWe2JgFFp0C+KZ6BUqoy4Ku1XmN96XOgi1LK\n1/r6WuvrX1xBeZZprS+2+tus/+8EdgA3Ywzm/q7iZb74qKDtQK2SNtBaz9daR2itI/7NAzeA6O+W\nsb7/RNb3n0js6kiq9eoMgG/TeuSnZ5GTmGK3TWLkAUJ7tAWg+l2diV1jDAY8q4cUpKnUsBYmV2fy\nLqTh6uuDs7cnACY3F4LaNiP95DmbPNMOHsOzRhXcqwSjnJ0J6dmRhHW2g4z4dZGE9jJOdio1qU9+\neqZxT08p22YcP8W6Xk+ysfcwNvYeRk58IlsHPFcwcANstgu+tSMJ67bZxExYF0nof7oVxDRnlByz\n6LY5Ccn4hjcBwC+iGZmnjS879yrBBQ8ocQ81vjCOf7GEdf0msq7fRM6vjqT6ncXqP8G+/hMiD1Cl\nh7Euv8ZdXYhdY9wEv/Ke0ay8exQr7x5FzIqt7Jv+GbGrjffCXnqK9KizRC36wy4/gLRDR/GoXgU3\n6/4E9ehM0vqtNmmSNmwl+A5joO/duAH56RnkJSZjcnfDycNY329yd8O3dTiZJ6LJPBHNtnsGsP3B\nwWx/cDA58QnsemK0zeDJ0bE3PvICGx95gbg1kVTt1QWAyk3rkZeeWWLbT9p+gJBbjLZf9c4uBW3f\nPSSA8DfHsOeVD0q8r6Y0mx95ns2PPE/cmm1F4he27ZLjt7PG70r8GvuBeHFNXhpCRtRZor/8zeb1\na93fADxqhBZsH9Qlgsxoo5+b3FwxWe+B829jXKw4Nu9bh9c/FLY/94L214nE9bbHgcT12wixtj+f\nJg2sdZGMi28lnC4e21xd8WsdVnBhJjchmcrW44Bvq2ZknbYt17FvVhQ80OLsqh3UurujUT/N6pKX\nnkV2wgWKi9t2kOo9jXudat3TibOrdgCQeT6JkLbGTJObfyV8alUh/Uyc9W8fADxD/anWoxWn/rBd\nvlde/W9Hv2fYNWAkuweNBqDKfy7f3pO37ye4oL13I36t8XnHr4sscftjc75i3d3PsL73cPZOepek\nyH0lDtyAcql7gJr/aWdX51A+ff9amDPnQ8LDIwgPj7ihBm7guL4vbmzXYuat+PqpNGC/1rp9Kekv\nfVf9P1c0fwVM01rPK5rAutyzqHxsB7Lul8gT4OJTM8zIzy38LXEbdhHUsQXdfp6JOTuHPa8WfjSt\nZz3HninzyUlI4eDsr2j5xggaPtOH1MPRnF68GoDQHm2o3qszlvx8LDl57JhgfGm6BfoS9uozKJMJ\nZVKcW7aZuPU7bWIbj9T/mPBZL4LJRMySVWREnaFa754AnP1pGYkbdxDYIZz23882Htv/+geX3PZK\nHHnnI1q8O8l45PmSlWREnaFqb+O+jXM/LSVx4w4COrSk/XfvG49Lf31OQcyStgU4NG0u9Uc/jnJy\nwpKbx+HpRj36ht1MzUd7o/PzC5Y25qUUzhDErd9FcMcWdF88w/pTDYX132bWeHZPWUBOQgqH3rPW\n/9A+XDgczemfV19yH/1aNKD6XZ1JPXqKzl8ay1gPf1DsmofZwomZ82nyzmQwmYj7bQVZJ08Teu8d\nAJxf/CfJm7bj1y6Cll/PxZKdw7Fpxufr4udLozcmAMYsT/yytaRstf18L8mRsa3iN+wksEMLuvw4\nC3N2DnunzC14r9XM59k3dT45Cckcnv0lYVNHUn9IX9KOnOTML8aN7HWfvB/Xyt40ft5YxKDNZjYN\neBGAsCkjQ+kULgAAIABJREFU8GvVGFdfH7r9+gFHF3xvFz9hw04CO4TT6cdZmLNz2T/lw4L3wme+\nwIGp88hJSObo7EU0n/os9Yb0JfXISc78shIA14DKtPtsGs5eHmituemhXmx4aCw+9WpStVcX0o5G\nF1zpPzbnK4Ay6W/1hvbHs2ZVtNZkn4/n8JsLjPL5V6bFu5NAW+xmtx1e/2YLx2YuoOmMV1BOJs4v\nWUFm1Gmq3Hc7ADE//0XSpu34t29F628/xJKdw+E3Zlvr3Y+Gk0aCyYQymYhfuYGkjcZJ9ZE351D3\n2SdQTiYsuXkcfWtOCS3PELNuN1U6NafXkv8jPzuHbS9/VPBe5/fHsO3VT8iOT2HPu9/S7q2hNB12\nPymHogtm1A7MX0ybKU9x2/evo5Riz7vfkms9tnR4x/hZF51vZscbX5CXlmm3/47of1nn4uj4w3uY\ns3M5MKWwbmza+/uLaPb6KOo9/RBpR6I4a23vRn9pWeL2pQnq2pqbxw3C1bcSAF0+HMfaZ94u07p3\n8nAlpF1Ttk/5rNRylVXfN2dk0WzKSPxbNcbF14cuv87h+IJ/tnQzJCSEyMjNVKpUCYvFwqhRI2nc\nuDlpaaX/BMu1NG7MD2zdGk1Kcibdu8xk+Ihu3N8n/OozrAB9X9x4lL7CG25L3NgYBEUBHbTWm5RS\nH2GsC3gKeNT6mgvQQGu933rP2zitdaR1+8kU3vO2G2N55Drr65W11qOVUnuAoVrr9UqpN4E7tdZN\nSynPQCBCaz3c+vdtwBSgh9Y6XSlVDcjDGHTt0FrfZE1XA1iHsQTUA2Om7tUi97xFaK0TrGkL9kEp\nFYhxb1yty1TV1VfyDeC3iH4Oi31n5JesaNfHYfF7bP6Ole0fcFj8WzZ9z5JW1/Cxx3/TXdsXsaHz\nvQ6L33HdYofH/7PNQw6JfcdW4/eAlrbp65D4t239xuF9z1F1D0b9r+3Y22Hxu2z4iW/DSn4kfXl4\ncPfnDu97y9o+6LD4Pbd86/D6d2TfBzBO/8qf1nmYWXT5hGXEif4O7/sYkxcVXiPvByr0+fHB9O8r\nZD1ei1mjw8Aw6/1uB4DZwF/Ae9blkM7AuxgPM7mUAcBcpZQncAK4+ANUjwOfKKU0l3lgSXFa66VK\nqUbAJmX83k868IjW+rhSaoP1Zwf+0FqPV0p9C+zDGIz+/cvqQgghhBBCCFGGrsXgLV9r/Uix13YB\nXYon1Fp3K/b35CL/3gW0K2Gb7UDRJ088V1pBtNafAZ8Ve20WMKuEtP2K/f1cSXkXn1Urug/W2bha\nCCGEEEIIIUQZc+iPdAshhBBCCCGEuDL/aOZNa30S48mS5UopdTvwZrGXo7TWjltkLIQQQgghhLgi\nFiU/FXA1rssnJWqt/8K4r04IIYQQQggh/hVk2aQQQgghhBBCXAeuy5k3IYQQQgghxPXLgiybvBoy\n8yaEEEIIIYQQ1wEZvAkhhBBCCCHEdUCWTQohhBBCCCHKlcbs6CJcl2TmTQghhBBCCCGuA0pr7egy\n/BtIJQshhBBCiPKgHF2AK1HP5+4KfX58LO3XClmPsmxSCCGEEEIIUa7kaZNXRwZvoswtbvmIw2Lf\nu2MhcxoOcVj8oYfncqpvG4fFr/nNVpa06u+w+HdtX8SKdn0cFr/H5u8cHn9hs0EOif3I3k8A2NTl\nHofEb7/2F4e3vfcd2PeHH56LmUUOi+9Ef4e3/X97fPNn7g6L7zQw22H732PzdwD8FtHPIfHvjPyS\ntR17OyQ2QJcNPzm874sbm9zzJoQQQgghhBDXAZl5E0IIIYQQQpQrWTZ5dWTmTQghhBBCCCGuAzJ4\nE0IIIYQQQojrgAzehBBCCCGEEOI6IPe8CSGEEEIIIcqVxuzoIlyXZOZNCCGEEEIIIa4DMngTQggh\nhBBCiOuALJsUQgghhBBClCv5qYCrI4M3Ue6ajX+U4E4tMGfnsPOV+Vw4dNIujWfVICKmDcPF14cL\nB6PYPulDdL6ZgFaNaDtjNJnn4gE4t3IbRxb8DECd/ndw033dQGtSj51h5+T5ly1Lpxcf5KauTcnP\nzmXFC5+TcOC0XZqm/bsRNuAWKt8UzCftxpKdnAGAWyVPur/xGJVrBpKfk8+qif8j6ei5K64H97B2\n+A0cCyYTGSsXk7r4f7Z10Ol2Kt3zGCiFzsok6eM3yYs+Ci6uhEyeh3JxBZMTWVtWcOG7BVcct8n4\nxwjuGIY5O5ddk+eRWkL9e1QNouW04bhW9ubCwZPsfGkOOr9wbXrlxnXo+Olkdk58n5gVW/G6qQot\np40oLHu1YI7M/R6Adt/MQplMnPtlBdFf/GwXq8GYxwlo3xJzTg4Hp3xA2uEoAPzbtaDB6MdL3LZ6\nnzuofv8daIuFxI07OPb+QgC869Xk5uefxsnLAyzaJs6l8iuLslyJiBf6Ua1zM/Kzc9k06WOSDp6y\nL9PDt9DokZ741Azhu84jyUlJB6DWne1oMug/oBT5GdlsmfIFKUfs2+9Fvm1aUmvkkyiTE7G/LeXc\noh/s0tQa+RR+7SIw5+RwfNq7ZBw5AUD4NwuwZGWhzRa02czewWMB8Kxbizpjh+Lk6U52TBzHpryD\nOTOr1DKURdsDcPb2JOylp/CpVx2tNbtfvXzfL6pzseNAfAnHgZ5vDyK4aU0seWZi955k9cuLsOSX\nzYnHixN+Yc3qI/gHePHLkmeuOp+yaPPBt7Sj9pMP4lWrGtsGTSDtkNFGnCt503zaWHwa1SPmt9WA\n4/u+o+OXZt1xd6Yt98dsgQdapPNU+1Sb97dGuzH8h2CqVc4HoGfDTIZ2ukBUojNjfg4qSHcmxZkR\nnVN4rE1aiXGu9f7XfrIPVe+5lbwUo7zHP/ySxE078W/TnLpD+2NydsaSn19iWRqPe4zgji0wZ+ey\ne/JcUg+ftEvjUTWI8DdGWPt+FLteNvp+SNdWNBjSB22xoM0WDrzzBcm7Dxtl6vcfatzbHdCkHjvN\nnlfn2eXr1zacuqOeQJlMnP91OacX/miXpu6oJ/Bv3wpzdg5Hps4m/cgJlKsLYR9MxeTijHJ2ImHV\nJqI//hoAr/q1qD9+CCZXV7TZzLG355N28GiJ+/53XKu+L25sMngT5Sq4YxheNUNZce9Y/JrVJWzC\nQNYOmGyXrvHIhzi+6E/OLt1M84mPc9N93Tj5/QoAEncdZsuz79ikdw/yo85Dt7Hygeex5OQRMX0E\n1W5vd8my1OzSlMq1gll028uEhNWm6+R+/PDgm3bpzu84TvTqvdz7vzE2r7cccgcJB0/z5/C5+NYJ\nocvLD/PLwHevrCKUCb9BzxE3dTjmxDhCp31OZuQ68s9GFSTJjztH7KtD0BlpuLdoj/9TE4idNAjy\ncol7bSg6JwucnAh5dQFZuzaRe3TfZcMGdwzDq0Yoq+4bi2/TejSb8DgbBrxil67RyIeIWvQH55Zu\nptmEQdS8rxvR1vrHpGg08iESNu8tSJ8RHcO6fhML3r/1j/c5v2Y7TcY9yq7RU8mJS6L1p9NIWBdJ\nxskzBdsFtA/Ho0YVNvUZQaUm9Wn43FNEPjERTCYajnuCnSOn2G3r17IJQV1as+XRcei8fFz8KhlV\n6mSi8eSRHJg8m/Rj0ThX8qbr0k+tZSo9v7Ioy5Wo2rkZPjeFsPjOCQQ2r0ObSY/xZ//X7dLF7zzG\n2TW76fnJ8zavp5+JZ9njb5KbmknVTs1o98qAEre/uP+1Rz/NgTEvkxufSLP575C8fitZ0YWDFN92\nrXCvXpWd/Z7Gu3FDao95hn1Dxhe8v//ZF8m/YHuSWPe5EUTP+YTU3fsJ6nUrVR/+L6c/XlRiEcqq\n7QE0Gf8ocZt2s/35WShnJ5zc3UquhxLc1KUpvrWCWVjkOPB9CceBI79sZdm4TwC47Z0naNynE/u+\nWnvFcf6O3v8No/8jrXnhefsT7r+jLNp8+onT7H3hbW5+YbBNLEtuHsfnf4N3nRp41akJ4Li+7+tD\n1z8/qRjHnmLMFnh9qT8fPRRHSKV8+n5Whe71s6gXmGeTrlX1bD58MN7mtdoB+fz0RExBPt3er06P\nhpn2QZSpTOof4PTXSzj15a824XJTUtk9bjq5Ccl41alBuy9n2Lwf1LEFXjVCWd17DL5N69F0wiA2\nDnzZrtg3j3iYqC//IGbpJppOGESNe7tz6oflJGzdR+ya7QD41KtBy+nPsuaBcbgF+VGr7+2seXA8\nlpw8wqeNpOpt7W0zNZmoN3Ywe0dNJicukfCP3iJx/VYyi9SFX/uWeFSvyra+Q/Fp0oB6455m1+Dn\n0bl57Bn5MpasbJSTE2EfvkHS5h2k7T9CnaEDiP7kW5I378CvfUtqD32MPSNesv8s/qZr1ffFjU3u\neRPlqkq3Vpxesh6A5L3HcfHxwi3Q1y5dYOvGnLNeVT+9ZB1Vure6bN4mJyec3FxRTiacPFzJjk++\nZPraPZpz+OfNAMTujsK1kgeeQfYn3wkHT5N2NtHudf+6VTi72bj6l3IiFp9qAXgE+Fy2nACu9ZqQ\nH3sGc9w5MOeTuXEpnq272KTJPbIXnWGcLOcc3YdTQHDBezrHmN1QTs4oZ2fQl77Se1FI11ac+W2d\nUeZ9x3Dx9iyl/psUzGqcXrKWkG4RBe/V7ns7MSu2kZOcarcdQGCbpmSeicMtoDIA2efi0Pn5xC7b\nQGCXCJu0QV1ac/73NQCk7j+Ks7cXrgG+VGpcj6wz50vcttp/b+Pk/35G5xlXePOs5fBvE0b6sWjS\nj0UDkJ+aXhDnUvmVRVmuRI3u4UT9shGAhD0ncPXxxCOwsl265EOnyDhn3/4Sdh8nNzXTuv1xPEP8\nSo3l3ag+2WdjyImJRefnk7BiHX6d2tqk8e/Ulvi/VgGQfuAwzt5euASUnieAe42qpO7eD8CFyF34\nd21fatqyanvO3h4EhN/M6Z9XA6DzzeSnl3BCW4raPZpzqMhxwK2U40D02sKLI7F7TuJ9ifr+pyJa\n30Tlyh7/OJ+yaPOZJ8+Secp+hYElO4cLuw9hyc3D1d/4XB3V9z2rV3Fo/KLHnuL2nnOlpl8+Nfzy\ncXWC/zTKYOWRv/9Zbz7pTk3fPKpVLuFpfYGty2T/S5N+5CS5Ccb3bcYJ+1nrkK6tOPt7kb7v44lb\nQMl9//yKLQCcWbKOUGvfN2flFKRx8nC3+b5TRb/33e2/930a1SfrTAzZ54xjX/yK9QR0bmMbt1Mb\nYv80jn1p+4/g7OOFq/XYZ8nKNuI4O6GcnQpia61x9jI+N2cvT3ITki5ZR1fqWvX964XGUqH/r6hk\n5g1QStUC/gS2Ay2B/cBjQBNgFuAF5AA9gADgC+trAMO11hvLt8TXL/dgP7JiC09Es+KS8AjyIych\npeA1V19v8tIz0Waj42TFJuEeVHii5N+8Pt2+eYPsuGT2z/yStBNnyY5P5tgXv3Pb77Mw5+QSt2kv\n8ZsvPRPlFeJL+vnCA33G+RS8QnzJjL+yE/CEQ2eoc1s4MduPEdysFj5V/fEO9SMrseQlLEU5+Qdh\nTowt+Ds/MQ63ek1KTe/d/R6yd20qfEGZCJ3+P5xDq5P+1/fkHtt/RWV2D/a3qf/sOKNui9a/i683\neWkZBfV/MQ0YM5yh3SPY9PRUfJvYXnm/qOpt7Tj310Y8gv1tXs+JS6JSk/o2r7kF+ZMdl1gkTSJu\nQf64271euK1nzar4hjWi7pCHseTkcXT2/0g7eBzPmlVAQ4t3X8TFrxKxyzYU7vcl8iuLslwJj2A/\nMs4XfuFnxCbhEexHVsKFK9q+qLq9O3Nu/d5S33cNDCAnLqHg79z4BHwaN7RLkxsXXyRNIq6BAeQl\nGn2k8YwpaIuF2F/+Iu7XvwDIOnkKv05tSV6/hYBuHXELDiy1DGXV9jyrBpObnEbY5KepVL8mFw5F\nsf//vii9sorxLnYcSD+fgvcljgMmZxMN723LuqnfXnEMRymLNn8lnDxsZz7Lu+8XH0A48thTXGy6\nM6GVCpcWhvqY2XPO1S7dzrNu3PdRFYJ9zIy/JZn6QbYzc78f9KJX41IuUnhWLZP9B6je5z+E9upK\n2sHjHH3vf+SnZdjkG9zdfsWLe5AfWUWOddmxSbgH+5GTWKTvV/Yp1vcTcQ8u/N4P6RbBzcMfwtWv\nEttG/Z9RtvhkTiz8jVuWzMack0vC5r0kbLE9DroF+dsc+3LiEvFp0sAmjWtQADnF6sI1yJ/cxGQw\nmWj5ydt4VAvl3I9/kHbAWBp5fNYnNJvxMnWGDQSTYtfTE+z2W4iyIjNvhRoCc7TWjYBUYDjwDfCs\n1joMuBXIAuKAnlrrlkBf4D0Hlfdf6cKhkyzt9Syr+07kxNdLaTNjNAAuPp6EdmvJsrtG89ftI3D2\ncKN6r45lWpYd8//C1ceDB39+kWaPdiPh4Gks5mt/pcatSSu8b7mHlEXvF76oLZx//hHOPnMXrvUa\n41KjzjWPW5LG4x7l4HtflzrTp5ydCO3ainPLt5RZGZSTCZfK3kQ+MZFj739Bs6ljrK874Rt2M/tf\neY/tg18iuGvby+RUdmUpTyGtb6befzuzY+Z3ZRZj/7Dn2fPEKA6Of5XQ3r3wCTMuNByb/h6hvXvR\nbMEMnDw9sOSVfL/LtVBa21NOJirdXIvo75ezrv+LmLNyqPv43WVWjq6v9ONc5FFith8rsxiiZFfa\n9ys1vvKBZlnE/6fHnsahuawYdpafn4yhf6tURvwQZPN+rhlWHfXg9kYZpeRQNs7+uJSN9w9n66Pj\nyUlMof7Ix2ze96pdnbrD+pdJ7NjVkax5YBzbx82g4ZA+ADj7eBHStRWr7nmWFXcMw8nDjWr/ucbf\n+xYLOwaOYXPvJ/FpXB/P2saS4Kq9b+fE7E/Y8t+nOP7eJzSYMOzaxhXiEmTmrdBprfXFy2ULgReB\nGK31NgCtdSqAUsoLeF8p1QIwAw1KykwpNRgYDDBv3jwGDy55luLfoPaDt3JT7+4AJO8/gUdIQMF7\nHsH+ZBVb5pCbko6LtyfKyYQ2W/AI8S9YCpGfUfgwhLgNuzFNGIirrzeBEY3JPBtPboox6xWzMhL/\n5vZf4E37daXxg52M7fdG4x1aeGXPK9SXjNgUu21Kk5eRzaqJhQ8ZeWTFVFJPJ1xii0LmpHicAkIK\n/nYOCMacHG+XzqVmPfwHv0j89FFY0u1nZHRmOtn7t+Me1p680ydKjHVTn57UtNb/hQNG/V+scfdg\nf7tlJnkp6bj4eBXUf9E0vo1q03LacABcfX0I7hiGxWwmdrVxP0JwxxZcOHSS3KRUsuJsl5G4BfuT\nE2+7/C8nPgn34AAuFKQJICc+CeXsjHtwQInb5sQlEb/KGBymHjiGtlhw8a1ETlwiKTsPkGe9Lyth\n4w4qNzO6Z7Y1TnmV5eIN/cU1eOgW6t1vLI9N3BeFV6g/Fz91rxB/suIuvdS3ON8G1Wn36kBWPjOT\n3Auln8jlJiTazIq5BgXa7X9uQiKuwUHAQWuaAHITEq3vGZ9lfsoFktZtxrtRfdJ27yf71FkOjjXu\nW3OvXhW/9rbLq8qj7aXsPUZ2XBIp+4wZz5jlWy87eGt2ieOAd6gv6aUcB1oPuxMPf29WDS/5vr6K\npiza/JUousztWsa+0r6fvHM/XjdVLTGP8ohf9NhTXIh3PudTC0+9zqc5Eexju/TR263wAkXXetlM\nWapIzjTh52lcHFx33IPGIbkEepVysTDTdlnrtdr/3KTC76Bzi5cT9vYLhemC/Gn+5ngOvPY+EfON\ne287LXoDsPb9UH+Sdxtp3UP8yS52rMu7kFas7wfYpQFI2nkIz2rBuFT2ISCiMVnn4gq+98+v2oZf\nc9t6z4lPsjn2uQUHkFv82BefiJvNPgeQG2/7/WVOzyRlxz7824WTGXWKkP905/i7HwOQsHIjDV6Q\nwdvVsMiPdF8VmXkrVHwqobS1c6OBWCAMiADs1zsAWuv5WusIrXXEv3ngBhD17XJWP/wiqx9+kfOr\nt1PjLuOkya9ZXfLSM22WTV2UEHmAqj2Mdek17upMzOodAAX3UQH4NqkDSpGbkk7W+UT8mtXDyd34\nOALbNCEt6qxdvvu+XMO3903l2/umErV8Fw3vM5Z4hITVJjct+4qXTAK4+nhgcnECoFGfTsREHiUv\nI/uKts09fgCX0Bo4BVUFJ2c8O9xGVuQ6mzROASEEjn2TxA9eIT+m8CmEJh9flKc3AMrFDfdmbck7\nF11qrOjvlrGu30TW9ZvI+dWRVL+zMwC+TeuRn55Vav1XKaj/LgU3i6+8ZzQr7x7FyrtHEbNiK/um\nf1YwcAOoent7zv5prCK+cMAYTLpXCUY5OxPSsyMJ6yJt4sSviyS0V1cAKjWpT356JrmJKaQdPIZn\njSolbhu/dit+rZoC4FGjCiYXZ/JSUkncshuvejUxWe9/8GvZuCDOpfIri7KU5sjXK/m9z2R+7zOZ\nMyt3UvueDgAENq9Dbnrm31oy6RnqT9eZw9gwYQFp0bGXTJt+6Cju1aviViUE5exMYI/OJG+wnR1N\nWr+VoNuNgZZ344aYMzLJS0zG5O6GycO4B8Pk7oZv6xZknTDao7OvtT8qRfXHHuT84j9t8iyPtpeT\neIGs2ES8bjLucwps04T0E/Z9v6i9X67hm/um8s19UzmxfBc3X8FxoPEDHanZqTF/jfn4iu8xdbSy\naPNXIjfZaMeO6vue1UIcGr/osae4plVziU525kyKM7lm+OOgF93r2z6hNT7dVNDE9pxzxaLB16Nw\noPb7AS96NbnErFtCZJnsv2uR+9SCurYpWJ7q7O1J2IwJHJuziAt7DhekWd9/Iuv7TyR2dSTVehXr\n+4n2fT8x8gChPYxZy+p3dSZ2jRHXs3rhhc5KDWthcnUm70Ia2ecT8G1aH5Ob9Xu/dRPST9r2/bRD\nR/GoXrg/QT06kbh+m23c9dsIucM49vk0aWCti2RcfCvh5O0JgMnVFb/WYWRGG/nnJiRTOdxYgeDb\nqhlZp2NK/TiEuNZk5q1QTaVUe631JqAfsBl4WinVWmu9TSnlg7FssjJwRmttUUoNAJwcWObrTuz6\nXYR0CuPWxe9gzs61eZx/u/fGseu1j8hOSOHAe18TMW04Nw/rw4VDJzllfRhB1VvbUOuBHmizGXNO\nHpETPgAged9xzq3YStdFr6PNZi4cjib6x1U0f35AqWWJXrOPml2b0n/ZFPKzclk58fOC9+6cP5xV\nk74gM+4CzR7tTviTt+EZWIm+v7xE9Jp9rJ60EL+6ofSYPhCNJvloDKtevPL7bLCYSfrk/wie+J7x\nUwGrfyXvzAm8b/0vAOnLf6TyA0/i5F0Z/yeMpwxqs5nYiQNw8gskYOgrYDKByUTmpuVk71h/RWHj\n1u8iuGMLui+eYX1kc+FjldvMGs/uKQvISUjh0Htf0fKNETQc2ocLh6MLHgZxKU7ubgS1bcreNz62\nltc42Qif9SKYTMQsWUVG1Bmq9e4JwNmflpG4cQeBHcJp//1sLNm5HHj9g4JtD7/9sd22AOd+XUWj\nSc/QdtE7WPLzOfCasU1+Wganv1pC60+ng9bGI6xbN79kfmVVlitxdt0eqnZpzr2/T7f+VMAnBe91\nnzOKza98RlZ8Cg373UrjQXfgEVCZO394jXPr9rB58mc0H3IPrr7etJn0aEE5/3jotZKDmS1EvTuP\nRm9PRplMxP2+nKyTpwm55w4AYn/5k5TNkfi1b0X4V/Ow5ORwbJqxItzFz5eGU40niSonJxKWryFl\nq3ExJfDWLoT27gVA0tpNxP++vNT9Lcu2t/+t/xH++lBMLs5kno1j9+R51H3srstuB8Zx4KauTXnU\nehxYUeQ4cJf1OJARd4Fur/Yj7VwSD3zzHAAnlu1k2we/X1GMv2vcmB/YujWalORMuneZyfAR3bi/\nT/jfzqcs2nxQ1zY0GDsIV99KtJgxgbQjJ9k1aioAHX76AGdPT5SLcWrRcs4raLPFYX2/Ihx7inM2\nwYs9k3jq62AsGno3T6d+UB5f7zAuyD3UMp2lh7z4eqc3ziZwc9a8c28CShnbZ+YqNka5M/mOS8yE\namM241rvf73hj+JTvxYaTXZMPIemG324ep878KweSu1Bfag9qI9dceI27CKoYwu6/TwTc3aOzeP8\nW896jj1T5pOTkMLB2da+/0wfUg9Hc3rxagBCe7Sheq/OWPLzseTksWPCbABS9h8nZsUWOi96w/q9\nf5JTP66kyfiBhcHNFo7NXEDTGa+gnEycX7KCzKjTVLnvdgBifv6LpE3b8W/fitbffoglO4fDbxj5\nuwb40XDSSDCZUCYT8Ss3kLTRGFAeeXMOdZ99AuVkwpKbx9G35pT+efwN16rvixub0tfJFcSyVOSB\nJZFAK+AA8CjGA0tmAx4YA7dbgSrADxgzdX8Cw7TW3pcJ8a+u5MUtH3FY7Ht3LGROwyEOiz/08FxO\n9W1z+YRlpOY3W1nSqmzuQbgSd21fxIp29l/m5aXH5u8cHn9hs0EOif3IXmMwuKnLPQ6J337tLw5v\ne+87sO8PPzwXM45bXulEf4e3/X97fPNn7g6L7zQw22H732Ozcf/tbxH9HBL/zsgvWduxt0NiA3TZ\n8JPD+z6gHFaAv6GKT+cKfX4ck7auQtajzLwVytdaFx9lbAOKPzrpKFD0ktrzCCGEEEIIIQSglPLH\nePBhLeAk8KDW2u5GTqXUaOBJjImevcDjWutL3oMj97wJIYQQQgghxLXzArBCa10fWGH924ZSqhow\nEojQWjfFuBXroctlLIM3QGt90lppQgghhBBCCPFP3AtcvIn6c+C+UtI5Ax5KKWfAEzhXSjqbDYQQ\nQgghhBCi3Fh0xf6pgKI/+2U1X2s9v7T0xYRorS8+hvQ8EFI8gdb6rFLqbeAUxrM1lmqtl14uYxm8\nCSGEEEIIIUQR1oFaqYM1pdRyILSEt14slo9WStk9nEUp5YcxQ1cbSAG+U0o9orVeeKlyyeBNCCGE\nEEIIIf4GrfWtpb2nlIpVSlXRWscopaoAcSUkuxWI0lrHW7f5EegAXHLwJve8CSGEEEIIIcqVxlKh\n//8xV4PdAAAgAElEQVSHfgEu/tjwAGBxCWlOAe2UUp5KKQX0AA5eLmMZvAkhhBBCCCHEtTMd6KmU\nOooxwzYdQClVVSn1O4DWegvwPbAD42cCTFximeZFsmxSCCGEEEIIIa4RrXUixkxa8dfPAb2K/P0K\n8MrfyVsGb0IIIYQQQohypanYT5usqGTZpBBCCCGEEEJcB5TWdk+uFNeeVLIQQgghhCgPytEFuBJB\n3q0r9PlxfPq2ClmPMvNWPtQ/+V8p9fQ/zUPiS/zrLbbEl/gS/98b/9+87xJf4l+D+NcFi7ZU6P8r\nKhm8XR8GXz6JxJf4N1xsiS/xJf6/N/6/ed8lvsR3dHxRgcngTQghhBBCCCGuA/K0SSGEEEIIIUS5\nugY/hP2vJDNv14fL/mCfxJf4N2BsiS/xJf6/N/6/ed8lvsR3dHxRgcnTJoUQQgghhBDlyt8rvEIP\nQpIydlbIh7/IskkhhBBCCCFEudJafqT7asiySSGEEEIIIYS4DsjgrYJRSpmUUh0cXQ4hhBBCiLKm\nlKrt6DIIcT2RwVsFo7W2AB84uhwASqkOSql+SqnHLv5fTnGdyiPOpeIrpVY5MH6Ao2ILg1Kqk1Lq\nceu/g/5tJxfWPlBVKVXz4v/lGHuKUqqnUsqrvGJWFEqpFVfy2o1MKeWhlGrooNieSqmXlFILrH/X\nV0rdVY7xlVLqEaXUy9a/ayql2pRX/CLl8CznkN9b4/6r2roQV0vueauYViil7gd+1A56ooxS6gug\nLrALuLgoWQP/K4fwR5VSPwCfaq0PlEM8G1prs1LKopSqrLW+UN7xgc1KqV3Ap8AfjmoDjqSUCgHe\nAKpqrf+jlGoMtNdaf1wOsV8BIoCGGJ+BC7AQ6FjGcWdj9LESaa1HlmX8IuUYAbwCxELBc5w10Lw8\n4gMngIeB95RSacA6YK3WenFZBrXGulT9VyrD2O6AJxColPIDLt4kXwmoVlZxSyhHR2AycBPG+YEC\ntNa6TjnFvxt4G3AFaiulWgCvaa3vKY/4GP19O9De+vdZ4DtgSTnFn4PR524BXgPSgB+A1uUR3Lrq\n5yPAG6iplAoDntZaDy3j0Cal1ESggVJqTPE3tdYzyjg+UCHafztgNtAIow84ARlleexxNIv8VMBV\nkcFbxfQ0MAbIV0plU3gAKc8OHAE0dtDAIQx4CPhIKWUCPgG+1lqnlmMZ0oG9SqllQMbFF8vpBLoB\ncCswCOME9lvgM631kXKIXVF8hnEi9aL17yPAN//f3plH2VVVafz3BcIghBlBG0GJNIjIEEHCoIiK\nouKAiMio4AQog4oKDcqg4hJFm6EVRAigIIZWEBuZlNEwJyBRBhuQqZ0VQgiBEPj6j3Nu6qVIJSHm\nnnNTb//WqvXq3FRl76p6776zz97720DrwRuwI7AJMAnA9h8ljSpg99b8uBWwPunnBdgZKHmIcRCw\nru1/FLQ5C9vjgHGSVgc+ABwCfBxo9W9gexSkzB/wJ+AHpHvv7sBL2rRNuucfDLyUFDw0wdvjwMkt\n2+7ldODT2YcaSgJHAa8DrgawfXvhrPdo27tI2jXbf1JSSbW5zW2PkXRbtv+opCUK2v828Dbgomz/\nN5LeUMDuB4H3kvakJe61Q1H7+X8y6XdxPmkPthdpPxAEsxHBWwdpNhGV+S2wOmkTUxTbU4HTgNMk\nbQOcC3xb0n8DX7Z9bwE3fpo/ipMD5iuAKyRtS8r67C/pN8Chtm+o4VdhVrE9XtJhALZnSir1ZjrD\ntiUZoFT5nu2zsr39gK1tz8zrU0jZp1I8DNTIOAMg6fuk4PUvpJ/7/eRAuhDvtr1Rz/q7+bX3pbYM\n2j4BOEHSAbZPasvOfDDF9iUV7T9je8qgeKnkAeIMSUs3NiWNBp4uaP+Z3DbQ2F8VyqYmbD886Pdf\n4r67ve2vS1rS9jEF7A1F7ec/tu+VtJiTDOO4HMgfVtOnoHtE8NZRcunMOsBSzTXb1xaw+3PSG8co\n4E5JN9Pz5lWifCW/eb0T2Bt4OXA8cA7weuAXFDiJajbSNcg9b3sAe5I2sAeQTkI3Jp3I9UP/1bT8\ne2g2MWMpF1CMl3QqsIKkj5EyoKcVsg2wIqlc7p95vWy+1io95Ur3A1dLupjZX/tFSpeAlUnlQo+R\nfgd/bwLZQkyTtDtwHun5tys92fc2sX1SLl17OT3vz7ZLlKsDXCXpG6SDq96/fang+XeSdgMWk7QO\ncCBwfSHbkMqFLwVeJukcUhb8wwXtnwhcALxY0ldJBxdHFLT/cH7+WdJIUhb+rgJ29wZOIGXfagZv\ntZ//T+ZM6+2SjiMdng9rbYok8xC8UGJIdweR9FHSTXMNUs/ZWOAG228qYHubuf277WsK+HA/cBVw\nuu3rB/3biSVKFyX9gTmc+JaofZf0e1LJ1jjbjwz6ty/Y/nrbPtRG0hhS7f8GpCzwqsD7bd9RyP52\nwFtJ5WuX2b6ihN1se29S+dhV2f4bgKPaPlDIvX5DYvvoNu0PRtKrSCVcnwYWs71GIbsvJ20ktyLd\nAyYAB9t+oIDtOfYaF+x3nJNQk0u892T7LyKVSs967ZGqLZ4qYT/7sDLpPVfAjbb/Xsp2tr8e8OZs\n/1e2SwRPje1VSM/9t2T7lwMHtV1CLelHpDLBlwL39f4T6flXpN+2A8//tUgHtkuQ7nvLA98pVG1U\nheWWXr/TQcjj0+/s5JDuCN46iKTJpAblG21vnG/mx9p+X0Efvm77C/O61pLtZW0/0badefjQq/i4\nFKnvaCXbrZVO9dhWP4qUDEbS4iTREAH32H6mkN1XAH9qNoy5jGq1Epv3Hh9WBzbPy5ts/7mU7doo\nqfu9nhS0rgDcCFxn+4yqjhVA0l3U6zXuFLkCY5mSvc6SdgSubISqJK0AvNH2hYXsrzSHy1NL3ftq\nku95lwHPq+6x/WAB+yNIB4Tj27Y1Fx+WAaZn1fHmNbCk7Sdr+dQ2EbwtGBG8dRBJt9jeLCsObm77\naUm/s/3qgj5Msj1m0LU7SpyAZeW1jwCvZvay0X3atj03JE20/doCdlYFPs/zf/4ip39dQNIngXNs\nP5bXKwK72v5OAdu3AlvanpHXSwATbBdRfMs2q5RNZ9tN6XQvU0iCKqe2nQWRdDKp1+06239s09YQ\n9qvdfySdDxxou3ivcbZfTeU12z8X2JeUdbyFVD58gu1vFLJ/u+2NB127zfYmhew/ALwMeJR0aLUC\n8GdSNuZjtie2bP8sUqat9757fO333lJIutX2phXt3wi8pTm8lrQscLntYTv7d9TS63Y6CJk6/Z5O\nBm/DupZ2EeaRfOJ3IUm04mdA6ydPkMQScuZvXUl39Hz8AZhcwgdSyeDqpJKpa0jlo1ML2QZS2V7P\nx6aS9qVcj+g5wN2k3rajgQdIG5l+4mPNBgKS6hrwsUK2F28Ct2x7BqmMpQi5bPpa0in00fnxqFL2\nST1vT5BFg0iKh1NJvaat9/7Z/hRJbXCMpB0kvbhtm4Ooef9ZhdRrfJmki5qPQrYhqbxeRipfg6Ty\nenBB++vnTNt7gUtI98A9C9qf056opDbAFcA7bK9ie2Xg7aQxBfuTxgi0zYZzuO+2HrgqKSojafKg\nfcdkSUVK5TO/lHSIpJdJWqn5KGh/qd6qo/x56Zl7wSJACJZ0ENs75k+PyjXYy5OaqEtwLulN82vA\noT3Xp9r+55y/ZaHzSts7S3qP7bPyaWxJtT1IIikNM0kB1AcK2V7Z9umSDso9htdI6rfgbbHe8tFc\nPlIqgPqbpHfbvijbfg9Qsu/lIAbKprdtyqYL2t9yUJbx5z3VAL9r27iknUmzvq4mZR9OkvQ52//d\ntu1MzfvPUYXsDEVNlVeAkUpCGe8FTrb9jLLqayFulfQt4L/y+pMk2fhSjLU965DK9uWSvmn7E5KW\nLGB/hKQVc9DWlHGW2CcelB+LDUQfgl3y4yd7rhkoMueNJJY0phFIkbQpML2Q7WARIoK3jiJpa2Ad\n2+NyGd2/AX9o226u9Z8C7Jo3zKuRnifL5l60h9r2AWjq+x+TtAGpbKTo6bvtbUvaG0Tz8/9J0juB\nPwIlT/+6wKXAj5VUHyHNwSp1gLEvcE4u3xNJOn+vQrYBnrL9lCSUpLPvlrRuQfvLSlqzea1LWpOk\neAkwY+hvW2gcAWxm+6/Z/qrAL4FSwVu1+08JQah5UFPlFeBU0kHZb4BrlQQcSs73PAD4IgMzFq9g\n9o182/xJ0hdISqeQgom/5PfiErJ8xwM35PJdkdQuv9q20aZMuERv2zz8qK3kfDBwvqSmXPwlDASU\nw5JQm1wwInjrIEqqb5uSxBrGASNJs762KujDp0inwH9h4E3DQAnVp+/lWvsjSBL5y5LeUIshaXmS\nbHQzoPQa4Jimkb1lvpLtf5akuLgcSXmqn/gCKWDbL6+vAL5fwrDt+4Cxud+gKV0pyeCy6UcpVDad\n+Szwa0n3kTZwryDNGVwGKDFCY0QTuGX+QdkS/+b+80UG7j+tCxUBSJrKQL/hEqR7/zTby5WwD3yG\n9DOPljSBrPJayDa2TyTJ5Tc8qDTrspT9acxecVKa3UjvO41AyoR8bTEKVH7YPjv3/Db91e+zfWfb\ndgc97+fkV5Hnv6Q5HtK53KiOycAppJLtx0mvxdarHYJFjxAs6SBKQiWbAJOaRmkVEgvp8eFeklhK\nqxLBg2x+Zk6X86Ndbs4Ukn5CkqhvNqt7AhuVVPwMyiJpD9s/HOJ5WHLOWa9P25DLpnv78ArYXRJY\nLy/vaVukZJDtb5AOiX6UL+0C3FFC6bZLSBLwHlIpXbGAQpVUXrPtKodmkv7T9sGas1hPkfmmNZG0\nnO3Hh+rvKtUyIenLpNlmPyA9/3YHXlJC5TnbP6lnuRRpZMMk20UOMHLv3+OkvndIgfsKtncuYb8G\nyy61TqeDkCee+t9OCpZE5q2bzLDtptY/n3iX5mHKlstAGgwOaeOwGenUCeBdwM2FfRlte6ee9dE5\nqG6N/MYxt9PHIrOeaiJpvO0PZNGcOW2i2jzAaF5no+b6VQWoUTYt6U22r5Q0+IBitCRs/7RN+w22\nPydpJwYqDb5n+4IStqG+4mJD7ve8MFdiFAnelJQ29we2Jr3+rpN0SsHg/QzSoVmTZdqTVH3S9qHZ\nD/LjN1u2M1ck/TtwCM8f0t620vC5pH6zicx+3xVle77ebXujnvV3Jf2GQplv2wf0rnMFxHlDfHkb\nbGB7/Z71VZJaz3zWxEWqgYcfEbx1k/G512cFSR8D9qGAytsg7geulnQx8HRzsc3sg/MQYEnXAmNs\nT83ro4CL27I7BNMlbW3719mHrWi/cfjW/LgVsD4DfRc7A8P6Bt5DtcZ126fm3pLHbX+7tP2GimXT\n2wBXkg5LYGAT12zgigRvALZ/AvyklL1BnEn6vR+e178nvRZbD94GBc4jSM+DYllP4GySsmaTgdiN\nFNiUOvkvfmgGYHtifu1/3PbubdubC+eTyua+z8CQ9taxvUPO9G5TqK99KKZJ2p0UMBnYFZhW0x9S\n2XgpJkkaa/tGAEmbM7AvCIJZRPDWTWaQGvQfJ23gvmT7isI+PJQ/lqCgTHpmNWYXRpiRr5VkP+Cs\nXMYDae7Oh9o0aPssSOMagK1tz8zrUyivtlkF23/Km6gza4jG2H5W0q5AteAN2JFcNp19+qOk1rOB\nto/Mn+4H7MTsp/+tl7bMpe9Fyb1ifV81FRff1fN5o3L7nkK2of7Jf41DM2DWa38tSUuULFEexEzb\n361hOFf7XAy8pob9zG7ACfnDDPT8FWFQ2ewI0iHq+aXsA68FrpfUBNBrAvc0lSglW2eCbhPBWzd5\nMXAgafN2BimQK0pPFqyGaMPZwM2SmlKp95JOw0tyF3AcMJo0KHVK9qPEzJkVSSIlTZ/BsvlaX5A3\nUc9JWr6QQMxgJmSlyR/Tc+rbyDcXoHbZ9IXAY6T7T5P1aT14s129XDVTTXHR9t4l7MyF2if/vYdm\nIt0DP1zQ/v2k1/9FzP7aL9Xv+nNJ+wMXMHvFS6kxPZMkbWa7ymga2w8wl8MKSYfZ/lqLLvSWzc4E\nHrT9SIv2BrN9QVvBIkwIlnSUXMLwVmBvUunMeOD0rIRXwv4GpHKZpoH578BetosoH0kaA7w+L6+1\nfVsJuz32L2VgAzvr1N328UN+08KzvTdJ6fMq0gbmDcDRts9s23ZXUBpMvwlJZbJ3E9V635/SbMXB\nuEDfSWP/EGAdYDvSvMV9gHNtnzTXb1x49n9re4MStrpIvvecBGxA6r9aFXi/7dYPbiStkW03JbLX\nAQeV2kBKuotU7fEQKXhdC7iHtJEtdvIvaTmSwZJjApqS5efRHGYWsD+nvlbbLtJzJulu4JUkddtp\nDGS9O5HxkTTJ9pgW//+vDxZGmtO1YOHxoiVf3ukg5MmnH+ikYEkEbx1G0kak4G170kZ+LHCF7c8X\nsH09cLjtq/L6jcCxtrds23YXqL2BlbQ6sHle3mT7z7V8qYGkOZaoNqWlwx1J25EObwRcVrJsWtL3\ngJNsTy5lsytIGkG6z95MBcVFSVeQxCMaAY09gN1tb1fI/lqkLP+sgzPSIRbQ3hyuoRRee+wWVXrN\nwaObvut+If/9n0dbf/cXiqTbnBW4W/r/nxccqrDSd78RwduCEWWTHUTSQaShwH8nNS5/zvYzeWPx\nv0DrwRuwTBO4Adi+upLqZS2ul/SaGhtYScdkaeSf5fUISedUbqQviu2zJC1Bkqs3aQNdpA8ll8wd\nyYDi3q9JcuWtj83I/X6/zP1+RftcexQ+Fwf2lnQ/qXSrU6fvbWL7OUn/lTeINeYrrWp7XM/6TEkH\nF7T/XuCjJHEakYLI0wpkfZuSWTMwHoaea0WQtClJrGZUXk8B9rE9saAPG5B6rZZqrrnQnDHbD+bM\nc3Pvm1CwXHx+aOW5kPvM9wfWltSbYR9F6rsLgk4RwVs3WYk0HHO20668sSilwne/pC8y+wnw/YVs\nV6MjG9iXNbX9SvO2xgNFy0ZrI+kdwKnArEHRkj5h+5IC5s8jZRwa1bvdSf1vb2nbcOV+v+IKnx3l\nV0qjCn7q8qUp/5C0BwMz7nYlDSkvxUdIc+WmQSoZA25gQH2yFXp6rM8ilYk+ltcrAq2XqvdwBrC/\n7euy/a1JwVypctEjgTeSgrdfAG8nHR4VCd4kfYmkLNooy46TdL7tr5SwPx+0lQU5F7iEVKbeO5Zj\nasF+w77EjlEBC0KUTQZzJL9pHs3svRdHNW+qw5WhykYaSpSP5H7Hc4DJwLbAJTWl62uQey92sH1v\nXo8GLra93ty/c6HYfl7JrKTJtouosNXs9wtmqV4uQ+p1nU5Btct8/zkJ2IJ0iHQ9cIDth9u2ne1P\nBjZznuumNPftloLP/eeVxbVdKjcf9lvtsxpkazKwEXCb7Y2UZg7+sGDZ7D3ARj1//6WB222vW8L+\nvJD0H7aPbdlG74zNVYBRtludsdnPLL3Emp0OQqbPeCjKJoNFitHAy0hyuYsDbwbeRKETyFrUrO3P\n5SoNJ5AyTxOAaySN6Vj5SttMbQK3zP2k+VMluFzSB0kZT4D3A5cVsg3p1LvYTLVgdiqrXh4DfMj2\nowCSViIp4O1TyP444KZBSr8lh5OPkLTioJ+/5D7lGqUZqz8iBc+7kOadjoEiirNP5Qqbmbnv7q+k\n9+FS/JFUrtmozC4J/F8p40NlXm3vA1AgcBs8Y3MJyszYDIIXRGTegjmST+AOIamtzcprd6VxeTgy\nhMphQzG1wy4g6bskpbvxpE3UziQFvF8C2G4tuBmUeQFYjIEMWKkMTJV+vyChNCy76fu5zvaFhexW\nzTxle03PE6SfvVjJtqS9gP9gYLbWzsBXbf9g6O9aqPar3YNzxcX3gc8CH8yPT5AyX0VGSEi6ENiM\nlPU3SfH2ZuARaD/7X/v5rzQQfhNgUmMzBEvaZakl1uh0EPLUjEci8xYsUvzN9s9rO9FPuMJQ6g6z\nFPAXYJu8/huwNGmIsWkxMzWvzIukV7vFkRmV+/36HknfIcmlN31n+0razvYnC5ivnXlqsktVsvy2\nz5Z0K6nKA1Lvd7Eh4fO6B0v6UFuKt7Yt6XU563SK0ria5VxgREUPF+SPhqsL2ob6z//aMzaDYL6I\nzFswRyS9mdQs/ytmHxYa5Vwtk/scjgVeavvtktYHtrBdsnyp06j9Ya1zs932rKFq/X7BrN//qxqx\nkqzy+zvbrypgu2rmKZg7BV77ZwEnu9KQ7Hkh6Se2d5r3Vy7w/78XcDip4kKkkvWSmdeqMzb7kci8\nLRiReQuGYm9S2dZIBsomW814BLM4k1Rvf3he/56kdhjB2wA7k95ca9D2zbxmv18A9wJrkgYVQ+o5\nunfoL1941M48BfOk7df+5sDukjo5JBtodVh4fv7fS+o7M7C37RvatDnI/jeVZmw+Tup7+5ILztjs\nR0JtcsGI4C0Yis26ojDVh6xie7ykwwBsz5T07Ly+qc+oeRrW9knhrZJ+wez9frfkPqzIfrfPKOAu\nSTfn9Wakv8lFALbf3abxHKxFwNZN2n7tv63l//9fpdWfX2nGbe+cwVMllZgzWHXGZhC8UCJ4C4bi\neknrx6lvFaYpDYpuyrbGAqVnfnWdTpda/ItU6/cLAPhSbQeCztLqoVEIgtWZMwjVZ2wGwQsigrdg\nKMYCt0v6A+WHVPc7nwEuAkZLmgCsSqr9DwaomXlrVfmxlLJcMCS3AtOzZPu/k8rHL7H9TGW/gvpM\nqO1AZdq+74oBlV/y5yXv9U8AkyXFjM1CmCibXBAieAuGYvvaDvQrtidJ2oZUcy+SVHxsHGfn/Hl/\nyYIh6RjbX+pZLwacbXt3ANtj27Kd7R0HfIU0IPpS0mzFT9v+YZt2g1lcC7w+z5i6HLiFNO9r96pe\nBa0j6TNzuDwFmGj7dtufKu1TSbK64nTnRqQs1rOU7Sfzl3yhZRdqzxmMGZvBIkGoTQZBx5D0IlL2\nbS3bH5O0DrCu7f+p7FrrSDqJuZREljgBlTQO+L3tr0laktR7dpvto9q2ne3fbntjSTsCO5CeC9fa\n3qiE/X6nURSUdACwtO3jJP0mfv/DH0nnksQymjE5OwB3AC8Hzrd9XCXXiiDpRuAttp/I62WBy21v\nWdCHanMG50Xbapv9yBIjV+90EDLjmT+H2mQQBPPFOGAisEVe/x8p0zTsgzdSyRrAVsD6JJVNSKId\npfov9wHOyYIx2wK/sP2fhWzDwH35naQN45Q0vzcohCRtQcq0fSRfG1HRn6AcawBjeoKXI4GLgTeQ\n7snDOngjZdmeaBa2n8iHicWoOWdwPmhVbbMfsUOLbUGI4C0Iusdo27tI2hXA9pPqk917MwBX0n7A\n1rZn5vUpwHVt2s4nvg0nkAZlTwCulTQmbypK8D951th0YD9JqwJPFbIdwEHAYcAFtn8naW3gqso+\nBWV4MT1zTYFngNVsT5f09BDfM5yY1nuvk/Ra0n0oSHQ6SxT0DxG8BUH3mCFpaQbUJkcz+4aiH1gR\nWA74Z14vm6+1yfGD1o+Ssn/Hk/4Wb3red7SA7UNz39uUrID2JPCe5t8lbRezh9rD9rWkvrdmfT8w\nq1xX0km2D6jhW9A655B6rn6W1+8Czs29YP2gvHwwcL6kP5L6rVcn9XsGQdAhouctCDpGHhJ6BClw\nuJxUQvhh21fX9KskkvYGjiJlPEQqWzqqycz1M01PVm0/+pX4/Q9vJG1KuucCTLB969y+frghaSRJ\nLAtCLGs2JN1me5PafgwnRi6+aqeDkGdm/q2TVU8RvAVBx5D0Q1KT/HTgfuAm23+v61V5JK0ObJ6X\nN9n+cyG7B5H6DqcCpwFjgENtX17C/ryIDURdIngbvkg6ETjP9vW1fSmJpPfN7d9thwIjIOmtXXkf\nGC6MXHzlTgchz8z8RyeDtyibDILucTrwemA7YDRwm6RrbZ9Q1632kbSe7bt7+s8ezo8vlfTSQn1n\n+9g+QdLbgJWBPYEfkLKgXaDTb3ZBsAgzEThC0rrABaRArh8yb++ay7+ZYS6fL2kyc1c53jA/duU9\nIOhzIvMWBB0kzxbbjKR2uC9p9s56db1qH0nfs/1xSVcx+5tpMyS+9b4zSXfY3lDSCcDVti/oUrYr\nMj916dJzIWgHSSsBOwEfBNa0vU5ll4IWkbRW/vST+fEH+bGZ7Xlocaf6hMi8LRiReQuCjiHpV8Ay\nwA0khcXNbP+1rldlsP3x/Ok7gP1J835M+j18t5AbEyVdDrwCOEzSKOC5QrbnhwdqO9AP5BlX9Eqn\nZ4Z9BjzglcB6wFrAXZV9KUaea7kTaa7drP2h7WNq+VQC2w/CLDGo3oOZQyVNAiJ4a4k8Dz54gUTw\nFgTd4w7gtcAGwBTgMUk32O4nyeazgMeBE/N6N+Bs4AMFbH8E2BgYSRrYuwpwZgG7wCzBgP1IIi0A\n1wCnNMIBtufanxL8a0h6Dem5tlJa6m/Ah2z/FsD2mRXdC1okq7zuCNwHnAd82fZjdb0qys9I7zkT\n6T+FY0iv961sT8iLLYkZj0EHibLJIOgoOePzYeAQYHXbS9b1qByS7rS9/ryutWT7o6RZX2sAtwNj\ngRtKlGxm+98nBY6NsuaewLO2P1rCfr8j6XrgcNtX5fUbgWNtb1nVsaB1JH2C1N+1NjDrfpvHRwx7\nJP3W9ga1/ahFnmt3BrA8qVT/UVIPdFeHhi/yLL7Yip0OQmY++2iUTQZBMG8kfYokWPJaUoncGbQ8\noLqDTJI01vaNAJI2B0oJBxxE6je80fa2ktYDji1kG1KZ7EY96ysl/aag/X5nmSZwA7B9dZ7zFQx/\nngOuZNDBDYVmPHaA6yW9xvbk2o7UwPZEYCNJy+f1lMouDXvcqY6ERYcI3oKgeywFfAuYaHtmbWdK\n0qP6NZK0kXgor9cC7i7kxlO2n5KEpCWz+uW68/62hcazkkbbvg9A0trAswXt9zv3S/oiA6IFe5BG\ndgTDnwOpe3BThZ777uLA3pLuJ5VNNkJRG9b0rxQ5aDuSXLIu6RrgmAjigq4RwVsQdAzb36ztQ4NT\n4RgAAAWkSURBVEV2qO0A8IikFYALgSskPQo8WND+54Cr8gYKknjA3gXt9zv7AEczII9+Xb4WDH9q\nH9zUove+uyKp8gPgWqCfev7OAH7LQG/1nqSZn9FnHHSK6HkLgiAYAknbkPofLrU9o5DNpYDPAm8m\nbZxuAb5t+6kS9oNEPoV/zvbU2r4EZZB0Aemg5GBSqeSjwEjb76jqWCEkHQR8lHRwIeC9wGm2T6rq\nWCEk3W5743ldCxYeiy02qtNByLPPTu1kz1sEb0EQBB1C0niS0uY5+dJuwAq2d67nVf8gaTPSCfyo\nfGkKSbRgYj2vgtLUOLipjaQ7gC1sT8vrZUhiTf1SNnkD8Dnbv87rrYBv2t6irmfDlwjeFowomwyC\nIOgWGwxS1bxK0p3VvOk/Tgf2t30dgKStSaVTfbGBDRK2r6ntQwXE7P21z+Zr/cJ+wFk56y7gnyTF\n5yDoFBG8BUEQdIuaSptBGsswS93V9q8l9ZVwUNC3jANuyuWjkMomT6/oT1Fs305Sm1wurx+v7NLw\nJ4Z0LxBRNhkEQdABBiltrgvMprRZYsZdPyNpTP50L2Bp4Eek3/8uJCGLz9TyLQhKkV8HW+fldbZv\nq+lPCSTtYfuHkub4Grf9rdI+9QuLjVim00HIs89N62TmOTJvQRAE3aALSpv9zPGD1kf2fN7pDUYQ\nLCzyQOp+G0rdzHEcNdevCoKOEJm3IAiCIJhPJH3I9lm1/QiCYOEhaTHgQNvfru1LPxGZtwUjgrcg\nCIIgmE8kTbI9Zt5fGQTBooSkm22/rrYf/cSIEUt3Ogh57rnpnQzeomwyCIIgCOafTr6ZB0HwLzNB\n0snAj4FpzcVcShoEnSGCtyAIgiCYfzp9UhwEwQLTDOM+pueaSQPbg6AzRPAWBEEQBPNPZN6CYBhi\ne9vaPvQfMSpgQRhR24EgCIIgWISYUNuBIAgWPpJWk3S6pEvyen1JH6ntVxAMJgRLgiAIgiAzxKyn\nKcDEPMQ3CIJhSA7axgGH295I0uLAbbZfU9m1YcuIEUt2Ogh57rmnO1lpEZm3IAiCIBhgU2Bf4N/y\nxyeA7YHTJH2+pmNBELTKKrbHk2v5bM8Enq3r0jDH7vZHR4metyAIgiAYYA1gjO0nACQdCVwMvAGY\nCBxX0bcgCNpjmqSVyaJEksaSsu5B0CkieAuCIAiCAV4MPN2zfgZYzfZ0SU8P8T1BECz6fAa4CFhb\n0gRgVeD9dV0KgucTwVsQBEEQDHAOcJOkn+X1u4BzJS0D3FnPrSAIWuZO4ALgSWAqcCHw+6oeDXMc\nk1cWiBAsCYIgCIIeJG0KbJWXE2zfWtOfIAjaR9J44HHSAQ7AbsAKtneu59XwRhrZ6SDEfqaTgiUR\nvAVBEARBRtKJwHm2r6/tSxAE5ZB0p+3153UtWHhE8LZgRNlkEARBEAwwEThC0rqkEqrzIvMWBH3B\nJEljbd8IIGlzIF77LdLV4KjrROYtCIIgCAYhaSVgJ+CDwJq216nsUhAELSLpLmBd4KF8aU3gHmAm\nYNsb1vItCHqJzFsQBEEQPJ9XAusBawF3VfYlCIL22b62A0EwP0TmLQiCIAgyko4DdgTuA84DLrT9\nWF2vgiAIgiARmbcgCIIgGOA+YEtgbWBJYENJ2L62rltBEARBEMFbEARBEPTyHHAlsAZwOzAWuAF4\nU02ngiAIggBgRG0HgiAIgqBDHAhsBjxoe1tgEyDKJoMgCIJOEMFbEARBEAzwlO2nACQtaftukgJd\nEARBEFQnyiaDIAiCYIBHJK0AXAhcIelR4MHKPgVBEAQBEGqTQRAEQTBHJG0DLA9cantGbX+CIAiC\nIIK3IAiCIAiCIAiCRYDoeQuCIAiCIAiCIFgEiOAtCIIgCIIgCIJgESCCtyAIgiAIgiAIgkWACN6C\nIAiCIAiCIAgWASJ4C4IgCIIgCIIgWAT4f2+l+5OX/kY/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAAElCAYAAACrn37VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm8VfP+x/HX55yiiKJ5IirRRaRMIVMTEZJrdoXMcnGv\n+Zpd3Gt2jQklU4ZkCMlQMjWLkEpoVNFA+alzPr8/vmufs89pdwbaa53TeT8fj/04Z6291v589z5n\nrb2+6/v9fr7m7oiIiIiIiBSXk3QBRERERESkYlJlQUREREREMlJlQUREREREMlJlQUREREREMlJl\nQUREREREMlJlQUREREREMlJlQURERESkkjOzgWb2o5l9vo7nzczuMbMZZvaZmbUvy+uqsiAiIiIi\nUvk9DnQv4fkeQOvo0Q94oCwvqsqCiIiIiEgl5+6jgZ9K2KQXMMiDj4E6Zta4tNdVZUFEREREZMPX\nFPghbXlOtK5E1bJWHBERERERWUseQ7y8+1SzE88kdB9KedjdH15/pVpH3GwHEBERERGRQvn5eeXe\nJ6oY/JnKwVygedpys2hdidQNSUREREQkRu5ryv1YD4YDJ0dZkfYElrn7/NJ2UsuCiIiIiEiM3Mvf\nslAaM3sa2B+oZ2ZzgGuA6iGePwi8DhwCzABWAqeW5XVVWRARERERiVH++mkpKMLdjyvleQfOLe/r\nqrIgIiIiIhKj9dStKBaqLIiIiIiIxEiVBRERERERycjzVVkQEREREZFMKlHLglKnioiIiIhIRmpZ\nEBERERGJkcYsiIiIiIhIZvmrky5BmamyICIiIiISI7UsiIiIiIhIZsqGJCIiIiIiGamyICIiIiIi\nGakbkoiIiIiIZGJqWRARERERkYxUWRARERERkYxUWRARERERkUxMYxZERERERCSj/LykS1BmqiyI\niIiIiMRIA5xFRERERCQztSyIiIiIiEhGalkQEREREZFMTC0LIiIiIiKSUSWqLOQkXQAREREREamY\n1LIgIiIiIhIjdUMSEREREZHMVFkQEREREZFM1LIgIiIiIiKZqbIgIiIiIiKZqGVBREREREQyU2VB\nREREREQysfz8pItQZqosiIiIiIjESS0LIiIiIiKSkSoLIiIiIiKSibm6IYmIiIiISCZqWRARERER\nkYw0wFlERERERDJSZUFERERERDLRpGwiIiIiIpKZWhZERERERCSjSlRZyEm6ACIiIiIiUjGpZUFE\nREREJE6VqGVBlQURERERkThpgLOIiIiIiGRialkQEREREZGMKlFlQQOcRURERETilJ9f/kcZmFl3\nM/vazGaY2WUZnq9tZq+Y2RQz+8LMTi3tNdWyICIiIiISpyy0LJhZLvA/oAswBxhnZsPdfVraZucC\n09z9MDOrD3xtZkPc/fd1va5aFkRERERE4pTv5X+UbndghrvPii7+nwF6FdvGgc3MzIBawE/AmpJe\nVJUFEREREZE4/YFuSGbWz8zGpz36FXvVpsAPactzonXp7gN2AOYBU4H+7l5iM4e6IYmIiIiIxOkP\ndENy94eBh/9k5G7AZOBAoCUw0szGuPvyde2glgURERERkThlpxvSXKB52nKzaF26U4EXPZgBfAts\nX9KLqrIgIiIiIhInzy//o3TjgNZmto2ZbQQcCwwvts33wEEAZtYQaAPMKulF1Q1JRERERCROZWsp\nKBd3X2Nm5wFvArnAQHf/wszOip5/ELgBeNzMpgIGXOrui0t6XXNf/4UVEREREZHM8gbVLPcFeO7J\nqywbZSmNWhZEREREROKUhZaFbFFlQUREREQkRmUbglAxqLIgIiIiIhKnStSyoGxIIiIiIiKSkVoW\nRERERETipG5IIiIiIiKSkSoLIiIiIiKSUeUZsqDKgoiIiIhInDw/kSkT/hBVFkRERERE4qRuSCIi\nIiIikpFaFkREREREJBN1QxIRERERkcxUWRARERERkYxclQUREREREclA3ZBERERERCSz/JykS1Bm\nqiyIiIiIiMRJLQsiIiIiIpKJa8yCiIiIiIhkpG5IIiIiIiKSiQY4i4iIiIhIZpWoslB52kBERERE\nRCRWalkQEREREYmRBjiLiIiIiEhmGuAsIiIiIiKZaICziIiIiIhkpG5IIiIiIiKSmbohiYiIiIhI\nJuqGJCIiIiIiGakbkoiIiIiIZKZuSCIiIiIikom6IYmIiIiISEbqhiQiIiIiIpmpG5KIiIiIiGSi\nbkgiIiIiIpKRuiGJiIiIiEhGalkQEREREZGM3DVmQUREREREMlHLgoiIiIiIZFKZxixUnjYQERER\nERGJlVoWRERERERipAHOIiIiIiKSkQY4i4iIiIhIRpWpZaHyVGtERERERDYA7lbuR1mYWXcz+9rM\nZpjZZevYZn8zm2xmX5jZ+6W9ploWRERERERilI1sSGaWC/wP6ALMAcaZ2XB3n5a2TR3gfqC7u39v\nZg1Ke11VFkREREREYpSlbki7AzPcfRaAmT0D9AKmpW1zPPCiu38P4O4/lvai6oYkIiIiIhIj95xy\nP8qgKfBD2vKcaF267YAtzOw9M5tgZieX9qJqWRARERERidEfaVkws35Av7RVD7v7w+V8mWrAbsBB\nQE3gIzP72N2nl7SDiIiIiIjE5I+MWYgqBiVVDuYCzdOWm0Xr0s0Blrj7r8CvZjYaaAess7Kgbkgi\nIiIiIjHKUjakcUBrM9vGzDYCjgWGF9vmZWAfM6tmZpsAewBflvSialkQEREREYlRNgY4u/saMzsP\neBPIBQa6+xdmdlb0/IPu/qWZvQF8BuQDA9z985Je19x9vRdWREREREQy+7b3XuW+AN/mhY8SmclN\nLQsiIiIiIjEqY3ajCkGVBRERERGRGOVnYVK2bFFlQUREREQkRlmalC0rVFkQEREREYnRH0mdmpTK\n02FKRERERERipZYFEREREZEYVaaWBVUWRERERERipMqCiIiIiIhklK/UqSIiIiIikomyIYmIiIiI\nSEbqhiQiIiIiIhmpslCUxxBDRERERKRSXIVrBmcp4rLmFyQS95Yf7mHTGi0TiQ3w628zOWjTsxOL\nP+rXB6i50VaJxV/1+/fkMSSx+LmckHj8Jpt1Tiz+vBXv83vewMTib5Tbl9X5gxKJXT3nZNpsdlQi\nsQG+XvEim2zcIrH4K/9vduJ/+6SPvaTj16/VMbH4i34Zl/j7N6ueSGz31QA03mzfROLPXzEm8WO/\nslDLgoiIiIiIZKTKgoiIiIiIZKRuSCIiIiIikpFaFkREREREJCNVFkREREREJCN1QxIRERERkYzU\nsiAiIiIiIhmpsiAiIiIiIhlVpm5IOUkXQEREREREKia1LIiIiIiIxKgydUNSy0JCttt/By5+70ou\nGXM1nc85eK3ndzmiA/3fupQLR17G2S/9ncY7NCl4rlPfzlz49mX8/e3L6XTa/n8ofpcu+zHps5F8\n9sU7XHzJmRm3+c/t/+KzL97hk3GvscsufylY/8BDtzD7+08ZN2HEH4oN0LFLWx6fdC2DPruOYy/u\nutbzzbdryL3v/IMRP91Dn/5FP59Na9fkmifP4LGJ1zBwwr9ou/s264zTpWtnpnz+Lp9PG80l/zgn\n4za333Edn08bzacT3mSXXXYsdd+jeh/KhMlv8+tvs2nffueC9ccedwQfjxtR8Ai2KMvHUcSVlw9n\nn73+y+E9Hyj3vutDNuLvf/DujJk4mLGTh3DeRcdn3OaG2y5g7OQhvP3RQHZq17pg/SefP8Oojx9j\n5NgBjHj/oYL1Dz5+DSPHDmDk2AF88vkzjBw7oMzl+WDMLA475BEO6fYQAx75eK3nly37jf7nv8hR\nRwzkuL8O4ptvFhU89+Tg8Rx5+KMccdgABg8aV+aYhbFn0rPHA/Todj8DHvkwQ+xVXHDeUI7s9QjH\nHjOQb6b/WPDc4EGfcsRhD9Or50MMfuLTMsfc9+BdeWPivbw1+X+ccdGRGbe58rbTeGvy/xj+0R20\nbbdtwfqTzz6UVz65i1c/vYtTzulZsP6fN57MiAn3MPyjO7jvqUvZrPYmRV6vS9fOTJ46iqnT3uPi\nS87OGPO/d1zD1Gnv8cn4EUXOMSXte9Y5pzDps1GMn/QWN958WcH6HXfcnnfff5Hxk96K1uRmjJnk\n3740G+KxD3DgwXvx0cTn+XTKi1xw0SkZt7n5Pxfz6ZQXee/jp9i5XZsiz+Xk5PDO2CcZMvSOtfY7\n+/wTWPTLOLasW/tPlzNb7//uu+/km2++ZMqUiey6664Zt2nRogUffzyWb775kmeeGUL16tUB6Nx5\nP5YuXcykSeOZNGk8V199ZZH9cnJymDhxHK+8Mizj6x5w8O6MmTiEDyc/zXkXnZBxmxtu68+Hk59m\n1EePs1O77QrWf/r5c7zz8eOMHDuQN95/ZK39zjz/r8xfMWatzz75Y58aGYNWMPlu5X4kRZWFBFiO\n0evGPjx28oPceeDN7NJrNxq0blRkm59+WMLDfe7hri63MOruNzjy1mMBaNimMR2P34v/9bydu7vd\nyvYH/YW6LeqVK35OTg533H0tR/bqy267dKPPMYex/fatimzTrdv+tGrVgp3/ciDnnXsld91zfcFz\nTw5+gSMOP/UPvnvIyTEuuONYLj/yPvrudj0H9unI1tsXff8rfl7JfZc8x9C7315r//P+cwzjRk7j\n1PbX0W/Pm/ju6wXrjHXX3TfS67BT2LXdQfT56+Fsv0PrIs93634ALVu1YMe2+3He2Zdxz303RWXM\nWee+X3zxNcce048PxnxS5LWeeXoYe3bswZ4de3DaqRdGa38u78fDkUe14+EBmU/qcVjf8XNycrj5\n9gs54ah/sn/HU+h19EG0brN1kW0O7LoH27RsRqddTuCfF/yXf995UZHn+xx6IV06nU6PzoUV27P+\ndh1dOp1Ol06n89rw0bw+fEyZypOXl89NN47k/of68PIrpzPi9WnMnLG4yDYDHv6I7bdvwIvD+nLT\nvw/l1ptHAfDNN4t4YegUnnr2ZJ5/qS/vvzeT778r+984Ly+fG294gwcePpbhr5zJ6699wcwZi4ps\n88jDH7L9Dg156eUzuPmWw7nl3yND7Ok/8sLQyTz93Km8MOwM3n/vG77/7qdSY+bk5PCv28/g9KNu\n5NCO/el59L60bNOsyDb7dW1Pi5aN6brLuVx9wYNce2c/AFrvsBV9/taFPvv/k157XcT+3Xdjq23D\nsTr2nSn03P1CDt/rImbPmMeZF/cu8pp33n09Rxz+N9q36xKOn+LnmO7706rVNuzUdn/OO+cK7r63\n8Nhb1777dd6Lnod1YY8OPeiwa1fuvjNcwOTm5vLo43dywXlX0mHX1M2H/Iyff1J/+7LY0I59CH/P\nW+74J8ce1Z9OHY7hyD5d2W77ojd4Du66N9u23Ird2x3FxeffzG13XVbk+X7nHMv0r79d67WbNG3I\nAQftwQ/fz18vZc3G++/RozutW7eidesd6NfvbB544L6M2916683ceefdtG69Az//vJTTTutb8NyY\nMR+w664d2HXXDtxww01F9uvf/wK+/PLLjK8Zzr0XccJRl9C540kccfTBbNemRZFtDuy6J9u2bMbe\nuxzHPy64jVvuvLjI80cf2p8unfrSvfMZRdY3adqA/Q/cnTnfr/39m/yxz+qMH0gF41i5H0lRZSEB\nzXfZmiWzF/HT90vIW53HlOETadt1pyLbfD/hW1YtWwXAD5NmU7txHQAatGrID5O+Y/Vvq8nPy+fb\nT2bwl+7tyhW/Q8d2zJr5HbO//YHVq1fz/NBX6XlY0bv3hx52ME8NeQmAcZ9OpnadzWnUqD4AYz8Y\nx08/L/1D7x1g+w4tmDtrEfNnL2bN6jzefX48e/cs+h6WLlrB1xO/Y83qvCLrN928Bjt1asXrT4wF\nYM3qPH6NPqdMZs6czexvv2f16tUMfe4Veh5WtBWj52FdeWrICwB8+umk6H02oGPHXda579dfzeCb\n6bNKfI/H/LVX2T6MDDp03JratWv+4f3/rPUdf9cOOzB71ly+nz2f1avX8PIL79Ct5z5Ftul26D48\n//SbAEwcN43adWrRoOGWZY5x+JEHMOz5tSuWmUydOp+ttqpD8+Z1qL5RLj167MC773xTZJuZMxez\n+x6hQrPttnWZO28Zixf/yqyZS9hp58bUrFmdatVy6NCxOW+/Pb3M5Zz62Ty22mpLmjffIsQ+pC3v\nvFN0/5kzFrHHHi2i2PWYO3cpixf/wqxZS9hp5yZpsbfi7ZFflxpz5w6t+G7WfObMXsjq1Wt47YUP\nOKjn7kW2OejQ3Rn29HsATBk3nc3rbEr9hlvQsk1TPhs/nd9W/U5eXj7jPphG18P3BEJlIS8vXJBP\nHjedRk3qFvsM084x6zj2hjz5IgDjPp1E7Tqb0ahRfTp03GWd+57R7wRu/88D/P777wAsWrQEgIO7\n7MvnU79i6tT0iyZf+/NP8G9fFhvasQ/QvsNfmD3rB76bPZfVq9cw7PmR9Di0c5FtuvfszLNPvwbA\nhHGfU7v2ZjRsGP6fGjdpQJfu+/DkEy+v9do33vp3rrvqXtzX/lv/Edl4/716Hc6gQU8C8Mknn1Cn\nTm0aNWq01nYHHngAzz8fvoueeGIwRxxxeKmv3bRpUw49tAcDBgzM+Pza595Ra517ux+6D0OffgMI\n597N69SiQcO6mV6uiOtuOZ8brr4/42ef/LFP0QuHCsrdyv1ISpkrC2ZW08zalL6llGbzRnVYNq/w\nYnvZ/KVs3mjdTagdjt2L6e+GA2HB1/NpsXtLNqmzCdVrVKfNAW2p06ROueI3adKQOXMK78TMnbuA\nxk0aZthmXsHyvLkLaNxk7RPcH1GvSR0WzSm8I7do7s/Ua1y299CoRT2WLf6Ffz50Mg9+eAUX/+9E\namyy0Tq3T38Pc+fOp+la77MRc35I+yzmLKBJk0Y0adqo1H1LcvTRh5V52w1do8b1mDe3sCvN/LmL\naNy4aGtYoyZFt5k3dxGNmoTKqTs8O/x23hj9MCecuvbnukennVn04098O3Numcrz48IVNGq0ecFy\nw0absfDHX4ps06ZNg4ILwamfzWP+vGUsXLiC1q3rMXHCHJYuXcWqVasZM3oWC+YvL1NcgB9/XEGj\nRpsVxm64OT8uXFE09vYNCyoBUz+bWxC7Vev6TJzwA0t/XhnFnsmCBaXHbti4LgvmLilYXjh3CQ0b\nF62INWyyJQvmFt5hXzB3CQ2bbMn0L79nt73bUmfLWtSouRH7dWtPo6Zrt2T2PulARo+cWGTd3B+K\nHj9NmpZ8jpk7Nzr2mjRc576tW29Lp0678/6YYbw58ll22y10A2zVelvcnZdfHcSHH7+6zs8iyb99\nVdW4SX3mzllYsDxv7kIaR8d2wTaN6zMvfZt5P9KoSQMAbrrtIq676h7y84u2FHU/dD/mz1vEF58X\nrexVNE2bNuGHH+YULM+ZM5emTZsW2aZu3bosXbqUvLy8aJs5NG1a2PV47733YsqUibz++iu0bdu2\nYP1dd93OP/95+VqfTUqjxvWZW+zc22itc2/9tc/PTcI27s6zw+/kzdEDODHt3Nvt0H1YMG8R0z6f\nmTFuRTz2K6LK1A2pTAOczeww4L/ARsA2ZrYLcL27Z6z6mlk/oB/AQw89RL9+/dZTcauebfdqTce/\n7smDR90FwKIZC3n//rfpO+RcVq/6P+ZPm0t+3vq5q1IZ5Obm0HqX5tx78bN8NX425/6nD8de3I3H\nb3gl6aIV6NhxF1auWndrh5TPEV3PY8H8xdStV4dnht/OjOnf8cnYzwqfP/pghj0/ar3GPO2MPbnl\n5rc5+sjHaL1dfbbfoSG5Oca2LevR9/Q96Hf6s9SsWZ3tt29Abu76PYGffsbe3HLzW/Q+8hFat27A\n9js0IjfHaNmyHn1P34t+pz9NzZrVabN9Q3JysvvlMevruQy48yUeHXYNq1b+xleffUt+XtELk7Mu\n6U3emnyGPzs6q2UByK2WyxZb1qbzvkfQoUM7Bj/1P9q22Zdq1XLZu1NH9t37cFauXMWSpV9hNMYp\nf/eUJP/2UlSX7vuwaNHPfDb5K/bet33B+po1N+bCS06lT6/zEixdPCZOnMRWW23Lr7/+So8e3Rk2\n7Hm2264thx56CD/+uIiJEyfSufN+WYndq+u5BefeZ4ffyYzp3zNl4ldccPFJHHvERaW/wHpUnmMf\nOAhYv18KWVCZBjiXNRvStcDuwHsA7j7ZzNY5qtTdHwYeTi3+ifJtkJYvWErttNaA2o3rsHzBsrW2\na7R9E3r/5zgeO+kBVi5dWbB+/LMfM/7ZMDCv26U9WTa/fF2C5s1bSLNmjQuWmzZtxPx5CzNs0wSY\nAECTpo2YP2/dYwPKY/G8pdRvVjjwt37TLVhcxvewaN5SFs1dylfjZwMw+qVJGQdIp4T3EDRt2pi5\na73PBTRrnvZZNGvEvHkLqF69Wqn7rkufYw7nuWdfZscdty/T9hu6BfMX06Rpg4Llxk3rM39+0X7i\nC+YV3aZJ0/osmLeoYH+AJYuX8sYrY9h1tx0KKgu5ubkccvi+dN+37DckGjTcrMgd+YULVtCwQa0i\n29SqtTE33nwoEO6ude/yIM2ah2P2qN7tOKp36DZ3953v0zCtpaDU2A02Y8GCwpaEhQuX06Bh0f1D\n7MMKYnc7+H80ax6Ol95H70Lvo3cB4K4736VRw9JjL5y/hEZNC7sVNGxal4Xzi451WDjvpyItBo2a\n1mXhvLDN84NG8fyg8L3792tOYGFaK8WRJxzA/j068Lee16wVt2nzosfPvLnrOsektgnHXrXq1de5\n77y5C3h5WOiuNn78FPLz86lXb0vmzlnAB2M+ZcmSwhZLs7q4F60sJPm3r6rmz1tE02aFd5abNG3I\n/HlFx+nMn7+IJunbNGnAgnk/clivA+l+yL4c3HVvatTYmFqbbcr9A67n3jufYKsWTXjvo6ei12zA\nqA+epFvnv/Hjj0uoCCZNGg/AuHHjad68cIxQs2ZNmTu3aCvokiVLqFOnDrm5ueTl5dGsWTPmzg13\n2FesKDxfjBjxBvfffy9169alU6e9OfzwnhxySHdq1KjB5ptvzuDBTxR53QXzF9G02Ll3wVrn3kVr\nn5/nLY72Lzz3jnhlNLvstgNLf17BVi0aM+rDxwq2f2vMo/TYvx+LfgznjKSPfaA9laCysCHOs7Da\n3YtfzaoS8AfNmfI9dVvUZ4vmW5JbPZd2h7dn2sipRbap3WQLTnzkNJ7tP5jF3xY9sW5at1bBNn/p\n3o7JwyaUK/6E8Z/RslULtm7RjOrVq3N0n5689mrR4+q1V9/m+BNC1pSOu+/C8mUrWLBgUaaXK7ev\nJnxH05YNaLR1XapVz+WAozvw4Wuflb4j8PPC5Sya8zPNWocvll33b8N3X627EtOq1TZs3aI51atX\np88xh/HaqyOLPP/aqyM5/oQwMHP33XeN3uePjB8/pdR9MzEzeh/dk6HPVZyWjqRNnvAV27RsRvOt\nG1G9ejV69T6Qt14bW2Sbt14fy9HHdQOgfce2LF/2Kz8u/Imam9Rg01qhD3HNTWrQ+aCOfDWtcKDj\nvgfsxozp36918VGSHXdszHff/cycOUtZ/XseI0Z8yf4HFB2At3z5b6z+PXQJeOH5KezWoTm1am0M\nwJIlvwIwf95y3n57Oocc2pay2nGnJnz/3U+FsV+fxgEHbFdkmyKxh05mtw5bZYi9jFEjv+aQnjtS\nmqkTZtCiZWOabd2A6tWrcWjvfXjntaKZfN55fRxHHLc/AO06bseKZStZtDB8+W5ZL3SRbNysHl0P\n34NXhoYWhH0P3pXTLzyCs//6b35b9ftacVuln2PWceydcOJRAHQsOPYWMWH8lHXu+8rwt+jcOYyZ\naNV6GzaqXp3Fi3/i7ZHvs+OObahZswa5uSELkvvaNyCS/NtXVZMmTGObllux1dZNqF69Gkcc3YU3\nXi/aCvXma6P563GhgrZbxx1ZvvwXFi5cwo3X/o92bXqy2196ccbfruCD98dxzun/4ssvZtJ2m27s\n9pde7PaXXsyb+yMH7XNihakoAAUDkocNe5mTTz4RgD322INly5azYMHa31nvvvseRx8dvotOOeUk\nXn45fIc0bFhYierYsSM5OTksWbKEK664iubNt2GbbVpz7LEn8M4773LSSUUzTRWeextH596DePO1\nD4ps8+brY+lzXHcgnHtXLPuFHxcuyXju/XraLL6aNoudtj2c3Xc8ht13PIb5cxfRdd/TCioKkPyx\nD0wr218pWZVpzEJZWxa+MLPjgVwzaw1cAKyd80/KJD8vn+FXP0/fJ88hJzeH8c9+zI/TF7DHiZ0A\n+OTJsRx8YXc2rbMpR9zUp2Cf+w79LwAnPnwam9TZlPw1ebx81VB+W16+Li95eXlcfOF1vPzK4+Tm\n5jDoief58stvOO304wB4dMDTvPnGe3Trvj9Tp73DqpW/cWa/Swv2f3zQXey77x7UrbcF02d8wI03\n3s2gx4eW6/3fe/Ez3Pry+eTk5jBi0Id89+V8ep62LwCvPjqGLRpuzgNjLmOTzWrg+U7vcw+k727X\ns3LFb9x7ybNcMfBUqm+Uy/xvF3PbWYPXGevvF17NK68NJjcnlyeeeJYvp03n9DPCiXvAI0/yxoh3\n6Nb9AL74cgwrV63izNMvKfiMMu0LcHivbtxx5/XUq78lL778GJ9NmcbhPU8CYJ9992DOnHnM/vb7\ncvxFirrkohf49NPvWPrzSg7Y707OO39/evfJnG4vG9Z3/Ly8PK685C6eGvZfcnNyeGbw60z/ajYn\n9Q29GAcPHM6oNz/moK578uGUp1i16v/4+9m3AFC/wRY8+tSNAFSrlstLz73Ne28XpgztdfSBDBta\nvhtI1arlcMWVXTjrjOfIy3eOPHInWrWuz3PPTALgmGN3ZdasJVx1+WuYGS1b1eO6G3oU7H9R/2Es\nXbqKatVzuPKqLmy+edmz9FWrlsMVV3XjzNOfJi8/nyOPaker1vV59plQ4f/rsbsxa+Zirrz8Fcyg\nZav6XH/joQX7/73/CyF2tRyuvLpbmWLn5eVz/SUDGDDsX+Tm5PDC4FHM+OoHju0bWuSeGfgW7785\ngc5d2zPDPgclAAAgAElEQVRyyv2sWvV/XHF2YcaWe4f8gzpbbsaa1Xlcd9EjrFgWWjmv/u/pbLRx\ndR57ObQqTBk3nWsuLExte9GF/2L4q4PIzc1l0OPP8eWX33D6GSHTzIBHhvDGiHfp1v0APv/yfVau\nXMVZZ/wjKm9exn0Bnnj8OR58+DbGTXyT1b+v5ozTQ+aWpUuXc8/dAxjz4fCCAZdOYT/xIp9/Qn/7\nstjQjn0If8/LL76N54bdQ05uLk8PHs7XX87ilNPCxeITj77IyDfHcnC3Tnz62UusWvUbF5x1fSmv\nmh3ZeP+vvz6CQw7pwYwZX7Fy5SpOPfX0gudee204p59+JvPnz+fSS6/gmWeGcOON1zFp0mQefTQM\nWj766N6cfXY/1qzJY9WqVRx77Illjp2Xl8cVl9zJ08Nuj869rzH9q9mc3Dck4Bg08GVGvfkRB3Xd\nk4+mPMOqVb/x97P/DYRz78CnbgZS596RvPt22dI1J33sA6+V+UNKUH6C2Y3Ky8qSRcDMNgGuBLoC\nBrwJ3ODuv5UhRpVvgbis+QWJxL3lh3vYtEbLRGID/PrbTA7aNHOO5TiM+vUBam60VWLxV/3+PXkM\nSSx+LickHr/JZp1L3zBL5q14n9/zMmcJicNGuX1ZnT8okdjVc06mzWZHJRIb4OsVL7LJxi0Si7/y\n/2Yn/rdP+thLOn79Wh0Ti7/ol3GJv3+z6onEdg9ZQxtvtm8i8eevGJP4sQ+V4yp8RMfjyn193GPc\n04m8tzK1LLj7SkJl4UozywU2LWNFQURERERE0mxwYxbM7Ckz29zMNgWmAtPM7B/ZLZqIiIiIyIan\nMo1ZKOsA57buvhw4AhgBbAOclLVSiYiIiIhsoPL/wCMpZR3gXN1CB7wjgPvcfbWZVfmxCCIiIiIi\n5bUhzrPwEDAbmAKMNrOtAU1dKSIiIiJSTpVpzEJZBzjfA9yTtuo7MzsgO0USEREREdlweeVI2gSU\nfYBzbTO7w8zGR4/bgU2zXDYREREREUlQWQc4DwRWAMdEj+XAY9kqlIiIiIjIhirfrdyPpJR1zEJL\nd++dtnydmU3ORoFERERERDZk+ZUoTVBZWxZWmdk+qQUz6wSsyk6RREREREQ2XI6V+5GUsrYsnA08\nYWa1CdNo/wT8LVuFEhERERHZUFWmbEjmXvZ2EDPbHCCaoC0WZtbP3R+OK57iK35FiV+V37viK77i\n69yj+Iq/IXtqp1PL3RHp+KmPlVrDMLPuwN1ALjDA3W9Zx3YdgY+AY939+RJfs6TKgpldVNLO7n5H\naYX+s8xsvLt3yHYcxVf8iha/Kr93xVd8xde5R/EVf0P25E59y11ZOHHqwBIrC2aWC0wHugBzgHHA\nce4+LcN2I4HfgIGlVRZK64a0WfTTYa3OUpVoaIaIiIiISMWQpRmcdwdmuPssADN7BugFTCu23fnA\nC0DHsrxoiZUFd78uCvYE0N/dl0bLWwC3l6f0IiIiIiLyx8YsmFk/oF/aqoeLddlqCvyQtjwH2KPY\nazQFjgQOYH1UFtLsnKooALj7z2a2axn3/bOS7rem+IpfFWMrvuIrftWNX5Xfu+Irfiz+SPecqGLw\nZz+fu4BL3T3frGwVljINcDazKcD+7v5ztLwl8L677/QnCisiIiIiUuUMbHtGuesLfac9UtqYhb2A\na929W7R8OYC7/zttm28pHFpQD1gJ9HP3Yet63bK2LNwOfGRmQ6PlPsBNZdxXREREREQi+dl52XFA\nazPbBpgLHAscn76Bu2+T+t3MHgdeLamiAGWsLLj7IDMbDxwYrTqq+MhqEREREREpXTYGOLv7GjM7\nD3iTkDp1oLt/YWZnRc8/+Edet6wtC0SVA1UQRERERET+hGxNyuburwOvF1uXsZLg7n8ry2vm/Pli\nrT9mlmNmeyddjiRFuW9FRERkAxd1F5EqyP/AIykVqrLg7vnA/5IuB4CZ7W1mx5vZyalHTKG/MbP/\nmFnbmOIVYWa5ZvZuErGj+HWTil1RmFlDM3vUzEZEy23N7LQY4+9jZqdGv9eval9m0THQxMy2Sj1i\njH2DmXUxs03jillRmNmosqzbkJlZTTNrk2D8TczsajN7JFpubWY9Y4ptZnaimf0rWt7KzHaPI3ax\ncmwSc8jno7hV6n9dQstCeR9JKXM3pBiNMrPewItellRNWWBmg4GWwGQgL1rtwKAYwrcjDEgZYGY5\nwEDgGXdfHkNs3D3PzPLNrLa7L4sjZjEfm9lk4DFgRFL/Awl7nPD+r4yWpwPPAo9mO7CZXQN0ANpE\nZagOPAl0iiH2vZRw88TdL4ihDOcD1wALKRx/5sDO2Y4dmQUcB9xjZiuAMcBod385m0GjWCV99ptn\nMXYNYBOgXjSHT+obcXNCzvBYmFkn4Fpga8J3owHu7tvGFP8w4L/ARsA2ZrYLcL27Hx5H/MhjwARg\nr2h5LjAUeDWG2PcTjrkDgeuBFZRj0qg/K+rVMACoBWxlZu2AM939nCyHzjGzK4DtzOyi4k+6+x1Z\njg9UiP//PYF7gR0Ix0Au8Gs2zz1Jy9IA56yoiJWFM4GLgDVm9huF/7Bx/sN0ANomcaHq7iuAR4BH\nzKwz8BRwp5k9D9zg7jNiKMYvwFQzGwn8mla2rF+sAdsBBwN9CRdMzwGPu/v0GGJXFPXc/bm0lGdr\nzCyvtJ3WkyOBXYGJUex5ZrZZybusN+Ojn52AtoQKEoTsa3GNl+oPtHH3JTHFK8LdHwMeM7NGwDHA\nJYQJeLL6N3D3zSC0bADzgcGEc+8JQONsxiac8y8EmhAuVFOVheXAfVmOne5R4O9RGeI63tJdS5h9\n9T0Ad5+cQKteS3f/q5kdF5VhpZU1Efuft4e7tzezSVHsn81so5hiA9wJdAOGR/GnmNl+McQ9FjiC\ncD0W17k2k6T//+8jfBZDCddgJxOuB6QCqHCVhdSXVsI+BxoRvjRjFY1ZOBQ4FWhBSFs7BNiXMGAl\njoPnxegRu6iCNhIYaWYHEO5qnxPN9XGZu3+URLli9mvUHcuh4I5LXK08v7u7m1kqdmzdYdz9iSjm\n2cA+7r4mWn6QcIc9Dj8Q32e9FjMbQKgoLSS856OJKm4xOdzd26UtPxAde//KVkB3vxu428zOd/d7\nsxWnDJa5+4gE469292XFrs3jvmH1u5nVpPDc0xL4v5hir46+/1Kx6xPzzVd3/6HY5x/HRXN3d7/V\nzDZ29+tjiLcuSf//4+4zzCzX3fMIN00mAZcnWaZsykY2pGypcJUFgKgpujVQI7XO3UfHEPcVwolq\nM2CamX1K2okypubgb4B3gf+4+4dp65+P6S5HwUVbEqKL5BOBkwgXTOcT7vTsQrjjUBX6z19EeM8t\nzWwsUJ9w0RiH58zsIaCOmZ1BaOF5JKbYKVsQuqD8FC3XitZlTVrz/yzgPTN7jaLHfixdAYC6hOb3\npYT3vzhVaYrJr2Z2AvAM4Vx4HGmti9nk7vdGXUFakPbd5O5xdP8EeNfM/kO4UZL+t4+rsvaFmR0P\n5JpZa+AC4MNS9lnfrgHeAJqb2RBCK9/fYop9D/AS0MDMbiKc866KKTbAD9H/n5tZdUIr45cxxD0V\nuJvQupBkZSHp//+VUUvSZDO7jXCztkKNq13fKlM3pDLN4BwnMzudcJA2I4wZ2BP4yN0PLHHH9RO7\nc0nPu/v7MZShlrv/ku04pZThWzLc0Yqj76KZTSd0gXjM3ecUe+5Sd78122WoCMysGmHcgAFfu/vq\nGGN3AbpGsd9095FxxY7in0rokvFuVIb9CDNSZq0SG43VWCd3vy5bsTMxsx0IXSL+DuS6e7OY4rYg\nXLh0IpwDxgIXuvvsGGJnHCsWU/dHLHNiB4/juyeKvwlhnFLBsUfoevpbHPHTylGX8L1rwMfuvjjG\n2NsDB0WxR7l7HBfrqdj1CP/7B0fx3wL6Z7tLopk9Teh20wSYmf4U4f8vlvFSFeD/f2vCDcKNCOe9\n2sD9MXW9TsRdrc8p9wX4hd/cn0hzREWsLEwlDGj62N13iU4eN7v7UTGW4VZ3v7S0dVmKXQM4DfgL\nRVtW+mY7dloZ0jMS1SD0Gd/S3bPWFSEttlXRQc0FzOxcYIi7L42WtwCOc/f7Y4i9DTA/dYESdUlo\nGMfFYrFyNAL2iBY/cfcFccZPioXMM/sSKkh1gI+BMe4+MNGCxcDMviShsWIVTdQdZ9O4ElukxT0S\neCeV3MLM6gD7lza763qKvWWG1SvivFGSlOh89yawVu8Fd/8uhvg5wNHu/ly2Y5VQhk2BVVFWzNQx\nsLG7r0yqTNl2R6vyVxYumpFMZaEiNvH8lnahsrG7f0W4wxqnLhnW9Ygp9mDCeIluwPuEFpYVMcUG\nwN2XpD3muvtdhHEUcahnIXXs62b2TuoRU+yK4oxURQHCQD/gjJhiD6Vo62hetC5u/0dohv6ZkCUk\nli54ZvaKmQ0v9hhsZv2jiny2dSeMUejt7ju4+6lxVhTMrIaZnWtm95vZwNQjpvCpsWKJsORTFj9l\nZptHF01TCV1h/xFX/Mg16VnwovNQia1u69FEYBEh+9s30e+zzWyime2W7eBm9kRUOUotbxHX/767\nL3D3du7+XfFHTPHzgX/GEasEowhZ0VJqAm8nVJZYaJ6FP2dOdMAOIwxyfRmI5YAxs7Ojlo02ZvZZ\n2uNbwsk7Dq3c/WpCyrAnCBfpe5Syz3plZu3THh0sTBMe1/iWIcBXhLEJ1wGzgXExxa4oci1tlF10\nhyWurCDV3P331EL0e5wZSVJdEUcT7rRdF/28NqbwswjZwB6JHssJlfXtiGHshrufR8iG097MeppZ\ng2zHLCbJmxX1CBfIb6ZX1mKKDSFl8ZuE7iAQLlovjDF+26gl4QhgBOEceFKM8SHzNUFc5/6RwCHu\nXs/d6xJu0L0KnENIq5ptO2e4SbNrtoNayPiHmU0tdt0x1cw+y3b8NG+b2SVm1tzMtkw9YoxfI70L\ndvR73HNexErzLPwJ7n5k9Ou1UR+62oQBV3F4inCS/jdwWdr6Fe7+U+Zd1rtUk+tSM9sRWADEfcFw\ne9rvawgX7MfEFLuuuz9qZv2jMSLvm1lVqyy8ATxrYaAxhNSScR0Di8zscHcfDmBmvYDY+ixH+lPY\nFfGAVFfEmGLv7e7ped1fMbNx7t7RzL7IdnAz60PItf8eoc/yvWb2D3d/PtuxI63cvY+Z9XL3J8zs\nKeLLRHVtTHHWJcmUxQDVLQysPQK4z91XW5SVLEbjzewOCidHPZeQSjMOe7p7QQuqu79lZv919zPN\nbOMY4ueY2RZRJSHVLSqOa6T+0c9YJr8rwV+jn+emrXMglnkWCMkV2qcGVJtZB2BVTLETUZkGOFe4\nygKEGWSB1u7+mIX0aU2Bb7MdN2p+XQYcF93NbUj4jGpZGHj8fbbLADwc9VG/ipARpxZwdQxxC7j7\nAXHGKyZVWZpvZocC84A4725UBJcSKghnR8sjCZMFxeEsYIiZ3Ue4WP2BkO86Tr+5+29mVtAV0eKb\n1baWmW2VOtYtzN5cK3ru93Xvtt5cBXR09x+j+PUJTfFxVRYSu1kRRwKJUiSZshjgIcKNmSnAaAsD\nPmMds0DIPnc1hXOcjKToxWM2zTezSwmZuCBcvC6MvovjuK66HfjIzIYSzn1HAzdlO6i7z49+xtKD\nooRyJJ1p8EJgqJnNi5YbU1iB2SApdeqfYAnOIJtWhvMId7lim8XVis7ceGr0M3V3J7Zc91FZahP6\nqab6ib9PmEk0ji/OG6P4FxNmc9yckBmhyoj6jz4QPeKOPRPY08xqRctJZOYq3hXxZ2Lqikj4v/vA\nzGYSLhi2IczzsSkQR0rhnFRFIbKEeLuLpm5WXE3hzYqsJzaAtWaR3ohw7o9zBtckUxbj7vcQ0oem\nfGdhrpnYuPuvFG1Vj9PxhO+d1GDqsdG6XGJo2Xb3QWY2njCDNMBR7p71ySAtwdnTi5Uj400hjy91\n8VTgQUIXyOWEYzHrrblJqkwtCxUxG9Jkohlk3X3XaN1ncaUPi+LNIMwmGdssrlaYurENoQtGqq/u\nYcCn7n5ijGV5gTDYMHVxdBLQLs6MVFWRmT3n7sdE42Yypa7NZmX1RHd/slilNT12XPMMFGEhnXFt\n4I30sRRZjrkxsH20+HWcqSst5DnfGXg6WvVX4LM4MrFVJNGYnV6ErimxXbxasimLE7tJY2Z3ufuF\nVjjXUBEezxxDiTCzzd19+br658fVBdnWMXt6HFkIo/jpEyLWIKSwnejusVSYo7EbywnjFiFUFOu4\ne5844ifhpm3OK/cF+JXf3pdIc0SFa1kgwRlk08Q+i6tHedzNbDTQ3t1XRMvXAq/FWRagpbv3Tlu+\nLqrEZU10oirp7kosudYTlmTf1dRxVhFmUI+9K6KZHeju75hZ8QpxSzPD3WOZ0dzd/2FmvSlsSX3Y\n3V+KIzaEjECE8SFN3L2HmbUF9nL3R+MqAxTM5D4suokSS2XBQrarc4B9COeiMWb2YIyVxYGEmzSp\nu+gnEVrX47hJMzj6+d8YYmVkZtsBl7D2pHzZzvP/FOGcO4Gi30FGvH32Y589PZ27n5++HLXuPrOO\nzbNhR3dvm7b8rpllvWUnSfmoG9KfURFmkE1yFteGFO0b/Xu0Lk6rzGwfd/8AwMw6kf2BRuOjn52A\nthT2me0DbNAnjBR3nx/1z3087nEj7v5QFHu5u98ZZ+ziEuqK2Bl4h9CSB4UXDakLhlgqCwDu/gLw\nQlzxinmc8JlfGS1PJxyLWa8sFKuo5RD+B+KckGwQIfNT6g7r8YSL6LjubMZ+kybF3SdEx38/dz8h\njpgZDCV0QxlA4aR8WefuPaOWrM4xjUtcl8RmT19XeQjdMOMy0cz2dPePAcxsDwqvCzZI+RWrY0+J\nKmJl4XfCgL7lhIuFf3nMM8gC30ePjYg5bSThC+tTM0vdTTyC8AUep7OBJ6JmcQi57k/JZsAoTSxm\ndjawj7uviZYfJL5sLIlz9zwzyzez2jGNESke+zgg0coCcCRRV0QAd59nZllt8XD3VDfAs4HeFL27\nmfVTegn9llOzuMbVbz/JjECHpf2eysLWK6bYkPydzSRu0hSIjv+tzWyjuLr8FbPG3WMfpwXhAItu\nDu6URPzI8YQZpO+mcPb04+MKXqwLWg7hpl2cc+zsBnxoZqkK21bA16luuXF2RY9LBRsFUKKKWFlo\nAFxAuFAYSAKTcqR1CYp9kKe732RhUqB9o1WnuvukuOJHvgRuA1oSZpFdRqi0xJHzeQvCoOZUP9Fa\n0bqq5BdgqpmNJO3OUkxdscZGmZCeLRZ7YgyxU5LsijgMWEo4/6Tuamf9lO7uFaL7FwlmBHL3U0vf\nKquSvrOZfpPGCOfAv8UYH0Kr+lgL81ukH/9xtKq/YmbnAC9RtEU/rrTlE82so7snkqrb3WdTQuXY\nzC53939nsQjpXdDWAN+5+5wsxiuue4yxKgR1Q/oT3P0qM7sa6ErICnRfNPDl0ShTS9ZFKQMHE6Xs\nNLPFwMnuHsvI/OjCLM6Ls+JepvCCaW7MsW8BJlmYY8MIg/2ui7kMSXuRGLu9FLNL9PP6tHVOYYaQ\nOCTZFbGZu1e5L600iWUEMrNmhC5Aqe5mY4D+MV6wpN/ZdGBrYryz6e6TgXZmtnm0HHfaVICZ0SOH\n+McvpVqv02etjnPMwB7ACWb2HaGilGrVqyh3tPsQ5oDKlkOKJ1Iws1vjSq6QdOrYJKhl4U+K7iou\nIOT4XkO4s/y8mY109zimJH8YuMjd3wUws/0JFyt7xxC7Ikjsgika0DqCwlmrL3X3BUmUJSkeJsPa\niJCRxwlZWWLpFhD3WIl1lOG/ZtaFZLoifmhmO7l7XDO2VxhmlkPIgtKZZDICPUYYbJoaI3BitK5L\nTPG7E75rUq26owk3TbJqXRnILJrEPc5MZGmt6puHRY9r9u6KkOe/W8LxS5Pt29BdCHP8pOuRYZ2s\nJ5UpdWqFqyyYWX/CJFCLCQOd/uFhJssc4BsgjsrCpqmKAoC7v5dQVqakJHbBZGbXR6niXo6Wc8xs\nSIKD7mJnZocQJmgqyPVvZme6+4gYYtclpG9MZYT5gJC+MZY0wtEgy7ejSktsY5WsMF1tNeBUM5tF\n6ApR0e4uZo2755vZ/zykrE4iv3l9d38sbflxM7swxvhHAKcTWvWM0Lr8iLvfW+Jef17qDr6z9gVh\nrPceLcya+1iqTGa2DOjr7rHM4hy16rclVFqB+PL8u/t3ZtaewnPf2Ji7X5YmK/8L0TjBc4BtzSy9\nq/FmhHETkiUa4PznbEmYDKVIk1T0RRZXSslZUVeoVDq5Ewl9OTdoFeSCqXmqb6aFfPfPAXGP2Uja\nHcAB7j4DwMxaEtLnZr2yQMjEMZowyBdCru9ngYNjiJ3kAO8k0tVWRKOi1K0vRulL47TEzE6kcI6J\n4wiT0sXlNMK8Dr9C6IIBfERhdqSsSLub/wSh29XSaHkLwqzCcRoInOPuY6Iy7EOoPGT93B9lQduf\nUFl4nXBX+wNC0o+sM7N/EVq1Ul1AHzOzoe5+YxzxyyBbLQtPEb5b/k3RNMUrYhwvIhVchZuUrSKI\nTtLXUbTv7LWpk/iGysy2Lun5OPoURinshhBmczwAGJF0Ks+4mdk4d++YtmyEifk6lrDb+or9ubvv\nWGzdVHePLUuImb1MyIaUxADvKi3KyrQpIXXlKmLMxhSdf+4F9iLctPgQON/df8h27Cj+VKCjR/Mq\nWJh3YVxc//tmNilq1SlxXQJlmOju7WOIPRVoB0xy93YW5vx40t1j6YZmZl8TJh9N/f1rApPdvU0c\n8UtjZle4+81ZjpE+v009YDN3z9r8NlXdZc0vKPcF+C0/3KNJ2SqQlkBzwiCvaoSZDA8khrsrSUpy\ngFHU/JtyN6EbzljgfTNrX8Gag7NtvJm9TmhVccLdrnEW5aH37E4Q9paZHRvFhjC49c0sxsskyQHe\nVVrCWZmuB05x958BLMyo+1/CAPc4PAZ8YkXTVsc5GV2OmW1R7P3H/R39fpRc4GnCueevhDmH2kPW\ns6L9FvUgWBONmfiR8D0cl3mE7k+pLGgbE2OCj3W1LLl7X4AYKgrF57fZiOzPb1Ol5buyIVV2Qwgz\nSX5O5RqDUpkVb27/mdAcfTvxZ+NJWg1gIWGgKcAioCYhD322Jwg7A7iQwi54uYR0mmcS0x3mJAd4\nS8HkaAWzGLv7sJhC75y6UIaQMtPMYrur7u53mNl7hPcO8aetvh34yMxSue37ADfFGB/CnX0I45bS\n7UoWz8NR6+lnFmYNfoQwm/IvhG5gcVkGfGEhZbUTBvx+amb3QCwtmzun915w95/j/P8ngfltqrrK\n1LFHlYXMFrn7K0kXoiqpCFl4KgovJd98NvNtl3Zn2cz+ku0UwkkO8K7qzOx+oBWF4wbOMrMu7n5u\nDOETv7OeZNpqdx9kZuMpvCA/yt1jnb2+tPOwmZ3i0QSa6zmum9nu0cXyg2b2BrC5u8cxt0/KS9Ej\n5b0YY0Py//9Jzm9TJVWmO9GqLGR2jZkNAEZRdHIYdY3Isqif6s1AE3fvYWZtgb3cPc7uABVdtvNt\nl2QwkO3+y0kO8K7qDgR2SA1ujrpGxJUZqSLcWU9UVDmItYJQTv2B9V5ZiBRMiuZhgrJYlVYJMrMX\n3L13Sdv8SbcDH1uYV8oIXUDj/P9Pcn6bKkktC5XfqYQuENUprPxlu/uHBI8T+kteGS1PJ2TjUWWh\nUJIdHeOIvSJVUYjMAmLL917FzQC2AlLjl5pH67KuItxZl1Jl8/iv6JOiZXVyuOj/fwZh3IATusHF\n1g3Lk53fpkpSy0Ll17GiZECoguq5+3NmdjmAu68xs7ykC1XBJHk/Io7YSQ7wruo2A740s0+j5Y6E\nv8dwAHc/PJvBK8Gd9aoum8d/RZ8ULavnPgtzTKXP8/GQmcUxz0di89tUdZpnofL70Mza6q5WIn61\nMDFYqhvEnoSBZ1Ko8qRQ+GOSHOBd1f0r6QJIhZa1c0+S2fgqiETm+YBE57ep0ipRXUGVhXXYE5hs\nZt9SxWZxrQAuAoYDLc1sLFCf0HdTCg0tfZOsyXpWotIGeEtWjQdWRSkstyN0xxzh7qsTLpdUDFV5\nRt9s36QxwvwmKXkxxEz3CzA1ygal+W1ioJaFyq970gWoqtx9opl1JvSZNELazCpxoWJm91LCzYbU\nSTub+bbN7Hp3/1faci4wyN1PiGLvma3YaTFvA24kTAr2BmF+k7+7+5PZji2MBvaNcry/BYwj5No/\nIdFSSSzM7KIMq5cBE9x9srufF3eZ4hJl/1nl7vnRcg5Qw91XRptcmuUiJD3Ph+a3iZkGOFdyag5N\njpltQmhd2NrdzzCz1mbWxt1fTbpsMRgf/exEmGPi2Wi5D/H1426eSs1qZhsTxg3EmWseoKu7/9PM\njgRmA0cRLmJVWcg+c/eVZnYacL+732ZmU5IulMSmQ/RIpQ7vCXxGSKE71N1vS6xk2TcKOJhwhx1g\nE0KFeW8Ad38rm8GTnuejAmSDqnI0wFnkj3uMMCHPXtHyXEK3mw2+spA6WZvZ2cA+7r4mWn4QGBNT\nMfoCQ6IB5gcAr7v7XTHFTkmdlw4Fhrr7sjBnk8TAzGwvQkvCadG6nATLI/FqBrR391+gYFbf14D9\nCOflDbmyUCP1vgHc/Zfo5lVskpznowyymg2qKqpM3ZD0JSAVTcvo7tVqgKgJuKpdKW4BpM+UXCta\nlzVm1t7M2hNm8Lyb0PXkG2B0tD5Or5rZV8BuwCgzqw/8FnMZqqr+wOXAS+7+hZltC7ybcJkkPg1I\nm1uIcB5u6O6riq3fEP2afq4zs90IXSElqESXtpWD/4FHUtSyIBXN72ZWk8JsSC3Z8L+kirsFmGRm\n7xIqSvsB12Y55u3Fln8mdIW6nfC3OHCtPbLE3S+Lxi0si7J0rAR6pZ6PZhRWer8scPfRhC5fqeVZ\nQMEARzO7193PT6JsEoshhH7zL0fLhwFPRf35N/TsgBcCQ81sHuG824hw00QkKypTy4J5ZRphIRu8\naPBADqIAAAzJSURBVFKYqwgXqm8R+u//zd3fS7JccTOzRoRJigA+cfcFSZanIjGzie4ed2uHoM++\nKjCzDoTzLsBYdx9f0vYbEjOrTkiuAVUouUZZmNkkd9816XJsSPrW61/uC/CBi+9OpKeFWhakojmF\n0Ef2ecLMvf3dfXGyRYqHmW3v7l+lNYX/EP1sYmZNov6s2S5Df8K4kRXAI0B74LJsD+4rp6rWLU0k\nFmZ2D/CMu9+ddFnikprsMYPtzEyTQBbKdjaoKkcDnEX+uEeBfYEuQEtCd5zRVeTL6yKgH4Vdf1KM\n+LoC9XX3u82sG1AXOAkYTGjlqSjUHCqSHROAq8ysDfASoeKwobcsHFbCcxv8JJBmNpWSU3bvHP2s\nSN8BEjNVFqRCcfd3zWw00JGQjecs4C+EQbcbNHfvF/16CHAOIYWeEzIhPRBTMVJ37Q8hzK/whSkV\nkRTS/8IGLMrI9oSZbQn0Bm41s63cvXXCRcsaTQJJz+jnudHPwdFPza2SZZVpzIIqC1KhmNkoYFPC\nNPdjgI7u/mOypYrdE8By4J5o+XhgEHBMDLEnmNlbwDbA5Wa2GRWvtXR20gXY0JlZLQjpI4s9tcFX\n2gWAVoTZu7cGvky4LLGI5pXpDbQg7drI3a9PqkxxSM0rFSWOSB+TcJmZTQQuS6ZkG75KVFdQZUEq\nnM8IKTN3JMwcutTMPopS91UVO7p727Tld80srkwkpwG7ANUJkzPVAx6PKTZQMMjwbEIWKID3gQdT\ngw3dfV19jOVPMrOdCBXTLcOiLQJOcffPAdz98QSLJ1kWZSE7EpgJPAPc4O5Lky1VbF4mmq2aqpeB\nD8Lx3sndx0YLe6P0+lmllgWRP8jd/w4Q3dH+G2GwbSNg4wSLFbeJZranu38MYGZ7UDi7c7b1JeTa\nbwZMBvYktPLcG1N8CF2uqgP3R8snRetOj7EMVdVDwEXu/i6Ame0PPEw0i61s8GYS/tbbEs65O0eD\nfEeXvNsGoZm7d0+6EAk6DRhoZrUJ3Q1/JnwfSJZkKxmpmXUntALnAgPc/ZZiz59AGLBuhGQmZ7v7\nlJJeU5UFqVDM7DzCAOfdCN1NBhLf7MWJShtoVh340My+j5a3Br6KqRj9CeNFPnb3A8xse+DmmGKn\ndHT3dmnL75hZiScyWW82TVUUANz9vSjHvlQN+cA7rH2zILZ5VhL0oZnt5O5Tky5IEtx9AtAuqizg\n7ssSLtIGLxv9e80sF/gfIUnMHGCcmQ139/TeCd8Cnd39ZzPrQbghtMfar1ZIlQWpaGoAdwAT3H1N\n0oWJWc/SN8m639z9NzPDzDaOUrm2KX239SrPzFq6+0yAaBbhvJjLUFXNMrOrKRzkeCIhhbFUDReQ\n/M2CWKXdpKnG/7d3t6GWlVUAx/9LK6kwp6wkfCmtwZCQslGnlEAj0EBsMMkkDRuwKQYFoQiKxpdP\nihWJlU1paW+jH9ImSkVosHF8QceGSksZBWukTzY5Nr7kzFl92Ps4Zy577txzuXs/95z9/w2be55z\n9t1nMXA5Z+31POuBiyLiaappSAHksBvQtKuThDXU0z8j4l7gSpOG9gzaKS2cBGytN9QkItZRbWr6\nWrKQmfePnP8g1c2BWZksaFHJzGtLx1DKcKFZYdsiYglwB3BPRGwHuo7rK1TrNIZfUt8D9L1jSVe+\nAFzBnnaRG3EqQp8shpsFXRu9SfNWqso2VDuZ92W9BlRV/L+yp5HGBVTTgF0j1pKWZiEdzp49mqCq\nLsxWNVgJ3Lm/i5osSHpNZq6oH14eERuAQ4C7Og5jE9Xc+Y9TfVjfTTUVQi3LzO3AJfVdxkFmvlA6\nJnVqMdws6NRIN6BLqdZF/ZqqqvAzqo0pu1yvVdJ7M/OckfEVEbGlWDQ9MJ8FzhFxMdV+TENrM3Pt\nfN4/Ik6jShZO3d+5JguSGmXmvYXe+haq1rFX1ePzqT64zy0UT29ExIlUdxgPrsfPU23Ut7loYOrE\nIrlZUMpKYHlm7gSIiKvpvrlDSS9FxKmZeR9ARJwC9KkLYedyHrWFOjGYLTl4FjhyZHxE/dxeIuJ4\n4MfAmZn53P7e12RB0mJTsnVs390IfDkzNwJExKlUUxF6MW9bexS8WVBKsPfaqN30axPCL1FtyDfs\nhvRvqo6EaklLrVMfBpZGxNFUScJ5VDfcXhMRR1FV0C7IzCfnclGTBUmLTcnWsX23e5goAGTmfRHR\nt0YD6qefAA9FxO31+FNUyXMvZOYWqm5Ib6nHOwqHNPXa6IaUmbvqrpJ3U7VOvSkzH4uIVfXrNwDf\nBA4Fvh8RALsyc9ls141sq9GrJI1hRuvYY4G9WsfOqDZoAUXECfXDC4E3Ar+i+r//DNWi18tKxSZ1\npf47GM7f3piZfyoZTxci4nOZ+fOIaPwbz8xvdx1TX5x18Oqxv4D/9oXri1S7rCxIWiwWQ+vYvvrW\njPGakcfeUVIvZOajwKOl4+jYcB+Vg4tG0UNtVBbaYrIgaVFYJK1jeykzT5vLeRHx+cy8ue14JHUj\nM39Yb+S1IzO/UzqePpmkmT0HlA5AkjQxLi0dgKSFlZm7gc+WjqNvBvM4SrGyIEmaqz51h5H6ZFNE\nXA/cCuwcPllPzVILWtrBuRUmC5KkuZqcTzdJ4/hg/fPKkecSOL1ALFpkTBYkSXNlZUGaQnNdt6SF\nM59N2UpxzYIkaa42lQ5A0sKLiMMi4saIuLMeHxcRK0vHNc1csyBJmjj76LX+PLA5M7dk5uquY5LU\niZ9SbUz39Xr8JNX6hd5sTNe1gZUFSdIEWgasAg6vjy8CZwA/ioivlgxMUqvenpm3Ud/AzsxdwO6y\nIU23QebYRylWFiRJQ0cAJ2TmfwEiYg3wO+BjwGbgmoKxSWrPzog4lLqJQUQsp6oqqiWTtGbBZEGS\nNPRO4JWR8avAYZn5UkS8so/fkTT5LgPWA8dExCbgHcCny4Y03SZpGpLJgiRp6BfAQxHxm3p8FvDL\niHgz8Hi5sCS17HHgduBF4AXgDqp1C2rJJCULMUnbTUuS2hURy4BT6uGmzHykZDyS2hcRtwE7qG4Y\nAJwPLMnMc8tFNd0+8qaVY38Bf+DFG4u0r7ayIEkCICKuA9Zl5ndLxyKpUx/IzONGxhsiwmpiiyap\nsmA3JEnS0GbgGxHxVERcW1cZJE2/R+tFzQBExMmAVcUWDWIw9lGKlQVJEgCZeTNwc0S8DTgHuDoi\njsrMpYVDk9SuDwP3R8Q/6vFRwBMR8RcgM/P4cqFNp0mqLJgsSJJmeh/wfuDdwN8KxyKpfWeUDqBv\nsuiezOMxWZAkARAR1wArgKeAdcBVmfmfslFJaltmPlM6hr6xsiBJmkRPAR8FjgEOAo6PCDLzj2XD\nkqTpUnINwrhMFiRJQwPgD1Q7OW8BlgMPAKeXDEqSps1ggqYh2Q1JkjR0CXAi8ExmngZ8CHAakiQt\nsME8/pVisiBJGno5M18GiIiDMvPvwLGFY5IkFeQ0JEnS0LaIWALcAdwTEdsBFz5K0gKzG5IkaeJk\n5or64eURsQE4BLirYEiSNJVc4CxJmmiZeW/pGCRpWk3SAmeTBUmSJKlDye7SIcyZyYIkSZLUISsL\nkiRJkhqZLEiSJElq5DQkSZIkSY2sLEiSJElq5D4LkiRJkhoNnIYkSZIkqYmVBUmSJEmNBmllQZIk\nSVIDKwuSJEmSGtk6VZIkSVKjQVpZkCRJktRgkqYhHVA6AEmSJEmLk5UFSZIkqUNpNyRJkiRJTQYT\nNA3JZEGSJEnqULrAWZIkSVKTSWqd6gJnSZIkqUOZg7GPuYiIMyLiiYjYGhFfa3g9IuK6+vU/R8QJ\n+7umlQVJkiSpQ220To2IA4HvAZ8AtgEPR8T6zHx85LQzgaX1cTLwg/rnPllZkCRJkjqUuXvsYw5O\nArZm5tOZ+T9gHXD2jHPOBm7JyoPAkoh412wXNVmQJEmSOjSfaUgRcXFEPDJyXDzjsocD/xwZb6uf\nG/ecvTgNSZIkSerQfKYhZeZaYO3CRzM7kwVJkiSpQy21Tn0WOHJkfET93Ljn7MVpSJIkSVKHksHY\nxxw8DCyNiKMj4g3AecD6GeesBy6suyItB57PzH/NdlErC5IkSVKH5rhgecxr5q6IWA3cDRwI3JSZ\nj0XEqvr1G4DfA58EtgIvAhft77qRmQserCRJkqRmr3/doWN/AX9113PRRiz7Y2VBkiRJ6lBLaxZa\nYbIgSZIkdaiNTdnaYrIgSZIkdcpkQZIkSVKTCZqGZOtUSZIkSY2sLEiSJEkdcs2CJEmSpH0wWZAk\nSZLUZIL2OXNTNkmSJEmNXOAsSZIkqZHJgiRJkqRGJguSJEmSGpksSJIkSWpksiBJkiSpkcmCJEmS\npEYmC5IkSZIamSxIkiRJamSyIEmSJKmRyYIkSZKkRv8HTqMxXMLHyw8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back=1)\n", + "y = y[:,target_index]\n", + "X = np.reshape(X, (X.shape[0], X.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# fit model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mforest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mRandomForestRegressor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_estimators\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mforest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mforest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrees\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 326\u001b[0m verbose=self.verbose, class_weight=self.class_weight)\n\u001b[0;32m--> 327\u001b[0;31m for i, t in enumerate(trees))\n\u001b[0m\u001b[1;32m 328\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 329\u001b[0m \u001b[0;31m# Collect newly grown trees\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 777\u001b[0m \u001b[0;31m# was dispatched. In particular this covers the edge\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0;31m# case of Parallel used with an exhausted iterator.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 779\u001b[0;31m \u001b[0;32mwhile\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatch_one_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 780\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iterating\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 781\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36mdispatch_one_batch\u001b[0;34m(self, iterator)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 624\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 625\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dispatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtasks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 626\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 627\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m_dispatch\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 586\u001b[0m \u001b[0mdispatch_timestamp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[0mcb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBatchCompletionCallBack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdispatch_timestamp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 588\u001b[0;31m \u001b[0mjob\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 589\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jobs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 590\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mapply_async\u001b[0;34m(self, func, callback)\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[0;34m\"\"\"Schedule a func to be run\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 111\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImmediateResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 112\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;31m# Don't delay the application, to avoid keeping the input\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;31m# arguments in memory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36m_parallel_build_trees\u001b[0;34m(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose, class_weight)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0mcurr_sample_weight\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mcompute_sample_weight\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'balanced'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 120\u001b[0;31m \u001b[0mtree\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcurr_sample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 121\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[0mtree\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/tree/tree.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight, check_input, X_idx_sorted)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcheck_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1124\u001b[0;31m X_idx_sorted=X_idx_sorted)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/tree/tree.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight, check_input, X_idx_sorted)\u001b[0m\n\u001b[1;32m 360\u001b[0m min_impurity_split)\n\u001b[1;32m 361\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 362\u001b[0;31m \u001b[0mbuilder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtree_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_idx_sorted\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 363\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_outputs_\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n", + "0. pca 19 (0.453368)\n", + "1. ask_price 7 (0.217941)\n", + "2. ohlc_price 16 (0.075821)\n", + "3. close 13 (0.069535)\n", + "4. period_return 18 (0.064586)\n", + "5. bid_price 6 (0.060840)\n", + "6. oc_diff 17 (0.057908)\n", + "7. month 1 (0.000000)\n", + "8. day 2 (0.000000)\n", + "9. hour 3 (0.000000)\n", + "10. weekday 4 (0.000000)\n", + "11. 5 (0.000000)\n", + "12. low 9 (0.000000)\n", + "13. high 8 (0.000000)\n", + "14. avg_bo_spread 10 (0.000000)\n", + "15. count 11 (0.000000)\n", + "16. open 12 (0.000000)\n", + "17. avg_price 14 (0.000000)\n", + "18. range 15 (0.000000)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAJOCAYAAADGcdzeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xu0pXdd3/HPl5kEJaARMnJJAok1aCMCwhBpizpKkSSg\nQeslqFDxEmMNiosqkVaUWtcCkVovSBohhlYkKDcjjgLaom0VzISGSwLRSUjIhEtGLoqAJiHf/rGf\nwc1kTubMnD2z2ef3eq11VvblOXt/f+dM9ux5n+d5TnV3AAAAABjH3ZY9AAAAAABHlyAEAAAAMBhB\nCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAgCFV1UVV9dPLngMAYBmqu5c9AwCwQqrqhiT3\nTfLpuZsf3N3v38Bj7kjyW9190samW01VdWmSPd39H5c9CwAwBnsIAQCH45u6+55zH4cdgxahqrYu\n8/k3oqq2LHsGAGA8ghAAsDBV9eiq+vOq+lhVvX3a82fffU+rqndX1cer6vqq+qHp9uOS/GGSB1TV\n308fD6iqS6vqP899/o6q2jN3/YaqelZVvSPJJ6pq6/R5r66qvVX13qr60buY9TOPv++xq+onq+qW\nqvpAVT2pqs6uqr+qqo9U1bPnPvdnq+pVVfXKaT1vq6qHzd3/z6vqzdPX4eqq+ub9nvfFVbWzqj6R\n5PuTfHeSn5zW/vvTdhdW1XXT419TVd8y9xjfW1X/p6p+sao+Oq31rLn7711Vv1lV75/uf93cfU+s\nqqum2f68qh46d9+zqurm6TmvrarHruPbDgCsIEEIAFiIqjoxyR8k+c9J7p3k3yd5dVVtmza5JckT\nk3xBkqcl+aWqekR3fyLJWUnefxh7HD05yROSHJ/kjiS/n+TtSU5M8tgkz6iqx6/zse6X5POmz31O\nkt9I8j1JHpnka5L8dFWdOrf9OUl+d1rrbyd5XVUdU1XHTHO8MckXJ3l6kpdX1ZfNfe53Jfn5JPdK\n8t+TvDzJL0xr/6Zpm+um5/3CJM9N8ltVdf+5x/jqJNcmOSHJLyR5aVXVdN//SHKPJF8xzfBLSVJV\nX5XkkiQ/lOQ+Sf5bksur6u7TfBckeVR33yvJ45PcsM6vHQCwYgQhAOBwvG7aw+Rjc3uffE+Snd29\ns7vv6O43JdmV5Owk6e4/6O7reuZPMwsmX7PBOX6lu2/q7k8leVSSbd39n7r71u6+PrOoc+46H+u2\nJD/f3bcluSyz0PLL3f3x7r46yTVJHja3/ZXd/app+/+SWUx69PRxzyTPm+b4n0len1m82uf3uvv/\nTl+nfzjQMN39u939/mmbVyb56yRnzG1yY3f/Rnd/OsnLktw/yX2naHRWkvO7+6Pdfdv09U6S85L8\nt+5+a3d/urtfluQfp5k/neTuSU6vqmO6+4buvm6dXzsAYMUIQgDA4XhSdx8/fTxpuu1BSb59LhR9\nLMljMgsVqaqzquot0+FXH8ssFJ2wwTlumrv8oMwOO5t//mdndgLs9fjwFFeS5FPTfz80d/+nMgs9\nd3ru7r4jyZ4kD5g+bppu2+fGzPY8OtDcB1RVT507tOtjSR6Sz/56fXDu+T85XbxnkpOTfKS7P3qA\nh31Qkmfu9zU6OckDunt3kmck+dkkt1TVZVX1gIPNCQCsJkEIAFiUm5L8j7lQdHx3H9fdz6uquyd5\ndZJfTHLf7j4+yc4k+w5xOtCvPf1EZoc97XO/A2wz/3k3JXnvfs9/r+4+e8MrO7CT912oqrslOSnJ\n+6ePk6fb9nlgkpvXmPtO16vqQZnt3XRBkvtMX6935Z++XnflpiT3rqrj17jv5/f7Gt2ju1+RJN39\n2939mMzCUSd5/jqeDwBYQYIQALAov5Xkm6rq8VW1pao+bzpZ80lJjs3scKS9SW6fToD8jXOf+6Ek\n96mqL5y77aokZ08nSL5fZnuv3JW/TPLx6cTInz/N8JCqetTCVvjZHllV31qz33D2jMwOvXpLkrcm\n+WRmJ4k+pmYn1v6mzA5DW8uHknzJ3PXjMgsye5PZCbkz20PooLr7A5mdpPvXq+qLphm+drr7N5Kc\nX1VfXTPHVdUTqupeVfVlVfUNU7z7h8z2iLpjjacBAFacIAQALER335TZiZafnVnIuCnJTyS5W3d/\nPMmPJvmdJB/N7KTKl8997nuSvCLJ9dOhTA/I7MTIb8/sxMZvTPLKgzz/pzM7afXDk7w3yd8keUlm\nJ2U+En4vyXdmtp6nJPnW6Xw9t2YWgM6aZvj1JE+d1riWl2Z27p6PVdXruvuaJC9M8heZxaKvTPJ/\nD2G2p2R2TqT3ZHYy72ckSXfvSvKDSX5tmnt3ku+dPufuSZ43zfzBzE5G/VOH8JwAwAqp7gPtoQ0A\nwFqq6meTfGl3f8+yZwEAOBz2EAIAAAAYjCAEAAAAMBiHjAEAAAAMxh5CAAAAAIPZuqwnPuGEE/qU\nU05Z1tMDAAAAbDpXXnnl33T3toNtt7QgdMopp2TXrl3LenoAAACATaeqblzPdg4ZAwAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgtyI4dO7Jjx45ljwEAAABw\nUIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMOsKQlV1ZlVdW1W7q+rCNbbZUVVXVdXVVfWnix0TAAAAgEXZerANqmpLkhcleVySPUmuqKrLu/ua\nuW2OT/LrSc7s7vdV1RcfqYEBAAAA2Jj17CF0RpLd3X19d9+a5LIk5+y3zXcleU13vy9JuvuWxY4J\nAAAAwKKsJwidmOSmuet7ptvmPTjJF1XVm6vqyqp66oEeqKrOq6pdVbVr7969hzcxAAAAABuyqJNK\nb03yyCRPSPL4JD9dVQ/ef6Puvri7t3f39m3bti3oqQEAAAA4FAc9h1CSm5OcPHf9pOm2eXuSfLi7\nP5HkE1X1Z0keluSvFjIlAAAAAAuznj2ErkhyWlWdWlXHJjk3yeX7bfN7SR5TVVur6h5JvjrJuxc7\nKgAAAACLcNA9hLr79qq6IMkbkmxJckl3X11V50/3X9Td766qP0ryjiR3JHlJd7/rSA4OAAAAwOFZ\nzyFj6e6dSXbud9tF+11/QZIXLG40AAAAAI6ERZ1UGgAAAIAVIQgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGs64gVFVnVtW1VbW7qi48wP07qupv\nq+qq6eM5ix8VAAAAgEXYerANqmpLkhcleVySPUmuqKrLu/ua/Tb93939xCMwIwAAAAALtJ49hM5I\nsru7r+/uW5NcluScIzsWAAAAAEfKeoLQiUlumru+Z7ptf/+yqt5RVX9YVV9xoAeqqvOqaldV7dq7\nd+9hjAsAAADARi3qpNJvS/LA7n5okl9N8roDbdTdF3f39u7evm3btgU9NQAAAACHYj1B6OYkJ89d\nP2m67TO6+++6+++nyzuTHFNVJyxsSgAAAAAWZj1B6Iokp1XVqVV1bJJzk1w+v0FV3a+qarp8xvS4\nH170sAAAAABs3EF/y1h3315VFyR5Q5ItSS7p7qur6vzp/ouSfFuSH66q25N8Ksm53d1HcG4AAAAA\nDtNBg1DymcPAdu5320Vzl38tya8tdjQAAAAAjoRFnVQaAAAAgBUhCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADCYrcseYFlue+4zF/p4fcN1R+Rxk+SYn3nhwh8TAAAAGJc9hAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwmHUFoao6s6qurardVXXhXWz3qKq6vaq+bXEjAgAAALBIBw1CVbUlyYuSnJXk9CRPrqrT\n19ju+UneuOghAQAAAFic9ewhdEaS3d19fXffmuSyJOccYLunJ3l1klsWOB8AAAAAC7aeIHRikpvm\nru+ZbvuMqjoxybckefFdPVBVnVdVu6pq1969ew91VgAAAAAWYFEnlf6vSZ7V3Xfc1UbdfXF3b+/u\n7du2bVvQUwMAAABwKLauY5ubk5w8d/2k6bZ525NcVlVJckKSs6vq9u5+3UKmBAAAAGBh1hOErkhy\nWlWdmlkIOjfJd81v0N2n7rtcVZcmeb0YBAAAAPC56aBBqLtvr6oLkrwhyZYkl3T31VV1/nT/RUd4\nRgAAAAAWaD17CKW7dybZud9tBwxB3f29Gx8LAAAAgCNlUSeVBgAAAGBFCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEWNOOHTuy\nY8eOZY8BAAAALJggBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEA\nAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEA\nAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAg1lXEKqqM6vq2qra\nXVUXHuD+c6rqHVV1VVXtqqrHLH5UAAAAABZh68E2qKotSV6U5HFJ9iS5oqou7+5r5jb7kySXd3dX\n1UOT/E6SLz8SAwMAAACwMevZQ+iMJLu7+/ruvjXJZUnOmd+gu/++u3u6elySDgAAAACfk9YThE5M\nctPc9T3TbZ+lqr6lqt6T5A+SfN+BHqiqzpsOKdu1d+/ew5kXAAAAgA1a2Emlu/u13f3lSZ6U5OfW\n2Obi7t7e3du3bdu2qKcGAAAA4BCsJwjdnOTkuesnTbcdUHf/WZIvqaoTNjgbAAAAAEfAeoLQFUlO\nq6pTq+rYJOcmuXx+g6r60qqq6fIjktw9yYcXPSwAAAAAG3fQ3zLW3bdX1QVJ3pBkS5JLuvvqqjp/\nuv+iJP8myVOr6rYkn0rynXMnmQYAAADgc8hBg1CSdPfOJDv3u+2iucvPT/L8xY4GAAAAwJGwsJNK\nAwAAALAaBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAwGEEIAAAAYDCC\nEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAwGEEIAAAAYDCC\nEAAAAMBgBCEAAACAwWxd9gCbxR8/7TuWPQIAAADAuthDCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACD2brsAVic2577zIU+Xt9w3RF53CQ55mdeuPDHBAAAANbHHkIAAAAAgxGEAAAAAAYjCAEAAAAM\nRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAg1lXEKqqM6vq2qraXVUX\nHuD+766qd1TVO6vqz6vqYYsfFQAAAIBFOGgQqqotSV6U5Kwkpyd5clWdvt9m703ydd39lUl+LsnF\nix4UAAAAgMVYzx5CZyTZ3d3Xd/etSS5Lcs78Bt3959390enqW5KctNgxAQAAAFiU9QShE5PcNHd9\nz3TbWr4/yR8e6I6qOq+qdlXVrr17965/SgAAAAAWZqEnla6qr88sCD3rQPd398Xdvb27t2/btm2R\nTw0AAADAOm1dxzY3Jzl57vpJ022fpaoemuQlSc7q7g8vZjwAAAAAFm09ewhdkeS0qjq1qo5Ncm6S\ny+c3qKoHJnlNkqd0918tfkwAAAAAFuWgewh19+1VdUGSNyTZkuSS7r66qs6f7r8oyXOS3CfJr1dV\nktze3duP3NgAAAAAHK71HDKW7t6ZZOd+t100d/kHkvzAYkcDAAAA4EhY6EmlAQAAAPjcJwgBAAAA\nDEYQAgAAABiMIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAA\nDEYQAgAAABiMIMRwduzYkR07dix7DAAAAFgaQQgAAABgMIIQAAAAwGAEIQAAAIDBCEKwCTgvEgAA\nAIdCEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAABiMIAQAA\nAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQsDnpB07dmTHjh3LHgMAAGBT\nEoQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghDAUbIZf3PaZlwTAACMQBACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBrCsIVdWZVXVtVe2uqgsPcP+XV9VfVNU/VtW/\nX/yYAAAAACzK1oNtUFVbkrwoyeOS7ElyRVVd3t3XzG32kSQ/muRJR2RKAAAAABbmoEEoyRlJdnf3\n9UlSVZclOSfJZ4JQd9+S5JaqesIRmZKl+OOnfceyRwAAAACOgPUcMnZikpvmru+ZbjtkVXVeVe2q\nql179+49nIcAAAAAYIOO6kmlu/vi7t7e3du3bdt2NJ8aAAAAgMl6gtDNSU6eu37SdBsAAAAAK2g9\nQeiKJKdV1alVdWySc5NcfmTHAgAAAOBIOehJpbv79qq6IMkbkmxJckl3X11V50/3X1RV90uyK8kX\nJLmjqp6R5PTu/rsjODsAAAAAh2E9v2Us3b0zyc79brto7vIHMzuUDAAAAIDPcUf1pNIAAAAALJ8g\nBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwg\nBAAAADAYQQgAAABgMIIQAAAAwGC2LnsAuCu3PfeZC3/MvuG6I/LYx/zMCxf6eAAAAHCk2EMIAAAA\nYDCCEAAAAMBgBCEAAACAwTiHECzBos9f5LxIAAAAHAp7CAEAAAAMRhACAAAAGIwgBAAAADAY5xAC\nFsJ5kQAAAFaHPYQAAAAABiMIAQAAAAzGIWMAa3AYHAAAsFnZQwgAAABgMPYQAhiIvZ4AAIDEHkIA\nAAAAwxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGDWFYSq6syquraq\ndlfVhQe4v6rqV6b731FVj1j8qAAAAAAswkGDUFVtSfKiJGclOT3Jk6vq9P02OyvJadPHeUlevOA5\nAQAAAFiQ9ewhdEaS3d19fXffmuSyJOfst805Sf57z7wlyfFVdf8FzwoAAADAAlR33/UGVd+W5Mzu\n/oHp+lOSfHV3XzC3zeuTPK+7/890/U+SPKu7d+33WOdltgdRHvjABz7yxhtvXORaYF127NiRJHnz\nm9+81DkWyZpWgzUBAABHWlVd2d3bD7bdUT2pdHdf3N3bu3v7tm3bjuZTAwAAADBZTxC6OcnJc9dP\nmm471G0AAAAA+BywniB0RZLTqurUqjo2yblJLt9vm8uTPHX6bWOPTvK33f2BBc8KAAAAwAJsPdgG\n3X17VV2Q5A1JtiS5pLuvrqrzp/svSrIzydlJdif5ZJKnHbmRAQAAANiIgwahJOnunZlFn/nbLpq7\n3El+ZLGjAQAAAHAkHNWTSgMAAACwfIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAM\nRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBbF32AAAH8uY3v3nZIyzcZlwTAACw\nmgQhhuMf5QAAAIzOIWMAAAAAgxGEAAAAAAbjkDEADptDMAEAYDXZQwgAAABgMPYQgk3AXhoAAAAc\nCnsIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBlPdvZwnrtqb5MalPPmRc0KSv1n2EAu2GdeUbM51WdNqsKbVYE2rYzOuy5pWgzWtBmtaHZtxXda0\nGjbjmh7U3dsOttHSgtBmVFW7unv7sudYpM24pmRzrsuaVoM1rQZrWh2bcV3WtBqsaTVY0+rYjOuy\nptWwGde0Xg4ZAwAAABiMIAQAAAAwGEFosS5e9gBHwGZcU7I512VNq8GaVoM1rY7NuC5rWg3WtBqs\naXVsxnVZ02rYjGtaF+cQAgAAABiMPYQAAAAABiMIAQAAAAxGEDpMVXVJVd1SVe+au+1hVfUXVfXO\nqvr9qvqCZc64EVX1ZVV11dzH31XVM5Y916E60Pdpuv3pVfWeqrq6qn5hWfMdrjX+/P1cVb1j+n69\nsaoesMwZD9Uaa3p4Vb1lWtOuqjpjmTNuVFUdX1Wvmv7svbuq/sWyZzpUa3yfXjn3WnFDVV21zBk3\nYq3XjFVWVSdX1f+qqmum17wfW/ZMG1VVn1dVf1lVb5/W9Nxlz7QoVbWlqv5fVb1+2bMsyvS68M59\nr+XLnmd7JX2wAAAISUlEQVSjqurHqupd05+9lXtvtJaq+vFpTe+qqldU1ecte6ZDtcbfUfeuqjdV\n1V9P//2iZc54qNZY07dP36s7qmrlflX2Gmt6wfT+6B1V9dqqOn6ZMx6Ou3oPUVXPrKquqhOWMdvh\nWuN79bNVdfPce7+zlznjRlTVmVV1bVXtrqoLlz3PMghCh+/SJGfud9tLklzY3V+Z5LVJfuJoD7Uo\n3X1tdz+8ux+e5JFJPpnZmlbNpdnv+1RVX5/knCQP6+6vSPKLS5hroy7Nnf/8vaC7Hzp9z16f5DlH\nfaqNuTR3XtMvJHnutKbnTNdX2S8n+aPu/vIkD0vy7iXPczguzX7fp+7+zrnXi1cnec0yBluQS3Pn\nP4er7vYkz+zu05M8OsmPVNXpS55po/4xyTd098OSPDzJmVX16CXPtCg/ltV8bTiYr59eJ1buH6/z\nquohSX4wyRmZvY4/saq+dLlTbVxVnZjkR5Ns7+6HJNmS5NzlTnVYLs2dX8MvTPIn3X1akj+Zrq+S\nS3PnNb0rybcm+bOjPs1iXJo7r+lNSR7S3Q9N8ldJfupoD7UAl+YA7yGq6uQk35jkfUd7oAW4NAd+\nX/RL+977dffOozzTQlTVliQvSnJWktOTPHkTvD86ZILQYeruP0vykf1ufnD+6YX5TUn+zVEd6sh5\nbJLruvvGZQ9yqNb4Pv1wkud19z9O29xy1AfboAOtq7v/bu7qcUlW6ozxa3yvOsm+Pe2+MMn7j+pQ\nC1RVX5jka5O8NEm6+9bu/thypzp0a3yfkiRVVUm+I8krjupQC3RX61tV3f2B7n7bdPnjmcWGE5c7\n1cb0zN9PV4+ZPlbqNe9AquqkJE/I7AdMfG7650ne2t2f7O7bk/xpZv8w3wy2Jvn8qtqa5B5Zwb9z\n13gNPyfJy6bLL0vypKM61Aat8Z7v3d197ZJG2rA11vTG6f+pJHlLkpOO+mAbdBfvIX4pyU9mBf+e\n2ozvi+ackWR3d1/f3bcmuSyz14uhCEKLdXX+6Q/Rtyc5eYmzLNK5WeF/4B3Ag5N8TVW9tar+tKoe\nteyBFqWqfr6qbkry3Vm9PYQO5BlJXjCt6Rezmj8t2ufUJHuT/OZ0OMhLquq4ZQ+1YF+T5EPd/dfL\nHoQDq6pTknxVkrcud5KNmw6tuirJLUne1N0rv6Yk/zWzfzTcsexBFqyT/HFVXVlV5y17mA16V2bv\nIe5TVfdIcnY2wfu97r45s79n35fkA0n+trvfuNypFua+3f2B6fIHk9x3mcOwLt+X5A+XPcQiVNU5\nSW7u7rcve5YFe/p0eN8lq3YY5pwTk9w0d31PVvwHZodDEFqs70vy76rqyiT3SnLrkufZsKo6Nsk3\nJ/ndZc+yQFuT3DuzQyd+IsnvTHs2rLzu/g/dfXKSlye5YNnzLMAPJ/nxaU0/nmnvmhW1Nckjkry4\nu78qySeyerutH8yTs7ni8aZSVffM7JC+Z+y3R+FK6u5PT4cpnpTkjOlQnpVVVU9Mckt3X7nsWY6A\nx0zfq7MyO2Txa5c90OHq7ncneX6SNyb5oyRXJfn0UodagOkfdOdk9sOLByQ5rqq+Z7lTLV53d1Zw\nL42RVNV/yOxQ55cve5aNmqLxs7M5fkg778VJviSzQ7Y/kOSFyx2HjRCEFqi739Pd39jdj8zsH0XX\nLXumBTgrydu6+0PLHmSB9iR5zXTIwV9m9pPYlTrB2zq8PJvjkMV/m386H83vZrZr56rak2TP3F4M\nr8osEG0K0yEG35rklcuehTurqmMyi0Ev7+5VPsfTnUyHXv6vrP65n/5Vkm+uqhsy2239G6rqt5Y7\n0mJMe5/sO0T7tVnt1/J090u7+5Hd/bVJPprZ+U5W3b9O8t7u3tvdt2X2d++/XPJMi/Khqrp/kkz/\nXblTBYyiqr43yROTfPcU71bdP8sssr59em0/Kcnbqup+S51qg7r7Q9MPZe5I8htZ3df0m/PZe3ie\nNN02FEFogarqi6f/3i3Jf0xy0XInWojN+BP/1yX5+iSpqgcnOTbJ3yx1ogWoqtPmrp6T5D3LmmWB\n3p/k66bL35BkZQ9F6u4PJrmpqr5suumxSa5Z4kiL9q+TvKe79yx7ED7btAfkS5O8u7v/y7LnWYSq\n2rbvN9BU1ecneVxW/DWvu3+qu0/q7lMyO1T7f3b3yu+hUVXHVdW99l3O7MSqK/1b/Obe7z0wsxD+\n28udaCHel+TRVXWP6TXjsdk8Jze/PLMfMGX67+8tcRbWUFVnZnbI7Dd39yeXPc8idPc7u/uLu/uU\n6bV9T5JHTO8JV9a+wDr5lqzua/oVSU6rqlOno2LOzez1Yihblz3AqqqqVyTZkeSEqtqT5GeS3LOq\nfmTa5DVJfnNJ4y3E9MbtcUl+aNmzHK41vk+XJLlk+vWJtyb5t6v2U4g11nX2FBvuSHJjkvOXN+Gh\nW2NNP5jkl6e9T/4hyaqfe+LpSV4+/aVzfZKnLXmeQ3ag71N3vzSb5Fxjd7G+VfavkjwlyTunc+4k\nybNX9beCTO6f5GXTbwi5W5Lf6e5N82vaN5n7JnntdGT21iS/3d1/tNyRNuzVVXWfJLcl+ZFV/AUB\n++vut1bVq5K8LbPDdf5fkouXO9WhW+O9xPMyOz3A92f2/ug7ljfhoVtjTR9J8qtJtiX5g6q6qrsf\nv7wpD80aa/qpJHdP8qbp9eIt3b3y72VX/T3EGt+rHVX18MwOv7whK/pvxe6+vaouSPKGzH6z4iXd\nffWSxzrqasX+HQwAAADABjlkDAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAACA/9+OHQgA\nAAAACPK3HuTCiBkhBAAAADAjhAAAAABmAsSSvmEJzLbbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1]\n", + "\n", + "column_list = df.columns.tolist()\n", + "print(\"Feature ranking:\")\n", + "for f in range(X.shape[1]-1):\n", + " print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + "\n", + "# Plot the feature importances coming from the forest of decision trees\n", + "plt.figure(figsize=(20,10))\n", + "plt.title(\"Feature importances\")\n", + "plt.bar(range(X.shape[1]), importances[indices],\n", + " color=\"salmon\", yerr=std[indices], align=\"center\")\n", + "plt.xticks(range(X.shape[1]), indices)\n", + "plt.xlim([-1, X.shape[1]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mitem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill_between\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'low'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'high'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# plot first 200 entries\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(*args, **kw)\u001b[0m\n\u001b[1;32m 251\u001b[0m \"\"\"\n\u001b[1;32m 252\u001b[0m \u001b[0;32mglobal\u001b[0m \u001b[0m_show\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_show\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 254\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/ipykernel/pylab/backend_inline.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(close, block)\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfigure_manager\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGcf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_all_fig_managers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0mdisplay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0mshow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_to_draw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/display.py\u001b[0m in \u001b[0;36mdisplay\u001b[0;34m(include, exclude, metadata, transient, display_id, *objs, **kwargs)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[0mpublish_display_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetadata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 301\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 302\u001b[0;31m \u001b[0mformat_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmd_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minclude\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mexclude\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 303\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mformat_dict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0;31m# nothing to display (e.g. _ipython_display_ took over)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mformat\u001b[0;34m(self, obj, include, exclude)\u001b[0m\n\u001b[1;32m 169\u001b[0m \u001b[0mmd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 171\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 172\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 173\u001b[0m \u001b[0;31m# FIXME: log the exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mcatch_format_error\u001b[0;34m(method, self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 213\u001b[0m \u001b[0;34m\"\"\"show traceback on failed format call\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 215\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 216\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 217\u001b[0m \u001b[0;31m# don't warn on NotImplementedErrors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0;31m# Finally look for special method names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_real_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36m\u001b[0;34m(fig)\u001b[0m\n\u001b[1;32m 235\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 236\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'png'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 237\u001b[0;31m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'png'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 238\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'retina'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m'png2x'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mretina_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, **kwargs)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0mbytes_io\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBytesIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 121\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 122\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)\u001b[0m\n\u001b[1;32m 2198\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2199\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2200\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 2201\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2202\u001b[0m \u001b[0mbbox_inches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_tightbbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mprint_png\u001b[0;34m(self, filename_or_obj, *args, **kwargs)\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mprint_png\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename_or_obj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 545\u001b[0;31m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 546\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0moriginal_dpi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 463\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 464\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 465\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 466\u001b[0m \u001b[0mRendererAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrelease\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1143\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1144\u001b[0;31m renderer, self, dsu, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1145\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1146\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, dsu, suppress_composite)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2424\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2426\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2428\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, dsu, suppress_composite)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 481\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlegendPatch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 482\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 483\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_legend_box\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 484\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'legend'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/offsetbox.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 280\u001b[0m renderer)\n\u001b[1;32m 281\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 282\u001b[0;31m \u001b[0mpx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_offset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 283\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 284\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_visible_children\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffsets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/offsetbox.py\u001b[0m in \u001b[0;36mget_offset\u001b[0;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[1;32m 219\u001b[0m \"\"\"\n\u001b[1;32m 220\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36m_findoffset_best\u001b[0;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[1;32m 432\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_findoffset_best\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 433\u001b[0m \u001b[0;34m\"Helper function to locate the legend at its best position\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 434\u001b[0;31m \u001b[0mox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_find_best_position\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 435\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mox\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36m_find_best_position\u001b[0;34m(self, width, height, renderer, consider)\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0;31m# take their into account when checking vertex overlaps in\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 949\u001b[0m \u001b[0;31m# the next line.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 950\u001b[0;31m \u001b[0mbadness\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_contains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mverts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 951\u001b[0m \u001b[0mbadness\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_contains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moffsets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 952\u001b[0m \u001b[0mbadness\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_overlaps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbboxes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/transforms.py\u001b[0m in \u001b[0;36mcount_contains\u001b[0;34m(self, vertices)\u001b[0m\n\u001b[1;32m 658\u001b[0m \u001b[0mdy0\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0my0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 659\u001b[0m \u001b[0mdx1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mx1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 660\u001b[0;31m \u001b[0mdy1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 661\u001b[0m \u001b[0minside\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdx0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdx1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdy0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdy1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 662\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minside\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low',y2='high', data=df, alpha=0.4)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low', y2='high', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close')\n", + "high_index = df.columns.tolist().index('high')\n", + "low_index = df.columns.tolist().index('low')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Create y_scaler to inverse it later\n", + "y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + "t_y = df['close'].values.astype('float32')\n", + "t_y = np.reshape(t_y, (-1, 1))\n", + "y_scaler = y_scaler.fit(t_y)\n", + " \n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back=1)\n", + "y = y[:,target_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 98% training / 1% development / 1% test sets\n", + "train_size = int(len(X) * 0.99)\n", + "trainX = X[:train_size]\n", + "trainY = y[:train_size]\n", + "testX = X[train_size:]\n", + "testY = y[train_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_9 (LSTM) (None, 1, 20) 3360 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 1, 20) 3280 \n", + "_________________________________________________________________\n", + "lstm_11 (LSTM) (None, 1, 10) 1240 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 1, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 4) 240 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 4) 20 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 5 \n", + "=================================================================\n", + "Total params: 8,145\n", + "Trainable params: 8,145\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "\n", + "# create a small LSTM network\n", + "model = Sequential()\n", + "model.add(LSTM(20, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(4, return_sequences=False))\n", + "model.add(Dense(4, kernel_initializer='uniform', activation='relu'))\n", + "model.add(Dense(1, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.02140, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.02140 to 0.00056, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.00056 to 0.00035, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.00035 to 0.00024, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error improved from 0.00024 to 0.00011, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00005: val_mean_squared_error improved from 0.00011 to 0.00006, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00006: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00007: val_mean_squared_error improved from 0.00005 to 0.00003, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00003 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00018: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00019: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "Epoch 00022: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "Epoch 00024: val_mean_squared_error improved from 0.00002 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error did not improve\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error did not improve\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error did not improve\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error did not improve\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error did not improve\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error did not improve\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error did not improve\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error did not improve\n", + "CPU times: user 16min 23s, sys: 1min 23s, total: 17min 46s\n", + "Wall time: 15min 1s\n" + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training.\n", + "simname = \"bm_kaggle_4\"\n", + "from keras.callbacks import ModelCheckpoint\n", + "checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "callbacks_list = [checkpoint]\n", + "%time history = model.fit(trainX, trainY, epochs=100, batch_size=10000, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPYAAAJcCAYAAABwybgsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X2U5XddJ/j3p2/VTd8bQhKSBicJ\nmnZFTjIwE7CJIA+DwyAJCMHlQR7iiuue4BndcfcIY3wAhNnZkz0zKqKg4pgZHQTMwKDM0gwBJwwq\nMKaJGUxIIIET6U5c0hPIY1VSVd3f/aNuJdWV6u5boe/9Vader3Pq5P4e7/sS/sp5n8+nWmsBAAAA\nAAAAAAA2l21dBwAAAAAAAAAAAB5OsQcAAAAAAAAAADYhxR4AAAAAAAAAANiEFHsAAAAAAAAAAGAT\nUuwBAAAAAAAAAIBNSLEHAAAAAAAAAAA2IcUeAAAAADpTVbdU1T/pOgcAAADAZqTYAwAAAAAAAAAA\nm5BiDwAAAADHRFXNbMYMG821GX4HAAAAQKLYAwAAADC20dqoN1fVF6vqvqr6/ap6QlV9vKruqapP\nVdWpo3ufWVWfrao7q+q/V9XzV73nJ6rqhtEzX6uqN6669vyq2ldVP1dVt1fV31XVT4yR7cVV9aXR\nO2+tqjetuvbm0Xtuq6r/tapaVX3P6Nqnq+p/W3XvG6rqL1Yd/0ZV7a2qu6vqC1X13FXXfqWqPlRV\n76uqu5O8oaq2VdWlVfXVqrqjqq6oqseteubHqupvR9d+acz/3Q/7zqo6e/R7frKqvp7kv6x3bnTv\ny6rq+tG/k09X1Tlr/t3+fFV9Mcl9yj0AAADAZqDYAwAAALAxr0jywiTfm+SlST6e5BeT7Mjyf2v5\nZ1V1ZpKPJfm/kjwuyZuSfLiqdozecXuSH07y2CQ/keTXq+rpq77jO5KcnOTMJD+Z5N0rhaEj+P0k\nb2ytnZTkKXmozHLB6PtfmORJSf7JBn/v1UnOG/2O9yf5D1W1fdX1i5J8KMkpSf4oyf+e5OVJ/lGS\nM5J8K8m7R1nOTfLbSX5sdO20JGeNkeGw71zlHyU5J8mL1jtXVd+b5ANJ/o8s/7vaneQ/VVV/1f2v\nTfKSJKe01pbGyAUAAAAwUYo9AAAAABvzm621b7TWbk3y50n+W2vtr1tr9yf5SJKnJbk4ye7W2u7W\n2sHW2ieT7Eny4iRprX2stfbVtuy/JrkyyXNXfcdikne01hZba7uT3JvkyUfJtZjk3Kp6bGvtW621\na0bnX53k37bWrmut3ZfkVzbyY1tr72ut3dFaW2qt/WqSE9Zk+Vxr7U9Gv3M+yU8l+aXW2r7W2gOj\n73vlaALOK5P8v621z4yuvSXJwTFiHOmdK36ltXbfKMN65340ycdaa59srS0m+ddJBkl+YNX972qt\n7V3zDgAAAIDOKPYAAAAAbMw3Vn2eX+f4MUm+K8mrRiuf7qyqO5M8J8nfS5KqurCqPl9V3xxde3GS\n01e95441E2PmRu89kleM3vO3VfVfq+pZo/NnJNm76r6/HetXjlTVm0Zrw+4aZT15Tda9ax75riQf\nWfW7b0hyIMkT1mYZFY3uGCPGkd55uBxrz52RVb+9tXZwdP3Mo7wDAAAAoDOKPQAAAADH3t4k/761\ndsqqvxNba5dV1QlJPpzliTFPaK2dkuW1UPXtfGFr7erW2kVJHp/kT5JcMbr0d0meuOrW71zz6H1J\nhquOv2PlQ1U9N8k/z/LUn1NHWe9ak7Wted/eJBeu+e3bRxOODslSVcMsr+M6miO983A51p67LcsF\noZXvrlGWo70DAAAAoDOKPQAAAADH3vuSvLSqXlRVvaraXlXPr6qzkvSzvM5qf5KlqrowyQ99O19W\nVf2qen1VnTxaM3V3HlpxdUWSN1TVuaMizdvWPH5tkv+5qoZV9T1JfnLVtZOSLI2yzlTVW5M89ihx\nfifJv6yq7xpl21FVF42ufSjJD1fVc6qqn+QdGe+/Tx3pneO6IslLquoFVTWb5OeSPJDksxt8DwAA\nAMDUKPYAAAAAHGOttb1JLkryi1kuxexN8uYk21pr9yT5Z1kumnwryeuSfPQYfO2PJbmlqu5O8lNJ\nXj/K8vEk70zyX5LcPPrnar+eZCHLK8X+IMkfrbr2iST/OclXsrzG6v4cfV3Vb2T591xZVfck+XyS\n7x9luT7JTyd5f5an93wryb4xftth3zmu1tqXk1yc5DeT/I8kL03y0tbawkbeAwAAADBN1ZoJwwAA\nAABbSVW1JE9qrd3cdRYAAAAADs/EHgAAAAAAAAAA2IQUewAAAACOE1V1fVXdu87f67vO9u2qqo8f\n5rf9YtfZAAAAALpiFRcAAAAAAAAAAGxCJvYAAAAAAAAAAMAmNNN1gGPp9NNPb2effXbXMQAAAAAA\nAAAAYF1f+MIX/kdrbcc490682FNVFyT5jSS9JP+mtXbZmuvPS/LOJP8gyWtaax9ade07k/ybJE9M\n0pK8uLV2y+G+6+yzz86ePXuO+W8AAAAAAAAAAIBjoar+dtx7J7qKq6p6Sd6d5MIk5yZ5bVWdu+a2\nryd5Q5L3r/OKP0zyr1pr5yQ5P8ntk0sLAAAAAAAAAACbx6Qn9pyf5ObW2teSpKo+mOSiJF9auWFl\nAk9VHVz94KgANNNa++TovnsnnBUAAAAAAAAAADaNiU7sSXJmkr2rjveNzo3je5PcWVX/sar+uqr+\n1WgC0CGq6pKq2lNVe/bv338MIgMAAAAAAAAAQPcmPbHn2zGT5LlJnpbldV1/nOWVXb+/+qbW2nuT\nvDdJdu3a1da+ZHFxMfv27cv9998/6byd2759e84666zMzs52HQUAAAAAAAAAgG/TpIs9tyZ54qrj\ns0bnxrEvybWr1nj9SZJnZk2x56gv2bcvJ510Us4+++xU1UYePa601nLHHXdk37592blzZ9dxAAAA\nAAAAAAD4Nk16FdfVSZ5UVTurqp/kNUk+uoFnT6mqHaPjf5zkSxsNcP/99+e00057VJd6kqSqctpp\np22JyUQAAAAAAAAAAFvBRIs9rbWlJD+T5BNJbkhyRWvt+qp6R1W9LEmq6hlVtS/Jq5L8blVdP3r2\nQJI3JfmzqvqbJJXk9x5Jjkd7qWfFVvmdAAAAAAAAAABbwaRXcaW1tjvJ7jXn3rrq89VZXtG13rOf\nTPIPJhoQAAAAAAAAAAA2oUmv4iLJnXfemfe85z0bfu7FL35x7rzzzgkkAgAAAAAAAABgs1PsmYLD\nFXuWlpaO+Nzu3btzyimnTCoWAAAAAAAAAACb2MRXcZFceuml+epXv5rzzjsvs7Oz2b59e0499dTc\neOON+cpXvpKXv/zl2bt3b+6///787M/+bC655JIkydlnn509e/bk3nvvzYUXXpjnPOc5+exnP5sz\nzzwzf/qnf5rBYNDxLwMAAAAAAAAAYFK2VLHn7f/p+nzptruP6TvPPeOxedtL//4R77nsssty3XXX\n5dprr82nP/3pvOQlL8l1112XnTt3Jkkuv/zyPO5xj8v8/Hye8Yxn5BWveEVOO+20Q95x00035QMf\n+EB+7/d+L69+9avz4Q9/OBdffPEx/S0AAAAAAAAAAGweW6rYs1mcf/75D5Z6kuRd73pXPvKRjyRJ\n9u7dm5tuuulhxZ6dO3fmvPPOS5J83/d9X2655Zap5QUAAAAAAAAAYPq2VLHnaJN1puXEE0988POn\nP/3pfOpTn8rnPve5DIfDPP/5z8/999//sGdOOOGEBz/3er3Mz89PJSsAAAAAAAAAAN3Y1nWAreCk\nk07KPffcs+61u+66K6eeemqGw2FuvPHGfP7zn59yOgAAAAAAAAAANqMtNbGnK6eddlqe/exn5ylP\neUoGg0Ge8IQnPHjtggsuyO/8zu/knHPOyZOf/OQ885nP7DApAAAAAAAAAACbRbXWus5wzOzatavt\n2bPnkHM33HBDzjnnnI4STd9W+70AAAAAAAAAAMeTqvpCa23XOPdaxQUAAAAAAAAAAJuQYg8AAAAA\nAAAAAGxCij0AAAAAAAAAALAJKfYAAAAAAAAAAMAmpNgDAAAAAAAAAACbkGIPE/XS3/yLvPuqm7uO\nAQAAAAAAAABw3FHsmYI777wz73nPex7Rs+985zszNzd3jBNNz613zufv7prvOgYAAAAAAAAAwHFH\nsWcKtnKxZzDby9zCga5jAAAAAAAAAAAcd2a6DrAVXHrppfnqV7+a8847Ly984Qvz+Mc/PldccUUe\neOCB/MiP/Eje/va357777surX/3q7Nu3LwcOHMhb3vKWfOMb38htt92WH/zBH8zpp5+eq666quuf\nsmHDfi/zij0AAAAAAAAAABu2tYo9H780+f/+5ti+8zuemlx42RFvueyyy3Ldddfl2muvzZVXXpkP\nfehD+au/+qu01vKyl70sn/nMZ7J///6cccYZ+djHPpYkueuuu3LyySfn137t13LVVVfl9NNPP7a5\np2TYN7EHAAAAAAAAAOCRsIpryq688spceeWVedrTnpanP/3pufHGG3PTTTflqU99aj75yU/m53/+\n5/Pnf/7nOfnkk7uOekwMTOwBAAAAAAAAAHhEttbEnqNM1pmG1lp+4Rd+IW984xsfdu2aa67J7t27\n88u//Mt5wQtekLe+9a0dJDy2hv2Z3H7P/V3HAAAAAAAAAAA47pjYMwUnnXRS7rnnniTJi170olx+\n+eW59957kyS33nprbr/99tx2220ZDoe5+OKL8+Y3vznXXHPNw549Hg36vcw9YGIPAAAAAAAAAMBG\nba2JPR057bTT8uxnPztPecpTcuGFF+Z1r3tdnvWsZyVJHvOYx+R973tfbr755rz5zW/Otm3bMjs7\nm9/+7d9OklxyySW54IILcsYZZ+Sqq67q8mc8IsPZXuas4gIAAAAAAAAA2LBqrXWd4ZjZtWtX27Nn\nzyHnbrjhhpxzzjkdJZq+zfZ73/an1+Ujf31rvvgrL+o6CgAAAAAAAABA56rqC621XePcaxUXEzXo\nz2R+0cQeAAAAAAAAAICNUuxhoob9XhYPtCweONh1FAAAAAAAAACA48qWKPY8mtaNHclm/J3Dfi9J\nMrdgag8AAAAAAAAAwEY86os927dvzx133LEpSy/HUmstd9xxR7Zv3951lEMMRsWeecUeAAAAAAAA\nAIANmek6wKSdddZZ2bdvX/bv3991lInbvn17zjrrrK5jHOKhiT1LHScBAAAAAAAAADi+POqLPbOz\ns9m5c2fXMbaswezy/8Ws4gIAAAAAAAAA2JhH/SouunXiCaNVXIuKPQAAAAAAAAAAG6HYw0Q9tIpL\nsQcAAAAAAAAAYCMUe5iolVVc8wtLHScBAAAAAAAAADi+KPYwUSb2AAAAAAAAAAA8Moo9TJRiDwAA\nAAAAAADAI6PYw0QNRsWeecUeAAAAAAAAAIANUexhoob9mSQm9gAAAAAAAAAAbJRiDxPV21bpz2zL\n3MJS11EAAAAAAAAAAI4rij1M3LDfM7EHAAAAAAAAAGCDFHuYuOGsYg8AAAAAAAAAwEYp9jBxg34v\n84tWcQEAAAAAAAAAbIRiDxM37M+Y2AMAAAAAAAAAsEGKPUzcoG8VFwAAAAAAAADARin2MHHDfi/z\nij0AAAAAAAAAABui2MPEDfu9zC0sdR0DAAAAAAAAAOC4otjDxA1mZ0zsAQAAAAAAAADYIMUeJu7E\nE3qZW1TsAQAAAAAAAADYCMUeJm7Q72XOxB4AAAAAAAAAgA1R7GHihrMzWVg6mAMHW9dRAAAAAAAA\nAACOG4o9TNyw30uSzC0sdZwEAAAAAAAAAOD4odjDxA1GxZ5567gAAAAAAAAAAMam2MPEPTSxR7EH\nAAAAAAAAAGBcij1M3Eqx5z6ruAAAAAAAAAAAxqbYw8QN+jNJrOICAAAAAAAAANgIxR4mziouAAAA\nAAAAAICNm3ixp6ouqKovV9XNVXXpOtefV1XXVNVSVb1yneuPrap9VfVbk87KZAxmFXsAAAAAAAAA\nADZqosWequoleXeSC5Ocm+S1VXXumtu+nuQNSd5/mNf8iySfmVRGJm9lYs/84lLHSQAAAAAAAAAA\njh+TnthzfpKbW2tfa60tJPlgkotW39Bau6W19sUkB9c+XFXfl+QJSa6ccE4maNifSWJiDwAAAAAA\nAADARky62HNmkr2rjveNzh1VVW1L8qtJ3nSU+y6pqj1VtWf//v2POCiTM1iZ2KPYAwAAAAAAAAAw\ntkkXe74d/zTJ7tbaviPd1Fp7b2ttV2tt144dO6YUjY1YWcVlYg8AAAAAAAAAwPhmJvz+W5M8cdXx\nWaNz43hWkudW1T9N8pgk/aq6t7V26THOyITN9rZltleKPQAAAAAAAAAAGzDpYs/VSZ5UVTuzXOh5\nTZLXjfNga+31K5+r6g1Jdin1HL+G/ZnMLyx1HQMAAAAAAAAA4Lgx0VVcrbWlJD+T5BNJbkhyRWvt\n+qp6R1W9LEmq6hlVtS/Jq5L8blVdP8lMdGPY75nYAwAAAAAAAACwAZOe2JPW2u4ku9ece+uqz1dn\neUXXkd7x75L8uwnEY0oG/V7mFhV7AAAAAAAAAADGNdGJPbBi2O9l3sQeAAAAAAAAAICxKfYwFcPZ\nmcwtLHUdAwAAAAAAAADguKHYw1QMTOwBAAAAAAAAANgQxR6mYtjvZU6xBwAAAAAAAABgbIo9TMVA\nsQcAAAAAAAAAYEMUe5iK5Yk9S13HAAAAAAAAAAA4bij2MBXD/oyJPQAAAAAAAAAAG6DYw1QMZnt5\nYOlgDhxsXUcBAAAAAAAAADguKPYwFcN+L0kyv2hqDwAAAAAAAADAOBR7mIqVYs/cwlLHSQAAAAAA\nAAAAjg+KPUzFoD+TJJlfMLEHAAAAAAAAAGAcij1MxUMTexR7AAAAAAAAAADGodjDVCj2AAAAAAAA\nAABsjGIPUzG0igsAAAAAAAAAYEMUe5iKhyb2LHWcBAAAAAAAAADg+KDYw1QMRsWe+UUTewAAAAAA\nAAAAxqHYw1Q8NLFHsQcAAAAAAAAAYByKPUzFcHYmiWIPAAAAAAAAAMC4FHuYigdXcS0sdZwEAAAA\nAAAAAOD4oNjDVPRntmVmW5nYAwAAAAAAAAAwJsUepmbQ7yn2AAAAAAAAAACMSbGHqRn2e5mzigsA\nAAAAAAAAYCyKPUzNsD9jYg8AAAAAAAAAwJgUe5iawWwv84o9AAAAAAAAAABjUexhapZXcSn2AAAA\nAAAAAACMQ7GHqRn0e5lbVOwBAAAAAAAAABiHYg9TM+z3Mr+w1HUMAAAAAAAAAIDjgmIPU3Nif8Yq\nLgAAAAAAAACAMSn2MDWDfi/zij0AAAAAAAAAAGNR7GFqhv2eiT0AAAAAAAAAAGNS7GFqBv2ZzC8e\nyMGDresoAAAAAAAAAACbnmIPUzPs95Ik9y+Z2gMAAAAAAAAAcDSKPUzNSrHHOi4AAAAAAAAAgKNT\n7GFqBrPLxZ55xR4AAAAAAAAAgKNS7GFqhv2ZJCb2AAAAAAAAAACMQ7GHqVlZxXXfwlLHSQAAAAAA\nAAAANj/FHqZm0LeKCwAAAAAAAABgXIo9TM3KxB6ruAAAAAAAAAAAjk6xh6l5qNhjFRcAAAAAAAAA\nwNEo9jA1g/5MEqu4AAAAAAAAAADGodjD1AxnreICAAAAAAAAABiXYg9TMxit4ppfVOwBAAAAAAAA\nADgaxR6m5oSZbeltq8wtLHUdBQAAAAAAAABg01PsYWqqKsPZnlVcAAAAAAAAAABjUOxhqgb9XuYV\newAAAAAAAAAAjkqxh6ka9k3sAQAAAAAAAAAYh2IPUzXozyj2AAAAAAAAAACMQbGHqRr2e5lfXOo6\nBgAAAAAAAADApqfYw1RZxQUAAAAAAAAAMB7FHqZqMNvLvGIPAAAAAAAAAMBRKfYwVSb2AAAAAAAA\nAACMR7GHqRr0ZzK3sNR1DAAAAAAAAACATU+xh6kysQcAAAAAAAAAYDyKPUzVsN/L/OKBtNa6jgIA\nAAAAAAAAsKkp9jBVg34vrSX3Lx7sOgoAAAAAAAAAwKam2MNUDWd7SZK5haWOkwAAAAAAAAAAbG4T\nL/ZU1QVV9eWqurmqLl3n+vOq6pqqWqqqV646f15Vfa6qrq+qL1bVj046K5M37M8kSeYWDnScBAAA\nAAAAAABgc5tosaeqekneneTCJOcmeW1Vnbvmtq8neUOS9685P5fkf2mt/f0kFyR5Z1WdMsm8TN7w\nhOWJPfOLij0AAAAAAAAAAEcyM+H3n5/k5tba15Kkqj6Y5KIkX1q5obV2y+jawdUPtta+surzbVV1\ne5IdSe6ccGYmaNhfWcWl2AMAAAAAAAAAcCSTXsV1ZpK9q473jc5tSFWdn6Sf5KvrXLukqvZU1Z79\n+/c/4qBMx2B2ZRXXUsdJAAAAAAAAAAA2t0kXe75tVfX3kvz7JD/RWju49npr7b2ttV2ttV07duyY\nfkA2ZGViz7yJPQAAAAAAAAAARzTpYs+tSZ646vis0bmxVNVjk3wsyS+11j5/jLPRAau4AAAAAAAA\nAADGM+liz9VJnlRVO6uqn+Q1ST46zoOj+z+S5A9bax+aYEamaGBiDwAAAAAAAADAWCZa7GmtLSX5\nmSSfSHJDkitaa9dX1Tuq6mVJUlXPqKp9SV6V5Her6vrR469O8rwkb6iqa0d/500yL5M37M8kSeYW\nljpOAgAAAAAAAACwuc1M+gtaa7uT7F5z7q2rPl+d5RVda597X5L3TTof0/XgKq5FE3sAAAAAAAAA\nAI5k0qu44BAnzGxLlVVcAAAAAAAAAABHo9jDVFVVhrO9zCn2AAAAAAAAAAAckWIPUzfoz2RuYanr\nGAAAAAAAAAAAm5piD1M37JvYAwAAAAAAAABwNIo9TJ1iDwAAAAAAAADA0Sn2MHWDfi/zij0AAAAA\nAAAAAEek2MPULU/sWeo6BgAAAAAAAADApqbYw9QN+zNWcQEAAAAAAAAAHIViD1M37Pcyv6jYAwAA\nAAAAAABwJIo9TN3yKi7FHgAAAAAAAACAI1HsYeoGszOZV+wBAAAAAAAAADgixR6mbnliz1Jaa11H\nAQAAAAAAAADYtBR7mLpBv5eDLXlg6WDXUQAAAAAAAAAANi3FHqZu2O8liXVcAAAAAAAAAABHoNjD\n1K0Ue+YWFXsAAAAAAAAAAA5HsYepG/RnkiTzC0sdJwEAAAAAAAAA2LwUe5i64exoYo9VXAAAAAAA\nAAAAh6XYw9StrOK67wHFHgAAAAAAAACAw1HsYeoGo2LP/KJVXAAAAAAAAAAAh6PYw9QN+zNJrOIC\nAAAAAAAAADgSxR6mbmUVl2IPAAAAAAAAAMDhKfYwdQ+u4lLsAQAAAAAAAAA4LMUepu5Eq7gAAAAA\nAAAAAI5KsYep2z67LVXJ/MJS11EAAAAAAAAAADYtxR6mrqoymO2Z2AMAAAAAAAAAcASKPXRi2O9l\nblGxBwAAAAAAAADgcBR76MSg38u8iT0AAAAAAAAAAIel2EMnhrMzmVtY6joGAAAAAAAAAMCmpdhD\nJwb9XuZM7AEAAAAAAAAAOCzFHjoxtIoLAAAAAAAAAOCIFHvoxNDEHgAAAAAAAACAI1LsoROD/kzm\nFxV7AAAAAAAAAAAOR7GHTgxne5lbWOo6BgAAAAAAAADApqXYQycG/V7mHjCxBwAAAAAAAADgcBR7\n6MSw38vc4oG01rqOAgAAAAAAAACwKSn20Ilhv5cDB1sWDhzsOgoAAAAAAAAAwKak2EMnBv2ZJMn8\ngnVcAAAAAAAAAADrUeyhEyf2e0mSOcUeAAAAAAAAAIB1KfbQiYFiDwAAAAAAAADAESn20ImhVVwA\nAAAAAAAAAEek2EMnhg9O7FnqOAkAAAAAAAAAwOak2EMnHlzFtWhiDwAAAAAAAADAehR76MTKxB6r\nuAAAAAAAAAAA1qfYQyeGszNJkjnFHgAAAAAAAACAdSn20InBgxN7ljpOAgAAAAAAAACwOSn20ImV\nVVwm9gAAAAAAAAAArE+xh04MZhV7AAAAAAAAAACORLGHTmzbVtk+uy3zi4o9AAAAAAAAAADrUeyh\nM8P+TO57YKnrGAAAAAAAAAAAm5JiD50ZzPYybxUXAAAAAAAAAMC6FHvozLDfy5xiDwAAAAAAAADA\nuhR76Myw38vcomIPAAAAAAAAAMB6FHvozKDfy/zCUtcxAAAAAAAAAAA2JcUeOnNif8YqLgAAAAAA\nAACAw1DsoTPLE3sUewAAAAAAAAAA1jPxYk9VXVBVX66qm6vq0nWuP6+qrqmqpap65ZprP15VN43+\nfnzSWZmuYb9nYg8AAAAAAAAAwGFMtNhTVb0k705yYZJzk7y2qs5dc9vXk7whyfvXPPu4JG9L8v1J\nzk/ytqo6dZJ5ma5hfyZzC0tdxwAAAAAAAAAA2JQmPbHn/CQ3t9a+1lpbSPLBJBetvqG1dktr7YtJ\nDq559kVJPtla+2Zr7VtJPpnkggnnZYoG/V7mF03sAQAAAAAAAABYz6SLPWcm2bvqeN/o3DF7tqou\nqao9VbVn//79jzgo0zec7WXxQMvigbWdLgAAAAAAAAAAJl3smbjW2ntba7taa7t27NjRdRw2YNDv\nJUnmFkztAQAAAAAAAABYa9LFnluTPHHV8Vmjc5N+luPAsD+TJJlX7AEAAAAAAAAAeJhJF3uuTvKk\nqtpZVf0kr0ny0TGf/USSH6qqU6vq1CQ/NDrHo8TwwYk9Sx0nAQAAAAAAAADYfCZa7GmtLSX5mSwX\ncm5IckVr7fqqekdVvSxJquoZVbUvyauS/G5VXT969ptJ/kWWy0FXJ3nH6ByPElZxAQAAAAAAAAAc\n3sykv6C1tjvJ7jXn3rrq89VZXrO13rOXJ7l8ogHpzMrEnvlFxR4AAAAAAAAAgLUmvYoLDmul2HPf\nA1ZxAQAAAAAAAACspdhDZwazywOj5q3iAgAAAAAAAAB4GMUeOrMysWdOsQcAAAAAAAAA4GEUe+jM\ng8WeRcUeAAAAAAAAAIC1FHvozPCElVVcSx0nAQAAAAAAAADYfBR76Mxg1iouAAAAAAAAAIDDUeyh\nM71tlRNmtmVesQcAAAAAAAAA4GEUe+jUsN8zsQcAAAAAAAAAYB2KPXRq2J9R7AEAAAAAAAAAWIdi\nD50a9HuZX1zqOgYAAAAAAAAB28ijAAAgAElEQVQAwKaj2EOnrOICAAAAAAAAAFifYg+dGswq9gAA\nAAAAAAAArEexh04N+73MK/YAAAAAAAAAADyMYg+dGvZnMrew1HUMAAAAAAAAAIBNR7GHTg1M7AEA\nAAAAAAAAWJdiD50a9nuZW1TsAQAAAAAAAABYS7GHTg36vcw9oNgDAAAAAAAAALCWYg+dGs7OZOHA\nwSwdONh1FAAAAAAAAACATUWxh04N+70ksY4LAAAAAAAAAGANxR46NTxhudgzv6DYAwAAAAAAAACw\n2ljFnqrqVdX/OekwbD0PTuxR7AEAAAAAAAAAOMRYxZ7W2oEkr51wFragwexMkmRuYanjJAAAAAAA\nAAAAm8vMBu79y6r6rSR/nOS+lZOttWuOeSq2jJWJPVZxAQAAAAAAAAAcaiPFnvNG/3zHqnMtyT8+\ndnHYaqziAgAAAAAAAABY39jFntbaD04yCFvTQLEHAAAAAAAAAGBd28a9sapOrqpfq6o9o79fraqT\nJxmOR79hf7lbNr+41HESAAAAAAAAAIDNZexiT5LLk9yT5NWjv7uT/NtJhGLrsIoLAAAAAAAAAGB9\nY6/iSvI/tdZeser47VV17bEOxNaysoprXrEHAAAAAAAAAOAQG5nYM19Vz1k5qKpnJ5k/9pHYSoaz\nJvYAAAAAAAAAAKxnIxN7firJH1bVyaPjbyX58WMfia1kprct/d42xR4AAAAAAAAAgDXGKvZU1bYk\nT26t/cOqemyStNbunmgytoxBv5f5haWuYwAAAAAAAAAAbCpjreJqrR1M8s9Hn+9W6uFYGvZ7uc/E\nHgAAAAAAAACAQ4xV7Bn5VFW9qaqeWFWPW/mbWDK2jOWJPYo9AAAAAAAAAACrjbWKa+RHR//86VXn\nWpLvPnZx2IqG/V7mrOICAAAAAAAAADjEWMWeqtqW5OLW2l9OOA9b0LA/kzkTewAAAAAAAAAADjHW\nKq7W2sEkvzXhLGxRw34v84uKPQAAAAAAAAAAq41V7Bn5s6p6RVXVxNKwJS2v4lLsAQAAAAAAAABY\nbSPFnjcm+Q9JFqrq7qq6p6runlAutpDB7EzmFXsAAAAAAAAAAA4xM+6NrbWTJhmErWt5Ys9S1zEA\nAAAAAAAAADaVsSf21LKLq+oto+MnVtX5k4vGVmEVFwAAAAAAAADAw21kFdd7kjwryetGx/cmefcx\nT8SWM+j38sDSwRw42LqOAgAAAAAAAACwaWyk2PP9rbWfTnJ/krTWvpWkP5FUbCnDfi9JMr9oag8A\nAAAAAAAAwIqNFHsWq6qXpCVJVe1IcnAiqdhSBv2ZJMncwlLHSQAAAAAAAAAANo+NFHveleQjSR5f\nVf8yyV8k+b8nkootZTg7mtizYGIPAAAAAAAAAMCKmXFvbK39UVV9IckLklSSl7fWbli5XlWnjtZz\nwYasrOKaU+wBAAAAAAAAAHjQ2MWeJGmt3ZjkxsNc/rMkT/+2E7HlDBR7AAAAAAAAAAAeZiOruI6m\njuG72EKG/eV+mVVcAAAAAAAAAAAPOZbFnnYM38UWsrKK676FpY6TAAAAAAAAAABsHsey2AOPyMoq\nLhN7AAAAAAAAAAAeYhUXnTtxtIprTrEHAAAAAAAAAOBBM0e7oaoed6TrrbVvjj6+4JgkYstZmdgz\nZxUXAAAAAAAAAMCDjlrsSfKFJC3LE3m+M8m3Rp9PSfL1JDuTQwo+sCFDq7gAAAAAAAAAAB7mqKu4\nWms7W2vfneRTSV7aWju9tXZakh9OcuWkA/LoN9vbltleZW5RsQcAAAAAAAAAYMVRiz2rPLO1tnvl\noLX28SQ/cOwjsRUNZnsm9gAAAAAAAAAArDLOKq4Vt1XVLyd53+j49UluO/aR2IqG/ZnMLSx1HQMA\nAAAAAAAAYNPYyMSe1ybZkeQjSf7j6PNrj/ZQVV1QVV+uqpur6tJ1rp9QVX88uv7fqurs0fnZqvqD\nqvqbqrqhqn5hA1k5zgz7vcyZ2AMAAAAAAAAA8KCxJ/a01r6Z5Ger6sTW2n3jPFNVvSTvTvLCJPuS\nXF1VH22tfWnVbT+Z5Futte+pqtck+X+S/GiSVyU5obX21KoaJvlSVX2gtXbLuJk5fgz6VnEBAAAA\nAAAAAKw29sSeqvqBqvpSkhtGx/+wqt5zlMfOT3Jza+1rrbWFJB9MctGaey5K8gejzx9K8oKqqiQt\nyYlVNZNkkGQhyd3j5uX4YmIPAAAAAAAAAMChNrKK69eTvCjJHUnSWvvvSZ53lGfOTLJ31fG+0bl1\n72mtLSW5K8lpWS753Jfk75J8Pcm/Hk0NOkRVXVJVe6pqz/79+zfwc9hMBv2ZzC0q9gAAAAAAAAAA\nrNhIsSettb1rTk2yiXH+6P1nJNmZ5Oeq6rvXyfTe1tqu1tquHTt2TDAOkzSc7WV+YanrGAAAAAAA\nAAAAm8ZGij17q+oHkrSqmq2qN2W0lusIbk3yxFXHZ43OrXvPaO3WyVmeCvS6JP+5tbbYWrs9yV8m\n2bWBvBxHrOICAAAAAAAAADjURoo9P5Xkp7O8OuvWJOeNjo/k6iRPqqqdVdVP8pokH/3/2bv3KEnT\nuk7w3ydumRF16epuuqGhG2hpuhAWbzSIzDgOoDPd7SruCiOKyuxhlj2uuLNnz+wOe3YPi6xnd3D2\njOsuqMcRHcWZ1Vnd2dNKA7OCl/EyCig6NlLS3ASBpqEvVZUZmRmR+ewfEZkZlZV1ye6MiqiOz+ec\n97zP+75PRPyyMg9a2d/6/fbsuSfJa8frVyZ5f621ZjR+62VJUko5kuTFST56gHq5inQ7zfQFewAA\nAAAAAAAAdrQuZ1MppZnk+2qtrznIm9dah6WUNyR5b5Jmkp+ttd5XSnlLkg/WWu9J8o4k7yyl3J/k\noYzCP0ny9iQ/V0q5L0lJ8nO11j87yOdz9dCxBwAAAAAAAADgXJcV7Km1bpZSvifJjx30A2qt9ya5\nd8+9N02s15K8ap/Xnd3vPk9M3U4r/cFmtrZqGo0y63IAAAAAAAAAAGbusoI9Y79bSnlbkl9OsrJ9\ns9b6x4deFQvnSKeZJOkPNnNk6SA/lgAAAAAAAAAAT0wHSVB8zfj8lol7NcnLDq8cFlVvHOxZ3RDs\nAQAAAAAAAABIDhDsqbW+dJqFsNi6ndGPYn9jc8aVAAAAAAAAAADMhwO1RimlfGuS5yVZ3r5Xa33L\nhV8Bl2enY89gOONKAAAAAAAAAADmQ+NyN5ZSfirJdyX5oSQlyauSPGNKdbFguhOjuAAAAAAAAAAA\nOECwJ8lLaq3fn+ThWusPJ/mGJLdPpywWTa89CvYYxQUAAAAAAAAAMHKQYE9/fF4tpTw1ySDJTYdf\nEouo1xlNhdOxBwAAAAAAAABgpHWAvb9eSjmR5J8m+eMkNcnPTKUqFs7uKK7hjCsBAAAAAAAAAJgP\nlx3sqbX+z+Plr5ZSfj3Jcq310emUxaLpdYziAgAAAAAAAACYdNnBnlLK9+9zL7XWXzjcklhEvZ2O\nPYI9AAAAAAAAAADJwUZxvXBivZzk5RmN5BLs4XHbHsXVHwj2AAAAAAAAAAAkBxvF9UOT16WUE0l+\n6dArYiF1mo00GyWrG8NZlwIAAAAAAAAAMBcaj+O1K0luPaxCWGyllPTaTaO4AAAAAAAAAADGLrtj\nTynl15LU8WUjyXOT/OtpFMVi6naa6Qv2AAAAAAAAAAAkOUCwJ8n/NrEeJvl0rfWzh1wPC6zXaWZF\nsAcAAAAAAAAAIMkBgj211t+eZiHQ67TS3xjOugwAAAAAAAAAgLlwkFFcZ7I7iuucR0lqrfX4oVXF\nQup1mlnVsQcAAAAAAAAAIMnBRnH970k+n+SdGYV5XpPkplrrm6ZRGIun22nmzJqOPQAAAAAAAAAA\nSdI4wN5vr7X+RK31TK31dK31J5O8YlqFsXh6nWb6OvYAAAAAAAAAACQ5WLBnpZTymlJKs5TSKKW8\nJsnKtApj8fQ6rawOdOwBAAAAAAAAAEgOFuz5niR/L8kD4+NV43twKLo69gAAAAAAAAAA7Ghd7sZa\n66di9BZT1Gs3syrYAwAAAAAAAACQ5AAde0opP1pKOV5KaZdS3ldKebCU8r3TLI7F0us00x9sptY6\n61IAAAAAAAAAAGbuIKO4/k6t9XSS/zjJp5LcluS/nUZRLKZup5Vak7XB1qxLAQAAAAAAAACYuYME\ne7bHdn1rkv+71vroFOphgfU6zSTJ6sZwxpUAAAAAAAAAAMzeQYI9v15K+WiSFyR5XynlhiRr0ymL\nRdTdCfZszrgSAAAAAAAAAIDZu+xgT631jUlekuSOWusgyWqSV2w/L6V8y+GXxyLZ7tjTHwj2AAAA\nAAAAAAAcpGNPaq0P1Vo3x+uVWusXJh6/9VArY+H0dOwBAAAAAAAAANhxoGDPJZRDfC8WULfdSpKs\nbgxnXAkAAAAAAAAAwOwdZrCnHuJ7sYB2RnHp2AMAAAAAAAAAcKjBHnhcjiyNgj0rgj0AAAAAAAAA\nAIca7PnUIb4XC6jbGY3i6hvFBQAAAAAAAACQ1kE2l1JekuSZk6+rtf7C+PyfHmplLJxee9SxZ1XH\nHgAAAAAAAACAyw/2lFLemeRZST6cZDt5UZP8whTqYgF1O4I9AAAAAAAAAADbDtKx544kz6211mkV\nw2JbajXSKElfsAcAAAAAAAAAII0D7P3zJE+ZViFQSkmv09KxBwAAAAAAAAAgB+vY86QkHyml/FGS\n9e2btdZvP/SqWFjdTjP9wXDWZQAAAAAAAAAAzNxBgj1vnlYRsK3XaerYAwAAAAAAAACQAwR7aq2/\nPc1CIEm6bcEeAAAAAAAAAIAkaVzuxlLKi0spHyilnC2lbJRSNkspp6dZHIun12mmL9gDAAAAAAAA\nAHD5wZ4kb0vy3Uk+lqSb5B8kefs0imJx9TqtrG4MZ10GAAAAAAAAAMDMHSTYk1rr/UmatdbNWuvP\nJblzOmWxqLodo7gAAAAAAAAAAJKkdYC9q6WUTpIPl1J+NMnnc8BgEFxKr9NMfyDYAwAAAAAAAABw\nkGDO9433vyHJSpJbknznNIpicfV07AEAAAAAAAAASHKAjj211k+XUrpJbqq1/vAUa2KBddut9AV7\nAAAAAAAAAAAuv2NPKeXbknw4yXvG119TSrlnWoWxmI4sNbOyMUytddalAAAAAAAAAADM1EFGcb05\nyYuSPJIktdYPJ7l1CjWxwLqdZmpN1odbsy4FAAAAAAAAAGCmDhLsGdRaH91zT1sVDlWv3UySrBrH\nBQAAAAAAAAAsuIMEe+4rpXxPkmYp5dmllP8zye9PqS4WVK/TSpKsbgxnXAkAAAAAAAAAwGwdJNjz\nQ0mel2Q9yb9K8miSfziNolhc3c6oY09fxx4AAAAAAAAAYMEdJNjz3PHRSrKc5BVJPjCNolhcvY5R\nXAAAAAAAAAAAySikc7n+ZZJ/lOTPk2xNpxwWXVewBwAAAAAAAAAgycGCPQ/WWn9tapVAkl5n9CPZ\nHwxnXAkAAAAAAAAAwGwdJNjzP5VSfibJ+5Ksb9+stf4/h14VC8soLgAAAAAAAACAkYMEe/6zJM9J\n0s7uKK6aRLCHQ9NtC/YAAAAAAAAAACQHC/a8sNZ6cmqVQHY79vQFewAAAAAAAACABdc4wN7fL6U8\n96AfUEq5s5RyqpRyfynljfs8Xyql/PL4+R+WUp458eyrSil/UEq5r5TyH0opywf9fK4uvc4oa6Zj\nDwAAAAAAAACw6A7SsefFST5cSvlkkvUkJUmttX7VhV5QSmkmeXuSb0ny2SQfKKXcU2v9yMS21yV5\nuNZ6Wynl1UnemuS7SimtJL+Y5PtqrX9aSrk+yeAgXxxXn+V2I6Uk/Y3hrEsBAAAAAAAAAJipgwR7\n7nwM7/+iJPfXWj+RJKWUX0ryiiSTwZ5XJHnzeP0rSd5WSilJ/k6SP6u1/mmS1Fq//Bg+n6tMKSXd\ndlPHHgAAAAAAAABg4V12sKfW+unH8P5PS/KZievPJvn6C+2ptQ5LKY8muT7J7UlqKeW9SW5I8ku1\n1h/d+wGllNcneX2SPP3pT38MJTJvep1mVgeCPQAAAAAAAADAYmvMuoCLaCX5m0leMz7/J6WUl+/d\nVGv96VrrHbXWO2644YYrXSNT0O0009exBwAAAAAAAABYcNMO9vx1klsmrm8e39t3TymlleSaJF/O\nqLvP79Rav1RrXU1yb5Kvm3K9zIEjnVZW1oezLgMAAAAAAAAAYKamHez5QJJnl1JuLaV0krw6yT17\n9tyT5LXj9SuTvL/WWpO8N8nzSym9ceDnm5J8ZMr1Mge6nWb6RnEBAAAAAAAAAAuuNc03r7UOSylv\nyCik00zys7XW+0opb0nywVrrPUnekeSdpZT7kzyUUfgntdaHSyn/LKNwUE1yb631XdOsl/nQ6zSz\nahQXAAAAAAAAALDgphrsSZJa670ZjdGavPemifVakldd4LW/mOQXp1ogc6fbbuWhlf6sywAAAAAA\nAAAAmKlpj+KCA+t1mulvDGddBgAAAAAAAADATAn2MHeM4gIAAAAAAAAAEOxhDnU7zfQFewAAAAAA\nAACABSfYw9zpdZpZHWym1jrrUgAAAAAAAAAAZkawh7nT67SyuVWzsbk161IAAAAAAAAAAGZGsIe5\n0203k8Q4LgAAAAAAAABgoQn2MHd6nVGwZ1WwBwAAAAAAAABYYII9zJ2uYA8AAAAAAAAAgGAP86fX\naSUxigsAAAAAAAAAWGyCPcyd3VFcwxlXAgAAAAAAAAAwO4I9zJ2dUVwDHXsAAAAAAAAAgMUl2MPc\nOWIUFwAAAAAAAACAYA/zZ3sU18q6UVwAAAAAAAAAwOIS7GHubI/i6hvFBQAAAAAAAAAsMMEe5s52\nx55Vo7gAAAAAAAAAgAUm2MPcWW4J9gAAAAAAAAAACPYwdxqNkm67mf7GcNalAAAAAAAAAADMjGAP\nc6nXaerYAwAAAAAAAAAsNMEe5lK300xfsAcAAAAAAAAAWGCCPcwlHXsAAAAAAAAAgEUn2MNc6nZa\nWR0I9gAAAAAAAAAAi0uwh7nUazfT3xjOugwAAAAAAAAAgJkR7GEuGcUFAAAAAAAAACw6wR7mUrfT\nTF+wBwAAAAAAAABYYII9zCUdewAAAAAAAACARSfYw1zqdVpZ3RjOugwAAAAAAAAAgJkR7GEu9TrN\n9Ac69gAAAAAAAAAAi0uwh7nU6zQz2KzZGG7NuhQAAAAAAAAAgJkQ7GEudTutJEl/Q9ceAAAAAAAA\nAGAxCfYwl3qdZpJkdTCccSUAAAAAAAAAALMh2MNc2gn26NgDAAAAAAAAACwowR7mUrc9CvYYxQUA\nAAAAAAAALCrBHuZSr9NKomMPAAAAAAAAALC4BHuYS92dUVzDGVcCAAAAAAAAADAbgj3MpV7HKC4A\nAAAAAAAAYLEJ9jCXejsdewR7AAAAAAAAAIDFJNjDXNoZxTUQ7AEAAAAAAAAAFpNgD3Op12klSfob\nwxlXAgAAAAAAAAAwG4I9zKVu2yguAAAAAAAAAGCxCfYwl5qNkqVWI33BHgAAAAAAAABgQQn2MLd6\nnaaOPQAAAAAAAADAwhLsYW71Oi3BHgAAAAAAAABgYQn2MLd6nWb6g+GsywAAAAAAAAAAmAnBHuZW\nr9PMyrqOPQAAAAAAAADAYhLsYW51O830jeICAAAAAAAAABaUYA9zq9dpZdUoLgAAAAAAAABgQQn2\nMLe6nWZWdewBAAAAAAAAABaUYA9zq9c2igsAAAAAAAAAWFyCPcytno49AAAAAAAAAMACE+xhbnU7\nLR17AAAAAAAAAICFJdjD3Op1mtnY3Mpwc2vWpQAAAAAAAAAAXHGCPcytXqeZJFkd6NoDAAAAAAAA\nACwewR7mVncc7DGOCwAAAAAAAABYRII9zK2djj2CPQAAAAAAAADAAhLsYW51260kyerGcMaVAAAA\nAAAAAABceVMP9pRS7iylnCql3F9KeeM+z5dKKb88fv6HpZRn7nn+9FLK2VLKP5p2rcyXnlFcAAAA\nAAAAAMACm2qwp5TSTPL2JHcleW6S7y6lPHfPttclebjWeluSH0vy1j3P/1mSd0+zTubTkSWjuAAA\nAAAAAACAxTXtjj0vSnJ/rfUTtdaNJL+U5BV79rwiyc+P17+S5OWllJIkpZTvSPLJJPdNuU7m0O4o\nLsEeAAAAAAAAAGDxTDvY87Qkn5m4/uz43r57aq3DJI8mub6UcjTJP07ywxf7gFLK60spHyylfPDB\nBx88tMKZvZ1RXIPhjCsBAAAAAAAAALjyph3seTzenOTHaq1nL7ap1vrTtdY7aq133HDDDVemMq6I\n7WDPyrqOPQAAAAAAAADA4mlN+f3/OsktE9c3j+/tt+ezpZRWkmuSfDnJ1yd5ZSnlR5OcSLJVSlmr\ntb5tyjUzJ7rbHXuM4gIAAAAAAAAAFtC0gz0fSPLsUsqtGQV4Xp3ke/bsuSfJa5P8QZJXJnl/rbUm\n+cbtDaWUNyc5K9SzWHqd0Y/nqmAPAAAAAAAAALCAphrsqbUOSylvSPLeJM0kP1trva+U8pYkH6y1\n3pPkHUneWUq5P8lDGYV/IM1GSafVyOpgOOtSAAAAAAAAAACuuGl37Emt9d4k9+6596aJ9VqSV13i\nPd48leKYe71O0yguAAAAAAAAAGAhNWZdAFxMr900igsAAAAAAAAAWEiCPcy1ro49AAAAAAAAAMCC\nEuxhrvU6raxuDGddBgAAAAAAAADAFSfYw1zrdoziAgAAAAAAAAAWk2APc63XaaY/EOwBAAAAAAAA\nABaPYA9zradjDwAAAAAAAACwoAR7mGvddit9wR4AAAAAAAAAYAEJ9jDXjiw1s7oxnHUZAAAAAAAA\nAABXnGAPc61rFBcAAAAAAAAAsKAEe5hrvXYr68OtbG7VWZcCAAAAAAAAAHBFCfYw13qdZpIYxwUA\nAAAAAAAALBzBHuZadxzs6RvHBQAAAAAAAAAsGMEe5tpuxx7BHgAAAAAAAABgsQj2MNcEewAAAAAA\nAACARSXYw1zrdlpJkv5gOONKAAAAAAAAAACuLMEe5pqOPQAAAAAAAADAohLsYa5124I9AAAAAAAA\nAMBiEuxhrm137OkL9gAAAAAAAAAAC0awh7nW67SS6NgDAAAAAAAAACwewR7mWrezPYprOONKAAAA\nAAAAAACuLMEe5ppRXAAAAAAAAADAohLsYa61m420myWrA8EeAAAAAAAAAGCxCPYw93qdlo49AAAA\nAAAAAMDCEexh7vU6zaxuDGddBgAAAAAAAADAFSXYw9zrdppZ1bEHAAAAAAAAAFgwgj3MvV6naRQX\nAAAAAAAAALBwBHuYe712KytGcQEAAAAAAAAAC0awh7nX1bEHAAAAAAAAAFhAgj3MvV6nmVXBHgAA\nAAAAAABgwQj2MPe6gj0AAAAAAAAAwAIS7GHu9TrN9AeCPQAAAAAAAADAYhHsYe71Oq2sbgxnXQYA\nAAAAAAAAwBUl2MPc67abWRtsZWurzroUAAAAAAAAAIArRrCHudfrNJPEOC4AAAAAAAAAYKEI9jD3\ntoM9qxuCPQAAAAAAAADA4hDsYe51O60kSV+wBwAAAAAAAABYIII9zL2djj2D4YwrAQAAAAAAAAC4\ncgR7mHtGcQEAAAAAAAAAi0iwh7nXM4oLAAAAAAAAAFhAgj3MPR17AAAAAAAAAIBFJNjD3OvuBHuG\nM64EAAAAAAAAAODKEexh7unYAwAAAAAAAAAsIsEe5l6v3Uoi2AMAAAAAAAAALBbBHube9iiuvlFc\nAAAAAAAAAMACEexh7nVajbQaRcceAAAAAAAAAGChCPZwVeh2moI9AAAAAAAAAMBCEezhqtDrNNMX\n7AEAAAAAAAAAFohgD1eFXqeV1YFgDwAAAAAAAACwOAR7uCp02830N4azLgMAAAAAAAAA4IoR7OGq\n0Os0s2oUFwAAAAAAAACwQAR7uCp0BXsAAAAAAAAAgAUj2MNVoddppi/YAwAAAAAAAAAsEMEergpH\nOq2sDoazLgMAAAAAAAAA4IoR7GF6huvJb/4vyUfvfdxv1dWxBwAAAAAAAABYMII9TE+zk3z4XyV/\n8ouP+616nWZWBXsAAAAAAAAAgAUi2MP0lJKcvCv5+PuTQf9xvVW300p/sJla6yEVBwAAAAAAAAAw\n36Ye7Cml3FlKOVVKub+U8sZ9ni+VUn55/PwPSynPHN//llLKh0op/2F8ftm0a2UKTt6VDPvJJ377\ncb1Nr9NMrcnaYOuQCgMAAAAAAAAAmG9TDfaUUppJ3p7kriTPTfLdpZTn7tn2uiQP11pvS/JjSd46\nvv+lJN9Wa31+ktcmeec0a2VKnvE3k86x5NS7Htfb9DrNJMnKxvAwqgIAAAAAAAAAmHvT7tjzoiT3\n11o/UWvdSPJLSV6xZ88rkvz8eP0rSV5eSim11j+ptX5ufP++JN1SytKU6+WwtTrJs785OfWeZOux\nd9vptkfBnv7G5mFVBgAAAAAAAAAw16Yd7Hlaks9MXH92fG/fPbXWYZJHk1y/Z893JvnjWuv63g8o\npby+lPLBUsoHH3zwwUMrnEN08luTlS8mn/vjx/wWvU4rSbIq2AMAAAAAAAAALIhpB3set1LK8zIa\nz/Vf7Pe81vrTtdY7aq133HDDDVe2OC7Ps785Kc3k1L2P+S22R3GtGsUFAAAAAAAAACyIaQd7/jrJ\nLRPXN4/v7bunlNJKck2SL4+vb07yb5J8f63141OulWnpXps84yXJqXc/9rfoGMUFAAAAAAAAACyW\naQd7PpDk2aWUW0spnSSvTnLPnj33JHnteP3KJO+vtdZSyokk70ryxlrr7025Tqbt5N3JFz+SPPTJ\nx/Ty3Y49gj0AAAAAAAAAwGKYarCn1jpM8oYk703yF0n+da31vlLKW0op3z7e9o4k15dS7k/y3yR5\n4/j+G5LcluRNpZQPj48bp1kvU3TyztH5L9/zmF6+E+wZCPYAAAAAAAAAAIuhNe0PqLXem+TePffe\nNLFeS/KqfV73I0l+ZCPFEyIAACAASURBVNr1cYVc9xXJDV+ZfPRdyYt/4MAv73ZGP6r9jeFhVwYA\nAAAAAAAAMJemPYoLdp28K/n07yf9hw/80l7bKC4AAAAAAAAAYLEI9nDlPOdbk7qZfOw3DvzSbkew\nBwAAAAAAAABYLII9XDlP/brkyI3JqXsvvXePpVYjjZL0BXsAAAAAAAAAgAUh2MOV02gkJ+9M7v+N\nZLhxoJeWUnKk09KxBwAAAAAAAABYGII9XFkn707WTyef/r0Dv7TbaaY/GE6hKAAAAAAAAACA+SPY\nw5V16zclrW5y6t0Hfmmv09SxBwAAAAAAAABYGII9XFmdXvKsl46CPbUe6KVdo7gAAAAAAAAAgAUi\n2MOVd/Ku5NG/Sh748wO9rNdppi/YAwAAAAAAAAAsCMEerrzb70xSDjyOq9dpZmVjOJ2aAAAAAAAA\nAADmjGAPV97RG5ObX5icuvdAL+u2dewBAAAAAAAAABaHYA+zcfKu5HN/kpz+3GW/pNdpZlWwBwAA\nAAAAAABYEII9zMbJu0fnv3zPZb+k22kJ9gAAAAAAAAAAC0Owh9m44WRy7a3JqXdf9kt6nWb6G8Mp\nFgUAAAAAAAAAMD8Ee5iNUkZdez7x28n62ct6Sa/TzOpgM7XWKRcHAAAAAAAAADB7gj3Mzsm7ks31\n5OPvv6zt3U4ztSbrw60pFwYAAAAAAAAAMHuCPczO078hWT5x2eO4eu1mkmR1Y3OaVQEAAAAAAAAA\nzAXBHman2Upu/7vJX74n2bp0WKfXaSVJVjeG064MAAAAAAAAAGDmBHuYrZN3Jf2Hks/80SW3djuj\njj19HXsAAAAAAAAAgAUg2MNsPevlSaOdnLr3kluPLBnFBQAAAAAAAAAsDsEeZmv5eHLrNyan3n3J\nrd329iguwR4AAAAAAAAA4IlPsIfZO3l38uWPJV/62EW39bZHcQ2GV6IqAAAAAAAAAICZEuxh9m6/\nc3S+RNee7WCPjj0AAAAAAAAAwCIQ7GH2TtySPOX5yal7L7qtK9gDAAAAAAAAACwQwR7mw8m7k8/8\nYbLypQtu6XVaSZLVdaO4AAAAAAAAAIAnPsEe5sPJu5O6lXzs315wy84oroGOPQAAAAAAAADAE59g\nD/Phpq9Ojj31ouO4llqNlJL0jeICAAAAAAAAABaAYA/zoZTk5F3J/e9PBmsX2FLSazezKtgDAAAA\nAAAAACwAwR7mx8m7k8FK8ql/d8Et3U5LsAcAAAAAAAAAWAiCPcyPW78x6Ry96DiuXqeZ/sbwChYF\nAAAAAAAAADAbgj3Mj9ZS8qyXJafenWxt7bul1zGKCwAAAAAAAABYDK1ZFwDnOHl38hf3JJ//cPK0\nrzvvcbfTTH8g2AMAAAAAAADAE8zmIFl9KNlcH603N8bHnvVwff/7F1rf9FXJ137vrL86HiPBHubL\n7X83KY1R1559gj069gAAAAAAAABwVdkcJGcfSM48kJz5fHL2C8mZPcfZLyQrX0pSD+czG+2k2Uma\n7WS4JthzFRPsYb70rkue/g2jYM/L/ofzHnfbrTy00p9BYQAAAAAAAAAsjFqTujU6p+5eb6+3z2uP\n7AZ2znx+HOD5/PjeRQI7pZEcuTE59pTkmpuTm1+QHLspOfKkpNXdDeU0OxdZX+R5KVf+z4ypEOxh\n/py8K/m3/2PyyF8lJ55+zqMjS830N4YzKgwAAAAAAADgCa7WZNBP1k8na6fH50f3XO89Pzp6TbOT\ntJaSdnd0bi2Pz3uuL/p8OWmPz1ubyWB19N6D1T3rfrKxMr6efL66e2/v8+HabljnvJDORIjn8bhQ\nYOfok0fnY08ZHUduSBrNQ/iG8UQn2MP8OXn3KNhz6j3J17/+nEdGcQEAAAAAAABXtVqT4XqyuT46\nbx+b66PgyXBjdN7cmHi2kWwNx+GTzWRra2K9OTrXrfH97fXmnvXWufcH/QsHd7Yu1WyhJEvHkqXj\nyfLx3fPmINk4m6x+aVT3YG38Na0nw/7o6zhspZG0j4zCQu1u0tle90Zhmu11pzcKC5Uyek3KuKvN\n5Lmxz7399k2cl44L7DBVgj3Mn+uflTzp9uTUvecFe7rtVvqCPQAAAAAAADB7w41RIGTt0dE4orVH\nJq4fTfqPJOtndgMlO11Rsue67rmevJcLdFhJzumscij3LrDnsVxvDSfCOpNBnbXphFv2UxpJaY5C\nJjvrxu663d0N5By7Kbnh5PlBnaVr9lyPz51jo/c6qK2t3QDT3tDPcO/9tVGdnd5uOGfn6I7v90Zd\ngoyd4glMsIf5dPKu5A9+YvR/8Jev2bnd6zSzOthMrTXF/zgDAAAAAADwWG1tJYOVZP3sqMPI+pnx\neXy9sTIKQDSa40BEaxyK2F43d4MSjdZugGJnvc/9reFoHNDGnnFC+40Q2tm3597k/uFG0myfO7ro\nkmOPJvft87rNjXPDOXvDOtuBnbVHR2GMi2m0R11dGq09XVIae7qgNC7wvHFuZ5XJ/dvO+W+G5RDv\nTXZrmdxWLrJ/4rrRGv2ZNrf/3Dujc7Ozz/XSBZ4tjZ8tjb7P2z9POz+XjXN/Rs9Zl8xl2KXRSBrj\nzjrdWRcDVwfBHubTybuT3/vx5P7fSP6j79y53e00s7lV8/EHz+a2G4/NsEAAAAAAAOBQbG0m/YeT\n1YdGQYHW0miMSufoeJxK77F1hThste52kEiZCHVMng/5P6LXOvrz2dwYH4MLrDfOv39e54v13fqH\nE/cGE10y9nbNmHyP1FFIo9kan9u7183OPs9aE3v27N++N/nnNvlnORlaOKfTyCWCDJsbE8GcM6Og\nzoVCO+tnRsGd1Et9F6680pwYJdQ9t0PJ3rFCzaXx93ufbicbK8nql/d8v8frzfXLrKUx+kf4yyfG\n52uSJz15dO6e2PNsYs/20e7OZ7gE4Coi2MN8uvmFSe9Jyal3nxPs+YZnXZ/ldiPf8mO/k7uff1N+\n8G/fluc+9fgMCwUAAAAAAHZMhnRWvzw6+hPr1Ycn1uNn/Udy8XBFGQd9Jo+jF1jv8yxlT5eT/Tqf\nXOzZxP1LhkDKPkGU7dE3e0NAE4GUunXh0M5hBk9K4+KdXDq9pHfd+R1dWkujcMbmMNkajOrbGuy5\nHp57f7g2Cs9cbN/WVlI3R1//1uZovbV5OF9zcylZOjr6GVg6Plr3npRc+8zxvWPj8/b62MT+o6Pr\nTm93pFLdHNW7s56od2c9vPj9rc1RsKm9d6xQ99xzq/P4v/5LmRyHdE7Aqz8KXm2HdjpHBXMAZkyw\nh/nUaCa335l89NdG/89ds50k+bqnX5vf/ccvyzt+95N55x98Ou/6s8/n5c+5MT/4stvydU+/dsZF\nAwAAAADAAdU6OjI+161z1zsBgq3d895QQd06PxixHULYu/9SwYy94Yx9QxsT19sdQS4npNNaHgUr\netcmveuTE7ck3etG6971o0DJ8jW7nUa2RyHtHBPX62dG4aFHPjPx7Oyorst1XleUifVkV5RzuqZ0\nR19H6vnfg32/P/t9v/a5X5qjrjfN9vh8ofWlnk+s23sCPK3lnf/eMve2f/7P+zmf+LPb73mzvRva\nuVq+1lmZHIcEwFwrtc5he7nH6I477qgf/OAHZ10Gh+Uvfj355dckr/215Na/dd7jR1cH+fk/+FR+\n9vc+mUdWB3nJs67PD770trzkWdenSA4DAAAAAHAxtY7H9qxMjOfZGyY5c36wZN99K8lgZRQ4yHYg\n5yJhnUyEeeZdaYy6dzRa+49g6hyZCOZcPxHUuW58TNzv9KZf73Bj4nsz/n6Vcn44p90T/AAAZqaU\n8qFa6x2XtVewh7m1sZK89dbkha9L7vxfL7htZX2Y/+uP/io//TufyBfPrOdrbjmRN7z0trz8K28U\n8AEAAAAAuNpsbSZrj47GOfUfGZ3XHhmPixmPjNk+Ntf3ub6cPeuj8UoH6e7SPjIez7N33NN4dE+7\nuzteKWV3dE1pjNdlz7rs2bv9POc+32980+QIp3NGPV3G/uZ2SKc9EdJpnRvWmQzvNBqH/A0GAECw\nhyeOf/n3kgc/mvzDP73k/M61wWZ+5UOfzU/99sfz2Yf7ec5TjuUHX3pb7n7+TWk2BHwAAAAAAK6o\nzcFuMOcgx9qjuexONo32eMxQZ3fcUHNpPHZoaZ/riT3t5d1QztLRPWGdicBO58iou4uACwAAh0Sw\nhyeOD/5c8uv/dfJf/vvkxq+8rJcMNrdyz4c/l5/4rfvz8QdXcuuTjuQHvulZ+Y6vfVo6LX/xAgAA\nAACegLY2k/Uz4+P06Lx2erw+PV5f4Nn62aRujt5ncjxUzcS6Hmw96I/GIF1QSbonku61lz6WT4z2\ntpZ3gznb4RxhGwAArkIHCfa0pl0MPC633zk6f/Rdlx3saTcb+c4X3Jzv+Nqn5b33fSFve//9+e9+\n9c/y4+/7WF7/t74i3/XCW7Lcbk6xaAAAAACAx2n9THLmgeTM55OzDyRnvrC7Xn3o/LDORUM0Y6WR\nLB0fHcvHk6VjydGnJNcfHY1oSs4dEzW6sWedC9zfs24t7wno7AnxLF0jlAMAAJdBxx7m30+/dPQX\nzv/8fY/p5bXW/NapB/O237w/H/r0w3nS0aX8g2+8Nd/74mfk6JJsGwAAAABwhdQ6GjN15gvJ2S+c\nH9w5O74+80AyWDn/9a3l5OiTkyNPGgd0jo0DOnvCOjvPrtm9Xj4+Gie1E8ABAABmRccenliec3fy\n/h8Z/WX22JMP/PJSSl76nBvzt0/ekH//iYfyE791f/7Juz+an/ytj+fvv+SZ+fsveWauPdKZQuEA\nAAAAwBPG1tYobLN+NtlYGXXI2Vi5yHp8Xj+dnP3ibnBnuHb+e7ePJMeeMjpu+prk9vH66FNGvxM9\nOr5evkYwBwAAFoyOPcy/B+5LfvIlybf9H8kLXnsob/nhzzySt//m/fn/PvJAep1mXnTrdbn52m5u\nubaXW67r7axP9Nop/qIMAAAAAE8sg7VxZ5zxeKvt4/Tnk/5D+wd2BquX//6NVtI5OjqWjiZHbtgN\n7myHdI4+OTl20yi4s3Rsel8rAAAwd3Ts4YnlxucmJ56enHr3oQV7vuaWE/nn339HPvqF03nHv/tk\nPvL50/mTv3okj/YH5+w7utTKzdd2c/O147DPdb3cMr6+5bpuji23D6UeAAAAAOAQbG0mKw/uhnT2\nhnbOfCE587mk//D5r20tjwI3vetHgZwjNySdIxPH0Qusj52/r6VDOAAAcDgEe5h/pSQn704+9C+S\njdWk0zu0t37OU47nn77qq3euT68N8pmHVvPZh/s7588+vJrPPLSa3//4l7K6sXnO60/02jvdfXaD\nP7089UQ31x/t5NpeJ82Gjj8AAAAAcCDD9WT9zGiM1fqZPcfpZG18f+3R0Xir7eDO2QeSeu7v8FIa\n4+44T0mufWby9Bcnx28ad8sZH8dvSpZPGHMFAADMHcEerg4n70r+8KeST/xW8py7p/Yxx5fbed5T\nr8nznnrNec9qrXl4dSL48/DqOPTTz6kHzuR9H/1iNoZb57ymlOTaXifXHenk+iOdXH90e72071oQ\nCAAAAICr3tbWKHzTf/jcY+2RpP/IPkGdvQGe08nmxqU/p9FKlo7vjri64StH572hnaM3Jo3m9L9u\nAACAKRDs4erwjL+RLF2TnLp3qsGeiyml5LojowDOV99y4rznW1s1Xzq7ns883M/nHunnoZWNfPns\ner68sjFeb+TUF87koZWNPLw62OcTLh4EuqbbzvFuO8eWWzm+3M7x7vi83M7R5ZZAEAAAAACHa3M4\n6oizN6BzqWPtkaRuXfh9G+1k+fgolLN0bHQ+/rTxenyc83zymLjfWtJhBwAAeMIT7OHq0Gwnz/7m\n5C/fM5qTPYf/wqbRKLnx+HJuPL6cFzzj2ovuHW5u5eHVwT7hn4MFgSYdXWrthH6OLbfOCQHtd31s\nuZ2jS60cWWrmSKeVI0utdFqNw/rjAAAAAGDWhhvjsVWPjsI2a4+Oj9MT6/Gxvs+9jbMXf//la5Lu\ntbvHtc8493q/Y+l40l6+Ml8/AADAE4BgD1ePk3cnf/6ryV9/KLnlRbOu5nFpNRu54dhSbji2lOTY\nJfcPN7dydn2Y0/1hTq8NRkd/mDNrg5xeG593rgc5szbMF8+s5eMPDnO6P7oebtVLfk6n2UhvHPQ5\nutRKb6k5Cv+Mgz9Hlpo5sjR+1jl3fXSplW6nmW67ec6502yk+JdTAAAAwKKpdTROamMlGfSTwep4\nvZpsrI7OmxvJ1jDZHFx4vTUY37uM9aB/bjBn2L94jaUxCudMHtd9RbJ8Ynx9POleNw7lnDg3oLN8\nzVz+4zsAAIAnGsEerh63ffNobvape6/6YM9BtZqNnOh1cqLXeUyvr7WmP9jMmbVR0Gc7DLSyvpmV\n9WFWNoZZWR/m7PpmVjeGObs+ul5Z38zZ9WEeOL22s15Zv7yQ0LZGyU7IZ7ndPH993rNGuu3R9XK7\nmU6rkaVWI+1mI51mI+3W6NxplXSazbRbZXS/OdrX2d7baqTVKEJFAAAAwLlqHYVghv1ksDY6D9dH\noZjh2p7z+u6+weq5oZyd9co+98Yhnrr5+Ottdkajq5qtS687veT4U0eBnJ2wzjiks3T8/BBP54hR\nVgAAAHNu6sGeUsqdSX48STPJz9Ra/8me50tJfiHJC5J8Ocl31Vo/NX723yd5XZLNJP9VrfW9066X\nOdY9kTzjbyT3/ZvkSbePZmi3uqNze3xuLe8ek/cW/F8PlVLS67TS67Ty5OOPv9Xx+nBz31BQf2Mz\na4PN9AejdX8wvh6vJ69XNzbzyOpGPr+zfytrg1Gw6AC5oUvq7ASBGmk3S1qNRlrNkmajpNUoaTYa\n43PZPTcvcH+8v9nIOc+bjZJGGY1ja5bt6wvfb5SM1uP7u+fsvK5ktK+Uc8+NUlL2u87uZ23vL8n4\n88rO7+i217vnJHs/K9ufcf77Z/tedj9j+3nG77f3/vZnlwu91i8QAQAAnji2tsbdYzZGY6A2t49B\nsrk+sd4YhWa21zsdasbPz+lWM76/3ZXmgp1shufeG65dOKhTtx7b11caSfvIKEDT7o2CMe3uaH3k\nSeN7vdGednd3fc65u/u8tTT6h2zNzmgUfaM9Om+vG03BGwAAgAU31WBPKaWZ5O1JviXJZ5N8oJRy\nT631IxPbXpfk4VrrbaWUVyd5a5LvKqU8N8mrkzwvyVOT/EYp5fZaD+OfuXDVev4rk3t+KPl/f+Bg\nr2u0J4I+22GgiRDQzi9LWqNfmDS31+NfoDRaE/cmjmZrYt8+r937r6ca7f1/STP5rNmZ+Lz5/AXO\nUquZpVYz1x15bB2ELqbWmsFm3QkBbQy3MtjcysbmVgbDmo3NzawPtzLYrLvPhqPnk9e79+v4PHqv\nza1kc2srw62aza2657yV4WbN+v/f3t3G2pbfdQH//u49M51pR/tAC9FpSwcYxWqkrTe1WjENmEiF\nMLyotspD02j6pkYwPoHRoCS+MDECBoI0bbVoQ4GxyIQX+FBIlcQ+TAGBthgnReg0hakWKmDaueec\nny/2Oueu/Xj2PWfvu/c59/PJ3Tlr/Z/Wbz3svfba97fXvnmcw+Oj6fKTdkc9V96dHB13jrpzPPzt\nDSYn3S0miUC3En1OEn8m05PKmmo7Shqa6Tfddnm7W0+tOl3+ePxxXMl0EtI4Yek0xqn56T6jRS2t\nWzbWyrZnLH88yPxyFqzXklgy12dVrMvrVq3LopgWtcmydV043vw+O6vdeNBx6dy+PCP2qbZrxLR8\n3CXt504N0wVz6zvbeq5+ef9F22GRVWOuimfRsb6o3fxuWr3OC7qcO8ZFz6VF/eaOpTXjWtn2jPcB\nt7Mvly17cYyLl7vu25JFca+/7NVjrbNOs41Whb1snZZtg3ViOGu/LOq0/LhYEcfSmtWve4tiWmff\nLovlPNt3UQzr97vd5Z3/uXmRY3n5cpYedEutXucLxniR16411+/8+3Nzz8PbPVeeJ6bVS1y+7Ok+\n53teLKpfZ1+s/bq+5hZa95y/an+cdR5Y1m5VHNP9bu/1b9n72WWxzL036J7cteX4KJXD1PFx0kep\nk7KezE/Kjm+VHR+mjo+SPkz1YXI0/D0pPz5MHR8O7Sfz6UndpHxSN2l3czL+8SQppo4OJ8s8unk6\ndk7qTvueTN+cLGOon/Q/Sa6ZJObUKHGnjg9Xb9AL6NPPVQ6WJMEcTH/W8ozfnzzwhemD+5N77kud\nfiHs/vQ996XuuW/qS2N1z/2jL4udfHFsaDNuu2ef0wAAAHC1bfuOPa9M8kR3fzxJqurdSR5JMk7s\neSTJPxqmH03yfTX5hOSRJO/u7s8n+dWqemIY779tOWb22Su+JflDr53c4vj0Fsmfn7ll8mj+8HPD\nLZVHj9P50a2UDz83fCB168Orkw+uTr8JNn4c3dzMrZTXdfLhVFVS14bHMJ1x2bWZ+pm6zPQ//Z/r\n8fTJQmv0QdWidkvqxuVLyxaNNamrVO6tyr1Jnr3wY9oFGTMLs2jWbZfk2vDYoJMldSedzvBvUj6U\n9UlI3aP2PRXqMDfMT9edlvTJaDldzq3pnt4So/rZrTGJtU5rb7WrZDae0b6Z3aw9WsjCPTMb/3jk\nPjkqJsuvqT6Tb1PeKhtHm9RoO0/Hc6tXn/4dT4/WpSrdNep3Uj9qs3TNTuKfWavZ7bNsB8wVj6dq\nYZ91jvyeeR7N7/fZdaupNitz1Fbs51tNFgd9UlqLevfcxPKIzkiiW1Y9PgYW1c7VTcU9PkrHTRaP\nt/iYX8+6SYKr98G6/cfP6/UWvKpV9fzRPHu0Le27oH5ZSIuPkrP3xVRcdatyUYxT/1G34Jmy/Eia\nj2f8OrQo3kV91v+v5nUs3/YLn48bjmDd58Dy5+d+WLWtptvtbsx1x7uoM88zt1m/qu0+mN2uc8kH\nC6Jed5+t+3q2j9vlIlYmZuzh2m7jeX3e8c46OtY5Hhe3We84XrfvbPmyc+jS8uqp8++t6VvzNdW/\n5+pu9T1pN9/m2un1xvSYp8urXlg3mT7O9eFxLT2aHv7W/hzLR105zEEOcy2HuT796OvzZaO6o1zL\nzRzkKPflZp6VmznIzT7I07knT+dgMp/ruZmDPN3jsoM8nYM83dPzN0dlT+ee3ByWdbMPTqcPM56+\nns2+L1rmc8NjsTuVGDppv7LytqrWTTS9naT0SfvltSv31kW24x2KcXm3FeOdb5dtLeFznWVPj7f5\n59j6XwxYs90WXgcuw3Zc19pL3nCI21jjy7AdL0Oe5zaeM2sv+xJsn125DHex387zeguD7rm7cZ2T\n3b727Mpl2Ndf+fDz83f+/JfvOgzOaduJPQ8m+cRo/skkf3JZm+4+rKrPJvmCofz9M30fnF1AVb05\nyZuT5MUvfvHGAmePPfCCJC/YdRST/wA8Pjr9Rtt0YtD41tAzt5A+vbX0oltGr+jTxzm9TfTJ9NSj\n56fTq9uN12UyMZrv+bqF7cZ1M/2n/jd7KDs+nh9rqv1sDIs+rVn8sfK5221Bzfy9vc61ouOqT3pu\nY32XJkMty0KZbbdh3TPxj6ZPy0cf4p7ZdjTuWcfy6XNh2TE+ml77ndmd+U/4+abz/126eqiz9ved\n2NfJ3PY6s37dZZ2zcmVSy7Lskoum1mzJ2rcP21aMm34Nn3E7r1FL2654XTnztaZuJXgtfP2Ziad7\npm62flHZdNxzyXLncva5ZNl/y17Iho7Hfbkr3nTCxYqg1j13dNIbP8/cTtLMOTbs3DG7YIxeOnO+\nZZ5lzSEv9lxafd5anKx01j5btO3WfI27rfco69n882zJ+/o1ei1dt9uM8ezmtxPj+uvSi5pe6PC7\nNWB3Vr5v6pn509Jxn6WvPeuVzfXt6WuZZYmqPXde7ZXtkxqWVdPtqhZPn6TezHwhpauSnhmrKp1b\nX34ZpxClkuNUUtdOU3hOl3/afjJe17V0XU9n+FvXcjz87Yzmcy197SDHqdN2J/2OR/OT6es5roPR\nWAc5HuqO62AyTk3SiG61nSTgnNT1qP1xXZ+sy6K3HyfzK14Apvv1wrqD4TH7I+ALvxByRpvlcazX\nd37dVsewLAn8rAUtfLVeGM/trfPKK4yV/dbYGEvGX3fbrhpjvX4b3v8bjOOsfudd1qqeK2M8Z/zr\njjE93prtbudjivXfnG2y2W3ZxBdbpsc7fywXtX6Mmw1yK6u80+242efWLu32eLw623HTLsMqb2e/\nXIY136y78fhO7sY9vflz67Y88Ix7dh0CF7DtxJ6t6+63Jnlrkty4ceNyPGu4GqqGn9q69E8jAOCc\n7vQXMS7BFz8AAAAAAIAN2vCPz8z5ZJIXjeZfOJQtbFNVB0meneT/rNkXAAAAAAAAAACupG0n9nwo\nycNV9VBV3ZvkDUkem2nzWJI3DtOvS/LTPblf1WNJ3lBVz6iqh5I8nOSDW44XAAAAAAAAAAD2wlZ/\nQ6i7D6vqryf5D0muJ3lHd3+kqr4ryePd/ViStyf5N1X1RJLPZJL8k6Hdjyb5aJLDJG/p7qNtxgsA\nAAAAAAAAAPuiJjfHuRpu3LjRjz/++K7DAAAAAAAAAACAharqw919Y5222/4pLgAAAAAAAAAA4Bwk\n9gAAAAAAAAAAwB6S2AMAAAAAAAAAAHtIYg8AAAAAAAAAAOwhiT0AAAAAAAAAALCHJPYAAAAAAAAA\nAMAektgDAAAAAAAAAAB7SGIPAAAAAAAAAADsIYk9AAAAAAAAAACwhyT2AAAAAAAAAADAHpLYAwAA\nAAAAAAAAe0hiDwAAAAAAAAAA7CGJPQAAAAAAAAAAsIck9gAAAAAAAAAAwB6S2AMAAAAAAAAAAHtI\nYg8AAAAAAAAAAOwhiT0AAAAAAAAAALCHJPYAAAAAAAAAAMAektgDAAAAAAAAAAB7qLp71zFsTFV9\nOsmv7ToO5jw/yf/edRAAXFnOMwBsk/MMANvkPAPAtjjHALBNzjMX98Xd/YJ1Gl6pxB72U1U93t03\ndh0HAFeT8wwAH4KPMQAABx1JREFU2+Q8A8A2Oc8AsC3OMQBsk/PMneWnuAAAAAAAAAAAYA9J7AEA\nAAAAAAAAgD0ksYc74a27DgCAK815BoBtcp4BYJucZwDYFucYALbJeeYOqu7edQwAAAAAAAAAAMAM\nd+wBAAAAAAAAAIA9JLEHAAAAAAAAAAD2kMQetqaqvqaq/kdVPVFV377reAC43KrqRVX1M1X10ar6\nSFV961D+vKr6T1X1P4e/z911rABcXlV1vap+vqp+cph/qKo+MFzX/EhV3bvrGAG4nKrqOVX1aFX9\nSlV9rKr+lOsZADalqv7m8JnZL1fVD1fVfa5nADivqnpHVT1VVb88Klt4/VIT/2I43/xiVb1id5Ff\nTRJ72Iqqup7k+5O8NslLk/zlqnrpbqMC4JI7TPK3uvulSV6V5C3DueXbk7y3ux9O8t5hHgDO61uT\nfGw0/0+TfHd3f1mS30ryV3cSFQBXwfcm+anu/vIkX5HJ+cb1DAAXVlUPJvkbSW509x9Lcj3JG+J6\nBoDz+9dJvmambNn1y2uTPDw83pzkB+5QjHcNiT1syyuTPNHdH+/up5O8O8kjO44JgEusuz/V3T83\nTP9OJh+CP5jJ+eWdQ7N3JvmG3UQIwGVXVS9M8rVJ3jbMV5KvSvLo0MR5BoBzqapnJ/mzSd6eJN39\ndHf/dlzPALA5B0nur6qDJM9M8qm4ngHgnLr7vyT5zEzxsuuXR5L8UE+8P8lzquoP3JlI7w4Se9iW\nB5N8YjT/5FAGABdWVS9J8vIkH0jyRd39qaHqN5J80Y7CAuDy+54kfzfJ8TD/BUl+u7sPh3nXNQCc\n10NJPp3kXw0/+fi2qnpWXM8AsAHd/ckk/yzJr2eS0PPZJB+O6xkANmvZ9YvcgC2T2AMAXCpV9UCS\nf5fk27r7/47ruruT9E4CA+BSq6qvS/JUd39417EAcCUdJHlFkh/o7pcn+b3M/OyW6xkAzquqnpvJ\n3RIeSvIHkzwr8z+fAgAb4/rlzpLYw7Z8MsmLRvMvHMoA4Nyq6p5Mknre1d3vGYp/8+SWjsPfp3YV\nHwCX2quTfH1V/a9Mfkr4q5J8bya3Dj4Y2riuAeC8nkzyZHd/YJh/NJNEH9czAGzCn0vyq9396e6+\nmeQ9mVzjuJ4BYJOWXb/IDdgyiT1sy4eSPFxVD1XVvUnekOSxHccEwCVWVZXk7Uk+1t3/fFT1WJI3\nDtNvTPITdzo2AC6/7v6O7n5hd78kk+uXn+7ub0zyM0leNzRzngHgXLr7N5J8oqr+8FD01Uk+Gtcz\nAGzGryd5VVU9c/gM7eQ843oGgE1adv3yWJJvqYlXJfns6Ce72ICa3CEJNq+q/kKS70lyPck7uvuf\n7DgkAC6xqvozSf5rkl9KcjwU//0kH0jyo0lenOTXkvyl7v7MToIE4Eqoqtck+dvd/XVV9SWZ3MHn\neUl+Psk3dffndxkfAJdTVb0syduS3Jvk40nelMkXL13PAHBhVfWPk7w+yWEm1y5/LcmDcT0DwDlU\n1Q8neU2S5yf5zSTfmeTfZ8H1y5BU+n2Z/Azk/0vypu5+fBdxX1USewAAAAAAAAAAYA/5KS4AAAAA\nAAAAANhDEnsAAAAAAAAAAGAPSewBAAAAAAAAAIA9JLEHAAAAAAAAAAD2kMQeAAAAAAAAAADYQxJ7\nAAAAALiQqnpNVf3kruMAAAAAuGok9gAAAAAAAAAAwB6S2AMAAABwl6iqb6qqD1bVL1TVD1bV9ar6\n3ar67qr6SFW9t6peMLR9WVW9v6p+sap+vKqeO5R/WVX956r671X1c1X1pcPwD1TVo1X1K1X1rqqq\nna0oAAAAwBUhsQcAAADgLlBVfyTJ65O8urtfluQoyTcmeVaSx7v7jyZ5X5LvHLr8UJK/191/PMkv\njcrfleT7u/srkvzpJJ8ayl+e5NuSvDTJlyR59dZXCgAAAOCKO9h1AAAAAADcEV+d5E8k+dBwM537\nkzyV5DjJjwxt/m2S91TVs5M8p7vfN5S/M8mPVdXvS/Jgd/94knT355JkGO+D3f3kMP8LSV6S5Ge3\nv1oAAAAAV5fEHgAAAIC7QyV5Z3d/x1Rh1T+cadfnHP/zo+mj+NwJAAAA4ML8FBcAAADA3eG9SV5X\nVV+YJFX1vKr64kw+H3rd0OavJPnZ7v5skt+qqq8cyr85yfu6+3eSPFlV3zCM8YyqeuYdXQsAAACA\nu4hvTgEAAADcBbr7o1X1D5L8x6q6luRmkrck+b0krxzqnkry+qHLG5P8yyFx5+NJ3jSUf3OSH6yq\n7xrG+It3cDUAAAAA7irVfd67KwMAAABw2VXV73b3A7uOAwAAAIB5fooLAAAAAAAAAAD2kDv2AAAA\nAAAAAADAHnLHHgAAAAAAAAAA2EMSewAAAAAAAAAAYA9J7AEAAAAAAAAAgD0ksQcAAAAAAAAAAPaQ\nxB4AAAAAAAAAANhD/x8Q5j5wGrfO2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPYAAAJcCAYAAABwybgsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X+U7XdZH/r3c/Y+s09mT4ghCXiT\ngImUusKProDHgIVeQUASkID1XgSbVin3xvbqLV5rSmgRhWploUWUEhVXo/diCyJcLnERasAmRcVU\nDiGVX8EkFM1JKImBYGZPMpMz53P/mD1xzsmcOTNk9v7Oybxea83K/v6c9x7OX6z3ep5qrQUAAAAA\nAAAAANhZ9nQdAAAAAAAAAAAAeCjFHgAAAAAAAAAA2IEUewAAAAAAAAAAYAdS7AEAAAAAAAAAgB1I\nsQcAAAAAAAAAAHYgxR4AAAAAAAAAANiBFHsAAAAAAAAAAGAHUuwBAAAAeASrqnOqqlVVf5vf+6Wq\nev52vhMAAACAIyn2AAAAADBRSkAAAAAA3xjFHgAAAAAecdabULTVqUXbPeUIAAAAYKsUewAAAAA2\nYTx15rKq+rOqGlXVv6+qx1bVh6vq3qr6aFWdOr73mVX18aq6p6r+W1U9Z817XlVVnx8/88Wq+pE1\n155TVQer6p9X1Z1V9eWqetUmsr24qj5VVX9dVbdV1c+sc9s/rqo7xu/8yTXPXlBVB8bPfqWq3rrm\n2sVV9dnx97iuqs47xu//rar62aO/x/jzu5I8PsnvVdV8Vf2L4/2NNviep4z/7l+uqtur6merqje+\n9sNV9cdV9UtVdXeSnznGuT1V9fqq+ovx3/j/qapTxu9YXVv26qr6yyT/+XiZAAAAACZJsQcAAABg\n874/yQuS/O0kL0ny4ST/MskZWfn/Wf5ZVZ2V5ENJfjbJo5P8ZJL3V9UZ43fcmeR7kzwqyauS/FJV\nPX3N7/jmJKckOSvJq5O8Y7UwtIFRkn+U5JuSvDjJP62qlx11z3OTPDHJ9yR57ZrVWL+c5Jdba49K\n8oQk702SqvrbSd6d5MfH3+/qrJRzZo6T5QittX+Y5C+TvKS1Ntdae8sm/kbH8ltJDiX5W0meNv4u\n/9ua689I8sUkj03yc8c498Pjn+cm+dYkc0n+3VG/57uSnJfkhVv5rgAAAADbTbEHAAAAYPPe3lr7\nSmvt9iR/mOS/ttY+1Vq7P8kHslI2uSTJ1a21q1trh1trH0lyIMmLkqS19qHW2q1txX9Jck2Sv7fm\ndzyQ5E2ttQdaa1cnmU/ybRuFaq1d11r79Pj3/VlWCjnfddRtb2ytjVprn07ym0leueb3/a2qOr21\nNt9au358/geSfKi19pHW2gNJfjHJSUn+7lb/aOvY8G+0nqp67Pj6j4+/x51JfinJK9bcdkdr7e2t\ntUOttfuOce4fJHlra+2LrbX5JK9L8oqj1m79zPh33BcAAACADin2AAAAAGzeV9Z8vm+d47kk35Lk\nfx2vmLqnqu5J8uwk/1OSVNVFVXV9VX11fO1FSU5f8567W2uH1hwvjN97TFX1jKq6tqruqqqvJ/kn\nR70zSW5b8/kvkpw5/vzqrEwguqmqPlFV3zs+f+b4viRJa+3w+B1nbZRlkzb8G23wzN4kX17zzK8n\necyae25b57mjzx3xvcaf+1mZ6LPRewAAAACmrn/8WwAAAADYgtuSvKu19r8ffaGqBknen5W1WR9s\nrT1QVf9fknqYv/M/ZmWd1EWttfur6m15aLHncUluGn9+fJI7kqS1dnOSV1bVniR/P8n7quq08fWn\nrsle43fcvs7vHyWZXXP8zUddb0cdH/NvtIHbkiwmOf2o4tNGv2e9c3dkpSS06vFZWe/1lSRnb/Ae\nAAAAgKkzsQcAAABge/12kpdU1QurqldV+6rqOVV1dpKZJIMkdyU5VFUXJfmebfidJyf56rjUc0GS\nH1znnp+qqtmqenKSVyX5nSSpqkuq6ozxRJ57xvceTvLeJC+uqudV1d4k/zwrxZqPr/PuG5O8qKoe\nXVXfnOTHj7r+lSTfuuZ4o7/RulprX87K2rJ/W1WPqqo9VfWEqjp65djxvDvJ/1VV51bVXJJ/k+R3\nNigLAQAAAHRGsQcAAABgG7XWbkvy0iT/MisFntuSXJZkT2vt3iT/LCulma9lpYBz1Tb82v8jyZuq\n6t4kbxi//2j/JcktSf4gyS+21q4Zn78wyWeraj7JLyd5RWvtvtbaF5JckuTtSf4qyUuSvKS1trTO\nu9+V5L8l+VJWyje/c9T1n0/y+vEKrZ/c6G90nO/5j7JSjvpcVv5+78vG67vWc+U478eS/Pck9yf5\nP7f4DgAAAICpqNZMFgYAAAAAAAAAgJ3GxB4AAAAAAAAAANiBFHsAAAAATgBV9dmqml/n5x90nW07\nHeM7zlfV3+s6GwAAAMC0WcUFAAAAAAAAAAA7UL/rANvp9NNPb+ecc07XMQAAAAAAAAAAYF2f/OQn\n/6q1dsZm7n1EFXvOOeecHDhwoOsYAAAAAAAAAACwrqr6i83eu2eSQQAAAAAAAAAAgG+MYg8AAAAA\nAAAAAOxAij0AAAAAAAAAALAD9bsOMGkPPPBADh48mPvvv7/rKBO3b9++nH322dm7d2/XUQAAAAAA\nAAAAeJge8cWegwcP5uSTT84555yTquo6zsS01nL33Xfn4MGDOffcc7uOAwAAAAAAAADAw/SIX8V1\n//3357TTTntEl3qSpKpy2mmn7YrJRAAAAAAAAAAAu8EjvtiT5BFf6lm1W74nAAAAAAAAAMBusCuK\nPQAAAAAAAAAAcKJR7JmCe+65J1dcccWWn3vRi16Ue+65ZwKJAAAAAAAAAADY6RR7puBYxZ5Dhw5t\n+NzVV1+db/qmb5pULAAAAAAAAAAAdrB+1wF2g8svvzy33nprzj///Ozduzf79u3Lqaeemptuuil/\n/ud/npe97GW57bbbcv/99+c1r3lNLr300iTJOeeckwMHDmR+fj4XXXRRnv3sZ+fjH/94zjrrrHzw\ngx/MSSed1PE3AwAAAAAAAABgUnZVseeNv/fZfO6Ov97Wdz7pzEflp1/y5A3vefOb35zPfOYzufHG\nG3PdddflxS9+cT7zmc/k3HPPTZJceeWVefSjH5377rsv3/Ed35Hv//7vz2mnnXbEO26++ea8+93v\nzm/8xm/k5S9/ed7//vfnkksu2dbvAgAAAAAAAADAzrGrij07xQUXXPBgqSdJfuVXfiUf+MAHkiS3\n3XZbbr755ocUe84999ycf/75SZJv//Zvz5e+9KWp5QUAAAAAAAAAYPp2VbHneJN1pmU4HD74+brr\nrstHP/rR/Mmf/ElmZ2fznOc8J/fff/9DnhkMBg9+7vV6ue+++6aSFQAAAAAAAACAbuzpOsBucPLJ\nJ+fee+9d99rXv/71nHrqqZmdnc1NN92U66+/fsrpAAAAAAAAAADYiXbVxJ6unHbaaXnWs56Vpzzl\nKTnppJPy2Mc+9sFrF154YX7t134t5513Xr7t274tz3zmMztMCgAAAAAAAADATlGtta4zbJv9+/e3\nAwcOHHHu85//fM4777yOEk3fbvu+AAAAAAAAAAAnkqr6ZGtt/2butYoLAAAAAAAAAAB2IMUeAAAA\nAAAAAADYgRR7AAAAAAAAAABgB1LsAQAAAAAAAACAHUixBwAAAAAAAAAAdiDFHibqJW//o7zj2lu6\njgEAAAAAAAAAcMJR7JmCe+65J1dcccU39Ozb3va2LCwsbHOi6bnjnvtyxz33dR0DAAAAAAAAAOCE\no9gzBbu52DM76GW0eKjrGAAAAAAAAAAAJ5x+1wF2g8svvzy33nprzj///LzgBS/IYx7zmLz3ve/N\n4uJivu/7vi9vfOMbMxqN8vKXvzwHDx7M8vJyfuqnfipf+cpXcscdd+S5z31uTj/99Fx77bVdf5Ut\nG870M7+43HUMAAAAAAAAAIATzu4q9nz48uR/fHp73/nNT00uevOGt7z5zW/OZz7zmdx444255ppr\n8r73vS9/+qd/mtZaLr744nzsYx/LXXfdlTPPPDMf+tCHkiRf//rXc8opp+Stb31rrr322px++unb\nm3tK5gZ9E3sAAAAAAAAAAL4BVnFN2TXXXJNrrrkmT3va0/L0pz89N910U26++eY89alPzUc+8pG8\n9rWvzR/+4R/mlFNO6TrqthgO+llYUuwBAAAAAAAAANiq3TWx5ziTdaahtZbXve51+ZEf+ZGHXLvh\nhhty9dVX5/Wvf32e97zn5Q1veEMHCbfXcNDLwa8p9gAAAAAAAAAAbJWJPVNw8skn5957702SvPCF\nL8yVV16Z+fn5JMntt9+eO++8M3fccUdmZ2dzySWX5LLLLssNN9zwkGdPRMOZfkaLy13HAAAAAAAA\nAAA44eyuiT0dOe200/KsZz0rT3nKU3LRRRflB3/wB/Od3/mdSZK5ubn89m//dm655ZZcdtll2bNn\nT/bu3Ztf/dVfTZJceumlufDCC3PmmWfm2muv7fJrfEOGg35Giyb2AAAAAAAAAABsVbXWus6wbfbv\n398OHDhwxLnPf/7zOe+88zpKNH077fv+4u9/IVdcd0tu/TcvSlV1HQcAAAAAAAAAoFNV9cnW2v7N\n3GsVFxM1O+jlcEvuf+Bw11EAAAAAAAAAAE4oij1M1NxgZdvbvHVcAAAAAAAAAABbsiuKPY+kdWMb\n2YnfczizUuwZKfYAAAAAAAAAAGzJI77Ys2/fvtx99907svSynVprufvuu7Nv376uoxxhOJ7YM1pS\n7AEAAAAAAAAA2Ip+1wEm7eyzz87Bgwdz1113dR1l4vbt25ezzz676xhHGA56SZLR4nLHSQAAAAAA\nAAAATiyP+GLP3r17c+6553YdY9d6cGKPVVwAAAAAAAAAAFvyiF/FRbfmxsWeecUeAAAAAAAAAIAt\nUexholYn9iwsKfYAAAAAAAAAAGyFYg8TNZzpJUnmF5c7TgIAAAAAAAAAcGJR7GGiVif2jKziAgAA\nAAAAAADYEsUeJmpvb09m+nsUewAAAAAAAAAAtkixh4mbG/QzWlLsAQAAAAAAAADYCsUeJm52ppfR\n4nLXMQAAAAAAAAAATiiKPUzc3KCfeau4AAAAAAAAAAC2RLGHiRsO+hkp9gAAAAAAAAAAbIliDxM3\nHPQzWrKKCwAAAAAAAABgKxR7mLjhTM/EHgAAAAAAAACALVLsYeKs4gIAAAAAAAAA2DrFHiZubtDP\nvGIPAAAAAAAAAMCWKPYwccNBLwtLy2mtdR0FAAAAAAAAAOCEodjDxM3O9LN8uGXx0OGuowAAAAAA\nAAAAnDAUe5i4uUE/SazjAgAAAAAAAADYAsUeJm44LvaMFHsAAAAAAAAAADZt4sWeqrqwqr5QVbdU\n1eXrXP8nVfXpqrqxqv6oqp605trrxs99oapeOOmsTMbcoJckGS0ud5wEAAAAAAAAAODEMdFiT1X1\nkrwjyUVJnpTklWuLO2P/sbX21Nba+UnekuSt42eflOQVSZ6c5MIkV4zfxwlmdmY8sWfJxB4AAAAA\nAAAAgM2a9MSeC5Lc0lr7YmttKcl7krx07Q2ttb9eczhM0safX5rkPa21xdbaf09yy/h9nGBWV3HN\nW8UFAAAAAAAAALBp/Qm//6wkt605PpjkGUffVFU/muQnkswk+e41z15/1LNnrfPspUkuTZLHP/7x\n2xKa7TU3LvYsWMUFAAAAAAAAALBpk57YsymttXe01p6Q5LVJXr/FZ9/ZWtvfWtt/xhlnTCYgD8tw\nsLJBbWRiDwAAAAAAAADApk262HN7ksetOT57fO5Y3pPkZd/gs+xQwxmruAAAAAAAAAAAtmrSxZ5P\nJHliVZ1bVTNJXpHkqrU3VNUT1xy+OMnN489XJXlFVQ2q6twkT0zypxPOywQMx6u4TOwBAAAAAAAA\nANi8/iRf3lo7VFU/luT3k/SSXNla+2xVvSnJgdbaVUl+rKqen+SBJF9L8kPjZz9bVe9N8rkkh5L8\naGtteZJ5mYyZ/p7M9PZktOR/PgAAAAAAAACAzZposSdJWmtXJ7n6qHNvWPP5NRs8+3NJfm5y6ZiW\n4aBnYg8AAAAAAAAAwBZMehUXJElmZ/qKPQAAAAAAAAAAW6DYw1TMDfqZV+wBAAAAAAAAANg0xR6m\nYjjoZWFpuesYAAAAAAAAAAAnDMUepmJoYg8AAAAAAAAAwJYo9jAVw5l+Roo9AAAAAAAAAACbptjD\nVAwHij0AAAAAAAAAAFuh2MNUzA16GS0tdx0DAAAAAAAAAOCEodjDVMyOJ/a01rqOAgAAAAAAAABw\nQlDsYSrmBv0cOtyyeOhw11EAAAAAAAAAAE4Iij1MxXCmlyQZLR7qOAkAAAAAAAAAwIlBsYepGA76\nSZKFpeWOkwAAAAAAAAAAnBgUe5iK1WLPvIk9AAAAAAAAAACbotjDVKwWe6ziAgAAAAAAAADYHMUe\npmJu0EtiYg8AAAAAAAAAwGYp9jAVqxN7FpaWO04CAAAAAAAAAHBiUOxhKoYzK8UeE3sAAAAAAAAA\nADZHsYepWJ3YM1LsAQAAAAAAAADYFMUepmI46CVR7AEAAAAAAAAA2CzFHqZi0O9lb68yWlruOgoA\nAAAAAAAAwAlBsYepmZ3pm9gDAAAAAAAAALBJij1Mzdygn3nFHgAAAAAAAACATVHsYWqGg56JPQAA\nAAAAAAAAm6TYw9QMB/0sLC13HQMAAAAAAAAA4ISg2MPUDGes4gIAAAAAAAAA2CzFHqbGKi4AAAAA\nAAAAgM1T7GFqhoN+RotWcQEAAAAAAAAAbIZiD1MzN+hntGRiDwAAAAAAAADAZij2MDWzM32ruAAA\nAAAAAAAANkmxh6mZG/TywHLL4iHruAAAAAAAAAAAjkexh6kZDvpJktGiYg8AAAAAAAAAwPEo9jA1\nf1PssY4LAAAAAAAAAOB4FHuYmuHMuNizpNgDAAAAAAAAAHA8ij1MzXDQS2JiDwAAAAAAAADAZij2\nMDVzD67iWu44CQAAAAAAAADAzqfYw9QMHyz2mNgDAAAAAAAAAHA8ij1MzXBmpdgzr9gDAAAAAAAA\nAHBcij1MzXDQS2JiDwAAAAAAAADAZij2MDUPruJaWu44CQAAAAAAAADAzqfYw9QM+nvS31Mm9gAA\nAAAAAAAAbIJiD1NTVZmd6Sn2AAAAAAAAAABsgmIPUzU36Gd+0SouAAAAAAAAAIDjUexhqoaDfhaW\nTOwBAAAAAAAAADgexR6majjoZ94qLgAAAAAAAACA41LsYaqGg15Gij0AAAAAAAAAAMel2MNUDWf6\nGS0udx0DAAAAAAAAAGDHU+xhquYG/YyWTOwBAAAAAAAAADgexR6majjoW8UFAAAAAAAAALAJij1M\n1eygZxUXAAAAAAAAAMAmKPYwVXMz/SwtH87SocNdRwEAAAAAAAAA2NEUe5iq4aCfJFlYso4LAAAA\nAAAAAGAjij1M1dy42DO/qNgDAAAAAAAAALARxR6manbQS5KMFpc7TgIAAAAAAAAAsLMp9jBVQxN7\nAAAAAAAAAAA2RbGHqVpdxbWwpNgDAAAAAAAAALARxR6majizUuwZmdgDAAAAAAAAALAhxR6majjo\nJUnmF5c7TgIAAAAAAAAAsLMp9jBVw4GJPQAAAAAAAAAAm6HYw1TNrRZ7lhR7AAAAAAAAAAA2otjD\nVA36e9LbUyb2AAAAAAAAAAAch2IPU1VVmZ3pZbS43HUUAAAAAAAAAIAdTbGHqZsb9DNvYg8AAAAA\nAAAAwIYUe5i64aCfhSXFHgAAAAAAAACAjSj2MHXDQT/zVnEBAAAAAAAAAGxIsYepG870MrKKCwAA\nAAAAAABgQ4o9TN1w0FfsAQAAAAAAAAA4DsUepm5u0M9oSbEHAAAAAAAAAGAjij1M3exML6PF5a5j\nAAAAAAAAAADsaIo9TN3coJ95q7gAAAAAAAAAADY08WJPVV1YVV+oqluq6vJ1rv9EVX2uqv6sqv6g\nqr5lzbXlqrpx/HPVpLMyHcNBP0uHDueB5cNdRwEAAAAAAAAA2LH6k3x5VfWSvCPJC5IcTPKJqrqq\ntfa5Nbd9Ksn+1tpCVf3TJG9J8gPja/e11s6fZEambzhY+We3sLicU2YNjQIAAAAAAAAAWM+kWxUX\nJLmltfbF1tpSkvckeenaG1pr17bWFsaH1yc5e8KZ6NhwppckmV+yjgsAAAAAAAAA4FgmXew5K8lt\na44Pjs8dy6uTfHjN8b6qOlBV11fVy9Z7oKouHd9z4K677nr4iZm41Yk9o0XFHgAAAAAAAACAY5no\nKq6tqKpLkuxP8l1rTn9La+32qvrWJP+5qj7dWrt17XOttXcmeWeS7N+/v00tMN+wOcUeAAAAAAAA\nAIDjmvTEntuTPG7N8dnjc0eoqucn+VdJLm6tLa6eb63dPv7vF5Ncl+RpkwzLdPzNxJ7ljpMAAAAA\nAAAAAOxcky72fCLJE6vq3KqaSfKKJFetvaGqnpbk17NS6rlzzflTq2ow/nx6kmcl+dyE8zIFszO9\nJMm8iT0AAAAAAAAAAMc00VVcrbVDVfVjSX4/SS/Jla21z1bVm5IcaK1dleQXkswl+d2qSpK/bK1d\nnOS8JL9eVYezUkB6c2tNsecRwCouAAAAAAAAAIDjm2ixJ0laa1cnufqoc29Y8/n5x3ju40meOtl0\ndGF1FdfCkmIPAAAAAAAAAMCxTHoVFzzE6sSe+cXljpMAAAAAAAAAAOxcij1M3b69e7KnrOICAAAA\nAAAAANiIYg9TV1UZzvQzr9gDAAAAAAAAAHBMij10YjjoZ2FJsQcAAAAAAAAA4FgUe+jEcNDLaHG5\n6xgAAAAAAAAAADuWYg+dGA6s4gIAAAAAAAAA2IhiD50YzvQzUuwBAAAAAAAAADgmxR46MRz0M1qy\nigsAAAAAAAAA4FgUe+jE3KBnYg8AAAAAAAAAwAYUe+jE7MAqLgAAAAAAAACAjSj20Im5QT/zij0A\nAAAAAAAAAMek2EMnhjP9LB46nEPLh7uOAgAAAAAAAACwIyn20InhoJckGS0td5wEAAAAAAAAAGBn\nUuyhE8NBP0kyso4LAAAAAAAAAGBdij10QrEHAAAAAAAAAGBjij10Ys4qLgAAAAAAAACADSn20Inh\njIk9AAAAAAAAAAAbUeyhE6uruOYVewAAAAAAAAAA1qXYQydWiz0m9gAAAAAAAAAArE+xh04MB70k\nyWhpueMkAAAAAAAAAAA7k2IPnZgzsQcAAAAAAAAAYEOKPXTipL29VCn2AAAAAAAAAAAci2IPnaiq\nDGf6mVfsAQAAAAAAAABYl2IPnRkOellYXO46BgAAAAAAAADAjqTYQ2eGg37ml0zsAQAAAAAAAABY\nj2IPnRnO9DOyigsAAAAAAAAAYF2KPXRmOOgp9gAAAAAAAAAAHINiD52ZG/QzWlzuOgYAAAAAAAAA\nwI6k2ENnhoN+Rksm9gAAAAAAAAAArEexh87MzvSt4gIAAAAAAAAAOAbFHjozN+hlXrEHAAAAAAAA\nAGBdij10Zjjo5/4HDmf5cOs6CgAAAAAAAADAjqPYQ2fmBv0kyWjJ1B4AAAAAAAAAgKMp9tCZ2Zlx\nscc6LgAAAAAAAACAh1DsoTPDQS+JYg8AAAAAAAAAwHoUe+jMg6u4Fpc7TgIAAAAAAAAAsPMo9tCZ\n4cAqLgAAAAAAAACAY1HsoTPDmZViz7xiDwAAAAAAAADAQyj20JnhoJckWViyigsAAAAAAAAA4GiK\nPXRmbmBiDwAAAAAAAADAsSj20JnhuNgzUuwBAAAAAAAAAHgIxR46c9LelVVcij0AAAAAAAAAAA+l\n2ENn9uypDGd6GS0tdx0FAAAAAAAAAGDHUeyhU8NB38QeAAAAAAAAAIB1KPbQqblBP/OKPQAAAAAA\nAAAAD6HYQ6dmBz0TewAAAAAAAAAA1qHYQ6eGM/2Mlpa7jgEAAAAAAAAAsOMo9tCpuUHfxB4AAAAA\nAAAAgHUo9tCpWcUeAAAAAAAAAIB1KfbQqblBL/OLVnEBAAAAAAAAABxNsYdODWf6WVgysQcAAAAA\nAAAA4GiKPXRqOOhnYWk5hw+3rqMAAAAAAAAAAOwoij10ajjoJUlGpvYAAAAAAAAAABxBsYdODQf9\nJMlocbnjJAAAAAAAAAAAO4tiD52aWy32mNgDAAAAAAAAAHAExR46NZxZndij2AMAAAAAAAAAsJZi\nD52aHfSSJPOKPQAAAAAAAAAAR1DsoVMPruJaXO44CQAAAAAAAADAzqLYQ6eG42LPwpKJPQAAAAAA\nAAAAayn20KnViT1WcQEAAAAAAAAAHEmxh07NzvSSJCPFHgAAAAAAAACAIyj20KnhzOrEnuWOkwAA\nAAAAAAAA7CyKPXRqz57K7EwvCyb2AAAAAAAAAAAcQbGHzg0H/YyWFHsAAAAAAAAAANZS7KFzw5me\nVVwAAAAAAAAAAEdR7KFzw0E/I6u4AAAAAAAAAACOoNhD5xR7AAAAAAAAAAAeSrGHzs0N+hktKfYA\nAAAAAAAAAKw18WJPVV1YVV+oqluq6vJ1rv9EVX2uqv6sqv6gqr5lzbUfqqqbxz8/NOmsdGN2ppfR\n4nLXMQAAAAAAAAAAdpSJFnuqqpfkHUkuSvKkJK+sqicdddunkuxvrf2dJO9L8pbxs49O8tNJnpHk\ngiQ/XVWnTjIv3Zgb9DNvFRcAAAAAAAAAwBEmPbHngiS3tNa+2FpbSvKeJC9de0Nr7drW2sL48Pok\nZ48/vzDJR1prX22tfS3JR5JcOOG8dGA46GdBsQcAAAAAAAAA4AiTLvacleS2NccHx+eO5dVJPryV\nZ6vq0qo6UFUH7rrrrocZly4MB/2MlpZz+HDrOgoAAAAAAAAAwI4x6WLPplXVJUn2J/mFrTzXWntn\na21/a23/GWecMZlwTNRwppckWXhgueMkAAAAAAAAAAA7x6SLPbcnedya47PH545QVc9P8q+SXNxa\nW9zKs5z4hoN+kmRkHRcAAAAAAAAAwIMmXez5RJInVtW5VTWT5BVJrlp7Q1U9LcmvZ6XUc+eaS7+f\n5Huq6tSqOjXJ94zP8Qgzp9gDAAAAAAAAAPAQ/Um+vLV2qKp+LCuFnF6SK1trn62qNyU50Fq7Kiur\nt+aS/G5VJclfttYubq19tao4yQp1AAAgAElEQVT+dVbKQUnyptbaVyeZl278zcQeq7gAAAAAAAAA\nAFZNtNiTJK21q5NcfdS5N6z5/PwNnr0yyZWTS8dOMJzpJUnmTewBAAAAAAAAAHjQpFdxwXGtTuxZ\nWFLsAQAAAAAAAABYpdhD51aLPSb2AAAAAAAAAAD8jU0Ve6qqV1W/OOkw7E5z42LPaHG54yQAAAAA\nAAAAADvHpoo9rbXlJM+ecBZ2qdlBL0kyMrEHAAAAAAAAAOBB/S3c+6mquirJ7yYZrZ5srf2/256K\nXWU4M57Ys6TYAwAAAAAAAACwaivFnn1J7k7y3WvOtSSKPTwsvT2Vk/b2TOwBAAAAAAAAAFhj08We\n1tqrJhmE3W046Gd+cbnrGAAAAAAAAAAAO8aezd5YVWdX1Qeq6s7xz/ur6uxJhmP3GA5M7AEAAAAA\nAAAAWGvTxZ4kv5nkqiRnjn9+b3wOHrbhTD8LS4o9AAAAAAAAAACrtlLsOaO19puttUPjn99KcsaE\ncrHLzA36mTexBwAAAAAAAADgQVsp9txdVZdUVW/8c0mSuycVjN1lZRXXctcxAAAAAAAAAAB2jK0U\ne/5xkpcn+R9Jvpzkf0nyqkmEYveZHfQzMrEHAAAAAAAAAOBB/c3cVFW9JH+/tXbxhPOwS83N9DNa\nUuwBAAAAAAAAAFi1qYk9rbXlJK+ccBZ2seGgbxUXAAAAAAAAAMAam5rYM/bHVfXvkvxOktHqydba\nDdueil1nbtDLaOlQWmupqq7jAAAAAAAAAAB0bivFnvPH/33TmnMtyXdvXxx2q9lBP60lC0vLGQ62\n8s8SAAAAAAAAAOCRaVMNiqrak+RXW2vvnXAedqnVMs9o6ZBiDwAAAAAAAABAkj2buam1djjJv5hw\nFnaxuUEvSTJaXO44CQAAAAAAAADAzrCpYs/YR6vqJ6vqcVX16NWfiSVjVxnOjCf2LB7qOAkAAAAA\nAAAAwM6wlZ1HPzD+74+uOdeSfOv2xWG3Wl2/Na/YAwAAAAAAAACQZAvFntbauZMMwu62WuxZWFLs\nAQAAAAAAAABItrCKq6pmq+r1VfXO8fETq+p7JxeN3WRu0EuSzC8ud5wEAAAAAAAAAGBn2HSxJ8lv\nJllK8nfHx7cn+dltT8SutDqxZ2QVFwAAAAAAAABAkq0Ve57QWntLkgeSpLW2kKQmkopdZ3ZGsQcA\nAAAAAAAAYK2tFHuWquqkJC1JquoJSRYnkopdZzizsoprZBUXAAAAAAAAAECSpL+Fe386yX9K8riq\n+g9JnpXkhycRit2n39uTfXv3ZLRkYg8AAAAAAAAAQLKFYk9r7SNVdUOSZ2ZlBddrWmt/tXq9qp7c\nWvvsBDKyS8wN+pm3igsAAAAAAAAAIMnWJvaktXZ3kg8d4/K7kjz9YSdi15qd6Wek2AMAAAAAAAAA\nkCTZs43vqm18F7vQcNDPaHG56xgAAAAAAAAAADvCdhZ72ja+i11obtAzsQcAAAAAAAAAYGw7iz3w\nsMzO9DNaUuwBAAAAAAAAAEi2t9iztI3vYheaG/Qzb2IPAAAAAAAAAECSLRR7asUlVfWG8fHjq+qC\n1euttWdOIiC7x3DQy8LictcxAAAAAAAAAAB2hK1M7LkiyXcmeeX4+N4k79j2ROxaw0E/IxN7AAAA\nAAAAAACSJP0t3PuM1trTq+pTSdJa+1pVzUwoF7vQcKaf0dKhtNZSVV3HAQAAAAAAAADo1FYm9jxQ\nVb0kLUmq6owkhyeSil1pOOjncEvue8A6LgAAAAAAAACArRR7fiXJB5I8pqp+LskfJfn5iaRiV5ob\n9JIko0XFHgAAAAAAAACATa/iaq39h6r6ZJLnJakkL2utfX5iydh1hoOVf46jxUM54+RBx2kAAAAA\nAAAAALq16WJPVb2rtfYPk9y0zjl42GZnVv45zi8e6jgJAAAAAAAAAED3trKK68lrD6qql+TbtzcO\nu9ncmok9AAAAAAAAAAC73XGLPVX1uqq6N8nfqaq/rqp7x8d3JvngxBOyawwHvSTJwtJyx0kAAAAA\nAAAAALp33GJPa+3nW2snJ/mF1tqjWmsnj39Oa629bgoZ2SVWJ/ZYxQUAAAAAAAAAkPS3cO+Hq+p/\nPvpka+1j25iHXWzWKi4AAAAAAAAAgAdtpdhz2ZrP+5JckOSTSb57WxOxa83NjIs9VnEBAAAAAAAA\nAGy+2NNae8na46p6XJK3bXsidq3hoJfExB4AAAAAAAAAgCTZ8zCePZjkvO0KAv3engz6exR7AAAA\nAAAAAACyhYk9VfX2JG18uCfJ+UlumEQodq/hoJ95xR4AAAAAAAAAgM0Xe5IcWPP5UJJ3t9b+eJvz\nsMsNB70sLC13HQMAAAAAAAAAoHObLva01v7vSQaBJP8/e/ceZedd3of++5vZmpFmj2br7suMbAtj\nGxtjLpYNmJhCGwLkAuFOkiaQJpAuVkLOOU27krYradJ2NWmTnHS1SRNCICf0JDmUGEISGg7JIRQw\nF9uEm42NjW+SfNHF1kgzI81oZt7zx7vHuliWZmzt2SPtz2etd/3e/b6/d+9nxCxAo+88T5oDOvYA\nAAAAAAAAACSLCPaUUr6RoyO4jruVpKqq6pozXhU9a3iwkUnBHgAAAAAAAACARXXs+f6OVwFtQ4ON\njE/NdLsMAAAAAAAAAICuO22wp6qqBxbOSynnJbmu/fLLVVXt7lRh9Kbhwf48tH+u22UAAAAAAAAA\nAHRd32I3llLemuTLSd6S5K1JvlRKeXOnCqM3NQeM4gIAAAAAAAAASBY3imvBv0py3UKXnlLK5iR/\nk+QjnSiM3tQcbGRCsAcAAAAAAAAAYPEde5L0nTB6a98Sn4fTag72Z3J6NlVVdbsUAAAAAAAAAICu\nWkrHnr8upXwyyZ+0X78tySfOfEn0suZgI/NVMj07n9Wr+rtdDgAAAAAAAABA1yw62FNV1T8vpbwx\nyXe1L72vqqqPdqYsetXwYP0tOTE9K9gDAAAAAAAAAPS0RQd7SinNJH9eVdVNpZQrklxRSllVVdWR\nzpVHr2kO1N+Sk9Oz2TQ82OVqAAAAAAAAAAC6p28Je/9XksFSymiSv07yo0n+sBNF0buag3WXnonp\n2S5XAgAAAAAAAADQXUsJ9pSqqqaSvDHJf6uq6i1JntuZsuhVzfYorqmZuS5XAgAAAAAAAADQXUsK\n9pRSXprkR5L8Vfta/5kviV62EOzRsQcAAAAAAAAA6HVLCfb8b0l+IclHq6q6vZTyrCSf7kxZ9Krh\ndrBnUrAHAAAAAAAAAOhxjcVurKrqM0k+U0oZKaWsrarq3iTv7Vxp9KKhgboJlGAPAAAAAAAAANDr\nFt2xp5SyvZTyjSRfT/LNUsrXSinXdq40etHRjj1zXa4EAAAAAAAAAKC7Ft2xJ8kHkrynqqrPJkkp\n5buSfDDJNZ0ojN7UNIoLAAAAAAAAACDJEjr2JJlbCPUkSVVVn0sifcEZtaq/LwONvkzM+NYCAAAA\nAAAAAHrbaTv2lFJe1D79TCnl95L8SZIqyduS/F3nSqNXNQf6dewBAAAAAAAAAHreYkZx/cYJr3/p\nmPPqDNYCSepxXFPTc90uAwAAAAAAAACgq04b7Kmq6pXP5ANKKa9J8p+T9Cd5f1VVv3rC/Zcn+a0k\n1yR5e1VVHznm3lySb7RfPlhV1eueSS2cHYYHG5nQsQcAAAAAAAAA6HGL6djzhFLK9yV5bpLVC9eq\nqvqVU+zvT/LbSV6VZGeSW0opH6+q6o5jtj2Y5J1Jfu4kb3GoqqoXLKVGzn7NwUYmZwR7AAAAAAAA\nAIDetuhgTynld5MMJXllkvcneXOSL5/mseuT3FNV1b3t9/jTJK9P8kSwp6qq+9v35pdSOOeuoYH+\nHDgs2AMAAAAAAAAA9La+Jey9oaqqH0vyeFVVv5zkpUkuP80zo0l2HPN6Z/vaYq0updxaSvliKeUH\nT7ahlPLu9p5b9+zZs4S3ZqUaHmxkyiguAAAAAAAAAKDHLSXYc6i9TpVSLkxyJMkFZ76k41xcVdX2\nJD+c5LdKKZeeuKGqqvdVVbW9qqrtmzdv7nA5LIfmYCOTgj0AAAAAAAAAQI9bSrDnL0sp65L8pyRf\nSXJ/kj8+zTO7kmw95vVY+9qiVFW1q73em+Tvkrxw8eVythoebGRCsAcAAAAAAAAA6HGLDvZUVfVv\nq6raX1XVnyW5OMlzqqr6xYX7pZRXneSxW5JcVkrZVkoZSPL2JB9fzOeVUtaXUgbb55uSvCzJHYut\nl7PX0EB/JmfmUlVVt0sBAAAAAAAAAOiapXTseUJVVdNVVY2fcPnXTrJvNslPJ/lkkm8l+XBVVbeX\nUn6llPK6JCmlXFdK2ZnkLUl+r5Rye/vxK5PcWkr5WpJPJ/nVqqoEe3pAc7CRufkq07Pz3S4FAAAA\nAAAAAKBrGmfwvcrJLlZV9Ykknzjh2i8ec35L6hFdJz53c5LnncH6OEsMD9bflpPTs1m9qr/L1QAA\nAAAAAAAAdMfT6tjzFMxN4oxoPhHsmetyJQAAAAAAAAAA3XMmgz1wRjQH6i49E9OzXa4EAAAAAAAA\nAKB7zmSw5/4z+F70sIWOPVMzgj0AAAAAAAAAQO9qLGVzKeWGJJcc+1xVVX/UXt94RiujZy0Ee3Ts\nAQAAAAAAAAB62aKDPaWUDyW5NMlXk8y1L1dJ/qgDddHDhtvBnsnpudPsBAAAAAAAAAA4dy2lY8/2\nJFdVVVV1qhhIkqGB/iTJpFFcAAAAAAAAAEAP61vC3m8mOb9ThcCCox17BHsAAAAAAAAAgN61lI49\nm5LcUUr5cpLphYtVVb3ujFdFT2sK9gAAAAAAAAAALCnY8286VQQca6DRl1X9JRPTc90uBQAAAAAA\nAACgaxYd7Kmq6jOdLASO1RxsZGpGxx4AAAAAAAAAoHf1LXZjKeUlpZRbSikTpZSZUspcKeVAJ4uj\ndzUHGpkwigsAAAAAAAAA6GGLDvYk+a9JfijJ3UnWJPnJJL/diaJgeLCRScEeAAAAAAAAAKCHLSXY\nk6qq7knSX1XVXFVVH0zyms6URa8bGuzP5PRct8sAAAAAAAAAAOiaxhL2TpVSBpJ8tZTyH5M8nCUG\ng2CxhgeN4gIAAAAAAAAAettSgjk/2t7/00kmk2xN8qZOFAXNAaO4AAAAAAAAAIDetuiOPVVVPVBK\nWZPkgqqqfrmDNUGagw2juAAAAAAAAACAnrbojj2llB9I8tUkf91+/YJSysc7VRi9rTnYbxQXAAAA\nAAAAANDTljKK698kuT7J/iSpquqrSbZ1oCZIc7CRqRnBHgAAAAAAAACgdy0l2HOkqqrxE65VZ7IY\nWDA82MiRuSrTs8ZxAQAAAAAAAAC9aSnBnttLKT+cpL+Uclkp5b8kublDddHjmgP9SZLJacEeAAAA\nAAAAAKA3LSXY8zNJnptkOskfJxlP8rOdKAqGBhtJkslp47gAAAAAAAAAgN60lGDPVe2jkWR1ktcn\nuaUTRXGOqKrkj9+WfPn3l/zo8EKwZ0awBwAAAAAAAADoTY0l7P2/k/xckm8mme9MOZxTSkke/noy\ntHHJjzZ17AEAAAAAAAAAetxSgj17qqr6i45VwrmpNZaM71zyY8OD/UmSiem5M10RAAAAAAAAAMBZ\nYSnBnl8qpbw/yd8mmV64WFXVTWe8Ks4drdG6a88SDQ3o2AMAAAAAAAAA9LalBHt+PMlzkqzK0VFc\nVRLBHp5aayy5638mVVWP5lqkYaO4AAAAAAAAAIAet5Rgz3VVVV3RsUo4N42MJbOHk6l9SXPToh9r\nCvYAAAAAAAAAAD2ubwl7by6lXNWxSjg3tcbqdXzHkh5rDvYnSSZn5s50RQAAAAAAAAAAZ4WldOx5\nSZKvllLuSzKdpCSpqqq6piOVcW54ItizK7nwhYt+bKC/L42+kgkdewAAAAAAAACAHrWUYM9rOlYF\n564ngj07l/RYKSXNwUamBHsAAAAAAAAAgB616GBPVVUPdLIQzlFDG5PG6uTA0oI9STI82MjEtFFc\nAAAAAAAAAEBv6ut2AZzjSklGRpfcsSdJmoP9mdSxBwAAAAAAAADoUYI9dF5rLBnfteTHhgYamZwR\n7AEAAAAAAAAAepNgD53XGntaHXuGBxs69gAAAAAAAAAAPUuwh85rjSUTjyRzR5b0WD2Ka65DRQEA\nAAAAAAAArGyCPXTeyGhSzScHH17SY83BRiZ07AEAAAAAAAAAepRgD53XGqvXJY7jag40Mjkj2AMA\nAAAAAAAA9CbBHjqvtbVex3ct6bHmYCNTRnEBAAAAAAAAAD1KsIfOa43W6/iOJT02PNifmbn5zMzO\nd6AoAAAAAAAAAICVTbCHzhtoJmvWJweW3rEnSSanjeMCAAAAAAAAAHqPYA/LY2QsGd+5pEeaA3Ww\nZ0KwBwAAAAAAAADoQYI9LI/WWDL+9Dr2TM3MdaIiAAAAAAAAAIAVTbCH5dEaTcZ3LOmR5mB/Eh17\nAAAAAAAAAIDeJNjD8miNJYf3J9MTi35kuN2xZ1KwBwAAAAAAAADoQYI9LI+RsXo9sPhxXEMDC6O4\nBHsAAAAAAAAAgN4j2MPyaLWDPeM7F/3IQseeiem5TlQEAAAAAAAAALCiCfawPJ5GsKc52J/EKC4A\nAAAAAAAAoDcJ9rA81l6QlL4lBnsWOvYI9gAAAAAAAAAAvUewh+XR36jDPQd2LfqRwUZf+vtKpmYE\newAAAAAAAACA3iPYw/IZGU3Gdyx6eyklzYH+TE7PdbAoAAAAAAAAAICVSbCH5dMaS8YX37EnSYYH\nG0ZxAQAAAAAAAAA9SbCH5dMarUdxVdWiH2kONjIp2AMAAAAAAAAA9CDBHpZPa2syeziZ2rfoR4YG\nG5mcMYoLAAAAAAAAAOg9gj0sn5HReh3fsehHhgf7dewBAAAAAAAAAHqSYA/LpzVWr+O7Fv1Ic8Ao\nLgAAAAAAAACgNwn2sHxaW+t1fOeiHxkebGRCsAcAAAAAAAAA6EGCPSyfoQ1JY/WSRnENDfZnamau\ng0UBAAAAAAAAAKxMgj0sn1LqcVwHljCKS8ceAAAAAAAAAKBHCfawvEZGlzaKa6CRmdn5HJmb72BR\nAAAAAAAAAAArj2APy6u1NRlfWseeJJnUtQcAAAAAAAAA6DGCPSyv1mhy8OFk7siitjcH+5MkkzNz\nnawKAAAAAAAAAGDFEexhebXGklR1uGcRdOwBAAAAAAAAAHqVYA/La2S0Xsd3Lmr7QrBnQrAHAAAA\nAAAAAOgxgj0sr9bWeh3ftajtwzr2AAAAAAAAAAA9SrCH5dVa6NizY1Hbhwb6kyST03OdqggAAAAA\nAAAAYEUS7GF5DTSTNesXPYpLxx4AAAAAAAAAoFcJ9rD8WmPJgcWN4mouBHtmBHsAAAAAAAAAgN4i\n2MPyGxlbdMee5kAd7JnQsQcAAAAAAAAA6DEdD/aUUl5TSrmrlHJPKeXnT3L/5aWUr5RSZkspbz7h\n3jtKKXe3j3d0ulaWSWvxwZ7Vq/rSV5Kp6bkOFwUAAAAAAAAAsLJ0NNhTSulP8ttJXpvkqiQ/VEq5\n6oRtDyZ5Z5I/PuHZDUl+KcmLk1yf5JdKKes7WS/LpDWaHN6fTE+cdmspJc3Bho49AAAAAAAAAEDP\n6XTHnuuT3FNV1b1VVc0k+dMkrz92Q1VV91dV9fUk8yc8++okn6qq6rGqqh5P8qkkr+lwvSyH1tZ6\nPbBrUduHBxuZFOwBAAAAAAAAAHpMp4M9o0l2HPN6Z/vaGXu2lPLuUsqtpZRb9+zZ87QLZRmNtP9j\nHN9x6n1tQwP9mZwR7AEAAAAAAAAAekungz0dV1XV+6qq2l5V1fbNmzd3uxwWozVWr+NL6dgz18GC\nAAAAAAAAAABWnk4He3Yl2XrM67H2tU4/y0q29oKk9CXjOxe1vWkUFwAAAAAAAADQgzod7LklyWWl\nlG2llIEkb0/y8UU++8kk31NKWV9KWZ/ke9rXONv1N+pwzxKCPROCPQAAAAAAAABAj+losKeqqtkk\nP506kPOtJB+uqur2UsqvlFJelySllOtKKTuTvCXJ75VSbm8/+1iSf5s6HHRLkl9pX+Nc0BpLDiwy\n2DPQn8kZwR4AAAAAAAAAoLc0Ov0BVVV9IsknTrj2i8ec35J6zNbJnv1Akg90tEC6Y2Q0efiri9ra\nHGxkanquwwUBAAAAAAAAAKwsnR7FBSfXGkvGdyVVddqtw0ZxAQAAAAAAAAA9SLCH7miNJXPTyeTe\n025tDjYyPTuf2bn5ZSgMAAAAAAAAAGBlEOyhO1rt6WsHdp5269BAf5Jk0jguAAAAAAAAAKCHCPbQ\nHSOj9Tp++mDP8GAjSTI5YxwXAAAAAAAAANA7BHvojtbWeh3fddqtzYVgz7RgDwAAAAAAAADQOwR7\n6I6hDUljTTK+47RbFzr2TAj2AAAAAAAAAAA9RLCH7iglaY0uahTX0EB/kmRyeq7TVQEAAAAAAAAA\nrBiCPXRPayw5sIRRXDM69gAAAAAAAAAAvUOwh+4ZGVtUx56FUVyTRnEBAAAAAAAAAD1EsIfuaY0l\nBx9J5o6ccltTsAcAAAAAAAAA6EGCPXRPazRJlRx46JTbmoP9SZLJmbllKAoAAAAAAAAAYGUQ7KF7\nWmP1emDXKbetWdWfvqJjDwAAAAAAAADQWwR76J6RdrBnfOcpt5VS0hxoZEKwBwAAAAAAAADoIYI9\ndE9rtF5PE+xJkuZgQ8ceAAAAAAAAAKCnCPbQPQPNZM2GRQV7hgb7MzkztwxFAQAAAAAAAACsDII9\ndFdrdFHBnmEdewAAAAAAAACAHiPYQ3e1tiYHdp12W3NAsAcAAAAAAAAA6C2CPXTXyGgyvuO025qD\njUxMG8UFAAAAAAAAAPQOwR66qzWWHB5Ppg+ecltzsD9TMzr2AAAAAAAAAAC9Q7CH7mqN1ev4qcdx\nNQeN4gIAAAAAAAAAeotgD921EOw5sPOU24YHG5kQ7AEAAAAAAAAAekij2wXQ40ZG63X81MGe5kAj\nh4/MZ3ZuPo1+eTQAAAAAAAAAeEpVlUwfTA7vT0p/0hrtdkU8TYI9dNfaC5LSt4hRXP1JkqkjcxkR\n7AEAAAAAAACgF8xOJ4f2J4cer0M6hx4/yeuTXdufVHP1ezzvLcmb3t/dr4OnTbCH7upvJGsvPH3H\nnsH6W3VyejYjq1ctR2UAAAAAAAAA0HnTE8mDX0ju+1/JQ3+fTD12NKBzZOoUD5ZkdStZsy5Zsz5Z\nvS5Zd9HR1wvXNl2+bF8KZ55gD93XGk3Gd5xyy7HBHgAAAAAAAAA4ax05lOz4Uh3kue+zyUNfSeZn\nk75VyQXPT9Zf0g7mrDs+tPPEtXZoZ3Ak6evv9ldDhwn20H2tsTp1eArD7VFcE9Nzy1ERAAAAAAAA\nAJwZs9PJzluT+z9bh3l23pLMzSSlP7nwhckN70223ZhsfXEy0Ox2tawwgj1038ho8q2/TKoqKeWk\nW4YG6m/VKR17AAAAAAAAAFjJ5mbr5hb3faYO8zz4pWT2UJKSXHBN8uKfSi55eXLRS5LVI92ulhVO\nsIfua21N5qaTyb3J8OaTbhluj+KaEOwBAAAAAAAAYCWZn0se+Xo9Vuu+/5U8+IVkZqK+t+W5ybXv\nSLa9PLn4hnqEFiyBYA/d1xqt1/EdTxnsabaDPZMzgj0AAAAAAAAALNH8fHJ4fz0Wa/5IMrdwzBz/\n+kn3Zut17sjx5wv3H709eeBzyeHx+nM2XZ5c87Z6tNYlNybNTd39ujnrCfbQfa2xej2wKxl90Um3\nNAf7kyQT03PLVRUAAAAAAAAAT+XwgWTvt+tjz131v/euXpcMb0mam4+uC+cDzc7VMjebTDyaHHio\nruO4tX0cfLgO7Zxp67clV72+Hq217cZk7fln/jPoaYI9dN9IO9gzvvMptzQH6m/VKaO4AAAAAAAA\nAJZHVSUHHzk+wLNwfvDho/v6ViUjF9RdaxY615xoVbOe4NJcCP60z08MADU3J6tbSSn1c7PT9Wc9\nEdI5IbBz4KFk4pGkmj/+8xqrk5ELk5HR5OKX1ufD5yWNwbre/oGkv1GvfauS/oXjZK/b+xauLdzv\naxytEzpEsIfuG9qQNNacMtgzNNCfUpJJwR4AAAAAAACAM2tuNtn/QDu4c1ey9+72+d3J9DFBnYG1\nyebLk2e9Mtl0WbL5imTTFcn6S+qQTFIHcSb3JpO7k4k97XX3Mdd2J4/fl+z4UjK1L0n15Hr6B+uA\nz9x0MrnnyfcHR5K1F9RhnUv/YTvA0w7xLJyvWS90wzlBsIfuK6Uex3WKYE8pJc2BhlFcAAAAAAAA\nACczP5/MHkqOHF7cOr6rDvHs+Xby2HeSuZmj7zV8fh3gueYtdXBn8+X1uvb804dlGoNJa7Q+Tlvz\nXB3umdh9TBBoz9HzxsDxYZ2R0TrQs3rkmf1ZwVlEsIeVoTV6ymBPkjQH+3XsAQAAAAAAAM49c0fq\ngMvkQrBlb/tov556LDkylcweTo4cOmFtB3WODeYsRulL1m9LNl2eXP49dXBn0+V1J5416zrzdZ6o\nr78evzW8ZXk+D85Cgj2sDK2x5J6/PeWW5kAjkzOCPQAAAAAAAMAZMD+fVHNJNV+/Ln1JSrsjTXt9\nuqOc5ueTw/uPD+c8Edg55nyq/frQ4yd/n75GPZJqzYZkYChprK5DMI3Vyao1z2xtbqq76wArmmAP\nK8PIWHLwkWR2pm6ndhLNwYaOPQAAAAAAALCSTT2WPPKN9vH1ZO/ddXhmURYZoqnmjx7zc/X7P7HO\nn/B67iT75pdQU7uuY8M+T4R+ThIEWlhnJp/iM0oytCEZ2lQHdrZcVa/NzXXQ5rjzTcnqdU8/XASc\nEwR7WBlaY0mq5ODDyfqLT7qlHsW1lP+BBQAAAAAAADqiqpLxnXV455FvJA9/vT4f33F0z9oLks1X\nJP1nsitMVQdqSn/S13fMef8xa98Jr0+8fsIzTwRnqqRKu4NPVX+NC+vJrqV9vaqO/pksXBtonjyw\ns2ZD0u+f6YHF898YrKI2Fw4AACAASURBVAyt0Xod3/mUwZ7hwUYe2n94GYsCAAAAAACALps+mIzv\nSg7srP8tbXxXcmBXfT61L1mzPhk+r31sOWE9LxnaWAdgnom52WTvt4924VkI8zwxPqokG5+dbL0+\nue4nkvOvqY/hzc/4ywfodYI9rAytrfV6YNdTbhkaaGRqxiguAAAAAAAAOuTwgWTf3fX4qP0PJo3B\nuvPKwNp6HRxOBhaOY173r3p6n3fkUHLgoTqkc2DXMQGeXUdfT48f/0zpS4bPr39xvrW1Dtfsui2Z\neDQ5MvXkzyj9daeYY8M+JwsArT2v/lqOTCWP3l6Hdxa68Dx6RzI3Xb9f/2By3lXJla9LLmgHeM57\nbv3nAcAZJ9jDyjCy0LFnx1NuaQ42MmEUFwAAAAAAAM9EVSUHH6k70Cwce+6qwzwHH3p679k/eELw\np3lM+Gft0ddHptpdd9pBnql9T36voU11aGf9tuSS70paY/W/pS2sa89/6iDR9EQd8JnYfcJ6zPmj\ntyeTu5P5k/xCfWNNMns49TyqJKvXJec/L7n+Xe0uPM9LNl1ulBTAMvLfuKwMA0P1PMnxp+7YMzzY\nn8lpHXsAAAAAAACesaqqRzxN7qkDH5O72+ueE9bdyeTeZO7I8WGVJ45TvT7NeWMwKaVzX+PcbPL4\nfccHd/a21+kDR/cNDNdhlW0vTzZfXp9vuiJZf3H9dc9MJDOT9Tq9cH6wXk98PTNZ/7ku7J94tL2n\nfTTWtDvtjCWj19bnI2PttX2sWv30v+bB4frYeOmp983P151+Tgz9TDxa/3lc0A7xtLZ29j8jAE5L\nsIeVozVWp5OfQnOwkUNH5jI3X6W/z/+BAAAAAACAc8r0wTp80RqrxwIJEyzd3JHk0P7k0GPHhHX2\nHBPa2Xv8tdnDJ3mTkgxtrEc0NTcnY9clzS11h5aF4MoTQZfJuuPME9cnkyOTSyi4JKvW1EdjzdHz\np7rWWJ2sGnrqPVOPtYM73072fDt57N5k/sjRjxs+vw7uXPPWOriz6bJk8xXJ2gue+vutMVgHZc41\nfX1Jc2N9nHdVt6sB4BQEe1g5WmPJ4w885e3mQP3tOjUzm7Wrn+acUgAAAAAAYGU49Hjy4BeT+z+X\nPHBz8vDXkmquvre6lWx+Th262Pyco8fIhcsf+KmqOryy/4Fk/4P1CKe+xjFBk0Ws/QOLr7uq6nFN\nhx4/5th/wuvHk8P7n3x/ZuLk71n6k+amOqAzvDnZeFm9NrccDfAMb6lfD218ZmOW5ufr+k8MAD3p\n9cHkyOFk9lBy5MRjql6n9tV7Fq7NHq7XUyn9yYZtdXDnitfW30ObLq9DPKtbT//rAoAuEexh5WiN\nJQ98/ilvNwfrb9fJ6TnBHgAAAAAAONtM7q3/HeCBm5P7P588+s0kVR16GbsuufH/SC54QXLgoWTP\nnXX3njs/kXzlj46+x8DaY8I+VyRbrqzXkbG6A8nTUVV1p5eF4M7JjiV1oTmZcurgz9yR4wM7czNP\n/VZ9q5I1648eI2PJec9L1qw7/voTQZ4tyZoNT//PZ6n6+o6Og8p5Z/79qyqZnT4a/lkI+xw5lAyO\nJBuelTQGzvznAkCXCPawcoyMJofH61abg2ufdLs52J8kmZieXe7KAAAAAACApTrwcDvI8/k6yLP3\nrvp6Y02y9frklf8yufiGZHR7smr1U7/P5N520Kcd9tlzZ3LPp5Kv/veje1Y16xFLx3b32XxFsu7i\nulPOocdPHdw5sdPN6lay7qJk46XJpa+sz9ddXK9rL6g7Cz0RKlnqutCl5pi1f1Vd77HBnCeOEwI7\nq4Z6e0xZKfX3y6m+ZwDgHCLYw8rRGqvX8V3Jluc86fbwEx17BHsAAAAAAGDFefyBuhvPA5+rgzyP\n31dfH1ibXPSS5AU/lFz8srorz1I6qjQ3Jc3vSi75ruOvTz12NOizsN77meRrf3J0T2NNPTZr5uDx\nzw6O1EGd9duSZ72iHdxpH62tdZgGAGAFEOxh5Xgi2LPzpMGeoYF2sGdGsAcAAAAAALpifq7uvr8w\nNurR24+O1xrfUe9Zva4O8Fz3k8klL6vHRPV34J+khjYkF7+0Po51ePz4wM/87NFuOwuH4A4AcJYQ\n7GHlWAj2HNh50ttHO/bMLVdFAAAAAABwbpqdPhrOObT/mPOTHIePuX94/Mnv1dxcj9S64b11kGfz\nlUlf3/J/TQtWt+pRX1uv714NAABniGAPK8fw+Unpqzv2nERzsD+JUVwAAAAAAJwD5ueSuSPJ/JH2\nOnvM69l6nZ1uH4eTuZl6XXh93Pki1yOHj4Z0jkw9dW2lL1mz/ugxtCnZeNnx1xaO9Zckmy5LSlm2\nPzoAgF4i2MPK0d9I1l6YjO866e3moFFcAAAAAACsANMTyWPfSfbdk+y7t173P5jMHjoayjk2pDM3\nc3xgZ+5IkurM1tRYkzQGk8bqpDHQXhder65DOGtX1yOoVq87eUhnTfv6wNrudtwBAOAJgj2sLK2x\nozN4T/BEsEfHHgAAAAAAOm12Onnsvjq0c2KIZ+KR4/eOjNada4Y2Jf2rkr5Ge11V/1Jr/0D7/FT3\nGsfsOebeQjDnuKDOCWv/Kh1zAADOUYI9rCyt0WTXV056a2hVPYprYnpuOSsCAAAAAOBcNTebjD+Y\n7PtO+7jnaJBn/44c11VnaFOy8dnJs/9RsvHSZMOl9esNz0oGhrr2JQAAcG4T7GFlaY0l3/rLZH7+\nSW0++/pKmgP9OvYAAAAAAHBqVZUcejyZeDSZ2N0+Hk0mjznfvyN5/P56NNaCwZE6tDN2ffL8H67P\nF0I8a9Z17csBAKB3CfawsoyMJXPTydTeZHjLk24PDTYyNSPYAwAAAADQc6oqmT5wfFBnYnc7rHNs\ngKd9bf4kP0vuH0iaW+qfP295TnLl9x/tvLPx0qS52UgrAABWFMEeVpbWWL2O7zxpsGd4sGEUFwAA\nAADAua6qkj13JQ98Pnng5mTXrcnBR5LZw0/eW/rrnyc3NyfD5yXnXZ0Mt88Xrg2fV19bvU5wBwCA\ns4pgDytLa7Rex3cmoy960u3moFFcAAAAAADnnPm55NHb20Gedphnal99b/j85KIXJ1e+rg7wnBjY\nWbM+6evrbv0AANAhgj2sLK2t9Xpg10lvNwcamRDsAQAAAAA4u80dSR7+Wh3iuf/zyYNfTKbH63vr\nLkou+57k4huSi1+WbHiWLjsAAPQswR5WljXrk8aaumPPSTQHG9l98CStVgEAAAAAWLmOHE523VZ3\n4nng88mOLydHJut7Gy9LnvuDdYjn4huSdVu7WysAAKwggj2sLKUkrbFTBnsm984tc1EAAAAAACzJ\nzGQd3lkYq7Xz1mRuur635bnJC3+kDvFcdEOy9rzu1goAACuYYA8rzymCPcOD/UZxAQAAAAA8XbPT\nye5v1WOwHvl6ve75djJ/JElpj7w6dl148GT3TrFOPJrMzyalL7ng+cn176o78lz0kmRoQze+cgAA\nOCsJ9rDytEaTu//mpLeaA41MCvYAAAAAAJze9ETy6DeTh9sBnke+Vod65ts/Yx1Ym1xwTXLNW5PG\nYH2tqpJU7TXHnC9hTZLmljrIs/X6ZPXI8n3NAABwjhHsYeVpba1/m2N2JmkMHHdraLCRqZm5zM9X\n6esrT/EGAAAAAAA9Zuqxox14FoI8++7JE0GboY1155wbvjs5/5r6fP22pK+vq2UDAACnJtjDyjMy\nmqRKDj6UrL/kuFvrh1YlSW594PFcv027VgAAAACgx1RVcvCR40dpPfz1ZPzBo3tGxurgzvPeXK/n\nX5OMXNgelQUAAJxNBHtYeVpj9Tq+60nBnje8cDR/9IUH8lMfujUffc/Lcsmm5vLXBwAAAACwnKoq\n2X1H8s2bkttvSh679+i9DZcmY9uT6/5JO8Tz/KS5sXu1AgAAZ5RgDyvPE8GenU+6tW5oIB9453V5\nw+98Pv/kD2/JTe+5IeuGBp60DwAAAADgrLf37qNhnj13JqUv2fby5Lp3JRe+IDnv6mT1SLerBAAA\nOkiwh5VnZLReDzw52JMk2zY1874f3Z5//P4v5d0fui0f+onrM9joX8YCAQAAAAA65PH7j4Z5HvlG\nkpJcfEPyvb+eXPX6ZHhLtysEAACWkWAPK8/AULJmw0k79iy4ftuG/Ke3XJOf/dOv5hf+7Bv5jbc+\nP8V8aAAAAADgbDS+K7n9o3WYZ9dt9bWx65JX/4fkuT+YjFzY3foAAICuEexhZWqN1X+ZPYXXv2A0\nD+ybym9+6tu5ZFMz7/1Hly1TcQAAAAAAz9DBR5M7/rwO8zz4hfraBc9PvvuXk+e+IVl/cXfrAwAA\nVgTBHlam1ta65exp/Mw/fHbu3zeZ3/zUt3PRhqH84AtHO18bAAAAAMDTMbkv+dbH6zDP/Z9Lqvlk\ny1XJK/91cvUbk42XdrtCAABghel4sKeU8pok/zlJf5L3V1X1qyfcH0zyR0muTbIvyduqqrq/lHJJ\nkm8luau99YtVVf3TTtfLCtEaTR743Gm3lVLyq2+8Jg/tP5R/8ZGv58J1a3L9tg3LUCAAAAAAwCIc\n2p/c+Vd1mOfev0vmZ5MNlyY3/lwd5tlyZbcrBAAAVrCOBntKKf1JfjvJq5LsTHJLKeXjVVXdccy2\nn0jyeFVVzy6lvD3JryV5W/ved6qqekEna2SFao0lh8eTwweS1SOn3DrQ6Mvv/uNr88b/dnPe/aFb\n89H3vCzbNjWXqVAAAAAAgCRTjyV7v53svfv49fH7k2ouWXdR8tKfrsM851+TlNLtigEAgLNApzv2\nXJ/knqqq7k2SUsqfJnl9kmODPa9P8m/a5x9J8l9L8TeanjfSHql1YNdpgz1Jsm5oIB9853V5w+/c\nnB//4Jfz0fe8LOubAx0uEgAAAADoKXOzyf4Hnhzg2Xd3MrXv6L7+gWTjs5Pzr06uflNy+auT0WuF\neQAAgCXrdLBnNMmOY17vTPLip9pTVdVsKWU8ycb2vW2llL9PciDJv66q6rMnfkAp5d1J3p0kF110\n0Zmtnu5pba3X8V2LbkV78cZmfv/Hrs0P/f6X8u4P3Zr//pMvzmCjv4NFAgAAAADnpEP7k333PDnA\n89i9yfyRo/uam5NNlydX/kCy8bL6fNNldXeePj+bBAAAnrlOB3ueiYeTXFRV1b5SyrVJPlZKeW5V\nVQeO3VRV1fuSvC9Jtm/fXnWhTjqh1e7YM77j1PtOcO3FG/Lrb3l+3vsnf59/8ZGv57fe9oJoAAUA\nAAAAnFJVJQ/cnNzy/uSBzycTjx6919dINjyrDu1c8dp2eOfyZNOzkzXru1czAADQEzod7NmVZOsx\nr8fa1062Z2cppZGklWRfVVVVkukkqarqtlLKd5JcnuTWDtfMSjB8flL661FcS/S651+YHY9N5T99\n8q5csrGZ//1Vl3egQAAAAADgrDc9kXz9/0lu+YNk9+3J6lZyxfclm684GuBZf3HSv6rblQIAAD2q\n08GeW5JcVkrZljrA8/YkP3zCno8neUeSLyR5c5L/r6qqqpSyOcljVVXNlVKeleSyJPd2uF5Wiv5G\nsvaCZHzn03r8Pa+4NPfvncx//tu7c9GGobzp2rEzXCAAAAAAcNba8+26O8/X/iSZPpCcf03yuv+S\nXP3mZGCo29UBAAA8oaPBnqqqZkspP53kk0n6k3ygqqrbSym/kuTWqqo+nuQPknyolHJPksdSh3+S\n5OVJfqWUciTJfJJ/WlXVY52slxWmNfa0gz2llPz7Nzwvu/Yfys/f9PWMrl+Tlzxr4xkuEAAAAAA4\na8zNJnd9og703PeZpH8gee4bkuvelYxtT0rpdoUAAABPUuqJV+eG7du3V7fealLXOeMjP5Hsui35\n2a8+7bcYP3Qkb/pvN2fPwenc9J4bcunm4TNYIAAAAACw4k3sTm77v5LbPpgc2JW0tibbfzx54Y8l\nw5u7XR0AANCDSim3VVW1fTF7+zpdDDxtrdHkwEPJ/PzTf4s1q/LBd16XRl/Jj3/wluybmD6DBQIA\nAAAAK1JVJQ9+sf7lwd+8Kvn0v0s2XZ68/Y+T9341ufGfCfUAAABnBcEeVq7W1mRuOpna+4zeZuuG\nofz+O7bn0QOH8+4P3ZbDR+bOUIEAAAAAwIoyM5nc9ofJ796YfODVyd2fSq77yeSnb01+7GPJc74v\n6W90u0oAAIBFE+xh5RoZrdfxHc/4rV500fr8n297QW574PH83P/4Wubnz50RdAAAAADQ8/bek/z1\nLyS/cWXyFz+bpEq+/7eSf/at5LW/mmy6rNsVAgAAPC1+NYGVqzVWr+O7ktFrn/Hbfe/zLsjPv/Y5\n+dX/eWcu2djMz736imf8ngAAAABAlxw+kNz3meSWP0ju/XTS10iuen1y3buSi16SlNLtCgEAAJ4x\nwR5WrieCPTvP2Fv+1MuflQf2Tea/fvqeXLxxKG/ZvvWMvTcAAAAA0EH7dyQ7vpQ8+MVkxxeTR29P\nqvlk7YXJK/9V8qJ3JGvP63aVAAAAZ5RgDyvXmvXJqqHkwK4z9pallPzK66/OzscP5Rdu+kZG163J\nDc/edMbeHwAAAAA4A+Zmk9231yGeB79YB3oWfk64qpmMbU9e/s/rzjyXvDzp96NuAADg3ORvO6xc\npSQjo8n4jjP6tqv6+/LbP/KivOl3bs4//e+35ab33JBnb1l7Rj8DAAAAAFiC6YPJzluSB79Ud+PZ\neWsyM1HfW3thHeC56CXJ1hcn510tyAMAAPQMf/thZWuNJeNnrmPPgpHVq/KBd16XN/zOzfnxP7wl\nH/6pl+aC1poz/jkAAAAAwEmM7zzaiefBLyaPfrMeq5VSB3ee//Zk60uSi16ctLbWvwQIAADQgwR7\nWNlaY8ndn+rIW2/dMJQ/eMf2vO19X8iNv/bp/KMrt+St27fmH1y+OY3+vo58JgAAAAD0pEP7kzv/\nMvnOp+sgz4Gd9fVVzWTs2uTGn6s78oxdl6we6W6tAAAAK4hgDytbayyZeDSZnUkaA2f87Z+/dV0+\n8d4b86e37MhNX9mZT97+aDavHcwbXzSat1y7Nc/eMnzGPxMAAAAAesLMZHLX/0y+eVNyz6eSuZlk\n+Pzk4pcmW3+m7sZz3vOM1QIAADgFf2NiZWuNJamSgw8l6y/pyEc8a/Nw/uX3Xpl//uor8uk7d+d/\n3LYz7//sffm9z9ybF120Lm/dvjXfd80FWbt6VUc+HwAAAADOGbPTyT1/k3zjI8m3/zo5MpWsvSC5\n7l3J896UXPgiY7UAAACWQLCHlW1ktF7Hd3Ys2LNgVX9fvue55+d7nnt+dh88nI/9/a58+Nad+fmb\nvpFf/os78trnnZ+3bt+aF2/bkOKHDwAAAABQm5tN7vtM8s0/S771l8n0eDK0MXn+25Or35xc9NKk\nr6/bVQIAAJyVBHtY2Vpb63V817J+7Ja1q/Pul1+ad934rHx1x/58+Nad+YuvPZSbvrIrF28cyptf\nNJY3XTuWC9etWda6AAAAAGBFmJ9PHvxCHea548+Tqb3J4Ehy5Q8kV78x2fYPkn4dsAEAAJ4pwR5W\ntpEL63V8R1c+vpSSF160Pi+8aH1+8fuvyl/f/nA+fMvO/Manvp3f/Jtv58bLNuct147lVVedl9Wr\n+rtSIwAAAAAsi6pKHvpK8s2b6uPgQ0ljTXLFa5Or35Q8+7uTVau7XSUAAMA5RbCHlW1gqG7be2B5\nO/aczJqB/rzhhWN5wwvH8uC+qXzkth35yG078zN/8vdprVmVH3zBhXnL9q25erTV7VIBAAAA4Mx5\n9I66M883/yx5/L6kb1Vy2auSq/9tcvlrksHhblcIAABwzipVVXW7hjNm+/bt1a233trtMjjTfvfG\nZO35yY/8j25X8iRz81Vu/s7efPjWnfnk7Y9kZnY+V14wkje9aDTffeV5uWRTs9slAgAAAMDS7b0n\nueOjyTf+LNnzraT01eO1rn5TcuX3J2vWd7tCAACAs1Yp5baqqrYvZq+OPax8ra3J4/d3u4qT6u8r\nufGyzbnxss0ZnzqSj39tVz586878u7/6Vv7dX30r2zY184orNueVV2zJ9ds2GNcFAAAAwMq19+7k\n9o8ld3wsefSb9bWLXpp8768nV70+Gd7S3foAAAB6kGAPK19rLLn/c92u4rRaQ6vyoy+9JD/60kty\n/97J/N1du/Ppu/bkj7/0YD74+fuzZlV/brh0Y17xnC15xeWbs3XDULdLBgAAAKDX7bnraJhn9x31\nta0vSV79H5KrXlf/bA4AAICuEexh5WuNJtPjyeEDyeqRblezKJdsauadm7blnS/blkMzc/nivfvy\n6bt259N37c7f3rk7SfLsLcN5Zbubz/ZLNmSg0dflqgEAAADoCbvvrIM8t3+sHrOVklz0kuQ1v1aH\neUYu7HaFAAAAtAn2sPIt/FbQgV1nTbDnWGsG+vPK52zJK5+zJVVV5d69k/n0nbvzd3ftyR/efH9+\n/7P3pTnQn5c9e1Ne+ZwtecUVm3NBa023ywYAAADgXLL7W0c78+y5M3WY56XJa/9jcuXrkpELul0h\nAAAAJyHYw8o30g72jO9MtlzZ3VqeoVJKLt08nEs3D+cnb3xWJqdnc/N36m4+f3fn7vy/dzyaJHnO\n+Wvziiu25JVXbM6LLl6fVf26+QAAAACwBFVVj9a6/WPJHX+e7L0rSUkuflnyvb+eXPkDydrzu10l\nAAAApyHYw8rXOibYc45pDjbyqqvOy6uuOi9VVeXu3RP59J31yK73f/be/O5nvpO1g43cePmm3HjZ\n5rzs0k25aONQt8sGAAAAYCWqquTR24+O2dp3d1L66jDP9e+qO/OsPa/bVQIA/P/t3XmQHOd93vHn\n7Tl2F3sBi2MBLO6D4CVRJCFSJChTluSYknW4KkpEH7KiUuKoSi7bqbgSO0e54qpUxVVJZKd8xC5J\nsWQ78sHIMSPTsmQdtAiKByhKFA+ABAGCuIHFsdhd7O7MdL/54+2efrtnZrEAdnd2F99Pcdjdb7/d\n885gZmdn5tnfCwC4CgR7sPD1rpVMYUkGe3zGGN002KubBnv1Lx/crtHJqvYeHNa39p/Vt189o8d+\neEqStGFFl/ZsX6X7d6zU/dtXaXVvR5tHDgAAAAAAgHkTRdLlc9LoSXe5dCJdvvld6dzBNMzzjk+5\nME/PmnaPGgAAAABwjQj2YOELClLfeunS8XaPZF71dpb00O3r9NDt62St1cEzY9p7cFhPvn5Oj714\nUn++76gkaddgr+7bvlJ7dqzSvdsG1NdZavPIAQAAAAAAcE0q49LoqWxYZ/SUNHpCunQyXj8pRdXc\ngUbqXi0N3ird92np5g9KPavbchMAAAAAALOLYA8Wh76hJV+xZzrGGO0c7NXOwV79sz1bFUZWLx4f\n0d7Xh/XkwXP60jNv6o+efEOFwOgtQ/3as2Ol9mxfpbs2r1BnqdDu4QMAAAAAACARhdKxZ6XXvyld\nPOpCO6OnXHBnaqSxf7lH6l0n9a2TNt8Xr693Va5717v2nkGpwB97AQAAAMBSZKy17R7DrNm9e7fd\nt29fu4eBufDIJ6Xjz0m/9P12j2RBmqyG+t6bF/Td189p78Fh/eDYiMLIqqMYaPeWFbp/+yrt2bFK\nbxnqVyEw7R4uAAAAAADAjaVyWTr0LWn/Y9KrX5UuD7vpsnrXpaGd+noutNPR2+7RAwAAAABmmTHm\nOWvt7hn1JdiDReHrvy499XvSvz8tBUG7R7PgjU5W9czh89p78JyefH1Y+0+NSpJ6O4t6x7aVun/7\nSj2wY5V2rOmRMQR9AAAAAAAAZt3YGRfi2f+YC/XUJqWOfmnnj0k3v1/a8V6ps7/dowQAAAAAtMHV\nBHuYiguLQ/8GKay4v2bqWdPu0Sx4vZ0lveeWQb3nlkFJ0vDYlL77ugv57D14Tl9/+bQkabCvQ3t2\nrNID8WVNX2c7hw0AAAAAALC4nX1VOvA30oG/lY4+I8lK/Ruluz4u7XqftHmPVCy3e5QAAAAAgEWE\nYA8Wh/4NbjlylGDPNVjV06EP3rFeH7xjvSTp6PnL2ntwWE8cHNa39p/Rl793XJJ002CPHtixWu/c\nuUr3bB1Qdwc/IgAAAAAAAFqKQhfgOfCYu5w76NrX3SG961elXe+X1r5FomIyAAAAAOAa8a09Foe+\nIbccOSYN3d3esSwBGweW6eF7NunhezYpiqxePnlJTxwc1hOvDetPnj6iz+89rFLB6M5NK1w1n52r\n9NahfhULTIMGAAAAAABucJXLbmqt/Y+5qbYuD0tBSdrygHTvp1xlnuSP1AAAAAAAuE4Ee7A41Cv2\nHG/vOJagIDC6fahftw/161MPbtdkNdS+Ny7oOwfPau/BYX3m71/Vf//6q+rtLOq+bSv1zp2rtGfH\nKm1d1S3DX5sBAAAAAIAbwegp6bWvuTDPoW9JtUmpo1/a+WPSze+XdrxX6uxv9ygBAAAAAEsQwR4s\nDl0rpNIyV7EHc6qzVNADO12VHkk6P17Rk6+7aj7feW1YX3v5tCRpaHmX9uxYqQd2rtae7Su1sqej\nncMGAAAAAACYPRMXpSN7pUOPS4e+LQ0fcO39G6W7Pu6q8mzeIxXLbR0mAAAAAGDpI9iDxcEYV7Xn\nEsGe+TbQXdYH3rpeH3jrellrdeTcZX3n4LCeeO2s/vbFU/qLfe7f5NZ1fbpv+0rdu3VAb98yoBXd\nfLAFAAAAAAAWieqkdPQpF+Q5/Lh04nnJRlKxS9p8n/S2n5a2v1ta+xb3ORUAAAAAAPOEYA8Wj74h\nKva0mTFGW1Z1a8uqbn3sHZtVCyP98PiI9h501Xz++Kkj+twThyVJN6/t1T1bB3Tv1pW6Z+uAVvdS\n0QcAAAAAACwQUSid+L50+NsuzPPmU1I4JZmCtGG39M5fkbY9KG14u1TkMw0AAAAAQPsQ7MHi0b9B\neu3r7R4FPMVCoDs3rdCdm1boF969U5PVUC8cG9HTh87pmTfO6y/3HdMXv3tEkrRtdbfu3eoq+ty7\nbUDr+rvaPHoAsW2XYQAAIABJREFUAAAAAHDDsFY6e8BV4zn0uPTGE9LUiNu35jbp7Z+Utj4obb5f\n6uxr71gBAAAAAPAQ7MHi0b9RGjst1SrMX75AdZYKumfrgO7ZOiBJqoaRXjw+oqcPn9fTh87pKz84\noS8986YkaeNAVxr02bpSGwe6ZChlDQAAAAAAZsvIMRfiOfRt6fA/SGOnXPvyzdJtH3ZBnq0PSj2r\n2zpMAAAAAACmQ7AHi0f/kCQrjZ6QVmxp92gwAyWvos+nHtyuMLJ65eQlPX34vJ45fE7feOW0HnnO\nTa+2rr8zM3XX9tXdBH0AAAAAAMCVRaF04Q3p9EvSmVekMy9JJ1+QLrjpwrVslbT1R9zUWlsflAa2\ntnW4AAAAAABcDYI9WDz6N7jlyDGCPYtUITC6fahftw/165MPbFUUWR08O6anD53TU4fP68nXz+mv\nv39CkrSqp6zdmwd087pe7Rrs1U1re7V5YJmKhaDNtwIAAAAAALSFtdLYGRfcOf2ydCa57JdqE3En\n4z43GrxNuudfuCDPmlulgM8TAAAAAACLE8EeLB59XrAHS0IQGN002KubBnv1sfu2yFqrw8Pjeubw\neT1z+LyeP3pRf/fyKVnr+peLgXas7tGute6YXWt7dNNgr4aWM40XAAAAAABLytRoXH3n5TTEc/ol\naeJ82qd7jbTmFmn3J1x4Z/BWafXNUrm7feMGAAAAAGCWEezB4tE/5JYEe5YsY4y2re7RttU9evie\nTZKkiUqo18+O6cCpUb16elT7T43qqUPn9FfPH68f19NR1E2DXuAnrvCzqqejXTcFAAAAAADMhLXS\n+UPSieezU2ldfDPtU+p2AZ5bPiCtuc2tD94mda9q37gBAAAAAJgnBHuweJS6pGUrCfbcYLrKhfr0\nXb6RiapeOz2qA6dH9eopt/zqi6f0pWeO1vus7C7HlX3SCj+bBrq1srusIKDCDwAAAAAA885aafg1\n6cgT0ht7pSN7pdGTbl9QlFbulDa8Xbrr51yIZ/BWqX8TU2kBAAAAAG5YBHuwuPRvkC4dv3I/LHn9\nXSXt3jKg3VsG6m3WWg2PVeqVfZLAz1/uO6rxSljvVy4EWtvfqfXLO7W+v0vrlndqXX+X217epXX9\nXerrLDK9FwAAAAAA1yuKpLP7XYDnjSekI09K42fcvp610pY90uY90sZ7pFU3SUWq7wIAAAAA4CPY\ng8Wlb4N04XC7R4EFyhij1b0dWt3boT070nLcUWR1/OKEXj09qmMXJnRiZEInL07qxMUJPX34vE5d\nmlQY2cy5ussFrVvepXX9LvyzfrkLACVBoPX9XeoqF+b7JgIAAAAAsLBFkZtK6429rirPkSely+fc\nvr4N0vYfdUGeLQ9IA9sk/qgGAAAAAIBpEezB4tK/QXrjO65sMx/8YIaCwGjjwDJtHFjWdH8YWZ0d\nndKJkQmduBiHfuLwz8mRCb1yclTDY1MNxy1fVtLavk6t6unQyp6yBrrLWtXToYHuZL2sgW63r7eD\nCkAAAAAAgCUoCqVTL6TTah15Upq86PYt3yTt/HFXlWfLA9LyzXyeAwAAAADAVSLYg8VlYKs0dUn6\nb7uk7e+Rdr5X2vaj0rKBKx8LtFAIjNb2d2ptf6fu2rSiaZ+pWqjTIy78c3JkQifiij+nL03q3HhF\nR49e1rmxisamak2PLxeCeuBnZU9ZK7vLWhmHgPwA0Mrusvq7SurpKKpYCObyZgMAAAAAcPVqU9Kp\nH8bTau2V3nzKfVYjuQo8t3zQhXg275GWb2zvWAEAAAAAWAII9mBxufsTUme/9NrXpQOPST/435IJ\npKG7pR3vdZf1d0oBUyRhdnUUC9q0cpk2rWxe9ScxWQ11fryi8+MVDY9N6fx4RefGKjo3XtG5eHt4\nvKI3zo3r3FhFlythy3MtKxfU01FUb2dRvZ0l9XYW1ddZamhLL6XMsqejqM4SzwUAAAAAwDUKa9Lw\nAen496QT33PL0y9JUdXtX3WTdPs/joM890t969s7XgAAAAAAliBjrW33GGbN7t277b59+9o9DMyX\nKHQfKB38e3c5/pwkK3WtkLa/W9rxY27ZO9jukQItTVRCnRvPBoAuTVQ1OlnT6GS8nEq207axqdq0\noaBEuRCot7OornJB3eV42VHQsnJRy8pu2V0uuPWObJvrW1RXyS2TtmXlogoBpdMBAAAAYEmJIunC\n4WyI59QLUvWy29/RL61/m/uDqqG7pE33ST1r2jtmAAAAAAAWKWPMc9ba3TPqS7AHS8b4OenQt9Kg\nz/hZ1772rWk1n433SIVSe8cJzJJaGGlsygV+Lk1WNZaEfzJBoJrGpqq6XAl1eSrUeKWmiUqo8Uqo\ny5Va3F7T5Wqoq3k5KBcDdRYDdZZc2KezWFBnyW27S6Cu+nra1lkqxO1Bdl8xUKkYqFwIVI6X9e24\nrVQwTE8GAAAAALPBWunS8WyI58T3pakRt7/YJa27Iw3xrL/LTbMV8J4MAAAAAIDZQLAHiCLp9A/j\nkM833HzvNpQ6+qRtD7qQz/b3MNc7ELPWarIaecGfWpMwULycCjVRDTWZuUS5tkiTtVATlXi7FqlS\ni657nIGRSl74xwV+sstywahcDFQMXBioVAhULAQqBcm6WyZBobTd729UCnJ94+10aVSIjy0EbrtY\nCOKlidvSvsXA7QuodgQAAABgvo0P50I8z0vjZ9y+oCgN3ubCO0mIZ/XNUqHY3jEDAAAAALCEEewB\n8iZHpEOPp0GfS8dc++qbXchnYJtU7naX0rLceo9UXiaVuvnLNOA6hJHVVBL2qUWarLr1qZoLAlXC\nSNVavAxdEKgSWlVq6XbaHuXaraZy+2uha6+GkWqRW1bDSLWGtvl9HTRGKgVxGKgeEHLhocagkNtX\n9LaTgFCmb5PzJNtJ32JgVJhpv9x1Z9q9sfvthfz+3HHGEGgCAAAA5kVYk06/KB17Vjr6tHT0Geni\nkXinkVbvyoZ4Bm+TSp1tHTIAAAAAADcagj3AdKyVzh6IQz5fl448KYWVmR1b7HIhn3K3C/qUu9PQ\nT7Je7pG6V0s3/bi05lb3LT6ABctaqzCyLgQUpcEfPwRUDa1qkQsD1eL1sL5uVYuDQmEcFgojq2pk\nFcbt+X2Nx1iF3vldn6h+/oZj43357WpoFVl37tC73lrU/tf6evjHZINAgTEqBFIxCBQEUsG4qkbF\n+j6TOTbwwkLJ/uQcQbw/MEYF42+r3i85xpj0uly76gGkgskGl4KW20G67QenTDYc5a4nO4bMmJIx\nmvj64+30trjxBt4+glIAAACoGz+XhniOPSsdf06qXnb7ete5acmHdktDd0vr3ip19LZ3vAAAAAAA\ngGAPcFWqk9LkRaky7i7Vy1JlTKpcjrfj9srl7HplLO7bbN+oO/fAdumWD0q3fsj9FRxfxAJogyS8\n5Ad9wiYBoVbhotA/Pswenz9vlDtXtr9rDyO5AFKyHqXXEcbrkXe+zL4oDi9l9qW3MbJWkXXnD+M+\nkZVCa70+itvj6/K2F0AGakbqwaQ4NJQEgFoFmfw+pun+OEyUCxIlxyVhJD+IVG/3tpuOK3NdLrCU\nhJ+SIFXzdtXHlpzTxKEmF26SjNI2E98vgbcupUEof7/cf/VQlh8Yy1agSoJbgQqFxmBatg9T7QEA\ngHkQhdLZ/a4Kz9FnpGPPSOcOun1BUVr7FmnjvdKGt7tl/wY+iwAAAAAAYAG6mmAPk2UDpU6ptHZ2\nzzl6Wtr/FemV/yd993ekvb8l9W2QbvmAdMuHpE3vkILC7F4nALRg4gozRX7sXJGNwz1hlA0vhVHz\ncNR0ffLbtkmQyLUrbveCSPWgUbrtjy3Z54eaXHhJ3noyBjVcd/YcVqFNbrtVFKXBqEqYjsEPRlmb\nHX/TcdZvT3qcH9xaTEGqqxH44SOlIaJs6CgNGpkksKT0OCltC0waTirkQlRpBSo/bKVMJapkXxKw\nSsem7LYX1pJ/Lm/Mfj9TH0N6nH8bg8ALiPnHKDtOv08S1MpUtQpMprpWoWlgzKva5e3LV79KA1/p\ndfmSsFh9vUlf4/XNX1dmPVepy686BgDAVZm4KB3fJx2NK/Icf06auuT2LVvlqvHc+bPShnuk9Xe6\nSsIAAAAAAGBJoWIPMNcun5de/aoL+Rz8hhROuQ/fbv4JV8lny49IxXK7RwkAwLzLh5XqgaNI9UpN\n9fBRnAKyVrJKA0Y2afPWozjkZBUv/XV5+20ugGVdlal8lajGPpFCq3oFKn8ZedeVrMf/1W9vdmze\nbfCOk2zmtiTBLb8qlR+Qyt+Xad80rOWqVLkrS8aW7PPv1yi+o/zrst51ZO7/3NhaLZdqkOtaZII/\ncdin0BA+8gNfXnUqZafiSwJI+f3xKZpWmbpSW72CVZN+gfGCT/kxJvvi/zXs90NT8UoS9CoESXgs\nDWkllbsCr7pX08ph+Spi01Tp8kN3ze67IGhe8SsfqMsE0rzrTe6ffCWzevgtvr0maB1o86uTAbgB\nRZE0/Goc5HnahXnO7pdkJRNIa26TNr49rcgzsI1qPAAAAAAALFJMxQUsVFNj0mtfcyGf177mpvPq\n6Jd2PeQq+Wx/N39dBwAAlixrGwNKfvjHSg2Vq5oFvpIqVG7KvWzVq1YVrJK3PUnAKxmPpHq4Km5N\n+3rtVjZzvH9dkb+Mq2D5UwlGuX6hVxnLr6CVnNt64a58MC0zHi80Zr2xJdv18TSZ1jA/9WGr6RBr\nUXYKxHhoDdebjKl+/+bGrSb9Mb18RSyT286HjDLVrPzgWBI+iqtbFZLgVJCdojGthKUm1cCyUzk2\nq8gVtAo8edW50mphaQArPSatYtasb73aWD2Ala2GVQikQhCkUzyaNKyWBNXyVb7yAbck1CWlITQ/\nKOb2elW8cqG2fFhM3v1XD3IF2ftOIth1Qxs760I8x/a55fHvpdV4OvtdFZ6N8WXobqmjt73jBQAA\nAAAAs4ZgD7AYVCelQ9+WXnlUOvCYNHFBKi2TdrxXuvXD0s5/JHX2tXuUAAAAwJxIqkA1qy6VrTSV\nBsD8KQD96QFD75hWVbrSSlhe+Mn6ASnVA2bWX8bHRDadbjATSMuF1RorXjUG2fxj6tW6ouwxyfia\nVc5qVhErnWrRC47Z7NSM/jSMfmCuHj7zzpNWGmtxnVH+37B1f/98/m1Ha62CXUmQqZgLLaXhrCSo\nFdSDXA3TBQbZUFQ9YBX4Fa2yUzf60zQaub5pZStvOkfJVf2KL8k4i/GYstvZftn1IBPW8sNq/hSH\nrYJp9TCbf2w9BJZeXzEOsc2L6qR06oU0xHPsWenim26fKUiDt0kbdktDu91y5U7FdzQAAAAAAFiC\nCPYAi01YlY7slV5+VNr/FWnstFQoS9ve5Sr57Hq/1L2y3aMEAAAAgFmTBH3SEFO2UlU+1GRzIaJ8\n5a50akSbCTdlK2ypoS30wkzJuNwyDV6l22nwKzkgX1UrOVMUN+TDTw1hMM0s2NVY/Ssb2koqa+Vv\nV2StamGrY9Pb6ldP84NkydSN/riSwJvkh7rSqSKTal/VcOF/5hQYqRgEaeCn4Ad/AgVBbn+Q3V8I\njIqFbHipGEhrwxPaNrVfWyZf1qbLL2vd5EEVbE2SdKk8qFO9t+ts3+062/8WXVh+q1RapmIhOT45\nZ7xdCOrXUQzS9VLBXX+pkF53ti3dntcQEwAAAAAAuCKCPcBiFkXuL/deedRdLr4pmUBatUtafVO8\n3CWtuklatVMqdbV7xAAAAAAANJWf1i+MQ0a1KFIYudBRfZ93yW9nwlxXqDiVVqtSrnJVEvqSwiiq\nX0d9Gdrm7VESHGvW36qjNqLtlf3aXjmgXbUD2lV7Vf0alSRdVqde0na9oB36frRDz0fbdSJc3paq\nVUnwp1iIl9NtB2l7qZAGiur9ikE9aJSEiOrBJC+EVA8dJW2FQKUgFzoqeIGkXF8/5FQqmEz4qUBY\nCQAAAACwiBHsAZYKa12p7v1/I518QRo+IF14Q7JR3MFIyzelQZ/Vu9IAUNeKdo4cAAAAAIDFy1pp\n6pI0dsZV1R07na6P5rbHz8QHGWnNLdLQ3em0WmtukYJCw+mTQFItdCEnt8yth1G8jNsjq2qYBqIy\nfaJI1TAJHKXHVaNIYWhV9dortah+PdUwOdYdn/Sphsn+qN4nOV/SnhlbPJ75Vq9MlASCvDBQKa6o\nlISHkqpGjdWXgibVmpr096smxdulTNUmr38hrehUDz55oaV8NaXmU9S5qeiS6w1M2hcAAAAAsPhd\nTbCnONeDAXAdjJHW3eEuieqkdP516ewBafjVdHnocSmcSvt1r8kFfuJl7zp3XgAAAAAAbjS1igvi\nJMGc0VPNwztjZ6TaROPxQVHqGZR61kj9Q9LQndKKLS7Es/5OqbNvRsMIAqNARqWCJDUGfxajpDJS\nLWoMJtUDSZEfCHJ9kkBSEhoKo8gLHKVhpWqYO74eakqDSP71VsMonYouU4HJBZkmqtnKS/UqUg2V\nmaLM7QrbEGDyGSMX+GkIBQUqxFPHFQvpfn+71Gr6OG+75B9byIehsufOBpFahKfiUFV9zN5Ucn6F\nqFLRjbVcyFaLoioTAAAAABDsARafUqc0eJu7+KJQunhEOvuqq+yTLH/4iDQ1kvYr97qKPiu2ug8c\nyz3u0uEvexu3y91u2i8+UAEAAAAALCS1ijR+Ng7sxJfM+tk0rDN5sfk5ugbSwM7Ge92yd23a1jPo\nLp3LpSCY39u3SBgThzaWRk6ppXyAKUwqI+UCTaFfYcmrbpSvuBR6U8U1m5IuqrdH2WnkrLvu/FR3\nSV8/QOVvh5HVZC30xuFNP+eNsR64igNS1bA9gaZ6BaY4CJRMDVdOpoMrBCoXGqsdJYGnpNJRoWBU\nMK0rJPnVkQrG9akvA6PASIFJ+wfGxNvZdmPic8Xtyb7MeAreuLwgVL5PGuAKFMShrfrSiNATAAAA\ncAMh2AMsFUFBGtjmLrseStutdR9g5iv8HN8nTY1JlTGpNjmz6zCFJiGgHqmj1y17B6Xlm6UVm92y\nf6MLIgEAAAAAMFNRJFVGpckR6fI5aeysV2WnSYBn4kLz83T0Sd2rXTBnzS3S1gezIZ1kvXu1VCzP\n723EonWjBJiaiaJs5aNWYaR8kMg/JooUT/GWVlaqJtO7hZEqXjWmZNq4an1aOFeZqZKbKi5Tncla\nTVTDTCgq8sbbNBDVJEi1GARGuZCRcRWdmgSPAmMUBKqHlYI4gJT0T0JJQVwRKoj3Jce57TTglASL\n0m2vv8n2N0YyMnEm0sTbqh9j5M6V9KvvD4yMO8T1lerX0Xws/nXnx3flPq2OScYaBLntuI9MdtuY\n7O1MAljJ+JPbKG+7vp67D/xz5cfebJkZd4tj/PuScBgAAMDiQbAHWOqMcX9l2LtW2vZg8z5h1QV8\nkqBPZVyaGs22Nd0ed+vjw2579KQUVbPn7l0nLd/kBX7i9eWbpP4NUqE09/cBbgxR6D74n7ggTV2S\nOvulvg18QA8AAADMNz+YM+PLRW/9kqQWX6yXe6We1en001vf6dZ71mSDOj1rXNVZALMmCIzKQRIE\nWNrJpigJAcUBoMjKrcftkbWKIrn1yO9n48pK/nbanoSbalF2qrh85aZ6KOkKfdKxeGP0xmHr16/M\nWPLjj6xVaF3/ZF/Svxqm94G16bkiv3/cZuv70nNYK1kl+yQpafP2WysrZdbTYyUl51c6BsweP4QU\nJGEj0xhGqoewJG+/FzBSs2BT4/HJdTaEu3LnnQlrZ/5gyIfR6tW4kgpdXpAtDcgpU40rv78+ynxI\nK3Pfpu3psnVfP5yVbqehNree7pMf4JK7PVJ6/7r7KV7Gv1/5d1tyH6Z9pj/GD40Zk61qZnL3Wb3a\nmR8u8wOHSUBuBq72ae/fr/mwXRpuyz/eTdPHrf/vq8x5G68v3T+z/q0fD2bax5Hf7j+2mj0Xg2a3\ny2Rvb/3xnHscNh9v7v4w+X2N90H++Pw5Wj3lZ9o/85j2Hi2tfkS06p9cj//48MOsBCIBtBPBHgAu\nXNO1wl2uRxS5cM/FI9LFN6ULR9L1N5+SXnxEslHa3wQueLF8U1rlp76+yX0gG1alcMqVVk+WtcnG\ntnBKqk1JYSW3zPWLapIN3Tgif5lbj6ImbWH8CUPoHWPj3/ACud96g9y2ucJ+fzu+T5LrjGreJUzH\n7m/XL1Hz/lHNnbfUlU6nVuqSSt25tmXxpUsqL/O2l8XbXdm2QslViQqK7mIK8XbB2y5efYl6P5wz\neVGauJhdb7qMvwSYutTkhMY9jpZvdEGy/o3u4m939rd+5wAAAAAsZmFNqk1I1QmpejleepfaRPb9\nU8N7qGTf5BXavH1Tl6YP5iQ6+tzv4smyb4O05ja37l+6VsTVdeIwT3nZvNx1AG5sQWAUyKi0tPNL\ni1o2ZOSHirKBoZZ9onQ7DRIlgaXsMZnAUpw0Ss4RZYJLaeApCSS5RXqeJJyUBJnqPer7vP7ebW28\nfdmxNgtdtTomG5qyDdeb3Cb5420yPv/fweZugzK3ufH45NxR5tzp/WZlG4IULc30Y71c+K0xDOfa\nkmkS039jt8/afBguDbw0Dcp4/8Z+OCYbnMm214NtUTbsltzH+X/b7OMIwHzJhH28IFA9YBentPyA\nnR9a9MNXUhrq8oNT+aCX6utumX/u13+GqvnPHredP9Y/SS5IKC9k2OS2JevJvmScfrU+/7YlG9nA\nWvb25e+Demgs3567L/L7GoJ03vmz/WdmpoGu5D67UoW9/P2ZVAX0Q5t+wDN/mxpuR5MQnVrcX7es\n69OH7lg/w1uOhYZgD4DZEwRS/5C7bL6/cX9YlS4djwM/b7rQT7L++jddKGiuFDqkYocLniQhFBPE\n60GTtmQ9yB0TB1aKHW7dmPi3IOsCOdam4SUbxQGhqMl+f9s/PvJCMkXvUnCVZ/JtDcGaJvtl0w/y\nK8mH+Um1pbOu8lJ9/7gLD80a0zzskx+3jVygp2k4x1PslDqXS13L3bJvyH34n2wny84+F/wZOeou\nF49KJ1+Q9j/mvnDwlXtzwZ8NaUWp/o2u2lUwzSd51rovNaoTueVk/CVKi2Vtyj1+CmV3CYrpeqHk\nrbdqL0lBKdte7FiaVbAql90UDJeH3XL8nLd93v37lJa5oFq5O17vcV/6lLtdkC2zHve52uAZMDXm\npgAZPeVes5L1sdNue3zYPb66vYoBPavT6T6643W+kMT1iCJXITGqud+tkiBvWHXtYRLyTfZF2VBy\nlFufyb5k3RQav3DvjL+QL/fyc1WKfy+YctUspy7Fl1F3mYzXo5qbyraj191/HX3xdrwsdxM6Xsis\n9Z5v+edi8hxM9uXD+M0C+rnt+vOuSZ+w6h5f9YDOZe93T79tMl3PV1S9GiaI30eV42Wnt+4tO/u8\n30U70p8L0106+qb/HRsAgCtwFVSkwoy/lgOWrnxoK4q/tY+sneaL7sYvjJt9yZ7Zb0zmusLID5Cl\nlbr8gJkfkqqHo7ygWRjZGb/9mWnYKxOkagij5cNmfkAqF0JrEZ7KV3i5wmbL4xsCfN4J8rchOW9j\ncCwfDstWOJPf1hDWs02Pk81WRvOvM397bK5Ps9vctFLUFfrm27PnTs+XrWDU/PExk6o//pGZ0GH9\nOZWG65JAZJTblwni1e/z5kG/ZiG/Zo/RZsfKpgNu9hxuFXJJb2/jMf7jKYr8IKH/PEhChvHPmOQ+\nyfWXF0JMxp/ermS98d+52fPUPy75Gq3+mG8ZWmr+eE2fX9n9VzLT8KQf4vV/FmcfK62XfiVEq/Rn\nZn6s0z8fm98n/sZPvHUdwZ5FjGAPgPlTKEkrtrhLM9VJaeSYdPENF/YZH44DC/EHxsXOxg+Rk8BO\n/YNk7wPlZH+hxJcjV6NWib8QuJwLBF1O15t++ZCvKhTNvI8x2WBOq2Wp8/puWxS5MNPIMWnkzfjx\ndjTdPvasqxDkC4pS73qpe2X8RUouwFObvL4xzbZCRxxw6ZE6etKwS7knvnTH7T1ee76/tz8oes+f\nOG7vL6Vs25Wea1HoQlf1kM5wNqTTbLs20fxcpuD+gttGLpSWD21diV+VqtyTDQcVO+P9na5iVbHL\nq3g13XZnWv2q2NX6508S8ss8J/JVwmpqqCKW9JfSIFf952C8Xigv7C/XkzBcffrHZArIMTdlR309\nv2/M3cbk3ympPlavKtZs3a88tszdN81q9U5disM6p7zgzilp7JQ0ejpennJjyCuUXQCwZ600sM31\nufCGdPRp91hu9jYxmUKkZ9AFgLrXpOv5aUSKHVd339bDot6yHiiN22pTTYKIfvgw9zOuWTDR/1kY\n1eJwYikbMJ3RdhL6jPcVvOBnErCtX5KfM/n2fB+/Kp7XLv9nVLN1/5PM3M+3Zuv16haTLZZT3nar\nPpNedYypmYV1/OqHC4qJQyotgj/+l/n+vqRaoR+AnvZip++b+2uzdNVcZVvSbt3vPq1COlOj0tRI\ntv16ghSSu0/KSein17v0ZdeT/eUed1xyHzQNbl1le3JfNHsuBoUmz8V8P5MNysu4+yX/3KhXfZnK\nPheSSjCZPn7lzvj50vT6p/k5EUz38yNo8ryrNj4nZzUEf5WCYuPvIEllza4VUt96b79fdbOzsS35\nXaeYD+x0pO+nCnxkBAAAsBjMZ9DNvy6qmgEAMH/M1cxButDt3r3b7tu3r93DAAAsZlOj0sjxuNJP\nHP4ZOeoCP8XO+EuQzvhLk+tZdrovJcNK+qVRWIkv/na1RZ9atn9UdV+6J0GIynguJDGeDUrMSyCp\nSRAoqqllHr7cIy1b6S7dq9L1zHayHHBhLz/AEtbialRJCG3MrVfG0/bKWFqdqjLeYv2yN2WFN03F\nNd0FBfcFmpQN6sz1F/NBMQ021r+cK6UBSL/CUxKEbPnhzzS/K073e2RUc/f3VJOAzky/FA2Kceis\n1335GNWyYcOr/fLcFLJTEMq64E6zf9/SsjSw0zuYLnvXudBN71q37FrROtAW1lxIbey0NHYmvsTr\n42eybZO6pvb7AAANaklEQVQXm5+jGD9+WoV00j9XmVvJY7mYhN060p9nQdH70jtXLWa67QUbUJll\nJnD3Vf3Lc++L8/p2p1e9LanIVkxDT34oqmF9mr5JBb9MBcKit+5VKqxX0mvWFp8jCl2IZTK5XPLW\n48p7ky32T420+19idgSlXOCmLxu46ey7crsJ4p+PfkCoVXAov4z3XevrUktGmSqVMjMITl2noJg+\n9pNgSWa7I/v8yPdJKlMmAaUZBcOuEBozQe55VUq3g0Lrfc2egw3PxRaVN/MVLVv1qYcUAQAAAAAA\nsBQYY56z1u6eSV/+/AoAAF9Hr7TmZneZD8Xy/FxPXlj1AkD54IUXCkqqwzRUAUlOlA8YNGvzamgW\nStnAjn+53opMhaJUiKtAzLakykw96JNMeREvp92eSKsHNEztV5h5mwnSL/qkuIJBxVUuSKbmyKxX\n0ooiYTWtcFBfr7ixJevTmfaLxBb7gkIc1hpw092VexurQvnVo5LpZ5IgT7n7ytVqksexP51gMt1g\ndSIOACXr42klsmRd8kI6a90yCex09F7/F6iFYnrOK6lNuYpimRDQGRf4yVShMVe/zLclX5QnQZ3p\nAovFDtdvLqb58yu7RfGUNUlljJZVWvzpLKfp02zb/1lUX4//1/DzawbrrcI5yX1ab1tib7m6V17b\ncVGYBlT84I9sY6WXaasy+RWYWu1TLnhor64t317uTkM6xY7ZCVcsG7i+48OqF/iJq4k1vGa0ei1p\n1j7D29QsPFMP1vjPvXxb5AVLO9MpcgEAAAAAAABc0Zx/ymyMeUjSb0sqSPqstfa/5PZ3SPqipLsl\nnZP0UWvtG/G+X5P0SUmhpF+01v7dXI8XAIAbQqHkpjjrWt7ukSwOxqTTXWDhWEqP42KH1L/BXW4U\nQSAFZUltCjhifgWFpfN8XQgKJRcOut6A0NVKpucSoRwAAAAAAABgvgRX7nLtjDEFSb8r6X2SbpX0\nU8aYW3PdPinpgrV2h6TPSPrN+NhbJT0s6TZJD0n6vfh8AAAAAAAAAAAAAAAAwJI3p8EeSfdIOmit\nPWStrUj6M0kfzvX5sKQvxOuPSHqPMcbE7X9mrZ2y1h6WdDA+HwAAAAAAAAAAAAAAALDkzXWwZ0jS\nUW/7WNzWtI+1tiZpRNLKGR4rY8zPG2P2GWP2nT17dhaHDgAAAAAAAAAAAAAAALTPXAd75py19g+t\ntbuttbtXr17d7uEAAAAAAAAAAAAAAAAAs2Kugz3HJW30tjfEbU37GGOKkvolnZvhsQAAAAAAAAAA\nAAAAAMCSNNfBnmcl7TTGbDXGlCU9LOnRXJ9HJX08Xv+IpG9aa23c/rAxpsMYs1XSTknPzPF4AQAA\nAAAAAAAAAAAAgAWhOJcnt9bWjDG/IOnvJBUkfd5a+5Ix5jck7bPWPirpc5L+2BhzUNJ5ufCP4n5/\nIellSTVJn7bWhnM5XgAAAAAAAAAAAAAAAGChMK44ztKwe/duu2/fvnYPAwAAAAAAAAAAAAAAAGjK\nGPOctXb3TPrO9VRcAAAAAAAAAAAAAAAAAK4BwR4AAAAAAAAAAAAAAABgASLYAwAAAAAAAAAAAAAA\nACxABHsAAAAAAAAAAAAAAACABYhgDwAAAAAAAAAAAAAAALAAEewBAAAAAAAAAAAAAAAAFiCCPQAA\nAAAAAAAAAAAAAMACRLAHAAAAAAAAAAAAAAAAWIAI9gAAAAAAAAAAAAAAAAALEMEeAAAAAAAAAAAA\nAAAAYAEi2AMAAAAAAAAAAAAAAAAsQAR7AAAAAAAAAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwABHs\nAQAAAAAAAAAAAAAAABYggj0AAAAAAAAAAAAAAADAAmSste0ew6wxxpyVdKTd40CDVZKG2z0IAMCS\nxesMAGAu8ToDAJhLvM4AAOYKrzEAgLnE68z122ytXT2Tjksq2IOFyRizz1q7u93jAAAsTbzOAADm\nEq8zAIC5xOsMAGCu8BoDAJhLvM7ML6biAgAAAAAAAAAAAAAAABYggj0AAAAAAAAAAAAAAADAAkSw\nB/PhD9s9AADAksbrDABgLvE6AwCYS7zOAADmCq8xAIC5xOvMPDLW2naPAQAAAAAAAAAAAAAAAEAO\nFXsAAAAAAAAAAAAAAACABYhgDwAAAAAAAAAAAAAAALAAEezBnDHGPGSMOWCMOWiM+dV2jwcAsLgZ\nYzYaY75ljHnZGPOSMeaX4vYBY8zXjTGvxcsV7R4rAGDxMsYUjDHPG2O+Em9vNcY8Hb+v+XNjTLnd\nYwQALE7GmOXGmEeMMfuNMa8YY+7j/QwAYLYYY/5V/JnZi8aYLxljOnk/AwC4VsaYzxtjzhhjXvTa\nmr5/Mc7/iF9vXjDG3NW+kS9NBHswJ4wxBUm/K+l9km6V9FPGmFvbOyoAwCJXk/SvrbW3SnqHpE/H\nry2/Kukb1tqdkr4RbwMAcK1+SdIr3vZvSvqMtXaHpAuSPtmWUQEAloLflvRVa+3Nku6Qe73h/QwA\n4LoZY4Yk/aKk3dba2yUVJD0s3s8AAK7dH0l6KNfW6v3L+yTtjC8/L+n352mMNwyCPZgr90g6aK09\nZK2tSPozSR9u85gAAIuYtfaktfZ78fqo3IfgQ3KvL1+Iu31B0k+2Z4QAgMXOGLNB0k9I+my8bSS9\nW9IjcRdeZwAA18QY0y/pRyR9TpKstRVr7UXxfgYAMHuKkrqMMUVJyySdFO9nAADXyFr7D5LO55pb\nvX/5sKQvWucpScuNMevmZ6Q3BoI9mCtDko5628fiNgAArpsxZoukOyU9LWnQWnsy3nVK0mCbhgUA\nWPx+S9K/kRTF2yslXbTW1uJt3tcAAK7VVklnJf2veMrHzxpjusX7GQDALLDWHpf0XyW9KRfoGZH0\nnHg/AwCYXa3ev5ANmGMEewAAwKJijOmR9H8k/bK19pK/z1prJdm2DAwAsKgZYz4g6Yy19rl2jwUA\nsCQVJd0l6fettXdKGldu2i3ezwAArpUxZoVctYStktZL6lbj9CkAAMwa3r/ML4I9mCvHJW30tjfE\nbQAAXDNjTEku1POn1tovx82nk5KO8fJMu8YHAFjU9kj6kDHmDbmphN8t6bflSgcX4z68rwEAXKtj\nko5Za5+Otx+RC/rwfgYAMBveK+mwtfastbYq6cty73F4PwMAmE2t3r+QDZhjBHswV56VtNMYs9UY\nU5b0sKRH2zwmAMAiZowxkj4n6RVr7X/3dj0q6ePx+scl/fV8jw0AsPhZa3/NWrvBWrtF7v3LN621\nPyPpW5I+EnfjdQYAcE2stackHTXG7Iqb3iPpZfF+BgAwO96U9A5jzLL4M7TkdYb3MwCA2dTq/cuj\nkn7OOO+QNOJN2YVZYFyFJGD2GWPeL+m3JBUkfd5a+5/bPCQAwCJmjHlA0nck/VBSFDf/O0lPS/oL\nSZskHZH0T62159sySADAkmCMeZekX7HWfsAYs02ugs+ApOcl/ay1dqqd4wMALE7GmLdJ+qyksqRD\nkj4h94eXvJ8BAFw3Y8x/kvRRSTW59y7/XNKQeD8DALgGxpgvSXqXpFWSTkv6dUn/V03ev8Sh0t+R\nmwbysqRPWGv3tWPcSxXBHgAAAAAAAAAAAAAAAGABYiouAAAAAAAAAAAAAAAAYAEi2AMAAAAAAAAA\nAAAAAAAsQAR7AAAAAAAAAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwABHsAQAAAAAAAAAAAAAAABYg\ngj0AAAAAAAC4LsaYdxljvtLucQAAAAAAACw1BHsAAAAAAAAAAAAAAACABYhgDwAAAAAAwA3CGPOz\nxphnjDHfN8b8gTGmYIwZM8Z8xhjzkjHmG8aY1XHftxljnjLGvGCM+StjzIq4fYcx5u+NMT8wxnzP\nGLM9Pn2PMeYRY8x+Y8yfGmNM224oAAAAAADAEkGwBwAAAAAA4AZgjLlF0kcl7bHWvk1SKOlnJHVL\n2metvU3S45J+PT7ki5L+rbX2rZJ+6LX/qaTftdbeIel+SSfj9jsl/bKkWyVtk7Rnzm8UAAAAAADA\nElds9wAAAAAAAAAwL94j6W5Jz8bFdLoknZEUSfrzuM+fSPqyMaZf0nJr7eNx+xck/aUxplfSkLX2\nryTJWjspSfH5nrHWHou3vy9pi6Qn5v5mAQAAAAAALF0EewAAAAAAAG4MRtIXrLW/lmk05j/m+tlr\nPP+Utx6Kz50AAAAAAACuG1NxAQAAAAAA3Bi+Iekjxpg1kmSMGTDGbJb7fOgjcZ+flvSEtXZE0gVj\nzDvj9o9JetxaOyrpmDHmJ+NzdBhjls3rrQAAAAAAALiB8JdTAAAAAAAANwBr7cvGmP8g6WvGmEBS\nVdKnJY1Luifed0bSR+NDPi7pf8bBnUOSPhG3f0zSHxhjfiM+xz+Zx5sBAAAAAABwQzHWXmt1ZQAA\nAAAAACx2xpgxa21Pu8cBAAAAAACARkzFBQAAAAAAAAAAAAAAACxAVOwBAAAAAAAAAAAAAAAAFiAq\n9gAAAAAAAAAAAAAAAAALEMEeAAAAAAAAAAAAAAAAYAEi2AMAAAAAAAAAAAAAAAAsQAR7AAAAAAAA\nAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwAP1/Nt8O2ertn9cAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPUAAAJcCAYAAACb/gMvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X+s5Hd93/vXe2fO7M4YB4y9SWtM\n461KkV1oTVi7IBKUhCaxSa9JFHCAkoa2kiNVSKmaohiFOIXmD1fpTWkUSEJSt025QBGUG26ztxhu\njYIaUry4iNjYYBs5eO0m3jqxY/vM+pzZ/dw/9pzN2fX+OMfsd76zex4PyfKZme8cv4/kP596v6u1\nFgAAAAAAAAAAYHHs6HsAAAAAAAAAAADgeKIeAAAAAAAAAABYMKIeAAAAAAAAAABYMKIeAAAAAAAA\nAABYMKIeAAAAAAAAAABYMKIeAAAAAAAAAABYMKIeAAAAgG2mqh6sqr/T9xwAAAAAnJqoBwAAAAAA\nAAAAFoyoBwAAAAAAAAAAFoyoBwAAAGCbqqqdVfW+qnpk7Z/3VdXOtc8uqar/UlWPV9WfVtXnq2rH\n2mc/W1UPV9WTVfW1qnpdv38JAAAAwPln2PcAAAAAAPTm55K8KslVSVqS30ny7iQ/n+RnkhxIsnvt\n2VclaVX10iTvSHJ1a+2Rqro8yWC+YwMAAACc/2zqAQAAANi+/l6S97bWHm2tHUzyniQ/sfbZapK/\nnOQ7W2urrbXPt9ZaksNJdia5sqqWWmsPttYe6GV6AAAAgPOYqAcAAABg+7o0yR9teP1Ha+8lyS8l\nuT/JbVX1jaq6KUlaa/cn+SdJ/nmSR6vqo1V1aQAAAAA4q0Q9AAAAANvXI0m+c8Prv7L2XlprT7bW\nfqa19leTXJ/kn1bV69Y++3Br7bvXvtuS/Mv5jg0AAABw/hP1AAAAAGxfH0ny7qraXVWXJLk5yYeS\npKr+blX9taqqJE/k6NmtI1X10qr6/qrameRQkmmSIz3NDwAAAHDeEvUAAAAAbF+/mGR/kq8k+cMk\nd669lyQvSfLZJE8l+UKSD7TWbk+yM8ktSf53kj9O8u1J3jXfsQEAAADOf9Va63sGAAAAAAAAAABg\nA5t6AAAAAAAAAABgwYh6AAAAAAAAAABgwYh6AAAAAAAAAABgwYh6AAAAAAAAAABgwQz7HuBsueSS\nS9rll1/e9xgAAAAAAAAAAHBSX/rSl/53a233Zp7tNOqpqmuT/JskgyS/1Vq75YTPX5vkfUn+ZpI3\nt9Y+vuGzv5Lkt5K8OElL8vrW2oOn+m9dfvnl2b9//1n/GwAAAAAAAAAA4Gyoqj/a7LOdnd+qqkGS\n9ye5LsmVSd5SVVee8Ng3k7w9yYdP8it+O8kvtdauSHJNkke7mhUAAAAAAAAAABZJl5t6rklyf2vt\nG0lSVR9N8oYkX11/YH3zTlUd2fjFtfhn2Fr7zNpzT3U4JwAAAAAAAAAALJTONvUkeVGShza8PrD2\n3mb89SSPV9V/rqr/WVW/tLb55zhVdWNV7a+q/QcPHjwLIwMAAAAAAAAAQP+63NTzrRgm+Z4kr8jR\nE13/KUfPdP3bjQ+11j6Y5INJsnfv3nbiL1ldXc2BAwdy6NChruft3a5du3LZZZdlaWmp71EAAAAA\nAAAAAPgWdRn1PJzkxRteX7b23mYcSPLlDae7/u8kr8oJUc8Zf8mBA7nwwgtz+eWXp6q28tVzSmst\njz32WA4cOJA9e/b0PQ4AAAAAAAAAAN+iLs9v3ZHkJVW1p6pGSd6c5FNb+O4Lqmr32uvvT/LVrQ5w\n6NChXHzxxed10JMkVZWLL754W2wkAgAAAAAAAADYDjqLelprsyTvSPLpJPck+Vhr7e6qem9VXZ8k\nVXV1VR1I8qYkv1FVd69993CSf5bk/6uqP0xSSX7zucxxvgc967bL3wkAAAAAAAAAsB10eX4rrbV9\nSfad8N7NG36+I0fPcp3su59J8je7nA8AAAAAAAAAABZRl+e3SPL444/nAx/4wJa/9/rXvz6PP/54\nBxMBAAAAAAAAALDoRD0dO1XUM5vNTvu9ffv25QUveEFXYwEAAAAAAAAAsMA6Pb9FctNNN+WBBx7I\nVVddlaWlpezatSsXXXRR7r333nz961/Pj/zIj+Shhx7KoUOH8tM//dO58cYbkySXX3559u/fn6ee\neirXXXddvvu7vzu///u/nxe96EX5nd/5nYzH457/MgAAAAAAAAAAurJtop73/D9356uP/PlZ/Z1X\nXvpt+YX/42+c9plbbrkld911V7785S/nc5/7XH74h384d911V/bs2ZMkufXWW/PCF74w0+k0V199\ndX7sx34sF1988XG/47777stHPvKR/OZv/mZuuOGGfOITn8jb3va2s/q3AAAAAAAAAACwOLZN1LMo\nrrnmmmNBT5L8yq/8Sj75yU8mSR566KHcd999z4p69uzZk6uuuipJ8spXvjIPPvjg3OYFAAAAAAAA\nAGD+tk3Uc6aNOvNywQUXHPv5c5/7XD772c/mC1/4QiaTSb73e783hw4detZ3du7ceeznwWCQ6XQ6\nl1kBAAAAAAAAAOjHjr4HON9deOGFefLJJ0/62RNPPJGLLrook8kk9957b/7gD/5gztMBAAAAAAAA\nALCIts2mnr5cfPHFec1rXpOXvexlGY/H+Y7v+I5jn1177bX59V//9VxxxRV56Utfmle96lU9TgoA\nAAAAAAAAwKKo1lrfM5wVe/fubfv37z/uvXvuuSdXXHFFTxPN33b7ewEAAAAAAAAAziVV9aXW2t7N\nPOv8FgAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAA\nAAAALBhRD535+7d+Mb/4X77a9xgAAAAAAAAAAOccUU/HHn/88XzgAx94Tt993/vel+Xl5bM80fz8\nyROH8tCfnbvzAwAAAAAAAAD0RdTTse0c9YxHgyyvHO57DAAAAAAAAACAc86w7wHOdzfddFMeeOCB\nXHXVVfmBH/iBfPu3f3s+9rGP5ZlnnsmP/uiP5j3veU+efvrp3HDDDTlw4EAOHz6cn//5n8+f/Mmf\n5JFHHsn3fd/35ZJLLsntt9/e95+yZZPRIFNRDwAAAAAAAADAlm2fqOf/vSn54z88u7/zL708ue6W\n0z5yyy235K677sqXv/zl3Hbbbfn4xz+eL37xi2mt5frrr8/v/d7v5eDBg7n00kvzu7/7u0mSJ554\nIs9//vPzy7/8y7n99ttzySWXnN2552QyGuTx5dW+xwAAAAAAAAAAOOc4vzVHt912W2677ba84hWv\nyHd913fl3nvvzX333ZeXv/zl+cxnPpOf/dmfzec///k8//nP73vUs2I8Gma6alMPAAAAAAAAAMBW\nbZ9NPWfYqDMPrbW8613vyk/91E8967M777wz+/bty7vf/e687nWvy80339zDhGfXZGmQ5ZVZ32MA\nAAAAAAAAAJxzbOrp2IUXXpgnn3wySfJDP/RDufXWW/PUU08lSR5++OE8+uijeeSRRzKZTPK2t70t\n73znO3PnnXc+67vnovFokOVnbOoBAAAAAAAAANiq7bOppycXX3xxXvOa1+RlL3tZrrvuurz1rW/N\nq1/96iTJ8573vHzoQx/K/fffn3e+853ZsWNHlpaW8mu/9mtJkhtvvDHXXnttLr300tx+++19/hnP\nyWQ0yPLq4bTWUlV9jwMAAAAAAAAAcM6o1lrfM5wVe/fubfv37z/uvXvuuSdXXHFFTxPN36L9vb/6\n3+7Lv7rt6/naL16bncNB3+MAAAAAAAAAAPSqqr7UWtu7mWed36Iz49HRRVDTFSe4AAAAAAAAAAC2\nQtRDZyajo9t5lkU9AAAAAAAAAABbct5HPefLebEzWcS/U9QDAAAAAAAAAPDcnNdRz65du/LYY48t\nZPByNrXW8thjj2XXrl19j3Kc8dLRqMf5LQAAAAAAAACArRn2PUCXLrvsshw4cCAHDx7se5TO7dq1\nK5dddlnfYxxnMjr6v9fyyqznSQAAAAAAAAAAzi3nddSztLSUPXv29D3GtjVeP7+1alMPAAAAAAAA\nAMBWnNfnt+jXBTud3wIAAAAAAAAAeC5EPXRmsrR+fkvUAwAAAAAAAACwFaIeOrN+fmu6Mut5EgAA\nAAAAAACAc4uoh85M1qIem3oAAAAAAAAAALZG1ENnxkuiHgAAAAAAAACA50LUQ2d27KjsWtqR6aqo\nBwAAAAAAAABgK0Q9dGoyGmZ5Zdb3GAAAAAAAAAAA5xRRD50aLw2y/IxNPQAAAAAAAAAAWyHqoVOT\n0SDLK6IeAAAAAAAAAICtEPXQqclokOVVUQ8AAAAAAAAAwFaIeujUeDTIdGXW9xgAAAAAAAAAAOcU\nUQ+dmoyGzm8BAAAAAAAAAGyRqIdOHd3UI+oBAAAAAAAAANgKUQ+dmiwNbOoBAAAAAAAAANgiUQ+d\nmowGWV6Z9T0GAAAAAAAAAMA5RdRDp8ajYaarNvUAAAAAAAAAAGyFqIdOXTAaZPVwy+rhI32PAgAA\nAAAAAABwzhD10KnxaJAkWV6xrQcAAAAAAAAAYLNEPXRqMhomSaaiHgAAAAAAAACATRP10KnJsU09\ns54nAQAAAAAAAAA4d4h66JTzWwAAAAAAAAAAWyfqoVPrm3qmq6IeAAAAAAAAAIDNEvXQqfWo5+ln\nnN8CAAAAAAAAANgsUQ+dGi8NkyRT57cAAAAAAAAAADZN1EOn1jf1LIt6AAAAAAAAAAA2rdOop6qu\nraqvVdX9VXXTST5/bVXdWVWzqnrjST7/tqo6UFW/2uWcdOdY1LMq6gEAAAAAAAAA2KzOop6qGiR5\nf5LrklyZ5C1VdeUJj30zyduTfPgUv+ZfJPm9rmake+O1qGe6Mut5EgAAAAAAAACAc0eXm3quSXJ/\na+0brbWVJB9N8oaND7TWHmytfSXJkRO/XFWvTPIdSW7rcEY6NhkNkzi/BQAAAAAAAACwFV1GPS9K\n8tCG1wfW3jujqtqR5P9M8s/O8NyNVbW/qvYfPHjwOQ9KdwY7KqPhjkxFPQAAAAAAAAAAm9Zl1POt\n+MdJ9rXWDpzuodbaB1tre1tre3fv3j2n0diqyWhgUw8AAAAAAAAAwBYMO/zdDyd58YbXl629txmv\nTvI9VfWPkzwvyaiqnmqt3XSWZ2QOJkuiHgAAAAAAAACAregy6rkjyUuqak+OxjxvTvLWzXyxtfb3\n1n+uqrcn2SvoOXdNdg4zXZ31PQYAAAAAAAAAwDmjs/NbrbVZknck+XSSe5J8rLV2d1W9t6quT5Kq\nurqqDiR5U5LfqKq7u5qH/ji/BQAAAAAAAACwNV1u6klrbV+SfSe8d/OGn+/I0bNcp/sd/z7Jv+9g\nPOZk7PwWAAAAAAAAAMCWdLapB9ZNRoNMRT0AAAAAAAAAAJsm6qFzk9EwyyuzvscAAAAAAAAAADhn\niHro3NimHgAAAAAAAACALRH10LnJaJDlVVEPAAAAAAAAAMBmiXro3Hg0yPIzoh4AAAAAAAAAgM0S\n9dC5ydIwK4ePZHb4SN+jAAAAAAAAAACcE0Q9dG4yGiSJE1wAAAAAAAAAAJsk6qFz47WoZ7oi6gEA\nAAAAAAAA2AxRD507tqlH1AMAAAAAAAAAsCmiHjr3F1HPrOdJAAAAAAAAAADODaIeOjceDZM4vwUA\nAAAAAAAAsFmiHjrn/BYAAAAAAAAAwNaIeuicqAcAAAAAAAAAYGtEPXRusn5+a3XW8yQAAAAAAAAA\nAOcGUQ+ds6kHAAAAAAAAAGBrRD10brwW9UxFPQAAAAAAAAAAmyLqoXOTJZt6AAAAAAAAAAC2QtRD\n54aDHRkNdoh6AAAAAAAAAAA2SdTDXIxHg0xXZn2PAQAAAAAAAABwThD1MBeT0cCmHgAAAAAAAACA\nTRL1MBdjUQ8AAAAAAAAAwKaJepiLo5t6nN8CAAAAAAAAANgMUQ9zMVka2tQDAAAAAAAAALBJoh7m\nYjwaZLoq6gEAAAAAAAAA2AxRD3Nx9PyWqAcAAAAAAAAAYDNEPczFeDTIVNQDAAAAAAAAALApoh7m\n4uimnlnfYwAAAAAAAAAAnBNEPczFBaOh81sAAAAAAAAAAJsk6mEuxqNBnpkdyeEjre9RAAAAAAAA\nAAAWnqiHuZiMBkmS6aptPQAAAAAAAAAAZyLqYS7Go2GSZHll1vMkAAAAAAAAAACLT9TDXEyW1jb1\nrNjUAwAAAAAAAABwJqIe5mL9/NayqAcAAAAAAAAA4IxEPczFWNQDAAAAAAAAALBpoh7mYjIaJnF+\nCwAAAAAAAABgM0Q9zMX6+a2nV2Y9TwIAAAAAAAAAsPhEPczF+vktm3oAAAAAAAAAAM5M1MNcrG/q\nWRb1AAAAAAAAAACckaiHuZgsDZMky85vAQAAAAAAAACckaiHuXB+CwAAAAAAAABg80Q9zMVouCPD\nHZXlVVEPAAAAAAAAAMCZiHqYm/FoYFMPAAAAAAAAAMAmiHqYmwtGwyyvzPoeAwAAAAAAAABg4Yl6\nmJvJaJBlm3oAAAAAAAAAAM5I1MPcOL8FAAAAAAAAALA5oh7mxqYeAAAAAAAAAIDNEfUwN+PRMMur\noh4AAAAAAAAAgDMR9TA3k6VBpiuzvscAAAAAAAAAAFh4oh7mxvktAAAAAAAAAIDNEfUwN+PRIFNR\nDwAAAAAAAADAGYl6mBubegAAAAAAAAAANkfUw9yMR8NMVw/nyJHW9ygAAAAAAAAAAAtN1MPcTEaD\nJMl01bYeAAAAAAAAAIDTEfUwN+tRjxNcAAAAAAAAAACnJ+phbsZLa5t6RD0AAAAAAAAAAKcl6mFu\nJqNhkmR5ddbzJAAAAAAAAAAAi63TqKeqrq2qr1XV/VV100k+f21V3VlVs6p644b3r6qqL1TV3VX1\nlar68S7nZD6c3wIAAAAAAAAA2JzOop6qGiR5f5LrklyZ5C1VdeUJj30zyduTfPiE95eT/P3W2t9I\ncm2S91XVC7qalflYj3qc3wIAAAAAAAAAOL1hh7/7miT3t9a+kSRV9dEkb0jy1fUHWmsPrn12ZOMX\nW2tf3/DzI1X1aJLdSR7vcF46duz8lqgHAAAAAAAAAOC0ujy/9aIkD214fWDtvS2pqmuSjJI8cJLP\nbqyq/VW1/+DBg895UOZjfOz81qznSQAAAAAAAAAAFluXUc+3rKr+cpL/mOQftNaOnPh5a+2DrbW9\nrbW9u3fvnv+AbInzWwAAAAAAAAAAm9Nl1PNwkhdveH3Z2nubUlXfluR3k/xca+0PzvJs9GBybFOP\nqAcAAAAAAAAA4HS6jHruSPKSqtpTVaMkb07yqc18ce35Tyb57dbaxzuckTlaP781XRX1AAAAAAAA\nAACcTmdRT2ttluQdST6d5J4kH2ut3V1V762q65Okqq6uqgNJ3pTkN6rq7rWv35DktUneXlVfXvvn\nqq5mZT5Ggx0Z7Kgsr8z6HgUAAAAAAAAAYKENu/zlrbV9Sfad8N7NG36+I0fPcp34vQ8l+VCXszF/\nVZXJ0sD5LQAAAAAAAACAM+jy/BY8y3g0yFTUAwAAAAAAAABwWqIe5moysqkHAAAAAAAAAOBMRD3M\n1Xg0zPLKrO8xAAAAAAAAAAAWmqiHubKpBwAAAAAAAADgzEQ9zJWoBwAAAAAAAADgzEQ9zNV4aZCp\nqAcAAAAAAAAA4LREPczVZDTI8uqs7zEAAAAAAAAAABaaqIe5muwc2tQDAAAAAAAAAHAGoh7marI0\nyLKoBwAAAAAAAADgtEQ9zNVkNMh09XBaa32PAgAAAAAAAACwsEQ9zNV4NExryaHVI32PAgAAAAAA\nAACwsEQ9zNVkNEiSLK/Mep4EAAAAAAAAAGBxiXqYq/GxqOdwz5MAAAAAAAAAACwuUQ9ztb6pZ7oq\n6gEAAAAAAAAAOBVRD3M1sakHAAAAAAAAAOCMRD3M1XhpmCRZXpn1PAkAAAAAAAAAwOIS9TBXx85v\n2dQDAAAAAAAAAHBKoh7maj3qeVrUAwAAAAAAAABwSqIe5mp8bFOP81sAAAAAAAAAAKci6mGuJqNh\nkmTZph4AAAAAAAAAgFMS9TBX6+e3RD0AAAAAAAAAAKcm6mGudg53pCqZinoAAAAAAAAAAE5J1MNc\nVVUuGA1t6gEAAAAAAAAAOA1RD3M3Hg0yXZ31PQYAAAAAAAAAwMIS9TB3k9HAph4AAAAAAAAAgNMQ\n9TB34yVRDwAAAAAAAADA6Yh6mLvJaJCpqAcAAAAAAAAA4JREPczdZDTM8sqs7zEAAAAAAAAAABaW\nqIe5G4+c3wIAAAAAAAAAOB1RD3M3GQ0yXRX1AAAAAAAAAACciqiHuZvY1AMAAAAAAAAAcFqiHuZu\nvDTMVNQDAAAAAAAAAHBKoh7m7uimnllaa32PAgAAAAAAAACwkEQ9zN14NMiRljwzO9L3KAAAAAAA\nAAAAC0nUw9xNRoMkybITXAAAAAAAAAAAJyXqYe7+IuqZ9TwJAAAAAAAAAMBiEvUwd+PRMEkytakH\nAAAAAAAAAOCkRD3M3QXObwEAAAAAAAAAnJaoh7kbi3oAAAAAAAAAAE5L1MPcTdbPb63Oep4EAAAA\nAAAAAGAxiXqYu4lNPQAAAAAAAAAApyXqYe7GS6IeAAAAAAAAAIDTEfUwd+ubeqaiHgAAAAAAAACA\nkxL1MHeT0TCJTT0AAAAAAAAAAKci6mHudi3tSFUyXZn1PQoAAAAAAAAAwEIS9TB3VZXx0sCmHgAA\nAAAAAACAUxD10IvJaJDlVVEPAAAAAAAAAMDJiHroxXg0yNSmHgAAAAAAAACAkxL10IvJ0jBPPzPr\newwAAAAAAAAAgIUk6qEX49EgU+e3AAAAAAAAAABOStRDLyajQZad3wIAAAAAAAAAOClRD70Q9QAA\nAAAAAAAAnJqoh16MR8NMV2Z9jwEAAAAAAAAAsJBEPfTiApt6AAAAAAAAAABOSdRDL8ajQaaiHgAA\nAAAAAACAk+o06qmqa6vqa1V1f1XddJLPX1tVd1bVrKreeMJnP1lV963985Ndzsn8TUaDLK8eTmut\n71EAAAAAAAAAABZOZ1FPVQ2SvD/JdUmuTPKWqrryhMe+meTtST58wndfmOQXkvztJNck+YWquqir\nWZm/yWiYw0daVg4f6XsUAAAAAAAAAICF0+WmnmuS3N9a+0ZrbSXJR5O8YeMDrbUHW2tfSXJi2fFD\nST7TWvvT1tqfJflMkms7nJU5Gy8NksQJLgAAAAAAAACAk+gy6nlRkoc2vD6w9t5Z+25V3VhV+6tq\n/8GDB5/zoMzfZHQ06lkW9QAAAAAAAAAAPEuXUU/nWmsfbK3tba3t3b17d9/jsAVjUQ8AAAAAAAAA\nwCl1GfU8nOTFG15ftvZe19/lHDAZDZM4vwUAAAAAAAAAcDJdRj13JHlJVe2pqlGSNyf51Ca/++kk\nP1hVF1XVRUl+cO09zhN/cX5r1vMkAAAAAAAAAACLp7Oop7U2S/KOHI1x7knysdba3VX13qq6Pkmq\n6uqqOpDkTUl+o6ruXvvunyb5FzkaBt2R5L1r73GeOHZ+a9WmHgAAAAAAAACAEw27/OWttX1J9p3w\n3s0bfr4jR09rney7tya5tcv56M/6ph7ntwAAAAAAAAAAnq3L81twSpOloz3Z0884vwUAAAAAAAAA\ncCJRD71YP781dX4LAAAAAAAAAOBZRD30Yv381rLzWwAAAAAAAAAAzyLqoRfjJVEPAAAAAAAAAMCp\niHroxY4dlfHSINOVWd+jAAAAAAAAAAAsHFEPvZmMBjb1AAAAAAAAAACchKiH3oxHg0xFPQAAAAAA\nAAAAzyLqoTc29QAAAAAAAAAAnJyoh96MR8Msr4p6AAAAAAAAAABOJOqhN5OlQaYrs77HAAAAAAAA\nAABYOKIeeuP8FgAAAAAAAADAyYl66M14NMhU1AMAAAAAAAAA8CyiHnpjUw8AAAAAAAAAwMmJeujN\nZDTM8sqs7zEAAAAAAAAAABaOqIfejEeDTFdt6gEAAAAAAAAAOJGoh95MlgZZPdyyMjvS9ygAAAAA\nAAAAAAtF1ENvxqNBkmS6YlsPAAAAAAAAAMBGoh56MxkNkyTLq7OeJwEAAAAAAAAAWCyiHnozWdvU\ns2xTDwAAAAAAAADAcUQ99Gbi/BYAAAAAAAAAwEmJeujNsfNboh4AAAAAAAAAgOOIeujN+Nj5rVnP\nkwAAAAAAAAAALBZRD71xfgsAAAAAAAAA4OREPfRmcmxTj6gHAAAAAAAAAGAjUQ+9OXZ+a1XUAwAA\nAAAAAACwkaiH3kxGwyTJdGXW8yQAAAAAAAAAAItF1ENvxkvObwEAAAAAAAAAnIyoh94MdlR2Dndk\nKuoBAAAAAAAAADiOqIdeTUYDm3oAAAAAAAAAAE4g6qFXk9FQ1AMAAAAAAAAAcAJRD70ajwaZrs76\nHgMAAAAAAAAAYKGIeujVZDTI08/Y1AMAAAAAAAAAsJGoh16NlwaZOr8FAAAAAAAAAHAcUQ+9mowG\nWXZ+CwAAAAAAAADgOKIeejXZOcyyTT0AAAAAAAAAAMcR9dCrifNbAAAAAAAAAADPIuqhV5PRwKYe\nAAAAAAAAAIATiHro1Xg0tKkHAAAAAAAAAOAEoh56NRkNsnL4SGaHj/Q9CgAAAAAAAADAwhD10KvJ\naJAkWV61rQcAAAAAAAAAYJ2oh16N16IeJ7gAAAAAAAAAAP6CqIdeHdvUI+oBAAAAAAAAADhG1EOv\nxkvDJMnyyqznSQAAAAAAAAAAFoeoh15NnN8CAAAAAAAAAHgWUQ+9cn4LAAAAAAAAAODZRD30aizq\nAQAAAAAAAAB4FlEPvZqMhkmS6eqs50kAAAAAAAAAABaHqIderZ/fevoZm3oAAAAAAAAAANaJeujV\n+vmtqfNbAAAAAAAAAADHiHro1WTpaNSzLOoBAAAAAAAAADhG1EOvhoMdGQ13ZHl11vcoAAAAAAAA\nAAALQ9RD7yajgfNbAAAAAAAAAAAbiHro3WRp4PwWAAAAAAAAAMAGoh56N7apBwAAAAAAAADgOKIe\nejcZDbO8Mut7DAAAAAAAAACAhdFp1FNV11bV16rq/qq66SSf76yq/7T2+f+oqsvX3l+qqv9QVX9Y\nVfdU1bu6nJN+jUfObwEAAAARBxskAAAgAElEQVQAAAAAbNRZ1FNVgyTvT3JdkiuTvKWqrjzhsX+U\n5M9aa38tyb9O8i/X3n9Tkp2ttZcneWWSn1oPfjj/TEaDTFdFPQAAAAAAAAAA67rc1HNNkvtba99o\nra0k+WiSN5zwzBuS/Ie1nz+e5HVVVUlakguqaphknGQlyZ93OCs9mtjUAwAAAAAAAABwnC6jnhcl\neWjD6wNr7530mdbaLMkTSS7O0cDn6ST/K8k3k/yr1tqfnvgfqKobq2p/Ve0/ePDg2f8LmIvx0jBT\nUQ8AAAAAAAAAwDFdRj3fimuSHE5yaZI9SX6mqv7qiQ+11j7YWtvbWtu7e/fuec/IWXJ0U8+s7zEA\nAAAAAAAAABZGl1HPw0levOH1ZWvvnfSZtVNbz0/yWJK3JvmvrbXV1tqjSf57kr0dzkqPnN8CAAAA\nAAAAADhel1HPHUleUlV7qmqU5M1JPnXCM59K8pNrP78xyX9rrbUcPbn1/UlSVRckeVWSezuclR6N\nR4M8MzuSw0da36MAAAAAAAAAACyEzqKe1tosyTuSfDrJPUk+1lq7u6reW1XXrz32b5NcXFX3J/mn\nSW5ae//9SZ5XVXfnaBz071prX+lqVvo1GQ2SJNNV23oAAAAAAAAAAJJkuJmHquqnk/y7JE8m+a0k\nr0hyU2vtttN9r7W2L8m+E967ecPPh5K86STfe+pk73N+Go+O/m+4/Mwsz9u5qf8lAQAAAAAAAADO\na5vd1PMPW2t/nuQHk1yU5CeS3NLZVGwrF6xt6llesakHAAAAAAAAACDZfNRTa/9+fZL/2Fq7e8N7\n8C2ZiHoAAAAAAAAAAI6z2ajnS1V1W45GPZ+uqguTHOluLLaT9fNb09VZz5MAAAAAAAAAACyG4Saf\n+0dJrkryjdbaclW9MMk/6G4sthObegAAAAAAAAAAjrfZTT2vTvK11trjVfW2JO9O8kR3Y7GdjJdE\nPQAAAAAAAAAAG2026vm1JMtV9beS/EySB5L8dmdTsa2sb+qZinoAAAAAAAAAAJJsPuqZtdZakjck\n+dXW2vuTXNjdWGwnk9HRK3A29QAAAAAAAAAAHDXc5HNPVtW7kvxEku+pqh1Jlrobi+1kPFo/vzXr\neRIAAAAAAAAAgMWw2U09P57kmST/sLX2x0kuS/JLnU3FtuL8FgAAAAAAAADA8TYV9ayFPP9XkudX\n1d9Ncqi19tudTsa2sTTYkaVBZXlV1AMAAAAAAAAAkGwy6qmqG5J8McmbktyQ5H9U1Ru7HIztZbw0\nsKkHAAAAAAAAAGDNcJPP/VySq1trjyZJVe1O8tkkH+9qMLaXyWiY5ZVZ32MAAAAAAAAAACyETW3q\nSbJjPehZ89gWvgtnNBkNsmxTDwAAAAAAAABAks1v6vmvVfXpJB9Ze/3jSfZ1MxLb0Xjk/BYAAAAA\nAAAAwLpNRT2ttXdW1Y8lec3aWx9srX2yu7HYbiajQZ52fgsAAAAAAAAAIMnmN/WktfaJJJ/ocBa2\nsclomMeXV/oeAwAAAAAAAABgIZw26qmqJ5O0k32UpLXWvq2Tqdh2JqNBHnnc+S0AAAAAAAAAgOQM\nUU9r7cJ5DcL2Nh4Nsrwi6gEAAAAAAAAASJIdfQ8AydFNPdNVUQ8AAAAAAAAAQCLqYUFMRsMsr8z6\nHgMAAAAAAAAAYCGIelgI46VBDq0eyZEjre9RAAAAAAAAAAB6J+phIUxGgyRxguv/Z+/eYyTLDvsw\n/05VdXVXzWvfXIq7JJfa5TAUGVnWglT0iiRSNncDhxZEwZQdiDGIMH4QQRAkDhMggqIYQSTAFmyI\nSkCJAhQpBiUIMLSAliISU7Ilh6a4skIJVLTU8iHvkiKzL+7OTPd0V3Xd/HGru6urqx8z0zV1Z+v7\nsBf33HPOvffUo1+1vzkHAAAAAAAAACBCPTTETqhnfUuoBwAAAAAAAABAqIdG6HU7SZINoR4AAAAA\nAAAAAKEemmF3pp7BcMEjAQAAAAAAAABYPKEeGqFn+S0AAAAAAAAAgF1CPTRCf6UO9Vh+CwAAAAAA\nAABAqIeG6Hc7SczUAwAAAAAAAACQCPXQEHvLbw0XPBIAAAAAAAAAgMUT6qER+l3LbwEAAAAAAAAA\n7BDqoRHOjJffuiLUAwAAAAAAAAAg1EMz9HZn6rH8FgAAAAAAAACAUA+N0O200mmVrJupBwAAAAAA\nAABAqIfm6HXbQj0AAAAAAAAAABHqoUH63XY2hHoAAAAAAAAAAIR6aI5+t5P1gVAPAAAAAAAAAIBQ\nD43RW2lnY2u46GEAAAAAAAAAACycUA+N0e+2s275LQAAAAAAAAAAoR6aoyfUAwAAAAAAAACQRKiH\nBul329kQ6gEAAAAAAAAAEOqhOfrdTtYHw0UPAwAAAAAAAABg4YR6aIyemXoAAAAAAAAAAJII9dAg\n/ZV21oV6AAAAAAAAAACEemiOfredjcF2qqpa9FAAAAAAAAAAABZKqIfG6HU7qark6mC06KEAAAAA\nAAAAACyUUA+NcWa1nSS5sjVc8EgAAAAAAAAAABZLqIfG6K3UoZ6Nre0FjwQAAAAAAAAAYLGEemiM\nfreTJFkX6gEAAAAAAAAAlpxQD43R79Yz9axbfgsAAAAAAAAAWHJCPTRGr2v5LQAAAAAAAACARKiH\nBtmbqUeoBwAAAAAAAABYbkI9NMZuqGcg1AMAAAAAAAAALDehHhqj1+0kSTa2hgseCQAAAAAAAADA\nYgn10Bj9FctvAQAAAAAAAAAkQj00SK8r1AMAAAAAAAAAkAj10CCrnVZaJdkQ6gEAAAAAAAAAltxc\nQz2llHeVUp4spTxVSvnQjPbVUsqvjts/XUp5/UTbv19K+VQp5XOllD8upazNc6wsXikl/W7HTD0A\nAAAAAAAAwNKbW6inlNJO8uEkjyR5c5IfLaW8earb+5O8WFXVg0l+JslPjc/tJPmVJH+nqqpvSfJ9\nSQbzGivN0eu2szEYLnoYAAAAAAAAAAALNc+Zet6W5Kmqqr5YVdVWko8lefdUn3cn+aVx+deTvKOU\nUpL8lSR/VFXVZ5Okqqrnq6oyfcsS6HfbZuoBAAAAAAAAAJbePEM9r0ny9MTxM+O6mX2qqhomeSnJ\nnUnemKQqpXyilPJvSyn/YNYNSikfKKU8UUp54tlnnz31B8DN11sR6gEAAAAAAAAAmGeo50Z0knx3\nkr813v9QKeUd052qqvpIVVUPV1X18N13332zx8gc9LvtbAj1AAAAAAAAAABLbp6hnq8kuX/i+L5x\n3cw+pZROkgtJnk89q8+/qqrquaqq1pM8nuQvz3GsNMSZ1U6ubA0XPQwAAAAAAAAAgIWaZ6jnM0ke\nKqU8UErpJnlvksem+jyW5H3j8nuSfLKqqirJJ5K8tZTSH4d9/sMkfzLHsdIQvRUz9QAAAAAAAAAA\ndOZ14aqqhqWUD6YO6LST/GJVVZ8rpfxkkieqqnosyUeT/HIp5akkL6QO/qSqqhdLKf84dTCoSvJ4\nVVW/Oa+x0hz9bjvrQj0AAAAAAAAAwJKbW6gnSaqqejz10lmTdT8+Ub6a5EcOOfdXkvzKPMdH8/S6\nHaEeAAAAAAAAAGDpzXP5Lbhm/W47G1vDRQ8DAAAAAAAAAGChhHpolH63nfXBdqqqWvRQAAAAAAAA\nAAAWRqiHRul126mqZHM4WvRQAAAAAAAAAAAWRqiHRumvtJMk61vbCx4JAAAAAAAAAMDiCPXQKP1u\nJ0myvjVc8EgAAAAAAAAAABZHqIdG6XXrmXo2zNQDAAAAAAAAACwxoR4apd+1/BYAAAAAAAAAgFAP\njdIT6gEAAAAAAAAAEOqhWfrdTpJkYzBc8EgAAAAAAAAAABZHqIdGsfwWAAAAAAAAAIBQDw3TWxHq\nAQAAAAAAAAAQ6qFRzqyOl98S6gEAAAAAAAAAlphQD42ys/zWla3hgkcCAAAAAAAAALA4Qj00ymqn\nlVLM1AMAAAAAAAAALDehHhqllJL+SjvrQj0AAAAAAAAAwBIT6qFxet2OUA8AAAAAAAAAsNSEemic\nfredja3hoocBAAAAAAAAALAwQj00Tr9r+S0AAAAAAAAAYLkJ9dA4vW47GwOhHgAAAAAAAABgeQn1\n0Dhm6gEAAAAAAAAAlp1QD43TW+kI9QAAAAAAAAAAS02oh8bpd9vZ2BouehgAAAAAAAAAAAsj1EPj\nWH4LAAAAAAAAAFh2Qj00Tq/bzoZQDwAAAAAAAACwxIR6aJx+t531wXaqqlr0UAAAAAAAAAAAFkKo\nh8bpdzvZHlXZ2h4teigAAAAAAAAAAAsh1EPj9LvtJLEEFwAAAAAAAACwtIR6aJydUM8VoR4AAAAA\nAAAAYEkJ9dA4vW4nSbKxNVzwSAAAAAAAAAAAFkOoh8bpr9Qz9aybqQcAAAAAAAAAWFJCPTTOzvJb\nQj0AAAAAAAAAwLIS6qFxeuNQz4ZQDwAAAAAAAACwpIR6aJx+t5PETD0AAAAAAAAAwPIS6qFx9pbf\nGi54JAAAAAAAAAAAiyHUQ+PsLr81MFMPAAAAAAAAALCchHponL2ZeoR6AAAAAAAAAIDlJNRD46x1\nhHoAAAAAAAAAgOUm1EPjtFolvZV2NraGix4KAAAAAAAAAMBCCPXQSP1u20w9AAAAAAAAAMDSEuqh\nkXrddjaEegAAAAAAAACAJSXUQyOZqQcAAAAAAAAAWGZCPTRSv9vJ+kCoBwAAAAAAAABYTkI9NFK/\n287G1nDRwwAAAAAAAAAAWAihHhqp323nyqaZegAAAAAAAACA5STUQyP1up1sWH4LAAAAAAAAAFhS\nQj00Un+lnXXLbwEAAAAAAAAAS0qoh0bqddtZ3zJTDwAAAAAAAACwnIR6aKR+t50NoR4AAAAAAAAA\nYEkJ9dBI/W47w1GVreFo0UMBAAAAAAAAALjphHpopF63kyRm6wEAAAAAAAAAlpJQD43U77aTJOuD\n4YJHAgAAAAAAAABw8wn10Ei7oR4z9QAAAAAAAAAAS0ioh0bqrdShHstvAQAAAAAAAADLSKiHRup3\nO0nM1AMAAAAAAAAALCehHhqpt7v81nDBIwEAAAAAAAAAuPnmGuoppbyrlPJkKeWpUsqHZrSvllJ+\nddz+6VLK66faX1tKuVxK+a/nOU6ap9+1/BYAAAAAAAAAsLzmFuoppbSTfDjJI0nenORHSylvnur2\n/iQvVlX1YJKfSfJTU+3/OMnH5zVGmuuM5bcAAAAAAAAAgCU2z5l63pbkqaqqvlhV1VaSjyV591Sf\ndyf5pXH515O8o5RSkqSU8teTfCnJ5+Y4Rhpqd/mtgVAPAAAAAAAAALB85hnqeU2SpyeOnxnXzexT\nVdUwyUtJ7iylnE3y3yb5H4+6QSnlA6WUJ0opTzz77LOnNnAWb2/5reGCRwIAAAAAAAAAcPPNM9Rz\nI34iyc9UVXX5qE5VVX2kqqqHq6p6+O677745I+Om6K3UoZ4rm2bqAQAAAAAAAACWT2eO1/5Kkvsn\nju8b183q80wppZPkQpLnk7w9yXtKKT+d5LYko1LK1aqqfnaO46VBWq2StZVWNiy/BQAAAAAAAAAs\noXmGej6T5KFSygOpwzvvTfI3p/o8luR9ST6V5D1JPllVVZXke3Y6lFJ+IsllgZ7l0+92sm75LQAA\nAAAAAABgCc0t1FNV1bCU8sEkn0jSTvKLVVV9rpTyk0meqKrqsSQfTfLLpZSnkryQOvgDSeoluNa3\nzNQDAAAAAAAAACyfec7Uk6qqHk/y+FTdj0+Uryb5kWOu8RNzGRyN1++2syHUAwAAAAAAAAAsodai\nBwCH6XfN1AMAAAAAAAAALCehHhqrZ6YeAAAAAAAAAGBJCfXQWP1uJ+uD4aKHAQAAAAAAAABw0wn1\n0Fg9y28BAAAAAAAAAEtKqIfG6q9YfgsAAAAAAAAAWE5CPTRW30w9AAAAAAAAAMCSEuqhsXrdjpl6\nAAAAAAAAAIClJNRDY53ptrO1Pcpwe7TooQAAAAAAAAAA3FRCPTRWr9tOkqwPzNYDAAAAAAAAACwX\noR4aq9/tJIkluAAAAAAAAACApSPUQ2P1xzP1XNkcLngkAAAAAAAAAAA3l1APjbW7/JaZegAAAAAA\nAACAJSPUQ2PtzNSzMRDqAQAAAAAAAACWi1APjdU3Uw8AAAAAAAAAsKSEemis3konSbKxNVzwSAAA\nAAAAAAAAbi6hHhrLTD0AAAAAAAAAwLIS6qGxhHoAAAAAAAAAgGUl1ENj9cahng2hHgAAAAAAAABg\nyQj10Fj9bieJmXoAAAAAAAAAgOUj1ENjtVsl3U4r64PhoocCAAAAAAAAAHBTCfXQaP1u2/JbAAAA\nAAAAAMDSEeqh0forbctvAQAAAAAAAABLR6iHRuuvdszUAwAAAAAAAAAsHaEeGq3fbWd9a7joYQAA\nAAAAAAAA3FRCPTRaz/JbAAAAAAAAAMASEuqh0frddjYGQj0AAAAAAAAAwHIR6qHR+t1OrmxafgsA\nAAAAAAAAWC5CPTRar9vOhuW3AAAAAAAAAIAlI9RDo/W77axbfgsAAAAAAAAAWDJCPTRar9vOupl6\nAAAAAAAAAIAlI9RDo/VXOtkajrI9qhY9FAAAAAAAAACAm0aoh0brd9tJkvWt4YJHAgAAAAAAAABw\n8wj10Gi9cahnwxJcAAAAAAAAAMASEeqh0fZm6hHqAQAAAAAAAACWh1APjSbUAwAAAAAAAAAsI6Ee\nGq3X7SRJNgbDBY8EAAAAAAAAAODmEeqh0czUAwAAAAAAAAAsI6EeGk2oBwAAAAAAAABYRkI9NFp/\nZ/ktoR4AAAAAAAAAYIkI9dBoZuoBAAAAAAAAAJaRUA+N1tsN9QwXPBIAAAAAAAAAgJtHqIdG66+Y\nqQcAAAAAAAAAWD5CPTRap91Kt90S6gEAAAAAAAAAlopQD43X67azYfktAAAAAAAAAGCJCPXQeP1u\n20w9AAAAAAAAAMBSEeqh8XrddtYHQj0AAAAAAAAAwPIQ6qHx+t12NszUAwAAAAAAAAAsEaEeGq+/\n0sn61nDRwwAAAAAAAAAAuGmEemi8npl6AAAAAAAAAIAlI9RD4/W77awL9QAAAAAAAAAAS0Soh8br\nCfUAAAAAAAAAAEtGqIfG63fb2RgI9QAAAAAAAAAAy0Ooh8Y70+1kfWu46GEAAAAAAAAAANw0Qj3M\nR1Ulv/uPks9+7IYv1eu2c3UwymhUncLAAAAAAAAAAACaT6iH+Sgl+dPfTH7/52/4Uv1uO0kswQUA\nAAAAAAAALA2hHubn4iPJV55ILn39hi7T63aSJOtbQj0AAAAAAAAAwHKYa6inlPKuUsqTpZSnSikf\nmtG+Wkr51XH7p0sprx/X/2Ap5Q9KKX883v/APMfJnFx8tN5//rdu6DL9lfFMPUI9AAAAAAAAAMCS\nmFuop5TSTvLhJI8keXOSHy2lvHmq2/uTvFhV1YNJfibJT43rn0vy16qqemuS9yX55XmNkzm6583J\nba9Nnnz8hi6zs/zWla3haYwKAAAAAAAAAKDx5jlTz9uSPFVV1RerqtpK8rEk757q8+4kvzQu/3qS\nd5RSSlVVf1hV1VfH9Z9L0iulrM5xrMxDKfVsPV/8nWTrynVfpjcO9Vh+CwAAAAAAAABYFvMM9bwm\nydMTx8+M62b2qapqmOSlJHdO9fnhJP+2qqrN6RuUUj5QSnmilPLEs88+e2oD5xRdfDQZXq2DPdep\n3+0ksfwWAAAAAAAAALA85hnquWGllG9JvSTXfz6rvaqqj1RV9XBVVQ/ffffdN3dwnMzrvjNZvXBD\nS3D1d2fqsfwWAAAAAAAAALAc5hnq+UqS+yeO7xvXzexTSukkuZDk+fHxfUn+eZIfq6rqC3McJ/PU\nXkke+sHkyd9KRtc3087O8lsbAzP1AAAAAAAAAADLYZ6hns8keaiU8kAppZvkvUkem+rzWJL3jcvv\nSfLJqqqqUsptSX4zyYeqqvrXcxwjN8PFR5L155Kv/MF1nb43U49QDwAAAAAAAACwHOYW6qmqapjk\ng0k+keT/TfJrVVV9rpTyk6WU/3jc7aNJ7iylPJXkv0ryoXH9B5M8mOTHSyn/z3i7Z15jZc4efGfS\n6lz3Elz9lU4SoR4AAAAAAAAAYHl05nnxqqoeT/L4VN2PT5SvJvmRGef9wyT/cJ5j4ybq3Za87ruS\nP308eedPXPvpO8tvbQ1Pd1wAAAAAAAAAAA01z+W3YM/FR5Pnnkye/8I1n9rttNJpFTP1AAAAAAAA\nAABLQ6iHm+PiI/X+yY9f1+m9bluoBwAAAAAAAABYGkI93By3vy551VuuO9TT77azIdQDAAAAAAAA\nACwJoR5unouPJP/uU8n6C9d86pluJ+sDoR4AAAAAAAAAYDkI9XDzXHwkqbaTP/s/r/nUXredja3h\nHAYFAAAAAAAAANA8Qj3cPK/+tuTsvcmTj1/zqf1uO+uW3wIAAAAAAAAAloRQDzdPq5VcfFfy1L9I\nhpvXdGqv2xHqAQAAAAAAAACWhlAPN9fFR5OtS8mXf/eaTuuvtLMh1AMAAAAAAAAALAmhHm6uB743\nWeknT378mk7rd9u5sjWc06AAAAAAAAAAAJpFqIeba6WXfPMP1KGeqjrxab2umXoAAAAAAAAAgOUh\n1MPNd/HR5OWvJF/7oxOf0u+2sy7UAwAAAAAAAAAsCaEebr43/tUk5ZqW4Op1O9kYbGc0OvnsPgAA\nAAAAAAAAtyqhHm6+M3cl9789efLxE5/S77aTJFeHZusBAAAAAAAAAF75hHpYjIuPJH/x2eSlr5yo\n+06oxxJcAAAAAAAAAMAyEOphMS4+Wu9POFtPb6UO9WwI9QAAAAAAAAAAS0Coh8W466Hkjm9Onvz4\nibr3u50kZuoBAAAAAAAAAJaDUA+LUUrypkeTL/2r5OrLx3bfW35rOO+RAQAAAAAAAAAsnFAPi3Px\n0WQ0SL7wyWO79rqW3wIAAAAAAAAAlodQD4tz39uS3h0nWoLrjOW3AAAAAAAAAIAlItTD4rQ7yRv/\navJnn0i2j15Wa2emnvWBUA8AAAAAAAAA8Mon1MNiXXwk2XgxefrTR3br7y6/dXT4BwAAAAAAAADg\nlUCoh8X65h9I2t3kyceP7LYT6rH8FgAAAAAAAACwDIR6WKzVc8kD31uHeqrq0G49oR4AAAAAAAAA\nYIkI9bB4Fx9JXvhi8tznD+3SbbfSbpWsW34LAAAAAAAAAFgCQj0s3hsfqfdHLMFVSkl/pW2mHgAA\nAAAAAABgKQj1sHgXXpO8+i8lT378yG69bjsbQj0AAAAAAAAAwBIQ6qEZLj6aPP37yeVnD+3S75qp\nBwAAAAAAAABYDkI9NMPFR5JUyZ994tAuvW5HqAcAAAAAAAAAWApCPTTDvW9Nzt935BJc/W47G4Ph\nTRwUAAAAAAAAAMBiCPXQDKXUs/V84ZPJYGNmF8tvAQAAAAAAAADLorPoAcCui48kn/n55Iv/Mrn4\nrgPNvZV2nr20uYCBAQAAAAAAAMAcbQ+TjReS4dVke5Bsb423Gyzf/kDyHX9n0Y+O6yTUQ3O8/nuS\n7rnkycdnhnrM1AMAAAAAAADALWV7mFx5Nrn0F8nlr9f7S1/b2y6P91eeTarR6dyz1Una3aS9krzu\nu4V6bmFCPTRHp5s89M7k87+VjEZJa//qcL1uR6gHAAAAAAAAgPmqqjpgU1VJqon9VN3mpb2QzuWv\nXUNYpyRn7k7O3Vtvr/7W5Oy9ydl7kpXeXiCn3b32cmvlwP9r59Yl1EOzXHw0+dw/T776h8l9376v\n6Uy3nY2t4YIGBgAAAAAAAPAKV1X18k9XX042Xx7vX6rDK/vqJtquvpxsXalDJZ218bZa71emjo9t\n7+2VUyWD9WSwUe+3JsqDjWRwZbyfbF+fqLsy1X9jL5RTjbI/rDNRd0MOCeucuzc59+rk3Kvq/Zl7\nkra4BsfzLqFZHnxnUtr1ElxToZ5+t531wXaqqkopZUEDBAAAAAAAALhOVZVsb9XBmeF4v72VDDcn\nyjPaRsNxIGW7XvVkt7x9gvrtcWhlp7ydDK6OgzkvHQzqjAbHP47uuWTtfLJ6vt6vnU+2B3W4Z/35\n8WO4Wo99MC5vb87hCS1J90w9u81KL1nZKffrcM1OeaVfB4Varfqc0kpKGZcn9qV1sG63bUZd96yw\nDnPl3USz9O9IXvedyZMfT97xP+xr6nU79Qxmw1HWVtoLGiAAAAAAAACQ7UEdCLn6UnL1G/V+4xsT\ndeOwyE64ZHfpokwdV0ccV7Pbk+ybUeVU6g7pc63HSR3AGW7ubdtT5ZuhtOrJFEorabUnyuP6ztpe\nKOfsq5I7H9of0lk9n6xdmDoe71fP1de8VqPROKS0sRdiGkyEf3aDQOPjZBzIGQdzuv39xyv9elYf\nE0LwCibUQ/NcfCT5xH+fvPjl5PbX71b3u/UPhvWtbaEeAAAAAAAArl9V1TOKbF1ONi8nW5fG+/Hx\n4Erdr9WpAxCt9l4wotWeqG/t71PGbTvBiVZnr74ajZcBml4iaNayQUf1G5eHm/WMIJPLFXVW68DD\nrKWOVqb6TZ63swTSaHt/SGdymw7s7DxHh2l1xuGPlakZUFpTs560DmmfPM7BGVSSqTDHadZNzs4y\n2a0c0X/iuLSnnuvVpL2adLp1Xbs7o2116nit7r9zXquzF9RpjQM6BwI7O+WSRgZdWq2kNX6/ASci\n1EPz7IR6nvx48h1/d7e6Nw71/OnXXs53fvNdixodAAAAAABwWkajOjyw/kKy8WL9P667Z+ulVLpn\n6mVUWq1Fj7IOgAw369klUvaHO3b/J/scxrk9rGe12N6qZ0U5UXlzvGzPxv6ZL46aDWNm++beNUbb\nSXul3lqT+87EcWfcp7tXPtBnZe8607OG7HsujwostGb0bdfLBR0I51yaHdjZGm/V6PRfsxtVWhPL\nB03NTnLm7uS2qRlKtgezX9fBRv11ddjrfbLB1DO17Gy925K7Hhwf3za1n+q3dqEeYxODJQC3EKEe\nmueONyR3vyl58vF9oZHv0igAAB5CSURBVJ6HX3d7zq128jd//tP5gTfdk7///Q/m2193+wIHCgAA\nAAAA7JoM6Kw/v7dtTB6/uL9+48XjgxUr/XHI5+z+wM9u3azy+LjVnpjpZHp/TN2+mVPWs29pncPs\nm62lvRf2OVA/EVhJpsI5EyGdUw2dlMNncOms1W39O6ZmFxn3Ka16OaHtQR2e2R5MHQ/31w8360DN\nrLadc0aj8VJK2+PlmcZLNJ3GY26Pw2GrZ5PuuXrfvyO57bX763b6rJ6f6H+2nl1mpV9fq9quxz0a\nTZTH4x2N6uOdx7BbnlU/Ggd2DltKqFeHedor8w/C7IbUpsJbw6tJyl4op3uuGaE6gCUm1EMzXXw0\n+df/pP5lvlcHd95w99n83od+IL/8qS/no7/3pfzw//p/5zvecEc++P0P5bsevDNF0hcAAAAAgFtJ\nVdVbxvtqtL+8G3YYBx12gwST+2pG3bj+QP/h4QGL40Ias9q21k8e0GmvJv07x9vtyb1vqcu9O/bq\n1y5MzLZyebw00pWp8vj46jeSl7+yv3176+TP/eRsKPuCFePZUHbK+/a9ermiVBOvy/ZE2GP6+T6k\nfvq1ScbL7YxnuWl3jygf1z6eBWfWckytzq0xa8rO+38y6LPvOZ31vI72lnrqnq1nfOJwpdTLH1kC\nCaDxSlWdIFV8C3j44YerJ554YtHD4LQ8/Znko+9MfvijyVvfc6B5fWuYf/bpf5ef/90v5usvb+Zb\n778tH/z+B/OON92TVusW+IUUAAAAAIDFGm7NCI5MHW9enhEqme43rhvtBHJGhwd1ptsbrxyxhFKn\nDrv0J0I5kwGd/u0T5TtvzjI8w61kMPG6bF6uQx8Hwjn9mzMbCgDADKWUP6iq6uET9RXqoZFGo+Qf\nvTF54HuT9/ziod02h9v59T94Jv/bv/xCnn5hI2+691z+3vc/mP/ora9OW7gHAAAAAODWMholmy/X\nM77sbFe/US9/NNyst+3NvfLOcjHTddsTbcOtcZ+tvePBej0jzEkdtfzTzjI9O0sqpeyFRUprXB7X\n7WsvU+2tpGR/3wNLNpWjl3GabCutGcs+dWaHc3aPOxP1K3tLQwEAcGqEenhl+I0PJn/yWPLfPHXs\nNInD7VEe++xX83O/84U89f9dzuvv7Ofvft8354e+7b50O9b6BAAAAAC4qbaHdRhnMpwzc/vGwQDP\nYcs3TWutjJcXWq2XduqszjheO6TPWrI6GdCZDuucHbef2QvsAADAKRDq4ZXhTx9PPvajyY/9RvKG\n7zvRKaNRlU987mv52d9+Kp/76sv5pgtr+cD3viHvfdtrs7bijy4AAAAA4BVoNBovFfVycvXlZPNS\nXT5wfGl8PNG2dTkZbWff8lDZ2e2Uq2srDzfr6x9l7ULSu/1k29qFOlgzHc4RtAEA4BYk1MMrw9Z6\n8tMPJH/5fcmjP31Np1ZVld/5/LP58CefyhN//mLuOtvN+7/7DflPvuO1Obe2MqcBAwAAAACcgq0r\nyaWvJZe/nlz6i+TS15PLX6v3688dDOpsXspuoOZQJVk9n6ydr5eL2il3z9ZLLiV7y0BNlneWkUrZ\nbTpYP1Vud5PeHTMCOrfthXQEcgAAWFJCPbxy/LP3Jl//XPJf/tHEH4bX5tNffD4/+9tP5Xf/7Lmc\nX+vkP/3O1+dvf9cDuf3M0Ut6AQAAAACcmqqqwzcHgjpfmwjwjMtblw6e3+4mZ+9Nztw5Ec45fzCo\ns3pudlv37HV/xgoAAJyeawn1dOY9GLghb3o0+fzH62DPvW+5rku8/Q135u1vuDOfffob+fBvP5V/\n+smn8gu/96X8rbe/Nv/Z97wh95xfO+VBAwAAAACvKKNRMlivZ9DZujzerkwczyhvXq7DOZef3Qvv\nDNYPXrvTS869qg7svOpbkgffkZx9VXLu3no7O973bhfKAQCAJSPUQ7O98V1JSvLkx6871LPjW++/\nLR/5sYfz5Ncu5ed+56l89Pe+lF/61J/n7Q/ckftu7+f+O3q5//Z+7ru9l/vv6OfOM90UfyQDAAAA\nwCvLcKsO2bz8F+MZc76WXPpqvb/y3OyAzuDKya9f2snq2XpmnO6Z5Mw9yTd9214459y9+0M7q+eF\ndQAAgJksv0Xz/cI7k9F28oHfPtXLfvm5K/no730pn33mG3nmxY28cGVrX3tvpb0b8Lnv9jrwc/8d\nvToAdHs/F/orpzoeAAAAAOAGjEbJ+vN7AZ2Xv7o/sLMT4ll/7uC57W4dsOnftT+Qc2B/SHnynHZX\nSAcAADiU5bd4Zbn4SPIvfrL+o/v8q0/tsq+/60z+p7++N/vP5c1hnnlxPc+8sJGnX1zPMy9u5OkX\n1vP0ixv5zJdeyKXN4b7zz611xgGf3u5MP/eNZ/q582w3d/S76bRbpzZeAAAAAFgKw616lpyrLyWb\nl6a2l/fKV19KLn99YradryWjwdTFSnL2njqwc+E1yX0PJ+deXX/OeG5i698hiAMAADSOUA/Nd/HR\nOtTz+d9KHv7bc7vN2dVO3nTv+bzp3vMz219aH4zDPut5+oWNev/iRr78/JX87p89l43B9oFzbuuv\n5I4z3dx1ZjV3nOnmjrPd3HWmOy6v1uWz42MhIAAAAABudVVVB242Xjy47QvpvHxI+VIyvHr8fUo7\nWTtfL211/tXJ6797L6AzGdg5e0/SNuM2AABwaxLqofnuflNy++uTJz8+11DPcS70V3KhfyFvec2F\nA21VVeX5K1t55sWNfOXFjbxwZTPPXd7KC1fq7bnLm/nCs5fzmS9v5YX1rRy26t1hIaAL/W7OrXVy\nfm0l53vj/dpKzq11cm6tIwwEAAAAwOkabdchnAPhnG/MDuxMbtXBf/y2q9VJVs8nq+fq/dr5Onxz\n1xvHdef22nb7TdaNyys9M+sAAACveEI9NF8p9Ww9n/losnm5Xp+6YUopuevsau46u5q/dP9tR/bd\nHlX5xvpO2Gcn+HN9IaAd/W57N+RzvreyGwA67Pj8WidnVjs50x3vV9tZ7bRP8RkBAAAAYKG2B8nV\nl5Or36hnwrn60oxtRv1O382Xj77+6oWkd1vSu73eX3jNuHzEtnYh6awJ4wAAAJyQUA+3houPJP/m\n55Iv/nby7/21RY/mhrRbJXeeXc2dZ1fz0KuO7789qnL56jAvXx3U28Ywl64O8vLV8X73eJBL434v\nXNnKl5+7sns82D4mFZRkpV3S73ZydhzymSzvhX86OdNt58zqTlsn/dV2zq520ltpp9dtp7fSTr/b\nztpKO6udVooPaQAAAIBlNNxKBleSwUaytV6Xd/aDjWR7qw7ebA+S0WCqPKzbd+pHw73+B8qD+nh4\ndX9IZ3DlmAGWOmSzdqGeLWfttuSOB+rj1fP1/qhwTttHywAAAPPmLy9uDa/9D+oPFp78+C0f6rlW\n7VYZL/11fWt/V1WVzeEoL2/UQaCd8M+VzYltazuXN4dZ3xzm8ub2uK5ue/bSZt22NcyVze1sbY9O\nfO9SUod9VuqQz07op7fSzlq3nd5KazcMtLay19brtrO60s5qu5Vup95W2jv7ktV9x610d/q1W1nZ\n2beLQBEAAABw0PagDtUMr+7th1eTwdVkuDG132lbHwdy1veXt64c0nalDtzcqNZK0u7WAZrjyp21\n5K5XTQR1bhuHdS7s33YCO92zScuS7gAAAE0211BPKeVdSf5JknaSX6iq6n+Zal9N8r8n+fYkzyf5\nG1VVfXnc9t8leX+S7ST/RVVVn5jnWGm49kry0F+pQz1/+H8kndV63ezOatLp1R9arKzV+51t57i1\n3MtKlVKyNg7V3HP+xq+3NRxNhH7qMNCVzWE2Btu5OtjOxtZ2Ngb1dnWivLE1ysZguNv+0sYgX39p\nf9/1wXa2R8fPKnRS3YkgULfTSqfVSqdd0m6VdFol7VZrvC+7+3ZrRnu7TPXbO69VStqtpNUqaZe6\nrpSd8qz6Oqi1U9+avEYpE1v92k3uW6WkzDrO+LhV75P97a1xuGnyuN7v9d29V3busb+uVZLsnJu6\nrd7X7Rlfb7p+J1c1Oc59fQSvAAAAXjmqajyDzNbE7DGbe+UD22DcvrU348yBWWqGE7PVzJjN5kDd\nePaao0I61fZ1PsCSdM8kK/2k209WztSfT3X7Se+OcV1/3KdXt++r64/7j9s7a0mrU3/uNSuk02pb\npgoAAGDJzS3UU0ppJ/lwkh9M8kySz5RSHquq6k8mur0/yYtVVT1YSnlvkp9K8jdKKW9O8t4k35Lk\nm5L8X6WUN1bVdf/FzSvBW344+eNfS37j713bea3OOPgzHQQaH7dX6j6tlfrDkt0PUzr7t/ZO+0Rb\nu3PIuSsTH8Ks7O1ntU2277S1u3vXbNiHN/XMOd3cfqY7l+sPtke7IZ+t7VG2hqMMtqtsDUcTx6Pd\n48H2KJsTdXtt1f7j4SjDUZXt0c6+mtqPMhyfs1O/vds+mtG/ynB7lFFVL5G2XVUZjaqMqiqnmEta\nGnXoZ6e8F/pJ9kJDZV/fsu+8nXDQOKe0/1q719nfb+9La7rPwesnBwNIO+Gn3THuG/P+cyZudWjb\nYdfKRP8DfY+5/+RFDt7n4OM6bCw5cM7EuKbvfYLHcfi1ju+Twx7rEWOb2XZEv+nHOzmmk4593/mH\n3GvW+UeN7bDxH7zCjOd9uveB9iOeqwPnzv65dNQ1jxrP/sdVDu138GU6+jHPOOW6xzjra2nWeQfe\nS4eMa9Z1Dut7XPjxWl7La7nvrGsd1fdgvxnnnvDex73nTnLOdKejhn0tj/+wc457r8283glem73r\nHfJ1d+Q5xxxfx+t71PvxsJajrnktz/FJ7nX4eSd7rLPfo9f/Xj78Ptf+4K71/TGPr/UTPrXX/N66\nnvf+rGse/3V47d8fr3VMR99x+jqHnXN9XxeHtR/7c+Gk39dP+Ayd9Gf+Ua/HSX/3mNX3sHHsP+f4\nnyvHtR/1O8uB56BKHSAZbadkO6Ua1eVqO6m2U0ajccBk3KcapYy2k9Gw3lfDlGpYt42G++tHw71r\nbQ/GdTvn1m0Z7Zy/UzfY7ZPtwe41U42PJ6+1PW6bOHf3eDekM0jZ3gvtlNHg6Cf0BlStWZ+l7Hwm\nM6O+ezbp35VqHJ4pK72kXX8WVHXWUlbW9oI1O+0ra/VnRjv73c+SJvo27HMaAAAAXtnmOVPP25I8\nVVXVF5OklPKxJO9OMhnqeXeSnxiXfz3Jz5b6k5F3J/lYVVWbSb5USnlqfL1PzXG8NN3FdyX/4EvJ\n5qWpaZGv1v+qa7hR7wcb+4/39Zs+72qyeXnvg6mJD6x2t51/4TXa3vcB1k2zG+5pTWyl3qdM1U+0\nlYm2A/1Kdj923FfeuWmZ+JBqst9RbVPlffup847ov1JKVpKcn/nx7Iy0TDUrQXPSfkla4+0U7dyp\nqpIqVcb/1fXjump3SNXu0KpxYfc4k+3723Zrqp2rZfc+u+0715s4oZo8d1/fpNp9zquJ9nJwPBOv\nzfTTWk3cZOYrMz3+6Z47z0n23o71OXvLvu3efeLxlYnnef94Jh7H+Mz6tdgpTzyWUsbXKBPP08R7\n9bAxTwynTPeYfn4OewGOuX6VcvBaR54/cd5R7dX0Yyv7+hybTzvita7rZw96p7bMOrM6UDh8RMcM\n8PBxHXxuJlsPtO17i5bdXvu7zL7e7Pf8yRz2betAv+ts299n8uv6ZDc+qlepDr6bZ30lzTz3kK+v\naxnDrNfj4Per8f3KXuOsMe77n3QzvlIOfycdHEs14w7H1Z38fzOfxOHP/cyvx1MewUm/Bg7/+myG\no56rg31P95qnfb0bdezPmWtsP6pvE0w/rzODMyfoM8vsn3ozvped8Hq3iiNDLw18tNfy3em0x3/8\ne+vg/Y47Z9YYZ9cdP57D6qbrD/sZemh92fvtfHJfdvd7Xyll4re8nbad602eM91nf/lg3eQ4Zt27\nZJT2eGulmiiP96U57+XtqmSYdoZpZzvtDCb3VSuDdKba6rrtqrV73jBrGaadQTrZqjr1PlP73fqV\nDNLJIO1sVZPHdd+dfjt9BulkWLV3x7FTv3Pv0/296DCb4222mxUKrfsf2XhNTScNmZ441Lnb/9pD\nd4c1nvh5vEljPPy0I653fS/ZXELQJ733/uud/tfYyf9RwAn7zeH7wK3wPJ7Uie88hyGe9iVvhefx\nVsh4zuNr5sT3vgWen0W6FWawP/2v61O+4C1iGR/3Ir/3LFLTX+u3vOZC/ucfeuuih8F1mmeo5zVJ\nnp44fibJ2w/rU1XVsJTyUpI7x/X/Zurc10zfoJTygSQfSJLXvva1pzZwGqx/R70tWlXt/ou3vaDP\n9sGpno+cGnprf7+jppoebSfVONRQjaa26uBxputm9Jt8LHVh4ri6trYD5cm6ifNGo2P6T99n1ic1\nsz9Svu5+c1Cm9td2cjnixKM+5bmGx3toEOqwBMp0v1NWVVPjnyjv1rcPqZ9VN3HdunBEebRX3j3n\nkPKJfyM77ffZSZMdB/9X6dGXOe71vhmvdXLg+Tq2/aT3us7GIwMthyVLbjRWMycnTQXNbYyn/T18\nyqGPb0b9od/Pyoz7HVG3r77shbuO+v4zawwz2w8UDoz7QFDuupzsZ8nJ/pfuNTil9+OJLzNn+8MW\nxwzqRO/n1OHSE7nxfrNHfI1PbjV9MOtr76jrz+PnzEm73ci9j/u5NSuMc9xrdi3ft2b0O+VPjU7/\n6+yQ3+tPcNahj+1G3q6H9jj93/Wqw7pe73M8+X26yrG/N1UH6qbeL4d+7zlZ3YFzq/1/yxwWUq0O\n/FytjuyflPG9pq5RJiI947HshfLL1PjGx9X+a+2Uq/E/htkXGyrJKPvbU1IH43fOG1+3Kq1UpZ0q\n4/34eFTqmE9VWhkdaN8rjybqR6WdUemMz+/snVs647b2RFt7qn/dtj3uu9de90lpHRp0TnJkuHt/\nWL2a2dYZb2tHnHvcNY4za4yzr390n5Pc/+CfUDPuffC0Ez3ew/oddd2TnXeSB3LYuBc3xht6/U9x\nHMedd733OurMI8d4neM/6TX2X++E/a7hZ9iJf+c65TFei9P4Ry37r3f9Y7lRJx/j6Q9yLr8+Lshp\nf20t0mLfj6+c53EeboWHPZ+/C5fPMr7Hl/AhJ5nPz9fTdn5tZdFD4AbMM9Qzd1VVfSTJR5Lk4Ycf\nbv5XC68cpYyXyZr1cRUAsAxu9j++aPg/9gAAAAAAAE7ZKS86s89Xktw/cXzfuG5mn1JKJ8mFJM+f\n8FwAAAAAAAAAAHhFmmeo5zNJHiqlPFBK6SZ5b5LHpvo8luR94/J7knyyqueneizJe0spq6WUB5I8\nlOT35zhWAAAAAAAAAABojLktv1VV1bCU8sEkn0jSTvKLVVV9rpTyk0meqKrqsSQfTfLLpZSnkryQ\nOviTcb9fS/InSYZJ/n5VVdvzGisAAAAAAAAAADRJqSfGufU9/PDD1RNPPLHoYQAAAAAAAAAAwEyl\nlD+oqurhk/Sd5/JbAAAAAAAAAADAdRDqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACA\nhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAA\nAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAA\nAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHq\nAQAAAAAAAACAhilVVS16DKeilPJskj9f9Dg44K4kzy16EAC8Yvk5A8A8+TkD8P+3d2+xtl5VHcD/\nf8+hSltDW0Wip0iLNGol0gIh1SJpwAdAIn2oFgVsGg0vJALBcDEYAokPJEYugSCkoCU2CNSiTR+M\nWkmVBwrlIpcWI6naHlI4JEC5RaB08LA+kk3hJGSfvc5ae5/fL9nZa85vri/jexoZX8aak3WSZwBY\nJ3kGgHWRY07cI2bmoT/KwgPT1MN2anvbzDx+03EAcDDJMwCskzwDwDrJMwCskzwDwLrIMSeX47cA\nAAAAAAAAAGDLaOoBAAAAAAAAAIAto6mHdXvrpgMA4ECTZwBYJ3kGgHWSZwBYJ3kGgHWRY06izsym\nYwAAAAAAAAAAAHawUw8AAAAAAAAAAGwZTT0AAAAAAAAAALBlNPWwFm2f2va/2n6m7cs2HQ8A+1vb\nh7d9X9vb236q7QuW+XPa/kvb/17+n73pWAHYv9oeavvRtjct4/Pb3rrUNe9qe9qmYwRgf2p7Vtvr\n23667R1tf009A8Beafui5Z3ZJ9u+s+1PqGcA2K22b297rO0nd8z90PqlK29Y8s3H2z52c5EfTJp6\n2HNtDyV5U5KnJbkwye+1vXCzUQGwz92X5MUzc2GSS5I8f8ktL0ty88xckOTmZQwAu/WCJHfsGL8m\nyWtn5lFJvpTkDzcSFQAHweuT/NPM/FKSx2SVb9QzAJywtkeS/HGSx8/Mo5McSvKsqGcA2L2/SfLU\nB8wdr355WpILlr/nJXnzSYrxlKGph3V4QpLPzMydM/OtJH+X5JkbjgmAfWxm7pmZjyyfv5rVC/Aj\nWeWXa5dl1ya5fDMRArDftT03yW8luWYZN8mTk1y/LJFnANiVtg9J8qQkb0uSmfnWzHw56hkA9s7h\nJA9uezjJ6UnuiXoGgF2amX9P8sUHTB+vfnlmknfMygeSnNX2Z09OpKcGTT2sw5Ekd+8YH13mAOCE\ntT0vycVJbk3ysJm5Z7n0uSQP21BYAOx/r0vykiT3L+OfSvLlmblvGatrANit85N8IclfL8c8XtP2\njKhnANgDM/PZJH+R5K6smnnuTfLhqGcA2FvHq1/0BqyZph4AYN9oe2aSv0/ywpn5ys5rMzNJZiOB\nAbCvtX1GkmMz8+FNxwLAgXQ4yWOTvHlmLk7y9TzgqC31DAC71fbsrHZJOD/JzyU5Iz94ZAoA7Bn1\ny8mlqYd1+GySh+8Yn7vMAcCutX1QVg09183MDcv057+3jePy/9im4gNgX7s0yW+3/d+sjg9+cpLX\nZ7Vd8OFljboGgN06muTozNy6jK/PqslHPQPAXvjNJP8zM1+YmW8nuSGrGkc9A8BeOl79ojdgzTT1\nsA4fSnJB2/PbnpbkWUlu3HBMAOxjbZvkbUnumJm/3HHpxiRXLZ+vSvKPJzs2APa/mXn5zJw7M+dl\nVb/828w8O8n7klyxLJNnANiVmflckrvb/uIy9ZQkt0c9A8DeuCvJJW1PX96hfS/PqGcA2EvHq19u\nTPIHXbkkyb07juliD3S1MxLsrbZPT/K6JIeSvH1m/nzDIQGwj7V9YpL/SPKJJPcv03+a5NYk707y\n80n+L8nvzswXNxIkAAdC28uS/MnMPKPtI7PaueecJB9N8pyZ+eYm4wNgf2p7UZJrkpyW5M4kV2f1\ng0v1DAAnrO2rklyZ5L6sapc/SnIk6hkAdqHtO5NcluSnk3w+ySuT/EN+SP2yNJS+MaujH7+R5OqZ\nuW0TcR9UmnoAAAAAAAAAAGDLOH4LAAAAAAAAAAC2jKYeAAAAAAAAAADYMpp6AAAAAAAAAABgy2jq\nAQAAAAAAAACALaOpBwAAAAAAAAAAtoymHgAAAAB2re1lbW/adBwAAAAAB42mHgAAAAAAAAAA2DKa\negAAAABOAW2f0/aDbT/W9i1tD7X9WtvXtv1U25vbPnRZe1HbD7T9eNv3tj17mX9U239t+59tP9L2\nF5bbn9n2+rafbntd227sQQEAAAAOCE09AAAAAAdc219OcmWSS2fmoiTfSfLsJGckuW1mfiXJLUle\nuXzlHUleOjO/muQTO+avS/KmmXlMkl9Pcs8yf3GSFya5MMkjk1y69ocCAAAAOOAObzoAAAAAANbu\nKUkel+RDyyY6D05yLMn9Sd61rPnbJDe0fUiSs2bmlmX+2iTvafuTSY7MzHuTZGb+P0mW+31wZo4u\n448lOS/J+9f/WAAAAAAHl6YeAAAAgIOvSa6dmZd/32T7Zw9YN7u8/zd3fP5OvHMCAAAAOGGO3wIA\nAAA4+G5OckXbn0mStue0fURW74auWNb8fpL3z8y9Sb7U9jeW+ecmuWVmvprkaNvLl3v8eNvTT+pT\nAAAAAJxC/GoKAAAA4ICbmdvbviLJP7f9sSTfTvL8JF9P8oTl2rEkVy5fuSrJXy1NO3cmuXqZf26S\nt7R99XKP3zmJjwEAAABwSunMbndVBgAAAGA/a/u1mTlz03EAAAAA8IMcvwUAAAAAAAAAAFvGTj0A\nAAAAAAAAALBl7NQDAAAAAAAAAABbRlMPAAAAAAAAAABsGU09AAAAAAAAAACwZTT1AAAAAAAAAADA\nltHUAwAAAAAAAAAAW+a7BZle4q9yLYgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "print(\"epoch\", epoch)\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left')\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0022660818189899888" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0009000000427477062\n", + "Epoch 00002: val_mean_squared_error did not improve\n", + "Epoch 00003: val_mean_squared_error did not improve\n", + "lr changed to 0.0008100000384729356\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "lr changed to 0.0007290000503417104\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error did not improve\n", + "lr changed to 0.0006561000715009868\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "lr changed to 0.0005904900433961303\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0005314410547725857\n", + "Epoch 00012: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "lr changed to 0.00047829695977270604\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0004304672533180565\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "lr changed to 0.00038742052274756136\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0003486784757114947\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "lr changed to 0.00031381062290165574\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0002824295632308349\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "lr changed to 0.00025418660952709616\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "lr changed to 0.00022876793809700757\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "lr changed to 0.00020589114428730683\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "lr changed to 0.00018530203378759326\n", + "Epoch 00032: val_mean_squared_error did not improve\n" + ] + } + ], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler)\n", + "\n", + "callbacks_list = [checkpoint, lr_decay]\n", + "history = model.fit(trainX, trainY, epochs=int(epoch/3), batch_size=10000, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQIAAAJcCAYAAACo4EsPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmQn1d9JvrndKul1tKWZO3dMpZA\ntvHewgpxMAEcIN7A6gwZQhJSSW7uhUwlN7n3Tpg4e6DmVjF17w2ZLCQzmZDKDJkkHigkgw3YDDaE\nxYBsS95tyRvaJcuyLMna+9w/9LOQhZaW1a23l8+nStXd73t+p59jlf2H66nzLbXWAAAAAAAAAAAA\nI1tb0wEAAAAAAAAAAIAzpwgEAAAAAAAAAACjgCIQAAAAAAAAAACMAopAAAAAAAAAAAAwCigCAQAA\nAAAAAADAKKAIBAAAAAAAAAAAo4AiEAAAAAAjRinl2VLKu5rOAQAAADAcKQIBAAAAAAAAAMAooAgE\nAAAAQCNKKeOGY4bTzTUczgEAAACQKAIBAAAADJnWGKuPlFIeLKXsLqX8bSllTinli6WUnaWUr5RS\nprfWXl1K+VYp5cVSyqpSyjuO2ueXSymPtT7zdCnlw0e9e0cpZV0p5d+WUraUUjaWUn55ANluLKU8\n2tpzfSnlt45695HWPhtKKf9LKaWWUha13t1TSvlfj1r7S6WUbxz1838spawtpbxUSrmvlPLjR737\n41LKZ0opny6lvJTkl0opbaWUW0opT5VStpVSbi2lnHvUZ36hlPJc693vDfCf+wn3LKUsaJ3nV0op\n30/y1eM9a629uZTySOvv5J5SysXH/N3+dinlwSS7lYEAAACA4UARCAAAAGBovS/Ju5NcmOS9Sb6Y\n5HeTzMrh/zfzG6WUniS3J/n3Sc5N8ltJPltKmdXaY0uS9yQ5J8kvJ/lEKeVNR/2OuUmmJulJ8itJ\n/vKVgtFJ/G2SD9dau5Jclh+UX65v/f53J7kgybtO87zfS9LbOsd/T/I/SimdR71fmuQzSaYl+Yck\n/3uSviRvT9KdZHuSv2xluSTJXyX5hda7GUnmDyDDCfc8ytuTXJzkuuM9K6VcmOQfk/wfOfx3dUeS\nz5dSxh+1/meT3JRkWq314AByAQAAAAwpRSAAAACAofXntdbNtdb1Sf4lyXdqrQ/UWvcm+VySxUk+\nmOSOWusdtdb+WutdSVYkuTFJaq2311qfqod9LcmdSX78qN9xIMnHaq0Haq13JNmV5KJT5DqQ5JJS\nyjm11u211vtbz9+f5O9qrQ/XWncn+ePTOWyt9dO11m211oO11v8vyYRjsny71rqsdc49SX41ye/V\nWtfVWve1ft9Pt27Y+ekkX6i1fr317g+S9A8gxsn2fMUf11p3tzIc79nPJLm91npXrfVAkv83ycQk\nbzlq/Z/VWtceswcAAABAYxSBAAAAAIbW5qO+33Ocn6ckOT/Jv26NoHqxlPJikrcmmZckpZQbSin3\nllJeaL27McnMo/bZdsyNNC+39j2Z97X2ea6U8rVSyo+1nncnWXvUuucGdMqWUspvtcaY7WhlnXpM\n1rXHfOT8JJ876tyPJTmUZM6xWVrFpG0DiHGyPU+U49hn3Tnq7LXW/tb7nlPsAQAAANAYRSAAAACA\n5q1N8t9qrdOO+jO51vrxUsqEJJ/N4Rtp5tRap+XwmKpyJr+w1vq9WuvSJLOTLEtya+vVxiTnHbX0\ndcd8dHeSSUf9PPeVb0opP57k3+XwrULTW1l3HJO1HrPf2iQ3HHP2ztYNSq/KUkqZlMPjwU7lZHue\nKMexzzbkcKHold9dWllOtQcAAABAYxSBAAAAAJr36STvLaVcV0ppL6V0llLeUUqZn2R8Do/X2prk\nYCnlhiQ/eSa/rJQyvpTy86WUqa2xVy/lByO3bk3yS6WUS1rFmz865uMrk/yrUsqkUsqiJL9y1Luu\nJAdbWceVUv4wyTmniPPXSf7vUsr5rWyzSilLW+8+k+Q9pZS3llLGJ/lYBvb/s06250DdmuSmUso7\nSykdSf5tkn1JvnWa+wAAAACcNYpAAAAAAA2rta5NsjTJ7+ZwiWZtko8kaau17kzyGzlcTNme5OeS\n3DYIv/YXkjxbSnkpya8m+flWli8m+dMkX02ypvX1aJ9Isj+HR5z9fZJ/OOrdl5N8KcmTOTxWa29O\nPT7rP+bwee4spexMcm+SH21leSTJryX57zl8O9D2JOsGcLYT7jlQtdYnknwwyZ8neT7Je5O8t9a6\n/3T2AQAAADibSq1uMAYAAADgxEopNckFtdY1TWcBAAAA4MTcCAQAAAAAAAAAAKOAIhAAAADAKFVK\neaSUsus4f36+6WxnqpTyxROc7XebzgYAAADQFKPBAAAAAAAAAABgFHAjEAAAAAAAAAAAjALjmg7Q\ntJkzZ9YFCxY0HQMAAAAAAAAAAI7rvvvue77WOutU68Z8EWjBggVZsWJF0zEAAAAAAAAAAOC4SinP\nDWSd0WAAAAAAAAAAADAKKAIBAAAAAAAAAMAooAgEAAAAAAAAAACjwLimAwxHBw4cyLp167J3796m\nowypzs7OzJ8/Px0dHU1HAQAAAAAAAADgDCkCHce6devS1dWVBQsWpJTSdJwhUWvNtm3bsm7duixc\nuLDpOAAAAAAAAAAAnCGjwY5j7969mTFjxqgtASVJKSUzZswY9bceAQAAAAAAAACMFYpAJzCaS0Cv\nGAtnBAAAAAAAAAAYKxSBAAAAAAAAAABgFFAEGoZefPHFfPKTnzztz91444158cUXhyARAAAAAAAA\nAADDnSLQMHSiItDBgwdP+rk77rgj06ZNG6pYAAAAAAAAAAAMY+OaDsAPu+WWW/LUU0+lt7c3HR0d\n6ezszPTp0/P444/nySefTF9fX9auXZu9e/fmN3/zN/OhD30oSbJgwYKsWLEiu3btyg033JC3vvWt\n+da3vpWenp4sX748EydObPhkAAAAAAAAAAAMFUWgU/jo5x/JoxteGtQ9L+k+J3/03ktP+P7jH/94\nHn744axcuTL33HNPbrrppjz88MNZuHBhkuRTn/pUzj333OzZsyc/8iM/kve9732ZMWPGq/ZYvXp1\n/vEf/zF/8zd/k/e///357Gc/mw9+8IODeg4AAAAAAAAAAIYPRaAR4M1vfvORElCS/Nmf/Vk+97nP\nJUnWrl2b1atX/1ARaOHChent7U2SXHXVVXn22WfPWl4AAAAAAAAAAM4+RaBTONnNPWfL5MmTj3x/\nzz335Ctf+Uq+/e1vZ9KkSXnHO96RvXv3/tBnJkyYcOT79vb27Nmz56xkBQAAAAAAAACgGW1NB+CH\ndXV1ZefOncd9t2PHjkyfPj2TJk3K448/nnvvvfcspwMAAAAAAAAAYDhyI9AwNGPGjFxzzTW57LLL\nMnHixMyZM+fIu+uvvz5//dd/nYsvvjgXXXRRrr766gaTAgAAAAAAAAAwXJRaa9MZGrVkyZK6YsWK\nVz177LHHcvHFFzeU6OwaS2cFAAAAAAAAABiJSin31VqXnGqd0WAAAAAAAAAAADAKKAIBAAAAAAAA\nAMAooAgEAAAAAAAAAACjgCIQAAAAAAAAAACMAopADDu11qYjAAAAAAAAAACMOIpADCt/8dXVWfqX\n31QGAgAAAAAAAAA4TYpAw9CLL76YT37yk6/ps3/6p3+al19+eZATnT3TJo3Pg+t25JENLzUdBQAA\nAAAAAABgRFEEGobGchHopsvnZVxbyfKV65uOAgAAAAAAAAAwooxrOgA/7JZbbslTTz2V3t7evPvd\n787s2bNz6623Zt++ffmpn/qpfPSjH83u3bvz/ve/P+vWrcuhQ4fyB3/wB9m8eXM2bNiQa6+9NjNn\nzszdd9/d9FFO2/TJ4/OOi2bltlUbcssNF6e9rTQdCQAAAAAAAABgRFAEOpUv3pJsemhw95x7eXLD\nx0/4+uMf/3gefvjhrFy5MnfeeWc+85nP5Lvf/W5qrbn55pvz9a9/PVu3bk13d3duv/32JMmOHTsy\nderU/Mmf/EnuvvvuzJw5c3Azn0VLe3vylce25DtPb8tbFo3ccwAAAAAAAAAAnE1Ggw1zd955Z+68\n884sXrw4b3rTm/L4449n9erVufzyy3PXXXflt3/7t/Mv//IvmTp1atNRB827Lp6TyePbs8x4MAAA\nAAAAAACAAXMj0Kmc5Oaes6HWmt/5nd/Jhz/84R96d//99+eOO+7I7//+7+ed73xn/vAP/7CBhINv\n4vj2XHfZ3HzxoU352NLL0tnR3nQkAAAAAAAAAIBhz41Aw1BXV1d27tyZJLnuuuvyqU99Krt27UqS\nrF+/Plu2bMmGDRsyadKkfPCDH8xHPvKR3H///T/02ZGsr7cnO/cdzN2Pb2k6CgAAAAAAAADAiOBG\noGFoxowZueaaa3LZZZflhhtuyM/93M/lx37sx5IkU6ZMyac//emsWbMmH/nIR9LW1paOjo781V/9\nVZLkQx/6UK6//vp0d3fn7rvvbvIYZ+Qtb5iRmVMmZNnK9bnh8nlNxwEAAAAAAAAAGPZKrbXpDI1a\nsmRJXbFixauePfbYY7n44osbSnR2DeezfvTzj+Qf7v1+vvd778rUSR1NxwEAAAAAAAAAaEQp5b5a\n65JTrTMajGGrr7cn+w/154sPb2w6CgAAAAAAAADAsKcIxLB1xfypWThzcpatXN90FAAAAAAAAACA\nYU8R6ATGwsi04X7GUkqW9nbnO8+8kI079jQdBwAAAAAAAABgWFMEOo7Ozs5s27Zt2BdlzkStNdu2\nbUtnZ2fTUU6qr7cntSa3rdzQdBQAAAAAAAAAgGFtXNMBhqP58+dn3bp12bp1a9NRhlRnZ2fmz5/f\ndIyTWjBzcq48b1qWrdyQD7/9DU3HAQAAAAAAAAAYthSBjqOjoyMLFy5sOgYtfb3d+ejnH82Tm3fm\nwjldTccBAAAAAAAAABiWjAZj2HvPFd1pbytZ9sD6pqMAAAAAAAAAAAxbikAMe7O6JuSaRTOzfOWG\n9PfXpuMAAAAAAAAAAAxLikCMCH293Vn/4p7c9/3tTUcBAAAAAAAAABiWFIEYEX7y0rnp7GgzHgwA\nAAAAAAAA4AQUgRgRpkwYl3dfMje3P7Qx+w/2Nx0HAAAAAAAAAGDYUQRixOjr7c6LLx/I15/c2nQU\nAAAAAAAAAIBhRxGIEeNtF87K9EkdWbbSeDAAAAAAAAAAgGMpAjFidLS35aYr5uUrj23Orn0Hm44D\nAAAAAAAAADCsKAIxovT19mTvgf58+eFNTUcBAAAAAAAAABhWFIEYUa46f3rmT59oPBgAAAAAAAAA\nwDEUgRhRSilZ2tudb655Plt27m06DgAAAAAAAADAsKEIxIjT19uT/pp8YdXGpqMAAAAAAAAAAAwb\nikCMOBfM6col887JcuPBAAAAAAAAAACOUARiROpb3J1V63bkmed3Nx0FAAAAAAAAAGBYUARiRLr5\nyp6Ukix7wK1AAAAAAAAAAACJIhAj1Nypnbl64YwsX7k+tdam4wAAAAAAAAAANE4RiBGrb3F3nt32\nclat29F0FAAAAAAAAACAxikCMWJdf9m8jG9vMx4MAAAAAAAAACBnoQhUSrm+lPJEKWVNKeWW47yf\nUEr559b775RSFhz17ndaz58opVx3Gnv+WSll11CdieFh6sSOvPPi2fnCgxty8FB/03EAAAAAAAAA\nABo1pEWgUkp7kr9MckOSS5L8bCnlkmOW/UqS7bXWRUk+keQ/tD57SZIPJLk0yfVJPllKaT/VnqWU\nJUmmD+W5GD6W9vbk+V37882ntjUdBQAAAAAAAACgUUN9I9Cbk6yptT5da92f5J+SLD1mzdIkf9/6\n/jNJ3llKKa3n/1Rr3VdrfSbJmtZ+J9yzVRL6f5L8uyE+F8PEtW+clXM6x2W58WAAAAAAAAAAwBg3\n1EWgniRrj/p5XevZcdfUWg8m2ZFkxkk+e7I9fz3JbbXWjScLVUr5UCllRSllxdatW0/rQAwvE8a1\n58bL5+XLj2zKnv2Hmo4DAAAAAAAAANCYoS4CnTWllO4k/zrJn59qba31P9dal9Ral8yaNWvowzGk\nlvb2ZPf+Q7nrsc1NRwEAAAAAAAAAaMxQF4HWJznvqJ/nt54dd00pZVySqUm2neSzJ3q+OMmiJGtK\nKc8mmVRKWTNYB2H4+tGF52be1E7jwQAAAAAAAACAMW2oi0DfS3JBKWVhKWV8kg8kue2YNbcl+cXW\n9z+d5Ku11tp6/oFSyoRSysIkFyT57on2rLXeXmudW2tdUGtdkOTlWuuiIT4fw0BbW8nNV3bna09u\nzQu79zcdBwAAAAAAAACgEUNaBKq1Hkzy60m+nOSxJLfWWh8ppXyslHJza9nfJpnRur3n/0pyS+uz\njyS5NcmjSb6U5NdqrYdOtOdQnoPhb2lvTw7219z+0MamowAAAAAAAAAANKIcvnxn7FqyZEldsWJF\n0zE4Q7XWXPenX885nR35zL95S9NxAAAAAAAAAAAGTSnlvlrrklOtG+rRYHBWlFKytLcnK57bnrUv\nvNx0HAAAAAAAAACAs04RiFFjaW93kuS2VRsaTgIAAAAAAAAAcPYpAjFqzJ8+KT+yYHqWPbA+Y33k\nHQAAAAAAAAAw9igCMaos7e3J6i278ujGl5qOAgAAAAAAAABwVikCMarcdPm8jGsrWb7SeDAAAAAA\nAAAAYGxRBGJUmT55fN5x0azctnJDDvUbDwYAAAAAAAAAjB2KQIw6S3t7sumlvfnOM9uajgIAAAAA\nAAAAcNYoAjHqvOviOZk8vj3LHzAeDAAAAAAAAAAYOxSBGHUmjm/PdZfNzR0Pb8zeA4eajgMAAAAA\nAAAAcFYoAjEq9fX2ZOfeg7nniS1NRwEAAAAAAAAAOCsUgRiV3vKGGZk5ZUKWGQ8GAAAAAAAAAIwR\nikCMSuPa2/LeK+flq49vyY49B5qOAwAAAAAAAAAw5BSBGLX6enuy/1B/vvTwxqajAAAAAAAAAAAM\nOUUgRq0r5k/NwpmTjQcDAAAAAAAAAMYERSBGrVJKlvZ2595ntmXTjr1NxwEAAAAAAAAAGFKKQIxq\nfb09qTW5bdX6pqMAAAAAAAAAAAwpRSBGtQUzJ+fK86YZDwYAAAAAAAAAjHqKQIx6fb3deXTjS1m9\neWfTUQAAAAAAAAAAhowiEKPee67oTntbybKVxoMBAAAAAAAAAKOXIhCj3qyuCblm0cwsX7khtdam\n4wAAAAAAAAAADAlFIMaEvt7urNu+J/c9t73pKAAAAAAAAAAAQ0IRiDHhJy+dm86ONuPBAAAAAAAA\nAIBRSxGIMWHKhHF59yVzc/uDG3PgUH/TcQAAAAAAAAAABp0iEGNGX293tr98IF9/cmvTUQAAAAAA\nAAAABp0iEGPG2y6clemTOrJs5YamowAAAAAAAAAADDpFIMaMjva23HTFvNz16Kbs2new6TgAAAAA\nAAAAAINKEYgxpa+3J3sP9OfORzY1HQUAAAAAAAAAYFApAjGmXHX+9MyfPtF4MAAAAAAAAABg1FEE\nYkwppWRpb3e+sXprtu7c13QcAAAAAAAAAIBBowjEmNPX25P+mnzhQbcCAQAAAAAAAACjhyIQY84F\nc7pyybxzjAcDAAAAAAAAAEYVRSDGpL7F3Vm19sU88/zupqMAAAAAAAAAAAwKRSDGpJuv7EkpyfKV\n65uOAgAAAAAAAAAwKBSBGJPmTu3M1QtnZNkD61NrbToOAAAAAAAAAMAZUwRizOpb3J1nt72cVet2\nNB0FAAAAAAAAAOCMKQIxZl1/2byMb2/LsgeMBwMAAAAAAAAARj5FIMasqRM78hNvnJ0vPLghBw/1\nNx0HAAAAAAAAAOCMKAIxpvUt7s7zu/bnm09tazoKAAAAAAAAAMAZUQRiTHvHRbPT1Tkuy40HAwAA\nAAAAAABGOEUgxrTOjvbceNm8fPmRTdmz/1DTcQAAAAAAAAAAXjNFIMa8pYu7s3v/odz12OamowAA\nAAAAAAAAvGaKQIx5Vy+ckbnndBoPBgAAAAAAAACMaIpAjHltbSU393bna09uzQu79zcdBwAAAAAA\nAADgNVEEgiRLe7tzsL/m9oc2Nh0FAAAAAAAAAOA1UQSCJJfMOycXzJ5iPBgAAAAAAAAAMGIpAkGS\nUkr6FvdkxXPbs/aFl5uOAwAAAAAAAABw2hSBoOXmK7uTJLet2tBwEgAAAAAAAACA06cIBC3nnTsp\nS86fnmUPrE+ttek4AAAAAAAAAACnRREIjrJ0cU9Wb9mVRze+1HQUAAAAAAAAAIDToggER7np8nkZ\n11ayfKXxYAAAAAAAAADAyKIIBEc5d/L4vP3CWblt5YYc6jceDAAAAAAAAAAYORSB4BhLF/dk00t7\n851ntjUdBQAAAAAAAABgwBSB4BjvvnhOJo9vz/IHjAcDAAAAAAAAAEYORSA4xsTx7bnu0rm54+GN\n2XvgUNNxAAAAAAAAAAAGRBEIjmPp4p7s3Hsw9zyxpekoAAAAAAAAAAADoggEx3HNG2Zk5pTxWWY8\nGAAAAAAAAAAwQigCwXGMa2/Le67ozlcf35Idew40HQcAAAAAAAAA4JQUgeAE+hb3ZP+h/nzp4Y1N\nRwEAAAAAAAAAOCVFIDiBK+dPzYIZk4wHAwAAAAAAAABGBEUgOIFSSpb29uTeZ7Zl0469TccBAAAA\nAAAAADgpRSA4ib7FPak1uW3V+qajAAAAAAAAAACclCIQnMTCmZNz5fypxoMBAAAAAAAAAMOeIhCc\nwtLenjy68aWs3ryz6SgAAAAAAAAAACekCASn8J4r56WtJMtWGg8GAAAAAAAAAAxfikBwCrO7OnPN\noplZvnJDaq1NxwEAAAAAAAAAOC5FIBiAvt6erNu+J/c9t73pKAAAAAAAAAAAx6UIBANw3WVz09nR\nZjwYAAAAAAAAADBsKQLBAEyZMC7vunhObn9wYw4c6m86DgAAAAAAAADAD1EEggHq6+3J9pcP5OtP\nbm06CgAAAAAAAADAD1EEggF624WzMm1SR5at3NB0FAAAAAAAAACAH6IIBAM0flxbbrp8Xu56dFN2\n7TvYdBwAAAAAAAAAgFdRBILT0Le4J3sP9OfORzY1HQUAAAAAAAAA4FUUgeA0XPW66emZNtF4MAAA\nAAAAAABg2FEEgtPQ1laytLc731i9NVt37ms6DgAAAAAAAADAEYpAcJr6FvekvyZfeNCtQAAAAAAA\nAADA8KEIBKfpwjlduXjeOcaDAQAAAAAAAADDiiIQvAZ9vd1ZtfbFPPP87qajAAAAAAAAAAAkUQSC\n1+Tm3u6Ukixfub7pKAAAAAAAAAAASRSB4DWZN3VifnThuVm+ckNqrU3HAQAAAAAAAABQBILXqq+3\nJ888vzsPrtvRdBQAAAAAAAAAAEUgeK1uuHxexre3ZZnxYAAAAAAAAADAMKAIBK/R1IkdufaNs/L5\nVRtz8FB/03EAAAAAAAAAgDFOEQjOQF9vT57ftS/fempb01EAAAAAAAAAgDFOEQjOwLVvnJ2uznHG\ngwEAAAAAAAAAjVMEgjPQ2dGeGy6bmy8/vCl79h9qOg4AAAAAAAAAMIYpAsEZ6uvtye79h/KVxzY3\nHQUAAAAAAAAAGMMUgeAM/ejrZ2TOOROy3HgwAAAAAAAAAKBBikBwhtrbSm6+sjv3PLE123fvbzoO\nAAAAAAAAADBGKQLBIFja25OD/TW3P7Sx6SgAAAAAAAAAwBilCASD4NLuc7Jo9hTjwQAAAAAAAACA\nxigCwSAopaSvtzvfe3Z71m1/uek4AAAAAAAAAMAYpAgEg2Rpb0+SZPnKDQ0nAQAAAAAAAADGIkUg\nGCTnnTspV50/PctXrk+ttek4AAAAAAAAAMAYowgEg6ivtztPbt6VxzbubDoKAAAAAAAAADDGKALB\nILrpiu6MaytZvnJ901EAAAAAAAAAgDFGEQgG0bmTx+dtF87Kbas2pL/feDAAAAAAAAAA4OxRBIJB\ntrS3Oxt37M13nnmh6SgAAAAAAAAAwBiiCASD7N2XzMmk8e3GgwEAAAAAAAAAZ5UiEAyySePH5bpL\n5+aOhzZm38FDTccBAAAAAAAAAMYIRSAYAkt7u/PS3oO5+/GtTUcBAAAAAAAAAMYIRSAYAm9dNDMz\np4w3HgwAAAAAAAAAOGsUgWAIjGtvy3uu6M7/fHxLXtp7oOk4AAAAAAAAAMAYoAgEQ2Rpb3f2H+zP\nlx7a1HQUAAAAAAAAAGAMUASCIdJ73rScP2NSlhkPBgAAAAAAAACcBYpAMERKKVna25NvP70tm3bs\nbToOAAAAAAAAADDKKQLBEOrr7U6tyedXbWg6CgAAAAAAAAAwyikCwRB6/awpuWL+VOPBAAAAAAAA\nAIAhpwgEQ2xpb08e2fBS1mzZ2XQUAAAAAAAAAGAUG/IiUCnl+lLKE6WUNaWUW47zfkIp5Z9b779T\nSllw1LvfaT1/opRy3an2LKX8bSllVSnlwVLKZ0opU4b6fHAq771yXtpKsuwB48EAAAAAAAAAgKEz\npEWgUkp7kr9MckOSS5L8bCnlkmOW/UqS7bXWRUk+keQ/tD57SZIPJLk0yfVJPllKaT/Fnv9nrfXK\nWusVSb6f5NeH8nwwELO7OnPNoplZvmp9aq1NxwEAAAAAAAAARqmhvhHozUnW1FqfrrXuT/JPSZYe\ns2Zpkr9vff+ZJO8spZTW83+qte6rtT6TZE1rvxPuWWt9KUlan5+YROuCYWFpb0/WvrAn939/e9NR\nAAAAAAAAAIBRaqiLQD1J1h7187rWs+OuqbUeTLIjyYyTfPake5ZS/i7JpiRvTPLnxwtVSvlQKWVF\nKWXF1q1bT/9UcJquu3ROJoxrMx4MAAAAAAAAABgyQ10EOutqrb+cpDvJY0l+5gRr/nOtdUmtdcms\nWbPOaj7Gpq7Ojrzrkjm5/aGNOXCov+k4AAAAAAAAAMAoNNRFoPVJzjvq5/mtZ8ddU0oZl2Rqkm0n\n+ewp96y1HsrhkWHvO+MTwCDp6+3JC7v3519Wu4UKAAAAAAAAABh8Q10E+l6SC0opC0sp45N8IMlt\nx6y5Lckvtr7/6SRfrbXW1vMPlFImlFIWJrkgyXdPtGc5bFGSlFJKkpuTPD7E54MBe/uFszJtUofx\nYAAAAAAAAADAkBg3lJvXWg9JAGctAAAgAElEQVSWUn49yZeTtCf5VK31kVLKx5KsqLXeluRvk/y3\nUsqaJC/kcLEnrXW3Jnk0ycEkv9a66Scn2LMtyd+XUs5JUpKsSvJvhvJ8cDrGj2vLjZfPy+fuX5/d\n+w5m8oQh/dcPAAAAAAAAABhjyuHLd8auJUuW1BUrVjQdgzHiu8+8kPf/p2/nEz9zZX5q8fym4wAA\nAAAAAAAAI0Ap5b5a65JTrRvq0WDAUZacPz090yYaDwYAAAAAAAAADDpFIDiL2tpKbu7tzjfWPJ/n\nd+1rOg4AAAAAAAAAMIooAsFZ1tfbk0P9NV9Y5VYgAAAAAAAAAGDwKALBWXbR3K68cW5Xlq1UBAIA\nAAAAAAAABo8iEDSgb3FPVq59Mc8+v7vpKAAAAAAAAADAKKEIBA24+crulJIsdysQAAAAAAAAADBI\nFIGgAd3TJubNC87N8pXrU2ttOg4AAAAAAAAAMAooAkFD+hb35Onnd+eh9TuajgIAAAAAAAAAjAKK\nQNCQGy+bl/HtbVn2gPFgAAAAAAAAAMCZUwSChkyd1JF3XDQrn39wQw71Gw8GAAAAAAAAAJwZRSBo\nUN/inmzduS/feur5pqMAAAAAAAAAACOcIhA06CfeODtdE8YZDwYAAAAAAAAAnDFFIGhQZ0d7rr9s\nbr78yKbsPXCo6TgAAAAAAAAAwAimCAQN61vck137DuYrj21uOgoAAAAAAAAAMIIpAkHDrn79jMzu\nmmA8GAAAAAAAAABwRhSBoGHtbSU3X9mdrz25JS++vL/pOAAAAAAAAADACKUIBMNA3+KeHDhUc/tD\nG5uOAgAAAAAAAACMUIpAMAxc2n1OFs2ekuXGgwEAAAAAAAAAr5EiEAwDpZT09Xbnu8++kLse3ZyX\n9x9sOhIAAAAAAAAAMMKMazoAcNhPvWl+/ss3nsn/9l9XZFxbyZXnTcvVrz83V79+Rq46f3omjfev\nKwAAAAAAAABwYqXW2nSGRi1ZsqSuWLGi6RiQJNm972Due2577n16W+59elseXLcjB/urYhAAAAAA\nAAAAjGGllPtqrUtOuU4RSBGI4UsxCAAAAAAAAABQBBogRSBGkt37DmbFMcWgQ/01He0lV86flqtf\nPyNXv35G3nT+NMUgAAAAAAAAABglFIEGSBGIkUwxCAAAAAAAAABGP0WgAVIEYjTZdZxRYscrBl11\n/vRMHN/edFwAAAAAAAAAYAAUgQZIEYjRTDEIAAAAAAAAAEY+RaABUgRiLFEMAgAAAAAAAICRRxFo\ngBSBGMt27TuYFc++kHuffiH3Pr0tD61XDAIAAAAAAACA4UYRaIAUgeAHFIMAAAAAAAAAYPhRBBog\nRSA4sZMVg3rP+0Ex6E2vUwwCAAAAAAAAgKGiCDRAikAwcIpBAAAAAAAAAHD2KQINkCIQvHY79x7I\niue2596nt+Xep1/Iw4pBAAAAAAAAADDoFIEGSBEIBo9iEAAAAAAAAAAMPkWgAVIEgqGjGAQAAAAA\nAAAAZ04RaIAUgeDsObYY9NC6F9Nfc6QY9KbXTc+Fc7py0dyuLJo9JZ0dykEAAAAAAAAAMNAi0Liz\nEQYgSbo6O3LtRbNz7UWzkxxTDHpqW/7um89m/6H+JElbSc6fMTkXzpmSi+Z05cK5XbloTlcWzJyc\njva2Jo8BAAAAAAAAAMOSIhDQmGOLQQcP9efZbS/nyc0788SmnYe/bt6Zux7dnP7W5WUd7SVvmDXl\nyM1BF845XBCaP31i2tpKg6cBAAAAAAAAgGYpAgHDxrj2tiyaPSWLZk/JjZfPO/J874FDeWrrrlZB\n6PDX+57bnttWbTiyZmJHey6cc7ggdOFRNwjNOWdCSlEQAgAAAAAAAGD0UwQChr3OjvZc2j01l3ZP\nfdXznXsPZPWWXXly0848uflwQeieJ7fmf9y37siaczrH/eDmoKNuEJo+efzZPgYAAAAAAAAADKkB\nFYFKKe1JfqPW+okhzgMwYF2dHXnT66bnTa+b/qrnL+zenyc373zViLHPr9qQf/jOwSNrZnVNyEVz\nXikIHb5J6II5XZkyQT8SAAAAAAAAgJGp1FoHtrCU79Za3zzEec66JUuW1BUrVjQdAxhitdZsfmlf\nnti8M09u2nn4a+vP3gP9R9bNnz4xF7VKQa8UhN4wa0o6O9obTA8AAAAAAADAWFZKua/WuuRU607n\n6otvllL+Isk/J9n9ysNa6/2vIR/AWVVKydypnZk7tTNvv3DWkef9/TVrt7985OagV0aMfX311hw4\ndLgo2VaSBTMnH3WD0OGvC2ZMyrj2tqaOBAAAAAAAAACvcjo3At19nMe11voTgxvp7HIjEHA8Bw71\n59nndx9zg9CuPLttd175z+b49ra8YfaUXDRnSi6c23WkKNQzbWLa2kqzBwAAAAAAAABg1Bj0G4Fq\nrdeeWSSAkaOjvS0XtEaE5YofPN+z/1Ce2rrryA1CT2zeme8+80KWrdxwZM3k8e25YE5XLpwz5cgN\nQhfN6cqsrgkpRUEIAAAAAAAAgKEx4CJQKWVqkj9K8rbWo68l+VitdcdQBAMYjiaOb89lPVNzWc/U\nVz1/ae+BrN68M09sOjxa7IlNO/M/H9uSW1esO7Jm2qSOw8WgOV1H3SA0JdMmjT/bxwAAAAAAAABg\nFBpwESjJp5I8nOT9rZ9/IcnfJflXgx0KYKQ5p7MjV51/bq46/9xXPX9+1748eWS82OGS0LIH1mfn\nvoNH1sw5Z0IunNOVC2Z35YI5U3LB7Cm5YHZXpk7qONvHAAAAAAAAAGAEO50i0Btqre876uePllJW\nDnYggNFk5pQJmTllQt7yhplHntVas3HH3jxxpCB0eMzYP373+9lz4NCRdbO6JrRKQVOyaE7Xke9n\nTJnQxFEAAAAAAAAAGOZOpwi0p5Ty1lrrN5KklHJNkj1DEwtg9CqlpHvaxHRPm5hrL5p95Hl/f836\nF/dkzZZdWb1lZ1Zv3pXVW3bls/evz66jbhA6d/L4LJo95Ugx6IJWSWhW14SUUpo4EgAAAAAAAADD\nwOkUgX41yX8tpUxt/bw9yS8OfiSAsamtreS8cyflvHMn5do3/qAgVGvNppf2HikGrWmVhD6/akNe\n2vuDgtA5neOOlIIWHVUQmje1U0EIAAAAAAAAYAwYUBGolNKW5KJa65WllHOSpNb60pAmAyDJ4RuE\n5k2dmHlTJ+ZtF8468rzWmq279mVNqyD0yi1Cdz26Of/0vbVH1k0e3/6q0WIXzJmSC2Z3pWfaxLS1\nKQgBAAAAAAAAjBal1jqwhaWsqLUuGeI8Z92SJUvqihUrmo4BMKi27drXGjG261Wjxrbs3HdkTWdH\nW2vEWNcPRo3N6crrzp2UdgUhAAAAAAAAgGGjlHLfQHo7pzMa7CullN9K8s9Jdr/ysNb6wmvIB8AQ\nmjFlQmZMmZAfff2MVz3f8fKBrNm688iYsdVbduU7T2/L5x5Yf2TN+HFtef3MyUdGi71yi9D5Myan\no73tbB8FAAAAAAAAgAE6nRuBnjnO41prff3gRjq73AgEkOzceyBPbd2d1Zt3HrlJaPWWnVn7wp4j\na8a1lSycOTkXzJmSRbO7jhSEFs6cnAnj2htMDwAAAAAAADC6DeqNQKWUtiQfrLV+84yTATDsdHV2\npPe8aek9b9qrnr+8/2Ce3rr7yGix1Vt25bGNO/Olhzelv9UjbSvJghmTD48Xm/ODUWNvmDUlE8cr\nCAEAAAAAAACcLQMqAtVa+0spf5Fk8RDnAWAYmTR+XC7rmZrLeqa+6vneA4fyzPO7s3rLrqzZvPP/\nZ+/OYy3N87u+f35nvVvdW9U91ctM94hmZux4nBhEmkX8EQkcYiMUDwFLDHYARRBIggERRREoKICd\nSIGQEBIMiJhEMdgyhoA0IIIhtgIEQ8Y9xhjPYty2Z6a7p/e6td7lbL/8cZ5z7rlb1b3ddbuqTr1e\nUunZn3puyZKnq9/9/c2XGfuxL72VUVMIlZI8f2Utn3hqIx9vAqFPPLWRjz21kY3+eVamBAAAAAAA\nAOAszvNvYn+0lPJbk/ytetb1xABYSivddr7h2c18w7Obh84PRpN85d1pIDSdIDRdauyf/Nw7GYwn\n8/s+cnl1OkGomSL0/JW1PLO1kme2VrLWEwkBAAAAAAAAvBflrE1PKeVWkvUk4yS7SUqSWmvdvOuD\nD7kXX3yxvvTSSw/6MwCW2mg8yVev7UwnCL11Oz/XTBF6+a3b2R9NDt27udJpoqDVPLPZb7YreWar\nn2c2V/PM1kqurHVTSnlAPw0AAAAAAADAB6uU8rla64v3uu/MYxdqrZfe3ycB8LjqtFv5pVc38kuv\nbuRbvvHg/HhS89r2bl69vpM3buzljZt7022z/6XXb+bt2/s52qz2Oq0mDlrJM5sreXZrJU/PtlvT\n7dWNfjrt1gf7gwIAAAAAAAA8QGcOgcp09MJ3Jnmh1vo9pZTnkzxba/3shX0dAEut3Sr56JNr+eiT\na6feMxxP8vat/WOR0Gz/p165nr//M3uHlh5LklZJrl7qHwqGntlaPTRZ6JnNlaz22hf9YwIAAAAA\nAAB8IM4cAiX5C0kmSX59ku9JcjvJ9yb5lRfwXQCQJOm2W/nw5dV8+PLqqffUWrO9M8zrN3bz5s29\nvH5jL282wdDrN/byi+/cyY///Lu5tTc69uzWanc+UWgeDW0dnja0tWopMgAAAAAAAODhd54Q6FfX\nWn9FKeVfJEmtdbuU0rug7wKAMyul5In1Xp5Y7+UbP7x16n139kd54+Y0Enp9cbJQs/3C6zfzzglL\nkfU7rePLj82jodU8s7mSq5f6abfEQgAAAAAAAMCDc54QaFhKaSepSVJKuZrphCAAeCSs9zv52NWN\nfOzqxqn3DMeTvHVr/8gyZLt54+Z+3rixm899dTtv3tg/thRZu1VydaO/sAzZ9NfRaUMrXUuRAQAA\nAAAAABfjPCHQ/5zkbyd5qpTy3yb59iR/7EK+CgAekG67lY9cXs1H7rEU2bU7g+kSZLOlyBa2P//2\n7fzTl9/Jrf3jS5FdXuvOo6Bnt1by7NZqnruymueurOW5K6t5enPFZCEAAAAAAADgPTlzCFRr/YFS\nyueSfHOSkuQ311q/OLteSrlSa92+gG8EgIdKKSVPbvTz5EY//+ZHTl+K7Pb+KG8ci4V288aN/bxx\nczc/89p0KbJF3XbJhy83cdDlaRz03BOref7KWp67spanLvXTEgoBAAAAAAAAJzjPRKDUWr+U5Eun\nXP7RJL/ifX8RACyJjX4nH39qIx9/6vSlyPaG47x+Yy+vXNvJq9u7eXX7YPtjP/tW3r51OBTqtVv5\n8OWVPHdlLc8/cTBJ6Lkr01joQxtCIQAAAAAAAHhcnSsEugf/1hEAzmml284LH1rPCx9aP/H63nCc\n167v5tXt3WOx0D/8wlvHJgr1Oq08d3k1H2mWGzsaC13d6KcU/y8bAAAAAAAAltH9DIHqfXwXAJBp\nKPSxqxv52NWTpwrtDsZ57fpOXtmexkKvLsRC/+Brb+TdO4ND9/c7rSYKWptvF2OhJ9d7QiEAAAAA\nAAB4RN3PEAgA+ICt9tr5+FOX8vGnLp14fWcwOrLk2HT/lWu7+elXr2d7Z3j4fd32fHrQSbHQlbWu\nUAgAAAAAAAAeUpYGA4Alttbr5OuevpSve/rkUOj2/iivzZcdW4iFru/kJ796PTd2h0feNw2Fnl+I\nhBZjoa1VoRAAAAAAAAA8KPcMgUopT9zteq31WrP7zffliwCAD8xGv5Ovf+ZSvv6Zk0Ohm3vDvHZk\nktAsGPqJL1/Lzb3RsfedNFFoFg9trXU/iB8LAAAAAAAAHktnmQj0uSQ104k/H02y3exfTvLVJC8k\nh4IgAGBJbK50s/lsN9/w7OaJ12/sDk9cduzV7Z3881+4ltv7h0OhSyudhUBoNc9sruTpzZU8damf\npzZX8vRmPxv9jqlCAAAAAAAA8B7cMwSqtb6QJKWU/zXJ3661/r3m+Dcm+c0X+3kAwMNsa7WbrdWt\nfOOHt45dq7Xm5u4or2zvHIuFvvruTn785XdyZzA+9txqt52nN6dh0FOX+vNQ6OnNlTy12c9TlwRD\nAAAAAAAAcJJSaz3bjaX8q1rrv3Wvc4+aF198sb700ksP+jMA4LF0e3+UN2/u5a2b+3nr1nT75s29\nvHlrP2/d3Mtbt6bHOycEQ2u99nyS0CwUeroJhQRDAAAAAAAALJNSyudqrS/e676zLA0287VSyh9L\n8tea4+9M8rX38nEAAEmy0e9k4+pGPnZ14673HQ2GZvtvNqHQ5792Mz/2pbfeUzA0mzgkGAIAAAAA\nAOBRd54Q6Lcn+eNJ/naSmuQfN+cAAC7UeYOhN2/u5e0mEnrz5v58stDnv3YzP/rFt7I7vHswdLAc\nmWAIAAAAAACAR8eZQ6Ba67Ukf6iUsl5rvXOB3wQA8J6cJRiqteb2/mgeB50UDP2rV6/nzZv7pwZD\nT2+u5Oql/qFg6Og5wRAAAAAAAAAftDOHQKWUX5vk+5JsJPloKeWXJfl9tdb/7KI+DgDgfiul5NJK\nN5dWuucKhg6WJWuOb+0LhgAAAAAAAHionGdpsD+b5FuSfCZJaq3/spTy71zIVwEAPGDnDYbebEKh\ntxZCobMEQ6vddp7a7M+XJXvqUrMc2SwWaq5trXYFQwAAAAAAANzVeUKg1FpfOfIvoI7/2ywAgMfI\nYjD08afOGAw1gdBswtBbt6bnvvi1m/lHt/Zze3907Plep5WrG9OpQk9dWjk5Htrs54m1XlotwRAA\nAAAAAMDj6Dwh0CvN8mC1lNJN8oeSfPFiPgsAYLmcNRhKkjvNkmRvLUwWevvW/jweevnt2/nxn38n\nN/eOB0OdVsnVS9NI6GoTBz29GA41+0+u99Jpty7qxwUAAAAAAOABOE8I9J8k+XNJPpLktST/IMnv\nv4iPAgB4nK33O3mh38kLH1q/6317w3HeXliC7GDS0PTcq9s7+cmvbufancGxZ1sleXJjFgc1y5Bd\n6ufq5srh40v9dAVDAAAAAAAAj4QzhUCllHaS31Fr/c4L/h4AAM5opdvO80+s5fkn1u5632A0ydu3\nD4dCb9+cLUs2PfczX7uZd27vp9bjzz+x3juyDNnBsmSzpcquXupnpdu+oJ8UAAAAAACAszhTCFRr\nHZdSviPJn73g7wEA4D7rdVr5yOXVfOTy6l3vG40neffOIG81gdBiKPTWzf28fWsv//qNW3n79n7G\nk+PF0OZKZzpJqImDZhOFZtOFZiHRev88QykBAAAAAAA4q/P8W5j/t5Ty55P89SR3ZidrrT95378K\nAIAPXKfdytObK3l6cyXJ1qn3TSY113amwdCbt/by9kIwNFum7LO/eC1v39rPYDw59vx6r50r671c\nWevl8lo3V9Z6ubLWzeVme2W9d7Df3LPR76SUcoE/PQAAAAAAwKPvPCHQL2+2371wrib59ffvcwAA\neNi1WiUf2ujnQxv9fDKbp95Xa82N3eHBZKGb+83SZHu5vjPM9s4g2zvDfPXaTrbvDHJzb3Tqu7rt\nkq3Vg1DoIBI6HAzNrl1e6+Xyajeddusi/ggAAAAAAAAeSmcOgWqtv+4iPwQAgOVSSpkGOWu9fP0z\nl+55/2g8yY3dYbZ3hrneRELbdwbzYGh6brr/i+/cyU/uXM/1nUGG4+PLlM1cWukcmzg03fZyZX02\njehwRLTabZs+BAAAAAAAPJLOMxEopZTflOQbk6zMztVav/v0JwAA4Gw67Vae3OjnyY3+mZ+ptebO\nYJztO4OFKUMH+4uTh7Z3BvmFd25n+84wt/dPnz7U67QOTxk6afJQExLNoqKt1W7aLfEQAAAAAADw\nYJ05BCql/KUka0l+XZLvS/LtST57Qd8FAAD3VErJRr+TjX4nzz9x9ucGo0mu7zah0J3BoSlEi5OH\nru8M8nNv3Z5fG09Onj5USrK1ejQe6h6ZRjTd32qOt1a7We+ZPgQAAAAAANw/55kI9Gtrrd9USvnp\nWuufLKX8D0n+r4v6MAAAuCi9TitPXVrJU5dW7n1zo9aaW/ujXL9zePLQtTuDg6XMmnNv3tzLz75x\nK9s7g+wMxqe+s9Mq2VqdxkFbq91cXm22a71sHjo+2G425/qd9v34owAAAAAAAJbIeUKg3Wa7U0r5\ncJJ3kzx7/z8JAAAePqWUbK50s7nSzUefXDvzc/uj8cESZXeGubE7yI3dYa7vDKfb3en2xs4w79we\n5OW3b+fGzjA3905fvixJVrvteSC0dSwYOiUkWu3l0konLcuYAQAAAADAUjpPCPR3SymXk/z3SX4y\nSc10iTAAAOAU/U47T2+28/Tm2acPJcl4UnNr76Rg6OSQ6Cvv7uSnXx3m+u4ge8PJqe8tJdlcORwI\nnRQTba32jk0jWu1aygwAAAAAAB5mZw6Baq3f0+z+n6WUv5tkpdZ642I+CwAAHm/tVsnltV4ur/XO\n/ezecJybuwuh0M5CSLQYEzXHr23vzo/Hk3rqe7vt0gRCnVxe682XM9s8EgydFBJ1263388cBAAAA\nAACcwZlDoFLK7zzhXGqt339/PwkAAHg/VrrtrHTbeeqcU4hqrbkzGOd6EwrdODJ1aDaFaLa82Zs3\n9/Kv37yVGzvD3Nq/+1Jm6712EzZ1c2WtlyvrvVyZ7a91m+Nenlif3vPEes8EIgAAAAAAOKfzLA32\nKxf2V5J8c6ZLhAmBAABgCZRSstHvZKPfyXNXzvfsaDzJzb1REwwNDqYPLQRE2zuDXN+Zbl/d3sl2\nc/40vU4rTyzEQ4uR0OW1Xp5Y7063a70mLupmo98RDwEAAAAA8Ng6z9Jgf2DxuJRyOckP3fcvAgAA\nHjmdditPrE9jnWT9zM+NxpMmEpoGQtt3BtPtznC+f+3ONC764hs3c31nun/aCmbd9nRJtStrC5HQ\n+mzy0MIkotkEorVeLq100mqJhwAAAAAAePSdZyLQUXeSvHC/PgQAAHj8dNqtPLnRz5Mb/TM/M5nU\n3NybxkPX7gxyfWfQbIe5tnNwvL0zzM+/fTvbX5nGQ6NT6qFWSa6ctGzZQix0eBJRL1ur3bTFQwAA\nAAAAPGTOHAKVUv5OktnfnLeSfDLJD1/ERwEAAJym1ZpO/bm81ssLHzrb9KFaa27tj3L9zjQWOpg+\nNFyYQjTI9p1hXrm2k59+dbo/GE9OfF8pydZqdx4QPbF2ZLmyWUzUhEWX17q5vNpLr9O6n38UAAAA\nAABwyHkmAv2Zhf1Rkq/UWl+9z98DAABw35VSsrnSzeZKNx99cu1Mz9RaszMYzwOh7YWA6FqzRNls\nEtHrN/byxddvZntnmN3h+NR3rnbb2VztZGu1O/+1udLN5mx/4fz0+ODe1W47pZhCBAAAAADA6c4c\nAtVa/9FFfggAAMDDpJSS9X4n6/1Onrty9uf2htN4aL5cWbN82Y3d4aFfN3dH+dr1vXxx91Zu7g1z\na2901/d229OYaRYMHURDnfn5rROCos2Vbi6tdNKylBkAAAAAwNI7z9Jgt3KwNNihS0lqrXXzvn0V\nAADAI2ql286zW6t5dmv1XM+NJzW39g4ioXkwtHc0IGr2dwZ55drO/Px4ctI/rk2Vklzqd7K11j0U\nDW2udLO1thAXrXROjIm6bUuaAQAAAAA8Cs6zNNj/lOT1JH810/jnO5M8W2v9ry/iwwAAAB4n7VbJ\n5bVeLq/1zv1srTV3BuODSGgxGGr2b+6NDh2//Nbt+fH+aHLX96/12ocDotXOsalD84lER2KjlW7L\nkmYAAAAAAB+Q84RA31Zr/WULx3+xlPIvkwiBAAAAHqBSSjb6nWz0O/nw5fNNIkqmy5nd3JvFQ6PT\ng6JmOtFr1/fyxddv5ebuMLf2776kWa/dyuZqN5fXurmy1s3Wam++f3mtl63Vbq6sTc9trXZzZb2X\ny6vdrPXaAiIAAAAAgHM6Twh0p5TynUl+KNMlwn57kjsX8lUAAAB8YFa67ax023nq0sq5nx2NJ7nV\nTBtaXMZscXmzG7uD3NgdZvvOMK9d380XvnYj2zvD7A7Hp763125la62by00oNN9fn8ZD05hoGg1t\nrR3ERKtdAREAAAAA8Pg6Twj0HUn+XPOrJvmnzTkAAAAeU512K1fWe7myfv4lzfaG49zYHeb6zjDX\ndwbZ3plGQ9d3hkf2B3nl2k5+Zne6vzc8fSmzXqeVy00odLkJhWbR0DQm6k0nE83216fb1V77/fwx\nAAAAAAA8FM4cAtVav5zkUxf3KQAAADxOZpOInt483ySiveF4Gg81odD1nWbbhEI3dobzgOir13by\nL1+dRkaD0ekBUb/TmsZDzdJl8/31g3Ozpc2uLJxb6QqIAAAAAICHx5lDoFLKn07y3yTZTfL3k3xT\nkj9ca/1rF/RtAAAAcMxKt51nttp5Zuv8AdH2LBqaBUQLE4lmcdH2zjBffmcn13ev3zMgWum2jsdD\ns2lEzXJml1a62Vjp5NJKJ5f6nWysdLLR72S910mrZRkzAAAAAOD+Oc/SYP9erfW/LKX8B0m+nOS3\nJPnHSYRAAAAAPPRWuu08u7WaZ7dWz/xMrTV7w8lBQLS7EBIdnUi0M8wvvHN7vj8Ynx4QJUkpyUav\nM4+ENvqdbKx0D4KhfucgIuofvu/SSnOt38lar51SBEUAAAAAwPlCoNm9vynJ36i13vAXjQAAACyz\nUkpWe+2s9lbz4cvnC4h2myXMbu2Ncnt/th1Nt3uj3Nof5dbeMLcXzt/YHea17Z35vTuD8T1/r1bJ\nQTTUREIbJwRDB8edbPS78/suNc+udFuCIgAAAAB4xJ0nBPq7pZQvZbo02H9aSrmaZO9iPgsAAAAe\nXaWUrPU6Weud5x+7jxuNJ7kzGE+Dof0mIGoioun+8CAu2j843r4zyFff3Znftzu8d1DUbpUTgqHD\nU4lOnFy0cN+llU76HUERAAAAADwoZ/4byVrrHyml/OkkN2qt41LKTpJPza6XUn5DrfUfHn2ulPKt\nSf5cknaS76u1/ndHrpp4E0oAACAASURBVPeTfH+SfzvJu0l+W631y821P5rkdycZJ/mDtdYfuds7\nSyk/kOTFJMMkn03y+2qtw7P+jAAAAPAw6bRb2VptZWu1+77eMxxPcudQMHQwpWh2bhYWzeKh2/uj\nvHN7kC+/u9PcN8z+6O7LnSVJp1Xm04bWup30u630O630O+2sdKfbfqfVnJ/tN9sj+yvz/fbJ72nO\n9driIwAAAABIzjcRKLXWawv7d5LcWbj8p5IcCoFKKe0k35vkNyR5NclPlFI+U2v9wsJtvzvJdq31\n46WUTzfv+W2llE8m+XSSb0zy4ST/dynl65pnTnvnDyT5D5t7fjDJ70nyF8/zMwIAAMCy6bZbubzW\ny+W13vt6z2B0EBTd2j+8rNlJU4p2B+Psj8bZH02mS6XtDrI3nEzPDSfZH03394b3Dozu5VA4tBAZ\nrSxGRgvx0KHIaOGZ02Kl06KkfqeVVkuEBAAAAMDD4f3NKD/spL/1+lVJXq61/kKSlFJ+KNMpQosh\n0KeS/Ilm/28m+fNl+p/xfSrJD9Va95P8Yinl5eZ9Oe2dtda/N/+YUj6b5Ln79LMBAADAY6/XaaXX\n6eXK+vsLio6qtWYwbsKgWSjU7O/No6Hm3GiS/eE4e812fm7xvoXIaPae2/uDU98zntT39f29duvE\ncOjyWjdX1nq5vNad72+tLp5rtqvddNqt+/SnCQAAAMDj7H6GQCf9rdlHkryycPxqkl992j211lEp\n5UaSJ5vz//zIsx9p9u/6zlJKN8nvSPKHTvrQUsrvTfJ7k+SjH/3oqT8QAAAAcPFKKU1A005WPvjf\nfzSLkBYmFB0Lig5FSfeOlXb2R7mxO8yX3riZ6zvDXN8d3jU4urTSOTUWutKERJfXerm8cG1zpWsa\nEQAAAACH3M8Q6GHyF5L841rrPznpYq31Lyf5y0ny4osvvr//7A8AAAB4pHXarXTaraz3L+73qLXm\n1v4oN3aG2d4Z5PrCdrZ/Y3e63d4Z5pVrO9neGebm3jD1lL+5aJVka/XwZKEra71srZ0QEq0eTCba\n6HcyHcYMAAAAwLK5nyHQl08491qS5xeOn2vOnXTPq6WUTpKtJO/e49lT31lK+eNJrib5fef+CQAA\nAAAuQCklmyvTKT7PP7F25ufGk5qbu9OJQtNwaBYRDXOjiYau7w5zfWeQt2/v5+feup3rO8Pc3h+d\n+s5OqxyaMHRs6tAsJJpdW5+GRKu99v34owAAAADgAp0rBCql/Nokv2TxuVrr9zfb33LCIz+R5BOl\nlBcyjXU+neQ7jtzzmSS/K8k/S/LtSX6s1lpLKZ9J8oOllP8xyYeTfCLJZ5OU095ZSvk9Sb4lyTfX\nWifn+dkAAAAAHjbtVsmV9V6urPfyQtbP/NxwPGmmDQ2mEdGdwTwYmoVEs/1Xt3fy+a9NQ6O94el/\nndLvtI4tX3ZlvZut1ePLl6322um0Wul1SrrtVrrtVjrtkl6zP/1VTCYCAAAAuM/OHAKVUv5qko8l\n+akk4+Z0TfL9pz1Tax2VUr4ryY8kaSf532qtny+lfHeSl2qtn0nyV5L81VLKy0muZRr2pLnvh5N8\nIckoye+vtY6bbzn2zua3/EtJvpLknzV/kfS3aq3ffdafEQAAAGAZdNutXL3Uz9VL51vvbG84PrJs\n2WA+jWi2rNl0GtEwP//27Vz/6vSe4fi9rbzeaZV5FDQPhGbxUGth/8g9vea4Mz8uTWx0sN/ttNJp\nlfQ6rRPfca/9XvN8t9OaB0ztlnAJAAAAeLiVetpC80dvLOWLST5Zz/rAI+LFF1+sL7300oP+DAAA\nAIBHUq01O4PxQjw0zP5onOF4ksG4ZjiaZDQ52B+OJxlNagbN/vRXPfP+YDR9fjieZDiavnc0mTTv\nrhmML25IdCk5FiL1joRE/W4rl1a6udTv5NLK9NdGvzvdrnSyudLJpZVuNubXp9f6nZYJSQAAAMCp\nSimfq7W+eK/7zrM02M8keSbJ6+/5qwAAAABYKqWUrPc7We938tyVB/010zBpPKnzKGg4nmQ0i4gW\njgfjg3joWGy08MzR4+lzTXw0nmQwqk3cNN3fG45zY3e65NrtvVFu7Y2yOxzf87u77XIoEJpuu9ls\nAqJLxwKig4hodu9Gv2NqEQAAADzmzhMCfSjJF0opn02yPztZa/22+/5VAAAAAPAelFLSaZd02slq\n2g/6c5Ikw/Ekd/anUdDNveE8ELq1P92/2Rzf3h9Ot83xq9s7ud08d2tvmMkZ5nSv99oHgdAsFjph\nOtFpMZHpRAAAAPBoO08I9Ccu6iMAAAAAYFl1261cXuvl8lrvPb+j1prd4XgeBd2ax0OHj2fXZwHR\njZ1BXt3emQdG72U60SwgOm060eZKd35+vTeNitb67fQ7D0eIBQAAAI+TM4dAtdZ/dJEfAgAAAACc\nrJSStV4na71Ont5cec/vGY4nud0ERDf3FiYQ7R+OiW4vHN9uphMthkdnmU7UbTfLxjVx0Hq/PT9e\n73eyMTvud7LeazfnOgfn+u2FZzvpdVrv+ecGAACAx8WZQ6BSyq9J8r8k+YYkvSTtJHdqrZsX9G0A\nAAAAwH3UbbdyZb2XK+vvbzrRzmB84jSiO/uj3BlMt7f3x9Pj/WlAtDOYTjR648be/NydwTjjs1RF\nSXrtVtb77awdCYs2+p3m3EFYtHEkMDo4157fLywCAABgGZ1nabA/n+TTSf5GkheT/M4kX3cRHwUA\nAAAAPJxKKfO45v1MJ0qmUdH+aNIEQ+MmDhrNj+fB0P4otwej7CyeG4xy8z6ERQcx0eGpRLNwaK23\neG56z2KMNLvWbQuLAAAAePDOEwKl1vpyKaVdax0n+d9LKf8iyR+9mE8DAAAAAJZZKSUr3XZWuu08\nufH+3zcLi27vT6OhWTA0i4nm55qwaDE4moVFrzdh0Z33EBat9tpZ67Xn27Vu5/i5Xier3dl+O6u9\nzsH1bnO9t3i9nV67lVLK+/8DAgAAYOmdJwTaKaX0kvxUKeVPJ3k9if/MBQAAAAB4KCyGRbnPYdHi\nEmez48Ul0HYG4+wOptud4Ti7g3F2BqNc3xnka9fH0+vD6bm94eRc39Fulax12wtRUecgFOqecO6E\nqGi1iZAWn1nrdbLSFRkBAAAsk/OEQL8j0/Dnu5L84STPJ/mtF/FRAAAAAAAP2mJY9KGN/n1772RS\nmyioCYaGTUC0Pw2FZtcOxUXzew/O3dob5a2b+9kZjprwaBob1bMNMWp+xizERIenGM0Do277+LlD\nIdLxKUazyUftlsgIAADgg3TmEKjW+pVSymqSZ2utf/ICvwkAAAAAYGm1WiXr/U7W++f57zTPptaa\nveEkO00sdBAVLcRCzfHB5KLD0dHsme2d4cG5JkI661JpM/1O69D0oWPRUPfIJKOF+Gh27rTYyJJp\nAAAAx535nzRLKf9+kj+TpJfkhVLKL0/y3bXWb7uojwMAAAAA4OxKKdN4ptfOk/f53bXWDMaTI/HQ\n8ahod2Fq0aF7hwfTjd69PcgrszipCY8Go/u7ZNrqkdjopElHx5ZNmz3bbadlmhEAAPAIOs9/cvIn\nkvyqJP9PktRaf6qU8sIFfBMAAAAAAA+ZUkr6nXb6nXYur93/94/nS6aNToyNTlsybW94ODa6vT/K\n27f2D997ziXTkhxMMOqesOxZrz0PiVa67fS77fQ7ren+wvbYuW4rK53D237HEmoAAMD9c54QaFhr\nvXFk1Oo5/9EJAAAAAACOa7dKNvqdbFzQkmn7o8mhZdJmYdFBdHRybDS/3kw6euvW3qHze8Nx9s85\nzeiobrscCoNm25XuCTHRXbZHg6SDdzTbbjsrnYNtp926T3/CAADAw+I8/0T1+VLKdyRpl1I+keQP\nJvnxi/ksAAAAAAC4P0opWelOp/c8sd677++fhUb7w0n2R9MwaBYInXe7P5xkbzQ+eNdwkmt3BofO\nL27PO+loUbtVDoVB/VOCooPt8bhodWFq0mxJttWFaUmzSUorHcutAQDAB+E8IdAfSPJfJdlP8oNJ\nfiTJ91zERwEAAAAAwKNiMTRKuh/Y71trzXBcD8KgWUw0GmdvISRaPL77djFIGufG7jD7C8d7C9vx\n5PwF0uJya6snhEPHzh+LijrHn1m4r2vCEQAAnCsE+mTzq9P8+lSSb0vyTRfwXQAAAAAAwF2UUtLr\nlPQ6rWTlg/29R+NJdofTJdb2BpPsDJsl1xaXXRsePt4bzpZmm2S3uX9nMM71nUG+dv3w/bvD8087\n6rbLwRSibruZVjSNj1aOxka9dtbOEhwt3NfvtFKKqUYAADzczhMC/UCS/yLJzyR5fwseAwAAAAAA\nj6xOu5VL7VYurVzMBKTZcmsHQdEsIJrGRHtHY6PBODsL+0fjo3fvDKbvWDg/HJ+vNColh4KhXqeV\nXruVbruVbrs024X9+fWDa73OkePZ9c7icSuddjn87hN+r17nyHG7Zfk1AADOFQK9XWv9Oxf2JQAA\nAAAAADm63NrFGM6mGs1ComNTjE4PjvYG4wzGkwzHkwzHNcPxJIPRJDuD0cHx7PqoZjSZXp9dG72H\npdXOot0qh8KgY1FR54QI6YzR0uJ+v9OaTktqoqiTlntb7bbTsVwbAMAH7jwh0B8vpXxfkh9Nsj87\nWWv9W/f9qwAAAAAAAC7QLGrZvKCpRnczmdQMJ00YNJoshEMHUdGhyGg8yXA0DYgOrtfmntn1I8cL\n545GS7MI6ube8d/r6PvfT7R0dLm2lSYUOnR8ZIm22fGh5dy67awsLOG2eNwVGwEAHHKeEOg/SvJv\nJOnmYGmwmkQIBAAAAAAAcEatVkm/1U6/k6T/oL/m7o5GS4MmFJpNSZottbY4TWm+bfYXJyvtNeeu\n7wyP3bc/mtz7g47otMqxaUQrJwRDi8u6HY2OFuOjeWy0cNxtl5Ri2TUA4NFwnhDoV9Zav/7CvgQA\nAAAAAICHygcZLY0n9VBUNNufR0RHwqHFkGgeGy0ERzf3htNQ6dB954+N2q2StSYqWuk2S6W1pkut\ndVrTZdU67ZJOu5Vee3qu22ml2yrpHFlerTPbb832D65P750ed1qt9Jr3z5Z3W7y/0zr+3vl3tIRL\nAPA4O08I9OOllE/WWr9wYV8DAAAAAADAY6ndKlnvd7LeP8+/vjqfyaRmb3Q4GNodTLIzGB0cL0RF\nB2HSJLvDUXYH4wwnNaOF5dRG45rBaJI7g3GzhFtzrrk2XFiabdRMV7po3VmQNAuHjgZJd7vWhErd\nJj7qNec67ZJ+c1+vs/CrOe7Pj9vpdabvmp9vzi0+Y9ISAFyM8/wvqV+T5KdKKb+YZD9JSVJrrd90\nIV8GAAAAAAAA91GrVbLW62Std3Gx0b3UWjOa1IVYaJLRZBoTjSYH4dBBRNQER5Mj8dGR0Gg0mS7f\nNpzM7jl8/3A8WYiYDl+7PRqd8t4mXhpN9wfj809Uupte+3hQdOr+CQHSLD7qnnBP/4T3dI88d9Lv\nJU4C4FF3nv+V860X9hUAAAAAAADwGChltgRYspr2g/6cc6m1zgOiwWiSQbPdHx0+Hi6en907mmQw\nGmfQBEbzZ0aTDMbjhf3ZtmYwGmdnMMr13cV3LN4z3U7u45ClbrMU2/GpR+35dKTZNKXewkSl3pHp\nSr3OwRJuswlJs2Xjeu3DE5cWl4frzaczLSwd1zzfbR3eb7VESwAcd+YQqNb6lYv8EAAAAAAAAODh\nVUpJrzNd8mu9/6C/5sBofDg42p/FSOPDAdH+wvFZY6bF52ZTlgbjSe7sj3J9FkUdmc50eLrTxS0F\n126Vg1jolEDp5EhptjzcdL/bbjWR0jREWtxffPfBsm4nT2JavGd2ffasSUsAH5wHN/cQAAAAAAAA\n4H3qNNN11noP+kuOm01Rmi6xVpuJSAfLsA3Hh5dqO/F4VDM8skTb4pJvx985XSZuNJlOVho2QdOd\nwbh5x0m/58G76gW0S0djoeMR0eHl23oLIdLser9zUoRUDkVHx97Z/J4nPzv9ZbISsGyEQAAAAAAA\nAAAXYD5FKa3kIQyVTjKeHA6EBgsTlmYTj4bj2eSleuKEpcXpSIMj95x076AJnnZ2h/NYaXru8FJw\nw3HN+H6uBZfpZKXefOpR+1BctBgpdU6YvnR0wlK30yzhdmi/NEu6HX7u8P7p1w7/3qYrAfcmBAIA\nAAAAAAAgyTSMabfaWem2H/SnnGgWKu2fEhfdLU46NWI64Z7pudos/TY9tzMYnz5RaTSZTm66gFhp\nUadVjodDzRJv3dYp++8xQuq0DyYzzfZPDqKaJeZmQdXCfrdl6hJ80IRAAAAAAAAAADwSHvZQKUkm\nkzqPgubLsU3qoWlHi0u7jRaiosG4zsOjwcIyb7NwaXH/7kvETbI/nOT23mj6nnnQtBg3Hdx7EUvC\nzbRbZR4FdTutk2OmeUxUTp3C1JktIdfsT4On4xOXOq3pVKfO4kSm1uF3nPz7HP79TF/iUSUEAgAA\nAAAAAID7pNUq6bfa6XeS9B/015zNbNLSbEm20WQhNprMIqQmWBodhE2jyfF4aXTC1KTRPECqJ09U\nGjeR06jm1nA0358GVQvB0+J3jC+wXso0YJpFS512mYdFnSZqmp2bbst8CtL8vtZBZHTi9YX99vyZ\nw/ctPn/8Ow6f77ZaabdLus07Dn+nsOlxIgQCAAAAAAAAgMfYozBp6aha66EoaDg+PF3paGw0Gh8s\nHzfbn9+/MLHpIHyaXa/zSUyj8UGINFo839y7N5xkNB4dOjc88p7RPHy62GXkjppGRgtxUDNRaTEa\nmk1v6rRb+cH/+Fen33l0/u+BA0IgAAAAAAAAAOCRUkqZL+f1qKr1cGg0njQTlWbbE+KhYxHSCaHS\nQbB0+H0nP79wfVwznNSMJ5O0TRB6ZAmBAAAAAAAAAAA+YKWU9DolvTy6MRMPH//XBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS+DCQ6BSyreWUn62\nlPJyKeWPnHC9X0r56831/6+U8ksWrv3R5vzPllK+5V7vLKV8V3OullI+dNE/GwAAAAAAAAAAPCwu\nNAQqpbSTfG+S35jkk0l+eynlk0du+91JtmutH0/yZ5P8qebZTyb5dJJvTPKtSf5CKaV9j3f+0yT/\nbpKvXOTPBQAAAAAAAAAAD5uLngj0q5K8XGv9hVrrIMkPJfnUkXs+leT/aPb/ZpJvLqWU5vwP1Vr3\na62/mOTl5n2nvrPW+i9qrV++4J8JAAAAAAAAAAAeOhcdAn0kySsLx6825068p9Y6SnIjyZN3efYs\n77yrUsrvLaW8VEp56e233z7PowAAAAAAAAAA8FC66BDooVRr/cu11hdrrS9evXr1QX8OAAAAAAAA\nAAC8bxcdAr2W5PmF4+eacyfeU0rpJNlK8u5dnj3LOwEAAAAAAAAA4LFy0SHQTyT5RCnlhVJKL8mn\nk3zmyD2fSfK7mv1vT/JjtdbanP90KaVfSnkhySeSfPaM7wQAAAAAAAAAgMfKhYZAtdZRku9K8iNJ\nvpjkh2utny+lfHcp5dua2/5KkidLKS8n+c+T/JHm2c8n+eEkX0jy95P8/lrr+LR3Jkkp5Q+WUl7N\ndErQT5dSvu8ifz4AAAAAAAAAAHhYlOnwncfXiy++WF966aUH/RkAAAAAAAAAAHCiUsrnaq0v3uu+\ni14aDAAAAAAAAAAA+AAIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAA\nYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAA\nYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAgP+/vfuNtS2t7wL+/Z1z7p0ZZmhh2pEQwDJt\nSRSaSnUk0VZD2lRp34DJ2IK2QWNSX9CExje0RtNKNGmNim9qaU1JpooOFMFOfGNrRZQXDgx0KAVE\nR6TpkJGh5Y8MDPfec87ji732uWuvs/afc+85d5+7zueT7NlrPetZz3rOnbOfvc5a3/1sAABgAgSB\nAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABg\nAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAA\nAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAA\nAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSB\nAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABg\nAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAA\nAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAA\nAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSB\nAAAA4Cy0luxfSQ4Pt90TAAAAAOCC2Nt2BwAm5fAgObiWHF6bPR9cSw6uduv7veVri/UO98+oQ3UG\nTZ5Fm7vJ7l6ys+SxeynZ2e2V9dZ3L82ea+ds+gYAXBz7V5Orz3SPr80eV756fflqt3xlvn1Z3d72\n1oWAdu9ILt2Z7N214fOdyaW7bvx599J2/y0BAAAAgK0QBOJ8efZLswvmtZOkuhv7O9dv8FeNbOst\nH5WXQMDtqrUuTLMkMLNpsOaoXldn6baxer3l4X6HXf2FY/eWm097b9VRSGhvFhSah4Tm6zu99ZXB\no73x0NGxUFLvWP1Q0vBYx/qyt7htXWBr7Xh2M/uv23fNoW+2760lad1y95952cK2Nr6ttRztfGxb\nVmy7kbaHdW+i7aNt646/yfOafmz0fKv7kdn79fw1UDvXX0e1u6JsN9nZGSkbLI+VHe2zs2HZ7qCP\nq8q6Nk5La7P39lUYwAAAEtZJREFUovn71OH+7L1xXnZ4bbC+P3svOlz1OOi11Ss7vDZYHzvmSB8O\nRvqw8phd3XbYG2cvXR8bdy8tWd9Ldi9fX950n6PyU9zPueX5c3hwPHQzFtC58sxinWPhnt72g6ub\nH//yPcnlu7vHPbPH3fcl996/WHbpztlr4dqzyf43Rp6/kXzjK8m1zyf7z87W+883qnZHAkInCSLd\nQFDJ6wQAAAAAtk4QiPPlv/x88ujbT6+9YwGhYXioBtvGQkU7s/vcp9bWmkDT2huohzd207YdDsqy\n4b6HI2Ub7HvseBvsO7/ZeNZ2+jcVe4+d4fLl2fLeHdeXl9bbW1wetr9wrMvHb27u7J7+jZOjoMKp\nNno2TbZVN7Svrbj5fG3kZvPIze1VN8jn7e1fOX68Yze6h9tuwe8r3JTqvT+d9Pks98/sfeLwYPZo\n/ef92VfoDMvOvRoJHu2Ml6WNh2Tm49Y2Q6VHQaexoGN/ZrYlj0t3DQKYg7aqjs+e1x9TD/ZnwYh+\neT+8O69ztO8tHIc3ChetCR0NA2RVI2U7i+G0GiwfK1vVzop9dnZG2hkee5N2uuMv2+foNd9mwZdj\nAZ3eLDvLAjpXejPu9Ote+/rm///27lwM51y+O7nzm5JveuFi2R295VXll55zugHAZeZfLTYWEFp4\nHgsYrXl+9svXg0j99m5mzN0bCwjdMZsNaeG8+nK3fGm2bWG52z5cHt1/bHlevzsvBwCAi+joenv/\nesvw+kvvmszRB3h612aO1nsf7jnar7t20w676zj9azk3u60trm+07fD6taaFYxys2DZWb922jFwf\n2R2U9T9otje+bdjG0fWYZW3eaLtj7QyP1b9esaI9M/ID3FZcFeN8+a4Hkxe8YvHErQ2DJf3yw0F5\nW1I+qL8QclnW1mEXUFjXVnezbm1b87DLweq2Vt1YPQoPDbbNb0Is3XdndbvL9l12vLU3e9cdb8nx\na/f6BfybDdYsrecT/Zyy+R/FS0NJw+DRSMhppTXhq7XZrBUV1obF1h37FPYfjgVLx5bhtsFzsuG2\nsXZutO2s2LZJ20v6csPBm/74PcFxrh8O6l+IOgoUrSvrXdhaVXZ0YWtYdrCkD/OywQW0hYtjg7L+\nbEcrZxZbMjPZpsGcYzOfjcxWtvAVi6c8s9GtMD+3Gg0VjYSM+gGihfUl+x0LIa1qc6TetWcX6x39\nPgwvKM5/R9ri7+d8+1kEcW+Veei9f968zs7eSAjn7uQ59y7OwnPHc5cEdgZll++5fQMhVbPZdy7d\nmdx1i455sL9B8GiD5/0rXejoSnJwZfa6+PrXutfWla58vny1m3Xzyun+LLUzEipaEUI6ChudNHg0\nElza6/4uGc4SeLSc2fpGyxkvH233pMsnON6y5VXHOGqqv96WlK/bdprtnXb/lvV1cH53w8u5iX1P\nsrxpn7t6K5cri9cGetuWXmtYci3hpNc6FtrPCeufwXn1/LrP8P194Wbm4CbnsfOCTcpHbnIeKx8e\nf+xG57rykTbn5yvVCxr3P0S3szO+7ShQvGzb/INzY+Ujj4Vtg7aPbevaPtbesm1r+t0//1+4kd4P\n/h+sqdNfH968X1Ln6Lg3UaeNHXuwz7E6vfW0ketyg+t6x5aXfdhuSdnojKHD/fauf5Dv2PIt/GAe\nJ3d0TX/ZmDMy7q3ddgMBj357q/px7JpDPzAzDNsMrk2Mra8K6fSvUawM6Yzsd1v9Hdkfc3ePj83H\ntvXeGxa2Dcbs/rb5+f2xbYN667bNP+B0bIxfNp52ZUcfQl02vo8999o9N0bOCU+0fjNtnFYfbrDP\nVb3rdt17yPBbAObvSwvbVtVdt76urZO0fZu97y2cQ/fvGc/Xe/dWR+sM7r0eqzPyWKjTG/OT62NC\n/2+I/vlgesv97aPlJ5xAYqG8Njhuv5+3yf9vzsRtejWUyXrJn509AG4XOzvJzuUkl7fdE5i2nZ0k\nO7M/XGGuqruQ381GNFX9m4TrwkPrbvgtDSGdwj4LF9EH++zsLgZzlgV27rhndmPGhYrt2d1Ldp87\nC1rdaq1dD+HNH/tXlix3waGj5auDUNHYvtcG+3RlV7+eHHxptrzseLfF7HTA2dg0OLSTZOQ9+7a6\nEbvEsRuzI7MLpnL95x+5gTK8uTKFf5fzZGGGiLGZHJbNItHbZz6759I6wza6siTHQvHLlvevJodf\nO15+uN+95w5C+bfi9+SmQkp7OfrdHw3JZrC8SZj2Rutlw3qndNz5+qazr4yGbHr7TcHw9XM0w0v/\ntdOfXbU3M0t/v91Ls9k1x/ZbqLtz/PXaP+aqY4x+lfqS9dFjjM0Gu7PhtrGwj7//VjoKRJw0+DlW\nbxgqGwaPRsJI89fwwXxW5hVjwkbry8pups3TWl/Rv/m/2dG3CPQ/FLbfm+F6uK2/3v+A8P52xr/h\nBw83CRXV7uzfZGlgph/Q6dfph3FGgjiHg/V+HU7JJsGhNYGlNz8+C1Jy2xEEAgAAOM/mgSd/vjF1\nVbOZdPbOYcD68HAkbLQieDR/rJo1Jbl+we2GluedW3GMTZZPdLyRT8uuXe7182hx5BPB67Zt3N6w\n2s22d4P9O/HMTxvcMD615ZxOO0d9HSwfPSfXZ0sebjscKWvXL/qfqP6w/Zyw/rz9nLD+yDH7M9gs\nm71g2U3QYzdOu31Gy+ez7JykfGzmhCUzHgwDP2dh009xL2wb3HRatm3VTaWFm1JjN6zWBJhGPzl+\nkMVwzM7iDbRNvpblWJ2RoM6yOlO+iT6/8Xxsps6rvdk5+8vDENLIDJ8nXR6GlK4+sxhYmttk9rSj\np03qbdreinoLb1k32d7othoZc1bNzNIfpzbYtjATS2XpODU6Vm4wQ8zSfgyOtWzbMJQDZ6V/DhE3\n4ydl+G0DB/3ldaGiE6zfbFuHB1mcDbE/S1YvOLJqpsXR7SOPY3VqcKxhnRrpT79OjfRnXmesDyPH\nT7Lw90H/PHb0G2DakvKx+m1FO/3ytsFxD8+mn7W7hRcHp8GVZAAAAIBVdnaSne5r2gC4efObOtk1\n6yfLzWck8f4LwBT5tgHgDIkpAwAAAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABAgCAQAA\nAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABJx5EKiqXlNVn66qJ6rq\np0e231FV7+q2P1pVL+1t+5mu/NNV9ZfXtVlV93dtPNG1efmsfz4AAAAAAAAAADgPzjQIVFW7SX4x\nyQ8leXmSN1TVywfV/laSL7XWvjPJ25L8Qrfvy5O8Pskrkrwmyb+oqt01bf5Ckrd1bX2paxsAAAAA\nAAAAACbvrGcEelWSJ1prn2mtXU3ycJLXDuq8NslD3fJ7kvxAVVVX/nBr7Upr7f8keaJrb7TNbp/v\n79pI1+brzvBnAwAAAAAAAACAc+Osg0AvSvIHvfUnu7LROq21/SRfSfItK/ZdVv4tSb7ctbHsWEmS\nqvqJqnqsqh77whe+cAM/FgAAAAAAAAAAnC9nHQQ6l1prv9Jae6C19sB999237e4AAAAAAAAAAMBN\nO+sg0OeSvKS3/uKubLROVe0l+eYkf7Ri32Xlf5TkeV0by44FAAAAAAAAAACTdNZBoA8neVlV3V9V\nl5O8PskjgzqPJHljt/xgkv/cWmtd+eur6o6quj/Jy5J8aFmb3T7v79pI1+ZvnOHPBgAAAAAAAAAA\n58be+io3rrW2X1U/meQ/JtlN8o7W2ieq6q1JHmutPZLkV5P8q6p6IskXMwv2pKv37iSfTLKf5E2t\ntYMkGWuzO+RbkjxcVf8wye90bQMAAAAAAAAAwOTVbCKdi+uBBx5ojz322La7AQAAAAAAAAAAo6rq\nI621B9bVO+uvBgMAAAAAAAAAAG4BQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgA\nQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJiAaq1tuw9bVVVfSPL72+4HC741yR9u\nuxMAt4gxD7hIjHnARWLMAy4SYx5wkRjzgIvEmAfny7e11u5bV+nCB4E4f6rqsdbaA9vuB8CtYMwD\nLhJjHnCRGPOAi8SYB1wkxjzgIjHmwe3JV4MBAAAAAAAAAMAECAIBAAAAAAAAAMAECAJxHv3KtjsA\ncAsZ84CLxJgHXCTGPOAiMeYBF4kxD7hIjHlwG6rW2rb7AAAAAAAAAAAA3CQzAgEAAAAAAAAAwAQI\nAgEAAAAAAAAAwAQIAnGuVNVrqurTVfVEVf30tvsDcJaq6rNV9fGqeryqHtt2fwBOU1W9o6qerqrf\n65XdW1W/VVX/q3t+/jb7CHBalox5P1dVn+vO9R6vqh/eZh8BTktVvaSq3l9Vn6yqT1TVm7ty53rA\n5KwY85zrAZNTVXdW1Yeq6mPdmPcPuvL7q+rR7v7tu6rq8rb7CqxWrbVt9wGSJFW1m+R/JvnBJE8m\n+XCSN7TWPrnVjgGckar6bJIHWmt/uO2+AJy2qvqLSZ5J8mutte/qyv5xki+21n6+C30/v7X2lm32\nE+A0LBnzfi7JM621f7LNvgGctqp6YZIXttY+WlXPTfKRJK9L8jfiXA+YmBVj3o/EuR4wMVVVSe5u\nrT1TVZeSfDDJm5P8nSTvba09XFVvT/Kx1tovbbOvwGpmBOI8eVWSJ1prn2mtXU3ycJLXbrlPAADc\ngNbaf03yxUHxa5M81C0/lNnFU4Db3pIxD2CSWmtPtdY+2i1/NcmnkrwozvWACVox5gFMTpt5plu9\n1D1aku9P8p6u3Hke3AYEgThPXpTkD3rrT8YJNTBtLclvVtVHquontt0ZgFvgBa21p7rl/5vkBdvs\nDMAt8JNV9bvdV4f5ihxgcqrqpUm+J8mjca4HTNxgzEuc6wETVFW7VfV4kqeT/FaS/53ky621/a6K\n+7dwGxAEAoDt+b7W2p9O8kNJ3tR9pQTAhdBm31Hse4qBKfulJN+R5JVJnkryT7fbHYDTVVX3JPl3\nSX6qtfb/+tuc6wFTMzLmOdcDJqm1dtBae2WSF2f2bS5/YstdAm6AIBDnyeeSvKS3/uKuDGCSWmuf\n656fTvK+zE6qAabs81X1wiTpnp/ecn8Azkxr7fPdBdTDJP8yzvWACamqS5ndEH9na+29XbFzPWCS\nxsY853rA1LXWvpzk/Un+XJLnVdVet8n9W7gNCAJxnnw4ycuq6v6qupzk9Uke2XKfAM5EVd1dVc+d\nLyf5S0l+b7u9AjhzjyR5Y7f8xiS/scW+AJyp+c3wzl+Jcz1gIqqqkvxqkk+11v5Zb5NzPWBylo15\nzvWAKaqq+6rqed3yXUl+MMmnMgsEPdhVc54Ht4GazdIK50NV/XCSf55kN8k7Wmv/aMtdAjgTVfXt\nmc0ClCR7Sf6NMQ+Ykqr6t0leneRbk3w+yc8m+fdJ3p3kjyf5/SQ/0lr74rb6CHBalox5r87sqyJa\nks8m+duttae200OA01NV35fkvyX5eJLDrvjvJnk0zvWAiVkx5r0hzvWAiamq707yUGb3aXeSvLu1\n9tbufsbDSe5N8jtJfqy1dmV7PQXWEQQCAAAAAAAAAIAJ8NVgAAAAAAAAAAAwAYJAAAAAAAAAAAAw\nAYJAAAAAAAAAAAAwAYJAAAAAAAAAAAAwAYJAAAAAAAAAAAAwAYJAAAAAANxSVfXqqvoP2+4HAAAA\nwNQIAgEAAAAAAAAAwAQIAgEAAAAwqqp+rKo+VFWPV9UvV9VuVT1TVW+rqk9U1W9X1X1d3VdW1X+v\nqt+tqvdV1fO78u+sqv9UVR+rqo9W1Xd0zd9TVe+pqv9RVe+sqtraDwoAAAAwEYJAAAAAABxTVX8y\nyY8m+d7W2iuTHCT560nuTvJYa+0VST6Q5Ge7XX4tyVtaa9+d5OO98ncm+cXW2p9K8ueTPNWVf0+S\nn0ry8iTfnuR7z/yHAgAAAJi4vW13AAAAAIBz6QeS/JkkH+4m67krydNJDpO8q6vzr5O8t6q+Ocnz\nWmsf6MofSvLrVfXcJC9qrb0vSVpr30iSrr0Ptdae7NYfT/LSJB88+x8LAAAAYLoEgQAAAAAYU0ke\naq39zEJh1d8f1Gs32P6V3vJBXKcCAAAAuGm+GgwAAACAMb+d5MGq+mNJUlX3VtW3ZXY96cGuzl9L\n8sHW2leSfKmq/kJX/uNJPtBa+2qSJ6vqdV0bd1TVc27pTwEAAABwgfikFQAAAADHtNY+WVV/L8lv\nVtVOkmtJ3pTka0le1W17OsmPdru8Mcnbu6DPZ5L8za78x5P8clW9tWvjr97CHwMAAADgQqnWbnT2\nZgAAAAAumqp6prV2z7b7AQAAAMBxvhoMAAAAAAAAAAAmwIxAAAAAAAAAAAAwAWYEAgAAAAAAAACA\nCRAEAgAAAAAAAACACRAEAgAAAAAAAACACRAEAgAAAAAAAACACRAEAgAAAAAAAACACfj/hQx2uebc\nveQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPwAAAJcCAYAAABn6yjlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xmc5Xdd5/v39yxVp7au3tNJOqE7\nC0lHVg0MCI4wCCQEcJtBdBhHxhmccbwjF0WDA14XRhlGERzBZa7ovXJH4aIoQwKEJYiAKM2ihHSH\n7KQ7W6fTW+3bb/6o09VVvXe6q09X1/P5eNTjnPP7/c6vPr965JE/ktfj+y1VVQUAAAAAAAAAAFga\nap0eAAAAAAAAAAAAOHmCHwAAAAAAAAAAWEIEPwAAAAAAAAAAsIQIfgAAAAAAAAAAYAkR/AAAAAAA\nAAAAwBIi+AEAAAAAAAAAgCVE8AMAAAAAAAAAAEuI4AcAAABgGSqlbCqlVKWUxhm+732llO85k/cE\nAAAAYCHBDwAAAAAdIQ4CAAAAeGIEPwAAAAAsG0db0ehUVzk606siAQAAAJwqwQ8AAADAaWivUvPG\nUso/llKGSyl/WEq5oJTy0VLKgVLKJ0spq9rXPqeU8oVSyt5Syj+UUl4w7z6vLaVsa3/nnlLKT8w7\n94JSyo5Sys+UUh4tpTxUSnntScx2Qynlq6WU/aWUB0opv3SUy/5NKeXB9j1/dt53n11K2dr+7iOl\nlHfMO/fKUso32s/xmVLKlmP8/j8upbz18Odov/+TJJcm+V+llKFSys+d6G90nOccbP/dHyql7Cyl\nvLWUUm+f+7FSyudLKb9VStmd5JeOcaxWSnlzKeX+9t/4/y2lDLbvcXD7sx8vpXwryadPNBMAAADA\nYhL8AAAAAJy+H0zy4iRPTvKKJB9N8gtJ1mX2v7/8p1LKxUluSvLWJKuT/GySPy+lrGvf49EkL0+y\nIslrk/xWKeXb5/2ODUkGk1yc5MeTvPtgSHQcw0l+NMnKJDck+Q+llO877JoXJrkyyUuS/Py8Lbbe\nleRdVVWtSHJ5kg8kSSnlyUn+NMnr2893c2ajna4TzLJAVVX/Ksm3kryiqqr+qqrefhJ/o2P54yRT\nSa5I8sz2s/zbeef/SZJ7klyQ5L8c49iPtX9emOSyJP1Jfuew3/PdSbYkeempPCsAAADAmSb4AQAA\nADh9/72qqkeqqtqZ5G+S/F1VVV+tqmosyYcyG6G8JsnNVVXdXFXVTFVVn0iyNcnLkqSqqpuqqrq7\nmvXXSW5J8l3zfsdkkl+pqmqyqqqbkwwluep4Q1VV9Zmqqr7e/n3/mNlQ57sPu+yXq6oarqrq60n+\nKMkPz/t9V5RS1lZVNVRV1Rfbx38oyU1VVX2iqqrJJL+RpCfJd57qH+0ojvs3OppSygXt869vP8ej\nSX4ryavnXfZgVVX/vaqqqaqqRo9x7F8meUdVVfdUVTWU5E1JXn3Y9l2/1P4dowEAAADoIMEPAAAA\nwOl7ZN770aN87k/ypCT/or1V1d5Syt4kz09yYZKUUq4vpXyxlPJ4+9zLkqydd5/dVVVNzfs80r7v\nMZVS/kkp5dZSyq5Syr4k//6weybJA/Pe35/kovb7H8/sikXbSylfKqW8vH38ovZ1SZKqqmba97j4\neLOcpOP+jY7znWaSh+Z95/eTrJ93zQNH+d7hxxY8V/t9I7MrAB3vPgAAAABnXePElwAAAABwBjyQ\n5E+qqvp3h58opXQn+fPMbr/1V1VVTZZS/jJJOc3f+T8zuy3V9VVVjZVS3pkjg59Lkmxvv780yYNJ\nUlXVnUl+uJRSS/IDST5YSlnTPv/UebOX9j12HuX3Dyfpnfd5w2Hnq8M+H/NvdBwPJBlPsvawIOp4\nv+doxx7MbDx00KWZ3SbskSQbj3MfAAAAgLPOCj8AAAAAZ8f7kryilPLSUkq9lNIqpbyglLIxSVeS\n7iS7kkyVUq5P8pIz8DsHkjzejn2eneRHjnLNW0opvaWUb0vy2iTvT5JSymtKKevaK/jsbV87k+QD\nSW4opbyolNJM8jOZDW6+cJR7fy3Jy0opq0spG5K8/rDzjyS5bN7n4/2Njqqqqocyu/3Zb5ZSVpRS\naqWUy0sph29ddiJ/muT/LKVsLqX0J/m1JO8/TkQEAAAA0DGCHwAAAICzoKqqB5J8b5JfyGzY80CS\nNyapVVV1IMl/ymxMsyezYc6Hz8Cv/ckkv1JKOZDkF9v3P9xfJ7kryaeS/EZVVbe0j1+X5BullKEk\n70ry6qqqRququiPJa5L89ySPJXlFkldUVTVxlHv/SZJ/SHJfZqOc9x92/teTvLm9FdfPHu9vdILn\n/NHMRlO3Z/bv98Ecfxuwo3lve97PJrk3yViS/+MU7wEAAABwVpSqshIxAAAAAAAAAAAsFVb4AQAA\nAAAAAACAJUTwAwAAALCElVK+UUoZOsrPv+z0bGfSMZ5xqJTyXZ2eDQAAAOBss6UXAAAAAAAAAAAs\nIY1OD3C2rF27ttq0aVOnxwAAAAAAAAAAgKP68pe//FhVVetOdN2yCX42bdqUrVu3dnoMAAAAAAAA\nAAA4qlLK/SdzXW2xBwEAAAAAAAAAAM4cwQ8AAAAAAAAAACwhgh8AAAAAAAAAAFhCGp0eoJMmJyez\nY8eOjI2NdXqURdVqtbJx48Y0m81OjwIAAAAAAAAAwGla1sHPjh07MjAwkE2bNqWU0ulxFkVVVdm9\ne3d27NiRzZs3d3ocAAAAAAAAAABO07Le0mtsbCxr1qw5b2OfJCmlZM2aNef9KkYAAAAAAAAAAMvF\nsg5+kpzXsc9By+EZAQAAAAAAAACWi2Uf/AAAAAAAAAAAwFIi+OmgvXv35j3vec8pf+9lL3tZ9u7d\nuwgTAQAAAAAAAABwrhP8dNCxgp+pqanjfu/mm2/OypUrF2ssAAAAAAAAAADOYY1OD7Cc3Xjjjbn7\n7rvzjGc8I81mM61WK6tWrcr27dvzzW9+M9/3fd+XBx54IGNjY/npn/7pvO51r0uSbNq0KVu3bs3Q\n0FCuv/76PP/5z88XvvCFXHzxxfmrv/qr9PT0dPjJAAAAAAAAAABYLIKftl/+X9/I7Q/uP6P3vOai\nFfm/XvFtxzz/tre9Lbfddlu+9rWv5TOf+UxuuOGG3Hbbbdm8eXOS5L3vfW9Wr16d0dHRPOtZz8oP\n/uAPZs2aNQvuceedd+ZP//RP8z/+x//Iq171qvz5n/95XvOa15zR5wAAAAAAAAAA4Nwh+DmHPPvZ\nz56LfZLkt3/7t/OhD30oSfLAAw/kzjvvPCL42bx5c57xjGckSb7jO74j991331mbFwAAAAAAAACA\ns0/w03a8lXjOlr6+vrn3n/nMZ/LJT34yf/u3f5ve3t684AUvyNjY2BHf6e7unntfr9czOjp6VmYF\nAAAAAAAAAKAzap0eYDkbGBjIgQMHjnpu3759WbVqVXp7e7N9+/Z88YtfPMvTAQAAAAAAAABwLrLC\nTwetWbMmz3ve8/KUpzwlPT09ueCCC+bOXXfddfm93/u9bNmyJVdddVWe85zndHBSAAAAAAAAAADO\nFaWqqk7PcFZce+211datWxcc27ZtW7Zs2dKhic6u5fSsAAAAAAAAAABLUSnly1VVXXui62zpBQAA\nAAAAAAAAS4jgBwAAAAAAAAAAlhDBDwAAAAAAAAAALCGCHwAAAAAAAAAAWEIEP3TM1PRMp0cAAAAA\nAAAAAFhyBD90xJv/8uv5D//fVzo9BgAAAAAAAADAkiP46aC9e/fmPe95zxP67jvf+c6MjIyc4YnO\nnotW9uQTtz+SL9z1WKdHAQAAAAAAAABYUgQ/HbScg59/87zN2biqJ7/ykdszPVN1ehwAAAAAAAAA\ngCWj0ekBlrMbb7wxd999d57xjGfkxS9+cdavX58PfOADGR8fz/d///fnl3/5lzM8PJxXvepV2bFj\nR6anp/OWt7wljzzySB588MG88IUvzNq1a3Prrbd2+lFOWatZz43XX52f+p9fzf+/9YG8+tmXdnok\nAAAAAAAAAIAlQfBz0EdvTB7++pm954anJte/7Zin3/a2t+W2227L1772tdxyyy354Ac/mL//+79P\nVVV55Stfmc9+9rPZtWtXLrrootx0001Jkn379mVwcDDveMc7cuutt2bt2rVnduaz6IanXpg/ftJ9\n+Y1bvpmXP/2i9Hf7xxEAAAAAAAAA4ERs6XWOuOWWW3LLLbfkmc98Zr79278927dvz5133pmnPvWp\n+cQnPpGf//mfz9/8zd9kcHCw06OeMaWUvOXl1+SxofG859a7Oj0OAAAAAAAAAMCSYEmVg46zEs/Z\nUFVV3vSmN+UnfuInjjj3la98JTfffHPe/OY350UvelF+8Rd/sQMTLo6nX7IyP/DMi/N/f+7e/PCz\nL80lq3s7PRIAAAAAAAAAwDnNCj8dNDAwkAMHDiRJXvrSl+a9731vhoaGkiQ7d+7Mo48+mgcffDC9\nvb15zWtekze+8Y35yle+csR3l7o3XndVaiV528e2d3oUAAAAAAAAAIBznhV+OmjNmjV53vOel6c8\n5Sm5/vrr8yM/8iN57nOfmyTp7+/P+973vtx111154xvfmFqtlmazmd/93d9Nkrzuda/Lddddl4su\nuii33nprJx/jtF042JOf+KeX512fujOv/c7Hc+2m1Z0eCQAAAAAAAADgnFWqqur0DGfFtddeW23d\nunXBsW3btmXLli0dmujsOtefdWRiKi/8jc9kw4pWPvSTz0utVjo9EgAAAAAAAADAWVVK+XJVVdee\n6DpbenFO6O1q5OdeenX+Yce+/NU/7Oz0OAAAAAAAAAAA5yzBD+eM73/mxXnaxsG8/WN3ZHRiutPj\nAAAAAAAAAACck5Z98LMctjRbKs9Yq5W8+YZr8tC+sfzBZ+/p9DgAAAAAAAAAAOekRQ9+SinXlVLu\nKKXcVUq58Sjnu0sp72+f/7tSyqb28TWllFtLKUOllN85xr0/XEq57YnO1mq1snv37iUTxDwRVVVl\n9+7dabVanR7lpDx78+q87Kkb8nt/fXce3jfW6XEAAAAAAAAAAM45jcW8eSmlnuTdSV6cZEeSL5VS\nPlxV1e3zLvvxJHuqqrqilPLqJP81yQ8lGUvyliRPaf8cfu8fSDJ0OvNt3LgxO3bsyK5du07nNue8\nVquVjRs3dnqMk3bjdVvyydsfzX/7+B35zVc9vdPjAAAAAAAAAACcUxY1+Eny7CR3VVV1T5KUUv4s\nyfcmmR/8fG+SX2q//2CS3ymllKqqhpN8rpRyxeE3LaX0J3lDktcl+cATHa7ZbGbz5s1P9OsskkvX\n9Oa1z9+U3//re/Jj37kpT9042OmRAAAAAAAAAADOGYu9pdfFSR6Y93lH+9hRr6mqairJviRrTnDf\nX03ym0lGjndRKeV1pZStpZSt5/sqPuebn3rhFVnT15Vf+cg3zust1wAAAAAAAAAATtViBz9nXCnl\nGUkur6rqQye6tqqqP6iq6tqqqq5dt27dWZiOM2Wg1czPvOSqfOm+PfnobQ93ehwAAAAAAAAAgHPG\nYgc/O5NcMu/zxvaxo15TSmkkGUyy+zj3fG6Sa0sp9yX5XJInl1I+c4bm5RzyQ8+6JFdvGMivf3Rb\nxianOz0OAAAAAAAAAMA5YbGDny8lubKUsrmU0pXk1Uk+fNg1H07yr9vv/3mST1fH2cOpqqrfrarq\noqqqNiV5fpJvVlX1gjM+OR1Xr5W8+YZr8sDjo/njL9zX6XEAAAAAAAAAAM4Jixr8VFU1leSnknw8\nybYkH6iq6hullF8ppbyyfdkfJllTSrkryRuS3Hjw++1VfN6R5MdKKTtKKdcs5ryce55/5dq86Or1\n+Z1P35XHhsY7PQ4AAAAAAAAAQMeV4yymc1659tprq61bt3Z6DJ6Au3cN5aW/9dm86lmX5Ne+/6md\nHgcAAAAAAAAAYFGUUr5cVdW1J7pusbf0gtN2+br+vOY5T8qf/f23sv3h/Z0eBwAAAAAAAACgowQ/\nLAmv/54rM9Bq5r/ctC3LZVUqAAAAAAAAAICjEfywJKzs7cpPv+jK/M2dj+XWOx7t9DgAAAAAAAAA\nAB0j+GHJ+FfPfVIuW9uXt960LZPTM50eBwAAAAAAAACgIwQ/LBnNei2/8LItuWfXcN73xfs7PQ4A\nAAAAAAAAQEcIflhSXrRlfZ5/xdq885N3Zu/IRKfHAQAAAAAAAAA46wQ/LCmllLz55VtyYGwy7/rU\nnZ0eBwAAAAAAAADgrBP8sORcvWFFfuhZl+ZP/vb+3L1rqNPjAAAAAAAAAACcVYIflqQ3vPjJaTXr\n+fWbt3V6FAAAAAAAAACAs0rww5K0bqA7//GFV+ST2x7N5+96rNPjAAAAAAAAAACcNYIflqzXPm9T\nNq7qya9+5PZMz1SdHgcAAAAAAAAA4KwQ/LBktZr1vOn6Ldn+8IF8YOsDnR4HAAAAAAAAAOCsEPyw\npL3sqRvyrE2r8pu33JEDY5OdHgcAAAAAAAAAYNEJfljSSil58w3X5LGhibz71rs7PQ4AAAAAAAAA\nwKIT/LDkPf2SlfmBZ16c937u3jzw+EinxwEAAAAAAAAAWFSCH84Lb7zuqtRrJW/76PZOjwIAAAAA\nAAAAsKgEP5wXLhzsyU9892W56esP5Uv3Pd7pcQAAAAAAAAAAFo3gh/PG6/7pZdmwopVf/cjtmZmp\nOj0OAAAAAAAAAMCiEPxw3ujtauTnrrsq/7hjX/7yazs7PQ4AAAAAAAAAwKIQ/HBe+b5nXJynbRzM\n2z92R0Ympjo9DgAAAAAAAADAGSf44bxSq5W85eXX5OH9Y/mDz97T6XEAAAAAAAAAAM44wQ/nnWdt\nWp0bnnphfv+v78nD+8Y6PQ4AAAAAAAAAwBkl+OG8dOP1V2d6psrbP76906MAAAAAAAAAAJxRgh/O\nS5es7s2/ef7m/MVXduYfHtjb6XEAAAAAAAAAAM4YwQ/nrf/4wsuztr8rv/qR21NVVafHAQAAAAAA\nAAA4IwQ/nLcGWs38zEuuytb79+Tmrz/c6XEAAAAAAAAAAM4IwQ/ntVdde0mu3jCQX//otoxNTnd6\nHAAAAAAAAACA0yb44bxWr5W85eXXZMee0fzR5+/r9DgAAAAAAAAAAKdN8MN573lXrM33bFmfd996\nV3YdGO/0OAAAAAAAAAAAp0Xww7LwCy/bkrHJ6bzjE9/s9CgAAAAAAAAAAKdF8MOycNm6/vyr5z4p\n7//St7L94f2dHgcAAAAAAAAA4AkT/LBs/PSLrsxAq5m3fmRbqqrq9DgAAAAAAAAAAE+I4IdlY2Vv\nV17/PVfmc3c9lk9vf7TT4wAAAAAAAAAAPCGCH5aV1zznSblsXV/+y03bMjE10+lxAAAAAAAAAABO\nmeCHZaVZr+U/v2xL7nlsOO/74v2dHgcAAAAAAAAA4JQJflh2/tnV6/NdV67Nuz51Z/aOTHR6HAAA\nAAAAAACAUyL4YdkppeTNN1yTA2OTeecn7+z0OAAAAAAAAAAAp0Tww7J01YaBvPrZl+Z9X7w/d+8a\n6vQ4AAAAAAAAAAAnTfDDsvWGFz85Pc16fu2mbZ0eBQAAAAAAAADgpAl+WLbW9nfnP/6zK/Kp7Y/m\nc3c+1ulxAAAAAAAAAABOiuCHZe21z9uUS1b35K033Z7pmarT4wAAAAAAAAAAnJDgh2Wtu1HPm67f\nku0PH8j7v/RAp8cBAAAAAAAAADghwQ/L3vVP2ZBnb1qd37zljuwfm+z0OAAAAAAAAAAAxyX4Ydkr\npeTNL9+S3cMTefetd3V6HAAAAAAAAACA4xL8QJKnbVyZH/j2i/NHn7sv39o90ulxAAAAAAAAAACO\nSfADbT/30qtTr5W87WPbOj0KAAAAAAAAAMAxCX6gbcNgK//+uy/PzV9/OH9/7+OdHgcAAAAAAAAA\n4KgEPzDP6/7pZblwsJVf/cjtmZmpOj0OAAAAAAAAAMARBD8wT09XPT933VX5+s59+dBXd3Z6HAAA\nAAAAAACAIwh+4DDf+/SL8/SNg3n7x7dnZGKq0+MAAAAAAAAAACwg+IHD1Golb3n5NXlk/3h+/6/v\n6fQ4AAAAAAAAAAALCH7gKK7dtDo3PO3C/P5n785D+0Y7PQ4AAAAAAAAAwBzBDxzDjdddnZkqefvH\n7uj0KAAAAAAAAAAAcwQ/cAyXrO7Njz9/cz701Z352gN7Oz0OAAAAAAAAAEASwQ8c10++4PKs7e/K\nWz9ye6qq6vQ4AAAAAAAAAACCHziegVYzP/uSq7L1/j256esPdXocAAAAAAAAAADBD5zIv7j2kmy5\ncEXe9tHtGZuc7vQ4AAAAAAAAAMAyJ/iBE6jXSt5yw5bs2DOa937+3k6PAwAAAAAAAAAsc4IfOAnf\necXafM+WC/KeW+/OrgPjnR4HAAAAAAAAAFjGBD9wkn7hZVdnbHI67/jEHZ0eBQAAAAAAAABYxgQ/\ncJIuW9efH33uprz/Sw9k20P7Oz0OAAAAAAAAALBMCX7gFPz0i67Mip5m3nrT7amqqtPjAAAAAAAA\nAADLkOAHTsFgbzOvf9GV+fxdu/PJbY92ehwAAAAAAAAAYBkS/MAp+pfPeVIuX9eXX7t5WyamZjo9\nDgAAAAAAAACwzAh+4BQ167X85xu25N7HhvMnX7y/0+MAAAAAAAAAAMuM4AeegBdetT7fdeXavOuT\n38ye4YlOjwMAAAAAAAAALCOCH3gCSil58w3XZGh8Ku/61J2dHgcAAAAAAAAAWEYEP/AEXbVhID/8\n7EvzJ1+8P3c9OtTpcQAAAAAAAACAZULwA6fhDS9+cnqb9fzazds6PQoAAAAAAAAAsEwIfuA0rOnv\nzk/9syvy6e2P5m/u3NXpcQAAAAAAAACAZUDwA6fpx563KZeu7s1bP7ItU9MznR4HAAAAAAAAADjP\nCX7gNHU36nnT9VfnjkcO5M++9ECnxwEAAAAAAAAAznOLHvyUUq4rpdxRSrmrlHLjUc53l1Le3z7/\nd6WUTe3ja0opt5ZShkopvzPv+t5Syk2llO2llG+UUt622M8AJ3LdUzbk2ZtX57c+8c3sH5vs9DgA\nAAAAAAAAwHlsUYOfUko9ybuTXJ/kmiQ/XEq55rDLfjzJnqqqrkjyW0n+a/v4WJK3JPnZo9z6N6qq\nujrJM5M8r5Ry/WLMDyerlJK33HBNHh+ZyLs/fVenxwEAAAAAAAAAzmOLvcLPs5PcVVXVPVVVTST5\nsyTfe9g135vk/2m//2CSF5VSSlVVw1VVfS6z4c+cqqpGqqq6tf1+IslXkmxczIeAk/HUjYP5gWdu\nzB99/r58a/dIp8cBAAAAAAAAAM5Tix38XJzkgXmfd7SPHfWaqqqmkuxLsuZkbl5KWZnkFUk+dYzz\nryulbC2lbN21a9cpjg6n7ueuuyr1Wsmvf3Rbp0cBAAAAAAAAAM5Tix38LJpSSiPJnyb57aqq7jna\nNVVV/UFVVddWVXXtunXrzu6ALEsXrGjlP7zg8nz0tofzd/fs7vQ4AAAAAAAAAMB5aLGDn51JLpn3\neWP72FGvaUc8g0lOppT4gyR3VlX1zjMwJ5wx/+67LsuFg6289aZtmZmpOj0OAAAAAAAAAHCeWezg\n50tJriylbC6ldCV5dZIPH3bNh5P86/b7f57k01VVHbeSKKW8NbNh0OvP8Lxw2nq66vn5667O13fu\ny1989fC+DQAAAAAAAADg9Cxq8FNV1VSSn0ry8STbknygqqpvlFJ+pZTyyvZlf5hkTSnlriRvSHLj\nwe+XUu5L8o4kP1ZK2VFKuaaUsjHJf05yTZKvlFK+Vkr5t4v5HHCqXvn0i/L0S1bmv318e0Ympjo9\nDgAAAAAAAABwHiknWEznvHHttddWW7du7fQYLCNfvv/x/ODv/m3+04uuzBte/OROjwMAAAAAAAAA\nnONKKV+uquraE1232Ft6wbL1HU9anZc/7cL8wWfvzoN7Rzs9DgAAAAAAAABwnhD8wCK68fqrM1Ml\nb//Y9k6PAgAAAAAAAACcJwQ/sIg2rurNv33+5vzl1x7M1x7Y2+lxAAAAAAAAAIDzgOAHFtlPvvCK\nrO3vzq9+5PZUVdXpcQAAAAAAAACAJU7wA4usv7uRn33Jk/Pl+/fkI//4UKfHAQAAAAAAAACWOMEP\nnAX/4tpLsuXCFXnbR7dnbHK60+MAAAAAAAAAAEuY4AfOgnqt5C0v35Kde0fzh5+7t9PjAAAAAAAA\nAABLmOAHzpLvvHxtXnzNBXnPrXfl0QNjnR4HAAAAAAAAAFiiBD9wFv3Cy7ZkYnom77jlm50eBQAA\nAAAAAABYohqdHgCWk81r+/Kjz92U937+3nzlW3uyeW1fLlvXn8vW9uWydX25bG1/VvV1dXpMAAAA\nAAAAAOAcJviBs+wNL35y+rrquf2hA7nz0aF8atujmZqp5s6v6m3msnX97RhoNgK6bF1fnrSmN92N\negcnBwAAAAAAAADOBYIfOMv6uht5w0uumvs8NT2TB/aM5p5dQ7n3seHcvWs49+wayme/uSsf/PKO\nuetqJdm4qvdQCDRvZaANK1oppXTicQAAAAAAAACAs0zwAx3WqNeyeW1fNq/tO+LcgbHJ3PvY8IIQ\n6N7HhvOl+x7PyMT03HU9zfpRQ6DNa/sy0GqezccBAAAAAAAAABaZ4AfOYQOtZp62cWWetnHlguNV\nVeXh/WO5d9dw7n5sNgS6Z9dw/nHHvtz89Ycyb4ewrBvobgdAh0Kgy9b155JVPWnUa2f5iQAAAAAA\nAACA0yX4gSWolJILB3ty4WBPvvOKtQvOjU9N5/7dI7ln13DueWw2BLr3seF87LaHsmdkcu66Rq3k\n0jW9uWxt/2wEdDAKWteXNX1dtggDAAAAAAAAgHOU4AfOM92Nep58wUCefMHAEef2DE/knoMrAj02\nnHvbUdBnv7krE9Mzc9cNtBq5bF1/Lm9vNXYwBNq0pi89XfWz+TgAAAAAAAAAwGEEP7CMrOrrynf0\ndeU7nrRqwfHpmSoP7h3N3bsOrQh0z2ND+dt7ducvvrpzwbUXr+zJZevaIVA7Btq8ti8Xr+xJrWZV\nIAAAAAAAAABYbIIfIPVaySWre3PJ6t684KqF50YmpmYDoIMhUHt1oL/4ys4MjU/NXdfdqGXz3IpA\nfblsbX82r+vL5Wv7M9jbPMuGk2+jAAAgAElEQVRPBAAAAAAAAADnL8EPcFy9XY1820WD+baLBhcc\nr6oqu4bGF4ZAu4Zzx8MHcsvtj2R6ppq7dk1f16EQaF1/Nq7qyYWDrVywopX1A610NWpn+7EAAAAA\nAAAAYMkS/ABPSCkl6wdmg53nXLZmwbnJ6Zl86/GRdgw0GwLds2s4n96+Kx/YuuOIe63t78qGwVY2\nrJiNgDasaOWCwVYuHDz0fqC7kVJsGQYAAAAAAAAAgh/gjGvWa7l8XX8uX9ef5IIF5/aPTebBvaN5\naN9YHtk3lof3j+WR/WN5aN9YduwZzZfv35M9I5NH3LO3qz4XBc0Pgg4GQhsGW1nb3516TRQEAAAA\nAAAAwPlN8AOcVStazazY0MzVG1Yc85qxyek8un88D+0bnQuCHt43nof3j+bhfWP5u3sfzyP7xzI1\nb9uwJKnXStYPdC+IgBasHNR+39NVX+zHBAAAAAAAAIBFI/gBzjmtZj2XrunNpWt6j3nNzEyVx4bH\n88i+8Ty8v71S0L7ZlYIe2T+Wu3YN5fN3PZYD41NHfHewpzm3StCGFd3ZMNjTDoRmY6ELB3uyqrdp\nCzEAAAAAAAAAzkmCH2BJqtVK1g+0sn6gladm8JjXDY1P5eF9B1cJmg2DHp63ldj2h/Zn19B4qoWL\nBaWrUcsFK7rnVgea2z5s8NDqQesHWulq1Bb5SQEAAAAAAABgIcEPcF7r727kivX9uWJ9/zGvmZye\nya4D40esEnQwDvr6zn35xO2PZHxq5ojvru3vWriF2NzKQe1IaLCVge6G1YIAAAAAAAAAOGMEP8Cy\n16zXctHKnly0sueY11RVlX2jk4dWCJq3StDD+8ayc+9ovvKtPdkzMnnEd3u76kcNguavGLRuoDv1\nmigIAAAAAAAAgBMT/ACchFJKVvZ2ZWVvV67esOKY141NTufR/eN5aN/ovCBoPI/sH8tD+0bzd/c+\nnkf2j2VqZuEeYvVaybr+7nYM1L0gDJq/jVhvl39tAwAAAAAAACx3/s8xwBnUatZz6ZreXLqm95jX\nzMxU2T080Y6Axua2EjsYCN2zazhfuHt3DoxNHfHdgVZjLv654OC2YfO2FLtgRStr+rpSs1oQAAAA\nAAAAwHlL8ANwltVqJesGurNuoDtPuXjwmNcNj08tiIEWvh/PnY88lkcPjOWwxYLSrJesH5i3hdiK\nVjYMds+FQRcO9mT9iu60mvVFflIAAAAAAAAAFoPgB+Ac1dfdyOXr+nP5uv5jXjM1PZPHhiZmI6B9\n7S3E2mHQQ/vGsu2h/bn1jkczMjF9xHdX9TbbMdChMOjCwXlbia1oZWVvM6VYLQgAAAAAAADgXCL4\nAVjCGvXabLAz2EouOfo1VVXlwPjUodWB9rV/9h8KhG7buT+7h8dTHbZaUHejtmDLsA0LthCbXTVo\n/UArXY3a4j8sAAAAAAAAAEkEPwDnvVJKVrSaWdFq5soLBo553eT0TB49MH5kENR+/w879ubj3xjL\n+NTMYfdP1vR1Z8Ng96EtxFYcWino4KpBA90NqwUBAAAAAAAAnAGCHwCSJM16LRev7MnFK3uOeU1V\nVdk7Mjm7UlB767D5YdCOPaP58v17smdk8ojv9nbVs6a/K6t6Z39W9x1838yqvtnPK3ubWd3XldW9\nXVnZ22XlIAAAAAAAAICjEPwAcNJKKVnV15VVfV3ZcuGKY143NjmdR/ePHxEGPT48kceHJ7J3ZCL3\nPDaUPcOTGRqfOuZ9+rsbWdXXXBAJrextZnVvl0gIAAAAAAAAWLYEPwCcca1mPZeu6c2la3pPeO3E\n1Ez2jkzk8ZGJ7BmezJ6RQ1HQ4+3Pe0Ymsmd4NhLaOzyZA6cRCa3q7cqqPpEQAAAAAAAAsHQJfgDo\nqK5GLetXtLJ+Reukv3MwEtozMpnHhycWREGPD0/OC4jOfCS0qnf2XHejfiYeHwAAAAAAAOCUCX4A\nWHIWOxK697Hh7BmeOGEkdHA7sZOJhFZZSQgAAAAAAAA4QwQ/ACwLTzgSGp3damxum7F2FLRnZHI2\nFjqFSGigu5HV/bNx0Jq+2dfVfd2H3vcfOr6mrzs9XVYRAgAAAAAAAI4k+AGAY+hq1LJ+oJX1A6cf\nCT0+NJHdwxN5vP2zc+9Yvr5zXx4fnsjkdHXUe/U067PxT//BOOhgEHT0SKi/u5FSypl6fAAAAAAA\nAOAcJfgBgDPoVCOhqqpyYHzqsCBofPb90Ozn3cMT2T00kTsfGcru4fGMTc4c/XfXa4fCoKNEQvOP\nr+nryopWM7WaQAgAAAAAAACWGsEPAHRQKSUrWs2saDWzaW3fSX1nZGIqu4cOrRa0+xiR0P27R/L4\n8ESGjrHNWL1Wsqq36xhbih0ZCa3q7UpdIAQAAAAAAAAdJ/gBgCWmt6uR3tWNXLK696SuH5+ano2A\njhIJzT++7cH92T08kX2jk0e9TynJyp5mOwjqPiISmn98Tf9sINTVqJ3JRwcAAAAAAAAi+AGA8153\no54LB3ty4WDPSV0/OT2TPSPtOGjeVmOHR0J37xrKl+6byJ6RicxUR7/XQKuRNX1dGexpZkVPM4M9\nzazsnX1d+DN7zWD7XF9XPaVYTQgAAAAAAACORvADACzQrNeyfqCV9QOtk7p+eqbKvtHJ2W3FhubH\nQYfe7xudzL7RyezYMzr3fvpYlVCSRq3MxUAr5oVB82OhuYBoXig02NNMT1MsBAAAAAAAwPlN8AMA\nnJZ6rcxt6XXF+pP7TlVVGRqfmot/9o1OZv/oZPaOTC44dvBnz8hE7ts9PHfdcVqhNOvlKCsItX96\nu444Nj8iajXrZ+aPAgAAAAAAAItI8AMAnHWllAy0mhloNbNx1al9d2amyoHxqew/LAo6PBY6eH7X\n0Hju2jWUfSOTOTA+leo4sVBXo3Zo1aCehasJHX0rskOrC3U3xEIAAAAAAACcHYIfAGBJqc3b7uuS\nU/zu9EyVobGp7B2dOGIVob0jk0dERA/vH8v2hw9k/+hsLHQ8rWbt0KpBPV0LtiJb0dOYfW0t3I7s\n4HHbkAEAAAAAAHAqBD8AwLJRr5XZFXl6m6f83anpmRwYm92GbO/okasJ7R1ZGBHt3Dua2x/cl/1j\nUxk6QSzUrJesaM2GQCt6mlnRaiwMg1rHDocGWo0067Un+icBAAAAAABgCRL8AACchEa9llV9XVnV\n13XK350fC+0fOxgJHf65/dq+buee0bl4aGrmOPuQJenrqi+Ig1Ycb1WhViODvYeO93ZZXQgAAAAA\nAGCpEfwAACyy04mFqqrK6OR09o9OHRkHjU5m31GO79w7mm0PTZ7UVmSNWjliVaEVh60qdNRoqP3Z\n6kIAAAAAAABnn+AHAOAcVkpJb1cjvV2NbBhsnfL3p6ZnMjQ+dYJVhdrh0Lxg6OD7yenjry7U21U/\n6pZjKw4LhI6IiHqa6e9qpFazuhAAAAAAAMCpEvwAAJzHGvVaVvZ2ZWXvE1tdaGxy5uiB0Mih7cfm\nH9+5dyzbRg+c1OpCtZIMtA5bRejwz0cLidrnWs2a7cgAAAAAAIBlSfADAMBRlVLS01VPT1c9F6w4\n9dWFpmeqDI0dWlVo/4LVhabmjs2en11h6O5dQ+3jUxmdnD7u/Zv1Mhf/DMxbSeiY4dD8bctazXQ1\nbEcGAAAAAAAsTYIfAAAWRb1WMtjbzGBv8wl9f2JqZl4oNLVgJaGDwdDBFYYOnt+5Z3Tu+Im2I2s1\na4etHLQwCJrbfqzVPCIkGmg1U7cdGQAAAAAA0CGCHwAAzkldjVrW9ndnbX/3KX+3qqqMT83MC4Jm\nI6GFqw1Ntbcmm/15bGgid+8anjs/c/xeKAPdsysKDRwWCh3cgqy/u5Herkb6uuuzr1319HYf9trV\nsNIQAAAAAABwygQ/AACcd0opaTXraTWf2HZkVVVleGL6UDB02NZjR9ua7IHHR3Kgff7A+NRJ/66u\nei293fX0dTXSe1gMdKJYaO58+/t93bP36G7UUooViAAAAAAA4Hwl+AEAgMOUUtLf3Uh/dyMXr+w5\n5e9Pz1QZmZjKyMR0hscPe52Yysj4dIbGpzIyMZXhiemMjLdfJ6YyPD77+uDe0SPOn6x6raS3qx0R\nzYuJDgZBC44f7Xz7df4qRa1GPTXbmAEAAAAAwDlB8AMAAGdYvVYy0GpmoNU8Y/ecmakyNjU9FwTN\nvc4LgobHp+aCogWv7XO7DowvOD48PnXCrcsOKiXpbR57haH5KxH1z/sZaDXS32pkoLs5+9qaPW4V\nIgAAAAAAeOIEPwAAsATUaiW9XbMr7iTdZ+SeVVVlfGrmqCsQHQyCFqxAdJSViPaOTrZXIzr03Ynp\nmRP+7ma9tIOg5mwc1GpkYF4g1N/dzMC8QOjgNSvmXd/f3UirWT8jfwsAAAAAAFhKBD8AALBMlVLS\natbTatazuq/rjN13vL0S0YGxyRwYm8rQ+FSGxqZyYHyy/dr+3D53YGwqB8Ym8/D+sdy169C5kwmH\nuuq1ufjn4IpCByOhgVZz7tyh480jrutvNdLdEA4BAAAAALB0CH4AAIAzqrtRT3fj9COi8anpDC2I\ngtrx0Pjkws/tYOjgdQ/tG5sXE01mcvrE+5Z11WvzVhc6FAzNj4IG2qsQzV+BaG7bsvb1XY3aaT0z\nAAAAAACcDMEPAABwTupu1NPdX8+a/tPbwmx8ano2ADpsRaHZeGh+TDQ5d83+sak8uHd0Lho6MDaV\nqZmTCIcatfR3N9LbVZ977WsHRL1djfR3z37u626kr2ve++7Zc7PXzH7u7aqnu1FLKeW0nh8AAAAA\ngPOP4AcAADivHQyH1p5GOFRVVcanZuYCoQVblM2tPDSV/WOTGRmfznD788jEbGz08L6xjExMZ2h8\nKsPjJxcPJUmjVhbEQb3tMKiv62Ao1I6Guo4dDfV3H7q2p1kXEAEAAAAAnAcEPwAAACdQSkmrWU+r\neXrhUDIbD01Mz2S4HQYNT0y1A6HpjLRDodnj7fPz3h+MiHYPjcy9HxqfysTUzEk+R9px0PxQqD63\nAtHRoqG+owRGc6sXdTVSqwmIAAAAAADONsEPAADAWVRKmV11qFHP6r6uM3LPyemZjIxPZ6gdD83+\nTLejoHlB0UQ7Gpp37cj4dB7cO9YOj2bDotHJ6ZP+3T3N+lwo1NfdyECrkf7uZgZaB9830t9qZKDV\nzEA7FhpotY+1r+tvNdKs187I3wIAAAAAYDkQ/AAAACxxzXotg721DPY2z8j9pmeqdih0KBoaakdE\nh95PLVilaOjgVmZjU9m5dzQHxibntkCbPoktzLobtdkoqDUvCmrHQitazXnh0KHzAwePd89e09dd\nT0M4BAAAAAAsA4IfAAAAFqjXSju+Of2AqKqqjE3O5MD4ZIbGZgOggyHQwShoaGwqB8bnn5u99lvD\nIwuuO4luKD3N+rwVhA5FQUccWxAOHVqVqL81u9VZ3VZlAAAAAMA5TPADAADAoimlpKernp6uetYP\nPPH7VFWVkYnpuVhofhg0FwuNTWVofHI2EjoYEo1N5tEDY4dio4mpVCcRDh1cOeiIVYW6jx4L9bca\n6WnW09tVT6s5+7wHP3c3ailFQAQAAAAAnDmCHwAAAM55pZT0dTfS193IBSue+H1mZqqMTE4fPxZq\nB0Wz5yfnPj+0b6x93ezPqeiZFwHNvTbraXXV09s+1moePF9Lb1djweeeZmPB93q6aunpasx97m7U\nUrMqEQAAAAAsG4IfAAAAlo1arcyt3pPBJ36f6ZkqwxNT87Ypm8zY5ExGJqYzOjmdsfbr3OfJ6Yy2\n389/3T86mUf3jy343sjkdKZPZv+yw8yPiVrNWnq66ultNtLqqqenWWufb8yLiGYjo96uxpGf29cc\njI56uxqiIgAAAAA4hwh+AAAA4BTVayUrWs2saDUX5f4TUzNHhEIjE8cIh9rvx+YFRvOjo9moaN53\nTiMqarXDodkViGpzgVFXo5ZGrZZmvZZmvaTRfm3WamnUy2HHa/nf7N1/tO15Xd/313vvfc65d5gB\nLR0TAxgmQrVDlrV4JahZaRfUOq4YcVkMQ4qx1pY/Akq6lsmSlbYa2q6UpF0mVaAh8kOpES3VlamJ\n0KS0JsYWuPxoIxBWpqBl0JRxwPl57zln7/3pH/u7z/5x9r3nnJmz597vzOOx1l3fvT/fz/d7PmfA\nJevy5PPZGSzNGa7N2fSe7rnRYDFv5bm1n+MINQAAAACe6gQ/AAAAcJPZHQ2yOxrkWRe3ExQlyeFk\nuthVaC0UWvnehUJHwdFadPTYwST7h9M8Mp1kPJnmcDLNeNJy0F3H02kOxtOMp+1ofNuGg9oQHC0+\nL4dDK+HRYDUm2u2uo8Ggi5pm83e750aDyoWdYW67MJoFYBdHue3CztH3W3aH4iMAAAAAtmLrwU9V\n3ZXkbyUZJvmZ1tp/vXZ/L8nPJfmmJA8keVVr7ber6tlJ3pfkm5O8u7X2+qVnvinJu5NcTPIPkryh\ntXb2/2kiAAAAPE3NI5ht7VJ0La21TKYt4+kiCjpcCoVmn2eh0NHnpTmLe617ZunzdPVdq9HR7LoY\nn80/GE9z9XCah6+Ou591rZ+z+BmnNRxUbrswOgqAZp93jj4/8+JOnrly/3g0tDsabPFfDQAAAAD6\naqvBT1UNk7wlybcnuS/JR6rqntbap5am/VCSL7fWXlBVdyd5c5JXJbma5D9L8se7P8veluQ/TvKh\nzIKfu5L82jZ/FwAAAOCJq6rZrjnD5MLO8EYv58xaaysx0P7hJA9dHeehq4d5+Oo4D12ZXR++eng0\ntjz++S89Nvve3TvJ3miQZ15cjoXWdhPaGx3dXw6J5vNv2xtlMLDLEAAAAMBTzbZ3+HlJkntba59N\nkqp6b5JXJFkOfl6R5Ce6z+9L8tNVVa21R5P8RlW9YPmFVfXVSZ7ZWvs/u+8/l+R7IvgBAAAAtqyq\nsjuq7KbbeefiTr7qmY/vXdNpyyMHy5FQ93n/MA9dmUVD8zjooaVo6Hf/4Eoe6qKiq4fXPyKtKrl1\ndzkC2hwGrY89c2nXoQs7A0eTAQAAANxkth38PCfJ55e+35fkT1xrTmttXFUPJnl2kt+/zjvvW3vn\nczZNrKrXJnltknzN13zNWdcOAAAAsDWDQc1263kCx6odjKcrYdDR7kJXFqHQw2u7D/3Lh67mX3xx\nvgvROJMTjinbGdbKMWPL172d2dFwu6NBdoeLz4uxWh1bu78zrA1ji3lDuxMBAAAAbLTt4OeGaq29\nPcnbk+TSpUvX/9srAAAAgJ7ZHQ3y7Fv38uxb9x7X8621XDmcHO0odNrjyT73+4/m4auH2R9PczCZ\n5nAyzcF4mhPaoTMbVDbGQjvDyu5omN1hLY0twqN5THSmGOnYvNn9vWvESHujgePSAAAAgBtm28HP\nF5I8b+n7c7uxTXPuq6pRkmcleeCEdz73hHcCAAAAcIKqyi27o9yyO8offtaFJ/y+ybTlYC0COuw+\n74+nOZy0o7GDpfuLsbZhbOk94zb7vvbug/E0jx5Mjo3Nr7P1tBN3MzqrW/dGuXVvlGfsDXPrhZ3c\n1n2/9cLsetuF+f3F5/n92/Z2cuuF2bN7o+G5rgsAAAB46tt28PORJC+sqjsyi3LuTvLn1ubck+QH\nkvwfSV6Z5IOttWv+7Utr7feq6qGqemmSDyX580l+ahuLBwAAAOD0hoPKxd1hLubmDFgm03bt2KiL\niVYioaV46XDcsr80duVgkkf2x3nk6jiPHHTX/XHuf3g/j+zPdkZ6ZH98ql2PdoeDo0hoEQSNVseO\nhUQ7x565ZWdo1yEAAAB4mthq8NNaG1fV65N8IMkwyTtba5+sqjcludxauyfJO5K8p6ruTfKlzKKg\nJElV/XaSZybZrarvSfLvttY+leQvJHl3kotJfq37AwAAAADXNBxUhoNhLuw8OUHS/Mi0eQw0D4Qe\n3h+vjD18dZxH9g+7sUke2T/M//fw1fw/9y/u74+nJ/68quTW3aVQaCkQesbueki0s/L9GbtLuxBd\nGGVnOHgS/gkBAAAAj1ddZzOdp5RLly61y5cv3+hlAAAAAMCZHYyneXR/KRw6Fg8drnx/9GAeEi3F\nRd1uRKf568C90WAlAFoOgp6xN8reaJjd0SB7o8HRdfF59d7ucJC9nWF3HRxd94azebujQYZ2JgIA\nAIAkSVV9tLV26aR52z7SCwAAAAB4gmZhzG6+8hm7T+g902nLY0e7Dh3OdhTqPq8HQkfxUPf5d//g\n6lFsdDBeHH12HkaDWgRCG6Kh2XW4FAst4qGNkdE13rE3GmR3OFwJj5bfsTOsVImPAAAAuPkJfgAA\nAADgaWIwqNmuPXujJBee8Pum05aDyTT7SwHQ/uGku06XrpMcjGfz5n/m0dD+eHFvZWztHQ9eObzu\n/Ok5bWS+Gggdj4Yu7AyzNxrm4u4wF3cGubgzzIXdYS4cjQ2XxgZHYxd2Zvcv7Czm7I0GGdjdCAAA\ngMdB8AMAAAAAPC6DQeXCYBax3GjjY+HRLDS6uhIenRAZLQdJK8HRIkB6dH+c33/kIFcPJ7lyMMmV\nw0muHk6yP358ux1d2BmsRECLMGiw+L4UCy3mDo5HREfh0eDYmLAIAADgqUXwAwAAAAD03mg4yGg4\nyDP2bszPn05bro6XI6DpLApaC4MWodB08f1w83NffvRwdU53//HYHQ2OoqKLu7PdhY7vSDSLhY52\nIFqaP4+PVkKk3fm8xTOj4eCc/8kCAACwieAHAAAAAOAJGgwqt+yOcsvudv/KdTpt2R9PVyKgKwfz\nmGi6CIOWIqPjY9PFvYNJHrp62L1junjfeJL2OI5JGw1qERAtxUEXjnYwGixFR8sx0WA1MjqKigZr\nOxsNu2PVHIcGAAA8vQl+AAAAAAB6YjCoWSSzO8xXbvHntLYWFq3tQLQ8fnU8PRYYHe1U1MVDVw4m\n+YPHDlajpO7P4eRxlEXJyi5FiyhocZzZ8q5FF0YbjkXrxi8svWM5Ppo/vzOsVImLAACAm4vgBwAA\nAACAFVV1FMd8xZZ/1ngyzdXxdGmnouM7EV1d2snoSje+vxYdXTmYZL+Lix68criy69H8nY9n16Lh\noHJhNMjeziz+2R0NsjMcZHc4yO5odt3pPu8MB9kbDVbnjRZzd9auu2vv2xkNstddl9+7eH51vl2O\nAADg6UvwAwAAAADADTMaDnLrcJBb97b719XzXYv21yKg1ahouhQcLe9kNM3hZJqD8ey6P5nmcDzN\nwWQx/tiVydH95evB0vXxBEfXMxpcKyw6OUzaHdWGsU1xUmVvNMzezmxHpJVrd7za/LozHJzvLwgA\nAFyT4AcAAAAAgKe85V2LnpWdG7KG8WSaw0lbhEBL4dB8bD0kOujmrwRHG8Oi4/Pm731kf7w03lZC\npPn4ePrEa6ThoI4CoPmuSHvd9cLG68kR0d7a903X0cCxawAAPP0IfgAAAAAA4EkwGg4yGiYXd4c3\neinHTKdtJTRaDoP2x5Psj2e7H812SVr9fvVwkv3Daa6O16+zufPrg1cO88UNz149nOSJ9EaDykoA\ndHIsNMjeaHjida+7zo5bq6Mdk0bD2eejo9iGlaHoCACAJ5ngBwAAAAAAnuYGg8qFwSyWuRHmOxed\nFBHtr0dFm+KjtetDVw5XYqXlEGlyDjsbzc3jn53RIKPBILvd53kctHMUCh2Ph+bHq+2MavbsaHn+\n6udj0VEXI82e2/zM8ecESgAAfSf4AQAAAAAAbqh5lHLr3pP7X1uMJ8d3IrrahUXz6+GkZTw/gm3S\nctjthHT0+egItdYd2zb7PJ83nix2T5o/Nz9m7XDczZsuPh8sPXceR61dyzwIGg2qC4w2xEVLOyLt\njQbXPW5t9mexM9Lsunx/aX53b3c4EB4BADxOgh8AAAAAAOBpaTQc5NYbEBqd1nTaZjHQenQ0XouO\nlu6tREfzedPlZ46HSweTafdcFyeNF+/cP5zmoSvjxS5Ja0e8tSfQJFVlJQba2xnkwnI0tCEourCz\niI2OBUVrsdHKEW3d++djYiMAoO9uzv8ECwAAAAAA8DQ3GFT2BsPcpD1SWms5nLSVHZFmR6etHcO2\nFAjNj1Zbua7cXz227eGr42u+/4nERklWo6G1yGh3OJgdyTaolSPUdoaV0XA2vjMcZDScHd826o5M\n2+12TZo9u3qM2nz+zmB+9NvivUfPDrtj3RzBBgCc4FT/EbGqhkne3Fr70S2vBwAAAAAAgB6oquyO\nZkeC3Xbhyf3Zy7HRSjC0diTbsaBoQ2y0Mv9wMXblyuToeLX50WtHn7vr/Mi2bRsOahYNDQZrsVAX\nIM0/DzbESUfHty2HR2uB0do750e6zY972x0NstdFULvDxfje2pxdgRIAPGlOFfy01iZV9Se3vRgA\nAAAAAAA4yUpsdIPX0lrLZNoyns6PR1scwbYcCI2n02Ox0Oq9+fjsSLbxZDp753i6dn8tOpoeD5Ae\nOxgvPbv+XPe5e24yfYJbJW2wiIJqNRxaCoNWQqH52MbxWsREo+PvWA+ONr6/uw4HQiQAnjrOsgnk\nx6vqniT/Y5JH54OttV8+91UBAAAAAABAD1TNjv0aDZMLO8MbvZwzm07b0e5F82DocDLNwXgWLS1f\nj8ZXxloOxpPuuZb98fG5h5Np9je849H98Wz+ZH1+O/oZ52m+U9IsABouYqKlOGinO5ZtfvzasNv5\naNgd7za/NxrMdkc6GuvG5z9j2O2oNBzU0fFuy+86mtP9jKN3Dtfee/Szlsa7OQImgKe3swQ/F5I8\nkORlS2MtieAHAAAAAAAAemgwqOwNhtk7y39r+CSZH912LDhai4kOxrOg6HBDnLS/EhBNjj7vb4iS\nlt/76MEkk3kINV3suHT0fTrNpNspaTKdrfPJVpVFCNTFQiuh0TxUWg6JjkVFy2PzI982HP82GGRn\n1B0r1x0XNz8Wbmdl/uLzPJ7aWR9bf2bgGDiAx+PU/6+7tfaD21wIAAAAAAAAwNzy0W3Zu9Grub7W\nWqYtOZzMAqBxd1TbeL1yz3MAACAASURBVLopGFoNiSbTlsNpy2TpmLXV9yyOfVuec/TO9Z+39LOW\n37X8M64cTjK+Ot3w7PxousVRcYeTabZw8tuKnS4+Wg+D5lHRLDia7Yi0fm8+fyVEGtTa/NWIaTU4\nGmR3tPyewcqxdMu7Px2NDQYZ2GEJuMFOHfxU1XOT/FSSb+uG/kmSN7TW7tvGwgAAAAAAAAD6oKoy\nrGQ46N+xbqcxD4fG05bD8TSHXTg07oKgRRzUzVuKhQ4ni2DpsIuJDjY8O57Odl8aT6c5HLdr/ozx\nPFhambf8MxfzzvtYuGXz3YuOYqBhFxl1wdDOqBsbLmKh3eXdjkbHw6Kd4SB7o8FKxLR4rouejo6l\nWw2Udka19HMHRzs8AU9dZ9mc711J/m6S7+u+v6Yb+/bzXhQAAAAAAAAAN4fhoBYx002+29Ky1trR\nkWuH09mxb4uwaC1KmiwfCbe4Nz9G7nB+PNzS+PzZ+f3FvdXnH90f52DtnYdrP2u8hW2UBpWlIGke\nDdXR50U0VCtz5jsozefPdkFaDZOu/Xn1++5ovnvTYiel+Y5Lyz/PrklwdmcJfm5vrb1r6fu7q+ov\nnveCAAAAAAAAAOCJqqrZkWDD5GJu7t2XJmsB0kpsNJntZnSwEhp10dCkrYzNI6KVsfV7RwHTPGZq\neWQ8Pvo5h5NuF6fu88HSDkrbCJPmRmtHts2Do53B0udNUdHa8W673fFuRzsvLUdGXeQ0Giw+DweV\n0WD2zGhQR99n1+7+8Brjg8pwuDo+qNm/92DbzhL8PFBVr0nyC933Vyd54PyXBAAAAAAAAABPH/Nd\nlC7s3Nxh0nS6etzawTxQ6o5jW97d6HDlaLe1nZPWjms7Os5tKVaaR0bzYGm8tMPS1cNpHrm6unPS\n8v3lHZluhGPh0FJYdOag6Oj+piBpU6g02PC+tee7+7fsDvOyr/9DN+SfEU/cWYKf/zDJTyX5ySQt\nyW8m+cFtLAoAAAAAAAAAuLkMBpW9wTB7ZykNbqDlY91mOxUt7aC0FApNpi3j6fw6XXyfXGP86P50\n9fvRdbrh+aXxY+9fHb9yOFmML61vPJ1ueOdibYeTs+3A9FW37eXDf0Xw01en+j/Dqhom+d7W2ndv\neT0AAAAAAAAAAE9Yn451Oy/Ta8VLK5HRbNzJY/12quCntTapqldntrsPAAAAAAAAAAA3mcGgsjuY\nlzxPj8jp6eosG23906r66SS/mOTR+WBr7WPnvioAAAAAAAAAAGCjswQ/39hd37Q01pK87PyWAwAA\nAAAAAAAAXM+pgp+qGiR5W2vtl7a8HgAAAAAAAAAA4DoGp5nUWpsm+ctbXgsAAAAAAAAAAHCCUwU/\nnX9UVT9aVc+rqn9l/mdrKwMAAAAAAAAAAI451ZFenVd119ctjbUkf+z8lgMAAAAAAAAAAFzPqYOf\n1tod21wIAAAAAAAAAABwslMf6VVVt1TVf1pVb+++v7Cqvmt7SwMAAAAAAAAAANadOvhJ8q4kB0m+\ntfv+hST/5bmvCAAAAAAAAAAAuKazBD9f21r760kOk6S19liS2sqqAAAAAAAAAACAjc4S/BxU1cUk\nLUmq6muT7G9lVQAAAAAAAAAAwEajM8z98STvT/K8qvr5JN+W5D/YxqIAAAAAAAAAAIDNTh38tNb+\nYVV9LMlLMzvK6w2ttd+f36+qF7XWPrmFNQIAAAAAAAAAAJ2z7PCT1toDSf7+NW6/J8mLn/CKAAAA\nAAAAAACAaxqc47vqHN8FAAAAAAAAAABscJ7BTzvHdwEAAAAAAAAAABucZ/ADAAAAAAAAAABs2XkG\nPwfn+C4AAAAAAAAAAGCDUwc/NfOaqvrPu+9fU1Uvmd9vrb10GwsEAAAAAAAAAAAWzrLDz1uTfEuS\nV3ffH07ylnNfEQAAAAAAAAAAcE2jM8z9E621F1fVx5Oktfblqtrd0roAAAAAAAAAAIANzrLDz2FV\nDZO0JKmq25NMt7IqAAAAAAAAAABgo7MEP/9dkl9J8lVV9V8l+Y0kf20rqwIAAAAAAAAAADY69ZFe\nrbWfr6qPJnl5kkryPa21T29tZQAAAAAAAAAAwDGnDn6q6j2tte9P8s83jAEAAAAAAAAAAE+Csxzp\n9aLlL1U1TPJN57scAAAAAAAAAADgek4MfqrqjVX1cJJvqKqHqurh7vsXk/y9ra8QAAAAAAAAAAA4\ncmLw01r7a62125L8jdbaM1trt3V/nt1ae+OTsEYAAAAAAAAAAKAzOsPcX6uqP7U+2Fr7x+e4HgAA\nAAAAAAAA4DrOEvz8paXPF5K8JMlHk7zsXFcEAAAAAAAAAABc06mDn9ban1n+XlXPS/I3z31FAAAA\nAAAAAADANQ2ewLP3JfnXz2shAAAAAAAAAADAyU69w09V/VSS1n0dJPnGJB/bxqIAAAAAAAAAAIDN\nTh38JLm89Hmc5Bdaa//0nNcDAAAAAAAAAABcx6mDn9baz25zIQAAAAAAAAAAwMlODH6q6p9lcZTX\nyq0krbX2Dee+KgAAAAAAAAAAYKPT7PDzXVtfBQAAAAAAAAAAcConBj+ttd+Zf66qP5Tkm7uvH26t\nfXFbCwMAAAAAAAAAAI4bnHZiVf3ZJB9O8n1J/mySD1XVK7e1MAAAAAAAAAAA4LjTHOk191eSfPN8\nV5+quj3JP0ryvm0sDAAAAAAAAAAAOO7UO/wkGawd4fXAGZ8HAAAAAAAAAACeoLPs8PP+qvpAkl/o\nvr8qyT84/yUBAAAAAAAAAADXcurgp7X2l6rqe5P8yW7o7a21X9nOsgAAAAAAAAAAgE1OHfxU1TOS\n/L3W2i9X1dcl+bqq2mmtHW5veQAAAAAAAAAAwLLBGeb+4yR7VfWcJO9P8v1J3r2NRQEAAAAAAAAA\nAJudJfip1tpjSb43ydtaa9+X5EXbWRYAAAAAAAAAALDJmYKfqvqWJP9+kr/fjQ1P8dBdVfWZqrq3\nqn5sw/29qvrF7v6Hqur5S/fe2I1/pqq+Y2n8P6mqT1bVb1XVL1TVhTP8HgAAAAAAAAAA0FtnCX7+\nYpI3JvmV1tonq+qPJfnfrvdAVQ2TvCXJdya5M8mrq+rOtWk/lOTLrbUXJPnJJG/unr0zyd2Z7SJ0\nV5K3VtWwO1LsR5Jcaq398cyio7vP8HsAAAAAAAAAAEBvnTr4aa39emvtu5O8rapua619trX2Iyc8\n9pIk93ZzD5K8N8kr1ua8IsnPdp/fl+TlVVXd+Htba/uttc8lubd7X5KMklysqlGSW5L87ml/DwAA\nAAAAAAAA6LNTBz9Vdamq/lmS/zvJb1XV/1VV33TCY89J8vml7/d1YxvntNbGSR5M8uxrPdta+0KS\n/ybJ/5vk95I82Fr7X66x5tdW1eWqunz//fef5tcEAAAAAAAAAICb2lmO9Hpnkr/QWnt+a+2PJnld\nkndtZ1nXVlVfmdnuP3ck+SNJnlFVr9k0t7X29tbapdbapdtvv/3JXCYAAAAAAAAAAGzFWYKfSWvt\nn8y/tNZ+I8n4hGe+kOR5S9+f241tnNMd0fWsJA9c59l/J8nnWmv3t9YOk/xykm89w+8BAAAAAAAA\nAAC9dWLwU1UvrqoXJ/n1qvrbVfVvV9W/VVVvTfK/n/D4R5K8sKruqKrdJHcnuWdtzj1JfqD7/Mok\nH2yttW787qraq6o7krwwyYczO8rrpVV1S1VVkpcn+fSpflsAAAAAAAAAAOi50Snm/Ldr33986XO7\n3oOttXFVvT7JB5IMk7yztfbJqnpTksuttXuSvCPJe6rq3iRfyiwKSjfvl5J8KrOdhF7XWpsk+VBV\nvS/Jx7rxjyd5+yl+DwAAAAAAAAAA6L2ababz1Hfp0qV2+fLlG70MAAAAAAAAAADYqKo+2lq7dNK8\n0+zws/zSP53kRUkuzMdaa286+/IAAAAAAAAAAIDHY3DaiVX13yd5VZIfTlJJvi/JH93SugAAAAAA\nAAAAgA1OHfwk+dbW2p9P8uXW2l9N8i1J/rXtLAsAAAAAAAAAANjkLMHPle76WFX9kSSHSb76/JcE\nAAAAAAAAAABcy+gMc3+1qr4iyd9I8rEkLcnf2cqqAAAAAAAAAACAjU4d/LTW/ovu4/9UVb+a5EJr\n7cH5/ar69tbaPzzvBQIAAAAAAAAAAAtnOdLrSGttfzn26bz5HNYDAAAAAAAAAABcx+MKfq6hzvFd\nAAAAAAAAAADABucZ/LRzfBcAAAAAAAAAALDBeQY/AAAAAAAAAADAlp1n8PPb5/guAAAAAAAAAABg\ng9FZJlfVtyZ5/vJzrbWf667fe64rAwAAAAAAAAAAjjl18FNV70nytUk+kWTSDbckP7eFdQEAAAAA\nAAAAABucZYefS0nubK21bS0GAAAAAAAAAAC4vsEZ5v5Wkj+8rYUAAAAAAAAAAAAnO8sOP/9qkk9V\n1YeT7M8HW2vffe6rAgAAAAAAAAAANjpL8PMT21oEAAAAAAAAAABwOqcOflprv77NhQAAAAAAAAAA\nACcbnHZiVb20qj5SVY9U1UFVTarqoW0uDgAAAAAAAAAAWHXq4CfJTyd5dZJ/keRikv8oyVu2sSgA\nAAAAAAAAAGCzswQ/aa3dm2TYWpu01t6V5K7tLAsAAAAAAAAAANhkdIa5j1XVbpJPVNVfT/J7OWMw\nBAAAAAAAAAAAPDFnCXa+v5v/+iSPJnlekn9vG4sCAAAAAAAAAAA2O/UOP62136mqi0m+urX2V7e4\nJgAAAAAAAAAA4BpOvcNPVf2ZJJ9I8v7u+zdW1T3bWhgAAAAAAAAAAHDcWY70+okkL0nyB0nSWvtE\nkju2sCYAAAAAAAAAAOAazhL8HLbWHlwba+e5GAAAAAAAAAAA4PpGZ5j7yar6c0mGVfXCJD+S5De3\nsywAAAAAAAAAAGCTs+zw88NJXpRkP8nfTfJgkjdsY1EAAAAAAAAAAMBmZwl+7uz+jJJcSPKKJB/Z\nxqIAAAAAAAAAAIDNznKk188n+dEkv5Vkup3lAAAAAAAAAAAA13OW4Of+1tr/vLWVAAAAAAAAAAAA\nJzpL8PPjVfUzSf7XJPvzwdbaL5/7qgAAAAAAAAAAgI3OEvz8YJKvT7KTxZFeLYngBwAAAAAAAAAA\nniRnCX6+ubX2dVtbCQAAAAAAAAAAcKLBGeb+ZlXdubWVAAAAAAAAAAAAJzrLDj8vTfKJqvpckv0k\nlaS11r5hKysDAAAAAAAAAACOOUvwc9fWVgEAAAAAAAAAAJzKqYOf1trvbHMhAAAAAAAAAADAyQY3\negEAAAAAAAAAAMDpCX4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAA\nAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAA\nAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAA\nAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4If\nAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAe\nEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAA\nAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI9sPfipqruq\n6jNVdW9V/diG+3tV9Yvd/Q9V1fOX7r2xG/9MVX3H0vhXVNX7quqfV9Wnq+pbtv17AAAAAAAAAADA\nzWCrwU9VDZO8Jcl3Jrkzyaur6s61aT+U5MuttRck+ckkb+6evTPJ3UlelOSuJG/t3pckfyvJ+1tr\nX5/k30jy6W3+HgAAAAAAAAAAcLPY9g4/L0lyb2vts621gyTvTfKKtTmvSPKz3ef3JXl5VVU3/t7W\n2n5r7XNJ7k3ykqp6VpI/leQdSdJaO2it/cGWfw8AAAAAAAAAALgpbDv4eU6Szy99v68b2zintTZO\n8mCSZ1/n2TuS3J/kXVX18ar6map6xqYfXlWvrarLVXX5/vvvP4/fBwAAAAAAAAAAbqhtBz/bMEry\n4iRva639m0keTfJjmya21t7eWrvUWrt0++23P5lrBAAAAAAAAACArdh28POFJM9b+v7cbmzjnKoa\nJXlWkgeu8+x9Se5rrX2oG39fZgEQAAAAAAAAAAA85W07+PlIkhdW1R1VtZvk7iT3rM25J8kPdJ9f\nmeSDrbXWjd9dVXtVdUeSFyb5cGvtXyb5fFV9XffMy5N8asu/BwAAAAAAAAAA3BRG23x5a21cVa9P\n8oEkwyTvbK19sqrelORya+2eJO9I8p6qujfJlzKLgtLN+6XMYp5xkte11ibdq384yc93EdFnk/zg\nNn8PAAAAAAAAAAC4WdRsM52nvkuXLrXLly/f6GUAAAAAAAAAAMBGVfXR1tqlk+Zt+0gvAAAAAAAA\nAADgHAl+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAA\nAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAA\nAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHtl68FNVd1XV\nZ6rq3qr6sQ3396rqF7v7H6qq5y/de2M3/pmq+o6154ZV9fGq+tVt/w4AAAAAAAAAAHCz2GrwU1XD\nJG9J8p1J7kzy6qq6c23aDyX5cmvtBUl+Msmbu2fvTHJ3khcluSvJW7v3zb0hyae3uX4AAAAAAAAA\nALjZbHuHn5ckube19tnW2kGS9yZ5xdqcVyT52e7z+5K8vKqqG39va22/tfa5JPd270tVPTfJn07y\nM1tePwAAAAAAAAAA3FS2Hfw8J8nnl77f141tnNNaGyd5MMmzT3j2byb5y0mm1/vhVfXaqrpcVZfv\nv//+x/s7AAAAAAAAAADATWPbwc+5q6rvSvLF1tpHT5rbWnt7a+1Sa+3S7bff/iSsDgAAAAAAAAAA\ntmvbwc8Xkjxv6ftzu7GNc6pqlORZSR64zrPfluS7q+q3Mzsi7GVV9T9sY/EAAAAAAAAAAHCz2Xbw\n85EkL6yqO6pqN8ndSe5Zm3NPkh/oPr8yyQdba60bv7uq9qrqjiQvTPLh1tobW2vPba09v3vfB1tr\nr9ny7wEAAAAAAAAAADeF0TZf3lobV9Xrk3wgyTDJO1trn6yqNyW53Fq7J8k7krynqu5N8qXMIp50\n834pyaeSjJO8rrU22eZ6AQAAAAAAAADgZlezzXSe+i5dutQuX758o5cBAAAAAAAAAAAbVdVHW2uX\nTpq37SO9AAAAAAAAAACAcyT4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAA\nAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgB\nAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgR\nwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAA\nQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA6BHBDwAAAAAAAAAA9IjgBwAAAAAA\nAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAA\nAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgB\nAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4A4P9v715jJMsO+oD/Tz/nPbOzu7bXu+tdPwCztsHYiwWs\nHSEQCZBIdogDNsFyokjkA0ig5AMPJYIgRUoiApEiAiECySQOhhiTWBFSeAQRbMC7a+O3Y2zMmn15\n197ZndnZme7p7jr5cG9NV92uqu6enZ7q6v79pKu699xHnZquuX37nv89BwAAAAAAAGCGCPwAAAAA\nAAAAAMAMEfgBAAAAAAAAAIAZIvADAAAAAAAAAAAzROAHAAAAAAAAAABmiMAPAAAAAAAAAADMEIEf\nAAAAAAAAAACYIQI/AAAAAAAAAAAwQwR+AAAAAAAAAABghgj8AAAAAAAAAADADFmYdgUAAABgZvV6\nyZOfTp76fPKi1yRnX5aUMu1aAQAAAAAHnMAPAAAA7FSvlzz5qeShDzTTFz+YXH56c/3Rm5I7vnFz\nuv11yZHT06svAAAAAHAgCfwAAADAOL2N5IlPJg99cDPgs/JMs+7MXcnX/O3k7jcmt3x1s90jDzTT\n5363PUBJbn1lcudACOiWr0nmjLANAAAAAFw7gR8AAADo620kX/rEZrjnix9MVs436256afK1fye5\n+03JXfclZ+4c3veO1yevf2czf/mZ5LGPJA+3AaBPvz/5yK8165ZPJbe/fqAnoHuTY2dv3GcEAAAA\nAGaewA8AAACHV28j+dLH2yG6Pph88U+S1Tbgc/ZlyT1vTu56Y3L3fcnpO3Z+3KNnkpd/WzMlSa3J\nU3+ZPHL/Zi9Af/yzSe01629+xWb45443JC+4J5n3JzsAAAAAMJq7hwAAABweG+sDAZ8PJH/9p8nq\nhWbd2Zcnr3pL04PP3fclp158/d63lOSWVzTTa7+/KVu9mDz2520A6MHk87+ffOzXm3WLx5IXv254\nKLATL7h+9QEAAAAAZprADwAAAAfXxnrypY8NBHz+bDPgc/Mrkld/z+YQXaduu7F1Wz6RvPRNzZQ0\nvQA988Um/PPIA8nD9yd/8h+S3nqz/sxLmt5/+gGgF70mWVi6sXUGAAAAAPYFgR8AAOD5W7ucXDqX\nXHoq2VhrhjM6elNy5HQyNz/t2nGYbKwnj390OOBz5dlm3S1fnbz67yV3v7GZTr5ounXtKiW56e5m\nes1bm7K1y8njH98cCuyv/zT55HubdfPLyYtfOzwU2Onbp1V7AAAAAOAGKrXWadfhhrj33nvrgw8+\nOO1qAADA/re2klxuwztXp3ObgZ5LTw2sb1/XLo05WGlCP0dv2tl07GwbFDqTzHs+gR3YWEse+2jy\n0B8nX/xgG/C52Ky75Ws2wz133ZecfOF063q9nH+0HQasHQrssT9PNlabdSdf3IR/7mx7Arrt65PF\no9OtLwAAAACwY6WUD9da791uO3fQAfbK2kry7GPJhceSC48385eeSmqvGa6h1iR1czltWe2NmR/Y\nZst+k46x0/3685lcj5H7Zft6pCaLx5tG3yOnkuVTm/NHTg8vL58eXrewfKN+agAHz/rqcFDnamDn\n6fGBnrXnxh9v+XQTyjl2c3LiRckL7mnm+2VHzybzS8nKM817jJqe/qt2/pm0v0TGvNepzZ6CdjP5\nvXGwbaw1AZeH/rjtwedDm9/ZW1+ZfP3bNgM+J14w3bruldO3N9Or3tIsr19JnvjE8FBgn3l/s25u\noRn66+pQYPc2PQiVMrXqAwAAAADPnx5+AHar1qYR88LjTZjnaqjnseTZxzfnL5/buu/8UtPoktI0\nspS5dj7t61zb+NKdH9y2jC+feIx0jjFmfmi/7KJOc+32Y+qRNL0/rJxPVi40r6vt/KTG3qQZrmJk\nMKg/f3pg3ZjtDCfD81Fr08C8sdq8rq925q800/rqwHZXmgbY3nrGB+YGA3ITwnIj9xkM243aZ9Jx\ncg371Ob9drNPKcnC0aZnicWjycKRZPFYsnikXT7azh/rrOsvH93cbm7uhvyo971+eGdL7zud8M5g\n7zv9nk5GWT6dHLupDezcvBnY6Yd3BoM8x25uwjTzi9fv8/R6ze+CoUBQGxS6dG58YOjy00ndGH/c\nxWOdEFA3NHR2rQKHtwAAGotJREFUdFBo8agQxH60fmU44PPwhzZ7lHrBPU2w52rA59bp1nU/ufhk\nGwC6v3l99CObwajjtw4MA/aNyYtflyyfmG59AQAAAIAkO+/hR+AHYFBvo2kcuRrkeTy58OhwkOfC\nY8n65a37Hr81OfXiZhiFU7cNzLfTydua8AnDer2mMXr1QicM1F8+P7xu1HZjh5EZsHRym9BQd11n\nu8VjGoH3Wq3N/8GN1eHgzHobphkbtlnbuk8/bLPTUM52x964Mu1/nV3aJqA3KhC4F/vUXrK+0vR4\ntna5+b86KaQxyfzy+DDQYhscGgwXDa07OrzPpLDRwtEbN4zU+pWtw2L158cNp3Xl2fHHWz7VDol1\ncyesc7YT5hkI7yws3ZjPer3Vmqw+OzkQdHlUD0PnJv9/nl8e02vQNr0MLZ/0O+J6Wr+SPPaRgYDP\n/QMBn1e1Q3Td1wR8jt8y3brOko315Mufaf49+z0BPfW5Zl2Za/5tB4cCO/tyYUsAAGB21ZpceW7z\nHvPKMwPz58eXX36m2XfkPZURD0gdPdvcUwKA60jgp0PgB9gyxFY3yPPs48mzX9raGD232IR1TvWD\nPLe3ywPzJ2+b3UbTg2BjrQ0DnR8RGtomQNRf7q1Pfo+5hTE9CJ0eExoanD/TDC9TN5pAS60D8xtN\nKKI3+NqZ7/VGlPW3qyPKepv7jH2Pzvpeb0RZf7vu+/aG67XleCPeY2J4ZyCIs11vT7s1v9z0rLWw\n1M4vNj+LofnFZnlwfsfbjTr2Ulvezs/NZ3xoZlSopjO/myDOLAQONtba8M/lJjy5ttI05K+3r/1w\n0Nh1/eX+MUata+d7a9dWx7nF0b0SbQkUbbPuysUJve+ca8494yydHNPzzs3jby75PbS9WpvvTTcE\ntJPA0KRw6dxCc64fDAgdObP5euT0+LKlE7Pxf3cvra8mj344eeiDTcjn4fs3w9UvfPVm7z133Zcc\nv3m6dT1oLp1r/u0feaCdPtxcTyXN9/SOe9uhwO5Nbn99850FAAC4EWod6DF+QlDn8rggz/ntHzxb\nPD7wN/tAT/IpnYexnt78W2nccUY9eNV/4EpICIBdEvjpEPiBA+zqEFttkGdwiK2rw2w92jTWdS2d\nHNEbz2Co58XJsVs83XzQ9RuAt/QmNCpANKanoUm9bsyaMpeU+SaoUuab5blRZYOvnfm5ueHjDIVg\n+sGZtmxswOZ57jO3oBH9sNtYHx8cWr+8GRrqBoe2rOvPT1g3qdeYpRMjngKb1PvO2eY7zP6yttJc\nb0zsVagdiqx703FSmHFuob2heGbgBuOZnYWGlk/N5jXK+mrTw8xDH0i+2Pbgs76SpCQvenVy1xvb\nkM+3NP8fuHF6veQrfzEQAHogefIzufodvuVrkju/sR0O7BuTW19p2FQAAGC0Wpu/9UYFcS4/PSHI\nMzBt9zDX4rHhoM6W6cyE8lO7G7Z8/crmg0OjemUeGmJ9tyGhEUOqCwntXK3NvYa1S02vTmuXmgfx\nrlzqlF1qhrq+8tzAfGebxWPJ6TuS03e2r+106nb//sANJfDTIfADM2rLEFuDIZ4dDLF1sg3vGGKL\nvdbbaIaXGRcMWl/pBGbKQDjmGkM0V1/LiLK5zr7znX1Hre8fS0gGdq23sbXnoaXjbsbQBChWL7Rh\nof5Th/35SWXt68SnEUvbo9wOA0Ld9Tdq+Lq1leTRNuDz0AeaEMnVgM9rkrvf1AzR9ZJvFvDZj1Yu\nNEOsPTwQArp8rlm3dDK5/XVN+OfMSzpPxQ7MCwUBAMBsWl8dHupq4tBYI9ZNekAqaXpI3lFAp7P+\naPsQzH7v7bgfEtoSBjqEIaFam+/DlecGAji7COIM7TewzZXnmvna2119Fo8nS8eagM/S8fb1WLJ6\nsXmA/OITW/c5futACKgbCLqjWT+LD2YB+5LAT4fAD+xDa5cHgjuDQ2w92vbUs8Mhtkb1zHPyRXpH\nAABmW63NjaudBoSu3oBtyzZWJx9/6eTuexXqbz/pOmttpQmFDAZ8NlaTlOS2r2sCPnfdl9z1zc0N\nSWZLrcm5Lwz3AvSlT04Opw0OhTp4A39cQGiw3LB3AACwc/2HEq881/Rwsnqx7emkP9+u65dP2nb1\nQvuwxgTzS9uHdMZd9y+f2j9hlP1k1yGh7YaN7/Y8vU1I6Mjpgd5yRgRrJgZxxgV42nXbDbHWNS6U\ns3i8Wb46393m+PB8d7/Fo9v/nbm+2rRVnX9kYHp4eLk7/Pv8UtNGNSoQdPrO5PTtzfsD7IDAT4fA\nD0ywsd40wqyvNgnr9dVkY21E2ZXh+W3Xtcfpll06Z4gtAIC9tnZ5970K9UNDa89NPvbC0a0hoCNn\nmptfjzzQXPuVueRFX9cMz3X3m5KXfFOzLQfP2uXmRvPQU7/ns2V4u+4Tv5ef2X5Y1DI/uaFg8Ps3\nKjTkIQAAAPazjfXmmnj14kDw5tk2ePPc5vzV9d1tOyGeUT3hj1SaIMjyiTYccSJZPtm8Lh1vyrft\neeeMwM5+sZOQ0NC6bUJCu7F4bETIphvEOTE6lDNpv4Wj+7sdqNbm33xcIKj/gHu356GjN40PBJ26\nvXmYXS+5QAR+thD4YV/od1nYDcCsX+kEZvplg4GZgbKr23fL+sftrhsM8IzYfrddHU4yt9CkmOeX\nmpvr88tNt5rzy814uAvLTZrcEFsAAPvX+pVOKKg///SEXoXOJ8dvaYbn6gd8jpye9idhv9tY3xz2\nbstQATsIDW33xPHCkd33KmQ4MoCtam3uL/XWmoa4/dwAx86tXW4afS+f23y9/HQ7//RwWe01D+Ed\n7/cEcUtz7Xfslmb5eFu2dFzvfBxs61c6PeZ05reUDYZ0RoR4tuuZta/MtaGJbUI6SycH5vvrR2y7\neMy5/LAbFxJaOd/8HbWTXnX2eyhn2jbWmtDPyB6C2t6DukO4zS007WZDYaDBgNDt7rVMsn6lOceu\nXtgMUI6brgwuX2z+/l9Ybr7XC8vt/4MjzevVabnpIaq/vj8tDqzv7794dKDsiPsL7JrAT4fAzyHW\n67UBl5XhsMv6ytZQzGAQZ32lE85Z6azvhnA6ZaP232682t2aX25DNf2AzdJwwGahDdlsKetuvzwQ\n0FncYdnS8Hz/1S8sAADgRllbGdN70NPjexUaLNvu4YedDEe2fLL9+2hx8++k7vzc4uRt3CSfLbUm\nvfXmdW7Bz4/9rdcb7i2i3wCypdHjwnCDx6jy3lpzzDLXnPu658ehc+bg1ClfPuX+0fW2sd78btsS\n2tkmyDMpOLt4rB0C5qbmtZTkuaeSS19JnvvK5veha+FIGwI6uxkIOn7L5pAx3bIjZ5xH2XuD58Kr\n0/nRDcArnfJuiGen9/jLXBO+6QdvBgM52wV2Rq3fyRBEwOxZOb8Z/ukOGXbhkeTCY83fHoOWT00I\nBN3RPFw/vzidz3Mtehudc/TF4WvQoWvYzrn8SuccvtNz9NLJ5vy6PHCerb22rfdyO6zdymbb8Prl\n59/GO7e4g7BQt2wnoaJtwkfzi35/zCiBnw6Bn33miU8lz35pl4GaUYGdwR5xuoGdtrz7i/Balfnh\ncMvV3mv6ZUeGAzcLRzpBm37ZhJ5vutvPjwrwDNwcdoIGAAC4NrU2Nw4nDTk2qXy74ch2o8yPCAIN\nvk4IE00MEi1ss9+k+TH7btdI3w/DbKw1r/1pKssbTYP0TpZ7602DeW+9LdsYOGZnuW5s/dxzC83P\ncW6h+Team9+6vO02C03j4NzCLrcZLBt8n4H33ck2E+s711le2PrdWVhubmJruL8++j1IbBvOGdEo\n0m0E2YmFo22jx+B0arMRpD/NLbY9s10YOEe20+qFzdftLJ3cPhg0GBAaChedmq1GrN2otfm5Tepp\nZ1SQZ+X8+GOW+SZ8c/RsM4xIf74f5BkqG9hu0jA9/Xpe+spmCOjSU00QaGTZU833eVL9roaAznZ6\nDxoRHDqoP3+26vW2Nub2z3cr3fPehfHnwtVnk+ygLWzxeBtoPLXZAHz1tR/C6YZ4xgR2Fo64fw88\nf72N5OITowNB5x9uwkKXzw3vU+aSEy8aHwg6fUfzu/75nKNqbXoKHDwHT+pRZ0vwfGDb7YaV71s4\nsnlNunSivVbtBHeWTw6EecZM19pbZa/XtlWvDAeD1lcGwkED69cu73K7gfJu2Oh5jdRStg8GnXhh\n8j2//Dzeg70g8NMh8LPP/Prbk8/+zvbbjQq8DIVuBgM0zzeIM+F95pebm50AAACQbA5HtvpsGxbp\nD728tov5td1v31vb2bbX6+GXrjI3HCiqG9uHYfba1SDLYhtEWRhYnm97WRq1PBBcuRp0WRwom7Tc\n3iPo9TY/d2+9DRFtTFget816cxN3x9sMlHe32UmD5l66GjRb3LyvMy6odvXBpu76cfv0eyseF1jr\nHm9x4N5OJwy3F42wtSZrlyYEcyZNnW13NMRLGR3KGQrsjChbGrH99QxQ9DY2wz8r5yeHg4aClQNl\n232PF4/tIBw0GCQ6M1y2sHz9Pu8466ubgZ2RPe2cSy49vTXcM67nnCRZbnuZGxXQGRfkWT61P0IH\naytbQ0D9136vQYNll5/O2O/B8unNIcTG9h40EBxaOn5DPyoZ7q1hKJhzYcQ5b2C+G+LZaWhx6Lx2\navT8kVHlA2VLJ7QBALPpynNtL0EjAkEX2t6Dur3TLB7bGgg6dvOIa9mBYE43tLOTEEqZ75xvTwyf\nd0eGdjqhy724Xp0l/YdqdhIMuhos2mXYaPlk8o73TfuT0iHw0yHws8888enml8GWgM1grze6NQcA\nAIBr0ut1wkHjAkfbhI22CzOVfoBmfkzg5gYsu3cwrNfbDGL1A0TdoNDV9YPL62PKRoWa1jvfhxHf\nkfVx35vV0eXrq2PCaxPCD8/H/NKIaSdhpKWmrqN60tlpw8fc4piG54Fp5JPJne0Wjx3M739/6J2R\nwaAJ0+C224Ue55d3NvzYkTObIaLlk02D2tXwTifIc7WsDe9Melp9frkT2rlpfE87V+fPHK6Gro31\n9t/yK51gUCcgNBgSGjvM2NEd9h7Uls3CMGO1tqHPXjsNzPc2mvVbynrD09j9e8Pla5e3hhJXtgnu\njOvRqat7rht7bhwR0BnshccwgQDj9XrN786RPQQ90oSFnntyeJ+lbjBnQg+QQ+fyTohHb2dwzQR+\nOgR+AAAAAGDGbAmvdQNF3fDQbgNI7fDxo8pHvsdq03AxtjeJcWUDjR83oneZw6zf09LIHoaemRAk\nurC5Tfcp+HHKXBMO2e2QWYtHNX5db7U2P9ehnoJG9SjUn39qfCirzA/0GHRzE7ZK2SYsU8eHaLoB\nmt0Gc4bKN57nsB7XQ9mmV7HtetUZ6G1svwerAA6LtZUmaLt03PkZ9omdBn70TwgAAAAA7E9zc8nc\nspAMO1dK21h1PDn14ms7xtpKJxjUDjm2dGK4R55Z6AnmsChls2emm1++s33WLu+s96CvfC5JaQJe\nZa75mZe5Jhh0taydX5gfXT44DZX158tAeXf/Mlw+6pgjj1vGvNcuj7t4rNOTg4ZggANn8UiyeNu0\nawFcA4EfAAAAAADoWzzSTCdfOO2asJcWjyZn7mwmAACYQWLYAAAAAAAAAAAwQwR+AAAAAAAAAABg\nhux54KeU8p2llM+WUj5fSvnxEeuXSym/0a7/UCnl7oF1P9GWf7aU8rfasjtLKX9YSvl0KeVTpZQf\n2evPAAAAAAAAAAAA+8WeBn5KKfNJfiHJdyW5J8nbSyn3dDb7x0merrW+IsnPJ/k37b73JHlbklcl\n+c4k/7E93nqSf1ZrvSfJNyX5oRHHBAAAAAAAAACAA2mve/h5Q5LP11q/UGu9kuQ9Sd7c2ebNSd7V\nzr83ybeXUkpb/p5a62qt9a+SfD7JG2qtj9daP5IktdZnk3wmye17/DkAAAAAAAAAAGBf2OvAz+1J\nHh5YfiRbwzlXt6m1ric5n+TmnezbDv/1DUk+NOrNSyk/WEp5sJTy4Je//OVr/hAAAAAAAAAAALBf\n7HXgZ8+UUk4k+a0kP1prvTBqm1rrL9da76213nvrrbfe2AoCAAAAAAAAAMAe2OvAz6NJ7hxYvqMt\nG7lNKWUhyekkT03at5SymCbs8+5a6/v2pOYAAAAAAAAAALAP7XXg54EkX1VKeWkpZSnJ25K8v7PN\n+5O8s51/a5L/U2utbfnbSinLpZSXJvmqJPeXUkqSX0nymVrrz+1x/QEAAAAAAAAAYF9Z2MuD11rX\nSyk/nOR/J5lP8qu11k+VUn4myYO11venCe/8l1LK55OcSxMKSrvdbyb5dJL1JD9Ua90opbwxyTuS\nfKKU8tH2rX6y1vo7e/lZAAAAAAAAAABgPyhNZzoH37333lsffPDBaVcDAAAAAAAAAABGKqV8uNZ6\n73bb7fWQXgAAAAAAAAAAwHUk8AMAAAAAAAAAADNE4AcAAAAAAAAAAGaIwA8AAAAAAAAAAMwQgR8A\nAAAAAAAAAJghAj8AAAAAAAAAADBDBH4AAAAAAAAAAGCGCPwAAAAAAAAAAMAMEfgBAAAAAAAAAIAZ\nIvADAAAAAAAAAAAzROAHAAAAAAAAAABmiMAPAAAAAAAAAADMkFJrnXYdbohSypeTfHHa9WDILUm+\nMu1KANwgznnAYeKcBxwmznnAYeKcBxwmznnAYeKcB/vLXbXWW7fb6NAEfth/SikP1lrvnXY9AG4E\n5zzgMHHOAw4T5zzgMHHOAw4T5zzgMHHOg9lkSC8AAAAAAAAAAJghAj8AAAAAAAAAADBDBH6Ypl+e\ndgUAbiDnPOAwcc4DDhPnPOAwcc4DDhPnPOAwcc6DGVRqrdOuAwAAAAAAAAAAsEN6+AEAAAAAAAAA\ngBki8AMAAAAAAAAAADNE4IepKKV8Zynls6WUz5dSfnza9QHYS6WUh0opnyilfLSU8uC06wNwPZVS\nfrWU8mQp5ZMDZWdLKb9XSvlc+3rTNOsIcL2MOef9dCnl0fZa76OllO+eZh0BrpdSyp2llD8spXy6\nlPKpUsqPtOWu9YADZ8I5z7UecOCUUo6UUu4vpXysPef9y7b8paWUD7Xtt79RSlmadl2ByUqtddp1\n4JAppcwn+Ysk35HkkSQPJHl7rfXTU60YwB4ppTyU5N5a61emXReA662U8jeSXEzya7XWV7dl/zbJ\nuVrrv27D3TfVWn9smvUEuB7GnPN+OsnFWuvPTrNuANdbKeW2JLfVWj9SSjmZ5MNJ3pLkH8a1HnDA\nTDjnfW9c6wEHTCmlJDlea71YSllM8oEkP5LknyZ5X631PaWUX0rysVrrL06zrsBkevhhGt6Q5PO1\n1i/UWq8keU+SN0+5TgAAXINa6/9Ncq5T/OYk72rn35XmJinAzBtzzgM4kGqtj9daP9LOP5vkM0lu\nj2s94ACacM4DOHBq42K7uNhONcm3JXlvW+46D2aAwA/TcHuShweWH4kLZ+Bgq0l+t5Ty4VLKD067\nMgA3wAtrrY+3819K8sJpVgbgBvjhUsrH2yG/DG0DHDillLuTfEOSD8W1HnDAdc55iWs94AAqpcyX\nUj6a5Mkkv5fkL5M8U2tdbzfRfgszQOAHAPbeG2utr0vyXUl+qB0KAuBQqM0YwsYRBg6yX0zy8iSv\nTfJ4kn833eoAXF+llBNJfivJj9ZaLwyuc60HHDQjznmu9YADqda6UWt9bZI70ozO8sopVwm4BgI/\nTMOjSe4cWL6jLQM4kGqtj7avTyb57TQXzwAH2ROllNuSpH19csr1AdgztdYn2hulvST/Oa71gAOk\nlLKYpuH73bXW97XFrvWAA2nUOc+1HnDQ1VqfSfKHSb45yZlSykK7SvstzACBH6bhgSRfVUp5aSll\nKcnbkrx/ynUC2BOllOOllJP9+SR/M8knp1srgD33/iTvbOffmeR/TrEuAHuq3+jd+rtxrQccEKWU\nkuRXknym1vpzA6tc6wEHzrhznms94CAqpdxaSjnTzh9N8h1JPpMm+PPWdjPXeTADStPrKtxYpZTv\nTvLvk8wn+dVa67+acpUA9kQp5WVpevVJkoUk/805DzhISim/nuRbk9yS5IkkP5XkfyT5zSQvSfLF\nJN9baz03rToCXC9jznnfmmaIh5rkoST/pNb6+HRqCHD9lFLemOSPk3wiSa8t/skkH4prPeCAmXDO\ne3tc6wEHTCnl65K8K0077VyS36y1/kzbnvGeJGeT/HmSH6i1rk6vpsB2BH4AAAAAAAAAAGCGGNIL\nAAAAAAAAAABmiMAPAAAAAAAAAADMEIEfAAAAAAAAAACYIQI/AAAAAAAAAAAwQwR+AAAAAAAAAABg\nhgj8AAAAALAnSinfWkr5X9OuBwAAAMBBI/ADAAAAAAAAAAAzROAHAAAA4JArpfxAKeX+UspHSyn/\nqZQyX0q5WEr5+VLKp0opf1BKubXd9rWllD8rpXy8lPLbpZSb2vJXlFJ+v5TysVLKR0opL28Pf6KU\n8t5Syv8rpby7lFKm9kEBAAAADgiBHwAAAIBDrJTytUm+L8l9tdbXJtlI8g+SHE/yYK31VUn+KMlP\ntbv8WpIfq7V+XZJPDJS/O8kv1Fq/Psm3JHm8Lf+GJD+a5J4kL0ty355/KAAAAIADbmHaFQAAAABg\nqr49yeuTPNB2vnM0yZNJekl+o93mvyZ5XynldJIztdY/asvfleS/l1JOJrm91vrbSVJrXUmS9nj3\n11ofaZc/muTuJB/Y+48FAAAAcHAJ/AAAAAAcbiXJu2qtPzFUWMq/6GxXr/H4qwPzG3E/CgAAAOB5\nM6QXAAAAwOH2B0neWkp5QZKUUs6WUu5Kc9/ore0235/kA7XW80meLqW8qS1/R5I/qrU+m+SRUspb\n2mMsl1KO3dBPAQAAAHCIeKIKAAAA4BCrtX66lPLPk/xuKWUuyVqSH0ryXJI3tOueTPJ97S7vTPJL\nbaDnC0n+UVv+jiT/qZTyM+0x/v4N/BgAAAAAh0qp9Vp7YwYAAADgoCqlXKy1nph2PQAAAADYypBe\nAAAAAAAAAAAwQ/TwAwAAAAAAAAAAM0QPPwAAAAAAAAAAMEMEfgAAAAAAAAAAYIYI/AAAAAAAAAAA\nwAwR+AEAAAAAAAAAgBki8AMAAAAAAAAAADPk/wO6hR0MIHEqoQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQEAAAJcCAYAAABD1/AMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3WuMX/d95/fPb+6cC4eX4W2GkkmZ\nlExZl2FMa5XISezYjmTLFhlk63qzbhfFAg6KDZB2t27kNkmboA+cbps1vFgn2GxcBM2uvV6nJmVL\niWXDki9JZIeSKFlXkpIs884hxcvwMiRn5vQBRyNSIilS4syZy+sFCBye//kffA8gSA/mjd+3VFUV\nAAAAAAAAAABg+mqoewAAAAAAAAAAAODtEQEBAAAAAAAAAMA0JwICAAAAAAAAAIBpTgQEAAAAAAAA\nAADTnAgIAAAAAAAAAACmOREQAAAAAAAAAABMcyIgAAAAAC6plPLTUsqH6p4DAAAAgIsTAQEAAAAA\nAAAAwDQnAgIAAAAAAAAAgGlOBAQAAADAZSmltJZSPl9K2T32z+dLKa1jn/WUUr5ZSjlcSnmllPKD\nUkrD2Ge/U0rZVUoZLKU8X0r5YL1vAgAAADDzNNU9AAAAAADTxv+a5PYk/UmqJJuS/G6S30vyr5Ls\nTLJo7N7bk1SllBuS/FaS91ZVtbuUsiJJ4+SODQAAADDzOQkIAAAAgMv1T5P8YVVV+6uqGkjyB0n+\nm7HPziRZluQdVVWdqarqB1VVVUlGkrQmubGU0lxV1U+rqnqhlukBAAAAZjAREAAAAACXqzfJy+f8\n/eWxa0nyr5NsT/JgKeXFUsq9SVJV1fYk/0OS/z3J/lLKV0opvQEAAADgqhIBAQAAAHC5did5xzl/\nv3bsWqqqGqyq6l9VVXVdknuS/MtSygfHPvtPVVW9b+y7VZI/mtyxAQAAAGY+ERAAAAAAl+vLSX63\nlLKolNKT5PeT/GWSlFI+VkpZVUopSY7k7Bqw0VLKDaWUXymltCYZSnIyyWhN8wMAAADMWCIgAAAA\nAC7X/5Fkc5Ink/wkyWNj15JkdZLvJDmW5O+TfLGqqoeStCb5XJIDSfYmWZzks5M7NgAAAMDMV6qq\nqnsGAAAAAAAAAADgbXASEAAAAAAAAAAATHMiIAAAAAAAAAAAmOZEQAAAAAAAAAAAMM2JgAAAAAAA\nAAAAYJprqnuAOvX09FQrVqyoewwAAAAAAAAAALigRx999EBVVYve7L5ZHQGtWLEimzdvrnsMAAAA\nAAAAAAC4oFLKy5dzn3VgAAAAAAAAAAAwzYmAAAAAAAAAAABgmhMBAQAAAAAAAADANNdU9wBTzZkz\nZ7Jz584MDQ3VPcqEamtry/Lly9Pc3Fz3KAAAAAAAAAAAvE0ioNfZuXNnurq6smLFipRS6h5nQlRV\nlYMHD2bnzp1ZuXJl3eMAAAAAAAAAAPA2WQf2OkNDQ1m4cOGMDYCSpJSShQsXzvjTjgAAAAAAAAAA\nZgsR0AXM5ADoVbPhHQEAAAAAAAAAZgsREAAAAAAAAAAATHMioCnm8OHD+eIXv3jF3/voRz+aw4cP\nT8BEAAAAAAAAAABMdSKgKeZiEdDw8PAlv/fAAw9k3rx5EzUWAAAAAAAAAABTWFPdA3C+e++9Ny+8\n8EL6+/vT3Nyctra2zJ8/P88991y2bt2aDRs2ZMeOHRkaGspv//Zv59Of/nSSZMWKFdm8eXOOHTuW\nj3zkI3nf+96Xv/u7v0tfX182bdqUOXPm1PxmAAAAAAAAAABMFBHQJfzBN57OM7uPXtVn3tg7N//b\nx9990c8/97nP5amnnsqWLVvy8MMP5+67785TTz2VlStXJkm+9KUvZcGCBTl58mTe+9735td//dez\ncOHC856xbdu2fPnLX86f/dmf5ROf+ET+6q/+Kp/61Keu6nsAAAAAAAAAADB1iICmuNtuu208AEqS\nL3zhC/n617+eJNmxY0e2bdv2hgho5cqV6e/vT5K85z3vyU9/+tNJmxcAAAAAAAAAgMknArqES53Y\nM1k6OjrGf3744Yfzne98J3//93+f9vb2vP/978/Q0NAbvtPa2jr+c2NjY06ePDkpswIAAAAAAAAA\nUI+GugfgfF1dXRkcHLzgZ0eOHMn8+fPT3t6e5557Lo888sgkTwcAAAAAAAAAwFTkJKApZuHChbnj\njjty0003Zc6cOVmyZMn4Z3fddVf+9E//NGvWrMkNN9yQ22+/vcZJAQAAAAAAAACYKkpVVXXPUJt1\n69ZVmzdvPu/as88+mzVr1tQ00eSaTe8KAAAAAAAAADAdlVIerapq3ZvdZx0YAAAAAAAAAABMcyIg\nAAAAAAAAAACY5kRAAAAAAAAAAAAwzYmAAAAAAAAAAABgmhMBMaVUVVX3CAAAAAAAAAAA044IiCnj\nP/7o5fzK//29nBkZrXsUAAAAAAAAAIBpRQQ0xRw+fDhf/OIX39J3P//5z+fEiRNXeaLJ09PZmpcO\nHM8Ptx+oexQAAAAAAAAAgGlFBDTFzOYI6P03LMrctqZsenxX3aMAAAAAAAAAAEwrTXUPwPnuvffe\nvPDCC+nv78+HP/zhLF68OF/96ldz6tSp/Nqv/Vr+4A/+IMePH88nPvGJ7Ny5MyMjI/m93/u97Nu3\nL7t3784HPvCB9PT05KGHHqr7Va5Ya1Nj7r5lWTZt2Z0Tp4fT3uJfTwAAAAAAAACAy6GyuJS/vjfZ\n+5Or+8ylNycf+dxFP/7c5z6Xp556Klu2bMmDDz6Yr33ta/nxj3+cqqpyzz335Pvf/34GBgbS29ub\n+++/P0ly5MiRdHd354//+I/z0EMPpaen5+rOPInW9/flyz/ekW8/sy/r+/vqHgcAAAAAAAAAYFqw\nDmwKe/DBB/Pggw9m7dq1+bmf+7k899xz2bZtW26++eZ8+9vfzu/8zu/kBz/4Qbq7u+se9aq5bcWC\n9Ha3ZaOVYAAAAAAAAAAAl81JQJdyiRN7JkNVVfnsZz+b3/zN33zDZ4899lgeeOCB/O7v/m4++MEP\n5vd///drmPDqa2go+Xh/b/7DD17KwWOnsrCzte6RAAAAAAAAAACmPCcBTTFdXV0ZHBxMktx55535\n0pe+lGPHjiVJdu3alf3792f37t1pb2/Ppz71qXzmM5/JY4899obvTmcb+vsyMlrl/p/sqXsUAAAA\nAAAAAIBpwUlAU8zChQtzxx135KabbspHPvKR/MZv/EZ+/ud/PknS2dmZv/zLv8z27dvzmc98Jg0N\nDWlubs6f/MmfJEk+/elP56677kpvb28eeuihOl/jbVmzbG5uWNKVjY/vyn/78yvqHgcAAAAAAAAA\nYMorVVXVPUNt1q1bV23evPm8a88++2zWrFlT00STayq/6xcf3p7/82+ez/c/84Fcu7C97nEAAAAA\nAAAAAGpRSnm0qqp1b3afdWBMSffc2psk2bRlV82TAAAAAAAAAABMfSIgpqTl89tz24oF2bhlV2bz\naVUAAAAAAAAAAJdDBHQBsyE6mQ7vuH5tb14YOJ6ndx+texQAAAAAAAAAgClNBPQ6bW1tOXjw4LSI\nZN6qqqpy8ODBtLW11T3KJd1987I0N5ZsfNxKMAAAAAAAAACAS2mqe4CpZvny5dm5c2cGBgbqHmVC\ntbW1Zfny5XWPcUnz2lvyy9cvzn1P7M5nP7omjQ2l7pEAAAAAAAAAAKYkEdDrNDc3Z+XKlXWPwZgN\na3vznWf35ZEXD+aOVT11jwMAAAAAAAAAMCVZB8aU9qE1S9LZ2mQlGAAAAAAAAADAJYiAmNLamhtz\n57uX5m+e2puhMyN1jwMAAAAAAAAAMCWJgJjyNqztzeCp4Xz3uf11jwIAAAAAAAAAMCWJgJjyfuGd\nPVnU1WolGAAAAAAAAADARYiAmPIaG0o+fktvHn5+IEdOnKl7HAAAAAAAAACAKUcExLSwYW1vTo+M\n5oGn9tQ9CgAAAAAAAADAlCMCYlq4ua871/V0WAkGAAAAAAAAAHABIiCmhVJK1vf35UcvvZLdh0/W\nPQ4AAAAAAAAAwJQiAmLaWN/fmyS574ndNU8CAAAAAAAAADC1iICYNlb0dKT/mnlWggEAAAAAAAAA\nvI4IiGllQ39vnts7mOf3DtY9CgAAAAAAAADAlCECYlr52K29aWwo2bjFaUAAAAAAAAAAAK8SATGt\n9HS25n2renLflt0ZHa3qHgcAAAAAAAAAYEoQATHtbFjbm12HT2bzy4fqHgUAAAAAAAAAYEoQATHt\n/OqNSzOnudFKMAAAAAAAAACAMSIgpp2O1qZ8+MYleeAne3J6eLTucQAAAAAAAAAAaicCYlrasLY3\nh0+cyfe2DtQ9CgAAAAAAAABA7URATEu/uHpRFnS0WAkGAAAAAAAAAJAJjoBKKXeVUp4vpWwvpdx7\ngc9bSyn/eezzH5VSVpzz2WfHrj9fSrnzCp75hVLKsYl6J6aG5saGfOyWZfnOM/syOHSm7nEAAAAA\nAAAAAGo1YRFQKaUxyb9L8pEkNyb5J6WUG1932z9PcqiqqlVJ/k2SPxr77o1JPpnk3UnuSvLFUkrj\nmz2zlLIuyfyJeiemlvX9fTk1PJpvPb2v7lEAAAAAAAAAAGo1kScB3ZZke1VVL1ZVdTrJV5Ksf909\n65P8xdjPX0vywVJKGbv+laqqTlVV9VKS7WPPu+gzxwKhf53kf57Ad2IK+blr5+XaBe3ZZCUYAAAA\nAAAAADDLTWQE1Jdkxzl/3zl27YL3VFU1nORIkoWX+O6lnvlbSe6rqmrPpYYqpXy6lLK5lLJ5YGDg\nil6IqaWUkvX9vfnb7Qeyf3Co7nEAAAAAAAAAAGozkRHQpCml9Cb5r5L82ze7t6qqf19V1bqqqtYt\nWrRo4odjQq3v78tolXzjiUu2XwAAAAAAAAAAM9pERkC7klxzzt+Xj1274D2llKYk3UkOXuK7F7u+\nNsmqJNtLKT9N0l5K2X61XoSpa9XiztzUN9dKMAAAAAAAAABgVpvICOgfkqwupawspbQk+WSS+153\nz31J/tnYz/84yXerqqrGrn+ylNJaSlmZZHWSH1/smVVV3V9V1dKqqlZUVbUiyYmqqlZN4LsxhWzo\n78uTO4/kxYFjdY8CAAAAAAAAAFCLCYuAqqoaTvJbSb6V5NkkX62q6ulSyh+WUu4Zu+3PkywcO7Xn\nXya5d+y7Tyf5apJnkvxNkn9RVdXIxZ45Ue/A9PDxW3tTSrJxy+66RwEAAAAAAAAAqEU5e/DO7LRu\n3bpq8+bNdY/BVfBP/8Mj2XnoZB7+n96fUkrd4wAAAAAAAAAAXBWllEerqlr3ZvdN5DowmDTr+/vy\n8sET2bLjcN2jAAAAAAAAAABMOhEQM8JdNy1NS1NDNlkJBgAAAAAAAADMQiIgZoS5bc350JrF+eaT\nuzM8Mlr3OAAAAAAAAAAAk0oExIyxvr8vB46dzg+3H6h7FAAAAAAAAACASSUCYsZ4/w2LMretyUow\nAAAAAAAAAGDWEQExY7Q2NebuW5blW0/vzYnTw3WPAwAAAAAAAAAwaURAzCjr+/ty4vRIvv3MvrpH\nAQAAAAAAAACYNCIgZpTbVixIb3eblWAAAAAAAAAAwKwiAmJGaWgo+Xh/b76/dSCvHD9d9zgAAAAA\nAAAAAJNCBMSMs6G/L8OjVe5/0mlAAAAAAAAAAMDsIAJixlmzbG5uWNKVjVaCAQAAAAAAAACzhAiI\nGWn92t48+vKh7HjlRN2jAAAAAAAAAABMOBEQM9I9t/YmSTZt2VXzJAAAAAAAAAAAE08ExIy0fH57\nbluxIBu37E5VVXWPAwAAAAAAAAAwoURAzFjr1/Zm+/5jeXr30bpHAQAAAAAAAACYUCIgZqy7b16W\n5sZiJRgAAAAAAAAAMOOJgJix5rW35JevX5z7ntidkVErwQAAAAAAAACAmUsExIy2YW1v9h09lR+9\neLDuUQAAAAAAAAAAJowIiBntQ2uWpLO1KRutBAMAAAAAAAAAZjAREDNaW3Nj7nz30vz1T/Zm6MxI\n3eMAAAAAAAAAAEwIERAz3oa1vRk8NZyHnttf9ygAAAAAAAAAABNCBMSM9wvv7MmirlYrwQAAAAAA\nAACAGUsExIzX2FDy8Vt689BzAzly4kzd4wAAAAAAAAAAXHUiIGaFDWt7c3pkNH/91J66RwEAAAAA\nAAAAuOpEQMwKN/d157qeDivBAAAAAAAAAIAZSQTErFBKyfr+vvzopVey58jJuscBAAAAAAAAALiq\nREDMGuv7e1NVyX1bdtc9CgAAAAAAAADAVSUCYtZY0dOR/mvmZaMICAAAAAAAAACYYURAzCob+nvz\n7J6j2bpvsO5RAAAAAAAAAACuGhEQs8rHbu1NY0PJxsd31T0KAAAAAAAAAMBVIwJiVunpbM37VvVk\n05bdGR2t6h4HAAAAAAAAAOCqEAEx62xY25tdh0/m0Z8dqnsUAAAAAAAAAICrQgTErPOrNy7NnOZG\nK8EAAAAAAAAAgBlDBMSs09HalA/fuCT3/2RPTg+P1j0OAAAAAAAAAMDbJgJiVtqwtjeHT5zJ97YO\n1D0KAAAAAAAAAMDbJgJiVvrF1YuyoKMlG7dYCQYAAAAAAAAATH8iIGal5saG3H3zsnznmX0ZHDpT\n9zgAAAAAAAAAAG+LCIhZa8Pa3pwaHs23nt5X9ygAAAAAAAAAAG+LCIhZ6+eunZ9rFszJJivBAAAA\nAAAAAIBpTgTErFVKyfpb+/K32w9k/+BQ3eMAAAAAAAAAALxlIiBmtQ1rezNaJd94Yk/dowAAAAAA\nAAAAvGUiIGa1VYu78u7euVaCAQAAAAAAAADTmgiIWW9Df1+e3HkkLw4cq3sUAAAAAAAAAIC3RATE\nrPfxW3tTSrJxy+66RwEAAAAAAAAAeEtEQMx6S7vb8vPXLcymLbtSVVXd4wAAAAAAAAAAXDEREOTs\nSrCXD57Ilh2H6x4FAAAAAAAAAOCKiYAgyV03L01LU0M2WQkGAAAAAAAAAExDIiBIMretOR981+J8\n88ndGR4ZrXscAAAAAAAAAIArIgKCMev7+3Lg2On8cPuBukcBAAAAAAAAALgiIiAY84F3LcrctiYr\nwQAAAAAAAACAaUcEBGNamxrz0ZuX5VtP782J08N1jwMAAAAAAAAAcNlEQHCO9f19OXF6JN9+Zl/d\nowAAAAAAAAAAXDYREJzjH61ckGXdbVaCAQAAAAAAAADTiggIztHQUHLPrb35/taBvHL8dN3jAAAA\nAAAAAABcFhEQvM76/r4Mj1a5/0mnAQEAAAAAAAAA04MICF5nzbKuXL+kMxutBAMAAAAAAAAApgkR\nELxOKSXr+/vy6MuHsuOVE3WPAwAAAAAAAADwpkRAcAHr+3uTJJu27Kp5EgAAAAAAAACANycCggtY\nPr89710xPxu37E5VVXWPAwAAAAAAAABwSSIguIj1/X3Zvv9Ynt59tO5RAAAAAAAAAAAuSQQEF3H3\nzcvS1FCsBAMAAAAAAAAApjwREFzE/I6WvP+GRbnvid0ZGbUSDAAAAAAAAACYukRAcAnr+/uy7+ip\n/OjFg3WPAgAAAAAAAABwUSIguIQPrVmSjpbGbLQSDAAAAAAAAACYwkRAcAlzWhpz501L89c/2Zuh\nMyN1jwMAAAAAAAAAcEEiIHgTG/r7MnhqOA89t7/uUQAAAAAAAAAALkgEBG/iF965MD2drVaCAQAA\nAAAAAABTlggI3kRTY0M+fuuyPPTcQI6cOFP3OAAAAAAAAAAAbyACgsuwob8vp0dG89dP7al7FAAA\nAAAAAACANxABwWW4ZXl3VvZ0WAkGAAAAAAAAAExJIiC4DKWUrO/vzY9eeiV7jpysexwAAAAAAAAA\ngPOIgOAybejvS1Ul923ZXfcoAAAAAAAAAADnEQHBZVrR05Fbr5mXjSIgAAAAAAAAAGCKEQHBFdjQ\n35tn9xzN1n2DdY8CAAAAAAAAADBOBARX4GO39KaxoWTj47vqHgUAAAAAAAAAYJwICK7Aoq7W3LGq\nJ5u27M7oaFX3OAAAAAAAAAAASURAcMU29Pdm1+GTefRnh+oeBQAAAAAAAAAgiQgIrtivvntp2pob\nrAQDAAAAAAAAAKYMERBcoc7Wpnz4xqW5/yd7cnp4tO5xAAAAAAAAAABEQPBWbOjvzeETZ/L9rQN1\njwIAAAAAAAAAIAKCt+KXrl+U+e3N2bjFSjAAAAAAAAAAoH4iIHgLmhsbcvcty/KdZ/fl2KnhuscB\nAAAAAAAAAGY5ERC8RRv6+zJ0ZjTfempv3aMAAAAAAAAAALOcCAjeove8Y36Wz59jJRgAAAAAAAAA\nUDsRELxFpZSs7+/N324/kP2DQ3WPAwAAAAAAAADMYiIgeBs29PdltEq++cSeukcBAAAAAAAAAGYx\nERC8DauXdOXGZXOzyUowAAAAAAAAAKBGIiB4mzas7c0TO4/kpQPH6x4FAAAAAAAAAJilREDwNt1z\na19KSTY+7jQgAAAAAAAAAKAeIiB4m5Z2t+X2lQuzacuuVFVV9zgAAAAAAAAAwCwkAoKrYMPa3vz0\n4Ik8sfNI3aMAAAAAAAAAALOQCAiugrtuWpaWxgYrwQAAAAAAAACAWoiA4CrontOcX3nX4nzzyd0Z\nHhmtexwAAAAAAAAAYJYRAcFVsmFtbw4cO52/feFg3aMAAAAAAAAAALOMCAiukvffsDhdbU3ZZCUY\nAAAAAAAAADDJREBwlbQ1N+ajNy3Lt57em5OnR+oeBwAAAAAAAACYRURAcBWtX9ub46dH8u1n99U9\nCgAAAAAAAAAwi4iA4Cq6feXCLJ3bZiUYAAAAAAAAADCpREBwFTU0lNzT35vvbR3IK8dP1z0OAAAA\nAAAAADBLiIDgKlvf35vh0Sr3/2RP3aMAAAAAAAAAALOECAiushuXzc3qxZ1WggEAAAAAAAAAk0YE\nBFdZKSUb1vZl88uHsuOVE3WPAwAAAAAAAADMAiIgmAD33NqbJLnvid01TwIAAAAAAAAAzAYiIJgA\n1yxoz7p3zM/Gx3elqqq6xwEAAAAAAAAAZjgREEyQ9Wv7sm3/sTyz52jdowAAAAAAAAAAM5wICCbI\n3TcvS1NDyaYtVoIBAAAAAAAAABNLBAQTZEFHS375+kW5b8vujIxaCQYAAAAAAAAATBwREEyg9Wv7\nsvfoUH700sG6RwEAAAAAAAAAZrAJjYBKKXeVUp4vpWwvpdx7gc9bSyn/eezzH5VSVpzz2WfHrj9f\nSrnzzZ5ZSvnzUsoTpZQnSylfK6V0TuS7weX48Jol6WhpzKbHrQQDAAAAAAAAACbOhEVApZTGJP8u\nyUeS3Jjkn5RSbnzdbf88yaGqqlYl+TdJ/mjsuzcm+WSSdye5K8kXSymNb/LM/7Gqqlurqrolyc+S\n/NZEvRtcrjktjbnz3UvzwFN7MnRmpO5xAAAAAAAAAIAZaiJPArotyfaqql6squp0kq8kWf+6e9Yn\n+Yuxn7+W5IOllDJ2/StVVZ2qquqlJNvHnnfRZ1ZVdTRJxr4/J0k1ge8Gl2392r4MDg3n4ef31z0K\nAAAAAAAAADBDTWQE1Jdkxzl/3zl27YL3VFU1nORIkoWX+O4ln1lK+X+S7E3yriT/9kJDlVI+XUrZ\nXErZPDAwcOVvBVfojncuTE9nSzZaCQYAAAAAAAAATJCJjIAmXVVV/12S3iTPJvmvL3LPv6+qal1V\nVesWLVo0qfMxOzU1NuRjt/Tmu8/tz5GTZ+oeBwAAAAAAAACYgSYyAtqV5Jpz/r587NoF7ymlNCXp\nTnLwEt9902dWVTWSs2vCfv1tvwFcJRvW9uX0yGj+5qk9dY8CAAAAAAAAAMxAExkB/UOS1aWUlaWU\nliSfTHLf6+65L8k/G/v5Hyf5blVV1dj1T5ZSWkspK5OsTvLjiz2znLUqSUopJck9SZ6bwHeDK3Lr\n8u6sWNhuJRgAAAAAAAAAMCGaJurBVVUNl1J+K8m3kjQm+VJVVU+XUv4wyeaqqu5L8udJ/t9SyvYk\nr+Rs1JOx+76a5Jkkw0n+xdgJP7nIMxuS/EUpZW6SkuSJJP/9RL0bXKlSStb39+UL392WvUeGsrS7\nre6RAAAAAAAAAIAZpJw9eGd2WrduXbV58+a6x2CWeOnA8Xzg/3o4/8tH35VP/9I76x4HAAAAAAAA\nAJgGSimPVlW17s3um8h1YMA5VvZ05Nbl3VaCAQAAAAAAAABXnQgIJtH6/r48s+dotu0brHsUAAAA\nAAAAAGAGEQHBJPrYrcvSUJKNW3bVPQoAAAAAAAAAMIOIgGASLe5qyx2rerJpy+5UVVX3OAAAAAAA\nAADADCECgkm2ob8vOw+dzKMvH6p7FAAAAAAAAABghhABwSS786alaWtusBIMAAAAAAAAALhqREAw\nyTpbm/KhNUty/5N7cmZktO5xAAAAAAAAAIAZQAQENdjQ35dDJ87k+1sH6h4FAAAAAAAAAJgBREBQ\ng1+6flHmtTdn45bddY8CAAAAAAAAAMwAIiCoQUtTQ+6+eVm+/czeHDs1XPc4AAAAAAAAAMA0JwKC\nmmxY25ehM6N58Om9dY8CAAAAAAAAAExzIiCoyXuunZ++eXOsBAMAAAAAAAAA3jYRENSkoaFkfX9v\nfrhtIAODp+oeBwAAAAAAAACYxkRAUKMNa/syWiXffNJpQAAAAAAAAADAWycCghpdv6Qra5bNtRIM\nAAAAAAAAAHhbREBQsw39vXlix+G8dOB43aMAAAAAAAAAANOUCAhqdk9/b0pJNm3ZVfcoAAAAAAAA\nAMA0JQKCmi3rnpPbVy7Mpi27U1VV3eMAAAAAAAAAANOQCAimgA1re/PSgeP5L4/uzNGhM3WPAwAA\nAAAAAABMM2U2nzyybt26avPmzXWPATly8kzu+vz3s+fIUBpKclNfd26/bmFuv25B1q1YkLltzXWP\nCAAAAAAAAADUoJTyaFVV6970PhGQCIipYejMSB7/2eE88uLBPPLiwTz+s8M5PTIqCgIAAAAAAACA\nWUwEdBlEQExloiAAAAAAAAAAQAR0GURATCdDZ0by2M8O5ZEXX8kjLx7MlnOioJvHo6CFWbdifrpE\nQQAAAAAAAAAwI4iALoMIiOlMFAQAAAAAAAAAM58I6DKIgJhJREEAAAAAAAAAMPOIgC6DCIiZTBQE\nAAAAAAAAANOfCOgyiICYTURklJ0DAAAgAElEQVRBAAAAAAAAADD9iIAugwiI2ezk6ZE8/rNDeeTF\ng3nkxVfy+I5DOTNSiYIAAAAAAAAAYAoRAV0GERC8RhQEAAAAAAAAAFOPCOgyiIDg4i4WBTU2lNzU\n153br1twNgp6hygIAAAAAAAAACaKCOgyiIDg8omCAAAAAAAAAGDyiYAugwgI3rqTp0fy2HgUdDBb\ndhy+YBT03hUL0tnaVPe4AAAAAAAAADAtiYAugwgIrh5REAAAAAAAAABcfSKgyyACgokjCgIAAAAA\nAACAt08EdBlEQDB53iwKes+18/OupV25fmlXVi/uTIcwCAAAAAAAAAAuOwLyW3ZgUsxpacwdq3py\nx6qeJOdHQX//wsH8px+/nKEzo+P3X7NgTm5Y0pXrl3TlhqVn/7xuUUdamxrregUAAAAAAAAAmLJE\nQEAtXh8FjYxW2fHKiTy/bzBb9w6e/XPfYB5+fiDDo2dPLGtsKFnZ03FOHNSZ65d05R0LO9LYUOp8\nHQAAAAAAAAColQgImBIaG0pW9HRkRU9H7nz30vHrp4dH89KB4+fFQU/tPpIHntqTV7cZtjQ1ZNWi\nzvETg16Ng/rmzUkp4iAAAAAAAAAAZj4REDCltTQ15IalZ1eC5dbXrp84PZzt+49l675j2bpvMM/v\nHcwjLx7M1x/fNX5PZ2tTVi/pfMNasZ7OFnEQAAAAAAAAADOKCAiYltpbmnLL8nm5Zfm8864fOXkm\n2/YNnndy0Lee3puv/MOO8XsWdLTk+lfjoKVduWFJV1Yv6Ur3nObJfg0AAAAAAAAAuCpEQMCM0j2n\nOetWLMi6FQvGr1VVlQPHTo+fGLR1LBL62qM7c/z0yPh9S+e2jUVBneMnB61a3Jn2Fv+pBAAAAAAA\nAGBq85ttYMYrpWRRV2sWdbXmjlU949erqsquwyezdd/g2bViYycH/cWLB3N6eHTsu8m1C9rPRkHn\nnBy0sqcjLU0Ndb0SAAAAAAAAAJxHBATMWqWULJ/fnuXz2/Mr71oyfn14ZDQ/e+XE2MlBx8ZPDvru\nc/szMlolSZoaSq5b1PGGOOiaBe1pbCh1vRIAAAAAAAAAs5QICOB1mhobct2izly3qDN33fTa9VPD\nI3lx4Ph5a8We2Hk433xyz/g9bc0NWbW48w1x0LLutpQiDgIAAAAAAABgYoiAAC5Ta1Nj1iybmzXL\n5p53/fip4Wzb/9o6sa37BvO32w/k/3ts1/g9Xa1NuX5p11gc1DkeBy3sbJ3s1wAAAAAAAABgBhIB\nAbxNHa1N6b9mXvqvmXfe9cMnTmfrvmNnw6CxQOiBn+zJl398Zvyens6WrF7cleuXdGbVkq6sXtyZ\n1Ys7xUEAAAAAAAAAXBEREMAEmdfekttWLshtKxeMX6uqKgODp/L8OSvFnt93LH/12K4cOzU8ft+C\njpasGguCVi/uzOqxQGhRV6u1YgAAAAAAAAC8gQgIYBKVUrJ4blsWz23LL65eNH69qqrsOTKUbfuP\nZdu+wbwwcCzb9h3LN57YnaNDr8VBc9uaxoOgVefEQcu628RBAAAAAAAAALNYqaqq7hlqs27dumrz\n5s11jwFwUVVVZeDYqWzfd+xsILR/MNvGfn7l+Onx+zpaGs9bJ7Z6SWdWL+5K37w5aWgQBwEAAAAA\nAABMV6WUR6uqWvdm9zkJCGAKK6VkcVdbFne15RdW9Zz32cFjp7J9/9kgaPtYIPT9rQP52qM7x+9p\na24YWyvW9dp6sSVduXZBexrFQQAAAAAAAAAzhggIYJpa2NmahZ2t+UfXLTzv+pETZ7J94LUTg7bt\nP5YfvXgwX3981/g9LU0Nua6nY3yd2KunB71jYUeaGxsm+1UAAAAAAAAAeJtEQAAzTHd7c97zjgV5\nzzsWnHd9cOhMXhg4nm37BsdPENqy41C+8cTu8XuaGkpW9nRk9ZLOrFrcNR4HrezpSGtT42S/CgAA\nAAAAAACXSQQEMEt0tTWn/5p56b9m3nnXT5wezosDx7Nt/2unBz27ZzB/89TejFZn72koyYqFHWdX\nii15bb3YOxd1Zk6LOAgAAAAAAACgbiIggFmuvaUpN/V156a+7vOuD50ZyUsHjmfb/mPZvm9wfLXY\nd5/bn+GxOqiU5Jr57Vm9uDOrxuKg1Ys7s2pxZzpa/S8GAAAAAAAAYLL4DS0AF9TW3Jg1y+ZmzbK5\n510/PTyalw+ejYPOnhx0dr3YD7YdyOmR0fH7+ubNOXty0NjpQavGTg/qntM82a8CAAAAAAAAMOOJ\ngAC4Ii1NDVm9pCurl3QlN792fXhkND975cTZk4P2H8u2sdODHnnxYE4NvxYHLZnbOr5ObPWSzrxj\nQUeWdrdmafecdDo9CAAAAAAAAOAt8dtWAK6KpsaGXLeoM9ct6syd737t+sholV2HTmbb/sHx04O2\n7x/MVzfvyInTI+c9o7O1KUu727J0bluWzG3Lsu62LOluy7K5bWevd7dlQXtLGhrKJL8dAAAAAAAA\nwNQmAgJgQjU2lFy7sD3XLmzPB9csGb8+Olpl95GT2XnoZPYdHcqeI0PZe2Ro/OcXXjiQfUeHMlqd\n/7zmxpIlc8+GQq8GQ68GQsu6z8ZDi7va0tLUMMlvCgAAAAAAAFAfERAAtWhoKFk+vz3L57df9J6R\n0SoHjp0aD4T2HjmZvUdPjf05lKd2Hcl3nt2XoTOj532vlGRhR+t4FLSs+/xg6NVrHdaPAQAAAAAA\nADOE334CMGU1Npw99WfJ3LbkmgvfU1VVjpw8k71jJwjtOzKUvUfHoqGjQ9l56EQ2v/xKDp8484bv\ndr26fux1Jwqde8rQgo6WlGL9GAAAAAAAADC1iYAAmNZKKZnX3pJ57S1519K5F73v5OmR8VVj5/95\n9nShrfsGMjB46g3rx1qaGrJkbmuWzZ2TJeesHDv3z0VdrWlutH4MAAAAAAAAqI8ICIBZYU5LY1b0\ndGRFT8dF7xkeGc2BY6ez58jJ8VBo/FShI0N5cufhPPj0UE4Nv3H92KLO1vNWjY2vITvnhKH2Fv/b\nBQAAAAAAACaG30YCwJimxobxYOdiqqrK4RNnzls5du4asp8dPJEfv/RKjpx84/qxuW2vrh+bk6Vz\nW7Ose06Wz5+T5fPbs3z+nCzrbkuTE4UAAAAAAACAt0AEBABXoJSS+R0tmd/RkjXLLr1+bO/YurF9\n54RCr64he27P0QwcO5XqnPVjjQ0lS+e25ZoFr4VBy+e355r5c7J8QXuWzm1LY0OZhLcEAAAAAAAA\nphsREABMgDktjVnZ05GVl1g/dnp4NHuPDGXHoRPZeehEdh46OfbPifxw24HsGxw6LxJqaihZNq8t\ny+e1vzEUWjAni7tEQgAAAAAAADBbiYAAoCYtTQ25dmF7rl3YfsHPTw2PZM/hoew8dPINodD3tg5k\n39FT593f3FjSO29sxdgFQqHFXa1pEAkBAAAAAADAjCQCAoApqrWpMSt6OrLiIqcJDZ0Zye7DJ8fD\noB3jkdCJfPf5/RkYPD8SamlsSN/8sUho/htXjvV0ioQAAAAAAP5/9u4tRrL8Puz7738uVd3V3XPZ\n5S5pXiRRIAWBfnDirB0EQZAHJ5ESBOZDjIhxLBgxDfnBgg0kMCAhDwn0FCNAAiG2FQhUgkiQowhy\nAvDBsBzHSJwETkhKkZyQtOSFSGp3Se6Su90zPV1dXbeTh3Oq+lR1dU/3zNTMnJnPB2ic+7+qh7uz\nw67v/P8A0FUiIADoqJ0yjx9+bT9++LX9jddHk9kyCmovNfbW4Wn8z197N77/YLxyf6/I1uKg80Do\n43cH8aH9XqQkEgIAAAAAAIDnkQgIAF5QO2Uen3p9Pz71+uZI6HQ8i3eO6ijo7Q9WQ6H/75178cHJ\neG28LD52Zzc+8cpg40xCr+yJhAAAAAAAAOBZEQEBwEtqt5fHp14/iE+9frDx+snZNN45Op9J6K1W\nKPS7bx3F4XCyOl6ZL2cQ2hQK3R2UIiEAAAAAAADYEhEQALDRXr+IH/nwQfzIhzdHQsejSR0JfdAK\nhZrtb//hUdw7XY2E9nr5ylJjH7m9G68f9OPDt3biw7f68frBTtzaLYRCAAAAAAAA8AhEQADAIznY\nKeNHP1LGj37k1sbr90eTlUBosdTYW4en8aVvfhDHo+mFZ/pFFh++tbOMg15bi4TEQgAAAAAAALCZ\nCAgA2IpbO2V85qNlfOajmyOh4Xga790/i3fvj+K94/Pte/dH8e79s/j6d+/HP/r9szg+e3gs9Ppa\nJPThW/14/dZO3NoRCwEAAAAAAPByEAEBAM/EoFfED32oiB/60N6V97VjoXebSGgZDT1GLLQ4LxYC\nAAAAAADgRSACAgCea9eNhU7OpuczCV0SC/1vv38WD66IhRYzCYmFAAAAAAAA6BoREADwQtjrF/HJ\nfhGffIxY6N37oytjoZ0yW1l27PVWJCQWAgAAAAAA4FkSAQEAL5WbxkLvNpHQe00ktDj32LHQwU7c\n2hULAQAAAAAA8GSIgAAANniUWOjd+6P4Xiscevf+KL7+nauXIVssPbYIhF476C9nFFqcuzsoxUIA\nAAAAAABcSQQEAPAYrhsLPTibriw99r3js9YMQ2fx++8ex//x5vfjeHQxFirzFK/t9+O1Wzvx4YP+\nSjj0emu2oVf3+pFnYiEAAAAAAICXkQgIAOAp2O8Xsf/afvzwa/tX3nc6nsV7x4slyM7iveM6Enrv\nuA6HvvX+ML78zQ/icDi58GyepXh1r3e+5Nitfrx2sLYM2a1+fGi/H2WebetbBQAAAAAA4BkQAQEA\nPEd2e3n84Kt78YOvXj2z0Nl01ppNqI6Eltvjs/j2vVH87ttH8f7JOKpq9dmUIl7d6y0DoUUctAiF\nXmvNMtQv8i1+twAAAAAAADwpIiAAgA7qF3l8/O4gPn53cOV9k9k83n8wXplRqI6FzpbLk/3T796P\n7z8Yx2xeXXj+zqBsQqFFGLS6DNmHm+1uTywEAAAAAADwLF0rAkop/dWI+G8j4jgivhAR/3xE/ExV\nVX9/i+8NAIDHVOZZfOT2Tnzk9s6V983mVbx/Us8qVM8wVMdC77aioW98/yTeOx7FZHYxFjroF/Ha\nrf7q0mMHO8tY6PXm2n6/iJTStr5dAAAAAACAl9Z1ZwL6C1VV/XxK6cci4m5E/GRE/EpEiIAAAF4A\neZaa2X6ujoXm8yqOTicrMwq9e3+0Eg799h8exnv3z+JsOr/w/G6Zxyt7vbgzKOPu4Hx7d1DGnUEv\n7u412+bc3b1eHAiHAAAAAAAAHuq6EdDiU5d/KyJ+paqqryafxAAAvHSyLMUre714Za8XP/qRy++r\nqiruj6bxvQ3LkB0Ox3E0nMThcBzvHJ3G4XAc904nUV2cYCgiIoosxZ1FJNTa1hHR2rlWYFTm2XZ+\nEQAAAAAAAJ5D142Afiul9Pcj4pMR8bMppYOIuPhXuwEAICJSSnF7t4zbu2V86vWDh94/m1dx73TS\nBELjODyZrMRCh8NJfX44jrc+GMY/ebs+N94w29DCfr9YmXHolb3eyuxD57MQNft7vdjr5WYdAgAA\nAAAAOum6EdDnI+Kfi4g/qKpqmFJ6JSL+g+29LQAAXiZ5a4ah66qqKk4nszgcTuLw5DwYOmqioQ9O\nzvePhuP41vvDOByO43g0vXTMMk9XzjjUDooW527vllGYdQgAAAAAAHjGrhsB/UsR8TtVVZ2klP5c\nRPzxiPj57b0tAAC4WkopBr0iBr0iPnZn99rPTWfzODqdLAOhdkDUnnHocDiJb3z/JH57eBRHw3FM\nZpesVxYRt3aKZimy1Vjo7kpQVJ+7vVvGnUEZ+/3CrEMAAAAAAMATc90I6Bci4o+llP5YRPxHEfGF\niPjliPhXt/XGAABgG4o8iw/t9+ND+/1rP1NVVTw4m16MhU7a4VB97f0H43jzvQdxNJzEg7PLZx3K\ns/Ml0xZfy0hot4xbu3U8tOn8Tpk/iV8KAAAAAADgBXLdCGhaVVWVUvpsRPyNqqp+KaX0+W2+MQAA\neF6klOJgp4yDnTI+8crg2s+Np/M4Om1mGjoZx9HpJO4NJ3HvdBJHp+N62xwfDsfxzfdP4mg4ifuj\nSVSXTzwUO2XWREF1JHS7FQm1j2+3Q6ImIMozsw8BAAAAAMCL6LoR0HFK6Wcj4icj4l9JKWURUW7v\nbQEAQPf1iixeP9iJ1w92bvTcfF7F8Wi6MRZafg3Pr731wTC+ejqJo9NJDMezK8c+2CnWZhfqNbMO\nbQ6JFhHRXi+3fBkAAAAAADzHrhsB/URE/NmI+AtVVX03pfQDEfGfb+9tAQDAyyvLUh3hDMr4gbj+\nzEMR9exD57HQakC0HhIdDcfx3Xv3l8eT2eXTDxWL5cvWYqE7gyYiWl/SbFDPPHR7t4x+YfkyAAAA\nAADYtmtFQE3486sR8SdSSv92RHypqqpf3u5bAwAAbqpXZPHaQT9eO+jf6LmqqmI4nq3FQmsRUWsW\nou8/GMeb33sQ94aTuD+aXjn2bpnHnUEdDL2y12wHvbi7PNeLO4MyXtnrxd1BL+7u9cw8BAAAAAAA\nN3StCCil9O9GPfPP/xoRKSL+q5TSX6uq6je2+N4AAICnJKUUe/0i9vpFfPTO7o2enc2rOB5tioXG\ny1mGDof1zEOHw0l8/dv343A4jqPTSVSXTD5U5qkOgga9uLtXLuOgu4Py4vnm2q2dQjgEAAAAAMBL\n67rLgf3HEfEnqqp6LyIipfRaRPyDiBABAQDASy7PUtwZ9OLOoHej52bzKu6fTuKD4TiOhuP44GRS\nx0HNfr0dx9FwEv/svQfLiGg231wO5Vk6n11ocD67UHsGortrsxHd2i0jz4RDAAAAAAB033UjoGwR\nADXej4hsC+8HAAB4SeRZqmf32bt+PDSfV3F8No3Dk3EcDpuvJh46bCKhxbVvvT+M33nrKA6H45jM\nNodDKUXc2d0w09BiabLWkmV3B2Xc3evFnd0yitz/HQIAAAAA4Ply3Qjo76WUfjMi/vvm+Cci4u9u\n5y0BAABslmUpbu+WcXu3jB+KvWs9U1VVnIxnyzhoMbtQHRDV4dBiNqJ3jkbx1W/fjw9OxnE2nV86\n5q2dYiUU2rxfL1m2mHFop8yf1C8DAAAAAABccK0IqKqqv5ZS+nci4l9uTv1iVVX/0/beFgAAwJOR\nUor9fhH7/SI+8crg2s+djmfxQRMKHQ3by5Y1x01U9L0HZ/H77z6Iw+E4huPZpeP1i2wZMN1qtrd3\ny7i1U6ycW7nWbPd6eaRk2TIAAAAAAC533ZmAoqqqvxMRf2eL7wUAAOC5sdvL42O93fjYnd1rPzOa\nzM5nGWqWKvtgOI77p5O4dzpZbu+dTuK941H8s/eO495wEsdn06g2r1gWERFFluLWWjDUjoXqmKgd\nDxXL/YOdMvJMQAQAAAAA8KK7MgJKKR1HxKYfRaeIqKqqurWVdwUAANBBO2UeH7mdx0du79zoufm8\niuOz6cZY6N7pJO6PFvvn97xzeLq8Pp1fURBFxEG/aM00VFyMhwbn+6szERXRLyxjBgAAAADQBVdG\nQFVVHTytNwIAAPCyyrK0DG8+ccNnq6qK08msiYemq/HQWki0OP7G90+W955OLl/CLCJip8wuzDS0\naTaixSxFtwfn9w4sYwYAAAAA8NRcezkwAAAAnj8ppRj0ihj0ivgjt2/+/Hg6b800dB4PLWclGk3j\n3vD82nfvj+L33j2Oe6eTOB5Nrxy7WMRNgzLuDnpxZ7eMO4Ne3BmU9f7e4lx9/Xazv98vxEMAAAAA\nADckAgIAAHiJ9YosPrTfjw/t92/87GxexYPRdMOyZecx0dHpJO4NJ3F0Oo7v3h/FP/3ucRwNx3Ey\nvnwGoiJLdSg0OI+ELuwPyriz22ybc3tmHgIAAAAAXmIiIAAAAB5JnqW4Pahn+rmp8XQeR6fjuDec\nxOFwEkfDcRydNtvhZGX/20ej+Nq378fR6SSGV8RDZZ7i9m4v7jZhUHv/snDojmXLAAAAAIAXhAgI\nAACAp65XZPH6wU68frBzo+fOprNmZqFJHJ6MlzMNHS4jovN46J2j0/jqt+/F0XASp5PL46FenjVL\nltWR0HK/WaLsbnsJs8F5RLRbiocAAAAAgOeHCAgAAIDO6Bd5vH4rj9dv3SweGk1mca+JhA6bSOje\n6biZhajZP6mXLXvrg2H8v2/X+6PJ/NIxe0UWd5pI6HYTCS2CoTok6sXBThH7/SIOdoo42Cljv1/E\n/k4R+70iskxABAAAAAA8OSIgAAAAXng7ZR47ZR4ffoR4qF6ebLwyy9Bhc+5eKyr6ww+G8btvH8Xh\ncBLj6eXx0MJ+v1hGQSuxUL+sQ6FlPFTEfnOuvr54poxBmYuJAAAAAICIEAEBAADApXbKPD5yO4+P\n3L55PHQ4HMeD0TTuj6bx4GwaD0bTeHA2iePRNI6bc8ejSbOtv75zb9TcV389TEoR+70mFFqGQ00w\n1L94vH7fIj4a9CxtBgAAAABdJwICAACAJ2ynzOOP3N6NuP3oY8zmVZyM63joeENA9GA0jeNFSLSM\niqZxdDqJtw+Hy/uG49lDXytLcR4MXRELXba82UFz306ZiYkAAAAA4BnZagSUUvrxiPj5iMgj4gtV\nVf1na9f7EfHLEfEvRMT7EfETVVV9s7n2sxHx+YiYRcRfqarqN68aM6X0qxHxRkRMIuJLEfGXqqqa\nbPP7AwAAgG3JsxS3dsq4tVM+1jjT2TxOxrPlrEOLqOh4uX8+G1F7dqLDk3H84fvD5X2nk4fHRHmW\nlpHQoJdHv8hjp8yiX+TRL7Lot/Z3yuZckUV/437e3J9dOU6/EB4BAAAAQMQWI6CUUh4RfzMi/vWI\neDsivpxS+mJVVV9r3fb5iDisqupTKaXPRcRfj4ifSCl9JiI+FxF/NCI+GhH/IKX0I80zl435qxHx\n55p7/nZE/MWI+IVtfX8AAADQBUWexe3dLG7vPl5MNJnN46S1dFm9ZNmG2YlG9bnTySzOpvM4m85i\nNJnF0ek4zibz5bmz6TzOJvMYTWdRVY/3PW6KiXZuGBMt718JjFr3t8ZY3N8rssgzARIAAAAAz4dt\nzgT0JyPizaqq/iAiIqX0axHx2YhoR0CfjYj/tNn/jYj4G6n+63ufjYhfq6rqLCK+kVJ6sxkvLhuz\nqqq/uxg0pfSliPj4tr4xAAAAeNmUeRZ3Br24M+g90XGrqorJrDoPg6bzOJvMYjSZXzh3Np3HaNI6\nN50tQ6JNgdHi+uHJeHXs1njT+eMVSGWeVmYl2inz6Jd53Nkt486gbH7Nyrg7KOPObrO/12uu18dl\nnj2hX00AAAAAXmbbjIA+FhFvtY7fjoh/8bJ7qqqappTuRcSrzfn/a+3ZjzX7V46ZUioj4icj4q9u\nelMppZ+KiJ+KiPiBH/iB6383AAAAwBOXUopekaJXZHHwDF5/OpvHeDa/MiYatWY1Wg2S2qHS+bPD\n8SzunY7jzfcexOFwEkfD8ZWx0X6/iNu7ZdzdK+PuoFfvN4HQnUEdDN3da+0PenFrtzQLEQAAAAAr\nthkBPSt/KyL+UVVV//umi1VV/WJE/GJExBtvvPGYE44DAAAAXVbkWRR5Fk94gqMVVVXFyXgWhyfj\nuHc6icPhOI6aOOhoOFmGQkfNtXcOT+NwWN97WTuUUsStnXI1FFqZeWgtIhr04s5eGQf9IupJmAEA\nAAB40WwzAnonIj7ROv54c27TPW+nlIqIuB0R7z/k2UvHTCn9JxHxWkT8pSfw/gEAAAAeW0op9vtF\n7PeLlR9qPMx8XsXxaFpHQ00gdG9Ybw+Hk7jXbBfXvvH9kzgcjuN4NL10zDxLcWe3jNuLUGh3bcmy\nVkRUz05U3zPo5eIhAAAAgOfcNiOgL0fEp1NKn4w61PlcRPzZtXu+GBF/PiL+cUT8mYj4h1VVVSml\nL0bE304p/RcR8dGI+HREfCki0mVjppT+YkT8WET8qaqq5lv8vgAAAAC2LstS3B7Uwc5NTGfzZsah\nSdw7HcfhSR0KHQ3HrVmIJnF0Oo7v3BvF179zP45OJzEczy4ds5dnzcxCa7MLDS5GRLtlHmWeRa9I\nUWRZlEUWZZ6i18y6VOYpyiyLzHJmAAAAAE/U1iKgqqqmKaWfjojfjIg8Iv6bqqq+mlL6uYj4SlVV\nX4yIX4qIX0kpvRkRH0Qd9URz369HxNciYhoRf7mqqllExKYxm5f8ryPiWxHxj5u/mfY/VlX1c9v6\n/gAAAACeR0Wexav7/Xh1v3+j586ms2amoUUwtLpM2WIWoqPhJL71/jB+562jOBpOYjx7tL+LVWQp\nijzVwVCeRZlnUTSxUJlnUTYRUa/ZL/OsPm72y0VQtNzPopenJjRqwqOifmaxX4+Roiwuec18bewi\ni7J5Ps+S2ZAAAACA51qqqksWl38JvPHGG9VXvvKVZ/02AAAAADqpqqo4ncziqBUIjSazmMyqmMzm\nra9qZX88ncd0fr4/mc1j2twznp0fj1vPTGfzGLfGWbk+ncdkXo+1LSlFHQc1EdEiXipa4VC/yOJg\np6i/+mXsN/v7/SJu7ZT1/k4RB83+Qb/e3ykzgREAAABwqZTSb1VV9cbD7tvmcmAAAAAAvMBSSjHo\nFTHoFfHRO7vP+u1EVVUxm1d1dDRv4qC1AGkRGq1ER9N5TOfN8SXPXNxfPR5PqzibzuJ4NI3v3BvF\n8WgSx6PplcusLRRZagVDdSB0q4mHDtbjoX4TGe2UzfU6MNrr51Hk2VP4VQYAAACeVyIgAAAAAF4I\nKdVLjBV5xG7kz/rtRETEdDaPk7NZ3B9N4sHZNI5H0zhu9u+PpvGgOT4eTZvrk7g/msa3j0ZxfDZp\n7p/GbP7w2bwHvXw589BytqG1WYnaIZFZiQAAAODFIgICAAAAgC0p8ixuD7K4PSgfeYyqqmI0mdex\nUBMSteOh47NWSDSarsRD3z46XcZHN52VaBEPXTYrUfv8YlaiQS+PvX4R/UJMBAAAAE+bCAgAAAAA\nnmMppdjt5bHby+P1xzil7+EAACAASURBVBinPStRe+ahdkj0YHRxtqJ3jkbx4IazEhVZir1+HQnt\n9fMY9M73F+frc/Xx+b1F7PXy1eN+Hv3i+ZjZCQAAAJ5nIiAAAAAAeAlsa1aiRUh0ctZ8jWfxoNl/\ncDaN4dksTsb1/nvHozhpjk/OpjGZPTwoiogo83RJSLQaDO03EdFg5VwTGvVERQAAALzYREAAAAAA\nwLU8qVmJFs6mszoKWgRD42k8aB23w6LVc3Vo9O790XL/5Gwa02vMUhRRR0XnYVArJOqdh0ODVlS0\njI7WoqJFaNQrsifwqwEAAACPRwQEAAAAADwT/aKeleeVvd5jj1VVVZxN5zFcC4bquGi2EhUtQqPF\njEQnZ7M4Hk3ju/dGK/feJCraLetlzwZNJFVvixiU+cVzi/0Nz7Sf2+3l0S+ySCk99q8PAAAALz4R\nEAAAAADQeSml2Cnz2CmfbFS0iIQWwdCDxXE7IhrP4nQ8i+G4Do7q/VncO53Ed++drpw7ncxu9D6y\nFDHoFecRUbmIhYrVcKi8PCY6P796z06RR5YJjAAAAF4UIiAAAAAAgDXtqOjV/Sc37nxexWg6WwmD\nhuPp+f5kFqdNTDTcEBbVIVEdIH3/wdn5ufE0hpNZVNebvGhpd9NMRWvnlsFRuTkmakdI7eAoFxgB\nAAA8VSIgAAAAAICnJMtSE9E8+R/NtpdEWwmLmnDoPBhqhUPL8Gg1OPrOvUmcTlbPXXd5tIVekdVh\nUJnHziIYKluzGrUjo3JtBqPm+oXzlkkDAAC4lAgIAAAAAOAF8KSXRFs3ns7rWGiyPjvRdGW5s/NZ\njVrnW5HR4XAc7xytnjubzm/0Xh62TNr6DEft0GjjbEZNnLSY8cgyaQAAQBeJgAAAAAAAeKhekUWv\nyOJ2lE987Pm8amYeml0rNFrEQ6PJbG2Go3qZtJWxxtO44SRG0V/MYnRFaDTo1cHVTpFFv6xnJ+q3\nji9syyz6RX3fTnm+tWwaAADwpIiAAAAAAAB4prIsxV6/iL3+9pZJO10ufTaN0/G8DokmG5ZHWwuN\n2vHR9x+MYzgeLscaTWYxmtxsFqN1RZZWoqB+KypahEPr2/WQqF9msVPU236xerzcLsZunimyZEk1\nAAB4wYiAAAAAAAB4YbWXSbu7hfGrqorxbB6jyTzOprM4a7ajte3ZZB6jxXZSL4G2fs+mZ46G4/Pj\nafvZ2Y1nOGrLUlyIjy5GSGvn14KkxWxI9exIWeyWqzMnLZZm27XEGgAAPBUiIAAAAAAAeEQppWZ2\nnjxiC0ulXaaqqpjOq5UoaNP2bLndFCFdvj0eTeN7x2cxbo/V7E8foT5aLLG2jIN6eQzKInZ6eQxa\n5xbLru2U5/u7redWwqNWaNQrsi38KgMAQLeIgAAAAAAAoGNSSlHmKco8i4On/NrT2TxGzRJro8nq\nEmrL4+bcYjm19n2nrfvvnU7iu/dOz883S61VN+yMiiytBEbtaKjeL2K3zGLQK5qIaHW2okEvXwmS\n1mOjnTKzfBoAAM89ERAAAAAAAHBtRZ7Ffp7Ffn87HzFUVRVnTWR0OjmPiE5XAqNpnI7nq+HRSmB0\nHh4dnkxaQdI0RpN5jGfzG7+v9ixF/SKLMs+iLOoQq8yz6OXZMswqi7Xjtf1esXa8cazmnmLt+JJr\nuSXXAABeeiIgAAAAAADguZFSip2yjm3ubuk1prP5hWhofTaiURMNnU7mcTqertw3mVUxmc5jMquD\nokkz3v3RPMbN+cmsaraLc/Xxoyyndh1ZilZQdB4MLQOiDcFScY146UKwVGTnS7WV9QxKm47L3BJt\nAABPmwgIAAAAAAB4qRR5Fgd5Fgc75VN/7fm8isl8fh4StfeXUVETEE3XjteCouX90yqm8/P9lWuP\nECxN59Xy/KMqsrSyNNtuma8sxbaIhdozLO22zrWf3Wnd1z4u82SZNgCAFhEQAAAAAADAU5JlKfpZ\nHv0iIvrP+t1craqqC8HR2WS+ujxbM2vS6WR1NqXF8WhlGbf6+P5oUi/ZtnLfzZdoy7MUg7WgaKeX\nx2AtPNrtZTHoFct4aLfM6uu9ohUdZU2kVLTGqmdGEhoBAF0hAgIAAAAAAOCClFL0ihS9YvtLe83n\nVYymq7HQ6XjeLMk2W4ZHi3Pt43o7bYKieYzGs3jveBSn4zouai/9dlN5lpYx0U55vrxasVwiLUWR\nNUuwZWl5rddsF0uuFVla3lMslmjLz+8vs3rJtiLbcG3xmln9v0WRtc6tvw+zIwHAS00EBAAAAAAA\nwDOVZSkGvSIGve19dDWfV3E2nV86a1EdDbVmOGrFQ8Pm2mJWpOmsinGznc7nMTydxbR1bTJvLdPW\nLLG2eGbbimw9IKoDodWAaBEjrUZGq9fakVMdNvXyepzFV5ln0S/Wzrf2+8096+fNsAQA2yECAgAA\nAAAA4IWXZalZBix/Zu+hqqqYzZtl1uZNMNTEQ5NZFdNm2bVFXDRuQqLz62v3z+fLJdvqZ+sxpvOq\niY/qGGkyPx9/eX9z7cF0uvF9TObVSvA0mc2jqp7cr0U7Cirz1AqF8jog2hAWLYKi/obgqHdJbNSO\nlnr5WpjUvi/PIsuESQB0mwgIAAAAAAAAnoKUUrNMWMRuPLsY6VFUVbWMi8bTOlZa2a7tn03rcGjT\nPWfN/mTDs2fL/XoWpnunk4vXp7Pl8fwJhklls5Rbbz0Uap1bLMvWnjWptzar0qX7rWXjyiKLXns5\nueUycpv327M7CZYAuIwICAAAAAAAALhSSmkZtOz1n/W7OTdrhUlns9mFqGjSio4ujZba5y65Z9Ka\nYenkbLqcUWnSml1p9Vx9vC15luogKT+PiBbLvi3+d6oDpcvipKtipRRl1pxrLfu2CJDKZRiVlrHU\n4toimlrcU+bJ0m8AT5EICAAAAAAAAOikfGWZt/JZv50Vi9mTJrP2smz1/ri1JNtiubXFsmzt48X+\nZNpESIuxZvN6vOl5eDSerS4xN14uATePk/GsGaOOk9ph02R6/ppPcmalhUUMtDLD0tqMS/X1PHrt\n+1aCo8WsSHmURVoNjlpj9S+Muem1zu/LzagEvGBEQAAAAAAAAABPWHv2pOg963dzPbP5xRmOlku3\nLQOmWYwX8VIrIFrMnHR+rlpZFm59ebjz8/VY908nG+6tYjydLe+ZPeFKKc/SyjJwq7MYnS/btmlm\npWJtqbblMyvHrSXjimb5t9YsSvXsTRf3N41fZpaBAx5OBAQAAAAAAABA5FmKPMtjp8yf9VvZaBEp\ntUOiC2HSpbFROyw6X7btsjDpbLqYXameYWk4njx0xqbprJ79aVuKLF0ZIBVNpLQpOtoUIC1mVWrv\nt8fZtGTcpnCpfj6Lsnl/ZZEtl6sTLsHTJQICAAAAAAAA4Ln3vEdKERHz+WLpt3o5tsWsSIvl2MbN\nEm7t/fbMS5uPL9lfLg1Xj9/eP5vM48Fs+tBxxrN5VNvrliJLsQyTirWoqFgs57bcv3i9jpTShcio\nzM5naFos/VaHTlfMpnRZ2NTct3wPZl2iw0RAAAAAAAAAAPAEZFmKfpZHv0OfxF+2DNx07Xw7appe\nERYtZkeabrq2IYSazs/veXA2ffgYzbVtyrMUxeJrESVl5zHR6vnVezbfe8nzV4zTvrfMs/o9rZ0r\n2q/ZGm+xhFzRjJuSqOll0aHfegAAAAAAAACAJ6kLMyytq6qqiZeq5bJt7SBpOj9f9m26mClpw4xJ\n03m9RFw7aho35+sAqY6UpvNquTTcZF4tX+/8vnmMJvOYNrMvLc+3xpmtndvm0nHr1kOk83CoHQud\nx0S/8O//8Xj91s5Te388OSIgAAAAAAAAAKAzUmqiljxiN7oTL7VVVdXERa0wqAmUNkVGi3vXzy1m\nR5q2lqGbNoFUe7zFvbPWtY3Pz+eWQ+swERAAAAAAAAAAwFOUUooyT1F2OGTi+ZM96zcAAAAAAAAA\nAAA8HhEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdt9UIKKX04yml30spvZlS+pkN\n1/sppf+huf5/p5R+qHXtZ5vzv5dS+rGHjZlS+unmXJVS+tA2vy8AAAAAAAAAAHiebC0CSinlEfE3\nI+LfjIjPRMS/l1L6zNptn4+Iw6qqPhUR/2VE/PXm2c9ExOci4o9GxI9HxN9KKeUPGfP/jIh/LSK+\nta3vCQAAAAAAAAAAnkfbnAnoT0bEm1VV/UFVVeOI+LWI+OzaPZ+NiP+u2f+NiPhTKaXUnP+1qqrO\nqqr6RkS82Yx36ZhVVf0/VVV9c4vfDwAAAAAAAAAAPJe2GQF9LCLeah2/3ZzbeE9VVdOIuBcRr17x\n7HXGvFJK6adSSl9JKX3le9/73k0eBQAAAAAAAACA59I2I6DnUlVVv1hV1RtVVb3x2muvPeu3AwAA\nAAAAAAAAj22bEdA7EfGJ1vHHm3Mb70kpFRFxOyLev+LZ64wJAAAAAAAAAAAvlW1GQF+OiE+nlD6Z\nUupFxOci4otr93wxIv58s/9nIuIfVlVVNec/l1Lqp5Q+GRGfjogvXXNMAAAAAAAAAAB4qWwtAqqq\nahoRPx0RvxkRX4+IX6+q6qsppZ9LKf3p5rZfiohXU0pvRsR/GBE/0zz71Yj49Yj4WkT8vYj4y1VV\nzS4bMyIipfRXUkpvRz070D9JKX1hW98bAAAAAAAAAAA8T1I98c7L6Y033qi+8pWvPOu3AQAAAAAA\nAAAAG6WUfquqqjcedt82lwMDAAAAAAAAAACeAhEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAwJNWVRHTs4j5/Fm/EwAA\nAADgJVE86zcA8MKYzyPmk4jZOGI2qb+Wx9PV/dm4OW7Ob0XawpDbGDOPyPKIrIjIy3qb5RHZYr85\nztvH61/5dt4bAPDymE0ixg8ixicRZ812fNxsTyLOWvvjB/XX8r4H588un38QUc3qsfNeRLEbUe5E\nFDsR5e41tzut526wzUt/NgIAAACAl5AIiOfH6F79g/WURUSqtymrf3i92G48n609k/zAu6uqKmI+\nuyScuUFUs9zf8MxV983GEfPp2n7z2u395Zhr41f+lvcztQyCyvOoaBkW5a1rm6Ki/JrXioj8shBp\n/bXW3stK4NS69rBY66G/n23x+Yf+VvqYr11Vi52IarGtVrfL+254rYrW2JvuueraprHjmq97k7Ef\nNs51tg95rWttn/b7iPq/14t/Fxb77SBw5VzR2s+ueS5f3b/0XNF6fv312u8xv+Jc8x6elKqq/5vT\n/pqtHS/+W9k+nq0dz6ete2atsTacm0823DO7+D7W38N1XrM9VjVv/T5anv++mJeXHD/ufb1HHGPD\nmP5s+fyZzyMma8HNuBXknLWCnEXIc7Z2z/q9s7Prv345iOjtR/T2Ivr79f7g1Yg7P7h6vtyt/x2e\nnkZMRhu2o/r/A518L2JyWh+3t+f/QbuZlF0RCd0kQrrmtth5sr8XAgAAAACPRATE8+PLX4j4X37u\nyY13IQ5aC4cirQZGG4OirP6M+4mN1bpv01g3+dD1xh/Qzh/tw9pqvnbuus/ON5y74tmq+TDxUT/o\nuK5FfLH4YDDvnX/Yt9xvfQjY22+Oe82Hhb3WB4e91XtX9tsfPD7kvm3MYlNt49dxC2NWUf+zsv7B\n8YUPllvHKx+GX/XB9aYPoi/58Hx8dvkH3Rc+fG+91rb/eYXHsohiH2W7zeej+fd+1vr3f1b/d2Dj\nuenT+yV7HBfCoEtCpKg2BzKLr8WsIc9Cyi4PKi9EkBviyqJ/dRCZUuv3+Ekrsl0cT+vwYdP5+WTz\n8dP6fTi7LCZ6WGTU+nPDyj8P2cUALi2CtGa78fp1zz3qMzd97XaIt+m1F//OV/X/tiuz6bSCnI2z\n7qwHO2thz+Tk+v/75f06yuntN8FOs7//4YvnFgFPby+if3DxfH+/DoCyfDv/rLVVVR2ab4qDrtxu\nio3Wtmf3L8ZIk9PHm6Ey71+Mjop+/ZX3mtmQ+s2fhfsRRXPu0v3e6rN5r7nWv2K/bJ7pb+fP2AAA\n0AVV62cPi5+trP/MZXlttvozmI3H09bPclo/v6lm9V/QWOy3f97zyNfW7nvsa9XF91zNV1//2tdi\n7ecdeVz42cnKz1YuuWflL5gVG8ZcP/eo424ab33cy8bZ8Pr+/xVAZ4iAeH58+t+I2Hvt/A9s1XpI\nsn5+3gpUFuerDefXnom45PzauFVcY6z2a141VnX+B++rvpfrfLjajo4ixfJv3D702eySa1c9e9kz\nD/mgd/09XrltXj/lN4xqLol2Hhb3+IMqT9L/3969x9h21XUA//5mbh9IkfKoSFqE8ki0KBa9IVHQ\nEAgK/FNMKhSFVKPBPyCB+A9gNCDRRIyK/yAPA0lRtDwEafxHHhKUP2x7gfIqoleE0KbSQilSwXt7\n5y7/mD1z9+w558yZuXPmzDnz+SSTWXvttdde594566yz12+vfXbji/MgIGnqIKadght2mNzece57\np+Mn7T+fY6c8fqMvSHboW5KJfcikfmZL3Zmwb7d1Z/Lxe6p7p2Om/L2M/dzZ/oWXtYy+ANW/oDXM\nW+vVMcjrX/TadvGrX8+wDePyem3YUnd3rv5qQlMF24z72WHVsrGrkI0558aqSItmYlDRmMChbdtn\nJgcm7em4B84FVKz1PiO2XFBcm5DXSy90wGmt/631x+E7HrI6CMzpgnB+8IrdB+ts5K1eMNuXOStV\n54JoDsrZtT0EHU34vXY6OXOqC2b6XnLmdLe65qleeqPMLlZimkrtMgBpRODRlvSkoKMxQUvDFQBH\nrhq4Uzrn0pt1nU96F+fr5+/lfJtV9bfbmPyd9u1nffvdvnFtHYzv9pzOeRw7bf21mTV6vLrb9Ma4\ndOPawHDfmGsNI68lZJfl+/Vnl+VnMK7euO4z/Hxva+euE22ZqByMC6bOHzW5OmZSdNwE7FT5wzp7\n2/0b4jaCimulCxieZt/q1nIbwZzbjhmU23bMNPm9urfs6wUyj903ot2jbmTY/Dm7dbv/fWbqMoOJ\n+GnKDCfvpyoz7jwTyqRlW3D8yOt6I4LkN9PD63eD9KhVPjdv1hukd2rDsD3L+P15EW3r2/p9TtvF\nvhEBHJP2jQz8GHGucf1v//277VrF8L12dsR7atS1hL0E6KwNzt/VtTCq19+ubu9/t+0bVW6HfSvH\n1sfqo+rv3/Cy076Nm5v6/WobbI/qe8+cmv4zYFsffZhujhsxhpy4vZdjxm3vd327bHPV4Drbse3b\nk/aN3e5dzzvvuqZo16J87vXnTvvjz81+eTC3uq3MiJ8tZXqfHyPLtHPnSs71B/3vFZu/xyz6sOW7\nxk7la0I9/fya4rz9di7I/zczIQiIw+OHf2L9B2BRrKwkKxcmuXDeLYHltrKSZGVxJ/KZnY2703Lx\nvFsyO5sThDsFDu00CbjHY7ZdJB91zPBi+OCYWhkE6/QCdoaBPccucpFinlZW1/9PLrrk4M+98TjE\njaChzQChLmhobPqBrcec6fLWTg3SYwKQHvh+8v37Jp/vUF14Bw7WLoKGku2fpQsdzNvZttLfxkqA\nvfxUkmHA04jJlY19y/DvcphsWfGhC+4f3kCwbVWIwTHHLt5+zHBlilHnSTchvnY6W4PmT/cC5Xvp\njSDhjQD6frofyL92Ogfyd7IyTcDQhACljb/9JKMDb/vpXQTo7rrciHMdxHlHfh9ove8OwyCaMcE3\ny2C4osvmqi39906Xt+3x5IMbd45d3KtndcRxq716++WG22POMVXbxp1j5VwdUwXsTLPP97+JNt9r\nYwI7RwZ99gLEdgxEHZM3KrhpXP8wcXvaMrupc0bbW5KDMv1/j82bvTY+v9bWb4TZcgPwAztvz6P/\nq+FNhVMEJ60cy+Y4b1KwzLaAmmEgzrBM/3rXoAz7ZJqgoR2ClX7zo8lDL5/z62AvBAEBAAAcVlXd\nBAMsuapzE26Hzdmzg8CkKYKO1k5nS2DAYVq1ZU/n3uv5esdtJkfcZbvTvqnrGxY73/r22L49r/50\nPsdOm8659Ob59jG97XHgZ0fs6/LHPi58N+WH9WeX5Secc+r29/7fRj1ac+TKBKvjJ0Z3zB8RhLMl\nf9T5h3VOk7+xWs4MJmd3c/f2ln29Cadxk0bbJp2GgUjjjpkwmbVT+/oT6v2J/G2T+yMm+8eWGRe8\nMzx+iSfQh6t+jktvCTQasSJoP0BpYrDSIChpVIDS6e8lZ79z7hwbpv7MzZTldvMZPqpcZctKr+dd\n36hyNb4vmrhaS43phwZ921QBJP36RrVjmn1TrP4yqh39wJtlfh8yf1Xn/tZYLpurQE0RMLTb7Y3g\npH2pu1sNZ+TKir2gkZErMq6e2z+2zOBnS5kanGtYpka0p1+mRrSnX2ZUGwbnT7LlO0B/HDvyyS9t\nTP6o8m1CPf38jIvAWAAAChVJREFUNsV5z86mnRc86IDfGOwXV5MBAAAAxllZSVYuTi5Y4lXHAA7S\nxoRmTGgywVFY9ROAo8tTBoAZWtm5CAAAAAAAAAAAcJgJAgIAAAAAAAAAgAUnCAgAAAAAAAAAABac\nICAAAAAAAAAAAFhwgoAAAAAAAAAAAGDBCQICAAAAAAAAAIAFJwgIAAAAAAAAAAAW3EyDgKrquVX1\n5ao6WVWvGbH/oqp6T7f/5qp6XG/fa7v8L1fVL+5UZ1Vd2dVxsqvzwlm+NgAAAAAAAAAAOCxmFgRU\nVatJ3pzkeUmuSvLiqrpqUOw3kny7tfbEJG9K8sbu2KuSXJfkyUmem+Qvqmp1hzrfmORNXV3f7uoG\nAAAAAAAAAIClN8uVgJ6W5GRr7SuttdNJbkxyzaDMNUlu6NLvT/Lsqqou/8bW2qnW2n8lOdnVN7LO\n7phndXWkq/MFM3xtAAAAAAAAAABwaMwyCOjyJF/vbd/R5Y0s01o7k+Q7SR4x4dhx+Y9Icl9Xx7hz\nJUmq6mVVdaKqTtxzzz17eFkAAAAAAAAAAHC4zDII6FBqrb29tXa8tXb8sssum3dzAAAAAAAAAADg\nvM0yCOjOJI/pbV/R5Y0sU1XHkjw0ybcmHDsu/1tJLu3qGHcuAAAAAAAAAABYSrMMAro1yZOq6sqq\nujDJdUluGpS5Kcn1XfraJP/UWmtd/nVVdVFVXZnkSUluGVdnd8zHuzrS1fmhGb42AAAAAAAAAAA4\nNI7tXGRvWmtnquoVSf4xyWqSd7bWvlhVb0hyorV2U5J3JPmrqjqZ5N6sB/WkK/feJLcnOZPk5a21\ntSQZVWd3ylcnubGq/iDJZ7q6AQAAAAAAAABg6dX6IjpH0/Hjx9uJEyfm3QwAAAAAAAAAABipqj7V\nWju+U7lZPg4MAAAAAAAAAAA4AIKAAAAAAAAAAABgwQkCAgAAAAAAAACABScICAAAAAAAAAAAFpwg\nIAAAAAAAAAAAWHCCgAAAAAAAAAAAYMEJAgIAAAAAAAAAgAVXrbV5t2FuquqeJF+bdzvY4pFJvjnv\nRgAcEH0ecJTo84CjRJ8HHCX6POCo0e8BR4k+Dw6Px7bWLtup0JEOAuLwqaoTrbXj824HwEHQ5wFH\niT4POEr0ecBRos8Djhr9HnCU6PNg8XgcGAAAAAAAAAAALDhBQAAAAAAAAAAAsOAEAXHYvH3eDQA4\nQPo84CjR5wFHiT4POEr0ecBRo98DjhJ9HiyYaq3Nuw0AAAAAAAAAAMB5sBIQAAAAAAAAAAAsOEFA\nAAAAAAAAAACw4AQBcWhU1XOr6stVdbKqXjPv9gDMUlV9tao+X1W3VdWJebcHYD9V1Tur6u6q+kIv\n7+FV9ZGq+o/u98Pm2UaA/TKmz3t9Vd3ZjfVuq6rnz7ONAPulqh5TVR+vqtur6otV9cou31gPWDoT\n+jxjPWDpVNXFVXVLVX226/N+v8u/sqpu7uZv31NVF867rcBk1VqbdxsgVbWa5N+TPCfJHUluTfLi\n1trtc20YwIxU1VeTHG+tfXPebQHYb1X180nuT/Ku1tqPd3l/nOTe1tofdQHfD2utvXqe7QTYD2P6\nvNcnub+19ifzbBvAfquqRyd5dGvt01X1kCSfSvKCJL8WYz1gyUzo814YYz1gyVRVJXlwa+3+qrog\nySeTvDLJbyf5QGvtxqp6a5LPttbeMs+2ApNZCYjD4mlJTrbWvtJaO53kxiTXzLlNAADsQWvtn5Pc\nO8i+JskNXfqGrF84BVh4Y/o8gKXUWrurtfbpLv3dJF9KcnmM9YAlNKHPA1g6bd393eYF3U9L8qwk\n7+/yjfNgAQgC4rC4PMnXe9t3xGAaWG4tyYer6lNV9bJ5NwbgADyqtXZXl/7vJI+aZ2MADsArqupz\n3ePCPBYHWDpV9bgkT01yc4z1gCU36PMSYz1gCVXValXdluTuJB9J8p9J7mutnemKmL+FBSAICADm\n4xmttZ9K8rwkL+8eIwFwJLT1ZxJ7LjGwzN6S5AlJrk5yV5I/nW9zAPZXVV2S5O+SvKq19j/9fcZ6\nwLIZ0ecZ6wFLqbW21lq7OskVWX+Ky4/OuUnAHggC4rC4M8ljettXdHkAS6m1dmf3++4kH8z6gBpg\nmX2jqh6dJN3vu+fcHoCZaa19o7t4ejbJX8ZYD1giVXVB1ifD391a+0CXbawHLKVRfZ6xHrDsWmv3\nJfl4kp9JcmlVHet2mb+FBSAIiMPi1iRPqqorq+rCJNcluWnObQKYiap6cFU9ZCOd5BeSfGG+rQKY\nuZuSXN+lr0/yoTm2BWCmNibCO78UYz1gSVRVJXlHki+11v6st8tYD1g64/o8Yz1gGVXVZVV1aZd+\nUJLnJPlS1oOBru2KGefBAqj11Vlh/qrq+Un+PMlqkne21v5wzk0CmImqenzWV/9JkmNJ/kafByyT\nqvrbJM9M8sgk30jyuiR/n+S9SX4kydeSvLC1du+82giwX8b0ec/M+uMhWpKvJvmt1tpd82khwP6p\nqmck+Zckn09ytsv+nSQ3x1gPWDIT+rwXx1gPWDJV9ZQkN2R9nnYlyXtba2/o5jNuTPLwJJ9J8pLW\n2qn5tRTYiSAgAAAAAAAAAABYcB4HBgAAAAAAAAAAC04QEAAAAAAAAAAALDhBQAAAAAAAAAAAsOAE\nAQEAAAAAAAAAwIITBAQAAAAAAAAAAAtOEBAAAAAAB6aqnllV/zDvdgAAAAAsG0FAAAAAAAAAAACw\n4AQBAQAAALBNVb2kqm6pqtuq6m1VtVpV91fVm6rqi1X1saq6rCt7dVX9a1V9rqo+WFUP6/KfWFUf\nrarPVtWnq+oJXfWXVNX7q+rfqurdVVVze6EAAAAAS0IQEAAAAABbVNWPJXlRkqe31q5OspbkV5M8\nOMmJ1tqTk3wiyeu6Q96V5NWttack+Xwv/91J3txa+8kkP5vkri7/qUleleSqJI9P8vSZvygAAACA\nJXds3g0AAAAA4NB5dpKfTnJrt0jPg5LcneRskvd0Zf46yQeq6qFJLm2tfaLLvyHJ+6rqIUkub619\nMElaa/+XJF19t7TW7ui2b0vyuCSfnP3LAgAAAFhegoAAAAAAGKokN7TWXrsls+r3BuXaHus/1Uuv\nxTUqAAAAgPPmcWAAAAAADH0sybVV9UNJUlUPr6rHZv1a0rVdmV9J8snW2neSfLuqfq7Lf2mST7TW\nvpvkjqp6QVfHRVX1Awf6KgAAAACOEHdZAQAAALBFa+32qvrdJB+uqpUkDyR5eZL/TfK0bt/dSV7U\nHXJ9krd2QT5fSfLrXf5Lk7ytqt7Q1fHLB/gyAAAAAI6Uam2vqzYDAAAAcJRU1f2ttUvm3Q4AAAAA\ntvM4MAAAAAAAAAAAWHBWAgIAAAAAAAAAgAVnJSAAAAAAAAAAAFhwgoAAAAAAAAAAAGDBCQICAAAA\nAAAAAIAFJwgIAAAAAAAAAAAWnCAgAAAAAAAAAABYcP8PaVBck7IscfMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left')\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0021724022948290786" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is not small enough. The model is still not an usable model in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAJCCAYAAABAuEcoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYVNX9x/H3mb6NshQRKUtsoDTB\nTjQae6wxGntiEnv8mcQYe9QkxhJjNEajIRoTY40tasSGiogUAQFBirQFls4u23en3t8fd3bKzpaZ\n3dnC8nk9D8/ee+65957dBZ5nPs8532Msy0JERERERERERATA0dUDEBERERERERGR7kNhkYiIiIiI\niIiIxCgsEhERERERERGRGIVFIiIiIiIiIiISo7BIRERERERERERiFBaJiIiIiIiIiEiMwiIRERER\nEREREYlRWCQiIiIiIiIiIjEKi0REREREREREJMbV1QNorH///lZRUVFXD0NEREREREREpMeYP3/+\nDsuyBqTTt9uFRUVFRcybN6+rhyEiIiIiIiIi0mMYY9al21fL0EREREREREREJEZhkYiIiIiIiIiI\nxCgsEhERERERERGRmG5Xs6gpwWCQkpIS6uvru3oouzyfz8eQIUNwu91dPRQRERERERER6YZ2ibCo\npKSEgoICioqKMMZ09XB2WZZlUVpaSklJCSNGjOjq4YiIiIiIiIhIN7RLLEOrr6+nX79+CorayRhD\nv379NENLRERERERERJq1S4RFgIKiLNHPUURERERERERassuERSIiIiIiIiIi0vEUFnWR/Px8ADZt\n2sQ555zTYt+HH36Y2trajJ4/bdo0TjvttDaPT0RERERERER2TwqLsigcDmd8z+DBg3nllVda7NOW\nsEhEREREREREpC0UFqWpuLiYkSNHctFFFzFq1CjOOeccamtrKSoq4qabbmLChAm8/PLLrF69mpNP\nPpmJEydy1FFHsXz5cgDWrl3LEUccwZgxY7j99tuTnjt69GjADptuuOEGRo8ezdixY/nLX/7CI488\nwqZNmzj22GM59thjAXj//fc54ogjmDBhAueeey7V1dUAvPvuu4wcOZIJEybw2muvdfJPSERERERE\nRER6AldXDyBTv3nrK5ZuqszqMw8Y3Is7Tz+w1X4rVqzgqaeeYtKkSfz4xz/mr3/9KwD9+vXjiy++\nAOC4447jiSeeYN9992XOnDlcc801fPTRR/zsZz/j6quv5gc/+AGPPfZYk8+fPHkyxcXFLFy4EJfL\nRVlZGYWFhfzpT3/i448/pn///uzYsYO7776bqVOnkpeXx/3338+f/vQnbrzxRi6//HI++ugj9tln\nH84777zs/YBEREREREREZLeR1swiY8zJxpgVxphVxpibm7h+qTFmuzFmYfTPZdH28caYWcaYr4wx\nXxpjdukEY+jQoUyaNAmAiy++mBkzZgDEgpnq6mpmzpzJueeey/jx47nyyivZvHkzAJ999hkXXHAB\nAJdcckmTz586dSpXXnklLped4RUWFqb0mT17NkuXLmXSpEmMHz+ef/3rX6xbt47ly5czYsQI9t13\nX4wxXHzxxdn95kVERERERERkt9DqzCJjjBN4DDgBKAHmGmPetCxraaOuL1mWdW2jtlrgB5ZlrTTG\nDAbmG2PesyyrvK0DTmcGUEdpvO18w3leXh4AkUiEPn36sHDhwrTubwvLsjjhhBN44YUXktqbe6eI\niIiIiIiISCbSmVl0KLDKsqw1lmUFgBeBM9N5uGVZX1uWtTJ6vAnYBgxo62C72vr165k1axYAzz//\nPN/85jeTrvfq1YsRI0bw8ssvA3aws2jRIgAmTZrEiy++CMBzzz3X5PNPOOEE/va3vxEKhQAoKysD\noKCggKqqKgAOP/xwPvvsM1atWgVATU0NX3/9NSNHjqS4uJjVq1cDpIRJIiIiIiIiIiLpSCcs2gvY\nkHBeEm1r7HvRpWavGGOGNr5ojDkU8ACr2zTSbmD//ffnscceY9SoUezcuZOrr746pc9zzz3HU089\nxbhx4zjwwAN54403APjzn//MY489xpgxY9i4cWOTz7/ssssYNmwYY8eOZdy4cTz//PMAXHHFFZx8\n8skce+yxDBgwgH/+859ccMEFjB07liOOOILly5fj8/mYPHkyp556KhMmTGDgwIEd94MQERERERER\nkR7LWJbVcgdjzgFOtiyroQ7RJcBhiUvOjDH9gGrLsvzGmCuB8yzL+nbC9T2BacAPLcua3cQ7rgCu\nABg2bNjEdevWJV1ftmwZo0aNatt3mCXFxcWcdtppLFmypEvHkQ3d4ecpIiIiIiIiIp3HGDPfsqyD\n0+mbzsyijUDiTKEh0bYYy7JKLcvyR0+fBCYmDKYX8DZwW1NBUfT+yZZlHWxZ1sEDBuyyq9RERERE\nRERERHZ56YRFc4F9jTEjjDEe4HzgzcQO0ZlDDc4AlkXbPcDrwDOWZb2SnSF3jaKioh4xq0hERERE\nREREpCWt7oZmWVbIGHMt8B7gBP5hWdZXxpjfAvMsy3oTuM4YcwYQAsqAS6O3fx84GuhnjGlou9Sy\nLG3dJSIiIiIiIiLSDbUaFgFYljUFmNKo7Y6E41uAW5q471ng2XaOUUREREREREREOkk6y9BERERE\nRERERGQ3obBIRERERERERLKmvDbAmY/OYH1pbVcPRdpIYVEHmDZtGjNnzmzXM/Lz87M0GhERERER\nEZHOM2XxFhaVVPD4J6u6eijSRgqLOkA2wiIRERERERGRXdH7SzZyrnMa4VCoq4cibaSwKANnnXUW\nEydO5MADD2Ty5MkAvPvuu0yYMIFx48Zx3HHHUVxczBNPPMFDDz3E+PHj+fTTT7n00kt55ZVXYs9p\nmDVUXV3Ncccdx4QJExgzZgxvvPFGl3xfIiIiIiIiItkQCkcYvuYFHnBPxrPoma4ejrRRWruhdSvv\n3AxbFmf3mYPGwCn3tdrtH//4B4WFhdTV1XHIIYdw5plncvnllzN9+nRGjBhBWVkZhYWFXHXVVeTn\n53PDDTcA8NRTTzX5PJ/Px+uvv06vXr3YsWMHhx9+OGeccQbGmKx+eyIiIiIiIiIdbf66Mh6eupKJ\npgqA/qYCy7L4alMlg/vkUOMPMbQwt4tHKenY9cKiLvTII4/w+uuvA7BhwwYmT57M0UcfzYgRIwAo\nLCzM6HmWZXHrrbcyffp0HA4HGzduZOvWrQwaNCjrYxcRERERERHJlrpAmFF3vEuB18UvTtiPCw8b\nxvcen4WTMP/2vQbAd/sW88ysddz55lex+z751TEM75fXVcOWNO16YVEaM4A6wrRp05g6dSqzZs0i\nNzeXY445hvHjx7N8+fJW73W5XEQiEQAikQiBQACA5557ju3btzN//nzcbjdFRUXU19d36PchIiIi\nIiIi0l4LNuzkXOc09guX8MmUMbzzxSGs8l7Mn0LnxPoMr/qCFVurku771gPTKL7v1M4ermRINYvS\nVFFRQd++fcnNzWX58uXMnj2b+vp6pk+fztq1awEoKysDoKCggKqq+D+IoqIi5s+fD8Cbb75JMBiM\nPXPgwIG43W4+/vhj1q1b18nflYiIiIiIiEj6bn1uGsf87g3y/Vt5wD2Zy11T+Jfnfv5WeikuE+FG\n939ifVf0OZocl2GI2UYvqhlt1gAQDEe6aviSJoVFaTr55JMJhUKMGjWKm2++mcMPP5wBAwYwefJk\nzj77bMaNG8d5550HwOmnn87rr78eK3B9+eWX88knnzBu3DhmzZpFXp495e6iiy5i3rx5jBkzhmee\neYaRI0d25bcoIiIiIiIi0qJ7Vp7Je6Gf8NN/z0lqLzTVKX3X54zi8C3PM8P7c770XcH/vLdTZDZT\nGwh31nCljYxlWV09hiQHH3ywNW/evKS2ZcuWMWrUqC4aUc+jn6eIiIiIiIi0yV290+76aOQczhq0\ngyHbpiW1b7t+KwN7+bI8MGmNMWa+ZVkHp9NXM4tEREREREREJPsiQQImNRQKRrrXpJX2uvX1xTw3\np2eVlVFYJCIiIiIiIiJZ158KqrauTWkP9ZCaRRV1Qc6fPIvpn8/j/tfnYFkWr84voT646y+z22XC\nou62XG5XpZ+jiIiIiIiIpOvjFdsouvltPlq+FSKZhTx9TA2LQsNS2oPBULaG1ymaC39++9ZSZq8p\nY4b35/zPcyszVu3gly8v4g/vrujkEWbfLhEW+Xw+SktLFXS0k2VZlJaW4vNpbaiIiIiIiIi0btrb\nL1Lsu5Cdz/2YsoryjO492TkXP+6U9kjQn63hdbitlfWM/PW77H/7OynXJlhfMd97JQDDHNu5/R9v\nMtd7FQtnvtfZw8w6V1cPIB1DhgyhpKSE7du3d/VQdnk+n48hQ4Z09TBERERERERkF3Be+G0Avuec\nwY0PPcgfGk05CThz8YRrAVjdZxJ7n/s7mP5HWDEFgMtd9leGHkZFVTW9y78iHKjrtPG3x45qP4vW\nbmW296fcHzyfl+YeyHmHxGdKjS57n36mKnb+ifd6AG50vwT8orOHm1W7RFjkdrsZMWJEVw9DRERE\nREREZPdi4unQHxyPplzeOOwMRqx90T7ufRB77zURLnghdde0i19j8wdP0nvenYRD9R065PZYu62S\nB55+gd9ccyln/f4FznZ+yonunTzkeZwDXz04KSwyjqYjlYCvf2cNt8PsEsvQRERERERERKTz1QeD\nLV7vf9DpCWctRAxODw6nvSQtEgwkXbrplS854t4P2zrErNlQVsubj1zHX+tuZN7MqXzm+xm/dL8S\nu36965Wk/sbhbPI5gbpqavy7Vl2mxhQWiYiIiIiIiEiTJvjntnjdsc9xsWPLmOY7ujwYlweAcKOw\n6KV5G9hcUU8k0rV1it/5y3X8zPU6AL7AzpTrP3E1qlvUzPd7vHMB20pT79+VKCwSERERERERkTbJ\n8fkIGXvGkCMxPPlpasjkcEbDonAg5RqAP5TZbmvZdoX1cuy4+vN/t9o/MdwKnPFE0rVwbWn2BtYF\nFBaJiIiIiIiISJs4HIaZoZEAfLWlJn5hwH7x4wk/BMC4osvQQslL2452LOJ0x0z8oaa3qO8sKwed\nFjs+3Tm7yT7hhICo3orWLLpiGp6x34NxF7JqtF3Y+uk3PuiwcXYGhUUiIiIiIiIi0mZHOxcDsF9w\nWfKF81+wv37TDlCc0bAoHIrPLLIsi2c89/MXz6PUB7t2ZlGlZ4+mL9xVwYKhl1BreQmG42M0oXoq\nrDwYfBC4PPDdxyl22AWwf191e2cMucMoLBIRERERERGR9N2wqsnmXEejos4jvwN3VUChvbu5iS5D\nsxLCoppAfDZRfbBrZxZZkRaKUjvcuAnFwqJN5XUUb95ODd6kbqOH7fo7oYHCIhERERERERFpwuez\npqU2nvkY5A+A//sCrluQdCngyG3xeZbDnlm0Zmt5rK2qPr4kzR9oeee19qqoC1J089vMWLkjqX3p\npkqKbn6bL4u3ptyzcN9rATBON24TJhStq/TujNl83/UJOSTXX+q754gOGn3nUlgkIiIiIiIiIikm\nvHd20vkWqxAOutg+6bc3FH4DgNqDfgLA8EJfi8/LzbGvr9tWEWurqqmLHfv9dSn3ZNOfp64E4OKn\n5jBnTWmsQPV5k2cB4CU1rAr1LrIPoju5BYN+AMZu/A8AfU11Un9PXp/Y8cIN5XxZUs6uSGGRiIiI\niIiIiKRwkbwsbJApa7Jf7rd+DsDwb/+kxef175UHwIhCT6yttiq+xXyovjblnlA4wuaK7IRIifWG\nzps8mzveXAJAVb29/MxrUsMiV04vAIzDHvMtL9mFr02k6VlQJm9A7Pisxz7jjEc/Y+2Omib7dmcK\ni0RERERERESk7foMs2sT7XN8i92My67vU1AeL4S9fvOW2HHAnxoW/X7KMo649yN21gRSrmVq7wF5\nSefPzl5PZX2QicP7AuAlwJrIIBaNvD7Wx53b2z6Izix6cPOlAEQwTb/E7WPhN64CwGCHUw998HW7\nx97ZFBaJiIiIiIiISMfrvy8A9SF7+de84jJee39a7HKwibDow2XbANhY3v7ZRbkeV0rbk9PXMLxf\nLm6n4XTnbL7h2IJxxWc+GV+B/TXa1sfYs4QO2fqfZt/j9trL7fKoB2Dc0D7N9u2uFBaJiIiIiIiI\nSIolg88FYPOJT2Tnge5cQpaDrdu3Y1kWa7bXUEA8IAoHUgOh9WX29WzMzqmvr+VFz+/oS2Wsrah/\nHjm1W3nZfWesLTEsGtSvEIAdFfHaRJX1LRfi9oftMOxx98McaNby8fJt7R57Z1NYJCIiIiIiIiIp\n/M58gpYT556js/NAY6gilwJq8Yci5HldDDXbY5dDCTOLIhGLJz5ZHTs/cK/e7X794Yvv5HDHMhb4\nrqI/dpHtX/93CT8vuY7xxMOo2nB8BlLhoGEADC2fG2urroqHTU3pV7cOgKOcS3jbexszVu3g8Hs+\nbPO4Lcvi928v7dTaRwqLRERERERERCSFFQkSwonTRFrvnKaIp4B8U0e1P8QepXO40f1S7FrxltLY\n8Y/+OZf73lkeO9+rT8s7raWjV+262PE839V807GYmkCYAaF43SS/tx9m1Qfxmzx2naNhY4+O96nc\nwUrfGADqBoxLec9eIw9JOj/SsYQtlfVsr/K3adxbKuv5+6drufTpz9t0f1soLBIRERERERGRVGE7\nLOrjzV500C+4me85Z1DjD1GwY0HStU+WlvDxim0EwxE++dqecfSu5yaKfRdSE92xrD3CVnJR6mc9\n99KLhNk6vYbg/eUSRvu205j3W79ky7BTARjx70MZVrecYmcROZe9ndLXdeRPk85HmfUAVNS1vHyt\nOQ5jj7sqCz+DtN/ZaW8SERERERERkW5h0ZyP4K7ePPTgb5vt44gECeLCOShLy9ASfOuBacxdkxzK\n+Aiwels1X2+twkGEy53/Y6RjAwDBuop2v/O90ISUtmMcC5nlOcI++dlC8ORSd9zvU292ONjcZ2Ls\n1GuCbPaOAG9Bal9jKDnid7HTAaYcgGC4bTO0LLsEEmVZ2BEuXQqLRERERERERHYT5VXVvDVtJuPe\n+S4Av6h6sNm+gdJ1hHGAMYSLjiZ87O1ZG4eLELVV5Ulto8x67n57Gec+MYtfuV7iNvfzsWuj1z3T\n7neWVdentFWSS2VdkPXuEeB0A+D25DR5f9Gkc5POw67cZt815KTr4JDLALjK9T8OMcsJR6w2jTts\nWQwzW3ESbtP9baGwSERERERERGQ3sWjyFZw+7ZRW+wXDEfYOrSI3uv2789K3cH7rV+1+//yRvwTs\nWUR1eJKuXe9+hdFmDVaghqtdbyVd27g1dWlYa4LhCIfdM5W3Fm2ieEcNXpO6DOwu1zPk4KfU74y1\n9RpoF7Wum3RTUt++ewxj/difx87d5atp0Yl3xw5f9v4WK9y2ZWT+im1M9/6CO13tD8zSpbBIRERE\nREREZDexX61dJ6iYPVvsd9+D9zHAVLDOu39W318T8QKwxHcZE429A5n/R1Nj14ebbVznej3lvnl1\ngzJ+V3ltkK2Vfm59bTH3TFmGj9RlXEWOreQYP3VWQnDVZyhcv4yc425O6T/wmCtix2PNmpYH4E6e\noWTqy5vp2LKLH58GwInOedQGOqdukcIiERERERERkd1EMLp0qr+1M9YWaWJ51KXV/7D7W9mNDZxu\nb+z4m86vAPD03iPWdppzVsqsIoAC6jJ+13/m2fWOqvwh3l+6lVwSdiMbdmTsMIcAtXiTb+41GByp\n37vHGw+AckyGNYSCNa33acSyLCzsAteDzE7eXLgp42e0hcIiERERERERkd1E0JkPQL6J1+/5eNHK\nlH5uY9fHCTm8Kdfa45DwgpQ248mPHZ/inNvkfXnUU7KzNqN3PfDeiqTzb5jNCWfxgGy0o5gjRw5N\n65mOhLArfNFrrd9w7G0EfP0AKK2s47GPV2FZ6dcu8ociOE28MPaOan8LvbNHYZGIiIiIiEgPFolY\nTc4ckd1PtT/EzqArpX35q79LaXNjL3eKZBBspMPjdiedBywnOD3N9I7LM3W80c5ZNXs7Eu5fPyvp\nWu7KN9N7iDMeFjn3Pa71/t+6kbUTbgPg3ilLeeC9FSzemP7ObrWBcFJh62Wbyrn8mXksWL+zhbva\nT2GRiIiIiIhID/aNW6fww6c/7+phSDfwxqM3cHBwXux8Rq4ddozum7rLVm+qAaisSy0K3S69Bied\n1uMB03o0UUAdHmdmEcax+/Si2Hch33d+zGB2MNA0qhl04Hczeh4AztSwrTXG2MvIAiE7gPOHIi11\nT1JTH+QT7/Wx80+XrOWDpVv57l9ntnl3tXQoLBIREREREemhVmypAuDTlTu6eCTSHVxU9XTS+ZpK\nByXOIXhDdjBUtvxTuKs3O7dvxhVd+pRfuEfKc9rloB8knfrxgCcXvv/vFm/LM/U4HCajVx2fZxeg\nvsn1IjN918Uv7HsSXLcA1s3M6Hlt5rB3WjPRpW/BcPph0ZL125LOD3Csix13ZLFrhUUiIiIiIiI9\nUCgc4bbXF3f1MKQL/eYP9/GX519j6YKZfP7FFynXa/Hhd+bjCdmhYuGLpwGw+JFz2W71BiB07J3Z\nHVTfoqTTsCO6BO2AM2DCD5u97Uxn5sHORSvsgKifqYo3HnEtXPQfKPxG8oymC17M+PnpCkYnABVQ\nxzizikAGM4tue2l20nli3aXaQOqMsGzJfP6UiIiIiIiIdHt/+uBr5q3r2Lom0r3dWXsvfI39pwlD\n++ZQF8rHWVPGspWrGBVtP9pph4yLXGOZNP6A7A7K6YK7Klj14s3ss/xxcq2EotVnPAJf/KvZW3M2\nTAdGtO/9B10SPz7yOnjvFjj0Stj/lPY9twWlNXao85D7MUY4tvJ+1YnAwFbvq/GHyE0oRA6Qgx8f\nfurxUO0Pkc68r7cWbeK1L0oyGrNmFomIiIiIiPRA84oVFEnLhhx6JiXVhnGONWx85rKU62F3Xoe9\n2+krAGC9Sa5hxO3bmuht85dvbvZaU0I4UxsHjowfH3EN3LIRTrk/o+dmas8+uQCMcGwF4LevzuHV\n+a2HN6c/OoN8ksOiX7ufZbnvRxT7LqLWn97Mov97YQEfr9ie0ZgVFomIiIiIiPRAq7dXd/UQpJvL\nz8tlr8F2WHO8M3VL+3pHboe9u5YcAGrCjQIdlzf5/PvPxO8JZRZhfJJ3ctJ5xbdSd33Dmw8ms1pI\nXPYR/OzLtLvvOzA/6dyHnwfeW9HqfWu21/CE+6Fmr3+8fGvaY8iUwiIREREREZEeqLQm0NVDkG5u\n73FHUdVrv2avB3E3e629hg22l2E5aaF+z4l3wwFnxk59wcxmyxUGk8OU3vsfldH9zRoyEfoOT79/\nRfIsonzq086nihzNB0J/nbqk1fvL2vj/gMIiERERERERkd3EPM8hAFQcczc43fQvOrDZvumXYc6c\nN9cuoO0hmHpxr4OhzzA48v/s8/EXAVAY3JLRO6rq/MkN7o6bKdWi2tKk016mhs0VddQHW15G5nO3\nnCjlUc/DU79u8TkTfvcBhgiODH+bCotERERERER6oMI8T+x4eL8u+pAs3c6IM2+DuyrofYwdxOw3\n6btJ19/rc17seEx1x20t7/bZfyf3NRtTL17+Ifw8YSe/s/5KEDeWZWX0jpSAxJ2T6TCzo1dyXaZn\nPPdzkfNDznz0sxZvey/vty1ezzF+Hp66kuMe/KTJ628u2gTAo+5HWOO7OIMBKywSERERERHpkZyO\n+KwER6Y1WWSXV+/3N9ne78BjU9q+nnB77Dj/oLNjx/1NZfYHFmX67Q2Ax+Ntpaet2vJSVV3N+tLa\n1jtHeU2jWUumiYLXnWHCD2HwQUlN5zo/YcXWKr4sKW/2tuH1y+Inl/w35fq1TrttY3ldk/df94Jd\nh+pU5+eZjlhhkYiIiIiIiLTN/HVlvLsks6VB0jn8m5eltNVbTdcgWmLidYsOOfJ46g61Zx0VX9xx\nM4saloQ5TXqzhfy48RLk6Ac+Tqt/OGLhbbzErdEMn07jcMDwSUlNBvv7fuHzDa3fX3QU7B0P+WoO\nuRaA813TAHA7sx8GKywSERERERHpgeoCdh2THOpxWOltsZ2p7z0+i6uenc+WivrWO+9C1myvpujm\nt1mxpaqrh9Jm4UD8d7J8wElAE8uyog6bMIFSq4DrIr/E43aR85274a4KivZpvp5RuzmjwVWaS8v8\nljt1plALagMh+psK/K4Cu+HoGzPf9SybDvwuuPNip72pAeCFz9e3fu+pDyadOveP7/I2kJ30zfU0\nviPel7b921dYJCIiIiIi0gNV+0MALPP9mLvr7+nQdx3/p6Zrpuyq3vvK3oHq5y8t7OKRtF0gFA+G\nagYdDjS/89heew1lykmfcuMvbuiUsdmDiS4/+8YxaXVvmFmUrvqqcgabMryhKrizHL59W+ZjzKYh\nB8Ot8fpMRY6tnOqY3eIt83ImUewsggH7J7X78nrHjj/3/ZSi+qXNPuMm14ttGq6rTXeJiIiIiIhI\nt7efsZe4HBGe16HvaQimuptAKEKNP4TLaSjwpb8NfO8cu++yzR1Xs6ejBcLxYMiXmw+0vOTrkiNH\ndPiYknhy4epZ0Lcore77OTayHxvpG2z9d+IPhamvKos3dJeaXY3G8ZjnEb6o37fZ7o5IkLBpIrbx\n5CWd/s1xP3BdUptlWTzjvpejnYtpC80sEhERERER6YH6Usn73pu6ehhd6qg/fMRBv/uAMXe9n/Y9\nVfVBFqzf2YGj6hxBv10IenHfE3C40ysi3en2OMAOjTLwlOePLV5fXFLB/re/y4ylxQCs3ffSNg6u\ng5z1eNLp5f2/ZOmmSq769/yUrg4rRCQxLPrRO3DWE+BMXnbW11Sn3FsbCLc5KAKFRSIiIiIiIj3S\nE56Hk85Ldqa/i1S68qijAPu5kUhm25p3hq2VTe8I1pJrn1/Ay/NLOmA0nStQZwcIkYMvw+H2dfFo\nsmeCYxXbq5r/vc5bZ88omvu1XQuoavA3O2VcaRt/IeT2i53+uPrvfOeRT3n3qy1MW7EtqauJBLEc\nCTPihh8J4y+AvAEpj7Ua1X6qaedsP4VFIiIiIiIiPdAwk/zB81sPTMvq819fUMIc709Z7LsMSF72\ntKvaWlnPJ19v7+phZIXvk9/zTKNOAAAgAElEQVQBsGXLJpzddWZRG9UGmg9CGmo1ecN2iOnK6dUp\nY8rIjWvgugUpzZc+PZeim9+m6Oa3ATCRULwQeKJG4d82qw/hRmFtVWJY1HtYxkNUWCQiIiIiItID\n7WnKks4bf5hsr1+8tIh8Y++4daxjQbcLi/yhzHeB2hadibS32chc79XsSSllNYFsD61TjAitAaCf\nJ4jLk9PFo8muz9eWNXstp3ItC72XMyy0DgBPbjcMiwAc8eVlIwcVNNnFHakn4mpmVtjRv4r3I8Tn\na8vwh8KxIK22NmEmYWFR5sPL+A4RERERERGRBE97Hkjafas7qPEnh0VLNla0eo/HZX9EPtf5CQNM\nBXe4n2HW6tIOGV9HW7LftQAMnngq3vzCLh5NFlz2Uexw8vQ1zXY7YMt/6WNqOCnwAQCenLxm+3ap\nPvZsnzVmGKMCi5nrvRov8WAyHLHwWn4irmZqOh39K+i/P9MjY3ERZsaqHRzzwDQOuOM9NlfUMW9x\nwg5pBYMzHp7CIhERERERkR4uYDk7/B3BbjazqKo+eZv1zRX1rd7T8D3stOyZHqc457a45Kk7Czjs\nGSlOl4eCoaMAWOw8oCuH1D5DJsYOHeEWalFFa/e4LPv3783JrIB2Z1qZO57t4Vweqr2VAaaC0xyz\nOcUxhwHs5IH3VuCjHtNcAXCXF679nOXWMNyE+Ou01bG/40fc+xHPfvZ1vO+kn4HJLP5pYg82ERER\nERER6Um+tPYG7CK4JkvbiOd7kz9OBkPdq8B1VX1yyJPOMryGpXRVxD+g+7vZjKl01fntWSrG5SQ/\nL5/IHeWMcXSTLeTbaZ++zYefxor+3q0IGMjxddOZRcDmqjD5Jv739EHPE7Hjok+e50pvgEp3y0sI\nJ4zYA/e61EDThx2WWU4vZo8DwJ0LlKc9Ns0sEhERERER6eEc2IHHRU/Oydoz783/T9J52OpeYVF9\n0F6G9qNJRQAU+FqfKxEMRTjJ8Tn3uJ8CYHVkT0LdbMZUuiatfQQAV7RAsqMHBEXBg68A4DuFm5rt\nYyz79+7A/urrxjOLBhUW4CLMusjAJq/n4sd4Ww67DvRswWkshpstSe052LOMzHnP2g2B6ozGprBI\nRERERESkh9nZqCizK/rBeebqUkp21nLr64vbHYKcXvNK0nk4FGymZ9eoD0Y43jGfXy0+ndtd/6Y2\n0HrB62AozN88Dye1dbfC3ZlyuprYTWsX5Vr3KQAjS15uvpNl/77c2LNtPL7uGxYN6dcLN2ECpP6O\n8qjDa4I4PS2HRTmr7J3TTnLM5SjHl5zisAPhgx3RZWg5fds0NoVFIiIiIiIiPUjxjhqOfuDjpLaG\nD865Hic/f3Ehz89Zz6KS1gs+ZyISbL0mUGeqD4Z50vMguYFSLnO9k1btId/2hUnnezs2Ewhmvqta\nd+J09pzqM8bltb+GW9ihLjrDzU2IiGWSdh3rbrxeH6Mc62Mz/xLd5rJnBLnSDLtOds7l3577eNzz\nZ0aZddzsftG+0PD7H3pYRmNLKywyxpxsjFlhjFlljLm5ieuXGmO2G2MWRv9clnDth8aYldE/P8xo\ndCIiIiIiIpKR0/4yI6VejycaFo0d0pt563YCsK60hqKb3+b2/y7OynutYAtFh7tAfTD5Z5DezKLU\npXQDdn6RtTF1hRxP9w1LMjbyNAC2e4c226VhGZqLMH7ckKUaXR3BEa2vtLdjc8q1C1124JvjaGVm\n274nATDBsSrW9I73lvj1vAH215+8n9nYWutgjHECjwGnAAcAFxhjmiqh/pJlWeOjf56M3lsI3Akc\nBhwK3GmMadscKBEREREREWlVtT91Bk3DzKKDhsU/jl3/n0UAPDt7fbveVzrwCAAi4e61DC1Yn1yj\npaWwyB8KU1EXJBhO/dm56ndmfWzpqKoP8t8FG7HaWAtqqxnIgpzDcfaAWkUxE+35J29tzOPNRc3U\nLYrYv+deps4Oi7oxc8S1sWProEua7jNwZMsPOeE3zV6qKtgbeg9p09jSmVl0KLDKsqw1lmUFgBeB\nM9N8/knAB5ZllVmWtRP4ADi5TSMVERERERGRNhnm2M4YsyarxZrXOoYDsH2Y/REvHO5ey7UWripJ\nOg/7my/wu//t7zLuN++zaXtZyrVgGruodYQH3lvBz19ayOdrU8eUjj2sbSyt6r47gbVJdBmalwDX\nvbCg6T6ReGjp9LS8k1iXy+0XOzS9BjfZxZvfynwbl6/ZSwVVq9s0LEgvLNoL2JBwXhJta+x7xpgv\njTGvGGMa5oSle6+IiIiIiIh0oLe8txMMZy/4sICF+UdhorttdaeZRaXVfqYvWZvUts+mN6kNhJiy\nOHXJT4MPFiXcc/L9AMxZ2fzOWx2pNFqkfEtlG2pBRWdIDcjpXjvUtZvLDn8atoVvijOhnlFBcEeH\nD6ldvPnxY39Vk118eb1bfobD2fy10x5qw6Cij23zncneAoosyxqLPXvoX5ncbIy5whgzzxgzb/v2\n7VkakoiIiIiIyO4lcclSpImPe6FI9mYWOa0QlnFhVy4BK9J9ZhbVBsLkUZfU5rfcHHDHe1zz3Bcs\n2lDe5H25JNRdGmXXx3FHuqZwd+8cO4Qrr808hAtFZ1HlDBmb1TF1OaebCAavSS5wXXTz2xTdbO8K\nVm+8XTGytvH1iR+PPsf+uv938Cd8D57WwqKcwuav7TmuzUNLJyzaCCRWjxoSbYuxLKvUsqyGf1VP\nAhPTvTd6/2TLsg62LOvgAQMGpDt2ERERERERSRBOWDI1N7JfyvVQ2GLcEPvDZ7HvQop9F3KX659t\nepfLChFxuGO7LUVC3WdmEcBwsy3pvCwU/wA+Z21p0rUJw+wP7b6GEOJnX4Lb3oUqKUDqREs22rvV\nVdRl/nOtr7XDIuPu5suwMmUMfjxc5/ovz7vv5s9TV6bUdApZu1CNJk8u/LoUbt0MQybCHTvh/OfZ\n7B4e62K8BS0/w5sPV37a9LV27ASXTlg0F9jXGDPCGOMBzgfeTOxgjNkz4fQMYFn0+D3gRGNM32hh\n6xOjbSIiIiIiIpJloYSwqDc1KddfnLuByvoQ9iIy26WuzHZJauAihOVw4Yh+IO1OM4siiQFCdDlZ\nVX18fI2Lerud9kfjWDDkyY+FRTm0sE17ByrbuJJ7XX/PKIT7Yv1OlmysYNXCGQBUhD0dNbwuE7Ds\nmWxHOpfy0NSv2Zkw8yoSsXAk1CzinH909vAy53TZoRGAwwHGEDQJhblbC4sABo2BUx+E/U+1vzaI\npBZsT1erMZNlWSFjzLXYIY8T+IdlWV8ZY34LzLMs603gOmPMGUAIKAMujd5bZoz5HXbgBPBby7La\nVp1LREREREREWpQYkvQzlSnXC6hl3Y4IN+y1FEpTLmfESQjL4cY47Q/vkSZ2EusqwXAET0Ndm8Jv\nABAOxZeTnTk+uZhwYXAzY00JOQ1hkTsHXF4sDAXOrplZdK/rSY5yLuHVqi+wNyZv3pTFm9lQVsvz\n706jgFp+M8b+2L3n/od1wkg7V6DRDmf3TFnGJMdi+1r4ZByRhHBv9Pc6c2hZU1YXjk/tiYaWLTIG\nDrnM/hOogbd/abcPavsytLTmJFmWNQWY0qjtjoTjW4Bbmrn3H8AuEOeJiIiIiIjs2hJnFg0wFSnX\n73U/yZzISK4t/We73+WywuBw4WhYhtaNwqKq+hBeEw2LfL0ACAXioU+40Q5nj+/4EXjhiZBdpwh3\njj3Dw5GDO+THsiyM6dzlTcHox3VXpPWw6prnvgCg2Hc9AF+GLidsGYaNmtjSbbukQEKM4SbEK/M3\nUOy7F4Cq8C9xNswsyh/UFcPLipCVULQ60793njy4K/XffqayVeBaREREREREulg4utvZdx1N1zAZ\nYrazl2nnlKIoFyEspxvTDZeh/fqNJfGZRdFlPOFgfGZR47CowVWu/9kH0Q/olWE3OfhZvLH9H74z\nlZdjb4nepz7z3djCNeVUkke+z916511M4t/flb4f0J/4DLoafxinFWCVe3+4YUVXDC8rwt0gqun6\nEYiIiIiIiEhWVPtDnOSYy0Oex5vts48pycq73IQhYRma1Y76KNm2ZGMl3lhYZM8sigT9HOX4kt+4\nniYYTm9L+f6mgotdH1Ky095ZbVtlPZOnr242bMqmscFFAATasLvXQVtfJgc/XlfP/8j/zegSNIAr\n/z0PZyRI2OzaIVmR2QJAidW/y8bQ8//miIiIiIiI7Ca+9/hM/uZ5qNnrH4Qnst3q0+z1dIUjFi5C\n4HTjcNofzK00lqF9+4/TOOXPzezclEWHjijkbKdd5LlhZlEkGODfnvv4oesDcuu3JPWvoeW6MA2h\ny+OfrOaeKcv5ePm2FvtnQ45lB1TpxFIjzXrGmVVJbT4T7PSlc13hYc9fY8eLSspxWkHCjl07LBrm\n2A5AHvWt9Ow4CotERERERER6iG1VTdS32fekpFOPCbIhMiB2vjaSeW2XYDCI01gYpxuHw55ZFE4j\nLFqzo4Zlm1MLb2fbd/csY5QjuuNZtEBwYcJeS3uXf5bUv8QR3+B71b4/SXne9ujPdWN0hlEwHMnq\neFvSeGv4przrvZk3vHe02q+n8xLEZQUJO3rGLnAdP3+teQqLREREREREeoDiHTWpjcffBRf9J3bq\nNiG8BPEn7CjlIkwow/AjEIyGUk43Tpf9rKYKXP/8xQUcds/UjJ/fboGEn0V05lNfUx1rMsG6pO4O\nK15vaZ+h8eAodPhPqbM8sRCuoYD4nLVlLC7pnDpGJnEreLGLN+91cJOX/uh+okeFRV05L0xhkYiI\niIiISA/w6zeW4KRRkenDr7G/Xr8MsIMhL6Gk7cfdJpR2DZ8GwYC9PblxenC57ALXf5v2dVKfkp21\n/HfhJrZW+tnntnc46aHpsWsvfL4+o/dlKmnmjzEEcNGLeIC0bGNZUv+kn5snP3boyulDjgmwraI6\n6bn/nFnM6Y/O6ICRx611DAPAobAo1bn/bLL5dOdsXFaQyC6+DK1BL0/XxUUKi0RERERERHoAl8Mw\nkPJ4wz4ngCtaHLnXYAB+4PwAD0F7+/HzX6DKNxg3IQKhzGb+hGMzizy43PYHcyf2M6Ys3kxptZ8F\n68uT7lmxtSp2fMtri7O+lKuiNshNr3xJjT/1+wlYLnqbeFjkJMyFf5/NlMWbWVxSgTNhZhEmYdvy\naL2jOUuLWb6lkrpAchiX6c8tE37s2THGatsuc+XnvZHN4XQvfYbCiXezI3eflEsuK4S1ixe4buCM\nBLrs3a4ue7OIiIiIiIhkjdPhIJK4cGXVByl9eplaDnQUs9oaDCO/Q8keb7NX8av4WwluagMhcj3x\nj48hf3QZl8uHK7oMzUWYspoA1zz3RVrjXbKxgoOG9U2rbzqemL6al+ZtoMDnYvGSTVyWsIlYEBe9\nqI2duwkzc3UpM1fb27DP8CWGRQk/w+hOav6anZz8cGph7v1uf4f7zh7D+YcOy9r30aB3JLrMzco8\nkLJu304fV89YitWsI/+PHYtm0b82ubC3sUKU1nfysseOEm6iBlkn0cwiERERERGRHsDpIDksakYv\nahi5V3RLbpcHDyECLYRFG8vrOOCO93h+TnzpWChgh0XG7cPt8QHgJsSO6vQ/3GZ7+3mXw/7en5yx\nlrvc/0q6FqTRzCKTPFvHSUK9JZPwMdltf2+jzLpm33vza4vTKkKdqb7YYVFLz7Ysi/97YUFy421b\nMT09KIqynL6UNhchttf0kLBo/MVd9mqFRSIiIiIiIj2A02FiS8GA5NAjgceE8eXk2F2cHtyECDZa\nThWOWNQG7ABlXbRw9luLNsWu19TYbS6PF1c0LPqb52G2VKS/1XdLAVV7xXZCiwo1qlnkblTbyZE4\neye69AyAPccD9owsgGMcC/jIcz0D2Jl0f2Vd6zvBZarWsqdGtbQMbUNZHW8t2sR2qxeV3kHwsy9j\nAdfuIOLyJp3/L3wYHkLsP6RfF40oy77zQJe9WmGRiIiIiIhID+AwBpdJCD2umdNsXxP9kG1cXpzG\nIhBMro1yw8uLOOCO9wBomAA0a01p7Pr9/1sEQEF+Ac6EWSwbd9ZyufN/9KfpncK+7fiC6/bdYT83\ny1mRx9nEx9uT7gUgbFzkmfisp337+7j91FGxcydhvuz/HTjhdzD6e/H78wcCcJCxlzpd7XqLbzi2\ncEiv5LCoLti2ukItMQ0bp0eDrO//bRZ/nroydn1jeR3/+GwtYG8ZPz/3m9B3eNbH0a25c2OHKyJD\ncBGht6mlsCC3hZt2AdfMhu8/A56u+z4UFomIiIiIiPQAToehL/Ei0gzYr/nOLnv2iYluKx8MJC8f\ne33BRgAiEYuwZbG32YhJmLVUWW3P0unbqwCc8bCoftNSbnM/zzzf1Zzv/Ihckmca/cPzR67fcB0A\n4Swv3RrWL/7Beq4VDYImXGKPk8qkvscPd/GDI4pi5y7CBF35MOk6cCQUuI7ujJYTDZrG7mGHbHcc\n1Ys+CT/r+iyHRZZlxXdosyJsrqjj87VlPDT1a+58YwkA1z7/Bf+cWQzYYdGooQOyOoZdgcdr/86D\nuKjDQx9j71rnjaQ/w61bGjgKDjizS4egsEhERERERKQHcBrDW97b0+rr2r4UAEd0VlAo0PSHa38o\nQs7O5Xzo/RVXO9+KtZ89xl7mY4dF8Z2nXvl8Tez4PveT3Ot+stkxRLJcsygUjj9vhWNvO+iJLinL\nTyhuDcCiF3A74/WdXITB0cT+T8YQHjiGo4d6WPbbk8lx2IHZoA+vY6Hvylg3f5Z3RQuGrfhSOSvC\nWY99Frv2r1l2/aSGndgcRPCaEIMK+2R1DLsC47GXU37lHo0fT2xGm7/fAV05rB5Bu6GJiIiIiIj0\nAMa0Utzakw8Be+aFqbBr+jiiy9FCjWYWeZwOAuEIVf4g3hp7ltFEx9ex6y4rumzN5Uvaar6fSV5+\ndqZzJmc6Z/JZ+EA2E68jc5xjPuHIwRl8d61LLJjtsgJJM56aYn7Th3c8Q6nFh4swVlNhEeDM7UO/\nSD14nBBOXq7nIEIER9ZnFgXCEXzRotvGirC1Mv77ufZYe7t4j8uBixCrfD+wLzSq37M7cESXofmN\nj8McC+Ptub27akg9hmYWiYiIiIiI9AC9Q9tb7nDZ1NihiYZGDnd0ZlEoOSwaGVnJBc4POfT3H9JQ\nh/oQx4rY9T2r7KVQuDyQFw+B9jDJtXwaTHJ+xTnO6bHzpzwPEs5y0SJHfTm/cr2IkzDOSCC21K4l\noxwbmOhYaRcGbyYswpMH62fBXb1hx4qkS791Pc0AyrMeFvn9gXj9KSuCIcLX3kuY6rmBUDgIwNF9\nSrnJ9WLCXa3vhNfTRKK/40hCYAngylFY1F6aWSQiIiIiIp0iGI6wYksVo/fSB7mOcMHGe1ru0H//\nlKaGmUXhYHJY9Kb31wC8ED6OhhVWDTuCAXxry9PRIzugsPIGYmq2sSdlaY/XV1kM7Jl2/9aMW/4g\n+7reZEVkGGebT8Cfn/a9bhPGahQ4xJTMa/a+i10fcrJzLl+FTsx0uC2qqKmJz8OyIpzqmIPHhNnH\nbGJ46WfAaK5afQ05roQaVUVHZXUMu4Kw0w6LnCZ5SaMvf/dbkpdtmlkkIiIiIiKd4q8fr+a0v8xg\nycamd8qS9oktDWuOI/Xjn8MdDYsaLUNLtGRjeew43LjOUG4hAOasxwHY05SSLhOqbb1TJiL2sq2f\nuV61w4NAVSs3JJu3obLpC7U7Wryvv6kk4I/XfCreUcN/5m1I/VllYO6qLfETK8Kjnr/E31djLwf0\nhBv9/IZMbPP7dlVBY9fLcpL8sy4s7N8Vw+lRFBaJiIiIiEinWBwNiTaW13XxSHomK5OPdwWDAQhH\nP2w/N3NV7NK2ynjw4SLE9JXxAKi6PkQkYvFs6Dj8lht62c/Ba8/iucD1sX1+3UJw5bQ83nAo/fGm\nI2IvBdvbsbnlfrdtabK50t/2ZVyJYdExf5zGja98yRmPzmjz877ROz7LaX1pcuhVa9mzaWpcCbNn\nfjKV3ZEVXZIXcbig3z6xdoevV1cNqcdQWCQiIiIiIp1qs8KirNpQVssjH66ExALXp/6p5Zt+9DYA\nYWNXJtlUWkldIMwr80s49J4PY93ucT0FCbM2qgMhjrzvI1yE2UnCMq+8Rtu25w2AS99ucQhWJLth\nkTuU5kwidw4cdhWc+mBSc15OMwWir5kTP554KZz1BFzy36QuIX8NEN+hDOCrTc3MVEqDFY6HT6FQ\ncj0kE7Znga3MGWc37P8d2Gv3m1UEEAnZs+kixg0//F/8QkH2ljfurhQWiYiIiIhIp2goAvzh8m1d\nPJKe5afPf8GfPvia2mBCwejeQ1u+KfphOj/P3k3KTYhbXvuSG15elNTt+65P4lu4A5c8NYctlfW4\nTZgQCTV+Ggc/njx7WdSR/5fy6tp9TgfAimS3KPSG3o12V7vy0+Y7n3I/jL8oqen7h45ouu/AkXDt\nfBh7HpzyAIy/AAaPT+ryh7cWUnTz2+z/63dSbg+F21DIOxBfYuZotMSqqrqao//wMRvL61gd2RMu\neKHJJYa7g2B0+aRxuqFXQkDkanknPGnd7vk3SkREREREOt2oPQsA+OY+qieSTRHLDhOSMonWZu1E\nd/4a2Mf+nZxyQL9mZ8K4iT9rzXZ7FzUXYYJWQliUPzB2uHXf8+OznCZcmvK8cJ8iAKxwdsOiRZvj\ns3Espxf2HJvaafT34seNdkvr3zuv+Yf33wfOnhwPIXL6Jl32Gns5lNWoTFHRzW+zz23v8MHSra1/\nAwmctfGd7RzEf7F+PFRVV7O+rBYfAfzs5qFIdCmjlbiT3d7HddFgehaFRSIiIiIi0uG2VdUzZ236\nO2VJ+gq8dt2hQGL2YrUSxDR8uPbbS7eGff0vVm6zg6ApnluSuv7V80js2BWdZeQiRF5OQk2ihPBk\nj5yExMSTGsAYpz3eSJZnFu2orIm/o/F7Bx5gf/3eUwkDSa5R5HC2fbNwHy0XF793yrKMnpdYG/tS\n1/sABDx9CODCQzD2znrcmQ20hxnbzw7Sxgy2Q0/uLIeLX+3CEfUcCotERERERKTDHfr7D/myxC5w\n3fY9oqQpeV57hk8wMWFoLYhpCEpq7BksJzrnM8as4WXPXRzgWNfsbS7CnOP8hFOdnzPQX9x0p0A8\ntMHtS7nscdrvrvO3sntbhpwJy+VwNgpRLn3bLgLdKCBi0s/jx/VtrzHkI8ChRYUMKLDrHr169RFJ\n148bNbCp25pVWZO6U5wnUE695cYbDYu8JsiwPfq1ccQ9g8dhh0W5vexd+TAm9XcsbaKwSERERERE\nOoUPP8c75rdrS3FJZaIfjkOJy9Bam1nUwFsQO3ze83sOcXzdYvejHIv5o/tvTV884lr7azAh6PD1\nSenmjoZFgUD2wqJIxEqqrZQitxCGHpLaXnRU/HjOE21+/zM/GMd/rjqCubcdT/HNY5i4+nHOGhkv\nAO5zO/nVy4t4fs76tJ73wqzVTba7vTnkGD+nOmZzsLuY/n16t3nMPUJDKOrJb7mfZExhkYiIiIiI\ndIpfu57lSc+DFJZ/1dVD6VEa5lFYJMyoaG53rMOuTj4fYgcoO6xeac34+runhV3WDr8anJ7kwtFN\nzPIwe9q7eAWC2dsNLWxZOBNq+6QUD2pOXsLMHHdum9+f7/DHTx4eA9P/wPnr74qPL2Lx8vwSbn19\nMX98b0Wrzxs1MCe1sc9w+hQUcLZzBo95HsEZrofgbr6z4L4n2l/3P6Vrx9EDKSwSEREREZFOMdjs\nAMDr39HFI+lZHNFAJhYW9R0BfYua7nzKfXBXRfy89xAA+ptKepl2Bg+9h8BtW2DMOU1f/9Vq+93R\ndwZDwfa9L0E4YsXqKdnSDIv67x8/bgge0tVvn/hxffRnWh6fOXR45IvYcY0/How9+vEqrFbCrFF7\nNBEWfecBCNUntw1qooj37mSvCfbfqb0mdPVIehyFRSIiIiIi0inqozs35dVv6eKR9CwNu6bH4ofO\nqtlyw8omBuNMbWvQsFQo2mfG11uJZGlJYjhi4TQJYVHN9uY7J0rcEe34uzJ76U8+sGshAbx+JdzV\n255VlGCl9xKKfRfiKU9eVlYTaHmZ4PCyz1Ib9zspNSwK1qT2E8kChUUiIiIiItIpgti7TYX0MSSr\neod3cpxjfvIyrGw79UG+HPnz5Lb8zIo247KLPzfsxOYkQnlddmYXhSIWrrZ8/46Ev4tNFONuUW4h\nDDuixS7uaIA1aduLSe21/paX4B24fUpywyX/tb+eeLf99RvH2l+PuzO9sYpkSP9Li4iIiIhIh6oL\nhHERYrjZCkAooo8h2XRdyS95yvMgBbFlZBnOLNpjTPPXfH3g/OfhkMswpoVZQ+lomPEUfY6LMIFQ\ndgKuuWvL6E3CLJu9Dk7/5sOvgV5D2vZihxMGNfHzG/7NpNP1kf5J5/5Wvu8Kz6DkhmhtKcadby+7\n+sF/7a+5hRkPWSQd+l9aREREREQ6VMSyeMnzO8Y51gAQ0mZoWTUgUAJAPm2sOXTJ681fu6kYRp4K\nwPqd8SVQliuDWTh3VSTXSYpuaz/UbGPhhnKue2FBu0OjvnluLnJ9GH/f5R+mf/PJ98L17Si6fuWn\ncGe5/eeYW+22U+7jK+/4WJed/uRbKutbnlG1rPfRVJMT/9l5tduXdC6FRSIiIiIi0qHClsVER7y+\njRWxZ5TMXlPahaPqOVzYS5qGm2gtqJzU7epbfoC36fZfrUmqf1SbkPKZH01p6o705NmzbPx4+MVL\nC3lz0SaWbq5s+/OIF/nuEsbE/xx9A1z1GQwaQ69IebxPoJq/uB/hYucHAPzsxYVJj5i5egfrS2vj\nDZEAQdydMXqRJiksEhERERGRDmU1mjSyZEMp90xZxvmTZ7N0U/tCAonzNBR4Pu/ZzG709YJTHkhu\nO/XB5G3lgWAkIZAp2LMNI4yKblHvI0Bd0B5za7uDtSacpULZ7eZwwqDRAPhMfPZQHnWc7pzN3e6n\nOdnxOau2VSfdduHf5/yeRgsAACAASURBVHD0Ax/HzsPBQKzGl0hXUFgkIiIiIiJZVVEbpOjmt/my\nxJ5ZEW4UBITDIf45sxiApz9b29nD69HW5I2HXoMzv/GwK5LPD7kspcsZByXU9fH1zvwdDZxuIg43\nuSZhWVvbnwZAKNRyweiu0C8vvlSvF/FZQ094HgZg5dYqIDkoe+Hz9QBs2VlJfaSdNaJE2kFhkYiI\niIiIZE04YjHut+8DcMaj9vbfkUZhUeKuXS/PL+m8wfVQ67z7x46H7dGvhZ7tk795dvwkOjuorSIu\nHzkEYuftnRlkBezi1usPvq1dz8kmhyM+E2uAKU+5fsJD0wmGI/z0+S9ibbe8tph3l2zGQ0gzi6RL\nKSwSEREREZGsaapQcWpYFI4dX3TYsA4fU08WiVjsTNh+3uXJaf9De+3VdPvX78WP21sjyOnlx653\nY6evtjM0tPz2si7Lk9eu52SViX/c3iMlLLL/Tbw0dwNTFm/hf55bY/WMrnr2CzyEcHmaqSUl0gkU\nFomIiIiISNY0lSFEGuVH7oSwqMCnIr7tMX3ldqzEj3U129v+sMs+hAO/C5dNbfp6O+sKJQr1LgLi\nxblfnLuhfQ8M2jOLTHcKi4j+Y8jtxwhfcm0uL3bA9+s3lgAWox3F3O1+Onb9JOc8hoeKO2mcIqkU\nFomIiIiISNY0nkUEUL5zR9K5m3h9me1VfvyhcONbJE0RyyJCQkK3YU7bHzbkYDj3n83XPLr4lbY/\nu5Hg/qcD0JcqDjTF7X+g3w6LrO60xXzDzCKnl5zAzqRL71w5HrDzt1z8sfYis7nThifSEoVFIiIi\nIiKSNY2zovpgmHOfmBW/bhzsXeiJnb/6RQmX/mNuZw2vx+md48Gik7aNH3G0/bVw73Y/ypVjhzq/\ncf+Lt7230pd27ooXtAtIO9zdaGZRwzS7qk0pl74x7zex43zqYsfTvL/EQepSTpHOprBIRERERESy\n5t+z1yWdL1hfHvvwu3DUDRinh4OH5nGGYybFvgvJoZ5Za0q55rn5vDR3fVcMeZcWjljJO4mNPK1j\nX3hLCVw9s92P8XjtUOc7zs+B5Nk1bWGF7WLZDrenlZ6dqPfQ1DZvdBe5r17HE12KdrhjaVKXNb6L\nAXg+9O0OHZ5ISxQWiYiIiIhIVtT4Q9z3znIAvC4HLoehT647tvvZTr8DQvUMWfp3HvE8CsBhDrv/\nlMVbuOnVxV0z8F1YKBLBk7Csj46u2eMtALev9X6tcPqSl4v1y2n77KgNZbVYYTt4cTi70Q5iZ/8N\nzn4S8gbE2/aJB0B/dz+IhyCPeB5r8nZXr4EdPUKRZiksEhERERGRrAiG7VDIQYSfuKZgIkFCYSu2\n+9lXW6pT7rnC+b9OHWNP89oXGymzCuIN7izshtYZGo1zaO+2hTzTVmzjqD98zFPTVwHw/+zdd5wV\n5fX48c8zc8tWelNAF1AsYEfF9tVo1NhbNGo0avxp1MT0GEwxGI3GWGI09t6NvaGioqioqIh0pPe6\ntO17y8zz+2PuvTNzyxb2bj/v10t3yjNznwsL7Jx7znkMswM1TC/sDXufDZe4q74RcoNkR5qzONiY\nn/PyktKerTk7IRokwSIhhBBCCCFEXsQspyDqxsCjXMOTvB26llP+OyWVWTSkb2nGNSv0wDadY1fz\n5sy1KMBSpnNg1+PadT5NFizy7ep4hAmz1qGbueLaV8u2OLdLZFcFOlIZWlK/XdztPU7xndpLLc15\n2eEDWlaaJ0RLSLBICCGEEEIIkRdRy6aYOs4PfAjArsYaAALKCRYdv9fgjGsaCxbFLZuycRN47LNl\neZ5t1/CjA4diYhEbuB/8eT3sflJ7T6lp0oJFh297k58/O51PFm3KcUGmTdUR7p28BCAVkOxQZWhe\nf94Af1oLI4+Ha5bB751MqGuCL/jHBdwSvx7FHahZt+h2JFgkhBBCCCGEyIto3Kafqkjtx7XzuHGC\n4SznXhgOZ1zj67eTRU3EKWG7/s15zc466Q6e/mIZR5hzCASCnacEDTKCRckAY0VdrMm3WLmlNrUd\nSJQ6moEOVIbmFSxw+0kV9XF6P3nYe50DF78NV0+HHfdLXNOJfj9FlyPBIiGEEEIIIUReROM2FmZq\nP5lR9Ofgs84BZcLJ//ZdM8ZYQH+28RNzIrupzNXQamNuMOmxz5bnf9KdTNm4CZSNm8Dabc5y6/3Z\n5pwo7GT9bXIEQprT5to7NhksMjpqsCid4c+AMoYdAWWHQc/Bbimh0UGzpES3IMEiIYQQQgghRF5E\n4zYxbfqO7aMWuzuGCWN+Cuc+mzr0f+Zsvi64ir8Hn2BieFxG9lBNxA0WzVq9rXUm3gnNXuNkcJUq\nJ7tG7XV2e06n+QL+FdWW2045ompGtKg2arm3U852qCP2LMrG8P85YcmH7vYu3/d/FaIdSLBICCGE\nEEKILujzxZuYvbqi8YF5FLUsdFpuiIEn+BNzsmHY/SQYn31u0cSKagB1UYvv3/FJav/1mWvzN9lO\nzrKdX9d+gXoAzMJe7Tmd5gv5y9A24sxfNSO3yBssSvYsCoU6SbAoPSpW1NfdHnqQ8+dj6IFtOych\nPCRYJIQQQgghRBd0/sNfcsp/p7Tpa0aiUe4J/cd3zPI+ctRubvQe9TE3WPT458t957SGVZ4+NV7/\n/XARizZUNX2ynVzIdH5df9R7gXMgnLnSXIcW8jdvrtRO8Kg5mUVTl26mLxVMHvYkNx6faJ5udJIy\ntHSH/7a9ZyCEjwSLhBBCCCGEEHmhKlZzoLEQgHigiEpdlFrS3DnY+FLgkbiVcexoYzolOEGiI/71\nEX96dTabqt171UUtbntvIcf++5OMa7uq4rDTz+aMymecA+GSdpzNdjr1vwAssgenGp1/2ozV0B6Z\nsozfBF6ibN27BD683jmYXt7VWaSV5QnR3iRYJIQQQgghhMiLiKcZta2CBLAoUfXugF2PbfQelXXu\nPYpCJoMp59HQbdwTvCt1/NkvV/K92ya7r+sJMJ1896fbOfvOJW7b/gOdceWs/S+E8RVsoZSwihEm\nynNfZTY5z+X8g3diZ7XBf7CzNoXujME+0aVJsEgIIYQQQogurC2Xm49F3MBQIBSmSEV4InSLc+CS\nd2HHfRu9xz/f+S61XRg0KVROBtGR5ix2VatT56rq3aCSt3RtzppKbFszc9U2nvpi+Xa+k44vbqX9\nvhZ0sp5FHhEd5GDjOxYUXMwgGi9VTLKmP80R5hz/QbMTlqGNr4BAuL1nIYSPBIuEEEIIIYTowiJx\nu/FBeRKPusEio2aj/2Sg8cbDcW2wcktNar8wZKYaFwPsayzOdllG6Vp1NM5p93zGX1+f25Rpd0qx\nRCPwVE+ooj7tOJuW6V3iZkUNM9Y3+brTyFJ22Fkzi4ToYCRYJIQQQgghRBfmXTGqtXmDRRnMxjMn\nAsrme7sPSO3rWB2Phm5N7ReRveeRN7MIYP7aytT2ys3ZG2J3Rratucp8nXdCf8RKBIu8wbTOatSQ\n3qnt9NX0GvKqfXjmQdWJehad8h+49P32noUQWUmwSAghhBBCiC6sOT1gWsqKNRAs0lmCVgdfAcUD\nfIcqaqKp7V2/u5fByi1LOrR/rmCR/96vTF+T2t5WF00f3mnFbJtrgv9jD2MVn06e2N7TyRvDlw3U\n9GBRTGfJIjI60SPuARfD0IPaexZCZNWJ/iQJIYQQQgghmuvWiQva7LWsmCeY03uY/2S2pd1PuAUu\n/8h36KVpy1PbZqzad+74bc+jsmTSpAeLxpT1ZoeezupSd01a1ISZdw4xT5+iReu2sLWmiwTCPAEe\nWzsZVI2JWzZBFW90nBBi+0iwSAghhBBCiC5oecH5fBj6bZu+pu3NLAoWudsXvw19hme/KK08LUic\nxz5bBkBMZfY5WlZwAZeZbwFu8+5IpI73Qn/gcGM2AFtro2xOBFI+mL8x4x6dVczTf8rCQAMz7OGs\n1v3ab1L5sH52ajOgLOJNCBbVRCzOMKY4Oxe+Cteuhl/PbvgiIUSTSbBICCGEEEKILmp4ollweuZN\na9HJYNHos2Dsle6JssNyX5S2elUxEa5/cx6zV1eAnT1z5M/BZ9ldrUwFFYxtKxhprOHp0M0AbK6O\ncmFZBcca07b/zXRAyabWABGCrK+oJ0qQlfaABq7qBLYuT22eYHyF1YRgUXU0zqHmPGdn4F5O5lqv\nnVppgkJ0PxIsEkIIIYQQoovb0kblSspKlKEd/RdY8E7TLkoLFl0ecLKGTvnvFCoKhua87N3wOKKJ\nTJtY3A0q7dOzlvLqCH9d/TMeCt1BWd+iXLfodKKeYFEAi9dnriGIRYyuswLYhYEPiNuNN+1et60O\nWyf6GxX2auVZCdH9SLBICCGEEEKILm5DZQONp/PItBKvEyiEwfs18SJ/GdoAtTW1HSWYPtpn8Uan\np1Es6gbDXo/8P8qr3N5JlbXZm2J3RrFYLLUdwOKBj5cSIM7A3iXtOKv8ayyzaMKsdbw/bwOGSowz\nG/4+EUI0nwSLhBBCCCGE6OJWbqlFa807s9f5SpnyzUgGi4IFMObSpl1kBuB3C2HX4wHYVbkrmc1c\nuanBS9+Z45TZ2ZEa3/HNVW5wLFS/qUkNkzuDWMR9X0HllBYGsRjQq2sFixrqWbRycy0/f3Y6D3yy\ntA1nJET3I8EiIYQQQgghujCFzdLyGj78biNXPjOdO95fmGoMncv2BpQCyTK0QCEU9Wn6haUD4YeP\nABDGzZ7ZUlXnG6aHHenbv//jJSzcUIUVrfXfL+quovZDYzLV0a6xalY04v56BEgGi+JgdPLMmiu/\n8O02lFkUtZL9t7pGAFCIjkqCRUIIIYQQQnRhwwuq+c+kRVz6hNPs+b7JSxh27ds5A0KvTF/Nrn9+\nh1Vb/AGYO95fyNfLtzT4WoYdwUZBIFFatv9P4PvXN22i4VIAdjHWMiKRXZQMiCSpnkMyLquJxNEx\n/1x7xjentn8ffJFFG6rTL+uU6uvc93moMRdI/Bp19jKsgXvCUdcCUKmLGswsWlLuZJF5g4pCiPyT\nYJEQQgghhBBdjSdzaBJXZB0ydenmrMc/XljuO//Fks28N3c9d01axNn3f5H1mqSAFXH6DKlE4+FT\n74bDf93c2TMp/AcAzGSwaId9na9ZgiIBw4C0zKIyazn1hFL7Z933ebPn0BHFIu77vCrwBqAJqjh2\nZ88sAjhqHAtHXIKJxaT5GzJO18csysZN4GdPfQNAMW3Th0uI7qpJwSKl1A+UUguUUouVUuMaGHeW\nUkorpcYk9oNKqSeUUrOVUvOVUtfma+JCCCGEEEJ0NfdNXsKNb81r8X20bryMzLI11ZE4H3230Xd8\nQKmTFZRcQe28h6ZyeeIBvTEBO0JUhRsf2AS3BB4kQOJ9XPQmjFsFZihjXNSyMoJFYbuOApz5T7d3\nyct8OoJYxF+WV0odO6ot9Fn6RjvNKM8MkwA2170+N+OUt2k5QJFygkXR425pk6kJ0d00GixSSpnA\nPcAJwJ7AeUqpPbOMKwV+BXzpOXw2ENZa7wUcAPxMKVXW8mkLIYQQQgjR9dzy7nc8PGVZi++zYlNN\no2M08LsXZnDJ41/7Ss4CpvOI0FApUC5OsCgzoLM9fhSY7JahhYqhoEfW3jyRuA1xfxCl2HbLzoro\nOquh2TF/Ns2OymkAblhd5D0agVQ22ZdpmW/p349DEu89VNK3beYmRDfTlMyig4DFWuulWuso8Dxw\nWpZxNwC3gC8fUAPFSqkAUAhEgcqWTVkIIYQQQoiux1sW1lgD6sZMX+F/0DbTev8ARGI2E+c65T6R\nuHs+YDglZJatG13C3GvGqm1sqawi3shy9w3qN9K321tVEdcGGKZzIK0MTWEngkX+IMqu2g24lSh/\nIKkz0zF/UOjfwfvaaSatQ5kBAsoGdEZ/rKXl/r5Tfws84WwsmthGsxOie2lKsGgwsMqzvzpxLEUp\ntT8wVGs9Ie3al4AaYB2wErhNa91wVzwhhBBCCCG6oQ2VbsDjdy/ObNG9ehUGfPujlRM8Gd6/mKcu\nPQiAeWsrUue9samAkcgssmxmrNrW5Nc8/Z7PMLGIY27vtMH2r1p2SWAilvIEiNLK0PpSRSRmQ9wp\nOeOvTpBsCG7Pmx40nmXVWei0DKI9jRXOxr4/bofZ5J9KZI6Z2OzQs9B3LtmgHeDPJ+7BwD0Pd3aG\nf6/N5idEd9LiBtdKKQO4A/hdltMHARawIzAM+J1SaniWe1yulJqmlJpWXl7e0ikJIYQQQgjR6Yx/\nw+3T8sr0NRm9hJriwH98wA1vzaMm4qwUVbPz0QD0U05gqDgUYI8degCwrsINTkU9K6MFTCezKG5r\nIrEsGUnxzGNJJjY1cdXseadYmUvcx73Bot47+85NK7iSeLQWZUWwMMAMsKbH/pi476eHqiOc6F/U\n6cVzNHXe/ydtO49W0qPI6XcVwMLI8aR6/6k7ctmH+9En7pShUXZ4G81OiO6lKcGiNcBQz/6QxLGk\nUmA0MFkptRwYC7yRaHJ9PvCu1jqmtd4IfAaMSX8BrfWDWusxWusx/fv33753IoQQQgghRAemtebz\nJZs48T+fZi0z21rrXwr8kse/bvZrlFdFeGTKMqrqnAwUo5fzY/yeagXF1HHhhn9Rop1Mm6p6NzBz\n0l1TUitQmYkytNlrKrKumHZFA82uA1hYLcksyhJnUgFPNlGWDJp/vPgZyoqmyt+sUAlB/EGn3lRR\nG80MRHU6iQyqWK8R/uNZGn93RgN6FgNO0LE64g9KnjNmCADf77/VObD4fedrID8N1YUQfk0JFn0N\n7KqUGqaUCgHnAql2+1rrCq11P611mda6DJgKnKq1noZTenY0gFKqGCeQ9F2e34MQQgghhBAdyrqK\nOl/T6Okrt/LoZ8s5/6EvmbeukmHXvp2RobNTn6Ks99pQWc8hN09i8cbqrOeTonE3myYZCAr0doJF\nBxeu5tbgA5wT+JiC24dxsvEF785d77v+mS9XAhC26jjV+Iypi9Zz14eLU+cPUvPpQTUfLSjnrkmL\neHTKMj6Y5wSY7ERvIxObeEuKF877H+x3oe9QUczTxUIp+Mkb0HOn1CFDWygrQiyRgWSYQQJYRHSQ\nlbbzQfRoYznVka4QLHKCgNYeaS1ku0rAxHDKJ/c1FhOL+1f0Mw3FNUVvEVg5xX9NFwmUCdHRBBob\noLWOK6V+AUwETOBRrfVcpdTfgWla64bWabwHeEwpNRfnc4LHtNaz8jFxIYQQQgghOqpDbv4QgDd/\ncTjXvzmXaSu2ZozZ7S/vMrhXIZ+Nc0rFVm6pzRgD8N8PF7Ouop5nvlzB304Z5Tv3xsy1DO9XzO6D\nSvnZU25Pl+pEZlEwGIZgEYfHpuJN+Plv6G6m1+/KWvqljiWDTXuufp5LQvdwdVTxpn0oCpsANi+E\nb2CevTMnRm/mjvcXpq47dZ8deWPmWsDJLOrXI3vQq0kG7gmn/Re2Lofln2YfM/xIOPtxeNj5dQup\nOIYdS5WrGcEwQeKYWEQL+kK0nIdDt7Mq9vvtn1dHkehZZISL/cfNrhUsejZ0Ew/ZZ/tO9alaxFX2\ns5D+bWG2oKG6ECKnRoNFAFrrt4G3045dl2PsUZ7tauDsbOOEEEIIIYTo6k7575QGz6/ZVsf3bpvM\nR78/KnXs+lNH8bdE/6Kyce76MT0KMh+Kf/nctwA8cOEBfLTA7f357pz1TkNRZUCoBGKZgaiBaitr\ntRssiiX6FhVHnGyh3qoKgGUFF6TGpBoqeyQDReAEiwrDeQhcXPwWjO+Z+3ywILU5oncAIxbBSjRH\njmqDEHECysbovTNscAob6rP0X+psVCKzyIhWpZ1oQZ+ojsRwI5qFNasAt92tGavKcgFdJ1AmRAfT\n4gbXQgghhBBCiO23bFNNaon6f+wwhYvCk7OOCwVy/+j+s7Q+QjUViV5DdVugJnujbBvF3moJNwYe\nATTxxBysxCOCt0l0U/UvNulVUtj4wOYYeULmsYAbLIpG6jB1DEs55Ug9i4vooZy+TEN33Ts1rj7W\n/PfT0ahkZlHVWv8J3fnfG5DKLALoVb3EdypqZfb54gf/hICUoQnRGiRYJIQQQgghRDsb8ae3Ac2P\nt94Lb/6KV646NGPMrRMX+PazNclOuigw0dn44t6cYwJYvBH+KxcEJlFCHfFEZtG0Fc7KaQZ2RqPo\nhoxUq9glOh+V77IgO5Z5zBMsqq2tJRqpT2UW9S4toqdyMqmCJW7mVH0Dq7h1Fspyfi2MkKfU75Bf\nQJ8ROa7oZDzBIkv7s6WKI1mCngdf0dozEqLbkmCREEIIIYQQHcApxhep7YE9ChoY6YhlybQoIIKB\nzXI9yDlw2K/8A3bcL7V5pDkztR3ASt3Pm1n0PePbJs//vfAfMeyYU/qWD30SJUhGls4ZnqbGYRUj\nRIzyusQBwxOsWjs9tRnpAplFC9Ylel8FPNlbx/+DnOvMdzZB933VK/+fgau33OQfu/vJXaf8TogO\nqIv8rSKEEEIIIUTb01qzYH2OXipZjD9lT3YfVApklpXtoNxl6gsaKDlLilqZwY/vCi7hjuC9bNMl\nzoE9T4OfvucOCJXAaU620RXmm+5h4sRt53479k4uX67ppyozXqOYuoxjPks+bHTuTXLcjc7X3U7M\nPOfpWRQiTogYURJBIu/qWJ7sqwse+ZL56zLfT2dRXhWhoqbe2Rm0V/tOprX0HJLazLmq3oWvwfgK\nOPeZNpqUEN2TBIuEEEIIIYTYTs99tYrj7/yETxaW8+6cdZSNm8DMVdtyjr/4sGH88phdAThm9wG+\nc+eYH6e2+350TWr79OGa94qv44cj/eVdkbSGzYFEydjp5ucMV+ucg8FC2OlgN4CydgZUOv1uQsq9\n/quCn7NDbJVzScDJ5DGwCZFZAnayOdV5L4eW5XyfebH7SXDpB7D/TzLPhUvhjAcBuMh8j5CKE9UB\n91xSsVuGZmJxwn9yrLDWCSzaWOX2kdrn3PadTGsZciDs7bw3beUogbQ7fzmhEJ2BBIuEEEIIIYTY\nTn96dTYAizZWc8XTTsnTafd8lnXsTn2KoHwhA9Z/AjhJLz8YNSh1fhfD07T4m8dZ/sdRLP/nSdxZ\n8jQjrcWMrX7Pd79I3J9ZVErmimeU7uB8TZb3RKuyB1+AX0QeAiCWWDD5EGMuR2cpQ7sl+BA/Mj/i\nb8O+4/I9YpRSy6d9b856zxYbemDuUqP+IwE4ypxJiBj7Dx/oHC/wrKJ2yC9Sm0VEWmeObaQwaGIq\nC1sr36phXYpScMBFzmZar6rPzAOdjRHfa+tZCdEtZSkAFkIIIYQQQjRHLK0krJg6NIpaCrj55OGc\ntauC3sPhpv6MAQZxN5qBlIQbaAb90NFw+WRY+A4AdarYdzoatxmh1lCue1JJCbsoN9hUqmrRgUJU\nslzL9syvoEeD7yXZs+hwc27OMbcEH4KXH+JPwFXhYnrV1LgnSwblvC6veg9Lbe67QxEUJJo+e4NF\nnvdaRD1VeBpDdzJ3vL+QsVjoZKBot5Mg383EO4JEz6n0zKJqXUB5aAj9u2qgTIgORjKLhBBCCCGE\naKH6mMUOPd0+OnMLLmVO+FIAzvtgLKH7DiZ0u7ti1dSCqzmiXy0ap6fOrT/cmwy1m+FOtzdNrXID\nHR/M28BRt01mUvgPzCq4nMOM2bwY/nvqfA9q/EEhK+p87T3Mt5KYV7KMTenMMp/YlV85fWKy6KVq\n/AfOfizruLwr7OUETAaMgnjEDZx45x8owD7DyZgqVvVtM69W8umiTZjYqGTD7/OehXOeaN9JtQbT\neX86LbPItKPYRhcMjgnRQUlmkRBCCCGEEC1UH7NZV+EPRhhKs7zgfPdAxN9c+YIvT+EC4MjgoQzp\n/2yjr2F7Vhl79LNlGLjZQs+E/GVg5wc+gmrPAStRgnXxWznLukZYy515ZwkWmcFwo/MD4Ijfw06H\nNG1sPkSrYWMiA2rw/omDnvdnBjHCTrPvIjp3sAicVet0ttXhupLE+4tF3WBR3LLRVpwt9TCwveYl\nRDcjmUVCCCGEEEI009Slm1lS7kZjqiOZjaCb6jTzcw4Ykli9rHcZnP9i1nG71s9ObQdNI2vz6UaV\nJB61dz8549Rm1QuAsdUfZJwzAk0MFo38QdsuZ77MbQqeyp7a+0fO18N+5XwNOeV7xZ28ZxHAOeZk\nzFh14wM7s0T20PRlG1lX4ay8VxezCBInjpSgCdFWJFgkhBBCCCGEx3frKykbN4Flm2pyjjn3wakc\nc7sbqJi9poVLsj95uvN163IYeRyMODpjyPerXk9tNztYdPp9MGhvt1TriN9mDIlp50G8n7Ux8/pE\nsEjveUbDr9NIP6S867+Huz33VedrIOSUzB2bKMsLOYG4wk5ehgaaHqquvSfR+hLfoyYWh9z8IXPX\nVvDgJ0sJEmdAr9JGLhZC5IsEi4QQQgghhEiwbc0P7nSWV//bG7kbPKebuWpby154xRT//jHXNTj8\ng/kbCJNjafGkwWPc7X3Phys8y8bHM7NsYg11qEg8wKv9Lmj4NcNt/TCvGx+Slllk2024pgP66Ygu\nnlGUlGhgHVROOeRJd03h7g8XE1RxtBlqz5kJ0a1IsEgIIYQQQoiEU+9xgzajduzB18u3sLGqni+W\nbG7bIEOg0LcbI8BnRccAsK3WKbdqNLPovOdyn0uWbHlfI5FZ9F1oVOZ4M1GGZnmCTOc9n3tcWynu\n3/iYkNMYvCiRWRSz7YZGd1j9YmsbH9QVJMrQAvh7ZwWxUueEEK1PgkVCCCGEEEIkzPGUk903eQln\n3/8FB/1jEuc9NJWLHvsKrTV1Ufch9kzjE14IXY+BTS+q+E3gJQ4xGshIOvNh2OlQZ3vH/TPP9xji\nfB2wOxx4Gez7Y7jiMzYb/VI5NMmYVUg1klkUbl5JmEo0zI6qMHXKH6xyl2j39CPa7QR3+9Bfwun3\nQ3HfZr1mi53/grv9m3nZxyTK0M4c1ROAaLxzBouG1ye+r/Y4tX0n0toSDa4zg0VxtCnBIiHaShdv\npS+EEEIIIUTTBOl3LAAAIABJREFUnbbvjrw+I3sGx6eLNjHs2rd9x+4I3Q/A94xv+VngLQ4yFvCr\nhl5g77Ohbgus/ByGjIG10/3nPSuecdJt/lOJcJHWmjBR9lWLG34zDTWl9paoJaRWQdM2K4LD2P3E\nq+G1KxMvrvzz2/U45+vYq2DqvU7j7H3Pa3g+rSFU5PQnanCMU4YWthOZRVbnLEP7QeVLzsZBl7Xv\nRFqbmT2zKEwMJWVoQrQZySwSQgghhBAioSi0fZ+lFlOfO3jTu8z5uuN+iQOJwIvWMHSsf+w+P8p6\nC62UMx6nS88/go/y79B9mQN3OdbdbmhVsnAJ7LCPs73HKUBiWXatMdBojFRGjo/yzL2zMENgBAjb\nTnPozppZlFK6Y3vPoHXlyCwqVBF0sKg9ZiREtySZRUIIIYQQQiSY2/lRapGKECNAKO0BF4BT7oKh\nB6ca96ZKtUoHwsZE6dQZD8Iux0BhnxyvoCCVWQRj1ILMIRdPcIJPt5RBtKrxSf+/SWBbYAZZdvep\nmJuXYdkapS0ngyiRkeOfRvIXKC1Y1FBgqr0pBaFiQtoJFsWsTh4sCnXxgEmuYBERIhIsEqLNSLBI\nCCGEEEKIBGM7gx7F1FGsMlcYc25qQrDA3R91Jtg2jDodln7sHCsdBMX9ct5fo1LdgjQ6+xpg4VIw\nA3DVF7BlaeOTNoOpkp94sJgAFlHLRmmNbeTILEplRXWygEuohJBVC0C0sweLunqT5xxlaEVEiIUl\nWCREW5EyNCGEEEIIIRKaGizaXa2kD24z7D8cuUP2gbudBEMO9B9TyuldZAbh5DudMrCdxma/3itZ\n+qXBzvZjfDKI0GsoDD+yCe/CMyUzSBCLSMxGYaOV4ZSqpSs7HHY7EU641dk/7New6/FOI+6OLFjE\nzitfpS8VnbYMrUonmo4XtXET8baWyCw6zJiLiUVfKthDraBQRQkVZAtgCiFag2QWCSGEEEIIkTBj\n1TYATCwszJzj3g2Po1y7q40V1G/MPvC8Zxt+wX67wI+ebnRe2luGlnPQ9gdBlBnEVBaRuJ1opK2y\nl6EFC+C859z90oHw4xcyx3U0mxcB8E3Blby7+Wj22KF5K8V1BHPsYRjK5mCji3/enwjYHmLO41f6\nZX5sTqKvcsoqQ4USLBKirXTxv2mEEEIIIYRouuI1n7K84HyWFFzICLWmwbH9lZtZxPQnW3lmyl0N\nzbIYYazLHNLQ6meNMMyAk1kUt1A6kVlU0HO779eRXfH0N+09he1iKgtLd6/Ht18GXksFigBKSrvm\n96QQHVH3+ttGCCGEEEKIBlxlvpHafvoHQa4yX+N44ytuDdxPCbXtNi/bsxoa0RxLxffbdbvvr8wg\nASzqk2VoGFDYe7vvJ/LPxCbeQLZbtxAsbO8ZCNFtSBmaEEIIIYQQCcWqPrW9g72Oa4JuidXhxauZ\nVDOM+61Tc99gxDGwZFIrzMzNLFL1lf5Tp90LlWtbdHfDDGFisaUmSr9kZlFXcvp98NqV7T2L7fbi\ntFXsipW9V1V3IsEiIdpMN//bRgghhBBCJC3a0ITl1rs4X+bGx7f4zu0QWcoFgUlMCf8q+8WBAjjk\n5+7+qDPyNi/tLUPTaV2LRp0OR/6hRfffFrUJYvH7F2dioCEZLBowCgbt1aJ7dwj7ns/yYT/y9Znq\nTP7w0qxEZlE3f3wLZumjJYRoFd38bxshhBBCCAEwce56jv33J7w1q2UZKh1ZNG5TNm4CT01dkXOM\n1ZIfjwt6pVZyouwIOPvx7b9XOk8Zmk5vZJ2tEXUzxbVJAIs12+qwbIu4TqwKd9XncMWUFt+/Iygp\nKiJEnN5F+V96fvXWWva/4X2Wllfn/d5JAWzJLJLMIiHaTDf/20YIIYQQQgAsXO9kFc1fV8lH321k\nYRfMMqqqjwHw19fmZD1fG40nVh1rpp0Pc76GS91gUQtWJsvOXQ2N9MyiPBg1tC9BZfHjg4aibZsN\nVdG8v0Z769ezhCAWF47dOe/3/seE+WypifLCtNV5v3fSHsZKDjbmt9r9O4U8BEaFEE0jwSIhhBBC\nCJFcrZovlmzmkse/5rh/f9K+E2oFdTErtV3v2U569suVaL0dwaL+u8ERv4PzngcjUcZmx7d3mln5\nwkPeYNGl7+fl/uGQs5La+m01mNjY2xM06+jMEEHi3PXh4rzf+p056wH46LuNeb+3w/k976nar8l6\nhyCZRUK0GQkWCSGEEEKIlOkrt7X3FFpNXdQNEG2pycycKetbTFhtR0ZN72FwzHXQbxcncAT+3kV5\nkdmz6Mv9boGhB+Xn9omMqCkL16PQ7LZDr/zctyMxggSVhSLfWV+uBa2UkafIfzZZp1TUr71nIES3\nIauhCSGEEEJ0Y799YQavTF/D0D5d/xP7Gk+wqKIuxo69/O/Z0pr9je3IOtGeLKXC3jA+x9L2LaBx\nexalvqo8Zv8kgkUBLAxsAoEuuET7Vw8AMESV5/W25VWRvN4vG0OCRY6SAe09AyG6DcksEkIIIYTo\nxl6ZvgaAVVvq2nkmrW/1VreEZ1ttLON83GreA7ne98eJjdbLVElRnsyiVOAgj8Ei02n6XGDYGGiU\n0QWDRXVbAdhJ5bdUbFtt6/d3+nXg5VZ/jQ7r//4A1yyDq6fnN0AqhGiQBIuEEEIIIbqxknD3STS/\na9Ki1Pb4N+ZmnI/baUGf/S/KeS9LK1TpIGcn/bpWoD3/b83MoiJd7QSLVBd8TDj2BgA26Z55va1K\n+314fcaavN4f4OrAa3m/Z6dx9F+gqA/0HdHeMxGiW+mC/woIIYQQQoimGtgjnPNcW2RMtJVPF5Wz\n39Deqf012zIzqXyZRSN/AKfeBWVHOPt7nwt9d0mdtjGcYwCjzmiVOXtpjIyeRelBihZZ9jEA1wWe\nwlA2yuiCjwm9ywCnpMu281fWlf7b8KvnZ1A2boKvR1ZLrPV8r9qhHnm5Z6ex1zntPQMhuq0u+K+A\nEEIIIYRoiUNH9AXgvIe+bOeZNE5rzUOfLGVDZX3OMTNWbePCR77if9NWUda3CIDzD94pY5wvs+j8\n/zlfL37L6UF05gNw9Tcw+iwgESzqP9I512+XjHvlnbcMLVX2lsdgUb+Rzr1RTn+crliGlnhPBjaz\n1uSvr1TIzP5Itcd17+bl/vPWVqa2je5WhnXWQ+09AyG6LQkWCSGEEEJ0E49OWUbZuAlU1jv9erbU\nRFlSXgPASLWKGeHLGMgW1icCL/PXVea8V3urjsTRWrN6ax3/eHs+lz05Leu4snETOP2ezwAoIMJL\ndZdyYtE8aiKZS9vH4k4Qpm70+blfOOA0xW7rpeV9Da5phTK0sVcBMNXekx3UFgYv64I9chKldQaa\nrVlWw9tetm7d5tOm4fl9LurTqq8lhBBJEiwSQgghhOgmnv1qJQDrK5xg0K0TF6TO/cR8j16qhi8P\n+4Zf9PmGkWpVu8yxKSpqY4z+20TumrSYjxY4zYpnrc7MFKlOCwgNU+vpZ2/mXvtGnvlyZaqcq7I+\nRnUkTrDOWSVLJ8qVskpk9RSq9ijRS2QW2a3Q4DpcCsCxxjeJO3fB1beUk1lkYhPMkQ20PfJY0ZaV\n4Q0WnXF/676YEEIkdJ+OhkIIIYQQ3VzyATmayKDxJqYM7VsCFcA3j3EmcGYYzh70TttPsglqok4Q\n6IkvlnPUyP45xzWWPbJ0Uw0j+pew9/j3KAya3L3PCgBUcb/cF818ttnzzQ+FgkS5XSv0LDJDABxi\nzgOgvngwBfm7e8eQ6MMUIE59bPv6Cf38mel8s2IrU/90TOqYlYgWHVjWm6+Xb00dH96vuAWTdWlv\n5lKvnfNyzw7v0F9C1fr2noUQ3ZpkFgkhhBBCdBPlVREAJs51HsIiMbdHzxEjemeM9z74diTJh/Mt\nNVGO3M0NFqU3FI5ZuVcpCxP1ja+LWWjLCUKpnQ7N53TzQitFbSTGwTdNYn1FrXMwn8GitHut3uvn\n+bt3R7HNyaz7ffBFrO0sHZswe12qTDMpGcwJBfyPVkfs2kDQcXuFivJ/z47ouBukX5EQ7UyCRUII\nIYQQ3YSVaOB894eLAdh3p17cHbyL5QXnY0x/vB1n1jzxHHU/b89e59uPWf5xAdzgUC+qicTtVP8m\ngLdnOqV3ZjCYr6nmkUoVnX0wb0PiUH77JlX028/dCZXm9d4dQrVTZjjWmO9f+a6FkoGnsr7FWY/n\nlZLHNyFE25C/bYQQQgghuokLxrolLIs3VrG+oo5TzKnbdS+tNVc98w0fLyzP1/SaLO7JGPI+9Kc/\nmqdnFg1UbqbUYLWJuqjFDW/OSx0LKCeYFAg0ECzq2wYrn2XlroY2on9x4kh+f5TvMWi4uxMI5/Xe\nHYLh/nr5Vr7bDt7vLcvWFFPHpXWP8e7PD2TZzSfSryRMA4ltzWN7e291s9XQhBDtRoJFQgghhBDd\nRHLVppJwgO/f8Qn3fLSkwfEKm+/WZ18RLRK3eXv2ei569Ku8z7Mx3oyhjYnSOsh8jI4mntYfv+RA\nfjhgHUOUG9jqqWqoicapqncfxIOJzCOV6N+T1RkPtGDm20/jvr9Uv+M8ZxapYGFqOxjqiNlVLeX+\nelkt7Ert/b7RGsYHnmD4wkfYfd3rKKUwDbDz1Pm675oP3Z1gNylDE0K0O2lwLYQQQgjRTSTLt3Yb\nVMo3K5wsm5V2f3YysmcHFRHx9TXyau3lwhvizQq55d3vUttG2segs1ZtA6Bf+ZfcVvk78MQ/Sqml\nLmoRDroXBUgEAMwGAiVDxmz/xFtgS20s1dA6Fk8EtfL9IuEeqc2Sgi7X3hp2OgSAafbInKWMTVVR\nF6NPsRNUtGzN2YFPnBOJ1fJMpfJXhua9T/o3uRBCtBL520YIIYQQopuwEhk53hIaQ2V5oD3yjwD8\nOfA0ATN7SMKbmWHbmjs/WJhqoN3avJlFFx3iltaFTNM3bnyixKy4dmXGPXqoWupiFrv0L0kdS2YW\nYXS8z1NtbaTK0JKr2eU7swjPKnAlhV0wWLSz07h8jLGwyT2LLFvzp1dns6S82nd87ba61LZRs8E9\nkegpZBgqb5lFuh0Ds0KI7kuCRUIIIYQQ3USfmsX8OvASs1ZXANCfrQxRm9wBu58MZz0CvcsAOD/w\nUc5yHe/xuWsrufODRfzyuW9bbe5e3p5FxWE3sJPZh0YzJfxLhn3+p9SRqpCzeloPaojb2hc4SzXA\nbiizqJ1oYLhax7jAc8QTq7blvdlxjyGpzXC4gVK8zkp5y9Cc3/cj/vUhv31hRs5LFqyv4tkvV/Lz\nZ6b7jq/YXJvaDm9d4LngHQBMI3+ZRbYVb3yQEELkmQSLhBBCCCG6iUsWXsWvA69QiLP093XBp/wD\nTrod9vqhr+wlV7mON1gUDDgP4Ztr2iazqLzaeR2l4N7JSzhYzSdInEjcDfxsrYnSmyp/MAxYHXUy\nia4JvkDcsonEbXYz1jCIzW6wyGgkWHTOk3DE7/P3hppAo+ivKrgi8CalNc6qbXnPLCod5G53wOyq\nfIlrg7itqYnEWbWljlemr0mde3PmWo7798eprKCVW5yg0Kottb5MoSmLy3k/sSqdpTzfL0smAYky\ntDxlFn26cGNe7iOEEM0hwSIhhBBCiG7C0E6GgokTVIl521ce+ks3WDBwFOA8VOcqpfFmTYQDTvlX\nfY7+Rvn2i2edDCatYQ+1gv+Fb+DawLO+LKHNNRGGqfUZ10ZNd3lzM1JBJG4zMfQHphZc7QkWNRIo\n2fM0OOavLX8jzeD9XbCsGNAKPYs2zne3u2iwKD5kLF/ZuxO3NN+tr3KPJ753fv2/GSzcUE19oi/U\ni9OcwFxN1KI2ZqXGvz17PZc9OQ0AS2X+WhmGyltfr37FHS/TTQjR9UmwSAghhBCim7BxgjqhRCPn\nGp3oS2ME4Ni/uwN33JdI0SA206NJmUVJK7fU8vCnS/MyV601ZeMmUDZuQsa5fdRilheczwFqAcU4\nvWNOMqdSF3Uf5utjttuDyGPoDm72jIpWE4m7YwLKckq7OmATYe0JDem4EyzKexmaZzW0vN+7gwis\nnsqh5jzqYhZn3fd56vim6ijgfl8nG7v/38j+qTG3TfSUm3lY6WsGfXQTH1Semrfysb7FXTNwJ4To\n2LrmvwJCCCGEECJDtdkTgEONuQDUEnZO9ByaUdIUKxxAtS6kJuI88L4wbRVl4ybw+ow1bK2JcveH\ni1NjvQ14b5ww39dTaHs1tFrVoYbTuPqx0L+wEz/ODlTbuHHCfMrGTUBrzcottQRU5sN67z59sQ+6\nAgAVq6VvlRsAuDrwWuMlaO3EGyxavylRWpfvMrS9zna3u2hmUVJNba1vf1O1v4QymTlXGHSbpj/+\n+fKM+ywpr2ZheZ3/4Me3ANA/sioPMwXLygx6CiFEa5NgkRBCCCFEN7G0cDQARxiz2V8txEgWN510\ne8bYTYGBjDDWcecHiwC45R1nifpfPT+D696Yy7NfruRQYw69qCI9rlNV3/KMiqin/1D6alDlOEGv\nHqqOSwNvZ1y7tTbGVc9Mz5pZpIJFqOH/52zH6zim/En/AKtt+i41V5Fy52VFnOCEas3Moi4eLOqz\ndSaDe7nvNxK3fA3akxlGt76XPZso6ZjbP+bxz7Jn0/WPrc7DTKG6PpqX+wghRHNIsEgIIYQQopuo\nMpJBlhpeCY/nsmSgZciBGWPLNrwPwPo1K1ixuYYCT4bFmzPXEiLGs6GbeDx0C/6OOs0LFj386VKW\nlldz16RFrKtwMzQmzFqX2vY2ri6vilCrw6n9mfaI1PZByum5M3P1NgAKyPKQHSxEBYsAUPFaQvGa\nJs+1PY0xFqa2gyRXQ8vzi3gzlUJFeb55BzF0LACVMZPisEmvIieTLBrXvDFzbWpYMlhUXuUPHhrY\nmGlBSIPsWXCF8aqsx5vrq2Wb83IfIYRoDgkWCSGEEEJ0F9p5yA2kZ9w0kEUSVlGOvHUya7b5S22S\nD8yjjRWk9/GtrI+xcENVxoN2urqoxY0T5nP07R9zx/sL+eVz36Z6FV3z8qzUOG9/pH+9+x1x3MDV\nT088zDNXp5dPRa3z9f7Qnc6JK93eNATCEHKaXJuxOpbUdL4l4oOJ8jrVmj/K9xjcevduT0deA4C2\nokTjNsUh53s/bvtLJy1bZ2S0AXwQ+j0zw5f5jiUbxqcbGl2SjxnnDEYJIURrkmCREEIIIUR3oZ2H\n2n0GFfiPm5l9evQJtwK5H1STJV4BrIwRD3+6lOP+/QlH3z6ZR6csY86aiiZNr7IuzsueZcyTvCuv\nRS2behIBnsLeDCpwH9TrtXN8Y1W9/wbePkSBglS51UdzVrBG92vS3DqSZGaRznfPIq8s3xNdgul8\nj9hWnGjcpiTsBItiaX22yqsj/OGlWRmXDzfWU6L8319GjmBRjcpPdtYuKvPPhBBCtLauXYwshBBC\nCCFcicyiATUL/cezZBap4r6Ap+QpjbcUJ32J8NdmOOU8VfVx/v6W04x6+T9PyriHlXadpTWLN1Zn\njNtYGWHv8e9x8aFlvD5jLUcmP+4MFsPWZalxQRUH7ZQOBbzzNj3vz7acgBHOqnChHO+vI0vOWbVG\nsOjiCVD+Xf7v21Ekv9ftOJG4zcCwk6UWjfu/F+/8YBGfLCxv4EaaZB1grmCR0vlpTB0sKIY4/gw5\nIYRoZZJZJIQQQgjRTahkqU3tptQxGzP7qlqJDIwwsdSh0rAbdPGWsmkNvakkvXeR1zG3T6Y+5n94\nTg8y2Vrz+ZJNpJs4dz3grkalUq+jwXLnN+7YYQBsq41RjCf7w/SUmn12Jxhm4j3ECXneX2fhvrdW\nCBaVHQ4H/r/837ejSASLdCOZRbG4f//+C/b37Rfillimsu9Gnekbo3TLVwUECOooUVUAA0fl5X5C\nCNEUEiwSQgghhOgG5qypYENFZjNnW5lZRpMKsHgzi6oicXYfVArAV+OOTB0PVK7m24IruNx8y3eL\n4f2LU9tLymt4cZp/KXE7bRk1rWHW6syStVsn+lekSgWLtIaI20Q4pJ3AT1V9nBI8PZa8ZWiDx6T2\nTWUTJoZlesryxjetZK49nRP4GIDPlkjj42ZLBAq1HSdi5e5Z5BU0FcePGuQ7dvOJO6W2TZW4dsxP\nne+f8RVECaUy+VoqqKPEjc7XW0sI0blJGZoQQgghRBdUURdjn+vf8x27JZCZ+WMGcvSmyRIsAnju\nsrGs3lqH0lvdoTXOymXHm9N40DoldTw9W6Oizp/FkxYrYtmmpq1MdmvwAWcjXgfTn0gdT2YJvTt3\nPbspT7DIu8T86fekskuCWIRUDCNUBHVpfY46gZpofjJXupVkGVois6g4kVkUjduYhmLkwFLmr6tM\nDS+llveK/o5at6PvNqfvXsKv394IeIKXhht41cogo/P7djrHficv9xFCiOaQzCIhhBBCiC7o3+8v\nzDiWyoDwULEcAZpksEg52RFD1Qb+uvM8eheH2GtIT7DcIJKdyNQJEud7u/XnZ/83nNP33ZHqen+g\nqSoS5+vlW/h8sVNqll6W1lT9VOJhvm6r73iQaGo7Vao1/HtQ0h/2u8DZ7z0s1bzZxCJEHBXsnMvE\n//CAIe09hc4nESxatdnJSBtuL+cY4xuqIxaWrdklsJGTjKmpysyxxjx2iK2Eyf/032eL2yvrzyeM\ndDY8QUkbAyse490561rvvQghRCuSYJEQQgghRBexcnMtJ9/9KZuqI6leLF65GvFmlWgCPUytZ2CP\nMK+E/salG26E2i1Ok+ity1NDtXKzkHoWBrn2xD0oLQhSG/UHgyIxm7Pv/4LzH/4SIHX+yqNGZJ3C\nMLWO/mxr8pRDVm1quzSZWfS9PzlfT7vHKRFSKpUBEsRyspESq6N1Nv1KCxofJPwSwaJkz62ff/cT\nHgndzpNfLAfgtk1Xck/ortTwVGadGaQk7CnZrHGbX4eST1Sekk4bg6q6KFc8PZ3FG53A1Htz13PO\n/V+g85RxJIQQrUmCRUIIIYQQXcRjny9jzppKxtz4AbOyLFffrGBRuASAm4KP8OlVo+mfzOb51zCY\n9Hd45qzUUDsRfAkRx0ikZFTWx4ikNQkOB/w/em6odLJ/DtipNy9dcUjq+LOXHczNJ+3MR+Hf8XXB\nVU2eckHVytR2cbJnUagkc2AiYGBiOQ28O2mwqCCUo9+UyC3xvWpiM1RtSB1esdkJNIa107ha206Q\nyA0WhZjz5/9z76NtrvnBbuy3Uy+G9018/3gyiyK28xoA9THn6+VPfcNXy7fwh5dmUVEb47rX52SU\nZmazSfdkev8ztuPNCiHE9pNgkRBCCCFEF9G7yG2Cm23Zb7M5wSJPkCUU9Zd78dmdvt1kpsQIYx0/\nX3E1AK/PWJtxy/Sl3n+cyDAqCpmMKevDrT/cmxtPH82hI/px3j59s07rih0XZx684GUAesx5ildC\n19GTau5NZoeEswWLnDK0ADZHmHNg/aysr9XRBU0JFjVbMrNIWZxmeJei92f7RBMlkskyTMwgxDx9\nsN76NVfNOINXrzoMUyV7FrmPVhZG6s/b81+vZH2F2xPrpW9Wc9o9U3jyixXcOznL93P6lLF8/ZCE\nEKItSLCoi9tUHeGbFVuaPL6iNsbabXWNDxTt5iePfsXPnprW3tMQQgjRAQ3tk5khs+SmE3ngwgMA\nOGa3fk2/mTfI8srlOYd9Y+/KL5+bntofUTsLbIvfHTsyY+x789antuckMp8uNt+lR3wzTLmTs0eV\ncMHYnZ0BM5/1XfvETw8C4Or445mTKN0RSndE2VH2NxYz1pjvnuuRpa9PImBwjDk981wnohofItKl\nsspsfh98MXU4TIyxxrzU/pzVzs/Pqcyimc/Bggn+e21LZLLpRBA2rWdRMpPv6akrOfLWj3yXLk9k\nMikU49+Yyz0f5Q4aBbDdxtxCCNFGJFjUxZ374FTOuq/ptdHH3/kJh/7zw1aelaisj1E2bgIvpC0h\n3BSfLCxn4twN290UVAghRNcVs7KsdmY4y34v/+dJFCWfN3fYF3bYp+Gbecu3Gsi8sTAw0rIyiEe4\nev8QxdQxTK1LPXAvLXebaZ989xR2UhsYH3yS0c8fBB/8Dd6+xllBauF7TqmbxxG79GPmdcdRXFSc\nOYk+w8F0H6bDeEp7jCw/7iayNMYYiSbgJYMyx3Q0R46DPU6FwQe4xxZPar/5dFaBMAAFnmboAIVE\neD50Y2o/GejxrQb4xtWZ96suh6pEEFRlzyw6YfSgjJLMpKCpePzz5dw6cUHW87atMbHQEiwSQrQx\nCRZ1cYs3VgNurXRj1lf6l42dunQzy5u4jK1oulVbnE+THp2yrJGRuX23vipf0xFCCNFFxLMEi3y0\nDQP3gp99DCN/4BwbdWb2sU0oe5mqR6PQmb2Q4vXwn735dsD1fBT+Hf8IPAJAQdD/o6dKDzLVbYWv\nH4Znz86cjqHoWRRMrdIGOA2rx1dAsMDN8gD6qMqM6/0vrGDEMe7+uc84X/c4teHr2tP3roUfPQWX\neT7UG7hn+82nswqXAp6eVglFRHz7yQCoL/CYzW27wITfOtueBteGEUitPlgYzP1nacKs7KulbauN\nMu7lWdz63gIC2MS0PLYJIdqW/K3TTWypjTY+KItzH5zKUbdNzu9kBNHEp0uGaloC+cbKeuqiFuVV\n7g8yspKGEEKIdHHbH7RR2HDX/jDtUeeAbbmZNgW9nK9lh+W+4UVvNvJ6GkWWoM+/hgEQqnQCOOf0\nnM+eO/SgKOTPjrBIf4jWsDpbqbXn/skH8n675ZxX38aCRQD9dnW3AwVwzTL44aONX9eRDD+qvWfQ\n+QTC2EaIElXPZMvNritU/mBRMivoz0F/OWSDPJlFA3oWcfLogew+qJStDfwcvjTHh7J3f7iY579e\nxX2Tl2BiMW1lZsN6IYRoTU0KFimlfqCUWqCUWqyUGtfAuLOUUlopNcZzbG+l1BdKqblKqdlKKVnj\ns41EPemulz3ReI+bl79ZnfOcBCbyK7nyhWk0HixavLGKg26axB7Xvcsr01dzqvEZhxmzqY7EG71W\nCCFE57cCVmtbAAAgAElEQVS5OkLZuAlMnLu+0bHezKKeVLOs4ALYsgTe+g289xdYNBHWzXQGHHQ5\nnHo3HHBJ7hv2zNLvJ+mCV9CJrjkZZWjpajZiaIstNf6H5oyMJK0hkhnoCROD96+D1d/A6q+cg0V9\n/IMueiu12ZfEPS79IPecYrXu9qDRzv3MYMPvo6MJZinJE43SoRJKqCPkyRoqTMss6qcq+GPguebd\n2PBmFpmETU2PgiAfLXCbzT972cFNupVlJ/9MaQLKRitpcC2EaFuNBouUUiZwD3ACsCdwnlIqI+dV\nKVUK/Ar40nMsADwNXKG1HgUcBY3lcop8sT0BnnnrGv+EbdbqbantDWnlaMOufbtJS3uKpnnmS+eT\nVqMJwaIz73VX6rj5ne+4K3QPz4RupqpegkVCCNEdLN/sZB7cN3lJo2OteIR91WJm/u04vj5wsv/k\n53f7980A7P+ThsvN0oMRBb3gnKfgwMtgl2MY2qcoexlaFidXv5hxLEB6/z0NC97OvNaYCp/9Bx4+\n2j34/fH+QcOOgPP+B8D5o4ucY4NG557Q9CcbnXOH19mCWx2EDhZSSIQiVZ8qa0wvQ7s+8DhXBhrO\nrMvQY7C7bZhgW6yrdMvdfnLIzhw6oh8P/2QMN5zufG/2Lmr49zAZiP3ZUbkz6YQQojU0JbPoIGCx\n1nqp1joKPA+clmXcDcAtgDfKcBwwS2s9E0BrvVlr3e268n6+eBNl4yawYnN+e//MXLWNsnETKBs3\ngbiV+UNac5OBjt3Tbe7obUCZ1JSlPUXTvD9vAwBNiBVRmSMolP7prBBCiK6pINHvJH1hgw2V9Vz3\n+hxfJnGPaf/ltfB1FG6cTigUosUKevj3T74D9jwVTroNgLK+xRywU6/cmUWeJtpXxJ9mtFoKwFOX\nOiubmelBphxNfG8P3Z95cKexmcdCieBW7Wbna6CBhPa9f5T7XGfRxHJ24afMIAFlUUwEigcAUJRW\nhlaqtmN14FCR90VAW6ze6t7nmh/sDsD39xzIhWN3pjQcYGttwx/GJgOqoZAEBoUQbaspwaLBgHfJ\nptWJYylKqf2BoVrrtPUkGQlopdREpdR0pdQ1LZptJ/XSdKe868tlTV/CvilOu+ez1PZXWe5ta80N\ngUdZEL4IgEi84Tid9vygt2B9ZibSAx8v3d6pijR7mStZXnA+o2n81/TIkf1T295Pbv/y2pxWmZsQ\nQoiOJVlKXpcIFn20YCNl4yZw8E2TePKLFYz8yzv8+dXZrKuow9i2AoDQY8dBZfbGuc0SLIQ/rYM/\nr4c/roDRZ/nPKwVaZ/YsSor5H7hHKudnokE9nCBORmbRovdaNt9ksGjlF+78cjk9SwBKdA9miCBx\nilU9lDjBopK0htcZ2XL7XtDwPb9/vX/fMMG22aGHG7AsCfuDoVWJlgJfh6/g7uBd2aea/DMiq6EJ\nIdpYixtcK6UM4A7gd1lOB4DDgR8nvp6hlDomfZBS6nKl1DSl1LTy8vL0051eIJE+4tYet9x3acGc\nbLe2tebCwAeElfOJxROfL2/wni9/s5rjja851/yQ8W/Ooy7a7ZLA2sxJhU6gZ/DaibwwbVWDY719\njQawNbUdNOXTRCGE6A7WVjhJ2ys21xK3bC557OuMMc98uZJDbv6QOXqYe3DRROfr/j+BPT1J4ee/\n0LwJhIqcoFFhrywnnX+LHrpwf/dQ7zI46k9O8+W0YFGcAKcYn9N7kVOSdlkg8TmjmYcsqObex5B1\nXrorwwwSxKJvMJoKFv39+wN8YwLpwaJj/upuH/Qz2Od8d3/sVXDARf7xygBtMbh3IQCTfndkxjx+\ne+xIAPqrSk4xp6aOxy071W7gaGOGc9CSdhBCiLbVlH8l1wBDPftDEseSSoHRwGSl1HJgLPBGosn1\nauATrfUmrXUt8Dbg+WnCobV+UGs9Rms9pn///umnO72FG5zl6699ZXbe7rm52l+C9PmSTRljvAui\nFFPXaJrrazPW8kDo3/wz+DAAe1z3bsaYdRXbkZIrMmyoc364DhPlmpdm8Ytnp+ccG7Ns9lOL6EUV\nvw28lDp+2l4Dcl4jhBCia3ovUcaci02WDxJOvRsGJ9YeGftzGHl8fidlRei73G0uzc6Hw1F/hEAh\nVPg/ENHA3aH/0u+D3wBwpjnFOXHus87cmkrl+BFWsi9EEygzyPG79yVs10Gx8+zRRzurjcV3PNAZ\n4w0WFfSCgp7u/on/gjPuc/fHXgWFvf0vkuhZdM+P9+eWs/ZiRP+SjHkM7BHOOr/fvziT16cv53Bj\nNveEEhlHc15u5rsUQoiWaUqw6GtgV6XUMKVUCDgXeCN5UmtdobXup7Uu01qXAVOBU7XW04CJwF5K\nqaJEs+sjgXl5fxcd3IxVbuNob1+BlkhfReveLE0vdZWbfv5A8A72HtwzY0yjr4NFALdnzjG3f9zs\ne4hMEZxPPpMrb7w1K3epQDQW49Xw33gidEtq1RmAL+csyGu2mhBCiI7vk4UNZ2AHMxpGJ/R3eqUw\nOOMzu5ZRCtbPhq8edI8lM3aWT8kYntGjKHWNCcf/w90fdQbssC/sdU728aPOzH2f5tj9ZBjatNWp\nOpSBo6GwT+PjRHZmEKI1YMdTmUXUbAQgUOT8vLxrf09z94Mub7j/VbYgZaJn0YDSAn504E5ZLysO\nZf9+fW3GWn4TeImnQze7ByPVuV9fCCFaQaPBIq11HPgFTuBnPvCC1nquUurvSqlTG7l2K06J2tfA\nDGB6lr5G3UpdLD+lXcmVzi46ZOecY7Qn9ftwcy6xtMDCys213PzOfGJZmmMnPRi8g5dD41P7tVKa\n1mJxyyaG88PBSGN16niuwM8PV98CwD7GUn4UmJw6rqwI+9/wfutNVAghRIfz/Nf+TJ0bThvF6MFu\nE2ozV7Bo5HFw7WrY64f5ndDiLEvTJ7N+olUZp7xNhG8+cy/3hBF0Ak9/2Qh/2wZnPQr/7wM49Ors\nr5utuTX4g0V7nd3Y7OGcJ+HiTvij6ZWfwR+XtfcsOq/VX8OKRDAzkVmUWh2vci3gtpFwdkJu/6te\nWQI/2ValWzMNlnwI43tCbaK36Fu/dfbH94Rln3Dyq3tynJFZVgowXKV9kLjXWVnHCSFEa2lSsbbW\n+m2t9Uit9Qit9T8Sx67TWr+RZexRiayi5P7TWutRWuvRWutu2eD60L7V3Ba8nyBxXp+xpvELmsC2\nYTDlXP/tYSwvOJ8QsYwV0Wzl/4frl89969u/YcI8Hvh4KYs2VKO1ZkfcUrZgIpvoGPNb9jGW+lNx\nRYv8853vOMH4CoCtujR1/NaJC7KOPzvwSdbjA9hKRV2swWCfEEKIrq1fSTjV9wQayCwCCJfmPpdP\nKnd2z9ghbtnNeR8e4Z5IZmYEws5DuWE4D+ABT5nOyBOcrzvsA2Mubfy1q9Y3PlfDlOXnu7twqT9r\nqDz585jnQ7ySxIrB/+9D5790diMfpq6dDnNfg2mPuMfevRaAY41vmjbPY/7WtHFCCJEn0tmvlWmt\n+U3dPfzQ/IQjjFlc9/rcvNw3bts8E7optb+PWkJtWtaSzuhboInGbR6dsoyYZTN7tVObrRRMW7GV\nx0L/So3sSY3vyp+a70CulU5Ek2mteXjKMo42nWaFJjYHqAUMURu5/+PMUsKG/DLwKgA/fujLvM9T\nCCFEx3K88RVhohnHexQGOXr3gSz/50lAlsyi42/KuKb1JX5eOPe5jDMnly5yd+rdMv2cvYa8D/Fn\nPgj7XQgXvZm7ObX3PsGi7GOE8AoV+79XDv+187X8O/fY3olyyCEHQImnv+pVX8Ihv3BL2XJ5+TJ4\nMa0B9gZnsZMqsn+fZvwc39DKfkII0QokWNSKNldHGHbt25hxJ/BSpjbQtzg/q31YtqbMcJtcKjQ6\nLcEkWaqWdJwxjUemLOPvb83jic+XpzJSYpZNeVWEd+0DU2MHqq2+a/8afIZRakVe5t6dVdT5m4xb\nGLwcvp4p4V9z3kFDs14T09k/of1W7wrAV8u35HeSQgghOoxXv13NvmoxD4Tu5LrAU2lnNf3Dbl/B\nf5wx2lkKPOnP6+GQZjSNzhcrEdTa/UQYX+H817sMACOSWZoGgJkjWBTy9I0p6AGn/dffaDid7fl3\nNthAjxnRvSUbvgOESv3fZ8VZAj+B7I2oGbC702ursUDOkANzntpJ+ZvWV9XLqmdCiI5BgkWt6Lb3\nFgKwv7EYgOuCTzGmrDczV23LCBo0V+GW+b79nqoGKy04ZKelxA5UW9lU7fQKqKqPp4JF0biNaSjm\n2W7/o2xlZ8+HbgCgOhLPONfdWLbmprfn8+q3qxsf7LG5xvkB+hPL6dOgGsnWisZtZnuXQfZYq/s2\n67WFEEJ0LtWROL/530x6KOdDp6Fqo+/85eZbjHxkN6h2jvcuCnFFILEq2fgKZ7n79lBfmXnsVzOd\n7I2aHA26wz2yH2/uewh4x0smhsjhSE9nDMP0Zxa1xp+bgaNynvq+6W8T8d36HAFVIYRoYxIsakXZ\nVj7bWhvjtHs+49wHp7bo3sVb/cGiB4L/zmiQbNv+1/f2NVq2qSY1PmrZmErx1+DTqbFnm5mrnpUq\np2H2AvlHjP9MWsT/Z++8w+Smrj78SpqyzeveK24YV2yKMdX0XoIJxRAIoXcI8OFQgkMJkNASSkJJ\nQjMdAwZjDAZsA8aAccG44Lruvex66xTp+0OakTSjmZ2xt3rP+zz7jHTvlXR3VzMj/XTO7zw/fQW3\nvDUvq+22lZpi0Yjc1QDxdDSAHWXJAuLijSUE8RYWT++3+94Tk+Zv4PZ35vG3TxfTY8xEflplR5KV\nVIYZO2EBJXvpk62xExZwzWsZ+gMIgiDUE9OXbGHgvZMBeND3XwAKAgpdlC3MDV7BZ4HbudNvpXk9\n2gfGNmdo8Rd1P9Fbf4Wb57vbnFEaLhTY7pFy3e80aN3LexNfljfuzdrby5KGJqTCaYSuqBBwnCup\nooj2hFDmlcxa5gU4Tf2OU7Qf4m3h89+q+TkJgiBUg4hFtUj31skXKfNWmmaLizaU8Nhnv2IYu+cD\nFPK5hQJVMZLSzozE6mdGe17+zkwlmzBvfTwSKRZZ1EWxDa4v8X3OGwclX9B1YBuVNVTRrTHjLF2c\nzd/j+enm39QfKk7q21mR7EUR1Y2UYtHhXXM4oX97+nXIXjS6Ztxs3vlpLc9ONedz0Yu279GHc9bx\n0owiXpy+Iuv9NgZemlHEpF8yMD0VBEGoRy7+r32j2FU1v3OGRX/mKu0jWihl9FWTC2Z0nFIPKWfN\nOiRXh0plpB0u827vdUzq/afyJkrHpZPMsvInPpj9tkLTwOlt1W0E+J3pji1q9ljNOsK2Zfb6jXNT\nDt1VGcYwDJ4OPOVq97ftU7NzEgRByAARi2oJwzB4/HMzDc3It59yjdK+ji8/9eUynvpyWdK26fZ5\nwfMz+WLRJkKa+aSttOcp8X5nZFFxeZi3fixybd9acYeFx7SlcNTA8EiHGjH/nqS2ScE/satS0tDm\nrrFNOR9NUcXMiymLNjNMWeLZt2XlfF7/frWrrTKsJ4tFvY83DT93rMTvUwnVQDU057kTW965h6mS\nDRFnBJUgCEJjpKXSQKN7m3Xa/W1rOpKj+6FmWfm8VjW7X2HvwSkW+QIQst5XB19lRhrVBEN/Z3oV\n+XJguaOCWitvewEwI9DDUY8HyakM4AVBEGoREYtqiSpHCppi2JEnI1X304RXvivKaH93fzCfQWM/\n47sV27js5Vl886sZGbFr2NXxMRHry6UqEmXIfZ8xYa7bT+dh/4uecwxF9Pi21dFSKU2KYGqKnDHE\nvijORlQppJTxwbGefTf5xnPn++5Q/spIlICSsP+L3oVIJcx7g/0q5mb8v0tH2JGymB80L0im/prC\nV6IRM+pfM+p7CoIgCHvEaVoDrYDZc6S93GFQ9eNvdTw4cVadEoS6IFF82WDZCjTrAHoNPRQ982m4\nfArsWJnc136g5yYjH53Kiq0eKWuav2bmJAiCkAUiFtUSFaEoI9U5FOWMhnI7vWuL4Q5t3VqanHrk\nJBzVuev9+bw2c7XLWHrJ+m0AqD77y+M5K8Vpw06zEopqRQut7na2576PVOfxTmAs0VAlEWfKmj+V\n14BJojdSU6RVfiBe+KJX24KMtimtitBJSV257HjV9NGJOCKFqhIji466w7XN9WtuYfX2cnqMmUiP\nMRNZvqV0t/4/Tv2vlVWxb/X28qz3IwiCIOw+b/24ml53fhIvQJERZ78IgYTvoX6n1ezEMuH0J+H6\nWXDNDDOiojqcN7/yEEqoa1JF6oTLIb9t7R33lgXm60XjU6ajXf/6nORGrWaqKQuCIGSDiEW1REU4\nyt/8LyS1N1fKuFibTA9lQ7zt5RlFKffzyfwNjEtITQLwY0Yrqb4ga4O9AVi/3XwSMWb8z4BdaUtx\nlPMMEuJSbRIqOo/6n+MgdQlK+VaiIYcwYJW3TYVEFoFatomPgn/mXt/LRPXMLurLqiIUkFqAeTFq\nphRuKLbLHldFom6xKNEXAhik2N5Cxz42jcc/zzwtzovGXO3uh5Xb+fc0D/NUQRCEBs72shB3vDef\nqG5Qkk0acPPOcP2P7rbCzjU7uUzwBaFNH7PqU3VlxMG8+b10ErTZF0b+qfbnJwhOnAbXTg6/Jfn8\nvWh8zR23eRfztVl7aLUPRl4bj0GShiYIQsNAxKJaojwUZbHeNam9v1LEff6Xecz/73hbulS0Vy1D\n6kT8mDf0qi9AzgEXAHDyvs0BmLnCjF6JRRZta2GHut7kG8+9/lc5Tf2Odorpu1NaUUGHNZPsned6\nGPt1GBxfFLEIzloyhoEs41LfZKIZpoGVVkXoGIssumo69Dza1R8T9/ya/basqIoQJExV18NBC0Lf\nk5L2+1Hwbtf6V4vTp48VbfU2GC0PmefUTW+mNl5s6Jz73Hc8PEnSGQRBaHw88bmdluWM9r39hL7m\nQtdDvDf05UBhJxjrKJyQ6ka4vtnnSHtZC5jeQtf/AMHMInQFocaIReq06mm+nvoYtO2XXMkvrw30\nPrZmjnndj0lNyuBzk9qOUn9O3lbEIkEQ6gERi2qJynCUn3TrAu/PO2BsMVUdD6KnanoN7a8s49h+\n7QA4dVDHlPuZ5WHIe/GI7nGxqGWzAoLBHLNDd6e0qZgRLzsMuypJc0yhoFCxI1xemPorWshhmOlP\nKFPb+UAYZfsd1YCfcqOnh25He/XbNCGjbcqqIjwVeNpcyWkBF3/g6m9mRR1FHJFKu8orUBXDvMC+\nZzPkez2BcrOtrCpt/8hHp3q2X/D8zGr33VjY3SqDgiAI9cWrM+2HQxHd4MQBZnGMq4+wIkpTVQzz\n5djLx99vLWQQ2VMfXPKRvSweLEJ9oliCakyEOehyuM7yA6vpa4hDrjVfva7hEsQpPxEUPC60JQ1N\nEIR6QMSiWmLjjl3c4n/PXImVfW0/IN6vKQY3bv0LuX6NXzft4uR/fM2uyjCbd1V67M3anO0U5Yzm\nvjmHMUA1LypVnx/Vb10oRkyxKI9KinJGMzk4BoCD9mlDVafhAFzo+wKAB/z/i+83QIQ5axyV0rYu\nNV877m++blvqKiOqpCp9C1z16iwe+2zP0qAaAyHsi9z2uxZktE1ZlW107lX55ejuZlvMc2jS/A08\nO9nMW/cHcpLGO9FU+8ZgU0l6sQjgZt+7vBe4l0f9/6YoZzSHqfOZt9Z8Kt1LWceS4O/orjTe8vLF\naVI4HvX/m6f9/6jD2QiCIGSHrhu0yA3QrlkQ7UHzwRLrZnkP9ju+HzJJ/6pvgoXma2OYq7D34rPE\nl2YdUvcBFLRP7s+W4++HWxZ6V+dL8BvLIcR2o9A95o+L3XMSBEGoI0QsyoJFG0p46JNFKaMWxk5Y\nwD+/WEpVJMr/vfZ1Ur+vVXfX+pDSr+nsK2bygk0s2lDCFa/M4uAHv2DmCtO8+qvFm13jz9Omxpcv\n81lpY1oAxXraYERD6LrBPgk3+fk5foLrU1dP8RNh+XaHwLDTerpZusk6RtDMrbbIKXVXWVu9zTRY\n/nDuOiYv2MRTXy5Leay9gbKqCBOjw+Pr6/P2y3i7OLGLk3P+C/nmjUC3dR/TQ9lAOGpw74e/cM24\n2bSySiSrWkL48VXTYfQ7ACzTO3HTsX1c3dWZXN/sG88B6lLO0aYD8H++twCzMt5N7eYSUKJc23p2\nRr9XQyJgpfDtKE8tFp2jTW+41YQEQRCASb9soH35Ej4IX2M3Lv0MOg1NHqw5Hz7EBJgGHF151TTz\nu08Q6pNWPeH0f8Ioj3Oxw2A49XE48a9w0Xt7fizNZ3qLeeFzPwwMEI5nD5DbEn73ARSmzkAQBEGo\nTUQsyoJrx83muekrWL4luaTl/LXFvDSjiMc/X8KY9+aTS3J0h5bXMqntAZ6NL8e8hs5/fiY9xkxk\nU4kZZTRYWc5R6jz+6H83eVKaH9VvikXlZWV8vmgTBVS4hijVeBf4iaA7Q9bPfcV8Pe1J17iKfqMA\neO6LBUz91RayTn/6G6Bxe91kyootpSzeuCtuMA6g6Okr2sUoC3kYRw8cBbcvheamv9X4wL18sWgT\nL1teVflYkWaxnPoYHYdA3xNY0vxQVHTahtZS9PCp8e6qSJRsCFgXJmVVEQyrGl4Lw442e+arZfQY\nM5Ff1jk8MUrWw/YVNCis01gq9gmC0Jj56yeL+eOKy+iE46HRBW/BWf9OHuys3DTot9CmLxx8Ze1P\ncndp1dP87suGAy+DY+6pnfkITZcDLoECj8pnigIHXQYjrqt9oWbhh67Vc7Vptr/lua9Ar6M9NhIE\nQagbxC0tQ6Yt2cJKyxj4ohd/YESv1sxbs5MVW8u44OCuHLefHXnz/px19FI8BASP/PyBxpLkcRZj\nxs/nZPV7/hVIkzKjBfCtMb1mfLOep6L7P/lf4G/uMYoK3Q6F1TM8d/HmH4Zy50t2dTb6n2kaZYas\ndLNB5wBQNfh35C5+j3ylko/mbWDkvmZETH5AS5v2szdxzGPTAHjMHyKq5aJFKzAyrIZWUW56ElXs\nexa5iZ1t94XiNbRSSnnIYdCcr1hiUbBZ4hYABHIK6KFupOf3Z8HJtpCzbkcFfdp7b+NFx2Y+2Gaa\nlxfr5uxaRLbG+/8+2UwtvP712Uy93bpwefl0KN0Cf0qu1ldfhCLm/yKVCXtB0P7IMwzDVSlQEASh\nPikI+tJXo9w3ocCB09A6RrP2yZXR9gZOe7y+ZyAItUN39/X5Hf437b5goccGgiAIdYdEFmXIJf/9\nIb68saSS9+esY4UlHr3xwxoSAxnikUXOUOvW7lQhgALKOVydn/K4vZT16Sem+lFCZgRIB2UHEd0g\nT0mIaoqG4Og7U+5C0cNEDetUuHKq3RHIhztWwQkPmOM0M0LJR5RKR+RKwNf0TqMcQuj+PAAUPbNS\n849NMM8hpevByZ3LpsQXNUfUUsz0OjGnPUb3ts3tlX8OoyhnNIeoC7ny1Z8ymlMM1TB/B92AhdtM\nwWV41QwMw4iLpElsWwZVHjcrDYBIigp1YYc7u3hgC4LQkIjqBt1b59X3NARBqEsG/TZ1n6MSsSAI\nQn3Q9O7yd4PiNP4nMSIJJcKCWNs4jKFTlYbtmUYQOlNLjgaKFnazVzQ/HHYTABOiI/jLRx5my7s2\nJpcCdaDqYXyKJVDktXZ35raIl+CN+eaoGFSGbEEjnGHp+L2JU7Uf8Fea3lKG4U75WrppV5KvVVUk\nSr5ipgcGChL+xgnEzx0caWgpIosUp+Hh9uUAXKB9mVLgmbM6uboeQGG5GR20dkc5naJr4u37/OkT\njnZUTyvaVp64aYMkVWSRsxx1qjGCIAj1QdQw2FGWQVrzNTPg0km1PyFBEGofNU2Shyq3aYIg1C/y\nKZQB5eHqI0fKQ1F6Kutpi3kzfoBqpZc5q14lCjb7XwhAIeUcqc7juqO68/5pKrPuPo5mOeaXRx91\nnXub815D6z3SXlcU1IAV4YJB5xZJCU4QKgW/R7uFqodsDx41dSnbmPeRis4XDvPtpu4PM3fVNm58\nYw7rdlbw5JQlHP/EdJ6f7vby2Vkejgs/ak76sOK4sSHVp6F5XWQoaYxN1+2soBUlnn0qOjsrwtzo\n+yDl9s0pha/+Ct8/l3JMQyDVORnUbT+vJn7aCkLWrNtZwe3vzHNF6Ak1h64bmX2fth9gpq4IgtD4\nqcZXVBAEoT4Rz6IMiPmgpOPWd+ZRlHMbAD0qX+dO/xtmR8VOe1BiKpEVdXSz7z18ig7b58L3k6Hb\nZ9x4TB8e/GRR8oH2Ox2Wf+Vqiok4PqIs3rgLEqusdzkIlNRfRko0bKc+pXnCoTnEIoC3flzNnNU7\nObpfW974YY1rrK4bqGrT8IPRMJgwbz0T5tkRYg9NWsxVR/WKr+8oD9HMiizyjDDrc4JZ6QbbbHpI\n1xYMCauwk9RikYcPlo/U5taqojA752rPvlt9b+NTD4mvbzJaJI2Zl3MlTEu5+wZDNEXU0G2+t+PL\nElkkCNlx2MNfAnD2sC6M6JU+QlLInqhhpJb6h11Sl1MRBKGuSHXdffLfvNsFQRDqEIksyoAqSyy6\nUvuIopzR+OKRHwZFOaO5zfcWndkSH3+r44YUxfEnThKLTL8Zn2KJUUsnm6/FawhFdQIkpL8NGW2+\nxkrax7C+aDRFp79SlPwL9Dg8bRoaXz9mRxYllmh3EBOlNEssuuO9+bz54xqXaXCMf01bnvp4jZRY\nallOQqW7mHiWSGXYFm12VUbIj1Wp8/IfuuAtOOVRwIwsOqZ3IR9uOYXflr5uCn2+RAUwdvDkv30/\nZbVrvq7hafS7Y9S5jTraZtlmu0rh018u8xwzQl0YXxatSBB2j9yAPAmvaQzDwDCgTzuP74erv4HT\n0xS6EASh8ZJKLMpp7t0uCIJQh4hYlAFVYZ2rtQnxaKFBykqmBW5mQuBuAK73fchg1U47usGZxuNM\nQ3MuA6gqYcPjovu9yzhw2VO0oNTdfupj5uvmhe52xRZxjlJ/9v4lmneGk//u3bdlEX0VKzIoTRqa\nqonlX/AAACAASURBVMUiiwz272pHnbzw9cr48mXaRI5S58WrZ9UHJZVhvlq82VMs2RNCVupFy9j/\nxSr9myqSZ1NJZXy5IhSlICYWeVW3UNX4+dFV2cIRFVb0WKQCjKhZxtVzUsneRD3VjQBUhpNFrHTV\nvzorW6moCjMlOhSAlYa7XGyfdgUU+fZJuX19c9zj0zhSncel2iS+dKRJxli3s8Il7ElkkSBkzswV\n2+LLmUTbCtkRSz8b3WULPw/7mAd9/2F6dJDZ2WFQ6u8AQRAaN06x6Mxn7OVUDwkFQRDqEBGLMmBT\nSSVjHKUs3w/eS3d1M4NVWyQJJkYBxehxhL2sKHD4LeC3onzClfgVb6Fh+LqXGKo6oiPO+hdY3kRE\nE45lfdH0UtbTXEkQmJwcdLlZdeE3zyd1ne+bai5ogaS++GGsyKJj1DlUhmxfnSAh3gvcS0tKuMc/\njpcDj6SeQx3wjylLufSlH1myKc3fYjcIRXT2VVZzpe9js2HfUwBQFfvG6bj92seXN++yI5AqwlEO\nUJeaKymMzln8CQB/8r/Opdsey2xSu0xhiGPuSegwKLf+R7puEI7qPPDxQq5KrJJ22zLodxoAhUo5\n14/7EZ8lqDjP6b7KGk4Of+4djlPPoktVJEqPMRMBeCXwCPf6X/Ucd9jDX8aj4kDEIkHIlOtfn835\nz8+Mr+8oz8CEWciKWOrseXN/T+HC17nQ9wVHavMBEYkEYa/G6Vk09CJ7ecO8up+LIAhCAiIWZcBf\n3v6m2jFBxUMsGv0O+BLEl+PGQp/jzOX2/dPu87nAE/bK/qPt5YgVsdL3ZPPV+qK5wvcJV8eEDC9U\nFUa9CEPOSz0mcb6uzc3jnOubxqEVX8bbvwneyAHqUuak8MKpa35ea/pE1fQNTUU4yuTgGC71WemC\n/jyiaC4B4rj92tnjrYpxU3/dzBeLNnGx73OzwysNDWBf8/85S++LbmR4g2BVQKPdfjDWLmMfIMKX\nizezsbiSnnd+Qp+7JvHiNyvd2+a1gYK2cP44fup9A2BGjeVZptrONMjPgnfwx4qn6BEtSp7Dkk8z\nm2stMXf1zuoHWWiOKLDGnHInCHXFuO9X8fHPG1xtt70jNzE1jZ4yWEs+qARhryYWWZSYjtb/zLqf\niyAIQgIiFmVAnxbV37gH8RAmWvX0HhxrL+yc3FfYJbnt0oSb8U7DzNezrYpUXpUUghnkOrfsAffu\nNP0QMkB1+BkVlK2NL7dVvKtr1ReaZcyj17AaUF6VEAWWU4ihqC6xyK+pcV+gWKrG7//3IxNmOTyc\nUvlHWWLR5b5JqEqGc49dTOS5zWYv1yZy+7s/s3lXpcdGFm37xRd/Wm0KTQoGuZYnUyyyaNqVvdPP\noWR9+v5apiKc2tA7EZ/jf1XTaYqCsDeieqQ/7aqsvkKokB1Rw+AE9cf6noYgCHVN7Bq+2wjzVbMs\nKzrtXz/zEQRBcCDV0NLw2YKNDOvekjMGtoJq9JT9VQ9D51Tl6o++C/Y5Erod4m6/bAq07gXrZ8Nr\no+z2xFLrZz8PWxbb5neOSmdTo0MYqc2DG+dAVTFEU1zUX/6lKRYpCjTr6D0mEcdNQ75SkWagycL1\nJQR8Cr3bpajkVUvEbm5qWgooDyWIEl0PwWeEuUr7mN7KetYZrRn10WeMCsJbkZG88UM7jutvpqU1\no9zeLpX3RJoUwJQcfZeZ6phwLv2f/22ejZ6VlCFW6PTBOvbP8cUj+7aHXyCHEIPUIgB6q+sZ63uJ\n7q98ln4OeuZiTW2Qyj9l9bZyurbKdfk0dVVtI3qJLBKE6unaMq++p9AkiOoGzzujiWN0GFz3kxEE\noe4I5JsPhdsPMNdvmgdlW9JvIwiCUEdIZFEKqiJRrnz1Jy54fiahivJqxw9VLD+aKxxl7Qs7eQ/W\n/NDrmOT2rgdBXivofRwccq3dnlg2PbeFWxxwRBa1VXZS3GYY5Lc2I5ja9vWeQ5cDzDHgrtiWDsdx\nuivJBsKJnPLPrznu8em1GsGxsbiSdTtN4cowDD6ZvyFuFFrTnjTrdyYIZFaklaoYHK/9xO99tqhy\nnm8qXzhMlnOVDFLiEg3QY4z8U+ptND/0PtazKz+gJf0NztUcde87D4sv9utkGpYPjfkqWTh/p1QY\nbfpUO6Y2GT97nWf7kX//ipdnFKXc7v053tsJgmCTppi7UIOkjIRt0a1uJyIIQt3TfYT9YLiwI3QU\nkVgQhIaBiEUpiEUrLN1cypsz7MpePxUc5Tl+H9UqZ995GLTqBcMu3rPqJU4BJ79d6nFgh6wCA9RV\nRP0p0pxS4ZXG5jkne1yOV9pdCiK1GMJxyENfcNjDXxKK6Pxr2nKuHTeb71duB0zfZcMwWLi+pEaq\n93y5eFNW44cri+LLeVZql3HuK6k30FKIRT0Oz/ygnWwB6Lj+7ZOiZwynWarmqHxnnW+VpJhDGqKZ\n+ivVAp/M38CnCzam7P966daUffd/vJBwVKo6CUI6JAKvbrjnw1+8Oyp21O1EBEEQBEEQLEQsSoFT\nXHCaVw/q3t5ruJsbZ8MZT+3ZBCos095THwN/NeUzNR/0Pyu+2mrD19kdS8lULLJPl5j5cffWed7e\nSw4i0dq/2+h79yT+9umvrjYDM+rklH9+zUn/mL7HxxjcITkdY0ebYR4jTQ7oaGd55mF6Bymp/IrA\nNCD3ormHj1UqrrQj28qqoklRXXqqyjrW/zZiZPaRsEzvxKiqewH4fnl2IlpNcu242Z7tbTA9mKrz\nM6rMwu9IEJoiXpGh/TrUbWpxUyDRRDzOgN/U7UQEQRAEQRAsRCxKQdghcByl/hxf9gdT+BAB9By5\nG0eybt5vSLjpNaybWF+a4zlp3Ws3jm2RaWSRY1yeUsn4wJ+ZVnYWDLkgaWhHtsWXw6nLvNQqqgJf\nLzXzvldsKeOA+z9n+Rbbs+eF6Sv40/j5LN20i753T2L26vRPcLVomb3SYRAAgbwWKceHAi3jy3mK\nGVlENlFfN8yGq6ab3lLZsP+FAHz162bO+fd3rq5oqre8JRb5FPN/VTUw+X/qpJRcopjnQ9GWXdnN\nrw5oo5hiUXVRbZVhiSwSBMMweOarZWzZVeXRZ74+fPYgPr7hcPp1aEa7wmoeYAg1x0GX1/cMBEEQ\nBEFooohYlAJnesrVvo/iy0okTXWpFt2zP9CNs+GYezzEnlgESIZROYf/Mftjxw+VfRraFqMlw9Rl\n5src15OG3uV/Lb5cm5FFHTxuWlqwizPVb4jqBgM721XhtpWF+OvERbz701quHfcTD36yiDd+WM0X\nizcTiuh8NC99VS81YnoWRfPbw+8+NBsT/KTKTngsvqxVmuLTmeo33OWz/h7pIouc9D/LPCc6Dsls\nvBPrPDQSjKe7KZu4sqOHETvEo5oGKCsBCLZOfy6XGTlx4cmvNJzonFgaXSzyrboEuZCkoQkCC9aX\n8PfJv3LTm3OS+mKeRft1LGRg5+aUhSLMqUZYF7LnmqP2MRcOvhIGn2937Ek6uyAIgiAIwh4gYlEK\nqiI6LdhFgDALdceN889vpd4oVJq6LxWtesKRtyW3H3ipmd7V44jM9hMsgE5DzeV+p2U3h4w9i+zT\nJej0LNqVLLKoDpErUs0Nua4bTFm4abeMsMuqkqu9/cP/DP8IPMuihfOSSjx/sXgzt70zj0/m2z43\n42evBWD26p1pj+WLmJFF5Uc/EDcH9+e5K9XlN7MjjS4veZrLX/6RfwSeZT91jdmYqVjk9BPKFqsK\nXwGmuNVD2UAntjI9eAtdtlpl/fqe5N7G+t/e4x9nruc0d/e3dptYPxc9LS4W9WvVcD5GdEvQ9GEK\nWM77rB6tk9MIa9N8XRAaC5pqvlG8IotigaGKYq6Ub9+Y9Lkq7DnRsPU3zW8Hpz5av5MRBEEQBEFA\nxKKUhKsqmJtzFUtyLqG/uiqzjULVV03LmK4Hwx8XQsssopViN76H3ZTdsWIiUC/vqlpxHJ46BUpF\nmoHudKeD/2qaUKeq9vLyd0Vc/sos3ktR1SoVhmGwy0MsaqeYT70n/LCUp75cmtSfyJJNpsg3b83O\nuIdNZTjK2c9+63qCroat/2/AFh0CeQmiit/uK6YZUxZtTtmflvnvZDbOi6oSAG71vU0bipkavJUZ\nOTe6x5z8iHt90cfudadYdPEEuGFWfHVy9ECm60M4ZYjppTT4ew+xs56IiUV+Syxy3tR6nX6iFQkC\n5PrN982WUo80NOtVVRSY9jA/5VxDW9IL60J2rN9ZweRfrO8/Vc082lcQBEEQBKEWEbEoBU9N8jbO\nTesh5AvUzmSyJdNIoRiKAjfOgfNeq2acQywivVh0ujbTtb5uZwWbPZ5aA/zlo4UAFG0t8+xPxaIN\n1XvlZFvJp989n/L9im38unEXs1fv5IpXZrG1tIplm0tpVTQRAMX5f96WkNblC8D5ZlreZ76RyQeo\nLrIoW6HPixIz0utEbRYtlBR/Iy3hXF33k3vdKRb1NCsA3h++CAAFg8IcH6cO6brnc61hYj5KfsUU\niRasL6HHGPP/pnsoQyIWCYL93thZHk7ZpyjANFNkbqGUpi71LmTNoQ9/yeYS62GEotnf4YGC+puU\nIAiCIAhNHhGLHCzbXMqtb88jHNWZsyJFhaerv0m9g5F31s7EMsVn+fdEvEWZtLTq6YqY8cTxtLOv\nml0UEFBt+fqnv1rG/R8vzHh/v6wrznoOmXDe8zNZtd28cN9aGuLAB6Zw3OPTOGzzGwAYFSX24CWT\n3BurfuhzAgBa1MPfqjqx6Kg7dnvecSxRT0MnQIp0kUSx6PpZ7nWPCnxrjLbm7oFmOX5UzSFKfvNk\nXKSqS04f0ol92uTzyh8OBqC5bkY8+Dx+72RhyIj7sQhCU8YppP660S0wx1I1FYcDmIrOtrIQQs3h\nw/p+VH3gC8JpT8I139bvpARBEARBaNKIWOTgtnfm8d7stcxfV0yOkuJCuE1vdCPBcPLAy8zytu36\n1f4k03HcWCjoAO0H1M7+s4xY6qFsoJtii26hqLcRcrtmwfjyf75ZmfH+e7XLpyUlFGJ7RXVXNtK2\nwBRCDOvm5qZj+1D08KlZzf3GN5KNXmMUFDgEn4OvdHdWbAfNTxQNPVxBkkF5dX/DQL5Zae3MZ7Oa\nr4tDrgHgO70//pRiUYInUkFb6Li/vb5wQtpD9Gybj+bcx5R74akDTEUmMdqqFrjq1Vn0GDMRXTdQ\nFPBp5v+6SjHPpTw8vFcS1CIFA90wPavGvPdz0nhBaCo4g4Qe//xXV59hQEtKyNs6L96WS4iDHpxS\nV9NrdGzZVcW6nemjbxNR42KR9R1x4KXZV8IUBEEQBEGoQUQschDzbSivipLrcbMZw3nLGUGF0x6H\n375Uu5PLhO4j4LZfk82JawrVEgdyW6YfZzE1eCvTg7fE11OVKe/YfPfKMIciBnNyrubnHFOwOUad\nzbTgH2lTbooVsYvvW47vu1v7T2SXYaYgKs4L+CHnuwdFzTSOsBrEr1e6jL4z5upvYOiFuzlLTLEw\nvx0nHdCHvm2C3mMSI4sAjr7LXm7d23xts2+8aZXRHoAZen+evmCYO7IIIFwO46+Ep4bBmh92f/4p\nWLyxhOLyMD3GTGTyAlOEXLSxBE1ROGSf1lx3dC+Chvm+fcT/Qny7Uwd3BLzEIrPtj2/P480f11AZ\njrJmezk9xkykx5iJlFQmp+QIwt5I1KEWJfqs6QbMybmaHuPtwgm5ym5ErzYhRjxk+vSl4pd1xfQY\nM5HZq3cwd40ZDanFxCLxKxIEQRAEoYHgq+8JNBRCEZ2ibaZnjoHhnb5zuylCaIp9YV1FoOn8ETUf\n3DQPti6FceeYbT2OgIOvMCuxlW6GNn1h/BWw5NOkzVOVKQ/6du/iuDJiRyq94n+II7X5rv59WufS\np2oxjB0NpzwKdIr3BTQ167Lp/4qcwf/533I/7U3MbbJSAaNqkBxC9g1AXRPIJxCt4I7je8J4j37V\no9pa2OEZ1ftY2P9CVzpaafN9OXTnP2nTuSfN8/xU+j32Mf9t83XbMtOkvQY56cmvkyqa7SwP07Yg\niKoq3H58X/jObG/mMGBXrZJoif9uFZ1jH5sWX+93j/ucHTz2s6wj0gShMeIUi6IJXkT5JUuSxqd7\nmCJApBo/p9OeMtPZz352Rrwt/l2hyjM8QRAEQRAaBnJVgvmU79pxs9lQbHrMLN6wixt87ycPzG+T\n1BSmgZha1xUte7gjl3ocDv3PhBbdoMuBkFMIHYe4NlGsi+BUnkU/FG3fralUOSKVEoUigId/058n\nmlml4D+5jT/63iaAGS0Siuocrs5n+hnlLL97OMuOmEp7ZQd+K51JRedm37s0d6S42b+Q420TcvSf\n8ij0M5++R7RccpUQF2r1lKoRKID579Bm/G+T+0570hT+Etno+Bu2HwD5rV0eS89eOIz1tImn92le\n+4ih1M5HS9E2d8XBnuU/86ftd8PaWVBmR0Qs1m3z7bhBr+4WgC/Uvqj2eE9OWcLLM4r2YMaC0PDx\nMn+PkbdrdVLbRZ3W73ZEqOCNKpFFgiAIgiA0MEQswnzKN2WR7a3z8KeLOVZL7VnjJKQ0MbEI3ClM\nqodgkJDi1DHfPM2qPMSi29+Zl9R24xtzMqq0UxWJUmykNuVu5ldQ9z3Z3q/vAy7RJvPkMbkcrv7C\na4GH6PbZ5WgLxuP78Xm+H/ABr51sRsscpc7jZt94/uJ/Kb69Ek8pc3hWdT7QFMeunGZGWFlPhaNa\nDjlUMdb/SrW/R60QTeG5dcbTpheGFwddYb6e+FfPbitAJ24KreS2YpPRwntfZVsyneke8W7wPkZq\n8+DFY2HqQ/H2fuqa+HLMoHek8b1r27/4X652/09OWcq9ExbU0GwFoWGS+HFbGbajNg0j+XP7mK2v\nUxH29qAT0rMrRXrrmf2symfZVjMVBEEQBEGoJUQs8sCnKukH5LWOL5ZHm+CFnc/hg+PlfZNwsfvC\nhYMB78iid35am9Q2Yd56ykIpjJkdTPt1s6eRcRwjmjSXu/yvc9aM3/BawCGIhK1olWWfM3zKORyk\nLI5HIJn7j1UDsu6onFEzwQK4ajp0cphDA7qWQwvKqDe2/urdnu5GpLAjjC2GEdd5dsc8vbq2NAU6\nnz/IEVX/8N7XZ3dnPNUa46eXXKuxiDbdOu18RvXnlCA0RaK6+7N59qod9kqKqKNKEYt2i88WeFda\nvXPXA3U8E0EQBEEQhPSIWORgpDqXopzRtDG2ZbxNqOk4Ftk4BaLEqloAK6a5VoOKeZOeKg1tuLKI\nopzR/OUIO+VJz8DqZ+KcIvxKmhuW/50MGzKocjXlXtfqO8H74iLUCdpPFOVcSFHOaG7zv2MOyCDF\nSvfl0E7Z6W4846nq51LbbFm825v2ad+Mf5y/P4+cY4p/mqYQIY34tKz6NK/aZGXORZyo/hBPsbmE\nDz3HHbdf+7qcliA0OGJRn2cP7QxAizznQwDvz9jKsB6P2hO88fr7aKkeRm1bZr6WrK/FGQmCIAiC\nIGSOiEUOfqd9DsB+xor0A322V0MID7FkbyfqCKPvfXxy/4qvXKu9X96fP/teIRTxjuy4y/8aAN1L\n58bbwmnUoh1lIZZvKaUVu6qfa8JcMuVwDw+kOBkYkEa0HPqo6+LrRqcDYOjvdmsuNcqKqXu0+Zn7\nd6YwxzznfaqCnu4jZOaze3SstPNQv+FybWK1487QZsRTbHYazQDY0Ntdwe4f5+/PN3cczR0n9Uu5\nn9KqCKVVEpkk7J3EhPyOLSyDfkdeWiwLrXjo1XDqYwB8i+lLJ35e6QlHsxCL4htVpO8XBEEQBEGo\nI0Qs2h2O/XN8saopikWxsuoArXsl95+QHE7/B9+nRCu8xZ3B6koAhq5+iVaUACkzH5i+ZAtD7/+c\nYx+bxu98n2c37ywYpX3j2V5a0COj7atwl6xXBp9rm/7UBc27utfPf8N8Pe2JGjtEjl/j9CGdUg/o\ndkiNHSuRfwSe5W7/uGrHBYjEn+77CbOy8EDKC3s6RhhoqkKXlnl8u2xryv0M+ctn7P+Xz/Z02oLQ\nIJm9agfDlUXk+83PKJdYb6lF5f3Ph4Muh0ABbRXzc3rTLqmKlg6vipsFOSmikYdcYL6mSAMWBEEQ\nBEGoa0QschCrRpIbqEYAGnI+kzpcDUDIaIJikeYzvW3GFnsLIANHeW5WXOr28EkM0W9etpLZOVd7\n9sW46wM74meN0dZ7fnnJVesYW+w9NksKmreufhBQYSR4OYU8qqrVJofd5F7vd4r5N+h8QI0e5qkL\nhqbuzG1Zo8faHVSMeBpakDBRNehKI9TQ4x5lD48alHI/Ud2othy2IDRWvvrqM94K3s/hq8xoQFdk\nkSUWKbGIylApfQ1T4O/XoVndTrQR4PRyqvLwdQpq9udP0cOn2h2BAvMzs6Bdrc5PEARBEAQhU0Qs\nAopyRlOUM5qjNbMy15FK9ZXQFEskaZKeRdVR6B1t8sJXi1zrsRB9Z5nzGKnuy9dst0P0NxitzIWu\nCREsV38D1/1gr9+TOmIka3KaZzSsWbOEm6i6FosOuhzurpuKZDFejJzsWi8prcHfWdcpyhnNzb53\nyaUy/Vi/XSFPRY+fSwFCRNUABm6xKJYW0qVl6sp6Mc5//jvXjbQXq7eVc/SjU9lUUs08BaGB4MdM\nsey43fzcDDsiYpZsNKOIFA+vtohHmlVT57pxs+PLXgKz32f+HZ84z0zlO26/dhTljIYfX4CKHUnj\nBUEQBEEQ6osmLxbNW7Mzqe0sfYprXe92KNww29XWp30hAEN7ijlupgQUt+dLLES/a06yR8P8dcWs\n3VGedn9Bq2IZzRL+B6oP2u5rr3uZcHtx9gts7npS+jEZikVd2yVEIIXS/y41jqKALwA3z4fLv6zV\nQ51e9QBHVD3BQLXI1f7mjKXugetmwxf37dYxDN08d67TPqSvklxBLxVHa/PYr+InIBZZFMBwRMOp\n6HHhF+A3lsFvKmau2E5xhbv0dTiqU+Ioh/3a96tYubWM4X/9gh5jqvdVEoT6JvbQo0AxP4tjgujV\nr/7E7FXbAUdkkYNIJpUImhhfL7UfToQT0tAiUT3uD9W+mekP9eIlB9Xd5ARBEARBELKgyYfFfLpg\no2XVaRNLR4uvDz43yZunVzszcqQwLwfBg32OgpXuqmixcvQx/vzhLwCoHiXNr3hlFpAQpp9A0Hoa\nTr4jHe3gqyDfSkM7+W+Ql0Ha2On/hJJ1MPhcfvxlE6fyaeqxmVb/8SecF+Ey73G1TYtu5k8tMt8w\nPYBuCV3Ldzk3cEnoDl4OPMKw3I3ugS8cbb6O/FPmAp6FYUBM0vkw+Oe0Y9Hd59Pw8mnANfiIois+\n7D2ZaWpOnjhvf75dtpXNabxYyqoitMq30wwv/d+PfJPG70gQGjrdWgSgArSoGQ0Xi4j5dMFGfqOa\nywbulOMW7JLUTA80VYkXkEs0uO5916T4slqd0bUgCIIgCEI90+Qjizq3yE1q05SEC+A13ydvuGSy\n+broo1qY1V7AJROSorGCCWLR+Nnr0IiSG3ZHd/lIXXXqokNs4SOohMyFfIfHwyl/s32Uhl8Fg85J\nP8+xxXDAJXD0nQAcs1+H5DFH3g5DRpvLu2vaHKonsagO2UBrelS+zjTdlF/baSl+53A5REKZC28Q\n9x3yK95lvN2D3WOiqBiGYYrAioaR4FmUyN2n9U+7e2cUESBCkdDoMaz3jL98EwAL15fE+xRLUI0k\nvFVmB6+uNiWzKeJziEBTFpp/zx1lIc597jvXOFVRQNehTD4/BEEQBEFomDR5sahLy2SxKIlKD3Pk\nsrr1g2mUJERjJYpFAMtzksvJL8u52HN320qreG3m6uT95XsYWqfj9hVQ2MWzKzcYSG486Aoosqqj\nBTM0dI0kRKa08qgat5dw8Yju3HFSPy4cbgt58/SecYEniV0b4YG28N0zGR8j4wiGUf8BI0FQMnQM\nw4wYNBQVn6bFuxKjCAHOGNKJu07ZL+UhykPu/Z880ENgBM4e1pm8gObZJwgNCisaTzF0RqnT+fvk\nX+NdqvXwJOG0R1UMvl+xvc6m2JDYsquKHmMm8sn8DUl9mmaLRQ9+sgjDMBh6/+f8sNL9t1IV4PH9\n4O9773eDIAiCIAiNmyYvFnnd0G4yWrgbEsuQg8tEV0jDLQvMNC+SPYtctOmb0JD8f1m7w+1t9FvN\nSnOLp6FlGNaf3xqumg7XzEju8zBxpVl7MxoGoG81nkYxIpa58TH3wKWfwsgxmW3XCLnvzIFcM7IX\nJ1miydBuLQgRAD1ZHARgs2V0Pndcxseo9Kgq5ImWLPYpho4ejyxS2adNgT3cQywCuPjQ7q71ds2C\nXDvSvKl7cKI5/+1lIXTdSCmKdWqeS2U4mrKynyA0FIyo/f56LPBvV18ssqhzggH8Er0zEz3EkqbA\nQQ+avobXjptNcbn7c86nqpynfcWN2ngAJi/YlLT9QGUFB760D5RuTOoTBEEQBEFoKDR5sSgaTb5Z\nzE+stuRVAtxvRSSd+lgtzGovonkXaGdGaXhFFsXpORIO+H18NXYT/93ybfG2igTBYIi6wlzoNgIG\nnwej304/l4snwGlPmMv5raH9gPTj9z0Vzvmvufy78XDM3ZlHMUWsFLlmHaD7iKw9ehojR/Rpy7x7\nT2D8NYdSZWiU79oJ485NMveurLTWNy/MeN83vVl9hUIAfMGkJgWdeWuLzXNK1eI3vwCXH+bt5xT0\nafxw17Hx9YP2acVpg80qf3PX7GRraRXD7v+cnnd+4nkzeP3RvckNaOhGsm+JIDQ0FA/fOIABnQrj\n75eA37I4PP8NAHTFjJr7fGHy+d+UuPOD+a71gKbwiP8F/uh/F4CKcPLf9uPg3XUyN0EQBEEQhD2h\nyYtFRtgtDFUafgqUBLGo/5nJG4atKJeO+9fSzPYirBv4RINrF6oPAnbEh89yCL3ghZnxthKrClUH\nttES21OD/DZw9vPQ94T08+h5FBz4h/RjnObIJ9wPA0eZyx2HmN5FmRKLLPI1LQP05rl+FEUh6GuD\nagAAIABJREFUjI/+xnJYOhn+ORSK7QpmVZXJ1e+qY4ZDNEyLhyi3o7SSUf+agYph+hV9+UC879qj\n9km5q3bN7P+dAvTvVBhfv/rVn5LG/3jXcRzVty1z/3w8t524Lzl+82Y6UeQUhIaGonuLRc1z/Q4T\neCtys98pMOBs/Ib5eXzFK7PYWFzpuX0qpi/Zwq1vz9vd6TYoRvR0F1Hw++zLqmY5PjoUZpDqDtD5\nAOhycE1OTRAEQRAEYY9o8mJRhzXu0tYRzePmvr2H4W2noeZrQbvkPsGNFhOLIvQYM5EVW0q58Y2E\nSJGZz0IgP76qeKShFVeEOUv9hpk5NzAn52q7Q6nBqjIxc+QBZyd5LmVFLGqpZY89nlJj5GjNcSNY\nuhGesKO4whWlWe/P63zwREuOLIr5EsXS0Ch3GMrq6YWce0/3NruetWqHa/3J8/anbbMgL//hYFrk\nmalwAeumcchfPsts7oJQTxgJ74OLDjRTSnXDsN97zhRdfy5BxRb/D3noi6yOd/F/f+C92WuTUrga\nC04vssSvH79m/52CPo2Ibn7+9GybT1qu+BIu/7zG5igIgiAIgrCnNHmxqPm2ua71An1XZhue9BBc\n/U2tlyXfK/CZN89BzNSs0S98z4R569FIuFEP2+lKXuLAXz9ZxKlaQmW6YPOanWvMuLx4zZ7t5/Bb\n4Mqp0OXAPZ3RXsf2nTuqH5QNbfvZyx6RXLHICDOyKMFwOtEMO4FW+ea5q1YjSJ41tHNS2wdz1iW1\n6brRaG+Qhb0XNeF9UFhlehGZxvAxscjxHti5mi7KVtqyZ+/lf09fvkfb1xdH9W0bX64Ku1PZnWKR\nYRhErDTUR0YN5se7jtvjv5kgCIIgCEJd0eTFos1t05RCv/xLOONp7z5fEDoMqp1J7W1YN/DD1cUA\nnDnU9H5xeRhd8SXMeyu+qiaIRTOWb2VHeZi8RD+pQA0bjf/ynvm69sc924+q2dFnTZDnOt6fsk8P\nldXswX77sr3ceVhSd8z/SkNnR3lCus3c1+GbJ+Gzu82f/50C711hLi94H8PjPjmRpQ+e7Nn++0N7\nxJd/XrsTgKe+XMaQ+z5jW2mV5zaCUB8kikUHbf8IMMUiz8iioq8BOEJ1+/Vky8c/r9+j7esL3TDo\n1sr87qmKuMWisqqIa1zY8kXM9Wu0bRa0CzMIgiAIgiA0cJq8WKR7F0My6XIADEsu7S5kiZUadJ5v\nKmA/iY1FGnHy302/hjNtYa6lsosgIVrm+SnaWsboF8yIovxEP6ldNVyN54QHzddTHq3Z/TYxZvhT\ni7BGguF1JqRNQ2u1j/n/ymnhqeo409B0RYVDrrM7pz0CU+6F75+DH16EVd/C/Lfhu2dh0h30aW/6\naB29r3e66WuXDXdFEjgZ4PA4iolOH1k3x1tLQ6l/H0GoY/Kx3pNDRgOwJtAbsESRlrFoPcd7a7iZ\nBlxKhn48KUj13mnoRHU7Fa0q4hbaDuje0jHOIKKbb36fZv79dLnsEgRBEAShkdBkrlp03eClb1ei\n6+6bzsm/2Kki77a/Kb5c0unwOpvbXk+C6fBLM4oAOK6PlUIWq2DV90Qmdb4BgG+CN/Nu/iPsKA9z\n0j+mx7ct0Twq09Uk3YbD2GI4+IraPc5ezrQlW1J31kRk0dXfQldLkPIFzf/XmFXmepeDXEOdaWhb\nyiJm5b1Ezn4ebl9mrx96PVTsZECn5sy553jPNDOA/To2SznFvIAvvhzzLfGp5g1jcUVYoouEBsPD\n/hfMhX2OAGCXZn4264ZBMGbY7IwsGmo+RLl+ZM89Ou7pVoXBxkZU1wn4VAKaSmVCGlprK3UVoKQy\nwsqt5uedTzX/fjoeYYo9jqi9yQqCIAiCIOwmvuqH7B2c+OR0lm4u5ee1xTx+nl3BbPuuSohd2zku\nhgvzazi9qSnjUc4c4O7Nt5oLhn2xHdXtC+lB0UUArovxdWonXFZHf1qL0PDo37GQVNYc+61/f88P\n0GEg/G48VHgc5OIPzXbLVNuZhhaKAn4PE3stYP7EyGkO0Sr4/F5aHv8XzykUPXxq2inm+m1/pFiq\nSiyi6NznvgNg4o2HM6BTDftuCUIWGIZhyxeqeUlgWOJmfrSES3Y+Y/Y5o/asz/TBHfO4cHg3Pv1l\nY1bHzAtolIeicRG1sRHRDTRVQVMVogm/w/5bPogva0Tjwrnfiiwqxq76yQVvQvuBkOeuqCYIgiAI\ngtAQaDKRRUs3mxWY2hXmEInqcR+B2I0kgM/ns32IwtmX9xZSoNqRRf+8wPbxaV5l+VWU2NFdOYHU\n+qWPCBdEJ7gbg6kjO4T645Ob6uBJeSAfmneptl1Bp2ebPFTFoFVBrvdTfC3gjoAbOMp8XT3TNey1\ny4Yz9vT+/Dz2hGqnlx+0xaJZRTv4avFmtiZEE81fW1ztfgShNnEH21qpUlbe5AVlrzq6HGJR7L0S\nDZEf9FEWSvACq4aY6XNiVE5jIaob+CyxKCFYmdNWPRJf9hGNC3E+K+Vu1GCHMLTvydCia8177wmC\nIAiCINQATUYsipEX0Bh63+f0uWsSAJpih6mM6N3eFoksA0+hBlDt0+zQXh5PUB2Cz1EpvGEADlEX\n1ei0hMbDaYM67Pa2GjqDO5vnWN8OheZN7+DzEgYF3DfDLXtAnxNgzfdQbEevHd6nDb8/bB8Kc9yp\nlS50HVbNwLfiS7oqmwB4/PMlXPpSsml6jl9LahOEuiQmDAHQ3Ey3VHUzAu6Uyol2nzMNLRaFF6ki\nP+CjMqwTiWYu/IStaJzKcPpqhA2ViG6gKgqKYgpHqQgQiX+s+FUF1s7i4B7Wd+DRd9fBTAVBEARB\nEHafJicWBX0quxzVSpyRRe19ZRARH5HapE2BR0paHztKw799Scpt44bYQpPD87zJEA2dI3u3AqBP\nByvlS02IYHOmoMWoLAEM+E/1UUQuVn8H/zsZxo3iJf/fsp+wINQhumGw0WjJwg5nQtUuAM7f6lUF\n1BlZZL1fomEClqdRJI1o4iSqG3HD9w/mrEvyEWwMRHUDnxaLLDIorYp4/h4+IvHf1acY8OKxMOl2\ns6HPcXU4Y0EQBEEQhOxpcmLRC1+viC/rukGu88F+qNSMKBDqlnb72culm11dd/vsNAg/jfMpdFNl\nYOWLXBC6iwtDf+LMqvs4P7T7T9LTVkOrhiO1+fxm/47Wjqw3fEF79yCnr1asb42VguZIk8yI8q3m\na7v+dC9IH22RLipBEOoCwzAFVUPR4mJRm+jm9BvF3i9bFsdN2zMVi8KOCKSyUJTxc7J8fzUAolZk\nkaYolFZFGHjvZH733++Txs3JuZotu6p4xv8krR5LiI5UJKpQEARBEISGTZMQi5zh8c6S1aWhCIpT\ngIiG4fxx5vLvHeH3wp6T08K7vXlX97rf7d1wuW9SfLlQqYEqWkKdUUoe3+kD+FYfxDyjNzP1/pxY\n9TAfRg+tmwmc95p53ql+lJiJeiyV5ohb3WM7DDZff/syXPRe8r7euRTmvuF9nFXfwZzX7PWQVYa8\noD2Kkd7LZcbybdX8EoJQu+iGgYpuihdKmksCw/FdGUsd9ueiWWJRNJqZWJQoKm0qqcxqvg2B/Spm\n8+qaE7haf5O5a3YC8O2ybTzz1bKksWu2FnOq9kPyTtL9rQVBEARBEBoAGV2tKIpykqIovyqKskxR\nlDFpxo1SFMVQFOXAhPZuiqKUKopy255OeHeYu2YnfZU1HK/OQnGknf2ytpj+rLQH6hGzCtLYYuhx\neD3MdC9m31Mgrw0s/oTOOSGGB1eb7QPOco9LTA9y0N3yf2HE9bU0SaEmeejsQUltvxrduCm8O/+/\n3YjA2e90OOD3pheRbt3oqtbT/EC+Pa55N9Cs827AWbbJ/fH322MWjIeZz3gf538nwYfXwS/jzZ/V\nZqUzgs1skSqBGWOOAeC92Wv5++TF2f9uglBD6LHIIlVzm7wDIRzrwUL3hgUd4McXaVVRBNg+RNWR\nKCqpikcp+QbOQ6VmlOQVxrus2FIab//75F8JGe6IoRPVZK8yQMQiQRAEQRAaPNVerSiKogHPACcD\n/YELFEXp7zGuGXATkByLDY8Dkzza64TKsM5nwTt4IfA4J6g/xdsf+3wJo9Rp9kA9u4ouQhaompme\n8+YFfDFiPm/FNMd1s93jPP4HVx3ZE4DrfFYlNOdNvNBgueDgbhQ9fKrr54KDuwEwITqCFXrmptXG\n7mZrqT5TKEqMLFIUGPUfc3nUC97bHnYj7H+hvV7dzfC7l5o/s182I+TyWqOk+EyJRWMA/O/bogx+\nEUGoHXTDsNPQEt5oK7Qe9oqakDalKBCp5KxvTcF/7uqd/O3TxdV6EE2cv8Hc3HpwEysp31g5V5vq\nWo/gfuBRSq73hol/T0EQBEEQhAZGJo+2DgaWGYaxwjCMEPAmcKbHuPuBRwBXTLmiKGcBK4EFezjX\n3aYw175466Zs4q3Afbzsf5jh+7RyD2zWsY5n1oRwPLHOCe+w2xMjifRw0qa3nrAv4zs50nxUeSLb\nWPnrbway9MGTiaK6zOWrY7c9i1TNTJ/54j5rR44btIGj4LZl0O2Q9NvHSCUmDzjbfL32e/vnpp8h\nWOBO3XHu1hFNoTXCyAph78HQrUIPipaUBqykU2kdqcV3+sZx+SuzeHbqcv41bXna4935/nzu9I3j\n6+DNgIFfa9yf530Ut+dSBLcIFCaFKCSRRYIgCIIgNHAyuVrpDKxxrK+12uIoijIM6GoYxsSE9gLg\nDuAvezjPPSIctm/yDlCXMlxdzFHazzw71XFRe/YLkt5Um1Q4BKLKEnt51IvucYk35J2GElj7HcO2\nf1J7cxPqDEVR8GsqrfJz0ZQ6MHeOiZGzrCiiSIVzMlDQNrPtIbVYpCjQuje062f/FLS1opqSt7no\nkG6uyCJ9t8OmBGHPMTAji1BV6H0sAOMix7J2R7npZZSK7XaxiCt99lf/3yf/Wu0xr/RNpIuylQ5s\nb/Ri0Ty9l2s95IgsWme0xo/1GXDeODjsJnugiEWCIAiCIDRw9vhqRVEUFTPN7FaP7rHAE4ZhlHr0\nOfdxpaIosxRFmbVly5Y9nVIS0bAd7HSSlsI/YPC5tm+JUPOs+s5e/uVd83XQuVDQzj0ual1YtxsA\nvY+HLUvgpVPs/jZ9zdcjbrPTiIRGR16O3ywlXdsk3pCVZvn5kolYZOjeN36qLykNrejhU3ngrEGu\naCIpiCbUJ7oBaiwNTVHYZjRDR+GfXyy1I/p++3Lyhs07J7el4b/frGT26h2utvv8L9EYtaJ5Ru/4\ncpAw+3e1o6yckUUaOsGYWNSiGxx/n70TEYsEQRAEQWjgZHK1sg5wlqzqYrXFaAYMBKYqilIEHAJM\nsEyuhwN/s9pvBu5UFCUpfMcwjOcNwzjQMIwD27at5kn/bqCHUlVbMagyfMzuekmNH1NIIFZO3Enn\nA5LbYjfXx90LlcUQTqiAplrpbMfeA4POqdk5CnWGoajpoxbS0XNk5mO9fFaywSUWeaeUpROLMHSX\nqX68yzG8Ipxiv4JQB8Q8i2LncMAfQCPKB3PWAwY/FxyeXIgA4MDLsjrOfR8v5OxnZ7ja2ijFjVIs\nLTcC7Ah2ASCohCkI2p8TxYZtnq8RtSOLtIB7JyIWCYIgCILQwMnkauVHoI+iKPsoihIAzgcmxDoN\nwyg2DKONYRg9DMPoAcwEzjAMY5ZhGEc42p8E/moYxtM1/2ukJ2fLPM/2E9VZ+ImyrkSMrWud2I32\n8GvstkBe8rhWppk1+W3iKREuNteb9ZVQk2QtFjnGXvR+5pslemJle4M281nHFLKNLDKFqpg3U8Bn\nj3GmoY3ct+YFckHw4teNu5hnlXqPoes6qmLE/bwUzY8PnVBURzV0jFTvmRHX2X5dDrq0TGHo7MFq\no12jS8OM6gYqOmGf+f0VJESO3xalFxg94ss+dDoUWH8/X4JYJAbXgiAIgiA0cKq9czIMIwJcD0wG\nFgFvG4axQFGU+xRFOaO2J1gTNN/wjWf7b7WpqIrBqp3JpspCDRO7aT/2HrvN7yEWnXA/XPieGXUU\nSpu9KDRiDEXb/ciibAzOlT2MLHKSwqwaw/AWi8rNlJtDVVPg/M8lB8a7nAbXbQqCuz8nQciCE5+c\nzpnPfOtqM2JCviVe5OUG0RSzLRKNYpDiPaMocJYpppYYuYwa1oUT+rcn6FOJVhMuZFiXHvP0XtVW\nT2tohKM6PqJELLEohzD5QftzJmzYAnVLpZQbDreqPkpkkSAIgiAIjYyMrlYMw/jEMIy+hmH0Mgzj\nQavtz4ZhTPAYO9IwjFke7WMNw3h0z6ecPZvbHubZ/rNlTNm8wEO0EGqWy6eYPkMBO0TfUyzyBaHP\nceZyqrQfodGTdRra7kYf7OnT+6EX2ctlW+CbJ5LHGLq3CDXzGQBeCTwCuKOJnMtlVRLZKNQfeswn\nLhZZpPrwWe9NlRRCaAx/LsbAUSgF7XngrIHsKA+xfEsZve78hFLrvC6rinDJf39wb2ed/gEijS4N\nrSqioxFF18wIKh8Rmuf6U45vvnaauSBikSAIgiAIjYwmcbUSsa5Go8HmrvZWilmV6/hBXep8Tk2O\nTvu7o4rArCCVjqhEfO21KKp5I1rbzHsj6bhZ0W2Ee33K2GThSo9mtF+fIyLK5xCLwtHdjLAShBog\nMbJIUX1omG2mwXX6aDxFC9LMFyU3oPFjkW1gPfDeyQA89eUypi2xjeUVdBTDSs0kXG0UUkMjFNFN\nMU0zBSJN0V1ikZL4uWb9rkliUU4LBEEQBEEQGjJNQizSLdEh3G6wq/33vs8A6NCiWZ3PSSC5Eloi\nqTxihEZP1mlouxtZ1KxTQkOWaWhe0W2J6ZGGnpzuBtBpmPvIinPZKRY1rptlYe9Cj5rnuBE7h1Uf\nfodYlNKzKIYvCJGqlN35Afd7I5dQfDmgRGrNs2jqr5uprAXz+FDUjCxC9aMbCgoGc1bbPlAt8hJ8\n0vQEg+uxxeaPP6fG5yYIgiAIglCTNA2xKGJerPlKVnsPiKSqlibUKrnVPFlNNCcW9h4UFdXIXCyK\nC0tH3JbdcY5MGJ9tZFG4PLmtaheUbYNXfwMvHgfLPof1s5PH/cGMrJiefwKAmZaz6GN4/TyIRujY\n3LxZjOgSWSTUH0YsgjOWsqnZkUVmGlo1AqtDLJr5p+SiBO0K3Z5c+djftzf4PiBQtW03Z56aVdvK\n+P3/fuT/3v25xve9oyxkRhapGjoKGjpn+H/gLt9rAIzs28YcOOo/5uvyL83XxMgiQRAEQRCEBk6T\nuBs3dPNJpq94lfeApZ/D4TfX4YyaOCc+VH1UEcAxd5mh/rNfEbPrvQyD7DyL1Ji5dGFipFA1JAqS\n2Rpce6VCrpsNb11Y/ba+ALToRtCKHCqtjMCn10PFDpj9El/ddinnPvedRBYJdU5UN+K+WWHrYYqi\n2pFFPqvcu0qaamgxfEGImmJRq/xkQaS0yh3dk69UuNY7b/sOOCjbXyEtuyrN+S/bXPPfG89PX8Gt\nhFldEqUtKho65668G3ywSO+GzwhDi27Qdl/3hlL9TBAEQRCERkaTiCyKhs0bvtABV6QYITdrdcqI\na2HQOdWPy20JJz0EV0612wb8prZmJdQlanZpaHGxKNtos8Tx+2VZwNG6CWbw+XZbJkJRjGBzBrRW\n6N2ugCP6tDGFIoCJt5Lj1yjM8RMRzyKhjnH6ZD3zxa8AVOmWkKr6KLAEHVWp3rMILWhG54bKCJRv\n5Inzhri6yy2j68Ic872YjztlrTYsi2K/38INJTW2z0hUp2hrGcf3b0+OEqJXxzboqAxVl8XHPB74\nN+qC8YCS/NmzJ5UYBUEQBEEQ6oGmIRZFrOiAg6+EfU9NHhAsrNsJCdnRpo/t8/Dbl+p7NkJNkKXB\ntWpYvh/ZikXOinsnPAgdB6ce60Urs2IifU+E0W+nHje22Ls92IwCKpjyx6NokZccdeHTlLgBvyDU\nFU6x6OslmwEoC1vnYTTEfjm2UfXyLR6pmE581nn9107w+H78plMJNx/XBwBdN/ihaDsA719nViXN\nxx1ZtL0ivVj68KTFfDRvffo5JFAb76ned01i5KNT+XDuenIJEczNQ0fhEHVR8mBF8fYxEwRBEARB\naEQ0iTS0mFjk9/tB9dDHWveq4xkJQhNHUfEpumlcncET9+Fb3jEXshWL8tvAtd9D6Sbodkj28xzw\nG7NqX8fBsPyr5P7+Z8KR/5d6+9UzzNeQxw23YeBTVUlDE+oEw2Ek7TznNCvCT489O1o/h3zMqmUq\nut2eikQvnmmP4G9rVr7seecn8ebOLcxS828H73cN/2rpDs5Ls/t/T1sOwOlDMk9Brc0Kg1MWbSIY\nDFHpzyUvGICQh7m3okramSAIgiAIjZ4mEVmkR03PIkULJD/tO+I2GPmnepiVIDRddkYt09uV0zIa\nP2LzW+bC7tyAtesHPY8yvVWyRVHsaKR9jrTbB54DZ78I574CHQZWv59ty2BjgtmuHsGvKZKGJtQJ\nFY7KYE4xRVMsschwXw60ZhcqBnp1aWiq372+8AP8WvI2AU3FK+U7qdR8DRCKJL+n9lRAGtGzNWD6\nOAWVCIGcAhSvh08A21eIWCQIgiAIQqOnUUYWLd5YQvdW+eQGMrsYi0YcKSyJF3DH3lPDsxMEoTqi\n6+aABrxyZuoULi/qs6KQqkGL7rBzFZz1bHbi0/bl5g2kkx1F+DRV0tCEOmF7mV2y3imcxLzDwoZb\n4Lnf/19UjOqlnMTzGvB5iChq+VYKSY6w81Hz5e13lNu/67+nLWfpplLem70WgNtP3Jfrju6d9T7z\ng+a1QxBz38Hc/PSpZs6+SydlfTxBEARBEIT6ptFFFlWGo5z05Nfc8IZHqeoU6BHrwlHzQ7cR5vJl\nU7K7SRUEocYI9hi+exs6PYjqg5t/Nj83MhWKYlEX7/wevrjP3ff0gXSIrK/VlBlBiLGz3K7spztO\nuVga2qF9rAqVfU8CoJuyGQUDo7rLhJ/fSmry+zy2ebQ3M7v9y1w+9bF4c2Ew9f6zibrbWlrF1tIq\nwlGdW96aF29/eNLiuFAE8NSXSzPep5PcgPlsLccSi9RAbvroId16SNWiG3Q/dLeOKQiCIAiCUJ80\nSrEI4JtlWzPfKBoTiwJw0OVw/U/QtWZL9QqCkDmVB1xlrzzQPvMNO+1f85OpTc4fl7b7ruWjGRn6\nuo4mIzRl3vxxNUU5oynKGc1xT0xj1bYywI4sap6XYw4s7AzAAHUVfiLVp6FVJVQc63UMgaQ0NDM+\nKW+z9ZDHWVQiJqp4EHKIRXqaCDzDMDjwgSkc+MAUXpu5Ku10C3P8afsTWbWtjGKH0JaDtezLMb2J\nAJp3c2/kjIC0/p6CIAiCIAiNjUYoFln+Clk8jFcileaCL8f0IPl/9u47Xo6q/v/4a2brbclNJ400\nkkBCSIAYuoD0IkEEpFhBQRFRrIiFIkURQVBQge9PEEWEr8oX6RCBAKF3ElJIIQHSy82t22Z+f8xs\nmW13b8vdXd7PxwP3zJkzM2fBZO/97Od8ztCup6CLSO/xFKuNd0DC/YXxnX/CB68WvjBY17cT623h\ngZ0OOTuRm5kh0tv++sLqVDsat/jzc6uAdGZRqnj8wemC7bV0dB4sOvSn6fb4g2D5f2ncviTVdcNp\ns/jnuXO814Qa4MQ/AmBbhZehJT/vAR5+Z13BcZGMGkWX/WdR0enWlrh8PengXz/FJ656gk3NTiHr\nsOF++RSoSQ8avpv3okETYPAEOO46p66ZiIiISAWqwGCR84NlrCvRokSUBCb4KrJEk0jVMbJ3QIu3\nQ6QZ/vcsuO1ThS/0h/t2Yr2thOVqBlqGJn3rrNtfzulLFqEeGHL/LCaXVGVk/fhK2Q1t7y/B4IlO\nxq775/OoZ05mGFvZbeQA5u7awN7Lfue9JtTgFJ2H4plFGUGgeJHP/EQX6n6F/F0vPB2NW2xqiXD0\n9J347wVu4MsfdgLdAOEB3gvm3uS8fuJsqB/e5eeJiIiIlIPKCxbFnWCR3YWasGYiQszoWuq5iOw4\nHW0tJG49vPOB2UGmcuev6XRIwq64v4alwvx38YacvlufWQmAlXAze5IFmTMCnD6jhA/a+uFwwetO\nxu57j6e6Xw5/k1ljB8Ivx8KCG73XhBpSzzOxCgZ7igWIvOPyX3/dqTMZM8j7ZzD5RVNrJE5rpHCg\nKtuyDS0MbQimM5UDNRB3so1yMgi1zF1ERESqQMX9lhKJdf1beCMRJW704y5KIlKUtfQxfJsWpzt+\nPRmeviZ1+Oago2ilwrKKAAIF5vyVR1LNRGfLfET6kJ3M7ElmFmUVbT5wcvczY8xCwd1AXWrZmw+r\nYJH3zCBSe7TwcrXsQtjD2Mqq8Bmc1Lic+T841HMuGrdYv72D6Zc8yvRLHi3lbaQ8v3wzxNqdg8zM\notCAwheJiIiIVKiyDBbZts34ix7k+seX5pz7z5sfpdqZRSeL8VkRBYtEypjvv1k7hbVugCevTB0m\nDD/NVFi9IkjXgclWOzg9xNYyNOkflmWzs73WOSiwDfzIQV3YgfAzt3gOTcOA6Z/JHWcYYDo/fviw\nPIWsM2VmDLXHCgeLsjOT9jbdHc9eugXTNHjpJ4fx9A8OAWDqiAZumJfeEW1tU3vB+364zXtu+cbW\ndIAos2ZR5vLYc1WwXkRERKpDWQaLYgnnB7/MH+iSbnt2Zar92KLCBS8ztbW3EUPL0ETKVShSYHfD\n9q2pZhdWnpaPAr+AZwaRao2Oojs9ifSVaMLit8GbnYP2LXnHmHbhIE2O6Sd6Dn2mkb/OWOPOqT8D\nJhZvrN6W93aZQaC2YplFWX9+UkdNHwAwvCHMuCF1zBzbSMyyuevFdLHv/a7+b8H7Lt/QkmqHiLLk\nqwPSmUWZwaI3/55uj9yj4P1EREREKklZBosKfcsIsMvw+lR7YE3nASDLsgkRoylWlm9VRIpJ7pJW\nmaGi9NbaRfo/sod2rWC/SC/xLuvOv2Ss9vXbSr+hPwS7Hp86HD+kFqItueN8gVQg1U8DtCdtAAAg\nAElEQVSC+nBuBt5rq7e6QR3nz/5ji9YXfGxuzSP3vax9w9Mb9BmpTTJK0dyRrml0gf9fhP56PKx7\ny+nIDILte17J9xQRERGpFGUZQcncASXb3jsPSrX97m4uTW0xrnhgUd7r5i/bSIg4UWUWiVSe5JIP\noNAvs2UtX82WT/7Ak1m00tqJB95cuwMnJR83u48ewG6+D3L6I4mMwEnmrmTHXdf9h51yB7YbPPny\n47Pg3f84/d9Y4B3n/hm4KHB33s/uk25ewO0LVvFs6Ntc6L+XN9fkzz6C3Myi2lD+5Z+1QT/rt3fk\nPZfPN+96LdXe13zXaWx3/6xmZhbtc07J9xQRERGpFGUZLIrEvd/8tUTibGjuIJaw2NbawU/8f2W8\nsZbkl/HXPraE255dyd0vr86518KPthMmQri2PueciPSfwyK/7nTM1g+dotdGpWYWJaK5fR1NniLC\npmHx+pqtueNEeklt0M/Zg9709E0fNcAbpLEyagDWNHb/YT4/RsNOuf2hBu9xxp+BiDuP5RtbWLmp\nNX0rEowxNvFt/7+LPjKRlZl37ckzvAMizfCf7zDAbOf9zW0lvIki3rzLec1eXvflB+Hbb/Xs3iIi\nIiJlpCyDRdnfMh5/4zPMuXIek3/yMO8tfoOv+R/iD4Hf8p+3nGLXd77wPgA//7+FOfeaNnIANUaU\noYMH5ZwTkf6zwh6Zar9hTcw7ZtC9J0OkBdsGuxIzixpGpdt1w9LtjMwiPxYNYWU+St+xbZtVwcmp\nYwML0zC8n7WJjGBRocLspfKF8vRlbTKRsRQzOY/DfvM0h177FIvXbQcgQOGt7aNxi7+/tBrLslN1\nDo/ZfSfuPmdffOGMwNRjP4VfjoNX/8xxW+703OPrB08C6HRp2v3nH8CssQO9nYEaOOpqOPEPzvH4\nA2HQuKL3EREREakkZR8s+vfrH7Aq45tA080wCBLn/974KOda2/ZmIETiFjVEvCnjItLv3rjk6FR7\nlZ0nEyHp6tGVm1lkmulfvA+/1Hmdeqyn8LUPi62teTKQRHpJwrIJZgRe/FhYts3lDyxis+0GVsbO\nSV8QK7xDWEny1eoKDXD+f3/wRe4Yg6ZdTmSlNYJo3PJkFB/9W2dHscw5Tx3hzPPI65/mG399lRvn\nLePH/3qbiRc/xKKPnODSyXuPYd+JQyAz02jB78At0u3busIzpQE1zp/NQnUSk3URdx81EF/2klJ/\nGPY7D2adUezfhIiIiEjFKstgUSQjWHThP7yp8yGK/1K1vcP7TWQknqCGCEagC9v/ikifqw2mAyYn\n+hYUGelUK6rIzCJIB4ZG7QmXbINJh4I/nWXhI8HdL6/pp8nJx4FlwwVbrkgdLwt/kV2ii3lqyUZe\ntHajpWES7JSxdCvf8smuyLeDWrAWfvwBHHJRqsv0BwkYCaKJBFN/+kjOJZmZRe2xBNG4xdL1LTz8\nzjp+/+R7qXPfu9f5OSFh2bBpGfzts3mndYTvVc7yPQw4WUi1AefPZjyRPxjd1B5jVfgMzPvOJadm\nWr56ZCIiIiJVpOyDRdnqiABODZMZowfmnJ952WOs2ZLORIrGEkw01xHaurT3Jyoi3eY3DT4duaLz\ngcCsrbm/SFaMZG0Ww5f+BTPUAGf+ExpG4cNi1tge1IgR6YRl5wZD9o69CsBuxvskfFn1d6zCy79K\nkrmkbc8vwPfcz99grSfIYviDBIkX3NQiM7No65ZNfPvu1/OOM7H4a+BKjrx3Ktx2WNGpHWE67/u7\nR0zh6aUbAfjHy2voiCWIFdqJ9a1/wNo3858TERERqVJlGSwqthtareHsZDLRXMeMMU6w6JNThnnG\nHHTNk6l2IuJs2xvc/G5vT1NEesAwDLYP3j3vuT/Hj+Ki2FdZY6X/bNfSw6Ux/SXmBq8zCvoCMPlw\nqB/GoLCZWu4i0hdGR1fm9E1rd4ImrdQQSGQVfY73MLMoGWwaPg3m/h4aRuQdZvqDBIoEiwJGOli0\nh7mch99Zl3fcIJo50OfWLOxoKjq1GM6fw4DPZP6yTQD86pHF7PqzR9jr8sc9Y0c3Zixfz665JCIi\nIlLlyjNYlLAIE8Eg9wfI+oxfGJesa+bCf7zB/KUbqCH/dri2Gyyyg9oNTaTcPP2DQ/P2/yp+Gncn\nPsVB0RtSfYNo3lHT6hutm3L7DB8+w8qb+SHSW/6w/fycvtmmk+1TSwfRYVm7h40/IN2eeXrXH5gM\nFk09tugwnz9EgHhONnHQb/LZvcbwyPn7pPuKFLv2U7xAdaZ4MljkN/GZ3qVkzRHvM4Y1ZBTqjjbD\n7LOc9sn/r+TniYiIiFSqsgwWxdpbWBz+Cj/w35NzrtaIpNpvvr+Rf7/+Iaf5nuTd8FmMMTbkjE+0\nO4UvE8dc23cTFpFeFSWdabPRHtCPM+lF4dxls5h+fChYJP2n3uggUJu1rX1m/aKDf9T1myaXoXWy\nq5oZcIJFVzyYzvy9/SufYOkVx/CbU2dSm3F5Q5HMwrzBoq89CZc2wQ+zsqrMZGaRwSFZWck5b8PK\n+nPpr3HuuXv+mkgiIiIi1aQsg0VWtBWAM31P5Jz7/qz0D4XjDScl/ZeB2wA41nwRgJ0GpOsvxDqc\nzCJ/TZX8wilSZWZ03OY5XmaNxsr4qylOD7fxLhcjpuX2BcKE7EjuL6UiO0gtHdTVF6mZ5evGEslk\nZlEnwSJfIEiABLi7Hc4a28ghU4enB2TUPmowspbKZd7HyLOMLblsrHYwnDs/1e13M5YbFlzDT4c+\nnXPZ+u3pLGVfIitA1dNaTiIiIiIVpOyCRdvaYtz61BIABmb9cDhuSC3DBtaljgfS6jn/xZrncm/o\nLkMjWJd7TkT6XTO13Bg/MXX8urULPzs+HVhJlN9fU13z9WfhqKvznwvUEbIjnp2+RfrMAd/xHBpY\n1BsdECqyTNsfLnyuEMsN8vg6ySzyBzENO5UZ9KldMwJFG96FlelgTn2RzKJAviVqmTWGRs6EC5zi\n2LHwYI40X6bm+d+w80uX51y2z1XzUu09ollFrQ+8sNjbEREREakqZfdb2Jqtbazdsj3vuemjBqSD\nP4CJ99v4MfHV7G6sIOzL+M0r4tY5CWal2YtIWbjm5D3osNO1QRqGjubsAyekjuO2L99llWOnGbDf\nefnPBWoIESGhZWjSR6zMrLXh3uy2GtxC1sW+TAnUFD5XyIxTnNepxxUf5xbSHms4u5LVhTKCSzfv\nC4//PHU42Mj/cwGAL099Q/xZBakHT4TBEzlgwkBuCV6f6q7NU+9wg5tdFM/+YzlgZME5iIiIiFSb\nsgsWAYSIeY4PmTqMv311H649ZWY6+ENusAjggdBPubftrHRH1A0uFfvmVET6zamzxzJseHq3pI21\nuwDw9qVH8s5lR6UK0lalYC0hu0M1i6TPdMQz6vkEvFlCdclsnWIbQPi7ESwaOdOp7TNsSvFxOzm7\nISY/8+uChf+sTzY+TLW/c/hkLp87nQlDnSBXIF/NonxfEPmChGPe3dIWhc/KGTbHzS66qv0Xxecv\nIiIiUsXKrhjIiAHhnF1Pzrbv44BFzfDyJljyUKp/mrmKFxO7sdAax3Tz/VT/MGM7HbEE4YAPM+Yu\nVdNuaCJl65dr92Ke+WNa7BomNR4CQEPYqZWyi/lRP86sjwVq3WVoChZJ32iPJlhrjWRIQ5jGjBpC\nr1u7UGe4WTXFPh/NPvxOyedkFAbdYNGcdy6Hh+6Fk27LGRqqHQBN8KfAdRw16Iuw95c4/v1f8eet\nUZ62ZnoHf/oGqBuS53kBaMuzKyFw4qxRLNvQwsKP8mQwHX89TDm6a+9NREREpMKVXbDINNI/OAIc\nbz7PQatvgtW5Yy8J3EkdHZ5AETgFcn97z5vcdOZe+FLBItUsEilXAxsaeLZ5BjsNCHPbsbv293R2\nnEAtIatDy9Ckz7THEnQQpLV+nCdY1GqH2MNY4Rzky7w9417YsrxvJ+cWz05+5k9cfa/T/6+v5gzd\nf3w9p4fGctRbr8B/XoHdT2Lw4rv4XgDGzjwGMssL7fWl/M/zh6Hpw5zucMDkt6ftyZ6XP5bqS1h2\nOqdxtxOgbmhX352IiIhIRSu7YJFhGJ7Mot8Hf1d0/PcD9+b0baWeB99ey02AP+EWyVZmkUjZeuCC\nA3l99TaOmr5Tf09lx/KHCBDDTuRZRiPSC7a3xzGxMQwfGOllXj5sbgze5Bzk+zJlypF9Pzm/m1lk\nxMmzqtzDSES5+tNT4C2346Efps6dMn2AEyyq3wl2Ox4MI/9NAjXQnJupOLzBWZ63tS39RdWkix9i\nVXLVXrjIbnEiIiIiVarsahaZBgSNWOcDi/Bn1C8IW21EjFCnu7KISP8Z3hAuGChaFZi0g2ezAy38\nNwBjNzzZzxORavX9e9/ExKI1apEZkTEzt5vvrw0g3GVod3xxJlceO6HwuGA9xCNwZbq2GW/elWoa\nd7kFtU+9A477TeH7ZO/sduCFWIaPv311HwCG1AXzXIR+fhAREZGPpbILFhkYOTWLuqrd3VkpGrcI\n2+1EjG4U6BSRsvCL4dd3PqhSbXPW114R+H+0RXv2955IPkvWN2Nik8AEK/1FimcHsf5apu3uWBaw\n45y59abC46ItsOqZnj9v2ePe40Atpp1g7EBnOVxjbaDnzxARERGpEmUXLBpYE2DmyM6DO7HAQG/H\nJ38A318GwDhzPQCReIKQ3UGHGc6+XEQqRNQMc1zkKr4U/VF/T6X3HX4ZAEON7Zx084J+noxUo4Rl\nM9n8kGEdK8FOB4hmm0vTg/orWORmFpGIwOt/zT2/6/Gw+8ml3y/S0smAjLVuh1+WzjR69XYAlm9s\nzbmi1Tcwp09ERETk46DsgkWGAd85ZFzxQSfdRiKQ9cPtmE9A/XCnaaR3OwnZHUQNBYtEKpVhGCy0\nx+fueFQN9jgVgMXWWBava+7nyUg1G9K2AuwCtbGyl2ftKG5mEa/9xdu/yxFw4h/gtL/Byf9T+v3G\nzil97IyTnRpGAA99H565jttPHgPAgos+xd+/ti9LrdGsHTS79HuKiIiIVJHyXIgfjxQ+d8C3YY9T\nSMy7xtvv86aP72a8jw2E7IiCRSIVbP7Sjf09hb5TO5gttRNY3jysv2ciHwdWgWBRqH9rFrHiqXTf\nmf+EyYd3737hAcXPj5kDH7zktM2AN0g27zIO4TJW/bIJgFGNNbQ3BgkN7+SeIiIiIlWq7DKLACcl\nPZ9wIxx2iTMkO23e5y1MeY7/AcAJFkW0DE1EypTp82N2thWUSBdtaokw/qIHMd3aRK+P/yqE8uwK\nOu4ACPTTZ6QvT42gQJ5l6D9c2TvP+/KD3mfne1aGGh+Y+eYoIiIi8jFQfsGirSvhgQvznxs8EUxn\n6187kPVNaFaw6DO+57BtZxlazAz1xUxFRHrMsg1vsWGRXrDoo+0ABNwNI+L+Oph0GMzNKiTdvHZH\nTy3N8HmPg/Uwbv/cceFeqhvkz/g5wfTnX373wSvptpVI/cwhIiIi8nFTfsGi9m35+3c5HOb+PnXo\ni2cVooy6xyfdBsDb1ngA/HachKFvBkWkPEUSpLI/Fn7U1M+zkWqxtS0KkNpddNb4YU5RwD0/7x24\nZcWOnlpazSDv8ZyvOXPM1hcBG18wf0bVbYel23YiN6AlIiIi8jFRfsEit0g1AHPOdV6PvBI+/08Y\nMT11KjF8uve6xp2d1z1OAWCGuQpsMLCwyvBtiogA7NRYl1qGdt/rH/bzbKRabGuLAenMokCwDJdj\nm1mfzaXWTrq0yfmnJ3wB8Hey86oVV2aRiIiIfGyVYRTF/VZxxIz0D2l5vmn0BzN+yLtoNQyZVOBu\nNka+bypFpCKsuOrY/p5CnzJMM7UM7dZneqk2i3zsNXc4waJ9zUVOx6Zl+QdOm7uDZlSCYAnBouSX\nSN01eKLzavoK7wJ3x6edVy1DExERkY+x8tsNzXDjV6F6UoEjcoM9pps+HrV9BAvUM7CxMbCxjDKM\niYlISUzT4IbTZvHyqi39PZW+YfgY02hCFW/6Jjue5dZM/57/Xqex6pn8A99/fsdMqJARu8P6d5y2\nP1h43FmPwYevwuyz0n2n3w1/P81pl1oE+6xHYcO77vMK1DNcOR9sG9o2wbp3SruviIiISJUpvyiK\nkREgOuh7MONU2OsLOcN8wdrO72XbGLZNOb5NESnd3FmjueLEGf09jb5hmIxtVBF+6V2W7USLJplu\nAevWTfkHnvPUDplPQWfem24XqlkIsPM+sN953jpDEw6G3U6Ac56G2sGlPa9+OEw82GlnBovm3gQN\nI9PHV49xXj94qbT7ioiIiFSZ8ouiZGYB1Q2Bz96at45BMOwsQwsaiYK3sm23cKyWoYlIuTJ9BN2/\n9k7ac3T/zkUqWsKymfv7Z9nQ3IEbK0or9AXLwH7+/9yAUXD6P5z2rsd37dpgLXzuThg1q2dzGDzR\nKfyduTNctKVn9xQRERGpcGUYLHLrA2TvkpKtUK0B4M0JX3NbNsnFaCIiZckwwbYYO7iG7N/vRbri\n148u4c0Pmphz5Tzs7GhR5hcxp9yxYyfWmalHOwWrh+6yY58bcANoI4sEm468csfMRURERKTMlF/N\noppGmPsLGH9g8XG+wrUNLCP9tgxsZRaJSPlya8msjXawNNycc3rNlja2d8SYPip/bTaRpN1HDwBg\nUG0gVbMoxQyk27schuBkVX35oeKZSZnZRiIiIiIfI+UXLDJM2PPMzse5wSILo2B6lG3bmKpZJCIV\nIG7ZLPxoe07/Qdc8CcCyK48h4NPfZVLYIvf/P421QWwrzim+p9InD/puuq1NH9LGH1D8vFV4qbuI\niIhINavcnxjdYJHhC+Se82QS2dj6wVhEypyJVfT85J88zPiLHtxBs5FKdPNTywEI+U0mbX2WXwdu\nSZ8M1qXbPhVUz+ug76XbR17hvO5+Uv/MRURERKSfVW4Uxd1i1zALJ0fZttXpL2AiIuXgCv//5PS1\nROI5fQveK7CrlYhrWEOI+sg6b2dmDSNf+SUVl4XDfu7UTrq0Cfb/lvM6dk5/z0pERESkX1RusChZ\nsyhfsMjNLFqztd0p8qnMIhEpVzPPAOAMv7PcLFmY+PXVW7ljwaqc4Wff8coOm5qUhw3bO/jDU8tZ\n29RecMxtz6xItYM+k0Ciwzsg+3PwwoVw4aLenKaIiIiIVJHK/XoxGSyKRwoO+ewfFvB8SMvQRKSM\nZS4Pwtn+3O8z+MzNC/IOb4+phsrHzZyr5gHwq0cWs+qXx+Udc8WD76baCdumseMD74ApR3uPB47p\n1TmKiIiISHWp3ChKMgBk5/7iZKRebQws7YYmIuXr5Vs9h/GcbaxydShgJFn2nzQk1bZsSGR+vO/5\nBS09ExEREZEuqdxgUf0I5zVPoU6bdHDIyPhfEZGy4w97Di07f7DIZ6b/Hvvlw4v7dEpSeRYs35xq\nW5ZNwsgIDoUa+mFGIiIiIlLJKjdY5HeDRKYv95yRfjGxtAxNRMrXKXekmp8xn8mbWXTQ5KE8eMGB\nqeMH3lq7Q6Ym/c/OEzy87vGlXPTPt1LH2ZlmCcvGMjI+G7OWOoqIiIiIdKZy89KtuPfVI/0NvImN\nbSuzSETK1C6HO4X6rTjXB//A1sTlntND64PcefY+gLPUaMHyzWxqibC5JcKQem2BXu1iidxg0Y3z\nlgGwpTXK3FmjeXyRd+ezhG17Nj8jUNuXUxQRERGRKlS5KTeNOzv/nPa3gkOcmkU2i9e37MCJiYh0\ngc8Ph1yUOky4v+UPCDux/Jd/cnjq3O9O3zPV3vuKJ3bQBKU/xRJWwXOPLVrPN+96jfve+CjVN95Y\ny0srN2NZGddtfq8vpygiIiIiVahyM4sCNfCdtwuczKxZZGNVcExMRD4Ghk5JNZeub2ZbW5TtHXEG\n1gQwMgr0Z9YtAmeJkqEC/lWtWLAo2zRjFQ+FLuYXsc/TEY2lT0T1hYmIiIiIdE1VRlEiceeH68eD\nP2CA0c6M0QP7eUYiIkWE039HnXHrixx+3XwAmtpjnmHZwaKH3/EuP5LycN3jSzn6t/N75V7RLgSL\nxhnrAfhZ4K9E4xl1jGoG9cpcREREROTjo3Izi4p4adUW9gXGmRsAGDqgpn8nJCJSzISD83bvPNhb\nayY7WJQdTJLykKwp1BuicW+wqD2aKDASrq25HdzTiYTbGL03HHV1r81HRERERD4eqjKzKODzvq2J\nw+r7aSYiIiUosJTs2lNmwtb3YaWTpWJmjRsxQAWuq0XCstncEsnpzy5wPf2SRwreoy7RlGpH43G2\nMBC+9l8IqsC1iIiIiHRNScEiwzCONgxjiWEY7xmGcVGRcZ81DMM2DGO2e3yEYRivGobxtvv6qd6a\neDE1wayEKaMqY2IiUuVCfhNu2APu+DRYCfxZmUUdsdKXKEl5+81jS9j7iidyAkbZ2WNW7uZoABw6\ndViq/WhiNpFoHBvVsxIRERGR7uk0imIYhg+4CTgGmAacbhjGtDzjGoBvAy9mdG8CPm3b9gzgS8Cd\nvTHpzhw9faesySlYJCLlLTr2AJZYYzx94cjm9MHlg/H/wlt7piNWeEmS9D/bLhDZyePxRU69oc2t\nUU9/Mni0y/DiGbIXH7tbqh0hANgKFomIiIhIt5USRZkDvGfb9grbtqPA3cDcPON+AfwK6Eh22Lb9\num3byT19FwI1hmH0+bqJnQZm1Shq+qCvHyki0jM1jTm/3DdsXZgz7D+fH8NlJ0wHCmeZSHnIXkJW\nTLIeVSLrP+odz78PwKRhdam+ofW5H6N1oXRGrY8EJjaWvigRERERkW4q5SfJ0cCajOMP3L4UwzD2\nAsbatv1gkft8FnjNtu3cogx97e17d/gjRUS6wvAFCBBPHe9srCfc+mHOuBkv/pDDdhsOgKVoUVnr\nyrb3yXpU2cGi+Us3AvDhtvZUX0M4d2+KsN8EwwdAwA0WKbNIRERERLqrx187GoZhAtcB3ysyZjpO\n1tG5Bc6fYxjGK4ZhvLJx48aeTim3WGzN4J7fU0SkDxmmN1g0P3Qhg5/KUyIuUJPKQrG6sMxJdrxb\nn1lR8tjkf9N/vpY/E9bKiDsld0h7+geHpPrCvgTYzrJEHxamYYOCRSIiIiLSTaUEiz4ExmYcj3H7\nkhqA3YGnDMNYBewL3J9R5HoM8G/gi7ZtL8/3ANu2b7Fte7Zt27OHDRuWb0jPHPLj3r+niEhv8gXw\nGyXUIFrxJCOv3wkfiZz6NlJefvvEMib++EHeXbu94Jg1W9qAdBbSn59blTPme/57eGjr8anj9liC\nubNGMW5Iemla2Eon7QaNBIYyi0RERESkB0oJFr0MTDYMY4JhGEHgNOD+5Enbtpts2x5q2/Z427bH\nAy8AJ9i2/YphGI3Ag8BFtm0/1wfzz2/TMu9xgW2pRUTKhbMMrfSC1UFi/PrRJby4YnPng6XfWDb8\n7L538p57Y802DrrmSf7x8mo+2JpeZpa9fO1b/vsAMHD6WyNxZ6e8DGYifX3IdINFqlkkIiIiIt3U\n6U+Stm3HgfOBR4F3gXts215oGMblhmGc0Mnl5wO7AD83DOMN95/hPZ51Z17P2HRt/EEw/TN9/kgR\nkZ4w/EHPMrQcF7zhORxubAPglfe39uW0pBumjxrgOS703+j9za0APPzOOgbVBVL9S9c3A9DUHvOM\nv+y4KQBE4hYhv897s2hbqrk372JiKVgkIiIiIt1W0k+Stm0/ZNv2FNu2J9m2faXb93Pbtu/PM/YQ\n27ZfcdtX2LZdZ9v2rIx/NvTuW8gj8wfkz/8L6ob2+SNFRHrC8AUIU2BZ2b7nweAJnq7Hgj8CoD1a\nejaS7BilJrMu39ACwFNLNrJmSzoz6LgbnwWgJeIEDy3buWHISAcTk5lFZx84gcbaAMTSwSIfFsPZ\nhmoWiYiIiEh3VefXjpM+lW77g/03DxGREhlbVhA2YhxlvpR78tCLndfRs1NdIcPJOmmNFslGkn4R\nT5RWePzV1cWzwlrdYFHyC5AjX/xy6txqt9bRz46fxhs/PxKWz3NOzDwdgAFGm2oWiYiIiEi3VWew\n6JQ7YP8L4NS/9PdMRERKs/YtAI70vcqpezSm+0fvDaEGp/3Z2zyXhIimAwpSNhKWN1g0dnBN3nEn\nzhrtOf7DmXsB8NUDnSyy5H9b061lNah5aWrsY4vWe2/2xGXO6y6HA1BHO5aCRSIiIiLSTdUZLArV\nw5G/gGlz+3smIiKlcbNHRrKZz2+6Md3/lUfS7fBAzyWfMl/nnlfyb7Uu/Sdh23xyyjAOmuwsgW6L\n5F8qGImnC1nffc6+HDNjJAPCfuJusKm1wHXTjFX86oDsXjdAVTsYgDojQnvMyh4kIiIiIlKS6gwW\niYhUGjdYtL9vEXtsyQgQZS6lNf2eS07xPQ3AI++s7fPpSRckYgwPW9x59j6cf+gubG2LYlm5S9OS\nwaIfHb0r+04cAkAo4Ev1OzWLcq97KHQxn3v1DGjZAPGsOleBOiCZWaSPeBERERHpHv0kKSJSDvJV\nRR4wxnucFSzaTi0AX//ra301K+mGW9q/x7VLjwJgcF0Qy4ZtWTubAXTEnMyhrxwwPtUX9JlE4k5/\nWzROiNzrUq6dDFcM8/YF3WCREWH0oNoevAsRERER+Tjzdz5ERET6XL5tzj+XVXctK1j0aOITqfbm\nlghD6kN9MTPpol3s91PtupCzxX0yMJQpmUGU3NkMIBQwaWqL8eU/v0QkZlFHR+cPvMxZesb0kyCY\nDhA1hLXBg4iIiIh0j4JFIiJlIc8OWjWDvMe+gOfQzLhmc2tUwaIyZLgZY62ROCs2tjBxWD0X/uMN\n/v36h3ztoAmE/GZqDMCKja2s2NiaOh5NxHO/AbTkPsR2A1Gj9kwtQwPAVPKwiIiIiHSPfpIUESkH\nh/40t8+XFfzJWqpmYHPtKTMB+GBrW1/NTHrAdP+bnXXHy3zqN0/T3BHj369/CMCtz6xMF7lOxKB5\nfc71YcNbk+jawJ8KP+zte1PL0JyH6/sgEREREekeBYtERMrB1GNy+3x5lhFd2mcJ9FIAACAASURB\nVATnvwLAjafNZM54ZwnS5pZo7ljpd6Yb31uzpR2AGZc+ln/gf74Nv5lCMKtGUU1WZtFQo6nww8bt\nD4GMOkWGr8vzFREREREBBYtERMpDviwQf4GaM259IxMbn8+JRlh2nmVsUjkW3Q/Ak9/Z19NdtMB1\npmG7wZFXOkvP/DVOn6lgkYiIiIh0j4JFIiLlIF+wKDww/9jkcjTbwu+mriSsPpqXdKqpPUZ7NLeA\nNb/cmTfXbCvtJu5/0yE13gBP0Ih7jvcy38t//blPg8/9/1ByKVpWjSsRERERkVIpWCQiUg66kgWS\n3Dlt7Vupv8QTlqJF/WXmZY8x96ZnAaeQdUpHE2cHnyh67b4TB3uOw2aCVb88jpljnEDhnEFuQetg\nffFJ+DPqWyWDidk1r0RERERESqRgkYhIOcgqXl18rPtX9ws3Ef7gOQASlpah9Ye2qBMcWrq+hYRl\nc+6dr3rO7/ziJXzTd1/B60P+ZJDQ/e8fd2oUfWG/8QBc2HqD099ZsChT60bn1a9gkYiIiIh0j4JF\nIiKVxkj/1R3Y9A4AcQWL+sW37no91d7v6nk8+96mnDFn+x/Ke+1UYzV3rD4CNi2DiFu4OuHUKAr6\nsz6ea4ek28ki1oMnFZ/c4geKnxcRERERKUDBIhGRcjNqLzjvxcLnM4pZ+9e/DSizqL88tzwdHNrQ\n7GQFxW3vR+sjiU+k2ruPHpBqz/UtcBq3HJoefP/5AAR9WZlmDSMyDgyoGQRn3NODmYuIiIiIFKZg\nkYhIuRl/AAzftfD5RDTVNDcvc7q0G1q/mDKiIadvCwM8x+OMDQDUBn3c8oXZqf7Uf7Foc3rw6ueB\nPJlFB1+Ubsc7YK8vwtBd8k9q1pnO65xzO52/iIiIiEg+ChaJiJSbcQcUP2+ni1mb694AIJFQsKg/\nnDJ7bKrtc3emM/EWGx9pbAbgu0dMYVRjTarfpnCdqjGDar0dO+8Dh/3cvTABZpGdzk68GS5tgmOv\nKeUtiIiIiIjkULBIRKRcXPwR/GAFTD2m+LisLdFXhc8gntBuaP3BzsjoCrvZQJ5g0YjdaagJAhDw\neT9yTzAX5L/pk1cxZUQDj134SezGcTDRXaZmZOyYZ/p7PnkRERERkQIULBIRKRfBOqgb0vm4QeNz\nusxER+/PRzplZdSKao0mAPAbNkw6DL7yCIyaRchqA9Ib3p3zyYmcf+gu7GxuzH/Tp38FwJTh9Rjb\n3oeaRqffzAgWRbY7r+e/4jxHRERERKQXKVgkIlIFAtFt/T2Fj6V8q/8GBE0YNhXG7QfBBoKJNs/5\ni4/dje8fNRWmHuu98PS7nddkf6sbTEpmFGVmFr1ws/M6dLLzHBERERGRXqRgkYhIJUoWMXb54sos\n6g92VmHxgyYPdWoKGe7Ha6ieoNWOgYVpxbwXD5mUbn/+n87yQ18Qhk5x+jrc7KHJRzqv2z/sg3cg\nIiIiIpJLwSIRkUo09yb4+RY49U4AjDJchvb66q1c/O+3cwIq1cTKem9/OWsOWIn0krFgPSY2V/n/\nhxOfneu9OJkpNGQX2OVwpx2ohVi7004uNQu7u6tFW9PXNo7rxXchIiIiIuKlYJGISCUyDCcgEXB2\nzXr49ZVlF5Q5/dYXuOvF1bRE4v09lT6TXVfcMAw3s8gNBLnFyE/3P0l9u5sZtOJpePJqsNx/L2c/\nnr5BoNZZfvavc2DLCqcv1OC8ZtYs+tRPe/mdiIiIiIikaTsVEZFK5g8BEDaitEYT1IdK+2v9npfX\nsOvIBvYY09iXswOgJRKnIVxkq/cKlp1ZBIBtpQM7RtZ3MokY/OUEpz3nHAg3Qu3g9HlfABb+y2m/\n9Q/nNeRmFmXWLEpkLWkTEREREelFyiwSEalkgRoAQkSJxa1OBjuaO2L88J9vccLvn2PVptbOL+iC\nY254hkvvXwhAxJ1PLF5eGU+9KSeby7adYFEySJQdLErWIQJnWZkv6D2f3DItU3IZmpkRCJxwUPcm\nLCIiIiJSAgWLREQqmT8MQJgYcau0oEybu8U7wMl/XFB07MpNrby7dnvRMZneXbud2xesApy4CYBN\n9QaLspehYbsdySygD1/znv/1xHT7jb9BR9YudltX5T4kmVmU+e+xcecuzlREREREpHQKFomIVDI3\nsyhMlFufWVHSJZnBoi/tN77guIRlc+i1T3HMDc/0aIplVkqpV1m2zY/9f+M7oxfz5f3HO8WtAUz3\n4/Xd+4vfIBHt/CHJYNHIWd2ep4iIiIhIVyhYJCJSyZKZRUaUW+aXFixqzSg47fcV/hj4yb/fTrUj\n8QRt0eKFqqMFlsFVcawI27I41/8g39l8OZeeMB3atzgnkplFbgHyHvG5y8+mzS0+TkRERESklyhY\nJCJSydxgUYjcgse2bfO7ecvY0Nzh6Y/E05lF7dE4zy/fnPfWd7+8JtU+8vr5TPv5o0Wnsqklkre/\n3HZp6y2vrd7KW0//M92RiMNf3IDOeqduE5/8fu890C1mLiIiIiLS1xQsEhGpZG7WiZ/crJ/3NrTw\nm8eX8o2/euvmRGLpDKAb//sep9/6Ar9+dLFnzH8Xr/ccv7+5rdOp/OKBRXn7qzNUBCfdvIDL/X9O\nd9z3Ddjo/nucdKjzuufni99k0mHe42+9ln8cpItf77x/1yYqIiIiItJFChaJiFQyMxksyl0CFg44\nS6FWb2nj0vsX8tG2diC9S1mmm55cDsCLKzZz9UPv8tcXVnd5KvOXbszbX6WJRQDsbGa857fvSbf3\n+JzzGqgrfgO35lTKkEnw9WfhsEvyjz//FTjz3q5PVERERESkC/ydDxERkbJlBgDwk2D2uEGeU/e/\n+REAG5sj3L5gFR9ta+fCI6YwLytrKKkjluBzt7xQ9HG2bWPk294dbxDqygczs4yqOFpUiM/575Iq\ndF1IdrAIYKcZsNr97zBihvfc0Mk9n5uIiIiISCeUWSQiUsnczKKpw8KeXc4Afv3oEs/xY4vWc8wN\nzxTMGnrt/a2dPm5tU0fBc8Mb0jV1bn1mZapdzZlFDyT2SR+49aMKOvGPcGmTty9fsAjAcpcVjtOS\nMxERERHZ8RQsEhGpZKYJhknIZ9Hi7nK2tqmd8Rc92Omlt31xtuf4f55dWWBk2vaO3ELaSWcdOAGA\ncUO8O4BVcayIt62JTsMXTAd43GyvlGRdolB97g0KBZgSUfe+gfznRURERET6kIJFIiKVzgywqamV\n1VvaiCcsfvLvd0q6bI8xA1n1y+P45qGTAJi3eEOn1/zigUWd7m4WT3jPV3NmkZkMhVkJJ1i0z9fh\n/Je9g5KBn2Ce+kVmgdXgfjfjqKaxdyYqIiIiItIFChaJiFQ6X4D2Dmd52O0LVnHktBGe0wdNHppz\nyafNBdRsfhuAbW2Fs4WyPffeZtZtz78UzbZhrvksIzuWefo7Yom84yuZZTlBIiNZWNx236Pph8ET\nvIOTwaKAN+PKuUGBj+HZX4HDL4P9L+iF2YqIiIiIdI2CRSIilS4e4av+hwkSoyboI2Z5U3lCfl+q\n/Y9z9gXgd8Hf03DH4WDbBHxd+yjwFyjanLBtbgjezP/yQ+e5RBlnrOOW+Su6dP9KEHf/Hfuyd6F7\n/vd5BkecV1/Q298wCmaflf8BvgAc+B3wh/KfFxERERHpQwoWiYhUOsvJDFoa/hLD6kO0R53aOfUh\nZ4nT5/fdmdd+dgR3nDWHfSYOYQAt6Wv/ewVHTh+Rc0uA/SYO4YnvfjKnv8BmaFhZ682uD9zM06Hv\n4qf0zKVKkXyvZnZFpnEH5g5OBosyAz8jZ8L33oUhk/pohiIiIiIi3VegWIKIiFQiy7ZTu6K98tPD\n+WhbOxOHOYWVD54yDICxxsb0BatfYP/Dfpb3Xtd/bhY7DcwtwDz7iic4fo+R/P6MvTz9diLuOT7K\n9woAx06tvro7CTez6BPjG+HDjBNfuj93cMNOsPHddM2iH73f+c5pIiIiIiL9SJlFIiJVxLKhPZog\n6DcJB3ypQFGmB76eEeSZfqLn3Jzxgzljn50BGN7gZMJcc/Ieufd4a21On5mIeI5TS7SseM7YSpdc\nhlYXyEqzMn25gz/7P3DSrTBovHNc0wgBBYtEREREpHwps0hEpIqc97fXaAj5CZhuEGPdO85Sp0BN\naoyRLLgMEG0FYOqIBpasb+b/feUT1AR8/OTY3TATHbDkCU4ZN4VfsxU/FmsZUvDZvnhr3v4l67cz\na3sHIwZUT4DEKlSzKJ+6IbDHqX08IxERERGR3qNgkYhIlXjJmgpAc8TN5GnbAn88AHb/LJz8/9ID\n4xnBokgzWBa3n/UJXl+9LVXnqC7kh3vOgkX/hwG87MZ5xnfcVfD5A1rfz9t/x3Mrue65Laz65XHd\nfm/lJplZZBo2+EKQiMC4A/p5ViIiIiIivUPL0EREKt3PNhGvG0mznbU1e6zdeX1/gbc/c7nYa3fA\n5YMY+fI1HDtjpHfcov/r0jT+87oTLNpqe5e+JRdqNbVVT6FrT4Frw4SL18IX7uvnWYmIiIiI9A4F\ni0REKp0vQLxxPPVGe9YJd6eu5rXw3yvS3fGMYFGrW+z62et6PI0gTkZTIuujxXDn0RFP9PgZ5SKe\nuQzN9EGwFvzBfp6ViIiIiEjvULBIRKQamH72MRenDpdfdSysfCZ9fv6vIdbhtDNrFmXbtgZWzof3\n5nV5CkGczCHDyC7y7ARWXn1/a5fvWa4sy2ZPYxmjNjwF0Zb+no6IiIiISK9SzSIRkSoQXuMEhoax\njY004jMNuO/r3kHvPQG7HgcdTflvYtvwv2fBBy8Vfg4ROnB2SbMsG9MtpL2tLUrIzSwaXB/k71/Y\nF+70Xru1rUiQqsLELZt/hy6B/DW9RUREREQqmjKLRESqiJ8iS73+cSZc1giPXOQcf+ZP3vNWomig\nCGBx+CsY7g5gyaVYAB0xi6DhZha1rGe/OyemziVrFk0d0VDamygTTe0x1mxpy3vud08s2cGzERER\nERHZcRQsEhGpAh2HXgJA0Ijx3Bm1cOnA9MmcZWGuXY+DUXulj5//XUnPSm4X//7mdFpNWzSeqllE\nzSDP+GTNoozYUkWYedljHHTNk3nP3f/Gmh08GxERERGRHUfBIhGRKhAeMh5wikyPfukq78kz78l/\nkS8E5zwJo/d2jp+4tKRnPRX6LnsYyzni+vmpvgfeWpuqWZTOJUoeJYNFFRYtctl55p0MmImIiIiI\nVCMFi0REqoHfqSP0tf1HwZBJ3nNZmT4pvoDzWqzgdR5jjE3cH/qZp+/ZZZvSwSLLuxQuGTqq1GDR\nt+9+I6fPVLBIRERERKqYgkUiItXA5wSLTp01Ijc4NGxXOP+V3GsMN4zjD/f48SfPHkMgWS/JinnO\nfcK/DHDqZ1ei+9/8KKdPmUUiIiIiUs0ULBIRqQb+oPMaj0C8w2nPvRm+8jAE62DoZNj3m3DkFbnX\nDhyb/54XLnSuL2BIXTDVTlh2qsB1dqbST2Y4u69VamZRPsosEhEREZFq5u/vCYiISC9wM4t49noI\nD3QCQHue6R1ztFvLyB+GEbun+4+5Bhb+K338pf/A+oUwcIzzTwHRRDpgEo1bhJIFrq24Z5xtOkGl\nSitwXYwyi0RERESkmimzSESkGiTrDy2f5w385DPnazBuv/Rx/TCYc276eOf9Yd9vZIw/J+9tmjvi\n3DJ/OQCReIJGmvOO6xiyG1BZmUXRuDcYtGx9+r0lLBsflfNeRERERES6SsEiEZFqYGT9dd7Uxa3d\nj70GLm1y/vFlJZ1+6mf5rwGuemgxAJGYxWn+p7wn9zsfACvUCOTfVaxctUa82VFXPPhuqh2JJ7zL\n0AK1O2paIiIiIiI7hIJFIiLVIGvpV68KD8gpkJ0w0gGlVZtauf7xxbnXBesAMG1nblYPVm7Zts11\njy9l9ea27t+kC1qygkWL121PtSMxK70M7ZAfwzee2yFzEhERERHZURQsEhGpBltX9e39h072Hmdk\nMh1y7VM00pJ7TaAGgPFPnMOv/Lf0aOHWmi3t3DhvGefcmWdXtz7Q3OENFpnJneNwajX5DDdYNHAM\nDJ64Q+YkIiIiIrKjKFgkIlIN3MBMyl5f7NPH+awoAzICRGGiuYMCdanm5/xPYfUg++mxResAWLwu\nf12k3padWZQZLHIyixLuCe0TISIiIiLVR8EiEZFqkJ3dcsLvev8Zh1zsvM76PABvhdOFr2uNjtzx\niYj3uAfBorrQjg3KtERinuMPt7UTd3d/e2nVlvQyNMO3Q+clIiIiIrIjKFgkIlINhu+Wbl+4sG+e\n8ckfwHfegcHjc07V4QaLTrkddjnCaSe82UZ2ItHtRzfWBLp9bXe8smprTt9NTzo7v33/3jfTBa5N\nfYyKiIiISPXRT7kiItVm4Ji+ua9pQuNY2Lwi51St4WYR1Q2Dz90JR10Nkw7zDupBZlFbNB1o2hG7\nqt381PKcviXr00WulVkkIiIiItVMxRZERKrFrM/nzfrpddHcukGpzKJgnVM/ab/zINbuGWP3JFgU\nSweL4pZNwGcUGd1zX9pvHPc9v5AwUdYzGIB316bf9yDDrddkKlgkIiIiItVHmUUiItXixJucpWJ9\nbeKhOV21qWBRfbozUAPHXps+7maw6K0PtvGz+95JHccTfZ9ZBPBc+Nu8GD4/dbxyU2uqfXfwCqeh\nzCIRERERqUIlBYsMwzjaMIwlhmG8ZxjGRUXGfdYwDNswjNkZfT92r1tiGMZRvTFpERHpR7PPgsnO\nX+fn+e4D4MCdw865YJ13bNMHqea2Fm+mUalO+P1znuO4ZfHw22tZvz1PUe1e0hpNUE/++Yb8GR+d\nyiwSERERkSrUabDIMAwfcBNwDDANON0wjGl5xjUA3wZezOibBpwGTAeOBm527yciIpXKMCDi1O/5\nYeAeAA7YucY5lx0sirakmr97fHGvPL65I843/vYaX/7zy71yv3zaovmzoMZf9CCRuNVnzxURERER\nKQelZBbNAd6zbXuFbdtR4G5gbp5xvwB+BWR+1TsXuNu27Yht2yuB99z7iYhIJVv9vOfQn2hzGoGs\nYNGB3001fUb3dkPbd+Jgz/HzyzcDsLG5DzOLIum5BiiyfG7tm302BxERERGR/lJKsGg0sCbj+AO3\nL8UwjL2AsbZtP9jVa0VEpPL5423gD4Mva9+EgaNpOuZmAAJG1zJyNjR3MP6iB3lhxRZP/7zF6wGo\nCfZdompmZtHSz24uPNAf7rM5iIiIiIj0lx4XuDYMwwSuA77Xg3ucYxjGK4ZhvLJx48aeTklERPra\n/hekmv8bvJQhb/4R4vkzfQbWOUvUPr37sC49InP3sUwPvb0OgKCv7/ZoiHSk34vx4IXsNCAdFDLI\nCHrVDumzOYiIiIiI9JdSftL+EBibcTzG7UtqAHYHnjIMYxWwL3C/W+S6s2sBsG37Ftu2Z9u2PXvY\nsK79MiEiIv0hvSPZbHNp8aGmk21kW11bhuYzjKLn+6p20LqmDj5Yt97T98LFhzFlhLPTWw3R9ImZ\np/fJHERERERE+lMpwaKXgcmGYUwwDCOIU7D6/uRJ27abbNseatv2eNu2xwMvACfYtv2KO+40wzBC\nhmFMACYDL/X6uxARkR3L7sL29clgUaJI7Z98l2V9Ql048QNCGYGaw3Yd3qX7lWrfq+dRQ8Tb2bEd\nvzuhWiPjXPYkRURERESqQKc/5dq2HQfOBx4F3gXusW17oWEYlxuGcUIn1y4E7gEWAY8A37Rtu3sV\nTkVEpHxMPab0sW6wyLC6FizKSF7i9XNH8e2Pfsgl/jtSfUYnmUc94QkIAfzvVwj4nOcN9Mf67Lki\nIiIiIuWgpK9Ebdt+yLbtKbZtT7Jt+0q37+e2bd+fZ+whblZR8vhK97qptm0/3HtTFxGRfjP+QBZN\nu7C0saZTiNruYrAokkgvMxv0/mMAnOF/MtX395dWd+l+pYi6S9vqyKq/9N4T+N0aSQN9XQx6iYiI\niIhUGOXPi4hI9xglfoQkM4vsrgVZYpk1iZY9mnM+ErewrC4shytBU7uTNVRr5BbrTmYWNfjczKK5\nN/Xqs0VEREREyoWCRSIi0j1miVvXu8EiEl1bhRzNyCwqVEi6PdZ7K5sty2b5xhYAxhveAtfUDac2\n6LyPAcllaAPHIiIiIiJSjRQsEhGRbjG6mllkda3WT8wNFj353QNhe85GmgC0RntvSdgN85Zx2i0v\nAHBV4H+8J4dMoj7kBotMt8h2sK7Xni0iIiIiUk78/T0BERGpUEZGZtGZ/wuTjygwzgkqWSXuoHb+\nXa8xtD7EtJEDAJhw884Fx7ZFEtBQ2nQ78+jCdYVPmn7q3GBRvc8NFgVqeufBIiIiIiJlRplFIiLS\nLXbmMrRgfeGBbrBo79b5Jd33gbfWcvuCVZ4C15lM0v29mVm0eF1z4ZOrnqG+zSmo/aOWXzl9gdpe\ne7aIiIiISDlRsEhERLrFsjO2rg8VCxY5L4e0PtLpPdc2tafangLXGR6/YB8uHvsOg9jO6s1tJc21\nN0xe/CcATNwMqcbCGU8iIiIiIpVMy9BERKRb4mQEi4plFm1fW/I9t7Wl6xq1xxKMYAt2oBYjlg4K\nTTLWMWnjVewamMGfXpzAMTNGdmne3WXUDoLtGR2lFvgWEREREakwyiwSEZFuidsZHyGhIoWDulDY\nemtrNNWeP38eL4bP9wSKAGhxdiobZDRz8t5jSr53MWu2pJ/xo6N3hZEzYfJRnjGnRO/rlWeJiIiI\niJQ7BYtERKRbPCWFimUW+YKp5qpNrTS1Fw4ebWyJpNo7RVblH/TaHQC0EcbKv1KtS2zb5qBrngTg\n6wdP4huHTIJ4BPzBnLEn+552GoPG9/zBIiIiIiJlSsEiERHpllhmZpE/VHjglGMAeMx3MIdc+xQn\n3vRcwaHfvvuNVDtBgWVe7/4HgBDRkndYKyaSURsp6DNg/SLYuBj84Zyx1wacukVsXdXj54qIiIiI\nlCsFi0REpFs64hmBGsMoPNA02e4fTJvtZOqs3NSad5idFfhJdPIR9ZY1qdeDRTVBP/xhP+fAF4Ij\nr4DRs3v8DBERERGRSqJgkYiIdMuIxrqSx9qYYBdfM7a9PZ5qHzxlWKfBohZqsHoeKyKaESyqC2Vk\nM/lDsP+34Gvzci/a47SeP1hEREREpEwpWCQiIt0yY8ygksfaho9YrHih63hGAaI7zprDLZ/fK33y\ngjfgpNs848/z30+iF6JFkXgi1TYyM6SKLa37zB97/FwRERERkXKlYJGIiHSP0YWPEMPANIoHdqJu\nxeyrT5rhdCTSO6MxeAKEcotoZy9d647MZWjvrW9On8gozM2XH0q3G3cuvuxORERERKTCKVgkIiLd\nYxYoQJ1HR8LApPgytJhbA6k+vgVaNjg7kmWK5tY66o3MotWb21Ltnx4/LX0is8D1+ANgyOTcfhER\nERGRKqRgkYiIdI9RerAomgATJ7DTWBvIO+aP85cD8OnHDoZrJ0PCDRaFG53XyPaca6xeCBbd+N9l\nAPzgqKkEYhmZRf6gd2ByWZqCRSIiIiJS5RQsEhGR7umkYHWmAbUhfG5mUaFsoLteXM0k48N0R9xd\nhnbe885raEDONUaio+Q5FHLK3mMBmDtrFLRtSZ/44BXvwOSyNAWLRERERKTKKVgkIiLdk1wWNnhS\np0Ntw0wtQ8vMBrJtm8cWruO59zYBcIj5RvqiZGZRqMF5nX5Szn2NhHep2qaWCOMvepCrH3q31HdB\nwi2sXdu0HB79SfrEkoe8A1OZRUUKX4uIiIiIVAF/f09AREQqVLTFeZ1wUKdDw23rGGc4u47FLZuX\nV21hl2H1vLhyC1//66upcevsIemL1r7pvPrc4Ixpwuf+BiuexF74fxhtGzGy6hotWecsI/vT/BVM\nHz2QE2aO6nRuyQLXjf88FZo/Sp+Y8EnvwGRGUaCm03uKiIiIiFQyZRaJiEj3xNzC0MHcXcqy1dht\nTDffB5zgzCl/fJ5T//Q8G1u8wZ4wGTugvfNP59WXUeNot+PhuN8QP+xSAMysZWg3Pfleqv3qqi2U\nIhksMprXek/MOtN7nNyNTZlFIiIiIlLlFCwSEZHuSRaeHjyh5EtWhc/gIv/fAVi2oYWFHzZ5ztca\neWoQ5dmm3gg4WT7t7W2Mv+hBvvLnlwBYsHxzasz0UQNLmlPUDRbRMDLded4LMPM078BkUEw1i0RE\nRESkyilYJCIi3TPrTDj1L7D3WZ0OtQeMJu6vA+Dr/v+k+u9+eY1n3Jd9j5b0aNNdCrbkgw0APLlk\nI7btLZwds0orwB2JWwR9JkbmErTaobkDk5lU5AavRERERESqiYJFIiLSPaYJ0+Y6r50wRu2Jf/C4\nnP5BtQHP8SRzbc6YvPdzM4tWrUsvNZvwY29B6ngi/65r2aJxi6A/6z3UDskduOj/nNfswtciIiIi\nIlVGwSIREel7vgDE2nO6zz4wvYRtJJtzzhdiuJlFISNWcEwsUVpmUTSRoNaXNbZYAMzQR6eIiIiI\nVDfthiYiIn3PDMDWlTnd2zviqbbP3S0NgEubcsZ6uEWmPQWxs8St0jKLNja18ZKVUZ9ov/OLXxDZ\nXtJ9RUREREQqlb4eFRGRvucL5O2+Zf6KVDuAGyza8wud388tMp0vWHTZCdMBiJeYWbTg3dXpgzGf\ngMMuKX7BgDEl3VdEREREpFIpWCQiIn3PLJ7IOmpgmCDukrJdDu/8fr4gAH4SfGk/by2kY2c4u5rF\nSqxZ5Ak4TT0W/MH8A7/1mvN67vyS7isiIiIiUqkULBIRkb6XlVn0qV2HAzBrbCMTh9ax4MeH8ejX\nprljCwRrMrl1g0xsQgGf51TQ55y7Yd4yPtyWWycp28TGjINQQ+GBQyY5y+Pq8hS/FhERERGpIgoW\niYhI38sMAA3bjRNmjgJgU0uEATUBWP0C/OUE5/z2Dzu/nxss8mERytrJzO9Lb21/3WNLO72VPx5J\nH4QGdP5sEREREZEqp2CRiIj0PTMj+yfeTsDN/gm2fMTvt50HT1+TPt+yl7npuwAAEA9JREFUoeT7\nmYYTLLrhtFkATDY+oO7qIXzKdJaM7blzY8FbJPmtjOwju7Q6RyIiIiIi1UzBIhER6XvRtnQ71kHA\nzf45xX6EMbFVsHxe+vyMkzu/n+EEi/wkOPGdbzF3pLN72vWBmwH4f8FrqaeNn973Dpa7K9qqTa3E\n8hS99lsd6YMPX+3CmxIRERERqU4KFomISN/LXFrWso4h294kQBwfeTJ5gnWd38/NLDrCfJUxW56H\nP+xHA228aO2WGrKfuQiAiRc/xLl3vsIh1z7FtJ8/kvu4REZm0ZxzSns/IiIiIiJVTMEiERHpe1bc\neR3mBHP2fvxUbgz8Ln+wyBfq/H5uZtE4Y32q6+3wVzl02PbUsZ9Eqv3oQmdcvh3SUplF570Iw6Z0\n/mwRERERkSqnYJGIiPS9ZOHorStTXcf4XsaXEdBJqR/W+f3cAteTzLWe7olbn0u1TXIDQwDt0fQz\nYwmLMG6B60BN588VEREREfkYULBIRET63nG/gSN+AQNGebr9+YJFpTA7//i6+jPT8vb/d/EGlq1v\nBuD9zW3UJINFpSx/ExERERH5GFCwSERE+l7tYDjgAjj6V57uIPHu3c/wdTqk1p+//5t3vcYR1893\nxgR91BB1TiizSEREREQEULBIRER2pClHwuGXpQ7rjPYig4sw08GiSGhI3iF+w2bqiIait0lYNrWG\nm1nkV7BIRERERAQULBIRkR1t/wtSzRCx7t0jI7OoqXF3GL13+txn/uS8WgluP+sTBW8RiSdojyUI\nEyHuC5e0tE1ERERE5ONAPxmLiMiOZZpsnDAXAKu7H0MZmUVt9WNg7D7pcw07Oa92glg8XeS6IeRd\nlzb7F09w5PXzqSVCwqesIhH5/+3de6wc1X3A8e/vPm1sjJ+Ay8MYMC5UJMRcOVYD/JEQMJACaUoF\nTYUbt6JUQSqkLxBRS9u/kipUaktDSQohVVJISKK4UtuERukjUYEY6mAMGNuUlljG5hVMCvGL0z/m\n7N7Z693r63v37u7d/X6k0cycnRmf0fx8ZvZ3z5yVJEkVJoskSS2XTlkDwAnHDk7uADF6+1q4aAm8\nun30s1nHFfPND3HygtEk0MoTa19Je3NfMV7S7NjPO76CJkmSJFWZLJIktdzx8+cC8K7FURQse18x\nX7VuYgcoJYvmzZ0LP3vF6GeVZNEL/0Hfrid435nFmEa/ceHyuoeazU/tWSRJkiSVmCySJLVeX/FK\nWLz9Oiw+C67/Jty2Ez705xPbP2J0eWBWbZJpeN7o8ts/5if7DgGweO4wv3fpysMOdUX/Y8x9c8dR\nn4IkSZLUrUwWSZJaLyeLePlZeOU56B+E4bk1YxEdUf9wMR+YVZs8qjlG4sDBd/ja0B8x8oXlXL/m\n1ClXXZIkSep2JoskSa3XN3DkbY6kf6iYDwzXlpd+KY3//GvO3reJ8/u2AXDsjn/gorOWTP3fliRJ\nkrqYySJJUus1JVmUB8cemFXM86DZNT2LdnyHz7z1ydH1h9bTX+qEJEmSJOlwTXhalyTpKJWTRVff\nPbljjO1Z9LF/hJTgnYPj/9NRmy3am2Yzb/VHJ1cHSZIkqQvZs0iS1HrlZNGiMyd3jJ+8VMwrPYv6\n+qF/AAZnwcV/3HC3tW98hQ/2bayuD/AODPpraJIkSVKFySJJUuv1l5JFS989tWPVe6Xtgpvhxu/X\n3fya1+/hc0N35rXEMPtHB8uWJEmSZLJIktQGh0qvig0MTfFgqX7xBHosDXCI/kijvZMkSZIkmSyS\nJLXBof1TP8aiFcW8Qa6IwVlww7+Oe4jb35sHyd7y9anXR5IkSeoSJoskSa13aN/UjzF7QTGfs3ic\nf+fAuIdYd+ZPi4U9T0+9PpIkSVKXMFkkSWq9ShJn7omTP8ZHPg8X3AInvmucf6fUg2nhGTUfzT9m\nkL7jVxYrH/zTyddDkiRJ6jImiyRJrbfs54v5NfdN/hgLlsHFd0DfOLeyJWePLo+sr/lo31tvwoG3\ni5WFyydfD0mSJKnLmCySJLXe/FPhjjdGk0bTZc4imHdysbz8Qrj6s9WPnpm1Hj7/gWIl+qe3HpIk\nSdIMYrJIktTdKuMjDc6Bd1/Hvhjme4d+rnabvoHW10uSJEnqUD4dS5K6W2XcoqE5EMHQKas4d1+C\n3aVtxnuVTZIkSeoxJoskSd2tMpj20DEARPRz3KxUu409iyRJkqQq/5QqSepuKy4p5oNFsoi+Pji4\nr3YbxyySJEmSqkwWSZK624f/Bm7eDP2DxXr0w769tdv0D7W+XpIkSVKHMlkkSepug7OKX1+riD54\n5bnabSqJJEmSJEkmiyRJPWb//x1edvzZra+HJEmS1KFMFkmSesuLjxxeNji79fWQJEmSOpTJIklS\n7zrvV+GWp9tdC0mSJKmjTChZFBFrI2JrRGyPiFvrfH5jRGyOiE0R8b2IOCeXD0bE/fmzZyLitmaf\ngCRJk3blX8JxJ7W7FpIkSVJHOWKyKCL6gbuAy4BzgOsqyaCSL6eUzk0pnQd8Grgzl18DDKeUzgXO\nB34zIk5rUt0lSTp61z1YzFffAH12sJUkSZLGGpjANquB7Sml5wEi4gHgKqDabz+lVP4N4jlAqnwE\nzImIAWA2sB8Y83vFkiS10Mq1cMcb7a6FJEmS1LEmkiw6CXixtP4j4L1jN4qIjwOfAIaA9+fihygS\nS7uAY4BbUkqvTaXCkiRJkiRJmj5N63+fUrorpXQG8AfAJ3PxauAQ8DPAcuB3IuL0sftGxA0RsTEi\nNr788svNqpIkSZIkSZKO0kSSRTuBU0rrJ+eyRh4Ars7LvwL8c0rpQEppD/B9YGTsDimle1JKIyml\nkSVLlkys5pIkSZIkSWq6iSSLfgCsiIjlETEEXAtsKG8QEStKq1cA2/Ly/5JfSYuIOcAa4NmpVlqS\nJEmSJEnT44hjFqWUDkbETcC3gH7g3pTSloj4E2BjSmkDcFNEXAwcAF4H1uXd7wLui4gtQAD3pZSe\nnI4TkSRJkiRJ0tRFSunIW7XQyMhI2rhxY7urIUmSJEmS1DUi4vGU0mFDA9XTtAGuJUmSJEmSNPOZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVZkskiRJkiRJUpXJIkmSJEmSJFWZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVZkskiRJkiRJUpXJIkmSJEmSJFWZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVUVKqd11qBERbwJb210PdZzFwCvt\nroQ6krGheowL1WNcqB7jQvUYF6rHuFA9MykulqWUlkxkw4HprskkbE0pjbS7EuosEbHRuFA9xobq\nMS5Uj3GheowL1WNcqB7jQvV0a1z4GpokSZIkSZKqTBZJkiRJkiSpqhOTRfe0uwLqSMaFGjE2VI9x\noXqMC9VjXKge40L1GBeqpyvjouMGuJYkSZIkSVL7dGLPIkmSJEmSJLVJRyWLImJtRGyNiO0RcWu7\n66PpFRGnRMR3I+LpiNgSEb+dy++IiJ0RsSlPl5f2uS3Hx9aIuLRUbux0kYh4ISI25+u/MZctjIiH\nI2Jbni/I5RERf5Gv/ZMRsap0nHV5+20Rsa5d56Opi4iVpTZhU0TsjYibbS96T0TcGxF7IuKpUlnT\n2oeIOD+3P9vzvtHaM9RkNIiLP4uIZ/O1/0ZEzM/lp0XE26V24+7SPnWvf6MYU2drEBdNu29ExPKI\neDSXPxgRQ607O01Wg7h4sBQTL0TEplxue9EjovF30959xkgpdcQE9AM7gNOBIeCHwDntrpfTtF7z\npcCqvHws8BxwDnAH8Lt1tj8nx8UwsDzHS7+x030T8AKweEzZp4Fb8/KtwKfy8uXAPwEBrAEezeUL\ngefzfEFeXtDuc3NqSnz0Ay8By2wvem8CLgJWAU+VyprWPgCP5W0j73tZu8/ZadJxcQkwkJc/VYqL\n08rbjTlO3evfKMacOntqEBdNu28AXwGuzct3A7/V7nN2mlxcjPn8M8Af5mXbix6ZaPzdtGefMTqp\nZ9FqYHtK6fmU0n7gAeCqNtdJ0yiltCul9ERefhN4BjhpnF2uAh5IKe1LKf03sJ0iboyd3nAVcH9e\nvh+4ulT+xVR4BJgfEUuBS4GHU0qvpZReBx4G1ra60poWHwB2pJT+Z5xtbC+6VErp34HXxhQ3pX3I\nn81LKT2Siqe6L5aOpQ5WLy5SSt9OKR3Mq48AJ493jCNc/0Yxpg7WoL1o5KjuG7lHwPuBh/L+xsUM\nMV5c5Ov6y8Dfj3cM24vuM8530559xuikZNFJwIul9R8xfuJAXSQiTgPeAzyai27K3fnuLXXdbBQj\nxk73ScC3I+LxiLghl52QUtqVl18CTsjLxkXvuZbahzjbCzWrfTgpL48t18y3nuKvuBXLI+K/IuLf\nIuLCXDbe9W8UY5qZmnHfWAT8uJSQtL3oDhcCu1NK20plthc9Zsx30559xuikZJF6VETMBb4G3JxS\n2gt8FjgDOA/YRdEVVL3lgpTSKuAy4OMRcVH5w5yN96cce1AeD+JK4Ku5yPZCNWwfNFZE3A4cBL6U\ni3YBp6aU3gN8AvhyRMyb6PGMsRnP+4bGcx21f5Cyvegxdb6bVvXa9eykZNFO4JTS+sm5TF0sIgYp\n/jN+KaX0dYCU0u6U0qGU0jvA5yi6/0LjGDF2ukxKaWee7wG+QREDu3P3zUrX3z15c+Oit1wGPJFS\n2g22F6pqVvuwk9pXlYyPGS4ifg34EPDR/JBPfs3o1bz8OMV4NGcx/vVvFGOaYZp433iV4rWTgTHl\nmqHytfxF4MFKme1Fb6n33ZQefsbopGTRD4AV+VcFhiheM9jQ5jppGuV3gv8WeCaldGepfGlpsw8D\nlV8q2ABcGxHDEbEcWEExSJix00UiYk5EHFtZphig9CmKa1r5NYF1wDfz8gbg+vyLBGuAN3JX0W8B\nl0TEgtzF/JJcppmt5i9+thfKmtI+5M/2RsSafI+6vnQszTARsRb4feDKlNJbpfIlEdGfl0+naB+e\nP8L1bxRjmmGadd/IycfvAr+U9zcuZr6LgWdTStVXhWwvekej76b08jPG0YyGPd0TxYjiz1FkbG9v\nd32cpv16X0DRje9JYFOeLgf+DticyzcAS0v73J7jYyul0eONne6ZKH5t5Id52lK5nhRjA3wH2Ab8\nC7AwlwdwV772m4GR0rHWUwxQuR34WLvPzWnKsTGH4i+5x5XKbC96bKJIFu4CDlC87//rzWwfgBGK\nL487gL8Cot3n7DTpuNhOMW5E5Rnj7rztR/L9ZRPwBPALR7r+jWLMqbOnBnHRtPtGfmZ5LMfaV4Hh\ndp+z0+TiIpd/AbhxzLa2Fz0y0fi7ac8+Y1QCWpIkSZIkSeqo19AkSZIkSZLUZiaLJEmSJEmSVGWy\nSJIkSZIkSVUmiyRJkiRJklRlskiSJEmSJElVJoskSZIkSZJUZbJIkiRJkiRJVSaLJEmSJEmSVPX/\n8lwR3hyQgDYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAJcCAYAAADKNbH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8pGld7/3vr/ZUlkrS6SW9Dsz0\nAMMwM+DA4KBH3BAQX+jxqIjLqHhGz4MePQ963FBxQfE8B1Afz1HhoCAyICoIIioICOLADDPMwmzM\nPt3pTtLpLFVJaq+6zh/3XenqTNKpSqrqruXzfr361cld21WVpPLN77ru32XOOQEAAKC1QkEPAAAA\noB8RsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZaAsz+xMz+9UW3ddxM1szs7D/+b+a\n2Y+34r79+/tHM7upVffXxOP+tpmdN7O5Bq/vzOwK/+OLXl8z+y9mNu+/TvvM7CVm9oj/+Xe26zkE\nwcxeamYzQY+j35nZm8zsLzv0WE+a2bd04rG2eOwfMbPP132+ZmbP3MX9/ICZfaK1o0OvI2Shaf4b\nYs7MVs1sxcxuNbOfNLON7yfn3E86536rwfu65Jurc+6Uc27EOVdpwdif9ovDOfcK59x79nrfTY7j\nuKQ3SLrKOXeo2dvXv75mFpX0Nkkv81+nRUm/KemP/M//rpVj72X9HNA2hwXsjv8z8/ilrmNml/l/\n9ETqbvc+59zL2j9C9BJCFnbrO5xzo5JOSHqLpF+Q9K5WP0j9m1ifOS5p0Tl3rgX3dVBSQtL9dcdO\nbPq8YX38mqPP8b2LbkPIwp4459LOuY9K+j5JN5nZ1ZJkZu82s9/2P54ys4/5Va8lM/s3MwuZ2Xvl\nhY2/90v0/73uL8TXmdkpSZ/e6q9GSZeb2e1mljGzj5jZpP9YT6tU1KplZvZySb8s6fv8x7vHv3xj\n+tEf1xvN7CkzO2dmf2FmKf+y2jhuMrNT/lTfr2z32phZyr/9gn9/b/Tv/1skfVLSYX8c797m9j9v\nZrNmdtbMfmzTZe/2pxuvlPRV//CKmX3azB6T9My61zXuj+Vd/v2d8W9bm379ETP7dzN7u5ktSnqT\nf/zHzOxBM1s2s382sxN1j+/86uUj/tf1f5mZ1V3+n/3brprZA2b2Av/4YTP7W/81ecLM/mvdbV5k\nZnf4X9N5M3vbdq+tf/1f9r8GT5rZD9Qdj5vZ//S/RvPmTa0OmdmwpH+se93X/PHkzGzKv+2vmFnZ\nzMb8z3/LzH7/Uvdb97ivMrO77UJ195q6y540s58zs3vNLG1mf2VmiW2e1+X+13HRf37vM7PxusuP\nmdmH/Ndw0cz+yMyeI+lPJH2t/7xW/OteNLVuT58a+wMzO+2/5nea2ddf6jWvu92EeT/TC/73x8fM\n7Gjd5f/qv3b/7n8PfKL2GvuX/5B5PxOLdomfIf+67/Zf60/69/XZLb4XX29mj0h6xD/2bP/6S2b2\nVTP73rrr7zOzj/rP+XZJl296vPpp+SEze6s/1rSZfd7/mn/Ov/qK/3p/7Rav7Y1m9iX/dl8ysxsb\nfX3QR5xz/ONfU/8kPSnpW7Y4fkrSf/E/frek3/Y//l15vwCi/r+vl2Rb3ZekyyQ5SX8haVjSUN2x\niH+df5V0RtLV/nX+VtJf+pe9VNLMduOVFyD+ctPl/yrpx/2Pf0zSo/JCyoikD0l676axvdMf17WS\nCpKes83r9BeSPiJp1L/tw5Jet904N9325ZLm657jLf5jX7HF63vR67PN6/phSX/q39cBSbdL+gn/\nsh+RVJb005Ii/nN7tf86PMc/9kZJt9bdn5P0MUnj8oLygqSX+5d9j//1eaEkk3SFvMpaSNKdkn5N\nUsx/jR+X9G3+7b4g6Yf8j0ckvXib1+al/njfJiku6RskrUt6ln/52yV9VNKk/9r/vaTfvcT3x+ck\nfbf/8SckPSbpFXWXfVcD9/t8Seck3SApLOkm/2sQr/t63C7psH/7ByX95DbP7wpJ3+o/t/3+GH7f\nvyws6R5/LMPyKphfV/d1/Px239tbXUfSD0ra53+N3yBpTlJiu5+Vutvtk/TdkpL+a/HXkv5u0+M+\nJulKed9P/yrpLf5lV0lak/Qf/Of4Nv/r+bT3lLrv9dW66//Bpufg5P3RMuk/1rCk05J+1H9ez5d0\nXt7UvCR9QNIH/etdLe97dfP91X7O/pc/9iP+a3+jP4bL9PSfuY3X1h/LsqQf8sfw/f7n+3Z6ffjX\nX/+oZKGVzsp7c9msJGla0gnnXMk592/Of6e5hDc559adc7ltLn+vc+4+59y6pF+V9L3mV2b26Ack\nvc0597hzbk3SL0l6jV1cRfsN51zOOXePvF94126+E38sr5H0S865Vefck5LeKu9NtxHfK+nP657j\nm3b7hMzsoKRXSvpZ/zU9J++X9GvqrnbWOff/O+fK/mv+k/ICxIPOubKk35F0XX0FQd4vhRXn3ClJ\nn5F0nX/8xyX9D+fcl5znUefcU/JC137n3G8654rOW/fyzrpxlCRdYWZTzrk159wXd3hqv+qcKzjn\nPivpH+R9D5ikmyX9N+fcknNu1R/7ay5xP5+V9A3+1/gaSX/of57wx/y5Bu73Zkl/6py7zTlXcd4a\nv4KkF9c9zh86584655bkBbTrtAX/9fqk/9wW5IWQb/AvfpG8oPbz/tcy75zb9Tos59xfOucW/a/7\nW+UFiGc1cLtF59zfOuey/mvx5rox1vy5c+5h//vpg7rwfP+TpI855z7nnCvI+/mt7vCQ/1B3/V+R\nV7E7Vnf57/pfl5ykV0l60jn35/7zukveH2Lf4/9cfrekX/Nfv/skbbke07w1pj8m6Wecc2f8r+ut\n/hh28u2SHnHOvdcfw/slPSTpOxp4fdBHCFlopSOSlrY4/v/Jq4p8wsweN7NfbOC+Tjdx+VPyKmSt\nKLcf9u+v/r4j8tY91dSfDZiVV3XZbMof0+b7OtLEODY/x9064Y9l1p/KWpFX1TpQd53Nr/cJSX9Q\nd/0leVWp+vFv9zock/dX+lbjOFy7T/9+f1kXXtvXyfvL/iF/euVVl3hOy374rHlK3mu2X1515c66\nx/gn//h2PiuvwvUCSV+RVxX5BnkB6VHnnUiw0/2ekPSGTc/tmD+mmka+b2RmB83sA+ZN62Yk/aUu\nfG8fk/SUH3z3zJ/CfNCf0lqRlFIDP0dmljSzP/Wn0TLyqm3jm/7Q2e75XvS97X8dF3d4yPrrr8n7\nfjy81eXyvhY3bPpa/ICkQ/K+XhE19rM1Ja9SuNX38k42v4/UHqeRnx/0ERYJoiXM7IXy3kCe9le1\n/5fuG+T9Erpa3jqrLznnPiWv5L6VnSpd9X/FHpdXBTkvb9ooWTeusC7+BbvT/Z6V9yZdf99leVN3\nR7e8xdbO+2M6IemBuvs60+DtZ/X057hbp+VVVaYu8ct58+tyWtKbnXPv2+XjXb7N8Seccye3HIBz\nj0j6fr+C8B8l/Y2Z7dsUpmomzGy47rLjku6T97rnJD3XObfVa73V1/9WedWb75L0WefcA+ad/flK\neQFMDdxv7fV681bPrUm/44/zec65JfNacPxR3eMcN7PIFl/LrZ7bRT8P8oKGJMlff/XfJX2zpPud\nc1UzW5YXpnfyBnmv2Q3OuTkzu07SXQ3edlbeNHRtHEl504+XsvGzYGYj8irmZ+sur3/up+V9Hb91\n85347wdl//4e8g9v97N1XlJe3vfyPZsua/Z9pPY4/7TD7dBnqGRhT8xszK84fEDe+o2vbHGdV5nZ\nFf6US1pSRRemB+blrc1p1g+a2VX+G/RvSvob57V4eFhSwsy+3bzWBm+UNwVSMy/pMqtrN7HJ+yX9\nNzN7hv9m/juS/qrZyoE/lg9KerOZjfrTbP+vvKpEIz4o6UfqnuOvN/P4m8YyK2+t0Vv9r1fIvMXV\nm6d36v2JpF8ys+dKG4v4v6fBh/w/kn7OzL7GPFf4z/92Satm9gv+guKwmV3tB3SZ2Q+a2X7nXFXS\nin9fl5pG+g0zi/lh4VWS/tq/7Tslvd3MDvj3e8TMvs2/zbykfeafzOC/Pll5a8Verwuh6lZ5U6af\n9a+z0/2+U9JPmtkN/nMe9r8HRxt8zeqNyluzlDazI5J+vu6y2+WFlLf4j5Ews5fUPbejZharu/7d\nkv6jX3m6Ql61sP5xyvLW00XM7NckjTUxxpy8hd+Tau77828kvcrMvs4f629q599Fr6y7/m9J+qJz\nbrtq98ckXWne4vqo/++FZvYc/+fyQ5Le5L8mV8lbP/c0/tf8zyS9zbwTJMLmLXCPy3vNqtr+vevj\n/hhea2YRM/s+eWvRPrbD80SfIWRht/7ezFbl/dX4K/LWjfzoNtc9Kelf5P3i+IKk/+2c+4x/2e9K\neqNf1v+5Jh7/vfIWxM7JK+n/V8k721HS/yPvF/0ZeX/J159t+Nf+/4tm9uUt7vfP/Pv+nKQn5P0l\n+9NNjKveT/uP/7i8Ct8t/v3vyDn3j5J+X9Kn5U21fnqXY6j5YXmLzR+QtwD3b+Stk9vu8T8s6fck\nfcCfDrpP0isaeSDn3F/LW6Nzi7wFy38nadL/BfcqeWtPnpBXKfg/8qaoJG+x//1mtiZvcfNrLrEm\nb85/HmclvU/eIvJaZeIX5L1mX/TH/i/y1xn513m/pMf977nalNNn5U2p3l73+agunEW20/3eIek/\ny6s4LfvX+5FGXq8t/Ia8qcu0vLVmH6pd4L+G3yFvcfwped/b3+df/Gl5bTvmzOy8f+ztkoryAth7\n5L1WNf8sr7LysLyprLx2nqav+X15C7bPS/qimqjQOOfulxdob5EXGJd18c/oVm6RF+SWJH2NvAX7\n293/qqSXyVsvd1be98rv6cIfWz8lb2puTt57yJ9f4nF/Tt4U8pf8x/49SSE/mL9Z0r/730f1a+/k\nTzG/Sl7Fb1FexfBVzrnzwkCpneEFAEDXMa/FyYxz7o1BjwVoFpUsAACANiBkAQAAtAHThQAAAG1A\nJQsAAKANuqJP1tTUlLvsssuCHgYAAMCO7rzzzvPOuUs1OZbUJSHrsssu0x133BH0MAAAAHZkZg3t\nwsF0IQAAQBsQsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaANCFgAA\nQBsQsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaANCFgAAQBsQsgAA\nANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaINI0AMAAGztlttONXS9195w\nvM0jAbAbVLIAAADagEoWAHSp937hST21lNVIPKKxRFQjiYhG4xFddXhMJ/YNBz08ADugkgUAXcg5\np0cX1jSWiGpqJK5ipaqnFtd162OL+vBdZ4IeHoAGUMkCgC6UyZdVqjg9//i4vv7k/o3jn35oXv/y\n4DnlihUNxcIBjhDATqhkAUAXms/kJUljQ9GLjtemCU8trXd8TACaQ8gCgC40l/ZDVuLikHVsIqmQ\nSU8tZYMYFoAmELIAoAvN+ZWs1KZKViwS0nRqSE8tErKAbkfIAoAuNO9XskYTT186e3xfUjPLWVWq\nrtPDAtAEQhYAdKG5TF7JWFjR8NPfpk9MJlWqOM2mcwGMDECjCFkA0IXmM/mnrceqqS1+Z8oQ6G6E\nLADoQnOZvMaGtu6ykxqKanwoqqcWOcMQ6GaELADoQnPpwraVLMlbl/XUUlbOsS4L6FaELADoMqVK\nVYvrhaf1yKp3Yt+wVvNlrWRLHRwZgGYQsgCgy5xbLcg5KXWJStaJyaQk6SmakgJdi5AFAF1moxHp\nNmuyJOlQKqF4JMTid6CLEbIAoMtst6VOvZCZjk0mCVlAFyNkAUCX2W5Lnc1OTCY1n8krk2ddFtCN\nCFkA0GXmM3nFIiElY+FLXu/EvmE5SXedWunMwAA0hZAFAF1mLpPXwbG4zOyS1zs2MSSTdOeTS50Z\nGICmELIAoMvMpfM6NJbY8XrxaFjTqYTuPLXcgVEBaBYhCwC6zHwmr4MNhCxJOr5vWHedWlG5Um3z\nqAA0i5AFAF3EOae5TF7TqcZC1onJpLLFih6aW23zyAA0a8eQZWYJM7vdzO4xs/vN7Df8488ws9vM\n7FEz+yszi/nH4/7nj/qXX9bepwAA/SOTKytfqjZcyTqxz2tKegfrsoCu00glqyDpm5xz10q6TtLL\nzezFkn5P0tudc1dIWpb0Ov/6r5O07B9/u389AEAD5vweWYcarGSNJ2OaTiV0x1OsywK6zY4hy3nW\n/E+j/j8n6Zsk/Y1//D2SvtP/+NX+5/Iv/2bb6RQZAICkupDVYCVLkl5wYkJ3n6aNA9BtGlqTZWZh\nM7tb0jlJn5T0mKQV51zZv8qMpCP+x0cknZYk//K0pH1b3OfNZnaHmd2xsLCwt2cBAH1iLp2TpIan\nCyXpmVPDOruSU4nF70BXaShkOecqzrnrJB2V9CJJz97rAzvn3uGcu945d/3+/fv3encA0Bfm0gVJ\nzYWsYxNJVZ10diXXrmEB2IWmzi50zq1I+oykr5U0bma13UuPSjrjf3xG0jFJ8i9PSVpsyWgBoM/N\nZfLaNxxTLNL42/PRySFJ0uklQhbQTRo5u3C/mY37Hw9J+lZJD8oLW//Jv9pNkj7if/xR/3P5l3/a\nOedaOWgA6FfN9MiqOTbhnWE4s8xm0UA3iex8FU1Leo+ZheWFsg865z5mZg9I+oCZ/bakuyS9y7/+\nuyS918welbQk6TVtGDcA9KW5dL7hMwtrplMJhUOm04QsoKvsGLKcc/dKev4Wxx+Xtz5r8/G8pO9p\nyegAYMDMZ/K69th4U7eJhEM6PJ5guhDoMnR8B4AuUShXtLhebKp9Q82xiSSVLKDLELIAoEucy3hn\nFh5KxZu+7dGJISpZQJchZAFAl5j3G5E2u/Bd8ipZ59cKyhUrrR4WgF0iZAFAl2h2S516xyY5wxDo\nNoQsAOgSc+nmt9SpOeb3yppZZsoQ6BaELADoEvOZvOKRkFJD0aZvW+uVxeJ3oHsQsgCgS8xlCjqU\nSsjMmr7t/tG44pGQTi8RsoBuQcgCgC4xn26+23uNmXGGIdBlCFkA0CXmMvldrceqOUqvLKCrNLKt\nDgCgzZxzXsjaxZmFt9x2SpKUL1X02MLaxuf1XnvD8T2PEUBzqGQBQBdYyZZULFd3PV0oSRPJmPKl\nKr2ygC5ByAKALlDrkTW9i0pWzcRwTJK0nC22ZEwA9oaQBQBdYG4P3d5rJpOELKCbELIAoAvMp3ff\n7b1mYtjrr7W8TsgCugEhCwC6wFwmLzPpwGjzm0PXDEXDikdCWsqWWjgyALtFyAKALjCfyWvfcFzR\n8O7fls1ME8kYlSygS9DCAQACsLnNwpefWlEsYlu2X2jGxHBMi2uFPd0HgNagkgUAXSCTL2ks0fye\nhZtNJqNazhblnGvBqADsBSELALpAOlfS2C42ht5sYjimUsVprVBuwagA7AUhCwACVqk6ZYsVjSb2\nvoJjwm/jsMLidyBwhCwACFiu5HVoT0bDe76vWkPSJXplAYEjZAFAwPL+NjhDsVZUsuiVBXQLQhYA\nBCzrV7KGWlDJikfCSsbCdH0HugAhCwACltuoZO09ZEnS5HBMy+usyQKCRsgCgIDlSt6ZgK1YkyV5\ni99ZkwUEj5AFAAGrVbISLapkTSRjSmdLqtIrCwgUIQsAAtbKNVmSt1F0xTllckwZAkEiZAFAwPLF\niuKRkMIha8n9Tfq9spbplQUEipAFAAHLlSotW/QuXeiVRRsHIFiELAAIWLZYadlUoSSND0VloiEp\nEDRCFgAELFdqbciKhEMaTUSoZAEBI2QBQMByxdZOF0relCENSYFgEbIAIGCtrmRJ3uJ3Fr4DwSJk\nAUDAcsWKkm2oZGVyJZWr1ZbeL4DGEbIAIEClSlXlqmt5JSs1FJWTtJort/R+ATSOkAUAAWp1t/ea\n1FBUkrRCQ1IgMIQsAAhQrdt7MhZp6f3WQlaakAUEhpAFAAGqVbJaPV04TsgCAkfIAoAAbYSsFk8X\nxqNhJaIhpXO0cQCCQsgCgADlWrw5dL3UUFRpFr4DgSFkAUCAckUvBLW6hYNUC1lUsoCgELIAIEC5\nUkUmKRZp/dtxaiiqNA1JgcAQsgAgQLlSRYloWCGzlt93aiiq9WJFpQoNSYEgELIAIEDZNnR7r0kN\nxSRJGc4wBAJByAKAAOVLrd8cuoaGpECwCFkAEKBssfWbQ9fQKwsIFiELAAKUK7avkjVGyAICRcgC\ngADlSu2rZMUiISVjYc4wBAJCyAKAgDjn2romS6r1yiJkAUEgZAFAQArlqqquPd3eawhZQHAIWQAQ\nkNq+he1q4SB5IWuFru9AIAhZABCQdu5bWDM+FFW+VNV6gT0MgU4jZAFAQLJ+JWsoFmnbY6SS3hmG\ns+l82x4DwNYIWQAQkE5Usmpd32fTubY9BoCtEbIAICC5jUpWe9dkSdLsCpUsoNMIWQAQkE5UssaG\nIjJJZ6lkAR1HyAKAgOSKFYVDpmjY2vYYkVBII/EIlSwgAIQsAAhIrlRWMhqWWftCluQtfqeSBXQe\nIQsAApIrVpRo43qsmrFElLMLgQAQsgAgINlSRck2rseqSSWjml3JyTnX9scCcAEhCwACki+2d9/C\nmvGhqNaLFWXyNCQFOomQBQAByZYqbT2zsGajjQPrsoCOImQBQEByHapkXQhZrMsCOomQBQABqFSd\nCuVqZytZtHEAOoqQBQAByJfa3+29ZjQRVciYLgQ6jZAFAAHoRLf3mnDIdHAsobNUsoCOImQBQABq\n+xYmO1DJkqTpVIJKFtBhhCwACEAnK1mSND0+xMJ3oMMIWQAQgKxfyepEx3dJOpxK6CwNSYGOImQB\nQABqlaxkLNKRx5tODalQrmo5W+rI4wEgZAFAIGprsjo1XXh4PCFJOrvCuiygUwhZABCAXLGsWCSk\ncMg68njTqSFJNCQFOomQBQAByJU604i0ZtqvZHGGIdA5O4YsMztmZp8xswfM7H4z+xn/+JvM7IyZ\n3e3/e2XdbX7JzB41s6+a2be18wkAQC/KFcsdDVlTw3FFw0avLKCDGllxWZb0Bufcl81sVNKdZvZJ\n/7K3O+f+Z/2VzewqSa+R9FxJhyX9i5ld6ZyrtHLgANDLcqXO7FtYEwqZDqUSmqOSBXTMjpUs59ys\nc+7L/serkh6UdOQSN3m1pA845wrOuSckPSrpRa0YLAD0i2yx0tFKliRNjw3pLGuygI5pak2WmV0m\n6fmSbvMP/ZSZ3Wtmf2ZmE/6xI5JO191sRluEMjO72czuMLM7FhYWmh44APSyfKnSsW7vNdPjdH0H\nOqnhkGVmI5L+VtLPOucykv5Y0uWSrpM0K+mtzTywc+4dzrnrnXPX79+/v5mbAkDPy5UCqGSlhjSX\nzqtapSEp0AkNhSwzi8oLWO9zzn1Ikpxz8865inOuKumdujAleEbSsbqbH/WPAQDkVbFKFdfRNVmS\ndGQ8oVLFaWGt0NHHBQZVI2cXmqR3SXrQOfe2uuPTdVf7Lkn3+R9/VNJrzCxuZs+QdFLS7a0bMgD0\ntkzO67re6ZB18uCoJOmB2UxHHxcYVI2cXfgSST8k6Stmdrd/7Jclfb+ZXSfJSXpS0k9IknPufjP7\noKQH5J2Z+HrOLASAC1ZqIavD04XPO5JSyKR7Tq/oG591oKOPDQyiHUOWc+7zkrZqSfzxS9zmzZLe\nvIdxAUDfSgdUyRqOR3TFgRHdc3qlo48LDCo6vgNAh61kg6lkSdK1R8d170xazrH4HWg3QhYAdFit\nkpWMNbJio7WuPTauxfWiZpZp5QC0GyELADosHdCaLMmrZEnSvTPpjj82MGgIWQDQYelsUSYpHu38\nW/CzDo0qFgnpnhnWZQHtRsgCgA5L50pKRMMK2VbnFLVXLBLSVdNjupvF70DbEbIAoMNWcqWOn1lY\n77pj47rvTFoVOr8DbUXIAoAOS+dKgazHqrn2WErZYkWPnlsLbAzAICBkAUCHrWSDrWRd4y9+p18W\n0F6ELADosEzAlaxn7BvWaCLC4negzQhZANBh6YDXZIVCpmuOpghZQJsRsgCgg5xz3sL3ACtZktcv\n66HZVeVLbC0LtAshCwA6aL1YUaXqlAywkiV567LKVacHZjOBjgPoZ4QsAOiglWxRUjDd3utdd4zF\n70C7EbIAoINqm0MHsW9hvUOphA6OxdleB2gjQhYAdNDSulfJCnq6UPKmDKlkAe1DyAKADlr2pwuT\n8eBD1nXHxvX4+fWNDasBtBYhCwA6aHmjkhXsdKEkXXM0JUn6ClOGQFsQsgCgg5ayJZkFv/Bdkq45\n4i9+p18W0BaELADooJVsUamhqMIhC3ooSiWjeubUMOuygDYhZAFABy2tFzWRjAU9jA10fgfah5AF\nAB20ki1pIhkNehgbrj02rvlMQXPpfNBDAfoOIQsAOqjbKlkvfuY+SdL7bz8V8EiA/kPIAoAOWskW\nNTHcPSHrOdNj+vbnTetPP/cY1SygxQhZANBBS9liV00XStIvvuLZqlal//HPDwU9FKCvELIAoENy\nxYrypWpXVbIk6dhkUj/2dc/Qh758RveyCB5oGUIWAHRIrdv7ZBetyap5/TderqmRmH77Yw/KORf0\ncIC+EHzLYQAYELV9C8eTsY2PO+WW23Ze2P51V+zX3919Rr/y4ft09ZHUttd77Q3HWzk0oG9RyQKA\nDlnJensETnbZdGHN15yY0MGxuP7p/jmVK9WghwP0PEIWAHTIkj9d2G0L32vCIdMrnzetpfWibn1s\nMejhAD2PkAUAHbJSC1ldWsmSpJMHRvWsg6P6zFfPaa1QDno4QE8jZAFAh2ysyRrqzkpWzSuuPqRC\nuaovP7Uc9FCAnkbIAoAOWV4vaiwRUSTc3W+9B8YSOjSW0MPzq0EPBehp3f2TDgB9ZDlb6tpF75td\neXBETy1mVShVgh4K0LMIWQDQIcvZosa7sEfWVq48OKqKc3psYS3ooQA9i5AFAB2ynC32TCXrxL5h\nxSMhfXWekAXsFiELADpkeb2k8S5t37BZOGS6fP+IHp5fpQM8sEuELADokOVssSu31NnOsw6NKp0r\n6dxqIeihAD2JkAUAHZAvVZRXU3CTAAAgAElEQVQtVrq6R9ZmVx4clSR9dY6zDIHdIGQBQAcsb3R7\n752QlRqK0soB2ANCFgB0wPJ6bd/C3liTVUMrB2D3CFkA0AG1SlavtHCooZUDsHuELADogFrI6pUW\nDjW0cgB2j5AFAB2wXNu3sEdaONSEQ6YrDtDKAdgNQhYAdMCSvyarlxa+11x5kFYOwG4QsgCgA5az\nRY3GI4p2+ebQW6GVA7A7vffTDgA9aDlb7KkeWfVo5QDsDiELADpgOVvq2ZAledUsWjkAzSFkAUAH\nLK8XNdFji97rXXlohFYOQJMIWQDQAb22b+FmJyaHFTbT6eVc0EMBegYhCwA6YHm92HONSOuFQ6bR\noYjSuVLQQwF6BiELANqsUK5ovVjpuS11NkslooQsoAmELABos5WsF0x6uZIlSWNDUWUIWUDDCFkA\n0GZL6725pc5mqaGoMvkSnd+BBhGyAKDNavsW9mK393qpoahKFceUIdAgQhYAtNlybUudHl+TNTbk\njX82nQ94JEBvIGQBQJvVKlm93MJBklKJiCRpjpAFNISQBQBttuyvyeqHhe+SNJchZAGNIGQBQJst\nZYsaiUcUi/T2W+5oIioT04VAo3r7Jx4AesBKtqTxHt5SpyYcMo0kIppL0/UdaAQhCwDabGm92PPt\nG2pSQ1EqWUCDCFkA0GYr2WLPt2+oGUtENc+aLKAhhCwAaLOlbFETfTBdKFHJAppByAKANlteL2mi\nT6YLx4aiWs2XtVYoBz0UoOsRsgCgjYrlqtYK5b6ZLkwN0SsLaBQhCwDaaKW2pU4fVbIkQhbQCEIW\nALTRctbfUqdf1mQlaEgKNIqQBQBttLTeH1vq1FyoZNErC9gJIQsA2qjfpguj4ZAmkpxhCDSCkAUA\nbbRUC1l9UsmSpEOpIdZkAQ0gZAFAG13YHLo/1mRJ0nQqwZosoAGELABoo+VsSclYWIloOOihtMzB\nsQSVLKABhCwAaKPl9f7ZUqdmOpXQ4npR+VIl6KEAXY2QBQBttJwtamK4f6YKJelQKiFJOpcpBDwS\noLvtGLLM7JiZfcbMHjCz+83sZ/zjk2b2STN7xP9/wj9uZvaHZvaomd1rZi9o95MAgG61lC31ZSVL\nkmZp4wBcUiOVrLKkNzjnrpL0YkmvN7OrJP2ipE85505K+pT/uSS9QtJJ/9/Nkv645aMGgB6xki1q\nsk/aN9QcGvNCFovfgUvbMWQ552adc1/2P16V9KCkI5JeLek9/tXeI+k7/Y9fLekvnOeLksbNbLrl\nIweAHrDUh2uyatOFLH4HLq2pNVlmdpmk50u6TdJB59ysf9GcpIP+x0ckna672Yx/bPN93Wxmd5jZ\nHQsLC00OGwC6X6lS1Wq+fzaHrhlNRDUSj9CQFNhBwyHLzEYk/a2kn3XOZeovc845Sa6ZB3bOvcM5\nd71z7vr9+/c3c1MA6AkrtX0L+2zhu+RVs6hkAZfWUMgys6i8gPU+59yH/MPztWlA//9z/vEzko7V\n3fyofwwABspyH3Z7r6EhKbCzRs4uNEnvkvSgc+5tdRd9VNJN/sc3SfpI3fEf9s8yfLGkdN20IgAM\njNrm0P0YsmhICuws0sB1XiLphyR9xczu9o/9sqS3SPqgmb1O0lOSvte/7OOSXinpUUlZST/a0hED\nQI84v+b1kdo/Gg94JK03nUro3Gpe5UpVkTAtF4Gt7BiynHOfl2TbXPzNW1zfSXr9HscFAD1vYbV/\nQ9ahVEJVJy2sFTSdGgp6OEBX4s8PAGiThdWCIiHT+FD/LXyfpo0DsCNCFgC0ycJqQVMjcYVC200G\n9K6DY4QsYCeELABok4W1Ql9OFUramCKkVxawvUYWvgMAGnTLbac2Pn54blWjiehFx/rFRDKqWCRE\nGwfgEqhkAUCbrBbKGk3059+yZqbpVIJKFnAJhCwAaIOqc1ovlDXSpyFL8tZlzROygG0RsgCgDbLF\niqpOGo33b8iaTiU0m8kFPQygaxGyAKANVvPevoUjif5r31BzKJXQfLqgarWprWuBgUHIAoA2WMuX\nJfV5JWssoWKlqiV/j0YAFyNkAUAbrBb8kNXHa7IO0ZAUuCRCFgC0wapfyernhe+H/F5ZhCxga4Qs\nAGiDtXxJsUhI8Ug46KG0TW1rnVl6ZQFbImQBQBusFsp9vR5LkqZG4gqHTHNpzjAEtkLIAoA2WM33\nd48sSQqHTAdG45pLF4IeCtCVCFkA0AZr+f6vZEnS5HBMy5xdCGyJkAUAbbBaKPV1j6yayeGYltYJ\nWcBWCFkA0GKlSlX5UrWv2zfUTCSpZAHbIWQBQIutFfq/EWnN5HBMS2uELGArhCwAaLG1AeiRVTM5\nHNNqoaxiuRr0UICuQ8gCgBZb3dhSp//XZE0MxyRJK0wZAk9DyAKAFlst1DaHHoBKVtILWexfCDwd\nIQsAWmxjunAA1mRNDHvVOs4wBJ6OkAUALbZaKCsZCyscsqCH0nb7huOSCFnAVghZANBia/nyQLRv\nkC5UspYJWcDTELIAoMVW86WBWPQueX2yJGlpvRTwSIDuQ8gCgBZbK/T/voU10XBIo4kIDUmBLRCy\nAKCFnHNaHZB9C2vYWgfYGiELAFqoUK6qXHUDU8mSCFnAdgbnXQAAOmCjEWkfh6xbbjt10ee5YkVz\n6fzTjr/2huOdHBbQdahkAUALbTQiHZCF75KUjEWULVaCHgbQdQhZANBCawNQydpsOBbWeqEs51zQ\nQwG6CiELAFrowr6FAxSy4hGVq07FCptEA/UIWQDQQmuFssJmGoqFgx5KxyT955otMGUI1CNkAUAL\nrea9Hllm/b+lTs2wX7VbL5YDHgnQXQhZANBCa4XSQK3HkuoqWSx+By5CyAKAFlrNlzUyQOuxJGk4\n5leyClSygHqELABooUHaHLrmwnQhlSygHiELAFqkUnXevoUD1CNLkuLRkEImZalkARchZAFAiyyu\nF+Q0WD2yJClkpqFYhEoWsAkhCwBaZGG1IEkDtyZL8hqSZjm7ELgIIQsAWqQWsgatkiV5W+us0ycL\nuAghCwBa5ELIGqw1WZI0HA/TJwvYhJAFAC2ysDbI04URFr4DmxCyAKBFFlYLikdCikUG7601GQ8r\nW6yoyibRwIbBeycAgDZZWC0MZBVL8ipZTlK+xLosoIaQBQAtsrBaGMhF75K3Jktik2igHiELAFpk\nYa2gkQFc9C55ZxdKbBIN1CNkAUCLLKwWNDrA04WSaOMA1CFkAUAL5EsVrQ7gvoU1ydp0IZUsYAMh\nCwBaYJC7vUt1lSy21gE2ELIAoAVqPbIGtZIVi4QUDZvW6ZUFbCBkAUALbFSyBnThu+Qtfme6ELiA\nkAUALXAuk5c0uJUsydskmoXvwAWELABogblMXpGQDeyaLElKxqlkAfUIWQDQArPpvA6MxhUyC3oo\ngUnGwix8B+oQsgCgBeYzeR1KJYIeRqCG4xEWvgN1CFkA0AKzaULWcCysQrmqcrUa9FCArkDIAoA9\ncs5pLp3XobGhoIcSqNrWOlmmDAFJhCwA2LPVQlnZYkXTg17J8hf9s0k04CFkAcAezaW99g0HBz1k\nxbytddgkGvAQsgBgj2oha9ArWcl4bZNoQhYgEbIAYM9qIevQ2GCHrFolizVZgIeQBQB7NOuHrANj\n8YBHEqzkxibRVLIAiZAFAHs2l8lr33BM8Ug46KEEKhwyJaIhFr4DPkIWAOzRXDo38D2yaoZjESpZ\ngI+QBQB7NJcpDPyi95pkLEwlC/ARsgBgj+bSOR0c8EXvNcNxKllADSELAPYgX6poOVuikuVLxiKc\nXQj4CFkAsAfzGb8RKZUsSdJwPKz1QlnOuaCHAgSOkAUAezC70Yh0sPctrBmORVSuOhUrbBINELIA\nYA9qlaxDqcHukVWTrDUkZfE7QMgCgL2oVbIOUcmSdGGTaBa/A4QsANiTuXReI/GIRvxwMeiSbK0D\nbNgxZJnZn5nZOTO7r+7Ym8zsjJnd7f97Zd1lv2Rmj5rZV83s29o1cADoBnPpPI1I6wyzSTSwoZFK\n1rslvXyL4293zl3n//u4JJnZVZJeI+m5/m3+t5kN9j4TAPraXCZP+4Y6wxv7F1LJAnYMWc65z0la\navD+Xi3pA865gnPuCUmPSnrRHsYHAF1tLp2nfUOdeDSkkElZKlnAntZk/ZSZ3etPJ074x45IOl13\nnRn/2NOY2c1mdoeZ3bGwsLCHYQBAMMqVqs6tUsmqFzLTUCxCJQvQ7kPWH0u6XNJ1kmYlvbXZO3DO\nvcM5d71z7vr9+/fvchgAEJzza0VVHY1INxuOhZXl7EJgdyHLOTfvnKs456qS3qkLU4JnJB2ru+pR\n/xgA9J3ZdE6SqGRtMhyPaI3pQmB3IcvMpus+/S5JtTMPPyrpNWYWN7NnSDop6fa9DREAuhNb6mxt\nOB7h7EJA0o6NXczs/ZJeKmnKzGYk/bqkl5rZdZKcpCcl/YQkOefuN7MPSnpAUlnS651zTMwD6EsX\nttQhZNUboZIFSGogZDnnvn+Lw++6xPXfLOnNexkUAPSCuUxesXBIk8OxoIfSVUbiEeVLVRXKFcUj\ndPHB4KLjOwDs0lw6r4OpuMws6KF0lVG/IeniWjHgkQDBYh8IAGjALbedetqxe06nFTbb8rJBVuv6\nfn6toMPj7OmIwUUlCwB2KZMvaWwoGvQwus5I4kLIAgYZIQsAdsE5p0yupFSCkLXZyEYli+lCDDZC\nFgDsQq5YUbnqqGRtYSROJQuQCFkAsCvpfEmSCFlbiEVCioVDOr9KJQuDjZAFALuQyXkhK0XI2tJI\nIkIlCwOPkAUAu5DOec02xxKcpL2VkXhEi+uELAw2QhYA7EI6V5JJGmXh+5ZG4hGmCzHwCFkAsAuZ\nfEkjiYjCIRqRbmU4znQhQMgCgF3I5Eqsx7qEkXhES9miypVq0EMBAkPIAoBdSOdKGmOqcFsjiYic\nk5azpaCHAgSGkAUAu0C390ujVxZAyAKAphXKFeVLVaYLL4GQBRCyAKBpGdo37IiQBRCyAKBpaRqR\n7qgWshbZvxADjJAFAE3KsKXOjhJRb2udBSpZGGCELABoUm1LHc4u3J6Zad9IjIakGGiELABoUjpX\n0lA0rFiEt9BLmRqJsyYLA413CABoEo1IGzM1EmP/Qgw0QhYANCmdL2lsiDMLdzI1Eme6EAONkAUA\nTUrnylSyGrBvJK7F9YKcc0EPBQgEIQsAmlCuVLVeKHNmYQOmRmIqVdxGywtg0BCyAKAJq3mvEWmK\nMwt3tH80Lkk6T68sDChCFgA0gUakjZsaqYUsFr9jMBGyAKAJaRqRNmzfSEwSIQuDi5AFAE3IUMlq\n2EYla5WQhcFEyAKAJqRzJcUiIcVpRLqjiWRMIZMW11mThcHEuwQANCGdKymViMrMgh5K1wuHTJPD\ndH3H4CJkAUAT6PbenKmRmBZoSIoBRcgCgCZk8vTIagb7F2KQEbIAoEGVqtMqW+o0hf0LMcgIWQDQ\noLVCWVXHmYXNYP9CDDJCFgA0aKN9A93eG7ZvJK5cqaL1QjnooQAdR8gCgAbVur2zJqtxUzQkxQAj\nZAFAgzJ5GpE2a4r9CzHACFkA0KB0rqRIyJSMhYMeSs/Yz/6FGGCELABoUDpX0tgQjUibwf6FGGSE\nLABoUCZX0hiL3puyb7i2fyHThRg8hCwAaFA6V1KKHllNiUVCSg1F6ZWFgUTIAoAGOOeUyZdZ9L4L\nUyMxpgsxkAhZANCA9WJFlaqjfcMu7KMhKQYUIQsAGrDRiJSQ1bT97F+IAUXIAoAGbDQiZeF705gu\nxKAiZAFAA9JUsnZtaiSuTL6sQrkS9FCAjiJkAUADMvmSQiaNJDi7sFn7/Iaki3R9x4AhZAFAAzK5\nkkYTUYVoRNo09i/EoCJkAUADvB5ZTBXuRm3/QipZGDSELABoQDpXpn3DLtX2L1ygkoUBQ8gCgB04\n55TJlZRiPdausH8hBhUhCwB2kMmXVaxUqWTtUjIWUTIWpiEpBg4hCwB2MJ/JS6J9w15MjcTZvxAD\nh5AFADuYTROy9oqGpBhEhCwA2MFcOidJTBfuwRT7F2IAEbIAYAez6bxM0igL33ft4FhCc/60KzAo\nCFkAsIO5dF7D8YgiId4yd+vIxJDSuZJW86WghwJ0DO8YALCDuUye9Vh7dHRiSJJ0ZiUX8EiAziFk\nAcAO5tJ51mPt0ZFxL2TNLBGyMDgIWQCwg9l0Xqkh1mPtxREqWRhAhCwAuIRsseztW5igkrUX+0fi\nikdChCwMFEIWAFzCnN8ji+nCvTEzHRkf0sxyNuihAB1DyAKASyBktc6RiSGdWaaShcFByAKAS5hj\nS52WOToxpBlCFgYIIQsALqG2pc4Ya7L27OhEUovrReWKlaCHAnQEp8sAwCXMpb0eWbEIf5M265bb\nTl30+VOL65KkP/3cYzowmtg4/tobjnd0XECn8K4BAJdwZiW30eMJezM+FJMkrWTp+o7BQMgCgEs4\nvZTVsUlCVitMDHshaznLRtEYDIQsANiGc04zyzkdnUgGPZS+MJqIKGRUsjA4CFkAsI3F9aJypYqO\nTVDJaoWQmcaTMSpZGBiELADYxuklr3EmlazWGR+KUsnCwCBkAcA2aj2djk0SslplPBnTCpUsDAhC\nFgBs4/RyrZLFdGGrTCSjWs2XVa5Ugx4K0HaELADYxsxyTpPDMQ3HaSnYKuPJmJykdI4pQ/S/HUOW\nmf2ZmZ0zs/vqjk2a2SfN7BH//wn/uJnZH5rZo2Z2r5m9oJ2DB4B2Or2UpYrVYhNJr3P+MuuyMAAa\nqWS9W9LLNx37RUmfcs6dlPQp/3NJeoWkk/6/myX9cWuGCQCdd2Y5p2Msem+p8WStISnrstD/dgxZ\nzrnPSVradPjVkt7jf/weSd9Zd/wvnOeLksbNbLpVgwWATqlW/R5ZNCJtqdRQVCYqWRgMu12TddA5\nN+t/PCfpoP/xEUmn66434x97GjO72czuMLM7FhYWdjkMAGiPhbWCipUq7RtaLBwyjQ1FqWRhIOx5\n4btzzklyu7jdO5xz1zvnrt+/f/9ehwEALVXrkUUj0tYbT0apZGEg7DZkzdemAf3/z/nHz0g6Vne9\no/4xAOgpF9o3UMlqtYlkTCs5Klnof7sNWR+VdJP/8U2SPlJ3/If9swxfLCldN60IAD1jZslrRMrZ\nha03nowqkyupUm16EgToKTs2fzGz90t6qaQpM5uR9OuS3iLpg2b2OklPSfpe/+ofl/RKSY9Kykr6\n0TaMGQDa7vRyVvtH40pEw0EPpe9MJGOqOimTL2nCP9sQ6Ec7hizn3Pdvc9E3b3FdJ+n1ex0UAARt\nZjnHeqw2Gfd7Za1kCVnob3R8B4AtnF7Osh6rTSaGvGC1zBmG6HOELADYpFypanYlr2P0yGqL1EYl\ni5CF/kbIAoBN5jJ5lauOSlabRMMhjcYjtHFA3yNkAcAmM8vemYVsqdM+40kakqL/EbIAYJONRqRM\nF7bNeDKmFSpZ6HOELADY5PRyTmbSdIqQ1S4TyahWciVVHb2y0L8IWQCwycxyVtNjCcUivEW2y3gy\npkrVaS1fDnooQNvwDgIAm8ws5Vj03mYT/hmGtHFAPyNkAcAmM8tZHWU9VluN+01IWZeFfkbIAoA6\nxXJVs5k8law2m9gIWVSy0L8IWQBQZzadk3NiS502i0VCSsbC9MpCXyNkAUCd00tejywqWe03kYxp\nJUclC/2LkAUAdWaW6ZHVKePJqJbXqWShfxGyAKDO6eWswiHTobFE0EPpe7VKVrVKryz0J0IWANSZ\nWc7p8HhCkTBvj+22bySmUsVpNpMPeihAW/AuAgB1Ti9l2bOwQw6MetXCR+ZXAx4J0B6ELACoc3o5\np6OcWdgRB0bjkqRHz60FPBKgPQhZAODLlypaWC1QyeqQ4XhEw7EwIQt9KxL0AAAgaLfcdkqSdG7V\nWxt0aim7cQztdWAsoUcIWehTVLIAwFfb4mVyOBbwSAbH/tG4HplflXOcYYj+Q8gCAN/SutcYs7av\nHtrvwGhcmXxZC6uFoIcCtBwhCwB8K9miwiHTaIKVFJ1SO8OQdVnoR4QsAPAtZUsaH4oqZBb0UAbG\ngTHvDEPWZaEfEbIAwHcuk9fUSDzoYQyU0XhEo4mIHjlHryz0H0IWAEgqlL32DUfokdVRZqaTB0b0\nyDyVLPQfQhYASDq7kpeTaEQagJMHRlmThb5EyAIASTPLWUnSURqRdtzJgyNaXC9unN0J9AtCFgDI\n2xh6fCiqkThnFnbaFQdGJHGGIfoPIQsAJJ1ZybEeKyC1kMXid/QbQhaAgZctlLW0XmSqMCCHU0NK\nxsIsfkffIWQBGHgzKzlJLHoPSihkuuLACNOF6DuELAADr7bo/cg4ISsohCz0I0IWgIE3s5zT1Ehc\niWg46KEMrCsOjGguk1cmXwp6KEDLELIADDTnnM4s55gqDNjJA6OSOMMQ/YWQBWCgzWXyWi2UCVkB\nO1lr48Did/QRQhaAgXbP6bQkmpAG7dhkUrFIiDYO6CuELAAD7d6ZFYVMmk4lgh7KQAuHTM+cGma6\nEH2FkAVgoN07k9ahsYSiYd4Og3by4KgeIWShj/CuAmBgOed078yKjjBV2BVOHhjRzHJO2WI56KEA\nLUHIAjCwnlzMKpNn0Xu3qC1+f+zcesAjAVqDkAVgYN07syKJTu/d4uRB9jBEfyFkARhY95xOKxEN\n6cAoi967wYl9w4qEjMXv6BuELAAD656ZFT33cErhkAU9FEiKhkO6bGqYxe/oG4QsAAOpXKnq/rNp\nXXM0FfRQUOckexiijxCyAAykh+fXlC9Vde3R8aCHgjonD4zoqcV15UuVoIcC7BkhC8BAqi16p5LV\nXU4eHFXVsYch+gMhC8BAumcmrdFERJftGw56KKjz3MNjkqT7z6YDHgmwd5GgBwAAQbjn9IquOZpS\niEXvgbvltlMbH1edUywS0ofvOqNK9cJ1XnvD8QBGBuwNlSwAA+f0UlYPzGb0kiumgh4KNgmZ6XAq\nobMr+aCHAuwZIQvAwPn7e89Kkr7jmsMBjwRbmR4f0mw6p6pzQQ8F2BNCFoCB89G7z+oFx8d1bJI9\nC7vRkdSQShWn86uFoIcC7AkhC8BAeWR+VQ/Nreo7rqWK1a0Oj3vbHJ1N5wIeCbA3hCwAA+Xv751V\nyKRvv2Y66KFgG/tH44qEjHVZ6HmcXQigb9WftSZJzjm974tP6bKpYf3LA+cCGhV2Eg6ZDqUSOrtC\nJQu9jUoWgIFxNp3X4nqRLu894HBqSGfTOTkWv6OHEbIADIx7T68obLbR8BLda3o8oXypquVsKeih\nALtGyAIwEKrO6d4zaZ08OKJkjJUS3e5IbfE7U4boYYQsAAPh1GJW6VxJ1zBV2BMOjiUUMkIWehsh\nC8BAuPfMiqJh03OmR4MeChoQDYd0YDRBGwf0NEIWgL5XqTp95UxGzz40pngkHPRw0KDD4wmdWcmz\n+B09i5AFoO89fn5N64WyrjmaCnooaMJ0akjrhbJW8+WghwLsCiELQN+793Ra8UhIVx5kqrCX0Pkd\nvY6QBaCvlatV3T+b1nMPjyka5i2vlxxOJSSx+B29i3ccAH3tiYV15UtVXX2YqcJeE4+GtW84xvY6\n6FmELAB97YHZjGLhkC4/MBL0ULALh8eHmC5EzyJkAehbVef04GxGJw+OMFXYo46MD2klW9LyejHo\noQBN410HQN86u5JTJl/WVdNso9Orpse9dVkPzGYCHgnQPEIWgL71wNmMQiY96xBnFfaqwynvDMP7\nzqQDHgnQPEIWgL71wGxGl00Ns1dhDxuORzQ+FNV9Z6lkofcQsgD0pSfOr+vcaoGpwj4wPT6k+89S\nyULvIWQB6EuffGBOkvQcQlbPOzye0BPn17VeoPM7egshC0Bf+sT98zqcSmgiGQt6KNijI6khOce6\nLPQeQhaAvrOwWtCdp5b1nMNUsfrB8X1JmUlfeHwx6KEATdlTyDKzJ83sK2Z2t5nd4R+bNLNPmtkj\n/v8TrRkqADTm0w/NyzmxHqtPJGMRXX04pVsfI2Sht7SikvWNzrnrnHPX+5//oqRPOedOSvqU/zkA\ndMwn7p/X0YkhHRpLBD0UtMiNl+/TXaeWlStWgh4K0LB2TBe+WtJ7/I/fI+k72/AYALCl9UJZ//bo\neb3sqkMys6CHgxa58YoplSpOX3pyKeihAA3ba8hykj5hZnea2c3+sYPOuVn/4zlJB7e6oZndbGZ3\nmNkdCwsLexwGAHg+9/CCiuWqXvbcLd960KNeeNmEIiFjyhA9Za8h6+uccy+Q9ApJrzez/1B/oXPO\nyQtiT+Oce4dz7nrn3PX79+/f4zAAwPOJB+Y1kYzq+hMsB+0nyVhEzz8+rlsfOx/0UICG7SlkOefO\n+P+fk/RhSS+SNG9m05Lk/39ur4MEgEaUKlV9+qFz+qZnH1SEDaH7zo2XT+m+M2mls6WghwI0ZNfv\nQmY2bGajtY8lvUzSfZI+Kukm/2o3SfrIXgcJAI24d2ZF6VxJ3/KcA0EPBW1w4+X7VHXSbU8wZYje\nsJc/9Q5K+ryZ3SPpdkn/4Jz7J0lvkfStZvaIpG/xPweAtrv10UWZSS9+5r6gh4I2eP7xCSWiIdZl\noWfsetdU59zjkq7d4viipG/ey6AAYDdufWxRV02PaWKYLu/9KBYJ6YWXTbIuCz2DRQsA+kK+VNGd\np5b1tVSx+tqNl0/p4fk1LawWgh4KsCNCFoC+8OVTyyqWq7rxCkJWP3uJ//WlmoVeQMgC0Be+8Nii\nwiHTCy+bDHooaKPnHk5pLBHRF1iXhR5AyALQF259bFHXHE1pNBENeihoo3DI9OJn7tO/U8lCDyBk\nAeh5a4Wy7jm9wnqsAXHj5ft0eimn00vZoIcCXNKuzy4EgCDdctupjY+/OreqctUpX6pedBz96cYr\npiR5U8THJpMBjwbYHpUsAD3v8fNrCodMx/mFOxBOHhjR1EicKUN0PUIWgJ73+MK6jk0kFYvwljYI\nzEw3Xr5Ptz62KG+LXOJH03cAABSMSURBVKA78Y4EoKflihWdXcnp8v3DQQ8FHfSSK/ZpYbWgxxbW\ngh4KsC3WZAHoaU+cX5OT9Mz9I0EPBW20ea3d8npRkvTWTzysrz+5f+P4a2843tFxAZdCJQtAT3ts\nYV3RsOnY5FDQQ0EHTQzHdGR8SPedSQc9FGBbhCwAPe3x82s6sW9YkRBvZ4PmeUdSOr2c26hqAd2G\ndyUAPWs1X9J8pqDLp1iPNYiuPpKSJN13lmoWuhMhC0DPeuL8uiTWYw2qyeGYjk4M6StMGaJLEbIA\n9KzHFtYVj4R0eJz1WIPqeUdSmlnOaYkpQ3QhQhaAnvX4wpqeMTWscMiCHgoCsjFlSDULXYiQBaAn\nrWSLWlwvMlU44CaSMR1jyhBdipAFoCfdfzYjSbryACFr0D3vSEpnVnJaXCsEPRTgIoQsAD3prtPL\nOjI+pANjiaCHgoDVpgypZqHbELIA9Jyvzq3q7Epezz8+HvRQ0AXGkzEdn0wSstB1CFkAes6H7ppR\nyKRrjhKy4HnekZRm03k9zl6G6CKELAA9pVJ1+ru7zujKg6MaibP9Kjy1KcOPf2U24JEAFxCyAPSU\nWx87r/lMQc8/PhH0UNBFUkNRnZhM6mP3ErLQPQhZAHrKh798RqOJiJ59aDTooaDLPO9oSg/NrerR\nc0wZojsQsgD0jPVCWf9435xedc1hRcO8feFiVx9Oyf5ve3ceHEd55nH8+8yMbusWtiVZlg/AF8bG\nCBsbs5gQCJCYwznKORY2LBBybHYrS+2SSmVDJbvLJqnU1iYEkqw3G4wTIORa45wmDk6IwfcB+HZ8\nSLIObF2WdY1m3v1j2kIYyZYtjVqj+X2qunqmp6fnGT3q1qN+u9/X4Jc6myUjhI5SIpIwfvN6Le3h\nCO+fV+p3KDIC5WSkcM2kAl7YdRznnN/hiKjIEpHE8bPtVUwsyOTqcl2PJX27Y04JB+tb2Vt7yu9Q\nRFRkiUhiqGluZ8OhkyybV4qZxiqUvt12xXiCAeOFncf9DkVERZaIJIZfbD+Oc3D3VWoqlP4Vjklj\n8aVFajKUEUFFloiMeM45fratioryfMoLs/wOR0a4pXNKqGxoZ0dlk9+hSJJTkSUiI96mww0cqG9l\n2bwJfociCeCWWeNIDQVYrSZD8ZmKLBEZ0bYda+SBlVsozk3nvVcW+x2OJICc9BRunHYJv9xVQySq\nJkPxj4osERmxNhw8wcdWbCQ/K5XnH1pIbkaK3yFJglg6p4T6U51sPHzS71AkianIEpER6cXddfzN\nDzZTlp/J859YyIT8TL9DkgRy0/RxZKYGeWGnOiYV/6jIEpERZ/XO4zy0aiszxmfz7IPXMjYn3e+Q\nJMFkpAa5eeY4fv16DV3dUb/DkSSlIktERpSnXz3K3z+7nXnl+ay6fwH5Wal+hyQJ6o45JTS1hfnz\nwRN+hyJJSkWWiIwI0ajjsV/v4Yu/eJ0bp43lqY/PJztd12DJxbv+skvISQ+pY1LxTcjvAEREOsIR\nHn5+J2t21bBgcgE3ThvLz7dX+x2WJKAfbTz2tueXj8tmzWs1zCnL6xlU/CMLJvoRmiQhFVki4qum\nti4eWLmFzUcaeeS26WSnhTRsjgyZKyfkseVoI/tqT3FFaa7f4UiSUXOhiPimsqGNZU9uYGdlM9/6\n8FU8dMNUFVgypKZckkV2WojNRxr8DkWSkIosEfFFRzjC/U9t4cSpTlbdv4Clc0r8DklGoYAZi6YW\ncqC+larGNr/DkSSjIktEfPHYr/awr+4U3/zwVcyfXOB3ODKKLZhSSHpKgJf2vel3KJJkdE2WiAyL\n3hck761tYeUrR7luaiHHmzrecbGyyFBKTwmyaGoR6/bWU9vS4Xc4kkR0JktEhlVLR5ifbK2iODed\n98wa73c4kiQWTSkkNRhg/b56v0ORJKIiS0SGTdQ5frq1inAkyocqyggFdQiS4ZGZFmLB5AJ2VTVz\n5MRpv8ORJKEjnIgMmw2HTnKgvpXbZxczTkPlyDBbfFkRwYDx5EuH/A5FkoSKLBEZFseb2vnt67XM\nKM5h/iRd6C7DLzs9hYpJ+fx0WxXVTe1+hyNJQEWWiMTd8aZ2Vm08SmZakGVXlaovLPHNX112CQDf\nW6+zWRJ/KrJEJK7qT3Xw0RUb6QhHuGfhJLLSdFOz+CcvM5Vl80p5dnMl9ad0p6HEl4osEYmbxtNd\n/PWKTdS1dHDvwkmU5mX4HZIIn1xyKeFIlP9cu59o1PkdjoxiKrJEJC5aOsLc8/1NHD55mhX3VFBe\nmOV3SCIATC7K4p6Fk3hmUyUPPr2V5vaw3yHJKKUiS0SGXFtXN/f972b21rbwnY/NY9GlRX6HJPI2\nX1o6ky++byYv7avnjsdfZk9Ni98hySikiyNEZNB699gedY6nNhzhYH0ry+dPpLa5Uz26y4hjZvzt\n4slcOSGXT/9wG3c/8Wf+/e7ZLJs3we/QZBTRmSwRGVJrd9dxoL6Vu+aWMrs01+9wRM7pmkkFrPns\nYuZMyONzP97J5368Q52VypBRkSUiQ2ZPTQvr97/JNZPyuUaDPkuCGJudzg/vX8Cnlkxlzc4abvzG\nSzz09Fa2HWv0OzRJcGouFJEhcbK1k+e3VlKal8H7rizxOxyRfvXXfD0hP5N/vOVyXjl0kvX73+Q3\nb9RSUZ7PQzdM5aYZY9W/m1wwFVkiMmhd3VF+uPEYhvGR+RNJ0ZiEkqCy01O4ZdZ4bpgW67T0f14+\nzP0rt1BRns/nb5/B1eX5PkcoiURHQhEZFOccq3dWU9fSwYcqysjPSvU7JJFBSwsF+fh1k3np4SU8\ntmw2RxvaeP+TG/jkqq0c1jVbMkA6kyUig/LMpkq2HWviXdPHMm18tt/hiAypUDDAh+dP5I45Jaz4\n02G++8dDrN1dx/L5ZXzs2nKmj8/xO0QZwcw5/3u7raiocFu2bPE7DBG5QK9XN7PsiQ2UF2Zy76JJ\nBHTNioxypzrC/H5PPVuONhB1UJKbzv3XT+HOuSUUjknzOzwZJma21TlXcd71VGSJyMVo6Qiz9Fsv\n09Ud5b7rJmtMQkkqrZ3d7KpqYtuxRo43dRAKGDdOH8v9iyezYEqh3+FJnA20yNJRUUQumHOOR366\ni6rGdp578Fr217X6HZLIsBqTFmLR1CIWTS2itqWD7Ucb2XDwBGt311FemMmSy8dy+bgxPXckfmTB\nRJ8jFj+oyBKRC/b0q0f51Wu1fP626VRMKlCRJUltfE46t80u5qYZ49hytIE/HTjBU68coSQ3nRum\njWVWia7bSlYqskTkgrxW1cy/rtnDu6aP5YHrp/gdjsiIkRoKsGhqEfMnF7Czson1+9/kmU3HKM3L\nYPr4bComqYPeZKMuHERkwFo6wnz6R9soGpPKNz44h0BAF7qLnC0UCHB1eQH/8O7L+eDVEzjVEeYD\n33mFv3tmO1WNbX6HJ8NIZ7JEZEDCkSj/9Pwujje189wnFqo/LJHzCJhx1cR8ZpXk0tDWxXfXH+J3\nb9Ty4F9N4RM3TGWMbhYZ9XQmS0TOa/fxFu769p/5zRu1/POt09XrtcgFSA0F+NzNl7Pu4SXcMms8\n31p3kMVfXcfj6w7Q0hH2OzyJI3XhICL96uqO8vgfDvLEHw6Sl5nCV+68gttmF79jvf7GghORd6ps\naGPd3nr21Z0iPSXAdd5dihmpQd2FmCDUT5aIDMquqiYeWLmFupZOrirL472zi8lU84bIkKlubGfd\nvnr21LSQFgowtyyPz7zrUhZMLiQ1pIamkUxFlohcMOccrxw6yQ82HOHFPXWMSQtx19xSphfrFnSR\neKlpbmf9/jfZU9NCOOLITguxZPpYbp45jusvLdL1jyOQOiMVkQFr6+rmZ9uqWfnKEfbXtVKQlcon\nl0ylIDONjNSg3+GJjGrFuRksv2Yi4UiU0rwM1u6u4/d763hh53EAJuRnMLs0lytKc3vmBSq8EoLO\nZIkkqVWvHuXoyTZ2VDbxWnUTHeHYAX7hlEJmT8glJajmChG/RJ2jsqGNoyfbqG5qp7qpnYbTXT2v\nX5KdxrRx2UwbH5tmFucwbXy29tthojNZIvIOzjkO1Lfyi+3V/GjjMZraw6QEjVkluVw7uYCygsye\nYUBExD8BM8oLsygvzOpZ1t4V4XhzOzVN7dS2dHL4xGle/ctJuqOxkyUpQaM0L4OygkzK8jP57E2X\nMS4nTfu0j+J2JsvMbgX+CwgCK5xz/9HfujqTJXLxIlHHydZOGtvCnO7q5nRnN6c7I7R1ddNwuouq\nxnaqGtu8eTutnd0EA8bUS7KYW5bHjOIc0kJqEhRJRFHnaGjtorq5naqGNo41tHG8uYOIV3gVjUll\nRnEOs0pymVmSw8ziHMoKMrTPD5KvZ7LMLAh8G7gZqAI2m9lq59zueHzeYEWjjnA0SiTq6I46olFH\n1MX+6z8zNzNCASMYNFICAYIBIxgwAob+S4ijqJeTWG6iRKOxg0rEOaLO4RwEA15uAkboAnPjnCMc\ncXR2R+jqjtIVidLeFaGtK0JrZzdtXbGCJRyJetu0nnlqyEhPCZKREiQjNTZPDQWI9MQbm4cjUTrC\nUTrCETrCEdrDETrCUe/37Mx3icUCsZgNMAPD6OqOcLor0hPL6c5uGtu6qGvppK6lgxOtnUTP8b9S\nWihAfmYq+ZkpzJ6Qy9jsNGaV5KojRJFRIGBGUXYaRdlpzJmQB0B3JEpNcweVjW3UNHVwqL6VDQdP\nEul1UiU7PUR+Zipzy/Iozc+gMCuV3IwU8jJTyctMITcjhZRgIHYcxWLHo3McU513PH7rOTicN/de\nh56/r1EXOz6eeU/s1bekBAOkBAOkBgOkhCz2PBAgFDRC3t/hRBhxIl5H2fnAQefcXwDM7FngTsCX\nImtPTQvLntjwtoTj3vpjPdiTeQGL/aE3s55fSIj9Qp4x8n8V4q+/H/PZO2NsWaxIGarcBLxk9GzO\n+8xwxP9rEgcqYLFODVODAbLSQmSnhygryGRWSQ7Z6SlkpgZJC8UKvTRvOlP86R8BkeQRCgZiTYYF\nmT3LuqNR3jzVSW1zB41tXTS2hWls62JHZRO/eq2mp8kxkfT8M42B0fN4+fwyvrR0lt/hAfErskqB\nyl7Pq4AFvVcwsweBB72nrWa2L06xxFsRcMLvIGTIKJ+ji/I5uiifo0tc8vmoN8VZ+UBW8q29wDn3\nPeB7fn3+UDGzLQNpl5XEoHyOLsrn6KJ8ji7JkM943etZDZT1ej7BWyYiIiKSFOJVZG0GLjOzyWaW\nCiwHVsfps0RERERGnLg0Fzrnus3sM8BviXXh8H3n3Bvx+KwRIOGbPOVtlM/RRfkcXZTP0WXU53NE\n9PguIiIiMtqo/30RERGROFCRJSIiIhIHKrL6YWYFZrbWzA548/x+1rvXW+eAmd3ba/m/mVmlmbWe\ntX6amT1nZgfNbKOZTYrvNxEYknxebWaveXn7pnm9e5rZo2ZWbWY7vOn24fpOycjMbjWzfV4eHunj\n9X73LzP7vLd8n5m9Z6DblPiIUy6PePvpDjPTWG3D6GLzaWaFZvYHM2s1s8fPek+fx92EEusKX9PZ\nE/A14BHv8SPAV/tYpwD4izfP9x7ne69dCxQDrWe951PAd7zHy4Hn/P6uyTANQT43eTk14NfAbd7y\nR4GH/f5+yTARu4nmEDAFSAV2AjPPWqfP/QuY6a2fBkz2thMcyDY1JUYuvdeOAEV+f79kmwaZzyxg\nMfAQ8PhZ7+nzuJtIk85k9e9O4Cnv8VPAXX2s8x5grXOuwTnXCKwFbgVwzr3qnKs5z3Z/AtyUkNV5\n4rnofJpZMZDj5dQBK/t5v8RXz3Bdzrku4MxwXb31t3/dCTzrnOt0zh0GDnrbG8g2ZejFI5fin4vO\np3PutHPuZaCj98qj5birIqt/43oVSbXAuD7W6Wv4oNLzbLfnPc65bqAZKBxcqDIAg8lnqff47OVn\nfMbMdpnZ9/trhpQhMZD9rb/961y5vdB9WAYvHrmE2PCkvzOzrd7QbTI8BpPPc23zXMfdhODbsDoj\ngZm9CIzv46Uv9H7inHNmpr4uRjif8vkk8BViB/evAN8A7huibYvIhVnsnKs2s7HAWjPb65z7o99B\nSfJK6iLLOffu/l4zszozK3bO1XinLev7WK0aWNLr+QTgpfN87Jkhh6rMLATkAicvJG7pWxzzWe09\n7r282vvMul6f8d/AmouNX85rIMN19bd/neu9GgJs+MUll865M/N6M/s5sWYsFVnxN5h8nmubfR53\nE4maC/u3Gjhzd9m9wP/1sc5vgVvMLN9rJrrFWzbQ7X4AWOe1N0t8XXQ+vWbGFjO71rsm5J4z7/cK\ntjPuBl6P1xeQAQ3X1d/+tRpY7t3hNBm4jNhFtRoCzB9DnkszyzKzbAAzyyK2/2p/HB6DyWefznXc\nTSh+X3k/UidibcW/Bw4ALwIF3vIKYEWv9e4jduHlQeDjvZZ/jVgbctSbP+otTwee99bfBEzx+7sm\nwzQE+awgdsA+BDzOW6MlPA28BuwidhAp9vu7juYJuB3Y7+XhC96yLwN3eI/73b+INRsfAvbR6y6l\nvrapKfFySezOtp3e9IZymVD5PAI0AK3e38uZ3vI+j7uJNGlYHREREZE4UHOhiIiISByoyBIRERGJ\nAxVZIiIiInGgIktEREQkDlRkiYiIiMSBiiwRGTXM7FEze9jMvmxm7/aWXW9mb5jZDjPLMLOve8+/\n7ne8IjK6JXWP7yIyOjnn/qXX048CjznnVgF4Y9oVOOcivgQnIklD/WSJSEIzsy8Q60m6ntgAtFuB\nK4gNcZRHrGPgZmADkA28l1gHso85557zI2YRSQ46kyUiCcvMriY2hMdcYsezbcSKLACccyvMbDGw\nxjn3E+89rc65uX7EKyLJRUWWiCSy64GfO+faAMxM4w6KyIihC99FRERE4kBFlogksj8Cd3l3DWYD\nS/0OSETkDDUXikjCcs5tM7PngJ3ELnzf7HNIIiI9dHehiIiISByouVBEREQkDlRkiYiIiMSBiiwR\nERGROFCRJSIiIhIHKrJERERE4kBFloiIiEgcqMgSERERiYP/B/Ty4ndfe5dIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 8.5686068097e-06\n", + "MAE : 0.00260148191793\n" + ] + }, + { + "data": { + "text/plain": [ + "count 20817.000000\n", + "mean 0.002528\n", + "std 0.001476\n", + "min -0.010324\n", + "25% 0.001668\n", + "50% 0.002496\n", + "75% 0.003467\n", + "max 0.010337\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "\n", + "# Benchmark\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + "pred = model.predict(testX)\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['actual'] = testY\n", + "predictions = predictions.astype(float)\n", + "\n", + "predictions.plot(figsize=(20,10))\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['actual']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction')\n", + "plt.show()\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + "predictions['diff'].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQkAAAJcCAYAAABQALD4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYXUX9x/H3bN9Nr6STQEKLhGLA\nUJSqIgQRFAFDUZCOCiigggJKFxFQkB+9BpEmVUB6DRB6h0A66XVLts/vj3Nzd2+2J5tsEt6v58mz\n58zMmTPn3Lv84X78TogxIkmSJEmSJEmSJEmSJGn9ldXRC5AkSZIkSZIkSZIkSZK0ehkSkiRJkiRJ\nkiRJkiRJktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmSJGk9Z0hIkiRJkiRJkiRJkiRJ\nWs8ZEpIkSZIkSZIkSZIkSZLWc4aEJEmSJElShwghDA0hxBBCTur8vyGEI1ZiniEhhJIQQnb7r3L9\nknrfw5vpPzaEcHnqOOPzWduFEH4aQnixib5mnyWE8PsQwvWtvM85IYTbV2WtbRVC2DWEMKOZ/ptD\nCOetyTWtjBDCuBDCE+0wzwYhhI9CCPntsS5JkiRJkr4qDAlJkiRJkqQmhRCmhBCWpUI4c1JhhM6r\n414xxu/FGG9p5Zr2rHfdtBhj5xhjzepYV3tJhUtiCOEbbbgm41lXpxBCHnAW8Jc1cb+1SYzxghjj\nzzt6Heu7GOMdMcbvtMM8c4BngGNWfVWSJEmSJH11GBKSJEmSJEkt2TfG2BnYFhhNEiTJEBL+7wxN\nCCEE4HBgYern2mg/4OMY48yOXojWTmtZVak7gGM7ehGSJEmSJK1L/B/vJEmSJElSq6TCI/8FvgYQ\nQng2hHB+COEloAzYKITQLYRwQwhhVghhZgjhvOXbgIUQskMIl4YQ5ocQvgD2qT9/ar6f1zs/OrWl\nUHEI4cMQwrYhhNuAIcBDqepGpzeybdmAEMKDIYSFIYRJIYSj6815Tgjh3yGEW1PzfhBCGN3Y84YQ\n/hlCuHSFtgdCCKemjs9IPWNxCOGTEMIezby+bwL9gV8CB6eq9tSft7XP2mDbqfrVhkII24cQXgkh\nLE59Bv9Y8V7N+B7wXFOdTb3XEEJBqtpU79T5mSGE6hBC19T5n5dvYdbInD+r99xfhBCOrde3awhh\nRgjh1yGEuann+Vm9/l6p9SwNIbwGbNyKZxwXQpiW+g6eWW+ujC3EQgiHhxCmhhAWhBD+0EhFp7zW\nfIdSc10RQpieWucbIYRv1uvbPoQwMdU3J4RwWXOLD8m2aPNT6xnXxJgG266FetvMhRDyU7+H01L3\nvCaEUNjMXC+FEP4WQlgAnJNqPzL1uS0KITweQtiw3jXfSf0+LAkhXB1CeC6kfq9XXFsIYccQwuup\nsa+HEHas1/ds6rvzUuo9P7H8O5byKsl/czZEkiRJkiS1iiEhSZIkSZLUKiGEwcDewFv1mg8j2fKn\nCzAVuBmoBoYD2wDfAZYHf44GxqbaRwM/auZeB5IEEg4HugLfBxbEGA8DppGqbhRjvKSRy/8FzAAG\npO5xQQhh93r930+N6Q48CPyjiWXcCRwUQgipNfVIPc+/QgibAicB28UYuwDfBaY09TzAEcBDwL9T\n5/u207OuqAY4BegN7ADsAZzQiusAtgQ+aaa/0fcaYywHXgd2SY3bheS7sFO986bCR3NJvhNdgZ8B\nfwshbFuvvx/QDRgIHAVclfocAK4CyknCV0em/rVkZ2BTkvfyxxDC5isOCCFsAVwNjEvNvfz+9bX2\nOwTJu9ka6AmMB+4OIRSk+q4ArogxdiUJOf278SmA5F30Tq3lCODa1PewrS4CNkmtaXhqvj82M/4b\nwBfABsD5IYT9gN8DBwB9gBdIfldIhXjuAX4H9CL5Pu3YyJyEEHoCjwBXpsZeBjwSQuhVb9hPSL4X\nfYE84DfLO2KM1cAkYKtWP7kkSZIkSV9xhoQkSZIkSVJL/hNCWAy8SBL2uKBe380xxg9Sf7DvSRIi\nOjnGWBpjnAv8DTg4NfbHwOUxxukxxoXAhc3c8+fAJTHG12NiUoxxaksLTQWZdgLOiDGWxxjfBq4n\nc4uvF2OMj8YYa4DbaDpk8AIQSaoAQRKMeSXG+CVJGCcf2CKEkBtjnBJj/LyJNRUBBwLjY4xVJCGK\n+utZqWdtTIzxjRjjhBhjdYxxCvB/1IV3WtIdKG7iGVp6r88Bu4SkmtMokuDHLqkwzHbA802s95EY\n4+ep534OeIK69w1QBfwpxlgVY3wUKAE2DUl1qh8Cf0x9194HbmnFM54bY1wWY3wHeIfGP/sfAQ/F\nGF+MMVaSBGjiCmNa+x0ixnh7jHFB6jP5K8n3Znm4pwoYHkLoHWMsiTFOaGH9f4gxVqTe1SMkv1Ot\nlgq8HQOcEmNcGGMsJvl9PriZy76MMf49tf5lwHHAhTHGj1K/9xcAW6cq+uwNfBBjvC/VdyUwu4l5\n9wE+izHelpr7TuBj6gXogJtijJ+m7vtvkmBTfcUk31tJkiRJktQKhoQkSZIkSVJLfhBj7B5j3DDG\neELqD/bLTa93vCGQC8wKyXZXi0lCKn1T/QNWGN9cEGYw0GjopgUDgOXhh/r3qV8Jpn5ooQwoSIVb\nMsQYI0m1mENSTT8B7kj1TQJOJqkANDeE8K8QwoAm1rQ/SXWlR1PndwDfCyH0SZ2v7LM2EELYJITw\ncAhhdghhKUmAo3dL16UsIqkI1ZiW3utzwK7AtsB7wP9IwkljgEkxxgVNrPd7IYQJIdnCbDFJyKT+\nehekwibLlQGdSSrY5ND679NyK372nRsZk/E9jTGWASuuv1XfIYAQwm9SW3MtST1jN+qe8SiSqj4f\np7bbGtvM2hfFGEvrnU9NrbUt+gBFwBv1fkcfS7U3ZfoK5xsCV9S7fiEQSL4LK767SFJ9qjEDaPiZ\ntfS7uuLn1QVY3MzaJUmSJElSPYaEJEmSJEnSqqhfYWU6UAH0ToWKuscYu8YYR6b6Z5EEYpYb0sy8\n00m2X2rpniv6EugZQqgfdhkCzGzmmubcCfwoVSXlG8C96UXEOD7GuDNJaCICFzcxxxEk4YZpIYTZ\nwN0kYaqfpPrb8qylJCEPAFIVdeoHPP5JUo1lRGoLq9+TBDha412SwEpjWnqvL5NUx9kfeC7G+GGq\nf2+a2GoshJBP8j4vBTaIMXYnCVK1Zr3zSIJXrf0+tcUsYFC9dRaSbIfVZiGEbwKnk1T86ZF6xiWk\nnjHG+FmM8RCSIN3FwD0hhE5NTNdjhb4hJJ/Lilb8jvSr1zcfWAaMrPc72i3G2FhYarkVv4PTgWPr\nXd89xlgYY3yZhu8u1D9fwZckvzv1tfp3NRXKGk5SEUqSJEmSJLWCISFJkiRJktQuYoyzSLaL+msI\noWsIISuEsHEIYfl2V/8GfhlCGBRC6AH8tpnprgd+E0L4ekgMTwV1AOYAGzWxhukkgZULQwgFIYRR\nJNVabl/JZ3qLJFhxPfB4jHExQAhh0xDC7qmgSzlJ8KJ2xetDCAOBPYCxJFslbU2yNdXF1G3V1ZZn\n/ZSkas0+IYRc4CyS7auW6wIsBUpCCJsBx7fhcR+lia3JWnqvqWo7bwAnUhcKeplka6pGQ0JAXmrt\n84DqEML3gO+0ZqGpbb7uA84JIRSFELYgCWO1h3uAfUMIO4YQ8kiqRbU2aLWiLiRhpnlATgjhj0DX\n5Z0hhENDCH1ijLXUVcRp8D2q59wQQl4qfDSWJHC2oneAkSGErVPbvZ2zvCN1n+uAv4UQ+qbWMDCE\n8N02PNM1wO9CCCNT13cLIRyY6nsE2DKE8INUiOdEoF8T8zwKbBJC+EkIISeEcBCwBfBwK9exPTBl\nZbfmkyRJkiTpq8iQkCRJkiRJak+Hk4Q/PiTZvuoeoH+q7zrgcZIQw5skIY9GxRjvBs4HxgPFwH+A\nnqnuC4GzUtsd/aaRyw8BhpJUKrkfODvG+OQqPNN4YM/Uz+XygYtIAkSzSSrB/K6Raw8D3o4xPhFj\nnL38H3AlMCqE8LW2PGuMcQlwAkmwaCZJ1Zj62zn9hqRCUTHJ+76rDc/5ELBZM9umtfRenyOpkPRa\nvfMuwPONTZbauuyXJOGxRal1P9iG9Z5EUqFpNnAzcFMbrm1SjPED4BckW83NAkqAuSRVstrqcZLt\nvD4l2UqrnMztu/YCPgghlABXAAevsJ1ffbNJ3tOXJFvWHRdj/LiR9X8K/Al4EvgMeHGFIWcAk4AJ\nqS3pniSpAtUqMcb7SUJu/0pd/z7wvVTffOBA4BKSLdq2ACbSyLtLbUE3Fvh1auzpwNjUHK0xjiSw\nJEmSJEmSWikkW4NLkiRJkiTpqy6EcAywRYzx5I5ey9oihNCZpMrPiBjj5I5ez7okhJBFEmIbF2N8\nph3n7UsSQtsmxljeXvNKkiRJkrS+MyQkSZIkSZIk1RNC2Bd4imSbsb8C3wC2jf4PaS1KbV32KskW\nfKeRbDm2UTMVkiRJkiRJ0hridmOSJEmSJElSpv1ItvX6EhhBsg2YAaHW2QH4nGQrvn2BHxgQkiRJ\nkiRp7WAlIUmSJEmSJEmSJEmSJGk9ZyUhSZIkSZIkSZIkSZIkaT2X09ELWJv17t07Dh06tKOXIUmS\nJEmSJEmSJEmSJDXqjTfemB9j7NPSOENCzRg6dCgTJ07s6GVIkiRJkiRJkiRJkiRJjQohTG3NOLcb\nkyRJkiRJkiRJkiRJktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmSJGk9l9PRC1jXVFVV\nMWPGDMrLyzt6Keu8goICBg0aRG5ubkcvRZIkSZIkSZIkSZIkab1mSKiNZsyYQZcuXRg6dCghhI5e\nzjorxsiCBQuYMWMGw4YN6+jlSJIkSZIkSZIkSZIkrdfcbqyNysvL6dWrlwGhVRRCoFevXlZkkiRJ\nkiRJkiRJkiRJWgMMCa0EA0Ltw/coSZIkSZIkSZIkSZK0ZhgSkiRJkiRJkiRJkiRJktZzhoTWA+ec\ncw6XXnppRy9DkiRJkiRJkiRJkiRJaylDQpIkSZIkSZIkSZIkSdJ6zpDQOujWW29l1KhRbLXVVhx2\n2GEZfW+//TZjxoxh1KhR7L///ixatAiAK6+8ki222IJRo0Zx8MEHA1BaWsqRRx7J9ttvzzbbbMMD\nDzywxp9FkiRJkiRJkiRJkiRJq19ORy9gnXbyyfD22+0759Zbw+WXN9n9wQcfcN555/Hyyy/Tu3dv\nFi5cyJVXXpnuP/zww/n73//OLrvswh//+EfOPfdcLr/8ci666CImT55Mfn4+ixcvBuD8889n9913\n58Ybb2Tx4sVsv/327LnnnnTq1Kl9n0mSJEmSJEmSJEmSJEkdykpC65inn36aAw88kN69ewPQs2fP\ndN+SJUtYvHgxu+yyCwBHHHEEzz//PACjRo1i3Lhx3H777eTkJNmwJ554gosuuoitt96aXXfdlfLy\ncqZNm7aGn0iSJEmSJEmSJEmSJEmrm5WEVkUzFX/WNo888gjPP/88Dz30EOeffz7vvfceMUbuvfde\nNt10045eniRJkiRJkiRJkiRJklYjKwmtY3bffXfuvvtuFixYAMDChQvTfd26daNHjx688MILANx2\n223ssssu1NbWMn36dHbbbTcuvvhilixZQklJCd/97nf5+9//TowRgLfeemvNP5AkSZIkSZIkSZIk\nSZJWOysJrWNGjhzJmWeeyS677EJ2djbbbLMNQ4cOTfffcsstHHfccZSVlbHRRhtx0003UVNTw6GH\nHsqSJUuIMfLLX/6S7t2784c//IGTTz6ZUaNGUVtby7Bhw3j44Yc77uEkSZIkSZIkSZIkSZK0WoTl\nVWTU0OjRo+PEiRMz2j766CM233zzDlrR+sf3KUmSJEmSJEmSJEmStPJCCG/EGEe3NM7txiRJkiRJ\nkiRJkiRJkqT1nCEhSZIkSZIkSZIkSZIkaT1nSEiSJEmSJEmSJEmSJElazxkSkiRJkiRJkiRJkiRJ\nktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmStNa580746U87ehXS+sOQkOjcuTMAX375\nJT/60Y+aHXv55ZdTVlbWpvmfffZZxo4du9LrkyRJkiRJkiRJkiR99fzkJ3DLLR29Cmn9YUhoPVVT\nU9PmawYMGMA999zT7JiVCQlJkiRJkiRJkiRJktRaMcLpp9edV1d33Fqk9UlORy9AbTdlyhT22msv\nvv71r/Pmm28ycuRIbr31VrbYYgsOOugg/ve//3H66aez3XbbceKJJzJv3jyKioq47rrr2GyzzZg8\neTI/+clPKCkpYb/99suYd+zYsbz//vvU1NRwxhln8Nhjj5GVlcXRRx9NjJEvv/yS3Xbbjd69e/PM\nM8/wxBNPcPbZZ1NRUcHGG2/MTTfdROfOnXnsscc4+eSTKSoqYuedd+7AtyVJkiRJkiRJkiRJWttN\nX1jGx7OLAZjwbB5/+UuPdN/51yxmx90rOmppDWw7pDu9Oud39DKkNjMktApOPhnefrt959x6a7j8\n8pbHffLJJ9xwww3stNNOHHnkkVx99dUA9OrVizfffBOAPfbYg2uuuYYRI0bw6quvcsIJJ/D000/z\nq1/9iuOPP57DDz+cq666qtH5r732WqZMmcLbb79NTk4OCxcupGfPnlx22WU888wz9O7dm/nz53Pe\neefx5JNP0qlTJy6++GIuu+wyTj/9dI4++miefvpphg8fzkEHHdRu70eSJEmSJEmSJEmStP5ZXFrN\nmSd1Yb8jljBjVm1G3wfvw4jt6kJCC+dmk50T6dazlsrywPzZ2QwYuubKDVXW1LY8SFoLud3YOmrw\n4MHstNNOABx66KG8+OKLAOlATklJCS+//DIHHnggW2+9NcceeyyzZs0C4KWXXuKQQw4B4LDDDmt0\n/ieffJJjjz2WnJwkR9azZ88GYyZMmMCHH37ITjvtxNZbb80tt9zC1KlT+fjjjxk2bBgjRowghMCh\nhx7avg8vSZIkSZIkSZIkSVpnTJgAIcDTTyc/99wzs/+mm+Abm3Xh9WeKOOun/SmftDCjf/DAkozz\nX3x/ICfsPQiAa8/vyWkHD+DCX/RZrc8grQ+sJLQKWlPxZ3UJITR63qlTJwBqa2vp3r07bzdR6mjF\n61dGjJFvf/vb3HnnnRntTd1TkiRJkiRJkiRJkvTVs8MOyc899kh+PvUUVFRAfj5UVsKRRwLU/Q17\n0kNLMq7P/XwGMKDBvOPGDEkfv/96IePGDOG8m2cxbLOqdn6CTDGu1uml1caQ0Dpq2rRpvPLKK+yw\nww6MHz+enXfembfeeivd37VrV4YNG8bdd9/NgQceSIyRd999l6222oqddtqJf/3rXxx66KHccccd\njc7/7W9/m//7v/9jt912y9hurEuXLhQXF9O7d2/GjBnDiSeeyKRJkxg+fDilpaXMnDmTzTbbjClT\npvD555+z8cYbNwgRSZIkSZIkSZIkSZIylVfV8MzHczt6Gats71H9AfjP67PIy0/aepLHQnpljLvz\n2blsMKCGpx/KBzJ3tnm5dDQAt3A4R3Ary2oLWn3/Fx/rxLDNFq/8A0jrMbcbW0dtuummXHXVVWy+\n+eYsWrSI448/vsGYO+64gxtuuIGtttqKkSNH8sADDwBwxRVXcNVVV7Hlllsyc+bMRuf/+c9/zpAh\nQxg1ahRbbbUV48ePB+CYY45hr732YrfddqNPnz7cfPPNHHLIIYwaNYoddtiBjz/+mIKCAq699lr2\n2Wcftt12W/r27bv6XoQkSZIkSZIkSZIkrQdihEVlVev8v+XefCOLvUf1Z+9R/fke/23wvFMnVzJv\naRWXnlkXEKqpF2HIoobv8yAAFcta/x5zc1d/mR8LCWldFaJ1sJo0evToOHHixIy2jz76iM0337yD\nVpSYMmUKY8eO5f333+/QdbSHteF9SpIkSZIkSZIkSVJHW1ZZw/1vNV7kYV2yfAuwrFBLbWy6bslv\nTv+UIRtV8Mvjtky3RQJHcDO3cgQA1WSTQw2D+y7hogfrtiCrv83Yig44aDY/PKVyVR+jWbts2oeB\n3QtX6z2ktgghvBFjHN3SOCsJSZIkSZIkSZIkSZLUweJ6Vp+muYAQwCtPdmbag/PS54dyG6X9BlJI\nXdmgN39zDgDT53bj2Qc7pdt7sJBBTE+fH8X16eOcGXNWdelaA378Y7jvvo5exVePIaF10NChQ9eL\nKkKSJEmSJEmSJEmSpPVIeUWrh7705gAufXT39PmRF1fxwH9e5pf5V7Mxk3hy43HM3GkPducpAK67\noBcAixdksYie7McDvM5o/s2BXMNxvMZ2yRJq89vxgRrnjk0r59JL4eqrobwc7r4bfvjDzP6pU+H+\n+ztmbV8VOR29gHVRjJEQQkcvY53nfzglSZIkSZIkSZIkad3z028NJjsncs51cxi8cVW6vXpGcYvX\nFoRyymNBg/ZZu+wJQPdtezHplRHwOfyr1zl04730mJpqOHGfQQBcxUn8g18wmjcA2I6JbMgUKpc1\nmFqt8P7MJVTW1LZqbIxQUwM5bUycnHZaDwA23WQyMAyAN6ctSvfvv1tXpk3O5tn3FtGla+a1PYry\nGNa7E1o1hoTaqKCggAULFtCrVy+DQqsgxsiCBQsoKGj4H39JkiRJkiRJkiRJ0tqrqjJQVRn47bj+\n3DFhGgDVVfDuC9kNxn6DCbzKGMZ1uoeXSr/OL0c9yKnv/CpjzAg+BZK/HS/r3TfdXpuXz/0ckD6f\n/HFe+nhY/nRIFS5asNmW9Pr4PQpZtkZCQutjPYzP55VQWlHTqrF/Pa03b75QBMDNz08jN6+FCyD1\n0pKQ0J7fHpZu/vqGPfjWPiXse/hSpk1O+v/8xxyOPGNRxuVDehYZEmoHhoTaaNCgQcyYMYN58+a1\nPFjNKigoYNCgQR29DEmSJEmSJEmSJEnSKnrwL7Xc++BWGW178CS1eXlQCQzpzfgf3sf03faCPTKv\nPXqnF4BvA/Du0afS6cvpTDztvAb3OPvn/QDoyQLuP+xy3s49nX6vv8QLF13D4KcfpeiCMirLDZKs\nDqVLA6UlWfQdUJMOCAH89FtD+MtdXzJgw+pmr8+qqmyy7/lHOvP8I53T588+0KlBSCiyHiazOoAh\noTbKzc1l2LBhLQ+UJEmSJEmSJEmSJKmV1pnqNFUNwyA11XDvg0MbtBcNKqR8frIdWX5RZPLYAwHY\nnA/5iC3S45ZsvgUDU8fL+vbn6av+le57bNBP+MuMI3mKPdNtC+nFVtdfxvgJU/nwiBMB+GLfgyi6\nYBqVFV1W9Qm/kup//+69AEJRLgecXLeV3J+O6s2M6YX87b6ZDa499+gN+L8nGrbXF0rLW72Wwuxy\nYoT6mzutM78fa7msjl6AJEmSJEmSJEmSJElaN8yZVNugLevdLxodW5FdyEeVIwDILqirYfJc1m4Z\n40LDXcrSvjvjTh5i34y2LXmXT390eObAECgM5ZRXta5Wyr3Xd2XcmCEsXWRsApJKPcd+ZyDjxgzh\nvgeHcO+/+mf0z5heCMApBwxscG3J0mymTcptdv6apRUN2j5jODMZkD7vx6xkvqoiHrnDsNfq4Ldd\nkiRJkiRJkiRJkiS1yqk/G96g7d2XCxode+IuzzCjNgmVPPTulun2iTfdxClclj7Pymk+ulBIOb/m\n0vT5f3v8iIm//lODcQXZlVRUty4kdN/13QF4dHzbwyjra1WbkqWZaa3yZXWlfPbkfxl9XViacV42\nu2EIqL6apZnbjZ3GJUy+5iLev+6qdNsm3WZwxYCzAZj99PyM8evpK1/jDAlJkiRJkiRJkiRJkqSV\ndsntYxptr/rJHunj47d8JH28aNOvsWW/6enznGaK0Nz/4ATK+vTjUk7jeo7iAb5PYZ/czL2oUgqy\nKyivzmtxveVlddcWdjZ+Ao0Hn47abTAfvpaErmaSWUHoOXbhLn6cPq+dV9Ls/OWLkq3L9uFhSini\nB2fnMW/r7Zm/5dd5g20ZwEx+dcokNv3TtmzOh+SWFq+wPj+n9mBISJIkSZIkSZIkSZIktVkulcx5\nv7zRvpG8T0X3nunzzc8dldFfst3W6eO8oqbvsaxvfx69/TFmbbczR3Ej3+ch3jrpzEbHFmZXUF7d\n/LZXAEsX10UlYq3hE4DKZQ23kQP45L7FlC8LfMQWAEQCkcDcG85lzO6lfJBqryqubnb+8rlJJaGj\nOt3Oo4+/wpTvHZDum3Pzn3nu+7+h4ttjWPC1bSjIquSJqdty54X57fFoqseQkCRJkiRJkiRJkiRJ\narMq8pj2wOyMtkFhBlMLNubWcdcB0IOFydgu3TLGZdXWhUpyujQf7Kns1oNn/n4HVUWdmbnT7szZ\nfudGx+VnV1Fe03IlodKldVGJ8PnsZkY2Lq6Hm19VzljaaHt5eTY1L3ySPh8/YSrjJ0xlwcitefGC\nf/LO2RcAUFVc0+z8y1IhoS9OO4XKbj0y+hZttiWv/f5iYnay3dlbtUmA7OEHNmDRvKRt/XvjHcOQ\nkCRJkiRJkiRJkiRJHWxdC0Ec0/dfAMydnYRybmcc2/MqD+9wKi8/8Rgfn3QqAB+yBW+zVYPrayrr\nnji7a8vVfwDufup9nvvrTU32F+RUUV7TcvWZqk/mp4+XFTczsAnr485XVdMWN9peXpFN9RvJ1nCP\n5oxt0J/TLfnsqkoar0QE8MDNXTnrju8CUDCwmbJRKWPzH0sfz/+kIjlYD995RzAkJEmSJEmSJEmS\nJEmSWjRuzJD08dbbLgFgybwkdhCvOYarTn2MT847l9q8fAgBgFfvu5fp//pbg7l2GvhR3UlhK7eV\nSs3ZlCk1G1IR8ygtbn5czQcz08cPvbp56+69Drj++uQVLVjQ8tjqajjqqGR8CPDz0xuvzjRig7l8\nMr8fAFOuPLdBf063JCRWWdp0SOjf13SnqiYHgILBnVtc2959Xqw7WVgCrJ/VmzqCISFJkiRJkiRJ\nkiRJktSsUF2VcZ49ONky6pEp2wNQtdFgPv3xz6gu6pQxrnTAYJYOHd5gvi8O/Rl/5yQAOvVrXSWh\nlgzvNA2Aj94saHbcP57apV3ut7Y5+ujk59VXJz/nzYP332987GefwY03Nj3XJ4PGAFBLFn9/OakC\nVLhF7wbjQrdCsqihoqzlEE8E+sheAAAgAElEQVQ21RR0y25x3KitlqSPK5Yk29JN+yKbl19u8VK1\nwJCQJEmSJEmSJEmSJElqVvayZenjX23/MPm9MoM9uZ1y2jRfVeeufOvIXGoJdOrZcnCkNQ4f8DAA\nC+c2P9/i0kIARpIkaKqr23afmTNDm69ZkzqnivVsuy1suSVce23DLdLmz294HcDRQ+5jbO5/+eiy\nSwjUUlEGGxbOAiCvoGGFptrCQjpRyi0vjuHK3/ZsOGF1Td26QllLxaAAKNl/T6awIQAVS5Prf7ZP\nb3baCb72tZavV9MMCUmSJEmSJEmSJEmSpGbVLilPH4+6aCuKumX2Z61Ezuf9Y07hzglTV3FldXrn\nL6GQMhZ+Xtlof0V5oHhJFn2KlnAkN/Bzrk/al7UiuZJSXhbYeesiTjihXZa8Wpx6Krz0EsyYkZwf\neyxsvHHmmFmz6o4vu6zueJu/b8shL4ykplMRnSmhpDiHyWUD2SBnXqP3qirqRCdKAXj12YZbiS2o\n91kUZpc36G/Mgq9tw8SrrgGgbGFmuumDD6C26Z3N1AJDQpIkSZIkSZIkSZIkdbC4YqmXtUzl4rrt\nxgqKIp0K175SOtN335vhTGL2Z42/y0t/3YfjvjuI0vJcuuaUUkASWqmqbH1IaFlZMva661Z9ve2t\nX7+644MPzuybPDnzfPbs5OfcudC1a1378u3Aqgs70ZkS7nlrNABzqvs0es+a/AJm0z99vqw0811e\n/ae+6eO8nNZ/Z7L7dQHgw0k9GvSt+CxqPUNCkiRJkiRJkiRJkiSpWdVLkpDQMVs8AsCS7UZzPr/v\nyCU1sOBr2/AZI3j9g/7cdEnDcMmHbxQAUFZbxJys/nUhoYrWh4SevLdL+yx2NVi8sG5rr+VVhJoy\n68tITlYtvR68iYU/Py3dnpefBKyqCwrpQnHLN83KjJ3cc2VhxvlGPeemj6eVD2h5vpTKHr0AeP6T\nEYwbMySj76STWj2NVtC2TQElSZIkSZIkSZIkSdJXTk1Jsm1U39FJ2ZmYnc2yb24DL3TkqjKV9elH\nOUlI5cn7uvCz0xc1OfapsAfbfX02vNFyJaG5X2bzwesF7LZfKf+5qW6ftTufmUuvvmvH3le1tVBe\n2a9B+2MvTeK0Xw3hvYl5nPnXxeyyVxKM+vC5EjaoLSDr50fyEvenx4flryIri0/ZNN0+cdfD+ITz\nW1xHt5lTgLrqQYPzZ0O9eVqrurCoyb7HHqtb5wOvzaGgaM1W4eqcn8OOw3szcyZcfDFcdBEUNb3c\ntYohIUmSJEmSJEmSJEmS1KzqkqSSUE5RXeWYmdMKOmo5jaru1Jn3w0i+Fj9gqx2WNTv2/v3OZ+Ls\n4QAsmJNDp661dOuZGfiproIjvllXxWaH75Rl9E+bVUMsqmJtsGh+w42keocFfHenEZy4RRIM+t/D\neYzceWkyfkkWPUhCVDfzU3qwmEf3OYtFHNPo/B+dd16TW1X9h/14kj25n/1ZsjBzVMWSZIuxb/I8\nV/Y/mw+5pXUPFAIX8lt+x0Xppl15hmfZLWPYb47qzjnXzWndnO2kvDr5nlx9Nfz977DFFnDccWt0\nCSutw7YbCyHcGEKYG0J4v4n+EEK4MoQwKYTwbghh23p9l4QQPgghfJQaE1Ltz4YQPgkhvJ361zfV\nnh9CuCs116shhKFr4hklSZIkSZIkSZIkSVofVJckW1nldK6rRXJy9+s6ajlNGhk/ZDif0bdkarPj\nOneH7E65AFz0q76csPegBmM+ejMzBLWsNLPi0II52au42vazcG7yuZzGJeRRAUC/+CUAz364MQCv\nP1tETBXdKSvNohtLAJhywnG8ecLvWHTW0RlzjuDT9HFWTtPVluIDv2O/q/oyk0E89sW2jBszhHFj\nhlBTDUsX57BBmMMlZ73Gx3dd26Zn2uawrunje/ghT7JngzGfvZffpjnbQ0y9xNpUpmzBgjW+hJXW\nYSEh4GZgr2b6vweMSP07BvgnQAhhR2AnYBTwNWA7YJd6142LMW6d+rd8c7ujgEUxxuHA34CL2/E5\nJEmSJEmSJEmSJElaK9UsKEmHNv56eO7Kz1OWCgl1qgsJff7nMwHYgZdXbZHtrIgyit77OP3cpcVJ\nwKV7qnLO3ziZLtMmk1PYdMintgb+c3PXjLay4iRi0YOFADx1f+fVsfyV8uKjnQA4hDsZyEwANiCp\nsDModQ7w0mPJvlhlZdl0YwnPXnojHx5+Ah8dfny9vcYSxxS2rupP2QYDmPv1HRq0l5cF7pu+C3Pi\nBnwx9sfU5rUt0LP4yAM4f/SNXL7XTezd8wWyqeWH3APAP/87g9y8yOhdylqYpf3VpkJCXVNfj7PO\nqgsMre06LCQUY3weUr85jdsPuDUmJgDdQwj9gQgUAHlAPpALtFQ7aj9I16y6B9hjefUhSZIkSZIk\nSZIkSZLWJ2/9u4x505LjTw9/It3+5qf9V3rOqx8YDUB2l7x027K+/Zmx2fb85bSXVnre9rZgi63I\noZoH+EG67aSxA6mthcX04I+cy8lcwQc/PYmcFXZL+9kug9Jhjw8mFvDxW5kDTj9kAEC6As/AoWvH\nVmPVVfDEPV0A2JCpTGYjAJ6qV3knkDzYLZf15MzD+/HR/MF0yy3hy533aHLeqj49Adi4+6xWrePP\n/S7NOJ/6fEnrH6IRNYVFDP3HnvQ5Zw/e+sXvAbiDccxkAKNevZcN+y6kpnqVbrFSln9HuhTW3fza\nthVJ6jA5LQ/pMAOB6fXOZwADY4yvhBCeAWYBAfhHjPGjeuNuCiHUAPcC58WkzlN6rhhjdQhhCdAL\nmL/iTUMIx5BULmLIkCErdkuSJEmSJEmSJEmS1O5iO82Tt3ABl162DUU5y7juxXnU5GRWD6quhpw2\nJgWKF2fx2eKBAPQekTnfczffs0rrbW+P3/ggb47J/Ft/ZUUWFcuSOiJdKGbONt9g6dDh5BRMazDu\nsB2HcPPz0ygoaro0zBgmUEUuSxd1b/8HaMbsaTn8+fgNOPva2fQdWJNuv/7CnunjnqlqScuNnzCV\nn4zZkHfYilG8R1lxFlOKk6BXbguFfb797bkMuuEwOl9/HMsY3OL6NvrPj7mDaYxLvf/zz9scgEO5\njcwNotpuyvcOAGDHc09hALMYcM7J9GQM2aEHSZ2ZNae6tpaXP1rMF3e9CewOwOQ5Zbw7o3KNrmO5\nrDbUyFmbQ0KNCiEMBzYHlm8I+L8QwjdjjC+QbDU2M4TQhSQkdBhwa1vmjzFeC1wLMHr06Pb677Ak\nSZIkSZIkSZIkSatd7ZJlAJRVFwJw4ZwTM/oXTqmm7/DWRwUWPvwFvzhvVwB26z2RvA36ts9C17Cy\nuUnVn8oRG/LMlccBUJ3VeEpm0vv59Fg0DejXaP8ZXMynbMKS+Ws2JPT8o51YvCCbx+7qyuGnJmGg\nlx4r4oVHk23PxnE7AL2Zx3z68OLg7zOVfwAwgs8azFeS1/z6PzvyOLp8fw5lGwxo0zr/9s1rOOWF\n49Ln80du06brmzLlewew47mnpM9zqSJ7/kKgbetbVaUlgZ22787ygBDAJecUsdVeDerUrBHZbdhD\nrMO2G2uFmZARRRuUatsfmBBjLIkxlgD/BXYAiDHOTP0sBsYD2684VwghB+gGLFgDzyBJkiRJkiRJ\nkiRJ0hpTs7RuC6zKCtgk7wsAjs29DoDyzxa3ab5lH9QFH/oPLG+HFXaMeZ8m76V6kyHU5iaVdHr2\nSiq/HM/VGWPPO2EDfn3mdk3O1YlS+jGb2Z+vuchFdTU8cHM3AB7/d7K12AcT87n6nN7pMf/HsUza\n9yBm049KctloQLIt2n9vfpgCKhrM2aNz859nzM5uc0AIIG7QM+N81KAZbZ6jJW+d+DtyqGZZUbd2\nn7slxUsa/9xnTl776/SszSGhB4HDQ2IMsCTGOAuYBuwSQsgJIeSS1KT6KHXeGyDVPhZ4v95cR6SO\nfwQ8ndqGTJIkSZIkSZIkSZKk9Ub14rrgR/HiLAblzGTrLh+z+fEbAvC7c7dl3pSapi5vON+yum23\n8gvXjT+zH8c/G7RN/ziJRxT2zE639exVRS2BX3Jlm+b/4vAjeZR9mD2viAtOWjOVlYoXZWecL12U\nxecfZlZC6kQZ75xwBtnUkks1y3r1AWDRJiMzxu26/XQO5xZO3O6x1bLWvKK67a9u41C2O7V/u839\n2hkX8Pk+B/LRYceRnQPVsS6Y8+R9nZnxRW4zV7ePZaWZUZsfcxcA82YZEmpSCOFO4BVg0xDCjBDC\nUSGE40IIy2tOPQp8AUwCrgNOSLXfA3wOvAe8A7wTY3wIyAceDyG8C7xNUj3outQ1NwC9QgiTgFOB\n3672B5QkSZIkSZIkSZJWk9pa8P8SL61fVvV3uqYaHri5KxXz6irGVM0vp6Imj/ycKvpt1yndfv2v\nG99mqzHlJXXHeQWrtsY15WpO4CHGciG/5QaOBOCVV3oB0LVfXUwir3gpAejPLAAubGWUYN539kgf\nfzBxzbyUpYsz4x3/u7czL/63KH1+H/sDUNG9rorPRo/emxxkZVE8aENmMoD/sB/PvDaEW/gpoW/X\n1bLWnE51a62467dUduvRbnNP2n8cr/7h0uQ+WTVU1yb3qqmGmy7pyVk/bXyLuPa0rCTzs7go9b1Z\nvCCb0uLAS48Vce/1XZn4fOFqX0tbdViMKcZ4SAv9ETixkfYa4NhG2kuBrzcxVzlw4MqtVJIkSZIk\nSZIkSVq7ZGfDoYfCbbd19EokrS1uHzefJ6YO4b6wd7otVtZQUZNLYU4NNSMGc8uNEzjiyDEMyJkN\n9G56snoqyuodZ619oYfGBGAsjzCWR1hID47iRj6ZkoRneg7JJr0hW0gq3nQNxVTGXHKp5ndc1PL8\nw/ryUM732bf6wdXzAI0oXpQZTLnv+u7p4z+MuI79P/tPanGBxjz3lxsYe8ie7EfdmmsKVs/nmdup\nrupR/sAuq+UeANmhlppUSKhkafKzqrLx529PpcWZn8XykNldV3fnuvN7ZfTtf9QSfnT0ktW+ptZa\nm7cbkyRJkiRJkiRJkrSCI5OiGNx+e8euQ9La5Ymp2wKZ2y/FyhomVm/LWwtHAJCzxQD2yHuO2bMb\nVr8J1VVct/MU/rBH5rZWy8rqYgU7HL/6Ah/tacFmW6aPe7CILOq2V8sbUFdRacp3f8CEMy/hhYv+\nj1yqAYgEaqkLmmzKxwDcxY/TbSE7i07d1mw5t6Xzk59P8O2M9mF8wZ8+OwaAV3+XBJxeO+08AO55\n/J30uNL+gxrMmVVZuTqWmhESyspZfaGdGAIfLh3G0//pRFnJmom/zP0ym7+e1iejrYAKOlPM0hW2\nhAN4+fGiBm0dyZCQJEmSJEmSJEmStA6YPBmKi+Gmmzp6JZI6wu/37cw959edz7hvBktmVBIj/OfM\n0kavueSMAQCU1NQFYzbN/5xJlUMztjcrXRT54qJ3eLb6W3xROpCqSlj0yhxmv7qU8vK6WEHnwetG\nJaEXL7g6fRyAfJIt2LbjNSq7dEv3xexsvtj3IOZu/Q1mj96RF8+7Kn3NcnvzKAB9h0ZmMoBP2ASA\n3l3r3vnrz6z+91LzYVKtZrNUaGm5KnLTx5P3SrYcm/TDwxg/YSqV3eqqDTVWNeiLfX/coK095HRu\nGJZZHR4r3xOAGy7qxdsvrZnv5ikHDGzQVrrBAHqwqNHxgzeuarS9oxgSkiRJkiRJkiRJktYBG20E\nu+7a0auQ1BGyqiqZOq8n9z80BIDc4iWcccmOnHFQf7Je+Yi7n9q80evmlSchkbEFj6fbOg3tRFks\nSm/PBHDFEVmc9fAB6fPi+bWcdMp2/PpXX6N0WR6ds0q44enpq+PRVovSAUMYP2Eq4ydM5al/jKeG\nJLTShWKqOjeshlTZrTtP/+NOvtxxtwZ9Z3I+k9iYIVtEBjCLTfgMgC0nP8P7jATg/dcbVmZqb0uX\n5pBDFQOZSV4q9ARQShIAK+03kNr81q3j3v++yfgJU6no3nO1rDU/p3q1zNuc956r+z7X1rb//DHC\njMk5jfa9ccrZdGdxRtudL0xixJYVlJetnkpKC+Zkc+YR/Vg4t22BrMafQJIkSZIkSZIkSdJaY86c\n5Oebb3bsOiR1jKyqumokh44ZRCQJCxXXdCJ7/uKmLkv78ROb1s1VlMQEXryxgm1+VEj1C5/ywdxd\nM8b/4oCh6eM75oxlSN5MCorW7PZa7aW8Zx8qyQcgp2cBZDVdS6W6qBN3PfMRfd59g2/+6nle4Fvk\ndcth4yVf8OQ+F7DRo/dmjB/Jh/TnS6qruq7WZwAoXbR867RIPhXpZ1pEEvR58J7nWpzjXy98RlZV\nFdVFnRr09euWT3Yz76YtCgYm8xewjIE92qfCz7LKahaWZlbl2bbgXd4sHwXAO2/XVYh6d0IBfzm1\nL5fd8yUbDGqfwNJzD3fiuvN7pc/n04vzOItP2JTKrt3pxpKM8Qd/cwS38CiTNxrTLvdf0dXn9GLK\nJ3k893AnfvTzpa2+zpCQJEmSJEmSJEmStJb7/POOXoGkjlQ/JBRX2DCotKb56jH5lJOdV3fNmLFV\n8CqM//cwbr8ri291arlCUKiuJnMTrnXHsl590scVOUUtjq8pLGLRpiN5jB2ZxHDoUghLoGyDATx6\n22PE7KRyy3tHncyWN1zOAL5k4bweq239y5UtTUJCCzYfRfFHmaGk1047j5iT28SVdWpz86jNzWu0\nb/thveic304Rkk32IJ76azjuOBgxol2mnLagjBcnzc9oe7H8G0xnMJvyaUb7rZcln8fE5wrZZ1xx\nu9z/8w8y31svFvI3TgXgka6P04m67efuJanK1ZWlfPJFD647P5ejz1zYLutY7uO3kt/7vPy2hffc\nbkySJEmSJEmSJElay/3ylx29AkmrXTN/6w9VlU32zZ5XF3z540bXcDGnc3qnywHYiRe58Y//zbzN\n1zYEoDYmcYHnS7/R4tKm1m7Y4pi1VWWXbpwZzgdgcXXDrcYaU9GtB0UsYxTv8cKF1/DpDw+jZMBg\nFo/YnCUbbQJAVafOAAxkJovnrf4AVWlJNt1ZzMvnXplu+y0XMnXbXZn0w8NW+/3b7K9/bbeAUFMK\nKWdj6lK0P+YuAObMSAJT7bkNXH5B3S/oJ2yS0VfZtTuz6J8+P4D7gSQkBPDsQ52J7VSIq7oarju/\nbpu40uK2xX4MCUmSJEmSJEmSJElruQ3X3b/PS2oHtcua3jKpZG5t+njwpbsxaMJJfOfs7lzBLzll\nfIS9v54xvqJ3nxWnSLtjwjT2G/byqi94bZKVxY5d31x+2DohMHmv/anJyWXxiC2YeNp5DS6ePXpH\nAHozn7K57bOlVVNqa+DlmZszO/SnrG9//si5APyJP1JU2fqtptZH2dQyincAuJTfZPS9O6GQV59q\nn+3OunSrAWAQ09mEzzL6Krt24z22BGAw06gq6sz4CVPJr7erW8WywCfv5PHa06u2njuu6MGzD3VO\nny+en92m6w0JSZIkSZIkSZIkSWu573wn+TlsWF1b586Nj5W0/lkxJHTri9P4y+h/AnDL41sB8DXe\no2hAEkCY863d6T3hN1Rs1DBhWJubx/inP23QvtyBdwxs0LbzNjNXeu1rg6rC5D+YhbkVrb7mlbP/\nxl0vTmqyf/EmI7n30TcoZBlVVas3evHCf5O0ybQ4hJqCAs7lHCKBXKrJXrasXe6xtm8mF5pZ4ATG\nsJQu9GN2g74rz+zDuDFDqF7FHFePt5Og2RSGAjB+wtR0X01+QXobwL/ya2pyk0pGRfl12wQunJvN\nn47txxW/78O//9mtzfcvXpzFyfsP4Im7M6thLZ1Z1cQVjTMkJEmSJEmSJEmSJK3llv9xszK141Dn\nzlBSArW1TV8jaf3x9n8z9yrKzoEuJfMAmFnVD4CjTpnb6vliUQFPXXA9A5nRoC9kBa65+MWMtu59\n1+3/2Az/BhzJDfxpm5taf1FzqZSUyq7dyKKWJeVFnPGTfquwwuZlZTezV1WryyOtfx647wX+d809\nFFJOF0rIpekk0BE7D1mle3X++BNyqCKbWqbtuhcAD/37WR649wUIgbOKLgbguzxOVZckBFSbm5e+\nfupndccP3NL2kNBpB/dn3qycBu1vvdWjTfN8db8tkiRJkiRJkiRJ0jpieUiorCz52bVr8rOi9UUx\n1grXXgs/+EFHr0Ja9yx5oGHln35/3g2AIdnTAagc0LdNc87e/TvMZFD6/NxfTEgfd/nWYJ4/+Lfc\nMOIsRuV9wA9/u26HhMqHDeUGfs6gTgvadd6Yk8vk7I0BmPFFHn87o3e7zr/cspIk2vHmtgdktFfn\nF/Dief9YLfdcF5QOGMK8UZnb6X3G8CbHz5nRMGTTWuW1+RRQDsBrv7sIgOIhwygdmISPftP3eiKB\nrhTz3F+uT67JKUpf/48/ZH43amvadv/ixU1vK1Ze1vo6UIaEJEmSJEmSJEmSpLVcVWo3kUWLkp9d\nOyd/sC8v76AFraRjj4UHHoC//GXdCzh9VZ1xBuy2W0ev4qsh0nS1mKrauoBAAcn2UmUDBjGQGSyt\nTbYfyi5sewBiEz4BoH+3JQwfN6CuIwSmn3wCBbcdwxnPdyGvcG3fjKp5WakybDV5eS2MbLuqnIL0\n8cTniqhu2+5PrTJvVg6FlNGjR5IYreyUfOYP3vcCxRtu3P43XJdkZTF/i62ZudMevHz23xjO50QC\nl/MrAA47cjr7Hr4EgN+OW/lqT8Vd+qZDQpXdGlbv6TYl2ZqurE8/lg4bAcDo3p80GPfN7y4FYOG8\npkM/LTnn9+9QShHXcCwAixe2fq6Vj0lJkiRJkiRJkiRJ65B5xRUsLqvs6GWslNmL84D89HmXTycC\n2/PRjBL6VDYeLOhamMsGXQsa7etop58O77wDt9/e0StRSy65JPl51VVw4okdu5avss16zoQvk+O9\nt/sE6EnMzqZLKGZmTKoBZRe1PXTwu2eLeGT8YvYZt7QdV7tyuhXm0rdrfssDV0KXkZsCULDt1ozY\noPMqzzdz0TLKKpNSMEuzMreOKi3OolvP9q28lP3O5/SmF0OfeoiXz/8H9zz1frvOv6574vr7IQS6\nTPsi3fYrruRXXAk3wmEHfwF0o7Ji5evolOZ0IT+rkvEvT2123KJNRqaP9+j+KjMZwMDlv7zA0Y+f\nyAvcxoLZOfTu1/pyQkVdaikrTtZ/0AUHUcQyNiRZy5IFrX8uQ0KSJEmSJEmSJEn6Spi+qIyPZxV3\n9DJWytR5XckICZE8x+uTltCnrPE/Mg7tXbTWhoQA7rgDzjoLNtuso1ey7qiqSraeq66GkhLo33/N\n3fukkwwJdaSFi+t+/wcPrQs7dskug9R2hNlFbf/zf15BZP8jOz4gBNC3az7bDe25eiY//gjYdjM2\n+sY32CiselWk4vI56ZDQkNyZvLJsdLqvPUJCtbXJv5zUR1rzxXx6sm5Xc1qtspKQTFNVlS55YFdu\nZyqdu7Zxj696yqtyKQrLgOarUb3+mz+lj7MrKxjArIz+oUwBoLKi9Z/n7Gk56YAQQB/mAdCP2QAs\naUMlIbcb0/+zd99RUpX3H8ffd/rObGfpVWmiiAVUsHfFEo29xoKxd2Nii5qfGqOxxS6WGI1g11jA\ngooKigUFKVKll92F7Ts7/f7+uLszOzuz7AJb4fM6J4c7z33uvc/U9Zz7yfcrIiIiIiIiIiIiIiIi\nHVw0mnwzsS4kFA43fpMx1rKFLLZaNM292WXL2n4dndlRR4HXC9nZ0KsXrNh0QYut8umnUFLSeueX\nzfN3/58AuHHvt9nr6q7x8WxndXzbk+ds83V1GoYBo0db/7bE6eoFdp6rOJv3OD7+uKRoy9tI1Xnk\npgLO279f/HFhZn/yKOWTZ97c6nM3poVemna34IxxKWOZXWycxStk+RIBu3AI7rioOz9MzWjWeWvC\nTjJsjff4/O6mf1C2w2D8PXrHx6IuK9wXxsGzviuJYMeN1WszvBlt6WZ9m7zGfKwf57qQUNlGhYRE\nREREREREREREREREth3VyTcms7Eqf/w8LYPykvS3/GJm+jZk7aW0NHWssnMWdmoX4TB88UXy2PLl\nLX8d04T16+HII6FLl8S419vy15LNN+LhURjORCAgx5f4bcjI7Fjf+c3VWTMqmVRzPB/wIccA8NCf\nuzZxRNNmfmV94ep+xitrPGR7atiw215bfe7Oqrkhpp+uvZ0JMxIJyjX7HsLGYSNwE8TYkKiaNe9H\nD0vmunnkpua9X/6wh0x7TaP7l554JpMmTkla6PxzLwPAQZSLqp/ATiweEorWNL+qkb8qcc4YBhUD\nBhH2ZlLABgxirFzc/ICg2o2JiIiIiIiIiIiIiIiIdHCGP5j0uK6S0ITH8vh6ko9/vLI+5ZiKQJh5\na8vbZH1NWb7UxhnHZtIwBrBwtZ95a5tXTiHX66J3bvMqPmyL5sxJHbNvfcGSFH//u9UGriG/36pc\n1L9/y19Tms/W4D3PzorABsgyKlP2SduI2e3YolEGsaTFzx0OGrg8JuXBDLIzg00fIHH1g0L73XoF\nboJJ1ffKNiR/YYrW2rnupEQVoGc+Xk1mTqIkX3XEQ09HmrTrJmwcvgevfrWIMw4cEh/77fRz4DWI\nFVdRv43oppgRax37MAMD+Oq+8VT2H8jwF/6FOd7GlHeymr0mhYREREREREREREREREREOrjMRYuA\nROuZupAQwOrf0lcQqKiJMHtVxwgJXXt6L6oqU8tALF4dZPaq5pUT2qHAt12HhAoLU8dmz4uw68iW\nrR4z/lkHjdV0GTAAyvxWqMvjtOF2KJXSFoxIpNF9Pq/1flSaWcDmBRg6ms7a7iqYm0/GxmKGsNh6\nXGPDNFvm+YTqQkKRLLK8oaYP2ApGp63l1LRgTi4eAgRxA1b1rfp/OwM1BovnJAd21ixzMnR3K5gV\nicCc6iHMYQjnsXKzrh1zJZ832suqXPToo4N55azEuUIBg8oKG126pVYYql5UAeTzNidZ680vAKAm\nv9tmrQUUEhIRERERERWDoWEAACAASURBVBERERERERHp8DIWLCGPPSklH0gOCRnpu411KMXrErcl\nz+FljuJjzuW/BKqafw6zg7VPa2vrU4tFceWlDvJ237wb1k0xHT0AV9LY8bzH+/wOgA9/WQfAHv1y\nGdYzu0Wvvb1r7CNuC4dwEOa03lOAXZL21aQJ30kbqPeyT3nqDfpNeZ/dxj8YH6urALQl6n8OQkGD\nUMAgYHrI9LVuSKijM7YidTXriptwv/0+QcMDWOHZ8sJElaBxh/TluvuKk45ZMNsdDwk1rDq0ub76\nxzMceNMlfDL+LezLqtPOueDgvgD8e+oqKits5BVEsdlgxWInH0/vCUAPrD8E4UzrtzfQZfNb23WC\n/2QQERERERERERERERER2b7Nyd6bwbVVKgA8tZUQOouBuyTa5PyDmziHV3ATILa++ZWOYtt3Roh1\n6xLbF1zQetdxulNf6A84Lr4daV53OGlB9lAIO1EcPVNbCu14Ri8ATt1hahuvSupU9tuBeRdezdLj\nT4uPVVdueRQjWJMIw4SCBlUV1rkyMxuvKCWbFvFlEerTk6DpZuk8KwRpLCsiA398zsN/SQ7cvP5U\nbjywVVpshYTuGfL4Fl1/9cFHM2HGCjaMGIXdm/hsvP5UDi/cl8crj+bGxy44uC9X/64377+cjWnC\nLef2jO+zYbJ+5Jh4maqagm6YGHz1wPPNXotCQiIiIiIiIiIiIiIiIiId3IpYPwaxJP54F+bFt2NR\ng8qyjn3br3tv6+Z2LqX0Zi0APqoJV6W2VWlMTJWEyM6GSZPg/vtb7zr5XRPvSXaetf0/ToiPVZSq\nxVhbi/pDBPHgSNNZcIeTuvHStJWcOHHHtl9Yi+vcVZGKdts7vr01IaFwKPE6BPwGVeXWY192rLFD\npBlWh62wze3jegAQ8NsYzQy+Z69GjylcZVXBW7bAChbt1nPFVq/Dk5n4bPzvPzl89k4WkyakVmWb\n+VUGyxcmvvSPcSU/3vA3Pn/i1fhYTW0lIW/RupTjG9Ox/2tBREREREREREREREREZDsXqDFYV53P\njvwWH+vu2pg059Kj+7B+laPhoR3G0u9jZFHBRrrEx5yEMYPNr4yxfUeEoKQECgpg7Fjr3wE7xDBs\nLf+qRCKJgEJpqRMTg+P5gFuyHwIgGLD2b+eZrTb17DXWd7s66km7395xv/rbleVHn8hEzgCgumIr\nQkLVid/Fh27sSnCD1WbMl7N169vendb3s/h2dYXBzKJBfMGhjOLHRo95/Hbrb9Z/HrRafe60evpW\nr8PIcHIPtzQ5b8Q+AW473wo2nTPsc67kCRadcl7SnGCetb6R9/+12ddXSEhERERERERERERERESk\nA/vgv9nETBtDWBQfy8qKUJHdLWnehvXJFV7+92I282a622SNTSksy6KSbGz1oj4OIrAZIaHtvZJQ\naSnkGuXw7rswZAgXrbsHM2bEQzstprgCgF35Jen92qviKyC5FZK0rMY+4VNXDgegxr9tV3EyOtFH\nK91STYeTgSwFoLpqK57MxsrEZpGDULHVXtKdn6aUlDTbnt2WcpbnDQAuPrIvAAfyJQYw7bBL4vNe\n51S6UgTAsgXJf0MHLv12q9cRc7oIkv5v81MnvxjfDtQY7DLKeu8f+/Uka7DBlyTmdG329ZUpFBER\nEREREREREREREelgohH46LUsjjilkneet8pHZFIV35+dG8W7qgK7wyRaW/klFk3cPDRNeP3pXABe\nmbGyDVfetA07787a/Q7F8WyE2GaEhIoqArz785pWXFnHtnR1AX2W/gC//z0APVgOQGWZDXeP5rdt\na4rzt9Ucxc98xNj4WMTtxhesBiBYY9WhMLf72k5tJ1p7Wz9UpXZTHV0epQBUl295SMgs8Sc9njXD\nC7R+SKijh7S2dnkxp4sLA08zgVPjY1d0fRmKYeRn/wGeAeBU3mQfvqM/qX87f7qq6QpATYk6nfQn\nfduy3d96mpdfGMoVV+zO5IlWC7JdmEsu5Vt93ToKCYmIiIiIiIiIiIiIiIh0MF9P8jHhsTwC/kRj\nEC+JG8dmjg/70iBmvcIioWDiFuozd+UnnW/pPBc9B4T542F9Oe2yMk44r6L1Fp9GHiWczmsAfPbk\na2DGcDwbwQw1P/QQjYE/1HJhmM7GXxyKBxAAfNSFdlr2zn4g4kz6rAGUDd4Z39za67V05SJpUk/W\nso5e7LVvOdC1vZcjm1D3HQ1sCG/xOWJVoaTHkz7vB4C7m5vgli9tuxfIL2Ag3ySN7TWyhI9Oe4+j\nL/xd0ng/VqU9x2/HnbbV6wjm5nMe/2EKhzORs5L2OQlzzoX7cm69EOY8hm/yfBNmrMBuA/bu36zr\nq92YiIiIiIiIiIiIiIiIbBc6U7eqQG21lqryxO08H9UUUAxAMCcPSK4eVD8k9PWkTADcnhihgMHt\n43pw3zVWe7LXn8pt3cWnEba58GC1TYl6PMScThxEiEYVOGmuygoHXdgYf1wXEqr7rGwJ04TSDcnH\nl5JHNskhMiMSSVzPv32+Z2++CT/91D7XzrFVcnCXH9jp6kHts4A2si18shZdfz0AgZIwH/w3i2mT\nvZt9jkiDkFAdZzffVq2ts9vaSkdzxl2LZ1Qfoti4/PpVvMnJhL0+SnbejR/+dBcxDGL1PoWn8yo7\nZK8HoIe3hPNsLxHK3vq/nzXdelI8ch8mcDb59X7TAYYzN+0xcy+4ionTlmz1tUEhIRERERERERER\nEREREZEOxzCsRNMnb2bFx3xUs5ChrKBf2huV4VDi5uaeB1iVYIbuHiRce795yVx3K65400IxJ26C\nTHp5MgCmza6QUDPFojDnOw+VNe6kkFBd+7mtqST00J8LuPK4PnzziZfC1Q4iYVhLr3grnG/ueJgf\nr7uT4t32SlQuCtS2G+tEobuWcOqpMHJk21/XWLOBBbGhLAwMbPuLS6OMRhIroR498FJNuDzCxMfz\neOpvBZt97lBZasW0e7iFWF72Zp9LEkyHg/Wj9sWGyRMP9eNk3qaqt1WlqWiPfTCwgmrf/vVBAFyE\niAatanfr/fnYYpEW68kW9ll/27/mAHZkKX4yMDH49dJrAHi9Xku08fyRFUf8DtPRMu3m1G5MRERE\nREREREREREREpIMJpWnpNIglZFFFPqXMz8oBrBuJp/FGo8f8MiODUKh9gzimCSHcuAhRNnhna9Bm\nqw0JqaZBUya/msWEx6zKUekqCTVs/zVvppsefSJ06d50a7afvraqnDxxuxVkGH14NTHs8ZDQ8rEn\nAeAu2cABr70PwDsvZHPAMdVb85Q6NdNssZxAs/inrwT2ZJ+hK4H8pqZ3ao0FbzqTUHYuXvyEq7a8\nNWKwygqmGMQwsTGL3diNX3g965yWWuZ2y2iQblx+1IkA+Lv1iI8tO/YUYk4nztvDRIMxZkyxfif/\nzYUczsoWWYezuhKAnfmVpSQqhK06ZCwF82Zx6tdv8tvYk9lh8tsATOx3c4tcF1RJSERERERERERE\nRERERKRDWbnYyatP5sUf73mAnxUHjyWrtnIMQLC2ktCpvMlvOx0AJLcbi4QT21ce16e1l7xJsaB1\ns9xNMGncYUSJxjp/KKC1rV+dqPuQSxkAcy68OhESqklU9pnwWC5/v6I7V5/Qu1nn7tU/nPR4xhSr\nnVEfVhPOSLRJCuYXsGbcHwAoXO2MV6faXkQiie2KisbntYaaUuv7M/LYtr2ubJlQdo4VEqredEgo\nFoWzR/fj7NH9KCmyJ+0LWPkRruFfAPSrDaZEvNt3u7GWUDxiVHx7wy57ECjoDkA4M7lK0/q9D8BF\niBAuHrvNClH2Z3mLrePXsy9JOx7J8PLVfeMB4gGh9aP2w3S0XP0fhYREREREREREREREREREOpBV\nS5NbimT4TLrN/gF/10Slg/rtxtwOK7FRPyQUjXSc8E3UbwVRNo7ZN2ncTpSYQkJNqv8KhbJzmDht\nKev2OTClktBHr2Xx4SuJG90Bf9Ovbf8h6dM+meeN4s0pc5PGotmJ1neVZfaGh2zT5tZ7Kdaubb3r\nmGl6uPlLrTFPgav1LiwtJpRlhYQm/zwsPhaJwCuP5lK2MRHPWLE48Tvf8De/qsL6fv0ftxPATV5t\nOLBNS1hto4pGjmHitCW8NnUhU556LbHDMHj168VMnP4bAMHcfKJdcgnaM+JTnjv5+RZbx7p9D2Hi\ntCUU1QstAUQ8XrAlx3h6/Di9xa4LCgmJiIiIiIiIiIiIiIiIdChOV3JQwOU2idntVPYZEB8zoonS\nJi7C2Owmb47P5aWHrApE4RD0G9x4uZc0WYRWE/Nba7W7km9wO4wokZhuVzalfi7AyHRjOhxs2G0v\nQjv2BRJhoIbt5mbP8DR57lDQoN+gEA+/tSY+9jSX4OyagWlPDgKFM7MYxQ8AVFXY2vQz1N7uvDPx\nZMvLW+86s342WDo/OQz0l3dPAcDdren3s7PrTBGYxtYa9npZwLCksQdu6MqkCdm8cF+iXdwPXyQq\nddUPeAIUlXrpwgayqMKN9Tv+/Y13t8zCOzGjhT4hpsNJ1OMh5nInjcecrqTfPYfDpCKahS8zwlgm\n0cfRsglB0+Hkm/97lO9uupefrr6Nb+54mHB2ToteI52Wq0kkIiIiIiIiIiIiIiIiIlvNkVxUglB1\nDO+GIpb8/hy6/zwDgHVjDo7vL5j7M9keP2VRHx+/nsUfri8lEjHoHVvNiw9PI5Lh5chLT0k6Zzho\n4PK0TcojVltJyN6gEIrdiBKJdqZYQDup9xLt0mNtbeMhKD7yMHgawhXW6+vLjiUdZmvGSxvxR/GG\n/bgzEp+FbCoIZaXeqA5lZXMff+EwPqe6ovOHuz77tZDCimDTE4EFS7oAVqunD38u5Dejecc1ZfFc\nF99+4uPc60oxDDj7wH5AD16ZUfsuxxLvaX7/7at6U2cVdWekjM35zhqb+ZWXpfNcDNwlRH63RDuy\nQHXylzUUMvDhjz9+beoCop7U80rrcjis7191lQMXIXZ67QV+uu4OAJx2g1NH9W2Bq/SDE8bEH8Xr\n7T31FFx2mbU9eTJn7dOvyTOd0cwrdv5fbxEREREREREREREREZFtiM2eHN4pXGjdTA5lJlpJBXNy\nk+aUBXxJjyMhg25Lf+GQ687Ds7E4Pt6b1QDUNKMVVUuJ1lYScrgbVhKKqZJQMyydl0hX9eidqA5l\nz8nAIEa4wnp96yoJXfDnEutxqOn3OGPBYrqvmEvXokXxsWwqktrZ1Qn7ssjHOnfRWgcmnbuU0OZU\nQnI5EpW7IuGW++7cfVl3Pn49C39Vg3PWhoNsxaUAXDxmKkZzUl/S7kzHpuu03D6uB+EQRNeUJY5Z\nV5o0JxS04bEFmX/OpQBtFhDq6N3M2np9TnsipOcixK9nXlRvLa28mEsvtX6kTBOOPrpFT62/uiIi\nIiIiIiIiIiIiIrKd6ByhBlu9O3iDhgf5fNUIAEqHDo+PR7yZTJixIv74aCYnnSMSsm5qAhxw6+Xx\n8bu5DYCAv+1uE8YCtSGhBu3GMmw1lId86Q6RWqYJyxYkWuIEunSNb0d9XnxUE662bmQHa0NCw/cK\nAM0Ls8SqwngIcPL5h8XHsqhstJJQFzYCMP7uLlvwbDqWzfk1GLhDZXw73HgXv80WrS0m88kbWfzj\nmsR7W7IwQCwGlb9avc1ye3Xw9EYL6eghleZa7BnGNTzS6P6qcjv2hSvjj1cudiWF1kIhOx5bkFlX\n3pz0Oy9ty+5IvClugiyoHxJqjwW1EIWERERERERERERERERERDoI04SS4kRboXse/Y2+tdV/Ihn1\nqkk0uJv+by6Ib6/+zcnalS7cJFoi7cw8wAqAAARq2rKSkJWEsHuSr9nHsY6NwdQwiiSUFCU+C9PY\nj0B+QfxxxGOFhEK1IaFQ0MBui3HWqXsCVku5ptSQQQY1STe8s6kg6nanzA1nZscrCTUmErE+mnfd\n1eSlOxVzfXl826isabnzxqxX/s3xufGWVABXXbAT5+7bj4tvOhgATy+1mupoNhVoGhRYwCNcx3q6\nJ40fwFeAVSjKX20nvzZ0N/nL/nzyRmZ8XjBsx2WPIO3LXq+qn4MINd16xh935kCbQkIiIiIiIiIi\nIiIiIiIiHcT7L2fz7D2JKi19vvokvh3ZRMsZH9Xx7b+cZd3IdBKOj81gNGvolQgJVbfdbcJojRUS\ncriTr+mz1+CPeFr0Wv93STeuObFXi56zPVWUJl6z/fiGYE5e/HHEa4WEArVvfbQsiC9WiQerklC4\nGe3G/PbM+Pw6eZRSvuPQlLnBnFx8+BNrK0+ZwpdfWv/efnuTl253sc3oN5b5/az4thEIbmLm5snN\nbV5Zoh2Py2t6knQ43SniQa4H4Dje5yKeA6wqXzXVBjkkvkQ/fOGNbwcjDjyOMNK+onZnfPunvAOT\n9ikkJCIiIiIiIiIiIiIiIiJb7edpyaGZHT94I74dyfCybq/9WT9q35TjvPXCG3VCuHj1y4VMmLGC\nLKroxbp4SKjG33Z3OGPBukpCybcmvbYaQqaTSAveC18428OG9Y6WO2E7C9RYr9knHAGQ1AYs4vFS\nTFfmL7FCZd5f5uPFn6ggVVLR9PnJINqzgClPTIyPLb3/Tky7PWVuxGtVOnmEawBYtyb1VrM/9WO4\nTSiPZeOsbd8XC0Vb7Lw7lM1t1jxnTmplp22R0ambOKV3Dv+lK0X8hfvi381wGPw1TrKNxHe0uirx\nfQpGnLidbV9JaFt8/bdGMJYICc0v65+0rzO/VgoJiYiIiIiIiIiIiIiIiHQArz+Vw6JfkkNCPX6c\nHt8O+zL54rFX+PzxiQ0PxU6M0cNWJY2V5vYh5k4+X6xfNwCCbRgSigSsdlj2BpWEskwrsBTcjNZn\nrz6Zw23nd2fRL65NztuMIjEdWt1rUxfuCmdmxfdFvD4qyaawNJNQwOCNZQeznp6JIEJJ01VqAqYL\nlyNC1J1BBVlsJJ9odnb6yYbBdzf9g335BoDVK1ODRBs2JLZNE6ZNg+nTU6Z1CJvzGVlm7MhAlloP\nWjAkVEYuADn5EY45q4JTeb3Fzi3tZ8KMFUyYsYIpT7xKN4opojv7Mz3+3YwEoTLgxutJBIFCRYmK\nXsGoE5ej5T5n24q2juUEQ4nAae/Mjclr6bwZIYWERERERERERERERERERDqC//0np9F9U554lYgv\nK2X8f29PY9blfwHgmN3nJ+3zG96U+cHDRgFQsqbtUjTR2pCQLSP51qQry3p80zk9qa5s+o7rlcf3\n4v2Xcli2wM3fLu4BwIM3FnD1Cantxc4Z049fvmvZVmbtIRiwXpe6dnLhzESAJ+LJYDhzALjg4L7x\n8Z+uuwOA1z4c3PT5TTduR4RIhpcsqsinlFBm6uesTigrm52Zj90eY+6sTYeEKivhgANg//0h2iHz\nDs3/DpS5C+hCbUgg3HIVXsrI5Uoeo6zEyYcTcjiEL1rs3J1RZwpeNKeSTNHIMazZ71AAFpwxjqID\nDwKs4OSGYA5dvFX8nrcB8NdrARmIuXC7OuSXZrviMq3g1u78zNNjn2nn1bQchYRERERERERERERE\nREREOrAFZ4yjaOSYtPuqe/Vl1cFjATh32QNJ+wJmIiTz+b9e5qt7nyYz38BOhJqStrsBXV1phUl8\nDQrU2Lpa7atKihzM+iYjPh4Jw9T3fMRql2iasHKJk9LiRFUHw2YFPH762svGQms80iC7cd813fjo\ntcyWfCqtavpHXqa+70saC9a2G8ukCoBIvcpQEa+Po/g4af5JjncpHbJz0tiaZQ7uuKg71ZUG5Rtt\nvPNC4o2oMT24nFEinsTrH95kSCgHH34yHCE+ed/JnDnw00/WvqoqKCxMzJ06NbF90UXW+xhqurhR\nm9mcSkL+sIdcyqzjIi0TsIvFrJBQHqXxsQv4d3z7FOMNnjv1OSb+88MWuZ60j+9uuZ+Fp57PnAuv\nIZZnffeqN5gsDe9AyOHhQW4AYKh3WfyY8mg23oy2bzcmyS7rPpHHuYIfGUV/e3KlPqMzJdoa2HYa\ncoqIiIiIiIiIiIiIiIh0UrFY4/tCmY20f6oV8VjBkQEzpnCM8yMmhY8GIN9dCbXtjNbvc6A1Z/Lb\n+KgmVLn1ISHTtCrdeDI2HZooLbNag+UUmNS/qsebOM7hTGx//HoWEx7L49m/d+HWJwq554ruKefM\nyokRqNem7L//ymXsmZUp815+OJ+jT69q7lNqV0/eWQDAwcdbVYOuOLY3ZRtrA1a1lYRquiZei3CG\nN96GrM5Q11JizkG4CBLCzW+/uvjrBVbVpYuPSFQbGrpbkKG7BYniwOWIEujSNXFeX+PBKtNuracq\n6KFqJYwY0fjzOeGExPa6dfDMM3DZZVaQqFu3xo9rK82N+pgmVEa95FAOQCzaMiGhgN/AxBYPHwF4\nCPI0lzDqkVMZMO53LXKdzsTr2vbiC4EuXZl5w98AKI9YAbz7b7O+i58UjmYHljOWSayJDgRg5WI7\nZeSSmamQUIo2zuXkxUq4gg8AyF84tz2X0qK2vW+ZiIiIiIiIiIiIiIiISCcTS5PZmcsuwKZDGwCR\njERbsbyw1e+pv20ld+3+PAu4M3mu10cmVQSrtj7o8O6/s3lzfC7PfrYKr6/x85WWu3ETwJNjq426\n1HK74pvRSOKWa3VFohlKuoAQgN1hctXvescfT56YzeSJmw5TdRbRCJSX2OMBIbBCQoG8LsRc7vhY\nzOUm06hKSrt4nUGiLhdOwoRwxwNCDdVU2wgFrdfc7YoSrVdJKOJt/PNWF1I6hg+ZxLHNfk65ufDK\nK9Z29+4wbx7svPOmj2ltza0kFA5BBCfZbj8EIbaV2Y3SYjv/vKErY8+sAEgKCQFcYm47bY0k2W47\nrEt6/MaJ/2T1xiPI+rqSqpgPiPH83XkA/ObvzUHtsEZJsAeD8e2Nw3ZL2teJCwkpJCQiIiIiIiIi\nIiIiIiLS3mLR1DuOuzAfANNmT9lXXzgrh6jLjT0UxIsfgHHOF8n0hVPnZlghoVgJQEbK/nT81Uba\nENCb460qRWUb7Hh9jScnFq0toCvFmPVCQQDVjkQYpXhlvTWGm777arNBt54Rlle6Gp0z6iA/RWs6\n3+3QD17JZswRSXEqvPgp7tsgVWMYeJ0hqNfCK8ftJ+Z0sStzmEH6FnUAgRqDcMh6nZ2O5DJWddWC\n0qnstyOrDjqK8778T7NCQhvKw4w9wk5RMfTqA2AFwP75YJRHHttE+aw2EG1mSijgr2355gnWhoS2\nLmD3xjM5rFjk4um/WZWjAnsN56PL3sMeDBAYvivHb9XZpa1sSUgkOyeCgzARnADsnPkb31z1MJ7D\nfqQm5ubLD2wMGlDOkoVebjj+S0ra+NPQ0YMvDpuN7Iy2+00P9+wJc+DHh56j8MDDyXYmrp3lcbbZ\nOlpa5/urKCIiIiIiIiIiIiIiIrKNaazd2Jr9DmXFkU23HVqz36H0+2JyvP1UOGZPqjpTx9+jN5lU\nUVOT06x1LZzl5v8u7c6NDxWx+76BtHM+fzeTc64pS7uvaI2dH5f3AyCUmdwaa8yQFfCptV28JFFK\nqXRFlC7eSjb6sxpdl80OIw/ys3xRakjomds+JvO4YfzrlgKiW99Vrc2tW+EgHEzcrZ/BPhjAtHuf\nTpnbMCQ0pGo2AdfRTGN/7j3pXV5afCRjz6xgn0NrmP6xlyfvsIIpwRojqZIQwMzr7iBr5W9Nrm/V\nwUeT/+UHKeN3/Xs9f72gBy9xLn/gZc68spSPf63kh++t9/+AY6rwZnrxV9koN6r4cE55s1+T9hSo\ntl6nLG8YysFs0G6sptrg9gt7cMolZewyMkhmTuqXORaDD1/JYvThfvK7J38o3f2yKNnZqlLidW06\nECidm+l2kU8JRXTnCh6n208ziFx5M+szB7Cuqivj77bm9WQt3u4uStp3uR1Ovs/FcSN6td0Fn3kM\nXt6bUVefD5sIT3Y2tqaniIiIiIiIiIiIiIiIiEhraizM8uWD/yaY16XJ45cdcwoAvVkDQEXYR9SZ\nGqAJ5OVbrauCzbvhuXS+dY6533sanbOpNl8b1idqFkS8vqR9tiwPr3EaAEXrE2vdOKucff1fkGEP\n0tBeh1iVkorXOvBXpr/Vefzd5wNgt5tJbcw6OqfbCpd8PSmTYMB6bn+7+Gv24XuWH3kCgS5dU47J\niSTHCIb65xBzurAT49ie33Lns4Xsc2gNALldEh+ygN9GxB+rva41tvD0C/nxxrubXOeGXUfGP2d9\nBloJpUHDg+w4LMQXNz/KufwXE4PjzqnEXbKB4btZ4bB1K53kFkRxe2IEazrP+xIstypyeX3W69ew\nNeA7L+SwdoWTR2/pyiVH9SGU+rFl5RInrz6Rx0sP5vHO88kBvSGDOkdYSrZe2JdJD9YDVpu5H2+8\nC4BPqpIbi+VQjrOqMuV4aWMDBsBf/7pNBYRAISERERERERERERERERHZTjSzu1C7iMW2LjQR8Vgh\nHg9WtZ8QLmKu1JBQJMNLJlXNDgk5nNaLVteaqj6nkdrOrCGj9m7k01nXpvSycVZXchpvMJw5zFuQ\nx33XduXJO7qwqHoA3Snks+jBAJSRwyh+AGDQLsF4K64Vi9O3GsujFLCqDUXTtHHrqOrfh/7vv6xW\nbnl2K0Dy61l/THtMeEi/pMd9WE3UbX0W9nji3qR9Nf7EreFAjUGkygr4OBvPf6VV1ac/vfqHeXbE\nXdwxvpB/f7mS258uBCCnfB0Akdo1nHzMSO6dfSYAS+a6WbvciTvD7FQhoXCJlfrxZVuhqvohoY9e\ny+TDV5JDcjO/8qacI1L7/flpWmLfnTf8iImBmZuomNXR2z3J1ikbNAwHVmvGXMooGTYi7bwcyikb\nOLQtlybbEYWERERERERERERERERERNpZNLJ1x4eyrVCJq7b3VAgXEU9qWMF0OPEZfmpCzmad115b\nCGjK21kpISu7mVh0uuopAAG/lXrYMXd96s7aRIQTK2z0y4wMpn9sVRtaQ2/GMAMTgxwqKMeqvnLg\n4zdzyaeXAzB/qXy4tgAAIABJREFUZvp0i4cgvz9mFO5oTUrVl46sfhBr7XLr/ennqQ3deDPTHmPL\nSFRqshPhh9vuI5SVHFrp/dUnnHLYcPr2qIiPBatiRKus192Rsfm3jEPZuZy3+B94fSYud+JzkrGx\nCADDNOn20wwACtiQdKzbY8YrJXUGoRLrO+XNsd4fs95n6uWH81PmO92pacRQMDX9c8eDe1n7spvX\n+k86li3JcwVz8olipQH9+yQCQrfZ70ma18VWQulOu27N8raIMmrbh87z6ysiIiIiIiIiIiIiIiKy\njUpXqWdzlA4dTtThxIvVjsvAxLSlP2eGI0hNKH0VnoY84ar49jljkqvWBMiIb7/6RF7a40PlVpCo\nS+XqlH2LTvkDAGfwasq+hcZOSY9/YC9u4l4uZjxdKU6ZX1ddqE5GSTEDP32bWGAr01dtJBaDaMTg\ntCN+BSAUsN67uuca9qUPCYXciRZuvzIMf49eYEvcAj5rdH8O+vMfcVVXss/S9+PjkdIQ0UrrtXH5\nNv+zF8rOxVnj57jTDmHoay9w1uj+nDW6P/0++wAAeyjI4ZefDsDefB8/7syhU3FndLJ2Y6XW65SR\nZ72usWhqCGiMfQYfHfUXa74/9bmZpcmfz0P5LL4dzmy8XZ9sW6IeD36s8KazR+I7fVb0v0nzzKzU\ngKdIS1FISEREREREREREREREthmLFkF5eXuvQmTzRcKJYME4nuNXdtrE7PS++b9/cQpvci0Pcy83\n4wgE0s7zOoL4I+5mnXPHqe83um8kP8a369qSNVTw8RTr37KVKftiLjcLT7uAgSxNGs+hjI93u5jq\nHr3rjVVwL7dgw2Qsk1PONWzZlyljDiLYyysbXX9HUteOas9PXwQgGLDhdoTZ9+FbAQj7stIeN6x3\nIcfzHnMYzmCWEMjt0ug1+k/5gEUMpitFBCujlKy3runybv4t48I9RwOQvfI3Rj78t/i4d0NRylwb\nJrfuboUgchfOp3ilwQ9TO08I4vsfrGpB+d2tEkKxNLmzEdFZjPj4JSC5rVud7JmzAHj3kFvYOHRX\nPuNwAIp3HUll3x1aY9nSQVVhhYPqQmcAPXeI8gHHxh9PLj+4rZcl2xGFhEREREREREREREREZJsx\ndCiMGNH0PJGOJuKPxbd7s4adWLjZ51h16LFEuubzMNdTwEbsgZq087zOULNDQpAc/olFYfrHXmIx\nsBFjT2YCUNAzfcWeSpdVYchHddr9M6+/k0MG/spw3+L42J3cSc3IXVl84lkAvPPed0SdicpHBrBz\nphUsOoqPuJLHeGjJmaykL2voFZ/nIEKERDuujixsdbTCTaJvW14k0aYr6k7/ftmyPLzHCQxnHgDB\nvNT2V3V6T/+MwSyhmG58Mb03Dz+1CwAOn33zF2w0rxLQhBkrKNthMN7qUgBi2AhGmm51FwrCp29m\nUr6x/W9nT53ZHwBPd6u9XSyWOuc6HiYTq+pWrLAiZX8wYn0Oh37xNvkL5wIQyszm02ffJuL1pcyX\nbVc11vtt7NA9PrbsmFM4lknxx68ccm+br0u2H+3/qyoiIiIiIiIiIiIiItKCVqYWLBHp8KL+cHy7\n7iayv2v3xqY3yrQlAh+h7Ny0c36JDidsOlk8p/GWY2uXO/ju8wzCMSvc4DWsNmYfv5HFk3cUMPU9\nH2Gc5GGFP8x1ZSnnCNQY/PPr4wH48j9vNHqtcHYOw6p/jj/OpIqoy8X8867grUkzqenWg2Bucvhl\nftVAAH5mDx7janKooC+r6cW6+ByHESVsa24Yqn2FaytJeQiQkWEFrnKoVxatkVBOxJOR9DiYY4Wy\nJk5bypf3Pxcff2vyT8y58Oq05zAymg7tNOTv1jNlbO3og4BElaG5F1wFQKBLN/IWzweskNARfGKN\nb6Ll2IWH9OXFB/K5/Ng+PHpr49WR2sLIASvIooJwTi42osSiUFlu4+zRVvu9XqxhKIviQbhwWSjl\nHAHTChh5SFT3evvDH9pg9dJqtrBjXl0lIVd+4ntXU9DNGiPIbsxidMbMrV6eSGMUEhIRERERERER\nERERkW1COJGxwEzf+UikwzBNeO+lbApXWyGcqD+a2Fd79/nj59/b7PNG3VYYYf2ofVlw5ri0c2bU\n7GH9OyW55dOSuS781QYTH8/lxjN68egtXQkGrduJ15oPA1C81lpv8ToHNWTQhY3YiOJYvDrpXL98\n52HcIX0TA7mZja455nSyEwvij7OoxOmvBsMgmF8AwLR7nmDmNX9NOTYpSFNrzb6H8P7rUwl3ySdi\nbkGVnHYQDlrvuZsgNTXWa7ywtuVc6eCdGz+wQXjIdDhr/3Ww5sAj+OXi65n60L8J5nWhfMehAEzg\nzKRjYp7Gw2KNWXnYsSw76kTmnXtZfOzLB17g29sf4vNHX+GbOx5mzrhrAStQVPf+DulayPm8CMDG\n9enfm5+meTBjief13WftW2nHGQuzM/MJ5ubjJEwkYvD4XxPBpbVYbfGKRo7GRxWhqtQ/QBvLre9l\neN/hFO22F5NemkSs9rsq25cY1ufeXZD43i0/6kS+v/FuqsjkR0bRdXb7BMiMZlYIk86tc9TXExER\nERERERERERERaUJNvc5KhYXQo0f7rUWkKZVlNl57Mpep7/l46M11RP2p7bpqum3+h7guJLT0+NPj\ngZGGxnaZxpvFRxGLJm4Ih4Jwx0U9GLhzkKXzE9V3qkPWdgFW66to7TIXznazkJ3Yg5+JYeeF7w9k\n0qlhHnzDquQzf2ZyBZ9oRnLFm/qCuXncwt+5i9sBsBNl2diTkuZsGDGKDSNGUTpkFw6/4oz4+Dn8\nN+V8X983npjThd2+rPOEhOpVEqqvqkcfPnn27cYPbCIROffCa+LbwVyrytAx9doaAXTvEyW1DlQT\nDINv//YvazMWZf3eB2I6HCw75mQAltd7/wr3HM0hk/7ET+xBt4G5LCu2Ep2P3NSVtSuSP6O9BoRZ\nuzz1cxuNgL32zrZpWm3v7G10p9usDOAmSCgrh1zKqPS7mDsr+fP85f3PUlPQncwLqwhWW+/J/17M\nprzEzplXljL+6wMBmH3H3wnlpK/wBQppbE/cBfV+I202lpx0Dnv/8zYAPn/0lXZalWwPVElIRERE\nRERERERERES2CX5/Yrt+YEikTkcqMBWtLRxUuNoKRERqopuY3XzOqgogue1YQ7fv/DwA+d0i8YxJ\nsMa6bVg/IASw0WUFlepCQlPezgJg4SwrjPRqvao061c5WbbAej4VpcnX31RIaNVBR+MhyFtYwRLf\nXcdRMWBQ2rlFI8dQuMdovrQdxOm9PuE27k6ZE3NaFToctihRHB2+sphpwsevWa+rmyB+Mjh94FTW\n0Iuv7h9P1NP4a1f/Uz3r0hs3eZ2w16rmlENFfOw5xhHbxHvTHLOuupX1+xzQ6P6ywcMA2INZGJj0\nMayqUw0DQkBSQOjg31XFt/+wfz/+fX8eZ4/uxzlj+vGH/fsR8LdNoCYaiOImSMzppIANfLlwcNL+\n//AHSofsQsTrI5MqSkpdfPhKFq8/ncvHr2dx/oH9Eudyd472d9L6jMwGlaRqA2K/HXMy1b37pTlC\npGUoJCQiIiIiIiIiIiIiIp1aJAITJ0J1dWIsGGy/9Yg0RziUHHCI1gsJjeLHLT7vhuF7AmCLhBud\ns9PX7wLw6pN5nDOmH999lsHLj+Slnbs+0g2AEOlbUuU5kmvQfPmBFUT58v1Ee7FJtmOINVLVCGDV\nYcdSOmgYJ/EOJgbu7E2XiCnfcTAHxr7i1bVHYdtE9Mtlt17TtgqTbKllC1zx8JWHABkEeCTvNnqx\njmBu/iaP9XfrBcDM6+5g/nlXbHJuoLZ1G8CTB1hVgE7lDSKt3PaqdOhwVhx2HACFe46hu6d5dYv+\neEsJ97y0Lv647jWqs6GwbapEBWMuyPFi2ux0YSMVNcmhquOG/oy/R2/C3kwyqWL6wh2Z8Fjq92kc\nzxF1KSS0rTDYst+VyRzNn/hnSqtAgAnfLGPGXx/c2qWJbJJCQiIiIiIiIiIiIiIi0qntthucdRYM\nqld4JBRqv/WINEc42DAkFAPgQ47hTF7d4vPWhRDsocaTcs5YcoDo0Vu7Mv0jX9q5kxbvQR4l7DF0\nfdr9l+5gBXs+u+4hAAp6RPj150QQIoqNsbHJaW+I1xf2JUJFTQUp7MFAytjc869MGRuatQKAlYvT\nB5w6ivqfBSfWe+Mu3QjQZEho5eHHMfWBF1h46vlNvsb+Hr2Z8sREQlnZHJkznXWj9iebyniLutYU\nrG2xFc3IIKOmPD5+0kVl3PJEIeNu2sixZ1fwpweLGDAkxM4jrfd4wJAwQ3dPfb8Baqra5lb3nOAw\nqg0fps1GlEQw6Sg+YjW9yV84F4Cwz8dsdm/0PH/Puwdsuj2/vTuaj/knf06/02Zr8nvcmjp2nFJa\nin6FRERERERERERERESkU5s/P3VMISHp6EINQ0IBKyS0C/O26rwxlxWIsYVb7ktQSj6OA3fCwFrj\nybwZ33fu7tMA2P/hmwCIhA2+/8wb37+pSj/1/XzVLfHtWBMhobkXXJ0yVtl3h5SxXLfVrqqmg1cS\ncjgTr9Fvh58IQN7SBYS9mU2+FhgGa/c/rNnhk6KR++Iv6E6/zz6kx4/TAZpoZ9ZC6tZX2/stgJtH\n3lnDSeMq2GVkkENPrOasq8rYY78A97y0njv+uYy+n0+i7+eTuP2pQi6/c0PKKWv8ied86dG9ufnc\nHi2+7A3rrVDQN2V7EPb6mM7+8X3v8Ht6szb+OJLh40XOSzp+wkMfc9alxXzK4dh65rb4+kRENtem\na/WJiIiIiIiIiIiIiIh0MP5QhO+XldQb6ZYy59vFpVRlNd5uaVvRPdvDsJ7Z7b0M2QL1243FohCo\nbZfnw9pYs99hW3Te5UeewOB3XqFozzGNzznid3z36d5c038CM1YManRe0np9mZi19QcO5Cue4jLs\nRPFOscbqKuBEIgaVFdZYPhubve6Nw/dkwekXMuTN/+Dv1nOTc6t796MmvysZJcX4C7rh3VBE0R77\nEHG7WXXosfF5PpdVTSng79h1E2K1GaFR/MCIEaUwxXocyNt0FaEtZdodOGv88cdtUUmoLhxUlxlz\nE6Jrz2ijc/e77Qp6f/MFAF///SmcrpNTpgWqre/QisVOKsvsVJbZKV5n561nczj32lJ82c0LqG1K\nJGxdY2jWCqIZXvY1vuEbc18AMrAqHBXtvrc12WbjrIw32ftEF3MvuJpTjxwB18ORw0bQhV8IrWr6\nt7pjx9mkvp16ZNE3f/MDdoFDD8c5fy4HDiloenIbs9n0CdwetFtIyDCMF4DjgCLTNIen2W8A/wKO\nAfzA+aZp/lS7737gWKxKSJ8C15imadY79j1gx7rzGoZxJ/BHoLh2yi2maU5qpacmIiIiIiIiIiIi\nIiKtKBw1WVuWaD8zcOcgS+cnV9tYXxqiS1nj7Za2FU57xw4/SOPqVxIKBgwmfjQMgDxK+fKfz7Pm\ngMO36LzFe+zDhBkrNjnnl4tv4HefHsQ9Ky7mMD5v8pzXOB7DW7iWzzmE4/iAy3gKJxEAynIH4ynd\niAE4CeFZsYpobEcAbuNuANaPbDywVN9P197OrCtvJuZsuj1YRol122/tmEP4/tb7AXj9y0XJc5xW\ncKmyrGN/TyK1gbH7+AuG95j4eDC3S6tc76erb+Owq8+OPzbt9k3MbhkV/QYCUNW3Pz9feTN7PH4v\njupKIr6slLmHX3IK3X75Mf54xDMP8M4VqSGhukpCVeWJ9/fa3/cGoKBHlFMuLk85ZnPVfU+v2Old\n4Pd80v00fOvXJM2Z8vQb8e2I18ewic8xbOJz8bEuv/4CwJyLrtvq9UjHkedzkefbglaGn30KQJ8W\nXo9Ic7VnJaEXgceBlxrZPxYYXPu/fYCngH0Mw9gX2A8YUTtvGnAQMBXAMIyTgKo053vYNM0HWmjt\nIiIiIiIiIiIiIiLSXhoUh4hGUv+f79Gw/t/w0rHVryQ0Y4qX0iqrIoWdWKLqSiupa0k2Aiu8MImx\nHMPkpDnPMY6LeJ4reJx7Cu6jsHwMhzCVajKT5s3543U4q6sYfc+fcRGCqgA1lUH2ZybX8Qjf33g3\ny48+sXkLM4xmBYSSDtlEO7MMlxUSevGBfLr1jrDbmECjc9tTuPb3ykWIaL3nn7/gl1a5XtSdCFUu\nOvncVrlGQ4tOPY+ywcMo2nM0zqpKAI4adyIxh5PMtatw+q3buzG7HVs0ucJQzoqlOIzUqkOB2jZy\n/qrUEFi0kSJFmytaG0jNrS4ESAoI/Xzlzaw47Lik+WFvJhkbi0ln4WkXNHk9Q3+6RKSVtVts1jTN\nr4CSTUw5AXjJtMwAcg3D6In1n/4ewAW4ASdQCGAYRiZwPdTGkkVEREREREREREREZJtj1gsFmCYs\nX5QaKogEYm25JJHNFq5XSei5e5MrxtgioVa9dqy2ckwBGzExGMtHKXP2YzpTOIxHuBaHv5qZ196e\n9lyrDzyS344/nXff/QYnYSIRg6qFFfTGClMsOfnctNViWsqmWpNlZyRCQZMmtN4attbG9db74SaY\n1PqrYVimxa63yx7x7d+OPbVVrpHCZqNoz9EAlA2yqmblLF+CEY3EA0KQ/JzXjjk4vj3ow9fi27sx\nC4D1K616GOkqRaULj24J3+z5APSbPz1l34IzLsLfM7kezIIzL0pqFfjJs28DELPZlAASkQ6hPSsJ\nNaU3sKre49VAb9M0vzUM4wtgHVZbxsdN0/y1ds5dwINY7ckautIwjD8APwI3mKZZmu6ihmFcDFwM\n0K9fvxZ5IiIiIiIiIiIiIiIi0jq++cQb3z756CVUf7SYjxhLNNA6N9dFWkrGgiVA16SxE3mnTa4d\nysppck5P1rETCwFwVJQRzs5h3h8uZ/BbL/PB658T6NItaX7M4aCMPD6YvSs1ERfn8QKFe4xulfUD\nrNtrf3r+MI0Vhx/X+CSHnYDLhydUzZARrRu82hp1IbFiupLhySCYnYu7oozyAYM2eVymx8HoHfK3\n6JoVTz1L5m03M/KIfTCzs7foHIsKq1hZku627KaV7zCY8v4DyVq1jJnX3ckuLz2Jp6QYh9/Pb787\njRHjHwJg6sP/IXv5Eo4+/zgqpiZuG//MHtgw+eTNbM77UxnlJant0uyOlqnGVWW3wmWVu++ass90\npN5qX3LSOSw56Zyksaba/4mItKWOHBJKyzCMQcAwEm36PjUM4wCgEhhomuZ1hmEMaHDYU1gBIpNE\nkOjCdOc3TXM8MB5g1KhRrVvLUURERERERERERERENlv9Tkw11YkKEm9+NJgFDOUjxkIwgvX/NRbp\nmCLVkZSxe7jV2mjlO1Qxt4cJM1awywuPstv4B9POyaYiZWz25X9h9mV/TlsRxXQ4AagJW5W9ciin\ncNS+LbjqZF889kqTc2yRMO6QFWIpXG3dFjVNePaefA44ppphewZbbX2bY6+d1/HD/J7syzf84BnH\nW5/MbtZxTptBt2xP0xPTufQiuGQcXbeius3qspotO9Aw+PDVz+LbhXvtF98GGDH+IfxduwNQMWAQ\nr3/xK8U3/ATf1E5rcLrKMjsOp0mkXpvJeT96gPItW1894dqnuO73J+JDgR8R6fzard1YM6wB+tZ7\n3Kd27PfADNM0q0zTrAImA2Nq/zfKMIzlwDRgiGEYUwFM0yw0TTNqmmYMeBbYu82ehYiIiIiIiIiI\niIiItJq8Aqti0JNcBoADK3gRDSVXElq+0El5SUe+LbJlTP3fnTutUCS1+omPagBiTmebrCHiywSg\nZMjOOElU2vmMQ1k3+qD447c//CFxUCOhkmiDNQ/ML2Te+Ve24Go3X9HuiVuC0z/2ARDwG3z5QSZ3\nX969vZaVYrB9KdmUk0s5Ec8Whn62RHu2vzKMxPXrbwP/e+trPnzl06S5hiu59sXZ/BeAhbNd+NcH\n6R9emrR/6Tw3P32d0eQyfp7uobQ49btYJ1hj/cg6fY3PERHpTDryfw2/B/zBsIwGyk3TXAesBA4y\nDMNhGIYTOAj41TTNp0zT7GWa5gBgf2CRaZoHAxiGUb8Z6e+BuW35REREREREREREREREpOXUz8XE\nYta/Y/gWACdhAObP8lG0NnFT99bzenLreT3aaokiTQqZrpQxH9XMO/cy1u53WJusYfGJZzFn3LV8\nOv5tJnEM1/MgJgaH8gUz/voA88++mLcmzUxpLZaOaU8OCQ05zINpb99gRXWvvilj/uqOd3s0UGOQ\nReVmH9eeGR9ovVpt1b37Ec5ObonnzUiuvPUKVkuv/7ukB/5fS+lKMaNr/w7UWTjbTSS1YFdcJAwP\n3NCNK4/v3eic8lLrc+3KbpvPjaEKeCLSytrtr6BhGBOBb4GhhmGsNgxjnGEYlxqGcWntlEnAb8AS\nrOo/l9eOvwksBeYAs4HZpmm+38Tl7jcMY45hGL8AhwDXtfDTERERERERERERERGRVnDBBdaNcL8/\nMWbWK58Tqy0YVFdBqC4k9Nln3bnupN6cPbofyxdaN3lLix2sXZ5cjUK2Lx2p8lK4ttPVpxweH/Pi\n55dLbmizcE3M7WHOH68j6sngcD7jQf4U3xfo0o1ZV91KML+geedyOLifG+OPQ9m5Lb7ezRXKzAbg\n0N2W0qOv9dvgr+x4IaFyVwGZVAFQ2XdA+y6mgzpy+K+cyDvMZgQAcxge3zezeDDV+PiWffHndY2P\nf/DfbMYd0peq8vTveUm9CkLLFjj533+y8Vcnh3Se/tRqmZeRr78dIrJtaLdfM9M0z2xivwlckWY8\nClzSxLHLIfGXwTTNc7dslSIiIiIiIiIiIiIi0h4WL4YhQxKPX3gBrkzTuSgSsW7o1oWD7ERT5sz7\nMdG+p2itg14DNlFaQqSNRAImNqIcxmf889W1RJ74BM83IUx75wwjmHY7N/IAkxmLkzDr9t6/vZdE\nuDYklO2opqa2gpC/quNVaqkOu8lkAx9MnELEl9Xey2k2ow1LGRl2O+9wUvzxcOYxeugKZizsD8Cc\n2vBQRumGpOMiYYNLjurD8L1ruPnRYsAKCz7+1y7kdkn8vbjtfKsxTdFqByddVE5psZ1BwxMt+MyM\nNmwDJyLSijpeVFZERERERERERERERLZ7H32U/Pi55xJVYOoXg4k2CAl1pTi+74+3bARgwmN58bGZ\nX2e0/GJFNtPa5Q5enb47MewYQK8BEW76+gJs0Wj795ACfrloC5py1K77cw7jY46mpmv3Fl7V5gtl\nWSGhwTM/orzETtlGG8GaxO3RwtUdI5BVE3CQSRVRl7u9l9JhZWwsAiDi9vDJ+LcA+HbhgPj+gnq/\n/enM/T6Dso3We19TbTBjio+PXstOmTf1/UyuPqE3d1zUg+kfefE4ghzOpwRz2qYyVgf4+ovINk4h\nIRERERERERERERER6XAyM5Mfz54NRdY94qSWUfayCgACPXqy4vDjCXTtFt/XvU9qxaDP3+k8VTpk\n23X7uB4EI8744+4/Tm/H1Vjef+1zvrnjYX666lbmnZ/S7GOzVffq1wKr2jqhnDyW/O4MMqgB4Ipj\n+1C6IdFiatpkX3stLUm0KoSPamJOV3svpcPq9e0XADiCATbsOjI+ftXdGzih11dMI1G56gdGxbef\n/3wVLncMgMduKyAShrKNzWvn9+SdBdgiUUbwC6bD2fQBIiKdgEJCIiIiIiIiIiIiIiLS4TQMCQHU\n1CQ/DoegctJi64HXwfS7H2f6XU/E9+d1TbSSGTDEahtz4gXllJfYiKrjmLSjutZXdQ678qx2WklC\nZf+BLB97EgvOvniLAxGBnLymJ7WxORddRz4l8cfj7+4S3w6H0h3R9sxSPx4CxFydKyTUlkVvIp56\nVeDqldvZ94ASnhhwJ/3zNsbHRjGT74+8iDvGr8fjNbnrxfUALPjZw/Wn9uLG03slnXs4cxq9rh8v\nuZS10LMQEWl/HaOGnoiIiIiIiIiIiIiISD2+NAU+qqutf01MFsxyc9el3QGrWknJqH0AiHg8VJDF\nc5e+Tve+u8SPveel9Zy7X1+qK21cfkwfxp5ZwTnXdP4bv2ZS8zXpLPYfW820yT7MBjGLX/54fYte\nJzvDwcCuaRJ3rWTZr8sZ1iuHwC67ske/lm/PtLEqxMoS/2YdE/Zl0pN1afeVbugYt0oDePAQIOL2\ntPdSOqyoO7lVZEXfHchetYzTD96JkmEjqOi3I57SRFBor0+eZ90f/0AVA3DWy7xt/H/27js8qir/\n4/j7Tk9vJPQqoNgLKoKKDV17Lyv2uuracC1rr2vvdf1Z1gK6WBF1FewFEBVBEKR3CAkJ6dPn/v64\nyUyGmQkB0oDP63l4cuecc+89dyYz0dxPvqc4/jVfSi96sAI7VrWhyTc+wKITz2TkkFglrCCqIiQi\nW4+O8ZNPREREREREREREREQEq1rQE0/A9tvH2vLzobwcamrqG0zqA0Ixi0/+K3Yg4nKTRQ2Dey5h\nOTtR2C1EOAinHziQi+1VTHzXWm7sf29lc8jxNRR0CfPMrQUMGVHHsCM2LnwgsqlCQeiTswYq49vn\njLykRc+T4XYwqGt2ix5zgyoq8LhcDEpL2/DYjbSwtGajQ0KhtHR6szJp3w//y+CyO8qS9rWlWlcO\nDiCclt7eU9koRhuWEqru0TvusWmzqnEZpknB7Bms2XMI497/gYzVKzjsijMAOO7U4Xz9+GuUb3do\n0mP+yFB6sTz6uD/zGfLgPxny4D8Z2SiA+WHB2dzU0heUQltWZxKRbZNCQiIiIiIiIiIiIiIi0mGM\nHQs33wx77mk9/ukn8Plg+PBGISGg98AAS+fFluYxPNYtj7DLDcAeT/+LXl99yg97ZTHz3L9jP8VP\nOpXUURjd5/1XcujWO8i0H9KZ9kM6w45Y1voXKIK13JjLCCa0h7eGSjI5Oe09g3g2G/s6f4X1nu50\n6qijfUI5Pq9BwGeQnWdVr/FHnDiyN+W27bYTKZlx2Y1kLV/M1JvuB+DzV8dz2iE7RvsLZs+gtltP\narv1jNuivELNAAAgAElEQVTv4GvPJe/AvwJjEo6ZTVV0u4TCuMdrKKIzJQDcecx4fJzQkpcjItJu\nbBseIiIiIiIiIiIiIiIi0jZCIevr0qXWV/u0n8l851UgFhIygUF7+kjLiET3c3ism+UNIYvM4hV0\n/ek7Bo5/i+6//QiAB1/cuSZPyGDKF7GQgKmVu7Z6Zgd4kWurDGZMTmNeRQ8A/NmNQjVtWZplG1K2\nyx58NXBk9LGJwakZ48jJD7fLfG45pwuXHdmD0tV25vzmxh9243RGNrxjB2O0YUgp7PHw7WP/wVvU\nFYBQegZLDj8u2l/do0/S/fzZOfT9aULSvi4UR7cLWYubQPRxEaXR7c49EgN9IiJbKlUSEhERERER\nERERERFpwvw11ZTXBjY8UFrE8goXkEVZ/QpA9ssuJoNa4HymL6rGNzHEbddk0qm7HbsjFvgw3E4A\nAlmxpZX+OOdy9njuAXIWzQPAjT/hfCsXx6oReWsN0jPbP0QiW7fqSnt0u66wMx+On8qB119Ej+8n\ntuOstm7BjCx2r57O6CnL6DVxPNwGLnuYYNAKuSz8w0VaZoRuvUNtMp/i5dbn1TUndo+21RdBk40w\n6e6n6TPhIwAWHnt6tL2usAvppVYA6L3PZzBs1IUwOXH/TpTxzsTfcdZUc8KJwwAYM2UpmCZn7teH\n/3AuH3EcWaWrWv9i6iknKCKtTSEhEREREREREREREZEmrKr0sXKdt72nsc1YsCx+EQQ7YTKxSghN\nmgx3jsoDYP5sJ7kFYd444SkqP5xLxDEKgLAnLbpvxYBBAAx66yUA8ilnYRPn9tbZSM9sXmWRFYsd\n3PjXbtz7n9X03aH9qkx0gMI4spHCjXIoDZWvvn/g3xjhtgmobMk2NT9hCwbImz+b3hPGYfdbFcWy\nq4oJuaw30O0XdgFg9JTWXXJw5JBeKfuc7i3vzdwRAi1vfzsXWzhMKC1WFW7cBz/iqq4k4nCAYbD4\nlJFJQ0IAwaxYJa/y7Xe2Nuov7Fxe51xeZ2rOva02fxGRtqblxkREREREREREREREmtARlifaltTV\nxt+6cBIki2oAJryTFdfnxsfIcddwBc9h2hP/Lrqy74C4xwbWa3nQcTVJz+33Nv+O92/fW2Gkj9/M\nZvGfzmbvJ/Lyg/kA3M1thOvLx5h2OxGVkmk17qoKAIbdfhW7P3O/1YafULADpFzqOV36WbMpIm4P\nofSMuMSS6XDgzyuIBoBCaRmxPgxu5j4mM4QpNz8IWEGhbx57lS+fGRMd98u1d0a3F5wYW6pORGRL\np5CQiIiIiIiIiIiIiIh0GAFf/E37dOpIpy7p2DVlGRgNIa5GN4iLBw8j7HThLewSbZt+2Q0EscI8\nwzOnJD1eXXXzb5sY9UOnfJHBred1VUUfiXruzgJGDunF/VcVJu1fMMsKA1WTxdqd92zLqW2zApmx\nZQg9lesAKyQUMW0JnzmtyW5P/UERtits2FrCLlfc4/u4lSH8xPJDjoq2rRp6SFxVoXmnnx/bwaZb\n6iKy9dByYyIiIiIiIiIiIiIi0mEE/IkhIRsmO/IHSzJ2oK7WvsFjfNWoGkTI7aF0t71ZcMJIfnt+\nVwB2G/MshxXl8EXJ3nH7vfZoHve8uqZZ8wwGjPUegwrBCMCPn1lVS2ZNTUvaH4lYX2vJYNrVt7bV\ntLZp5TvsQtep38e1ufEDUFnedgGQ7n2DFHYL4fcazPo5/vujJJC/0cfrCMt9bQnCKT6ct+/flZxM\nT8r9fPsMwTlvLsP6F7TW1BK4HAokiUjrUkhIRERERERERERERKQJHaFAzOxf3XjSTfoNCrT3VFpd\nwG+QXxSivMS6hZGLtUyQB1+zAkLrG/vtXDBN7D4vPzCMM3ibo/mEipJcvuDVuLErFm24ksesqW6+\neD+LlUvix777Yi4nX1yJ29MRvmOkvTSnotReB3j55dt0LtnhE/7IOLb1JyUJSw9CLCRUVbHxnyub\nyltrIy3DJDvPSoo9OnYVdkeE20/K4rhBv+JnYJvNpSVsKSGliMvNzwymiJK49i55GRRlpw4J8dNk\nME16bykXKiLSDIoiioiIiIiIiIiIiIh0cPdd0Znbzu+y4YFbgVBVkJyaNZy357fszm/Mvvhq5px5\nMSvpHh1z3SMlZNi93Mo9zTuoYRBxuhjGJJbTCxdB7ISj3W9xBgBHnF69wUPdf1Vnfv4mnVXrhYQ+\nGZ3N5Ud1p6Js4269+H0GbzyeS221bkJvDYLNyPE5bSEGMI/egYWtPh99V1mW/OXEuMffPPoKtnTr\nPXz7BW3z2RoKQulqB6Wr7dw+8EX+PfINuvQK0bmTl0py2a5zWZvMY1sUdrkZzK/0Ynl8R3PeIAoI\nichWRiEhEREREREREREREZEOrDmVSbYm7kXLyK4r5enVZ/Ebe7Lg+DMo3XUwa4jdyO/RN8jMESO5\noftLzT6u6YhfXKFxSOhYxpNBDaHA5t0M9tXZuOLoHnzwSjYT3s1k8Z/ODYZ/vh6XwWf/zeaSET3x\n+3Qzekvn98VuvXXvmzwx5Fy1Bjd+chfNa6tpiWHw+UsfAjDzwqtZNexQwkWJy3v98L/0VvvMXbbA\nBcDc6R4Oevg6Lhl9DjkL59J7wkeAVe1GWkfYnfjcrttuB2wKAInINkjLjYmIiIiIiIiIiIiINKWd\nQzqRWJaFuhqD9MytOzXkCzlJoxJbfUkW02YnlJYeN8Zj1uHw1hH2pLHigBFkL1mw0edpCAmdzttk\nUEctmUyeGOKsayo2+xrefTE37vHoKctSjvXWxkIl49/IZtLn6dz2fAl5heGU+0jHFWgU9AoFkwcQ\nAmEHHnxtNSWpV7bzHoyZsjT62OvMTBjz/F2dyC1Yw877+Fv8/A0hwL9fNAfq841Hjzw82h/eAkNC\nxhZSqyrsjD2370z8nVNH7MqfIy9he4WERGQbpEpCIiIiIiIiIiIiIiIdWCQS2579q6f9JtJGfGEX\naXhJX1sCgGm3E3ancSMPRMecfso+pJcWE3Kn8d3DL/HxO98069gRuz263RASChNrqyhztEoVkUgT\neZ/Gr+8HL+ewZoWTX79LixtTXWljzNO5hIKJ+2/dkbEtT0MQxO2JEPCnCAlFnLhp+RDKtsBowVDH\nikj3pO2BzawolsqHr2QDcO5LZyftT1btRlpG4ypNwawcxkxZyuKjTsamjJCIbIMUEhIRERERERER\nERER6cAikdhdzNrqrf/X+t6Aiwxqo49Nm42Qx8Nd3BFtS8NLwewZZK5evlHHNm1WIGjqDffR3VkM\nwP78EDemeHnTizAUdQ9i2EyyHTVcwr+j7X85o4pr7i9Nuk9NVerXra4msS+yXvLn3Rdz+GR0Nl+P\nS6x8Ih2L32u9XzNzI3FLjzVm1vhx42fSHY+35dRkPTsXLEna7klrnejdrJ+t8F82VUn7t8RKQk67\ngdth6/D/HOlWwDbsdse1t2ToTERkS6HlxkREREREREREREREmmC2c62WxlVoKsrsqQduBUwTllUX\nchiLo21htwdbKISbQLStoQqLZ13Zxh3fZoU21g3ckSHdX+WPJTsyiDn4cvLoWbmM5fRi0oR0Tr4o\n+U18gHBNiBP6/8q/3X/nvZmDo+0FRWFyUywR5vcakJf8eDWVia/pa4/kc/gpNdHHwfqKNP95JJ8R\njdpl47X2uzlQHwzqvm4ecyI7JB1jLynHjR9vQVErz0aacmiv31kxezuGd/2dhfMzGM43fMtBuNwt\n/10SjH18pQwJRZyuFj9vaxvQOYsBnbPaexrN8/DD2I84gpN36dHeMxERaVdb/58ciIiIiIiIiIiI\niIhswRqHhMY+n8ukCentN5lWVldtUBtOo2+jkFDE5aaqdz8AxvBX/o+L2NTaD3+cewX+7FxquvWi\nZI8h7MgcDMBTuY55DATA72361kmk0kv3eT9TOPNXfMSWfztxvz/IKwgl3SdVRRlouspQg9xOTaxX\nJh1Kw3JjXfzLCQZtvPtiDtUV8a+xHzdu/LiqK9tjilIv4nRSFFnDXaN+YRzHcTP/stojG9hxEzQO\neFYec3B0u6pn3+i2syZ1OFFawD/+Abvs0t6zEBFpdwoJiYiIiIiIiIiIiIg0wWzfQkJxy40BPHt7\np3aaSetruJGe3jMtrj2YlYM/O5dT3R9yES9H29futMdGHf+PC67ivQkz8Od3ImKP3bRfve+B0epE\nn4zOjgtmrc9LGunUAVBLBgA3cT8n//UAdlr8ddJ9GpagSqamMvmtmupG7W5P7Jvw0sO7p56ctLtg\nlVUyphNrAfjglRxeuKcgbsxSepNOHT5VEmpXEacLWzBIoaOc4xiPHeuNHw63/BJUDZ9t97ruhPQ0\nVg0ZDsDHY79m6g33AVDdKDDUXFosS0RENpaWGxMRERERERERERER6cBMrz+xzQRjK7w73LD0Vk5G\n4jWH3W7cVRUAfPXkmxhmhNJd9trkc5mNQkK/XXETR/30XfTx2cN6cf1jJew+1Be/jwk+0kjDC0Ck\n/m+xc7Aqwhw66hzg7IRz+XypXyxvWQhwJ7QXL3OQtYsVOAkGYvvXVMUvT2a2d4pN4hVXAD0oILYU\n3prlsdtxKxY7qCKHcRzP0buXt8MEt2wt+bEXcTqxBwMcfvFJADiwKoG1SiWhUut9e1RgHOlrOvP9\n/S/gWbcWDIMFJ46kdLe9qdxu+5Y/sYiIyHoUEhIRERERERERERER6cA8xcXAdnFtE97J5IjTatpn\nQq3I77ciAM4MOxNefA9PWWm0L710TXR77S57EkrP2LyT1aesarr0oKZHn4Tuh0cVcfx5lfToF2To\n4VbloGD9/BpCQtfwBGvpxFU81eSpmqok5F0bv0TZYSdV88X7Waxe5mRAfUjIrKwDcqJjQkFwOJu+\nPGkf4fpKQvnEAkChYOz1f+eFXABqyQQUEmpPpi0+cNdQSSgSavkE5rr6SkJdWU2Xb6cTTkunNq2X\n1WkYCgiJiEib0XJjIiIiIiIiIiIiIiIdWMjhSWh7/bH8dphJ6wvUh3Ds2S7W7jqYFQcfmXRc2J34\nnGyshuXG5p98NiGPtbzZB5wQN2bcf3LilnfzrxcS8qTDk1xDev3jVKor7Cn7qkIZ/JN/YWLw7qfT\nuOzU6bjcEZbOi6WAPnyvKwAXnj1/g8eT9hWotSo72YiVo9l9WOz745dv0wF4YuCDbTsxSdD9+4lx\njxtCQo5161r8XP97KwuAQkr59erbWvz4IiIizaWQkIiIiIiIiIiIiIhIE9p7NadI2Aob7Mgf7TuR\nNhCsX93Llp24/FZjjZcK21Trtt8ZgKre/cBm3S7Jo+lwQEOIad2QfRkzZSlLDzsm2vfHuVfw2+U3\nJd3vxXsLkraHghAyHWRQC8Bu/36Ek/56IDv0K+fP6YlBqCGTX7fmXKHbOx1VoD4PFLbFFvMIh6yQ\nyNSv0kjLsN7Pw7tMb4/pSSO2YDDuccNyY+HI5lcSCvgMfvw8Pfrzo2SlFfqzE2F5ivCjiIhIW9B/\nRYqIiIiIiIiIiIiIdGBmwAoV3MQDfPrse9H2OdPigzTrSu3M+a3pcE1HF6q2lmqy5SYGZJYedmyL\nnmvpYcfy8VtfsPKAEdG2bKqSjr1pZBfmz3JFQ0wud/2d/0YJsuruvfAWdo7brxsro9szf/KwrjQ+\n3OT3WWGEhpBQ/3FvAbB9UTErlzgSAmo7LPgagMpyVRLqqPx14CBIH8+qaFvAb+PNJ/N48uZCsvPC\n7OL4g5x0fzvOUgBqevSOe9xQScgMJRu9cV5/PI/n7ujE/JkuAHr19XEIXwIQzMjc/BOIiIhsIoWE\nRERERERERERERESa0M6FhDBD1gzshMmoWsshJ1QDsHaNnUgYItZ9bW49rwv3XtYZ0wRv7eZXwgiF\nYsduK5FKKzhhy0lL6Jt21S0tezKbjaq+A8CwnqvFR55EF4qTDl2+0MV/Hs4nWGulB1weK7jl8Fup\nobJBu7L46FPxdiriD3ZkFI8C4CcW2nrg6iLuuiQ+ROT3Wrdp0qmLa++3YBJBv43wes9/ESUAVJXr\n9s6mau3KYNU1TvIp56T8Cfyvzzl06xOMhsEA1qxwUhPJIOx0te5EZIOm/vMBfrrp/ujjcKa1FJwZ\n3PwPvlVLrEpSLz+Qz5inc1m22ENXVgMQSm+5kJBhbP5nvYiIbFv0X5EiIiIiIiIiIiIiIh1Y45BQ\n/4/e5pzzlwNQsdbOZUd159qTuxGJQEWZVV3mrP16cdGhPbnyuG78/lNiRZ7mOnf/Xjx+U6cNjouE\n4eUH81i9zLHBsRsSqqqvJJSfntDnKyja7OM3ZfbZl9GZNQAM6rwqob+6wka4xgoJOT3WjXlnbQ0A\ns86/CtNup7pHH3ZkDrdxDwAH8H3cMUpXxz9HgfUqCTUoXDkXgGD98mYOI8TN3Bed38olTspKVE2o\nI6qsdtGJtYSyszl82WiyfOVUlsXfjlsc6UPE1TYhIYVIUvPn5rPwhDOZcvODLDv4SP4892/A5oeE\nKstszJ1hffauWOTik9HZAORSYR2/BZZLFBER2VQKCYmIiIiIiIiIiIiIdGBmyKpaYydMt8nfcOAz\n/wTA77NRU2lnbbGDT8dkJexXXuLgwas3L1gz7fvEsA7AwtkuJk1IJxKBNSsdfPVBFo9cV7hZ5wLw\nVYSxEcbeKSOhz7TbGTNlKWOmLN3s8yQTyMzGhslMdmbSmh15gBvj+svWOKgts16LjAwrRLB6nwMA\nqOw3EIC6zt0AyKWSnxnMGM7kXlJXQPLWJQ8JebAqFAUDBuEQhEwHaXijy6F99FoOVx3XHWj/SlcS\nr7LWQyGlBDKysEUidCqeT8XiQMK4sHvTA3zSshYddwY/3P8CNqcV3gl64btPMohEmn+Meb+7GDmk\nF1cc3Z3Lj+6RdMwMdmuJ6YqIiGyWzY/1i4iIiIiIiIiIiIhsJUaPhs8/h9dfj7WZrb0+0QZEgrGQ\nEEDfiR9hd5iEGuUOgoHmVwuZ+ZOH3gMDZOc17w54OAT2RncTImG4/YIuAFSWrWOXIV4Aipc7mz2H\nVPyVEbKoJpiTs9nH2ljBTCtotTN/AHAjD3Hydj8wYOGPADhdJm+/3hWAggI/dcC8085j6RHH48/N\ntw5ii/1t9mB+BRIDQI1VV1qhhE6sjWtvHBJqeG09+CjbcXeYvTlXKa2tsi6NvpQRzLCWlHLjp6Q6\nO2Gcu6K8rae2VWjNwkhGfYGftz7oR3FJOuEQHHx86vdvY+Nft17jhopuyezBb4x7//uU/SIiIm1B\nlYRERERERERERERERIDSUjjrLHjjDfjll/aeTcwb7w8AwEYs1BMOGYx/Ixakqa1q3q/7A3544Ooi\nHrq2+VV/Av74u/K11bFzrVziJOBruVsNQZ9JGl6C6ZktdszmCqVnsOKAEXFt/RdOIoCTnff2EgwY\nLFpkzSunqP45MYxYQCiFdOqi2z36xVeUqS2xgl+FlMa1R0NCfiOu2tDSEcdu5FVJW/MGnWRQS96C\nPwH4ikOjfWdeuS66XTR9apvPTZoWxgr4FJdYFdReur+g2fumZzUdJn0n+2we5Tpqu/bc9AmKiIi0\nAIWERERERERERERERESAI46Ibf/+e/vNY31TZ1hVe+pIvvQXgN9nBUmeeH8lo6csi7Z37xsLpQQD\nMGNyGgBL5rqaPGfj4knrh4SWL4xVDAoFY0tmWWObPGxKq5Y6mDwxnaDfCsiEPe2zFNPCY09PaHMS\nYtbPaXFt4fzEyjDJBDKy4kJC1RXxVUa8a63Xx9UlnWCa9fp+8+gr0ZBQIGBQU2aNLaQUf24+j3Ft\ndP92LnIlSfhDDjz2AFkrliT07b6DFQY7ng+ZdMfjbTwz2ZC8rE37ADNN+PGz+M/nv90Rqw529rXl\nnFL1Jk5CrVsKSUREpBkUEhIRERERERERERERAX77Lbb96adw0kng9UJ75zAG9LKqjwzrvyDado5r\ndNwYv9dGUfcghd2syjRPfbSSfoP8rFwcCwONeSqPJ26yKgiZZtM3qiPh2Pb6IaFH/hGrQhQOGXhr\nY7ca1hY72BTXn96NZ27rxJdzB+HBR8iTOhDVmgLZuUnbPyOWIBvPMQSymrccWlXv7aLVSQCqK21x\nwR5flfVg6YUX8M7XcxgzZSnFg4dFQ0J+r0FNmTWmkFL8eQWcyjvR/UPB5l2XtB1/2InbEUrad9j9\nl+HDzXucTNlOu7fxzGRDMrOSv24bMmuqJ+4zNTsvzLAj6rj/zdXc/XIxfzm9pqWmKCIistkUEhIR\nERERERERERGRbd60afGP33sPPvgA0tNh/uxNC75sLNOE84f34NMxWXHt85flsTdTmX/Vtbz93TwA\nXgucxV5DYzeea6psuD2x9ElBUZhFc9wALJtvVf5ZMi9WAchubzr6FA7FbngH1wsJ+b2xWwuL57p4\n/IZYaKhxlaFNEQg7+ZNBhN3tU0kokJ08/HMEE6LbA5nX7JCQt7AzFcSCR5GwEfd8+qpM3PiwZ8Se\nt4jbQ/reXQFYs8LBc/+yKkkVUoovN59MYq/79B/T2j/FJnF8YRceR5B5J52V0Nd9xUzcBCjZeyim\nY/PeK9LyTMPGSN4EYLudrKpCwUBTe1gMI/YmHD1lGc//byU7vvUiN53VjQEDqq3jpGcm/Z4QERFp\nawoJiYiIiIiIiIiIiMhWIRKB8nLYY4+NXy7szDNT9115WqfNm1gz1VTZCPhtjH4qL9pWtc76Nf7P\n7IPpcBBxuaN9oy6ZycBdrYozMyan4S0NMnDsq9H+PYZ5AVi31qpk40mP3cgOhw1eeySPkUN6JV2y\nKtyokpDfZ1C8zMGsn90J41YvjQ86PHVzIUvmOeMqEW0K09E2waz1NSz5VdO1R0Lf0JzpAPRlccqK\nQwAfvfsd0y+/EQDTZuM0xrIfk7iSpwB465nYvr4ayKaKkCd+ObPczlaQaN1aO+Vrree48thD8ecV\nxC1f9vVHmRt9jdJ6QiEIm3acHvjtqlv55pFXeMV9SbQ/myqAdgvBbQ0MWnG5LpuNl7mQV++bwKEn\nWmG8daX2DewEofpQ5ZDDaqNtez59HwCHXHUWZw7pjbOuptnhQhERkdakkJCIiIiIiIiIiIiIdFhr\n18L8+cn7fL5YBaBAAOx2KCiA6dNht93g/vvhww+bd57c1JkPIPmyThPfzeTBawoTOzZRspvRZWus\ntue4DNNmbc8eeSkAnfyrOGrvudGxa6syGPzYnfT57AN2e+5Brjz4SwAeuraI7z/NwOWOTwNNeNeq\nWFRRlniroHElobWrHVx3Wjfuv7Jzs67jlnO6cvawXkQi8PnYTEJB+OK9TH77MXkworxkwzfh20pd\n527MO+ksvnvoJeaeel5c36v9b2ImO+MkRCg9I+Uxanr0Zu6p57Hs4COZffZldKWYSQyjDiuA1PC8\nA3hrDXKoJLxeSCgtI0IWVawrbRSW2qUX/px8nMS+GR1OlRHqSBqqRDnS7YQ9aaza/1BOT499CLmx\nqtPk/7mRKUZpE6Zhw02AXpkldF81CwBv3YZvpfq91uv+j5zncFWuI714ZbSvaPrU6HZTnxubqhUj\nUyIispVSSEhEREREREREREREOqyddoKBA+G886zAUINnn4W0NNhrL1i9GtyJRW64+WY48UQwjNi/\nVH76yfr60EPw4IOJ/dMnxYc4wiH4zyP5/D4lLWklnlS+GZ/BikXx1Xe+/CCTkUN6UbIysXpOeYnV\ntjc/Y9qtX+kv+csJAKSVlTDs5XuiY9PqK8wMvfMadnr9OU6+N1Ye6YW7C/DWJr8lsGpJ4rJHptcf\n3S5rFOKJRGJjuveJrcMzgRHcvN+7ccd49aE8Xn8snzsu6sKrD+fzyHVFAPi8Bred35mRQ3oxckgv\n3n4uPqE1vdvBSefZJmw2frnhPioGDOLX6+7ikzETo10Df/2cnfnDetDUNxMQTkvnh/tfoHzH3Zh3\nyjkAnI9V5cnWaKk3b61BNlUE1wsPRJwuqsnm87GxQJHpchH2eOJCAb9+l74pVymtJNAQEspo9J7x\nxD6cGl67iNPVltOSZmr4jN37oVvY85WHAQgFNxzD8dUvwbjXe89yzGkHc8IJQ5OOc/i8LTRTERGR\nTaeQkIiIiIiIiIiIiIh0WCUl1tfXXoPCQjj4YCuf8fe/x8bMmNH84738srW/z5e8//rr4YYb4Omn\nrXM2ePzGQh64upCRQ3rxxy9uLh4RW47KW9e8Wg611Qb/d18BN57ZNdq2bq2NVx7Mj56jwdL5TiIR\n+GSMFRLpwYpoJSFvJ6uiT9raErKoju7zT+6PO192oz6ILV22vqXzkgQWfLFqNVO/jgVRaqtix5i2\npAddO9fx/FXjGcEX3Df51LhDNFTgWDI3/vjP3l7Aojmx4MSPn8UHZHpllCSdZ3uo7DeQMVOWbtYx\nQh7r+RvGJEZlPINhEF2OzVdjhYT8uflx+4Rdia9JQ9u8k87arPlI6wn46kNCWbHgXebqFcynPxMY\nEW2zp/oAagWqNNN8pmF9ZmWtXBat2BUObXg/X/3PgExq8FSuSznOn5OXsk9ERKStKCQkIiIiIiIi\nIiIi0sFFIiahcGSb/Le+b75JfH6OPNL62r//hkv6XHSR9fX5F2Ln+H2mdZ4zzjAJv/AC4See5G+X\nRThzZIRrr40dc+ZPVjWhf/29M35v7NfrlWXNWy4r2bi/H9MjyUi4+eyunHdAT+ZOt5boKqKEiN3a\nv+FG8+DH7oyGhPpmF3Mr9yYc50sOiW4vX+jisOMreXufm+PGjH4q8ca16Q9HtxvmAPFBoyJK+eCC\np9mhV6zEU1ZubL/Crol31yNh6N43ce02T3qEm59dw8RdLiDcwaus/HLtnRs1PuyOPX89M0oJh4xo\ndaaaOgdZVCeEhCJOF0fyafTxE1yNL68TACV77scZvAVAl55J1sGTJpm03hJtgfoCXM70+Ntv/VnI\nCL5g0p1PWA0bqEQl7cMIxz6/YiGh5lcSyqQm5Zg/z7iQBSecmbJfRESkrSTWLhURERERERERERGR\nDg1K7dYAACAASURBVGXummp+W1bR3tNoJ72aPXLBgtjN3Jz8MJXlqcM7o6618erb3mjwB2Dt2hLs\nl10GwJj9TgRgr9OAx5uewzO3deK+14o3OL+6mlhwYPGfTvpsnxjw2OeQOqZ+ZVWeCYdj12PDjIVN\nbLHj5GFVrdi/YDpGldUWTM/EWWfdrB7caynHHVzJR6/lAOD9ZSWnr7yfpzJOZlLtXinnOmF8ftL2\ndaXWc3ofVtDIiERwemuj/dUVsef84zezE/Y/e1jy59JXZ+Mw/2fs6JxDxN7xQkK/XzyKXf/vMQAW\nHXvaRu1rNCpF0j80F4B/31PAzc+UsGRdIYfbVhD27B63T9jl4mOO4c2PZ3HYxafQbfUcPio8BYDq\nnn14i6MxMPnKjK/eJO0rVGO91o605MGSlcMOYdb5V7LskKPbclrSTHkL5kS3N6aSkL/GxE4IN/6k\n/T/c8wzLRhzbInMUERHZXKokJCIiIiIiIiIiIiJbhXP/UQ6Ayx2h76BAtH3vg+oYenhtwvjGASGA\n3l+Oj25nLVsMWAU/jju3ssnzrr+cVire2tiv5G89rytrlif+He91tyxJaHPV33iuK+qa0DeIP/mO\nA7ir6xOsG7AjY6Ys5Z2v/qB4r/0AsAUDBAOxwMKylZkAHJ71XbStU5fEu+DjP+yc9BrKS605N74Z\n7qiNVc94+NXF0e1IeOOqpRw86jwyilcScTg3PLiNzRl5aXQ7lJbexMhEzkbPz8Dwn9bxpnk4e2gv\nghEndY6shH0iThc2THIC5XRbbQUXvJ2K4s6fRTW+OlurVsaRjfPl+9b7y5We/PZbKD2T3y/9BxUD\nBrXltKSZVg09OLrtwvoZEmpGJaH0GXPIpCa6tFsgK5sxU5ZS2ac/yw76iwJCIiLSoSgkJCIiIiIi\nIiIiIiJtqrLcRmV58349vdNgX0Jb5x5BHhm7KqF9+DG13PLsGh7+72r++vd10fYTLqjkwpvKN3iu\ngBkL+zhrq6PbLndiCOP6x0q4/d9W9aDsvHBCfzJ1tfE3mz8fmxgOOe3Qnfju0rvj2o5O/4Klhx5N\nKCMz2jZm8hJKdt8HgMEFc8muKMZbUBjt/+rZt5lz5sV4ykvx18XO+zxWpaSd0+ZF2wL+xJvgJ5+4\nIuk1rFtrVQpquIFuCwTinqtDf36RvQ+qS7pvc2SuWk6XX37c5P1bS9jjwZ9tVWPa2KWiarpb1ZMq\ne29H38D8hP5SW1FCm1lfLSp7WSx0FfZYobZQ/dcsqvHVmPz0rYvDD4e6TX/apQVMeCeTL/9XAIAj\nRUjItDdvaUJpH1V9+ke3GyoJNSckFKgKRpcaGzNlKe9OnAnAJ29/yQ8P/LsVZhqjletERGRjKSQk\nIiIiIiIiIiIiIm0mEobLj+rB5Uf1iG+PwMghvXjjiVwAKstsfPtxBm5PJOlxirqF2OvAWCpi9JRl\nuD0mO+7lp1OXMD36hkjLsPb1eEw86Sajpyxrcm52YmGfIXeP4sDrL4JIhCP/Wk1eoVVtJ68wxI57\n+dh9qI/j/nyBfjmrGbhr8iVm1te4khDAhHcTQ0IAu0wczSmXWMvLuT0R3qg7DX/uest/GQbfPPoK\nxYOHklZWSsHsGYnnKyjE4fcTqIldVx+WAJC5eFG0LVlIyAxHMEh87sc+b70+DTfQBz9+J3s+/a9o\n/x7PPYAzHB/suv2FNfzrjdX87fayuPaH3lrFA6NXA7AzMxPO1dF8/PZXjB/79UbvN/+ks/jqyTcp\n3XUwTm9ikqebpzShbd2AHQFIX5MYhgt5YpWE/AEHN/8tj4kT4ZxzNnpq0oJGP5UX3fbE8nx818oh\nkW1Na4dixo/9mjV7DKFqB+s9aNYlLgu5Pm/AFQ0JiYiIdHQKCYmIiIiIiIiIiIh0cOZWtJrQg9cW\nJm1vWKbns7ezAbj86B68eG8Bq5Y66dY7yHUPx4IUQ4+ow+6AUQ+txbCZFHSOLZflrK6k3/j/AlYg\nCcCdHgu7vPTl8pRz60JxdDt38Xx6fD+Rk/+yB51X/ckz41cxesoynhm/ilueLcHurWOvx+8iq3IN\nkeQ5pgTrh4RSsQcCZGRbBx2xzxIyqKO6R5+EcaGMLNbuvGf0sbuqIq7fl2891/vO+zDa1lAByEts\nqbXGy5E1iIRMnARZwHY8ec0Ehu65Oq6/4TgNpl92Q3S72/dfRrcn9z+RQYMqGbbqY/6y2xyeGrcy\n2nfOQydz8tjruPfOGXzBYQlz6Gj8+Z2o7tVvo/eLuNwU73sA+fP+AOAAYku9HZw1mZt6v5SwT0P1\noYzilQl9YY8HsEJCjb333kZPTVrQAUfFljTMyo99aK848PD2mI5soupe/fjy+f+ydsgQq8EbaHoH\noNrIIpMaJt/+WCvPTkREZPMpJCQiIiIiIiIiIiIibWbW1LSk7XZH8iRU8XInLmcIhzPWf9KFldh9\nPjxlJYz+YAaPvmNVW0krXcO+993AkPtuoN/4/xJuCAmlxfZNy4htX3xLGdc/VsI5o8q5Y+CL3MFd\nCed3V1Vw9MjDyVq6EFvAj6esFLvPx353XQuAjQhmpHmlLepq4scN2MVPZnaYsV/MimvPWBWreGT3\nWZVnivc5IOkxg+mZSbcBfPmdAHhg+UUMYjYABVjVfBqHhMIhIxqoirYFTRyE2I5F7FG4kB+ndeNI\nPiU9ywovuQjw9WP/AWDxkScx+9wr8OVZSy2ZWNf5DqcwZMGHHH7xSRx44yUcddYRFHSOnajzb1Po\nP+4tbrlzdzpTEm3/45zLk17rlm7WBVcB8B3DGT1lGaOnLOPdrhfhzHImjPXnWa/d9m+/nNAXcboI\npmeQTVVC39YUKNySzPnNzdfjrPffw/yDvE6N3lA2GwuPPY0V+3f8IJzE2BzW51g4uOE3lTfgJMPm\nZfFRJ7f2tERERDabo70nICIiIiIiIiIiIiJSWx37m9ZIBHpuF2D5QhcASxaksd1Oa6P9Nhscdvlp\n0SW2xkxeQvqa1Zxw/H7RMUPuu4Fj2Y4POAm3O/lN3oOOjVX+OPDnd/HMS71s2LGnHxLdru7ei6yV\nVpDHRoTIBkoJXXlcNw46tpZwcSWQy6mM5R1OY/5MN3mFIU49bBce52p67umAaWCLRHBVVQL5OLxe\nALydOic9dig9I7q9et8D4/oaKgk5CPMre7GCHuSzDoA9mQbA/nzPDxxAIGDgaRSmigRjS4o5fNYc\nsqimrv51chJk9dCDGTNlaXSf9z/9lTP360Ok/u+TbfXLlTVU0Em21Nb6qnr2ZcblN25w3JZoxfAj\nmHHpP9jt349gC/iJuNw4a2sIZmQmjDXtdiDFc2YYvPPVbKqGPwvrfcuWl0NBQWvMXpoy+klrGT63\nM8Q/go/yhfvtuP6fbnm4PaYlm6EhXOrbwCpipgm/lG5PFyOXhDekiIhIB6RKQiIiIiIiIiIiIiId\nnMnWWR4k4LMqNUTC8PazedH2s4f2wumKv+aLR1jLL3lsPs4c0jsaEAJweOvY46l7E44/hjNZRF/O\n3r83Zw6x/vX7yLp5v37lorS1a1i9zwF89eSbfPjBj03OuyEgBFYQxllZmXJsMADlJQ7efzmH0Fov\nXVnFQXwT7XeWWpV9ruFJTp72aLT99PlPADBq5tUABLJzkh6/IUxS2Xs75px1aVyfLz+WFknDxwAW\nsPCYUwHYnnlEMDiNsdY8/fFVjiIhcGAt47bfPddZ191oeav1lxsDwDCo7dKdMNacKvrvkDDE5vcl\nvQ6AT9/4H18+99+U/VsDf24+AGccOBAjHCZr5bK4oFcqP979VEJblScxDbR6dUKTrK8VPk4z6its\nNVRyCrvdLX8SaVN5OQHyKGf5Ek+T4+bPtMKsxWbyIKeIiEhHo5CQiIiIiIiIiIiIiLSaWT+7KVlp\nT9o3c6p183VdWWL/ojlu3J74Cj1rKGJ1pEvC2MP+dgq9v/wkod2Dn74siWsb8q8bWUMRL36wINqW\n9+dMCub8Tl3nrhTvewB1XXvwzSOvMPH5sRu8PgOTrEULUvbXNaqQVOt1kkMlvYiFjNaRFze+bIdd\nADj066cwMRjK5PoTJV/SzFFnVUMq3ueAhDG+giJ+GXVnXFvx3vsz8YV3qS3qigGkYVUJCqwXErKV\nV0YrCTVovLzVmv0PSjqfskG7RpcbK1jwR0L/GcO3T7qfL6+AigE74i3cum+0rxx2aHR7xKXW0kRh\nd/IQwncPvhjdXnboMQn9l3ePBaoaqgeVlbXELGVjZeVZn1WBkLWAR9ilkNAWz2GnE2tZtiyNd/8v\nJ+VSfssWWCGh0zM+aMPJiYiIbDqFhEREREREREREREQkqdsv6MwdF21eaOP+Kztz7cndk/a98mA+\n4RC8+URe0n6/L/5X2EWUkkti1Z78ebMBWLvTHs2aUxGlHHXX+aSvXkG3H77kyPOsAEbjJb1W7X8o\npXvsy9TrEysUNWYjYq2PlkJdbewavDUG2VRxDLFAUxBX3PjvHvq/Zl1Dg2WHHUNtUVfmnXpu0v55\np53PyqEHRx8XzPmd0t33ZsVBfwHAg1XZZ/1KQvm//xatJNQgk9i6O94+vZKeb9b5V/IsV3Aer/IX\nPks65lXO4zkui2tLtuTW1shbFAu5dZr1GwA1XXsmHbti+BGMmbKUMVOWRitGNRbOjFUgaggH1Wxg\naSRpHRmZ1mfAJfwbSB38ki1HxOEki2pm/5nLBy/nMPXrNEpXW+9DX53BmKdz8fsM0jKs1/7awpfa\nc7oiIiLN5mjvCYiIiIiIiIiIiIhIx1K83PrV8cLZLVcNo7baIC3DxLCZmBErkDJgFz/n7B8Lm/To\nFyArN8KcadYN9h7bBVix0JX0eEnP0bUHnf74jbDDiT83j/S1JSnHdvnlR044cVhcm7egMGHcgpPP\npu9n71M4c1pc+9xTzqW2W09sT0UIeJIvFxUKwVM3d4o+rqxx07M+5PR3nuYZrkzYx1vUlfH//Ypj\nTz8k2jbtyltSXkdd526M+2hKyn4Ad2VFdHtd/0EA1HSzgimpKgkFcSZUEvqW4bFjpicvq1ExcCdy\nerl4ddkFKedzHq8BsHz4EfT89nMAIvZt93aFPejfpP0aB6tycqCyEqqrm9hBWk0kAhlGLc+ZlwMK\nCW0NIg4HbmLvzadutn4+9OofwOEyWTTbTacuIRo+utI9oWSHaXUpisyJiIikpEpCIiIiIiIiIiIi\nIhIVCcN1p3bjulO7xbWFgrB0vpNlC5xUrbN+tVxZbmP5QmfKY4UaZUwuGdGT8W9ks8PusZuuP3+T\nHjf+ynvL4sIqR56RPPFQV9iF5cOPSGj//ZLrAKju1RdvYaxiy/9e+4TZIy9NOc/ofNOSh31qu/RI\naJt2ze38ecaFGJgE3elJ9oKxz+dGl6IBWFLeKbpkV18Wp5xHde/tqOg3EIA5f72IP/960Qbn3hSH\nry66vWqYFT5y1lolZ6KVhALxd5qrC7pht8UHgZ7k6uh29861Kc9nRMJxjz8YP5WJz49lyq0Px7X/\neM/TfPr6p4AV8NpWhTzJv382JJiRyYS8EwAYW78y3ssvt9SsZGOEQwZ5Zjl2rKoy/pzk1dFky2Ha\nHQlBSbCWF1tUH6B97dF81q21qgulpaWuKCciItKRbLvRfBEREREREREREZEthJm8aEurqKlK/NvS\ndWV27r6kM2uLrV8pF3QO8dS4VdxybhfWlTp46K1V2OzQtVd8JYX1Q0DjXs1mt76r2TW7ji47O5kw\nqU+075RLKrj4tkNY3O9lFv4xFIDuv/0AHJ8wn1VDD6Zk932iVWgApl5/L9W9+jLpjsdZs9dQTJvB\nScfsA1jVdn6/9DqKpk+l0x+/pbx2w0x+k/fnG++jtkt3KgbuSMidRnXP3piO+l+v222YJC/l0L1v\n/A1mX8jFe5wCwEm8z7+4mR+JVTOKNFpSqrLvAHIXzaNiwI5g27y/97X7vLFz1M/b7rfCQSkrCZkO\n7A748pHR5C2Yg6d8Lbu/+UK0Pys7RKqYkBGOhYQ++OgnvIWd8RZ2pnT3fSicPpXtPn7HmovLTcXA\nnfjpnw+wIknoa2v1wz3PsP9tfwegZPd9WHDCXzfpOMGMLIYH3+WL2WvYt6e1VN4XX7TYNGUjOErK\ncGJ930+9/l7CaZsW/GoNqjSzaSKO5CGh9X3wcg4A7rQ2/EEtIiKyGRQSEhEREREREREREZEovy/x\njvLqpY5oQAigbI2DkUNiy4Td8NduceNverKEXfb18cxtneLaMcA1ZxEGTgZM+oUJWEGJw0+t5rwD\np5L34p88t3AYvwyv5Zdv0+n76Xs83+kH+q2dEXcYWzDIymGHUj5wJ/Ln/QFYy4IBLDnypIT5B9Mz\niLjcTHj5Q4bcPYp+n76X/OIjyUNCwcxsZlxxU9I+m2FimsnvwtvsiTeNH2UUAH1Yylqs5WtquvQg\ns3gFEUesKpNpswJDjYNDm+qnmx/isCvOsI5Xf46GkFBDJaH1Q0Jh04bDFmbNPvuzZp/9wTTZ4a2X\neKXnjfy8pDe4clKez6hPtX381hd4i7o06jD46dZHoiGhBguP37SQzJZq2YhjGTPi2M0+Tig9A1dN\nFTafl8z6lcf22GOzDyubIO/36TiwlvJr+CySLVvE4cBFoFljM40aImlprTwjERGRlqHlxkRERERE\nREREREQkKhxKDLzcf2XnjTrGlx9mJq1+5Pfa+IED+Ikh3MUdjc4JXX6dBIAB5BVaFTkqyOUC77/Z\n4SA7s869Ijp+9ZADCWbn8Fn9UlXFg4c2OZ+Iyx3dnnL7YynHrRu40wavbX0GJpEUIaFkz+Wlnf/L\n1Bv/FX1cPnAnPh77FbBeWKa+/IeRIri0MUr22o959cGFiNNa/qxkzyEA+PpaYa/1lxsLRew4jEaV\noQwDX34Bpwbe4jmuiFYkSqahklDY7U45RjZf//ffBGD4vtsDsO++UFjYnjPadkUCYZwEKd5rv/ae\nirSQVMuNJZNp1BDMyGzlGYmIiLQMVRISERERERERERERkahwaMNjNmTnvX2kWLkrqoByBg+v45dv\n0wmHDJzVVQDUdOsZt3iXq7Yad2UF3sJYRZqlh8eWIPvv13OIOJ1sivc+/ZVgRib2gB8Mg2Bm9kYf\nw2iiklAkHP/47O4fE3RlkL1kQbTNtNmIuNyM/Wo2IU+sEkVt1x4AmzSnZH4ddRfTL78pukzaiuFH\n8M4XM0l78l1YnFhBKhyx4TDiL8CX14mcRfOsa2siJNTw4kccrhaZuyRn2q3XwBa0qp243eD3t+eM\ntl0BWxrOSBB7oHmVZ6TjC7vczQ4JZUWqKJzxcyvPSEREpGWokpCIiIiIiIiIiIiIRIWSVL/Z6GME\nU67cBcBZvAHACedWALDznrXs+tLjAGSuWk7+3N8BcGAllnIXzmHBiSOTHiuclo7pSB4SGvfe93zx\n7Nsp5+HP70TE7SGYlbPJYRwbkaRVkyD2XP6Tf2Fi8EDPRwilZdD9x69ig+orBoXSM8AW+5X9zAuv\nZtIdj7Ny/0M3aV7rM+12QutVughmZuPJsCbvr4t/3YMRO3Zb/Ivoy++EPWTdNE/1nAMYEbP+nLoF\n0ZrGv/MNAGtGHA2Ax6OQUHsJGE6cBLGFmhcqkU1nbP6PqGYp32GXZi83VkgpOUsXtvKMkjNooydE\nRES2GqokJCIiIiIiIiIiIiJRyZbI2lhvP5vHwcfXRh+ffFYJH75dGD3241wLwB7OmbzwWYTt/5gY\nt/8zM48jnYc4l9cAMA0bpt3O3NPOp3jwsGbPo7Z7L2q790po//OMCynZY9+Nvq5kDEi53FgkbLVf\nx6MAOGtrCKVn8OM9T3P8yQdY+6dIU0VcbpYceVKLzLEpnvrckL8qfh5h047Tvl4lofzYWlbhJqo3\nfffQ/zHwnf/gy+uUtP/nf9yNLdQCJau2caGMTEp32YvMeXPg8cdx267A71f1prYWCsGE4GEATLnt\n0XaejbQU0+GwgpJNBF7zi0KUlzj4lb345do722xuIiIim6PdQkKGYbwCHAOUmKa5c5J+A3gSOAqo\nA84zTXNafd9DwNFYlZAmAlebZuxvNQzD+Ajo13BcwzDygf8CfYAlwGmmaa5rtYsTERERERERERER\n2UL9PsWz2ccIBoy4pbaemXU8X+Z+T8Va61fSWVQDUDhjKhWnDMIIx4dRCijnZS5iyeHHkzFhHK4a\na/yvo+7c7LkBTLvm9hY5DoDNMDFTVHJo+K21Hev6HN46fHkFccGl/LmzWmwum8KdaVX78a0XEgqZ\ndlxGfBUNX34s9NNUJaGynfdg8s57pOyff8q5mzJVScLbqYjCmb/CqFHUFB3MbyW78/3cMppaDW5b\nV1rTsuWWKsvsse1+A1v02NK+nPb4kNBfzqjis7etqnNfcxDH1FgBVz8eVg07pD2mKCIistHa8z8T\n/wM8A7yeov9IYED9v32B54F9DcMYCgwDdq0f9wMwHPgGwDCMk4Ca9Y51E/ClaZoPGIZxU/3jG1vq\nQkRERERERERERES2Fu/8Ozdp+/WPlWCa8Mh1RdG2pz9ayZXHdU86vnFIqMv0KVzw0Doeu8GqROOu\nX8IlvXQNZw7pnXIudUVdAbCFO27VmaaWG3OXlAB5GFgDnHVWJSGAxUecQN/PP2yjWaYW8bjJogpf\ndfxFhCJ2HOstN+Yt7BzdDrvcbTI/aZrD541uf12yOwD/HWsy9PC69prSNsdmT/EBIFs8hy0+wPrg\n9NO4lWqGMQmA1aFCztzhK97882A+z5vUHlMUERHZaO22ILBpmt8B5U0MOR543bRMAXINw+gKmIAH\ncAFuwAmsATAMIxMYBdyb5Fiv1W+/BpzQUtchIiIiIiIiIiIi0tpShVBa06mMxU6IeQzg3v+sZveh\nPvYY6sVhxAI7u03/kOED5gKw/e4+jj+vMtpXuc4ed7xHbyiKe2waBju99mxc2ydvfk7pLntGH9cV\ndmmx62kthmGmXG4sa/liwAoSAThrqgilWSEhe9AKSv3SQtWRNlXE5SabKnzr/eltyLRbS+00sujI\nk6PbNUmWcZO256quTGgLBTd/yUARgTV0jnvc48+p0YAQQFagkkd3eoJMp49QemZbT09ERGSTdOSC\nk92B5Y0erwC6m6Y52TCMr4HVWMs9P2Oa5pz6MfcAj2ItT9ZYZ9M0V9dvF8N6P9UbMQzjEuASgF69\n9D85IiIiIiIiIiIism26hBcZy+kA9N0+QOaKZWz/31f40lzIw46buHS3zzng9qf4iCyO2mEG1xw9\nhf5lvzHF/g/WhIsoXmYtR3Ur90SP+eNRVxCaVczyPofT87sJCees3G57pl1zB0dceDwA/rz8NrjS\nzWMYJmaKkFAEKyjVUEnIXVVJsL6S0LSrbiWYkcmCE85sm4mmEHJ7MDD55tsizmdFrN20J1TRCGbn\nxB4Y7RtEyfI4OHa3bu06hw7h7TfwnXcBnl+mRpva+aXZppStsXPV8cmrqUnrMNrwG3yVaVWzG8EE\nTuJ98lmXMGbge29YgVa98UREZAvRkUNCSRmG0R8YBPSob5poGMYBQDWwnWma1xqG0SfV/qZpmoZh\npPy7G9M0XwReBBg8eLBqRIqIiIiIiIiIyDZh3TrweqGb7rlLvQpiy465qirZ/5bLyZ87i+2BA0Pf\nw69WXzbV/PBnP7jPevwt49iBuZTMqAUK6dEoeJKXE6CbMYMqoz9zTzuf7ce+CsDk2x9j8VFWlZqy\nnXbHl5uPp6KcYIZVmWH+iSNb/Xo3lQ0TkxQhofqbxg2VhABqeljLq9V16c5Ptzzc+hPcgLDbwwp6\nQhhWLnbQva9VKSpkOhIqCQGs3vdAspcsaOtpJtD9+Ho77UTx/76i+MnnY2sspL4FIi3su08yotsP\nbvcYcEr7TSYFI8Xnk2yYDw8Ad3M7Q/gp5Th/bscPtIqIiDRot+XGmmEl0LPR4x71bScCU0zTrDFN\nswb4H7Bf/b/BhmEsAX4ABhqG8U39vmvqlyqj/mtJm1yBiIiIiIiIiIjIFqJPH+iuYggdlknzbvov\nne9k5JBerFjk3KTzRBoVjhnaaEmVA/55KflzZzXrGLlUAOCttAImDmLLkw166yVyli6k57efs+io\n2NJVRjgUd4yI0wVAMD2TMVOW8vON/9q4C2lDtiaWGzPrn0+j0eu3oIMFnsJud3S7ojy2RNzSUI9o\nJaTGvn7yDcaNm9wmc5PmMQwIedLpg7W8nSdtywoJjXstm8dv7NTe09hsTkd4w4Nki1JjWkHVfMqb\nHOdTSEhERLYgHTkk9BFwjmEZAlTWLxm2DBhuGIbDMAwnMByYY5rm86ZpdjNNsw+wPzDPNM2DGh3r\n3Prtc4FxbXkhIiIiIiIiIiIiHV1VVWLbBx/AwoVtPxfZdJMnpgNw45ldqa7Y+F///jjB2v8JrqYb\nq6PtnadNafYxPPgAWLHKurlqJ/mN83U77EJF3wFJ+xqCK6H0jKT9HUvq5caMkBV+alxJqKMJpWfy\nENcDsHa1tfhAKAhBXHy6Zlh7Tk02QsiTxjucCsSH/Tq6yjIbY5/P5Zdv09t7KpvNVlXb3lOQFlZr\npgGQQ2WT47aEpTFFREQatFtIyDCMt4DJwPaGYawwDONCwzD+ZhjG3+qHfAosAhYA/wdcXt/+LrAQ\nmAnMAGaYpjl+A6d7ABhhGMZ84LD6xyIiIiIiIiIiIrKeyfUFQkIhOOkk6N+/fecjG8eMxMIqD40q\n3Oj9X7jLquaRhneT59Cw75Rfi4DkIaEf734KgC9eeJd5p5zD0hHHx/WHXVZIyLR15L9ztdiM1HWe\njKAVEpp6o7UW28dvTWyjWTVfMCOTv/ECAHNnWM97aX1YSLYcYY8nGmT4zyNbTmDh5Qdjc/3+f1t2\nUCiyuukgiWx53tjuH/yN5ymk9P/Zu+/wqMq0j+PfM30y6ZVQghRBUcQuKig2FBXsDXTtBcW6a2dX\nV10LrnVfK5YVBcvaAQUsgAoGpSlFkB5IgPSe6ef948zMyclMKkgmeH+uy8uZ0+aZSeYMOc9vrseW\nZQAAIABJREFU7rvF7byJyXtoRDFINzkhhBDt1Gl/YamqeomqqrmqqlpVVe2pqurrqqq+rKrqy6H1\nqqqqN6mq2k9V1cGqqi4OLQ+oqnq9qqr7q6o6SFXVO2Ice7Oqqgc2ul+mqupJqqruq6rqyaqqtlwX\nUAghhBBCCCGEEEKIP6ljjgFVhYKCzh6J6Ai1UVplnwHeDh/nEt7t8L5WfIb7jduNhW0ZqYWCvCmp\nLP7bwwQcDsP6FVffBkBdbs8Oj2NP0dqNNXOp3a8FpDaPvpBp+Vuo7jNgD46sbXyuJBKoB2D+dK36\nU3GhFhKaeuxDnTYu0T5+RwKBUHu46oroNnHxSFVh+xa9NWI4pNhVjWROZw9B7GZDktbzEjdiihEF\n3TTq3MjtAR+/syeHJYQQQuyS+P8ahhBCCCGEEEIIIYQQYreaMwcURfsPoLTUuL6uDs48U79fWbnn\nxiZ2TV21fsm3rqb9l38HDnFzAt+SRG2Hx9C0qIGZANPyt1DRf/82H2PrSWcwLX8Lvs6sztAOzbUb\nC4e2lDiu9OBzJWJu0g5tZygklJdc3BlDahNFymcY+J0J9GZLZw+jXWZ/kERRo5AQQENd1/25HsDq\nzh6C2M2CFmNVtfVjLo7cXjbhvsjtskFD9tiYhBBCiF0lISEhhBBCCCGEEEIIIf5kxowx3s9q0pUq\nKQl++02/v27dHz8m0TK1uX5WTcwLVYIB2Lja3u7H8fuVqEpALQlX/GlJuN3YV6/8r93j6QpMSpBg\nc4GVcEgojq/E+50JqIrChfv9QFKq9rMq22HBipfMhI6HxcSe5Utw4cRNHzYCUFwU/9WEVixyRC2r\nr4vjN0sMjrKW21CJ3W9PxsiCFmOIbfHfHmLuM28x799v4M7I4oNvVrLqLzcy59WP9uCohBBCiF3T\ntf61JYQQQgghhBBCCCGE2GX336/ffvPN1revqPjjxiJ2H3e9ceq0ZLuFLeuszWwdW8AHNoxtyuZP\nmszcZ95iwcP/4auXjUGflVfeHLldOuhg3ClpAHzHcHr3rAH0kJDfldSusXQVJkVttpJQMLQ8nisJ\noSgoqsq29RZqKs2UF5vxeRWtBZnV0vr+otMpKNR36wFAL5cWWtlR0L73fmdo/L7I6amFE39Z6OCz\n/yZTUdo1pq9yfloQuZ0/8clOHIn4I6gm4+9h0GZn+9EjKBp2EqB9rv1y492olvh/vwkhhBBhXeNf\nWUIIIYQQQgghhBBCiN2mvl6/fdVV+u177zVu9+672v+nTIGgsRuRiBP1dQqrFmsVg954Ih2AfQd7\n2HewB4CC9e2buAx6g5FKQhtGX0hF//0pPG4k248ewZZTxlBy8JH8es3tgBYKUi0WZr05HYDvH3+Z\nzz/RJsyH8wPd06oAKOt/YOT4684eS9HQ4zv6dOOSoqiozdW2CKoodI03z0L/UABW/OQg4NfCYk0n\nyEUcUxQq+u3HPQOnAFBTFf8/O6tdL5F22e1aGvX1xzP44OVUJpzZk+tH9mDm1PgNF05/O4mntl4B\nwMEso6ZH704dj9j9kgs2dvYQhBBCiN0u/v+VKIQQQgghhBBCCCGE2K2qq6OXTZkCt9yi31+0CEaM\n0G5PnQqTJu2Rof1plJfDI49AINC27ZvrNnbfpbk8OiGHilITC2a7ALjz6WImPFwKgKe+fZeAgz41\nEhJaftO9fPnOrKhtVl5zG9PytzDnjc+057L/QUzL30JDdi7+BBeL7nkcAEdNJQDbjj0psu/P9zzG\nvGentGtM8U5BrxjUVFBVUJr96cWXI1kEQFW5Gb9PazsXNMdvJaG4rs7USYJWK9mmYgBefCCzk0fT\nOodTD9A5EqLfJ7XVZqb9J41Na+KzSstHr6VEbn/NyaiW+H2/iI5xlGufpbNf+5Rp+Vs6eTSxyalQ\nCCFEe8m/WIQQQgghhBBCCCGEAIJBlRq3v7OHsUs8HshJt3LvxAB33xu7esk7UxSmvWum6bTSKV/c\nTMIPFpKTn2bSUwEGHqji8QBok7Pz5gcZf0sbEy1tZLOYcNrMu/WY8aiyElJTjcvuuQcmT4aBA+GC\nC9pxrDITN53Rk579vDwxdQcl27VLvKsXOzhmZB0rF1gYe9nRzJgyC7OlO6U72/f6BkIhoaW3TMST\nmt6ufSNj7L8fAPu4tgMHYrZ16DBdhqmlSkIqmLpAJaEltz/Ah8+cTx5bef/FVIafUokNL1krlnT2\n0EQ7qBYL2UppZw+jzdIy9c8UZ0Lz75Mfv3LRZ7/KPTGkdrFaweeBNMrJoBxPqN2i2HvYq7Xfu/rs\n3E4eiRBCCLH7SEhICCGEEEIIIYQQQgig1utn5ortnT2MXVJXowC9eOpJhQPPjP1cJozPi1p26PB6\nct77PxRgysfnUdc9jy+W+TnwjeeA5wCo8LqZuWL3Tj73y3JxVN+M3XrMePPf/8KVV8KXX8Jpp+nL\nJ0/W/r9pU/uON31KMgDbNthYu9weWf7Oc2n0G+Sld3Azrh2FXDRyMNel+Zg+JYVjTqknb19f1LHq\n67RgS4KrUQWPOg9WfJQPPKB9A2vEn6BVNHpp1Zkcy6XkHXgSJfTr8PHinaKoXb6SUPmAAziMbQAo\nJhVzeRU2vGQv/6mTRybaI2ixYgu4OfbUOn5fYW99h84Wetv0HuDF6Wr+fTLrvSTG3hx/ISGzRRuz\nkwYAanru04mjEX8kd0ZWZw9BCCGE2G0kJCSEEEIIIYQQQgghxF4i4NdmXL2etreYOv+6Ss65qhpl\nqHb/9HGn8r+5v5G+ZgWD33ieC5NO4oOaMah/QM4h/qMTu+7NN7X/jxpFzNewsLB9x0tI0qttPHRD\nTuT2USfVU7DOSoapJrKsukK7/HvvZblMzS+IOtZ1J/fEbIG3vt8aWRb0BrHio7r3ge0bWCMBmxZO\nsOPlat7ga+upHT5WV6CgooZCQjVVJhzOINZQ9SS1i1QS8qRqFVCu4E3+G7ySoEfFhpffxl7bySMT\n7aEqCsmbN+DoHcRd3zlNiKZPSeK9F9N458eCVlvCBUOFhB56fQd1Nc1/bp13bdVuHOHuZyZAdV5f\nMLWvvaPomOwkO2cctGcq+9T/50Vs/3uf0w/puUceryOsZmk4JoQQon0kJCSEEEIIIYQQQgghxF7C\n79MnimoqTSSlNh9OGHJ0Azc+WIYr2biNtaEeAGfpTgDerzmLD1D5eW7Cbh/vHxE8ijeZmbGXu1xQ\nVwfPPw/DhrW95VhDbexJaK9Hob7WRD9TdZvHpqoK/iYFhvxBM77MDNyZObF3aoNwSCjyOKa9u6Vc\nuN1YSZGZ287tQfd9fDz5nlbJS1XpEpWE3OlalYz/ciUAG7clk0U5ay6+pjOHJdopZ9kiABzBenxe\nV6eM4b0XtcDZ4nlOjjihocVtAwEFuzOIxQpOl/5ZdMekEp6+S6/cYjLH53tIDQ3ZRJCA3dG5g/kT\nsZhNpDj3UCBrwniYMJ6UPfNoQgghxB4hsWYhhBBCCCGEEEIIIdg7Ait+v377H1dHhzwaP8ezfpzE\ndaf2QlHgwhH7GbYbO7Q3x91zfdT+DXW799vq6t7wordiwADt/6NGGZd3767fvvDC1o8Tfq08HoXk\ntIBhnc0epKHORH2tiWRFryQ089AJAPQ/0BN1vPdf0qc8t22y8PRdmbgbFNyqDZs1ELV9ezSdLA9a\n9u6QkKKoBFG47dweABRttkbWaZWE4v/33JuSRvGQIyL3t1WmY8OLO72ZlFsckNoZzbPjMYRG96Tw\n+cnraf3xg0Ewh04PNrvW6g7g0OENHHZcPZf/tRyg055LW5kJRIUj40lrFZ2EEEII8eciISEhhBBC\nCCGEEEIIIfYSjSdSiwv1oMLWDVaqykwEQiGi0XzORB4BwFZVicXdcrWHO+/bAMC6lR2fBK2tMvHw\n+GyKC/fuwEhTnlA+JxiMvby9vG4TdqfKP17ZAcC+gz306OPD06BVEsqu3hzZ9vSlLzB8VC0VJcbX\n3O+Dz9/SQ0J3X9KdJd8l8N8n03AH7bshJPTnqiSkKFDsix2mUVWlS1QSAlBNJmaht4az4UW1SDOC\nrqBpCMRmDeL3KZ0Sfu07yAtAdUXr7/ugX8FkUunx3Vf0nD+bV2Zv45mPC1EUuGNSKSMvqEUxqfEb\nEgpo50oTwbgOCQkhhBBCNCYhISGEEEIIIYQQQggh9hKNJ1KTUvWgxz3jcrlrbC5er7b+iIw1WNES\nQ+efOqTV4/ZKrwDgiVuzOzy2pT84WbPMwQevpEaWBbtGdmKXhMNAXq9xeUFBB4/XoGB3BBk4xMvU\n/AL+9fTv2PxuAgFw1yskY2w3lu2ooLLUbAgL1NXEviz8/ReJBLBQx661KQrYHRSMOC1yP7iXB00U\npflfZFUFk9J82794krNsEYewLHI/xeXuxNGIXWFTtBNO03aCe8L6lTYAyktaDwkFAmA2qxx/1zUc\nd/d1uJJUsrsbQ4oWa/yGhMx1WntOE0GW3PFAJ49GCCGEEKJtJCQkhBBCCCGEEEIIIcReIlwpyGxW\nScnQJlqDofnW2iozvlD7l2BOesz9v3xrpuH+goeeB6C3a8cujy01UxtIZeneXVWmKXcoZ9E4JLRl\nS/uPowKb1ljZWWjB5tBDKSfcdjmZ61fgrlNQVYUkagz7pVpqCAQU3PX6JHtDXcuXhcsDqS2ub5Wi\n8MPjr+BOywAgaLXt2vHinKnFkFDXqSTUkJFFBmWR+33tWztxNK2TFkrNs6OdcHydEK6prdLO8V9M\nS25120BAwVlb0eI2FouxlWY8Up0OKvcd1NnDEEIIIYRoEwkJCSGEEEIIIYQQQgixlwhXW3C6gpFA\nUG21fgnQF6ok5PTXRu37yfSfcKdnAVCx7yA+mrWMutyeAIwZP5r+Pco4dFh9h8cWDiuFxwAQVFW2\nbIEnnqBT2uLsCbEqCdWEcjwTJrTvWBOvyKVgnQ27XX+xMlctYxN9WL/KAUAitXz66ULmvPIhACmB\ncsAYDGqo034Gvfp5ueZePRQSdtnAb9o3sGYEzVpYYG9vw9M0rJKQ2KhykKpVGekKvn7xfcyNxppn\n3/VwoNizvn3ubQB6/6y9h/3ePyYkVFJk5tVH0qMqFYXPLWGBVsI9SRvXY/O1/LkSz5WEfGhtPVuq\nJiaEEEIIEW8kJCSEEEIIIYQQQgghxF4i4NYm+BMcfnxehZpKE+NH9YysD08Y5/6+JGrfhqwcGrJy\nmD/pNb75v3fxpKbjTs2IrE+qLY20K+uIcDio6aT1+PFwzz2wdGmHDx3XYoWEqqq0/48eDXfcAa42\ndPdyN+r81GfZNxz9wK2YPNrCInpE1rnMbupzukcCXi53JWCsxFEfCgz95Y4KMnKMrX0ArI7Wx9MW\nAUcCAKbO6HnUSfZP30rAqwcGgmp8hhtiqcnrC8CBzrUA9HPFdyUh0bzszSuB6EpCqgpXHt+TVx6O\nXU2urV5/Ip35MxJZs8wYACzbqbUW7NlXO+GVFLXcajDp998xo5+D8r6aHrVNPIeE6kOtGVuqJiaE\nEEIIEW8kJCSEEEIIIYQQQgghBNBFOgK1KHHNGgAyarfh9yn8ttQ4gRueMHbSYFi+8gq9pE3hcafg\nTdHaTdXl6uETm8m3SxO14X29HmMloQQtR8K6dR0+dNyqrobCQu12OCS0YwcMG6bdTt78K8nJUFcH\nvlZyNK8/ryd3tpNLn9mf0nfmh1HbVSVmgaLgTs8EYOCX7wLGcFa4qlBWxSaS3SVRx0hN9kYt64jv\nnniVTaPOpbZH791yvHgVriYCkF2+AV+jl09VVUxK16gkhKKw85ChTGm4mJFJ33Fw8trOHpFop7JB\nQwAwZ2onVneTyj6z3kvC6zHx3cxEFs5JiHmM5QsdjBuax8qfm68AtmKRU7vR5COhrkZbsP+hWjqy\noV5h2yYL8z6PnYT0mWxY0BOMw/4+IaqsnMXSekWiztZl3uNCCCGEEEDLMW4hhBBCCCGEEEIIIUSX\n4VW1sEKiUovPq2BzGCdbw9V87HjwJKdir65k7tP/ZfsxJ8Q8nmqxsuOwo+m25EfsisfQKqy9wvtW\nlpsjyyrqvXhMbsDB8g015K33dPj48eiUg9MjVXt++y26LVXi9WOp++tXQC6zl5SRntl8Uu2nRUmR\n2+vpD8CRk+6P2q5fRjFVaD87AIeqVRtqHPAKtwQ6Y+KllJsyuZ98AP77zSYOOeks1OSRbGvfU42p\nqt9Afnzgmd1wpPhW4tOrsjhpIIiZYABMZlBVBaULJRBzluWTA3yQcTV1th6tbi/iiy8phZLBh+F0\nm6AU6mr074nX1Si881xa5P7bz6RxzMjoVl9P3pENwKTbspmyoOVqUqXbLYB+3t681gZAcppWHeiH\nL13Mej8ZgKNOqsfpMr4XAorFEBICcBVtpa5HXuR+vFYSctfrY3p0/xep49ZOHI0QQgghRNtJSEgI\nIYQQQgghhBBCiL2EF63yQxK1+H2KYWLVbFEjFU4cuFlz8dWsvvwmVLM51qEi5j73NqdeNYaU9UVs\nzhjc4bGFO0553Y3CKt4gfpMXcLCt2M/vhQ189FoKZ11RRUJifAUr3A0KV5/QC4ApPxRgbsOV1fq6\nzBbX78NmLPVFQC7LVvvod0DzFXy65dlZuVj7+daQ3Ox2g/N28EOj+/bQBL7PF11JKJlq6oN6NREn\nDRzECpbax7Q4bmFU6dd/Hla0X3SfT8FuVlFVBVMXCgmFJews6gIVoOIvOBIPslYsoV+oiUTjkNB1\np/QybHfIMGNFubARo2uZNz2RoadEB4iamvxoBkOOaSAtU6ukM+VpLTCXkq7dDweEAHZstdBnP2PJ\nNK9iiwoJWetrAXAVFXDWucOZ2K0Mv2839UDcjfK/1s6dN/ASQ9LWs7CTxyOEEEII0VbSbkwIIYQQ\nQgghhBBCiL2EPzTXml5XhM+rMP1tfYI24Fd46PpugBYcUU2mVgNCoFWkqew/iJJgJgXrbDG3qa9V\nuOqEnsx6P4mvP040rPv+ywQ2/maLBJaaVoRwJGgBCneDwpUjejHjnWRmf5BEvFn0jR6m2bbJ2sKW\n0YbyY8zlidRx4vppAGxZZ6Vos0Vr8/NTdJufbz9LJCEpSKKpln8kP2lY93LCLQC8x0W4M7Mjy2e9\nOR0bWvDI32hu3l2pTeCnUBVZD5CyeT0AAXvzbYZENG+o3dgNvMQJzAVg8xrtvRJU6VKVhBY++CwA\n1oZ6Atb2/Z6L+NGdIiBc6Sda30EeKkpin/9TM7UqQNk92tbja8KZPXl0QjbjhurVf1LSA1Hb1VVr\n01FlO82sXqKdY7zYIuegyj77AnD6ZaMYO7Q3Rzz5dwDSdmwynL/ihdOlnUfP5WNUU+ufpUIIIYQQ\n8UJCQkIIIYQQQgghhBBCAGoXmshvTsCjPYdwNZP1K2OHPWpJZP05l7b5uCUHHUY+RwNQVW6KVCQK\nK9psxdNg4u1n0nhzUjpV5dplR78PXv5nJn+/shtvPaVVmLDZg4Z9LdZQSKhev1Rps8ffzyIhUR93\nSTMT7825kyejlu1EC/Oc+NUzWK1Bdmy18s2nWsBq3nQ9aPXgtTmMG5pHMKBQX2Ni84BjuO7ALw3H\nujTxQwqHjuAiPiBg03/m5fsfhLu3Vj3E79fDWYGdNdjwYMcbqTQEcPiTE7X1NgkJtYcvqP0+XMo7\n1KOFyR66IYef5zqp8iVhUoIt7R5XyvfTq4WFW9aJrmXlFRPoQSGJ1LC9QP8Z9h6gnbj//vJOnAmq\noV0WwGdvJTNuaB714epDzZyGp/0nNWrZqsXGSj8pGdEhodpqLUhz32Xd+NdNOagqNNiTIiGhJbc/\naNi++4/zALT11bGrHnWm+lrtdcple9yHhKTmlhBCCCEak5CQEEIIIYQQQgghhBB7iXBI6F3GGpZf\nz8uG+2Vjz8abEj3R25yg1cbfeQiAG0/vyVN3ZhnW+7zGKcgbT+9JwA/lxdETpxbVWBIiGMpPuOsV\n9hmoTRZ73H/clKbPCx+8lIK7QXuMqjITH01OiYwjlh1bLTx7j/6caytbv6w6flSPyO00Kgw/g30G\nesmmBAATKimBCmZOTWbWe1rlJ6tNn51ft8IY2LG4GwjYHXz6qdbcZv6k10BRsFVXAVAx4ADjQJK0\nyXt/o5+Ru0YlmWoAQyWhjDUrAOJ+wjveeFStapADN9kUR5Y/e28WX5QM61IT9PVZOZHbSqBtlWRE\nfPn9gstRgCxKqGl0rqoqNzFiTC37HezBalfxeoznsQ9e0j4TikMhSH+MH7+qwsypzbc7BDj1gmqc\nlujWibVVJjasskXCQvU1Ct9XHMZqBrHmoqsI2mJXqrPhxR+Iv3fRa49lAFooVzXF3/iEEEIIIZoj\nISEhhBBCCCGEEEIIIfYSQb8WLrmQ9yPLHvv3ag5jiWG7AXkV7TpubY/enMi3kfsrFjmpKjMx9flU\nxg3NY83y6MozfxmWR/43rugxNgnjqEFtcrWhzoTJpI2/psIYUtm81kpt1e65lDn380Q+eyuFq0/o\nRdlOM/f9JZePX09h7S/G51BSZGbc0DwWzknggWtyDOuahqKa8nmhutFzyKSU55Vb+PcHRTz/WSET\nX9xJQ7oeOioNZhj2NzcqVJTX3zjZnrJ5PQG7g/puPZiWv4XC407BtbOIzNXLAfA7nMbBpGiVbbyh\n4JWqwox5fSlFe/zKIQdHjb9iwKAWn58w8gW1n7UDNxf1+gZbo+pMAApdp5KQP0GvYrVh9EWdOJLW\nKZLLiMmdkc32o47DYQ/g9egvks+rRKq02eyqYV1jyxdo55CmrSGBZluUNfZCyaWcdcUpUctrqkz8\n4+pukftP362dg6pIZentD6CaYp/jbXhjjiVe+LGgKjLVJoQQQoiuQ/7lIoQQQgghhBBCCCHEXsLv\n1SaAn7f/lRf6/JMXv9jGQTlbuZI3I9u8wZUE7O1rJ1Vy8BH0Yqth2QsPZPLFNK2ixNzPEmPtxvsv\nGqsVjeMdAkHjJclwaKi+zkQgVC2iqkLb5uuPE1m12M79l+fyr5u09lyqCv97JYWynR2sdtOohc4D\n1+RQWaYdJ2AscMRt52qVgF5+KIPaKuNjNW7dFUvpDj3lc7BrNQeykm2jziI3z09GToAEhx97ZVnM\nfbNy/YY2QIFGXXsm8rC2zO5oups+NmeC4X737m5Aq2oD8MW0pMi6ZRPupeqgwTTlcyVFLRPNC7cb\ns+PBk5rGAZY1hvVdKsyiKPgStHBfXW7PTh6M6Ci/w4kDtyHQ6PUokSplNruKr5mQUFigUTBn/gwX\n33+ZwO+/6p8d/5qynZPPqzHsc+ARDfSbN93QxjDsw1eNnwdrlmnnsZ6mQgBMsUoXEQ4JtTjUTqEo\n2ms5iNUEmoYzhRBCCCHimISEhBBCCCGEEEIIIYTYSwRDISFcNs5PnklqsodBb7+EBT1p0p2idoeE\nAJIbdRjr3ttH6Q49OFO2UwtJDDm6gWc+Kmz2GL3YSlCNHRJqqFUigZhF37h47OYs3pyUzqMTtCo+\nBeu1VjSFmy18+mYKt5zVg5Ki9geFGrfyqijRwzyb1sZudROIEQhqPGE973MX44bmRZaNH9WDv13Y\nPbL+0szPUABTo53slWWYgkGW33g3AFtzDuDAIxu44PpKElMCNNRpr1FVuYnCTdq4Hhj/Iw/zD21M\nLYSEAnbjZLUtVX9elWUmpv0nDYCBrGHriFGYM10czULe50L9+blih75EbH2sWoBOQcXnSqIsmGZY\nb+pClYQAvn7xfdZecAU1eX07eyiig4JWGw7ckQo8qgo+jwmbIxQScgSbrSQEkJwWMLQbe/WRDF7+\nZyZJqfpnSc8+Pi6ZUMmgw9yRZeHQZRp6tbonpm1vcayrcocBzbe3s+GNCnHGgyxKuZ6XUYBfr/9r\nZw9HCCGEEKLNJCQkhBBCCCGEEEIIIcRewh/qTGVyWjH5fAx8/032mfOZYZsB/N5iyKQ5DnuQa3p/\nQnq2n6ItVnZus0Ztc+fTJWT3CHDhDZWG5aMvq+KcA5dgxUdAbRLsCbVIq681EWwUyFn5c+zKDOZG\nu992bg8WzE5g0bdtr+IQbrfT1HsvpMVc3tjEl3YCxjY8kx/VWoVNfS6Nsp1mQ5sxgEOdqwDjBLij\nrASA6l592HDGBaRRyb3Pl3D2ldU4ElQa6kIVlUIT7t17+zgtY0Fkf5PP2IKssaYBsKDVyj08BsDM\nqcmR5b8wBF+Ci0BKMgs5lvNNH0XWeROTEW33RrfbeJnr6cdGfK5ECoJ5hvVb/T06aWQdU7HfYJb8\n9Z+o5g5W6xJ7XNNqVQGbDYfaEAkChasGNdduTFWNAUqrTY3Z4svToE8pWazgcKrc/0JxZNm2jTaq\n8/qSQnVkWc++PkPFocahoqt7fYJq1cKalf33B2DeU2+w4upbI9vEa7uxerMLJw189dIH+OScKYQQ\nQoguREJCQgghhBBCCCGEEEJ0cfW1Cm/9O43qOq1qjOK0YfJ7sTTUR23bh80dCgkF7Hb+sc8rlBdb\nmt0mPFGdnq1Vm7huYhlvLyzg4puqmHjCJ5hDFY2CjQqrZC5ZBEBDjVZJKCs3djUJu0PbqXH7HIAX\nH8jk+fuyYu0Sk8UWOyTUfR+9VMXmtdEBqIturGS/gz0oihqpLlRerIco5nyYxC1nGcMgz35cyAG2\ntYCxlY4zFBJyZ2ThdyViravV17mCNNRrl23Dr9OF4yuxl+vtyewVsVuVAbhT0w33gxYrV/EGAJ4G\n/bWz48Wf4CJg035n/K5EpuVvYVr+FlRL8z9jEa3P1qVcz6sAKGrs3y8h9qSg1YZd1duNhXOFhpCQ\nWz8fNNQp+LwK2T18XH1PGRarHhJqXFEo/xutneG+g43txC7/W3nkti9Ra1f46Ih3uPgmraLQCWP0\nc1xCov4BcGzKMoJm7XzjSctgWv4Wio49iRXX3sG0/C3MfGe2FhJqpcVjZ/CoWrWmyv77dfZQhBBC\nCCHaRUJCQgghhBBCCCGEEEKgVVKIZ99/obW1mvyvdMYNzWPc0Dy+/lhrC3Xtyb2Y82FqusjVAAAg\nAElEQVQS7y46AoBgggOTz4cvSa9u8Pa+dzLxsu8ACNja324sYHdg9ribXX/SOXqliGGj6rj7uWKO\nO6MOU+gKpMnvixkSStq0HtCCTsGAwn6HuHnsbb09zdT8Ai66sRKP24S7QYkKCUXGFztbFEUNxt6/\naLOVz6cks2qxnfsvz415fEXRqmeEO4dVlLZcaeXk1+8h+9fFgN5uLG3tSk64/XIA3OlZ+FyJWOtq\nIr+ATpcaaTc250Ntst1mV3GW6dU6Ao7mKyfV5/Y03A9arWShhZK++UQ73u2Hf0bQZCJgdxC0hNqR\nxfnvfzxTQn3yFt3zOAGbnZUcwK3Kcwznu04e2d4t/mIj8SNgteFUGyLnKneoAlA4bGmzqwQCSuS8\nWVWuncvOu6aKE8+uw2wh0v6xccWhBbNcADx01uecNP7CyO/+Ecc3RLbJWP0LANdvf4LRl2mfC42D\nQTu26iHEkSkLWgwlBuyOUEgovqaygkHwBSw4cBO0RIdKhRBCCCHiWXz9y0oIIYQQQgghhBBCCBHT\nyw9pba3mTU+MLHtzUjruhuip8oAzgdRN67BVV0WWXbru39yw8Z/a+o5UErLZSVu7iusm6lVscnrq\n1Xeucb2DyatVl1AUOOgot6EFjsnXKCQU0Jf7zFpgqaHBjN8PJjPk7evj9idKuP0JLdziStImmOtr\nTM2GhHYW6hPNm9ZYWTw/dpAmVpWgsPdfTOXRCTmxj79NO77PqzB/RmLMbRrL7uHjgJnvRO6bfD6G\n33Utoy4/I7LMnZ6Jz5WIoqqRqk/OhGCk3dj80M/aZldxlhZT0yOP1ZfewMqrbqWxRfc+DsDn/5sf\nNY6A1UYKVYZlR6Sswp+QCIpC0Bp6PeI9JRfHTKGkRfGhQ1l92XgOYDXPqrdho/m2cEL8kYI2G+ag\nn20bbTw6IZvqCm0qKCktiKOshIM/fAmAylA4qDLU2jA1I0Diti2kb98QaV/ZuOJQ2JhHLidn2SKs\ntVoIyJUciNomfe3KyG2nSz+/bNtoY2p+AVPzCzD5/S2GbAIOJza8+EIhoeULHVSUdH4bPH/oc8iB\nWyqvCSGEEKLLkZCQEEIIIYQQQgghhBBx5MNXU5j9gTGEUl/bfM2Mq0/oFbUsYWcRAINff9awvMeC\nb4GOhYRMXi+mgI+DehYCcMMDpTz94XYycrSAxCnvTGTIy09iLy817Ocs3oHJ5yV7+aJGlYT05+MP\nVbJRVYX6WhNmszaZfPjxDRweqk4RrkJRX6fg88R+LUq36xO1E6/I5Zm7s2LmXqa/nQLAMx8V8sCr\nO3ju08I2Pf8Lbqgi5+cfAKiuMPP1x4n846puABw0tCFq+/OvMwZzcn/6nl7fzTEs8ye48CZp47FV\nVwJauzF3fZPLtgo4y4qpz+7O8gn3UpPXx7B6w1mXMC1/C7W99okaR9Bijaq4kuCtxu/U2gZFQkJi\nl/kdDqr6DaQhXWt/Z0F7b9yRNbkzhyX+hAJWG4HQeXbVYgfVFaEQUEI9555xOJ5yLeB5yxitRWJ1\nuXbOSU4PMub843B6qnFs2QbEDgkloJ3zLA11AISL011+2i+G7WxVWrsxZ6NKQo0pfh/BFkI2/lAl\noYp6F3XVCk/ekc2jN2fH3Hb1Ejvjhubx+6+2Zo+3u4Tbt0klISGEEEJ0RRISEkIIIYQQQgghhBAi\njnzyRgpTnk5n2n9SGTc0DyAywdtWPldSi+s70m5s+9EjsFdXcdMNQ1gxchzDR2mVb/72VAkTTp5P\nBuXsP20y551+WGQfxe/nnDFHceaFJ9Bt8cKY7cb8Zn0sngYTphhP1ZGg7XD3Jd15/FZtgvihN3YY\ntnHXR09kh6tnhNVVKww5Wpvczu4RYMBBXjK7Bfj3B0WG7YYc3cDU/AKe/6yQ9Gw/b8zbyjFzJ3PS\nzeMi27w5KT1y+9JbKyK3nS5trEedWB/9RBqpz9ICRg0Z2vNxlhaH9lfx+5TIJHT4uTlLd9KQGXty\nvCXhENDTjy+OLHN5q/ElaG2DIu3GxC4Lht5XznKtAlYd2mucZqnutDHtzRRFGo6FNX0tgnY7GehV\n36ortXPhGZOuA+Bm/hNZV1Fi5vn7tWBbSrp2jrbiwx/QjulxG8+jhw7Xz23WutrI7an5BVwzbAEA\nay66CiDSotJigWvvK+OIE+r552v6uVurJNRSuzE7RXQH4LqRWiC2aHPsUM7kR7Vz8uR/ZTBvuotF\n3+rV5OZ97uIvw3oZPnt2hb9WC1mVDhsO8nsohBBCiC5GQkJCCCGEEEIIIYQQQgDx1mxp5tRkAL7/\nMoG/XqBNkp57tVad5qwrqnhj3lbD9nc+XcyZ/X+mhkQyVy2LLA+azdT03MewrWpq/2XB+iy9Ddeg\nb96P3M7r7+PCE1cbth07tDcA9qpyABK3axUpwiEhtVFnmoDZOOG77xfvkVSw0fjYNdHjTUo1trdx\nN0RvU1tlXHbdyF788qOTtCy/YXlunp+p+QVceWc5Iy+o4a5ntJBHRk6A/3xehN2hkrN4IQDX87Jh\n37OuqKJHH/14z39WyFMfFHHSPVdGjaexGe99DRAJ/jjLikld9xtHvvMkADee0TOy7UN/7U3Sti24\nM7JaPGYs4ZBQ/x56kKnPotmkbNlgWO8PhYZExzUN3+1Ee890s5XG2lyIP4wvIZFr0SpYpWX5qQ61\nFetfkA9AFqVkJVSRt6+Xey/rFtkvKSXI9qOOw4YXt1mrNtY0gHnqBTWR29ZaYwAu3H4sfK7qO+N/\njB3am9PHjeTE08q57bFS+h+oJyBNfj9qC5V4gjY7HqJDrVs36Pt43Aqrltg5bLgWAC3aYmXyvzJ4\n/j69mtzkRzMI+BWKtuye1mDBOi0kZHFKQEgIIYQQXY+EhIToooJBmDHjj2sX73bD77//MccW4s9i\n3Dg4/fTOHoUQQgghhBCiq3v5n5mR230HeZiaX8CFN1Rhd6g8PnV7ZN1BR7l57Ni3SDC7DfvnT/w3\ndTm5hmX13Xq0exwNmXpIyBQIkLJhLYPeeoEhLz5BQsnOqO17zpuFvaLcsKxxu7FxQ/MYNzQPn9k4\nAexoqCF1/W+GZUNPjq7Kk9nNGBJa+oNWNaK4SC9FdNcl3Vn5U/QEs9NdHSln5CosYN8PpwBw8nm1\nXP7XiqjtU39fRc/vvwJgAPoFk3OvqeTCG7Tg1j4DtYnvhESVbnn+SGs3gEX3PG44XtBswR+q9uQO\nVxIq2cHpl51GZq0WqAoHoybyME60n2npAYdEja014UpBvb+bpT9/9PZoQbP2enkTW64+JVrXNCRU\nSSoA/Qp/7ozhiD8xnyuRI/mZww4rx5UcZNp/0gBIRg/1HJmxGk+DQk2lfs7cZ+4MFL8PG178ARPL\nFzr4bqYxQJhs0kNCI68/H8WvBWacxds56vF7ACIt94a8+hQAqRvW4iiPDsuZWmk3hqIwnTFRiz95\nIzly+61/p/HoTTksW+CM2u6bj42tO212/WL61OdT+ey/yU13aRNfXajiUvuL8gkhhBBCdDoJCQnR\nRU2bBqNHwyuv/DHH/9vfYOBAKC7+Y44vxJ62335a9d/t21vfdndQVe19+uWXWqBPCCGEEEIIIdpK\nMTX/jaDGE5wAvfr5mJpfwNT8AkzmcOsWK8tvvBuAzz76ns2jzmXZzfdH9qnrQEAIMLS6qs/M5vRL\nT+XglyZxwJQXGfju61HbH3fP9fT58qPI/bL9BlPdb18Aqsr1SekqUgz7WfBjqzFWp0gt2sgVt5VE\n7r/3+lyaFkP6ea5W9eLlhzIMyx+7JYd5nxsnuZNqihn4/htY6usYfcHxHPHvv0dVxHCUFdNt0feY\nPG5O/4v+DZDGIaGefXyR2w9O3sHrc0PVnZp8q6vgxNNZ8NDzFA09npLBh/H9Y3o1IneaNt4j/v0P\n7XExhrwaT+oXDj+F9qrqo73m+737GkeMqAMgl+1sPW4koLcD8klIqMMW3fMYOw4/FjUUdgiHucK/\n2938hZ02NvHn5HNp4ZgEk5ttG/SWguG6N7Xde5FlKjOciwGGTbyJhOId2PCysyqJJ+/I5ttPjeeG\nlGClcZ/7byJ583pOmjA2ssybkhY1pvB53VZViTMULFVCn1nt1Wc/vRrRlnXa89uxNfo4M6clRdp2\nAgT9euWfL6Yl88HLqe1+bIBAvVY9TkJCQgghhOiKJCQkRBdVEroutmbNH3P8+fO1/xcVxV4/ezZs\n3Rp7nRDxaO1a7f+rVu2Zx9uht1dn9Og985hCCCGEEEKIri/gBzXYfPuSpiGhpkx+H0GrjdV/uZFp\n+Vuo66FNjlbsNziyzaw3Pu/Q2Oqz9WpEQZsdpVEQJnHHtsjtH//+VOT2oKmvAjBz6hxm/3dGpK3M\n3WP1YxV6cshArzCRTbEhsGOvLGf0hSdw7+bbOfm8Gt679lUuuvpEspfmG8a372APALm9jK3EQGs1\ns6NAr1axD5s57LmHOenGizCFKgrZK40VhM494whOvPVSDnr1acPyzEZjtTv118BqA0fovq26yrCP\nLymZLSPPYt6zU/hq8scUHqeHfdQmVTSqMVa2SDfrxwo4HFHPrTW1vfZh/eiLsNVW8+JhT6GioADf\nT9JaEYUrGW09QUrhdtSGs8fy7f9Ni9yf8/qnTMvfgl3Rggy57KFvLAkR4klJByClKvbvXsBmJ8NU\njrs+eorItaMQG15Ka2MHB5ObhIR6zZ/NmRefRHKjNpF+e/S5ylqnVSAafcFxnDP6SABMAT+q2Ry1\nbWM3OPUQ6uHH12MyqzTU6uOuqzY+h39N2c7bCwoAKC40Bodeezy9xcdqzsI5CSyYlRB6PIW/3XEQ\nANb2n5I7h3RFE0IIIUQjEhISootav177/9q1u7/lWHU1rF6t3a6tjb3NaadBXh74fLHXCxFvrKFr\nAm53y9t1xJYt0e+FZ5/Vb+fkIIQQQgghhBBt4vNpM3lWW+w/9v0+hYxVyzn/lMHk/jgvar3J5yVo\nbbkqgyc9s8X1Le338YyfWHv+5SQWxf7m0Mczf2bTGeez/cjhxn1TtaoSv9X1idqnxp9AEnr7mjwK\nsNXWYKmr5ZzTD+e807SqLN0XzefKOysYUr0IgPQ1KyJVlAYOcUdeM4criN0ZjHqcku16GKcHWmWX\njDUrIsv2m/ZqzOc0aKqxjHPjsVqbCW05yvXSzD/+42mttG0bXcK7hvv7BbRvu/icCW0+RlMFJ2vf\nXknetC5qXW3P3nw882fWXHJNh48vYvsy9Xwe5AEKrr26s4eyV5LcQ/NKDzoMAIdZr7hzP49Q2XcA\n78/9jYDdYTiXAcwmVF3M56We5s8359wW3f6rsfVjLiZos0Utt9VUc+z9N2IPhyhVNVT9roV2Y8Cj\naf9i0YgrmZpfwO1PlJKSHqAyVAHpm08SDef2sTdXsM8AH6Zmcke/Le1YqueFf2Ty4oOZ+H2w4bdG\n5YOsLY9dCCGEECIeSUhIiC5o+nR48UXt9qxZ8Oabu/f4KSkQ+hIdVVUtb/vFF7v3sYX4o7hCleV/\n/73l7dpj+3btOu8++0CvXsZ1kybpt/fff/c9phBCCCGEECJ+zJ/hYtzQPDzu3TdV7fdqx7pofCVJ\nqQHMFj2EMj5nGv+4sSenXn0WtppqBk9+JrKux3dfMXZobwZ8/A6OirKYx/7yvzOY88qHuzQ+d2YO\nUX2+Gq8PVaUJT/quPf9yFjz0fGR5hS+6MsXGuh5sRg8PHcAqDnzzP1x40gE4y/UWYyafNtntTdba\nwxz6/CNkrFwKgM2hsn6ljfGjerBto5XElCBT8ws4dHh9ZP/tW1uezB3w8Tstrgf46a5/kYj+jSq7\nXaXHd3MYO7Q3Jo8bVJXBk5/huLuui2zTkJHV6nHnPa1d3Fl5xQTons6Uwx+IrDuIXwH4YursVo/T\nnPps7dsr4ec499kphvXujOx2BZlE2xzpWcADPERdbs/OHor4kwlabQTNFlyKfg58hL9TNmgIAWcC\nAZudZFWv2Db25gpG8lXk/ixGNXtsJw0tPvbiOx8mYIvuw5W2diW9v5kZuT/m3GEkbduMam753Gyy\nmsgx658FFSUW5k9PZMs6K288YawMdPrYmqa7c+mtFZx5aXXU8o54/fF0nrhVb715QP/Yn7dCCCGE\nEPFMYs5CdEH5xmraXH01nHoq9Oix+x/rzjvhjDOaX3/22dC7N9x3H1x3XfPbCdGZNm6EylAl5A0b\n2r7f9F+K8Pqjv30a9sD1mYD2DaSdO+G+50rxeRTmfOSKLAeYNw8+XLytXddbT94/h5SE9vdkF0II\nIYQQQuw5X0zTAi9Fmy302W/3lNr1hzplOX3VvDxLm+ws2W4mPc3DZSPGGbZ1lpeQ9/UMCo89kePv\nar0KTOOWY7si2ExrmPlP6i1hlt18P6rZwvIJ9xJwOCPLL+n1FV/uPJan/lfEwjkJfDQ5Neo4jdt5\nNVbbXWud5k3S23Gdes05TH//W5zmZLweJ14PrPzJSe8BWqCocZ5pR4H+N9b5RIeltg07Wb8To2zz\nz397mKJjTqAfejs1mz3I8XddC0D/z99j+1HHM/j1Zw37VQw8MObzaazomBOZlr8FgJwlCzmFr5ma\nfzW9vv2CpPtqyZ/4JHWh598RntQMw/3qvOiKTmL3s9bXAeBO7ViLIyF2RcDuoJtNO58ecmQN/ARV\nfQeG1tlJrGrU1tFhPOcdx3y+4/jI/dOZyTIOYTvdW63gFLTaDCGhLSedQe9vZpKzZKFhu8TtWpvK\npu0Zo45nsWLyR7eRvO8yvW3lvf/ZyYFHeAzrH3p9B0u+czLqkhpqq0zMeEf77FDVjmcily3QP8+O\nYQGWhJZbpQkhhBBCxCOpJCT2CgMGaGGVrqCuTvsjJPzfrFntP0as9vOzO/5lshYFm89HAJCRobVa\nuv56mDmz5W2F6Cz33qvfLixs+351Hj8ef7DZ/3r2M04CPHZbJv++O4Nff4p+kxYX0+Kxmv4X3N19\nBIUQQgghhBCtUtv57/D07AAAZTvb9j28We8n8Wt+y61ONq7QjnXgp29ElmXlBshe/2vUtq4dhQyb\neBMDPpoSte6PtH3oCAB+eOSFyDK/w0nhsSdG7lf32ZfvnnzNEBACGJa1gprcXnTr5eeYkfWGdamK\nNlGcRoVh+Yezl7PjsKMj930JiYb1oy86kf6LvjQsS0zWLmjc+lgp51ytHXfZAu21f27kG4wi+oKM\nu1Ebtt5zPotaH7RaCVqtpFIZWdZvwQx9XK4kLA11hn3+N+dXPO0MiDRkZOMoKzEsKx+4awGvcPWl\nsKA1usqH+OO093dAtI0Uv9LFeikCNhtJihY2TUnUAjT+0Dk5YHfg9Ovnq6OPKDbsOxTjt1TNBFjO\nwUy+9dPIsvfnreHLt4wXhNePvggA1axPPeUszac2tyc5yxbFHPuv193R0lNDtVgw+fVrcCefZ6wW\ndO39ZVEBIYB+B3i5cLx2/k9MCTJslPZ8CzdbWr3m3ZzGrUBfYnzMtmpCCCGEEPFOKgmJLm/nTli3\nTvsvFrcvQHmdN/bKPayhHvr3MF4cGzUKCitaLtHalA8LoH37rd8+XjZstvH1PD+nndvytxYTbGZS\nE1r/w6V3by34A7B2LWzbBj2bVEVWFO1bFy4XlIWqqt56a8tVh0R8q/P4qWrYPd98jTfp2fp7pqzc\nR1Fl9LePmlKBYCvzA15Py1ejZnI669iX23iOt59J4+ZH2l6CWCJCQgghhBBCxLcn78ji13ztb/zy\n4uhKAn4/XD4sj0OObeC2x0u4fLixCkxalp/zrqmiVz8fWd39pKRrM5ZP3dMNgF5Fv3LO0N7UZ+Xw\n6fSfsDQYAzU1PXsz7+m3OPWqMRzyf4/9EU+xWTuOGs77c38j4EzgwyOOxe9MwOxxt9iGLExVTJE/\neLK763+bHcZi3s64kZ8rB1F48pn0mfVJZJ03JQ1PagZp61YDoKjRs7tJAWMlisQULcBlMsH511bx\nyespFBdqfxemmGO3nen/+XuY/D6Stm4ia8XSqPX1Wd0IWmyY0R8/vXJr5PbRD91BXU53wz6+RlWP\n2sqdnknOUm2Cfvh94wGt6seuUM1mvn3ubU689TLteDKxvUdJSEh0hqDVRoNXO++57KGQkDMBgIDN\nTi+1ILJtbmCbYV8vxnOEgko2JVzz3DmRZQGHk4qBB/Lh7OWcf+rBAFg8bgBDC7Hq3v3YfMoYjnxy\nIgClgw4mc/VyAOa88mGr1daCVmMloYycgGH9iNF1TXeJyebQzt3zpyeSkh5oZevYMnIClBdrzy2Z\nanZY5VwqhBBCiK5HQkKiyytrZc69pMbD9+til6ne0/7v7xkxl8/5tYQYbZqbVVCVCGgXFyZf9xYn\n3nct775t4cybilrcLy89gWH7Zra4zUcf6QGhsF69wOsFjwcSE7VwUPjLlY2rsrSnjZOIP9sqGliy\npaL1Dbug737MBqycwhyW/3YcBw+ycseTJeT137VQlNejkNXdT0lR7I/TJGo4kxncxnP4ffL1NiGE\nEEIIIfYmyxfqXwJ666l0Rl5QG7lfsN7KLwu1qjXLFjjZ+Fv0JGJFiYXXHtOvE1x6awWnXaxXRxjD\n5wAklOyk+4JvOHbiBAAW//Wf9J3+Ad+88C6+pBRWXnULhz7/CABLb76P3t/MZP1Zl+zGZxpbIDTR\n7E1JAyDYxgsbqqJEQj4mMzz/WSEjnriVAxZ+jN+TxACWsyb7Wn697g78jgS2DT8FAE9aOvZK7SKQ\nEoie3H2FGwz3u5WvZ9Bb01h9+U1R2/Za/zMA8ydNJmXzemxVlWT89gs5S/Pp+8VHzY59+9EjsNQb\nJ6Mb9t/XcN+1s8m1mQ6UOvE7XVjcxi+UBewtV6Bqi4aM7MjtoExs71HutNjXBIX4IwVsNo5PXcy/\nuJxTjt4CX+rnEp8rkcMDP/D41O306OPDuUSrJLR8/F0UnHgG3gtWGI6lttBkLPw5AOAs2QlATV5f\nVl02Hou7gRXX3Eb28p8i21QMPJA1Y6/F7G6gdMgRrT6PoMWKyad/CfiEs2p5/8VUMrr5eWLq9ja8\nEppzr6rm20+SWPKdk55923ZNsK5GwZmgf5UvKUX//MmklDXtuagvhBBCCBEnJCQkurzGgRZFgblz\nYcQIfVk8tezJ/yYhcvvtBQXMn+Hitccy+PErF8ef2bZvPABYzfo3J/p+Ox24tk37ba2o5/2fC1rc\n5uLztW82Duc7vuc4ACxWlaEnuln6g5Np+QUsnJMAaGGjptfl7nq6mIFDPCQmx8/r3pTLbuHMg7q3\nvuGfjLoX165ZvUS7AJJILSWl2u05/0ti9RI7+w72Mv6Btlf4aczrVrDZm69PbMdDPzZiVfzk9t47\nqzQJIYQQQgghNA11Ck6X9nfVvZfmGtZNeTot1i4G7zyXxq+L9CBI42o1Rzz5d6yhSkI7DxnK7xdc\nEVm3s1EbrpKDj2LNuOs7NP49xqREvnmUuWIJWYEAaeZqTKjYarQKP6rZzMqrbjXs5klOxV5dRcbK\nZRz1+L1Rh23KtmwtBy+bFDsktO4nvEnJFB43ksLjRgKQs3hBpHpPLL+NvRYUhaDValh+ygPNX5NZ\n9ZcbWx1nLEGbDbPXo39DCwjshlBPbc999ONJJaE9KhyqE2JPClptDLRvZGp+AdlLtUpB3kStupkv\nMRlbbTW9+mnXq5ylWkho6wmjqO21D0cpr/GiehNX3lXOm5PSOZFvDcdedM/jhvu/XPdXhrz6FI1r\nY/9y0z2R2z6X3iYyaLFQcPKZbX8eFgsmrx4SSkoJcu19ZQw52h353G2L5DTtQvbObVYOONzd6vbr\nVtp48JpuXDdRv2649AftvfwJZ5NI3W45NwshhBBC7GkSEhJd3nnnGe/Pn980JLRHh9OijOwApTu0\nt53JDElp2gW/Vx/JYPioOkzR1clj6v79N4D2rcDeX09nSN/t/LIxt+Wd0K4tBdr4euSynd/Yj8GW\n1fh9Jpb+oH1DcuzQvJjbW6wqfp/Ck3/NZsBBbh54tTjmdvEgEE+/FGKP6c1mXOhhvMTkADu3Wdm5\nzdrxkJBHwRWs4zB+ZQmHR60/nMUAWM0+igstbPzNRt/929b+UI2jgKMQQgghhBB/Frvyr/B7xuXy\n7CdFbNtojVqX19/HpjVatYHeA7xcdnsFj4zPidou3L6sKdcOvYxv04o99dn69YDa3Ca9wuOQioIS\nDGDyeRl57bkAFB57onGbGBdIwhPMp15zdszj/spgLh04l1/Xal9qmoE2AW3yegja7PTs62XbRm0y\nN51y/A5jaGPn4ccy492vOfOSkwF4b/5agnYHhz77EPu99zrLbr4fiK7AY6P5v/F+GX9Xs+taEp50\nNnk9kWX+hES6pzrok+nq0DHD6k89HftP+RwzMKdDVY5E+9SdOQbXjM85tr9UEvojOKxtvJj6JxWw\n2SLhGntlOaBVZQPwJqVgra9D8ftRzeZISKghIwuAseb36T4mj+Jzr+P43F/4y+3PGY694Wxjxbod\nRx3HkFefwlof+4uwPldS5PbA//2XJX/9Z5ufR9Bi1Y+rqqAojBjT9i/chvczmyEhKUjAB2mZWmBI\nofkv/21YpX3e/jQ3OuR3Np8B4JEqYUIIIYTogiQkJLq85GRoaFSBubLSuD6eKgll5fop3WHh/he0\nsqvZuXpFoJoqEynpzf9R0phjpzGAc/bGV/iFBwkGaDVoFAzA/15N4bDhDfQ/sPkLWWZTkP2Ca7l4\nzHre+XhAq2O6+MZK3nlO+2bk77/ueglsIXaXTWu0C/Q38DKb2SeyvHSn/hH42zI7+x/iabprq375\n0cn+bGIE8wwhoTsmlXDeXWdhCk0x1PudLPoGFn3j4sRzarjstopWWwzGz5lLCCGEEEII0VTAH72s\ndIeFS4+O/cWailIzZrPKy7O3kZCo/Wv//6YXMmF0j5jbT+aaZh/b7zD+ze1Jy+C979dh8nrxN6rU\nEK8y1qwgobSYi4frbbqstTWGbYLm6IsbiUVbo5a9P28tF40YCMBgVvLULV/zbcmNjPsAACAASURB\nVPAEHrs5hyPQWoo5S3dS1z2P2x8v5c6Lczk9OIN0yqlx9o06XnWfffng29X4HU4wmQBYeuvfWXrL\nRD1QoyisO+dS+CR0N7TvtB83M/bofYwH7GAIJxiq8nPx8dpzW3z7gwQcDpKdVnpn7FpIiJmfg8dD\n7wSpbLNHfP4pAL0lkCU6QdBqp+cPXzPsvvHsOPxYADypWqjFFTqn9vj+K/rM+oRe82cDWiARAIuZ\n7s4SioHuzrIWmo1pGtK1gGZ17+hzK2jV4DrKVl1FxupfOPvMI0goLWbVX27klxvvjtpuxG1/oXv+\nfOa8+hEjrzuPTaeezY//1MJN4fPzuNAVN3eNdh1eafEKnLZu+YLYAV4AdyhUJYQQQgjRlZg6ewB/\nRqqqEgzKf7vrv6OOMv5D/tlnwe02bhMvPG6FIUc38MhN3Rg7tDe3Xqb/0fTjV22/OOOzaBeLfmUw\nAE60lNT1p/WkbGfLKaHVS+18/lYK770Q/YdZVZl+SnAEtWMe2X1ds8dyopU6z+3tY9jp7fz2hog7\ncZSn260mXqF9q9aOx1BJaPMa/dufj4zPoaGuYxfsSsnkTp6M3C8hk6EH7+AYfoy5/befJPHU3+QC\nghBCCCGEEF2Zx92+vx8qSsykZgUiASGAtKwAqZl+snv4OO9a4zeectne7LHUGAGaoNXWJQJCAGnr\nVkctSyg2Pt9YzzFzxdKoZYEmgansZT+R2U2rDnEq2oT3mRedxP5vv8yoTx/ko49+ZDpjUIgOW4X5\nE1yRgBCgBX1Mxkuo3qTkyO36rBxmv/6ZIRD06acL+WLKFzGP3xYBq/FbJZ50bVJ/t8RMzGaQgNCe\noyhSsUnsEbF+zcJtBfO+/QJHpVZF25OqfckzqXALAIc+90gkINT4QEGzBVNAO59a62tbffz63J58\n/cK7/NSkDVlYXY88lt9wJwBVvfu14RnpHOWlACSEqh0dMOVFw/qs5T9z6LMP0T1/PgAjr9NaD/SZ\n/Skmn/FLsrl5Wnu12vLQ88RMMNCu4eAIXYv/8e9PtW/HTqTsnk8QIYQQQuwlpJJQJ1hfXMvPmys6\nexh7Ba8HVvyegw3wol9AufJvlYy+rKb5HTuJ36dgMel/dTjRex//NDeB0y5q/Q8uAJ9Zu5DVA63c\nuClUFrW+xsTCOQmR575htY26GhMHHaU/zmM3a+XMy4qjL7i99JBeHtWK9gdTrw2LgTNaHM/2LVZ6\nlq0B4r+sufjzqK0ycf2p+u/ksSzgZv4Tub+9wNgCYOVPDo44oYG2Cga0bxuN5yVyKGYEcwliIpMy\nLhh5kGHbI/iJnzlSf6yfndTXKoYJgqb21tCWEEIIIYQQewNPgxYaOerYSm489lsun3Rui9tXlJgj\n4ZXGXphRFLn9w5cudm7T/k7JpJTCY06gx8K5kfULH3yW9DUrcKfvfV86SCjegTcxGVttNRA7JDTv\n6Tc590z976olt/0japuDXnuGldfcxnr7QPp4tC89mX1eDnnhMQA2nXZOZNum7cbaw5uoh4QWPPwC\nZQccDMB3j7+Cs7SY+m49qO8Wu0pUW4QrCYW5U7X2QIqETYQQ7aA2Cjju+78p+BISIy0TFzz8f5wz\n+kjKDjiYxB3bovc1mzH5vPSe81nURaoVV98W8/GKDzumxfGs/suNOCrLWX/22PY9D0v0Z4KtqgJv\nihZ4OuWG85vdN2v5T+w8Yljk/omjq5n6QgZ1Jfpnss+nYDdHX4jz+2Kfc8PX4guHndS2JyCEEEII\nEWekkpDokuZ97uLnuU6uPD6PTWuie/ZsWN1KH59OEvBD2o5NMdcdNrzt4QS/+f/ZO+8wqam3Dd+Z\nsjPb2b5Lr1IERURBUEGwYkPF3vVnAXsXFeyK/bNjRxGwCxYQEQRpC1Kld1hge2/TJ98fmUkmOzPb\n2AUWzn1de21OSXIyk2SSc57zvMrLnBHlZWYR2ouOxaq90Iy/JZ1X7ksNuY1Q/UqbVmmz6PwiobT8\nrUH1ktIVX/UneRGA5xjHkIdv0dWx2w7fjishvjg6WDZP3+F7Mv+qwrpQVFc17CexstyAjEQKBQD8\nzTAWMFRXZ9M1twHoBEJ+xoyoXVQni4BjAoFAIBAIBALBYcmmVRY1TNi12e9ww6uXcf4lBbWuU1lu\nJCbeg9FuQ/KEtix4YVKuupxMIbvPGQnA0qdeZ2rmHnafewmr7h9/xLiS/PT7v+qywePGGRevpuUQ\nsdTtyWlMzdyj/m256tagOlVprQGI7p2khn8OJKowT122lhY3uu2u2DhW05dMBugcifYNPZdto25o\n9Hb9xOzbrUs7fCIhgUAgaAjbLtPuR5ElhTpHIFtKGkU9j8NcFXqirddootOsnxg8/l6On/iarixQ\ncNkgDAZW3T+e8o5dG7aayxWUl7w+2F0uFJFFBcTt0vq3zUalX1vepPURup1Bq7FoVhTT3ksI3R6f\nSMgdKVzZBAKBQCAQtEyESEjQIvnkpST+b6w2c87vIpREIa1bV+v6y9b/a8HtPtgtDI05r5CUHesA\n2DvkHNbdej9d2A6A213/Tj6PpHSWGfHww+y1XMaPapmxDn+wEwYrYqTYVt6gspg4Lc8vEoqVtRfF\nh9/I5/G381VbVicRVLRuzzheICZ7LxOGTVbrfj9R69wTCACK843MnBrL/F+jD8r+cvZoF8P3A8ZS\nld6Gib1e5LVOr4asn7evYeZ6m1Yr9524aEfYOjtHjCJr2Aj6o3R+DxiuhTtzOY+Mjn2BQCAQCAQC\ngeBoYs0SKy+MSVPTlXmK4OfOUWtD1j9paLW6HBPv5cqhPTjplSdC1g10Gk2mEEerJKZm7mHXBZc3\nRdMPG8p8g8P2pFS+m7tBzY/K1QZs5QYIofyioeqUdHJPViZR2VIzqEpvw7RFOyjsfYK2jzwtrFlF\nu06NPgZXTCx9WcsAluOIDz2IfCDUdItytGrCcGMCgeCoYe+wERQf0ytsuaNVIpYwgknZZMRcrfRj\nxeTonYZcBzm8pcGtiYRsvvujpVSL1OAxRwSt42fQM/dzwdVnqemT330GgJWO49W8UI5BHz6bHJR3\nt8+h3C8S8kYcnhOVBQKBQCAQCOpCiIQERwQ76AzAg7xJ2/gS8n2D/VvWWHj5njRmTIqrbfWDhmxz\nquKbJc++gz0hka0cA4A7eEJEWDy+SIFGPLgjI7meybzJAwA47cEvNft3aeKHmHilA9NeHVwvwqqJ\nhEqtygtX11V/qnmdezrpM8BO6w6K6moXnbAW5avld2weT7suytSLP749PD5zQf1pToclWYZ7LmrD\nlHcS+OTFpLpXaAJmfaOcg1/O28GoZROwJyYjWyK4q/z1oLqR0V7y9zdMJLR6USQAJyTvCFvHHRlF\nZEEu0xnJrW1/4q5ni3jivbyw9ZuLzZvh4ouhwqf5+/priIiAyEiw1WFi9sMP8PHHzd9GQdMzcSKc\ncELd9QQCgUAgEAgEtVNdKTH+1jTG3ZzGaw/q3Xrvq1bcFaIK83jj+2xd2XXHzmfG/C5axlxl0lDX\nX77hmoEd1L/TH/kfKWuUiQVDRijhtuIopzo1vbkO6ZAy56Mf+W3aXwC4AwaaDV6tT8IfvqshuKJj\nSFuxhCEP3kRUbja2pFRkkwlzpTb5KSpP+Y7WjH6UZU9MaOwh6MKNuaOafiLMliv1bs2OVooQ6Qgx\nkRIIBAcRjyUybJk9ISmsq5pcy0xUd9TBFQlJvhnAyx95gbnvTwPAUloEQGRBHkaXZgW07tb7+en3\nf1n40ocht2WV7UF5rhAioTMvC3ZYep5xnMssPur5HL9P+TOoXCAQCAQCgaClIERCghaFLMOOjcrM\ngKgYL5/M3Ut21xPozC6cmBnLy3Tes4zdWyNw2iUqypVTfOcmCyv+ieSrNxMOaRgsF2ZVJOSxWqlO\nbY0BGRMuPGFiHIfCg+IkZMCLN8KCBNzNewB8/XYCY6/TdyQ+enVrddnpUPZjqw6+/EsKtJe/Sfbr\nALCguaR02zgPo62aQc756vGYHFp5dfsOvDvi83ofx6FChHE6+NhqiNKevKF5O7u3rNFm8rTepHS2\nl3XsisdiIbKogHS02aPnMRNblYGlc6IbJJSyRMokGktIygh25fLjsVpZ9sQrtCGb0Zf/h9EEx/Z3\ncNaoCmLiQocYUGnC0/Shh+CXX2DJEiU9ZQq4XGC3w+LFta97+eVwxx1N1xbBwWP0aFizBqqq6q4r\nEAgEAoFAIFAI9U6w+I9odmywsHOT3jFgD+2JQlHdD7vvOtqkVPLQa1rYsUc33EMGWgix2+TQ6vu2\nC+dw1p2j6PPJm3xgvY8y4pCgweFYWgrO+FaUd+qmptffdHdQnbKA8vrijoomJmcfbZb8TdrqTGzJ\niqArfvd2tU5G5gIA9px5Ifak0OHZ64MrQBjksVhrqdk4ZJOJn39dDkDhsSfgrcUlQyAQCGrDazar\ny4uffVtX5oxrRXSAi9vPv2Sqy7Ih/NCRx3JwHXSsZYprUNaZF1DesStui5XIQmXi6nnXn6uru/7m\nu7EnpbL3jPNCbiuC4NhiP34S7IgfyoU/jnJmMYLBqRso69K9wcchEAgEAoFAcLggREKCFsUXryYw\n/hZFXHD5naVERctYfHGEzbiRgMpq5cVn6V9ReHzuPC6HxFuPpjD7u1huPaMdWdvNoTbfZBTmGhl9\nXhsmva63nPaLhFbfNRaA4h59AOXlxFsVIvhxDZb8GcXuLWY8vkvXiCIy2HT1/zCjxVTL2h6+88hW\npawbykkoMPxRpNHB9ouvRgLy+/RHRuLMh2/klGcf4MoZjwBwIb+q9Yt6HU/rzAVc/O5obuo0E2tU\neOGE4PCkOcVTZUVGXXr31giqq5pPsPfcnZr9/5l3Xa3s85yRauftRnrR3bSNTfRgJuerde8b2Zp1\ny+rXwVuUa6IVpUE28AA7LricqvQ2OONaUdm6PQCW0mJMPpvmbessVJYbcYRw/vLTlN+GP+Sif8Aj\ncPZpiLDughaOLENygCt2Tk74ugKBQCAQCASCujGZg5/Ou/W20569urzB4+6m36laeLFIn4Aomww+\nuPNnbuGLWvfT57O36fXTJOLwuRccJbYxO88PDqfmimm4O7G7hluGLUl5V1t7+0NqXtJmxc3JfYCh\ncgJdKzzNFG7GlpLG1Mw9/PnZdDVPEgHHBAJBA/GLDN0WC3vOGakrC3RFW/7IC9hSM9R0dI0QYzoO\n8u/TqnuexJaQjDM+ASQJW0o6MfuzSF+2UOeENDVzD7LJHLKNFW2U/jmDRd9HCfDP78G/CQ6bRKTB\njhMz2waOoIooDGLiqUAgEAgEgiMEIRI6BIhHycaza4smfjGZlE/SUlaie6F5lUcBMBhlHHblFK85\nEL9/V9OLhCa9nsDCmdF4vXDfyDaUlxiZ80Ms1w5srw7QOyUL1R06sOn6OwGw+zqsDHgp3Rze6sFW\nJXHtwPa8Pz6ZJ2/MUMON5Q4aAkDbhX8FrVNSoH/heefJJOZNj+a/TKXTzF5lCJohGRWjCHue5yn+\nGfUwy8dOoPiYY0lZt1Kt037+H/RgC9VEcg3T1PyygBmOseV5eNyi40qgsfW/4E7Thob3qi+BIfeK\nSFSXqzLaqTOdEihlTfQAerAFgLe5V6mfZ2LCffWbTVpeaqCLdxu2pBQ2Xf0/Xdmyp15nxvQleM0R\neCMseExmen/xLlcMU+LA7/bdy7J3N89nUBP/te7/HxhizFm3PhGA9eubtk2C5mPrVigq0tLl5Yeu\nLQKBQCAQCARHAqaI4J4cryc4r+3COfSarIU38TvzZpDLyZFr1fypmXuYmrmnGVraMnHFxAKwbeQ1\n6iBuYwagJa/erdXvFLThlnv56fd/9fs8QJGQbrJILW4bTc1RohsTCARNiNcnmgl0g1cxaDeVnIFD\ndEVSQ+y2m5nN197Oz7O0/unq1HTa/fMnw+67Ts3bfdZFQetl+45p2uKd7B2qOA5FOcrU8gyUEJQn\nDLbx7lNJPHxlhtp35rRLRBodmHHTNXOW6hwIIHnF5FiBQCAQCAQtGyESErQoBg7XZuTdYJjM+VcN\nJzp3P1XpbdT8NigWqZ9PSFTFApVl+lP9/aeTmqQ9P38ex7tPJbHgt2jm/BDLxOeSePmeYIHBuJsU\n9yOXbNLNQJSNipCnklgWru8Y1lXk96n6GXReGSS8LPbFVo7dtztonbk/6zu8ls2N5rMJ2nF7PBKu\nGuKA+EQPVzGNp3iRSKvSzqxhI0K2KRI7zlilXRVtO7LnzAvVMqujQhVGCQQAH7+gnHvPfJLLDQ8q\nM3z8rlZNzdzp2rmfSIm6XNG+E2krl6ppv1UxgBu9WGfL2rqt3G0V0EouxRkbz5q7Hlfz//j8F31F\nScIbMLP0opGD1eWNK61cO7C9+lddKeF2QU6WqUGhz+rLiBGKeMQeEH69viKht9+uu47g8CBQIASI\n+7FAIBAIBAJBPSkpgdQ4JVx5IKYQ2v5u3auDM4G+H7zCw7wGQEZAmGO/I4M/hBTAnInfh23L329O\nqm+zWzyOhCR++2YuKx96lj8m/cb0n+uIiRyGpI1rdelAIVDN0GIHGr6rrPMxB7S+QCAQNDXhnMY8\n5vCTZQ0B9tJVfpGmD0dcK1265gS5Q4khhC125rjXg/IWTviIX75fgGw0sna0MrG4DC20mAUH/Y0r\ncbsh869ocvaYWbPEyqZVFjautBJtsgVtE4RISCAQCAQCQctHiIQELQp/OKyh/M3pLz2gxpV3Ryod\nePsHD8Mcp/TeOR0GvnhNcRHJ3WtWXXIAZK/izFNRdmCXwA8ftyLzr2hVAAHKoH9NsrYroZWqicZY\no3Nx1T1PqsvOECKh/GwjP3+mj4tc6bRixIPHquzL3ko5zhuZpNaZ/V1s2HYf43NPsVfrj99V5VHt\n0L2+XtCK9p3Cbqcyox0AVemtKe3aQ82PtJcjeyUO1/elw2gizFHD4HMUp6zrp93B9R/fCICnmYQL\nRp/L2L/0V/MWvfA+AJFFBSHXqUQvqnvnyeSQ9QKxVUrEUY4rNk6zMgaKex4XVNdcXakux+Tu4ynL\nBACmvqsPSXjbme248bT2PHxFa/Lzm+5EDTznk5P1TkL33gvFxcHr1OTTT5usOYI6yM2F0aP1Yq6G\nUPP7FCIhgUAgEAgEgrqZNAnefFNZnjFJP1HHaNQ/myelu7n5+p0A2BJTgiYKvMajyEiY0JxtonP2\nUZ2Sji1FC41c2OdENl91K7vPuoiCPv1026jKaHugh9SiKO/YFa85AldsPNWNPHZjjZlQnhpCoOk/\nL2bXuZewdPybjW6nQCAQtDQ8FqX/uLh776Ayyddh4IwO7keuTmutSzviE5jz4XcsePWTZmhlwwh0\nvXdFRfPjzJW6CXp+PNZIKtt1BEA2mSnsfQIxaH10RjxEy1W6PvLXH0rlhTFpZO8xs9eWHroB8mHa\n6S0QCAQCgUBQT4RISNCicDklDJLMPIapefb4BDZffRuOuFasv/ke7GkZHGPeHrSuxw3HDdSr/7ev\nb/zMsXnTo2stf+aTXKZkZqnpu89X3I6+3Hq2rt7ucy9hFMrsQb8IKpAHLm0TlDdl63DcaKKEFQ8/\nDygvNn6qK5XL+wH0nV892MQTvKSro1JUoYmEfGomd1R4C+78fgOxJaaQNex83aw8i1uZUdlcIhBB\n89Cc4qncHcr/zvN+IaZSEeo0V0i6kgIjRqNMP1YBipV/1pkXALD5qltDrmNHL+6zWGv/MGQZqiqM\nJFCiWuNnnzKU9TfdHdL/vTpF36kw1DGnzuMoLDjwz2f3bhg+HP6qEZFwbcAE29xc6BRGC1hWFjpf\n0LyMHw8TJ8J33zVu/cJCfVqIhAQCgUAgEAjq5uab4YUXlOXASUagOPH6eeaTXF7/JodoX7iSlQ8+\nQ3Gv4+vcfnTOXmxJKbo82Whk1f3jWfL8u8z55Ge2X3y1WuaKiau5CUEdrHzgaV06Oj9Hl67OaMvS\nZ/6PXSMuO5jNalJEuDGBQNBQ/K432y65Nqhs5wWX44yJY9ZXM+u1rYITBrD/9LPrrtjMZD75KgBe\no5Hv523EkVj3ZD+ArGHncwk/89zdimPdbXxClLeS0kJjyPpxhO4YE05CAoFAIBAIWjpCJCRoUbic\nEhFmDxIw58PvmJq5h59mr2HvsBH8+Odainr3wxkTywMuzV40EkWw4rAbiIz28sWCLB57Ox+A8pLQ\nLwD1ITB0V02MJplufZQZbPe+qAgiWndUbFD/b7jejsNrMnMhv6rH1xj8AohAkZCf85ilS9uIZC+K\nA9A377cKKrNiV9sFymwMP5Xpymw+W4Ly4lXYux8/z1zB9kuvQzYa2TvkHADMKMfaXCKQA0U4CR18\ndmzXzqPmPj/KioykGAsxEPxFr7p/PFMz9wTlP8ibnNfjP16erHQiH9u/dguX0iIDTpeR9mTh9HXe\nz3/rS/6785GQ9Q01ZrRGEtquOJD6hgGrjXHjYN68uuuVl0N+fnB+oEjojDMOvD2C+hHh068+/njt\n9cIhREICgUAgEAgEDaNnT306tpV+8M/tUt5d7hxfRLc+TiKsMuYK5WHZH4a7sFffWvcRnbs/KORV\nTZaPnaAu+7crqD9brryFqZl7WBPmvUwgEAiORgxupR/OHR08EbSiQxd++GtdUKixQLJPGdpcTWs0\nWcNGALDjoqvrqKmnqOdxSMCjX12AzRzDo7xKJDYKcjTrf5NZ60+cyQjd+r99MxeAvH6nNLLlAoFA\nIBAIBIcHIaKqC5obIVBoPAu/N2J3Kqet372jJtsuvZ6M1X+q6Td5kNFMBKDjun+IsBxLl54OQHPS\n+eCZJHr0tTNspBISyValdABGRof+ssI55AwYXsWyudFYDQ6uGdgBgIj2d/IOH7Jrs2J5enKHXb5g\nXwpekxELSntChFMOy1DjAkCz//ht2l8Yr96qq3MiK2jHXl3eHjoSgaI++Hd+FGNGtOGJ9/No09GN\nHasqXpB94cbckZq4Y+aU2Rgdds4cfQWRJYVINT6Iso5dabdgNiaU/MY6CXnccMOpystpoBuToGVS\nc3KNen64mudmWFZspI0zWAhUGwmmcl47aSJruz1OXIKHUGHcZRn+nhHNoHOqeeluJURAB/bgjB1e\n5/ZtKelYS4uZ9/bXDLvvOqKpUsseeLWA5HQ3T92YjixrO84r8lJSdWBKoZJSE/XVAy9a5uKMYfrv\nZE+2BD7Xsiqbl5Kq2i9qg0EiPjJ8rHtB/Uj1jR3l5NReDwh5juQXGQFNBFtS6aKkqmmvt1irCZNR\naM0FAoFAIBC0fLxe2LxZnxcVXVMkpPzv5ZtMMHz0FaStXgaAyzfoOufjH7n61C5h92MpLyOivLTe\n7fKHhxE0HH9/kfMIdGOSQr2sCgQCQS04WiUCDb8n2pJSSNimhNWE0CKjQ4U7Opbp05dgS65dfBu0\nXmQUAJaA32OpxiRDvzAYIMo3+dhPeceuzPhpEVXpwc7/AoFAIBAIBC0JIRISNDkeN3z1ZgIjrqkg\nrW3DVCL2aolfvowjrZ2bgmwTI28uw2dow4wv4yh3aoIVrzl0qLDSrt1pwxdqOlAk81v+aYz94lnW\nXX83ANUVBlYsiGTxH9Es/iNaFQndeW5bvF6YvFgvsPHjF7DUZMDwarof7+CBN7VwaOlZ63R1DFb9\nZScbTapIyF3DSSh3b8AsBly6EGP3Rk7Exitqujo1nR78olt/Jf3pxjZOZAUr6a/m38//8RiKLWtZ\nsZHHrtZiTPvbIhuVAWZXtPaZu6NjcEfHYEtOJX7PDiylJbr9rb/1Pnp/+b7qFON2S7jdMqY67jTv\njUti6Zxo3p6+n+R0D2uWRNa+gqBFsWiWPjSf//yQKqppDkO70iIjx5ILwM+/ZIasM33GUoY+eBOr\n7h1HdM4+ek96l45zfsFrNmMyvk5Rrv6kLSsyMOZ8xUlr5yYL2buVazGJIrJ69KmzTQte+5T0FYvJ\nHXAaM35cyCmXXaqWte/iJLWNh9e+zWHCvakU+vZ906goHn0rn+NPqd3VqDbyKpKBKDU99ZvlXHPV\nySQZiynyKJ1Edz2+j/cntOWyi8w88GoB/U/XXI7mzYgGFNe0glIXs9bn1bq/aIuRi/uKjpIDxS8S\nOu+82uu5PV5mrc8Nyt+Q1QrQOv+W7SjBkdb48ygU5xybRlKMpUm3KRAIBAKBQHAoqKoKzvO4Jfbv\nUp7L23Ry4yxRhNl9pn2Aa8gJqkBIQXmPl00mZn41kxE3aK4Dy8ZOIGnjWrrOmAZAyrqV9W+YiCvV\naLaPvAaj08nWy2881E1pcsRpIRAIwhHu/rD67rGUd+xKzoDTG7S9pU+/Rbu/Z7Hzwiso69I9ZLiy\nQ0l1I4Q6Jd17B+X9yCh1+aSh1fw7X+lHe7LH53QpL2bu2CnE7t2N3RcytKp1u0a2WCAQCAQCgeDw\n4ZCJhCRJ+hy4AMiXZTno6UySJAl4GxgBVAM3ybK8ylf2KnA+yujyHOA+WZZlSZL+ADJQjmshcJcs\nyx5Jkp4BbgMKfJt/Qpbl+gXaFTSY3L0m/voplr9+iuXrpVkN6sC4dZj+IXvtUivPf5FHeYmB7z7U\nh8aqDPNAXp2aQRd2qOnerFeXRzKd4z96nf2nnklUTDuqKyV2b9HERtcO1It/AtMTpuQQ18pDfFL4\nmMPHt9lHert8+rJWzasZVshj1g+qykbNSaik0EjH7pqd0EOXa+KdlZxIEUkM428AEg0l7A/crjWK\nu3mPk/iXwSxR8414+YobOJaNANyf8hkRBeEti1JRYg51/u17tlx5C7bktKA6pd16kb5yKYYaVkHe\nCAszflqI+dLJALw9Npkta611ugEtnaOISO4b2YYpmVm8+WiKWibLohOsJZK920R0nJf4RK/qzHUv\nb/PbtDlUL9wDH4Bc5QCaXhBWVmQg3ScSsqVmhKxTndaamVM0x7GeUz8mLmsnfT5/h2LeprjQTFG+\nkcQUDx4PLPpDEzr9PUObOdWzYyF7THU751Snt2HnBVcAUNWmPSWXnAM/3lPAdQAAIABJREFUK2Xd\nytZQ1qYPGe3dvD09m4JsI/dfqnR0zJwWe0AiISlAg3Ujk4gxdGJKZhYjrj2biTtG8n/cz+mnFZK5\nJJGV/0Sxb4dZJxLyh1WMpxSXM6rm5lX++imGnD0mCnPMDP8dYsJNLtu7F4qL4fjjG31MRwP1dZXz\nhjEHstv0N83DNfSjQCAQCAQCweFAebny32xWnsMMBpn5v8Yw/1floXZKZhZfTVTeK06e9hZR0/Tv\n+KVdewQs6+OW7TnzQvJPGKCKhP6Z8FGd7Vn+6Iuk/Lei0cfTEkmLszCgc/iQ7o2i/9Mc07RbDMI5\negxyRmsu6tu67spNRIRw8xQIBA3EHR3LlitvafB6joQktl96HQCbr7mtqZt1aKjRybzjwisY9Oti\nljAYgPZlm/mXfgA8XPoc3uhI8k46lbyTTj3oTRUIBAKBQCBoTg6lk9Ak4D3gqzDl5wHdfH8DgA+B\nAZIkDQIGA8f56i0ChgDzgStkWS73CYx+AC4HvvHVe0uW5deb/jAEflb+E0laO5fODWfuTzGceVkl\nAM+PTmXzaiuTl2Qx5e1W/PFtHGdeWsHNj5aE2ySJqR4A/v5FG3E+n99wRcXgjQjtYOCOjiWeMgBS\nIktpbctWy97mPgAsJUVExXipqjAQFeOp1/E9fq3SKfjlwiyOP8XG2qV6cYMXidLneuCO0g+kB4qE\nbucjvBF6BySv0YQVRQTw+kOpYQU1x6E4EiVQTAmJJBjLdSIh2WjEiJdBLMWLxPGs5XEmAKifB8DT\nsa9CAZS37cSvPywAYNMqCy+MUcRA5/M7AHuGn6+0L8LC1Ex96Ka8EwfR45vPKOp5HDWpat2e8h49\nYDNsWavYo3u9YGhAP1aExYvToazgdEhYrE0bJkdE/Gt+HrlK6SQ996py4hIUYd0EHmdW7D8Yzco9\nwtsM4ca8XigvVkRCa8Y8Vu/1dp99Mcd9+pYuL3eviQ3/Wvno+SQuvL4s5HrO5ORGtdPVKkFdPv+W\nC1j40gfsHaZcc1GxmhBx/fJIvB4wGIM2US8C+z4e4C32OV8DwOhw8Div8BivMN2zjHtfKuTGU9uH\nDYfZk01kVQdf7wAuJ3zxaqKafuvTKkZcEjpMWu/TTsOydw8rdxc37oAOY45tHYfV3Mgvqgb33qv8\nrys8qRzmbuao1t9wvfX7mRMIBAKBQCA4KnH6Hl0/+AD69YNrrpXZsll7kN65SXuHj6oxCWjzlbfg\nsQb0DRgMTM3co4Yf91isVLTvHPROXRvbL71OHZQ9WjAaJGIsLdDs/IP3ARD+mgKBQNAyKTy2H9OW\n3k6Hwg18wv/4dPX/1LJWuXso7dL9ELauaRGTcAUCgUAgEARyyN7AZVn+R5KkjrVUuRj4SpZlGciU\nJKmVJEkZKOP7ViACxdPZDOT5tumb/4XJVy60AAcJjxvefDQFs8VLr34ONf+L1xLZvMbC3c8XsXm1\nIhjZvj6C2d8p8eH/+im2VpHQigWK4Gb1Iq3T7afIq/hpZu0W3ftPP4uf/xnJibaVmHEzjLkUk0gS\nysD08HuvpbWxD7aSDjgSQj8h9x1sY83iYJeT3L1mJAnad3Uyd3svUsnHgxEJSNixGYCSbr2Y/8bn\nGNwuBlyqWZZO5E6WWvVCBAwG1UkoHKloIX7SyKOERDqVrAvwSFKoSmtNdF42EvAfmlNHBjn0ZCOP\nM4FWO7cCIAWMGpvM2qVSdspJrH5gChXtOoZtz/7TzuSH2WtwxieELPeLQPw4HRLWyPpdjm4XnDWq\nkt+nKKFybFVNLxISHDz++EYLeRSJHVdMPBEWRUjhdTbt9+r1wPWDFfevFArYetnt9V854E15Aacz\nhH9wOSQW/6Hcg36dHB+0SifjbuyJjRMJua2RbKOrmj7tiTGUdunOzCl/0u/79yAglOC/CyIZMMwW\nYiu1k5tlYvNqrbs6mUKOv+4cZk36DYNTuedIgNFhxxddEI9H+xycdom0ti7kfcX0YDN7Szrrtu9x\nK05FX7yWqMvPKbWxJVcfs93PiXuVwZEt2WUNUw62ALqmxjSZSMhPnSKh+joJeURPkEAgEAgEAkE4\n/C6OUVGKSKimQH/czekA3BQQ1hxg+4VXsur+8SG3aUtKIbKoALmu2NsCACQxcikQCASCg8SWUTfS\n/YcvAfBYLCRYq9k9/AI6zP2dPziXwICiq+8ae2gaKRAIBAKBQNDMHM4jdG2AvQHpfUAbWZaXAn8D\nOb6/2bIsb/JXkiRpNpAPVKC4Cfm5W5Kk/yRJ+lySpNDKBmX92yVJWiFJ0oqCgoJw1QQ1+HWyIgRw\nOQxBDjtL50RTUqidaiYzqrtQfbh2YHu2rVMGunedfTGOpGT9TL0QlHXpzkhm0I59OGPimMuZrPZZ\nhe4++yL2DD+fBE8RK5bGseTPKKLjPIx5tpBnP1VCFKW2cXHfi4Uht52TZcLpkEiw59GVHcRRQQKl\nujrF3Y/FlppBVev2eAb35jNu4ed7PkJCEQfUJFAk5NfurFliVfMyyFGXf+d8vuJ6Ygn+DJ1xrYLy\nAAzIbORYbmCymid5NbeSQJGQt0MaFe071Tm9IJxACMBYox80f1/9O0YddomFM7XQTg5b09+m5LpG\n3o9SDsbH4rFaMUQo55bHFT50H0BVhURRXv1FFyv/0a6tjcbeuKNj671uZKEmxEvxRaa0VdV+7i2K\nGIo9MaXWOuHwRFjoyg66BoRGbLVjC1G5+znx41d1dd95onH7GHt9OuUl2ufXBsVV7bybLsDo0EKY\nnfzKE5gcdoxGmcAIgn98F0vePjP5pOHCzH5HGm8+qoiiFs+O4oZT23P9oPYs+FUfW+zDZ+sWThmd\noZ2GWjTNcP009pq013AS8jSDk5C4iwoEAoFAIDhScPuegf16nk0bQr8HBL6XA9hS08O+N897ZwqL\nnn+vydooEAgEAoGgaXDFahMaPRYrHouF6BzFrz8ZZTzgfcYA+pCiAoFAIBAIBEcSh7NIKCSSJHUF\negJtUYREwyRJOs1fLsvyOUAGitvvMF/2h0AXoC+KsOiNcNuXZfljWZb7y7LcPyWlcQOzRyPWqNqH\nCwuyNZGI2wVul9aR5rAHd6rFxbvoPyTYiaLtgj/x1lSghKA6JV1d3nzVreryllE3suS5d9l54ZW0\n8gl7SgpMVJUbOev4bXTu6WTIhZU8NmYNcVV5fDxnL2/+kM3kJVoIMLtNwumQSN23iVA44uLZcfHV\nanr/oDO4hS844xclzE95x65B6+y64hp1udAnigi0NP+WK9Xlzuzier4OuW85hDPHmtGPBuVVJ6ci\nBYwaB36kUmREUP2GYjTrz4efPgt2YfHjduvTHzydrBM2NEQkIjh82UknddloVs7TeYuUkGQzvlTE\negBV5RL7dpmwVUk8fm0G917chrx6iszKAs6bsSnvN6h91iJNFBqHYkpnq5JY/69e1PfiV9rAQGvb\nHmyNFQlZrCHzR44cBMBuOujyqyoaPrPWH7IPYBbn6sqsZZqDW/qKxZz06pMYTTIet7afTas0F6Kl\nnALAyn+U72n5PH1YxVD0e+tZ4rdvpuOsn4jO3qsr8zsZCWqn5v2xJuFERDV/V73CSUggEAgEBwGP\nR9FLfPLJoW6JQNAw/E5CZnPt9dLJ1aVNttDumaBMXMo668IDbdpRg3haFQgEAsHBwmvSfvA9Vise\ni5XELesAGM2HmHBxAb9hT0jClpx2qJopEAgEAoFA0KwcziKh/UC7gHRbX94lQKYsy5WyLFcCs8A3\neulDlmU7MAMlZBmyLOfJsuyRZdkLfAKcfBDaHxb5CJx/bzBox9S1d/Dgb2WZNnjvdkm4XVpZcb5S\ntnSONujsLnPy4HP7Oe+qcjVvAJmYHHbi92jOG+FwtNJcbgLDZvkdiFzRMapIyM/IkYMwGOH2J4t5\n8MmTGXnhAKJjZdLaujEY4L3f9gEw8dlktq+3sFd3emr8+Od/FPY5UU17IxTRjb/doURCboM2GP/A\npW1wu+DHTxRXoHJi6c7WOo8ZCBJQ7R1yDpWt2+vyck4+jezBw8OGG/NEWDhQzCb9Of7vfO273bjS\nwk2ntyN7t9JWl0PfHbhmiV6U8dHzSQfcHkH9aM57UywV6rI1RtnPlp3Kdfrdh614f3wyHjfcfnY7\nHru6Nf8b3o7ifOUceXBUa7atr1u8Vl6i/KQt73MZ0SkNE5dlD1I0pdtGXqO2dd9O/T7jEz10PMbF\nBdeV88D9WwCwJzXeSag2OpDFy69oAQVXLaxblBOOCBycy+xa63Se+QNGk95xJiZOcXpqy17u5R1d\n/bLi2j/ftgtm0+Pbzzn/unMY9OwDXHzpqRhcmnuQ0XXkiYSa4/qpy3DJG0Yl5CzXWwd563DtEggE\nAoGgKXjmGeX/7Q2I+CoQHA7UdBLy8+hb+bq0XEPKktt/cHM2SyAQCAQCQTPgDfjBd1useCIsGHwd\nYsfzHy4iaM9eZn82HUJMyBUIBAKBQCA4Ejicn3J+AW6QFAYCZbIs5wBZwBBJkkySJJmBIcAmSZJi\nJEnKAJAkyQScD2z2pTMCtnsJsB5Bk+KwaZ1lFfleLjX8xIJXPuGFSYrrhjNACOJ2S1j27lfTfqeY\n98ZpIWqmcC1XDzmGscdNUfNmc06921PWubvWtlaayCR+pzKw74qOZRpXB613zcAOXDW4CwAGr35Q\n1RKpH4zdRreg9Wf8uDAoz2uuIW4IYUfeKaOEEfyuph+/Tjtl/WHFaooKZk7+I2g7Jcf00qVlo5Hq\ntAxdXtLGtXSdMY3IogKS1/4LgLmJRUKmGjMwM9prqrAX70rD5ZR45KrWlBQa1HOjxwl2QlGYa2Lz\nmgNvk+DgEcr9JFAkJEUYiaMMo8Grc0L5+fPwjlPzf4kJW+anrNhIdJyHbtUbGhwGbMfFV/Ht/C2s\neOQFYnzX3OzvYmndwcWA4VVMycziuwkzuGZgB+48N5Nze20AwJ5Yd2itUHgtdZ/Tfdrm0HewDQCj\nqfECFClAvLLhhjFh6xkNXp2TUHKG8kVO4HHu4x3OSVlC285OvF7UEJDhiM3aFZR31WndmM7FPMGL\nGB1HnkioKVi9Wn/9LFoEv/8evn64syLwNxnA6xQiIYFAIBA0P6tWHeoWCASNo6aTUNv2ylNWVKz+\nGWo4cylv14nv5/zHt/O3kDPojIPZzCOaOqKdCwQCgUDQZASKhLzmCNyRoSfm2ZJSD1aTBAKBQCAQ\nCA46h0wkJEnSNGAp0F2SpH2SJN0qSdKdkiTd6asyE9gJbEdx//GPbP4A7ADWAWuBtbIs/wpEA79I\nkvQfsAbIByb61nlVkqR1vrIzgAea/wiPLmZ/F6su24vdxHtLOf2x2zF5FRsEl0MbyvS6ZOLXrcOK\nMvhdlKefrufBwEhmAJC4ZQPX3V/CxykPEk859UU2KMKjirYdcEdpD/pJG9Yo7YmO4Uz+CrmuwaON\n0A4adw/9X3uKwU+OIUqu0tXLQu/QM/+Nz6lqo88D8ETUI3yXJYLfuYCICGXWQs4epXeyNZqYavFz\n77BtpBaWzNEqMWgza0c/ypKn36KgTz8AjA47hb37sWf4BWqdiErtczz7jlGc/NJjmNyaQCdcGKSG\nYAwQCSWnu3G7Q/f43X1BW7avV8QGftcSPxJa+vk7m9bataV5ec2aBXl5h7oV9WfzqmABSQRO/nr/\nGwBko4nRfIgkydiqtXPDZA7/zdRHJFReYiQ+wYu1qKDBIiEkCY/Vimw0Ygg4Q2zVEkYjmCvLOfv2\nywBIW7mUHtM+BRovEnIHXGf/TPiIbZdcG1Tn1CfH8L/RSqhDe3X9e81rmsuY0UR6/93xMDkDTqew\nV181b92t9wEQaSvDXWjDHwkswqJs6Eq+BcCKHZdTYsK9WifJVWOUsGWnnK0IqQafW0VKazdVGW1D\ntu0OPuJlnqCyUIhWarJrF/TrBw8+qM+/4ILQ9QHkGl+22wVzfoghr0DvyCachAQCgUDQXLjd8Oef\nyvIpPn/fvn3D1xcIDkf8Im2zGaisZPkpd/HJNxvoNn+6WmftbQ/Rmw38NfF7XLHxeKwH/t4s0JBE\nwDGBQCA4YMSdtH74xw0Aio49gTVjHmf9zfew4frRunreJugjFwgEAoFAIDhcMdVdpXmQZTnYxkVf\nLgN3hcj3AHeEyM8DTgqzresb2UxBPSkp1E4lmzuCSJ8AaNArjwLfIhWWA8qgvamqkvKEDDqV7GIT\nvfj4hSSiA2boBQ7QR+XncN7oCoYvWAoFSt7KB56usz2Vbdqz48Ir2HTNbVSntlbz/357MqCIhMZx\nPzM5H4AFnB5yOx3n/KIu7xtyDtADgMJefUnaqLgkrR7zOLbUdLIHDw+5Da9ZE0yEEgKAFpLsj+e/\nZNhjt6j5FWjiq+zBw8g+ZSjdpk8FwBkTS02c8QnsPu9SSo45lv5vjGfniFFgMLDt0mvpMPc3AOa9\nPZm43Tvo/9YzAHT95RsK8szAVxzLelzRdYsx6sIUoX2Hp56Yzay5bZHl0LMDF86KBqDj7mWsQJuJ\nGUsF5YR3ljlacDphxAjo0QM2bTrUrakf/8xUzqHjO+WwdlcGXw5/DfeSKPJPVEaOvCYT7cnC7TGy\nYbn2wl1RquhW3/t1P1PebUVpoZFNq+r/Ql5WbCDJWo51TzG2RoYB8/Mqj/Aor1FSYMJuc9LVd90B\nGNwu2v89C6DR+wkU+eWefBr7hp5Lft+TGfz0fWp+/O7tnDznM+BVFs2KZtjIqhBbAq8H/P0bW/+L\n4Nnb01UXNwATyqjHmjsfQTYa1ftgxpK/Sd6whi1X3ETqqmVYVlfz9/x2rBzp4cNZ+/F6lAvWiIeK\nth2YsU8JyZa3T1MBJmcowsaIinLid2whqqQrsrcdhsCYkgHkowj+IrbtxnVch3p/Xi2BMJG/6uSp\nFxy8OM5C30E2IJJ33w2uM215Vr229cKYtJAuT3IziIQae7wCgUAgODIoKoLhw2HtWiU9aRKU+qI5\nr1lzyJp1VLNoWyF7S6oPdTNaJBv+swBpLNiWR/ysifT/9kMGG90Ypi4A7iTC4iV19TKg8eGGBQKB\nQCAQHB6Yq5X+tfU334NsNFLarSel3XoCcOzkDw9l0wQCgUAgEAgOGodzuDFBC8WJRRUJpW9RPOft\nbm1QWXK7cWIhLsAZ6JsPWpGU5uYmvtBtKzp7L+aKMmL37cJtjWRq5h62XHkLdSEbjSx78jXKOx2D\nO0D0UtKjDwDuyGgGsoz5DKGaSE5HHyYsa+i5/PTbcl3e4PH3qstGu01d3nTDaHafe0nYtnjN2rGH\nEwl5fCHJznjsVm57skjN/4obAMgeOASvOUI3g8Fj1TtFBFLWpTtzP/iWvcMVEZQ7UhHiVKW1JnfA\n6Wy98mZd/YHLJvM8T/ErF1KV3ibsduuLKUJTAw36/V0cdkNYJ5R//1acnjrt+VeX70Ifs8zZlNGJ\nWtDgtlMx42Lz5ubfV1MN+i+fp3ynf+3qgxeJM9xzcUdFq+Vek1m9/uf/GnB9FipKl8gYL3c/V8Tt\nT2nXQmqb0KKT9cstrFqkXBflxUZ6blEcwhrr8OPnZLTrf/MaC1JADKh+776oLgeGM2wIpV20kIj+\nz2bPOSOZmrmHX7+dp5ZFe5QwbVvWWtXQjH5mfxfDtQPbc/3g9mxaZWHfLhPP3p4OwIoFUcQlKAKe\nHxgFwI6LrtKtnzPoDNbd9gDO+AQyx73GPtoBiiPTr1/F4vUqjl4SYE8IPs47xhXR4wQ7Pframbj0\nDM6/9mzaLvsb2e3ViYRsCcnk9h+kW7fPay/W3FyLp7GXz4vjFFHPmiWh7+nJ6W5kmbB/gcQnekJu\nQ4QbEwgEAkFTk5ysCYQAbroJ3nhDSy9bdtCbdNTjleVanxnEX/g/f8hdk9eB0a68eEpeLwafu22H\nbk7SVyw+ZN/t0YAINyYQCASCg0VERRkAzpi4oDKPyRyUJxAIBAKBQHAkcsichI5mjrTZ96GOxy8S\n8jtYSMWVapnkcuPyGjGjCW384bWiUGY+FvY+gcqMdnSc8wuXn3UcAAV9Tmy6NhuNuCKjGGL7R837\nbu4GEres58wxV1LRoQv25DTWjHmMvh+8otZZzCDmfPg9pueq2TniMjLHv1nnvrxGZWB/ww1jKD3m\n2NB1AkKStUrSBnn9YdfKO3RR89wWKyaHvUG9aM64VgDk+ZxcAKYu3Y25ohyD10P7v37lqdfHA7Cs\n9wn13m44AsONpaHEycreY6ZLL2fYdRIo0aVrioS2rbdw7IlNqRRqGQRoU1oMQy+qZPEPBpJRRD7t\nFsymvH1ntVw2GolBuSekttEOsKRAuVb8Ya5SMjwkpLipKjdgqwqtaX35XsWZ5rN5eykvkEklHyBs\nPPH68M8rHzPksdvVtKmiUp1lFEjWGechmxr3M+qODnYC8+MK6KTo9fVEQJnF9PGLiYx9p0Db/zbt\nvvHv/CidkMrllLBYZS5PnMnwYkV0VJtLmGzUH8c3HyRw0Y1lGPGQM+B0kGVuSfyWz4uvVOucfr7y\nmXx78pP0WLMFUFyHvB5ZFVXlkkZGSS6sADnA+NpGeJGjQE9DBkzS24W+YSjhxsTIi0AgEAgOHosW\nwYABh7oVRxfeI62j4SDi8b2CD33yDk4o/QOAHt98hgy8wqPcuP7LQ9c4gUAgEAjqicVspGNS4/vD\njhasHZRJclE9ugV9XkUXXkrqz9+y6q9lR9xnmRwT7DwtEAgEAoHg6EWIhAQNwuuFxbOjOOWsavxj\n415fh5oZJy6UQesSEnx5yqC1XKYJgiSXC4fbTGKASMiPX1zkMVtYM+YxSrv2oO+HryplRfmNbvfM\nybNwxCfq8tyR0Zhtmh27OzqG/H4Dmff21+T3U3q0N117ByVdeyIbTZzw3ksM2raU3HbZGO12PJb6\nDXLn9zuFhS99SPagM8LWCXQbsm8uBFLV9NJxb7DnzAvU9K/fL8BSWkRDqGzbgbnvTKHg+P5apiTh\nilPCeQV+Nl5zRM3VG4wpYBMFvjBz429JZ0pmFq07uMjeEzwrIwn9MY1gJr9wsZr2aa3I2mbGYZfo\n1ie84OhI4mCKhJpqWMHtgFaU6vKWPaGJ7bwmM9EoApPifM0dp6TQRITk4rpBHdh91kVUtOvI6uN2\nMHTxRHaXtqW0yECrpNCOKN9+2IoqW4QqSpMNjTfKc8Qr96+vn5nBdc9czMO8zrFffRBUz2Q7sHAO\nMyf/gTMuOKReqFCCAAnJepcYg0n7xhw2Sb1GAH6fogiNktij5tUWS90bQuz0y5e++0NcK6Lyc7ik\neDKfo4iEvn7jT64ZeA4lXXuSsF2Lg2fEg6m8EqdNRqpxRhnRTmYhEqo/LqfEtvURdOjmpLoy/DUA\nUF4S+rxXnISMIcsEAoFAIGgMxxwDW7cqy337BocYe/hheOihg98ugaAxuH1OQrGlubp8CXiU19T0\n9hrOnIKmQ8jZBQKB4MCJjzQzqOuBOWsfFYx/BE7qTY+RI9F1pgFMnQRL76DfGScfkqYJBAKBQCAQ\nHCxEuDFBg1i1MJKJzyYz4wvf4LFdUjvUMshR6/1ovIKinsepIiFdqCiPF5vHQqTBzir0rjVRVLP7\nrIvIHPc61Rlt2XzVrWrZ/DcnNbrdpd16YUtN1+V5rKEHzHMHnKYKZWSjkZxBZ5A74DTW/e9+AI6f\n+BoRFWU4Y4MtSUMhG43sHTai1vBg1uJCdfnVj/vpynadP0o3uG9LTQ/rSFQbeSefGlYkEChSagoi\nrIo4YDCLuJOJujKXK3T3X0d2q8txxgqmcbWuvLpSoijPyNjrM3jmtnSWzWvZIoOtW2HLltBl2dnK\n7GtomU5CmX9FkYt2vXmNRgqOP0lNuyMjVSehFQu0WTkF2SYiZUU81HHOL/T5/B06zP0dya4Iwjb8\nqz9/AydL5+9XRC6JFAOw94zzGt1+t+9abRtdhMsYwTheCFlv+eMvN3ofAKXdelKd1joov+Z16hfX\nWKP0ohuvW7uWHHYJoylY5uW/B899b2qtbZGNJmQkLj1uRVCZtbiA1LX/0ob9at5Fz1wHoBMIKW1V\nnIR25AZ3SnkDRCp2wguWWipyI2bvT5qk/I+JCx0mDKC0yMgz/0vn5iHtuev8tqowNxSBortA3E6Y\nOTU2bNjHxiC3pLiNAoFAIGhyogImVgc6Bo0adfDbIlAQRkKNx+XwhRuj9pevnIFDDkZzBAKBQCAQ\nNCdRUXDZZcECIQCrFc4IP9FXIBAIBAKB4EhBiIQEDaK0SHl4Li024HbDLUPbMfktvWsQwGtnT2b2\nF7+y9IV3AK3TDQAZKj2RWK0eTkA/5XQV/Vjy/LtUtVZsP70WK9XJqWy87k7KO3Zt0mNx1yLaCYUt\nSXHE6fLb9xg8bkoaIdQJR2AoNSsHP6RWU4uEUhNs/MBl/MqFRFNN59RCJIPSa+1yQs9+djr1cDDk\nAkUocjHTGc5c/id9wqVX5DCv9SiisDGNq7jprmwAbJUGKsu1W1ZhTuON0A6Hwe3u3aFHD9i1C1y+\nSycvD0pLldnYp50G+fmweXP4baxZA++8A3b7wWlzfbHZjDpBiDsyWhczyZ6YqnMaiqNMXS6jVdD2\nJnETAF+9maDLdwWYSbl9n2GsqYqpS3fjjWi8ha7HJ9KxFhVg8rh0ZRuv1cKQVae3afQ+6mLNnY+o\ny/tpg9nsDXKJ8QSIRZbOicYY4pLIoj0VbTuQ139wrfvzOwk9dNpMOvXQ34Mkr5ftF1+tu1/HVhQQ\nCiMePBjBWfsAy5bk/rWWH+ls2gQXXgg336ykpRBPY7voyLB+u4LyK0rDP7o57KHLvv2pE1PeSeDH\nT4OdqwQCgUAgaAzeAGO7igptOerIisrQojgc3nFaIqVFBt4bpwjca4bAronfcVTQDAgrIYFAIBAI\nBAKBQCAQCA4aQiQkaBBOu9JzExEhs3mVMgj/94wYQAsrBXBcO0XYYTAr9V1OrcdHliHfnUxiTHCo\nnpcZG5Q3/bd/WXN3cP6BEhhepyo1o8769kTt+Kb/soysgBBgB0oT+aP1AAAgAElEQVRFhy58P+c/\nNX0Sy3mJsWy75Nom20dteE0HHmJMvz0zl/ETCT4hyMC225C9Ev9lWiktNGGOkHlhUh63P1XMrM9/\nZTqXYMTLJ/Lt/Phda07c+ycAV/Etpw9QwkdVVepvV9IR0onYuTOMHq0IhdLT4fTTocCnv+jYMfzk\nFacTTjgB7rsPIg9zUyVXVLQu7bFaiR6gOejUDDVXk9NYCECfgXo1VKAgoqRQESVFxcoHfHK4I5XR\nrQETHg8qWzv6MQByTjr1gPZRFxtvupupSxSBSBr5dGxbga1Kfw14PfrjLMwNngFVSiu8odRDNfCa\nFKFgJHbadtYLo4p69WX52AmUdO3JEx0+ZswzhaE2AWgioQ4/f6fLP++qcl16TOGrdbappdGQYbkx\nY+C337R0Ran+u7s243c6sodji5cFrVtaHD5sWKAgtw//BZV7w0cqEwgEAoGgQQT+pvTvD7f7dNR+\nJ6FTm/dRSRAC4STUOPyOpADJ6J9zi3odr0vbUvTuxAKBQCAQCAQCgUAgEAgELREhEhI0CL/YJ8Iq\nM+mNRF1ZOYpDwbvcjdvnxGG0KIOZzoCBS68H7LKVqEjFBmMK19AmoYQSWhE3vGNzH4LK7nMuAaAy\nvS2zJs+qs77fSQjAlpLW5O1xxWoOD8sZwFgmYHA6a1mj6WhqJ6FAARZArFOZkfnK/akA/JcZSbu5\nvwNg8NnBlHbqFnJbV90wCABblYGSAm1w/EAGuw91B7o/hFjbtsr/DRug2qeZW7dOq2ezwWCfAUw/\nfRQ6VUgUyFtv1R3iYcYMOPdcfd7tt8NJJ0F1ddN9MBcxQ13OHP9GULkrOYmxUUp+PqlUEKOWTZ+x\nlIq2HdS0BJxoXUtFDSedwNBJ+3cpQreo+ANXj3kCXIjK23cGYO+Qc/jtm7nIJhO/T53DwgkTw63e\ndBgMLHj1UwAijXYcdok1S6xcO7A9f/4Qw+LZevHVT5/qXZiOYQvP8rQaPrE2ZJ/FssHtYuFM7bt4\nlvGsHa24Grkjo7gn5Stuz3lFLd828hpAuT/O/myGEm4MA060fUqSrIYgFCjU1LGZI7TP5+Wvc3hs\nxF8ARBD8G+AX64bCEfBbG01VUHlUtPgeBAKBQKAnOxteeaXhz8der/LcuXSpIlqfOFEJl3vBBTBk\nSOjoDYLm5VC/47RUAp/Llr/yLr9P+VNNb7niZnV55f3jqWjf6WA27ahCElZCAoFAIBAIBAKBQCAQ\nHDSESEjQIPxinwiLTO+TFFePmFjFdSLJN+vuRFaqoX4MEUr9P7f0Vrdhtys9xtYIRSlxDdNYnzCQ\nVpRRFkYo0hxsu+wGtoy6kXnvTcVZD9twr0/41JwsfOlDXdrkODhxpOQmtuWRa4qEHMVBdU57cgwd\nZk/H4IsTVV7ju/f6RhYsvvBrLqfEaw+mavtowY4Ypb5IW48+qgykOBzKXyieegqG9soj2qyvkJ+v\nr3fXXfDgg/Djj/qQD++9pziWfOg7tUaOhNmz9fv75BNYsQL2Zx34T4J/cOIEVvPbtDmsvmsseScO\nCqpnT0phv00R3lURQwxVvHzMO7xoGkd1Wmt+/eEfVt43Tq3f2b6Fojz9eaULY+jDktD4MHR+HAlJ\nqlAosjCfHRdewcJXPlZDHpZ1PgZ3dOwB76c+VPrEUiaviy1rrOo18OXriWHX+eH6d5i6aCdb6MEQ\n/qnXfvxuQ62X/E3/vsq9/Oaef/KE9XVkn8tQVF426SsWc/xHr6vrFffoA8D+QcMoOrYvBrx4MOpE\nQrIsYTgKBgobMjAXeMt9ZJydzj21C9JkktUbXIQn+DfA4wl/vw4U5MohBlrsNjH4IhAIBAI9t98O\njz+uiH0agtcLBgMMHKj8lyRF3O7/jVuwoOnbKqgdoRFqHG6XctLO4lycsfGUdenOigeeIfOJV1RH\n1OJjerHlqlsPZTMFAoFAIBAIBAKBQCAQCJqMAx9NFRxVOAIcDCKjlUHMygplAPk5xtOLjZxCJpv3\nHwuAZFZGhl1e7VSzO3ziD4uHXedeQqc/fqbVzq2AEoboYOGxWln58HMNWmffqWdSndp8FuN7h41g\n/hufM/ShWwDYOurGZttXIObqSgCyBw5pku15IhSBQGmX7riiYnDsD+2INPjp+8h8Ugk75KwhupCN\nJvB4MPi6u3/+LF5X7pX1IewaonPyyjB7Q66azs4y4rBLdDrGXf+NHAD7dhuBFPZVl1Jit1JcYeTP\n/0qA1KC6Owr3Y9y4CbulFa9/2YkIC3Tv42LlvxFAIglJHkqKjHzwgbbOLfdV8r+HKrFVS9xzj+Z6\nZe1YAL6wgLfcX0m/UxxYo2QgGYB33jBzx9PKQE9j8SoGYbjj4ynvdAzlnY4JWc+emMxl8g98xQ1q\n3v8iJhEdt4+fuQ0AZ5zmjJNIMdUBEateuT+Fjt2Dz6ukdDe5QbkNRJLIO/EUWi+dj7m6Erfl0MVz\ns7dSxECrdrattd5p51WycJbiAHTc5HfJGqA5n+WdeErdO/J96SnrVpJJGs9/kMXl877Du09zGYvO\nz9GtsnPEKHJPPpXq5FT2nHMxoIUbCxQJAURGKb8Xp5xdxdI/lcEWo60ajy+029FGoElcbraBWx4r\n4rFrlLCXBiNIPqs0E8H3JE8ttymnXeKUs6v4rGAUK1Yns4yBuvImDTcmRiIFAoHgiGD/fuX/jTfC\ntm31X88vEgpi/XoWLFAmiGRmKiIiwcFBFlZCjcIvEoqlgirfRJWtVyoOQq2XzAP07yWC5uFICScu\nEAgEAoFAIBAIBAJBS0CIhA4BLbnvLmLrbuA4ts2z0667F9CEG4aUGIYWKFNGJY+iFJDNwadYRaUy\n6GyIMrP0mf+j0x8/q2Vu6+E9YPzP6581+z5c0XHqckHfk5p9fwC2JEWcknvS4CbZnsfqE1XIMq7o\nGDzFNl35OjRnqU4zfwTAFRunq+M1mTA6w9jrAN992IrvPtQ6a1/8MoeO3V31bmNRpdPfRG4Z0R6A\nKZlZ9V7/QNizT3GpkSOceDDjdBrJLwk98m+1lmHAS7EjlkduSgLgw1n7WL5E+YxLioItWiqqZAor\nnOzZpg8jd8sITTgydWIMUyfG6MoXzY5i24YMXv8uB0kK7qjduSmCr95M4Il388OGj1JFCNbaQ9jZ\nk1K4iF+Z1+M6em+eDYClpAiPRQv1FRhyLIpq1SXF7VZC1v2XGSzeMaU2jcNP9sChtF46HwCD7352\nKKjL5exWPuUOPiKz7VMsRBHqGPBiqq7CFRnFjouvZtX94xu0TyNeRi2fQITHgccUOlSZ12BQw8hN\n/+3fgHU9uIigGL3T0dmXV+CwS1xwXTlpezfy76YMLjv3BL5bsKVBbTuckRugmlm0SFv2eKBtZxeR\n0V5sVQaMJhnJ96BgkoOFcKWF4W2ZPG6J+AQPiYWlXM8fXM/XpJFLPopY0FuLC5FAIBAIDj0bs8vr\nrtTEZHSIZM0aM1l7ZTZmV9S9gg+7M5oKh5eN2dpzfuTypXS65Fz8StLFq6uJa39wRPgCsLkO3TNr\nS6SyzMDeHWb27VTeWyJwUmnSv8OYq5TJNEIk1PyIp1SBQCAQCAQCgUAgEAgOHkIkJKg3741LYulK\nRUyxdns67VP1g7tmjzaY6TUrnWuy0chFzOAX3+A1wLzFbQDYZOtC5xr7cFsPnWPH4UJVWsZB32dJ\njz78Nm0O5R2bJtybX+wleTyUdunO2MyX+YC7APiN8+nNBrVu2uplALhiajgJNTA+0bJ5UXTsXtbg\ntv7x7cEJGxXI83cqA/bRcV5MZnC7JVyu0N2iidYq1tGHXLTzYvR5tbvKRFi9/PN7NB+/kNTgtuXt\nMzP2+nT27Yhg8pIs3Qzxr95MYNs6C7u3mklI9mC2yLRKUlRBOzZG0KmHE3e1MjgRk7ev1v3YEhXB\n0hmbp6h5sfuzVOccgMLjT2L+659jslUTNa4Eh8OALENFSehzQ0ZiZeLTDT7mUGy94ib6v/UMABHl\nJU2yzcYg+2Yzf8FN3MwkAB5+I5/XH1KEfb3/n73zDo+iavvwvX03PZBA6L1jQYpg74BYUVGxiwVf\n1NeKvffeu/iKBXsDBPwEkd4RFZAqkNBDets+3x+zO7OT3U0joYTnvq5cmTnnzJkzu9P2nN/5Payk\nP0vBtBBC91kPDqzuCqzuCvx1dOrp/fGbbDx7hHYvB1h15X/o9YlqWTX1s19ibrfmihvgU7iBD7S0\n868twmaH4aPUgU+T1YwfK1aPG4u7QhcVHkKcey789JO6POQcVdxosaoDqhYLmtrOpkQLH99+NIO3\nH4UhFxdzxe2FhrxAIORE5NcHZCPdiOrVSUgQBEGod1bkFFZfqJ5JbhEE0ujc21Or/bt9LgorvIZt\nTnzxeUOZ9TsqaJFTVl9NFYR65cbBxt9UdrwEQ2GzzSZIdFhxmdX3M1+r1iQ7pfusIXHaDoH4xIIg\nCIIgCIIgCIJwgCC9HEJMPn0ljX4nVdCjj+7ksuDXRGOhonLDqsOtDgBXNMnk71G3AaobTALGAfZW\n6YVsz03ivAGr8KE7hWw79hR2DDqpHo/i4KQis+HCmVVFvLBQdSEs9jIpCiVtOtKTbcx75FU2Dx3O\nsIFTYm7jTTQ6CUVOJXyPG7iR9wE48pgK/lrkNDhiJCQF8VTULUbWohm6iGLeLwm8/UgGNz+xh0Gn\nl1exVf1gsYDJpJC73cpLd2VG5ac1DWD2esglOi/MuJk5vPdEUxb/ph9HMGCqk0AozNaNqnvMFce0\n5ZYn9zDwtHKCQVj/t+ryEwyauG24KvY76rhyhl9XxMPXZtHjKDcmjyoWfJr7eZf4A03upvoxlbRu\nT/LWzQA4C/MN5bYfdyrJ2ZtI4BeCQTMBPxRUclKZwlDanpoKM9QwZvWCycSKm8Zy5DvPYy+t+az6\nhmIkEzSR0GFHu8ls4Sd3hxUbqojEGXBzS/8p/LkkkR78g+nhWwFqJRJaedUYeo9/S1vvNOlrQ74z\nL1dbLuoQW1CYVxi9v9QmlWa1W83sQr3PHfHuC6y4aSxdvx3P2otHoVgP4teSaoyEIsMi9uunioR8\nPlifG+CP7JA4CDCZFTJWLgfAqsR3X5j2VUqUSCgYMGGxKJhFJCQIgiDUkPAjY/UyJy/cmcndL+VW\nvUGIYMCE2Wx8+LWa95thfcNKO8cMLuNgfrwLhw52vAQt6sma6LBy9hEtoedoCBbR6fbb6ZSYWE0N\ngiAIgiAIgiAIgiAIBwfSXSdE4ferg4/TvkoxhF9q0dbHjmzdVSJ51Wqgj7auVKiD1ctvewh/ohrG\nSLFYmcGphvpLS9SR0KSWNgqA5bfcT/tffmTOs+8RtMUObbM3NE9x0K9dk+oLHkD4jz8B3znnMeyw\n+nUVys4v5+9ttXfbqS1hZxBTMEhez8MB6DDtBzYPHY7PlYCtIlqAEykaAfjzxrvo/6IaJulyPtNE\nQoEiN2aTg2BIRXTpzQVM+yoZT0XdDMrLinVx0duPqAKTNx/KYNDpDR96rGvWLtZ2dTBnCuTuUG/H\nxw4pY940tQP6P4/tweJ18y0XMtN0Cpsuv4pJn6oh/rr3cdO5lxenS+G/T+8BVMv8Gwe35ufPdcHV\n+/+XQ1AxMXpw1e5D8XjjwQwGnpbN6qV6GLDI6FvL5yaQ86963f6z3Mkpp5eyehXM4FTW813cektb\n6O0py2qpiYRiUZHRDBdqKAuP20RFufG7TqCcrO3bAXCn110cVZn1wy/nsMlfkPz0E/V+LdaEORty\nKa7ws+3YU7RBtw7dPVit+vmSjCpgchTs4eqB8zhqydOGOgIOZ43399dNY/GmpHLUG0/HzP/n8hvp\n9PM36krlWHQhVi6J3l/z1kahS3lALVOOi+5fjsNeXETHKd9i9vlYP/wKfCnqOZ64PQeLx01xHEHS\nwUTv3rBqFUyeDMOG6QOylgi9W0JSkKJ8C8GgCVu56rrQZPuGuHUmJEUrfsJOQuZAHJFQpXBjORtt\nfPV2Grc+tSduCMF4HMSRUwVBEIQIAhFulivmufC4TThq8ExQFLCXFZO4LRtMUNayLbuPHECzFYu1\nMjN+SGb9SgfPfLqzQdouNG7KS00U5VtosY9C1tnxRgvWbTZ48MF9sn9BEARBEARBEARBEIR9hYiE\nhCjcZbEdWSoPSHqx04PV/ENPAErbdoAtUNClh1YmaLHiw2bYrqTMjpkA1kzVcWLNZTey5rIb6/MQ\nDFgtZlITbNUXPJCYPQsrUN9BeFyl+8bC25OaDkDOiYMp7NqLHf2Pw1peCoDF6425zZ7euuBs/Xkj\nyT71LE0kFBaIAPRaNY31nIc/9Ok4nAoOp4LHXTeRUGlx3RyI9gaHM8jN7pcZMfRuNn+xDUjX8gad\nrouEevXzYFnj4Sx+4iz7Lzx/2kWaSOjul3NxuowDOFZ79IBOYooCKHTq6WHjakdUfpizryyiXRcf\nbz4U24nH49Y/p8r3iNzt+qPE7zPRkm30Zynr4+4Ngg4n+d1602TtSrKWzmfCwi2MHNguZll/QqIm\nhikvMeMpN+7fip/EndvUtjWJ77pUW3zJqfg2biJpP1nfW0JCnFkvjOOS4zuz6OI7WHPTbYYyXUKf\ncsqWjRR26RlVh9njiUqrijWX3UjTf/6m3fRJUXlhsc6uPgPjbr9np/G1YvQjezjsaLexzW3y+eUv\nGMNb/I9rsZWqLnRHvvsCR777AhMWbgHg3OHHAWjrBzoKsGgRHHEEOJ2wcye0aAHjxqkCIYCzzlIH\nVf3+sJOYug7qNT3vlwSaZAawF6sOQWGBT1rTAIV5xvPw6FONYktFCTsJxQ83lr9br2Ptn3Yev1F1\ndFq/yk6vvh4UBfJzLTRtFmDFfCcv3KGGtfvo9xx8HhNJqWJFJAiC0Njw+43v0Ov/ttO7f/XvD8Eg\ntJ81hXNnXQ/AD5MWU94sWlSdvb7+J4EIhwav3pvJqqVOPpmbjaWOPVcPXJXF5rV2PluQjckEG1fZ\nSUwOsmRW9C9tNdzYQdZvIAiCIAiCIAiCIAiCUAdEJLQfUA7g+fc7sq0EA7HzfBGzTF02LwVp7XHk\n6h3IPca058eu8ynPaqWlKRYLr3IbVzNeSyuqcJFGIb60tPo/AOGAwN00k0lf/05ZC/Vc8CUm4crb\nDcEg5oCf1ZfdSPZpZ1HWvCUZK5dT0rYj5VmtmPjtbCweNyWt2xF0OPlh4kIyVv7B8fffxIlHbWF3\nrot3c0bzJZdq+7LZFRwupc5OQq06+Cgu2LcikEDApIWJOufqM7iHlVpen+njgbu5g5cYdvE7JO3Y\nCkDQaqN9Nx9dDvNQlG8m2VfIRSerLk1/3nAnq669FZst/r3luDPL2LjawaDTy7TQgS99vZ2iAjOP\n35hF9yM9WK3G7Vu09dG6kw9FgZfH6uKbV+6NH9Jr/doEMtnK0jsfq/ZzsLgrqi0TplVmKeTC1C9T\n+OXrZEOeDR/Ogjygfp2EIK5hzj5B27fZjLtJBk1LthEet3huwg7yx05m4NaFAGQtW4ASY1CjLuG7\nIgVCwUojMt//vBRfYnLlTTRufz6XV0Lnyj2v7ubwge6oMhlN1OfGx1zDm9yMORDnoRPC7PM2iMtc\nfZO9xcTAgXDttaowaPVqNX3UqOiyfr86MR30d4Lmrf0MH1VM6sa12nWvCXxMxmszPdOPUkmvE352\nmy0KZr9PS7egf75/LXSxeZ2N9l19mkAIoKTAwor5TgrzLHzwVFMeeX+nJhACGHtJC/bstBrcBQVB\nEITGQeXH8DO3NGf8nGyq00rYCwsxoz+Mzj13IOZQXMsHeJKn0N1XIkNuCkJNWbNCneBQXGAhPbPq\n98V4bF6rvkOWFZtZPNPFuGfj/1Zw4iZo2T+TAwRBEARBEARBEARBEPYl+95CQzjg2LjKTsEeM34/\n3DWipWFgMMwHTzcxzAL1B83MyO3PdlqSjOoCodhtBoEQgC8pmSv5hCx2cCFqmJoSXwJNyMebmo7Q\neClp20Eb2PclJpP27zqa/bEIgKDdTn6Pw/E0yWDbCWdQ3L4zAKWt21HUqRvBUIikimYtKGnTHoDH\nL5rGe6O/IzV0voXp1MtLSaGZ5XMT6tTOf5bHDseUu6PhOogDfn3w324zdnh3n/oFAcy8yF2kbtnI\nzv6qm0pezyMAGPvKbp76ZCdN1unCoiPefwmA1otnxt1nOMxQhn8Xv4x9mzcmbiOrrZ9uR3j57Zbn\nuWLV07TtogoLrrorn1e/34bDqRDwQYTeAAAlGH+UJy/PTlPy8LkSq/0cLCGXm1nPfwDA9Le+ZNr/\noh1sAFKaq/8rC4QATXAFuotVY8AUMZrmbpKJMy+Xfi88yMiB7Th10Ts8u/UGIr+JFotmA7B94Ims\nvehq/vjPvWw8e8RetWHSN78b1t1NMwk444cw63eCLvxS4mjW7BGbL6E/rebNiCrjyt2lLTvzcmvW\n2P1MkWr+w/Ll4HbDa69Fl+nWDaZMgeeeU8tw//04/15hKNMxFNJt63GnafeJhETjh2k2qw4OkYQH\neRMLd5O6ZaOW7sUosHrgymiXhzcezOCFO5rxwVPqwNm//xi3iXSICgbgsoFtGXGuzLQXBEFoDPh9\n0e91y2bXwM/UHzCIhMwRD6YneYhfPviBkbcUANRZzC8c2qSkqy83hXl167aaM0X/PbJ9i5UNK6Nd\nVZ/8eIe2nExJTNG9IAiCIAiCIAiCIAhCY0NEQgIPj8rirhEt8XvVztvcHdHOE79PTNKWhzEZX0At\ns5vm7KAFJSTFnHXnS0zGBOygJc9wn5aeTgGeFHES2tfsrxm8/kT1/DltzCUAdPtyXM23DYlNbBXl\nJOTuBMCLjWtPWUynnh5atvORv7v2bimv3pvBxE9S4uZv/dfGy2Mz2Lqpfg3XgkFQFBNW/Kz4zz0E\ns4yzWa34MaNo4o81l44ir8fhmiNMQpJCQqKCqdK07+Tsfzn5jqsNafe+tpv0tStx5O/BWZwPQPeZ\n33LG82No0kzf/uQ37uGwca/Rds9Kvp22gvOOXUNr5y4sNoXlcxNY91fsMGU3P7EnKs3rtdCUPJQa\nzMJd8OirbB94ItuPORmA3X0Hkd/j8JhlXZVEEkOYqi1HioQw1+9jzcSBMajlSU2n1fyZdP3uUwD6\nvvZE3LILHn6ZZXc+xj9X3oQvObXW+1px01gAfv78/yhr2abW2/fsq7oHxRMJ+dq11JZP5ndmcAom\nFH7mTC09a/EcbTl184Zat2F/8Ee2qhL6808FlwsmTowuk1/k55FnIxy0nnmGjmeeQpvfppDx5xJa\nzf6VHhNU0dzKUf/VRELJaQGuuL1A20wVCRnPzbAQsOd3HwHgSUmjqF0nNtI5qh2XDWxb5bGYLdC2\nS+zQkItnqoLM2b9b8PliFhEEQRAOIgL+6HedBdOrF3sHMWsioeyThkTlnzZ6BK5ENb8iTjhrQaiK\n1HT1/CnKr/3kjT/mOXn3cf131mM3ZDFrcpKhzPFnltKhu+rUCuDAQ7AOLpyCIAiCIAiCIAiCIAgH\nG9JbJwDgLjez6LfqnVju5RkGsNiQlkg5SZQRjDXrzmTi3zMvUBcjwqwtYQABZw1mqAqNAl+isUPW\nFC+mXQwCdtXRwuz10vfVxwGw4WfUCQt4/KNdREZD8npi1RCbJb8n8NXbulDthS+3A/qM1X+WO1k2\nO4GPnmtS80prQO52tcEKJiqaZJKcYByIP4y/DevlzVoQtFox+f2GdEehKvrxudTr9uwRJxvyTzy7\nlGObr2ToVcO44My+vDauN4NHlPAgTwKQsGt7lIrjzCuGcualp3Pe+cdy/tkD2L1NbevTN6s2PjeY\n3jeUT2vi5/xRRQB0O0IPK/UT59ZIJJR7ZH9+f/WTGs3YdSXpbR101E6mciZpqKIJg0ioEWGOUPW1\niBDNVMad3pR5T7yhrQdtezcDevVVY5iwcAtFnbrVafuwAC21SezrXGluFIi+xn8BOIufuYdnARj0\nxJ38xsk8wqOcfNuVdWrHvsYXclBQlPjCstydVlb/YRTdmYJBjr//Js648UJOHHudlu5JTScYek1L\nSgky4KRSLc9sUaJCg4Z1g/aAei3u7nM0v735RZ2OxV1upqwk9iui2axfi2VldapeEARBOIDw+6Bp\nlp//zdJDSi6ZWf3vwkiRUKRD7M6+gwAwB/w4E9RnRkXZgSG6Fg4uktLUl5uSwtqLhF68M9oduTKj\nH1Z/T731n4kooakB4fdoCY8nCIIgCIIgCIIgCEJjRkRCgsb7TzaNSqvsBJFOgWFA/i8O08vGEQVU\nZGYBRpGQmiA9b4cKthJjiLDi9l1qvG04ZNnRz95rSDdHxMAadplav6ei9re05LQA16R+yYXjbuLz\nhdk89K4a5kgbzIjjhlJXxj2rio7mcDzujGYEXS5+aH8DR3TbzUdcE+VbU56ZRdBqw+z3M3JgO0YO\nbAeAMyQSslWUG8ovoR9pCRWMGF1oCNPkws24beeRQgkAJ91xNSMHtWf44CMN27sKVHcgcyBAYuFu\nQ16Cybivx8a05PtxaXw/cTHv/TlYSx/DWyjm+g3XZknShS9dm6nf0RCmAdCUPAC+mf539IZ7yf68\nTdVk13+MuY9JX83EnaaL2WIKNvchV92Zz5jH99Che2zxls1hvKic6AKz57lHO8dP5Tce5xHKSNDS\nDmRqeq6UlxrvU2suGcX68y+PKlfWsg25Kepx95z7LaPP7aDlxQo3FnYSCrsPFbftiFKNs9a433Ji\nOoJtXGUnb6eVpFSjEklRoLRYr7NyGwRBEIS6o8Sz4GtgPG4zTlcQuwPe+2VrjbcLKhEioQjnwkgX\nwrCTUFmpdDsItcduV68JX2xzwxphsVZ/XSXt0M97X2J0aGNBEARBEARBEARBEITGhvTWHeJU1xe9\nernR8WAPGdoAJEAzdBGBYoltzV2Roc7iixQJDU2YUdumCvXA/tI7ZP611LA+/e0va7xtPFeUwz54\nhVNuHskJd1/HicvU8DruitofYUmhhcyiLbT/VY0NZLWGO8VErnsAACAASURBVKNDde3Fh+b3Q3mp\nieICMx63ifzdFnZuVa8TJ24qmmbid7o4yTKbl8ZM5xo+jqoj4ErAXlJM8z8WamlHP3EXfV95LOY+\n+7GMH574kk47lmnh3cK0mvebtpy2ca3ajqIC4hEe+AnzcFDfZ2fWYw5d0y3nzyQfXaRyLR+xu8+A\nuPXWhUCCPqP9/GkPA/A+N7CY/qx79CGmfjwZX1L88HEHI5GikxlvfK4tT/l0mrbsbpKBLyWV0lZ6\n+ChlP4dJSEhSOOaM8rj59koioW8YUWV9uwk9Q/wHtmNUrFtFj6PcMVJVmqOGTyzo2gt3k4yYZfq0\n2gLAFcqnWNEFO6YY4cbCTkJW/Gw75mT+ufxGglYr3fknqt5bn8rl84XZOBMUBp1ezms/buONidv4\nfKHqIrF0lnq9lRYZxX4BP3g90SKhbdtgt1FTKAiCIBwkuMtNOFzqszkptebqzwBmKpplkXPiYP4Z\neT1znnqb9edfzpK7VdfKjWddpNX36HVZ9d9wodFjCf0M9Hrq/oMsVji9yhhcbmUikyAIgiAIgiAI\ngiAIhwAiEjrECVQT9cldZjYIifrwByXos+uCvXV3h+I2HYjFrr7HsKdXH7YedoyW1jFpe90aXAek\nm2//M/+x17Tlid/Oxl+LGZq+hKSY6Ym7tpO1dB5NV62g3Zr5QM2dhHZvNw58fx0SKSRv2UjHmT8B\nMGeKut+adCzH46ahrbn+tDbcNLQ1912exS3ntCJvpyrg6MMfuJuoIqG0jWtJ3bQ+avvS0Ezs9A3G\nQf5OP3+jLc9/5JWo7WzlZQy+7rw6tztMZfevNAqZh3odv81/tPSjn72XYfysrbdP2IG7afUW/7XB\nn5CoLfcIiR6SKaU/S9nTqw8F3Q+Lt+lesT/vH5FjFPk9DteWC7v00Jb9LjVsY1lWa81NaH87CVVH\n81Z+Tr+whJSU+KKf+QzSlsMiIVtZabziBywPvq0rZ7LYQddORdq6Ejq7ghYLyTn/xty+ZUs3CiaO\nyTLeA2KHG1PrK+rWg1kvf4w3NR3FbCZAtKuXJoIMkZEV0MLERXL8mcbPvLzUbJjNHxYJtW4NzZvH\nPARBEAThAKYo38xfC12a0ySoDp1WW/XuK0HM+NLTmPPc+3iaZJBz6jCW3PMUQbsDd3pTMv9aRst2\n+rN+PxklCQcxNlulyRu1ICFJF7w9/4Xe9/DGxG1RZcNOWOUZ9fv7RRAEQRAEQRAEQRAE4UBFREKH\nOP5qOtzKy0wEdOMgRvC1Ib/FyiXasi8llVgUdezK/437kdVnXamlZQdb16G1wsFKcYcuTFi4hQkL\nt1DaupZhg8xm/j3zAm11wzlGd5x/LrueRMoAyN1RsxBXebuMTiubUQVug0edx9FvGh166tIpDeD3\nQXmJfovdtdUo3HiEx/CkNcEcUur1e+XRqDq2nnCG2r4zzlHXjz89qszmocO1z3bqx5MB6Pviw1r+\n1I8ns/T26LprRIRKxWXxYAKOYQELHniB05luKGrHh4KJnX0GEcxMq9v+qsDv0p2EWmIUGcYLdXiw\nY4qQKIVDH2w491JDGS0kgtnM99P+YMLCLQf8DGiLFa6+q4An39wUMz+AmWOZr60/yYMAWN0V+6R9\ndaaaj30ZfQ3nbjD0CqZYrHHDGpaE7peVw4bFDDcWelZbrHpDFIs1pkjIVMO3vwGnGB2hls5yGe6J\nlYXGMgAsCIJwcHHHhS0BWLE6A1Popm62KDW6nwcxYzbFLugsyCMl+1+SnR76nag+SyJ/UwpCdWSv\nt2mhwvy+2r/bht9RWrT10aqDn88XZvP5wuyoUKoAZp8qZpv5+udReYIgCIIgCIIgCIIgCI0REQnt\nBw6kQbSAO7aV0AAWAVBRZsbvVRv8HGPJHnIuezr3rtO+lIgR1KObr61THcKhyT+X3agtVw5r50lt\nQhKq28WLd9Zs9qe5Uj/zBjoBYC8txoLxmujdP364oKooLqhauLLpwpEoFgubzzjXkL547FPq9m06\nsPxWVRyx4OFX+HrGSorbddLKfTdlGV/M3WDYNmhXwwNGhhAr6H4Y60ZcXW17Zz/7HnOffMvQjrCT\n0P2v76Q84NTyBj41Vt1fjBCDSdu2UJFZ/5YiQZtdWzY1T+XrGav0vAZ0zjHtR8FNZrKD1uku9a9J\nAnP+3sr2Z1+hdbpLK5PUq7te5gD4y0p1VHFERiypzpjp1krX4GTO5jjmYCmPH8LsQCBxa3bM9GvP\nWsH9PEVLduD0lkTlBy2WKGHX7GffU/Mc6ueZe0R/Q745Zrgxdd0UKRIyW2KKhMxVvP09/tFObbny\npdWqvd8gLh4xwtj0PXvglFNg2bL49deWJ5+E+++vv/oEQRAEHXe5/kBoFwq9G0uIGonHbWLlYgdB\nzNWKTu1FBXQ93APsXcgo4dBiw0o7913RQnN29dXh3DlikPob7pnPdhjSbXbo0cfNbc/mMnJgO0YO\nbMdxD44BwO+I/W4qCIIgCIIgCIIgCILQ2Ige4RUOKV68K1pU8QPnMZSpOPFQUWqGcnVmnQ0fpa3a\n4t+ojho+yQPMfu59ypq3xJeUUu2+OrbRw6xc0eQH5nJmPR2FUFP2p+Bhbwha9VtV0GYctfYnJJBm\nK4b4kYuiqChXP4dHP9zJI9e1MOSlURhzm42r7KRlBmgaIyRPLMpLqx418aSmA+Ct5MDlTUnT/4dG\n8hWrFb81mb9uuIOen72rbt8kI6rOQISQxoDJxIZzLqHzxC8NyTknnEGb2f+nFgkGyD51GHNC50jO\nyUPZ8XwWAElKtLABYPo7X3HGDarLU8Bqw+L3kbh7B7uPGljlsdeFsqxW5NGEEpIp6NITf6Iehi7y\n/GhM9G4V250NgIULYfZsBpzab981qAaUuH1M+nNH9QUBZ0rN70fzOI7CndOxxI5qqWFxV9DvpYf5\nc/Td9R7yrjrS16wEjo5KHze5j7bsDOiiw/C9RrFYopyCwve5sBCv8qBV6taNWOxNjduEbk3miFtk\n0GrRHIsiqepR0KaTlyOPqeDimwopKTZu6w+AN0IkNHeucdtmoY/8lFOgqIhqURRVWJSZGb/MQw+p\n/595Rk8LBg94wyxBEISDil85jR6fbWfzkPMxW0AJxr7J/vZjIuOe1Z8/awracGoV9dpLS7A7QiGj\nPCZIOoBmywgHLHm7jAJnbw2dXYMB9d3CYlX/t+rgpfLPI5MJHnxnd8ztA46ai90FQRAEQRAEQRAE\nQRAOZsRJ6BBn3eqEqDQfNhx4seOhotRE0Kt6w9vxUty2I13S1HApPVnNrj4DKeh+WI1CSJnMJhTU\nv7Zz/q9+D0Ro1JS00ZUBK6+5xZDndyaQ4Kx5/ILVyxy8cIc6ku1KUPAlJBryrQRQMPH5wmwcrqA2\nk/rhUVncO7JF5eriUlpc9e01EHL98UWIXQD2HHYU688byYJHXo7aJmh3sPT2R5n/6Ksx6wza44iE\nAE+6OqCz8qox5HftRc6Jg5nz7Hv8MHER/555AduPORVMJnJOHUbOqcPAbCYQ0pG2mfQ9ABVNjSP5\npa3asv78y9jV52g2DR2upRd27FblsdeFsuYtaUIB7cjGnW4UR1R2l6pPDlgdwtFHw9137+9W7BUO\nZ9UDhaefYRzAsfy9udo6e3z+Pp0mfc3h7720N02rE4EYr1QdpnxnWLcrukioP2q4zlgiIcVs0fIi\n/4dxlhVhLzQKGsNOQmabXlc8JyGTOf5nb3fA3S/n0rZLtPLy6THNmfpF9aLg4uJqiwDwzTeqsMhk\nMv5Nnw4ffRRfCLQ79tieIAiCUEuaZvm5MGs6pzGD8maqONwUCiEWy00oUiAEMH9Hzyrr7/nJO9ht\n6nu6OAkJNabSqVLTcGM3nNGaK49rC6jh7ar8iRDD3jngdMUoKAiCIAiCIAiCIAiC0PgQkZAQhQ/V\nhiCZEpZNt6K41Y5dGz58icmc1WExi+nP+fxocPOoHr1zb3el0CmCUCVmMxMWbmHCwi140ptSltVK\ny/KkN8Vl10VC/mochSZ9qg9wu1x+bOVlMctZKsoxmxWUoNrJDNW7A0WSv1sdmH/w7V0cO1jfx2sf\nr0PBRCDkDFJZJOR3ulhy7zOUtO0Ys951F1/D5iHnx8zzV9GxbS9WbT0qMrOY9skU5jz3PpjNVDTL\nYuHDLxNwRtvrv2e6AYCLpj8MwOrLRxvyvcmpLLnnaWa88zVbTx6ipeecPDRuO+qKP0H/nNrOnGrI\na6xOQo2dSAHIuVcVccr5JQy5WFeXOJs7OOV83cUqZcGSaus8/ANVXGeudCMw+7x72drq8QejxTiD\nHr/DsO4I6iKhD7kOUEVuSqV4LYWduqt5IbFQ5ZB6FgJRg7eBsJNQRLgxVewXI9xYDcdp23et2+c2\nfHj1ZQDmzYudfvrpMGpU/O22bq19mwRBEIRofB4TdpcqlkjI3YWtuIhASJBRVrL3XQUdp3xLp3lT\n1H3V0A1GECq/p/z6bTKb1kSHF/b74Y95Tl67P4PSIjMVZeo5u2aFg2DAhNVaSQikKDgK87G4K2g1\nd0ZUfQEJNyYIgiAIgiAIgiAIwiGCiIQOcXr3jo4HkkkuAHlksH1nIjdc1huAXDLxpqaRtGsb/VkK\nRLsbVIUzP1db3nDeyL1ptlBHGkvX/MRvZ1HaojUA+d16k5n3r5bnqaj6KLdt1juYT33xv3HLtZr3\nG66yQhw7drAjp3YilFmTE3nrYTUcWEYLP8lpeoiyREsFoDsJeZONIaUqiwFqQ2RdK68aw4SFW7T1\n8OdV1KFzjeu7QfkABRMOVKFAYZceWt768y8naNct+QNW3cXIHSMU2t4SKaYq7KwKKHb1UcOaVQ5B\nV59ISKOG5fgzSzn36iJG3FTEqHsKuOy/ujuO2QKj7ingoXd3AVDhq3kICFOEgqbD5G+45PguJOxo\nWGWJN1D9fcIZVK//i/iaBNTlYCUnoQkLt1ARcnNAUY+j8rPWQoBAsFKIshhOQqA/01/hNi3NVMO3\nv8Rkhc8XZvPR7zlVlps9G3ZERJnbtq1m9fes2oBC45JL1An/M2eq6zV1KhIEQTiYiGFs0uB43Cac\nJlXAmr5+NRedcThzf1ZF599/GB321O6IYS9UDS1nTwdg+5aGe18TDly+eieVT15OZ94vCTU+x2O9\npzx4dQvD9rnbLTx6XXNevLMZi39L4MbBrbW8J0Y3Z8V8F+ZKXRX9n7ufC4b04eKTutPtyw+j9rE3\nv8MEQRAEQRAEQRAEQRAOJkQkdIgTDBjXr+ATTmN6zLL9Ds9lT68+JG3LrtO+Irezl0SLkwShpihW\nG798NJEpn04Fsxk7uttFpAgoFnk79YH8nvN+AGDzGefy7S9/smnweawPCdjazJxCPk35aXY3tm+q\nXYfx+0/qoRiSU4OGmdgt16huKGFhiy85lfxuqhCvsEOXWrpzVSJCaLDt+NMMWWtGXs/0t79id99j\n6lz9rn7Hast/jjaGurKXqtd0WVarvTuGOPgSk7Xlma+MB2Dek28y/a0vDWKl+sYkKqEGZfTD+YwY\nrT8PzGawhGZ9t+6ougE5XeqAZIW7elHqnt592E4LvHbdVWvA8w8AkLplY721Oxbbi9OqzN/VZyBb\n3c2i0hWLNa4azRyyBwpWipcR00nIp35ulUVCUxnKB1zHbbzGCe1XA7UXvzmcCmdfEfu5/cEHcPzx\nkJUFX38NiYmwaBG8956xnKLAnj3GtNxcqsXhgA9D43gpISM4EQkJgiDsPYoCXreJBMoN6a4C9eZc\nURb9sDhuqNGB843TP6h2P9Y09T1t4fToMNdC4yZ7g42J41P55etk3n4kg8sHta3ZhnHeUyLPyduG\nt2LTmqp/A1isCkMvG8x5Zx8NQJcfJ2h5WcsWxNivXr+p0UyvEQRBEARBEARBEARBiEZEQoc4gUqh\nma7nA0zAnl59DOm9WEnKeT3AbMbdNLNO+zIp+ojmv2eNqFMdghDGk96Uwi6qDUVFZnMt3eupWYfu\nSczUlgs7d8ebmsaCx14j+7SzALBW6AMm839N1JYnvJHG+r9115zqcLgU5kzRRTOnPDVGrb9cr3/p\nnY+Rc+Jglt/2SI3rjcekr35j1VVjyOt5pCFdsVrZfdTAva5/xuufs/iep/GmGgUR2449lbUXXsXU\n8T/v9T5iEXBEuBa51EEmd9NMdvcd1CD7E/YfH8/K4Z2pWznmDPUacSao4pcP91wMQKs50+k5/q2Y\n2+b602nFdl7/4xwtLexClbR1S8xt6oOls1w8OenMuPmFHbpQntWSNSXtAFhGXy3P7PMZnIQiCYdN\nU6yxREL6vW5njpVFv6ohMkx24z2wNdu4jnEA3D/oO44dXMbhAytqemgal4wpYvzcbE46u5Te/fXt\n+/XTy1x0kSoWAhhtjE7Iu+9CZqY6/rZwofr/oYfUvBUr4u/3++9V4RGISEgQBKE+8XlBUUwkKEaR\nkD2gOgv5fdHv1IpiTDuh/ZqYdf/6ztcsuetx1g2/nHODqig/s6Wf335MZNns+OFxhcbFrq3RLovb\nN1fvvBjwx06v6e+8MLaAh/SNa0jI3Ym1rIR/z7wgqsyUT6fVqk5BEARBEARBEARBEITGgIiEDnH8\nXqPntw0fv4z7iUX3P0cKumtAImWa84kpUMl+qIZsH3Syvt+ExCpKCkLt2HjOJVzFxwB43fFva5HO\nG98zXFv2RZyPYZt5155dWtqSmfrM558/T+GDp5vUuG2u/FycLv2aCbseWTxuLW3P4f2Y89z77Dz6\n+BrXG4+Sdp3486axBlehvaUiPYPtg04CYNeA49hw/mVRZYIOJ8vuehxvanq97deAOPocFNSH85LZ\nAinp+sXavLU6UrTQfRQmv58T7x7Fke88j8WtX0PJ2ZtwFObz0LY7AJi6W3fM8jvVwcj+Lz60122L\nxx/zqh7wXDPyesqyWvEKtwPwL520PHtJUdz4X+HnrVIpXsY2U2tW5Hbih49SuGxgW+68qCVTv1Gv\nPbM1/rXfypnLfx7Lw1ZznaMBqxWufyCfLofr7m0JlYwhlqrRSOnRA95+G0pK4I034D//0csMqqTt\nO+II1dFCUeCdd+DFF/X1MyO0VyISEgRBqD98IcFFYrDUkH516J06tUn0bz5FgcQUPV2J89zP7XM0\n6y+8Cn9CEna3KkKaOD6Vcc825eWxmUz7Khmvpz6Oomq2b7Zy2cC2FOyRbo/9QawQc9W5vgIkpRrt\nEnsdoZ6jAb9+vmW1UYXU14zN59yrY7sdZq1eqi0n52zGmb8nqkxhlx6sG345ZVmtqm2XIAiCIAiC\nIAiCIAhCY0F6yw5xHNnbDOt2vARsNvxOF4XoTiEuKvRwJyFHoBlvfF6rfRV26gbAzn51D3ckCLHw\nO1zcxYuAOsP0ymPbcNnAtoZwesvnOrniGNXifvSwRaRTqOWlbPlXWw6LhJqsWx13f9s2xR9hVxQ9\nXFJHNjJ8WD8urRiv5Ye7tstatqnZwR0ATH/vG35/ZXz1BQWhATCZYETTn2nBDi49ThfXWMvVAaM2\nv03h7BEnccGQPnxXMgyAMr9TK7fO1xErPtbTucHa6KtmZnvA6aK0ZRvOYSJmAnzP+VqeO71p3O1M\nflUgFbRYmPLpNH7mTH7mTNYo3QH49v3oEGdme/y2mH2+uHm14fxr9ME4VyV9VFqa6ib0zz8wZowq\n7Ln11vh1vf22cX30aLjzzthlk0NRB2++WT0v6qhZFgRBEABPSFifoBhDiD3Ik4AaajIKBewOPT2e\nE14YX0IilhhqoE9fSefHj1Jr2+Rac/clLQF46JqsBt+XEE1JgX5+/PdpNYyd1RbjvKqEOeJVpgvr\nOO3YHCDaYWjQGWWcNryUYwbr5/C707biSlT7KxwB3flw6NVn0XLhLG09aLEwYaHqMrl07FP89OP8\nGh6VIAiCIAiCIAiCIAjCwY+IhA5xvBjFDna8KFYbAaeLyGFGE4omnvAlqVP5w+s1xmxm8he/MuuF\ncXvT5FojBiQ6jfWzCDidWFF7jUuLzQQC6oG+85g++P7SXc205Wa7Nxi2T966WVuubrCjOlYtdRDw\nm+h/bDG/cYraDm4ylPG5Esg+ddhe7Wdf4ncmVF9oH/DLuJ+Y9r9J+2x/jfV6ORhxWb2UooYN20R7\nxnMltrJSBj16G8ffr19fA8xLAOhi04V/F+R/QgArExjZYO2LYwSk4Xe42Dz4PExAACuDM+azacj5\nLHzgeXb3HUTS9uyY25nDTkJWK4rFwplM5UymVt0We/wwHuHwZXuLJWIXlUVCADt3Vl9H+/aqqPKm\nm6otquF0GtenT49fNi8P/HHClQiCIAjgdYechAKl7BhwPNPf+pLFY5/CBLgox++PFW6s0vtRNe/N\nYffYSzrMiMrLz7VEpTUUBblWysvkxW5fE3b+ueP5XJq18hvSqiIYoSMyE8TpKVG3Dejb+n0mrKGJ\nGa07+Hnqkx18PDub5LQgCcmqSCj8+zAW4XC0giAIgiAIgiAIgiAIhyLVB4QXGjVe7FzFx4znakAN\nN+Z3urTwLGF+52SCVnUQc8nYpyjs3J3cI/rXen/FHbrudZsFoTJ+V4LWCbx6mUNL37w2tuNPSo8U\nWKKvz3viDW3ZWRBtQw/QvquXzevU+sJOQZEU7DHzzXtp5G5Xb6vubeW0Q71mHHgNZfN6HnFQKVAC\nDmf1hfYBeb2O3Kf7O3i+ocZP8TEDKPtBHWjsyCYA3lozm3Om/WAo11rJYTH9KfDr7gTJJnVgyU3D\nncdmc9Wz4v1OF0G7fm/yJaWw4NFXtfUWi2bH3M4UCDsJWQ0CxlVJR9GrdHnsbWzxB2zb//IjJa3b\ns+G8S0neuoWOk79RR3wrkZyzidLW7VAi1E8Vmc1Ze/G1UfeuWCKh6ti8GVq0qP12lW+bQ4bEbD4e\nD2RkqCHO3nqr9vsRBEE4FPBo4cZKCDic7O47iN19BzHg+QdUd1l/9POkskhIqUYlG352fbTpLL6k\nwpA3Z0oSox/O38ujiE9l15mSAgsJiaIe3Zf4/WrYur4nVJCzUZ1gVPl7iYUSEW1sLd1x+GeFttVP\nvkDAKFpu31UXQicmBclD7dso6NyD9A3/RO3Dl5Bcu4MRBEEQBEEQBEEQBEFoRIhI6BDHY3bhCOoW\n8Ha8VGQ0Q7FEnxqlrdsD4G6ayd/X37GvmigI1eJ36iKhRTMStfQjBqmDEZGd0Xe+kMsxBWsA+PGH\neZS3aG2oK69nbCHKXXevo9SWyr1Xt6FFO70TOm+3hd9/SmL5XBeb19rperhb3c+wmRBncDpr2YLa\nHeA+ol3TBLpl6R3mwZQUzMXFnDSgE1gPvceFiIQOHCyZiXhw8gY3a2lluarLjhebJsQbrEwDoDiQ\nBKgjTF3NG/g70JtnuY/Pie3Ys7dUZaRQkZ5Baet2hrSCrj0N64vvfpIBLzzIjDcnGOuNdBIy644L\nLay747fFFv/MdRbk0f/Fh7C6y3Hl7qL7Vx/hryQCNAUCWEKOQ+G8cFrOyUMpb97SUD4hhtGYyRRb\nvAPx02vKo4+qfwAOR+wyW9ToIXz0kYiEBEEQ4uENiYTS83OiBOF2vPh90SpQRQFM8MH36zh3+LHk\nmG+och/h92oXbk46u5TfJxndW4IBMDeQoZC7wvg8LC0y07x1nMJCgxDwm7TwYuH/fl8NnISCxjK2\ngNpfEekQ6PeZ4oYui3QS8iUkGvLmPf46xz58K/7ExFibCoIgCIIgCIIgCIIgHBIceqO+BwB7O0BW\nFdkbbJQUmenV11Nt2QlvpLErmII9wuXk9/e+xBHhdrCIATzGI4zt+x3b2j7aEE0W9iGmRip78CUm\nYSGgrXfq5WHjKgdTv0xh6pcpPPj2LgDOu6aIo46vwPZVOaCHQIjEk96UCQu3YCspgtP19KuuH8iu\ns4cxYeDH/LXQRXGBmZT0IF+9nca8aXo9zgT1Am+ZaJwZ3Yqt9CB6FuuBhNNmISMpYtS9qAiAjP3U\nHuHgo6HuMD6vWvOt6K5fitvH/7ia23lFS/uFIQCUKQlAKQABpeEjq8YbpCpp1ZZJ383R1hc8/DKD\nHr+DjWddbCi34YIr2HDBFVHb53ftBUBhh64GJyG7VR8l692/gn/+cGqz681242irNzEZe1mJIc1e\nXIS1opzyjGb8OHmJIa/VnOmcePco/A4HX89aq6bN/j9OHHs9joI8TST098YK0uyumKZold9zLr4Y\nvvoK+vSJLltbMiJuSPHq27FD/e92q39Opxp+LBiEzMy9b4MgCEJjIPzccHmKCVp0kfimwedh/TUY\nV8xhNkFKqo9M9pBTjZNQXu8+rLlkFB0nfc31D+RzzT35/Pe8lhTuUbshfp6QzNlXlFRZR10Jvzuk\npAcoLrBQUiSR1vc1fp9Jc2AN/48Vxq4ykU5CAPagOgnjlbGZvPbjdq3ueO9fYTfZL7mUL/4yhpvd\n01t9edh2zClVtuEgMn0VBEEQBEEQBEEQBEGoNdJT1ohYu8LBfZe34OkxzWskRPr58xQANtBZS7Mm\nGE+JASzhZ86ifVpuvbZVEOoTX2KS5iQE8Pi4XZhM+kWwdLY6E7p3fzdtp0+m3yuPArFFQmEiXTu+\n/mkJSZTR5repNGmmipG++zCVgB88lWYpe9zqujOoCpEWPPgiFU0z2UobfuUM1l14JV/9vnYvjlYQ\nDj2OOq4iKq3z++9yLf+jiDQtzRYSvZaRSO8PX2XkwHbgD0RtW98ceazevh6s1panfjLFUG7T0OFM\n/mI6uwYcV6N6Nw27kMlfzmDXgOMMIiEs+v3pvjdyueK2Am3dVMlJqCKjWVS9pmAQi9djCIEWJhAj\nzZPWBIBTbr2Mvi89AkBaukLrOI4MqanG9TffVIVDy2NHSKsV27frywUFscu43fpyu5CJU0YGNIv+\nKARBEA5ZgoGQeIMATdau1NIViwW7yRtTzBEMmrC6yxhxam8A7EVxbsQRBOwOLF51AovVCm9N3s7l\n/1W3S04NVrXpXuELOSWdeLYqGi4rlq6PfY3fr5uRXeKxpQAAIABJREFUhv/XJNyYc9cOw7rdrz7Y\n9+zU57hF1l0Zd7nxu/72lxXMe/x1fvxxPmUt2zLp65n8Nfrumh2EIAiCIAiCIAiCIAhCI0R6yhoJ\nigKPj26uredssGnLwYDRmjtcPsw0hmrLCfpYK/Mf0d0ZKlvQC8KBhC8xGXMotFBymioI+GxBjpa/\nZrl6/qakBzjuwTFaetBmj1unEjEIn771XwD8LheXjikEYPp3yYx7rgnr/jIOqK9doe6r77gXAMg+\n7Wz29D5Ky1965+MEnAfm9SQzZoUDlc69vXy2wBgqrIxokZ8P9Zr24qD7h28CEKCB4phEEHntrKYX\nL3M7X3MR/sTkqILFHbrUquLi9qqQN/KeFLkMcNoFpdpyYqJxwHXm65+xeOxTxnoVVSRUOdQYRD7v\n9YPK73E4qy8fjTc5lawlc6tt9qxZ8PTTUFwM+flG95+95aqr9OW1a6G8HDZuhM8/V9NKSmDsWL3M\n7t1qmiAIglAJtxpa0kIAW5n+HFHMZuz48PuiN3Hk5+Eq2KOtZy2bX+1uAg4nFp9XtXML0XuAKvpw\nJTacSCgcTi0s8BcnoX1PZLix2jgJZc2bbVi3+L1RZapyErrrpd305m+KSWbNJaPwpqaz5YxzKc9q\nBUBJ245R71KCIAiCIAiCIAiCIAiHEtJT1kjwVeo3C0QYJzw5phlXHdfWmB8hGrqPp3mROxnKFLDp\n4qLNQ87Xy9vjiykEYX/jT0jQREIduusXw5uTtwKweZ16/qZl1NxRRDGbmcUJ/Hj8vSTtUAVH3pQ0\nkiJmPM+alERxQewO5oQC1X0r4HQSDE1zDVqsosQRhDpS+dLZSKcqyxeRygY64WXfPb/eYTQAt/Mq\nF/FtvdYd6W4WuQzqZ3P6MVsASEs3juqWN2/JhuGXG8srChaPO7aTkCOcpg+8BW12Vtx8H7lHDMBR\nmE+LhbOwrovviHbEEXDffZCcDOnpNTq8+GzeDFOnan9dy/4wZOfkQOfOcPnl6rvP44/DX38Zq0hJ\n0ZcbMuSrIAjC3rDPb09e9QehhQCL73tGTzeZcATKtXBkkWQtnoMp8vlgqT56edihLuwmBGCzq3V4\nvQ33XhwON5beVH3/LyuRro99jd+vhxsLC3pinVeVCVQKY+etZCgZDIAS1OsO02zZAhwFefQ51s2y\npONIppRVV9+8F0cgCIIgCIIgCIIgCILQOKm+V084KKgoq9SR5tbXw84mG1ba6dxbFVD4IjpkH+MR\nbPi5k5f5xvq3XknEiGyXHyew5N6IzmPhoKSx6lP8zgQy2cM0BpPz1IdaekKSseM4Mbnmwy+K2cIJ\nzIE5c/i7y60AlLTpUKf2tZvxMwDmmvjr70ca6ekhNFIe49Eq88/g/1hBH0OaojTsffAo6iGeVhwi\nw40FY8x+v/PyJUya35W5tv9VW5cpGMTi8cQMLRYrLYzf6cRZmM/Jt12Jt0kGK1asr2Hr6063ocNw\nrdFDuClmM0cPLGXRQjWM5BvjKgB12WqFVm0CEHKPsjsUzUkizNJNhTRNttIxM6nB2y4IgnBAExIJ\nrR05Cucxp2jJnSZ9jZ2xmPKLozZRMGnCfIgWrcZCEwl5PASc6v3a5lDfyX2ehhcJOVwKFqvC5jV2\nNq2x0aF7DIskoUHw+8AamoMU1pOFHaqCAcjbZSGzZfQkjmCEC2RPVuEpM54nPp+6HhabgSoQOm3M\nJQBMWLiF4rYd8aakaiFTBUEQBEEQBEEQBEEQBB0RCe0HlAaYJ1pZJDT1q2S6HekxpEU6noRtvl/l\nv6y9ejS9P1bDsgStjc8xyCTSh0ZPODzOYP6PL5x+lFDHssNpvNbMEZZbCx94vso6Iy3o0zasAaDN\nrF8YObAdl+37ud6CINSSygIhUF30rLYYhQ8CgqGGl4VCZfzFYcx4fQKQCoA16MOBF6UGrg7pa1fS\n/I9F7Ox3bFSe36UO4BZ16BqVFx7cBbDn72H19ugB5Pqm267d5Jw4mNVX3ETrOb/Sa/xb3H3v38xe\n1YHXH8hk2x4vYZEQwLYc/d597+u7ePzGLEN9q3JKaJ/lEJGQIAiHPEpIJGSyRQt9EimjpDha3B7E\nbHASUszV/84Khhxpm6z5m51HHw+oIk4wTlypb8IiUZtdwWZXWD43geVzE/h8YXY1Wwr1RaAKJ6EH\nrs4ie72d0y8s4ao7CwwibsWnCodmchIDWMyS2f2By7R8r1st3GLNMkYOPB1fQhJrL9LjkY4c2A5v\ncgq5h/dvyMMTBEEQBEEQBEEQBEE4aBHP7UZCUZ6xc3fJzISoMh633vPmD3XIOnEbXAPCYZHCzHnq\nbUpateWn7+fUZ3MFoV7xJyaR37UXYBQCRXLN3fnYiwoAcKem8++wi6quNKKnus3s/6tRO17+dnuN\nyh2omBqr1ZQghPBXBKsvVAf2RQgrb2oaS+56gtnPvc+OQSdxGCvp6dqg5ZtCcUYrP8fDrL7sBm25\n+R+LAFgXMaAWpqxFG5b99yEWPPJyVF5YkBmm009fcMxDt3DMQ7fQ7YsPo8pXR+L2HHp99DoE438v\ntvJSSlq3I693H4rbdgTAGvTicIVC1VThQtGyffQA94r5TjzuWjdVEASh8eENObg4op8baRRS6o52\nlvO5kgwiIbOveleevB6HA5C4c6uWFnaAaUiRULhuu0PRREnCvsVTFKDTH9MZPvQo+nzwAqBOVtq+\n2Ur2elU89uu3yTw1phm7t1n4fWIiANaSUgCasZsEKjiR2Yzkc0ANsz53qlpu5oymgPqu0Hv8W4Z9\n20uK474TCYIgCIIgCIIgCIIgHOqISKiR8NLYjKi0qV8k8/ukRFLS1Q7gNx/K0Mbhwv25DjyaOwEY\n3VMAck4dxqTv5lDWsm3DNFwQ6omw6MficdN86Txazf4Vk99H+65eLFaFs07cyMm3qQPiy+58DMx1\nv/21sW4D4N7XdhvSIy3vK5pksvSORwFY+OALdd6XIBxMNLTO7Pbnc0P7UTCZFNp389K8tY8LbyjU\nylx3X17c7f0VDRvyz9TALmPrL7ySgm692RYKCxMWBgGYQ/E7gnGskjaeO9Kwnn3SELaeODi6oMnE\n2kuvoziGk9CuvoMM673/9wat5s2g5YLf6f2/12t1LAD9n3+AI95/iZ6fvE3b6ZOj/tr9OhGrx40/\nUXX9CdrUYzP7fNqAr9cd/6RzuoJ8vjCbzxdmc8Xt+QC8dn8mQ45sxh9/1Lq5giAIjYuQW4vJFi2k\nSKWIMne0w6w3IckQbmz57Y9Uu5vi9l0AaLJmJS3nziBxWzY2W8OLhEqK1Hd9m13R3Gxg3wh7BRVv\nrps0CnEW5HHY+DexmfwE/HD3JS0N5f5Z7uSha7P44OmmBPwQVNTzIvJcG8BitU63CYdLTb+ZN6vc\nf7x3IkEQBEEQBEEQBEEQhEMdmVrVSFACam/ny9zOHbwCwGevpQOQ1lQfRJw7NZEThpVBsTqN3o6X\nTpO+0isSJxHhICXscJH67zpOvVkdDJ/z9Dvc/+YwLDYYfvIArawvce/CzHzX4SbmPPUuWW39XHhD\nId++nwZAYorekb1m5HWsG3ENAJuGDGfgk3fv1T73BXL1Cwc6/U6oiBsm5Pxr9dBXJhN88HRTjh1S\nxrxpiVp68CB2EjLsz6IOfEaKhMLLlcW+YUraduCLuRu5+MSuFLfrxNxn36v1fnf1O5YJC7fQ7YsP\n6fvaE9jKSsg5aQjelDQ6Tfyy1vVVNG0GwJHvVi2kLGumDiaGB/vMPp8WTjLSSeio48pZPld3Uowc\nG6z8sSxbBn2iI9IJgiAcMoTDjSkxnIQy2EN+aQLBQBHmiPtnUDGBxQyhx09+yCWoKgJO9R29xcLf\n6fLDZwBMWLgFi0XBF7qHb91kZcNKB+27emnfrXp3ouooyjfz7mPqJBqTEjCIkQIBEIOZfUOx20k6\nBdq6TfGglHpili0tUk80d7mJsowWgFEk5ETtv/B6TWzbrD7gh/FzlfuP904kCIIgCIIgCIIgCIJw\nqCPdY42Ek4/exoLfkridVykhmUd4XMsrydNHLyeOT+GEYWXsWK+mOXFjCgai6hOEg42AQw2JkLZx\njZaWuCOHxJTo0XtvUkqt65/8xa+cdenpALRNyiWrrTqwcv61xVSUmVn0k4lrTmqLw34FXq8Zn6uL\ntq1ykIxEiEZQaCycdE4Zxw4pw2aH/zyax2UDVTe8oKdhn3cN7SQURrGo95SwMOjkWy+nxWI1LGhV\ns+YVq5UfJi+JChtWW4I21V3CWlZK0GojaLVh9tfepamknRo+bOrHk7V7eGUUi42SNu0N+zX7fdgc\n0SKha+/NZ/lZukgo8p4W6SIB0Lx5rZsrCILQuAiFGzPZo99TO/IvHr+NrZtstO1cSbRj1kVCNWXz\nGefQ/v8mausjB7ZjlNPHT+NT+Wl8qqHsjQ/lqZNa9oL/nNlaW77rqnY84XQDqmAk6DeBVeyEGppg\nEEq9LtLQ3R5t+Ah6owXbGVl+9uxUz8NxzzXhlHRVJGSJONHCIqG7RrTEXa6KpQNHduaHJybRbPkC\njn3kv9Ft2AsnIflZJAiCIAiCIAiCIAhCY0bCjTUS3OWQguqiYKnUaxvAygdcB0Cv/m5WzHfy/FOd\nAUiilDnPvMukr3/n13e/2beNFoR6JDzA3P/Fh7W0hNxdAJgiBq/XXHwteb2OrHX9ZS3a8v1k1ebe\n7Pdq6c2Wzee1ouvILVWFRwOG+rma8WwKhT8TBGH/YIuIknL9MbOABhQJKft2KEkJhUs0h0S+YYEQ\nQLAaUaInvSn+hMQqy1RHwB4S6wSDBO12glYrJn/tnR/C9+bCzj0o7tA15l9J2w6a2id8bBafVw83\nFiESSs8IctGN6mDkzU/sMezLcnBoNQVBEPYZpvIKAAJJxmfCr+98TSAkqLn/yixDnqKYwFz7Z97G\nsy6OSnOavDFKwntPNK11/ZFEzn/pySosSpCyCl0sEpD5MfsEd7mJIGaDk5AdLwGPgs0RZMjFugNk\n5HeyaEYiz/x4GqA6CfmdLtYNvxwHnlC9ehdWUe/DqMhsTs5JQ1h6+6PMfu591l14Jf7Q78Lq3okE\nQRAEQRAEQRAEQRAOVUQk1Ejwlikkos64vIU3ovKbs4vmzdxUlJr59x995DSJUoo6qoNwuUcOiNpO\naFw0ZqeYoFU/r7NPHkpxmw50/3Icnb/7lNRN6wBYcdNYlt/+CEotZ5X+e+YFBJxO3BnN2Xr86WT+\nvRyLWx1Y6ffiw3SarAvsrBVlKCZTlCvG6stu4PcXP6rr4QmCsBd0aKYOUPk9DRNuLMy+dhKylpUC\nUJ6pD+IGbXWfNV9TghEKrIDNTtBmxxwMGsKf1QRzNSHSoverhxsLi4SK8ozbnndNMZ8tyGbQ6eWG\ndIvF+N2MH1+rpgqCIDQ4yj6OXWlyq+LOYJLLkF7auj0d+VdtU9BEYZ7eZRBUTJhMCkGLleyTh9Z4\nX/ndD4tKK/PYY5SsPYoC37yXyvbN6rOxKF9/Liwm+vetmOjuG7aHQoIFMbP68tHMffItbPjwuhV8\nHjNJqUHGz83mlPNLCPhN2OzR5385CezpfRQFXXtHTYQqMSVp7wVBh5N1F1/D1hMHs/SuJ/Amq+5U\nIhISBEEQBEEQBEEQBEGIjYiEGgmeCpMmEkqmJCo/hWISHR4qykz4vLpSZN0t/621YEIQDkTMPn02\n8txn3qWga08ABrzwIC0WqC4iOwaeWKe6Fz78srYc7nTuGBIGOYoKDWUdhQVqKJ9KiqwVtzzA9uNO\nrdP+9xUmMdYX9pID9RyyhMYhg+59NzK4acj5DVa3M283AEc/fQ8ApS30sCp7G0qsJkSKIIN2hzYI\nV1s3IVPAT9BiqbGCNSwGjRQJbVwdHaYsVnWVnYS++65WTRUEQWh0BIPqfdRkMXYJBOwOzmaStl4c\nIboJKGasBPhy3kbmPvNujfflS44O9esL1o+Ao6TQzI//S+XZ25oBsGW9+tv2mUeXk0h5VPlA4MB8\nV2lsLJ+ris82NjmCFTffR8DuwI6X8hL1fHO6FKxWsFrB7zfRumO0s1R31pCyZQMBh4NC0rT0l77I\nIUkpiyuM9oVCS0s/hyAIgiAIgiAIgiAIQmxEJLQfaIhJovYN2ZpIKFa3ZwrFZOSsYfncBCaOT9XS\nHQnSSSo0DkxB1SEkPKt5/mOva3kpWzYC4G6SWet6AzbjLOc/br4PgP4vPkSPT94haDfmt1g8B2vI\nZehgozE7TQmHNmZrKFyVt2FcGio/17+Y9y8LIsSF9U3YycdepoqCnYX5Wt6+EAnZysv0/dnsmkjI\nHBHasSaYAgHNFakm6E5CXuxOoytU/5OiB4IjqewkdPfdNd6tIAjCQcPubRZWLY0WT8Yi7KhjslYS\nCTmcht+Ti35L0NyE/IoFi7kOgluTiS/mbuDLOetjZjdp5ufVH7YBkJZRu2dJ6CcAeTvV50lJoSpq\napZQHLO8hBvbN7Tvqop+RjSdAqgCYxs+SkvV78nhUr84q00h4McwkQngN07GQhBbWSkBu0Nza7zw\nhkJatQiFyrPGdqPyJSUD4iQkCIIgCIIgCIIgCIIQDxEJVYOiKPX+1xCUkaiJhGKRTAl2omfnOZJE\nFXAoYToEVCDhwXPFamXxPU8D0Oln1fXHk5Zeq7p+GfcTE7+bY0gLOPWQDH3efpbEndv2prmCIOwD\nTCGREP6GHRkMD2ApFguYG+4VK+yKVp7ZnNNGX0RK9r9a3r4QCbly/5+9+w6TosoaOPyrzpNzgCFK\nRkAUVIKCggmzLIKAWfHDnBOGNa55dV3XhFnBjBkjIqI4ChIEREDSECfn6dz1/VEdp7snB4Y57/Pw\nWHXrVvXt6XGq+tapc/L9yx6TKZDhp5FBQjqXU8sk1EC+TG7H3HQxcdZAFresbk6ue7iozn1rxyJZ\nO2YspxBC1On6f+Twr6uyqCyr/xykev9k64yh3w/c3gD428doKdc+fjWJJ27WAu09qg6D0rRzqWow\n4jGa+OaFD0La5363kyc/3ENGFzcnTq3EYdfhsCkNLgtWO7ikqlx770lGLZB238ixnMcb/u0eySTU\nJnwZm/TeZD6+TEK+ICFLrHbNpDeouJxK2OeYiZY1UW+34TGZuYDXufnIjzjtvAp0Lm1eI1omIWOl\nFiAWU1TQsm9KCCGEEEIIIYQQ4gAhj1bVoaTawdu/7WzvYTRIpT6JOPcmlv3zSfoteIuStSnsI5vB\nbAC0TEI/cXTYfqZ4BVtbD1aIVrBr/AlsPnMGa2dd728rHDrCv+yyxPgDiBqq+ODhYW1uU8OezhZC\n7Ed8WRJaKUiodcJ/6+AN+IwtzCc2KGAHwNMGpTU2Tr2IQ154HAjNJGQuL2H4M/9i+W0PaYFS9dA1\nMpOQLSXVvzz47ReJTXiamkodblf9N3wVXeBTMhpVqqrkJrEQ4sBVWqgnIdlTZx9fBh5FX+vvoU6H\n22jiyPQNIccDbyYh6j5ufYoOOZzVV9zK3mezef6qT4mNz/ZvM5k91FTquOiY7gw5wsqEM6sYdqSN\nmLjwM+13C+LZ9peJrj0DpS7v+79MNq7RgmUTdVqQ0K7xJ/DGigvoPiWHf30wUTIJtRFf3LDepF2D\neYwmjDiprNa+j1litM/UYAC3S8FhD/097IeWdUrnduM2mTDi4tFfJzPfuANdldN7zMjXPEneLLLZ\nv/7Ysm9KCCGEEEIIIYQQ4gAhQUIHiCp9IoZ4E9snTcZtMnP02itCMgc5BvSCjYH+153xE6s/cWKI\nl18BcWDwmMwsv+2hkDZrRuCmg97eMuFwqqStF6LDUfTeG1Su1g3nUdo+XCjCIFo/+MUVF+9f9hhN\n/r+Lp0091r995XV313scxe1qVCkQZ3xiYMXj4eJbSnjmrnSK9tV/jKycQJajhCQP1dUNz2AkhBAd\nja4Bf+L85caM4VmH3GYLSWogY1t1hdbHreoxKI3LGhdJyYChDCefMUN3UkTgev3zeYG/8+t+i2Hd\nb1oGz3m5eSH726wKrz6aSm2+ACEAo9MOQI33+4DZrmXd9TQgsFQ0ny+A1xcL7Dab2Uw/qitiAXB6\nY7v0Bu3ayW4L/B7+dtMDmB4PBH/VLuWs8+7siVJubOOUCxjwweusvvK2Jo+/EyTgFUIIIYQQQggh\nRCcm5cYOEDa3GYtBmyyzpWUCEEeNf/v2mefzufkMAGZP+IknPzmaxUzAHRPb9oNtYzLB13k5kpL9\nyyWDhrX66727eEP9nfZj8v+KOFD5b4A6Wyl9QFBskKcRmXEOBCkb1+GMjQ9pS93wR4P2VdzuBmUc\nCuwQ+COl6vXEJTY8m0VO78BN7ZR0D1VVDX9ZIYToaJzhVabD+DMJGcIvAN0mM0meUv/6oUdpQRpu\nVYde17xMQhDIAKOvNdDeAyMP3GYNHWN1Zf3TGL4HBHylKo0eLWioo2USstUorPml9UuJtjSnNzOQ\nL47HbTJTTeB6oUdfbe7C4A0SqvF+poMOs6Gogd+xwqGH4YyNCzm2zvt7Ey3Q+Peb7uPtn7aw9fRz\nWuCdCCGEEEIIIYQQQhx4JEjoAOFQDRgN2oynNS0jbLs9JZUJcb+wrctwnvs+UHbMbYlpszGK9qdX\nFIz6zvXPZ8kL70Vsb46q7G4h6x4pRSbE/sngDURppXJjPgoq3z3/Xqu+hk/R4PByiO0haftmdo07\nPqTNXF4a1u+Ih25jxqieZP/6IzNG9SR27y76fTyfmOLCRr3ejw+/AIAtNZ3+w+wR+5hLiph4+TQy\nf/8lpP3QsdpN7vgEVYKEhBAHNJez/mtdfyYhQ/iUgCs2jmRHsX9d56va2QLlxgDcJi1yROcIDQq6\n58V8evYPDxT6e11oxhhrVd3TGEOOsGLwBwlp2Yn6famdn93ujhUV/8GLSTx6fSZb/mxc2eT2tmKJ\nNs8Qb9E+z9olm7v0cJG0dRM9v/rY3zbpnArufLYAPFrg0KL/zuOHJ18n//CjKO/ZB1tKGgDJW7QU\nyXVlcJTsr0IIIYQQQgghhBDRyczJAcLhMWLQHsjEmp7pb/+DodiwUJj8AKpeT6+9a0L2q/1Unjiw\nZSdZOHtk9/YeRtt64QXQ65l8VH9/k83pZsHK3U0+5Kqrbqeqaw/2jDmWaccM9Lc3KiPGfkihY900\nEfuf/TUbla/cmOpq/o3N+lhTwwN1W4Oq3z/ivJfd+zQec2iGg6Ttf5O0dRPlB/Wn+/cLOfyROVi8\ngUMTrj0PgDPPGtuk19sz+hgADNYaLDGRbw6mbN5A1qpcsq48h9+vvYtNUy9C1eu57uFC7FaFufdn\nYo8cXySEEAeEhgQJlVRp3wONMUpY2I8zLh5TTSCa0uHNClPsSqFP7C6ga7PG5zFqAS+1MwnpDXDZ\nHcXccUGXkHa3q3YmoejvL7u7k1ufKkT/SWgmIZM3k5Cng2US2r1d+5JfWbZ/nPcbat1yLUhIH6dN\nOfmyRwHc89I+krZu4pQZx/M0X/nbU0rzgEQU74dUMnCov9TonrET6LfgLQCOfOhWANLWrWLrqVNb\n/b0IIYQQQgghhBBCHGgkSOgA4PGACyN677xbcAmxoawDYEFKasQABmdcfFibEAeUyy4LazIbdEwc\nlBmhcwM9eDcA/YH8citZSdok+MRBmTiHHoLr4IObd/x2Em+WU4I4QPnKjbVSkJAaFKviNrdNRrGM\ntStD1osGD0fvaPvIl+quWuDp6stvYfhzj/rbT5lxPN8+9x5Hz7m8RV/PYzLj0esx1FQDMPGsStKy\nQu/4GoJubI/4z/0UHHokpQOHYjCCwahiMKpYK1t0WEIIsV9x1hMkVF2h8NbvYwDQGXQRg4RiivL9\n63argt2msNPZlQn635o9vtqZhPQ2K3q7DVdMLL0GwP++2MUd53ehRz8Hf+TGhAUJ1XgzCd387wIW\nfxLP1Q8WccFRPQAwmVV0OjBWa3/oXd6SmAa0spMNCaDan/iCmtb9ZmH4GFv7DqYOeZuNZOa4sMSG\nBvA6E7UgLdUQCBI6uHsBp5yoZSGcyyx6kgfAc1+P4fN716F4a+GpusD8hdtoQud0YCovxZaajqW0\nmL/Pmtmq70kIIYQQQgghhBDiQCV3hA8Abm2+E11M4OOcn7uD5E3rOfn8kwGwJ6eit9aE7SvlkURn\npCgKWYmW+js2lDdCIAvgj9UYASnkJ8T+QzG2Xbkxt6lxf1sSYwx0SWr+36Pdb7yDKz2DAc0+UtP8\necGV/HnBlcwY1dPfdvzldT/d//43f/hvHjaYouCKicPovaa5+Nbw0mbG6tBaYgabNXTdAI7wajZC\nCNGhFewOBFS4HPUECVUGZaWJUG7MbTKTtTKXe1/ax8PXZmK36bj5HC27j0M1hvVvLN+50pdJyJeZ\ns7TPQL6c9zXJaR7+98Vu9uYZuGlqDNbqwPtRVfj9R+2hmOxuLq5/pAiAgwbb2fqnGaf3vad7g2ld\nMdpVeQzauaBwr4G+Q5p3Enjj3ykMH2Nl2KjWD9op3Kt9x//ynUTOva6s1V+vKTauNnPf7CwA5uXm\nsWeHNuYZzPOXe/Po9eSwi910Y8qJh/j37cFOvuYEDmENiWiBXYrqCxIK/G56TGZ0bjdTTgyUWy0d\nMKR135gQQgghhBBCCCHEAUqChA4Avqch9ebQyWBbmlbyxJGQiGow+kt9hNhfa8MIIYQQLcVXbszZ\nOpmE4vO2A9o5t7GZhNLjzYzomdr4Fy0vh6++grFjYccODhnRtuFBv8z7ghI1/DLSlpQS+XoD+HPm\n/6Hq9ShuN8UHD298gJCXqaqCAe+9SlVODzZOuzhkW8bq3xj9wE0hbXp76E1cg1GVICEhxAHnrouy\n/cvbNxk57Ghr1L52WyD4Ijhbi09NllZObJT6C4NHnEjhHgPF+7S/+X/V9ObUZo7VbdGChEbfdwOj\n77vB356y5S+OvP8mfr3rcQBi47XzdnWVjn07Ddx4dmiZs9iEwHl90jmV/O9uM3vzjP6AVXtikv+h\nGAUtqP+Zu9IZfXxe08fugq/fS+Dr9xKYl9so/IbRAAAgAElEQVT04zSUxxP4vu6ww/74jE/h3tDf\noZunaZ9TEuX+cm8eg5H1HMzvF98Cr4Tuf0Tv7SRvKwAgcdsmfyYhlKAgIYNMXQkhhBBCCCGEEEK0\nlHYrbK8oyiuKohQoirIuynZFUZSnFUX5W1GUPxRFOSxo26OKoqxXFGWDt4/ibf9KUZQ13m3PK4qi\n97anKoryraIom73/TWmbd9k2XN7064ZaD3Xak1JRFQVbclpI+55R4/nqlU/55a4n2mqIQgghRLtx\npGpBOBmvv4+pvOWfwj9o4QeAdgOysRn6mhyqm5gIU6dCTg6MGdPUozRZ+bDDKO87MKz9m5c+Dllf\n/NQbfLLgJ1ZfcSurr7qdNVfcyuqr57BzwsnNHsOIJ+8Naxv52F3+5bWXXAuA3h5ahk2ChIQQ+yO1\n/i51GnV8IGtsfc+B2K1BmXl04VMCBm+2thNmTUZvAKdDISFZy8aXaqpo5kjBZYmec7PPF+/7l+O8\nQUCvP54aFiAEoUFCiSnh2QKtGYHAqT5s8S/bapr+oMyeHc3PpNQYB48MBLr6yqwF83gCmYXbS3CJ\nsZmjeviXc9gdVG7MQBIVZChFYfu7zYGMiqdOP57hzz6i7aMPvF9DrazIv972cMsMXgghhBBCCCGE\nEKITarcgIeA14KQ6tk8C+nn/XQY8B6AoyhhgLDAMGAIcDoz37jNVVdVDvO0ZwNne9tuARaqq9gMW\nedfbhKrC5rUmXzWiVuG2aZOjemPoZKdqMGBPTsWeHJqhYPktD1Ay+BC2nTKl9QYlhBBC7CfKDNp5\n8FJeZuSdN9TTu/HcwVkYGpmhT6frmBn9or3Nqu69yL3zMQCW3fMUe0eNp7prd/48/4pWy14Yv2sH\n6Wt/J33NcuLy9/jbd44/EQC9w07ypvVYirUsBUYjOJ2tMhQhhGg3ej3ExHkwmT1Yq+v+mr97eyDQ\nRdWHZxJad9FV/uXSfIW9eUYqy7R+Ol3zv9i6zQ0rzGswgqJEfz1fcpnY/D2kpmuRMgf3DQShLLvn\nP/7l7uziOp4EqPfnU5fgAKPW/I4PYLcpVJYFxvrqo6lsWGXm8RszmDmqB+XFOh67IYPzj+pB3t9G\nZo7qwfoVbZ9qKDjoLFgZyTjiveXGvE80mcuKw/rpopyU1aBMQrVLiW45c3qTxiqEEEIIIYQQQggh\n2jFISFXVH4GSOrqcAbyhanKBZEVRuqA9ZGkBTIAZMAL53mP6Hms0eLerQcd63bv8OnBmC76VOq36\nKYZ7ZmWz+JO4VnsNd402Iao3hW+r7NaTqq7dAZifu4P5uTuo7tojvOMBrGPefhVCCNFSBo8IpI2Z\n8dfjLX58nUs7DytNyANxIJ6jtp46lfm5O9h+0lmtcvyFbyz0L3f/fiGnTxnHCbMmc8L/TcFUFchw\n4YqNB7QbkieffzKTTzkckExCQogDk61GISbOQ2y8SnVl3V/zX3xAyzR7BL+GlHTyqejd37+8e1to\n5hyd0vzSnWqE0lG7jj4egKLBw0P7qnWfKZO2buLMM0Zz7G9zmfO/fOae+D8Avn75E8r6DQrpeyir\nAHDYm372DQ6IKc4PD7BqisoyHaWFocfK+9vIxcd05/cfY/1tK5bE8sDlWaz6WQuyuuKUbvyRqy3f\nfm4XAL5bkNAiY2oMmzXy79td3I8jQQsSQlHw6PUYqyoB+PPc2f5+OpeT6qzwTFHBWa4MNdUA5N7x\nKPNzd7TU0IUQQgghhBBCCCE6pfbMJFSfHGBn0PouIEdV1V+AxcBe77+vVVXd4OukKMrXQAFQCXzg\nbc5SVXWvd3kfkBXtRRVFuUxRlBWKoqyoLKsrhqlhSou0yb6/17feE30LXksGIK8y/G39+MhcVtx0\nX6u9thBCCLG/C05g81dlDyZePo0pE4eQtGVjixzfYLMCUBZ0U7UpY+tI2nPYZf0PprJbL0oGDCFt\n/Sp/+5ZTzw7p57Jo5UsOf/xuf1vfj+bRe8EbOGzhZWmEEKKjqizXseTzeKwFDjKL/8ZarfDDp3E8\nd29anfvlMipiubFgpprKkHV9C2QSiuTn+5+htN9gdK7oqd6e+mg3D76xN6Qtbq82ZdDllx84eIQd\ni6qV5yrrMyBs/1i0klV2W9PPYjZb4Oe1eW3zv+OXFumYfVI3rjoth21/aQFZW9ab/EE/jWU0tnJ6\nIyB/l4Ga6sDPcMnn4Q9E3XLWDyRSiSsmsE3VGzB5g4RKBg7l0/eXsO3EM9E7HehqRe8u++eTEPS7\n6TZrP2tbSnqLvpfoOugFmhBCCCGEEEIIIUQD7M9BQhEpitIXGAR0QwskmqAoytG+7aqqngh0Qcsy\nNKH2/qqqqhD9UX9VVV9UVXWkqqojE2qV6WoKo0l7qSWfxTf7WNE4tXuTDO+1K2ybPTUdZ0JSq722\nEEII0RE887l2jjyLj8halYupupJ+H74RsW+vLxeQvPnPBh/bd2OrKqdno8eldNQooXZWdPBwjEFZ\ngwAqevQJWbelZbLtxNDkkT2++wyLrRyHvdWHKIQQbWb2id0AsBKLESeq08Pcf6Xx05fhwRueoBhJ\nVaeLGq26evbNADiplUmohYOEljw6l4VvfonbYqGiR2/0dhsD588ldm/4d9uMLm569Xfyf3cVc98r\n+7T34M2ElLR1EwCm6krcBiNus8W/3w+Pv0LRkEOJQfvi7GhGkFBwJqFn7mp+wMrvSwKZgu68UAsM\nuvuS7CYfL7Obq9ljqs8NU7oya2J3/+/SFu8DUcNGWTl5hnZuHp69DQBXTKC0nMdgwFitBQm5LDFU\nde+F22RG53RitFaHvMbeI8eFrK++8jZWXH8Pe8aGTfEIIYQQQgghhBBCiEban4OEdgPdg9a7edvO\nAnJVVa1SVbUK+BIYHbyjqqo24BO0MmMA+d5SZXj/W9DKY/ez1WiTiLHxzU/LHs3uPG1S7oj+4ROp\nQgghhICUdA8Hs46lHM0KRrCLHHDWyiajqiRt2ciee3/Cct6jDT62zqllPfCYG59RoKOGCLV3cJMj\nIYmE3XkYrDX+NlVf67JWUVh19Rz/qtuo1WW1YMPu0uNpvUszIYRoEx/MTWLmqEAp6Qe4Az1uPK5A\nIE/toEibN8jl5pEfouqil8vafdRxAPQgL6TdoGuZTGzLb7qfvGMnsXvcCZT1G+xtVUjasYXDnn6A\nM88ay5EP3uzvP+2KMv/yuFOqGWFcw6A3niNz1a8AeExmLEX59H//dRSPOyT4ac9RE8mbcIo/k1Bz\nyo3VV8qtsWLi6j8ZjT6hmi49tWuNrj2jZ1qCwPxDWyjYY0D1/qoNHmHj1qcKmXlNGW/+nEef+D0A\nuM21goQqtSAiX/CQx2hEb7f5szL6OBKTQ9ZdcQlsmnZRx03BKIQQQgghhBBCCLEfMbT3AOrwKXCV\noijvAEcC5aqq7lUUJQ+YpSjKQ2j31sYDTymKEg8kePsYgFOApUHHugB42PvfT9rqTRTs1n7ENVWt\nF4/l9s4TqiZTq72GEEII0dH9TV/sWDicFQBc+9e7HBG0fcC8uRQ9s5yz+RqAebVujEZT2a0nbATz\nkYczvHty/TsESU+Qc3dTOBK1LIn9F7wVaFTCr7XsQVkh3SYzKAoJaFkMqqshIaF1xymEEK3po5dD\nM8bewb9YwGRcQYFBt0zvylML9vjXfaW2YnT28ODKIK4YLcPN15xIj6Aq4LGGlknFtnnK+Wyecn5I\nW89Fn4es9/nsPeBdAIYcbgvZdvJ5J4Wse/R6Jp96BNF4jMYWCRKqLAv9mXk8IVWxGs3lCh1LpCxH\nOb2cTL+yjMK9BuKT3Lz0rzTiEjysXhYT1jc405G/zabgdkNsXMtmgVq9LIbMHG0y4sgJgaBdnR4M\nNm3dZQkKEtIbMVdowV6+MmQeowlTZXnIcefn7mjRcQohhBBCCCGEEEKIUO2WSUhRlLeBX4ABiqLs\nUhTlEkVRZiuKMtvbZSGwFfgbmAtc4W3/ANgCrAXWAGtUVf0MiAM+VRTlD2A1Wrag5737PAwcryjK\nZuA473qb+PKdRP9y4d7oT2o2R0K8g2P5HrcECQkhhGhH+/vD3XYsIeu/bO6F4g5kRNj0zBZO8gYI\n+ehtNqaO70/Pb6LHF5cMGAJAlxPGMbhrYqP+ZSZYoh53f9beH7UrNryEjqoPv85SDUY+/GoVG6Zf\niqm6kuwVy0hEy2JQURHWXQghOhSzJTwLjR43q38P+g66J/S5IKc3QMais0cMrvRxe4M7urOL4Smb\n/O1XD1zQrDE3VXxS4HxtqKkO2560Y0ud+3sMQUFCzSg35nYq6PUqM68pBZqfucflDN1/xY+BoJpB\nh9p4fcqzPP/VkaRluhg43E633i7umZvPGRdqgTWz7y7mPx/v9u9jqwn9TL/7MJ6Lj+nOrIndaQnB\n5erefDKFJ27KBCCrVpkzg1XLDOQOChKKKS0itlArE2dNz9KOZzCiqC0bvCSEEEIIIYQQQggh6tZu\nQUKqqk5XVbWLqqpGVVW7qar6sqqqz6uq+rx3u6qq6pWqqvZRVXWoqqorvO1uVVX/T1XVQaqqDlZV\n9QZve76qqoerqjpMVdUhqqperaqqy7utWFXViaqq9lNV9ThVVUsaO96C3XpmjurB2l+bfjPvurNy\nmrxvXaw1ehKpwGNsfJkTIYQQorP6jSMhv9S/PoO3w/okbt+MwW5n7N3XELtvd9h2AFXKVrW5SCVy\n1CipHOzJqSE3KX2ZhCRISAixP2lKnERwjM9ho7S/bQZcUXprHHZtpz65X4aVeAoWnAEmJU7rN1M3\nj6T01gvo+OKtr6NuS0gKnGwtxYWNPrbHYCAG7X3s3Gps/OC8XC4Fg1El3jueyrLmPQjkqlU97M/f\nA/MN1mod539wJWl5mzBWhZ60+g9z8NSC3Rw1qZr0bDfnXOkNWgrKJLTtLyOvPhbIqPfU7em46v71\nqNeHLyVFbM/MCT2wuawEe2JSxABeAFtqOgB6eyBD1LaTzuKLed80b4BCCCGEEEIIIYQQol7tFiTU\n0axbrk3W/fJtbIP3KS5oncxBtW3bmYgFGx5j0yc7hRBCiM7I+OzndW6P27vLvzzi3/fU2VfRtXd+\nnbbT7lmjIkRmqXVkxPAYAtdIvkxClZUtPywhhGhLvnhJo9nDbfdsBbRMQnXxlxsjeoAQhGaAiddp\nGXgyPfk441uvTmN534FRA4UssYHgpJh6goS+e/bdsDaPwUgaxQAseKlxpUGDuZwKeiNkddOie/bs\naF4F99qZhBZ/Eu9fLi8NnNdS/1obtm9GV7f/fHzaeZUMOtTmL3Nuq1G488IuIf2XL47lgqN6NCkg\nzeezNxLD2g4ZbWXYviWYS4r8bTElhdhS0qMeRzVoP7cBH7zubyvtN5jyPgOaPjghhBBCCCGEEEII\n0SDNm9HqRKortcm2n76K47I7G5aIaM2y1i8hsmOzdtPrXc5htue1Vn89IYQQ4kByd+653OldHqpf\nx1r3EP+2uO1bsZSV8AdD6c7OqDdGFbx329o9cqbz0EVIhRAtWwEQEkjtyyT03sJqyLC3/OBEixrY\nJYFEiwTCCxFJUqqbmkodx/+jCoPTATQkk5B2rvKV3opG1etxmc0Y7HZMHi3bSwaF6ByOFhh5dOV9\nB7L0X89x9JzLAYinkioSQk6xluKCkH0+f/tbTp1+PADbTjyTgsNGhR3XYzCSQhkQCPBpqNIiHd9/\nHM9ZF1fgcoLBoJKerQVjLV0Yx6FjbfUcITqXK/q1g680HMDEq2cyP3dHnceKT/awe5v29zJ/d/Sp\nHrtVCQm6aiiPG9zu8PFecelfTLxkBrvHHMuSf78GaNmebGkZ9R5z68lTOGjhBwAUDz6k0WNqLXJJ\nJ4QQQgghhBBCiAOZBAk1kLVaCxJy1zGJV1vRXu3He9EtJbz6aCp6ffSJuJ+/isUSqzJiXN1PdNY2\n5zzt6cDZPIcjPqtR+wohhBCd3ZbqbsA+ALrrd4cECZWf8wpj+60kg3UALI+7OuIx/E/kd6I7Su39\nVo1VgTRA1pR0Pv78Nw5+/Rl/2ztLNob0D84kFJephwJ44t44DptU3PqDFc3SMy1WgoSEiKJ7Hyd7\ndxiZdnkZY67RzlH1ZRLyBZ7Ul0kI4KPPl3PCpWfhqtFOdOkUoXO2frbcnRNO5r3v/yQhbyubLuzP\n19c8RbclFYy79TKqs7oSl78HgAVfLEdVdNhT0/nz3NkMfut5iFJ60uPNXHMGH7PSfHKjxnPVqd0A\nOOwoK267m/iyfIZ//RpwB78uioMHm34ucXtjutKyXBTnB6ZnDju6hjMuqIBLG36shGQ3VeVaCfKC\nXdGneirKdFhi6/49ieS7BYEsR8eeUeXPepRj3w5A9opl/u0xxYUUDxoW8Tjv/hA4Ry+/5QEOWvgB\n5T37UHjokY0ekxBCCCGEEEIIIYRoPCk31kBfzNPSaqdnhz+Z6XZB4Z7AZKnLBU4HeDxgMHi49e/r\nOOGsMmLiw0tj+Dx7Tzr/viUDa3XT7rr9l6spGjaySfsKIYQQLUGh4wXJOFSTf1lH6Hm6iHTsm0v9\n6w++P4GINTp8iYQ6Ubmx9masDgQJlfUdiKrXk7R1s7/NYw7N5hicSahnWuAz9US/NBNCiP2e2wU9\n+jowGCFr1a9AIEjIaPbQq78jLGuOoxFBQs6EJOxJKXTVacG0RhqXgac5XLFx2NIy6cI+Lnz6HMbd\nehmAP0AIwJaSjj1VK2llT0oBQImQaQ5A8ZapTKaMmurI0yD5uwzs2hY9uMbtUtCVVWFWbRz56sON\nf1MRuJwKOr3KUx8F3te9L+3jxseK6DukVtamCNcgOT9+Q98FbwFgNqs47ApfzEvgl+8CZdLPuKA8\nZJ+SgqY9K1ZeEpjzmH5l4FyaWJYPgN5hZ8JVMxj64hMk7NoeNZOQ22IJWo5h8VNvsOjZd5o0JiGE\nEEIIIYQQQgjReBIk1EBJqdpka2V5+I/s7f8lc93kHMqKtW33XJrFheN68NmbSaTpSxmw4E1++8ZM\nVbme6srwG4grl8b4ly+d2N3/NGFDdO3pZGDMVsoGD23kOxJCCCE6l9o3yWrTK6ERIzfyb7bTy7+e\nyygmXnkOA959JXKwUCfS3gFh6y+6xr+serND/HHZjVH7u41m/7IvmwRAdYVcCgshOi63S0Fv0M5H\nld16AVBMGgBOu47ufR1hmXDttoYHCQF4TCb+lX8Fc3iQabyLPzK2DTiilPn0C8oaZE9KBrRAlUiK\nhhwGQBLlWKsi/+2/YUpXbp3elZU/WSgt0qGq8OuiwHf16kodao0DEw5M1qrGvBU2rzWxZb0prN3l\n1D5DnQ6OOa2KCWdWhgQHlffq61/uvvhLRt13A1krfmbg/Lkk7NjC+FtmccSjd6BzOtDpwVajY/5/\nU7QMR152u8K83Dye/HA3APvymhYkZDIHPvu4RJXXfszjxW93ElOU72/PXvEzQ195GgBramiQ0Iob\n7iF3ziNhx907ajy2tMwmjUkIIYQQQgghhBBCNJ6UG2ug7O5a+m+7VUdlmY6EZA/ffxzHoMPsrP5Z\nmzi88pRuYfulmCrBDmXVWp+VS2M5+uTqkD4vPZQasv7r97GMOaGmQeNyOhSGGdZhT05pytvqHCSx\ngxBCCGDq5eV01+3kmVcDJcViDYGbpLWDhAD20NW/fCyLyVqZS9bKXGoystk5wVuuxBswJJmE2o41\nI4u1l1zH0JefwqPXLmcre/Rm99iJ5Py8KHyHoI/GYzByV9dnuH/PVfz8dRwnTasM7y+EEB2A2w06\nb3KX6uyuOGNj2b0pB4BzrixlX54Bd1BVqe2bjDz7Ty3zTgKVVHUJ//5am6+E1IPcCYDShkGywVng\n6lM8eDgAO447LeJ2a2YX/rjsBpJeLMdareDxBGKMXC4o3heYGnnipsgBK3vzjFRWGjGhBQidNLWC\n7z5KQFVDy3DeeHYXho+x8o9Z5cTGaz+ve2ZlA3DwSBtzninwv64vYzHArDtKAgdRVRS3G2dcIFDq\n6DmXA3DQwg8BOOzpB/zbxt55Fe/lvBlx3L5AsbgE7TrHWtO0ANmC3drP6O7n94KqYjQpGE0qMcWF\nEfvXziS0aepFTXpdIYQQQgghhBBCCNGy5PHpBvIETa4u+iiegt16Xn44jdtmdmFvXvTJS4M+9Iaj\n78nNYOaY0D5rf7WE9YnGZlVIcpVgT05r8D5CCCFEZ6UkBDIC6HExyfUF5jLtppyihN/4nMr7gX2D\nsiccPedyUv5aq634bpgqEiTUllwx2mepC0rBuOTxl5m/bFtY35oM7ebs2ouvwWMw0lW/F4A3n5Qg\nayFEx+V2KRgMKtm/LiV7xTJi8/diQ/suec7nN9Pv6w9CMgmtWRY4B6Yby/h0wU+Nf9E2DBJS9dGf\naSoYfkTIennfgby7eAN5x0cOEgJwmS0kUoGqKtisgZ/LtWd25YYpXaPu5/Pmkyms2NLdv56UaMfl\nVHAFVWHbt9PAvp1Gvno3kVnHdae8WBeSuWf9isB3/Z+/CmT7qW30Pdcx/ag+pK9fVe+4ALov+ZpB\n818MaRs5voaTzqngrIu1TIpGbyagppY4/+GzeAD+OTuHId5sQQCWooKI/R0JSU16HSGEEEIIIYQQ\nQgjRuiRIqIHcblB02qTa+y8kc/0/tCc0Xc66J9jWlR0EwNV93gWgJkJq88wc7eaWb/Luxy/imTmq\nBzNH9aCmngk8W41CsrUARQ3PfiCEEEKIUP2OC9ycO5RV1BBLvw/eAECvq/tcOp+ZeIJS0ky68FSO\nePAWVF9bZwoS2g/eqsui3exWXEF1WhUlpPyMz97Rx7D4yddZd8l1qAYD/4j7AoDufRxhfYUQoqNw\nu0BvgAnXnguApbwUB1pJqy47/sDsqArJJBRcOluNj2nSeastMwnVHt+n7y9hyaMv8cudj7PksZfC\nurtjYus8nNtsIRYtY68z6OGdsqK6Eyxf82Boppy1DAOg2x8/A7D8B+11Swv13Hh2aLDR3p1Gbpwa\nOQBp4duBLEGnTJtAvw9eB1Xl8Efm0Pvrj+scUyTzmBmybolVOe+6MpJStesbo7fa2Ydzk/nzd7M/\n3sth17IaNZQOlWFz/+1f75r7Q8R+HlN4eTUhhBBCCCGEEEII0f4kSKiB3G6FmLimT4g+Vjgbo9lD\nVXn4jzwx2UNiipt/zCoP2zb7xOgp4D1ucDp0xFNF7y8XNHlsQgghRGeRlukmLtHNjKtLUVH4kpPJ\nfuktAIzu+gNGkixWFg04z7/e97N3SVu/GpAYobbm9gYJxRRHzmAQQlHYO/oYVL0ej8GIwe2k/zAb\niSkSZC2E6Lg2rrFgK7D71798/QvsmAGIpQYjTqor9Oz1ZrIJ/i5aldOjbQfbTLl3PkZV917sHnc8\n2049G2cTstS4TWZ/kJDd3vAz2ZAjbCHrr3EBAF1/+xGA/92tlXB74YHQMuIA98/OCmt78tZ09u00\nsGuLFkTzLlNJ2rGFwx+/G2NlBf0+mhfSf8fEUxo0zjEsC1l31wr8Cb5OefDKLM4d3YNn70njovE9\nuG1Gl3qP32ewHZM5cN40VpajuN3EFBdSNHg42084A7chkGU5f8ToBo1bCCGEEEIIIYQQQrQtCRJq\nII8bYmPd9Xes5cTEJQCYK8qIiVGx1mgzc9dN7srt52WjqrDsmzhUjxpSLsNn5PiaqMe2eZ9+jKOa\nVVfd3uixCSGEEJ3Ri9/s5pSZlfzOSACyKCCmYC8eS/Qn3nV6LVC4ymbmuI1v8NSCXf5tiTu95a06\nU5TQ/sCbAiF566ZG7eYxGFBcTvQGQjJsCCFER+Lxxmps3RkIlintfzButICgWGowoH2/vGW6FgDi\ndATOUxtmzGrQ62ycelHIet6xk5o85ubYcdzpzT5GcCYhuzUwFZKQHHoyeOTtPby6JA9Fp3LyjAri\nElRe/ymP137Mw4GRC9AyEH7IP/z7fP9xHGt/jaEhViyJDck4FFzaVO+0h/Vfd/G17Bx3ApU5Pfhz\n5mVRjzuXWbx63qucNK0CAJer/usSX8mzukqo+5jMKn37VvnX43fnkbH6VwB2HH8ay+57mhU33w/A\ne9//iccomYSEEEIIIYQQQggh9kcSJNRA+soquuRvaNQ+Z15YxoKKwCRqRZme7z/SUooX7jGQt9nE\nR68kAlBZbmD8TReHHSOnV/S832VFegAyKGTDubMbNTYhhBCipXXkGJnJpx/J+pr+Ube/snhnyPr1\nk3PIO+qEkLaO/P47IoPN2qT9PAYjeqcTvV7F3YAbqEII0RZUGpe11uF9YCSLfQBsP+H0kBNRDFb0\naMEvHrfW7vb+9yiWYk8Kz3oTye833IMjTvsOu3HKBRQdcnijxtlS3BZL/Z3qO4bZQhzVADx9RzpP\n35HGnRdmhWRYmpebR7feLkxmeGvZTmZeUwaAwaCV6zJ6A6/Wn3c5d+gf8u/38sNpTRrTcb3WhKzH\n7d3tX949diJv/7yV8j4DWProXD77cCmrr76Dt3/6m9WX3wLAov8Gsg7FUcOw5C0MPFQLNIrwDFKd\nXM66tzudCkZDIKDq4Nf/x3FXTgdg3xFHA7DljOnMz92BKzaucS8uhBBCCCGEEEIIIdqMBAk1kLvc\nTgaFUbcPHxO4UTX2pGqe/WIXlx73G7GE38BSg+Z/g28ods1dwvsvfsuhYwP7OOpIg75nh/a0X9ZB\nDXkHQgghhAh22NGh2fr+cAyO2jfSw/A3b7kBJwZUX/GtThQlZNLrMBva95/B+/PeOvncRu2HyYji\nckkmISFEh2a3an8D70LL3JKycT0ABTkDWMZourAPN/qQfXyZhBZyMq6Y2Aa/li0tAwCPqWNnhnGb\nLRjRImH2bDfy66I4tv1lRlUVTp5RwX8+3l3PEaCk/2AcCYnY0jM52f0Fk84MnSMYcoSVyZeElxGP\nxlPrPJTgy04IuGJiUfV6alMNRjZOu4TFT71B/sixLH7qDf82g92K3qBNOLic2uc96I3n6P/eq0Dd\nmYp/+iqO8uLoU0Quh0JS6V7/eo/FX+bzZZMAACAASURBVPqXq7Nzou7XEXWeKzohhBBCCCGEEEJ0\nRob2HsD+rHCPgfeeS+KY06vYVtWVUfwQta/RrE3E9R5o54p7igFI+e3PiH2Db0jFJ2p54q/kGQCm\nXHYCzp+2MOMoLfKnriChknxtwjDx4CSKG/aWhBBCCOF18vRKVi4N3CTNYh/5ZAOQlOrm/+4qJjXT\nTf6uyJdL7+09kdWs427uA0DRdZ5bSmP6prf3EGDQjeAp46B77+Wg+PgG71bVJR1TdYVkEuog1MYl\nVxGi07B7MwnFo5V/+u659wAwmlRGkwuAq9bXfXuNwiG99pCwvQq3ueGZeexJKQA44xOaPe725DZb\n6MvfEbf1H2onPTty5KilKJ/0davYdcxJOBKSKIuJw5qWCcD5k9bx5cfH+vvGxKn0OTi8ZFjUMblD\nz0M9v/20YftZLOwdNR6AvUeOY+0l1zH05afQW60kp2lzDF2qt5O6YQuHPvswAJumXkRyWvTo2LkP\nppGa6eK/n+6JuN3phIy88DmOneNOwBXX8POwEEIIIYQQQgghhGhfkkmoDlUVOj55PYnr/6E9Ffc2\nM6L2ze6mPZE489oyf1tMcQEAK6+eA8ComN8BWLMsxt+nvEQL9HmQO/xtmatymXnWZgA2rDRHfc3q\nSu3ji0mWG1x1UeQ5QCGEEBF0O8iJOcbDzDM2AfgDhAAemb+XQ0bb6N7HycjxWoa/+ETtxtqQIwIZ\n/zYxIHDATpRJaL8QGwtPPAGNCBAC8KSlYar0BglJJiEhRAdls2rfBeOoZvUVt2JP1YI3VYPR3yc4\nSEhVYcMqC+VV2vdLtyn698za3N4MQrbkppXUao6d409k26TJLXKsqpweHMS2iNuSM6KfEE666HTG\n3fZ/6Bx2FI8HVafHmq4FCWVW7gjpu2uLkeFjbDz/9a6w41x1f1FYW+0goZxli/3LBmv0rD8hFIW1\ns67HkZCIwWbloEEObr5oOW+vHcNJF53m75awYwsmxQHAIaMD1zJnXBDIfFRSYKCyXEdxfngGI6dD\nwYItrH3pIy82bJxCCCGEEEIIIYQQYr8gmYQa6cVec/jhtJuZ/1/tacpxp1Qx45oyYmI9DBhuZ9Ch\ngacGLcWFuCwx/DXjMjJXL+fqLa+Qax3Bv2/J8Pf56JUkQJvc3TdyDNkrljHx6plMBOahsnNL9JTu\n1jIPsVRDQsNTxQshhBBCk5Ds4ZXFu8j/xcq8T0K3xcR7wvr/5+M9uN0Ql6BitylcfEx3APLJ0jpI\nkFCHoCYkAmDAhdvVsUvnCCE6r+oKLUgomTKquvbwt3sM2ld8t9GEyxn4un/uaK3P9iIt0KcxmYR8\ngUf25NTmDboJWjIApSarK2W9+3FGzWI+yT82ZFtdGXZiC/cBYKypRnG78ZhM/vJavb/7FLjQ33dv\nnvazSkjyMOQIK5YYleseLkJRoLoi/DpBR/TXrerSraFvDQCXJRaDtRqAScM2kEJZyPbTpk3gJx5m\nIbcSmxC4zjl+ShUlhXqWLtSCbm+e1oXKMj3zcvNC9lcrbJixU3ZQf4oHH0Kfz9/HozfI9Y8QQggh\nhBBCCCFEByOZhOrQtZeWHSg10wVAGUlM5X0mnVPp73PZnSUM/v0zjrv5fA4dqz1VN/y/D3LO2D4M\nevslrGkZoCh0W/ot2Xs2RHydGMWGATfbTp4Scfs9s7IittvKPCRThjNWUnsLIYRofx31FpHNmw0g\nmCFCGLUlViUuQat9ZLaozOy6EIAb+TfQucqNdWSeBK1cjhEHHskkJITooCrKtK/yiUku8iae4m9X\nvCnSKnochJvwbDCDsnYD4DY3PJNQdVZXAFyWmHp67v9csfFclPZBWHtympuRj9/F0LlPcuLFp5P+\nx4qwPobqKnQeN6pOT012Dm6TGZ3TwfFTAvMDp51XxoSrptP1p0Xc/nQh1z9S5I+hGf/incQbrSHH\nvG3Am9RkZLNh+qUh7Yuemc+ay29p1HuzJ6VgLivV3s/myHMPJrRMQpYYlWGjtLEkpbmZfXcJ/YfZ\n6HaQg8oy7fem9jnSbfNgxo6pspzltzzIjw89z2fvLUYIIYQQQgghhBBCdCySSagOOm8IVUWpnu7G\nPSQ5K7CVGdAFzbVayks4es4VAAx7/jGGvPZMyDFsqYGsQWP5GYBBh9rYsCrw5KZVtWBLSmH7CWcw\n+r4b/O0vczGX8Aqb15opzteTlhU6S2etULUgoTgJEhJCCCGaKvgm2Kw5xZQUht9UjSR5z9bQBokR\n6hB8mYRMqhOXSz40IUTH5LBrf7+cfbqHZHJJ3bQegJQtf1GZ3hVqVbj6xjEBaFy5sXUXX4MjIZH8\nEaObOer254yNY4wtN6zdaIL+H7zhXx/5xD9Ze+n19Psw0Ja8dZO33Jg2UVA8aBiW0mIufLCUSedU\n8slriUyflkf2qcvIXJnLO8sCpc1yfvyG/h+8wdmM51Uu5qJbSjhuchUD/7kVt8nE6itvY9DbLwHw\n2bvfU9mzT6Pfmz05FUtZMQCmqoqIfXajZUBKTHFz6e0lIdtMFpVNfwQy7JUW60nLdOOwQ+EeAyXO\nJL7jOGwpz+Ixmdl17KRGj1EIIYQQQgghhBBCtD8JEqqDb67V5VSIM9cAYC4vJW7PTkBL137U7Zf7\n+9cOEAKwpab7l804iIlx+TMTBbOUl6LWSlvQjV3+5U9eS+TiW0tDti/LzQAycCT81qj3JYQQQoiA\nXgOczP5nEYcfo5UFaSidSYf3gXwAFCm30SF4UrVyOTGVxXjc4VmkhBCiI3j+Xu17pskUOSXajomn\ncuquH3m76LSQ9pzSTUDjyo3VZOew+uo7mjjS/YsrNo6YkkJueqKAqnI9z9+XFrFf6sZ1jL/5kpC2\nXl99RPyu7diGjgC0oJyEnVogUFY3F5fdWcKg194CQOfxEFOwF2tmFwDG3zILgJe4lEFvn0RObxeo\nKjk/f481LcNf0s2j1zcpQAjAnpRMTOE+4vbsJG7froh9XuViIFCuLti630IzRX33YTyfvp4U0raZ\n/qy87u4mja8jkWs6IYQQQgghhBBCHMik3FgddPrAjUKzagdAUVXOmHwUe0eMQUUha1X4U4jBUjau\nD1k3Gty4qsKDhCIZReDYiz5KoLQo/OOyYMWenNqg4wkhhBAinKLA0ZNqGhUgBFDdu3f4gcR+z9Wt\nOwBVqwopLTSwb6fEzO/PVBr3/6UQHZXaiF/14L7mKEFCf1x2A+PTV5KhL/a3rR37j0DSO13nnApw\nxsVjqK7m0LE2jj65mntf2sedz+bT47vP692356LPMVeU4/EG9NiTUjCXBx7kyVi9nOHPP+ZfP+v0\nUaCqGCvL/W06VAYYtwAw+M3nMFVVkLRDW5+fu4N3fq6VpbARXJZY4vbt5ozJR9Hrm0/97b/d/ADz\nc3fw7XPvsYl+pCZamXFNWdj+514X+lBS7QAhgKUcRcFho5o8RiGEEEIIIYQQQgjR/uSuSB2C5023\nO7uHbMv+/ZcGHSOmKB+A7//zFhOuPRejzo3Dqm17jJuoGjuCa36+0t//w69WkbHqV8bdPptEKvn1\nsjkc+eK/AJj3nxSuuj8wyRtntnOp/QVsKSOb8vaEEEKIFqUoCimxxvYeRpupGj0aNgbWFZ0ECXUE\nbm+Q0GK0kjsfv5rIrDkl6OWqWAjRQVhrAucbsynyAyhuswWP3sCTGf/k3H1axtsEW0nEvp2JKzYO\nY02Vf73vEAdnnno4sUUFUfcpGTCE1I3r/OuORC14RtXpiCkupNviL9l17CSStvwVtu+M0b3C2kze\noKHhzz7S1LcRkcdkwmC3hbebtdJyzrh4+vE3W9KHs9DybVi/Xv0dYW219SCPvOYPVQghhBBCCCGE\nEEK0I7kdUo//u6uYF+5P49XkK6kxZBFbmN+o/fMPHwtAdZduAJgUJ3abNqmbRjEzPC+SSikL3/wK\n0FKW7zp2Er/c9QSj77+RPj8tBLQgIYe91s1Hj4qCKpmEhBBC7Bf0OoVJQ7u09zDazLJutRoMclnV\nIXhvlvosXRjPto0mHpm3r50GJIQQjbPyx0BZqITywoh93CYzqsHAsH1L/G1d/lwOgK0Tf390xsZj\nqKkOaasrQAjg2xc+ZOjcfzN43gtYUzPYOFUr2ZW0bTMA426fzfxftpMcIUgoEl8mopZmsFlD1v8+\n/RzKe/dj20mTAXDGJQCQvHUTB7/6X9ZfcGXIk1FOR3iw8+ARNs69rpQ552nXd9HK2wkhhBBCCCGE\nEEKIjkPuZtVj3CnVjDulmpNO+ZrqjJxGBwmtvuI2IDARa3bbcNhjATDgousvP2BLTqWs36CQ/bad\nMoXR999I2p9r/G0GY2gOelXVnl50xcY1+n0JIYQQonmMnSdp0gHnx4eeZ/ztP7CEYwDYtcXUvgMS\nQohGeO7edP9y1+VLI/Zxm82oOj1u9P42nUfLOtSZHzJxxsahdznp8ssPlPfqS012Tsj2ooMPZdEz\n81ENBo67fCqrL78Ft8XC6qvnsPrqOSF9M9cs9y9nrFlO/wVvNWgMPRZ9TvcfvvSvr7jx3ma8owB9\nrSAha0Y2G6df6l8Pnjc45IXHMZeVsOW0aSTs3Ma+I45mwHAtSOi6hwoZeYyV4nw96dlaUFDvgXa2\n/WWm5ujDW2SsQgghhBBCCCGEEKL9SJBQA+kddmoys+HPyNvticmYK8r861++9jmlA4f6150JiQDE\nVxZQnnSQdky0CTe3JYaGMFtCg4RQvanDFSlvIoQQQrS1klpVW+R03HHsOnYSL3aZwoC9v/nbHHYw\nmevYSQgh2pmqauea7n0c7PQGN7qNkYMc3WYLOqeDHkHFoTwmM9jtbD15SpuMd38U6y0Hfuz1FwDw\n+dvfhWz/5uWPA8svfUxdqjO7EFewF4DjZ5/tb197ybUMffk/Ufcb8toz/uX1F1zJprMvbNjg61E8\neDg9FgeCj1xmS8h2V615h4HvvsLAd1/xr8/P3cG83MDviy9ACOD2/xYw4JzZYG7Y3IUQQgghhBBC\nCCGE2H/p6u8iUFUMNdVU5fSI2sUXIFQ8+BA+/HJlSIAQ4L9zGEsN1hrtaU4D2pOctSfrfP4+YzoA\nr3M+AD36OmsNS0W1yJPvQgghRHvYurW9RyCaI8lYFbJeVa6P0lMIIdrfj1/Ece7oHpQX68ju4fK3\nL7s3NBjFmpoBgKo3oHfYSaWUJ7iBYaOs2BOT2TNqPBvOm92mY9+fqIRG9J46/bgmH+vTBT+x5rIb\nQ9r2HjmO6lrZieribMGswBtmXsan7y9h19HHA1qgWLDa62FUNeqmuASVw1mOJ0pQmhBCCCGEEEII\nIYToOCRIqA7xu3cw8vG76PbDV+jcbu3JyyiqM7sAkHvn49hT0iL2KeszgAwKKS3XJtZ8mYSMVRUR\n+zsSkgA4nU+1hloZClSPluFICCGEEG3P4Qhdd7sj9xP7J5M+9AOzWSUVlBBi//X1uwkA7NtpxB70\n98qRmBTa79VPWfLoS6Ao6JzaieoGnuTdnleRsDtP+/7YiVPfRSvVvfbia/jsvcWNOpZqMLBnzLEh\nbdVZXdk17kTyDz0yrL81JT2sTdW3YICqTkdV915aBmRAQQ3bXpdDnn+MxG2boh/e6YiauUoIIYQQ\nQgghhBBCdBwSJFQHg9VK/w/eYNzt2pOWg956gcpuPcP6ffna5/z84P/YOf5EKnr2iXq8bSdNJpMC\n3G7tx25EywwUW1QQsf+W06YCQZN7QXN8hppqVBTM1ZEDjERAJ54DF0II0Yqs1tB1u8TtdiyG0Kq7\nN0/r2k4DEUKI+m3fpAVnOB1QUaoFlrzDNJxxCSH9arK6snuclklGH3Ri8pWVylqZ2xbD3W9tnHZR\nxPZd406gssdBjT6e78Een94LP8SRlMyiZ98l/9BR/vaCQw5n5Q3/DD+AJ3r2nqZyxsYD2pxBbbuO\nip456eDX/8fEq2ZE3a53OPAYjc0foBBCCCGEEEIIIYRoVxIkVIfqrNCbRX/NmMVnH/zI/GXb/G3v\nLN1M6cChFA0dwdJHXqzzSUBzWQmZBAKC0imK+Do+lT378NFnv/mDhBK3bAzZrqKEPx0ohBBCiDZx\n++2h6xIk1DH4Yoc9ej239Zgbss0j2aCEEPshd6C6GNYaHeUlOk4Zvp5pvIczLj7qfr5MQsHUTv4E\nhS0tM2J7vaW4onDGJ4asbz1tmragKCx67l3m5+5gfu4OvnvhA5wx4VmMFNXTpNetiy9bUqQgIbdZ\ny468bdLkiPvGFBdGPa7O6agzu7IQQgghhBBCCCGE6BgkSKgOvoAfZ2w8NRlZrJl9s7YhKE23pxHp\ntu1JKSFBQlvvuIXP31nEpx8ujbqPLSXNHwhkLi4KGpyKikJB0NOJQgghhGg7J50EpaXQu7e2brO1\n73hE46h6A9d0eYvnv9rlb3vm7sglY4UQoj2VlwQeRLFZFWqqdAxc/SUAzijlsyByaep3lm5u+QF2\nMGv+76awNldMbJOO5YwPzeS08po7GtwXwJaW0aTXrUtVTg8A7MkpYdtUvZZFz5oaeN13lmxk7cXX\n+NePn3UWEy+fFrKf4najc7s7Tbmxzh1KJ4QQQgghhBBCiAOdof4unZcvSMhYU0Vp34HNrlv195kz\nKHn2E/96Qoqbil596x6DwRCULSj49bUgIXQyfSWEEEK0l+Rk+PhjuOkmGDGivUcjGsNjMKC4XSQk\nB7I4/LooDh4sbsdRidpUSZopBGXFgSCh5+9NByCeKgBcEbLT+OgdETIJGaRc1J/nXc4hLzwe0uZI\nTG7SsVS9nkVPz8OWnklM4T7cdQQbFQ4/wr9cPHAoe8Ycy9aTpzTpdeuy4/jTUXV6dh5zUtg2vV2L\naA4OTvKYLay99HqGvvI0BcNGkvnHirD9Ujf8AYC5vLTFxyuEEEIIIYQQQggh2pYECdVBDcoY5Kr1\nhGbuHY+iuBuXGtxtNtOTHf71mDgITwAezhck5NEFJocVbyahTp4tXgghhGh3w4bBN9+09yhEY6l6\nPYpbqy82+dIyFryUzPCx1nYelRBChLPVhH/pS6ASALclpsHHKe0zsMXG1JGpBgMbz76QAe+/5m9r\naiYhgPwjjgKg/KD+9fZd+OZXDH3pSXLvejysVFmLURTyjjs14qb4PTsBsKWm89ut/wpkBtLpKO03\nOCRAyFJcwISrZxJTlI+5ohyAAe+/xu833ts64xZCCCGEEEIIIYQQbULKjdXBl4obwicNt542jS1n\nTm/U8TwmMxfxauD4Rn0dvQMqumt1TJzmoDF4g4QkD7YQQgghRON59AZ0LhcAZ11cAUB2d2d7DkkI\nIdi42swTN6WHZNHyRHg2xZdJyJf9NpIN0y8NWf9y3tctMsYDwe833sv83B1UZ+ewb8ToZmcNbqiy\nfoNY+siLrRcgVI+UzX8C4DEY+fusmWw79eywbT6TTzmc5K2b/AFCAFtOORshhBBCCCGEEEII0bFJ\nkFAdVJ2O6uwcoOnpx0MoCoopEHjkaWCq99x7ngTAbQzqr4KKgk4nNRiEEEIIIRpL1evRubUgIV/y\nyPXLLe04IiGEgPtmZ7Hyp1j+Xmfyt6me8ACW36m/xuXf/zivRcd2IPrk42V8/8zb7T2MNleTmd2k\n/Zbf+mALj0QIIYQQQgghhBBCtDUJEqrH0oee59fbH2btJde2yPHcJrN/2ZGQ1LCdvHeuVDUwOayV\nG9NJIqEGkJ+REEIIIWqL27ebtD/XoHPY/W07t5jq2CNUZbmODSvN9XcUQogmePCqTP+yL5PQPXP3\n+dvu4v4GHWfl1XNadFwHpE5Uw/ujz35j1VW3UzRsZNi21VfcWu/+HmPDz5NCCCGEEEIIIYQQYv8k\nQUL1KBk0jC1nTMea2aVFjucLEhrMeuzJqQ3aR/F9SkFJg1Rf/vnOM58phBBCCNFikrb/DUD62pVN\n2v/aM7vywBVZLPk8riWHJYToxPJ3BbLOOu2Br+q+r34Z637niff3kNf3cLqzq0HHlKAOEcyakcWG\nc2dH3KZ6JxesKen+tnUXXc07P24KdOpEAVVCCCGEEEIIIYQQBypD/V1ES/KYTGxgIBnGUr6O/a1B\n+6je+WE1uLKYW3ucVObohBBCCCGaTudyhqyXFOhJzXTXu5/dql2gvfhAGksXxrFhpVaq7Nb/FDDs\nSFvLD1QIccC7YUpX//LI8TX+ZY9b+9J3xH/+yd+T5xNjcjX4mPkjx7bcAMV+bUhOIhkJTc9wZzjn\nDHj2Yao++QzHzz+RdPvNpD32IOMNBmouuAjzVws5dmBGC454/2XSy/N0QgghhBBCCCGEOHBJkFAb\nc5vMDGQj1SldGhzho/jSBQVFCakeySQkhBBCCNFcE649j2X3PEVc4lVUV+jZvc1Yb5DQuuWBm7CH\nHVXDyp9i/euPXJvJaz/mIck7WoZafxchDki+EmPBy3rcmMvL+H/27jtMqur+4/j7Tt/eWHoTxIIK\nKEZRVESNit3ECvauiVFjEI2J+anRKIklRk1iw4a9oMSCDREL0myoSFFYOmyv0+/vjzs7s3dntsE2\n5PN6Hp6595xzz5xZdvaZ2f3M96QVb2r1PBVDdmnnlUl3lZfuoU9O2tZPcPAYME0K64+v/wPxesqP\nPwZA+9RXFhERERERERGRrqSPR3Wy+u3GWrvVGIDhsJJA9Rmh9atd+Gus/zpVEhIRERFpvfrXTu/f\nNz3eNubWa5l81xYA/LWpX1ytX+ViwWzrj68zHsuJtzcMCNWbPzu5TUR+nh5+GJYvhxUrtn6OYBDS\nPM74+ZDhAcKhxM8iM2K9EXQQxV1TRVrJljbN/8r/5vPaK3O3foEiIiIiIiIiIiLys6FKQp0slJEJ\nQCCvoNXX1G83hgmhIEw+vS8QK0WvkJCIiIhIm9X2Tmzr44hEyMi2SnUEg6lfXN14bm+Cgdbl6x/8\nSw/GHlW07YsUkW5tv/1gwYLEeTS6dR/iWL8+cXzYSVWs/dFNJJyYyFFVDfSMVRIqwxEJUzZsOIuu\nvqlV8/t79Gr7okRERERERERERORnSZWEOll9BSF/WyoJGYlKQhceNqBRX/utTURERGRHEU7LsJ17\nXNYWY6EmQkItBYSmzSni6c8SwaCvP/dt4wpFpDuLRu0BIQC/f+vmqqhIHGfmRHG6IBxOtLlqagDi\nISGAlSeczubRB2zdHYqIiIiIiIiIiMgOSyGhTuaPVRBqSyWh+pAQJgwYGmrU125LExEREdlhhNLt\nIaHM2mIAwk2EhFJxOs34scdrf11251U9qSjVS22Rn6vS0uS2QGDr5jr55MRx38EhXG7Ttt2Ys8oK\nCTmI4omFhMJeBRFFRERERERERESk7fSXi84W++tRIDu39dc4YpWEMNhtlP3jqQoJiYiIiLRdOLYF\nbL1fnT0eaLqS0K4jk0uE3Pf6OvoPCfL7qVvibUN2T6QEaiodRKPtsVoR6W6efDK5rXFI6KGH4Oij\nm5/n7bfhp58S5z16RXC5sG035qxOVBIac/sUAKIe71atW36+9LsBERERERERERFpDYWEOlnGxnUA\nBHLyWn9Rg0pCwcZ/uNIvAkVERES2yqxHXmXNIUcC4MMKASW91orxpiWqBu07rpa7X1pPbkGUO5/Z\nyOhD6uJ9v7u9OH48+Yy+PP73PAWFRH6GPvwwua3xdmOXXgqzZlnHK1ZYb+uefz7RHw7DhAn2a3zp\nUZwu07bdmBm0ThwkfphEFBISERERERERERGRreDq6gV0Zzlpbo7dq0+7zun821/xn3cuq488odXX\nmIaBQRTThFDA/oerRUUDGduuKxQRERHZMZTsuQ+f3vxPTh+/O16sEiBNVRKqfw02+e7NjDowuapQ\nvcI+EX57azH3/7kHAO+/msX7r2YxfV5RO69eRLrSMcfAzJn2tqa2G7v/frjySuv4jDPgtNOswJDb\nnTw2N7iFhXOs96CfzEpn7FG1mFHr54+TSHxcxKftxkRERERERERERKTtVEmoGU6HQU66u13/ZY4b\ny7K5Cwll5bR+IQYYmJimSShokFeY+Fjp8L4bO+CRi4iIiOwYImnpQKI446uP5hCNQiQMX33mIxyG\nD2Zk8P0X1h/kmwsI1XO5zaS2VT+kSAOIyHarvtLPcccl2poKCb3+uv28pqbpeU+95Ij48YzHrPeM\nZtT6mdKwkpARjiDSkKH9xkREREREREREpBUUEuoCRpv3CDOI4mT297sQrjPpX7I03nPxuE/bd3E/\nQ/plqYiIiDSnpqe9cmRlmYPbr+zJ1Gt6cu5BA3n0joI2zef2JIeEbjy3fatTiuwI3n4bPB4oL+/q\nlSQLhazbo45KtDXebqw+QDRggL199WqorbW33fPPKMP2ClDIFkwMBudtpv9Q604isTzQkkuujo8P\np6Vt60MQERERERERERGRHZBCQl2grZkVM3bB6pICFn6SSVq0hp34cesmExERERGbdx551XZumhD0\nJ7/GOvG8ilbN53Ilh4Rk65imvpY7sr//3QrjzJ/f1StJVl9JqEePRFt5ORQ12FnQFdvcu7jYfu2e\ne8LIkfa2iy8xefHAP8U/TtKvbBnVFdbbdTNWQGjjQYdRPnRXADbtq02nRUREREREREREpO0UEtoe\nNAoCzWd/FjGajfRSSEhERERkG9U1qiQUDhnse2idrc3tMTn10kRIyFtWwl4P3w3RKI25PB2zTpEd\njSf2XAqHmx/XHoqL23Y/9ZWEMjMTbUceCYMGJSof1Y/56afk61essG5/9zuYNAkcDhj5338k5s/O\n5rtF1jaHZv3OYi4Hb05/h2fmrdb7QBEREREREREREdkqCgltp/Iopxeb9cthERERkXYWCRtEI4lz\nwzA5aEKN7WXXryfsw16P/pN977op6fqKEvtL7FMuKY/N2yHLFfnZqn/OpcjitatgEAoL4YorWn/N\nypWQng4jRiT3rVpl3daHhL75xrp96im45BL72GuugaefTp5jfqU1cXWFI15Ry3DpvZ80Td8dIiIi\nIiIiIiLSGgoJdYE253oMg/OYNLmabAAAIABJREFUFj/9D5fGj02FhERERES22fcTL+YOpgBWNZFI\nJPEayzQNnM7EtldDZzwbP85b9h0AE8cMYuKYQaRvWMvoQxJViP7y0EbcHuvaUFCv20TawhF7t9rR\nIaHqaus2VVinKY89BrW1MHAgzJ1r7yspsW6DQXv74MHgdifOTz3VagOsfQ5j/Ln57N/D+tlSUeog\nGvt5ZDj19l1ERERERERERES2jX7L2AWMNn7GzzQMpnEBr13xIN/vdxyX8lBirkikmStFREREpDVq\ne/VlF5YB1nZj0UZVf5yuxPHI/0yNH68ZP4EJZ0+In5908lhcLpNzry3l0OOr2WVEMH6tKgmJtE19\nSMjv79j7qYvl+lobRnrxRft579728y1brNv6SkL1CgvtbePHJ47N8jIAisZPIOL1cf7gmQAEAwZm\nbF2qJCQiIiIiIiIiIiLbSiGhLtD24j/WBb2yK8mNltt6enz7RfssSkRERGQH0FRYO5iVgxvrr/eB\nOoPXnsix9fvqKkjftN6ao0GSYOAHb5C3/Dvb2NwVSzny1GouvrEUAKfLqhASDusP/CJtUf++qaND\nQjU11m2DYj7NOu006/a556zbHj3s/fWViRpXEtp5Z/j3vxPnmZmJY6O4GIC1hxxJ1O0mA2tR/joH\n0UhsYaokJM1QkWEREREREREREWkN/ZZxexD7bZ9hmjhC9t80rzl0QqorRERERKQNAjm5eLBeZ5Vu\ndiX17zTzRU468QAA3NWV8fYeS5ID2/3mvms7d8VCQtGI/oLbVq0NbcjPU33o4dxz4Z13Ou5+amut\n22AQpk5tfmxDQ4datzn2TGG8WlAoBEceCWeeCcXF4HRa1ZH23tvqt4eErPJDgdx8oi436ViLCvoN\nQmEnAC6ffoaIiIiIiIiIiIjItkn+C4h0uLZ+ws+sH2+aOENBanr2IWPzBgA27n9w+y7uZ0ifqBQR\nEZGWRDzeeEiorib5xcODXME9/J6JYwa1ONfIh+5i5EN3AfDJLffhcE6Mz5uWaeBLU/JFpDXc7sTx\nUUfB+edDr14wcyYsWZI83h+KsKUq0OycdbVW5aAehYm2lesdgA+AKVPg6F/Vkpff3CzpAKSVfA3G\nSIpfnAGcGO/dXB5kTWmYmjofTm+UO+8PUgvUlsYGOLyAk9qonzWlVmUy1+r19AH8eQVE3R4yolYl\nodXLPWRFnDiI4HA7aOWOaCIiIiIiIiIiIiIpKSTUBZra5qLpC6zx+029EYC1B/8yHhISERERkW0X\ndXvwxbYbq6myim1ecXMxD/7F2kfoQw5t8tqNow9g/vV34K6pYsJ5x9n6hsx8AecxZwIw+Yy+AEyf\nV9Teyxf5Waqrs59Pm5Y4Xr0aBjXK7JXUBJm7vLjZOe+Z0oOFc9J56tMiHLG6unM/z6A+JARwy9Qg\nv7qwMuX10Sg4nAPIK4xQ9dHbAFQ+MR2X+wT6Dg5RtNzD8o01zF1eRVVtH8r9QeYuL7HNURvuCTj5\nflMFxnIr1DR06Wr6UF9JyEWOaW0z/c6LmRzfx4GXAKbT2exjExEREREREREREWmJQkLbBXuoKOp0\n8vFfH8BX1vwvwEVERESkdaJuT7yS0HMP5AGQlZuo2XEA85KuWTf2MGp79mXhtTdjulK/rO6z4GM8\nR9al7BOR5q1ZA3vsYYWFfvzR3jdpEnz8sb0tGm25StfCOVYVoLpqg6hp4PaYfPRGhm3Myw/ncsK5\nlaR6Wn/waibRiEHJRleiZKkJ0+asIRgwuHD8ACJhqzkcMnC5k9fkjM0bCSfe53nLrTJDgdwCoi43\nY754DniW0YfUEVrqxEsADO0WLk1r84eRRERERERERERkh6TfMnaBtm9/Zf/F8sAP36boiONYdup5\n7bUkERERkR1axOPBHaskVC8aaf6aJedfyYIptzUZEKq3x4uP2M79dfpDrkhrrFsHhxwChx6a3PfJ\nJ9s2d9EKD5cd1Z8Lxw/gu0VWFaF7Xl4X7/9gRmbK6zavT36+OyJhHETjgaBw2MBfa1C80cWyr71J\n44+dZFUpGjgsGG/LKvqJsC+NiM9HdX+rRNLArM3UVDqoC3rIpBrTobfvIiIiIiIiIiIism26rJKQ\nYRiPAccBm03T3DNFvwH8EzgGqAXOM01zcaxvKnAsVsjpXeAqIA14ERgKRICZpmleHxt/HvB3oP63\nvvebpmn/a00nyklzM7hHeqvHu0ke25brd3QFGZ6uXoKIiIh0c1F3ckio7yDr3OuL4vfm4asoi/dV\n9R9MyZ77JM3z9UXXMOKRe2xtvZZ9aTsv3uCi/xD7fYlIsro6SE+HzZtT91dWQnZ24txsuZBQ3F+v\n6JXU1rNfIhlYVZ46kJNXaI257KYSiFqBv53efhVXbQ0f3fkwANGIwTfzreDRprXupDlGHei3bTuY\nvmk9Q994kbr8QgA++/Nd9J/zDnnOCqoqssgMWSEhjIykuUTqtf3DSCIiIiIiIiIisiPqyu3GHgfu\nB55son8CMCz2b3/g38D+hmEcCIwFRsTGfQyMA+YD/zBNc7ZhGB7gfcMwJpim+VZs3POmaf62Qx5J\nG/XK9tEr29f6C4b2sGrpr18Pb74J993HgVlZHbdAERERkR1MxOMhiD1YnJkT5cE31tL/y4/w3ZgI\nCK096Ag+vu2BlPMsueB3SSEhs9EWMGtWuhUSEmmFcBhcLhg5El5+OdG+226wdCksWwb77ptoj7Yl\nJdTI7U9tAODvz61n8hl9qSxzphxXW209n8ceXsmYcZPj7QM+egfDAIfTJBKG2a9ZlYh2GeFv8b7H\n/sl6m/rDGRdYDQ4HVf0Hkr6xhs/mp7HSNZzd+A5QSEhERERERERERES2TZfVKzdN8yOgtJkhJwJP\nmpZ5QK5hGH2w9t7yAR7AC7iBTaZp1pqmOTs2dxBYDPTvyMfQqcaOhVNPhWnTQAEhERERkXYVdXvx\nYf9j/uFTzqPAV8HxN06Kt31412N89I9HiXqbCHw7HHx+/R22pnJybeeP3pGvLcdEWiEcBrcb/vhH\n+PJL6/aMM+DJ2MdM1q+3j28pIhSNJrdNn1fE9HlFDBpmBff6Dg5T0DtM0J/6OfrOi9Z7sYzK4pT9\nTpdJTbWDdT9ZFYRunPRR84syTQq/WQTA5r33jzf78wv5rHIUAHVhL1+wd/PziIiIiIiIiIiIiLRC\nl4WEWqEfsKbB+Vqgn2manwGzgQ2xf7NM0/y+4YWGYeQCxwPvN2j+tWEYXxuG8ZJhGAOaulPDMC4x\nDGOhYRgLt2zZ0l6PRURERES6sYjHw+4sZQqJgM+gRbM58eSD4ufBzGzWjz28xbmibvv2QqXk287r\nahxcOH4AwcA2LlrkZywatf65ogGcTqua0G23wbPPQp8+1piNGxtd00IlIX9trArQ0TUU9Apz57Pr\nU47zeExCwdQhoeoKq8KQt7wkZb/TCe+9nEXxRqto7wlTTgPACIfIW/oNRtheRcxdUxU/DmUkPgwS\nyCsgy6hCREREREREREREpD115XZjW8UwjJ2B3UlUCXrXMIyDTdOcG+t3Ac8C95mm+WNszEzgWdM0\nA4ZhXAo8ARyWan7TNB8CHgLYd999t75evYiIiIh0O0YTBXyibmursTu4gY+PuILP30vHgYm3sjw+\nZtHVN7XqPhqHhM7hSa7l7qRx548byANvrCW3IEV5E5F2tqGijip/uKuX0WrBIEAWrttvYdmVU2xP\n3qBp9S1ZHmDZpmC8vbiq+eRdTZX1GZnho/1c8X+pQz4A7mZCQgB77V9HjyVfJHeYJv5a++dwMqgB\n4MyDdo63PTNvdfzYW5YorhvISVQdq8vvwVfuvRkSXAHAIt/+LOXFJtckovp0IiIiIiIiIiLSGt05\nJLQOaFjxp3+s7Sxgnmma1QCGYbwFHADMjY17CFhumua99ReaptnwN8CPAFM7cN0iIiIisp2JeDzx\n4yuvK+L+/o/A41A2bDjesmICuQX8dOwprZor6rKHhHrQdBjhlkt7cfdLG7ZqzSJt8eOWGlaX1Hb1\nMlot4DeALNyE+Oqb1YSyc2z9Xl8GP24IsHBVeeoJUqgPCWVkNR/Mc3tMggErcvH9F17mzMzg0j+X\nsmmN9fZ5+OgAjkYVgQCcgeSQkpswTr8/qR1g4phB8eNvz7kCf0HP+Lk/vwfDgyt5/v1vGfHQ3Qz5\n3/csbeHxiYiIiIiIiIiIiLSkO2839jpwjmEZA1SYprkBKALGGYbhMgzDDYwDvgcwDOOvQA5wdcOJ\nDMPo0+D0hPrxIiIiIiIApjORnXdFw3hC1h/1fcWbcfn9bBp9QNNliBoJZWTGj5efPIkl518ZPx8w\nNMg/XkhscbRprT1QJCKWSMS6dRHGXVud1O9wJsYAFC1303i3se8WeZk0ZiCvPJoNJEJC6S2EhFb9\n4OHreWm8+N8c/np5L+a+mcm0qXn84QzrbWVGVhRXTfKahr38ZMr5Cr+abzvPWfkD2T8tt7WtGT/B\ndh7I6wGAr7QERzhE1NWdP98jIiIiIiIiIiIi24suCwkZhvEs8Bmwq2EYaw3DuNAwjMsMw7gsNuRN\n4EdgBfAwcEWs/SVgJfAN8BXwlWmaMw3D6A/cCAwHFhuG8aVhGBfFrvmdYRjfGobxFfA74LxOeIgi\nIiIisr1oEAByhEI4g1ZFkLSyYjzVlUR8aa2eqnjPfeLHi675C6bDyaNcAMDVdxTTZ2CYaR+uiY9p\nHGwQ6Qjb2/dZJGw9J90kno8NOZ1mfMzXn/u44ew+fDAjk5rKxHP5tt/0AuDlh3M5f1x/bo+dp6ok\nlLZ5Y/yLFIlYc8yYlqhe9P6rWZhRI369u6aaiMfLTxN+FR+zz79us825mL0B6P/RO7b2YycdydCZ\nz9va/Ln59vP8+pDQFhzBINEG1c5EUtJ+YyIiIiIiIiIi0gpd9nFE0zTPbKHfBH6Toj0CXJqifS1N\n/FrMNM0bgBu2bqUiIiIisiOYd+NUxtx2HUY4hDNg3x4o3IaQUDgjk2fmrY6fR51OLmAaaR/fiBnb\niszjM8krDFO2xUVttUFG1naW4BDpYNGwdesinPR8BHC6EpWE7rzK2qbrsTvzeezOfKbPK2LdT/a3\nusFA4vMxjUNCmWtWccKp4/jiiuv5/pzLGX9iNbNfy6QpOQUR3DVVhNIzCGTn2vouOWMJDz23J06X\nyUjzG4jALi8/lTTH7s88bDsP5BXYzv2xc19ZCc5ggKhbISERERERERERERHZdt15uzERERERkU4T\njQV4jrjidHZ+/TlbXzgtfavnNWPbBBkN90YCTjq/EoBgQOUfRBqrr+ZjhYSSKwlVlDr54NUsopGk\nLiaNGch1Z/Ztcu70THtIKGPDWgD6fD4HgItuKGXcccnbidXbbVQAd001ocwsanr3s/Udc/BPAIw5\nvBZHJMXiGpn5wmxmPfpaUrUyf34hAL7SYpyhIBGFhERERERERERERKQdKCQkIiIiIkIizJMZCwys\nG3tYvG/NoUdv9bxRpxMgKTDg8VrVg0IKCckOqrbaIMVOYkCiSpCbEEdddBITxwwifeO6pHEVpc42\n32+TlbsabDs4/qSmQ0KGgRUSSs9g+SnnsGWv0fG+MY/cxl3PFnHxjSUpr119xPHx45XHn0bVwCGU\n7DEqaZw/z9p+zFdWgqu2hnBG05WNRERERERERERERFpLISERERERESDqtG9P9P3Ei+PHtY2qhbSF\nGZvXV7IFb1kiOOD2WEGFYFAhIel4Jt1vS7uLjxjAdWekrvjz6awMAJwkwnVHXH4aOSuWklX0Y7xt\nQ5H1/Kp/PrXkiv8rTmozzORrh+0ZZPq8IqbPK2Ly3Zvj7RdeX4K3rISeX84nlJFF1O3hm4uujvf3\n+uJzdg98Q6rCP19fdA2f/PX++PmPx57a5DpNl5tAdi49F3+Gp7qSYGZ2qx6f7LiM1Luvi4iIiIiI\niIiI2CgkJCIiIiICRBv9VT+YldMu85oO6yX3CaeO49cT9om3q5JQy1JkN+Rn4r1XrMo4WzbYw3lV\nFQ5ME174Ty4AG+gT78vcsJZjzzqK408bz/X/tII7t/2mFwB5hWHbPFPuTQR7ps8rIjvPChulZSR/\nUzlCwWbXOupAf/x4yPAgv56wD57qynhbxOO1jfdWlKWcZ+mZF9nOI15fs/frrSyn96LP6LHkC4JZ\nCgmJiIiIiIiIiIjItlNISEREREQEiLrsYYWo290u87prUm9bVB8SCvr1klw6XncLXE2bmp/U9s6L\nmVx2VH/OOmBgvO233J80DqCfucZ23vB5dPtTGxgxxm/rryyztiUb9eKDjL/qbFtf308/aPW6PQ0q\nFq05dAKQHPZxhEJJ160+4vikLcMah4uak7/0m1aPlR2TobypiIiIiIiIiIi0gqvlISIiIiIiP3+N\ntxur3GkX5kx9hMrBO2/TvDk/LbedZ61eSdWgobjrQ0KqJCQ7uGjUCjg8cZc9OHRN2v2k19WlvGZw\n+XfA6Pi5y209n66ZuoVBw5JDOvWC81fTh48gGmWvR/9JMCubXV55GoDeCz/llCP24qX3kgM5hsPE\njBrx5y0Q/9nQOOzjiCSqGpXuuidrDj2alcefljRnW0JCWeuKWj1WREREREREREREpCkKCYmIiIiI\nAHnLv01qW3fIL7d53ojHvo3Zno/dx2c3/xOXywobRCLbfBci25Wg3x6M27LeRW6P5CfCXoEv+O6s\ny+j38XvkrFph6xuy9CMgURHo3GvLWPmdh33Gpg4V1TuWNwDoO+9D9nr03qR+T3UljoCfaKPqQF6f\nib/WsFUSqu3ZG4CavgOoGDSUnNUrATDCVkgo7PWxcd+xfHv+lba5ok4njkgkqQLRyXv3s50HH38S\nz3nnABB44aWkfpGGvC5VpRMRERERERERkZYpJCQiIiIiAhSP2Dd+XFvYq93mdQaDtvOdZs1gwXV/\nxeW2qqaEQ6okJDuWkP0pgb/OiAeH8nuGKd1svU3NiFYRyB6Kq7YmaY5hrz8HPBw/79EnzD4HNx8Q\nAiigBICxN/6myTFpxZup6TfQ1rbPQXV8+k6GrZJQba++AITTM3jj+Q/IWr2S408/LF5JyIhEMJ3O\npPmjLlcsJGSvJJTmaTT23LOtf0Draw6JiIiIiIiIiIiINE0fNRMRERERAYr3Gs2M1z7jxXe/5o1n\n3m23ef15BUltpx2+JyeeewQADXYmEukwZstDOk0kYgWCevS2vvkDdQaBWEjo1xdVxMf58RH1eOJh\nnBkzPuWNZ95l+cmTcNdWc8t/18XHen2te4ROrIpF7rrapL4Ff7gFgBN/fTBpmzfa+i75Uwl3Prue\n9EyTqv6D2LjvgYTTM2xjzNiWhY5YJSEjmjokVDFkVwCi7kSVMUNZQREREREREREREekECgmJiIiI\niMTU9upLKCuHUFZOu8351eVTUrZ7sMqpqJKQ7Gjqt9jbdWQAgECdg9LNVpjG4zO57p7NABzBe0Rd\nLj6a+jBz/v4otb37UTFkF8p22QOAtNqy+JzetGjS/Rw7qZJL/mRVDjr9inI83ihNPdtmvPoJm0Yf\nGD8fOvN5W7/bA/13CpO9agVZa1dT1yO52ljUZYWEjHCIXgs/wRGN4koRRvrw7seZM/WRpJCRiIiI\niIiIiIiISEdTSEhEREREdhhdEceJ+Hzx4x9OPS9+7CYEQDiskJB0PNPsPrWEolHrez4t0wr2BPwG\nN1/SG4CSjU5GHuDnlZkL6MsGTKeLQF4B6w4+In59fUAno6o43uZJUUlo4pXljDvO2qrshHMqef65\neUljlp1yDu/fN53aPv2p7j8o3j7i4btTrr3PZx8CsHnv/ZMfVywk1HvBJxz+24kA7Pbco0njAnkF\nrDvkl7Y2/RQQERERERERERGRzqCQkIiIiIhIBysZPhKAVUedxDPzVrPw2ptVSUh2WNHYFnvpsZDQ\nh69nxvuG7GE9L4ywFaKrD940VFtohYSiGyvjbR5vyyEod21NUtvCP9zKpv0OsuZze3j19c8BqOnZ\nJ+UcnuoqAH487rSkvvrtxga/+3qLaxERERERERERERHpCgoJiYiIiIh0sFmPvsazH6+kZM+9AVh2\nyrn4+/cDIBLuypVtX/x+OP10WLasq1ci2yISsYJx6RlWSOiLT9IAuORPJewx2tqCzBG2nhhRlzvp\nen9BTwBGZyyJt51z0CAy165u9n7dtdXx4+/PvIhnP/kxaUxdz95EXG5WH3li6jmqKwlmZGE6nUl9\nqQJNVf0HN7umeoaygiIiIiIiIiIiItIJFBISEREREelohoHZMEBgGAQGWCGhJ+7KZ83K5CCEgIm9\nOsyiRfDCC3DeeV2zHmkf0Yh1m5Zp//8dOjwYP3bE0nOpwjjh2BZ+7lDA1p63bInt3FeymTG3/B6n\n32+Nr7FCQkvO/Q1f/ub6lHMDRLw+HLFKRn0++5A9H7k33rfb84/hqalK/bhSBJrefHpWyrEiIiIi\nIiIiIiIiXUEhIRERERGRLlC9y7D48VP35HXY/ZgmvPNi5s8iiPT999ZtWNWX2qzlzbg6T7ySUGy7\nsXq9+ofix0a8klBydZ76bb2MSJjz/lDCPPYHIGPDOtu4A/7vGoa8+TIDZr8JgCtWSajoiOMxUwR6\n6kXdbhwhK7A0/ppzGfHIPfT+fG6LjytV6CgSCzS1xEClhERERERERERERKTjKSQkIiIiItIFnL7E\nS/GODL18OiudJ+7K5/pJfZg0ZiBmd0qLpGCaMPn0Psx6ITOp7+qrrdsmCsDIdiISqyTk9pjc/MjG\neLvbkxhTX0koVXWeaOwbwBXwM+GYzezPfAD2+ddtGOFE0KjPgo8T84WC8UpCoYyMZtdnOp1kbFyP\nUb9Q4LCrzrKdp9J4rat+eUKz40VEREREREREREQ6m0JCIiIiIiJdwZtIRKz9seOq/Py01GM7ryjd\n9rcAZcUOln3taXngVqirNVi/2s2Td+cn9TliS9977w6565+3bhQOi8YqCTmdsPOewZRjHOGmtxur\nrwI04qG749WB6p150M5J43/x9z9zxsHDGHPbdQCE05MDaA2llWyh3yfvc+bYIbZ2b3kpAAuvvTn1\nhQ77c+vTW//V7P3YqJCQiIiIiIiIiIiIdILk2u0iIiIiItLhIp5EyKam0klZsYO8HtFmrtg6WXn2\nOctLnOQWbP39lBU7+O1x/QH454x19OjdfHWVNs+/2QqFOF3JqZaqKus22v5fJulE0di3zO4vPUpv\nzwD23O9XDNndHhaqrwiUqpKQ2SCM466tSeo//eBhtm2+3I2CRKH05isJNWWvR+4FoK6gZ4tjQ2np\nW3UfIiIiIiIiIiIiIh1JlYRERERERLpA1O3hF7FtkgDu/3OPDrmfmkrrJf8pl5QDUF2+9W8BTJN4\nQAjAX2vNFQlDbU37lEIpK7ZCQrkFTYePFBLavtXv2jXw8/c57KqzuOG+LZx+eYVtzC4vPQlA1JXi\ncy1G4ntt+JMPJnU7Q0E8VZVN3n/U492KVcOwV58GoK5H0yGhz266G4Dann3aNLcKCYmIiIiIiIiI\niEhnUEhIRERERKQLRDxe5rN//Nzjbd1+UKWbnbz2eHargzI1VQ5yCyKMOrAOAL/feguwfpWL4o3J\nWzk1pbbG4O7r7EGmYMCKNvz3rwVcfPiAVs/VnEVzrAosOfkRzEZfkmHDrFuFhLZP/jqDe2/owS2X\n9gbARThpjKeiHKffz+B3Xwegtle/Zucc+r8X232dxXvY97MLZmbbzpsLCVX3HWhdk53T7usSERER\nERERERER2VYKCYmIiIjIjqMbleuINKpmkpHduuTLM/fn8sJ/cvluYeuqodRUOUjPiuJLtxI3gTrr\nizD5jL5cdVI/fviydfNMPr0Pi+fat1AK+K25Pnnb2r6pPcI777yUBUB2fvJkgQDtdj87GpPWhdA6\n0p1XFbJgduJ7qD4k5KqxtgPrM28Opxw1kgGz34yPqe4/KOVc7/77ha1aw8e33t/imHcencEPp5wL\nwIzXPmPOPx6z9fvzmw4JhTIyAdj4i4PatC7D6EY/nERERERERERERORnSyEhEREREZEu0HjLo8rS\n1lX18cYqDm1a5wasikDT78ttMjhTWeogOy+C12dd9+BfejBpzMB4/y2X9Uq6dvHcNCaNGUhdbAux\n8hIH5cXJ2z4F/fZgQzjUqofQKm5PcqhFIaHtV02VwbKvfbY2J9a+Y666Gpx+P+OvPgeAA2++BoAv\nL7+uyfkqdxpmOzebCdmsOvLE+HFdYe9WrfeLq/7Em0+9RW2vvmwZua+tL+LzNXEVlA/bnbce/x/f\nXHRNq+5HREREREREREREpDMpJCQiIiIi0gUiHg8At181lx69w1SUtfzSfMrE3nw406pU8tid+Uwa\nM5DJZ/TlzWey2bA6EeJZ9YObFUs81FQZVJY5yS2I4E1rOlnz6N/ybed3TS4E4KLYFmILP0xPugYS\nVYnqrVnpafExNKdh+MdscHzppfDyywoJbYvGW7d1tnAwOcTTcLuxtC0bk/rLdt2z6fl89u/J9/79\nIouv/GP8vLpvYvu7T2+5L37szy9o1Xqjbg/lw4ZbJw0CSO898GyL15btthc42vZWW3WERERERERE\nREREpDMkfxxYREREREQ6XP12Y/sNW8uIMXUsnJM6iFMvGIC1PzYdwrnuzL5JbQOGBvHXGfjSTdLS\nm06JuNyJvosO72/rW/mth2l/t0JE519XyrSpiUBRZbm9+tFNF/Rm+ryiZh9HcyKJzEjs61FDbS08\n9JD1Ly3N6lNIaPsTCjUdEnKEwziDVgLsmwuvZq9H77WuiW3dlUrEa6/EVTZsN7aM+gVLJ10KgLuy\nglOPHJF0XTAze+seQMzm0Qdu0/UiIiIiIiIiIiIiXUmVhEREREREukDUbQV+nMEAPfpEqCxzxrf3\naugvF/Vi0piBrFjiTepryZqVHupqHPjSoziccNsTG/i/hxMVWx79YA0A772SRSC2dVhdjf0twutP\nJkIV/Qbb9xObNjWfuyZrY2OEAAAgAElEQVT3aPO6mhKJJD/+iorEsSoJbb9SVRIq3WsUEAsJBfwA\nlOyeCPb4c5up+mMYzL39wcT8aRm27qjbnfKyUGZWq9fcmZrZLU1ERERERERERESk3SgkJCIiIiLS\nBeq3G3MEg+QWRAB47YnkKif14aDbftMr5Ty3P7Wh2fvx1zriVYQG7xpi2F5Bps8rYvq8InwNqgvd\neE5vyksc5BVa1V3Ov64UwFbhaLe9A0nzL55rr4D02uPZbFq7dQVLG1YSAqirhcrKxHl9OEghobbr\n6u3GUlUSIs0K8jhCwXgloYjHyytvLODdf79A9YDBzc7pqqtLnDTa3st0pf4ejHraHrYTERERERER\nERER+blQSEhEREREpAvUhxWcwQDlxda2XTOfzLGNCYeSLosbNbaOf72+jrSMlhMzaz4oJ/un5c2O\n2VDk5jfH9qdsi4tfjK/l4GNqksa0ptrJC//J5d4btq66UCRsv4PHH3bbQkL1Xn11q6aXLpTqe9nw\nWkEeRzjMLy87FbCeF/6CnmzZe/8W5yz8emGTfVFX6kpCW+vtx17nw7sea9c5G1IlIRERERERERER\nEekMCgmJiIiIiHSB+kpChV/O58Scd1OOKd3sbPL6yXdtIb9nhJ59I/G2fQ6u5Y/3b+KJuUX8fuqW\nePuzqw7nuDOPoPDLBU3ON2JMoirLsq+8eH0mBxyZCAqde21pyw8qxrGVgYdIxH5eVkbKkFAwuHXz\nS9cJxbYbO/O3ZYlGrxXkyVv+XbzJU1lGa608/vSmOxulbhZf+UeKxk9o9dyNlQ4fyfqxh2/19SIi\nIiIiIiIiIiLdwdbtAyAiIiIiItskEqsktMsrT7MLT/PSoUuZtXCYbUzAb2X6L/5jCaMPqePTd9J5\n8u78pLme/qyI+bPT2PtAPx6fta/UPgcnQj87sxKAX152Cs/MW51yPV/PS4sfV5Ra4SRfWmKPqlFj\nrfkeencNhgHfLfZxz3WFKefKKYikbG9J40pCCxdBRZUf8CWNXVzU+jCJQHUg3PKgDlS/3diQ3RMJ\nr9ws69hXkgi0Vfcf3Oo5qxptR5ad5mJIj0z7mCOOZtSAXLh+CtXAqLYtu9O4nSolJCIiIiIiIiIi\nIh1PISERERERkS4QdXtt55llG4mEG4WE6qzgQG6PCFm5UY46rZq9x9aR39MewjEM2P+wuqQ2gONy\n3oeKRLsjFCTq9sTPp88r4uIj+lNbnSgy+p9ZawFY+kVijfUVizKyrODQvofUsdNuAX5aan8cAG6P\nyQ9febjl0t5MOKOSs64ub/oL0UB9SGgKd3An1/PFPA9fzLP6/vHCega+NYPbph3IV4xi6YaqVs0p\n3UMkFhJye0wev/Vt8v/8AL6sgQDs/cDfAPj8+r9RMWSXVs/Z8PsYIMPrYnjf7ERDSQlZmZkM93gQ\nEREREREREREREW03JiIiIiLSJSJee7jG568i3KiSTiBgnXu8iYo+PftFcLlbdx9PfVrE34+cbmvz\nlidX4Bl9SG38+LCTqsjKiQJw/DnWXl8XXl+Scv4b/rU5fpydlwguLZyTzi2X9gbgreeyiUZbt95I\nrNhNNsl7jGXmRNnVvZITeQ0A00waIt1Y/XZjLrdJv/wKjud/SVuCrf7l8W2aM5yewfKTz2L2vU+m\nHpCfDwoIiYiIiIiIiIiIiMQpJCQiIiIi0gUiXvsWWg6fk0jY4Pen9GHSmIGEgrDsKytI5PUlEjFO\nv59eCz9pVUrG4QBfRSkA5UN3BcBdXZE0btzxNQCMOrCOC6YkQkTjjqvhkffXcNhJNfG2vB+WkP/d\nVxQsWUxGlsltT2wA4Kjx65pcx7z30ltcK0AkYoVGMqlO6ktLj1L45QJ8+AEIBWHB7DSWfplcyUi6\nn3DIunV7wIhYgbKS3fYikJ2TGJOR1eZ5F0y5jQ1jxrXLGkVERERERERERER+7rTdmIiIiIhIV2hU\nRcUbtII4m9ZaZYLOO2RgvM/tSQSCdn/6P4x45B7eeehlikfs2+LdeCrLKR4+im/Pv5Jxky/E5fcn\njdltVIALry9h7NG1jZdFWkbivtM3rmPCucfGz5/9eAWDd4Wv0vdlp1d+4EVSbwGWkx9J2d5Y0G/d\neQ7JQSaXG/rMn4uP0QCcPy7x9Xn8oyLcKhjTrcUrCblMHLGSUXWFvZjx2jxOH787P5x2/jbfh9Hy\nEBEREREREREREZEdmioJiYiIiIh0kWc/XslrL8+lYtBQ0vzJW2zVG7BzKH6cv/QbAHxlqbcAa8xd\nU0UoM4twWhoATn8dABPHDGLimEHkrFiKYcBhJ9XYKhalMvD9N2znrthcI2oX4SHY5HWt3Rrspgut\nLcp6sanJMfWVhBr6xx8KW3cH0mXCoVhIyGPGKwmZTheRtHRefvsLFl/1565cnoiIiIiIiIiIiMgO\nQSEhEREREdlhGN2s1ojpclHTbyB1hb1Jq0uunlOvYXUf0+kEYLdnH2HimEGM+tftzdyBSeE3i8nY\nuI6wzwoJ/fLy05g4ZlB8yE5vv9rq9e7zr9ts5666uvixt5mQUH1ApLX6sKHJvlQhoSXz09o0v3S+\n+kpCbneiklA09r0cyM2Pf1+LiIiIiIiIiIiISMdRSEhEREREpIvVFRSSt/GnpPYjflXF9HlF8fP+\nc2aRuXY1AD2/nA/A8On/peeiz1LO6662qhNlF/1IxJs6SNNr8Wc4QvaAT/qGtRx69Tk4/X5yViwl\nfeM6ei76NOna+qpE9e5+cqXtfLe9rUBPa0JCwUDiOIcKlh5yMqdfUW4bE3U6MWhlWSLpVuq/B9yO\nEH0/fh+wKgmJiIiIiIiIiIiISOfRb2VFRERERLpY1rrVfM2xSe3jT6qOH6dt3sAhUy5Jef2hvz+P\nF2Z/b5UcMgwwTVy1NThCiW3K6gp7pby24Luv6LXwUzYccGi87aSTxwJw3GmHkrG56ao+Ln+t7fz0\nBy/k93wYPz/10gpuvczXqpDQW89lx4/7sY4twcGccE4l+42vxemMYoTDOCIRSslvcS7pftxrNgB5\nnHj+kRRuXAGg6kEiIiIiIiIiIiIinUwhIRERERGRLrb+gPG8s+TIpPbBuyRCPp7qqpTXfnvub9jj\niQeYeOBOSX1fXjEFgHk3TiWQm88LH3zHaYcNTxrnbmLu5gJCAAf+39Xkrvwhft533hxbf05+BIAG\nWaUmVZYmipy6CdN33hzSN62n94C+TBwziNWHHwdAf9YmXTtgaNNbnUn7iYRh3So3A3duxX9oAz98\n5WHaK9b3XcHGRLWpqCoJiYiIiIiIiIiIiHQqbTcmIiIiItLFvjvncqZyXfz8ohtKuPeVdQCMueVa\nJo4ZxLETf2m7ZvlJE/n23N9QsdOwJuctWPIFABGPF4BwegYvv7WYDfsfwuc33MHHt94PwEF//i3e\n8lIARj5wR5PzrT3oCNt5w4BQvaGsINNVwy9PqcLjtbYGe/u5bJYs8DY5L0AwYFUb2oMl8bacn5Zj\nRKyg0aD3/wfAqbzIjONvjY/JzovgcmsLss5w2297csNZfdhY1LZwz2uP58SPHQ22i1MlIRERERER\nEREREZHOpZCQiIiIiEgXi7o9HHB4YmuxUQf6KewbAdNkyJsvJY2v6j+IBdf/ja8uv45gVnZSf70B\nH70DJEJCAIG8Amb/8ylWnngmm/Y9MN6+93230W/ue+zx1L+bnO+jqQ+3+FhWMIz5p17NlENmsv+/\nbwFg1Q8e/nZl6u3O6n0wIwuANzkm3mYaBp7Kcts4AxiWvS5+7nCaRCItb2cm2+6HL30ALPgwrU3X\nVZSkDgNFXaokJCIiIiIiIiIiItKZFBISEREREekGTKeTJ/Ov4OgzKskrtKrnuGprUo7NWrs6fly6\n24gW5454fSnbw75E2KPnl58zbvKF8fNP/3JP8gWO1r19MKJRDv/dJPZ7+6FWjW9oIGts597ykqQx\nzlBie7Fe/cNEI22+G9kGzz2Yx+K5rQ8KbVybOgykSkIiIiIiIiIiIiIinUshIRERERGRbiDqcnOy\nZyZnX52onJNWsiXl2GWnnBM/9hcU8sy81aw44Yx4W3mjLchCGZkp52kYHspcnwjnLD95Eqsm/Iqo\nMxHuqC3sHT8Oe5vfOmy35x9L2R4ONXsZu/Qvtp2bhgNveVnSuF1fmMZlN5Vw8gUV5BZEVEmoC9w1\nubDVYzOzowD0ZZ2t3XQoJCQiIiIiIiIiIiLSmVTfXURERESkG4g6XTgiYVubr9QKCS34wy1s3O9g\nclcsJX3LRpb9+pyk6xdOvpW6wt5kr17JZ3+5m8x1RRx3xuEAlOy5T+o7baIykBGxSvOsOfRoBr3/\nP3445Vy+Pf9KAP733PsEs3JwBvyc+KuDWnxccziE6w5/i8/fz6Cu1kFWTjT5sUfBMEwOGLYK1sKX\nl01m1H/+TtTtxlNdlXLeg4+xqiw9cFOBKgl1Y8UbnRRvtN52rqO/ra9hCK09GIbCYiIiIiIiIiIi\nIiLNUUhIRERERKQbMF0uHMEAuz77CJU7DWPDmHH4YpWENo/an6qBQ6gaOKTJ66NuD99cfE38vHLw\nznx16R9Yd9DhzW7rtGbcUQyYM8vWtvPrzzH/j3fy+R/voK6wF19ddh0Rny8+bz1/bj6+8lIASnYf\nQcH3XyfNfwhz2XvfSiskVG2QlZO8hmDAwDQNMpx11rw9egLwy8tPo2j8hPi4ikFDyVm90nat02US\nVSWhDvfpO+lbdV1ZcdPfe9puTERERERERERERKRzabsxEREREdlhdOdCI1GnC19FGaP/eSvjrz4H\nV20NQ958CbC2FNsa355/JeXDhjc7Zu6dD7H0jAttbfP+9HcAwhlZLL76pnhAqLH3/v1C/HjLyF80\neR99sioAuObX/Zjzv4yk/kCd9R+TFba2WgulJ8YMnP1W/PiN595PutbhhIgqCXW4/9xckNR2wfj+\nVFc0/5YyFLA/6YIZWfFjs50rCYmIiIiIiIiIiIhI8xQSEhERERHpBkyXPTBx2mHD6ffJBwAEcvI6\n9L4XX30Tz8xbHf/343Gnteq6yp2G8elf7gGgrJkwkiMcih8/9NcCgn57cKSm0npbMuLDZwEIp2cm\nzfH8h0vBMFh+8lnU5SdCU06nKgl1hkiKr3GgzsGtV/Rs9rpFc9Ns5zNf/oi6vB4ARF0KCYmIiIiI\niIiIiIh0JoWERERERES6gdzl3zXd6ei+L9tXHX0ybzw9i6LDj0vqW3nsqQCM3HmTrf3lRxJ7jj3z\nr1wmn9EXgF5Y48Jee+WiqNNFJNYW8XhwBgPxPoeje1QSqixz8PS9uYSCXb2SjtGzXyhle16P5r/4\nSxbY/y9Nw8Gsaa/z5lNvJQXjRERERERERERERKRjdd+/NoiIiIiI7EB6L/qsq5ewdQyDip13S7kl\n2fqxhwHgCgds7SWbnQB8MiudN6Znx9t7shkAR8geSAlmZcf3iot4vHiqKzn+lHHsf9tkdn9lGtFu\nEBKaek0hbz2XzcI56V29lA5R2CfCriP9PPDGWn51YUW8ffjoQDNXwUFH1wAw9VirSpTpdFDbu1+L\n2+CJiIiIiIiIiIiISPtTSEhEREREpJvaPGJfVhx/elcvo9W+P/Oi+HHJ8JEEM60AUN6K723jdh1h\nBUse/EsPW3t9JaHS3faytTfclsp0WgGjrLWrGDrzBVyEoa7ry/f8tNQLwP1/7tHCyO1TKAguN+QW\nRHF5TFt7c8IhK9w1brD1PWAaegsqIiIiIiIiIiIi0lX0G1oRERERkW6gbOhuSW0f/Gs682+c2gWr\n2TpfXPVnwAo3zXrsdaIeKzgz5q+TWchozvtDKQDRKJhm8vUFlLD8pImEsnOY9ciMeHt68eb4sae6\n0naNizCRqNHeD2WbLJnv7eoltLu6Gge+9CgATmfiP++VR3JZtczd5HUvPZQLgJswAGY33jpPRERE\nRERERERE5OdOv6EVEREREekGZj0+M378+ksf8fpLHxH1Jm/h1d298sYCZt83HYBwgy3IRrOYA4+y\ntp6KRgyWfe1JurZsz5EsuvZmAEr23JuZL3yYNMZbXmY7dxIhEu3atzXRqP3820Xb3/9bc8JhWLPS\nQ22V9XWOFXOKu/GcPtTWJAe1tqxPDDRM64vUkSGh7hUVExEREREREREREel+XC0PERERERGRjhZ1\nJ0Iz1f0HdeFKto2/oGf8uHzn3W199eGSSAQ+fisj6dqS4aNsX4eqgTvx/n3TiXgTlXm85aW2a1yE\nidAotdLJ6mIBmT6DQmxY7ab3gHCXrqe9ffO5FXr6/gvr1uFMLgNVW+UgPSNia7v6V/0SJ/VJKlUS\nEhEREREREREREeky+g2tiIiIiEg3seL40/nyiildvYx2Y7rsn0moD5dEowYfzMhKGu/PzU9q27Tf\nQRSP/EX8/KvLr6Ns2PD4uYswUZxJ1Xw6U32FnV8cWgvYt+P6OfjHtVbw68Z/rCGr6CeMFO8iX/xv\nbpPXnzCxlNwflwFgOro20CUiIiIiIiIiIiKyI1NISERERESkm5h/41S+O+eKrl5Gh4i43IlKQg0K\n7dz32rr4cTgtvcV5SvYYxVtPvZVo8FmVh7oiJOSvM5gysTeP/M0KN+X1sCrpBAM/r42v+g4OAXDR\nqxdx/GmHEqi2QlBHn1HJhdeXAKkrQ9W7adPvGfzOawCYjfcqExEREREREREREZFOo5CQiIiIiIh0\nmBff+4Zvz74cZzjEWQdZ26hFIwbDR/vpPzRIQa8Il1y+ilkcScSX1ub56zxWRaKKks4Pn8x4LJu1\nP3pYssBadyIklHibFY3Ae69kEgp2+vLaTZ+BIQYOCzL4k3cA8BdbDyYrJ8qev/CnvCYaAcNhcsK5\nFQz/4s1OW6uIiIiIiIiIiIiINE0hIRERERER6TChzGwCuXkAGICTMNFQhEgYsnOt8j/HjV/NkbxL\neCtCQndW/g6AG87u3W5rbq1Q0F4xKDcWEqqpSrR/ODODaVPzmfVC8vZq24tgwMDtSWyhVldslYLK\nyIrSs1+E3fa2gkKTxgzk5kt6UlNlcPbYgZhRgw2r3TjCoS5Zt4iIiIiIiIiIiIjYKSQkIiIiIiId\nKmttUfzYRZiMH38iFEwET5yBOoA2hYQW/+5PLLrmL/RzbwRg+OhAO664dTw+03aeU2CFhF55JDfe\ntn6VGwDTPnS7EgoaeBqEhI7K+BCAvfazwkE/fOWN9y372kdlWaKq04Cdg3gryztnoSIiIiIiIiIi\nIiLSrC4LCRmG8ZhhGJsNw1jSRL9hGMZ9hmGsMAzja8Mw9mnQN9UwjG8Nw/g+NsYwDCPdMIw3DMNY\nGuu7o8F4r2EYz8fm+twwjMEd/whFRERERARg7cFHxI9dhDGDEYINQkKuuloAImnprZ5z6cSL+eH0\nCzirx2sA5BdG2nHFTXv/1UwmjRnIpDEDef2JHFtfRlY0afyyr60ATU5+ct/2IhQwcHsTIaFr3jiH\npz9dTe+BVkUhM5qonHTkqVUE6hLnJ59f2XkLFREREREREREREZFmdWUloceBo5vpnwAMi/27BPg3\ngGEYBwJjgRHAnsAvgHGxa/5hmuZuwN7AWMMwJsTaLwTKTNPcGbgHuLNdH4mIiIiIiDRpw4Hj48cu\nwoRxEgoY5JSvY+KYQRx5ya+BtlUSqndV36cA8KV1TgjnibvybOcFvcPx47QMe7mgH7/3sPI7KyTk\ncGy/pYSCAYPeP31tazvm3GPix784tDZ+HAoa1NVYbzP/+MAmctau7JxFioiIiIiIiIiIiEiLuiwk\nZJrmR0BpM0NOBJ40LfOAXMMw+gAm4AM8gBdwA5tM06w1TXN2bO4gsBjo32CuJ2LHLwGHG4aR+Hir\niIiIiOwQ9AKw67kIE3T4KC9xsuuyD219WxMSMt0ufIafcLhz/ncjje6nZKMrfuxwwJgjaugzKATA\nulWJvkhk+/vui0Zg7lvpBPwG+Zt+tPXlLf8ufnz1HcU8/VkRhX3DBAOJkFBaukmvhZ/Gx731xBud\ns3ARERERERERERERScnV8pAu0w9Y0+B8LdDPNM3PDMOYDWzA+jvP/aZpft/wQsMwcoHjgX82nss0\nzbBhGBVAAVDc+E4Nw7gEq3IRAwcObNcHJCIiIiKyo3MRprzKS6DOwWDfT7a+UEZWm+cznU5cRphI\n5+w2ltJRp1XRs6CWnos+xe05jg2r3VSWOfjPzT3iYyLhZibohkwTzh6beD/kSzeh1j6m7yfvs/7A\nw8AwMAxwe0xCQYNgwApEeXxRHNHEf0zZrnt26Jr1MRARERERERERERGR5nXldmNbxTCMnYHdsaoE\n9QMOMwzj4Ab9LuBZ4D7TNH9MPUvTTNN8yDTNfU3T3LewsLC9li0iIiIiskMr2X0EYIWE1pVkA9Cr\noM42pq6wV5vnjTpduAknVfjpKN4G25pdMKWUxz8q4pzfl3H7krM54jdnsnaptY7LJ/S3XRcObV8J\nlrpa+3oLa9cmjTn02gsYMPvN+LnHYxIMGISCRvzc6Mr0loiIiIiIiIiIiIjYdOeQ0DpgQIPz/rG2\nk4F5pmlWm6ZZDbwFHNBg3EPActM07001VyxElAOUdODaRURERESkgVnTZjLj1U9wEWZzReb/t3ff\ncXKV9R7HP8/OzPb0QiAkhF4EpASIcBEMFxVF9IIVLAhX7OWq2Pvl2huIelWqBVEUu4CKIKIGQQzd\nS09Ir7tJdne2zDz3j3N2ZmdLCrvZls/79cprzzlPmd+Z+M/iN78HgIOW/6U0vnn2XApP57ixTIZc\n6By2Tj2TppZDLyee1kKuOrne88+/B6Dq8ZX9rrvu25PpyI+doFDz+kzF/Tye7Hde7YZyc9aa+iL5\n1nInoVxN5OivfgqApn0O2DmFSpIkSZIkSZK222gOCf0SeG1ILACaY4wrgaXASSGEbAghB5wEPAQQ\nQriIJAD0rn72el16/VLgjzHGOBwvIUmSJCkRszmydNHSXgNAAy2lsdqNTy/DHzNZshSGrZNQT9W1\nya8UmXx+wDmX35KcoNy6uYrf/7RxWOoaCk29QkJzsiv6nVfsTkkBk6YW2bQhU9FJqNtfP3lxn7WS\nJEmSJEmSpOGVHakPDiH8EDgZmB5CWAZ8HMgBxBj/F/gt8ALgUaAVeH269CfAQuA+IAI3xhh/FULY\nE/gw8C/g7hACwKUxxsuAy4HvhRAeBTYArxyOd5QkSZJUVsxmydJFVzEJoNTTWhrLtbYMtGzre2Yy\n5Oika5hCQu1tff+dRfXm5tL1ZiZUjGVz5aBMW+to/jcaiTXLMzROKnLLzysDTTO7VrL05OeTnzqd\n6s2bmPf7XyYDPf7txaSpBR64q4bO9uQ+Vw0rFpzEHov+RNO+Bw3XK0iSJEmSJEmSBjBiIaEY46u2\nMR6Bt/bzvAC8sZ/ny4B+/5+BGGMeeNnTq1SSJEnSUOgOCXWro41bv3wlJ7/79Sw55fSntWfSSWj4\njhtrzwdOe+UmXv2uJoiR2g1rqV9TPmLs15zOsdxZus/0aMjT1jK6jxsrdMF/nTW74tn/XL2S+69c\nw/xb7yJza5FrFi3hiK99ujSea9lSup40tUDLpgytLUkYKlcTyU+dTn7yVKga/QEpSZIkSZIkSRrv\nRiwkJEmSJGnXUszmyNBeul+98BRWHL+Qa/76xNMOkRQzGarp3CnHjb31hbOpri3ylZ8mIaAYob0t\nUFOXdM859IpLOPw7Xy7Nv++8d3DMFZfw8n9/iB//4WDO/M8mQo+y1q0c3b9+bVhTecTYjD26mHdg\nJyctvI3MrUXaps4AoFhdPmIs11oZEgJYvSxLTW2REGCf3/50GCqXJEmSJEmSJG0P/zmnJEmSpGFR\nzOW4l2eW7rOTa5KLQXSZqSp0UV1oI9O0abDlVVixJEvT+gxrludoWp/U19EeiLEcEjrguqsq1rRN\n3w2AA3dfA8Cee3dWjPcO4Yw273vV7hX3tXVFAA780ZUA/PHSa4Dk77HbYZdfzPEfezsAk6Ym8++7\no47GyUXO+I8TdnrNkiRJkiRJkqTtZ0hIkiRJ0rCImcpOOnFS46D33O3uRTQxmUfur9725B1w4Sv2\nKF0vfzIJxbS3JW2BamqTMMzq+ZUhmO6Q0MkHPszHv72KYxe2UbtuNR895WcAPP5QzZDWONQ62it/\nPWzekISapj/wTwA2z54LJB2hepr3u19CsUh9Y/K9tG6pYuLkAo0rlwGwcb+Dd2rd3UL/p09LkiRJ\nkiRJklKGhCRJkrTLCMEQwYjq8f3fx6G0T5w86C3rV69gCfNY3zV10HsNZEtT8mtTd0iokS1MfPJR\nQldlp6C2GUlIqD7fzAGHdxACHPm1T/Opm88szSkWdlqZg9LrVQA48QUtFffFmloA6lct7zO3bv1a\nDnxm+Si5uoZYur7nLe8boiolSZIkSZIkSYNhSEiSJEnSsGughY4Jkwa9T4hx25Oehtl7d7DfoUno\nZdPGDDHCu86cDcBJX34vp7/yFObeemPFmvZJUwBYcNGFpWdT/3UfAP9xyiMAFIs7pdxBWfZElraW\n5FfDZ53aQv2EIu//6hpe8eYmAFYftYA1Rxxbmp9pT76XRR/5And88LPJuk+8k6oep6k9+I/a0vWW\nPebu7FeQJEmSJEmSJG0HQ0KSJEmShl0jW+gYgk5ChWyOj/MJoBzAeeqxHPm2p981qliANctz7HNw\nB6EqctUXp/LqZ5WDLg2UO+xsmrN3uZaa2op9Jix9gklLHgNgWsOWdO/R1c1q9bIs73/VHnzg1bMA\nOPiodr7z+2UcviBP9+lwmXyertq60ppMRxISKlTXQBrSmvWPv1Xsexj3ArBiwUlsmrffzn4NSZIk\nSZIkSdJ2MCQkSZIkadglIaHBdxL63eU/p5Y8kByZ1ZEPfOCc3fn6x6Y97T0/fO4sOjsCs+Z0Eot9\nQz2t1Jeuqzc1la6L2WzFvHk3/bx0nSsm53kVRtlxYyuXJjU3rUt+1tSWWx3lNjdz4LWXk21r6T8k\nlKvmiRecVXp+wrRMfcIAACAASURBVEfexsnPWcchuy3nnxwJQPvknXcMnCRJkiRJkiRpxxgSkiRJ\nkjTs6sgPyXFjzfscUAoJdXYE2lqTUM/df67f2rIBbW6qYukj1QCEAZr+7Mtjpeva5o2l686GCaXr\nCUufYLe7/lK6zxY7gKRL0WiypbnyV8Ka2vLxbcd+7sMc/dVPMfmJRyjUlb/PB1/zJtonTmbNUQso\nVteUnu/1h1/x+aO/yTf/6zdkKKZz37yT30CSJEmSJEmStL0MCUmSJEkaNlNCufNOx4SJg94vVmUq\nQ0JbBvcrzk3XlYM+Rz+7jbf99zoOPjJPbX2Rs9++kQ1M4Sj+WZrTlR4xtuaZxxCzWVYfeRwAL3r5\nycy8587SvFx3SKifzkQjKd/WKyRUVw4JNax4qnTds5PQ+kOP4qe/u4eOSVP67JdtaysdQQbQvO+B\nQ1muJEmSJEmSJGkQstueIkmSJElDY/Huz6ZmxWoAuuqeXrefnmJVFTUkx19d/aWp/P2P5T2LBajK\n7Nh+DY1JB5wXnrOJabsVeNaprTzr1NbS+JSvlUNON132czbufzC5li101Tcm448+1O+++914HbBw\n1B031t5WGVrauC79wmJk+oOLS88LaRhqW7L5NnJtyfd1y1euHpoiJUmSJEmSJElDwpCQJEmSpGEz\ntbiRRtYAQxMSIgRqQjtEKgJCAJubq5g0tbiD+yU/Xnxuc7/DxUyGqjTps/7QIwFo7xGgqd68qd91\nWbqS9YVR1kmotbKT0PyTkoBPrmVzxfP2iZMH3OOmy35ONt/KSe85j0y+lUwaEtp4wCFDXK0kSZIk\nSZIkaTA8bkySJEnSsGlctax0HbO5IdkzM0C3oN5dcrZH95qaukjNhnXUr15RMR7Djv0K9c+3fjCp\nkSRYNNo6CV1/+aTS9Yte00zDhOSosNr1ayvmtU+eOuAe6w89ktXzT6Crti7tJNQCQFftEITAJEmS\nJEmSJElDxpCQJEmSpDFtWthQcT9n3w4AOjt2LCS04sks130r6ZiTzcKLz/w3XvLiZ5XGqzo7yHR1\nArD6yAXbtedDr3lTsl/aSSjuYGOj4fKDRUt55VvL3ZOmPXRvxfjWQkLdCrV1ZPJ5sm1tpfvhFEZX\nkyZJkiRJkiRJGnUMCUmSJEka0/bNPlG63mOvTs48Pwm7dHZuf2qkIx+49GPTS/dnL9iLbD4Ju+Q2\nJftlW5NjtO694N3ccsn3trln7JFaKXcSGn1JlkOPbevzLLel8rix/JRp29wn6STUSibfSldNLXGg\nFk+SJEmSJEmSpBFhSEiSJEnSsPvjxd8fsr2ymfIZXue+bwPVtcmRWV1b6SS0cW2Gxx6oLt2//uQ5\nLHm4ut+5E59KQkjZ9Bit1um7Ucz1P/eX1/2JfNp1544PfrZcY9pJaHuPGztnwVzOWTCX6y+fyOam\nnfNrWzGt5YDDks5LoVDgyEsuomHFU8y4586KudvbSWjGvf8g19pKV51HjUmSJEmSJEnSaGNISJIk\nSdKwW3XciUO2V+OW9aXrmppIrjoJCXV3Err79lq6uirXvPcVu/Ox82cB0LS+8teil17QVHFft241\nAMd+7kMAdNU3DljLljnzuOmKX7D8hIUsOfUMAO4/922lkFBxBzsJ/fQ7k3nT8/fcoTXbq601qaW+\nMTkDbfIjD3LwNd/hxWf+G9Wbmyvmtm9HJ6HQ1UUxkyWbNyQkSZIkSZIkSaORISFJkiRJY1qOztL1\nHvM6yeaSkNCN107gqi9O4Uvvnck1l0ypWJNvTX4VihGWPZYrPZ81p5P/OG8Tm+bszeqjFgBQt3Y1\n0x5YzB5/uxWArvqtB2Ba9pjLn750JYU0KHPvmy6kef+DgHL3nq25747aPs862re9bke1bkm+g7o0\nJJRpz5fG9lj0J5Yf/xweOvsNyedPmLTN/VYfcwI1zRvItrYYEpIkSZIkSZKkUSg70gVIkiRJw6U6\nW8XsKXUjXYZgu/4e1m1up72ruM15dbSVrqfmV3HEG9/Mp7iLu/5UDqo8dHdNv2sfe6CaZU+UQ0Ih\nbfRTvWUTa45awG53L+KYL360Yk3nVjoJDeSRzIEA/PMvdcw7sJPFf63lC++eyfkfWM/Cl7RUzP3S\nhTMAeMb8PA/clQSGOvJVVNds+7vYEW3dIaGGZN/apg0V460zd+efb/8wi9/yfmIms8398lOmkWtr\npaZ5I111DUNaqyRJkiRJkiRp8AwJSZIkaZfRWJPlpANmjHQZu7aHH4aWlu36e/jDg6tZs3nbLXRa\n95zDPcsO5+af3Mikxx8hT99OPF2d5WO+Cj2OHvv4f86qmJdvC8y74XpqN66nfeLkfj/v6XTJ6cxU\nA7B2RfIr2BfePROAyz87jY1rs5z1hvLxXp0dSa0TJhd4/fs2cOXnp/Y5Lm0otLYkIaH6hgjFIsd8\n9kMV420zZ0EIxGyuv+V9dDROBGDm4r+zav7xQ1usJEmSJEmSJGnQPG5MkiRJ0vDZf3844ojtmhrC\ntucArDz2RA6YsoLd9kySNCfwlz5zuoM3AJ2dA28cCgWO/+R/JfMmTOx3Tqzadled3k6ddy8ABx+d\n58F/VHY1uv7ySbz1hbMBaNlcrm323uWj07q2UvPT1daS7FnfWKR24zrqNq6rGF9+wik7tN/kx/5V\nuu6q9bgxSZIkSZIkSRptDAlJkiRJGtOK1TVUdXQAkOloJwDf2vejvOnj5dDL2pXZUiimsJWuPI0b\nVpWuu2rqWHP4/D5zWmfO6vNsWzK57s8O/M9bd+sz3rQ+Q7EAN/ywHEw647WbyGZ3XkioNT1urKG2\nnWxra5/xjQceukP7LT3l9NJ1iHFwxT0NQ/8NSZIkSZIkSdL44nFjkiRJksa0YjZHpjMJCZ383vMA\nOGPKLTSe9gYKnev5zqenAXDF56by1k+t32rgJkdn6XrVcSfy8CteDzFuf1ujAYTaJJBT6Bx4Tns+\n8LMrJpXus7nkD7BTjhtbuTTZ/FXnLGB3VlWMXfeH+3Z4vzVHHle6Xvqc0wZXnCRJkiRJkiRpyNlJ\nSJIkSdKYVqiuJtPRTv2q5aVns+5Kjhw7+YyW0rPlTyahmHv+VlexPoRy15tQXw3A4jddyKZ5+3VP\nGHSNVbnukFCx9Oz7f1vKBy9ZXbpfsSRXur78j08B7NTjxn52eRJImkRz6dnt/30pv/vO9XQ29n/U\n2lZVlX+9fGrhCwZdnyRJkiRJkiRpaNlJSJIkSdKotL3ZnGIuCfac9tqtB1M2rs0AydFe3Q49po23\nXbSezRuruPCVe/DqvW5i86a5PHju255e0QPI1Caf2b4pCf284i1NhACHHttemvOx85JjzE5+0RZq\n65N53SGhwk4ICXWro610nZ82g3WHHf2091p24qkAdNU3DLouSZIkSZIkSdLQMiQkSZIkaUzrqqsH\noGZTU8XzUCgQMxne+em1XPyhGRz97CQMU1WVBG8uu/kp6hqS60n1eX70x4c44aM/IjQVGWpVNUlI\nqHl90m2ncWKhNPbCczbxmx+UO/fsMa98Jlk2m9T3sfOTANEPFi0d0rpmN64jbCnfd3+XT9dtX7hs\nkBVJkiRJkiRJknYWjxuTJEmSNKa1T5pScb/4Le8HoHb9WgCOXdjGlBldxPRUsaZ1GWpqi6VuPQCn\nvOWVvHzhIcz+y800rlw25DWGNCS0aUPSEahhYjmI9OLXNVfMrakt15XJVQzR2jJ0HYVy1ZHT9rij\n4lmhumbI9pckSZIkSZIkjS6GhCRJkiSNSoHtC8S0T5lWun7wnDfSMms2ALnWcouc2rpIe1uy3w3X\nTqQ9X8XRX/1kMm/LJmbc94+hKrtfpU5CG5Jmrg0TyiGh+gmxYm51beTsBXtx9oK9qCm0Voy1NA/N\nr3BdXdDZEWiMmyueh+LQd1GSJEmSJEmSJI0OhoQkSZIkjWn5yVNL10+cdiZdtcmRWZl8W+l5TV0k\n31rF8ifKJy4f9KMrANjrpl9U7LczuunE6moydLF5UxIWmpZfwUnveT3VzU2EUHmMWG1dOajzgred\nVbHPf79lN5Y93qu9ENCyObD4r7XbXU93YGruI5WdhJr2O2i795AkSZIkSZIkjS3ZbU+RJEmSpNGr\nvUdIqGWPOdRuWAfAjHvuIptvo2X3Pamtm0m+LXDLLxr7rJ/y6EMV992diIZSIVdNNR00NycBnxdf\n+DJm8xgvfd4zuf7Xf6eYq+EZ82fywF21TK4qHz9WTUfFPutXZbn8s1PIZKG6JvK+r6xlySM5PvSa\n3UtzLv31MqZM33pHoHxb8u9FGtlSORCG7jgzSZIkSZIkSdLoYkhIkiRJ0pjWPrl83FhXfQOFujoA\n5n/lE6XnX9jvUZbGOdxw7UQAttBQGsu0t1fst/awo4e8xmKumkk0s6o5CfNMohwEOvP0YwFY8uPl\n/PzKSZx15+dLY7GfI9cevreyY1DPgBDA1V+cyrs+u26r9bS3Jvt2h4SuWbRke19FkiRJkiRJkjRG\nedyYJEmSpDGtUFsZmumqreszZ3LLKpY9Vl26b6A1uSgWqeqs7NZz5/suGvIai7kcqyiHeXqGhLrt\nPreLD7zmbxz20+8A8Ksf30LngkN2+LN227Nrm3OWP5F0NMrRyQOvefMOf8aoZBMkSZIkSZIkSdoq\nQ0KSJEmSRqcdCH385ZMX89vv3QhAZ8OEPuMzVj7S77psvo1MR7mT0IYDD6VYU9vv3MEoVFdX3FfT\n2e+8Q773zdL15rn7kDl8Dnlq+P5tj/Pd25fygrM3Vcy/7DNTe2/Br7+fdEt68v9yLHkk1+/n/PaH\nyXf0OPvQPmVav3MkSZIkSZIkSeOLISFJkiRJY96S572Epv0PBqB15iw2HPAM7n3Du0vjy5nd77rD\nv/0l5vzpptJ9Z0PjTqmvmM1xErdufVKMNKx4qnJdrpoaOsgWO8lk4YDDKo9Gu+UX/dd795/r+PDr\ndu9zFFm345+bdFJ6Nd+nq65++15CkiRJkiRJkjSmGRKSJEmSNK7EbI4bv/tb7j//naVnq9mtdH3Q\nM7aUr6+9vGJtobpmp9RUrK7hB5xTuu+qqeWaRUu4/b8vLT2r6mhn5j13AvDkc89I1mWzyVh6JNph\nC/IccHiewxe09fmM//nuytL1ly6csdV6urqSNk11tJGf3LcbkSRJkiRJkiRp/DEkJEmSJGlU2oHT\nxgb00xv/SWddPVUUS88u+tR9A84v5qoHHBuMQq6aPVhRut9w0GEALD31RTzx/P8A4JUnHQjAk6ee\nwaKPfimtJzkurKqrC4DausjHv72GWXt2Vez/kW+sZt4B/R9h1q1lcyDfmnyrXUnmiFryHjcmSZIk\nSZIkSbsIQ0KSJEmSxq32yVO55ZLv00JD6dnEtSsGnN8dyhlqxVyuIvS0ad5+pesVJyysmLvqmBNK\nYaViNvlZ1VkZAGrPV0aoJk0rbLOGC06dw/kL5wDQ0ZGsr6GddjsJSZIkSZIkSdIuwZCQJEmSpHFt\n3aFHcRJ/AuDDX1/NsZ95f585bVOmA0nHn52hO/RTX93BK7iWtmnl48Ca9j6gYm7HpCnldelxY88/\n93R2u+svpecve2Mz9Y3l7khTpm89JNS6pTJU1NkRyFYVqCKSt5OQJEmSJEmSJO0SDAlJkiRJGt9C\n4OLq9/DbMz7KIUe30zZjVmloySmnc82iJdxy8XcBWP5v/75TSugOCf3ttR/gWl5F27SZpbHWmbtX\nzO1onNhjXdLZqG7DWk5529ml51NmFHjDh9aX7usaIgAXXbWSF5y9qc/nb1iTrbjv6gjUZDooZjJ0\nTJj0dF9LkiRJkiRJkjSGGBKSJEmSNO5lawP71CwDYPOcvSnkqvnRLQ/x109eDEDTAc/gxzffz9JT\nX7RTPr9QnYSEGlYmNeR7dBLqnDiJX/z0z6X7jgl9Q0LlB+XuQVVp7qcqE0vP9j6ok3Pe0dTn8596\nrHKf9vZAQ+cmqgoFqBofvxYGwrYnSZIkSZIkSdIubHz812BJkiRJ404IQxf6KNTUkulop7p5I/v/\n7PtkOjso1NUTs+UOO10NE4bs8/r7fIDGFUuBypAQQMvsuaXrzp6dhLKV4Z7ajeXuQaufSmovFgJn\nL9iLKf+6rzT27s+vBWD23h0UC3DpR6dX7NPWUsVE+nYckiRJkiRJkiSNX4aEJEmSJI17heoaMu15\n5n/xYyP2+QCNy5OQUM/jxnrr2EpIaOE7ziGTb2Ov3/+Sdfdsrhg77dzTOeS73wDg6Ge3seDfWygW\nA5ubKn/ty7cG/va7Bh5l/6f/QpIkSZIkSZKkMceQkCRJkqRxr1BTS6Y9T2dD48gUUFVFV20dDWtW\nApCfOr3PlAfPuQCArh41TlzyWMWcyY/9HwdcdzUnfPTtvPy2T/bZ44hvfI7Zf/5D90dSLEBnZ2VH\npvMXzhncu0iSJEmSJEmSxiRDQpIkSZJGpaE7bCwJCc295Qb2//k1APzw9se2sWLoZfNtSS25agq1\ndX3GF7/tQ/zw9seImUzpWeeEiX3mHfn1zwBwHlewz74t3MjzKsYbly8BoCoDxWKgq6P/b/JyzmPx\nm9/39F5GkiRJkiRJkjTmGBKSJEmSNO4VampL160zZhGz2RGrpaqrs/+BEPrU9fgLX8a/Xnk+P7lp\nMfed947K6cDXPnE7z+N3Fc9rmjYAMOXJ/yO05vt0Eup2HldWHG0mSZIkSZIkSRrfDAlJkiRJGvcK\nuerS9fpDnjmClUCIcQcmB+5+18fomDSF+y54T5/hvf7wqz7PDvjJd6nZsI6ZD91NtqmZgTJJ0H+n\nIkmSJEmSJEnS+GRISJIkSdK4t/udt5eu73/920ekhnsvePeg97jpsp9X3D/j6q/3mVO9ZRML3/ka\nsnRRIENnj+PG5u7fAcAZCx8HoLNxwqBrkiRJkiRJkiSNDYaEJEmSJO1SNh502Ih87sNnvXbQe6w/\n9EiuWbSE9Qcf3mfsmkVLStfVm5vJUEhCQj2OG7voylV8+ScruHzVWQAUqmsGXZMkSZIkSZIkaWww\nJCRJkiRpVAph23PGks6GxiHbq6qrq+L+19feXHHfsGp5KSRUSENCr3vPBjJZ2G3PLqY/uDiZuCNH\nn0mSJEmSJEmSxjRDQpIkSZJ2Gbd8+aoR++yYzbH4Le/nt9+7cdB7ZVu3lK47Giawad5+feYsYgEb\nmcrqZVkADjyivTT22OkvA2DNkQsGXctoMd5CZZIkSZIkSZI01AwJSZIkSRr37n3Du+lomMDK458z\nonU8+Nq30LT/wYPe5/7z3lm67pgwqXS9/PjnsOJZJwNwJ8cCcNUXpwIws7iabGtLaU1nXT0xmx10\nLZIkSZIkSZKkscGQkCRJkqRRKTB0rWHuP/+d/OTm+4dsv5H2xAtfyvITFgLQuGpZ6fmfvnwVt37l\nagA+wGcq1rz2dcfw8oWHAJDp7KCYqx6maiVJkiRJkiRJo4EhIUmSJEkag6b+674Bx67/zZ2cMfPW\nimc5ukrXVR0dFKoNCUmSJEmSJEnSrsSQkCRJkiSNQX//wGcB2LjvQX3G8tNmsveczVy/75v51BWr\nuOLi2yvGq7o67SQkSZIkSZIkSbsYQ0KSJEmSNAZ11dUB0DFxcr/jsSrDv9X/nX0P6WDPmlUVY5mO\nDgrVNTu9RkmSJEmSJEnS6GFISJIkSdKoFMJIVzC65adMB2DF8c/pdzxmMlQVCgDkWjZXjGXbWinU\nGBKSJEmSJEmSpF1JdqQLkCRJkiTtuOZ9D+RXP76VzXPm9TseM1lCKSS0pfT8yEsuYvZfbqazvmE4\nypQkSZIkSZIkjRKGhCRJkiRpjNo8d+8Bx4rZNCQUI4dd9tXS84Ov+Q4AudaWnV7fcLLxlCRJkiRJ\nkiRt3YgdNxZCuCKEsCaEcP8A4yGEcEkI4dEQwr0hhKN6jH0+hPBACOGhdE5In/9PCOGpEMKWXnud\nG0JYG0JYnP75z537dpIkSZIGy9DH4IRikYlLHmPKww8wcenjfcYffPWbRqAqSZIkSZIkSdJIGbGQ\nEHAV8PytjJ8G7J/+uQD4JkAI4XjgBOBw4FDgGOCkdM2vgGMH2O9HMcYj0j+XDbp6SZIkSRrF9vzz\n78l0drDnbb/vd3zxW94/zBVJkiRJkiRJkkbSiB03FmO8LYQwbytTXgx8N8YYgUUhhMkhhN2BCNQC\n1ST/uDgHrE73XASQNhaSJEmSpF3eYZeXjxq747u/oKqrk7ZZs5k2sXYEqxp6jbWepi1JkiRJkiRJ\nWzOa/yvqbOCpHvfLgNkxxr+FEG4BVpKEhC6NMT60HfudFUJ4NvAw8F8xxqf6mxRCuICkcxFz584d\nTP2SJEmSNGIKuWoynR3lB4sWcdxxx41cQZIkSZIkSZKkETWaQ0L9CiHsBxwM7Jk++n0I4cQY45+3\nsuxXwA9jjO0hhDcCVwML+5sYY/w28G2A+fPnx6GrXJIkSdKOmD9vKkftNWWkyxizuu68i8wRhwMQ\njz6aYEBIkiRJkiRJknZpozkktByY0+N+z/TZq4FFMcYtACGEG4BnAQOGhGKM63vcXgZ8fsirlSRJ\nkjSkqrNVI13C2PbMwyAm/+7BA5klSZIkSZIkSaP5v7r/EnhtSCwAmmOMK4GlwEkhhGwIIQecBGz1\nuLEQwu49bs/Y1nxJkiRJkiRJkiRJkiRpPBmxTkIhhB8CJwPTQwjLgI8DOYAY4/8CvwVeADwKtAKv\nT5f+hOSosPuACNwYY/xVuufngbOB+nTPy2KMnwDeEUI4A+gCNgDn7vw3lCRJkiRJkiRJkiRJkkaH\nENP28+pr/vz58a677hrpMiRJkiRJkiRJkiRJkqR+hRD+EWOcv615o/m4MUmSJEmSJEmSJEmSJElD\nwJCQJEmSJEmSJEmSJEmSNM4ZEpIkSZIkSZIkSZIkSZLGOUNCkiRJkiRJkiRJkiRJ0jhnSEiSJEmS\nJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmS\nJI1zhoQkSZIkSZIkSZIkSZKkcc6QkCRJkiRJkiRJkiRJkjTOGRKSJEmSJEmSJEmSJEmSxjlDQpIk\nSZIkSZIkSZIkSdI4Z0hIkiRJkiRJkiRJkiRJGucMCUmSJEmSJEmSJEmSJEnjnCEhSZIkSZIkSZIk\nSZIkaZwzJCRJkiRJkiRJkiRJkiSNc4aEJEmSJEmSJEmSJEmSpHHOkJAkSZIkSZIkSZIkSZI0zhkS\nkiRJkiRJkiRJkiRJksY5Q0KSJEmSJEmSJEmSJEnSOBdijCNdw6gVQigCYaTrkCRJkiRJkiRJkiRJ\nkgYQY4zbbBRkJ6GtMyAkSZIkSZIkSZIkSZKk0Wy78i2GhCRJkiRJkiRJkiRJkqRxzpCQJEmSJEmS\nJEmSJEmSNM5lR7qAUW4dMBWI6X0YxdejpQ7rHt3Xo6WOXfEdRksd1j26r0dLHbtK3ePhHUZLHdY9\nuq9HSx27St3j4R1GSx3WPbqvR0sdu0rd4+EdRksd1j26r0dLHbtK3ePhHUZLHdY9uq9HSx27St3j\n4R1GSx3WPbqvR0sdu0rd4+EdRksd1j26r0dLHbtK3ePhHXreb2Q7hBjjtmdJkiRJkiRJkiRJkiRJ\nGrM8bkySJEmSJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSePcVkNCIYR3hxBirz/L0rHTez0vhhBO\nCCFc3Ov5qh77PTed13P86n4+9+5ec9amzzf2ev7cAeou9JpXCCE8I4RwRa/njwywvmuAd36kn+/j\nlF5rj+jnHVemY4v6Wf/Nfj6/95yHB1jfFkLI9Fr77X4+f1UIYXo/+7aka7b0M9a+tf9tSJIkSZIk\nSZIkSZIkaezYViehzcBfga8Dx6fPZocQPgVcn96vA1rS6xuBv6drCv3sdwMQgMeA2cArgG/1nBBC\naACOTG8/lv6cnn7mjene23IpcDTJ+xXSn7cCJwKrgXYgAvMGWP8AcG96fQTld54N5IGNJO8cgV/2\nWtsKbEnHuv/MCiH8O3BMuu7etAbSmnrrTH8W03r3DyHUpe/UCfwY6AJqgSt6rd2U/myi/PeyGVif\n3ucpf+f1IYQzgZuBXwEfTOeSfq4kSZIkSZIkSZIkSZLGgRBj3P7JIXRPvgE4Lb1+OTAZ+DZAjDGk\nc/NADbA6xjgrhPAc4I/pmqo4wAeHEH6b7h1jjFUhhC1APbA+xjijVx3PizH+biv1BpIwTg5Ymz7+\nJPAZoJEkwHN4jPGBfta+FLguxhhCCAXgJuB5JIGjtwNfTq+rYoxVvdZuTPfvGVK6ATidJPhzDHAL\nMLH7++m1vntNK7CBJJx0IfBFkrDPs0nCWA3AXTHGY3qsfRjYC7gHODitow3YG3gUWAk8DnR3Yfoj\nSRBqPXAysJwkyLUkxjhvoO9WkiRJkiRJkiRJkiRJY8e2OgmVhBA+3OP2I90XMcbrgMu2Y4vze1x3\nH4fVEUI4qNe8A0iCNN3ddJrSn43bW2tab3O6Ty59dDzwSK86qkgCMlvb583pvI8Aa9LHl6T7ZpIp\n4a3p+3TXXN89lq4tAlNIQklVwJ0kASGATSGEq9MjwppCCFWU/17qgT1JAjz7pM8mkXQ6akjv7+5d\ncvrnEMrfWV26Tx7YnyTs1D13Esl3PA94Kn0WSYJfkiRJkiRJkiRJkiRJGge2KyQUQpgPXJTe3hFj\nrAimDNQVqJe6HtdXkByXlQMWbU8NOyrGOAn4P5JOPkXgNyRdjyakf0I61rWNrb4B3AEsJgn+QBLa\nKa2LMX49xhhijLkQwhEknXs2pMMZkhBO99oOki4/3epjjK+LMVbFGCeTHO3Wln5mW/o500m6CZHu\n1dZj/b696u0+Jqz7++4+8mw28FXg/vR5IAlidaT3bcC/eq2RJEmSJEmSJEmSJEnSOLDNkFAIYQZJ\n5xuAVTHGBb3GXxZCeMN2fNZvui9ijOcDt6W3E9MuPDE9Rmz3tK7uDkDdHW22bKXG2ONPe/rsjyRd\ncr5OEnjZBO94vgAABM5JREFUL8a4PMa4P7A5fRaA2wfYtrsLT/c7TyAJ6wBMoxz66e1ZJB2ApqX7\nA8wAZqb3WeDAHvNre60/MX12LEnQJ9tjD0iOT6uiHOKZ12t9dzcgSEJQ3Z2FFpJ0F+qe391lqZbk\nO15DcjwZ6f7rB3g/SZIkSZIkSZIkSZIkjTFbDQmFEALlzjRtMcbdewx3H631DeArJKGVloH2ijFe\n0WPfDwMnpLetaReeEGMMlDvmhBDCB0mO1QrAt7ayd8/1tSGE24AFJKGYl6fv2RZC2CuE0H1MVwA6\nYozLB3jvy9K9d09/NgNPknQIKgKt6Ttv6LX8h5RDVQWSTj1F4NUkXYC2AM2Uu/Us7rX+ROD96dpW\nyh2LzgeWpc+v7TH/Nip9i3IA6uH0WStwM/A4Sejon5RDRs8lOb6smN4X0z/X9/5eJEmSJEmSJEmS\nJEmSNDZtq5PQ7yh3panr0a3nZuAV6fPpJEEegBeGEM5LOwLVpM92S9ccBfwgfXZROh6B5/X8wBhj\nE+XjuD6d/lwfY/xICKEp3bvbTd2dg3rIkARt6kgCPLPS588GvkYS0pmQPqvttV+3rnQfer3zemBq\nOtYdXvpTCOGt6ZxO4PXA8T1qqU6v24A8MJGkW1IgCeP8OoRwdQihGEJoIunm8zmSME99+vMJksDP\nJGAu8DrKx4VdH0JYnK5/mCTI1N09qLszUCdJZ6SPkHQOOjKtrQM4Ln2XA0n+91BFcuzYZ/v5XiRJ\nkiRJkiRJkiRJkjQGhRj7y8hIkiRJkiRJkiRJkiRJGi+21UlIkiRJkiRJkiRJkiRJ0hhnSEiSJEmS\nJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmS\nJI1zhoQkSZIkSZI0pEIInwghvHcr4y8JIRwynDVJkiRJkiTt6gwJSZIkSZIkabi9BDAkJEmSJEmS\nNIxCjHGka5AkSZIkSdIYF0L4MPA6YA3wFPAPoBm4AKgGHgVeAxwB/DodawbOSrf4OjADaAXeEGP8\n13DWL0mSJEmSNN4ZEpIkSZIkSdKghBCOBq4CjgOywN3A/wJXxhjXp3MuAlbHGL8WQrgK+HWM8Sfp\n2M3Am2KMj4QQjgM+E2NcOPxvIkmSJEmSNH5lR7oASZIkSZIkjXknAj+LMbYChBB+mT4/NA0HTQYa\ngZt6LwwhNALHA9eFELof1+z0iiVJkiRJknYxhoQkSZIkSZK0s1wFvCTGeE8I4Vzg5H7mVAFNMcYj\nhrEuSZIkSZKkXU7VSBcgSZIkSZKkMe824CUhhLoQwgTgRenzCcDKEEIOOKfH/M3pGDHGTcATIYSX\nAYTEM4evdEmSJEmSpF2DISFJkiRJkiQNSozxbuBHwD3ADcCd6dBHgTuAvwD/6rHkWuDCEMI/Qwj7\nkgSIzg8h3AM8ALx4uGqXJEmSJEnaVYQY40jXIEmSJEmSJEmSJEmSJGknspOQJEmSJEmSJEmSJEmS\nNM4ZEpIkSZIkSZIkSZIkSZLGOUNCkiRJkiRJkiRJkiRJ0jhnSEiSJEmSJEmSJEmSJEka5wwJSZIk\nSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmSJI1z/w+m2leULXkXFAAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJcCAYAAABTzWhBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmcZHdd7//3p2vvvXv2LQuZBAlh\nNSYs94oPUTbRcK+KCGJAlJ/3ct1ABQQvCKLwu1cQrtcFBVkkYESUiLJEIiBCQhIggSTADCGZ6Znp\nmZ7p7uqlqrq27/3jfKunZqZ7equqc07V6/l49GO6T5069a3q7pp3f5fP15xzAgAAQPj6wm4AAAAA\nAgQzAACAiCCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghlCZWZ/bma/26JrXWJmC2aW8F9/zsx+\nsRXX9tf7pJnd2KrrbeBxf9/MTpvZ5DrPd2Z20H9+zutrZv/NzE7612mbmT3VzA75r5/XrucQBjP7\nITObCLsd3c7M3mhmf9Ohx3rIzH6kE4+1wmO/xMy+2PT1gpk9YhPXeZGZfaa1rUM3IZihbfybaNHM\n5s1s1sy+ZGa/bGbLP3fOuV92zr15nde66Buyc+6Ic27QOVdrQdsv+M/GOfds59z7t3rtDbbjEkmv\nknS1c273Ru/f/PqaWUrS2yU9w79OZyS9SdKf+K//sZVtj7NuDnXnBwxsjv+defBi55jZZf4PpWTT\n/T7knHtG+1uIuCKYod1+3Dk3JOlSSW+V9GpJ72n1gzS/8XWZSySdcc6dasG1dknKSrqv6dil5329\nbl38mqPL8bOLKCOYoSOcc3nn3C2SfkbSjWZ2jSSZ2fvM7Pf959vN7BO+d23azP7dzPrM7IMKAso/\n+eGD3276S/RlZnZE0m0r/XUq6Qoz+4qZzZnZx81s3D/WBT0ijV45M3uWpN+R9DP+8e7xty8Pjfp2\nvd7MHjazU2b2ATMb8bc12nGjmR3xw5CvW+21MbMRf/8pf73X++v/iKRbJe317XjfKvf/LTM7YWbH\nzewXzrvtfX4o9CpJ3/aHZ83sNjP7rqRHNL2uGd+W9/jrHfP3bQwNv8TM/sPM3mFmZyS90R//BTN7\nwMxmzOzTZnZp0+M730t6yH9f/6+ZWdPtv+TvO29m95vZE/3xvWb29/41+Z6Z/WrTfa4zs7v89/Sk\nmb19tdfWn/87/nvwkJm9qOl4xsz+t/8enbRg2DdnZgOSPtn0ui/49hTNbLu/7+vMrGpmw/7rN5vZ\nH1/suk2P+1wz+7qd7UV+bNNtD5nZb5rZvWaWN7O/NbPsKs/rCv99POOf34fMbLTp9gNm9jH/Gp4x\nsz8xs0dJ+nNJT/bPa9afe86wv104bPdOMzvqX/O7zew/X+w1b7rfmAW/01P+5+MTZra/6fbP+dfu\nP/zPwGcar7G//cUW/E6csYv8Dvlz3+df61v9tT6/ws/iK8zskKRD/tj3+fOnzezbZvb8pvO3mdkt\n/jl/RdIV5z1e85SBnJn9kW9r3sy+6L/nX/Cnz/rX+8krvLZPMbM7/f3uNLOnrPf1QZdyzvHBR1s+\nJD0k6UdWOH5E0n/zn79P0u/7z/9QwX8aKf/xnyXZSteSdJkkJ+kDkgYk5ZqOJf05n5N0TNI1/py/\nl/Q3/rYfkjSxWnsVhI6/Oe/2z0n6Rf/5L0g6rCDYDEr6mKQPnte2v/TtepykJUmPWuV1+oCkj0sa\n8vf9jqSXrdbO8+77LEknm57jTf6xD67w+p7z+qzyuv6DpL/w19op6SuS/j9/20skVSX9iqSkf243\n+NfhUf7Y6yV9qel6TtInJI0qCNdTkp7lb/tp//35AUkm6aCCHrw+SXdL+p+S0v41flDSM/39vizp\nxf7zQUlPWuW1+SHf3rdLykh6mqRFSY/0t79D0i2Sxv1r/0+S/vAiPx9fkPST/vPPSPqupGc33fZf\n1nHdJ0g6Jel6SQlJN/rvQabp+/EVSXv9/R+Q9MurPL+Dkn7UP7cdvg1/7G9LSLrHt2VAQU/pf2r6\nPn5xtZ/tlc6R9HOStvnv8askTUrKrva70nS/bZJ+UlK/fy3+TtI/nve435V0lYKfp89Jequ/7WpJ\nC5J+0D/Ht/vv5wXvKU0/6/NN57/zvOfgFPyhM+4fa0DSUUkv9c/rCZJOK5g2IEkfkXSzP+8aBT+r\n51+v8Xv2f33b9/nX/im+DZfpwt+55dfWt2VG0ot9G37Wf71trdeHj+79oMcMYTiu4A3pfBVJeyRd\n6pyrOOf+3fl3p4t4o3Nu0TlXXOX2DzrnvumcW5T0u5Keb74HaIteJOntzrkHnXMLkl4r6QV2bm/d\n7znnis65exT8J/m48y/i2/ICSa91zs075x6S9EcK3qjX4/mS/rrpOb5xs0/IzHZJeo6kX/ev6SkF\n/7G/oOm04865/+Ocq/rX/JcVhI4HnHNVSX8g6fHNPRUK/iOZdc4dkfRvkh7vj/+ipP/fOXenCxx2\nzj2sIKjtcM69yTlXdsE8nr9sakdF0kEz2+6cW3DO3b7GU/td59ySc+7zkv5Zwc+ASXq5pN9wzk07\n5+Z9219wket8XtLT/Pf4sZLe5b/O+jZ/YR3Xfbmkv3DO3eGcq7lgzuKSpCc1Pc67nHPHnXPTCkLd\n47UC/3rd6p/blILg8jR/83UKwt1v+e9lyTm36Xllzrm/cc6d8d/3P1IQOh65jvudcc79vXOu4F+L\ntzS1seGvnXPf8T9PN+vs8/0pSZ9wzn3BObek4Pe3vsZD/nPT+a9T0DN4oOn2P/Tfl6Kk50p6yDn3\n1/55fU3BH28/7X8vf1LS//Sv3zclrTi/1II5s78g6decc8f89/VLvg1r+TFJh5xzH/Rt+LCkb0n6\n8XW8PuhSBDOEYZ+k6RWO/y8FvS+fMbMHzew167jW0Q3c/rCCnrhWDAXs9ddrvnZSwTyuhuZVlAUF\nvTvn2+7bdP619m2gHec/x8261LflhB9mm1XQe7az6ZzzX+9LJb2z6fxpBb1fze1f7XU4oKA3YKV2\n7G1c01/3d3T2tX2Zgh6Eb/mhn+de5DnN+MDa8LCC12yHgl6cu5se41P++Go+r6An7YmSvqGg9+Vp\nCkLVYRcspljrupdKetV5z+2Ab1PDen5uZGa7zOwjFgw5z0n6G5392T4g6WEflrfMD68+4IfbZiWN\naB2/R2bWb2Z/4Yf45hT06o2e98fRas/3nJ9t/308s8ZDNp+/oODnce9Ktyv4Xlx/3vfiRZJ2K/h+\nJbW+363tCnokV/pZXsv57yONx1nP7w+6FBMg0VFm9gMK3nQu+Ovd/0X9KgX/cV2jYN7Ync65zyoY\nDljJWj1qzX8tX6Kgt+W0giGt/qZ2JXTuf8prXfe4gjf25mtXFQwr7l/xHis77dt0qaT7m651bJ33\nP6ELn+NmHVXQe7P9Iv+hn/+6HJX0Fufchzb5eFescvx7zrkrV2yAc4ck/azvqfivkj5qZtvOC2AN\nY2Y20HTbJZK+qeB1L0p6tHNupdd6pe//lxT0Ev0XSZ93zt1vwarZ5ygIbVrHdRuv11tWem4b9Ae+\nnY9xzk1bUO7kT5oe5xIzS67wvVzpuZ3z+6AgnEiS/Hyy35b0dEn3OefqZjajIICv5VUKXrPrnXOT\nZvZ4SV9b531PKBgib7SjX8HQ6MUs/y6Y2aCCnvnjTbc3P/ejCr6PP3r+Rfz7QdVf71v+8Gq/W6cl\nlRT8LN9z3m0bfR9pPM6n1rgfuhg9ZugIMxv2PRsfUTAf5RsrnPNcMzvoh4Pykmo6O3RxUsFco436\nOTO72r+pv0nSR11QTuM7krJm9mMWlJF4vYLhmYaTki6zptIe5/mwpN8ws8v9fwB/IOlvN9pD4dty\ns6S3mNmQHwJ8pYLej/W4WdJLmp7jGzby+Oe15YSCuVN/5L9ffRZMMD9/6KnZn0t6rZk9WlpeyPDT\n63zIv5L0m2b2/RY46J//VyTNm9mr/aTqhJld40O9zOznzGyHc64uadZf62JDXL9nZmkfMJ4r6e/8\nff9S0jvMbKe/7j4ze6a/z0lJ28wv6PCvT0HB3LdX6GwQ+5KC4dzP+3PWuu5fSvplM7veP+cB/zM4\ntM7XrNmQgjlYeTPbJ+m3mm77ioJg81b/GFkze2rTc9tvZumm878u6b/6Hq6DCnolmx+nqmB+YNLM\n/qek4Q20sahg8vu4Nvbz+VFJzzWz/+Tb+iat/X/Wc5rOf7Ok251zq/Wqf0LSVRYsMEj5jx8ws0f5\n38uPSXqjf02uVjAf8AL+e/5eSW+3YJFIwoJJ/hkFr1ldq793/YtvwwvNLGlmP6Ngbt0n1nie6GIE\nM7TbP5nZvIK/Tl+nYB7MS1c590pJ/6rgP5svS/pT59y/+dv+UNLr/ZDDb27g8T+oYFLwpILhhl+V\nglWikv67gnBwTEGPQfMqzb/z/54xs6+ucN33+mt/QdL3FPzF/CsbaFezX/GP/6CCnsSb/PXX5Jz7\npKQ/lnSbgmHg2zbZhoafVzDh/n4Fk5A/qmDe32qP/w+S3ibpI36o6puSnr2eB3LO/Z2COUc3KZi0\n/Y+Sxv1/is9VMJfmewp6JP5KwfCZFCx4uM/MFhRM8H7BReYYTvrncVzShxRMpG/0gLxawWt2u2/7\nv8rPm/LnfFjSg/5nrjEc9nkFw71fafp6SGdX36113bsk/ZKCnq0Zf95L1vN6reD3FAyr5hXMnftY\n4wb/Gv64ggUCRxT8bP+Mv/k2BSVSJs3stD/2DkllBaHt/Qpeq4ZPK+jB+Y6CYbaS1p5C0PDHCiat\nn5Z0uzbQE+Scu09BCL5JQcic0bm/oyu5SUH4m5b0/QoWLax2/XlJz1Aw/++4gp+Vt+nsH2j/Q8Gw\n4aSC95C/vsjj/qaC4e07/WO/TVKfD/NvkfQf/ueoeS6h/PD3cxX0LJ5R0DP5XOfcaaFnNVa8AQAQ\nWxaUk5lwzr0+7LYAW0GPGQAAQEQQzAAAACKCoUwAAICIoMcMAAAgItasY2Zm71WwauSUc66xv+H/\nUrDip6ygqN5LnXONPddeq2CpdU3SrzrnPu2PP0vBCqqEpL9yzr3VH79cQQmFbQqWor/YOVdeq13b\nt293l1122YaeLAAAQBjuvvvu0865ixWxlrSOoUwz+0EF5Qs+0BTMniHpNudc1czeJknOuVf7Wi8f\n1tntQP5VQYVuKVhq/aMKljvfKelnfYHGmyV9zDn3ETP7c0n3OOf+bK2GX3vtte6uu+5a6zQAAIDQ\nmdndzrlr1zpvzaFM59wXdN72Oc65zzQV0rxdZyud3yDpI37vtu8pqNFznf847IJ9BcsKeshu8IVE\nf1hBrSQpqJ/zvDWfHQAAQBdqxRyzX5D0Sf/5Pp1beHDCH1vt+DZJs00hr3F8RWb2cjO7y8zumpqa\nakHTAQAAomNLwczMXqdgq47N7JO3Yc65dzvnrnXOXbtjx5rDtAAAALGy6U3MzewlChYFPN2dnah2\nTOduqLxfZzdjXun4GUmjTRvtNp8PAADQUzbVY+ZXWP62pJ/we4E13CLpBWaW8astr1Swp9ydkq70\nGz6nFexNdosPdP8m6af8/W+U9PHNPRUAAIB4WzOYmdmHFWwo/UgzmzCzlynYgHdI0q1m9nW/mrKx\n6ezNCjZA/pSkVzjnar437H8o2Az3AUk3+3OlYMPfV5rZYQVzzt7T0mcIAAAQE7Gt/E+5DAAAEBct\nK5cBAACAziCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghkAAEBEEMwAAAAigmAGAAAQEQQzAACA\niCCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghkAAEBEEMwAAAAigmAGAAAQEQQzAACAiEiG3QAA\nQGvc/fC0XvLeO5VLJzTan9JILvjYNpjRY/aNqM9MkvTC6y8JuaUAVkMwA4AucffDM5pfqmrfWE7z\npaqOzRS1WK5JkrLJPj1y93DILQSwFoIZAHSJyfyS0ok+vfhJl8p871ipUtPv//P9euhMgWAGxABz\nzACgS5ycK2k4l1wOZZKUTSW0dzSnh88shtgyAOtFMAOALjE5V9JwNnXB8UvH+zUxU1S1Xg+hVQA2\ngmAGAF1iMl/ScG6FYLZtQNW604nZUgitArARBDMA6AL1utOp+ZV7zC7Z1i9JDGcCMUAwA4AuMF0o\nq1JzGs5duKZrOJvSWH9KD08XQmgZgI0gmAFAF5jMB8OUK/WYScFw5pEzBTnnOtksABtEMAOALnBy\nLghmIyvMMZOkS8b7Nb9U1Uyh0slmAdggghkAdIFJH8xWmvwvSZcyzwyIBYIZAHSBk/mS+kwazKxc\nN3zXcFaZZB/zzICII5gBQBeYnCtpx1BGiT5b8fY+M10y3q8jZwhmQJQRzACgC0zOLWn3cPai51yy\nrV8n50rKF5lnBkQVwQwAusDJfEm71ghml44PyEn62pGZzjQKwIYRzACgC0zOlbR75OLB7MB4Tibp\nqw8TzICoIpgBQMyVKjXli5U1e8wyyYT2jGR1F8EMiCyCGQDEXKO47FpzzCTpkm0D+vrRWVVrbGgO\nRBHBDABirlHDbK2hTCmoZ1Yo1/Styfl2NwvAJhDMACDmGlX/1xrKlKRLx4NCs3c9NN3WNgHYHIIZ\nAMTc8lDmOnrMRvvTzDMDIoxgBgAxNzlX0mAmuWrV//N9/6VjrMwEIopgBgAxd3KupF3DmXWff+2l\nYzqeL+n4bLGNrQKwGQQzAIi5yfzaNcyaff+l45Kkr1JoFogcghkAxNzJuaV1TfxvOLhzUJL0vanF\ndjUJwCYRzAAgxup1p5NzpXXVMGvIpRPaPpjR0Rk2NAeihmAGADF2ZrGsat1taChTCrZnOjrNHDMg\naghmABBjG6lh1uzAWD89ZkAEEcwAIMY2sh1TswPjOZ3Il9iaCYgYghkAxNhGtmNqdmCsX7W60wkf\n7ABEA8EMAGLs5FxJiT7T9sH11zGTpAN+ayaGM4FoIZgBQIxN5kvaMZhRos82dL8DY0Ewm2ABABAp\nBDMAiLHJuZJ2bXAYU5L2jGbVZ/SYAVFDMAOAGAtqmG1sGFOSUok+7RnJ6eg0wQyIEoIZAMTYZH5j\nxWWbHRjP6egMQ5lAlBDMACCmiuWa5krVTQ1lSr6WGT1mQKQQzAAgppZLZWy6x6xfp+aXVKrUWtks\nAFtAMAOAmNpscdmGA+M5SdIEw5lAZBDMACCmlrdj2sJQpsTKTCBKkmE3AACwOZsdyrzpjiOSpHyx\nIkn6h68e04nZC3cAeOH1l2yxhQA2ih4zAIipyXxJQ5mkBjKb+xt7KJtUss80s1huccsAbBbBDABi\n6uQmi8s29JlptD+l6QLBDIgKghkAxNTk3OZrmDWM9ac1QzADIoNgBgAxdTJf0q6tBrOBtGYWKy1q\nEYCtYvI/AMRAY8J+Q905Tc6VdGZh6YLbNmK8P61ipaZSpaZsKrHVZgLYInrMACCGFpeqqjtpOJfa\n0nXGBtKSpGkWAACRQDADgBiaK1YlScPZLQaz/uD+zDMDooFgBgAxNFcK5oUN57Y2I2W8P+gxo2QG\nEA0EMwCIoUZx2K0OZebSCWWSfZousAAAiAKCGQDE0HypKpM0uMnisg1mFpTMoMcMiASCGQDEULFS\nVTaVUJ/Zlq81NkAtMyAqCGYAEEPFck25dGvKW4z3pzRTKMs515LrAdg8ghkAxFCxUlOuRXXHxgbS\nqtScFsu1llwPwOYRzAAghorlmvpb1GM2xspMIDIIZgAQQ8UWVupvBDM2MwfCRzADgBhqaY/ZgC8y\nS48ZEDqCGQDEjHOupXPMMsmE+tMJVmYCEUAwA4CYKVfrqju1bFWmJI0PpDWzSJFZIGwEMwCImUIl\nWD3Zqh4zKZhnxhwzIHwEMwCImaIva9HKHrOx/rTyhYrq1DIDQkUwA4CYKbajx2wgpZpzmisynAmE\niWAGADHTjh6zcUpmAJFAMAOAmGlPj1mjyCw9ZkCYCGYAEDPt6DEb7U/JJEpmACFbM5iZ2XvN7JSZ\nfbPp2LiZ3Wpmh/y/Y/64mdm7zOywmd1rZk9sus+N/vxDZnZj0/HvN7Nv+Pu8y8ys1U8SALpJsVJT\nwkzpROv+tk729Wkwk1SeOWZAqNbzW/0+Sc8679hrJH3WOXelpM/6ryXp2ZKu9B8vl/RnUhDkJL1B\n0vWSrpP0hkaY8+f8UtP9zn8sAECTYrmmbDqhVv8dO9KfIpgBIVszmDnnviBp+rzDN0h6v//8/ZKe\n13T8Ay5wu6RRM9sj6ZmSbnXOTTvnZiTdKulZ/rZh59ztzjkn6QNN1wIArKBQqam/hfPLGkZyKeUL\nBDMgTJvtB9/lnDvhP5+UtMt/vk/S0abzJvyxix2fWOH4iszs5WZ2l5ndNTU1tcmmA0C8lcq1ls4v\naxjJBT1mjlpmQGi2PEHB93R15LfYOfdu59y1zrlrd+zY0YmHBIDIaeU+mc1GcimVa3WVKvWWXxvA\n+mw2mJ30w5Dy/57yx49JOtB03n5/7GLH969wHACwikK52rYeM0nMMwNCtNlgdoukxsrKGyV9vOn4\nz/vVmU+SlPdDnp+W9AwzG/OT/p8h6dP+tjkze5JfjfnzTdcCAKygnT1mkpQvUjIDCEtyrRPM7MOS\nfkjSdjObULC68q2Sbjazl0l6WNLz/en/Iuk5kg5LKkh6qSQ556bN7M2S7vTnvck511hQ8N8VrPzM\nSfqk/wAArKDunJYq9bb2mM3SYwaEZs1g5pz72VVuevoK5zpJr1jlOu+V9N4Vjt8l6Zq12gEAkEqV\nmpxaW/W/YSgbFJllKBMID5X/ASBG2lH1vyHRZxqmZAYQKoIZAMRIO/bJbDaSSylfIpgBYSGYAUCM\nNHrM+tvQYyZRZBYIG8EMAGKk0WOWbWePGUVmgdAQzAAgRgod6DGr1t3y4wDoLIIZAMRIqQNzzCRW\nZgJhIZgBQIwUyzWlEqZkoj1v3wQzIFwEMwCIkUKbqv43jPQTzIAwEcwAIEaK5Vpbapg1DGaSSpgR\nzICQEMwAIEbatU9mQ5+ZhnNJghkQEoIZAMRI0GO25m56WzKcS2mWWmZAKAhmABAj7e4xkxq1zMpt\nfQwAKyOYAUCMFMu1ttUwaxjNpTRXqqpep8gs0GkEMwCIiVrdqVyrt63qf8NILqVa3enMIr1mQKcR\nzAAgJpY3MG9zj9lILi1JOpEvtvVxAFyIYAYAMVEoVyVJ/e3uMfO1zI7Pltr6OAAuRDADgJgolTvV\nYxYEM3rMgM4jmAFATBTavE9mw0A6oWSf6USeHjOg0whmABATxQ71mJmZhnMpghkQAoIZAMREsUM9\nZlIwnHlilqFMoNMIZgAQE40es3aXy5CCWmb0mAGdRzADgJgoVmrKJPuU6LO2P9ZILqXJuZJqFJkF\nOopgBgAxEeyT2f7eMikomVGrO03NL3Xk8QAECGYAEBPFSq3tNcwaRrKUzADCQDADgJgolmvKdrDH\nTBLzzIAOI5gBQEwUKrWOrMiUzhaZPc7KTKCjCGYAEBOlck39Heoxy6USyqUS9JgBHUYwA4AYcM6p\n2MEeMzPTntEsc8yADiOYAUAMVGpO1brrWDCTpL0jOXrMgA4jmAFADCxX/U8nO/aYu0eyOjFLMAM6\niWAGADFwNph1sscsq1PzJVVr9Y49JtDrCGYAEAPLG5h3cChzz2hOdSedpMgs0DEEMwCIgeVg1sEe\nsz0jWUliM3OggwhmABADxUpVUmd7zPaO5iRJx1kAAHQMwQwAYqDRY9apOmbS2R6zSUpmAB1DMAOA\nGChWajJJ6WTn3raHsikNZZI6zspMoGMIZgAQA4VyTdlUQn1mHX3cy3cM6NCp+Y4+JtDLCGYAEAPF\nSue2Y2r2mH0juvdoXvW66/hjA72IYAYAMVCq1Dq6IrPhcQdGNb9U1ffOLHb8sYFeRDADgBgolDu3\nT2azx+0flSTdOzHb8ccGehHBDABioFgOp8fs4M5B9acTuudovuOPDfQighkAxECxEk6PWaLPdM3e\nEd1DjxnQEQQzAIg451wwxyyEYCZJj90/ovuPz6nCnplA2xHMACDiFpaqqrvObsfU7HEHRrVUrevb\nk5TNANqNYAYAETdbqEjq7HZMzc4uAGCeGdBuBDMAiLh8MQhmYdQxk6QD4zmN9adYmQl0AMEMACJu\nzgezbEjBzMz0mP2j+vpRghnQbgQzAIi42WK4Q5mS9Lj9Izp0amF5M3UA7UEwA4CIOzuUmQytDY/d\nP6pa3em+48wzA9qJYAYAERf25H8p6DGTpHtYAAC0FcEMACIuX6woYaZUwkJrw87hrPaMZFkAALQZ\nwQwAIi5frCibTsgsvGAmBYVm72EBANBWBDMAiLjZQjm0UhnNHrt/VA+dKSjvh1YBtB7BDAAibnqx\nrIEIBLPlQrPH6DUD2oVgBgARN1uohLois+ExfgEAOwAA7UMwA4CIm4nIUOZILqVHbB9gnhnQRgQz\nAIgw55wPZuH3mEl+AQArM4G2IZgBQIQtlmuq1JwGMuH3mEnBAoCTc0s6OVcKuylAVyKYAUCEzSyW\nJYW3gfn5HnfAF5plOBNoC4IZAETYTKERzKIxlHn1nhEl+owFAECbEMwAIMKmI9Zjlksn9MhdQ/r3\nw6flnAu7OUDXIZgBQIQ19skciEiPmSS96EmX6J6js/r0fSfDbgrQdQhmABBhUesxk6SfufaArto1\nqD/85AMqV+thNwfoKgQzAIiw2UJZZlI2QsEsmejT637saj18pqAPfPmhsJsDdBWCGQBE2HShrNFc\nSn0hb2B+vqddtUNPu2qH3vXZQ8srRwFsXXQmLQAALjBTqGisPx3KY990x5GL3v74A6P64uHTeudn\nD+mNP/HoDrUK6G70mAFAhM0sljU2EE4wW8uu4ax+9roD+uDtD+vwqYWwmwN0BYIZAERY0GOWCrsZ\nq/r1H7lK/amE3vrJB8JuCtAVGMoEgAibLZR1zd7hsJuxqs/cd1JPPbhdn7pvUm/6p/t1cOfgiue9\n8PpLOtwyIJ7oMQOACJuO8FBmw5Ov2Kax/pQ+c/9k2E0BYo9gBgARVSzXtFSthzb5f71SiT5df/k2\nTcwUlS9Wwm4OEGsEMwCIqGm/T2aU55g1XLV7SJL0nZPzIbcEiDeCGQBEVKM+WNSHMiVp11BGI7kU\nwQzYIoIZAETUzHKPWfSDmZmiystFAAAgAElEQVTpql2DOnxqQbU6m5sDm0UwA4CImvEbmMdhKFOS\nrto1pKVqXQ9PL4bdFCC2CGYAEFFxGsqUpCt2DKrPpO9MUmwW2CyCGQBEVGMoczQXjx6zbCqhS7cN\nMM8M2AKCGQBE1MxiWcPZpJKJ+LxVP3LXkCbnSpTNADYpPr/tANBjZgqV2AxjNly1KyibcYheM2BT\nCGYAEFEzhXIsVmQ22zWc0XA2qW8TzIBNIZgBQEQFwSwe88sagrIZQ5TNADZpS8HMzH7DzO4zs2+a\n2YfNLGtml5vZHWZ22Mz+1szS/tyM//qwv/2ypuu81h//tpk9c2tPCQC6w8xi/IYypbNlM45MF8Ju\nChA7mw5mZrZP0q9KutY5d42khKQXSHqbpHc45w5KmpH0Mn+Xl0ma8cff4c+TmV3t7/doSc+S9Kdm\nlthsuwCgW8RxKFOSDu70ZTMYzgQ2bKtDmUlJOTNLSuqXdELSD0v6qL/9/ZKe5z+/wX8tf/vTzcz8\n8Y8455acc9+TdFjSdVtsFwDEWqlSU6Fc03gMe8womwFs3qaDmXPumKT/LemIgkCWl3S3pFnnXNWf\nNiFpn/98n6Sj/r5Vf/625uMr3OccZvZyM7vLzO6amprabNMBIPJmfdX/0ZjNMWu4ateQTuRLmqNs\nBrAhWxnKHFPQ23W5pL2SBhQMRbaNc+7dzrlrnXPX7tixo50PBQChahSXHY/hUKYkXbVrUJJ06BS9\nZsBGbGUo80ckfc85N+Wcq0j6mKSnShr1Q5uStF/SMf/5MUkHJMnfPiLpTPPxFe4DAD2psR3TaEyD\n2e7hrC+bwfZMwEZsJZgdkfQkM+v3c8WeLul+Sf8m6af8OTdK+rj//Bb/tfzttznnnD/+Ar9q83JJ\nV0r6yhbaBQCxt7yB+UA8hzLPls2YV/BWD2A9tjLH7A4Fk/i/Kukb/lrvlvRqSa80s8MK5pC9x9/l\nPZK2+eOvlPQaf537JN2sINR9StIrnHO1zbYLALrBdMyHMiVp90hWpUpdhTJv6cB6Jdc+ZXXOuTdI\nesN5hx/UCqsqnXMlST+9ynXeIuktW2kLAHST2ZgPZUrScDbo7WPfTGD9qPwPABE0XShrMJNUOhnf\nt+mRXBDMWJkJrF98f+MBoIvNFiqxLZXRMOyDWb5EMAPWi2AGABE0vViOZXHZZoOZpEz0mAEbQTAD\ngAiaLZRjPb9MkhJ9pqFsUvlide2TAUgimAFAJE0XyhqP+VCmFMwzm2MoE1g3ghkARNDsYiX2PWZS\nMM+MVZnA+hHMACBiKrW65peqsZ9jJgXBjDlmwPoRzAAgYhr7ZI51w1BmNqWlal3zDGcC60IwA4CI\nmfXbMXXLUKYknZwrhdwSIB4IZgAQMdO+6n83DGU2isyeyBPMgPUgmAFAxMwWGtsxdcFQpg9mkwQz\nYF0IZgAQMdOLwVBmN/SYDWWDLZkJZsD6EMwAIGLOTv6PfzBLJfrUn07oBHPMgHUhmAFAxMwslpVL\nJZRNJcJuSkuM5FI6SY8ZsC4EMwCImJlCpStKZTQMZ1NM/gfWiWAGABEzUyhrrAvmlzWM5FKaZCgT\nWBeCGQBEzEyh3BXzyxqGc0lNL5ZVqtTCbgoQeQQzAIiYmcXu6zGTpFNzSyG3BIg+ghkAREzXzTFr\n1DJjOBNYE8EMACKkWqsrX6x011BmtlH9vxhyS4DoI5gBQITki0Fx2W7qMaP6P7B+BDMAiJAZv4F5\nN80xy6YSGswkGcoE1oFgBgAR0k1V/5vtGs7QYwasA8EMACJkZrE7g9mekRxFZoF1IJgBQIQs95gN\ndM8cM0naPZLVSYYygTURzAAgQpbnmHVZj9nu4axOzS+pWquH3RQg0ghmABAhM4tlpZN96k93xwbm\nDbtHsqrVnU4vlMNuChBpBDMAiJBgO6aUzCzsprTU7uGsJIrMAmshmAFAhEwvdldx2YbdIz6YUWQW\nuCiCGQBEyEyhrPEuqmHWsMcHM1ZmAhdHMAOACJmaX9KOoUzYzWi58YG00ok+hjKBNRDMACAinHNB\nMBvsvmBmZto1QpFZYC0EMwCIiMVyTcVKrSt7zCRpzzBFZoG1EMwAICKm5pckqWuD2S6KzAJrIpgB\nQER0ezDbM5LViXxJzrmwmwJEVjLsBgBAL7vpjiPLn3/jWF6SdOf3ZnR0uvvKSuwezqpcrWumUOnK\nladAK9BjBgARMV8KtmMazHbn38xna5kxnAmshmAGABGxsFRVn6nrtmNqWA5mc93XGwi0CsEMACJi\noVTVQCapvi7bjqlheVum/FLILQGii2AGABExX6pqKNOdw5hSsKihz9iWCbgYghkARMTCUrVr55dJ\nUirRpx1DGWqZARdBMAOAiJgvVTSUSYXdjLbaPZxlWybgIghmABABdee6vsdMChYAsCoTWB3BDAAi\noFiuqe6koS4PZntGcgQz4CIIZgAQAfNLVUnSYBdP/pekXcNZzS9VteCfL4BzEcwAIAIWSkFQGcp2\n9xyzXcPBdlOnmGcGrIhgBgAR0Kj6383lMiRpzG/FNFOohNwSIJoIZgAQAY2hvW6f/D/e74PZYjnk\nlgDRRDADgAiYL1WVSpgyye5+W25sXj5dIJgBK+nudwAAiImFpaoGM0lZl27H1LAczOgxA1ZEMAOA\nCFgoVbt+RaYUbNCeTvYxlAmsgmAGABEwv1Tp+hWZkmRmGu9P02MGrIJgBgARMF/q/qr/DWMDac0w\nxwxYEcEMAEJWqzsVyrWuL5XRMD6QoscMWAXBDABC1iulMhrG+tPUMQNWQTADgJAtV/3PdP8cMylY\nmUmPGbAyghkAhGx+yVf975Ees/GBtPLFiqq1ethNASKHYAYAIWv0mPXKUOY42zIBqyKYAUDI5htz\nzHpk8v9YY1smVmYCF+iNdwEAiLD5UlXZVJ9Sie79W/mmO44sf3741IIk6ea7juoR2wfPOe+F11/S\n0XYBUdO97wIAEBMLS9WemfgvSQOZhCSpsFQLuSVA9BDMACBkC6VKz8wvk6T+dPBcF8vVkFsCRA/B\nDABCNt8j+2Q29Kd9j1mZHjPgfAQzAAjZwlK1Z0plSFIq0ad0sk+FJXrMgPMRzAAgROVqXUvVes9s\nx9QwkE5okR4z4AIEMwAI0dntmHpn8r8kDWSSKjDHDLgAwQwAQjRf6q2q/w396YQWWZUJXIBgBgAh\nmi/1VnHZhoF0klWZwAoIZgAQosZQZi/2mFHHDLgQwQwAQjRfqsoUzLnqJQOZpMq1uipsZA6cg2AG\nACFaWKpoIJNUn1nYTemoRpFZapkB5yKYAUCI5ku9VcOsoVFkdpFaZsA5CGYAEKKFpd6q+t/QGLql\nxww4F8EMAEK00KM9ZgONHjNWZgLnIJgBQEicc5rv0R6zfv+cGcoEzkUwA4CQzBWrqtVdz1X9l6Rc\nKiETQ5nA+QhmABCSqYWSJPXcPpmSlOgzZVMJesyA8xDMACAkp+aXJEmDPTjHTJIGMgl6zIDzEMwA\nICRTPpj1Yo+ZFNQyY/I/cC6CGQCEZDmY9eAcMylYmcm2TMC5CGYAEJKphSU/16o334r7M0kV6DED\nztGb7wYAEAFT80sayiRlPbYdU8NAOqnFck3OubCbAkTGloKZmY2a2UfN7Ftm9oCZPdnMxs3sVjM7\n5P8d8+eamb3LzA6b2b1m9sSm69zozz9kZjdu9UkBQBxMzS/17MR/KZj8X6s7latsZA40bLXH7J2S\nPuWc+z5Jj5P0gKTXSPqsc+5KSZ/1X0vSsyVd6T9eLunPJMnMxiW9QdL1kq6T9IZGmAOAbnZ6odyz\nE/+lsxuZL7IyE1i26WBmZiOSflDSeyTJOVd2zs1KukHS+/1p75f0PP/5DZI+4AK3Sxo1sz2Sninp\nVufctHNuRtKtkp612XYBQFycmiv1ZHHZhgE2MgcusJUes8slTUn6azP7mpn9lZkNSNrlnDvhz5mU\ntMt/vk/S0ab7T/hjqx2/gJm93MzuMrO7pqamttB0AAjXUrWmM4tljeR6uMdseSNzghnQsJVglpT0\nREl/5px7gqRFnR22lCS5YEZny2Z1Oufe7Zy71jl37Y4dO1p1WQDouFNzQamMkRw9ZgxlAmdtJZhN\nSJpwzt3hv/6ogqB20g9Ryv97yt9+TNKBpvvv98dWOw4AXetEPtiOabiHhzIbc8wKDGUCyzYdzJxz\nk5KOmtkj/aGnS7pf0i2SGisrb5T0cf/5LZJ+3q/OfJKkvB/y/LSkZ5jZmJ/0/wx/DAC61uScD2Y9\n3GOWTfWpz+gxA5ptdXLDr0j6kJmlJT0o6aUKwt7NZvYySQ9Ler4/918kPUfSYUkFf66cc9Nm9mZJ\nd/rz3uScm95iuwAg0ibzRUm9PZRpZhpIU2QWaLalYOac+7qka1e46ekrnOskvWKV67xX0nu30hYA\niJPJ/JIG0gllkr1d57s/k9Ai2zIBy3r7HQEAQjI5V9SukWzPVv1vYCNz4FwEMwAIwWS+pD0j2bCb\nETo2MgfORTADgBBM5kvaNUww68/QYwY0I5gBQIfV6k4n55foMVPQY1Ys11RnI3NAEsEMADruzMKS\nanWn3fSYqT+dlJNUomQGIIlgBgAd1yguu3skF3JLwjeQofo/0IxgBgAd1iguS4+ZNJBmv0ygGcEM\nADpscrnHjGDW2MicWmZAgGAGAB02OVdSKmHaNpAOuymha2xkTo8ZECCYAUCHTeZL2jmUVV9fbxeX\nlc5uZL7IRuaAJIIZAHTcZL7EMKaXTvYplTAm/wMewQwAOmxyjmDWrJ+NzIFlBDMA6CDnXNBjxorM\nZQNpNjIHGghmANBBc8WqipUaVf+b9GfoMQMaCGYA0EHLNcwIZssG0gnmmAEewQwAOuhEviiJ4rLN\n6DEDziKYAUAHnaTH7AID6YRKlbpqdTYyBwhmANBBjX0ydw4RzBqWa5nRawYQzACgk07OlbR9MKN0\nkrffhgG/LVOBlZkAwQwAOulEvqTdI5mwmxEp/X5bJnrMAIIZAHRUUMMsF3YzImXQ95gtsC0TQDAD\ngE4Kqv7TY9ZsOZiVCGYAwQwAOqRUqWm2UNGeEXrMmuXSCfUZG5kDEsEMADpm0q/I3EUNs3P0mWkg\nk2QoE5CUDLsBANCtbrrjyDlfPzi1IEm6//icbqoeWekuPWuQYAZIoscMADpmrlSRJA3n+Jv4fAQz\nIEAwA4AOyReD4DGSTYXckuhhKBMIEMwAoEPmihVlkn3KpBJhNyVyBjNJLS5V5RzbMqG3EcwAoEPy\nxYpGcvSWrWQwk1Sl5rRYpvo/ehvBDAA6ZK5U0TDBbEWNWman55dCbgkQLoIZAHTIXLHC/LJVDGaD\nYHZmkWCG3kYwA4AOqNWd5ktVVmSuotFjNjVfDrklQLgIZgDQAQtLVTmJocxVDDSGMhfoMUNvI5gB\nQAfMFYMaZgxlrmwgE6xUPbNAjxl6G8EMADogX2wUlyWYrSTZ16dcKkGPGXoewQwAOqBR9Z9yGasb\nzCQJZuh5BDMA6IB8saJkn6k/TXHZ1QxmkwxloucRzACgA/LFoIaZmYXdlMgaoMcMIJgBQCfMFasa\nzlIq42IYygQIZgDQEVT9X9tgJqm5UlVLVbZlQu8imAFAmznnqPq/Do0is8wzQy8jmAFAmxXKNVXr\njh6zNRDMAIIZALQdpTLWp7FfJvPM0MsIZgDQZhSXXZ/l/TIJZuhhBDMAaLNGMKPH7OIYygQIZgDQ\ndnPFikxngwdWlk6yLRNAMAOANpsrVjWUTSrRR3HZtWwfSusMwQw9jGAGAG2Wp4bZum0fzOg0Q5no\nYQQzAGizfLHC/LJ12jaQYSgTPY1gBgBtNlekx2y9dgyl6TFDTyOYAUAblSo1LVXrVP1fp+2DGU0v\nLqlWd2E3BQgFwQwA2miOGmYbsm0grbqTZgr0mqE3EcwAoI3yVP3fkO1DGUnUMkPvIpgBQBvNUVx2\nQ7YPBsGMBQDoVQQzAGijfLEqSRrKUlx2PbYPpiURzNC7CGYA0EZzxYr60wmlErzdrsfZHjOGMtGb\neKcAgDaihtnGDGdTSvYZPWboWQQzAGijuRLBbCP6+kzbBtmWCb2LYAYAbZSnuOyGsS0TehnBDADa\npFKrq1CuaZjishuybZBtmdC7CGYA0CaUytic7YNp6pihZxHMAKBN5kpBqQyC2cbsGMxoamFJzrEt\nE3oPwQwA2iS/vB0TNcw2YttgWuVqXfNL1bCbAnQcwQwA2mR5KJM5ZhvSqGXGcCZ6EcEMANokX6wo\nk+xTJpUIuymxwrZM6GUEMwBoE2qYbc42vy0TtczQiwhmANAmVP3fnB2+x2yKoUz0IIIZALTJXLFC\nDbNNGBvwG5nP02OG3kMwA4A2qNbqmi9Vqfq/CalEn8b6UzqzSDBD7yGYAUAbTC0syYkaZpu1fTCj\n0/MMZaL3EMwAoA1O5EuSpBFqmG3KtsE0qzLRkwhmANAGkz6YMZS5OdsHMzqzSI8Zeg/BDADaYLnH\njMn/mxIMZdJjht5DMAOANjg5V1Kyz5RLU1x2M7YPpjW/VFWpUgu7KUBHEcwAoA1O5EsayaVkZmE3\nJZaWt2ViOBM9hmAGAG0wmS8yv2wLlrdlYjgTPYZgBgBtMDlXolTGFixvy0QtM/QYghkAtFi97nQy\nv0TV/y3YMRT0mJ2cI5ihtxDMAKDFpgtllWt1aphtwe7hrBJ9puOzxbCbAnQUwQwAWowaZluXTPRp\n93BWEzMEM/QWghkAtNjkctV/gtlW7BvN6RjBDD1my8HMzBJm9jUz+4T/+nIzu8PMDpvZ35pZ2h/P\n+K8P+9sva7rGa/3xb5vZM7faJgAI04k5esxaYf9YTscYykSPaUWP2a9JeqDp67dJeodz7qCkGUkv\n88dfJmnGH3+HP09mdrWkF0h6tKRnSfpTM6MiI4DYmswXlewzDWaYY7YV+8ZyOpEvqlKrh90UoGO2\nFMzMbL+kH5P0V/5rk/TDkj7qT3m/pOf5z2/wX8vf/nR//g2SPuKcW3LOfU/SYUnXbaVdABCmE/mS\ndg5l1Edx2S3ZN5pT3Z0dGgZ6wVZ7zP5Y0m9Lavw5s03SrHOu6r+ekLTPf75P0lFJ8rfn/fnLx1e4\nzznM7OVmdpeZ3TU1NbXFpgNAe5ycK2n3SDbsZsTe/rF+SWI4Ez1l08HMzJ4r6ZRz7u4WtueinHPv\nds5d65y7dseOHZ16WADYkBP5kvaM5MJuRuztGwteQ1ZmopdspcfsqZJ+wswekvQRBUOY75Q0amaN\niRX7JR3znx+TdECS/O0jks40H1/hPgAQK845TebpMWuFPf41ZGUmesmmZ6Y6514r6bWSZGY/JOk3\nnXMvMrO/k/RTCsLajZI+7u9yi//6y/7225xzzsxukXSTmb1d0l5JV0r6ymbbBQBhmitVVSjXtHuY\nYLYZN91x5Jyvh7JJfeHQ1PJOAJL0wusv6XSzgI5pRx2zV0t6pZkdVjCH7D3++HskbfPHXynpNZLk\nnLtP0s2S7pf0KUmvcM7V2tAuAGi7RqX6PaMEs1YYzaU0UyiH3QygY1qylts59zlJn/OfP6gVVlU6\n50qSfnqV+79F0lta0RYACFNjPtSBsX7dV5wLuTXxN9qfZvI/egqV/wGghY5OFyQFxVGxdWP9aeUL\nFdWdC7spQEcQzACghSZmiupPJzQ+kA67KV1htD+lmnOaL1XXPhnoAgQzAGihiZmC9o/lZBSXbYmx\n/mBbq1nmmaFHEMwAoIWOzhR1wBdGxdaN9gc9j7OFSsgtATqDYAYALdToMUNrjPlgxspM9AqCGQC0\nSL5Y0XypuryVELYunexTfzpBjxl6BsEMAFqksSLzwDg9Zq001p/WbJEeM/QGghkAtEijhhk9Zq01\n2p/SzCI9ZugNBDMAaJGJGWqYtcNoLqXZYlmOWmboAQQzAGiRiZmihjJJjeRSYTelq4wNpFWpOS2W\n2a0P3Y9gBgAtMjFT0D5qmLXcaK5RMoN5Zuh+BDMAaJGj00UdGGd+WauN+iKzM6zMRA8gmAFACzjn\nqGHWJmP99JihdxDMAKAFZgsVLZZrrMhsg1w6oUyyjx4z9ASCGQC0wFG/IvMAPWZtMdafpscMPYFg\nBgAtQA2z9hrtT1H9Hz2BYAYALdCo+r+fqv9tMdqfZr9M9ASCGQC0wMRMUSO5lIaz1DBrh7H+lJaq\ndRWpZYYuRzADgBZgRWZ7jTZWZrJnJrocwQwAWuDoTFEHmF/WNmONWmbsmYkuRzADgC2ihln70WOG\nXkEwA4AtOrNYVqlSJ5i10UA6oVTCWJmJrkcwA4AtaqzIZDum9jEzjeZYmYnuRzADgC2ihllnjA1Q\nywzdj2AGAFvUqPrPUGZ70WOGXkAwA4AtmpgpanwgrYFMMuymdLXR/pQK5ZoK5WrYTQHahmAGAFs0\nMVOkt6wDxvzKzGN+6BjoRgQzANiiiekCNcw6YNTXMpuYJZihexHMAGAL6nWniVl6zDphlB4z9ACC\nGQBswdTCkspVaph1wlA2qWSf6eEzi2E3BWgbghkAbMFEY0UmNczars9MO4YyOnxqIeymAG1DMAOA\nLWjUMDtAj1lH7BjK6BDBDF2MYAYAW9Co+r9vlB6zTtg5lNHETJGSGehaFN0BgA266Y4jy59/7ttT\nGswk9Q9fOxZii3rHzqGsJOnBqUVds28k5NYArUePGQBswWyhojFfxgHtt3MoI0k6dGo+5JYA7UEw\nA4AtmC6Ul8s4oP22DWaU7DMdOsk8M3QnghkAbFLdOeULFY0PEMw6JdFnumz7ACsz0bUIZgCwSXPF\nimrOLVekR2dcuXOQYIauRTADgE2aXixLksYZyuyogzsH9dCZRS1Va2E3BWg5ghkAbNIxv2fjnlFq\nmHXSwZ2DqjvpodOFsJsCtBzBDAA26dhsUaO5lAYzVB7qpIM7ByWxMhPdiWAGAJs0MVPUPir+d9wV\nOwZlJlZmoisRzABgEwrlqqYXy9rPMGbHZVMJXTLer8NTBDN0H4IZAGzCMb9H5r4xtmIKw8EdgzpM\njxm6EMEMADZhwk/830ePWSgO7hrUg6cXVK3Vw24K0FIEMwDYhGMzRW0bSCuXToTdlJ505c4hVWpO\nR6ZZmYnuQjADgE2YmCloPxP/Q3N2ZSbDmeguBDMA2KC5UkVzpar2M78sNI1gxg4A6DYEMwDYoMbE\nf3rMwjOYSWrPSJZghq5DMAOADZqYKcok7RkhmIXp4M5Bisyi6xDMAGCDjs0WtGs4q3SSt9AwXblz\nSIdPLahed2E3BWgZ3lUAYAOcc1T8j4iDOwdVqtSX9ywFugHBDAA2YGKmqEK5xvyyCLhyFwsA0H0I\nZgCwAfdO5CVRWDYKDu5gM3N0H4IZAGzAvROzSvSZdo9kw25KzxsbSGv7YJoeM3QVghkAbMA9E7Pa\nM5JVso+3zygIVmYSzNA9eGcBgHWq152+eWyOYcwIObgz2MzcOVZmojsQzABgnR48vaiFpSoT/yPk\nyp1Dml+q6tT8UthNAVqCYAYA63TvxKwkaR9bMUXGlY09M08ynInuQDADgHW6dyKv/nRCO4cyYTcF\n3tnNzFmZie5AMAOAdbpnYlbX7B1Rn1nYTYG3Yyij4WySBQDoGgQzAFiHSq2u+4/P6TH7R8JuCpqY\nmR61Z1j3H58LuylASxDMAGAdvnNyXkvVuh5LMIucR+8d0QMn5lSt1cNuCrBlybAbAABxcMeD05Kk\nJxwY0xcPnw65Nb3tpjuOnPP1fKmipWpd/+e2w9o1fLbw7wuvv6TTTQO2jB4zAFiHT9x7XN+3e0iX\nbGNFZtTs8XXljrOZOboAwQwA1nB0uqCvHpnVTzx+b9hNwQp2DGaU7DOCGboCwQwA1vDP3zghSfrx\nxxLMoqixd+nxfCnspgBbRjADgDX80z3H9fgDozowzjBmVO0dzen4bFF1tmZCzBHMAOAivju1oPuO\nz+nHH0dvWZTtHclpqVrXzGI57KYAW8KqTABocv6Kv88+cFImqVytX3AbomPvaLAa83i+pG2D7MyA\n+KLHDABW4ZzTvRN5XbZ9QCO5VNjNwUXsGs6qz1iZifgjmAHAKibnSppaWKKobAykEn3aOZTViTzB\nDPFGMAOAVdw7kVefSdfsJZjFwd7RrI7NluRYAIAYI5gBwAqCYcxZHdw5qIEM03HjYO9oTotLVc2X\nqmE3Bdg0ghkArODoTFEzhYoeu2807KZgnfaMsAMA4o9gBgAruHdiVsk+09V7h8NuCtZp70hjZSbB\nDPFFMAOA89Sd0zeO5XXVriFlU4mwm4N1yqQS2jaQ1vFZdgBAfBHMAOA8D51e1HypymrMGNo7mqPH\nDLFGMAOA83zjWF6phOn7djOMGTd7R3OaLVRUWGIBAOKJYAYATZxzeuDEnK7cOaR0krfIuGneAQCI\nI951AKDJsdmi5kpVJv3H1F5WZiLmNh3MzOyAmf2bmd1vZveZ2a/54+NmdquZHfL/jvnjZmbvMrPD\nZnavmT2x6Vo3+vMPmdmNW39aALA595+YU59J37drKOymYBMGMkmN5FLMM0NsbaXHrCrpVc65qyU9\nSdIrzOxqSa+R9Fnn3JWSPuu/lqRnS7rSf7xc0p9JQZCT9AZJ10u6TtIbGmEOADrt/uNzunTbgPop\nKhtbe0eyrMxEbG06mDnnTjjnvuo/n5f0gKR9km6Q9H5/2vslPc9/foOkD7jA7ZJGzWyPpGdKutU5\nN+2cm5F0q6RnbbZdALBZD51e1Kn5JV29h2HMONs7mtOZhSUtsgAAMdSSOWZmdpmkJ0i6Q9Iu59wJ\nf9OkpF3+832SjjbdbcIfW+34So/zcjO7y8zumpqaakXTAWDZrfeflCSCWcztHc3JSXrgxFzYTQE2\nbMvBzMwGJf29pF93zp3zW+CCnWRbtpusc+7dzrlrnXPX7tixo1WXBQBJ0mfun9SekazGBtJhNwVb\nsHc0WABw33GCGeJnS8HMzFIKQtmHnHMf84dP+iFK+X9P+ePHJB1ouvt+f2y14wDQMacXlnTXwzN6\nFL1lsTecTWogndB9x2n9kCoAABjDSURBVPNhNwXYsK2syjRJ75H0gHPu7U033SKpsbLyRkkfbzr+\n83515pMk5f2Q56clPcPMxvyk/2f4YwDQMbc9cErOMYzZDcxM+8ZyuvvhmbCbAmzYVpYdPVXSiyV9\nw8y+7o/9jqS3SrrZzF4m6WFJz/e3/Yuk50g6LKkg6aWS5JybNrM3S7rTn/cm59z0FtoFABv2mfsn\ntW80pz1+I2zE2yO2D+pT903q1FxJO4f5niI+Nh3MnHNflGSr3Pz0Fc53kl6xyrXeK+m9m20LAGxF\noVzVvx86rRdef4mCwQDE3RU7B6X7pC9994ye94QV15MBkUTlfwA97wvfOa2lal0/evWutU9GLOwZ\nyWokl9KXvns67KYAG0IwA9DzPnP/pEZyKV132XjYTUGL9JnpSY8Y15e+eybspgAbQjAD0NOqtbpu\n+9YpPf1RO5VM8JbYTZ5yxXZNzBR1dLoQdlOAdeNdCEBPu/OhGc0WKnrG1bvDbgpa7ClXbJMkhjMR\nKwQzAD3t1vtPKpPs0w9etT3spqDFDu4c1I6hDMOZiBWCGYCe9h+HT+u6y8fVn2bT8m5jZnrKFdv0\npe+eUVAYAIg+ghmAnnVmYUnfPjmvJ/shL3Sfp1yxTVPzSzp8aiHspgDrQjAD0LNufzCoZf3kRxDM\nutVTrgiGqBnORFwQzAD0rC9997QGM0k9Zt9I2E1BmxwY79f+sRwLABAbBDMAPevLD57RdZePUyaj\nyz3lim26/cFp1erMM0P08W4EoCednCvpwalFhjF7wFOu2K58saIHTsyF3RRgTQQzAD3py37OERP/\nux/1zBAnrA8H0BNuuuPIOV9/7KsTyqX+X3t3Hh1Xfd5//P3MjPZ9s6zFi+QF49gyYMcmDksgCQmJ\nCSlNgZA0QJpD0zb0dEmTtPSXLr/8DrQ07Una01LqhCRNISQQmpilBFIWBxsvGFtmkxfZWJJlS7YW\na19mvr8/5soWHAlMGM29mvm8jufozp17r577zPjOo/u99/sNs7ulh8bWXp+ikmSYU5jN4jn5bDl4\nklsuWeR3OCJvSWfMRCQtHezsp648j5CZ36FIEqxfVMb2Q12MRWN+hyLyllSYiUja6R4cpXtwjPqK\nPL9DkSRZv6iMwdEoe1p6/A5F5C2pKVNE0k5z5wAA9RX5PkciM2ly8/Xg6DgG3PXMQS4/fqaz2RvW\nzfchMpHp6YyZiKSd5s5+8jLDVBZk+R2KJEluZoSq4mwOekW5SFCpMBORtOKco/nEAHUV+ZiuL0sr\nS+YU8PrJAQZHxv0ORWRaKsxEJK2cHBild2iMRbq+LO2srCki5uBl9WcmAabCTETSyunry8p1fVm6\nqSrKpjQvk5fa1D2KBJcKMxFJK80n+inIjlCen+l3KJJkZsbKmiIOdvYzoOZMCSgVZiKSNpxzNHcO\nUF+ep+vL0tREc+Yras6UgFJhJiJpo6NvhP6RcRapm4y0NdGcuVfNmRJQKsxEJG00d8b7r1L/Zelr\nojmzWc2ZElAqzEQkbRzsHKA4J4OS3Ay/QxEfnW7OPKrmTAkeFWYikhaGRqPsO97HsqpCXV+W5qqK\nsinLy2TvUTVnSvCoMBORtPDS0V7GY47z5xX7HYr4zMxY4TVndg2M+h2OyBuoMBORtPDikR7K87Oo\nLcnxOxQJgInmzMdfPuZ3KCJvoMJMRFJeS9cgh08OcP78YjVjCnCmOfORxna/QxF5AxVmIpLyfra7\nDYDzatWMKXETzZlbm09ysn/E73BETlNhJiIpzTnHT3e1sbAsj5I89fYvZ6ysKSIaczz+8nG/QxE5\nTYWZiKS0Pa29NJ+IN2OKTFZVlM3Cslwe3avmTAkOFWYiktIe2tVKZiTEypoiv0ORgDEzPt5Qxdbm\nk5xQc6YEhAozEUlZY9EYmxrb+fDySrIzwn6HIwG0oaGaaMzx2Eu6O1OCQYWZiKSsZ5o66RoY5Zrz\na/wORQJq2dwCFs/JZ9Oeo36HIgKoMBORFPbQi22U5WVyydIKv0ORgDIzrmqoZsfhLtp7h/wOR0SF\nmYikpt6hMZ549ThXraomI6xDnUxvw6oqnEN9mkkg6GglIinp0b3tjI7HuOYCNWPKW1tUkc97qgvZ\npMJMAkCFmYiknKHRKD98/nUWVeTpbkw5K1etqmZPSw9HTg76HYqkORVmIpJS+obHuPG723m1/RR/\n/OGlGoJJzsrHV1YB8PBe3QQg/lJhJiIpo3tglM9s3MauI918+9Pns6Gh2u+QZJaYV5rLBfOL2bRH\nzZniLxVmIpISOk4Nc93dW3ntWB93f261ijJ5x65aVc2r7ac40NHndyiSxlSYicis19o9yLX/vpXW\n7iG+d9N7uXxZpd8hySz08ZVVmKGzZuIrFWYiMqs1Hevj2ru20jUwyg+/sI71i8v9DklmqTmF2VxY\nV8amxqM45/wOR9JUxO8ARER+Xc8dOMEX//MFcjLD/OiW97G8utDvkGSWuXfbkTc8ryzMZmvzSb75\ni31UF+ecnn/DuvnJDk3SlAozEZmVHnyhla8+2Eh9RR6fPK+G3S097G7p8TssmeXeU13Iz/e00dja\n+4bCTCRZ1JQpIrOKc45vPbmfP/3JHtbVl/LA762nODfT77AkReRlRVg8J5/Gth41Z4ovVJiJyKwR\nizm++mAj//TkPn7zglruuWkthdkZfoclKea8ecX0DI6x73i/36FIGlJhJiKzxn9sbubHO1u59fLF\n/MNvNZAZ0SFMEm9FTRFFORk83dShs2aSdDqqicissLe1lzsfb+LKFXP5E/XoLzMoEgpxyZJyXu8a\n5NDJAb/DkTSji/9FJLAm7pgbHY/xL0/tJy8rwuoFJdy3vcXnyCTVrVlYylNNnTzd1El9eb7f4Uga\n0RkzEQm8hxuPcrJ/lN9aXUtupv6elJmXEQ5x0eJyDnT009qtgc0leVSYiUigvdTWy87Xu7lkaQX1\nFTpzIcmztq6U7IwQTzd1+h2KpBEVZiISWD2Dozz0Yhs1xTl88Nw5focjaSY7I8z6ReW80n6KpmMa\nP1OSQ4WZiARSNOb4yQutRGOO6947j0hIhytJvvX1ZWSGQ/zr0wf8DkXShI50IhI4zjn+8r/3cujE\nAFetqqI8P8vvkCRN5WZFWFdXyqY9Rzl8QndoysxTYSYigeKc4xuPvMp921v4wNIKVi8o9TskSXPv\nX1JOJBzirmcO+h2KpAEVZiISKP/05H6+86tD3LR+IR9eXul3OCIUZmdw3Zp5PLirVeOxyoxTYSYi\ngXHXMwf59i/3c+2aWr6+Ybk6kZXA+IPLFjOnIJtr79rKvduOaEQAmTEqzEQkEP5z62HueOw1NjRU\ncfs1DYRCKsokOOYWZbPp1otYV1/KXzy0l6880MjwWNTvsCQFqadGEUm6iR79J+xt6+W+7UdYNreA\ndXVl3L9DPftL8JTmZfK9m9fyrSf38e3/PcAr7ae467OrmVea63dokkJ0xkxEfNXRN8yDu1qZV5LD\np9fOJ6wzZRJg4ZDxJ1ecw3duXENL1yAb/vlXbNzcTP/IuN+hSYpQYSYivhkZj3LvtiNEQsYN6xaQ\nEdYhSWaHD55bycO3Xsy5VQV845FXed/tv+SOx17j+Klhv0OTWU5NmSLiC+ccD73YRmffCDe/v46i\nnAy/QxKZ1pub3yd8YlUN588rYfOBE9z97EG+86tmPnleDX9w2WIWluclOUpJBSrMRMQXzx/qorG1\nlyuWV7J4jsbAlNlrXmkuN6ydz/sXl/HdXx3i/p0t/PfuNj574QL+8PIllORl+h2izCJqNxCRpDvS\nNcijje0sm1vAJUsr/A5HJCEWlOXxN1ev4NmvXManVs/j+1sOc+mdT/EfzzYzMq47OOXs2Gzti2XN\nmjVu586dfochIu/Qyf4RLv/mM4QMvnTZEnIyw36HJDIjjp0a5n9eamff8X5KcjO4ZGkFDTXF/M7F\ndX6HJj4wsxecc2vebjk1ZYpI0sRijj+6fzcDI+N88dJFKsokpc0tzOam9XXs7+jj8ZeO8bPdR3mk\nsZ1dLd186oJaLvaGehKZTIWZiCTNvz1zkM37T3D1edVUF+f4HY5IUiyZU8Diy/Jp6xli15Eethw4\nwSON7ZTnZ3Htmlpufn8dFQVZfocpAaGmTBFJih2Hu7j+7ue5csVc3ldfpuGWJG2Nx2LsO9bHC0d6\neK39FOGQsXpBCZcsqXjDjQI3rJvvY5SSaGrKFJHA6BoY5dZ7X2ReSQ63X7OSTXva/Q5JxDeRUIjl\n1UUsry7iRN8Iz+7vZOfhbnYc7qKhtphLl1ZQWZjtd5jiExVmIjKjYjHHn/54N10Do/z099dTkK3+\nykQmlBdkcc0FtXzw3EqeO3CC7Ye62NPSw9q6Uj66Yi6l6moj7eiqQxGZUXdvbuappk7+z4ZzWVFT\n5Hc4IoFUlJPBx1ZW8ZWPnMOF9WXsONzFB+58inueO8RYNOZ3eJJEKsxEZMZsOXiCOx9v4mMr5/LZ\nCxf4HY5I4OVmRbhqVTW3Xr6EVfOK+ZtNr3DltzbzVFMHs/WacHlnVJiJSMINj0W547HX+OzGbcwv\nzeWO32zQxf4i70BlYTY/+PxaNn5uDePRGDffs4Nr/m2LCrQ0oGvMRCShdh3p5s9+soeDnQNct2Ye\nt204l0JdVybyjt23vQWAz19Uxwuvd/NMUyc337OD2pIcLl82h3MqC/iMzkSnHBVmIpIQw2NRvvmL\nJjZuPkRhTgY3rV/I0soCHtYdmCLvSiQUYl1dGasXlPDi6z08va+DH2x9naqibPpGxrlieSX1FRpv\nNlWoHzMReVc6+oa5b1sLP9z2Op19I6xdGL+bLDtDvfqLzIRozPHikW6eP3SSoz3DACyZk88V76nk\nQ+dWsqKmiAyNKBA4Z9uPmQozEfm17G7p4ftbDvNw41HGoo4PnFPBFy9dRHPngN+hiaSNS8+p4ImX\nj/GLV46z7VAX0ZgjMxLi3KpCVtYU0lBTzIqaIhbPySczomLNTyrMRCSh7t12hL7hMRpbe9nd0kNb\nzxBZkRAXLCjhfXVllGtIGRFfDY6Oc6Cjn7buIVp7hjjaM8TIeLyrjUjIqK/IY2llAcvmFnDO3EIa\naovUkW0Sqed/EUmIgZFxnnjlON/bcogDHf3EHFQXZbOhoYoL5peoyVIkIHIzIzTUFtNQWwxAzDm6\n+kdp6x3ieO8wx04N89yBEzzceOa6z+KcDOaV5jK/NJcvXFzH8upCsiL6P+2nwBRmZvZR4FtAGNjo\nnLvD55BEUpJzjr6RcTr7RhgYGad/ZJzBkSgDo/Hp9p5hWroHae0eorV7kOOnRgAozs3g4iUVnDev\nWH9li8wCITPKC7LiZ7Nrz8wfHoty/NQwrd1DHOkapKVrkL1tvTyyt51IyFg8J5/l1YUsryrkPdXx\nZtDy/Ex1eZMkgWjKNLMwsA/4MNAK7AA+7Zx7Zbp1/GzKdM4xHnNEY97PqCPmJh7x1x0QDhkZoRDh\nsBEJxR/hkOnDPYMmvzcT708sFn9vos4Ri0HI4u9NJBQiEo6/J+GQETYjFHr79yYac4yOxxgZjzI6\nHmN4LMbg2DgDI+MMjEQZHB1ncDSKWfzAOLHtcMjIzgiTkxkmJyN8etq8bcbjjjEec4yMxRgeizI0\nFmXYmx6Nxrx9gahz8c+ZAzMwM0IGhhFzjsHReCwDI+MMjEbpGx6jo2+EjlPDHD81wtBYdNr9C1m8\nF/KS3ExKcjMpzsugvjyfBWW5hPTZFUlJp4bGONI1yNGeIY72DtHeO0zf8Pjp1zPCRnFOJiV5Gbx3\nYSlzC7MpzsukOCeD4twMinMyycsKEzI7feyDM8enySbqjsnlh3PgcN7PM9+jzvtejbn4Md25M+vF\nl4gLmZEZCZERDpERNjLDISLedEY4FIjv39nWlLkWOOCcawYwsx8BVwPTFmYz7Uv37uKXr3YQ8z4c\neB+amIt/ib5bZwqB+JfphInPjL7+4qbK9Jv/A0+8N1GvaHm3Jt4bs0m/35uIegeH2SIzHCIzEiIr\nEqIgO4PCnAxqS3IpyI5QkB0hOxImMxI6/ciKhMnPihA+iwJVRFJHYU4GK2qK3jBsWt/wGO29w5zo\nH6FncIzuwVF6Bsd4dG873YNjPkb764uELF40xv/FC0eMzV+9jPL8YFwnG5TCrAZomfS8FVj35oXM\n7BbgFu9pv5k1zXBc5cCJGf4d6UT5TDzlNPGU08RSPhNPOU2wim8kJadn1RtwUAqzs+Kcuxu4O1m/\nz8x2ns1pRzk7ymfiKaeJp5wmlvKZeMpp4gUpp0Hp1KQNmDfpea03T0RERCRtBKUw2wEsMbM6M8sE\nrgd+7nNMIiIiIkkViKZM59y4mX0JeJx4dxnfdc697HNYkMRm0zShfCaecpp4ymliKZ+Jp5wmXmBy\nGojuMkREREQkOE2ZIiIiImlPhZmIiIhIQKRFYWZmpWb2hJnt936WTLPcjd4y+83sxknzV5vZXjM7\nYGbfNq/r4Om2a2ZXm1mjme02s51mdlFy9jR5fMjpZ7yc7jWzLWa2Kjl7mhw+5HOZmW01sxEz+3Jy\n9jI5zOyjZtbk5eJrU7yeZWb3e69vM7OFk177c29+k5l95O226d2wtM2bf79381LKSXJOv+TNc2ZW\nPtP75ock5/O/vPkvmdl3zSxjpvfPD0nO6XfMbI/3nfSAmeUndGfc6aFdUvcB/D3wNW/6a8DfTbFM\nKdDs/Szxpku817YDFxLvKPgx4Mq32i6Qz5nr9xqA1/zOQQrkdP2kda8Etvmdg1mezznAe4H/B3zZ\n7/1PYB7DwEGgHsgE9gDL37TM7wN3edPXA/d708u95bOAOm874bfaJvBj4Hpv+i7g9/zOQQrk9Hxg\nIXAYKPd7/1Mgnx/zjgsG3KfPaEJyWjhpu/+Id4xN1CMtzpgRH97p+97094FPTrHMR4AnnHNdzrlu\n4Ango2ZWRfxNeN7F34UfTFp/yu065/q9ZQHymHpkodku2Tnd4m0D4HneMCRvSkh2PjucczuA2Tmu\nyvROD+/mnBsFJoZ3m2xyTh4APuidYbwa+JFzbsQ5dwg44G1vym1661zubQOmf99mu6TlFMA596Jz\n7vBM75SPkp3PR52H+B9wqXbshOTn9BSAt34OCf6OT5fCrNI51+5NHwMqp1hmqmGharxH6xTz33K7\nZvYbZvYa8Ajw+Xe9B8GT9JxO8jvEzwqlEj/zmUqmy9GUyzjnxoFeoOwt1p1ufhnQ421jut+VCpKZ\n03TgSz69JszfBv7nXe9B8CQ9p2Z2D/Fj6jLgnxOxExMC0Y9ZIpjZk8DcKV66bfIT55wzs4SfwXrz\ndp1zDwEPmdklwP8FPpTo3znTgpZTL6bLiBdms+66vSDmU0TSxr8CzzrnNvsdSCpwzt1sZmHiRdl1\nwD2J2nbKFGbOuWkLHzM7bmZVzrl2r9mnY4rF2oAPTHpeCzztza990/yJ4aLedrvOuWfNrN7Myp1z\ns2rQ2aDl1MwagI3Er586+Wvskq+Cls8UdTbDu00s02pmEaAIOPk26041/yRQbGYR7y/wVB1KLpk5\nTQdJz6eZ/RVQAfxuAuIPIl8+o865qJn9CPgKCSzM0qUp8+fAxB1sNwI/m2KZx4ErzKzE4neuXQE8\n7jUDnTKzC7325M9NWn/K7ZrZYm9ZzOwC4hcVzrpC4m0kO6fzgZ8Cv+2c2zcTO+SzpOYzhZ3N8G6T\nc/Ip4H+9629+Dlzv3b1VBywhfk3OlNv01nnK2wakbn6TltMk7EsQJDWfZvYF4tenfto5F5vhffNL\n0nJqcYvh9DVmnwBeS+jeJOIOgqA/iLcj/xLYDzwJlHrz1wAbJy33eeIX/h0Abp40fw3wEvE7NP6F\nM3dcTrfdrwIvA7uBrcBFfucgBXK6Eej2crob2Ol3DmZ5PucSv2biFNDjTRcmY1+TkMuPAfu8XNzm\nzftb4BPedDbwEy+H24H6Seve5q3XhHdn63Tb9ObXe9s44G0zy+/9T4Gc/qH3eRwHjk7+/KfKI8n5\nHPfmTRw7v+73/s/mnBI/ofUcsJf4Mfe/En3s1JBMIiIiIgGRLk2ZIiIiIoGnwkxEREQkIFSYiYiI\niASECjMRERGRgFBhJiIiIhIQKsxEJK2Z2V+b2ZfN7G/N7EPevIvN7GUz221mOWZ2p/f8Tr/jFZHU\nljI9/4uIvBvOua9PevoZ4Hbn3A8BzOwW4n3ARX0JTkTShvoxE5G0Y2a3Ee8FvIP4QMUvACuAh4Fi\n4O+JD3K8BSgAPk68Q8nbnXP3+xGziKQHnTETkbRiZquJD69yHvFj4C7ihRkAzrmNZnYR8LBz7gFv\nnX7n3Hl+xCsi6UWFmYikm4uBh5xzgwBmli5jNIrILKCL/0VEREQCQoWZiKSbZ4FPendbFgBX+R2Q\niMgENWWKSFpxzu0ys/uBPcQv/t/hc0giIqfprkwRERGRgFBTpoiIiEhAqDATERERCQgVZiIiIiIB\nocJMREREJCBUmImIiIgEhAozERERkYBQYSYiIiISEP8f4TVwJfqINXMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAGoCAYAAABv1G0ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4XOWZ/vHvoy6rWpKL3HvBjeKO\nAQNOQjMOCb0FQgkBAkk2QAgp7Aay2SRks0CAXyghDqEnhG4nENtgwAZTjG1sg3uTLctFxbLqvL8/\nZuSMZZWRNDNnNLo/1zWXpXPOnHlGAt3zlvMec84hIiIinUeC1wWIiIhI2yi8RUREOhmFt4iISCej\n8BYREelkFN4iIiKdjMJbRESkk1F4i4iIdDIKbxERkU5G4S0iItLJJHldQJRoGTkRiRfmdQHiPbW8\nRUREOpmu0vIWiSs+n+O6Jz5k7a5ykhMTSE40zhxXyPUzh5GQoIaZSLxTy1ukE3px+Xb+8dkuctOT\nyctIwTn4zT8+5ztPf0xVbb3X5YlIhKnlLdLJVNXW85v5nzO4IINbTxtFghnOOV5dUcSTS7ewbW8l\nD39jIj2z0rwuVUQiRC1vkU7miSWb2b7/IBdNHkCC+bvIzYyzxvfhe18awZqd5Xzz8Q+orfd5XKmI\nRIrCW6QTKT1Yy33/Wsf4fjmM65tzxP5Jg/L49syhrNxexh/e2uBBhSISDQpvkU7kwYXrKTtYy0WT\nBzR7zJTB+Uwdksfv3vicz3eVR7E6EYkWhbdIJ1FRXcfj725k+rACBuVntHjsldMHk56cyA+eW06d\nus9F4o7CW6ST+MeqnVTV+vjyUb1aPTY7PZkrpg/m022lPPz2xihUJyLRpPAW6SRe/GQHPbJSGd4z\nM6Tjpw7JY9Kg7tz75hcUlR6McHUiEk0Kb5FOYE9FNYu/KGHakHzMQluExcy4bOpA6nw+fvn6mghX\nKCLRpPAW6QReW1FEvXNMH5rfpuf1yErjrPF9ePGTHSzbtDdC1YlItCm8RTqBv3+yg/7d0xmQ163N\nzz17Qh/yM1L42Uur8Pl0jx6ReKDwFolx2/ZV8uHmfUwfWhByl3mwtORELpo8gFU7ynh22dYIVCgi\n0abwFolxLy8vAmBaG7vMg00fms+o3ln87KVVvLl6V7hKExGPKLxFYtxLy7czvGcmvbLbv1a5mfG9\nL42gX/d0rp37IX//eHsYKxSRaFN4i8SwVTtKWV1UzvShBR0+V3ZaMneccRSjCrP43jOf8Ls3Pqe4\nrCoMVYpItJlzXWICS5d4kxJ/fvriSp56fwsPXHwcmWnhuQlgTZ2P3y9cx/sb92LA1CH5XDi5P2dP\n6NOuMXWJOv2SROEtEquqauuZdPcbjO+bw42nDA/7+bfvO8h7G0p4b/0edpRWccrIHvzy6+Pp2YHu\neYkKhbeo21wkVr2+sojyqjpOGdUzIufv2z2dc4/rz6/Pm8A3pg1k8bo9fOl/3+L1FUUReT0RCR+F\nt0iMemrpVnpnpzG6MDuir5NgxmljC/nvr42jIDOF7zz1MZtKDkT0NUWkYxTeIjFow+4K3t+0l5kj\ne0RtHLpPbjo/+PJIkhKNX76+OiqvKSLto/AWiUHPLNtKgsFJI3pE9XVzu6Uwe3wf5q3axQdaTlUk\nZim8RWJMdV09zy/bxrEDupPbLSXqr3/m+ELyMlK465XPtJyqSIxSeIvEmL99tJ09B2r4Ugj37Y6E\n1KREzp/Yj+XbSnn50x2e1CAiLVN4i8SQunofDyxcx9AeGYzrm+NZHScM68Gg/G78et5a6up9ntUh\nIk1TeIvEkFc+LWLr3oN89ei+ni6YkpBgfO2Yfmzbf5B/rSn2rA4RaZrCWyRG+HyO+xeso39eOscO\n7O51ORwzMJe8jBSeXLrF61JEpBGFt0iM+MdnO1lXXMGcCX1JiIFlSpMSEpg5sgeLPt/N1r2VXpcj\nIkEU3iIxwDnHff9aR2FOGtOGtP/Wn+F2ysiemMFT76v1LRJLFN4iMWD+qp2s2lHG2RP6kJDgfau7\nQX5mKsf0784zH2ylpk4T10RihcJbxGM1dT7++/U19O+ezgnDo7soSyhOHd2TPQdq+Odnu7wuRUQC\nFN4iHvvL0s1s3lPJxVMGkBhDre4GE/rl0iMrlb8s3ex1KSISoPAW8VDpwVp+98YXjOubw4R+uV6X\n06SEBOOUkT15d/0e1u4s97ocEUHhLeKpBxaso+xgLRdPGeDpdd2tOXV0T1KTEnj47Q1elyIiKLxF\nPLN1byWPvbORE0f0YFB+htfltCgrLZmTRvTg7x9vZ2dpldfliHR5Cm8Rj/xq/loSzDjvuH5elxKS\nM8YV4nOOx9/d5HUpIl2ewlvEAx9t2cfLy3dwxrhC8jNTvS4nJL2y05g0KI+/LN1MRXWd1+WIdGkK\nb5Eoc85x1yufkdstmbMn9PG6nDaZPaEP5VV1PK1FW0Q8pfAWibLXVuzkoy37Oe+4/qQlJ3pdTpsM\n7ZHJUYVZPLp4I9V19V6XI9JlKbxFoqi6rp5fzlvNgLxuzBwRewuyhOKrx/SjqLSKBxas97oUkS5L\n4S0SRb9fsJ6tew9yyZQBMbUMaluM65vD8UPzeWDhOtYV67pvES8ovEWiZHVRGQ8sWMeMYQWMj9EF\nWUJ12bRBpCYlcvvfVuDzOa/LEelyFN4iUVBX7+OW55eTkZrE5dMGel1Oh+WkJ3PxlAF8sGkfzy7b\n6nU5Il2OwlskCh5ZvJGV28u4YvogstKSvS4nLGaO6MFRhdn84rXVut+3SJQpvEUibPnW/fzvPz9n\n0qDuTBmc53U5YWNmXHPCEOqd45uPf0B5Va3XJYl0GQpvkQhasmEPFz+yhJz0ZK48fnBMr1/eHr1z\n0vjuqSNYv7uCm576mPoYHf++7rrr+PnPfx6Wc23ZsoXMzEzq6/2Xys2cOZNHHnkkLOduTmZmJhs2\nRHddeTNLN7OXzazUzJ6L6ot7xMweN7O7wni+183sG+E6XzCFt0iELFhTzDcee5/cbin8bPYYundL\n8bqkiBjbN4crjx/MgrW7+cVrq6P++oMGDSI9PZ2srCxyc3OZPn06Dz30ED6f79AxDz30ED/5yU9C\nOtcbb7zR4jEDBgygoqKCxMSOX6N/5513cumllx62rakPAxUVFQwZMqTDr9dG5wK9gHzn3HnRfvF4\n4Jw73Tn3p0icOykSJxXpyg5U1/HQovU8uHA9A/K6cdvpo8iOk3Hu5swa3Yvt+w/y6OKN5GWkcMPJ\nw6L6+i+//DKzZs2itLSURYsWcfPNN7N06VL++Mc/hvV16urqSErqMn82BwKfO+c6vBaumSU1Pk9T\n29p6jlhl/i42c875Wj24ndTyFgmTep/jmQ+2MPPXC7nvX+uYMjiPO84cHffB3eCyKQM5YVgBv56/\nlt8vWOdJDTk5OZx99tk888wz/OlPf2LlypUAXHHFFfz4xz8GoKSkhLPOOovc3Fzy8vI44YQT8Pl8\nXHbZZWzZsoXZs2eTmZnJr371KzZt2oSZ8eijjzJgwABOOeWUQ9vq6v6dI+vXr2fy5MlkZ2czZ84c\n9u7dC8DChQvp1+/wG880tO7nzZvHL37xC5555hkyMzOZMGECd9xxB2+//TY33ngjmZmZ3HjjjYB/\nfsG6desavs4xs7lmttvMNpvZj80sIbDvCjNbbGa/MbN9ZrbRzE5v7udlZqPNbKGZ7TezVWZ2dmD7\nfwI/BS4wswozu6qJ5yaY2Q/NbL2Z7TGzZ80sL7BvkJk5M7vKzLYA/2pqW+DYswOvvT9Qy+ig19hk\nZreZ2afAATM74pOTmf2fmW01szIz+9DMTgjad2egrrlmVh54nYlB+48xs48C+54B0lr4WV1hZu+Y\n2f2BoYQ1ZnZq0P6FZna3mb0DVAJDAtuuDjrmGjNbHXi9z8zs2MD2Pmb218DvdKOZ3dRcHQ26zEdI\nkUhataOUH/1tBcu3lTKiVyY3nTqMYT2zvC4rqhISjOtOGooDfj1/LUDUW+ANJk+eTL9+/Xj77bcZ\nO3bsYfvuuece+vXrx+7duwFYsmQJZsaf//xn3n77bR555BFmzZoFwKZNmwBYtGgRq1evJiEhgV27\ndh3xenPnzmX+/PkMHjyYyy+/nJtuuoknnniixRpPO+00fvSjH7Fu3brDjn3nnXe49NJLufrqq5t7\n6n1ADjAEyAf+ARQBjwb2TwH+BBQA1wKPmllf59xhExLMLBl4GXgM+DIwA3jRzCY6535mZg4Y5pw7\nvF//374DfBU4CdgN3Av8Hrgo6JiTgNGAD38X/GHbzGwE8FTgPAuB7wEvm9lRzrmawPEXAWcCJc20\nvD8A/gsoBW4GnjOzQc65hnvXng18DbgSuAu4H5hqZinA34HfBbbNCdTyP828X/D/bJ/H/7P9GvA3\nMxvsnNsb2H8ZcDqwFjhsgouZnQfcGXivy4ChQG3gg9fLwIuB99oPeMPM1jrn5jdXiFreIh1QWVPH\n3a9+xtn3vcOmPZXccPIw7pw9pssFd4OEBOPbJw3l+EAL/Pa/fUpVrTdroPfp0+dQCzhYcnIyRUVF\nbN68meTkZE444YRWJxLeeeedZGRkkJ6e3uT+yy67jLFjx5KRkcHPf/5znn322UMT2sIpcM4Lgdud\nc+XOuU3APfhDo8Fm59zDzrl6/CFeyL+DM9hUIBP4pXOuxjn3L+AVDg/fllwH3OGc2+acq8YfTOc2\nah3f6Zw74Jw72My2C4BXnXP/dM7VAr8B0oHpQcff65zb2ugchzjnnnDO7XHO1Tnn7gFSgZFBhyx2\nzr0W+Hn8GZgQ9P6Tgd8552qdc8/j/yDQkuKg45/BH9JnBu1/3Dm3KlBL48svrgZ+5Zz7wPmtc85t\nBiYBPZxz/xX4PWwAHsb/e26WwlukndYVlzPn/nd4+O2NzBzZg9+cN4EZwwribkZ5WyUkGNefNJQ5\nR/fhqfe3Muf+d1i/uyLqdWzfvp28vCMvzbvlllsYNmwYX/7ylxkyZAi//OUvWz1X//79Q94/cOBA\namtrKSkpaXvRrQicMxnYHLR5M9A36PudDV845xouwM9s4nR9gK2NxmUbn6slA4EXAt3d+4HVQD2H\nf1BoagWf4G19CHovgVq2NqqhxVWAzOwHga7o0kAdOfhbxg12Bn1dCaQFPmD0AbY36pEI/rk2panj\ng28N2FKt/YGmbggwEOjT8HMMvIcf0fQHrkMU3iLt8OIn25l9/zvsKq/i9tNHcfUJQ8hM1ShUg4QE\n48JJA7jttFEUlR7krPsW8/BbG6ipi9j8ncN88MEHbN++nRkzZhyxLysri3vuuYcNGzbw0ksv8dvf\n/pY333wToNkPXq19INu69d9/s7ds2UJycjIFBQVkZGRQWfnvBWzq6+sPddc3d96WXqugoACgFv8f\n/AYDgO0tFti0HUD/hvHydpxrK3C6cy436JHmnAt+flPXDgZv20HQewlM9OrfqIZmrz8MjG/fCpwP\ndHfO5eLvPg/lE3QR0NcO/4EPaOU5TR2/I5Ra8f+8hjazfWOjn2OWc+6MlgpReIu0wbricr7152Xc\n/PQnDMzrxn+fM77Tr1MeSUf3z+UX54xjVO8s7n5tNV/53VssWFMcsdcrKyvjlVde4cILL+TSSy9l\n3LhxRxzzyiuvsG7dOpxz5OTkkJiYSEKC/09hr1692nU99RNPPMFnn31GZWUlP/3pTzn33HNJTExk\nxIgRVFVV8eqrr1JbW8tdd91FdXX1oef16tWLTZs2HXZZW0s1BC5Pexa428yyzGwg8H2g5QH2pi3F\n3xK91cySzWwmMBt4OsTnPxSoYyCAmfUwszltrOFZ4EwzOzUwBv8fQDXwbojPzwLq8I+5J5nZT4Hs\nEJ/7XuC5NwXe/9eAya08p2fQ8efhH7t/LcTXewT4gZkdZ37DAj+794HywMS8dDNLNLOxZjappZMp\nvEVase9ADe+uK+HW55fz5f99i7c+L+H8if2548zR5GXE57Xb4ZSfmcqtXxnFrV8ZSXVtPVc+/gHf\neOx9Pt8VvjuSzZ49m6ysLPr378/dd9/N97///WYvE/viiy+YNWsWmZmZTJs2jeuvv56TTz4ZgNtv\nv5277rqL3NxcfvOb34T8+pdddhlXXHEFvXv3pqqqinvvvRfwz35/4IEHuPrqq+nbty8ZGRmHzT4/\n7zz/5dP5+fkce+yxANx88808//zzdO/enZtuanLS8XeAA8AGYDHwJP5JZ20SmBA2G/8EqxLgAeBy\n59yaEE/xf8BLwD/MrBxYgn9CV1tqWAtcin8SXkmgntlBk9VaMx+YB3yOvwu7ila62YNeuwb/pLMr\ngL34x9//1srTlgLDA7XeDZzrnNsT4us9F3jOk0A5/slyeYGx+LOAo4GNgXM/gr/7v1nWaAJivOoS\nb1I6xjnH+t0H+HjLPr4oruDzXeWsKSpnZ5l/0mpSgvHlo3ox5+i+ZKd3jcu/wq2u3sf8Vbt44eNt\nVNX6uGhKf7514lD653XzurTOpGtPqvCImV0BXO2cO3IsxgMKb+my6n2ODbsrWL6tlPc37uHtL0oo\nKvUHdXKi0Sc3nX7duzEwrxsD87sxuCAjbm4q4rWyqlr++uE23li9C+dg5sgeXDxlIJMH55GjD0at\nUXh7QOHtjS7xJqVl1XX1LN9aypINe1iyYQ8fb93PwRr/5TwZqYmM6ZPDuL45jC7Mpnd2GokJ+hsZ\naSUV1SxYU8yCtcXsq/RfWZOfkcLgHhn0zk6jIDOVHlmp9MxKpTAnnd45qeRnpJKdntyVfz9d9o17\nSeHtjS7xJuXf6n2OnWVVbN1bycdb9vPu+hI+2LSXqlofBgwqyGBEryyG9shgSEEmhTlpJHTdMPBc\nnc/Hyu1lbN1bSVHpQYpKq9h/sJayg7VU1hx5vbQBWelJ5Gf4w71HZio9s1Ppk5NO75w0euek0TPL\nv69bStxdBaD/UKVrhfe64goqa/69QI9z/h3OuSbT3fBftuH/t2Fb5/r/pvE7a3jP/q+PfN/B7/nQ\nNjv8uT7ncM7/b73P/3XDcYb/MiF/DhoNr+Y/3v+aPndkXcH11fscPueoq3fU+XzU1vu/9zmHz+f/\nQ19T56Om3lFRVcf+gzWUVtayt7KGkopq9lbUUFxeTV3QHa7656UzpjCHo/pkM7p3NplpcfcHPW7V\n1PnYV1nD3gP+R1lVLRXVdVRU1VFWVUvpwdpDv/+q2iMvRUtLTiArLZmstCSyUpNIS04kPSWRtKRE\n0pITSEtOPLStW8O+5ETSA9uTE43kpASSExJITLDAA4IzNPj/kab9e0dTx5jZof9/Gv/NAeiZ5f9A\n0nB4yD88iVtdKrzPffBdlm3e53UtEmYZqYlkpSWTk5ZMTrdkctOT6ZGVSmFOGoU5aQzpkalZ4V2A\nc46K6jqKy/0f4PYcqGHPgWrKDtb5w766jsqaeqpr66mu81FV56O2zv91dZ2PgzX1h33giyU3njyM\nH3zl0KJhCm/pGuGdX1Dg+g/wrwOwp6SE/IKCVp4R+/Q+Yk+8vJd4eR8QP+8l+H307tmDefPmeVyR\nJ/ShJUiX6DvsP2AgbyxeCsCsGVMOfd2Z6X3Ennh5L/HyPiB+3kvw+zjtxKkeVyOxQIu0iIiIdDIK\nbxERkU6my4X35d9s9h65nYreR+yJl/cSL+8D4ue9xMv7kPDpEhPWjj72OBcP414SO+rratlfXERt\nTXVL1weJtI8ZySmp5PYsJDHp8BXnTjtxKsuWLfOoME9pwlqQLjFhTSTc9hcXkZudTfe8vC5//24J\nP+cc+/buYX9xEfl9WrtLpXRFXa7bXCQcamuqFdwSMWZG97x8f8+OSBMU3iLt4ZyCWyLKzJockllX\nXOFBNRJrFN4i0qk45/jed29i9MjhHHvMBD7+6KMmj5t1ysmMOWoUE487honHHUNxcTEAc//0OH16\n9zy0/bFHH4lm+Yd89OGHHHP0eEaPHM73vnsToc4/0hQLAY15i0iQuro6kpLC/2ehvr6exMTEsJxr\n3uuvs+6LdXy25nPeX7qUG2+4nnfeW9LksXPnPsFxEycesf2888/n/+69Pyz1tNeNN1zPQw/9gclT\npnD2WWcyf948Tjv99Faf19x9AaRrUctbpBPatGkTY8eM5vLLLmXc2KO44PzzqKysBPwtulNPnsmU\nyRM58/TTKCoqAuDRRx5m2tTJHHfs0Zx/3rmHjr/qm1dyw/XXcfy0qdx+2628tWjRoVbppInHUl5e\njnOOH956C0dPGMcxR4/n2WefAWDRwoXMOuVkLjj/vEP1NLQghw8dzO0/vI3Jk47j+eefC9t7f/nl\nF7nkssswM6ZMncr+0v2H3mNHTTzumCa3Dx86mB/edivHHD2e6VOnsG7dug69TlFREWXlZUyZOhUz\n45LLLuOll/7eoXNK16LwFumkPl+7luuu+zYrVn5GdnYWDz34ALW1tXz35pt4+tnnWPr+Mr5x5ZX8\n9Cd3APDVc77Ge0ve58OPPmHUqFH88bFHD51r+7btvLX4HX59z2/57W/v4d5772fZhx+zYOFbpKen\n88ILf2P58uV8+NEnzJv/T26/7dZDgfnJJx9zz2//l09XrGLjhg28+847h86bn5/P+x98yAUXXHhY\n7U8++ZdDHxCCHxecf16r73vH9h3079f/0Pf9+vZjx/btTR579dXfZOJxx3D3XT8/rFv6hb/9jWOP\nmcAF55/H1q1bD21f9uHHzb5uTk4OH3/yKd++4QZ+8P3vHbF/4YIFTb6nE2cc38R72E6/vv0avYcd\nLb/xAHWbC6jbXKTT6t+/P9OP9wfDxRdfyv3338eXv3Iaq1at5PTTvgz4u6sLexcCsGrlSn7205+w\nv3Q/Byoq+NKXv3zoXF8799xD3drTp0/nlh/8BxddfDFfPedr9OvXj3cXL+aCCy8kMTGRXr16ccKJ\nJ7Fs2QdkZ2UzadJk+vXzB9GEoyewafMmjp8xA4Dzzr+gydovvvgSLr74ksj8YAL+9Ocn6Nu3L+Xl\n5Vxw3rk88cSfueyyyznzrNlccOFFpKam8vAf/h9XXXkF/3jjzVbPd8GFFwFw4YUXcct/fP+I/TNP\nPrnF8A8Xn9JbUHiLdFqNZ7ubGc45jjpqDG+/8+4Rx1991ZU899cXmDBhAnP/9DiLFi06tC8jI+PQ\n17fe9kNOP+NM5r3+GjNPnMErr7V8B6vU1NRDXycmJlJfV9fkeYM9+eRf+O09vzli+9Chw3jm2cO7\n2B984Pc8GphU9tLLr9Knbx+2bvt3a3nb9m306dv3iHP1DWzLysriwosuYtkH73PZZZeTn59/6Jhv\nXnU1t//wthbfX4Pgn3dTVxosXLCAH/zgyFDvlt6Ntxa/c9i2Pn37sm37tkbvoU9IdSi7BdRtLtJp\nbdmyhSXvvQfA008/yfHHH8/IkSMpKdl9aHttbS2rVq0CoLy8nMLCQmpra3nqySebPe/69esZN24c\nt9x6G8dNnMTatWs4/oQTeO7ZZ6mvr2f37t0sfvstJk2a3O7aL774EpZ9+PERj8bBDfDt6284tL9P\nnz6cddbZ/OXPf8Y5x9IlS8jJzqGwsPCw59TV1VFSUnLoZ/Dqq68yZsxYgMPGx19++SVGjRp96Pux\nY0bTnOcC4/zPPvsMU6ZOO2J/Q8u78aNxcAMUFhaSnZXN0iVLcM7xlz//mdmz57T0IzvE51zIM9Ml\nfqnlLdJJjRg5kgcffIBrrrmK0aOP4lvXfZuUlBSeeuY5vv/dmyktK6Wuro6bbrqZMWPGcOd//hcz\npk+loKAHk6dMpry86euF77v3dyxcuJCEhASOOmoMp512OikpKSx97z2OO/ZozIxf/PJ/6N27N2vX\nrInyu4bTzziDefNeY/TI4aR368Yjjzx2aN/E445h2YcfU11dzZlnnEZtbS319fWceuqpXHX1NQDc\nf9+9vPLKyyQlJZHXPY9HHvsjACUlJS2G4r59+zj2mAmkpqby5yea//ATqvvu/z1XXXUlVQcP8pXT\nTgtppjmAA8qr68hOS271WIlfWttcpB12bvyckaOab6VF2qZNm/jqnNl8snyFZzXEm1dfeYWNGzdw\n43duOmLf8KGDeW/pBxQUFES1prVrVtN78IjDtvUdOpq1Kz5hUEHTQxJxTKsiBVHLW0QEOPOss7wu\nIWQb9xzoiuEtQTTmLdIJDRo0SK3uKPpi/caot7pbsl5LpHZ5Cm8RkU4k0YzPdpR5XYZ4TOEt0h6B\ny7JEIsU5B01ckpaeksiCtcXU1fs8qEpihcJbpB2SU1LZt3ePAlwiouF+3skpqUfsy0hNYl9lLR9s\n2udBZRIrNGFNpB1yexayv7iI3SUlWjVDws+M5JRUcnsWHrGrW3IivsQE/vbRNqYNzW/iydIVKLxF\n2iExKZn8PgOO2L5iV/UR28b1OrL1JNJeZnDq6J789aNtXHPiEEb0yvK6JPGAus1FwmDFruomgzt4\nX3P7RdrqnGP6kp6cyC9fj/4iORIbFN4iHdSWUFaISzhkpSVz9oQ+/GtNMa98GtrdyCS+KLxFOqC9\nQawQl446fVwhI3pl8oNnl7Nye6nX5UiUKbxF2ikc4asQl/ZKTkzge7NGkJmWxDVzl7G7XP8ddSUK\nb5F2CHfgKsClPXK7pfD9L41k74EaLn90KcXlVV6XJFGi8BZpo0gFrQJc2mNwQQbf/9IINpQc4NwH\n32Pr3kqvS5IoUHiLhNnKXVXNPlqjAJf2GN8vlzvOGM3eAzV87cF3Wbuz3OuSJMIU3iJhEkpAh3KM\nAlzaY3ivLH561lHU+xxff/Bd/vnZLq9LkghSeIu0QXPBGkqruvHxLT1HAS7t0T+vG/959hh6Zady\nzdxl3POPtdT7tAJgPFJ4i3RQW4O78XObe74CXNqjIDOVn541hpNH9uC+f63jyj++z/7KGq/LkjBT\neIvEgI58ABBpLCUpgWtPHMrVJwzm3fV7OPPexXy8RTcyiScKb5EOaC10VxVXH/Zo67nU+paOOHVU\nL+48ewy19T7Oe+g9Hnl7g+6EFycU3iIhakuQNhfWrQW5AlzCbWiPTO4+ZxxH98/lrldXc83cZepG\njwMKb5Ewa62FHXxcU8eqC13CLTM1ie9/aQSXTxvIwrW7OevexazaoSVVOzOFt0g7hStkQwlwtb6l\no8yM08cW8tOzjqKytp6vP/AqahZpAAAgAElEQVQuL3y8zeuypJ0U3iJhFGqruz3PU4BLOAzvlcXd\nXx3L4B4ZfO+Z5dz50ipq631elyVtpPAWiRGNA1zd5xIpud1S+NEZozljbG8ef3cTV/9pGZU1dV6X\nJW2g8BYJk1Bb3SuLmw/l1gJcrW8Jl6SEBC6bNohrThjC21/s5pKHl2oiWyei8BaJgpXFVYceTX0f\nrL1d7yLtccqonnz31BGs3FHKuQ+9R1HpQa9LkhAovEU81lSIBwe4Wt8SaZMG5/HD00axfd9BLnl4\nKaWVtV6XJK1QeItEWEvd5O05TiQSjuqTwy1fGcmWvZV8+y8fahJbjItYeJvZY2ZWbGYrm9lvZnav\nma0zs0/N7Nigfb8ys1VmtjpwjAW2LzSztWb2SeDRM1L1i3ghOMDV+pZoG12YzdUnDOHd9Xv46Yur\ntBpbDItky/tx4LQW9p8ODA88rgUeBDCz6cDxwHhgLDAJOCnoeZc4544OPIojULdIzGgpwEUi4aQR\nPZhzdB+een8L81ft9LocaUbEwts59xawt4VD5gBznd8SINfMCgEHpAEpQCqQDOjGtNJlhNp9rta3\nRMp5x/Wnf/d07n51NdV19V6XI03wcsy7L7A16PttQF/n3HvAAqAo8JjvnFsddNwfA13mP2noTm+K\nmV1rZsvMbNmekpJI1C8SMaF2n0vXMPexh5k1YwqzZkxh/949EX+9xATjkikD2brvIHPf3Rzx15O2\ni7kJa2Y2DBgN9MMf8KeY2QmB3Zc458YBJwQelzV3HufcH5xzE51zE/MLCiJdtki7FBUVUVRU1O7n\nq/XdNVz+zWt4Y/FS3li8lNy8/Ki85oT+uUzol8ODi9ZT79PYd6zxMry3A/2Dvu8X2HYOsMQ5V+Gc\nqwBeB6YBOOe2B/4tB54EJke1YpEWjOmZ2qbjg0O7qRDX5DXx2okjerD3QA2fbNW9wGONl+H9EnB5\nYNb5VKDUOVcEbAFOMrMkM0vGP1ltdeD7AoDA9rOAJmeyi0TCuF6Hh/PYXmkhPW9szyOPa6613ZFW\nuEi4TeiXS2KC8eZqzQ2ONZG8VOwp4D1gpJltM7OrzOw6M7sucMhrwAZgHfAwcH1g+/PAemAFsBxY\n7px7Gf/ktflm9inwCf5W+sORql8kFqj1LV7KSE1ieM9M3lsf+XF2aZukSJ3YOXdRK/sdcEMT2+uB\nbzWx/QBwXNgKFImAMT1TO7y8aVFREYWFhWGqSKRjemWnsWZnmddlSCMxN2FNpDNpquu8qbHvprrO\nQ6XWt3gpLyOFkvIa6rTiWkxReIvEoPaOfSvAJdxyuyVT7xz7tN55TFF4i7RB40lrzWnrzPPWNNf6\nFom0lER/TGixltii8BbpoFBnnbdVKK3vphZtUetbwin5UHir2zyWKLxFIqSl1nd7JqS1pfWtAJdw\nSUnyx8TBGrW8Y4nCW6SNmuo6D6X13Z5Ja+1tfYMCXMIjI9V/UVLZQY15xxKFt0gERXLs+7DtWvNc\nIiQjJRGAUoV3TFF4i7RDe1vf7dFc6zuUiWtqfUtHZacnA1Bcrv+WYonCWySMIhXgwUK9ZWgDBbh0\nRG56Mt1SElm/u8LrUiSIwlukndpz2Vh7F2sJpfWtrnOJBDOjX/d0Pt9V7nUpEkThLRJmoba+O7IE\naltb3yId0b97Nz4rKsOnW4PGDIW3SAeE2voOh460vtV1Lh0xvFcmZQfr1HUeQxTeIhHQuPUd7lnn\nItE0slc2AB9s0n29Y4XCW6SD2tr67shNSoJb36HesKSBWt/SXr2yU8lOT+LjLQrvWKHwFomQaMw8\nF4kGM2NQfgYrd5R6XYoEKLxFwqC9Y9/tmbTWXOtbJJIG5Wfwxa4KarTGeUxQeIvECV02JpHUJzed\nOp9jx/6DXpciKLxFwqa1Vdeam7TW0da3SDSkJBoAdT61vGOBwlvEAx2ZtNaYus4lGhISGsJb13rH\nAoW3SBhF87rv9tCMc2mvymr/LUFTkxI9rkRA4S0SVZHuOte4t0TK2l3l5HZLZlB+N69LERTeImHX\nuPXd3CVj6jqXzmTtzjImDcrDzLwuRVB4i8SMjqx1LhJJ64or2FlWzYxhBV6XIgEKb5EICHXsu6Ot\n79a6zkXC4cVPtpOTnszXj+vndSkSoPAWiYJQLhmD8Le+Ne4tHbVtXyXLNu/jG9MHkZma5HU5EqDw\nFvFYuMa+Ne4tkfDk+1vISE3kiumDvC5Fgii8RSKkpa7zcLa+tWCLRMpHm/fx8Zb9fG/WCPIyUrwu\nR4IovEWipKUblYRz5jlo3Fs6rqbOx9wlmxjaI4NvqNUdcxTeIh6JxNh3U13nGveW9pi/aie7yqr5\nz7PHkpyoqIg1+o2IRFCo13xD6K3vqi0rj9imrnMJp4rqOl5cvp2ZI3owY7guD4tFCm8RD7W19d0Q\n3E0FeKi0RKq05qVPtlNZXc9tp4/yuhRphsJbJMJaa30HB3hbxr6bC/CGrnONe0t71Pl8LFi7mzPG\nFzK6MNvrcqQZCm+RTiw4wFvqOte4t4RqTVE5FdV1zB7fx+tSpAUKb5EoiFTrWyTclm3eR2pSAieO\n0Fh3LFN4i8SwUGadN9X6bq3rXOPe0pzt+w8yqncW3VK0mlosU3iLRInXrW91nUsoUhKN2nrndRnS\nCoW3iIdaunSsLToy+1wkWHJiAlV19V6XIa1QeItEUWt3G2vp0rFQhdp1LtKUHlmpbNlTSUmF/ruJ\nZQpvEY951frWuLc0ZeaIntT5HM9/uM3rUqQFCm+RKGuq9d3ULUMbxr3bs1Rq49Z3A417S2v6dk9n\nVO8snly6hXqfxr5jlcJbJI401/pW17m0xWlje7NlbyVz39vkdSnSDIW3iAdaa32HqnrrinCUI3KY\nyYPymNA/h1/NX8v2/Qe9LkeaoPAWiUFtmbjWOMAbWt/NdZ0H07i3NMXMuOr4wfh8jp+8sALn1H0e\naxTeIh5pbeY5hH69dygt8Iauc417Syh6ZKVx3nH9+dfa3cxftdPrcqQRhbdIDGmu67ypSWuNA1td\n6BJup43tzcC8btz50mccqK7zuhwJovAW8VAore9gaQPGhnRca13nwa1vdZ1LcxITjG/OGMzOsiru\nffMLr8uRIApvkRgVjgVbGtOsc2mrEb2ymDYkn6c/2Epdvc/rciRA4S3isdbWPG9u3Du1/7gjtrW3\n61ytb2nJlCF5lB6s5YNN+7wuRQIU3iJxqnHXuUh7TeiXS3Ki8c/PdnldigQovEViQChj3+1ZaS2Y\nVluT9kpLTiQ7LZl9lTVelyIBCm+RGNTQdd7UuHeok9aao3Fvaauq2nr2HKhhaI8Mr0uRAIW3SCfQ\nlnHv9tK4tzSnYZW1oT0yPa5EGii8RWJEWy8ba6AAl0ibv3InKYkJHDuwu9elSIDCWyTGBXedN4x7\nN9d13lyQNzdpTePe0poNuyt4e10JV50wmF7Z4bl9rXScwlskRrXlRiWp/ceF1AJvmLTW0ri3Wt/S\nwDnHE0s3k5eRwvUzh3pdjgRReIt0EqGucx4OCnAB+OfqXawuKueWr4wkKy3Z63IkiMJbJIa05ZKx\njs46b6Cuc2nKztIqnly6hROHF3DhpP5elyONKLxFOoFILJXaGrW+uy7nHP/vrfWkJiXwq3MnYGZe\nlySNRCy8zewxMys2s5XN7Dczu9fM1pnZp2Z2bNC+X5nZKjNbHTjGGj33pebOKxJPWlsqtSOt7+Bx\n7+Za3yt2VSvEu6CVO8pYs7Oc204fRe8cTVKLRZFseT8OnNbC/tOB4YHHtcCDAGY2HTgeGA+MBSYB\nJzU8ycy+BlREpGKRTqIjq601XmlNpLFXP91BQWYK5x7Xz+tSpBkRC2/n3FvA3hYOmQPMdX5LgFwz\nKwQckAakAKlAMrALwMwyge8Dd0WqbpHOJhpj32p9dx3b9lWyfFspVx4/mNSkRK/LkWZ4OebdF9ga\n9P02oK9z7j1gAVAUeMx3zq0OHPNz4B6gsrWTm9m1ZrbMzJbtKSkJb+UinVBT13q3ZalUBbh35j72\nMLNmTGHWjCns37snoq9VUuH/PU8ZnBfR15GOibkJa2Y2DBgN9MMf8KeY2QlmdjQw1Dn3Qijncc79\nwTk30Tk3Mb+gIIIVi0RHw6S1hnHv4K7zaM08V4B74/JvXsMbi5fyxuKl5OblR/S1MlKSACirqo3o\n60jHeBne24Hg6w/6BbadAyxxzlU45yqA14FpgcdEM9sELAZGmNnCqFYsEsPaEuDB496NW98K8K4t\nM9Uf3sVl+j3HMi/D+yXg8sCs86lAqXOuCNgCnGRmSWaWjH+y2mrn3IPOuT7OuUHADOBz59xMr4oX\niYSOBqOu/ZaO6pGdSu/sNP7vzS8orVTrO1ZF8lKxp4D3gJFmts3MrjKz68zsusAhrwEbgHXAw8D1\nge3PA+uBFcByYLlz7uVI1SkSbxoCvKkgb26N86bGvjWBrWtKSkjgxlOGUVxezR1/X4FzzuuSpAlJ\nkTqxc+6iVvY74IYmttcD32rluZvwX0Ym0qUVFhY2G8itWVlc1eqSqyt3VbVpjXWJD0N7ZPL1Y/vx\n7LKtjOmTw3UnDdFCLTEm5iasiXRV4WzNtqf7vLmZ5y0t4CLxa86EPkwenMf/zFvDd576mAPVdV6X\nJEEU3iIxLBJjz8Et9cYLtrTl0jGJbwkJxs2nDufCSf15bUURc37/Dut3a32sWKHwFokBTbViGwd3\npII1lABX67trSjBjztF9+eHpoykuq+Ls+xfz5NIt+HwaB/eawltEjtDWCWwS38b1zeHuc8YxIK8b\nP3phBV9/8F1W7Sj1uqwuTeEt4rG2trqDW8rtnazW+Hla71xaU5CZyk/OPIpvnzSU9SUVzL5vMf/1\n8mdUaCzcEwpvkRgTKy3cULvp1XXedZgZJ47owT3nHc3JI3vyx3c2cspvFvLS8h26pCzKFN4iMa65\nVndLqraspGpLy3fNDaX13dbV16RryExN4uoThvBfc8aQkZrETU99zIV/WMLqojKvS+syFN4iHmrc\nam3LJLWmuswbh3ZrAS7SEcN6ZnHXnLFcPWMwnxWVcea9b/OzF1dqZbYoUHiLxKgjWr2tjHU3F9Rt\nCXCNfUtbJSQYp47uxW/PO5pZo3vx5yWbmfmbBbz4yXZ1pUeQwlskRgS3usMV3OGgrnMJRWZaElce\nP5hfnDOO/MxUbn76E66eu4ydpfrvJRIU3iIeCXWiV0vBHcrYdkua+iDQnta3Jq1Jg4H5Gfzn7DFc\nOmUgb39ewpf+dxHPfrBVrfAwU3iLxJhQLwvTeLbEqoQE48zxhfzy6+Po1z2dW//6KVc9/gGlBzUW\nHi4Kb5EY0FRXtIJbOrvCnHR+fOZRfGPaQBZ9UcKc+xezrrjc67LigsJbJIY0NbtcwS2dWYIZp40t\n5MdnjGZfZS1zfv8O//xsl9dldXot3hLUzF4Gmh2ocM6dHfaKRKTZcefGwV29dcURx6T2Hxfy6xQW\nFratMJF2GlWYzd1fHctv//k518xdxn+ePYZvTB/kdVmdVmv38/5N4N+vAb2BJwLfXwToo5NIO4U6\nwauh1R1KaAfva0uAi0RLfmYqP5s9hvv+9QU/e2kVKUkJXDR5gNdldUotdps75xY55xYBxzvnLnDO\nvRx4XAycEJ0SRbqm5tYtbym423KMiBdSkhK46dThHN0/lx/9bQUvfLzN65I6pVDHvDPMbEjDN2Y2\nGMiITEkiXVvjLvPgVnd7Q7mpcXJ1mYtXkhMT+N6sEYzpm81/PLucBWuLvS6p0wk1vL8HLDSzhWa2\nCFgAfDdyZYl0HaEuetI4uKu2fXbEo6XjQzW2Z1q7nifSFilJCfzHl0YyIK8b3336E7btq/S6pE4l\npPB2zs0DhgM3AzcBI51z8yNZmIj8u8UcHMRNBXXwPpHOIi05kZtPHUFtvY8b/vIRNXU+r0vqNEIK\nbzPrBtwC3OicWw4MMLOzIlqZiLRLKAHeXJd5R1rdWmVN2qN3ThrfOnEoy7eVcs8/1npdTqcRarf5\nH4EaYFrg++3AXRGpSESa1daWtSauSWcweXAep4zqySNvb9RtRUMUangPdc79CqgFcM5VAhaxqkS6\nuOCZ5q1dFtbwCNae7vPmWt1jeqa2+VwibXXRpAFkpCZyxwsr8Pm0DnprQg3vGjNLJ7Bgi5kNBdRH\nJhJFrU1IUytbOrPMtCQunjKQj7bs5++fbPe6nJgXanjfCcwD+pvZX4A3gdsiVZRIV9faZVzNBbVm\nmEtnduLwAgbmdePBhet1F7JWhDrb/B/4V1m7AngKmOicWxDBukS6jLG9IhOcmnkunY2Z/25kXxRX\nsHDtbq/LiWmhzjZ/0zm3xzn3qnPuFedciZm9GeniRKTjWmuNt9Tqbut4t2acS0dNG5pPQWYKj72z\n0etSYlqL4W1maWaWBxSYWXczyws8BgF9o1GgSFcXrnXKdTcy6QySEhKYPDifpRv2UlVb73U5Mau1\nlve3gA+BUYF/Gx4vAvdHtjSRrqm5lnBav6OiXImIN8YUZlNT7+OjLfu8LiVmtXZjkv9zzg0GfuCc\nG+KcGxx4THDOKbxFIixtwNg2P8frWefqOpeOGlWYhQHLNim8mxPqbHOfmeU2fBPoQr8+QjWJxL1x\nvTp27XRLXem6Hah0dt1SkkhKNCpr1G3enFDD+xrn3P6Gb5xz+4BrIlOSiMDhl4s1BHJw17lCWuKZ\nc5CgpcCaFWp4J5rZoR+jmSUCKZEpSaTrauvs7nAEeONbkAZbVdx0F3hrd0JT17l0RG29j3qfI1Hp\n3axQw3se8IyZnWpmp+K/1nte5MoS6VoaX+sdPGmtYdy7qdZ3w/bgh0hnt3J7KQ44dkB3r0uJWaGG\n92347+H97cDjTeDWSBUlIn7NrbTW0ZnnwWuni8Sa9zfuJTM1ienD8r0uJWaFusKazzn3oHPu3MDj\n/znnNJNAJAKa6jpv3PqG8F461lLXeXup61zao+xgLR9s3sus0T1JTUr0upyY1doiLc8G/l1hZp82\nfkSnRJGuobmu88at71ADPFzh3ty4t0i4Oed49J2N1NT5+PbMYV6XE9OSWtl/c+DfsyJdiEhXM65X\naptap2kDxh5aJS21/7hD13N7tXjLyl1VEVuXXbqmd9fv4f2Ne7nttFGM7J3ldTkxrbVFWooC/25u\n6hGdEkW6noau88at7+BFW0KdnBbqceo6Fy99saucx97ZyDH9c7n2xCFelxPzWus2LzezsuYe0SpS\nJFo6Q9g0DvBwzjCPRICLtGZ1URn//fpqCjJTuf+SY3WJWAhaa3lnOeeygf8Dfoj/ZiT98M8+/13k\nyxOJnobg9jLAg7uhm2t9w5HLpjZ1qVg4g13j3hIpK7aX8st5ayjMTee566bRNzfd65I6hVAvFTvb\nOfeAc67cOVfmnHsQmBPJwkSiqXFgRyvAQ10mtbkAb2rt81BDu7nLxdT6lmhwzvH6yiJ+NW8NQwoy\nePZb0+iVrTkUoQo1vA+Y2SVmlmhmCWZ2CXAgkoWJeM2rFnhTre9gjWefh3rzkvbc5CQcOsNQhERX\neVUt9/zzc+a+t5mZI3vwzLXTKMjs2Hr/XU2o4X0xcD6wK/A4L7BNJK7FUvAEr7pWWFjYZCu8uYBu\na3Cr9S2RsmZnGbf/bQXLt+7np2cdxcOXTySnW7LXZXU6rV0qBoBzbhPqJheJmrG90g6tHz6mZ+qh\nMeexPdMOC9bCwsIjur+9amGLtKSqtp7nPtzGvJVF9M/rxuNXTmZcvxyvy+q0Qmp5m9kIM3vTzFYG\nvh9vZj+ObGkiXUMo497B3efBLXA4shUuEmtWbC/ltr9+ymsrirhw8gBe+c4MBXcHhdpt/jBwO1AL\n4Jz7FLgwUkWJRFtH768dCY0XQGkc4OEIca1xLpFUUV3HQ4vW84vXVtMtJZGnr53KL84ZR1aausk7\nKtTw7uace7/RtrpwFyMSi2Jp3LuxxgEO4WuJNx731uViEirnHEs27OGW55az+IsSvj1zKPO+eyJT\nh+hGI+ES0pg3UGJmQwEHYGbnAvrILhImzS2VGjz2Df9ufQcHaUOANw7bhgBX61qiaU9FNX98dxMf\nbt7HmD7Z/M/XxzO2r7rIwy3U8L4B+AMwysy2AxuBSyJWlYgc0jjA4fBJbIeOayHEWwrwoqKiiI6Z\nx+KQhISfzzneXL2Lp97finOOO84YzZXHDyIpMdQOXmmLVsPbzBKAic65WWaWASQ458ojX5pIdLX1\nRiHRfP3mAhyO7M5uPCMdWg/w9tBNSaTB/soaHly0nk+3lXL8sHz++5zxDMjv5nVZca3Vj0TOOR9w\na+DrAwpuEW80F5ZNLeTS3Fi4SLit3F7K7S+sYO3Ocu766lieuGqKgjsKQu3PeMPMfmBm/c0sr+ER\n0cpEPOB1F297X7+jAR6pcXGvf54SOfU+x7PLtvKL11aTl5HCizcez6VTB2Kmm4pEQ6jhfQFwPbAI\nWBb0EIk7sRw4Y3ulqQUunqv3OX6/cB0vfLydc4/rxyvfmcGo3tlel9WlhBreRwG/B5YDnwD3AWMi\nVZRILIl2mIfyem0J8FCFu/Udyx+CpP18PsdDi9bz3vo93H76KH593gS6pYQ691nCJdTw/hMwGrgX\nf3AfFdgmEpc6Q/CEGuBNtb5F2sPnHH94ewOL15Vwy1dG8q2ThnpdUpcV6selsc65o4K+X2Bmn0Wi\nIJFY0VkCvPEsdGj6UrJo6gw/O2m7N1bvYtHnu7n51OHccPIwr8vp0kJteX9kZlMbvjGzKWjMWyRi\n2hJ+oVyy1dRSqpGi4I5PlTV1/PXDbUwdnMd3Zw33upwuL9TwPg5418w2mdkm4D1gkpmtMLNPm3qC\nmT1mZsUNNzNpYr+Z2b1mts7MPjWzY4P2/crMVpnZ6sAxFtg+z8yWB/Y9ZGaJbXq3Ip1IRwO8PePf\nLY17h3I+BXf8evGTHZRV1XHHmUdpRnkMCLXb/LR2nPtx4H5gbjP7TweGBx5TgAeBKWY2HTgeGB84\nbjFwErAQON85VxYI8+fx31f86XbUJtIptGXhmOa60EU6qqbOx7xVO5lzdB/dDSxGhHo/781tPbFz\n7i0zG9TCIXOAuc45Bywxs1wzK8S/fnoakAIYkAzsCpyzLKjulMCxIhKCplZeEwnFuuJyaup8zB7f\nx+tSJMDLRWf7AluDvt8G9HXOvQcswH/jkyJgvnNudcNBZjYfKAbK8be+m2Rm15rZMjNbtqekJBL1\ni0RFR7rPO3LpWFupyzxy5j72MLNmTGHWjCns37sn6q//WVEZCQaTBmttrlgRcyvGm9kw/Jel9cMf\n8KeY2QkN+51zXwEKgVTglObO45z7g3NuonNuYn5BQYSrFomsWAtGrWseXZd/8xreWLyUNxYvJTcv\n+rfVXLOznNGF2eSk6z7cscLL8N4O9A/6vl9g2znAEudchXOuAngdmBb8ROdcFfAi/q53ERGJEOcc\nm0oOMKF/rtelSBAvw/sl4PLArPOpQKlzrgjYApxkZklmlox/stpqM8sMjIljZknAmcAar4oXibZQ\nW9+hdp1rmVQJxa6yag7U1DNO9+SOKRFb087MngJmAgVmtg34Gf7JZzjnHgJeA84A1gGVwJWBpz6P\nvzt8Bf4JafOccy+bWS/gJTNLxf+hYwHwUKTqF4lHjSetReJWoRJfVu4oBWBCP7W8Y0nEwts5d1Er\n+x1wQxPb64FvNbF9FzApbAWKdEKRvue4WuMSzDnHv9YUM7JXFqMLs7wuR4LE3IQ1EWlZR25c0hQF\ntjRn/e4DbCw5wKXTdKvPWKPwFukCgse9m7tNqEJcgtX7HH9ZupmM1ES+erSu7441Cm+RTijWLh2T\n+PPch1tZs7Ocu786jqw0XSIWaxTeIl2QbhMqLflk6z5e/GQHF03uz1eP6et1OdIEhbdIJ9Va69vL\n1dak81pdVMa9b37BqN5Z/Gz2GK/LkWYovEW6qNZa321tnUdyFrxEx8rtpfzPvDUU5qYz95uTSUvW\njRtjlcJbpBPraOs71IBWqz3+fbptP7+ev5aB+d145tpp9MzW0EosU3iLdHEa/5YPNu7l1/PXMrRH\nBk9fO40eWfqwFusU3iKdXDjHvsf2TDv0aA91nXc+iz4v5ndvfs74fjk8fe008jJSvC5JQhCxFdZE\nJHaN6ZnKquJ/B61a313TvJVF/Om9zRw/LJ8/XDaRjFRFQmehlrdIHGhr6zuS1PruHN7+Yjd/em8z\nXxnTi8eumKTg7mQU3iJxoq0Lt4Q6CU2T1eLPZ0Vl/OGtDUwbks99Fx1LapJmlXc2Cm+RLqKp1nek\ngnnFrmq1wGNU0f6D/O8/P2dAfjceuvQ4UpIUA52RfmsicaQ93ectBXhHw10BHnsefWcjiQnG41dM\nJqeblj3trBTeInEm3AHeUWqFx46V20tZtaOM784azoD8bl6XIx2g8BaJQ+25ccmYnqmHhXi4A10B\n7i3nHM98sIXCnDQunjLA63KkgxTeIl1QS7PPG4d4OCnAvbNt30HW7T7At2cO1QS1OKDwFolTsXT5\nWDAFuDfWFVcAcPywAo8rkXBQeIvEMd33Wxqs311BdloSg/MzvC5FwkDhLRLnWgpwtb67ju37DzKy\ndxYJCeZ1KRIGCm+RLs6rAJfoqq7zkZWmS8PihcJbpAuIxe5ztb6jq7q2nvQUTVSLFwpvEVHruwuo\nqfeRplnmcUPhLdJFxOrsc4mOep8jJUnj3fFC4S0inlHXefTU+RxJCfqTHy/0mxSRQ9T6jl+19T5S\ndROSuKHfpIhInKur91FV6yMnXbPN44XCW0QkzlVU1wGQq7uIxQ2Ft4gcRl3n8ae8qiG8UzyuRMJF\n4S0ibbZyV5XXJUgb7KusAaBnVuxd7y/to/AWEYlz+ytrAeiZrV6VeKHwFhGJc2VV/vDOz1S3ebxQ\neIvIYdQlHn8qa+oxIDMlyetSJEwU3iLimVhccz0eVdbUk5mWpDuKxRGFt0gXodXMuq66eh8pifpz\nH0/02xSRQ6LZZa5Wd1YDIUUAAA4fSURBVPQkJSZQW+/zugwJI4W3iESdgju6khON6jqFdzxReIsI\nEL1Wt4I7+tKSE6mu86n1HUcU3iISNQpub2Sn+ZdF3XegxuNKJFwU3iKiy8PiXMMNSXZXaNJivFB4\ni3QBsTDTXK1u72Sm+a/vLg2stCadn8JbRCJOwe2ttMB9vCtr6j2uRMJF4S0iEudSkxMBOFBT53El\nEi4KbxGJKLW6vefzOQDMtMJavFB4i3RxmqwW/0oP+se6e2Tqg1S8UHiLSMSo1R0b9jeEt+7nHTcU\n3iIicW7LngMkJRh9c9O9LkXCROEtIhLnVhWVccyAXNJTEr0uRcJE4S0iEscOVNexqeQA04cWeF2K\nhJHCW6SLG9srLSLP0Xh3bPhoyz58Dk4c0cPrUiSMFN4iInHsnfUl9MtN59gBuV6XImGk8BYRiVOl\nB2tZsa2UOcf00TXecUbhLSJt0p5udvHG0o178DmYPaGP16VImCm8RUTi1JINexjWM5NRvbO9LkXC\nTOEtIiG1psf2SlOruxPZe6CGNUXlzB6vVnc8SvK6ABGJrFBvBzq2V9oRS6UqrDuvFdv344Avj+nl\ndSkSAQpvETlEYR0/PttRRm63ZEb2yvK6FIkAdZuLiMShNTvLmTo4n4QEzTKPRwpvEQk7LdDircqa\nOorLqxnfP8frUiRCIhbeZvaYmRWb2cpm9puZ3Wtm68zsUzM7Nmjfr8xslZmtDhxjZtbNzF41szWB\nfb+MVO0iIp3ZrjL/PIdB+RkeVyKREsmW9+PAaS3sPx0YHnhcCzwIYGbTgeOB8cBYYBJwUuA5v3HO\njQKOAY43s9MjUrmISCdWXOafeDgwv5vHlUikRCy8nXNvAXtbOGQOMNf5LQFyzawQcEAakAKkAsnA\nLudcpXNuQeDcNcBHQL9I1S8i0lmVBu7f3TNLExDjlZdj3n2BrUHfbwP6OufeAxYARYHHfOfc6uAn\nmlkuMBt4s7mTm9m1ZrbMzJbtKSkJe/EiItEy97GHmTVjCrNmTGH/3j2tHl9ZWw9AVpouKIpXMTdh\nzcyGAaPxt6r7AqeY2QlB+5OAp4B7nXMbmjuPc+4PzrmJzrmJ+QW6FZ5ItGiyWvhd/s1reGPxUt5Y\nvJTcvPxWjz9YU09SgpGaFHN/4iVMvPzNbgf6B33fL7DtHGCJc67COVcBvA5MCzruD8AXzrnfRa1S\nEZFOpLbeR2pygm5GEse8DO+XgMsDM8mnAqXOuSJgC3CSmSWZWTL+yWqrAczsLiAH+K5XRYtI89Tq\njg0+B4m6vjuuRWxAxMyeAmYCBWa2DfgZ/slnOOceAl4DzgDWAZXAlYGnPg+cAqzAP3ltnnPuZTPr\nB9wBrAE+CnyivN8590ik3oOISGdU73MkqtUd1yIW3s65i1rZ74AbmtheD3yrie3bAP3XKBKj1OqO\nHfU+R1KixrvjmX67IiJxpt7nI1nd5nFN4S0iHaZWd2xRyzv+6bcrIh2i4I49B2vryUzVNd7xTOEt\nIu2m4I5NFdV1dM9I9roMiSCFt4hInKmoriM3PcXrMiSCFN4i0i5qdcemep9jd3k1fbune12KRJDC\nW0TaTMEdu4rLqqitdwzvmel1KRJBCm8RkTiydd9BAIb3yvK4EokkhbdInAt3K1mt7ti2akcpaUkJ\njOqt8I5nCm8RkTjy6bb9TB+aT1pyotelSAQpvEUkZGp1x7Yd+w+ys6yamaN6el2KRJjCW0QkTixc\nW0yiGV8Z09vrUiTCFN4iXYBazPGvrt7Hoi92c+ronvTKTvO6HIkwhbeISBxYunEvZQfruHjKAK9L\nkShQeIt0ER1tfav1Hrucc/z/9u49Rq6yjOP496E3WtrSlkILVKC1BgQFlEoMFgJIwsVoMYZIQgwB\njRcw/kUUQ4IEY4hA/EONIaZKMBIBMRhFMQETg+FSQSgUItBKQdoClQJtKgK9PP5xXtPpZrcs3WHP\nvDPfTzLpmTPnvPM8zB5+e2bePfP7xzewaO5+nPKBA9suR+PA8Jakyj36r9d5ftMbXHLaYvbxq0AH\nguEtDZC9PXv2rLt3ZSa/XbmeBbOmsuz4Q9ouR+PE8JYGzLsNYoO7t61av5nVG7fy1VPfzyS/w3tg\n+EpLA2i0gWxw97bM5DePrGP+zH05b8mCtsvRODK8pQG1p2D+8LwpBncFntywhWde3sqlpy9mykSv\nqDZIJrZdgKT2GNB1u/PxDcydPpnzTvCse9B45i1JFXp+0394bN1mLvrEQq9jPoAMb0mq0F1PvMTU\nyRO4wIuyDCTDW5Iq8+a2HaxYu4llxx3CrGmT2y5HLTC8JakyK9a+ypvbdvI5P+seWIa3JFXmvjWv\ncNicaSw5fHbbpaglhrckVSQT/vHiFs48Zh4RXgp1UPmnYpJUkf9u20HsTJb6BSQDzTNvSarIm9t2\nMGlCcOIRc9ouRS0yvCWpIm9t38mR82cwdbJ/2z3IDG9JqsjbO3bywfkz2y5DLTO8JakiO3YmR86f\n0XYZapnhLUmVWTB7WtslqGWGtyRVZt5Mv1Bm0BneklSZg2bu23YJapnhLUmVmTV1UtslqGWGtyRV\nZpp/JjbwDG9Jqsg+EV4WVYa3JNVkH3NbGN6SVBXPugWGtyRVxegWGN6SVBVPvAWGtyRJ1TG8Jaki\nnngLDG9JqozxLcNbkupidgvDW5Kk6hjeklSRg/f3S0lkeEtSVaZPmdh2CeoBhrckSZUxvCVJqozh\nLUlSZQxvSZIqY3hLklQZw1uSpMoY3pIkVSYys+0a3nMR8W/g+XJ3LvBKi+V0i330nn7ppV/6gP7p\npbOPwzPzwDaLUfsGIrw7RcTDmbmk7TrGyj56T7/00i99QP/00i99qHt821ySpMoY3pIkVWYQw/un\nbRfQJfbRe/qll37pA/qnl37pQ10ycJ95S5JUu0E885YkqWqGtyRJlak2vCNiTkTcHRGry7+zR9ju\nwrLN6oi4sGP9CRGxKiLWRMQPIyL2NG5ELIuIxyNiZUQ8HBFLK+7lgtLLqoi4PyKOq7SPoyLigYh4\nKyIu60L9Z0XE0+X5Lx/m8SkRcWt5fEVEHNHx2LfL+qcj4sx3GjMiFpYx1pQxJ4+1/pb6+HpZlxEx\nt1s9tNTLzWX9ExHx84iYVGkfP4uIx8oxfntETO9WH+ohmVnlDbgWuLwsXw58f5ht5gDPln9nl+XZ\n5bG/AR8HArgLOHtP4wLT2TVH4FjgqYp7Oalj37OBFZX2cRDwMeB7wGVjrH0C8E9gETAZeAw4esg2\nlwA3lOXzgVvL8tFl+ynAwjLOhD2NCdwGnF+WbwC+1qXXYLz7+AhwBPAcMLfLx/h493JO+dkL4FcV\nvyYzO8b9AeXY8dZft2rPvIFlwE1l+Sbg3GG2ORO4OzNfzczXgLuBsyLiYJof8Aez+Qn/Rcf+w46b\nmVvLtgD7Ad2c6TfevdxfxgB4EFhQaR8bM/MhYFsXaj8RWJOZz2bm28At5XlH6u924JPl3YFlwC2Z\n+VZmrgXWlPGGHbPsc3oZY7eeauoDIDMfzcznulR72738MQuaXyS7dVyMdx9bAMr+U+nu/6vUI2oO\n73mZ+WJZfgmYN8w2hwIvdNxfV9YdWpaHrt/juBHx2Yh4CvgDcPGYO9hl3Hvp8EWas9xuaLOPsRqp\nrmG3ycztwGbggD3sO9L6A4DXyxgjPdfeGs8+3mut9FLeLv8C8KcxdzCkxpGeky73ERE30hwrRwE/\n6kYT6i0T2y5gTyLiHmD+MA9d0XknMzMiuv7b5dBxM/MO4I6IOAX4LnDGaMfqtV5KTafRhPeoP7/v\nxT6kLvsJcG9m/rXtQvZWZl4UERNogvvzwI0tl6Qu6+nwzswRwzEiXo6IgzPzxfKW68ZhNlsPnNpx\nfwHwl7J+wZD168vyO46bmfdGxKKImJuZo/rSg17rJSKOBZbTfK68aTQ99GIfXbQeeN8Izz90m3UR\nMRHYH9j0DvsOt34TMCsiJpazrOGeq4Y+3mvj3ktEfAc4EPhKF+ofWuOwzzlkm669Jpm5IyJuAb6J\n4d1/2v7QfW9vwHXsPonp2mG2mQOspZkYNbsszymPDZ0cdc6exgUWs2vC2kdpDpSotJfDaD47O6nm\n16RjzKsY+4S1iTST5xayawLQMUO2uZTdJxXdVpaPYfdJRc/STCgacUzg1+w+Ye2SLr0G49pHx5jP\n0f0Ja+P9mnwJuB+YWmsfNMfO4rJvANcD13ezH2+9cWu9gL0uvPk86M/AauAedgXAEmB5x3YX0wTV\nGuCijvVLgCdoZmz+mF3BPNK43wKeBFYCDwBLK+5lOfBa6WUl8HClfcyn+axvC/B6WZ45hvrPAZ4p\nz39FWXc18JmyvC9N6K6h+UVjUce+V5T9nqbMkh9pzLJ+URljTRlzShd/nsazj2+U/+7bgQ2dr3OF\nvWwv6/5/XFxZWx8085juA1bRHEs3j+WY8Na7Ny+PKklSZWqebS5J0kAyvCVJqozhLUlSZQxvSZIq\nY3hLklQZw1vaSxFxVURcFhFXR8QZZd3JEfFkNN8+NzUiriv3r2u7Xkn9o6evsCbVIDOv7Lh7AXBN\nZv4SICK+TPN36TtaKU5SX/LvvKV3ISKuAC6kuUTrC8DfgQ8BdwKzaL6+dDPNlbpmAJ+iuWDGNZl5\naxs1S+o/nnlLoxQRJ9BcuvJ4mmPnEZrwBiAzl0fEUuDOzLy97LM1M49vo15J/cvwlkbvZOCOzHwD\nICJ+13I9kgaUE9YkSaqM4S2N3r3AuWUW+Qzg020XJGkw+ba5NEqZ+UhE3Erz9YsbgYdaLknSgHK2\nuSRJlfFtc0mSKmN4S5JUGcNbkqTKGN6SJFXG8JYkqTKGtyRJlTG8JUmqzP8AH2BBxmjpd+QAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 6.42847482193e-09\n", + "MAE : 7.12554587774e-05\n" + ] + }, + { + "data": { + "text/plain": [ + "count 20817.000000\n", + "mean 0.000069\n", + "std 0.000040\n", + "min -0.000283\n", + "25% 0.000046\n", + "50% 0.000068\n", + "75% 0.000095\n", + "max 0.000283\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(testX)\n", + "pred = y_scaler.inverse_transform(pred)\n", + "close = y_scaler.inverse_transform(np.reshape(testY, (testY.shape[0], 1)))\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['close'] = pd.Series(np.reshape(close, (close.shape[0])))\n", + "\n", + "p = df[-pred.shape[0]:].copy()\n", + "predictions.index = p.index\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low', 'high']], right_index=True, left_index=True)\n", + "\n", + "ax = predictions.plot(x=predictions.index, y='close', c='red', figsize=(40,10))\n", + "ax = predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=ax)\n", + "index = [str(item) for item in predictions.index]\n", + "plt.fill_between(x=index, y1='low', y2='high', data=p, alpha=0.4)\n", + "plt.title('Prediction vs Actual (low and high as blue region)')\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['close']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction ')\n", + "plt.show()\n", + "\n", + "g = sns.jointplot(\"diff\", \"predicted\", data=predictions, kind=\"kde\", space=0)\n", + "plt.title('Distributtion of error and price')\n", + "plt.show()\n", + "\n", + "# predictions['correct'] = (predictions['predicted'] <= predictions['high']) & (predictions['predicted'] >= predictions['low'])\n", + "# sns.factorplot(data=predictions, x='correct', kind='count')\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['close'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['close'].values))\n", + "predictions['diff'].describe()\n" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/.ipynb_checkpoints/example 3d surface plot-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/example 3d surface plot-checkpoint.ipynb new file mode 100644 index 0000000..e75394a --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/example 3d surface plot-checkpoint.ipynb @@ -0,0 +1,1247 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import pypyodbc\n", + "import sys\n", + "from IPython.core import display as ICD\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from IPython.core.display import display, HTML\n", + "\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "df_iboxx = pd.read_excel(\"out.xlsx\")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mem_datedateindexnameisd_bondmv_weight_rollspread_weight_rolldate_lmmv_weight_eom_lmspread_weight_eom_lmisNewmv_weight_change_on_rollspread_weight_change_on_roll
02012-01-312012-02-29ref loans + hy daily price > 604327290.0143560.095617NaT0.0143560.09561710.0143560.095617
12012-01-312012-02-29ref loans + hy daily price > 604350190.0123840.058010NaT0.0123840.05801010.0123840.058010
22012-01-312012-02-29ref loans + hy daily price > 604354910.0336520.074094NaT0.0336520.07409410.0336520.074094
32012-01-312012-02-29ref loans + hy daily price > 604372620.0733590.025315NaT0.0733590.02531510.0733590.025315
42012-01-312012-02-29ref loans + hy daily price > 604374440.0233630.079587NaT0.0233630.07958710.0233630.079587
\n", + "
" + ], + "text/plain": [ + " mem_date date indexname isd_bond \\\n", + "0 2012-01-31 2012-02-29 ref loans + hy daily price > 60 432729 \n", + "1 2012-01-31 2012-02-29 ref loans + hy daily price > 60 435019 \n", + "2 2012-01-31 2012-02-29 ref loans + hy daily price > 60 435491 \n", + "3 2012-01-31 2012-02-29 ref loans + hy daily price > 60 437262 \n", + "4 2012-01-31 2012-02-29 ref loans + hy daily price > 60 437444 \n", + "\n", + " mv_weight_roll spread_weight_roll date_lm mv_weight_eom_lm \\\n", + "0 0.014356 0.095617 NaT 0.014356 \n", + "1 0.012384 0.058010 NaT 0.012384 \n", + "2 0.033652 0.074094 NaT 0.033652 \n", + "3 0.073359 0.025315 NaT 0.073359 \n", + "4 0.023363 0.079587 NaT 0.023363 \n", + "\n", + " spread_weight_eom_lm isNew mv_weight_change_on_roll \\\n", + "0 0.095617 1 0.014356 \n", + "1 0.058010 1 0.012384 \n", + "2 0.074094 1 0.033652 \n", + "3 0.025315 1 0.073359 \n", + "4 0.079587 1 0.023363 \n", + "\n", + " spread_weight_change_on_roll \n", + "0 0.095617 \n", + "1 0.058010 \n", + "2 0.074094 \n", + "3 0.025315 \n", + "4 0.079587 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_iboxx.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df_piv = pd.pivot_table(df_iboxx.loc[(df_iboxx.mem_date <= '2015-06-30')&(df_iboxx.indexname == 'ref loans + hy daily price > 60 stable spreads 10 day')]\n", + " , values=[\n", + " 'mv_weight_eom_lm', 'spread_weight_eom_lm'\n", + " , 'mv_weight_change_on_roll', 'spread_weight_change_on_roll'\n", + " ]\n", + " , index=['mem_date']\n", + " , columns=['indexname', 'isd_bond']\n", + " , aggfunc=np.sum)\n", + "\n", + "df_piv.fillna(0,inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + " " + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/vnd.plotly.v1+html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.plotly as py\n", + "import plotly.graph_objs as go\n", + "import plotly\n", + "\n", + "plotly.offline.init_notebook_mode()\n", + "\n", + "\n", + "def plot_3dsurface_with_slider(df, colFilter, nbDates, nbSecurities, title):\n", + " #nbSecurities = 30\n", + " #nbDates = 40\n", + " maxWeight = 1.0\n", + "\n", + "\n", + " dfn = df.loc[:,[colFilter]]\n", + " \n", + "\n", + " ellist = list(dfn.index)[:nbDates]\n", + " data = []\n", + " for el in ellist: \n", + "\n", + " znow= dfn.sort_values(by=[el], axis=1, ascending=0) # this needs to have access to every column\n", + " znow = znow.iloc[:,range(nbSecurities)].head(nbDates) \n", + " #znowup = [[zij+0.5 for zij in zi] for zi in znow.as_matrix()]\n", + " znowup = znow +0.5\n", + " #display(znow)\n", + " #display(znowup)\n", + " data.append(go.Surface(\n", + " z=znow.as_matrix()\n", + "\n", + " ))\n", + "\n", + "\n", + " steps = list()\n", + "\n", + " # make an entry in the slider for each day\n", + " for i in range(len(ellist)):\n", + "\n", + " step = dict(\n", + " method='restyle',\n", + " args=['visible', [False]*len(ellist)], # set rest to visible false\n", + " ) # this styles the slider?\n", + " step['args'][1][i] = True # set only these ones to visible\n", + " #step['args'][1][i*2+1] = True # set only these ones to visible\n", + " steps.append(step)\n", + "\n", + "\n", + " sliders = [dict(\n", + " active=0,\n", + " steps=steps\n", + " )]\n", + "\n", + " layout = go.Layout(\n", + " title=title,\n", + " autosize=False,\n", + " width=1200,\n", + " height=900,\n", + " sliders = sliders,\n", + " margin=dict(\n", + " l=0,\n", + " r=0,\n", + " b=0,\n", + " t=50\n", + " )\n", + " , scene = dict( aspectratio = dict(x = 1, y = 1.5, z = 1),\n", + " xaxis = dict(\n", + " title=\"enum\", nticks=4, range = [0,nbSecurities],),\n", + " yaxis = dict(\n", + " title=\"date\", nticks=4, range = [0,nbDates],),\n", + " zaxis = dict(\n", + " title=\"weight\",nticks=4, range = [0,maxWeight],),\n", + " ),\n", + " )\n", + "\n", + "\n", + " fig = go.Figure(data=data, layout=layout)\n", + " return fig\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 143, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig = plot_3dsurface_with_slider(df_piv, colFilter=\"mv_weight_change_on_roll\", nbDates=5, nbSecurities=30, title=\"mv weight\")\n", + "py.iplot(fig, filename='elevations-3d-surface')" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The draw time for this plot will be slow for all clients.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\plotly\\api\\v1\\clientresp.py:40: UserWarning:\n", + "\n", + "Estimated Draw Time Too Long\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig = plot_3dsurface_with_slider(df_piv, colFilter=\"spread_weight_change_on_roll\", nbDates=40, nbSecurities=30, title=\"s weight\")\n", + "py.iplot(fig, filename='elevations-3d-surface')" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mv_weight_eom_lm
indexnameref loans + hy daily price > 60 stable spreads 10 day
isd_bond459957471207B1284457361237473223449374473486B1286271269032472032471621B1285111736308...495671495672495673495707495709495710495716495719495731495760
mem_date
2012-01-310.7923100.6006710.4723310.4229990.4022230.3955780.3725440.3660740.3493870.371342...0.00.00.00.00.00.00.00.00.00.0
2012-02-290.8156820.5963920.4747370.4342090.4059990.3901780.3879120.3674550.3510220.376884...0.00.00.00.00.00.00.00.00.00.0
2012-03-310.8191890.6051050.4857560.4482400.4167830.3995250.3908240.3781580.3671310.365057...0.00.00.00.00.00.00.00.00.00.0
2012-04-300.7949130.6048170.4758740.4444690.4343480.4085410.3916410.3760430.3661980.370582...0.00.00.00.00.00.00.00.00.00.0
2012-05-310.6851360.5300090.4258260.3935370.3630840.3551870.3459120.3276170.3104240.327583...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 4998 columns

\n", + "
" + ], + "text/plain": [ + " mv_weight_eom_lm \\\n", + "indexname ref loans + hy daily price > 60 stable spreads 10 day \n", + "isd_bond 459957 471207 \n", + "mem_date \n", + "2012-01-31 0.792310 0.600671 \n", + "2012-02-29 0.815682 0.596392 \n", + "2012-03-31 0.819189 0.605105 \n", + "2012-04-30 0.794913 0.604817 \n", + "2012-05-31 0.685136 0.530009 \n", + "\n", + " \\\n", + "indexname \n", + "isd_bond B1284457361237 473223 449374 473486 B1286271269032 \n", + "mem_date \n", + "2012-01-31 0.472331 0.422999 0.402223 0.395578 0.372544 \n", + "2012-02-29 0.474737 0.434209 0.405999 0.390178 0.387912 \n", + "2012-03-31 0.485756 0.448240 0.416783 0.399525 0.390824 \n", + "2012-04-30 0.475874 0.444469 0.434348 0.408541 0.391641 \n", + "2012-05-31 0.425826 0.393537 0.363084 0.355187 0.345912 \n", + "\n", + " ... \\\n", + "indexname ... \n", + "isd_bond 472032 471621 B1285111736308 ... 495671 495672 495673 \n", + "mem_date ... \n", + "2012-01-31 0.366074 0.349387 0.371342 ... 0.0 0.0 0.0 \n", + "2012-02-29 0.367455 0.351022 0.376884 ... 0.0 0.0 0.0 \n", + "2012-03-31 0.378158 0.367131 0.365057 ... 0.0 0.0 0.0 \n", + "2012-04-30 0.376043 0.366198 0.370582 ... 0.0 0.0 0.0 \n", + "2012-05-31 0.327617 0.310424 0.327583 ... 0.0 0.0 0.0 \n", + "\n", + " \n", + "indexname \n", + "isd_bond 495707 495709 495710 495716 495719 495731 495760 \n", + "mem_date \n", + "2012-01-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-02-29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-03-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-04-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-05-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[5 rows x 4998 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mv_weight_change_on_roll...mv_weight_eom_lm
indexnameref loans + hy daily price > 60 stable spreads 10 day...ref loans + hy daily price > 60 stable spreads 10 day
isd_bond459957471207B1284457361237473223449374473486B1286271269032472032471621B1285111736308...495671495672495673495707495709495710495716495719495731495760
mem_date
2012-01-310.7923100.6006710.4723310.4229990.4022230.3955780.3725440.3660740.3493870.371342...0.00.00.00.00.00.00.00.00.00.0
2012-02-290.0100890.0074840.0078420.0053700.0067070.0044000.0064080.0060700.004496-0.005877...0.00.00.00.00.00.00.00.00.00.0
2012-03-31-0.025517-0.007446-0.012267-0.005929-0.003466-0.005351-0.003250-0.003145-0.004246-0.003036...0.00.00.00.00.00.00.00.00.00.0
2012-04-30-0.087991-0.066940-0.050917-0.049038-0.046474-0.045524-0.041904-0.045430-0.040317-0.039651...0.00.00.00.00.00.00.00.00.00.0
2012-05-31-0.027947-0.021575-0.065440-0.015903-0.013311-0.014823-0.026388-0.012011-0.012439-0.012010...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 9996 columns

\n", + "
" + ], + "text/plain": [ + " mv_weight_change_on_roll \\\n", + "indexname ref loans + hy daily price > 60 stable spreads 10 day \n", + "isd_bond 459957 471207 \n", + "mem_date \n", + "2012-01-31 0.792310 0.600671 \n", + "2012-02-29 0.010089 0.007484 \n", + "2012-03-31 -0.025517 -0.007446 \n", + "2012-04-30 -0.087991 -0.066940 \n", + "2012-05-31 -0.027947 -0.021575 \n", + "\n", + " \\\n", + "indexname \n", + "isd_bond B1284457361237 473223 449374 473486 B1286271269032 \n", + "mem_date \n", + "2012-01-31 0.472331 0.422999 0.402223 0.395578 0.372544 \n", + "2012-02-29 0.007842 0.005370 0.006707 0.004400 0.006408 \n", + "2012-03-31 -0.012267 -0.005929 -0.003466 -0.005351 -0.003250 \n", + "2012-04-30 -0.050917 -0.049038 -0.046474 -0.045524 -0.041904 \n", + "2012-05-31 -0.065440 -0.015903 -0.013311 -0.014823 -0.026388 \n", + "\n", + " ... \\\n", + "indexname ... \n", + "isd_bond 472032 471621 B1285111736308 ... \n", + "mem_date ... \n", + "2012-01-31 0.366074 0.349387 0.371342 ... \n", + "2012-02-29 0.006070 0.004496 -0.005877 ... \n", + "2012-03-31 -0.003145 -0.004246 -0.003036 ... \n", + "2012-04-30 -0.045430 -0.040317 -0.039651 ... \n", + "2012-05-31 -0.012011 -0.012439 -0.012010 ... \n", + "\n", + " mv_weight_eom_lm \\\n", + "indexname ref loans + hy daily price > 60 stable spreads 10 day \n", + "isd_bond 495671 495672 \n", + "mem_date \n", + "2012-01-31 0.0 0.0 \n", + "2012-02-29 0.0 0.0 \n", + "2012-03-31 0.0 0.0 \n", + "2012-04-30 0.0 0.0 \n", + "2012-05-31 0.0 0.0 \n", + "\n", + " \n", + "indexname \n", + "isd_bond 495673 495707 495709 495710 495716 495719 495731 495760 \n", + "mem_date \n", + "2012-01-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-02-29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-03-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-04-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-05-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[5 rows x 9996 columns]" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = df_piv.loc[:,[\"mv_weight_eom_lm\", \"mv_weight_change_on_roll\"]]\n", + "asort = df_piv.loc[:,[\"mv_weight_eom_lm\"]].sort_values(by=[\"2012-03-31\"], axis='columns', ascending=0)\n", + "display(asort.head())\n", + "colsort = asort.columns.get_level_values(2) # to get sorted columns after a sort\n", + "#colsort = asort.columns\n", + "w = list(colsort)\n", + "#display(w)\n", + "b = a.loc[:,(slice(None), slice(None), w)]\n", + "\n", + "c = b.reindex(w, axis='columns', level=2)#471207\n", + "c.head()\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The draw time for this plot will be slow for all clients.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\plotly\\api\\v1\\clientresp.py:40: UserWarning:\n", + "\n", + "Estimated Draw Time Too Long\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "col = \"mv_weight_change_on_roll\"\n", + "#col = \"mv_weight_eom_lm\"\n", + "fig = plot_3dsurface_with_slider(c, colFilter=col, nbDates=40, nbSecurities=30, title=\"order by mv weight, show change\")\n", + "py.iplot(fig, filename='elevations-3d-surface')" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import plotly.plotly as py\n", + "from plotly.graph_objs import Surface\n", + "df = c\n", + "\n", + "\n", + "\n", + "#dfn = df.loc[:,[\"mv_weight_eom_lm\"]]\n", + " \n", + "znow= df.loc[:,[\"mv_weight_eom_lm\"]] # this needs to have access to every column\n", + "#znow = znow.iloc[:,range(10)].head(10) \n", + "\n", + "znowup = df.loc[:,[\"mv_weight_change_on_roll\"]] # this needs to have access to every column\n", + "znowup = znowup +2\n", + "#display(znow)\n", + "#display(znowup)\n", + "\n", + "#z1 = znow.as_matrix()\n", + "\n", + "\n", + "l = go.Layout(\n", + " title=\"double\",\n", + " autosize=False,\n", + " width=1200,\n", + " height=900,\n", + " #sliders = sliders,\n", + " margin=dict(\n", + " l=0,\n", + " r=0,\n", + " b=0,\n", + " t=50\n", + " )\n", + " , scene = dict( aspectratio = dict(x = 1, y = 1.5, z = 1),\n", + " xaxis = dict(\n", + " title=\"enum\", nticks=4, range = [0,10],),\n", + " yaxis = dict(\n", + " title=\"date\", nticks=4, range = [0,40],),\n", + " zaxis = dict(\n", + " title=\"weight\",nticks=4, range = [0,7],),\n", + " ),\n", + ")\n", + "#f = go.Figure(data =dict(z=znow.iloc[:,range(10)].as_matrix() ,visible=True, showscale=False, opacity=0.9, type='surface'), layout=l)\n", + "#f2 = go.Figure(data= dict(z=znowup.iloc[:,range(10)].as_matrix() ,visible=True, showscale=False, opacity=0.9, type='surface'), layout=l)\n", + "py.iplot([\n", + " dict(z=znow.iloc[:,range(10)].as_matrix() ,visible=True, showscale=False, opacity=0.9, type='surface'), \n", + " dict(z=znowup.iloc[:,range(10)].as_matrix() ,visible=True, showscale=False, opacity=0.9, type='surface')\n", + " \n", + "], filename=\"sdfs\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "toc_cell": false, + "toc_position": {}, + "toc_section_display": "block", + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/.ipynb_checkpoints/kaggle_bm-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/kaggle_bm-checkpoint.ipynb new file mode 100644 index 0000000..55f379d --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/kaggle_bm-checkpoint.ipynb @@ -0,0 +1,1864 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "I will use 1 year of data, from 1Jan16 to 1Jan17, also in 15 minute intervals, but with tick data features.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To run on EC2:\n", + "Enter the repo directory: cd aind2-cnn\n", + "Activate the new environment: source activate aind2\n", + "Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "Find this line in output and copy url to browser: \n", + "Copy/paste this URL into your browser when you connect for the first time to login with a token: \n", + "http://0.0.0.0:8888/?token=3156e...\n", + "\n", + "change the 0.0.0.0 with EC2 IP.\n", + "\n", + "you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd, numpy as np\n", + "import pypyodbc\n", + "import io, datetime\n", + "import matplotlib.colors as colors, matplotlib.cm as cm, pylab, matplotlib.pyplot as plt\n", + "\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hideCode": false + }, + "outputs": [], + "source": [ + "#kaggle dates: 2015-12-29 00:00:00 to 2016-05-31 23:45:00\n", + "min_date = \"29Dec15\"\n", + "max_date = \"31May16\"" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"mine\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29Dec15\n", + "31May16\n" + ] + } + ], + "source": [ + "print(min_date)\n", + "print(max_date)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "hideCode": true, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "\n", + "strConnDef = \"DRIVER={ODBC Driver 13 for SQL Server};SERVER=localhost,1433;DATABASE=kai_dw;uid=kai_ta;pwd=tenpen12\"\n", + "def getQueryRaw(strQuery, params=None, strConn=strConnDef, commitOn=None):\n", + "\n", + " if commitOn is None:\n", + " commitOn = False\n", + "\n", + " if params is None:\n", + " params = []\n", + "\n", + " pypyodbc.lowercase = False\n", + " conn = pypyodbc.connect(strConn)\n", + " cursor = conn.cursor()\n", + " cursor.execute(strQuery, params)\n", + "\n", + " if commitOn:\n", + " conn.commit()\n", + " return \"sql insert was successful.\", \"sql insert was successful.\"\n", + " try:\n", + " rows = cursor.fetchall()\n", + " #print(\"rows\", rows)\n", + " # print(\"PARAMS:\", params)\n", + " description = cursor.description\n", + " conn.close()\n", + " return rows, description\n", + " except:\n", + " # print(\"THE QUERY: \" + strQuery) TODO: add query\n", + " conn.close()\n", + " raise ValueError(\"There was an error fetching a sql query. Make sure the index exists for your selected dates. THE PARAMS: \", params)\n", + "\n", + "\n", + "\n", + "\n", + "def getQueryDataframe(strQuery, params=None, strConn=strConnDef, columnMustAlwaysExist=None, commitOn=None):\n", + "\n", + " rows, cursorDescription = getQueryRaw(strQuery, params, strConn, commitOn)\n", + " if commitOn:\n", + " return \"sql insert was successful.\"\n", + "\n", + " if len(rows) == 0:\n", + " print(\"No rows were returned.\")\n", + " print(\"THE PARAMS: \", params)\n", + " print(\"THE QUERY: \" + strQuery)\n", + " print(\"Rows length is zero. No records returned\")\n", + "\n", + " if columnMustAlwaysExist is None:\n", + " columnMustAlwaysExist = \"Empty\"\n", + "\n", + " columns = [\"Information\", columnMustAlwaysExist]\n", + " rows = [\n", + " [\"No results were returned.\", \"There is no data.\"]\n", + " , [\"No results were returned.\", \"There is no data.\"]\n", + " ]\n", + "\n", + " else:\n", + " # bytes conversion needed because of the linux pypyodbc bug\n", + " columns = [column[0].decode(\"cp1252\") if type(column[0]) == bytes else column[0] for column in\n", + " cursorDescription]\n", + "\n", + " results = pd.DataFrame(data=rows, columns=columns)\n", + "\n", + "\n", + " return results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# create 15 minute data - this fills the 15 minutes table\n", + "str_query = open(\"get_data.sql\", \"r\").read() # returns prepared data\n", + "str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "\n", + "df = getQueryDataframe(str_query, [min_date, max_date])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekday15_mindatestamphigh_bidlow_bidavg_bo_spreadnb_ticksopen_bidclose_bidlast_10_tick_avg_bid_returnlast_10_tick_avg_bo_spread
020161317102016-01-03 17:00:001.087231.086610.0001651421.087011.08664-2.760660e-060.000139
1201613171152016-01-03 17:15:001.087141.086620.000149801.086661.086741.104220e-050.000154
2201613171302016-01-03 17:30:001.086991.086710.0001411091.086741.08674-9.201579e-070.000153
3201613171452016-01-03 17:45:001.086871.086550.000102931.086741.086627.362178e-060.000094
420161318102016-01-03 18:00:001.086651.085230.0001134591.086621.085741.013142e-050.000093
\n", + "
" + ], + "text/plain": [ + " year month day hour weekday 15_min datestamp high_bid \\\n", + "0 2016 1 3 17 1 0 2016-01-03 17:00:00 1.08723 \n", + "1 2016 1 3 17 1 15 2016-01-03 17:15:00 1.08714 \n", + "2 2016 1 3 17 1 30 2016-01-03 17:30:00 1.08699 \n", + "3 2016 1 3 17 1 45 2016-01-03 17:45:00 1.08687 \n", + "4 2016 1 3 18 1 0 2016-01-03 18:00:00 1.08665 \n", + "\n", + " low_bid avg_bo_spread nb_ticks open_bid close_bid \\\n", + "0 1.08661 0.000165 142 1.08701 1.08664 \n", + "1 1.08662 0.000149 80 1.08666 1.08674 \n", + "2 1.08671 0.000141 109 1.08674 1.08674 \n", + "3 1.08655 0.000102 93 1.08674 1.08662 \n", + "4 1.08523 0.000113 459 1.08662 1.08574 \n", + "\n", + " last_10_tick_avg_bid_return last_10_tick_avg_bo_spread \n", + "0 -2.760660e-06 0.000139 \n", + "1 1.104220e-05 0.000154 \n", + "2 -9.201579e-07 0.000153 \n", + "3 7.362178e-06 0.000094 \n", + "4 1.013142e-05 0.000093 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# dates only have an effect if a subset of dates is needed.\n", + "str_query = open(\"get_data_1y.sql\", \"r\").read() # returns prepared data\n", + "str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "#print(str_query)\n", + "df = getQueryDataframe(str_query, [min_date, max_date])\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min date 2016-01-03 17:00:00\n", + "max date 2016-05-30 23:45:00\n" + ] + } + ], + "source": [ + "df.set_index('datestamp', inplace=True)\n", + "print(\"min date\", min(df.index))\n", + "print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(\"eurusd_features.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "df_res = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df_res.set_index('date', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min date 2015-12-29 00:00:00\n", + "max date 2016-05-31 23:45:00\n" + ] + } + ], + "source": [ + "# load kaggle reference dataset for comparison\n", + "df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + "#df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + "# Rename bid OHLC columns\n", + "df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open_bid', 'Close' : 'close_bid', \n", + " 'High' : 'high_bid', 'Low' : 'low_bid', 'Volume' : 'volume'}, inplace=True)\n", + "df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + "df_kaggle.set_index('date', inplace=True)\n", + "df_kaggle = df_kaggle.astype(float)\n", + "\n", + "simname = \"bm_kaggle\"\n", + "\n", + "df = df_kaggle\n", + "print(\"min date\", min(df.index))\n", + "print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# to include seasonality as a feature\n", + "if simname == \"bm_kaggle\":\n", + " df['hour'] = df.index.hour\n", + " df['day'] = df.index.weekday\n", + " df['week'] = df.index.week\n", + " df['month'] = df.index.month\n", + "\n", + " df['momentum'] = df['volume'] * (df['open_bid'] - df['close_bid'])\n", + "df['avg_price'] = (df['low_bid'] + df['high_bid'])/2\n", + "df['range'] = df['high_bid'] - df['low_bid']\n", + "df['ohlc_price'] = (df['low_bid'] + df['high_bid'] + df['open_bid'] + df['close_bid'])/4\n", + "df['oc_diff'] = df['open_bid'] - df['close_bid']\n", + "#df['bo_spread'] = df.ask - df.bid\n", + "df['period_return'] = df.close_bid / df.open_bid" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrwAAAKFCAYAAACeFkmkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUnWWZL+xfDamQpAqBzxz0QCeYSEJLiGQ40MoKCEdO\nFDQiSEKqV1AIdoM2CrLoMIW5GYXmEIki0keGlYQIdjegdLcggkabpVHEQMchDMugYpiaVIVUJdn7\n+yPZm1RSmYBK7eG61sKq/b5v7Xru2tub0l8999tQLBaLAQAAAAAAgCrV2N8LAAAAAAAAgLdC4AUA\nAAAAAEBVE3gBAAAAAABQ1QReAAAAAAAAVDWBFwAAAAAAAFVN4AUAAAAAAEBVE3gBAABlP/vZz/Lh\nD384BxxwQObPn9/fy6konZ2dGT16dB577LEkyYwZM3L11Vdv8+uKxWIWLlyYrq6uLV5zzjnn5Atf\n+EKS5Nvf/nYOPvjgt7TW733ve/njH/+YJHnssccyevTodHZ2vqXnBAAAqGTN/b0AAACgctx0003Z\nZ5998s1vfjO77bZbfy+nos2ZMyfNzdv+n1Q//elPM3v27Bx99NEZOHBgr9ecf/75KRaLb8u6nn/+\n+fzd3/1d7rvvvrz73e/OuHHj8qMf/SiDBw9+W54fAACgEgm8AACAstdeey2HHXZY9t577/5eSsXb\n3kBwe4Kstra2t7qcLX6/lpaWDB069G17fgAAgEpkpCEAAJAkOeKII7JkyZLcdNNNGT16dJJk9OjR\nueGGG/LBD34wU6ZMybp16/LMM89k5syZef/735/DDz8811xzTbq7u8vP88QTT2TatGl5//vfnxNO\nOCG33357jjjiiCS9j9ebM2dOjj322PLjrT3/8uXLM3r06Pzbv/1bPvKRj+SAAw7I9OnT8/TTT5e/\nfunSpfnMZz6TcePG5bDDDsvNN9+cJLn44ovT3t7eo+Z77rknRxxxRK+h1Ouvv57zzz8/EyZMyKRJ\nk/LAAw/0OL/xSMMXXnghp556aiZMmJCJEyfmC1/4Ql566aUsX748J554YpJk/Pjx+fa3v505c+bk\nlFNOycyZMzNhwoT88z//c4+RhiVf+9rXcvDBB+fggw/OFVdckbVr1ybpfeThxl//v//3/06SfPzj\nH8+cOXM2+5m/+OKLmTVrVj7wgQ9k/Pjx+eIXv5g///nP5ecaPXp0vv3tb+fYY4/NAQcckClTpuQX\nv/hF+fxdd92VI488MmPGjMlHPvKR/Mu//MtmPzsAAICdTeAFAAAkSe6+++7st99+Ofnkk/OjH/2o\nfPw73/lObr/99lx99dVZu3ZtZs6cmX322Sf//M//nGuuuSY//OEPc/nllydJXn755cycObMcmkyZ\nMiX/+I//uN1r6Orq2urzl9x00025/PLLc/fdd+eVV17JtddeW/7+n/70p/M//sf/yLe+9a1ceuml\n+frXv5677747U6ZMyc9//vP86U9/6lHbxz72sTQ0NGy2lksuuSSLFy/OLbfckq985Su5/fbbt7ju\nSy65JGvWrMnChQtz55135vnnn89VV12Vd7/73ZkzZ06S5MEHH8xRRx2VJPnhD3+Ygw46KAsXLsxh\nhx222fO9+uqr+dGPfpTbbrst11xzTe6///584xvf2K6f4be+9a0kyR133JGTTz65x7m1a9fmM5/5\nTJ5//vnccsstue222/LCCy/k85//fI/Q78Ybb8wXv/jF/Ou//mtaW1tz0UUXJUmeeuqpXHzxxTnr\nrLPy7//+7znxxBNzzjnn5Nlnn92utQEAAPQVgRcAAJAk2WOPPdLU1JTBgwf3GIF3/PHH573vfW/+\n8i//Mvfff38GDBiQ2bNnZ8SIEflf/+t/5ZJLLsm3vvWtdHR05Lvf/W4GDhyY2bNnZ+TIkWlvby+H\nPNtjW89fctppp2XixIkZPXp02tvb86tf/SpJ8sADD2TAgAG5/PLL8973vjeHHXZYLrroogwePDjj\nx4/P3nvvXd6p9eKLL+Y///M/M2XKlM3W0dHRkfvvvz/nnHNOxo8fn/e///259NJLt7ju5cuXp7W1\nNXvvvXf222+/XH/99TnppJPS1NSUd7zjHeWf7y677JIkGTRoUP7mb/4mI0eOzB577LHZ8zU1NeXL\nX/5y9ttvvxx22GE57bTTMm/evO36GZaeb7fddsuQIUN6nPvhD3+YZ599Ntddd13GjBmTAw44IDfc\ncEOeeuqp/PjHPy5f197ensMOOywjRozIzJkz8+tf/zrd3d15/vnn09DQkHe/+93Za6+90t7enltv\nvbXXGgAAAHYm9/ACAAC26i/+4i/Kn//ud7/L73//+4wbN658rFgsplAo5Nlnn83vfve7jB49OgMG\nDCifnzhxYn7yk59s1/fa1vOX7ps1fPjw8vnW1tbyuL/S929paSmf3zjQmjJlSr773e/mpJNOygMP\nPJBRo0blve9972brePrpp7NmzZq8733vKx8bM2ZMGht7/5vBU089NbNmzcrBBx+cv/qrv8qHP/zh\nXoO0kr322qvXXWUle+65Z971rneVH++///554YUX8tprr23xa7bH7373u/zP//k/s+eee5aPvetd\n78pee+2V3/72tznkkEOSJPvss0/5fGtra5L1u8MmTZqUsWPHZurUqRkxYkQ+9KEP5ZOf/GR23XXX\nt7QuAACAt0rgBQAAbFVpV1KyPvQ48MADc+WVV2523Z577plBgwalUCj0OL5x+NRbyFMKq7bn+V98\n8cUk6RGoJSmP4xswYECv9+MqmTJlSubOnZvly5fnO9/5zhZDqdI6N36upqamNDU19Xr9UUcdlb/6\nq7/Kww8/nB/+8If5h3/4h9x333257bbber1+4MCBW1xjks2CtdLPtLm5eZs/w63Z0vctFAo9XrdN\nf77J+p/FLrvskvnz5+cXv/hFHnnkkXz/+9/PnXfema997WvlsAwAAKA/GGkIAABst5EjR+a5557L\nu971rgwfPjzDhw/PK6+8kmuuuSZr1qzJvvvum6VLl2b16tXlr1myZEn581KQ0tnZWT62fPny7X7+\nbdlnn33ym9/8pse1X/nKV/LFL36xfP6AAw7IPffckyVLluToo4/u9Xne8573ZMCAAXniiSfKx379\n619vcQ033HBDli9fnuOOOy433HBDvvKVr+Q///M/8+KLL251J9eWvPDCC3n11VfLjx9//PHstdde\nGTx4cAYMGJDXX3+9Rxi38c9wa99v5MiR+cMf/pAXXnihfOxPf/pT/vjHP2bkyJHbXNcvfvGLzJkz\nJ+PHj8+ZZ56Z++67L/vvv3/+4z/+Y0dLBAAAeFsJvAAAgO02ZcqUNDY2ZtasWfnNb36Tn//85zn3\n3HOzZs2atLW15WMf+1gGDRqU888/P8uWLcv999+f+fPnl79+3333zS677JKbb745v//973P33Xfn\nBz/4wXY///asb926dbnkkkvy9NNP55FHHsltt92Www47rHzNJz7xidx6662ZOHFij9F+G2ttbc3x\nxx+fK6+8Mo899liefPLJXHjhhVsMk55++ulceuml+dWvfpXnnnsu999/f/baa6/sscceGTx4cJLk\nySef7BH0bc26dety1llnZenSpfne976Xm2++OZ/97GeTrB+t2NXVlVtuuSW///3v8/Wvfz1PPfVU\n+WtL3++//uu/snLlyh7P+8EPfjCjR4/OWWedlSVLluRXv/pVvvSlL2WfffbJBz7wgW2ua9CgQbn5\n5ptz++23Z/ny5fnRj36UZcuWZezYsdtVFwAAQF8ReAEAANtt8ODB+ad/+qe89tprOf744/O5z30u\nBx54YL785S8nWT++8JZbbsmf//znHHPMMfl//+//ZerUqeWvb21tzRVXXJEf/OAHOfroo/Pggw/m\n7/7u77b7+beltbU1t9xyS55++ul84hOfyMUXX5zPfe5zOfbYY8vXHHXUUVmzZk0+/vGPb/W5zj33\n3BxxxBE5/fTTM3PmzBxzzDG9jvpLkksuuSTDhw/PKaeckilTpuQPf/hDbr755jQ2NmbUqFE5/PDD\nc/LJJ2fhwoXbVcfIkSMzZsyY/PVf/3UuvPDCfOYzn8kJJ5yQZP0utXPPPTe33357pkyZkmXLluXT\nn/50+Wt33333HH/88bngggty44039njehoaGzJ07N3vssUdmzJiRk046Ke9617vyzW9+s8foyS3Z\nb7/9cu2112bhwoX56Ec/mvPPPz8nnXRSjjvuuO2qCwAAoK80FLc24B4AAOAtuvPOO/NP//RP+f73\nv9/fS0mS/Pa3v82nPvWpLFq0KK2trf29HAAAAN4Gzf29AAAAgJ3hpZdeyk9/+tPceeed+djHPibs\nAgAAqCFGGgIAAHVh1apVOe+887J69eqceeaZ/b0cAAAA3kZGGgIAAAAAAFDV7PACAAAAAACgqgm8\nAAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqa\nwAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACg\nqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAA\nAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAA\nAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAA\nAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvAC\nAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoC\nLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICq\nJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAA\nqGoCL4Aq8ctf/jIzZszY7Pj3v//9HHfccZk2bVoWLlzYDysDqB16LUDf0mcB+pY+C9Sz5v5eAADb\ndsstt+Tee+/NoEGDehxfs2ZNrrzyytx9990ZNGhQpk+fniOOOCLvfOc7+2mlANVLrwXoW/osQN/S\nZ4F6V5GB14oVK3fK99l998F55ZVVO+V77Sy1WFNSm3WpqTINHdrW30vo1bBhwzJnzpz8/d//fY/j\ny5Yty7Bhw/KOd7wjSTJhwoT89Kc/zUc/+tGtPl+xWExDQ0OfrRegGr2dvVafBdic32kB+pY+C9S7\nigy8dpbm5qb+XsLbrhZrSmqzLjWxIyZPnpzly5dvdryjoyNtbW+EdEOGDElHR8c2n6+hoWGn/XFB\nfxo6tK3m66yHGhN11ppK/eOCt7PX6rO1RZ21ox5qTOqjzyb10Wvr6T2rztpRD3Xqs7WlHt6zSX3U\nWQ81JvVV545yDy+AKtba2prOzs7y487Ozh6/xALw1um1AH1LnwXoW/osUC8EXgBVbOTIkXnuuefy\n6quvpru7Oz/72c8ybty4/l4WQE3RawH6lj4L0Lf0WaBe1PVIQ4Bqdd9992XVqlWZNm1azjnnnMyc\nOTPFYjHHHXdc9txzz/5eHkBN0GsB+pY+C9C39Fmg3jQUi8Vify9iUztr/mQtzrqsxZqS2qxLTZWp\nUudw94Vqf622Ry28J7elHmpM1Flr6qXX1strqc7aUQ911kONSf302aT2e209vWfVWTvqoU59trbU\nw3s2qY8666HGpL7q3FFGGgIAAAAAAFDVBF4AAAAAAABUNYEXAAAAAAAAVa15WxesW7cuF1xwQZ55\n5pk0NDTkkksuycCBA3POOeekoaEh++67by666KI0NjZm4cKFWbBgQZqbm3Paaafl8MMPz+rVq3P2\n2WfnpZdeypAhQ3L11Vdnjz322Bm1AQAAAAAAUAe2ucPr4YcfTpIsWLAgZ5xxRv7xH/8xV155Zc44\n44zMmzcvxWIxDz30UFasWJE77rgjCxYsyK233prrr78+3d3dmT9/fkaNGpV58+blmGOOydy5c/u8\nKAAAAAAAAOrHNnd4ffjDH86HPvShJMkf/vCH7Lrrrvnxj3+cgw46KEly6KGHZtGiRWlsbMy4cePS\n0tKSlpaWDBs2LEuXLs3ixYtzyimnlK/dnsBr990Hp7m56S2Utf2GDm3bKd9nZ6qlml7r7M6FX/9x\nZnz0LzNhvz37ezlvu1p6rUpqsSYAAAAAACrbNgOvJGlubs6sWbPyve99LzfeeGMWLVqUhoaGJMmQ\nIUOycuXKdHR0pK3tjf+je8iQIeno6OhxvHTttrzyyqo3U8sOGzq0LStWbHs91aTWavrN71/NsuX/\nnSXLXsqw/29wfy/nbVVrr1VSGzUJ7AAAAAAAqs82RxqWXH311fn3f//3zJ49O11dXeXjnZ2d2XXX\nXdPa2prOzs4ex9va2nocL10L26tYLPb4CAAAAAAAsKltBl7/8i//kptvvjlJMmjQoDQ0NGTMmDF5\n7LHHkiSPPvpoJk6cmLFjx2bx4sXp6urKypUrs2zZsowaNSrjx4/PI488Ur52woQJfVgOtaZQ7PkR\nAAAAAABgU9scafh//s//ybnnnpu//uu/ztq1a3Peeedl5MiRmT17dq6//vqMGDEikydPTlNTU2bM\nmJH29vYUi8WceeaZGThwYKZPn55Zs2Zl+vTpGTBgQK677rqdURc1orSzqyDxAgAAAAAAtmCbgdfg\nwYPzf//v/93s+J133rnZsalTp2bq1Kk9jg0aNCg33njjW1gi9axgpCEAAAAAALAN230PL+gPxfJI\nQ4EXAAAAAADQO4EXFa1Y3uHVzwsBAAAAAAAqlsCLilYolD5KvAAAAAAAgN4JvKhopR1eRhoCAAAA\nAABbIvCiohWMNAQAAAAAALZB4EVFKwVdRYkXAAAAAACwBQIvKlpph9c69/ACAAAAAAC2QOBFRXtj\npKHACwAAAAAA6J3Ai4r2xkjD/l0HAAAAAABQuQReVLTChlGGBYkXAAAAAACwBQIvKlop5yq4hxcA\nAAAAALAFAi8qWrF8D69+XggAAAAAAFCxBF5UtNIoQyMNAQAAAACALRF4UdFKOVdR4AUAAAAAAGyB\nwIuKVt7hVejnhQAAAAAAABVL4EVFK23sMtIQAAAAAADYEoEXFa0UdBlpCAAAAAAAbInAi4pWLJQC\nr35eCAAAAAAAULEEXlS0QmmkYUHiBQAAAAAA9E7gRUUrjTJ0Dy8AAAAAAGBLBF5UtDfu4dXPCwEA\nAAAAACqWwIuKVgq67PACAAAAAAC2ROBFRSsFXe7hBQAAAAAAbInAi4pW2thVtMMLAAAAAADYAoEX\nFa20s0veBQAAAAAAbInAi4pWzIaRhhIvAAAAAABgCwReVLRSziXwAgAAAAAAtkTgRUUrjzQs9PNC\nAAAAAACAiiXwoqLZ4QUAAAAAAGyLwIuKVgq6igIvAAAAAABgCwReVLRS4GWHF/WsUCjkwgsvzLRp\n0zJjxow899xzPc7fe++9+eQnP5njjjsu8+bN66dVAlQ3vRagb+mzAH1LnwVImrd2cs2aNTnvvPPy\n/PPPp7u7O6eddlre/e5352//9m+zzz77JEmmT5+eo446KgsXLsyCBQvS3Nyc0047LYcffnhWr16d\ns88+Oy+99FKGDBmSq6++OnvsscfOqIsaUR5p6B5e1LEHH3ww3d3dueuuu/L444/nqquuyle/+tXy\n+WuuuSb3339/Bg8enKOPPjpHH3103vGOd/TjigGqj14L0Lf0WYC+pc8CbCPwuvfee7Pbbrvl2muv\nzauvvppjjjkmn//853PSSSfl5JNPLl+3YsWK3HHHHbnnnnvS1dWV9vb2HHLIIZk/f35GjRqV008/\nPd/5zncyd+7cXHDBBX1eFLXDSENIFi9enEmTJiVJDjzwwCxZsqTH+dGjR2flypVpbm5OsVhMQ0ND\nfywToKrptQB9S58F6Fv6LMA2Aq+PfOQjmTx5cpL1gUNTU1OWLFmSZ555Jg899FCGDx+e8847L088\n8UTGjRuXlpaWtLS0ZNiwYVm6dGkWL16cU045JUly6KGHZu7cuX1fETWllHPJu6hnHR0daW1tLT9u\namrK2rVr09y8voXvu+++Oe644zJo0KAceeSR2XXXXbfreYcObeuT9VaaeqizHmpM1Enf6oteWy+v\npTprSz3UWQ81ViK/07559VBjos5aUy91VhJ99q1RZ+2ohxqT+qlzR2018BoyZEiS9Q3zC1/4Qs44\n44x0d3fn+OOPz5gxY/LVr341N910U/bbb7+0tbX1+LqOjo50dHSUjw8ZMiQrV67crkXtvvvgNDc3\nvdmadkgtvjFqqaaBA9e/RdcVizVVV4ma2B6tra3p7OwsPy4UCuVfWJcuXZof/OAHeeihhzJ48OCc\nffbZeeCBB/LRj350m8+7YsX29eRqNnRoW83XWQ81JuqsNZX474q+6LX18lqqs3bUQ531UGNSP302\nqf1eW0/vWXXWjnqoU5+tLfXwnk3qo856qDGprzp31FYDryT54x//mM9//vNpb2/Pxz/+8bz22mvl\nvwA48sgjc9lll2XixIk9GmpnZ2fa2tp6NNrOzs7t/suBV15ZtcOFvBm1+MaotZpWrepOsn6HYS3V\nldTea5XURk2V+Evr+PHj8/DDD+eoo47K448/nlGjRpXPtbW1ZZdddsnAgQPT1NSUPfbYI6+99lo/\nrhagOum1AH1LnwXoW/oswDYCrxdffDEnn3xyLrzwwnzgAx9IksycOTOzZ8/O2LFj85Of/CT7779/\nxo4dmxtuuCFdXV3p7u7OsmXLMmrUqIwfPz6PPPJIxo4dm0cffTQTJkzYKUVRO8ojDQtmGlK/jjzy\nyCxatCgnnHBCisVirrjiitx3331ZtWpVpk2blmnTpqW9vT0DBgzIsGHD8slPfrK/lwxQdfRagL6l\nzwL0LX0WIGkoFrd8d6TLL788DzzwQEaMGFE+dsYZZ+Taa6/NgAED8s53vjOXXXZZWltbs3Dhwtx1\n110pFov527/920yePDmvv/56Zs2alRUrVmTAgAG57rrrMnTo0G0uamftEKmF3SibqrWavnH/U/nx\nkj9lj113yZc/98H+Xs7bqtZeq6Q2aqrEHV59pdpfq+1RC+/JbamHGhN11pp66bX18lqqs3bUQ531\nUGNSP302qf1eW0/vWXXWjnqoU5+tLfXwnk3qo856qDGprzp31FZ3eF1wwQW54IILNju+YMGCzY5N\nnTo1U6dO7XFs0KBBufHGG3d4UVBSymMLW85lAQAAAACAOtfY3wuArSlNMtzKRkQAAAAAAKDOCbyo\naOUdXoV+XggAAAAAAFCxBF5UNDu8AAAAAACAbRF4UdGKBffwAgAAAAAAtk7gRUUrBV12eAEAAAAA\nAFsi8KKilXKugrwLAAAAAADYAoEXFa28w0viBQAAAAAAbIHAi4pmhxcAAAAAALAtAi8qWmmHV8E9\nvAAAAAAAgC0QeFHRiqWRhgIvAAAAAABgCwReVLRCoRR4Cb0AAAAAAIDeCbyoaBtnXOIuAAAAAACg\nNwIvKtrGu7pKu70AAAAAAAA2JvCiom2ccZloCAAAAAAA9EbgRUXbeIeXe3gBAAAAAAC9EXhR0Qo9\nAq9+XAgAAAAAAFCxBF5UtI1HGhYkXgAAAAAAQC8EXlQ0Iw0BAAAAAIBtEXhR0QqFjT6XdwEAAAAA\nAL0QeFHRirHDCwAAAAAA2DqBFxWtsNG2Lju8AAAAAACA3gi8qGgbb+qywwsAAAAAAOiNwIuKtnHI\nJe8CAAAAAAB6I/CiohWK7uEFAAAAAABsncCLirZxxlVwEy8AAAAAAKAXAi8q2sY7vAr9uA4AAAAA\nAKByCbyoaBvv8DLSEAAAAAAA6I3Ai4rW8x5e/bgQAAAAAACgYgm8qGjFje7b5R5eAAAAAABAbwRe\nVLSCkYYAAAAAAMA2CLyoaEUjDQEAAAAAgG1o3trJNWvW5Lzzzsvzzz+f7u7unHbaaXnve9+bc845\nJw0NDdl3331z0UUXpbGxMQsXLsyCBQvS3Nyc0047LYcffnhWr16ds88+Oy+99FKGDBmSq6++Onvs\nscfOqo0asPEOr4LECwAAAAAA6MVWd3jde++92W233TJv3rx84xvfyGWXXZYrr7wyZ5xxRubNm5di\nsZiHHnooK1asyB133JEFCxbk1ltvzfXXX5/u7u7Mnz8/o0aNyrx583LMMcdk7ty5O6suaoQdXgAA\nAAAAwLZsdYfXRz7ykUyePDnJ+uChqakpTz75ZA466KAkyaGHHppFixalsbEx48aNS0tLS1paWjJs\n2LAsXbo0ixcvzimnnFK+VuDFjtp4V5cdXgAAAAAAQG+2GngNGTIkSdLR0ZEvfOELOeOMM3L11Ven\noaGhfH7lypXp6OhIW1tbj6/r6Ojocbx07fbYfffBaW5uelMF7aihQ9u2fVGVqamaNsq4dtttcG3V\nlhp7rTaoxZoAAAAAAKhsWw28kuSPf/xjPv/5z6e9vT0f//jHc+2115bPdXZ2Ztddd01ra2s6Ozt7\nHG9ra+txvHTt9njllVU7WsebMnRoW1as2L4QrlrUWk3rNrqJ18svd2bFoG2+ZatGrb1WSW3UJLAD\nAAAAAKg+W72H14svvpiTTz45Z599dj71qU8lSd73vvflscceS5I8+uijmThxYsaOHZvFixenq6sr\nK1euzLJlyzJq1KiMHz8+jzzySPnaCRMm9HE51JqNpxgaaQgAAAAAAPRmq9tlvva1r+W1117L3Llz\ny/ffOv/883P55Zfn+uuvz4gRIzJ58uQ0NTVlxowZaW9vT7FYzJlnnpmBAwdm+vTpmTVrVqZPn54B\nAwbkuuuu2ylFUTuKG4Vc8i4AAAAAAKA3Ww28LrjgglxwwQWbHb/zzjs3OzZ16tRMnTq1x7FBgwbl\nxhtvfIsDR9vhAAAgAElEQVRLpF4Vi8WNb+HVI/wCAAAAAAAo2epIQ+hPm+ZbBXkXAAAAAADQC4EX\nFWvTe3a5hxcAAAAAANCbrY40hP606QhDIw2pV4VCIRdffHF+/etfp6WlJZdffnmGDx9ePv/EE0/k\nqquuSrFYzNChQ3Pttddm4MCB/bhigOqj1wL0LX0WoG/pswB2eFHBNh1hKO+iXj344IPp7u7OXXfd\nlbPOOitXXXVV+VyxWMzs2bNz5ZVXZv78+Zk0aVKef/75flwtQHXSawH6lj4L0Lf0WQA7vKhghYId\nXpAkixcvzqRJk5IkBx54YJYsWVI+98wzz2S33XbLN7/5zfz2t7/NYYcdlhEjRmzX8w4d2tYn6600\n9VBnPdSYqJO+1Re9tl5eS3XWlnqosx5qrER+p33z6qHGRJ21pl7qrCT67FujztpRDzUm9VPnjhJ4\nUbE2zbcKhf5ZB/S3jo6OtLa2lh83NTVl7dq1aW5uziuvvJJf/OIXufDCCzNs2LCceuqpGTNmTD7w\ngQ9s83lXrFjZl8uuCEOHttV8nfVQY6LOWlOJv5j3Ra+tl9dSnbWjHuqshxqT+umzSe332np6z6qz\ndtRDnfpsbamH92xSH3XWQ41JfdW5o4w0pGIV3MMLkiStra3p7OwsPy4UCmluXv/3CrvttluGDx+e\nkSNHZsCAAZk0aVKPv+ICYPvotQB9S58F6Fv6LIDAiwq2acC16T29oF6MHz8+jz76aJLk8ccfz6hR\no8rn/uIv/iKdnZ157rnnkiQ/+9nPsu+++/bLOgGqmV4L0Lf0WYC+pc8CGGlIBdt0Q5cdXtSrI488\nMosWLcoJJ5yQYrGYK664Ivfdd19WrVqVadOm5R/+4R9y1llnpVgsZty4cfnQhz7U30sGqDp6LUDf\n0mcB+pY+C5A0FCswRdhZ8ydrcdZlLdX0akdXvvSVReXHp35i/xz0l3v244reXrX0WpXUQk2VOIe7\nr1T7a7U9auE9uS31UGOizlpTL722Xl5LddaOeqizHmpM6qfPJrXfa+vpPavO2lEPdeqztaUe3rNJ\nfdRZDzUm9VXnjjLSkIq1+Q6v/lkHAAAAAABQ2QReVKzCJjftqsDNiAAAAAAAQAUQeFGxNg245F0A\nAAAAAEBvBF5UrMKmjyVeAAAAAABALwReVKzihpGGTY0NSQReAAAAAABA7wReVKxSwNW4IfCSdwEA\nAAAAAL0ReFGxNmzwKu/w2vSeXgAAAAAAAInAiwpWCrjeGGnYn6sBAAAAAAAqlcCLilXa0NXU1Ljh\nscQLAAAAAADYnMCLilUo9NzhJe8CAAAAAAB6I/CiYhWz6UhDiRcAAAAAALA5gRcVq1BY/7G8w8tN\nvAAAAAAAgF4IvKhYpXt2NZZ3ePXnagAAAAAAgEol8KJilSYYNjWuf5uWRhwCAAAAAABsTOBFxSrd\ns6s80lDeBQAAAAAA9ELgRcUqjTRsatow0tBMQwAAAAAAoBcCLypWKeB6Y4eXwAsAAAAAANicwIuK\nVdjw0UhDAAAAAABgawReVKziJvfwKki8AAAAAACAXgi8qFiFDVu8mprWv03dwgsAAAAAAOiNwIuK\nVdrh1djgHl4AAAAAAMCWCbyoWKURhk1N7uEFAAAAAABs2XYFXr/85S8zY8aMJMlTTz2VSZMmZcaM\nGZkxY0a++93vJkkWLlyYY489NlOnTs3DDz+cJFm9enVOP/30tLe357Of/WxefvnlPiqDWlQKuEr3\n8LLDCwAAAAAA6E3zti645ZZbcu+992bQoEFJkieffDInnXRSTj755PI1K1asyB133JF77rknXV1d\naW9vzyGHHJL58+dn1KhROf300/Od73wnc+fOzQUXXNB31VBTSgFXU2PpHl4CLwAAAAAAYHPbDLyG\nDRuWOXPm5O///u+TJEuWLMkzzzyThx56KMOHD895552XJ554IuPGjUtLS0taWloybNiwLF26NIsX\nL84pp5ySJDn00EMzd+7c7VrU7rsPTnNz01soa/sNHdq2U77PzlQrNbX+4bUkyZDBLUmSXXZpqZna\nSmqtnqQ2awIAAAAAoLJtM/CaPHlyli9fXn48duzYHH/88RkzZky++tWv5qabbsp+++2XtrY3/k/u\nIUOGpKOjIx0dHeXjQ4YMycqVK7drUa+8smpH63hThg5ty4oV27emalFLNf33f7+eJOnuXpsk6VzV\nVTO1JbX1WpXUQk0COwAAAACA6rNd9/Da2JFHHpkxY8aUP3/qqafS2tqazs7O8jWdnZ1pa2vrcbyz\nszO77rrr27Rs6kGhsGGkYVPpHl79uRoAAAAAAKBS7XDgNXPmzDzxxBNJkp/85CfZf//9M3bs2Cxe\nvDhdXV1ZuXJlli1bllGjRmX8+PF55JFHkiSPPvpoJkyY8PaunppWCriaGtcHXu7hBQAAAAAA9Gab\nIw03dfHFF+eyyy7LgAED8s53vjOXXXZZWltbM2PGjLS3t6dYLObMM8/MwIEDM3369MyaNSvTp0/P\ngAEDct111/VFDdSoUsBVCrzkXQAAAAAAQG+2K/Dae++9s3DhwiTJ/vvvnwULFmx2zdSpUzN16tQe\nxwYNGpQbb7zxbVgm9eiNwGv9RsSixAsAAAAAAOjFDo80hJ1l05GGAi8AAAAAAKA3Ai8qVnmHV9OG\ne3gV+nM1AAAAAABApRJ4UbHs8AIAAAAAALaHwIuKVQq4GjcEXgV5FwAAAAAA0AuBFxWrsCHhampc\n/zYtRuIFAAAAAABsTuBFxdp0pGHBFi8AAAAAAKAXAi8qVmmkYVNT6R5e/bkaAAAAAACgUgm8qFil\nDV1NDaXAS+IFAAAAAABsTuBFxbLDCwAAAAAA2B4CLypWoRR4NTb2eAwAAAAAALAxgRcVqzzSsNEO\nLwAAAAAAYMsEXlSs8kjDDYGXHV7Uq0KhkAsvvDDTpk3LjBkz8txzz/V63ezZs/PlL395J68OoDbo\ntQB9S58F6Fv6LIDAiwpW2LDFq9EOL+rcgw8+mO7u7tx1110566yzctVVV212zYIFC/Kb3/ymH1YH\nUBv0WoC+pc8C9C19FiBp7u8FwJaUAq6mJju8qG+LFy/OpEmTkiQHHnhglixZ0uP8z3/+8/zyl7/M\ntGnT8vTTT2/38w4d2va2rrNS1UOd9VBjok76Vl/02np5LdVZW+qhznqosRL5nfbNq4caE3XWmnqp\ns5Los2+NOmtHPdSY1E+dO0rgRcX5wePPJ0me/dNrSZIlT7+c5I0Rh1BvOjo60traWn7c1NSUtWvX\nprm5OX/+859z00035Stf+UoeeOCBHXreFStWvt1LrThDh7bVfJ31UGOizlpTib+Y90WvrZfXUp21\nox7qrIcak/rps0nt99p6es+qs3bUQ536bG2ph/dsUh911kONSX3VuaMEXlSsUr7V0NDzMdSb1tbW\ndHZ2lh8XCoU0N69v3//2b/+WV155JX/zN3+TFStWZPXq1RkxYkSOPfbY/louQFXSawH6lj4L0Lf0\nWQCBFxWslG+9cQ8viRf1afz48Xn44Ydz1FFH5fHHH8+oUaPK50488cSceOKJSZJvf/vbefrpp/3C\nCvAm6LUAfUufBehb+iyAwIsKVgq4GjZs8SoUBF7UpyOPPDKLFi3KCSeckGKxmCuuuCL33XdfVq1a\nlWnTpvX38gBqgl4L0Lf0WYC+pc8CCLyoYOWRhhv+KfTnYqAfNTY25tJLL+1xbOTIkZtd56+zAN48\nvRagb+mzAH1LnwVIGvt7AbAlxZR2eK3/x0hDAAAAAACgNwIvKlZ5h9eGxEveBQAAAAAA9EbgRcVr\naEgaG9zDCwAAAAAA6J3Ai4pVGmHYsOE/7fACAAAAAAB6I/CiYm080tA9vAAAAAAAgC0ReFGx3gi8\n1v9joiEAAAAAANAbgRcVq5g3Eq6GhgY7vAAAAAAAgF4JvKhYPUYaJikIvAAAAAAAgF4IvKhYpR1d\n60caNkTeBQAAAAAA9EbgRcUq5VsNaUhDQ4w0BAAAAAAAeiXwomK9MdJw/Q4vIw0BAAAAAIDeCLyo\nXBuPNHzjIQAAAAAAQA/bFXj98pe/zIwZM5Ikzz33XKZPn5729vZcdNFFKRQKSZKFCxfm2GOPzdSp\nU/Pwww8nSVavXp3TTz897e3t+exnP5uXX365j8qgFhlpCAAAAAAAbI9tBl633HJLLrjggnR1dSVJ\nrrzyypxxxhmZN29eisViHnrooaxYsSJ33HFHFixYkFtvvTXXX399uru7M3/+/IwaNSrz5s3LMccc\nk7lz5/Z5QdSOzUca9u96AAAAAACAyrTNwGvYsGGZM2dO+fGTTz6Zgw46KEly6KGH5sc//nGeeOKJ\njBs3Li0tLWlra8uwYcOydOnSLF68OJMmTSpf+5Of/KSPyqAWlXd0NawPvdzDCwAAAAAA6E3zti6Y\nPHlyli9fXn5cLBbT0NCQJBkyZEhWrlyZjo6OtLW1la8ZMmRIOjo6ehwvXbs9dt99cJqbm3aokDdr\n6NC2bV9UZaq9prbWXZIkTU3r89hdW3dJQ9bfyKvaa9tUrdWT1GZNAAAAAABUtm0GXptqbHxjU1hn\nZ2d23XXXtLa2prOzs8fxtra2HsdL126PV15ZtaPLelOGDm3LihXbF8JVi1qoaWXH6iTJmrXr7w/X\n0dmVhoZk7bpC1de2sVp4rTZVCzUJ7AAAAAAAqs82Rxpu6n3ve18ee+yxJMmjjz6aiRMnZuzYsVm8\neHG6urqycuXKLFu2LKNGjcr48ePzyCOPlK+dMGHC27t6alpppGFDw/rdXSYaAgAAAAAAvdnhHV6z\nZs3K7Nmzc/3112fEiBGZPHlympqaMmPGjLS3t6dYLObMM8/MwIEDM3369MyaNSvTp0/PgAEDct11\n1/VFDdSoUr7VkKSxoSGFgsQLAAAAAADY3HYFXnvvvXcWLlyYJHnPe96TO++8c7Nrpk6dmqlTp/Y4\nNmjQoNx4441vwzKpSxvyrQ23jEsxAi8AAAAAAGBzOzzSEHaWjUcaNjQ0xAYvAAAAAACgNwIvKlYx\n68cZJut3eRXdxAsAAAAAAOiFwIuKVSwWy4lXQxpSKPTvegAAAAAAgMok8KJiFYvrxxkmdngBAAAA\nAABbJvCiYm0+0rA/VwMAAAAAAFQqgRcVq1gspmGjkYZ2eAEAAAAAAL0ReFGxNhtpGGMNAQAAAACA\nzQm8qGhvjDRc/5m8CwAAAAAA2JTAi4q1fqThGzu8kqQg8QIAAAAAADYh8KJirR9puP7zho2OAQAA\nAAAAbEzgRcVav8Nr/eelnV52eAEAAAAAAJsSeFGx1kdbPUcaFgVeAAAAAADAJgReVKweIw03fCLv\nAgAAAAAANiXwomIVi8Xyvbs2PgYAAAAAALAxgRcVq5g3dnY1lu/h1Y8LAgAAAAAAKpLAi4rVc6Th\n+o8FO7wAAAAAAIBNCLyoYBuNNNzwibwLAAAAAADYlMCLirV+h9f6pKthQ+LlHl4AAAAAAMCmBF5U\nrN5GGsq7AAAAAACATQm8qFjFvJFulXZ6FQoSLwAAAAAAoCeBFxXl5ddW55HH/5COVWt6jjQs7/Aq\n5idL/pQ/vtTZj6sEAAAAAAAqSXN/LwA29uSzL+e5P63MnnsMSrFYfGOk4Ybz/93ZnVvufyof2H/P\nfPbj+/fbOmFnKhQKufjii/PrX/86LS0tufzyyzN8+PDy+fvvvz+33XZbmpqaMmrUqFx88cVpbPT3\nDAA7Qq8F6Fv6LEDf0mcB7PCiwnSvKSRJ1qxd/7EhpR1e6z92rl6bJFm14SPUgwcffDDd3d256667\nctZZZ+Wqq64qn1u9enVuuOGG3H777VmwYEE6Ojry8MMP9+NqAaqTXgvQt/RZgL6lzwIIvKgw3WvX\nJVkfeBWKb4wyLH1c3b12w3WF/lge9IvFixdn0qRJSZIDDzwwS5YsKZ9raWnJggULMmjQoCTJ2rVr\nM3DgwH5ZJ0A102sB+pY+C9C39FkAIw2pMD12eG080nDDJ13d6zZct65f1gf9oaOjI62treXHTU1N\nWbt2bZqbm9PY2Jh3vvOdSZI77rgjq1atyiGHHLJdzzt0aFufrLfS1EOd9VBjok76Vl/02np5LdVZ\nW+qhznqosRL5nfbNq4caE3XWmnqps5Los2+NOmtHPdSY1E+dO0rgRUUpBVlr1hZSLL4RdJXu4bV6\nw/muNXZ4UT9aW1vT2dlZflwoFNLc3Nzj8bXXXptnnnkmc+bMKf/3ZltWrFj5tq+10gwd2lbzddZD\njYk6a00l/mLeF722Xl5LddaOeqizHmpM6qfPJrXfa+vpPavO2lEPdeqztaUe3rNJfdRZDzUm9VXn\njjLSkIrStSHQ6l5bSDFvBF2lfweXd3ittcOL+jF+/Pg8+uijSZLHH388o0aN6nH+wgsvTFdXV+bO\nnVseTwDAjtFrAfqWPgvQt/RZADu8qDDlkYalkYWbjDRc3V3a4SXwon4ceeSRWbRoUU444YQUi8Vc\nccUVue+++7Jq1aqMGTMmd999dyZOnJhPf/rTSZITTzwxRx55ZD+vGqC66LUAfUufBehb+iyAwIsK\nU9q51b12ffC12UjD7rXrzxtpSB1pbGzMpZde2uPYyJEjy58vXbp0Zy8JoObotQB9S58F6Fv6LICR\nhlSYUpBVupdXeZrwhuCrPNLQDi8AAAAAAGADgRcVpXwPrzU9d3g1bki+Vm84v65QzNp1dnkBAAAA\nAABvYaThJz/5ybS2tiZJ9t5775x66qk555xz0tDQkH333TcXXXRRGhsbs3DhwixYsCDNzc057bTT\ncvjhh79ti6f2lEYarllXCrzS42PpHl5JsmZtIc1NMlsAAAAAAKh3byrw6urqSrFYzB133FE+duqp\np+aMM87IwQcfnAsvvDAPPfRQDjzwwNxxxx2555570tXVlfb29hxyyCFpaWl52wqgtmx6b66GTT7r\n2ijw6l6zLoMGug0dAAAAAADUuzeVFixdujSvv/56Tj755KxduzZf+tKX8uSTT+aggw5Kkhx66KFZ\ntGhRGhsbM27cuLS0tKSlpSXDhg3L0qVLM3bs2Le1CGpH1yb35iqNNHxjh9faLV4LAAAAAADUpzcV\neO2yyy6ZOXNmjj/++Dz77LP57Gc/m2KxWA4nhgwZkpUrV6ajoyNtbW3lrxsyZEg6Ojq2+fy77z44\nzc1Nb2ZpO2zo0LZtX1RlqrmmteuKPR4PaG5KW+su5ffWmo3OD2kbVNW1JtX9Wm1JLdYEAAAAAEBl\ne1OB13ve854MHz48DQ0Nec973pPddtstTz75ZPl8Z2dndt1117S2tqazs7PH8Y0DsC155ZVVb2ZZ\nO2zo0LasWLFyp3yvnaXaa1rdtbbH43Xr1mVlx+ryDq/O19eUz/3pz69lSHNDqlW1v1a9qYWaBHYA\nAAAAANWn8c180d13352rrroqSfLCCy+ko6MjhxxySB577LEkyaOPPpqJEydm7NixWbx4cbq6urJy\n5cosW7Yso0aNevtWT83pXrvJmMLSSMPSPbzWbHwPr573+wIAAAAAAOrTm9rh9alPfSrnnntupk+f\nnoaGhlxxxRXZfffdM3v27Fx//fUZMWJEJk+enKampsyYMSPt7e0pFos588wzM3DgwLe7BmrEukJh\ns5GGpf1bpR1ea9a+EXJ1u4cXAAAAAACQNxl4tbS05Lrrrtvs+J133rnZsalTp2bq1Klv5ttQZ3rb\nsVUKuhp6mVzYJfACAAAAAADyJkcaQl/oXttb4NXQ42OP6400BAAAAAAAIvCigpR2bO3S0lQ+1rDJ\nx41tdr8vAAAAAACgLgm8qBile3INGvjGpM2t7fD6r+de2TkLAwAA4P9n796j9Krre/G/Z5655DIh\nARLAKkFIiS0iJwR7sTS9aFPq5dAl+UEQDf39Vs+hnrVae1qOtqeVNL8fiGnRc1wipbWHKuWoSUQs\nhKOoCJaKiBANGBCQEIIg5AKZJDOTzGTy7N8fk4wJhAQy82RmP/v1WotFnvv3M3vznqz15rsfAAAY\n1xRejBt7L1G47w6vHOQ7vAZ3u6QhAAAAAACg8GIc2bvDa9I+O7xaD1B47f3z4O7iSC0NAAAAAAAY\nxxRejBt7v5Nr30sa7t3i1bLPt3h1tg/tALPDCwAAAAAASBRejCPDlzTs/NklDVsOsMOrc88lD3fb\n4QUAAAAAAEThxTjSv+eShu1ttbTV9uzsGi68ftZ4TbDDCwAAAAAA2IfCi3Fj73d4tdVa0t42dGru\nvZThgXZ4Ddbt8AIAAAAAABRejCP9ey5p2FZrTXvbUKm1b9G114ThSxra4QUAAAAAACi8GEcGBod2\neNVa99nhdYBLGra31dLa4pKGAAAAAADAEIUX48bAfju89p6aQ0VX6z47vdpqLanVWjO42yUNAQAA\nAAAAhRdj7LkX+vIvtz2SgV279/sOr449hddw0bXPDq9arTVttZbhHV73P7Ixjz615YiuGwAAAAAA\nGD8UXoypf3/wp/nW6p/m4fVbhi9p2FZrTXttz6m5p+ja96u82lpb0lZrze7dRer1Ip9e+VCWffPx\nI7xyAAAAAABgvFB4Maa6tw8kSbb29O9zScOWtLfv+Q6vPc9r2e+Shq2ptbZksF7P9r6BDO4usmX7\nziO5bAAAAAAAYBxReDGmtvb2D/27ZyD9ey5pWKu1pr2tluRnRVfLPo1XW21oh9fgYJHunqHCbHvf\nruyu14/gygEAAAAAgPFC4cWY2rqnsOruHdjvO7za93yH196i68U7vNpqrakXRbZsHyrMiiTbencd\nuYUDAAAAAADjhsKLMdXds3eHV3/6B+tpaUlaW1rSUXvRJQ33+RavWq0lbbWh2xu7d7zkvQAAAAAA\ngGppG+sFUF27Buvp3TmYJOnuGcjuej0d7bW0tOy7wyv7/TvZ8x1eewqxTVt+Vnjt3S0GAAAAAABU\nix1ejJm939+1988Du+rp3FN0dU1qT5JM6BjqZPf/Dq9WO7wAAAAAAIBhdngxZvbdkbW1ZyBHTe5I\nR3stSTJ96oS8+zdOTtfEoeJrnw1eaau1pG3PDq+NW/qG71d4AQAAAABANdnhxZjp3qfw2l0v0t3T\nn8Hd9SRDO7qmTOoY3tm17yUNa62tqbUO3bF5687h+7f2uqQhAAAAAABUkcKLMbP3koYd7UOnYVFk\n+Lu5Xmz/Sxr+bIfX7nqRiZ1Du8L27hgriiJFUTRs3QAAAAAAwPii8OKIemHbzqz+8eYkP9vhdcxR\nE4Yfb2ttOeDr9t3hte93eCXJCcdMTlutdfiShld/6Ye58oZVo710AAAAAABgnFJ4cUStuPPxfPJL\nD+bZ53uzdU9BdexRncOPt73cDq893+LV2pK0trbs97xpXR2Z1tUxfEnENeuez9qfbsv2Ppc4BAAA\nAACAKlB4cUStfWbb8L/3fufWvju8arWD7/Dae8nDfS99OLWrM9O6OrOtd1ee3tSTwd1DlzNcv2H7\nqK8fAAAAAAAYfxReHDHbegfy/LadSZJ1z21Ld09/2motOWpSx/BzXm6H154NXsOXMtz3kobd23dm\nYHB36kWRlXc/OXz/+ucUXgAAAAAAUAUKLxrqx09357sPP5ckWffstuH71/10W7b2DGRiZ1smdrYN\n39/2Mju8Wlv2Fl2t+/07yX7v8fSmnuH7128Y+vOadc9n5d3rUhTFaIwEAAAAAACMM22HfgocnqIo\n8k8rH87mrTtz6munDRdetdaW/GRjT+pFkRnTJmZCZy0tSYocZIfXHrXWl+7wmtjZlkkDu5Mkm7t3\nptbaks72WtY/ty1FUeRzX38sG7bsyOmnHJuTX3NUQ2YFAAAAAADGjh1ejKp71jyXex/ekCR54qfb\nsnnr0CUM73tkY9Y9O3SJwbmzZ2R3vUhRDJVVrS0tmdBZS7L/d3Ptq+XFO7xaD7zDq0jy2umTc/Jr\npmRT98488lR3NmzZMbyGJHn86a254WuPpn/X7tEcHQAAAAAAGCMKL0bkqQ3bs7V3IEmy4YW+XPd/\nfpT/devD2bx1x3DxlST3Prwh657dlulTJ+SMWccO3z9xT9G1t7Bqaz3wJQ1bhr/Da+iUrb1oh9e+\nl0WcecKUzDxhSpLkxm+tHb7/vh9tTL1e5LO3PZI7f/BM7vz+M0mSHf2Due+Rjdk1WD+8HwIAAAAA\nADCmFF68rKIo8twLfanXh777akf/YL5w+4/z8JMvJEkefWpL/t/P3pcrrr8/vTt35Za716VeFNld\nL3Lzt9flvkc2ZvKEtrzx5GOyfsP29OzYlckT27Np647hz9hbVA0XXofc4bX/Tq+WJBM6a5k0oTb8\n3NefMCWvP2Ho0oXrnt2Wzo5a3vwLx+X5bTuz/I7H89PNvUmSr967PjsHBvOPtzyUa/91TVbc8XiS\n5OmNPfnEFx/Ij/bMmSTrn9uenQODI/hpAgAAAAAAjdLw7/Cq1+tZsmRJHn300XR0dOSKK67ISSed\n1OiPHfeKPcXQ3uKmKIrsGqyno702fLtnx650TWxPS0tLiqLI81t3ZmpXZ9rbWlMURZ7Z3JujJnXk\nqMkdKYoiTz63PX2DRSa1taReL/LQky9k12A9Z8w6Nq0tLbn/0Y15YVt/3nL6CZk8oS3/tvqneWT9\nlpzzyzPz+tdMyS13P5l/f/Cn+d1fOjFvnfu6fO4bj+XbDz6bX5g5Lf/PO34x/7Ty4Tz+zNbc+YOn\n83+//Rdy47fWpiiS57ftzNU3PpgfP701r5vRld31eu7+4XNJkt+c83OZ/bppeWjdUHk0feqEHDW5\nI+211uzaXc+kFxVe++7c2tfee/de8nBv8TWhs5bWlpb9dng9v21nenfuGr79c8dOytmnn5D7H9mY\nb9z/k7S2tORXTjs+9zz0XD62bHWe+OnQd4t98/tP5/hjJub/3LM+W3sH8shTW3Lpwjn53o825pur\nns4Jx0zKn/5fZ2Tztp35319/LK85ZlIWnfOGFEWRf/33dWlra83vn/36TJ7Ynnsf3pAd/YP5tdNP\nyEqgsiEAACAASURBVMTOtjz+zNZs6t6ROT8/I5MmtKW7pz/PbNmR6V0d6WyvZdfg7vx0c19+bvqk\ntLfVUhRFNm3dmWOmdA6fI707d6WzvTZ8e+fAYGqtrWlvG7pdL4aKydaWA/8MKa9D5egdd9yRa665\nJm1tbVmwYEEuuOCCMVwtQDnJWoDGkrMAjSVnAY5A4XX77bdnYGAgy5cvz+rVq7N06dJce+21o/b+\n9aLINTf9MN09Aznu6IkZ2LU7m7p3pLWlJccdPTFpacnGF/qyu17kuKMnpr2tNRu27MjOgd153XFd\naW9tyYYtO7K9byAzpk3MtK6ObOremS3bd+aYoyZk+tQJeX7rzmzs3pFpXZ05/phJ2drTn2ef70vX\nxPb83PTJ6du5K09v6k1He2tOPG5Kdg3W89SG7SmSzDy+K22trVn37Lbs3LU7Jx0/JZMntGXtM1uz\nfceunHhcV6ZPnZh1z27Llu39OeGYSXnt9Ml5Ys/tqZM7cvJrjspTG7fnhW396Wyv5dQTp+bZzb15\nflt/WlqSU187NS9s7x/+vqzXzZic/l27s6l76PZRkzsyoaOWjXu+y+rL//7E8JxJsuqxTZnW1ZHu\nnqFLE37xzrW59TtPZkf/7kye0JZHnurOX/7jPSmK5LTXH50fP701/+vWHyVJzvuNU/Lwky/kkae6\nkyTvnndydu2u5x9ufihJ0tleS8/OXam1tmR3vcixUyektaUlx06dkOde6BsuqiYdcodX9jw+9Ie9\nxdfe13e219LakhRFcvSUztRaW9Le1ppdg/W8/jVH5Y0nH5PJE9rSu3OohFr4tp/P6sc354mfbkvX\nxPZccu5p+eSNP8znb/9xkuTs00/IPQ9tyNL//f0USaZO7shzL/RlyWfuG/7urw0v9OXRn3Rn9+56\nBvZcDvG7Dz2XiZ1t2bK9f/hnfexRE/L0pqFdZZ0dj+Wk47ry42e2piiSCR21zHrt1Dz+zNb0D+zO\nhI5aZp84LU9t2J7unoF0dtTyhhOn5fmtO/PM5t50dtQy+3XT0rNjIE8+tz1ttdb8/GunprUleeLZ\nbakXySmvOSqd7bWhc25gd046vitHTe7ITzb2ZFvfQF47oyvHTOnMs8/35YVtO3Pc0ZNy/NETs6l7\nRzZ178gxR03ICcdMSndPfzZs2ZEpk9rzmmMnp3fHrjz3Ql8mdNTymmMnZ9dgPRu29KW1pSUnHDMp\nLS3J5m396R8YzPFHT0pHe2s27vlvbca0iZk8sS2bu3dm+45dQ8XnpI5s2b4zW3oGcnRXR46eMiHb\nevvzwvb+TJnYnmOnTkjPjsFs3rojkzrbMmPaxOwc2J1NW3ekvdaa446emN27i2zqHjqvZ0ybmNbW\nlmzcsiMDg7tz/NGT8gsnHZ3f/aUTX22sjDsHy9Fdu3blox/9aG688cZMnDgx73nPe/LWt74106dP\nH+NVA5SLrAVoLDkL0FhyFuAIFF6rVq3KvHnzkiRz5szJmjVrDvmaGTOmvKrP+P/ef/ZhrY3Geedv\n/Px+ty96+2n73T5//i+86Pah3/O9v/eL+91+3zveuN/tC373Fw96e9lH3rnf7RVX7n/7t3/59Yde\nBIyBg+Xo2rVrM3PmzEydOjVJctZZZ+W+++7L29/+9kO+76vN2rKqwpxVmDExJ43ViKytyrE0Z3Op\nwpxVmHE88nfaw1eFGRNzNpuqzDmeyNmRMWfzqMKMSXXmfLUa/h1ePT096erqGr5dq9UyOOi7kABe\nqYPlaE9PT6ZM+dkvuMmTJ6enp+eIrxGg7GQtQGPJWYDGkrMAR6Dw6urqSm9v7/Dter2etraGbywD\naBoHy9EXP9bb27vfX2IBeGVkLUBjyVmAxpKzAEeg8Jo7d27uuuuuJMnq1asze/bsRn8kQFM5WI7O\nmjUr69evT3d3dwYGBnL//ffnzDPPHKulApSWrAVoLDkL0FhyFiBpKYqiaOQH1Ov1LFmyJI899liK\nosiVV16ZWbNmNfIjAZrKgXL04YcfTl9fXxYuXJg77rgj11xzTYqiyIIFC/Le9753rJcMUDqyFqCx\n5CxAY8lZgCNQeAEAAAAAAEAjNfyShgAAAAAAANBICi8AAAAAAABKrSkLr507d+ZP/uRPctFFF+U/\n/+f/nBdeeOElz1mxYkXOO++8XHDBBbnzzjv3e+wb3/hGLr300uHbq1evzvnnn58LL7wwn/rUpxq+\n/gM53Jle7nXf+MY38ju/8ztZtGhRFi1alO9973tHbJZ6vZ7Fixdn4cKFWbRoUdavX7/f43fccUcW\nLFiQhQsXZsWKFQd9zfr16/Oe97wnF110Uf7mb/4m9Xr9iM2xr9Gc6eGHH868efOGj81XvvKVIz7P\nXocz114PPPBAFi1aNHx7vByrKhnJ8SuTQ8156623Dmf44sWLS3vuHWrOvS677LJ87GMfO8KrGz2H\nmvPBBx/MRRddlPe85z35wAc+kP7+/jFa6eE71Iy33HJL3v3ud2fBggX5/Oc/P0arHD0v/n2wV1Uy\nqBnmlLP7k7PlUKWslbPVmFPWloecHSJny0PODpGz5VKFrK1SziajmLVFE/rnf/7n4pOf/GRRFEVx\n6623Fpdffvl+j2/cuLF417veVfT39xfbtm0b/nNRFMXll19enHPOOcV//a//dfj55557brF+/fqi\nXq8X/+k//afioYceOnLD7HG4M73c6/7H//gfxW233XZkh9jja1/7WvEXf/EXRVEUxQ9+8IPi/e9/\n//BjAwMDxe/8zu8U3d3dRX9/f3HeeecVmzZtetnX/NEf/VHx3e9+tyiKorjsssuKr3/960d4miGj\nOdOKFSuK66677sgPcQCHM1dRFMWnP/3p4l3veldx/vnnDz9/vByrKjnc41c2B5tzx44dxdve9rai\nr6+vKIqi+LM/+7Pi9ttvH5N1jtTB5tzrC1/4QnHBBRcUV1111ZFe3qg52Jz1er0499xziyeffLIo\niqG8XLt27ZiscyQOdSzPPvvsYsuWLUV/f//wf6dldaDfB0VRnQxqljnl7M/I2fKoStbK2WrMKWvL\nRc4OkbPlIWflbBlVIWurkrNFMbpZ25Q7vFatWpV58+YlSX7jN34j99xzz36PP/jggznzzDPT0dGR\nKVOmZObMmXnkkUeSJHPnzs2SJUuGn9vT05OBgYHMnDkzLS0t+fVf//V85zvfOWKz7HW4M73c6x56\n6KF86UtfykUXXZSlS5dmcHBwTGaZM2dO1qxZM/zY2rVrM3PmzEydOjUdHR0566yzct99973sax56\n6KH88i//8vB8Y3FsktGdac2aNfnWt76V9773vfmrv/qr9PT0HPmB9jicuZJk5syZufrqq/d7r/Fy\nrKrkcI9f2Rxszo6OjixbtiwTJ05MkgwODqazs3NM1jlSB5szSb7//e/ngQceyMKFC8dieaPmYHOu\nW7cu06ZNy2c/+9m8733vS3d3d0455ZSxWuphO9SxfMMb3pDt27dnYGAgRVGkpaVlLJY5Kg70+yCp\nTgY1y5xydoicLZeqZK2crcacsrZc5OwQOVseclbOllEVsrYqOZuMbtaWvvD64he/mHe96137/bN9\n+/ZMmTIlSTJ58uRs3759v9f09PQMP773OXtLhXe84x37nRw9PT3p6ura77kvfr/RNpoz7Xv/vq87\n++yzc9lll+Vzn/tc+vr6smzZsobO9OK17vszrdVqw4XbweY40Gv2/Y/5SByblzOaM51xxhn50Ic+\nlM997nM58cQTc8011xy5QV7kcOZKknPOOSdtbW37vdd4OVZVcrjHr2wONmdra2umT5+eJLnhhhvS\n19eXs88+e0zWOVIHm3Pjxo255pprsnjx4rFa3qg52JxbtmzJD37wg7zvfe/LZz7zmXz3u999yf8A\nUgYHmzFJTj311CxYsCDvfOc781u/9Vs56qijxmKZo+JAvw+S6mRQs8wpZ+VsGVUla+VsNeaUteUi\nZ4fI2fKQs3K2jKqQtVXJ2WR0s/al71Iy559/fs4///z97vvjP/7j9Pb2Jkl6e3tfcrC7urqGH9/7\nnH1/cId6bqNPntGcad/7933dggULhv/8tre9LV/72tcaNs+LvXit9Xp9+IR+JXPs+5rW1tb9njtW\n/2GP5kzz588fnmP+/Pm5/PLLj9AUL3U4c72c8XKsqmQ0j994drA5996+6qqrsm7dulx99dWl/T9e\nDjbnbbfdli1btuSSSy7Jpk2bsnPnzpxyyik577zzxmq5h+1gc06bNi0nnXRSZs2alSSZN29e1qxZ\nk7e85S1jstbDdbAZH3nkkXzrW9/KN7/5zUyaNCkf/OAH89WvfjVvf/vbx2q5DVGVDGqWOeWsnC1b\nziaytlnyJ6lGziayNmmerJWzcrZs5OzPbsvZ8qhC1lY9Z5PDy6DS7/A6kLlz5+bf/u3fkiR33XVX\nzjrrrP0eP+OMM7Jq1ar09/dn+/btWbt2bWbPnn3A9+rq6kp7e3ueeuqpFEWRb3/723nzm9/c8Ble\n7HBnOtDriqLIueeem+eeey5Jcs899+SNb3zjEZ3lrrvuSpKsXr16v5/9rFmzsn79+nR3d2dgYCD3\n339/zjzzzJd9zWmnnZZ77713eL6xODbJ6M70h3/4h3nwwQeTHPlj82KHM9fLGS/HqkpG8/iNZweb\nM0kWL16c/v7+/P3f//3w5QnK6GBzXnzxxbnppptyww035JJLLsm73vWuUv6FNTn4nCeeeGJ6e3uH\nv6j1/vvvz6mnnjom6xyJg804ZcqUTJgwIZ2dnanVajnmmGOybdu2sVpqw1Qlg5plTjkrZ8uo6lnb\nLPmTVCNnE1mbNE/Wylk5WzZydoicLZcqZG3VczY5vAxqKYqiOELrO2J27NiRv/iLv8imTZvS3t6e\nj3/845kxY0Y+85nPZObMmXnb296WFStWZPny5SmKIn/0R3+Uc845Z/j19957b5YtW5b/+T//Z5Kh\nE+rKK6/M7t278+u//uv5sz/7s9LM9HKv+/a3v51PfOITmTBhQmbNmpUPf/jDaW9vPyKz1Ov1LFmy\nJI899liKosiVV16Zhx9+OH19fVm4cGHuuOOOXHPNNSmKIgsWLMh73/veA75m1qxZWbduXS677LLs\n2rUrp5xySq644orUarUjMkejZnrooYdy+eWXp729PdOnT8/ll1++3/bV8T7XXk8//XT+/M//PCtW\nrEiScXOsqmQkx69MDjbn6aefngULFuTNb37z8P+ddfHFF2f+/PljvOpX71DHc6+bbropTzzxRP7b\nf/tvY7jaw3eoOe+55558/OMfT1EUOfPMM/PhD394rJf8qh1qxi984Qv50pe+lPb29sycOTOXX355\nOjo6xnrZh23f3wcrV66sVAY1y5xyVs6WUZWyVs42/5yytlzkrJwtGzkrZ8uoCllbpZxNRi9rm7Lw\nAgAAAAAAoDqa8pKGAAAAAAAAVIfCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8GFd++MMf5q//+q9f1Wve8IY3jMpnP/jgg7nqqqtG5b0AAAAAAIAjp22sFwD7etOb3pQ3velN\nY/LZjz/+eJ5//vkx+WwAAAAAAODwKbwYdffee2+uvvrqtLW15dlnn80ZZ5yRj3zkI/nKV76S66+/\nPvV6PW984xvzN3/zN+ns7Myv/uqv5o1vfGM2b96cD33oQ/mHf/iH3HDDDVm3bl0WL16c7u7uTJo0\nKX/913+dM844I08//XQ++MEPpq+vL//hP/yHQ67npptuype//OV0d3fnt3/7t3PxxRdn8eLFee65\n59LS0pJLL700p59+ej75yU+mr68v1157bY4//vh873vfy9KlS5MkixYtyh//8R8nSa666qrU6/Wc\neuqped3rXpcNGzZk/fr1eeaZZ3L++efnv/yX/9LQny8AAAAAALA/lzSkIR588MEsXrw4t912W/r7\n+3PddddlxYoVWbZsWW6++eYce+yxue6665IkW7ZsySWXXJKbb745bW0/62A/+MEPZtGiRVm5cmX+\n+3//7/nTP/3TDAwM5PLLL895552Xm2++OXPnzn1F69mwYUO+/OUv58///M/zkY98JAsWLMhNN92U\na6+9NosXL05ra2s+8IEP5K1vfeshC6snn3wy119/ff72b/82SfLoo4/muuuuyxe/+MV8+tOfzrZt\n2w7zpwYAAAAAABwOO7xoiF/6pV/KKaeckiT5/d///fzJn/xJjj766FxwwQVJkl27duW0004bfv6L\nd2r19vbmqaeeyu/+7u8mSebMmZOpU6fmiSeeyPe+9718/OMfT5Kce+65+fCHP3zI9Zx22mnDZdp3\nvvOdPPHEE/nkJz+ZJBkcHMxPfvKTVzzbySefnClTpgzf/pVf+ZV0dHTk2GOPzbRp07J9+/YcddRR\nr/j9AAAAAACAkVF40RC1Wm34z0VRZPfu3Xn7298+XE719vZm9+7dw8+ZMGHCfq8viiJFUbzkvr2v\n2ftYS0tLWlpaDrmefd+/Xq/n+uuvz7Rp05IM7f6aPn16fvSjHw0/p6WlZb/P37Vr18uutbOz82Vf\nBwAAAAAANJ5LGtIQq1atyoYNG1Kv1/Ov//qv+au/+qt84xvfyPPPP5+iKLJkyZJcf/31L/v6rq6u\nnHjiifn617+eJFm9enU2b96cU089Nb/2a7+WW265JUny9a9/PQMDA69qbb/6q7+az3/+80mSxx9/\nPOeee2527NiRWq2WwcHBJMnRRx+dtWvXpiiK/OQnP8mjjz56OD8GAAAAAADgCLDDi4Y47rjj8qEP\nfSgbNmzI2Wefnfe9732ZNGlS/uAP/iD1ej2/+Iu/mEsuueSg73HVVVdlyZIlufrqq9Pe3p6rr746\nHR0dWbx4cT74wQ9m2bJledOb3pTJkye/qrV9+MMfzuLFi/Mf/+N/TJL83d/9Xbq6unLGGWfkU5/6\nVD72sY/lAx/4QL70pS/l937v93LyySfnrLPOOuyfBQAAAAAA0FgtheuvMcruvffefOpTn8oNN9ww\n1ksBAAAAAAAqwA4vmsJXvvKV/OM//uMBH7v55puP8GoAAAAAAIAjyQ4vAAAAAAAASq11rBcAAAAA\nAAAAI6HwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAA\nAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEA\nAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqY1a4fXAAw9k0aJFL7n/jjvuyIIFC7Jw4cKsWLFitD4O\noHLkLEDjyVqAxpKzAI0lZ4EqaxuNN/mnf/qn3HLLLZk4ceJ+9+/atSsf/ehHc+ONN2bixIl5z3ve\nk7e+9a2ZPn36aHwsQGXIWYDGk7UAjSVnARpLzgJVNyo7vGbOnJmrr776JfevXbs2M2fOzNSpU9PR\n0ZGzzjor991332h8JEClyFmAxpO1AI0lZwEaS84CVTcqhdc555yTtraXbhbr6enJlClThm9Pnjw5\nPT09h3y/oihGY1kATUPOAjTeaGatnAV4KX+nBWgsOQtU3ahc0vDldHV1pbe3d/h2b2/vfuH6clpa\nWrJp0/ZGLm3MzZgxpelnTMzZbKow54wZh86o8UTOHlxVztlmnzExZ7OpQtbK2eZizuZRhRmTauRs\nUo2srdI5a87mUYU55WxzqcI5m1RjzirMmFRrzldrVHZ4vZxZs2Zl/fr16e7uzsDAQO6///6ceeaZ\njfxIgEqRswCNJ2sBGkvOAjSWnAWqoiE7vFauXJm+vr4sXLgwf/mXf5k//MM/TFEUWbBgQY4//vhG\nfCRApchZgMaTtQCNJWcBGkvOAlXTUozTi7E2+5a8Km07NGfzqMKcZbsswUg0+7FMqnPONvuMiTmb\nTVWytirH0pzNowpzVmHGpDo5mzR/1lbpnDVn86jCnHK2uVThnE2qMWcVZkyqNeer1dBLGgIAAAAA\nAECjKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAA\nAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAA\nAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAA\nAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUA\nAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gB\nAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BRe\nAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKLUR\nF171ej2LFy/OwoULs2jRoqxfv36/x2+55Za8+93vzoIFC/L5z39+pB8HUDlyFqDxZC1AY8lZgMaS\nswBJ20jf4Pbbb8/AwECWL1+e1atXZ+nSpbn22muHH/+7v/u73HrrrZk0aVLe+c535p3vfGemTp06\n0o8FqAw5C9B4shagseQsQGPJWYBRKLxWrVqVefPmJUnmzJmTNWvW7Pf4G97whmzfvj1tbW0piiIt\nLS2v6H1nzJgy0qWNe1WYMTFns6nKnOOJnB2ZKsxZhRkTc9JYjcjaqhxLczaXKsxZhRnHI3+nPXxV\nmDExZ7OpypzjiZwdGXM2jyrMmFRnzldrxIVXT09Purq6hm/XarUMDg6mrW3orU899dQsWLAgEydO\nzPz583PUUUe9ovfdtGn7SJc2rs2YMaXpZ0zM2WyqMOd4/GUhZw9fVc7ZZp8xMWezqUrWVuVYmrN5\nVGHOKsyYVCdnk+bP2iqds+ZsHlWYU842lyqcs0k15qzCjEm15ny1RvwdXl1dXent7R2+Xa/Xh4P0\nkUceybe+9a1885vfzB133JEXXnghX/3qV0f6kQCVImcBGk/WAjSWnAVoLDkLMAqF19y5c3PXXXcl\nSVavXp3Zs2cPPzZlypRMmDAhnZ2dqdVqOeaYY7Jt27aRfiRApchZgMaTtQCNJWcBGkvOAozCJQ3n\nz5+fu+++OxdeeGGKosiVV16ZlStXpq+vLwsXLszChQtz0UUXpb29PTNnzsy73/3u0Vg3QGXIWYDG\nk7UAjSVnARpLzgIkLUVRFGO9iANp9mtQVuk6m+ZsHlWYczxeh7tRmv1YJtU5Z5t9xsSczaYqWVuV\nY2nO5lGFOaswY1KdnE2aP2urdM6as3lUYU4521yqcM4m1ZizCjMm1Zrz1RrxJQ0BAAAAAABgLCm8\nAAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoK\nLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSa\nwgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAACl\npvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAA\nUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAA\nAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKm1jfQN6vV6lixZkkcffTQd\nHR254oorctJJJw0//uCDD2bp0qUpiiIzZszIVVddlc7OzpF+LEBlyFmAxpO1AI0lZwEaS84CjMIO\nr9tvvz0DAwNZvnx5Lr300ixdunT4saIoctlll+WjH/1ovvCFL2TevHl55plnRvqRAJUiZwEaT9YC\nNJacBWgsOQswCju8Vq1alXnz5iVJ5syZkzVr1gw/tm7dukybNi2f/exn8+Mf/zi/+Zu/mVNOOWWk\nHwlQKXIWoPFkLUBjyVmAxpKzAKNQePX09KSrq2v4dq1Wy+DgYNra2rJly5b84Ac/yOLFizNz5sy8\n//3vz+mnn563vOUth3zfGTOmjHRp414VZkzM2WyqMud4ImdHpgpzVmHGxJw0ViOytirH0pzNpQpz\nVmHG8cjfaQ9fFWZMzNlsqjLneCJnR8aczaMKMybVmfPVGnHh1dXVld7e3uHb9Xo9bW1Dbztt2rSc\ndNJJmTVrVpJk3rx5WbNmzSsK002bto90aePajBlTmn7GxJzNpgpzjsdfFnL28FXlnG32GRNzNpuq\nZG1VjqU5m0cV5qzCjEl1cjZp/qyt0jlrzuZRhTnlbHOpwjmbVGPOKsyYVGvOV2vE3+E1d+7c3HXX\nXUmS1atXZ/bs2cOPnXjiient7c369euTJPfff39OPfXUkX4kQKXIWYDGk7UAjSVnARpLzgKMwg6v\n+fPn5+67786FF16Yoihy5ZVXZuXKlenr68vChQvzkY98JJdeemmKosiZZ56Z3/qt3xqFZQNUh5wF\naDxZC9BYchagseQsQNJSFEUx1os4kGbfklelbYfmbB5VmHM8XpagUZr9WCbVOWebfcbEnM2mKllb\nlWNpzuZRhTmrMGNSnZxNmj9rq3TOmrN5VGFOOdtcqnDOJtWYswozJtWa89Ua8SUNAQAAAAAAYCwp\nvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAb0T6\nSwAAEYxJREFUAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAA\nAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAA\nAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAA\nAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAA\nAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIA\nAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpjbjw\nqtfrWbx4cRYuXJhFixZl/fr1B3zeZZddlo997GMj/TiAypGzAI0nawEaS84CNJacBRiFwuv222/P\nwMBAli9fnksvvTRLly59yXOWLVuWxx57bKQfBVBJchag8WQtQGPJWYDGkrMAo1B4rVq1KvPmzUuS\nzJkzJ2vWrNnv8e9///t54IEHsnDhwpF+FEAlyVmAxpO1AI0lZwEaS84CJG0jfYOenp50dXUN367V\nahkcHExbW1s2btyYa665Jp/61Kfy1a9+9VW974wZU0a6tHGvCjMm5mw2VZlzPJGzI1OFOaswY2JO\nGqsRWVuVY2nO5lKFOasw43jk77SHrwozJuZsNlWZczyRsyNjzuZRhRmT6sz5ao248Orq6kpvb+/w\n7Xq9nra2obe97bbbsmXLllxyySXZtGlTdu7cmVNOOSXnnXfeId9306btI13auDZjxpSmnzExZ7Op\nwpzj8ZeFnD18VTlnm33GxJzNpipZW5Vjac7mUYU5qzBjUp2cTZo/a6t0zpqzeVRhTjnbXKpwzibV\nmLMKMybVmvPVGnHhNXfu3Nx55515xzvekdWrV2f27NnDj1188cW5+OKLkyQ33XRTnnjiiVcUpAD8\njJwFaDxZC9BYchagseQswCgUXvPnz8/dd9+dCy+8MEVR5Morr8zKlSvT19fnmrAAo0DOAjSerAVo\nLDkL0FhyFiBpKYqiGOtFHEizb8mr0rZDczaPKsw5Hi9L0CjNfiyT6pyzzT5jYs5mU5WsrcqxNGfz\nqMKcVZgxqU7OJs2ftVU6Z83ZPKowp5xtLlU4Z5NqzFmFGZNqzflqtTZgHQAAAAAAAHDEKLwAAAAA\nAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAA\nAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAA\nAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIA\nAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwA\nAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagov\nAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrC\nCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKLW2kb5BvV7PkiVL\n8uijj6ajoyNXXHFFTjrppOHHb7311lx//fWp1WqZPXt2lixZktZWPRvAKyVnARpP1gI0lpwFaCw5\nCzAKO7xuv/32DAwMZPny5bn00kuzdOnS4cd27tyZT3ziE/mXf/mXLFu2LD09PbnzzjtH+pEAlSJn\nARpP1gI0lpwFaCw5CzAKO7xWrVqVefPmJUnmzJmTNWvWDD/W0dGRZcuWZeLEiUmSwcHBdHZ2vqL3\nnTFjykiXNu5VYcbEnM2mKnOOJ3J2ZKowZxVmTMxJYzUia6tyLM3ZXKowZxVmHI/8nfbwVWHGxJzN\npipzjidydmTM2TyqMGNSnTlfrREXXj09Penq6hq+XavVMjg4mLa2trS2tmb69OlJkhtuuCF9fX05\n++yzX9H7btq0faRLG9dmzJjS9DMm5mw2VZhzPP6ykLOHryrnbLPPmJiz2VQla6tyLM3ZPKowZxVm\nTKqTs0nzZ22VzllzNo8qzClnm0sVztmkGnNWYcakWnO+WiMuvLq6utLb2zt8u16vp62tbb/bV111\nVdatW5err746LS0tI/1IgEqRswCNJ2sBGkvOAjSWnAUYhe/wmjt3bu66664kyerVqzN79uz9Hl+8\neHH6+/vz93//98PbZgF45eQsQOPJWoDGkrMAjSVnAUZhh9f8+fNz991358ILL0xRFLnyyiuzcuXK\n9PX15fTTT8+NN96YN7/5zfmDP/iDJMnFF1+c+fPnj3jhAFUhZwEaT9YCNJacBWgsOQuQtBRFUYz1\nIg6k2a9BWaXrbJqzeVRhzvF4He5GafZjmVTnnG32GRNzNpuqZG1VjqU5m0cV5qzCjEl1cjZp/qyt\n0jlrzuZRhTnlbHOpwjmbVGPOKsyYVGvOV2vElzQEAAAAAACAsaTwAgAAAAAAoNQUXgAAAAAAAJSa\nwgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAACl\npvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAA\nUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAA\nAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAA\nAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAA\nAABAqSm8AAAAAAAAKDWFFwAAAAAAAKU24sKrXq9n8eLFWbhwYRYtWpT169fv9/gdd9yRBQsWZOHC\nhVmxYsVIPw6gcuQsQOPJWoDGkrMAjSVnAUah8Lr99tszMDCQ5cuX59JLL83SpUuHH9u1a1c++tGP\n5p//+Z9zww03ZPny5dm8efNIPxKgUuQsQOPJWoDGkrMAjSVnAUah8Fq1alXmzZuXJJkzZ07WrFkz\n/NjatWszc+bMTJ06NR0dHTnrrLNy3333jfQj4f9v7w5Cmn4fOI5/zKmFW0n0o1MGiXbpkNZNBKGk\nQxLosJlpHQLpFESHujS6JETdxA5eCoQKCQ8lVFASghRkqRERgZTXghy1LTZkz+8g7Uc//3z3//nd\n/Pbseb9u2zfs+TB6EzysAKfQWQAoPVoLAKVFZwGgtOgsAEghvz8gmUwqHA7nX1dWVmplZUWhUEjJ\nZFKRSCT/rLa2Vslk8v/6uX/9FSn8iyznwkaJneXGlZ1/Ejrrjws7XdgosROlVYrWuvJZsrO8uLDT\nhY1/Iv5Ou34ubJTYWW5c2fknobP+sLN8uLBRcmfnf+X7G17hcFipVCr/OpfLKRQK/c9nqVTqt7gC\nAAqjswBQerQWAEqLzgJAadFZACjChVdLS4ump6clSfPz82pqaso/a2ho0NLSkhKJhLLZrGZnZ9Xc\n3Oz3twQAp9BZACg9WgsApUVnAaC06CwASBXGGOPnB+RyOV25ckUfP36UMUZDQ0N6//690um0YrGY\npqamNDIyImOMotGoTp48WayzA4AT6CwAlB6tBYDSorMAUFp0FgCKcOEFAAAAAAAAAAAABMn3P2kI\nAAAAAAAAAAAABIkLLwAAAAAAAAAAAFiNCy8AAAAAAAAAAABYLbALr1wup3g8rlgspoGBAS0tLf32\nfGpqStFoVLFYTOPj4wGd0r9COycnJ9XT06Pe3l7F43HlcrmATupPoZ2/XL58WTdu3Njg0xVHoY1v\n375VX1+fTpw4oXPnzimTyQR0Un8K7Xzw4IG6uroUjUZ1586dgE5ZHAsLCxoYGFjzviv9cWUnnbWL\nC611qbMSrS2HnXT2d3TWDi61ls66sZPW2oPOrqKz9qCzq+isXVxorUudlYrYWhOQJ0+emIsXLxpj\njJmbmzNnz57NP8tms+bw4cMmkUiYTCZjuru7zdevX4M6qi9eO3/+/GkOHTpk0um0McaY8+fPm6dP\nnwZyTr+8dv5y9+5dc/z4cXP9+vWNPl5ReG3M5XLm2LFj5vPnz8YYY8bHx83i4mIg5/Sr0GfZ2tpq\nlpeXTSaTyf85tdHo6Kjp7Ow0PT09v73vSn9c2Uln7eNCa13prDG0tlx20tl/0Fl7uNJaOuvGTlpr\nFzq7is7ag87SWRu50FpXOmtMcVsb2De8Xr9+rba2NknS/v379e7du/yzxcVF1dfXa9u2baqurtaB\nAwf06tWroI7qi9fO6upq3bt3T1u2bJEkraysqKamJpBz+uW1U5LevHmjhYUFxWKxII5XFF4bP336\npLq6Ot2+fVv9/f1KJBLas2dPUEf1pdBnuXfvXv348UPZbFbGGFVUVARxTN/q6+s1PDy85n1X+uPK\nTjprHxda60pnJVpbLjvp7Co6axdXWktn3dhJa+1CZ1fRWXvQWTprIxda60pnpeK2NrALr2QyqXA4\nnH9dWVmplZWV/LNIJJJ/Vltbq2QyueFnLAavnZs2bdKOHTskSWNjY0qn02ptbQ3knH557fzy5YtG\nRkYUj8eDOl5ReG1cXl7W3Nyc+vv7devWLb18+VIvXrwI6qi+eO2UpMbGRkWjUR09elTt7e3aunVr\nEMf07ciRIwqFQmved6U/ruyks/ZxobWudFaiteWyk87SWRu50lo668ZOWmsXOruKztqDztJZG7nQ\nWlc6KxW3tYFdeIXDYaVSqfzrXC6XH/XvZ6lU6rdhNvHa+ev1tWvXNDMzo+HhYWtvYr12Pn78WMvL\nyxocHNTo6KgmJyc1MTER1FHXzWtjXV2ddu/erYaGBlVVVamtrW3NrbstvHZ++PBBz58/17NnzzQ1\nNaVv377p0aNHQR21JFzpjys7f72ms/ZwobWud1Zyp0HlspPO0lkbud7acumP5EZnJVorlU9r6Syd\ntQ2d/ec1nbWHC611vbPS+hoU2IVXS0uLpqenJUnz8/NqamrKP2toaNDS0pISiYSy2axmZ2fV3Nwc\n1FF98dopSfF4XJlMRjdv3sx/bdZGXjtPnTqliYkJjY2NaXBwUJ2dneru7g7qqOvmtXHXrl1KpVL5\n/zxwdnZWjY2NgZzTL6+dkUhEmzdvVk1NjSorK7V9+3Z9//49qKOWhCv9cWWnRGdt40JrXe+s5E6D\nymUnnaWzNnK9teXSH8mNzkq0Viqf1tJZOmsbOruKztrFhda63llpfQ1a+z2xDdLR0aGZmRn19vbK\nGKOhoSE9fPhQ6XRasVhMly5d0pkzZ2SMUTQa1c6dO4M6qi9eO/ft26f79+/r4MGDOn36tKTV8HR0\ndAR86v+u0OdZDgptvHr1qi5cuCBjjJqbm9Xe3h70kdel0M5YLKa+vj5VVVWpvr5eXV1dQR+5KFzr\njys76ax9XGitq52VaK2tO+ksnbWRq60tt/5IbnRWorXl1Fo6S2dtQ2fprI1caK2rnZX8tbbCGGM2\n6JwAAAAAAAAAAABA0QX2TxoCAAAAAAAAAAAAxcCFFwAAAAAAAAAAAKzGhRcAAAAAAAAAAACsxoUX\nAAAAAAAAAAAArMaFFwAAAAAAAAAAAKzGhRcAAAAAAAAAAACsxoUXAAAAAAAAAAAArPY37Py3bWHd\ngd8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb Rows: 14880\n" + ] + } + ], + "source": [ + "# create ohlc prices, analyse distribution, think about feature transformation and de-trending\n", + "\n", + "fig, axarr = plt.subplots(2, 5, figsize=(30,10)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "i_row, i_col = 0,0\n", + "fig.suptitle(\"frequency distributions\")\n", + "\n", + "\n", + "sns.distplot(df.period_return-1, ax=axarr[i_row, i_col])\n", + "#axarr[0, 0].set_title('Axis [0,0] Subtitle')\n", + "\n", + "# i_col += 1\n", + "# sns.distplot(df.bo_spread, ax=axarr[i_row, i_col])\n", + "\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " i_col += 1\n", + " sns.distplot(df.avg_bo_spread, ax=axarr[i_row, i_col])\n", + "\n", + " x_axis_col = \"ohlc_price\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + "\n", + " x_axis_col = \"period_return\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + " i_row, i_col = 1, 0 # move down one row\n", + "\n", + " x_axis_col = \"hour\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + " x_axis_col = \"hour\"\n", + " y_axis_col = \"nb_ticks\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + " x_axis_col = \"day\"\n", + " y_axis_col = \"nb_ticks\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + "#plt.tight_layout() # reduce overlap\n", + "plt.show()\n", + "\n", + "print(\"Nb Rows: \", df.high_bid.count())" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "hideCode": false, + "hideOutput": true + }, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# all at once\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpairplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"bo_spread\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mpairplot\u001b[0;34m(data, hue, hue_order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, size, aspect, dropna, plot_kws, diag_kws, grid_kws)\u001b[0m\n\u001b[1;32m 2071\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"scatter\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2072\u001b[0m \u001b[0mplot_kws\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"edgecolor\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"white\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2073\u001b[0;31m \u001b[0mplotter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mplot_kws\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2074\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"reg\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2075\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mregression\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mregplot\u001b[0m \u001b[0;31m# Avoid circular import\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mmap_offdiag\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 1491\u001b[0m \"\"\"\n\u001b[1;32m 1492\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1493\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_lower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1494\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_upper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1495\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mmap_lower\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 1423\u001b[0m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpalette\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkw_color\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mkw_color\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1424\u001b[0m func(data_k[x_var], data_k[y_var], label=label_k,\n\u001b[0;32m-> 1425\u001b[0;31m color=color, **kwargs)\n\u001b[0m\u001b[1;32m 1426\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1427\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_clean_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, hold, data, **kwargs)\u001b[0m\n\u001b[1;32m 3432\u001b[0m \u001b[0mvmin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvmax\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0malpha\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3433\u001b[0m \u001b[0mlinewidths\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlinewidths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverts\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverts\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3434\u001b[0;31m edgecolors=edgecolors, data=data, **kwargs)\n\u001b[0m\u001b[1;32m 3435\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3436\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1896\u001b[0m warnings.warn(msg % (label_namer, func.__name__),\n\u001b[1;32m 1897\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1898\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1899\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1900\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **kwargs)\u001b[0m\n\u001b[1;32m 4061\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ymargin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.05\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4062\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4063\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_collection\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4064\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautoscale_view\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4065\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36madd_collection\u001b[0;34m(self, collection, autolim)\u001b[0m\n\u001b[1;32m 1760\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1761\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mautolim\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1762\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_datalim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_datalim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1763\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1764\u001b[0m \u001b[0mcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_remove_method\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollections\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/collections.py\u001b[0m in \u001b[0;36mget_datalim\u001b[0;34m(self, transData)\u001b[0m\n\u001b[1;32m 227\u001b[0m result = mpath.get_path_collection_extents(\n\u001b[1;32m 228\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrozen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_transforms\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 229\u001b[0;31m offsets, transOffset.frozen())\n\u001b[0m\u001b[1;32m 230\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minverse_transformed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 231\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mget_path_collection_extents\u001b[0;34m(master_transform, paths, transforms, offsets, offset_transform)\u001b[0m\n\u001b[1;32m 1008\u001b[0m return Bbox.from_extents(*_path.get_path_collection_extents(\n\u001b[1;32m 1009\u001b[0m \u001b[0mmaster_transform\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_3d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransforms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1010\u001b[0;31m offsets, offset_transform))\n\u001b[0m\u001b[1;32m 1011\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1012\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mvertices\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_has_nonfinite\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_vertices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mvertices\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \"\"\"\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# all at once\n", + "#sns.pairplot(df, hue=\"bo_spread\")" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import dill as pickle\n", + "with open(simname+'_eurusd_features.pkl', 'wb') as file:\n", + " pickle.dump(df, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "dataset = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQpHV9P/D3c/fT9xw9187eF8rGIOb4eRAqlgajpCxA\nBDQLlMT8kZhDTEVNIlJlhDWS0hQVKY9UjMTERQIKhChRSYiKR5DFLAJ7zuzu7M5M90zfx3N9v78/\neqZnevrpc7qnu2c+r5Qpto/pb8/T08/n+X4/389H4JxzEEIIIYSQjhG7PQBCCCGEkM2OAi5CCCGE\nkA6jgIsQQgghpMMo4CKEEEII6TAKuAghhBBCOowCLkIIIYSQDqOAixDSER/5yEfwD//wD673HTx4\nEIuLix19/bm5Odx8880dfQ1CCGkUBVyEkE1pdHQUX/va17o9DEIIAQDI3R4AIaS/HT16FA8++CBE\nUcTw8DA+9rGPYffu3QCA559/HjfffDNisRj279+Pv/3bv4XX6y17/uc//3k8+uijkGUZO3fuxJEj\nRxAIBKq+3uHDh7F3714cP34c8Xgc73znO/HHf/zHuHDhAt773vdi7969mJmZwZEjR/C+970Pzz//\nPGzbxqc//Wn813/9FyRJwmtf+1p8/OMfh6qqeOCBB/DUU0+BMYZt27bh4x//OEZHR8te8+abb8bt\nt9+Ot73tbQCA++67D5xz3H777fjwhz+MeDwOALj66qvxp3/6pxVjfvWrX43bbrsNP/7xj5HL5XDn\nnXfit37rt6q+f0mScPfdd2NqagrJZBI+nw/33Xcf9uzZ0/qBIoR0Fc1wEUJa9uyzz+JLX/oSvvKV\nr+Cxxx7Dtddeiz/8wz/EcgOLubk5/OM//iO+/e1vY25uDk899VTZ87/73e/ikUcewdGjR/HEE09g\ncnIS//zP/1z3dS9evIh//dd/xaOPPoonn3wSTz/9NABgdnYWf/AHf4Bvf/vbiEQipcf/y7/8C158\n8UV885vfxBNPPIFsNosnn3wS3/jGN3DixAl8/etfxze/+U1cffXV+Ku/+quK17vxxhvx6KOPAgAc\nx8Fjjz2GG2+8EQ899BAmJyfx6KOP4qtf/Sqmp6eRTqcrnu84DkKhEB555BF89rOfxV/8xV9gcXGx\n6vt/5plnEAwG8dBDD+Hb3/42Dh06hK9+9auNHxhCSM/pmxmuF154Affddx8efPDBmo+bnp7GBz7w\nATz++OMAgMXFRfzZn/0ZCoUCRkZGcO+990LX9Y0YMiGb3v/8z//g7W9/OwYHBwEA119/PT75yU/i\nwoULAIC3vOUtpb+3/fv3V+RtPfvss3jb296GUCgEAPjoRz/a0OvedNNNUBQFiqLgbW97G77//e9j\n//79kGUZV1xxRcXjf/jDH+Kd73wnPB4PAOCzn/0sAOBP/uRP8H//93+44YYbAACMMeTz+Yrn//Zv\n/zb+5m/+BtFoFL/4xS+wc+dO7Nq1C1dddRV+//d/H5cuXcIb3vAGfOhDH6o6O/e7v/u7AIDLLrsM\nBw4cwE9/+lP89Kc/rfr+t2/fjgcffBDT09P4yU9+gte+9rUN/W4IIb2pLwKuL37xi3jsscfqBkrf\n+MY38JWvfKXsS/1zn/scrr32Wlx//fX4whe+gKNHj+L222/v8IgJ2RrcWrFyzmHbNgBAlle+YgRB\nqHi8JEkQBKH071QqhVQqhcnJyZqvu/rncs4hisXJelVVy+5zezwAxGIxMMbAGMPv/d7v4T3veQ8A\nwDRNJJPJiud7vV5cc801eOKJJ/D888/jxhtvBAC85jWvwXe/+108++yz+NGPfoQbb7wRf//3f48r\nr7yy4mdIklT6b8YYJEmq+v6feeYZPPTQQ3jve9+L3/md30E4HC4FsYSQ/tQXS4o7duzA/fffX/r3\nK6+8gsOHD+Pw4cP4oz/6o9IUfigUqliOeO6553DVVVcBAH7jN34DP/zhDzdu4IRscm9605vw5JNP\nli5y/u3f/g3hcBg7d+5s6PlveMMb8J//+Z/IZDIAgPvvvx9f/vKX6z7vscceA2MMyWQS//Ef/4E3\nv/nNNR//+te/Hk888QRM0wRjDHfffTf+/d//HW9605vw8MMPl17/7/7u7/Dnf/7nrj/j3e9+Nx55\n5BE8//zzuOaaawAUc7k+97nP4S1veQv+8i//Evv27cPU1JTr87/xjW8AAF588UWcPXsWv/qrv1r1\n/X//+9/HddddhxtvvBG7d+/G9773PTiOU/f3QgjpXX0xw3XNNdeUXd197GMfwz333IN9+/bh61//\nOr70pS/hgx/8IH7zN3+z4rmZTKY0xe/z+VzzKwghrXnjG9+I22+/HbfddhsYYxgcHMTnP//50oxT\nPVdffTVOnTqFW265BQCwb98+fOITn6j7vEKhgHe9613IZrN4z3veg9e//vU1Z4BuvvlmzMzM4Prr\nrwfnHL/2a7+Gw4cPQxRFzM3N4d3vfjcEQcD4+DiOHDni+jMOHToEWZZxzTXXQNM0AMBtt92Gj3zk\nI7j22muhqioOHjyIa6+91vX5P/vZz/DQQw+BMYbPfOYzCIVCVd//yy+/jLvuuguPPPIIJEnC5Zdf\njhMnTtT9vRBCepfA3dYEetCFCxdw55134qGHHsLrXvc6vPrVrwYAWJaFXbt2lX1JvvGNb8QPfvAD\nAMB1112HL33pSxgaGsLLL7+Mz3zmM/j85z/flfdACFm/w4cP473vfW9px2A/OHjwIJ599tlSrhsh\nZOvpixmutXbv3o1PfepTmJiYwHPPPYdoNFr1sVdeeSX++7//G9dffz2eeeYZvO51r9vAkRJCmvWj\nH/0I9957r+t9v/7rv77BoyGEkPboyxmu48eP41Of+hRs24YgCPjkJz9ZqvsDlM9wxWIxfPjDH0Y2\nm8XAwIBrHSBCCCGEkE7qm4CLEEIIIaRf9cUuRUIIIYSQfkYBFyGEEEJIh/V80nw0SmUcmjEw4EU8\nnuv2MMg60DHsb3T8+hsdv/7WC8cvEnHvNkEzXJuMLEv1H0R6Gh3D/kbHr7/R8etvvXz81hVwvfDC\nCzh8+HDF7V/+8pfxjne8o1QN/syZM2CM4a677sJNN92Ew4cPY3p6ej0vTQghhBDSN1peUqzV33C5\nbMOhQ4dKtz311FMwTRNHjx7FsWPHcOTIETzwwAOtvjwhhBBCSN9oeYZrbX/D1V588UV84QtfwC23\n3FKq6r66p+EVV1yB48ePt/rShBBCCCF9peUZrrX9DVd7xzvegfe85z3w+/34wAc+gKeffhqZTAZ+\nv7/0GEmSYNs2ZLnn8/YJIYQQQtal7dEO5xy33XZbqWH01VdfjV/84hfw+/3IZrOlxzHGGgq2Bga8\nPZ0E14uq7ZAg/YOOYX+j49ff6Pj1t149fm0PuDKZDK699lo8+eST8Hq9+PGPf4wbbrgBhUIBTz/9\nNN7+9rfj2LFjOHDgQEM/r9vbO/tNJBKgUhp9jo5hf6Pj19/o+PW3Xjh+1QK+tgVcjz/+OHK5HG66\n6SZ88IMfxK233gpVVfH6178eV199NRhj+MEPfoCbb74ZnHPcc8897XppQgghhJCe1vO9FLsdqfab\nXojuyfrQMexvdPz6Gx2//tYLx48KnxJCCCGEdAkFXISQjrIZQ49PpBNCSMdRwEUI6ai5dAbJgtHt\nYRBCSFdRESxCSEdtCwW7PQRCCOk6muEihBBCCOkwCrgIIYQQQjqMAi5CCCGEkA6jgIsQQgghpMMo\n4CKEEEII6TAKuAghhBBCOowCLkIIIYSQDqOAixBCCCGkwyjgIoQQQgjpMAq4CCGEEEI6jAIuQggh\nhJAOo4CLEEIIIaTDKOAihBBCCOkwCrhIX8hkCt0ewoZxGEPesLo9DEIIIW1EARfpC4lEDpzzbg9j\nQ5iWg0Q23+1hEEIIaSO52wMgpBGTk4PdHsKG0TUF44PBbg+DEEJIG9EMFyGkL/18bg5si8x6EkL6\nH81wEUL60i+NjEAQhG4PgxBCGkIzXISQvkTBFiGkn1DARQghhBDSYRRwEUIIIYR0GAVchBBCCCEd\nRgEXIX2Mc45XZqLdHgYhhJA6KOAipI8JgoDdo1unRlk/eTkRhcWcbg+DENIj1lUW4oUXXsB9992H\nBx98sOz2J554Av/0T/8ESZJw4MAB3H333RBFEddddx38fj8AYHJyEvfee+96Xp4QAkCVpW4PgbjY\nFxyELNKxIYQUtRxwffGLX8Rjjz0GXdfLbi8UCvjsZz+Lxx9/HLqu484778TTTz+NN73pTeCcVwRn\nhBCyGVGwRQhZreUlxR07duD++++vuF1VVXzta18rBWK2bUPTNLz88svI5/N43/veh1tvvRXHjh1r\nfdSEkJ5i2DZORhe6PQxCCOlZLc9wXXPNNbhw4ULF7aIoYnh4GADw4IMPIpfL4Y1vfCNOnDiBO+64\nAzfeeCOmpqbw/ve/H9/61rcgy7WHMDDghUxLJk2JRALdHsKGsW0HnAOKsrk+I/14DCdGwxDFrVWM\n9FImDZszbA+Eym7vx+NHVtDx62+9evw60tqHMYZPf/rTOHv2LO6///5iYu/u3di5c2fpv8PhMKLR\nKMbHx2v+rHg814khblqRSADRaLrbw9gwyVQOts0wNOjv9lCaMj27iMGgDwGvVnHfVjuG/UwGIENE\ntLByvOj49Tc6fv2tF45ftYCvI7sU77rrLhiGgc997nOlpcWHH34YR44cAQDMzc0hk8kgEol04uXJ\nFhIKevsu2AKAnWODrsEWIYSQzaltM1yPP/44crkcDh06hIcffhi/8iu/gttuuw0AcOutt+Jd73oX\nPvrRj+KWW26BIAi455576i4nEkIIIYRsBgLnnHd7ELV0e2qw3/TCdCpZHzqG/cNmDKdTizgYHi7d\nRsevv9Hx62+9cPw2dEmREEK2AlkUsTsw0LXXjxlZJK1C116fENI4WtMjhJB1UKXu7ZD1ySokYWvt\nDCWkX1HARQghfUqXlG4PgRDSIFpSJGQLmUumkTPMbg+DEEK2HAq4CNlCgroHmrJ1J7YLto25bKbb\nw9gyHM66PQRCegYFXIRsIbqqQBK37p+9LIrwKrQMt1FO5ma6PQRCesbW/eYlhGw5sigioFLB2Y1y\nmW97t4dASM+ggIuQVSzLQS5POU6EEELaiwIuQlaxbAcFw+r2MEgXzOUot6sXzBjzsJjd7WEQ0nZb\nN3uWEBdeXYVXV7s9DNIFDuvpphtbxpASgix0r7YZIZ1CM1ykZbbtIDqX7PYwthzHYZiej3d7GJvO\nhN+9HQfZWB5Rg0DFXMkmRAEXaZkoitA8tONro0mSiOGgr9vDIIQQ0gQKuEjLRFFAMOTt9jC2JJ+H\nlj1J/+Gclm3J1kUBFyGEkA0xVZhFgdEuYLI1UdI8IYSQDbFbH+/2EAjpGprhIoR0xXQ8gVSh0O1h\nEELIhqCAi5AGnJyOwrTKawMZJtUKWo8d4RCCHk+3h0EIIRuCAi5ScuFsFPms0fTzZs4tIJvZ3DMV\n+3dGoK5q+mw7DJdiqS6OqP/R1n9CyFZCOVykZGLHEESp+Rh8fNtAS8/rZ7IkYtfEYLeH0XOyhom8\nZWHYT2UrCCFkta11liQ1tRo0bUSwlUzmOv4aZP0USYKubK3abBZzuj2ErsvYBZhNtOMxmIkz+Ysd\nHBEhvYcCLtIXsjnaSt4PVFmCT2utRphh28hZ/dfH8kQi1u0hdJ3FbTicNfx4TVSxR5/o4IgI6T20\npEj6wsR4uNtDIB1m2DYczuHtsxmyywdHuz2ErhtQ/N0eAiE9jwIuQkhPoB2LpNdxzpFlKfilULeH\nQvoQLSkSQsgW8Upmbt05ZwkrB7vBn7H5Wvlw2JzSG0hrKOAiJbbtwLYoAZiQzWqvLwJFlNb1M2zu\ngKF+IJVzDJwrzK/rtXqNIIgIy5FuD4P0KQq4SEk2XUAqQbsBCdmsZGH9X/nDagCqWD8bxStp2KlT\nfhshyyiHi5SEBqh2EiGEENIJ67rceeGFF3D48OGK27/3ve/hhhtuwE033YSHHnoIAMAYw1133YWb\nbroJhw8fxvT09HpempBNwXEYGNtseS6EEELWanmG64tf/CIee+wx6LpedrtlWbj33nvx8MMPQ9d1\n3HLLLXjzm9+Mn/3sZzBNE0ePHsWxY8dw5MgRPPDAA+t+A4T0s2gyA4+qIOzX6z+YkC7inFM7JkLW\noeUZrh07duD++++vuP306dPYsWMHQqEQVFXF6173Ovz0pz/Fc889h6uuugoAcMUVV+D48eOtj5qQ\nTWJsMLjpgy3Drl+BPJ7Pb8BIWmMzBrbpdts172Rutqlq8oSQci0HXNdccw1kuXKCLJPJIBAIlP7t\n8/mQyWSQyWTg968Ux5MkCXYDX8SEkP7FOcfUYqLuYzJG7261n81lkDQ3d3P2RhzwjTeULE8Icdf2\nvx6/349sNlv6dzabRSAQqLidMeYasK01MOCFLK9vG/NWE4kE6j9oizhxeg67dwxDUfrrM9StY+gw\nBocxqA38bTZqZCTYlsd0SyvHIhIJ4Cez5/FrY9s7MKL2SVsFcHAElc09y9os+g7tb716/NoecO3d\nuxfT09NIJBLwer343//9X9xxxx0QBAFPP/003v72t+PYsWM4cOBAQz8vHqcyBc2IRAKIRtPdHkbP\nCHg1JPqs1EU3j2EyX0DetDAW6s0vrH6wfPx2S+Ge/1vM2gY4AEOm1YZl9B3a33rh+FUL+NoWcD3+\n+OPI5XK46aab8JGPfAR33HEHOOe44YYbMDo6ire+9a34wQ9+gJtvvhmcc9xzzz3temlCqqLZ0eaE\ndA9COrXY6ZTZfBphVYdH6o2lOZ+sdXsIhGwZAu/x3gvdjlT7Taej+3zOxPxsAjv3jHTsNba6XrhC\na4d4Pg+PLEOv0oz6UioNSRQx4t9c9d9qHb+UVYBXUiGLraXPOpxBakPxUlLdZvn726p64fhVm+Gi\nv1zSFN2rloKt+dkkCgWryyNqnGG6L5tYtoPzF+MbPJoVc/E0LLuzLZVmFpOwHdbR11hLhACxRhmB\n8WCgoWArYzaWUD+fzWIh35nl47OpOBLG+hPng4qn5WDLcGycSi+sewyEkO6ggIu0LBDUofZRMvpc\nNAXTqgy6ZEnE8KDf5Rkbw6MqEMXO1jcK6FrHX2OtkO6B1kDyvc0Yopls1fvns9mqZRl+PjdXum9Q\n1xHSOrMcujs4gHCHfnajNEnGwWB3+vj1+EJIXTPGDBjf2AsOQtbqjUQC0pd0r9rtITRlx7ZB19sF\nQYDucV/22gghX+dP5MEeycsybBucAx6l/KunVj3NPQMDVe97zehKr75WZ4664UI2CY+sYFjzdnso\ndSWsHDJ2AZO6+99PP4goEYi0FEu6jD6BpKMchyG+kOn2MKpKpvOYma1dJ6pfZA0Tl+K9nXtSsG3k\nrPIlQlkUMezbXHlc9Uz6Qn0RbAFAWPH2dbAFAKrYXxeHZHOiGS7Scb28GBEK6AgFNkcNIo8iQ/L3\n9jVUyNP5mTZqQUMI6UW9/e1M+p4kiRgc6l5+1FYiiWLFUt1WdDGTRizXX7XXusVw+mfTixuHOzhb\nONftYRDSEAq4CCGbyrZAEMPe/liua7fjyUtNJbhfNJJ93R9REiTs0nq7mj8hyyjgImAOw9xM98oi\nkPY5eSmGgstOTLI1XBYYbWo5dbd3uOP9EbNOAVmnc70oafmY9AsKuAgEUYDuK1aczmeNLo+GNMpx\nGE5fKtZlyhkm8qaF/ePD8CgyUvkCEtl8l0dYKW9ZMKhpfcf02k7NmJnEolW+kaNaiY9+YXMLjHe2\nbh7ZnHrrr5OsS/RiAtl081eSgiAgGPaCc47YfKrl1+ecg7H+/jKtJZnO91Q9IkkSsX04BACwHVZW\n2FSVZWhdzOdinMNyKk9KBcvGK9FYF0bU+2zmIGZUr0fWjwaVILZpw/BJxc0SNndwJn+xy6Nan5yT\ngsF772KG9D7KsN1EggNeeHQFuRarvwuCgO27Wy+smErmUcibGB0Pt/wzelmuYMHv0yD10BKGuhRU\nBb3lu/+6nTyfMQxkDAsTa5pgD3j1npuF6SU9FM+3xdpOA7IgYZ93W5dG0x5BeajbQyB9igKuTUTT\nVUgb2Kx5Yalf1dBS36hQ2ItQeHMlK+cKJryeYg2f8Uiw469ndrjFz0YJejwIVikBEfBQw2Q3sigh\n4tla9cg2M5ubMFgWPql64V6ytdClJmnZ4LAfg8Obu+TDXGxjC4lOzS5u6mVZQrYKASIkgeY0yAoK\nuEhdyXgWcxcrq7ELgrDpdwjtntzY5YMDk5EN73nYDqlC7dxBm1Efu1b0Us5gIxbMFGaN8u+KrFPA\nrBHHvLk5Ojo0ShJkJOxZSrAnJRRwkbpCAz6MjIeaek6vztJYFn35dUI8V4BTJajKGCYuJJIbPKLO\n2qhA6OeJ2Q15nXYZUoMY08pzOB3OEJB0DCuNfYdwzmGy/i7IumxM3Q9R2Lg0D9LbKODaouYvJmA3\nkS/U7EzW6RPNFWDcKBfnEjAbrFO1mMgik6MyGY3YORiGVCUZ3q+p2DW4ufJYTiQXkLc7HxT88sB4\nxW0Z20C+hyrEO5zV/FsPyl74ZE8pgX7OqF3zz+QWohbVBSSbDwVcWxBzGI4/dxbZZOe2Nu+/bGLD\nlhuzWQNWg8Hjzsmh0s6+ery6Ck2lHIxOO7O4CNOlhEQvOxgehi4rbf2ZNnNwKV+/LIvNGBze/SXa\npJVDwbEwZySQshv7Lnklex6iIIDVGL8mqhhXh9s1zI5j3EGeZbo9DNIHKODagkRJxJt/57UIufQ4\nPH8mCrvPlt0KhgXHaf8JyKMpUBrY9ck5x6nz0ba//laxLRiEKtGyiyAI8Ej1g7iwqsMvt3enZ8Y2\nMGc0X4NPEIAJzyBCSu3dyVFzZUlZ4gJeyk5XfSzjDGcKM02PxU3WydYM7tqBgcHiNBNO6qOAiwAo\nBg35rIGRiTBkpbWT3/SZKFgHAp/Vzl9YBFuTKzQ06IdHa+9sQzMEQcCOse4vmeXN3llmaoYmr8wi\n2owha5p1n3NyYaHvK5avJQkiBlS9K6+tSwpCsg6HM5zIzCFp1Z+xCileaOLK393apUXGOaw1fRoP\n+rbDr3ixUx+r+nNFQcQ+vT39EQvMgNPhpHVZUBCU+rc2F+c2HE4zdBuBAq5NgjGOmbOtz7I4DsNi\nLA3N03rgMjoRhih19iM1NOiH2IOFMxtdpuykS/FU3wchluMgbdQPuCaDwYqimqR1kiDCIyngnMMn\nqS3NoM2bSaTsXOnfeWYgZhVnzSLqSsK8KirwSxsTWA4pg1DE5r/TCiwHi9X/HPYai2eQcc429RwG\nCzbf2PI3W1X3zxKkLURRQNhlibBRsixh28715U141hGsNcrrVRt63NS5GMZGQ12d+doI8UwODucY\nDviwZ7R/r7KX6YoCXal/zBp5zGaQtU345MY+8+0gixK26a3N1o5r5c/zSZ5SS59+43CnL0veKIIf\nsthc8VxJ0CEJ3ZlZ3Wp6b6qAtMwXbP8fzcJ8ynUHEmO8qV2OG23H5NCmD7YAIKB7EPI2f1LjnGM+\n1dllhP+7NLfuGbefz85uyG5Xy3Hw4sJ8y8/vxBg557jYQBJ9o85kY8jZvTtrM2suIOPk6j8QQMbJ\n4pLZ+vGqxycFIELCvFmZS5Zz0jBY8z1rN0q7AkXeAxszNhsKuEhLctkCFuZ7dxq63cVDL0VTWEw2\ndjLYSLIkQmkg4fxiPLXhbYN+aXx03ct+rxkb25CZBkWScPnQSEvPtRnDi/GVk/9MJgXDaaz0SC2C\nICDvWG1bJt7pHYR3A2fLmjWshOEVVy4eDGYiVqU8hF/yYVxt7Xg1ShFVDCmjFbeLggQB/Tf7VQ/n\nNmxe3Nzg8CRMXn1jA2kNBVxbiJE3MXWiuUKKQyNB1xOeP6BjdGJzNql2Mx4JYjDUv30iAx4N8qr8\nOkEQMBLsn7ZMhm3jXLI3i6fKoohDgysnZp+sQBLa89X6mvB423LV1jOmlzIzsFmnk88liKvGKAsS\nfGJ3l7rcWvN4RC9UcfP1A+VwwHhxs4QkhKCJu7s8os2HAq4tRNNV7NxfecXWqNmZOJLxbBtH5O7S\npQQSid6bTepnAV3riyRzzjkupStnTlVJQsTbXMCbtUycXFxo19AaFvbokNuwseN0ZqHjQU6jXuXf\nBlnc2NIdkiBB79McsH4kChpUsfruUbJ+lDS/xaxneWZs28aUPhgf3zozZ6txzmE0WAV/MzmzGMew\nz4ugpkEQBNdgRRCEphPlfYqK/YPt3UhgOg5EARsSfIx7Ahse5LQb5xwWd6CKW+NUk3YWoIsByELv\nLt2S7qEZLkI6zLTshpKqLYdhLr716uHsGRxAUNOwkMthNp1BxNfcLqvFfA4po7nCk/O5LFJm88Uq\n40YeGWtjEs97Od9qNZNVv0goMAvRPmtabTMbZoslIRRBg0CnVVIFfTJIT8lkCjDN9s7yxBOdXwat\nZT6eaWjmSpUl7BztzCxiwbKRyje2s2qje2DmTBO2wzCg64j4ai8bGnbl79EjK9CarFQfVDXoUvOz\nLqNeP8IabaFfxjjHuUKs6v26pGKbp3/a9ACAwQoweP3Crxknibg9V3abR/S75n0RArS4pMgYw913\n341XXnkFqqrir//6r7Fz504AQDQaxZ133ll67EsvvYQPfehDuOWWW3DdddfB7y8m6k5OTuLee+9t\nw1sgmwljvKKS/HoZbWhVxBjHqXNRHNjV/M6oyZHuL5FyzsFYY4HUy7NR7BsZamj3YyNORhewe3Cg\nLGl/tYxpwacCPkkt9oqpgnGOqUQCB4eHYTNWWnr0NrnU+EJ0Fr80vP4dlAQQBQH7vGOYLcQhCRIi\nWrDbQ1qXpB1HQBhBQArVfaxPDADo7/dLNlZLAdd3vvMdmKaJo0eP4tixYzhy5AgeeOABAEAkEsGD\nDz4IAHj++efxmc98Bu9+97thGAY456X7yMZLxIrJyOHhQJdHUl2wA7XExiLr/1IURQF7dwzDshwo\nLbY+6iZdVaCrjQUmrxpv73b7HQOhqsEWAIz4G1tCFAUBB4eHUbBtXEglsW9VflbBtjGVjOOyoUjZ\nbR658ivAb/8RAAAgAElEQVTulyOdTQxOmQYuZJOY9NU+aRccG54WZtl6TcExEbXS2OWJ1H/wGjEz\nAb/shUdsfvk0Yaegix5oLTy3Gk30QBFlAPXbZCWcGFRBg6+B4KxXWay4qUQR+79ocj9oaUnxueee\nw1VXXQUAuOKKK3D8+PGKx3DO8YlPfAJ33303JEnCyy+/jHw+j/e973249dZbcezYsfWNnDTNH/bC\nH+7f0gZr5fMm5qPtKwxZz/lLcVyYT8Bqc3PvkzNR2B3uQdlNy70SU4UCLibXf7w8slwWbC3fNurz\n41xyJV/oYpvqYbkp2FbVHYReWUHOtpAwK5dwT6WLJziHM0xnO5/blHc6319TEkTs0iMIKO4XS6vb\n/azllTxQhNYuYFRBgdjmrBiPqDe8JDggj/R1sAUAkhCEJNAs3UZp6fIqk8mUlgYBQJIk2LYNedXV\n5Pe+9z3s378fe/bsAQB4PB7ccccduPHGGzE1NYX3v//9+Na3vlX2HDcDA17Icv/NKHRTJNJbM1id\nmhWyHQbTtOHVNya5WPep8HvbX39nYNBXMQPUa8ewHYa4HzZjUNu0VLlWBAFwzks7cTv5O5zNpqHL\nCkKae9mCN+5zr2GkBleeMzbSmZP1dGYRA6oXHllBIrOAHcHBjryOm7xtQpXksppfuWweEV+1Y7Ge\nY9S547sZ//62kl49fi0FXH6/H9nsSiIyY6wicHrsscdw6623lv69e/du7Ny5E4IgYPfu3QiHw4hG\noxgfH6/5WvE41WNqRiQSQDTaWxXgT5+cxZ59ow2VpGCMN10lPptpfrfZsjPnYtizo/Gk3ny28zvU\nqh1Dw7Jh2Q78+vqCvtlEGn6PBr9nY3fBZU0TjHEEPJ0tGnk2EcfucHHzgc0YXlmM4fLh9i6TSgBM\nWIi6LD3V+xt0e047KUxEPmfCECyEoW/o98GsEUdQ9sIrrRxjL3REc731nVRLL36Hksb1wvGrFvC1\nNB975ZVX4plnngEAHDt2DAcOHKh4zPHjx3HllVeW/v3www/jyJEjAIC5uTlkMhlEIs2v+ZPWnTs1\nV3cHWrt3CALA3v3l7VmYwzA9FXV97OlTcw0nd9eSTOUa2m03Mdr+WYbp2cWW30O2YCKedr/IcBhz\nXXpknMNpYqPBgE+Hrm587pBQ+n9FDmM4s7jouvNwPQY9K0tbsijiVUP98T1TcGw4a/rXZWwTC0Zz\nF52KKHVtQ8CYNlAWbK0WNZOwVpWQOJWbAetCv75cg/0aCWm3lgKut771rVBVFTfffDPuvfdefPSj\nH8Xjjz+Oo0ePAgAWFxfh9/vLTrLvete7kE6nccstt+CDH/wg7rnnnrrLiaS9IhPhurNMM1OxikCl\nkDfbEgQtEyURo2PuO/f2HxirOsN18VLj+VP5goVGqht0osH1cMjfci9HSRRxcSGFRLZyW7pXUxH2\nV+bJxDN5LFQJ0txoigypDZXQm+VVVQS0lZPxdCKJAV0v5XjVUyuAns9mcTFdzA8LeTxwGMOJpSrz\ny8FHyjBwIe2eQ8Y53/ByGGstGDnk7PLZL0UQoW2CxHoA8IhKWeue3fpY2b/XMpmFS4b7hdl6ZJw0\nHObAZK3PjLeDxfOwGig/QTYPgXf7W6aObk8N9pt2TqcuRtPQvSoS8SyGRoJQ2zArcn56AeMTYcgt\n5HTlciZ0XdmQZsbrkczkkStYGB9uLRm13jG0bAfKFstrzJomLqXT2DfU+G4qw7HLgpXlmUC3chez\n2QwEAKM+9/6SSbMAjyTXDX5ejM/j9Xt3IrXYOyfSqJGBX9agS8WLiwUziyG1cmdoysoj55gY83Qv\nEXx1Dh7nHAY34VnTtzDr5KCLnprBWj0WtxC3FzCiVO5Y3aglKYMVX0MTezPfqF9tuiVFsjXoPhWK\nJmN8crAtwRYAjIwFWwq2bNuB16u2PdhyGEOsRnX3ZpbqlgV9HowMdq4x9MxiCoUOLP02q5FrtVOx\n9vQy9Klq3WBrLpsBWzWmtcGRKAhVa4uN+fxVgy2gmAvGGni/lw+MIJbPYaHQ2JL2RtBEGfKq4CTv\nmK5j88kaBl0CsU7inKOwVNWdc46T+XOl+wRBqAi2ACDPChVLr81SBMU12NpImhigYGuLoYCLVLBt\nB2dPzEL3am3ZIWrbDk6dmAUAaC0s4dm2g3PnF13vS6byuHip9e31wtL/VXNxPolMrrmlB0EQOrZk\nZ1o2hgJeeLqQg7XWS7P1y1mMB9d/QkkbBrJm/c0KtY7jeg15vNDlxj67I14fbMYw0yOJ4kHFA2VV\nT8ZJfcD1wkUSxA3veWhxG4tWcZlXEAQc8O6s+5xhZXCpVhYh/YUCLlJBliUYhdZ3UiUTOdircq0Y\n49g22XrLGlmW4PEocFxO7qGgjvGx1pdARFHA0ED1q/rtYwOYjbVeOypvWFVno2LJLBKZ5paeHMZh\n2e2tA9aqV4+P1CxoChRnpprlMFY2s7g6ODBsG1OJlQA7a5ml3K0Rn2/dyeI5y0Lebv2zP5fPQBEl\njHr9mPStLCkzznEhm6z53EKHaoa1IucYKKyp4fVi+kLd5zHOUXAa38mrigomtP5q/UNIqyjgIq4O\nHJps6HGOw8qCK2CpjcyqJQvLdGAY6zuZBAOeqononc7pGg77WlpaBIozUtUCpJDP41riYSaWrLoc\npWsKBgO1i9faDsPUfLz5wbaJwxjsdbRnWsznsZgvBqKMc5yNx0uBmypJGF3V3NojyRjwtK87gckc\nWGvGfiJRfVn0bCpeVly12rKjANScIbOZg/NLhVAZ56X/ruVUJoas3ZnEb5M5sHn55/bV/m11n2dx\nGwtWjfxDZsNgnS/GSkgvooCLuGp0l102U0AiXt4cOjzgK8v58vk1yIqE+GL1XKl6/H5P15LlDcuB\nbbcWQIT8OgJViqUqsuQ6Q6RI0rreqyyJGA275yOZLiUYCg001m5GPJdHPNfYzF2qUMDMmurzEZ8P\nkaWgShQE/NLoaOk+QRCgL/VOfCkWhSSKpX+3Q1jzIKiWH6+JqkU7gXFfAOqq5bpxr/tjBUHAkFY9\nUJZFCfuDxZkeAYBfqV+rbJ9/GD65+Lj15jStFVa88MvlRV0b+UxqooJtnmKu3YnsTMX9eWYi56w/\nSGymnMSMMQOTNT7rxjhDnmWRcVIt7WTknIHx3piFJr2FAq4tgDkMrMHWMcxhFUt3tZYXgyEvhkfq\n78bTNBl6E1Xa0+k8ZmYan6XJZA2cv+Ce57Veo0MBaBuYMzUysP6Ee7e+iabt4Pxi5bLW+YVEzQRv\nxjmS+co2NdUM+32INNgf0auoSOQLMB0HZxbjpVytF+fn686S7QkPgHGO+WzW9f6Cbbclcd2vVF8W\n9Uhy2y8EBEHAgFqctXM4w1yhfi7Y6czChixJZuwC8g0uGe7xVialB2UvBhQ/YmailCzfLIOZmDFm\nG378uDoO1aXfYoHlXQM3hzvIsxwkSC3thMyzNDIsDs5Zz2ycIL2BAq4tILGQQaLO7FIuU0AuU0Aq\nkUNiofyxszPxhgO2ahRFhiw3/nELBHRMTJTX6qpVC8zv0zC5rfU8sV7kOO6FTpcVTNs1r60aVZaw\nd6Ryp9/+seGaQQNjHBmjsZOjzRjSRuOzArIk4vKxEaiShJ3hUGnp8PKREcguGw8upJKlZbvl+l0c\n7p+L2WwGhtP/Mw1SAyf9A4HIhjTC5uBga37f80YSBcesmGWTl3oknsxdrFie9Eqe0v21JKwUck55\nsK+JKrZpY6VgKeNk4dSYUaoWNKWdNBgqn6eICgblCHTJB1lofvbUK4UQlIaRZjHkWOf7ZdbDuAHO\neyc/cCujgGsLGBwJYjDiPgvFHIa5VTNJ4SE/hpZmrJjDkErksHPvCMQ6ydH12LaDc1Mx9/ssp+JK\ncH4+VXabbTuYnU0gna4+0yIIApKp3ql/tF6pfAFxl6T6RDaP+WQGiWweBctuqFzBesiSiG3hxmqK\nOYwh22BwtlYjOztVSS5LjBcFoWo5h12hMDwdLK5sVWle3U6SIGJYa65Uw7lcvGOfiYCswyuqZcGV\nX/bA4Qyns7Ol13U4wyvZYpL9Xn28IrjySsXlyrXB1FqaqEERVtdSYygwAxknh0W7GMxYzGqpYn1E\nGSkFVItWrO1V74PSCHxS9y8CLZ6Azd1ngd1QcNY5FHBtQaZhIR4rLlMIogCPV4XX74HXX56zwThv\nW6sfWZawZ9+o633z8ynkc+UnaU2TsboPzPkLixgZCSIQcG8WvCyXM9paFb+bBvxeREKVJ9uAR8OA\nT8fYQAAeVcaJi+urxt3OZQ9NljG2VAqCc45z8do78wBgJpVCslB/ydJmrJRMDwCzmQzOJev//E4o\nODam043NXjh8fZsImhVUPOvarWkyG5cK5e/NYg5OZovLeEk7h3lzJe/OK2nwycXSE2k7B8Y5JEHE\nfm8xyb7aWGxm183n0iWtrASExW2k7SyCsh/DSrEp94AShiKuL49PEiQYrPgZ5Jwj47S+M7nXaOIo\nFLHxndx59go45aB1BAVcW5AoiqXio4IgIFSlLIIsSxgeCWJmegFWBwttTmwbgNdXnt8VCnnLEvd3\n74q41gQzDKsUMKTSeQQDetWE/9loCulM47lIvSCRzcN2GAyrmI/kOAySJJYqzUuiiMu2uTdmzptW\nQzMdL87U77G5rNGlRaD42QpUaZCdMU08ffosgGJ199Utf6oRBQHbgyszbTnLQjSb7UqejEeSsS9U\nuxCrzRzM5zOIG3nEmuyHuB5hpfVdmxfycRQcC4E1CfOKKGG3Hln6+T6Ma5WtucKKD5Ig4sfJV1Bw\nzLpBn0fSMKwWA4Gsk8eFwnzVx+acPGaMOWiiiog62OzbqiluL0KAAJMvBVzgpeCrX1ms9QsRr3Q5\nhAaWe0nzKODagmRFQiBUu7TAakMjgZaqw2+E+Vi61F9RliVILnli+byJ8xcXMRT2wddE4r5lO1hI\nVJ+Kj6dzmFvobHHLYh6Xg/PRBM7Nx/HzqUsAinlVZp3dhfFMHkYDOxAPTY655nBF09mVJSJWHEcs\n0/jSBAAM6O4nf5+i4NcmJwAUlyyrnZxThQJiuWKwYjoO4qtmwvYMDOB1ExMd272aMg2cTa2nvIYA\nURAx7PFhTG98I4TFHMzmu1M0dUQLwC97cC6/UJmTJdb+DhhQ/PDLOg75d7oWJr1oLJQ1r17NJ+k1\n63F5JR3bNPcZ8vXyij74pABCcjGQEwURQ4r7RUy/MHkSvAuNwUltFHBtQRenYzAKFi6cjcJpoNyB\nRy+21GGM48SLlVu9m5HPm5g+29oSmNtMxvZtK22HvLrq2oxa11WMj4SgKJLr7JftODh3sXKHoyAI\nkFblrmVyRlkRVK+mYjjcWisUxnhDwdBQ0AePqmDfxDB2jg7itXuLyzR500JsTcPqtbNZE4NB6KoC\nhzHMp8o3QjiM4aWL1WcUgPLf91wqg7RhYtdQe3JSBEGAb9Ws1svzUZguCe4XUimoS7ldHlnGZLA8\nlyxZKGAq0f6aY1OpBAKKihHdh1PJlc/GpWwai4X6eYKMczicYdjT+IXNMlEQXBPgZwtp2E3kjbVS\nKkIVZVjchl/2NJSsD1TmsgVk3fW5YdlfM1G+WnL7opVAzulcbqYmapA2YEbH2sBZM5+0A8I6ek2S\nzqAjsgUNjYagajKGRoOuM0LViKKAA5dXFj+8dCEOq8FaTrquIjIaxNxs81Pec3MpJJKtLc2sXY6M\nJ3OYnS+OQZYkjAxV1k+SJRHhQHGGJp0tQBJFDC3lVBUMC3MLKUiSCKPJ3YIAUDAtLKZaX2byeVRM\nDJYHHy9dcA+gBEGomEGSRBEHxyM1X2Mk6C89byIcxIC3fQVGl52MLcCwbRyMDEN16XN4YHgYQU/1\nvL2Qx4Nd4fYnJoe1Yt03n6JiV6C4fHYysYAhj46QppUCqmVrg92cbSJaqD8baDOnorK9JIgIq5W/\na1WU4KwpKrz8Wqurwi8XYj2djZUVZa1nKreA09koVEHGiNp44/Wz+bmKMRnMKvv9nMzNQBGKJTRS\ndhYzheoXXZxzmKuKo/okr2tZh16WdmIVtbjSLEr1ubY4Cri2IM2jFAtIVlleu3R+AalEbum/F5Gp\ns/MvPOhrqueiR1MQCte/8l87ozU2FkLYZSn09Nlow3k8jHEwxhEO6hhdtXNz7czY2nIMjHEIAqAo\nErJ5E7MLaewYH0QmZyCeyiFvNFc92+tRMT7U+EmtHtO2oVU5BqIgYDhQORO33jY47bB7cACaXL2W\n1erSEJ3O1Tq+MF96jbC2EuQtj2HCF4AqyZAEEXEjj9lccdbQcGycSJbvwPUrGiZ99ROVC46DpNXY\nzMeg6sWimUPcLA/UT2djiBrFsTDOMZUrzsgd8I9UNPBeNm9ULlmOagEMq75i02ip8ST0A76J0mcp\nbmWwYKaQsLJl9br2e7eV+jkGZR+2eaoH+wY3EbNWkvY1UW2ohESnOC3s2pOgAGt6ew7K2yH2WG6U\nxRNw+ObZ2d3rKOAiFca3DyG4FBCNbhuAP1h7ZkOSRJyvUvLBjSiJ8HjKv9DddkOePRst3X7pUvXi\nnNu3uTfjdbOYyGIxkYUgCFWfwxjHmfMxLK7K3woF9FJQ5tNV7Joo5ntkcgYGQ174VwWv2byJZJM9\nEquJZ3J1G0QDgCrL2D1aP5mYcY5MoTPtYFrhVmvLTTSbxaVM650Klr0Ym69o0zSdSiBtGrhsoHY9\nMt9SAVSHMwxoOrYt9UrUJBmDmo7ZFppV+xUVY3pjDb6PJ2cR0fwYWlMmIqL5MakXZ+FEQcDBQO38\nI845LuQrl2F1SUVI8SLnmK7tdzjnmMq7z0xl7AJSdg5B2YuQ4sOoFoZf9uAXmXMNvbfVPKKGCa32\n7GsjYtZC00F6wl4se47FDMSs8iKrnDPE7drL8V4p1FLR1I1WbPje/gsvxhPgfOM2ivSL3v9EkK5y\ny3manYmDcw6jYGH6TBSqJmNisvrJfn4uiUKdZtjnz1f2q9uzZ6SUn6V7VdeTYS5vlrURqidfMOH3\n1U6cF0UB+3ZEYC0FOpblVPRDNEwbsUQGY8NBqEr565+bXWy4NVI9jPGGTxpr61jZDkMyVz57cmEh\ngTPR7vVZbFXE54PNmGuel5tLmTTmspUB2mWDwxW/p23+IPyKWhH8ZS0TpxKLSBh5xI2VAHo+l8Wi\nUR5QRzw+jDSRGN+KVwdHXQPU5RN7o8uHgiBgt7d6grrJbJguuWKCIGBICeBMbq4iIJMFEbIgQRLE\nUvAFAK/272hoTJ2gCAocl8KmtYhrTomKqGFUXdtXVoAmtGd5fdGegsW6N8MkCyFIQu1SO63hS/8j\nq1HARZqm+4rBj+ZRMLmzuDVeViRk0gXYS4HJxQsrV4qSLGIxVvvqf+/e2juQ3JYSASAaTeHsVLRi\n1iIaS2MhXnnCHYuEXBPr1xJFAYokwrQcnJ+NI5svL4cgSSK0VYFWwbQxt1h8j3snhxHwtudLbCjo\ngyJLmI03P3viMFYRKO4YHsBrtle2XOkmmzHMpFKwGYPh0utx2ZCuQ2lwRmzcH3AtiOpWXFUWRddg\n3qeoiBVyyNsW9FVLc+O+QEUyvFue3FoFxy4L3JpV7eePaMX3eSZbvcn2WgNq9SX9sOKtKAux7CfJ\nUxjXBqAt1b0qOCayTgEeSUXeMTFrxOERldL9jTKrNLSOWykk7dZmNr2ijnmr9kzUWkE5XHe2XBAE\neKXGZiXrGZB2QBHbnxvZbaIwAEFobUPRZkYBF2laaNXOvNW7+FLJHLKZ4nJVIKiXvrgGBvyIjJbn\nK9WauTFNGxfq9EV0GINh2ti5YxjbJgZKJ9Llnzs06Megyw5CpUp5iwuz8YqCqYIggIPD79VKyfPL\nZElEwLdyUlJkEX5dW7pPwktTczXH3yy3Jtf1aIqM4eDGfunlTBNnF5qbQROXktNzpon4qsKmacPA\n/0xNwWYMDmPwqe6znO02k0mVZtL2hwcx6PHCI9cOIBYKOczm0khbK8u1DmeYz69/GbQRgiDgVcGV\nixaHM6Tt9e+Ki5lpzBorG1xeH9oPXVpJYGdY2TwwoPgxpg3AI6lNB1yz5gLsNSUjlpPn803u7uOc\nI+tkoYgKJtSJpp670Wgn4dZCR5u4SiVyMJcSwTmvDI7cduWFwt7SVXhgVd6XKApQ1iy7LcTSSCwl\n5jOH4cQrl0r3KYqEkZEgGGM4cbKySW0qnceJE7M4O1XMJ1m9pDg3n0Q6U4AoVs/RchNyKZg6EPJC\nU2TXHYyrxVM5ZPMmfLpaer8Hd1TPo3EYq1tDa62NDpzWyhgmcmb9jQFeVcX2gerJ4tPxRKlB9TJR\nEBDWPQh6PBgLrPyudUXB6yYmIIsiXllY2LBq7XGjgIxlImuZiBuFqonnq4U1D4Y9Xszlq+9M9Egy\nBrSNmc2wGUPGXl+uns0cDCl+jK7aseiVy5fjvZKGoFycLTuVu1TRM9GNwUxk7PL8nh2eMchrancJ\ngoBRbQhjavXlTzcMDLkuLtMRUg0FXKSueCyDhWj5ktaFqVhForvP70Eg1NgJJTISxMBShXtREnHg\n4HjpPkEQoKoyRFHEPpelRr/Pgz27I9i5vbLS9/hYGMGAjniiuYTN1bNVq5lLFd5r0T0q9FXLlCfO\n1d41mTcsxNOdPyG02tNwLdthMO3qPRstx8Gl1MrnY22ekcMYXpwtLu1MBALwKpWzHynDgOU4KFg2\nMkvNr2VRhHepmfWrI5GGE+zX69DQCAY9OnyKin2h2hsRlhPlJUGELErYF1x5vCSIHc/rWmsmn0Te\nsaBJMsY9jbdzWZay85gzirXmzuZjsDmr3dicc7yUKfZMPOCbaGg3IUdxZixupVFwan9GDdb8Z1gS\nJESUlSAtz/KYNYsXdCYzkLA3PoeRLe10NFluQzsjcO7AYOtr/dVJnM+B89qrGZsJBVzEVTDshboU\nRAxGAhgeKV8S3Ll3pKlk9VatnnVyHIbv//AETNOGpinQ9craPI7DcPLMHEyzPFAyTBs/PTaFbK65\nq/7oYga5glnzS9KjyqVWOwCwd9tQ2VLrWn5dw+hge3JAACCezbuOL5bOVuS2tWIxm4MAAX5t5fe9\n/HM55zgVXaxZJFMSRbxqtLjr7PTiomvie8GykLMs5G0Lv4i2/wSRMcuPoc0YslbzJ/NXErGyBs2t\n7ExcjxPp2r+bAUWH5lLlvVE+ScOAUpyx2u8bLZVyqEYUBLzKvzapfEXCqmy95BFVBGUfknYWSbv6\n78/hDubN9Z+MdVHHqDKGvJPDvBWFJrYnv7LAcsg10HOx4KSQdIopBnmWAGsykX/9BFi8V3tDhgBs\n7EVJN1HA1YPmzjVeYqFTEosZzM3EsRhLIzqbBGugNIFZpwBoJlNoqBl2tcdIkohf/9W9S42tK+Xz\nJs7PLGLvrhGMjgTLrsw1VcahV0001doHALaNhpHNmVhcVXA1nTVqBmC1gq1WxDO5mknzecNy3Q+0\nc3jANUm8WSNBPwZ85TOXL80WT/yCIOBVYxGMuNT5Wm15qfmykQg0ufL4BTQNyYKBAV3HRDCIUwvF\nBPCXozH8fG79+XCxfA42YzgeK9baMhwbmTVLm2eS8bq7IHf6QxAFAdPpBAQI2BGoLLpqODYczjCV\naf9MyqRee9bKK6tlyfVrq81fLCRhVmmvwziHAAGqKBf7dq6zNYzBLCSsTHFGi3Ok1ywj7tLHMKoV\nZ6nPFWZRcAwUmIm0XVyWlQQJ2z2NbfA4lT+LS8Ysco77zLYgCNAlLya1Seg1ktTzrPGZcQkSZKF2\nrhrjDlIshpA0CosVEJInIAmdv1BdJggSNHEYJmt8Q8VGEgQPBKG/itquBwVcGyS1mEE63lgfOq3J\noKATwoN+jG4bwGI0jaGRIKZPz8Ne6ll4/mwUuWzlTFEqkXO9fZljs4YCt5kLi64BzaXZBGR5ZUfZ\nzMU40ukCEskcFhYz0HUVO7cPVS3JoGut/WGPDAUwtCoB/+S5+XVVia/l5EysrIgqYxx+j4ZIyD2g\nsR2GicEgREGAaTsNNatuh0MTzfe1y5kWzi7GXeuK6YqCHeFiMBHWNCzm8shZFnYPhHFwyL1JNOMc\nU4mVApkF28bpuPuMyK5QGIok4bLB4VIF+bW7GMd9/rJq95ZTWQV+OXk+oGgQBQGDa3KyOOf4zvQp\nmI6DwRo7AVvllZv7DL+ULq8C75e0qrORC2YGUbMY2P8sOY3vL54o3VdwLCSs4veXw1lDwZjBLPhl\nD0RBAAND1qn+3TCpjcAjaUsVoZrfGBGUAtBFHV5pfb/zjJMCW3pvDrcxb12s+lhF1KDW2WEoChJG\nlD2wuQmDN9eHdL0snkLOKdZB80m7N/S1iTuBb+SCcgui0e40cW23Qs6AKApQPZ2N5iORQN3f2eJ8\nCrIiIThQPxGbOQxiizM2mUwBHo/SVBX68+cWMDIahOZSuiGZzCG0qjwE5xyCIMBxGDjnpddJpvJQ\nFAneVUuOqXQekiQ2PcO1WjZfXJZaXeR0eQyW7SCVKZQFZq1afQwXUlkwDteAy7Qd/Oz0DP7fwWKt\nowsLSQz4dPga/IyZtoOpaBwHxoeRMUxkCgbGQu1b6lxWnC3hmFqMYyIULOVwpQwDpxcWccV4ZfNs\n03GQMYoziZIkIVylvU/SKCC0qiq86TiuLYJa8ZO5GWzzBTCseyEJQt3mzct8YQ3ZRG8Ul/1JfBq7\nvUOILJWOYJw31GGAcw6T26XdhgazUHAshBQv4lYWFrMxolWfbUvaWYRkH87mZ7HdE+lqpfhlBVaA\nAAGKoIDBqTo7tfrvz2QGVLH7F8CtKJ7aGYQe+N1vpEbOgRsxBjc0w7VBPF6t48FWo4IDPvgC1a/M\nzrxyCXMX4zh7orhD8JXjF1p6HaNgNd1jcHwiXAq2OOcoFFaWfaKxNCxrZcln+SQtSWJZUCfLIqQ1\ns1yyLLVUWmE1QVh5TcO0sZDI4mI0WRqLXKMv5cVYEukm88cAYDDgxXDQ/apdFAQc3LZSkXtyKAQI\nqOS+UrYAACAASURBVCh2ulo6b2AuWfwyUmUJ+8aKs0e6IiPcgV6JABDP5zGfzmDf8FBZwnyqUMAv\njY66zsqpkoRBrxd+Tauah/ZidB7eNeUa2hVsAcCvjExgmz+IpGkg00S+l1cp/zs3nPobL9wYjl1W\nZqIZJzNRZG0ThwJjCC7V1JrOLeB7868gaZVv2LiQj5f1YgSKn+fVpR00UUFoKbdrQPGVgq2ZwkLF\nzkTOOTJLJSl262OQBQnzZgI2d5B1CkhY7SmVEbUWSrNRtRSWyko43AHjDgxuIGmvzIzG7QXkHPfZ\np34NtgAsddPYWsFWr6OAawsxjWLuhqxINZtW79o/hmDIi6GRAERJxMFD1ZNiaxkaDrjOVNWyOnBy\nHIZYbOXLee+eESwsZErlJKrxebWK1/XqatNjSabzMCwbF5eaXHs9aqn0QzKTh6bK2DZSbKkiSyJC\n/uoBSyTsb3jmabVoMoto0v1kIEsiQj4PsoYJw7JLsxdrg83VvJpSlo+1PNshiSI8SmdySwa9XkyE\nKvtGToZCkCURL0eLiegnFxYqgi9NljGg6zi5UJmDcnlkBMqqAOtMfBEpo36AEs1VJnK7OZdOImkU\nMKL7EF61dLhYyCNao/zDSwvlxTYv5dIorKkC73CGmVztRGaHMxhV8q3q2e+PwCer8MpaqazFmCeE\nNw7vRUgp/5wOqj6oLon2jSwbBmUvpFWnEYs5OJW7hG2e8mVgTVRgMQecc6gN1OhinCFfYwkSADyC\nttSapraEnYDDHdjcggMGAQKCUrh0f0AKwiNWLg1fNKfBOcOMcabua7TSb7ETqDk2wNnG1L5rBQVc\nmxjnvCxn6uJ0rG4OVWIxA9t2ICsSxBoJ11YDye/rJcsSJle1DEokchgdDSK8qvF1OuM+m5PPm5i+\nsL5EUdthwJolxGUjg4GK2y3bwU9/Me16MldkqSK3LJ0zEE/XDh5Hwn6MhMtzjV48N1sq0mrZDpLZ\nAmLpLPKmBV1V4PdUvyqXRBGqS9J6N10+OgJREGBYNvJWZa0vURAwGawM2DjnSBorx3/PwCCCWu0Z\nCctxYK1qW2MzhvPplcKenHP8PFZM0t8VDCOkebBYyJc9J6iqCKnuS5ycc2wLlC+17QoMQF8zEydA\ngKdOfS+vrGJYa2yJ+mQmWjZGN5ooQ3dpSu2VVNdlxjO5aNUE+2UBWS9bDlZECfu84xWPC8k+GMyE\nAwavVH/WyOYOUk7tE2dA9jdUa29MHQMHh8FM6KKOnJ1BxllZMrSYVdb3kHMOi1sYUSYgCCLG1V11\nXyNqnQNvYZMBW5p1awfOOdLOifoPbJDDs3Cq5J3Z7CIc3v3NXa6cGaBHA08KuDaxbLqAuZniTinL\ntDG5O1KWj2WZdqm46TJRFCGgOLtk25Uf2unT88hmCrhYpxJ8LQsL6VLAwDnHKy9XJqa6BS2W7WDt\nzdVmu3RdxehwAIZRv1hnNUNhHzRVQdDf2DZyRZawfbSykXa15tOaIsGjrpwAZ2JJzCcqTzKxVBbm\nqmNx+Y6xUvCmKTICejGB26epMG0HL1/sTt2dC/EkcqaFE/OxUouehWwOc+mV9+QwVvX3cWhsFD51\nZRbwhdmVore6S+0uh/OGZrRWOxFfwIS/uIO1YNu4lEkjqK4EAIIg4NBQedFaxlnZ504WpapLl2fS\n8dJndzaXRrTgfsJqZHPDXCFTsdRXzU7vQN0SDs3a7xtFwsohYbn/jaXtfCkgM5iFhaWE+2pBUFjx\nIyS7B5AOdzCVv1RaIlRFBaOq+2aJ5cfHrWTV+9cSIcIv+SAJEnTZB2Vplo2Dg6H882hxE0lnsZTj\n1UgT6jF1T0tV4/MsDqNNJRsEQUBIflVbflaRs/S/SpIwAhG1a9TZ7GUwvvGzTYJyEOjRpdSWAi7G\nGO666y7cdNNNOHz4MKanp8vu//KXv4x3vOMdOHz4MA4fPowzZ87UfQ5pP39Qx/iO4pdWNpVHbs1s\nUCFvIpcpP2EFw14oqozkqh2VuayBwlIvwe27I/D5PRgZC9fckVjTqnONIAg4eFl5+w3GOE6drCwF\nMBIJVswSba/VNDuWxvSqwDCeyJblgDmMYWqds2BrjQ2Vz8QUDAsX5hOuj1UVuaxgqq5KOO/yWFkS\nayY6e1QZ+lKgosoSLpso5nXZDsMLU5eqPs9NPFtcRm3FsN8HjyJjX2SoVPohrHsw5FuZkTwVW8Qv\n5oulGRZyuZp1wn55rHZJAFkUsT0YQt6yEMs1tmv08uGVYEqVJAzqelnSPVDes/CVeAxhzdNQbljG\nMiAJAlRJQsYyMKL7MaRV2zXHMbUqOAOA2Xy6rJq+LsmQGzyJq6IMizlNV5c3mY3pXPW/gYSVw5yR\nQtIl6LK4UwqQRIilgG95WREozlQtFzc1mIXzhShs7lRcUKXsLFRRgSiISNjpsuXEeXMRmTXlHgQI\nDQVCy0RBhFcqBnu6qMO/1AtREz3wSeUzyKqoIaK0v9/oVOF/UXDKk7l90jB0sbK0SC+QhCAkoXJm\nGQAEQa4bYMriZRAFPxjvzZIU3dDS2sJ3vvMdmKaJo0eP4tixYzhy5AgeeOCB0v3Hjx/Hpz71KRw6\ndKh021NPPVXzOZtNfC4JX0jvmUT58HDlrolAlYbQADA6UfwSsC0HZ16+hMGRICa2D5YCnkbKO1Qz\ntGosjHGk03n4vBrkpT6Hoihg/4H1f+HtmCy/QhZFsWzHuSSKGIu4f6E0yrKdYt5UlYR8z/9n702a\nJUnT67zHP5+HGO+cc2XW1EBDDbSJEkmRIo1aaAHsYcAGpj0Mv6FX/A/kUlxpxwVXMploBCkQcze6\nu6qyMiunO08xh8/u36eFx43hRtybN7Oypkae1R0iPDx8PP6+5z3HNnmwc/2T4AXa9QBzRSWn6V+t\nDRuECQpFlGY0L7nlG7rAucKcth/F1Bx7yaerGgy40eouYZUG7PLyP9mcOYAfDccYmuBoNOKj9bUb\neYYlRYFzqSWqC4F5xfb/onPGx63VyxaTKpdnmMtVSSkZZSnrjofQBKWS15q7AviGheMbdJOIp8MO\nv7e2OsevVBJD6DystRc+twrRnr2ubr6ZQWcuS+IyJ5iL3+lmIb5uXxlPZGo6m/bV58BH/hYShVih\nlWqbM6JiCh1TeNOfP3C32EuqxAVbmNN8xS2rxVk2INBdasbsuG6ZdS5oh6WZC9u6bTaWPl9ogoZR\nI5c54zLE1z3O8y637Oq6cZaf42senjG7xh2mB+SqoKnXCYw6uqYTTdqW3iXSlcqYUI5pGxu8C2Qy\nYtv6FFtbfc1N5QhDc9Bf4+v1Q4RSQ9Curlb+Y8JbVbj+7u/+jn/5L/8lAL/7u7/Lr3/964X/f/bZ\nZ/z7f//v+aM/+iP+3b/7dzd6z28ajEk0zfcFpwe9qWj+TWCYOp/+zh1s26AsJXuT/EK/5uDX3uyG\nMBxEfPHZAXE8m/jqdEZ0zsc39o86OOiyuzfTDvT60crW5zz6g4gsL2jU3akjvFKKbj/Emasw9QYR\nhyfLbYq8KHn66nTp7wD9Ucw4fncWADX3zaaiNK162g+vaJ1+cmv1DeMqz66m574TjdfLbm/l8r84\nncUePVpr4dsWH66tJkRSKX4511ZMi4K9QbV/evHMXd/S9aUq1QU+uoJsTZdZFitNY8d5Rj9NkCjO\n4+hKkXwhJa9GVVVSm1hH3A4aV5Ktg3DAP3Sr73Q5V3Hd9l9L6q6DpmlT769xkVIqybjIGBarY6TO\n0hFhmeHqJkdJn7N0eZRe0zR0TdxIKzUPXRNsWy0sYdIyZw9YljDYsdsLZOsyPN1ZENYbmj6tZuWy\nWIj7EZrAFCaZzCnndDtNo8l50SGbe+2OdYv7zn1KJLnKJss2V9pDWJq9IKy/KS7ruFIZMShOGMsO\njgiurApJChTfTlbotw1dvPcAu8BbXVnH4zFBMHsi0HWdoigwJhfq3//93+eP//iPCYKAP/3TP+U/\n/+f//Nr3XIVWy3sjH6fvC67y4fiuPtu1DbzAnpLAIi+nFaV5xFGKe0kMrpRi53aLYT+iXndp1B20\nFYHUr8P6esDWVgPXtaZTkm+yncpSousanmcTRSm+byOERqPhXnuMmJaO61rYc9UepRQStfD5163L\nznZj5U3nuvckWT7VaI2jdKX4/ircdLtsUL3uQ1YTqzQvKEq5NCH5TR2fZ6MQ1zT4JNik7i6SoMPB\nkJCCtfXgtdWsL07O+HRznf9tLlLq5wdH/NNP7iM0jXG3oFH3VrrW7w8GNByH2jUC+rMo5DwMabV9\ntlZMUG5Q43A0pJCSlutSs1YvSymFm1o0HXfhb2vrwbQ1OcxSjsIhn7Q2qLVcPlZyyTriTXEaj3EN\nk5o5W6+9sEdgOQSmTRIWNB2PunJRVNW3w2hAKUtsw2TTqeEVFqbQsYQxPY6+DqIiRSpFMFeZGw1D\nNoLadAqykOWN/cwuMF9dHOUhhSppWcvr+wGLVfF26QIazkSkfxQf07ZabOgPpq+JS4O0TGleWt7m\nZjX4kJaVDMPWr364zGVGXIaYmsmoGLHhzKa6pfIoVRPztfYS3979opP8PWvOT7+1z/su8F3ef6/D\nWxGuIAgIw9kTn5RySpyUUvzJn/wJtVr1hf/Vv/pXfP7559e+5zr0et+Mo/dvKq4zfYsnFa6ykOw+\nO+GDucDozumQ5lrA3/yXx9z7aJtmy8cLbIqi5NVXpzz6dAelFLWGx8uX5xi6uLYleQGlFK9enLO9\n08CZWCrEyZsL2fO8ZG+/y8MPNvj5L15xcNjjt390m/X12o2OkTxbfsrXNbGwrY7OBuR5yb1bsxbg\n01en3L/Vxpojl71hRODamCsI6wWUUjzbP+fDuxtIqdg77XF/+/WtxTDJ6MYxphJsv4O8xXGSkRUF\n7eDdu56v/Lw0o1MU6EIjdRf3s4nG/7i5w9nZCE3TrtWleaU+tQTpxTEt1+W26dOZ/C2Lc74cnLIT\nLG8jVUjCJCER13tnNUuLLJScZSMOxyPCPOMsDvnntyoj2fNwzJYXEKUpiTZbllKK8ySqKmuWw3kS\nElvZNFxbr+k8P+pwP5hVSFrKXjjWQt6uKjouMgZZTNNyybScRJ+tl4PB2XBEbGQ4GIwmfmxKKYYq\nmv4cq4wzY7YuUilyVS5kMMZlhqu/GSkMy4TjpM+gCPlp4xEAbRo8GR4SGC6+7vA02ueRe/tG5qsX\nOExPaRpVmoIjbEDjjNXXuKP0mIZRx9M9xuUYDQ1/ot1S0mSgpWhz+7JQOYUqeJl/xqa1g6mZC9fQ\nq1qO8yhVQSojPL2ORoOz0WzdCpWhIdC1dxMk/27w0cI6/qbhN8749Kc//Sl//ud/DsAvfvELPv74\n4+n/xuMxf/AHf0AYVl43f/VXf8WPf/zja9/zHt8udEMskC1g4ugt+Kf/5rdY26hhuyZJnPHV54c8\n/KR6ctQ0jcO9LpZp3IhsARwf9Wm1/SnZusD52Yjx6GqDzsswTZ2HH1RVnHt31/if/8kj1lfo0q5C\nWUqevbx+em+zXVsyR/3o/uYC2XodBuOYopRomsaHd2dVp9eRrTDJiNIMzzb5nYc7NyJbF5Oe1yFw\nrG+NbAEEtoVvWQsi836c8KrXn7YYz6OI7kTk/rzbWzlpeGGQ+rLX43Byc/j87GwqKm+77kqyBeAY\nxlIFrZvE7A4HnEUho6z6PEPXp5+z6fk8qDf5vY3ZebHj1zhPIg7D4ULGogLiImcwWU71tWb7ou14\nC2QLrp7cm8e4yNiPZi3tf+gdLYnLXd1gzfbxDWtJl6WU4iSZ3WhGRcLLqMuoSDlKh5hCx9WtpXig\nsEw5z8YLyzlI3jwH0tcd1ldUnppmwLiI+So6ZMdaeyOyBXDL3iSVKa/iw9f6p+3Y23i6x6tkF1Mz\np2QLwBTWdD8cZYckMsbQTMbliLrexFzRWvT0AE8PKFVxpe2Drhl4elUlLVVBLGf7IJEjchUzLs+J\nytXDM98VbmrGq5QkLj/7htfmHwfeKtpHSsnPfvYznjx5glKKf/tv/y2ff/45URTxh3/4h/zH//gf\n+Q//4T9gWRb/7J/9M/7sz/5s5XsePXr02s/6rpnqDw1fh91fxNQA9DtjHM+i1xmzc2kS8OKQeVNd\nB8Deq3PiOOfBww10XVwb9NzvhxiGTrDCluHV7jn3760zGFRtzuvWpdMb02x4hGFKfxhz7/bNROxv\ng84gpO47U60YwONXJ3x8d/PKjEeoHODP+mMebLXZ2qov7MPPXh3z2/cr0psXJeMkoxW4vDztsVH3\n8R2LflhpmlrfIrm6ClIpnpye8+nWjHBmRcHzbo9PN68XIedlSS9O2Ax8pFKcjMfs1N5Ne0ApxVkc\nkpeS27XXD0t0kogwz6lZFrmUbLo+X/bPuRc0lny15nFxDhayRMGSXcOzUZcPgtYC8ZBKUcgSCdf6\ncxWyfK2maphXDzKPR8d85G/SunJScoaTtLImKJUkMGzqE41VJgsGRczGCiIFi9cMgE4+oqa7S0aq\nuSw5y/ooFLed9cuLWcBheoorHFrmbB+lMkPXBMYNg5+lkhxlRziiunasmWscZodsmpsYmrG03vNY\ndQ3tFac4wscV1/uiFSojkWMCffEaI5VEg7eyjvgmIFVKLF/g65/e6PVK5Wg/EEH/97nC9T5L8TcM\nX+dgO9ztUGt41Bou/e6YoD7TRn356/2p4/z5yRCha7SvqDBddTE7Puzx+PEh/+J//XRBcxWGlR5L\nSjmJo6jemyQ5ui5Wtu6iKMPzLI5PBivtIuZxQbh0Ia690F6HKMnwJjqot13G69AZhrRrHpubi4RL\nSoUQlTFoWpTkRclabfEmmhWV03yalzS8NxtmeNfY7faRKB6033zcvZCSUZrSct2qdRdFbPg+R8Mh\ndcdZ8OmCSbssTWlckbW4avmFlEuTjhfoJTG2bkwrX6WSJEWB0LQFkqWUopPGrDvLZObiHDxPIkCx\n7izepMd5SmAuanr6WcJJXHmC7bhXk8HdsEfb9jiMh9z3Wti6wX7cxxbGNC8xLDI0DaIiQ9M0WqZ3\n46pSIUuENrMhKWRJWKbTWJ955LLkRXzCx/6t6TZ5Gh3ysX976bWHaQdfd2gYPmGZ4AiLUpUrXedP\n0g6e7lIz3u3DQ6GKJcImlSSSYwJ9ts03Nmo8OXqOqVkE+tV5kTeBUpJUhTji+6kp+j5AqRLUV2ji\nk3eyvO8z4fp+0O33+F7g1r01ao3qybbZDhZI0Ue/dZtnX1beOutbddrrNZ58dsCLrxb9spIk59Xz\n1a0717f5yU/uLyxXlpJet9L2nZ2NGA5nWivHMZFScnCw3N5I0pyz8xHbWw3G4fWtycEwppj4b70N\nUZJSctqZaDqSjJeHy6avZSl5/HLZO+xNsFb3F9ZPSkVRyimZPOoOOTgfLJEtAMswMIRO9DWMXq/C\nq06PcXq1BqWQkpPheOoSX3Ns6rbNi06XYTzbN3v9AYMkoZSSZ51qGw6SZMFd3hCiWt54jKZpbPg+\nYZbxot/nJAyJ85zTOS1oqRTD7OZ6KEOIK8kWVFYR8+TkPI74vHfKnx+8XJi6VLDQZlyFdcdbIlvn\nSbTyGGxaDo9qa7SsxX37fNylmHOQv+e3GBcZG1YwbSnecZts2AFSKXpZVEX66BbrdkBSFjfKG7yA\nIfSF7z8sYsIrInZMoU/JFlTn1kNvJlzv5rOb3rbVnpqe/nL0nEKVHGdd8hVO9lv22rVkq5cPrmyH\nnWZnDIvlm+1xdjRZp2VPqFwtnzNNfQ1ffD3LGGDicH91DNR7UOU9am8XH/dDw3vC9R5LePXslCTO\nFlzohdC4/2jRgfvDH93izv01kiRjNKiIkuOYPHi0yclRn68mBK0oSuI4IwgcWmuL4lOhC+7crcrv\nm5t1Gg2PKMo4Pq70DrouFgKsL9Bqeqy1q2WN5rRgB0c9kkuko15zGb2lSesoTNg/GfDgduUjY1sG\nH9xeI79kRaHrgk8fbK1cxucvT3j86oTuMHqjEONxknLaHxOlGb9+ecyDrTaf3rm6JWfogp1W9WQV\nphlHvXfzlHe71SCwVwuowzRjvzfAt61p66yQkqwscU2TeOI4L5VilKYYmoYuBDv11U+Af7t/gJyY\nogIcDIco4J/fu8fDVgtzTncllaKUkrv166sQT3qdBUNRgL882luIBbpAP00Wcg+3vIB/snmH/+XW\nvQUiIjSNW/6bVy0c3cC85ILdz2LGeUpYZPyyd7SQYbjpBEtTfU3TXZhOvIBUiuiSM/1tt7Hw/pdR\nh1Fxc+1k2wrYsZsUsqRUkrBIOLxG32XMfbf5WKBcVRXYXBZ86N7CFib3nC3MFRmOr4NcYeRxYRWx\nYa5TN2b7pZt3yWVOXW8gENiTFmOucmIZITRBy1j2iNLewgpjHoOievgSmk7DePcmqtehUGMyufhQ\nmMrvJn3iptC0m0VY/dCh/+xnP/vZd70S1yGKvk/THdeje9zHcszv1H/L9+2vvc3qTQ8FnB4NqE9y\nC9Mkp98ZL3hvaZrG/qtzTvZ7OJ6F589HpEC96WOaOidHA4bDGNsxMU0DKRX7e100NMZhiudZfPn4\nkG63GtM3DB3bNqftRd+3p1UxKat2XvUdFYahU6/NRvJt28S2jIWLZRSnNGrukl7s1X4H17GWhPIX\nSNIcDY31VkXs8qLk5UGXRuDy6rhHu15tm94oIk5yXGe1xmGjGdCu+xycD/Aca0HfBbB/1scydYyJ\n0PxiH9qmQc2zkUqhlORsGHI6GFdWBJbJ5/unrNf8lTcGXWhYpnHld3sTXNeOsgx94t01y4r0TJPA\ntqg59pSolVIR5znrQbW+F6HTjmEsBFC7pknb82i6LroQ2LqOrc+qLmLi5A4Q5Tkv+j0KJalZNkop\nFLMqZlZWGqq6bWPpOi8H/ekybN3AN80lfVXdsqetw1LK6edal3RVSZFzlkTUTJu4yMmlnC7runPQ\n0vUlQX8vi+mkMbe9OpYw8IyZuNtaYaFgiNXJA0LTsIWBIQTn6ZhxkXKQDFizZjezmuHgrMhTnEc3\nCxkVCf7EQFXTNDr5mFyVBIaLo5s38gsLDJfH4R7rVoPTrI8lDAxNR1KZoV7GQXqKronXhlt7uoOm\naZSqnJjSlpzm59SN2tK5IJGYwsQWNpqmYQkLqSSZzDjOD3CFx2l+jFKQqRRLs7FdnSR++6zYUdkl\nKvtYwvtOjEwVCk0TCG32kFSoAYb2j6Ot+S7uge9iHVbhfYXrHeIbkPV8Jxh0x6Rxxp0HM3HrcBBh\nu5PKglQ8+7Iyb7z3wQZe4FCrLxoZ+oGD51kMhzE7t1vcf7CB0DSklKRpztp6gB/MrBU++fQWH3+y\ng5jorMbjhKdPj+l0RjgTIhPHGXuTKJ6ylCun9C6TLaim0VaR4FtbzQVvrssoJy09gCwviOKMD+9V\nYv9Hd2bbpuY51K44wS4ghMZmc3XY7nojwL5mEtI2DW6vN7m33qTuOTR8FyE01mse56PV7QpdiCXn\n98Peu8lsm8fRYFZFOx+HpEWxoMODKmLoeDTiQbu1RBSkUoTZ7OLYct0FUmWvmDgEGKQJpVJ81F7D\n1Q0KKfmH0xOe92ZP9p044mA0xNYNnvY6KBRNxyEtC0whVgrfL9ZvlKX89ckBabl44z2Oqmm+0cQY\nVSlFJsvXthevw7ZT42FQ6d02HP9GeqtSyWkl7qLVKZXiZVR9/3BCAj/0Fyui80QpvdTO62YhB0mf\nhunSNhcrDhtWnZZZrdtlQfx1+NirWkVrZp2vwgOUYtri7OcjzrOKBA+KMY5mc5pdXT0rLgUSv0r2\nJ99J57a9HJgNkMgUNamIhcWYTGYMij6n+TEP7Ec4wmXHvIOne1iaTSTHdLPVocyJjOgVr68UCQRN\nY+c7c43XNRvjUsXIEauNeC/jey7pXoKmDkDdPFPzu8Z7wnUNhudvdoNqbTXRfyAmrVlasDunv0ri\njIOX54SjBL/uLpmfOo6JP5kW/Pu/esatu9UNYtiPqLc87LnqznAQcTZxbB8Pq5tSHGecnw158viI\n/kSzdXTYYzAJn07TnF6vshL55S9fMR6nfPLJDhtz0Tuua3H7VotxmFCvu7iuRVGUSy3Ey2g2vGun\nIa+C71rUAwcpFeMovfJiZOhiqWp1GQdnA2zLXBm146wgiatgGjq32nWsyWdtNWtsNqrq2xf7p9Nc\nwqsCoq8jdTdBP1puRc1X0AxdpxvGdMOIL05mNyYhNOrOakIaZRn/7eWrqaZrFfKypJ8sfrYhBIYQ\nnIQhx2FIUhT8eGOTR6024yyjlJKW4071Wp5hIjSNg9GQ/eHsAn2ZUF2gZtn8eG0TU+gMs5RxnlJI\nyf64eu+G6/Oj1kYVGGw5NG2HvfGApFg+FnNZufpfEKPP+icLLc4Lh3rgyrDry0jKgpNkyN9299iP\nq3USmsaHwTqFLNl2aoQyvZa8vYw6C8d0Wua0DY/PR4dksmT8Bq3HeZwkvWlb9OLzTc2gYfgMy5BX\ncXXdqRs+bbNOXKb08iGe7nDLnj3IpDKjk1eE7DA95SA9XnCZf+jef+26OMJGUFXB9rI9YhlTNxps\nmtscZQfV9KCmYWgmtnDoFR02ndUtQFtzqF3hPq+UIpeVbMHXm/TLI7Tv0e1VqpRx+fja1+TynEwd\nfktr9G6g2ACu9kj7vuH7c0R8j5CEKePemHH/7cWOT/7uOUVR8PTvXxAOv7556/PP9ineMlS4LCTP\nv5idSEophr2QW3MVLMe12LrTotcZYVnGkgt9rTFz/P/wk22sSSSOX3NoNGcC19OTAZ4/02rdutNC\nKXjyxSGb203uf7DBzu0WrmuxvdPk7iRcO8tKTk8GaJrG7dtrKz22RqOEoigZzwVup2lBGM7/nnN4\n3F/423Q7zN3k8qJk//hmvjillKRZQbP+dlNTSVYgBFOi9HVRSsnz40Xxry60KckaRAm9cNnode01\nlhGH/SFxtkgY5onCKEmX4no2gtmTdN2xaXkuozRj3femlatKiC5WVoEC2+Z///gjHl4z0fj/rsV9\nZgAAIABJREFUPn/O/3cp7N43LTzT5E69zqfr6wSWNcki1BhmKflkEnHLr47Dtuuy5QXUrCptoT5x\njn8+6K0k0i+H/SlJExrsjQYch0Oca+wg1hxvqfUYFzm74YCzJJySqR81NqcmqfNQSjHMk6mtw5PR\n+dI2G+QJ4yLDNyzu+21+0rzFPa+58P/zLMTWjaXq1oWovlQSqRSfBFs8Hh8TF9V+qpkOJZJM5hyn\nAwZXRAK9Dn8z/Iq4TKekSyrF02ifu+4mdcObCuKraUhBrgpc4WALE1vM2mC6pk+MTqFlNLhn31r4\nP8DLZO/adfF1H6EJdE3nU+9HRDJEIPB0j01zaykA+479YOVywnJEqpKVMUAAJQWjcnZOblsf3Shc\nW6qCs/zJa1/3dSE0m2BiAZHJDoncX3qNKdaxxfKE6fcamgXaD6PIAe9tIVYiCROyJKe+9vqed+9k\ngFd3sd3VomIpJYdfnXDn49Ul75tCSnkjbdhVI7FlIadxOoevzlFScfuDqwXY/c4YoQvqTY/nXx7x\n4KPtldYLjz87YHunSbNd3Xh/9fNXfPSjW9M24AVGw3ip7XgZV8UNQTX9eHo25M7tFv/wyz1+73dX\nP91KKen1I8IoXQqvfvr8hIcPNm4UknyBKM4I44yN9ts/RWV5QZIV1P2bWRdctQ8POgN2WpUFRpzl\nuNbiNs6KgmGc0vRcsqLAu0LofhXiLMc2jYWqyMlwjNA0NmrXi1oP+kMO+gMerleBzGu+x7PzDo/W\nq31wHkZ4poFnvXmkTTeKCCzr2ozHUspls9M4xhCC+oqIn+Owag1u+6v36zBLycoS3zRxDZNngw5C\n03hQa722Gvl1xtLDIiOXkqblcJqMCYuMD4KZp9MoT9E1bWpeehAN0DS45S4ODnSzkOacHcQoTzhN\nh7iGTSJz0jzjR41bvAw7bNk13MnyTtIBvm4TGG9vLVI51xccpl0+cKtBkuusVJRSPIl3+cSrzulE\nZjhzxCouEzpFnzv2YuWpl/dxhYOjO5znHUzNomGsvmb3iz6ucLHnInYKla8kUKKecHh+TtNYwxHV\nNSuVCQINU9iMy8GEtL07f7hvwmbm+wipjoEC8Q1OJb63hfiBwfGdG5EtANM2rvWAEkJ8bbJ1sZyv\ngwuyBbB1u71Q3VoFr+ZMRfD3Hs5MO/denhHNVY/ufbBBNGfL8Du/d3+JbAHU6i5RmLK32yG/VKnL\nsoIkzjBMHSkVXz4+mv6v2x2TZQXjcUK75SOEYGfn6lBZRSV2v0y2AD56uPVaspUXJaO572NbxoI+\nqzMIGYYJSZpz2q1O6rPemHGU0htFC1W0C1imcWOydR18x5ruh8tkC5iK0bOiYLxisrMoJXudq/UO\nrmUutaC26sG1ZKuQkkGcsNOo0XQdXMucCuUvyJZSinXfox8nNw4pn0ep1MJcWlIUS1OHX5yfLVWq\nHMOYasEuTyS+GPRYd71K26UUaVlwFoc861etzbplY86J0wPTZtNd1OANs5TjqDoG0jk91Wk05m3h\nGxZNqzpWNp1ggWxBJaKfd4oXmlYNCyjFV+NZGzcsMl5EHcK56tWjYJNbToOsLOgVMS+jDve9Nq5h\nEZUZuSzZshsLZKtUks/Hy22mV/HZ0r5UkylEoWkIxJRswaIdS6FKMpkv/O+CbAEcpWfsJ7OweFd3\nJpXWxX2uMQuudjWXTKVE5eqqnC1sMpkynkT1pDJlP91d+dqa2aClr2POJd/ZwkHXDEpV4AgPS7w7\nr7t/LGQLQGjb3yjZ+r7jPeH6mgiaPqb93TrwRuOE04OrNTCXoRurR56zNGc40VRdtBWlVBztV8vu\nd0Nu31tfmEa0TB3jhtogw9QxLZ2L63SRl8hSVoQrLXj27IRf/WqXu/fajEYxT54eUxQle3sdev1w\n6ji/vdUgilbbPOhCcHunxav9DoNhPM1tLEvJq/0Oh69pI0opyfJy7ndFbzBrCQeujWubmIZO4Nns\nHffQNA3HNikKSWcQUV7ST+2e9BiE8Upd1U2we9ZnGCU0fZfeeLE9/eq0R5zlRGnGIEpoeA6ebVFz\nbY56wwUfLF1otN4B8ZtHKSXn44hBnICmoVQldI+yDKkU3SjiYFBpIW3D4OKo2+31F/y3oCJvqwjZ\nhu8vhFT3k4SjS1lwP97cWjqmPdMkLQteDvp0k9mNWCnFplsJwKMiqwidAg2N20F9+pphlk69rjZd\nH/9S4HQ3iSgm7bnno0rsraimMY/j60nXs1GXQXYzjdRBNKCQklyW7EbV8bsXVVFJLcsln+iQdpyZ\n3vGu1+KRvz51re9kVTszLnM+rW3zPzTu0DJmCQ1hkZLJghfROS/CGXHrZGM2L7nMS6UY5OESOU9k\nzknW54vxHi/iY55Gh9O2YqFKnkWHPIsOGRYh4yuIEcAD5xYts0ZcJoyKar03zPa0RZfIlESmDMph\nRcQokUgMdIbFTHc7KAaMyhEn2QmlKrGFMzU+1TVBXW+QyJioXJSOWMJCFzqnxdHC3yM5JpRDDM0k\nldGVUT9vCqkKusWLd7KsHwKU+uE4D7xrvLeFeMcIB5W79LcpntcNgeWY6Ib+tUZiy1JSFHJBAK9p\nGpZtYpo6/W44NUa9gNAFSlXarXCc4roW4pJAXUpFOiE+vU7I+qTc2umOkaXCtAzOzkbcu7eGYeg0\nmz7HRwMePtwgCBza7WDquXWxnmfnIxSKPC8pinIh7zCMUgK/CrktihJnSogV7aZ/bbXQ0PWpo/zF\n99d1gWXqdCf71p1UmkxDp+Y5+K6FpoHv2iRZjm2ZC1XPmudw1BnSGYSsNV7vNzO/D4tSYpsGgVuR\n3KPuiLpr8/K0SyvwMHTBMEoIHBtF5UtlGhWpLaREqVk1TNO0a9tylzGIEoTGUlVQKUWpFELTMITA\nt03GacZWrYY3+azj4RjXNKjZNvWJC7xnmdMbvGMaFQGb/K6U4mQcch6FBJZ1bSUysCz6aULdtnnS\n6bDuVZqgThxNPbou4BgGDdum5bjkZYmYTFBmsmScZdwK6thGZaXgmeZUW6VpGoWSeEZF2p70u2y4\ni/uuabvUrcqiYGNicCo0DSz4+dEhD2pX69LatntthM88SqVw9Wrd1iYxPaWSmJpOrko2nep8ujw9\nOCoSTtIRTdOlm0V4uslB0qdleRwnQ9asSt+Uljl10+U4HSCVIjDsqSWEq1uMiwRHmIA2nUBtm8GS\nNcSgCGkaPtt2i3Wrjqnp0wDsXJX0i5CWXmdQhJxkXZpGsNKHq7JvMJFITrMumiYIDI/n8R4No0am\nchSKDWuNUpWYmomj27i6i6d7pCpFR8cQBpZmUTNqWMLiODuibtQRmkBD4Ol+RQg1hamZlKokLkMM\nF2SiU5u4zCsl6RTHNI117EmLMZEhlnCmUT2H2RMC0V4i/Wf5CxwRIK7RGWmawNKuf81vCpTKkOoZ\nQrs+4uvr4L0txD8iVFWbryeLK/LyjcZzhRBTEftl9M5HvHpyfKPlWLY59d0a9EKkVJyfDHAmdhDb\nt2c3EKUUeVa1UYKaw517azSaHgpFElcH+6AfTScRv/zikFJKHjycnWgbG3XqEwLnOiaGobO5WSeO\nM3ZuNRcuXmUp6XTGnJ4N0XXBndttnr88J89LsmyxRVkUJUpBMIkLOj4bIoRGq1F5fF20/Tq9kOOz\n4fTni2rY4rbV8Cf6PN+1cC618kop2T3usXtcVTjWGv6S95UQGve3Wjy6fX0bdxXiLGccz6p5QmiM\nkpR00pa9qGZlRYGp64zilKwosQyd9Zq/EFz9pnLNMMtI8oKnJ4tj8qMk5XjODsI2DBzDYL7xd7fV\nWKhKXWCvPyDKsgWyBfDZ6RmbgX/jiJ77jSZC07hbrxNNKmVhvnpa9eJz9kZDHner77LtV+3BXF5t\n51CfmIvausFvtavj9h86x5X9wqhHXhYopZbam+uOz281N3g+qWIVsuTLwTm99O1E6C3LXagmKaVo\nmi4FknGxeGMpZElYVMdLzXC477WRSnHHbfL56HhqBXHPa08nIw/TAaksMDQdWzPo5xHddMxh0kdo\nGqbQ6eVjTrPqXOnnEcMVE4yOsDCEPt3evxy9pJSSXBbYwuRD9xZfxrs4msUj7/bCdypksXR82sLi\nnrNDfRJAfd+5hdAEvu7h6xMPvKJPrmbnv9AE/WJASYmhGehzJGbb2sHQDJ7EjznKDiefYeOKalkS\nSaJikkn17SjbJZMJmibw9UXX+bqxRqpiysln37I+Xtk1WDPu38ge4ruykPi2oWkWuvjRlf+v2uPP\nvsU1+nbxvsL1juF4NsY13k43wcluB93QMe03X85ldh8OY5prAeY165TEGcN+hDvHyof9CM+3SZMC\nz7c5PqjMTS+qQ2mS8/SLQ3rnY9a3qouRaRmkaU4UZpSlJE0LNrcajEcJ65s1glrVwihLyd7uOc3m\npCogBKZVGaJW76tunNbcOh8e9bDMiiwFk7aYbRk0Gx7epYEFZ1KRA3Ada1LtqpDlBbsHXRo1F9+z\np/9TKExz2ZTyMi7bPygFaV5gmzqOvayBuoAQ2rVav3nM70PbNPAdi+PeCKWgFbj4joVtGozjFN+x\nOOgMeXHapeW71D2H/U5/GmLdGUUYeuXu/vS4Q829vno0j6woqzak5y6Yk9qmQd11+Oqsg2dVxrGO\naU5fE+c5L7o91vyJaW5R8Oy8w7rv4xizylaSF+SyxNR1NoOqxeeZJorVIvhfnZyw7i3mAuZS0k9i\narZNw76erDVtB1s3pkQwsKwrY36UUjzun7N5qaolpcQzTYQmOEsiTCH47yd7eIaJoxv8snOEsHXW\nhEtrUsWKihyhiWkV7OviLA0ZlxktyyUwFp+kE1kQllWG4qhIcHWL51EHRxjc8Vo0TGehMtXNQrbt\nBqbQcYSJb9iEZcZZNiQwbGqGg6tb+IaDI0xexuesWzUsYSwsJ5tot+arbFt2k0JJ/nb4hG4+QtcE\nLTNg027h6jaGpvM02mPNbHCUdTA0faniNe/pViqJQi1M/wW6v+BuX/0tWDkhePG3NXO9akFqxsLr\ndE3H03026m2iKKOmN9AnLUhTWx72SGSIrpkLpC4qBxiaNTEf1VaSsO8SueyRqw6GthxbJFVWxex8\ng1CT9vdVqP4n0LS3lz58nytc7wnX9xC1lv9WZAuWDzYvcJbIVllITg96BJfag9bkM7vnQ4K6i2kZ\nCyTMdkzCcVJ5bzV9dFPQaPsLLUjTNPB8G9PQiaKU0TDGry0aowqh4bn2VMifZyW2YzIeJ5SlpNHw\nME29qh4UktE4oVF32dvrYjsmtYmWaxymeK61dAKrC03OKgd2XdBu+jx9eTp1kIdK2D5/g+/2Qwxj\nkYB9+fKUtcais7sQGpapc9IZc9IZEXg2g3GCZV4/THEdVl0whNBIi2ra0Xesqp2n6xi6wHdMdloN\nHKtybb8gW1Ip+mFM4NjoQrBW895oQtOzTGxz0Ql+Hg3XWWl1Yer6lGxB5Zl1MgppuQ7WXGUryquJ\nPPdSG7Afx8RFsRRUvRUEU7KVFgW/Oj3hXqNBbTKFKCfVpqu+o6ZpS1W3g/EQUwhMoVNIiQacxiGl\nUtytLUcGFaqym/AMk6btYOkGYZFxL6gidALT5tHGGp1hyItRb8kq4k22/xeDyq9rPsbnIBpgaIJh\nnrBmLxM4U+j4ho2kOgds3aBteVMX/MttwJNkxJPwhFtOs2qnKmhbPp5hUU7ai+fZCFuYGELHFRa2\nvki2noZHmEKnk49ozhmmVgRKZ9Nq4ukOkczYttsL77U0E0MTNK5oL85jVI4Jyxip5JI9xJviIN3F\nFR7W3HJKVXKQvWKnvnWj+44t3AWyBRDKPpKSTIXYYtmG5XWEYxUS2adUGYZ2vbnyTSBwMLSZI38m\nTyhVhK75JPIZulb7xkiXUjlSfYbQro86+jpkCybXz3CMYA+lXT1g9U3ifUvxPaYQurZAtgxTX4js\nGXQjwtFiyyCoV9UpKRX1VnVRrdU9knh1G0fogtOjAY5t4tgmJ0d9Dg+607bBBbmTUnEwEfw3Gh71\nCTELw5STk5kA1jB0bMdkc71GrxdyejpkY722kGl4dj4iywp6/YjzzvJYcF6U07bhJw+Xcw+H43i6\nfqueTlt1l+GKoGzLNPjo3ga2ZWLoAl1oaMBX++fT1t/r0B/H9MerW06jOCUvJGs1n42JBsw0dOIs\nR0qFZRhYxnJ1rijlQozOIEpWCvez4u383a4iD/04YRAnHA1n++C3tzeXiFvdcRgmKYOJqalSiqed\nDm3PIy8l59HV/nUK8AyD//T0S5RSDJKE/7r3iv/01aKn0Uk4ppdc3cpr2g5ZUZKWBfvjIeM8o2E5\nCwL503gmqm7ZLromSMtiGir94/bWtD3XS2NOozGuYfJhfTYpO8gSOumb+fF9Ut+kYHF/3XLrrNs+\nt93r8yNtYWDrxrS9CPBVeEahJKWSHCYDojKjZXns2A2EpjHII/7P/b8AwNdtWuYiYejn0TQWaH64\n4QNvk5O0Tz+vpnRLJRlNPLyUUvzF4HMaps+W3WQ3uRR2LzNydTOX/qZRp24E1yZ63LRt/sj9GF+f\nkcODdJdMpuxYd3k6ekwnPyWTKWf5IcWKcOtVeJn8CpSGrzep6avlA53iJcUbisYNzbmWbBUqZFS+\nvNGyquva7Lw1tQ1MrVpXV/94IQ7oXUPTTHTxk29s+YswkXxzOrG3xXvCdQMkUUr4NUxQvy+Ixglx\nmKJpGsE1nlgffLzN2mZVcu6cDhc0UoNuOG31WZbB5vbswv/08dF0Qm88irl1t01rLSDLC9Y2aqRx\nzt5uh+Ew4mQyLSiExgcPF0OxAYLAYWeniWnqhOOUPC/Z3mpwdNzHsnXW1oJKP7XbmUb8uK5VVbBa\nPpsbyyXzx0+PiOKrQ6xHYTqdoGw1vCUtlu9aV0YBnfbG3NtuYZkG47ia0Ht0e+3G7u6ebeKt0OGd\nD0N0TcMy9IUoozDJyIqCrCgXJhHnYRk6t1qz7fDspDMlCfPY7QxW2llEWbZkhHoTDOIE3zJZ919v\nFHuv2Zjqtr44PWPD8+lEEduBz5p79TEa5TkPmi1+e32TfppwHkd80l7jn95eHDlvOy6+aXEazc7f\nvCzZHVbHn29a5EqSS8mDehNHN+gl8bSSlhQFX/Yq3VchJbujylajlyaM85xClpxOJhL3xgNu+3V0\nTdBN44XWZ9t2MYXg+ejm08RC07jrLT6hXzwIXFhDSKVIypyX4Wy5R8mAUkkKWU41W6+iLmumj6EJ\nullEXGT8eniIoBLbHyUD6obL/3HvXwBMMg2rY3fdqqFrglFRPZBIpXgSzqwiDE3nI/8W99x1hKZV\nsUMTR3hN0/jXrZ+gawJbmDy45OKeyAxLW32OdLMBu8nipKAtLAJ9dWs2lgmH2dV61dPsZDqRmMnZ\ndWA3ecmoGBCVY2IZcsu9i4GBpKSpr11pdnoZ2+ZDGsbytWwe6+ZDjDckNYbmoF8iXKVKKSfEzdB8\nAnH3jZZ5gSqk+zeDBmiqi6YmdiKaBt/DQOzfjC39DUNJtTK374eIq54ApZyJ4C9+Pz8ZVNOPc8Tj\n7gqz1LKUKKX46NMddF3Q74WcnQwoi+rvv/7FHmmSE9RdPM/m4FWX1mTqUEr12qfSjY0atm1UZVoF\nf/Hfv+LJ02OiKKPRcKetu8C3r43w+eTDbWqBw2AUczapgEmpptFAt7ear20D5vkiYflq75w4zTjv\njdH16r1rE7J2USH74uXJa48fyzQWJi1LKfl8t3qfY5m4tsmX+6fTDMlfvDgkSnJennV5cVLdbMdJ\nSi+MOR+GxFm+RKI+3tnAMZdvHh9urS1Vqw77Q5J82e/qJrjXamDo+lJFqx8nvOz2OBzMKpeaplFI\nyecnp3y0voYhBAfDIblcbL0keb6wLp0oQimFb1kopXjUarMd1Fh3PV70e9MoIFPXMYRYqMgYQhCY\nFsmksvdfDl7g6AZPeuecJxHnSTQV078Y9bjj18hlia5pU4f6bS+gOdGMXeiAAtPi+bDLXx7uYly6\nibmGybrjT6cMvy7SsuCz4THnWcggS9iwZ+1xWxhoaMRlTi+vKk3bdp2m6dLPYwxNcNtt8pPGHWqm\ny7ZTx9BWW8XM4667Vg0aqIINq8FRWg2KpDLnKOmigJNJSPWGNXsQmyeelz9jzaxPt59SakrUqu9h\nIuf2eS8f8JeDn9PPV5tausK5MlOxWp5NJKsqY6foMCh6xGXEhrnFQ/cTLOHgaQG+4dMw2zjCw5z4\nd70OhcoIZe9b02wVKqJQs8rtN629+r5DUx2UclF8Ny3Em+K9husGMC3jSif57xuuEwyalrGg51JK\ncXrQJ5iYkp4c9mi2A2QpSZIcJRWNlo+mwf7Lc2oND03TCMfJgqD9+LCHLgRpkmM7Jnle0l6vUZu0\nIW3HRErF+kYNz7cRhmA8itGF4Bc/f0Wt7qw0S72APrGeCKOUjfU6D+6vU69Xovf5XvkXT49Q8hrB\noi5Is4I0yen2Q9bbVfWt24+murAL5MXMQuACtmWwe9yjXfemf2/WXCzT4PBswPZavWrhGfrC+9Yb\nPk/3z2j4zo00PL5vE8c5G40A36k0anlR0o8SNhoBSV6QZDl31htkRcmj7XVKJfnVq2NqroXvWAzj\ntMob1AVfHJyyXvPfKEuxlJKG5y4FYN8Ef7N7QDeMiIuc8zAisG16cUzTdfFME8vQp4akUN2QA9vC\nnrRGt4JgIfomznMen59jCEGYZYzSFNes2reuUVlwWLrOaRhSyJK6ZXOexLScqkKmaRqBtWj1kcqq\njeiZJr/V3kRoGllZ4pom9+uVnqmQki0vAK2ylxCaWBLZn8bRVFjvGiaWbnB3rYUj9ZU3X0c36KUx\nJ8mYprVYwTtJxjhCv1EkTKkkgzzmvt8mMG2UUjwLz1m3fVy9OmaejE+xNJ227U9jj8ZFim9YOHql\nnaosPiQ18+a6GanUdCLV023+qvdk6q/mGjaevnj+zTupn2V94jLF06vPm9dt5aqgkw+oGdX2zGRO\ntxjgCgdLmJRItq11fN17LbGRSiKRC9vSEQ7epDpW02toCHRhYAubTn7KqOjj6QH1wJ9eQ5WSnBfH\nBPr1LVyh6Xj6clX9m4KhuRhfU+v0mwSNUVXR0qz3ovmvg+96w71LZElGluTXTgx+XbzJwaZpGmUh\ncVwLyzIY9qog6iwtGPVj1rYuTCDheL9Le6OGEBpnxwOCwEGbVIM838Z2TM5OhpydDlnfqGPO3ag9\n38b1qhteFKYoqfB8m89/vc9Pfu8evu9wdNRHKYU9aatJqfjVr/YIo4xWy+f4uE+WldQCByEqLdnl\nala76ZNlBaahkxclur781G6aOp5nY06mCg1dXyJbAIcnAyzTwDR0nu2e47vVNN5l0fzFz5ahk6Y5\nx90Rx50RG81g4TXrDf/GgunL+/DZUQfL1NlsBOhCoKRiEKfstOo0fZdXZz2UAl3XyPKSduARTCYZ\ndzt91ms++50BgWMttUmvgmOab/S0HmU5Lzo9LF1H06DlORUxsiyklCggsKvPnydbwzRF1wSv+n1a\n7syIMy0K9AnhNXUdb7I+G75PzbbxLQtrUr26WJ5E0U1iHMNgkKbERY5UCvdS/uGvzk+4V2uQS8lo\nLnexZtl0kqpyZgjBV4Mu665XkTpN4zgck0xI2jCr1vv/3n/KXb8xNUi1dJ2tVo0oykjLYmVmomuY\nS2QLqqqVo1896ToPQwjW56pahhCsWTMiEpUZaPCBv5i4MCwSxmWKp1s8j845S8fsJz3aVjBpN46J\nygxPtzhJh3i6haLSzM17prm6NSVWcZmzZtXZcpoE+uK5lMqc3eSUlll5hfm6MyVbl6FrOpYweR7v\n4+sunj7RjSJx9Yp09YsRhco5K7pLMT5KKeIy5ig7pqQkkSmePtvOg6LPqBhOtVv9ogcobGEzLkc4\nustIDtmub9Afj9C1asDjKrIVlUNGsocrfjjhyfMoVYgkQbwDMf63BU3+CliDyw8lWjDNVPw+E673\nLcV3jCzNSa5wQc+zkix9c03Mm0JKRbwivPkyiqKk0Z71ue892qxc012LzVvNhdfVW/609Xf73trU\n3DRJcg53q9DW7dtN8rxgf7fD6fGALK1aNvMtQ8OsxO/HR30efrg5DZne2mpMxfNQabsM08CdVL40\nIYjCjOPjAUop9g+6lFJydNxnMIo5Ohmg64K1dsB5d8Svv9gnSa8Wgzdq1+c63t1pTT/70b31K7Vb\nF7Atk58/OaDuO3x4pxKhdocRp70Ruyc9ylIu+Gm9Ce5uNHh2eE6YVhcRyzSqibyJXs4xdZq+y8Ot\nNXZaNR4fnnLUq9ou99dbtHyXj3bWb1zhGqcZ56M30yx6lsnHm+vUHJsP1trIiXP73WaDUik2Ap+z\nccgoXdwGF21LzzSn4nmA4/F42vKDqsJ0YWq6NxwsvPazs1PCLON4POZhs03Dcfl0bZ3btfq0yjWP\nH7U30DSNk3BcVYrShF4S008TtryAUikGWcKnrUXhc1zmqImIfZgl9NKYn7S3qU3ajKWSU6+teff5\nVRjmyZIH2JrtERYZu2Gfs2TmVK+U4jgeTX+e1+E9Hp0SFxlfjk4XCLIjTDbt5XiyCw8tQ+jcdds0\nTJe2FXAQ9+jnETXDpW64lEry88FLBnlMPw+nHlxSKZ7FlU7ms1EVgPxJcItNuzG1Z6h0ZRNbE2Fy\n392il4+nbd3n0SH9bEQx0Zcdp51pm/A069LPxyQyo1QldT2YEiupJE2jRtNs0FxRTcpUzlCOuW3d\nIpEpa2Z7+r4XyQtSmeEKt6rsZye4wqM2Wc6WdQtbODT1Fq/CF/TL12vtPL1O21jUpKUypJMvB0O/\nx7uB0n4EV2j+fgh4X+F6x0jClDzJcS4x3CRKOdvtsHX/zc0vT/Y65GmB69u8fHyI69tXhjz7vs2g\nFzLojJdsHy5j/8U5rm8v5CwCfP7zVwhdYJo6w17E0V6XUpbE45RGa1GIaBg6aVJNy7mGUxX5AAAg\nAElEQVSeRXu9RmstQBMalmVwsN/l+KhPveGi6wJ9slzPs8nTHE2A69pV9eKS0H1tLcAwdExTJ4oy\nbNtAN3Rcx0QpOO+M6PZD9vY6WIa+4EYfhim3tpskacFf//0LpJQ0G2+vn8nygmd75yillny/pFRY\nps697TaGEBx3hzQDF02Dv3u8x+2NBoZRien9G7Smfd/mv/7Dc26tVdtDF4Km71JzZ8fURt2f6s2e\nn3SpezaWUVXktho16t7btxs0DTTgVafPWvB22ywpSrZqVWtwnKYEtl35NOmL05T+xMcrsG3cSbtO\n0zSajrOgATOE4Gg0olSKdc/DnbOX2PR9LF2nZtkLy75coesmMWdRiDepeG14PoFl83cnh9wJ6th6\nlb14YfZ5uTrVst3p9KIldI7jMQ/r7WrCL0s4CAcITbDVrBFH2dR367+dvAQ0fMMkkxJDCIZ5yu64\nz7qzWDG1hU7NtBnkKTXDmqtY5QSGxTBPeT7uTN3l1ywPUzcIDGs6KXnx3feiHo5uVpYXSiI0jXU7\noG64VbtZq7RtoyLmA38dT7fQJ23GXhHxib9DiQQNNibxPpqmsT75ed2qTfy+YgZFRCYLHGEyKiI+\nG7/ijrM+ifQ5QkfjPB/QMmu8jI/JZYEpDBzdJjA8nEm1rGEE+IZLQw8Iy5hIJvSLIQJBieQ4P6eu\nBxxlpwS6j0DjIDumbtToF/2pq3x9rvp1kO2zY+1QN+p0inNCGaJrOpEMkRPyepjvsWFuYwqLdq1O\nEWsYkwpXrjIGZQdX+OynT6npVweYG5qFK2pvVB1+1yhUhKRAvEbsLzTrB1XdApYrWyvwvsL1jwh5\nVlAUy5Ngjmdz70e33mqZW3fXaE2mBu99vP1aPZnlmGzdbV/5/zTJOdrrcO/R5tSeAaoQ6eePj7j3\naJNGuyJN/e4IP7DZ2GpMXegvwzB0LkQcFyRgPEwYjxMGgwg/qMTsWVrQ647J8wIhNHRTJ03LpexB\nqIi2EBqOY/LlkyOE0Dg87tOou1QRI7C5UefRg03W12ogBPHE4f7gqMdonPL3v9xlMIz4n376gLVW\nQBilZJdsGr746nhagUuznOe71UTa0emA/nA2xm+ZBh/d31iZ9XfcGU7tInZP+tP4HMcy+dc//YiN\nVg3HMths3bz10PIdzgbj6VCBO9dqPRuE0+rWQWdAO/CWwqzfJiT6AqauEzg299feTIAqleLXRyeU\nUnI6Gk89r7br1c3PnZijPj0757OTk6X3d8KIvTlBPUAvjqe5iXcbDdquO9UjXcZFa/FwPCLK8yqQ\nOgynE4ptxyUwbf6vL3/Nr85PUEoxzjJ+d2ObXpqwO+ozzjNs3VjQauWyJClmlelOEpFLyYeN9pSU\n1UybpuWy49X4ojMLXn456iEQNC2HsMgZ5tVxsuH4HCUjXo0Xq2CapqFrgtteffodNU1jzXIra4ks\nYt1ZbFcrpTjPwmluYS5L/p+TL1m3fFzdpJSSv+69mr5nN+6SlNX3GRQxa9YspucsGyFRaKoyMTU1\nnf14daVOaBpRmeLpNg3DI5UFimqI4I5TDdfoCB66O+w4a9x3tyiV5PfqH/Ghf5vTfDnXdFCMOUrP\nUChqhs+a2WTTbNMp+rjCxtIq09m22SRRKef/P3tv9mtLmp51/uKLOWLNe+3p7H2GHE5lVmXZVV02\nNGDsgm6EulH3BcLc+sKIvwBuEJLNFbbkC1tCQlxTF21LFqhpI0CysNrYBmNsp7PyZOaZpz2ueYo5\n4vv6ItaOvdcezlSZWWl3PVJKedaOtVZMK+KJ933e58lGGMuQ6YbeIC0y+ulgpaq+Y+1Wflsdo0vL\naOFoZTVrKqekKuWG/fbZo8Bh9oxYlb9/AwOT8ve1a99+6VTfD9vsVKkcxeXV/XnxyZe8LgqlXi0z\n9P8P+FGF63OG5ZjYro3QBXv3DtENHcs5zbL7QfGyz3gVdi+EwLaNqkrWP5yQ5wXzcYDt2RSFpNZw\nEEJwfDCl2fbxfBu/5qCU4tG9Izrd0ydITWiYlrGiqXJcC9s2WevWiKKU2Szi4b1jJqOAVruG61k4\njkW97vDhnz6lVrcr/db9+0eEYUK7XT79t1s+43HA9d01HKfU8riuxSKIyYuCet1lZ2khMZ4E9Psz\n3r61wa3rXXzP5vnBmGbDJUlzdCFW3OLXO2XEy2Fvim0Z1b9rno3rnKtkKXXh/b3xAl0IOs2y4tSu\ne0RJVmUfvskx930bWzd4dDgkXsbVnBCqh0dD5lFCp1aamApNYxJEBElGyy8rmoWU/N9/9Am3NtpX\nmpa+Cl7HpBPKbV2vlVmV4yDCtQySvCQrQtOYxgn3+wO2m40Lwvg7xz0WacI7a2urFZ9lK/FFuqYo\ny3g8mbC2zFQ8DkofLFTpvO6bFp8M+2z5NVJZcL3e4Ea9JJO9KGDd83k6G7O3mPFWs12ZhJ5gkaVM\nkpjjMGDN8ZilMcM4pG279KIFljDQNJhnKXXTptPwyZPyoatmlhmXHcfl6WLKrtestuXteoe2vVqF\n/v7kiDXLu7C9R/GCuMjY8Ro0zwjc+8mC52GZj+jqZkXYtt1mlYeoUGQyZ5pFWEInU5Km4fDZ4rjM\nOxRm5a8VFRmebhEVKVGR0rI8NqzTik2hJMfpFE+3eB4PCIqYluFjCp2a4XA32K9sHiSKTBWM8jkN\nw2Ocz4lliqeXFe2O0Vg51icC/i27i0Ixyecsioi64dMy6uSqwNEtDM3AETa2sPB1j9pSZK9rOobQ\nmRYzLM2qBPknAn9NK6tWhmZiCRtTmDSNFrYo92emMsbZAM+zaOQbZ9zlFZNiRO0NRPGzvEeuUizx\n4m7D5wldsy/YSADkao5BHf1LFdunSLWH0JbtXTmgkHsIsfaS9705vsoVrh8RrjeAUgolVSUaPwtN\naJW+qbFWr8jWF435JCQOEjrd+gv3mZRqqY86vamkSU695fEHv32H9799g8ay9bb3ZMDb720t2446\ncZRimgaua2GY5RRWGCbkucTzyhMsDBPMpct6nhfoQtBoevhLx/t608WyjJXKWmetzDg8IWxrazXa\nZ1qXRSFZBDGNulstk2UFmtBo1N2VCcckycml4vpOm9k8wrYN2k0Pc9mKPEuWnu4NAQ3HNitbhpMK\nnaZpTOcRtmVUVYTnR5OSjHp2OTU4iyhkweFgRqt+agVRc8955hSSg8EU1zZfSGKeHI0wDZ1W0yMM\nU2quzVrDw7MtpFTMwqSc6HMsfMdmFiZkhaRVc/n0+TFhmrPeKPdbp+bR9r+8i/wkjFZc3Ls1n4eD\nIUmeYxl6NQVo6QaebeGZJvMkob8IaDgOG7VSO5UvJwVPoGnalWSrkJJn0wnrvk/njODeNUzcZYRQ\nzbKxdJ0tv6wKnYjjDSHKVq3tIDStNFqNAza8Gq5hkktJmGVYuo6jGzQsh6ZlI7TSlX7Tqy23SWLr\nOklR0HHK341maQznQSW2N3UdRzdpWc4FMgfwcD7EMywSma8QsrOomzaDNLiQq+gbFos8ZcupM84i\nDqIpDdPhv4+ecsNtV/svU5K24eEZFp5ukcmCa24LX7erqUagCsRumh6+YfOHk4ds2I1zMT4ZljBw\ndYu2WeMomZDKDE+3SWVOw/SIihhHt5aasHK/eLqNK6yVyt0JclWgkIzyGY6wOUj7bNtd/DOi90Qm\nJCrlUfR0Obl4sdJfIGkbTQb5YOlib/AgfoAt7EuXPwuN0hRUdyQkq+dgTW8wy0cYywrbZVgUowvE\nytK8L5VsnYVSikH2ezhiC6EZFCQIzXxpq/HzhKYZFdkCkGqA0Bpo2udjj6KpPcBa0XV9lQnXj1qK\nb4BgEnL0pHfp3+Igob83/JLXCGzXWonhuQxpkvHswcVWTppkaMD/9rN/uaoyAaBg2JvSOyxL//2j\nKUUhGY8WlcN8ME8qEiSlYtCbV0ap/eMZi6VjfVmVMitrCCkVYZgSBgm2bVY2E1Iq9vZGPHhwjJSS\nwWDOkyc9umulw/wJ9vfHJEnGcLSgKCSjccAiSGg1PW4vjVSzvCiJ8bmn6M8elOaIhqFjmfpyIlG/\n4MF1PJiRpBlJmvN4b0jdd9jqLg1hpwH3n/VpeC5N38HQNeI0Z7RsQ2Z5wWReCqiHsxBNe3nF6OZm\nG/9MVc13TnMPpVJEaYahC7pL/daT3ogky5lHCd/95ju8v1O2cYSmsdW6KJj+IrFIUhRwNF/QX5TH\nqeG43Oq0ibOy1dT1S4uRSRRxNJ/jWxZhlldC+u16nY736hdiXQjW3CXJOXOMXfNqYjtPE/7ocL/y\n9IrznM9GA240mvyv199hnpbrMogCFllKlGdEy3biiUbqs/GAT0Z9AEZJyIPZkP3gtBU6SWMG8Wk7\n+iCco5RaIVtPFuNqHXa9JpM04uH8xdeNd2pr5FLyYL4aJn7L75R2LXlC3bD5s/Ee150WkTxtg9b0\nMpJHW+rTjpMZhZKYQl8hcKMs4GHYr/49SOYMknLbjpIJGmXLsJxkXFbQlCReflfdKMlFrHIsUV5L\nCiXpp6Vh7FE6YpoHy/edevAdJANyJblmr2MJk5tO6aeVyJThsvXo6S4towFKQ2iCoAjpp0NSmVWf\ns58ckMiE5/EetijXr2N08M7E7GTLdY2KkIPkVOAuNIGn+3TtU/PSUXZMtjQY1TUTjasrrcUljvlf\nZnvxrC/XyXc3jA8Qy3aoqTXQPyei86bQxQ2EeH0d81Uofbf+/AR//6jC9QawXIt653I9jia0Mnj6\nC7R+uAy6IdAN/YXsXjd0Wmvleg+Op+w97uN4Fu1u/dJqnVe3sR0LjTJH0TD1Ugy81azCoR/dO8Lz\nTOTS0qFed3j+dIBfc1jMY1zPxrKNyo9LCEGWFfy3P7iHaRrYjsl8FpetwqXdg5SS7e0WQggWi6Rq\nWX722QFrnVpFztotnw8/eooudPqDOc2GUxHG8TREF6KqvJ1A0zTWlq1K1zHJc4lhCJxLXN51Q8c2\nSzLoOiaTeUSzVt5Qap7N7maLg0FpH+G7NvMwpj9eMJyGtOouD/cHeI5Np+HR8J2XXnxP/u77Ngf9\nKULTeHA4rAhWzbXxbKuKWNruNFhECevNso13UonrzQJqZ4hbkuVMwgjP/uK85Dzb4slwzPV2k/3p\nnIZtMwgCmq5TZi4uW5t1xy49tITANgzWfI9CSp6MT1uCJzjfKjzBNIkZRWVgtW0YBFm6YjUBJZGa\nJnE12XiCrJCsuS7OUnRviDKmJy0KciU5CudIBYks2K03CLKUQkmcM9YSW16N9aX31pPFhE3XZ9ur\nVyRvp9PEKU6jfixdX4kKuj8bsOnUKgJUtlY1tt36Sz24MlXQTxaVaP4smqaLq1v0kjmLIqFQio7l\nERUZn8yP2PXa1bLPozGJzGmZHtOlGaqGhreM9NE1QVSkHCZTbnhr1USlZ9j00tIuwhZltcfVbXJV\nEBUJGhqGprNhN5lkC4I8wtVtMlXg6hZ1w8MRFpNswdP4GIXCFTZNo0auCvRLDFj34iNaZwxS18w2\nlrAwNB1b2AyyIfNiQcOo0zKaGJrBprVBL+sxzxfomo5EYgubQhX08mMm+ZhUJUzyEU2jVYVUw2qF\nRNcMTK1s1VrCRtME03zIYfqYumijcfK7K32/TPHmIvQ3yVk8+95Q7mGL9srrhuaiyAiKJ2jo6JpD\nWDxaZib+Bai3aNYFIf1XucL1I8L1OUMI8YWRrTwrePLZAe2NBv2DMQeP+rTXV8nSVSdbmmRkaVG1\nEg3TYG2j+UIBvhDlVKHtmKRpTjCP8c5NSNqOwXgUYpo6rmejCY12p0YUpghd4Hpl3E6SZNz77JDu\nep2ikLTbPrW6wycf7/Ho4THXb3YxDJ3DwzHTSUi94VYTio26i+taldu8rouqjfjs+Yida22aDRfH\nsZCFpNef0Wp6ZSD1svp2/9Exa+0a+0cTdF1gmQZ5VmYrti+ZXiwKiedY1ft1XWBbRjkgcAaObdJu\neGUgt2PRafi0G2ULc7PTeGUrht5kQbpsv9VqDs8PxzR9t8pOBLi318e1TA5GM+4fDNhZa1JIueKZ\nNVqE5Y3zDLlSlEkJb2Ji+qoQmoZnWfQXAXXHpu6UZEihLujIFmnKLEloLEOnTV2/QKpOXvdNkzDL\nsA2DXEqmcUzdsiuHelMInk2ndFwPqRR3RwO6nr+MtpEXPLgsXWcURwR5Vpmh1k0LzzBxdIOu49Gw\nbeqWzafjPjfqrbKik2eV19YJ4jznD4+e8/G4x7vNNRzDJJcFpqOTxmWV1xAC69zEo6XpuMZqFa6c\njly9cUilLtyATaFXZOtZOMHXyyBzpRQfTvZpmS43/A5du8aatZyAVIpn0ZgbZwjXUTyjYTjUTYdn\n0YhE5hzFU9btOsfJlFxJ6obLW25ZjVDAcTKjsbSNiIoUR5gMsjl1w+U4mWALE1e3iWRSkbB5EdE2\na7j66nXG0S1MoVPXPYb5jFwVjPMZk3yBo9uVxYTQBC2zjrEkRAfJMTXdryKOdE3gC49IxoQyZJCN\naBlNxHLa0tFdEplgC5t5PqOXHbNrX6em16jpDRIZY2gG/aysetvCuUC4jrJnOJpbkTJbc/BEg2fp\np5jCRiAY5UcEakJDf3Nt0qR4iqk5iDewPdA0rSJb0/wOQpnoy1amIkeRYYo2miYQl0QFvQxxcQeh\ntf5cONr/iHD9APhh77ivEoQuaHZLUXeeFmxcb6OfIwBXnWxxmJJnRUWwdENcGmPz2fef0VlvXLjQ\nF4UkDBJMQ1/RX5mWAUphGDrOGfJm2QZFIQmCMjC5yCWD/gzT0FksEjY2m1UboCgUN292S72J0HBc\nE8MwStH+8WypB5M8etRjc7NZkSClFLs7HYTQKApFHGdYpoFtGzx5PqS7dir2bdRddCHoDWZ0Wj66\nLjAM/YLFwwke7w2peyW56w3nWKaOfW4SUCm1ogkDqm24CtlS13YeutD4/qNjXNuk3fSI4wxn+X1Z\nXk5y2pbJLIq5vt5iZ600Y3SskmzNopg4zYjSnM1z7URdiFciW58d9mm4r+aGfxkMXVB3bLzleqdF\nwSJJqZ2rrJU6KuuVnuYzWeYcumapq4qyjHmWMotjTF3gmRadZVsxynOGYciGXwryz5OtEzydTbnV\nbK1oiX7v4Bm7tQaGrle6pzW71Et9POrhGSaWrle2DmlREBc5txotfqyzhdA05lnKw9mIuu8ilt08\nfWm98OH4iGteeVwOohmTNKLzgpifVBb8Xv8Ju17jhVUvd1klU8Asj/D0Uxf5g3iGv7SL6Fo+D4I+\nhiYqcf26VUNoAh3BQTwhUznbToujeErL9IllRqEknmFjC6PKVFRKkaocR1jES+1W26xVLcZCFTyL\n+1xz1miZpw8M42yxQrwehvvUdZeO2QBNq0hWw1i1yji7/aU56ur5NMrHCDQ6ZpuGUVYJ4yLhMDtk\ny9pkUSzwdX9JuubEKmJezKmLOrqm4wgPS9j080Maepua76xcQ+v6agWsrEqW1b1YBksRvkPb2PyB\nqkauaL0R2ToPW1snUf1SJK/5CM3EEKcVrTfRcOna+ueybl8G/sIRLiklv/iLv8i/+lf/in/37/4d\nP/ETP0GrdTpC/lu/9Vv803/6T/k3/+bf8NFHH/Hd734XTdP4u3/37/Lv//2/59/+23/LH/3RH/G3\n/tbfeul3/bB33FcNJxcix7MQl9wYrzrZLNvEckz2HvUrs9M8L5CFQuiCPCvI84Lnj4YMelNaHX+l\nkqXrglF/hmUbOK5FGCTMZxF+zcHz7RWy1T+eMp9FdLqlXktJhW7oaELjyeMeX/9glzwrmE5CPN+h\n2XBA05hMQtptvxTlG3ql4ZJS0mx6OI6BlApNK/VX9+4fEQQJR/0ZrYbHfBExmYVVxe+4NyUIS11X\nfzAnyyQba/WVzMKr0Gl61VSiVAr7jKD+BHef9mjXvZfmL4ZxyuFwhm2ZHAxmtC8xXTV0nesbLSaL\niDDLWARJ5aV15+lRmU1olELvE4uI/WGpi7FNg88O+hxN5qw3fFzr9VzioSSPdcd+rfifEwwWAbZh\nIDSNJM+JlhUptLKF55rGyvqEWcbTS1qIJ5glSSXAN3W9EtHrQuBbFnXLpu26K+L6k2U3/NNWfyEl\nGhd1NBuef+G1s/mKuhAUSvFoNmbNKT2/GpbNOIl5NB2z7deJipwgS3AMk7ppsRfO2PZqTNOUD7Y2\nCcOUTyY9bFFOWS6ypBLoR8upzaZ19bSYrgnatoujnx7Lu7M+dcOuqmWOfrpfZ3mMr5ei/pNKXKFk\nRa5MoeMIg0WRcC/o4eombcurvksBX6ttMs0jNu0GiczQNR19+V6Ap9GAuuFgCL0S2p+P8dE1gaNb\nNAwfqRRH8ZiGWX7POJ9TN06PeceoV/5bhSzKaqgwsIVFLFNSlVU6sOoYC5MH0RM6ZuvMd+oMszGh\njGgZ5YNIrGJ8vYYtrHJiUTMxhEHTaKKAul5jIscUqmBWTAiLBbvWWxjCuPIauiim7KUPaOgdYhlg\nCx9H+DjCxRIOErkU3l/87UmVMyt6OF+CK33Z/myiyNG1l8cgvepnfhFQKv3cq2ZfZcL1RnT8t3/7\nt0nTlN/4jd/gH/2jf8Qv//IvV3+L45hf+7Vf41//63/Nr//6r7NYLPid3/kdkiRBKcX3vvc9vve9\n7/FLv/RLb7YlX0EcPemRZxcFk181aJpGd6uJLCT9wwnTUcBiVgotozAlmMfcur3J1k5nhUCdoNn2\nqS/bb0Uh6R+VN/zZNKyE8lIqoiij1SpJnSwkjx70sCyDnd0Of+WvfY04znj+fIDtmLRaHusbTQb9\nOULTiOOMZOnGXxQKyzJxPRshBEfHMxZBwmQSUhSS9762zXF/ShJlzBcxg+ECWZQmpJZlcG27zdZm\neWF2bJP+aE6a5ewdXu0AfoJFmHB/ORhR951LQ7Hfv7W58np/vFgJqT4Jj3Ztk2vdJqNZQPOSGKGz\nuLbWYK3h01pqxfYGU97ZXmOjVcMxDbwzWrOtVr0yQ/Vtk7fW22gaPO69fPvOI80LerPFyxe8BCfR\nL1Bu84mvmgbomsafHR4RpKcXQM80ud0tWy9JniOV4vtHpS+WVIpREPKDIkhT/uvBHpMkZn8+Yxwv\nBxiikDuDHlmx+nvdqTXQhWAQh6RFgSEEG45PlGf0woBpmrDmeNxulevdiwJMXScuMhJZUCiJrgne\nb50Kgh1h4CwJu65pjJbrsOXW6cUBaVFUvlyXoWk6K4L2d2qdlbbmcTznMJoxzWKOojkarAjzU1mQ\nyFM/Js+wKJTkJ5rX6ZgeD4NSHG8KnQ27zrNwxCJPkCgSmXN/cYR1JuvwpMJ1FpnMVxzzx9mCsEgw\nhU5QRDyJj5nl5fG8Zpf7TilFXCQoSlE8wH7axxYWdjXFeLWP3DvOzer/C1VgaSa3nOvs2qXPYVRE\nDNIhlmaSyhRdO821jIoIRzg8T5/REV3qepOW0WbXvsXT5AHJMqg6VxmJPBWhKyVxhc+2+TYKRUGO\nJWxs4VSVo2nRJz0nXC8/K0VDYH/JEUCW6LzBg1dOLB98QWt02fc9frlPl7oP6vWSL76qeCPC9cd/\n/Mf89E//NADf/va3+fjjj6u/WZbFr//6r+O65Q0jz3Ns2+azzz4jiiJ+/ud/np/7uZ/jww8//BxW\n/6uBWstH6F++2Z0sJFJeNA19EVzfZjGLuPvRczzPqkT09aZLu1vHMAWb1y43vGy2S/F2EmeMhwve\n++YuAEqqKrIoWMT0j6eMRwFhmCClotF0OdgbkS1JmeOY3Ly5TqPhMpuWF6ibt7o0mi6zWcRgUBpd\nJknG5maDzvJ7339vm51rbTzPpt8vl3nv9jU++PoOO9stvvXN6+xca1OvuWxtNKnXnCqSp9X02Nlq\noetiaZ56EWmWM18amKZpTqfpk2Y5zw4uj/n45OHRyr+FVoZMh1GKUoqDwYx5mJQtCF2QZsWKdcJl\n0DSNTsOrphUbnl3psSzTwLFMZmFMmuVVVuTecMrbm2tstOqs1X3e3rza9PYq2KbBjdc0Oj3Bes2v\nqi6eZdHyyv1r6jptz+VGs0X/ChI1CELiLOObmxss0pQ4z1lkWTXBdxZxnjMIQ+70ehf+LpWikBKp\nFNMkxrcs/vruDdqOy6Zfo2mXRNc3LdY9j3xpEnocLOhHAYMopJCSxtJGYm8xQ6IIshTftFhzSm+s\n2lL8fqveouv4bLg1jsI5nn6xTfN2o0MvCfkPe/dQSnK4jOcRmsbX6l3MJcE7i6S4Oo7KOGcpsenU\n2XYb+LrJLb9DVGQE+SmxzVTBk/D03A3zlEke88n8kPtBny37NCNQQ+Oj+XPWLL+0fBAWe8moemgA\n8M9Vs8Ii4X5wxKI4vWGeELSDuJy4/Kn2NypbiBOctBz34z6DdEpcJLzt7mAKg72kfMhxdWfFEuIs\nNE0jKkoH+l42YD85YlbMeRw/pZAFru6yZq5RqIJBNuBh+IhncWn8up8+J1MZ6+YGh+kBn4QfUdPL\ntu26uVXNIBYqr6YTw2LBKO+jawau7mFoJnW9fWG9OsY2tvCY5Meo5fmllGSUPWdc7FfVLalypHq9\n6/ZViOQxUq3GxS2KxwCkcrJiAPsqkMTofHEeWechxHtoL/UFe6sMpv4LgDdqyi4WC2q1U7au6zp5\nnle6m263fMr73ve+RxiG/NRP/RT37t3jH/yDf8Df//t/nydPnvAP/+E/5D/+x/+I8ZIbULvtXRAq\nf9Wwvr6qmSkKyWB/xOaNH3z89eBJn42dzqVRPr39MYap0zn3/efX57L1bTRcbMek0fLIswJNK3MR\nZ0q99P0Au9c7RGHKdBLyzu1N/vN/+j5/7WfeZ329zq231vn9//cz1tZrbF9rsX2txR/+13sEi4Tb\n751eqJRSRGFCrzflgw92uXNnjzjOaDQcmk2XZ8+G3L69ieOUk4KffLrP1laL7e0mrmuhlOLp8yHN\n6x10Q1Cr2zj21e20dcrtCsIEw9Av5CNGcUoUZ3RaPuvrdfaPJ2x1G3Q6tSpX8RV0f4UAACAASURB\nVAT98YL33t1kfWkAO5lHvH2ry3gWMR4t2Nho8J2NVaPEV9mv55c9WecVTEpjVmfZqjNcg3bNZRbG\n9KYLdtdaOMtte9afsN2uX9CafVEIkrQkLu6Zi6gjaCkP2zRWX2d1n1hRjCE0bl67nDAmeU4ty/j6\nzc3yu9KUQRAQZjnrvsfd/oB31jrsBQve3V2/ch1nScIkjlhv1ums+RRK8dHxIU3PReQ63WYNUdNZ\n98qL/NFiTsdbDR9/PB3TdhwmccxbW2uksiBDUVvmKq6v17k/GfL2dhenYWIKg02vRt2yy1bbKODt\ntS4bZ86RMEvpzQLeazcvDb0+jz8d7PNjne1qWRXAk/mQW+01DCGIwpyadFhfOv13VY23tXK/xHlK\noRS+ufTPy1N+fvOnq89+0D/mZ9/7S+yFI27Xty71D5PKZ0s2sc+QzXXqPJgd0NBcmsuW5bOgz9eb\n16vlngbHaKJAFzoLGfC19rWyDaYZrIv3X7rdAJl0yGSOt7ShCPMIO9GoWSY102edOkop/NTkIMzZ\nda8xL8b81PpfAmCUjuhIj3busl5b/a2FecDu5qk1hFI1FAqhCSbpgKZ5as4rleQgesyu9061vJdL\nPP1UB9tVP0YmE2y93B+D5DlJsWDH+/orbeuLEBcFlqgjzrTlGsVNbL3OIptgCx2hGaRyiobA0psv\n1HAleYwu6hh/TgO5T/A619ovE5p6XQoM/NIv/RLf+ta3+Dt/5+8A8DM/8zP87u/+bvV3KSW/8iu/\nwuPHj/nVX/1VXNclTVOklDhOecH92Z/9Wf7Fv/gXbG9vv/C7TioZf54gpWQ2XOA3PKSUL43ieRHm\nkxB/6fr+Klhfr9PrzV5aSp5NQkDRaPmMB3M0TWPUn7Gx06b2kmDn2SRcRnhoHB9NePe9i8cwzwrE\n0gRWSkWe5zy8d8zt97Yr8hiGKcPhnE7HZzBYYFkGhiFYW6uTJBm2XRL4x0/63Li+hhAa40lAzXeY\nTEK63TpCaKRpThRnLBalvYTnWcwXMRvd05vZ4fEUxzGoeQ6LMMG2jCsF868CKRUKxWgSstbymcwj\nHMsgSlKyQrK19vqu1CdYX69fed7PwphJEHFjvc2dZ0d8cKMMzw2TFM+2CJKUZ4MJt7e6GLpgHiX4\njvVCp/bPE0GSIpd6MCgrT0LTCNOUtJC0zhGuvJAYl7RrXwVJXto51JYC/GkSV5UspRRJUaxE9MTL\n9uV5q4hn8yl106JpOzybT2nZDi37dD2PwwVd1yMtikqIHxc5d4ZHWIbBO401PMMkyjNMIbgTD1iT\nDuM05pvtMhD+z0aHbLo1Ppv02A9n/J/Xv85hvOC616yyHR8vRrQtj9YLtF0vglKK/+vZH/N/bH+A\nY5hMsqgKsE5kzuNgwPv1LTJZ8HvD+6xZNW7XNnF1k98fPuCn1t699HNnecQij7nmtAmKBE9cPfBw\nFI85iIfc9ne4H+3TNmplVJAGb7vldWKYTjlMRnzN30VQpiXcDZ+Ryoxv1W9fuW0npOc89pNDUpny\nlnsTqWS1TCpTxvmYTask6PN8zlF6wKa1zYPoLtftm/i6j6evVk9Cr894HLJl7aIBoVyQqYy20WVW\njEo7iOX2T/MBnqhfaQeRq5RRtkfL2K4MUJWSDPMntPQdYjWlpm9c+t7PA/PiPr54i0ItUOQY2osJ\n118EvOj6+WWuw2V4oyvdd77znYpgffjhh3zta19b+fsv/MIvkCQJ//Jf/suqtfibv/mbldbr+PiY\nxWLB+vrVT6FfRSilyNOrS/4nEELQWm+QRAnR/GJP/3VQb3mXkq3ZOGAxvdimSZOcx58dvvRzTVOv\nPrfdrdNaq7G22bySbM0mIcGibB04noXrmtSb7gWy1e/NSJOMw4NxlW0YhSnjUUi96TE6Y146HMxp\nt3183+HGjTW2t1s0mx5pmjObRaRpqQ1569Y6ui54/GTAeByUT8NWGacCYFkGjbpDFGf0h4vSUDVM\nmS9OWx1bGw1cx+KoP6Xu23iuRRRnS7f5izjsz5gtYp4ejPj00RGjaUgYn7ZrhNCYLWI+fniIlIpO\n08OyDAqlSLNiZVmAw8GM7JKMzRdhMLuoW2h4DjfW24Rxii4Ew1nAYBZwOJ4zDSN820KgVRqluvvl\nhNPO4pjj2WIpOi8PzCdHPe72SpNOXYgVsnV/MCRMUx4MhyttKyh/Z+Po5b8b2zCo2zaFUjyfTYnz\nvGqhpLLg2XRStRpzKUmKnIeTER8PesT56e/4Rr1J2yknEm81WrRsp8qiHMUhQZ6hFOwHM+IiZ5rG\nHIULvtXdpmW5HAQzDsM5uiaYpDG3mm2+Pz7mG6310jNNKXa8Bt4yvPp/au8wSiPea3QrsgXwVq3D\n02DEYbSaJ3keUinuzno8C0+zCKM85b8MHvG3t97nT6Z7WMKoyBaALQze8rskRdnOMjSDH2/u4giD\nQkner2+tfMdhPGGcleefjmCel7+lUbYglhlBkVxYr34643F0jI5gki+o6S5bVhuBoG2UFadxNqdj\nNvh67QaGpvOni3toaFyzu1eSLYDDtM/jaI/RJfmLW9YGb7k32Yv3eRw/LatOySGZKo/xiSFp3aiz\na1/H1AxuOrdoLO0jTlCoAqUUlrBxhU8/O+Bpch9Xq9E2ym5FQ1/VRRmaiaGdsWBRsmonhsWUWM7p\nmDvE6vSYKiTlbKiB8QWHR9f12wjNwBQtLNH93MhWrk7bpj/Cq+ONKlxSSv7ZP/tn3Lt3D6UU//yf\n/3M++eQTwjDkm9/8Jn/v7/09fvInf7I6MX/u536O7373u/yTf/JPODg4QNM0/vE//sd85zvfeel3\n/bCZ6lnEQczwYMzO7RdX5X5Q5FlxaQtxZV3CBCHEheigZB6RFor6uaBppRTj/pwn945otH3e/WDn\n0s/tHUzobjUvTN5FyzBpTWjMpxFrSwa/mEcsZjFbO2Wr8OmjHtNxyK13N2k0V8nbdBJi2waLRYJl\n6QSLBMe1iOK08twyTZ1Bf85at4brWkRRRlFIWlcEZw+G82oKUaIIg5Rmw2VjvcHewRghSoPTduv0\nKfazB0d4nsWNax0KKS+1QSgKiRAacZJjWTpRnGEu25CLMKHm2URJhi60C1OPiyjBEKtmqouonLzb\nG0x5a/vFGquTJ7Sj0byMYdIFnfrp9j/rjxnOAt69tk6UZKRFwXa7zh/cfcpffvc6f/r4gL98+3pV\n1bqzd8wHu5sv/E4o3eIH84Bb3Yv6lPPYG0/ZaZ22TXIpKaTk+XhK1/dpeQ5RllWThHf7A25318qq\n6GLBmltGIZ3s//907z5/8+23sAyDQkoOFwt2G69WJVRKMQxD5mnKrdap3cPefEbTtktTUynZ9Gsc\nBXM8w6y8vM6iHwV0HY9cSu5PR3yjs86dUY8POhsM45CmZZNJSZTnaBq0bZdMFvyP/gEbrseNWotF\nlqLXDO4f9PhmZxOpFM+CKe81u8yzBB3BMC2TB2xhYIkyOuhEDD9PE4TQ8I2L1dcgTxmmITe8FrMs\nLjVlhs1BNKVjeQzTgKNoSlwU3KqtseOW1iuTLKJteUyyCKkkHcsnLjL2owmTLMDUTX68cXo9eB6N\n2LQbGJp+aWU0LBKCImHdWj0+j6NjTM1g1yk1QJ8tnrNm1glkgqHpJDLFEiZtw+fjxWM04LZ/nf14\nwE13k4ZxuU5HKskkn+MJB10TmOJy0pCpHB3BR4vvc9u7ja979LM+mgJL2EQyIlMpTb3JZ9Edts0d\nGkaTml5nkPcQlBE+1zc3eHj4DFs4xDJE18wX5ijOivKhraGvMS9KzVxd7yBVOXmpn7NTUEqSqAWO\nePMq+OcNpQpi+QRXf+flCwO5PELXNr5481T5fdA+uGBu+iJ8lStcb0S4vkz8sHfc6yLPCmRRYNom\nwTSk1np9sd+jj59z6xs7K5WtwcEY27NXiFSe5SymEa0zQdLdbo3B4OK02R//7l1+/K+8g5SqrG4t\n2zjzSUiWFbS7NZRUDI5nOJ5Jo+UTRymWZVTLFoVkPg3RdVFWqwZzHt07pt5yuX5rHUMXPH82YHOr\niec7TCch7aUFxXgUkOcF6xsNnj8bUKs5mKbB8fGUZsul06mjaaUgNo4zZrOIvb0R3/jGNXr9klQJ\noVE7N+X3Z99/zjtvreN59gWSKKXiv/y3e/zEt29S807fV0hZepJd4i7/Knh2OGZ3s/VSO4izCOOU\nJMtxbbPy1wKIlsMG7pl1OXvBCOMU2zJWSOHhaEaSFdRdi7XG6fl10p47aeO9Ca4ioOcxDiPa3sVq\naJhmZEVBfxFwo9O64AAPMApDmk7p9/VoNGKrVkMBvmUxDENMIUDTKmPUV0GQpQRpxob/4t/bf3r8\ngHfbHXZqDRzDYH8xo27ZNCyb/cWMTddnmpUTiQCHwZym7TCMQnIlcQ2DNcerNE1KKe6MjpllKX9t\n6wZw9W/wMJwvrR4MgjxlP5yxZnt4ulm1Kv90fMB1r0nXvrgdUikyWVwwYJ1mMaYmOIxn3Jv3+cn2\nLuMs4u1aF4HGQTxl1704EJHLgv1owobTQGhlaI1AI5YZ/jJg+mk05JrdwhQ6j8Iem3bzgnj+BHcX\n+9zyNrCXhKifTpFKsWm3qvXvZxNawufDxQM+qN3C1W0+DZ5ww9m6lHBFRcx+0sMRFnXdp2mW17pc\nFeQqxxE2qUxJZIqnu2hoFKqoSFkZiF1wlB1iC4eW3kIqybyY0bXWqxbkx4s/4Rv+t0vx/LkbdixD\nnDPRQMfpM9aNawhhEBRTBDqu/sPTPMVyQFAc0NY/QLvEqf9VUagA/asmTlcZ8AC0V9e7fZUJ118A\nb/+vFuIgZj4OyJKMT//b/deeIgR4+5vXL7QRW+t1/PrLtR1X/dje+vo2YukaL85oZtyaTa3hcrw/\n5vv/4zFRkPDobjl9N5uElUUDlFOReS5B0/jvv3cPv+7Q6nggJbNJyB//94coqajVXQbHU9I0J8+K\nUgjfdDk+mvD4UY9rOx1Go4BCSubziOPj6cq6O0u7iHp9acegwLL0angiy3Lu3jtkPAn51o9dJ0lz\nRuOAJMnYOxhXrTshNP7qX3qHz+6f5keOl23Yq8hWf7Qgu8Ti4+xzyY3tdkW2BpNFRZquQprlPDse\nYy+nDM8iywvyZfvvYOmrdRb7oxkaGkmWl5mR8xDXNrm12WYSxDw+Pm2JnmihXkS25BXPVyevnydb\nSZ4zvGTC8DKyBeBZJpMo5lqjTpoXJPnFFnzHK6tISZ7zdqeDZ1n4loVchsI7pskguHwMXJ7J3zsL\n37TY8H3maUI/vHqE/G/feodNv0ahJFlR8FHvEHdJYHZqpQFnLiXDOKQXBoyTMvZGCOg6HqjV/atp\nGqM4pB8tVl47gVKKdHl8t706jm4QF2WL8muNLmu2hykEn0zL6byvNzZ4MB8ySSPm2WrbTmgaszy+\nMKHZNMvKz5rl879vf52uXUPXNASlget5siWVYpwGPAoH3PTXcHWTJ+GQSRYSFCk14zSGasOqYyyr\nC297G/i6TS6L6nzJVUGwnFL8mn8NW5QxXw/DQ9atZkW2oEw8cLXS4uV/bn2DmuGhazrfrL1zZXXL\nFhae7uCK04qkVJKoiAiKsu1cKElQBHwW3ieSMaYwK3uH0qTUwNU8HoT3OU6PiVVMx1xDKslhuk8s\nIzbsa5fqw5RSzIvVNqZUkumyqhWrkHFxTKFeLjX5oiAwaOnvE3NMql7fEiaRB0iVoms+hXoza5gv\nDJoJ3Phhr8Xnhh85zX8OmPZnhPMI27VIopT2RhPd0Nl5d+tzM4wTuriQdyh0wbP7R3Q2mys5fJft\nM9M2+PD377Ox214hc0IIdEMQRylbO22UUrz13jaapuHXHTQ0oiglChLms5iNrSamadDdbDA8nuP4\nJoZusHmtRbPl49ccbNsgTQvyLCdLCz69c0CW5RwdTnBdm97RFM+12NhqsrXdAlVWVkyzNDs9yQVs\nNNyyjalBrVZG/YyXIdVbmy3yoihF8q4FGjzfG+P7FkdHM1zHLAmaKvdJnhcsFjFSKXqDOXXfvlQb\nVxQFtnXR5PRPPnmOZV7uTG9dYop6FrouaDe8S01FbcuoXs8KiWubK8dwrV4aFz49HqO0UpOVF4rR\nIsTQBQ23bJm9yLD0zt4xG43yCfzTg371mScIkpSD8Yy27/KgN6Tpnvo/Samq+KBXgVSKtudiGjpB\nmpZ6u0uqXOMwIisKPOt0f6ZFwTxNabsubfdyQrc/n1MoVbUqn04nNO3Tm/EiSbk7HNB23EstOL4/\n6GFoGoM4xNYNhklUmpdaNsfhgkkS0XU83GXUj2MYuIZJWhSYus6HgyNu1le1P5tejd1aE8cw6YUL\nHkcTHKnzZD7BNUz+bHyIp5sUSmLpBnGRkyuJs5zaE5qgs3S1N4Rg12uSK4WhiQvTgWGR4urmBVK9\nF42RKOqmgwJimdM0Lz6gKaU4iCbEMmfLblQ2Dl2rhq4JaobNcTIjlwWGJrD1i1O/j8M++/GQTbvF\nk7BHpgoahre0a0j4/dEnvO1u4ZyL8xlkU46SIfejPa5Za2Tk7Md9WubV1SFN06gbPp7uYi8d5iMZ\nE6uErlm2vgsKJJJr1haO7pCrnGE+oq7XKFTBNJ8yLabU9QYZKfbSPytdkrK60cQ/U6EaaUeQlk7y\nmqbh6+eqFZrCFXV0zcATdXKVY2o2+g8p9kbXHISmo6FjavU3uOcoBGXVMpF7mOL1bWU+DyiVgrqD\npp2TP2ivN9z0F8749EcosX/vAFlI/JZPo1NDFpI0vrra8Trd2zTJePLp/kuX+9q3br7SD8wwdN77\n9o2KZBS5JDwjKq8I25LknCDPC5I4q0KloawcOY7Fzs01NARBkBAGCc2WRxjEpYh8rYYQgk63xgc/\ntsudj55z49Y67Y7P5nYTpZX7QxaSjc0mzabHaBQwHC7K70wyhsMFhqHTaLiVoWi77bO50cS2DY57\ns8poczhc0Gq6hGGK71kc9Wfcf9xDKbBMndkiJogSup0aO5vNK61GGjX3UpPTW9fWCKOU5MzQRJRk\neI6FoQuCKGU8v1gJOhHPv0qbrlP3yPKCabBqBCilwrMNao6NAg7HM9YbPtvtBpZpMA8vCpjP4us7\np1NQ39jZuHCz9m2Lt9bLi+z1dnNlXU1d4FqXk63Lzuc7R73q9bbn4i8J1cPBkEl0brvOvd3SdXZe\notvabTTouC5KKRZpStMuqzFZURBlGU3Hoem4REVWCeODLGWelvvox9c32VgSpKbt8N3dt7hWq3Mc\nLHg4HfF8OuXZfIohBKau01oSoWka4xsm/8vu2xf8sBzDpGWXBHGWxWx5Po5u8E6j3Ke1pTt8sdwv\nNdOmZZXLn/hunRiKKqW4MzmmZlgXoolyWTqZX2YZUSjFtlPuO6Fp7LjNC8tU+1no9JM5e9Fp5aZQ\nkv24/HfTcElUxiyPeBoOCPOE3+7fqZZ9x9/kxxul+eg1d41rdodCScJlePW0CBGaxkEyYpqfVhs3\nrBa3/V02zBaRSnGExXVndUIvlVl1/py0A8+eZ/N8QSQTumaHQhU8jJ6gI+iYbXRN5zA5IpUZ21Y5\nBDAv5kyLKbv2LsfZEbvWdTrmGrqm4+oes2K2NNyVHKTPSGXCtrODoRlXisLrehvrzFSiokAhCYqL\nFeoTSJUzzY+u/PvngUSOkKzef+bF/Ze+z9AaS7d3iY5PWHz80vf8ICjkfZS6uK80zUITP/7yD1gO\nQaCmaOrlA2JfJfyIcP0AaG+3EbrAMHUMy8CwDLo7Vz8dHD7qMR+/mmOuZZvcuMRu4VUgiysuFE2P\nw2fl1Fie5YTB6Y16baOBV3Pwz2ikRoM5jmvR6dZpr9XY3r24bZvbLd77YId6w2UyDqrAaykVh/tj\nxqMA17P463/j62xtNQkWCZ1OjTjOysrN02HlUq9p5eTiw4c9XNdie7tsR4zGAZNzE5lSKlrNMh9R\nCI1222djvVFVs96+uU63U+P+o2PyXNJpetzYKcW8r6PdevR8QJrlrLV9up0ax8NTbcDRYFZN2JmG\nuFBlUkqx17s4VXUZnh6Py8xJqUiznE+f9aq/RWnGh48PKaTkeDIniFOyorTd8GxrpU34pDe+4KL+\nOji/DXGWczS9qIcYBSH704vTdD+2vXnpA0DTcbjfH/B0XO6P9ZrPem21jfTxcY9FkpBfcf6eRS4l\noyhiHEdlxmKe83RWEqW3Wy0+7p9OIvbDgP356brqQqxYQ0ilMIQGUvH+2jo3Gxf1Ts8XMx7NVg1w\nPx4ds8hSjs+0EzfcOrlSJEWO0DRc3eDdRoeG5VRRPnGR82BWtqR+6/mnfDQ+vWlomsZ7jav8+9SV\nLeF3al0U8DQYrTi/B3nCo2Cw8vkbToOu7ZOeaYNpaCgUD4IeQZHQMWt0rDK3NVUFf2PtfXJZsBeP\n+HSxT7p0sL8732M/HpHJnF4yRWiCv9p6j4bp09BdoiKplu2lEzJV8F7tBp6wmOXBhTbeMJsSyxSp\nJA+i5wyzCYvi9Lffy4bUdJejpM8km9HUG5VeK1M5sUxZFKfX2JbR4pZzC1OY3LJvceJsOs5HHKeH\n7NrXAXgU36WtdznODhCaIFcZR9neFcdhFR1jG6kKMhkzyY/J1cXqiobA1NzXNiK9CoVKmeWPV17z\n9V30M9UguVyPXIXk6uWaJoVC0wws7bSFFxd3UerFkonXhS5uo2lXPxC8DBoPQIWAj+KHU417U/yo\npfgDwHzFG7dSiiKXNLv11/LkuqpydfdPn9LdvtwV3HFM7vzJUzobFysFsij1V0opHM/GqzkcPB0y\nn0VVZI8sJEmSoRuC/acDPM8uA6ovQRxn5Llc5h4qLNugvnRxH/TndDo1ag2X//D//An2MoOx3iwN\nV03LwLZN2m2ffn+OoQtMy8DzLHaXxG42i5jNItotvyrRBkHCH/zhQ27dXCMvJI5Ttjye7Y1otzxm\n85hazUETIAtFs+7iexa2bTKeBBi6fqGCtQgSDnoT5kFCGJVtsME4wLFM2g2vMg01DZ3mGduMdsOr\nqkW6Li4Nsp4sItp194VVyDjN6E/meLbJaBby7o310rBwWWm0DB1zOdG3223R9JxKgA/Q9Bz2hlMe\n9YbsrjUvVKQeHo/wbAtdaAzmIf65MOmP947o1i/mC0LpFt86o9caBWHZ5nFsGs6r+0W5pokuBNuN\nerXPcim5PxjS9ctzb7NWYxzH5blwrg35dDJBQNUm1IWg6ThYuo5jGNiGQZzn2IbO7zx+zI1mi516\nnY/6x7y/tk7dtnkwGdF1V6ddH05GaMBxGHCj0abrelWFb5Gl7AVTTKHzXqvLcRjQssqKmqZpbLg1\npJIUSlX2DgKwXROr0NkLpgzigExJ6qZNUuQYQmAIQcMscw8NBL5hVRUy4FItEcAwDWlbLromeBqM\nqyrZWQySoMzbXLYrLWHQNMvzLy7Kh5zH4YB1q44rTIIixTdsjpIpcZEhlaRm2DjLcGaAfjKnZXr8\n4eQB62addbPB07hP1yrF9oVU1EyH/XiELyzuhgdcd7r0synzIkKg4RulzswSJoMl8ZIo3HMC/Lrh\nYYrS0HfNbOLrXtVKBGgZJcHqZUPWrBZ1vcafLe4gNI2GXsfSzPI/YbEoFiQqwV5Wo2pGjVQm5TSj\nphPIBY7mYgqTp8lDbOGwaV2jXnOJwxwLm8+iP2HDunyiu1A506KPK2rM5JC63inNRTXnwm9J0zQC\nOUTXDPTPwZpBAxZyD09/0fSxhr50cQ+Kp9ha94XXIU3TEdhkHGJoZbtW15poXzXfLq1bars0AZcE\nan+VW4o/IlyviZMnlNfpk8dBwvBgTL3z+UyydLdbjHqzMsT5XEWiVnOwrzjY03FAGmUE84hgFuN6\nNvN5hAbV9OPR/pjB0bSsePk25tJ89DJEYYosJLZtMp9FzCchjmdxtD9m61oL17OQhSSYJ7z97iaN\npkfvaIbrWkwmIYP+DHvZkjs+nnJ0NMWyDAaDBbWaQ78/pVZzGI9D6vXy6XA2i7Adg067hm0bHB5N\nS5F90+OoN2U6i7i21eKTu4c0Gy61msOTvSGdlk+aFpiWzngSVo70UZziezathodhCOp+GQek6wLL\nNCpyFkQpB70p9ZqNWk4BxknG06MxncbllhUAnYbHZBHx2dNjNtuX6ysMXadT90jygk69HBaIovKp\nMsly7u33eWtrDUMXWIaOZegV2Xp0NKTm2ARpwmAW0vAcHNNYaRt2al4lqF8kKTVnlXBtNGoX1utB\nb0jdsS+0Qkstk7jSCT1IUqxL2rWaplGzbe72+uRSUrft8iZ57jtqlnWBbAHULetCWDWUbcgoy7g/\nHvFOu4MhBLmSCE2j6/lsLoOqDSHoOBeJr6OXE6BxkbNbaxDlGYVUGMsMRKkkYZ7jLQOsB0lYPrAs\nCdY4iUHTKsJ1fzbEdSxsqS8DqD1atsvdaZ//fPiY9xrdsiq7JDMFimte45WuJ3GR4+gGYhk27Z6L\nE/r/2HuvHkfSNEvz+YRpMyqnixAZqSqruqu70ZjFXs9id+/2j+5vGAwwwPZiMNuyqrJSZ4ZwD9dO\nTZoW314YSXcPd4+MrKia7AbyAImMIBmk8TOj2bH3Pe85QggGTnDr8aKpeJVOGNgBl/kSLSS7ToSr\nLP5x+gpf2fRtn1A59K2Aq3LJrtOhwWBJxWk+5VN/r9WHaZfaGAZOyHBtCRFol67lo4XiwOnhKpun\n7pBJucSVFk/dIafFhGBt6SCE4IfkBC00B851deIsHxOou0TlTWye71td9PpiawsLV7o4yiFrchoa\nXmevGeg+F+UFnXV0D8Dv4t8RiICX+XOe2E9xlUfcLHlsPaNjtdo837eJ45zT8pAPnc/u2Dpst2Ud\nVG0AYQABuYnx3tR8reHKDkpY22zF1qOtYlGf/WSLCCEkhk07+v7zfbttDQKFluGWfP3Y+27IVvv3\nf98pL/fhF8L1Hvi5F+5NTM5mJMsUf13J+f5fX9A/6N46UVRljVSS1Swmwm7ePAAAIABJREFUWWZE\n/eDPRrY2MI1pydAb1Zq3HWyubxN0PDq9AK0VtqPxPBs/9FB6fUFeJIQdryVb1sNkC9rW3KY957hW\nK7IXrV4sy0rSpGAyjvEDByEFjmsRRg6rZYa1tpsQQhD4DvN5Qn8QcnW5YLATUtcN83nK48d9Op2N\nQ7Nhucp59nSHV4cjjl6PicLWdT6K3O3n+p7N0ycDXNdCSsFgbc3hOhZpWlLVDZ5rU9cNl6PVtmq1\nIVhCCGxL3dqntqXoRi7jeUJR1riOxtLqVvXKGENZ1XcqaFpJOoG3jdt5E/Ha+mGyTAg9mzB0SZKC\nrCiZLBK6gUfo2by4GJOXFUIIHEvzw+mIZVqw1w3pBz4fDHvEWYH7ho3EBkKIO2TrIYSOjX2P6Ny1\n9INkyxjD69mCge8xTdKtCBzatt0iz4lch7yqttWxd9G2wfVk4NmybY1sKl3zPON8FbfkxnX5fjLm\nV4MdjhYzHoURSVVuRfsPVfBspejYLQFcFq1Tvqvb7xlaDkVTb72yOrazJVvQTkdepTFSCBylEQiw\nBKKC7xZjFmXGrhswyVP+l53H21bmNE9JqoJd95rsniQLbKnurG9jDLVpCLRN2rRu+SfpnK7lcpIu\n6FouizLjNJuzqnLKpsbXNkVT8Y+TQxyp8JSNoyxCfT1gUBvDh/6AVdXmfbYh1h3SpsCw8Qlr//ty\necyqaluNSshbIdZl05qpbh4TQmBLjSPbhANXWiyqhFWdMikXPHP3UVJgyTV5NAYB2PK2QL8xzfbv\ni2pF1hSMiimevBaoCyG2gvpl1QZ4Z3VGbnL2nD0iFaGFJm1SjrPXhDLkifuUVbkgJ8ORLhfFGfN6\nsjZCVaR6ziKNWdULJuUFPbXLUf4DPX07Y1AIgRY2hoaL8iV9fYC/9usqTc6kek1wT+bivD7Dki5S\naEAgb1S9alMA5p38rSwRoO6ppt1E20qssf4Cnl95/Q0152jxl3PKvwVTAiMQb7+W/kK43gM/98K9\nCT/ytmQLYPCod4uUGGN4+fkRg0c9WLceQGwJzY/h4mjUVo1+pPV4k2x9+7tXrcFn6L7zwWbZbdn+\n8IdLOv1gu31R18fzbZI4Rwpxi9A9/+aMwTDi6MUVaZwzm8Z01pWxoqhYzBJcr61qtVUgyRefH+H5\nLstlyt5+t70wuRauYxFF3jq+R7Ttx9Dlh+8vaEyD77cH7Nn5nOHaZyxNS5bLjG63rQK1YvqGx4/a\nUOr5MmW4E+K9QSqev7pCCsHZ5ZzxdMXTx33Ksub0cs6Hb9HcQWsT4a/blkIIAs9utVTjBd03WoVp\nXjKex3SC23eSSt7Vd21QNw3nkyW9sCVkWqvtPszLVjA8WSUkecnHewO0koyWCaN5zCcHOzwatCfS\nqq5RUhK49i0Sc7WIKav6jh0FwMV8RXxPxWuzzW+DMebetslg3X7MqwpLteTh9WxOUhQcTWc4WuNo\nC/8BIf6PwVaKpKq4iFf0XQ9bKbquy9D3ScqSbycjpllG33WRCCZZRu8dWp9/HF2w7wf4lsWqLJgX\nGZ5upwF9bT3Y5vv96IwPox5101CamrSu6EUe81XKosz5u8EBoyymY7nMy4yu7XKZrQi1zbeLEU/8\nDs+XYzqWy0kyZ8fxt9U1s17TWZkxL1N8ZXGeLRk6AUMn2Arol2VOpB1Oszm+tqmahj/Oz3jkdhjY\nPj3reirVlprKNLyIr9h3O3jK5jCdkFQF/XX2oSMtnPX04maKMVhXwE6yKaNiwbSK26xC7bCoUgpT\n88flIR3t46zbkZNywWF6Sd6U7NhtFU9JSaR9iqbispjiKYeLYoKrnK1/F7Ti+cP8lI4OyJuCUTml\nqEs8ZZM2BZZQNKbhm+QHdqw+UkhepofkpuSRc8DQbnVwmzggjUavSY2nPFKTbp3mC1NSmhJPetjS\nYbczoE4lvmwd5g2G2pTEzRJX+tckUQgaUzOpzjiwPwGu28FK6Ftka16dYQsPISSe7KzJVrt/b7YY\ns2aKoXknB/qHPLeKZratZinhvVNl60+BEBaW/J9k2WAMYID83iBrab5o9VxC/kK43gc/98L9GO69\n6Kz1VUorsjhvK2I/kk+4gR+6OP7DWWX3wXJ0GwGk3u1gy9MCY0xrVzCMbpHBo+eXnB9PaaoG17dv\nOd53uj5CCvK8IM8qnn3cRjNdns24ulyAMISRy+nJlDwrsR1NkZd8/Ku91hC2afjv//AdQhp21jmH\n00lMHOfbA7TbdXn8uE8QuJyfz9jf6+Ctyefl1YKD/Q5KSVZxRhS6W2IG7W/yPkuHQS/gXz8/xLE1\nRVnzaK+dUoxClzcn9i5GC6qq3rrEn13NGXRv2yjYlqYTuizj/FYAtqUVnaDVV71rRmC9Fog3TcM/\nfnvER/uD7T601872dd1wOY8xGPqhT+janI4X7HZDsrLk88MzBILu2tx1Grf+RJZq24+udX1yv4nQ\ntR+seBVVRfnAd2iM4auzS/aih+80XctqyUCeI4D9TsTjbofIdf5ksgUwTdPWINdAtLaD2OzDfzs/\n5dNen8C2OFkuCR2HDzrvJs49CK4rTbMiQ6//fLxa4Gu9nUw8T5YY04rou47D46BDWddkdUVk2ThS\nYXuaJCn4tNNWRGpjcJXFwPW5SmNGRUKgbF7GEx77EcfxnB3XJ7IcvLUNw2Uek1QF4fqxyHKRQt7S\nbQkhsIRiVMRE2uGR16VjufjaZmD7BLr9t1lT0rFcbKkZFSuKpsIY2HUiZmXCY7dH3w7aIY9sykWx\nINIulan5Pr7AEoqLYs6uHTF0otaqwkBaF3jKJtIenrLpaP9WW7AxECmPq3KGwXDg9AmVhxSStMlb\nM1Pt09EB9hvu8RLJoopxhEPSZIyrKbv2gHm9ZFXH+LrVdlWmpqPaVv3Q3iHS4bbVCHBenONIh5qa\nr5Mv8aVP1+ohETiytVPo6h59vYO7zjp0fcViFXOSH6KlJlAdAtWhMTWuCljWM9JmRdqs8GTIuDxB\noYmb+bbCdRONqciaFZ7s/uh53ZL+e8f9jKt/whJdSjNrV/IvpMGSfyEidx+E+RzEHoj727WGna2e\n698z4fplSvEnwhjDiz+8eufXR4OQncc/HpWywabN9lPQHYS3tFzPvzy5NQ1TVTXFDXPONC5u/X2D\num4Y7Eb85u+eUtcNZVmTpdcHblFUHB+O2Bl26A2u7zLqps0PE0IipeTDj3e5uphzejzh018/4tuv\nTtFa8f23Z+wMA5KkJElyqrJmsBOyu9vZmqR2uwFKKVarjEePeliWvraEWLdCAVarfPv4BmHgrON4\nrr9bWdW8ej3iyaM+H384xLEVs0U79dTUZvse42nMZBYzHIR0wuuLWuC1F/WyqklurEVjDKv0fjuG\nLK/Iix+f7JkuE16eTzAYbEvzv/76AyZvWEsoKTkYdPj1kyE/nI5ojMHSimE3ZBanzJOcvU7A40Hn\nxr8RLNMcYwyWUigpeXk5IX2HbdogLSuS4v6TlhSCv33841FBAK7Wd0T6b8Ks8w7fxJsGnwBl0zD0\nAx6/YR9xslzwKIyQUrLjBXRsB09pDufvNiUKrUVD1TQ8DiL2/JC8rgktG1vpreFqz3bxtObR+vnf\njc7456sTHKXb2Bml2PNDxnnKy8WE02RBZDl8Pj3nIl1ymcc887us1tWa58sJrrLI6prIum73DWyP\nfe/+i8tmW79bXrXic2NuWVVoIbePA1xkS+Zlul5r6Fgeny9PqU3DqsppuNalXhULDuwOr5IRjrT4\nyGsrPJ8FB2ip1garEU+9HZSS/LfxF9tzTaS9WzcwoXbpWD4d7fP16mg7PfkyPWNgdahMzWU+JWtu\nH2ezasllOeEj7wmB9tixenzoPiHS7ZDKb/xPaEzDam0/cZSfcFFcMi6mHGent97rsfMYW9pkdUqo\nOjxxn7ZrJC0a0zAqL9FC3yJpr5NDFvWMobWPJ4P1uhnGVWugHKkePb3LpDznqjjiifNrXBXeylS8\nibY9e33TVv+Zp/7exJ71nynMFEWA5HqbavN+ub4/J4z8+3sF8lv8B9Ga/VLh+okQQuB3vDti9XdF\nuspandBPiIV5COdHY4LO7bZWEDgo51rsXRYVP/zxGNux8Nas2/Vt7HsmLKuyIl62Plp13eC41vb/\n0LYhu70AqSTujZZnGLntxOGgrRJcnM9xbM0nv9rHcS3KokJbkt//yyv+t//zb9jb73B2MiNJCjzP\nRinJYpGSpQVFUeG6NvN5Qhi65Hm1/bN1S1dlOHw9Jklyut1r0XpR1rx4dYXjaCxLU1c13bW/VRg4\n7cSfpbEtzdV4ySYI27E1rttO0m0+YzJP2Ftr7/Ki2vpuQUs6ouD+OzzXvusoP1ul9z72bK+/bQPa\nWjFdpezvRHePe2Owtaa/JoMd38FSam0Bsda5JBmBa+NYmlmSErj29gI4CP17xehv4mS6oKxr+oH3\noP/WT4GSdycO38QizxnFbdzPBllV8Xo+x1aKeZZt/byiG3E/N9tujlL0PY8XsylPwoirNCa0bXxt\n4a7zGZdFzmUSUzXNLVuIDa7S1k5gVRZtK9GyOFrO6TkuF8mK0jTM8nzbyrSkYt8L+bjTx1GaeZEx\nyhIe97v4jSavKyyheLGa8rf9PdK6Im8qHvsdfliO+cDv8Em0Q992meYZkyKmZ3ukVcl3iyvSujUv\nvXfQQkq6locl1b3Tii/jMYWpCJRNaLmUTY2nLALdHhMfeH1sqUnrklWdE2l3TYgEAzugp1vLFWut\n/3oTQgjypsSRFntOl+NsvNZWXd/DZ3WrBZNCECiPZZ0Qag9fuizrmEm1xJU2panw1fW+d4RN0mQE\nytt+VqsHk3RUSNlUnBeXRCqkr9sK5sDqkzQpRjR09N0qkxKKuI45LY5Z1nN2rX1saZM2CbWpEEgU\nioYG25NYRcAP2ZeEqouzrny9Lr7Hkd425mdgHVCL1hutffx+t3wpJJa83kfj6iW+7P8JBqW3YdYa\nt2n1JZ68raOyZR8lnFtasLQ5xBLdd9KH/UfGv+cK1y+E6yciWaaMTyZ0hg/ffd7EcrK6NaE4vZjz\n6qsTBvtdTp5f0N15+H1Onl9g2fpBW4ambnD92zs2CByyG+arSsl24vCNWKAiL1FvTJMprdqWpmsR\ndT1sx8JxLdKkdZp33gjKbuqGoqiYTWNeH44JAofx1RK9zmrcWES4nk2vH/K3f/8B2lKYxnB6MuXq\naskHz3Za/ZlnY1maxTwlz0t2dztbl/m25WjTNAYpW/3E6+PWE0lbiu6NKUGt2imj2SIBA4evx+wO\nI7K8xHMs/u2LI7SWSCEo62YrqJfyujW1cVdfxm1INbTtwg3ZitMC+0fCxd/EfdquyL8boBz5zr0n\nDCEEr64mxGmxDbJWUvJ6NOfJoIO7dqw/Hs9xbYtB6N9pl96Hq2XMIm3F7AAd73bLr7lHq/Xnhqv1\nLbIFLaEYrN3m9T2k7dVsyslywYvZlA863a2x6L4frKtcPsuyoOe2beOqaZjnGU+j9rXLosB9Yygg\nsh0cpfh2OiIuSzq2w67n8/urc4QQPA46nCZLdlyPcZYQVyV5XfLtbIyjNH2ntWx4nS2IsAkth6u8\ntXKIbIfQsgm1zfeLMZ91hthKYUuFFJKatpoXWQ6WVOy6IeM85rvViA/8+y1gNvt3Wea38hWrpm1x\nPnI7/PP0iJ7lEdcFXev6or+ZGDzP5m1QtVRIBEpILovFViwPcJbOOM2neNLiKB3hKgtLakLtsuu0\n5EYLhbO2cwBYVAkv0wsi7eEoi47yOc4uGZVL9u0+cm370LGCW2Rr+x1MjaucO1pBIQRH+TGX5YRd\na4AUksvyito0eMohUm3o9pt4nj7nwD4gkhGv8pfsWntoaXFZnhOJgMTE2MJGCU0YuJQZaBQ9Pdzq\nN3esA6z1awBm1YjS5HgyeHCScYO8WVE0MZb0CNTgz/KbmlXf4sgejhhspx7fBlsOMNTvNXloTN1O\nSJry38cEoymRfI8R1951vxCu98DPvXAbNE3D/GpBNAjfmWylqwxjzK2WYtD12X06QOk2G/D0xSW9\n3fsnSIKOh/2WqbLJ5YKwe7fC9eaaJXGOvlEdqquGk1cj6qrBD+8eGGmSY92o4JmmbTrYtt5mI1q2\nJs0KVouU3f0u+496fPXH1+w/6jLYiVjME7K0IM8rAr+dUhRC0DSGi4s5nmuzu9+hqRvGoyWdjsf5\n+ZzdvQ6Oo4njnOk05vvvLxgOQw6Pxmil8NckZTAIiUIX17XRWvL//fML9oYRdWPwXJtu5LUVKyVx\nbE0Uunz3/ILf/qb12VFKcjFaMOzf1SHNFilxUrC3E1GU9VbHZIxhskhYrDJC725Y9tvwJtl6Gzb7\nMCuq7WcLIdjthLiOdct2YdgJUKolkEpK/PXz73pCl0LgaHXHQ2yDL08vt7FA74v7hPY/hjcrZGVd\n891kzKf9AftheEujdTSfURtDXBQtYXIc0qrE1W3lMrLbY71sGrK62la5lkXOLMsIbZuj1Zye7bDj\n+czzjP/n9BBXK0JtUTaGgePiaE1clvQcF0vqbaB1UdckZUksSvqy3d8dqyVa3y1GdLTDrEy5yhM6\nlkNjDC/jKVldMnB8QOCqa73dwPF54v247ufr5QW+sq9Jl4GzfEFaFpxnS3xl81GwQ1IXWFLRGMMf\n5sf0tbfVZBVNxVk+Z9dp9VA3tVgv0kv27S7P00vSpuSpM7gzRGDdIFubfb1n93Ckxbxu9YcfevtM\nqxWR9vCVe6sadhNCCNy1P9dZcbWeerTIm4Lj7Iwda0BHBRwXZyyrmAN7SE1NIAPstWdXbWom5ZRR\nNaaruxgajAAtNX29w7SeEqkOy2pBqCO6eoAS7e/G9gRlagh0uxaj8gxfRev4HMGymWEJm3F1Sk/v\nYQuXwmRUJr/VVqxMsRXtr+oRjTC48s83rV7TJjfkZowSFnL92ZVJyJortGg7Djd/d3HzA1r07lS5\nKjOnMBdo0ZL7pP4SvfbtakxKYY7QYkBhvgcjqDlHiZ/RdNTUtAJ6B0P3VkvxF8L1Hvi5F24D0xhW\n84TgLZ5Lb6JeT5nZ7l2/HADbtYj6wYPWC2+zZID2pOa+Mc1438E2Op/jh8524rDISpI45/TViL3H\nvVuTiMYYzl5P6N7QaCmtsNdVtqKsSJMCz29tI6qyZrlIybKS169G1HVD1PV49eIK29GMr5bs7nU4\nP5uhrfZ92jaeIi8qoo6L5ztorbaVLqUkZ2dTfN/GmFZb5vsOYehut+PV4YidnZAXLy+5mqz45KNd\nbEfzzXdn+L6zFbP7ns18kTKdJWhbM1+k7A5CtFa3yFZV19v19tzW7uLbFxcs4oxhL1yvDaySnMd7\n3S3Zmt/TKtwgL6utTcNPQRA4jKcxL87G7K0/u6hqVlnOKiuwlGSVFVzMV7y6nFI1DZ21YL6oakar\neFux+jFkZWsz8NAU5Z+LbF2t4tYWwnl4u5KyxFIKYwzfjyfs+Ld/a23Ui2HX929NUSZlyelqyUEY\nMUlTnkQdQttmVRR8Nb5ECUnnxuduzEc376GExF5PVPYcl8huW2OHyzl/O9jjN/1dTpMV382uUEIR\n2Q59x9u+j69t/ji5QAoomprX2ZJVkrHrXQvxx3nCRbLkv57+wP/19DfMywzfsjmO52jR2lIkdUmg\nbc7SBQbT2ky8A0ENtYMtr+06XiUTOpbLpEyILJfIcgi1w1EyZWC3vmSesviX2RFaSL6PL0irkot8\nwQfegEkRYwnF/zv5lidunyduH187HDg9Htk9hBD82+wFFQ1dy6dsKo7SEb6yOc9ndLTPSTbmqpgz\nqhY8c/cwGFZVyp7d56qcESmPeR2T1TmVqe+I5jeIbgjqtVB40qUwJTUVHzlPuSpbM9F9exclFItq\ngbUWiecmp2wKumu7h7qpWNYrBrq/Da9GCE7yw7Yytv6c3FrSZJLT4ohQdTgrjnCkh0ZhENRU7d+F\nRd4kXFXHRKqPwaCFTWMaGmryZkVDgyUcHBHgiNt+d5XJaai3E4s/FbbsoIWLLbtIYa+d5QWlmVOT\nYYseDRlJ8wotQmpSXPn43paiFC6KaPucEn0qc4mhQBIhRYAQGi2GSOH/vGQLgATBFETnjn7rF8L1\nHvi5F24DIcVPIlsA2tZ3yNabkFJSZHfbewCTi/k2OuhNfPu7Q56spwQ3aBrD4TenBL3b27mYxszG\nKzq9dspQKontaD78bP+Oj5cQYku2jDEUeYWUkrPjKVG3DZD2fKedrlvfOY2vluw/6hF1fTpdj/Fo\nxWAQIpXk0ZM+x0djqqpmsBMhpcB2NEIKfK91gNdaUVU1tt1OaI3HS87OWtNTz7PxfZt+P8CyFFK2\nsUG2rbFt3Ub+GHjyuN9WeDyb715eIhGE65iiqmpwHc2wHxIGDkpJlnGGY2uyvCTLK07OZ9v2IrQZ\niJZWfPh4cGttwjdauFfTmG54f/Wqqhvq+n5LhskiYbZKCb27E6lB4LBcZW1YttO2Ur86OsdgGIQ+\nF/NV670V+vQCD8+xsJQiyUv+7cUxgevQC95tKtbR+l6yFecPZ0DmZUVeVdhaUTXNndalMYasal3V\nhRAs85zaNOw/MNV4sVohgMu41V1toncspfhhPKbvtVXctKo4X622rcYvry7ZCwK0lG3YtNYtWVp/\nrpSCD7v9rafWBo0x/OvFKf21U/1Nv7ANBK1pqK8tXi4n+NrmcdBh1/OZ5hldx11HCrU+XzuOT8d2\n6dgu4zrlI6+HozRZVaKlomM5HPgRrtbsrM1QLSE5y5Z8FPZ4sZwSVwX7XsiqzFmWOf0b7vPLsh3Q\n2Gxn1dTbKlPVNLxOZ+w47fHbt30Egkg7dCyHQDs4SjOw2+dP0hm7dshTr8+yzknrgqden0+DPYQQ\nRNrFkopHTg9HWfzT9Dld7eOo1k9rUaXt0EiVs+90eZ5ekNU5j5w+WkpsqelZAX0rZM/ubde8weAr\nh/N8zDfxEaf5mJ4VYguLq3JKR9+vgboJLRW/W/2RXXuHcP36fef6PBjXCa50EQhc4fA6P2bH2sGW\nNlVTs2qWuLI1Ub4qz9HSwlU+o/KCju617V0r47vFtzyxPyKpV3T1gMvyGIPBCENhUqTR7VSjAF9F\nuDLYVrdSsyQ3MZHawVpPHG7akjdRmJiGCv2e035FsyBrrqhJ13q3PlLYZM0Zjhxiyx0aShqTocTD\n17CbRKx1nfeReGv7iT+NFP7FIOyWbN2DXwjXe+DnXriHML9acPjVazo70ZYsxfPkQYJljCFLijt6\nrCIvuTwe07nHGLVpDJZj3SFFwL3RPkIIPvpsnyQpOPr+HMdrbR06/QApBc764l6VNfNJTNi5fVEu\n8pIsbe0cAPKs5Px4yuuXV2irje+JVzl+4DCbrJjNEuJVxoef7HH0csT+QRfb0fT67YlwuUj54btz\nbFuT5wW7e13StODibIbrWWRZyXyeEoYul5etaeEm6yyKvG1kkLYUh4cjBoOwJUurjDjOCUOXQT9k\nuHO9dnpdjdOqJV/QTmm+Pp3S7XicXy7QWvL88Aq4Lrc/2mtbUyfnM9KsZND1CW6Qq1cnY+S6PXkT\nD5EtaPVkrm1RNw15Ud1q23mOReQ7fHV4sa1ibRAEDnlW4a+n+15dTul4Do8HXSbLlDgriNai+dPJ\nnD+8POWD3R4n4zl/82yfQfD2KKF3wTJrfdjuc43PqoqyrvEsi2/OrxiGt20z5lnOV2eX2yrbpnr0\nkHj+eLbAUZLHnc6W4G1e62i9NWBdFa0Ie1MlG3jtVJwQguNFK7D//PKCJ1GHyzjmdLVkzw+2JMUY\nw+lqSddx6ToO+obJ6E2tWt00SCnpOi0hC7TNrhcQWBa+ZdN1XI5Xcw5Xc76aXvIkiPh6dkXPdvnH\nqxP+7uAAURrypuZ87bllK7UWmtf8cXpB3/ZYVgW1MXw9v+KvO0Oe+q1PXWS1FbTaNFzlK0LtMC8z\nStMamgIcJjNsqZgUMQLBE/+6tVo0Fa/TKUfJlKKpefRGW3LzPkq0fl97ToeO5XGSzejc0HltJh9n\nZcKyzth1Ig7TMR2r1aqF2uWimPNZ8Ii0KdekqtmK7G8ScSUkjrTaPMWm4ok75JmzT94UxE1GR/uM\nyjkdHfCH1Xd4wt62Fd/EB+5j/LWgPlD+LYNUT3lU1IzKEQ0Nq2qJFJJABXye/IFPvV8xr6ac5ce8\nyL5HSsVH7icMrOE2Q9HxLGThMK4uKMnZ0fv09BBfRdjSRaIZlyc0oqY0GZ4ISZslmUlwpN9WtORd\nYlM0CatmvG0rauG+N9kCEEZhyw627Gxd5wUaLYKtzkoK661k6973vcfnqzJXGHKkeLcbuodgzAjD\nFULcr098H/xCuN4DP/fCPQQ3cLA9C/sGIbo4vCKexyC4Y1yaJwWf/8PXPPp4l3SVc3E4orvTagS6\nD2jC7AfI1tsQBM7WMiG6UelyblRSlJJ3yBZAWdacvR5jO5qyqPEDh7KsydOCT//qMctFynCvNTD0\nfIcgdMmykjByCSMXIQXPvz2nKhssW7G7321d01c5QejRX1fOyrJECkGvH+A4muc/XPDhR0POz2cs\nVyl1bbBtxdnZDNe1GY1XDHYCVquMxTJnNo+xLQvH1iRpQZoWuK6FMYbpLGG4E+HYmi++PqZuWpuE\nYb/VP3U7HmVZ04k8jk+nZEXJk/3eVl/2+mxKFDgE3u0fzCopmC5iQt99J3+tDV5fzqibZkuSbmIe\nZww6/h1S8+YJQ0nBZJWyEwUg4OmwS1nVrLKCySrm1492CVyHQdi22i7nK47HC4adH68YPATftu4l\nW9BmO25idnajgI0lYav3aCNhng16FHVFWpZErnOHbI2ThKPpDM+yeNyJ8O3bv5c/nJ9zEIZbl3iA\nSdqOtb+cTem5LklZMstSQttBIDhZLbhMYiLH5vl0wm92dlFSch634dKO1hRNTVqVZHVNz3X5enJF\nZDl8Oxsz9HwM8NXkirgsyeqKw8WMtC6ZFRlx1eq2AFxl8ciP2PfMF5GEAAAgAElEQVTCLXEZegEH\nXoByFLNVynE85697e0yKlEWR4yrNosz5NNrBVgqD4bvFFXlT0dDG/BzHc7rrvERDS9p8bWOAtC6J\nrPYY6tteS7jymApDx3JpjOGLxRmPvS47drBub8545HWI6wJXWczKhFWVbwX0nrK24vjKtGRpWsa3\n3OQ72uM4m+CstV4HTo+u5RNpj9JU2FJTmgpPORSmpKgrpuWSSF+ff+I6a9uerPenMBS004kHzgBX\nOYSqvVHQKApTclGOGVhv91GrTc3r/ISevn5daQoEgp7u0td9wCCQdHWX8+KMeT1lz37EE+cpl8U5\nO9bu1hYiNzmer7GLEE/69PUulSlZ1DNSsyJvUg6zL5FScmB9tPbiirCETdosH4z1gfZHIoW+pfOK\n6/Ed89Pr75G8NXfRmJqkvmBaf0WkbxuQthW1nyZqN6YCmjstx9os149bgEbivrdgXggf+HF94p+C\nXwjXe+DnXri3wfGcW4SoO4wI+wGOd3exta15+tkBUkpsx6K7E9E0DS+/OGZwcH2yWExWLMYrgnsI\n0X344Y+vGZ3NGOy3B28QOMSrjCTO8W9UX4wxvPzmjP7uW04Iov2hnh6OkVIQdX2axvDo6QCpJK9f\nXjHc63D4/JJOt7Va+PaPJ0Q9D8931lOFgtUq5fT1ZPueT54OSNM2vibPK/7xf/yAUpLhbsTl5ZJB\nP8BxLY5ej/jVrx7R6Xi4bttGzLKSDz8cUhYVi0XGZBJTlhXTWYxlW0Shi9KSNCtJ0pLnLy95tN/j\n/HJO4DtYWrIzCLEsRV03rTbGbp3uB/2APK8piroV9q+tHrpvmNTWdcNsmfL0oH8n8ufHELg2gWsT\nrTVW8zhjNFvRCVzqpkFJwfcnIwbR9VTh5oTx/emInu/iORa9oBX6ayUpq5rz6ZJ5nCGFwHOsbTUM\nIHQdqqYhfAcd1/FkjjFszVH/FEySlEXW6rMWWc40SYkcG+ctHlyb0GlX3x9DdBCGnK9WBNZ13EvH\nceg4DnFZcBnH1E1DTUPP9XC1ZugH9F2PcZryyaBPaDt8OxlTNw19t9Vc+ZaFoxS+1brI73ptBWxv\nnbn4u6uzNr5Hafb9EE9baCk4XM35bX/vOqx83bZ0lG6tGZzrqKKDfgdZwvPllKHj8y/jYz4M+7hK\nrzVfFpZU/N8vP+f/OPiUru0RlwX7XkRkOTiyzcJsXe7b9bOlYl5mFM11lQuga3t0rPazZ2XKvhNt\nK1MD2+eTYMioWLGqMvq2j6va732SzujbPq/T1gdsXiYUTY0nLfKmJVEbwqWlQtFOgYba2TrJH6ZX\nTIuYvhVyVSzwlc3AjniVXqCQdLTP98kpcZOxrBJ6OqQ0NbkpyOqCQDmUTUVS5/jK2bZIXWnjSJus\nzjkrLhna7dBR2VQcZSf01yTMGMPvVl/wV/6vbv0mtdBYot1GJRR5k7OsV9jCZlxNqE3F43WOolo7\n1s/rCbawcaXHIOoSxxlCSJb1nLReYkmbyhRgBL4K2bU+QEuNocGWG/sFgyUf/s3lJqY2BfYb1S8t\n7Ht1Vav6DFuED9o45GaCFGpdKbv9uvpGXuO7ojJjGvI7lbCGhDaCyEYI/WebTvxLTT//QrjeAz/3\nwv1UbA6i+WhJmVf3RvRUZc3LL4/ZOejdIlvQusZ7gfOjgvkNesOInUe97ecGgUOalrfI1ma7bvpn\nlUV1J/OvqhrKvOTZp/torZhPE/o74dYzzPNsHNfCD1201U5Z7h50WMxTNr3AqOOhLcXOMMRf66WE\ngK+/eE3TNJyfTinymg+eDWnqBs+zsddTic+etVMxL19c0u8HHB6NieOc4U7EYpHS6bh8/PEujw56\nOHZLmOw1iWuMwXEsHu23LvJ5UTHotc8vlm3A8HyRtFmLm0qTaA1PBz0fe004Nm2/sqyZzBMCz0ZK\ngeu0Xl2tNcW7nyg2JHQD19aE3rVDepKXPNnp3iIdmxNGd11NWyQZo0VMN3BJsoJFkvPBsMewG5Bk\nBUVV39Fsha7TtsY2nmKrBFurO3qrwLFxrXcTZz8E37a2bT7X0lhKcrGMyet665+1wSRJyKsa37Za\nC4JVGy90vlrdEcmnZYlvWXe2beB57AUBfc+j57bfe5KmeFY7jdhzXQLL5svRJb/qDyiaGiUErtZt\n5JSU23VYFTnfTSfs+W010NcWHdtBCYGnLb6fT/iw0wMDPcfbTjjaD7RH50VGJ/TI0pJnYRdLKT6J\nBuvQaUHZ1BzH83U8DHwcDejYDgPbpzaGnu3d2UcbbFzkH8K0SIjrYkvANlC0DvVFU/MqGVM2NU+9\nHpVpcKXFaTbjdTrjKBkhhaTBsKhSetb1/hgXSx65feK61ZKNyyWVaehbAV+tXvO30TMu8zlaSPo6\nXOviWl+ri2zKwAqJrPamol5PMJ4VE+qm5kV2Sqg8bGlxmJ0xsLrMyhX/tPySvo5wpUNjGk6LCx7b\n+9s2cjtN6VHTGqqqG0TgvLjAljZaaE6yU9I6ZcfeQUvNrrXHt+mXKBSBChECuqq/jtSxCAKHyWrB\nsp7Rt3bxVYQjPU7yl+zofSpKIt22wmzpbrdlVB3jyw5xM6E0Gba8/Zu0hHOHbClhPUioXHm/Z1bR\nLMmaCb7aRwsfKRzS5hx5Y1IxbY5RYpPX+G5QIkAJH2OqW58rhbd93/8I+IVwvQd+7oV7F2Rxxuhk\nQti/buEIIdC2vlcML5Wkv27NvYlW7PvuLSvxxgX9bQfb6GxGZ72Nr749o6kNfujS1A3T8ZKw423N\nUYUUaEuRpUVb8lZya5YaLzNWq4wsKfBDl8Us2VbHbEczGS3xAocsLzk/meH7Dp98dkBTG7Sl2d3r\nEMcpO8MI0xgWi5Tzkxle4OA4Gt9vJxXrusE0hjwv6Hbbac7TsxlSCF6+umJ/r435uRovSdOC4SDk\nh5eXrOKck7Mpj/a7OLZFWdXkRYkQgiyvtnYReV7Ri1wsW9275o0xW83WyeW81QpdtC3CwHNomnez\nOajqhvEixlJyG44Nrdj5q1fn9KM27mSyTPBde7sPN8TOsTSOViAErm0R3qigdgPvXoH8Ms25XMTb\nuJ9FmiMEdwKpF2l2h3BdLeOtQ/3bsMgyVnlxJ6pnsq5wbXIVb0IgMKZBSUlSFvzz8SlVU/M3+3t3\nyaD99oirWZZR1DWWUozTBEsqrPX0oRCCPT9ArclVbRqKuuY8jm9lKy6LgrN4yQdRe+OTr8nU88WU\nqyxhz/X53eictK4ZOj6VqcmqCt+6/wI0y1P6kc/3oxGNafC0tXVir41hVqSM84QPgh6R5fDF/AJP\n23Rtd2sJ8afCUxZKqFueXNDqp5ZV3k4sKoejbMojt8t3qwseuV0u8gW7TsieHdG3fCLLpW/524rT\n7xeHvEqu+NjfY14lnGQTVnVG0pSAwRKKfafXurGXSz5fHvLM28UWFoVpg62HdhdbWhgMl8W0NTxt\nKoSAvw0/wVPtZGikA6SQ2NLiM/8D9p0htalRQjG0B2ipeJEd0ddtRf+yGJE3OYHybxGuSEfbNuGk\nmpA1Gba0qU3FjjXEVwGWtDkrjnnqfEhpCoomRwuLMHAp0gZfhRjTcFEetxPh0ifQnbX7/PV5t2hS\nSlPS1/vttgsXW3g01AjeXsm5KL8mVLsPPn8fJBZaeLf0WVpEW/0WgC17SKFZVa9QwvtJxCs3L9Zi\n+b9MJNBfGr8QrvfAz71wN7ERxW9OoJsfktQSx7dvkSttqXvJ1gZ/znJqVdWUeYVUkjBsD7blPGE5\njW8ZnnZuEMLR+Zyo5+P6NsYY8qzEW1d+Xn3XCu6lFBR5hdK3JyVPjkZcnEyxLYsGw2wc8/y7C2aT\nJXleUWQlL364bE1XB0EbCfR6QlHVPH7Sx/UsdoZtnI+hFciHkcvp2QzLUmjdVrzOL+ZopUizkm+/\nO2d32EEIOL9c8Nu/fsTR8YR+z2c2j9kZdHh1eMX+boeyrPmrXx1sY4DkmlyFoUtRVEzmCVHgcHox\no98NODye3JpQ3MTMeK7FxWhB4NnYliYKXHodD9dqSdzx5Yz+O0yuNsYwX6VkRUXkt5Wn0WxF6Dl0\nA5eL6YrIa9uAnmMhtWwHFqZLjDGkecn5bMk8bVuIm6nHTQ7j1hl/lbBM863b/IZs1U2DpRXTOKXj\n3a5+jFcpcV6Q5OU2V7GqG1xLv5NxqlZ3xfBN0zBNM3o3PutsscTTrS5smmaAoeO6uFrTcR1Cx/nR\nz3s5nRLdeF0baSOZZimPwoiT5YKqbvgfp8d80uuT1zVxWRBYFq62uEpiHoURSkq+m45pjCGrKz7r\n7xBXJbMsw0BL2oTkw6iHwfCvV6f0HJd5kfMs6t0iW1dpzHmypGO7JOuJxL1eiFVJxnnCoiw4SRY4\nSnOetlWhv+61VRpPWzzxOhgD8zIjeEv16l0ghbxDtqDVhs3KhI7loqRkaAdUpuYka33LEPDMHdCx\nPP6wOGboRLjq+mI7sEKO0gmBdkjqHIPh77sfIYXgmTtkx46oTcNFMedDb4+j7IpfB08wNPjKZdfp\nbq0dGhoi5XOYX/Cx9whPOizqGFtopJBbkieF5LwYYQmNLS0saZHWGULA0GqNQxfVkrKp2LV3cKRN\nbWrOi0sC6VObeuuB1dEdPOURqIC4WrGs53R1j0CFSCSe8tHCojQFSR2TqgW6bG8WVvWc0/wlSbNk\nz36ClhbT+gohNhE9goYG1pYQcD2RuKxHINqWYVLPsORdgfxPJVvX76/eeOzuzZExhtQc48idn0S4\ntBj8hyVb8Avhei/83Au3QdM0XL0e0dmJePGHVxjYBlKbps3kexvB+ksiXmRcnU4pi4q9gy5JUmBZ\nCtu1SOOcsqixHc3lybRtBVqK/jC6Vc3ybgi6vcChKut2Yqrrb8mWMYbzkylKS548G9IfhixmCZ5v\n8/Gv9xEIhvutQ7wxhjDyuDhf0B+E7O51cF2Lqm44PZ6itOLqcsHOMCTPK774/IjhbutTkyQFFxdz\nLs4XdLs+g0GAVoowchgMQnaHEWfns9blfp6wSgp2hyH9XsAqznl80OPsYs7ZxRwh2mnPIHB4fTrh\nyUG/9QoLXfpdH7m2p5gvs+1U43yREqcFgWeTFxW+Z2NZm7vJttqntXonsgVtW7ETuFvR/GSRMF4k\n7HQC3HUFTilJd12pmsQJwgjOJkv6gctomdANXPa7YUuE1pWvi9mSxpgtAXMsjWdbt4hLXlYcjmbs\ndcM7ZAtaZ/nIdQhdmzgvWGU5/eDhttZNPDR5+P1ozK92d27dVNSNoVxnFfa8lrS2j2/ImXenonY4\nm2GM2Qr0baUQ689tjGGSpvRcl0maEDkuyzzHtTQf9/rYSrMqCi7iFVpJzuMlRd0w9NuJysiy0VIS\n2g4SgQDmec6+H7AqS76fjblMY5Kq5H9/8jFKSH7VvesQXpmmdWkXgsPljNNkya/3djmZzqmamt+P\nz/g47JM3NR+GPSypsJVa5zbWXGYx8zLF09a99hR/Dkgh6FguqyrHlprzvNVbWVJRmZpVnbNnR2RN\nSYNhWWVo0VYGl1XGqsqYVitsabFnRzzzhnwbn3Lg9FCizVeUCE6zMQdunz27S9oUTMp2WMG9EQ00\nKZc0GB7bO2uxuKI0FdZaF3YTrmxF+PN6Rah8VnWMEmpbuUqbnLheMbTbkPCGhqtyhCNtLssrRtXV\ndkLRlS5pnXJZXrCo5vT1AEtYCAS5yZjXM0LVwRYOB91dsrRa79+SJ84n9KzhVp/lyZBFNea0fEFP\n7SGRLOvxneDqm1YRSTPDEcFfTLd0H4QQuHL/T/b5AmhMhqH8D0XAfiFc74Gfe+E2EELQ2YkwxlAV\nFbtPd7bPJcuU1TQm6P60sds/FxzXojeMCDre9mATsiUGddWQp2WrlwocTNMwn7xdlK+1wnEtrLVm\nqa7bMXkhBKYxXJzO8HybIHSpqgakwLE1Qejy8ocLhBD4gcPufpez0ylh5FFVNYt5ymAnQmmJaVox\nvWVpVquMly8v+U//6WNc1+LLL17z+EmfL7484fHjLp7XftZGu3FyOiVNC4qyptPx8VyLTqe9YNd1\nQ16UWFoRBi6+72DfyE7sdX2qusFzLcqy5rtXl+wOQgRsdVyeaxGsyZfv2ixWraPzu0wnTuYJ//D7\n53x40EcgKKr6zr/zXZth9/rkG3oOeVlt/bCe7PfIs5JB5OHYFv3Qw3dsqrqhWQc9l1VNP2oJ4+W8\nrZBtdGG39qWSDMJ3PS7bFulmOvG/fvkDB93wwWnF+/DNxRW/PdjbfrfpWlvlWppvLkfMs6wVjtvt\n96lMW6Ur6hoJtwjcyWLRVijW4n8tJf/l+Q98NthBAGlVEdg2X1xdYEvFi/mU0LYpm4aT5YKnnS5D\n32+d1Ouaj7o9RmmCpy3SumJRtLmIZ/GSvKl4sZiS1zVKSn7d28GSkk+7A6QQvFhM0FIRvNFKVMCi\nKKhMQ8d2+Ky7QxA4vBxPyJua/7TzGF9bVE1NYLX2EBfpkkVZcJXFLKqcT8I+l1ncapK0TdnUW8H6\ntEjx1J9+sUvrkpN0xlWxYlokDO0QA3y9PCfSLjtOSNaUlKbiv1x+yX8e/oZZmVA1NY60uCqWuNrm\nt9FTutrn8+VrAu2Q1SU7dsR/n33D/ppgSaHo6Pa8MirnZE1JV/u3TE195eLKtT2Nab3EllVC1hR3\nIn7ypmBczlrzU2HhKZfK1CyqFbN6wa41oKs7NDTb6tjA6mNLm67usmPt4EmvNTgFaio8GVBSUZiC\naT3itDjBwiI3KVpoXuTf8lHvGf9w8d8IZEhFgUZzWhzRvRHJ40qfvtrDkg5ZvaKkIFAd4nqGLV1q\nU2HW29W+PnwnspU1CyqT/VnsIv4caIhb89P3tIH4n4lfCNd74OdeuDchhCDoBRx/e4qQ7aSi7Vo/\nG9mKl+mtIOo3D7aN75cxrV6rqmouXk8J1+L2H8NktGRytaS7bkc6roXtaPzAaXMRDVyczdC6dQh/\n8myHNCnYf9RDKUmWlXzw4RDXs+l2fQyGKGqJ4bZSczZvsxOVIIlzlquMx4/7/NVvHrVEt+NxcT7n\nm+/OsSzF+cWMwSBkf7/LcBBSruOGiqImSQsux0v2hhGvXo/od32c9foMByFKSqq6Js1KAt/m/GoO\nDazSHN+zuRqvKMqKZZyTFVXb9jQGva5qzZcp1toV/z7UTcOTnQ5l3TCax0yXCYMHKmHnkwVpXqKl\n4Gqe0FsHU281XDcrRHXD56/OsC1FnJeMFjGubfH96Zj9XvigU/xNxHnB5WJ1b6UL2AZob/Bs0H3Q\nRf8hNMbg29dC96tVQsd1KJtWQ/Wbvd2tBcTZcsHXlyMOohAQ5HVNeENk72pNx3HacOskoee6PI46\n1Ma0/ljr1z7rtvqhWZ7x2+EertJ8Mx79/+y92a4k93nt+Yt5ysg5c481k1UcTIqS2jZ0bB2f9tB9\nY6Av1LCAbvgB/A6GYT+CL3XZF0YDhhs4jW6g0bBh2ZYpWxYlUiJZrHHXnqecM+bx3xeRO2tv1q5i\nkdSxaLQWQHBXZmRkRGRkxMrvW99a1HUDazGNeOB5NE2TSRwxSxP6iwnEnfmUpMiZJQm/ubpJc5F5\nCBAV+ZktHB+NT3mt1VtW4UohGMUhWVlyGvnUdQNdVjBUlUjOqZUabcNmyxszSxNsVSfMM/aCKQ9m\nQ+40uhSiZC+YcsNtV6a2usWWP2GWRdhqVYE7jf0L4dR5WVKK8kI1aJyGDBL/QlYiQFxkbAcjQGKW\nR9xxVzhNPCylCrA+iCdLHy5FlnnDXUeTK4PUhmajSgqzLGTTai/3ORcFe9GIt+pXUWSZtlbjIB6R\nlAV+EdPRXH44vccbtSvYikFQJNTUZ8+3tMz44ewjrpp9nEXUD1QZiqfphJpqo8kqMjLfn/wbfaON\npVTWFxIStmKhSirzwuM972fUlTqmrBOWEcfpMa5SWe7ERcxusoOCii7rnKRHREXAbfs1UpGyrm9y\nkh2yblylprp01D71mo0cWThyjUkxpKY0yETCXvqQjrq6aOnJyIu2Xi5SFEnFkC3CcoYp1wjLKaXI\nL20jfhZS4ZOIOfrnrIhlwkeQ/UIF7rJk/ociW/ArwvWl8Ms+cM+D26lxujtcGpN6Ix/TMZicziiL\n8gIJgmoqcP/+0XNzE78oBodTanVrOUl42ckWhylpnLG/PWRlo02rV2f/yYDWJf5fQgjmkxDT0tnf\nHmI7BpOhh2Ub6IbKfBYiSaAsphTjKKXRctB0pWpj6iqP7h/jeRGdnkujabO3OybLch49OOFwb4zl\n6ERRimXplEVJGMWcnMzQdBVFUWi1bPK8IElyfD+u8hANDcfRsUydjfUWg6HHxiKj0rZ0bEtH1xXi\nJOP6lQ6aqrC9OyJJc8qiJIgS4jijKEoMQ10OAmRZjq6rtJvOUiDv1kwcW8cyNWZ+TLvhLFuKpxOf\nuR/TdC+/COmaSpRm5EXJWqf+XLJVFCUTryJZo3nI1f65vM3FZzicBfhximNWero4zZCoWqRZXum9\n6rZJ4yVzGlVFxtIvt2G4DEGSvhSRO49xFC2tIPKypG1X3kqKLGOq6rKC9XAwQiC41WlTMwxsTUNX\nFMZRuBClaxgLh3hL06gbVQUvzivdTJhl+Gm6zEP8ZDQgK0tcw2BvPmOSJKy7LjuzKTXdoGvbqIs8\nRU2p2nrvnxwRZCmvt3us1+oIIfhkMmScRNyfjrjVaDNOIlqmhSErNHWDPX++tKqYpTHTLOaNVp+k\nLKoWjqKSyAVSVv04C9KUvWCGkGDdctGkyhVfWVRkhknAJI1Zs1xMVUOXFVat+rK12NQtynOa0Uka\nLiOAzmAp2jNka5pFOIpOUGZct9vkVBOJsiSxG42pqQZJkVNS0tCqoQ1NUpaWElC1S/+3/X/mbfcK\nuqLyD+O76JKMIqmsmdWUXlykzPOYtuYuiJLJFauLqegoKPzc38JSDJxz1aujZIwua7xibfDe/B62\nbGApZ4ad0sISozo+kiThKjYN1UWTVRRJQZe1ZVvRlA1aap3D9Ahd1gjLiL7WIxUZSBJH6RF9vc9O\nvE1TaeEqdUqpxCvn1XVMUpgXcxRJwVHc6jhYEifeKXvpYwzJJBMJfW2DmtLgJNsFwCvGOIsWYpWx\nKDPMdulqV8hETCYSasrF+BshxCI8+vnfP1lS0eUammRzkv2cmrz6QtJVioxZ8RBT7lKySId4AeEq\nRUouPJQvWEFLyy0kjK90i/FXhOtL4Jd94J6HyrC0jmZolIUg8mNs10JCqojDp9owiiJTazpL366t\nD3dpdN0lUfqiqLccjvdGOAvj0csJV8Jk6HPrjfWloPM82dp/MiDLCjRNQZJlth8cc3o0JYtTag2L\n6ThAUarpyZ3HJ6xutJdVozwrUBSF0cBjurCR6K3UybKSOE7J0oLJyOfRg2NUXeHO6+voulJNPeoq\nk2nA4f4E3TTQNYXxOGA2i7h5c4UgSBiPgypDrxC0mjayUk2hbW8P6fWqKcW8qKbe9vfHDAYenYUj\nfb9bp9t2sW2DJMmJkgzLrG6WQZgSJzmr/QaObZDlJdN5SJxWy5xNE9YW/lxnqFkGzmKK8nnQVQVd\nU/Gj5LkVIi+MidIMP864tlKRLS9KCOKUbqtGGKZM/Cqq42wqUVdV7u8PuLnWYa3tYura8gYVZ/nS\nu2lvOF0K5s9jEkQY2ssRruOZx6OTEZvtFxtPfhppXnAwnVMKwcPBiL5bW1bqzshWKQTvbu9wrdVE\nV1WejCcgQU3XKURJlOcceR5d22Z/NqNuPg1SNlR1GceTFsVS92RpGh+fnuBoOptunUPPo6brVbi1\nBIMwQFeUJdkCKud4VcXRKyH+nj+nKEtW7BrX602MxaRmLkqeeBP8LKVvOZiKyiAKaBiV/YQiyTia\nvpwyXGvViaOMnw4PKSh5o9Vn3a4vKlYBqqwwigNKSfBOe4OWYXEc+2RluQixvogPpoeUogrCDosM\nRZY/s804TAMc1UBdEDxL1jGV6tx3VYOu4dLRK9NWL4to6w6aXHnMpWXOJAupKQY1RcdSDHbjEWtG\ni57e4IrdWX6mT6JTplnIitlgKzrBUDS6eh1ZkqqqnVZHlRSMRVsxKwssxUBfkL8Vo419LihbkiQ0\nSWU7PsBVqoiitt5Ak58S/0k2q84nWaUUJWEZcdXcRJd0xvmEttYiLCMUSaardZCReRJvMc6H+EVA\nR+vQ1brUlDqJSBCU9PRVysU0JEbGyJvyJHrAa87b6LKJLhtosl5Vu0hpKJ0LAn9V0pYES0JCRn7G\ntDQRAWE5wZRd4tIjKqcYzwmzLsnJRUxBgiE/3ztRkhRMuQtUROtFZAtAkFPy4oif5yErDwEFRXpW\ny/hVwq8I15fAL/vAvQxkRV4K6D9tBTE+mqKZGnsPjrAcY9niq3dqvzCRvSRVQdhnxqefPmampeO2\nbLbvH9FeVNhCP154SsmUZYk/j7EcnThMqdVNNq51sGomo9M5nX6dTr+Oaen0F63CM5SlYHQ6p9Vy\n8OYh/+///T5lUXLjlRXufXxAt+uyeaXDo4dHCCG4crXNzs6Y2SzEMDVGI59Wu4bnRQvzUcF0FtJs\nOqRpQa/nsrraQFGkhYt8DdPU2NhooWkqcZwxHPnU3apFGkYZXhDTbjlL0hRGKYahMZ2HKIuIlVbD\nXorkz46hIsu0Gw7beyO29oZYpo4fJjhWNcn5YGfA1AtpufYLCVc1hejxww+3ee3ayqXLlELg2hat\nmsXUj7AMrRKEKzKNukUYptiGjhclS32WBLRqFllREKeVqHd/OENVZIIkrUTsi9buZURvZzip9FOf\nMiP95PAUR9cvRA+Nw4hr3eYzNhKfhTQvWKu7i8lDHVOtqolhmvH9R0+41a0u1qoi4+g6tqbh6BoN\n08RLE1qWRZhl9GwbXamyGk1V5ZPBgKZpPg2clmWSoiKZuqIQ5Rl3Or3KawvBge/RtmwMVeHY9zkJ\nAroLny8BzJKYe5MhIDGMQ3q2syRQaVGw403JyspyAgF13bhxM/oAACAASURBVMDVjIURamVyaSgK\nfpZyHHl4Wbo0P3Ucg9E8ICkLXm/1+bvDx1xxGmiygqkotHWLvzt6zKtuF1vVkZBo6Sb6whj1/nxA\nTTWWVa6aaiz9uVRZwThnSjrLYkpRosmfvpYITmMfS9EwFuutROoyhlx9JkGekJYFuSgQwH48xZQ1\nVEmhWLjONzSHR8EJQgjaukNUpnh5hKUYeHnEXjSklEpqsomjmtRUk6TMiYuEvWSALEn4RYwqKXhF\nyHEyoak5y0raWRXrPCRJoq01+Mh/hKHoF7RdSZEgIaErT0X2qUgxZZNRPqajtVAlFVM2llWwXOQk\nZUpNdTEXLb6G2kAgUCQZW7ZJyoT70Yc4co1SjZlHc1paDyFK/HKOqzQWGkkZQ7aeEfgfp1vUlNZi\n+2WOs8cIUSxjfKCaVlQlg5ICTTLRJGtZ7TrN7pEKHwUdRdKQJQVTbi2MT39x5EaS1GeNTUXMy2Ql\nyjgo0tOA668qfkW4vgR+2QfuyyJNUgxLp7XSQNMr48X9h8dfqLXoz8KlGP48zsgWPHuyRUHC4GhK\no11bki2AKExBQJrkJHGG7RroukYUpORZgaopODWLwEto9+pomvqM71RZCh7fOwQEK+stBqdzbNug\n1XGpuRZlKWi0HIqy4GB3jBDQ6tS4dr1LHGUUpWA6Cen36/zw3fscH89I0oLX7qzTbNm4rkVRlHzw\nsx1MU+fKZnsZXu37CYahoWkKbs1k68mAlX4DTZORZYnauTbbweGU3YMxtqGRZAVFXkX7nIcsy2ia\nwt1HR6z167g1k0bNxNSfVrvqjkm/7b6QbAHMgxhNVXjn9ubyMS+sxOKyLLF7MqHlVpE+pRDEWYZt\n6AsneWX5GcZZzuFwxnAe0K07/PDeNlleULMMVEVm5se4loGhqbRrNpqqMI9iGpf4XwHULRPbuDjF\nCFU8z/5kjq1rS4F/wzI/N9mCcy0hWcJQn/p7aYrCldZTg1dTq0iWKsvVcsCTyRRNro5Jc1HVsjSN\ntCjwksqO4GyaD6gIzGIbR2G4JG22qrFZb5AWBUGWcb3RZMOt42cph/68IqayQlaWDOOQN9t9JmlM\nVhS8e7iDrqh0TYuabpAWOUlZUNeqv6dpjKOeTU2qlEKwYtVomU+PueMY/Phgjxtui7wsK+IoSuqa\nwcP5iJ1gykNviCJJ7AQTgjzjOPToGA5RmXEaB6zb7nI/DUVlnsX4eYqrGUuyBZCUVUh4kKccxx41\n1SAtc7b8EcPU5yTxaGoWhqKyG445jGf4RUJLtxmkPn3DRUjgqAaOqleGrAhOkzmyJDHNQmRJoqFZ\n/Gy2S03VmeUxq2aDnWjIbWeNDbPDPX8PWzEwFZ2CgkKIysE9D1EkmaTMsBWDvtFEk1WSsrr+xGV6\noXp1HqtG9wLZKkXJ/XALW7FwFHvRohNYytmxlzDkp95tWZnxSXiPhtpgzVhDlmQs2eQ4O8CUbXKR\nMc0nyJKCl89YUzeZFEMaTp1GsUJb6+GodZIyYpif0FSrQamw8EhEjH5On2XKzlLTBWBLLqqkX1rl\nKsnQZOsCcbHlDqbcRJWf/hjKRID6Aud6gEIkpGKK+pyKVSlySrLnTioKkROXO2hy59Lnz+OsO/JV\nx1eZcH0hqlqWJX/2Z3/Gd7/7Xf74j/+YnZ2dC8///d//Pd/5znf47ne/y1//9V+/1Gv+I0EIQVmU\nPP5g+zOXbXTrFypZkiTRXX+q10mTDG8SvNT75llBufBeelkUeYEoxTOP15s2B9tDRicz+utNmu0a\nhqnRXamj6gqzcbVNm9e76LpKnhV8/P4O6aKyApXdwdpme7l/d97Y4OrNLidHU44PJ5RlWfk0aSrN\nTo3f+NYtegvD1zTJ6ffrvP21q1iWTqNpo6gVsVE1mSjKyPOC/f0xpqVhWzoHhxPuPzxiNo+Ik+zC\nMb16pbpguDWLRt1me29U2VgMZmysN7lza4XVlQamoeJHKX4Qs3s4Zv9owmDkLdf1xitrzLwY09BQ\nVWWp3fr5/X0+fHDwUse85dq0XBs/TJaPhXFGXlSO2O26vSQeqiLTeU7moaWr3Nns8ea1VWRZ4nq/\nzZPjKXlWkmQFpqHRrFmM/RA/rt5r4kdLn7hPQ1erFpkQYqkLOsONXutSvdbHhyfPLPsiHM7nnPr+\npc8FScqJVz13NPeWfmdQfYY3Wk00RaZfq8TCkyhiEoZsTSbc7nYRSJxtSZCm7M2r1pKfpgRZhiJJ\nDMIQS9OwNY111+VqvUG2OO62qtEyLVqLKKCkyPlP65X4+8F4xN3xAFs16Fs2HcvhyPf4/v4TylJg\nqhpennGl1iDMc2Zpdby3vAk7/nS5H1lR8OPjfQ5DH1mSeOyNsVSNmqrzg5NtdFnlltvhv6zcoG1Y\nNDULS1XxixRJgofzIdec5gVSBeCoOtYlxKShmViKRl0z0SSZoEj4YLqPreq81djgZq2LqxrMsxhT\n0agpOtMsBGDTapGUOWGeEhcZmSgwZBVL0WlrNrvhCGdBYKIiZV5E6JJKQzN5f/4ER9bZjYaVCF9W\nWDfb3PV32QpPcNTK0qGrutyy17AXMT6qpDDPA3aiEw7iAT/zHj2zT0II0rL6fo+y6fJvWZLp692l\nwem88PgouM/jaLsaClIsSkr2kwMyUQ27SELCVmzG6ZioiEhETElJXEZEZUhdqWNIJsfpAY+T+4yy\nUxzVYZAeMs2HALS0HleMm+wmD4nLEF02MWWbk3SHQlTXw7P/n0GVjWec5gEsuY4lP9umv4zMxGJK\nKYrFMbn8ui+hIPOUpJUiJSoPl/8uCMnEbLmOqNz91Puq2Mqrl677V/jF4wtVuP72b/+WR48e8b3v\nfY+bN2/yl3/5l/zhH/4hUAUT/8mf/Al/9Vd/xR/90R/xF3/xF/ze7/0e77777nNf8yL8spkqQOTH\nhPMQc+Gj9OC9x/Q2OzS67udyhT/DWVsRoFjE6Zj2Z+fembbxmZOFjmMwn0VLrZhmqNiueel2tnou\nzc7FkvVsEnC4U11owiClvgjALkuxDKw+Q+DHfPDeE/Jc0Fup480j/q+/eY/5JGD9aodXbq/x+OEx\n3X69Er3XTKaTECFA11WmY5+trQHDwRzb1vmd33mN+TwiDCtBvSzLzOchrmuxuzvCdau8tfHEp9+r\nM51VbUhgWXWSJInDwwlBmDCdR+zsDQnDlNV+gyd7I/KsoNepkWUlpqHh+TGjWYCqnJmkSkRJxnQe\n0nTt5bHxoxTXMdA0BU1VeLg7IEnzymLCqMxwhQAhWGrKjkZzGk5VqQmilLwosU19aT8BcDicoanq\nBeuIMMvwvJj90ZyO65At1tdwTG6utkmLnH+9v1u1H+0qxFkIqsxFu3q/oiwZeyHGJQam4yDCi5KX\nylrs1ZyX8uQ6g6FWk3qXWUlMwoiiLFFlme3plPuDAQ3LxNY0Dmbzqop4zgV+niScBgFN01oGV5+5\nxOtK5ah+bzQkTFNyIUiKgrZlceDP6Vh2ZTibxPyfj+5xo1EZlj6ajHC0akrvvZND8qIkyFLe6a/R\nMExuNlocBB4dy2bXm7Fec/HSlLpuEBd5RXwW4nZFlhnFFXk5DD26pk0p4GEwoq2YrNv1qoVo2Fiq\nhiHLxGUVEHx3NuBbvWvIkkQJjNOIK3aDrulQ102GcYAqyU9bqJLMdjjB1cxnyBgsbGs0E1PRyIXg\nqtOq2nl5jKVonCQeZVkwSHxuuysYC/J2GM8YpwGmopGWOcM0oK6aTPOQnahquUZlSlAkvFW/UlWC\nJRUZib14hAA6ust1q09cJEzTkGE259fcawyzGZFIOU4mFGXBpllFd2WioKE6zIuA9U9VsQBSkTHK\nZriqQynKhd6r2mdbtjAXAntTNmiqDbpam1kxJyxibNniUfQYqIKtDVnHVV0m+ZiojJAlhRV1FU3R\nMBYVqlk5BiFQZIXX7LcRekocZ4RlQENtVYosSQYkdElHkw1kScGSayhS1bWYFqfP+HB9WRhyHUmS\nCYshg/xn1JUr5CIiFR7qYnJQkuQLDvNV5Ie81HIpkoEqOctzpHrsq2E58d8KX+UK1xdyRPvJT37C\nt7/9bQDeeecdPvroo+Vzjx8/5urVqzQaFYv/5je/yY9//GM++OCD577mqw5FkVHP3STv/Por1eOf\nQ4MVBwnTwZzV6886C/uzkMYlE4NfBGVZsvvohJuvrwOLiKHnbOfJ/pjOSgPdeLpvjZaztIAI5hHz\naUia5tSbNoPjGfWGRZZVRp2WbfCt//zasjLl1i3efOsKiiLT7lT7c3uxHY2mze72kJW1BkVRMPci\nXMfg9TfWybKCw8MJUZRx9WqHWs3EWJCYTsel23VRFZn1RWXw8GhS+X+dQ54Xy/2c+zGb662FOamF\noio83hmw1mvQqFeeYGlWMJtHjMY+iiYTJ1llXqtIqIpS+Y+VJbJc/X3rSrcKjR7OsVd1rq21LhCn\n8SykEALb1Jj7Meu9BtdWn04prbRd9k+nhHFKGKd0m5W2o+laz5CTKMnwooTNboMwqbITSyGoWQZC\nCPaGM1bbdR4dDXl8NOQPf/0NFEXmcDwHBCtNl6wo+en2AV+7usY8SgiSlHeur3My87F1jc5LenN9\n3hZCVpTPDaxWFQVLVRmGEVdcl9ypYWsa8zhmazzm1U6HB/6Qq80G5mJq8Xa3S5CmeElJ17LOvU9B\nVhbUDYOGYaJIEke+x4Zbp6brnAY+Hw8HNA2T31jbZBLH6IrKjUaramMqKj3LpmGYREXGPE2o69VF\n8narQ5RnrNVcvDQhFgV/t7/FhlOvwq6ReTgb8Wa7z5vtfpWfqBkM4oCWYfH13jrxPGGaxvzodJ+2\nafLN7gZenrFmuliqyv90tTqXT2KfFavGm40+uqIsydRuOOWa06Jzzjn+tvvstePD2RFv1FcukLDr\nTnXeDWKPaRrhZQmv11fZDkasWQ00SWGaBmSiZM2o09VrzLKInuHy/mxnEWSd0dNcojLlmtVhmHr0\n9co+IisLxrnPptlmw2xjLNpVBYK6bldtRVEyzXwaao2uVudheMA1e4VJ5rGyCKO+ZW9cep4Yss66\nUe1rTb14nmYi5yg55Zq5sVwWoK48vX7qks6mscF+ckBZ5hwlx6wbGzyJnqBJKpGIsIXFvJzQUFqo\nqNxx3iIpIlQ0FEnQUNr0tOp8uBe+zy3rTRIR0ZCffqeVxX5LkkRXeyofOI/T7DE99eaXasXZShdL\nPhPkqyhc/H6l5RxBgSG3KruKUmVefEJdfX25TC58FEw06eWGYITIgM/OWM3LfZA0FPr/IdqNv2x8\nIcLl+z612lMxoKIo5HmOqqr4vo/rPj35HcfB9/0XvuZFaLXs5xKG/0goOw79lfozYdZCCLrd2qUh\n189DGmfEUXohquc8fvM/37nw74cf7bN6pY37Ka+wmq1j2lXLYDYJ0PTKX+sMtqlyfDhFV2QefXTA\nb//+6yiKwvB0zmwacvPVlcrAMC84OpigaiqvvblBnhdMxz6Oo7O+0a4sDeKM06MpH/xkm9ff3Kh+\n2QtYW2uSJBmjoc8//cNd/uB/fJvT0zmvvFKt2/Niej2XXs9lb39Mp+3w6isreH5Cx1CrQG1d5ZP7\nR9x5dZV/fW+LtbUGt2722T0YI2syx4MZQZByZaNNr+cuzVw7nRoTP+S3fv2VZ8xJJ7OQVsNmMPbZ\nP5nwyrUePddlfa156THv9VxmflWFuXG1e+kyuqXimDofPj6i06ld6uWV5QV2XrDWqS9F7MdjD8uo\nKlVCQKttczrxWOnUaLkWKyuLXE5dwgsTGk0by9D4X9e/CVQVt7P9cxtW5Sn2EiauL4uyFPxkZ583\nN1bJNEGnZj+j//LihK4BSV7wzSubZEXB3aNTsGSypGBjpcHNtS7/8mQXw9VRZBlbM3Atk+k04etX\nnt7QjuYeh7OAr2+s4aUpx57Hj/b2WKvXWelXVYYNIXjj2ippUUW8zJOEohQ8OR3x+7duAfD7jVef\nCdfen88Is4yNTh0rM0CqTFlPt0O+cX2DvlNdw36nW+M0DFhxavRwuT8e4NRNAnLKvORUCni91aeT\nOWy6dZpNm3daFu8PjrhT79K1qu/u/9C7wzSJMBUVU32q97lj9rEUnZ59+RTbGX6355IWBXvBhFv1\ni+ddGcHBaM5vr1xftA1zNuotHFUnjQsMZNp2jUHssak2cTWL3+28gaGoTNOQ/7rzE9q6zUCd07Bt\n/mn+Cb/Vv4OhqHyzfQP3UyHZ47lH23KoqSaWofJ15xajZE7LdPifr/wWhSip5wau9izZP9NjfVqM\nfhnWRQtJkpimcwSClv6URMwzn28036Cpu3x8MiQtU9atVZp1EyYx6+51ZtmEVbNLWNhYisU1ZRWA\nYRLTNRqMkiGxM6Jv31w425fUGxod+Rqm8vk8qVrlm6jy8ydKS1GwE3zANeedCxqwz4Oi1Ckp0RYt\nzChPqJUb1PSn9+Eg8zAUE/WSNudlCLMn6HIHVfmsQkBF6sLkZ5j6HeSvSPWs1/vFFDB+0fhChKtW\nqxEET3VHZVkuidOnnwuCANd1X/iaF2EyCb/IJn7l4E0CkjChu9G+fAE/ufzxS5BEafVf/mxfv9dz\nGQw8sjSvLBPykuZKg09+vs/1O089XYq8RFFl/DBleDJDUWTsmkmwKMUWRUkYJARBgixXYdu72yNq\ndQskqYroOZiQLSpLWV4ymcyJohRJwNpGi9PTOUUh8LyY48MJN271ee2NDXRDo4bE3t6IvCiZTkNq\nNYN3vnGdf/7BfTRdZWd7SL1hUpQCz4/pdV2mk5Dx2Gd9rWqX7OyOMDSlqoK1awwGHo+3TlhfayLK\nKqJntV9nPAnotmtYhsZg4DGZBTx8csJvvHOT12+u8uDRMe2Gs2xLBlHCva0TvvnmVaI4Q5VkRiOf\nNM6fOd7ncTiYIcsyvWZ6qbDejxJSK6fnOoxGF3VO4cLzKoxTFEMl9BO6DYfRvPLiCpOMW6ttdE0l\nzXJ6toPkVJ/lcFit6ydbB7yx2cefx/jEL30+vQiTIMI1jRcSNCEEaiYxm4RossxsEj2zzMFsTssy\nAYntgxGOriPikp8c7VGUgjXX5aeP9unoFtNxyMPxiNe6XbbGAe8fHUEsaFvVpF6cpvQUi7s7JwRJ\ngqLI/MHmLR6Mh9zdPkaWJRxNR5Kq9mwpBB3L5tibYxUKg8FTzV5I9b0rheDAn1fZis0O4Szhf7//\nc37vyk1c3eC6XkcKBYPQWy5/d3JK5LZwNJ1aofH3h4/577obvH51Ff1wRDRLeHw84N7RCe51nZqm\nc1trI/ySdw+eoCkyN2rV9SAoEsIixVF15lmCIknsx1Myp9Iv6QvLhks/ozTiMJphRSrb4ZhXa1V1\nKC5SbkkdoknCv4y3cGSdYeqhWQ3qVDfGk2BOUubYus6PvC0k4Jrd4d8mW/SVOr9mbDBNI1blJj2r\nznQcABJNzSaWq22b5SGGpNJWXN6fb/G6c4Wh51VtR39EYcC7e3f5T803KUTJgRijSxqZqDRdddXh\nx/O7XDfX6emX/6C5DPlC3zSQnn6eWZkhEGSyx2Z5nb14D5M6O9EJSm5z339CV+8yD1N24j0ykfKK\ndYekjNmKH3DDFDTbJlbQZWu+h1/OaEhrTMYRlizj4ZGUEZlIqSkva5ny/O9iITJE0WQUPXufi8sJ\nuYioKesv+T5nx8GgECUzsY++1Iu5hOTnljn/PrsoOJ8SzncJLqwTkuI+BVNs5Tcvee+bBGRAdslz\n/744uwf+srfhMnyhn7nf+MY3+Kd/+icAPvjgA27fvr187tatW+zs7DCdTknTlPfee4+vf/3rL3zN\n/x/g1K1fmOmpYenU209/+ZZFycOf7y3/LYRg5+ExgRczWwjCb7y2duGCvbd1SprkFHmJZRvUm05l\n03A6J01zirzg5GDC6mab3mqDtc0Wqq6w+2RQeXSlBeNRwNaDEyZDH0WV6XRdRFlyfDLlo5/tceVq\n5TAfBDE1t9IWCQGBn2A7BpubLUxTQ5FlwjAl8BN+7a1NXnttHT+IOTiYomsqw+Gcj+8eoOsKH3yw\nSximbO8McSydKMkJgoTv/9M9BiOPr791jV7HpdWweeVGnywr2FxtEcc5H35yQBAmFIXg6kZ1cRlP\nw6o9KYHnx2ztDnEsg3deryoqlqnhOpVP12eh03BQZInR7OIQhBdWFhzDWcCDvcFSnO5HCcfjOZ/s\nnOCFCVle4Nom69065kLnZ+kaq02X16/0URSZNMt5cDDgYDQjSjN+eG+HNM95cjrmnetreFFMlFak\n+WTqESbV36UQ7I2mzKPPR8QqZ/MXi+YlSaIQgiSrCOmT0YQou3jh7dccilJUxyeMOJjP6To2RVlN\nJG5PptzpdnF0DUvXeKPXI8wy2pbF71y/zs5kQrhYZ03X2Z5OuDs4xdQ0hmHIaeCzPZ0yjiMOfY/3\njvd5Mp3QMi06VlVR2XTr3G49vamchD773oy8rHRcsyQGAX6WkhYF//3GDXqWg6VqvNp8Wj0qRIks\nSVx3W+iKwrY3ZRgHKEjsh3OOA4+kyJEk+PbaDf6XV75GTdOJ8oyfj4/48XAfR9VoqCb7wYwPJ0eM\nk5DTOGCcRCAE2/6EO/UehqJyGM0X2q/L0dIt3mysLiwONJKiWtZWdFq6zV40YdVoUNOsZ7Sch/FT\nUfrr7hq3nD6lEHhFzJreZJKG/HS2zaPgBF1WaWg2bc1BPyfgl5EqXxVgVW+SigxXtfnh7B6WYnCS\nTfh2861FYiUgKg+tWeYv9Vu/Xn/jAtnKypx5/uzwxSz3yBbbq0rq0vqhFCVHyTGjfEIqMgpRUIqS\nK+ZVGmqDqAhRJJUNY4NRNmCUDTGVyk0+L3O2ogfM8iGlKHkw/5hRdspB+oSm3MFVmpjnpgAVSUX7\nBbi5CyEIyiGu2r/weCYi5sU+ptx6LtkSoqQUl58ThYhJyykv0+ArREQp4peaUtTl21jyb1y6H1UL\n8lf4LHwh0fzNmzf5wQ9+wPe+9z1+8IMf8Od//ue8++67fPDBB7z99ttsbGzwp3/6p/zN3/wN3/nO\nd/jWt7516Wva7edUe87hly1++0VBkqWlkP3Jx3u0+p/PUPKz1t1ZqdbnOAaD4xmiFLT6dexaRXT8\neYSmVz35OKysH2RZYj4NaHXdZXurLEo0XUXTVfa3h9QbNrq5CBrOSwxTpdVxkYBm20FVZTwvptl0\nmIx9DnZGvPrGOo2mxXQSEoUJ9+8dcrQ/5uYrK0ynIUGQYOgK7Y6L78WYlso/fv9jXNfi4GDCxmaL\nbrfO1752jckk5Ph4imHoXLvaISsKWi0Ht2ZimhqyLOHWTLqdGqoi86P3tjANjZXF8bVMndHEp9Ww\n6XVqeH7CSq9qwela5dlkWTpHpzMURcE0VWxTRwKGk4C5H1N3TDRV+cw2nKrIOJaOszAqPRzMOBrN\nqyqja3Ey9qg7lfA/yws+3DrECxO+dmt9YfVQtRRc1yRPq1/vszAmTnMcU8ePErZPJxVxFtCpOzRt\nC0mCJM9pOhYH4zn7ozmtmlVVzNJs6bs1mPtIkvxSYvkzOIb+UkapqiRz6vu0bIuaoWN8qnqdFSXz\nJOFg5rFaqww3k6KgYZhcbTXpOQ62rmFpGtuTCS3LomlZqLLMvx0cYKoqV5tPb8iyJNFzHNKiYJrE\nFCW8vbKKplRu8k3DYsOtP7PtaVGwPZ/SNi0GoU+QZDyaj+jbNcZxhK4o9CyHj0an/OBwm5Zh8sSb\nsFF7+mNp25uiyTK1hUXDcejhZylZWTBLE17r9/HDhINgziyJSMqKoM3SBBmJURIyzxJWbJewyOib\nDpZaVeRqmsHHsxPiIuNardI6uaqOcU7LdRr7GLLKNIvQZYWdcIwuq0gSHEQz6pp5gRDthGOu2m16\nhkOQp1jKU2uNjl7DPRe9o0gysyyiqzok5GRlzo8nT2hqDqnIsRR9SZx+OH2AX8Q4srF0qT9KxqwZ\nbWRJpqc3kJC4Za0t/MM0DFljkvkkeUopV8aoaZkh4EI7sRAFqcgxZYNhNkFCRpNV0jJjlE9wlIte\nWJIkocoqpShwZJtxPsGSTRRJ5SDdZzvepqY4SBJMsglXzGu4iktaxmRkyJLMK9brJCJmvbFGHgvW\njWtoksa8GGPKNsP8EEepI0sK6sLuoRA5sQjQpJf/Tp3f5pIS7VNtOBkVCWUZfH0ZMuGRiCn6Jaao\nghKQzlW3XgyVzkt5a52fpBSiJCl/BpKKREEhTlCk1mes4d8HX2XRvCSeN0P+FcEvuzT4eVGW5YVf\nkXGQYH7q4KdxtiQxL8L4ZEaz6y6J2svgfDl1eDSlLAW1hsVsHLCy0SIKU06PptRcg95a9QWJwoQo\nSGme0xUJIXh495Dbb14ubH18/4hbd9aYz0JsS0fVVYancz58f5fX3lxjOPC5cr2LN4+YzyO6vTph\nENPpVh5de7tD+isNoijDMFR+8t5jhJC4crVNr9egVjM4PJxycDBG0xWuXOngzSPGk4BSCH79mzfJ\nsoIoTiviJUl8ePeAtZUGnbaDtqgiRXHGcOyx2m+gKjJhlGIaGkenMyRJYrVf3ZS//6/3uXmly7VF\n5csLEu4/OeHOjT7up6JzDgczHFOn8Zx4nzMcDaecjAM6TYe8KLB0lbpTESRZqjy5zkxAz6PTqT3T\ncoRKK/XDT7a5tdbBMTR0XatK1JJEVhSXitX3RlOudJrsDCdYmkaYpphaVTWDSt91MvfYaF1+cS6F\neOkpxTQvnht0fTz3GAQBLctiEsXc7nb44OiIjmNzrdlcutALIfjo5JTX+z1UWWZnOmUUhvxav7/U\nhX14esLrnS6DKCRMM5KiYM2tEWc5758c8Uq7ze12VZHKy5JRFHLoe7zRrSpGoyjkk/GA3964xifj\nAbcabY4Cj2FYTUTealY/BH90vM/b3RWSouA49LhZb+FnKfvBnLc7q8t9++fjba7YTeIyZ8Ou4+kZ\naziEecZ/3fmYP1h/hUEcsmI5PPRG1FUDJIl1y8VQT2RhtQAAIABJREFUVO7PB1x32qiyzDSL2LQb\n3JudcrveQ5Yk/p/De/x27waZKIiLDAmJnlFjmAZ09aryosoKWVmQi3LpQj/LIkxF4zCasmm10GSF\nQeLjqgY/Hu/Q1E3eajwr9v7EO+RRcMLt2gr/NtkiESnX7D6v2WtoikpWZrS1WuUpmIzp6nUMWcVW\nDPKy5CQdsxWd8JZzjZZWY5jPsWWDmvr0+/IkPKSjNahrDuNsjiapuOrlgxxxmaBJ6tIOIipiTNl4\npsVaiIKH4RbXzE0sxaIQBbvxHhv6Og+iB2Qi4bZ1h5P8hK7arUxXkThOD7ll3SYpY/aTbXJzThYp\nvGa9jSppzIsJx8kOpuzQ09cwJHtJ9obZPgUFK9q1F301PhdKUTArdmkoV5kUD+mor33pdQpRLklV\ntog1UqU6QXEPXVpBkz8fWRKiIlmq/LLtzn8/fJVbir8yPv0SKMuSYBaim9WNbnQ04eDhMaZjLAnV\nwaOLJqfeJMCwtJeyk4jDtBK1f474n/Ps3nZNZEUmzwq6qw3EYp1O3aTRqpHnVZXr0ccHmLaGN4uo\n1U0e3zukVrdQZAm7dpFsJHHGwc6IG69WNxzD1Dg6mFTBx6ZKt1+n3nRwHJ27Hx1w5VqH/mqDve0h\ns2nAjVdWmIwrd/npJERVZUZDj8DP+K1v31lMKFaVuIODCbdvr3H1SgfbNph7EaKEV26toOsqP/1g\nh739ETXHIAgS2i0Hw1A5Pp0xHPtLkXkYJTx4fIxAotdx8YKqrVZzDIxF1a/dsAmjlLpb6YQMXWW9\n31jmK144xpaBudjG8SzEWnzWo2kVKC1JEo/3h9QsA7dmstJyORl7XFttoSoKw1mAF8a4tnnB3V2I\nKiNxEkbEcYahqRQL37WzX5eb3eZi4ECwN5hWLbkFIfxk/5R+46LI+izix1BVGrZJy7EvVrgkkOBS\nD64ozdgdT2k7LzfR+KJKWCEETcukaVm0bYu0LHg4HHG12WDoh7QsszI4TVNkWaK1mEjUFYUrjcay\n+gdwOPdYc11+fHjAjVYL19BxNJ29eUWih2HArVab7dmEPW8OojJaVWSJHx3to8sKkyjES1MsVeM0\nDNjzp6zVXMI8ZWUhVB9HEaos0bWchaO9yv/x5C7fXr2GplSO/pIkcbXWpBAlQghOEp9+o4ZRKER5\nTs90OAw9SlEyiAO6psOdZg8vS9AlZZEFKeHqOraqE+c5cZlz1WkuCcWrbhdDUSuPLFnj+6ePeaOx\nQk01lpmDAGGeLXVgAGGRoi1idU4Sj5Zuk5QZs7zKWVy3mhjnIoL8PGGWRVyzu6waDUoEp+mcV+xV\nFGR6houp6MzziFWzyV4ywpFNRpnHqtFkKzpBReIfRh9SUw1yBOO8yinsnRO2l6JknHskIsVVbRzF\nWkb/XAZVUi9UszRZZZpXgvlUZMtcyqiMCYoAQzEwZZN5MScofcIypK/1sGUHS7WIioi60mCcj4iL\nsLJcUVtsR48YZwN+a+0/M/cDIhFQkxvkIsOSHVaMK0SFhyrrS4G7rdSpKS+vO3sZSJKMtZg4tKQO\nmfAJylOMl6hYZcKjJFvaQmSlR1aOicURsqQhoZCIA4TI0eSqAilJynPF7rmYXBpeLUiRpK9mpuJX\nucL1K8L1JVBkBfOhj7PwqlJ1lfZq64Kn1qd1W/ORx/7D4+eL58/BcoyXIltZmrN975B2v/7Myabp\n6nICMk1y/FlIu1dHkiW2HxzT7tXprTVxXAu3YXG0N2Z36xTL1knibGkRcQZVVdBNFU1Tlzcct26h\nGxrDU49W22Fna0CzZdNsO5WAuWbSW6mzebWLEIKDvTG+nyLLUHMtfv7BLp2eSxQllKWoomnMyhYi\nilJc1+TgYEKcZJimzmQa0GrarK01uXGtR80xcWsmtqXjeTFrq026bZeiKEmznHbTwbYMLFPDNDTS\nLKdeM7FMHSFg93CMIitYpo5lPHWqTrOcIEqfIV3nS+tTP8JdfN5BlGKbOlMvQtcUOs0apq6RFwX9\nVuXZlhclYZxyNPZoOBYClhWuWRDz08f7fOutGxRZRbROpz6FKJdRPXd3T+jUHf757jZfv7lBwzE5\nmfl4UcKt1c6lwuqJH+JaJjvDKbahXSBGkiQ9N6BaU5SXJltn54IQgrvHA/ruxfPGVFUMVWUSRoRZ\nTse2ud5uUQhB3TS5ezrgx3sHvLW6uiRbZ9sgSRJb4/EyB7FjWby7t7c0Sp1GEWGWLcxPZVqmRd9x\nuDca8o3VdXJR0rVtZnHCke8hSWAoGn6eUAqJa/UGR4HPJIn4em8ddWEO2zJNaprBPK0sHrqWzTvd\ntWU1rjI8lfDzFD9LWLNcxknEjU6b07nH/dmApm7StWpERc48S9CVKgvSUrSq2qWb9MynUTeWqjFJ\nI+raszfAsxDwO26v8puLFoL3BcEyFPVCqLUpV95armYyTgMUSSItC1zNZNVsLMlWKQQ70ZiWZjPL\nI+IyIy1ztqMhv9t9k02zzffHH7NmNunrdXpGFfRtyBolJRtmG0VSqCkmhSh4xVnDVk1etddpaA5t\nrfq1HxQxh8mQlubS1uo01Bof+Vs4qoX+AsJ1hqzM+cC7y4reIS0zNEklKRNUSVuGWne0NqZskouc\n/eQAW7ZRJZW6WmdaTAiLiJ7WQ5d1BtkxfX0VR3GJigBN0qhpdYSa8vPJTylERi4y5sWYRITYkouj\n1i+dJsxFSi6ypVXEZYjKGYVIUV/Qfhxk93CUp3rBKo7JQJfqL2W7UJItfMM0SpHiFY/QpTq2co1C\n+EiSjiH30RbkTZHsF04WZuIUhcYz710SACnyF8hk/G+NXxGuL4Ff9oF7EWRFXpItqHy5Pqv959Rt\n2qtN5mOf6emcWvNya4fLMDyaohnqMxNwiiLTXozDP+9kO9oZEvgxa+csC9rnyp5lUXJ8MEGSYPNG\nD8c1sW3zgkkrVG2tH/3jPTwvIvBj8qIgz0uyNMc0NfK85PRoymwesXm1g2FoSBKkaV5NM6YFk0lA\nnmcLawaX4WBOp+1gGBp+kGAYKpNJwN27BxSFoNm0MU2NZsPhkwdHmKZGmlbVubMQbYAHj44xDR23\nZiKE4OP7hzRcC7dmMvNiJpMAVZWZTAM6raqKsX88IUtLVvv1RZajRLlw5i8KQZrmyLLEdB5eyF48\ng3uOXEdJimNVIdymrjGaB2R5wTyodGBQVYHG85DVTp3dkwmlKGk4FcEwdY1r/dbyM/znj5/w+tU+\n1rlcxGbN4nTq8c1XNlEVmaKsXOfX23XGfkScZWiKcqE1PA4i6paJpWvPJVeX4cHJkJZjfeaFvihL\nPjkZ0ncrh/i2Yz23DZkWJVlR4BpVYPS/7O5hKDJHc5/fuLJJ7ZK2aJhl/MveHuuui63rJGfO8bpG\nTdM58Dw263XysqTnVCajYZ5xp1MZbdZ0HU1Wlv5bpRCsuDV+rbvKWs3FVDV6loOhqByFHpM4IhMl\nLcNCArZmY24128t98tKESRIhgOPQ44bb4jj02fanlMDrK30Gcx9LUbnqtrBVjb5Vo2va2KrKzyYn\n3HTbzLOYDbsKevazlEHisxNMeLXexc8SFFm+9DiefR5BntDQzCVZO49H/oBR6jPLY7pGjd1wQlGW\npJTUVfNC9qKgmvhzNRMvj5GRWTUbbJptTpIZ/zi+xzcaN3BVi1HmISExzDwMuarm6rLGo+CI7XhA\nS6sRFAkdzWVehBwnY07SCQ21xkEy4Jq1utwnSZKoqw4y0jKI+kXnmiLJuIqDqRjcDx+DkFgxKuf5\nuEzYTw5xZJv3vZ9xGB8xycccZSdYkoWlWKRlgl969LQ+qqxSU1wUFAbZKS21g604OIpLroc0ih4C\nWNWu0NA62LKLoED7VNROLjJkSWE/vY8hW+iyiV+MSUSE8SkLhooIqUvClomYqJygy0/vAWeVred9\n5p8FRdIpySuLDTRyMaOQQgy5tyBXn8+YQJWal763LJlfSbIFvyJcXwq/7AN3GfKsYPujPf4/9t7j\nSZIjzfL8mZoaN3MePBkStApV1ay6emYuc9rj/oF73vvK7mFlh4i01DSRru4uFAocSB6cOGfGTXUP\n5uGZkRmZyCygG5hdPJG8REa4u6mpmT3/vve9195+eSl5Ophf6x5f5iV5VhC2AoKm/9oXEtQxPbb7\n6nbkyzabRpNnBedHY8bDOUVRUeYV48GcsOGtqzZFXmKv2mXDixmeb78QTeSHFg++PMG0BGVWka4q\nYUIKirzEb3g8vneG0tDbaFAUFZ99vM/WTovFPMVxLSoFaVYwmSRoDPZudNh/0kdaJr1exMX5lHYn\n5O23N5jPUxoNH8syuX2zy0avgetIpDQZj5cEvlOTt05IGDoMhgsug2bbTZ/xNGYZ57x7d5OD4zHt\nVrAmT2Hg0GkFV6o+F8M5RakIA2fdLtRaX9teXJ/XSjFdJPhu7WJeW3JUDGcxYuUSf4lW6FFWim4j\nWBugXncOHcsicJ9W3NK8YDBbstdponRdCZSmSeDade7icIrnWLiWtSZchmHQ8Or3flPvrcCx19Wc\nV0EYxpWK1qs0XxerEGlp1lWkOM85ms7ZiUJut6+/ng5nMz7o9bBWuYuV1kzSlN2owaPJmLut2pdp\nMwjwLZtpnnFvNOB8sSAtSwLbXuUnCg7nM365scXj6QRhGAyTGE9aPJlPuNVoUmrF8XzGL3p16Hil\nNWlV0nHrh0teVRwtpwySmLPlAkeaVFpTqIq3G21yVVdPz6cLMlXRc33GWYInLeZFTqJKftHaQgrB\nlhciDINSKU7TGR3bp2179NMl/zw8YMOJSKra5kDrF1u2pVa4puQsmWMLSVzllFphC5NlmbPpRmw6\nIbMywxYmmS4Z5TGeaeGbNl8vzthwIobFkkfLPjtuLTvoOfWe7Ocz/nn8EA38VestFIphPufLxRG3\n3B5tOyTX5SrP0CZTBR07ZJjP+Hy+TyR9brgbVLrCFCY7Tne9N2blEg14poMlJIsyZljOXqrjusSl\n0em8WrLldIhVUuu5MBgWIxZVjEaRVjFLHfMfGr/BMiwO00O6Vpebzi1itcQRLgfpY0rKOvOxGnFe\nHKNRGLbidHnKu94vSHWMNCSeGbxAtgAuigMC0SI0W7gr4iQNB9twX7i3C8O8Uh0z6uTRK3mLl2Rr\nWfUxDfvaatq3odBzMGqXeUf0cMSLhrn/X8ZPhOs74IdeuOsgTEHjJbE+9//wiPZmk2l/RtB6kVBl\nSU66zPDCFy/Ib4Ozirt5HlVZk6fB2ZQgcCiuyVt03Jo4zUZLzg6GbGw1UUrjhy6OZzMZLpiNl7ie\nzWKaMp8lzKcxm9utF6p2x/sjuhsN3v35bh3b49YGpMP+nN6qrZnnJVWlaLV9bFvi+TaPHpzj+Tab\nW02aLb/27AI2ehFJUrCMM95/fwfXtZnOUm7c6KCUpj+Y0+1cjSCSq6nBJMnxfYf9w1rLZZoCYRpY\n0qTVrG0Hzvt1bp8lJVIKGqFLnOQcn0/ptgIqpfjnPz7BMk0C3+bwbMLN1UDBcLLEdSw859Utj/Es\n5uhiijCMumVly3WsTivyrpCdrCj5+vCCzVZ4RcN1iSBwmM/T+nWeqUgVpWI4X9L0XabLlCQv1xOI\nSisw6rBnyzQZzJcE7tVq0b2zAYFjMYnT9d+9Ct+nOeolbLMOnL4k+MIwqJQmq0o2g3BlfmnwdX9A\n5NjrcOuG4+BISVbWGXkniwU7YUjH8xjES6ZZyoPxiLPlAt+U3Gq2wIBFlhPaDq6U/N+P7xFKm2VZ\nkJYlp4s5vzs9rM1LvYBhmnAratFPY6Z5hmdaPJ6PsYRJ03bWn9e3bG5HLXaCiGmRUShF23bIlEKh\niQKXSNvkqiJXinmZ4QmL02TOrt/g8WKMb1oUVcVZuqDteLRtD9us98uDxZBbQZstN+Sz6RkGcJBM\naNs+Ugjuz/t0nQDXrCNvvpydM8pjWpbLKI8pdIUnbSLpYArBcTLlwbLP++EWbwVdAumgtGJRZnTs\nAN+02bQj7i/P163CTJWUWtGUPr9p3yVROa5pcZyNmBUJW3aDhuXXFhkrdyETwVfLY0LTxRQmmcpJ\ndcGe28MWV3VYuSqxDHMthLeF9a1k61mEpo8jbBKV4K0mFn3h0zBDunaHiopNa4v97ICO1aFpNVnq\nGE94HGRPCIyApmyT6Jhte5e27CIQJFXCwhzSVjuEMsQSNvaKaC2qCdKwrlSgQrO92hf1cYzLUzwR\nvZaBax3Lc/19RVEiDee1pgehFtpXJAjDBhSS4NrnS52rqBA/Qu3V94WfCNd3wA+9cC/Dy6pM3Z02\nhjAI21c3fFVWGIaB5Vh4KyH66eOL+gb3Bi7z1+HRF8e0txrkSVFrn15C5PbvnRE2PN758AZxnFFk\nFUVeEbV8vFU7TQiD08MBe7c3aHdDXN9e63Mu4QUOn/z+Ec12gOfZuJ7Nx//6iM3tFq5XX8iNps+o\nP68rUKFDELg4rkWj4dZj5atqGsBkskQpTaPpY5p1YHSa5BRFxeHRkJs3Oldah8/CXVWA2i1/3Wod\nT2OyrKwfuMuUi9GCX36wx9nFDK01/dGCf/7jPhudgNCvH0pCGAjTIApcNp7xOMvzEseW17rCPwvf\ntdloh7Qib10Ju4wH8lfEZzSL8RwLaYorTvLPIwgcJrOEj+4fcWujRaU0908GbHciulFdjfMd+wpp\nMoXAFPW0omNJSqWwpUlZVevKSNNzGcyXTOKUXvT6rezvE5earM/PLtgM62PZCkN2mw36y5hSVXiW\nRS+oyUWlFP90eMiddptKKR6tLCMmaUqpNYFtIzAoteJsMeez/jn/ae8WDcel7XpkqmIzqK/FbT9c\nVewM5nnGThDSdF26ro9vWXRcj0mW0nLcmsilMaFl03AczuIFYOBJa92Ok0LQsGzmZcbtqM1Xk35t\nWxL5/P3Bo5r4RS1atsf+csKdsIVtSrqOj2kI7s+HtByv9r0qU86SBYHlrMxPU+ZVxntRj54bsuVG\nzIqMWZkSSgf/GVf6G36LDSeg0tC1A47TMT27rp6dpBPuBF223QbVaoIxVeVahH9pH3F/ccaiyvh5\nY5d0pd/asiNyVTIulvTzObkq+Hl0k1t+lz/MH/O2v4UlJJYwebA8pZ9PuetvcpHPqIyKpvTpWg0G\nxRTXcK5YVSRVika/lnYLYFHFzKvl2rdLGvU+coTDaX5OJEMSlYABnunRlvUXJsMw2HP3VkTSJjAD\nurLHp/HHxGpJS7ZZqgUCgRQWw6LPXIwo8op+fsq0GtGztjjN97GFg2XYLyVT82pERYX/re7s3w5p\nuGuypXRJqkdYz7XwMjUhVQNAkespihLLCEjVOak6wzKaGM9VyEo9R5EijVcnGDwPpWMU2YrQ/bjx\nE+H6DvihF+5NURYVh9+cvCCWvzgYYhisJxoBonbwnckWQGeriRACP3LpbTauXbNkmZHnFTfeqgW3\nli2JViTFWbXNHNfCtiWWbdHuhtgrknO8P8SUAntFJCxbEkQu9744RmlNpxuhNRRFycXZBMex1kRs\ne7fNoD/n6GDIxdmEre02o9GizjKcxnQ6EePRkr2bXVqtgE/+eMDOTosocsnzgtm8Ng2V0ly//yWK\nomL/cIDv2fzxs9r4NS9LTs+mbPQihqMlGyuPsSh0sW1JI3IJfYedzQY7my3G0yX7J2MuhnPeubP5\nQtvGdaxryZbWmv54sfbcgtouwrHkOoqqrCoWSU6wOseTRS2m/7bKURA4ZGnJrY3WmgQ7sq6YKaX5\n4+OTNRkZLxJsS2IKgWXW2jFhGHi2xTLNmcYZ0eozCmEQeS7TJMWV8qWE798DrjSZpCmOKfnDyQka\n2Gs2cKVknmVrHy+tNQfTKXfadbpAz6+JWM+vHz5HsxkYcLKYozX851t3OJjP2ApCvhz2udtqr8/p\nZbVMo5HCZNMP8aRFpRWDJK4rbar2BvMtm4btorSi5dRanJqMeWitGa7ieCzTxDFNNHA7ajHMY361\ns0OeVLTdWk8GcJEsaNkuwjDIVMXvh8fs+g023ZCTZMq8yDlN5tzym7imZMuL6Ng+n0/P2fYiFJpp\nkdY6Jumshf1n6ZzIciiUYlIkNG2PnhMihckwX3KezlmUGb606wpVMmFaJnTsq+alhVaE0qWx0nGl\nVU5k+ZxkY275XbacBqf5lE/n+9zyerzj7wAwrxIOkgHvBXsoNHtul1JVZLrgJB/wjr9HQ/o8iI/Z\ncp6xHjCMldXD61Vw5tUSC4lj2kyKGZ8uv0JrTSTDVWNOkKuck+yUeTVnWs5wDZdhNWTT3uSb+Gv6\nxYCD9AkSkw1rk0g2sA2bluxgCQthmEzLCdvhFmbhsmPfYMPeQaEodEZbbnxr5cp/zerWm0DXn2Ad\nWL2ojtAoHNHCFg1AIA1v7bulyNEYWEZIqs+RPO0OGJfVyGsmD18FRQKU104s/tjwE+H6DvihF+51\ncfLgDMuR2K6NvwpMfhZhKyCN81XL6/tv1cwnMY5rvXSzDc9neIFNUZS1wadnEy9SsrTAD92VRYQg\nywoOH14wn8Y0V1OGjZZPlhZY0lxPTV6cTJmMluze6rCcp+zc6BAEDlHT52h/QLcXMezPSdOC0WDB\n9l6bZtOrjVQdiRCC5TytK0BhHcrcaHi0OwHTacJwOOeTTw7p9SLeurOB+1x77OJiRqPh0WkHZFlB\nnpVIS2DJetpw/3BIXpacnc84OZvUrx95lKXCNAXNyCeOMw5PJ3z47g6397rX2hrESc7R+YR24+q3\nS8MwSLJiXb2CusplW08jWO4f9dnbaK0Jm+9aHJyP6TRe3Tq5PIeXU38XkznzNKcV1Nqvk+GMvV6T\nvKyrWZety+fhWHJNtp5Fy/deyDr898LBZErTrasUD4YjPGmSFiV5WbIVhSitOZsvUFrjyrpSJ4ya\ncF629KDWiblS0vN9fnd8hG2abPoBe40GO2FdYdj0gyvrMs/qKcUbUYOT5ZzzRd1qdqUkLgsCy8Y1\nJZHtcLKco5Tio/4JDdthlmVMipSO43OwmHCwmLLp+khhMivq680xJR3HozA1aZKz4QXMi4xBFjNI\nYyQGD+ZDboUtbgZNQsthXmQoNHmleK/R45vZgFwpWnb9YNv2ovXxRpbDJE/qSUdx6UlVEKwI2GW2\n4WE8piFdAunUbdFFnwpNqWupwZ3gqat4UhUkVU6h60pWz46YlTENy8cRkkJXjIolHStkx22xY7eo\nUHimTakrJsWSm16vNrJVBbYhaVg+rrAYFgvaVogv3JXBp0michxhIQ3ztckW1HonR9iYhiBWKbNy\nwS239oAal1MOsyMW1ZxEZRRVzt9Of4s0JLe9W5znZ4RmRGAGWIYkN3J8M6BfXNCSHZZqzqQY4QqP\nTMc0g4hlnJCT0pJdKl2S6CWB+fKkkEqXjMoTIvntju1vCo0iVn1cUWscLSO6kolYa8OeXs8GgrQ6\npSJDGh5SBOsuhTCsK2RL6RTjNYT0wnAQhkeungAKgzeXxPx74cdMuL7/J///T7Fxs4vjO+RZwfB4\ndO3vlHlJpb49IuZPweOvT3iVh213q8GDz49ZTBPyLOfg4QVB5NLq1qXl+18cM+rPQcOTB+e89d72\nlWnILMnXnlAAGztN3vtwF1XpdeC1MAWWZaIqzf6jC548vEAYBh/+6iaOLZErPdJwsCDPCrzA5v79\nM7KkwPdt/vt/+4yPPnqM71tY0uQ3v3kLx5aUpSKOM9Rq7RbLlIv+bP1ZgsDlvXe32ew1aDY8+sM5\n3U6ANAW72002NkK+vn/GMs54fDDg9HyKUprJLOVn79bHmaTXR1P4ns1bN66/idrPTfxZsiZbT05H\nXIxmiOdMTU0heHvv+mDrlyHLSx6fj7m92V6/x1+/dxPfselEPg3ffS0n+Gfxukam/xaI7FrgLwyD\nv9rbxbNsGq7D5irYXhgGcVFQVFXdBpKSu50O0zQlK59GmRSrScWT2Yy3W208Kfn7wyf83eE+Xw36\nV6KFKqX4p5NDClVhmaImy2XBHwdnaDTTPKPleLRXbUgAxzQ5ief8zfZN5kUOBnzY3gA0PTfgP27d\nXIdNK61YFBlxWfDl+AJPWpwmtXHtH4YnxEXOr3t7NB2XX7a3qbRilMUoremnSxqmQ9txcU0LX9rc\nCdvkqqJU1dPjVRWLMidTFaApVT3Rt+nWhGxapFRaMSvS1e9m/B8nn2BgEEiXaZFQ6Ion8ZBB/tRU\nd14mfD4/oWdHtO2Afj5nx23TtUM80+aW16UhXc6yCU+SPunKFf6j6SMWZcr95enaed41bfbTPqN8\nzqCY8Tet97msz0Sy1rNq3txnO6kyKiqsVUWuYzX5y8Yv8EwPW9jsOdt0ZIuu1eUXwQcMqxF79i6u\n6dGzejiiljGUOucgO+AkPUKj2bS2GZTnJFVCScFJtk8gGozzAbZw8EW9J01DorViXPZf+hkLnbFp\n3XnjY8vV62QFa3L91MjzOqKjdEmh6vNqGh4t6xeE5h0cUd9vEnVAoSYv/F2qDtEviQi6DpZxC9Po\nkOsvUfr1839/Qo2fKlzfAWVespgscXwHc/WwxYAyr/AilzIvEaZgMVnSPxrVNxylX3Ce/z7guBZe\n4LyU3ZumYPtml0bbR1V67bF1WW2Lmh7Vitj82W/efqEK54fuFQI2HszJ0hLLMqkqRbDSpRmGQW+z\nwcnBkO5Gg92btd+Y7UiSuCZtnW6I69kc7A/Z2IhwPQvPd1Crb2G+bxMELh999ATft9nZafHw4QUY\nBoHvYNuSzZUNRpoV64y+/cMRvm8zGM7Z7DWZTJfcvb3BZq/Bo/0Bt292ubnbQSmFUpqNblRPE1YV\nh6cjbEuu25bnwzmO9aIFxyWKouLobEL3GVuPslKcDmd0mwHnozkn/Rlv7V5P1qaLhCQrrhXjP3sO\n86pir9d6Y1L1Y4VnWYyTmLQsKZVilMQs8oI7nVp8/GA04larRdu7ai0ROQ72amLy68GAUZKwEdRu\n7l8Ph8zSlBvNFr/Z3eNkPuNG1FhZfCjyqsLnaa54AAAgAElEQVSTkiezCe93NngwGfFuq4MnLT46\nPyFyHPbCiJPlAksIPro4pev6BJZNy6kf1o/nEzxp089imrbLRbzg68mQvaDBV5MLtr0IKQTjPGWz\nEbJp1vviTtim69Zkwzbr1q/SikmR0bRdmrbLP/b36Tg+R/GUXb+BI0xGeUyp9do1vp8tuT8f8MvW\nNraQPFwM8Z/Rk43zGNesW3SBtJkWCVopTrMZua5YVnUI+6+ae7imhWmIlQWEQccKCC2Xw2SE0ooH\ny3NcYSGFYFlmTIpl7fdlOiRVgSMsOlZApkqm5ZKeE6HRKKX5dL5PSUWFYtOuneQrrVhWCQ3TZz89\np2e/WazZsooZFGPa1svSEBSmIXiU7dORbSxh0RARHwY/J9MZaZWS67wWwBsWd713cU0XV7h0rC6F\nzrENtxbwG+B6NnYZoKgYlPXQQkN2iNX82iqX0opvkn+h1CkN+WZfqKbVMZ54tXFqTVlLHNFEa4Wm\nekFMX5HVonmsF3RbAJZoYT7nt6V1hTRaL7WKSNV9DJy1bqvUAyo9ROBjGDaG9qj06EdnD/FjrnD9\nRLi+A8qiYnAyQkq5dpZXlWY+WhC2Aw6+OibqhLi+Q6MTEjT975Vsaa2pygphClzfqWN8wpdvtsso\nmcUsYXg+oyyqtSWEtExsR2I7EmmZq2NRLzVeDRsey0XGcDhnNo7Z3nuqz6grbQZ7N6+auwqzzi/E\nMMjzEs93WC5SlILeRlQ/lGyTLCuZTJbcutVlc7NBWVZIadLtRi98u3v0pI9ry7V4fjJdsrfTIVpN\nInZaAUVZcfd2D9uSKKWwLIllmSRJTpzm9EcLNjrhyvrhqQ2EbV/fqoO6aoLBFQ1XWVUIw+B8uCDy\nHX5+d5tsNa0pn2kxp3nB333ykG4jWPtzPYtnbxizJKtdzld/v0gyziaLKzYT/9NBw/94/IRf7dQm\np1vhU41Jx/PWxOpliGx7/TehbTNOEr4cXPC/vvsBjpRsB+F6qOVkMefBZMQ77W6ddZhlHC9mvNPu\n0rAdBumS240W20FEx/X4etTn7VZNkkqtWBYFbbeufmHAbtDAEia+tDhezLgRNkmrsn7tIkNrzc1O\niyKtKJWi0opPR2dseyFqNYF5spzxX47v8bPmBrMio9AVd8I2aVWSrkKvu06AZ1pMixRbmESWQ9v2\nMFdt1a7jX/HSila5jrX9hUlc5limZMMJCUybbadBzwmJLBfTEJym03q/mxZN+/KBqWlKv9Z3GYLT\nbMq0ipmVKVII7vqbmMIkNB2sVTbittsirQoyVVChcIVNXGVIIXmUnJGqnIb0+Do+4oa78cZkC2or\niIYMEYbgUXJIJIO1TmpazrkoBkzLOS3ZoGO1VhW1iEAGHGVHWIZFqlJ27V3+uPyYYdGnZbU4yY84\nz0+56dzhIHtIJJuYhqATNjifXzAuLjjJDhCGQSCaCMMgUQsqXWKLp9ffZes/Eh1s8800Tt9GtmoI\npGGTqCG5WlCwfCFDURgWJi7z6gECicD+1pZfqSdULF4qoJdG94pIXhg+ptEEKpReoiko9AMs8WI8\n1A+JnwjXd8APvXCvgilNHM/GtMw64sexqMoKJ3AQQuAEDmmcXevH9TqY9GdYztMR+ueRLjNGFzOi\nlo9SmkdfHHPzrY1vXTPPd2h1Q+azBD9wyZK8DrYWxlp7pirFk/vnBA0P0xTEy2wtXr/E4GKGKhW/\n/Ms7658ppfn8j/u02iGev4oYiTPiZY4pa1KXZSUX51O+/uqEu29v0umEnJ9NcV2Lzz8/Znu7SVkq\notDFcVZCfstc5yM+i3sPznC9ugUZRS7Nho+UtfGn59kkacGjJwNc16KqFOf9Oa2GhykE+ycj5ssM\n25J02yEnZ1M6q4qV8wzZyvKS8TRei9+hrhjGSUGS5Wsd1yf3jwk9h91eg3mc0Qw9kqxAaX3F3kEp\nzW6vwcY1Hlzw9IaRZAWR57zQugy91wuU/qGQFAVn88Vaq/U8LFPwyckpvSAgdByysuR0Nqfp1rqQ\npCgQz+i1rsPjyYSO53GxXNLxPH7e28SzLEZJwiCJaTr11G3DcfAti/3plN2owflyyd1Wi8Cy0cDb\nrS7hyqcLoO14RHZ9vWoN4yyhUPWEcaEUgVWf60pr5kVGy/Zoux6lqogshz+OTtlrtTBLg3vTAYsi\n42bYwjElTxZjLCE4SubsuCGfjs/5VWcHUwg+Gh5zJ2yx4zVwn4nbGWRLfFlXpPrpAseUSGG+MDn8\nPELL4SAZ8164iS1MWra/dqSflynDPL4S7dPP5oyKmJ4TEkiHQbGgZQfsuR3Q0DA9plXCMJ/TtHyS\nKmdSLDlIBmS6oGuFFEohDGhbYa35sjtIYRJJj7aM+Lvxp7ztv3n23qxaMK8WhKZPqStKXWEZJsIQ\n2IbFRd7HMiQVJdKQnGQn9RfLak5XdrGEhYnJcX5IpjI+DH7JprNFS7YJjJCZmnDLuYtjuLjCY6PZ\n4XR+wU33bTIdM68mJHqOwKRr7WAbV3McK11iYDBW5zTl9+95dam9UrrAFiGueX1KiWEYuKJHrseY\nRvCtlhKm4b1yWrHUYwzsF16njgIKAY3WJaYRXVtV+6HwE+H6DvihF+7bIO26IrQY163Fj//2i5XW\nSXPvo4e4gYvt2uuq0cnDc4QpXiu8ejpaEM9TNKwnCZ/F5aQh1BdbZ+vFaJ+XoShK2t0IpRSPvjrB\n8Wwc1+LBVye0eyEXp1PSNGdzZe6arETcl87zdfxO7e01HS85ORzR6tRk5exkzMZWA8uSfP7JIecn\nE0ajRU2KVgRucDHn7Xe3+PyzQ6qirtJtbDZJkpy7dzfW75GmJY2Gd4XoPYvNXrTKWUwJA4fFMuPg\naEiaFZxdTPnymxPmi5SdrRZR6DKbJ6R5yWSWsLvVYrZI2d5o4NgWUfhUD1VWitP+lEbo1goV40XN\nlu9a+M8Ykzp27aofeA798YJOw8e2TKaL9EolzDTFupKWF+ULbcvLc3g6nuM7V8nVP32zT5KVdEL/\nW60qfiiYQuBI86WmqYZh0HBdWp6LbZqrnMJ6yrJSit8dHtH1PSzTZJZl2KbJIs/Xk4tpUZCX5Zqg\nnS3mTLKMhuvQcl2mWYoU5rpS9tuDJ/zh7Ji8qnin1eHL8QBDa3579ARXSgbJEgzIqorzeIlBHbEz\nWvlxBZZFx/XJqgpPWpRKMU4TTGHiShNbmHwxumBW5PxVb49b3TZxnNNzAzqOj2NK/vb0IcIwuBW2\nScqCXFUcxjO0odlyAnbcxnoa8lkkVcF5OuezyRl3ww5fTM/Y8Rp8Pj1jy42YFglgIIWgVBX9bEko\nHR4tB9iGoGMHDPIlh8kEy6gnFzWaRZWx5aza8lWBK2TtnVUVzMqUYbFgy6mz9v5x/A1aw3E6xDUt\nOnaIXLXfZkXMz6IbpKpgXqb84+Qrbno9BAY5JTtOp27Jpqf8uvH+G+sHS12RqowNuyYZ0jD5dPEV\ng3xE127z1fI+38QPUVoRqwTLkGhDc8e9TaYyhsUI0xBs2BtoNLNqxryasufcQBgmjukQmCGFLniU\nfc2imtHwIn4/+Cd6cguNAgE/8/+KggzffFplT9SCUuUc5feIzA4tc4tMxdcapH4fyPUCUzgvtAC1\nftpirHSOafhk6gJN9cI0YqkX1NJtjVr7dl2PSk8QhvdKMqV0DsQYBGgSjB+BbcRPhOs74IdeuNeF\ntCWWI+nstGiv9EXCNGl0ap2QXBGVoOm/thVE2PTxQ5fDe6d0r3G1H5xNMKXJ/jen3xrt8zw+/eeH\nVIUiXqZoXU8iXpxOamPQls/p4YidG+0rlhGXZOvB16dkWcHgYsqov2Bzp8nOjc66srSz12Y6jgkj\nF9sysRy5Nl51HIt4mWG7Etu2kNJke6fFZBLj+zZ7ex201hweDvn66zOiyKP9XJ7jeLzEW62hXE1O\nPnrSp9308T2bTjsgzUp8z+adu1s4dl3d8j0b15H87g+PGU9qh/puKyB8JnbnEoYBpmliW/UxPU+2\n6t+5WnmUZj0lKU1xZRIxLcor04zP4ugy3/AZ0vXUab4Oum74TytFtzbaOJbEXYVua60ZLxO01j+o\nzcOzMAzjpWRLac3RdIZvWQyWS0wEJ4s5oW2vydftdmvtKD9OElwpGacpDae+iQ3iJcuyzmP8Zjhg\nO4z4l+NDOr5H03YRhiBynt7wVKX49c4NtIZU1a7xD6ZD3m/3eLfd5SJZsuEGHC2mGBjciOq2V15V\n7AQRFZp/ONnHk5K263EeL5BCoNCcxHMCy+JwMcMUBk3bodcI6wplWfC7i0N806JpOeiV4F5rzTiL\n8aXNbzZu8o/9fcZFSigtPGkxSJdUSuGYklA6NCwXjWacx1hCsrny5QI4TWeEZh1dpIFcVVSq4iJf\n8na4gWkIpkVK2/KJLHcdcdSxg3VLclFllFrx2eyILafB343usWlHpKpkXC4JTIdA1v8KXeEYko9n\nj7nhdrntb9Ru/Cpn121zy+3RsSM+m++TqQJfuLimTSg9RsWcUL5Zy02jWVYJk3JGQ9ZEb9fZ4iwf\nMClnLKoFkQi55e6xKOdMqwXveHfJdUGpSzatDUIzJFUpg2KICZwXZ2w7O2tDU4B5OeXz5R/Ys2+D\nU2JkDhfFMaHZwBMBqVowLQe4IsASNrlKUbpCGhYduc2iGpHrjGl18cY6rtdBpQtSNcQ3r7621hWT\n8mssESAMm2V5wKy6R1P+bEW2KmJ1gL1qXRZ6siJsikKPkcb1k5daayo9w8AmU99giU0AlF5S6CcI\nGlR6iiEkUmyjSVF6jHjJ6/174ifC9R3wQy/c62L/yyPaWy0sW9atM9em2Wvg+PaabAGvFUZ9iYNv\nTglbPhvPBF1nSc7J4wua3YhypYNqbzz91vW6m23nVpc0yelsNLAckyDysCxBkZVELZ/uZgPDqNtf\nz1dgGqsWZtTwEaZBb6v5wu9kWYnn25wej+n2IuJlPdHS7gRIabJcZsxnCQ/un9NqBSRJTp5VSFmb\nkP7D39/jzls99vY6OM5VsjOdJYThUxKitaYsKppNn3sPz9noRuwfDChKVVsjhC6OI7FkLYI3hEGl\nFPaqyhSFLqf9KYH3tFVgGAa29XICcynWf34K8XmPLcMwriVbZaUQwqAVei+tcA2mS4pK0VplLT4+\nHxF5Dp5jUZQV/3L/kLwq2e9PCB2bwP23+Wb9fSOr6qmocZLw1cUFrmmy22i8UP0Qq5agFGJNtqAW\n0HdXPly2KenHC361tc0fzs6422pzvlzQcFbVr+WCeZ7j2xb9NGY3iGh7Hh90NjhezJhktbfVdhAS\nWQ69lZXELM+4PxnSsB0ezcd0XZe3Gm2Ol3MCy+beZIQw4GbYwLdsKq3YcgM6bkAYOAxnS+5NB3Sd\ngKwquRE2iasSadRO+1BX0QwM4qrgr7s3+B8Xj3kn6jHKY76annMraK/CiwWzMiWSDmlV8s18wK2g\nfoAuypy27a8tMyxh8r/v/ytbTsSe12JRZfx+csDdoEehSmxT4q8IGtRi+0i6+NImNJ11cPX70Q5b\nToODZMgH4S5Ny+cim/GOv8Xfjr7kP7Xfp2HV+3JWJmg0k2JJrko808YRkk/mj2lKj6VKkZgEqxif\nN0HtIO+uDU8HxZiKCkfY3HFvkKic94O7xCphy9rkm+Qh0jAodcEwH+JJly/jL0mrlIbZoDIUfx7+\nJZ8tPyWvMtpWfW/9cvkJLbMOvt5pbtKsNplWfeblBN+M8ESAY3jYpos0LIblKU2zixS183yucxzh\nE5hN5L9BlUcY5toWAmBYfo4vNjEMgSUiltUxsTrFMTosq0cYhqRiQaHn2EYbcxWYLY0AYVhkuo+B\nRBrXGyAbhkGh+2gjwxFvP3NftBG0UUzBUEhjc/Vz60dBtuAnwvWd8EMv3OuivfX0YnjyxSGz0ZI8\nKzClIEuKtYnom8CLXCzbIs8KjJXgXVomUSvAEAaOZ69/fonX3WxVqRhezFYVLAN3lZlYlgpvtVnm\n0wSl1JV2ZhLna2PTsih5dO8MIQxUpXE9m+l4ibkiTUVesbndRJqCIHLJ07LWGXg2ZVExnSb88pc3\n6fdnvP3ONq5nMRzOOToasbvb4p13tkiSoha3xxn+ajAgCK4KQoVhkKZ1BuRmL1qNn8PeTpvJNCYK\nfe4/vGC+TPF8mwePL7hzo8dbN3u135NjUVUad6WXex3EaVFXIV6Rr/gyaK15cDyg17x6s3tyPib0\nnFrwH+eEnrMmWwC+Y63F85q6WrTdjjCFge8465DrL48u6EZvltP574XLzzTP6lin9zZ7mEIQF+WV\nqtTr4r88uF8LuM06/iewbIQwGCcJoe1QKsVnF+d4UnKeLEnLgkIpup7PrMg4nE3ZjUKOl3MOFhNu\nRS3ioiApC/aiBpHt0HY8NrxaqG0Y0HJcXCl5MBthCsEkz9j0Ao7iOU3bBdtAFLDt1+fmPF2SqpK2\n4yENQVzmnCdLFJpC1eTTNATvNzZW7vUubcfHNS2GWYwlBF0nILQcNtyQL2dn3PbrydWmVRPLB4s+\nDenSzxbcDXv8rLGNBj6fnbEoUkZFzGE8IVXlujoGMM6X7KdDtpx6qnOYzWnZPh9Nn1Dpip9Fe0hh\nsqwyLENymk8IDIdvlse8E2yvX+cP04cMiwV7bofjdIRrWLwd7LLrdomkhyUkzmu6yj8LpRUP40M2\n7A4aTalLFlXMpt3DEpKe3UFeBkIb8CB5wGF8SKxSXOEiDZO2bNdTiqbFrrNHrGKW1Zw77ttYwqpt\nPdScSld0rC5bjR4fDz6iKbp07S027V0SvSDRSzqyJhiB2bxyfc3LPola0i+f0LX23vg4vw3Pa/b8\nVcUJasG8Y3TQlGCUdKy/WK1dgWGY2M8EYpd6TqmXGIhvzViUooM0nh5nqc7J1D2ksbOaTDTI9UOk\n8f1X9L4LfiJc3wE/9ML9KUiWGWVeUCQF0jI5+PqY7k77laHT1+FSwD44mSCluW7pvapK9rqbTQiD\nVjdctaUUBw/7dDYa+OHTjeL69gvasdPDEY1VRuT+wz4K2NpuEYR1gPTF+RTPd/jqsyPOTsbs7LX5\n7JNDHMdatw3LUuEHDu1OgO1Y7D8esLPbrj28lMbzbCxLEi8zLMuk0wnw/ZpkTacJ80X6woYOA4cs\nq72XpCkYDOccnow4Pp1y//E5v/hgh/kyxfdstjcatNt1rIy7IsJfPThls9u4oosqygqt6+lD0xQs\n4oxsFfVz+e9PgWEYL5AtANeu3d9fdg4vq2fDecw8ThktYqQQ3Oi11mQLoBv5P6jX1qsQ5zkfH5/i\n25JpmnFvOOSdboeN4MX1mD3jOA81way0vnJsHddjOwwZZxkazZeDPqD5tH+OJcw63qcqabkuf7G5\nw14Y0fPr93oynfDr7b2VI3wdUdN0XKrVwy1cCeSlEKuMTAPXXFWnVuL1ruthGYKO67PlheRVhbLg\ncDyh5dRi+qbt1lOOsMperPjXwRHbTsCkSLkdtpkUKZvuUwGzs3qfuMpxTEmhal3oosy56bfWAvhL\n+GZdnR3mS94KuvSzBUordr0mrpAcJiN+2dzjpt9GPiOCjix3reU6SkZsug0eLwfMioS/bt/FFpJS\nVZwkY46zEe8H22w6TZKqPo5JvmBeJiQqp2X5fDJ7gi8cHifnGMCgmLKsUozVZ3xTGIbBrFoQSR/T\nMHFNh4YMr5imLqols2pO02ygKs3t4Dab9gZ77i6RjLBFnS/YL/sIBJnO2LC2wICz/Ji21WFQnCMM\ng2k1orJykiTlIH/AlnMDT/jYhoMrAuQ1FgpKKVI1p6KgI2/giO/fjX1c3cMxnhKn69ZJGgGm4WMg\nqPQSBPjm7vpvtC6ZVZ/hGnuYhvtahqdX3gMfkJgrfzLDsDBpAuJH9eXuJ8L1HfBDL9yfAse3cTyb\nzVs93MBl82bvjcnWJRbTmM5Wc022vg2vs9lUpWodlSMxDPj8oyfcfmcL9zW0Zc1nMiJd18IA9h/1\niVp+XXWz5UoYb+CHLvEy590PdggCB9s2KQrFbBLT7taj+//1//mEv/r1W6RpwWKecP/BOdvbTRoN\nj+FwSW8VEp6mOZYlcVdu+tchSYq6tWLWn2Oz12CxSOh2QvaPRniujW0JPvr8ENs28X2bLHvqJdaM\nvCs3jsksIctL+qMF7VUQtoGB9YpW43eDwYPjAbd2Oi89h1lR4liSpu/S9D2aQf2Zx4sYW5prYvBD\nIs4LSqVe0HFprbGl5Fa7RdN1caRF1/Np+961BPF4NqftPX14zfOcYRLTWJGXYRxTKEVSlVjCoO15\n3G602AxC3mvX04eLPOedTpem45JVFV8OLjiLF2x6AU/mE95q1nYmGmisonekEGvCo3Tt0J5VFd+M\nB3S9upW5KHKUVnw8OOVG0GBeZASWzVfTPkggh6bjUmpNWhaEloM0BOcrvVjb8RhlSx4uxvyHzVsr\n7dmLa+DL2l19mC+Jq4LjZEbXCdZO85eQQtSWBrbPQTymVBUX6ZykKvGlTcNy2fNa2EKSVAWTIiaQ\nT6+jSit+O7zHL6I9Pp7uc5JO+LC5hyMsBvmCj6dP6FkhB+mA216PULp8Mt8n1yVPkj67bpv3w716\nHaXPaT7itrtJrgrO8jE/C28xL2PGf4KOq201OMkukIa8tiVZ20ZEKK343eL33PXucJAdYBuSk+KU\nr5OvcA0XGwvX8Cgp2HZ2cYRDa5W5GFdLbrh3EIbJrdYNvKzNg/RLpGEhkZzkj+latYj++eieTMcM\niiNynSAMi9B8c+uLV2FRnqN1iWe+2sXeMATCMFG6pDSWuMYWJYt1OxEMLNFEigBFhoH5rZOMV1/f\nwHyuBVmo+5R6HynefPr03wo/Ea7vgB964d4U4/MJ8SypR8rPp0SdNwsJfRZVWXHwzSndndfxaqnx\nOputKCoWk5ggclnMU7Zvdgmip5qo6XhJvMjWrcWX4dKz69ZbG3i+g5QmRwdDHNdCWpJON6LR9Cjy\nClMKDg8GKK3Z2WuvdUtB4NBoesRxzniy5M/+7BanJxPKSpHnFctlRhS5TKbxFd3W80izgjBwsCyT\nPC+ZLVKWccZkluD7LpYp+OL+MXlW8YsP9vjo0wM6rZAsLwkDB1MKDIwreirftfFdm3azfsha0nwp\n2Tq6mKxF838qhKgrXy87h0ppRvNLZ+r6s15WvS6mC84nS3qNHyaU+lnEeYHWXKlOAZzO5uSqqkXw\nScLFfEGl60Br15KUlSIpi/V04bNkC+rXuyRbAJ6UhLaN0oq263E0m3FvNMQxTdqef2Wo4Xgx4++P\n95GG4O12h8C2YVUt+/j8lGmWcRYv2Amu+ht9PRlgGnX+YdtxQRtM85RJniINg9ByaDkuaVUSWg6b\nbkAz9EjTYm0hMStzNHV1bpondG2fYZ7wdtilYbv03ICTZEbDevn+doWFb9ZWFl3n1UaTAoOuHbCo\nchwh2XGbnKUzdrxniIABzjPkRRgGP4t2eBBf0HMidpwWXTvCFpJAOmy6DX47+ooNq8GW2+I4HfEX\n0R3G5ZItu0UgHXJd8nB5xpPkghtul7+bfMGG3WBcLHnH38UWFp7p/ElZgw0ZrslWVuV8Gd9jy96g\n1CWjcoJvepjCROkKMIirJW95d9iyN9mxd7jIL1ioBQs15z3vA4QhGBUDpGFhGiaBWVfCAhGRWwv6\nywE9uUlHbrHUMzrmBqPqnEU1pSGfeg6e5o9QumTTvk3L3KLQCf4rIoD+FKRqRKnzFwTz16HSKbPq\nKyL5zsona4y10lbVOr/6np7rAcKwyfUZAueNq12XMEUP09j+wb/kPYufCNd3wA+9cG8KL3TxGx6L\n8RLbt/FeQRJehdF5bUxoORZ+dP1rVGWFVvpK9ex1NpspxZpg9U8mzGcxrU7IdLSkqlSt5xLitapq\n9sq/qygqvvr8kM3tJkf7Q4LIqT2+spInj/vM5zHzaUK8zNnebSOEQVUphBC4no3v21iWyenphDQt\n2N1t02r52LbE9+1Xki2Aw6MRrebTh2yc5LiuxWwRc3gy4s7NHh+8s0O7FRD4Du/f3aLZ8IiTHCnr\naB/zFYTpwUGfyHdf6jzvORaOJUnzknmcYZkCVpEnk0VyraP8dXiVee0izcmKkl4zYBqntXHlanqy\nFXg/ONkqqgqlNb5tv0C2ACK39sQqleLhcIQjLd7b6OKujuGLi3O+6Q/Za0RrX6xXwTAMKq05WczZ\nDOogakuYbIXhug1om3UChCkEv+hush1GZFXJf99/SGBabPkhj+cT/nJjhy0/XE+qVkoRFwV7K1F8\nYNmcLhcMs5jbUQvXlLRdn0JXaGDDq9f+y0mfj8en9KSHJy3uTQdsuAEXacyOH/HH0Sm3wzYdx+Pr\nWZ+u7RNYFl9MLrgVtJjkCaM8IZRXdYpPliMeL0cIQ3AYT2hYzhXj02dxkIwZpAu+nJ8RSpu4ypkU\nCXtuE80qxFvIdbLDJYb5gkkR07UCHizP8aRNQ9bVR8+02XXaBNKlX8yodMW226IhPU6zCQpFpkoG\n5Yz3/T2EEPwiusVNb5OGFdCygtUD/7v7x5mGwBE23kpIr9GrtiGEZsi4GrFn7zCuxtjCxhUuTdli\nXI7468bfcJ6fEskGCsWkHKOpOC9OOMkPMAyDt9p3mC8TxtWQG+4dKkoask3DbNOQVz2wHFxcEZLp\nhIUa0bNufufjex6OaL4W2QIo9BQDWds1GFyr04qrR1iiizR8DKwV4frTCZNiivEdX+P7xI+ZcP14\n3RP/J8V8tOD00Tmbt3rMR0vK/PVzqp6FFzi4vk3vFdWt2XjJZDh/6f+/DkzLpN0LGV7MsF2JZUuq\nUjEaLL79j5/B4ZM+WkFZKN7/cI92JyLPy5XhaMV0ktDpRrz7wc6atFSVIn0mw1ApRRi4vPvu9trw\ntNF4vfbD7k6Li369FoZh4DqSdtPnzz+8xa9+foP/9tsvsG2JaRp88+CM//O/fsJgtCAIbKQ06bQC\nvFd4o9290XtlK/EyR1GaAqUUH987Yn1Iup0AACAASURBVB6naF0bp74uHp+NSLLrcx0jz2GnU39b\n7UZ1lWO8qCteJ6MZw/nr5LL922GWZszSb89X+4fH+4SWw+1Wk6PpdJ0vGtkum2FwLVl7Gb4eDHi7\n3WGRZRzMpkSOwzRLr/yOMAwi20EYBl8N+wRS8me9bY7iOV8MLrhYLvjfPv89p4un11KhFNO8fp1S\nVfSTJW812/ysXT/AvhoPeDIf03E8wmf0VB+2N/mwu0mpNElVkpS1ieu7jbod9L/svkuhSv6vwy/5\n8/YOjmkyzGIiy1m9l2KeZ1T6aubq3bDLrzs3uem3CKXNonz5A+XdcIOG7fGfe+9Sas0oj7njdUhU\nwb+On3CcTDhMxjxcXs0GzFVFW/pMy4z/2H6HSLpMinpPaa2ZVwn9YsYH4S4fRjcxDAPPdPjL5lvc\n9DYITZfw/23vzmMkPesDj3/f+627+qo+5u45PQ6Djw2ErCcYvCxYWhSEjcZ4M4gE2QoEcoAsWHZl\n/0fiZNEmhBhzhOAMYINDJExWCxKQxGCsgI1tbDM2c/Z0T99VXdV1vPf77h9vdc30fUz3dA9+Ppal\n6erqqqf66ar61fP8nt9PTlD0qjw7fRovDJkOGtjB+r75SZLUavMjSzLpZhulMArRJQ1dMtAVg36z\nn0ZgUfbLjLvjNIIGQRQwHcTznFLS9Bh9uJGP7Vt0q9uxgjpOYDPsDlBQevhu6TFUdIJmYD2XriQI\nCagHFRJyhmowSRRtTL/cldClfLMVkEcQ2QteJyHvbp1OVKTkqrYVFxKEk9jBs0RRsPyVX+OkaKmO\nx1vAxMSVBRSbYe6JksFXh9m2r2def8K1mBieIteRbp16PPXCBfYd2dG6v66uzIp/Z67jMzlWId+R\nolqx6e7LNy/3kBUFVV39eEvFGpmsiaIoDJwdZ8++bp796VkOHd5GKr36pNkwDPH9uFFvsVSjp3vh\n/IggDHEcH11TOD9YZN+e+BTPk0//ikP7e9A0tbU1GIQh45M1HMdl9471P2FTbdjxNpmh0bBdRktV\n+hfpqbiQlc6h6/kEUTQrYf5aYHkeddcljOISEa7vs7ejo9WcejUB1+W3+W8XznP73v2zLrf9uO1O\nRjf4VWmS58ZHmWjUeX1nN7vzbQzWpvnh4FmO7TtMSjewQp+9uXgVo+a6TNoN2gwTLwpJKCp+FKJK\nMhN2g+2pLF4YcKZS4jc6ulv3OSE1eHFolLdu68cPAxRJxg0DplybnkScYjDaqPJSZYy96XbyeoKk\nqmEoKqerRYIoRJYk9qTaWyt9URThRSFO4DNu1+hPty+7ohBGEU7oc7o6TruRJqloZNS4BdCYU6Vg\nZGgELkW3xvZEG+cbk+xOdjJsl9lmtrVyyoJmr8JxZ5qErGFHHl16HPifa4zjhB5p1aRNTVMPLOq+\nAxKkFZNG6LArUaAe2KSUta32O6FLEIWt0hCLKXoliJq5RpHMC41fcFP6RobdYTrUDqLmf3HOV47T\n1qtklCyVYIpOtUDZL7Lb3I+RD7k4MYEmabihRSAFlNwxQinkcPI/oUqzn29WWCMKI0a8U3Tru0nJ\nbeu+2mOFRSAiIS/9ehVENuPuT2hTj9AIz5FU9mAu8zPrIYjGgAhF6ln2uhttNe+BGzmGhYgtxQ0w\n98lmJHS0NZSFmOvCr0bItqcwzLgchGt7dPbmV72l2BqnHCeAl4s1pkt1OrtzjAyWuDhQpDbdoL1r\ndbkIlak6phmfbPS8ANuKc3na2lNkc/FK1eX9GV85OUznIn+Y5XKdet2JTylN26TTJpJMq7n0jIsj\nU5iG1sqvkmWZXO5SEnZXZ4ZU0ohb9TR/T7IkocgSERGpNbZdWorj+kTAZLmO5fpsL+RWdWpwqTl8\n5vQQjufT1qzftViB0a1MUxSSuk5K18mZJu3NmlqqLC+6lbhUK5tio0Hd87ixpxfL81DkS6emnMDH\nCQKSmoahKOzM5Njf1sGpShFDVXl9Vw83dvVwsjzJnlx7s/yDxIRVZ8qxMVWVlKaT0038KCSK4HSl\nxO5MnnPTZV6aGmudQpQlmUm7ji379CfaMZS4eKsXBoQRnK4W2ZaMn1Nlx+JcfYo3FXbxw9GzHMp1\nIUlS/DNhRF5PkFC01uOoBy6/rIyxuxmgreTv6VRtggmnRm8iRxCFtBspVDleiU2r8RaQLqukVRO1\nWZX+l9WLDFkl0oqBG/rUfIdJt4YuK0x5DQbsCezQpdvIYwcunXqGYadErnmKsBG6FL1pVEnGVDQ6\ntLhMy4RbIavOzj1rBDa1wCKxzOlFL4yLmBqyzqnGeTq0hVf9k0oCK2jwVOVpfl5/nuuTh+g1e3ED\nl1etV5GRSCophp2LaJJGQetGx6BL76ER1sgoeUrBBH3ZHpyGz5g3TLe+jYScos/cQ07pRJPird5p\nv4ghJ5vjs5n0hhhzz9KfuHHdgi0/cgAJSZJRMVClxLKrUV5YQ5USJNU+VDmLE46iS51XPKYoipqV\n5Bd+H5OldLPdz+bbyluKIuC6CtQ1lA/wPX9ejS3d1EllEq2ApThaIZKgXmm0csVWFXA1W/Vkckk6\nmytHmVyCQm9+yWCrVrWYKtZJz8ktG7k4BZJEKmUgyxJmQsMwNFRNQVFkPM9ncKBILp+kXnPou6zh\n9VyKonD+/CSqKlMoxOUapqctbMdvVZkHiMKIZFKnYblMFmtYlkvmsnyv8nSD0+fH2dYz+75cz0dV\nlDWXdliKoauoisKpoQlcP64yX5pukFlhcLfUHOZTJoXc1nhhW6tio8HJsXEyusGUZZM24vkcqVap\nuy4DlQpdydl1xH4xNkZK0+atflUcm7rn0ZuJ39hfnhzH9n3azDjA1xWFpKZRtBqkdYO0buAEPjXP\nY7RRY6xRY0cmhx+F8QlURUZXFFKaTt4wyeiXcqVm6n31pjJcqFVo+B5ZVSela4RRXPh23K5TyGbA\nizAUlZrr8lxphH25DrrNNKemJ0kqGj4h1+e70WQFK/AomHGJFpk4IM0262vNOFMtktMT5LSFTzNe\nLooihu1pdiXbKRgZUqpBPXAwZW3BgHbm9ibdGnbg066nmPJrvFy9yI5EO31mW7x1p5oYska3nkOX\nVYacElk1QaeeRVfiFTpZkrACl6SiM+yW2GF2EQE5NUnZr6HJ6qw8LlmSly2GqkoKiiSjSAoJ2aTo\nT7W2ES/nhC4TXpHXp19HQS+w09zBqDvGqDtCv9mPJmtk1QyarJNQEphKgjP2KXRJo13rxJBNTDlJ\nPpPGavhM+mMEeNSDCoaURJXi9kfxfVmtgEuTDQwpSYiPKhnrVhbCCkvIyChS3M9wJVt/QWRjM0pC\n7kFGI5ICVCl9RQFXGDmE0TR+NIYi5ZAkmbr/JJq0Y91X8tbDVg64RA7XBvIcn/r02vJqJi5OYdcd\nfvnTM0wOTwHMOzVY2N5OKm2uy1al7wUMnBlb0XWTKZOOwvyVqT37uukqXDoRE4URjbqD5wbxAQBN\nZc/eAmEYUq8vnF8AMHB+EkWRaG+PG7DObHq3t6fJ55KEYcj5gUl8P2B4tExpqk61ZpNJGa1g6+VX\nLhJFEemUyesOXSpEWKlaPP3MGSZLNfRm3a+NEIQhh3Z1Y+oaiiyRzyz8Iuz5AVPL5F7FvTljI1Oz\nl8qL03UApi2bC5PlKxz11eEFAT3pNLbvMTw93bo8o+s0PI+DnfM/kXen0ws27M7oBoVUqhU03NDd\ny578/EA+jCLcIGCkVmW0UWNfWzuHO7rQZIl/HTxHhxknr8+cLIT4b3isUWPcqs+6LT8McfyA7mSS\nF6fGaDeSdCVSmIpKl5niV6UJap7L6ekiiizxpsJOIF7B25nKM9ioMGrV0JqP5/VtvQw3ppvXUUip\nOn4YcKo62brPg9kCqiRTcpd/PZEkibC5LTnze+k1c61SFzOGrKlmL8ZYp57mUKaHvakCBT3H67I7\nWsVK64FD2WuQVRMM2SXc0Gd3ootxt0IYhZiyRsVrMGQVuS6zg3rocEO6nzPWCONumWpgMZcmq8uu\nbgG4kce4VwIgIRt0ags3bzZknW1GHz4B242+uL+s1saexB5SalxDKy5bkUOTdarBNAcS16HKGvWg\nyoQ3hjazgiNFJKUE7WqBLn0bg86rTPmXct6y6qUUAS90GPHP0Kb3kVEXHttapJQCmpzCj2xG3WcI\nomVOn4c1/KiOHQzjhzXq4VlkLq1IRdHa8okjXCBEkbIEVAAIoip+OLym23stEwHXBgr8ANdaOAF6\nOb27u0ikTdK5JOYSuU+yIpPvXHhbbjXGR8qkMwlsy6VSqi95XVmWFmwmXa1YjA6XcZtJ4n4QcmFg\nkp8+/Su+939fYCZdUFUVuhfoDTmjuyeLLMv09OQoVxqtYqSyLCHLElEE7W0pHMenszPTajqdTput\n1a+pcoOG5ZIw4yryz710AQDL9jg1MMHwWIWzFyY5fX48bpK9SKL6Wp08N8pkpUZvR4ZTQ5NUGwsn\nk0fN/5dysVihbscvtnt7ZueCuX6cqJpNmPTkM60E9K2sJ5OhK5PG8gMK6RRT1sybsURaNxZchelJ\np0lq87czGq7LkwPn+f7Z0yyVjtqVTDHtOkDEjnSWbels3GWgebLx9FSJIIw4W5niZGmidVtnK1MY\ncz7QlN24r2MhkeYNhe3ossKYFR8yyekmfhhScx1eKI4Qhsx6PFXfIQijVkL+DHNOMFR0GrTrl4J0\nWZLYlszRYazsJOrZehE/vJTEXPcdTs9Jku81c2TV5km/KKLSTJAfs6c5VR9jZ6KDdPP7WTVBwciS\nUHQOpfvQm6tSqqQwZBcB0FE43xjjbGMUXVYZdovsMgv0Gu1k1SRtWiZuer1KhqzToeW56IzhRf6S\ntyEh4YUuT1d+ylnrHEWvSDWsUgtqXLAHqPnVZomOAIk4rcAOLSLAi5xLr1GSxq7EARJKCq/Ztkdf\npCm1Jhv06ftR2ZjGzTIqEjLSMm/XdjiGKifo0N6ALCVIK/sw5M7LtqXPEEbLH2qZS5EyqHInqtyN\nKnUQRVGz2vy1vdK+GUTAtYHMlEHbIkneK1Gftuja1kYytbZk09Xo29kR90+UJQbOjlMcn17y+rbl\nMjJUan0dRRFnTo1imGorGEunTfYd7OENb9rPbx89cOmJX1/6SW+aeqtqvNVwcF2PMIzwm8GF6/o4\nro+uq6RTJrqu0tVs6TOzYnXLb+0nlTQYHa/E/09UODc4SSZlcstv7qUtl+TiaJkdfW34fshEaXWn\nMpfzun19dOXTnLwwTkcuRaFt/otTuWbFjYQzS9dV2lloI7VI8+uZU4sA5brFcHF6ycBjq9Bkmc5k\nAl1RyDVb+piqSsZY+HGOVKtM1Od/ECjZFpoik1A1Bqcry95nxXaYdh38MAQkDubj9k5pLd4a7DDj\ncg5BFGH5Hj+fGCaaswqa0w26E3ETalVWkICi3WjeJpyplEhpGm8q7JzVuQAgpeo4gUemWXR0pq9k\npzk7kMpoBrkl6nItJ6MacQf21v0a7EvFJywbvovXTOafeU6GRNSapwm7zSyvy2yLk9+bgihkzJn/\n++3Ss+xttvhxIp+MmiQh6+jN1avltgvdcPkPOn4UN+Tu1jsZ94r4S6zU6LJGQk6QV3KYkkGP3sM2\nfRtZJcuh5HU4OGhojLhDEMVbmh1aF05o0y7PX1kteqMQwTajf8mtQkNO4OPSCJZ+3VwLWVIpaDc0\nm04vLqPuxZDbMeTOuNXRHJEUAmvP+QyiMmFkxf1h1ZtQ5JXXhxRiawq4bNvmIx/5CHfffTf33HMP\npVJp3nW+8pWv8J73vIf3vOc9fPaznwXiN+WjR49y/Phxjh8/zqc//ekrG/01xHd9rNri22hzhUFI\npVglsU5bhitlGBqGqS77pq0bGh2XJbxLksThIzuYLjfgsp8dulBiZDhePfvlS0NEUbSikhOVioVt\n+xQKWZ555hzj49OMjsUv+ImETldnBlmW0C47SdmwXE6fnb0t2t2Vpa83z62/dZB8NomuK+QyCTJp\nk8MH+uJim463ZEmI1XBcn4HRUlz9vWpx/e4euvLpBVeeHM+f93u+kmCpkEsjyRLhNRBwSZJEUtfj\n6v3NNzlVkUkssIoF8QpXZ3J+YOqHEUe6e+hOpyna8UrZz0dHWsHP5c5MlZBliZSmc6Zc4lB7J6NW\njbrnsj2TJaFq5AyT3dk8qixjKiq/d/AIeXP2/WqygiYrjFp18rqJqWr0JTMozcfx9t37mXIdar6L\nOedQg97MAwukkMFGheHGNF44/zh9UtVRF6mztRJH8ttmtfC5XD1wcMPZQYsiyWwz8zQClxG7jCor\nre1IN/SxAy8+KRkG2MH8IOlsY4yQkDY9TaeeRUZutfJpBA71YOHXvhG3iL9MOYFpv8aAM4IqKfTq\nXQu217mcFdrsS/WT0TLYoY2ExJAzRD2s0a31cNEbpEfbhiIpjLkjAHRoXVTCMnY4e+tTQWXcu4iM\njCkv/cGoTe1Z96KnM1aSv+VHdaIoou5fYNJ9GoCy/4vW9zPKdcsGbUsJojJ+NLn8FYVFremd/NFH\nH+XAgQN8/etf513vehcPPfTQrO8PDg7yxBNP8Nhjj/HNb36TH//4x7zyyitcuHCB66+/nhMnTnDi\nxAk+9rGPrcuD2IrCMGTw1Ut73N4qAy5ZkenbU1j+ihvg4G/sWPaEoixL8xpy67pKd1/brABx34Ee\nduzqYHK80ipMumPX8iUSCoUsyaSOacZ1slzPoy0/exWgWrMpV+JtkDCMGJ+Y5sC+2ceSJUlCUxUS\nCZ1T58Y4OzDJeLFKWy5BX3cOU9cwDJXsGgvUzmXoKr0dWabrNkQRpq5xfrS0YC2u7rbMrEKqQRjy\nyuDEvOutxvaO3IK5TltVbzazosTby6vGX66/rQ1Fkml4HjsyOcbrcYPqhbYl97a1kzNNap7Lzmy8\n8hwX/4SXS+Pzru+FIWPW4jlT21NZnMDnB0NnsIOgNb6EpjNp18lrxrygSZYkplyb/ZkOflmewA58\nat76J/jODbYuX63qMjKERLxYuYgzJ3iKooiSWyetmiSUeLXRCX2KXo1xdxo7dKktEDz1Gm20aRk6\n9QwT3jRJxSClmARRSNVvLPpBYpfZs+w2Y7uW43BqLwCj7iR2uPQKebvWhimb5NU8qWZyfa/Wy5g7\nihVa7DR2o8s6qqyRbbbhqfoVVEnDbK5iWUGdMArJa53sNPdfca2qq8EJS3EDaySyymEA8uqRdblt\nNzyPTPuWa1R9rVnTX9Gzzz7L0aNHAfid3/kdnn766Vnf7+np4Utf+hJKs8qz7/sYhsHLL7/M2NgY\nx48f55577uHs2bNX/gi2KM/x6ey7lLybSJu0L5G3tNWcPrl8QuSZV0fx5gQSgR8QBvNXF8ZGK3T1\nrOzTX6PhMnghzgtpa0vR3ZMnm0kwPFKmXre5MBh/L59L0tkRr7LJssTunQu/GEwUq1SqFgf6u9m9\no518JonrxZ+qS5U6ruuja+t3WlHXVBJGXFHd9XyySWPRSvOTlTquF/8OFVnmup0LB9kzOVy/Dk4X\ni9Td9Xs8WcNgb1s7vxgfZcq28Bc5CNGRSNJhJsnpJglV47nxYaIIfrt3B73JDDXXnbUSqckyPcml\n81S8MKAvmaHDTLSKlZYadWQkdHXhOY8ro6tcn++iO5FuFT3dSD8qnpm18mnKGn2J/Lwtv5RqcH02\nPmQyEyRlVJMOPc3eVDcZNUGnPjtndNAqUvctJAk0SaHPaKdNi39vcfK+vGD/xEF7nKpX56Kz8g8Z\n24xuzEVyqRZjhzYONkfSN5BT4wBr2B3ipfoL+PjYocV55ywXnYHWY66HVYLI56JzHpWrX+fOCxvL\nJsnPlVJ2IEsaKXUH+jr3c1SlAoqUQZbWvzH3a8my7zKPP/44jzzyyKzLOjo6yGTiJ10qlaJanX1y\nStM02tvbiaKIv/zLv+Tw4cPs2bOHyclJ7r33Xm6//XaeeeYZ7rvvPr71rW+t48PZGnzXZ/zCJDsO\nbnxDT8+Nt6XmrjZdqQPXb1v2Ov0HuuetOtRrNrqhzlrlMgyN192wa8X3nUzqyIUsr7wyzKFDfeza\n2YFte+zf1926vdWwbA9dU6g3XBqWS6lSZ3++gGW7JE2dzDrnyNUtl4lyjd298YmlPmPxFz9NVVbU\n2HysXKW/Z+XFU7eqMIqwXD/uZbiAquNgquqq6otVHYeTkxMcbO9kWzbLwY7FP4UHUdyCBuDGQvz8\nfLU0yXB9mp2ZHN859yv+254DqLJMEEVMORZZffE3+O3peG79MODV8iSH2wocKfSSCw1S6vzHqEgy\nN7T3xQn7ioYbBgRRiLrB6bT/tXDdrHISmqzQoc9PwB+0SmRUk7yW5IJVpF1Pk1FNUs3twbLXQG2W\niACoBzZhFOJFAaqk0KFnCaIQK3AwFR1FUujSF/7732HGHy5We3iu7E/jR/6ipxXnSipJksrs7cDt\n+k5q/jRE4EUeZa9Iv3mw9Xo2UyS1R9++KaUPAlyiKEKRNiYRf7VkaentVGFl1lRp/sMf/jD33nsv\nR44coVqt8t73vpd/+Zd/mXUdx3H45Cc/SSqV4oEHHkBRFCzLQlEU9OaL7dGjR3nyySeX/IP2/WDB\nE3FCrFysEYbhqouUbmWVSoPh4Sm6urJ0Nk9gnj03zq6dnYv2MlxIudLAsly6C7lW8vKLJ4dQFJn2\ntjS5jInvh7Pqdm1lURTh+QG6plKuWSiyRCZ5bYx9MQOlMvmESS5hEkUR337xJG850E/OXPnjGq/V\nsH2fkmVxpKdn2TpVQRiXTJAkicFKhUIqhSrL67oVG0URz4xf5De7ty/4/ZdLY1zf3r3g99ZbxbXi\nJPZFVtxWo+47rd6KEOd3NXyH/GXBmxN4TLk1vDAgr6fIaOu7KhIX4YyW7cv4avUUBzP7GbcnyGoZ\ntGaJC2XOFua52hkSUhJZkSiYm18pfYYfuqjy1gi4hPWxpn2Um266iX//93/nyJEjPPnkk9x8882z\nvh9FER/60Id44xvfyL333tu6/LOf/Sz5fJ577rmHV155hd7e3mU/PUxNbW5/uGuD1GplsBXaGlyp\nMAzJ5VJE0aXWTpl0gtIy5Srm304EERSLl5L0uzuy+EHIxEQVpdlc2l5j6Y6Nstgc1m2XqZrF9s4c\nddtFliXs+tYa+2ppAdi+i1vzmKw3SKNhT7u41ZU/robnYigq29Q0xRUcyLgwXSFnGOQME9txKTvS\nokHav108x75cB9vTK/9A09WVYXKyxm45N28ef1ke53C+QGgFjPvTV2X1ZMptYMgqyQVW3NaqRpxH\n5YY+w06J3YnZW+EKKgoqdsPHZnNej9rpYcKu4oYSFcmhGkwAUmtbcUaaAk5oY8gmE9XqvOffoHOa\nHca+qzx6GHB+xDbtDair3EJ9rdsK74GLtfZZ0wqXZVl8/OMfZ2JiAk3T+PSnP01XVxf/8A//wM6d\nOwnDkI9+9KPccMMNrZ/56Ec/Sn9/P/fddx+NRgNFUbj//vvZu3fvkve12b+4a81W+GMTrsxrdQ7D\nKIq3UVa50vT9c2foTWW4vrC6Qya272M2K9e/Uppkdzbf+vpKLDV/TuBjKCqjVpVu88oqgAvrZ8wd\npkvrQZbkefMXReGmJM37kYMqiWBrtbbC6+diAdea/ooSiQSf+cxnePTRR/nHf/xHurri+i6///u/\nz2233cbb3vY2XnzxxdZpxBMnTnDjjTeSy+X4whe+wFe/+lUeeeSRZYMtYWXed+sD63p7x297cM0/\n+9/f+X/WcSSrd+f7Pzfvsjs+8PCsr999z8PzrrMVvf1/fWmzh3BVvfXzf79ssHXr38//ndy6aw8H\nO+fnbf2XE1+cf92vxZedq0zx5se/3Cofcai9c12CreXMVHvvSVw6nfmb/++hpX5kRW79179Z/jo/\nWvq5+dan//ea7/+dP//Umn92s/yPgY+0/v2ZkU/N2qJ8YPCDrX9vdLD1yOSdC14ugq1fP1v/rKuw\npPe94QFYx13XaznYmrFU0HWtBFszXitB1y0Pf4mV5E67wG/PCboWanr9Wye+yNzNxTd+7YvMVFna\nkYm3lf7zNzb39zsTbF1p0OUAb1om6AqAo4sEXa+1YOty/3Pgw7O+/tDPf++q3fdiwZbw62lNW4pX\n02YvDV5rtsJyqnBlxBxe28T8XdvE/F3btsL8reuWoiAIgiAIgrByIuASBEEQBEHYYCLgEgRBEARB\n2GAi4BIEQRAEQdhgIuASBEEQBEHYYCLgEgRBEARB2GAi4BIEQRAEQdhgIuASBEEQBEHYYCLgEgRB\nEARB2GAi4BIEQRAEQdhgIuASBEEQBEHYYFu+l6IgCIIgCMK1TqxwCYIgCIIgbDARcAmCIAiCIGww\nEXAJgiAIgiBsMBFwCYIgCIIgbDARcAmCIAiCIGwwEXAJgiAIgiBsMBFwXYNeeOEFjh8/Pu/yH/7w\nh9xxxx0cO3aMb37zmwB4nsfHPvYx7rrrLu6++27OnDlztYcrzLHY/AFYlsVdd93VmqcwDLn//vs5\nduwYx48fZ2Bg4GoOVVjAaubP8zzuu+8+7r77bu68805+8IMfXM2hCgtYzfzNKBaLvPnNbxavn1vE\naufw85//PMeOHePd7343jz/++NUa5jzqpt2zsCZf/OIXeeKJJ0gkErMu9zyPP//zP+ef/umfSCQS\nvPe97+Wtb30rzz//PL7v89hjj/HUU0/x13/91/zt3/7tJo1eWGz+AF588UUeeOABxsbGWpd9//vf\nx3VdvvGNb/D888/zF3/xF3zuc5+7mkMWLrPa+XviiSfI5/P81V/9FeVymXe9613cdtttV3PIwmVW\nO38Qv7bef//9mKZ5tYYpLGG1c/gf//EfPPfcczz66KNYlsWXv/zlqzncWcQK1zVm586dCwZMZ86c\nYefOneRyOXRd5+abb+ZnP/sZe/bsIQgCwjCkVquhqiLG3kyLzR+A67r83d/9Hf39/a3Lnn32WY4e\nPQrADTfcwEsvvXRVxiksbLXzh+tAwwAAAt1JREFU9453vIM/+ZM/ASCKIhRFuSrjFBa22vkDePDB\nB7nrrrsoFApXY4jCMlY7hz/+8Y85cOAAf/RHf8Qf/uEfcuutt16lkc4n3n2vMW9/+9sZGhqad3mt\nViOTybS+TqVS1Go1kskkFy9e5Pbbb2dqaoqHH374ag5XmGOx+QO4+eab511Wq9VIp9OtrxVFwfd9\nEThvktXOXyqVAuJ5/OM//mP+9E//dEPHJyxttfP3z//8z7S3t3P06FG+8IUvbPTwhBVY7RxOTU0x\nPDzMww8/zNDQEB/84Af57ne/iyRJGz3UecQK16+JdDpNvV5vfV2v18lkMnzlK1/hlltu4Xvf+x7f\n/va3+cQnPoHjOJs4UmE15s5rGIYi2LrGjIyM8L73vY/f/d3f5Z3vfOdmD0dYhW9961v85Cc/4fjx\n45w8eZKPf/zjTExMbPawhFXI5/Pccsst6LpOf38/hmFQKpU2ZSwi4Po1sXfvXgYGBiiXy7iuyzPP\nPMONN95INpttrXzlcjl83ycIgk0erbBSN910E08++SQAzz//PAcOHNjkEQmrMTk5yR/8wR9w3333\nceedd272cIRV+trXvsZXv/pVTpw4wXXXXceDDz5IV1fXZg9LWIWbb76ZH/3oR0RRxNjYGJZlkc/n\nN2Us4qPyNe473/kOjUaDY8eO8YlPfIIPfOADRFHEHXfcQXd3N+9///v55Cc/yd13343nefzZn/0Z\nyWRys4ctNF0+fwt529vexlNPPcVdd91FFEV86lOfusojFJay3Pw9/PDDTE9P89BDD/HQQw8BcdKv\nSMDeGpabP2HrW24O3/KWt/Czn/2MO++8kyiKuP/++zctl1KKoijalHsWBEEQBEF4jRBbioIgCIIg\nCBtMBFyCIAiCIAgbTARcgiAIgiAIG0wEXIIgCIIgCBtMBFyCIAiCIAgbTARcgiAIgiAIG0wEXIIg\nCIIgCBtMBFyCIAiCIAgb7P8D7tjtUAeyfHoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUY2WZP/DvXZObpZJUVaqqu6v3rgaBUQYd5yAwPTKD\nMIDDYZNuOQ2OjLOiDgwi6gj8VKAVZsSDI+M2OuIZaW1bNnEZhXFf0e6xhd7X2lKppLLn5i7v/f2R\nqlSlsm+VpOr5eDyHSqdy38rN8tznfd7n5SzLskAIIYQQQlqGb/cACCGEEEKWOwq4CCGEEEJajAIu\nQgghhJAWo4CLEEIIIaTFKOAihBBCCGkxCrgIIYQQQlqMAi5Cutw999yDz3/+80X/7ayzzkI4HG7p\n8QOBALZv397SYyy2Z88e/N3f/V3ebe985ztx2WWX4ZprrsE111yDBx98sKbH/MAHPoCf/vSnNf3O\n448/jj/90z/F+973vrL3++QnP4nvfe97NT02IWR5Eds9AEJIdxscHMSTTz65JMeKRCL4t3/7Nzzz\nzDP44z/+47x/++1vf4uvf/3rGBwcrOuxH3jggZp/Z8+ePXjkkUfwute9ruz9fvGLX2DLli11jYsQ\nsjxQwEVIl9i9ezeeeOIJ8DyP/v5+fPCDH8TGjRsBZION7du3Y3p6GiMjI/jXf/1XOByOvN//9Kc/\njW984xsQRRHr16/Hrl274Ha7Sx5v586d2Lx5Mw4cOICZmRlcc801eNe73oXR0VHcfPPN2Lx5M8bG\nxrBr1y68/e1vx29/+1sYhoGHH34Y//u//wtBEPCHf/iHuO+++yDLMh5//HF897vfBWMMa9aswX33\n3VdzcPStb30LAwMDuPvuu/GDH/wgd/uZM2eQTCZx3333YWxsDOeddx7e+973wuv1YufOnTj33HPx\n85//HKFQCLfccgtCoRB++ctfIp1O49FHH8VZZ52FnTt34uabb8Z5552Ht73tbdi2bRv279+PaDSK\nO+64A1deeWXeWP7pn/4JgUAAH/jAB/Dud78bX/nKV3DzzTfjiiuuyD1/N998M0KhEA4cOICPfexj\nEAQB3//+9zEyMoLbbrsNQDZDOffzpZdeile/+tU4dOgQ7rzzTrz61a/Ghz70IUxMTEDXdVx11VUF\nmb0TJ05g+/bt+NGPfgRZlmGaJt74xjfiP//zP3H8+HE8/vjj4DgOgiDg7rvvxh/90R/l/f7evXvx\nzW9+E4wxBAIBDA4OYteuXRgcHEQwGMR9992H48ePg+d5bN++Hbfccgv27duHhx9+GJqmIRgM4g1v\neEPNGUVCVhqaUiSkC/zsZz/D5z73OXzpS1/CM888g6uvvhr/+I//iLmNIgKBAL7whS/gO9/5DgKB\nAL773e/m/f73v/997N27F7t378Zzzz2H4eFhfPnLX6543PHxcXzlK1/BN77xDTz//PN48cUXAQCT\nk5P4h3/4B3znO9+B3+/P3f+///u/8fvf/x5PP/00nnvuOSSTSTz//PN46qmncPjwYXzta1/D008/\njW3btuFf/uVfan4eduzYgdtvvx12uz3v9nA4jDe84Q340Ic+hKeeegoOhwPvf//7c/8+NjaGp556\nCp/85CfxyCOP4PWvfz327t2LSy65pOjzcObMGVx88cXYs2cP7rrrLjz88MMF93n00UcxMDCARx55\npCAYW2guiLv77rtx2WWXVfwbR0ZG8K1vfQuXXXYZ3vOe9+D666/H3r17sWfPHvz0pz/F888/n3f/\njRs3YmRkBC+88AIA4Mc//jHWrFmDLVu24GMf+xjuu+8+7N27F+9+97vxi1/8ougxf/Ob3+Dee+/F\n888/j3PPPTeX7ft//+//YcOGDfj2t7+N3bt346tf/SpOnTqFL33pS3jXu96Fr33ta/jmN7+JF154\nAQcOHKj4txGyknVNhmv//v145JFH8MQTT5S936lTp3D77bfj2WefBZD9IL7rrrugqioGBgbw0EMP\nQVGUpRgyIU3zox/9CFdeeSV6e3sBANdddx0eeOABjI6OAgD+/M//PPe6HhkZKajb+tnPfoYrrrgC\nHo8HACrWHM256aabIEkSJEnCFVdcgR//+McYGRmBKIo4//zzC+7/05/+FNdcc00uIHr00UcBAO9+\n97vxu9/9Dtdffz0AgDGGdDpd69NQ0mte8xr8+7//e+7n22+/HRdffDE0TQOAXKCzdu1aAMAll1wC\nAFi3bh1++ctfFjyeJEnYtm0bAOCcc85BJBJp2lgrmZueTKVS+NWvfoVoNIpPfOITudsOHjxYEODd\neOON+MY3voErrrgCe/fuxY033ggAuOqqq3D77bdj27ZtuOiii/COd7yj6DEvuuiiXLb0LW95C665\n5hoA2fP5nve8BwDgdrvx3HPPAQB27dqFH/7wh/iP//gPHD9+HKqqIpVKNfmZIGR56YqA67Of/Sye\neeaZioHSU089hS996Ut5Xzaf+tSncPXVV+O6667DZz7zGezevRtve9vbWjxiQpqr2JanlmXBMAwA\ngCjOv5U5jiu4vyAI4Dgu93MsFkMsFsPw8HDZ4y58XMuywPPZpLgsy3n/Vuz+ADA9PQ3GGBhj+Ou/\n/mu89a1vBQBomoZoNFrw+x/4wAdymZLt27djx44dZcc359e//jWi0Sj+7M/+LDfWuWm0ufEuJElS\n2ceTJCn3ty583ipZ+Lzrul70PovPz+L7zU0FM8ZgWRaefPLJ3GdfOByGzWYreMwrrrgCDz30EI4d\nO4Zf/epX2LVrFwDgjjvuwA033IAf//jH2Lt3Lz7zmc9g7969ub9tztzzNHfcuZ9FUcz7+8+cOQOf\nz4e/+qu/wtlnn41LLrkEf/EXf4H9+/cXfY0SQuZ1xZTiunXr8Nhjj+V+PnToEHbu3ImdO3fine98\nJ+LxOADA4/EUTA+89NJLuavZP/mTP6l5FRIhneDiiy/G888/n7uY+PrXvw6v14v169dX9ftveMMb\n8D//8z9IJBIAgMceewxf/OIXK/7eM888A8YYotEovvWtb+HSSy8te/8LL7wQzz33HDRNA2MM999/\nP775zW/mpufmjv+JT3wCd999d8HvP/DAA3j66afx9NNPVx1sAUAymcRHPvKRXCbq85//PC6//PK8\nQKLVent7c8Hi6dOncejQody/CYKQC459Pl/ufuFwGL/+9a+LPp7L5cL555+PL3zhCwCyQfKOHTvw\n/e9/v+C+NpsNV111Fe655x686U1vgqIoMAwDl156KVKpFHbs2IH77rsPx44dy41joZ///OcIBAIA\ngCeffBJvfOMbAWTP59e//nUAQDwex6233oqTJ0/iwIEDuOuuu/CmN70JgUAAp0+fBmOsrueNkJWi\nKzJcl19+eW7qBAA++MEP4sEHH8SWLVvwta99DZ/73Odwxx135D4kFkokErnCYKfTmQvOCOkmF110\nEd72trfh1ltvBWMMvb29+PSnP12QqShl27ZtOHr0aC6I2bJlCz784Q9X/D1VVXHDDTcgmUzirW99\nKy688MK89+Ji27dvx9jYGK677jpYloXXv/712LlzJ3ieRyAQwFve8hZwHIdVq1blsjDNsG3bNuzc\nuRM7duwAYwxnnXVWVX9fM/393/897rnnHvzgBz/Apk2b8lYuvvGNb8RHP/pR6LqOnTt34q677sLl\nl1+O4eFhvP71ry/5mI888gg+/OEP481vfjM0TcPVV1+Nv/zLvyx63xtvvBFf/vKXcf/99wPIZqfe\n//7346677splqh588MGCbB+QXWn6nve8B8FgEFu2bMGHPvQhAMC9996L+++/H29+85thWRb+9m//\nFueddx7+5m/+Btdeey28Xi98Ph8uuOACnDp1ChdeeGEDzyAhyxtndUkeeHR0FHfeeSe++tWv4rWv\nfS3OOeccANl0/IYNG/I+vC+66CL85Cc/AQBce+21+NznPoe+vj4cPHgQH//4x/HpT3+6LX8DId1k\nbpXd3Ko7sjzt3bsX3/nOd+hzkZAW64oM12IbN27ERz/6UaxevRovvfQSgsFgyftecMEF+MEPfoDr\nrrsOP/zhD/Ha1752CUdKSOf6+c9/joceeqjovy3ucUUIIaQxXZnhOnDgAD760Y/CMAxwHIcHHngg\nt8IGyM9wTU9P473vfS+SySR8Pl/R/kSEEEIIIa3UNQEXIYQQQki36opVioQQQggh3YwCLkIIIYSQ\nFuv4ovlgkNo41MLnc2Bmhjo+dzM6h92Nzl93o/PX3Trh/Pn9xfeopQzXMiOKS9fokbQGncPuRuev\nu9H5626dfP4aCrj279+PnTt3Ftz+xS9+EVdddVWuG/zx48fBGMO9996Lm266CTt37sSpU6caOTQh\nhBBCSNeoe0qx3P6Gc20bzjvvvNxt3/3ud6FpGnbv3o19+/Zh165dePzxx+s9PCGEEEJI16g7w7V4\nf8OFfv/73+Mzn/kMduzYketevHBPw/PPPz+3lxghhBBCyHJXd4Zr8f6GC1111VV461vfCpfLhdtv\nvx0vvvgiEokEXC5X7j5zm7mKYsfX7RNCCCGENKTp0Y5lWbj11ltzG0Zv27YNL7/8MlwuF5LJZO5+\njLGqgi2fz9HRRXCdqNQKCdI96Bx2Nzp/3Y3OX3fr1PPX9IArkUjg6quvxvPPPw+Hw4Ff/OIXuP76\n66GqKl588UVceeWV2LdvH7Zu3VrV47V7eWe38fvd1Eqjy9E57G50/robnb/u1gnnr1TA17SA69ln\nn0UqlcJNN92EO+64A7fccgtkWcaFF16Ibdu2gTGGn/zkJ9i+fTssy8KDDz7YrEMTQgghhHS0jt9L\nsd2RarfphOieNIbOYXej89fd6Px1t044f9T4lBBCCCGkTSjgIoS0DbMsGIy1exiEENJyFHARQtom\nqqqYiifaPQxCCGk5aoJFCGkbn6LAV2S3CkIIWW4ow0UIIYQQ0mIUcBFCCCGEtBgFXIQQQgghLUYB\nFyGEEEJIi1HARQghhBDSYhRwEUIIIYS0GAVchBBCCCEtRgEXIYQQQkiLUcBFCCGEENJiFHARQggh\nhLQYBVyEEEIIIS1GARchhBBCSItRwEUIIYQQ0mIUcJGaMMaQSmlLftykuvTHJIQQQpqFAi5SE103\nkUioS37cYDQBy7KW/LiEEEJIM4jtHgDpLjabhIEBacmPu2Gwd8mPSQghhDQLZbgIIU1zKhrBjJpu\n9zAIIaTjUIaLENI06z3edg+BEEI6EmW4CCGEEEJajAIuQgghhJAWo4CLEEIIIaTFKOAihBBCCGkx\nCrgIabMTU2FkdKPdwyCEENJCFHAR0mZrej2wSbRguBsF1SQmU/F2D4MQ0gUa+pTfv38/HnnkETzx\nxBN5tz/33HP4r//6LwiCgK1bt+L+++8Hz/O49tpr4XK5AADDw8N46KGHGjk8IcuCLArtHgKpU5/N\n0e4hEEK6RN0B12c/+1k888wzUBQl73ZVVfHoo4/i2WefhaIouPPOO/Hiiy/i4osvhmVZBcEZIYR0\nK57j2j0EQkiXqHtKcd26dXjssccKbpdlGU8++WQuEDMMAzabDQcPHkQ6ncbb3/523HLLLdi3b1/9\noyaE1O30TAQxden3wySEkJWs7gzX5ZdfjtHR0YLbeZ5Hf38/AOCJJ55AKpXCRRddhMOHD+O2227D\njTfeiJMnT+Id73gHvv3tb0MUyw/B53NApCmXmvj97nYPYUUzDBOMWZDl+mfsW3kO+/pc4HnKzFTr\neCSMHpsN/Yqz6t+h92B3o/PX3Tr1/LWkUpcxhocffhgnTpzAY489Bo7jsHHjRqxfvz73316vF8Fg\nEKtWrSr7WDMzqVYMcdny+90IBqmIt9kOjwaxYdAHuYri9mgsDcMw0dfrqutYdA47ixsSLJ0hmKju\nnND56250/rpbJ5y/UgFfS1Yp3nvvvchkMvjUpz6Vm1rcs2cPdu3aBQAIBAJIJBLw+/2tODwhTbd1\n2F9VsAUAnh6l7mCLEELI8tS0DNezzz6LVCqF8847D3v27MHrXvc63HrrrQCAW265BTfccAPe9773\nYceOHeA4Dg8++GDF6URCCCGEkOWAsyzLavcgyml3arDbdEI6lTSGzmF3mzt/k6kERJ5Dv7362i/S\nfvT+626dcP6WdEqREEJWun67Az6bUvmOTWBZFk4kQ0tyLEJIfWhOjxBCWkDkl+56luM49MqUSSOk\nk1GGixBClgGPZG/3EAghZVDARcgKcCYUgWGydg+DEEJWLAq4CFkBfE4HBGp22nQmYzgTj7Z7GF3J\ntOgCgKwsFHARsgK47DI42vev6XiOg1uytXsYXelUOoAM09s9DEKWDBXNE0JInTiOg9dOtVP12OQo\nv8sIIcsNZbgIaaJEKgOTaqUIIYQsQgEXIU2USmtUnN4GKV1HQtPaPQzSBNN6BEkz3e5hENJ0NKVI\nSBMN9HXmLvXLHYNFRdjLRI/ghMBRLoAsP/SqJh2JmQxTkytv9deJQBiMdfRuWx3JJcnw2KiWajmQ\neQkCJ7R7GIQ0HQVcpDNxHGx2qd2jWHIDHhd4at9ACCHLDgVcpCPxPAeP19HuYSw5p11u9xAIIYS0\nAAVchBBCOkpIjyGgzbR7GIQ0FRXNE0II6Sh9Uk+7h0BI01GGixCyZIKJJCZi8XYPgxBClhwFXIQA\nyGgGACAaT2N0MtLm0SxffpcTQ25Xu4dBCCFLjgKuFYiZDMcPTrR7GE0xE04gGGisfYRumJicjgEA\nPG4Fw0PeZgyNlEB7OhJCViKq4VqBeIHH+pHBdg+jKbw+J6wG21ZJooD1q3ubMyBSYDqZgiKKcNpo\nBSYhZOWiDNcKJQjddepjsTSsIpEVx3HUt6rDKaIISaBGlgsZjIE1eqXQZgkjDZ0ZTX/ctJnByfRk\n0x+XkHbrrm9dsmKl0lrRgIt0PqdNhiwWBlxRVe36oKNeQTWJiKa2exgN0SyzJdspKYING5Shpj8u\nIe1GU4qkKwwNeto9BNJkCU2DU5LBCysvQ7nK0f17bvZKtPiBkFpQhosQ0hZrenogdtnUNiHlmJaB\nNEu0exikQ9GnHSGErAAnktNIGVrF+83oyZZMFa4EDAyGpbd7GKRD0ZTiCmLoJgBAlKiAmZCVZq2j\nFyJX+RrbsMxsvWQTZ3rDehwaMzBk8zXvQTuQxMmQBFqNS4qjgGsFScTTAABvL9VeELLSVBNsAYBf\nbv62Or1S99esEdIoCrhWEAq0CCGEkPZoqIZr//792LlzZ8HtL7zwAq6//nrcdNNN+OpXvwoAYIzh\n3nvvxU033YSdO3fi1KlTjRyakI7FmAXTpBoYQggh8+rOcH32s5/FM888A0VR8m7XdR0PPfQQ9uzZ\nA0VRsGPHDlx66aX4zW9+A03TsHv3buzbtw+7du3C448/3vAfQEiniaVUpDM6VvU1f2qGkE5iWRZt\n1URIlerOcK1btw6PPfZYwe3Hjh3DunXr4PF4IMsyXvva1+JXv/oVXnrpJVxyySUAgPPPPx8HDhyo\nf9SEdDCvS1mxwZbJGDTTrHg/y7Iwk04vwYhaz2CV/97lSGcmDiepIzwh1ao74Lr88sshioUJskQi\nAbd7vkDS6XQikUggkUjA5ZqvIRIEAYbR/G0hCCHtk9Q0TCdTFe9nAUhkKrco6AYHZ6bbPYS2kHgB\nZ7lWtXsYhHSNphfNu1wuJJPJ3M/JZBJut7vgdsZY0YBtMZ/PAbHItiCkNL+fVgRVKxpLI55QMby6\ns5arN/scqroBmyi0fPrHj+rHPTiwPLKAl/Q5sT84gdcOrsnd1s3vQZ2ZmMkkMaAsj/NTj24+f6Rz\nz1/TA67Nmzfj1KlTiEQicDgc+PWvf43bbrsNHMfhxRdfxJVXXol9+/Zh69atVT3ezEzlq2Uyz+93\nIxiMt3sYXcOyLIgC31HPWSvO4anQDIZ63LBJtDC5FdbxPblz1u3vQYOZiBoqOHll1mZ1+/lb6Trh\n/JUK+Jr26fvss88ilUrhpptuwj333IPbbrsNlmXh+uuvx+DgIC677DL85Cc/wfbt22FZFh588MFm\nHZqQunEcB2EFFP2u7+usDN5KMJqKYsjuhsh314YeIi+gT3a2exiELDucZVlWuwdRTrsj1W7Tzuj+\nyMvj2HzWEHjaH68hnXCFVqtAPAG/ywm+juD1lakgNvX6YKuixKAbzJ2/iJZGj2Sv6zmZY1oMQpUN\nS0lzdOP7j8zrhPNXKsNF72TSNCPnrIZhMkyOz7R7KDhyYqptvbDGQzEwVv91TFrTEYh21wc+z3F1\n7wTzqgE/bKKIhFZbEf3+6UmwGq8Xk7qG07FoTb9TL6+sNBRsAcDLsama/0ZCSGeigIs0lSgK6PE4\n2j0M8BxgGO1Zru+wSWjke1YSBDhttuYNaAn4Xc66C/Ity8JkPIGpZLKq4EI1DByansZr+odqDmgU\nUcKgs3umy87rGWw4aCun24M50zIxro23exiEVIUCLtJUPM/B4Wx/sLB5wwBsNqktx/a6lIZWA4oC\nD5d9+W+AmzEMZGZbw3AcsMnnqyq4sIsizurvr+uYPMfBJnTP1OX+mdb2uTqaCkBj3dueR+AE9Iv1\nvRYIWWoUcJGmUVUdibja7mG0zPRMAlPTnTPVZzKGk1Ptn76tV1LTkNYNcByHQRft81nM+b2t7XO1\n1TkEme+eALQYmV/+FydkeejudxrpLJaFDl+D0ZB+X2cFBQLPY8DTPdNji/U66pt6pu1kCCHdiDJc\npGnsigx3j1L5jqRpHLaVdXWvGgYOhUPtHkbXyph6u4dQs4A2hbiRaPcwCGkYBVyEkK5hF0Wc3bdy\nanZ0ZuJQfKppjzeqRqB32d6Pg/IA3GJnZZcJqQcFXCTP5Gh4WU8LLgcmY3h5tHlfwqRzSbyAzc7m\nBZibnX5IfGdvlRbW4zCt9rR0IaSVKOBawdLJTMFtitNG9TFLaHImjmiytoUGAs/jnOEBANll/WPh\n+b5SkWQaJuucL6tIevkuolgq3dapfk6xlhOGZeJoqnwbBwvdecFnWQyG1X1TtmTpdOc7mTRFeDpe\n0BzU4ytdhM1YflG8oZsYPzndsvF1i2Rag67XN03T3+OEW6m/jQYHwLmgjkszzLb2VtJNMxfwWZaF\nSDqNE+HuXUnZbKFMquum9OphWgxHU2MFt4ucgI3KUNnf7ZN6urK7vmapSJiRdg+DdDBapbiCrVlf\n21RFMBCFXZHh8WZXlwkiD19/Z+7KvpQymgGOAySp9qkascFtkDiOg9c5v1BhwNPeWpfpZAoOSYJH\nsYPjOGzo9SGuFmZSVyrL6tb8TW0EjsdW53DJf1uObLwDNr79TZ9J56KAi1RtcJU372eO46C4ymdn\nNM3A2OkQNm4ZbOXQ6qJmdMiSCJ5vbAq1t0JnfcYsMMtqOLjqBqt6CgNwt739jXA7Rb+9e9t4kOpk\nWAoMJhSeLkZJvuX/DUDaSpZFrN800O5hFBWOpqAvwfY/STWDqQgtaycr00pbhMNzAgR09sIE0h4U\ncJGqMWbhyMu171vWaAapVVYPeGCTW5/kdTvsWN3X0/LjdBqTMaQ0DVqb9rRcjjoxeBlTQziZChT9\nt6iexFgmvMQjai+JsyHBwlBZ5+xKQToDBVykajzPYfPZjW01wlgbC7rrLGwn9RmPxRGIJ3P7JS5H\nSxkAZUwDh+LBJTtetRRexqDNV/TfPJITw/a+hh5fZwZYl7WJ6BWHYacpRbIIBVwrSCKWLvlvhm5C\nTWkVH6PRbNXJY1Mw2hT4jAci0PTmfPkbJsNYgFYklbPW68HGPt+yruE6GgsjqVd+3zSDTRAx7PBA\nbXO3+MU9snplNxSh9I4HcSOFlFn/womQEUGGLc1zTEgrUcC1gkTDyaJX5IZh4tTRAEJTsZaPYdPI\nIMQ6VvM1Qs3oUDM61g/3QZaaM4Uo8Bw8btrGqJnCqRSmEsl2D6MmI54+OKX8YCOSSSOqtab/mMEY\nzCWeVlRNDVE9BQCIG2mMZ2pr88FzPPgivf0WZq1OpCYR14tfEA7J/VAEe03H7BQpM9aR08CkPSjg\nWkHWbOgv2tRUFAVsftVq8AIPNb38riR1zYSuNTerxnEcXI7qMjdnAhGkM9QQsZIeux29SvcHsRIv\nQGpRs1KvrMApls4mHU8GW/AFz+UCJreoYG2VU4Qq0xDRs3VMxTrHn1ID0Fj2feGT3DihjiFupJo0\n5nwJsz2LVjJWumsbuZLmo4CL5PQN9sBml3I/q2mtoDFqMZPjEaRSre21dPp0qO4vErfbDre7fVfI\nQ31u2FtUnK+bZlcXpSc1Dcbsa0zkeQg8h8Oh7t6c2inJcJQJilpp0NZT104RCUPFhBpBVE9BY/nT\n7nZBglusPRDmLA5zJZscCse0UVkFmc9+3nglJ17t3gK3mN9ipVlb/KRZui11YD5xEHwH9x0zrRQY\ndcdfMp37SiA1m56MIpWofypDlsW8D+tENI1MFRmv3n4X7PbWfsH097u7dsshSRRaNvaEqiGe7t7G\noglNg7ag8zrHcVjbs/JWdDaLU6yvXk4RZPTJLhgWa1pGhoEhzTJwCnY4hNrHlTIzGFObE3z7JX9T\nAh/LspAwo5Xv2CVMKwHdCiNuHm/3UFYEany6jLh6FMg2Ccl0c65Y+oc8Vd1PXoLWCg5H8YDu4JEJ\nnD3S2MrJTqcZBiZm4ljvL1wJ5nN29xTcoKuwM74iSUXuSYrJmAYEjoPY4IbUAsdD4Hj0yc3bqUAR\nbFhTR6A1xyHYsE7xN208zWFBX0YZIZnP9kiUqc5sSVCGaxmxO+SmFqQbuolIuHm1D7rW/PYAWzeX\n35dtOZAEYcm27ElrOqKp1hR8BxNJjEdbvzADACbjcQQSzXntvhya6tjWFlFdRcKov+5yKhNHINO+\nflHjmSBS5tJscB4xYghq1WXMkmYMOivMHHOzWbKk2f09tqwFU6zdOnvQbSjgIkvCMEyMnW5+bc5S\nNlX9/dGJJTvWQhzHQZGLZ30sy8Lp6e5oT+F3ObHaszTThUNud9HsWT3O6RvARDqOSJ0rD6OaiplM\n6ZYspRyITMKosNH1gN0Fr1x/ltMvuzDQxKxWrQZkHxS+uW1DTMvEpDZdcLtX7IFfrq7gn+f4XHC1\nmEfwwcGMTNlIAAAgAElEQVR39xZNzMogZf4OptVdq4K7HQVcK9DJw5NV1WaJkgBvb3M+jEVRwIYO\n3E+xFudu6bypS47j4HE0b0GAIktNfbx2OhmJQDObs6Bgg9sHr1zf82LjBdiE2qfdz/MONTxVWAnH\ncTVnN8J6AmNqc7rHi5zY9OwKDx5uobGASOFdELniFzk8J5QMxroFz9lgEzbBwvJbld7JuvtVQ+qy\nfmQQNqXxIvczJ4JIJVtTsH3kyCSMLl59t5Q6IUAyTIZgcumvlvdPTZZcvTrgdLasPUMt7KIEh1h7\nXZplWTgcL8zUtFuv5MIae2+7h1ESx3FwCt1d27gURM4NkSu+QwBpjfZ/GpEl16wryrUb/XA4W9NF\nfGRkCKJIG8AupGodXKzLAUKTMxWRtIpTM+WnS18zMFTy9eyQpKa91lVDB1viwmKO4zCsLL8Vm6bF\noFeYKu0UlsUQMYrvE0lIrSjgIqSDZEpsPWSYDJMz7WneWA2R59HrcFS+YxWYZeGVYBBexY71Pm9D\nj2UyhjOxKE7HItAbmF6cVlNIG0sf8Larn1cpi3t01SNhphE1Ove1nI+DzCnQWAam1R1BIulcFHCR\ntjBNhkik8a7SM5HlU/SpGyYmQ8VX8YkCjw2D1af/05qOZKZ8fUa7thyJZzJls0U8x2FL7/yUVSMr\nBHmOQ49sQ6/dAbGB6cVhl6dgC5+VxrIsnEo3vnm2R3SiX66u5Uw76CyDSe0kgGyW0SH0IM2S0C2q\ndyKNqauBEmMM999/Pw4dOgRZlvGRj3wE69evBwAEg0Hceeedufu+8sor+Od//mfs2LED1157LVyz\nK4eGh4fx0EMPNeFPIN3IsqyquthXkmliq4lILAVVMzDU355pHEkUsH6oObUxJrPKdtY2GcPBiSDO\nXbP0Cxmiqgq7KIIXslPGZyJR+BQFLtt8QCMJ89PJJyMRjPT1gec4GIzVFDhxHAePvbYat4PhaWzo\n8cIuUpvChTiOw4iz+MKRoBaDQ5DhXLTnocp0cABsfGf0VouZEcicDXa+dI2XxNswJG/Iu80jVv++\ntCzW9UX1pDXq+kT53ve+B03TsHv3buzbtw+7du3C448/DgDw+/144oknAAC//e1v8fGPfxxvectb\nkMlkYFlW7t9IczFm4cyxAPx+d7uHUhVRFNDX1/gKyKGB5l0pe9wKehYlXnTdhLTEm203g6tC53+B\n59sSbAHAsCf/nA25XRDKBFFn9fcDyE41HgpN41z/QNnHPzoThs9uR59S3xTn2b39Vd/XtBiEEl+u\nh6PT2OqZfyxmWTAYgyx0z+spaarQmQmvVH7Vn1uwF11RmTE1gONyAVfCSMEAg1dsfSuKgDaNAakv\nr47PxtkhcK19/qf0M+iTVpdc5dipTCsN3QrCzq9r91CWrbrC8JdeegmXXHIJAOD888/HgQMHCu5j\nWRY+/OEP4/7774cgCDh48CDS6TTe/va345ZbbsG+ffsaGznJw/MchtZW12NmOUkmMwg1qTkrx3F5\nfb3GAhEcPdPYFEpgJo5wrDUb8naSQ8HpuovKJUHIbY5cDs9xecHW/qnJovdzy3LRvfta4WgsDNWc\nz7ImdC03VbvGmZ8pTRoaptTqX6sJPYPJdO0NNjPMaNoehCInQOYrX5fbBRnibCCTMNK543skJzwL\n9keUeQl2fmmmZhXeVrBowsbbWx4IDcrruy7YAgAeNshc+YsZ0pi6MlyJRCI3NQgAgiDAMAyIC1Lw\nL7zwAkZGRrBp0yYAgN1ux2233YYbb7wRJ0+exDve8Q58+9vfzvudYnw+B61Wq1GnZbkYs2AxC4LY\n/DS7z+eAbphQWrCXY4/HDoHnG3r9zWXxam3Q2mnnsJIenwLbEk/BXdrvKhqoLeVzt/hYsUgYOmPw\n+91YvCmNH7WNy8sc0E0TjkW1Y+OpKGy8iD578azT6cQMnDYb3FLj7UJ0ZoBZFmxC9QGEntbhkx01\n/U4r1Pp85/1ul73/SL5OPX91fUK6XC4kF/TcYYwVBE7PPPMMbrnlltzPGzduxPr168FxHDZu3Aiv\n14tgMIhVq8o3k5yZWf7ZgWby+90IBjtr24loJAUtY8A/mL3in8sANLPhYSJeXT+wsckI+nudsJXo\n3N4JFp7DaFKF0y5DFJoTrI7PxOBx2OG0tSbLoJkm4pkM+pq0YnGhU9EI1vZ4qsqG1Uo3TRyNhPGq\nvsb27uuBBFkQmvoeTCL/tc0xCzpnIBgvfgwFItS0DhWNr6qM6kmYYOiVqv8CkyAhBhXA0mzZ02yd\n+BlKqtcJ569UwFfXp/gFF1yAH/7whwCAffv2YevWrQX3OXDgAC644ILcz3v27MGuXbsAAIFAAIlE\nAn5/p21MunKEgzHEy6wS1JpYjO7xOnLBFgCEQgmEw6VXF04H44jHa98KBcgGc9EyU3j9vU7IUnMy\nMbGkilC0taskddNEPJ1BJFH5+bAsC0aFhQi9LgfsTfr7i+Fm/1+KyfLHdzwcrnoVotdmb0mwBWSn\nNc+qoXarFUaTUcSr2D5I5IWSdWPN5pGcNQVbo2p1eyPqzMCU1hlbUqlMpZYPZEnU9a697LLLIMsy\ntm/fjoceegjve9/78Oyzz2L37t0AgHA4DJfLlZfBuOGGGxCPx7Fjxw7ccccdePDBBytOJ5LWcfU4\noLhKNy0dPdH48u90iS70/f3usgXzikNGNFZfwMUsC6pa+gvcJjevGaZik+BSmt/4dWomgclw9gqt\nv8cJRZYgVTGtmcxomIyUv7KzS2LZAvVGSYJQth/XK8HpvHYUwx5P0anIYi0riq02HI/H8NPR0wW3\nm4zhcLi2vTtLBXNL1fBU5HlMa92d0V9t64NDqDyVyXM8lDpquTJMK7pPYikay1Rsf5JmKehWa3us\nmZaGDOuW3mOkVTirXc14qtTu1GC3aSSdGo+mwRiDx1ffPmSnT05jzdpeCAIP02SYHA1jzfraswaM\nWchkdChN2H6oU50JROBzK3A5CgO2SudQN8yqArBuFUgkYAEYqmLzaWZZMBnLayMxJ2MaNe1hGEwn\n4VcKX/v/Nz2JV/cPVf04i89ftvg9gS09rVvU8nJ8AltdgxCXIPM1rkbQI9rhEisHVpZlNeUCx7BM\naEyDnbdBtwzYqgzWpvRJ+MQ+SDUUsbdiSkq30jAsFQpPW+m02rKbUiTLk02RYG8gyBlc5YEwW2sk\nCHxdwRaQLTAvFmw1urdiJJaCVqKTeynW7Bd6s63u74Gzjuc6ndExHi7eHLXdqrl2m06mMJMun70c\ndLmqCrbmhNXij1frhtGZEp3oywVbBjNxJFo+k+aSbLlgqxXZMsuyAAvgl2hlZr/sgkOoLrN7XB2D\nXqI7vWpWvw+raZnIMA08x1cdbAHAgDRUU7DVKhKnULBFKOAi82RZhM2e/XCKziQxNZ5fYxGLpTE+\nNlPy92221n6wnTgZLPqlfuhI6Q2MF6rnSjuRymAi2PwARxD4qsaTzuhILegYr9gkrB/ozA/uVyaD\nMCoEp26bDJfceOZyKpnMBS/NagEx7Kq94a3IC1jrqr4X3O9mmr8vH8dxOKdnVcvq2xaTebHqY21W\nhiGVaCsxpUfKNuddyMbL8Emd252ekGpQwEWK6vE60D/Yg/HTISRm66l6ehSsWl3f3nbBQBSJROVi\n2nA4gVSq+JXvyJbiGxWPbB6sKnjxuJWqC+YZs3D8zDTcTjuGByv/zYbJEE/VvyorFEsiHC+s3zEY\nq1gI3ynOWTVQsQu8TRSLTv9Voi3KPs2d7ZORGfTP1owFU0mEy2TPNNNEXKs+q1Ite5FMWkRT8/pz\nzXlN7xBGk9G8TBezrIK/rx2ierrm/l0vJ8YKsnY6M6ranHqdfRA8dWQnKwi92klRHMeBF3gMDffC\n1aPk3V6NjJpfhJrJGMikKxemOhwyZLm2qaBae1xV+5hrigRaiVTxIlyTMagNrOzscdjR48iviTFN\nBjWjF9xei2hKxVS0/cW6hskQSqVwMlL7yjSDMZyYyc+s+p1O8ByHQed8Ly6PzY4eW+mpLoOxktOG\n1ZpKJxHJ5AfWmmniWCycd1t2mq941lURpbyc3FxD1KCaQMqovF/fyWQYEa2+RSXlZJhec8D1Kufq\ngmxX3EwjuWil4uKfCVmJKOAiZdUbzEyMzeSvRlvXh77ZQkLGLIyNhov+nt0ud0yjW1uRwC+WUGGy\nwi9SmyTC761/uxJJFAp7bXHI1cTVy2WX4XXmB2zaojYMao11bfUIJBKQeB4bvPNB7GQ8jqSWDTD0\nEoFQQtMwEY/ntvdZzLlgelIWhLIZNockob/O7X7meGQbXFL+1LksCFjjyC+S9dkU2MXiU+x9Nkfe\nhYtbsmHY6YEiSEW3x1lsg7MXXrn0XoAL1RJADdh6quoqv9Dc36GaGk6mpwAAvZK7YCugkF7/tHy1\n047lZFgGx9JHSz5WhqlIms0pHTCt1r+fSHeigGuFqabw3DBMsCJBxZzF2atiNmweKJkN43kOHk/l\nLz7GGI4cLr59CwAkkhmcKRG4tcrqAU/TmpBWIvA8et2NBQgCz0Ne0HZBM0yMLiq6PxOKVKyBS2la\n1f2yilnj6UHPbFuHyXgCwWQSHrsdNlGEZpo4VSLz5ZAkDLpcSOs6Dk3ntwNIaFouYAOAtN7apf1A\nthC/WFBUKriqhUuyQV702ClDqzubpTMTRxK1t3dJmRkkjdoyUnZBxrC99CrMYVs/xtT6Ws0E9TDi\nRmNZWhtvg0d0wUL+69y0TGgsAx48BK7+NkXWgkBu2jid9zMhcyjgWkEyaQ2Tp0uvqLIsC9OBKEJT\nMSTjpT9wJ0bDVRWpl+Nyl58mMwwTPM9j85bSGyy7nDYMr/GVDQ6XO90wc6sodcOEViGglkUBmwZ6\n824bGeqvOFWc1g3oRWrJIunap4oGXE70OxxQJAkiz0MWBGzpK/5lzXMc5Nm9Fr2L+nBZVv7X52gi\nVrFov9tw4OpuqyDxAs52175BuQWgmmdxcfYsrCWQNucD4IPJM7n/5jkePWI26xXUZqCx6oJjwzIx\nKPfDvWCza9MykTBrbzjcLw0VbFytWRmkWQoSL8PO13dxozEVIWM09/OgtAlcm2vTTKu7+7ktVxRw\nrSA2RcbwpgHEIqmSARXHcRhc7YMg8iUzWRu2VFekvhgzGViJAvDJyfkMB2MWTs02Xq00pclxHMYn\nZhCJppBMZhpuHdENTgdnkJmdBgzFU0iqGphlIaFmEE83vygcAPqcDriKbAcUU9Wag2+eqy2IMBiD\nwPNQFi14cNtseSseR3x9FYv262FarGmbQddKESV4mrAnYi0SupbbiLqYDNNhWRaOJMfzbneJdhjM\nxLFUNiu91TGc9+/u2U2sbbxcVcBlWRbOqOMFt6fMdE0tJYrJMBUJMwaFd8AjNrbqV+bt6JfWNfQY\nzaayiYazbJbFKFPXZBRwrUCSLECU8j9QE7E0knEVfQPZpfGGbpYMjuoViaQQKbGdkN0+PyXD8xw2\nj1TfaHJ4TS/sdgnxhLrkU4ztMOh1Q56tcxvyudHjsGM6loTJLPSVmYJsRY/jdT4vzkTqr32pZmuf\ng9PTMBgDBw5j8cJj6abZ0sxWSE0jVKLXVyOqWcnXDg5BwrFUtn1FSEsgvmh6MajFkLEMnO2aD6gS\nRhp2XoZmmXDw2QCR57iifcdsvIQUqxwwcRyHjcragttTTIVHbGxzYp4TclOIGabCKFJ3xSyGpNmd\njbedwuaGs2yGFYRhVd/Vn1RGAdcKpDhsuX5bc0RRyCtW7/E6oDjnV3xNjs5ATVdeQVVOb58LvSW2\n9PF6q+9uPxGIFtxmt0kYGvRg44bs/pyZTPYK+tRoCHqHZ71C8VRuWjSt6RUbrdoksSBD5O9xwmkv\n39/q92NTLWm86V5w3ESm+GtEN00cDWWns18OTOVuX1tia585SU3DOX4/MqYBjZlwSIW1UqF0uiXt\nHuYMKE4MFOlAX0pS1xDJlA/QTIvhWLwzLg5OpqahLWhO6pbsONu5CgDgEGTYFhXSD9v7YOfzz0Pc\nVGFaDH2yC6vs8wsjDiXH8u43pUXBg8eAnJ9VOq2OI24kcTxdmNFabFDuh8Q3VjMncRKU2SnEbMA1\nn3ELZUJQWRoWLGSs7lpdySwDhtWcVckSPwiJH2jKY5EsCrgIAMDukGF3lP7C9vY5Ibe4sWm17BXG\noesmpma3dhj09+Dk6cav0mIJFakSAadlWTh8aqrov1XDNBksZDvaHzwzhcBM6avqV85MIakWjkM3\nTQRj5etazhserKs5pskYphOFjz2XVfIp2RVzzLIQjBcfgyQIWOvJNq4c6e/Lu72ccDqNhJZBIqOh\nT3HAZy9cnTfkchW9vZmORsNI6NVdcFQzZSpwPM72+Gsaw1gq2pKAebXdC5kXEdFTOJPOBsVzCwMU\nQa5q5eIqmw9SkcUEr3LlTysqvAyVaZjW8i+a1tlXwy06scFefWa7WXpEL+z8/OvHJbogcTIETkCv\nWNs5ajcLOgyr9vo2sjQo4FoBIqEEouH5N6FpMJw+VluAYFfkXD1VcDKKUJ17VR0+ONHwVKXPm70y\nLTVFJkkC1g5nC8PtNgkb1lXeYujkaKho8f14MIpUWgPPcyXryTiOw/pVvTDr/LsGvC4IPA+B5/GH\nm9dgdZ8H6UzxGpfhfg9iReq0ZFHEuv75zEKxL+bjU2GE40lEkrVPjxV7qo9OhfKasvIch439peth\n5jJZi4Os05Foye1+1no8cEpyrmD+5alslu7/pgINBR8pXUcglZ8JGE/GEVKLT3lv6vHBJVXukP/y\nTBCKKMEpynU3M2WWhfF0YRZXEaSKPfWZZdU8dTwXUHklB9YqfQhkYojqtb9GTItVPCduUYEi2OAS\niwfICxuhmpaJ8Uz9FzL1sgm2guL6Ruhs6bJkAqfAzte+UIIsDQq4VgCn2w7nglWBgshjsM6O8QDg\nH/Kgz++GphmYLLPVTzEjZw2Bb6CtQjiUQDyeRiyexvhEdU00F270PB1OYDpcmHIf7O/BTCxV8GXV\n73XCbpPgctjKZtZUTcd0JBvUpopkoGo1EYoV/eJ0Kzas8pWvXzFMhiPjhVm9DX4fHHZbzQseBJ6H\n3104pXb2kL8pLTLWenpyWbJQKoWJWH4wL/B8rt/W1v5+8ByHP/APNLSVjSwIcC4KoAYdTvhspQKB\n+WMF00kE08WnbTb3+MAsC3E9g3AN7Rwsy0JUU5EwMuCAolml3kX9uxaaqwcbV6OIzAZLGjMKAiCD\nmXg5No7RVOnpTJ/kgEusbq/Ehaa1GGJGfsCaYTqOpcaRNjWcSE9AZdmCfHsV+yEKnACX4GhKH652\niRpTiJqlW9uQlYUCrhVAksWCInlbDRsnv/DcvqJZKVEU4PFVX9sCFHaqr/Vq3OW2Q1Fk9LgVrFld\nfnVRJJrCdGj+i9E0Gfp8TvQVGbNil2CYJgwj/++UJTGX2Tp4MpDL6JgmywusPC4Fg33ZQCgQjjfc\nqmLT6r6ygVE8ncHp6eIBpyjwOGtN4VQIz3GwSyI8DXSub4WFf6dPUTDgmj8/i18fc6sQ622VsPBx\nXJIM3TRxMJwNTgWOryqI65FtGE8miq5ctAkiDs9MQ+YFDCnVN8I1LQtTagIzWgocx6HfVtv76lRq\nBqppYFjxwidnM8ABNY6UmR/8T6gxDNg8cBQJqFRTR1RPQ+ZFCHUUXA/avAUNT228BB4CAtoM1toH\nqgq0FsowveO61DOr+sylxNnQJ7Z/BWOGTbR7CAQUcJEq/OlfvLpoVornOSgOGcm4iokaM10AEIkk\nMT4eyZuKsywrr0XEYrIsVt2J3u22w+vJZix0w8TJ0RC4MvU1DruM4Exh5iIaT0M3TJy9YTCX0dFN\nhniyeKH2xtV9BdOPUzOJpu2JOB1LwmWXsaa39GbLyYxWsfi+E/EcB2E2qDIZw4Gp5k8p/W56fjpS\nEgQ4RKnkVCIATKbimFqQ0bIJIl7TP1TyYuHsXn9B9qwSkecx0tOPtY7qWhScTkUwo6WhmgbCWhJb\nXP0FezqudfjgEm0IZuJIm3rutn6bE71yYUBnAbBgQTX1vH5aAHAmHaqpNcaMnoA6+xir7b3YoAxC\n5AQcTI7W9Dh+2ZdrJ9EsGtMQM8qvrE2aCWSKTAVme25lV3CqLIVUhVWMDsHT9p5cWe0bg2lRsDen\nE14JpMNVmgIUJQHpVAaJeBqxBW0fgoFY2ZWNXq8z284hNj/1wnEclDLZN5MxqFV0ugeyU1FzwZkk\nClg14MFYmWDO7bRj9YAHjFmYmJ7/QDZZYV2MLArwuLKZouBMAjNFNp5eyCYJaDApkzMXuAllek5F\nUyrCiVTVQV5a03F4srOWgAs8jz8YnK9HOTEz05T2D+f0+vMyWWtcbvxuagq/CozCKNKqYUBxwW/P\nD1BU08CJeO37QjbLsOKBT1bAIdsctRSNGbALEsQqvvQVQYJXckC3TGRYfpsEn+TE8dRU3mpGIFsz\nNqYWNlMWOSFXj2VbsKLwbOdwXdmzRliWldf2gef4ijVa3Oz/FpN5O/zSagCAAAECV/9CoqQ5jaS5\nNO85W1vrulZuY+rFKOAiZUVL9M1ayGaXsH7TACRJhGzLXmWPng5BtouQiuxHqKp6rui+r88F76Ip\nvnLb/mgZA9EFAdqZsXCuBUQp6bSG06NhKHYJA/2V+/dwHGBfMG5ZEmAY2SnEyVAsl/EKzdZs+Xoc\n6HGWn6bzuJSyAVI5jFmYXLByccjnrjilttrXAw5c1VkuRZawdajy4oJWCSaSua15DJMVLTj3O51N\naWw6dx6SuoaTsRkIPI9ta9djxNuXV7Q9Z27V4cn4/BZIdkHEiKd4d/xIJo1kFZtQN2IuYLQJYm4K\nsZjjyRCcgq3oCsJS3KIdXin/MW28BAYGmRdxYkHgxXMc3LMF8IeSY4gZKaTMDNyiUnJ1o8GMsnVZ\nlmUhUsXei3EjWVV9V8bKIKTP16yJnAinUH7K1iE4IfPl69gk3gYbX//0vIPvg4MvvR3SciFwq9s9\nhI5BARcpK53SqqqzEgQekiTAPpudsttFeDyOopsviyIPZUELiomJCFKp6r6gFEXG4GxzVpMxDPp7\nIAg8dL10XYWiyFiz2guO4/IK6AHAME2MBfIzFRzHwdfjWHRbtp7LIcswTAabLGLNYHbhgSjwVQVT\nqmbg2GjtV7QcB0h1FKf39zhhk+rfHw7Ifvn9fqL1K8XskpgLpuJaBlFVxZFQCIenp3ONURd2lS+m\n1ilUhyhhjSv7WuI4Dl6bUraGyyvbcDw2g4Su4ZfBUcT10r2/ymWdmi3DjNyU4WJnu2trBXImHUJU\nL7zIkngBm5RslmTY3pcXTPWIDliWhS3KKvDgK04ZhoxYxcanehUbQKtMA6uwCVHSTEHmZAzKnddP\nqlx5A1meKOAiedLJDJKJ+dqFodnVjMWKwBmz8m4fG5tBKpX9IDWM+Wk4wzBx5Mj8Sh1RFOBY0FS1\nr88Fu11CJJrCVLD0lW06reHUqfmAJTAVQ0YzkExmEItns15j4zNFx1oqIBJ4Hh5X+R5OLocNil2G\nKPDocduRqGP7nHRGh10WsXF17Ve0HMehr6e2IupGWZaFUCJbwH3WYP2Zr1AqhUC8ciNGt82Waxfh\nUxT4nU6sdruxube3bGPUORnDwLGZ2uoIOY7Ly/zsD06WvbhwSTZMp7PByHqXB9Ml6r68NgWOJmxm\nXa2MaRQUx9drjb0XHql4xmzuuVr4nDHLgmkxRI0UAloELtGey3iVMij3wiUU3iesZ1fmchwHv9xb\n5Dfz+WUfxAobTqtMhVlDkTshrUQBFym06DsnFkkhWKT2aSaUwExofqpr7bo+OBzZQGpoNqMEZAOs\nkTJb9chydiVgj1tBX2/plV2KImPt2vmAZfWQF26XHR6PA329LhiGCa5Mv6xiOI6Dy1l+6iCj5V9t\n93lKBz+HTk0VfGkzZmEynA0kaxlbo0zGkNaqq3dbzAKQmO3eXs00nl5kCnAyFofXbofbbsPBQHZv\nzIXPTUxVy9aYOWUZAs8jlKpiWlsUsbXEBtjVeo1/qGzGQeR5rO/xwilKGFTc2OhubA++ZpnWkvCV\nCJJqNZcNO54Kls1UvZwYBbMsRPQkprU4vJITq+2Vg6SFmMWQYfOBomkxaMxAylTzbm9En9Rbsiv9\nmcwZ6EX2dMyYGUSM6oN3y2IwmQ6Nde6G0ZZlIMOC7R5GUZZlgrEj7R7GkqCAi+RRnDY4XPkBiMfn\nxGCRFgx9fjf6/KVXytWK57miU5CGYeLI0QBMk+H06cIC3TmMWbDN1pD94jcnECqy4nBONJ7GVKi6\n5q2nJ8J5gYLLUTpA2zLcX/ClzfMcNq5qfa3GzKKGppphFtxWLZ7joBksV6ReqaHm0WDheRF4fvZx\nzNzU5qHpUG6KMGOYVa1YS+t6rr6rHjEtkxt7Qqv+izxl6DgZj8C0GEaT9e8XWQvLsnA4XtsX44DN\n1VBPsmKGbJ6yxe3nuIbBcxx6ZRcGbZ6qHtOaDdDmqExD1Jj/2S97wcCQNjOY0pq37dFo5gy0IgHc\nsDxcNBgTOKGq2qykGUWGpaBaCcRYAGlW2Kx2jlnFFGmzZbf5mQ8Cl3KauxYcJ4Djln6HgXaggGuJ\npBMqYqHm7HHValPjEUTCCRx9eRymyQqmDmtRakVhKpUp+W+GYea1ihBFASNbBiEIPFYvath68PD8\nkmNZFtHny2bILviDdegtsz+jy2lDb5ni/DkmY+hx2jFWZP/GYooFjK0WiqcwFUkglcmvt1NkCat9\n9QfEIwN9uexWIJZAKFn6Cv5VQ4U1Mn6XM1sbpdixsTcbsJ/t789NEfpdztx/h1MpHA5OI6lpOBCY\nygV6R0IhDLhcGI1WH/D8bjqQ9/OMmoY5+7xMpZJla70SmoaxxOyxLAsix4EHl5siHHK4imbBDMbK\nrqBkloWT8cpZE47jMKxUF8DMKdaktFQgmzQymNbKfw7pzCzYK7EeR1OjedN5FoD0bO1WzEhB4W25\nPUp7qiAAACAASURBVBXjRgrMsqAINki8iEG5/AVK1IhjSssGpmOZCahlurkP29ZCLtL/a+48aiyT\nt4pR5EUofOWtokROBs+JUPge+MRheMRVRe/HLIaAfhSG1dqFFAXHhQbTyl5UcpwImW/fophKOK6x\nzci7BQVcS0QQBWiqhuh05+8+P7jGB2+vC1vOWQ1B4HHgt6fws/99pa7HCkxEigZrhsFKbvETiaSQ\nXNTjamJ2SlOWRaiqjpf2nUQsnsZZJaYqJUkoOz20sGVEOUdOBbOB2xJeHBqzQS4ATEUSmIoU/4I0\nTIaMbsDnVNDX48CaXk/LinBXedzod9VfR5aqMLUZy2QgCTwUScJaT08u0Fvn8UAWBIBDQUAzlUwi\nWSRjtcnjw9GZ+QzJ+h5v7vE2eX1lFzg4JAn9SjYQlwQBPVK2M79coY1AREsjnJkPSBN6BqPJ+SCd\n5zj02qqb9nOItfXwKuZEMlS0rkviBTgWBR9Hk4Fc3y2NGXgpehK/j48W9OIqZW7FYlRP5XpvAcAm\nZTUMK3/rp1W27LRjwlTzKheSZqZiAfxCHtGNATnb3FfiRKgVivDLUVka45lTNTU0BQAbr0DiKp8r\nnuPhFYZgWK3bYH0hjYWRZuMQOUeb20GQxTir1lbfSyxY5559nUjL6GAGg71CzVAj/H53Vc/ZqSMB\nrN3kr2qbHWayhrbjiUZS8HjrqzFhzMKJE1Po63fDuyAjpekGhEWrA4PTcfT6nBAEHvHZwn+3q3ld\n1ecKejXdQDKt5VYyTs0k0NvjaMo2NwCgwkQmqcNTpNVEMJqEz6VAFHgcmwhBNQycu7Z5H6qT0Tjc\ndhtmkmm47DK8jsY3hTYZw8mZCFa5XZAEoWAvxbkmpBnDgCQIOBgMwrKAcwfnt+/RTDMbeC2Q1DXY\nBLFojVnGNGATGluhGUwnoZkmhhwuHImGscXTW1U9m9/vRmAqBp2ZDY+hVuNqFL2SA3YhP0MVN1TM\naGmsK9JY1bIsWMjfvkhjBiSu/EXLnN/GTuA17g1ImCpkTsw79rHUBDYqQ02f8myUzjRICwJPjWUg\n8zbEjCg2Da3B9HR3zEYUk/1KZ+CauB9kN6n2O7DVYyiGMlxLSLZJLQ22ajG0thexSApTRfYjnBwN\n56b0TJMhMD6T+++jL4/XfKxUKlP1Fj6JhIrR0fnsBM9zWL++PxdsqbPb6ciSWJCpkGUhr1C/2o70\nVY0rlcHpyezzwIHL+wKRxfmmpumMXtXfmkxrGAsWb5y51u/NC7YWZghFYb4SY/OqvlywFYqnkNGr\nrxMxGcPxqcI6Ga9DgV0SscbX05RgC8hmEzf39SKh6QX9teKZDE7PZPtbKZIEkedx3uAg/C5n3vO4\nONgCAKckQ+R5xDIZHF+0QrEZgY5fcWKV0w2e4+CRbUgb1deR8RyXNwadmQ1ttj3HYAyRMns0ekQ7\nJF7A/0Xz36cuwYYB2YlX4oX7+nEch5fjEziZDEFjBs6kZyDzYlXBFrMsDNo84DkOPaICwEIgM/+6\n3uxYlXuv6MxAUMufms/e1pwGstki/GwWKW2mETNKB00hYxqGNX8+53pu6Zae3TRbG23KmNoh225i\nZQZbnY4CrhXIsizwPAdPrxP9g4X1Iq4eJbeajuc59Mw2JhUEHlvOqb2J3arVvqqnulwuO9asyb8K\nXxg4BYNxGEbx1L+nxwGe55DJ6JiYiECx116HEo4ki97usMu57IYkCfC454MRr3u+qWkokoReYnz5\njydhoMIm1EB2U+wTgfnAyOcq0dtM4MFx2UanSTVTMfgSeB6rvIXHt88Gsq2YmhxwOXObUM9xyTJS\nhoHD0/lF90MuV0FAndZ1nI4W1tL12GzY5PNhRk3jVHT+y9tgDDNqbYsGxpNxxLVM3s8hNY1VTjfc\ncuWLpSPR4os6AulkQd+u0WS05r1EGSyoZulz6xRtEDger/bkv085joNdlHGWq3g2dKtrAKsVD0RO\nQG+ZFY+La8N4jsNq2/zqRGl2H8a5+x1KjsGYnarjOT6v6/zcbbXur5gdh1mwktGwDMTMGHSmIayH\nIBVpGZFmaZiWiSF5NcQiXeL7pH5MqGdgWSbSrPhnAbMYrC7cUNvq0nGXZalAGxYk1IsCrmXONArf\nYJqqY2psBhxX2EIhNBWDoZu5rArHcXBWmJbTtea+4Mt92btcdqRLbBc0NhFBPKHCZpOwaWPh5s3V\n0EoESzzPwb1oii+d0RGJz3+ha7oBw2SQSzQbnY4mkcpkx16sCWsxdlnC5hIrHE9NzSCWyk6dehx2\nyKKAVEbHWDiOZKZy/Y0iL2GvKMPAK1OFq+84jsNGnxevGqh8vuyiiEFn8TqyjJGdQlzvmV9UwSyr\nZCE7s6xc8XwgmUBqdhVkr12BQ8o+LydiYaiGnqvpKmZxwLTKUbytybCzBx45//VjF6WaA1uZFzBg\nd+FgPFD5zkWUmtqTeREyL4LnODiLFOHPKba9z0ICx8OEmQuytjpWQ5zNtggcj55F+yIKHF/XXokZ\npiNu5i/ikHkZfskPkZPglwegCHZoLAOVpRf8noqJzDhiRums2pB9GKvltVD44q+1JJtBxGhOiwXT\nqi4j3gyqNQXNqi+bqNfYUkJnozCt5q00LYXHDDh0bjuOxSjgWsZMg+HEoQlkFq0GtCkyvCW2uBEE\nHobBYBXZP3CheDSF8TPZN9TkeARaFUGXZVk4+MoYphuYX9cNE9PhBHTDLBifv88FR5l9GKsx1F96\nVV/PosCT57i8ui1ZErFmwFOyt5Rik/Lql8LxVN6WPYuZJst7rKSqIZqcX421fsCHHsf8mDTDxKHx\n/8/em/TIsqZZuY/1Zm7eR9/s7rSZeTKprCrgKiWg7uhOYMAMwYQ/UKrfkEgIwS9AMEJihJgwvLdU\nUl0lcCFRFZWZp9/9jtYjvHdz682+7w7Mw5tw94jY++zTZOZZZ3K2h7u5dW627H3Xu1abumvTLL/d\nwN83xcfnF/z3F6+I0mwlqcpysbJdeIVOEHAyKqYGFUVZa4Ia5/mSdYSpaWyVVt80e1FIe2Ji6pom\nwzhiGEfYmj61Q6iZDgfuzVXIX/dmLbo4zzgN7nZur2ovRnnKRXS7dkhVFN5xv16bkct4RD9drvC8\n7+4uRfYchZ0Fd/odszGtZK0ilMkK76tVSETKeby6YljSbExFW+nXpSjKdCoxl/nCpGRdb1DRqzea\noRqqcWPgdEXbICVfmGx8U3j5BRnrJyzfJhx1F0t9Pa80uNL4vd6Epa7solJfej0VnyLl2yNIQtlD\nKm/PmujrxhuJ5oUQ/PznP+fLL7/ENE3+5b/8lzx48GD69//wH/4D//k//2eazeLg/ot/8S94+PDh\njZ9Zh29b/PbbhnnBYDCO8L2Irb3FE18IyflRl4OH68eEx6OQYd9nY7uKEEULUgi54BB/9frrQEpJ\ntzNmc42o8C7wxhGdroepaRwczi4g3d4YXdeoVe+mPRJC0u2P2dpYvy7HZ312t6oYxt01EU+O27xz\nsHFr3I+UEimXzVDHWYKrGQzGIZmQbE2MVqMkJRcS154T+06I55XPVS4EUhYtxijNOOoM+GBvkyTL\nMO/g2A7Q9nya7ptnP85DSEmQJJRMc2V15dOLS5CSH04E8u2xz9ZXmIaEYnqxalnYd9xegCjL0FV1\nSRT/yhuwYTuUjcWqTyZyno56/KC+de11wc52lednHVzdQL+WYThKI1IhKOsGj70uP6nvLiwzyFOq\nxpsPevST4MZsxbsiFTlHYZcHzgateIirWzQMlyd+i4fO1oLb/FnUw1FNGmaZMI8xVQMh5VJ+41F0\nySgNUVXBvrlJ3Vj83UkpeRmd8sg5BK40WSmOtrriNs59LMVca2z6pvgqoutBdoqrbmBMfLykFHSz\nIzaNh29xDX87IOQAhTLKLWkAbxvfZdH8G+2Jv/iLvyBJEv7Tf/pP/OpXv+Jf/+t/zb/9t/92+vdP\nPvmEf/Nv/g0//vGPp6/9+Z//+Y2f+V2H1/dRNQW3+s1VHkplm9KKdqCqKjeSrXZriD+OuP/ONlGY\nIIQA1AVvrKvlvC4URVkiW3ku8Mcx5bJ1p2nIStleOX14k0v96nW5fRu2Nsro+vI6pVleGLWuICXv\n37tbO7MQty6/3qy6JEFKo7J4rtgrWoBhkpILMRHuL66Pbeh8sLfJaXdIlGW8u7O6KtIbB19bRUxV\nFMpWccP8/LLNh1ubC8Tro51tXvUH5EKgqOpSCzDKstciTgCWrqEpCs/6PfbLFRzj9hvy1XeM06Tw\n3Zp8xlBVkMtTj7qq8V51uVqgT7bBS2O6ccC2XaZszAiyqeroigQU9p3qtc9qVF8jZHoVRlk8JVxx\nnuHnMU3z9QmsoWrs2XV0VePQmW3nI2driUTOO8yPsoBYpijAPXub46jNllHD1kx2zSYHloqQYmVW\noqIoHFozAqoq6gLZGuc+CgquVmxfeS6AOhYJlmrSSs6pajVKWolUpHSyLnvmLrnMOYqOMVWdA+tw\n6bsTERPkAVLJKOdvfgwq2jbqwm1VoaTOdLKhGGApFdTfA1G7JEDB4Q1pxu8k3ugR9q//+q/5+3//\n7wPw05/+lE8++WTh759++in//t//e/7pP/2n/Lt/9+/u9JnfdeiGhvYWp+beBOdH3bXeV/PY2K5S\nrhSEpuRalCsO/Y63EDj9OhgNA1orpiG9UUi/5yOEJM1ynj+/vHX9Tk57S4apQZAwGt0sjr7sjPD8\niPOLwYI+7eIWt3lNU3l6tKxf6A59wjXGrV8Vq+wg1r63ZGMbOi9WTBxewdC1tWQLIEqzhfbsVsX9\nytUtL4oXMhSFlBiKOiVbV9+X5jkbJQd9ItTfq1a4GI859zyElLwaDO4cSp0LwTCKqFk2hqbxoFa/\nE9m6voxcCoLJRKKmqPyme8kgLto+nShgNI08Wv17NjWNQ7fGO5XmAtkCsDWdi9DjPPQKMveWsWtX\nCPOURGSkMltyFz8Ph/xqeEQmBcfhzRqbkrb8e1+3zVfYsRpoqBxYxUPHrtnAnizHnAjqDVWnpK0+\nx41Ju1JIQZAvttp0RV+ZnZjLnG7am3zfHqUJITNUgw29OO8VFGzNoqatNpUd5z6BCKho9Tu5zK+D\nphjMZ6NJcuJJC62bHpGLhKXstN9RaMo+ivLdmMr/ruCNqOd4PKZcnlUTNE0jyzL0yVPiP/yH/5B/\n9s/+GeVymT/90z/lL//yL2/9zDo0GqW3Ot7/reErtNBe+6tWfFeW5tiGRmWFH1aW5ujXWmY7O7On\n7yRJKf9on+OXHd79YLcwcU0ykBLTuv2GtrlZRgi5NF1XqzkIIbFtY8lBHiBN86W4n1rNwTA0hJBE\nUYphaFQqNlmWU75B3C+QmIaGrqtsbVWmla0/ucNx2dtdNhS9vo/jJMMyV5/L4yC+MQ5oFdaVpNfh\nweF6QjW/rCBOismwuXV93e+6CxrCJcsFtqETJimjKOajR7tUHZtcCH5z2uIP7+3zvNNjq16hYs/2\nz/z6bG9V+NVZi5Jh8O7msg/WvD9Xkudk4zFbteLzl+MxqqqyUZqd890gYBhHlAwDW9ep27P2cy4E\nIlTYcct81rnk/kaDLaXCj5k5iLuphaaqt9pOuHWLF6M+H23skAuxQGCNqk7dejPLjU7kY6gqNXP1\n54dJSCJyFMDCYNMurrmn/oBNu4yWqXxk7hdVvNSkFY54VNnE/IqVtXnIMKeTDPhR7f7a92Qiv5G8\nJSKll6Rs2cWxzGWOdoMb+e5ELxRkIbqqY65oM4owpGk2sDSLVKQM0wGbE2K4RbFsLx2iKuqdfhNx\nHpLJFFefXSvD3GeU9tm2Z9u+QzF1Xc0fYWnfvrYyyjrkMsA11h+f33Z8Hde0t4E3Ilzlchnfnwkq\nhRBT4iSl5J//839OpVJs8J/8yZ/w2Wef3fiZm9Dv//ZMIHwb6F6O2Nie/eBX9a/zTPDq6QXv/GCP\n6Prf8snfPtwjzwWt495Su/G//fkn/O1/8CHVZpne5HiMBgFCSOrNWVn/yhj0OoSQPPnynA9/uNpS\nwvNWi0Z/8/ERB/sNNlZorB4/abG1WcGyDEqTylsYLlacOl0PyzSoVGxUFLJU4Fgm3WsRS0JIRuOI\n+g3aryTNeHbUwTJ03rk/2z+9YUC1bHNyOWB/s7pyQvFVq8e97cat7ctREOFHCX/rw4PpMXx61uFw\ns7aynfgm6PshuqpScd7+k+fl2KdmWwvCdo+iihWlGdI0CL0EVVE4tIvztIJBOIqJvPWiXDfXsBWV\nfndRxB1nGcejIe81Z2TTQp3uuzTPyYC2vyiQLkudOMqQqiD1Zq2t/3l+gqPrqFu7qJHk1y/POChX\nyYSYEr1+HFLWTYI8nU4dtoIxu3PTiVtbFfxBzJZ0aLc9no667Jeq03gggDZ315gIKXk27vJ+ZRM/\nS9AUlUS7WbAtKUjN6bCPlJDIjL7voykqPWb70c1Nhknxm85EsZ80RSUSKc6KCteN3ykl3dRDRyWX\nCu3EI8hjLpIBuqKyazamFayTqE3DqOCuqXQBaFi0PY9UpJwlbR7Y+2Qy53n4kvecR6grhO1e5mGo\nBvaKKpUUBkMlRlEShBREIkdqi8ehm7b5wX6NL89eoCk6NX35QfAKqYjJyQmu/a5VGrS9dce3eD0R\nIeYd4oO+HliARfAa5+BvE77LGq43qmn/0R/9Eb/4xS8A+NWvfsUHH3ww/dt4POYf/aN/hO/7SCn5\n5S9/yY9//OMbP/M93hzyllBhAE1XeecHq3O+NE3lnQ/3pv/f3KrQbg1Jkowszelcjvh7/9ePsW1j\nWmk6ftFGN7QFsgXQOh8wXOFjparKWrJ1etJbO+H4gw/3V5ItgA/e36XRcKdkaxWqFefGvwM8eX6B\nEOJW3yrT0Pnhu7vcP1h26gZ4uNdEVVR6o+UHhAe7zQWyFacZXrBMMsu2xVZtUYf23v7mWrJ1l2N/\nHQ3X+VrIFoCtaysDjw1N43g45MJbzGO8mtT79cUFn7SWbQ5ORiPavs84SVa2Bi1dXyBb12FOXO1z\nIfikcwnA82F/sq7LDvU/2dzmvXqTTAgaljMlUc9H/an3VZLnZFJMW4wAck2L6Orh473qxgLZmoeX\nxpwGq3Min3odxmmMqigcTPRerm5i38HUNcgTjsI+fpbgZTEV3cbPEl4Fi23E+UrdMIsYZCGxyG7N\nW1yFSKScRB0CkTDMihteSbN4aG+zZdSm9hAAh/YWpmIQrZgyvA5DNXhgF9ePMA/ZNDaXyFYmcz4e\nf4amaCvJViYzDNWcHhNVUfHyEUG+eL3aMHYYJAMkkppevzF02lAtbHVWsfLzmy0XOukLxGR5Y9F9\n64HW32RoTCrOyOTqCdLvsR5faUrx8ePHSCn5V//qX/HZZ58RBAH/5J/8E/7Lf/kv/Mf/+B8xTZOf\n/exn/Nmf/dnKz7z77ru3fte3zVR/2/BV2L0/jlCVYhrRdgqPoLEXUV3RhnyTCUWAXneMYWpUJsah\ngR9zdtrnvQ9mYlkhBK3WkP39gty0WkMajRLWivblYBgsRP6sQ54LRl5Id+Bz/6A5rURlWf7WWtZP\njtuULIOD7fVPxVBMG0ZJRr28+glXt3V++clL/vi9RXFvZ+SzUSlNbxqdkc+rdp8/fndZBPxdQpxl\nHPcHvLe1WDl91R/QcGyqdnGD7PgBFcucVsiklAyiCGfS/vsqEFKiKgrPBj22Si7VNSamn/cvERI+\nas7CuNuhT5znHJbvNn5+9Rs8DzxKmk7JMJcm9q6QyyL02tL0lfFF65CI/MY2oJdF+Fky1WFVDZte\n4iMlbFjrRfRHYZea7lAzSjwP2hzaDUxVZ5gGaIpKWV9fkZJScpEMUICmUV27zVfw84hIJGwYi/tV\nSEEoYlxt8fdxFJ1zaO2srGyNshG9dMBDZ3Wb7Cg64v6kzddO25RVF1t1Vlbkr45fKmIGeYct4+DG\n7bjCILugrq+P2cplhvY1TexJKfDFp5S1n3wty1/+vgxQb7TP+LbwXa5wfZ+l+DuGr3KyBeMYRZm0\nBtoe9x5t8fjTU97/0f7ChSnLcl49a/Puh6uDo9e1FjttDyEE3ijk/oNNDFNHSkn7csT2nON9HKeE\nYUK9PrFDiFJMU19J8M5bA/Z2byY4V+s88iIa9dJrm01GcYpprP7+eazb7teF7Rr0egGlawTzYuCx\nXSsvfEdv7JOkgp16+a1899tCmKY8vuzyBwfFOZLl4tasyX4YUjbNBa+yQVi0QDMpUWFKzlbBi+Np\nPNA6rLN/mMdl4NO0ndnEYRJh6QaZEGuJ2jyufoNhljJOY1AUtuzbJwWfel0OSzUU4Dz0eFheXU0F\neOJ1eOA2FkhXlKd8Orzgj5uHPBm3qesOrmEiZVEZi0WGAks+WuuQiGz6Xj+PUVFubTN2Eo9c5uxY\nxW9ylPqcJwM2zQpCSmp6aaW+avF7U4aZx5a5OAUaiRhb/erV2UxmaKzOicxlRuL2Mfw6iUgoaXeb\n8AyFh6N+N3VDvy2QMgGOUJT3vtJyvsuE67tHT7/Ht4ZS2cJxLUplm3sTp/YPPjpAURTCIOHLT07o\nXIzQdW2JbLVO+wwHRbvo+FWXIIiXll+p2mxsVnj3/V1evuxMX79+4fP9eEEob9sGqqrwy//1jJG3\nOI14nWx1+2NOz/tLE4S6rtFsuK9FSq6eRXrD4Na4njwXfPb8gi9fXd55+auQZDmVkr1EtgB26pWl\n9bcNg1+/OCOMv56JyXl8fn45bQOuc3AfhBF/fXxKmudsukWFIslznvdmrazH7c7K9kfDcaZkqxsE\njKKI31xc0PYDxnGMBI5XRPtcwU/Ttet1hVWtxOtQFQUpJc+GPVqBx387PybMbl/2dTi6wZZTZst2\nGSQRg+Rmg8v3KhvYmo6pauzYyxYnr/w+yURn9f6c0P04GBDmKanMuVcqHlwelprYmkFJM3H1giRZ\nEzf5VfjUO106JvPvdTXrTpquTbPCjlUnkzlPglNGecC7pV2aeoVNo8qT4JQgW742LH6vwZbZJBXZ\nQh7iTWSrnXQYZatbs/MY52PaaZtIrj4WmqJzWHpYpBS8RssvEt432tL7XYSimMBq6cvvCrSf//zn\nP/+2V+ImBMHrOdz+vsN1rTfaZ2maoWkqxy/aGIaO5MonqrjBG4ZGtebguBbq3A0rjlKSJKPedLEn\nLu+1emkqcDYn03AnR13cskWa5hiGzsbG7IZy2fGo10q8fNmh0XBxHHNl+3Bjo4xbstaSpjwXdLpj\nGnWXNM2wJ1mKT19eUinbr2118PK0h2XqNGvuQnWmMBeVyLm2qqoqbDfLbNYXn4ijJOVVq89ZZ4ht\n6li3iN+P2wM26mWSuIgJitMMQ9f4/PiSrZq7VEUzdI339jYZxwlhkn6tcT2NOTPUz1tttivLT/+K\nUmi2Toce709aiJqqUnNsVEUhTFM6fsBOZTI9NxyhqwpftjtFCztJKJsmz7s9dspl7tfrNB2Hmm1j\nTciYretEWXEzfNnv03AKYlc2zbVkahhH9KKAimmR5DmPB122nNn6e0nMhT9mkETsuxU0VcXUVDYd\nlw8bm5R0A2eNDus6Vv0Gj/wBigIV4+YKzWkwwjVMTE3nLBhR0o2plYahatgrQqVNVcNSdWzNmMby\nJCInyJMp2YJCFP94fMmmtUzmtsxlMr8K4yziNOrRMG6u/KiKSlOvUDNcVEWdXksc1WKQjhGIqV3E\nOgiZk8psJdGSUpLIdKoLc7US1rX3ddIulmottCCVyX+WYpHKBCEl2jVPrLJrE4f5a9lDOOri/hvl\nHXTFXNn+/CYhZY6fv0BVTFTlq6VwfBNQ3sI6vuk98G3CdVf/zr+vcL1lRH6E1399wem3jaMXRcXp\n4MEmpbJFv+MRXTtpTctA1zV++YsvSSYVlTwXZGm+dLEWUuKNZk+RWztVVFWh31sUqSqKgmMb/OY3\nx7iuheeF/PpXr8jz5YqSZRpkmVg71ahpKo5joOvqgq7rnftbS7mFQkievbo5H+zR4QZZJpaqW6cX\nAy46I/reokD+1XlvyRzWNg226mUa1dLajEWA3iig5wU83GlOLRviNGMcFcfgg4NNup7Pk7OZUPWL\nk6Ka9slRi5JpULa/Xs+beTLz0d72yvdYus52pUy9tKi/ufqsYxj8eHemc9kolbAnrzUdZ2rhsFet\nYE6qUVfnlqIo1CYtxVeDAaqiME7XX1jF3FBBxbSoGhZ/1TolzjI+bCzqyVRFoemUuFeuTT933V1+\nHl4SE+UZqciJssXqYi8KlkKe369ssO9UGacxL8f9tcu1NR114p1latqCj5armytJkYqCqih4WcQw\nDYnylLNouOSjpasa75VXH7d1ZOs47OHPVaTO4wH79vpW5/VlHkdt/Dk/LVs1SGQ6nVa8Qicd0E0X\nq5eGalDTV7dmMpnTS2f7cVVUj61aKChkcuYzd5YcUdEqGKpBJjMEOe20NV3Gi+jpnbZtFYJ8SCSK\na7+uGMQiIBavF57+9iFBUVH47pOt3wd8T7jeNuaqQr9NePeDXV49u5xWbHb2G5TKFpfnM6PQK/z4\njx6gGzpRlNJte5iWwYuni1Nmu3t1difeWkEQY1kGmqaxO4kZOjnukk2IzO5unT/4g/tsb1cplSyc\nksHHH58srePTZxdkWbZEaubh2Ms3pVXaK1VVuL9/e65YtiKzsVlzqVdLbNYXKwXbzcqS1xgUT+Mb\n1dKN1g5V117IRQRwbXMa66OpKpaus1GZEZl3dzemVS3L0DGvkcowSemNvxlblUEQEiQF8VAVBUNR\nV7ZY5ttyp8MRmqpMKzjanLZq3jvrCvMGrR9uFo71H2xs0g18/CQhuNZSbPljjr3CZV9VFHIkddvh\n/37xlEwI/DShe5WnaJiUjSJ+6Hg8ZJisbnu9GPWRUpJJQS4EYZYxShOCLMWbfCZI06WsxKtz0tVN\nDkvrxfcb1kxjuGm5a8Om5/Hc7+KnhcZKV1ROwyH37PpCdSueBE7rKyouich4PF4dhr1jVReIWLx+\nkQAAIABJREFU2/vu7jQn8Tb4eYSQAlOZvX+U+xiqhqvZjDKfXjoiEpM0i9foyKmKwp5VEHchBb/x\nP10638paGVVR6aYdYhkTipBto5h27KRtLMXGVCxctfgda4qGqRgIeXPrWMicy3T5+mSoFvqkQlNS\na2iKtmQ8+01DUXTK2iO016gcyVu2/9uEKh/DW57u/CbxPeF6A2RJRrBi/B/ALlmU618tC+7bghSC\nv/qvXy4QLNMyFuJnfvW/npPGGaqqYNsGtbpDEqU8em95OufZk1aRV9gunvo+/eSEX/3NS4SQfPn5\nGaNh8fR3PudC3+/7vPNoh+3t6tIF9IP3d3EcC9e1iCcVttEoXHhfpWyvNSCdR9HavH0irFl3MQ0d\nz79WVVtxc3DWmMDWys5KstUd+gzGxT7QNfVWUXnZsdiozs4tQ9dwTIP9ZpXnF8sj2po6C9cWUpKu\nqBreBUGS3mqboakq7bHPKIw4GQynLb/rOBkOGcdFVapqWQtt3n4YcjQoqhy5EAukJc4ynvV6JNe2\nwdZ1xmlKazzmxBsuVJv2yxXKhkU60T3VLJv36k3+aHuXX56f0PLHDOMIP1mskj2o1Klbq9tJTauY\nbGtYhSA9yBLKhomUklwK+nGAoijTCT0hJb044NW4OMcVRbnVrf06Hnvt6TaswrvlTb7w2ozSGFe3\nsBVj+v2fjM5J8uxGV/lMCjqxxziLiEVKlKfTdTdXtDCza9WkbjJaqugBuJrNvrXBSTyrJFe00vS4\nljSbilYiFimWalIzCuIT5NE0lDrKY1pxl246IMwjOklR1bpIulMnegWF9513FtYzErPf6465i63a\nJCLmOHnFRdrCUR3G+ZBAjClpswenA+vBrW1AVdGoa1ukMl4gJ4ZiTwnXFbz85ir6t41YXBCLRbId\niE+RN4R7f5sQ3INvOJvxbeJ7wnUDuqerL1JpkhKvEIU///ho2mqLgpiXnxwTeK9fUn7yq1ev/Znb\n0GkN6bVHdFrrRcf3Hm2ze69JPtdCqzcXheYP39umXJtVWeI4wzBnY/wLy3uwiaoq1BslRsOA99/f\n5Sd/6z6qqvDTP3yIaRWfc5y5rDlD5/nzS0rXtFpBEBNFCVJKojglCJPJ6wlXX3veGhBN9r+/4vhM\nlxUlnLfX74frkFIymDuO5ZJFybn9ibHVu1nEW3XthSDqN4fk6HLZA8jUdapOQRy8MKaz5iEBwI8T\nWsPFyZ6r1lqcZUtE5zoqtsV2xWUUJxiKyv1G4c4fZxmjMCaeELCHjQZly5x+Zr6C03AcgjQhyXMu\nfZ9+WOzzTAged7tLpqpXeFCr826zia0b2Nd0Vk3HoXJtsnCnXGHfLeMaBqqi0olW75dPuhd82rvk\n3PcYTny3ateIWNmwMFUN1zDRVY1eHNKcc6/vxQFxnnPfXR0pcx1eGnPkF8fyIioeVB65zSmBivKM\nbry4vqaq8cfNQ/acKkJKXsx5bf2osksoUh46hV+Zl0VT8paKnFEaMkpD3nU3uYxHhFlCJIpooKfB\n6gGQs6hHlC+3ctvJiNOwxxf+8fQ1Q9V55MwGbE7jDvtW0c7VFQ1D1anpLjWjPNVjZTKfEjhdKaph\ntmphqSYVvXjg2Le2p/FAvgiW/LwG2WCpzVjT6zyy32XX3MPVyjSMTcra6mpjLjMGWWfl3wBM1cLP\nB6RyfUvbUl02jHtr/w7g5Rf4+bfnZ2WpO1jq4sOyq/2EHJ8gf/EtrdUNUL4ts9i3g+9tIW767qMO\nW/fXhzxfh5SSYXuEXbaxSxZCCM6eXnD4wetNXgghFoTpr4N1I7FXVatBx6O5XSWJM86Pujx4f71v\nzBXGo5AkzmhuVWidDQqB/ESQ/stffMn/8Q8+pNvxGHTGvPPh7tITcRJnSORKIfwqzFefgiDBsnT6\nfR9vHLEzaTsCDAYB1aqDqipEcUqWCUqOiaoqHJ/22N+rLwnlkzTj5KzPOw/uFjANhaVBqz3i8A72\nE/PoDH02a69f7bx+DC8HY+quvVYDJqVkHCVoqkLJmhG4XAg6I5+d+u3j6rkQpJMoniucDz1MXWPD\nvXscSccPOOr20VSVPzjcYxwndHyfkmmyXb59X4RpSpLnU63WbZCysB1d1XrLhKDljzmsVBdee9Lv\n8sONrem/1wntM5EjJZz6HvtuhSjPMDUNW9N5Nuxx4FaWCB68+Vj6IAnpJyEHpRqmqnEejti7FnAd\n5xlhnhKLjG1r0QrkyO/j6gYbc6L4z70WVd2mabo4mkE79lBRURS4iD0eOhvkMqds2ByHPXas6p1t\nI67jMi50dRtG9bVkFa24i62a1I3F8/RqSvAqP/E0vqCh1zhPWrzrPJy+T0iBRNLPhmzojYXvDkVI\nKlKq+mpiddU+nK9qbW1VaF0M+CL8G951PsKeOMJ3sxZ1bfNr89L6fYSQR4CFqtx+H7orvreF+C3F\n65AtKNoFhmlMyZKqqq9Ntq4+97ahqgqqqtCcxACZls7ho7uRDrtkUq4WN8Dd/fqUbIlcYJcMsjRn\nY7OyMqcRYDyOSNOcQX9RMJ8k2TSI+ooQtlpDdF1lMPBptYb4fvHZzc0Kjx5uTb8bCvJ01dvzgxiF\nmV7r3kFz5VSiaeivRbaklDx5eUnZXaxEpVnOycWA/igoQpPH4UIVDHgjsrUKtqnfOGGpKAqaqkwF\n9vOvd7zgTq1ETVUXyBbAXq3yWmRrFEVoKGxVXMq2RZRmlC2Th83GncgWFMTptmraFfwkoR+FnHqr\nK4mqoqArCu2gOO+OvSGpyKnbNlJKgjTl/z15sXacX1c1NFWlbJiYmkYuZ23O+5UagySmEy2e0+M0\nIbhByH8T6qbDo3JzavdwnWzNv28VnVEUhXCi1Xrhd8lEzg8ru7i6RTsuqmVbVgUvj/hsdM4PK7vE\nMmWUF9Xge05zSraklIzSxfP5E29Rt5RLwVE4qwJtW3VqenlqXXEbrlqCu9bGAtkaZh7DzGOch4zz\nYh1CEaGjUtJsHk0MTM/iNrnMURUVFbXQTM2TrTwiFwJTLX67o2w0bTUKKQjzAC8f4eWj6TZnMkVI\ngaZqPLA+wJxrEZbVGiq/A7m+3yGoyv23Sra+6/iecL1luPUSpv31jea/KUa9Mb3LxRuTpq8+/J2L\nIf54poHQdW0hpLpzMdPZ7B40p8HXWztVRoPl9oxlG+jasog6jlI8L0QIwbNnhY4gTTOyLKded3Fd\nk07b4+x8QJJkfPrpKWdns9bZ9laVKMoQQrLRKK8dxfXGEZ98ccrRyax0n+eCy+7NT0Hn7RFRkmJb\nBlX32tSdptKslUhzwdnlkCTNljRcw3E4IYXQGficrmj73QWmrvHJqxb5DT5QYVIIw7Nc8PS8Q5wW\n/36w1VhL1rJccN5/O0+CXT+gH4SYusbpyMOLIiTyVvLU8jy6fjA9NyxdZ8u9nZzFWcbRcEDVsrlX\nLdp1XhLzfDBrp6lK8ZDRngjjN50SlqaTihwhJSXD4O/tP+DM9xajeubOU1VRMDWNQRzRsJxpRI+h\najz3enTCxfM9k4JMSoSUtIK779tnXo9ROluHI3+wkgg+94tzeNtetCEQUnIaDtg0i+rWtlVBVzUy\nKagbDvdLs8nCsmbxYWUHMdGdGSs0SwLJMAtpJx69ZMwoC+mn44V10hSVTbPCZ+NjgjzmOGpzkfR5\nEpyu3c5IJLwMLziJLnkVrRbqu5pDSXWo6xXqkynFcRZQ0ysMstG0GlXTy6iTW9iz6BUNvTgPjuNT\nEpGQU5CxVtIilzmGaqBNCJMgJxQBtmqjonKWnJHJhG7a4iR4WewnvYo6ZxlhrXGmvwmxCEjFzb5j\nAKP8jEQsx6L9rkHe0IL9fcD3PlxfEV5/jKoqaG8pHuarYp0HiWZoWLaBeoswG0CbEKx1zuqBH1Mq\n22iaihSSMEhonQ2wbQN/HFOuFNUwISR5LrBtA93QsCbO8n4Qc3kxpFyxefH8ErdsT2N88lxgmjqa\nphLHhZfWwUEDTVPxw6RoE85tQ7szWsh5XFjPsJh+8vyY3a0ajbq7sE1Zli9UzK6j1RnSrLpsrDBM\nVRQFQ9dwHZNKyaZcspZE71GcoWsauqbiRwnH7SF7zdvbLdePoa5pIIuqmqFpKwnUWW/Idq0MCry4\n7LNdK09zBK+IxxImqQLXK1vz8OOETOQL7u9XyHIxXa6Ukprj4JgGh/UahqYRZxmZECtzEK9g6jq9\nIERVFCxdX/IZuxiPKZvLOrcwTbF1Y+FvlqZjazon3oiG7ZBNhPf3KsWN2FA1UiEYxQm5FBPdlUpJ\nL6KDFEUhzjOeDHsLHl1SFv5i12N37pVrbDqL5NBSNU7iEWVM2lGAqih3yj5sWs5CrmGOoKQvb/fW\nXLtwmEZYqjb1uKoYNraqoSoqpqoR5xkvgy4b5uI6dlOfXEqEFIyzpJganPh3DZKAYVYMoliKTpRn\nk3akya5ZWyn4lxKaZpmy5lA3XLYnLvN+Hi20J78YH1PRioqpoqjsmHVimU6d5yOR8CI8w8t9Ns3F\n9n0qMxzVxs8DYpEQ5CElzUabrE/TmL2/opW5zC4xFJOy7lLX66iKiqEYU88tBRWQKCioioqruZiq\nRVmrUXFL9MYDBALjhum+dnqErpjoyvrzO8xH9LMzKvrN3RJDcdCU9R6DvwuQMkXIp6jK3TsMb4Lv\nsg/X983or4g8E0u2CW8LWZpPq0dfFVGQUJqcBKEfM+iO2bu/OvjXsg3OjjrUNyrTz8xjc6c2tWaw\nSwZSMA2ydkoWWZqT5YLjow6aqvDo3R3yTEyqWZKNzQquW1xcfvqHD4ttzXLiOKPZLG4ovh8Tx0Wk\nz9Fxl/v3NkjnWohXyHNJkmZTg9V5pGkOhkacZJRduUDKzi+HHMxpsl6ddGk2ypRLM1uJva0a+poq\n4DzmyUyrM8IwNPJcsN2ctUm26mVqrv1G+ZMAu80Kn7xqcdYbsdesUi0VbTFrQpYONmqYRkFYfniw\nPSVlXhhTtk30yWj/PKFRFYVaab1WqjP2GccJrmlg6cttzaPegP16FdvQca3FG5OQkkapNNVHvej1\n2a9WlkTvpqbxoFEch34Y4sUJ9+szgfk6hWnFssiFIEhTSnOEztZ19svFfs+EKMT6FvhpwjhJ6EYh\nuqrwwJl9x7yGy9J03q9tTLMXr5Z5HbksbAyO/SFCSuqmQ9N2yKXgIvTpxQGPKo1bLQbWoWne3sod\nJCElzcCYkIiaYTNMQ6qKjaIoWJrOB+VthmlIPw247zQL89k85YHT4DQasGVVsFS9mLBMfJ4Hl2yb\nVcq2VWgDk4htKpN9s0wshtnMc+x6cHk38XBsi2E6RgKvogv2rQ22rXox/CISlLnfs47Ke87hyjDw\nq0rXlrkxaQdGDLIRW+byNUxVVEpK6UZ7g1fxC2IRcWDdo6wt6m3CPMBSbDSl+D0dJ8+4b83iZmIR\noioaW8bq3MZ5VPQNXO123zL190AXpigGmvKjhdekPAJ234rh6W8Dvq9wfUXYrvXWSNE8kjjl/MUl\ntc3Xy+dax+5HfR9zUgnSDQ27ZE4JyMVpH6dkLZCBXsfDda3pBOI8nn15zhcfH1OplShXnKXWZBgm\ntC9GVGsOB/c2iligL87Y2a1TrV094V4T1ic5UZRMJxY1TUVVFTrdMQ8fbOL7MZapI+RMfN/tjdnZ\nrqJr2koiY1sGhqFRqzpLgnMpJfZcC7BeLdEb+IjJ61kusC3j1ifOIEoYjAJcpyCm5ZKFYxnESUbp\n2gTiqircPLojnywXNOvu0jFs9T32GlUONmuULJNxlBBnGY5pTJzvizbn1WTg/3h8hG3o7DYqGLpG\ne+SjoPCi3WNzhUP8KpiaTtW28eMEQ9OWqlwN1yHOMk4HI/phiK6pU0LlmuaCkL1kFKTt84s2DcdB\nUWbnQCYE4yShbtvUbJtMFB5XmqpStkzCNOV5v8/mNW+uKMsYRCEVa/ZQUNguFPtZV1XcSQVMnejc\nDspVNpyb8zTPfQ8h5Y3O8ueBx2kwommVCNKETcflPPBwNJ1SyWTkhxy6NY78EYaqLlSv3hYSkXMc\nDKiZ9tRfq5P4uPri9KetGdSNEp+PL2iYJWqGjaUZNEyXcRahKyqXyQg/i9m2qmzbVRzNxFR1NEXF\n0mZu95EovM5ehh2aZjFZ6Or2EtkCqBlFZbidDOklHptGjWfROQ+c7Yl1ho6pGkgpeRqekMmiGmup\ni7+bSMRT4TwUx9hUDVxtPSm1NRtbK6wgmFSxUpEiZI6maNT1BpvGFuYKF/vt2gZxKFAnmrCavujX\nF4sQBW6sbOUym7Y+F0X8Hjq3X1feFmLRQsgQTVn9my9CqOU3FkJ91ZKebb8C2G91f3yXK1zfa7i+\nozAtg/sf7r+15W3u1qfkyfcigjmNluNaqNrshE/iFLfiUCqvrn5s79XRdZ16czkiJMty3LJNvTGL\n+im5Fj/86IAszel1C/GuELKoQE1g28a0unX19zBMefSwKD8PhwEnZ33siZWE50UMhgFSwvPjzlp9\n07rqY62yPF68t12bvn503pvqr4SQXHRHk7zE1sJnRn5EcC3HUFEUNua82JI0o3eDJcMVXNtaG81T\nLVkLxqa1kk2zXNxwwjilP54JnG3D4A8f7U9NUwF0VcEyND7cu3s5/8obbLdWWbtermVyv1njnY3m\nAvG5jisi9uH2Jkme86w701rlQkxNU6EQ3w+iufPTMPhwc7klUzIKG4hzb6aVElIyTpLp+XA1MKCr\nKq6x/BT9fNifen5dCeIPylUaE2uHThjQi5atXQ7cKrtOhYbl8H59E1vT2bBLmJpOLPJpO3PLLt0a\n57MOx8GAp95MlJ6KnOfjmQ7Ry2LqpoM2J6E/dOorzU2hsIjQJ4a0V4L4DbOMo5k4qslpPJy0I/Wp\nJUhVd+inM21RmMekMuPQLkiIqeqkMqOdjDiLVtvo7FlNdp0Ghqbzs9oPp8u5sm1QFIV3nH32rA1c\nbfF3KaWknaxerpSSbnqzLjIQ/tS6IZExsVytpzqNX5HKu+WRuloVS725AtlOV1v7JCJCsHytehOz\n0VB0SOXN1xVT2cZQFn87fv7x9P9T2SWT65MP3jYkF0jOpv9WlOpbJ3syfQLfUR+x7wnX7yFMy5iS\nIYBqffGJv98dE47XB+1Wqg5795uIXCyI66MopTURtatzppsnR13Go6jQPJWLm08QxPR66yOQzs76\nRFFCFKVctkeomsrBfgMmNxfL0jnYa6CqCu8/nLXQciE4n4j6x37MWWvxghyEydTh/ur9Y3/5IvzO\n4eZCVaw3CBgHMT96ZzG0e3ejStmxuOyPedXqMQ6Xl3U1RXgbbFNfiCB62ZrdaEqWSXtSAbsOTVUX\nWoO5EERpRjhHYhrl0q1ZkskKV/27YN1yB2FxbrRGHv/j1dG0TVcyDd7bnLWCLF1nd5KteDQYoijK\nAuFahfOxx9loRDvwaTgOvTDgr87O+KxzybN+j1QIzscev768edhg23HRVJVeFHIZ+IyThDifmbZW\nTYswX30jbtrFtGA4MVu9yj38ycYOP93YQ0hBO/L5YrDaz6kTBTfub11Rue/O2lGGqi1MLj5ymxw4\nq3VVAL1kRpSiPKUde8Qiw8tiPh9fTN3nAZqGyx/XHtCKhwzTkM/GpxyHPbwsWjCgbRhlKrqDPWkv\nCilJREZJNTmOOrTj4ZJJ68vokqZR5aGzw8fjFxxHbcZ5SDp3U7yeZ3gFRVG4Z6+f9L7JyV1KSV1v\nTm0dXK280D48TY4QUhCJEFt1yOcczDOZ0ctmpqW5zPFzDy8fMM6XPfw+CX6xQJp2zXdXrlNN31qy\nlRAyo5M9X7sd66ArJTRWPwglYoCfn6Ao6lL1qKT+cPr/prqDob7eNP5XgarsoioHX++XaHuw5nz6\ntvF9S3EFoiAm9mPMt2JK+c3iejlV5IJ+18OZK3Fqurq2DSpyQRgk7K/Rd13BNA1aZwPiMKVcLaZ3\ndF2btgzjKCXPBeNxxO5enShKaF+OiKKEUsnEcUzKaypoUBCqeq2EBM5aAw4PmkghGAzDiUZKEkUp\npqWTZ2LarlMoLrSWZWCaOtWKw9FprxDuayqDUYCua1Nik2U53jjGLa2vQiiKwlazvNCChEI03u55\nKIpCuWQRJ9lS3A9MLBdeI1T66hjqmoqQEMQJlqGTCYE5aU1FkynEcRhPqzNXei5jItSPs5zWwKPh\n3s0s8POzS1zLxFyhWXoTXHhj6o6NpescVKsriVmcZSjAk06X+iTg2jVNXNNcKdSHIjrH0XWapRKK\nAqfeiDPP4+/sH6AqCmXTpGbb2Fqh57r+vf0onGq/roTwjq5TMgzGaYI2mUzshgFCSuI8p2paXARj\noiylZJi8HPWpmTaxyPnLsxfsOGUsTacTBVRcmyQqWkqubpKRUzWWz/VeHFIx1gulK4a11Koz5siV\noigIKemnIV4aTYXvmci5jMdEIqOqF+2aL8eXNM3i95Qjqek2icgYZRGOZvKF18JSDR65m9iawbZV\ntBW9PGLHWm3aOkwDuqnHjlXHVHUqmk0qMkxVXyCBG3OWD7tmg6pewtUdLpIepWvh0ifRBYaiL2Ut\nAvh5OBXYX22/o92gQUy75DKfhloP0wG+8NEVjf/p/YJ75gNsrYSKhqlaDPM+tupQdm0CPynanhNt\nkSAnERGuVsFYEUpdUTcwVrQn7wJFUXG122PGrkNTDBRFQ8icjHAhvkfFwlBWB5J/U+3DbwtuuULg\nj1E5Qip3y/186+vwfUvxNSAl4oa8vt86vEbRIsvFgm4rzwWdi2WfI6dk8uCdLQ4fbi7opy5aA0Qu\nuGwNGXshTqm4CHTaHr2uR7NZxlgxFXd9f3ujkCTNMU2ddx5uEYQxfpCwvVWh0/UwDI3jkx7jcUx/\n4NPpenhehKIoVK+1C/e2a1imzvOjDtWKgzOZTMwm7abtO+rkjlt9+tdag6qqYhg6lqHTnLTwztrD\nhcDrV60e3g3O9+tQdixAToXjtZLNf/38BS8ve/w/f/2Yx6dt/CihWipyGL84bU8rYEJKNsoltqvl\nIvMvub1dsllx17YOr5Z5Nljvnn+9WqOoCuOJ/ku/Rp7ORh5RmtELQ9p+UYnRVZUkL9pxV0J4IeVC\nPqKQEj9Jpl5PNdNiFEX83YNDxknCKI4LOwQh1k50hlnGyXg0Xd6fv3rKKIk5Ho/YdEqMkyLRoBuF\nRHnGYbmoKkVZOo38qVsOuZS0Q5+fbuxhT7ZPUxT+4ugp/sSLy1A16ivIFsChW71TVuJ1CCn5eHgO\nQDf2CbKYqjE75xOZE+Up+dyAxLvuJlXDwVJ1dEVl266yZVVwNAMVhT27hnNNFG+qOrsTsuVlEV42\nqzqex31qRolDe/ZgVjNcNEWjmxT79lW4HGtzNVEJ0NSrS5WtfWuLqyr2UXTGp+PH9NMh4zygmw5f\nqwK7ZW5SnQu/TmSCgYauGDS0bQaTsOyrCcZtY3e6Pqqi4qhzLXnFwFZLaIq+0vjUFwOyO7Yk3zYE\nKalY7BYU+/n37PYuA5BX+8FA8N3z9/o9OyJ3g+3aVDZeT6z+XYWqqVOz0+sYj0K84aI+pd/2FqJ9\npJDkec6w7+OPIwa9Za+YwI/JshwhJGdHPVAU3vtwj/3DDUoliyhKOT/v89M/eoQ7qWqNr7Usnzxu\n8eL5LEpke6c2tWy4qlTt7tSIopT9vQaGofGTHx9Sqzpsb1XJczl1pz+/GNKf8wO78tvSVGWhnegH\nyVI7cZ4ozeO8M6Qz8KnPkTldU9lqlqmVi+nDKx+uWtlZuNH7YfLGET62aVBzi332+KzDDw+32GtW\n+cc/+wjXtuj7wXSddVUhiAv9UntYHKeybZJkOX0/5PFZm2QSsbPqxrVbW64GzUOBtRYPQZLyrNPj\ny8s2jy87CCnZLDlEWcqnrdlxvSKENdtCUWCr5LJbqfD+pMW45boL3zGIoikhg6K69bTXm5JQXdNo\nOiXCLKXlj9l0SiR5fqPZ655bnsb9qIrC39k5oGbZPKzUp871iqLwTq3BTmlWsXRNa1q5qVs2mqJQ\nMUy2HZdRWpxHDcvh7+0/mAruVUWhfIuG6yIa88WgzTi9GylXFYUfV3cZZzFeFnNYatCKRlMfryhP\nqeo2m0aJL71i39taIU4XUk5beVJK6kYJIQVN051WyFZBUxS0SUXt8/EJpqIT5MvrKxXJadSnn/o0\n9BlheRm2CK+939GWq3uqotJO+wgpuGft8X7pIYaqE4mYXXODYTbmLCq26XqmYy5vbolvmdtUjcIi\n4tC6R1kvM84XHyCEFJyFJ6RiubMyyNsLbcd5bBqHN4rov07oik1J++6Ri28eOQqT46MooNzdtPmb\nwveE62uAEILRDfqk7wp0Q1sKcLZL5kKFK00ykEWLsNfxiMLZhUhOKoHeMCTLCk+mP/y77yxUvF48\nvUDXVf7B//kjdEMjSYofxPnZgN/8zavpBfLBw80FgbsQYoEcCSH58stzvvjyjJcviyfn+Yu1pilc\nPdDt7dRoTFzvcyGmxO3B4cZC67BWcWjOidvjJOP8cnXG4lajwnajQn+0PhvztD0kywVhnOKHMVJK\nPn9xwY8e7b6xHQRAlKR8/LLFhwdblCxzSlokkppbtHOllFQdk9+8OkdTVR5uz0rpjmmw36gSZdm0\nXfj0onunqtc8FEVZ254smQbvbjYZRwmuZfLfn78qWp1C8uH2TCPytNMlFwLXNBknyTQv8arSkwvB\ncE6/1XQc9irFw0/b95FS8rN79ygZxlRb9P7GBpamI6Tgy16H3XKZdhjQvyZ2PxoNGcYRYZaxMZd3\n2LCdycRjoVfadQuS9XH3gqcTI9Ungy5Na3HbMykwVI1xGvN0WIjZP+1f4hjGa1WudEXlverGrcRs\nHoqiUNYt3ikXRPVBqTFtWzZNl6blUjZsHrlNhJSchAM+91p0Ex9Xs3gZdDmNBgzSgJNoQDCXjfjM\nvyxsIlKfMC88y0qaRUkrph9/4B5Q00u04mXB+pZZ4yfVB6Qyo5uNCCfLfWDv4Gg3b18MtnziAAAg\nAElEQVQucz4eP+HQ2kadaI9M1aSsuWwaDSSS87iFPVnOUXRKJCJO47OCKMXnePnidfckPl7KVASo\n6jUctcRx/JJUzH4HqqJS1av0sg5+7hUGqpPPbxuHa2N9MpnSSr6D2YMrkIjL72w4NVKiiF+/2WeV\nClJ5vfi1bxrfE663jCzN8QcB0Qoh9jcBKSXhLd99RWRsx8QuLVZeag2XWmPSGjvu4bgW2/t1tnZr\n7OzV2T2Y3ci9UcjZSY84TpcMRI9etDk76bG5XUXXtSmxumgNefbkgvfe3+Hg/saUNNlOQSSu1m00\nihjMVak6nRFjP+Jgv8nhYZPnLy6JJ9OBrYshSZKRJEWV7cWrDpftUeEjNI7v3B62TJ37+6u1FLqm\ncrBTo1lbfGrqDMZ0Bz5CSD59fk6cpFRKFkJCbxTw4YNtoHCdf1O/tijJ2G2UeXXZxzENKhMLigdb\nDbygIHbtkc+ziz6PttdrQf7W/Zn4+P3dzRvbh1cIk5SL0e0PD0JKun7AH98/YK9a4WeP7tMeF7FH\n8z5XP9jZIkwz2mOfjVKJrbnIn09aF+RSLkwsAjzv9xjGEa5pTqcd275PLwz4/06OC0sKVeXDjS3+\n7v4hAIeV2aThFQ7KFapmUVmDYgJxnBSEIMxSzgOPcE4wXzNt7k3aiftuZYlExXnOII74deec9iQA\n+0f1rTtbQFyFUG9YhV/Zl6P2gmBfSMnnw4sF0ToUHmBBlvDFaFY5vNJzPfYW23gXsUeQJ2xZZbat\nCidRD1vV2bNrNIwST8YX7FlVgjyeTiPu23U0ReXxuIWmqLwI2iRzAvt+6vMq6qzUWcUixVYNts0a\nj5xdJJIgKyYbL+Ie3WREkEez60HSZZB6HEUXfBG8oqZVUFCI5ypMV15mmci4bx3QNIo25zvOfWzV\nZt/cI51E8iRzbT0v89DnzE4zmXEUz6YHLdXmA+cj2mmxH1vJySRXssqOuU8mM3zhEYjbz39dMdgx\nHgIwznuMsuV26ve4AxQFqXz0ba/F14bvRfNvERdHHcJxhMgFW4c3i87vguefnVKulVb6N335v1+y\nubfM5k1D4+RFe22uoZSSV49bNK6Fa4Z+zMd/9YLdwyaKUrTehn2fWsOl3RoSjGNOXnbZ2p0JaC3b\noFovEQQJqqpgmjreKCwc6IFyxcK2TVRN5fSkN9E7aTgT0XypZJKlOVGcYRgam5uVaY6kbRvTkGoo\nZGhJnFGvl7Asg3rDRdc1Xrxs07oY8sF7exyf9tEUhbPWgDjJiOOUcsli5EXoukrrsjAlvV7VWwXP\nj3j88pKNa+7012GbBnku6I4CPnq0i6FrjPyIKEmpujbm5Lv+5vEpmzV3YQrxOp6cdmiUHcrlxcGH\nOM1pVkrYE63YPDarxZSdRODHKe/vvb2Jo5P+EF0rMhbNW5IUJDBOEspWYRyrKgqGpmHq2pLZqaIU\nnmS6ujhBtVEqYWjakr1Ew3GwdX2qyXo1GFA2TTZKJTacEmXTXGpNrRILqxP9kKFqWJrGp51L6rbF\niTeiZllkQrBdchfef+Xjdd1l/tPeJbulMo6u4+gGf3vrYPq9uQFftgvyVIjw1QWxu5fGPPN6KEpB\n6q5QNxzasU9p4nslgYvIY8t2p2TPzxLa8ZhcSu6X6gvbqSgKrm4uCNZrhjN1e4/yjJJmUTUK3y5d\n0ajqNpaqY6kGtmbw1L9ARcHVLQ6dJq14yL5dX3CMt1WDhuEWxqUKc8tPOIm6lHUbXdF4HJziqCZn\nSY9hNsbLAvbtTf6395hdawNNUSlrJWzNwlZMqrrLltkglRmddEB10pJ8GZ2SyYzLtINAUNVnbd7j\n+BQv92kadWIZ4WqlaXaipVqUteK9XjZCU1RqWp12ekGQBQzzAZqiYSgGreSMLWMXQzWmQyu26qCj\nY0yW54kBoRgTigCdZS3X1bEwVQdLfTs5ql8FUuakcoimLD54aIr73dZ3fcV1+y77cH1PuN4i3KpD\nue5SqhYneOvFJaqmYlhv1tuvbZTR19zoVpEtKCwb1BuiWhRFIUtzVFVZaB2qmkq96WJaxv/P3pv9\nWpLf1Z6f+MUcsWOPZ86hMrMGl+fh0txuwCDde6WW/IaEBS/mAZq/gCcesPxmJB5AQkLiDeEXIyFB\nS4iGFmoazHDB2K6yqyqHyso887TnIeaIX/RD7BPn7DPk5LSroL2kUmXm3jt2ROwYVny/67sWMpcc\n7Y9I05xWp4brWcymEbOJz+rGaYWrdzxB01RqnoU5NwmdTSMMQ+Ngf0iz4cwd5/vcvLWEaeqMJyGF\nLKoDMk4y/Fl06QGaJBlFUSCEIMsk+wcj3JrJcBSQJDm5lHzn7U06bY+11QbHxxM2NpokcYpp6NiO\nia6rtNsucZzRadcwz2yzH8QcHE847I5pNxfje+IkQxMKUZJRe8oEY5ymOKZBmuUMxgGDccCt9faC\nrcSNleYTyRYwr4wV5EqBzE6rct3xDM820bXTqJ6d3oiGYzENIh4d9rnWabLaXCTR8lxMzvPC0nXs\nucv806AoCrW52/zOcDxvcVoVUVEUhXEY8c7h0Vy/pbA9HjOLy2lMgXIhGukEW6MRmhDVspqWVem8\ndLU0p8ykxE+TK6tL9wc9wiTlvWEXR9N5u3vET69fx9Z0emGAlAVRltGxHWRR8E7/mJv1UtPlZwmG\nWk6JHgRTPN2gY5dVqRPSeH/cY9Uub+7tuoOZCXQhOAhLE9WdYELHtJFFwSSNSWXGHa/D49kAhTL+\nRygKmcyxNb0Sl69ap5W1R7MBWZ7jaAZLlkteFPzLYJMVs1aRrJP/H0YTjqMpdd1CAe5Oj7jhNCtT\n1M2gx1Y44BWnU7bvUBgkPrrQaOslwZMUaIqKKRaNOvvpjEke0tRdTFGSw8fhEYnMaBs13PnkYEvz\nsFWDJaNOXSsjfzRFsGF2eBjsEciwcpDPyEiLDEsYqIpakS2All5nNzpgw1xhkvs0tNPpO0tYpEVa\nRkupDfaSQ1rzmJ+syCgoEIogLzJUpYxv6mddDGGyZm4gFBVN6LT1pcpc9ewNO5AzpMzoZocs6xso\nqOiKiaZcJPkfNRRIMmZoSo1p/h6m+NFF6hRFhPIRccv/CeH6IfBh77jnwfkTMApKg1Gv9WJPOy9y\nQj/TwabA0e6Q1nw6L45SFEXBsg3CIKZ3NMFxTWQuy4gQSyeJUpZXGgsh1oUsMMwy9/DRg0PaSx6O\nY6Kqgn5vhmFoeHWbf/7H+9TrNp5nYxgas1mE7yfUaha6rjIYzNB1rao8DfplSG4QJgwGPo2Ggz7P\ngqy5Jp2OR801sUydtZUGrZaLOV+uqqmMJiEry3VGk6DScvlBTM0941WVS6I4Y3W5Tqd1sYp11Juw\nulzHc0+FvfGcAJ4Vlt/fPMY2dUxdw7VN6q5Fp+FWlbrngSoEWS5L5/78tI2kKKVg3jZ0Hh+WgnHb\n1NkbTKhZBlGS0awtButuHg95fDzA0DR0TTzVg+uq9XmeY/BwMsUxDBqWyfZoTM3QGYWl6L3nB+ia\nSt0yadk25tzWwZkTus3hCFsv44PyM7E6ADXDwJwTq/PIpORur0vTsvCTBENV2ZlOaFqLk4HKfDmO\nrnPk+1yr1avKmC4EvSgkKyQrTo292ZS0yOlYDofBlK3pmHXXIy8kH0yGdCyHbuhjaxpCEUR5hqYo\nlRD/5BxUFUFdN2lbDm3DQhMqspD8YHTEp1trCEWhZdgLWYuxzDmMprSMxapEnGfkRc5gbljanL9u\nKAJTaAsVNChF8oPEZ5gGdObtRKEovDPdAxQ0ReW2u1Tt5wKYZCFhnrJseoyzkGHq0zFqF/b7KA0I\n8pgVs1F9XkFhlkesmS32on4pbZAx0zzEUDT24h5hHiMUgaWaLOkNPM2p7BUSmVFTy2P4YbBNc06q\nIhmTyZw1cxlTGLT0xsL6lITQRBcamtCoa161zGk+Iy2y+etG1Vpsam3ceZVMKIKsSJnlk8qvy3I0\netMBhjAxhYUhTOpa+aDZTw+pq80LthDPgmG2h4JA+zHF2CiKQFNqyCKBQkETFy1rXhby4jEKHsq5\nqdOiSCiKHZS5tqr0KhujKFfbefyw+Anh+iHwYe+4Z4HMJcolbSen7rww2XpRBJOQIEgujeQ5gWFo\neA0HoZau0+Nhqd0wTJ17b+9gWhqrGy3qzbKdubfVo73kLXh5le/XEGIenFu3UVVBFKUMejOu32jj\nzMnKnVdX8TwLRSh0jyc0mi7+NKo8u04I1QkUBXRdw3bMsi04n2wsigJtHjI8nUWY8wgeXVPRNJWZ\nH7OyVGep42GaOqomiOKyQnVWLF8UBb2BTyELHOfyJ1XT0EizvIoYAjjuTxiOQ+rzTMSpHzEOQpaa\nNbojn7prLYy9Z7nkoD/GNvUnEp5HB30sQy+3Yz75ePa4N3UNitLisVmz6U8DXNNgueHyzvYRQZKy\n0qgtfEfTtVlv1QmTtPLlepmIs4w4zTA0taqkRVmOo5fVEM80eDwYUTMN1ure3Ln8dNLxcDolznI8\nszxGWraFrqqMoohxFC+0FcWZfXqCcRwxTWI8w2R53oo8iRMyhHqhBVh6bml4hsmqW6vI1jv9Y2qa\nzs16k1Ec0bEd6vP2Yk03cHWDdae8+UtZ0DJtbE0nzFLcuYeWLlTqxukxiqEwmAaYaulHNU1j4jzD\n0nSEIli3PVKZsxdMKuIEpTZLKArL1sVrRj8JsDWdm06z+szJsRbkKYZQeewP0BWVSRbhqDqqIsgL\nSUO3SWRGXkg2rCaWqjNMfTzNWoif8TQLVzMJshhJwZJRbvdWUBq3npidZoVEn0f6dJMJrmpiqQZ+\nHuOpNtM8pG14TLMQoQg8zaGp16hrDgKBUAQSieCU0HfT4VyUL2ifIVWzPOAoGWDNSdVZbEW7SCmB\nAmteVbsX3Keu1dEUDUuYlQfXCbpptxLjn0BBQVXUqsJl2irD2bgiYEUhGec9LOFSUy+Gzwf5BKGo\nTyVhluK9sFfX82KWP0JXyv1YkFOQoSoO0/wBpvjh5S7nIZTOBbJVQkFRdE6zEjMK+ijK5d5uLwql\n2AEsULSPNOH6CDdy/+Ng671d0rmAu38wxH+GGJcfFbyGjWE9vYV5Ynw6OJ5SyILavA1667VVmu3T\nytewP2N3q8/jD44I/JjwigNZNzSSJEMIheFgRhyfimxHI5/ZrBTKnmi3LjNe7fWm9HpTUGA48un3\np0RRuZyjozFpmqPrKr3+lO2dciosyyTJPCJobbXBwRlneds0cOzLnyZlUTCehcTJ4ph3nKT0hjOS\nNGc8Dbn/+NSpPEwyWnX7xCYIXdeYTCOSJKNdL936s1wynJa//2QWYhk6j/b7PAm319qVpcRVcCwd\nTRNEScZGp852b8RWd8Qnb6zyU6/duNKstOM5F3RfLwNpLomyrMw57JWTfEvuaWKBrqq8vtwhm7dA\nl2suK56Ln6R8/+CQKE1p2qdPue8ed8mlpGXbbNSfbsniaHpVUbqgYzKuriBsT8b0w9Pzs2mYzLKy\nJXW73uLdfimgXnNqzNIEP00r0Xosc/w05W93P2DfnyIUhSTPuTc6FUgnMufQn9GN/Opzh8GUUVIO\nsjyc9tGFiq3qbJxxjZ+lCduzUSWkP49Vq0ZDt9gJRsyy8hyURUFNM1k2a2iKoKlbTNKITEr6iV+a\nnM4F5ycWElBORbZ0F1URhHnCTniaaGAKjazIGSUhO1GPXjLFVg3iPOU4npAXElNoyLm534n4Pchj\nGlr5+9c1h+N4zJrZYtloUBQFx0l5Xv7b+D7DZMpxMmKWn06RbpjLaIqGn4eMs1ORelOr86pzA+eM\nwel2tEecx9wwN5BIDpNjDuLyd9sw1jlIDvkgPHVuP5lClIWkrnm4akloZ/mUYTZAVVRMcbp8XehV\nfmJWpPTT4ydWpST5pYHb5/GyW5BZcfXEtCXWKp2WUAyMOclyxNMDt18mSqf72pm/6wjl5a9DQROu\ncN3/KOEnFa6XgNZqA3WuzxGqwDBLofiHgUbTIYqePu6/t9nDcU1q9dPMxNkkZDIMWDojjBeKwvXb\ny6yuN0nTUkifpXllaAqw9eiYNM3oHk7odMrqzNLc+ysKE2zHIApTdrcHbFxroSgKHzw8pN2uoWoC\n3y91X1km8byyUqaqgiBMGY19Vlbq+EFMUYDjmMz8iAcPjlhbbaBpKptbPVRV4NgmqhAYhkaeS7R5\n5Wv/cIRhaGWbI0wxDY2aa9JqOJdq5BQUigLqNYuVtlcNLbTrDpapU8iC7YMhSy0XTRV0mm5liKqq\ngr//3gestktPK9c2WWl5BFHC7vGIlndxmOH8hfjkCW0aRGhCsNsbYRkadcfCtQw0IVhreTRdG2Ne\n8RtMAwoKBrOAmnX6dDUOIrJcPlX0/rwwNBXH0NFVlbZ7uk0Pjns4us63t3foOM7CawAtx6Zl23im\nuUASD6ZT1rwaDwcDbF2/0mX+BLM04XA2o20/3UXfTxLCLMXSNDzdqKpwAFvTMZ5usD0b0w0DPrVU\n+hnlRcFxMA8z17RKQ+bqpX7qptcgyFJsTWd7NmLd8ciLgp1gzGfW1zGz0xZox3Iqw9RSsK/xeDak\nadinLTkFLE2nYz7ZO8gSGpaqkcicD2Z9lkx3/nkFRzMI8oQCSV6Argi+PdymbTgsmTUc9fScNdXy\nuNEUwSO/RywzVEWQyRxL6Awyn1edVRzVxNVMapqFLyO2wwErRp20yOevWciiIMoTVCF4a7LJslGe\n+87cvmEv6pOTU9dcHM1glgdICjpanUSmaOcqVwKBLjQ+CHdo6w1kIat9Oc6mGIrGOJ/S0Oo4qk1b\nb+HO25GWauEIh5wcV7gcpkdM8jGe6pEVGYfJQVnRQjDMBmiKSlSE2MIhL3Km+YS216juOwoKutCx\n1RpFIZHkjPMuAoGmlN5mSRERyilibqr6snEx8LlEIPfQlNoFAXwsu1V16yxCuUVBQV6Uuq7/VFBM\nTsaPP8oVrp8QrpcMTddeKtnqHYwwbf1STVB3f0gSpeRZTu9ghNdyn/lgMwwN3SwvunGYkOcSxzWp\nn5luFEJUGq3x0C+rU65ZDgLMK1SjgY9uqDiOyep6szRWjDNcz2J3u9RyKIqCaZb7xXFNimLe1uvN\nsCydf/vXR6yuNpjNYmazCM8rtV2bj7vcubNSrqumEkYJNdei5lrcvrXMUXeC65isrTWI4wzT0jBN\nnTjJ+PfvbRLGKa2Gi65r9Ic+aVoaI9pzE9JLJ9mEwNA1TENDm7dcz+u7hCi3R9dUak7ZVjJ0FcPQ\n0FSVV9baOJaBaWhVm0/X1EvJFpT7Yvt4iKVraJpa/YZjP8LUVdp1d6FKtd0d8WCvy2AWVkL53tTH\nsw2SXOKapzfWLJeoQnkqgXlZUBXBNIrxLJMV74qLugJbozEd53R/rHmlVqht2xfagQBhmhLnefXa\n3nTCmusySRIcXWcURTweDlh2L7bjUlkOWFiazmEwI8yyKsh6xXapGQZty2HZPp0GFIpC07R4NBni\nzgngyWumqjFKIv6vnYe8Vm/zve4BQoFlp4apqjQ958pz8ETUb6jqgnYLSjJ22TF5dvjhRKSvKOWf\nz7rDy6LgMJpiqhodw6Wb+Hy+eR1HNdgJhzR1Zx747FfkS1EU8kISyYx+PGWUhiRFxh1nuTKA3Q0H\nTLOQdauFIVSm8xzEulaSXT+P8GVMW/doaA7b0THXrA7TLKQAGrpDQyuHUhzVoqHXaGg1NqMDpnmI\nrpTaNk1o5dTgnIDVNRehCA6S3jxUuyQ4w3TMNXPtQmUTIMhDeukAioK6Xuc9/y63zFtM8gmRDHGE\nS11rUCBp6i0sYWMKi152xDSboCiw5LVPCZeioCoaw6zLNB+Rk+CpbXTF4IPoeyQypKWtoaAgyX8k\nLUNfdsmLGP1cYLYhmiiKYJLdQ1caZAQI9LlQ3r1wLAksBA5CMRFPEbiH+VtoyspHfjDgMvyEcP0Q\n+LB33IeNLM0w7ct1RrZrYrsmpmXgNsonvGc92DT99OIe+jF5LjEtnYd392m0SxF5luUIIZCy4Phg\nhFe30Q1tQW/lz2Ka7RqmuXjhNy0d3dCoNxwMQ+Ot724i81JkH4YpQlEQqsCydVzHYDqJuH6jTZ4X\n82UVjEYB9bpNkmZsbfWQeUGrdfJED8259sv3Y5Ikw7ENhCgtCYIoYX21gWWW2ijH0pnOImzbWJhU\nfBo29/q4jkEBHA+m1cSiPvcWO9mHqiqqG/JlNh5Sliagl1lMKEo5offP722y1vJQNEGeSlzLqJaV\n5ZIky9FUUWqyhMIb106njvzoNG/ROUO4DE19Ktl6d++ITs15oZiZ85jGMa5hXE22KMnMWbJ1grP7\n8zySPC8F+KFP27Zp2za6qjKOS72XoaoEaUYmJb3Ap3FGNG+oKu8PB6zOHeZPyBbAu4MuHaucOExl\nTpilC5OOy5bDnj8lyFIa5ukyZ0nC6/U2KHCn3uI49it912HqE4RJ5Tb/3uiYVOZlteyEcJ0TuR9H\nM+I8w9Eutq7eHR/RNhziPKMfB9R0E1lIpllM7Yw7vKRgnEZs2E268Yw108OaR/eYaims3w6HDJJZ\nlXcoFIW6btPQLKI8ZZD5fLp+HUnBg9lRJaBfMxvlgIDMUBWFmmZVxMgQOrU5+TKExopRisrTIkcT\napldOLqLpqh42hnDWb1OS/dIZMogm2AJE1VR6SUjTKFXmipPc6sMRV1o6EJf0GDlRV7ppzRFQyLL\nCUi9gSscduIdGloDR3XQFZ1ABtwP79HUWujzCUyBYJQOqOstWjXvwjXUFi6aopMXGbpiMJY92to6\ntlrqsnRh/Mj0WYZwL5Cts5BFjqZYpMUIVbHQxcXqFoBQtLnW7OnXP01Z/WhbRzwBH2XC9UJ7VErJ\nV7/6VX75l3+Zr3zlK2xtbS28/pd/+Zd8+ctf5ld+5Vf46le/Ohc2wi/+4i/yla98ha985Sv81m/9\n1ot89f/vUG/Xrpx4E2emyJ42Fbf7qHulAahQBZNRwPH+ECEUVFWQ55KdR13SJCOOEuIovVSIX/Ms\n/OmpM7iUkn63jNKx5/qpMEj41Gdu8Orrq/zj39/D9yOWVuqsrNYxdI12x0PVBJNJWFbC5kL81dUG\nUhYcHIwpFFhbO7XC+O5bW/hBzGAw4/BoTM01mfkx3d6U3f0Br1zvVDYMw7kx6e7+gLff3XnifjqP\nOzeWMPRyZP88Ubv7+OiJn908GBCnpUZsGkR0x1cbKNZsk//xhTcQQjCcBjw6WNR9/fv7O7yzuQ+A\naxncWG4hZcG3399hGsZoqiBMMo7HM4az59MQfvLaalWJexb3+SjNGIXRpa8t11ySvKwoHU1nF0w7\nr0KYprx9cHhlNItrGFxv1Hm1dWrsqigKG3MXeqEo3Go2WXIcNryLUVafXr48+uRTnZXKmDWXxYI7\n/e5sQpCl3K63qBtWtW6ZzPlub5+kkHQjn5yCT7ZWuDvqcW/UZcVxaZ1xpV+zamRSViqf/WCykA8J\nsGZ7LF0ilgf4VHMNTZQ2E+6ckGlCZc2q42cJD6c9+nE5+OJpJgIFR9Ur4lhWlgwSmfHOZJ9Vs0E3\nmjJKTyOTNKGyatf5TL00jlUVwce9dTKZM8mCSrPV1B1aeq1qF16GbjJGSomnlTYYBQU3rBVWzcut\nbFzVpql7aHPRtaaoKChkRc4HwTaDdDH9wVFP920sE96evUsk42pbW3qTW3apE5JIblm38VSPu+H3\nQYG62uBj9pucpSRHyT6r5gY19Uz2oow5TvfKbUr30BWTnBwVHU/tYKse1lP8tso4pUVX9yAfET+D\nmeqzQlVMQGCLDcRLmoD8UVe2ikJSXBGT9J8ZL0S4/vZv/5YkSfjTP/1TfvM3f5Pf+Z3fqV6Loojf\n//3f50/+5E/45je/yWw24+/+7u+I49IR+xvf+Abf+MY3+PrXv/7SNuKjhOlwxrg3/bBX4wI6q/WF\nVmcyF7UHswhFgfUbHTYfHHHzTlk1UVWBbqgcH46JoozVjYsXy+FghpSyItRQEr+N66c3xTyXvP3d\nTaQsL7w/9wtvcm3++mwa8fbbWyRJxo0bnYWJQEVRaLXcuZ2ERd21cByD73xvk4PDMetrDfr9Gbks\ncF2LvYMR793bZTDysUydLMtJkvJCJ+dtQa/uUHMt8md0nk/SjGAeZSSEwngaLYjsP3Fn7eI+mQbV\ne64tNxamA9fai0RgPAuZBovExTI0bq21ub226Bj/8RurLNVrHA6mJHMSJ4TCm9dXMHWNmmVQt002\nWnXeP+zjxy/2hHcwnlZDAk/EE4jUO4dHVazPedf4q2DrOl3fZxrF88W/mCs/wDvdY37QXSTDj8ZD\nAO72u3QDn3F8kTDamkYsT3MGT7RSmZR8r7tPNHeBVxXBz66/wqpTw1A1DoMZWVHwmfYqbdOuhOoA\ngzhAAp5u0tBNJmmMJkoric3Z8Lm2SxMq3rn4H1kUdEyHluFwb3rEpj8s26G6veBan8mcu9Mj/tvy\nx1g2a2zYTQSCRGbshkO2gwFKoVR5imGe8MA/JJIpjmqiXzqBdopU5qRzN/pMZvzr+D4AvXSMLApu\n2EtzP6yccTpbyEF8EG5TU08tIhy1nJ7UFJVb1rULgnRZSLL5d5nC4AveZ1ARFyJ8duJdPLU0U86K\nnDXjRvlAmPWRSPQ5OYllXJqZFjphfkpCDWHS0VaRhaQ2t4JQKTsD+jMSm0COGWWLx6IuLNSXaA1h\niOYzVa2ehqwYksrjp7/xpWBEwcEzvfOFo34+gnghwvWd73yHL37xiwB87nOf45133qleMwyDb37z\nm9hzMWuWZZimyb179wjDkF/7tV/jV3/1V3nrrbdewup/9GDaBqbz4/FZOUGWPv1JwXZNkjjl8f0D\n8kxysH1aQVEUBSEUPv75mwuVsmuvLHHtZodW+zTu5yyKeVTNaG4rkWU53/23D6q/AwyHPmvXmkzG\nAb3jKbWaVT09Oa7Jm29uEAQJUZTiuiamqZOmJ/E+IVmWU/csrs+d+7/wuVdYWVECIssAACAASURB\nVPFYXW3Q6dRQVQWZ57z+6io/9fk73LjWZmW5jlezaMwnLzut0kD2+nqTV6614QkPb0GYVITpqFeS\nmzjJ2D0ccetam9E0pD+6GOB9AqEoFSHKZcH24ZAoTpnNsxXPwjS0BXPUszj/hNlwLW6ttanZBpMg\nqmKCPNukP/XnflsqTdfmp1+7saDjeh7cWW4/1bPL0jWaztVi9V949XbpGG+ZBOkp4QqShOQJodJf\nvPUKo7jMM/yHza1L3zONYyZnyNLbR4tVsaIo+NTyCrcbrYo4FkVBa94OfK3ZxjNMJnFMLwwIs9P1\nO9nngyhgksT4WVJ6bAnBL1y7XbUI80KSzonZulPjjUYHS9Xw0wRZgKsbJHnGB9MBNc3E0w1GScSO\nP+bvDh4hZYE+t4d4Es4Spqvg6SYto2w3tQ23mnyMZca/DjdJ8owoTxGKwFGNSvPlaia9xOft8R51\nzaZjuPzfvXcXlq0rGn4WE8v00orHQ/+w+rOfR0zz8nfxtFKzFcuUG9Yy3XRYkbEwjzlKBqQyq363\njzmvVMsZZTO2o8MqzkcVKh198WFvmI7599nb+PlpJdeXPnvxHgdxSW4SmeKJGoEMyGRKVESEechh\nckAsI8bZoCJok3zMqnmNoewTn5v8UxWN/eQx9ryS1dCWrqz+TPMeWbH4oFOQowmNcXa6r3TFWph6\nPP+ZHxahPCYvEiJ5RJg/G6kpioKiyFB/TFmEitJGKDee6b3/maJ+XogWz2YzarVTjYaqqmRZhqZp\nCCFYWirjRb7xjW8QBAE/+7M/y4MHD/j1X/91vvzlL7O5uclv/MZv8Nd//ddoT3GxbrUunyT7j4Ki\nKDja6rF264dz+d3f7LJ6vV1NQ57F/be3eeMzN6oLwfLy1Rfyk+qSKApUBRxbZ3neqpNpRrtTisyf\nhMkowHZNlpc9wiChkAWqopDJgpWVBm9+YoP93SHLq3X63Slraw2Wluu89Z1NOkvXEKKsZM2mEWma\ncev2Mn/zN9/nv//3TxJFKY8eH/HZz7xCHKfU6zZBkLC87JEkGYahEYYJ43HI/sEQKQt+7mfeqNat\nKAqiOK2E8WexvOwxmgTUa/aVcT3DcWnQWXNNkjzn2lrpNt7p1LAtnQyJoWt0mpe3Elptl8d7fZaX\nPd66v8snX1/HdUxucHXG4WW46jdcxmO/P6HdcNDn545uaxwMp6y4Lo5pMJyFbLQvttV+nAiSFD3T\nue2c6p6Op7PSpLXpXKkru0EZtvwz5issNy7uAycp3fhPfLq+2LLZn0y43+vzv7/+GtM4phcEaKZK\nq+ZiahrHsxm2aS4sb0M2kEXB/3nvLr/0yU+VVVBF4bDwadgOigIN4bDsXPyd4zzjuN+lU1NZtj2S\nPGd7OiJXC171OgyiAL2u82ZrlaZp8XDU5/XmMooCr20s4+g674/6fKK9cmHZJ1ovU9W4Ozxmue5d\n6p4/TkKOwhlvNMrryuZ0gGdb2JpO03QYxD7/rfUxTFXjKJxyw6tTy0wctdSDFkVBo20vCPX/j/Wf\nn29fSlu4+JMYU2hoUr30t/Dapf8WlMflCe4eb7LSbtIvxlx3lnhNXccUOlvBMRtWm9vaKoNkyiTx\nCbKY1+rXeH+6yycbt1BiyS19+dKcxhMs43ErX0VBwVQNgixkWbtBPx5gqw6G0NkND7jjbJDJjFEy\nxtJM7BTWrDWO4y6DeMBKvY4u9GrdR8kQTy/Pm7PnX6f4zILHVl5k+NkU5pW3ul6e224Gplp6jUGB\nogiW8SgKSVokGHPribxIGSb7LJmvkBcZvfiYZevVK7f3eRHlObrikOSQyDEN02MU38PRrmGol19X\nikISZkMc/eV7dH0YeNI98MOEUrxA7f7rX/86n/3sZ/nSl74EwM///M/zD//wD9XrUkp+93d/l8eP\nH/N7v/d72LZNkiRIKbHmYtZf+qVf4g/+4A9YX1+/9DtO0O1+9NpzV0FKSewn2N6ii+7waExr9Ycz\nepuOAtz6orHmZVhe9p5pnx3vD4mjlP7xhE/91O3nIrV3v7/D7TfWsCydYX+Gaek450SCSVLmIyqK\nQpJk7Gz1uXGzPJm3trrcvrOy8J0ylwhV8N3vPKaz5HFz/t6TbU2SjP2DEdevldql0ShA1QQKpVWE\nZemluL87YTINeeO1tepzsiiwTJ3NnT5CwMZqE01TS2NTIa4kX5chlxIFZeEzw2mAa5lAQRhn+GHM\nxnKjrGrJAs99PlflZ/kN//6dR9xZbXFjuXTAlkXBdnfEWqtGlhfUzhDOwSygXXuy3cDLRpimRGlG\n61wlrDvzac5NTqEcBvhhTFkzKfGThIKC5rmw6ijLsC55oMukJEhTDFVlczLkzfYy3+8d8unO6mmq\nQJ7hpyntM8uMshRdlHmOB/6UWOZYqkbTsIjnlaSO5fDt2QH/xV3nIJxQ00z+5/EWN90mCIVPt8rj\n8geDQzShEEvJ59qn18CDYIIQglXr2cf23591sYXOht3gMJqwZLrshePKo+sE28GAVauOKTT+394D\nXGHwem2FcRbxinP6QHAQlZ/1NItYpphCr4KtW/pFAurnMa5qEsuUzeCIuuqgCZW3J4+oaRb/a+vj\nyKJgL+7S0es4qoUsJEIR/OPwbTp6g4/XbpXfHfdZN59+08+KHE0pB1ceho9paB5LeueC+eg4GyOL\nnGk+JZ1Xkm5ZdwhyH0tYSGTlwfV9/99Z06/xyWtvVOefLHIO0x1W9etVdmJeZARyhivKm7pEEskZ\nNbU8F4N8RJCPWDLKbUqLiEiO8dRSR1gUBRkx+jm39VnexRZN1JdgLZEXIbHs4ahlFcnPH2Eq62ji\n6TYq/9HxrPfAH/U6XIYXutJ94QtfqAjWW2+9xRtvvLHw+le/+lXiOOYP//APq9bin/3Zn1Var6Oj\nI2azGcvLP7psp5cJKSVZenUr5AR5Khn3Jxf+/YclWwBe00EIwdaDQ+JzPlsHm73nXp6mqWzcXOLV\nj288UXDfP56QnDMHvXF7CWturtrq1CqyJXPJ0eGYu+/sYBhadfPqd6esbzQxTA3D1Fha8rh/d58o\nSsmynNHQr/Rln//CLV55ZYmiKHj7+9tV6+zgsCRbmlaGT8dxSqddwzA0kjQjmhvPdvsTwvBM8HOS\nVb5kr1xvc/NapyJ6R91JpdE6wYPHpYZha39AECW89d4O77y/X71+QtCiOKU7KIWvUz9m93hEUZT6\nEtvUq1bkWbKVS8nu8YjnQX/iV/vgBO9uH/Fzn7jF8dhnGsb4cUKaZTRciyyX2OfE/X78bDqqF8Hu\naMzQD+jOFtuscZYzjWMGQcD2aFy91zhjrwCwMx4TJFe3VJI8Z3bF636SMAhDGpZVka3DWfmbRFnK\n5ly3lUm5IN7fHA8ZJSGWpvFmu7wGfWZpjXuDHum85WmqGt45A9Xd2YTv98uW1brr0dQNDvwJmign\nVLthQDf0+a+rN9jzJwzjiCjP+Ex7nbSQCzYQ15w6mlD5XHudKE9J8pxdvzQ+vYpsbQfDqpUJ8Ngf\nkEnJbafDdafJTjgkLyRvjfZIZE5dW7yh33Tac2NTyafr11CFiqMaqGd67LIoGGcB3vyzB9GYRGa4\nqol7TiifF5JJFrIfDZhkAftxHygtSB4E+7xZu8mbbnnDF4rCqtFmkobsxX0Okj6zLOAN5yYfc0+N\nMG3x5Fb4Pf8DMpmxEx0gC8lR2uWGuUFHb3OcdgnyEFlIEpmwPZ9ObGhNVHRW9FUc4aKg4Gl1hKJy\nmOyRFuX58Unn87S1ZSbpmKxIOU73OUr3WNEXdWSqouGpzfnEXynwVxDz2Bpw1Caq0E/bohhMsj6T\nuZar1IBdfAjTFBPlJXmRq4pdkS0AV73zwmSrKFKy4vnvMT/BRbyQLcSdO3f41re+xR/90R/xrW99\ni6997Wv80z/9E2+99RaKovC1r30N0zT5i7/4C/78z/8cz/P40pe+xF/91V/xx3/8x/zN3/wNv/3b\nv821a9ee+l0f9ngnwKQ/xR8HuPUnVwlUTVC7otX0PMiz/MpKVnPJu1CNKooCcz4R6Lomb/3LQ9qr\nixEUWZbz1r98gKar6IbKeODT6NQwLf3C9wx7U4QQaJpa2kWY+kJF5yRPUeaS7vF47qslefs7j2l3\naoCC45qVpcGJnYSUBWGQEIQpjmswGYUIVXB4MEKoAts2KAo42B9hWmVMSxSlaJqg0/EqYpikeWWQ\nahgajza7hFFKu+Uym8VlW7tTww/i0jvMPvUc2trt06w7PNw8JpcFa8uLrbdGvWw3eq6JqWs0GjZp\nltM876E1170ZukqjZtOqO2iqwDZ1bFMvQ6ilxDJOn1Y3D/o0a/bCv12Gs2PNszDBMQ0e7PVYqpfH\nVp5LcllgGzrH4xlxmmObOpMw5v7eMXGa0/FOj8Od/oiVxtUVEz9O2BtOaLnPf0HOpMSPS5uPIEkr\n7ZilazTsMmS6dhK5o6o87A+wNK0Kn27N7R0A3j44JEgTWvbZqlJGlGU4+sV9pgDqfLlQEtpjf0bb\ndkhySZLnNC2L/Vn5tGtpGmmeIxSFlbnnViZl+V8h6YchtXmsj6KUQvsl+/R3b1sO6+7pk2uYZ0yS\nhA3X4yAoCdZR5NOq2VhSpWVYLFkuTdMmyDNW7RqmqpEXklBm3HDLB7G9YMKWP6JjOtyoNa+051AV\nwX4wpqabqIrAECpCgXcnB9Q0E1No+FnCqulx3WnyzvgAP4tom4vXpA/8Y9q6wyD1SYqcSRqxbHrV\nNaehOaiKYDPo8YrdQRMqqiJQz1WPEpni5zErRp0cyZrZwhI6b083+ZnWxwEoFLDnbcf7/g6xTFg3\n26Qy439O3mWc+dy0V3kY7tLUaguO8sCC6SlALFM8zaWtN0t/P8XAlwF5kdHRO+hCZzPeZknv0NDK\n/asoCqNsyHb8mCAPcIRTaruKjG5yQEvvoCn6vDpWoFgZRaQxycdsGDfJi4xR3sO9oh1XWmBE7Ccf\nYIkamqJji9Prr6Io2MKbDwJcPd2pKeaHasUgi4ik2Ee7ELsjKQgRyo83pq5C8T5lbM+z6VI/yrYQ\nL9RS/HHiwy4NPi+yeQvrLCnJshyKAuMSXdFl2H98THOpjuNd3oravLvHrY9fTlY7HZf77+yxtH7J\nVGF3wsH2gI9/4RXSJFsIot55dMzajQ7jwQzLNrBsozRchCtzGaUsGA1mDPozVtcbfPuf32d5pcFr\nb25gWjqzaYjjmFWMT5JkDAczvLrD0eGIw4MRP/XTdzg6mnBt7kCfJBlxXIp0d3b6tNs1clmwcWZ7\nev0pmqbSbJRGjqNxgFAUGvNsxtksojuY4VgGrZazIEz3gxjXMQmj5FKd12XYPhhyfbX5XK3HsxjP\nwtI9X4gLET5FUTCahQumqJeVxKdhjGeXJ7EfJRwNp7iWQd2xFpZ5Mh34vG26XMoXCrgGSouIAnRV\nLIj1h0FInGX0goBPrZXtlJ7vs3SJOSlAnGaoatkm3h6PWXHdJ8b0XPh8ntEPQzZqV+s37g16TJOY\n67U66zWPYRSSSomj6ahCIc5zNEVQMwyOghnHoc+nO6eWEncHXTbcGg3TJskz3h8P+GR7hV7oM0oi\nXmt0WFqq0evN2PXHrNk1tHOeW5mU9GIfa26geqtWtqLuT7q4msG67V0gNyeI8rTKNITy+NkJRxiK\nSkaOoZSTldedJt/qfcA1q8Gd2tKlyyqKgq1wgKuZLBslIY9lhjnXT02zqKp0ncDPYt6ebvNTjdsY\nQuPubJc33WsLpCgv5CXkLOOBv8cde5VpHuKpNu/MHqEJlS/UP3bp+o3SCY+jPT5b+9hCq3CQjrCF\nhS50NEUlL3ISmZKTl0HV5yb2ummX5nzKcJpPqav1MtIHFVd16aZHOMKlqbeRhWR1pUG3OyWUAQpg\nzT2wygqWQlYkCEUllFMKSmd8V2080UfuR4FUltcIfd7aDPIDVMXEUMrj6XnXpXTSj1GVj1jbsUiB\nx8AdeIZpzP90LcWf4GqEs4jZmSm92cjneLvH8HD8hE8tYuP2ypVkC2D9CQL8k4nDszjh1F7L5drt\ncsrGOHfjr9Vt7n9/hw/u7uO4JUl6+O4ug3MHbhSl9HtT/un/eY8wiPFnEbNpSBRl/G8//3GEKtjZ\n6jIZB+xu9UtrBT/mB2/v4M9iVteaOI7B7TsrmJbOwcGQ4cCvwoH3dgd4nk2tZnHjRod226WQsmqr\n5blka7tfTUhu7/QJgrgiW3v7Qw57E9pNh9WVekW23n98jJRFFWL9NLKVpnnVMry53uKya9dwEjAL\n4icuB5iHUqsLxOj+9jG5lBQFRPOW7X7/8mNkEkQcj8p1yXLJ0WjKnfUOQZKSS0l/cnq8ibmJ6nk8\nyQ+rmAvGL0Oa5/Sf4uvVtC2CdHGSLUozhKKw5LoV2QIukK1pfLr/TL2M0PGTBM8wGIaLE2NPs6sY\nhlEVoXMVlmyHzy6vsey4FEXB7mxCwzDxs4RcFmRSYs91Xw3DpGlY7M4mPB4PGSdRqR2aV9SmaUIw\nzzW8O+ryWmNRd3jdbSyQrTgvA6Snacya7dE07IpszdIYXVF5PBsgUAizlF58cRpWU1S68amHk6Io\nLJs1LFXHUQ1WLI+6bpHKnC8uvXol2dqPRhxEY5q6XbXCEpmxF55aVZwnW1BON36+/gpRniCLgtft\ndeQ524YTsnUUjxik5fXDEBqf8l7BUk0c1cJUDX66+YkryRaUflsdrbVgIQGl0ekkm5IVGUdJl6Qo\npzATmbAT7Z7u77k3l6d6qIpKKlN2wx0ehR9QVxtkRUZWZBjCxJtXw3aTraoVaCk20/xUAjDO+/hy\nwkQO8LMJeZEhUBGc+p39OKEo6kJgtC3WMEWbqDgmLrpP+OTVSIsuefHyPMJeChQduPZMZOujjp8Q\nrpcMr11D01X6+0NG3Qn1jsf119dZfYEpxe33DwlnF/2CzCsCmaE86dvnNGPd/RGj3rTKFpwMfUaD\n2YIurbXk8an/cou1622UOWH7xOdvUSgQ+OWFa9ifIYSCbRv8Lz/zOkf7IzorDRpzv6wwTNi42Wbj\neocwSNjc7HJ8MELTVN78xDqKAh+8f8h77+zy8MEBr7+xRp4VvPGxNfq9KUIoXLvershVrWah6xq2\nbVSER1UFn//sK7Ra5Q3z3oNDVlZOt1ciicMEIQTjacjO3oDxJFzw3hpPrg59PYEQCqZxejG79+ii\nyall6hjz6t1hb0IQXV7GdiwD61yV8LXrS5UebL1TtjUvazVOgoj9/pRbqy2yvPQ8u95pMPJDFMDQ\nNSbhIum7t98lO7O9uZTc37/6Atyd+nSnpzf3SRhxOC5vlArKpWTzPDYaHo6hz8fLC/JCInlypS2T\nkkEQLvw9k5JhGLHkulxvLB7H93q9K4mjnybEWYahqjweDTn2Z/TDgChb1B+mMmd7OqYXBhz6Mz69\ntMqDUZ9xFGFpGoMoQBZFOYkY+izZDkuWg62XsUA3ao3KfLRt2hjzatDrc7L1b8c7vNc/5jAsb1rb\nsxGpzInzjB1/TC4l++FFnWdNN3ml1uSLK7fLOBkhnuh9VRQF/jyM2lZ1moZN23CJ84x3JgdkxdXk\nNMpT8pPILaGzYpbHX15IDKER5smCVuw8bNXAlzESybdG93jg75eay8ljEpnRSyaM04CO4XEcnxK4\nR8EBQlEYpTM+CPbZDA+I5NWtH0Po3LTXKpf5E1jCxBAGljBp6y0sxcQUBm29haM6yEKSypSj5Hj+\nfotIRrwXvEdGgqs66EKnpnmERUhWJKjzfX3TvF1V0xRFYVnfqL63qS1TUxs4wkNVNBxRRyjiglD/\nx4cCTTmtjJ8QPlusYomLE7BPg6IIVFwS+WRD5x8nCvmd8oHgw2pnvmT8JNrnORCHCf29wVN1Wpqh\nYdoG0+EMp26/8JNPo1Or2nlH231kLp9ItuDy/rVbt7Gc056yEIIsyzFMHaEKgllUWTVkSY57pro2\n6vsIVcF2TPxZhFuzynxFTeXB3X1aLZdarTQTbbZcLEsnzyXtTo2lJY/OksfOdp92x+Nf/vE+rbaL\nW7OIo4yl5TpLSx5SylJPk+UMhwGGoVY6tSzLcV2rGmXPc1lpw46OJzQaDu3WaW6YHyTkWU6alvYN\n37+7g+MYvHZ7pVrGYOzj1Z5cCSkJ1+mFvtN0iZKUzb1BZQmR5acaLW2uJ0vTnOEkwL3kd8pySZqX\n8TyXVZROKmCua+L7MYeDKYau0qmXmppZGBOmWTk4oAqaNQddU8s4H0NnGsaYuka75iy0B4WisFy/\n+ph1TWOhFaipZYKBqZWu/7ax2LJ80vHc9wMmcUyc5XimWRGuLJdMk3hhalAoCk27/B2KoqDr+6Wu\nrn6xHB+mKSu12pVtT4WTClJJ9jyzzLjUVYEmBLmUjOOyAmZrOm3bxjPKc2LVqdGxHbqhz/ujMrev\nbpqMoqj0EzNMLFUlySUrzqkWTlEU1uZ/r80NSW1N585ShzzM2ZyNWLLdKlanFwU0jbJd4+kmcV7G\n5Jzsz6NoSiLzsr2piAWR/TgpiamhariaQVrkdGOfhr7Y/tGE4IbTQhdXk7X9aMwkDcsAacNlNxri\nqCa70ZAVs06UpwR5XJmg3p8d0NJddqI+qiIwhYan2QhFsG42Wbda+HmEITRqms1u1GOYTVk325jC\noJuMqWtOpc86iHvccTZo6d4F+4dEpgjEpcdYURT4MmSUjVk2OvOcQ8FOvI8tLMbZBKEIXNVhmk+x\nhDWXswsG2YBJNuKz3uepz6tZx+khDbVFTa3j51Om+RhHrc3Pv+jK41xXDIQimORd6tpSFVidFSlJ\nES14bJ0gyEdIsktfexEURU4oDzDE032zsiIgKo7QlcutYsL8PqpSIyuGaEoLXfzorCGKIkUW7yCU\ni6bRl0FRNq6+3hQShS3AnFfBSnyUNVw/qXA9B3RTo/EM/h6qps5Jl0l3d/BSvnv5egvvEvPR54HM\nJYapYzkGzXklbjLyOd4flTozYGltsaqwdr1VidWXVuoL7cr/+nNv0Gy7uDUTr1Fe+O+/t8fB3pCH\nDw5pdWoYps6rr68hhILrWVi2geuafOzjGxhzIf3WZh+3ZtHtTllfb2Kdaffdv3/A1lY5IROGKYdH\np2235SUPVQhG49OW18Zqk431Nn4QEycpP/vTr3PrxhJ+EHNwNCrjYFafzdxv93BUtQyjJGU4Drl1\nrRyfz3PJcf+03WqZOqoQqOpFnVaWS7JcEkQJ0ye0IO/tHPP4sDxeigK2ukPqTkk2Hx70CZOUpbrL\nvz/YZTALKjKzXHcZ+iFb3bKacELmnjVW5zxUITiazBaqZCfYHoyYRJfH+gAs1VzW6x51y1yobuVF\nmQV5gjTPuXvUZRJFRGnGu8ddll2XlmMzjeML6z6OY+Jz1aqiKNgajTiczdBVlUmScDCbcKPeqMxN\nT4xX86LgKJjRDQNq53RhcZ4xSxM83eRzyxv0Qh9DqNysNzgOy8qfUMSFqcUkz3k47vMvhzv05u9r\nmw6mpiEpiGWOp5vV73Gz1sRQVWq6wXf7++wGY743OKgc51esGi3jcv1MAQuNO0No3HRaF94ni4Jp\nGnMQTebu8ocX3tMxXEKZsmaWk5KJzMmKnFfdFRzVICty2nqNu9PSNHPFrPPudJeW5uBpFrMsYj8q\n11kXGrMs5K+738NTyweDW/YKN60VojzBEjqGolX2EuPU56a1iiE0hFI6wI+z0xZWNx0SF4tTtf10\nyH58zH7SxREW+3GX46TPKCsrhdfNdQxhYAqTrMg4TI6oqTUaWoNpXrYe14w1Put9vqpk9dMua/oG\npjDRFI3H8UM0jPmxkrETP0YWObKQ7MSPL+xDTdHp6Is62qKQxDIgK1KyImGYnZqOqor2wu7yWREx\nzRcjyRRFpabeuvDe4lxlc5x9H6UQmMrlrWUAS7yOUCwKCmQRXojcSeQBWdG/4tPPB0XRUcVnf/gF\nFWMUNilYAX40GZY/CvykwvUcUBQF7TmCjy3XpNY4LflmSbYQr/O8332W6Xf3Sh8t+xyTvozdZ2mO\nIhS23z/C8WxUraxwZakkTTL0eQVjOg4wTJ3sTBUpzyRxlFJImE1CbOfiwb35qNRHOY7J0kqddqc2\nn1YsSd7h4Yjd7T77O0M++ZkbCEVBNzTSNCOOUpIko9F0KjI3HoekaYZpaqAodNouk2nE9u6A115d\nzMTLcolpaozGAaNxQH0+vTiZhNy83sbQNfJcMplFNOqLJrpZnvNwq0untTjB9+0fbNGoWcyCmJVO\nSbB1TcVzrarCIoRC07t4cywnFxePkdEsJE4zmp6Nc047Ng0iuqMZ4yCi6Zi06y6NeXv2+lJJDNN5\naHWaS+qOhalrLNXdal0mYcQ0jLAMHc8uKztDP+R4PEMVAvPc+pyQNVUIulOfSRjjWYu/a9t1Lh0S\naDo2hqpyOJld+MxZnLd/0IRYEMCXAdY2YZaVmh+lJJmWrtH1A2xdX6hm1QyjmkYECNKUrdEITVXp\nOE5VxRrEER3L5t3eMa+1OtiaRi8MmCYxd5ptNscjVpyyIprmOVvTMcMoYhLHrLk1XN3guleG/47j\niEkcseLU5u03lQejfjW5WFDG7bzaaC8EYgtTUCRFaRGi6QhF4fFkwOZsWLYnVR2hwKpVI8lz1m0P\nfR4kfdXTvKXqBFlCmKWM0vBCxM8JIpkxSHxsVcfVTDqGe2GZhtBYMT3uzg5Ztxoczj27zLkY/x8H\nD2loFtesJvf8fa5bHbajPn4e09JdTKEzyULCPOYwGZEUGXGecdNZQlNUtqNjbLWsAgkUxlkICthq\nOV3ZT8cYio4uVPJCEskEe245UdfcKlOx2nZh4qkuda38HVzVRlVULGGiC424iHnPf8A1cw1Pq6Er\nOofJEQKBJnQiGWKrZUVOFpKy2V38f+y9V5MsV5al9/k5flx76BRXAiig5NT02IwNh8YxGh/4e/nA\nh3mg2ZAc0eyxrq6uYlWjAFwtU4dWrt0PH05k3IybeQWAqkYNDdsMBgNSUc9vFwAAIABJREFURXh4\nuK/Ye+1v4Vguk2qEtGxc4eAJnz8lv6ftx4jCxZMBlmWRNQmu5W3F2k01rc7xREihc0DjWB7SUkjL\n4CGm9RGx/G4YJAuJbXkfjO/RWjOtH+AL83fW1QssJK4YIN7D9ro8P6QVUuspWCCubFMKfATBP7tH\n7b1leWB1TWfrrcf119zh+lFwfce69Kp87ElYFhUnT8/p7P15COCreUpvP77G0LrpZDs/nmIryd6t\nDtI233/0fESyzGh1Q2xb4AcurqdIk4I//v1TWp0Az3dMxyYwN3Fpi+3G4dVyHJvZJMG2JY67e1Go\n64bHD0/4/KeHhJGL2HSBvv7TkdlkXOV0OgGuq/inf3qFZRmejes6FEXFq5cjgsAFy6Isqs3WYsP5\nxYIodHFdm0bD2fmCg/02y2VKkhbcu9vj6fMhypZcjJZbPIRuNPNlaiC8rromtgBC3yEKPZSSO+Ip\nyQqOz2eEgbsVA49fDYmDNwiMm6ppNOP5mryqiPzdN6JjSyLfJfJcaq2JNh3Ay9cwKyoWSUpe1tzu\nmQ6jhq1gAnh2NibwHWwpcW2bdV6Q5iW3u60bfWFJUeLYNlKYrcKrwul8saKs6p0x4k2VldWN8UFV\nbWJv7BtGf/Msw8KIr4vVmqQsGYQhSkoCW+Epw25ree4HNyaVlHQ8j6PlgoMwQlgWkeNwGEb87uyE\nn3b7ZiRqWYTKIXYMYX0vCLdCUFgWx6sFn7U7HIbx9r3caM28yJlkCWfZmruhWem3LItQqe24TlgW\nnm3vXAOqpua8Sng8vuD5cs6nURdhWcTKZVqkzMqUljLixhYCLIu283Fg3HKzSWoLuTNu3DkuQtJW\n/hbF8GQ9pG1713xGszJhUWbc8tr8aXmMxKLnhEzLNT8LD8h0SakbPgnMks0dz3R2bSFxhY0jbGLl\n01MxXRXyWbCPbUkWVYKFYOC0UMLmrJiS6wLbkkS2j21JHEvxPDmhpqatoq3Yele9/WHTlx6+9Lbj\nSK2hLSNc6XKcnxDJiMfpE/p2j0JXaBoCaUTyrJrxLHvKXfceT7JHJNWant0ntlso4XBg3+KgM6DO\nxPb67gkf21Kcla/xLH9HeGltxFvSzAlFm3l9QVcdbsadavv4Q3lz0sTlxuOkeoH/jvGgZVnXxJaJ\n78muebguxRaw4YQF34q/Ja1oR2yZ33vziPevtX4UXN+jfugDd1NVZc2f/us3CPGGu1VX9XsBopPT\nKf3b3RsFy3cp3TQ4/nWG1k0nW9wOrqEdvMAhbvu4nkI5xqsjpcD1FJ1+SBh7PPn6hP6+EYhC3iy2\nwAgu33dwHHungzceLrEscD2HPCmIOz7rdY7jKLr9kCj0ePVyxP5BmyQp8DzFfJaY4OpeSJIWCCFp\nt3xaLZ9OJ+TR4zMG/ZjlMuXFqxGWZRFHHnFkwq19TxEEDo+fXfCTT/fwPEW75eN7ptOQpAVnF3Oi\nyMN9R7fSc81xfbtTpWxJO/Z5djzeYhx67QBbSvKieqdB3JYC37PxXefa95iLqfGWnYwXdCN/5zV8\neTEh8l201pxOl3RCn3WW89XLcw46ZqRqWRaDOCT2Xaq6Ic1LDjrxOzcPA0e9U9B4to2n7Hf+7OVj\nfldW46rIWeUFketQ1DWz1IissjYh0FIIlJRErrMVj5fLAx97UX82nW6jfWZZxkFoOkXPZ1P6QcAg\nCPl6dME8z9nfbEVeZSJdfR59L7gWnVNrzSRP8W3FL7t7O8fqJm/UPw6PSeuKWDlUTcO9fpd/OD7i\nf9y7i20Zv54Ugj0vZN8LyZuKZVXQcjwCW/Ffz59zL2i/8/mXTY3A4tFqyG2/hS8VqyrfGva/WZyx\nKHN6TsBptiCpCuZlyteLM5QQeFLtoCTALEMceDFVUxPYLveDPo3WnOZz9t0WSkhOsxmx7SMtwXE2\nZVqu6aoAJWzstzpySZ2b/29JPOEgLbHxXGWcZGPuuANcqah0jSsUbRUyq5Z01HWLxuWWYK4Lyqa6\n5vOalnOm1ZzYjig3OAhlKQpdEgoDiF7WSwbOHm073oqti+IcaUkW5YxhdcaBfYtcpwgL0ibFlwGl\nLqmchIezr3mcfElH9fGF6RLGso20JLWusDbnz0X5Ak9E5jon/C1tHmBVT8j0ElfcbAWpdcWiPsUX\nbSTOVqBp3VCTv7ejZeNjW+/3BwvLJWvOPsrn9W1rXf8nJB3ED4GQ0BeAgnd0HH8UXN+jfugDd1MJ\nKTj4dI9o46lKlimjozGt/puLR5bk2OqqQVjgeGq7AfiuWoxXzMdLwvb7Iauu7+y82ebjFckqY7Df\nIkkKLo4nKMe+MXsRDGn+1ZMLwtjbdr1gA1H1HIQQOK4RYzvr/lnBxemMuB2wXqb87f/5Ff39FmHk\nIaRgvcxYrTKmkxVB5GEJmM+TzZvA4BtabR/XVUgpsKWgrjWua6OU5GJoAq6llPQ2x3e1zhmPTZfq\n8MDcmKazhE8/GXAxXLI3iFHKxHycns9pxT69bogQgrKskVKwTnK+eXxGVTX4vqId+TtdqbpuePpq\neC0jsW4aJrP1Djy13zYX4IcvL+htWGCvz2d03wHGtSxrg4Z4tyAXwmKdFniOIoo8Hrw8px14ZEXN\nMs046MaEnoOrbELP5XS6pLWh2LcCbyuQbCkIroihoqo4mswZLRN8R70zw/Dq43if2PpQubZNtPn7\njdYUdc3Fas3r6RzXtumHb47RPMtBm5/5NiWFQANPphN+1h9sBc0oTVnlBVXT8Hg65k7U2oGo3lTC\nsphkKRfJeouUEJZFy3GJlHmPFXXNi8WMSDnXhGpeV/hC0fcC8rrm785fMohCfh4MWJUFeV3xbDmh\nbAxp/h/Hx9wJ2nQcj1mR4UmbeZEx8MJtF+rJckzPNcepahqOkjmutLkbvIGivkpm9Dah1W3b51ky\nQiK45Zvont9NXxPZLj0noEET2bs3ACUko2LFN8szfhnfMiNWbbxcse1hW5K+84YHNi3WeNJhVq6o\ntN5mMgI8WB0zzBcceObxPV6fMMrnnOQjPgtukTUlvnRZ1ykXxQxfujiW4jgf4lpqm8d4WefFhFKX\nSEvS0NDohkW1xpcela5I6gx3w+B6kb0mqTIC6XFSnJPWGY5wuOPeRlk2ta63x9W2lKHMq5hZNSGU\nMX1nj0i2OC5e0bX7WJYgCj2azGbfuU0sOzvXP601Z8VrsmZNKFtEsou0JLblMqxe4whvGwHkCB9X\nhFS6YNWMcMVuN11YAl8Yz+zVOJ+anKSZ4Ip3+4U/FPF2WVfFltaaUi+QN1Duv23Z1gHC8newFP8s\npTWQAR4WMyxG8Bao9UfB9T3qhz5w76qrJ7ty1Y7YAjh+ck6rH22/T7n2B8UWgOMrgtj71i1c5Uhc\n3yGOPZKkwBKGtfX239Rak6wyHFfRHUQ7YitNcv7wm6e0uyGOq5hP1khb7IRZSylIVjl+6HJ+NqfV\nCphM1nR7IVIKHj84wfOUyTasG/Ki4vi1EX9FXtFqBwzP5/iBsyXFO67EdRVKSeLYoxV7/PYfntHp\nBHS7IXHsbQWalMZ/lqQF3U64s6F4yfK67FA1jebF0YheJ2SdFASe4u7tLg8enRnz/s7mpkWn5W9v\naC+Ox8YILwV5UVHXZpPyUqRleUm3ZbYEhWXRbQXUm+6S8y26mGVVM5qvCVyHTuTz/z45pt8JsRpI\n8pJGazqhzyrLiTyH16M5ndDD3kBUH5+NOJ0sOezG29f3fL4i2owJxaZTd9COPii26qYhLUqcD+Rq\njtcJ0ySl9Q4PV1ZWXKxNZqKvFL0g4Ha7RcvbvdAHjvpWYktrzShJcKRkXZaGNC/EdvPRkzaPJ2OU\nLei4PrfieMf39a4ygc/Xb0KjLCGvKzxp82Q2NmZyz4ic16s5jpBcpGtK3RAqh0g5fBp16LUCisxs\nGwbK4cCPqHSNsgTn2YrYdpkVGU+XY2whaDsenlRvRLMQuNJGa803iwt+3tq71lm7FFuN1hRNxWdh\nn3WdE9nGJzVwI7pOQMcJGOYreo75IJFWBUld4ElF2VR8Hu6/2fCtMkLbpdQ1L5IRfSfid/MXtG2f\nlu1T6gpPuEzKFQMn3m79pnXBXX+wfYy2JYhVwF1vD41mWMwJpPFb7TsdHGFviPYh02pJy979kGNZ\nFmmd0VUtlGXzLH3N8/w1993b5I3JzfSEhyOMwd+XPi0VE0gfX3p4wqWhMST5akjWmA3PaTVh1Sw5\ncA6JRISwJLalUELRtrtUumBWj+hGbUTu4Qqfk+IlkYi3Vofj8hm3nE+whYNtKS7KVwgkRZNgWw7L\nZkwo3+4oWQjkVlTVuiLTixvjfQCEZb9XbH1MLevHKKvNvP4KT1z6XjWFHqPE97e1WJb6AcRWBjwG\n65NNd8sHWv9debh+3FL8jnX69JzkPTynT355570jxneVAZd++5+TttwxhAebjlNZVLx8ZDaV0nVO\nU2sWs5tBln7g8st/dR9nk5O4f7vD2dF0y8WaTw2gtMhLzo6nDPZa/OTnh3iu4vGDU/7x75/w6ef7\n5HmF5zt0+xHrVc5gL+Lpo1OULfnyD6/wAnf7O20lt4JuOFwRRWaT8X/69z/l6qJaWdbbTEQpBd3O\n7qho+xw2WAowIuqzewP+y98/IstK1pvcxH/3bz7bmuEBFquMo9Mp1pVMuXuH3e3mYb8Tsk7yHc5W\nXlYU5VuMp7phnX4YhHpZWVFyMp6TFRXlZgPvV58c0G+HtAKPXhywSnJWWUE78HCUzZ1ei0YbQGfg\nOhy2YxZpSlq82ey62kmzLIvjyZyL+eqDW4tFVbPMPvz4+2HAnc67L9pKCtrvMdS/rxqtt3mGN1XV\nNESOw34Y8mmnS9s10NVX8xmh4/CLwR5l3VA3DaFSPJt9+y3htDLHMlYOoW1iiQZBwEHw5pwZeAGj\nLOH5asYncQffNu+ZJ4sJ/9frZySb35FVJbMio+cGJHXJo8WY3wxf82Bxwb8b3OPQjxl4IdMiZZiZ\nTceW8qgagxP9defN+nxeVzxa7vLUiqZmVJifO/TMa6K1ptI1aV3S6IafhGZD7SSd82B1vt12/Gp5\nSn2Ft6WBJ+sLAulQbjbVfhoc0KANpkI47LstfhHdJmvM83ueXqCEZFi82R7uqIi0LiiaCguLnooA\nTdsOKXXFs8TwtywsZuV6h9UFEEqfQ9c85rNiTCRD/pfO/8CiXrGqEgLpM68XjErjD7scS9ZNzaic\nIi3JsByj0dx2btO3ByyqOQO1hyvMeRnaMbWuGZbm2mhbNq7w6dsHfD3/I8UGmmpZmtoyx6jSJXv2\nHTMKrEYMy9fsq/tIS5LrBCVc9tWn184nYYnrgdR/4YCXWiegBR37X27+22wWB/LuX/Tv/kXL8sD6\n1ZX/tuAHjEL6LvVjh+s7lh952I79ncTRepFeI71/TNVVzehkRth695jkbXUvpSBq+zS15vd/+5D7\nPz0gfs+4cj5dc/xixN4GD9G90qWbjVdELZ9217C0tN6In37E3kGLTjdEKZveIOLo1Yg4Nt6r5TKj\nvxeTFyVl0ZDlBctFymCw+ynud799xuGtzhbQ6l9hWbmu4uhoiuvanJ3P0cBsnhBHu93AyXQNlvXG\nGO85KMui34txHEmal3hvHXtlS1brDNsWW9/W5YbeZJ7guQZfYVnW1vflOeqaB8yWgtC/WWgsk8yE\nHF/pONpS0ol8Gq2xpUTZEseWO69hXlbsd0IcZbPOCpaZifhpBd72sftKcTJdErgKV9k7I0WAfhQw\nTzMCx7m2efhqPDMdA2XGjdF3FEpX6zI38bvU8XzBw9FoCz19OZvR3jC1LMvaerfAdOQsMD4l25jQ\nn89n/KzXx7UlSkocKflqeMGiyBn4AbMN4PR99XIxR1jWRrQ5/Lez10S2w2EYsy4LFkVG2/VoKZdP\n4100Q0t5/PJwHwrDA/tqNmRZ5lxkKwZuwL/t3+F1Mud/vfU5r9ZGpOR1RUt5+FIxytcGIjo7xbcV\ngW18YWbZwBji397+fJvFpYFpmXLbN6T7Py1O6TsBNQ13/M52vLjvxizrnLQ24imULl1l0A5KSPKm\noq0C3A3C4aoP7Cgb07YDek5EvTGOp3VBuKHTS0tuvVgath0u25K8TIdc5BMC28MVDh0VXdtMBLgo\nJhy6/W0HzLUc0JppveC2e0DVVCgh8YW5BlhA1mRoGmIZb8VVoxseZQ+5591HWQ55k/Eg+Yq+2mPP\nOSCrM46Kl3jCRwmHLwafG3Bz/gitwbE8XuWPCGWMpsGTAaFs4wiPVT0jEDGBbL+XsTWtX+Na0RaU\nqr5jkPTbpXVDrscUzQJ1ZWTpicOd62KuTxGW895txf+/1F9zh+tHwfUdS0jByeMzbNdG3SCehkdj\n8nWBv4GIzsYLvvy7R9z5/IDzlyPa/Q+3jI+fnqMce8fw3jT6vfDTm042IQRCCg7v9UyMy3tEYhh5\nW7G1fS5nc/zA3RFqeVayWqScn8yQtiBZ59RVQ7QRg7PJmqjl4Tg2QeCS5xV37/a5c69HGBpGk9ag\n0dvOXJLmTMZr9vdbNE1DWdYURcV8YTYg9/ZiTk5nZHlltg4D55p4ch2bNC9RtuR8uKQVeyzXOask\n59XxhLpuaG38W6PJygRMu4pW7GNLida7XbPFKiXwXXzP4DK+zbjwas1XGa6SN24z+q5CXelOXn0N\n48Bsdp5OFrw4n3J30N5Gy6yzgrPpknt7HTqhh2O/Mbs/PBkyuBJgHfvujZiHrKyoG010Q9TRhyCn\nf4lqed4OYd4CvE1w9VfDC3r+G8Hx+9MT0qraYiEA+n6ABlZFgb8JyT4IIwa+WWs/T1a0HXf7vOZ5\nhmUZ4aK1Zppn+NKEj385PKfluhwGEb8bnW5o8oa8LyyLaZER2IpVWfAfXj3gi1YfR0pe50uc2mAq\n7kVt+q5P3w3wpOLFakajG24HLRrdoIREbUaIwrLI64rQdjjwYnypeLgYUugaDTtjx3VVIK2b/XaW\nZXGeL+k7IZVuqJqaaZlwy2vz9fKM/U1QtS0kjiXxhM2wWOEJm3G5okETShclJEVjIppGxZKLYsFR\nOia2PfbdNyZ/TzpGUFlyG2W0qlNO8jGR7eFLlxfpOQNnEyatYVIv+Wlwd7u5eFOVTYW32WDUWlNT\n81XymD3VxxMuR7nhXGk0aZMhhaSrOiZ+yZLbbUJhCRzL8LaG5QUOLjUN0rI5K0+YViMiGRNJQ44P\nQ5c0KZFI2rJDYMcEMsYTIY54cyOdVGfYGwiq/ACywbMiVvUQ73uOCq9Wo0uW9XNc+rii8973qk0L\nEHzXcGyt6xt/Vuvyn3+0eEMJ/TWaLmxevx9aN/wouP6MNT2f4UcerUF8o9gCKPOKsBNsTeuu7zDY\nbCnaymZ0PP0gyDRs+TuB15ZlXRNbpy9HRO032yrvO9lePDxDNxovcCiLamcE+XYVRbUVZ/PpGj90\ndsSCUnJLndcalvOUIHIZD5dELY8w9rBtyVd/fEWr7TEarRkMImPGd8zPvHw5JC9Kg5NwbPr9mM6G\nx/Xll69J0xLXVdgbM31elAgh+OyTAWHg4l4GhG+6T0fHU6qq4uRsxv27ffpdw6pqt3yENOPFXifk\nP//9I+7f7hr/mC23AnQ8W5MV1Q4rKwpcqqoxG1wj05F4G2z6MRX6znvRETvfu3kNsyubj6HrEPsO\n4ZUOlGNLupERuFLs0utb/ofRCkle4NqSbnj903ZWVrwYz3ZM7t+nvmuw79Vu1DBZMwiC7fO8Hbfo\nbUzxWmvyukZJyYPxiGWem5unUjvbdB13tyO6LgtsIVgWBaMs4cFkyDeTIb/s7YFlUTS1eQxacxjG\nNGjjr0KTVhWhMnwwXyrarseyyOnGAaq2eLKY0nd9GjSrquTlasrAC7kVxNiW4O+HrxkXCZ9F3a0f\nKrCdTS5gRaM1h36LjuNf2zIc5+uNWLvClWtqvpyfUjUN43xNrRsWVYovHLpOgCNtOsrn0cqMDS/h\no2AE1cCJaSnzt6QlkJbgRTJCWBbP0iFFXZquloquYSbERsCByWR0N34tVypepmcIS9LdcLSEJbjn\n7X0wEse7got4kR0jsNAN5DrHEYpcFyzrNYHwCWyf0/yU2I7xhLsVW41umNUzXOGSNgmrakVp5Xzq\nfYYjHHzhUdOw5xxsifHKt1gnGb4MsYW5FtiWYt0sNhuRDkm9xNYKzw4Zlq+JZYdlM0FZN/tvk2ZB\n2ixwRPBBcfYxVeuCpDnCF4dkjDYjS4llCYrG5D9ayO1jqVhS6vE7afMAZXNBo9cUzSnC8qj1CE2J\nsHwK/QBJe0dcaV1Q6GfY74Gq/sVLayAxAFTrTVLHD60bfhRcf6bSWrMcrwg/EO9TZCXKUVtTumVZ\nW6yC4yrClv9BE/3HjCu11nhXRNjbJ5vhhYFuNGdHY27dH3D2esLwdHaNKn+15pOV6aZ5iqKojVDc\nCLSiqFgtUpJ1Thh7BIGJosmygjwvOT+ZMR4uSdY5x8cTbt3p0x+YmKI8LxmPVkSxh+c6xrPlGTFi\nWdb2b4Shy95ezIOHp0wna375i9sbg7qBmo4nK7TWOI7i5asRk8kaLIhCDyEsWhso6TrJWa4yzs7n\nDPrmk/1P7g+YL1JWSUEQONvjHPjOVmxdjJdM5gnt2Gc0XSGEoN+JSLOCwHeom4YkLa6hI64dx1W6\nY7Z/X6V5SVnXdFoBSVJwPJ4bhMPm2JxOl5xMFlR1Q+y7NFrzf3/5lLv9NlrDdJ3CJr/Q/oiRXlqW\naG7eErSl+LOJLYAvz845iK8zz95V66LYjiVfzeY4UnIQmp/XGw/b8/lsK7jyuuZsvaLWDb5S7IcR\nyyJnURS03TfxQZcsq8sKNlwt3zaC6SCI2PMN6uNWGHO6XnGWrKhp6Hs+zxZTlBCEytnCTn9z8ZqB\nGxAoh69n53Qin1fTGXteiBKCb2ZDTtIlX8Q9srridbLg0I9NFqaQLMqCYb7iePP/AZLK5B1eesPe\nrli514z0Gni+nvCr1iE9N+T/GT9lz43Z9yLOsyVn+ZzQdvGEIm1KQvlmVPu/n/2B+36XwHb5ennM\nosroOSFZXTKrEn4d32XfbdN1ItIm5/eL58TS46yY01EhZVNzlI2IbZ9VnVJRc5SPCaXHcTbmvreH\nKxW1rjnJx3jC4SwfEdsfB9TsqhaVrmirmH2nT1pneNJ0qpImZd8Z4AgXidigG8x2okaTNzmzasae\n2iNpVuypfZRQlLpkXs2IZcysmuIKAzfVbsFynaCBRtek9Zpxec6yntG1BwhLUlMxrI5xLA8sTSjb\npM0KT9z8fJTl4ljeNUyE1ppCr7915I+wJK7oIi0HV3TI9QRpOQjLpmxWCGzWzWMkEQ0Zymq9V2wB\nCDwsHCo9xJV3EHgIfCxLYFt71zpZliV/WLEFQIXFMVx5HD8Kru9RP/SBe7ssy/qg2AJwA2dnA/Da\n73mH2Ko2RuyrX19sgqbf9n1lSc7o1Hi6Xjw4pbffunayLWcJ88mKZJ3zyU8PUUrS7oUMDtuslxnK\nkTdeIPzQgFBXi5SqNPmKQhj46PGrMZ1+RJYWFEVJELjELZ+45dPpRpwcTfji57fp70VGLAiL+WyN\nUjauYyNtgec5+L6z3T48P58TBA7Pnl0wn6fs7bU4P59z+3aXvb0WaiP4HEdux5TrJMdREs9TzOYJ\nB/ttwsClsxl9zuZrvn50Shx5fHK3v/M8hWXhuYrXp1PAwlFyZ+SWZCWtyBjVo8DFUYZVdomHqKqa\nxTonuoG8f7XS3Gz9vS24lknO6XhBJ3rTXcrKiqbR9DohSVLQCd+gK8qq5o/PTrjXb2NZAmWb8efd\nXhvPsSnrmi9fnQEW8Ud0twBcZb9zSzAvK8pNx+imqhoT1VPU1Y3fU23yMS/rII7Iq4qiqpkk6RYd\n8Xo2J3KcrWfqxXRKx/N4NZ/TC8zr6Nn2JtdRcL5aGUCs43CxXuErhSMlthBEjoNn2wgMoLTj+Vux\nBZDVFSfrJV3P33mc58lqm6uopCSpSsZZSt8L6HsBZ8mSw8BwzSyg7/nb7sy8yDj0Y9qutw2M3mvF\nyMoATaUQdBzP/OP6RMql7Xi8Ws/ouj6zIufn7T0kgk/jLn+YmMifBs3tYPcG2WjNtEzxpaJq6p0O\n0bzMOMsW/E3ntgkNtyRt5dHeZB7uudEWiCqF4CxfMnBC/rB4TWi7/Jv2feKNF2zPbSE3Xa3Pw30i\n6fEyGVHqmlGxZFGn/DS8jSsUvnQM4DSfYiGYlmtueV084dC2Q5SwadsGNquEzevsAoGFJxweJ6/p\nqzaPkiMsbbGo18T2u0W+KxySJmVRLZlWcySSvupw4JibbdZkJjvRsjjOj4mlAdbmOqdrdzfxPx5l\nU+BKD4HgcfoQZSmG1Rl7ah9p2cShz5+mf2RdrZhXF4DAlT4H6u62O2VbDm05IGtS0mZJKFusm+kN\nG4qmTCC5usbk0tSkevq9txKVFZFrEzo9rb7CEwMCeQ9NSaNL5Efwsgzg1Ma2uliW3PzzV25KtyRY\nu1DZHwXX96gf+sC9Xcky5dkfXuJHLmVebTf63lVaa3SjrwmsIi9vZGSNz2ZbFtZlNY3GVvLa99vK\npjOIkVLQ2wBK3z7ZXN+hrmpm4xW9vXhHdIwv5vihe62T1jSa+XRtRn/A1394RV3X5HnFfLqmyiv2\nb3U2iImCuO1TlhVZUjIdrzi802W1ysjS0nQVyprxyGzJCSFAw8MHp/iBEVxVVdM0DY5j47qKOPZ4\n+OCUVsun2zW4ifU659HjM/r9CKVsbFsShR7nFwsC3+HWYQd3A3C9rKrWOMrm6HhCK/bwXEXTaEbj\nFVlZkWXlxjBfcDpa0OuE258PN5yz5Srb8YmdjxY4GwL9h8QWmPGjENbWV7Z9XZTNcLYi9JxtN8pV\ntuFsvfUavhrOiDyXbuQzXiVYYLbQiop5kuHYkvk64/ODHsssJ3Sdj+pwva+SwvCsLv1Tb9eDsyGh\no975PS8nM8q63gJSG615Np6yF4VI8cZU/3g0Zi8MzULBxmzv2PbdW7SQAAAgAElEQVRWbIHxV23R\nBWXJXhgyyzL2ghBfKeqm4dV8xrPZlLutNi/mU9ZVuePVAsOe6no+yyInqyo8295s9JlOUqM1GvBt\nm0g5KGE+jNwOWyZQWgimecqyLOi6Pqsy5z+8esTtIKblGFRHrFz+aX6Or20i5ZLVFcsi4+liSmAr\nvp5dUNQVd8I2kXJ5shpjac2kNCyuQz+m43hISxDYu12PWmtG+RoLi+N0QUu5vFpP6ToBnrTpblAR\nF/mSQteABRacpDPKpqF9mdOoNY6w8aUisl0a3Zhzvcq2hHpPKvacmIerU1q2z2kx457Xo6tC5uWa\ni2LOqs45dI3ACKXHWTHjrtcnqTM86WwFtxI2WVMyLhfYls2B00NagtvegOfJCYt6yRf+XQLpbblf\njW743fJr+qqz4/HyhEsoA3qqQ2QHO1BUZSnSJiXTOYfOwSZX8QxlmXGiRiMtyT+ufosvPE6LI5Jm\nxX33U5ImxbFMHmMrCrGzkFyn3Hc/p6LAlyGL2nTBKl0iLZtlPSHRCwbqDsZhVrOuZyjLvXFsuKjP\nDCDiinHdssT3FlsATVNjWyESl0je3dLlhaU+SmxdrQ95shqdUukzpPXuCcn7H+sTzPjz+/PAbqof\nBdf3qB/6wL1dylX4LQ9pS6bnc6J28M5u1fR8xtmLEUVWbon0l/X8T68Zn83oH3Zo6mb7O8KWvyO2\ngPcCTC8rTwvyrKTTDa8dM8936A7ia52suB1sxdZilrBapEgpmE9WFFnJelXQNJrPfnZIXWn2b7Xp\ndENaXSNMhDRgUduWnLweE8YerXaA49jGWCwEutGcn824d7/PrVsd8rzE8xX9foxuNNIWPHlyQVUa\nUn9RVLRaPtOZ2dbqdEL++MfXCGkBmsUyQzk2r16PqRtNUVZ0Ns9Da21E3eZ5Pn81omk0f/Oru1vR\n1DSa33/1mtsHbZQtWawyDvdaVHXDcpXiOm8M7E2jKYoa/4qofn48Zr8XfXDcO56vSbKCwHOo6obR\nbL0FlYLJV+zGPv4NxPa3Lxi2FHiOzcvhjHuDDp3Ix1WK2crgPfbakRkNKptO6PP4bEQn9Fmk+Qcj\net5VrrLfKbYA9uLwxu/RWlNUNf0wYLhKaPvedmw1CIOtqPr98SmOLfmi39+JAbq63fhwNCJynJ2v\n/+7kmEA524BrKQRPpxOKuubXewcIy+JiveLlbMYgCDhbr/CVvfM7vhyds8hyOp7JhfRtxaLIebGY\nMc1T9oIIaQkeTkecJ2uKpuZktdiEZ1vciVpYFpysl/zPh5/Qct5cXC3LYr8dUeY1vq0YZWvO0zU/\naXWZbaJ9QuWQ1iWv1jO+iAfMyoznKyPIYuVS6wYsrhHwhWXI/LVuuBt0sLB4vh5z4O2mCrxMptzx\n2kjLIpQOj1ZDHCnpOyHTIuHJ+oJP/J7xhAobTyr0BhbhvEV1H+YLZlXCZ8GAcbmmrXykkNz3B5RN\nRVLnRJvNRFfYrKuUXFfE9mbU25TkTUkoPULpkTclRVNS6oqiKQlsn58F95FCbsXW5XGMZcjr7Jys\nyWnZ7x9Hp3XKqJyw5/TxxZtNyVCGuMJhUk5Y1Stc6ZI3GaEwqAoN3PXuM1B75DrDES5R6JEmFRUl\noYxY1lNiq8O0HhJYEU/yfyISZmlAILmoXtK3b2MLl0DEW9/X2yUtB9tyqCmwMOf5oj7Bu4GLpXVD\nRXYdJ3Ht+zR5M2VY/5ZYfrrpUn2/rlSjM6x3+MxqvQINwgqwvvPGY/cvJrbgR8H1veqHPnA3leMq\nbMem1Yve68PyI4/OXutGc3zvsEP/sEORlxw/2c1YfPbVEe1BdOOo72o9/eqITj9iPlkxPp/jhS7d\nXnTjMXv56Iz4SgfnaiWrDLnJUxRSmMDp4yntbkh/v4UlLFbzhOUiJW4HHL8coVyTxffk4Smttk+r\nHZJnJa6n+G9/+4jHD0x+YrsTohxJtxexXGWMhguOjsbcudtntcpIkoL79/u4jk3c8gkCl0cPz/jZ\nz25thJtFVdWs1zlK2dS1RuuGP319zGefDLgYLalrY8jOi4rZPCWOzJu52wmII29rPK828Uuep+h2\njEg7O58z6EUMuhG+p3DUG7K+FGIrtrK85GKy4t5h94O+LTDbkr6rthT0q2ILTObg05MJiyQjcJ0b\ntxTLqub52YTDrhHLvcg32YgWPDy+IC8qGgz2wXNsLMxNea8VUTeavKwIPmDwf3g6pBP4N54X36Vm\nacY3F0NansdB693nsGObLMT3Ue0HV7YPwcQDzfMcYcF+GNFoTct12QtCTpdLbsemU9D3A6Rl8WAy\nYi+ITEew0Vsxdztq0feDnXGqK20GfsA0T2k0hMrBlTbPFzN+1dtjWRUUdcP9uI23CaTuujdHqzxc\nj+kJD0dKIuWiLdMxcoRgkmf8Te8WTxdjyqam0g3H6YJ/3bvNwca/ZQu5I7ZeJzPKpiawHXyptp0v\ny7K47be3242rKt90pkKmZYISEk8q7gc9+hvw6bxMueW2+GZ5xrhYs++avzkp1oT2G1juZXVVxHE+\n5a7XI7I9HqxP8CxFpLzNzb4kts1iwHE2ptQ1t70eWVMwLVcoYTOv1vx2/pCOiuipmD+snvDz8B6z\ncsmB02NVp+RNhSvMuTorVzxMnnPb26dlm9Dqq+PT83xETYMAxuWUcTll4PQIpM91M7/BMMS2wUS8\nSJ9TNBl9ZUz7y2pGLFskzYqO3dvZUgykEWXHxQu0Bb4MWTdzPvN+tcFQCELZoqEm2MT+vG8RQFim\nY7qoz1HCvTKevH5zrinImjHuByClmR6zal5w6Pz7G8/FRheYzdqPe39rXZM1L1Cif/PXScCykNbH\n+zHfrr/05vOPgut71A994L5taa05fXZB3DMn5Nsn1/GTM7Opt7mRS1teC7SOu8EHO1oAnX6EkAIv\ncOn0Y1xPvfNki9oBtpKslxmOa1MW1dYflKxyk6PoGwO5+bdFGHuojQAJYw9/s2nX3vC2hBTYtqQq\nK9rdEH9jQF/ME27d7hC3ffK0oKo1fuCwmKe4rsOjb06JYo/lIsPzFWHo8fVXx3i+g+cpBptuXJaV\nJEnOkycX3L3TYzCIODhoE0UeX3x+gO87HOy1zGMRgih0zZhQSRZLg3O4FFvLVcbpxRzLgl473BjR\nDUcsDBxW65wkLYjeeqOcXMyJQ49GG6jqu/IX3y7xjpX9y3I2vKxW4O1sRYJ5sy6XGU/PJvzksL8V\nQ1dFkWtLPj3oUZQVjjLMqZfDmQk3liav8KrYquqGeZpd63h1Q/+9kUPfto5mCz7tdbeP4e1aZjnL\nvMBXNtISpFXJPMso64az1ZLOe6J4Lsd9t1stHCkJrnTXDqOISZriK9OtSqqSn3UH9IOAcZpuWF3m\ntWu05tl8Qt/f9QvNspS8rmi7Riw9no35RW9AVld0XY/DIL72nLKqpGqa7YYewC8PD5guU4M8EYJo\ns8noSptllTFwQ7K6puMF3A/b2JYgst1rHa3Laivv2njxssb5Go3eRvP48k2+qnqrawRwnM7ouRHr\nusTGouuYpIaX6Zjfz1/RtQOOsikajbIkR9mEtvKZFCsGbkwoPbKmQFk2aVOSbbpXL7Mh9/09I1KT\nIbNyuXn+kpYdILDYczooYXPL6VE1FQ+T1xS6QCJY1GtG5YyWHXGaD1nVCeEmA3Fame1AicDCoqEh\nqVNadoS0JG27RaNrnmcviWW0Ey59VpxhYRmxlT3nJ97nOMLjqHyFK1x6zgBlKRoaPOFTNAXKhyLV\n1LriojziU+8XzOspAujZ+whLsqinhGJD26chbRZ4V/xZRZMxrU4J5PWxmyda25zEm8QWXNLmzX2h\nbFZkzQjnhtGjjUfWDAnk4bWvAaTNKcKyER9pyrcssSO2tK52OmbC8q6FW/+11Y+C63vUD33gPlQv\nvz7aifCxLAtuwDdcVtwN38vRAnYCoN9XN3XX3nWyXf7Oi+MJrW7I8fMhYWw2JZfzBK0N9f3y+4Q0\nWYpCWMwmK/zAZTZeEYSu6TitcoNVcGymkzWOpyiLynDDlCRZ57TbIXWjKYuKLKu4OJuzd9hisUxp\ntXw+/WyPPKtYrXPanYB222e1zEjSAt93qOuGLCtpdwxA1bYFi2VGmub85jdP+PTTPS5zCpMkJ0sL\nnr0Y8vpoasj70vDHpDBxQK3IJ80K1kmB6xgfmO85FGWF7zm4m43Aq1XXhvh9MV7gu4rpMkE3MJqv\nicOPb4tfIh4W68zciDaB19NlguconhyP6ESm0xSGLmla0ouC7eNpGk1e1tibjcVL4dQKvK0I6IQ+\nrrJ5cHzBXmv3E2jVNKRFYUChb4n5RZrj3dC1u1isUFJ+lAH/bLFECsFBbIKkVxtRdVV0VnVDjca1\nJc8mExxbMl4nnC5WfNrt0PU/FMZr4SvFPM+2HqzLarTm9WLGIAjxbJuOa46Lten+BOrNaLJoak6W\nS25Fb25gT2cTXq8WPFvM+Hl3gBTmvDldrzhazxGWieB5+/GtyoJSNzvbhGHocjZbYm0e1+PFmL4b\nbDpRhgDvSuMTS+qSo2Sx4XR9e1yA3hjkPanwr6AjLsXWKF/xMp2w55rzoe+Ehr8lJDWaeZlQNDUd\nFRBJl0OvbRYDHGM4d4RNVhf8b2e/4TN/j6qpeJWNadC8SC74IjjElYpYejjCZlqu6KqQtC7QWHy5\nfMkXwW1i5eNtRm3P0hOG5Yyf+Lc5dHtEdkBHxbRsA0ANpc99/xa+dHGFQ2yHFE2Jsmxe5sfccveJ\nbSMUsybnpDhj4PRxNziIq4Irr7ONT8plWa84L86JVEjX7qKEYlHN6Ko+oTTHp9QFjieoMoOvsJBM\nqyFd0SO2e8jNyLXUOa7wmVUjYtnBk7vvNwtrCzp9uy7KBwSi/9GdHoG9Caq+/gHGsiw8sffOMaJt\nhRR6BmjkdxBKWfMIabVv/Nt/rfWj4Poe9UMfODCbg5cm97ffJF7oot7qGrxPUP0526mX3q+qrKiq\nGrmhlE8nay6OpsSd3U/wj/90xGc/vwVAu2e6Y5ZlkWflputmc348Y71MTfdsI+jmkzVRy+fhV8d0\n++bCMjyb47iK3/7dYyxpMTybE7d8PN/h9//wjDQtids+F+dzXjwfouuGz396SOA7xLHP/iaE2g8c\nRqMl81nC/n4LKQXLZcp6nXF+PmexSMmLmjt3uti2JM1KLs7nVHVDUdQMJ0t6nYAsK7GVZLXO+Zf/\n4i79bsQ6uRxD1lyMVwx6Eat1Tl3XNFobsVVUzJYZrcjbEVtHZ1NakY+3gZK2YyOGHGXz6mzKYT++\nJlzeVy9OJ3Rjn7Kq0dqIHs9RnM+WnI2X/OqTgzc5jXXFxWRF5DvM1xl5WbLKcta5eS9MVymeo3Y6\nXuezJWVV4zvqmti6LE8pzuZLOsGbLlLdaOZpxulsuTHb747wvLdE07vKwsKxzVjzMsD60cWIjm+O\nW15VvJhODRnd9wzI07YBi5/vDXZYWTfVNE1ZlyWBUuiNd+tqt+nheEToOLRdj7Qq+e3pMb5ShMoh\nKUpWZUGwYXLZQnArivk/Xjzmk7iDFIJxlvCL7h4txyUpS1quy+PZiI7rcTdqM8tT/svJC37WMY91\nlBnzeuy4TPMUV5oRe6M1KwrKrOIomdPzAl6vZwS2wrcVLccDLLK6ou8ZkVXpZouD+LbliF1/2ts1\nLtfc97pb0Xx5jB+tzolsl7ypOM8W7LsxkW1M67Hyt767vKmIbI9fx/d4llzgSEVS5dz2u9zyDD9M\nWoJvVq95vD7hV/F9fOkwcFr0nZjPggMsCxzx5hrZsUN86TIsZvQ3MNRZuURaAtuSW5N8pWvSJmda\nLWjJkJqGfWd31PU6O+ET7w4AyrJZ1EuUUORNjhKKQAa4wqVsSlzhsqoXdGWHWLbNVqO1SYjBYlIN\nadtdunFre9+RluS4eMZp8RJHuATSvE7uxpR+VjwnkK0tw+uy1s2UmhLnClG+bDIaKlry8FvdB8xr\n8e5rzfs8Ww0luR4ZQ/13EFxKDP67Elvwo+D6XvVDHziAdJWxnK548vvnHH62v/M1+0pnIFtn2B85\ncvpz1NOvjunuxyTLjDwt8EOXMHTJ8hIvcEiTgqqst6T6bt94zo6fD4mucMD80MXbjhMVWVKQJDmu\nqxBSbOnxtzaip64bVvOEuOWTbkKkf/Yv7uD5jiFCNw37B23W64w0KfjX//YzlsuMVifg7HTG8HxJ\nlpfbwOrhcM6rFyMODtoMR0vStOD586EZHX5xyO1bHYajJatVxun5DNex+Ztf32M8XfHFZ/torZnN\nEgb9GFsK4sjj+GzGi9cj7t3uoZRNp+XTNJp/+MNz7t7u0d/46kyMkGC+zLbIB4AXRxM6LX9n208I\nC1sKBt3oW4ktgF7L8HlcZXMxM50jZUu6UcBosaYdetvf2WkHZgQ6mTNfZ7hKkRXVhjIv8JTN0XiO\n76itQPIdheeod17In56NaQce/WhXhAthEXsu/SjY/q7zxQpHCkLX/SixBcaTJSyLo/nCwHWVYhC9\n8QzmpQHpHrbMDcuTNkpKvrkYciuOrv2dB8MRsfumK2ULscU/TLN0G9sDmxHhbMqv9vZZFQXPZlN+\n2d+js8E/PJ1NiJTDebreGSP2XN8IRSkpqpq2a8Z6eV3ycDomr2tix0EKi30/5F7c3rK3yqbBERuR\nhfGHPVtMOUkWFJiN3kWZk9UVnlTcDd+MloqmQgmBIyS/HR9xN2jhScW8yHDFzZiW71quMKPby05L\nXpeMizU/Cfc4TmdYQGA79J2IZZWZxUYNXy2PCKXLpFpjW5JS13ziD1hWGbe9LkpIjrIxAkPJD4TB\nYuy55nlqrZmUK8Pk0jX+FYipsAQCSdJkdJT5cPA2Hb5oSk6LIX3VxpcmULvQJZ7YvZEZ47/Dqk4o\ndcVxcUIsIipM0Pa8mjMrZ3yTfMOBs4+ybHwZICzJi+wpoYzwhIcnfHwRIiyB7yumqzm2UGTNmkPn\nPrfcT8l1imO5DKsjItmm1hUlOaFs0+iGeT3E38TrOCLYEVsApd6Mmb8lc+v7lBlN9r6T2Hq7Gp2g\nqd9pqP9rqR8F1/eoH/rAATieImyZ8c77GFxHj07p7H+3VdnvUr2DlrngeA7+5gW+PNmkLbebf5fA\n1bppWM1TwtijqmryrKSp9fbrsMle3IgT11NUZb3tvEzHK5J1BhtsRRT7ho10MiVu+yglt/DSyWiF\nbQui2Of0ZEpdNxRFies6fPaTvW3uIsAf/vAKPzBcrpOTGb/85R1OT2fcv99nPk8INl2wXjdCa81q\nlTOdrmlqzaAfozV0Nt28N5ysZpvHeClkhuMlrrLZ60fYtuSbx6d02gFSGr7SVTP8waC1I7byoiJJ\ni3d6uFZpTlHWSCH4/cPXKFsS+g5V1VDV9U73rHVFXFmWxV47oqxrnM3/iyOPumxoBR57nYjAc2hv\nxpfrrKCsGg678VYgLZKMrCivZSherX4cfNRoEKBpGlxl883JBRfLNfvv6JjdVG3Po2wahqs1Le/N\nyPXpeMIqL9iPzCjowXBIxzdeqbQsWZclkePQaM2j8Rhf2fSvoCGkEORVxav5jEma0vF8JmlKWlVE\njsPdVov/+PwpjdZ40iatTM6eIyWN1uyFBiFRNPVWqA3ThOP1ksMw4jxZ0/V8krrkq/EFd6IWvx4c\n0HJcHs7G+LaibBoidYlNMGKrbGrGWUqtNS3H5cCP6LYCvhme80Wrx72oQ98zzyOvKy6yFauyoELT\ncjySqqSlTMdvXCQkZYknjW9yXRXbDtJ3rd/OXtJRAa/SKb6wsYU0BPoy4zSb868693iZjknrklWT\nk9QFrrD50/KYe36fA9eIwUo3/H/svcmz5PZ17/nBPOecd66ZLFIkRZq2Wpb6ORyv4/Wie61oa+WN\n/wVvHQ7vbP8J3njjlRSOHqJftNsdtp4tWTJl0SLFqYo13XnIm3MiMQM/9AJ5s+6tW6wqUrRFd+ts\nKuomEokEkMDBOd/z+Z6mU6Z5yJbVxlYMmqpDJDI81WRahEve1nEyYT8eMEgneJrNin6ZTVVS0tIq\njVKVXI3onFtOkRT66ZiG6hGLFEPRCYoQS65QH8fpKZZsYso6MjKWYmLKBit6F13Wl4lZImKaWpOr\nZmUybSsOh+kB82KGX0wZZX0USWZWzPBUD1lSOBD3uTP5CFO2mBcz3EVCpUgqmmwsEzNZkrFkl2ne\nR0KuqruyTVkKCjLkJypDqmS8ULJVlgJfHD1XMP/vHQU+IJD/DScMv4z4dcL1S8SvesedxXngqRDi\nwlPo6HjMfBKw+fL6v+s2Bf5lE+zzJ5umqxeSKVGUxFGKW7M52h1iu+aFhOx8GEZVLbn7wT6NloOi\nKhimhmXpBPOEerO6ccqyRJaLyvswzbEWljtezSKOMmzXwDR0tq60qdUt6o0Ko3F+/1271iHLctIk\nx7R0Gg2HbrfGdBoSxSmWrbO9M2B1pY4/iwijjPW1OjXP4vBoxA9/co/XXt0gijOUBbPJsnQkqeJg\nffqwhxAlq90a7ZZLXlTJWKNm8/6dfTZXm8zmEfe3+3RazgXkw/HplEKUaKpClheVbiTJ0DWV8TRc\nTjHmRXVOGLpKu+7g2gbzKGG/NyErxKUpRaiStKPhDMfUmQQR+kJ3dnYMn6z6nIx9TkYzCiHozwIc\nQ2PkR4zmIe2a81zx+/5wir4wdX5WGIs2YtdzaDv255pgnIQRnmlUhPxz+7HrOhxNZ5haVdmaJQk1\nw6SkpD8PmcUxa4spQyRpOXEIVQXro9NTtup1ClFys9XCUFU8w8DRH9/A0jzHVBQEcL3eICsK3jna\nX+IikiLnznDAplfdyOqGyTxL0WSZKM+p6wYnwZxrtQZdy1nuf1WSMVSVSRKzPRuzZleaTVGWjJIQ\nU1XJRIEuq8yyBEmT2dIrNte96YAH/pAgT2kbDqfxnKBIKcsK7xAXVYIlSxJd0yEoUqZZTJRnHEYz\nGrp5iSifi2KBP7l4vD+YHtE1Lk6Grugekyzio9khmqKiSyq9ZMbD4JTfbt1AXZhUb5hNaqrFmlnH\nVDRuu2uYikYqciQk3p9t85KzhquaSFAlZorGfjzgJJ5Q1xwUZFzFICxibEWnobrMigh7AUd9fDwF\n29EJAH4RUlMdmppHURb00tESfqpJKu9OP6agoK66lcn6IuFSUdAljVE+IRYJ02JGUiQ8iB5RU2vI\nVBosUzZJRcrd6C7zfE5drVcwVBHhKB7XzFuUUkmymFwE2Gpu0Mw3EKIgLVOmxZC4DElEvPRbPIuz\npOs038VVG2iSQVbGBGKCKX/+ST6/OEZQoEkmCp9dsX5WpGIKlF+6UbUsWV/5ZAt+nXD9UvGr3nFP\nRlmWPPj5Nu2Nim4b+hG6qRHNY8wFVuFZcfjgsiH1F43TgzFe86KVxPmTTRSCwK8seExbR1Yq9IMk\nSZzsDcmy4oK9jygE/izCOEMhRCnD3oyNq232t/sYpoamK4wGPoalkyzApitrdVzPwrINPvrFHq5n\n8tEv9igl2Niq/CNPTqa880/3WFtvLD0QAeI44/69EybjEN3QWFtrkOcFjlNV4Q4ORlzZajObRVim\njqIpbKw1sG0D2zao1SxevrWKqioMR3PEwox6NA545+fbeK5JmhZsrNZRFJksLzjuTReVLRnHMjAN\ntSLU1yzyXCDJj22VXNvAMqrWnWlopFlOlgsMXeXD+8esdWrIciXc11SFeZQwncfUHBNDq5KvJ5Ot\neZQw9iNaNZu6Y6IqCp5lsHNS6bzOjuF4Xo32j+Zh1UqbR9xYaVF3LN57dMh6q4YoS1YaHsYLoCrM\nBVj1RS7isyjG1LTPjYs4mc1pWOYy2UryfNkWbNnWUqu14jpsj0cEacYrKx26TtV+PPb9ar+fS6Qk\nSWLFqRL8WZLgGZWt0c5kQnMx1ThPU37eO8LSKqaULMvsTMcYSmVeLUkShqIu7YEeTcekRUHTNNmZ\nTXil2eYonFPTDZqmxU+O9mhbNoM4wtN0BnHIhuNxEs5Zd7ylAP7utM/L9Q6uVrUjXVXnOJ3jSlU7\n1JQrcn0scpq6yWkScMWp4+cp+8EEP0tpmw4gYSrqkkRvq9ql6cQzM/FhWgndn5xcXDUvsvbGacgo\nDVAXvoi33RWMhTG3rRhM8wiJqs2oywpxmWMvwKe5KPjFbJ8P/X324wHfaNziKB7TT2a0tKqyZco6\nUgkbVhNNVnkYHhMWGY5q0tRcCgRNzeEkmRAVCYKSII9xVJOWVmM3PuGquYokSTwID2hrla7zTO8V\ni8oz8SX7ajUYID8G2WpydR7bisU0n2HKBm29RSwS8jJHlzVUSSUqIvbiPTaNDabFGKmUKcqCUATk\nIgMJ1owN9IW+S5VUplKPNBGEYo4u6SCVrGhb7CX3aWpd/GJUTSkqVeIeiIqyX1Mr4r0iaZiyS1BM\nEOTLqlZZCkrEMzVXhuyhSRZFmTIpdjDlxnO5WrNiG1nSURafU5QJsqQ8NeFKxbCy8PmCbetUPETC\n/kq3FX+dcP0S8avecU+GJEnLZAsq4ChI6KaObj3/icT2rKWoXgjBow/3aa1+sTZkrVXdhI52+niL\n6tv5ky2cx8wmIaatL5Oos+isN0jibKnPisOUo/0hoZ+QpZUIfzyYc/XWCqqq8OmHBziewcHOkLIs\ncT0TSa6eIrVzFbL9nQHd1Rpb1zqkSc7B/ojZNOLRgxPqTYe1hWn0WfizGMPU+OAXu2ysN0nTguGw\n0nH1TmdYts76egND17DtiqAeJxnzIKHmVdY3YZjw4ccH3H5pjf3DEY26zTxIePWlVWzboFm3ieIM\nWZY4OJ5U/KZFdW/qRxW5foG4mPgR6kJfdXa8z4emKhgLPlin6V747gCqoiySmsqOR1Vk0iy/0FIM\n4pRSAsfUubt/Ssutqkitms1+f8LGSp0wTJnOYyxDI0oyXMsgSDK2T4esN2u8tNFZWvOUZVnthySl\n7wcYmvrU9qEiSwz8cEl/f1Y8OB0yjRNa9rMnB88iLwTDMAOgLdIAACAASURBVERTFII0JRcFSV5w\nMJ3RXqxDlWVmSUIuKr/DU3/Ow+GIlmlSSpXYfhrHnM4DmpaFKssEaco8SbAXCZij64yiCEfXL+i4\n3u+d0DBMojxnxXFpmhaWqlIIUSU+iynCsiyZJDG2Wu2jhmHStRwO5jMUSUKXFUxVw9MNXN2AsuT+\nbMSq7eBpBqKEWZrg6Tq9aM51r3mhAlWUJS+tdMjigqIU/D9HD1Blmbfb6xiqRtd0eOiP+Fp9BUmS\n2HLqHEWzitWmPU7MKyschZ1gREO3mGYxvdinoVsMkoCWbj9TLA8gI+HnCW3DWZLlNVnBVQ1c1aCp\nVZOTjmKgL5AVnmoyTgPSsiAsUr5Rv8GsiNk0GjR1F0NSicuMNaOBn0eMsjlt3cNUdJKFNu2fJnfY\nMtvosoqjmDRUh1IqMSUdUzGWLdKO3lieWzXFRpGVZbKVi5z9uMdNa+uZ518/HYAk09Gra3ImMhzF\nwZRNemmPeTHHVh0MyeA4PV4gIArW9U0UScZVPebFDFMysRWHQX5C122zM9tGQmLNuIJfzFBQ2TRv\nVBqzsgKeGgvAqi5b2Mrl9p8kgSKpy9ZiVE5JymBp7xMUI/IyQpOfYh4vJjjyGjOxg/UZTKyzOPNU\nPAtFMj+zupWXMxTJ/sJw1FQco0qNXwJ6+m8fv064fon4Ve+454Vu6miGhm4+O9lKk4xf/OMd1q53\nl9UTSZKot59PLX9+SMuE6vzJphsaXsPmcKdCQJz3dsyzgt7RGNPS0XWVLCvQdKWyENIU6k2HetOm\ndzQmSwuu3OgsvBIdOqtVa8da8LqiKGHnQY88F3zywT6trsf2wx6mpbG/M+CNt66Q54KV9QbDwZz7\nd48ZjwP6/RlZVtBs2hi6SpYXhGHKjRtdbNugUXeo1ywsS6csYTia4zgG9bq9hJtCdbOPk4xO24Oy\nMtfutD36w/lSV9YbzGg3XBo1m0II8rzAMqu2o64/nsRzLJ3j0yl3Hp6w3q0jyxJHp9OlnuvOox5R\nktHwns6vSvOCWRgzDxMGk4BWzebR0ZB2/bH2T5Kqtp2qVKP75jlLIkmSaDUc7u31WW1UWjPHrGyG\nFLkSzNtmNW03CSImQcRgFtLybHrTOYamYi+Aq09GfxYwCWPa3kXh/EcHPTqeU1HMRYksS+RC0LSt\nZ9Lmz4egJCsKOq6z8EmU0JQKE3H2u/jZ/kE1IVjzKvp+GPL66iqWrpHmObIk0bJtGpbFOAzxDGPp\nHrAzHuMtRPx+muLq+gUqvavruFo1tNG0LH56fMCa4zFKIiQkGgs9WZClxEVB07TY86d0LYf9+Yym\nYWIoKndGfTbcGpM0pqYbDJMIV9OJ8oy4yOla9lJsXwKebnAwny4rTqfRHMVQICsZJ5Um65bX4qeD\nfbqmi6motA0bQUlNM/hg3KNt2HiawSAJqOuXWzamomEqKo2FNY8uK0udl58lZGVxgRB/FE1QZQVV\nkikoaWgWrvo40RFlyXvTA7asBrqsVhZGCzhmJnI+nB2wbtSoaza6rJKXBfvRkLpqE4gEAE+1GOch\nB/GQw3iIq5j8y+Qeb9Su8VbtRkX8T6fsxD2CPMFWdY4WZtVPtkiBS+3RtKyqT34RLqteohTkZX5h\n+UlWIQ+8BYnelA0MSSctU+aFv8Q/5GWOLmms6xskpBiyQV1tMMnHeHKNoTjFUTx02WQmDxmHU47S\nbTrqGnW1jS7ry/NYlbVlsgUQFGeJVPW7mhdDsjLBlD3GxTGWVFUeFVQUSbsAPB3nO7hK99y6+mRl\niKtUvo6m9PwK1+cJVXKfur6q+pY+t3KlSq1fc7hecBueFr9OuP6dohQlXsvFck32Pj2i3qk0Kl8k\n2UqTjChIlvDU89Wrs5Pt0Z0j6gs+WLPjXTLSTtOcIiuwHQNNVzk9HFNbTO71j6a0uh6yLFFSLrVf\neS6WLcndh6d4dZs8KwjmMbZtkKYZeVawvtFifatFrV7hHzRdZToNabVdZpMAStjcbDEc+Oi6Snel\nxrvvPmI6CUiTnHbboz/wCcOEzc0Wdz89RtdV6nUL266e5CaTENPUePjolJVujW672p+6pjCZhNQ8\nC0NXMXSNk37FUfrFJwfIikzdtfDcqqyuL/RK86CCv3663ePqRhNFVqi5xnKZs6pXq+7Qqn+2we7E\nDzEXOq5WzWYyj9jsPq5gBlFKEKfUnermGSYpxjnEw5mX4mQacjCcVsMGec40rKxsHhwPMDQV1zLI\nikrc7kcJnmXgmDqaqi7F90+Grim0XftSMrayIMLPooRpFOOZBp5pPJXN9VlxxsgCmCcptq5dqsB0\n3UoTBhX6YrNWW2q6gjTl2J/TcarKTXhORG+qKrMkwV6I3tu2fckc21QrobwoBU3TQlnoBK/VGySi\nIMwyHE1j159yrdagF8zJikqTd2d4SsusEoEtr86+PyUtcqZJwqbjEeQppqLi6Aa9cI6pqiQiXyAe\nwNUMHE1nlia0TZtuo3J7OI0CPN1gw6lR000GScA7p7schFPGScTefMJPB/u8Vl8hyFJmWWWEPU1j\noJrMNM+xtaZZzCyLaeiPq45ZWeBnMcexT9uofr8fz07oxY/Bo5qsME6jZQvy7ryHn0UV/FSSl7BU\nQ1ZJRVXZWjXrOIqx0G/t0jFqdAyPsEiYZAHvz/ZYN+oISmxFp6lVGquyLDlOJ6wZDeIiIShiVo0G\np8mEVaPJMJviKiaCElGK5b9PJlyqpOIqNp7qLKte43zKIBtXk6WyVumnFAtTNpcoCVmS2U12aakt\n6loDv/DRJI2aWqOXHaFjkIgIXTaYFGMm2QBZVlnTNzhNT0jLhPXaKl7WRlcMOvo6aRkzKQakZbic\nQry4rTqaZCy/gyoZaJK5SLKUpdVPVsakZYC+SMwkScKROxce1HXZQZF0BBmypD4z2UrEePGdn/1Q\nlJfBc8GnBXPycowqPVuo/5U3s+arnXB9ob0nhOCP//iP+e53v8vv//7vs7u7e+H1H/zgB3znO9/h\nu9/9Lt///vdf6D3/EWP/7iGhH73QsqquUlswrLqbj1uSRV4w6c8+1+eWoiTPimcuc/Wl1eVNfDKc\nMziZXnjdn4TYrrmcbty83iHPcqajgNaqy3hQaWnqDQfHMzBtHVWVOT4YAeB4JkVeYFo6jmvSaDls\nXmnzyutbvPfuI2aTgN1HfWynEtF3ujXmfsztVze59fIq3dUab/7GVbI852//5n1EKWh367z51lVa\nbYfNzSan/RmTSYBlaoRRyv7BiDTNiaKUKEopy5KrVy4CBBVFRlEkhuN5VbmSqwnE9bU6nY7HxmoN\n1zEQQjCaBJycTjnsTdg7HFGWJV+7tYauqRiGwnhWHduiEPz9Tz9dtBuf/ZPpNFw8u7oRz6OEeZhU\nVRpRedUZuop3zvT6s8TunbrDq1srtGsOnmViaAquqTOPE0Z+5aGoyjJBnGAbOkVZMg1iouSzLzSa\nUqEbRFk+9fW6bbLeqBJXUZZ8fNR75nd9WhxPZ5wsdFhPRpCmDOYBWV5wOL14zncch67zOJFddV38\nJOHdw0MUWealdruaCiwEWVHwcFSdh7kQy/dMkphRHKErCi8122x6FZF+xXKWFaGXGi38JOFgPqs8\nGdOEb65t0bUdgjxlnEQ8mo5oGhZRnvGDw22yomCURoiy5EatiaVqnIRzoCLN358OAejHwXJbHs5G\nTJKInfmY/WCGLsncmwy5ajf5zdYmHdOmYzn8VnsTTZaZ5ckyaRCU9CKfcRotj0UuBI6iXWg7Ariq\nQVCkXLOby79tWHU2zQZ13WacVhU+WYJZFrMdDBCUfLN5A0fVCIuUYVJ9l2kWossK1+0OqqSQipwf\nj+/zsr3O3fkBh9GIw3hEP/V5y7uCIWuYskYkUnRZ5Ya1wj+MPqIsq2OSIVg3Wowyn4bq0NBcrltr\nzIqQo7jPQTLgOBlwnI6IxcXzNln8PxM5w2wCQEtrICjRZI1e2gcqYb0h60xzn2k+4zTt01Ca9LJT\n4iLmJO4hSsEoG9FSu+TkKLJCKmJKBKv6FtvxPcqy5F/nP0FQJUL76SPsRfKhSyZxEZKLi9fccd4j\nEnNkSUaRVBJRHS/5nMWPcY4+r8s2rtK5sI6ndUWKMiErgwt/O9un50NGW3oyXtx3A7JyvnhfQSJO\nLy1zFrE4RpQJquRhyJufudyv48uJL5Rw/d3f/R1pmvK9732PP/zDP+TP/uzPlq9lWcaf/umf8pd/\n+Zf81V/9Fd/73vcYDAbPfM9/pAgmAfNxgCgEkR9he5/PiR0qj8WzKEuWN+MXDcPSaXQ+G5RYliWc\n+x3Xmg7NJ5bvrjdotC8+rcmKTFkKTo+nOJ7JdBxwelRd7GRJwq1ZbF5tc7Q/pH8yw7R07n18SBRU\nvK+/+d9/zke/2KXb9VA1lck4ZDSofvittkvveIIoBPWGw+H+iN7JlDQp+PZ/epm33rzObBLQO53y\ns589wrJ0fuc/vcJ8HjMczul2XE77MwYDn9E4oNv12D8YLejzEUmSAfDOu4/44O7hBQp8khbs7A2q\nKl0mODwe8U8/e4Bl6uRCYGjyoj0q4wcxOwcD4jijvdDFybLEWtfjsP84aQ3j6obwycOT5d+EqBKr\nNKvaHuNZxHq7Qnfc3asuepUR9eMn0p2TKtFLspxP9nqMF4bUZ6EqFUyz6dqkecHtjRWudOr8890d\nTqcVLHKl4SDKkkwImq69XN8sismLizeJwTykP7t4MX9ayJLEa+srz13uydAUhVvt1lNfi7OcTAii\nPONWu8X9wYD/4+M77IxG7E+mtOyLlcMgTTEUhR/t7C51X23bRlMU1rwKpfHO4T4PRkOCNOVarY6j\n6zwYj8iFQJRVxeW93jEfDnqkRcHubEJWClZsh4+GPQZRwDCpbpSrtsuq7fIbK+scBT6OpmNKCtM0\noa4ZaIuK3SiJlm2xUVqZUZ+Ec9as6ve0PR2z7Y95ud7h292r1DQdUcI3u5vkUuWduGJ6dM3KTPow\nmvFSrU3HrM43RZJYt2t4atXKHKcRvdhHXbQSn4yX3O4FW6C8LGgZFmVZsmXVK5RKnnA/OMWQVDaM\nOqqscM1uM8kC7gfVuSmoErugSPjEP+RvTz/kFWeNjJwts8P98IS27vG6t8VxOgYkNs32wpMw5r8O\n/pX/vvEKDdVmOzwhFwWmotNLxmRldTzCPKGl1XBVG0qBKqlcMVeWFHpY2KOlg+V5qJ+r4Fw3N3EV\nmw3jopWNq9g4ik1X69DQ6mhofDD/hHExRZXUih2Y+/SyE3RJp613WdM3SMuYV+zXOcr2uWHcRgGi\nIqStrnOaHVIupkHb2urCW/Fx1JUOprSYXC8L5sXoqef95w1ddrHkNqP8U0RZIMqccfHgwjJZGVKQ\nXtBunYUiOSic+W0qOMqNz/wsVXKR+OoK4P+/Fl+opfj973+fb37zm9y+fZu1tTX+/M//nD/4gz8A\n4P79+3z88cf83u/9Hoqi8PDhQ4QQvPfee5/5nmfFr7o0+GRUdPfKC7G9+fQby4uEPw7YvXOI5ZrL\n9uKXEY5j0D+ZMhn4uPXHpevz02bjgU+WFpeE9JqmUm+5iFzQaLkYpobtmjy4e8zqRoMsLYjClEbL\nod12F7qsOrZTTY3N5zGvvrZJveUw7M94/c0ruF514S+FYGWtzvHhGMetpjnDIKHRsHE9i97xlG9+\n6xbNpotl6dQWYn5NU8nzgnbb5drVTvWZKzVkuRLr67pKsrDNURSZNMu4dX2FsoQgiNk7GFKUgpW2\ny81rK2iaQpbnGLqGZWn0B3PmYYbr6Di2wWA8R4hKy9Rc7D9VVVhperRqj1lWB70JzZpNZ4HHABhM\nAuI0YzgNcSydZu0xUqHbeHyxnkcJ9/b7rDQrWr2uqSiyhK2r6KpK3w+QBUuh/V5/zDRIaLgWEnD/\neER/OkeIkqORz1anQZJmjOYhTddiGiXsDsbcOexTd0wORzNcs6LI96ZzNlu1FxLCf5FJJlvXGS88\nDZ8MzzDwDINBELI9HOPqBrc7bZq2xTAM+fnhEbqiUF/orQZRRNdxWPVcLO2iRnISxxiqStOyqs9T\nNdzF+ttW1Zb8x/0ddqcTfqO7yprrMksTSmDNcfHTmDDLudVsVZiDRQsTwE8TbtZbNAyTWZZgKAo/\nPN5FCMGmW8dSNRqGSVLkDOKQVbOqjjUMk2kaY9saL1ttduZj3h8dcbvRYZCE1HWTOM95rVlhKhxN\nJysEjmqwYjoLsKvCceTT1K3KWijyaWgmLeOz29j3/f7CHLtKApu6TVlWk4Yfzo7Q5Ur/dd1uM8pC\nTEXDkFWG6RxbqaCnsUjZCYd8Mj+mppjshAPerl8DSWLdqJOXgk2zyZbVxpA11owGj8IemSjYNFt4\nmokuV9twmvo4qklDc/GLCEPW6Oh1ZkXAbtyjobnEImPT7C4REE+edw11IbmQZIxFMiZKwXZ8QEu7\nPGR0xsU6O0d6aR9PdVnXVxEICqngINmjo3XIRE5dq5hfFfjUws9nbBhbaLJBw/EYh2NW9C1Osj1M\nySYUM+rqk9Wpx58nSfIl4fw0ryrEXxR0akqtheG1/BThfDWxKiETimP0C8wuadlm9It7qJKHIKEy\nsX7S3Nt4Zpuwqqxdnqwsy5JU/BxV3vhC3+3fMr7KLcUvlNrO53Nc9/ENRFEU8jxHVVXm8zneOYaO\n4zjM5/NnvudZ0WzaqJ+T6v1vGt0vJzlqNW1W12qYjnnJv+9FYjYOKsG7efnGtnW1zYNPYrrntjVN\nMrTFdF29Xt24NV0l8GOEEHjndEmKVFHp7/xin0bb5Te+cb1aLi9wXYOV1TqzSVgJ3tsu00mAH6a8\n8uo6V653GA8DfvwPd3n5lXW6XY/jozEP7p3wtTe2+MY3b3J6MsVzDSajOaIU7O8P+e1v3eLgYES/\nP6O7UieYx2xsNqnVTFoth+FwzupqnTBKzn2v6t9u1+PDTw65eqWJZWrsHYxotWyiOCdKM7rtGtev\ndcnyAiFKbjVWidMMU9eo1y2OTqa8/spGVclaqxNEKYosYRoaO4dDrm20+ODuEa/eWsFYVKe6TzkP\nul2PeZiQ5QXN2tNvkPMwwU8TXrm5Srfr0X3KMrMgxl4kSH6U8LWba8iyxKOTIQ3P4r9cfZmiKHhw\nNOJKt45j6szCBNszWOvUyfoTfnv9OtqC63U+bK/Sen2Z4ccJeSFoOhZ7wwmyqdA+Zw11toyj65SU\nTMqEdrsCkRqqys/2DhgnEd9+5TqZKOh2PXIhmEoZa14Fu90ejbnSqNOwTKIsRy5CVjoeuqLw8cd9\nXq53GWUx4zTm7Y11DFXlf+m+ycPRCFPXGYchjm3wRrN6SOp2PV7N1i4YYJ9FNK0GKnZnE16/skrT\ntOmJENvU6XRcTsNgiZfYLBt8Oh7QdhyCssCxLe6O+vzO5nW+1b6G2df4MDzlf7rxCpMkIjQKnLrB\nw8mIr3fW+HbTJC0K6sbjimy36/HxqMc1r8Fvda88c9/v+CO+1blBLsSFIQKAfuzTUT1eW9ng3rSH\nqqtsOk38LKbtuUz8iCCLWTFdumYNL7EqREUJfi9iKM1ZsWvUXZtJEPLI73GSTelaNa45bW46K6xb\njaVxdy03+Wn/Plv1FitGDVezCHKLYTrH1XVumiu8zhVyUdAUNq5qUZTic4FdV8rLDwtRETPNfNbM\n6tcU5hG3apsE+ZztcA9Htlk1V3ij8QqlgN1oF72xtUy6ANrlq0zTMU2jzWG4x2q7RSwi3jbfIipC\nknhEJJ9y1b71wtvaKi1k5GcmNH42ZJ73WbdefeH1no+yFKRCxlhYDuUiZp6d0DBeBqBTvo0kyYR5\nD03W0D4nGyzJTynJMdWLiVWY/AJT/9ZXlsv1tOvzVyG+UMLlui5B8LgtIYRYJk5PvhYEAZ7nPfM9\nz4rxOHzuMv+R4uhhj/ZGc4mGCJPnt3eeFrPRHMPSL/k2drseJ8cTmmsNjo8ny2T1cLtPZ71xqaoV\nRymHOwNu3F5bMsSCecz+boV/UA2VJC1QDQ1/nnB8OCY9Vx3b3e0z6s/Zutbh6GBEcr9HURRcudal\nBPp9H1VTsR2D//u/vs9//h9fxzA0hCjZ2xvS6risrzX43/7Xd3ntjU1M2+DOnUOuXevy9z/4BF1X\n+OY3b1KvO5yezlAVhY8/OaTbucgcisKEnZ0hk2mMKApsXafu2fQHM+Io4Z//5SHra3UUWaYsS8I4\nw3NM5lGCBAyHVeuzN6xsh9qNCl5apILBYE6RFwwHwSUMxJMRpzlZnvPpox63Ni8+Ec+jSm9lyioa\nMv3+Ra1TXlRUetVUGQzn+GGMZxscDGa8stllNApZdz1mk6oF1jJN8rhgGlf/9/2Yn/f3qTsmc+LP\n3MbQT575Hc5vjx8nNJ1nt82jLEOIkjzMKZKCmq4v9+dZHE5ndBwbQ1XRMokszbk/HiBLsDMa0zRN\n0iClZdv0+z5JnvPx4TE7mkYpQcM0uedX8FNdUdAzmXv7lY5nRbUJpjE5JbfsBrNxRLyg0t9stpiH\nEX4Uc5ynqLF0wfQ6OLefsqKgH4XMspifBnO+vX6FwSDgWMyoCY03nFX6fZ+TcI4cPpYBnIymvFRr\n8/HwmJe8Nt9c32IyDPhg3CMrCh7NRxxYY6ZpTE03CcYJ01nEz2Z7XPeaxEVOKCVIEnwyOeWNxipT\nP2SQqERq9aReadXKZXJzFmmaMYh87s373HLa9JMAU1Fp6lXCbyYq+yeV9vG0nDLOI17xVhmnAS1s\n9LwyUZ+GIf/Q/5TXvHVsVWc0Dbhpd5CFxGk0o6N6eOoCIRNlHIZjDFnjwaRH7dzk4avyFe6M9kmU\nnFHmV1ZbioVrWPR9n7vBPpnI+JpzlUkZ8q/+p9y2q6Sy8xQi/YuEKAVFKdNfaAeLsiAvC4Iixyua\n1JU6w9AHSZCWGSvyFqeDKSflmJraoJ/10CWdoJixbki0Wh3++eAnXDde5SF7SJJETdmgKHP6gU8i\nYrIyxlW+2Paej6Dw0aQm/fll3eOs2MeQ6i9AnJeBx+8vyiaH5R663Dy3jA2UF5YDKMucQNzBVb7+\nGeu2yMshWfGPqPIKmry1+PtNAjIge862/ftHt+tdurb+KrbhafGFNFy/+Zu/yQ9/+EMA3n//fW7f\nvr187datW+zu7jKZTEjTlHfffZe33377me/5/1N0NptPrUp93qi13GWy9eDDfYq80uoIIegdjAhm\nEePT2VJXtHmjeynZEqJE01Qc1+T0uNJqiUIQzGJMS6coLhL1syxHUmT2d/rsPqrK5VlSkGcFUZiw\ndbXN4NTnX995RKNlEQYJwby6oZ0cT7l2vbusesiyRHelhmXp+POY3/rGTYpcMB4FeJ5JmuZ87Wvr\nqKrMhx8fcOfOEYOhT7/vM/Mj/uVnj3i4fcoHHx0wHM25ca1L3aumt155aZ1Ox8N1DLqdWmV9ZOv8\n9OfbTGYReSFYX6mjawpxXFHjhSjJsoJ5ENNturgLYbuhq/QGM66sNZ+bbAGYukqWC1RZIS/EUutV\nCMF79w4oqaj1QpQEcUJvXF0Ytk9GDGcB8yhlvV3DswxsU8c1Ddaa1cTo61dXKYRg5IfsnI74h48e\n0pv4zOOE3sTHjxIajoUQgii9fCFM84KhH3I6m1967WlxJtZ+XuiKshTBu4bOo8GI7Ant2Ga9xsls\nziSKsTSNQRBSliWGorDmuIRZTmsxfSjKEkNV+c2NddqOjaEoRHnOzVZrWcVpmCaaIvPRaY/d6YS/\nffSQNC+YxjE/Pzni3mjA0eImVjdMbjSafL2zeiHZ8tOEv999SFLkpEXBNI2ZpjG3ai1eb62gywpd\ny2bD8XijXWmGJEli1b5o73U22WfJCj862aUfVSiDrzdXuV3v8F82bmEoKgfhFE2W6UVzBlGAp2r8\nn/t3GKch/SRYMsPu+0OuOA2cc2DTaRYzTC8/fDb1Cnx83W4xSiOamkVde5wgX7Ga1DSTuMywNZ1E\nVJOJZ6FKMppU4UlecVaZZCE11eKt+hV24zFH8YRH4Sn35sdoskJQxCQipaZa1FRr0cZ7vD2arPB1\n9xqaLLOf9PnX6QM2jQ7GYtKwq9e5aa4RFgmGorNpdHEV66nJ1plY/iyKsmCcTS8tJ0sy+qLtGBYh\nHwd3USUVBQUJGSRwFJuwCLhh3iQuIxzJw1PrRCJEKiEXGXGZMsh63PM/IcpjHsV3EaVApdr2M5yD\nIilov6QfYiYiIjHGUdrLqcUnw5DqZOXlY16WArHAY1xe74yiDHjRW3ssdrHkz9Z4AahSG1N5G1W6\nLKovy69ewvVVji+k4bp58yY/+tGP+Iu/+At+9KMf8Sd/8if8+Mc/5v333+fNN99kc3OTP/qjP+Kv\n//qv+c53vsO3v/3tp76n1Xq+BupX3Yv9MuN0f4iiKuhfckuntVpf4iUsU0O3DQxTw/EsRqezpbE1\nwPH+kCTOsF0Tfxoxn4asbjaXAFSkaiovS3ICP6a98vjpKo4yNq60cD2TetMh8BNUTaHd9Spvwg8P\nMAyN175+lcP9IQ/unbD98JRrN7sUeWUR0l2pc/fOIUKUXLnaYTSYM51G7GwPGA5m1cVbknj11XUM\nQ2N1tU6W5gzHIa5tkqQZN2+sUKtZuI7J+noddyGQn85C5kHK8em0Er03XUxDw9BVbEunLCVWuzXK\nsiTPBWVZomsKzbrNPIz56NNjXr+9jq6pxEnG6XCOJIFt6i+UbJ2FZWg0PIuT0Yz+JCSMU9KsoFmz\nmAUJNcdkGsR8+PCIKM1Yb9dpuhbuIsk60yCcmVHv9yc03IrS/s7dXfwwoVN3uLHSQpFkciGoWSam\nrpJkOR/tn9KtVdY0UZovMRHDeUghCjRFwdKfn/QrsvxCkFSAnj9nxavaFa5hPBVNEecZD4fVKPtW\nvUbdMjFVlVKS+K2tjcojb1GlMNXH8NZ/OTzkG5ublyyJTuZzTE1Fl2Wu1GrkpaBumjQME0fTea27\ncgmB0QvmZKLAUjXSouDBdMSa7TJNYj4e9tlwajRN+bUpZwAAIABJREFUi3dPj/DTlH/u7VcIC3fh\n+1cUPJyOaJoW+/MpRSm44tZ55E+YZykdy+G1tVUG04AfneywH0x4o7lKJgSP/BGeZvDQHxKJjFfr\nK5VFkWayF0yIRE5NNRgkc7as+oWHHVvVcFWDonyMw9gLxkiSxHY4xJJ1TpMZdc1CXwjo4yIjKwse\nhQNedlaq4QvdwVEf60tUWVkyvOq6zYpRW9ogKcgcRGOO4wmBSAiKhLrmUNdssrIgEznvTO6jSyqq\npCyZXTtRj6vWCi/bm6iSwrrZIihidFnFVgxK4H3/Plet1SUD7Lz1z1kcJ/2FLuzxuZqWGQoK/WyI\nqzxOfEfZuEqEZI221kKTVdIyxS9mCASBCJBLlUTEOLJDXEbERUxcxliyRVDOaaltutoaV5qblIlG\nU2tRUKBKKvrCm3GQHWPIFvqCwxUKH5nHU4kvHiUgPVX0fhZSKaNIOsoT2IesnJOUY3T5chWlJEOS\nNLSnvPa0UKUG8HTI84VtkSRKUtLyU1SpGqYRZUAm7iFL3lcKhPpV1nBJZfkZM+JfkfhVlwY/bwgh\nkGWZOEgwn9jpWZqjqPILs7dGvSmNjvdcu6DHn10yPp7Q3mxeem06muPWbT786SNuvLpOFCSsbjUp\nSy5obfK8YNibsXpuHaOBT54VrKxffAoNwwRFlhkNfGqNCpL63rvb/M7/8Br1pkMYxMRxTs0zOTmZ\n0u54eDWTOM44Phzz8iuV9+TPf77NoD/j5s1VNrdafPThHl9/8xqffHKA65rcuNHlJ+884PrVDodH\nY954Ywvb0knTnPk8xvMsjk+nbKw1mE5CkjRnc6O51MYVQnB4NKHbrgT5SZJRlvCDdz7lt9+8xnAa\nsrnWqMCihsZoEhAlWQVGhaV4/nxESUZv6HN947MfGnaOR9zd7fGt168xmkfcWGsxCxNMvbLYSbO8\n8rJ84vielcTFAkJ6PkZ+yP2jAasNl812naIsSdMM1zIvLRsmKZ8cnvKNm1Ub4Mef7vD2jY0ltf0s\nDkZT1hveU+n0lWff88XzaV58Jv8LYBLF7I4nFKJAliVutFqMFnBTS9MueCKefeZHvR4vtdv8t0eP\n+J/PVcQfjcesOg6nYUDdMLgzGOCnCZuex7rrYaraUgA/T1PmWcokjtAVFUfXaJs206QS3buaznu9\nIwxVxdF0NFmhphu4uk5aFPzs5IA3u2vszadsOTVsTWPXn7BiOfhZiq1qZKIgzDOiPOdrzS6Kp/Dw\naIi74Ib9t+NH/Oe1G5iKxmE4xVBUgqxyG7jtddgPp6xaDnXNRJUVHs2HpEXBuuVR1y+2c394us2r\nXoemYbMfTmjpFo5qoMkK0YKrpckV0uE0meMoOraqUwhBgUBBpkDwk9FD/rvGdVr6xWodwIezA65Y\nLf6m9wGDdMZbjatYks40D3m7fh1NVjiKx9wwOxwnE/wi5jWvOsdSkePnESfpmLIsedO7jqDkMB6w\nZXYXWBLBg+CAm/YGSZkRFgndp1S4UpE9NRkry5KkTJcG1QBhEWHIOsdpj5baRJEUIhESFykSJTIy\nURlRUHAc73PduklDbZKJbKnlysuMn/r/wO9u/S4PTneQqbwYj9Jt3nZ/t9qmIiYrUxy1SsCH+TGp\niFjXb37muf9FIxZTijJFk0zickxNufpLra8sBVk5QZWcJbxUiJy43EaTO2jS5fvG86IoJ4CM8hx+\n179nfJVbir8Gn34Jkac5cZigGRp3f/qANErxxwH1J3RGilJNtQgh8MfBJf3VkxGHKaatI72gn50k\nSVy7tXJpn0VhQugnOK5Jd6OBYWlkaY7tmpzsj8izgv2HfRpth8HJDChxaxbjgY8sy3g1C8d7LI7c\n3+6jGxq2bXB6PKXWsHA9C8e1MG2dKExxXZM8FygyHB9NeOVrG+w96uPPIlbX6niehSTB/v6Q6TTi\njTeusLHZIs8LBv05hSh57bVN2m2P7Z0+b339Ks2mw9ZWi37f57Tvk8QZk1lEvWax2q28Ev+vv/0A\nWZW5uvV4qmcw9Dkd+Ni2zsd3j4jTnNVujU7TwTQ1bEvHtQ00VWEwntOo2dQ9C8vUlubUT4amKtSc\nx55kZVly1K8sWvRFNazmmBi6SsOzGU8jBrOA9bbHbm9Mkmd4lnkp2SrLEtPUmM8TPtnr0ak5FxIp\nQ1PZbNcJ04xZFNObBqSZQNeqaccnt7HpWMvK0NVO4zONq83P8Fj85OiUjuc88+kXeGqydj4kqeKG\nbTbq+EnKes1jGISc+HO6bjWhl56BSE/7tG2LNc9DlWU2PO8SVf693jGDMOR2u4MoS15pd/jh3i63\nWy1OgoCGaSJLEidzn14wpyhLNEUmyXOCLONoPuP93hF7/oy2bXO91uQomLHueghKhlHEtj/mZr2F\nIstossyOP2Waxlxx63i6QU03KiDqgjAvSRKuqtGtuzwYDAmylKTIiYucVxsrjJKQVctly2kQFRl1\nzVzaEXmagbWwH2rqNoaiYqraUlCei4I7s1Pebm7gaAb3531ue11M5fEykyyiBAxFJReCkpKW7iAB\nB/GYR8GQruniqSY3zDbjPKR2rv2YFBn91OeWs4KpaDR1m1EyX0wgqlyzOzQ0G1VWGKQ+vWzKFatN\nXgpausvd4IDt8IRR5qNJKrIEh8mAEmjp3rKtKEkSsyJknPt09UaFiHjaObVodT4ZBQXjfIooBbpU\nEeC1BQhVl3QOkkNEKRatPxVd1piKKQYGDbWBLi38JGWbO/GH2LLDdnIPCZl1bZP1xipjf0ZORkdb\nY12/RiJiBAJVVonLAHPRBrRlD0/5/InKi8Q036amXEWVDXTpxSaLoWJvheIYTfKAkrTso0oOodhB\nlClIAnWBs/CLDxYMrrVnrxQoSp+yjJCQkZagWfMrR57/Kle4fp1wfQmRRClxkGC5Jp3NFrql09lo\nPvUHUpYlD97bRdVVnGcQywEsx3ihZEsUggcfHdBerT/1ZBscT2mt1FA1BVmRicOE0I/x6jZe3cay\nDXYfnqKoMmVZQU3zvCCJqtbjkxU2r24vhh4UHM9AN6rW12wWUltM5wVBQpEL1jaadBdtyWbLQZJl\nhn2fvd0+cVKwsdFkbb3BycmUKEz44P19Xrq9RqfjMZ1GpGmOYWhYls79+z0+fXDC6kqNq1faNBoO\nK93a0ptRWrQir24+TraSNCfPChRZxnMtSlGwulLH0FUsU2cepmiawmAU4LkmSZpjGOqFqk4FL+VS\ncvTk8Z3MQ3RNxVxsz9FghmPqeLZBu+5Qd0x2exNe2uxwf79Pq2ajKjJJli+tgybziFEQMZqEOJax\ntAE6iw+2j/l4r8e1lSZrTY+2ZzPwA0xDe2qb8CzBKsuSSRgzDeNKI3Vunc8ytD6j0H+eeNAfYuna\nheROleVK3zUcVVosVaHt2OxPpjRtC0vT+PCkx7Hv89b62oX9f+L7SFRJnSxJ+EnCveGIt1bXqBkG\nSVGwM51gLZKUQRTRsix0pTKOfqnZRpMrntb+bIqja8sK12+srLMzm1AgyAuBrek0TWvB8IJNt8Zx\n4LPueGy5NVYs90Lyt+NPOAimS19GW9VJlIKBX5lGb9g1gjzlutskKQre6R9wzW2QFgXzPGXFrJLZ\nROQXNFt+nqAs/BSh0il1DQdFrh7aukbVvt0LqxatqWg4qr7kcamyvDSinmQhYZ5y1W5iyBqxyJBl\nmeaiurUbDnFVE0WSGWUBohRYik5UpOxHI0KR8HXvCo5q4KoV1b2jeegLEvqaWVWIGqqDIenYqsFt\ndxNXtVg1GjQ1D1VSlsf0XnDATWsDWzHppWMkoCjFU9uKT4uP5vdwFIewCDFlA/Xc+1RZpa21GOVj\nbMXCVmz62YCrxlW2k0dokr6g2Ht4Wo01fRNDNgmKKik/yQ6wDYP703uokoon13mU3KWfHdFU2xiy\ntUy2zkdZCpIyeC4CIhIz8jJBe0qSMsn3UNCWLUTrHIX+8/0GS4JiB11uUIqCDB9NrqHLTRTJoiRD\nkarvYMhrqPKLefkW5QyBv0BJfLmymC8zfp1w/RLxq95xLxKari5hppIkoT7DEkWSJJqrddwFVDOY\nhvQPhtRazx/XHfdnyLKE+oSeSJIl2gsD7KedbJZjMDqdMR0F1Bo2mq5ewEAArF9p4daqqtPO/R6O\nZ1WU+CcqPPc+OaTd9bj/0SFRlDGbRuw9OsVyDOIoJZjHBEFCu+PRaDkVGyvNqxumqmDZOkmScnQ0\n5etvXWV3d8D9eydsbTX59N4xK6sN2m0HVVUYjgL29gboukp/4LO52WR3b4AoBI3m0wnt/b5PlhVY\npsbdByfUPYssKxhOw6q1eDLl5RuVBqEsS0aTkOEkZHO1gaLIWKa2gB1WF7hCCPaPx3iOuTS0/qzj\n6tkmUZxhmdUU5r39U9ba3rLypMgyzgL3oCkKn+z2WG16nE4C6gsdmmVoXN1ooUoyrqVz77Cy8jmD\npa41PQytotVrSuUTmRcCVala1aN5hK1f9vUsgUkQ0fYcDE19oTYhwN5wgq4qn1kZe1pEWUYuyqfq\nvyRJIs5z9idTPMPgeqvJj7Z3CdOEG60mddO8xPDqBwH9sPIlVGSJtBDoqkJJ5ZvopwnrrsdGrcbh\nfMb/y957PUlypVl+v+vXtQqZkbIUgOpGN7q3e6Y5O5wll0sj+cJX/gn85/i+ZuRybbnG4azN9kyr\naTRk6aqsVJGhlWv3ywePjMxEZRUKohcYEscMZgAiw8Pjhovj33e+c95rtcnWOq3QquOZXMPYBFbb\nuo5jmPxqex/XMNj3Q+K8YJjGbDvuOrdS8GQ+pm27NEx7Q3yezyc0rdrO4E+jU0LD5m7YpG25TNKE\nf3/0kPd72zSFjaCuNt32W0hNw9dNWpbDOI04i5f4urnelqJlORyupqRlwbLMsDSdwLBeWbtrv6lS\nzIuEnnUzKX68GHCazpFoPFqeE+o2bcNlWabIdesRatG/L+tomqwqSKqC0HDwdZs7bpfn8ZBxtqJl\n1rrAZZkwLSJCw2VVpvh6fex+OH/OMJ/zjrfDYTzgJB3SMgIexUcoJTZTjk3DX3++TkP3KFSJhoa8\n4mv1JnjSxZMOh+kJUkgKchzN5iQ9w9B0Pl8+RAl4Ej/l09Un3LZuc5i+YM/aI1MZUug40sXQDPIq\no5+dcmDdJTQaaAi6QZtOuU9UrciqlAPzHlLqtPTrJi6lqq9rQgjO8icIBPbaduEse4IvX5UbCMS1\nQOtp8RJ7TXhM4aNfaZN+HR+8+n0ajtyhUAuW1UN04WOsJx01oW/I1leFFB5SNL/XZAt+IFzfCN/1\nwt2Ex394Snv35jJyVVUsxkss9/Vl1uX0sp1o2gZB68tbNlBXsnRTf6Nv180Hm6DIa22WJjUefXxE\ns+NzfjLFckziKMW06pvc4GxG2KorX5PRkjTOcK8447e7AWma8+xJn8UsJs8LOt2AoqjY3W/TP5vV\n/SMFnl/fdD78w3NabZ/JZMVnnx2znKf89b+6T5oWzGYRgW+yWCQkcUaeFxwcdDYRPp1uwHavsalk\nHey3aYQus3mMv96vsqw2bTfXMXHWQeLtpodpSM4Gc/rDGcPhkn/zNz+69tQY+jbN0NnYZyilePR8\nQLe1JsCqNj4NXnMCXftd45Qky/Fdi8kiwrOtTWi1UoonxyN66+2WlWK7HeBY5oZs3fQbCgTdK8HX\nR8MpndDDNvRN0LRrmRwOpjQ8myTLN2HX144AIQgca1Mlels4po6lv74CdhNC236t2H4axQS2xW4Q\noEtJpRSPRqNa/9Tr3WiYGto2J/M573bqyqUpJfthSFaW5GXJMs8QAkLLwjdMkrLk2XTCrh/w7548\nZMcLsHSdw/mc/SBky/X4eHC+yV38aNjH1nV2PB+pSaQmiIqcA69BVOaU6zzHq2v56WSArmmMkoij\n5ZySCtcw+EV7B8PW+afTY+74TYZpxCrPCM26/ezoBg3TJi4L7oe1bcjLaEbbcvH0OqT6OJ7z68Fz\ndp1w02YEiIp6IuyizaaUolQKVzc5jCYE+mWL+zSegYIdJ2RZpLRMh366QBMaxtoZPjQcPp4fU6iK\njuVTqopAt7GlQVzmmJrOH2eHnKZTumZAw3D4aPaCW04HXUj+MHvCHad7KWpXilt2l0mxwpEW58mE\nuMq4bfVIVUa4bh2uypjqSkXL1AyWZcSqTPDkl/s6mZpRTx5qDlJoHKdn9MwuAniWvGCYj2joIcty\nwS/9X6KEop+dc9+pvakqVWBoBmmVsKqW9PNjClWwKhekKsZzXE4Xp/TMXWblmIbRJryhbbgox1Si\nwhAWjubjystKkaOFNwrp69ify4cXgYa+rnYJobEsT28Uw38dFGqJLfewXjFN/f82fiBc3wDf9cLd\nhMZW+Frh+8mTPvPhgvbOzR4tSinGZzOC1uVN9G1vZqZlvEK2qrJicDrFCx0mgwWdreCVNRNCYDsm\nmoBomTI+X2CYkrDpIqUgSwuG5zNePD7n7v0dzk+m2I7FZLQkaLjYX9CavXg6wA8dfvTBPp1uSLPl\n0Vh/nyB00DRBGLo8e3hGnOS89+MdlILDZ0OC0OFH7+8ipYauS2zbYDxeMZ8n7O610A1Jtxvguiaj\n8Qqpge/bm/WWUsM0deIkx1uT2qfPBzQa9RSfWP9z8b2rSnE+nJOlOe/d2yYMHKpKsYxq36P+Wqd2\nNpjhuRbLKEWTgrwoMQ2d8Tyi0/BYrBImswj/DcTrP/zDAw56TTzHqluzjrmpwgkhNmamAJ88O6Pp\nO9difi5wccGYRymdLxioDmYrTENSlhXDeUS4zm3MygIpNBR1O+mm6t/JZM48Tmqd2VuaCV+0sL4t\nmLrElPLa+dN0HM6XEbomOJ7P8UzzWkVNE4K2W9tDWLrOp4Nz2utK1IW4/XixQAiYJDFPZmN+0dvh\n2WxKy64nFi1dZ5LEfDo8516zxbPZmN+fHXMer0iLgtCyQQiaVj05+dl4wLP5hJ+2e0RFXle91oRJ\nCkHDtNn3QlqWw/FqRtN00IXgs+mA2+0mRVrRdepz4ulizIHXYJLGDJIVLcvB0w0KpVgVtfDelrUG\nSWoacZExTFa4hokrayH/WTznd5Mjepa/CbR+sDxn2wo2IeESwYPlOYsixdF0SgVbtr+pZpVK4ekW\ncZWTqrqK1bNCumuy9dnilJ4VEpc5f5g9p2P63PO22Lda/Njf5ZPlEUmZ1XFSVkiouwSGs472ifF0\nm0+WL1kUMaaQJFXJll0HXm+blwapuaqPVf0K8XCk9VZk6/KY0DA1g6RK2LG211OSJoEMGOZD3rHv\n4q6rWIUqMDWTQuVYwsCTPud5H0uzaegtmnqHQhWUoiBXOcKosHIfV/PxtABDmOQqJVPpNTsIW3M3\nrcGrJCquFpQUN7YNvwj9C39Tv++rx8VBncGoKNGETqGWGKJ5bQoyqc6QuN/q+fx9xA+E6xvgu164\nm/CmKcOw7b9CtpRSVGU9vSiE2JCtLM158dkJre2366HfCAFVUVEWJc8+Pead9/duXLOyqDg9HOM3\nHO7e3+b54z7SkLS3QmzXxDB1wmZ9c8+yOsR6706b4As3/CwtePjJEY2Wx1avwWSyYjaNCC9alAL6\nJxN0U2cyXtJoujSaHlITbO82MQ0doQmUqkO4j4/GNJsu7763zYPPTglDh0ajjsQ5P5+hlCCOsw3R\nuoB3pYLYbtWtjtP+bC04r72/dF3yycMT3rmzhaHr2LbB85ej2p05rzgfLXjxcoRtGTR8h0rVOp5e\nO8Cxa1f0i/aksSaHbxKH39vvEK6rVVdd3ldxttFilWXFPEq4t9u5kWzB5QXj//z9Azqhe80Zvh24\n2KaBaegbsiWEwNB1sqLWgpmGvLafcZZjSElRVQwXK5qe89aE69vGBTn47HzAll9Xdj3TZMf3sHWd\nQim2vMuHEaUUx/M5yzxH1zRMWQup/93jR/xqdw/BZWj1vh/waDxmy/WYZRk/7W7R83xGSYyuaZwt\nl7zX6lAqRdNy2PF8JknCvz64S9f1yKuqjvkpCt5ptFgVOYFh1saaleLFYkZ3TfQENbna90LuBC18\nw+TBbMSOE3CczHkxnfJu2GaURLzf3OLRYsS+G9K0nPU6SA5XU0ytrh6eRQuysuAwmvJe2OV+uIVC\n8Xw1ZccJWJUZrjTp2f6mctK1/M165lWFLQ22LB9fNwkNhxfxiKKqatKlaZiaxJMmXcvH0nRsWVeC\ns6ogKlNWZcY0j9ixQgwhWRUpqyrlaTygqbtoSALTZlws2bNahFfI1t+NP+G+t4utmbyI+ti6yS/D\ne2Sq4DgZ0jFDDFF/V1MzOEtHhPqrE5JfhnE+pVAlcRVTUtHQw2vELa4iemaPQPcxZa3XSqsMW7Pp\nmdusyhWP48/Zt24R6g1mxYQn8QPu2vWU4Wn6ghUTkjynUBnLao6p2Qg05uUEhdpYQlyFUhWj4riO\n91GgITe+XV8FN5GtSpXEaoyxbgUuy5coFPoXXN6X5XMUJYYWEFdn6MJnWT3GFG2EEJQqRlEC1Sb6\n500o1RSB3Ajk/7ngB8L1DfBdL9xXRTSPGZ1M8K9UsKK1CemFbusCUpffjGxR32wtx8SwDHZud157\nsJ2fTOnuhAQND01qeIGN49objVZZVJRFhR84hE2P9laAYeqMBwtWy2TTVtR1ye13eqiqFhU7jsnf\n/8dPuPPONlGUMp9GTCcrDFOiScGt2x3iJKN/NiNJC+IopX82o382Q9M1dEPSbvsYhk6r7RGENotF\ngqZpHB+PyYsKqddRMTe1Ug9fjqiU4uXLMYdHY24ftJlMI5IkJ/Bt4jinLCv2dpp1u9Ey8Dyb0Lfp\nND28dRvu9x+9oNcJ2WpflvM1ITZTirWu5/Vkazyr7Sjyoty0IS+wiGoCeEHUV0n2xnidi9/w/l4X\n37FYJVmtWVKKPz47IXTsWr8TJQwXKwK7nrB0TAPb0K/tZ6UUh8Mpbd/FMQ22Qp95nDCLUwL7u5ku\nivOCCoWuaXzaP2eZ5mwHPqau07Rt5kmCudanPRyNkJrGnWZzI1Z3DIO7jWbdJpxN+c3xMbt+wDhN\n2AsCftTp0vM8PhkOaDsOTdveZDQ2LJvfnB7TcVzuNurBloZlk1Ylg3iFrmkIVQc5b7v+pQhdSkCh\nCw1dk2RViSt1DCmZZymuYbLvhQzTiF8dHCALQWBY9d/pBpbUebma0VrbPAzSFc9XE+75LXSh8ens\nHEvq3As6aAj+aXKMpen8KKx1Q9MsoWU6CASKy7biLI+plGJWJNiajq7VhPQ4nuJKg/NsRdf0OIzG\na12WxTxPyFWJsxbVD9MFCsEdt/5sQ9OJq4xRsSIpMz4I9jlKRvSzGT2zwfveHqUqSaqco2TElhly\nx9liWSY8XtXZjb9o3EMKjcN4wK7Vpmn4PI6O6ZhrLRHimr/WmxCVMVGV1AJ5oTPIJ5wkfXpmm/N8\nRKj75FVdNcurgv97+neUVUFHbxOpiExlpFXKaXrMsloRyAYNo8E4H1NSsG3u4UiXXGVIDEoj5b7+\nS0zNomNsU6icUpWEson5muzBi1xDQzORQv9aZOv1UJRkpNUIRYUrt18hWwBS2BgiZFE+wpV7aJjk\naom1dpzXhYciQyDQ3kKHVakZQliIb/W7/PnxA+H6BviuF+6rYnA0xmu41zRcpm1syFaWZMTL5Fs3\nPwUo8gIpBHlx6Q6eZwWrRYztmESrFKnXwdu2YzI8m2E7Boq6XWnZBvEq5Xd//xDHtXB9C8ezrmm4\nACajBYP+nMOn55iWzu5Bh6DhYDsm82lEsxOw1QtJk5yyUMznMVla0Gi6OI7JVq/B7l6LRw/PCEOH\nMHR4eTgiCB0cx8T3bYSAp08HPHnU5y/+4jbuDZq46SwiijLC0GG5StnfaxF4Nk+eD6hU3Uo8O5+B\ngPkiwdDrSamirDg6ndBp+XXIdMOl2/Hpti7Fx48PB3iOdWNr7iaYhsS2DPKyQpd1dStKMl72p+xv\nNVjGGXGW4ztfnmV4ccHQNME8SjgezeiGHpVSZHmFodetwzQvsA0dx3pVJH8BIQRt/3qV0jEN/Bt0\nXn9OFGXF2XJJYFmcL5cUZYWp11OFqzxjFie03Xo/T+dLAstkFMccNBr0lyssvW4nXnyni38fRBGB\nZVKUFaFpca95OR3c87xrejVDk/RXSx6MR+z5PoNoxSRN2PHqvMa4KFhkKUoIjpcLQsvClJLT1ZIn\nsxH7fogpdRSKP43OKKsKU+pMsoTmOgsxNCyagUuVVPx+eMyW4+PoBkerGYu8DhCOqxxXmrwTtDE0\nyYvVlD0n5DxdMS9SerbPnhPSMC/Pu9CotVXzPCGtCtz1RGNW1RO4bdMlrQoWRYIrTRxpEBoOe06D\nj2YnzLOYW26LF9GYhuFgaJKkyilVxSyPiauMtukxSBdYmkHb9OiZIYsyYZbHdM2Q9/09QsMhqwrO\nshmutOiaYd0e1CRxmWFrJl0zZFIsaRoeSZUjRD2FuG91GOYzPGm/Ndm6gCa02j1eaJjC4OPoc+7Z\nd7A1i4qKJ9EzjtITTGFylpzyMHmIUpComKbexNUcFuUSA51pNcbUTELZwJU+83KCL8N1dWyXyox5\nMnuMb4Q4mouqKqTQMTQTITSSKiJX2bX2YqkKJuUp/p/BIkJRklQjfHkLXXt9u1ETBkJodWtR5cTV\nMabWRF9XxpRSSGFvyJZSBeqGYOrL7dV607T6GF3bvr5PSn1vW5PfZ8L1z4u6/jOAJgXccBxeGKJW\nlaIsvzwu5W0xOJ7Q2a2d5vO0IFomcEX/ohRUpeLscFiPk18xL7Vdg/GgNjXt7jSwHZOnD07XlaTX\n++EmcU67U1ejbLd2Yb9ol3Z7Dc77M3LP4sGnx/zlX73D7l6LZ4/7lIWiUBVFURE2XMqi5OysLtMH\noc10uuLjj47Y32+xf9Bmayvkgw8OWCxSGleE40VRkmUlValI1lqu++9ub16zTB0NQRRnWLZBXpaY\n6IynK6SULFfJxjm+Nh8VtBvXq4/v3b4pVvr4hoKUAAAgAElEQVQ64rSemjMNnePBjG7TI/RsVnHG\nZDTH0CXvrC0q2q8Js/4yVJVCcFkVu7t9eUEPnK9XofouLpSaJvBMgyjL2AkuTVYbdm37sN24rPTq\nUrDMcrKyRBOC97e6PBmPCazL75uXJVlZEmc577ba/Ienj5mlMf1oyX9z6861z1ZK8XIxZ8fzOZrP\n2fMDGpbDfzp+QNdxKcuKF4sZO55f68Skzu2gQbImYIeLGYFp4K+nBpVS3G90aJg2n00GvBO2mGYJ\nGjDPU6qVxjxPuB92mWcpcZGzyDPu+PU0Y6kqPp8OeC/sYEmdPad2d9c0gaObnMZzdp26EhQVGY40\nqKj1Xh3L48HiHFcauLpJaFySskwVoGCUrjhL57wfbAOC300OObCbfDg7pmf5RGVGx/SY5wVRmaFr\nkl2zyXEyxddtpkWEq5sMswUNvdZ5rcqUl/GQQHc5SUagYIZkWSbM8iXbVgtHmkRVSscM+GjxnDtO\nj1t2l6wqOEqGBNL5yo7shSpZlhEt44ogXdr8z53/Yf16wXFyxp69i6PZZGVGz9raaA97Zg+B4FH8\nCEGFLkxMzSKUTc7zMzrGFlvGDrN8zOP0c37m/mVtECt0rHUV6bw4Zt+8jL8RaMD1a7iioqO/Gn3z\nNsiq6LXxPgAVJZlavvG8rVRBqRIMzceV9X5YqnftPcvqIZ52d+ObVag5FTmW2L5xmwBC6Fjaz77w\nWRGFeokpfvxW3+8HXOKHCte3hPlogdRl7SQv5Wbq7+jhaT2S36+z5rzQwX7DBONXRZ4V2G49+m6Y\nOlvbjWtrJnUN2zXpbDdodLxNW6uqFMOzGTv7bZodH92Q5FnBYh7zk39x+xXbiKsIQof+6azWJVm1\nc7vtGGiahtQ1wobLeX/GwZ0uRVHi+TaOYzKdrtjZbdY5jUXFhx8e8ld//V4dzaNqS4deL6CqFFJq\nnPWn5HnJzk6D07MprmNubCZWUUq77WE7JtYVbdeDx33u3OowGMzZWWvp9rZbPHxyys9/ekAzdOi2\nfdpNj7Kq+OzRKZ5rk6Q5UmrX2nGzRUy+JnBfRJLmzBZxrS0zdHzHYjhd4tkm55MFZ8M5ZanoNG/W\nqWR5QVlVTJYx7hcqXlef0GzToOHalJX6znRX3waEqEOjh6uIUqnNNOI/Hr6k4dhkVYVcV65C28Y2\ndMIrBKvtXD7ZF1XF3x2+YDfw0aXGyWJOXlUYmuRvDm7xfDbD1Y2Nbu3ZbIKuCXzTYpom/KjdxTdN\nXsynzNKY99tbfDYZ0LRskrLA0DSWecaqyDHWQvbjaE5RVXRsl2mWMM9TfMPk08k5XdtjmEZ4uoGj\nm3XVOKtoWDYN0yYwLHbcYDNxWKkKBBuy9J8HLxhlER3Lw9dNzHXcjSYER9GM43iOLXVWZU5gWJwm\ncw7cV4dy4jLH0CTa+omvUoo/zI7IygJDk/zr7rscRhP2nSZKKZKqoGW62NLA1CTjLOLz1QmLIuG2\n09m0HJ9HQ87SKb60GecL3vV2sKWJoelsmSGfLo7wNBtHN/nd9BHW2mw0qlJC3a2d4auCfjbhlv3l\nDzJXoVCM8xlZlePKV6s7mtBwpU1cpkRVzFF+Qktvc8e+zY7Zo2W0WFZLYhXTlG127F1aehsNDVfz\ncKSLFJJcZSyLGbNixM+2fk6z3OZJ8ik6BtvmAf38EE+r45Z0oaNf0UDlVcph+imOCBgWLwnkV5sK\nnJdnWMJ/baWpJENDYmqX1kGlyjdCfaUUhYqoSDaGpvDqg5Wlda+1B6Vw0LAB9cpnJ9UTBBJN2Ne2\nE5d/xBD7aIQUaoCGjSL9Idrnhn24CT8Qrm+ALMmYns9wA4doHmNYBkVeG21exPoMjsbs3usRtLwv\ndZb/OjAtA1XVuVxCiDcebBdkK0sL+scTokVCp9dA0wTLed129IJLXVdV1VWum56sWh2fo+dDhAaj\nwZKt7cY1R/QgdHBcE8+3SdOCJM42BqZZVnB0NOZnP79VT22Ol7Q7AZZlYFk6o9GKqqrY2a5vKo5j\n0lnrvKDWR7muRVlWTGcxwbrlmeclSimCwOZ8uODOQYdeN+R8MOPdu9vY1pWLZFGiKkWWlbSaLk8P\nh3Ra3jWdmFprsW5qK0ZJjmFIgrVIXtMERVHiWAZFWSE0wa1ek0Wc4ljXL0ZH51Men4yw1hE/9hcI\n3Rd/wzQviLMc1zJ5fDrEt803WoN8nxFYFi8mU1ZpxjRJ+dnONm3XpWnb2DdYQtwETQj2ggDPNAks\niwo4CBr84fSU9zs1mfLXZG0cx2RVhViTkN+fnrDj+fimxdF8zt1Gi/0g5HbQIMqz2uF9rdtaZBnb\nno9rGNwOag2Zs9ZjxUVBWpa8G7Y5TyKkEDQth/NoiW5Jpsto46NVoXgwGxIYVq1bm5wzzRMOV1N6\ntk8/XeJKnXtBG21tdvpkOcKVBlu2T9N0EEDbclnkKbduIFsAjqz3bVGkVOrS/NSTFj8Nt/F0ix27\nbgEWqiIpc6Z5TGDUpqdxmXHL6bBt1bmUQsCf5i8ZZgu6ZsAtp0PHDMiqnNBwcaRJqSosoVNQa8Js\nzWJWxBzGAxKVoSFIqpxpueR979ZXPl40oeFLF3vtE/Yoek5nHcWzKJZMihkNPeSj5adsGW32rT1a\nRpNpMWNZLWjqTXKV1yHbaMzKCafpKSf5Ictywayc0DV6nGXHaEIn1Fvshts8nT5BIjnNDjlLD0Eo\nNCSOfPUBSihBqlY0jC6B1n4tcXodHK3xxvfUWY0GmtDJqgVJNSaqznC02lakJCJTY1y5R6FWKBTa\nW+quMnWOokB+QayvizbaDToxQ9tZC/DHlOocTfgoVpv24/cB32fC9c/zqv29gSCNa2+csBtg2gZS\nSppbIZP+jGgR8+4v7nzJNm5GsSYP8TIhjV9/8MwnK2ajJU8+OeJtYzENU9Lphfz4F7dJ1tueTyKU\nYmMBkaY5Lx73mY1Xr91OWdZBuh/84taGAMRRxqcfvdyQNYDVMmG5jFks4vrzDcl4uGS1SkmznK2t\nkNUq5ZOPX6JUTZxc18K2awIWBDa6Lomi9Nrn67ok9GuR/flgzqOnfbx1RM8vf3YLw5CsopSz4RzT\n0MiLklWU1pNvpxNO+jNeHI0oS4Wmaa8Ymzp2HXydZgWD8fLaa6FvE3o2nz492/y/F2cTBtN6He/t\ndtB1yWJ1fZ+hDsP+1Y/22W4Fr3hwXaCqFElWH1uuZdIN6wv9vV4dNZMX5Wt/l+8Ko1XEOIre+Ddx\nnlOhOFsucdbrfTpfEOf1d02LAqirWK/DLEmYJgmfDQcA7PoBHdflf/2Lv+TxdHztvV3XrQOyUUR5\nzq929zZVzL/a3eeDbm2Cq2saPdenYVrYuk5gWuhaHeL8bD5hlee01hOG2to+4ixeYkqdHcejados\n8pTzZFm3s8uCRZ4yz1OOVnN+0tzaELmTaAFV7cV2uJrys+YOSsDD+YBlXp+P94PupiKWlgVRmaOU\n4jz58oy4Lcuna3m8iMbsO01+0dqnY12/Ic7zpH5A0y3kmowaUqdhOJwlcz5eHLEoEn7VuMu/at/H\n0gyeROcAnGd1tX5VpPzv57+nbQb4uoNSYGqSXzbu8V+3foyJTssI2DIbbBkN/nby4Zfu+014nhyj\n1hIHAeRVfawEuk/P6HCSnqFQrMqYUT7mOD2hUAVdY4txMSHUQxzhcJy/pK13yVXOfxX8DT/zfom9\n1kTdsd/lrvUeu+YB/eSEhuzQM/axNAtTWmhKZ5Af3bh/Qmj4skNcLphW51/rO74JQmgbkbyGgcSm\npV+283Th4a1zFiuVocjfetuWtoOh3ZwHW1TD175P13oY2h5lNULSe+vP+/87fqhwfQMoBXma44YO\nTz98QXu3xfnLEZom+N3/9Sds36Iq1caF/ujRGYalY9zQovoizg6H6HptI6CU2rQovwjbtXB8m852\n40srXBcQQhCtEs5PpiRxRtjyMCyd/smEsOmRxBmf/O453d0mnd7rQ0kbLW9Djh4/PCNPC0bDRW14\nKmC5SBgO5jz45ISw4WIYkjB0am3FdshwsODf/tvf86Mf7RGGDju7TY6Oxty/v42UAsPQCUMXKWvt\nW78/o/GFVmf/fE6z5eLYJju9BkenEwLf5k+fHDMcLjg5n1HkJasop9lwieOM6SJmuUrZ6YXYtkG3\n5dNquNeqRrUr/ZRGUFcXELySVQjQaVya1vbWInx/3eJ9+PIcJRSmoV9771WRu1KKvCivfbbnWUxm\nK0aLS5+tC2ia4A9PjxhMl+y2vz+BsVBHH1m6/sZpTkNKtjwPxzBQ1JYQula/TxOCw+kM1zD48PSM\nbc9/JZB7ntREofbmqm+Wh/MZL2czLF3n3Vab57Ppxr6hv1ryx/4plYL/5+VzftLe4uVyTl6WvJhP\neTwdcbfR4rf9Y2yp83A6oufWYvuoKBjGKxqWzZZTDy3MstrH7Pl8ypbt4psWJRV/e/KcD1o9TCn5\n8U4Pp6wrZbbUaZo2szTm/zh+yJ4bsu34/Hp0yHtBm47lcp6uaBkOt7wmUhPX8gN/PTykQlFrKgVH\nyYxhumLHvpymHWURptColGKYrvD0upL2eDUkrXK6ls8sj5kXCQ8Wfc7TObfdNram4+r18MSiSFBV\nRVoVnKZTdswGbcujn875zfQJ77nbHMZDDFFbjhii1m2mVU7T8DhJx0Rlwu/nT3jH3WFexISGR9vw\nOUlHuNLmPXf/K5nuXqBlNMhUzqKIOM5O2TI6PIifEEif/zT5B86zIV29xePkOctyxY/d97ClTVwl\neNLlLDvD0z32zX3O8mPyKkPXdAI9pGVctv9epE/Iqoy+ekmSZgyLE9rGFrvmHUxp48sGaRVfi/ZJ\nqoi0WjErBnXygb7zlXVqb4tK5VSU6yzEm6wpSjRhsCifYojmNW+w+nVFwRwpbEq1Wmci3ryvSilK\nxkjxhil6pVOos3UlrPzeONB/nytcPxCubwBNarhhfdH3Wz5Sl4RtH03T2L7VxWu4nDzp0+jUr/lN\nF/M1YchfRLAmQaPTKYap39iOPHsx5PxkTGvr8sb7NgdbGmd8+ocX3H5vmxeP+himpCwqTEvHcS10\nQ240Xq1ucGP76pMPX/DJPx3iujbNjk+7G2C7Bp1uSKPpkud1Beb0ZMI77/Y4uN0hCGw++dNLTEvH\n9SyaTRfXtUjTnGbLI03r3ETTlDx63Gc4nJOmJe12TWpMsyagF5YLs3lMGDpYps54siLLSvZ2mvUN\nwdBYxRm399vcuVUHHHdadRD0s8Mhz4/GzBYxP3+/Fph+kSRoQmz0WdpaGH8TrrZbNU1c+2/PsfAs\n48bq2QWSrGA4W238uy5+wywtCNaWENNVcm2ysRt4dBoehpQcj6avkLLvClLT3ki2LlCUFfMkIS0L\nRqsY1zJ5OZ3RcV1ajoOuaRRVtSFUF6iU4my1wjVqp/GyUvzu5GT9mRVJUVsw+OsqFbC5wd9pNHF0\nnYbl0LZtPhqe8/PuNk3L4WS1YNcNGCUxHcdBF7Xfl6vXE7w91+M8XvGbsyN80+R4uWDL8Xi+nLLt\neDxbTAlME083OYuX3O22mSzq+J5clZRVxW9Hx/xVdx/PMBlnMU3dpmt7vIxm/Ly1w2/GR7Qsl2eL\nMZoAKQS6JjGERtNwiIqcsqrwDJP7fpd5kWzyCaOiboUKBHGZoRRkqsSXJgJBoUpC3caUOqG0sNc+\nXVeJwThb8dvpMxzdYpqveBYN+SA8oGE4aAjO8znbVpPPV8fctbc4SSdYQq+vdVaDLbNBXpX82N9H\nCo3Hq1PiIsPVTXpmE0sz6GcTTE2/5pv1NpgXS6bFAk+63HNuUamSaTGna7T57eKf2DG2+JH7Lofp\nS3bM7fU5KKiocKVDS29RqYon0SOepI/4bxv/PQ29ySA/R0NDExofrn5DUsaEeotu0CRLFJUomOZD\npNDJVUpepdjSQRfGZu1ylZJUK3zZRFGxKEd4WvPPMpgSVQM0oWN9Ifswq+ZUKidW5xgiIKvm5NUC\nJUp04dWvVccYwidXE3QRkqsRQpiv9eMSQlCpnKT8CEPsX/s+SlWk1Z/QRANFitRCKjVFE9+PB8Af\nCNc3wHe9cG+DLMnpvxjQ6NZPnZrUsBwT0zLY2m8j1zfbtwmivoqqqhidzdi5XT+FHT48xV4TIgDL\nNTAt8xoZe5uDTTckOwdtDFMijdoo0187ykfLlKpSBA0Hx7Pw/Jtv5o5jcutuj+Ui2WQmSnnpSl6U\nJXleEMU5O3vNzVTg0eGYvYMWul77LB2fTJhOVpiW5OxsxnQa4bq1wD7PFa2muzFVTZK6VH5hgJpn\n5Xo78PTFkJ2tEF2XpGnOgyd9drYaLFYJtl2TOMvUQdVu57NlzHYnoBG6yPX06NlwvtFkwc0VrauY\nL5MbBfUXMHSJaehvzGA0dIlrm9cqORe/YVaUDKYrXLsOpl4lGYPZkpbvYkjJy+GUv/v0GW3fJStL\n7BsyFL+PUCjyskTTBB+e9YmynNC2aF4RxjftV487IQRN28bSdez1P55hcKvRIClLQtPid2cnOLpO\ny663NYojJmlC03LY80M+HQ3Y8X1+vrXNLEuRmuDFbMqeH9B1PNq2s/H7Ol4tOF7OmGUJFXAraNCx\nPfrREkOTTLKEbcejqiosqdO2HZqmzUrkDOYrmqbFyWpBw7Q48Jq0LIcXqymWlGw7AYN0iabqDMyf\nNbc5ieaUSjFMIhZFRs/28Q0LW+q8jKZEZc6+2+DD2SmONHD02ibB1U2kqCObDqMJ/3HwkDtOm8Cw\naJgO/zh+jm/YoBS+YREal+s8z+NaeK4ZlMD7wQ5JkdMyPbaskAfLU247HVqGyyCb40qLhuFyls64\n7XRZlQmhXletJ/lyM9vctUI+Xb4kLXN2rTafR0dsm3V49lc9Rg2hk1cFtmZSUGIInbhK6JgtDqxd\nENDQAzzp8yx5TlKmdYuxWjHJpyyrJcfZMctqzrv2fRzd4VnyhG1jB1e6jIsB03xCU2+zax6QGku2\nOCApY6blFF3TsTUHXzZAqHUskbXet3rqMVcZtuZhSx9D+/NUekzNR15xpk+rKXF5TlydIDUbV9th\nWT6nUEui6gW2tkVFhi48NGEghY0uQtLqDBAY2pstLHJ1iqYC9C8QyDp1oQeiAiJ0rfe9IVvwA+H6\nRviuF+5tIHW5IVtVVTEfLbAck6d/OqTIS+bjFV7D+coXGiEEXuhsCJtpGRsxPoCU8pXK19sebNPh\nguPDEbsHdWj1BVnK0gIpNSzbYHA220T2XMVFdmEcpcRxhmEaRMuUPC8wLZ35LGJ0vqDR8tjfbwOq\n/n+jFX5g0+7UepJnT89pNT1+8sEBDx/0uXevh20btNsepmkghCJOao3Xcpmg6xqua1EUJZqmYVk6\n+npqUWoazbVTvqLWd1mmTrPhIoD//Nun7PYagOJ8PMexTG7ttbGukJSyVNeE9W9CVSlGX6hMfR1E\naUZ/vKDhOxRlxeFgyn6vnjTVpUbTd3DWjvS6puGsszTLqiJKc3aaAd3QJStKpquEsqo2f/99RKUU\nz8YTKhSuYdJ2HZqOTcfzvlJA9gX+/ZPH3Gs1eTye4JkmW25NPqUQpGWJJXXSsuSz0ZCoyDhazmiY\nNi3bJq8qQtPmt/1aI2RLySCOaNkO0zRBAHcbLQLToud4eEbdfvMMk9CyeDobcxot2PFCFkVGpcCU\nOrc6TWQuMKXOSTxnkWc0zZrI6UIwz1Im6Yp+vOKdoCZGn8z6/KTRo2HY9ByPru0hhcayyMjKglte\nk20nQEfw4fSUv2wfXGs9KqUYpxGfL8/5X/Z/gWdYzPKEfjonVwVPVkMyVbIsUyrqiB+ARZFiaJJp\nETPKl2xbIWfZjH+aveCu22XHbmJoOqamMy9jpJAsi5hZHtE0PDJV0M+mPFqdoqra62zbavIiOueW\n3eUdd4eSih2rhaF9tUzOzXdDkaiUUT4lVwWe7hJIDykkjrRp6Q0UiriK+cPyQ3bNHhk5ZVXQz/sY\nQqdttNk3D5iXM3KVs6X3MISJrum40ierUlKVUlLyTusun4w/JtBCPN1n17yNJjTGRZ+eeWtDti6g\nCcm06DMuT8mrCE+2/ywPPl/0vtKFjaU1cLRtFCU5c0wRYIoGhmjVAdbM0UWwifhZlY/RRQNzLbh/\nE3TRvka2CjUir85QZEgtQAgDKZok5R+RYusrDwv8ufAD4foG+K4X7quiKitWsxjHt/n47x/w7i/u\ncPTwhO5uC+1rTJbJK9WR46fnNDr+G0/mtz3YHM/CcU3MddBz/2RCtExpbwWbCtpNZAsgjlJWi4RB\nf4HfdBAopBQkSYHrWnz+6cnG+sEPbB4/7PPrv3/Izm6TO3cvT3TXNTd2EHt7LTzPZD6PsW2DKEqR\nUnLvXu0lk2UFUgp0XfL46Tmd9qUIWNclhqmTJjmmqaMqxWSyYhVn/OMfnjGZrvjlBwfESUZelHiO\nxd5OE+eK+eeDp30C375GuJI0RyleaalOFzEKtQmm/iYwdEnDX4uxNYGpS5oN98bfUKzbnJ8dnTOY\nLdGE4J2dDqau49kmgWPhvCY0+vuCtCgZJzF/Ou1zOJ3xL28foKjbjPa6ojhP042x6QXytSfXF4/9\nbc/DNgyyqgSh+IfjI04W87rSImCZZ+x4AfdbbQ6CBj9pb9G0HZRSfDYasO8H/Hxrh30/ZJzEdB0P\nc20nYes6ltQxtCthw0JgSb2eANQNpCa5EzTp2LW/lkCwUBlPx2O6tsuOExCaNrasycYki7F1nV8P\nXhKYJlITPF9O+VHQ2Wz3wi0e6ozMCoWhSeIyJ1Mlt5zGJk9xs65VwTiPeD/Y5jxdEBo2nm4S6Daa\nECgEUZnxF81bONLctFpd3UTXJL5u0TMD/mn6Aokkqwru2J1N/E9cZPzD5Al/2biDrzucZ3McaVBW\nJbftLR6sjrnr9PjbyUekZY5E8Hezj7nv7HGUjuiaX68CUqmKZ8kR+9YOLSMk0L06c/JKW3JcTMlV\nfa5uGR1MaXLXuk3HbONKF196tGWLhVpSVAUVJfv2AaNiQFzFnGQvsTQDU7N5mT6l528zXA54FH/M\nbeddPBkgkASy8VoHeQ2NeTGgpe9j3zDJ+E1RqpxZ+RTnhiDq2uXeQAoLQ/OJqiMcuYvUTAwRXG8H\nkhOXpxha8FbxPtc+BwcNDyHUtQlGKdo/2ELcsA834QfC9S1D02pdlxCCZjfADR127mx9LbJ1gdU8\nxrQMmt3gS5+c3krDleRUZYXtWuRZyfNHZygFe3fezj/GNHVc36a7HXJ8OCJsevVnKlX7ca0J0p17\nW8RRRllU/OpfvkOW5AThZTvjvD/n2dM+SZyTlyVFXmGaOmHocHg4ZmcnZDJZ4fs2pqlvtFtXydYF\n8nWsjr3WTF1oyFZJyru3txjPIjptn+FkyW8/fM6dgy7Guq25XKWXGq/1+uZFydlwzjJKsS3jmjVE\nccVN/tvGi/MJ3ZZPlhY3vr6MU/baIU3Poek511qRaV6Q5uX31q9rlWVoQrATBPykt0XDspinCR3X\n3fhyAZwsFjTt6/4/x4vFJkvxKixd549np2RFQdfx+Ou9A37cqY0vtz2fnudvhPzLLOX356cUqqLj\nuBzOZ2y7PnFZ1NE/lr3ZvillTXKKnFLVMURRkfNiMaVh2Tybj2laNgrFp+NzjlYz3mt0MKWkny+J\nkoy25ZJV5YZsXeDFagooorLgL9r7GJqGZ1jXiN0FTFmTvrQqOI2XnCRzuraP+YW/1TVJ03RY5gnT\nPKZl1pXdP85e1nojofjr9r3aYFUIzpI55hViB7AoEp7GQ4qqZJSvWFQJO3YDQ5P84+QxZ+kUWxq0\nDJ9Slfx6+gBH1k7vtjR519thx2jyNO4TlSm37S4tMyAtCxZljBAwK1b4N/hpvQ5CCCzNZJCPCfWb\nrQdc6eBIh8PkJZNiSsMIGeZDHkaP6BpdPlp+RM/cZpJPmBRjPvB+jhQSXwZ40qNjdElUiiM87tr3\nyYwlx4sjUBots4ul2TxI/khLbqGvHfJLVVzTwD1J/lg7zwvxrbvN59WKSfGEln7/tVUkIbQrvlwF\nUnPRhCSvZsgr5EgXPrrmIdSF5c/bXyuEEAihb8hWUb2kUgtK+kjx5RWz/1L4gXB9A3zXC/dVsRgv\nGZ2MsTyL/uGAsBN+LbK1nEUgat3X6HS6Cbz+MrzNwRYtE8qiFp9Hy4Ttg9r89AJJnDHsz/DDL78w\ndnshtmMShPXN37IM/MDm7GSMAlptn7DhUhQlcZQRhA7Png5otTwcx0Rogv1bHcajJXfvdvHWNg/D\n4YzFIiGKMnpvmJS8QFVVeJ7NdBaRFyWGoTObRez2GgzHSx48OUPTBK2mgxQa40nEcX/K/k6T/nCB\n71q4V9qzUtNoBg6NwHmFWJlG3cocTVckabHJW/w20A5cGqHz2t/wcDCl6TsYuiTO6kDni5v54WDG\nKs1o+W9/Q/sviSjLAEFWluRVyeFsxjiOKCtF06lbqpVS+Ka5zi68RMO2XyFbUIc2dxwHTQg+HPQx\n1l5Z5tox/oJAx0XOfzp6wSJL107zNnFRcB5HPJoOmaYxO+6r1eMHkyFxUdCwLMpK4RkG4yRhGK9o\n2w62NAkMi47t4hn18SNMjS3NIa1KJkmMb1jkVUlSFZzFS267LXJV8d9t38PQJJ/NBji6gW+8uTpZ\nojhwGptYn5tgSYOW6fL5rI8pJXe8Dr5uMckitu3L86hSFZY0rk0NlqriltMmrnIU8D9u/RRDkxRV\nyXE2ZssIGBUrdqwGhar4m9aPcaTFSTrBEDqfrg6Z5BEdI+B300fklCRVRssIOLC7WJqJK62vPKlo\nasY1snWaDRjnU5p6/X3G+RQpNHasbTKVs2P2SKqUUlXsWDsEus9ZdootHDKV0DY7mJrJMD/H1uqH\nY1tzsDUbqUnaQUiZaJjSpqJkUgy5bd2nICOqFtiax2n+nFC2GOenjMs+d60P8GSTUmV1gPW3iIqC\nZXWCL3ff2LarVE6pYmLVx5E7ACRVH2mLuOIAACAASURBVFO77tumCZOsGpBWJ5ja17d0EARoIkTX\nvpqZ7Z8bPxCub4DveuG+KizHxG95FFlBtIhp9Rpfq58fLRMGx2NavcZryVaW5tdajvB2B5tlm1i2\nQVVVPPv8FC+wMS2D+TQizwqkLnE965Vtvw6jwQLDlBw+H9JoubU/VtPjT79/getb6LrG44dnLOYx\nQcPhvD/Hdkwc1yRsuJimTq8XIjTB40dnjIYLbt/pEoYut29/edUtL0rOzmc0wrqtM53Ftb9XNyDP\n6xbiz396QP98TqXg7q0ut/fbdJsew+mS7a2A1SrD+5IEgNF0xTJK8daROubatPRqlSkvSoaTJa5t\nUlWKSimWcfpGcf1VVJXC91//GxZlRVlV2KbBcL7CWpM/gJbvfC/IVpznm2iVq7ANA1OXDKIV54sV\n277Hj3tbG7H8w9GISRzTXy3Z9t/OSPF8tUJoAtc08U2DPT+s43l0nS/mKDYth/vNNqM04eV8StNy\naFgmL+czftLZ2hCmCyyzjF0voOO4TNOEfrzEkJJt16dtOXi6yWlUTyx6hslHkz4vlzMKWbJt+Ahg\nktU2FhdZire8BmfJkvfDLr8dHrHvNUjKgqNoxoHbYJRGKOqMRENcruE/jA4pK0U/mVOoCu9KW/Aq\n6vYS/G9Hv+c9f4uzZEY/nePpJm3Drc0lhMCSl6HsFxhnS46TKQ3DxtVNTuMpgW5TqIp3vW0OnA7L\nImGWR1RCsW01cKXFJF/haRbzPEZqkp4ZElUZ/1PnF3i6w67dJq1yLM34ymTrJphCxxEWxrraVFFh\nasbadd7hLOtjC4tda5t5MaNrdLE1h1k55Wf+v8CRDuN8hC4MzoszNCBXGU+TB2yZOww5IU1KCnLu\n2PcxhIkmNBzNx9Zqu5FwXcWy/t/27jw6sqs+8Pj37e/Vq02lKm3drd7sxgsmYM+EyYw7LB6G8AcJ\nB8yx8UxzSBj7JASywPGBIXPsf+ZAnAxnMgkxxhACGDBLyBlMzhmYABkMhOOxHWxs7MZ2L2qptUtV\nqv2td/546upWq7S21FLD/fzVLZVUt+qWXv3q3t/9/RQHU7FRUJgJx+i/oAXQVtEUg4y2Z80cqZAW\nEW3S2n4i0aIdT2Eo2SUrXAB+PEtMhK0Nbnhb8ULK4ha/EIKYha6FUneCDLguwU4/cZtx6pkz5EtZ\nqrN1cqW1twG7sVNW57TjSs6emsZJ20sCo4282FRVpTiQ49knTzOwpweUJOF8emKB3tL6P6WNjcxi\nGBo9hTSjp2fJF1xMU2f/oVJSOX62ytxsnXyPi66p7B3upVptke5yAjIII/L5FD09aex1rhxpqkou\nm6JWb9NuhziOQamYxTR0Uo7FE0+fZr7S5Nojg7TbAbWGx2NPnUbXNUqFNLZlrBlsQVI/y3XO532p\nqrK8TlSjzUy5gWloVBttbFOn6QXL2vd0E8UxL52dZXiwsOIcuraJvZgUf6746Xy9RTsIcXdJ/tZk\ntY6t6ytuuc7WG9Q8n5Sp40dR0jxd00ibBnXPx9C0TiPrtZiaxkhlAccw+Pn8HPtz+RVLU1S8FoaW\nnGwMRZw0oZ6Z6pxGrPs+ezPnj9zPtBpYmk4QR8QiZk86S2qxGOnZRg1L1XFNk6rv0QwDDmcLpHWT\n4d4eYl/wxNxZZr0m1+RKlJw0RdvFUJP8qBers0RCoKkqacMkrVtkTRsvCtFVlZl2g4xhdratBuwM\nA06GeujhaAYZw1r1ujJgZ+g1Xeb8OlndIYyTSvCPlU+TNxxszeDp6hi2anbywRaCFq5msTdVQAAl\nK8O4V0kKe+oWtbDNicYUN+YPMmAlqyaxEPSZWVzdRlc1qmGDn9ZPE8Uxr8gdICYmiCIqUZ2cvjW5\nTbqid4ItoBNsAcwF86S1NLqi0RYemqJhqiaeaFMNF2jEDXr1XiIRktYy9OgF5oI5KsEsvWYfKS2N\nZsdM1CdZCOcZ9V+ioBWx1BSaqi17zhVFxVBN6lGZdtzAUMxlSfWXi6aYIDQa0QiW2gtoxLTQL6oC\nr+KgK+lOE+tLF+FFzwIhmtK9C8LlJAOuS7DTT9xm5PtyaLpG/oLVrUa1xcJMDXcd23TndAu2fC9g\nfmoBN+tQryZNmC+s7bXeF9vs5AKKmiShCyFwsza6oWMYOm7aQumyQrGS3lIWJ2XRbvn0FNKY1vnV\nnPm5OrVqm76+HKmURW8pi6qqXYMtgPRi38Vz2m0fXdeYLzcQQnTa+3QzM1tDVZUlOV4L1RYnR2Z5\n7b89gm0Z9ORT9Pa4i8nqNj0bSHw/94luNY5lUOpJU2t69BcyPD8yxYHB7pWcL6YqCsWcu/4LhgKG\nppJ3nV0TbAHkHHvV/Dbb0NmTy/Lz2TliAYVUUntL17Skcnsms+LPXkxXVTKmyVi1SsFOUewSqE3W\n61R9j9lWEz+K+e6Zk7xQnmOvm+VALs+TU+Mcyha4qX+I4+VZinaKII7w4oi8ZdMIfE7XKuRNOzmt\n5rUw1KQ9zny7yZCbJWUkqze2rvPt8ZfIKhZHckX2udlOADjdqqOpKrqiUgu9pKG1mydtWKSNJGg4\nWZtj1m9wVabIVLve6beoKSpeFBIJgaoonUba3SiKQo+ZSmpk2Vkasc+MX2evk2c41dNJhLdUg3YU\nUIvaZHSbOb9Ov5VDU1Xm/DolK0uvmcbVTGIErdhjwMrTiDzSejKucW+e0fYcg3YPU36V69xhQhFx\nKDVAwcxgKDoTfplDzsC65/Ri0WIDa2uNcgte7DPnz1OJKiyEC3iiTY/eg6maZLUcOT2Pq6aYCWaw\nVIsR7xR5PY8nPPzYo88cYiaYJNY9hjhMSktjYhISMOafYNw/xYC5vHNIM6rSjBcwFQdFVbBWaUS9\nGX5coxXPYaqr/12EokEtOk47nsJW+/HFHClt77Lbrec6thGKoqIpOQR1NGVr89c2QwZcl2Cnn7jN\n6PZi1nUN09bXvU23kqnReSzbxHEtsj0upm3Qbnroi4HIel9sqqpimgaaphL4IULA6IlpUq7J4z94\nEU1XVzyluBLLNpibqZHOnA+mUq5FtdJk73AvcSyoVBq4aZuR0zNYltGpz3WhkZFZMhkLUJiaqpJK\nJb0DDUPr9IO82PhEhd5CulPJ/hzbNij2pkktbgOeu9hEUYRjW52aXlttbKpMyjYZ6M0yMVvdUPmI\nlebQC0JeODtDud6iN5uUUbgSeyoaWlKwc08uS9FNoV8wp5tJ+J9vt3ANk325HHXfw9SWzulcO+lr\n2Jdy6XVSDGey3FDs55unX+BVfYMcyvdgqBoCONLT29n2ioXgVLWcJMcLgaVpnKiWGXIzGKrGZLPO\n2UaVqt9m0M0SxhGxAAwFPVbJGEn/vyfnzlKyXQRgL+aWHV+Y5WA6z1S7jq6quLpJJAStKMDRDezF\n/CpncfUpiCNGmhWGU3lqgdfp07iSRujz1MIoad1CAP1WJimlop0vg+JoBmndwtWTvKoe02UuqPPY\n/Ak0VUUsHvX04oBpr8qp1gwlK8uZ9hy9RhpNUamFLVQFamGLopnBFyFp3cInYt6vYStJE+uC0T1Y\nmPTmcBb7JK4kEjHt2MPRbM56k+iKtmSF6xxd0fBin5OtUzzXeI4haw8HnP3ExFSDKv+08F16jSIK\nkNXzgEJWz5FSk7mZD6dx1TT7e/ZRbTaYDs5SMobI6T0MWvvJa32dpPlqNJ9sJSoK9ajMVDhKLEJc\nNbdlAVcgmmiKgYqBoaTW3FJUFRNNcdDVDBoO7XgCW+vfkrEAxMIjaXS9/G9UUcxdEWyBDLguyU4/\ncVtFUZUNB1vdcrRM2yCVPX+Ca/rsPJXZOvnFOmDrfbHphtbZDku5FpZl0NuXxTB19l/Vt2aw5XsB\n42NlcvnzF5czp2ZQdZVMZukqnp0y0XWNublkBcpeLAqbWmEbz7J0yuUm09NVBgZy1OttPD9ctioW\nRTFRFHeKro6Ol0EslpsAJmeqGLqK54fUG96SbcO2FyZ1vLbhRF/LC5hdaOBHET2ZFAuNZPzuOpuX\nXzyHSV/FENs0KOXS9Ga3/tj55VRptTk1P08QxTTDgLSZPC81z2O8WiNjWsu2al+am8OLIibr9SSp\n/oIgrRkECJJk+++fGWEonVlS0ytnWtQCn7Rp0gh8AhFzplblZYUS/3fsNC8v9VNut0CBopO8ns+t\nVvXaSS/GvOVgaTp9jks98Jn3WkRxDAiuyiUlHWbbTX46P8nRAwcZLS9QsByeK09jqir9TgZ7MdDK\nmUmV+bzpJFuJhsnz1RkGnAw9loOuatiaviQ5XkGhaCUdFxqhv2yF64XaDI5mdE46znh1rk6XcHWL\ntG4RLLbtSWlLX4Pn2iQJIXi2dpaMblOJmuy1CxyvT9BrpukxXfJGiqKZoRzUOZzqx1SToDalWdSC\nNnnDxdZMdEUlo6dQgSlvgdmwzsvTwyhKErg1Iw/rgmBJAJZqrrriogCGYqApKq7mMOHPdBLmL9SK\n27RFm0POQa5NvQxN0QhFwM9bP0dDY799gD3WHjw8XNXFUi10RacdtxjxT3GVcy2WapPPpGk0PGph\nhWZcpSnqZNQsoRKiYyw+libWYsK9o6XRSZ4PS3O2LOCqRxNYShpF0dZd40pbbLNTj07h6vsRxJeU\np3VOJBYI4zkgRlVSeNHzCAI0Zf2r0ZfLbg64rryPx1eApPhpfe0briIKI8ZPTjM5MsvI8XFa9TaQ\nbDNeuMqj6xr7XzZ4SfcFSf2w+ZkqtYXVmw+fY1oGA0NL9+uHD5YYHFr+KWdmKulnODjUQ19/jiiM\naXZp6nyO45jYtkG53CCKYvJ5l0LP+W3CZtNjcnKByakqp88kDVYNU8OxDBwnubhMz1bJpm10Q6NY\nSNNXzDBXrjMxVebxnyS1uWzLWNJke6s4lsH1hwbIpx38IKTaaFHIdr8Il2vNNRtRB1HEVKX766np\n+TQ9Hz8MeXFi5Wazu0kYR2SspOjpc1Pnm/06erKq40XLS2I4hkHBcTjY07OsRlfBcehdDJTecPDw\nkhITkLypx0LQDH2aQUA7DLmh1I+tadi6xs/mpnENk147xVx76ev/dK1CI1h68c4aFn4UMttucLpW\nIWMmF9eClSJrWrxYmaNop2iFAX2OS948P/fX5ft4rjJNJGKCOMaPQ2qBzwH3/N/NnNdY9hyMNStU\n/KT5+4Cz/E3uqnRxSYAWixj9gjfprGHTa3YP1Ke9KrN+nRuyeylZGQ6l+rBUg+syeyiaaWIhCOOI\nKX8BVVGZ9haS51UIZvwqRSvLQtjEiwO8OEBFoRI2uT4zjKVqTHjzXe8XIKOn1tze8mKf+bACgKZo\n7LW6r9o4qs2g2Y9AoCkae+whDMXgoHWQrJ4lr+eoRgsU9RJCEfgiuQapisY1zvWM+qdQF98SdUXH\n0hwcNU2/vo9GXGfMO0Gw+DNZvXfJuD2RnCq3lK37MJTTh1EUDT+uUwlforlKM2mARjRKO5xjIfgZ\nmqoT0UTh/AcPIbqXmlmPSNRRiDv1tkIxAbFJKK6Ma85uIQOubSBiQbvRvqTfoekaB67dQ+CHFAZy\nWKnuqyOF/lWai65THAtO/nyCTC5FGMa0W+v7dHBhE+5atYUQgrOjc8RR3Pn6s0+P8v3vPEul0mTs\nzBwApqVTWqPUg+ta3HDDPs6Ol5ckp8exII6htzdNf1+G/ft6abUD5ubqpNMWbspCCMGpM7MEYcT0\nTA3PD6nV21SqLVzX5sc/OcVsuUEUx0xMV5ivNPCDzV+MulEUhXrTZ6HeZmquvmJO03rCPcvQaflB\n1+9FsSCKBaauc6i/gLfFj2M7FF2XoptmttnghoEBJqo1AGabTYpuCtdc/lrfk81i6fqSlS2AH42O\n8NjYKCMLZWLR/dlUFYUBN03DDxbbAZmowHgjOWEYhjFeFJIxTUZrVZ6dnSKMY1phQBiHne3Dc9qL\nwdCr+/byyuIg8+0mZa8FCPrsNNONGl4UcnxhhoxhUrRT1AKP07Uyk60aKd1gvFGl4rcWE+lV9AtW\n9PwoOaF4oWG3h7y5cv7nxaf//Dhizm9Q9puMtsrM+40Vf7ZoZigYLgtBEmymNJNG5NFvZYmF4Hh9\nAl3VOOCU2GsX2OMkOYnn8sAmvDJFM0s7Cvh/lRcYbc9iqDoLYZMDTj8DVnJ7SzXI6htf/UkC5uSa\nEouYFaa5oxJU+Mfy92hFLVpxi0bcYMQ7zUQwgVj8i4tF3Pmd9ajGqfaL7DMPdoIoRVEZsvZjaoun\nIRVBRsuvWPh00DxMTi0iiLt+/1JoikkQtzFZ/eSupSZdPQytQE6/HkcdWtIKqBGfIBYhQgjEWk/i\nRUx1D6Z2oNPM2lSvTpYepQ2RW4rbQFVV3NylLyvHcUzoh+R60yvmLl1sM8upiqJQKGXRNBWv5TNy\nYop0NkkAXet+x0fnkpISCy1SrsX05ALZXApNT34uX3C55vo92I6BaemdnKkwjPAXeyFeLAwj4lhg\nWTo9PS6jo3O0F6vIx7GgstAkl0uSgjVNRSHZIs1mHOJYoKoKewd7sEwdN2XxwktT/OSZM+RzDoN9\neZqez56BHsYnK/SXsqiqQrMVLKnDdamabZ9as02pJ1kh6M12/yTvWMayU3Xn5rBSbyX5TqpCaYXk\nfsvQsYzzjZqfH5umJ22vq4n0TlJVBUNLDmykLbPzOC1NX7adCHCqXEZX1WWrW+0wpNxuk7UsJusN\n+tyVVxiaQcB8u814o0af6zKUypA1Lap+Gz+K6Eu5zLSaXN/bh66q1HyPx6bGyZs2KcPAWTyhqCkq\nrp4U2PUXK+Bbms6816LXTvFsdZrIj8hbqU6LHkvTyZhJLa+kmGpMzrSxNA1bN9AvKGRqqlonsX2z\nWlGy0pQ1bAqmi3PRVqIXBYQiRl88eScQzPsNsosnGJuRR3qxZlbJSlbUJr0KKW3p6UhHM+k1Mxiq\nzrg3jxCw1yliKhq1sEnJzC0prtqNHwdLKsdf7FyzaxWVQARUoipprfv11Ys9YqDfKGFpJm3RZsAc\noKD14uppsnqWCX8CQUQ1qpBbbDqdUl2cxd954TU0FjELUZkevYSm6BjKytufs+Eoea3/kuatG1XR\nSKlFtC55a0tvZ6KrKewV6mKZahFFUfHERNKeR9nYe1QsGsS0URULTcktFlfd2gMCW+EXbkux3W7z\nvve9jzvuuIM777yT+fnlS8af/exnefvb387b3/52Pv7xjwPJEvTRo0c5duwYx44d42Mf+9hm7v6K\n1W54+F73lYpu4igmDKJ1B1tbIZ1zKPXnabd8FuZX/lR8TrEvi2npDAzlOX1yGoGCYV7w5mHqtL2A\nJx47uSRny/dCGvXuq4DtdkC12mJ+vo7vB1RrLTwvYHyigqoqDA6c38r0/bDTCFsIwYsnpzrfU5Rk\nZezaI4O85t8e4cihAWbnaxzaV2KwL4dpaGRcm2zaoe0HW7bK1Wz7lKtNDg71cnZmgYMDBfw1tg0v\ndO7TZxBGRBv8JNqXc9mGXdItpyoKKcMgFgJl8aNyyjBWXAncn8+TsZZfxFKGQca0UFDZk80QxjFP\nTo4vu50fRZytVwFB3rJpBgGmrjPdaiyWY4hIGSY39g12VtEKdopb9h5iXyZHj3V+dSnJ7zKYb7fQ\nVJWi45I2TFwjadXzK32DZCwbQ9Wo+ue3zjVFJWfa5E2bs60a016T6XZz2crcWiUf1mPAzlCy0p1c\nq4u14oB2fP5apCkqe5weFoIWc16tE+RAsh0759cwFZ1m5C1bHWlHPuPteQbMHlRVJaM5QFIhXlNU\nqovbjd0IITjrzaz6WHwRcMabIBABpmrQb65c1bwRNUlrKfbae6hGVQbNQSIRMR/NUwurBHFAK65T\nMIrk9GQbtxotMOqfxIuXX49MxUSI5G/XUd1Vc6mGzKu3rXn8enK4QtFEiJhJ/3u0o2Q3YSF8FiGW\nrrrZ6tC6eileLBIVQrHy9rC0tk29kz/88MMcOXKEL33pS7zlLW/h/vvvX/L90dFRHnnkEb785S/z\n1a9+lR/+8IccP36cM2fOcP311/PQQw/x0EMP8YEPfGBLHsRuNfbCBNEFb7Reyydorz/g0g2dgf2X\nt2WCrmsUB3IUihl611Hh3bTOfxLft7+XQ4f7ll10KvNNrr1+aMmFOuVa9Ba7J1ym0zbFYgZNUwnD\nmHK5ieOYDO8rLFsRm5qu4vshU9NVhICXXbX8+LmqKmQzDifPzKCoCtMzC0zPVLnqQF8nf6rYk8bY\nogR6xzLoK2SYrdRJWQbz9SazK+RgdXN6sky12aaUT2/41F5/PtPpSXglKKRS6xrvSgUziykXW9co\n2Em/wrO1atcVlalmnSM9Ra7qSXJvclZyAMM1TJ6dnyIUy7eCYiEYb9RWHFPJcVGAJ6bPcrI632mV\nc02hjyCOGamV0S8at6oo6KpGLGKmWlUW/BZ+vPXbwJqytKxLJGKaUfKpvxn5zPn1pP/kMoKFsEXO\nOH/aNxQRp5uzuLrFWHuehXBpnpupGkkJCFVj2Orl581x8obLkJ1sJVbDRmf77mKKonDQGVr1sViq\nyfXu1aQ0hzFvkmCV56tg9GCrydwOmUOLP28RxSGe8GhEdQ47RxYfaYwvPPJagSPOy5cEXK0oGbOh\nWvSZy0sr7EZ+XCYmwFWGMRZzyXL6y7ekqXQsPCJRx1A2X95D2mTA9eSTT3L06FEAfv3Xf50f//jH\nS74/MDDApz/9aTQtWXkIwxDLsvjZz37G1NQUx44d48477+TkyZOX/gh2sd7BPEJAuNjXL1fMbMlW\n43abGJ2jWV85qf2cKIp56fnzqwmmaeB5AVG09OJ68HAfJ1+a3lDewKlTMziOSTptc/XVA3h+yMlT\nM1QWmszMnn8T3Le3gGnqHBju7boVBXB6dI5qvcVVB/pIpyxKvVl6e9LUmx6VavLmYVuXtoVzMUPX\nqDU9MikbQ9PozS3Pv5gq15Y9VwAHBwtkU0tPZDbaV97WejexEDwzObX2DdfJ1nWuK/UhFHhi8ixC\nCAa7VKnfl8mhKQonyvMc6eml3G7x9RefY086yxv3X02fnabcTvIQL1xx2pde/UNH1kza9gymMhiL\nK2NPz0ygAcPp/LLXVCRiji/McHP/fq7L9nF1tkg18FbMP9sqx2tTjLeSZHdT0SgZGXL68lIlOSPF\nIbevszImhMBUdW7KH8RSDfbahSWnDOthm/mgRjvyk7IXusU17p4lv9NWza5bhtWwwbiXJF23Io+5\nYGHNx7Hf3oOxwqrdSmIRo6rJKcW8kaxq1aMa094kzzaexlYdmnGTk60XmfKT61kjrhItJpmf9U5t\n6P42QghBO177ca9HStuDplhkjKvQ1K2t+q5gYqr7dk01+SvVmq/cr33ta3zuc59b8rXe3l4ymXNl\nCFxqtaWfAg3DoFAoIITgz/7sz7juuus4ePAgs7Oz3HXXXbzpTW/iiSee4O677+brX//6Fj6c3cXJ\nOFSmkz+mfN+lJ7d3I4Sg1fBIrVBIdDP2rHNVTdNUDl+z9IRks+ljGPqy+lD/6tWHNzSG/ft78f2Q\nEyem2b8/CabCxf6PG034HBrIMT5ZYXJqgZ5cimzWZnJmgULeJb/C6cFLMTFXxTENDg4lbYlWKgdh\n6ssrV3cTxTEzCw3cdVSr3+1UReGGgX5emp1jMJtZliBfbrXI2faGWsC0w5AzlQpDbpYD+ZVrATmG\nwdWFZE68KOIth69BVRROVcsEcczpaoWcZWFpOnvSWcI4puK1O6cQu7E0nV8bGE4CqcoM1/f0c2Pf\nEGfiMs5FTashWXn6lcIgURzjEaN36l1tr2szA53nVFc1shcl4DcijyAOyRsuz1THuCGbrOq81Jxi\n2OntBFnpi4I0TVGpR20MRSNvuDiYVMMmGc0hFBGGqlM0u1/7srpLdrH6vKHqOKyvQvuMP4elmmT1\n9ZUkUBWVvdbSVSpd0XE0lx69iEDwYvM5HNWlqCcnIMUFx1kGzH3rup/NEMSEogVsz/vDVklaRu3+\nxYLdThEbffcC3vve93LXXXfxile8glqtxjve8Q7+4R/+YcltPM/jwx/+MK7rcu+996JpGq1WC03T\nMBcvskePHuXRRx9d9U0nDLsnVkuJwA+ZGptn76HNNyHdbVotn5mZGkEQceBAEU1Tqdfb1GptBgfX\n3zrC80PGzs5z+GDy3JwanSUIIkq9GXRNoVJtMdiXu2JeX1GcNHc2NI0z0xWG+3a+jcZWGC1XyNg2\nURTx2Jkx/sM1Vy87jbiaM+UKKFD1PF7ev75Cj14YMtmosz+XJ4iiJXW7tsJYbQFVURhaYYXs+flp\nXtZT2pLegutVC9qoSlJk9WLtKCCMI9LGxj64xSKmHnrYmtFZFRtrzjJg9/BibYJrc1u/HReLGIXV\nq6WfaowwZA9gaRbT7RmyRibZWhQR+gUrZI2wTi2s0QjqDNp7SBm7J6gIYx99jer60pVlU8keN954\nI9///vd5xStewaOPPspNN9205PtCCN7znvfw6le/mrvuuqvz9Y9//OPk83nuvPNOjh8/zuDg4Jqf\n8Mvl9dWF+mVmZRxmZpJVxlIp0/n3lSqOBZqm4jgm8xck7uu6tuHH5lhm52dcy0SxFUI/ou4F1Bse\nZWP3vb5WmsNKo0XbDxnoydCse8woV/Y8n6NFUG01GalU2GtnKM+tfVjjQkqYtLvp11Lren20woCx\nWpWik2LGX/n2YRzxj6MnuXlweNVVrouVShmsdhIwzrSW/v7JVo0BJ0MRh7nZOmEccbJe5kh2+3M1\nq0E7aQukr/xYWqw/x/QcIQTPNke52k1Wuy0syo0mRXI7di1KU6Da9AEfP1ZYUDx8UaMWVSkZSz+c\naqTJkqbRjmhQo1TKMDY1g7W4LXfWO8mgeWDVavhbrRFNU4+mKBnXoq5QikLqbje8B5ZK3VdfN7XC\n1Wq1+OAHP8jMzAyGYfCxj32MUqnE3/7t3zI8PEwcx7z//e/nla98Zedn3v/+93Po0CHuvvtums0m\nmqZxzz33cPjw6ltNO/3EXWl2bcu5lwAAB7pJREFUw4tNujS/rHMYRvGqPRhX8tOpSYpuaslq0nSj\nQRhHDGW6rzCFcUwYx9i6zlSjToxg0N2aqtmrzd+5gOtCXhRiafJNdbfoLbr8bPwFBswkF02IeEsS\nzzciEgEKKuoq5TKk7nbD9XOlgGtTryLHcfjLv/xLHn74YT7/+c9TKiV1P377t3+bW265hTe84Q08\n88wzndOIDz30EK961avI5XI8+OCDfOELX+Bzn/vcmsGWtD7vfN29G85rWs2xW+7b9O/7j2/+H51/\nb+WY1nLuvm591yeWfe9t735gyVjeeucDl3Vsm/XG//rpnR7CZfXvP/WZNW/zur/59LK5e1lvkYGL\ngqU+1+Wd/+sry37+tV/8FEIIzlQrvOZrn2GqWacv5W5ZsLWWi4MtIQQ3/58HO//erNf+0/9c8zav\n+8Hqf5uv//F/39R9CyF48798ZFM/u5P+y8j7Os/Dn4y8t/NvVVH5xNR/69xuO4MtIQSfm7112dc1\nxZDB1i+g3V0dUVrTO3/1XmjAiz8d3ZLfd+yW+wB48bmzG/7ZC4OthUqTqYnKloxpPU6dmcVbrHHW\nLei69T9/koVqi7fe+QAAx09MXraxXYpflqDr5gc+TUiyyrUaD/h3n/mbJQGDpevLcqH+zUOfos7S\nwOLVX/wULeBsvUrKSHJjfvMbX2K0tjWnxDbjV7+VvFb/9f++n59WNvearPgtPODX1gi6QuDoYtA1\n0V5g1j9fqmSzwRbAb/7ko5v+2Z026p/mT0beC8BsmJyefc+//KfLct9+3ODzc2+/LPcl7Q6b2lK8\nnHZ6afBKsxuWU6VLI+fwyibn78om5+/Kthvmb0u3FCVJkiRJkqT1kwGXJEmSJEnSNpMBlyRJkiRJ\n0jaTAZckSZIkSdI2kwGXJEmSJEnSNpMBlyRJkiRJ0jaTAZckSZIkSdI2kwGXJEmSJEnSNpMBlyRJ\nkiRJ0jaTAZckSZIkSdI2kwGXJEmSJEnSNtv1vRQlSZIkSZKudHKFS5IkSZIkaZvJgEuSJEmSJGmb\nyYBLkiRJkiRpm8mAS5IkSZIkaZvJgEuSJEmSJGmbyYBLkiRJkiRpm8mA6wr09NNPc+zYsWVf/973\nvsfb3vY2brvtNr761a8CEAQBH/jAB7j99tu54447OHHixOUernSRleYPoNVqcfvtt3fmKY5j7rnn\nHm677TaOHTvGyMjI5Ryq1MVG5i8IAu6++27uuOMObr31Vr773e9ezqFKXWxk/s6Zm5vjNa95jbx+\n7hIbncNPfvKT3Hbbbbz1rW/la1/72uUa5jL6jt2ztCmf+tSneOSRR3AcZ8nXgyDgox/9KH/3d3+H\n4zi84x3v4PWvfz1PPfUUYRjy5S9/mR/96Ef8xV/8BX/1V3+1Q6OXVpo/gGeeeYZ7772Xqampzte+\n853v4Ps+X/nKV3jqqaf40z/9Uz7xiU9cziFLF9jo/D3yyCPk83n+/M//nEqlwlve8hZuueWWyzlk\n6QIbnT9Irq333HMPtm1frmFKq9joHD722GP85Cc/4eGHH6bVavGZz3zmcg53CbnCdYUZHh7uGjCd\nOHGC4eFhcrkcpmly00038fjjj3Pw4EGiKCKOY+r1OrouY+ydtNL8Afi+z1//9V9z6NChzteefPJJ\njh49CsArX/lKnn322csyTqm7jc7fb/zGb/CHf/iHAAgh0DTtsoxT6m6j8wdw3333cfvtt9PX13c5\nhiitYaNz+MMf/pAjR47w+7//+/zu7/4ur33tay/TSJeT775XmDe+8Y2MjY0t+3q9XieTyXT+77ou\n9XqdVCrF2bNnedOb3kS5XOaBBx64nMOVLrLS/AHcdNNNy75Wr9dJp9Od/2uaRhiGMnDeIRudP9d1\ngWQe/+AP/oA/+qM/2tbxSavb6Pz9/d//PYVCgaNHj/Lggw9u9/CkddjoHJbLZcbHx3nggQcYGxvj\n937v9/jWt76FoijbPdRl5ArXL4h0Ok2j0ej8v9FokMlk+OxnP8vNN9/Mt7/9bb7xjW/woQ99CM/z\ndnCk0kZcPK9xHMtg6wozMTHBO9/5Tn7rt36LN7/5zTs9HGkDvv71r/PP//zPHDt2jOeff54PfvCD\nzMzM7PSwpA3I5/PcfPPNmKbJoUOHsCyL+fn5HRmLDLh+QRw+fJiRkREqlQq+7/PEE0/wqle9imw2\n21n5yuVyhGFIFEU7PFppvW688UYeffRRAJ566imOHDmywyOSNmJ2dpbf+Z3f4e677+bWW2/d6eFI\nG/TFL36RL3zhCzz00ENce+213HfffZRKpZ0elrQBN910Ez/4wQ8QQjA1NUWr1SKfz+/IWORH5Svc\nN7/5TZrNJrfddhsf+tCHePe7340Qgre97W309/fzrne9iw9/+MPccccdBEHAH//xH5NKpXZ62NKi\nC+evmze84Q386Ec/4vbbb0cIwUc+8pHLPEJpNWvN3wMPPEC1WuX+++/n/vvvB5KkX5mAvTusNX/S\n7rfWHL7uda/j8ccf59Zbb0UIwT333LNjuZSKEELsyD1LkiRJkiT9kpBbipIkSZIkSdtMBlySJEmS\nJEnbTAZckiRJkiRJ20wGXJIkSZIkSdtMBlySJEmSJEnbTAZckiRJkiRJ20wGXJIkSZIkSdtMBlyS\nJEmSJEnb7P8DWHwd8XsUmLQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price vs pca')\n", + "plt.show()\n", + "\n", + "if simname != \"bm_kaggle\":\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs pca')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['ohlc_price'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs ohlc_price')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return shift')\n", + " plt.show()\n", + " \n", + " \n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price - 15min future vs pca')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# this creates a training dataset for the model\n", + "def create_dataset(dataset, look_back_rows=20):\n", + " dataX, dataY = [], [] # for training\n", + " # it creates for each row a 20 row lookback dataset\n", + " # this expands the data by 20!\n", + " for i in range(len(dataset)-look_back_rows-1): # \n", + " a = dataset[i:(i+look_back_rows)] # from example 1 to 21\n", + " dataX.append(a)\n", + " dataY.append(dataset[i + look_back_rows]) #get example 1+20, so the next point that is to be forecasted\n", + " return np.array(dataX), np.array(dataY)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAM9CAYAAACITXI7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYFeX7x/H3WVhEQARR3BdQ3NcUl7Sy1Mo2bXFBs0wr\nzW+lqGiauaW5tWmZqW1mlpaVfct+reZXc7fEhVTIDVQQRATZOef3B3UU2Q7q8UB9XtfFdcXMPTP3\n3DNzOg/PM48Gq9VqRURERERERK45o7MTEBERERER+adSg0tERERERMRB1OASERERERFxEDW4RERE\nREREHEQNLhEREREREQcxOzsBEREREREpf3JZ6ewUimUi1NkpAOrhEhERERERcRg1uERERERERBxE\nDS4REREREREH0TtcIiIiIiJSahZLrrNTKJapjHQtlZE0RERERERE/nnU4BIREREREXEQDSkUERER\nEZFSs1pznJ1CuaAeLhEREREREQdRg0tERERERMRBNKRQRERERERKzWot27MUlhXq4RIREREREXEQ\nNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoWTQtvF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUi\nIiIiIlJqVg0ptIt6uERERERERBxEDS4REREREREH0ZBCEREREREpNQ0ptI96uERERERERBxEDS4R\nEREREREH0ZBCEREREREpNatFQwrtoR4uEflH6N69O8HBwbafJk2acMMNNzBs2DD++OMPZ6f3jxUc\nHMyXX35pV6zVauWLL74gMTERgG3bthEcHMzp06cdmWKxYmNjeeCBB2jevDnPPPNMoTEzZ86kTZs2\ntGvXjoSEhKs+Znp6OitXrrzq/YiISPmgBpeI/GMMHz6cTZs2sWnTJjZs2MD7779Pamoqjz76KKmp\nqc5O719v9+7dhIeHk56eDkCbNm3YtGkTVatWdVpOK1eu5NSpU3z55ZdMmTKlwPqoqChWrFhBeHg4\nX375JVWqVLnqY7733nssX778qvcjIiLlg4YUisg/hoeHB/7+/rbfq1WrRnh4OP3792fr1q3cdttt\nTsxOrFZrvt9dXV3zXS9nOH/+PPXr1ycwMLDQ9cnJyQB06dKFWrVqXZNjXl4HEZFyS7MU2kU9XCLy\nj2YymYC8L/eQ9wV64sSJhISE0KFDB4YPH86ff/5pi8/MzGT27NnccsstNG/enI4dOzJx4kRbr8za\ntWvp1asXU6dOpV27dowfP560tDQmTpxI586dadGiBQ899BBbtmyx7TM9PZ358+fTvXt3WrRowYMP\nPphv/YQJE3juueeYOXMmISEhtGnThrCwsGJ75RISEggLC6NDhw60b9+ep59+mvj4eNv6Tz/9lLvu\nuouWLVvSo0cPPvzwQ9u6ws6hsGUAO3fupH///rRs2ZJbb72VBQsWkJmZWWhOxdUuJiaG0NBQAG69\n9VYWLlxYYEihI+p08uRJRo8eTceOHWnTpg0jR47kxIkTAAwePJg1a9awY8cOgoOD2bZtW75t165d\ny8CBAwG47bbbmDBhAgCHDh3iscceo1WrVnTr1o0pU6Zw/vx523YxMTE8/fTThISE0KxZM7p3786y\nZcts+3zttdeIjY21HXPhwoX06NEj37EvXRYTE0NwcDBvvfUWnTp14o477iArK4tTp07x9NNP07Zt\nWzp37szo0aOJi4uz7eP333+nf//+tG7dmpCQEMaNG8e5c+eKrJWIiDiGGlwi8o914sQJFixYgL+/\nP23btsVisfD4448THx/PsmXL+Oijj6hRowYDBw4kKSkJgDlz5vDzzz8zb948vv32W6ZMmcLXX3/N\nJ598Ytvv0aNHSU1N5YsvvuCJJ57g9ddfJyoqiuXLl/PNN9/QpEkTRo0aRVpaGgCjR49m/fr1TJs2\njS+++IJWrVoxbNgw9uzZY9vnunXryM3N5eOPP+bVV1/lp59+4oMPPij0vHJychg6dCgxMTG8/fbb\nfPjhhyQkJPD0008D8O677zJjxgyGDBnCunXreOyxx5g7dy7vvPNOkedQ2LLIyEgee+wxevTowVdf\nfcXMmTP5+eefmTp1aqF5FVe76tWr8+abbwKwZs0ahg4dWmD7a12n1NRUBgwYQHJyMsuXL2fFihWk\npKQwaNAgUlJSWLhwIXfddZdtaGObNm3ybX/nnXfmy3nSpEnExcUxePBgGjVqxOeff2679qNGjbJt\nN2LECLKysvjggw/45ptvuPfee5k3bx6RkZHceeedDB8+nICAgEKPWZyvv/6aDz/8kPnz55OTk8Pg\nwYNxc3Pj448/Zvny5WRnZzNkyBCysrLIzc1lxIgRdOrUif/+97+8/fbb7N27lzlz5th9PBERuTY0\npFBE/jHefPNNli5dCkB2djY5OTk0bdqURYsW4enpya+//srevXvZvn07np6eAEybNo2tW7eyevVq\nnnjiCVq1akXv3r1p164dALVq1eKjjz7i0KFD+Y41cuRIateuDcCxY8eoWLEitWrVwsvLi/DwcHr1\n6oXJZCIqKoqff/6Z5cuXc+ONNwIwefJkIiIiWL58Oa+//joAPj4+TJ48GZPJRP369encuTO///57\noee5ZcsWDh48yA8//GDLYebMmaxdu5aMjAyWLVvGkCFDePDBBwGoV68eJ06cYNmyZTz66KOFnsPf\njZpLl40dO5abbrqJxx57DIC6desybdo0Bg4cyOjRowu8e1Vc7UwmE5UqVQLA19eXihUr5tvWEXX6\n8ssvOX/+PC+//DI+Pj4AvPbaa3Tv3p1169YRGhqKu7s7Li4uhQ5tdHd3z5ezl5cXy5Yto1atWoSH\nh9viXnnlFbp168Zvv/1GkyZN6NOnD71796ZatWoAPPXUU7z11lscPHiQJk2a4OHhgclkKvVwytDQ\nUNvQxzVr1pCens5LL71k68V9+eWXCQkJ4bvvvuPGG28kKSmJKlWqULNmTWrVqsUbb7xBdnZ2qY4p\nIiJXTw0uEfnHCA0NtQ0BM5lM+Pj42BpWAAcOHCA3N5euXbvm2y4zM5Po6GgA7r33XjZt2sTcuXM5\nevQoUVFRHD9+PN/7OwaDId/vjz32GCNHjqRTp060adOGrl27cs899+Dm5mZrqF3ek9GuXTs2bNhg\n+71OnTq2L84AXl5e+YaHXerQoUP4+vraGkYADRo0YOzYsSQmJpKQkFDgeO3bt2fZsmW2GQIvP4fC\nlkVGRnLs2LF8+/r7/aPo6OgCDS57alcUR9Tp8OHD1K9f39bYgryGU2BgYIEGtL0iIyOJjIwstGcq\nOjqaNm3aMGjQIL755hsiIiI4duwYkZGRWCwWLBbLFR3zb5de7wMHDnD27FluuOGGfDHp6elER0dz\n11138eijjzJ9+nQWLlxIly5duOWWW+jVq9dV5SAicimr3uGyixpcIvKPUalSJerWrVvkehcXF3x8\nfFi9enWBdR4eHgBMmjSJH3/8kT59+tCzZ09Gjx7N9OnT88UajUbbO2EAN9xwA7/88otthsSVK1ey\nePFiVq9ejbu7e6G5WCwWzOaLH8GX7u9vRU2ucOl2l3Nzcyt0eW5ubr5tLz+Hwpa5uLhw3333MXz4\n8AL7K6x3xp7aFcURdSpuny4uLnbldTkXFxe6dOnC5MmTC6zz9fXlwoULhIaGkpubS69evQgJCaFV\nq1bccsstpTpOTk7BLzGXXlsXFxeCgoJYtGhRgTgvLy8AwsPDCQ0Ntd2bEydOZPXq1UUOwRQREcfQ\nO1wi8q/RsGFD26QBdevWpW7dutSqVYtXX32VHTt2kJSUxKeffsr06dMJDw/nvvvuo379+pw4caLY\nmeUWLVrE7t276dGjB9OmTeO7777DxcWFDRs2EBQUBORNiX6p3bt329aVVmBgIGfPniU2Nta2LDo6\nmo4dO3Lu3DkCAgIKHG/Xrl34+/vbhsjZIygoiOjoaFut6taty9mzZ5kzZw4XLlzIF2tP7QwGQ7HH\ngmtfpyNHjuSbKOLs2bMcOXKkyFkJS/J3TWrUqGGridFoZNasWZw6dYpNmzYRGRnJihUrGDVqFL16\n9SItLQ2LxVJkHVxcXArU89ixY8Xm0bBhQ2JiYvDx8bHl4efnx+zZszl06BDHjx/nhRdewN/fn9DQ\nUBYvXsycOXPYtm2brZdTRESuDzW4RORfo1OnTrRu3Zpnn32WnTt3cuTIESZPnsxPP/1Eo0aN8PT0\nxNPTkx9//JHjx49z4MABwsLCOHXqFFlZWUXuNzY2lmnTprFt2zZiY2NZt24dKSkptGrVijp16tC7\nd2+mTp3Kpk2biI6OZvbs2ezfv5+HH374is6jc+fONG3alPDwcPbt28cff/zB888/T2BgILVq1WLE\niBF88MEHrFmzhmPHjrF69Wo+/PBDHnnkkWIbPZcbPnw4ERERzJ49m+joaLZv3054eDgpKSkFerjs\nqd3f721FRkaSkpKSb3tH1Omee+7B19eXMWPGsH//fvbv38+YMWPw9vamd+/eV7TPQYMGcf78eSZM\nmMDBgwfZu3cvY8aM4ejRo9SrV4/q1asD8NVXXxEbG8uWLVt49tlnAfLVITk5mT///JPMzExat25N\nYmIi7733HjExMXz00Uds3Lix2DzuvvtuKleuzLPPPsvevXs5dOgQYWFh7Nmzh4YNG1K5cmXWr1/P\n1KlTiY6OJjo6mvXr11OnTh0qV658RecuIlKAJbts/5QRanCJyL+GwWDgjTfeICgoiJEjR9KnTx+O\nHj3K8uXLCQoKwsXFhVdffZX9+/dz1113MXLkSCpVqsTQoUPZt29fkfudPHkyHTt2JCwsjF69evHe\ne+8xe/ZsOnToAMCMGTPo2rUr48aNo2/fvuzZs4fly5eXaoa6SxmNRhYvXkzlypUZPHgwQ4YMoXr1\n6raJJfr378/o0aNZsmQJvXv35t1332XChAkMGzasVMcJDg5myZIl7N69m/vuu49nn32W9u3bFzqM\nzZ7aBQUF0atXL0aPHm3L9VLXuk5ubm4sX74cV1dXBg0axJAhQ/Dy8mLlypV4e3tf0T79/f159913\nSUhI4KGHHmLYsGFUr16dd999F1dXV1q2bMn48eNZunQpd955J9OnT+eee+4hJCSEvXv3AtCrVy9q\n1qzJPffcw4YNG+jYsSP/+c9/WLp0Kb1792bLli22GSeL4u7uzrvvvou7uztDhgxhwIAB5OTk8P77\n7+Pn54eXlxdLly7lxIkTPPTQQzzwwANkZWXx9ttvYzTqf/0iIteTwap/gVFEREREREopJWWKs1Mo\nlpeXfe8RO5omzRARERERkVLTLIX20bgCERERERERB1GDS0RERERExEE0pFBERERERErPoiGF9lAP\nl4iIiIiIiIOowSUiIiIiIuIgGlIoIiIiIiKlpyGFdlEPl4iIiIiIiIOowSUiIiIiIuIgGlIoIiIi\nIiKlp3/42C7q4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoGTQtvF/VwiYiI\niIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJ6GlJoF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJ6\nGlJoF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJqBquGFNpDPVwiIiIiIiIOogaXiIiIiIiI\ng2hIoYiIiIiIlJ4l19kZlAvq4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoG\ni6aFt4d6uERERERERBxEDS4REREREREH0ZBCEREREREpPU0Lbxf1cImIiIiIiDiIGlwiIiIiIiIO\noiGFIiIiIiJSepql0C7q4RIREREREXEQNbhEREREREQcREMKSyGXlc5OoVgmQst8jqA8rzUToaxv\nP8DZaZTojh2ryk09v75hoLPTKFbvnR8B5eMz6adODzg7jRJ13/Ip33Xo5+w0StRz+yfl5ln/seOD\nzk6jRLduXcMvXfo6O40S3bR5Lcf7dXB2GsWq88l2ALIWVHRyJsVzDbvAhs73OzuNEt3862fOTsFu\nBs1SaBf1cImIiIiIiDiIGlwiIiIiIiIOoiGFIiIiIiJSehpSaBf1cImIiIiIiDiIGlwiIiIiIvKv\nY7FYmDJlCv369WPw4MEcO3Ys3/p169bRp08f7r//fj766KMrPo6GFIqIiIiIyL/ODz/8QFZWFp98\n8gm///47L730EosXL7atnzt3Lv/973/x8PCgd+/e9O7dm0qVKpX6OGpwiYiIiIhIqZX3aeF37dpF\n165dAWjdujX79u3Ltz44OJiUlBTMZjNWqxWDwXBFx1GDS0RERERE/nVSU1Px9PS0/W4ymcjJycFs\nzmsiNWzYkPvvv58KFSrQo0cPvL29r+g4eodLRERERET+dTw9Pblw4YLtd4vFYmts/fHHH2zYsIEf\nf/yRn376ibNnz7J+/forOo4aXCIiIiIiUnqW3LL9U4K2bduyceNGAH7//XcaNWpkW+fl5YW7uztu\nbm6YTCZ8fX05f/78FZVJQwpFRERERORfp0ePHmzevJn+/ftjtVqZNWsWX331FWlpafTr149+/fox\ncOBAXFxcqFOnDn369Lmi46jBJSIiIiIi/zpGo5Hp06fnWxYYGGj77wEDBjBgwICrPo4aXCIiIiIi\nUmrlfZbC60XvcImIiIiIiDiIGlwiIiIiIiIOoiGFTmK1Wpk0cR1BDf0Z+lhnZ6dTJOV5bTkrT/8u\nbWj0VH+MrmZSDh9n38y3ybmQbnec0c2FZuOHUqlpAzAaSd4Xxf6572DJzMa3XVMaPzsIg8lEdnIK\nkS9/QMrh4w4/J2de86pdWhM86u86nSBiRuH1LCrOXLECLac8jme9GmAwEPP1//jz/a/ytunallZT\nnyT9dIJtP1uGTyc3LcOh5+SMevp1bkvgiFAMLmYuRB8n8sU3yU1LL1WMW1U/blg2i+2Dx5KdnJK3\nzY3taPr8KDIuqeHuEc9fVQ2rdGlDw5EDMLq6kBJ1nP0z3yK3kGteUpxbVT9C3pnJltDxtnz9b2xL\n8xeeIj3uYr47Hn/hivItq8+6X+e2BI4ciNHFhdSoY0S+uLjwa11YjNFIo2eG4BvSCoPJxPGP1hH7\n+ff5tq1+1y3439yBiLFzChy79kN3UuPeW9kWGlaKSoJvp3bUfzIUo6sLF6KOcXD2GwVyLirG6OpK\nUNhwvJoEYTAaOL//MFELlmLJysKjXi0ajR+BycMdq9XKkcUfkrT991LlVhT3Nl3wGTASg4sr2cej\nSHxrJtb0C/liPG68He97BoPVijUzg6T3FpD1ZySGChXxe3Iy5pr1MBgMpP7yDSnrPrgmeV3OUL8X\npq7TMZhcsZ7ZR853IyErpfDYoLsw376U7EXV/zrJyphuexWjf0us2WlY9q/A8ttb1yQv385tafDk\nIIwuZlKjj3FwVsHPpJJi3Kr60XbpbHY+HGZ7xs1enjQc8xge9WthcnPj2PufEfftL9ckZ6fTkEK7\nqIfLCaKjzzB0yAq+Xb/f2akUS3leW87K09XHixZTnuC38Ff43wNhpMfG02hUwRdAi4sLfLQPBpOR\nTQMnsGnAeIxurgQ+ci/mihVoO3c0B19fyeaB4ex/6R1az34Go4tj/5bjzGvu6uNFyxeeYNf4V/nl\n/rGkxcbReFT/UsU1GvEgGXFn2dgvnM0PP0/d+2/Dp0VDACq3bMifH37NptDnbD+Obmw5o54uPt40\nmfQUeyfOY1v/Z0iPjSNwZGipYgLuuIm2b83Azd8v33aVWgRz/KOv2DFknO3namro4uNF8+dHsGfC\ny2x+cDTpsXE0empgqeOq39mNDm9Pxb2qb/58WwZzdOVXbB0Ubvu5knzL6rPu4uNN08kj2TtxPlv7\nPUP6yTiCnip4rYuKqdnnNirUDmBb6Bh2DJ1A7X698W4aBIDZ25Pg8cMJDhuKAUOBY1dqGUzdwfeW\nupYuPt4ETxrFgUnz2DHgP6SfjKP+iMF2x9QZcj8Gk4ldQ8aw8+ExmNxcqfNwXwAahj3O6a9/ZNcj\nYRya9QZNZ4SB6eq/jhm9fPAb8TwJL0/g1OgHyYmLxWfgU/lizNXrUHnQ08TPeprT4YNIXvsOVcLy\nGqk+/Z4k52w8p8cO4PRzj+DVoy+uDVtcdV4FVKiC+fYl5KwbSPa7bbAmH8XUdXrhsT6BmLvNAsPF\n+phungNZF8h+rx05H92MsV5PDA1uv+q0XHy8aTxpFPufm8f2AU+TcTKOBiMHlSqm2u030WbxzAKf\nSY0njyLzTCK7HhnHnqenEvTsUNz8838OyD/bP7LBtXDhQlatWlVg+ahRowosW7VqFQsXLrweaV08\n5sqd9OnbmtvvaHZdj1tayvPaclaeVTq2JPnAn6SdOA3A8c++p8btXUoVl/RbJFHvfA5WK1isnD94\nFPcAfzzqVCc7NZ3EHXlf1C8cO0nOhXRb48FRnHnNL6/TsU9/oMYdJdfz0rgD8z8g8rWVALhV8cHo\naiYnNQ2Ayi0bUeWGZty44kU6LZ2Cb5vGDj8nZ9TTt0MrzkdGkR6TV5/Ytf9HQK+udse4VqlMlW4d\n2DNmVoF9V2oRTOV2zbnh3Tm0XTwDn9ZNripXv5BWJB+Itl3LE599T8DtN5Yqzq1KZare1J7do18q\nsJ1Py0b43tCcju/Ppv3bU6nc5sryLavPum9IS85HRpN+4u/r+F3Ba11MjP9NIZz6789Ycy3kpFwg\n7ofNBNyet67arZ3ISkzi8MIVBY7r6luJ4LHDOLyo4LqSVO7QmpTIKNJjTgFw8vNvqdazq90xyXsO\ncPz9NX/V0ULqoSO4BfgDYDAZMXt5AmDyqIAlK7vU+RXGvVUIWdEHyDl9AoCU7z+j4o35GyLWnGwS\nl7yI5VwiAFl/RmLy8QOTmaT3FnBuxet5eflUweDiiiUt9Zrkdilj3Vuxnt4F56IByN2zFGOTfgUD\nzRUw37mcnF8m5FtsqNYGy4FVYLWAJRvLkW8xNryyqbovVblDq/zXc+3/FXLNi475+zMpIuzF/Kfh\n5UnlDi05unw1AJlnzrJ7+ASyz1/72krZ9a8aUrho0SJnpwDA5Cl3ALB16xEnZ1I85XltOStP92p+\nZMQl2n7PiD+Li6cH5ooV8g01Ki4uYdvei3EBVag34A72zVpK2vFTmD3cqRLSgoRte6nUtAFeDWrh\nVqWyQ8/Jmde8QjVf0u2oZ0lx1lwLraePJODWDpzesJPUYycByE5OIeabTcRt2EnlVsHcsGAM/xs4\nkYz4sw47J2fU072aH5nxF+uTeSYRs2dFTB4VbMNziovJSkhi38R5he47OzmV09/+QsIv26nUsjEt\n54azfXAYmWeurIbu1fzIuDSP+ERcPD0wVayQb7hgcXGZCUnsCV9QZL6n1m8kfsMOfFoF03r+OLaE\njiezlNe8rD7r7lWrkHHJcMnM+ETMnh75r3UxMe5V8+ebGZ+IZ1BdANvQwuq9b85/UKORZtOeIWrR\nCiw5OSXmeDm3qn5kxl+STyH3Z3ExSdv3XNxXNX9q9ruLQ3MWA3B4wVJavT6NWv3uxqWyN5EvvAy5\nllLneDmzXzVyEuNtv+cmxmP08MRQoaJtWGHumVPknjlli6n88LOk79wIuX/VyJKL36hpeIR0J23H\nBnJOHrvqvArwroU1Jebi7ymxGNwqgatXvmGFph4LsUS8g/XMvnybW0/twNh0ALknt4DJDWPD+8By\n9Y1W92pVyIwr/poXF5OVkMT+5wp+JlWoFUBWwjlqD7gb345tMbqYObFqHeknThWILY80S6F9rluD\nKzs7m4kTJxITE0Nubi6PPvooq1aton79+hw5cgSr1corr7yCv78/CxYsYOfOnVgsFh555BHuuOMO\nBg8eTOPGjTl8+DCpqam89tpr1KxZs8jj/fDDD6xfv56MjAwmT55My5Yt6dKlC5s3b2bnzp3MmjUL\nb29vTCYTrVu3vl5lELn+DAWH2QBYL/8fvB1x3o3r03beGI6t/j/ObPoNgF1h82k0sh/BT4dy9rc/\nSNyxH0t26b/glBvGwgcGFKinHXG/T3kT0+zltJs7mobD+nL47c/YNf5V2/qkPQdJijhMlZAWxHz1\nDxnv/7ei6mOxlC6mEJc2xJIj/iB570F8O7Ti1Nc/lz5PwGAs/Nm4/EuyvXGXu7Qhdm7PQZIjDuHX\noSUn/7uhNGmW3We9iLrkv9ZFxxRW1wLndJmgkQM59/sBzm6PwKdt05JzvIzBjnvPnhjP4AY0mxXO\nyc/Wc/bXXRhcXWgyPYw/XlzI2V934dWsEc3nTCQlMirfHxeuiKGIQUuFfCE2uLnjN/IFTH5ViZ/1\nTL51iYte4OzSl6gSNodKDzxG8pqlV5dXwaOXmKex1XCw5GDZ9wF418kXlvvLREw3zcI8eAtcOI3l\n2E8Ya4Rcg7TsuE/tibl8t2YTFWpWI+dCOr89OYkKNQNovXgmaSdOkXrwz6tKWcqP69bg+uSTT/D1\n9WX+/PmkpqbSt29fXF1duf/++5k+fTorV65kyZIldO3alZiYGFatWkVmZiYPPfQQXbrkDXVo2bIl\nkyZN4pVXXuHrr7/m8ccfL/J4NWvWZPr06Rw+fJjx48fz+eef29ZNmzaN119/nfr16/PCCy84/NxF\nrreGTzxA1W7tADBXrEBK1AnbOjd/X7KSU8nNyMy3TUZcIj7Ng4qMq96jE03Dh3Jg3ruc+r9f84IM\nBnLTM9j+5Azbdl1XzyftryFg/xSNnniAqt3aAuBS0YPz0RcnCnAvqp6nE/BpHlhoXJWOLUmJOk5m\nwjly0zM5+X+/EtC9A2ZPD+o+2IPod7+8uCMDWK/gL/RlXcbpM3g3vTgczc3fl+zzKVguqaM9MZcz\ne3pQ8/7bOfb+2osLDYZS93IEPv4g/t1uyNtnxQqkRl285m7+vmQXcc0rNQsqMe7yfGs/0JMj731x\nSb72X/Py8KxnxiVQqdll1zE5Nd91LC4mIy4hX0+am79viY2TgNu7kZWUjP9NIZgquOPm70uHD+ax\n/eFxJeYLefee16X3XhW/Qu/P4mL8b+1Cw7GPE/XyMuK//x8AFRvUweTuxtlfdwGQsv8QaUdO4NW0\nEZnxW+y0UauzAAAgAElEQVTKrSg5CadxDbo4LNjk609uajLWzPzvA5r8quEf/jLZsUeInzYSa3Ze\nvu6tOpJ9PIrcpASsmemkbf4/PEK6X1VOhUqJwVC9/cXfPWtgTT8LOWm2RcZmg8DFA/PgLRhMLnnD\nCwdvIWdtHzCayd04GTKS8mLbj8F67uobLplxCXhfcg+6+he85vbEXC4rIS/P03/9wSc99jTJEZF4\nN22oBte/yHV7hys6Opr27fMeME9PTwIDAzl+/DgdO3YEoG3bthw5coRDhw6xf/9+Bg8ezLBhw8jJ\nySE2NhaApk3z/koVEBBAZmbRNzdgO1bDhg05c+ZMvnUJCQnUr1/fdlyRf5rDSz5lc+hENodOZMuj\nU/Bp3hCP2gEA1Ln/NuI37iywTcLWiCLjArp3oMnYIez4z+yLX8AArFZueDUc7yYN8uJuDcGSk3td\nZim8ng4t+dQ2gcXmR6dQOV+dbiXul10FtjmzdW+RcTV6hNDw8fsBMLqYqd6jI4k795OTlk69B3sQ\n0D3v88s7uC4+zQKJ/zXiepzmdXV2+x4qNW9IhVp59anRpycJG3eUOuZyOWkZ1Lq/F/435/3F27NR\nfbybBHF2a+lmgYt+e41tAovtQydT6ZJrWatvj0KfocRtEXbF5c83ndoP9KLqLR0A8GpUj0pNg0jY\nsqfY7f5WHp71xG1/Xce/jlezT0/O/G+H3TFnNu6g+t235L375OlBtR5dOFPCfbDprsfZPngc2x8e\nR+TsxaTHnra7sQWQtH0P3s0aUaFW3sx4Nfr0JPGynIuLqXJzJ4JGDyNi9HRbYwsgPeYU5ooeeDcP\nBsC9ZjU86tUi9fDVf/HOiNiGW8PmmANqA+DZo2/ecMFLGCt6U23qEtK2/0zia5NtjS0Aj4634f3A\nsLxfzC54dLqNjH3F379XwnL0RwzVO4BP3h+kTK2GYYn+Ol9Mzkc3kfN+e3JWdCJ7bV/ISSdnRSe4\ncBpTq2GYOk/+K+mqmFo8giXyk6vO6+z23/Nfz/t6kvC/yz+TSo65XMapeFL+iCbgzpsBcKlciUot\ngkn5I+qqcy4TLLll+6eMuG49XIGBgezcuZMePXqQmprKoUOHqFWrFvv27SMgIIDdu3cTFBREgwYN\nCAkJYcaMGVgsFt58801q165d6uNFRERw9913c/DgQWrUqJFvXbVq1YiOjiYwMJC9e/dSqVKla3Wa\nImVOVtJ59k5/izYvPYvRxUxaTBwRU98EwLtJA1pMHs7m0InFxjV6qj8Gg4EWk4fb9pu05xAH5r7L\nnucX0WLScAwuZjITktg9rvD3VP4pspLOs2f6EtrNyZuh7UJMHHteyHs3o1KT+rSYPJxNoc8VG3fg\nlZW0eO4xun0yB6vVStyGXRxZ9S1YrewMW0CzcY/Q6IkHsOTk8tvEhbaphf9JspPOEznzDZrPGovR\nxUx6bBwHpi/Eq3EgjSc+yY4h44qMKZbFQsT4uTQaM5T6w/phzc1l3/MvX1UNs5LOs3/GYlq9NAaD\n2Ux67Gn2Tn0DyHuGmk56gq2DwouNKzpfK7+Pm0fjsY8S9PhDWHJz2TPptSvKt6w+69lJ5zkw401a\nzArLu44xceyfvgivxg1o8twItj88rsgYyJtAo0LNADqsmI/RxUzs599z7rcDpa5PaWSfS+bgrEU0\nnTkOg4uZjNjT/DHjdTwbBxI8YSS7HgkrMgag/pN5MywGTxhp22dyxB9EvbyU/c/NIfDZxzC6umDN\nyeXQ3LfIiI276pwt55NIXDyDKmNewmA2k3M6lsQ3puLaoAm+T0zidPggPHvej6lKNTza34xH+5tt\n28bPeIqkFa/iO3wCAfNXgdVK+o5fSFn/8VXnVUD6GXL+70nMd6/EYHLBeu4IOd8Ox1CtDaaeb+Y1\nrIqRu20+5juXYR6S19DJ3TILa9zuq04rO+k8f7z4Bs1eHGu7npF/fSYFTxjBzkfGFhlTkn0T59Iw\nbDg17usFRgNH31lDSmT0Vecs5YfBarVar8eBsrKyeP755zl+/DiZmZkMHjyYtWvX4u3tTXJyMhUq\nVGDu3Ln4+Pjw0ksvsXfvXtLS0rjtttsYNWoUgwcPZurUqQQGBrJq1SoSEhL4z3/+U+ixFi5cyIED\nB7hw4QJZWVlMnTqVxo0b297hioiIYNq0aXh6elKxYkWaNGlS5L4ulcvKa12Wa8pEaJnPEZTntWYi\nlPXtC079XNbcsWNVuann1zcUnPK7LOm98yOgfHwm/dTpAWenUaLuWz7luw6FzJJWxvTc/km5edZ/\n7Pigs9Mo0a1b1/BLl77OTqNEN21ey/F+HZydRrHqfLIdgKwFFZ2cSfFcwy6wofP9zk6jRDf/+pmz\nU7Bb5u6Ozk6hWG5ttzo7BeA69nC5uroyZ07+f5Bw7dq1jBkzhsDAwHzLJ06cWGD7FSsuTus6YEDx\n/8MpqvG0efNmIO9dsM8+Kz83s4iIiIiIlE/lelr4UaNGkZycnG+Zp6cnixcvdlJGIiIiIiL/DoYS\nZo2VPE5tcF3aa3Ulysq/qyUiIiIiIlKY6zZLoYiIiIiIyL9NuR5SKCIiIiIiTlKGpl4vy9TDJSIi\nIiIi4iBqcImIiIiIiDiIhhSKiIiIiEjpaUihXdTDJSIiIiIi4iBqcImIiIiIiDiIhhSKiIiIiEip\nGaz6h4/toR4uERERERERB1GDS0RERERExEE0pFBEREREREpPsxTaRT1cIiIiIiIiDqIGl4iIiIiI\niIMYrFar1dlJiIiIiIhI+ZK9uZmzUyiWS5f9zk4B0DtcpZLLSmenUCwToWU+R1Ce15qJUL7r0M/Z\naZSo5/ZPyk09v+3Q39lpFOv27R8D5eMz6fuQh5ydRol6bFvNjx0fdHYaJbp165py86yXl3r+0qWv\ns9Mo0U2b13K8Xwdnp1GsOp9sByBrQUUnZ1I817AL5ebeLDcsmhbeHhpSKCIiIiIi4iBqcImIiIiI\niDiIhhSKiIiIiEjpaUihXdTDJSIiIiIi4iBqcImIiIiIiDiIhhSKiIiIiEipGSy5zk6hXFAPl4iI\niIiIiIOowSUiIiIiIuIgGlIoIiIiIiKlp1kK7aIeLhEREREREQdRg0tERERERMRBNKRQRERERERK\nT0MK7aIeLhEREREREQdRg0tERERERMRBNKRQRERERERKT0MK7aIGl5NYrVYmTVxHUEN/hj7W2dnp\nFEl5XlvOyrNKlzY0HDkAo6sLKVHH2T/zLXIvpJc6zq2qHyHvzGRL6Hiyk1MA8L+xLc1feIr0uARb\n3I7HXyA3LcOh5+TMa+7fpQ2NRva31WnvzCWF1rOkOPeqfnR8ZwabQ8Nt9XTxrkiTsY/iWb8mRjdX\n/nz3C06u/5/Dz+l61rNKlzYEjRiI0dWF1Khj7H+x6Pux0DijgeBnh+AX0gqDycSxlV8R8/n3AHjU\nDqDp5BG4VPIiNy2DfdMWkXbsJAA+rZvQ8D+hmNxcyUlNY//0N0k/GW87nl/ntgSOHIjRJe94kS8u\nJjctf15FxhiNNHpmCL5/5XT8o3XE/pVThdoBNJ00EpdKXuSkZXBg+kJbTi1mh+EZVI/c9LznJWnX\nPg6/9j7u1f1pPP5x3KtXITctg2Mr19ld27L4rDuqtn+rftct+N/cgYixc2zLGjzRn2q3dSY3PZPk\nvQc5/Nr7WLKy7aojgG+ndtR/MhSjqwsXoo5xcPYbBXIuKsbo6kpQ2HC8mgRhMBo4v/8wUQuWYsnK\nsm3rXr0qbd+ZR8To6aT+EW13XsVxb9MFnwEjMbi4kn08isS3ZmJNv5AvxuPG2/G+ZzBYrVgzM0h6\nbwFZf0ZiqFARvycnY65ZD4PBQOov35Cy7oNrktflDPV7Yeo6HYPJFeuZfeR8NxKyUgqPDboL8+1L\nyV5U/a+TrIzptlcx+rfEmp2GZf8KLL+9VarjO+NZ92ndhKBRgzD+9flzYMYbZJyMp93bMzG5u9mO\n61GnRqnORcoHpw0pXLt2LfPnz8+3bPTo0WRd8mF0uS5duti9/+7du5OZmZlv2caNG/nkk08KxD70\n0EPExMTYve+rFR19hqFDVvDt+v3X7ZhXQnleW87K08XHi+bPj2DPhJfZ/OBo0mPjaPTUwFLHVb+z\nGx3enop7Vd9821VqGczRlV+xdVC47cfRjS1nXvO8Oj3JbxNe4X8PjiEtNp7gpwaUOq7GnV0JKaSe\nLaaMICP+LL8OnsiOUS/SJGwIbpfFXGvXs54uPl40mzySiIkL+PWhZ0mLjafhyMLvx6LiavXpgUft\nALYMDGPboxOp0/9OvJsGAtB82tPEfPYdW/qPIXrpalq9FAaAW1VfWs0dyx9zl7N10Hjift5G4/HD\nLjmeN00nj2TvxPls7fcM6SfjCHoq9LKcio6p2ec2KtQOYFvoGHYMnUDtfr3xbhoEQLOpzxCz9ju2\nDhjNkWWf0GL2WNs+KzVvxK4RU9j+8Di2PzyOw6+9D0DT50eRvP8QW/uPZveoadQddK9dtS2Lz7oj\na2v29iR4/HCCw4ZiwHDxHHrfTJUu7djx6AS2PzyOzIQkGjzRv8RcL80neNIoDkyax44B/yH9ZBz1\nRwy2O6bOkPsxmEzsGjKGnQ+PweTmSp2H+9q2Nbi60HjKsxjN1+7v3kYvH/xGPE/CyxM4NfpBcuJi\n8Rn4VL4Yc/U6VB70NPGznuZ0+CCS175DlbC8RqpPvyfJORvP6bEDOP3cI3j16ItrwxbXLD+bClUw\n376EnHUDyX63Ddbko5i6Ti881icQc7dZYLj4ddV08xzIukD2e+3I+ehmjPV6Ymhwu92Hd8az7ubv\nS8s54zg4bxnbB4/jzM/baDxuOAC7Hp9se/7/XPoJGafikX+eMvUO1yuvvIKrq6vD9t+tWzf69evn\nsP3ba9XKnfTp25rb72jm7FSKpTyvLWfl6RfSiuQD0aSdOA3Aic++J+D2G0sV51alMlVvas/u0S8V\n2M6nZSN8b2hOx/dn0/7tqVRu08SBZ5PHmde8SkjLAnWqXkg9i4v7u547L6uni3dF/Dq0JGrppwBk\nxp9ly9DnyU5OdeQpXdd6+oW0IjnyYl1i1n5HwO1dSxVX9aYOxH61AWuuhZyUC5z+/leq394NN//K\nVKxXg9Pf/wpA4pbfMbm74RVcn2rdO5L46++kHDwCQOznP3Dwlfdsx/MNacn5yGjS/zpe7NrvCOiV\nP6/iYvxvCuHUf3+25RT3w2YCbu+Km78vFevVIO77zRdzqpCXk3v1qpg8KtA4/HE6fDifJpNHYvb2\nBMCrcQNOfb0BgNy0DJJ2ldwYLqvPuqNqC1Dt1k5kJSZxeOGKfPvzahzImY3byUlNA+DMhm1U7d7R\nrnwBKndoTUpkFOkxpwA4+fm3VOvZ1e6Y5D0HOP7+GrBawWIh9dAR3AL8bds2HDOc09/8ZOs9vBbc\nW4WQFX2AnNMnAEj5/jMq3pi/IWLNySZxyYtYziUCkPVnJCYfPzCZSXpvAedWvA6AyacKBhdXLGnX\n/rPHWPdWrKd3wbm8Xr3cPUsxNinku5m5AuY7l5Pzy4R8iw3V2mA5sAqsFrBkYznyLcaGfew+vjOe\n9ardO5Kw5beLnz9ffM+hV9/Nf7renjQeP5z90xbafS5Sfjh1SOGePXsYOnQoZ8+eZcCAASxZsoT1\n69dz+vRpJkyYgNlspmbNmsTGxrJixQqysrIICwvj5MmT+Pj48Prrr+Pi4lLk/qdMmUJsbCx+fn7M\nmTOHb775hj///JOxY8fyyiuv8L///Y+AgACSkpKu41nD5Cl3ALB165HretzSUp7XlrPydK/mR0Z8\nou33zPhEXDw9MFWskH94WzFxmQlJ7AlfUOj+s5NTObV+I/EbduDTKpjW88exJXQ8mfFnHXZOzrzm\nl9cpw856ZlxWz9/DXy6wb49aAWQmJlEvtDf+nVpjdDVz5MP/knb8lEPP6XrW072aH5lx9t2PRcW5\nV/Mj87J71TOoDu7VqpB5JinvS+5fMs6cxb2qLx61q5ObkUGLmc/gUacGGXEJHHrl/YvHq1qFjEuG\nymXGJ2L29MDkUcE21Ki4GPeqfmTEXZ5TXdyq+hXIKTP+LG5V/TCYTZzdsZeD85aSlXSeRqMfoemk\nEUSEz+P8/sNU730LR5atxsXHG7/ObeyqbVl81h1VW8A2lKt675vzHfP8/sPUHtCbmDXfkn0+lYA7\nb8LNr3KxeV7KraofmfGX5HMmEbNnxXw5FxeTtH3PxX1V86dmv7s4NGcxAAF334bBbOb0Vz9Qd8gD\ndudUErNfNXISL/aO5CbGY/TwxFChom1YYe6ZU+Seufh5UvnhZ0nfuRFyc/IWWHLxGzUNj5DupO3Y\nQM7JY9csPxvvWlhTLhlVlBKLwa0SuHrlG1Zo6rEQS8Q7WM/sy7e59dQOjE0HkHtyC5jcMDa8Dyz2\nDxV1xrPuUacGlvRMms949uLnz6vv5cur7uB78xplf/xp97mUCZZcZ2dQLji1h8tsNrN8+XIWLVrE\n++9f/B/f3LlzefLJJ1mxYgVt27a1LU9LS2P06NGsWrWK1NRUIiMji93/gAED+PDDD6lZsyarV6+2\nLd+7dy87duzg008/Ze7cuVy4cKGYvYiUbwajofAVuZYrirvcnvAFxG/YAcC5PQdJjjiEX4eWpc6z\nvDAYi/jYLFBP++LybWM24VGzGrmp6Wwb/gJ7Jr1O49EP4924/pWmW/YYCq+L9fK6FBdX2L1qsYCh\n8HvYarFgMJvx79ae6CWfsO3hcM7u2EerOReH9hW6z7+2tSemsOfHmlv48r/Xnd8fxd4J88hKPAcW\nC38uXY1fl7YYzGYOTF9ExXo1CflwAU0mjSBh865C93OpMvusO6i2xTn97Ubif9xCmzde4Ia3Z5J2\nNBZLdk7Juf6lqOf30pztifEMbkDrN2dy8rP1nP11F56NGlDjvp4cnle6d47sUsQzU9gXYoObO1VG\nz8YcUIvEJS/mW5e46AVihvXE6FmJSg88du3zpIj775I8ja2GgyUHy76C75Dl/jIRsGIevAXzvR9j\nOfYT5Bb9OkoBTnjWDWYTVbq1J/rtj9k+ZDxnd+6l5UvjLh7O1YWa997G0ffW2n8eUq44tYeradOm\nGAwG/P39yci4OA48OjqaNm3y/prXrl07vvrqKwAqVapErVq1AKhSpQrp6QVfBP6bi4sLrVu3BqBt\n27Zs3ryZFi3yxiIfPXqU5s2bYzQa8fT0pFGjRg45PxFnCXz8Qfy73QCAuWIFUqOO29a5+fuSnZxK\nbkb+dxwzTidQqVlQiXGXMnt6UPuBnhx574uLCw1gzbH/i015EPT4g1Tt1g7Iq2dK1AnbOjd/X7IK\nqVN6IfUsLO5SmQl5ve0xX/8CQFpMHOf2HKRSsyDO/1G2e3CLE/j4Q/h3zbsfTRUrkBpd8H60XH4/\nxiVQqXnB+9GSkUnG6QRc/XzyrcuIP0tGXP7lAO5/rctMOMu5iIO2YXSx636icdijGN3yRklkxiVQ\nqVnDYvMqLiYjLgG3KpXzrcuMTyyQ66XrfFo1xuztScL/dgJgMBjAYsVqsWB0d+XAzDdtxw8eP7yI\n2pb9Z91RtS2O2duTuO82ceyDvHy9mwWRHnO6xFz/lnH6DF5NL8mnih/Z51Py5VxSjP+tXWg49nGi\nXl5G/Pd5E99Uu+NmTB4etFkyGwDXKpVp8sKz/PnGByRu2mF3foXJSTiNa9DFYcEmX39yU5OxZuZ/\nz87kVw3/8JfJjj1C/LSRWLPz8nVv1ZHs41HkJiVgzUwnbfP/4RHS/apyKlRKDIbq7S/+7lkDa/pZ\nyEmzLTI2GwQuHpgHb8FgcskbXjh4Czlr+4DRTO7GyZCR93lpbD8G6zn7e4Wc8axnnkkiee9B2xDF\nk+t+InjMUIxurlgys/Dr1IbUw0fJOKn3t/6pnNrDZSjir5GNGjXit99+A/KGHZYUX5js7GxbD9jO\nnTtp2PDigxMUFERERAQWi4W0tDSioqKuJH2RMiv67TW2l9q3D51MpeYN8agdAECtvj2I37izwDaJ\n2yLsirtUTlo6tR/oRdVbOgDg1agelZoGkbBlT7HblTdRb6/h10ET+HXQBLYOfR6f5kG2OtXpe1uR\n9bQn7lLpJ8+QHPknNXt3A8DVtxI+LRqRfODazGDmLNFvr2br4PFsHTye7Y9NKnif/a/gF83EbXuK\njDuzcSc17+6OwWTE7OlBtR6dOfPLdjLjz5IeG0e1HnmzLPqFtMJqsZAadZz4DdvxaRWMe/W892iq\n3dKB1OjjWDKz8x2vwl/Hq9mnJ2cuy6u4mDMbd1D97lsuyakLZzbuIPPMXzndlpeT7985RR/H5OFO\nozFDbe9t1Rl0D/E/bwWLhQbD+lGrb08AKtSubmuwFqxt2X/WHVXb4ng3bkCLOeMwmEwYTEbqPdyH\n0/9n/2yfSdv34N2sERVq5c2MV6NPTxIvy7m4mCo3dyJo9DAiRk+3NbYAol97hx0DRrHrkTB2PRJG\nVkISkdNeverGFkBGxDbcGjbHHFAbAM8effOGC17CWNGbalOXkLb9ZxJfm2xrbAF4dLwN7wf+mkjG\n7IJHp9vI2Ff8fXElLEd/xFC9A/jkTXRjajUMS/TX+WJyPrqJnPfbk7OiE9lr+0JOOjkrOsGF05ha\nDcPUefJfSVfF1OIRLJEFJ0QrijOe9TO/bMenZTDu1asCUPXmkL8+f/J65nzaNOXszr2lKWOZYbBY\nyvRPWVEmp4UfO3Yszz33HO+88w5eXl6Yr2AWHxcXF1asWMGxY8eoUaMGYWFhtp6yJk2a0K1bNx54\n4AGqVq2Kn5/ftT4FkTIjK+k8+2csptVLYzCYzaTHnmbv1DcA8G7SgKaTnmDroPBi44pksfL7uHk0\nHvsoQY8/hCU3lz2TXrumL4KXNVlJ59k74y1avzQao9lMWmxcvno2n/Q4vw6aUGxccX4bv4Cm44dS\nu+9tGAxGopd/xvnIcjamvxjZSec5MGMxLWf/fZ/FsW/aIiDvS3LTSU+ydfD4YuNi1n5HhVrV6Pjh\nPIwuZmI+/4Gk3/L+wLZ38qs0mfgEDR7tiyUrm4jnXgGrldTDx/hjzjJazx2HwWwiO+VC3rp8eb1J\ni1lhGF3MpMfEsX/6IrwaN6DJcyPY/vC4ImMg76X6CjUD6LBiPkYXM7Gff8+53w4AsO/5V2gy8Unq\nPXo/lqxs9k16GaxWErf8Tsyab7jh7RlgMHIh+jiRs/OGmkUtWkHTF/5D9Ttvxpqby4GZb9LmtcnF\n1rasPuuOrG1Rzm6PwKdtM0JWzgeDkTMbt3P846+L3SZfzueSOThrEU1njsPgYiYj9jR/zHgdz8aB\nBE8Yya5HwoqMAaj/ZN6MdsETRtr2mRzxB1EvL7U7h9KynE8icfEMqox5CYPZTM7pWBLfmIprgyb4\nPjGJ0+GD8Ox5P6Yq1fBofzMe7W+2bRs/4ymSVryK7/AJBMxfBVYr6Tt+IWX9x9c+0fQz5Pzfk5jv\nXonB5IL13BFyvh2OoVobTD3fzGtYFSN323zMdy7DPCSvAZS7ZRbWuN12H94Zz3rq4aP8MXcpLefk\nff7kpFxg76SL7/F61K5O3DX6pwGkbDJYrZe83VdGrFu3jlatWlG3bl3WrFnD7t27mT17trPTIpeV\nzk6hWCZCy3yOoDyvNROhfNfB+bNvlqTn9k/KTT2/7WD/9NHOcPv2vC9BZb2eJkL5PuQhZ6dRoh7b\nVvNjxwednUaJbt26ptw86+Wlnr906VtyoJPdtHktx/t1cHYaxarzyXYAshZUdHImxXMNu1Bu7s3y\nIvfr6s5OoVim3o6ddMpeZbKHq3r16owePZoKFSpgNBqZNWtWoXERERHMmzevwPI77riDgQML/tsj\nIiIiIiJyjZShYXtlWZlscLVv3561a0ueqaVly5asWLGixDgRERERERFnKFP/8LGIiIiIiMg/SZns\n4RIRERERkTJOQwrtoh4uERERERERB1GDS0RERERExEE0pFBEREREREpPQwrtoh4uERERERERB1GD\nS0RERERExEHU4BIREREREXEQvcMlIiIiIiKlZ7E6O4NyQT1cIiIiIiIiDqIGl4iIiIiIiINoSKGI\niIiIiJSepoW3i3q4REREREREHMRgtVr1tpuIiIiIiJRK7hofZ6dQLNOD55ydAqAhhSIiIiIiciU0\npNAuanCVQi4rnZ1CsUyElvkcQXleayZC+W+7UGenUaK7dq0sN/VcV8brec+uvDqW9XqaCOXHjg86\nO40S3bp1Dd+HPOTsNErUY9vqcvOsl5frvrFLH2enUaJumz/nRP/2zk6jWLU/3gFA1oKKTs6keK5h\nF8rNvSn/LHqHS0RERERExEHUwyUiIiIiIqWnf/jYLurhEhERERERcRA1uERERERERBxEQwpFRERE\nRKT0rJql0B7q4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUnqaFt4u6uESERER\nERFxEDW4REREREREHERDCkVEREREpPQ0pNAu6uESERERERFxEDW4REREREREHERDCkVEREREpPQ0\npNAuanA5idVqZdLEdQQ19GfoY52dnU6RlOe15aw8q97Ymsaj+mF0MXM+6gQR05eScyH9iuLazXuW\nzDNJ7Jv7PgB+NzSlyTMDMJpN5GZms3/e+5zb/6fDz6msXPOqN7am6SU1+72Y2hYV1+uHxWTEJ9li\no1b8l9j1v163c4DrV0+/zm0JHDkQo4sLqVHHiHxxMblp6fbFGI00emYIviGtMJhMHP9oHbGff59v\n2+p33YL/zR2IGDvHtqzF7DA8g+qRm54BQNKufRx+7f0Sc63SpQ1BIwZidM3LY/+Lb5FbyLUtMs5o\nIPjZIfj9le+xlV8Rc1m+Ne6+hao3deD3S/Jt+VIYXkF1bfme3bWfQ6+WnC+U3WfdGdf9b7UfupMa\n997KttAwu3L9m2+ndtR7chBGVxcuRB3j0OxFBXIuKsZU0YNGE5/Co24tMBiIW/8zMSs/B8CzcRCB\nz0ywxMoAACAASURBVAzFVMEdg9HIiQ8/J/67X0qVW1Hc23ShUv+nMLi4kn38MGeXzMSafiFfjMeN\n/8/efUdHVa19HP9OS2+kh05CKAFCb6KICAhYaVJCQEAQEZXem4B0Ua+KoIgFERBBX8tFio0OCQKh\nlyAJBNJ7z5T3j9EJIW0SEibxPp+1WIuZeWbO7+wz58zs2fuc9MHx6eFgAENuNkmfrSHv+sUCNW5T\nVqFLiiP509UVkuteigZPoHpkMQqVFYa4c2j3ToDctKJrGz6FuvfH5L3v8/dK1kDV4x2UHoEY8jLR\nn9+M/tT6cmep7PemjY8nHT5byanXl5B2KX9/UWjUtHxrNre/3Ufsb8fKnV9UD1VmSuGuXbtYs2ZN\nhb3erFmzOHDgQIH74uLiWLRoUaHaNWvWsGvXrgpbdmnCw+MYPXIzP+8+/8CWWR6Ss2JZKqeViyMt\nF47j5PR3+H3AdDJvxdLk1cHlqvMb8RSurRubbivUKtosn0jY0o0cGDqHq598R6vFL1f6OlWVbW7l\n4kjrheMImf4Ovw6YTsatWJoW07bF1dnX8yEvNYM/hs0x/XvQna0H1Z4aFycC5k3g7Ow1HBv8Olm3\nY2j4SpDZNbX69cC2jjfHg6YQMnoWdQY/iVNAQwDUTg40njGWxlNHo0BR4DWdmzfi5MsLODFiOidG\nTDers6VxcaTZvAmEzX6LI89PIjMqFv8Jw8pUV7tfT+zqeHN02FSOj5pN3SF9cQrw+zuvPU1njqXJ\n1FHcExeX5v6Ejl/IseAZHAueYXZnq6ru65ba7gDOgY2pF/ysWTnvzdNo7qtcmLuK0KETyb4dTYOX\ng82uqT92KDlxCZwMfp1TL06nZr/eODYztmfAmzOI+GQbf74whbNTl+D72ihsavuUOeO9lI4uuI5f\nQMLbM4meMhBtbBQuQycWqFH71MMl6DXilr9GzKwgUnd9gvuUVQVqHJ8OxrpJq/vOUyxbd9S9N6D9\nfhh5n7bGkHID1SOLi6518UPddRko8r+uqrqthNwM8j5ri/arbijr90Lh27tcUSrzvQmgtNLQ7I1X\nUWgKjm84NW9E+43LcAlsUq7covqpMh2uB8HDw6PIDteDtnVLKP36t6J3n2aWjlIiyVmxLJXTo3ML\nki9cJ+NmDAAR3+ynVp8uZa5zaxeAx0OBROz8xXSfQatjf59XSb0cAYBdLU9yU9Irc3WAqrPN722z\nG9/sp7YZbXt3nWugPwa9noc2zKXbtuU0GtsPlIW/OFamB9Werh0DSb0YTtbNaACidu3F+4lHzK7x\neLQjd378DYNOjzYtg5j9h/HubXzM6/HO5CYkcfW9zQVez8bHE5WdLU1mjqPDl2toOm8CaieHUrO6\ndWxJysVwMv/OcWvXXtOyzK3zfLQDUT/8bsobve8IPr27AuD9+EPkxCdx5T/35vVAZWdL05lj6fTl\nagLmv4zayb7UvFB193VLbHcAK1dnGk97kavvF36sNDU6tCLt4lWyb90B4Pa3P+PZq6vZNeHvfML1\n9z8z5nCrgUKjRpeRgcJKQ+Sn20kODQMgNy6BvORUrD3dypzxXjaBncgNv4A2+iYA6ft2YvdwwY6I\nQZtL4kdL0ScnGJd//SIqFzdQGTsE1gFtsWnZmfT9lfcjtLLe4xiiT0JyOAC6Mx+jbFr4hwHUtqj7\nfoL2j1kF7lZ4tUZ/YSsY9KDPQ//Xzyj9+5UrS2W+NwEaT3uROz/9Tl5KaoHXrPN8H8I3bCP1wtVy\n5a5KDPqq/a+qqHIdrk2bNjFgwAAGDx7M6tWr0el09OzZE61WS2xsLE2bNiUpKYnc3Fz69St5B/vq\nq68YOXIkw4cPJyIiglu3bvH8888DsGfPHp577jlGjx7NmTNnHsSqmcxb0Idnngt8oMssD8lZsSyV\n08bLjezoRNPt7NhENA52qO1tza6zdneh2bRgTs1bB7qCRzCDVoeVqxM9dr9H09eHEv7Fj5W7QlSd\nbW7r5UaWGW1bUp1CrSLu+DmOTVzJoReX4NkpEN/BTzywdYAH1542nu5kx8SbbufEJqB2sENlZ2tW\njY2nG9kxCQUe++eLatS3+/jrk2/Q5+QWWKaVqxOJIWe5tGIDJ0bMQJeVTcDc0kdmbLzcyLlnWRoH\nO1RF7DfF1dl4uZETe29eVwBufbuP6598g65QXmcSQ85yYcVHHBsxA11mNs3mTSg17z9ZquK+bont\njlJJszde59r7m8mJS6SsrD3dC267uATUDvYFMpdao9PTeMEk2m1+l5RT58mMvI0hN4/oH/M7st7P\n9ERla0PauStlzngvlZsXuoQY021dQixKOwcUtvkddl3cHbJPHTbddgmeTNbJA6DToqzhjsvIqSS8\nPx/0uvvOUyyn2hjSbuXfTotCYe0MVo4F16fne+jDNmGIO1fgfsOdEJQBQ0GpBo09Sv/nUDh4lytK\nZb43az7THYVaxe3/y9/e/zi/4F0SjvxZrsyieqpSHa6IiAh2797Ntm3b2LZtGxERERw4cIB27dpx\n+vRpDh48iL+/P0ePHuXo0aN06VL4l7u7tWnThs8//5yxY8eyenX+POS8vDxWrFjBp59+yieffIKN\njU1lr5oQFqNQFD1aYrjny1RxdSigzfJXOf/WZnLik4ssyU1MZX+fVzk8ahEtF76Efd3yffhVN/fb\ntgadnshvf+Pc6i/Q52nRpmcSvuW/eD/WrsKzVgnFjNwZ9HqzahRFPHZvW98r9fw1zs5aTW5CMuj1\nXP/4a9y6tEGhLuUUZkXRH4+FlldSXVHroi8975mZa/7Oa+D6xztw79IahVpVcl6q8L5uge3ecMIw\nkk9fIPFEWOn5inKfmf9xefE7HHlyJGonB+qNer5AXZ3h/ak3ZgjnZy5Dn5t778tUWOaiOk8Kaxvc\nJi1H7V2bxA1LQaXC7bU3Sf5irWn0q/KUnlPZcizotejPfVGoTPfHbMCAOvgo6me3oY/4FXTlbL9K\nem86Nm5ArX69uLTyo/LlEv86VeqiGRcvXqRbt25oNBoA2rVrx9WrV+nVqxd//PEHt27dYvLkyfzy\nyy8olUoGDhxY4uu1a2f80tK6dWtWrcqfo5yYmIizszM1atQwPS7Ev0mj8QPw6toWALW9LWnXbpoe\ns/FwJTclHV12ToHnZEUn4NK8YaE6hwa1sKvpQcDk4QBYuzmjUClRWmu48PYW3Ns3I/q3UABSL90g\n7UoEjg3rkBEZXdmraRGNxw/A+662Tb2PttVl51C778OkXonIfx2FAoO2En9dtqCcmHicm/mbblt7\nuJKXko7+rvYqqSY7Jh5r9xoFHrt7hKEoLi2boHZyIP6g8T2qUChAbyj4hepvfuOex+MR4+eGyt6W\n9PDIErMCZMfE43zXti2QNzoeKzeXAo9lx5Y82uLSqgkaR3viDp7k78DF5oXqsa9bYrt79+5KblIK\nHo92RGVrg7WHKx2+WM2JEdNLfJ4pT3Q8jgGN8pfp7kZealrBzCXU1OjQiozrEeTGJ6HPyiZu/0Hc\nH+0MGC+W0Hjua9jVr83pl2aREx1nVqbS6OJjsG7Y3HRb5eqBLj0FQ052gTqVmxfuM9aijbpB3OKX\nMeTlYOXfArVnLVyCJxtrXNxAqUShsSLpozcrJJ9J2i0UPu3zbzvUxJCVCNpM013KZsNBY4c6+CgK\nlcY4vTD4KNpd/UCpRndgHmQbLzSkbD8FQ3L5LtRUWe9N7z6Pora3pd3Hxrazdnc1jbj+cyz615Cr\nFJqlSo1wNW3alLCwMLRaLQaDgZCQEBo0aECXLl0ICQkhKSmJRx99lPPnz3Pp0iUCA0ueAhMWZvxl\nKzQ0FH///J3Fzc2N1NRUEhONH3xnz56tvJUSwgKurN/JwWFzODhsDodfWEiNFg2xr+MFQL2BjxPz\nx8lCz4k7drbIuuSz1/jlyddMrxe58xfu7D1G2JKNGHR6AheMo0ZL45cOB99a2NevSfK58Ae3sg/Y\n5fU7TRe3OPjCQlzvarP6Ax8nuoi2jT12ttg6R7/aNH55ICgVKK01NHi+J1H7/p1XrEo4fgbn5v7Y\n1jGOitTq14u4gyFm18QdCMHn6cdQqJSoHezw6tmFuAMFn38vlZ0NjaaMNp23VXf4M8YrghXRgQn/\n6GvThSpOjJmLc3N/7P7OUbt/T2IPFl7WP3mLqos7EEqtp7vflfch4v44UXJeWxsaTx1tOm+r3vBn\niPn1WLFfaqrDvm6J7X7oqXGcCDZeJOXi8g/Jioo2u7MFkHTiNE7NGpkuZuHT7wkSDp4wu8ajexfq\njTKel6TQqPHo3oXkP43fNQKWTkdlb8vp8bMrrLMFkB12DKuGzVF71wHAoccAskMLXjxMae+E58IN\nZJ34jYT/zMWQZ+xY5F49y51XniJmVhAxs4JI37+TzKP7Kr6zBehv/ILCpwO4GC8go2r5IvrwnwrU\naL96FO3n7dFu7kzerv6gzUK7uTNkRKNq+SKqh+YZC+08UbV4Af3F7eXKUlnvzavvfMbR5183Xagn\nJz6R8wvf/fd1toTZqtQIV7169WjTpg1Dhw5Fr9fTtm1bevTogUKhwNvbm5o1a6JUKmnQoAGurq6l\nvt6ZM2cYMWIECoWCZcuWYTAYP7DUajULFixgzJgxODs7oy5taokQ1VhuUipn3thA21Wvo9CoybwV\ny+kFHwLg3LQBgfPHcnDYnBLriqPLyiF06lqaTR2OQq1Gn5fHqXkflPor/r9FblIqp97YQLtVr6PU\nqMm4Fcupu9q21fyx/PF32xZXd+XjXbSYMZLHtq80zvfff5zIb3+z5GpVmrykVC4sWUeLZVNRatRk\n3Yrh/OL3cWziS9M5L3NixPRia8B4srptLW86bF6DUqMm6tt9JJ+6UOIyE46e5taO/9LuoyWgUJIR\nHsnF5aVfQtqY40MCl09BoVaTFRXDuTeMOZya+BIwdzzHgmeUWHdr115sa3vR6cvVKDVqbn27n6RT\nF0taLAlHT3Pz6920/2gJCqWS9PBILizbYE7zVtl93RLb/X7lJadwedl7BCydjlKjISsqmstL3sWh\niR+NZr3Cny9MKbYGIPz9T/GfPp62m98Fg4H4g8eJ+vpHnFo0we3hDmRGRtFq/XLT8v5a9wVJJ07f\nV2Z9ahKJ6xfjNnkFCrUGbcwtEj9YhMa3Ka7j5hEzKwj7ngNQuXtj2/4xbNs/Znpu3NIJ6NNT7mv5\nZsuKQ7tnPOqnt6BQaTAk/4X257EovFqj6rXO2LEqge74GtR9N6Ieaez06I4uwxBTvvOhquN7U1RP\nCsM/vRBRKh1bLB2hRCqCqnxGkJwVTUUQP7YNKr3Qwp46uaXatOf3Vbw9nzlpbMeq3p4qgvil0yBL\nxyjV48d2sK/j86UXWljP419Xm329umz3A13Kd3W7B6nr4W+5OaR96YUWVGebsfOT+5Z5V9S0FKup\nGdXmvVldaD+ytnSEEqnH5ZRe9ABU66Gd3NxcxowZU+j+Bg0asHhxMX/TQQghhBBCCCEekGrd4bKy\nsmLz5rL/fQ0hhBBCCCGEeBCq1EUzhBBCCCGEEOLfpFqPcAkhhBBCCCEspOQ/iSf+JiNcQgghhBBC\nCFFJpMMlhBBCCCGEEJVEphQKIYQQQgghyk7+uJRZZIRLCCGEEEIIISqJdLiEEEIIIYQQopLIlEIh\nhBBCCCFEmRn0CktHqBZkhEsIIYQQQgghKol0uIQQQgghhBCiksiUQiGEEEIIIUTZyR8+NouMcAkh\nhBBCCCFEJZEOlxBCCCGEEEJUEoXBYJA/WSaEEEIIIYQok7x3bS0doUSa17MsHQGQc7jKRMcWS0co\nkYqgKp8RJGdFUxHE7vZDLR2jVH1Ctlab9vyp3TBLxyjRk6FfAdXjmLS3w2BLxyhVrxPb+bXzQEvH\nKFX3o99Um339l06DLB2jVI8f28EfXfpbOkapHj28i8jBHSwdo0R1t58AIPctewsnKZnV1Ixqc0wS\n/y4ypVAIIYQQQgghKol0uIQQQgghhBCiksiUQiGEEEIIIUSZGfQKS0eoFmSESwghhBBCCCEqiXS4\nhBBCCCGEEKKSyJRCIYQQQgghRNnJlEKzyAiXEEIIIYQQQlQS6XAJIYQQQgghRCWRKYVCCCGEEEKI\nsjPIlEJzyAiXEEIIIYQQQlQS6XAJIYQQQgghRCWRKYVCCCGEEEKIMpM/fGweGeESQgghhBBCiEoi\nHS4hhBBCCCGEqCQypVAIIYQQQghRdnoZuzGHtJIQQgghhBBCVBIZ4bIQg8HA3Nnf09Dfg9FjHrJ0\nnGJJzoplqZweXVrT6JUhKK3UpF2N5NzSj9BmZJldp7TW0GzGaJwDfEGpJOXcNc6v2oQ+Jw/XtgE0\nmTQchUpFXkoaF9d+QdrVyEpfJ0tuc88urWg88Z92uknYkqLbs7g6tb0tgQvG4VC/JigU3PrpINc/\n/wEAt7YBNHl9GEq1Cl1OLufXfEHK+fBKXydLtad7l9b4TxiK0kpD2rVIzi9dj66ItiytztrTjY6b\nlnI0aAZ5KWkAODX1o/GUkahsrVEoldz44v+48/OhMmd0e6gNfi8HodCoyQiP5OKb69BlZpWpxtrT\njXYbl3EieJopn2NTP/wnjUJlY41CpSRi83fE7DlY5nx3q6r7uttDbfCbMAylRkP6tQguvvlh0W1Y\nVI1SSaPXR+LasSUKlYrIr74n6tt9BZ7r89RjeHTrQNi0lab7XFo1peHE4SitrdCmZ3JhyQdk3441\nuy1dO7elwfgglFYaMq5FcHn5B4UyF1ejtLKi4dSxODZtiEKpIPX8Va699TH63Fzs6tem0YyXUdnZ\nYDAY+OvDL0k6cdrsXCWxad0Fl6ETUGisyIu8RsL6pRiyMgrU2D3cG6dngsFgwJCTTdJnb5F7/SIK\nW3vcxs9DXas+CoWC9D/+S9r3X1RIrnspGjyB6pHFKFRWGOLOod07AXLTiq5t+BTq3h+T977P3ytZ\nA1WPd1B6BGLIy0R/fjP6U+vvK899H4eUChpPGoF7J+N79MaWH7i1az8A9g1qETB7HCo7GzAYuPrB\nVhKOnaH+iGfx7pV/rLVycUJtZ8Ov3Ufd17qIqskiI1y7du1izZo1lfb6x48fZ/LkyYXuf/PNN7l9\n+3aB+8LDwwkODq60LEUJD49j9MjN/Lz7/ANdbllJzoplqZxWLo60WPASp2a+zcGBU8mKiqXRxKFl\nqvMb1Q+FSsmhYbM4NHQGSmsr/F54FrW9LW1WTebyf7ZweNhMzq/YRKvlr6PUVO5vOZbc5lYujgQu\nfImTM97hjwHTyIyKocnEIWWqa/TyILJjEjkweCaHR8yn3oAeuLTwR6FW0Xr5q5x982MODpvNtU++\no9Xilyt9nSzVnhoXR5rPf5kzs9ZyeNBksqJiaPTKsDLX+fTtSoePFmHj6VrgeS1XTiH8ox0cGz6T\nPyctp/GkEdjV8S5jRieazn2Fs7NXc3zI62RFxeA3IahMNd59HqXN+iVYe7gVeF6LZdP4a+N2QkZO\n58zkN/F/7QVsa5ct392q6r6ucXEiYN4Ezs5ew7HBr5N1O4aGrxRuw+JqavXrgW0db44HTSFk9Czq\nDH4Sp4CGAKidHGg8YyyNp45GQf7V0qw9XAlcOZ3LqzdyIng6cb8dp8n0sWa3pcbFicZzJ3Jh7mpC\nhr5K1u0YGrwcbHZN3ZEDUKhUnBw5hdARU1BZW1F3RH8A/KeOI/qnXzj5wlSuLPuAgCVTQXX/X8eU\nji64vTyf+LWzuDN5ENqYKFyGvVKgRu1TlxrDXyN22WtEzxxOyq5NuE81dlJdBo9HmxhL9LShRM95\nAcee/bHyb3HfuQqxdUfdewPa74eR92lrDCk3UD2yuOhaFz/UXZeBIr99VN1WQm4GeZ+1RftVN5T1\ne6Hw7V3uOBVxHKrTryd2dXw4MnQax16YQ70hfXEK8AOg6YwxRP3wG8eGz+T8kvUELpuEQmX8AejY\n8JkcGz6T0PFvoMvOJmzuu+VeD4vRK6r2vyrif2pK4dy5c6lZs6alY7B1Syj9+reid59mlo5SIslZ\nsSyV071TICkXrpN5MxqAyJ37qNm7S5nqkk5d5Nqmb8FgAL2B1Ms3sPH2wK6uD3npWSSEGL+oZ0Tc\nRpuRhUsL/0pdJ0tu83vbKeKb/dTsU3p73l13Yc0XXHx3CwDW7i4ordRo0zMxaHX80mciqZcjALCr\n5Ulecnqlr5Ol2tOtY0tSLoSb2ujmzn149364THXW7jXwfLQ9f05eUeA5SisN1zd+Q2LIWQByYhPJ\nTU7D2rNgp6c0rh1aknrxGlm3jMuO2rUH7yceMbvGyr0G7l07cGbKskL5/tq0g6R/8sUlkpeSWuZ8\nd6uq+7prx0BSL4aTdfOf9tlbuA1LqPF4tCN3fvwNg06PNi2DmP2H8e5tfMzr8c7kJiRx9b3NBV7P\ns3sn4o+eIu3yX8bX+24fV9751IxWNKrRoRVpF6+RdesOALe//RmvXo+YXZNy5gKRn+/4ux31pF/5\nC2tvDwAUKiVqRwcAVHa26HPzzM5VEpuWHckNv4A2+iYAaft2Yv9wwY6IQZtHwoY30ScnAJB7/SIq\nFzdQqUn67C2SN//HmMvFHYXGCn1mxR9/lPUexxB9EpKNI/e6Mx+jbDq4cKHaFnXfT9D+MavA3Qqv\n1ugvbAWDHvR56P/6GaV/v3LnqYjjkGe39tz+8XfTezR63xF8+hjfCwqVEs3f21ttb4s+J7fQazd6\nPZj4I6eJP1oxI52i6nkgUwqzs7OZPXs2t2/fJi8vjyeeeML02KZNm/jpp59Qq9W0a9eO6dOnc/Lk\nSVauXIlarcbW1pZ3330Xa2trFi5cSEREBHq9nkmTJtGxY8dilxkREcGYMWNISkpi6NChDBo0iODg\nYBYtWoSjoyPTpk3DYDDg4eHxIJqggHkL+gBw7NhfD3zZZSE5K5alctp4uZEdk2C6nR2biMbBDrW9\nbYGpRiXVxR8/m1/n7U79oX04t+xjMiPvoLazwb1jC+KPn8U5wBdH39pYu9eo1HWy5Da39XIly4z2\nLK3OoNPTavEEvB/vQPTvoaRHGEffDTodVq5OPPLlMjQujpya/V6lr5NF35ux+W2UE5uAxsEOlb1t\ngek8JdXlxCdxZuZbhV5bn5tH1Pe/mW7Xeu5xVHY2pJy7UuaMOXcvOy4BtYM9Kjtb0/Sykmpy45M4\nN3t1kfnu/PCr6XbNZ3ugsrUh9fzVMuW7N2tV3NdtPN3Jjok33c6JTUDtYFewDUuosfEsmDcnNgGH\nhvUATFMLfZ7sVmCZdnVros/KofmSSdjVrUl2TDxX3vms1Kz/sPZ0Iyf2rjxFbPeSapJOnMl/LS8P\nag1+iisrPwTg6lsf0/I/b1B78NNoajhxceFa0OnNzlYctZsX2oT8KZO6hFiUdg4obO1N0wp1cXfQ\nxd0x1dQYMYms0AOg0xrv0Otwm/gGdh27kxnyO9rbEfedqxCn2hjSbuXfTotCYe0MVo4FphWqer6H\nPmwThrhzBZ5uuBOCMmAouttHQWWN0v850Je/01oRx6Gi9in3v9+jF1dtot26+dQb2hcrV2fC5r6L\n4a7tbe9bG89H23Go32vlXgdR9T2QEa5t27ZRq1Yttm/fztq1a7G2tgbg8uXL7N69m23btrFt2zYi\nIiL47bff2L9/P3369OHLL79k6NChpKamsmPHDmrUqMGWLVtYt24dixcXM/z8t7y8PD788EO++uor\nNm7cSGJioumx9evX89RTT7F582Z69OhRqesuhMUpih5SN9z7AW9GnVOTBnT6eCERX+8h7tAptBlZ\nnJy6Bt9Rz9Flywpq9u1KQsh59HnaCotf5SiLPmwWak8z6k4vWMe+Hi9h5eSA/4v9TffnJqbyS9+J\nHBm1kJYLX8K+bvmnmVVlCmUx0z3uaUtz64pTf8SzNBw3iFNTV6HPKeMXs+K2o15ftpoS1At+jgYv\nDiZs+ooif/02W1Xd14vZfgXbsPiaorZ/oXW6h0Ktwr1re8I/2saJkTNIDD1L4IrppWf95/lmbFNz\nahwa+9Jq3VJu79xN4pGTKKw0NF08lUtvvsexfmM5/cp8/KePv6+RzbsCFX2/Xle41NoG98nLUXvX\nJmHDmwUeS3h/Ibde7IXSwRnngWPuP1fhpZeaU9lyLOi16M8VPodM98dswIA6+CjqZ7ehj/gVdOXf\nbyrkOFTUe1SvR2mlIfDNSZxb/CEHnp5AyEuLCJg9tsD2rje4Dzd37CnyXEvx7/FARriuX79O165d\nAahfvz5OTk7Ex8dz/fp1WrZsiUajAaBdu3ZcvXqV8ePHs379ekaOHImXlxeBgYFcuXKFkydPEhYW\nBoBWqyUxMRFXV9cil9mqVSusrKwA8PPz49at/F9Tbty4wfPPPw9AmzZt2Lp1a6WtuxCW4P/SQDy7\ntgWMUxjSrt00PWbt4UpuSjq67JwCz8mOScClecNi63x6diZg5mgurP6UO3uOGIsUCnRZ2ZwYv8T0\nvEe+XkPm31Or/i0avTQQz65tANDY25Eann+hAJvi2jM6HpfmfkXWuXcKJO1aJDnxyeiycri95wje\n3TugtrfFrX0zYn4PBSD18g1Sr0bg2LAOGZH/jjb1GzcIj67tAON7M/1afltae7iSV0xbOjdrWGrd\nvRQaNc0XTMDBtzbHx8wn+05cmfNmR8fhFJA/bc7aw5W81DT0dy3bnJri8gXMm4hdg9qcHDuH7Oiy\n56sO+3pOTDzOze5pn5T0Au1TUk12THyBkTRrD9cCI4pFLjMuiZSzl01TFG9//yuNp4xGaW1lVqc2\nOzoOx7u3qbtbkdu9pBqPx7vgP20c19ZuJHaf8WIo9r51UdlYk3jkJABp56+Q+ddNHAMakRN7tNRc\nJdHGR2PVMH9asMrVA116Coac7AJ1KjcvPGauJS/qL2LfmIAhz5jXpmUn8iKvoUuKx5CTRebhPdh1\n7H5fmYqUdguFT/v82w41MWQlgjbTdJey2XDQ2KEOPopCpTFOLww+inZXP1Cq0R2YB9lJxtr26ZRa\nbwAAIABJREFUUzAkXy9ThIo+DmVHJ2Dt7lLgsZzYBBz86qCysSL+0J8ApJy7Svr1m7g0b0jMrwmg\nVODZvSPHRswuU/6qxGCoOudJVWUPZITLz8+Ps2eN0xRu3rzJ2rVrAfD19SUsLAytVovBYCAkJIQG\nDRrw/fff069fPzZv3oy/vz9ff/01vr6+PPnkk2zevJmPP/6Y3r174+LiUuwyL1y4gFarJTMzk/Dw\ncOrWrVsgz6lTpwBMuYT4N7m64RsOB83mcNBsjo5agEtzf9PFAuoO6EHsgdBCz4k/FlZsnXf3DjSd\nNpKQV5fnfwEDMBho985MnJr6Guse74heq3sgVyl8kK5s+IZDQXM4FDSHw6MWUKNAOz1OzB8nCz0n\n7tjZYutq9uyI/7gBACg1anx6diIh9DwGvZ6WC16iRstGADj41sK+Xk2Sz1X+VQoflH8uYnFs+ExO\njJ6H811tVLt/zyLfmwnHw8yqu1fL5ZNR29tyopydLYDEE2dwbu5vuphFzX69iD8QUuaaojR/cyoq\ne1tOjptbrs4WVI99PeH43+3z9/Jq9etF3MEQs2viDoTg8/RjxnOfHOzw6tmFuFLaN+6PE7gENsbG\nxxMAz24dSQ+PNHsEMenEGZyaNcK2tvHKeDX79SLhnswl1bh360zDyS8SNnmxqbMFkHXrDmp7O5ya\nNwbAppYXdvVrk361bB2GomSHHcfavzlq7zoAOPTsb5wueBelvRNeizaQeeI3Et6dZ+psAdh16oHT\nwBeNN9Qa7Dr3IPtc6ftZWelv/ILCpwO4GH+QUrV8EX34TwVqtF89ivbz9mg3dyZvV3/QZqHd3Bky\nolG1fBHVQ/P+Du2JqsUL6C9uL1OGij4OxR4IpdZd71Hvng8R+3sImTejUTvY4dzCeEy3reWFff1a\npF6+AYCjX120qRnlPj6J6uOBjHANGTKEOXPmMHz4cHQ6HaNGjSIpKYnGjRvTp08fhg4dil6vp23b\ntvTo0YOwsDDmzZuHra0tSqWSxYsX4+Xlxbx58xg+fDjp6ekMGzYMZTHD+QDW1taMHTuW1NRUXn31\n1QKds5dffpnp06fz3//+l9q1az+IJhDCYnKTUjm7eD2tV0xCqVGTeSuGsEXrAHBq6kuLeWM5HDS7\nxLpGrwxBoVDQYl7+Vb6SzlzhwqpPOTP/fVrMHYtCoyYnPok/pxc+n+bfJDcplTOLN9B2pfEKbRm3\nYjiz0HhuhnPTBrSYN5ZDQXNKrLvw9hZazBlD1+0rMRgMxPx+kr+2/gwGA6HT3iJgSjAKtQp9npbT\n894nOzaxpEjVVm5SKueXfEjLFVNQqNVkRUVzdtEHgPG9GTD3JY4Nn1liXXFcAhvj2bUdGRG3ab8x\nfwr61fe/IuHYmRKeWVBeUioXl35A82XTUGrUZEXFcGHxezg28aPJ7PGEjJxebE1JnAMb4/FIezIi\nomi7Yanp/vB1X5J43Px8d6uq+3peUioXlqyjxbKpxva5FcP5xe/j2MSXpnNe5sSI6cXWgPECGra1\nvOmweQ1KjZqob/eRfOpCictMv3qDS6s+JnDldBRqFdq0DM7OXWt2W+Ylp3B52fsELJ2OQqMmOyqa\nS0v+g0MTPxrPmsDJF6YWWwPQYLzxCouNZ00wvWZK2CWurf2Y83NW4jdpDEorDQatjiur1pMdFWN2\ntuLoU5NI+HAJ7lNWoFCr0UZHkfDBIqx8m+L60lyiZw7HodcAVO5e2LXvhl37bqbnxi55haTN7+A6\ndhbea7aCwUBWyB+k7d5237kKyYpDu2c86qe3oFBpMCT/hfbnsSi8WqPqtc7YsSqB7vga1H03oh5p\n7Nzqji7DEPNnueNUxHHo1s692NXyovOWVSjUam59u5+kUxcBOD3jLZpMfcG0vS+s+Jisv7e3XV0f\nsqSz9T9BYTAYDJYOUV3o2GLpCCVSEVTlM4LkrGgqgtjdvvCln6uaPiFbq017/tSu8CWBq5InQ78C\nqscxaW+HIq4+VsX0OrGdXzsPtHSMUnU/+k212dd/6TTI0jFK9fixHfzRpX/phRb26OFdRA7uYOkY\nJaq7/QQAuW/ZWzhJyaymZlSbY1J1kb2kAs4/rEQ280uefvygVOs/fPz+++9z/PjxQvcvW7aMOnXq\nWCCREEIIIYQQQuSr1h2uiRMnMnHiREvHEEIIIYQQQogiVesOlxBCCCGEEMIyDHq5SqE5HshVCoUQ\nQgghhBDif5F0uIQQQgghhBCiksiUQiGEEEIIIUTZyZRCs8gIlxBCCCGEEEJUEulwCSGEEEIIIUQl\nkSmFQgghhBBCiDIzGGRKoTlkhEsIIYQQQgghKol0uIQQQgghhBCikkiHSwghhBBCCCEqiZzDJYQQ\nQgghhCg7vYzdmENaSQghhBBCCCEqiXS4hBBCCCGEEKKSKAwGg8HSIYQQQgghhBDVS8YcH0tHKJH9\nsjuWjgDIOVxlsrv9UEtHKFGfkK3s7TDY0jFK1evEdn5sG2TpGKV66uSWKr/NwbjddWyxdIxSqQiq\nNu2ZdaGHpWOUyDZgP1A9jkk/dxhi6Ril6n1iG78/NMDSMUrV7cjOarOv/9p5oKVjlKr70W9YVO9V\nS8co1aKI91jf5CVLxyjR+EsbANgaOMrCSUo2NOxTfmo3zNIxSvVk6FeWjiAqmEwpFEIIIYQQQvzP\n0ev1LFiwgMGDBxMcHExERESRdfPnz2fNmjXlXo50uIQQQgghhBBlZjAoqvS/0uzfv5/c3Fy2b9/O\n1KlTWbFiRaGabdu2ceXKlftqJ+lwCSGEEEIIIf7nnDx5kkceeQSAVq1ace7cuQKP//nnn5w5c4bB\ng+/vlB3pcAkhhBBCCCH+56Snp+Pg4GC6rVKp0Gq1AMTGxvLBBx+wYMGC+16OXDRDCCGEEEIIUXbV\n/A8fOzg4kJGRYbqt1+tRq43do59//pmkpCTGjRtHXFwc2dnZ+Pr60r9//zIvRzpcQgghhBBCiP85\nbdq04bfffqNv376cPn2aRo0amR4bMWIEI0aMAGDXrl1cv369XJ0tkA6XEEIIIYQQ4n9Qz549OXz4\nMEOGDMFgMLBs2TJ++OEHMjMz7/u8rbtJh0sIIYQQQghRZgZ96VcCrMqUSiWLFy8ucJ+fn1+huvKO\nbJmWc1/PFkIIIYQQQghRLOlwCSGEEEIIIUQlkQ6XEEIIIYQQQlQSOYdLCCGEEEIIUWYGQ/U+h+tB\nkREuIYQQQgghhKgk0uESQgghhBBCiEoiUwqFEEIIIYQQZaeXsRtzSIergnh0aU2jV4agtFKTdjWS\nc0s/QpuRZXad0lpDsxmjcQ7wBaWSlHPXOL9qE/qcPFzbBtBk0nAUKhV5KWlcXPsFaVcjy5XTvUtr\n/CcMRWmlIe1aJOeXrkdXRM7S6qw93ei4aSlHg2aQl5JmXLeH29B84StkxcSb6kLGLUSXmV3mnJ4P\nt6LJxMEoNWpSr90kbPHHRbanOXVtV08iJy6Jc6s+B8CtXQBNXx+KUq1Cl5PH+dWfk3z+epkzQvXZ\n7mVhMBiYO/t7Gvp7MHrMQ5W+vLtVt/Y8EJrFe1+mkJtnwL+ehkUTXXGwy//w+eG3DDZ/n2a6nZ6p\nJzZBx56NNVGr4M0NSVz+Kw9bGwXPdrdn6JOO95XnbtWlLT26tKbRhCGmY83ZpRuKPCYVV6e01hAw\nfTTOAX6gVJBy7hoXVhtz/qPW093w6taeP6euLldG14fa4Dt+OEqNmvTwCC4vW4cuM8usGqWVFf7T\nXsSxaUMUCiWpF65wdc1G9Lm5ODb1o+Hro1HZWINKyc0vvyNmz4FyZSyPB7mvuz3UBr+Xg1Bo1GSE\nR3LxzcJtWGyNUon/ayNx7dQKhUpJ5Fc/cPvbvQC4tGmG/2sjTe/Fq+98Svq1CNNrKjRqWq6ZTdR3\n+4j77ViFrY9/92b0mPE0Kis1MZdu8/2Mr8hJL/xZ12FkV9oNfxgMBhIj4vlh1lYyEtIrLEdR6j7a\nnI5T+qGyUpNwOYrf535BXkbxn8OPLR9J4tXbnNm0DwCFUsHD84fi094fgMgD5zi2ameF56z5SCAt\nXx+I0kpN8pVbHF+4CW0JOTsuGUPKtSguff5zgfvtvFzp+eU8dg9aQG7y/betZ5dWNJ74zzHxJmFL\nij52FlentrclcME4HOrXBIWCWz8d5PrnPwDgHOBLwNRgVDbWKFRKrn/+A1G7D993ZlH1Sbe0Ali5\nONJiwUucmvk2BwdOJSsqlkYTh5apzm9UPxQqJYeGzeLQ0Bkora3we+FZ1Pa2tFk1mcv/2cLhYTM5\nv2ITrZa/jlJT9r6yxsWR5vNf5systRweNJmsqBgavTKszHU+fbvS4aNF2Hi6Fniec2Bjbmz5gWPD\nZ5r+laezZeXiSMuF4zg5/R1+HzCdzFuxNHm18F/7NqfOb8RTuLZubLqtUKtos3wiYUs3cmDoHK5+\n8h2tFr9c5oz/LL86bPeyCA+PY/TIzfy8+3ylLqco1a09E1N0LHwvkTUz3Pi/D3yo7a3m3c3JBWqe\nfsyer9/25uu3vdmy2gt3FxWzxtbAzUXF6k3J2Nko2fUfbzav8OLQn9kcCCn8oV4e1aUtjcea8Zya\n9TYHB00hMyqWxq8UzllSnd+ofijUKg4HzeTwsBmorK3wHfmc8XlO9gTMGkPTaS+AonwndmtcnGgy\ndyLn56zmxNDXyL4dg++E4WbX1HthAAqVitARUwkZMQWltTV1Rxj/gGazN6dzY+N2Ql+YxtkpS/F7\n7QVsa/uUK2dZPch9XePiRNO5r3B29mqOD3mdrKgY/CYEmV1T67me2Nbx4UTQZEJHz6LO4CdxDGiI\nyt6OFsunc+39zZwInsrl1R/RbOkUFH+/F52aN6LdxuU4t2xSoetj5+rAc6uD2D7+E97vvpSkyHh6\nzHqmUJ1P8zo8NLY7n/Rfy7pey0m8EcdjU5+s0Cz3sqnhwGPLRrL3tQ1s67OQ1JvxdJrar8haF19v\nnv5sMr692xW4v9GznXBp4MWOZxbzzXNLqNm+Eb5PtKnQnNY1HOm4ZAwHp3zAT8/MIf1WHK0mDSqy\n1qmBD903zqBur/aFHqv/9EM8/tls7LxqVEguKxdHAhe+xMkZ7/DHgGlkRsXQZOKQMtU1enkQ2TGJ\nHBg8k8Mj5lNvQA9cWhg7r21XTeLKhp0cCppDyGuraDp5OHZ1vCsku6jaqmWHKzg4mPDwcEvHMHHv\nFEjKhetk3owGIHLnPmr27lKmuqRTF7m26VswGEBvIPXyDWy8PbCr60NeehYJIcYPxYyI22gzskw7\nb1m4dWxJyoVw0/Jv7tyHd++Hy1Rn7V4Dz0fb8+fkFYWe5xLYCNd2zen0+XLaf7SIGq2bljkjgEfn\nFiRfuE7GzRgAIr7ZT60+hduztDq3dgF4PBRIxM5fTPcZtDr293mV1MvGX0DtanmSm1K+X8Sqy3Yv\ni61bQunXvxW9+zSr1OUUpbq159HT2TTzt6JeTQ0Ag3o7sPtAJgaDocj6z75NxdVZycAnHAC4GJ7L\nk93sUKkUaDQKHmlrw76jmeXOc7fq0pbuHQMLHWt8ijgmlVSXeOoS4XfnvHIDWx93ALx7dCYnPpnL\n/9lS5mz/qNGhJWkXr5F16w4At3ftwavXI2bXJJ++QMRn3/ydT0/6levYeLujtNJwY9MOkkLDAMiJ\nSyQvORVrT7dyZy2LB7mvu3ZoSerFa2TdMm6/qF178H7iEbNrPB7twJ2ffsOg06NNyyB232G8n+iK\nXR0ftBmZJIWeBSAz4ja6jCycmxt/ZKszqC/XN2wl9fy1Cl0fv65NiAqLJPFGHAChXx6ixbPtCtXd\nOXeT/3RbTE5aNmprNY5eLmQlVcw+Xpw6XQKIPRtBSkQsABe2/UHDpzsWWds8qBuXdh3h+s+hBe5X\nKJWoba1RWalRWmlQalTocrUVmtO7czMSzv1FeqTx8/va179Sr2+nImv9hzzO9e8OErk3pMD9th4u\n1H6sDX+88naF5br3mBjxzX5qFvH9o6S6C2u+4OK7xmOOtbsLSis12vRMlFYarn68i4QT5wDIjk0k\nNzkN23t+vK5uDHpFlf5XVVTLDldVY+PlRnZMgul2dmwiGgc71Pa2ZtfFHz9LZqRxx7Xxdqf+0D5E\n/3KMzMg7qO1scO/YAjAORzv61sbavey/5th4uZEdm7/8nNgENA52qIrKWUxdTnwSZ2a+RcZfUYVe\nPy8lnZvf7OHYyNlc/WArLVdNxbocBxIbLzeyoxNNt0tsz2LqrN1daDYtmFPz1oFOX+B5Bq0OK1cn\neux+j6avDyX8ix/LnNG0/Gqw3cti3oI+PPNcYKUuozjVrT1j4nV4u6lMt73cVKRnGsjIKtzhSkrV\n8cX/pTF9TP7yWjSy5qffM8nTGsjM0vPL0Szik/SFnlse1aUt7z3WZJt5TLq7LuF4GJmRd0w56w3p\nQ/QvxwG4uWs/4Rt3os/OLXO2/GW7k3PXNOmcuATUDvao7GzNqkk6cYasm8Z81t4e1H7+KeJ+PYo+\nN4/oH/N/DPJ5ticqWxtSz10pd9ayeJD7uo2XGzl3f6YU2YbF11jf077ZsQlYe7qRGXkbla0Nrh1a\nAuDY1A973zpYu7sAcH7hOyQc+bPC18fZpwapt5NMt1PvJGPjZIu1g02hWr1WT5NegUw5toR6Hf04\ntaPipjUWxd6nBul3fS6mRydh7WiLxr5wtkNLtnH1++OF7r/87RFyUjMJ/mMlIw6uIjUyjojfwio0\np523K5l35cyMScLK0Q51ETlPLv+SGz8eLXR/Vlwyh6a8T+r12xWWy9bLlSwzjp2l1Rl0elotnkDX\n7StJOHmR9Ijb6HPzuPl/v5ueU6dfd9R2NiSdu1ph+UXVVaXO4Zo4cSIjRoygQ4cOnD17lvfeew8n\nJydu3bqFTqdj1KhR9O3b11T/3nvv4e7uztChQwkPD2fRokVs3ryZp59+mnbt2nH58mV8fX1xc3Mj\nNDQUKysrPvroI7Kzs5k7dy5JScYD5rx582jcuHFxsUpXzFQVwz1f9M2pc2rSgDarpxDx9R7iDp0C\n4OTUNTSaMJjGrwWReOoSCSHn0eeV/dcmhbKYnv49Oc2tu9eZmW+Z/p985jIpYVdw6xDI7R9/L0tM\nFGa2Z3F1KKDN8lc5/9ZmcuKTiyzJTUxlf59XcWpSn04fzuHw9QVk/P3lsgxBzcpp6e1ebVSz9tQX\nPZCFqoifsXbuzaBbB1tqeeUfcqeMcuHtz5IZMiUad1cVnVrZcOZSTrnzFFBN2lKhLOY3v0LHpNLr\nnJo0oPWqqUTu2EvcoQr8kl1cG+n1ZapxaOxL8+UziNq5m4QjJwvU1Q3uR61BTxI2ZQn63PJ3Dqus\nYrZfgTYsoabIY71ejy4zi7MzV+L70jD8JgaTfPoCSSfPVfpxsrjPSH0xn5GX9oZxaW8YbYY8RPDm\nCfyn6+JiR8LvP5sZbV2Ktq88RXZiGp8/PB21tYYnPphA4KgehH26v6JiFtuGZclZKYprv3u3rRl1\npxesQ7X8E9qumoz/i/25+lH+eXB+I5+m/tDenHh1ZYHzTcW/V5XqcA0aNIhvv/2WDh06sGvXLrp2\n7UpkZCRr1qwhPT2d/v3706lT0UPOd8vIyOCpp55i4cKF9O7dm9mzZzN58mSGDx/OtWvX+PHHH+nU\nqRPDhg3jxo0bzJ49m61bt5Ypq/9LA/Hs2hYAtb0taddumh6z9nAlNyUdXXbBL0/ZMQm4NG9YbJ1P\nz84EzBzNhdWfcmfPEWORQoEuK5sT45eYnvfI12vIvGVe58Bv3CA8urYz5Uy/ln9iu7WHK3lF5YyO\nx7lZw1Lr7qZ2sKPOwF789dl3+XcqwKA174Ov0fgBeBXTnjbFtGdWdMH2/KfOoUEt7Gp6EDDZeA6F\ntZszCpUSpbWGC29vwb19M6J/M06hSL10g7QrETg2rGNWh6u6bPfqojq3p4+7inNX8rPFJuhwclBi\na1P4g3jv4UxmjHEpcF9Gpp5JI5xxdjSOkn26K5U6PuU/JFeXtmw4blCZc2YVcUy6u867Z2cCZozh\n4ppPubOnYk9Az4mJx6lZ/nRJKw838lLT0N+VsbQazx5d8J82lqtvbSR23yFTnUKjpsm8V7GvX5tT\n42aTHR1XodmriuzoOJwC8tvH2sO1UBuWVJMdE4/VXSOo1h6uxhFPhQJdZjanXlloeqzj1ndM0xIr\n0mNT+tK4h3FU19rRhphL+aMqjt7OZCVnkJdVsLPsWs8dBw8nIkONF2U69fVRnlo2GBtnW7KSK25q\nYbtXn6Z+d+Mon5WDDQlX8meg2Hu5kJ2cgTbL/I68b8/WHHpzG/o8Hbl5Oq58dxTfJ9rcd4erxYTn\nqNWtNQAaBxuSr+bntPWsQU5KOroy5KwojV4aiGdX4zlqGns7UsPzvycV9/0jOzoel+Z+Rda5dwok\n7VokOfHJ6LJyuL3nCN7dOwCg1KgJXDQexwa1ODJqIVl34qnu5A8fm6dKTSl85JFHOHv2LMnJyYSG\nhnL16lXatzeeJOng4ICfnx83b94s5VWMmjUzzkt3cnLCz8/P9P+cnByuXLnCzp07CQ4OZv78+aSk\npJQ569UN33A4aDaHg2ZzdNQCXJr7m058rDugB7EHQgs9J/5YWLF13t070HTaSEJeXZ7/xQbAYKDd\nOzNxauprrHu8I3qtzuwrgoV/tMN0AYsTo+fhfNfya/fvWWTOhONhZtXdTZuZRZ2BT+D5mPGg4tio\nPs4BDYk/esasnFfW7+TgsDkcHDaHwy8spEaLhtjX8QKg3sDHifnjZKHnxB07W2Rd8tlr/PLka6bX\ni9z5C3f2HiNsyUYMOj2BC8ZRo2UjABx8a2FfvybJ58w7J7C6bPfqojq3Z+dWNoRdySXitvHXyW/2\npNOtQ+HpMKnpeiLvaGnZxLrA/Tv2pLNuayoACck6du3LoM8jduXOU13a8tpHOzgyfBZHhs/i2Oj5\nuDRvmL/8/kXnTDgeVmydV/eONJ36AqGvLavwzhZA4onTODVrZLqYRc3nehF/MMTsGo/HOtFw8hjC\nJi0p0NkCaLZ0Gmp7W/58ac6/trMFkHjiDM7N/bGtbdx+Nfv1Iv7AvW1YfE38gRBqPtUdhUqJ2sEO\nr55diD9wAgwGWq6dg2MT42e8R/fOGLS6AlcprCi/rf0v6/uuZH3flWx87i1qt66Pa30PANoFPcyl\nvWcLPcfB05mB77+AXQ17AAKfa0/s5TsV2tkCCH3vB77pt5Rv+i1l1+CVeLX0xbmeJwABQ7py41fz\nPof/EXchEr+/L6ShVCup91hLYk7/dd85z677jp+fX8jPzy9k7/CluAf64lDX+PntP+gxon47dd/L\nKI8rG77hUNAcDgXN4fCoBdQocEws4ftHMXU1e3bEf9wAwNjB8unZiYRQ4zmvbVa+jsbeliOjF/0r\nOlvCfFVqhEupVNK7d28WLVpEjx49TFMBe/bsSXp6OleuXKF27dqmemtra+LijB9S588XvNJSsdPN\nAF9fX5555hmefvppEhIS2LFjx33lzk1K5ezi9bReMQmlRk3mrRjCFq0DwKmpLy3mjeVw0OwS6xq9\nMgSFQkGLeWNNr5t05goXVn3Kmfnv02LuWBQaNTnxSfw5/a0ic5iT8/ySD2m5YgoKtZqsqGjOLvrA\nlDNg7kscGz6zxLpi6Q2cnr6aJtNG0XDc8+h1Os7Mfdd0yfiy5jzzxgbarnodhUZN5q1YTi/4EADn\npg0InD+Wg8PmlFhXHF1WDqFT19Js6nAUajX6vDxOzfuA7NjEEp9XXM7qsN2ri+rWnq4uKt541ZXp\nqxPIyzNQ21vN0tddOX8tlzc+SOTrt40fxJF38vCooUKjLnhMGjPAibnvJDLgtTsYgPGDnWjub13E\nksquurRlblIqZ5esp9WKySjVajKjYgock5rPHceR4bNKrGs0wZiz+dxxd+W8zMXVn5Yr073yklK5\n9OYHNHtzGgqNmuyoaC4ufg/HJn40nvUyoS9MK7YGoMF440h741n5V0NNOXuJmL0HcX+kPZkRUbRZ\n/6bpsfAPvyTp+OkKyV5V5CWlcnHpBzRfNg2lRk1WVAwX/m7DJrPHEzJyerE1AFHf7sG2thftv3gL\npUZN1Hf7SD51AYDzC9+lyezxKNRqchOSCJu5stLXJyMhnf+bvoXnPxyDykpFUkQ8307eDEDNFnV4\nZuUw1vddSWRIOAfe38sL219Dr9WTFpvCtnEfV2q27MQ0fp/zOT3fHYdKoyb1Zhy/zjTuCx7N6/Ho\nkmC+6be0xNc4smIHD88bwuD/voFBpyfq2CVOb/y5xOeUVU5iGsfmb+LhtyYY/5TCzViOzd0IgGtA\nfTosGsXPzy8s5VUqXm5SKmcWb6DtSuOVVzNuxXBmYf73jxbzxnIoaE6JdRfe3kKLOWPoun0lBoOB\nmN9P8tfWn6nRshFeXduSHnGbzp/kr9ul97YRf6xiz5ETVY/CUFkTicvpzp079OjRgz179uDp6cn8\n+fOJjIwkJyeH4OBg+vXrR3BwMIsWLcLKyopJkyZhZ2dHs2bNOH/+PJs3b6Z79+7s3r0ba2trnn/+\nedauXUvt2rWZMGEC48aNo169esydO5e0tDTS09OZOHEijz/+eKnZdrcvfLniqqRPyFb2dih8+fSq\npteJ7fzYNqj0Qgt76uSWKr/NwbjddZT/KmwPioqgatOeWRd6WDpGiWwDjFN7qnp79gnZys8dCl9S\nuarpfWIbvz80wNIxStXtyM5qs6//2nmgpWOUqvvRb1hU71VLxyjVooj3WN/kJUvHKNH4SxsA2Bo4\nysJJSjY07FN+alf4z+FUNU+GfmXpCGZLfrVh6UUW5PJexV6ltLyq1AgXgI+PT4HRqpUrC/9atXnz\nZtP/d+4s/Mf4fv31V9P/v/76a9P/161bV+T/hRBCCCGEEKIyVKlzuIQQQgghhBDi36TKjXAJIYQQ\nQgghqr6q9MeFqzIZ4RJCCCGEEEKISiIdLiGEEEIIIYSoJNLhEkIIIYQQQohKIudwCSGcSitHAAAg\nAElEQVSEEEIIIcrMYJBzuMwhI1xCCCGEEEIIUUmkwyWEEEIIIYQQlUSmFAohhBBCCCHKTC4Lbx4Z\n4RJCCCGEEEKISiIdLiGEEEIIIYSoJDKlUAghhBBCCFFmBoOM3ZhDWkkIIYQQQgghKol0uIQQQggh\nhBCiksiUQiGEEEIIIUTZyVUKzaIwGAwGS4cQQgghhBBCVC/xYwMsHaFE7h9fsHQEQEa4ykTHFktH\nKJGKoCqfESRnRVMRxO72Qy0do1R9QrZWm/b8qd0wS8co0ZOhXwHV45j0S6dBlo5RqseP7WBfx+ct\nHaNUPY9/XW329eqy3f/o0t/SMUr16OFdRA7uYOkYJaq7/QQAuW/ZWzhJyaymZlSb96b4d5EOlxBC\nCCGEEKLMDAaZUmgOuWiGEEIIIYQQQlQS6XAJIYQQQgghRCWRDpcQQgghhBBCVBI5h0sIIYQQQghR\nZga5LLxZZIRLCCGEEEIIISqJdLiEEEIIIYQQopLIlEIhhBBCCCFEmRkMMnZjDmklIYQQQgghhKgk\n0uESQgghhBBCiEoiUwqFEEIIIYQQZSZXKTSPjHAJIYQQQgghRCWRDpcQQvw/e/cdHUXZ9nH8uy29\n99AJCYEQCEgXKVKUovLQpHepotJ7kd6kPCKKooAgYEUfGyiogHSC1IBAKIEE0nvPlvePhYSQDlmT\n+F6fc3IOu3vtzG/vmdnZe+aeQQghhBDCRGRIoRBCCCGEEKLEDAYZUlgccoZLCCGEEEIIIUxEznCV\nEYPBwJxZ3+Pt48qIkc+WdZwCSc7SVVY5XVs1ovbr/VCaqUm6fodLSz5Cm5JW7DqluYZ600dg7+cF\nSiUJl4IJWrUFfUYWTo39qDNxEAqViqyEJK6s3U7S9Tsm/0xluczdWjXEd8LDdrrLhcX5t2dBdWpr\nSxrMH41NjUqgUBD605/c/PQHAJwb+1HnrQEo1Sp0GZkEvbOdhKAbJv9MpmxP52efodb4ASg1GpKD\nQ7iy9AN0qWnFq1Eqqf3WUJyaB6BQqbiz63vCvt0PgGVVD/zmjEdjb4s2NZ3LizaQGnIv13SrvtqV\nSt07cHLgFABU1la0/nlznjoAl1aN8B43AKWZMUPQ0k3o8lmuBdYpFfhOHIrzg6whO38g9EFWq6oe\n+M0dh8beFl1qOpcWvpc3a98uVOnegeMDphqzWprjN3c8NjUrg7J4x0fL67ZuqnXgIc+Xnse1XTMu\nTF2Z/ZxDw7p4TxiE0twMbXIqlxdvJP1eZLHyAji1bEzNsQNRmmlICQ7h6vKNeTIXVKM0M8N7yihs\n63qjUCpIDLpO8JrN6DMzsapRhdrTx6GyssBgMHDrg8+IO3Wu2LkKY9GoFQ79x6PQmJF1J5iYTUsw\npKXkqrF6rjN2rwwGgwFDRjpx29aQefMKCktrnMfORV25BgqFguRDP5P0/fZSyfU4Rc0XUbVehEJl\nhiHqEtpfx0NmUv613i+h7ryZrPc8H3xIR1Qd16N0bYAhKxV90A70Zzc9cRZTrZu2dWtRe9IwVBYW\nKJRKQj77jvB9f+aa7uPfT+LfS85wlYEbN6IYMXQH+/YGlXWUQknO0lVWOc0cbKk/fwxnZ6zjz95T\nSAuLpPaE/iWqqzW8BwqVkiMDZnKk/3SU5mbUGtYdtbUlz6yaxNV3d3J0wAyCVmyh4fK3UGpMeyyn\nLJe5mYMtDRaM4cz09RzqNZXUsAjqTOhXorra4/qQHhHL4b4zODpkHtV7dcShvg8KtYpGy9/g4tLN\n/DlgFsGffEfDReNM/plM2Z4aBzv85o7n4qx3ONH3LdLuReD9+sBi11Tu0RHLqh6cHDiZ0yNmUrVv\nN+z8vAGo9/ZbhO75lRP9J3Hr4y+ov3xqrunaN/Cl+uDuuZ/z9yH+3BVODZmW/WfMYEu9ueO5MGsN\nx16dSGpYJD7jB+TzeQquq9KjE1ZVPTg+YAonh8+iWr+u2PnVAsB/4ZuEfvMrx/tN5sbmLwlYkfsH\nln0DX2o+lrX6wFfQZ2RyfMBUTo2cY6zz8yqwrcvrtm7KdUBtZ4Pv9FH4ThmBgpyhTeauTjRYOY2r\nqz/m1OBpRP1xkjrTRhWZ9dE8vnMmcHnOak73f4O0exHUHDe42DXVhvZCoVJxZuhkAodMRmVuRrUh\nPQHwmTKa8J9+48ywKVxbthG/xVNA9fQ/x5S2DjiPm0f02pncn9QHbUQYDgNez1Wj9qyG46A3iVz2\nJuEzBpGwZwsuU4ydVIe+Y9HGRhI+tT/hs4dh26knZj71nzpXHpYuqDt/iPb7AWRtbYQh4Taq1ovy\nr3WohbrNMlDktI+q3UrITCFrW2O0u9qhrPECCq/OTxTFlOtmg+VTubn5S04Nmca5SUvxeXMollU9\nsqeb3/dTRWQwKMr1X3nxr+1wffTRR1y4cKGsY+Rr985AevRsSOcu9co6SqEkZ+kqq5wuLRqQcPkm\nqXfDAbjzzX4qdW5Vorq4s1cI3vItGAygN5B49TYWHq5YVfMkKzmNmNPGH+opIffQpqThUN/HpJ+p\nLJf54+0U8vUBKnUpuj0frbv8znau/HcnAOYuDijN1GiTUzFodfzWZQKJV0MAsKrsRlZ8ssk/kynb\n06l5AxKv3CDtQTuE7fkVjxdbF7vGtW1z7v/4BwadHm1SChEHjuLRuTXmrk5Y16hExP6jAMQcP4fK\n0hxb35oAmDnZ4zv1Na6/tyPXvOzr+6Kxs6Hxh4tp9ukqKvd8AQDn5gEkXLmRvbxC9/yKR+fcOYuq\nc2vbjLAfDmZnDd9/DM/ObTB3dcS6RiXC9x/LyWqRO2vdaSO5tuGzXPNSqJSorCxQqJQozTQA6LO0\nBbZ1ed3WTbUOALh3aElmTBzXN+Rezm7tWxB9/CxJV28Zp/fdfq6t31pk1occmzUk6UowaaH3Abj3\n7T7cX2hd7JqE85e58+lXD9pRT/K1W5h7uALG5aq2tQFAZWWJPjOr2LkKYxHQnMwbl9GG3wUgaf83\nWD+XuyNi0GYR8+FS9PExAGTevILKwRlUauK2rSF+x7vGXA4uKDRm6FNL//tHWb0DhvAzEG88c687\nvxll3b55C9WWqLt+gvbQzFxPK9wbob+8Gwx60Gehv7UPpU+PJ8piqnVTaabh5idfEXf6IgAZUbFk\nJSRh4eoMFPz9JP69/rVDCkePHl3WEQo0d34XAE6cuFXGSQonOUtXWeW0cHcmPSIm+3F6ZCwaGyvU\n1pa5hhoVVhd98mJOnYcLNfp34dKyzaTeuY/aygKX5vWJPnkRez8vbL2qYO7iaNLPVJbL3NLdibRi\ntGdRdQadnoaLxuPRoRnhBwNJfjC8zKDTYeZkR+vPlqFxsOXsrA0m/0ymbE8LNxfSI6KzH2dExqC2\nsUJlZZk9bKewGgu33OtlRmQMNt7VMXdzJiMqzviDNvu1WMzdnEm6HkK9hW8R/N4O9NrcHRSDTkf0\nkUBubd2DubMDz2xcYMzg7kzGY/PR2FihsrbMNaywsDoLd2cyIh/PWg0Ld5c8WdOjYrFwcyLp+m38\nF73JtQ07MGh1ubLe3vE/mnzwNm1+/BCVtSVAoUP4yuu2bqp1AMgevuXZrV2ueVpVq4Q+LQP/xROx\nqlaJ9Ihorq3fVmTWh8zdnMmIfCRPVAxqG+tcmQuriTt1Pmda7q5U7vsS11Z+AMD1NZsJeHchVfq+\njMbRjisL1oJOX+xsBVE7u6ONyRkyqYuJRGllg8LSOntYoS7qPrqo+9k1jkMmkhZ4GHQPthO9DucJ\nC7Fq3p7U0wfR3gt56lx52FXBkBSa8zgpDIW5PZjZ5hpWqOq0Af2FLRiiLuV6u+H+aZR+/dHdOw4q\nc5Q+/wH9k3VaTbVu6jOzuP/D79nPV+reEZWlBQlB10GpLPD7Sfx7mbzDlZyczJw5c0hKSiIyMpIu\nXbrw448/8vPPP6NQKFi0aBEtW7bE3d2dhQsXYm1tjbOzM+bm5qxYsSLfaW7YsIGbN28SExNDYmIi\nc+fOpUmTJjz//PN4eXlRq1YtEhMT6dq1K82aNWPWrFncu3ePrKws5s2bh7+/PwsWLCAkJAS9Xs/E\niRNp3ry5qZtCiLKhyP+UuuHxHXwx6uzq1OSZ1ZMJ+fIXoo6cBeDMlHeoPb4vvm8OJPbs38ScDir0\nKHyFV8C1NHnasxh15+a/j2r5JzReNQmf13py/aNvAMiMTeS3rhOw861Biw/mcHRYKCl3wksn/z9N\nWcB6pdcXq0aRz2sGXf7PP3zNe/wA4s9dJvbUBRye8cv1+u2t32T/OyMqlrDv9uPz5tBcQ5Yen14u\nhdXll0mvL3jb0uvxGT+A+LNXiD11EcfHstaZNpKYkxcI/mA3Zk72tP35I9yfb0bEH6fynV653dZN\ntA4URqFW4fJcE86MnUfa3XCqvNqFBityhpAWRVHQ9vtI5uLU2Ph6UW/ZDO59s5fYY2dQmGmou2gK\nfy/dQOyxM9jWq43/ylkkXQnO1Vl/IgWsm+h1eZ5SmFvgPH4BKmc3Ipe9leu1mPcWELt5BS5TVmLf\neyQJX21+ulx5515kTmXAKNBr0V/aDnbVcpXpDs1C1XYZ6sHHISUcfcjvKCs94W+4f2DdrD74P1Tt\n25VzE5eiz8jEe8KgAr+fKiL5j4+Lx+QdrpCQELp168YLL7xAREQEgwcPxs/Pj8DAQAICAjh58iSz\nZ8+mT58+rFq1Ch8fH9atW0dERESh07WwsGD79u1cv36dKVOm8P3333P//n327NmDo6MjM2caT0F/\n/vnnVK5cmXXr1nH79m0OHjzIlStXcHR0ZNmyZcTFxTFo0CB++uknUzeFEP8YnzG9cWvTGAC1tSVJ\nwXezXzN3dSIzIRldekau96RHxODg711gnWenlvjNGMHl1Vu5/4txaBQKBbq0dE6NXZz9vtZfvkNq\naAXtHBSg9pjeuLV5BgCNtRWJN3LOMlgU1J7h0Tj418q3zqVFA5KC75ARHY8uLYN7vxzDo30z1NaW\nODetR8TBQAASr94m8XoItt5VK2yHKyMiGvt6OcPOzF2dyEpIRv9IexVWkx4RnessirmrExmRMaSH\nR2Pm7JBrXg9f8+jchsy4BFzbNkdlaYG5qxPNtq/m1JBpVOnTmajDgWREROM1qi+VXmkPQOXu7Ul+\nZLnmlxMgPSIa+8e2k+ysj2Uyd3UiPTKW9Ii8WS0evObZxZjVrV2z7KwtdqzixODpuLVrzvEBU8Bg\nIDMmHgDnJn65OlwVYVs31TpQ6Dyj4ki4eDV7GNi973/Hd/IIlOZm6DMyi8ycHh6Frd8jeVycyUpM\nypW5qBrXDq3wmTqa4LUfE7nfeLMEa69qqCzMiT12BoCkoGuk3rqLrV9tMiKPF5mrMNrocMy8c4YF\nq5xc0SUnYMhIz1WncnbHdcZassJuEblwPIYsY16LgBZk3QlGFxeNISON1KO/YNW8/VNlyldSKArP\npjmPbSphSIsFbWr2U8p6g0BjhXrwcRQqjXF44eDjaPf0AKUa3eG5kB5nrG06GUP8zSeKYsp1U6FR\n4zfvdaxrViFw1BzS70cBFPr9JP69TH4Nl4uLCwcOHGDq1Kl88MEHaLVaXn31Vb799lsOHDhA+/bt\nUavVREZG4uNjXKEbN25c5HRbtGgBgI+PD9HRxlO9jo6OODrmHt5w8+ZNGjZsCECNGjUYNmwY165d\n4/DhwwwePJg333wTrVZLbGxsaX5sIcrU9Q+/5ujAWRwdOIvjw+fj4O+D1YOLdav16kjk4cA874k+\ncaHAOo/2zag7dSin31ie8wMMwGCgyfoZ2NU1Xsjv0aE5eq3uH7lL4T/p2odfc2TgbI4MnM3R4fNx\nzNVOHYg4dCbPe6JOXCywrlKn5viM7gWAUqPGs1MLYgKDMOj1BMwfg2NAbQBsvCpjXb0S8ZdMf5dC\nU4k5eR57f5/si8Ur93iBqD9PF7sm6vBpPF9+3njdi40V7p1aEXX4NBlRsaSFReDe0XhHRafmARj0\nepJv3OHIS6M5Ndh4NuPK8g9ICwvP/jHjEFCX6oNeAeDOFz+hTTH+yDs1cg72jyyvKj07EflYzkez\n5lcXdTiQyi+3fyTrs0QdOkVG5IOsnYxZnR9mDb7D4W5jODFoOicGT+fysk2khYVzYvB0AJKu3sTj\nwXuUFuYAxF8KzpWnImzrploHChN16BQODXyx8HQDwK1dc5Jv3ClWZwsg7tR57OrVxrKK8c54lXq8\nQMxjmQurcWnXEu9Jr3Fh0qLszhZAWuh91NZW2Pn7AmBR2R2rGlVIvv5kHYZHpV84ibmPP2qPqgDY\ndOppHC74CKW1He5vf0jqqT+I+e/c7M4WgFWLjtj1fs34QK3BqmVH0i/lXX+elv72byg8m4GD8YCU\nKuA19DdyH/TW7mqL9tOmaHe0JGtPT9Cmod3RElLCUQW8hurZuQ9Cu6GqPwz9lS+eKIsp1836y6ag\ntrYicNTc7M4WUOj3k/j3MvkZri1bttCwYUMGDBjAiRMnOHToEC1btmT16tVERESwYIFx/LyHhwfB\nwcF4e3tz/vz5IqYKQUFBdO/enWvXruHu7g6AMp/T+7Vq1eLixYt07NiRu3fvsn79egICAvDw8GDs\n2LGkp6fzwQcf4ODgkOe9QvwbZMYlcnHRJhqtmIhSoyY1NIILb78PgF1dL+rPHcXRgbMKrav9ej8U\nCgX15+bc5Svu/DUur9rK+XnvUX/OKBQaNRnRcfw1bU2ZfM5/SmZcIucXfUjjlcY7tKWERnB+gfHa\nDPu6Nak/dxRHBs4utO7yup3Unz2SNl+sxGAwEHHwDLd27wODgcCpa/CbPBiFWoU+S8u5ue+RHllx\nDwhlxSVyefH71F82BaVGTVpoBEGL3sO2jhd1Z4/j1JBpBdaA8QJ1y8oeNNvxDkqNmrBv9xN/9jIA\nl+ato+6ssdQY3gt9ZhaX5qzNdZ1Ufq6+8wl1Zo6m+a61KNUq7n69D9/JIx5k+IAGyyejUKtJC4vg\n0kJjBrs6XvjNGcuJwdMLrQvd8yuWVdxp8dlqlBo1od8eIO7sFQAuzl1P3Vlj8BreE31mFhdmrysy\n66WFG6kzbSQtu7Y1Dk0E7u09UmB9ed3WTbkOFCT5+m3+XrWZBiunoVCr0CalcHHO2mLlBciKT+Dq\nsvfwWzINhUZNelg4fy9+F5s6tfCdOZ4zw6YUWANQc6zxLna+M8dnTzPhwt8Er91M0OyV1Jo4EqWZ\nBoNWx7VVm0gPK3xUT3HoE+OI+WAxLpNXoFCr0YaHEbPxbcy86uI0Zg7hMwZh80IvVC7uWDVth1XT\ndtnvjVz8OnE71uM0aiYe7+wGg4G004dI2vv5U+fKIy0K7S9jUb+8E4VKgyH+Ftp9o1C4N0L1wvvG\njlUhdCffQd31Y9RDjR0b3fFlGCL+eqIoplo37Rv44tq6CSkh92jy0ZLs+QVv/IzYk0X/xhX/PgqD\noYhv/Kd04sQJlixZgoODA7a2tly/fp2ff/6ZLVu2cOzYMbZvN/4fDxcuXGDJkiVYWVmh0Whwd3dn\nyZIl+U5zw4YNnDp1CqVSSVpaGvPnz8ff359WrVpx9KjxjlUzZ86ka9euNG/enNmzZxMREYFOp2P2\n7Nn4+voyd+5c7t27R3JyMgMGDODVV18t8rPo2Fl6DWMCKgaW+4wgOUubioHsbZr31s/lTZfTuytM\ne/7UJO/twMuTboG7gIrxnfRbiz5lHaNIHU58xf7mRe8Dylqnk19WmG29oiz3Q616lnWMIrU9uoc7\nfZuVdYxCVfvCOMw1c411GScpnNmUlAqzblYUoQOalHWEQlXZVfpnaZ+Eyc9wtWjRgh9//DHP82PH\njmXs2LHZjy9evMimTZtwcnJi3bp1aDSaQqfbtWtX+vfPveN52NkCct1wY82avEfhVq1aVezPIIQQ\nQgghhBBPotzcFt7Z2ZkRI0ZgZWWFra0tK1asYMKECSQkJOSqs7Gxwc+v4t/VRQghhBBCCPHvV246\nXJ07d6Zz59z/Qd97771XRmmEEEIIIYQQhZHbwhePye9SKIQQQgghhBD/X0mHSwghhBBCCCFMpNwM\nKRRCCCGEEEJUHAaDDCksDjnDJYQQQgghhBAmIh0uIYQQQgghhDARGVIohBBCCCGEKDEZUlg8coZL\nCCGEEEIIIUxEOlxCCCGEEEIIYSIypFAIIYQQQghRYvIfHxePnOESQgghhBBCCBORDpcQQgghhBBC\nmIh0uIQQQgghhBDCROQaLiGEEEIIIUSJyW3hi0dhMBgMZR1CCCGEEEIIUbHc6tWyrCMUquY3x8s6\nAiBnuErkpyYDyjpCoboF7mJfs35lHaNInU99zveNB5Z1jCK9cmZnuV/mYFzuaZc7lnWMIln6Hagw\n7aljZ1nHKJQK4/ZT3tuzW+Au/vfMoLKOUaTuf33G8TavlHWMIrU8/H2F2dZ/b9m7rGMUqf3xr1nr\nPb6sYxRpcvD77PAfWdYxCjX40icA5X577/7XZ3wRMKysYxSp7/ltZR1BlDLpcAkhhBBCCCFKzGCQ\n20EUh7SSEEIIIYQQQpiIdLiEEEIIIYQQwkRkSKEQQgghhBCixPRyl8JikTNcQgghhBBCCGEi0uES\nQgghhBBCCBORIYVCCCGEEEKIEjPoZUhhccgZLiGEEEIIIYQwEelwCSGEEEIIIYSJyJBCIYQQQggh\nRIkZ5C6FxSJnuIQQQgghhBDCRKTDJYQQQgghhBAmIh0uIYQQQgghhDARuYZLCCGEEEIIUWJyDVfx\nyBkuIYQQQgghhDAROcNVStxaNcR3Qj+UZmqSrt/lwuKP0KakFbtObW1Jg/mjsalRCRQKQn/6k5uf\n/mB8T+tnCHh7LGnh0dnTOT5qEbrU9BLndG3ViNrj+6E005AUfIeLSz5El0/Oouos3JxpsWUxRwfO\nICshCQCNnTV1pw7HpmZllOZm3Nz6Hff2/lnijI9ze64hfhP6otSoSQy+y7lFm/Nv20LqXjzwAemR\ncdm1wTt+JGzvsafPZsLl7tzYjzpvDUCpVqHLyCTone0kBN14qryHA9PY8FkCmVkGfKpreHuCEzZW\nOcddfvgjhR3fJ2U/Tk7VExmj45ePK6FWwdIP47h6KwtLCwXd21vTv5vtU+V5XEVrz+IwGAzMmfU9\n3j6ujBj5rMnn91BFbUv35xpS941XUWk0JFy/w7lFH+ebu7C6Gn06Uv0/7VBZaIi/cptzCzejz9I+\ncSaHFk2oNmYISo2a1Bsh3Fj5LrrUtGLXuP+nC24vvYDS3IyUqze4sfJdDFlarOt4U+ONUagszFGo\nlITt3EP0/oNPnPNR5Xlbd372GWqNG4hCoyblxh2uLH0/T3sWVWPu5kyTj5dxavDU7H2Q83ON8Zs3\ngfRH9pV/jZv3RPvK/NRs589zU7ujMlMTfTWMX2d9RmZy3mnX7d6MJq91xGAwoE3P4o9FXxJx6Q5m\nNha8sGIQTl4eKJQKLu85wemP9pdKtkdVbtOARhN7otRoiL8WyvH5W8lKKbgNnl0ygvjgMC5v+wUA\njY0lLRcNw76mJygV3PzfMYK27H3qXKWxbXf+7f3c+/LtPxG69xi2NSsRMHckaisLDAYDlzd8QdTx\ni0+U07N1AA3e7I3STE3CtVBOvf0J2nzar6A6MztrGs8dgoNvNXRpGdz63xGu7z4AgFvTOjSc0g+F\nSkVGQjLnVu0i/trdJ8opKhY5w1UKzBxsabBgDGemr+dQr6mkhkVQZ0K/EtXVHteH9IhYDvedwdEh\n86jeqyMO9X0AcGzgw83PfuLIwNnZf0+yA9E42OI/byxnZ67jzz6TSQ2LxPf1/iWuq9S1Nc0/ehsL\nN6dc76s/fxzpkbEcGzyL0xOWUnfKUMwfqykpMwdbGi0Yzelp6/m91zRSQiOp+0bfEtVZV/ckKzGF\nQwNmZ/+VRmfLlMtdoVbRaPkbXFy6mT8HzCL4k+9ouGjcU+WNTdCxYEMs70x35n8bPanioea/O+Jz\n1bz8vDVfrvPgy3Ue7FztjouDipmjHHF2ULF6SzxWFkr2vOvBjhXuHPkrncOn8+4sn1RFa8/iuHEj\nihFDd7Bvb5DJ5/WoitqWZg62NHp7FKen/pffek4jNSwSv4K29wLqPNs3watfJ46NW87vvWeiMtdQ\na2CXJ86ktrfDe9abXJu3nHODxpN+P5xqY4YWu8apTUs8er3ElUnzOD9kAkpzMzxf7Q6A7+JZhG7Z\nxYWRE7kybSE1JozAoornE2d9qDxv6xoHO+rOeZ2Ls1Zzst9bpIVFUGv8wBLVeHRpyzObFmPu6pzr\nffb1fbmz6wdOD52W/VdanS1LJxteXDmYH17/iG0vLCThTjTPTftPnjrHmm60ntGDPSPe47NXlnNy\n415efn80AK0mvUzy/Xi2d13Czh4raTCgDZ6NapZKvofMHW14dvFwDk18n+9fnkNSaBSNJvXOt9bO\ny5NOn0yl+otNcj3f8I3/kBoRxw895rO332Jq922HS0Ctp8pVGtu2zYN9+cH+c7L/Qh/syxvMGs6d\n7w9xsP8czi3cTNMVb6BQlfwnrrmjLc0WjeTolPfY230WyWGRBLzVp0R1Daf1R5uawb4eszkwaDEe\nrerj2SYAjY0lrda+wbm1X/BLn3mcWbKdlqvHo9RU7HMfBoOiXP+VF9LhKgUuLRqQcPkmqXfDAQj5\n+gCVurQqUd3ld7Zz5b87ATB3cUBppkabnAqAY4PauDSpx3M7ltJy83ycGtV5spzNG5Bw+Ub2/O9+\nsx/Pzs+VqM7cxRG3tk0JnLQi13s0dtY4N2tA8OavAciIjOX4iHlkJSQ/UdaHXFvWJ/7yTVLuRgBw\n++sDVMmnbQurc2rgg0Gv59kP59Du8+XUHtUDlE+/EZpyuRu0On7rMoHEqyEAWFV2Iyv+6dry+Ll0\n6vmYUb2SBoA+nW3YezgVg8GQb/22bxNxslfS+0UbAK7cyKRbOytUKgUajYLWjS3Yfzz1qTI9qqK1\nZ3Hs3hlIj54N6dylnsnn9aiK2pZuLesTF3Qrezu+9dVvVOmS96xgYXVVuz1H8MX+I+4AACAASURB\nVI69ZCWmgMHA+aVbufvTkSfO5NCsEcl/Xyc99D4AEd/txaVT22LXuL74PPc//w5tUjIYDNx8532i\nf/kDhZmG0G2fk3DmPACZUTFkJSRi5uryxFkfKs/bulOzABKvBJMWalznwvb8gseLrYtdY+biiEub\nZpyfvCzPtO3r++LY2J8mW1fyzAeLcWhYt1QyA1R/ri7hF0KID4kC4Pyuw9R9pWmeOl2mlv2zd5IS\nlQhA+MUQrF3sUGpU/LH4Kw6t2AOAjZs9KjM1GUmld9AKoNKz9YgOuk3SnUgArn3xBzW7Nc+31rff\n8wR/d5SQXwJzPX96+W7OvPMlAJYPtv2spKdb/qWxbTsFPNyXz6bdF8uoPeo/2ftyhUqJxtYaALW1\nBbrMrCfK6dHSn9hLt0i+Y5x/8Jd/UK1ryxLVOfnV4PaPxzDoDei1Ou7/eYGqHZtiU82drKQ0Ik9d\nASDp9n20yWk4B3g/UVZRsVTsbnU5YenuRFpETPbj9MhYNDZWqK0tc50uL6rOoNPTcNF4PDo0I/xg\nIMkh9wDISkgi9OcjRBwMxDHAlyZrJvPngFmkR8aWKKeFuzPpkY/OPwaNjRUqa8vcwwULqcuIjuPc\njLV5pm1VxYOMmDhqDOyGa8uGKM3U3PrsR1Lv3C9RxsdZujuTFp7zOQtu24LrFGoVUScvcXn9LpTm\nZrT47zS0yWnc3L3vKbOZdrkbdDrMnOxo/dkyNA62nJ214anyRkTr8HBWZT92d1aRnGogJc2AjVXu\nDmhcoo7t/0vi8zUe2c/Vr23OTwdTaVjHnKwsA78dT0OtLr2jRxWtPYtj7nzjmZUTJ26ZfF6Pqqht\naenunDePbQHbewF1NtU9MQ+6SYv3pmPh6kDs2asErf/8iTOZubmQEZkzRC0jKhq1jTUqK8vsIW6F\n1VhUrYTG0YG6q99G4+JE0oUgQj7YhiEzi8ifcoaTub38IipLS5KDrj5x1ofK87Zu4e5MxiP7l4yo\nmDztWVhNZnQcl2atznfaWQnJhO87RPShU9g3qEODVTM4NXgKGVEl21fmx9bTkaT7OUPZksLjMbe1\nxMzGItewwsSwWBLDcubXbk5vbvx+AX2WDgCDTk+XNcPw6dyI4F/PEXcz4qmzPcrKw4nUR/aFqRFx\nmNlaobG2yDOs8PSyXQB4Ns/bMTXo9LRa8RrVOzXhzm9/kXg7/Klylca2rVApiTpxiaD1u4378nen\nok1J4+auX7iwYhvPbppNrYFdMHeyI3DWexh0+pLn9HAiNSKn/dIiYjGztUJtbZFrWGFhdTEXb1Lj\npWeJPncdlUZNlY6N0Wt1JIWEo7Yyx71lPSKOB+FUryZ2tSpj6WJf4pyi4qkwZ7j27NnDwIED6d+/\nP59++ilDhgyhT58+jB49mszMTPbs2cNbb73FmDFj6NKlC3v2GI8iXbhwgV69ejFkyBAmTZrEzJkz\nAdixYwd9+/alX79+bN++/enCKfNvxjwbezHqzs1/n/0dx2BmZ4PPaz0BODN9PREHjUeg4s5fJe7C\ndVya1y9xTEUB8+exnMWty/UetQqryu7oktM4OWoB5+e8S51JQ7Cr83TDJRSK/Hfyj7dtYXV3vv2D\nS6u3o8/Sok1O5cbOn/F4vkm+9SVi4uUOkBmbyG9dJ3Bs+AICFozBuppHfpMqFn3+B7fJb9TFN7+m\n0K6ZJZXdc47JTB7ugEIB/SaHM2llNC0aWlCqIyEqWHuWaxW1LQs485w3d8F1CrUK1+b+BM7YwKGB\n89DY2VB3Qt4hQcWlUBTQRnp9sWoUajX2TQK4tmAlF0dNRm1rS7VRg3PVVRrYi6oj+vP3zMXoMzOf\nOOtD5XpbL2ide6Q9i1WTj0uzVhN96BQACRf+JuHiVZyaBTxZzscoCljn9AXsF9WWZry04TUcqruy\nf9bOXK/tnbKND5pOx8LBmhZvdC2VfEXlLKrt8nN05sd8+dxbmNtbU3/cK08XrBS27ZBvD3Jx9Y6c\nfflne/F8vglKMw1NVkzg7Nsf8muXNzny2mIC5ozAwr3klzQU+FtCX8zfHHo959Z8DgYDL36xkFbr\n3iDieBD6LB3alHSOTPwvfiNf5sUvF1Hj5VZEnr6S3RmvqPQGZbn+Ky8q1BkuOzs7Nm7cyPvvv8+2\nbdtQKpWMHDmSixeNF0YmJyfzySefcPv2bcaOHUvPnj1ZsGABq1atwsfHh3Xr1hEREUFwcDA///wz\nu3YZj+4MHz6c5557Di8vr2JnqT2mN25tngFAY21F4o072a9ZuDqRmZCMLj0j13vSw6Nx8K+Vb51L\niwYkBd8hIzoeXVoG9345hkf7ZqhtrKjepxM3tv4vZ0IKMGiLdwG49+g+uLVpDIDa2pKk4JyLM80L\nyJkWHo19Pe8i6x6VEW088hf60yEAUkMjiD9/Fft63iT+XbKj+75je+HxSObERzIX1LZp4TE4+Hvn\nW1el63MkXgvJmY5CgUH7ZF9w/9hyt7bEuWm97I524tXbJF4Pwda7Kil3nuxIo6eLikvXcrJFxuiw\ns1FiaZH3C+nXo6lMH+mQ67mUVD0Th9hjb2s8cr51TyJVPZ/uK6Qit2d5U1Hbss7YXni0NebOs727\nORa4vTs+mvuRuvSoOML/CMw+ah7681F8R+W91qa4MiKisPGrnf3YzMUZbWIS+kcyFVaTFR1L7J8n\nss/eRP16kCrDjNekKDRqvGdNxLJGVS6Nm05GeOQT53xUedzWH0oPj8LOzyf7sbmrE1mPtWdxah6n\ntrGicq/OhHy6J+dJhQJ9MfeV+Xn2rZfw6mA8uGlmY0n0tbDs12zcHUiPT0GblreDbOvpyH8+GkfM\njXC+GrgebYZxeFv11nWJvnqPlMgEslIz+PuHQHw6N3rifA8FvN6dKs83BEBjbUn89dDs16zcHMlI\nyD9nQTyfrUf89TDSouLRpmVw6+dTVO/0TIlzlfa2XaVbKxKv3SHx+sN9ORi0OuxqVUFlYU7En+cA\niLt4g6QbYTj61+J+RNFnN/3H96BSW+Ny0NhYkPBI+1m6OZKRkIzusfZLDY/Bub5XvnXmHjacX/cl\nmYkpxnYY3tU49FChQJuawR+v5VyS0eXbZSTfLd2znKJ8Kj9dv2KoWbMmSqUSjUbD5MmTmT17NuHh\n4WgffKHWqWO8tsnT05PMB0cJIyMj8fExfnE3bmz8EX/t2jXu3bvHsGHDGDZsGPHx8YSEhJQoy7UP\nv86+gcXR4fNx9PfBqqrxCG+1Xh2IOHQmz3uiTlwssK5Sp+b4jO4FgFKjxrNTC2ICg9CmplGjTyc8\n2hvHitv5VsehXi0ij10oVs7gj77i2KCZHBs0kxMj5uHg750z/54diTwcmOc9MScvFKvuUWn3oki4\ncpPK3doAYOZkj0P92iRcLvmdy65u+ib75hZ/DluAU31vrKu6A1CjdwfC82nbyBMXC6yzrVUF33G9\nQalAaa6h5qudCNt/osS54J9b7ga9noD5Y3AMMP6Is/GqjHX1SsRfevI7wbVsaMGFa5mE3DPu/L/+\nJZl2zSzy1CUm67lzX0tAHfNcz3/1SzLv7zZelxATr2PP/hS6tLZ64jxQsduzvKmobfn3pm+yL4A/\nPPRtHB/djnt1IPzQX3neE3n8YoF19w6colKn5ijNjdcvebRrTNzlm0+UDSD+9Fls/Hyzb2bh0b0L\nsUdOFrsm5uBRnNu1QmlmBoBT6+ak/B0MQO1FM1BZW3JpfOl1tqB8busPxZ46j72/D5ZVjOtcpR4v\nEH34dIlrHqdNTadKrxdxbWe8Xsmmdk3s6noTe+LcE2c99t8f+eyV5Xz2ynJ2916FZ8OaOFR3BSBg\nQGuCD+TdD1vYW/Hqrklc//UcP0/ckt3ZAvDt2piWD85oqczU+HZ9hrvHn34I6fmN/+On3gv5qfdC\n9g1cikuAF7bV3ACo3bctd38/W6Lp1ejclAbjXgaM236NF5sQfvLvEucq7W3brlYV6oztlb0v9+r7\nAmG/niD5bgQaG0scGxh/61lVccOmZiUSrhbvd92l97/l177z+bXvfA4MXoxzg1rYVDPOv1af57l3\nMG/7hR+/VGBdrT7P4/96DwDMnezw6tmWO3tPgMFA642TcfSrAUCVTk3Ra3Vyl8L/JyrUGS6lUsnf\nf//NgQMH+Oqrr0hLS6Nnz57ZFwLnd4rXw8OD4OBgvL29OX/eeHGyl5cX3t7efPzxxygUCrZt24av\nr+8T58qMS+T8og9pvPItlBo1KaERnF/wAQD2dWtSf+4ojgycXWjd5XU7qT97JG2+WInBYCDi4Blu\n7d4HBgOBU9ZQb9owao/pjV6r4+ysDdm3wS1pzouLN9FwxSSUajWpYRFcfHsjAHZ1vfCfM5pjg2YW\nWleYs9PX4Dd9BFV7dkShUHLjk29IvPLkP3QeZj678EOarHrYZpGcnZ/Ttg3njeLQgNmF1l3bvIf6\n04fy/BcrUahV3Dtwkjvf/vFUuR5mM+lyn7oGv8mDUahV6LO0nJv7Xomv23uUk4OKhW84MW11DFlZ\nBqp4qFnylhNBwZks3BjLl+uMP27u3M/C1VGF5rFrNkb2smPO+lh6vXkfAzC2rx3+Pub5zOnJVLT2\nLM8qaltmxiVy9u2PaLr6zezt+K95mwBwqFuThvNf42D/OYXW3frqAGb2NrTbuQSFUkn837c5v3TX\nE2fSxidwY8V/qb1oJgqNmoywcIKXrsPa15ta0ydwYeTEAmsAwr/bi9rOlvofr0WhVJJy7SY3N27E\n1r8uTq2ak3YnFP+NK7PnF7LpUxJOl+wH8uPK87aeFZfIlSUb8V82FaVGTVpYBJcXbcC2Ti3qzBrL\n6aHTCqwplF7PhemrqD15BDVf64tBp+PSvLVPtK/MT1psMr/O2MHL741CqVGTcCeKfdM+BcDdvxqd\nlg3ks1eW02BAG2wrOeHdKQDvTjnDGb8e8i6Hln1Dh8X9GfLzXDAYCN5/nr+2Pf2+6FHpsUkcm7uV\nNuvGo9KoSLobxdFZnwDgVK86LRcO46feCwudRuDqL2gxfwgvf7sIg8HA3d/PcuWzA0+VqzS27asf\nfUv9GUNp/+WKB/vyU4R8exCAU1PWU3/aYFRmGvRaHeeXbiE1tOQHMTJikzg1/xNavfM6So2a5NBI\nTs7ZDICjXw2aLhjBr33nF1p35ZOfaL50NJ2/WQIKBUGbviM2yDjS58TMTTRdMNy4XkfFc2Tiu0/V\nruWBQV9+7gRYnikMBd22qJzZs2cPN2/e5PXXX2fMmDHZZ7DMzMzo3bs3Wq2WmzdvMnXqVDIyMujS\npQu///47Fy5cYMmSJVhZWaHRaHB3d2fJkiV8/PHHHDhwgMzMTBo0aMC8efNQqVSFZvipyYB/4qM+\nsW6Bu9jXLO+tn8ubzqc+5/vGA4suLGOvnNlZ7pc5GJd72uWOZR2jSJZ+BypMe+rYWXRhGVJh3H7K\ne3t2C9zF/54ZVNYxitT9r8843uYpr1H5B7Q8/H2F2dZ/b5n/rcjLk/bHv2at9/iyjlGkycHvs8N/\nZFnHKNTgS8ZOXXnf3rv/9RlfBAwr6xhF6nt+W1lHKLagLh3KOkKh6u39rawjABXoDFfPnjkXaxd1\nkwtzc3N+//13AC5evMimTZtwcnJi3bp1aDTGYSavvfYar732mukCCyGEEEIIIf7fqzAdrifl7OzM\niBEjsLKywtbWlhUrVhT9JiGEEEIIIUShytN/Llye/es7XJ07d6Zz585lHUMIIYQQQgjx/1CFukuh\nEEIIIYQQQlQk//ozXEIIIYQQQojSJ0MKi0fOcAkhhBBCCCGEiUiHSwghhBBCCCFMRDpcQgghhBBC\nCGEicg2XEEIIIYQQosT0cg1XscgZLiGEEEIIIYQwEelwCSGEEEIIIYSJyJBCIYQQQgghRInJbeGL\nR85wCSGEEEIIIYSJSIdLCCGEEEIIIUxEhhQKIYQQQgghSkyGFBaPnOESQgghhBBCCBNRGAwGQ1mH\nEEIIIYQQQlQsZzt2LusIhWp0YF9ZRwBkSGGJ6NhZ1hEKpWJguc8IkrO0qRjI3qb9yzpGkbqc3l1h\n2vOnJgPKOkahugXuAirGd9JvLfqUdYwidTjxFfubv1rWMYrU6eSXFWZbryjL/VCrnmUdo0htj+7h\nTt9mZR2jUNW+OAVA5hrrMk5SOLMpKRVm3awo5D8+Lh4ZUiiEEEIIIYQQJiIdLiGEEEIIIYQwERlS\nKIQQQgghhCgxuUth8cgZLiGEEEIIIYQwEelwCSGEEEIIIYSJSIdLCCGEEEIIIUxEruESQgghhBBC\nlJhcw1U8coZLCCGEEEIIIUxEOlxCCCGEEEIIYSIypFAIIYQQQghRYnoZUlgscoZLCCGEEEIIIUxE\nOlxCCCGEEEIIYSIypFAIIYQQQghRYnKXwuKRM1xCCCGEEEIIYSLS4RJCCCGEEEIIE5EhhWXEYDAw\nZ9b3ePu4MmLks2Udp0CSs3SVVU7XVo2o/Xo/lGZqkq7f4dKSj9CmpBW7Tmmuod70Edj7eYFSScKl\nYIJWbUGfkYVTYz/qTByEQqUiKyGJK2u3k3T9jsk/U1kuc7dWDfGd8LCd7nJhcf7tWVCd2tqSBvNH\nY1OjEigUhP70Jzc//QEA58Z+1HlrAEq1Cl1GJkHvbCch6IbJP5Mp29P52WeoNX4ASo2G5OAQriz9\nAF1qWvFqlEpqvzUUp+YBKFQq7uz6nrBv9wNgWdUDvznj0djbok1N5/KiDaSG3APAa0w/3Ds+iy4t\ng4SLV7n+30/RZ2Zh7uZM3TnjMHOyR6FUErLz++wMLq0a4T1uAEozY4agpZvQ5bNcC6xTKvCdOBTn\nB1lDdv5A6IOsVlU98Js7Do29LbrUdC4tfC87a60xffHoZMwaf+Eq1/67HX1mFigVeI3ojWvrxqgs\nLYrV1uV1WzfVOvCQ50vP49quGRemrsx+zqFhXbwnDEJpboY2OZXLizeSfi+yWHkBnFo2pubYgSjN\nNKQEh3B1+cY8mQuqUZqZ4T1lFLZ1vVEoFSQGXSd4zWb0mZlY1ahC7enjUFlZYDAYuPXBZ8SdOlfs\nXIWxaNQKh/7jUWjMyLoTTMymJRjSUnLVWD3XGbtXBoPBgCEjnbhta8i8eQWFpTXOY+eirlwDhUJB\n8qGfSfp+e6nkepyi5ouoWi9CoTLDEHUJ7a/jITMp/1rvl1B33kzWe54PPqQjqo7rUbo2wJCVij5o\nB/qzm0oll6nWU8dn6uH9xmAUahX6jEyurd1K4uXgUslc1mRIYfH8o2e4Bg8ezI0buX84nDx5kkmT\nJpX6vPbs2cNvv/1W6tMtDTduRDFi6A727Q0q6yiFkpylq6xymjnYUn/+GM7OWMefvaeQFhZJ7Qn9\nS1RXa3gPFColRwbM5Ej/6SjNzag1rDtqa0ueWTWJq+/u5OiAGQSt2ELD5W+h1Jj2WE5ZLnMzB1sa\nLBjDmenrOdRrKqlhEdSZ0K9EdbXH9SE9IpbDfWdwdMg8qvfqiEN9HxRqFY2Wv8HFpZv5c8Asgj/5\njoaLxpn8M5myPTUOdvjNHc/FWe9wou9bpN2LwPv1gcWuqdyjI5ZVPTg5cDKnR8ykat9u2Pl5A1Dv\n7bcI3fMrJ/pP4tbHX1B/+VQAPLu1w6VVY04Pn8mpIdPIiI7Da4yx7X2nvUbMsb84NXgaZ99YhO+U\nEQ8y2FJv7nguzFrDsVcnkhoWic/4Afl8noLrqvTohFVVD44PmMLJ4bOo1q8rdn61APBf+Cah3/zK\n8X6TubH5SwJWTAGg0kvtcH2uMSeHzeLE4OlkxMRTa6wxa7W+XXF8xo/To+dxfOCDz9apZYFtXV63\ndVOuA2o7G3ynj8J3yggU5PzwM3d1osHKaVxd/TGnBk8j6o+T1Jk2qsisj+bxnTOBy3NWc7r/G6Td\ni6DmuMHFrqk2tBcKlYozQycTOGQyKnMzqg3pCYDPlNGE//QbZ4ZN4dqyjfgtngKqp/85prR1wHnc\nPKLXzuT+pD5oI8JwGPB6rhq1ZzUcB71J5LI3CZ8xiIQ9W3CZYuykOvQdizY2kvCp/QmfPQzbTj0x\n86n/1LnysHRB3flDtN8PIGtrIwwJt1G1XpR/rUMt1G2WgSKnfVTtVkJmClnbGqPd1Q5ljRdQeHV+\n6limWk8VajX+SyZxZfkmTg2exq2t3+C34I2nzisqln/tkMKePXvSoUOHso6Rr907A+nRsyGdu9Qr\n6yiFkpylq6xyurRoQMLlm6TeDQfgzjf7qdS5VYnq4s5eIXjLt2AwgN5A4tXbWHi4YlXNk6zkNGJO\nG3+op4TcQ5uShkN9H5N+prJc5o+3U8jXB6jUpej2fLTu8jvbufLfnQCYuzigNFOjTU7FoNXxW5cJ\nJF4NAcCqshtZ8ckm/0ymbE+n5g1IvHKDtAftELbnVzxebF3sGte2zbn/4x8YdHq0SSlEHDiKR+fW\nmLs6YV2jEhH7jwIQc/wcKktzbH1rYlunFlGHT6FNTgUg6uBJ3Nq3AODC9FXc/WofAObuLhi0egCc\nmweQcOVG9vIK3fMrHp1z5yyqzq1tM8J+OJidNXz/MTw7t8Hc1RHrGpUI338sJ6vFw6xeRB46nZ01\n8o+TuD/fHIBKXdtya+se9BlZGLK0xveevlRgW5fXbd1U6wCAe4eWZMbEcX3DjlzTc2vfgujjZ0m6\ness4ve/2c2391iKzPuTYrCFJV4JJC70PwL1v9+H+Quti1yScv8ydT7960I56kq/dwtzDFQCFSona\n1gYAlZWl8WxmKbAIaE7mjctow+8CkLT/G6yfy90RMWiziPlwKfr4GAAyb15B5eAMKjVx29YQv+Nd\nYy4HFxQaM/Sppf/9o6zeAUP4GYg3HoDXnd+Msm7fvIVqS9RdP0F7aGaupxXujdBf3g0GPeiz0N/a\nh9Knx1PnMtV6atBqOfLyGJKv3QbAsrI7WQn5n80T/14mOwydlZXFrFmzCA0NRafTMXz4cAA2btxI\ndHQ0aWlprF27Ntd7vvrqK3bv3o1er6d9+/a8+eab+U57z549HDhwgJSUFOLi4nj99dd58cUXeeml\nl6hRowYajQYvLy9cXFzo168fixcv5sKFC2RlZfHGG2/QsWNH1qxZQ2BgIHq9nmHDhtGlSxdTNUUe\nc+cb53XixK1/bJ5PQnKWrrLKaeHuTHpETPbj9MhYNDZWqK0tcw01Kqwu+uTFnDoPF2r078KlZZtJ\nvXMftZUFLs3rE33yIvZ+Xth6VcHcxdGkn6ksl7mluxNpxWjPouoMOj0NF43Ho0Mzwg8GkvxgeJlB\np8PMyY7Wny1D42DL2VkbTP6ZTNmeFm4upEdEZz/OiIxBbWOFysoye6hOYTUWbrnXy4zIGGy8q2Pu\n5kxGVJzxB232a7GYuzmTGHSdqv27EfrVPrISk/Ho2hZz5wfrpMEABgPPvP829g3qcPfzH6k+qDsW\n7s5kPDYfjY0VKmvLXMMKC6uzcHcmI/LxrNWwcHfJkzU9KhYLNycSg65TrV837j7I6tm1bfb2Y1XN\nE+uaVagx9D+YOdgBkJlY8A/g8rqtm2odALKHbHl2a5drnlbVKqFPy8B/8USsqlUiPSKaa+u3FZn1\nIXM3ZzIiH8kTFYPaxjpX5sJq4k6dz5mWuyuV+77EtZUfAHB9zWYC3l1Ilb4vo3G048qCtaDTFztb\nQdTO7mhjcoZM6mIiUVrZoLC0zh5WqIu6jy7qfnaN45CJpAUeBp2xQ49eh/OEhVg1b0/q6YNo74U8\nda487KpgSArNeZwUhsLcHsxscw0rVHXagP7CFgxRuQ8yGO6fRunXH92946AyR+nzH9A/fafVlOup\n8XvdnqbbVmHmYMvFueueOm95If/xcfGY7AzXF198gZOTE59//jlbt25l/fr1xMXF0bZtW7Zv306b\nNm3Yt29fdn1MTAybN29m165dfPvtt2RmZpKSklLg9NPS0ti6dStbtmxhxYoVaLVaUlNTGT9+POvW\n5azIBw4cIC4ujq+//prt27dz6dIlDh06RGhoKLt372b79u1s2rSJxMREUzWFEGVLkf+XoeHxHXwx\n6uzq1KTF5gWEfPkLUUfOok1J48yUd/Aa/h9a7VxBpa5tiDkdhP7B0fh/JWX+X5t52rMYdefmv8/+\njmMws7PB57We2c9nxibyW9cJHBu+gIAFY7Cu5vH0ucuKsoD1Sq8vVo0in9cMuvyff/ha+L7DRP52\nnEYbF9DkoyWk3g7Ls07+Nf5tjrw0GqdmAcYnFMVcroXV5ZdJry9429Lrub/3TyJ+P0HjjfNpunkx\nqSE5WRVqFfb+PpydtJzTo+cBUKNvIUOnyuu2bqJ1oDAKtQqXNk258dHnnBo6ndjAizRYMa3orA/f\nX9D2+0jm4tTY+HrR8P0l3PtmL7HHzqAw01B30RT+XrqBEz1Gce71efhMG4u5m3OxsxUSOv/n9bq8\npeYWuExajtqjCjEfLs31Wsx7Cwh97QWUNvbY9x759Lnyzr3InMqAUaDXor+U9xoy3aFZgAH14OOo\nu3+OPuR30GU+fSwTr6eZsQkcfWUMgaPm4Dd3PJZVPZ8ur6hQTHaG68aNGzz7rPHCaxsbG2rVqsXR\no0fx9/cHwMXFhejonKMEd+/excfHBwsL44XBU6dOLXT6TZs2RalU4uLigp2dHbGxsQDUrFkzV92t\nW7do2LAhAPb29kycOJHNmzcTFBTE4MHGsdZarZawsDDs7OxK4ZMLUfZ8xvTGrU1jANTWliQF381+\nzdzVicyEZHTpGbnekx4Rg4O/d4F1np1a4jdjBJdXb+X+L8ahUSgU6NLSOTV2cfb7Wn/5Dqmh4ab6\naGWi9pjeuLV5BgCNtRWJN3JuFGBRUHuGR+PgXyvfOpcWDUgKvkNGdDy6tAzu/XIMj/bNUFtb4ty0\nHhEHAwFIvHqbxOsh2HpXJeVOxWzTjIho7OvlDDszd3UiKyEZ/SPtVVhNekR0rrMo5q5OZETGkB4e\njZmzQ655PXxNbWdDxK9HCNn+HQB29bxJe7BOuj3fgpiT59ClplO1TxfMTBTQ/wAAIABJREFUnO0B\nqNy9PcmPLNf8cgKkR0Rj/9h2kp31sUzmrk6kR8aSHpE3q8WD19R21oT/coTbn+Zkfbj9ZETFEbH/\nKIYsLboHHRuH+j6we2/2dCrCtm6qdaDQeUbFkXDxavbQr3vf/47v5BEozc3QZxT94zw9PApbv0fy\nuDiTlZiUK3NRNa4dWuEzdTTBaz8mcv+fAFh7VUNlYU7ssTMAJAVdI/XWXWz9apMRebzIXIXRRodj\n5p0zLFjl5IouOQFDRnquOpWzO64z1pIVdovIheMxZBnzWgS0IOtOMLq4aAwZaaQe/QWr5u2fKlO+\nkkJReDbNeWxTCUNaLGhTs59S1hsEGivUg4+jUGmMwwsHH0e7pwco1egOz4X0OGNt08kY4m8+dSxT\nracqayucmvgTdeiU8eNfvUVycAg23tVIu5tztlH8u5nsDFetWrUIDDT+aEhOTubatWtUqVKlwPpq\n1apx8+ZNMjONX4RvvvkmERERBdYHBRnHkUdHR5OcnIyzs/HokPKxI05eXl5cvGgcIpGUlMTIkSPx\n8vKiefPm7Nixg08//ZQuXbpQtWrVJ/+wQpQz1z/8mqMDZ3F04CyOD5+Pg78PVlWNZ0mq9epI5OHA\nPO+JPnGhwDqP9s2oO3Uop99YnvMDDMBgoMn6GdjV9TLWdWiOXqv7R+5S+E+69uHXHBk4myMDZ3N0\n+Hwcc7VTByIOncnznqgTFwusq9SpOT6je/F/7N13dBRl28fx77b0RnogFJNACqEKoShFmiI2QHoH\nQZpKb6FXBRSxF8SCKEXQR/RVARuIhAQEQi+hJkI6Cekhu+8fC0tC2i5ks8nzXJ9zOIfsXjPz23tm\nd+beuWcWQKlR49O1NckHT6DTamky/0VqNGkAgINfLezr1uTGcfPfpdBckg8cxTm0Pra326FWz24k\n7o0yuiZxTxQ+Tz+mv+7FwQ6vro+QuCeK3MQUsuPi8eqi/2LPtVUTdFotGTFXcAryo9Fr01GoVChU\nSuoN7cn1X/QHvLV6dcO3j34I5eWvdpCXdAOAyFHhOBdaX769upJwT87CWUuqS9xzkFpPdyqUtS2J\nf0aSm3A7a1d9Vrc7Wc9fwSnYnyavTTNkfWhYT67/8hcACb9F4P1Ee1AoUKhUAKSdLLotVIf3urm2\ngbIk/hmJS+NAbHw8AfDs2IqMmCtGdbYAUiOP4tSwAba++rMQNXt2I/mezGXVuHdsQ8DkF4ievNjQ\n2QLIjr2G2t4Op9BAAGxqeWFXz5eMcw/eYciJPoB1/VDU3vrjGYeuvfTDBQtR2jvhtfBDsiJ/J3nt\nXENnC8CudRecnn9B/4dag12bLuQcL779PCjtpV9R+ISBi/4LKVWTF9DG/Fik5tZXHbj1eUtubWhD\n/vZecCubWxvaQOZ1VE1eQNV27u3QnqgaDUd7avMD5zLbdqrVEhw+DufG+nVu/5AvdnVrkX783ANn\nrgp0OkWV/ldVmO0MV9++fZk3bx4DBgwgNzeXiRMnsn379lLrXV1dGT16NIMHD0ahUPDYY4/h5eVV\nan1SUhLDhg3j5s2bLFiwANXtndG9OnfuzP79+xkwYAAFBQVMmDCB9u3bExkZycCBA8nKyqJLly44\nODg88GsWoirKS03n2OIPaPbqJJQaNVmx8UQvfA8Ap2A/Gs0dzb5Bs8usazChPwqFgkZz797lK/Xo\nWU6u/JSj896hUfhoFBo1uUmp/DP9dYu8zsqSl5rO0cUf8vBr+ju0ZcbGc3SB/toM5+CHaDR3NH8N\nmlNm3ck1G2k0ZxTtN7+GTqcj/o9DXPz6Z9DpODjtdUKm3L59cP4tjsx9h5yEFEu+5AeSn5rOySXv\n0Wj5VJQaNdmx8ZxY/A6OQX4EzxlH5NDppdaA/qJ021rehG1YjVKjJu7bXdw4fBKA4/PWEDx7LPVG\n9Eabl8/x8DdApyMlMhqX5g1ptXE1KJQk7onkyib9Ad3JJe8SNGsMXl+uBuDf/+wmMHDU7Qzv03jF\nFBRqNdlx8RxfpM/gFORHSPhYIobMKLMudvtObH29aP3lKpQaNbHf7ib18CkAjs19k+DZL+I3ohfa\nvHyi56zRZz0QTVKzEFpvXIVCqSThzyguf/0DAOc/3ET9CYNp8/XrKG7fxe5SobNb96qq73VzbgOl\nyTh3idMrP6bxa9NRqFXcupnJsfA3ypymSOYbaZxZ/g4hS6ej0KjJibvO6SVv4RDkT+Cs8RwaPrXU\nGoCHxurvXBc4a7xhnmnRpzn/xsecmPMa/pNGobTSoLtVwNmVH5ATV/oXzMbSpqeS/P4S3Ke8ikKt\n5tb1OJLfXYiVXzCuL4ZzfeZgHLr1RuXuhV3Ljti17GiYNmHJBFI3vInr6Fl4r/4adDqyo/7k5k+b\nHjhXMdmJ3PplLOqnN6JQadDduMitn0ej8GqGqtt7+o5VGQoOrEb95DrUw/QdnYL9y9HF//PAscy5\nnUbPXEWDScNRqNVo8/M5MX8tuYnV93NdmE6h0xW6irea2L59OxcuXCh32GFFK2BjpS7PVCoGVfmM\nIDkrmopB/NSy+K2fq5ruUV9Xm/b8sUXx24FXJT0OfgVUj8+kX1v3sXSMcnWO2MquVn0tHaNcXQ9s\nqTbv9eqy3v98pFf5hRbWYd92rvQLs3SMMtXZrB8ul/e6vYWTlM1qama12Tari78efc7SEcr06F/f\nWToCUMV/+HjhwoXFfrcLqNQ7CgohhBBCCCHE/aryHS4hhBBCCCFE1SO3hTfOf+0PHwshhBBCCCGE\npUmHSwghhBBCCCHMpEoPKRRCCCGEEEJUTbrSfshaFCFnuIQQQgghhBDCTKTDJYQQQgghhBBmIkMK\nhRBCCCGEECbTyV0KjSJnuIQQQgghhBDCTKTDJYQQQgghhBBmIkMKhRBCCCGEECaTHz42jpzhEkII\nIYQQQggzkQ6XEEIIIYQQQpiJDCkUQgghhBBCmKy636VQq9WycOFCzpw5g5WVFUuXLqVu3bqG53/7\n7Tfeffdd1Go1vXv3pm/fvve1HDnDJYQQQgghhPifs3v3bvLy8ti8eTNTp07l1VdfNTyXn5/PihUr\nWL9+PRs2bGDz5s0kJSXd13KkwyWEEEIIIYT4n3Po0CHatWsHQNOmTTl+/LjhuZiYGOrUqYOzszNW\nVlY8/PDDREVF3ddyZEihCVQMsnSEclWHjCA5K1r3qK8tHcEo1aU9exz8ytIRjFId2rNzxFZLRzBK\n1wNbLB3BKNXlvV5d1nuHfdstHcEodTZHWjqCUaymZlo6Qrmqy7YpKkdGRgYODg6Gv1UqFbdu3UKt\nVpORkYGjo6PhOXt7ezIyMu5rOdLhMsFvbZ63dIQyddr/Dbta3d/Y0srU9cAWfm3dx9IxytU5Yis7\nw/pZOka5ukVu5uew/paOUa4nIjdVm/X+n+aDLR2jTM/+8yVAlW/PzhFbKWCjpWOUS8UgFAqNpWOU\nS6fLrzbvddkXVZzOEVurxfEHVI/jpPTkly0do1xObm9ZOoLRqvtt4R0cHMjMvPtFgVarRa1Wl/hc\nZmZmkQ6YKWRIoRBCCCGEEOJ/TvPmzdmzZw8AR44coUGDBobn/P39uXz5Mjdu3CAvL4+DBw/SrFmz\n+1qOnOESQgghhBBC/M/p2rUr+/bto3///uh0OpYvX86OHTvIysqiX79+zJo1i1GjRqHT6ejduzde\nXl73tRzpcAkhhBBCCCFMVt1vC69UKlm8eHGRx/z9/Q3/79SpE506dXrw5TzwHIQQQgghhBBClEg6\nXEIIIYQQQghhJjKkUAghhBBCCGEyLdV7SGFlkTNcQgghhBBCCGEm0uESQgghhBBCCDORIYVCCCGE\nEEIIk1X3uxRWFjnDJYQQQgghhBBmIh0uIYQQQgghhDATGVIohBBCCCGEMJlWhhQaRc5wCSGEEEII\nIYSZSIdLCCGEEEIIIcxEOlxCCCGEEEIIYSZyDVcFcWvbHP9xg1Bo1GTGXOHUsvcoyMo2qcba040W\n65YTOWQa+Wk39dM8+jAh8yaScz3JUPfPuHkUZOUYnc39kWYEjBuI0kpDxvnLnFj2AQWZ2cbXKRUE\nThqGW6smKFQqLm/cQey3uwCwq+1NyNxxaJwdKcjK4fiid8i6/C8ALk2Dqf/SIFTWVtzKyOLE4vfI\n/jeh9PYbPxClRr/sU8veL7n9SqpRKmnwyjBcb+e78tX3xN3Od4fPU4/h0TGM6GmvGR5rtGIqDgH1\nKMjWt2XqoeOcW/u50e16p83qjx+A0krDzfNXOLG09LYtq87a041W65eyf9AMw7p3CvYncMowVLbW\nKJRKLn3xH679/JdJ+e7weKQZDcb3Nyz/2NIPS8xZWp3SWkPI9JE4h/iDUkHa8fOcXLUebW6+Ydpa\nT3fEq2NL/pm6qtQc5lrPtrW9CQkfj8bZkVtZOZxc/LZhO7yjdt8nqflsZw4MmgqAyt6Odv/3cZG6\nc29+ZnLbej3alOCX+qLSaEg7d4Uji9dxq4S2LauuXp8u1H2uIyobDTdOXeLIoo/R5t8qd9mWaE+/\nF/vj1aUtBdm5pB07w7m1n6PNy8fa043g8HFYuTqjUCq5vPF7k9vSGDqdjvDZ3xNQ34ORo9qaZRkV\n6dNPP+H48eO8/vqaSlleVXmv38uc+yG1kz1BU0di/5AvKmsrLn62nWs/7dVn7dmFOv2eRHergOxr\nCZxc+oHhM/ZeltgPASg0apq8Ppt/v91Fwu8RRrdpkUxmOP5wDPan/qQRqGysUaiUXN7wHfG/7DU5\nX2Vmrmh/7Uvk3Q/Okpevpb6/I3PnhOJgX/TQ+fc/4/lo3XkUSgVOjmrmzgrF19eOtPQ8Xl11irPn\n0rG1UfF0j1r061PXLDktSW4Lb5z/iTNcffv2JTY2lu3bt/Prr78CMGXKFHr37s3Zs2cZMmQI/fv3\nJy0t7b7mr3FxIjh8Asdmr+JA/1fIjovHf/wgk2q8u3eg+QdLsPZwKzKdc6NArny1g6hh0w3/TOls\naVwcaTh3PNGzX+fvvpPIikug/viBJtX59uyKXW1v9g+cyoERs6nT/0mcQvwBCF30MrHbdrK//xRi\nPt5Ck1f1B7PWnq40WTmN0ys/IWLwDOJ/P0DQjBdKbb+QueM5Nns1Ef1eIfvfeAImFG+/0mpq9eyC\nbW1vDgyaQtTIWdTu1wOnkAAA1E4OBM4YTeDUkSgo+qHgHNqAQ+PmEzl0OpFDp5vc2dK4OBI6bxxH\nZ73Bvj6TyY6Lp8GEktu2rDqfJ9sT9tFCbDxdi0zX5LUpxHy0lYjBM/ln0goCJw3Frra3SRnvLn8s\nh2etYW+fKWTFJRA4YYBJdf4jeqJQq9g3aCb7Bs5AZW2F37Dn9NM52RMyaxTB04aDouwPXnOt54YL\nXyF2+04iBkzm4rrNNFoxrch8nRsHUnfIs0UfC63PjSOnDOs/cuh0Uv85YXzDAlYujjRbOJqoaWv5\ntdd0suISCHmpn0l1Pp1a4Ne/K3+PW8Fvz89CZa3Bf1B3o5Zf2e3p06Mj7o88TNSIWUQOnU5uUip+\nL/YHIHD6CyT//Q+RQ6Zz+KXFBE4daVJbGiMmJpGRwzbw80+mrSdLCAoK4tdfd9K37/OVtsyq9F6/\nd3lm3Q/Nm0BOQgoHhs7k0EtLCJwyAmtPV2x8PAgY25+DY+YTMXg6OdcS8R/Tt5SMltkPOYU2oOW6\n5bg0DjK6Pe/NZK7jj0bLp3Fx3Waihk3n6ORl1H95OLa+pu+DKjNzRUpNzWPxsuO8trwp2za1o1ZN\nW95572yRmpzcAuYvOsbKFU356vO2tH/Uk9VrTgGwZu0Z7GxVbNn4KJ9+3Jq/I5LYu6/kL53Ff7//\niQ7XHb169aJz584A/P3332zbtg0HBwcyMzPZtGkTzs7O9zVf17AmpJ86T3bsdQDitv+C9+PtjK6x\ncq+Be/swjk5ZXmzezo0CqfFwKC0+fY3m7y/BpWmwSdncWjUh7VQMWVf1y43dvhPvJ9qZVOfZIYy4\nHX+gK9By62Ym13f9jc8T7bH2qIF9vZpc3/U3AMn7j6CyscYx8CG8OrUm+e8j3DxzUf96v93NmTWf\nldx+rRqTfiqG7Kt32mZn8fYro8ajQyuu/fC7IV/87n2G7F6d25CXnMq5tzcUmZ+NjycqO1uCZo4h\n7MvVBM8dj9rJwfS2PXm3za5u24X3E4+aVGftXgPPDi35Z/KrRaZRWmm4sO4bUqKOAZCbkELejZtY\ne5q+c3Fv1bjY8n1KyFlWXcrh08Ss/xZ0OtDqSD97CVsfdwC8u7QhN+kGZ97aWG4Wc6xnaw9X7OvV\nJH7XPuD2dmir3w4BrFydCZz2AufeKboNODcKROPkwMMfLiHs85XU6tXNiNYsyrNNI1JPXCTzajwA\nF7f+im/34mddyqqr3eNRzm/4ifz0TNDpOLrsU67+aNyZzMpuT8cgfxL3RHIrIwuAxD8O4NmpNQDR\nM1ZydevPAFh7uaO7pTWyFY339caD9OzVlCe6N6zweVe0CRPG8emnn7NlyzeVtsyq9F4vzJz7IbWT\nPa5hjbmwbiug/6yMHBlOfloGCpUShVqNyt4WFAqU1tZoc/NKzGiJ/RBA7b7diflwE+knz5nUpoZM\nZjr+UFppuLh+K6l39kGJKeSnpd/XPqiyMle0iMgkQoKdqFPbHoDeverw885r6HQ6Q422QIdOpyMj\nQz8iISu7ACtr/aH1qdPpPPlETVQqBRqNkkfaevDr7/FmzSyqrio7pDA/P5/Zs2cTGxtLQUEBI0aM\noFatWixfvhytVouXlxerV6/GxsamxOnXrFnD3r178fb2JjU1FYC3334bd3d3zpw5Q0ZGBuPGjePW\nrVtcunSJ+fPns3jx4vvKauPlRm5CsuHv3MRk1A72qOxsDae/y6rJS0rl+OySh2bkp2Vw/ec/Sfoz\nEufGQTReOZPIIVPJTUwxPlt8oeUmJKNxsENlb1tkOEdZdcWyJyTjEFAHGy93chNT9Tvm23ISU7Dx\ndMWutg8FOTk0WvoKdnVqkhOfxNk1JZ9BsvF0Jyf+7pDJ3IRk1A52RduvjBobTzdy4u/Npz9tf2dI\nh0+PjkWWaeXqRErUMc6s+pi81HQaTB5OSPg4omcaP0TGxsuNnATj2ra0utykVI7OfL3YvLV5+cR9\n/7vh71rPdUZlZ0Pa8bPFak3NmWNkzsJ1yQei79Z5u1O3f3dOrFgHwNXtu/UZe3QoN4s51rO1p1ux\n7TA3IQVrTzdunrtMw0WvcP6dDWhvFR2ipysoIOmvg1z8dDvWbi40f3cBuUmp5b6Gwmy93MiOL9xm\nKWgc7VDb2xYZVlhWnUNdH6xPXKD1OzOw8XAh5fAZTry5yajlV3Z7pp84R+0BPYjd+jP56Rl4P9kB\na7ca+iKdDnQ6mr+3EOfGQVzd9AN1Bxc9q/ig5s7Xn/mLiLhYofM1h5deegWAzp07Vdoyq9J7/d5c\n5toP2fl6k5ucSt2BT+HepilKKw2XNu4g6+o1smPjufzl9zyy5U3yMzK5lZFF1Ki5JWe0wH4I4MT8\ntQDUHfxM+Q1ZUm4zHX9o8/K5tuM3w981n+2CytaG9BP31zGsjMwVLT4+By+vu8eYnh7WZGbeIjOr\nwDCs0M5OzewZIYx68QDOzlZoC3Ss+zAMgNCGzvzfz//SpLELeXlafv89HrX6v2/4XcV/tfbfqcp2\nuDZv3oyrqyurV68mIyODXr16YWVlxdq1a/H392fr1q3ExMTQsGHxbzqPHTtGVFQU33zzDVlZWXTr\nVvSb64ULF7Jr1y7ef/99YmNjmTJlyn13tgBQlnyiUKfVmlZTgsIfKmnRp0k7dgbXsCZc+/H3MqYq\nRFHKcgu0xtcpS/iA0GpLHVKi02pRqNV4tHuYgy/OJ+vqdWr37U6T16YRMWRG8QlKmj/3tl8Zyyrh\nuWKv7x7pJ85zbNbdtr3w8Rba/d/HKNRqdLfKv3YGKHG5ANyzbGPrSlNv6LPU7d+dQ6+sKHIdhbEU\npWx7xXOWX+cU9BDNVk7lytadJP71j8lZSvKg67m09tUVaAkYP5AbR06SEhmNS/OQIs9f+nSb4f+5\niSnEfbcLzw5hpoUvY9nG1inUKjxahRI5ZQ0FuXk0XzyW4Il9OL76S9Oy3JmnGdvz+s97sPZ0pdm7\nC9Bm5xL33a5i15r9M34hGhcnmr01777yi/tXZd/rZtwPKdRq7Gp5cSszm6gx87H19aLlh4vJunoN\njbMjno+1Ys8z48i/cZP6EwfRcP4EjtxzDRVgkf1QhTDj8ccddYc8h2/fHhydvLTUM4QmqYTMFaHQ\nd05FqApFOx9zk3XrY9iy8VF8fe3YtOUyM+ccYePnbZn0UiBr3znDoGH7cXe3JizMjehjNyonvKhy\nqmyHKyYmhrZt9UNuHBwc8Pf357fffsPfXz9mu0+fPqVOe+nSJUJDQ1EqlTg4ONCgQQOzZs25nohT\nSH3D39YeruSn30Sbk2tSzb3UDnbU6v0Elz/ffvdBhaLYN/X38h/TF492LQBQ2duSEXOl6HLTMoot\nNyc+CefQgBLrcq4nYeXmUuS5nIQUcuKLPg5gc/u53KQUbkSfMQwNifv+N4KmjkBprSmWNzc+CeeG\n97TNPRnLqsmJT8LavUaR5wp/M1YSlyZBqJ0cSNp7EACFQgFaXbkf5v5j+uDRXt+2antbMs4Xb9uC\ne9v2ehLODYu37b1191Jo1ITOH4+Dny8HRs0j51pimfWFBYzpg2f7hw05b56/WmT5eSUsP7uEnIXr\nvLu2IWTGKE6t/pRrv+wzOkth966niljP926fhZ/zfqI9ealpeHRohcrWBmsPV8K+WEXk0On49nmC\nxD0HyTV8Y61AW1BQ7msIGtsb7w7NAX3bphdqWxvPGqW0bTI1Qv1LrMtJTOX67wcNZ8Ri/28fgaOf\nKzcHVH57qp0ciN/5F5e/+A4Ap4YBhiE/no+1JvnAEQqycsi/kU7inkgcG9Qz6nX8N1i0aAHPPPM0\nAN9/v4MFCxZVynKr6nu9svZDd0Z7/PvjH/rXFhvPjaOncQ4JwN6vNol7D5Kfmg7A1W9+oc1XxUcU\ngGX2QxXBXMcfoN8HhcydiN1DvhwaPYec68bvgyyVuSJ5edlw/MTdDlJiYi5Ojmpsbe8eOu8/kEST\nxjXw9bUDoE/vOqx56zRpafnk5BTw0oQGODtZAfD5hgvUvl0n/vdU2Wu4/P39OXhQfzCckZHB2bNn\n8fX15dKlSwB89NFH7Nq1q8RpAwICiI6ORqvVkpWVxfnz582aNSXyKM6h9Q0Xk9bs2Y2kPVEm19zr\nVlYOvr0fx6NjKwAcGjyEU3AAKRFHypwu5qMtRAyZQcSQGUSOCsc5tL7hZgu+vbqSsLf4cpMPHC21\nLnHPQWo93QmFSonawQ6vrm1J/DOS3IQUsuPi8eqq7xi7tWqCTqsl4/wVEv6IxKVJIDY+HgB4PRZG\nRsyVEs/Q3Fm27e1l1+rZjcR7MpZVk7gnCp+nHyuU7xESy2lblZ0NDaaMNFy3VWfwM/q7Q5XT4bpz\nE4uIwTOJHDm3eJvtOVjC64s2qu5eTVZMRm1vS6SJnS2A8x9t5e/Bs/h78CwiRs7DJTTAsPw6vbqU\nmrO0Oq9OrQieOpyDLy+/7wMwwCzrOTfx9nbYRb8dut7ZDmOu8NdTY4gcor8hxqkV75Mdd53IodMB\ncGkSbBjGo3ZyoOYznUjY/Xe5r+H0B9v4Y0A4fwwIZ8+whdRoFIB9bS8A6vXuzPU/i58NSNh/rNS6\nf3dHUrNrK8OXEd4dHyb15IUq2Z5OQX40em06CpUKhUpJvaE9uX77rmW1enXDt49+yJ/K3g6Pdi2N\neg3/LRYsWESzZi1o1qxFpXW2oOq+1ytrP5RzLZH00xeo+aR+mKOVqzPOjQJJP3WBm2cu4vFIc1S2\n1vrX9lirUodlW2I/VBHMdfwBELpsKip7Ww6NCa+wzpa5M1ek1mFuHD+RxpWrmQBs++4q7dt5FqkJ\nauDEP4dTSE7RdwT/3BNPTR9bXFys2PbdVT78WH/8mZySy3ffx/J4V59KfQ2VQadTVOl/VUWVPcPV\nt29f5s2bx4ABA8jNzWXixIn4+/szZ84clEolHh4eDB8+vMRpg4ODad++Pc8//zyenp64uZnvLjYA\n+anpnFr6LqHLp6HUqMmOi+fk4rdxDPInaPZYooZNL7WmTFot0TNW0mDKSB56oR+6ggKOz3vDpNuf\n5qemc3LJ+zReMQWFWr/c44veAcApyI+Q8LFEDJlRZl3s9p3Y+nrR+stVKDVqYr/dTeph/V14js19\nk+DZL+I3ohfavHyi56wBnY6Mc5c5/do6mq6cjkKtIv9mpv65UjO+R6PlU/VtExvPicXv4BjkR/Cc\ncUQOnV5qDegvXLat5U3YhtUoNWrivt3FjcMny2yX5P1HiN36f7T4aAkolPpbzq74wOh2BchLTefE\nkvdp8uqdNrvOsYXv6ts22I+Q8BeJGDyzzLrSuDQOxLN9CzIv/0vLdXeHu5575yuSI46anPPYkg9o\n+upklGo1WXHxRXKGho/h78GzyqxrML4/CoWC0PAxhvmmHj3DqVWfmpTFXOv5+Lw1BM8eS70RvdHm\n5XM8/I3Sx4Pcdmb1JwTNGkOrr95AqVZx9ZufSYmMLnOae+WlpnN44Ue0XPUySo2azNgE/pmn345c\ngh+i6fwX+GNAeJl1F7fuxsrZgY4bl6JQKrlx+hJHl31VJdtTPzSzIa02rgaFksQ9kVzZ9OPtLO8S\nNGsMXl+uBuDf/+wmMHCUSe0pHkxVeq8XZu790NEZqwia/gK+vbqCQsGF9d+QfiqG9FMx2Pp40Orz\n19Dm5ZNzPYkTS94rI2Pl7ocqgrmOP5wbB+LRriWZl+N4+MOlhsdj3vuSlAOm7YMqK3NFc3W1Zn54\nKLPCj5Cfr8O3lh0L54dy8lQaS189wVeft6VlCzcGD3qIsROi0GgUODlpWP2afgTE8CF+LFh8jH6D\n9qFDx+hRATQMub+bs4nqT6HTlXNUIgx+a1N5t/e9H532f8OuViU6P3zCAAAgAElEQVTf8rYq6Xpg\nC7+2Ln1IaFXROWIrO8OK3+K7qukWuZmfw/pbOka5nojcVG3W+3+aD7Z0jDI9+4/++q6q3p6dI7ZS\ngGl3tLMEFYNQKIoPd65qdLr8avNel31RxekcsbVaHH9A9ThOSk9+2dIxyuXk9palIxituuwvLa3K\nnuEyxubNm/nhhx+KPT5lyhSaNWtmgURCCCGEEEL8b9BWoWF7VVm17nD169ePfv2q/hkIIYQQQggh\nxP+mKnvTDCGEEEIIIYSo7qr1GS4hhBBCCCGEZeiQIYXGkDNcQgghhBBCCGEm0uESQgghhBBCCDOR\nIYVCCCGEEEIIk8ldCo0jZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiIdLiGEEEIIIYQwE7mGSwghhBBC\nCGEyrc7SCaoHOcMlhBBCCCGEEGYiHS4hhBBCCCGEMBMZUiiEEEIIIYQwmQ65Lbwx5AyXEEIIIYQQ\nQpiJQqfTyeVuQgghhBBCCJNsbjLc0hHK1O/oZ5aOAMiQQpPsDOtn6Qhl6ha5mV9b97F0jHJ1jtjK\nrlZ9LR2jXF0PbOG3Ns9bOka5Ou3/hj/a9rZ0jHJ1/HtbtVnv+9s/Y+kYZWqz53uAKt+eXQ9sQaHQ\nWDpGuXS6fArYaOkY5VIxqNq812VfVHG6HthSLY4/oHocJ9lZ17N0jHJl5V6ydASjaXUypNAYMqRQ\nCCGEEEIIIcxEOlxCCCGEEEIIYSYypFAIIYQQQghhMrkThHHkDJcQQgghhBBCmIl0uIQQQgghhBDC\nTGRIoRBCCCGEEMJkWvnhY6PIGS4hhBBCCCGEMBPpcAkhhBBCCCGEmUiHSwghhBBCCCHMRK7hEkII\nIYQQQphMp5NruIwhZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiJDCoUQQgghhBAm08qQQqPIGS4hhBBC\nCCGEMBPpcAkhhBBCCCGEmciQQiGEEEIIIYTJdJYOUE1Ih6uCuD/SjPrjB6C00nDz/BVOLP2Agsxs\nk+usPd1otX4p+wfNID/tJgAejzYndMEEsuOTDHVRYxZQkJVTYha3ts3xHz8QpUZDxvnLnFr2PgVZ\n2cbVKJU0eGUYrq2aoFCpuPLV98R9uwsA29rehISPR+PsyK2sHE4ufpusy/8C0GjFVBwC6lGQrc+U\neug459Z+jo2PB0EzxmDj405BVg6XN35fZhsGjBuI0kqf6cSy0tuwxDqlgsBJw3C7nf3yxh3E3s5+\nR82nH8OzQxhHpr1meKzxq1NxDKhryJ5y6ARn3/y81JxF2nDcIBQaNZkxVzi17L2S27mMGmtPN1qs\nW07kkGmG9e0Y7E/9SSNQ2VijUCm5vOE74n/ZW26e0ri2bY7f2MEoNWoyYi5zZnnxnKXVKK2sqD/t\nBRyDA1AolKSfPMu51evQ5uXhGOxPwCsjUdlYg0rJ1S+/I/6XPeXmMed6tqvtTcjccWicHSnIyuH4\noncM2+gdtft1x/fZzuwfOA0Ala01IXPH4/BQLVCWf9LfpXUL6rw4FKVGTVbMZWJee6tYe5ZV4/Vc\ndzyf6obS2orMMzHEvPYWuvxb2AcFUO+l0Yb1HrdxO0m7/qiy7en/Yj+8u7alIDuXG9FnOLv2C7R5\n+aBU4DfyeTzaPQzAG2+sZsqUaeW+DlN9+uknHD9+nNdfX1Ph864IOp2O8NnfE1Dfg5Gj2lbKMqva\ne70wc+2X1E4OBE4diX09X5TWVlz6bDvXf9Zn83uxP15d9Nto2rEznFv7uX4bLYOl9kMACo2aZq/P\nIva7XST8dsDotjXn8YdTsD+BU4ahsrVGoVRy6Yv/cO3nv4zOVlk576j5dEe8OoZxeOrK+8pYkie6\nP8aiJTOwtrbi+LHTjHtxJjdvZhSre+aZxwmfPwmdVkdqahrjx83k4oUr1KjhzNq3l9G4STBZmdl8\n8cVWPniv/GMM8d/FbEMKJ06caHRt3759iY2NfaDl7dq1i/j4+Aeax/3SuDgSOm8cR2e9wb4+k8mO\ni6fBhIEm1/k82Z6wjxZi4+laZDrnxoFc2riDiMEzDf9K62xpXJwImTueY7NXE9HvFbL/jSdgwiCj\na2r17IJtbW8ODJpC1MhZ1O7XA6eQAAAaLnyF2O07iRgwmYvrNtNoxd2DKOfQBhwaN5/IodOJHDqd\nc2v1HyYh8yaSduIsEf0n88/ERdQd/Gypbdhw7niiZ7/O330nkRWXQP3xJbdhaXW+PbtiV9ub/QOn\ncmDEbOr0fxKnEH8A1E72BM8cTdDUEXDP9Z0uofU5OHYBEUNmEDFkhlGdLY2LE8HhEzg2exUH+r9C\ndlw8/uOLt3NZNd7dO9D8gyVYe7gVma7R8mlcXLeZqGHTOTp5GfVfHo6tr3e5mUrLGRQ+kRNzVhE5\n4GVy/o3Hb/xgo2vqDu+NQqXi4NCpRA2dgtLamjpDewHQcNl0Lq3bzMHh0zg2ZSn+Lw/H1tennDzm\nXc+hi14mdttO9vefQszHW2jy6tQi83VuHMhDQ4pug3UHPYM2N4/9A6cROSocAPuggBLzq52dCJj9\nMmfnreDI4PHkXLtOnReHGV3j2r4N3r2f4tTkeRwdOhGltRU+ffV5ApfMJnb9V0SPmsSp6YuoN3Ek\nNlW0PWs+1RGPRx/mwPDZRAyZQW7yDfzH9gegTr8nqdE8hKgx8wBo06Y1/fr1LfN1mCIoKIhff91J\n377PV9g8K1pMTCIjh23g559OVNoyq9p7/d7lmmu/FDJvAjkJyUQOm8HhlxbTYMoIrD1c8enREfdH\nHiZqxCwih04nNykVvxf7l5PTcvsh59D6hH2yDJcmQUa3650s5jz+aPLaFGI+2krE4Jn8M2kFgZOG\nYlfb9P2RuXOqnewJnvUCwdOKt+2DcHd35YOPVjGw/ziaNurMxYtXWbJsZrE6GxtrPvlsDQP6jaV1\n2JP8+ONuXn9jIQCvrZpPZkYmzZt0pUO7njz+eEe6P9mp4kKKasFsHa533nnHXLMu0RdffEFGRvFv\nHCqDW6smpJ2MIevqdQCubtuF9xOPmlRn7V4Dzw4t+Wfyq8Wmc2ncANcWobT+fAUtP1pIjWbBpWZx\nbdWY9FMxZN9eRtz2nXg/3s7oGo8Orbj2w+/oCrTcuplJ/O59eD/RDmsPV+zr1SR+1z4AkvcfQWVr\njWPgQ9j4eKKysyVo5hjCvlxN8NzxqJ0cAHAM8uPaj38AUJCVQ+qhkg9A3Fo1Ie3U3baJ3b4T7yfa\nmVTn2SGMuB1/GLJf3/U3Pk+0B8C7c1tyk1I5+9aGIvOz8fFAZWdL8MzRtP5yFSHzxqF2si+1fQ1t\nGNaE9FPnyY6904a/FG/nMmqs3Gvg3j6Mo1OWF5lGaaXh4vqtpEYdAyA3MYX8tHSsPYt2yoxVI6wJ\nN0+dJzv2GgD/bv8Fr27tjK65ceQklz/7BnQ60GrJOHsBG293lFYaLq3fSurB6Ls5b5Sf05zr2dqj\nBvb1anJ919/A7W3URr+NAli5OhM8fRRn3/6yyLIUKiUqOxsUKiVKKw0AuvxbJeZ3CWtGxulz5Nxu\nq/jvfsK9awejazwef4xrm77j1s0M0Om4sPo9kn75HYWVhtjPNpF26CgAeYnJ5KelY+XhXiXb0zHI\nj4Q/o7iVkQVAwu8H8HqsFQA1n+zAxU+3o83Vn0no3bsvv/76W5mvwxQTJozj008/Z8uWbypsnhXt\n640H6dmrKU90b1hpy6xq7/XCzLVfUjs54NqyMRfXbTVkixo1h/z0DByD/EncE2nYRhP/OIBnp9Zl\n5rTUfgj0X1TEfLiJtBPnjGjRe7KY6fhDaaXhwrpvSLmzP0pIIe/GzfvaH5n7OMm7Sxtyk25w5q0v\niz33IDp3acc/h6KJOX8JgI8/+pJ+/Yt/caxSqVAoFDg7OQLgYG9HTk4uAM2ah/LVV9+i1WrJz8/n\n559+47meT1ZoTkvS6hRV+l9VUe6Qwu3bt7N7924yMzNJTU1lwoQJ1KhRgzVr1qBSqahduzaLFy9m\nx44dbNu2Da1Wy8svv8y0adPYt28fJ0+eZMmSJahUKqytrVmyZAk1a9ZkzZo17N27F29vb1JTU8vM\n8NRTT1GvXj00Gg2LFy8mPDzcMM3cuXO5du0ap06dYubMmaxatYqZM2eyZcsWQH/27I033uDbb7/l\n8OHDZGVlsWzZMubMmYO3tzdXr16lUaNGLFq06L4b0cbLjZyEZMPfuQnJaBzsUNnbFjkNXlZdblIq\nR2e+XuL889MyuPbTHhL+iMKlSSBNV09n/6AZ5CakFM/i6U5OoaGHuQnJqB3sUNnZGoZvlFVj4+lG\nTnzRjA4BdbH2dCM3MVW/MzY8l4K1pxsKtYqUqGOcWfUxeanpNJg8nJDwcUTPXEX6iXP49HiMi+u2\noHFxwq1ts1LbMDfeuDYsrc7Gy43chHuz1wEwDOnw6VH04NjK1ZmUqGOcWrmOvNQ0AicPp+Hc8Ryd\nsarEnEVyFF5WYjJqB/ui7VxGTV5SKsdnF1+GNi+fazvuHpzWfLYLKlsb0k3cCd/N6U5u4XVdYs7S\na1Ijjxoet/b2wLfvU5x97QO0eflc/+FXw3M+z3bV5zx+tpw85lvPNl7uxbbRnMQUbDxduXnuEqGL\nX+bs2xvQ3SookunShv/Q4v2FtP/hQ1T2tgBkxVwqMb+Vpzu5CYXbKqlYe5ZVY1O7JpoaLgSvWojG\n3ZWb0Se4/P5n6PLySfjx7rAjz6cfR2VrS8aJM1WyPdNPnKNO/x5c3foz+ekZ+DzZAWv3GgDY1fHB\n/iFf6g17DoBx415kwYL7/3y910svvQJA585V9xviufO7AxARcbHSllnV3utFsplpv2Tn601ecip1\nBj6FW5tmKDUarmz8nvir10g/cY7aA3oQe3sb9X6yA9ZuNcppQ8vshwCOzVsL6M+4m8Kcxx/avHzi\nvv/d8Het5zqjsrMhzYR1Xxk5AWK37wagZglt+yB8fWsSe/sLCoC42Gs4Ozvh6OhQZFhhZmYWL08M\n57c/t5GSfAOlSknnx/Rn4Q9GHmHgwJ7s//sg1tZWPPtcd/JvlfylnvjvZdQ1XNnZ2Xz66aekpKTQ\np08flEolW7Zswc3NjTfffJNvv/0WtVqNk5MT77//fpFp586dy7JlywgODmb37t28+uqrjB49mqio\nKL755huysrLo1q1bmcvPyspi/PjxhISEsGrVKlq3bs3AgQO5dOkSs2fP5uuvvyY4OJiFCxei0WhK\nnY+fnx9z584lNjaWS5cu8cknn2Bra0uXLl1ITEzEw8PDmOYoRqEspQddoL2vunsV/oC5cfQMadFn\ncQtrzL8//FG8uJRl6LRao2pKyqgrKPnxO8+lnzjPsVl3Ow8XPt5Cu//7GIVazcnF71D/lWG0+vJ1\nsq8lkLTvEA5+tYvPSFHyyVbdvW1TVl1JGbVlt236ifMcnbm6UPattP/pIxRqVZnTlXatT9F2NqKm\nDHWHPIdv3x4cnbwUbW6eUdMUozBiezCixiHQj9AVM4jb9hPJfx8qUldnSE9q9elB9JQlaPPKyWnO\n9VzG66g/fiA3Dp8iJfIYNZqHFHk+aPookg9Ec/79r7FydabD/32Ea4c2pPy5v3j80nIVaquyahRq\nNc4tmnBmzjK0efkEzJlEndFDuPT2OkNdzUG98Xn+aU5NW1hl2/PaT3ux9nTj4XfnU5CTS9x3u9He\nPiuoUKtwDq3P4ckr6PLXVzz66CO89NJE1q59q+zXIh5MVXuvF2au/ZJahW0tL25lZnNozDxsfb15\n+IPFZF29zvWf92Dt6Uqzdxegzc4l7rtdhm20VBbaDz0Icx9/3FFv6LPU7d+dQ6+sMJy9NkVl5axo\nylLyFBQU/eKuYcNAZoe/TPOmXbl44QrjJgznq00f0Lpld2bNXMaKV+ewP/JHrl9P4Ldf/6J1m+aV\nEV9UIUZ1uFq2bIlSqcTd3R1bW1suX77MpEmTAMjJyaFt27bUrVuXhx56qNi0CQkJBAcHG+bz+uuv\nc+nSJUJDQ1EqlTg4ONCgQYNyM9yZ99mzZ4mIiOCnn34CIC0trczpdIW+nS2cr06dOjg46Ie9eXh4\nkJubW26GwvzH9MGjfQsA1Pa2ZJy/YnjO2sOV/LQMCnKKzjPnehLODQPKrStM7WBH7ee7cfGz7+4+\nqABdKd+O5MYn4dywfrFlaAsto6yanPgkwzfVd57LTUgm53oSVm4uRZZ15zmXJkGonRxI2ntQH0+h\nAK0OnVaL0saKk0vfMyw/cMZow/T+Y/ri0U7fhip7WzJiireh9t42jE/CObR4G2pzcotltPZwJaeE\ns4CFuTQNQuNoT+Le2wcWhbKXJed6Ik4h97Rh+s0ieY2pKYlCoyZk7kTsHvLl0Og55FxPLLO+LLnx\nSTgVWtdWHm7FMpRX49nlEepPG82519eRsOvuxdIKjZqguS9hX8+Xw2Nml5qz3gv9cX9Uv55rPdvJ\nbOs5J774Nmpz+zmf7u3JS03Ds2MYKlsbrD1cab1hJRFDZuDZsRX7B04FnY685BsAODdrXGKHKzc+\nEYeQu59XVu5u3CrWnqXX5CelkLI3wvCtfuLOP/Ad3s/QngGzJ2FbrzbHx80g93pCie1Ze+Td6xks\n1Z5qJ3uu//IXlz7Xfy45NQwg6/bQ2dzEVOJ37TMMy9y6dRvt2z/K2rUlvpxyLVq0gGeeeRqA77/f\nUaFny/6bVIX3elnZzLFfyk3Uj3S5dvvLx+zY69w4ehqnhgFkX0sgfudfXP7i7jZ6Z3h3YVVhP2Sq\nyjr+AP26D50/Hgc/Xw6MmkfONePXfWXmrEjz5k+mx1NdAXB0cuDE8bsjDWrW8iYl5QZZ99zwpUu3\n9uz/+xAXL+hf44fvf8HKVfNwc6uBrZ0t4XNWkJqqP16dMnUsMTGXK+nVmJ9lusLVj1HXcJ04ob/u\nJikpidzcXOrUqcN7773Hhg0bGDt2LK1b68dFK0v4Rt/T05PTp08DEBUVRb169QgICCA6OhqtVktW\nVhbnz58vP+jtefv5+TF8+HA2bNjAm2++yTPP6E+/KxQKdDod1tbWJCcnU1BQQHp6epGbcRTOpyjl\nmz5j3bmINGLwTCJHzsU5tL7hQlLfXl1J2HOw2DTJB6KNqivsVlY2tZ9/HM/HwgBwbFAP55AAkvYf\nLbE++cBRnEPrY3t7GbV6diNxb5TRNYl7ovB5+jEUKiVqBzu8uj5C4p4ochNTyI6Lx6uL/m5brq2a\noNNqyYi5gsrOhgZTRhqu26oz+BkSfo8ArRa/F/rh20t/BtO2to9hx6Zvwy2GG1VEjgov3jb35C6c\nvaS6xD0HqfV0p0LZ25L4Z2SZ7auytSFw6kjDdVt1Bz9D/G8RoC37Rqcpkbfb8PbNLGr27EbSniiT\na0oSumwqKntbDo0Jf6DOlj7DEZwaNjBc4F7zuW4k7b03Z+k1Ho+1JmDyKKInLSlyAAbQcOk01Pa2\n/PNi2Z3CS+s2cXC4/gYr5lzPuQm3t9Gu+m3U7c42ev4Ke3q8SMRg/bZ2cvkHZMddJ2LIDABunrmA\n9+1plDbW+sdKGcp3I+owDiGBhptZeD/bnZS/Dhhdk/zHPtw6PoLSygoA13atyDyt//xrsHgmKntb\njo8vvbMFcHX9V4b/W6o9nYL9afLaNBQqFQqVkoeG9eT6L/rtI+G3CLyfaG84m/LUU08SFVX251xZ\nFixYRLNmLWjWrIV0tspQFd7rpTHXfinnWgLppy8YhuhZuTrj3CiQ9FMxOAX50ei16YZttN7Qnlwv\n4W6vVWE/ZKrKOv4AaLJiMmp7WyJN7GxVds6KtGTxGlqHPUnrsCfp2K4nLcOa4h9QD4AXRg/ixx27\nik1z5PBx2rVrhaen/rrbp5/pxqVLV0lOTmX06EHMWzAFAE9Pd0aM6s+WTf+ptNcjqgajznAlJSUx\nbNgwbt68yYIFC1AqlYwZMwadToe9vT0rV67k2rVrJU67dOlSlixZgk6nQ6VSsXz5cmrXrk379u15\n/vnn8fT0xM3N+Aswx44dS3h4OFu2bCEjI8NwN8RmzZoxY8YM1q9fzyOPPMLzzz9P7dq1qVu3rtHz\nvl95qemcWPI+TV6dgkKtJjvuOscWvguAU7AfIeEvEjF4Zpl1pdLqODJ9FUHTRhAwpi/aggKOhq8t\ndivUO/JT0zm55D0aLZ+KUqMmOzaeE4vfwTHIj+A544gcOr3UGtBfqGxby5uwDatRatTEfbuLG4dP\nAnB83hqCZ4+l3ojeaPPyOR7+Buh0JO8/QuzW/6PFR0tAodTf/nzFBwCcf2cDIQtewufJjugKCji5\n9D2arZ1bSu73abziTtvEc3yRPpNTkB8h4WOJGDKjzLrY7Tux9fWi9ZerUGrUxH67m9TDp8ps3uT9\nR7i65SdafrQEhVJJRswVTi7/sOx1cjvvqaXvErp8mr4N4+I5ufhtHIP8CZo9lqhh00utKYtz40A8\n2rUk83IcD3+41PB4zHtfknKg5E52eTlPL3uXhsumodCoyYm7zqnbOQNnjePg8Gml1gA8NFZ/B7PA\nWeMM80w7dpr4nXtxb9eSrMtxNP9g2d2c739J6oEjZeYx53o+NvdNgme/iN+IXmjz8omes6bINUgl\nOb7oXYKmj6LNkx0MQ39Kux37rRtpxLy6lgaLZ6HQqMmNu875ZWuwDwzAf8ZEokdNKrUG4Pp3P6F2\ncqTRujdQKJVknr3AhXffxTE0GNdHWpF9JZbQd+/eKvryB5+TFnW4yrVnyoFokpqF0HrjKhRKJQl/\nRnH56x8AOP/hJupPGEybr/VDoS9cuMibb8pwQnOrau/1e7OZa78UPXMVgdNHUatnNxRKBZfWb+Xm\nqRgAXJo3pNXG1aBQkrgnkiubfjQiZ+Xvhx6EOY8/XBoH4tm+BZmX/6XlusWGx8+98xXJEabtj8x6\nnGRGiYnJjB0znY1fv4+VlYaLFy7zwkh956l580a898FrtA57kj//2M+baz7k512byMvLJzXlBn17\n60f0rFr5Hp98uoaof35BoVCwbMmbHDoUbbHXJCxDodOVfTSyfft2Lly4wLRpFf87KtXNzrB+lo5Q\npm6Rm/m1dR9LxyhX54it7GpVcbeJNpeuB7bwW5uqe+vpOzrt/4Y/2va2dIxydfx7W7VZ7/vbm3bh\nemVrs0f/e3ZVvT27HtiCQlH6dbVVhU6XTwEbLR2jXCoGVZv3uuyLKk7XA1uqxfEHVI/jJDvrepaO\nUa6s3EuWjmC0j4PHWDpCmUaf+sjSEYAq9MPH0dHRrFpV/K5t3bt3Z+DA4r/VIIQQQgghhBBVXbkd\nrl69elVGDho3bsyGDcV/m0IIIYQQQgghqiuz/fCxEEIIIYQQQvyvqzJDCoUQQgghhBDVh1b3YHf9\n/l8hZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiJDCoUQQgghhBAmK/uXLsUdcoZLCCGEEEIIIcxEOlxC\nCCGEEEIIYSYypFAIIYQQQghhMrlLoXHkDJcQQgghhBBCmIl0uIQQQgghhBDCTGRIoRBCCCGEEMJk\nWksHqCbkDJcQQgghhBBCmIl0uIQQQgghhBDCTBQ6nU5+s0wIIYQQQghhkrcbjLN0hDK9dPZ9S0cA\n5Bouk/zUcoClI5Spe9TX7AzrZ+kY5eoWuZkfHh5k6RjleurQxiq/zkG/3gvYaOkY5VIxqNq0Z/bJ\nLpaOUSbbkN1A9fhM+jmsv6VjlOuJyE380ba3pWOUq+Pf26rNe/23Ns9bOka5Ou3/hoV1X7J0jHIt\nvPw2HwS9aOkYZRp7+kMAvm48wsJJyjYg+lN+bDHQ0jHK1ePgV5aOICqYDCkUQgghhBBCCDORDpcQ\nQgghhBBCmIkMKRRCCCGEEEKYTG4Lbxw5wyWEEEIIIYQQZiIdLiGEEEIIIYQwExlSKIQQQgghhDCZ\nTqewdIRqQc5wCSGEEEIIIYSZSIdLCCGEEEIIIcxEhhQKIYQQQgghTKbVWTpB9SBnuIQQQgghhBDC\nTKTDJYQQQgghhBBmIkMKhRBCCCGEECaTEYXGkTNcQgghhBBCCGEm0uESQgghhBBCCDORIYVCCCGE\nEEIIk2nlh4+NIme4hBBCCCGEEMJM5AxXBfF4pBkNJvRHaaXm5rkrHF/6Ebcys42uU1praDhjJM4h\nfqBUknb8PCdWrkebm4/rwyEETRqMQqUiP+0mp974gpvnrtxXTvdHmlF//ACUVhpunr/CiaUfUFBC\nzvLqrD3daLV+KfsHzSA/7ab+tT3anNAFE8iOTzLURY1ZQEFWjsk5PR9tStDEfig1atLPXyV68ccl\ntqcxdQ+vmkRuYirHV34OgFuLEIJfGYBSraIgN58Tqz7nxokLJmeE6rPeTaHT6Qif/T0B9T0YOaqt\n2ZdXWHVrzz0Hs3n7yzTy8nXUr6th4URXHOzufo+14/dMNnx/0/B3RpaWhOQCfllXE7UKln2YypmL\n+djaKHi2kz0Dejg+UJ7CqktbejzSjAbj+xs+a44t/bDEz6TS6pTWGkKmj8Q5xB+UCtKOn+fkKn3O\nO2o93RGvji35Z+qq+8ro2rY5fmMHo9SoyYi5zJnl71GQlW1UjdLKivrTXsAxOACFQkn6ybOcW70O\nbV4ejsH+BLwyEpWNNaiUXP3yO+J/2XNfGe9HZb7X3do2x3/cIBQaNZkxVzi1rHgbllqjVFL/5WG4\ntm6KQqXkylc7+PfbnQC4NG9I/ZeHGbbFc29+Ssb5y4Z5KjRqmqyeTdx3u0j8PaLCXk/9Tg3pMuNp\nVFZq4k//y/czviI3o/i+LmxYe1oMfhR0OlIuJ7Fj1tdkJmdUWI6S1OkQSqspPVFZqUk+E8cf4V+Q\nn1n6fvixFcNIOfcvR9fvAkChVPDovAH4tKwPwJU9x4lYua3Cc9Zs15gmrzyP0krNjbOxHFiwnltl\n5Gy1ZBRp5+M4/fnPRR6383Kl65dz+anPfPJuPHjbej7SlMCJdz4TrxK9pOTPztLq1Pa2NJ4/Bod6\nNUGhIPbHvVz4fAcAziF+hEwdgsrGGoVKyYXPdxD3074HziNJK/QAACAASURBVCyqPjnDVQGsXBxp\nNP9FDs9cw97np5Idl0CDiQNMqvMf0ROFSslfA2fx14AZKK2t8B/+LGp7W5qvnMyZtzayb+BMTry6\nnqYrXkGpMb2vrHFxJHTeOI7OeoN9fSaTHRdPgwkDTa7zebI9YR8txMbTtch0zo0DubRxBxGDZxr+\n3U9ny8rFkSYLxnBo+pv80Xs6WbEJBL3U777q/Ic+hWuzQMPfCrWK5ismEr10HXsGzOHcJ9/RdPE4\nkzPeWX51WO+miIlJZOSwDfz80wmzLqck1a09U9IKWPB2CqtnuPGfd33w9VazdsONIjVPP2bPljXe\nbFnjzcZVXri7qJg1ugZuLipWrb+BnY2S7W95s+FVL/76J4c9UcV36vejurSl/rNmLIdnrWFvnylk\nxSUQOKF4zrLq/Ef0RKFWsW/QTPYNnIHK2gq/Yc/pp3OyJ2TWKIKnDQfF/Q170bg4ERQ+kRNzVhE5\n4GVy/o3Hb/xgo2vqDu+NQqXi4NCpRA2dgtLamjpDewHQcNl0Lq3bzMHh0zg2ZSn+Lw/H1tfnvnKa\nqjLf6xoXJ4LDJ3Bs9ioO9H+F7Lh4/McPMrqm1nNdsa3tQ+SgyRwcOYva/XrgGBKAyt6ORiumc/6d\nDUQOmcqZVR/RcOkUFLe3RafQBrRYtwLnJkEV+nrsXB14btUgNo/9hHc6LSX1ShJdZj1TrM4ntDZt\nR3fik15v8F63FaRcSuSxqT0qNMu9bGo48NjyYex8+UM2dV9A+tUkWk/tWWKti583T382Gb8nWhR5\nvMGzrXF5yIutzyzmm+eWULNlA/web16hOa1rONJqySj2TnmXH5+ZQ0ZsIk0n9Smx1ukhHzqtm0Gd\nbi2LPVfv6bZ0/mw2dl41KiSXlYsjjRe8yKEZb/Jn72lkxcUTNLG/SXUNxvUhJz6FPf1msm/oPOr2\n7oJLI33n9eGVkzj74Tb+GjSHqJdXEjx5MHa1vSsku6japMNVAdxbNybt5AWyrl4H4Mq2XdR84hGT\n6lIPn+L8+m9BpwOtjvQzl7Dx9sCujg/5GdkkR+l3ipmX/+VWZrbhzWsKt1ZNSDsZY1j+1W278H7i\nUZPqrN1r4NmhJf9MfrXYdC6NG+DaIpTWn6+g5UcLqdEs2OSMAB5tGnHj5AUyr8YDcPmb3dTqXrw9\ny6tzaxGCR9vGXN72q+Ex3a0Cdnd/ifQz+m9A7Wp5kpd2f9+IVZf1boqvNx6kZ6+mPNG9oVmXU5Lq\n1p77j+TQsL4VdWtqAOjzhAM/7clCpyv5JrmffZuOq7OS5x93AOBUTB49OtqhUinQaBS0e9iGXfuz\n7jtPYdWlLd1bNS72WeNTwmdSWXUp/8/efYc3Vb5/HH9nNd0t3UDZhZZSKLOAKCKKCooCsstW9pBV\n9p4iDlAUcKEiLhScXxFUFARKAdmbMkpL994r+f0RKJSuFBra8Ltf1+V1SXIn55M755zkyXnO6dFz\nhN6Z88JVrKq7AODxVHuy45I4/86Wcme7pVqAP6lnL5EZHgnAjW2/4/70Y0bXJB07w7VPv7uZT0fa\nhctYerigtNBw9ZOtJB4+AUB2bAK5SSlo3ZzvOWt5PMht3SnAn5Szl8gMN7x/Edt+x+OZx4yucX08\ngMhfd6PP15GXmk7Mrn14PNMR61rVyUvPIPHwSQAyrt0gPz0TBz/Dj2y1+nTj8savSDl9qUJfT4OO\nPkScCCPhaiwAh7/4l6Yvti5SF3nqOu90WkJ2ahZqrRo7d0cyEytmGy9JrQ6+xJy8RvK1GADOfP0P\nXt3bFlvrF9iJc9v2c3nH4UK3K5RK1FZaVBZqlBYalBoV+Tl5FZrTo30T4k9dIS3M8Pl96du/qNOt\nXbG1Dfs/yeUf9hK281Ch261cHfF8oiX/jH+7wnLdvU+89t0f1Cjm+0dpdWfe+Jyzaw37HK2LI0oL\nNXlpGSgtNFz8cBvxIacAyIpJICcpFau7frw2N7oq/l9V8dBNKdy2bRt//PEH6enpJCYmMn78eCws\nLFi3bh16vZ4mTZqwePFidu7cyZYtW8jLy0OhULBu3TqcnO5tpbd0dyYrOr7g31kxCWhsrVHbWBU6\nDF1aXdzBk7frPFyoO6Arp1Z8SEZYJGprS1zaNiXu4EkcfOtjV98TrUv5f82xdHcmK+b28rNj4tHY\nWqOysSo0hae0uuy4RI7PfLPY589NTiPytz3E/H0IR39vmr8RxIHAGWTHJJQ/Z9Ttx5TazxLqVFZa\nmkwfzMEJq6jTq3Oh59fn5WPhZE/HLcvRONrx3+x3y5Wv0PLN4H0vj3kLugIQHHzFpMspjrn1Mzou\nHw9nVcG/3Z1VpGXoSc/UY2td+GhKYko+n/+Yytdv3v4ls2kjLb/+nUFzHy25uXr+PJCJWl0xJx+b\nSy/v3tdkGblPurMu/uCJQjnr9O/K6ZUfAXB92x8A1Hzu8XJnu71sF7LvmCadHRuP2tYGlbVVwZS4\n0moSQ44X3K71cMWz7/NcWLUBXU4uUb/c/jGo+otdUFlZknLqwj1nLY8Hua1bujuTfednSrE9LLlG\ne1d/s2LicfaqQ0bYDVRWljgF+JMQchy7xg2wqV8LrYsjAKcXrgGgduCLFfp6HKpXI+VGYsG/UyKT\nsLS3QmtrWWRaoS5Ph8/TzXhh1QDycvLY/davFZrlbjbVq5F2x+diWlQiWjsrNDaWRaYV/rv0awA8\n2xc+Anh++37qP9uKwf+sQqFWEb7vDNd2n6AiWXs4kXFHzozoRCzsrFHbWBaZVnhk5RcAuLf1LXR7\nZmwS/05dV6G5rNydyDRi31lWnT5fR/Ml4/B4MoCovw+Tdu0G6PRc//HvgsfU6tkZtbUliacuVuhr\nEFXTQzfgAsjMzGTTpk0kJCTQs2dPFAoF27dvx9nZmQ8//JCoqCiuXr3KBx98gJWVFQsWLODff//l\nhReKTgkwSglTVfT5unLX2fvUo+XqqVz79ndi/z0KwJFpb9BoXD+8JwWScPQc8YdOo8st/69NCmUJ\nX+buymls3d3uHIglHT9P8okLOAc048Yvf5cnJgoj+1lSHQpouXIip9/cTHZcUrElOQkp/NF1IvY+\ndWm3fg77Li8gPSyqXDnN5X03G2bWT10Jf+1RVcy8ge93ptMpwIqa7rd3uVOHO/L2p0n0nxqFi5OK\nds0tOX4u+57zFGImvVQoS5hkUWSfVHadvU89Wrw+jbCtO4n9979yZylRST3S6cpVY+tdH7+VM4j4\n/jfi9x8pVFd7cE9q9nmOE1OXosvJuf/MVU0J71+hHpZSU+y+XqcjPyOTkzNXUX/0QBpMGEzSsTMk\nHjll8v1kSZ+RuhI+I8/tPMG5nSdo2f8RBm8exzsdl5R4JPz+sxnR6zK0Gv88WQmpfPZoEGqthmfe\nG0ez4U9xYtMfFRWzxB6WJ6dJlNS/u99bI+qOLXgf1cqPafX6FBq+0ouLH9w+D67B0O7UHfAsIRNX\nFTrfVDy8HsoBV5s2bVAqlbi4uGBjY0NOTg7OzoZpGiNHjgTA2dmZmTNnYmNjw+XLl2nevHm5ltFw\ndG/cOrYCQG1jReql6wX3aV2dyElOIz+r8JenrOh4HP28Sqyr3qU9vjNHcGb1JiJ/328oUijIz8wi\nZMzSgsc99u0bZIQbNzhoMKoPrh1bF+RMu3T7xHatqxO5xeWMisOhiVeZdXdS21pTq/fTXPn0h9s3\nKkCfZ9wHX6MxL+FeQj8tS+hnZlThft6qs61XE+sarvhOMZxDoXV2QKFSotRqOPP2FlzaNCFqt2EK\nRcq5q6ReuIadVy2jBlzm8r6bC3PuZ3UXFacu3M4WE5+Pva0SK8uiH8Q792Uw42XHQrelZ+iYPMQB\nBzvDUbJN21KoVf3ed8nm0kuvUX3KnTOzmH3SnXUeXdrjO+Nlzr6xicjfK/YE9OzoOOyb3J4uaeHq\nTG5KKro7MpZV4/ZUBxpOH8nFNz8iZte/BXUKjRqfeROxqevJ0VGzyYqKrdDsVUVWVCz2vrf7o3V1\nKtLD0mqyouOwuOMIqtbVyXDEU6EgPyOLo+MXFtzX9qs1BdMSK9ITU7vh/VRTw/LtLIk+d6PgPjsP\nBzKT0snNLDxYdqrjgq2rPWGHDRdlOvrtAZ5f0Q9LBysykypuamHrid2p29kfAAtbS+IvRBTcZ+Pu\nSFZSOnmZxg/k63dpwb/Lv0aXm09Obj4XfjhA/Wda3veAq+m4HtTs1AIAja0lSRdv57Ryq0Z2chr5\n5chZURqN7o1bR8M5ahoba1JCb39PKun7R1ZUHI5+DYqtc2nXjNRLYWTHJZGfmc2N3/fj0TkAAKVG\nTbNFY7CrV5P9wxeSGRmHudPLZeGN8lCew3X6tOHcgri4OHJzDb8cJCUZjnQsW7aMkJAQ3nnnHd5+\n+22WLVuGVqst969NFzd+x77A2ewLnM2B4Qtw9GtYcOJj7ZeeImbP4SKPiQs+UWKdR+cAGk8fyqGJ\nK29/sQHQ62m9Zib2jesb6p5siy4v3+grgoV+sLXgAhYhI+bhcMfyPXt1KTZn/METRtXdKS8jk1q9\nn8HtCcNOxa5RXRx8vYg7cLzUx91yYcP37B04h70D57Bv2EKqNfXCppY7AHV6P0n0P0eKPCY2+GSx\ndUknL/Hnc5MKni/s+z+J3BnMiaUfoc/X0WzBKKr5NwLAtn5NbOrWIOlUqFE5zeV9Nxfm3M/2zS05\ncSGHazcM+5jvfk+jU4BlkbqUNB1hkXn4+2gL3b719zTe/yoFgPikfLbtSqfrY9b3nMdcennpg63s\nHzSL/YNmETxiPo5+XreX36v4nPEHT5RY5965LY2nDePwpBUVPtgCSAg5hn2TRgUXs6jR42ni9h4y\nusb1iXZ4TXmZE5OXFhpsATRZNh21jRX/jZ7z0A62ABJCjuPg1xArT8P7V6Pn08TtubuHJdfE7TlE\njec7o1ApUdta496lA3F7QkCvx/+tOdj5GL74unZujz4vv9BVCivK7rf+x4Zuq9jQbRUf9XgTzxZ1\ncarrCkDrwEc5t/NkkcfYujnQe90wrKvZANCsRxtizkdW6GAL4PC7P/Ndz2V813MZ2/qtwt2/Pg51\n3ADw7d+Rq38Z9zl8S+yZMBrcvJCGUq2kzhP+RB+7/6mnJ9//gR19F7Kj70J2DlqGS7P62NY2fH43\n7PMEEbuP3vcy7sWFjd/xb+Ac/g2cw77hC6hWaJ9YyvePEupqdGlLw1EvAYYBVvUu7Yg/bPhe2nLV\nq2hsrNg/YtFDMdgSxnsoj3DFxcUxdOhQUlNTWbhwIXq9ntGjR6NUKvH19aVNmza0bNmSfv36oVar\nsbe3JyYm5p6Xl5OYwsklG2jx2mSUGjUZ4dGcWPQ+APaN69N03kj2Bc4uta7R+P4oFAqazhtZ8LyJ\nxy9w5vVNHJ+/jqZzR6LQqMmOS+S/oOLPoTIm5+ml6/F/bSoKtZrMiChOLnqvIKfv3NEED5pZal2J\ndHqOBa3GZ/pwvEb1RZefz/G5awsuGV/enMcXb6TV66+i0KjJCI/h2IL1ADg0rkez+SPZO3BOqXUl\nyc/M5vC0t2gybRAKtRpdbi5H571HVjnPM7uV0xzed3Nhbv10clSxeKITQavjyc3V4+mhZtmrTpy+\nlMPi9xL49m3DB3FYZC6u1VRo7jo/6+WX7Jm7JoGXJkWiB8b0s8evobaYJZWfufQyJzGFk0s30Py1\nKSjVajIiogvtk/zmjmL/oFml1jUaZ8jpN3fUHTnPc3b1pnvKdLfcxBTOLX+PJsuno9CoyYqI4uyS\nd7HzaYD3rLEcHja9xBqAemMMR9q9Z92+GmryyXNE79yLy2NtyLgWQcsNywvuC13/BYkHj1VI9qoi\nNzGFs8vew2/FdJQaNZkR0Zy52UOf2WM4NDSoxBqAiO2/Y+XpTpvP30SpURPxwy6Sjp4B4PTCtfjM\nHoNCrSYnPpETM1eZ/PWkx6fxY9AW+q5/GZWFisRrcWyfshmAGk1r8cKqgWzotoqwQ6HsWbeTYd9M\nQpenIzUmma9HfWjSbFkJqfw95zO6rB2FSqMm5Xosf800bAuufnV4fOlgvuu5rNTn2P/aVh6d159+\n/1uMPl9HRPA5jn20o9THlFd2QirB8z/h0TfHGf6UwvUYgucazr108q1LwKLh7Oi7sIxnqXg5iSkc\nX7KRVqsMV15ND4/m+MLb3z+azhvJv4FzSq078/YWms55mY7frEKv1xP99xGufLWDav6NcO/YirRr\nN2j/8e3Xdu7dr4kLrthz5ETVo9CbaiJxJdm2bRuXL19m+vTpFf7cv7UperniqqTroa/YGVD08ulV\nzdMh3/BLq8CyCyvZ80e2VPn3HAzvez73fhW2B0VFoNn0M/PMU5Udo1RWvoapPVW9n10PfcWOgKKX\nVK5qng35mr8feamyY5Sp0/7vzWZb/6t978qOUabOB75jUZ2JlR2jTIuuvcsGn9GVHaNUY85tBOCr\nZsMrOUnpBpzYxK+ti/45nKrmucNfVnYEo62oP6GyI5RqzuWKvbDKvXoopxQKIYQQQgghRFXw0E0p\n7NWrV2VHEEIIIYQQQgjgIRxwCSGEEEIIIUzv4ToxyXRkSqEQQgghhBBCmIgMuIQQQgghhBDCRGRK\noRBCCCGEEKLcdMgfPjaGHOESQgghhBBCCBORAZcQQgghhBBCmIhMKRRCCCGEEEKUm06uUmgUOcIl\nhBBCCCGEECYiAy4hhBBCCCGEMBEZcAkhhBBCCCGEicg5XEIIIYQQQohy08s5XEaRI1xCCCGEEEII\nYSIy4BJCCCGEEEIIE1Ho9XIwUAghhBBCCFE+C+pMquwIpVpy7Z3KjgDIOVzl8me7PpUdoVRPBm+t\n8hlBcla0J4O38lf73pUdo0ydD3wn/awgnQ98B5jHPmlX276VHaNMXQ5+W+V7CeaxboJh/cxnS2XH\nKJOKQFk/K8iTwVsB89gn7QzoV9kxyvR0yDeVHUFUMJlSKIQQQgghhBAmIke4hBBCCCGEEOUmJyYZ\nR45wCSGEEEIIIYSJyIBLCCGEEEIIIUxEphQKIYQQQgghyk1X2QHMhBzhEkIIIYQQQggTkQGXEEII\nIYQQQpiITCkUQgghhBBClJtOrlJoFDnCJYQQQgghhBAmIgMuIYQQQgghhDARGXAJIYQQQgghhInI\nOVxCCCGEEEKIcpNTuIwjR7iEEEIIIYQQwkRkwCWEEEIIIYQQJiJTCoUQQgghhBDlptMrKjuCWZAB\n1z1yfqQlDcYNRKnRkHbpGmeXryc/I9O4GqWSRq8OxamtPwqVirAvfyJi+65Cj63+/BO4dgrgxPRV\nRZZdq283arz4JAcDp1XJnPVH98f9qUfIz8wm+eR5Lq79DF1ObpXLaS79dGzeGK8Jg1BqLchLy+DM\n0vfIuhFTds6xgSg0atJDwzi7/P3icxZXo1TScNJQnNo1R6FSEvblz9zYvtOQpWUTGk4aikKlIjc5\nlYtrNpF26VrBcyo0avzfmE3ED7uI3R38UPSyQnt7k9bNmdYfrSBk8HRyk1MNj3m0Fb7zJ5AVFVdQ\n99/Y+eRnZBmfy0z66dKhBV5jB6K0MOQ4vXwD+emZxtcpFXhPHorzzbzXtvxM+M28ansbfKaNwKae\nJyqtBVc+3Ubkb3sBqNnzKWr364Y+L5/MyBjOLNtQ0P8H1U+1vS3e00ZgU9cTpdaCq59uI2rHHuA+\n9p1VfFu/X3q9nrmzf8KroSsjXn6kwp/flOujdS0PfOeNReNgR35GFqcWryPj2o2C51Ro1LR4cxbh\nP+wi5q+DAGgc7Wg8axTWnh4o1KqbhQq8Jg7GvXN7clPSAMgIu8GpeW8XyujZ51k8e3dFl51D+tVw\nzr/xMXk3642lcbTHd+EErDxc0et0nHttI8knLwBg06A23tNGoLaxvnnfB6Sev1zwWI+uHak9oHvB\nv9W21mjdnNj3whhyEpILbveaNKTM12LKnHdz6dCChuMGoLTQkHopjNPLSl4Hiq1TKvCePASXdoZ1\n4OqWnwnf9gcA1Vo1wfvVwShUSnKT0zj39mekXTRsS15j+uHWKQCAlLOhnHntI3TZOeXqgzAPMqXw\nHmgc7fGdN46Ts98guN+rZN6Ixmt8oNE1NXs+hVUtDw4GTuXQiFnU6vcc9r5ewM0P4xkj8Z42AgVF\nfzVwaOZNncEvVtmc1Z/rhEuHVhwaPouQIUFkxyVSf3T/KpfTXPqpdXWi2aogzq/+iJDBQcTuPohP\n0MgyczaeO56Ts1dzsP+rZEZE02Bc0Zwl1dTs0QWrWtUJCZzC4Zs57Xy9UNlY03RlEJfWbSZk8DTO\nr/6AJsumotAYfrex92tE649W4uDv89D0sqJ7C+DR9XFabliK1tW50OMcmnoT9uXPHBoaVPCfsYMt\nc+qnxtGOJvPGcWL2m+zvO5mMiBgajhtYrjrPnl2wruXBgYHTODh8NrX7d8PetwEAfvPHkxWTwMEh\nMzkycSneU4ejdXPCsrorXmP6c3jUAoIHBZEVGUuDUX0feD99548nKyaekKEzODpxCY2mDkfr6nTP\n+86qvq3fr9DQWEYM3cyO306b5PlNvj4unkT49zs50H8qoR9+i/9rt3/Yc/BrSMDHy3G8q4/ek4eR\nfiWc4EFBHBwyEzB8tjo29ebU/LcJGRJEyJCgIgOUai2bUGdwD45OWEzIkCDi9x+l8azR5e6J9/SX\nSTp2luABUzi96F38lk9DqbVAqbWgxdp5XNv8IyFDZ3Dlk+9osnhSocdG/banIN+h4bPIiU/iwhsf\nFxpsAWW+FlPnvJPG0Q6/+WM5Pust9vWZQmZENI3GF78OlFRXq2cXrGtVZ/+A6QQPm0Odm+uA2saK\n5qumcuHdLzgQOIMzqz7Cf8VkFBo1bp0CcG7bjAODZrC//zSUllrq9O9W7j4I82D2A65t27bxxhtv\nPNBlOrVtRsrZUDKvRwEQsW0nHs88ZnSN6+NtifxlN/p8HXmp6UT/sQ+PZw33uT/Znpz4RC6+u7nI\nci2cHPCe/goX1xW9r6rktPNpQOyeEPLSMgCI/fsgbp3bVbmcYB79dOvcjrgDR0k9f8XwfD/s4sKa\nTaXnDPAn5ewlMsNvZfi9aM5SalwfDyDy19s5Y3btw+OZjljXqk5eegaJh08CkHHtBvnpmTj4eQNQ\nq083Lm/8ipTTlx6aXhbJfZ+9tXCphkvHAI5PXVHkuR2aelOtlR+tN62i5fqlODZvbHwuM+qnc1t/\nks+GknEzR/i2nQXLMrbO7fEAIn7+uyBv1K79VH+2I2p7G5wCmnH5o60AZMckEDJiLrnJaShUShRq\nNSobK1AoUGq1Jf6SbKp+qu1tcWrTjCu38sUmcOjlOeSmpN3bvtMMtvX79dWWw/Ts1ZxnuzYxyfOb\ncn3UulbDpm4NonbtByD+wDFUllrsvOsBULtfN0I3fk3y6YuFlhXzTwjXt+4AKDjCaVnDHdtGdakd\n+AIBm1fTdOU0tO4uhR5n51OfhEMnyY5NMDzP3wdxebQVCrUahVpNw1eH0uazVQRsXk3j+eNRWVsV\neZ0KlRKXR1tx48c/AUi7eJXM8Eic2zfHqa0/mRHRxB84CkDc3sOcmvdWib2tM+RFchKTifjhj8LL\n0KhLfC2VkdO5rT/JZ26/t9e/34XHs4+Wq86tUxtu/HLXOtD1MaxrVycvLYOEQ6cAw7aUl56JY9NG\nxPwdQsgrC9Dn5aOyscKimj05JRxxr8r0+qr9X1Vh9gOuymDp5kJW9O1pP9kx8ahtrQvtFEqrsXRz\nJis6vtB9WjfDr90R23dx5ePvin4RUCppsvhVLq3bXLAzrYo5U05fxOWx1mgc7EChwKPb42idq1W5\nnObST+vaNdBlZuO3dDIBn72O37Ip6HLzSs/p7kx2zB3LiY1HbWtTOGcpNVp3F7LveA1ZN3NmhN1A\nZWWJU4A/AHaNG2BTvxZaF0cATi9cQ/z+/0rNZkyfjKl5UL0skvs+e5sTl8ip2avJuBpe5Llzk9MI\n/34Hh4fPJHT9Fpq+NgOtq5Nxucyon5buzmTftSyNrbVhIGRkXZEex8SjdXPC2tOD7PhE6gx8njYf\nLKHtpyux86mHLjuHzPBorn3xEx2+XUPH/22kWsvGXPl0+wPtp7WnBznxidQe+DytPlhKm02vYe9t\nyHdP+04z2Nbv17wFXXmhRzOTPb8p10dLdxeyYxMLfevLik3A0s2wXZ+cv5a4fUeLZIrZfbDgiJBd\no7oApJw6T+KRU4S+/yUhg4NIPnUR/9dnFHpcyplLOLXyw9LDMHip8fwTKC00aBxsqTukB/p8HYeG\nziRkcBA5sQlFjtoCaBzsQaEgNynlduZb62/t6uTEJ9F4zljabHqNFu/OR6FSFdtXjYMdtQd058Lb\nnxa5T+viVOJredA5wfDeZsUYtw6UVGfpXnibz4pJwNLNmfSwSFTWlji3NazD9o0bYFvfs2Bb0ufn\nU6vPM3T86T0sHO2I+TukxJzCvD0U53AdP36cESNGkJCQwIABA/D09GTNmjVotVocHR1ZsWIFZ8+e\n5euvv+bttw2HrTt06MC+ffuYNWsWSUlJJCUlsXHjRhwcHMpeoLL4EwT1Op1RNYpi7tPn64qpvs1r\n3ECSjp0hIeQEji19y85YSTmjduxB6+ZEi/cWosvMJuKHXWV/CZN+lkihVuHyaGuOjJlP5vUoPPt2\npdlrhikYJecs/neUwjlLrlEoinkNOh35GZmcnLmK+qMH0mDCYJKOnSHxyKlyD1oMyzeTXhbJfX+9\nLc2p2asL/j/5xDmST57HKcCfyF93G5HLjPqpKKE/dy+vtLriXotOh0KtxrqmO3npmRwatQArT3fa\nbFxCxvVINA52uD3Rlj0vjCU3KZWGEwJpsmA8x4o5r9NU/VSoVVjdzHdk1HysPD1otWEJGdej7nHf\naQbbelVnwvWR4vpL2fuCW5zb+uO3eCIA8fuPEr//9uAsbMtP1BvxEpbV3ciKNJw3mXTsLJc/3krT\nVUGg03Pjl7/ITU5Fl5uHc4dWaOyscQowfPFXatTkFDrwhwAAIABJREFUJCYXXWgJ6zX5OpRqNc6P\ntOC/8YtIOX0Jl8da4//WHPb1GFukvEaPp4jde7gg252yImM4PnVlsa/lQecEit1ebz2X0XXFbfM6\nHfnpmRyb/gZeY/vRaNIgEo+eJeFw4W3p+tbfub71d7zG9MP/takcHrO4+OUIs/ZQDLjUajUff/wx\nERERjBw5kuzsbL766ivc3d357LPPWL9+PZ06dSrx8e3atWPYsGFGLy87Og6HJg0L/q11dSI3OQ1d\nVrZRNVnRcWhdqhW6785fx4rj8WxHchKTcX28LSorS7SuTgR8vrrULzeVkVNtb0v0zn+59vkPANg3\n8SqYylKVcppLP7NjE0k+eb5g2tKNn/7Ce+oIlFqLEqdDZUXFYu97V4aU1EI5S6vJio7D4q6cWTHx\noFCQn5HF0fELC+5r+9WaMt/fYl+XmfTybvfb25Koba2p+dKzXPts2+0bFQp0ecZ9wa3q/Wwwqi+u\nj7UGQGVjRVpoWKlZAbKi43Dw8yo+b1QcFs6Ohe7LikkoOFp949e/AcgMjybp+DkcfL2wqV+L2L2H\nyU00/CJ+/bvfaf/lm8W/NhP1Mzs2EYDIX27liyLp+DnDfjIyptz7TnPY1qsiBc1QUBOAmi92Ntn6\nmBVd+HYAy5v3laX2gOeoN6QHJ+evpdW6+dh61cbWq27BBVZuvRL9HfsIlbUlSUfPEPnzX4Bh2nyD\nUf3JSzFMqb3w9ibiDxwz1FpZorTQYOdTn8Zzbg9EDg03nDOmtrMhLzW9IHNMTDyarGzSr0UUTCWN\n23sYxZyxWNV0L5Lf/alHuPBW8VOMS3stDypng1F9cO1o2CepbaxIu1R0Hci/ex2IisOhSdF1ID8r\nm6yo+IKjVrfuy765LeVlZnF47JKC+x755i0ywqOxbVgHhUJB6oWrAIT/+Be1+3UttmdVmXE/H4iH\nYkqhr68vCoUCV1dXIiMjsbW1xd3dsGG1adOGixcvFnmM/o5D/PXq1SvX8uIPHsfBryFWtTwAqNnz\naWL3HjK6JnbPIap3fwKFSona1hr3Lh2I3VP48Xf79/lRhAw2/Hp8duV6MiOiyvwluTJy2vvUp+mq\nIBQqFQqVkrpDehL1+94ql9Nc+hn7TwiOzbyxrO4GgFuntqSFhpU6QEgIuZnB05ChRs+nibtrOaXV\nxO05RI3nOxfKGbcnBPR6/N+ag52P4WRw187t0eflF7pymbHMpZd3u9/eliQvIwvPl57BtVNbAGwb\n1cO+sRcJwceMylXV+xn6wbcED55B8OAZhLw8Fwe/hljfzOHZqwsxe4su61be4upi9xymZvc719FH\niP0nhKzIWFLOXaZGt8cBwxdOh6bepJy9TOr5K7h2aInKSguA+xNtST514YH2MysyhpRzl6n+3N35\nQu9p32kO23pVpOcEOn4DMOn6mB2TQGZENO5dDFdWdG7rj16nK/Tlvji1BzxHrd7PEPLyXBIOGc6j\n0+v0NJo6vGB7q/nS06SFXis0JV7r4kTL9xcVTCmtO7w3UTv3AZAQfAzP3l1RqNWgUOAzezQNxg0k\n9dzlggtXhAwJQp+vI37/f9Ts0QUwDI5s6nmS+N8Z4g8cw8rDDTvv+oDhKqXo9UWuTKq2s8Ha04Pk\nE+eL738pr+VB5Qz9YCvBg2YSPGgmISPmFX1v9xwuZh04UWJdzJ7D1Lxjm/fo8ggxfx8CvZ6Wb8/C\nvrEhi/uT7dDn5ZF28Rp2XrVpsmAsSq0FADW6dSTh8KlS1w1hvh6KI1x3TouoVq0aaWlpxMTE4Obm\nRkhICHXr1kWr1RIbGwtAREQEycnJxT7eGLmJKZxZ+j5NV0xDqVGTGR7N6SXrCn6BCRkSVGINGE6u\ntqrpQcDmN1Bq1ERs30XS0TMV0InKz2mYoteEtlveAIWS2D0hhH39a5XLeS8qI2faxauce/1Dmq0K\nQqFWkZeazsm5JZ/8eyvn2WXv4bdiuiFDRDRnlryLnU8DfGaP4dDQoBJrACK2/26YivX5m4acP9zO\neXrhWnxmj0GhVpMTn8iJmcVMx3qIellc7vvpbYl0Ok7MeJ1GU0dQ75V+6PPzOTX/rRIvWV5cLnPp\npyHHepqtnIpCbejPqcWGHPY+9fGdO4bgwTNKrQvfthMrT3fafbEapUZN+PY/SDx6FoDjM1bjE/QK\nnr26gELB5U++I+VsKClnQ7Gq7krbz1ahy8klKyqO00vff+D9PDFzNd5BL1Oz59MolAqufrKV1LOh\nAPe076zq23pVZ+r18eS8NTSePZr6w3uhy8nlxJy3Sz2TX6FW4TW6H7mpGfivml5wu2vHNlx46xP8\n35iJQqUkKyaBU/PXFlonM8JucO3zH2jzyQpQKEk+fo7zb34MwJVN39Nw4mACPn8dhVJJ2sWrXFz7\nebEZzq/+CJ85Y2j77Jugh9OL3iU/PYP89AxOzHwd7xmvoLLUosvN48TsN4r86QIrTw+y45LQ5+cX\n3HZnzvTL14t9LQ865y05iSmcXroe/9duvbdRnFz0nmEdaFwf37mjCR40s9S68O93Yl3TnfZbXkeh\nvmsdmP8OvnNGodSoyY5L4liQ4UJvkb/txdrTg3afrUSfn0/a5XBOL9tY4rohzJtCr69K1/Aov23b\ntnH58mWmT59OdnY2Xbt2ZdmyZaxduxaFQoGDgwMrV67E3t6eiRMnEhcXR4MGDTh69Ci///47s2bN\nolu3bnTs2LHMZf3Zrs8DeEX37sngrVU+I0jOivZk8Fb+at+7smOUqfOB76SfFaTzge8A89gn7Wpb\n/KXXq5IuB7+t8r0E81g3wbB+5rOlsmOUSUWgrJ8V5Mlgw5U3zSHnzoB+lR2jTE+HfFPZEYw2tcar\nlR2hVG/dWFvZEYCH4AhXr169Cv5fq9Xy11+GucuPPFL0jyOuX7++yG2vvfaa6cIJIYQQQggh/l97\nKM7hEkIIIYQQQoiqyOyPcAkhhBBCCCEePLlKoXHkCJcQQgghhBBCmIgMuIQQQgghhBDCRGTAJYQQ\nQgghhBAmIudwCSGEEEIIIcpNZ9Z/XOrBkSNcQgghhBBCCGEiMuASQgghhBBCCBORAZcQQgghhBCi\n3PRV/L97kZWVxcSJExk4cCAjR44kISGh2DqdTscrr7zCV199VeZzyoBLCCGEEEIIIYCvvvqKRo0a\n8eWXX9KjRw/ef//9YuvWrFlDSkqKUc8pAy4hhBBCCCGEAI4cOcJjjz0GQMeOHTlw4ECRmh07dqBQ\nKArqyiJXKRRCCCGEEEKUm7lfpXDr1q189tlnhW5zdnbGzs4OABsbG1JTUwvdf+HCBX755Rfeeecd\n3nvvPaOWIwMuIYQQQgghxP87ffr0oU+fPoVumzBhAunp6QCkp6djb29f6P4ffviB6Ohohg4dSkRE\nBBqNhpo1a9KxY8cSlyMDLiGEEEIIIYQAWrZsyT///EOzZs3Ys2cPrVq1KnT/jBkzCv7/3XffxcXF\npdTBFsg5XEIIIYQQQoh7oNdX7f/uxYABA7h48SIDBgzgm2++YcKECQBs2rSJP//8856eU6HX32sc\nIYQQQgghxP9X49xfrewIpXo/em1lRwBkSmG5/NOhV2VHKNXj+7ZV+YxgyLmnQ8/KjlGmjvu2m00/\nF9WZWNkxyrTo2rtm08+3vMZVdoxSTb1kuERtVe/n4/u28We7PmUXVrIng7eyq23fyo5Rpi4HvzWb\nbd1c+pnPlsqOUSYVgWaxrQNsbzG4kpOUrufRzWazTxIPFxlwCSGEEEIIIcpNV9kBzIScwyWEEEII\nIYQQJiIDLiGEEEIIIYQwERlwCSGEEEIIIYSJyDlcQgghhBBCiHLTybXOjSJHuIQQQgghhBDCRGTA\nJYQQQgghhBAmIlMKhRBCCCGEEOUmMwqNI0e4hBBCCCGEEMJEZMAlhBBCCCGEECYiUwqFEEIIIYQQ\n5SZXKTSOHOESQgghhBBCCBORAZcQQgghhBBCmIhMKRRCCCGEEEKUm16mFBpFjnAJIYQQQgghhInI\nEa4K4tS+FfXGBKK00JB+6RrnV75HfkamUTVKCwu8po3ErrEXCqWClNMXufTmh+hycrCu60mjGWNR\nWVui1+u5sv4LEkOOVamMt1hWd6PlJ6s5MWUJaedC7ynjrQx1xwwqyHBh5bpicxZXo7KxptHs8VjX\n8QSFgujfdhO+ZTsAtj5eNHh1BCorSxRKJde/2E7Mzn/uK2dVf8/L0rBzE56a0R2VhZroczf4acaX\nZKdlFakLGNqR1oMeBb2ehGtx/DzrK9Lj0yo0i7n2s14nPx6d/iIqCzVx5yPYOfsLcorpYeMXA2j9\nylPo9XrysnLZveRbok+FYWFrydOvDcKpvgcKpYIz24I59MGu+85VVfvp/EhLGowbiFKjIe3SNc4u\nX18kV4k1SiWNXh2KU1t/FCoVYV/+RMT2wr2q/vwTuHYK4MT0VYVuV2jU+L85mxvbdxGzO9iorC4d\nWuA1diBKC0OO08s3kJ+eaXydUoH35KE438x7bcvPhN+Vt0b3J3B7PIBjxeRt8eYswn/YRcxfB43K\nW5YHvb2bsn/WtTzwnTcWjYMd+RlZnFq8joxrNwqes7j+aRztaDxrFNaeHijUqnK/nrLo9Xrmzv4J\nr4aujHj5kQp//pKYy2e7+6P+NJnYF6WFhpSL1/lv8YfkpRdd/0qrq9fnSer27IRKqyHx7FWOLv4I\nXW4eLq0b4zelP0q1mvysHE68vpnE05eNymXqfZJldTcCPl3F0VeXknrOkKnpymnYetUlP9PwuhKP\nnOLi2s/K3VNhPuQIVwXQONrjPXcCZ+au5tCAiWTeiKbe2MFG19Qe+hIKlYojQ6dyeMhUVFoLag/p\nBUDDaaOI+vVPjgybxoUV7+G7dBqoyv+2mTIjgMJCg8+CySjV9zeG1zja02juRM7MfZ3DAyaQdSOq\n2Jwl1dQdOYDs2HiODH6Vo68EUaPns9g18QbAd/kMrn38Nf8Nm8rJaUupP2k4lp7V7zlnVX/Py2Lt\nZEuP1YF8M+Zj1nVeRmJYHE/NeqFIXXW/WjwysjMf93qL959eScLVWJ6Y9lyFZjHXflo52fLMqsH8\nPP4DPn16MclhcTwa1KNIXbV6bjw2syfbRqzjixdWcvC93+j+/igAOkzpTlpkEp93W8aWnqtoNrAj\n1VvUu69cVbWfGkd7fOeN4+TsNwju9yqZN6LxGh9odE3Nnk9hVcuDg4FTOTRiFrX6PYe9rxcAantb\nvGeMxHvaCBQoCj2nvV8j2ny0AsdmPuXooR1N5o3jxOw32d93MhkRMTQcN7BcdZ49u2Bdy4MDA6dx\ncPhsavfvhr1vg5t5bWg8cyQ+04ZzV1wc/BoS8PFyHP2Nz1uWB729m7p/fosnEf79Tg70n0roh9/i\n/9q0gucsqX/ek4eRfiWc4EFBHBwyEwAF9cv92ooTGhrLiKGb2fHb6Qp5PmOZy2e7RTU7Wi0excGg\nd/ij5wzSw2NoMqlfuepqdG5Ng/5d+HfMa/zRezYqSwu8Bj2LQq0iYNUEji75hL/6zeX8Rz/SatkY\no3KZcp8EoLTQ0GTxRBSawv1z8GvEkbELCBkSRMiQILMebOmq+H9VxUM74MrOzqZz584PZFnVApqT\nevYSmeGRANzYvgP3px8zuib5+BnCPttqmAir05F24QpaD1cAFColajtbAFTWVuhycqtcRoCGU0cS\n9b+/yE1Ovad8hTNcJOuODG5PdzS6JnTNx1xe9ykAFs7VUGjU5Keno7DQELbpG5IOnwAgJzae3KQU\ntG7O95Gzar/nZWnQ0YeIE2EkXI0F4PAX/9L0xdZF6iJPXeedTkvITs1CrVVj5+5IZmJGhWYx137W\nebQxUSeukXTN0MPjX+6h8QttitTl5+Sxa84W0mNTAIg6eQ0bF3uUGhW7l27ln9e2AWDr5oDKQk12\natGjAOVRVfvp1LYZKWdDybweBUDEtp14PPOY0TWuj7cl8pfd6PN15KWmE/3HPjyeNdzn/mR7cuIT\nufju5iLLrdW3K6EbvyblzEWjszq39Sf5bCgZN3OEb9tZsCxj69weDyDi578L8kbt2k/1Zw37Ko8n\nHyE7LpEL7xTNW7tfN0I3fk3yaePzluVBb++m7J/WtRo2dWsQtWs/APEHjqGy1GLnbfihoqT+xfwT\nwvWtOwDuWG9tyv3aivPVlsP07NWcZ7s2qZDnM5a5fLa7tWtK4unLpIdFA3Bl65/U6lr0KGBpdbWe\nf5SLX/xGbko66PUcW76JsF/2oc/L57dnJpF8/hoA1p5u5CQbd0TWlPskAO/prxD569/kJqcU3GZZ\n3Q2VtRU+M0cR8MUbNJ43DrW9rVF5hfl6aAdcD5LWzZnsmLiCf2fHxqO2tUFlbWVUTWLIcTKvG3aE\nWndXavZ7nti/DB8kF9/8kNqDe9Fu+4c0W7uQi29shPzyj9lNmdGj+1Mo1Gqifv6j3LmK5nQhOya+\njJxl1OTr8F4wmdab15J89DQZYTfQ5+QS9cufBY/xeKELKitLUk9duMecVf89L4tD9Wqk3Egs+HdK\nZBKW9lZobS2L1OrydPg83YypwUup07YBR7caNyXLWObaT7vq1UiNvN3D1KgktHZWWNzVw5SIBK78\nfarg353m9ib0rxPocvMB0Ofr6PrmMIb8bx7hBy+QeDn6vnJV1X5aurmQFX3HMmPiUdtaF8pVWo2l\nmzNZ0fGF7rv1o0nE9l1c+fg7dNm3p0LdcnrBWuL3/2dUxoIc7s5k37Usja01Khsro+ss3Z0L76ti\n4tG6OQEQvn0Xlz/+jvxi8p6cv5a4fUfLlbcsD3p7N2X/LN1dyI5NLHS2flZsApY3e1tS/2J2HyQn\nIRkAu0Z1AdATXu7XVpx5C7ryQo9mFfJc5WEun+3WHk5k3vE+Z8YkoLGzRm1jaXSdbR0PtNXseWRd\nEJ2/WU7j0b3ITTX8GKDPy0frZM+zv6/Fb3J/Ln76q1G5TLlPqvFCZxRqFTd+vP3dA8DCyZ6EQyc5\n99pGQobMID8zC9+5Y43KK8zXQzXgSk9PZ+zYsQQGBrJo0SIAQkJCGDJkCIMHD6ZXr15cuXKFb775\nhlWrDPPl8/Pz6d69O9nZ2fe8XIWy+Dbqdbpy1dh616f5+8u48f1vJOw/gsJCQ+Ml0zi3/F2Ce47k\n2Pj5NAwac09HZUyV0bZRfWr0eJqLqzeUO1OxlIpib74zgzE155esYf9zQ1Hb21JneN9CdbUG9aLO\ny/05PXNFoXnq5WEO73lZFCX0UVfCl+dzO0/weovZ/P32bwzePA6FovjH31sW8+xneXuotrLg+Xdf\nwbGOK7tmbyl032/TPmV9mxlYOtrQbmK3+8xVRft5n9t3cf3Wm+DHCAAUJfTn7uWVVlfca9FVziSX\nB769m7J/JWTRG9lb57b+tHxn3s1/JZZaW9WZzWd7Se9Zvt7oOqVahVs7P0JmvsvuwAVoHGzwndC7\noCY7IYUdz7zKP0MX03LxSGxre5Sdy0T7JDvvetTs+TTnVn1Q5P6U05c4OWs1OfFJoNNx+cNvce7Q\nEsV9TtsUVdtD9e5+/fXXNGrUiClTpnD8+HEOHjzIxYsXWb16Ne7u7mzYsIEdO3YUDL6mT5/O3r17\nadu2LVqt9p6XmxUVi51vw4J/a12cyU1JRZeVbXSN65MdaDh9FJfe+oiYXXsBsKlfG5WlloT9RwBI\nPX2BjCvXsfNtRHbMgSqR0b1rJ1TW1rTYuBIAC5dqNF44mcvvfU78v4fKlREgOyoOO99GpeYsraZa\nQHPSL18jJy4RXWYWsX/sxeXx9oDhJGrvuZOwruvJsdGzyI6KLXe+W8zhPS/OE1O74f1UU0MeO0ui\nz90+ydzOw4HMpHRyMwsPQp3quGDrak/YYcPJvke/PcDzK/ph6WBFZlLFTC00p34+8urz1H/S0EML\nWyviLkQU3Gfr7khWUjp5mUUH8nbVq9Hjg7HEh0axNXANedmGKU11HmtM3PkbpMckk5uRzbmfD9Pw\n2Rb3lO2WqtrP7Og4HJrcsUxXJ3KT0wpv36XUZEXHoXWpVui+O4+A3K8Go/ri+phhmp3Kxoq00LBS\nswJkRcfh4OdVbF1WVBwWzo6F7suKSaiwvGV50Nv7ncur+WJnk/UvK7rw7QCWRva29oDnqDekByfn\nr6XVuvll1ld1VfmzvfHYXng83hIAjY0VKZeuF9xn6VaNnOQ08u9aHzKj4nFq2qDYuqzYJG7sPlJw\nAY3rv+7DZ1RP1LZWuLbxJXK3Yb+UfO4ayRfCsG/oSVpYVKkZTbVP8uj6OGobK1p/uNxwu4sTTRa/\nyqV1m8lLSUNtb0vc3sMAhh8zdHqjfzCoanRyWXijPFRHuK5evUrTpoadvb+/P2q1Gnd3d5YvX86s\nWbM4ePAgeXl52Nra0qZNG/7991+2bdtG7969y3jm0iWGHMe+SSOsbl6AoUbPp4nfe8joGpdO7fGa\n8gonpiwp2NkBZIZHoraxxt7PcNEHy5ruWNf1JO2icVfeeRAZQ9d+wqEBEzgybBpHhk0jJy6Rs4vX\n3NNgy5DhGPZNGhVczKJ6z2eI3xtidI1r5w7UGW44wVahUePauQNJ/50EwHdZECobK46NmX1fgy1D\nhqr/nhdn91v/Y0O3VWzotoqPeryJZ4u6ONU1zNdvHfgo53aeLPIYWzcHeq8bhnU1w7kOzXq0IeZ8\nZIUNtsC8+rl/7S988cJKvnhhJV/1fp3qzevhWMfQQ/+Bj3HpjxNFHmPpYE3fL6dwcecx/jf5k4LB\nFoB3t1a0v3lES2WhxrtbS64fOH/P+aDq9jP+4HEc/BpiVcvwy3PNnk8Te1eu0mpi9xyievcnDOeR\n2Vrj3qUDsXvubV9TnNAPviV48AyCB88g5OW5OPg1xPpmDs9eXYjZW3RZt/IWVxe75zA1u3e+I+8j\nxP4TUuQ5TOVBb++3lgeYtH/ZMQlkRkTj3sVwbo9zW3/0Oh1pl8KKPP+dag94jlq9nyHk5bkkHCr6\n2s1RVf5sP7t+G7v7z2N3/3n8PWQx1Zp6YVPbHYB6vZ8k8u+i03yjD5wqsS7ijxBqPhWAUqsxvI4n\nWpF4+jL6fB0tF43Eyd8wKLKrXxO7utVJOFn2FRVNtU+6uOZTDvR9teCiGNlxCZxeuJa4vYdRWVvS\naOqIgvO2ag96wXDlVDMdcAnjPFRHuBo0aMCxY8d46qmnOHPmDHl5ecyfP59du3Zha2vLzJkz0d+c\n8923b18+/PBDEhMT8fG5vytB5SYlc37FOnyXBaHQqMmKiOLc0new9WmA96xxHBk2rcQagHpjDFe7\n8Z41ruA5k0+c49JbH3J6zioaTH4ZpYUGfV4+F17fQFZE+c/vMGXGimTI8C6+y4JQajRkRkRxfula\nbH0a0GjWeP4bNrXEGoDQdZtoGDSGVpvXgl5P3N6DRHz7C/ZNfXB+NICMsAiab1hZsLwr739+T5cI\nN4f3vCzp8Wn8GLSFvutfRmWhIvFaHNunGE7gr9G0Fi+sGsiGbqsIOxTKnnU7GfbNJHR5OlJjkvl6\nlCned/PrZ2ZCGjtnbqb7upEoNWqSw2LZEWS42pS7X226rAjkixdW0mxgR+xqOOHVxR+vLv4Fj/9u\nyDv8s+J7nlw6gCH/mwd6PZd2Hee/T3ffV66q2s/cxBTOLH2fpiumodSoyQyP5vSSddj51KfxnLGE\nDAkqsQYMJ6tb1fQgYPMbKDVqIrbvIunomfvqVelZ19Ns5VQUajWZEdGcWmzIYe9TH9+5YwgePKPU\nuvBtO7HydKfdF6tRatSEb/+DxKNnTZK3LA96ezd1/07OW0Pj2aOpP7wXupxcTsx5u9S/wKpQq/Aa\n3Y/c1Az8V02/fTtN0PNgryxYkczlsz0nMYX/Fn1I29WTUKpVpIfHcHj+RgAcfevRYsHL7O4/r9S6\ny9/+gYW9LU98uRSFUknSuaucfOsT8jOzCZ66hmZBg1CoVehy8jg0Zz1ZMWVPF62MfVL8gWOEb/0f\nrT9YCgol6aFhnF1ZQVM3RZWl0Osfnr8RnZ2dzYwZM4iJiaF+/focPnyYTp06ERwcjJWVFS4uLjg6\nOrJs2TIAunfvTmBgIP379zfq+f/p0Kvsokr0+L5tVT4jGHLu6dCzsmOUqeO+7WbTz0V1JlZ2jDIt\nuvau2fTzLa9xZRdWoqmX3gfMY5/0Z7s+lR2jTE8Gb2VX275lF1ayLge/NZtt3Vz6mc+WsgsrmYpA\ns9jWAba3GFxGZeXqeXSz2eyTzMVg51crO0KpNsevrewIwEN2hEur1bJ2rXGN1el0WFtb8/zzz5s4\nlRBCCCGEEOL/q4fqHC5jXb9+nZ49e9KtWzdsbeVvHwghhBBCCCFM46E6wmWsWrVq8eOPP1Z2DCGE\nEEIIIcyWXKXQOP8vj3AJIYQQQgghxIMgAy4hhBBCCCGEMJH/l1MKhRBCCCGEEPfn4bnWuWnJES4h\nhBBCCCGEMBEZcAkhhBBCCCGEiciUQiGEEEIIIUS56So7gJmQI1xCCCGEEEIIYSIy4BJCCCGEEEII\nE5EphUIIIYQQQohy08llCo0iR7iEEEIIIYQQwkRkwCWEEEIIIYQQJiIDLiGEEEIIIYQwETmHSwgh\nhBBCCFFucgaXcRR6vZztJoQQQgghhCifPo6TKjtCqbYmvVPZEQA5wlUuYf0CKjtCqWp/E1LlM4Ih\n5/X+bSo7RplqfX3IbPq5wWd0Zcco05hzG82mn5v9Xq7sGKUafOpjwDz2SX+1713ZMcrU+cB37Azo\nV9kxyvR0yDdms63/2a5PZcco05PBW/mnQ6/KjlGmx/dtI58tlR2jVCoCAcjd27iSk5RO89hZs9kn\niYeLDLiEEEIIIYQQ5aaTeXJGkYtmCCGEEEIIIYSJyIBLCCGEEEIIIUxEphQKIYQQQgghyk0v1yk0\nihzhEkIIIYQQQggTkQGXEEIIIYQQQpiITCkUQgghhBBClJtcpdA4coRLCCGEEEIIIUxEBlxCCCGE\nEEIIYSIypVAIIYQQQghRbrrKDmAm5AiXEEJ09aeiAAAgAElEQVQIIYQQQpiIDLiEEEIIIYQQwkRk\nwCWEEEIIIYQQJiLncAkhhBBCCCHKTa+X68IbQ45wCSGEEEIIIYSJyBEuE7Bs0QHHAeNQaCzIDbtE\n/IZl6DPTC9VYP/os9i8MBr0efXYWiZ++Sc7lsyisbHAeMw91zbooFArS/vkfqT99/v8+p0P/8Tdz\nXiRhY3E5u2LXfRDoQZ+TReKnb5B7+WyhGuepr5OfGEvSptUmyWgOvQSo/bgfbaf2RGWhJv58BH/P\n/Zzc9KwS659YOZSEizc4/skuABRKBY/OH0D1Ng0BCNtziuDXv6/QjObUz5odm9Fici+UGg1JF8I5\nsGBTqf18ZNkIki5FcObT3wHQ2FrRfskwHOpVB6WCyz/u5/Qnv1VoxqraT+dHWtJgbCAKjZr00DDO\nLn+f/IzMctVo3Zxp/dEKQgZPJzc5FQC7xg1oOHk4KkstCpWSa5t/IPr3vfeV1aVDCxqOG4DSQkPq\npTBOL9tAfnpmueu0bs60/WQZBwJnFOS1b9wA76lDUVlpUSiVXP38RyJ3/HtfeaFqbOtek4bg3rk9\nuSlpAGSE3eDUvLcL1Xj2eRbP3l3RZeeQfjWc8298TN7NemNpHO3xXTgBKw9X9Dod517bSPLJCwDY\nNKiN97QRqG2sb973AannL5f5nE7tW1FvTCBKCw3pl65xfuV7RdbPkmqUFhZ4TRuJXWMvFEoFKacv\ncunND9Hl5BQ81rK6Gy0/Wc2JKUtIOxdartd7P/R6PXNn/4RXQ1dGvPzIA1vunf45oWfN93py86CR\nJywZpsDWSlFw/4/79Xy+6/aRk7RMiE6EP15XYGsFy7boOX3V8Ed3m9aDeYEKLC0UxSypbPe1H1Iq\naThpKE7tmqNQKQn78mdubN8JgHVdT3xmjUZlZQlA6PtfkHDwOAB+K6Zj27AO+RmG7THxv9NcWvvp\nPeUX5kGOcFUwpZ0jzmPnE/fWLCKn9CEvOgLHgeML1air16baoEnErJhE1MxBJG/7BJdpqwBw7DeG\nvIQYoqYPIGrOMOy69MKiYdP/1zmdxiwg/u2ZRE3tTV5MBI4DJtyVsw6OgZOIXTmJ6FmBpGz7GJep\nrxeqses+GK1P8wrPdyujOfQSwLKaLU+sGMrOSRv5uutCUq7H0W5az2JrHet70P3TKdR/tnWh2xu9\n2A7Heu5sfWEJ3/VYSo02jaj/TMsKy2hO/dRWs+WRpcP5Z/L7/NR9LqnhsbSY0rvYWvv61eny8XTq\nPFO4n80n9iAjOpGfey7gt/5LadSvEy7+DSosY1Xtp8bRnsZzx3Ny9moO9n+VzIhoGowLLFeNR9fH\nablhKVpX50KPa7piOlc++oZDQ4M4PmU5DScNw8rT4z6y2uE3fyzHZ73Fvj5TyIyIptH4geWuq96t\nIwEfLMLSzanQ4/xXTSX0g60ED5rJf5NX4j15CNa17j0vVJ1t3bGpN6fmv03IkCBChgQVGWxVa9mE\nOoN7cHTCYkKGBBG//yiNZ40u34sFvKe/TNKxswQPmMLpRe/it3waSq0FSq0FLdbO49rmHwkZOoMr\nn3xHk8WTynw+jaM93nMncGbuag4NmEjmjWjqjR1sdE3toS+hUKk4MnQqh4dMRaW1oPaQXgWPVVho\n8FkwGaX6wf7uHRoay4ihm9nx2+kHutw7JaTqmb9Jz5pxCn5ZrsTTFd7+vvC0tBcfUfD9QiXfL1Ty\n9VwFLvYwZ6ACFwcFH/yqJ18H3y9UsG2Rguxc+Oh/9zat7X73QzV7dMGqVnVCAqdweMQsavV7Djtf\nLwC8g0YS+ctuDg0N4uzy9/FbNhWFyvC128GvEf+NXcChoUEcGhpk1oMtXRX/r6r4fzngCg8Pp2/f\nviZ5bkv/tuSEniEv6joAqbu+x+bRZwvV6PNyid+4HF1SPAA5l8+icnQGlZrET98kafM7AKgcXVBo\nLNBllO+XvocqZ7N2hXKm7foe6yI5c/g/9u47Oqpq7eP4d1p6IYUkQKgJJRAINTQp0hQ7KgLSFRCw\n0nsHqVawUFQQFQHB9nJBVHoJCUgNPZSQhPTek5nz/jEwENIhY5J7n89aruXMPDPnlz2zz8w+e59D\n/JqFBeYEsGzcCiu/9qT+tb3M80HlaUuAmh0bE332Jkk3owE4/+N+vJ9tW2Ct78CuXNx+hGu7jue5\nX6VWo7W2RGOhRW2hQ63ToM/OLbOMlak9q3doQmzwDVJCje15efNe6j5dcHs27P84V385zM0/8rZn\n0OJNnFixBQBr1yqoLbTkpKSXWcaK2p7O/n4kX7hKRlgkAOHb/8DjiU4lrrFwdcK1sz+nx7+f5zlq\nCx3Xv95KQtBZALJi4slJSsbSLe+grDRc2vqRdD6E9FvGHLe2/YnHk4+Vqs7S1Qm3Lm34Z9ySfHmv\nrfuJ+Lt5o+PJTkx5pLxQMfq6SqfFrkEdag18Dv+Ny2m6eAKW7q55auwb1SM+6CxZMfEARO87hutj\nrVBptai0Wuq/O5Q2G5biv3E5PrPeRGNjnX87GjWuj7Ui4te/AUi9coOMsNu4tG+Oc1s/MsKjiDt6\nEoDYg8c5N/PDYrM7+Tcn5cJVMsJuAxDx8y7ce3UqcU3S6fOEbtgKigIGA6mXr2PpUdX03PrjRxL5\nnz2mWc5/y6bvj9PnxeY82bvJv7rd+x0JhiZ1oLa7cUaqX1cVO44Vfi7Q17vA2QFe6WKsb9VAxRtP\nq1CrVWjUKnxqqoiIe7gsj7ofqtrFn9s79qLoDeSmpBH952E8nugM3Ok/9rYAaG2sMGTnAMaZTY2N\nNQ0nj8J/4wf4zBiL1sHu4f4AUWnIksIypnVxJzcu2nRbHxeN2sYOlbWtaQmPPuY2+pjbphqnIe+R\ncfwA6O98kRn0uLw1D5u23UgP2kduxM3/2ZwaF3f0cVGlylll8DgyThhzqp1cqTJ0AjGL38aux4v5\nXr8sVJa2BLCt5kRqZLzpdmpkApb21uhsrfItNTq04EcAPNs3ynP/pZ+PUO/JVgzevxSVVkPY4fPc\n3HumzDJWpva08XAm/b72TI9KwMLepsD2DHr/BwCqtfXJ9zqK3kDHJSOo3bM1oX//Q/KNyDLLWFHb\n08rdhazoe7+SsmLi0NrZorGxNi3nKaomOzaBc9PyLw82ZOdw+/c9ptvVn++BxtqK5OArj5Q18/4c\n0XHo7GzQ2FrnWS5YVF1WbAKnp3xQYN7w3/aabtd4oTsaGyuSzl1+6LxQMfq6paszCSfOEfL5D6SH\nRlBr4HP4LZtM4NDJpprk81ep+cpTWHm4khkZS/VnHkdtoUPnaEeN53ug6A0EDZ0CgNfoAXi/OZBL\ny9fl2Y7O0QFUKnISk033ZUbHYenmgtpCR3ZcIj7Tx2BXvza5qWlcXfVd8dndXMiKjjXdLujzWVRN\nQuDpe6/lXpUa/Z7h8tIvAPB4tgcqrZbI3/+i9tCCZ8TNZebs3gAEBFz/V7d7v8h48Lhvktfdybhk\nMC0T7B4YTyekKGzYrbBl1r3lgh2b3Pv/iDiFjX8pzBnycMsJH3U/ZOnuSlbUvc9AZnQcLt61Abi0\nYh0tVs2hZv9nsHByIHjWxyh6AxZOjiQcP8Ol5WvJTkim/nvD8Jk+lrNT867MEf9dKt0M14svvkhc\nXBw5OTm0bNmS4GDjtHifPn3YsGED/fr1o3///nz7rfEcg9u3bzNixAgGDx7MiBEjuH373o8KvV7P\npEmTWLNmTdkFVBXSpAZ9/lJLK1zHLUbr4Unc6kV5HotbNYewEb1Q2zni+PLrZZevsuVUF7ITLSSn\ny3vGnPGrF4JGg8s7i0j89kPTkXuzqCxtifGIW0EUQ8kn3lu9+QyZ8SlseGwS33WZgqWjLc2G9yir\niJWsPQv+fJamPe86PHUdWx57F0tHW5qOee5Ro91TUduzJJ/FR/y81h78AnVH9OPMpCUYsrKLf0Ih\nCnuf0Rseqq4wdYY8j/eovpycsAxDVk5pIuZTEfp65u1oTo9fTHpoBACh3/+Gtac7VtXcTDWJpy5w\n7autNF06iTbfLEFRDOQkpWDIycWlYyuqdm6N/7fL8f92OVW7+GNb1zP/hopod7VWi0uHFoT/+idB\nw6dya8tO/D6cjkpX9PHmkrRfSWrsGtaj+ecLidi2k/gjJ7BrUI/qL/TiyvIvi9z+fzNDIav/CmrO\nrQfg8ebgWTX/exx8Q2HIUoUB3VR09Xu4Adej7odUqgK2azCgttDhu3AcFxZ+xpHn3+CfMbNpOGUU\nlm4uJJ+/wtmpy8mOSwSDgevrtuDSsSWqf3l5aVlRFKVC/1dRVLp3t1u3bhw8eBAPDw88PT05cuQI\nlpaW1KpVi127dvHDD8ajyMOHD+exxx7j008/ZfDgwXTp0oWjR4+yYsUKxo0bR25uLhMnTqR169YM\nHDiwmK2WXG5sJBbe96bqNc5V0acmoWTlPaKocXGn6pQPyQm/TvS8sSg5WQBY+bUjJ/Qq+oRYlKwM\n0g//gU3bbmWWr7Ll1MdGYentW6KcrpM/JDf8BjHzx6DkZGFRvylatxpUGTzOWFPFBdRqVDoLEtbk\n/TH5KCp6W7Z++1nqdPMDwMLOirjL4abHbN2rkJmYRm5GyX+M1uvZgkOLfsSQoyc7R8/lX45S74mW\nnPnmrzLJW9Hb0+/N5/F83Hg+oM7WmsQrYabHbNycyEoqXXtW69CExCvhZMQkkpuRxfX/BFK7Z9md\nE1dR2zMzMgaHxvVNty2rOpOTnIIhM6tUNQVR6bQ0nvkWNnU9OTFyOpmRMaXO5zWqL1U7G89p0tpa\nk3o1NG+OpFT0D+TIjIzFsYl3sXUF5fWdPRa7ep4ce30WmbdLnxcqXl+3866FnXcdIncduO9eFUru\nvWWJGhsrEk+eN81KWjg74jWqP7nJqag0ai5/9A1xR08Za62tUFvosG9UD5/pY0yvETTcOAOmtbcl\nN8U4a2tV1Zno6Dh0mVmk3QwnOfgqYFxSqJo+Busa7kVmz4yMwf7+z56rS4Gfz6JqqnbvSP2Jo7j6\n4Tqi/zRetMW9d1c0Nja0WL3Y+Pe6OuEz5z2uffYtcYeCStCqlV81Zzh73wRbdCI42ICNZf7By64g\nhWkD8t//n0CFhd8pzBio4um2DznY4tH3Q5lRsVi4OuV5LDM6Dtt6tdBYWhJ3+AQAycFXSLsehkOT\n+mRXc0Nnb0vsIeMSXpVKBQbloQ7Uicqj0s1w9erViwMHDnDw4EHGjRvH0aNH2bNnD0888QQREREM\nGzaMYcOGkZiYyM2bN7l8+TKrV69m8ODBfPbZZ8TFGWc6Ll26RFxcHOnpZXeuBEDmmWNY1vdF61ET\nALueLxqX5txHbeuA+9zVpAfuJe6TmaYfNgA27Xrg8PII4w2tDpv2Pcg8l3dd/f9WzgAsvO/L2eMl\nMgvI6TZnNRmBe4n7dIYpZ/aVs9x+8xmipg4kaupAUv/aRvrRP8t0sGXMWLHb8vjK3/mpz0J+6rOQ\n7f2W4u5XD8faxiPMjft35sae08W8Ql4x50PxunNyvVqrpvbjfkSdKrvlKRW9PU9/9is7Xp7Hjpfn\nsWvgIlz96mFfy9ieDfp14daek6V6vTpPtqHZmGcBUOu01HmiNZHHLpZZ3oranvGBp3H0rW+6mEX1\nPr2IPRBU6pqC+C6agMbWmhOjZjzUYAswXcQiYNAUAl+biaNvfdOFLDxf7En0gfxtEHfsTInqHuS3\neBxaW2sCH2GwBRWvrysGhQbjh5tmtGq81IvUkJum87XAuOyw5edzTedm1Rn+MpG7DwMQH3AKz5d7\nG4/8q1Q0mvYGXmNfJeXiNdNFOAKHTELRG4g78g81XugJGAd6tnU9SfjnPHFHT2Ht4YZ9w3oAVGnu\nA4pCZkQ0RUkIPI1DkwZYe1YDjJ+9uINBJa5x7doe73EjODNuvmmwBRDyydcEDXiLE8MmcGLYBLJj\nE7gw7+P/mcEWQIcmcDoEbkYZZx8271PoVsA1rZLSFG5FQ/MHriG0+7jCkk0Ka8Y/2mALHn0/FHsg\niOrPdEOlUaO1s8G9Z0diDwSSEXYbjZ0NDk0bAmBdwx3bOjVIvXwdjbUVDca/bjpvq9bA54neGwAy\n4PqvVulmuBo0aMCtW7eIiYlhwoQJrF69mr///pt58+bh7e3NunXrUKlUrF+/noYNG1KvXj1ee+01\nWrZsSUhICEFBxk7SpEkT1qxZQ9++fenUqRONGjUqZsslY0hOIO6LBbiOX4JKqyU3Mpy4z+ZiUc8H\n5zdmEDllEHa9XkLj6o5Nm67YtOlqem70gjdJ2PgxziOn4rFiEygKGUH7Sdn5Y5lkq6w547+cj8u4\nJai0OnKjwoj/bC66ej44j5pJ1NSB2PZ8CY2rB9ZtHse6zeOm58YsHIshNanMMxWUsTK0JUBmfAr7\npm+g5yej0Oi0JN+KYc+UbwCo6lubLgsG81OfhUW+xpElW3lsZn/6/Wceit5AeMBFTq3bVWYZK1t7\nHpn5DZ0/GotGpyHlVgyHp30FgHOT2rSfN4wdL88r8jWOL99Mu9lDePbn+SiKwq09J7nwXdnMFkLF\nbc+chGQuLPwM3/cnotZpyQiP4vz8ldg38qLRtNEEDZ1UaE1RHJs1pGqnNqTdDKfV6nuf5fsvyVxa\n2QnJBC/4Ar8l41FptWSER3J27mcAOPjUo/GMNwgYNKXIusJUadYQt86tSbsZQZt18033X1n1A3EB\nD5cXKkZfT7t2i8sffo3fiimoNGoyo+M5N+sT0wxV4JBJpIdGcPPbX2jz9fugUpN0+iKXPjD2oevf\nbKP+24Px/3YZKrWa1Cs3uPJJwf8kwaXl62g0fTRtn/wAFAieuxJ9Wjr6tHTOTFlGw8kj0FhZYsjJ\n5cy0FaYLGBQmJzGJS++vovHCSah0WjLDI7m44FPsGnnRcOpYTgybUGgNQN3RxpUzDaeONb1m0pmL\nXP1wbYnb77+Vi4OKhcNh3BcKObkKNd1g8Wsqzt1QmLNBYdsc41xAaDS4OoJOm3dQ9fF2BUWBORsU\nwDhoa+ENMweWfg7hUfdD4T//gbWnO22+/QC1Tkv4L3+SePI8AGenLqPBe8NRW+pQcvVcXLqajPAo\nMsKjuLX1P8b9k0pFWkgoF5dU3iWmMkwsGZVSkRY4ltDy5csJCwvjk08+4YMPPuDq1at88cUXrFu3\njr/++ovs7GyaNWvGrFmziIiIYO7cuWRlZZGZmcmMGTOoWrUq48ePZ8uWLRw/fpwFCxawdetWLCws\nitxuaD//f+kvfDi1NgdW+IxgzHmrf5vyjlGsmj8GVZr2/LJR6S+j/G8bfXF1pWnPjb7mOeerrAw+\nZ/xBWtHbs9bmQPa0/3cvCvAwuh39id3+/co7RrF6BW6uNH3973Z9yztGsboHbGV/R/NcTKksdTm8\nHT3fl3eMImkwDjBzDua/KFBFout0odLskyqLJ+3eLL6oHO1KLfqg17+l0s1wAUyaNMn0/xMmTDD9\n/4gRIxgxYkSe2po1a/LVV1/le40tW4yXYW7dujW//vqrmZIKIYQQQggh/pdVygGXEEIIIYQQonwZ\nKt9CuXJR6S6aIYQQQgghhBCVhQy4hBBCCCGEEMJMZEmhEEIIIYQQotQUZElhScgMlxBCCCGEEEKY\niQy4hBBCCCGEEMJMZMAlhBBCCCGEEGYi53AJIYQQQgghSs1Q3gEqCZnhEkIIIYQQQggzkQGXEEII\nIYQQQpiJLCkUQgghhBBClJpBLgtfIjLDJYQQQgghhBBmIgMuIYQQQgghhDATWVIohBBCCCGEKDWD\nIksKS0JmuIQQQgghhBDCTFSKIkNTIYQQQgghROl0sXmjvCMUaX/66vKOAMiSwlLJ/sC2vCMUyWJC\nWoXPCJKzrFlMSGNTs+HlHaNYA858U2na89eWg8o7RpGe/+c7oHLsk/a0f7m8YxSr29Gf2O3fr7xj\nFKtX4OZK09f/bte3vGMUq3vAVn5uMbi8YxSrz8mN5Bz0Ke8YRdJ1ugCAnu/LOUnRNAysNJ/NykKR\nqxSWiCwpFEIIIYQQQggzkQGXEEIIIYQQQpiJLCkUQgghhBBClJr8w8clIzNcQgghhBBCCGEmMuAS\nQgghhBBCCDORAZcQQgghhBBCmImcwyWEEEIIIYQoNTmHq2RkhksIIYQQQgghzEQGXEIIIYQQQghh\nJrKkUAghhBBCCFFqiiwpLBGZ4RJCCCGEEEIIM5EBlxBCCCGEEEKYiSwpFEIIIYQQQpSaXKWwZGSG\nSwghhBBCCCHMRAZcQgghhBBCCGEmsqTQDFR1n0DTaT4qjQVKzDlyd4+F7JSCa72fQfvkWnJWVTPe\nYeWEpsfHqKs2Q8lJxxC8EcPJLyVnBc9ZGTLeVb1TM/zefRm1hZbEy2Ecm/M1uWmZhda3XfA6SVfD\nubhhV577bdyd6fndTHb2nU12YmqZZqzo7en+WHN83n4FjU5H0pVQTs1fR25aRqnqnvz7czKjE0y1\nV7/dQdjOI9jXrY7fzNfR2lihKArnV24m5ujZR8pb0dvzLpcOLfEaMxCVTktaSCgXFn2OPj2jVDWW\nbi60Xvc+gYMnkpNU8N/4MFw7tqD+2AGoLXSkXA0leOGX6At4z4urs3Rzoe3XCzk6cHK+fNWf7Yp7\nV39OTlhWJpnLu6979O5MrQHPmm5r7WywdHPm8HOjyY5PMt3v/c4Q3Lu1JyfZ+NrpoRGcm/lRibcD\noKviQOM5b2HtURXFYODiktUknb0MgK1XLRpOeA2trc2dx9aQculaiV7X/TE/mrz9CmoLHclXbvHP\nvLUFtmFRdXX7dqdOn65oLHUkXLjByXnrMOTk4traB99x/VFrtegzszmzbCMJwSXLVZj9ZxQ+3qaQ\nkwsNPGH+MBV21irT478eUfj2z3tLwFIzICoB/lqmws4aFn6vEHwDDAo0rQszB6qwslAVsCXzUxSF\nGdN+w7t+VV57vYPZtuPSoSVeY19FrdORevUmFxZ9UfB+p6AatZoG7w7Fua0fKo2G0B9+I/znP7Gt\n40mT+e+anq9Sq7HzrsWZqcuJ2RdI08UTsPOugz7D+BlJOHGOK59sMNvfaE4GlaG8I1QK/1MzXJcu\nXSIoKAiAbt26kZWVVfYbsXZF++Rqcn97lZxvWqAk3UDTaX7BtVW80HZ+H1T33gZN16WQnUbO+lbk\n/tAVdZ1eqOo9KTkrcs7KkPEOSyd72i54nYPjP2PHc9NJDYuh+Xt9C6x1qFuNbusmU6tXm3yP1Xm2\nA93XT8PG3ansQ1bw9rSoYk+LuSMJmvgJf784ifTwaBq/3a9UdXa1q5GTnMa+ATNM/4XtPAJAs2nD\nCf1tP/sGzODUvLW0WfI2Ks0j7KoreHvepavigM+MNzk7bTnH+r9LRngUXmMHlqrGo3cXWn65AMuq\nLmWczR7fWWM4PfVDDvcdR0Z4FA3efLXUddWe6oz/mrlYuTnneZ7WwRafqSPwmTgcyui3bUXo65E7\nDxA4ZBKBQyYRNHwq2XGJXF7xVZ7BFkCVpg05N+sjU21pB1sADSe+TuKpCwQMGEfw3JX4LpqA2tIC\ntaUFLT6Zyc2NvxI4dDLXv/6JJvPeKdFrWjjZ02reKI5N+pS/+kwmLSyaJu8U0NeLqKverTVe/Xty\naPQS/np5GhorC7wHPYlKq8F/6VucnP81e/rN4NK6X2m1cHSp/+77xacozPpG4eOxKv5vkRrPqvDR\ntrzn1zzfQcW2OWq2zVHz4wwVrg4w/VUVro4q1uxQ0Btg2xwV2+eqyMqBdf8pn/NzQkJieG3oRnbt\nDDbrdnRVHGg8cyxnp60goN+7ZERE4f1m/v1OYTU1+vTAuqYHxwaOJ+i1qdTs9zQOjb1JuxFm+jwH\nDplEXOBpIv84RMy+QAAcfRtwYsxs0+OVdbAlSu5/asC1e/durl69atZtqGt3R4k8AYkhAOhPr0Xt\nk38HjdYa7VNfkbt/ap67Ve4tMJzfBIoBDDkYru9CXb+P5KzAOStDxrs82jch7tx1UkOjALi6ZQ+1\nn2pXYG39/t259stBQncH5bnfumoVPB9vyf43S/+jqCQqenu6tW9KQvB10m4Z2/D61r/x7J3/6GtR\ndc5+9VEMBjqsnk7Xze/TYOQLoDb+0lZp1OjsbY1/oq0V+uycR8pb0dvzLmd/P5IvXCUjLBKA8O1/\n4PFEpxLXWLg64drZn9Pj3y/zbC5t/Ug6H0L6LeN2b237E48nHytVnaWrE25d2vDPuCX5nufRoz1Z\nsYlc+vS7Mstc0fp67SHPk52QRPgvf+W5X6XTYtegDrUGPof/xuU0XTwBS3dX42NaLfXfHUqbDUvx\n37gcn1lvorGxzvfaKo0a18daEfHr3wCkXrlBRthtXNo3x7mtHxnhUcQdPQlA7MHjnJv5YYkyu7Vr\nSkLwNdJC7/XhmgX19SLqaj7zGFe+20lOchooCqcWfUPo/x1GydWz84l3SLp0EwAbTzeykx5tpcCR\nYGhSB2q7G/cl/bqq2HHMOFNUkK93gbMDvNLFWN+qgYo3nlahVqvQqFX41FQREfdIkR7apu+P0+fF\n5jzZu4lZt+PcthnJF0LIuHV3n7I7/36niJqqXdpy+//2ougN5KakEfXXYTyezPv8Kn6NcHu8HReX\nrgHAqpobGhtrGk0Zhf93K/CZORatg51Z/05R/ir8ksLt27ezd+9eMjMziYmJYciQIfz9999cuXKF\nyZMnk56ezoYNG7CwsKBOnTrMnz+f33//nf3795OZmUloaCgjR46kY8eO/Pzzz+h0Opo0MXbguXPn\nEhYWBsCqVatwdHR89MAOnigpYfdup4SjsnQEC/s8S3g0PVdiOPM1Ssy5PE9XbgehbjwAfcRR0Fii\nrv8CGB7tB5fkNHPOypDxDhsPZ9Ij402306MSsLC3QWtrlW+ZzInFxh9/7m0b57k/IyaRQ+NXmSUf\nUOHb09rdhYyoe79CMqPj0dnboLW1zrOssKg6lUZNTMA5gj/ehNrSgnafTiQ3LYNrP/zBmSXr6fDl\ndLwG9sbS2YHj01ah6B9hyUYFb8+7rAf/0DkAACAASURBVNxdyIq+115ZMXFo7WzR2FiblvcUVZMd\nm8C5acvLPNfd7Wbev93oOHR2NmhsrfMsFyyqLis2gdNTPijw9cO2Gwch1Z/uUmaZK1Jf1znaU2vA\nswQOnZLvMUtXZxJOnCPk8x9ID42g1sDn8Fs2mcChk6kz5AUUvYGgO8/zGj0A7zcHcmn5ugde3wFU\nKnISk033ZUbHYenmgtpCR3ZcIj7Tx2BXvza5qWlcXVWyga2Nh3OePpxh6sN527CoOrvaHliec6DD\nqklYVa1C3MnLnPv4RwCUXD2Wzg48vmkBFlXsCZryWYlyFSYyHjzumzx1dzIuGUzLBLsHxqkJKQob\nditsmXVvSrVjk3v/HxGnsPEvhTlDymc54czZvQEICLhu1u1YubmSGRVrup0VHYfWzibvfqeIGis3\nFzKj8vZ5O+/aebbh/c4Qrq3eZHo9C2cH4oPOcmn5WrITkmkwbhiNZ4zhzBTz7L/MTa5SWDKVYoYr\nLS2NtWvXMnLkSDZt2sSqVauYP38+P/30EytXrmTDhg1s2rQJe3t7Nm/eDEBqaiqrV6/miy++YM2a\nNbi7u9OnTx+GDRtGs2bNAHjppZfYuHEjNWrU4PDhw2WUtpCdk0Fv+l+130gw5GI4922+Mv3+aYCC\ndvBRtM//iOHmHtBnl1E2yWmenJUh452k6oKzKoaKtAa7grdnYW344KCoiLqbP+/j7PKNGHJyyU1N\nJ+S7nVR7vDVqCx2tl7zFybmr2d37HQ6NWIDfjNewcncu8LVKpoK3pylEwV9HeT6bJakxg8L6DQ+8\n5yWt+zdUpL5e/YUexBw8Tubt6HyPZd6O5vT4xaSHRgAQ+v1vWHu6Y1XNDZeOrajauTX+3y7H/9vl\nVO3ij21dz/wbKKLd1VotLh1aEP7rnwQNn8qtLTvx+3A6Kl0JjjerCuvDSonr1FoNbu18CZyykr0D\nZ6NztKXxWy+barLik9n1xLvsHzqPlvNGYlfLo/hchTAU8ru3oG6z9QA83hw8q+bPHnxDYchShQHd\nVHT1K58B17+mJP2kiJqC+tn93wWOTRugc7Qn8o9DpvuSg69ydupysuMSwWDg2totuHRsiUpb4edA\nxCOoFO+uj48PAPb29nh5eaFSqXB0dCQjIwNvb2/s7IxTsW3atOHQoUP4+fnRqFEjAKpVq0Z2dsE/\nDnx9fQFwdXUlM7PwE4lLJSUMVbX71sHbVUfJiIfcdNNd6iaDQGeDdvBRVBqdcSnP4KPkbu8Dai36\nAzMh03gyvbrNeJTERzuJVnKaOWcFz9h07AvU6NoCAJ2dFYlXwk2PWbs5kZWUij7DPAO8h1IB27PR\n6Jfw6NISAK2tNclXb5kes3JzIjspFX1m3nNCMyLjcPL1KrDO8+mOJF8OJfnKnddRGY92O3h5orGy\nJOrgKQASzoaQEhKOk68Xt6PieSgVsD0LkhkZg0Pj+qbbllWdyUlOwXBfu5akpqx4jepL1c6tAeN7\nnno1NO92C3jPMyNjcWziXWyduVTUvu7eowOXP/ymwMfsvGth512HyF0H7rtXhZKbi0qj5vJH3xB3\n1NgfNNZWqC102Deqh8/0MabqoOHGGTCtvS25KWkAWFV1Jjo6Dl1mFmk3w0kONp5OEHvwOKrpY7Cu\n4V5gHp8xL5r6uq4Ufd25acF9PTMmkYi9J0wzYrd2HKbRqD5o7ayp2qYxt/eeACDp4k2SLofiUN+T\n1NDIohu0ENWc4ex9E0LRieBgAzaW+QcFu4IUpg3If/9/AhUWfqcwY6CKp9v+lw+2gKyoWBybPLBP\nSUrNs08pqiYzKhZLV6c8j90/C+/eoyORO/fDfcs6q/g1QutgR+zB4wCoVCowKBXswKcoa5VihktV\nyNEjlUpFSEgI6enGHw6BgYHUrVu30OeoVCoM932gC3vdR2G48Teqav5Qxbjz1fiNwBCyI09N7g9d\nyN3QhtyN7cnZ/iLkZpC7sT2kRaLxG4Gmw0xjoY0bmqbDMFzYLDkrcM6KnvHs57+w65U57HplDrsH\nLcS1WT3sahl/bNTv+zjhe0+W2bbKQkVsz4tfbjNd3OLA0Lk4NfXGtqaxDeu81J3I/f/ke0700bOF\n1jl4edJo9EugVqG21FGvXy/CdweQeisKnZ01Ts2MX+42nm7Y1a1uOs/jYVTE9ixIfOBpHH3rY+1p\nPMJfvU8vYg8ElbqmrISs2UrAoCkEDJpC4GszcfStj01N43Y9X+xJ9IHj+Z4Td+xMierMpSL2da29\nLTaeHiSduVTg44pBocH44VhVcwOgxku9SA25SVZMPPEBp/B8ubfxyL9KRaNpb+A19lVSLl7Lc0EC\nRW8g7sg/1HihJ2AcxNnW9SThn/PEHT2FtYcb9g3rAVCluQ8oCpkR+WfbAC58sZ29/Weyt/9M9g2Z\nZ+zDd9qw7svdub0vf1+POnqu0LrwvwKp0cMftaUOgOqPtyIh+BqK3kDLuSNx9jP2dft6NbCvU434\nsyEP1c4AHZrA6RC4GWX8cb95n0K35vnrktIUbkVDc6+89+8+rrBkk8Ka8f8bgy2AuGN39il3+myN\nPr2IORhU4pqYA0FUe/ZxVBo1Wjsb3Ht2JOa+fVKVFo2JP553mbbGxooG418znbdVa9BzRO8NABlw\n/VerFDNchdFoNLz99tsMGTIEtVpNrVq1mDhxIjt27Ciw3tfXl2XLluHl5VXg42UiI4bcP0ajffZ7\nVBodSuJ1cneNROXeAk2vz40/YoqgP7YC7VPr0A41dlj90fdRovLv4CVnBcpZGTLekRWfQsCsr3ns\ng7GodVpSb0UTMMN4PoRz4zr4zx3OrlfmmGXbJVbB2zM7IZmTc9fQZvk7qHVa0sKi+WeW8TLpVXzq\n0nz2CPYNmFFk3aU1P9N0ylC6bVmCSqsh4q9Abv68D4DACR/TdNJgNBY6DLl6Ti/6mvSwgn8clkgF\nb8+7chKSubDwM3zfn4hapyUjPIrz81di38iLRtNGEzR0UqE15padkEzwgi/wWzIelVZLRngkZ+ca\nz7dx8KlH4xlvEDBoSpF1/7aK0tetPT3Iik1E0d9bwnp3hipwyCTSrt3i8odf47diCiqNmszoeM7N\n+gSA699so/7bg/H/dhkqtZrUKze48kn+Za8Al5avo9H00bR98gNQIHjuSvRp6ejT0jkzZRkNJ49A\nY2WJISeXM9NWYCjBxWiyE5L5Z+5a2i5/B7VWQ1pYNMdnrQagSuO6tJj9Onv7zyyy7tqWv7BwsOPx\nHxagUqtJvHiDsx9+jT4ji4DxH9Ns0iBUWg2G7FyCpn+R55+KKC0XBxULh8O4LxRychVqusHi11Sc\nu6EwZ4PCtjnGY+yh0eDqCDpt3kHVx9sVFAXmbFDgznk5Lbxh5sBKcWz+oeQkJHN+wec0fX+CcZ8S\nFkXw/FV5PqOF1YDxAhrWNTzw37gCtU5L+M9/knjyvOn1bWp65Bvcxx09RdjW/9B6zQJQqY3/vMVi\n8/1TMOamIAPFklAphV2+RuST/YFteUcoksWEtAqfESRnWbOYkMamZsPLO0axBpz5ptK0568tB5V3\njCI9/4/xpP+K3p4WE9LY0/7l4gvLWbejP7Hbv4ArN1YwvQI3V5q+/ne7gi9BX5F0D9jKzy0Gl3eM\nYvU5uZGcgz7lHaNIuk4XANDzfTknKZqGgZXms1lZtLSt2H3on7SN5R0BqCRLCoUQQgghhBCiMqrU\nSwqFEEIIIYQQ5UMuC18yMsMlhBBCCCGEEGYiAy4hhBBCCCGEMBNZUiiEEEIIIYQoNYNKrlJYEjLD\nJYQQQgghhBBmIgMuIYQQQgghhDATWVIohBBCCCGEKDWD/MPHJSIzXEIIIYQQQghhJjLgEkIIIYQQ\nQggzkSWFQgghhBBCiFKTJYUlIzNcQgghhBBCCGEmMuASQgghhBBCCDORJYVCCCGEEEKIUlNkSWGJ\nyAyXEEIIIYQQQpiJDLiEEEIIIYQQwkxUiqIo5R1CCCGEEEIIUbn42L1c3hGKdCH1p/KOAMg5XKWy\nr8NL5R2hSF2PbOPvdn3LO0axugdsrTQ5d/v3K+8YxeoVuJkdrV8t7xjFevr4D5Xmfd/sN6y8YxSp\n3+n1ABW+PbsHbCU57p3yjlEsB5dPsbGsU94xipWedaPS9PXKsu+s6H0IjP1oT/uK/aO221Hjj9qK\n3p7dA7ai5/vyjlEsDQPLO0KJGVRyDldJyJJCIYQQQgghhDATGXAJIYQQQgghhJnIkkIhhBBCCCFE\nqRnksvAlIjNcQgghhBBCCGEmMuASQgghhBBCCDORJYVCCCGEEEKIUlPQl3eESkFmuIQQQgghhBDC\nTGTAJYQQQgghhBBmIksKhRBCCCGEEKUmVyksGZnhEkIIIYQQQggzkQGXEEIIIYQQQpiJLCkUQggh\nhBBClJosKSwZmeESQgghhBBCCDORAZcQQgghhBBCmIkMuIQQQgghhBDCTOQcrjLi3KEl9UYPQq3T\nkhpyk0vvf44+PaNUNZZuLrRcu5jjQyaQk5QCgNbejvrjX8emricaS0tubthG1K79RWZx6dASr7Gv\notbpSL16kwuLvsiXpdAatZoG7w7Fua0fKo2G0B9+I/znPwGwrulB4xlj0Tnak5ueyfn5K0m/GQFA\nleY+eL81CLWlBbmp6Zxf8BmZEdG0WrMQjZWlabs2tar/q5nvsqrmhv/6pZx8dwEpF6+Z7lfptPh9\nMI2In/8kem9Ake16l2vHFtQfOwC1hY6Uq6EEL/wSfVpGyevUKhq+NwTXdsa8N77/nbDtfwFgW7cG\njaeNQmNjBYrClc82ERdwmjpDnsejVwfTa1tUcUBrY8WebsNLlNmtY3MavtUftYWWlCu3OLNgDbkF\nZC6sTmtrTbPZo7CrUx1UKsJ2HOTaht8BcGxcj8YTBqOxskSlUXNtw++E7zxcbCZzvef2Pl40GDcM\njZUVKrWam9/9QuSug3let+YrT1H9+e4cGzihRO33oGqd/Gj2zsuoLbQkXQ4jcO5X5KZllrjOwsGW\nVjOHUKVhLfQZWVz/9RBXNhk/A25tGtF8Qn9UGg1ZSamcWvYDiZdvlTqjudrXqWUTvN8ejEqrwZCV\nzeUPvyH5/NWHaMX8Dh2O4bMvL5OdY6C+lz0zp/tiZ5v3a2rv/ijWrLuKSq3CwV7LzKm+eHrakJSc\nzZLlF7h8JRlrKw3PPl2Dfn1rl0muBz3Z+3HmLZiMpaUF585eZMwbU0hJSc1X99xzTzBj9nsoBoWE\nhCTGjpnC9WuhODk58snKRTTz8yE9LYNvv93Kl59vKJNsFbGvg3n3m06tmtDw3cGoNGpyklK5+NEG\nUq/cBMB7dD/cuvoDkHwhhPNL1mHIyi4wY3l8DzVdPAE77zroM4z7j4QT57jySdGfBZcOLfEaMxCV\nTktaSCgXFuX/vVFojVpN/XeG4tyuOSqNmtAffifi590A2NTxpNHUN9BYWwEQ8vl3xB87DYDv+xOx\nq18bffqdnP8Ec/WT9cXnLOP2tK3jSZP575qer1KrsfOuxZmpy4nZF/hQ7fmoFEVhxrTf8K5fldde\n71D8E/7LKOjLO0Kl8F8zwxUUFMTFixfLZdu6Kg40mvEWwdOXEzjgHTIjoqg3dlCpatyf7EKLLxZi\nWdUlz/MazXyLrJg4TgybxOl35uL93mtYVnUuMkvjmWM5O20FAf3eJSMiCu83B5a4pkafHljX9ODY\nwPEEvTaVmv2exqGxNwBN5r5L2PbdBAwYx/V1m2m6eCIAllWdabZ0EpeWryNw8CRi9h6j0aSRAJwY\nNZPAIZMIHDKJa2s3k3k7+l/NDKC20NFk3tuodHl/uDn4NqDNuvep0qxRoe2ZP6s9vrPGcHrqhxzu\nO46M8CgavPlqqepq9umJTc1qHBkwkYBh06nd/ykcGnsB4DP5dcJ/30vAoCkEL/iSZu+/h0qj5sa3\nvxIwaAoBg6ZwfPQ89JmZnJnxSYkyW1Sxp9mcNzgx+WP2vzSR9PAoGr3Vv1R1Dcb0JTMqngP9pnB4\nyCxqv9SDKk3rA9Bq2XtcXr2NQwOnE/TOMnzGDcKmpkcx7Wi+97zZ4olcW7uFwCGTODVuEfXfGYr1\nfXkcmzWk9uDnS9R2BbF0ssd//uscnrCKnc9PIzU8Gr93+5aqrvmkAeSmZ7Grz3T+GrQAj45NqdbZ\nD52dNR0/fJtTH27mj76zOLHwW9ovH4taV7pjY+ZqX5VWi+/CcVxY/CWBgydx/ZttNJ7z9kO2ZF4J\nCdnMX3SOpe83Z9uPnahR3ZpVn1/OU5OZpWf2vLMsW9ycHzZ0oPNjbqz46AIAH31yCRtrDVu+f4xv\n1rbjSEAsBw/n3988KldXZ75cs5xX+4+hedPuXL9+iwWLpuSrs7Ky5Kv1HzGg32ja+T/Fjh1/8cGH\ncwFYunw2aalptPTrSZdOfXjiia70fqrbI2eriH0dzLvf1Npa03zpeC6v/I6jAydzfuk6/N5/D5VO\ni1tXf1zaNuPooMkc6T8BtZUltfs/VUjG8vkecvRtwIkxs03fk8UNDnRVHPCZ8SZnpy3nWP93yQiP\nwmts/pyF1dR4oSfWNasROHAcx+/ktL+Ts+Gkkdz+v70EDZ3EhUWf47twPCqN2pTznzGzCRo6iaCh\nk4odbJmrPdNuhJnaKnDIJOICTxP5xyFi9gU+VHs+qpCQGF4bupFdO4PNuh1R+f3XDLi2bdtGdHTZ\nf7mWhJO/HykXrpIRdhuAiO1/4N6rU4lrLFydcO3sz5kJi/I8R2tvh5N/M258tQWArJh4/hk5lZzk\n/EdS73Ju24zkCyFk3IoEIHz7bjye6FTimqpd2nL7//ai6A3kpqQR9ddhPJ7shGVVZ2zrVCfqT+PR\nzLijp9BYW2LfsC5u3doRe/QkKZeuG1/vlz+5/PE3ef8WBzsaTR5J8LyV/1rmuxpOHMHtHfvISUrO\n85o1X+lNyOofST5/pdD2fJBLWz+SzoeQfifHrW1/4vHkY6Wqc+vahoj/22fKG/nnEar1NuZVadTo\n7O2MbWZrXeCR2AbvDib2yClij54qUWbXds1IOn/NlOXmT39RvXfHUtWdX/EtFz75HgBL1yqoLbTk\npqajttBxZe124gLPAZAZHU92YgrWboUfFADzvedqCx3XvtpKQtBZwNhncpJSsLpzIMPC2ZGGE0dw\nZdXGErVdQTza+xJ/7jqpoVEAXN2yl1pPtS9VnXPjOtz4vyMoBgVDrp7bB89Qs0cb7Gq5k5OSQXSg\ncRCRcuM2uakZuPh553v9opirfZXcXA49+wapl28AYF3D3TQb/6gCAmNp7ONArZq2ALz0Yi127b6N\noiimGoNeQVEUUlNzAUjP0GNhafwau3AxmaeerI5Go0KnU9OxQ1X+3htVJtnu171HJ/45cYaQqzcA\nWLvmO/r1zz+A12g0qFQqHB3sAbCztSEzMwuAFi19+eGHnzEYDOTk5LBr5x5e6FPwQKA0KmJfB/Pu\nN21qVSM3NZ34IGOu9JsR5KZlUKVpA6L3BRI4YjZKrh6NrTUWTg5kF/J5LY/vIatqbmhsrGk0ZRT+\n363AZ+ZYtA52Rbals78fyReukhF2N8Mf+XMWUVO1iz+3d9zLGf3nYTye6AwYZ4u09sb+p7WxwpCd\nkydnw8mj8N/4AT4zSpDTzO0JUMWvEW6Pt+Pi0jUP3Z6PatP3x+nzYnOe7N3ErNsRlV+ZLCncvn07\ne/fuJTMzk5iYGIYMGcLff//NlStXmDx5Munp6WzYsAELCwvq1KnD/Pnz+f3334t8To8ePdi5cyfr\n169HrVbTqlUrJk6cyMqVKwkLCyMuLo6IiAimTZuGk5MTBw8eJDg4GG9vb/r27cvhw8aBwbhx4+jf\nvz/h4eHFbu9hWbm7khUVa7qdFROH1s4WjY21afq8qJrs2ASCpy/P97rWnh5kxyZSc8CzOLdriVqn\n5dam38i4dbvwLG6uZN6/neg4tHY2ebMUUWPl5kJmVFyex+y8a2Pp5kJWTALc9+MnKzoeSzcXbGpV\nx5CRhe+C97CpVZ3MqFguf7w+T67ag583DsruW85n7swA1Z/rhkqrIeLXv6kz7MU82w2ebZwhqj3o\nuULbM19Wdxcyo/NuS2dng8bWOs/ymKLqrNzz5s2Mjsf1Tt4Ly76m9eezqD3gKSycHTkz4xMU/b1L\nrtrW88StS2sO9XmnxJmt3Z3JeGB7OjsbtLbWeZYaFVen6A00nz8Wj+7+RO47TurNCDAo3Pp1n+k5\nNft0Q2tjRcK5ogex5nrPDdk53P59j+n+6s/3QGNtRVLwFVCraTLvXa6u2oghN7fE7fcgaw9n0qPi\nTbczouKxsLdBa2uVZ1lhUXVxZ69R55kOxJ66gkanxbNHKwy5elJuRqK1scS9fROijgbj3KQuDl41\nsHZ1LFVGc/YpRa/HwtmRNuuXYVHFnrMzPypVtsJERWXi7m5luu1W1ZK0tFzS0vWmZYU2NlqmTW7M\n628cw9HRAoNeYd1q43Ix3yaO/GdXBH7NqpCdbWDv3ii0WlWZZLufp2d1wsLu7YPDw27j6OiAvb1d\nnmWFaWnpvPPWDPbs30Z8XCJqjZruj78MwPHAU7z6ah+OHjmOpaUFz7/Qm5xH+EzeVRH7Oph3v5kW\nehuNjRUubZsRd+wMDj5e2NXzxNK1CmD8vNbs+wTeo/uRFRNP9J2ZkHwZy+F7yMLZgfigs1xavpbs\nhGQajBtG4xljODMl/++B+9so6/42KvD3RuE1lg/8FsmMjsPlTs5LK9bRYtUcavZ/BgsnB4JnfYyi\nN2Dh5EjC8TOmnPXfG4bP9LGcnbqs8JxmbM+7vN8ZwrXVm0yv9zDt+ahmzu4NQEDAdbNto6KTy8KX\nTJnNcKWlpbF27VpGjhzJpk2bWLVqFfPnz+enn35i5cqVbNiwgU2bNmFvb8/mzZuLfM727dtJTExk\n5cqVrF+/nk2bNhEVFWUaRFlYWLBu3TpmzJjB+vXr8fX1pVOnTkyaNInq1Qs+R6i47T0SVcFf6orB\nULqaB19Wq8G6hju5aRmcHD2D87M/wuud4dg1rFd4FnUJtlNEjaqAxxR9wfebHtNqcO3chpA1PxI4\ndDLxx8/SbMmke5uz0FHj+R7cWF9IO5sps33DutTo08t09KssFNYO6A0lrysor8GA2kJHs0XvcW7+\nFxx4dixBb8yl8bSRWLrdW2Zau19vbm39o8BzMgqlLribKw9kLkndqdmf82ePN7BwsKP+iLwDWK+h\nz9LgjZcIGrcCQ1ZOMZnM857fr/bgF6g38hVOT1yCISsb77GvknjqPPGBZ4rOVgxVCftyUXWnPvgR\nFIUnNs+j40dvE3U0GEOOnty0TA699wmNX3+WJ7bMp86zHYkOuoAhp5Rr5M3cvtnxSRx+7g2Oj5xB\n45ljsa5ZrXT5CtquUvD9mvs+lldDUlj3dQhbvn+Mnb91ZfjQekyZfgpFUXjv7YaoVDBw6FEmTTuF\nv78LWl3ZL+JQF9Juen3e96hJk4ZMm/EOLZv3xKtuW5Yt/YwffvwSgKlTFqEoCkcDd/Dj1tXs+fsQ\nOdkFn1dUynAF3l2ufR3z7jf1aRmcmriCusNeoP33y6j+dGfij5/DkHNvAHtr6x/s7f4a0fuC8Fsy\nvuBtlMP3UHLwVc5OXU52XCIYDFxbuwWXji1RaYs4Fl7Ye5cnZ+E1Be6X7nz/+C4cx4WFn3Hk+Tf4\nZ8xsGk4ZhaWbC8nnr+TJeX1dSXKadx/k2LQBOkd7Iv84ZLrvodpTiH9JmX0KfXx8ALC3t8fLy8u4\nlMLRkYyMDLy9vbGzM07rtmnThkOHDuHn51foc7KysggNDSU+Pp5Ro0YBxsFSaGhonm15eHiQXcyX\n1P3LUYra3qPIiorFoUl9022Lqi7kJKdgyMwqVc2DsmMTAIjcsReAjPBIks5cwKFxfVIv5Z8pursd\nx/u2Y1nVmZyk1HxZCqvJjIrF0tUpz2NZ0XFkRsZi4VIlz7buPpYVk0DS2UumZQERv+2h4fjXUFta\nYMjKxqV9C1Kv3CAzouAln+bK7NG7C1pba1qvNS7VtHR1Ns1wxB48XmCWgniN6kvVzq0B4zK/1Kuh\n+XLoH3gfMyNjcWziXWBdZmSc6ejr/XntvGqisbIg9tA/ACSdu0LqtVtU8fUmak8cqFW4dWtLwJBp\nxWZu8MbLuHVuCYDO1obkkHuZrao6k11I5iq+XgXWubZrRsrVULJiE9FnZBHxxxE8uhlnFtQ6Lc3m\njsa+bg2ODJ9Dxu1YimOu9xyMF0JpPOtNbOt6cnzkDDJvxwDg8WRnshOSqNqlLRprKyyrOuP/7XIC\nh9w7OFAY37F9qN6lhbE97axIuhJmeszazYmspFT0GXn3RemRcbg0rVdgnaWHHac/2kJ2choAjYY/\nZVx6qFKRm57F3hFLTM/r/fP7pN4q3dI4c7WvxtYG59a+xOw3zhKkXLpO6tWb2HnXKnLmvSTc3a04\nF5xouh0Tk4WDvRZr63tfU0ePxeLXzAlPTxsA+r5Ui48+vUhSUg6ZmXrefrMBjg4WAGzYeI2ad+oe\n1azZ43j6mZ4A2DvYEXzukumx6jU8iI9PJP2BiwH06NWZo0dOcP2ase+t/uJbli2fhYuLE9Y21syY\nvpiEhCQAxk8YTUjIzYfKVlH7+r+130SlIjcjk+Nj5pse67D5Q9LDorCrXxuVSkXKnSWwYb/uoVa/\n3gXmLY/vodzkVLQOdqbvI5VKBQalyAOxmZExODR+IMMDvyWKqsmMisXigZyZ0XHY1quFxtKSuMMn\nAEgOvkLa9TAcmtQnu5obOntbYg+VPKc59/EA7j06Erlzf54jNVX8GpW6PYX4t5TZ4b/CjuaqVCpC\nQkJIT08HIDAwkLp16xb5HABPT0+qVavG119/zcaNGxk0aBDNmzcv9Hkqlco0uMrNzSUtLY3s7Gyu\nXr2ap8Yc4gNP4dCkAdaexqO81V/oRezBoFLXPCjzdjQpF0PweKorADonRxybNiTlYuFXBIs7dhpH\n3/qmiwTU6NOLmAe2U1RNzIEgF8S7ZQAAIABJREFUqj37OCqNGq2dDe49OxJzIIismHgywqNw72G8\nAo9zWz8Ug4HUkFBi9gdSpVlDrKq5AeDWtS2pIaGm84+qtGhM/PGz/3rmKx+v5+gr75pOns2KjSd4\nzielGmwBhKzZarpgReBrM3H0rW86UdzzxZ5EH8j/enHHzhRaF33gODXuy+vRswPR+4JIvxWJ1s4G\nx6YNAOP5MbZ1apB86QYA9l61yE1OMw0ginJ59U8cGjidQwOnc3j4bJzuy1Lrpe5E7T+R7zkxAWcL\nravesy31R70EGH90VevZjrjjxpOEWy59F52tNUdem1uiwZaxfczzngM0fX8CWlsbjo+cmaetDj0z\nisDBxs/ChcVfkBEeWaLBFsC5z39md7/Z7O43m78GL8ClmRd2tdwB8Or7OBH7TuZ7TuTRc4XWefV9\nHN83+wBg6exAvRe7ELozABSFTp+Nx6lxHQA8e7bBkKsv9VUKzda+BgM+M8bg2KwhALZ1PbGpXYPk\nEiwrK047fxfOBScRess4CN32yy06d3LLU9OogQP/nIwnLt74o23/gSiqV7OmShULtv1yi9VrjfvG\nuPgsfvktjCd6PvrMG8CC+R/Rzv8p2vk/RddOfWjj3xwv7zoAjBg5kB2//5nvOadOnqNTp7a4ubkC\n8Oxzvbhx4xZxcQmMHDmQWXOMMy1ubq4Mf70/W3789aGyVdS+/m/tN1EUWn40FQcf48EN9+7tUHJz\nSb1yE3vvWjSZPQa1pXEQXv0p4+xXQcrje0hjY0WD8a+ZzjOqNeg549VyixggxAfeyeBpzFC9Ty9i\nDzz4e6PwmtgDQVR/pluenLEHAskIu43GzgaHpsa+fff7J/XydTTWVjQY//q9nAOfLzanOffxcPd3\nRd738mHaUzw6BUOF/q+iMPs8q0aj4e2332bIkCGo1Wpq1arFxIkT2bFjR5HPc3Z2ZtiwYQwePBi9\nXk+NGjXo3bvgI1MAfn5+rFixAk9PT4YMGUK/fv3w9PQscolhWclJSObios9osmgiKp2WzPBILsxf\niX0jLxpOHcPxYRMLrSnOuWnLqD9hJNVfeALUKm58vZWUCyFFZjm/4HOavj8BtU5LRlgUwfNXYd+o\nHj7TxxA4ZFKhNWA8adW6hgf+G1eg1mkJ//lPEk+eN2aZ9RE+00ZTZ/hLGLJzODfjQ1AUUq/c4OKy\ntTRbOgmVVkNuShpnZ3xoymRTsxpRF8snc1nLTkgmeMEX+C0Zj0qrJSM8krNzPwPAwacejWe8QcCg\nKUXWhW3bjU0Nd9p/vwyVVkvYz3+RcNJ4kYRTkz+g0YRhqC10KLl6zi9ZS0a4cXbDplY1Mkow2Coo\n8+n5q2m19F3UOi1pYVGcnvMFAI4+dWk6cySHBk4vsu78R9/TdPrrdN68FEVRiNp3guubduHk1wD3\nzq1IvRlB+6/mmLZ5ceWPxAYUvnTPXO+5Y7OGVO3UmrSbEbRes9C0vauf3bu88aPKik8hcPZXdFzx\npvGfeAiL5tiMtQA4Na5Dmzmvsbvf7CLrLny1g7aLRvHktoWgUhH85S/EBxvPAQiY+iVt5gw3/s0x\niRx679NSZzRnnzozZTkN3huGSqvFkJND8OxPyIqJLypOiTg7WzJ7hi9TZ5wiJ0fBs4YNc2f7cv5C\nEguXBPPDhg60ae3CoIF1Gf1mEDqdCgcHHSuWGmd3hg2ux5z5Z+k38DAKCiNf96ZJ49Kd+1YSMTFx\njB41ie83fYGFhY7r124y4jXj4Klly6Z8/uVS2vk/xf59R/n4o9Xs+vNHsrNzSIhP5JWXjFdvXb7s\nc7765iOC/vkDlUrFogUfc+LEoy11hYrZ1+/mMud+8+ysT2k8fRRqnZas2EROTVoBwO2dB7Hx9KDd\nhsUoej2p18IIXri6wIzl8T0Ud/QUYVv/Q+s1C0ClNl6+ffGXRT4nJyGZCws/w/f9icYM4VGcv/N7\no9G00QQNnVRoDUD4z39g7elOm28/MOb85V7Os1OX0eC94agtjd8/F5euJiM8iozwKG5t/Q+tVhv3\nV2khoVxcUnxOc7anTU2PfKtmHqY9hfi3qBSlsJXz4kH7OrxU3hGK1PXINv5ul//y1BVN94CtlSbn\nbv9+5R2jWL0CN7Ojdf5LLFc0Tx//odK875v9hpV3jCL1O70eoMK3Z/eArSTHlfwCL+XFweVTbCzr\nlHeMYqVn3ag0fb2y7Dsreh8CYz/a0/7l8o5RpG5HfwIqxz5Jz/flHaNYGgYWX1RBeNo/+j9pYU7/\n396dR0VV/38cf84AIrIoguKCqCCWZmqItlhaaibW91uSkJio5bGs1COKOyaikmuYWG5pKqdUTDjH\nXMq00lJzaaOfkQsGilruIYsoML8/PMwXZEBGm9B6Pc7xnLoz87nvz713PnPf9/O+l8zLX9z8TX8D\n3UkoIiIiIiJWK9IfPq6Uf8zf4RIREREREbnTKOESERERERGxEZUUioiIiIiI1e6kJwHeyTTDJSIi\nIiIiYiOa4RIREREREQGuXLnC6NGjOX/+PM7OzsycOZPatWuXes/y5cvZuHEjBoOBIUOG8OSTT1bY\nphIuERERERGxWpHpn/eUwtWrV9O8eXOGDRvGpk2beO+994iKijK/npWVxapVq9i6dSt5eXk899xz\nN024VFIoIiIiIiICfPfddzz22GMAdOrUiT179pR63cnJiQYNGpCXl0deXh4Gg+GmbWqGS0RERERE\n/nXWrVvHypUrSy3z8PDA1dUVAGdnZy5fvlzmc/Xr1+fpp5+msLCQV1999abrUcIlIiIiIiL/OiEh\nIYSEhJRaNnToUHJycgDIycnBzc2t1Os7d+7kzJkzbN++HYBBgwYREBBA69aty12PSgpFRERERMRq\nJoru6H+3IiAggB07dgDXk6t27dqVer1mzZpUr16datWq4ejoiKurK1lZWRW2qRkuERERERERICws\njLFjxxIWFoaDgwNz584F4IMPPsDHx4euXbuye/duQkNDMRqNBAQE0LFjxwrbVMIlIiIiIiLC9Ydi\nzJ8/v8zyl156yfzfw4cPZ/jw4ZVuUwmXiIiIiIhYzcQ/77HwtqB7uERERERERGzEYDKZTFUdhIiI\niIiI3F3quLSv6hAqdDZ7f1WHAKikUEREREREbkGR6daeBPhvo5JCERERERERG1HCJSIiIiIiYiMq\nKRQREREREavd6h8X/rfRDJeIiIiIiIiNKOESERERERGxEZUUioiIiIiI1Uwm/eHjytAMl4iIiIiI\niI0o4bpDxcfHs3r16jLLhw4dWmbZ6tWriY+PL7M8KSmJOXPmlFoWERHB1atXy11vx44dKx1jly5d\nyM/PL7Vs586drF27tsx7Q0NDyczMLLctS7HejnHjxrFz585Sy86ePUt0dHSZ986ZM4ekpKRKtftX\nx3mjvXv3EhERUWb59OnTOXXqVKllaWlphIeH39b6wsPDSUtLu6027nRLliwhJSWlqsOwOUv7srzj\n6XYlJSWxffv2v7zdW1U8vpSMa+TIkTz//PMcPnyY8PBw+vTpw59//mlVu5bG25vFcDs+//xz/vjj\nj9tq425k63HVVvLz8+nSpUtVh/GXyczMJDQ0tKrDqJRDhw6xf//1P2hr6VzkTrN//35+/fXXqg5D\nqpBKCu8yCxYsuK3Px8XF/UWRWNapUyebtn876tSpYzHhuhtMnDixqkO4a73yyitVHcI/TnBwcFWH\nYFHJuHbv3s23337LqVOnyMnJqfRFlZJud7y11qpVq4iOjsbLy+tvXa/I3Wbr1q14enrSvn37qg6l\nUtavX0/Pnj259957qzoUqSJKuKxw7do1xo8fT2ZmJoWFhbz00kusXr2apk2b8ttvv2EymYiLi6NO\nnTrMnTuXAwcOUFRUxMCBAwkKCiI8PJx7772XI0eOkJ2dzTvvvEPDhg3LXd+2bdvYsmULV65cISoq\nitatW9OxY0d27drFgQMHiI2Nxc3NDTs7O9q2bWuxjZ9++omXX36ZCxcuEBYWxuLFi9myZQu///47\n48aNw97enoYNG3Ly5EkSEhK4evUqo0aN4tSpU9SqVYv58+fj4OBQboxvvvkmJ0+exMPDg5kzZ7J5\n82aOHTtGZGQkcXFxfP3119SrV4+LFy9WahsvX76cTZs2YW9vT2BgICNHjqRHjx5s2bKFCxcu0Llz\nZ3bv3o2zszMvvPACycnJ5bb10UcfsWzZMgoLC5k+fTp2dnaMHDmSxMREPvvsMxYuXEjt2rW5du0a\nvr6+Ftu4cuUK48eP59SpU1y7do2nnnqq3FhHjx7Nd999x8yZM7G3t8fJyYl33nkHR0dHJk+eTEZG\nBkVFRYwYMYIHH3yw3LgzMjIYNGgQFy9eJCwsjJCQEMLDw4mOjsbV1ZXIyEhMJhN16tQpt42hQ4fS\nv39/OnTowM8//0x8fDxubm6ljt2ePXua3x8fH4+npydhYWGkpaURHR1NQkIC//nPfwgMDOTQoUP4\n+vri4eHBgQMHqFatGkuWLOHKlStMnDjRvH+joqK45557LMaUnZ3NxIkTuXz5MmfOnCEoKIiNGzey\nefNmDAYDMTExPPzww3h5eTFlyhScnZ3x8PDA0dGRGTNmWGwzPj6eY8eOcf78ebKysoiKiiIwMJAn\nnngCX19f/Pz8yMrKomfPnnTo0KHUvpw0aRKtWrWyat8US0pKYv369RQVFdGjRw+2b99OXl4e7u7u\nLFiwgI0bN7Jjxw6uXLnC8ePHGTx4MMHBwaSkpFjsW0JCAhs3bsRgMNCzZ0/69+9f4fotjUUA7777\nLufOnSMvL4+333671GfWrVvH6tWrKSoqokuXLgwfPrzcvm3bto2cnBwuXrzIG2+8wVNPPcUzzzxD\nkyZNcHBwwNfXF09PT/r06cPUqVNJSUnh2rVrDBs2jG7dulkc/yrTh4YNGxIbG0tRURFeXl7MmTOH\n6tWrW4zT0vhSfBwfOnSI7OxsXnvtNQoKCjhy5AhdunShUaNG5j65u7sTFxeHnZ0djRo1IiYmhk8+\n+cS8X4cPH05kZCS7du3il19+YerUqdjZ2eHo6MjUqVNp0KCBVWNcye0XExNT5ntz+vRpUlNTGTt2\nLLNnz2bs2LEkJiYC12fP3n77bZKTk/nhhx/Izc1l+vTpTJgwgXr16nHixAnuv/9+pkyZUul9Wq1a\nNRYsWIDJZOK+++5jypQpbN26lQ8//JCCggIMBgMLFiygdu3aFfbrr3Ljb5W3tzfz5s3D0dGRWrVq\nERsbS2pqKmvWrDFfOCz+PRw3bhyXLl3i0qVLLF68mJo1a9oszpycHCIjI8nKysLHxweAffv2mbdl\nTk4Oc+fOZd++faSnpzN27FgKCwt57rnn+Pjjj3F0dLRJXMHBwSxduhQ3NzcefPBBEhISuO++++jV\nqxfPPfeceZwtHl9Onz7NpEmTyM/PNx/TxQoLCxk3bhz+/v5/6QWrpKQkvvzyS65cucLZs2fp378/\n27dv58iRI4wZM4bc3FxWrlxJtWrVaNKkifk7eeNY2rFjR5KTk3FwcOC+++4DIDo62jzDvGDBglLH\nwK2ut6LPdOvWjS1btrBixQqMRiPt2rUjMjKS+Ph4MjMzOX/+PKdOnWL8+PG4u7vz9ddfc/DgQZo1\na0ZISAi7du0Crlcd9enTh5MnT950fXeqIj0WvlKUcFlh7dq11K5dmzlz5pCdnU1wcDDVqlXj+eef\nJyYmhg8//JDFixfz2GOPkZmZyerVq8nPzyc0NNRcqte6dWsmTpxIXFwcmzZtqnAwa9iwITExMeYv\nXMnkYsqUKcyfP5+mTZsyefLkctuwt7dn2bJlnDx5stS6Zs2axZAhQ+jcuTOJiYmcPHkSgNzcXCIi\nIvD29iY8PJzU1FRat25dbvthYWG0bduWWbNmkZiYiIuLCwA///wz+/fv5+OPPyY3N5fu3bvfdPtm\nZGSwd+9e1qxZg729PcOGDWPnzp0EBgby448/kpGRgb+/P3v27MHZ2fmm5Y8BAQG88sor7Nixg9mz\nZzNu3Djg+onejBkzSEpKolatWhXugzVr1tCwYUPi4uJIT0/nq6++4vLlyxw6dIgtW7aUivXLL79k\n3759BAUFMWDAAL744guysrL46quvcHd3JzY2losXL9KvXz82bdpU7jqvXbvGwoULKSoq4tlnn6Vr\n167m1xYtWsQzzzxDaGgomzdvtlh2ChASEkJycjIdOnQgKSmJTp06cfz48VLH7kMPPVTh9oPrJxfP\nPPMMkydPpkePHowfP56IiAj69evH0aNH2bhxIw899BB9+/YlPT2d8ePHlxtTRkYGTz/9NN27d+eP\nP/4gPDycli1bcuDAAdq0acPevXuZMGECISEhzJo1C39/f+Li4m5aYlW9enVWrVrFkSNHGDVqFBs2\nbOD06dMkJSXh7u5u3u+W9mVqaqpV+6YkNzc33n33Xd577z3zj+6gQYP4+eefgesJ5rJly0hPT2fI\nkCEEBwczefLkMn07evQomzdv5qOPPgLgpZde4tFHHy33IgCUPxb17t2bZ599lvj4eD799FPzd/f8\n+fMsXbqUDRs24OjoyNy5c8nJycHZ2dli+3l5eXzwwQdcuHCBkJAQunbtSm5uLq+//jotW7Y0lzBv\n27aNixcv8vHHH/Pnn3/ywQcf4ODgYHH8c3Nzq1Qf3nnnHfz8/Fi3bh1paWnmE6qSbja+REdH8/nn\nn7Nw4UIyMzMZOHAgjRo1YtmyZeY+GY1GEhMT8fDwYN68eSQnJ2Nvb4+bmxsLFy4s1V5UVBTTp0+n\nRYsWbNu2jRkzZjB48GCrxriS22/27NkWvzctWrQgOjq6wotcvr6+REVFkZmZSXp6OsuWLcPJyYlu\n3bpx9uzZci/ElNynvXr1wmAwkJycjIeHB0uXLuX3338nPT2dJUuW4OTkxJtvvsk333zDf//73wr7\n9Vcp+Vs1ePBg8vPzWb16NV5eXqxcuZKFCxfy+OOPl/v5hx56iIEDB9o8zjVr1tC8eXMiIiL46aef\n2Lt3L0eOHGH27Nl4eXmxaNEiPv30U8LDwwkODiYyMpKvv/6aBx980GbJFlwvqytO/r29vdm9ezeO\njo74+Pjw6aeflhlf5s+fT3h4OJ07d2bPnj3MmTOHiIgICgoKiIyMJDAwkBdffPEvjzMnJ8d8sXLF\nihUkJiayd+9eVqxYQVpaGsnJybi4uBAbG8vatWupUaOGxbG0V69eeHp6mse4559/nsDAQMaNG8eu\nXbtKXVC81fWW95lVq1YRGBhIfHw869evx8nJidGjR5uTqGrVqvH++++za9culi9fzrJly3jsscfo\n2bMnDRo0sHrbrFq16o5OuKRylHBZIS0tjUceeQQAFxcX/Pz82LVrl/nENSAggC+++AIvLy8OHjxo\nvr+moKDAnNC0bNkSgHr16nHu3LkK11c8Ve7v78/Zs2dLvXbu3DmaNm1qXu/x48ctttGyZUsMBgN1\n6tThypUrpfrywAMPANCuXTs++eQTAGrWrIm3tzcAnp6e5OXllRufg4ODeWYtICCAXbt2cf/99wOQ\nnp5Oq1atMBqNuLi40Lx58wr7CpCamsrjjz9uPtkIDAzkyJEjdO/enR07dpCZmUlERATbt2/HaDTS\nu3fvCtsLDAwE4IEHHmDWrFnm5RcuXKBmzZq4u7ubXy/PsWPHzGWSTZo0wc3NjXPnznHs2DHatGlT\nJtYhQ4awaNEiBgwYgJeXF61bt+bw4cN899135vuICgoKuHDhQrlXjtu2bUu1atUA8PPzK3VfSHp6\nurnGPiAgoNzk5rHHHmP27NlcunTJPNPw6KOPAv87dk+cOFHh9itWfMLr5uaGn5+f+b/z8/M5fPgw\n3377LVu2bAGo8B4ZT09PVq5cydatW3FxcaGgoIDQ0FCSk5M5e/YsXbp0wd7enjNnzuDv7w9cPzY3\nb95cYXzF3z9/f3/zd8rd3d28f4vduC8HDhxIdHS0VfumpKZNm2I0GnFwcGDkyJHUqFGD33//nYKC\nAgBz6Uj9+vXN901a6tvhw4c5deqU+WTxzz//JCMjo8KEq7yxqFWrVsD1bV1yfDlx4gT+/v7m2aLI\nyMgK+9a+fXuMRiOenp64ublx4cIFc59L+u2338xjQM2aNRkxYgRLly61OP7dmHBZ6sMXX3xhPsZC\nQkLKje9WxpeSfXJyciIjI4MRI0YA12eyH3nkERo3blymj3B9v7Vo0cLczty5c28phuK2rfneAJhM\npjJtAPj4+JgvctWpU6fC+1hK9t/Z2ZmrV6/i4eEBwODBgwHw8PBg7NixODs7c+zYsXIrJ2yh5G/V\n6dOn8fHxMZdWtm/fnrfffrtMwlXedrGl9PR0OnfuDECbNm2wt7fHy8uL6dOnU6NGDf744w8CAgJw\ncXGhffv2fPPNNyQlJfH666/bNK7u3buzaNEi6tevT0REBAkJCZhMJp566ilmzpxZZnw5fPgwixcv\n5v3338dkMmFvf/108NChQ7i4uJCbm2uTOIu/R66urvj5+WEwGKhZsyZ5eXk0a9bMfDwXb7s2bdpY\nHEtvVHLsK3muczvrLe8z+fn5HD9+nAsXLpgv2Obk5JjPw4o/V69evQrvmYfSx3BF65O7nx6aYQU/\nPz8OHDgAXL96ffjwYby9vfm///s/AL7//nuaNWuGr6+veUp/5cqVBAUF0ahRI6vXV3wSeOjQoTJX\nRby8vMw3yBdfUbfEYDBYXN68eXN++OEH4Hopx83eb8m1a9dITU0F4MCBA+YTSYBmzZqRkpJCUVER\nubm5HD169KbttWjRgpSUFAoKCjCZTOzfv5+mTZvSsWNH9u/fz8WLF+ncuTMHDx7k119/rXDmDf63\n/W6MzcPDg6ysLPNJZEXbz8/Pz/z6iRMnzGVavr6+FmPdsGEDvXr1IiEhAX9/fxITE/H19eXpp58m\nISGBpUuX0qNHD2rVqlXuOn/55RcKCgrIzc0lLS3NXLZSHE/xfqsobqPRSI8ePYiOjqZbt274+/tb\nPHaLOTo6mpP6gwcPlmqromPC19eXgQMHkpCQwLx58yq8Gr58+XLatm3LnDlz6NGjByaTiYcffpjU\n1FTWr19vPsGuV6+e+XgpeWyWpzjew4cPm0/QjMayQ9uN+3LUqFFW75uSjEYjv/76K9u2bWPevHlM\nmjSJoqIi8w+ope1mqW++vr40a9aMVatWkZCQQHBwcLllmSX7UtH+vJGPjw/Hjh0z//gPHz68wpnD\n4m167tw5srOzzSfmN25XX19f8za9fPkygwYNqvT4V14f0tPTgesPO/n8888txncr40vJPuXn5+Pj\n48N7771HQkICQ4YMMSfulo6dunXrmm94379/P02aNLmlGIrbLu97YzAYMJlMODo6cv78eQoLC8nK\nyip10aVkfNaM1yX7f+3aNQAuXboEwLRp09i3bx/z588nLi6OadOm4ejoWOpk0NZK9sXd3Z3s7GzO\nnDkDXC/Za9KkSalx6uTJk6USVWu2xe3w8/Pjxx9/BP43Vk+aNInY2FhmzJhB3bp1zdstNDSUdevW\ncf78eZvfu9O8eXNOnDhBSkoKnTt3Jjc3l+3bt5c7vvj6+hIZGUlCQgJTpkyhR48ewPULbEuWLGHD\nhg02echDefvJYDCQlpZmTvT27dtnTqItfcZgMFBUVFTq//+O9Rbz9vamfv36LF++nISEBPr162e+\nQFFevMXHRUFBATk5OVy9erXUuPF3HcN/NZOp6I7+d6fQDJcVQkNDmTRpEmFhYeTn5zN06FCSkpJI\nTk5mxYoVODk5MWvWLGrVqsW+ffvo27cvubm5dOvWzXz1xBqZmZn079+fq1evEhMTU+q1mJgYxowZ\ng4uLC87OzlbXrEdGRjJhwgSWL1+Oq6ur+eqWNRwcHEhISCAjI4MGDRowatQo80xZixYt6NSpE717\n96Zu3brmE7aKNG7cmICAAMLCwigqKqJdu3Z069YNg8FAvXr1aNCgAUajkaZNm1ZqBuKnn36if//+\nGAwGYmNjzYOdvb09b775JoMGDaJmzZoV9r1Pnz5MmDCBfv36me8zuXjxIvfccw9BQUFlYk1JSSEq\nKgonJyeMRiMxMTF4eXkRFRVFv379yM7Opm/fvhZP6oo5OjoyePBgsrKyGDZsWKkE4LXXXmP06NFs\n3ry5whNsuF5i0a1bNz777DPq1q1b5tgtuU+CgoIYMWIE+/fvt1jCVZ4hQ4YwceJEEhMTyc7OrvCp\nbk888QTTpk1j8+bNuLq6YmdnZ74vbvfu3ebEcvLkyUyYMIEaNWrg4OBw0wcIpKamMmDAAPLy8krd\nh3CjG/flhAkTuOeee6zaNzdq3LgxTk5O9OnTB7g+y1B8kmiJpb7de++9PPzww4SFhXH16lVat259\n0z6XNxaVp3bt2gwePJh+/fphMBh44oknKlzHuXPnGDBgAJcvX2by5MnY2dlZfF/Xrl3Zs2cPYWFh\nFBYW8sYbb9CpU6dKjX+W+uDn58eECRMwGo3UqVOn3BKxWxlfbuyT0WjklVdewWQy4ezszKxZszh9\n+rTFz06bNo2pU6diMpmws7MjNjaWRo0aWR1DsfK+Nw888ABjxoxh+fLldOzYkd69e9OoUSMaN25c\n6bYr23+TycSrr76K0WikZcuWtG/fnoCAAF544QVzaWVFx7ItGQwGpk2bxrBhw8xX+d966y3c3Nxw\ndXUlJCQEPz+/m46BthAWFsaYMWMICwvD19cXBwcHnnzySV588UWcnJzw9PQ0b7c2bdqQkZFhk9I8\nSzp06EBmZiZGo5H27dtz9OjRcseXsWPHEh0dTX5+vvle3GLVq1dn8uTJjB07lnXr1pkrLmzJzs6O\nYcOG0b9/f4xGIz4+PkRGRpZb4t2qVStmzZplnhH/u9ZbrHbt2gwcOJDw8HAKCwtp2LChxXtVi7Vp\n04Y5c+bg7e1N//79eeGFF/D29q6wxFD+WQymv/MS1j9Q8cMMbvdL/3fbsGEDbdq0oXHjxqxbt47v\nv/+et956q6rDEuHDDz8/kZgcAAADwklEQVQkKCiI2rVrExcXh4ODQ7mJXMmHfdwNrOlbVUlKSjI/\n+Oaf4p/YJ2v82/tfVYqKiggLC2PZsmW3dNFV5G7g5tSyqkOoUFbeL1UdAqAZrio3dOjQMvX7Li4u\nZW7a/qsV13kXz8TExsZafF9KSgqzZ88uszwoKIi+ffvaNMabuXr1KoMGDSqzvGnTpmVmBO80CxYs\nYO/evWWWF185/zfz8PDg5ZdfpkaNGri6ujJjxoxyvyfF90TeLSz1rapER0db/BtsFV2l/butXbuW\njRs3llk+cuTICu+9rCp38ngpf68TJ04wdOhQgoODlWzJP5qJwqoO4a6gGS4REREREbGaq1PF9xxX\ntct5h6o6BEAPzRAREREREbEZlRSKiIiIiIjV7qQnAd7JNMMlIiIiIiJiI0q4REREREREbEQlhSIi\nIiIiYjUTKimsDM1wiYiIiIiI2IgSLhERERERERtRwiUiIiIiImIjuodLRERERESsZjIVVnUIdwXN\ncImIiIiIiNiIEi4REREREREbUUmhiIiIiIhYzWTSY+ErQzNcIiIiIiIiNqKES0RERERExEZUUigi\nIiIiIlYzoZLCytAMl4iIiIiIiI0o4RIREREREbERlRSKiIiIiIjV9JTCytEMl4iIiIiIiI0o4RIR\nEREREbERlRSKiIiIiIjV9JTCytEMl4iIiIiIiI0o4RIREREREbERlRSKiIiIiIjVTKbCqg7hrqAZ\nLhERERERERtRwiUiIiIiImIjSrhERERERERsRPdwiYiIiIjILdBj4StDM1wiIiIiIiI2ooRLRERE\nRETERlRSKCIiIiIiVjOZVFJYGZrhEhERERERsRElXCIiIiIiIjaikkIREREREbGaSU8prBTNcImI\niIiIiNiIEi4REREREREbUUmhiIiIiIjcApUUVoZmuERERERERGxECZeIiIiIiIiNqKRQRERERESs\npz98XCma4RIREREREbERJVwiIiIiIiI2ooRLRERERETERnQPl4iIiIiIWM2kx8JXima4RERERERE\nbEQJl4iIiIiIiI2opFBERERERG6BSgorQzNcIiIiIiIiNqKES0RERERExEZUUigiIiIiItYzmao6\ngruCZrhERERERERsRAmXiIiIiIiIjaikUERERERErGZCJYWVoRkuERERERERG1HCJSIiIiIiYiMG\nk0mPFxEREREREbEFzXCJiIiIiIjYiBIuERERERERG1HCJSIiIiIiYiNKuERERERERGxECZeIiIiI\niIiNKOESERERERGxkf8HmZWqmR+I/yUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAEeCAYAAAAjC0L/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VFX+//H3TCYJqUASCDVAQkAQAUNRlwWU4gK63xWQ\nEiDAyqKI4EqRXkIxIlUFREVQyFcRUNgfolgABUW6AgpIldBrAiG9zPz+yGYgpNwkkEnC9/V8PObx\nSGbO3Pu55945cz/3nHPHZLPZbAIAAACAPJiLOwAAAAAAJR+JAwAAAABDJA4AAAAADJE4AAAAADBE\n4gAAAADAEIkDAAAAAEOW4g4AAAAA+L8iXR8X+D1O6l0EkRQcPQ4AAAAADNHjAAAAADiI1Zpe4Pc4\nlZBL/SQOAAAAgIPYbGnFHUKhkTgAAAAADmKzFbzHoaQgcQAAAAAcxEqPAwAAAAAjDFUCAAAAYIjE\nAQAAAIAhm5XEAQAAAIARehwAAAAAGGGoEgAAAABj1tTijqDQSBwAAAAAB6HHAQAAAIAxJkcDAAAA\nMETiAAAAAMAQQ5UAAAAAGDHR4wAAAADAUClOHMzFHQAAAACAko8eBwAAAMBRSnGPA4kDAAAA4CAm\nJkcDAAAAMGRNL+4ICo3EAQAAAHAQ7qoEAAAAwBg9DgAAAAAMFUGPg9VqVXh4uI4cOSIXFxdNnz5d\nNWrUsL++bt06ffjhhzKbzeratat69epVqPWQOAAAAAAOYiqCHoeNGzcqJSVFK1eu1L59+zRjxgwt\nWrTI/vrMmTO1fv16ubu766mnntJTTz2lsmXLFng9JA4AAACAoxRB4rB37161bNlSktS4cWP9/vvv\nWV6vW7eubt68KYvFIpvNJpPJVKj1kDgAAAAADlIUPQ5xcXHy9PS0/+/k5KS0tDRZLBmn+sHBwera\ntavc3NzUvn17eXt7F2o9/HI0AAAA4CjW9II/DHh6eio+Pv7WKqxWe9Lwxx9/6IcfftCmTZu0efNm\nRUdHa8OGDYUKncQBAAAAcBCTNb3ADyMhISHaunWrJGnfvn2qU6eO/TUvLy+VKVNGrq6ucnJyko+P\nj2JjYwsVO0OVAAAAAEcpgqFK7du317Zt29SzZ0/ZbDZFREToiy++UEJCgnr06KEePXqoV69ecnZ2\nVkBAgDp37lyo9ZhsNpvtHscOAAAAIAfJ+1oU+D2ujbcVQSQFR48DAAAA4Cj8ABwAAAAAIyartbhD\nKDQSBwAAAMBRSnGPA3dVAgAAAGCIHgcAAADAUUpxjwOJAwAAAOAgJhtzHAAAAAAYoccBAAAAgCHu\nqgQAAADAEIkDAAAAACMmhioBAAAAMESPAwAAAABDJA4AAAAADJE4AAAAADDEHAcAAAAARkz0OAAA\nAAAwROIAAAAAwBCJAwAAAABDJA4AAAAADFltxR1BoZE4AAAAAI5SinsczMUdAAAAAICSjx4HAAAA\nwFFKcY8DiQMAAADgKMxxAAAAAGDIRo8DAAAAACP0OAAAAAAwROIAAAAAwBCJAwAAAAAjpXiKA4kD\nAAAA4DD0OAAAAAAwRI8DAAAAAEMkDgAAAAAMld6RSiQOAAAAgKPYrKbiDqHQSBwAAAAAR2GoEgAA\nAABD9DgAAAAAMMJQJQAAAADGSnHiYC7uAAAAAACUfPQ4AAAAAI5iK709DiQOAAAAgIMwxwEAAACA\nMWvpnSlA4gAAAAA4Cj0OAAAAAIzYmOMAAAAAwBBDlQAAAAAYYXI0AAAAAGMkDgAAAACMFMUcB6vV\nqvDwcB05ckQuLi6aPn26atSoka3cxIkTVbZsWY0cObJQ6ym9g6wAAACA0sZqLvjDwMaNG5WSkqKV\nK1dqxIgRmjFjRrYyn376qY4ePXpXoZM4AAAAAA5is5oK/DCyd+9etWzZUpLUuHFj/f7771le/+WX\nX7R//3716NHjrmIncQAAAAAcxGYzFfhhJC4uTp6envb/nZyclJaWJkm6fPmyFi5cqEmTJt117Mxx\nAAAAABylCG7H6unpqfj4+FursFplsWSc5n/99deKiYnR888/rytXrigpKUmBgYHq0qVLgddD4gAA\nAAA4SFHcjjUkJETff/+9OnXqpH379qlOnTr21/r27au+fftKktasWaOTJ08WKmmQSBwAAAAAhymK\nuyq1b99e27ZtU8+ePWWz2RQREaEvvvhCCQkJdz2v4XYmm81mu2dLAwAAAJCr2OE1C/we77mn7nkc\nhUGPAwAAAOAgpfmXo7mrEgAAAABD9DgAAAAADlIUcxwchcQBAAAAcJQiuB2ro5A4AAAAAA5Smuc4\nkDgAAAAADsJQJQAAAACG6HEAAAAAYMhmY44DAAAAACP0OAAAAAAwwhwHAAAAAIaY4wAAAADAEHMc\nAAAAABiixwEAAACAIeY4AAAAADBE4gAAAADAEEOVAAAAABhicjQAAAAAQ6W5x6H0pjwAAAAAHIYe\nBwAAAMBBmBwNAAAAwBCJAwAAAABDpXmOA4kDAAAA4CD0OAAAAAAwxO1YAQAAABiy0uMAAAAAwAhz\nHAAAAAAYYo4DAAAAAEMkDgAAAAAMkTgAAAAAMGTlrkq5S9fHRb2Ku+ak3iU+ztIQo1S64tzQLLS4\nwzDUcfeKUlOfXzbtVdxhGHpqzyclvj6d1FuS9G3zHsUcSd6e3LVSmx97trjDMNRm+2el5rO+6dFu\nxR2GobY7VmtLiy7FHYah1tvW6HSP5sUdhqGAlbuUMsejuMPIk8uI+BLfHkkZbVJpweRoAAAAAIYY\nqgQAAADAEIkDAAAAAEP8ABwAAAAAQ6W5x6H0TusGAAAA4DD0OAAAAAAOUpp7HEgcAAAAAAdhjgMA\nAAAAQ/Q4AAAAADBE4gAAAADAEEOVAAAAABiixwEAAACAIRIHAAAAAIYYqgQAAADAED0ODmKz2TR+\n7DrVDq6g5wb8pbjDyRVx3lvFFWeFFg+rzks9ZXax6Oax0/p9+vtKi0/Mdzmzq7MeHPWcytYPlMxm\n3fj9uA7OXCprcqp8mtTXA6/0kcnJSak3burw3OW6eex0kW9Tce7zii0aq+6QzHo6owPTcq7P3MpZ\nPNzUcNLz8qxZRTKZdPbLH3Vy2ReSJN8m9fXAv3vJbHFSenKKDs5erhsHTxT5NhVXffq1eFjBg0Nl\ndnHWzeOndXD6u0rPoS6NyrlW9NUjS6dre+9RSr1xU5LkXS9IdYf3k5Obq0xms04t/3+68PVPBY7R\n9y8hCnqxt0zOFsWfOK3Dr72j9ITEApVxreirph9EaFfYSHt8XvWCFPzKP+VUxlUmJ7OiIv+jS9/8\nWOD4bldSP+u+fwlR0OBeMjs7K+54lA6/tijnOsypjNmsOv/uJ59HGsnk5KTTn6zTubXfZXlv5aef\nUIXHm+vAyDfsz5VrXE+1h/SR2dVFaXEJOjRtoZLOX853Xfo81kS1BvWW2cVZ8cejdOT1hdlizq2M\n2cVFtUcMlFe92jKZTYo9eEzH5yyWNSVF7jWrqc6oF+XkXkY2m01/Lvpfxezal++48lLm4RYqFzpY\nJmcXpZ4+rmvvTpctMT5LGfe/dpD3/4RJNptsyUmK+WiOUk4elsnNQ76DJshStaZMJpPitnylm+uW\n35O47mSq9Tc5tZwqk5OLbFd+V9q3g6WUmzmXrf20LB0WK3VB5f9uZHk5tXtT5goNZUtNkPVgpKy/\nvntX8dx1O2Q2qe4rfeX3aMYxeurjL3R2zUZJkketqqo/9nk5uZeRbDYdW7hC13bsV82+/1ClJ2+1\ntS7lvGVxL6PNbf55V9viaKW5x8Fc3AHk14kTV/Rcv0h9veFgcYeSJ+K8t4orTpdyXnpo0gv6dfQ8\n/fjsCCWeu6w6Q0ILVC7on51lcjLrp15j9FPoKJldXRTU/x+yeLgpZOYwHXn7Y23rNVoHZyxV49f/\nLbNz0ebxxbnPXcp5qeHkF7R31Jva0nWkEs5d0gNDehaoXJ0XuynpUrS29hitbX0nqkbXdir3ULBM\nFic9/PpQ/fbaYv3Ya6yOL/mPGk99sci3qbjq07mclxpMfFH7x8zVtm7DlHjukuq81KvA5Sp3aqXm\n74erTEWfLO9r9MZwnXh/tXb0Ga1fXnlddV/pK/fqlQoYo7fqjX9Jv42dpZ09/63Ec5cUNLh3gcpU\n6thaIe9Ok2sF3yzveyhipP78YKV293tV+4e9puCX+8utWsHiu11J/aw7l/NW/QmD9dvY2drR499K\nPH9JtV/KXoe5lanauZ3cqlfSzt7Dtfu5Mare4yl5168tSbJ4e6ruqIGqO+I5mXTrBMa1go8avvGq\njsz6QLvCXtWV73fqgVcH5rsunct5q+74ITo0fpZ2hw5V4vlLqvViWL7LBPTrKpOTk/b2G649fYfL\nydVFAX27SJKCRzyvi19u0t7+I3Q0YqHqTxshOd39KYzZq5x8X5yoq3PH6MKwbkq7dE7ler2UpYyl\ncoDK93lZlyNe1sXRfXRjzVL5jchItsr1GKS06Mu6ODJUF8f1l1f7LnIJfuiu48rGzU+WDu8pbV0v\npX74sGw3Tsmp5dScy5YLkqVVhGS6VT9Oj78hpcQr9aMmSvvkcZlrPilTYIdCh3Mv2qHqndvLvXpl\n/Rw6Ujv6j1ONnp3kXT9IklRv1ACd++J77egzWgenvauGEa/I5JRxIWNHn9Ha0We09gyaovSkJB0Y\n/1aht6O42GQq8KOkKDWJw4qP96hzl8bq0PHB4g4lT8R5bxVXnH6PNtSNQyeVcOaiJOn059+pSocW\nBSoX8+thHV+6VrLZJKtNsUdOqUylCnIPqKzUuERd251xwhkfdV5p8Ykq91BwkW5Tce7zO+sp6rON\nqtLRuD5vL3do9nIdfutjSZKrXzmZXSxKi0uQLS1dmzoOUeyRKEmSe9WKSr0eV+TbVFz16ftII904\ndMJeR2c+/06VOvy1QOVc/cqrYutm+mXYjCzvMbs46+QHnyl692+SpOTL0Uq5flOuFbOevBvxad5I\nsYePK/FsxrrPrflGlf7WMt9lXPzKy69Vc+0fHpEtvj+XrlZMZnxXopV6I7bA8d2upH7WfR5pqNjD\nJ5R4JrN+vs1eh3mUqdD6EV1Y/71s6Val3YzXpY3bVKlDxmv+bR9TyrUYHZsfmWV5Fds8qqvbf9XN\nI39mLO8/3+nomx/moxYzlG/eWDcPH1fi2QuSpPNrv5b/ky3zXebG/kM6vWz1f+vRqrijf8q1UgVJ\nksnJLIuXpyTJyd1N1pTUfMeVlzKNHlHKiUNKu3hGknTzu8/l8desJ9S2tFRde+81Wa9fkySlnDws\np3K+kpNFMR/N0fXItzPiKucnk7OLrAn3vv0x12gr28W90vWMntT0/Ytlrtcje0GLmyydlihty5gs\nT5v8H5b10ArJZpWsqbL++bXMwZ0LHc+9aIcqPt5M59f/YD9GL373syp3zDgWTE5mOf93f1s83GRN\nTsm27Dr/DtPVn/fp6vZ70/PkSDabqcAPI1arVZMmTVKPHj0UFhamqKioLK9v3rxZXbt2VY8ePbRq\n1apCx15qhipNmNRRkrRjx5/FHEneiPPeKq44y/j7KunSNfv/SZej5ezpLouHW5YhDHmVu7rzt1vl\nKvmpZmhH/R6xWAmnL8jiXkZ+jzykqzt/U9n6gfIKrCZXv/JFuk3Fuc/d/H2UmI/6NCpnS7eq8dTB\nqtS2uS7+sEdxUeclSbb0dLn4eKvl/0bIuZyXfh07v8i3qViPzcu36ij58jU5e7rLycMtyzCBvMol\nX43R/tFzsi3bmpKqc+u+t/9f9Zm2cnIvoxu/Hy1wjMm3r/vKNVk8PeTk7mYftpJXmZSrMfp97Kwc\n47vwxWb7/1X+0U5ObmUUe/BYgeK7M9aS+FkvU9FPSZeu2v9PvnxNFk/3rHWYR5kyFbPGm3z5mjxr\n15Ak+5Clyk89nmWd7gFVZE1MVoNpr8g9oIqSLl3V0Tc/Mow1k2tFXyVfvi2eHPZ7XmVidu2/tSz/\nCqra42kdfWORJOnYnMVq9PYUVevxdzmX99bhyXOldGu+Y8uNxddfadduDcVKv3ZZZndPmdw87MOV\n0q9cUPqVC/Yy5fu+osQ9W6X0tIwnrOnyHTJF7o+0UcLuH5R2PusJ2z3hXU22m2dv/X/znEyuZSUX\nryzDlZzaz5f1wFLZrvye5e22C7tlrh+q9PPbJSdXmYOfkayFT77uRTuU02fK77/H6OGZS9X0nYmq\nEdpJLj5ldWD8W7Ldtr89AqupYuum+qnzy4XehuJUFEOVNm7cqJSUFK1cuVL79u3TjBkztGhRxucn\nNTVVr7/+uj777DO5ubkpNDRUbdq0kZ+fX4HXk2fiEBYWJpMp541bvrxoxvABJUIux73tzi+qfJTz\nfqCWQmYNV9Sqb3Tlp18lSXtHzFadwT1U9+Xeiv71D13bfVDW1LR7E3tJZM65czNbfeaj3L5J78jp\n9SVqMnOYgv/VRcfe/1ySlBIdq02dhsi7bk09umi8tvU/q/jTF+9N/CWIyZzLF84ddZnfcrmp2fcf\nqtGzo/b++3VZkwt4gpHbfrRaC1YmDzXCnlG17k9p/7DpOV6NzLeS+lnPZf9lrcPcy+S0/7Nt0x1M\nFif5/bWp9g6aqMQzF1Wte0c1nPGqdvV91TheSaZ87NP8lPGsG6gHI0br/OcbFP3zXplcnFVv6gj9\n8dp8Rf+8V14P1lGDN8bq5uHjWZLPQjHlMvDCmp69qGsZ+Q6eLCffiroc8e8sr11bMFnRi2fIb8Qb\nKvvsAN1Yvfju4sq+dsM4zY0GStY0WX9fLnkHZCmWvmWsnFpHyBK2XYq/KGvUZpmrPFL4aO5FO5TT\nMWq1yuzirIavvaLfpy7S1Z9+UdkGwXp4zijdOHTCvr9r9OioM6u/yXEuUmlQFJOj9+7dq5YtM3ps\nGjdurN9/v5U8njhxQgEBASpbtqwkqUmTJtq9e7c6duxY4PXkmThMmTJFkrRw4UK1bdtWTZo00YED\nB/T999/n9TagVAp+4VlVbNVEUkbX6M3jZ+yvuVbwUcqNOKUnJWd5T9KlayrXoHau5Sq3f0z1Rz+n\nQ7M+1IVvfs4oZDIpPTFJuwZNs7+v5arZSjh7f53k1nnhWVVsFSJJcvZwV+yJWxNCy+RWnxevqlyD\noBzL+T3aUDePn1by1etKT0zW+W9+VqU2zWXxcJNvswd16Yc9kqTYI6cUeyxKXrWr3zeJQ9Dz3VSh\nVVNJGcdm3PFbdelawUepudRl2QdrG5a7k8nZogaTBsszsJp2DpiopAtXChxv0sUr8q5/aziOawUf\npcbelPW2deenTG7x1Z8wRO61qmnvwHFKuljw+ErDZz350lWVffCO+rkRl6V+8iqTdOlqlp4N1wo+\nhifZyVdidOO3I/ahT+fXbVbd4c/J7OqSr+Qs6eIVed2+T/18c9zveZWp0LaFgkc+r+NzP9Dl7zIm\nvXsEBsipjKuif94rSbp58KgS/jwjr/p1lHx5u2FceUm7elEutW8NN3TyqaD0uBuyJSdlKefk668K\no+cq9dyfujxlsGypGfGWafSoUk8fV3rMVdmSE5Ww7Ru5P9LmrmLK0c2zMlVudut/zyqyJUZLaQn2\np8wP9pGc3WUJ2y6Tk3PGsKWw7Upb01kyW5S+dYKUFJNRttlw2a6fLFAI97odSrp4Ta5+5bK8lnz5\nmjyDqsupjIuu/vSLJOnG78cUd/KMyjWorUubr0lmkyq2eUQ7+o4tUPwlSVH0OMTFxcnT09P+v5OT\nk9LS0mSxWBQXFycvLy/7ax4eHoqLK9yQujznOAQGBiowMFBXr15Vp06d5O/vr/bt2+vs2bN5vQ0o\nlY6995m29R6rbb3Havs/J6lcg2D7pNCAru10eeuebO+5uuNAruUqtWmueiP7affQ12+dSEiSzaam\nb46Wd73AjHJtH5E1Ld0hd1VypKPvfaafeo/TT73Hads/J6l8lnpqq0tb9mZ7z5Udv+Varkr7RxT8\nfFdJktnZosrtH9W1PQdls1rVaNILKt+ojiTJM7CqPGpU0fXfi/6uSo6SOVl5R5/R2vXcBJW9rY6q\ndWmf47F5beeBfJW7U6PXh8ni4aZdhUwaJCl6136VbRBsn7RcpfOTurp1d4HL5KTBayPk5OGmvc+P\nL1TSIJWOz/q1nf+tn/+ur2rnJ3Xlx935LnNl625V/vsTGXMDPN3l376FrhjU75Utu1SuYV2VqVxR\nklTx8UcUd+J0vnt0Ynbtl/eDdeRWLeNOPlU6P6lrd8ScVxm/xx9T7WH/0oFhU+1JgyQlnr0gi4e7\nvBvUlSSVqeov95rVFHesYCe+OUk6sFOuwQ1kqVRdkuTZvkvGMKTbmD285R/+nhJ2fa9rb02wJw2S\n5P5oO3k/+6+MfyzOcn+snZJ+N/6cFZT11CaZKjeXymVcWHFq9C9ZT3yZpUzaJ62VtqyZ0iIfU+qa\nLlJaotIiH5PiL8qp0b/k9JcJ/w26opwe6i/r4ZUFiuFet0OXt+5R1duO0Urt/6LLP+xWwpmLsni6\nq+xDGW26W1V/edSsqtgjpyRJXkEBSouNL3T7VBIUxRwHT09PxcffuhuY1WqVxWLJ8bX4+PgsiURB\n5HuOw+rVq9WwYUP9+uuvcnZ2LtTKgNIiJSZWv019Vw/PeEVmZ4sSzl7SgfB3JEne9QL10ISB2tZ7\nbJ7l6rzUUyaTSQ9NuHVXkpj9R3Vo5ofaP3GBHho/UCZni5KvxuiXV7OPN7+fpMTEav/U99TkjYw7\nysSfvaT9kzPGXpatV0sPTRion3qPy7PcoXkf66FxA9Rq5Ruy2Wy69MNe/bnia8lm056Rc1R/eJhM\nFidZU9O0b8ICJV2OLs5NLjIpMbE6OG2RGs0YLpPFosRzF/Vb+EJJGcdm/fEvaEef0XmWy025hnVV\nsVVTxUedV7MPbt2x5diCT3Rtx/483plVakysDk9fqAYRI2V2tijx3CUdmjpfXg8E6YGxg7S736u5\nlslL2YZ1VaFlM8VHnVOT96bbnz/xzv8qemf+47tdSf2sp8bE6tC0d/RQxIiM+jl7SQenLpDXA4Gq\nN+5F7er7aq5lpIyJ0m5VK6l55GyZnS06t/Y7Xf/1UJ7rjDt2Sn/MXKyGb7wqk8VJaTfj9dv4ufmu\ny9TrN3QkYoHqT39VJmeLks5d1B/T3pbnA0GqO2aw9vYfkWsZSao1KOOOUHXHDLYv88aBP3R87mId\nHPeGgl4ZILOLs2xp6To6810lnbuU79hyY42N0bVF0+Q3fIZMFovSLp7TtYXhcgmsJ58Xxuvi6D7y\nfLKrnPz85d7scbk3e9z+3svTXlJM5JvyGThGlWavkGw2Je7eopsbPr3ruLJJvKK0bwbJ8vePZXJy\nlu36n0r7eqBM/g/L6cl3MhKEPKTvnC1Lpw9k6ZeRpKVvj5Dt0i+FDudetENnP/9W7lX99djHM2Wy\nWHR27UbF/HpYkrRv1Bw9MKK/fX8fmrFYif/d3+4BlZVYipOGohISEqLvv/9enTp10r59+1SnTh37\na0FBQYqKitL169fl7u6uPXv2aMCAAYVaj8lms9mMCl25ckXvvvuuTp06pdq1a2vQoEEqXz5/EznT\n9XGhAnMkJ/Uu8XGWhhil0hXnhmbZb7lY0nTcvaLU1OeXTbPfiq+keWrPJyW+Pp2UcfL0bfMc7phS\ngjy5a6U2P/ZscYdhqM32z0rNZ33To92KOwxDbXes1pYWXYo7DEOtt63R6R7NizsMQwErdylljkdx\nh5EnlxHxJb49kjLapNLi6+bZb0dupMOuvBNSq9Wq8PBwHT16VDabTRERETp06JASEhLUo0cPbd68\nWQsXLpTNZlPXrl3Vu3fvPJeXmzx7HC5evKhKlSopLi5Offr0kc1mk8lk0vXr1/OdOAAAAADIUBST\no81ms6ZOzfrbHkFBt+YMtmnTRm3a3P38mzwThw8//FBjx47VpEmT7HdXykweuKsSAAAAUDCl+Zej\n80wcxo7NmLEeGRmp6OhonTt3TjVq1JC3t7dDggMAAADuJ0XR4+Ao+Zoc/fnnn2vx4sUKCgrSyZMn\nNXToUHXq1KmoYwMAAADuK3f/04XFJ1+Jw4oVK/T//t//k6urqxISEtSvXz8SBwAAAKCA7vseh3Ll\nytnvBVumTBmGKgEAAACFcN/OcRg+fLhMJpOio6PVpUsXNWrUSIcOHVKZMmUcFR8AAABw37DpPk0c\nevbMfp/Zp59+2v73uXPnVLVq1XsfFQAAAHAfum97HJo3z/vHU8aOHcttWQEAAIB8shr+9HLJla85\nDrnJx49OAwAAAPiv+3aokpHMH4UDAAAAYOy+HaoEAAAA4N4pzQN2GKoEAAAAOIi1FA9VMhek8PXr\n17P8/+ijj97TYAAAAID7mc1mKvCjpMhXj8OuXbs0depUpaenq0OHDqpSpYq6deuml156qajjAwAA\nAO4bpXmOQ756HN566y397//+r/z8/DRo0CCtWLGiqOMCAAAAUIKYbPmYqBAWFqbIyEj17dtXy5cv\nt/8PAAAAIP8+evBfBX5P/4MfFEEkBZevoUoBAQGaM2eOrl+/rvfff19VqlQp6rgAAACA+859P1Rp\nypQpqlKlipo0aSJ3d3dNmzatqOMCAAAA7jvWQjxKinwlDikpKXriiSc0ePBg3bhxQ1euXCnquAAA\nAID7Tmm+q1K+EoeXX35ZBw8e1KxZs+Ts7KxJkyYVdVwAAADAfcdqMxX4UVLkK3FISkpSmzZtdPHi\nRT3//PNKT08v6rgAAACA+46tEI+SIl+To1NTU7Vs2TI9+OCDOn78uBITE4s6LgAAAOC+U5J6EAoq\nXz0Oo0eP1uXLlzV48GDt2LFD48ePL+q4AAAAgPvOfT85OiQkRM2bN9fKlStVqVIlNWzYsKjjKpT5\n8+fn+ON0Q4YMyfbcihUrNH/+/GzPr1mzRrNnz87y3LBhw5SSkpLrelu0aJHvGNu0aaPk5OQsz23d\nulUrV67MVrZ79+46e/ZsrsvKKda7MWbMGG3dujXLc1euXFF4eHi2srNnz9aaNWvytdx7Heeddu7c\nqWHDhmV7/rXXXtP58+ezPHfixAmFhYXd1frCwsJ04sSJu1pGSff+++/rwIEDxR1GkctpX+Z2PN2t\nNWvWaNMkFm/IAAAevElEQVSmTfd8uYWV2b7cHtfw4cPVtWtXHT16VGFhYerZs6du3LhRoOXm1N4a\nxXA3vvvuO126dOmullEaFXW7WpSSk5PVpk2b4g7jnjl79qy6d+9e3GEYOnLkiHbv3i0p53ORkmb3\n7t36448/ijuMIlGaJ0fna6jSnDlzFBUVpZCQEP3nP//Rnj17NGbMmKKO7Z5ZsGDBXb1/3rx59yiS\nnLVq1apIl383KlSokGPiUBrQM1Z4zz//fHGHcN/p0qVLcYeQo9vj+vnnn7Vjxw6dP39e8fHx+b44\ncLu7bW8Lavny5QoPD5e/v79D1wuUNt9++638/PzUrFmz4g4lXz7//HN16tRJDzzwQHGHcs+VpB6E\ngspX4rB79259+umnkqR+/foVKLNOTU3V2LFjdfbsWaWnp+uf//ynVqxYoVq1aunPP/+UzWbTvHnz\nVKFCBc2ZM0d79uyR1WpV//791bFjR4WFhemBBx7QsWPHFBcXp7feektVq1bNdX0bN27Uhg0blJSU\npAkTJqhhw4Zq0aKFtm3bpj179igiIkLe3t5ycnJS48aNc1zG/v379dxzzyk6OlqhoaF67733tGHD\nBl28eFFjxoyRxWJR1apVde7cOUVGRiolJUUjRozQ+fPnVa5cOb399ttydnbONcZJkybp3Llz8vX1\n1RtvvKGvvvpKJ0+e1MiRIzVv3jz9+OOPqlSpkmJiYvJVx0uXLtWXX34pi8Wipk2bavjw4erQoYM2\nbNig6OhotW7dWj///LM8PDzUo0cPrV27NtdlffLJJ1qyZInS09P12muvycnJScOHD9eqVav0zTff\naNGiRfLx8VFqaqoCAwNzXEZSUpLGjh2r8+fPKzU1VX/7299yjfXVV1/V3r179cYbb8hiscjNzU1v\nvfWWXF1dNXnyZEVFRclqteqVV17RI488kmvcUVFRGjBggGJiYhQaGqpu3bopLCxM4eHh8vLy0siR\nI2Wz2VShQoVclzFkyBD17dtXzZs312+//ab58+fL29s7y7HbqVMne/n58+fLz89PoaGhOnHihMLD\nwxUZGam///3vatq0qY4cOaLAwED5+vpqz549cnFx0fvvv6+kpCSNHz/evn8nTJigunXr5hhTXFyc\nxo8fr5s3b+ry5cvq2LGj1q9fr6+++komk0lTp07VY489Jn9/f02ZMkUeHh7y9fWVq6urZsyYkeMy\n58+fr5MnT+ratWuKjY3VhAkT1LRpUz3xxBMKDAxUUFCQYmNj1alTJzVv3jzLvpw4caIaNGhQoH2T\nac2aNfr8889ltVrVoUMHbdq0SYmJiSpfvrwWLFig9evXa8uWLUpKStLp06c1cOBAdenSRQcOHMhx\n2yIjI7V+/XqZTCZ16tRJffv2zXP9ObVFkrRw4UJdvXpViYmJmjt3bpb3rF69WitWrJDValWbNm30\n8ssv57ptGzduVHx8vGJiYvTSSy/pb3/7m55++mnVrFlTzs7OCgwMlJ+fn3r27Klp06bpwIEDSk1N\n1dChQ9WuXbsc27/8bEPVqlUVEREhq9Uqf39/zZ49W2XKlMkxzpzal8zj+MiRI4qLi9OLL76otLQ0\nHTt2TG3atFH16tXt21S+fHnNmzdPTk5Oql69uqZOnaovvvjCvl9ffvlljRw5Utu2bdOhQ4c0bdo0\nOTk5ydXVVdOmTVOVKlUK1MbdXn9Tp07N9rm5cOGCDh8+rNGjR2vWrFkaPXq0Vq1aJSmjN2Pu3Lla\nu3atfv31VyUkJOi1117TuHHjVKlSJZ05c0YPPfSQpkyZku996uLiogULFshms+nBBx/UlClT9O23\n3+rjjz9WWlqaTCaTFixYIB8fnzy3616587uqWrVqevPNN+Xq6qpy5copIiJChw8f1qeffmq/AJb5\nfThmzBhdv35d169f13vvvaeyZcsWaazx8fEaOXKkYmNjFRAQIEnatWuXvT7j4+M1Z84c7dq1S6dO\nndLo0aOVnp6uZ555Rp999plcXV2LJK4uXbpo8eLF8vb21iOPPKLIyEg9+OCD6ty5s5555hl7W5vZ\nxly4cEETJ05UcnKy/bjOlJ6erjFjxig4OPieXXxZs2aNvv/+eyUlJenKlSvq27evNm3apGPHjmnU\nqFFKSEjQsmXL5OLiopo1a9o/k3e2pS1atNDatWvl7OysBx98UJIUHh5u7/FbsGBBlmOgsOvN6z3t\n2rXThg0b9NFHH8lsNqtJkyYaOXKk5s+fr7Nnz+ratWs6f/68xo4dq/Lly+vHH3/UwYMHVbt2bXXr\n1k3btm2TlDEKpGfPnjp37pzh+kqqktSDUFD5ShzS0tJktVplNptls9lkMuV/g1euXCkfHx/Nnj1b\ncXFx6tKli1xcXNS1a1dNnTpVH3/8sd577z21bNlSZ8+e1YoVK5ScnKzu3bvbhwA1bNhQ48eP17x5\n8/Tll1/m+YGsWrWqpk6daj9wbj9JnjJlit5++23VqlVLkydPznUZFotFS5Ys0blz57Ksa+bMmRo0\naJBat26tVatW6dy5c5KkhIQEDRs2TNWqVVNYWJgOHz6c53Cu0NBQNW7cWDNnztSqVavk6ekpSfrt\nt9+0e/duffbZZ0pISNCTTz5pWL9RUVHauXOnPv30U1ksFg0dOlRbt25V06ZNtW/fPkVFRSk4OFjb\nt2+Xh4eH4bCqkJAQPf/889qyZYtmzZpl71lKTU3VjBkztGbNGpUrVy7PffDpp5+qatWqmjdvnk6d\nOqUffvhBN2/e1JEjR7Rhw4YssX7//ffatWuXOnbsqH79+mnz5s2KjY3VDz/8oPLlyysiIkIxMTHq\n06ePvvzyy1zXmZqaqkWLFslqteof//iH2rZta3/t3Xff1dNPP63u3bvrq6++ynE4myR169ZNa9eu\nVfPmzbVmzRq1atVKp0+fznLsPvroo3nWn5TxBfn0009r8uTJ6tChg8aOHathw4apT58+On78uNav\nX69HH31UvXr10qlTpzR27NhcY4qKitJTTz2lJ598UpcuXVJYWJjq16+vPXv2qFGjRtq5c6fGjRun\nbt26aebMmQoODta8efMMh26UKVNGy5cv17FjxzRixAitW7dOFy5c0Jo1a1S+fHn7fs9pXx4+fLhA\n++Z23t7eWrhwod555x37l8eAAQP022+/ScpIlJYsWaJTp05p0KBB6tKliyZPnpxt244fP66vvvpK\nn3zyiSTpn//8p/7617/mmsxKubdFzz77rP7xj39o/vz5+vrrr+2f3WvXrmnx4sVat26dXF1dNWfO\nHMXHx8vDwyPH5ScmJurDDz9UdHS0unXrprZt2yohIUGDBw9W/fr17UMjN27cqJiYGH322We6ceOG\nPvzwQzk7O+fY/nl7e+drG9566y0FBQVp9erVOnHihP3E4HZG7Ut4eLi+++47LVq0SGfPnlX//v1V\nvXp1LVmyxL5NZrNZq1atkq+vr958802tXbtWFotF3t7eWrRoUZblTZgwQa+99prq1aunjRs3asaM\nGRo4cGCB2rjb62/WrFk5fm7q1aun8PDwPC/WBAYGasKECTp79qxOnTqlJUuWyM3NTe3atdOVK1dy\nvaBw+z7t3LmzTCaT1q5dK19fXy1evFgXL17UqVOn9P7778vNzU2TJk3STz/9pP/5n//Jc7vuldu/\nqwYOHKjk5GStWLFC/v7+WrZsmRYtWqTHH3881/c/+uij6t+/v0Ni/fTTT1WnTh0NGzZM+/fv186d\nO3Xs2DHNmjVL/v7+evfdd/X1118rLCxMXbp00ciRI/Xjjz/qkUceKbKkQcoYspOZyFarVk0///yz\nXF1dFRAQoK+//jpbG/P2228rLCxMrVu31vbt2zV79mwNGzZMaWlpGjlypJo2barevXvf0xjj4+Pt\nF90++ugjrVq1Sjt37tRHH32kEydOaO3atfL09FRERIRWrlwpd3f3HNvSzp07y8/Pz97Gde3aVU2b\nNtWYMWO0bdu2LBfGCrve3N6zfPlyNW3aVPPnz9fnn38uNzc3vfrqq/ZkwMXFRR988IG2bdumpUuX\nasmSJWrZsqU6deqkKlWqFLhuli9fXqITB2tJuk1SAeUrcejUqZNCQ0PVqFEjHThwINvBlZcTJ07o\nL3/5iyTJ09NTQUFB2rZtm/0ELCQkRJs3b5a/v78OHjxoH3+elpZmPzGvX7++JKlSpUq6evVqnuvL\n7IILDg7O9kN1V69eVa1atezrPX36dI7LqF+/vkwmkypUqKCkpKQs2/Lwww9Lkpo0aaIvvvhCklS2\nbFlVq1ZNkuTn55fnXaecnZ3tPR0hISHatm2bHnroIUnSqVOn1KBBA5nNZnl6eqpOnTp5bqskHT58\nWI8//rj9S7Np06Y6duyYnnzySW3ZskVnz57VsGHDtGnTJpnNZj377LN5Lq9p06aSpIcfflgzZ860\nPx8dHa2yZcuqfPny9tdzc/LkSfvwq5o1a8rb21tXr17VyZMn1ahRo2yxDho0SO+++6769esnf39/\nNWzYUEePHtXevXvt4+zT0tIUHR2d65W8xo0by8XFRZIUFBSUZdz0qVOn7L1kISEhuZ6kt2zZUrNm\nzdL169ftV37/+te/Srp17J45cybP+suUeeLm7e2toKAg+9/Jyck6evSoduzYoQ0bNkhSnmPI/fz8\ntGzZMn377bfy9PRUWlqaunfvrrVr1+rKlStq06aNLBaLLl++rODgYEkZx+ZXX32VZ3yZn7/g4GD7\nZ6p8+fL2/Zvpzn3Zv39/hYeHF2jf3K5WrVoym81ydnbW8OHD5e7urosXLyotLU2S7F3SlStXts8r\nymnbjh49qvPnz9tPem7cuKGoqKg8E4fc2qIGDRpIyqjr29uXM2fOKDg42H71fuTIkXluW7NmzWQ2\nm+Xn5ydvb29FR0fbt/l2f/75p70NKFu2rF555RUtXrw4x/bvzsQhp23YvHmz/Rjr1q1brvEVpn25\nfZvc3NwUFRWlV155RVJGz+Jf/vIX1ahRI9s2Shn7rV69evblzJkzp1AxZC67IJ8bSbLZbn0z3x5f\nQECA/WJNhQoV8hznffv2e3h4KCUlRb6+vpKkgQMHSpJ8fX01evRoeXh46OTJk7n2ZBeF27+rLly4\noICAAPuQrWbNmmnu3LnZEofc6qWonTp1Sq1bt5YkNWrUSBaLRf7+/nrttdfk7u6uS5cuKSQkRJ6e\nnmrWrJl++uknrVmzRoMHDy7SuJ588km9++67qly5soYNG6bIyEjZbDb97W9/0xtvvJGtjTl69Kje\ne+89ffDBB7LZbLJYMk6jjhw5Ik9PTyUkJNzzGDM/R15eXgoKCpLJZFLZsmWVmJio2rVr24/nzHpr\n1KhRjm3pnW5v+24/17mb9eb2nuTkZJ0+fVrR0dH2C4/x8fH287DM91WqVCnPOaVS1mM4r/WVZKU4\nb8jf5OjnnntO06ZNU0hIiKZOnVqgKxRBQUHas2ePpIyriUePHlW1atX0+++/S5J++eUX1a5dW4GB\ngfZuwmXLlqljx46qXr16gTco82TmyJEj2bJUf39/+0TIzCucOcmtR6VOnTr69ddfJWV0ERuVz0lq\naqoOHz4sSdqzZ4/9hEiSateurQMHDshqtSohIUHHjx83XF69evV04MABpaWlyWazaffu3apVq5Za\ntGih3bt3KyYmRq1bt9bBgwf1xx9/GE5sz6y/O2Pz9fVVbGys/WQor/oLCgqyv37mzBn78I/AwMAc\nY123bp06d+6syMhIBQcHa9WqVQoMDNRTTz2lyMhILV68WB06dFC5cuVyXeehQ4eUlpamhIQEnThx\nwt4VnhlP5n7LK26z2awOHTooPDxc7dq1U3BwcI7HbiZXV1d7cnrw4MEsy8rrmAgMDFT//v0VGRmp\nN998M8+rk0uXLlXjxo01e/ZsdejQQTabTY899pgOHz6szz//3H6iWKlSJfvxcvuxmZvMeI8ePWo/\n0TCbszcHd+7LESNGFHjf3M5sNuuPP/7Qxo0b9eabb2rixImyWq32L4Kc6i2nbQsMDFTt2rW1fPly\nRUZGqkuXLrkO97p9W/Lan3cKCAjQyZMn7V9iL7/8cp49OZl1evXqVcXFxdlPMO+s18DAQHud3rx5\nUwMGDMh3+5fbNpw6dUpSxqT27777Lsf4CtO+3L5NycnJCggI0DvvvKPIyEgNGjTInoDmdOxUrFjR\nPrFx9+7dqlmzZqFiyFx2bp8bk8kkm80mV1dXXbt2Tenp6YqNjc1y8eD2+ArSXt++/ampqZKk69ev\nS5KmT5+uXbt26e2339a8efM0ffp0ubq6ZjmpKWq3b0v58uUVFxeny5cvS8oYBlSzZs0s7dS5c+ey\nJFwFqYu7FRQUpH379km61V5PnDhRERERmjFjhipWrGivu+7du2v16tW6du1akY9vr1Onjs6cOaMD\nBw6odevWSkhI0KZNm3JtYwIDAzVy5EhFRkZqypQp6tChg6SMi0Xvv/++1q1bd88n9Oa2n0wmk06c\nOGFPVnbt2mVPBnN6j8lkktVqzfK/I9abqVq1aqpcubKWLl2qyMhI9enTx55o5xZv5jGRlpam+Ph4\npaSkZGk3HHkM30ul+Qfg8uxxmDNnTradcujQIUkZd9/Ij+7du2vixIkKDQ1VcnKyhgwZojVr1mjt\n2rX66KOP5ObmppkzZ6pcuXLatWuXevXqpYSEBLVr186ezRbE2bNn1bdvX6WkpGjq1KlZXps6dapG\njRolT09PeXh4FHhM58iRIzVu3DgtXbpUXl5e9isNBeHs7KzIyEhFRUWpSpUqGjFihL3nol69emrV\nqpWeffZZVaxY0X7ikZcaNWooJCREoaGhslqtatKkidq1ayeTyaRKlSqpSpUqMpvNqlWrVr6uCO/f\nv199+/aVyWRSRESE/UNrsVg0adIkDRgwQGXLls1z23v27Klx48apT58+9nHYMTExqlu3rjp27Jgt\n1gMHDmjChAlyc3OT2WzW1KlT5e/vrwkTJqhPnz6Ki4tTr169cjw5yeTq6qqBAwcqNjZWQ4cOzXIi\n++KLL+rVV1/VV199leeJopTRdduuXTt98803qlixYrZj9/Z90rFjR73yyivavXt3jkNDcjNo0CCN\nHz9eq1atUlxcXJ53oXniiSc0ffp0ffXVV/Ly8pKTk5N93sjPP/9sT5AmT56scePGyd3dXc7OzoYT\nRQ8fPqx+/fopMTExyxjdO925L8eNG6e6desWaN/cqUaNGnJzc1PPnj0lZVz1zTzZyUlO2/bAAw/o\nscceU2hoqFJSUtSwYUPDbc6tLcqNj4+PBg4cqD59+shkMumJJ57Icx1Xr15Vv379dPPmTU2ePFlO\nTk45lmvbtq22b9+u0NBQpaen66WXXlKrVq3y1f7ltA1BQUEaN26czGazKlSokOuFncK0L3duk9ls\n1vPPPy+bzSYPDw/NnDlTFy5cyPG906dP17Rp02Sz2eTk5KSIiAhVr169wDFkyu1z8/DDD2vUqFFa\nunSpWrRooWeffVbVq1dXjRo18r3s/G6/zWbTCy+8ILPZrPr166tZs2YKCQlRjx497EO28jqWi5LJ\nZNL06dM1dOhQ+1XX119/Xd7e3vLy8lK3bt0UFBRk2AYWldDQUI0aNUqhoaEKDAyUs7Oz2rdvr969\ne8vNzU1+fn72umvUqJGioqLu+ZCf3DRv3lxnz56V2WxWs2bNdPz48VzbmNGjRys8PFzJycn2+WqZ\nypQpo8mTJ2v06NFavXq1vRe8qDg5OWno0KHq27evzGazAgICNHLkyFyHjjZo0EAzZ86091A6ar2Z\nfHx81L9/f4WFhSk9PV1Vq1bNcS5XpkaNGmn27NmqVq2a+vbtqx49eqhatWp5Dl0qLUrz5GiTLY/L\nI5nzA65cuSJXV1d5e3tr7ty5eu655+wTCwsjc9Lq3R68jrZu3To1atRINWrU0OrVq/XLL7/o9ddf\nL+6wAH388cfq2LGjfHx8NG/ePDk7O+eakNw+qbs0KMi2FZc1a9bYb3Bwv7gft6kg/q9vf3GyWq0K\nDQ3VkiVLCnUBESjpZgQW/DtszEnH3rEuN3leMu/cubOkjKuw8+bNU0BAgH0izd0kDndryJAh2ca3\nenp6Zpucd69ljoHMvDIeERGRY7kDBw5o1qxZ2Z7v2LGjevXqVaQxGklJSdGAAQOyPV+rVq1sPTQl\nzYIFC7Rz585sz2deyfy/zNfXV88995zc3d3l5eWlGTNm5Po5yZwzVFrktG3FJTw8PMff8Mjrqpmj\nrVy5UuvXr8/2/PDhw/Ocm1RcSnJ7Ccc7c+aMhgwZoi5dupA04L513/Y4ZOrZs6f9dqxSRo9BZGRk\nkQYGAAAA3G8iCtHjMK409DhkqlKliubOnavGjRvrwIEDqlixYlHHBQAAANx3HHgPhXsuXzMaX3/9\ndfn4+GjLli3y8fFhXD8AAABQCFaZCvwoKfLV4+Dq6uqwH4kBAAAA7lf3/Q/AAQAAALh7pXmoEokD\nAAAA4CAlaehRQZE4AAAAAA5CjwMAAAAAQ6X5dxxIHAAAAAAHYXI0AAAAAEOlOG8gcQAAAAAcxWpj\ncjQAAAAAA0yOBgAAAGCIydEAAAAADJXmHgdzcQcAAAAA/F9hLcSjMJKSkjR06FD16tVLAwcOVHR0\ndM7xWK3617/+pRUrVhguk8QBAAAAcBCrreCPwlixYoXq1KmjTz75RM8884zeeeedHMu9+eabio2N\nzdcySRwAAAAAB7EV4lEYe/fuVcuWLSVJrVq10vbt27OV+frrr2UymezljDDHAQAAACjFVq9erWXL\nlmV5ztfXV15eXpIkDw8P3bx5M8vrR48e1fr16/X2229r4cKF+VoPiQMAAADgIEXxy9HdunVTt27d\nsjw3ZMgQxcfHS5Li4+Pl7e2d5fX//Oc/unTpkvr166dz587J2dlZVatWVatWrXJdD4kDAAAA4CCO\nuqtSSEiItmzZooYNG2rr1q1q0qRJltdHjRpl/3v+/Pny8/PLM2mQmOMAAAAAOIyj7qoUGhqqY8eO\nKTQ0VCtXrtSQIUMkSR9++KE2bdpUqGWabLbSfDdZAAAAoPR4vuK/C/ye9y+/VQSRFBxDlQAAAAAH\nKc1X7EkcAAAAAAcpisnRjkLiAAAAADhIaZ4kQOIAAAAAOEhhJzuXBCQOAAAAgIMwVAkAAACAoVKc\nN5A4AAAAAI5CjwMAAAAAQ0yOBgAAAGCIydEAAAAADFlLcZcDiQMAAADgIKU3bSBxAAAAABymNE+O\nNhd3AAAAAABKPnocAAAAAAexleLBSiQOAAAAgIOU5qFKJA4AAACAg3A7VgAAAACGbNyOFQAAAIAR\nehwAAAAAGKLHAQAAAIAhehwAAAAAGLLS4wAAAADACL/jAAAAAMAQQ5UAAAAAGLLS4wAAAADACHMc\nAAAAABhijgMAAAAAQwxVAgAAAGCIxAEAAACAodI8VMlc3AEAAAAAKPnocQAAAAAchKFKAAAAAAxZ\nTaX3J+BIHAAAAAAHoccBAAAAgCGb6HEAAAAAYIAeBwAAAACGmOMAAAAAwJCVoUoAAAAAjJA4AAAA\nADDE5GgAAAAAhpjjAAAAAMAQQ5UAAAAAGLIpvbhDKDQSBwAAAMBB6HEAAAAAYIjEAQAAAIAhhioB\nAAAAMESPAwAAAIASIykpSa+++qquXbsmDw8PvfHGG/Lx8clSZunSpVq/fr1MJpMGDRqk9u3b57lM\nc1EGDAAAAOAWm6wFfhTGihUrVKdOHX3yySd65pln9M4772R5PTY2VsuXL9enn36qpUuXKiIiwnCZ\nJA4AAACAg1iVXuBHYezdu1ctW7aUJLVq1Urbt2/P8rqbm5uqVKmixMREJSYmymQyGS6ToUoAAACA\ngxS2ByEvq1ev1rJly7I85+vrKy8vL0mSh4eHbt68me19lStX1lNPPaX09HS98MILhushcQAAAAAc\nxGq793dV6tatm7p165bluSFDhig+Pl6SFB8fL29v7yyvb926VZcvX9amTZskSQMGDFBISIgaNmyY\n63oYqgQAAAA4iKPmOISEhGjLli2SMpKEJk2aZHm9bNmyKlOmjFxcXOTq6iovLy/FxsbmuUx6HAAA\nAAAHcdTvOISGhmr06NEKDQ2Vs7Oz5syZI0n68MMPFRAQoLZt2+rnn39W9+7dZTabFRISohYtWuS5\nTJPNZrM5IngAAADg/zpfjybGhe5wLX5vEURScPQ4AAAAAA5SFJOjHYXEAQAAAHAQWxFMjnYUEgcA\nAADAQaz0OAAAAAAwYrOROAAAAAAw4Ki7KhUFEgcAAADAQehxAAAAAGCIuyoBAAAAMMRdlQAAAAAY\nYqgSAAAAAEOleaiSubgDAAAAAFDy0eMAAAAAOAhDlQAAAAAYKs1DlUgcAAAAAAfhrkoAAAAA8oEe\nBwAAAAAGmOMAAAAAwBBzHAAAAADkA4kDAAAAACMMVQIAAABghKFKAAAAAPKBxAEAAACAEZutuCMo\nNBIHAAAAwEFsKr2Jg8lmK8VpDwAAAACHMBd3AAAAAABKPhIHAAAAAIZIHAAAAAAYInEAAAAAYIjE\nAQAAAIAhEgcAAAAAhv4/nFu8rOoxCoYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close_bid'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close_bid') # predict this, should it be return?\n", + "dataset = df.values.astype('float32') # so regressor can use it\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset) # scale features to between 0 and 1 for faster convergence\n", + "\n", + "# Set look_back to 100 which is 100 ticks\n", + "# look back is 1 period, to check which features predict best a 1 period return\n", + "look_back_rows = 1 # to work with more than one, use alternative reshape\n", + "X, y = create_dataset(dataset, look_back_rows=look_back_rows) # look back only 1 row\n", + "y = y[:,target_index]\n", + "#TODO:X = np.reshape(X, (X.shape[0], X.shape[2]* look_back_rows)) # to get back rows and columns\n", + "X = np.reshape(X, (X.shape[0], X.shape[2])) # to get back rows and columns\n", + "# extend extra rows into columns, as all the prices during lookback periodd should be used as features." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(14878, 11)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X.shape\n", + "#y.shape\n", + "#X[0].shape\n", + "#X.shape[2]\n", + "#np.reshape(X, (X.shape[0]*10, X.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n", + "0. close_bid 3 (0.816391)\n", + "1. ohlc_price 7 (0.067108)\n", + "2. high_bid 1 (0.064573)\n", + "3. avg_price 5 (0.050164)\n", + "4. low_bid 2 (0.001339)\n", + "5. open_bid 0 (0.000077)\n", + "6. range 6 (0.000056)\n", + "7. momentum 15 (0.000053)\n", + "8. volume 4 (0.000046)\n", + "9. pca 10 (0.000045)\n", + "10. hour 11 (0.000038)\n", + "11. oc_diff 8 (0.000028)\n", + "12. period_return 9 (0.000028)\n", + "13. week 13 (0.000023)\n", + "14. day 12 (0.000023)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAJMCAYAAABkexbrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2Y1XWd//HX3AACgyDb5LYl3lC4phlCtnEl5uJSZpom\n6ADukOnuXq6V9ZPMm1ZUEMQss7W8yexmtQRzvRTsxhaj2MhMMUw0ajVlXfIiVFRmQGGY8/tjrpkV\nb9thmDP6eTyuy+uac75zznnzduY4PvmeMzWVSqUSAAAAAIpSW+0BAAAAAOh9ohAAAABAgUQhAAAA\ngAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAdpi99947Rx55ZI466qiufz73uc91+/5+85vfZObM\nmT044bZuv/32XHDBBTvs/l/Oo48+mk9+8pO9/rgAQNnqqz0AAPD69u1vfzvDhw/vkft68MEHs3bt\n2h65r5dy6KGH5tBDD91h9/9y/vjHP+bhhx/u9ccFAMpWU6lUKtUeAgB4fdp7771zxx13vGQUeuih\nhzJnzpw89dRT2bp1a5qbmzN58uS0t7dn7ty5uffee9Pa2ppKpZILLrggf/VXf5WpU6dmw4YNef/7\n35+jjz46s2fPzq233pokufPOO7suX3bZZVmxYkX+9Kc/Ze+9984XvvCFXHHFFfnxj3+c9vb2vPnN\nb865556bXXfddZuZbrrpptx222256qqr0tzcnH333Te//OUv88QTT2T69Ol54okn8qtf/SqbNm3K\npZdemr333jvNzc0ZOXJkVq5cmfXr1+eoo47KqaeemiRZvHhxvvKVr2Tr1q1paGjIWWedlf3333+b\n+d72trflvvvuy9q1a3PggQfmmmuuyZVXXpnFixfnueeey6ZNm3LGGWdk4sSJueyyy7JmzZqsW7cu\na9asyfDhw/OlL30pu+66ax5++OHMnDkzTz75ZGpra/PP//zPOfzww7N27drMmjUrjz32WLZs2ZIP\nfehDOfnkk9PW1pbZs2fnnnvuSb9+/fKWt7wlF154YQYPHrzjvzAAgD7BmUIAwA710Y9+NLW1//uK\n9W984xsZOnRoTj311Hz+85/Pvvvumw0bNqSpqSlvfetbU6lU8qc//SkLFixIbW1tvva1r+Xqq6/O\nlVdemVNPPTW33XZbLrzwwtx5552v+Lhr1qzJrbfemvr6+tx88835/e9/n+9973upr6/PggUL8i//\n8i+5+uqrX/U+br755tx777057rjjcsUVV+TMM8/M3Llzc91112X27NlJOs70uf7667Np06Ycd9xx\necc73pERI0bk3HPPzfz587PbbrvljjvuyCmnnJIf/ehHL5qvM2hdc801WbNmTX7xi1/kuuuuy047\n7ZTvf//7+dd//ddMnDgxSXL33Xfn5ptvTkNDQ04++eQsWLAgp556ak477bRMnjw5xx9/fB577LE0\nNzfn4IMPzumnn54TTjghEyZMyHPPPZd//Md/zIgRI/LGN74xv/rVr/KDH/wgNTU1ufjii/O73/0u\nY8aM2Z5/3QDAa4goBADsUC/18rEHH3ww//3f/52zzz6767pnn302DzzwQKZNm5ahQ4dm/vz5efTR\nR3PnnXd26+yV0aNHp76+40edJUuW5L777sukSZOSJO3t7dm0adOr3kdniNltt92SJOPHj0+SjBgx\nIr/61a+6Pq+pqSn9+vVLv379cthhh+XnP/959tprr7znPe/puu24ceMyfPjwrFy58kXzPd+b3/zm\nXHTRRVm0aFFWr17ddcZUp3e/+91paGhIkrz97W/P008/naeeeiqrVq3KsccemyR505velMWLF2fj\nxo2566678vTTT+fLX/5ykmTjxo1ZtWpVDjrooNTV1eXYY4/NQQcdlA984APZf//9/9z1AgCvA6IQ\nANDrtm7dmp133jm33HJL13WPP/54hgwZkp/+9KeZM2dOPvaxj+XQQw/NXnvtlYULF77oPmpqavL8\nV8Fv2bJlm+ODBg3q+ri9vT3/8A//kGnTpiVJNm/enKeffvpV5+zfv/82l/v16/eSn/f8uFOpVFJb\nW5uXeoV+pVJJW1vbi+Z7vvvvvz+nnHJKTjjhhLz3ve/NgQcemPPPP7/r+E477dT1cecOOh+/pqam\n69gf/vCHNDY2plKpZP78+Rk4cGCS5Mknn8yAAQMyePDg3HLLLbnnnnvyy1/+Mp/+9Kczffr0nHDC\nCa+0EgDgdcRvHwMAet2ee+6ZAQMGdEWhxx57LEcccURWrlyZZcuW5W//9m8zbdq0vOMd78jixYuz\ndevWJEldXV1XVBk+fHj++Mc/5oknnkilUsnixYtf9vEOOuig3HjjjWlpaUmSfPnLX85nP/vZHvvz\nLFy4MO3t7Xn66afzwx/+MBMmTMh73vOeLFu2LI8++miS5I477shjjz2Wd77znS+6fV1dXVfUuuuu\nu7LffvvlYx/7WN797nfn9ttv7/rzv5yGhobsu+++ufnmm5N07HPq1Kl59tlnM3r06Hzzm99Mkjzz\nzDOZOnVqbr/99ixZsiQnnHBCDjjggHzyk5/M0UcfnVWrVvXYTgCAvs+ZQgBAr+vfv38uv/zyzJkz\nJ1//+tfT1taWT33qUxk7dmyGDRuWz3zmMznyyCNTV1eXd73rXV1vEH3AAQfk0ksvzcc//vF89atf\nzZQpUzJp0qQ0NjbmkEMOednHO/bYY7N27docd9xxqampyZve9KbMmzevx/48zz77bCZPnpzW1tZM\nmzYt48aNS5Kce+65+cQnPpGtW7dmp512ypVXXpkhQ4a86PZve9vbUldXl8mTJ+fKK6/Mj3/84xx+\n+OHp169fxo0bl6effroraL2cL37xizn//PNz7bXXpqamJnPmzEljY2O+8IUvZPbs2TnyyCOzefPm\nHHHEEfnwhz+crVu3ZunSpTniiCMyaNCgDB06tOs9kgCAMvjtYwAA26G5uTnHH398DjvssGqPAgDw\nf+LlYwAAAAAFcqYQAAAAQIGcKQQAAABQIFEIAAAAoECiEAAAAECB+syvpF+3bkO1R+gTdtllUNav\n31jtMarKDjrYQwd7sINO9tDBHuygkz10sAc76GQPdtDJHjrYgx10amwc8rLHnCnUx9TX11V7hKqz\ngw720MEe7KCTPXSwBzvoZA8d7MEOOtmDHXSyhw72YAd/DlEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKNSHjB27X/bYY49qjwEAAAAUQBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABdquKHTvvfemubn5Rdf/5Cc/yaRJk9LU1JQb\nbrhhex4CAAAAgB2gvrs3vPrqq7Nw4cIMHDhwm+u3bNmSCy+8MDfeeGMGDhyYqVOnZsKECXnDG96w\n3cMCAAAA0DO6fabQiBEjctlll73o+oceeigjRozI0KFD079//4wdOzZ33XXXdg0JAAAAQM/q9plC\nH/jAB/I///M/L7q+paUlQ4YM6bo8ePDgtLS0vOr97bLLoNTX13V3nNeF2tqaJElj45BX+czXPzvo\nYA8d7MEOOtlDB3uwg0720MEe7KCTPdhBJ3voYA928Gq6HYVeTkNDQ1pbW7sut7a2bhOJXs769Rt7\nepTXnPb2Smpra7Ju3YZqj1JVjY1Dit9BYg+d7MEOOtlDB3uwg0720MEe7KCTPdhBJ3voYA920OmV\nwliP//axkSNHZvXq1XnqqaeyefPm3H333TnggAN6+mEAAAAA2A49dqbQokWLsnHjxjQ1NeXMM8/M\nSSedlEqlkkmTJmXXXXftqYcBAAAAoAdsVxR6y1ve0vUr54888siu6ydMmJAJEyZs32QAAAAA7DA9\n/vIxAAAAAPo+UQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIHqqz3Aa8Gwy8/rlcepfeapXnu8p07Z8Y8BAAAA9F3OFAIA\nAAAokCgEAAAAUKBuRaH29vbMnDkzTU1NaW5uzurVq7c5vnDhwnzkIx/JpEmT8t3vfrdHBgUAAACg\n53TrPYUWL16czZs3Z8GCBVmxYkXmzZuXK664ouv45z//+dx6660ZNGhQPvShD+VDH/pQhg4d2mND\nAwAAALB9uhWFli9fnvHjxydJRo8enZUrV25zfO+9986GDRtSX1+fSqWSmpqa7Z8UAAAAgB7TrSjU\n0tKShoaGrst1dXVpa2tLfX3H3b3tbW/LpEmTMnDgwEycODE777zzq97nLrsMSn19XXfG2eG2VHuA\nHaCxcUi1R3hFfX2+3mIPHezBDjrZQwd7sINO9tDBHuygkz3YQSd76GAPdvBquhWFGhoa0tra2nW5\nvb29KwitWrUqP/3pT3P77bdn0KBBOf300/PDH/4wH/zgB1/xPtev39idUXrFsGoPsAOsW7eh2iO8\nrMbGIX16vt5iDx3swQ462UMHe7CDTvbQwR7soJM92EEne+hgD3bQ6ZXCWLfeaHrMmDFZunRpkmTF\nihUZNWpU17EhQ4Zkp512yoABA1JXV5fhw4fnmWee6c7DAAAAALCDdOtMoYkTJ2bZsmWZMmVKKpVK\n5s6dm0WLFmXjxo1pampKU1NTpk2bln79+mXEiBH5yEc+0tNzAwAAALAduhWFamtrM2vWrG2uGzly\nZNfHU6dOzdSpU7dvMgAAAAB2mG69fAwAAACA1zZRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nqu/Ojdrb23Peeefld7/7Xfr3758LLrggu+++e9fx3/zmN5k3b14qlUoaGxtz8cUXZ8CAAT02NAAA\nAADbp1tnCi1evDibN2/OggULMmPGjMybN6/rWKVSyTnnnJMLL7ww119/fcaPH581a9b02MAAAAAA\nbL9unSm0fPnyjB8/PkkyevTorFy5suvYww8/nGHDhuVb3/pW/uu//ivve9/7stdee/XMtAAAAAD0\niG6dKdTS0pKGhoauy3V1dWlra0uSrF+/Pr/+9a/z93//9/nmN7+ZX/7yl7njjjt6ZloAAAAAekS3\nzhRqaGhIa2tr1+X29vbU13fc1bBhw7L77rtn5MiRSZLx48dn5cqVGTdu3Cve5y67DEp9fV13xtnh\ntlR7gB2gsXFItUd4RX19vt5iDx3swQ462UMHe7CDTvbQwR7soJM92EEne+hgD3bwaroVhcaMGZMl\nS5bk8MMPz4oVKzJq1KiuY7vttltaW1uzevXq7L777rn77rszefLkV73P9es3dmeUXjGs2gPsAOvW\nbaj2CC+rsXFIn56vt9hDB3uwg0720MEe7KCTPXSwBzvoZA920MkeOtiDHXR6pTDWrSg0ceLELFu2\nLFOmTEmlUsncuXOzaNGibNy4MU1NTZkzZ05mzJiRSqWSAw44IIccckh3ZwcAAABgB+hWFKqtrc2s\nWbO2ua7z5WJJMm7cuNx4443bNxkAAAAAO0y33mgaAAAAgNc2UQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQPXVHoD/9V//7x+qPQIA\nAABQCGcKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUKBuRaH29vbMnDkzTU1NaW5uzurVq1/y884555x84Qtf\n2K4BAQAAAOh53YpCixcvzubNm7NgwYLMmDEj8+bNe9HnzJ8/P7///e+3e0AAAAAAel63otDy5csz\nfvz4JMno0aOzcuXKbY7fc889uffee9PU1LT9EwIAAADQ4+q7c6OWlpY0NDR0Xa6rq0tbW1vq6+vz\npz/9KV/96lfzla98JT/84Q//7PvcZZdBqa+v6844O9yWag+wAzQ2Dqn2CK+or8/XW+yhgz3YQSd7\n6GAPdtDJHjrYgx10sgc76GQPHezBDl5Nt6JQQ0NDWltbuy63t7envr7jrn70ox9l/fr1+ad/+qes\nW7cuzz77bPbaa68cc8wxr3if69dv7M4ovWJYtQfYAdat21DtEV5WY+OQPj1fb7GHDvZgB53soYM9\n2EEne+hgD3bQyR7soJM9dLAHO+j0SmGsW1FozJgxWbJkSQ4//PCsWLEio0aN6jo2ffr0TJ8+PUly\n00035Q9/+MOrBiEAAAAAele3otDEiROzbNmyTJkyJZVKJXPnzs2iRYuyceNG7yMEAAAA8BrQrShU\nW1ubWbNmbXPdyJEjX/R5zhACAAAA6Ju69dvHAAAAAHhtE4UAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokChE\nnzJ27H7ZY489qj0GAAAAvO6JQtAHiWMAAADsaKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgF91tix+2WPPfao9hgAAACvS6IQAAAAQIFEIQAAAIAC1XfnRu3t7TnvvPPyu9/9Lv37988FF1yQ\n3Xffvev4rbfemm9/+9upq6vLqFGjct5556W2Vn8CAAAA6Cu6VWoWL16czZs3Z8GCBZkxY0bmzZvX\ndezZZ5/NpZdemn/7t3/L/Pnz09LSkiVLlvTYwAAAAABsv25FoeXLl2f8+PFJktGjR2flypVdx/r3\n75/58+dn4MCBSZK2trYMGDCgB0YFAAAAoKd0Kwq1tLSkoaGh63JdXV3a2to67rC2Nm94wxuSJNde\ne202btyY9773vT0wKgAAAAA9pVvvKdTQ0JDW1tauy+3t7amvr9/m8sUXX5yHH344l112WWpqal71\nPnfZZVDq6+u6M84Ot6XaA+wAjY1Dqj3CS6qt7fha6avz9RZ76GAP/8sOOthDB3uwg0720MEe7KCT\nPdhBJ3voYA928Gq6FYXGjBmTJUuW5PDDD8+KFSsyatSobY7PnDkz/fv3z+WXX/5nv8H0+vUbuzNK\nrxhW7QF2gHXrNlR7hJfU3l5JbW1Nn52vt9hDB3vo0Ng4pPgdJPbQyR7soJM9dLAHO+hkD3bQyR46\n2IMddHqlMNatKDRx4sQsW7YsU6ZMSaVSydy5c7No0aJs3Lgx++23X2688ca8613vykc/+tEkyfTp\n0zNx4sTuTQ8AAABAj+tWFKqtrc2sWbO2uW7kyJFdH69atWr7pgIAAABgh+rWG00DAAAA8NomCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC1Vd7AF47hl1+3g5/jNpnnuq1\nx0qSp07pnccBAACAvkYUgv+j11scE8YAAADK5OVjAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQ\nKAQAAABQIL99DPg/643fipb4LWwAAAA7kjOFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgA\nAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgA\nAACgQKIQAAAAQIFEIQAAAIACdSsKtbe3Z+bMmWlqakpzc3NWr169zfGf/OQnmTRpUpqamnLDDTf0\nyKAAAAAA9JxuRaHFixdn8+bNWbBgQWbMmJF58+Z1HduyZUsuvPDCfOMb38i1116bBQsW5PHHH++x\ngQFKMnbsftljjz2qPQYAAPA61K0otHz58owfPz5JMnr06KxcubLr2EMPPZQRI0Zk6NCh6d+/f8aO\nHZu77rqrZ6YFAAAAoEfUd+dGLS0taWho6LpcV1eXtra21NfXp6WlJUOGDOk6Nnjw4LS0tLzqfe6y\ny6DU19d1Z5wd79wvVnuCHtfYnRv1xh6++e9Jkn69tHN76MM7SPr+HnpBbW1NkqSxccirfGYZ7KGD\nPdhBJ3voYA920Mke7KCTPXSwBzt4Nd2KQg0NDWltbe263N7envr6+pc81trauk0kejnr12/sziiv\nO42NQ7IXSrrPAAAOA0lEQVRu3YZqj1E17e2V1NbWFL2DxB462YMdPF/pz4+d7MEOOtlDB3uwg072\nYAed7KGDPdhBp1cKY916+diYMWOydOnSJMmKFSsyatSormMjR47M6tWr89RTT2Xz5s25++67c8AB\nB3TnYQCKt3z5yjzyyCPVHgMAAHgd6taZQhMnTsyyZcsyZcqUVCqVzJ07N4sWLcrGjRvT1NSUM888\nMyeddFIqlUomTZqUXXfdtafnBgAAAGA7dCsK1dbWZtasWdtcN3LkyK6PJ0yYkAkTJmzfZAAAAADs\nMN16+RgAAAAAr22iEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiENBnLV++Mo888ki1xwAAAHhdEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAA\nUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoXoU5YvX5lHHnmk2mMAAADA654oBH2QOAYA\nAMCOJgoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAA\nAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAA\nAAAKJAoBAAAAFEgUAgAAAChQfXdu9Oyzz+b000/PE088kcGDB+eiiy7K8OHDt/mcb33rW/n+97+f\nJHnf+96XT3ziE9s/LQAAAAA9oltnCl1//fUZNWpUvvvd7+boo4/O5Zdfvs3xRx99NAsXLsz8+fNz\nww035Oc//3lWrVrVIwMDAAAAsP26FYWWL1+e8ePHJ0kOPvjg3HHHHdsc/8u//Mt8/etfT11dXWpq\natLW1pYBAwZs/7QAAAAA9IiaSqVSeaVP+N73vpdvf/vb21z3F3/xF5k5c2ZGjhyZ9vb2HHLIIVm6\ndOmLblupVPL5z38+ra2tmTVr1isO0ta2NfX1dd34IwAAAADwf/Wq7yl07LHH5thjj93muk984hNp\nbW1NkrS2tmbnnXd+0e2ee+65nH322Rk8eHDOPffcVx1k/fqNf+7Mr2uNjUOybt2Gao9RVXbQwR46\n2IMddLKHDvZgB53soYM92EEne7CDTvbQwR7soFNj45CXPdatl4+NGTMmP/vZz5IkS5cuzdixY7c5\nXqlUcsopp2TvvffOrFmzUlfnDCAAAACAvuRVXz72UjZt2pQzzjgj69atS79+/fLFL34xjY2N+eY3\nv5kRI0akvb09p512WkaPHt11m9NOOy0HHHBAjw4PAAAAQPd0KwoBAAAA8NrWrZePAQAAAPDaJgoB\nAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiUB+wdevWnHXWWZkyZUqmTp2a3//+99UeqSpuuumm\nNDc3p7m5Occdd1ze8Y535Jlnnqn2WFVx7733prm5udpjVNVHPvKRrq+Hs846q9rjVMWWLVty+umn\nZ9q0aZk8eXJuv/32ao9UFe3t7Zk5c2aamprS3Nyc1atXV3ukqrjqqqvS1NSUY445Jt/73veqPU6v\ne/7z4gMPPJDx48d3PUf84Ac/qPJ0ve+JJ57I+973vjz00EPVHqXXPf9rYfXq1Zk6dWqmTZuWc889\nN+3t7VWerve81M8Kc+fOzfXXX1+liapjy5YtmTFjRqZMmZJp06YV+T2RJJs3b86MGTNy3HHH5cQT\nT8wjjzxS7ZF63fO/Jx588MFMnTo1U6ZMyZlnnpm2trYqT9c7nr+D3/72t5k2bVqam5tz0kkn5fHH\nH6/ydL3npZ4fFy1alKampipN1LfVV3sAkiVLliRJ5s+fnzvvvDNf+tKXcsUVV1R5qt53zDHH5Jhj\njkmSnH/++Zk0aVJ23nnnKk/V+66++uosXLgwAwcOrPYoVfPcc8+lUqnk2muvrfYoVbVw4cIMGzYs\nF198cZ566qkcffTROfTQQ6s9Vq9bvHhxNm/enAULFmTFihWZN29ecc+Rd955Z37961/n+uuvz6ZN\nm/KNb3yj2iP1qhc+L95///352Mc+lhNPPLHKk1XHli1bMnPmzOy0007VHqXXvfBr4cILL8ynP/3p\n/M3f/E1mzpyZ22+/PRMnTqzylDveC/fw5JNP5rOf/WweeeSRnHTSSVWernf97Gc/S1tbW+bPn59l\ny5bl0ksvzWWXXVbtsXrdDTfckEGDBuWGG27IH/7wh8yePTvXXHNNtcfqNS/8nrjkkkty2mmn5cAD\nD8yZZ56ZJUuWvO6fG164gzlz5uScc87JPvvsk/nz5+fqq68u4i9aX+r/pR544IHceOONqVQqVZys\n73KmUB/wd3/3d5k9e3aS5I9//GORIeT57rvvvjz44IPFltwRI0YU+cPM861atSqbNm3KiSeemOnT\np2fFihXVHqkqDjvssHzqU59KklQqldTV1VV5oupYvnx5xo8fnyQZPXp0Vq5cWeWJet/Pf/7zjBo1\nKh//+Mdz8skn55BDDqn2SL3qhc+LK1euzE9/+tMcf/zxOfvss9PS0lLF6XrfRRddlClTpuSNb3xj\ntUfpdS/8Wrj//vvz7ne/O0ly8MEH5xe/+EW1RutVL9xDa2trPvnJT+aoo46q4lTVseeee2br1q1p\nb29PS0tL6uvL/DvvBx98MAcffHCSZK+99irujKkXfk9cdtllOfDAA7N58+asW7cuDQ0NVZyud7xw\nB5dcckn22WefJB2vTBkwYEC1RutVL9zD+vXrc8kll+Tss8+u4lR9myjUR9TX1+eMM87I7Nmzc+SR\nR1Z7nKq66qqr8vGPf7zaY1TNBz7wgWJ/oOm000475aSTTso111yT888/P5/5zGeKOe33+QYPHpyG\nhoa0tLTk1FNPzac//elqj1QVLS0t2/wwV1dXV9zXw/r167Ny5cp8+ctf7vqeKOlvu174vLj//vvn\ns5/9bL7zne9kt912y1e/+tUqTte7brrppgwfPrwrlJbmhV8LlUolNTU1STqeMzds2FCt0XrVC/ew\n22675Z3vfGcVJ6qeQYMGZc2aNfngBz+Yc845p9iX3++zzz5ZsmRJKpVKVqxYkbVr12br1q3VHqvX\nvPB7oq6uLmvWrMkRRxyR9evX56//+q+rOF3veOEOOv/i4J577sl1112XE044oUqT9a7n72Hr1q35\n3Oc+l7POOiuDBw+u8mR9lyjUh1x00UW57bbbcs4552Tjxo3VHqcqnnnmmTz88MN5z3veU+1RqKI9\n99wzH/7wh1NTU5M999wzw4YNy7p166o9VlU89thjmT59eo466qhig3FDQ0NaW1u7Lre3txcXTocN\nG5aDDjoo/fv3z1577ZUBAwbkySefrPZYVTNx4sTst99+XR8/8MADVZ6o9/z7v/97fvGLX6S5uTm/\n/e1vc8YZZxT7/JgktbX/+6Nsa2tr8Wdbl+hb3/pWDjrooNx222255ZZbcuaZZ+a5556r9li9btKk\nSWloaMi0adPyH//xH9l3332LPcO405vf/Ob8+Mc/ztSpUzNv3rxqj1MVP/jBD3Luuefma1/7WoYP\nH17tcXrd/fffn9WrV+e8887LaaedlgcffDBz5syp9lh9jijUB9x888256qqrkiQDBw5MTU3NNj/k\nlOSuu+7KuHHjqj0GVXbjjTd2/cd77dq1aWlpSWNjY5Wn6n2PP/54TjzxxJx++umZPHlytcepmjFj\nxmTp0qVJkhUrVmTUqFFVnqj3jR07Nv/5n/+ZSqWStWvXZtOmTRk2bFi1x6qak046Kb/5zW+SJHfc\ncUf23XffKk/Ue77zne/kuuuuy7XXXpt99tknF110UZHPj53e/va3584770ySLF26NO9617uqPBG9\nbeedd86QIUOSJEOHDk1bW1tRZ8h0uu+++zJu3Lhcf/31Oeyww7LbbrtVe6SqOvnkk7vebHvw4MFF\n/r/VLbfc0vXfi1K/Hvbff/98//vfz7XXXptLLrkkb33rW/O5z32u2mP1OWX9VWsf9f73vz9nnXVW\njj/++LS1teXss88u8s0jk+Thhx/OW97ylmqPQZVNnjw5Z511VqZOnZqamprMnTu3uDNDkuTK/9/O\n3aKsGgRQAD43GBRsXzEJ7sEFGMQNGMRksimYFEER/ImCRdyQyd1YRd4vXLhL0AvzPCs4acKZmXO7\n5fl85nq95nq9Jvk7nlfa+dDv93O/3zMajVJVVU6n07cjfVyv18vj8chwOExVVdlut0XfAO92u+z3\n+9Rqtfz8/Pzb5aM8y+Uym80m5/M5nU4ng8Hg25H4sMlkkvV6nfF4nNfrlcVikUaj8e1YH9dut3O5\nXHK73dJsNot/DTGdTrNarVKr1VKv13M4HL4d6aPe73eOx2NarVZms1mSpNvtZj6ffzkZ/6M/VUmj\nBAAAAAAk8X0MAAAAoEhKIQAAAIACKYUAAAAACqQUAgAAACiQUggAAACgQEohAAAAgAIphQAAAAAK\npBQCAAAAKNAvnTbiiIhM3PgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1] # get indices for importances\n", + "#print(indices)\n", + "\n", + "column_list = df.columns.tolist()\n", + "#print(column_list)\n", + "print(\"Feature ranking:\")\n", + "for f in range(X.shape[1]-1):\n", + " print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + "\n", + " \n", + "# Plot the feature importances coming from the forest of decision trees and their standard deviation\n", + "plt.figure(figsize=(20,10))\n", + "plt.title(\"Feature importances\")\n", + "plt.bar(range(X.shape[1]), importances[indices],\n", + " color=\"salmon\", yerr=std[indices], align=\"center\")\n", + "plt.xticks(range(X.shape[1]), indices)\n", + "plt.xlim([-1, X.shape[1]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "#df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOEAAAJDCAYAAABHO5LzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYVvP+//HXuk9zrplqks4HClERQhKJREWRConQbztt\nu03abJukr2SLTc52taUktqTSlooKHeRYKkrpMKWapjk1p/u0fn/cM/fM3Zxn7pl75p7n47pc1vqs\nz1rrfd8yK9ar98cwTdMUAAAAAAAAAAAAAAAAgCqzhLoAAAAAAAAAAAAAAAAAoL4jhAMAAAAAAAAA\nAAAAAABUEyEcAAAAAAAAAAAAAAAAoJoI4QAAAAAAAAAAAAAAAADVRAgHAAAAAAAAAAAAAAAAqCZC\nOAAAAAAAAAAAAAAAAEA1EcIBAAAAAAAogdPp1K5du4qNJyUlqUuXLurSpYsef/zxEFRWMcGoc+HC\nhf5rfPLJJ0GuUMrKytL+/fuDfl0AAAAAAIBQIIQDAAAAAABwgnXr1mnIkCFatmxZqEsJW8uWLdPA\ngQO1adOmUJcCAAAAAAAQFLZQFwAAAAAAAFCX/PHHH7r99ttDXUZY+/bbbzV+/PhQlwEAAAAAABBU\nhHAAAAAAAACK8Hg8ZR5v3bq1fv3111qqJrSGDRumYcOGBf265X3HAAAAAAAA9RHLUQEAAAAAAAAA\nAAAAAADVRAgHAAAAAAAAAAAAAAAAqCbDNE0z1EUAAAAAAAAUlZOTo/nz52vlypXavXu3jh8/rvj4\neJ155pkaPHiwBg4cKIul+J8t2rhxo2699VZJ0qJFi9SpUye9++67WrZsmX7//Xc5nU61atVKl156\nqcaOHatmzZoFnN+lS5dSa5ozZ4569eqlpKQkXX755ZKkESNGaPLkyf45Cxcu1COPPCJJ2rRpk1at\nWqU33nhDSUlJ/vpffPFFRURE+M/5448/9M477+irr77SgQMH5HK5lJiYqHPPPVcjR47U2WefXaXv\n8MQ6n3zySX388cdauHChfv31V+Xk5Oikk05Snz59NGbMGLVr167YNYp+nueff17XXHNNwPHc3Fy9\n//77WrFihXbs2KGsrCzFxsaqTZs26t27t2666SY1b968xJpKsmrVKrVu3TpgbOfOnZo3b542btyo\nQ4cOyTRNNW/eXOedd55GjRqlM888s8RrzZgxQy+//LLi4uK0adMmzZo1S/PmzdORI0fUtGlT9erV\nS+np6Vq9erUkaeXKlWrTpk2ptb311lt67rnnJElLlixR586dS50LAAAAAAAaJluoCwAAAAAAAChq\n8+bNuu+++3T48OGA8eTkZH3xxRf64osv9M477+ill14KCHicKCUlRQ8//LB27NgRML5r1y7t2rVL\nH3zwgWbPnl1qiKO63nvvPU2fPj2g/qysrIAAzgcffKCnnnpKeXl5AecmJSUpKSlJixYt0ogRI/SP\nf/xDdru9yrVkZWXp9ttv1/r16wPG9+3bp3nz5umjjz7SSy+9pD59+lT4mn/88YfGjh2r3bt3B4yn\npqYqNTVVmzdv1uzZszV9+nT179+/0jWbpqnp06dr5syZ8nq9Acf27t2rvXv36sMPP9TNN9+sRx55\nRDZb6f+ba/r06Xrrrbf8+4cOHZLVatXQoUP9IZwlS5bonnvuKfUaixcvliR17dqVAA4AAAAAACgR\nIRwAAAAAAFBn7Ny5U2PGjFF2drZiYmJ000036cILL1RcXJwOHDigpUuXauXKlfrhhx90xx13aMGC\nBYqOji7xWn/729+UnJysPn366IYbblDLli2VlJSkWbNmacuWLcrIyNDEiRO1dOlSGYYhydc958iR\nIxo3bpwkXweZUaNGSZLatm1bqc/ywgsv6OSTT9Zf/vIXtWnTRj/99JM6dOjgP75w4UI99thjkqTW\nrVvrlltu0VlnnSWr1arffvtN8+bN0/bt27VgwQK5XC5NnTq10t9ngaVLl0rydfoZPXq0OnXqpMOH\nD2v+/PnauHGjsrOzNXHiRH322WeKjY2t0DX/9re/affu3bJarRozZox69+6txo0b69ixY1qzZo0W\nLFig3NxcTZgwQcuXL1fz5s3VvHlzLVq0SD///LP/s99///3+7jhFQ1VPP/205syZI0lKSEjQbbfd\npp49e8pisWjz5s2aNWuWjhw5orlz5yorK0vPPPNMiXVmZWXprbfe0qmnnqr77rtPzZo104YNG3TJ\nJZfotNNOU3x8vNLS0soM4Wzfvt0f5ho6dGiFvh8AAAAAANDwEMIBAAAAAAB1xoQJE5Sdna0WLVro\nnXfeCQi+dOvWTQMHDtS8efM0efJk7dixQ6+++qoeeuihEq+VnJysP/3pTxo/fnzANfr376/hw4fr\nl19+0W+//abNmzere/fukqTTTz9dcXFx/vmJiYk6/fTTq/RZDMPQzJkz1alTJ0lSz549/ccOHz7s\nX8bqwgsv1KuvvhoQJjr77LM1dOhQf0ho4cKFGjhwoC655JIq1SJJV155paZPny6Hw+Efu+qqqzRu\n3DitXbtWKSkp+vLLLzVw4MByr3XgwAFt2LBBki9Ec/fddwcc79u3rzp16qTJkycrOztbS5cu1dix\nY+VwOHT66acrIyPDP7dly5bFvuPvvvvOH8Dp0KGD5syZExDQ6dmzp4YOHaqxY8dq69at+uijj9Sv\nXz9deeWVxWr1er2Ki4vTnDlz1KRJE0nSueee6z8+aNAgzZ07V7t379bPP/9cYmekjz/+WJJkt9uL\nLckFAAAAAABQoPji6QAAAAAAACHw9ddfa/v27ZKkiRMnltp55uabb9b5558vSZo/f75cLleJ8xIT\nE3X//fcXG3c4HAHdTH755Zfqll6i888/3x/AOdG7776rnJwc2Ww2TZs2rcRuPjabTZMmTfKHggpC\nKVXhcDg0efLkgACO5AsKFXT6kXydiCri6NGj/u127dqVOOeGG27Q8OHD9cADD6hbt26VqnfmzJn+\n7WeffbbEZcfi4+P1r3/9S1arVZIClps60YABA/wBnBMNGzbMv71kyZJixz0ej7+TUN++fUu9DgAA\nAAAAACEcAAAAAABQJ6xevdq/3bt37zLn9u3bV5J0/PhxbdmypcQ5F1xwgWy2kpsAFw34ZGVlVbLS\niinorlOSgs/aqVMnnXTSSaXOi4uL0znnnCNJ+vbbb0sNHJWnW7duSkhIKPFY0RBNenp6ha7Xtm1b\n/3f7zDPPaOXKlcVqi4iI0JQpU3TPPfcEdJ4pj9vt9nfZ6dq1a5kBnrZt2+riiy+WJG3ZskWpqakl\nzuvRo0ep1+jatas6d+4sSfrkk0/k8XgCjq9bt07JycmSWIoKAAAAAACUjeWoAAAAAABAnVDQBUeS\nv9NNRezfv98fVCmqVatWpZ5TtPOM2+2u8L0q4+STTy5x3O12a8eOHZKkX3/9VV26dKnQ9XJycpSS\nkqIWLVpUupayzomIiAiorSISEhI0fPhwzZ8/X4cPH9a9996rmJgY9erVSxdddJF69+6tjh07VrpO\nSTp48KA/GFVWkKlA9+7dtWbNGpmmqZ07d5b4a6e87+z666/X1KlTlZycrA0bNgSEwAqWokpISPCH\nvwAAAAAAAEpCJxwAAAAAAFAnlNbFpDwZGRkljsfExJR6jmEYVbpXZcTGxpY4npGRIa/XW6VrVrRT\nzYnK+i6KMk2zwtf8+9//rjFjxvg74mRlZenzzz/XlClTNHDgQF1xxRV64YUXdOzYsUrVmpaW5t9u\n2rRpufObNWvm3y7t+yntn0WBwYMH+z9H0SWpsrKytHLlSknSoEGDZLfby60HAAAAAAA0XHTCAQAA\nAAAAdUJBF5aEhATNnj27wueVtZxTKJUW9CnabaZPnz568MEHK3zNoktHhZrdbtejjz6qu+66S8uX\nL9cXX3yhb7/9Vrm5uZKkffv26fXXX9e7776rmTNnlrmsVFGVCQJJClg+qrTvvLzQVdOmTdW3b1+t\nWrVKn332mSZNmqTIyEitWLFCOTk5kliKCgAAAAAAlI8QDgAAAAAAqBPi4+MlSdnZ2erSpYsslvBs\n4FvwOSXJ6/Xq9NNPD2E11ZeYmKhbbrlFt9xyi5xOp77//nt9/fXX+uSTT3TgwAFlZGRowoQJ+t//\n/lehf6aNGzf2b6ekpJQ7v+icot9tZQ0bNkyrVq1SVlaW1q5dqyuvvFLLli2TJHXu3Fldu3at8rUB\nAAAAAEDDEJ7/NwsAAAAAANQ7p556qiQpLy9P27dvL3Pu2rVrNWvWLC1fvrzSyx2FmsPh8He02bp1\na0BnnJLMnz9f8+bN0+rVq8udW1u8Xq/279+v9evXB4w7HA5dcMEFevDBB/Xpp5+qR48ekqQ9e/bo\n999/r9C127Rpo+joaEnSTz/9VO78H3/80b/doUOHin6EYvr27asmTZpIkj+MU/D56IIDAAAAAAAq\nghAOAAAAAACoEy6++GL/9rvvvlvqPI/HoyeffFLTpk3Tn//8Z/9yQcFSGx14Cj5rWlqaPvnkk1Ln\n7d27V5MnT9bkyZP11FNPyWarG02N//GPf6h///667bbbtH///hLnFARyCuTl5fm3y/qOrVar/7yt\nW7fq559/LnXu3r17/UGZ0047TU2bNq3U5yjKbrdr8ODBkqTVq1drzZo1cjqdslqt/nEAAAAAAICy\nEMIBAAAAAAB1Qv/+/dWmTRtJ0ocffqjFixeXOG/q1KlKSkqSJF1++eVq1apVUOtwOBz+7ezs7KBe\nu8Ctt94qq9UqSXr66af166+/FpuTk5OjCRMmyOv1SpJGjx5dI7VUxWWXXebfnjp1qkzTLDYnJydH\nq1atkiTFxMQEdKkp7zu+/fbb/dsPP/ywjh49WmxOenq6xo8fL4/HI0kaO3ZsFT5JoGHDhknyhaNe\nfPFFSb7AVGJiYrWvDQAAAAAAwl/d+ONTAAAAAACgwbPZbJo2bZrGjBkjl8ulhx9+WF988YWuueYa\nJSYm6sCBA1qwYIE2bNggSWrcuLEeffTRoNeRkJAgu90ul8ulpUuX6qKLLlKjRo3Url07xcfHB+Ue\n7du31/jx4/Xcc88pLS1NN954o2666SZdcsklcjgc2rFjh/7zn/9oz549kqRu3brp5ptvDsq9g6Ff\nv34666yztGXLFq1atUrXX3+9Ro0apfbt28s0Te3evVtz587Vzp07JUl33HGHoqKi/OcXDbW89957\n6ty5s2w2m04//XRFRUXp/PPP1+jRo/XOO+9o165dGjJkiMaMGaOePXvKMAxt2bJFs2fP1qFDhyRJ\ngwYN0rXXXlvtz3XaaafpjDPO0LZt2/zf/XXXXVft6wIAAAAAgIaBEA4AAAAAAKgzevbsqTfffFPj\nx49XWlqali1bpmXLlhWb16JFC73yyitq3bp10GuwWq3q16+fli9friNHjujOO++U5OtYc/311wft\nPnfddZcMw9ALL7yg3NxczZo1S7NmzSo279xzz9XLL78su90etHtXl8Vi0csvv6w77rhDv/32m7Zu\n3arHHnus2DzDMDRq1Cjdc889AeMtW7ZU165dtXXrVu3cudPf5eftt9/2L0X16KOPym63a/bs2UpJ\nSdHzzz9f4vVvu+02Pfjgg0H7bMOGDdO2bdsk+YJe/fv3D9q1AQAAAABAeCOEAwAAAAAA6pSLLrpI\nq1at0vz587V69Wrt2rVLmZmZio6O1imnnKLLL79cI0eOVGxsbI3V8PTTT6tp06ZatWqVjh07pkaN\nGik1NTXo97nzzjs1YMAAzZs3T+vWrdPBgweVk5Oj+Ph4de3aVUOGDNHVV18ti6XurSjeokULffTR\nR/rwww+1YsUK7dixQ2lpabLb7WrevLl69eql66+/Xt27dy/x/Ndff13PPvus1q1bp4yMDMXHxwcs\nO2WxWDRx4kRde+21evfdd7Vx40YdPnxYFotFLVu2VK9evTR8+HCddtppQf1cAwcO1JQpU/zbRZfO\nAgAAAAAAKIthlrRoNwAAAAAAANAArVmzRuPGjZMkLViwQD169AhxRQAAAAAAoL6oe3+MCgAAAAAA\nAAiRhQsXSpJOOeUUAjgAAAAAAKBSCOEAAAAAAAAAktatW6eVK1dKkkaNGhXiagAAAAAAQH1jC3UB\nAAAAAAAAQKhMmTJFWVlZyszM1Jo1a+R2u9WiRQtdf/31oS4NAAAAAADUM4RwAAAAAAAA0GClpKRo\n2bJl/n273a6nn35aUVFRIawKAAAAAADURyxHBQAAAAAAgAbr3HPPVXx8vKKiotSzZ0/NnDlTvXv3\nDnVZAAAAAACgHjJM0zRDXYQkJSdnhrqECktIiFZqanaoywAAoFbw3AMAhBLPIQBAQ8OzDwBQH/H8\nAgA0JImJcaUeoxNOFdhs1lCXAABAreG5BwAIJZ5DAICGhmcfAKA+4vkFAIAPIRwAAAAAAAAAAAAA\nAACgmgjhAAAAAAAAAAAAAAAAANVECAcAAAAAAAAAAAAAAACoJkI4AAAAAAAAAAAAAAAAQDURwgEA\nAAAAAAAAAAAAAACqiRAOAAAAAAAAAAAAAAAAUE2EcAAAAAAAAAAAAAAAAIBqIoQDAAAAAAAAAAAA\nAACAWrNs2RK99tqMGrv+999/qyeeeKTY+IsvTtehQ4cCxvbu3aP77hsXlPvagnIVAAAAAAAAAAAA\nAAAAoA574IEHa/T6hHAAAAAAAAAAAAAAAAAagJhJjyliyaKgXjNv8HXKmjSl7Dl5uXr66Sd16NAh\nuVwuXXbZ5f5j8+fP1apVn8lqtap797N1zz1/1ubNP+rll/8lm82myMhITZkyTQ5HhP75z6eVlLRf\nXq9Xd911t84559xS77l//3799a/3KT09XUOHXq9Bg67TffeN04QJjyomJlaTJz8m0zTVpEnToH0X\nhHAAAAAAAAAAAAAAAABQYxYt+lAtWrTUk09O1f79+7R+/Vc6fvy4du36TZ9/vkKvvz5LVqtVf//7\nw/r66y/144/fq1+//rrxxpv01VdrlZGRqfXr/6fGjeP1yCOPKz09TffeO05z575f6j09HremTXtB\nXq9HY8bcpN69+/qPzZkzU/37D9CQIUO1atVn+uij/wblcxLCAQAAAAAAAAAAAAAAaACyJk0pt2tN\nTdi3b68uuOAiSVKbNm21ZUucUlJStHfvHnXtepZsNl98pXv3Hvr9910aPfp2zZkzSw88cLcSE5vr\njDPO1K5dv2nz5h+0bdvPknwhm7S0NMXHx5d4zzPOOEt2u12SXR06dNChQwf9x/bv36fBg4dKks46\nq3vQQjiWoFwFAAAAAAAAAAAAAAAAKEG7dh20ffs2SdKBA0l6441X8sfba9u2n+V2u2Wapn788Qe1\nadNOn322TFdfPUgzZryhDh06avHihWrXrr369x+gl19+U9Onv6TLLuuvRo0alXrPnTt/ldvtVk5O\njvbs+V2tWrX2H2vfvqO2bt0sSf66goFOOAAAAAAAAAAAAAAAAKgx1147TFOnTtZ9942Tx+PRiBE3\nKz09TZ06naJ+/frr7rvvkGma6tatuy655FJt27ZVzzwzRVFRUTIMQw8//Hc1a5aoadOm6L77xikr\n67iGDh0ui6X03jMOh0MPPfRnHT9+XGPHjlOjRo39x8aMuUOTJz+mlSs/U8uWrYL2OQ3TNM2gXa0a\nkpMzQ11ChSUmxtWregEAqA6eewCAUOI5BABoaHj2AQDqI55fAICGJDExrtRjdMIBAAAAAAAAAAAA\nAABAvTN79lv67rtNxcYfffSJoHa4qShCOAAAAAAAAAAAAAAAAKh3br/9Lt1++12hLsOv9MWxAAAA\nAAAAAAAAAAAAAFQIIRwAAAAAAAAAAAAAAACgmgjhAAAAAAAAAAAAAAAAANVECAcAAAAAAAAAAABA\ng+P1mqEuAQAQZgjhAAAAAAAAAAAAAGhwPF5TXpMgDgAgeAjhAAAAAAAAAAAAAGhwTNOUx+MNdRkA\ngDBCCAcAAAAAAAAAAABAg2Oavm44AAAEiy3UBQAAAAAAAAAAAABAbfOapkyWowIABFGFOuH89NNP\nGj16dInHcnJyNHLkSO3atcs/9sYbb2jEiBEaNmyYPvjgg+BUCgAAAAAAAAAAAABBRCMcAEAwldsJ\n56233tLixYsVFRVV7NiWLVv0xBNP6PDhw/6xjRs36ocfftD8+fOVk5OjWbNmBbdiAAAAAAAAAAAA\nAKimpv/vNnkcEcp7c2aoSwEAhIlyO+G0bdtWM2bMKPGY0+nUK6+8oo4dO/rHvvrqK3Xu3Fn33nuv\n/vSnP+nSSy8NWrEAAAAAAAAAAAAAEAwxyxar0aIPJI8n1KUAAMJEuZ1wBgwYoKSkpBKP9ezZs9hY\namqqDh48qNdff11JSUm6++679emnn8owjDLvk5AQLZvNWsGyQy8xMS7UJQAAUGt47gEAQonnEACg\noeHZBwCoj+rz8yvRlSm1aBPqMgAAYaDcEE5lxcfHq2PHjnI4HOrYsaMiIiJ07NgxNW3atMzzUlOz\ng11KjUlMjFNycmaoywAAoFbw3AMAhBLPIQBAQ8OzDwBQH9XL55fbrcT8zezn/qWsxyaFshoAQD1S\nVvC03OWoKqtnz5768ssvZZqmDh8+rJycHMXHxwf7NgAAAAAAAAAAAABQNbm5/s3ol54PYSEAgHBS\n6U44S5YsUXZ2tkaMGFHi8csuu0ybNm3SDTfcINM09fjjj8tqrT/LTAEAAAAAAAAAAAAIb5aM9FCX\nAAAIQ4Zpmmaoi5BUr1rU1cuWegAAVBHPPQBAKPEcAgA0NDz7AAD1UX18ftk2blDC4Cv9+8lHMkJY\nDQCgPqnV5agAAAAAAAAAAAAAoC4zXM7AgbrRtwAAUM8RwgEAAAAAAAAAAADQsDgDQzgGy1MBAIKA\nEA4AAAAAAAAAAACABsVwuwL2LSlHQ1QJACCcEMIBAAAAAAAAAAAA0LC43JIkb2JzSZLx85ZQVgMA\nCBOEcAAAAAAAAAAAAAA0KAWdcNxndZMkJdw5JpTlAADCBCEcAAAAAAAAAAAAAA2LyxfC8cbHh7gQ\nAEA4IYQDAAAAAAAAAAAAoGFx+5aj8rTvEOJCAADhhBAOAAAAAAAAAAAAgAbFyO+E4+l0qiTJGxsb\nynIAAGGCEA4AAAAAAAAAAACAhiU/hCO7Xe7Tz5BptYW2HgBAWOBpAgAAAAAAAAAAAKBBMdy+EI5p\ns8u2fZtvLD1NZuP4UJYFAKjn6IQDAAAAAAAAAAAAoGFxuX1/t9v9QxEfvBeiYgAA4YIQDgAAAAAA\nAAAAAIAGxbrnd0mSaWfhEABA8BDCAQAAAAAAAAAAANCgRL09U5JkOXpUru5nS5K8bdqFsiQAQBgg\nhAMAAAAAAAAAAACgQTIy0pU3fIQkyfr9dyGuBgBQ3xHCAQAAAAAAAAAAANAguc/uKTMiUpIU+8Kz\nIa4GAFDfEcIBAAAAAAAAAAAA0HCYpn/T3fM8mY0bh7AYAEA4IYQDAAAAAAAAAAAAoOHIywvY9bRr\nH5o6AABhhxAOAAAAAAAAAAAAgAbDyMqSJDnPv1CSZDZqVHiwSJccAAAqixAOAAAAAAAAAAAAgAbD\nyPaFcLzt2kmSPJ1O9R+LWPxRSGoCAIQHQjgAAAAAAAAAAAAAGgwjfzkqMzKq2DHbxvW1XQ4AIIwQ\nwgEAAAAAAAAAAADQcOTmSpLMyIhih7wtW9d2NQCAMEIIBwAAAAAAAAAAAECDYeT5QjiKiPSPHX9s\nkiTJ27JlCCoCAIQLQjgAAAAAAAAAAAAAGgz/clQRhZ1wzGaJvg2nMxQlAQDCBCEcAAAAAAAAAAAA\nAA2C1zSLLEdV2AnHdDgkSYbLFZK6AADhgRAOAAAAAAAAAAAAgLBn37BOia0T5fhilW+gaCec/BCO\nnHkhqAwAEC4I4QAAAAAAAAAAAAAIa44lixQ/5CpZXE5Fv/GKJMmMiCwywRfIMZwuudzeUJQIAAgD\nhHAAAAAAAAAAAAAAhCe3W2ZKihrfcWvxYwGdcOySJMfKz5Qw+EoZ6Wm1VSEAIIwQwgEAAAAAAAAA\nAAAQNkzT9G83GjNKTc/vXvK8IiEc2X3LUTm+XK2o775R5Nuza7RGAEB4IoQDAAAAAAAAAAAAIGx4\nvKay0o/Lm5eniBXLZc3MkKf5ScXmmY6IErclyXDm1XidAIDwYwt1AQAAAAAAAAAAAAAQLB6vqbZd\n28vbLNE/Zj1yuNg8b+vWhTv5y1EVMPII4QAAKo8QDgAAAAAAAAAAAICw4fV4ZXE6ZTl4oNixY19/\nK+ubryun7+Wynt3TP35iJxzl5lbsXl5TFotRrXoBAOGDEA4AAAAAAAAAAACAsOHNKT1A4zm1s45P\neVZREYGvSc2YmMD9zMwK3ctDCAcAUIQl1AUAAAAAAAAAAAAAQFCkHpPlwP6AIW+jRpIk0/CFZey2\n4q9IzbhGAfvG0aMVup3H661KlQCAMEUnHAAAAAAAAAAAAABhIbFL+2JjziuuUu65veQ+qYUkyWYt\nIYQTGxuwb6Qdq9D9vF6z8kUCAMIWIRwAAAAAAAAAAAAAYSvyw/eV+dq/y54UESHTapXh8UiSLKmp\nFbq215QsO3fI276DZLdXt1QAQD3HclQAAAAAAAAAAAAAwlbutcMqNK8ggCNJ1rSKhXASx92qpr3P\nVdz9f6pSbQCA8EIIBwAAAAAAAAAAAEBYcrdspczXZ1b6PGtaqmSWv9RU7PJPJEmRCz+o9D0AAOGH\nEA4AAAAAAAAAAACAsOO8sLdSf9gmWa2VPtdwuWRkHS97ktdbxcoAAOGKEA4AAAAAAAAAAACAsJM3\nfKRkGBWe7+pxdsC+kVrOklQuV1XKAgCEMUI4AAAAAAAAAAAAAMJO7s23Vmq+q2+/gH3LZ8t9G8eP\nyzhyxD/uye+AY7ic1SsQABB2COEAAAAAAAAAAAAACCvpjzxeqS44kiTTDNhNeORBGWmpanLxeWp2\n5imS2y1J8njy59EJBwBwAkI4AAAAAAAAAAAAAMKK1Wqt9DnZ4+7R8Qt6K33uAv9Y49EjZT14wLfj\n9HW+8Xh9IRz7NxurXygAIKwQwgEAAAAAAAAAAAAQXirbBUeS2by5jn2wRM4rByp71C2SJPvG9YWX\n9Pg64Zg/K8KdAAAgAElEQVSHDsl0ueRYtiQ4tQIAwgYhHAAAAAAAAAAAAADhpQqdcCQpwuE7z927\nT/GDbrcsfxxUu/POUNzokXKf1yvgsJGWKvtfH5B97eoq3RsAUP/ZQl0AAAAAAAAAAAAAAASTp2On\nKp1nye+gY7jdxQ+63LL+sl2SFPX5Ch0/IajTrHM7372/WKFjP2yr0v0BAPUbnXAAAAAAAAAAAAAA\n1HueI8n+beeAgdW6lvXnzcXGDI9bhsvp34996vGSzz2QVK17AwDqL0I4AAAAAAAAAAAAAOq9Fmf6\nut9kn3O+lN/RpqqcV13j3867erBvw+2W5eDBKl3Psm+vHEsWVasmAEDdx3JUAAAAAAAAAAAAAOq3\nlBT/pkVmtS/nuuRSZU59Tq7GCYr6ek3+oEtxD4+v0Pm2TRsV8d/35W7ZSq7hI9Tkkl4ysrN1bPV6\nec7oWu36AAB1EyEcAAAAAAAAAAAAAPWWkXpMzU7v4N+35uUG5bq5d4zzbWz4WpJkST1W4XMTrrnC\nv+2ZM0tGdrYkybbha0I4ABDGWI4KAAAAAAAAAAAAQL0VM+XJgH0jSCGcAmaEQ5IU8b9PqnS+df8+\n/3ajvz0UlJoAAHUTIRwAAAAAAAAAAAAA9VbUO7MD9o3c4IZwIpZ/KkmKfun5oF4XABB+COEAAAAA\nAAAAAAAAqLdcZ3YL2Ddyc4J6fTMmpsJzUzZtDuq9AQD1CyEcAAAAAAAAAAAAAPWW12INHHC7g3r9\n409NrdC8lO+3ytuuvY6u2ajjD07U0e2/K+ORx5V3yaX+OZ74hKDWBgCoWwjhAAAAAAAAAAAAAKg3\nvKbp37ZtWK+IzT8ETjCM4N6vxckB++7WbUqelz9unn66cib+XWbTpsob/5AyZ85Rxouvyt3pFBku\nZ1BrAwDULYRwAAAAAAAAAAAAANQbWTku/3bMc88UnxDkEI6ncxf/dvbd98uSU7nlrszG8cobdYsM\nl0uWrCzp+PFq1WMWCSEBAOoWQjgAAAAAAAAAAAAA6gXH4o/UsX0z2dd/LUly9b64+CRL8F+Bpr/w\nsnIGXK2sxyfLyMmu0jWs+/ZKkmJe+Ge1aiGDAwB1FyEcAAAAAAAAAAAAAPVC4zvHSJLirx0oSfI2\nbVZsjhkdG/T7Om++VcffeU+yWmVkF4Zw0l/9d6WvZdrt1arFFCkcAKirCOEAAAAAAAAAAAAAqJ9c\nTklSxouvKvvGUXJ27KT0/8yrlVtnPvaknDfcWOH5WeMfkiR5Tjm1WvelEw4A1F22UBcAAAAAAAAA\nAAAAAJVmmjKcLt9mQhNlvfyGnC6PHHZrjd42beFSRT43TXm3jZUkHf3oE7kjo1XeXb3tOvg23O5q\n3d8khQMAdRYhHAAAAAAAAAAAAAB13wnhk8STGhcecviWeLLban4hENfFl8h18SX+fWev3vKaZrkh\nHNPqm2F4vdW6PxkcAKi7COEAAAAAAAAAAAAAqPuysko9ZMbESZIMw6itavwsFslmVCD8Y8t/NVvt\nTjjVOh0AUINqPgoKAAAAAAAAAADCHsujAKhpztQ0SZKnbftix8yEhFquppDVYqlY+Ce/E061Qzji\n5y0A1FWEcAAAAAAAAAAAQLU5XdVbXgUAyuKYN0etep4hSfK0bq3UlWuVfef/8x/3No4PVWkVZlrz\nO+F4PdW7DhkcAKizCOEAAAAAAAAAAIBqy3NV76UyAJSl8fj7/NtGVpbc3XrI1beff8yMr/shnILl\nqIxqL0dFCgcA6ipCOAAAAAAAAAAAoNpcbjrhAOHM7ak7/45nznhdkuTucXbhYEREiKqpBGv+q1l3\nNTvhBKEUAEDNsIW6AAAAAAAAAAAAUP95vHXnBT2A4DuanqsWTaJDc/MTOr94OnSUJHlPaqGDr86W\n0SiuXrz0NAs64eTlVu86pHAAoM6iEw4AAAAAAAAAAKgej0eJTz8h6/Ztoa4EQE0wTTmPJEuScp3V\nW0qpSk5cvqlI15u8a4bI7Hd5LRdUNd7WbSVJ1t93V+s6LEcFAHVXfQiFAgAAAAAAAAAQUm6PVzYr\nf661NI5Pl6nx229Ib7+h5CMZoS4HQJBFT/s/9Xz+WeXeMEKJ/10gScq+7U7lXX+jb0JCtGyp2TV2\nfyM3x7+dNvOdgGMWw5DVUj9+Pnsbx/s28vKqdR0yOABQdxHCAQAAAAAAAACgHC43IZwyWa2hrgBA\nDYp5/llJUmR+AEeSov/zb0X/59/+/YRaqCP3umFyDb42YMxqNWSxGLVw9yCIcEiSjGqHcEjhAEBd\nRQgHAAAAAAAAAICyuN2KefZpWQZeJfe554e6mrrJRggHaIiy/vKQJCkm2qGsbGfN3sxiKG/o8GLD\ndlv9CUiajvxltKoZwvGSwQGAOosQDgAAAAAAAAAAZXCsWqHGM56Te8UnSl27MdTl1KoKL8Pl9dZ8\nMQDqnOxHH5ckxSTGKTs5MyQ1WIx60gVHkiJ8IZyIL1aGuJCGwZuUJEuzZlJkZKhLAdCA1J9oKAAA\nAAAAAAAAIWAc971Ytv2yPcSV1D7zm42yvvlG+RNd7povBkDImJbirxRTPltd+4XUd0WW7jMyM6p8\nGZajKp+RmaGTzjlDCVf1C3UpABoYQjgAAAAAAAAAAJSlPnVZCKacHLW8doCaPDZBxrGUMqcazuot\nrQKgbjs2pPgyUN4e54SgkvARNfPNKodpTFPysiZVmazbfcFZ27afQ1wJgIaGEA4AAAAAAAAAAGVp\noCGcqNn/Ltxxe8qe7HTWbDEAQsY4lqKmixYEjKV8vzVE1YQPy949yjmeU6VzPaaprFxXkCsKL7H/\nmBjqEgA0UIRwAAAAAAAAAAAoSwMN4RgZ6YXb5XS6MQjhAGErYvGiYmPeVq1DUEl4iZo3R+06tZA8\n5YQcS2B6Tbnc3hqoKnxYDh0q3D58qIyZABBchHAAAAAAAAAAIEzlOt2hLgH1mLdZM/+2kZdb9mSW\nowLCl81WfKyBhhODIWXjjwH7RQOPFWKa6tq1lVoPvyaIVYUfd5Hl0hpfd3UIKwHQ0BDCAQAAAAAA\nAIAwlZtHCCcoTDPUFYSEGZ9QuJNbTiecPDrhAGErz/fvf1a/K5Q+c45S/vliiAuq37wdOsobEenf\nj5n8eKXOt3+1VobHo5gfNgW7tLBiHDns37bt+i2ElQBoaAjhAAAAAAAAAEAYsn/9pU7t1FyOFZ+G\nupQ6z1teyMbdQMNMlsJXCOV1wjHL65QDoN4qWG7ONWasnIOvk3fM7SGuqP7zJib6t6PmzanUudYd\nv/q3zSosZdVQOL47IaTEdwWglhDCAQAAAAAAAIAwFPXqS5Kk6GenhriSui/7j2TJ6y19QkN9cVfk\ncxt5ZXfCiVi6uHDH5aqpigCEQsFycxERoa0jjFgquwRVPtv33yrukYf8++6U1GCVFF6cxbuzWQ4e\n8P19/z7ZvtlY2xUBaEAI4QAAAAAAAABAOLI7JEmGs+zwRENnHEtRhx6nqNHIYaXPaaidcIqGj3LL\n7nTj2PJT4faqFTVVEYAQ8IfwCOEEjSUjo0rnxV87MGDf+dsuZWSzHOCJHGs+LzbWtOeZinnwz2ra\n80wlDLpCic0bKfqFf4agOgDhjhAOAAAAAAAAAIQh02H3bZTwp8FRyLp/nyQpYnXxF3Z+Deg7dLmL\ndL8p0h2ozE44JyznZeRkB70uAKETOfdtSZLpcIS4kgYuJ6fYz+L2112hFldc3HCXTSyFfd3X/u3U\nV97yb0e/85+AeTFTn1LkCWMAUF2EcAAAAAAAAAAgDEUs+ViSZLh4MVcW02rzb3tKWZKqqsuG1BcF\nn9u25SdZ1q4pcqAwkGP78bvSL3BiSKkBhZaAhsB66A/fBp1wQip2wl9KHI/Z+YuiZ7xQy9XUbe4e\nZ0uSskbeIvPMs8qcG/fgn2X/ck2ZcwCgMgjhAAAAAAAAAEAYMvIDFNZ9e0JbSF1ntfo387JK7vYS\n8/Tk2qomJNweXyebhMv7qMXI6/zjpqdiAS4jNydgP9xDS0BDZdrphBMsWQ9O9G97YuMqdE7U+/NL\nPWakHK12TWElfwlFb68L5OncpVgXp5zhowL2WUYRQDARwgEAAAAAAAAANFyGUbidmVF79y3SZSbU\nPB5Tlr17ig5IkrxFlqaK+PCDUs+37N8vSXK3ONk3sPmnoNcIoA6IIIQTLNkT/659b/9XnvYdZFRk\nKamcnDIPG7llLBkYAuYJyxTWuvxwqBkZKVmtOpp0VMlHMpR8IEXJRzJ0/OXXlfpJYfDGQogJQBAR\nwgEAAAAAAACAMJY7bHioS6jbioRhjGPHauWWMVMmKfHkBBlH68ZLP292lpqe182/bxzP9G0cOOgf\ns+3dI5Xyojju4fG+OflL1kTSUQAIS6bBa8VgsvS/XN6mzWRUoOuY/acfyjzu/7ldBxjHMxX953tk\n3fFryGpwH88P4UREBh6w231/Nwy5z+tVOO5y1VJlABoCnpYAAAAAAAAAEM5Mb6grqNOKvvxs9K9/\nljnX64gIyj2jX3pekmT/blNQrlcdtm+/UdMJDwSMGZmZUk6O4l95IWDcciCpcMc0Zf6+W5Lk7tZd\nkpQxZZpMh0OG01mzRQMIjVB3NwkzEXarTLtdhstV7nfbeMRQ/7YZGVnseF0K4US99rJiF8xT45tD\nFwL2ZGfnF1P8uyoq7b0PJUlmTExNlwSgASGEAwAAAAAAAADhpmh3lzwCEWUq8l3FL/5v4YtQ01RO\n+vGAPx1vRgQnhFMgYAmoWub1+j5nwtX91WjJwoBjRmamjIIXmEVYfvxBMk05Fn+khG6nqXmvHoqY\nP1cR/31fkuS+vL/c3XrImpHOy3qgniv4GREw1qp1CCoJb8bx45Ikyw/fydzze+nziixHlbJtV6nX\nCTmnU44Vn0oq3l2u1paoyspS4j+n+O5ptZU51XPGmZKkiI8/kv3JJySvV2ZGupxHa6czHoDwRAgH\nAAAAAAAAAOo4y+FDsr2/oMLBBiM9zb/tzcurqbKqxOOtY515Tlhiyb5xvSSp0S03qu2pLWWkFX6X\nRinLMVVV3GMTg3q9ysh1lv5ZjMzMEpeeSrhrjCI+XqjGd46R7bBv6alGD9wjS0a6JMl7UgtZ9u2V\nJMU+8lANVA2gtuQ6CwOKnvgE5Z3SRQpyEBGS/efNkqSmV/VT8/O7lzvfednlMmPj5Ox0qiQp9/Ir\n5Y2JkTIyarTOioqd8BfZf8xfOssS+Bra6fKUcEbwOb5Y5d8uKVBalBkdLUmyZKQr/pUXFDn3bTU/\npY1andG+JksEEOYI4QAAAAAAAABAHdf42oFKuO8u2dd8UaH5ltQif4K7Di0NZFu7WpH33R3QXaao\nWvtT8kUYnsCXgpaDByRJESuWS5KsBwuXYDLcJddd3xiHD6vJHbfItnFDycePZ8hwlhzeiv3r/aVe\n14yNk/XIYUlS1Ky3ql8ogJAxft0uZWX5djweyWEPbUENVV6eGg+9xr+bMXOOJOnA5xv09aY9Sn/3\nA5mxjXzhyTogav7cwh2b1b8ZPXWyWrduIiM/tFkZlf29gRkdVbgdWXZwzIwOXIbK+su2St0LAEpC\nCAcAAAAAAAAA6jjbbt/SE5ZDf1RoftQbr/q3jVICL6GQcMMQxf93vhyfryzxeE5e7fwp+QAndHyx\n7N8XuH802b9tuFzBX2YpyN11KiJi6SLFrfifEgZfWeJxx+crZbgKw1tHJ0/zb1tKWfIku8+lQa0R\nQOhY9u1V2yt6K/7agb4Bj1uG1Vr2SQiOE57Ztv9+IMfXX0qSnJ1PkxkbJ0kyDCk6yiGLYchsFCfr\n4UOyr/681sstk6Xw10zMC89Jkmxbf670ZfIq2UHHKPKcdl3Wv+zJtsDlqoou+2X542Cl7gsABSoU\nwvnpp580evToEo/l5ORo5MiR2rUrcP3BlJQU9e3bt9g4AAAAAAAAAKCKDKNC06L+M7Nwp5SOJqFk\nSdpXbMy6c4eaXH+NLHv3yLLnd1leelEqspSW7ftvC7syBNMJIZjY/3tSxtGj/v3Go24IOO743ydB\nvb1ty09BvV6FOIp3BjhyqHDZreg3X5OchS+C7a1blnvJ7DdnB6c2ACFnTdovSbJv/lFGepqs2dmy\n7dwR4qrCU/b/uzdg37H2CzUaPEDN2rdQzG23KGH8PYUHowo7vFgMQ9GRvgCJGRsrS26O4m+8rsId\n82qDJfmIYm8cqshn/s8/lrdzd6Wv4927z9eNqaKK/l6hgr9vKuBYu9q/HbFkUaXOBYACtvImvPXW\nW1q8eLGiivxgL7BlyxY98cQTOnz4cMC4y+XS448/rsjIyOBVCgAAAAAAAAANXUVeJp3QqcVwuiSv\nV163WxaHo4YKK5+RkuLfjntkgnLv+H8Bx6P/+bQiN62X6+47Zf/2G0lSZmy0csfeJduG9UoYMkDO\nvpcp/YOPg1uXp3gnGtv2raXOt27ZLOcVA+WwB6crRMKAy5T8R6pUm10mSniZaVgsOrZijZpc0Ve5\nw25Q3IN/9h8z4xop96weitzyY6mXNJs2lSTl3DFOUTPflPvk8oM7AOom01r4+rCgs5olN6e06agG\n10UXS2+84t8vGvyMXrY4YK7jpx/82zarxR/CKarxmJuUM2as7/cCpinJLNzO//2BYZ4wZirgeLFz\nTLPwHClg3IyIUPZfHpI3sbmi/vZQsXqiVq+SVq/y75/00L1KvnG4VMF3yLbvv1W7q/opd8RNypzx\neoXOMfM7tmXc+5cKzT/25TeyLVuqRlMny1q0G14Ov+YBVE25IZy2bdtqxowZevjhh4sdczqdeuWV\nV4odmzZtmkaOHKk333wzeJUCAAAAAAAAQENnKb+5uZF1wnJBLqcSLusty287lHIgRR6vV9YKXCfY\nIhZ/VPYEb/7LwfTCjiyW5CO+c5f6/jS6oyb+hL+7hEBKGS+b3W6PnG5v0EI4khR3x2hl/ufdoF2v\nXO6Slygz4xN8G3aH7Js2Fh5wOHRwyUrF2Q3ZN6yTbda/FfuJLwyVfeXV8lzWzz/1+FPPKGrmm3K2\nbV9T1QOoabbCn29eAnU1y1a1Z4ndZpHV9AVzjYwM/7iRnaXo12YEpbSK8p7cUjJNxbw3t0LzLclH\n5G3TtvTrmaYs+aHjglBu5IJ3KxzCiViaH17q3r1C8z1dTpOnTVtp6uSAcYMQDoAqKjeEM2DAACUl\nJZV4rGfPnsXGFi5cqCZNmqhPnz6VCuEkJETLVsUHTSgkJsaFugQAAGoNzz0AQCjxHAIANDTFnn1e\nr3+zUW6mVN6zcfH7haee1EI2j1vWX3dKkuJnvy4jPUO2yZNqtfOK12vK0iiw23pis9jAzj75IR1r\nWqp/KGb6NMU894z05muF53mzpZNOKvE+uYePypOZqZhTOlS4tjxH8UBS4ycfK3V+zLo1MvpcrMbX\nXi2X2yubwyajMqGmIv88C0QuW6pIu0eKj6/4daqj4DPfcos01/fSNDExTnI389WjwGBS/KAr5XB6\nFB1pl4YN8v21fLnMvDxFDxkiSTrxV2X0xnWKjrXJZY+Q3Vb7oS8A1dCskX8ztmWib2PGjHL/24z/\ndquCpo2Kjw0aJP34o1Twfnb0aOmddySV8h1bi/yMnTFDuuAC37ZhlPxXsI7t3CldcYWi1n4u49ix\nin9kb06Zv5fJznX5njeS1DjGP17hX18rl0uSGrmyy/89UwFPdLGhGJsUw69pAFVQbginsj788EMZ\nhqH169dr+/btmjhxol577TUlJiaWeV5qanawS6kxiYlxSk7ODHUZAADUCp57AIBQ4jkEAGhoSnr2\nxfzfk/K/GvrrX5V8y51lXiNq/yHFSnL27iPj99+l3DwVxG3sE31dzdNPOU3OQUOCWnupTFOxQwcp\n8pv1KrqYVsqP2+Vt3ca/X/B/kI3k5IDTk5MzVfT/Lpsnn6yjh9OL38ftVmL+y+LkQ2kV6xqUnqZm\nI4ZLkjKnPqeImW/K8dsOaceOUs+xb/pGjW+4Vscfm6TYKZOUd8llyvhvJZbIyslRoqTcHj0V+eN3\n/uHcP92rzKnPVfw61RB9OEUxkrJOaqWC15vJyZkyjrvUTFJeRpYi8sezBg9VdkqWXG6vsoqGac65\nKP/E4r9XK/jn5epxjtzRMcq+9TZ5ZJHnltE184FQJxXtZoF6xOtVzIsv+587md9tViNJmW5DuWX8\ntxn/7VY1Eb/u1okxnKPPvyL7po1qfPONkqTkf86QpUcvqU8feUv4jhM8Xtkk5Q69XpkjxtR80fmM\nkzuomSTLN99U6ry0vX/I1a7kXyvWbVul9xco6/FJksWiyBy3P+RZ3q8vr9dU9DuzC+cPHFriM6o0\nJ77Jzk4/rix+TQMoRVnBwKCHcObNm+ffHj16tCZNmlRuAAcAAAAAAAAAULLoF6dX7oT88EnOuHsU\n9cTfZWRnFZ9SpNtMTTPS0xS17kv/vuucnrJ//52sSfvlatmq3KWxIue+HXg905SysqSYmIBxyx8H\nC+ekpsps2rTc2uxfFdYlm03OXhf6QjgnyHx+huL+en/AmOPLNZKkiLWVWyLLctQXMvK2aiUVCeFE\nLnhXkQtqcUkqSZ527X215HfgMe0O34G8PP8cS36GwmatfJjCvuMX2SVF5X/Oo9dcIzOhSZXrRf3i\ndHkU6Qj6ayjUsIj35yu6yM/dRs9NlSSZtdg9rSExXMWXBzTjE+S85DJlXXKZvNcOlSwWeUffWvpF\nTLMGKyzjtk2q9vPcSC8hSJsv4YpLfN/Jq/9S8v7kwI55ZfF6lXUkVSdN+EvhWGxslerz11nkWQgA\nlVHp3/0sWbJE2dnZGjFiRE3UAwAAAAAAAAAoRcFLUK/XlMVS8ospI9W3JISZkCA5HDJKCNxYd/xa\nc0WewJJyNGDf07ad7N9/JzMtTTl5HsVG+UI43oQEWVKL13pi+EWSrLt3yXNWt4Cx+CFXFd4z9Zg8\nFQjh2H7eXGTHpsynnlHsPN/L5+z7x8vYsF65/5gk9wUXycjJVuzfJ/qnGzk55V6/KJfbK7vNIvv6\nr30DkZE6unWXzP37FDv1KVkc9kpdr7rMJk2VN/g6pbVsJU+X03yDNt8rg4jPV/jnFfwqMyrR0STv\nvF6K2LSx2Lh19y65exLCaSjcHpNuOPWQbevPJY5bDyTVciUNg2kv/Nnv6niK8sbmd7uLiFD6ewtl\nt9Xh8JPNpuxB1yl66aKA4ewHHiwzQGzJKAzhWPb8rvih1yjjtZlyX3BhQCjJum+v/j979xngRNm1\nAfiekr690EGxgYq+KogVC3YFFbD72QuKvtgbir1gbyh2ee0FEVEsiNgLiGDvYgGkbC/pycz3I8kk\ns5lkk2za7t7XH2aeeWbmLAspM2fOKZl2SUqhOC45H7VPz9bWVas1xR8iMaG9vcvHIKLeKaUknEGD\nBuGll0J9hMePHx+3/elwH8JUx4mIiIiIiIiIiIgofUIwCHn5MjQN3xaldrPhnEgii1JRCfmfvyF6\n4pNF7A/NTKldUzaI69fp1oObbAYAqDzxGODoExC4/4HQBkXRzWt9dDbKzjjZ8JiVB++D+lX6tlWx\nN4gFtyul2Bx33qotq5IEucSB1lmPwTR/HpxXTNeSUgBAtdr0O7tSO0dEe0MzKvtWwXHrTQCAwKjR\nUGtrgdpatL88r5O9c8e/x17RFTn+loFaXpH2MU2//Gw4XnreFDR98iUTM3oJx9wXga22BrbfvtCh\nUBrEcCJnR5HKWZRd3olHomnZV1BOOx3KVlvrtqWagOO6dBrKzjoNnpNOy0WISTmfeArS/x0Fy8K3\nAQBN736IwIhtkybhBBsatGX73bdDWrMaZWechMZvOyQIC4JhpaBYkfcTe0wCDgAIHk96P4gB4c+V\nXT4GEfVOrANIRERERERERERE1I1UHHYQhD33g//RxwGbPjHEPuNG2P73OABAqawyTMDR5j54X07j\nNOLfZDMEtt5GW6988WnU3Tcz1G7CH9DGFbMF3sMmAgmScASvN2kih9DaGmrPkU6iRzgBxTvpKHgn\nHRW/vUMrllQTfQDAfsv1qL37DrQ8/hSkVf+EBlOo1JN3Bu1mXBdcnPZhYqsc6MZXrYL1sYdgnv0k\nWt9+r8utQqh4CW2tqL1gCgCgbkNrgaOhVAktzbC+9HzcuGvXMcavi9R1Fgsar78VZQ7jxNpUeCce\niT/2OQRl5fYsBpYGOVrNJ7jRxobvJbEqbrwGLX37wXf0sVDLygAAYlsbhLYOrxWBgH49GNQdW2ht\nQeW4A+A6/6K4cwQ23yK9nwH65F/FYoXQ3MykUSLKCJNwiIiIiIiIiIiIiIqVQSsEwetFxcI30Pzl\nEgS22x7qDz8Au+wKAHDcdZs2T60wrmCy5qOvYHfn96a4+YPFML35BlpfmAtp5e+6babPP4V/190h\n+H3amFJWDgDwHHIorAvmGx4zGAhCNBlf4q6YcAgAoOnl1xDcehuoNTWG81xTpkaTkQyqwMRSOybh\nxCQNCU2NUCsTt1ly3H0HAKD0suiNQlXOb/upTKx+6Q1YBg3O2vFEtwul0y4FAMi//4rAdjtk7diU\nOxndhA4Go8vpJsRRwdjvvctw3HnCqfwd5pDZ1PXKdDZH19svZcry5uvaslpalnCeUl4OsSWUpFn+\n38moO2Q87A8/CAAQXM5QAm3scefN0a2L69ZCGThIW7fNmgnzzz/CfFZ8BaCWV16PG+tMcOOh0Vhr\namD+4zeIb7wBGHSJISJKhkk4REREREREREREREVKbG9LuE1oaUbJRefB+tpctDw/B7599tdPsFgM\n95OHbYZAnm+mBrYfCVxwSWi5slK3rfyIQ1G/pkHXckKu3wAAaHvyGTS5Pag482T4Jx0Jy/x5sLzx\nGgBgwMCqTitsVB55GACgbn2L8Q3kmBZYce2mOuqYpBOTNGT65GP4xh+WfH8AvrH7RqtMqEryyUXA\n2qcaao6OLTQat7yh4uP1BWGzpHk7KbbdXSAAmIo/6ay3E+rrYZ95j/E2uy1nrwUEWM1dv11rkvPT\nYulBb2wAACAASURBVLJT4YTVwFYjIP/4vTYcrKpG48dLUbv1ptpY7SYDdLuaPv1Yt+6463bduu2J\nR+Gcfl10IDbZrwOlX/+0Q1dt0UpCkc8ktacdz2peRJS2InlFJiIiIiIiIiIiIqI47sTtpBy33Ajz\nh4sBANZnn4a8dElKhyx4WwVRf1laCAQAjyfhdNlmRfvTL8B7+CS0znw4o1M6rrrMcFzwebVl1dxJ\nK5AOSTixSUOptqaKbfOiOoq/FZNQlriiQTJqCgkXYhOTcPLO64V4/32Ql3wBefmylHfz+BLf6E5I\njUnZUIo/4YwA+btvEm4TbYWrskLFr/2qa+PGmt7/FHV/ro0OyDJQW5v0OGX/PSvpdtPHH0RXVBWm\nr5fr45gyFS3Pz0HD1z91FrIhNeZ9XnA6MzoGERHAJBwiIiIiIiIiIiKiomV+byEAwH3K6QgOGqLb\nJv/+K8TmZgChFg3JbqACQLBffzS9vjA3gaap/nt9Sypx3Vrdevt/LzTe0W6PGxKamyA9/VTS89kf\nfch4Q0wiDazJbzKrUodKBcFoOyrbg/dD+uJzw/3MC98yPvVeY5OerxgkamnWmebX4n/m1nsfRNsB\n47R1gUk4eWe59WZU33AVKsfvj8oDxyZNfouwPTQTQ3ccDqG1Jb2TxSbeMAmnW4h9HW5a+IFuW3C3\nMXmOhroTzymnI1BTC9f/nRQdFATA4dDGfAeHXv8bPzB+r0yF6esV2rL1qSdh/mCxbrsybDh8++wP\nZcDAzE4Qk4wrOuPbgSarvENEFItJOERERERERERERERFqnTapQAA6bdf0bj0a6x+cDbarpgeN8+0\nbCls99+d9Fi+/Q5EYKedcxJnutQ+feA56lht3fbc0wCAwNbbYNWUi+GeFv8zRvj22Eu3XnrBf1F1\n0bnaumvyFDRdeiXck47SzbM8/GDcsQRvTCWcBO27opP1FYTEpiZt2fTj96g69ACUnn06hJZm/bx/\n/42eQ5ahlJXBO3zruIpAxabxrKlQS0oz2jcwanT8oNUKz9PPofmV1wEAYkNDV8KjDJTN1L9G1A7p\nk3S+P6Cg5OppMDU2QF7+VXonU2Iq4fDGdbcgxrSIC26yqX4j24lREmppGZq+/gnOO++L2+a86378\nPudttN8wAwAQ3GprrPt9NVrPuwRKWbnh8VofeCTxycJJfdYXntHHYDbD2+F9P13KoMFomnoRmufM\n142XH7I/ysYfgNr+lQkr6xERxSruT/lEREREREREREREBMHlBGQZpokT4Dn/Yvh2GBU3R/53jbbc\nOv36uO2qtZMkk3yLSWqJVNnw7b0PvJdcDkhSwt3a7rpfty53aEfhPutcBC6+DO2zHsP6dS1wHzoB\nAFA2/fL4g8W2o7I7kserdJ5IYH3lJZRcfL5+t9poooMQCAA+PwRLJ62vCkyx2hC47obsHjSciKFU\nVQMAxDVrks2mLBP/+Tu9HdrbUTr5FG1VtcVXoUoqph2VoLISTncQaavXet8sqGXlaH34CQBA/bNz\nChkWdRdmc1yyaoR1552AmERXqawM3iuno+H3Vahb24TAViN08/277p74NIvfBQAInuj7d92GVtSv\nrtdVssmU/8qr4d9jL/j23id6zi+/gGVJqIKP/ZFZkL9Zgco9dtKqFRIRdcQkHCIiIiIqOCX2CTki\nIiIiIooT2G4HAIAoCoAgoOXtxaj/7je0GDwt/tfbn8Bz7nnxB7Ekb7eUb/6YRCL5m1CLCbWsDDZz\n4gQcAFCGbITARhsj0K8/3N5AXAUbZeAgbVkUBYjexC13BK9PW1bLjZ/I1+YGAkm3R1hfmwvLnBcB\ntxtCXR3KTzlet130uKFm4UZhrqz7cy3W/fQXhAQ3UzMWbv0V3GxzAIDthWcgrvwju+egxFL59+t0\naskz1hefRenrr2qbIgkaKYttQcVKON2C4HYDAIKbbgYA8E44An/8VQ91v/0LGRb1AGZTktvRkgR0\nSNRTS0sR7NPXcLrj8otRNWJzyD98l80QNdp7XzBx8mDlfntC/vknlB97BKTff8tJHETUvTEJh4iI\niIgKzh/gU3FEREREREZ8O+4EAGi/9qa4bWrfvvAdeUzcuGXr4dpNpNZZj0Xnd9ZuKc88J0arbJjC\nrW6Cg4dAllO4bC1JkNethXD/fbqn641Y3nlLW7Zf8F99MkJMJRylojL5OVNMwgGAsilnoPzk4yD/\n+L3xhCJOwhHsdsj2HCRsRdpvxfy+qnfePvvnIUOdVaMRmhpRvdWmKD1vSmhA1T8sE0nQyOh8SW5m\nUxHxhH7HqtWmDZlTeT0m6kRnSZ2+/Q/SrauOEiiDB2vrTW8ugvOyKwEA8j9/Q9qwPvtBdoxpr7Ep\nzbO++FyOIyGi7ojvnkRERERUUEJDA8wvP69/So6IiIiIiEKCQSgmM2BNnBThH7mjttx68x2QY1od\nKTW12rJqs6GoSBKUSn3ii1LbB2IqFVjC7aoG33Yt5J9+TDrVt8fe2rLj2f/B9NEHMRtDlXBWLf8Z\nsHfSbifNah7m99+D4IpWDwkM3URbNn37TVrHyidRELJaBcd54SVwXjEd3iOONtzesZ0Y5YjPbzwe\nTraR/lwJ0e2C9YVnQ+Md2rMJLmd654tN4uH3/W5BS7SyR98rTEzCoTxwXjoNa199G+03zkDr5HMA\nSYLgjlaxC4waDde55xvu2/TuhzmJyX32uWh6cxHq/tmAxntmoW7lv2hYEf95QxWzXDWOiHoEvnsS\nERERUUGVnfp/6HPBFFjmvlzoUIiIiIiIio7S1gY1SQIOALTdca+27B9/qH6jGHMJuMgq4QCA6/xL\ndOuqOcUYReNL266pF8aNtcx+Vrdu+vRjbVlwuaCaTJD69ev0lKm2o4pVftKx2rJaXaMti22taR+r\nuwpuvAlcF1yiJU51VHJZ/O+Msk+IqfqkEwgAqgr7zdfrhju+7qRbCSc28UZQ2I6qO4gkDcZWwpES\nvNYSZZXJBHm3XeE+cwq8N9wSGuuYDGrwGca7974I/CdHFdUkCYFRowGrFcHjjgdKSqAMHISml+YB\nADyHTgiFmSjBkYh6Nb57EhEREVHBKKoK0xefAQB7KBMRERERdeT3w/rbLwhusmnSacGtR6D55DPh\nvGI6lL4dkklibqCqlhy0GOoi9ymn6wcsKbZpEo0TOgyr/ZSUwDPhCG1V+OP36GGaGhEsr0it2kMn\nlXCc50xFw4dfJNxedJWI8sXg567/Lvr9z7SClXDywTJvrrbs22ssfGP2DK/4YPpgMSwxFaJaW12Q\nly/T7S8429M7YWz1G1bCKSilQ2uxRARPqPJIr32touLidsUNtZ91LgDAdda5qFtVh9bn8v9AX2Cv\nsVizpgmu8y4KDSRKcCSiXo1JOERERERUMMGgCphDF9mFcBl4IiIiIqKeTlFSuyFq/uA9AEBwy607\nneu/7Y5QtZGOYpNwOqmoUxAdn2xPsQ2S/NMPhuOqzbilVNuDj6Jl+g0AAPubr0NeuiR0utZWKKVl\nKZ3Te8ihCPTpi9b7ZhlvP+FkKFtulfgAKd4I72lU2RQ/1rcv6lauKUA0vZf0+6/acstzcwCE/q+J\n69dBrNugm7vpZv1gf0T/71yKSV5LSWziTZqt3Ci7fP7Q33+nyTju+Eo4RIUS284xwn3dTWia+wac\n064OfX5IUGEt18wmSfv8Inh5PZOI4jEJh4iIiIgKJqgoUE2hJBx52dICR0NERERElHvysqUw3X1H\nSnPtt94MAFBSaJWUiCoUdzuqjkk3Rjfd0pEw0UiS4Dt3qrZacs0VoYVAADDFJ4kYHrumBv9+9RO8\nxxxvvN3uSLq/f9TolM7T0/h32sV4Q0kp/KN3hioIrJSSB8HBQwAA6xZ+BMgyzB9/AAAouem6pAl6\nvuGhxDKhPc1KOLEJH0zCKZiSSy9A2RknQ/jqK9iuvDzp70L+4XsoJSWG1auI8i3SwtF5YUyCsSAg\nsPseQBEkFavaQ4WshENE8ZiEQ0REREQFoygq1JKS0EoRfIEmIiIiIsq1yoP3RdWtN0Bc+Uenc9Xy\ncgCAb98DMj+hrhJOcd5YbX7ldW3ZP3rnrh1MlhNvi0n4UcXQPCGYehIOAK1tVf30G7Wx9htnwHnC\nKVorsOZXFxjuqzoc8O6zX8rn6iki/46NyMuWQlBVyBeeD4Rb4VBuRKo1SLbQd2/v+MMBAJbX56H8\n9JMAAL6x+8bt1zpnfmjBm+aNZrajKgq22Y+j/K35qDlob5Q9NgvWZ5/Sbff4AlBUFeZ334a0YT3E\n9vaUK5IR5VLL40+h9eTT4Tr3gkKHYiyS2MzK3kRkgEk4RERERFQw0lfLIK1bG1pJsSQ/EREREVFP\nIAQCnc5Rwk+BK0OGZH4iMSbxpBgr4QDw774H/rnpHqxe/nPyJJosMn/5BVRVBQLBtM4pS6FL6hZH\n9CEC95lT4LrzXu3GtX+3MWie/zZab5wB56XTtHmC34/Ajjtl6Scofk0L3sXvN92bNMlJCCdnVD43\nG6XnnZ2v0HolwdkGABDDD8C0PvR43Bz/yB3jd7SEqj2oaSbhCGo08UZQWAknlzptMxWj9OLzIH+9\nXFuX334Lwe9/gG3WzFyERpQxZZNN4Z5xJxB5eK/IRCp7C0zCISIDTMIhIiIiooIZNCHmid40LhoR\nEREREXV7fn/nc8LtX1RH8jZHScVUwina6pOCAMvpp8AyaEBWjpWqdrcfQjAAVcog8aeTffw77wrv\nmVPguvhyqJHfQcDfq773BHbcCW2HH5l0TnOkygoA66uv5DqkXs06d05oIZKMZ5Ac5T14vG69/bgT\noZpD89O+0eyLeY3jQzc5paT592ta+kVowelE/9OPx4B9dkVg+5EAANfUC7MdHlHGRLGIqzKFExTh\n84aSeomIYjAJh4iIiIiKgxLkl1YiIiIi6jUEt6vTOdLqVQg6SqCWlGZ+oth2VEVaCQcAxAK0P9lk\n45pQYoEspb+zlPo+Sk0tAEAtrwSCvasiiMWU/O/Jv8de+QmENLFJZ60PP6EtN372FYJbj4Dr9MkA\ngIbDj4Lzjnsybrlieyimskov+3efb5leSxEbG7Rl+/13AwA8xx6flZiIerpIgqJYtwH+L7+C6ZOP\noHzzTYGjIqJiwSQcIiIiIsqrRGWSVUVBkE/HEREREVEvIbjdnc4RmxoRqKlNq7pLHCXaEka1FGkl\nnAy033ALWsZNxN/Lf4Fn3GHRDZ38XTWs+DF+MI2EGo2Y+qX11mdeRPPRJ8B9yulQ+oeq/fhHbJv+\nObuhSPsuKh5qVZW27J1wBJpffg0N3/yM4GabAwCcN92G9Wsa0H7fLIiyDIgigmVlEOs2pHUe0/Jl\n0ZWY1yHKvrQvpYRfJ2OTcCKCAwZlISKiXsAcqoRjWrEcA8eNRcXEcei735gCB0VExSI/DXaJiIiI\niMJUVTW8MK6aTAgG1YweQiUiIiIi6m5SqYQjuJxAuIpKxvyB6HKxtqPKgHvyOWg6zosyhwltTzyN\nwKyZKLlmGnz77Jd0P2XgILhG7QT7siXamOXzT9M+v5pGEk5gux3QOmMEyqxmeI45HoLLCe9hE9M+\nZ3ckFXMrkV4mWNsHSllZXNKZf8+99RMFAaLJBJMQrV6j9OsPaUN6STgQY87DSjg5lbASTrilYdz8\n8DUZ6wP3xW+02bIVFlHPJghQLBaIXq9+eMMGqH36FCgoIioWTEMnIiIiorxK+ACcP4Agn44jIiIi\nol6i00o4qgrB6YRgd3TtPP5oC5libkeVCVkSIIWTYdxnn4tff9+gVZpJxvbtiq6fPI0kHACwW8PP\nw5pMcE8+B0q//l2PoRuQpc6TcPzDt8pDJASfD6rJnPJ0XRUjmz3Uui0Nakyyj6AwCSeXEl1Kkdas\nTriPuPZf2Oa9oq2rsoy61fXZDo2oRzNqFyqtXVOASPIv0zZ4RL0Fk3CIiIiIKK8i7ahMMRd7AMD6\n+Scou/3mQoRERERERJR/nSXheDwQFAUo6VoSDmJvnMs9qzC6SdZf3pZSbH2UbjKBEbW6Oq35vbUt\nkymVUqcsh5offp/WPiUVQmwFW4sFgteT3vliE9X4wE1OJWr7nejv3fzRBxBaW7X1ltnPYf3q+rT+\nfRARoFRUxo0JTU0FiCS/VFWFP8DXdaJkeucnfyIiIiIqmMiTEhVnnhK3rfL+O/MdDhERERFRQQiu\nUDsqoaEB8Pvjtkt//QkAEMN/ZnyemGOrsqlLxyo2HZNwxBRbH7n+7yTdunf/A9M+t2/MXnBusz3a\nr7kx7X17k46/IyOuaVdHVzq09aDsEXx+wJTZa4BqsUIIBg1fqxIJbLdDdIXtqHIqUUUKIWD8+7K8\n/SaElhZt3Td2X62qGBGlwSBRWmhtMZjYs6jNTXD++kehwyAqanxXJSIiIqK8UlWWLCUiIuqJFIXv\n70TpENxuwOlEzZZDUTFuv7jtjluuBwDIf67s0nkC/9lOW1Zrarp0rGLT8aaxlGoSzvTrsOaZudq6\n6bNP0z+52Yy1ry2E+5yp6e9LOr59D4Bz4lEAAHH9ugJH07P4A6HkF3X9eogBP5TyioyOo9qsAJBW\nNZzAsGHRFX5GyJlAUEn41+tx6iuurb8x+uCT+f1F0Q1Way5CI+rxTN98HTcmtrcXIJL0yd99A3Hd\n2oz2rdltR2yx9ygonVV1JOrFmIRDRERERHkVVFQEA3wKjoiIqCcRGhtQsdcuML/zVqFDIeo2BLcL\njjtmAABMK5bD5w8iEIyW9g9s8x8AgFKR2U3zCKVff6z8eRXWrm0GhNSSVLqrVCvhqJVVkPYdGx0w\nZ1YdxGxiG6VsESrKQ392k5uX3YLHA8s9dwHr1kJdvhwAEBg5KrNjWcJJGp7UKxUJMdVvBIXXAHJF\nUVR4fYG4cdPid+F46kltfcPMx+A96RQEHSXwbb0NHHfeCgAIDhqct1iJerL2yeeGFrpD5a9AAJX7\njEH1tsM6nxsR095Oqq8DANRsvVm2IyPqMZiEQ0RERER5pSgqbM/MTjYhb7EQERFRdlhffgGWn39E\n+QlHJ50n/fYrhLbWPEVFVHyCzc3asuB2w/7Avdq6/Y4ZMD01W1tXqqoAAO233d3l80p2O2Sp518K\nTrUSTmhu9O9DtWRWBSKVVkuUIkcJACbhZJN91v2ovu0G1G47DH1PCr0/q1XVGR1LtVgAAMFwG72U\nxD580x1uShdIVysJqgDc3vi/34pjJqFszvMAgJbzL0Fg4iRYzBJUiwWK2wP/jjsBAFpnPd6l8xP1\nZp6jjgUABAYNhrL99qHBQHxSXNFJo7UgAJjfeQu1/SogL/lCNy61t8G8kA9hEBnhtwQiIiIiihP7\nBG62BRUV0srEJfWlX3/J2bmJiIgoN1STWVsOJkioFZoaUbXbKFSO3T1fYREVFdPid9FviyHRAbf+\nZnbl3bei5rLzQ/1bAQjO0HbV4ej6uXtJskiqlXA6UktKMtqvNyQ25YtqtwMABJezwJH0HOLff8WN\nZfp6oobbFZnfmJ/6TrGJN3zYJiGPQRWbdMjfrMDQKSdCaGpMOEc0m2GSJYiCAMFkhnXlb9r/ucA2\n23bp/ES9mi9UHUyQJKiyHBrrBpW/hEA0Ccf08YedJkra7wxVbnTcdWvcNvP772U3OKIegt8SiIiI\niEjHcflFKD1vSs6OH1QUBJI86VVy+UU5OzcRERHliDmahOPzK4aJOOKGDQAAyeCmIFGPpigQV6+C\n7dmndcPmxYuM59eFSvxHkhFUe9eTcHpLsoiYYbut1oeeyHIklC7VFk7C8XgKHEnPYf7w/bixSOJF\n2sKVcCqvnQY4U0uU0rWgYiUcQ0JzE6qPPhzyd99kfIx+B49F9SfvwfbYwwnniDG/C2n9WgAx/z5s\ntozPTdTb+Q44GADgOuscQAy1qBS6w+tdTLWeiknjUbX9Vkmna+/RBtXQlPKutU0l6ql6x7cvIiIi\nIkqZ/YlHUfLSczk7fjCowh9MnIQj1tdBUdQul2QmIiKi/FFNJm05qKjGD7ynWfacqKcwL5iP6h22\nhuX1ebpxeeUfxjs0hqoZRG50ZHzTPIaQYXJKbxFkJYiCi1RaETzuAkfSc0hrVseNqWXlGR1LlSRt\nOeWHdmJbsrASjqGaLTZCyecfo3KfMZ1P9nrh+/yLhJvNixYm3Ca0tSU+Lt8fiDLmnXgkVn6wDJ7T\nJgOR18kcVhfPmoA+UUhatzZpGy3z55+GFsKVf2KJzU1ZDY2op2ASDhERERHlVeXD96HPEw8m3C60\ntcEfVKCoTMIhIiLqNmIq4SiqCtNnn6Bilx0g/rtGG+eNVeqtbE8+lt4Ozc0AAHHDegDZqYRDxpwX\nXIz2Qw4rdBgEQI1U42AlnJSYXn0F4mvzks5RqqvjxwYPzuh8gtenLVvnv5raTjHVIIRu0J6l2JVc\ncTEGHrY/zAteN9xuWvEVhLo6iP/8Hb9RNU4KCAzbMpshEvU+ggB5001Cy5Gqg0VeCSeoKLp2VBGi\nQeImAJg+/Ti6vGI5TOGEnMCmmwEAhPDnViLSYxIOERERERnLURLMwLtvTrpd8HpQfdwklNxzR07O\nT0RERNmnytFKOIP23x21R4yD6Y/fYZt5jzZuVL6cqDcwf/JR0u3NL76KplcXwHPM8eGBcBLOX38C\nAIIbD81pfL2Z64qr0fzI7EKHQQAQqYTjZsJmKiomn4LqM05EIEnFBbWkVFsO1vZB88XTENxks4zO\nJ3gzSI6KvRHNSjhdZpk3FwBg+ix0Q1zdsAGWO2/VzanZelNUj9oGpg8W68ZdF15qeEzffgfkIFKi\n3sVqDlfACVfCUYOJK8oUA5cnYFj1RjJK4AMgtLTo1suPnQQAUPr1Dw00sRIOkREm4RARERGRMZ+v\n8zlpElf90/mcxkbYPlyM0ltvzPr5iYiIKPcsv/4cXfFGS5YL7e0FiIao+KmOEgR2GwP/9iNDA+Ek\nHKGtFYHKasBiKWB0PZ9Z5iXyYqBaQ5VwBFbCSYuybFn8oKrC/PprQExCk1S3Af5LL8+89VAGSThC\nbBJOd2jPUgBKeUVqE91uiO2hllKCJ/TZqnzK6Si79SbD6RVHHQ7FUQIAqFvfArUqWhUpMHST6ESR\nr39EXRVp+amKoSQc05LEbeMKzfzCsxi863ZQN2yI2yZ1uGYrff8dyk48FkKrPgkn8tCmWlkF1WyG\n0NSYs3iJujO+wxIRERGRIcGf/SQcx03XZbwv21MREREVr0RtJuxPz47OccYk4fCJeKIoayjJRi0v\nD60feyygqhDr66GWlBQwsN5ByDQpgbJKjVTC8biTVnch6CrMDBy/L6QfvtdtNr8xH+WnnQAp3NIu\nG8TGDG6yxlZaKPL2LIXi22c/AEBgyEZJ54mNDdGVcMsb09fLkx9cUeDfZLO4xKv2O+/TltlGhiiL\nwpVwrIveKXAgiZVPPRumf1ej5qCxAADfLruh+ZVQi7uOD06WH3cELG8vgL1DpXJVlkN/Wq1Q+vSF\nvPIPJuIQGWASDhEREREZy0ElnK6UFvcHeCGWiIioaBmUNO9IcDq1ZXnJ57mMhqhbUcpCyTdqWZk2\n5rj2KkhNjQj27VeosIjyyxaqhAOPGy5vAEEmayYkuPXtHSsP3Fu3Xn7aCXH7tF+XvC10Z5zTr0Og\nskqrrpLK+778zYroisrfp6HI34vfn3xeTCKNbfbjAACxtTXpLqLbBYRvlusO1damLfsOODDFQImo\nU+EknO5EtdsRHDwEAOC481bYHp0FqCqEX36BtG4tgPiWwmL4NUS12RDYfiSk1hbUDNsYpk7arxL1\nNkzCISIiIiJj/uz0MNZVsAl0cmEp0TEUFUE+DUlERFS8ktyMM7+1AHC5IC9bqo1VHnYQn4onClMr\nQu1IlNJybcw+634AgGnl7wWJiSjfVLsdQChh0+cLIhBgJdREYpNaAUCIaf0Y+14bS+1iW7vAttth\n9Te/wb/zLqGBmHMmYv7sk2iMfM83JARCfy/y2n917cPidPyclSRJzX3qGdEVOT4pQIhpLaaUpdgO\ni4g6V2SV9SyvzoHp4w+1daEtPnHPfeYUKAMGauslV16G2r7lqBmzozYWScZpfXS2bl/VakUwpr2d\n+a03shU6UY/AJBwiIiIiioq5kJaNdlTSr79AWbIk5pjGSTjuk09D65TzsPb5eYbbLU8+hppJ43JS\nnYeIiIi6LtnNtfKTjkXtxv1ge+l5/T6//pLrsIgKL0FL1WD/AdEpFZUAgMDonaJVJrRtvEFKvYNS\nUwsAEOrq4A0oCDJpw5DQ3ATzTTfEbwi/1lQevK821PLMi2i77W4AgO+gQ7p8bptZBizhtmExiRwp\nYWUjQ0F39O+xYtz+SSbq/z9UjhltOM0/ZGMENts8OiCb4ub49o05j92WWqBE1LnYZLnwa57XX6D3\nMr8fZZNPRcWk8Vpcpo8+jJ+2866A2ZzSIVWbDc4rpkcHrDatmiMAKOGKOkQUwiQcIiIiItJIK/+I\nrnRWDjkFVbvviP6HxlzgMTimc7c90X7NjfBeewPEsfoy2pELTRVXXATHl59D+uvPLsdEREREOZBC\nW4oIz257AABKLrsoV9EQFY8ESeTeQycAABS7IzooCHBPnqKfmOKNEaLuTkvCWb8eG59zEvrvaZxk\nkEvdoQWW45orUfrC03Hj8rdfx70X+/Y/CJ6TT8O/axqhxCT+ZUoUBaiW0GuSkO4DMkyqihcIwL7o\nbW3V9N03Cad2THaWf/vVeGJ5ORDzvqIatKNSS0q15WAftjwkyhb/yB1jVvyQv/sGgwZWomKfMXmP\nRfojWkmx/PgjIa5ZjfJTjtfNabx3VrQVZApUmx2uKVOj67IE1RF9vbHPuAlCYwOEn3/uQuREPQeT\ncIiIiIhIE9tbXkjjZlqnPKGnuwJbbqUbbrrpdqx75hUg/KVN7FC61XHddN3FOsGTpDwzERERFU4a\nN9esn34U+vOLT3MVDVHREJztxhssFjQs+RqNX/+oG5a//1a3rhpUMSDqkcxmBCoqIa38AxXveic1\nZgAAIABJREFUL4T5r5V5D8HrK/5EEenvv7Tl+nMuhH/TUNWTyv32RO2AKq2aVtMb72rzTKb4RIxM\nCeHKLeb33k0+sWMVMCbhxIm9/tKpNK7PqLE31Q2ScADAu81/4O/bH2rfvqnHQETJORxo3zNcjczv\nh/2u2wEkT7DLFVNMa0Lz+++hrEMCDgBIlZXasvuEkwEA3vGHJzxmcPAQwGLRqt+Ira2AGE0zEF1O\n1Awfipo9RsO84PWu/ghE3V72Pn0RERERUbcnrl+vLQstzdk7bnMTlH79ofTrrxtXdx8Dm0Xfo9x1\n7vmwz7wHAGB/aCak1auiMbUnuIlBREREhRVM/eaQUlMLsb4OACB/9SUCsU+NEvUwgtNpvCEYhDJ0\nk7hh19SLYFkYrYygDNkoV6ERFR25uQlAU3RAVYEOD2rkitDSDPHzL4ED98vL+dIWCKB89x1hjqle\na60sh7LlVsAfv2ljorMdvs22QGD0TjkJw/L2AgBA6QXnwnP8iYknujokmCRozUediPwfSDGJyfTd\nN3DZ7NGBBEk4jW+/j/Z2D9jwkCjLwhUMBb8PvjF7wrJgPgBAXPVPXsNw3Hy9bt309QptWTWbIfh8\nUC0Wbaz9ptvg33V3eA+fBHHtTZB+/QX+vfcBnE7UbhKqpKZsPDQ02RxOEHe54D1sAuTPPoHttbm6\n85WfcjzqNrTm4Ccj6j6YhENEREREmvKTjtWWpVX/IDAqVALcHwhCksS4SjWpijwBLHRsRxUMwiTr\nk3CcV1+vJeEAgOWN16Ibs9Aii4iIiLIvUQW9hi+/BWQZQa8PfXbeDgDQ9M77qB45AgBgffE5tDMJ\nh3owIXwj2rv/gfC3u1DyWagSlBRz0zxWYMfRUC68CK7KGmD1Gnj+e37eYiUqOoEAYMpPNaiyyaei\nZvEieA48GC3nXABxp9wksWRKaGzUJeAAgOpwoO2u+/TfmQGo5eU5i8N92pmwPf5I0jmKqkJu0998\nFf/6C2pdHYTaWt240N4G+HxQq6qzHmvR66T9mdDWiurhQ+HdZXe4p1+b8mF1lXAk41uAsklGabnd\ncBsRdUEkQcUfAJRo8lzku08xaJ67AL7XX4e46+7RQasV3klHAQCUQYOhDBocGi8pQcPXP2kVzgGg\n7Z4HUHrqiXBPmQq1qhrtj86G87a7UH70BF2yD1FvxyQcIiIiIjIW8wXLH1DQ5vKjqsya0aEiTwCr\n4SSatmP+D+rqNQgO39Jwvm/MXjB//EH8hjSesiciIqI8Chg/oa1stDEAIDaNVxk8BM0PP4mKyafk\nPi6iAhPa2wAAwc2HwXX19RBm3ADH3XfAt+feCXYQIN55B9x1bXmMkqhI+Xx5S8IxfRJulfj2m7C+\n/WZhn+B3OiH99SeCW0dv2gZ/j0/cU/r2g1pRGTdu/uG7nIXWfvPtsD3+CJSysoRz/H4FppYW3VjJ\n3beh5O7b4v5eq0ZvB7G+rndWTDCobiP+9adWbcJx03UQ/H5YP3of3n9OTemQ9X+shvTzT9GBJK3I\npJg2MkSUHUJMJZzSaZdq4/6RoxAMtw/MNetLzyfdHhi9E7z/GQmbJbUUAWXAQN26b/+D8OsPq1Bd\nHr1GrFZWoXnhh7DMfRllZ52WftBEPRCTcIiIiIjIkBCThGN+5034RAsw/sDMjuV0Qvrhe+2JOe9x\nJ8AzcjQsHargRLQ++TRqNhscfxw/k3CIiIiKkkGirBq+CB3h23NvCGvXhqZvvwMA/ecNAAgEFcgS\nbwpRz1Ey7RIAgLziKwiCANelV6Jp1G6w7Du2wJERFT/B74MKR17OFRw0GHJspZk8tsLqqOLoCTAt\n/QKNn3yJ4BbDAADmF+JvqiqDQ9+Z26+6FjCZIX33LWxzXoh7b80qQYBn0y1gaqwPrf70I4SKCij9\nQ+1K4HSi+rgjIfTpAwAIDhwEac3qhIeLtKeE0wk48vO7LhpKfIsuwefTlq0vPKstO66fbniI5lMn\nI3jWFLhW/Yuyf/+GWqpPjpKXLslSsESUCtERqjAldGjJ5znuRHhOODk/Qfi8sM6ba7ip8YPPASDl\nBJxETCbj72veCUcAZ52GYHVNl45P1BPwqgYRERERadSYfuHyD9+HFtxu9D/jBGx+2lEZH1dob0PV\n3rtCamkGAEgWMywm4wQcAHEXjjQJWl0QERFRYRm1o1JLSnTrLS+/huZPloa22cItENzumB1UCJ9+\nqqvGR9RdWF56HtL38dUnTCuWAwDEdaEENEgS1D33LNjNfaJi5u/YntDrM56YA6pD/55VyPci09Iv\nAADSnyu1sdYhm8bNCw4MJeG4p14I99nnwnfwOACAUl6R2wAryiG2twHBIGr23BnV/xkOcdG7AADr\na3Nh+/wTWF8L3QBOloAjNDVqy7bHHoK7zZVwbo9k1I4qpgV37E18+e+/QrtUVWHDyWdp4+3Xz4Cy\n8VB4d9gRvqOPCw1ao9UpxHZWVSPKJyXcck/qUL1MzVNVNwBwXXpl3FjbzaFKZMGtts7KORJe0xUE\nBLYY1mm7PaLegEk4RERERKRR7dGe4LannoBQXw+hLbOLNkJrtPx0pB2Vdh65ky+fggDPAQfHDwf8\nBpOJiIio4AxaKiS9CWi3hf50RT8jmN+Yj35HHILSi6ZmOzqinBLWr0fZuZNRNXa30HpDQ9z/ieYF\ni7TlZMnoRL1Z+zU36tYFf/6ScNChepvQmv/2SOK6tTA/87/oQLhyrLBhAza67Zq4+Wp1tW7dd/A4\ntF91LZrfWZzTOIWyMgh+P0wfvq+NVR83KVR1xZf678xx43XacslN16H2sMwq73ZXghJ6n/BMmITm\nyeeGxrweKIqa8AGk9lvugDI19DkpWF0Dc7gaRWxaZ2Cb/6D1hFD7qsCWW+UoeiIyItaFqnuVn3Ss\nNubbaRf4xh2atxiCm22O4MBBUM1muE84GS2zn4Pn9LM63zENZjlxeoFqtUHwerN6PqLuiEk4RERE\nRAQAUFUVCOqfVBCbGiH4ol+cTO+/B+v/noDickFR40snx4q9aBmXyJPCEyBtT78QP8hKOERERMWp\nQzsq14j/oPXpFxNOV62hJBzVGa2EI//wLQDA+rLBZwCiIibWbdCWpZ9/Qs2WQ1Fy1WWQv16ujcfe\nLBdYBYfIUGDnXfQDaSR0dFXHFopie/6TcMonjUf5hf/V1lUxlIQTezMXAFquug4r3/ksvqKWKMI9\n9UIEN9ksp3FGKtdWHDNRN145bj+IG9brxlxT9Im15vcWasuCx63bZvv+62yGWdQCQSVaKUKUIIar\n1wheL7yffYHaAVWG+6mlpZAGDcK/cxagftHH2vtJx38Knjvuxj9vLEbz3AU5+xmIKF6kEk6sltff\ngVpSmtc4Gr9YgfrfVqH9zvu0KmnZlPSzrMmU3yRaoiLFJBwiIiIiAgD4A0pckou49l9Iq/7R1iuO\nnoDSS85HyXXTQ0k7CZQdPQGlJx8fPU6kz3uEKbPew+q//7KkKRERURES/NHPEJ6tt8Xq1xYhuMWw\nxDuYTKGy7O5oqwXVXpJ4PlERsz73lLZs+nIJAMD2+COo3H+vAkVE1H21nzZZWxbymIQDU+Er4ci/\n/apbj7SjCg4erBtXR4yAMDzJe2yOqaWJbyY77pihLStWW9xnAcc14TYpqqol3SqxFX16Q/UEVYV8\ny02Ql38VWhdFiLZQEo7p808xZOIB2lTvQeN0FYvV8L9T/+hdgAEDtPGON8QFQYCw3XZx1ZKIKLfc\nZ0zRrXv33b8wgVgsgM1WkFOrZjMEv5/Xb6nXYxIOEREREQEAFFWFoASh2B3aWMURh6LisIPi5pq+\n+wbJCuFY3n8P5m+jT7FJP/6g295pO6qw4MBBuvXyG65Gbb8KVsQhIiIqMkFP6KbZX6+9hzVvLIYp\nSYnyCNVqhW3FMki//hJaT6FSHlExUgZvpC2rBjc8Wo49MZ/hEHVr7quuhWfUTgDiK6XkUsdKOIVI\nwumo9PKLAABqeaU21n7RZfDvvS9KbIV7z+xY6bZpwbuG81SrVZdsCwDyr7/APP9VwOPRxgLDttSW\nS66+IouRFifTF5+h9r7bUX7q/4UGJAkIVwg0LflcNze48VB4Dx6vrQvt7eFdBIgxiTdGRSnMbH1I\nlHcdkxRdl11ZoEgKx/z5pwAA26OzChwJUWExCYeIiIiIAACWRQsh+P2GNw46UsTEF3Ok776NG7O+\nNlc/kOJNtsYv448FAJY3XktpfyIiIsqP4LpQ+wnJZoEoCjBJnV9yEsM38SrH7gYAKL1mWu4CJMoh\nweXUlm0PPRC33XvP/fkMh6h7czigbL89AKDi4H3T3t3tzeyBDaXDd1ShtSWj42RdIADEtIh2X3al\nccZFHikxD8u4pl6IwI474Z/FS+LmSc1N8B1yaNx4+eknQfrjdwCA5/CJEBsbtG22Jx/LQcTFJZJ8\nHKGKIlSLBQBgfv89AIB/p13Q+MxLcF46De033wb3pKPQeuhE+MJVNTp+zjL6FyGy9SFR/oX/L0cE\nh2yUYGLPZ174TqFDICooJuEQEREREQCgz8nHAACkhvpO51qXfg5x1d+G2xwzbuh0f7VDqe+EZBn1\ny75D2x336oaFhoYEOxAREVG+yd+sQMUboYRbyWqBKAgpVcKJMGo3In8ZfzOPqFgJzc3asimmGiQA\neA4eF9cmhIiSE5yhxDYhEEgrqcb0yUcwv2dclaUzHZtmiAWohGP0QIzQ1grBG6oa49ll93yHZMg7\n8Qht2XnlNQAAddPNDOd2rDAUURVOwDV9uRTOSztUioipktMTRarZaCQJsFp1Q55jjkdw/wMBhwNq\nRSXaZz2G9oee0G7wi2J8+ykiKj5qZVWhQygY88cfAB1f72IEgmxXRT0bk3CIiIiISCcwZCMoJfE9\n3p2XX6Vb7zv6P4b7J+sPrzHJKcejDtkISk2tbkzwx9+sIyIiosIwffhBdMVigSjG3xzqjLxsqW7d\n/MlHWYiMKD/sD8dXv4lom/lIHiMh6iFiEgpaGlpgnXV/0ht5ERUTx6HfyUdnds5AULdaesG5EOo7\nf0Alm7zjDosbE3w+WOfOAQA0P/50XuNJJDBiW3gOnYDWh5/QfleyLKLlgUfQeupkbZ5SUwskSMKJ\ncJ82Gb5xh8J96hnaWOn55+Qm8CIRWz1No+hvRivlFXFT0klwJqLCaznp9EKHUBCx14/t998VP2Hd\nOkBVoX7xBeA0eD0k6iH4rk1EREREOqrFCt/B4+LGXWedi59+Ww//yFFJ9w+MME7O0Z1DTrN/fcek\nHZ8/vf2JiIgoZ1SHPbpiNmf0NHZlx5Yj3p79FDz1IiUlhY6AqNsRAtHqN9tsNxSl11yJsjNPydn5\ngooC62cfAwDWTr9ZG7c99lDOzmkcSOjn9m+3Pfw77QIAKLn4fG2zYLMa7pZ3koS2x/4H74RoRRxZ\nFuE78hh4Z9wO5yVXAACaFn+iq4LrH7Ft3KHcU/4LAPAeOkEbM7+/KFeRFwXB5dKt256eHfe5Rxkw\nIL1jshAOUdGRrJbOJ/VA/l1205Ydd9+hLSuqCrz/Pmq33QJVO/4HAyYciNqh/QsRIlFeMAmHiIiI\niHQEUYBqMkiSsdtRZjdDLS1Lvn9Mv/qEjI6fhCrpk3BYCYeIiKiICNHLS4LNijSL4BgfsgBtQDoS\n16yG5flnAFUtdCjUTbRcF7p5337R5fBvMRytMx8ucERE3VQgvgWVZdE7OTudcOONkJyhSjvKFsO0\nccddt+XsnIbC1Xhanp2DwOZbAAAs77ypbRatRZKEY0CMyQJxXXIFfvh5LZR+/XXf/Vufn6Pbx3n5\nVYAY+gwRSToKraTegqw7MqqE4514pG49sNWI9I7JLByiotH07BwES0rhO/7EQodSEP6RO+rWhc8+\nBQBYrroCtUeHKr5J//yV77CI8i71PgBERERE1Gu0z7gTTtGMmqcfAwA0rPgRAGA2SZ0m4STq3+4f\nOQqmr5aFVtJMwuk43/LS83BddFl6xyAiIqLcEGOe8Sorz86NoHSr5uVAxf57QarbgDaPB55TQuXk\nxXVrYb9wKtzX3IDgsOEFjpCKQkySlvesc7B+8jkQRQHuy6YVMCiibi5onIRRcvRE+I86Bt5JR2Xv\nXG43+s6MPqkv7baLbnP5UYdDqazM3vmSMEVaM8qSLsFVI0l5iSMbKstsoQVRhHvkaCiSDKVvP9St\nqkPN5oMheDzwxN6gjvnZhAS//57C8uLzcWNqVTXWr21C3/7hf2uW9CpoZCMBmoiyI7Df/lj949+w\nW3vpLXizGa5zzoP9gXsBADWHH4T6n/5ExaMPFjgwovzqpa8ARERERKQT+4S3JAMWC4K334nGM8+E\nUlEJtW9fbbNSljwJxz7zHsPxtvsfRtWuI0MrYpoFGWX9x9bgkI3S25+IiIhyJxjUFkVRhIosVI5R\nFQBAIKhAlvJbyFloboJl/jxIdRsAAJbX52lJOPbbZ8C26B2Y1qxC04df5DUuKk7y999qy4IgsCUI\nURYIQcVw3Pb+Ili++7rTJBzp++8QHLFNSueyvPm6tqzYHZBKSvDvqnoMGFwDADB/sDi1oLMk2K8/\n1JJSWBa8ltfzZptJjr531736FlxuP6oBwGJB/T8boKiqrnpOLMHthv3Wm+C6dFqP7LMkdqiE03Zz\nqOKSGJtklfbP3fP+noi6s16bgBPmvOYGeI45HlVjRgMAxJYmw3lKTU0+wyLKq979KkBEREREITE3\nz9RwwosoCsZPeEvJP0IKHUqH+/beBy13zwQGDMw4PLVDEg6c8eWbiYiIqDAEX6hNZMutd4XvGaV2\nI0iprITYZHxBVly/DuZ334Z50SL4Ztye15twNVt0SPaNSVaOtMSUf/oxb/FQcVN545Mo+5K0ARTr\n60Pbk7wvVI3dDXUbUmtraH3uGW1Z8IaquposZtRtaIXQ0AAh4E8x6OxQyisAkwn+nXaF5a038nru\nXDGZJAi+oG4sUQJOhOPOWxEYOQq+fQ/IZWjZ5/HAvGghfAePS/nhI7W2j7bc+sAjQAYtOXtgrhIR\ndXPBYcMRHDgI0prVgNNlPIcPWVIPxiQcIiIiItIl4UBOXuLae8RRsD31ROfHCVMt1i4l4ACAarXp\n1oXGBqiqyr7nRERERSBy01LdaONQJZBUdwzEf25ovW8WyqaeDeu8ubDOmwsAaDj7HCgbD81StJ0w\nuvG7YUN0c8fEYOr1BJ+30CEQ9Tjt06+D5Y3ElWAsc1/OWksq88cfaMtCh++zanV1Nmq7ZcR5xXRY\n3noD7TfOgGKzI9DSVqBIuk4UhYyq2km//QZ0syQcxyXnw/7ic2i75XZ4Tpuc0j5CW/R36z3ymIzO\ny0sjRFSMAjuMgrRmNSwL3zLcrtodeY6IKH/yW8+XiIiIiIpTzMVGIcET6RH+nXdFYOOhUIy+KHk8\n0UP2CbWw8u+2uzbWctd9aH4oQQJPEkqfvrp188o/oP7ya9rHISIiohzwhpMQLJa0dmu/6db4Qx11\nbDYiypxBQrH5t19gXvQOAECtqtbGPR5f3sKi4iWuXw8AaL/sygJHQtRzKEM3QeMlif9PiWtWd3oM\n0+J3UT7uAAhtqVcVUSoqUp6ba8HhW6JuXTPcZ5wN7wknw3PWlEKHlDFRECBLGWSJ+PNbhairLE8+\nBvuLzwEA5O+/022Tli7R/i0qjhL4RmyrbRPr67p87jRSoImI8kapqAQAOG69yXiCyZTHaIjyi0k4\nRERERARBid5wkv9c2el8tabW8KlfISYJp+njJWia9ybcp5+ljfn+72T4Jx6RdnyqQY/gvnvsmPZx\niIiIKPuEcBKOmmYSjveY43XrnqOPM2zdEGl3lRde46om5ccdCbjdUMrKtTHH9dfkKyoqYtKqvwEA\nwc23KHAkRD2L9/yLsOrj5Wg+/1KoHW7SqeGberGUDpXMKo6ZBPPSz2EJV1VLRCkrC/1ps8N1/iVd\njDrLRFErcZJJJZliImUQf6QFZHdRdtmFhuPisi9RNW4/VG82GOa3FkB0tgMmE9ruvA8A4B13WNdP\nzhwcIipCamX8+7V+QqHqzRHlHmvoEhEREREQCKQ1XbVYIAQCQDCIwNxXIe++K9B/AASPOzqnvAKB\nXXdPcpQ0SMlbZBEREVEB+TKrhNNRcOgmhuPWl19AsIutLVMltjRry/4R2yK4xRawzp0DALDPul/3\nmanqsQdQd/MteYmLipfgdAIA1JgELSLqOtkkQx62GfzTrkLLzjuj4piJ8Ew8Eta5L0O1WODx+mG1\nhJJzvP4g1AQ38hK1EVQDAQiyDFWU4NtiOFo++Awo4paD3b0VsyT2/Eo4sQS/H+1uP8rX/o3SE0NV\n/gRVRflJoWVVluE54WS0HXsiTHLXE6zEbv7vg4h6JtVq7WQCk3Co5yreT5VERERElD9BRVt0/feC\nzueHb7KZPvsEteecisDgIWj66nsILld0jsGT7F2xctnPaPcp2HbXrbJ6XCIiIuoawRt6Ul21dHKR\ntROJbpTa772zS8fNlDJkIzinX68l4QgN9YDVpp/kdAIOgxad1GtoSTj8d0CUM/6x++LfNY1wvPU6\nrHNfhv3eO+G44hI0L/4EysZDgbfeArY0/p4o//wj/D//BGX4ltqYuOofVI8cgfYrpkNwuwG7vagT\ncHqCVCr5KLV9INZt0NYFvx9BRYGU5WsLOdHhRrL1pecx9KXnE063fLkEALKSgENEVKxUcycPaShK\n8u1E3Rg/WRIREREREIy2o1JNnX9EjHyJkn/+MfTnqn8AAIKzHQDg22hotiOEqV8fVPHpLiIioqIj\neEPtKFWzuYsHCt2Ian7ldVRMGg8A8I8cBffkc7p23DSUnXmKttx29/1QKyqhVFZCbGqC114Kk7NN\nN19sbYHC5IteLfL5V3WUFDgSop7NZJIR3HoEAED+/TcAgP3B+9Ay5XwMOv24hPvZZ82EfdZMAEDj\nx0sRHDYc5kULAQAlt9wQmsTX8aLQ+P5nCC5fjr4nHhUa8Hnh8yuwWYo/UUVtbip0CERExcei/37Y\n8PVP8C35EvL4cagdUJWwih1RT8AkHCIiIiKCoMQk4djsne8QfhKt5MrL9McJPwnsmXhU9oILM8sS\nRFGAUl6htYpQVbXbl+UmIiLq9rLUjsq311gAgH/Mnlrii/usc+E9bGJXI0xZS2kpyo89Am233AG1\nsgoA0Dz/HVSNGY3Ke29H23En6ebb7pgB55335S0+Kj6shEOUP8H++taEttmPwzb78ZT3LzvzZDQt\nWATpz5W6ccHny0p81DVqnz5Qx47V1i2vvgJ7RQ3Uiy4uYFSdk7/6EtZbbix0GERERUf643dt2XPA\nQVAGDITvoD6Qw9eVBSbhUA9W/CnERERERJR7MZVwPKee0el0obHBeDz8JLBYVpqduGKI4R7yLS/P\n08akH77P+nmIiIgoPYInlISjZpCE4xuzFwBg7fKfENxmW228ef47aLl4GrzjD89KjCnHs8/++Ov3\ntfCcdqY2pvTpoy1Lq/7Wzbc/PRvysqV5i4+KTzQJh5VwiHLOnsIDI0kEBw5C9fZbwv7QTN24/MN3\nXTouZY9kMkWXN6xHza3XQ1y/roARda7yoH1g++h9APGfhTwJEom9hxya87iIiApN3BBtMegLv+7J\nkghEHqhUmIRDPReTcIiIiIhIS8JpmXAU1NKyTqcLMUk7uvE8PAkc2GqEtlw9drecnYeIiIhSFK6E\nE2lXmY6W5+fgj29WQh6kr24QHDYcvksv16rv5ZNk1f8cakWltmz/+IO4+Zb58+LGAEBctxbweLIa\nGxUftT3SjoqVcIiKnWXRQogtLfEbEny/pQIQBHhHbKsfqq8vUDDJqRs2wL9qtW6s9eEndettj85G\n0/x30PjeJ1BqarRxobU1LzESERWS8+rrtGXvoRMAALIck4TDSjjUgzEJh4iIiIi0i46SKcVupYpi\nOCw0NgIA1C4+oZiUbByjEjSOiYiIiHJL8IbbUVmt6e9sNkOurMhuQF0kSx0ulwkCGq+foRtyXnip\ntqzU1MYdQ/x3Daq3HYbaIX1QtucuEBqMqwhSD9DeDlUUM/v3T0QZa33w0U7nBDcemtKxWp6b09Vw\nKIvWL1gMxRJ9TRUibS+LTJ8Rm2HAyK10Y4FttoX34PH6sZ13QXCbbeE6e6o25j14XF5iJCIqpOAm\nm+GvZT/hz+W/atXsxHACjioIgMprudRzMQmHiIiIiCAooSQcMcUkHP/onQ3H5d9/BQAEN9k0O4EZ\n6fhEvN+P2j5l6Nu/AuYFr+fuvERERGTM6w0lISRIlO2M2VRcl6fiknAASNXV2rJSUQHXZVdq60LA\nHz//55+0ZctPP8D0+adZjpKKhehyQnE4ok/0ElFOtTz7Elr2PQjecYfBE36qPhHprz8BAMGNNk44\np+7l1+Efs2c2Q6QuEiUJojemkpzXV7hg0qQ6HGid/Sxa/vc8GpZ8rdvmPvtcrP38a6z7dDk8p5xe\noAiJiPLLMrA/Sgb1i98gCKyEQz1aZldHiIiIiKhnCYSScATZ1MnEENcFF8M+6/64cSFc2lvp1z97\nsXXC9Nkn2nL5Kcej9aHH83ZuSBJ8e42FWl5cT/ATERHllccD1ZJ5FRCjpJeiE1OtxzvpqFB1nCnn\no+rBe6C0O+OmCy6Xbl1sZCWcnkpwOqHa2YqKKF98+x0I55h94LCa4Dl9MqzzX00413PoBFjnvwr3\nKWeg5NpQ8qTzsElw3fsAajcO3RCUy0oQyEvklCqLWdKtF2MlHPGfvw3H1apQ0q7voEPiN8oy5E03\nyWVYRERFJ+F3PVFkEg71aEzCISIiIiKtHRVSvAmmVlTq1v0DBgEAxPXrQtvLy7MXW2dM+sShsrNO\ny9+5AbjO/i+c192U13MSEREVE8HnhWo2FzqMnFLKokk4kYQL9/gJwIP3oHTm3TAtW4q2197UqqHI\n3+qffhec8Yk61DOILieU0rJCh0HUqzisoe+AqhhN1nCN3R/2xQsBAIGqarivvAaeCUd/1VCwAAAg\nAElEQVTAe+zx8I3dD6alX8D89gK47nsQsNm0/VRTz37/6q58O+4E85dLABRnEo7p048LHQIRUfcm\nCIDCdlTUczEJh4iIiIi0JBxVkjqZaEwNt4iS/voT/j59oebxRoTg0t/Uarv9nrycV2xqhOPm6/lk\nOxERkccL1WIpdBS5ZY4m/arhm7diSbT6ifWLTyEdsBeaF34Y2tZQr9td9bjzECQVguB0Qs1jFUgi\niiHHfH8dtgVayiugHHssGkbtjvKS0PuSb5/9AQCtj/0PTfUtqIxJwAkdg7dIilH7Hfeias9wG+wi\nbEdlffG5QodARNS9sR0V9XD8hElEREREEJRwJRwxsyQcwRt+Ms3nAxwlWYoqNe76JkTq7vhHjoLn\npFPzcl5x3Vo4br4eqrf4nsojIiLKJ3nNKgRq+xY6jJwKDN9KW5ZXfAUAEMtKdXNMX68IXUgWBK1F\nZ4T90YfgueCS3AdK+aUoEF1OqHZ7oSMh6p1iHiJxXjINit0BURRg9Qfj58oyyvtUaauNH34B76vz\nIA8bno9IKU1qafQ9VvAXXxKOURvC1htmFCASIqJuiu2oqIfrBk23iYiIiCjntHZUXUzC8Xp1T4rn\nQ7+pZwIAnNOuRvMrb+TtvJG2G7Z5r+TtnERERMVG+uM3CH4/TP+uLnQouWW1aotifR0AQCqNTzy2\nhJ+M71gJRwrvQz1M5DN0D2/HRlSsVCnmGeOSEohiqCWgxWT8vTayHQCCW24F5ZLLtDaCVFxURzTJ\nRf7u2wJGoid+tQzSLz/Dsugd3fgvv2+Ad/KUAkVFRNT9qGA7KurZmIRDRERElAK1p2fmdzUJx+cJ\n/en3AQVqRxHYYjiQx6eQVXMPb7tBRESUgmK6MZZr3j32BgC03f8wAOOn4OU/fof450qYP/0YitUG\n7+575DVGyrPIdwSRl1iJCiLD768R5gTJOlR4amW0apH9/rsLGEmU7ZEHUX3QWFSNGa0b92+/Axy2\n/D6MRETU7bEdFfVw/IZIRERElIIe/5UgGHryQM3wIqbk8QDr10N0OoECJafElqvOiwIlGxERERUT\nVe49N52aX56HFT/8i+AWw0IDBokX9nvvRPVO24VWJAmtc+bnMULKu8jTu0zCISoM/t/r0dwnnFLo\nEHRKrro8bqzlvlloeeblhNWXiIgogV7ejqrHP/BLTMIhIiIiSkVP/2AsKOFKOGlcxGx+YS68I7bV\n1mu32RwAIP36S1ZjM6IYJNyoJfEtIXLKFHPTMVJJiIiIqIdSEn0WkmXj8R5IFASUpPGku+j8f/bu\nOzyKcm0D+P3O9mTTCQjSxI7iUey9i11RVESxYFcUj733w/HYEOzlWLHr0WNFFMtnx4roUekI0hJS\nN1tn5v3+2N3Z3WzJbrItm/t3XV7OvPPOzJOQZHdnnnkeF6AocO8eqobj9+coMiqYUBKOYDsbooLQ\nBw6E7nDAfcqkQodCORDzGb8IPnPrVVVxY/7xJ0HW1xcgGiKiXk4IiD7cjsrrL/zrGuUWk3CIiIiI\n0lDiOTiAqgb/n8GNtMB+B2D97E/jxpW21mxFlVT7JVfGjenVNTk/b2fuw44EAKgrVuT93ERERPmk\nacmScPrWk98OW+L3Su13z0i6j2KzBhcCAWOs1BO8+4zQv6NkNQ6igpCVVVj4wyJ03Fkc7Yoou9zn\nX2Qsiw5XASMBEAhAac39tQ4ioj5DiD77mchx/3QMGVoHsW4dPD610OFQjvATIhEREfUZWh/Oro+m\nJXiCTLiCF7QyrSZjNhXm7WTHOZOx9uJIIk7LpHOhbzQi73FoQ4YCAOqOPBj2mU/n/fxERET5outJ\nLpCGKoC4z7kgj9EUjtmUuOKJXluH5vc/TrhNWINJOEILXmBV/loJ9YM5uQmQ8kpItqMiKjSzw2a8\nFlFpkQMGwHvEUQAA8/yfoXzwfsFisc58xljuuCzYlsr7t9GFCoeIqPdTRF6eetV0HapWXPcEnLdc\nDyElKiefjdYOVkstVfyESERERH1GT3JwSiUz37R4ITYYWAPbyy/EjItQ9RpZGV9eOZVCld4XAkBd\nP2NdverqwsRhswEArGtWoeKSCwsSAxERUT4kvXgZCCaW6IM2zHNEhWHqlGzR/P7HcE08Hf4xh0Dd\nbnv4QlXyAKDljXdDO4Wq54S+V3XbjcSgk4+BaGzMS8yUQ+EPGEwAICoYh7VvVWTrc6zBz9zVYw9D\n3UnHQVu9uiBhVF35dwCA59jj4Tn/QrSddT7WPvF8QWIhIioJQvTsYn2anCePR9mlU3J+nnSJtWuN\nZesnH6HqoeQVVal3YxIOERER9RlJn+BOQ4nk4MD2UjD5pmLK+THjSmsLAEDPMAkHAAI77tzzwLrB\n0hS5cSUL0IoKiDzZTkREVPKWLoHy9FNxb4qE1wMAkH30NVHdbnt47p5utPRsv3s6Vl9+AxoXrUBg\ntz0AANISSsJR1ZhEJqWlOe/xUpaFfx8EL7ESFYqlj7VF7Gtk6MGXMOW77/MeQ33/SmPZtG4tpLMC\nvn/cDtG/f95jISIqGUJA9uBafbqcH85C1fPFU73c8sqLMetDp0+F6ddfChQN5RI/IRIREVGfofUk\nCSeLcRQj0dYGAJCVlV3MjNf6/CvZDqdLQgCmIvhX6as3HImIqO8ZtveOGHDVxbB1umgo1geTYmW/\nfol263NkbR28k6fEVhcMVcIRagBef6QtqGASTu+nsx0VEVFOhavJhZS99mKSiTni88WsmpYvN5bt\nrMJERNRtSnMzbAt/jwyoavYrhapqZLkInrC1vfwCqm65Pm686pTxcWM9eZiYigM/IRIREVGfoffg\nzXaptKMydH6KvTXcjirzJBxZVQ0t6um0wHa574suhIBSDP8mlvgknIBaXH2GiYiIeswf6VNv/iNy\noVRrboayLlhOW+9Xn/ewipXTYYkdMEcq4US/T3A8MD2PUVFOhC+Osx0VEVFOOJ59Mmbd+e6beT1/\n+IGlMN9hR0S28W8/EVGPmRb8AQBwXnoR+o0cAWXpEmNbwnbImfB6I8uBAOByxSVX5lPl5HMSjut1\ndXFjbp/ao3sZVHhMwiEiIqI+g+2oACS5RqSHK+FUVHTvuFFPp7W+9Hr3jpEBRQgIEfxHkYV88jj6\niQoA6OhAxeknAf95rTDxEBER5UA4WReItFYyf/8tNth8GMqn3QUA0OvZkiEZaQkm5YhAAMP33t4Y\nt7/zVqFComwJf0hgJRwiopxwn31eQc+vtLfGrPv3O6BAkRARlSbr++9BV1U4XpgJAKg8YyKUNath\nn3weHLfdBMuXnwMATL//BtsD09O6SN/Y6oHXr0JEJdyIDhfqRwxC5YRxOfk6ekIdvUPcWMDjgxbQ\nEswOKrkHhkuQuespRERERKWhJ+2oSk6nN+p6uys4XO7s3vGibjzEtF/IId9xJ8I57S603/tAXs6X\niPDHPj3Rb9MhEKqKivffQcMxxxYoKiIiouwSgUglHJgtgMeDmkP2j5mj17MSTlKhZGVl9SpYV/4Z\nt1lKCSEERFsrZEUlq6r0ElJKiFA7qoImhRMRlTDvaWei7NGHYsZsL7+Qt+RH808/AADcZ52LtpMn\nwbTlFnk5LxFRqXNPuRRl0++G89Yb4Lz1BmPc8st81G2zeWTiA/eiYV0bavfaGQDQvOMuUHfaOelx\nTfN/Rv1dd6Hfe2/Afe7kyPjChQAA22efAg0NUKI/4+aBXlVtLKsjt0brE8+ibpftggPRFXsAoKMD\nww7ZE/qw4XC9nPhhV1XTYTGzLWIxYxIOERER9Rl6dAlLlwv6+vVQhg1La9+SyS5PclOn8p03AADS\n2b0knPANCAB5uximb7IpFixah5pKe17Ol4j/oINRfsdUY11EV8bRNMDED0NERFQC/LEXKK0ffRiz\nrpvNkFEXFSlWuHqQ8tfKuG3mj+egfbe9UbHgV9TsvydcN0+F57zJcfOo+Gi6hEmG3gMzb4qIKCcS\nJfkma+eRS7Kyigk4RERZ5D7zXJRNvzu9yYGAsai0taScWrv/HsZy2cP3G8v2118xluu32jjNKLNH\nr62FusmmMC9aiNYXX4O+wUCsn/c76v62BYTXEzPXMu9H2JYuBpYuhsvjgfm3X6FuOzrmmntAZRJO\nsWMSDhEREfUJpgV/YIs9dkTb9AfhO/FkVJ8wFpZvv0Hjr4sh03hyu0RScGD5dm5wISoZx3Hfvcay\nLCvv1nGFpnY9KQdM5iJ+6jgQYBIOERGVBBGdhNPcDN1mi9muqCrb8aQSqoQjFi6I21RzwljUAPCN\nOQQA4LzxGibh9BKqpsPKdlRERDnVOcnXPfE0aNuOztv5Ky69CACgDxyUt3MSEfUFcsCAtOfGPAQS\n/SBoBpTly2LWfQcf2v2K8Bkyz/sR5kULoTQ1QR04CPoGAwEA0h58sFR4YivhKCsi1VPrhwW/T95x\nJ6D9vocBkwmO+6fD+d47cL01i59DihiTcIiIiKhPsL/yIgCg4rIp8J14MizffgMAMC9agEA6STgl\nkoVj/exTALGVa6JLfnb7jXvoiQT34Ud3O7busJgK+0FDHbk1XIcdBec7/43bJgJ+48MUERFRrxaV\nhFP+2EMof+yhFJMpjsUCALB9ODvpFNv77xnLpj9+h7Y5n7bPJ8+Kv+DYoL/xb5UOVZORmwCCF7+J\niHKl+d0PYZk+DZ7HnwI6JQLnmn+PvSBnzYKceFpez0tE1Bet/+FX1I3eKm5ctDRHVvRuXqR3lMWs\ntj30b6C8ew+jZqr8tptgnnEPACCw6+7GuLQ7ggudKuGYFy2MO4b91ZegDR4C9zU3wHnL9QCAjvXr\n03q4mAqDnxCJiIioT5BKqPKLpsWMOy+bAmXFn9C6yKIvmXZUORJO6lEc+U06MZsKXPvfbEbLo09h\n/Uefx2/z5be3MBERAR5fYSqzlToRSP6apg0chIa/1ucxmt5HmoPPwFl/+zWt+bV77gRl6ZJchkRR\nTP/7FUO33xKO229Lex8pJWRbG6TPFxxI0vKViIh6Tt1hJ3iefSHvCTgAoG80Av6zzuHfeSKiHGtY\ntgb64CGJN0Zdl5fdrMYumptiB/KUgNOZ//CjIivhhzc9HkDXoTaFko283vgdAThmPh1TJce0fGmu\nwkxLV/dT+jom4RAREVHfoATbAolObw7NCxeg+qhDsMEG1XA8MCPp7r05Bcftjf9w4t9u+5ycK9+V\nX0wFroQDADaLCfrW20DdalTMeKoblkRElH3KmtWovOkalJ88HlCZjJNVKRJLm774LqPqIX1SN9pT\n1hx+UA4CoUQsP3wHAHDeNy3tfQJvvY0RozZC5VmnBQdYBp6IqGRZzGwzTUSUC60zXwIAtF91HVAW\nrFTT9vC/4+YJt9tYdjx0f7fOpSyLJKy0TX+wW8foLvcFFxnL/n33j2wQAtJmh2nlClSNPQwDtxgG\n06+/QISScLzHnwjPoUcY05XGBlQfEtnfeeO1uQ8+hbaOQEHPX+z4CZGIiIj6huibH52q2phWrgAA\nOG++Lvn+vTQLx3nJhRi4R6Rfum/0jgAAXTGho6Ep2W7dJvP8ZJpSRE+jtbz+Nnx77Qt1s82DA34m\n4RAR5VPt6K1Q/e+HUTb7XZi//67Q4ZSUZImlrmtvBJzOPEfTC3WRhKP1HwDvJpvFjCkN6yKtjii3\nMvw+m36Zjw3PPAkAYP35p+Agk3CIiIiIiDLiP+gQNKxrg/eSKyJju+9lLPt23xMAIFztxpht7tdJ\nj2cOvzcHoG04GGuPPB7uKZcGt4Wu/zf8uhi+E0/OzheQJllTi78+/wHNsz6Kq8AjHXaYV66A9asv\nAACWrz6H8AWTcDouvxqup56D9+hjjPmmdWuN5cAOO+Uh+iSkRKDD3fW8PoyfEImIiKhviLr5YX/i\nscx2/exT2P/v42xHlBeOmU/D+ucyIFQq37RoAQDA/v1cDN9qOJQ/l0OvrgYAND3+TM9PaMtvJZxi\nIqtr0Pbqf6FuHayI47z5+gJHRETUt4jo6jdFlKRZEkJJOHpNTcywf78DCxFNr2N747WYdbWuH/SK\nSmPdfckVaP3iW6xd0YCVvy0zxqt32yFfIfZpor2960lRTAlahUn+zSEiIiIi6jHZr5+x3HF18Nqq\n0tbWaVKnp2U1DbKxEc5LpxhDzR9/Afnoo5BRVdQDm28J1NdnP+g0iBEbQR0d//lOaWmJWdcHbBBs\nTwUY7araH4qvDgQA2iabZjfIDJRffxVGbjcCorGxYDEUOybhEBERUZ8go55Otb3+akb71h57BDY8\n9bhsh5RXor0d1lnvwtzWGjNu+fJzaEOGQSt3Qjvy6B6fJ9+VcIqRsmoVAMD29n9RccTBsP33PwWO\niIioD1KCN8TZozw7RKgdlfviy7FiZRMWv/A2Vj37KrRR2xQ4st7BvOCPmPU1M18DLGYAgFpdC++p\nk6AIAcVmg7W2Bt7jxgMALEsWwdRpX8o+tbnZWLa8/V8jeT0ZqSRIuGElHCIiIiKinouuIhp6cEF0\nup5tf2FmzHrZPXeg/8gRsMz70RiT1TUwKQpEIPKwjrbV1jkIOD1mU3qfF5R166AsXQIpBPTauuBg\nssqqgcK1gyp79CEITYPl6y8LFkOx4ydEIiIi6huUqDerURfak1G10rppJ9rbUHXK+Lhx86/zIbxe\nyGxVsLH33Uo4Yd6JpxnL9m++ROVZpyWdS0REuRGuiqOqvbSfZJExLQxW0pNWC+xWM5TddoXpQFbB\n6S6zxw29/wAAgPu0M2IuqgohYHv1JWPdedmUuP0puxwfzDKWqydNRMUFZ6ecL1UtfpBJOERERERE\nWdE24yGsv3MGZKj1sfJlbKJHxcUXQITaS6majvI7/xmz3XXDrcZydMsm/8GH5irkLok0K2dWXH0Z\nrD//BL2yCrBYUs61fjInC5H1jNIpQYoi0vqEOG/ePEycODHhNo/Hg/Hjx2Px4sUAgEAggMsvvxwT\nJkzAuHHjMGdO4X8AiIiIiKIvjFsXdv1EsaaX1k07pb0t4XjZIw8CPi9gz04Fm6wl8/RivuPik52I\niCjPvMEe6oESS6otFOdtNwIAlFAis9NhgZKoGggl5J5yacy6vt12aHtyJjpOOhX+C+OTbDxnn2cs\ni46OnMfXp/l8sP32a8yQ/c3XU+5Sc9apcWOigE+hEhERERGVEt/4k6CfepqRhGNb8FvcnH6jt0LV\n0Ydig8F1cdv8Yw6JLB9yGJqeexXNM1+B7+hjcxd0lnW+lt824yFj2X3O+QAA26x38xpTQl1UEe3L\nukzCeeyxx3DdddfBl+CbOH/+fJx00klYsWKFMfbmm2+iuroazz//PB5//HHceuutcfsRERER5Z2a\n3oVxj9sHx333wvH0EwAA2x3/7GKP3kH5YHbMeseOuxrLor09a8kz0mrNynGIiIh6QoSScEqtsl2h\nhb+vlBnPhMiDberIrWEqc0DbeFO4p90HGSqxHq3jpn+g9cnnAAD68I3yFmdfpDStT7zB70fFicfC\n/vjDgNsNZe2a1AeSpZXAT0RERERUaIk+K0Wzfvk5hBZfpVKvqY1Z1w48COpBY7IaW7b4d9sDAKB2\n+twnOrXW9p0wAR2Tp6DljXcBc+oKOXnl9RQ6gqLVZRLO0KFDcd999yXc5vf78cADD2DEiBHG2MEH\nH4wpU4JP8UgpYUrWp4yIiIgoj4Tfn9Y8+913wHnrDai75lJgzWpU3lUaSThV/7rNWG74cx28Z55j\nrJuam7JWCYftqIiIqBgIrwdi/XpsPHIoHI8+WOhwSoZ0OAodQq+k1/c3lltfeBVKV6XITSb4Dzgo\nuBwq7y2Z5JETojVx+XTnVZfCPucDVFxzBaqPOwp1ozaDaG5KepzA37bNVYhERERERH2T2QzPpLPS\nmuo96hj4tx2NwEYbQ9bFV8cpVq2vv4O1q5rQ+p+3U08UAu4bbkVgtz3gO2psfoJLg+5ydz2nxDoO\npMvc1YQxY8Zg5cqVCbdtv/32cWPl5eUAAJfLhYsuuggXX3xxWoHU1JTBbO49CTv19RWFDoGIiChv\nSuJ1zxJ/s0M740woO2wPcV6k5H//++40lm3zfoiZXwrfB9m/P+qH1EOrjr2JZi4vy8rXV1FfjYoS\n+D5lWyn87BAVEn+HKFOVVgH88h3g9cB53VVwXntloUMqCeW1lSjn72Pm6ivQPG4CzFtshrptNk9z\npwpImw3WJYtQ52tD4J13YTv6SGDAgJyG2ucsin9yFgAcM582li3ffgMA6LfsDwTMmyacX7HbTll/\nD8zXPiIi6o34+kVEWbXvXsATj0XW77sPuPDCuGn2444BTjgBEAL1vbFASE38Ay9J/54euDcAQO68\nS8H/5lbd+Q/gjttixlpdPlQ5Qw/8NjTA95/XYTv3LKCrh1FKTJdJON2xevVqXHDBBZgwYQKOOOKI\ntPZpbu46U6pY1NdXoKGhvdBhEBER5UWpvO6Vt7hQ1mms+aobIKuqgSOPR/2G8RnylRNPjFnvTd8H\nKSWEEKjvvKGtDQ0N7bC6/KiKGg6YLGjtwdcXPk+rT4e/F32fciX6++7bYiTa+D0h6rZSeR2i3Iv+\n29u+rhna0EpUh9b5M9Qz4e9t0y57Q+P3slsWXfsvjBhUCW8G37/aikqYVqyAGDIYNgDqv25H8zc/\n5S7IPsiyqhHVANQtt4L5t19TTx4zBhYAekUFlPbYf8fmjgDULP5u8LWPiIh6I75+EVG2lf04H+Wh\n5TWvvA3T3nuh+pHHYPnlZwBA+13T4d1tD2CTTYHm3t0aqfN1/FR/T2srq6C3taGlQH9zo2ONjlO0\nNKPfZsPQfvNUeM+bjOrDj4Rt7tdo96vwRrVpLhWpkqC6bEeVqcbGRkyaNAmXX345xo0bl+3DExER\nEXWLcLnixmRV6NacxQLfEUfnOaLcUjUJJGhbILxeAIDWqc8sbFlqI2WxZuc4pcTjgc4WEkREeSV8\nXoCtk7ImsMVI6FYbtC1HFjqUXstqVrpuQ9WJ0t4Ws25eugQen5rNsPo84Q1eqJe29N/DSmuCNq5W\nvgcmIiIiIso20dFhLCvOYDpO++NPwXvceDQuXgnvKacHE3D6GOkoA9xFknQkJcTatajvX4l+mw0D\nAFTceA0AwDL3awCA6fffChZeoWSchPPWW2/hpZdeSrr94YcfRltbGx588EFMnDgREydOhDd0s4eI\niIioUEwrlqfc7r740jxFkh+qpkNZ8WfS7dqobWLWpT3BzYTusOSk0GKvpVdXw7JmNXRNT38fJuwQ\nEfWc1wuo6SUrSCnhDyRuSUMhug6tvLzreZSU1ZJ5SXTh88WNBTJ4T0FdE57ghWv/mEOh1vaD65ap\naFz4J9qn3Y/1P/4v4T5KSzOk2Yy2K681xqTSC0veExEREREVucBOuxjLJqsFAKCN2ATtDzwKWVFZ\nqLByTttwcMrt0uGA8BSgy5CUwLJlkFEPISh/rUS/UfGJULb/vGIsmxYtyEt4xSStuySDBw/Gyy+/\nDAAJ20s9++yzxvJ1112H6667LkvhEREREWWJ359yszrqb2h5+Q1UH18CFXGkxMDdtoOli8SjmF1q\narNzarMlK8fp7fSKSijtbVC3HQ3rJx9Brl4DDNkwvX3bXbDOfg/qEUcBtiwlRxER9QHqkKEwhxJQ\nhccDBAJp7Vd1/NHQdQnXa2/mMrxeTeh6n+vfnm0Oa3aSNGpuuxHa1H9m5VgEIJSEow3aEGvnLzSS\npbwnnQLRqRJRmNA0+LfeBr5LrwT+9Y/gmLsAF8CJiIiIiEqc//AjjWXRR6pPescei45rbkw9qbwM\nYn1jfgJC8OElIQSss2ehauIJMdusH32YcJ/Kc88wlk1//ZXT+IpR1ttRERERERUj0UUSDgAE9tkP\nUkn89kgv60VPf6tqTALO+smXoH3a/Sl30QdskJ1zW5iEAwBNX/2AdR9+Dhn6ftg+fD/tfZ233oCa\n889E2bQ7chUeEVFpiqp8I3w+CDW9JBzbpx/D8dknOQqqNEgpk75HovRUlGd+wVjvVx83Vvv4A4CU\nsD/5OJTly7IQWd9mJM84HHHVimSq9/+dEqXVHXbMdmhERERERBT9MIi5tKtPts14CM1nT0b7I09C\nHzY89WRHGUztbXAedlDO4zItXoia3XaAef48WGfPituuLFtiLLc+/wpa/vN23BytPv6zbanjFRQi\nIiIqfboeV/IwsMlmCae2PfMC1GHD8ef7n8du6E0tgjrFGhhzKLwTJqJ90tlofer5hLuYfk9cbj/j\nU5vYjgoAZP/+ENtsA9sHweSbuisvTnvfiqf/DQCwfP9dTmIjIipVIioJx/rf/0C0thYwmhKj6xCs\nhNMjSje+f+7zL0o4bvr6K1RceQlq994F5u+/RdnUW6B7PAnfr6qd2lc5LzwXZRdPzjiWUhVuRyUd\nZfEbTSas+WM5Vi1ZA//o2CQb08oVAIA1q5qwaPE6wFTaNwSIiIiIiAqt1Cuw+8afBPW2qWnNDX9+\ncXz7NWSaVYC7RUrU7ro9LIsXouKCsxNWyC2/fzoAoPWp5+E/YAwCe+wVN0f3eHMXY5FiEg4RERGV\nvPIbr4HS3Bwzpo3ePuFc/0GHoPnbn2EetTWanngOgaHDoQ0Z2iuScIybLJ1itThsgBDw3n4X/Ice\nnnBf78mnZScIC5NwekTTIss+H8rumIqym68vXDxERL2JqkK3BKuNmFeuQMXfI4kGYv36QkVVGqSE\nZBJO3nkuuAgNN/wjbtz07jsAglVcag7ZH+X33oUBwwbA8cgDcXM7J+E4Xnoe5c8/k3a7tlInPMFK\nONLhSLjdVFMDc7kDrW+/D++obSPja9cAABSTCYqJl1eJiIiIiHLOzOvOYbI88hCBnDkzZ+epmHK+\nsSxcLtiffTLp3MAOOxnLvoMPAwA0zfkcuqMMcl0DvB5fzuIsRvyUSERERCWv7JEH48bc512Ych+L\nWYF2+BFo+e5n6PX1gK6nnF9o+odz0PZrqNpPp1jT6ZerdVXiMl1sRxVDr6jscmzOIhYAACAASURB\nVE5Ajfr3imqbJvw+lN91O8ofmJ6L0IiISk8gAN3pNFajW1FWXJq4okiMXpBwWyhC6oDgJaS8EwL+\nc86PG6565L6E08tvui5uTNUS/1w7HnuYP/MAhDf4RKa0J07CARCsAmU2Q997n4TbLGb+bhARERER\n5Vz0w4t9nHRWGMsDrpySs8929hefM5aFqx0ixXlkVMup9gcfRdP/fQNt1DZQPG6ULV+MIcPqEViy\nNCdxFiN+SiQiIqI+SR+wQfqThQKB4r1JIdpaMWDCWGx+QCjbvHPCkLXrxBhpt/cohrZHnkD7gYdA\nHbl1j45Talpfe9NYtnz1Rdx2XUoE1MgHSBGISsLpVL2JiIhSE5oGWe5MuE1pWAevX4Wup3g99/a9\n8shpkzJh2WnKPavFhPXfzYe61agu54rOidjtbai75HyYfv8tOBB1wdR507WoH1CFijNP7dvJOF1U\nwokRddG//fa7jWWrma2oiIiIiIhypfXxp+EedwL0wUMKHUrR0DccHLMuGhtzfk6lpSXptvZLr4y5\nZiCdFdC22DJunn3GvTmJrRgxCYeIiIj6pkwulitKcVfC8UUlbrjag0+rR0nWL1ePyphHOjceUoUw\ndhzWPPIMYOJNiGjqtqONZcunH8VsE2vXwnL7VNgfuj8yGFCNRfPSJRmdy+NTu55ERFTKVBV6eXni\nTcOGw/z0U9BdrqS7C68nV5H1flIG3w9RQehDh0EdtU1acx3nnIGK8ceiYsJxKL/5BlS+9hKqTj4e\nAGD98P24+fY3X4eyfFk2w+1VhCf0e1/W9Xth+/PPGsuB3fYwlhWFCWpERERERLniP3IsOh58jJ9J\no3W6V6GsW5v1U5jmfpP2XDl0WPJtUW3Eap9/EmLduh7F1Vvwp5WIiIj6pGSJKQkJUdRJOMIf6aeq\nLFsWH2uSFlFtz71sLPe0Eg4AKHxCPqHWp18AAMjK6pjxqgnjUDvtXxjwzxtRfttNAGIr4WTK1dG3\n+uoSEXUm1ABkZRU8E0+L2+Z49SUMvPYSVJ13ZvL9C1gJJ2WFnmKg66yEU2DSaosb08vLERixCVw3\nTzXGnK+/AvtHH8D+4ftwPPMEAECsXw8ASZNtRHt7/KDfnzJprVQId7gSTlnXky2Ri8d6bV2uQiIi\nIiIiIkrNF3v9Qlm7JuunkEsjraP8++4ft13rF2k/Jauq47aH+Y45Lmbd/NEHWYiu+DEJh4iIiPqm\nqAzsrkhFKe4y/f5I4oZp2dK4WGVZ4psKgV13j8yxZSEJh08BJySrqgAAoi22ZKdl/jxjuWzGPcEF\nf/eScCrOOR0jtxgI83dzuxckEVFvp+sQUkJYLXDdPQOuW/+ZcJr9q8+SH8NTuEo41rv/Beuc2QU7\nf5dYCafgpM0aN7bq16Vo+fqHhIln0ZSOYDKNnuTCaDgRJVrVicdiwIhB3X5vUtSkDL5n0nWjEk46\n7ajcF18WOUT//jkLj4iIiIiIKBXR6fpFLirhOB+cAQDwHHoEtKj2V3pd8IEEoUWqskt7/EMjYe13\nz4D7pFMic5uasx1qUeIVFCIiIuozZHRFmAyScKAoEFIWbSKOCASMZdNfK+Iq4aTKRDdkpRJOjw9R\nkvTKcBJOW8y4jLqZ6Tv4UACA6c/l3TqH/fXXAAA1hx7Qrf2JiHo9NXTxJ/T67jntTLSfMglN/xdb\nPllPUQmvYJVwXC7U3DkVVSeOK8z508FKOIVniU/CsZWF3r/Zkl/wjFZ1wdkAAGkyoeHnP9Bx5bUA\nAOHuiJ0oJayffQoAsM56B4iqiKMsXVLUFSLTUT+gCjWHHoB+g2qhNARLoadTCcdz9vlYP/EMtN33\ncK5DJCIiIiIiSqrzQwTZroRj/vkn2H77BQAQOPxI6PWRqjf6gIHBhahrBCLVZ0SbDR3T7kfro08G\n929uST63hDAJh4iIiPoMWV4eWTGZ0t8x/IaySJNwYp5Q9nqB7rS0yMKNNcGbcwnJykoAgNLaGrsh\n6mdQhP4NwzeC4g+S/N/UdN/0ngVIRFQCLF9/CQCwffpxcMBmg/vOadC22DJmnqm108WeqAtFwluY\nSjhCDXQ9qdAkWAmnwFJWakkjuVw0NxnLbc++CGwwENLpDG4LVcIRTetRs91IOK+4xJhbdeapqN1x\nG0DXUXb7bajbeVvY77+3m19FcRG6Dku4imCaiUye2++C74QJOYyKiIiIiIgoNfeV16LlzPPR8uqb\nAAD7009k9fjK6tWRFU2DrK41VgM77AQg+CBT6xMz4dlzH/j32LvLY+ojNgYA1E2/I6uxFiteQSEi\nIqI+Q9s86kZcJgkj4ZtORZqEIwKRJBzh9Wb0dLJ/730RGLhhVuJgO6rEjFZfnds5RP88hZ5AL7tj\nKgBADyXuGFQViZjnfoPaW6/PSpxERL2Z/dWX4saUBK/1ovNruaZFthWoHZX5f78W5LyZEJKVcArN\nfcEUrD9pEtqnJrhgGfVv0/zm+wn377f5cGPZf8AYAIAsCyaomz4PtmlzXn81zH+thOPpf8fsa1rf\niJr99kD5PcFzV9x2Uze/isKz//vRxBvS/Pm2WTJI5CciIiIiIsoBWVGJwNTboW49CgBgXrkiuyeI\nulYiq6qhV0cq7XsmnQXdbEb7tPvhP/xIuF57M60q+3pF5Hq3adHC7MZbhJiEQ0RERKUt6mZb22NP\nYd3Pf2D5+59neJDQRfmo5BY5d27Wyzx2mz/yBL3w+TJKwml9+Q0s/+KnrISR6GYnAbAEn06PbhsG\nKSGiEmusX38Fyxefwbx4EQBAHzw09hhJknBMK/+MWfftvW8WAiYi6oUCyavJeE48Oek24Yu0oCpU\nJZzqow+NrOg6ICU8bl9BYklKSlbCKTSnE21T74SsqEy4efVX87Bq/mKou+wK103/SOuQpgV/BA/9\n74chGhpgf+XFpHPN//sl85izyN3S3q39Opqj9nO5UHH1ZVmKiIiIiIiIqLBkbV1kJSpxJuPjeL3w\n/PwrEHo4SbS3BcctFvgPOAiBXXYDAHiPPxHayK3w2y8r4BubWUvtmM+ynR9WLUFd16slIiIi6sXM\n8+cBALT6/tA3GAgBQK2sS71TZ0psOyrR3IT6ww+AtNnQuKIhi9F2T3QlHPh9EIgkHsmu2m4JAbst\nO28JeW8uCYsl+P+odiOiwxU/7bNPjGV1081ibnYJTUWiOkyioyN2vT3+uEREfYKWOFkRAHzHjYfj\nhZmRAVU12vc4r4rckHeePQlNfyxLq7VProgOF6qOOhT1v/wM7977of2VNwoWSwxdZ9vJIuCwmeJe\n+8PERsPCaeOQFRVpHc970ikoe+QBAEDtbtvHbfeNOQS2999LuG/V+GPSOkc2WD/60Fj273dARvvV\nA3Dddjs8p52Jfhsnrv7oO/jQhONERERERETFruOAg1H+4SyIDhdkZVXmBwgEYLntFvR/9H4AQOPi\nlRCu4MMMbQ//GzCboW80Ao3/WwJZFTx+RXl67XyjyX79IC0WiEAAwl9kDx7lAJNwiIiIqKQ5r7wU\nAGBqWGeMWUwZZouEs0tCFWZEe/BNqPAVyZvFqDetwhtbCafxvY+63D1bZfV5cy4xaQ4m4URXwhFN\nTXHzRIc7shxVmQFA0ko4cdWYGgufFEZEVAhCS14FLrDHXmh57S2U3X8vrB/PgWhthawLJuTaX37B\nmGdqb4Nl7tcI7LZHzuONppc7oYSSM22vvwbLLz8HY/v0I7TrenFkuUoJWQxx9HEmRYFv3PEwPz8T\n/iuuitsWJp3OpMfwnHqGsaxtEWnVqrS2xMzz774n2p55ER1L/sTwXYMlzlufeRHmuV+j/P57YxJj\n8qk753VedxXMc7+JaUfX9PGXqN03+DSnf5/9sxYfERERERFRPimVwQozpo8/gnrU2Iz3rzjndNjf\nftNYrzpxHPwHHAQAkOWRz5ayXz9j2Wzq3n0Az/kXoWz63TGV/UsVk3CIiIiopIWztqOZM0zCkVYr\nAEBZ3wh9w8FJn0AuFMu8qHZSumYk4TQdcSyw7XZ5i4PtqJIIV1RQVVScewbUbbeDNij+SWzrB7OM\nZeHtlIQTSJaEsxYA4B13AmxvvAbrn8uCpUe7qoBERFRiZBf9xwN77g3t9VcBAEpzE7S6xFXxbDOm\n5T0JJ7DLrrDN+QAAUHHZlJhtornZSBgqKF0H+DpfFGRlFda/91HKJOpwAnAinrPPS3l83+gdseaV\nt1BWbgeEQNmIofBMPB3W2e/BP+YQ+A8+FO4rrolp+Zpr5nk/oebIMQCAxt+XQjrK0trP+t7bqDo3\nmHRkf/N1AEBg1DZoefYlYNCG0IYMhWnFn5GqhURERERERL1N6F5HzVmnok3XMm4TFZ2AAwBSVaH8\n9VdwOUmVVVOmDzmHjx367MVKOERERES9nPmP3+PHMszU1gcMBBCVhBOV2OOccn7PAsyQ76ixCOx3\nYMxY+T9vjaxokSQci8WE7neCpawJJeEojQ2wfvYp8J9XjE2BkVvDf/AhKL/nTpiXLDbG9dramENI\nNfHTAaK9FQDQcf3NEM1NwZu4Hg+Q4gl4IqJSFNh6FOyvvIiOK65JOkdW1wAItpVMxvHRB8h3Yz+R\nohe68LghUQRJOFIWR0UeAtB1FUOhJ38HqI3YOGY9sN32sPz4vbHuvuoaWBx2499bCAHX3dMBTI/s\n1EXSW7apu+yKxl8WYc0fyzGgNv3fB/8xx0G//mooURUxXXdMA0LJ0G1PPQfLSy/Ae/yJWY+ZiIiI\niIgoHxyvvGgsV54zCQ0JknBMv/8GfPcttJNP6fJ41h++A374DgAgKyoTzunuw7jSFmpjxSQcIiIi\notLgnnKpsZxp2yRZXh5cCLejckVuzzlemNnz4DJg/uM3tHRKwokmYpJwzPAmnUl5IwSk2Qzzb/+L\n26SP2Bjq1n+LG3fdcjv06lqYli+Fbc4H8HT44Eh06NDPonQ6AXtwhvB649pQ6LqEorCCARGVsFCL\nyMDo7ZNO0WuCCY5KiiQcAIDfD4Sq4OVDovaWgVF/g2X+PAiPJ29xpCIkK+H0Jr7Djky+sVO1vPb7\nH0Ht7jsgsN32aH3xNciaWhRjXRjZvz+qazJPSHOfcz6ct91krKvbRf5GqKP+BnVU/PswIiIiIiKi\n3qLllf+i+rijUs6p3WtnAID6yP1Y894nsDnTqy6arBJOd0ln8HhKS0sXM3s/JuEQERFRSdMrq6C0\ntcJz5jndPobwBm+Ald0xFW3Pv2okPnSceQ68Z+evEk7NAXt1fTNO04z2AJJPrBcNoSZuJ9Vx7Q1Q\n1qyJG5d1dei4/S6j0tIGJx2D1m9+jD9uOAmn3Gm0YhFeDzo3iNB0HYrCFlVEVLqEL1RNxmpLOkeW\nhdIZO7f866Tf0P5oXJPHC0KdknA8J54Me6hqmv25Z9Bx0235iyUZKQEmc/Ye5sSX+9Tq2rgxbdPN\nsGrpWljKE6X7FpeuKgAl4rnoEnj22heVN1yNwK67s6ITERERERGVlMDe+xrLXd0PMP/xOwZtMRTr\nVzYG53fRZlgPVRHNFn3wEACA7YnH4DvmuKweu9gwCYeIiIhKmrrdaFg//dh4+r07TKEKJrYPZwMA\nREcw8UHfahT04Rv1PMg0Sbs97kZdHD1SCYc3GYpb2wOPQtt4U4im2IoM6oiNI0+ph26iWZcu7rx7\nUHs79LIyQFEgHZFKONGklFA1CQvf+RNRKfMF//bJFEk4MId6jwfiW/w1nzwJNTOfCG4Pv47mifD7\nIIWACF38ck27H9ZPP4Zp1V8w/fFbXmNJSmclnN6m8b2PoLz9FhxNDXC8MBPt/7oHzceemLCyXm9I\nwOmRbbdD25uzCh0FERERERFRTsmqKkBVYx/M6NQCW/H74f/oE9i22Rp1u25njDe/NRvi4zmwz/kA\n9nk/BAezfB1A23AwAMA29+usHjffxNq1cFx9OfDW60nn8FI8ERERlbbwjTZLDwrrd0pmsb73NgDE\ntfzJOZsNwu+HMnsWhKpCO/Tw+DmaHmwZATAJp8jJ2mBimLr9jsaYZ/zJcM14MDIpumVE5w9QAKzz\n50WOF6qEI70eeHwqHLbgXH9Ah6YnearB54Pu7oDSgyQ1IqKiEE5StaVoIxX+G5qgOpmwWaENHQ7T\nn8uCA1GtJ3NNdHRAq+8P87q1wQFFQfuMh1A97khoW2+TtzhSkmASTi8jt98B/u1GQ9N1rDv7IpRt\ntUXCBBwiIiIiIiIqDUpzM+oH1aL93gfgnTARAGBavixu3obj41sYqzvvArnTzghcdS1M++wKdatR\nWY9P1tdn/ZiFUH7HVDjefiPlHCbhEBERUWnz+yEtlp7dOIpKZjF/+w3s770DAJBl6fVOzRpFgWn5\nMtSdfDwAoGHJKqBTIpDQNMBIuODNsmIWGLVtcEFR0PD1j7DOnoXA+Akxc2RU0o1wd0BWVgFSwjpn\nNvwjt449oD14a836xOMom/sNOl5/GzCbUDvxRLScexFw+GFxMVQdfzSsX32Bxt+XQtbWZfcLJCLK\nI6U5WFVMlidPkA3/TVUaGuK2uY8cC/Xa69FvRLDUcv2IQTmIMjlptaJ51kdG20lZWRnc0EXrrLzR\ndSb39kImRQEUBWKTTQodChEREREREeVI81vvo+aIMcZ6xcUXGEk49peeBwAEthsNy48/pDyOCN1D\nafnkq5zEGdOtwOuFR5iNB0l7E9OK5V3O6X1fFREREVEm/H5Icw+q4ACAiNx0ss2OlLLXhg7v2XEz\n1DlrXWlYBzSsi52ksR1VsfPuuz/WXXsrHP37RwZHbAz/uRfET4762VXmfgOvrRyDjj0kZkpgx50B\nRCrhVMx8Kjj/ykugjtwKZXO/gv3Xn7HqoJWwWYOVdQKqDotZgfWrLwAAVeOPQcvsT7P1JRIR5Z1p\nzWoAgDZsePI5oddR5y3XwzN5CgBAHTIUcLmg77ATpMWEtkeegPWVl/JW9MW0eBHMSxZD+P1QR+9g\njIfbaomAP9mu+SUlmNzbe1nMfE9IRERERERUqtSdd40flBLQdZTNuAcA4J58MarOOCXPkXVijVQv\ntv33P9Bb2oFzzilgQKmZf/weaG2Fus9+MePKn392vW+ugiIiIiLKB1XTYTYlv7EgAqFKOD2hRG46\nlU2/21jWNt+iZ8ftIaWhAY4nH4sd1DUIX/CpeWm3FSAq6oqw2eHYZuuuJwIxH0xqJ4xLOMV7/IkA\nAOmIrcwkWpqBJUsAAEpHB7Tffwe22QqipRnOv0+BdsFkY67lpx8z+RKIiIpPuMWUOfllDmX1qrgx\n4fdDq6yCJfRewjd2HHxjE/+9zQXH9Lvh/MfN8RtCbbXsL8yE6/a747fnmYAEUrzfouKW6r0yERER\nERERlZ7y666E0hipBKzutAvULbeC+bdf4+ZKW/7uI3gmngbHs0+h8sJzUQmg4eyzi6/9tZTAKy+j\nZvJZAICmT76CNnIrwO+H8HlhWroY3l12hz3FIfgpnIiIiHo1TZOpJwTUmESGbklQUab55dd7dsxu\naH36hZh1Zd3a+JuNmgZ4Qq0rQu2JqLh4J56a9lyZRjUj35FHB+d2ao+mbrElyl990VgfdkDwiYiy\ne+5E5TtvoObQA2KPE9DSjouIqOioarDdVKoLN9HbXK7g/30+wGaDohTmgo9I0m7KqIQTak9VcLoO\nVsIhIiIiIiIiKk5tDzwK3xZbGetljz0M++uvGev6gA3QcfnVMfuoQ4YCAGQe7yPIyqrYgfBDVUWk\nfkAV6kMJOABQds8dUFb9hbqNB6Nmtx0gpIS+404pj8EkHCIiIurVtHDrpSSyUQlHmkzxY/36J5iZ\nW/5DDoN/192N9apJJxs9XcOErkNZtwYAgjcjqehIW6oc+VhC6zoxRlZVB//vdKa1r1i4IOG49aH7\n046LiKjYCE2DVOJfr5OpPCuYECn8fiCPT3x1Jnw+AIDe+SJUF+9v8k5KtrkkIiIiIiIiKlK+48aj\n5dMvU87xH34kGta2Guv6JpsCAKQ9/evVPaXX1MYOBAJ5O3d32d98HXXbbgnF54VpbfDei7rlyJT7\n8AoKERER9Wqa3kUlHL8f6Gk7qgRP1Wubbd6zY3aTrK5JPUHT4bz6cgCA/cXn8hARZUJaLAjssVfa\n85VVf6UxKfiWXjorYof/Whk/V9PgmDM74WH633Z9xk8eqFrim8TJxomIckZVEybNRvNOPM1Yts35\nAAAg/D7InlbM6wH/vvsDADpuuCVmXN9wcCHCSU7Xi688NBEREREREREZFCHQ+MsirL3rfgR2iFRq\ncV0X1QZbCLQ+9zLWX3tzJCEmj0k4sjY2CUeoxZWEo8su7jeFaEOHp9zOJBwiIiLqtURjI2pvvhZi\n3brkk/x+SEsPb64lehq9QDfsPJPOih879Ag0/Pi/4Iqmwr/fgQAA9+Qp+QyNUnBPvhgA0Ljgz4wq\nCShrVqc9V5aXx6zbZs+KP15Dit8VAEookz9dATX+d0O0tWLgwGrU96+E5bNPMzoeEVG3qWp8i8bO\nU7bZNnZA1yFUFbAWrhJOYM+98dfCv+A95fTYDWYzAsNHQO0/ADLNC0A5JWVaLRKJiIiIiIiIqHBk\n//7wnTABbQ8+BgBQt9wKnov+HjPHf+DB0Kf83WiRLR35a0cVVwmnyNpROW7/h7G8/M05Sefpw4al\nPA6voBAREVGv5bzhalQ/+Qgqrrwk+aSAClh7Vgkn3CqiGAT23heNC/+MGVP3PxAYtGFwRdMhA/7g\n+PY75js8SqLjhlvw+8J1QKdEma74jjomZt1z0iloWNOScK4s6/rYtpdfiBzrlElx20Vra9xYKokq\n3ih//GEsVx97RLAaFRFRrmlal0k46FwpJ/T6LgvYjgoArFUVCceFzQoEAtB0WfAKY0JKVsIhIiIi\nIiIi6gWsFgX68I3Q/O6HaH3xtaTztE03AwAE8ngfoXMlHASKKwmnctodxnLZLjvCF1XVfv1389F+\n9wy4L7oEev8BKY/DJBwiIiLqtZRQBZxU1TtEoOeVcITH06P9s01WVaP9n3dGBkItIqSiAJqGstde\nDs4zdXEzkvLKZk3dJiUR76mTsGDOXGjDhgNA8OmEqEoE7dPuj0xOo1KC87abAACBTTeH685pWLck\ntt2VcHekH5yqwvn4Q3HVevTVsev2554JxpbP/4io70mjHVVnwh9Ksi1wEk4y0mKFubkJ5q++gKZL\naIkq8+UlkNDfVVbCISIiIiIiIip6ptDnd3WHnaAPHJR0XsffL8e6O6bDdevt+QoN0umMWS+qdlSa\nZiy23zENAOA9b7Ixpg8dBu/E09Bx3U1dPqjEOzNERETUe4Xf56S46W7yuKFZelYJJ7qSh3fzkVj/\n/KsoTDOqCN+xx6Pi6suDy0eHqqWYTJBaJHNc22TTQoRGSdi7kYQDIWAaMQII/4jL2Buw/n33N5bV\nHXdCInpNDZTm5pgx7+lnAEJAOGOrLwi3O2U4UspgNQRdh/2Fmai47XoE3nwNLR/+X3gC+p05MWaf\niisvSV2tKsukw4GWl/8Ldedd8nZOIioCabSjiuMNJeHksfd5JhRXOwCg/pjDsGJlEzQNMBUiDyac\n/MNKOERERERERESlo6wM6smnwmLO38UG2bkleBG1oxIdLgCANmgwvKedAQAIbLs9AMB9wZSMjsUk\nHCIiIioBiZNwLF9/CQCwfv9tj47umnYfag4Ilh1cf83NsAzesEfHywZZXYP2ex+AuvUoyKpqAIAI\nBGD74TsAQKBffyCPvVypa+Zu3jm1WhT4DzgQjiceQ2DPfQAAzW++D+8PP8E8KOpnMUmFAmmLv7ms\nD9ggcYy/zEdgr32SB/PAA6i/5RoAgBY6t3n+PGNz+INKNP/ueyY/XpYp6xth/v03mOf/xCQcor5G\n0zKuhKN0BJNcOj+FVSxEU5Ox7HjpBcjKSuCoo/IfSDjZWbASDhEREREREVEpyWcCDgBom2+Bv664\nEf3nvAPL998VVRcC4Qpe2w7ssqsxJuvr0bC2NeNjMQmHiIiIeq8unsi2vv9eVk6jbrOtsWyyWSGK\n5Elw74SJSbfJsrI8RkK5ZDErcN08Fe1jDoPYZ18AgLrLrujYejSqOs31HHQI0NICx9yvjDFtxMYw\ndW4Z1T+ShNP4yyLIZctQf/gBMP/2a9I4zN9+g5pQAg4AmFaFWllF/T44Hn7AWJYmEzquuRGeCy9O\n+2vtKesHs1B10vGw/+dVeM88N2/nJaLCEz4vZFXnv4qp2V5+MbhvEV3wiRFVBrnfpRcAABqOast/\nHKyEQ0RERERERERZYr70EvhVDyzffwdlfSO0rnfJi3ASjuxUPb4710P4GBMRERH1XuE3P8naUel6\n4vEesJfZup5UBGRZeaFDoCwxKQpgs0Hsu1/MG/5ETym4Zr6E9rdmxYy13/cwWo+bEDOmDxhgLMv+\n/SG22BxAbNUFANCjfrdqDjswcYBRMZXfMdVYblzdnNcEHACQ9mD1J8t3c1F+/VV5PTcRFZbi7sj4\nta/8njsAANbZs7qYWRgiwfsb4WqPaZPZpY4OaAsX9SyQcBwKk3CIiIiIiIiIqGcUISLV/VszrzKT\nK9YPZwPITsVkJuEQERFR79VVBnIOknC0YcOzfsycKGclnFKXrFRo50pN+uAhaLxzBpreeDcy1qkd\nlayohDSbIZrWx4z7A2k8h5Bh+5dckvZI662yRx6EridJ0COi0qLrMLndQDcvksjq6iwHlC3xf8P6\njdgQNTtvm2BurPDfv5ox+2CD3UfH/X3PCCvhEBEREREREVEWha/jCr+vwJFEOG+6FgAgvD2vmMwk\nHCIiIur9klXCSXDzqqf0ysxaXRRMOSvhlDqzKflbeWmO6jorBMpsZmg77BQZczhidxACek1tTCUc\nTdcRUCOJbNqQoQCAlXN/Rdud0yLnqorcvPbvtgcAoPXJ5zL6WrJF71cfs+7qCH6Is73yIsxzPihE\nSESUD2538P/dTcKpqMxiMLln/mtlyu3K6lUoO3UClDWrYV7wR3Bs1aruwTyopQAAIABJREFUnzD0\nPksqvIRERERERERERFkQeuCn8uzTCxxIAlloW84rKERERNRryU5PZMtOyTiyLAfVYDonLxSr8p6X\nTKTi1rniTbTmTkkwZpMCWK1oWNeGhnVtCffRa2qhRFVKsL7+GiovvzhSASEQgHfIcNiGD4FA5Nx6\nVRVUTYeq6RCqGpy6487d/bJ6RB++Ucz6xhv3h1i7FpUXnI2aE48tSExElHuiowMAILuZgOo7/Mhs\nhpM1IpxclKGK885ExfvvoPzGayLH8gSPpSdNXE6BlXCIiIiIiIiIKIusX35uLIvmphQzcyQQSLop\nfJ2pJ5iEQ0RERL1X+GaQLqHrEgG1U+WOzbcEAHhOmZS9c/aSp8BzkoBEvYZ60MFY+6/paP/X3Wnv\nI2trobS1AlqwBVXteWeg3yszYfm/TwAAwt0BxRm6wa0Govarg+X5mRDvvw/L3K+Dg+YCtagSAu0T\nTo0ZqjptQmFiIaK8ER0uAIDsZgKqe/LF2QynIKLb7ylrVgcXohJuhNsNv8uNpnUtEI2NGR1bhCsL\n9pL3QERERERERERU3LTBQ4xl89xv8npu2xuvoX7DOlgffyQyGJWU4z/iqB6fw9z1FCIiIqLipmo6\n/D4/TAsXQlu9GpYxBwY3hJIJ1L9t2/NzbDQC5qVLenycfJFlbEfVlwkh0DH+ZCgOS9r7yIpKCCkh\nOlyQUW3XhMsFXdODFRlCVSZkdU1kR01Fv0snxx7MXLiPGe133Quha3C+OBMAYPn+24LFQkT5IcJl\ngkP9xFPxjj0W9tdfix1MY79CaPriO9TssytEiqezwnx+FVi9CtXffG4kyygLFhjby/55K6p/+A4b\nhtabZ30EdfQO6QXCSjhERERERERElEUdV1+PsofuAwBUTzwB/t32yNt1h/CDpFXXXI6GM84GhICy\nPvjAUmCHneA76pgen4NJOERERNR7hd6UOX6ZhyHD6o3hhrWtwW2hJByZhYSA5i+/R3ubGxU9PlJ+\nsBIOmZQMP7RYQgk7ATW2eoKrHdbbbgm2mgr9XPmOOgbr/1iAunvvgGhtjTuUNKef/JNtJpMCE+8T\nE/UtoSQRmUallvb7HolPwinS5BJt083gmXQ2yh55oMu5A/fYHpY/l8WMWf/3S2T5h+9ittUcvB88\nBx0C9xFjoZ8wPvXBw68JRfp9IiIiIiIiIqJexm5H4/yFqDxhLKz/+yWmPVU+lU27E+5LroCybi0A\nIDB6+6wcl0k4REREVHp8PsBuhwgl4WSlfYLJhLKq4q4u4znpFDieewYAIMuZhNPXmTPMRJHhJBxV\nNRLYAKD89ttgWvVX8Jjz54UOboZ29bXQnn0iYRJOISvhKEJARCURhRlfHxGVHKNdUjpJIlYrPKO2\nhWP+T7kNKkvcF1/WZRKOacmiuAScdDhmvwfH7PeAC89G4/yFkAMGJJ5oVMJhOyoiIiIiIiIiyg45\nYABaP/ky5oHQfKnddkuYVq9C+e23wT35YjhmTAMA6P2TXBvJEK+gEBERUe+V5Gab6OgILoQTCUym\nrJzOlI1knhxyTbvfWGY7KjKZMvx5DSXOCDUAuWxZ5DihBBwAUJqbjWUhBKTNBqWtuJJwAEDdbIu4\nMREIxPT2JaISkmmlluqqrucUCVlXh/WXXhO/we8Hvp0LV2sHqsYe3uPzWL/8LEUQrIRDRERERERE\nRDkiRN7/a3typnH6+sH9YH/zdQCAXt8/K19Scd9JIiIiIkolWRKOO5SEo6rB/xc4IaAQ2I6KlExv\nlhrtqAKonHJeWrtIuwPC50tw8sJ+zPCcNxmNd81A46+Lsf7nP+A76GAAgPB6ChoXEeWI8cRUen/3\nRGVl7mLJAfWKK9F0/sUxY2XT70b9YQdgo00HwrR6VY/P4XjwvuQbw9/eIk9GJiIiIiIiIiJKhzp6\nh4Tjsr4+K8fnFRQiIiIqOcLtDi7owUo4MkuVcHoVVsKhDEmjEo4KZfXqhHPULUfGDthtcXOabrk9\n67FlzGSCPOU0yPp66BsMhHSEktLcTMIhKknhJJx0k0ScFbmLJQcUIdB+5XUxY+V3/jNuXuP0h9M6\nnuvmqVg/fwGaPptrjFnm/Rhs55mI0Y6KlXCIiIiIiIiIqHRJmz0rx2ESDhEREfVeXVTCEUY7qj5Y\nCaecSTiUoXDFKI8H1pV/xm1uu/8RtLz835gxaXfEH6amOifh9YgjGKfwuAscCBHlRIZJItLpzGEw\nuWGxpJFQfHh6bak8502GPmADyE4Vgar22ClxH/bQmGQlHCIiIiIiIiIqQYFtt4Nn7DgEdt41K8fj\nFRQiIiLqtWyz3k04blTCUcNJOH2vEg7bUVGmZKgdVcVlUxJu9x1/IuSAAbGDCZ4M0LNUsjObwr8P\nxt8GIiot4cSRNJNw9Ire1Y4KAMwmBb4xh8SNu8+70FiWZeVoe+SJtI/Z+b2CdflSOGbcE1xxuSC/\n/gaQEkKGk5wyj5uIiIiIiIiIqBi5p1wa/P/E09Ay62O4HnkCsFqzcmwm4RAREVHJCVfCgVEJp++9\n5UlUoYQoFevHcwAAlh+/j9sWblUVJ0E7qmJshRZuR8VKOEQlKsMkHPTCRFUhBNqefA4t+xwYM+6+\n/CoAgG6zAyYTfGPHpTyO1j+STCkT/L12/uNmwO9H2c3Xof+RB8L69puZt/siIiIiIiIiIipyHdfe\niIZ1bei4e0bWr3nwCgoRERGVHNERbkelAgBkX2xHZclOxjb1Hd4TJybdFthjr7SPkzRhp4Ck0Y7K\nU+BIiCgnMkzC6bWvkWYzWv41zVj1jjkE0lmBpjmfY91XP6Z1iJY5n0VWLBY0LlgO1yVXwHPK6cZw\n9YF7ofzpYEUd05JFkXZfLIVDRERERERERNSl4rtCTkRERNRDlWefjlZNj6qE0/faUcHCt3mUGd/x\n4+G89YaYMb22Fu0jNkfgsaeS7OSLHwu1tSom4Uo4mqujwJEQUU6EcnDSTcKx/PBd7mLJsfL+dcay\nuvueAABt1DZI552O98Ax0AdsEDMmq2vgueo6AIDjmScBAJbf/heZYLGyEg4RERERERERUQZ4BYWI\niIh6LXXjTZJuqzrvDFjmfh1c6ZNJOMWXCEHFTSZoz9Ly1my0vv4OZFV1wn2Ezxt/HHPx/ezJsmAl\nnKqLzgX8/gJHQ0RZl2ElHNG0PofB5Jgt0gZQljsz2lV04/2QtFkjlXDSbfdFRERERERERNSHMQmH\niIiIeq9wpZskrJ98BKBvtaPynDIJAKCOSJ6gRJRIuFpMNL2qGlZL8o8Mwts7KuGYli0DAJhbmlF+\n5z8LGwwRZV8oCUem244q1KIOANZ9+3NOQsqZqJZ/srw8rV10I5GyG0k0Qsk4yYmIiIiIiIiIqC9j\nEg4RERH1XuEns7ti6jtveVx33YtVKxoBZ2ZPxxNF39gNk3V1MKVqPxKqhKNXVEb2SXCcQvONPdZY\ntnz9ZQEjIaJcEOF+VOnmiEQlHYphw7MeT74kSp5MRB+0IQBA22hEynlt9z0cN2aePw8iVEFMRlXh\nISIiIiIiIiKixPrOHSkiIiIqPV1UwjEUYVJALlls1kKHQCXAdczxXbZyk1VVAAAt+iZ2EbZ/U0fv\ngLUP/BsAENhx5wJHQ0RZl2GlFnWrrXMYTP5oSRKIWt54F4GRka+x9ann0HzGeei46rqUx/MdNz5u\nzPHcM5ALFgCIrSBERERERERERESJMQmHiIiIei0Ruunm3fpvcdt0Z0VkpQiTAoiKUfuUy4xlUxrJ\na+13zUDzkePgunOaMZZuZYZ8U7bcAgAgPO4CR0JEWRdOwkmzFI77gim5iyUPGhetwPJ3P4U2cquE\n2wO77YHAvvsb6/pGI+C5dSrQVRJNVOUzdeAgY7nutBODC0X6952IiIiIiIiIqJgwCYeIiIh6L01D\nYKONsfbtD+E67Ci4rr3R2OQ74ihjObpVDhElFzj8iMhKGm3ctK22RuO9D0HdfkesvfRarL/vUcj+\n/XMYYfcpZaGbx15vYQMhouzLsBIObDa4J52NjrPOzV1MOSQrqyBGjUo9ye+LWbWYM0tIbnr/4+Bh\n9toncl62oyIiIiIiIiIi6lLf6s1AREREJUOXEtB1QFFgtVnQ9thTsJhNkOXlEB9/DBHVokHfcHDh\nAiXqTcqdkWVLem3Nyu3BjxTN505BXZU9F1FlR6iyz/+zd9/xbdT3/8Bfn7vTsLyTOJu9Z8OmbCh7\nlVXGjw2FsmehhUJL+2UTSluggbIbNrTsMsIqq6wQwk6AJJAdJ96WNe7u8/vjtE7DlmxJd2e/no9H\nHrn73J3ubVmWZd1L748odho7IvKOUkM4AHqvn1qhYqoj4O8/VCOiMQCAMXpMSbe7cNZcCENHMPE7\nQHR3p7Ypy5eXWCURERERERER0cjDTjhERETkSaYpAcMAVAWaqqQ+4R355RnouP9hmA0Z3W/8xYUJ\niEY6s7EptRy+6JKijkn+7Glq8Re/HZGcXkvXna2DiMovGcJRRs5bHMpAgaO4FcJBqd1rWsbAN3lS\nqhua6OpMbRJRdhIjIiIiIiIiIhoIO+EQERGRJ8V1E0KagMi94BbwqfC/964DVRF5m2xpQevUW6Fv\nshm0iZNKOlYtYvoqJ0k18aePwRAO0bBjmtb/JXTCGfYSwUPZ1FzSYQGfCiFE6njt++/SGxliJCIi\nIiIiIiIakLvfKSciIiIqIG6YgGFAFvjUe+TQw6tcEdHwYB53AjBlSsnHqYrLL34np6OK8yIy0bAz\niOmohrvwpZcjsv+B6Lrr/pKOE4n7MBVczGCstXY5SiMiIiIiIiIiGtbYCYeIiIg8SddN65Pvqpp3\ne2y/AwEAxugx1SyLyPMURUBB6Rey3T8dlfVcEXj+Geu5YwRNW0M07DGEk8McNx7d9z88+BvQct8u\nCp9zwRAqIiIiIiIiIiIaGRjCISIiIk/STQkY/VxI1zSs+vRryIaG6hZGNEKpLg+1ZHZ1UJYthVni\ndFtuZpoSits7ERFVkuR0VGWXFXJuvfUfQE2NQ8UQEREREREREXkHQzhERETkSWP+cgOUvnDBTjgA\nhtVFdiK3c30IJLOrQzzuXB0VoE67Hb5wD5SWFshAANFjjnO6JKKqajramoJSMoRTPlnBShEMQjpU\nChERERERERGRlzCEQ0RERN4TjWLc3/8MADDXXMvhYojIEzJCOKK318FCykudOwej/ni5bayVIRwa\nqRjCqRg14IfudBFERERERERERB7g7p7xRERERPno6ctAsrnZwUKIyDMyumaJnh4HCymvpoP3cboE\nIhdhCKecottsl1pWJPvgEBEREREREREVgyEcIiIi8hxhZIRwakIOVkJEniEEYptubi32dDtcTPko\nbW1Ol0CUXzRa/XOyE05Zdb0wI7VsTpjgYCVERERERERERN7BEA4RERF5T2YnHJ/PwUKIyEv6jjoW\nwPAK4fQd+HMAgMyYbguG4VA1RJbQTdehZbUWqN/Ore6JGcIpu+Vvf4TOv9wOfcqWTpdCRERERERE\nROQJDOEQERGR5yirVqWWRbjXwUqIyFPWXBMAoM2d42wdZSQjVrcRY73104PxuEPVEFlqb7oOAOB/\n7ZWqnlf9dvj8bLuFssEGiP2/450ug4iIiIiIiIjIMxjCISIiIs+pvf7q1LKIODDdBRF5krHOugAA\nZfEihyspD/9rryD06ksAALNlXGpc6AzhkEsYZlVPV/PIg1U9HxERERERERERUTaGcIiIiMhzlKVL\nUsvshENExTIbGgEAoqenpOOiMXdO79R4zBGp5fhOO6c3sBMOuYVZ3RAOERERERERERGR0xjCISIi\nIu+JxVKL0f0OdLAQIvIUnwYAELpe9CH1552JUQf8rFIVlUxKmXc8fO6F6RXdnaEhGiEyf74kQzhE\nRERERERERDSyMIRDRERE3qOmX8LEDvq5g4UQkadoVggHxsAhnL7uMAAg+OhDCM3+pJJVlUTPmN7H\nrAkBAKTfD6gq+g61OuNwOipyUuDfT6RXCoTGiIiIiIiIiIiIhiuGcIiIiMhzYrvvCQDovehShysh\nIi+RaiKE0990TbEYak8/BauvMx7Nu2yXcXB5wgTGEKfn0Q0JM1GLbGqG0dSMVd/MBwAIn8/aidNR\nkYOCGSEcwemoiIiIiIiIiIhohGEIh4iIiLxHsV7CxHfaxeFCiMhTkp1w+pmOqu7K3yL09JPW7t98\nnRoXnR1DPr1oWwX52uvFHxCJwPz3v20BIFNKhCOJ+sO9MMeNg6yrBwDIRAiHnXCo2jI7NMlgTXqD\nwanRiIiIiIiIiIhoZGEIh4iIiLzHTFzUS15QJyIqRhEhnJr77s4/fvedQz5906EHYsKxh0H77NOi\n9q+/4CyMO+MkBB+eDsTjqDn5eKy+7kSMOeVYAIDa2WEPPGjJTjgDT7dFzonGhl8wJZLxNUm/L7Us\nIpGq1mG2jK3q+YiIiIiIiIiIiLIxhENERESeI3TrYp9UVIcrISJPURRIISD7CeHoa6yZd1z09Q35\n9NrXXwIA1Llzito/8Pyz1v7fzoX5zLOoe+EZKLEo6l97CdqHHwAA/LNnpfaXviKm2yLHReLDL4Rj\nCxb5A+nlvnBV6+i+8Zaqno+IiIiIiIiIiCgbQzhERETkPcnpLVS+lCGi0ggpEfzgf/k3SgnthwUA\ngPa//N2+ye9PLZsZ00MNqobe3oLb+qIZAaFEZxvtm68w7qyTbfsF//147sEap6PyAl03B97JY4zW\nFTASv5szf1bKEV4rhWxsrOr5iIiIiIiIiIiIsvHKFREREXmPwemoiKgCYrHUornrbrZN+kYbp5aH\nPJ2Qkf940dqK+rNOg/7pZwAAGbDCDP7XX83ZV9aEcm/Al5gGqJ9OP+Q8Y4ghLrfxv/QfbLLDpvA/\ncB8AwNQypqMKV7cTDhERERERERERkdMYwiEiIiLvMawLzJyOiogGy/fGa/DdeD10w+pK0hfVIaIR\nAEB07/0gGxps+4uMYEt8qJ1MCoQwQrf/Fc3P/QsT9t4JAKC0txe+iURAp/eSy9JjiemoBEM4rmaa\nwyuEE3z4nwCA2vvvBgCI5ctS22Q/XZ/6E9cNyGEWViIiIiIiIiIiopGBHx8nIiIizxHshENEQ9R0\n1KEAgJ4jjkZAxjHm+P8H44STAABKextkbZ39gIwuOcngzmBJM//xob//rejbUFauAgCYEyamB5Md\nSOJx+N5/D/omm0LWN+Q5mpw03EI4iFvTnwW++QqQEiIjPFbz8n/QM5ib1E2YEgj4SgzbCjGIsxER\nEREREREREZUPO+EQERGR9+iJEI7KTjhENDRNf7wCo366FULfzUH9762uMr6PPgAUBV1/vyu1n0gE\nDQCg4dHp0N55q+C0UgNp+N2lUL/71j6YNW2P/8H7+70N39tvAgCk358ak4npqHz/exdNB++LpoP3\nG1R9VFnmMOvwIuIZnZc+eB/qoh8hhxKG0XWMOvFohK68bOB9c4phCIeIiIiIiIiIiJzFEA4RERF5\nj5kM4fClDBGVxhg7zrZe9+KzOfvIUAgAEN9mu/RgMoRjGJhwxcVoPuxAtExohujpLuq8osM+tVTT\nPrunt3V1Qs6ebdveeNF5/d6eNn+eVWtmxx7V6g6mfjfX2ufLz4uqjapHnfMN6t58FXF9cAEu1wiH\nEX/nPWtqNT0dUBtzxEHwL1oIkRk0KjF0pM2aifo3ZmDUvXeUq1oiIiIiIiIiIqKq4ZUrIiIi8p5E\n9wmpcjoqIipN9133D7jPyjk/AADMNdZEz8GHAQBE3JqOSoR7bfuq8+cBsRjUl18EIhGEIzryUVpb\n7evdXanlUdtvibE/36foryGTrEuHcGRjIwBA+/bbQruTw0btvC3WO/sERLoGM0mTc7JDQ7U3XYeJ\nh+2LwJOPQejpx7zImLYtRc//M1GIMndOeqXUrkHshENERERERERERA5jCIeIiIg8J3XBj9NREVGJ\n4j/dceCdAoHUYuTwI62FmNXtQ2RNGyVVDY1HHYpRxx+F0K23YPJma8P/3NM5N9lfxxxlZTqgo2+0\nSb+lRffa137++vrUsjFpEgB2wPGCiYfsC5im02UURc6bh/hnX9jG/M8/Y/3/8ouQ3fkf27E99rQW\nMqZyK0bjheeklkV7W0nHEhEREREREREROY0fHyciIiLvSXTCgcaXMkRUOrOmBkpfn22s6677YXT3\nQG68sW1crbECOSI55U6vvROO//VX4X/3bQBWdxAAaDz1BLQuabM/R2V1AzGaR+WtrfuWW9G87x55\nt/UeczzCt9yKlvFN6a9l9Jj08sTJeY8j9wl+8yV6Fy+CudrqTpfSv3gcY7efAgCpx3TNXdOg/bAA\nABB89qmCh0qfD4D1s1NiP5sUZflyGKNGD/JoIiIiIiIiIiKi6mMnHCIiIvKe5HRUCjvhENEg5OlA\nYoyfCP24E2BsubVtXPj81kIsOR2VvRNO3Z+uzHsK38cf2m/HsE/no3R1AlJCN9K19F50KfSs82cK\nXz8VUOx/wpnjJ6SWZSiUe1CJUwERZcqcfk2b+TF8776Nut/9pqhjlWXLrOO+KK0zU3z1NdPnnPtN\nSceaLWNL2p+IiIiIiIiIiKjcGMIhIiIiz0ldzOZ0VEQ0CEo0mjMmx+TvtiETIRwjcYz/kQeLOofv\nsUcg3ns3PZAIw6w44wL07bEnhGGg5u47MGGC1dXGaBmL8G+vyLkdY+Kk9EowaI1NXg0AsHRxm23q\nLPj9Ocf7X3mpqHrJAVnBLFeKpaeSaj5obzQdekDe3cInnZoz5ps9CwBQd/mlJZ3S9+OC1LKyYH5R\nx5hNiZ+jddcr6VxERERERERERETlxhAOEREReU9qOiqGcIioPMxCU974rSl1Gm77C7BoIerumlbU\n7dU+9ADGHLJfeiARwgk21kIkwjS2jiIZHW56TjgltWysvkZ6HyEAAG3vzcSKL7+H5rNPySc1X04d\ngaeeLKpeqj6RJwzmNiIaGXCf2DbbIXbQIbYxfYMNU8u2x/BApH3iKmXVqqIOM8eOg15gijciIiIi\nIiIiIqJq0gbehYiIiMhljMT0KuyEQ0RlIhub8o9nBFtG/2yngscbkyZDXbyo4HaReN5SfH4E//N8\nnhOlwweZz2zGuusB779n3zcYTAV5bPy5IRyRZ+otcgcRi6LmjtsgOjsR/s3vnC4nLxHrPyi0cu4P\nkLV1OVO8hS+8BJASDWf+EvqGGxV/wkQwyRg9BuqqlVBWthZ3nJSpkBoREREREREREZGT2AmHiIiI\nvCfRCUeqzBMT0eB13XlvekUp8KdRxhRPSnt7allfa+3UcnTfA2wBnNjOu+bejp7s4JX/ecucPDm1\nLLo60uMldBHJ1wknOxxBLhKJoO73l6P25hucrqSwSG4Ix6yrh9nYiPbX3oZsagZ8Pvu0aACih/0C\nxnrrAwCUrk7U7bcn6g/Zf8DTJTvvxDfexDr2qy+Lr5UhHCIiIiIiIiIicgGGcIiIiMhzhM5OOEQ0\ndPHtd0D7q29hxavvFNxH+vIEWwDIMS2pZX3KFrZtPddNTS2ryRBB8nlLU9H+4ms5t9d34qmpZaWr\ny6pvyhYQieWiZASG0oXK3DFyBRGLOV3CgLI74Sxb1oFV8xZj1bcLoW/2k36PlTUhAEDNvXehZuaH\nCL73DpTly/o/YSL0IxPTw/m/+iI9BWW/J+PjnIiIiIiIiIiI3IEfHyciIiLvSXZ2YAiHiIbAbGyC\nOWEi+u2fUSCEo2+2OXwffQAACJ9/MWqvvzq1zVht9dTyqN1+itYVXalp9KSqQd9qm9T2vpNORdcl\nl0MZMyZ944lAgTl6TGnPc6oKGQgApgkRjye+yCICDOSI4H13p5brLj6/qp1c9M1/gsgJJw+8Y1Yn\nHLVQx6g8ZCiUM6bNnoXY3vsVPEaEe62FjOnWmnfeFu3vzRz4hOyEQ0RERERERERELlBUCGf27NmY\nOnUqpk+fnrOtr68PJ598Mq655hqss846ME0TV111FebMmQO/34+rr74aa6xRfAt1IiIiogElPxXP\nEA4RDULPFX8E3nsXqKkZcF/py9NdBkDvry9Dzx57Qw34AVVF3/Eno2b6fdbGPLdrRhNdTxKhnsXf\nLoL8eCYCu+0CJeu5rOfaGxG6/FL0Xn8zgo/k/g1WkBBY+d/3YSoqxm27OQDA2GCj4o+nqgo++1Rq\nOfXYqRIpBCLHHFcwZJaU2Qmn+6a/9Ltvx1MvoOnQA9B9w5+tc+T5OQhdeXm/IRx10UIAgDlpUmpM\n++5biO4uyPqGwidnJxwiIiIiIiIiInKJAUM4d911F5599lnU5HkD7fPPP8cf/vAHLF++PDX26quv\nIhaL4bHHHsOnn36K66+/HtOmTStv1URERDSiCV2HVBR+6p2IBqXvvAthnnsBlGKeQ/wFpqNqagL2\n3gfJPjPxnXa2BSnMunooPd3p9ViiM41m/Qnmb2wAfrZ73ts21lkP3Y8lAhpKiWHDtdeBAqDr9n+g\n4ezTYUxerbTjyRHtz8+AbG6uyrnqfn0+/P97F4jFBg7hRCMAgM4r/ojYiaf0u298x52xcOEqBAPW\nbSano8rkm/89tI8/hL71tvnP1xe2jq2zB25ER0f/IRyArwmIiIiIiIiIiMgVBgzhrL766rj11ltx\n6aWX5myLxWK4/fbbbdtmzpyJnXfeGQAwZcoUfPHFF2Usl4iIiAhWJxyNs2oS0eAVFcBB/iABgJxO\nXPGttoFZU4O+8y8GAIjeHtt20d1l3V6JHbwiRxyF2qnXo/svt5d0HPyJDj66XtpxVHXxDTeGvu12\nVTufbLLCPiIeg0Rt/zsnOjipNcH+90tIBnCslfQxfSeeipoH7rFua9HCgiEcGOnpJruvvRH1l1vv\nNdTcchN6/3xr4ROzEw4REREREREREbnEgFev9tlnHyxatCjvtq222ipnrKenB3V1dal1VVWh6zq0\nAS6UNTeHoGnemVKipaXe6RKIiIiqxnW/94SEVFX31UVEw1A9wu8+Uf9HAAAgAElEQVS8j9BO29tG\nW8ZmdeVo2RRoa0NtIIBaIWyhgJaWeuD3vwUANIyqB0p57mqZgh+WdGCNCY0o6RlvlLV3fciH+mHw\nXDmcn+99SpW/vnorWDamITDwYzFghdXqxjShbgg11px4LJAI4TR0tBY+b50VHqtrDAHnn49oRzsC\nN16H0IMPIDT9/oK3L1UFUlWG9eOEiEYePqcREZEX8fcXERFRESGcUtXV1aG3tze1bprmgAEcAGhv\nD5e7lIppaalHa2v3wDsSERENA278vdcUjUNVFKx0WV1ENDz1rbE+Vs8aK/i82G1NO1V3wimo+ee9\nqX1bEpu7wnFES3zu6umJlvw87O+NoxFAT0cv+jz+XOnG30OD1ZJnLF5Ti44qfn31pkAQgLH1Noht\ntAl6Hnq84L6BlZ1oANAVNUt+3ALpr7djRTvEP+5D4+knI/zdfPQWuK1AWzcaAHT36Yi0dsO88DcY\nd+N1AIDWFV0Fp5xq1g3AlFg1TB4nRETD6XcfERGNHPz9RUREI0l/wVOl3Cfbcsst8dZbbwEAPv30\nU6y//vrlPgURERGNcMIwIFVOR0VE1aEq6Qv/kQMORuuMtwY8pue6mwAA8bXXAeLx1Phgnrv82iD+\nbFMTx3A6KlcxGhoRXWc9GIkpoQDkTG1WadpXX1qnXbQQNTNegrLwR/ifexq+12fk7CsiEWshWNx0\nVIXoP9kS+vY7AACU5csL72gY1v+J+0RRMx770Wj/JylyijkiIiIiIiIiIqJKKvkd4Oeeew7hcBhH\nHXVU3u177bUX3n33XRx99NGQUuLaa68dXGXRKER3N+SYMYM7noiIiIYvQ6/6RUsiGrkURcCsrYPS\n24PY3vsCP5ky8EE+H/QJEwHdgAj32sZLpamlh3BSYR/TKPlYqiDDAAJBKN1dqaG+Y0+oagnaV1/Y\n1pv23QNq6woAQNu7H8NYL/1BGhGzgi/SHxjUuVqXdwKmCagqpK5DCgGxfFnhA7JCOAAQ3Xd/BF76\nD0Q0AlkoDJQx/RsREREREREREZGTigrhTJ48GY8/brWoPuigg3K2T58+PbWsKAr+9Kc/DbmwxuOO\nhP+/b2Dl1/MhR48e8u0RERHRMGIYQBHTXRIRlYOmKuh49iX4HrgP0cOPLPo4oWmQhg7R15d5YyWf\nP7MTT/EHWecR7ITjKsIwAE1F9x+vRcMVv0HHA48gvs9+Va2hfcZ/0bzXrqn1ZAAHAHxvvWkP4XR2\nAgBkcHAhHAiRDtRoGmSoFqKnp/D+eUI4MmAFb7SvvkT8pzv2fy4iIiIiIiIiIiKHlX06qnLx//cN\nAICydInDlRAREZHbCF2HVFz7MoaIhiFjs80RmXoL4PcXfYzUNCsEEw6nxwYxHZVvMNNRJYOKDOG4\nQzyOaHfYCpmoGqKnnYHWha2I73cAUOXfZ/pPtkB0r33zbhPxmG1dXTAfAGCOn1iWc8tQCCLj50E3\nTPv5EyEcmRHC8b3/HgCg6ef7QZv5EdDbixzshENERERERERERC7h+qtXmW/QEREREQFIXMTkdFRE\n5G7q8mXQli+z/00ziC5eg+mEw+mo3GXUtlMwacPVIEwDQlOtri2BQXaXKYOu6Y8ifMY5uRticduq\niEQAAObYceU5cW0tRG+iE45pou78s+H795Pp7Xk64ZhrrJlabt7vZ6i94ZrUeuim61Bz841WBoed\ncIiIiIiIiIiIyAVcE8IRPd15x5WOtipXQkRERK5nmpyOiohcLxm+afx5eroh6S89eCEGEy5QrT/1\nhM4QjhuoixdCxOMQhmHr8uIYRUHvFVdh5W13oe3N/6HjsacA5HbCCTz/TGKh+A5Q/TIMaMuXAQCC\n9/4D9Y8/hKYzTrFtB2AL4XTdea/tJvwzXkot1950HepuuBpS2jvqEBEREREREREROcU1IZwxa09C\n6NKLIFassLWSFm0M4RANN6Zp/YwbpgmTreOJaDB0HVJxwUVMIqIiqN1d6ZVBdLUZlGRQ0WAIx3GJ\nbjJJSjjPdEpO8PshjzwKxsabAMGgNZYVwkkaTHgsH3XhjwAA3+szEPjP87k7JDo3yYygrTlpsv02\nFi1E4IF7bGP+hT9CshMOERERERERERG5gGtCOABQe//dGLPputBmzUyNqcuWOlgREVVCMngT103E\n4/zUKhENAqejIiKvqlZQIBFikLpenfNRQer8ebZ132ezHaqkMOnzAQBE5nRUmWF5f5k64SSEbr4J\n/nfeyhlPnV/zFTxWRKNouORC+N57J2sDQzhEREREREREROQ8V4Vwkpr33SO1rCyY72AlRFQJpikB\nKTH6xGNQe+stTpdDRF4Ui0GW+YIgEVG5rfz829zBKgUFkt3CzMxQBTlC6exwuoSBJX+ndnWmx6LR\n9HKZH7f+j963D0gJ/5/+AP/LL1qrdXW2zeFzL8y5jboLzylrTUREREREREREROXgyhBOJmXxIqdL\nIKIyM6UEensReu1lNN/wJ6fLcZ6UUGfNBGL52/8TUS4RjaanziAicik5blzOmDk2d6wiEp1wah+Z\nXp3zUUGis9O2Hj71Vw5VUpix1toAAHXBgtSYiPSV/TwdTz6bd7z+rNPQeNst8L/3NoDcEE7vb36H\nJfc/ZhsTfdn1sRMOERERERERERE5zzUhnOje++YdV+bPR+jGa4He3ipXRESVYpqA0Pmp7CT/c09j\n1D67o+63FztdCpE3SAklGoEMBJyuhIioJF033gJz8mrVOVliyj4lGoFYtao656S8RFYnHH2jjR2q\npDBZV2/9n9H9RkQiAIDIIYeX7Tz6T6bkHQ/+63F7PaFa+w5+P/Sf7WUb4tTVRERERERERETkRq4J\n4XRNfww9V12TM+77cQFqp16P0F9vdqAqIqoEU0qAUyOk+D76EAAQePrfDldC5BHJrlHshENEHhDN\nCA7oO+5ctfPKRCccAIBhVO28lEu2t9vWheKaP8PThIAMBCAjVghHSgkkOs3IUKhsp5GNTYgcdsTA\n+/l8OWOa6sL7jYiIiIiIiIiIKIt73sUSAn1nnYu+407Mu1nW1uYdJyLvkVICcU69lCKs1vnCNB0u\nhMgblPY2AIAMMIRDRO4XzegiYgvGVJrfn1oUkq8xKsEwTUDKgUNOWdNRKSuWV7CqwRPRKGpmzwSk\nhG7I9HRPZQ69xvbcZ+CdMh6/SZoqsOqdj9D2/id5D2GnTSIiIiIiIiIicgP3hHASem76S95x2TK2\nypUQlV9c5wUQAGi65QaM2cJ9bfiJyBuUH38EAJhrre1wJURERUhMCwUAyNPdo1KkLyPEEGc4oRJM\nE2g46Vi0TGi2VvKREo1Tr7OP6XrlixuKWAxx3YToCwMAZLCmrDdvTpg44D62x2+CEALm+hvAWHvd\nvMcIt9+vREREREREREQ0IrguhJP5JnXPlX9Kj7OFOg0DMZ2PYwAY9debnC7BXRKdcCCls3VQRcW6\neyF6up0uY1gQ0QgAdskjIo/IDGdUMYQDf/pcNfffU73zjiCmlAi8+DwAwFjwQ/6denurWFGZ6Dp0\nw4Q6fx4AwCzzB2Li2++A8Nnno+31dwvv5B/EzwrDZkRERERERERE5ALuC+Fk6DvrXHTdea+1wk+1\nkcdpn8/GuF8cBGXJYqdLcZ+RHrJLTkeV+LQxDU8te++CMWtPYtiqDBqPOhQAICIRhyshIipCRghH\nqtWbjiqzk0job3+u2nlHEtNM/04fv/1P4Hv91Zx9hJnnda5LXwvEN58CABCxKCYdsDsazjoNAGBO\nmFDeE6kqev/wfzA23QyRw47Iu0u+TjhERERERERERERe4OoQDlQVUku8UW0whEPe1nDqCaj54D2E\nbrjG6VLcJxZzugLHKEsWI/T3vzldBlVaNAr/998CAERnh8PFeF9yugll2VKHKyEiKoKWEbzR1ML7\nlVs1u+4MknRpGKVYZlb9TUcflruTh8Lm5mqrAwDEDz8g+NXnqXGpVS481n3HvVj45YLcDf7+Qzid\nDz9RmYKIiIiIiIiIiIiGyJUhHH2jjaGPT8wTn/i0qPDQm5dEeSUew4JdnXKI+MgN4TTvsaPTJVAV\niM7O1LJv5kcOVkJERNUmGxvTy03N1TtxBYMT5RLTzYF3cjGzmKlmDetrjGy3Q4WrGbpk2Cb64yL7\nBq2yga5gyyj0br+TfXCAEFlsz32w8pv56Lj+ZkT3OzAx6u1QFxERERERERERDQ+uDOG0v/Ee2md9\naa2oiU+LFvMGJ5GbJaYccmv7eUdFR24IR2lrc7oEqgKR0c2t9ne/cbCSYSb5vEpE5GKx3fdE+LAj\n0fHEM9U9scufI5WlSxCcfr9tui5PkRIt555mG4puvW3ufskPk4wbV4WihigRwpn4y2OzxivfwWnF\ng0+i95zz0wNFPH7lqNGIn3Ja6j0Ddz/iiYiIiIiIiIhopHDnxyOVjGxQ8g0/dsIhz2MIBwAQjeYM\nqT/Mh97S4kAxDhvpj4URxMyYci2+3U8drISIiKpO09B7x92OnDp84qkIPXAPzMYmR87fn8ZD9oc2\nfx46J05AbN/9nS6nZOp336L+BXuwSv3xB+vvVlUFpETD/nsiuv9B1sbMIItbXwPK/IEoWeFOOAAQ\nCAUgRw/t7wHJGA4REREREREREbmAKzvhZJJK4lNtBqfwIY9Lvifs1jfdq0RZtTJnrO6i8xyoxHnB\nB+51ugSqEvlhegoqEY04WMnwYqy/gdMlEBG5Wl+is4gbQy7a/HkAAGVlq8OVDFI8njOkrViO2Pfz\nAQCBxx9BYOZHaPi/31sbFRXS5d2Jgv9+Mu+40raq4uf2aSr8b785uIMT96vgdFREREREREREROQC\nrg/hJFtiQ2cIh7xNJjs8FfiE6YgRyQ0giJ5uBwpxXuiGa5wugapALF+OsWefmh7o7HKumGFCX3c9\nAED49LMcroSIyOV8iQ4meQIjbiH9fqdLGJyMQE332ecjfPqZAICxvzgI/pf+A5Hd/VHNnNLJW2GR\nnK+lUufp6RnUcW4PNxERERERERER0cji+hCOrK0FMPg35IhcQ3A6KgAQZp4Q0gi9T8zmZqdLoCoI\nPv6IbV39/juHKhk+zAmTrAVf5afHICLyMumzAi7CbSGcjHpkMOhgIYMn4umpJkVTE2TI+rvVt3Qx\nGk84GuqXn9v2l6pqC+64UficC/KOV+t71HfCyVU5DxERERERERERUSW5PoRjNo8CACjtbQ5XQjRE\nLn/TvWryhHC0xYscKMR5vu++dboEqgJzwgTbeva0G+YIDaENSbKjmK2rABER5fAluoq6LIQjIn3p\nFc2jgcq+dHfHwIyXYY4da9scuu9u+/6qll526e/+6H4H5Iy1n3UBogcfWp3zH/YLAICReA+gaPw7\ni4iIiIiIiIiIXEQbeBdnJT9RiMw3amlIdMOEpro+fzX8pDrhOFuG4/J1wgEgVqyAzLp4MawZRv5x\n0wQU/nwOJ6LbPt2a2tNtXQxNdHHRdRN+H8MkJUn+/PCiGxFRv2Qy4KK7K4SDcMbfdoVeE7mciKZD\nOOq87xDbY6/+D1AV1//e0rfZDotnvINJe+0EAOi8ZzriBx4MUa26NQ2t734MtdS/Vd19txIRERER\nERER0Qjj/iu9mpUTEpFI0Z8YZFeB/vVFdadLGNEM3UBczx9EGREKhXDcdnGowkR3FwAgutse9g3R\nqAPVUCVlTqdojkp0d8vohqMbI/j5YJCEaUIK4fqLmUREjvMnpqOKuet1Vu0tN6aWM6d18pLMEE73\nX26HufY6iBx6ROEDMru3ufjPVd/mm6VXQjXVC+Akrbc+jLXXre45iYiIiIiIiIiIysj9IZzEp+AC\nL/0HDaccDwDwPfUkRGtr3t21D96H/M1voX70IQBe3MwWfOBejD35mIJBCKocEbMuMNS+8AwaLjrH\n4WqGRlm+DMasWYM7OOPTziuu+L/0+Ai7mO57520AgP/DD2zjIsYQznATfPRBAEDHMy9CabOmVhz9\nkw1Rc+ftAAD5ww9AOOxYfZ5kmpyKioioGD57Jxzt00+gzp3jYEGWmnvvSq/EvBnCQST9ms2YvDoA\noGfqX2CMT09D2bqiCzIQAJDRlcjlMkM3Zn2jg5WUINVx1MXpJiIiIiIiIiIiGjHcH8LR0jNmBV54\nFr7XX0XTr05B0+EH5t29+aC9Mf7+aRh1wJ4AAH3OXKC3tyqlekH9JReg7o0ZUJYtdbqUITOl9FbX\no0j607J1iYvyXjV6s/Uxfp9drSl1SiRkOgCm7L1PeoNHpyIYLNFnhS4iRxwFY/U10xsiDOEMN9q3\ncwEAZmMTogf+PDVed+VlMFa1Yc2dt0Tz/ns6VZ7jBvU8bhqcto2IqBhCQKoqRDwO9PWh8aB9MWqn\nbVwVVhC6N7t0iszpkhMdh2R9A3pu/qt9v0SXQ3PsuKrVNlQdT72A3lNPh771Nk6XQkRERERERERE\n5Dmuv4IlFfsn3dUliwEA2jdfD9jNRZv5EVbbbVvUXXVFzjbf6zPgf+LR8hXqNV7vOmIYqDvqcPhu\nusHpSopme6N+mBjU15T4uW0//lTIDTdMj3v0AkyxsrtyiUQ4ML7Djmh/YUZqPPDqy1Wti6rH2Ghj\nRPe3B0jHb7QmAED76gsHKnJeze1/Q/3xR5d+oGnmvD4gIqL8hGHA99EH8L/7FpTEFErKwh8drSmW\nOd2QRzvhmL3pLnYy44MjsV12z7//+PGe+RssvuPOCF831TuBV4/cr0RERERERERENDK4/121jDc0\nAdjeYFOWL0st117zR7SMbbAf+sXnAICaB+5JjfVFdWifz0bT0Yej8ezTrTd9R+DUTNLjX3PNtNtQ\n++arGDX1WohVq5wupyhKV5fTJZSFrWtFX6TwjgVvwHrsqXW1AIDY7j8DAAhjeIdwzLlzbUEjkXg8\nyIYGyHHpT0bXX2ifqsxT3Z4oLzNUi/DGmwFCIHr4kei++W9Ol+QadX+8AqFXXkTNXdNyN0oJo0CH\nLN+sT6AMw2AjEVElhf7659SyOn+eIzXU/v5y1F5wNpRVK1NjIu7NEI5sbwcAdB1yJMw110pvCATQ\nfdmV6Jhq/31vZOwj+PquzBjCISIiIiIiIiIi9/BcCEedOye9KdE5QFm8CKG/3pxzqO+5Z2zroqcb\nY/bbHc0/2zk1Fnjm3xi97mTUXXC2Z8Ic5RCPezvwoH3zVXp59iwHKxka5ccfoHzxmdNllMQ00xcN\nklMqlSRxUV2oVhcLY401rXF9+E5HFXjkQUzaddt0wCYeRzAxJZnZ0GT9X1efc5zo7ICx2PtTx41k\nUkqIaAQIBq0BIRA5/iT0HXeis4W5TOjG63LGGo4+DI2HHJC78zDvmkVEVCmiuzu93NNT9fPrPb0I\n3XEbQg9Ph9bZAbPJeg0Ej/5dItraAACRk3+Zsy1y4SWIn3ASAKDtjfew7PfXQd96W3ZsISIiIiIi\nIiIiGgG0gXdxWFYL7NC0W1PLgWeegvnSywjG8n8aPvjWG7b1uovPQ/CL2baxhrNPBwDUPDwd6pxv\n0P7Cq1CU4f/mqPjsM2DNNZ0uY9AyW+g3HX0YWle4v8uMMXoM1IxP/cIwMHrrzQDAE/UnGbYQzmCm\no7KOF6r1s51q3x+PD7k2t2o4/ywAQPCxh9F96x2omXYbtO++BQDIxkYAgNnSAqUnfXEsFjcwbv89\noc6fh5ULWwGVU+94UeAf0yAMA2ooZBs3J0x0qCJ3Ujo7csYCb7wGAMi8TKx+8TlG7bFjlaoiIhpe\nMqc+DP77CWhzv6neyaVE7fVX24b0jTaB/3/verYTjtJuhXC0cWPQX5Tc2GRT9K29AeoyAzjshFNe\nDDcREREREREREZGLuD+E04/gow8hWML+srau3+3+mR8h9OsLELlhKuDzDa04lxv/y+PQuqQtd7ov\nj1A6O4d0vCkllCq/WSt6emCGQjBCtfCtbLV3c5DSM28eD7UTjpDWdFTJTjjQrJ+14T4dVSbfxx+m\nlmVDYhq9YE1qTFm+DEZHD7Rv5wKw7meZp1MOuV/jlb+1FkI1tnF9iy0dqMajwmGYNTVQhLAFcOIb\nbOhgUURE3hZ47mkEnnva0RrMsYnpOKNRR+sYrLrnnwIAmE3NA+4b8Fnhc7NlLNQliyFrayta24jj\nkb+jiIiIiIiIiIhoZPBmAmMA8e1+Ct8H/8vdoA785dY/eB/kT3+K6C+OrkBl7qIsWwpz8mpOlzEo\n+uY/SX2aN7b9Dtab94FA0cfLN/8LsdmmkGPGVKpEu3gcSjSC8E93hhkMwvfGDHvnl1ispPqdZBhm\nanlQnXAS01Glulwlg2AOTTEjpYSo9hv3evp7b9ZbIRyZEfwbvdn6GJ25f18EYAjH2wL2yGhsz33Q\ncf/DaDrp/6UHPRTGK4tY4c4HZsb0kLVTr0frpVfC77N3gzLXWKtipRERDWcdV/4fsNlmVTtf8LGH\nEfzX4znj5uprAABE19DC9Y4Ih6GErTC6bGwacHefZv0O63z8aai3/Q2x086saHlERERERERERETk\nnGEVwlk5ZwGUb76G2tGBxuwQTiQCJXMqoH6Ifi4MDiciXHoXE9cw0k3f/e+/h/rzzkD3nfcVdaj6\n1ZdoOepgAEDnI09WpLxsoisx3dSoZihxK2wiMoIYIhqB9EgIp/Hm61LLg+mEAzMR4lGypqPS+2vk\nXxmmlIjrJgK+yk31lO/CkohlBLDqEh26tMI1iEgfOGmBt8R1Ez4tPZ2iDOb2bYvvf6B9IBoFEvs5\n0a2r2pS2VXnHA48/goZzfpUeaFuF4EsvwJTW/SgiEQDw7PQlREROi590MpAIAVeDb+ZHeceNtdYG\nAMi2tqrVUi7qsiUZK8W/jjTW3wDt192Chlp/BaoawYb5ayYiIiIiIiIiIvKWYRXCkc2jYPx0Ryj/\nezdnmzbnayjffZtaN0ePhpL4pH3HE88g+I+/IzjjZet2PBKGGKq+9k549u3frKmLgk/9q/gQzvff\npZYbjzmirGUNaLXV4Xv/PQBA8K470uN9EaChsbq1DNKoW29Or4QH0QknGcJJXrBI/O/EdFTG8hWo\n+9ufYW63PYyfH1qRc4iVWeG/eBxi0cKc/WK77QHfJzPz38ZgOg6RY9TPP4Py6gyYF1yUGpPBmn6O\nsIhoJBXWicYM1ASG1a/oHNrns3PGRFcnfC++YBsLPTwdoYenAwD6Tj0dNff8w9rgQHCPiGhYqGIA\nB4C9+2MGY02ro1ntv59AeNrd3gpSJEL10bXWLf1YD32ZnuGlxw4REREREREREQ17nrjC13fwoah5\n9qnUenTvfRF45SXbPp0PP5FaNse05NyGFAKiswPxCZMQvvZGxHfeBaM32wCiL4z4Trsg+OhD6Z0d\nmhan2mR3j9MlDN4QLr6G/v43AEB8yhaIHnhIuSoaUBQK5FFHY8wdtwEA6m7K6CjjlU4nWV2ihtIJ\nRyano0q8ae5/9inEd9hpSOWVauLm61kLd09Da6VCONGobV395mv45llBsLY33kuNhy/+LWpu/SuU\nPN091O+/g7H+BhWpj8pv1M+sx3HHNtukxmRw4HCn6OmBbGxCX1SH8c0cmGYcyhZTKlan0xqPPdI+\nEIthzLr9T5GozPs+vaLnv6hLRETuoi78Me945t9s/hkvIbb3ftUqaegSfy/Gdt295EMZF6kgT/xB\nRUREREREREREw50nQjjtd9wH2dGJ0FuvAwB6/3hNKoTTfd1UyHfeQWz3PVP7G+uuh7ZfX45RU69N\njZmRKJTOTsTXXgexAw4CAKz8biHikRh8WS3Esy+aD1fKgvlOlzBoIvHGd9ffpqHhvDNLOjbZEr/n\n5r9B3+wnZa+tkGjcKDjtkVcec8EnH7OtD6ZDS6rjjWLdF75PPgYAhO69C73X31zosLJTflhgH5Cy\nIp+iFdGIbd2X0f3D2GTTjA0+9O25D2pffC73NsK9BW8/rhvwZUxlJaWE4KeBXUF+nw6MKO3tA+6v\nzfoEsUmTgffexVpHWb+nWld0Vay+atJmz0LzXrui8+4HEDv4UOjx3LBr04F75YzFtt8R/vfT3e0C\nb7yWWhYjJDBLRDRUKz/5EqN23hZKby+MlrFVP78M1drWOx9+AtoLz9sCxr4PP/BUCCc5rawSKL2v\nKF+nVUDyPuVdS0RERERERERELqA4XUAxFAUQGd0hZG0d2l58Has++gyRU09H9L5/pqe2AQAhEL7g\nEqx66Y3UUPCRB6GEe4GmpvR+Ph989dabwj1XXYO+9Ta0bt8jgYjBSHUfATDx8guhzco//Y3rJYIc\nyUAVgKK/FmPSZACoagAHAHyadd933v1AzjYR8cZ0Q6Kr077eF4ZumEUfH9cNiB6rA5Osq7MGM7rr\nKAvmQ1myuCr/tNmz7MWFB9HVpxiRrE44X35ecFcRKjBlUSy3Ow4AiPY2KA89mJ7iC/wAsJuE/nlv\najk7wJaXtL6Pqx+Vfl4rNIWH1wQfsO6L+t9cDITDWPLWxzn7+D61/0xGdtkd8R12LHyj7IRDRFQU\nOXk1LPjfF1j05H/Q9sW3Ax9QZpGjjkkt9/38MMT23AfhW261/shLKvBax7USQVChlf6ZFmZwKoB3\nKhERERERERERuYgnOuEoQqDmf++k1qXmg7nV1v0eo2kC5pZboevEU9HwwD2oeygRfGhsyru/HDcO\nnZf9ATWnHAMj7I1AxKBomu1Nbt/HH0LfYisHCxqkxBvfUk0/hMUAnSZMU0JRBGRDI4zu7oqWl4+S\neHM4dvChiO10D/zvvJXeGPFG8EsGgvb1SAS9fXE01g081Q4AdPTEUNNhBXlkfb01mBGgG71tdYNR\nmURvL2Rt7cA7lnq7Mfv3NnTXHQCs4F/OvjX5QzgiEsk7XnfFbxF84lH0dKxE3/kXQ0oJWaGOPmSn\nL18BbVz+bgLS54OIxxHI6Hqkr73OgLcpwmH4X3nRPtbZCTlmzNCKdQHZ0AgAUFatRMua45E7aWSu\n7iefQe0ffldwe/TwIwtuIyIiO625EYFdqjvtZ5K+9bap5T4AZD0AACAASURBVJ5/3Jd/p0BxryVd\nI9HRTfp8JR+q8HVa5fC+JSIiIiIiIiIiF/BECCe7ZbccPXrAY9TEJyvVrO4W6rzvCh4TrA8BAOr+\neS86Lrio1DLdT0qIrE+ZZreH94rUNCSZnz71998O3jBNKIoKRPogg8F+9620VBeYBK90wsm+QFLz\n6ENoCscgL798wEN9b72J9c74JbT2VQAAWd9gbTDtnXQiVbywHvzX46ll0dsDifJP0ZCcjkoqCkRm\nx5o8F5sKPS6zp7RK0j79BADg+2w2+gAYJvvgVEPNP/6Ouit+i877HrJ140rx+XI62MR322PA29U+\n+xTq0qX2QcMYSqmuIRsaStq/44lnrOMKBOOWvvI2tCnOhfaIiLxGU51tgKqvux60777NCUn0Xvhr\n1N4yFcZqqztU2eCkpldV80812++xzImUneSdSkRERERERERELuKJEE6OEt5kk6PtHQS0r78qvG+i\ny4dv0Y9Q5s+Dudbag6vPrfK1eTeLn0rITURvr7Wgqui95DLU3nRdwaBCkm5I+FQJ0dUFs7au330r\nTf3xR9v6QLW7hcwKOmnzvseYv1yP1iJCOE1HHGy/rWQnnGSgCkB0r33QPe3uoRdaJHsIp7cyJ4la\nP3ci+2ctX+AmmL8TjtlX4PEhrdCNFAKmlOjtiyMULP0T2TQw3TBTFzCD9/wDABB45l95QzjS54dA\nOgBqBoJ5Ox9lC911B8K//JVtTJiGZ6YYM0wzFYDNUWgcgL7BhtDmfJNa77j7n4jvujsAIHLcidBm\nfgR1wXxo8+el9hGbb1aeoomIRojktKhOaX/rA5ixWM5cyPpmUwBY3RW9RFm00FoYRCec7A+YUBnx\nviUiIiIiIiIiIhdw9t3YQYgecPDAO2XovdQeDoge+PPCOwfSAQNhDo/uA5lE3AoDyIwpbzzTgSWD\n7/VX4fv4Q2tFVdNhjmiekFFC4F+PY9Lm60JZsRzqqpUw1hl4aphK6rnqavtAJAJl2VLUnnwclHnf\nO1NUlSW/b+bk1RyroW/PfVLLmSEc0d6G2ssugbJk8dBPUuCiUt4OHwVCcaKtLf9tJ0I4UATEZ7Nh\nfDPHmo6Kykp0d0E883S6K03yPi50ocdnz7f2/Wzv/KGrfOfKfgx4qBOOrvfz2OsL5x1eMfcHxLfb\nIbVuNjYifvAh6fWJk9D12FNof/tD23EFwz5EROROmgYlFModr7F+PzZc8ZsqFzQ0DeeeAQCQWumf\naeF0VBXA+5SIiIiIiIiIiFzEc1exIr84uqT9lbpaRDbcOLUe3We/gvsmO+EAAGLxgvt5ViKkYtan\npwWp+5233vAGgOBjD9kHkm3g++nq03DmL6G2t6F5p22tgfrSpkYpt/hue2Dll9+j9ze/AwBo33yN\n0ZtvgNALz6Lh7NMdra1f8QI/F4MICujrrg8A6Ln6+vTNZ1yMr4bO6Y+iO/E9qP31+alwRWjq9Qjd\ncyfqy/C9iHT1AEDqe50k/bnTUcX23T/vbdTfeVv+G88Ig4zdaxdssP9OYAan/OovOAfjzzgJwUce\ntAYy7nczzx1uZj2/KCWEHXM6MnkphFPoOXjJEmiff2YbMiavhtZ//BOiqRnSn+4iED3sF/lvI6ML\nV+ynOw65ViIicod8r4fcTvvog/TKIKa4ZV6kAninEhERERERERGRi3gmhGOMGw8AMCdMKPlYNZz+\nBH58h50K75jRCUfpaC/5PG4nYlEAgLna6g5XMjSyrt6+nuyIUET3IqWzwzomXxeSKpMtLTBWXwMA\nEHw0HSwSiRrdSBQK4RQa70+iI5NsHoXWZR1ov+9B9J12xhCqK52qqlASHaL8c76G/8UXIKWE0mF9\nD9SFP/Z3eFF8M14GABhrr4O2J59NjesbbZyzb3z7EkNIee53Kb05xZyb+f73DgBAm/0pgIwGRKtW\nYdy4Rvgfnm7b3xw7zrZe8/qMos8l5s4BAPTsua814KEQTixuPfaklDASgRxlwXy0TNkQgVdfse0r\nQyHInyc606npLgL6hrk/F0ntjz+F1rMvQtddD5S5ciIicorocO/r3kJC0zLC0Xrpv6cVhYGRimEY\nh4iIiIiIiIiIXMAzIZyOV97E8mn3Qd9iq5KPjR13gnUb9z/cfwAlrqcWa6++quTzuF08bE2LY6y7\nHlZd4L0OOEkylBWgUaxOODnTuPQnY0ouJ8lExwzbBYhSvo5qi+ef8kvopYVwIjvtah9QFOgHHOzI\n9yW2/0GpZdHbA+Wxx9JTC8QKT3EGAAiHUX/IAdAef6TgLloiyCP9ARi77IbW5Z1YNfsbmGutXVqh\neTquJG9b7+hOfw3t3ruY5XYyaD0uk9P3+X5cAADw//cNAEDjBWfbD4hGbavxzacUfa7ArJnWuRob\nrf/d/HyQQVm2FJP33xW+t/8Lw5Spqal8H76fd39t7hyIxIUy0ZfuFCSi+advAwB9t58Bf7gKcuzY\nMlZORERO0rfZNr0ymFC3A6Smppb1jTcp+XhOR1UBvE+JiIiIiIiIiMhFPBPCMSdMhH7wIYM6Nnze\nRVg18wvE9z+w3/2MddZNLce33Brq7FlQ5n0/qHO6UV/iQr30B6BP2cLhagZP1tXZB5KdcEroGGEm\nLnA7zRw1GgCgdHelxoSLO1+IQtO0lXjRRIF75kwyW9IX9Ot+fxnGnHc6ahLTDqnLlkJ0deY5yApG\n+F99GcH33kbzOb/Ke9u+12egYe6XAID41omLTELAnDCx5DqVFctt65l11b2R7jLSdPWVJd829U8G\nElNlRCNFPdbVHxaklleceSG6Hnq85HMqyec5Fz8fZKq5+06E5nyFpsMPQuOZp6Jv3g8A+umelUH0\npENkxhprVaxGIiJyH3P8BHTvZU3HKbq6BtjbJTI6uMV328PBQiiFIRwiIiIiIiIiInIRz4RwAMCn\nDbJcRSluCiafD+3THwNgvSE8aq9dMXp774ZVMmmzZmKt/XYGAMiAH5qH26Anu8ekqIlPo2Z0jDDz\ndA3JZGywUbnLGpR802KpPyxA8JabrO39dMEwTYmevip/YjjRCafzxluyxvU8O2fI/n74fGUsamjM\n0WNSy8qqVTnbm362M3zHHQPt4w8BAKGp12PUxutArFo1YGCq6ejDU8s54bEC2v90Q/4NWd1VtC+/\nyLtb3eMPp5YH+jmgIqU64UQAvcBjPeOxkNkZqvdXZ8NMTKdYErX0cKGTfG++nloOPf0vrLfLFMAw\nUH/hOXn3j/zi6NSyCPemlmP77l+5IomIyJVkIhyvdLZDeuG1i6oOvA85g2EcIiIiIiIiIiJyAW3g\nXdxDVOFNNeGz7pKau6ZV/FzVFHj26fSKzw9z190cq2WopN8KcHReN9UayNMJJx43EfAXfoM8tve+\nFauvJAXCKPXX/R+0H3+A/6X/oO2r7/O+oWx+8zXihgJstmGlq0xJdrUQWeEhocf7722T1Q1Dz+g6\n5Ti/v9/N2g8L0PTDApizPoJY2QqRuDjUePhB0LfYMr1jJAIEg4VvKE/gKp/4KaeiVVXhW7wQaF0J\nXyiI2gfusU3ZAwCidcWAt2WaEorKixFDJRPfV9HXV3C6OGXpEhihEMSo0YBuPRd1HXMClOamwZ0z\neYHPKyGczz7NGRNtbTljC79aAN/SJVDXSz8HiJ4eAEB82+158YyIaCSqr7f+7w2jN6KjrsY9YW3y\nCpH1PxERERERERERkXM8FcKpBiVx0VBdstjhSspLX3+D1LIMBICaGuhrrQ309vZzlDslu4/I8ROs\n/xMhHO3rr5DsFRLTjXQIJyu8AACytriuJJUm++kIU/PQP62F3l4gTxeVCbttjwkAOp54BvFdd69I\nfdrjjwEBPwxVg9LQkOqEI0NZgZIBppwR3dZ0M2ZtHboOPgzGeRdVpN7B6jv0CNQ89WS/+4j2tlQA\nBwB8X30B31fpbjSiszMV1si2/J+PF912TPj96DvhFEQEEI2bmHjDVQAA9dGHYfz+j6mQgtLaOuBt\nGaaExg9rD1ny8S66uyBk/hDO6C03AQC0Lu+EMA1Et9gaPTf/FepgP9CvWN84YXojhJPPmE3Wsa3L\nQADBMaOAMaNs48nnh2K7RRER0fCi1Vm/Z43eXsilS4C1Vnd1KLO/1+/kEBc/XoiIiIiIiIiIaOTx\n1HRUVVFoqhGPExlfV/Dpf1kLgUCqs4mnJLpMCM3KkPk++RgAEJp2q7VdSvjeeRtIdFfInBomxS1v\n1BbxJr7S25N72BuvpZbrL7mgrCUlaZ99iuZzTkPzaSdizCnHYtQRB0HErPtShkK2ffPexxlCd9wG\nwPpaOm64BWYiQOUWvdfdNOA+YoDnBqWrs/DGvfYqqR6fpkBVFGiqgLnaagCAxtv/gtFrjIdITJnl\nHyA0BADRmHcDHG5iTpwIAFCWLRuwM40yfx6g6xCqAp+mQhtEJ6Lw4Uemp7rwSCec2PY7FNwWPuQI\n9B1zHDpemJF3e/TAg63/Dz60IrUREZG7yRpr2sfm44/G2ttvVlRHUken3NSs1+9dd9zjXA2Ul3TL\n33hERERERERERDSiMYSTRZ+y5cA7eVFG2EZdMB8AIH1+iFi00BHuZSTCEIkWH9nT9Phf+g9WO+5Q\nNJx7hjVQYPoYVygihCPyhHCajkpfrFaWLilrSUnNe+6SOxiNAABkjT2Eg/gAAZXFi1LLAZ/7WrPI\nUaOHfBvKysKdaRS1tK9ZUxWoqoCmKjDHjkvfTqQP/hkvAVIi8OH7AIC26/9sOza68Wap5Y6eKHTD\nxY9/j5CJwJ/U9QGfTwIvvgBhGKljVKW0X7ORjTZF77S7PRfCkY2NBbfFDzwIPX/9O/TNp+Td3nfu\nhWh75yNEjjmuUuUREZGLyYDVSVDrbAcABB+aDqD/MHFcd+71jegLWzVsva1jNVAWhm+IiIiIiIiI\niMhFGMLJYmy4kdMlVIQw0iGJzrsfsBb8Pk92wklNR6UmLoxnBlmkhDZrJgDA/9IL1ljWRfP4Bu75\nHkutiBBOT24Ix7Y9WuYglZTQPvs07yZ1SSLwU5sdwin8OBKffoLgk4+l1jXVnU87HXfcg6W33GEb\ni48bj9jk1WAGa2zj+bp+NP18P8A0yxZ6UYSAporcrkOmieA/70vXst8BWHnzbVh21sUwGxvTXYnC\nYUz48zUYvct2UOfOKUtNI5WybCkAQFux3Bb6m7dgJbpuu9O2b+r7VWLwKnzOBeg472KsePpF63ZS\nIRxvhKhEX6TgtgHDrYoCY/0NeAGNiGikyp7qMfH7oLsvMQ2qlMDy5VBfedna/N57UD76sKol2kQS\nofSs14fkPL6SICIiIiIiIiIiN9CcLoCqJNGpZPlxv4SSmPJD+gMQsRggpbcufianBUpepM4I4dTc\neXs6lBIIWP9nXcQOX3lVhQssgd8ewjGDNVAi9s4+A4Vwyi3w7FNoOO2kvNuS3V6yO+EUmo5K/eJz\njNp7t3KWVzHxw34BRUrgwjNSY62zvoFhmpi8VrobzarP58IcNx7NO24N7du5tttQFsyH+O/bEAce\nADna6q4T3WGnQdekKgpkqNY+2NeH+st+nV4fNw7GscfDNE3Ipx9NhUTqLzwbwaesqefqLzoXHc+/\nMug6RjqlvS21rH39JQCg98BD4PepiGd9f1MdkbTifr1GDzgYgReeRWy3PRDdeVeoyU/2JzroCNMD\nnXAMA6JtZcHN5uprVLEYIiLympwpP6UEenqw5v57wNhqa9Q9+iAAYBSAtmn3YtSZpwAAWld0VblS\niwhbnXAQYgjHNRJ/ynI6KiIiIiIiIiIicgN3tqSg8ku8uR3ddY/0mM9v/e+1bjiJeqXfCtlkdsKp\n+/3lkJD2/bM64Zjjxle2vhJkh1nM0bnTIome7mqVAwDwvfFawW3JaaWkz2fvQFRgOqpRe+xoW++9\n6JKhF1hBStYb9z5NQdCv2TpGJR8/+lbb5Bxff9mvMf4356H+/DPTP1dFhjEKkbX2EE5mJxZ9nXWh\nKgoURcCnqVYwLfF497/1Zmo/dd53Q6phxMt8fCeXVQUBnwpz0mR0/e4qdJx5HgCg9qbrEtuL64TT\nNe1uLH3hdcR32Q2KEPBpiv14D0xHVX/emfB98bltrPvaG7Hy7unoePxph6oiIiLPyDM9rv9/76Dm\n229SAZykZAAHAOTzzycWJIwq/r6Uiddi7ITjInLgXYiIiIiIiIiIiKqFIZw84ltu5XQJZSdjVjv3\nQG0wPZbowiLyvPHtZiLxtaS6yGQFJ0J3WVMKJT+lmt1JwlVvmGsaOh54BACw6v1ZkGNacveJ2Kd5\nqbnyssrVIyVqHp5ecLO6aKG14Pdj8fdLYTQ0AsjfCUdZ+GPOmLHRJuWp0wXyfdLWnwgwBV59Jd2x\nyTfwlGP9nicrqCV7exDdc28AQGd2wEEoEIkpHURvb3o8+xPmVJLMT+iLqPXzKJIhGSEQPf8iGL88\n3X5QseGrYBDKVunfOSL5uPJQCCf4xKO29VUPPYnIL8+AedDBiO+2R4GjiIiILLK+0T4gBBqPPXLA\n40afa/3ubTz8IDTvuG0lSsslJYLvvmUtDzFoTRXATjhEREREREREROQCDOHk0fGv523rUnr/o3Xq\nxx8BAPz1denB5BvHHrjIaxO3Qjgy2cknq/7MC+bq3Dk526XfX9n6ShTf7wB8+tVSmGuvA7MlN4Qj\nMkI4orsLdXfebttu1tZlHzK4OnQTNXffUdS+0udHIOhH+FdnJw7ODeGM3mrTvMd5Wfd1N6WWY3vt\nCwDoueIq9B13Ys6+gQcfsBaGGMLJvpgge8NAdzekEDAnTc7aF+nOTxnPW/qULYdWwwikZ05jlxEy\nU1YsBwAI2L8vZstY+w0oxXXCAQBFyb1gJJMhHC9MR5VFaWgAkBEoIiIi6kffaWeg46LfpgekWXjn\nDGpvDyAl/O+8hcC8byE6O3J3WrqkTFVatNdmlPX2iIiIiIiIiIiIaPhhCCef2lrIQCC12rDnLlCS\nHUC8SMr/3959B7ZVXn0c/11Jlix5xXacvRghBMoKM+yyoewAAcpMCoWwR14SRkspI5TQEvYuLZQs\n9p4BSiGMsAlJGNmDxHFsx1Pzvn/I1rDkIcuSLPv7+cf3PveR7pEt+bF0j8+Ra95bkqRA//7hcWtT\nEo4vuy7yGu7mSjhNCR2uvFbnWn/+KaYdVUfbxKRTcwsas7RvzDHHk0+EtgsuPC/muOfQw7okBrfX\nL/vLL0aNVb4xL/7knOBzx2iuRuTvYKUVe5IJKRlmFpeEtj1HH6tNn3yphkuuUO2td8TMLbyh6WJS\nkolHgUGDJEn+IUOD9/vgPXJ8Ol+GaUqW6F/hpsUSSr4xCwpC4/b3W/k5olW+zTWSaSrQ6Jbtpx9D\n43l//bMkyfncnOgb5Oaq4cxzw/vJ/p5pSuIxsi1JUsr61zkAIM3sdnmnXBvatS36ocM3df0pfDvH\ni89HHcv99z9VttO2crz4XPIxNik+/aQuuy90oR7wTzMAAAAAAADoOUjCaUXFgu9D27nffaPSMdvL\n+vH/MhhR5xkbNoS2A8NHhLbNLGp3EiVUCSd4obf+4staneq6a7q0sTx6sBsm4diaKmGYdkfMMcen\n88Pbb70ec9xojG0nFggk9kG0/aXn1ee2v8i3W3Qpf9/OY7Tpv59qxYP/jhoPtfRqSuRqmShgVG4K\nbfsjEleyvRJOy6o0/i23Do7l5srXsipN85xhw5M6pZlfoA1L16jquVfan2yxhJLO/IOHJnXeXq22\nVkNHDVXxgWPVf1h0dSqjRXu4SGafPuHtZH/PhH4/d6waQCYFCgvl6RuuBJT1r3MAQLdT86ebtOmD\nT1R9/MlR43kRFSID/fpHHXM2HbO/8GyXxJD7+CPhcxUVtTETGUMVPgAAAAAAAHQDJOG0wuzfX75t\nRkWNlRx/VIaiSU6gslKSVPf7s6M/mLQGf/xGFrQ7iWwNY3iaKuE0VSsy+xRr2YoK1UyfEXO7nK+/\nVOnhvw3tbz5zggKDBqc22E6wNv0sIn8+/gED27xN46GHB2/ijk0K8Pj8CiTwH6FFfzhbxQ/eLbOp\njYwkbb7ocslikX/b0XIddUT0DZqrENmaEgVaVFMquGxSaLtywbfhA47YJKPuZvOM++XdehttejdO\n0l0bH+z79tkv7riZ13qlpo4y8gtinreevfaOM9EIV8JxOqMOBTyxLcMQn3X9OkmJ/Se+JLmPOyG0\nXX/F5CSDaPqdkAVJkkZjowJDhspz0CGSpMCwYRmOCACQjar/PavVY8Y118g/ejs1PvRo63fgCSem\ne30BGdXVkqTcV1+OmlbX2MG/ierq5K8Kt7gqmHJVOJ66uo7dB9KDSjgAAAAAAADoRkjCaYslu789\nzdVQnPf8Q5JkRCRYSIpoR9XBVkIZVNfoUyBgBpNxvMEPziOrLeTarWo88eRgO542bJ52Z7f8D0m7\nLTYJp2USRaTyVeWqeXJ2cMcdWwnH+P57aUN5zHi76uslSb88NkfuP98UHs/NVcDlkiQFHLmhOE1b\n/OeQ9ZefQ9tmQfh511y9qDtzn3aGqj5eIP8OO4bGPPsdIEnyjRrd6u3Mpu9PzLgjt2sCs0dXFwn0\nHxA7x2IJtqmSZAQCUdVYch99sGviyCamKc2bF/qd0fHbde50vh13VuPe+6n8uPHyb/+bzt1JcwjN\nP7vuniQZCMjweGQJ+FX99DPa+MtqmYVUBwAAJM5z+JFx/5b3DxuufFfw7yBLG3/HF/3hbBmVm+SY\nM1POyy6SdcP6mDnW77+Tc9ot8ja3t41g+/xTGR+8L19Do4xFP6hsi4EasM2wuAmxtbf8LZGHhpRr\n+uOtG77PAwAAAAAAQO+T3VkmqWbE+fa00Yqku6mp90herwrmzpQUW6JdWdSOyuP1a1NVvbR4kXJf\nej44aA8ndNisFik/X9UvvNbm/eTYuudT3umwxQ62SLpobjPkGbtPsKKMxSLTbo99TjY2asgR+6vf\nmNYTRlpj1NVKkgrL+sQc85eUSpLMyGo2luBzyPAHk3Dy/vpnFR5/lLz7HyhJ2nztjW0/pixR/dQc\nrXn7I/lHb9fqnFb/I9rRdY+5duoNoe3GsyfECcIIPU8UCEgWi9y/O1aSVHTjdV0WR7bIffxhlZ16\nvPJu+Uurc5wP3y/XZReFv29S9HaCNj//ijbPuK/9ie1pWn9atnrrbuzvvRP8+u3Xwd9JBYXt3AIA\ngFYYhoyINXjTY0+p8tW3Vfn2Bx2+i5K9dlHhxX9U8dz/RN/1pgpJUvERv1X/+/+uQUP7yrJqZdSc\n4t8dqr4nH6uBw/up7wF7hcYta1bLqKiImtt47h86HBPSiCQcAAAAAAAAdAPdMyOhm4isItEs7/Zb\nMhBJ4nLeeE39Tj1O1lUrQmPuo4+NmmNmQRKOaZoyAwHlz3lao7cdqIG/HRs+lhOb3BCqzNKKtv57\ntluIDC/y5+L3h6t5RCSymA5HTBKO4fU0fU28/VBzIok1P04LpZKS4NfI10XT99v2zFyptlaue/4h\nx8f/k/OxhyVJ3kMOjboL0xm/Wky353TKtmPblU1s334dd9zYuLHLwmi4YrJ+/nShNn72jbz77h87\nwWIJJ5CYAZmGJesreiXD/t67wa/vz2t1Tv71U5Q380kVTDxTxuZqFRyyvxzPzI6Zt/GTL6P2q+a+\nGPf+DMNQoasLEq+y4PezJFmX/pLpEAAAPZT/mGPl231PmcUlUeOBvPxWb2NpasPbku3r4Doeamsr\nyf5mOHnf0sZ6ZtlYroLJl3coZgAAAAAAAABoO2Oht8uJ/fbYvvoiA4Ekrs9Zp0qS6p/8lyQpUFKq\nwPAR0ZOa2lEZSVR9SDXnXdPlevwRWdf/GnswXlWVLGh31KaIJKGoJBqPR4avqQ1XRCUa05EbWwkn\niYv2Rm2wEo6csS2Umi+AWCs3hQebknBcb70myxUXx96fK9hSq+H0M5U78yn5Wz4Hs0h7CVyB0r7x\nbxfvuZuEwhFDZLYWi2EJtmCSQpVwav90kxwvv9ClMWSN5pZ7HWjplPvqyzL79Vfut19LLRKqAiWl\nMrfcOmrMe8BvuyzMuLIkCcfvC8ZX+6e/ZjgSAEBvUXv7nSq8+I8J3cb+3w9kFkVXeox8D2Q0tWSN\nJ+/Wv8qyIfz3XFRVSHQPZid7iQIAAAAAAAAp0HtLJHRAoG9ZzJhZmF2tNpr/67NuyvWxB61NP36f\nL40RJabgtr/GT8CRQgkgkUxrlueVRSRX+LYZFR7/5hsVHPe74HZEBaBASamsG9ZHf/Ds6/xFe0t1\nlaT4FWvcRx0TMxZZLSr3xedijgeKiiVJtXfdpx8Wrc3+JKk21Nz3cMyYLy9fdTdP69LzGG0lAxmG\nDLO5HZUpWS0KDB8h75jdZObk9LoLFGZzol4Hq0I5//lozJh3z7GqWLS0K8PqmObXVjdOkrQs/UVF\nf75WkuTbdbcMRwMA6C3cJ5/a4bk1dwVbRLruv1vFRx4cdcz27TehbcPdesth+3/fk3XF8tB+5byP\nOnx+pFl3r3oKAAAAAACAXoEknDYE+g+IGfPtPCYDkXSedfkySVJg0KDYY0uDF5adjz6U1phSKiLJ\nY9Ot06MqhlTN6f7VQPxDhoW2AwMGyr3fAZKksmMPk+P74IUCMy/cKiowZKistTVSUxspSTL8nU+q\nsn/wXvAcTmfMscCAgbE3aKP9l7+gUGZpaWi/IK9n/9dwYPAQff3lUm1YV6mG08+UJK15dZ7MgvQl\n7pmW6Eo4ZlMrqkBpqQyvV0ZdbXTMPT0ppynR0PbLz52+i0C//qELOht/XiXPTruoatrfuyS8tjQn\nEEW2zehucr74PLQd6N8/g5EAAHoVw1D1Xfe3OWXDf55V1Q1/VeNpZ7Q6x2/LCf0tZF21MjTecNoZ\nKl+7SZs+/Cx8yoYGSVLFq2/LP3KbZKJHKvT0v2kBAAAAAACQVUjCaYNZWBQ72I2rxsRjXbNaUvyE\nIvt/gwkXzn8/ntaYuoJ77D5xx82CgtC2f8edtemdiHA8dAAAIABJREFUD0P7vjG7pjyuZDWcd0HU\nvlnWL2ZOoE+4lL5ZGHy8lrffktl0cSDyORqore3Uh9LxKuGYRXFeDxGVcGIO1WyO2nfYW5/bU5T2\n6yPDalXt9Bla+/1S5W47qv0bdSWLJVgBR5Lh9wfbUyncSsyoqIia3uju3q2OkuV45aU2j+f877/t\n3kdkIp9ZWKTqtz+Q+9yJScfW7nmbXoNGQ+vtMTLNzA23rfMPHJzBSAAAPUX52k3afOyJqv7nf9qc\n5xl/WpvHjYMPlveSyyTD0Ob7H4k7J+/pf8vvD1acy535VPB+DzpEtTPul2w2BQbEvn/S4CEdeBTI\nGCrhAAAAAAAAoBvI8t49qeXb/jcxY7Yli6WXXpK9uiEDEXVeZHJKT+A+4+y444FB4QvBlrJSmQXh\nxBHTkgVJIA6H/P0HhFtwWWLz5Mz8/PD0t96UJJX+8Rw1HD9Om+57VLkRSTj9txykmtumq3Hi+QnH\n0RGJtP+y9IIPxXPtTd8Pm005/fqmPwBD4fZFZiD0/AmUBCsSWSo3KTB8RGi6PxBQIGDKYuk5Pxuf\nPyBbUwWc9qrI9Dnx6Pbv0Br7GkzHc9l0NSfhdM+1xrJmtYomniVJ8m21tRSnehYAAAmz2eR+9In2\n51mtWv/kXPU/8+T4xyP+hvbusVerd2N++ZW0x27ybbud7O+9q/rzJ4WPxfmHjMj3Gug+jKbWo0YH\nW5ACAAAAAAAAqUQSThvc405RxXvvy6GA8p+ZJUlyvPyC9PILilMTpFtLJFkiG0RWYGhpzdxXZPvy\nC1m22EpG5abwgTgJLd1S8wX+QEC2r76IOex45SXVT7khOLU+3IbK+cKzMk7+vYytRkTNz7/u/xJP\nwomTZODdaRd5ho2Q+w9/DA+20Y7KR6n+9GvRjqr5OW+WBCvhWCo2Rk/fsF6BviWy5Ocpm9k+/URu\nq03W3XaTd9kKFV9wjur/cU/0JLc7lFwWMM1WE2l82+8g28Lvwvu77p6yuNsSqoRTW9vOzMxwTbs5\ntG2WZiDhDADQ61kOP1ybnpojbbGlSvbZrdV5gaHDovZNw5DR9PfS4KMPUvmydTKqqyRJ/hFbhCca\nhhrOmhCqGrrp3f918SNAV8mdM1OSZNlYnuFIAAAAAAAAAJJw2maxyHPP/XKbUsN9D8k6d7bsFRuV\nn+9Qba0709G1yfbdN8p9ZnZ4ICcnZk7DmefI+eQT6QuqK+XYWz1kP2B/+fbdN9hrLTLxpo3WSd1K\nU4KR0dAgoz62FY3n0CNavemg35+ouqunRI159zsgodPX77pH/AN5edr4ydfKsUV8T23R39NAcYlq\nZtyv3Dv/ppqZzyR0XnQBwyLDbKqEE4ithFN02kkq39DUJszj0Yg9tpdvyFBVfrkwE9F2meJjDpMk\nVXzylYbtvYskyfaHs6LmGPV1MpuScDxev+w54eeub+uRsv38kySp8ZTTpLpj5HzyCdWcdpa8512Y\njocQIzB0qCTJsmpFRs7fGsvKFQoMGSrn7KfDg72gyhUAoHvyHxb7d3HtzdOiB1quU06XFJHIbl25\nQpZNwZadZmlp9H1Nv0u1E85XwO+XZYcduiZoAAAAAAAAAD0aSTjtsEW0IvGfcqoaJOWXFaihvCZz\nQXWA9cclUUk4pi1OEs4FF2dtEo6luV1TK0I/tyxMwgnkF8gqyairlVlcIq1bq/pz/yDXPx+VJDVM\nOC80t2banSqYclXU7e3vvhW1bzQ2JnR+1xefqa6VY1EJOIqtsFQ5738KDB4izxFHJXROdBHDCLej\nCgRkNlfCKQrX7rIu+kH+0dvJcAefF7bVq9IeZqqU7rVLaNu2bGnUMaOhQWZxcDv3P09Ko7cNHat6\n9W3lX36xcl9/Jfj6cjjUcPUUmaYpI0MJJmZhoaTu1Y7K/tbrKjpjvExXdOUk75jWqw8AAJBu8d73\nbPpogYpO+J2sG9bLdDlVf/lVyrv1JknBv7ktFRUyrda4Lai03XbKknqaAAAAAAAAALoBPk/sqVpe\nOLbFJqAEWvynZ1ZpbrnT3jRLxOPOkiSc2tvvlK//ANX933Wq/dNf1Lj7nmq4YnLoeOQFcO+Bv425\nvW+XXaP2cz6d3+HvV8Iivqfrbr5TgcFDUnMedExr7agc4fZthRdMDG74fOmOLjWak47aYTQEq0pZ\nli1V2TWXqezYwyVJDSeNl1lcopp/Pa3166tDLaskZSwBR4pIcPN6MxZDSznvz5MU3QZPkuovvjwT\n4QAAEF+cCqD+kdvIfcI4SZJv5CjVXxZOYne8/qqMTRXy9ymmuhsAAAAAAACApFEJp4cKDBwYPRDn\nw2izqUWNb+CgdITUpXyjt+/YxMhKOFnyobpv9z218ZvFslos8kvyHnRo1HGzT5/Qtn/g4Jjb2996\nI2bM9tUX8rVSrcKybm3UftV/5nY82IgkHO/Z5/ILJdMiKuEYkZVwcnNjp3o8aQ0tZTpaKaY+OC//\nz9dFDZt9y0Lblu70O8LW9GrqLslSjY1yPfpQ3ENmQUGagwEAoHVmnPc9klR/zXXyu71yT54iGYZM\nq1WG3y/nw/fLcHfvVsMAAAAAAAAAsgeVcHooM79AmyaHLza3bBvUzDdocNyS7d2db8+9OjbRkp1P\ncWucuDff97DW3nh7dEUfp1MbrpwaPbGpEop73/3laUq8yfnof62ey/HyC1H73oMO6XigEQkCufbs\nqDTUk5kWi4ymn791xXIZTVVUvHvvG5pjW7RQ9nffkmP20xmJsat1tN1ac1sn21dfRI0Hyvp1eUxd\norsl4fz3v3GH1/3jQSlOkhcAAJlitLJ2mvkFavzbnTLLggm41c+/GpxPAg4AAAAAAACALpSdGQro\nkNyN68M7rfxHqGy27nORt6WuaKGUJS2oOsJ98qlqOHtizHjdZVdHDzRVQnGfcbYaJ5wnScr/659a\nvd9ASbgtWflXPyT0PYu8aJHJ1j1o0pS8ZV36c/Br+YbguN0eNS3nvXeV+/yzoX3HrP+kJ74u5Pb4\nJYXbTDWeNF6b3p+vxn0PCM0pv3Sy6i+9UpJkqdgYnF8X3UrJzM9PR7iJs1hkGobk88ky713Zvvsm\ns/G8807MUMNue8kz7uQMBAMAQOssa1Z3aF5U21pJ/iFDUxEO0qDyzfe0ecddtfGXjv3sAQAAAAAA\ngFQiCacHazznD+Gd1hIrrFYZ/m6ahOP3R+16d9gp8fvI0ko4rXE6Yn+O+c4WCVbNlUGsVnkOPLj9\nO21Kwqq54y5p8JDEAnJ3rAoJ0qQpEcr6ww8xh+r/OCm07Xr4AdkWfhfaL7z0wtTH1sUaXnhJRlWl\nik48WpJkOl3yb7e9ap57WRu++1nrflqlhslTZfv+W0lSwWXBx2jURyfhtExQ6lZyciSvV6WnnqDi\ng/fLbCx33CFJCrjytHrZepWvWK/Nz78se07PSXQEAPQMgaHDOjTPt8uYqP3mxF1kH98uu2rJUy/K\nLCjMdCgAAAAAAAAASTg9melyhXdaS0ax2SSfP/6xTGuq6NKseuazrUxsQw+rzpJja/+Ct7Vyk6Rg\nCzKzXz+ZNps8u+3R6vzmkv2m05l4QE23MR2OxG+LrmcEX+dFE86QJNUfPy50qOHc8zISUio4np2j\nkRefrYKLzpdt+TJJkukMt0Qy+veTrahITodN9RdfLkmyVFUpsHatjBa/V/wDB6Uv8AQZHo8cXy7I\ndBhRvAf8Vo48p+R0yuJwyGblzwgAQOa5DzlMkrT+iqlqPO2Mjt2oRaVQs6ioq8NCGjlIDAYAAAAA\nAEA3wdWznqwjiRE2W1QlHOviRbK/+5bkdsu7Zq0kydhUIds3X6Uqyta1qISj3E4kevSwJJyENCVe\nGT6f7As+k1FVKZmmHI89LMfMp8LzmtuRtdayrA2egw9TxZVTVTnvo66IGMmyRD/fLdXV4Z1O/Hy7\nK9eMOyVJ9vfnhcZatplq5h27T2i735jtYo//tgPVorqLFglEaRPZGtDjbn0eAAAZsvmpOfpu/iLV\nXnZVQn//BwrDlVMCJOFkNXsH/lkBAAAAAAAASAeScHowswNtVkyrLZTsYtTWqGT/PVV02kkquOJi\nDdplW1lWLFfx4b9V8aEHyLJqZapDjhaRhFNz23SZFj5YTYTh9UTt58z/WI5nZqtw6tUqvGySjA0b\nggd8XkmSabMlfhKLRbWXT5Z/5DbJhouu0PKiU0R1mI4k4Xi7a1WsFmyLF0mSDK83NOY98KD4kyNa\n8UVWwQkUFanynf9mVaJe2YA+st/9j7Sf1/LrutC20UgLOgBAN2SxyNm/r1yOxP6erZz9QmjbLCQJ\nJ5vZc/hoAwAAAAAAAN0Dn1T1YKYz2I6qzWQcm1VGU7JL0cnHhYZzn5kdPPzt17KuWC5JsqxbF3Pz\nVDLM4AVz9+FHqnHi+cHWWYhr0wefqPb0s6IHGxqidk2HXYUXnR/aN+qDlUMsVVXBAWvnvr9OB8lR\n3Ya/RaWUiItJZl5e27dtaJDHF5AZWfWkG2lwBys2WZp+H0Vq/N2xch97Qqu3rbvw4pixip9Wybfj\nzl0WXyr4hw6LGSu6+c9SGhNhbAs+U/4lF4b2GyZdkrZzAwCQiHxXTsJtEs0RW4S3i/p0dUhII6sl\nexKrAQAAAAAA0LOR1dCTOZ1a+/b/ZB3Qv/VsK6tNampHlfPFgpjDhi/cqspobIg5nlLNlXCMpuit\nJHu0xj96O3kuuEh6+t8xxxpOGi/nM7PV59Rx0QeaqoLk/e1WSZJl/a+dOreRRZVEejrDHZ2c4T7q\nmNC2WVCoNa9/oNLH7g8l2UVyPXCPNl9wuXz+gHK6YTn/BrdPNquhXHdsOyTf2L3brGhjqalJZWgp\nU3/hxSq49v9ixnPnzlKgT3ouFBZNDCf31U29QZ5Dj0jLeQEASJTVkvj/l5guV2g70L9/V4aDNOM9\nCQAAAAAAALoLknB6uMB228va1n+E2mxRiTYtGdXVoW3LpoquDK19zVU9mpNvSMJpW4tKQe5xp0iS\nfLvvKcVJujAbG6OqnljWrU1tfEi9FgkqniOOitq37rKTam+/M24SjmXdOvWdeqUajz1ROriV1k4Z\n5PEF1OjxyxknGTBn/sdqOH9SBqJKsVxn3OGCqy5NcyBBgf4DMnJeAABSJjfcupN2VNnNQhIOAAAA\nAAAAugmScHo4m9WQpY3S3LYvF8gIBGRs3KhAnz7h1kRN8qb9NbRtXfyDpBbVVFKk4KhDZY4cKUky\nm5NvOvHfrb2J6XBED+TkBL+20o7Msnq13D8vDe17jj42VaEhTSIr4XiGxLYyslosMgsKtfaJ2Rp0\nzvjoY8uWqui/76lo5r9VvmFzymNNiNer7XYbKWttjSpfejP2eHPVrNa0SFCrvf4vXRhc6pjO2CSc\nmml3SmYgzuzUsP30o5yPPyJJCpT2Tdt5AQBICxI3egzeKgIAAAAAAKC7IAmnh2uvLLvh9UoKtqIx\n7Q55Rmwp+/JwYoZl06bwdmVlaoJsGdPmauUu+FRa8GnTicMfjlc985J8CVZjWPO/LxXIzVVu+1Oz\nmllcHH+8ORmnhZIzTg5te0vL5Ntx55TEhTRqej1LUt2Z57Y6zdm3JLS9+b6HVXjR+TILC1MaWjJy\nPv9U1tpgSylr0++nuqunKG/6NEmS+/gT27x93dVT5XzisdC+d+99UhRp1zLjVMJpnHBeWmOwrFsb\nkYRTmtZzAwCQDjWTr5W/X79Mh4Ek0Y4KAAAAAAAA3QX/LwZJUs7H/5N1w3pZ6utVd8XV8Sd5PKkP\npK5OfbceGj1mCbeh8u5/oMxR2yZ0l/7hI2T2gjYqZl5+aLv2zzeHtiPbTPkHDpJnz7Ext/WNGJHS\n2JAehjfcWi7H1XraWWSFFf/Q4U0b7VSTySCjYmN4Z/lySZLpdKnq+VdVNf1uuU84qc3bm/36ybfl\nVpKkTTdNk2+3PVIVapeK/Dk1nHmuKr76If0xuFzh7ZKSNmYCAJCdGidPkffsCZkOA0lqq/orAAAA\nAAAAkE5UwoEkKeeLzyVJtg2/qvKSK1VfWKqSB2fIuv7X0BzD7U55HHm3xmkTY7XGjiXAMCRDveBD\nWcPQyp/WymdKBX3CCTmW6urQdvVzLyv3n4/K/un8qJsGmhMxkN384SQc0+5ofZ7LGbNtlG9IVVRJ\nM2prQ9uFf789uJHrkHef/aR99uvQfVS9/q5qKjYrb6vh2fPbICIJp/bOGRkJwXTlhbYDBUUZiQEA\nAKA9FirhAAAAAAAAoJugEg6imC6XlJ8v93kXyPB5o46lIwnH9ciDsYPttNTqiN7ymayjME95RXlR\nY5GtdwJl/SRrbO6dkZcXM4YsFNGOSo7Wk3BMI/yaMp3BSif2BZ+lLKykmKZyn5sbOxynVVObd1Nc\nIseIoVnVqiCyEk7GRLSzMwsKMhgIAAAAAAAAAAAA0P2RhIMolW++L0my51hkqaiIOma6G1N+fjNO\n4oCZbCUcGVl14T0ZFsOI+S9QzyGHh7bNgsL4lYVIwukRIhPnzDae82bfvpIk7047d49EjzbkTzhT\n9g/eixm3fbkg4fvKsSX3uyTdzPxulvSS23qLMwAAAAAAAAAAAAAk4aAF/5ChkiTDMFT/x4skSTXT\n7pQk5b71hiwrV6T2/AMHxw4mmYQjo/dUwmlN7RWTVXXmRMkwZNpiK+GY+STh9Ag+f2jTqK9rdZpZ\nWKTln3ynqlfellkUp8WQ3x87lgHuyio5X30p/sFe8KIO9OuX6RAAAAAAAAAAAAAAJIAknF6u4awJ\n0QMRFVHqbrpVFd8sVuM5E0Njrhl3pjQey4b18pf2Ve0tt0cMJl+9omV1mN6mYeoNqrntjuBOnKQm\n//At0hwRUiGyEo4RCLQ51z5siORwBKsjtVA2sLjLY0uU8flnGjJqWKvH66+eksZoMsMsLFL5LdO1\ndnYriUhpUnfF1TKvuSajMQAAAAAAAAAAAADZgCScXs79u2NaP2gYCgwcJFkiniammdJ4DK9H/hFb\nyj9sRHjQklwCjaFeUTSjXfbmVjxxKuEEho9IbzBIDW84Cae912q7rZnaSeJJtT7n/D5mrHzD5tB2\noDBOBZ8eqO7Mc+Xea5+MxlA/9U8ypk3LaAwAAAAAAAAAAABANoi9Go/eJScntFlz69/anW7ZtCll\noRg1m2V4vZI9R6bTGRo3k2xHZRjB9lq9naUpmck7NvaCvn+LLdMdDlLASCAJp937qquNWyUnHSzL\nl8lWvj7usdqbp8n84ouoql09mdNhUyCQ2uRHAAAAAAAAAAAAAF2DSji9XURVFLOoT7vTvbuMSVko\nhb8/RZJkn/+RTJcrfCDpJBwScCJ5995Xmx96XHUHHapN8z7SmqdfCFY8Qo/i33pkUrc3amq6KJLE\n5U27ObRdc/vfo441nD9JjQ891mvKW1kMQzYrSzUAAAAAAAAAAACQDTp0Ze+bb77RmWeeGTM+b948\njRs3TuPHj9ecOXMkSV6vV1dddZVOPfVUnX766frll1+6NmJ0KTMyCcfhaP8GKbzwbf/k43Aszogk\nHCO5C9CWXnKxPhHuE05S5ZNz5P/NDjIOPDDT4aCLefbeT56DDu3wfPdhR4S2/X3LJEnG5s2tTU+9\niApdjaedoYZjT1DVsy9nLh4AAAAAAAAAAAAA6IB2sxseeeQRXX/99XK73VHjXq9Xt912mx5//HE9\n+eSTmj17tjZu3KgPPvhAPp9Ps2bN0kUXXaS77rorZcGjC3SwEk7V3BclSUZ9fcpDkhTVjirZSjjN\nbZgQzZET/L7m2Kiy0dN4Dj08oYQ5/1bBqjmNhx4u92lnSAq2h8uUyORA5eaq9tF/ybvfARmLBwAA\nAAAAAAAAAAA6ot2r78OGDdM999wTM/7LL79o2LBhKioqkt1u16677qrPP/9cW2yxhfx+vwKBgGpr\na2WLvJiKbse0hStO+Eds0fq8ggJJktHYmLJY/EOHhXe6sB0V0OvkJPZ7t37yFFVc9n+q/cd9CvQp\nliS5ZtypgvEnSl5vKiJsk2ll3QAAAAAAAAAAAACQfdq90nn44Ydr9erVMeO1tbUqaErMkKS8vDzV\n1tbK5XJpzZo1OvLII1VZWakHH3ywQ4EUF7tks2VPskVZWUH7k7JBv6LQZunQflJrj2twsEWNUz65\nuvixm6YpwzCkgw+SnnhCWrBApcP6h4678nO7/JxAT5bfJ1/5ibxmygpUc+tfVeCyS7v8RpLkeOsN\nSVLu2qXSbrulIsz4/H7p349Lkszjju85v2t7AH4WAIBMYh0CAPQ2rH0AgGzE+gUAQAeScFqTn5+v\nurq60H5dXZ0KCgr0xBNPaN9999VVV12ldevW6eyzz9bLL78sh8PR5v1VVqanzVFXKCsrUHl5TabD\n6BLWGrdKmrY31vtltvK4LPV+lUpq2FStui587PWNXlmtFjlyrCqoqVeupAqrS4E6v8qa5tQ1+lTf\nQ77fQCo1v2ZqGv1qTPA14/b41VjnlrXf0NDvBEmq/naxPMNHdVmM7cm9++9qfpu26dobFeC13y30\npHUPAJB9WIcAAL0Nax8AIBuxfgEAepO2Ek87nYSz1VZbacWKFaqqqpLL5dKCBQs0ceJE/fLLL8rJ\nCbY4Kioqks/nk9/v7+xpkGKRbV/MXGfrE51NxxoauvT87k3VspcUyZFjlXy+YBy2HCkn3CaLdlRA\nYszI108H2WyGpNi2dIXnnZ2216DRovVVYNjwtJwXAAAAAAAAAAAAALpCwkk4L7/8surr6zV+/HhN\nmTJFEydOlGmaGjdunPr3769zzjlH1157rU4//XR5vV5dccUVcrlcqYgdXSHyYr2t9aeDmZsb3Gho\n7LJTOx++X2XXT9HaJ+ZIRx0RvgCf0yIOi6XLzgn0Cp1ImrE2v87sdgVcebLUByud+cakrxVVzoLP\nWgRFAh4AAAAAAAAAAACA7NGhJJwhQ4Zozpw5kqRjjjkmNH7QQQfpoIMOipqbl5enGTNmdGGISKk2\nEm8imc5gIpXrrddU187cjnI+cK8kqeCZp9V41BGSrzkJp0UVDy7EAx3iHzBQ1l/XKTBocFL305yA\nI0lVr72TbFgdljPvbfU5dVzazgcAAAAAAAAAAAAAXYkSI72caetg2xq7PbRpVFd1aQwFr7wgBQKh\nSjgtYzItJOEAHVH1+rtaeesMeffZL6n7qb3hJklS/aRLuyKsDvMedKg2LFyqqof+qY0/r0rruQEA\nAAAAAAAAAAAgWQm3o0IPY+tggothhDcbG2UWJX9q65rVoe38yVdIPl9wh0o4QKcEBg9R1QmnyBnx\neu2MhksuV8Mll3dRVIkxyvrKewLVcAAAAAAAAAAAAABkHyrh9HJmrlOS5C8pbX+uwxHcqK/v8jic\nT/4znITTMunGwtMU6CiLJbkEHAAAAAAAAAAAAABA55Dd0Ns5HFr78VfaOP+Ldqc2/v4sScFKOKlg\nn/9RcCPJKh5Ab2bw+gEAAAAAAAAAAACAjKAdFWTdaktZOnDh3nS6JElGQ9dXwmmTx53e8wFZjMxK\nAAAAAAAAAAAAAMgMrteiQwk4kmTm5ga/1jekMpwYRkN6zwdkM3uOtf1JAAAAAAAAAAAAAIAuRxIO\nOqy5Ek6gti69Jw4E0ns+IIsV5tkzHQIAAAAAAAAAAAAA9Eok4aDDTJdTklRw9/SUnaP+oEND25vv\nfUiS5B5/WsrOBwAAAAAAAAAAAAAA0BVIwkHCHAs+65L7CbW3sljk3XEnVT/2b9XNejZ03H3Kafp5\n2Ub5txrZJecDAAAAAAAAAAAAAABIFZJw0GHuE0/u0Dyvr2PtoxrOnihJ2vzUbFW986E8xxwfM6fA\nmdPxAAEAAAAAAAAAAAAAADKEJBx0mFlSqvpddpNptUqm2cokU/l/mqrCA8bK2LCh7Tu02SRJgZLS\nVqdYLEZnwwUAAAAAAAAAAAAAAEgbknCQEKO0VIbfL2PjxrjHrUt/VuGjD8ixaKEKLz6/1fvxBwJS\noKlijoWnIQAAAAAAAAAAAAAAyG5kPyAhFqtVkmT74fv4E/zhVlTWZUvjz2lslOeLr0nCAQAAAAAA\nAAAAAAAAPYYt0wEgu3h331OON1+T4W6Me9zMyQlt+7YeGXdOwcQzVfb2m+HbGCThAAAAAAAAAAAA\nAACA7Eb2AxLjsEuS8qZOjn/cMMLbuc64U3IjEnAkUQkHAAAAAAAAAAAAAABkPbIfkBCjulqSZFu1\nMvZgXZ0cLz0f3q+tiZniWfdr7O1IwgEAAAAAAAAAAAAAAFmO7AckJqLdVCBgRh3Ku/0W5d98Y3ig\noSHquOtvt2rwTtvE3idJOAAAAAAAAAAAAAAAIMuR/YCENEw4L7RtnTMrtG379BO5Hry3xeSGqESd\nvOnT4t6nmZfXtUECAAAAAAAAAAAAAACkGUk4SIhZ1Ce03ffSP4a28267KWau0dAg5+QrlDPv7Vbv\nr+rk3ysweEjXBgkAAAAAAAAAAAAAAJBmtkwHgOxjOp0ymltN1dZK+fmyf/y/mHn2n3+U/ecfpScf\nV/mGzXHva/Pf75HTMFIZLgAAAAAAAAAAAAAAQMpRCQcJMy3W0Lb113UKBAKdux9XnnJsPAUBAAAA\nAAAAAAAAAED2oxIOEmcNJ+HY33pD1oULO3U3/oEDZbVQBQcAAAAAAAAAAAAAAGQ/ypAgYfWXXB7a\nzr/xOhXNfVqS5NlmlAJ9+rRyo/rYoSnXy6AVFQAAAAAAAAAAAAAA6AFIwkHCGi65Iu64f7c95Ntx\nF0lSoLBI1U88HTpmqdwUM9993ImpCRAAAAAAAAAAAAAAACDNSMJB4iwWuXcaEzPcMOlSNZ50iiTJ\nt/MYeY46Wp6995MkmXV1aQ0RAAAAAAAAAAAAAAAgnWyZDgDZyTvuJDm++TJqzMzPl/uU07TZapXn\n4EODgw578NjmzVFzq158PS1xAgAAAAAAAAAAAAAApAOVcNAp3j32ihkLlPYNVsk5+VSZJaWSJNNq\nlSSVHXWwJKn+iKP1/eJf5R27T/qCBQAAAABhv+nqAAARzklEQVQAAAAAAAAASDGScNAppt0RO+iI\nHXO881bUvuuNV+TMpQATAAAAAAAAAAAAAADoWUjCQefY7aFN98GHqmruix26WfVlV8tu42kHAAAA\nAAAAAAAAAAB6FrIh0ClmRBJO47l/kPeA38ad591x56h9//AtZBhGSmMDAAAAAAAAAAAAAABIN5Jw\n0DkRSTjG5s2tTmu48OKofe/2O4gUHAAAAAAAAAAAAAAA0NOQhINOMXPCSTi2RT+0Os99wklR+77f\n7EAlHAAAAAAAAAAAAAAA0OOQhIPOcYSTcBrOmdj6PItFG6+6VpJUc+fdMgyJHBwAAAAAAAAAAAAA\nANDT2DIdALJTZCWcwNBhbc6tvfhy1R15jFw7bi/DHyAJBwAAAAAAAAAAAAAA9Dgk4aBz7Pb25zRx\n5Npl2WG70D7tqAAAAAAAAAAAAAAAQE9DEg46x2rt8FSbNdz1zDAkUnAAAAAAAAAAAAAAAEBPY2l/\nCtB1DMOgEg4AAAAAAAAAAAAAAOhxqISDTmv87cHyDhme0G0sJOAAAAAAAAAAAAAAAIAeiCQcdFr1\nzOfk9QfkyHQgAAAAAAAAAAAAAAAAGUYSDjrNYjHksFgzHQYAAAAAAAAAAAAAAEDGWTIdAAAAAAAA\nAAAAAAAAAJDtSMIBAAAAAAAAAAAAAAAAkkQSDgAAAAAAAAAAAAAAAJAkknAAAAAAAAAAAAAAAACA\nJJGEAwAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAAAAAgSSThAAAAAAAAAAAAAAAAAEkiCQcAAAAA\nAAAAAAAAAABIEkk4AAAAAAAAAAAAAAAAQJJIwgEAAAAAAAAAAAAAAACSRBIOAAAAAAAAAAAAAAAA\nkCSScAAAAAAAAAAAAAAAAIAkkYQDAAAAAAAAAAAAAAAAJIkkHAAAAAAAAAAAAAAAACBJJOEAAAAA\nAAAAAAAAAAAASSIJBwAAAAAAAAAAAAAAAEgSSTgAAAAAAAAAAAAAAABAkkjCAQAAAAAAAAAAAAAA\nAJJEEg4AAAAAAAAAAAAAAACQJJJwAAAAAAAAAAAAAAAAgCSRhAMAAAAAAAAAAAAAAAAkyTBN08x0\nEAAAAAAAAAAAAAAAAEA2oxIOAAAAAAAAAAAAAAAAkCSScAAAAAAAAAAAAAAAAIAkkYQDAAAAAAAA\nAAAAAAAAJIkkHAAAAAAAAAAAAAAAACBJJOEAAAAAAAAAAAAAAAAASSIJBwAAAAAAAAAAAAAAAEgS\nSTgAAECSZJpmpkMAAAAAAAAAAAAAshZJOHGYpimv15vpMAAASBu/36/q6urQPgk5AIB0CQQCamxs\nzHQYAACkjd/vV3l5uaTgOggAQDbwer2aP3++amtrMx0KAADdGkk4EUzTVGVlpW666SYtWbIk0+EA\nAJAWzzzzjCZOnKjbb79dL7zwgnw+nwzDyHRYAIBeYNasWZo0aZLuuOMOrVy5MtPhAACQcg0NDbrt\nttt07733SpIsFj6eBQB0f3PnztWECRO0aNEiORyOTIcDAEC3xrs8hf/b3zAMrV69Wq+//roWLFig\nqqqqDEcGAEBqNK99ixYt0rvvvqubbrpJBx98sBYuXKj169dnODoAQE/WvAb99NNPmjdvnqZOnSrT\nNDV79mxJVAQAAPQ8kZVGrVarVq9erdWrV2vevHmSgpVxAADobkzTlGma+uCDDzRnzhzdeuutOuWU\nU1RRURE1BwAAROv1STiVlZWqr68P7X/xxRf63e9+p19++UU//vhjBiMDACA1Ite+Dz/8UMOHD9ew\nYcM0atQofffddyotLc1whACAnipyDfroo4+09dZba/jw4dp77721ePFilZeXy+PxZDhKAAC6TsvP\nHtetW6eioiJNnDhR7733nioqKuTz+TIYIQAAsSorK1VXVyfDMJSfn6/dd99dM2fO1KRJk0IV3crL\ny6mmDQBAHNYbb7zxxkwHkSlPPPGE/v73v2vlypVasmSJxowZI5fLpRNPPFFLlizRihUrNGLECOXn\n52c6VAAAukTz2rd8+XKtXr1a55xzjkaPHi2Xy6Xy8nL9+OOPOuqoozIdJgCgB4pcg1atWqWzzjpL\ne++9t6qqqnTXXXepuLhYCxYs0Pr167XTTjtlOlwAAJIW+dnj4sWLteuuu6q+vl5+v19jxozRv/71\nL73xxhsaO3asioqKuJAJAOgWItevpUuX6sgjj9RTTz2lvn376o477tBWW22lH3/8UevWrdOOO+6Y\n6XABAOh2bJkOIFOWL1+uDz/8UA888IC8Xq+mTp2q4uJijRs3TpJ0wgknaMaMGVq4cKFKSkpkt9sz\nHDEAAMlpufZde+21stlsOuWUU2Sapl577TVtt912kqRvvvlGgwcPVt++fTMcNQCgJ4i3BlmtVp16\n6qkqLi7WvffeK4fDoZkzZ4ZuY5omFyMBAFmr5dp33XXXacCAAerbt6+effZZvffee+rXr58Mw1Cf\nPn1Y8wAA3ULL9euaa67RoEGDNHny5FBlt2222UbvvfeeioqKJPHeDQCAlnptO6qKigpts802ys3N\n1cCBA3XJJZfowQcfDJV/HTBggHbccUe98847Ki8vz3C0AAAkr+Xad/HFF+uRRx6Rz+eTYRjasGGD\n+vTpo6lTp+qZZ57JdLgAgB4k3hr02GOPyefzadWqVfr555+1evVqffDBB3I4HJLEh7gAgKzWcu2b\nNGmS7r33Xnk8Hm233Xa64IILdPfdd2vLLbfUq6++mulwAQCQFLt+XXrppZo+fbqGDx+unJwczZ8/\nX7/++qu+/fZb5ebmSuK9GwAALfWKdlTNFxcNw1AgEJBhGKqvr9ebb76pnXbaSX369NGgQYO0cOHC\nqNLno0aNUllZmUaNGpXhRwAAQGISWfsqKio0YMAATZ48WV6vV4cccoguuOACuVyuTD8MAEAWSmQN\nqq+vl91u11NPPaW5c+dq3LhxOv744zP9EAAASEhH1r7BgwdryZIlamxs1NVXX63+/ftLCn7+uOee\ne2b4EQAAeqOOrl/ff/+96uvrZbVaNXPmTD3zzDM64YQTdOSRR2b6IQAA0C31+CScBx98MPTfJFts\nsUXoD4nS0lL98MMPWrZsmUaOHCmn06nNmzcrLy9Po0aNUiAQkM1m08CBAzP8CAAASEyia5/T6dSY\nMWPkdDp13XXXafTo0Rl+BACAbJXIGlRdXa2cnBwdeOCB2m+//XTKKado2223zfAjAAAgMYmsfZWV\nlSouLtaoUaPk8/lktVr55wcAQEYk+t7NZrPpkEMO0eGHH66TTjqJ924AALShx7aj8ng8uvnmm1Vd\nXa1zzz1XHo9HkmS1WmUYhr7//nuNGDFCa9as0cyZM/Xqq69q1qxZKiwslCRZLD32WwMA6KE6s/bN\nnDlTBQUFkqSJEyfKZrNl8iEAALJUZ9ag2bNnh95/5ebm8h4MAJBVkv3skfdeAIBMSPa9m8Vi4b0b\nAADt6LHv9qxWa6ilxtNPPy2/368VK1bovPPO06233qpFixbpb3/7m/bcc0999dVXmjdvnq688kqN\nHTs206EDANApnVn7rrrqKtY+AEDSeP8FAOhtWPsAANmI9QsAgNQzTNM0Mx1EV5k1a5YMw9D48eO1\ndu1aPfjggxo0aJD69eun/fffX1dccYV23313nXHGGSopKcl0uAAAJI21DwCQKaxBAIDehrUPAJCN\nWL8AAEivHlUz7vPPP9dDDz2khoYGDRo0SHl5eXr77bc1cuRI9e3bV3/+85/1/vvvh8rm+f3+DEcM\nAEByWPsAAJnCGgQA6G1Y+wAA2Yj1CwCA9MrqJJzy8vLQ9k8//aT8/HxtscUWmj59uiTp1FNPVVlZ\nmZYsWSK/3681a9Zor732CvVctlqtGYkbAIDOYu0DAGQKaxAAoLdh7QMAZCPWLwAAMisr21H9+uuv\nuueee1RRUaGDDjpI++yzjwoLC1VeXq7+/fvr2GOP1UMPPaStt95a77zzjubPn6/ly5eroaFBkyZN\n0r777pvphwAAQEJY+wAAmcIaBADobVj7AADZiPULAIDuISuTcO6//355vV6deOKJevHFF1VZWakr\nr7xSeXl5kqR7771XixYt0n333SfTNGUYhr755hvttNNOGY4cAIDOYe0DAGQKaxAAoLdh7QMAZCPW\nLwAAugfrjTfeeGOmg+iIZ599Vv/617+0ZMkSrV69WmeddZaGDh2q/v37a/HixVq5cqV23nlnSdIe\ne+yhadOmadiwYdpqq60kSQMGDMhk+AAAJIy1DwCQKaxBAIDehrUPAJCNWL8AAOh+siIJZ/r06fru\nu+80YcIEvfnmm3r11Vdlt9u1zz77yOl0ymq1auHChdphhx2Um5srSRo9erSGDBmikpKSDEcPAEDi\nWPsAAJnCGgQA6G1Y+wAA2Yj1CwCA7smW6QA6oqamRuPHj9f222+v3//+9+rXr59eeeUVHX300Ro9\nerRKS0vldrvlcrlCJfTGjh2b6bABAOg01j4AQKawBgEAehvWPgBANmL9AgCge7JkOoD2BAIBHXbY\nYdpxxx0lSa+99pr2339/TZo0SbfccouWLVumjz/+WFVVVQoEAjIMI8MRAwCQHNY+AECmsAYBAHob\n1j4AQDZi/QIAoPsyTNM0Mx1ER9XW1uqcc87RAw88oLKyMj3wwAOqrq7Wxo0bdc0116isrCzTIQIA\n0KVY+wAAmcIaBADobVj7AADZiPULAIDuJSvaUTVbv3699t57b9XU1Ojmm2/WyJEjddVVVyknJyfT\noQEAkBKsfQCATGENAgD0Nqx9AIBsxPoFAED3klVJOJ9//rkefvhhLVy4UMcdd5yOPfbYTIcEAEBK\nsfYBADKFNQgA0Nuw9gEAshHrFwAA3UtWtaN69tlnVV5ergkTJshut2c6HAAAUo61DwCQKaxBAIDe\nhrUPAJCNWL8AAOhesioJxzRNGYaR6TAAAEgb1j4AQKawBgEAehvWPgBANmL9AgCge8mqJBwAAAAA\nAAAAAAAAAACgO7JkOgAAAAAAAAAAAAAAAAAg25GEAwAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAA\nAAAgSSThAAAAAAAAAAAAAAAAAEkiCQcAAAAAACCLTZkyRc8991yrx6dOnao1a9akMSIAAAAAAIDe\niSQcAAAAAACAHuzTTz+VaZqZDgMAAAAAAKDHM0w+hQEAAAAAAMgapmlq2rRpev/999WvXz/5/X6d\ndNJJWrFihebPn6/q6moVFxfrnnvu0fPPP6+7775bw4YN03/+8x+tWrVKt912mxobG1VcXKy//OUv\nGjp0aKYfEgAAAAAAQI9AJRwAAAAAAIAs8uabb+qHH37QK6+8ohkzZmjlypXy+/1aunSpZs2apTff\nfFPDhg3Tyy+/rPPPP1/9+vXTww8/rLy8PF1//fW688479fzzz+vcc8/VDTfckOmHAwAAAAAA0GPY\nMh0AAAAAAAAAOu6zzz7TYYcdppycHJWUlGj//feX1WrVNddco7lz52rZsmX6+uuvNWzYsKjbLV++\nXKtWrdKFF14YGqutrU13+AAAAAAAAD0WSTgAAAAAAABZxDAMBQKB0L7NZlNVVZUmTpyoc845R4cf\nfrgsFotadiAPBAIaMmSIXnzxRUmS3+/Xxo0b0xo7AAAAAABAT0Y7KgAAAAAAgCwyduxYvfHGG/J4\nPKqurtaHH34owzC0xx576LTTTtPWW2+tjz76SH6/X5JktVrl9/u15ZZbqrq6WgsWLJAkPfvss7r6\n6qsz+VAAAAAAAAB6FCrhAAAAAAAAZJFDDjlE3333nY4++mj17dtXW221lRobG7V48WIdc8wxysnJ\n0ahRo7R69WpJ0oEHHqjzzz9fjz76qGbMmKFbbrlFbrdb+fn5uv322zP8aAAAAAAAAHoOw2xZmxgA\nAAAAAAAAAAAAAABAQmhHBQAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAAAAAgSSThAAAAAAAAAAAA\nAAAAAEkiCQcAAAAAAAAAAAAAAABIEkk4AAAAAAAAAAAAAAAAQJJIwgEAAAAAAAAAAAAAAACSRBIO\nAAAAAAAAAAAAAAAAkCSScAAAAAAAAAAAAAAAAIAk/T9xGUjzVTpaiwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJ8CAYAAABQyzzyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VWW+xvHnnPQeUqjSQUGkBimKIEVwLCg4iFKUcRQs\ngIKKF0RFBEXnIigooKAOiIwVBkeUIirg0KVJJ0BIIT05SU7aafcPbo6J6YeEBPh+1mK5s9/9vvvd\nSSBr7Tz+fgaHw+EQAAAAAAAAAAAAAAAAgCplrOkNAAAAAAAAAAAAAAAAAFcigjkAAAAAAAAAAAAA\nAABANSCYAwAAAAAAAAAAAAAAAFQDgjkAAAAAAAAAAAAAAABANSCYAwAAAAAAAAAAAAAAAFQDgjkA\nAAAAAAAAAAAAAABANXCv6Q0AAAAAAADANf369VNsbKy6deumFStWVMs9Dh06pPfff18HDx6UyWRS\nnTp11KNHDz399NPq37+/JGn48OGaOXNmtdy/Io4dO6Y2bdq4PN/hcOjHH3/Uv//9bx06dEgpKSly\nd3dXw4YN1bNnT40ePVpNmzYtd41vv/1WX3/9tY4ePars7GzVrVtXERERGj16tDp06FDuPlJTU/XJ\nJ59o8+bNio6Olpubm6655hoNHDhQo0aNUnBwsMvPCAAAAAAAagbBHAAAAAAAAJTo8OHDGjlypPLy\n8pznEhMT5e5eO14pRUVF6bXXXlNeXp7LwaSMjAxNmjRJ27ZtK3I+Pz9fp06d0qlTp/Svf/1LU6dO\n1ciRI0tcIzc3V08//bR+/vnnIudjY2MVGxur//znP3rmmWc0bty4Uvdx6NAhjRs3TikpKUXOHz9+\nXMePH9eXX36p999/X+3atXPpOQEAAAAAQM2oHW9RAAAAAAAAUOssXbrUGcoZMWKE7rjjDhkMBoWE\nhNTwzi74+9//rujoaHXr1s2l+Q6HQxMmTNCOHTskSTfccINGjhypli1bKjc3V9u3b9fy5ctlNps1\nc+ZM+fv765577im2zvTp052hnJ49e2rUqFEKCwvT4cOHtWTJEiUkJOjtt99WvXr1dO+99xabn5iY\nqLFjxyo1NVUeHh4aM2aM+vTpI5vNpg0bNmjVqlWKj4/X448/rtWrVyssLMyl5wUAAAAAAJcewRwA\nAAAAAACU6NSpU5KkevXq6eWXX5bBYCgyfvz48ZrYlpPdbr+o+evWrXOGcm6//XbNnTu3SDWg7t27\n66677tKIESNkMpn0+uuvq3///vL393des2PHDn377bfONebPn+/8PHXq1EmDBg3S8OHDFRMTo7fe\neku33Xab/Pz8iuxj7ty5Sk1NlSQtXLhQt956q3OsR48e6tq1qyZPnqzExEQtXLhQM2bMuKjnBgAA\nAAAAl46xpjcAAAAAAACA2ik7O1uS1KhRo2KhnCvB119/LUny9vbWjBkzSmzR1apVKz3xxBOSpPT0\ndP3yyy9Fxj/55BNJkpeXl6ZNm1bs8xQWFqYXX3xRkpSSkqI1a9YUGU9KStJ//vMfSVLfvn2LhHIK\n3HHHHbrtttskSV999ZVMJlMlnxQAAAAAANQUgjkAAAAAAAAokcPhkKQSAyuXO4fDod9++02S1KVL\nF9WpU6fUa2+66Sbn8bFjx5zH2dnZ2rZtm6QLLazq1atX4vx+/fopNDRUkvTDDz8UGfvpp59ktVol\nqcQ2VwX++te/SpIsFot+/PHHUq8DAAAAAAC1y5X3VgUAAAAAAFSL0aNHa9euXZWaU1Kro5SUFK1a\ntUq//PKLzp49q5ycHIWEhKhDhw66++67NXDgwHKrs5w8eVIrV67Uzp07FR8fL4fDobp16+rGG2/U\ngw8+qBtuuKHEeQsWLNDChQsVHBysnTt3KiYmRh999JF++eUXJSYmKjg4WJ07d9Zjjz2m9u3bS5LM\nZrM+/vhjrV+/XtHR0TIajWrbtq1GjhypO+64o8x97t+/X59//rl2796txMREubu7q1GjRurVq5dG\njx6thg0bljk/KSlJK1as0M8//6zo6Gh5enqqffv2GjNmjHr16lXmXFft3LlTDz30UJFzu3bt0nXX\nXSdJ6tatm1asWKGYmBj1799fkjR8+HDNnDnTef0333yjqVOnSpJ2796tH3/8UUuWLFFMTIyCg4N1\nww036J133pGXl5ckafv27frqq6+0b98+JSYmysPDQ+Hh4YqIiNC9996r7t27F9nPn78XC+9v/Pjx\nmjBhQrnPmZ+fryeffFIJCQlq0aJFmdcWBJQkKS8vz3l86NAhWSwW5+elLF27dtX69eu1b98+5efn\ny9PTU5Kc4aDy1oiIiJDBYJDD4dCOHTs0dOjQMu8HAAAAAABqB4I5AAAAAACgWri5uRU7t27dOr38\n8svKzMwscj4hIUEbN27Uxo0bdeONN+rdd99VSEhIsfkOh0Nz587VsmXLZLfbi4xFRUUpKipKX3/9\ntUaOHKmpU6eWWell69ateuaZZ5SVleU8l5iYqPXr1+unn37S4sWL1bhxYz366KOKiooqMnfPnj3a\ns2ePTp06pYkTJxZb22q1atasWVq1alWR83l5eTpx4oROnDihTz/9VNOnT9fw4cNL3N+vv/6qCRMm\nyGw2O89lZ2dr69at2rp1qx5//PFSn602+de//qW5c+c6P05KSpLZbHaGcmbOnKmVK1cWmWOxWJxf\nz2+++UaDBw/WG2+8UaWVe7y8vDR27NgKXVs4BFQ4TBUZGek8btq0aZlrNG7cWNIfz9a6desiawQG\nBpb4PV/A399fISEhSklJKXJfAAAAAABQuxHMAQAAAAAAFTJr1ixlZ2eXOu5wOPTyyy/r0KFDkqQp\nU6YUGd+wYYOeffZZ2e12eXh4aNiwYerXr58CAwN1+vRpffbZZzp48KB2796thx56SJ9//rn8/PyK\nrPH6669r+fLlkqQ6depozJgxioiIkNFo1MGDB/XRRx8pMTFRn376qcxms+bMmVPiXrOzs/X000/L\narXq0Ucf1S233KK8vDytXr1a33//vfLz8/Xqq6/KYDAoJiZGI0aM0IABA+Tj46Nff/1VS5YskcVi\n0aJFizRkyBBn6KLA9OnTtXr1akkXKp3cf//9at68ufLy8rRv3z6tWLFCSUlJevnll+Xp6akhQ4YU\nmX/kyBGNGzdOFotFHh4eGjFihPr16ycPDw/t2rVLy5Yt0+LFi2U0Vn2X8htuuEFr1qyRJD322GNK\nSkpSu3btNHv2bEmSr69vpdabN2+eGjRooGeeeUaNGzfWgQMH1Lx5c0nSmjVrnKGcbt266YEHHlDj\nxo2Vl5enY8eO6aOPPlJcXJzWrl2rDh06aPTo0ZL++F4saX9hYWFV8nkokJeXp3/+85/Oj2+55Rbn\ncUJCgvO4vOpHDRo0KDKvIJhTsEbh8dLUr19fKSkpRe4LAAAAAABqN4I5AAAAAACgQsqrCDJv3jxn\nKGfo0KEaM2aMcywrK0svvfSS7Ha7fHx8tHTpUnXt2tU53rFjR91zzz166aWX9NVXX+nkyZOaN2+e\npk+f7rxm7969zlBO8+bNtXz5ctWtW9c5HhERoSFDhuiRRx7R4cOHtXr1avXr108DBw4sttf8/HxZ\nLBZ9/PHH6tmzp/N8nz59FBsbq4MHDzqr5MybN69Iy6ouXbqoTp06eu2112S327V582Y9/PDDzvFN\nmzY5Qznjxo3T5MmTi9y7W7duGjZsmEaPHq1Tp05p5syZuvXWW1WnTh3nNTNnzpTFYpHRaNSiRYuK\nhEEiIiI0aNAgjRgxQmlpaWV9SVzi5+entm3bSpKz3VLhc5VlMBi0bNkytWzZUtKF/Rf4+uuvJUmt\nWrXSsmXLnPeTpBtvvFG33XabBg8eLJPJpC+++MIZzCn4XqyK/ZXnzTffVExMjCSpd+/ezueQJJPJ\n5Dz+c4jsz3x8fJzHGRkZxdYob770RyjqzxWnAAAAAABA7VX1/1sVAAAAAAC46qxZs0aLFy+WJHXu\n3FmvvvpqkfGvvvpK6enpkqQJEyYUCeUUMBqNeuWVV9SsWTNJ0hdffOGcI0nLli1zHr/11ltFQjkF\ngoODNX/+fGcbrQ8//LDUPd92221FQjkFCgd5unXrViSUU6B///7O43PnzhUZW7p0qSSpdevWmjRp\nUon3DgkJ0SuvvCLpQvWeL7/80jl24sQJ7du3T5J03333FQnlFGjRooWef/75Up+tNunWrVuRMEth\nycnJki5UmykcyilQv359TZw4UY8++qhGjRolh8NRrXv9s08++cRZ0cfX11dTp04tMp6fn+88LmjN\nVRpvb+8S5xUclze/8DWF5wMAAAAAgNqNYA4AAAAAALgou3fvdla2adiwod57771iIYtt27ZJktzc\n3DRs2LBS1/L09HSO5+XladeuXZIkq9WqHTt2SJLatWunDh06lLpGkyZN1KtXL0nSoUOHSq0qU1Io\nR5Lq1avnPO7Ro0eJ14SGhjqPC7f3MplM2r9/v3OuwWAodZ8RERHOKikFzyZJv/zyi/P4rrvuKnX+\nnXfeWSTsUVt17Nix1LEWLVpIkrZu3ap58+YpJSWl2DWjRo3S888/r+HDh5f5+axqK1ascLZCMxgM\nmjVrlnO/BQoCYAXXVFThawvWcHU+AAAAAACo3QjmAAAAAAAAl0VFRWn8+PGyWCzy8fHR+++/XyS0\nUuDkyZOSLrSgCgwMLHPNTp06OY9PnDghSYqLi5PZbJZUdtCjQME1DofDee8/a9SoUYnnC4eKSqrK\n8+drCldxOXr0qPPjFStW6Lrrriv1z/XXX+98pujoaOcap0+fdh6X1Z7J29tb1157banjtUWDBg1K\nHXvkkUfk7u4uh8OhxYsXq1evXrrvvvs0d+5cbd++vcYqwyxcuFCzZs1yfi3/53/+R3feeWex6wpa\nS0kXgmRlyc3NdR4Xro5TsEZ58wtfU5HqOgAAAAAAoHYgmAMAAAAAAFxiMpk0btw4paeny2AwaM6c\nOaUGSQpaUoWEhJS7buFgT8G8wi2tSgr+/FlYWFiRfZakoFpNWQpXRKmI0qrzlCcjI8N5XFA1xmg0\nKigoqMx5Fflc1DR/f/9SxyIiIrRw4ULVr19fkmS32/X777/rgw8+0JgxY9S9e3dNmjRJe/bsuSR7\ntVgsmjp1qhYsWCDpQmWaadOmacyYMSVeX/h7qHDlpJLk5OQ4jwt/XQvWKDxemoJ7lPd9AQAAAAAA\nag/3mt4AAAAAAAC4/FgsFk2cOFFnzpyRJI0fP1633357qdcXripTHrvd7jw2Go2Vni9JNpvNeVxa\n2x9396p/LVL4vk888YQGDRpUoXkFzykV3a/D4SizbZGHh4cLu7y0ymu71LdvX/Xq1Utbt27Vpk2b\ntG3bNiUkJEi6EERZt26d1q1bp3Hjxmny5MnVts/MzEyNHz/e2VbM3d1dr732moYOHVrqnIYNGzqP\n4+Pj1aZNm1KvPX/+vPO4cCWmhg0bKi4ursh4aeLj44vNBwAAAAAAtRvBHAAAAAAAUGkzZsxwBhgG\nDRqkp556qszrg4KClJiYqNTU1HLXTk5OLjKv8H+lPyrKlKXwNcHBweVeX1UK79Pb27vMVlSlCQ8P\nl3QhoJSWllZmlaHClYQuZx4eHurXr5/69esnSYqMjNT27du1adMm7dixQw6HQ0uWLFHv3r3VtWvX\nKr9/cnKyHnnkER0/flzShfZS8+fPV58+fcqc17p1a+fxuXPnyry2oF2Zh4eHmjZt6jzfqlUr7dmz\nR2lpacrMzFRAQECJ87Oyspx/f1q2bFn+QwEAAAAAgFqBVlYAAAAAAKBSli5dqq+++kqS1LZtW735\n5pvlVkW57rrrJElnzpwp0rapJAcOHHAet2jRQpLUuHFj+fr6Fhsvzf79+53HzZs3L/f6qnLttdeW\nuIeS5Ofna+HChfryyy+1b98+5/lWrVo5jw8dOlTqfLvdrhMnTlzEbmteenq6fvvtNyUmJhY537Jl\nS40aNUqffPKJpk2b5jz/008/Vfke0tLS9PDDDztDOaGhoVq+fHm5oRzpwve1j4+PJJXbbqtgvFOn\nTkWqNXXq1Ml5vHfv3lLn792711k5qjrCSQAAAAAAoHoQzAEAAAAAABW2adMmzZ07V5IUFhamRYsW\nOYMJZenVq5ekC62eCkI9JcnPz9fXX38t6UIroe7du0uS3Nzc1KNHD0nS4cOH9fvvv5e6RlRUlLZv\n3y5JatOmjUJDQyvwZFWjXr16zioq27Ztc1ZJKcnatWu1YMECTZ8+XV988YXz/MCBA53HBZ+Lkvz8\n88+XdcWcPXv2qHv37nrwwQe1atWqUq8rHJDJy8srMlZeIKw8drtdEydO1KlTpyRJjRo10qpVq9S+\nffsKzff29lbv3r0lSVu2bCm1mtPmzZudYwMGDCgy1r9/f2dLsm+++abUexX8vfHw8NCtt95aof0B\nAAAAAICaRzAHAAAAAABUyOHDh/Xcc8/JbrfL29tb77//vho0aFChuffdd58CAwMlSQsWLChSIaaA\n3W7XzJkzdfbsWUnSvffeW6SN09/+9jfn8ZQpU4q0vCpgMpk0adIk2Ww2SdIjjzxS4eerKgX7tFgs\nmjx5cokVgs6cOaN//OMfki6ES0aPHu0ca9iwoQYNGiRJWr9+fYlhjYSEBM2aNas6tn/JdOjQwRma\nWrlypaKiokq87ttvv3Ue/zkw4+npKUkym80u7eGjjz7Srl27JF1oebZ8+fIibaYqYtSoUZKknJwc\nTZ8+XVartch4cnKyZs+eLelCq7OhQ4cWGQ8MDNTdd98tSdqwYYPWrVtX7B7r1q3Txo0bJUl33333\nJQ2bAQAAAACAi+Ne/iUAAAAAAOBql5CQoMcff1w5OTmSpBdffFFhYWGKjIyUxWJxttj5swYNGig4\nOFgBAQGaNWuWJk6cqOzsbI0ePVrDhw9X3759FRAQoDNnzuizzz5ztqlq1qxZkRZGktStWzeNHj1a\nK1asUGRkpAYPHqyHH35YERERMhgMOnTokD7++GPFx8dLku666y7dc8891fhZKdnQoUO1YcMG/fzz\nzzp48KDuvvtujRkzRh06dFB+fr727t2rf/7zn87AzsMPP6zrr7++yBrTp0/Xzp07lZ6ermnTpmnn\nzp266667FBAQoP3792vp0qVKSkqSr6+vsrOzS9zHggULtHDhQknS+PHjNWHChOp98Ery9PTUk08+\nqddee00mk0nDhg3TqFGj1LFjRwUFBSkxMVHr16/Xd999J+lCW7M77rijyBrh4eE6ffq0jh8/ri+/\n/FJt2rRRUFCQmjRpUu79s7Ky9MEHHzg/HjNmjDIzM3X06NEy5wUFBalhw4bOj7t166bBgwdr7dq1\n2rx5s0aOHKkxY8aoQYMGOnr0qBYtWqSEhARJFwJlBQG1wp577jlt3rxZ6enpevbZZ/Xbb7/ptttu\nkyRt3LhRK1eulMPhUGhoqCZNmlTuswEAAAAAgNqDYA4AAAAAACjXr7/+qsTEROfHL730UoXmvfHG\nG84KIYMGDdLbb7+t6dOnKzs7W59++qk+/fTTYnNuvvlmvfXWW/Lz8ys2Nm3aNHl4eOjjjz9WSkqK\n3n777WLXGAwGjRkzRs8++2xFH69KGQwGvfPOO3rxxRf1n//8R/Hx8ZozZ06J144cOVIvvPBCsfN1\n69bVypUrNXbsWMXGxmrNmjVas2ZNkWuGDx+uhIQE/fzzz9XxGJfEyJEjdfbsWa1YsUImk0nvvfde\nide1atVKH3zwgbPlU4GBAwdq586dslqtmj59uqQLlZbefPPNcu/9ww8/yGQyOT+eP3++5s+fX+68\nIUOGFPt6zpo1S+np6dqyZYv279+vZ555psi4wWDQ+PHj9de//rXENUNDQ7V06VKNHTtWqampWrFi\nhVasWFHsmg8++EB169Ytd48AAAAAAKD2IJgDAAAAAAAumTvvvFPdu3fXp59+qi1btig6Olp5eXmq\nX7++2rZtq6FDh6p3794yGAwlzjcajXrhhRd0zz336LPPPtPOnTuVkJAgo9Gohg0bqnv37ho2bJja\ntGlziZ+sKG9vb82dO1cPPPCAvv76a+3du1dJSUmy2WwKDw9X165dNXz4cEVERJS6RqtWrfTtt9/q\niy++0HfffaeoqCjZ7Xa1bt1aDz74oO655x6NGzfuEj5V1TMYDJo+fbpuv/12ffnll9q/f78SEhJk\ntVpVp04dtWnTRgMHDtSQIUPk7l78NdbIkSOVn5+vL7/8UrGxsfL09Cy1gtCfHTlypMqew8vLSx9+\n+KG+/fZbrV69WkeOHFFWVpaCg4MVERGhhx56qMyvtXShTdf333+vjz/+WJs3b1ZMTIxsNpsaN26s\nfv366W9/+1uR1m4AAAAAAODyYHCUVmsaAAAAAAAAl7W0tDT16NFDL7zwgh555JGa3g4AAAAAAMBV\nx1jTGwAAAAAAAED1OHnypCSpcePGNbwTAAAAAACAqxPBHAAAAAAAgCtQZmam3n77bQUHB+uWW26p\n6e0AAAAAAABclQjmAAAAAAAAXIHWrl2rM2fO6N1335W3t3dNbwcAAAAAAOCqZHA4HI6a3gQAAAAA\nAACqlt1uV0ZGhoKDg2t6KwAAAAAAAFetWh3MsVptSkvLrultAAAAAAAAVEqdOr680wAAAAAAAJcd\n3mm4Jjw8oNSxWt3Kyt3draa3AAAAAAAAUGm80wAAAAAAAJcj3mlUvVodzAEAAAAAAAAAAAAAAAAu\nVwRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAAgGpAMAcAAAAA\nAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAA\ngGpAMAcAAAAAAAAAAAAAAAA1at26b7Vo0YJqW/+33/bolVemFjv/zjtzFR8fX+RcVNRZjR8/tkru\n614lqwAAAAAAAAAAAAAAAACXmaeffrZa1yeYAwAAAAAAAAAAAAAAcBXzmzFdXt+ukYwGhdgdVbJm\n3t33yjxjVunjebl6/fVXFR8fL4vFor59+zvHVq36VD/+uEFubm7q2LGznnxyog4e3K+FC+fL3d1d\n3t7emjXrTXl6eukf/3hdMTHRstvteuyxJ9SlS9dS7xkdHa3Jk8fLZDJpyJD7dNdd92r8+LF6/vlp\n8vPz18yZ0+VwOBQSElolnwOJYA4AAAAAAAAAAAAAAAAusTVrvlb9+g316qtvKDr6nLZv36asrCxF\nRp7S5s0btXjxR3Jzc9OLL07Rr79u1f79v6lfvwG6//4R2rZtizIyMrV9+/cKCgrW1Kkvy2RK11NP\njdWnn35R6j1tNqvefHOe7HabHn54hG6+uY9zbPnyZRowYJAGDx6iH3/coNWrv6qS5ySYAwAAAAAA\nAAAAAAAAcBUzz5gl84xZCg8PUGpS5iW557lzUerR4yZJUuPGTXToUIBSUlIUFXVW7dq1l7v7hUhL\nx46ddOZMpEaP/puWL/9ITz/9hMLD6+r6629QZOQpHTy4T0eO/C7pQvAmPT1dwcHBJd7z+uvby8PD\nQ5KHmjdvrvj4OOdYdPQ53X33EElS+/YdqyyYY6ySVQAAAAAAAAAAAAAAAIAKatq0uY4ePSJJio2N\n0ZIl7/3/+WY6cuR3Wa1WORwO7d+/T40bN9WGDet0xx13acGCJWrevIXWrv1GTZs204ABg7Rw4Qea\nO/dd9e07QIGBgaXe8+TJ47JarcrJydHZs2fUqNE1zrFmzVro8OGDkuTcV1WgYg4AAAAAAAAAAAAA\nAAAuqXvuGao33pip8ePHymazafjwkTKZ0tWyZSv16zdATzzxdzkcDnXo0FG9e9+qI0cOa86cWfLx\n8ZHBYNCUKS8qLCxcb745S+PHj5XZnKUhQ4bJaCy9Ro2np6eee26isrKy9MgjYxUYGOQce/jhv2vm\nzOnatGmDGjZsVGXPaXA4HI4qW60aJF2iEkkAAAAAAABVJTw8gHcaAAAAAADgssM7DdeEhweUOkbF\nHAAAAAAAAAAAAAAAAFwRPv74Q+3du7vY+WnTXqnSSjgVRcUcAAAAAACAKsb/XQYAAAAAAC5HvNNw\nTVkVc0pvrAUAAAAAAAAAAAAAAADAZQRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRz\nAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAABXtAxzvg6dTpHJnF/TWwEAAAAAAAAA\nAABwlXGv6Q0AAFBdMsz5OhiZIqvdrpSMXIUGeqt5g0D5+3jU9NYAAAAAAAAAAAAAXAUI5gAArkiF\nQzkFUjJylZKRq7rBPmpWP1C+3vwYBAAAAAAAAAAAAFB9+I0kAOCKYzLn69CfQjmFJabnKNmUq3p1\nfNS0foC8PflxCAAAAAAAAAAAAKDq8ZtIAMAVpbxQTgG7w6HzqdlKSMtRw1A/Na3vLw93t0u0SwAA\nAAAAAAAAAABXA2NNbwAAgKpSUijH05SmkCP7Sp1jdzgUk5ylHUcSdOZ8hqy2sgM9AAAAAAAAAAAA\nAFBRBHMAAFeEkkI5BptVt0x7TP0mjZR/7Nky59vsDkUlZOrQ6ZRq3ikAAAAAAAAAAACAqwXBHADA\nZc9kztfByORi7auu/fJjhZw8LIPDoWt++aHCa8Umm6tjmwAAAAAAAAAAAACuMgRzAACXtYJQjs3u\nKHI+4Fyk2q1YoNw6YbK7e6jxlvUVXvNMXIby8m1VvVUAAAAAAAAAAAAAVxmCOQCAy1ZpoRzZbLpx\n7otys1i09+kZio+4WcGnj8k/5kyF1rXa7ToZm14NOwYAAAAAAAAAAABwNSGYAwC4LJUaypHUes0K\nhR49oHO33qG4m/orpvcgSdI1laiak2zKVVJ6TpXtFwAAAAAAAAAAAMDVh2AOAOCyY861lBrK8YuN\n0g2fvKO8oDra9+SLkqS4nv0q3c5Kkk7FmGS12atkzwAAAAAAAAAAAACuPgRzAACXFZvdrsNnUksM\n5chuV9d5L8k9L1e/PTVd+cEhkiSLf2Cl21lJUp7VptNxGVW1dQAAAAAAAAAAAABXGYI5AIDLyslo\nk7LzrCVujef9AAAgAElEQVSOtfjuc9U9uFuxN/VXTJ+/FBlzpZ2VJMWlmGXKynNtswAAAAAAAAAA\nAACuagRzAACXjfMpZsWnZZc45psQqw5L/1f5/oH6bcLLksFQZDyuZz/ZPDzUeMsPlb7v8eh02Uuq\n0AMAAAAAAAAAAAAAZSCYAwC4LJhzLToVYyp50OFQxPxX5JGTrf2PT1VuaN1il1j8A5XQ5WYFnz4u\n/+iKt7OSpOw8q6ISMl3ZNgAAAAAAAAAAAICrGMEcAECtZ7PbdfhMqmyOkqvWNNuwWvX3/qrzXW9R\n1G33lLpOQTsrV6rmRCdmyZxrqfQ8AAAAAAAAAAAAAFcvgjkAgFrvRLRJ2XnWEse8UxLVcfEcWXz9\ntPeZGcVaWBVW0M7qmq3rK70Hu8OhE+fSKz0PAAAAAAAAAAAAwNWLYA4AoFY7n2JWQlp2yYMOhyLe\nmSFPc6YOPvq8cuo2LHOti2lnJUmm7HzFJpsrPQ8AAAAAAAAAAADA1YlgDgCg1srKsehUjKnU8cY/\nfaeGO35SYsfuOn3HsAqtGd3n9gtzXWhnJUln4jKUl29zaS4AAAAAAAAAAACAqwvBHABArWSz23Xk\nbKpsDkeJ415pyer83ixZvXy0Z/JrkrFiP9Iupp2VJFntdp2MpaUVAAAAAAAAAAAAgPIRzAEA1Eon\nok3KzrOWOt75vdnyyjTp0COTZG7QuMLrWv0CLqqdlSQlm3KVlJ7j0lwAAAAAAAAAAAAAVw+COQCA\nWud8ilkJadmljjfaukGNt/yg5HZddOqekZVe/2LbWUnSqRiTrDa7y/MBAAAAAAAAAAAAXPkI5gAA\napWsHItOxZhKHXfPNqvze7Nk8/DU7smzKtzCqrCLbWclSXlWm07HZbg8HwAAAAAAAAAAAMCVj2AO\nAKDWsNntOnI2VTaHo9Rr2n62SD6pSTr2wFhlNW7u0n2sfgFKiOh1Ue2sJCk+NVu5+aW32wIAAAAA\nAAAAAABwdSOYAwCoNU5Em5SdV3rQxT/2rK79ZrnM9Rrq2P1/v6h7RfceJOni2lnZHQ6dS8i6qH0A\nAAAAAAAAAAAAuHIRzAEA1AopplwlpGWXeU3HxXNktFp04LEpsnt5V3hto8FQ7JyzndVFBHOkC1Vz\n8vJtF7UGAAAAAAAAAAAAgCsTwRwAQK0Qm2wuc7z+rl/UcOcvSuzYXbG3DKzwum4Gg5rWCyh23tnO\n6syJi2pnZXc4FJ1I1RwAAAAAAAAAAAAAxRHMAQDUuJw8q1Izc0sdN1jy1WnxHDmMRu17cppUQgWc\n0oQGeatRuJ/cjcV/5FVFOytJOp9iVp6FqjkAAAAAAAAAAAAAiiKYAwCocXEpZVfLab3mUwXEnNWp\nux9URvNrK7V2eLCP3N2MahjmV/y+VdTOyuZwKIaqOQAAAAAAAAAAAAD+hGAOAKBG2e0Oxadklzru\nlZqk61e+r7zAYB0ePb5Sa7sZDAoJ9JIkNQr3k/FPlXYKt7MKOHe68psvJC7ZLIuVqjkAAAAAAAAA\nAAAA/kAwBwBQo5LSc2Sx2Usdb//RPHlkm/X7mKdlCQyu1NqhQd5y+/8WVl4ebqpXx6fYNQXtrKqi\nak50YtmVfwAAAAAAAAAAAABcXQjmAABqVGxy6WGWOscOqvmG1Upv0Uan/zKs0muHBxcN4lxT17/Y\nNc52VlvXV3r9P4tNzpLFWnrICAAAAAAAAAAAAMDVhWAOAKDGZOVYlJGdX/Kg3a7O782WJO17cprk\n5laptQu3sSrg5+2h0EDvIueqsp2Vze5QbHLWRa0BAAAAAAAAAAAA4MpBMAcAUGNik0oPsTTdtFah\nxw/qXJ+/KLnDjZVeu3Abq8KuCS9eNaeq2llJUkyiWdYyWnMBAAAAAAAAAAAAuHoQzAEA1Airza7E\ntJwSx9zNWeqwbK6sXt46+NjzLq3/5zZWBeoEeCnAx7PIuapsZ2W12xWbVHp7LgAAAAAAAAAAAABX\nD4I5AIAaEZ+aLZvDUeJY288WyTstWceGP6acug0qvXZJbawKa1yvaNWcqmxnJUkxSVlUzQEAAAAA\nAAAAAABAMAcAUDPOp2SXeN4/5oyuXb1C5nqNdHzYIy6tXVobqwLhQd7y9nQrci669+2SqqadlcVm\nV1wyVXMAAAAAAAAAAACAqx3BHADAJZeWmSdzrqXEsU6L58hotejAuCmye3m7tH5pbawKGAwGNQ4v\nWjUnrmffKmtnJV2ommOzUzUHAAAAAAAAAAAAuJoRzAEAXHJxKSVXk6m/82c12LVFCZ16KPbm21xa\n281Ydhsr571CfeXh9sePwcLtrIJOH3fp3oXlW+2lVgUCAAAAAAAAAAAAcHUgmAMAuKTyLDalmHKL\nnTfm56vT4jmyG920/4mpksHg0vqhgWW3sSrgZjSqYZhfkXNnbr9PktTj9Wflbs506f6FRSdkyW53\nXPQ6AAAAAAAAAAAAAC5PBHMAAJdUfEq27I7iYZXWa5YrIDZKkXc/qIzm17q8fnltrAprFOYnY6EA\nUNxN/XVi6MMKPBepnrMmyWCzurwPScqz2nQ+lao5AAAAAAAAAAAAwNWKYA4A4JJxOBw6X0IbK5/E\n82q7cpHyAoN1+KHxLq/vZjQoNNC7wtd7eripfohvkXMHHntecd37qP7eX9Vp0Rsu76VAdEJmiUEk\nAAAAAAAAAAAAAFc+gjkAgEsmxZSrXIut6EmHQxHvvCKPnGwdfPQ5WQKCXF4/NNBbRmPlWmBdE+6v\nIjPc3LTzf/5Xpmat1WrtZ2q5dqXL+5GkXItNCVTNAQAAAAAAAAAAAK5KBHMAAJdMXAnVcppu+rca\n7N6q+C436eygoRe1fmXaWBXw9XZXaFDRKjtWP39tm7lIuUEh6vT+G6q359eL2te5hCyq5gAAAAAA\nAAAAAABXIYI5AIBLIifPqtTMvCLnvFMS1WnRG7L4+GrvpJmSoXLVbgqrbBurwhrXDSh2Lrt+I/13\nxkI53NzUc9YzCjgX6fLecvKtSkzLcXk+AAAAAAAAAAAAgMsTwRwAwCURl/ynajkOh7osmCnPrAwd\n+vuzyq7X6KLWd6WNVYEgP08F+XkWO5/SrrP2TJ4lj+ws9XrpCXma0lze37mETNnsdpfnAwAAAAAA\nAAAAALj8EMwBAFQ7u92h+NTsIueu+eV7Nfrvj0pq31WRdz1w0feo60Ibq8Iah/uXeP5c/7t1ZMTj\n8j8frZtenSBjfr5L62fnWXX8XPrFbBEAAAAAAAAAAADAZYZgDgCg2iWm58hi+6NajGd6qrq8N0tW\nL2/tnjxLMl7cjyM3o0EhLraxKhAW7CNfL/cSxw4/NEHRtwxS+O971eXdGZLD4dI9EtNzdC4h8yJ2\nCQAAAAAAAAAAAOByUvJvIOGUlpmns/EZcjMaZDQa5GY0ys1okJubQe6Fjo3GCx8bDZIMrrVSKYvB\nIPn7eMjdreayVKkZuUo25apVoyCX28UAuDr9uY1V5/dny8uUpv1jX5C5UdOLXv9i2lgV1riuv45H\nl1DVxmjU7uffkF9CrJpvWK3MJi10/P5HXbrHmfMZ8vfxuOggEQAAAAAAAAAAAIDaj2BOGVJMuTp8\nNlX2ClRG8E5OUMQ7M1Tvt1+V1KGbYnoPUuzNA5QfWKfK9mM0GBTg66HQQG+FBHrL38ejytYuS3au\nRadiM5SamStJMuda1L5FaI2GhABcPjKz85WR/Uf7p4a/blKTn9cppW1HnRwyukrucbFtrArUq+Or\nM+czlG+1Fxuzefvo11ffU/8J96v9sreV2aiZ4m4eUOl7OCQdOZumLteGy9ebH8MAAAAAAAAAAADA\nlczgcLjYj+MSSUqqmZYfiek5OhaVVn4ox+FQ041r1GnRG/I0Zyo7rL58k+MlSXajmxI796iWkI4k\nebm7KSTQS3UCvRUS4FXlQRmL1a6z8Rk6n5Jd7PPg7+2h9i1D5eXhVqX3BHDlOX4uTedTsyVJHpkm\nDXrsLnlmmrRx0WplNml50eu7GQ26+YYGVVbJKzUjV2fOZyozJ7/E8eBTR9R30ihJ0ub5K2Vq2dal\n+/h5e6hz6zBCjgAAAFeo8PCAGnunAQAAAAAA4CreabgmPDyg1DGCOSWIT83W8XNpKu8T452coK7z\nX1aDXVtk8fHVwcem6PSd98s3PlbXbF2vxlt+UMiJ3yVVf0inoJpOSIC3QgK9FODr6fJadodDcclm\nRcVnymIrXjWigLeHmzq0DJWv96Wp3APg8mO12bX993jZ/v9HzY3/mKpmG9fo0N8m6diDY6vkHvWC\nfdS2WUiVrFVYhjlfsUlZSjLlFgsnNty2UTfPnKjssPr6ccHnyg2t69I9woK8dUPz0KrYLgAAAGoZ\nXmIBAAAAAIDLEe80XEMwpxJik7J0MtZU9kV/qpKT0Lmn9kx+Tdn1GhW71Pd8zIWQztb1Cjl+SNIf\nIZ3o3rcrasBgOTxcD9GUxsPNqCA/TwX5eynIz1P+vh4yGsqvJpFiylVknEnZedYK36d9i1AF+lX9\nMwC4/J2Oy9C5xAv/jtfftUW3TB+ntFbX68d3/yWHe9WE+m5oFqKwKmplVZI8i01xyWadTzEXaXF1\n3ecfqsOyt5V8fWf9/I9PXP63vFn9ADWrH1hV2wUAAEAtwUssAAAAAABwOeKdhmsI5lTQuYRMnT6f\nUeY1f66Sc2DsCzpzxzCpAqGXkkI68V176b8vvyubd/X9UlmS3AwGBfh5KsjPU8H+Xgr085Cb8Y/2\nKdm5Fp2KzVBqZq5La1/fLEShQd5VueVa7/czKcrKtsjHy73QHzf5ernL29O9ytrqAJeryFiTopOy\nJEnu5iwNeuxueacla9PCL2Vq2aZK7lHVbazKYnc4lJSWo5gk84U2Vw6Hur/xnJr8vE4n7x2t/U9O\nc3nt6g4XAQAA4NLjJRYAAAAAALgc8U7DNQRzKuDM+QxFJZRxr0pUyakI3/Mx6vLea2qwa4uS2nfV\ntpmLZPXzd3H3fzDm5+v6le8rLzBYJ+8bU/p1BoP8vD0U7O8pm92h+NTsYq1aKnVfg0HXNg5W/RBf\nl9e4nJT3/WKQ5OXhViS00zDMt0gYCrhS2R0OHT+XroS0bOe5Lu/MUMvvPtfhUU/qyEMTquxe1dXG\nqjwFba5S41PUd8L9CoqK1I6p/6vovne6tJ6b0aAu14bLj9aAAAAAVwxeYgEAAAAAgMsR7zRcQzCn\nHKdiTIpJzip1vEiVHF8/HRg7RWf+UrEqOWUxWPLV/c0X1HjLD0q9rr22zP5AlsBgl9fzTklUz9ee\nVtiR/ZKk3c/O1tlBQy9qj5XVokGgmtQr/RvuSpCUnqPDZ1MrPS/Yz0vtW4YQzsEVzWa36/CZVKVm\n5jnPhe/boVtf+JtMzVpr43tfVWn7vpquNGPKytPJn3ZrwIRhMtjs+nHB58po1tqltXw83dXl2nB5\nuPNvBAAAwJWAl1gAAAAAAOByxDsN15QVzLmqf/vncDh0/FxamaGcJpvWatBjd6vBri2K73KT1n+w\nVmfuuP+iQzmS5PDw1M6p/9DZ2+5VyPFDuvX5h+WVluzSWiFHD2jA+GEKO7JfMb0GKt8/UF3enaGQ\nowcuep+Vcfp8hk7Fmi7pPS+lrByLjkWluTQ33ZynQ5GpstntVbwroHawWG3afzKlSCjHLSdbXee9\nJIfRqN3Pzq7SUI6b0aCQwJptoRfk7yVry1ba/ezrcs/L0U0zJ8rdXPrPlLLk5Ft1NCpVtTwvCwAA\nAAAAAAAAAKASrtpgjt3h0NGoNJ1PzS5x3JiXq4i3p6v7Wy/I4LBrzzOvausbS5VTt2GV7sPh5q7d\nz87WqcEjFHzmhPo+O1o+iecrtUbTDat163Oj5Z2WrANjp2j7S/O1Y9rbMtpsumnmRHmnJFbpnssT\nk5Slo2dTL6o1Vm1ksV6oBGK7iOcinIMrVU6eVftOJiszJ7/I+Rs+mS//+Bgd/+vflHZd+yq9Z1ig\nt4zGiw9JXqy6wb6KvWWgjg17RAExZ3Xj3GmSi/9OpGbm6XRcRhXvEAAAAAAAAAAAAEBNcZsxY8aM\nmt5EWbKz88u/qJKsNruOnk1Tkim3xHH/2LPqPfUxNdi9VWmt2uqXNz9WYpebqqRKTokMBsXf2Ftu\nljw12r5ZjX7dqLgefWUJCCp7mtWiTovfVIeP5snq66//vrJQ5wYMlgwGmRs2kdXLR9ds26iwI/sU\n1X+wHG5u1bP/EphzrcrNsyq8BlvMVCWHw6Hfz6QqM8dy4YTNpiY/fSerl3el24/lWmzKyLIovI63\njNX1PQVcQlk5Fh08laJci63I+eBTR3Tj29OVdU0z7Zj2thzu7lV63+b1A+Xr7VGla7rCw92ouBSz\nkjp1V9jve9Vg91ZZvX2U0q6LS+tlZOfLx8td/j41/2wAAABwnZ+fV7W80wAAAAAAAKhOvNNwjZ+f\nV6ljFQrmHDhwQM8//7yGDh1a5PzmzZv13HPP6ZtvvpHD4VC7du2Un5+vKVOmaNmyZfr+++/VsWNH\nBQcH6+jRo3rqqaf0zTffaO/everXr58MFQglVMUX3GK1KS0jT3Ep2TpzPlOn4zJkzrOWeG2jrRt0\ny/Rx8ks8r8g7h2v7S/OVHxx60Xsol8GgxM49ZXd31zW/btI1W9br/I23KD84pMTLPU1p6vXKU2ry\nyzqZmrbSL299rLQ2RatRpFzfSf5x59Rg9xZ5pybpfI++1RcuKoE516rQQG95eVy6QFB1iYzLUGJ6\njqQLgajub72gdivfV4t1X8hgtyulbadKBZ8I5+BKkZ6Vp4ORKbLYileBavfPBQo5eVi7psxRZtNW\nLt/D3WiUt6eb/Hw8FOTrqToB3goL8la9EN8K/Rypbp4ebkpMy5HFLsXfeIua/PSdGm3/UUk3dFV2\n/WtcWjMtI092h0M2m10Gg0Ee7ldtgTsAAIDLFi+xAAAAAADA5Yh3Gq4pK5hjcDjK7rfx4Ycfau3a\ntfLx8dEXX3zhPG+xWHTHHXfoq6++ko+Pjx588EEtWbJEP/zwg44fP67XXntNp0+f1uzZs7Vs2TI9\n9dRTuv/++9WnTx89++yzuvPOO9WvX79yN5+UlFmJR70gJ8+qDHO+0rPyZDLnK7uUEE5hBku+Oiz9\nX127eoWsXj7a+/SMC9VnakDrb/6pTovnKC+ojra8/qHSW7crMh4UeUw3zxgvv4RYxd7UX7umvCmr\nr1+JaxnzctVv0kjVOXVEv42frsjBIy/FIziFBHirQ8tLEGyqRgmp2Tp6Lk2SZMzPU4/Zk9Vo+2al\nXnuDfFIS5ZOSqMxrmum3CS8rsXPPSq0d7Oel9i1D5Gbkl+64/CSl5+hoVFqJbevccsy6+4HesvgH\n6bvlG6UKBNd8vdzVKNxfXu5GeXq4ycPdKC8Pt1rRrqo8Z+MzdDb+ws+r0MP7dOtzDyk/IEgb3/9a\nuWH1Lnp9d6NR/r4e8vf544+vtzvBPgAAgFosPDzApXcaAAAAAAAANYl3Gq4JDw8odazcNECTJk20\nYMGCYucjIyPVpEkTBQUFydPTUxEREdq9e7dOnTql3r17S5JatGihyMhISVLbtm2Vnp4uh8Mhs9ks\n9ypuaZKakaujZ1O1/XC8dh5N0NFzaTqfml2hUI5PYpz6PveQrl29QhlNWmrTwi9qLJQjSSeHPqw9\nk2bKMyNdfab8TaGH9znHrvnle/V7ZoT8EmJ1ePR4/ffld0sN5UiS3ctbv85YoNygEHVaNEdhB3e5\nvC9jfr78o89Uak5qZq5M5ss3TZeRna/j0emSJLecbPV66XE12r5Z8V1u0s//+Kd+WPqdTgwZLf+4\nc+rzwiPqNmeKvNKSK7x+ujlPhyJTZbMXrzYC1GaxyWYdOZtaYihHkhpvWS+PnGydGTS0QqEcSWpS\nL0CNwvwUFuyjQD9P+Xi5XxahHEmqW6htX0q7zjow7gV5p6eo56xnZLBc/L+BVrtd6Vl5iknK0rFz\nadpzPFHbDp7X3uNJOn4uTVkFbfYAAAAAAAAAAAAA1CrlpmMGDRqkmJiYYuezsrIUEPBH4sfPz09Z\nWVlq27atfvrpJw0YMEAHDhxQQkKCbDabmjVrppkzZ2rRokUKCAhQ9+7dK7TBslJFBU5Gp+lMolmS\n5OnlIU8vjwqtLUlh239Wh1cnyTMjXXED79HhKbMlXz+Vf9fqlTxstA4GBan9a5PVe9qj2jdniUL2\nblfL5e/L6uun395YosQ+Ayu2T/8WOvDGIt04YaRunjVJ/132b+U2qER7FYdDdbds1HULX5dfbJT2\n/mOZkm4uv9pRgbRsi1o1u/yq5uRZbDp8Ll1+fl5yz8pQxEvjVOfgHiXccpsOvLZAvp4XSlGdfn6m\nkgffr3Zvvqimm79Vw92/6MQTLyh68ANSBSrh2CSdS85RRJu6cnOjcg5qv8iYdMWn58rf37vUa1pt\n+EYOg0FJQx5QQBnXFfBwN+r61nXldpkEcUoSm5arjP8PIiaM/LviTh5Sw41rdePHb+vo5BnVdt+s\nfLvy7FLzCvy8BAAAwKVVkXcaAAAAAAAAtQ3vNKqWy2Vr/P39ZTabnR+bzWYFBARowIABioyM1IgR\nI9SlSxe1a9dObm5umj17tlauXKnWrVtr5cqVmjNnjl555ZVy71NWiSSrza5jUWlKzsit9P4NNquu\nX75Q169aIpuHh/ZOnKHTd94v2Q1SVuXXqw6ZNw1U1kvvqMfsSbrx6dGSpKyGTfTrjIXKaNa6UvvM\nbNVB7k9OU8SCmer4wlj99PZK2bx9yp0XFHlMnRbPUd0DO2V3u/Dt0mzpOzrdoadUwRYqmVm5CvZx\nV7B/6T3Vahu7w6EDp5JlMufL05Sm7lMfVZ1TRxTV9y7tfv51OfIdUv4fn//MRq0UO+8ztfzuX2r/\n0Xy1e+tF1f/2C+2dOEOmlm3KvV9mVq7STdnq0DKUtlao1VIzcnXwdEqZ1wSci1SdQ3sVH3GzkgLC\nKvRvVeNwf6WmZFXVNmuEl/HC3+UCO8a/ov4njqjpV//U+VY3KLrfXdV279PRNoX6VTyUCgAAgOpH\n2WcAAAAAAHA54p2Gay6qlVVpWrZsqaioKKWnpys/P1979uxR586ddejQIfXs2VOrVq3S7bffrsaN\nG0uSgoKC5O/vL0mqW7euMjIyXL21JCk716rfTiS5FMrxSk1S7/95VNevWqKs+tdo8/xVOn3X8AoH\nTS6luJv6a9vMRbL4+ul811u06d3PL4RyXHD6rgd0+i/DVOfUUXWd95JUSgsaSfJKS1HEvJd125ND\nVffATsV176MNS/6tmF63KfT4QdXdv6NS9z5z/uK+3pfaqRiTTOZ8eack6tbnRqvOqSM6/Ze/ateU\nOXK4l/LLbzc3RQ4eqR+Wfadzff6i0KMHNOCpv6rDB2/JLcdc8pxCTOZ8HYxMoa1VLWS12WW3l/73\n5WqRb7Hp2P+xd9/RcZRXG8Cfme1dW9SbZRV3G3dTTUvoEAKBjxZCCRBIKKYnAUxNaAkECC0QQgkJ\nCR3TwRhwMC64W7YsW1YvK+2utL3NfH8IjI1taXa1siT7+Z3Dsa2d+77vyquVj+bh3gZvv9eVvf8q\nAKDuuNMVr13g2vNIvpEix75z2DFpMOJ/t/0FcaMJM/58K6x1NYO2dzASRzSeHLT1iYiIiIiIiIiI\niIiIiCg9giz3kc74VlNTE+bNm4dXXnkFb7/9NkKhEM4880x8+umneOyxxyDLMk477TScc8458Hg8\nmDdvHsLhMCwWC+6++27k5uZi+fLleOCBB6BWq6HRaHDnnXeiqKj/cUq7S2J5eiLYsM2LxI4BBlmG\n1u+D3tMJvcfd+6t3598bPG7ovZ3Q+rsBAM0HHYVl192DuNmawqdsaAjxGGSNNiPrHH79L+DasBKr\nL74ONWdctNPjYiyGijdewPh/Pg5NKIieknKsuuwmtM84BABgr1mHo3/9M7QfMAef3/f3lPaePNoJ\nh7X/kTZDraUziJomH4ztzZh744UwtzSg5tTzsPqym1MKb+Uu/xLTHrkD5tZGhFx5WH3pDWg69Jh+\nx1vZTFpMGu2EmmOthlwoEkeTO4h2bwiluRaU5O7fLdvWbOmExx/t8xohHsNJZx8OAHjnpc8gaft/\n33JYdJhc7srEEYfcyho3ukOxnT5W8OVHOPiOK+EvLMXHj/4HCdPgvI7GltiR5zAOytpERERElDr+\n32VERERERERENBLxZxrp6atjjqJgzlD64V94Q7sfda092PHQeUs/x6z7b4Kuu+9ODlFrFiKObETs\nTjQffDS2nHR2Rrvk6DQqjMqzQBQHofOODHj8UXT6wkgO8K9M53Hj6F//DAaPG1/c9WRv6EaWUbD4\nY0x5+n6YWxsRtdiw/vzfYOsJZ0JW7Tzx7NCbL0beisX45OGX4Rl3gOJ9rUYtplVlD+jsg83rj2Lt\n1i4YG7di7o0XwehuxYazL8P6869M67UiRiMY9/KTGPvKMxATcXgrxmPtBVf3fs77WE+nVqG8yIac\nrP7HjVHmdXVH0NwZ2CmEohZFzB6fC416/wxMNXYEsKWlu9/rCj//AAfddTVqfno+Vl92k6K1J45y\nwLWPvNab3AHUNu/6eZr0twcw9pVn0D51Dv536yNImMwZ3zvXbsS4UnvG1yUiIiKi9PCHWERERERE\nREQ0EvFnGunZJ4I5SUnCpgYfOnzhnR4vf+ufmPrXuyGpNWibfggiThfCjmxE7Nm9IRyHCxG7CxG7\nMyMdZ/bEYdFhXKkdGrVq0PYAekfqdHjDaPOE0PODrgypsG9aiyPmnYukTo9l196NyjdeQM7qpZBU\natSefDY2nHs54hbbbmtda5biiOvOR8ucI7D4jr+mtO/EMgdctuFzA16SZXQHYvD0RNDVE0EomoC1\nrgZzb7oIem8n1lw0D5vO/GXa61sMGuQ5jMj3tsJ0390wv/UaAMA9cTrWXngNuiZO77PeYdGjssgG\ng07d53U0cImkhLauEJo7gwjHEru9pjjbjPLC3X9d7Mv8oRhWbu6EpODbxSG/vQT5y7/AB0+9pWjs\nnrE9UtgAACAASURBVE6jwpzxuRCG4SjBdETjSSxZ34YffqaEZAIH3nEVCr/6FN2jKvHFXU8gnFOQ\n0b11ahUOnJiX0TWJiIiIKH38IRYRERERERERjUT8mUZ6RnwwJxJLYN1WDwKR+PcPJJOY8tR9qHr9\neUSynFh8+2PwjJuy188nABiVZ0VJrnmv31gOReJo9YTQ4QkjmkimXF/64RuY9cDN2//cMnsuVl9y\nIwLFZX0XyjKOmHcuXOu/wYdPvIHu0WMU72nWazBjbE7KZ82kcDQBjz8Kb08EXn90pw5E9pp1OPTm\ni6Hzd+ObX/8eW04+J+X1NSoRuQ4j8hxGmA2anR5TrVsL7V23w/zphwCA1pmHYt0FV8NXMX6P66kE\nASW5FhTnmiHuI+GF4WTHcVVJqe+3Q1EQMGtcDvTa/ScolUhK+KbGjVB092GlHRk6WnDCeUeja9wU\nLHzoZUXrl+VZUZq3b40IW1XbCV9g15FfQjKBKU/ci8o3X0TY4cLiOx6Ht2piRveeMSZnl/cdIiIi\nIhoa/CEWEREREREREY1E/JlGevoK5qjmz58/f+8dJXUtHX6sru1CJP598EQVDuLAu+eh7KM30F1a\njkX3/wM9Zf13Zsg0rVrExDIn8pzGIen2oFGr4LDoUZhtgsWogSTLiMSSu3Rq2JPu8rGQBQFiPI7l\n19yJ6nMvR8ymYAyKICDicKH003egCfSg+dBjFJ85lpBg0mtg0u+9G8eSJMPrj6K5M4itW9vRvnYz\n4uvXQ79mJVyrvkbBV5+iZOECjH73Pxj/4mPQhENYdu3dqDv+DMV7CACcVj1G51tRVZIFp1UPrWbX\n7klyTi4Sp5+B2OFHQtqyFY6lX6J8wSuw1m9B96iq3X7+ZQC+QBSd3RGY9er9KhQyaBIJ6K+fh9bq\nrVhlLoY/HIeSiKIMIJGQ95mxS0rUNPrg3U3IZHeqXnseOauXYv25V8BXueew2XdEQcDYUjvUqn1r\nPJgsy+jqiez6gCiibdZhiJltKFr8EUo/fgs9JeXwl5RnbG+DTg2bafC6wxERERGRciaTDqEBdLol\nIiIiIiIiIhoK/JlGekwm3R4fG9Ydc9q6gli8smmn8Sn6rg4ccstlsNdWo33qgfjqlocQN1v3+tls\nJi3Gj3JAt5vwxVCKJ5Jo94TR5A7sFGYaKAFAvtMEk0GDzU0+QJbxo1/9FLZtNXj/mQUIFI5SvJZJ\nr8GMMdmDHmaSJBnedz+G4y/3Qd/ZAb23E9pg38m+mMWGFVfNR9Nhxyraw6hTI89hRK7DmPprQZah\n+fwzaO+4Dca1qyCLIrb96CfYcO7lCOUW7rEs32HE6ALroI9N25cZHn4Q5rtvhyyKWPjgi+iaMFVx\nrQBg+n7SlaTdG0J1vVfZxckkjj//R9D6u/H2vz5H0mDqtyQ7y4AJoxwDPOXwE09I+Gp9W5+jv/K/\nWog5f7gOqmgYay6+DjWnXwBk4D3RYdFjcrlzwOsQERER0cDx/y4jIiIiIiIiopGIP9NIz4gdZbWx\n3oO1NR3b/2zbshGH3PIrGDvbsPW40/HNb26FrE7t5rhOrcKofAtEQYDbF4bHH+3z5unuFOeYUZZv\nHdZjhSRZRktnEA3tfsQS0oDWyjLrUFFo2x5EWF/ngbs7jKJF7+HAu+dh63GnY8U1d6a05rhSO3Lt\nxgGdqy8d3hDqt7bj8PN+DGNnOyI2ByLObETsrt7/dvh92JmNiD0bEUc2EkZTnzfHtWoRNpMONpMW\nNrMWFmMGOlPIMjTvvgP93XdAX7sJklqD2pPOwrpfXLnHcINGJWJ0gRX5zv7DD7QzVc0mZB15COI6\nPbSBHgTzivDR46/3/t0r5LTqMWn0vh1+CEcTWLHJjYSk7P0jd/liHPbbi1N6P5hS7oLdsufk6Ei2\ndmvX7rvm7CCrdgMOueVXMHR1YMsJZ2LlFb9L+XvaD6kEAQdPyocoDt/vT0RERET7C/4Qi4iIiIiI\niIhGIv5MIz19BXNGzEycvKWLMOfuedCEQ1hz8bXY9LOLUuouIAoCinPMKMk1QyX2jk3JdRiRSEro\n6o4oCuloVCLGlGTBZRv+Y2xEQUBRthn5TiOa3UE0dgQQT6YW0DFo1SgvsO4ytqeiyAZfIIqmQ34M\nf9EojProTWw49wqEs/MUr13f5kdOliHjXXN6QjFsae5GdzCGMf/9B4yd7ag+85dYd9G8tNYzaNXb\nQzg2kw5G/SB8yQgC4iechPixxyP62n+g/8NdqHr9eRR89SmWz7sL7gNm71IST0rY1OhDuyeMymLb\nXh0NNqIlkzBeeTnEWBTLb34Ajo1rMO7fT2PKE3/Ainl3KV6mqycCXyCKLPO+GSqRZBnV9V7FoRwA\nKPvgvwCAumNPU3S9UafeZ0M5AJCTZeg3mOOrGI9P/vJvHHzr5Shf8G+Y2prw1e//jIRpz9+0+5OU\nZXQHY/v055aIiIiIiIiIiIiIiIhoJFHNnz9//lAfYk86u8Po6Aqi/K2XMPu+mwBBwJLf/gl1x/8s\npVBOTpYBE0c7kJ1l2KXLjSgKMBs0yLEbUZjdO6oJMhCJJbFjRMdi0GJyuRO2PuaCDUeiIMBm1qHA\nZYIgCAiE4uivP5BaFFGWb8XYUnvv5+OHj6tEaDUqdPqjSOiNKFr8ESBLaJ95qOJzxZMSDDp1xsYB\nReNJ1DZ1Y3NzN6LxJDQ9Phx49zwkdXos+f2fIWmV/b0ZtGrk2g0ozjajoigLpXkWuLIMsBi10KjF\njJx1j0QRyQkTET3/QsSjMVgWfYKyD1+HzueBe/IMyJpdu/NE4km0dYWQlGRYTZph3cVpONA/9ThM\n/3weDXOPw8ZzfgX3pOnIX7oIBUs/h2/0WPhLRiteKxRJ7LMdi+pa/ejwhRVfr+32Ysafb0VP8Wis\nu+AaRe/PpXkWWE0Z6Dg1TOm1KjS7g/2+3yZMZtQfdSJsdZuQv+wLFCxZiNbZcwc0olGnUTGYQ0RE\nRDQMcB47EREREREREY1E/JlGekx9ZEkGOWkwQMkkpjx+D6Y9eheiVjs+u/8faD70x4rLLQYtplZm\nY/woB/Ta/judqFUicu1GTBztxEET8zCu1A6XTY9ClwlTq1ww6EZMg6FdqFW9YZvZ43NR5DLvNsAh\nAChwmjB7fA6Kc3Z/zXfyHEY4rXrUH3kiQtn5GP3uf6D1eVI607a2npTHiP2QJMmob/Nj6YZ2tHlD\n2z8+9t9PQxvoQfVZlyq+wa0SBRxQ4UJlURZy7EboNKoBnS1tej3i8+9Ex1sfwj+qAhVvv4wfX/oT\nZK/6ereXS7KMhg4/lm3sgKefDh37M7FuK4z33I6ozY6VV/weACBrtPj6xvuQ1Oow46FbofO4Fa/X\nE4rBnUJ4ZaTw+qNo7EitNV3px29CTMR7u+UoCOWoBAF5jsEbZTccqFUiHFa9omuTBhMWz38Mm39y\nHmz1tTjqyv+DfeOatPf2+qNp1xIRERERERERERERERFRZg3rjjm6M05Hwbuvobu0HIvu/wd6yiqV\n1alVqCzKQlVxFvTa9MIVO3bScVr1GR+5NFRU394sznUYkEzKCIbjAAC7WYcJZU7kO03bR331J8uk\nQ6sviqQoonDJQkhqDdxT5yg+SyIpQ6dRwWJMr2tGhzeEdXUedPZEdupKYehoxex7b0DEmYOlN94L\nWaUsUFWeb1N8I31vEAoLET7rPLg9QeQs+azf7jmJpIx2bxjBSAI2kxZq1fDO3e1VkgTTL86Bdlsd\nll17N7xjJ29/KJblQNxgQtGXH8FaX4uGI09U3JErGI5v70a1L4gnklizpQsJKYXAnCxjxp9vhTbo\nx9Ib/oikvv9Rf3kOI3Ls+3YwBwAgQHl4SxTRNvNQxMw2FC3+CKWfvI2eknL4S8pT3jaeSKLQZYZK\n3Ddel0REREQjFf/vMiIiIiIiIiIaifgzjfSM2I45lo/fR9u0g/DpQy8jlFfY7/UqQUBprgWzxufs\n890YBkqvVWNMiR0zx+ZiUpkTUypcKY+V0mlVKC+0YutxpyOS5UTFW/+EOphap436dj+kFEIASUlC\nhy+MlZvd2FDvRSSe3OWaCS88ClU8hnXnX6l4hJXFoEFh9vAbS6QxG2G8/w9Y8bfegFrF2y/jmEtO\n2WP3HKA3CLC0uh1N7gDkAXYk2lfonnsGhiWL0XzQUWiae9wuj9eecg7aph+M/GVfoPztlxWvG4om\n0NoV6v/CEWJTgw/RxK5fU31xbFwNW30tmg8+CjGbXVFNgWv4fa0NBpdVn3I4pvbU87B4/qOAIGL2\nvTek/J4KADIAb4Bdc4iIiIiIiIiIiIiIiIiGg2HdMaehcjK+OuF8SAo6MGSZdJhS4UR2lqHPEUy0\nM41ahFGf/ogui1ELX0RCJBxDwdJFSBjN6Jw0XXF9UpKhUYuwmvbcNScpSejsjmBbmx81DT50+MKI\n7iaQAwDWuhpM/8vt6CmtwDe/uRVQ0P1HADChzKlo3NlQEAUBtspR2HjkTxAMxZC39PPe7jneLrgn\nz9xt9xxZBjz+KDw9EZiNmqEbyzUMiI0NsP7iHCR0Bnx515NIGM27XiQI6Jg6B6M+fB35yz5H06HH\nKA6ZBEJxFLiMI/59p9kdQFNnMOW68S88CnttNVZfehOCBSX9Xm81ajEqT9l4uZFOEASEIgkEI/GU\n6gJFZRAkCXkrFsNfPBrd5WNT3lstCnDZ+v/eSURERESDh/93GRERERERERGNRPyZRnpGbMec0CGH\nQ1b338VFp1ZhQpl92AYr9nVVxVnYdvJZiJksqHztH1BFFI5u+VZjewBJSdrpY991xlm/zYP/rW3D\nhm0euH1hJPvpADPp7w9BkCSsuWgeoFIWRsl3mvoMBg0HgiCgqiIP/ptuwad/+Re6SytQ8c6/ervn\nrFyyxzp/OI6VNW5sbvIhkZT2eN0+S5ZhuPo3UIWCWHXZzYg4c/Z4acSZgxVX3Q51NILZ994AIaEs\nTBFNJNHUkXqgZThJShK2tvakXKcOBVHy2XsI5hagfdqBimr2l24538nJSi8c03DECQCAkoXvpFXP\njjlEREREREREREREREREw8OwDuYoIQAYW2qHRr3/dgQZagadGsWVhag9+Wzouz0oe//VlOqjiSRa\nOkNph3G+41q7HAVLFsI9aQbaZs1VVKNTqzC6YOR07yjLt8J1xMH45LFXUX3WpTC42zD3pgvhWrN0\njzUygObOIJZVd6DDu++MXVJC+88XYPxiIVpnHIr6H53S7/XNhx2DbT/6CRw16zD+xb8q3qexI4B4\niiOghpOuniiSKYyU+07RovegjoRQd8xPFXWn0qjEtIMqI5XdqoNGlfq32mBBCbrGTEbOyiXQeTtT\nro/EkghHEynXEREREREREREREREREVFmjfhgTnGOBXbLnlsC0d5RlG1G+7kXI6EzYMwrz0CIK29t\nZXC3Qfen+1Dzwhsph3G2k2VMeuZBAMCai68FFI4VGl1ohTqNm+ZDqTDbjDFVedhw4TX4/N5nAQDT\nHrmz3w4v0UQSG+q9WLnZDf9+0HpMbGuF6ZbfIm40YcXV8xW/JlZe/jsEcwsx7l9Pwbl+paKahCSh\nvj0wgNMOrXQDW6Pf/y9kQcC2H5+q6Po8hxGiOLJHfqVKFAS4bPq0ahuOPAGilETR5x+kVe/xs2sO\nERERERERERERERER0VAbWYmEH7AatRiVbxnqY9C3Rk8qR90JZ8DY2YbST97u+2JZhnPdCsy5+xoc\nf97RmPDsQzjkpotRtOi9tPYu+N8ncG1YhaZDfgTPuAMU1TgsOuTajWntN9RysgyYNNoJ79Q52Hrc\nz2Crr0XFGy8pqu0OxrCixo2N9V5E4yO3y0ufZBm6a66EOtCDNRdfj3BOgeLShMmMpTf8EZBlzLrv\nRqhDysZUtXQGEYmNvA4liaQET0/qAQ7rts1wVq9G2/RDFH9+97cxVt/JSfN9pumwYyGLYvrjrPyR\ntOqIiIiIiIiIiIiIiIiIKHNGbDBHJQoYV2qHqLALBg0+o16N8K9+DUmtwdh/Pw0kdw19iLEoRn3w\nGo6+4jQcOe9cFC96Hz2jKrH2gquR1Okw5w/XYdQHr6W0r5BMYNKzf4YkqrD2gmsU1YiCgMqirJT2\nGW7sFh0OqHRh0y/nIWqxYcKLj0Lf1aG4vs0bwtLqdtS3+SGlMcZoOFO/+h+YP/kA7QfMwdYTzki5\nvnPSDGw885cwtzbigMfvUVQjyTLqWv0p7zXUOrsjkFLtUAVsH1lXd9zpiq53WHQw6NQp77MvyDJr\noUtj3GLEmYOOKbPg2rAKxtamlOt9/hjkNP5uiYiIiIiIiIiIiIiIiChzRmwwp6o4a7+9yTuc5U2u\nQstxp8LSXI+iL74fv2Jwt2Hi3x/CieccgZkP/g62rTVoPPQYLHzwBXz0+GvYeNalWHTfc4iZLJj5\n4O9Q/qay7i8AMOrD12Ft3Iq6Y09DoLhMUU1prmWfeP2YDRpUTinHugvnQRMKYvJT96dUn5Rk1LX1\nYGl1e9rjjIYbwe2G+ebrkdAZsOKaOxSPsPqh9eddAW/FeJR98BoKv/xQUU2HN4RAuO+RYsNNhzec\nco0Yi6H04zcRsTnQMudwRTUFzv2zWw4ACIKA7CxDWrUNR5wIACj57N2UaxOSBH9oZL0eiYiIiIiI\niIiIiIiIiPY1IzKYk2s3jtgRRPs6QRCA66+HLIoY96+n4Fq7HHPu6h1XNe7lJwFZRvX/XYJ3n/8I\nS255CJ2TZmwPTnirJuKzB55HxO7CtMfuwph/Pd3vfqpIGBOefxQJnR4bzrtC0RmNOjWKc80Dep7D\nSZZZh/jPz4dnzCSULnwH2auXprxGJJ7EhnovVm52oycUG4RT7j3a666BptuLtRdeg2B+cdrryBot\nvr7pPiS1Okx/6DZF3YhkAFtbetLec2+LJ5LwBaKoeP0FHHHNOZj85L0oWPwxtN3ePusKlnwKXY8P\n9T86BbJG2+8+eo0KTps+U8cekbLt6QVzmg/5EZIazQDGWaU+poyIiIiIiIiIiIiIiIiIMmfEBXMM\nWjUqi2xDfQzqg27sGHiOORlZWzfhiGvPQ/HnveOqls27C++8tBDrLrwG4Zz83db2lFVh4Z9eQCg7\nH5Of/RMm/P0hoI9RLBVvvAhDVwc2//R8RJw5is5XWZS1z41AKyuyY+O82yELAqY+eieERHpdMrqD\nMXxT48bGei+i8V1HkQ13qjdfh/W9t9A5YRpqTzlnwOv5S8qx+pfXQ9fjw/SH5yuq8fgj6A6MjDBE\nhy8Clb8bk/7+EFzrv8GYV5/Dwbf/Bqf87CAcc/GJmPbQbSj5+C0Y25t3qit7778AgLpjT1O0T77T\n1Bva24/ZTFroNamPs4qbrWibeRhs2zbDWleTcr3HH0m5hoiIiIiIiIiIiIiIiIgyZ0TN8hEFAeNG\n2aFWjbg80X5H/t3vEFq5HF2VE1D7k3PROXG64pFCgcJRWPinF3DYjRdi/MtPQh0JYfVlN+9Sr+3x\nYuy/n0bUYsPGMy5StHau3Qi7RZfy8xnuREFAwXFzUXf8zzB6wSuoeOMlbD79F2mv1+YNocMXhiaF\nrzWHVYeyfCu0aYQPBiIpSfD5Ywhu2owJN1yLpEaLZfPuAsTMvE9sOflsjPr4TeR//RnUQT8SJku/\nNe3eMGzm4f86c3vDKHvvv1BHQlj381+jc9JMuNYuh2vdCrg2rEL5u6+g/N1XAACh7Hx0TpwGb8V4\n5H7zP3SOnwp/SXm/e4iCgDwnO5wBvV1zGjsCKdc1HHkiCv/3CUoWLsC6sqqUav2hOBJJid83iYiI\niIiIiIiIiIiIiIbIiArmjMqzwGrsf2wKDT25agx836xFLJZEYVJGniQhKcmQJBnJpIykJCMhSdt/\nn5QkeP1RJKXe7jih3EJ89uALOOymi1D1+gtQh0NYcdXtgOr70MfYfz0NbdCPVZfeqCgsoVGJKC+w\nDtpzHmomvQatv70V0c8/wIQXHkHjEccr7iK0O5IsI5pQ3jWn1dMb5inNtaAo2wxRHLwOKaFIHJ6e\nKDz+CHyBGJwrl+DAu66GrseHVZfciEBxWdprqwQBoihApRKgFkWoRAE9sw6GY9NaODatRce0g/pd\nw+0Lo6LINqw7M0XjSfT0BHHQmy8ioTOg9pRzEbfY4J4yCwAgJBPI2rJxe1Ane90KlCxcgJKFCwAA\ndcedrmgfl00P3V4Oaw1XuXYjmt1BSH10AdudltmHI24womThO1h3wdWKQ45A79dxdyC2V0aJdQei\nEAQBVhO/TxMRERERERERERERERF9Z8QEcxwWHUpy+w9f0PChUaugUSu/IR9PSGjpDKLJHUA8KSHi\nzMFnDz6PQ2/+JUa//yrUkTCW3vBHyGoNjO3NqHjzRQRzC7DlpLMVrT8U3Vz2tvzKEmy5/EaMv/e3\nmPLUffj65gf26v5JScbW1h60doUwusCK7CxDhtbt7Yrj8Ufg6YkiHEv0PiDLqHjzJUx54o+AKGL5\nVbej7oQzFK1ZlG1Grt0AlShAJYpQqQSoRGG3I5e0R88FXngCjo1rFAVz4kkJPn8UDuvghyHS5faG\nkb/4E5g6WlF70lmIW3YeESir1PBWTYS3aiI2n/YLQJZhaayDa91y6Lq9qD/yxH73UAkCyvL33TBc\nqswGDSaWObC+zoNkCuEcSadH88FHY9THb8G5YRW6JkxNaV+vPzrowRxZlrG5qRsJScKMMTns0ENE\nRERERERERERERET0rRFx50yjEjGmxD7Ux6BBplGLKM2zYM6EXJQX2KBTqxCz2rHovr/DPXE6Sj57\nFwfeeTXEWBQTnn8Uqngc686/EpK2/+4MNqMWBS7TXngWQ896xaXwjpmEkoULkL166ZCcIRxLYP02\nD1Zt7kQgHE9rjVAkjqaOANZs6cTitW1YW9eF5s7g9lCOGItixp9+j6l/vRsxmx2f3f+c4lBOeYEN\nFYU2WIxaGPUa6LQqqFXibkM5ABCfNgMA4Kxerfj8bl9Y8bVDocMXRtXrzwMANv/kvP4LBAH+ktGo\nO/4MbDzrUsia/r/uSvMsMOhGTP5zr3BY9ZhS4UppTBwANBzRG4Qq/mxBynt6/JGUa1LV0hVCIBJH\nJJbE5kbfoO9HRERERERERERERERENFKMiGDOuFI7R6HsR1SiiOIcM2ZPyEVVURY0dju+uPsptE07\nCIVffYrDrz8fpR+/Cd/oMdtvVvdFFARUFmfthZMPDzq9Bp6774csCJj66B0QEmkEY5JJFH3+PkZ9\n8Bryln4O25Zq6DxuIKl8tBUA+IJRrNjUgU0NXsTifdcmJQld3RHUNPqwZEMblm7sQG1LNzz+6C6j\nf/RdHTj8up+j7IPX4KmaiI8f/Q+6Jkzr9zyiIGBciR3FOeaUnoecm4tYYREcG9cACjuduH2RlEcW\n7S3haAKqlSvgWv8NWmcdNqDRX3ti1mtQlOLneX9hNWkxtTIbeq3y72sdU+cgYnOg+LP3ICQTKe0X\niiYQjaX2tZuKeELCttae7X9u94XR5gkN2n5EREREREREREREREREI8mwb2VQlG0e1uNgaPCIgoAC\nlwn5TiM6fBasvvdpJG/9DQq/+hQAsPbCeYCq/xvbhdkmmA2awT7usGI97CC0nno2Cl57CZVvvIia\n0y9QXGuvWYdpD8+HY/P6XR6TRRGRLAcijmxE7K7eX7/9fdvMQxAoHLVrDYBWTwgdvjBKcy0oyjZD\nFHs704QicXh6ovD4I/AFYoqCLI7qVTjo9ith8Lix7eiTseKq2yHp+n+PUAkCJpQ50n4/iU+dAdM7\nb8DU1oRgfnG/1yckCd6ewR8hlA63L4zK118AANSc+vNB2aOyyAZxDx2ICDDq1ZhamY21W7oQiPQf\nnpPVGjTNPRYVb/0TOSuXoH3GISnt5w1EkecwpnvcPm1r60E8Ke30sc1NPliNWhj1w/6fGURERERE\nRERERERERESDaljfMbOatLAbhvURaS8QBAG5diNy7UZ0PfMC6uf/HvFYHN4DD4dFq4JWo4JWLe78\n6/bfi1CJI6IxVMaJd96J2McLMP6FR9FwxAmIOHP6vF4d9GPicw+j4q1/QpBlbDv6FLinzILe44be\n09n7q7cTBo8blsZtsNdW71QfM1nw4ZNvIJxTsNv1k5KMra09aOkKwmHRw+OPIJJiF49R77+KaY/c\nDjGZxKpLb8Tmn54PKAh/aFQiJo12wmrqf/zSnsgzZwHvvAHHxjWKgjlA77io4RjM6d68DVMXvYfu\n0nJ0TDso4+vnO4ywmXUZX3dfo9OocEClC+u2euALRvu9vuGIE1Dx1j9RsnBB6sGcnsigBHMC4Tha\nOoO7fDwpyaiu92BqVTYDWkRERERERERERERERLRfG9aplwKXGW63f6iPQcOI02UBHn0YAHDgEJ9l\nuFNlu+C96Vbk/nYepjx1H76++YHdXyjLKFr0Hg544g8weDrRU1SGb66aD/eUWX2vHw7C8G1oJ2fl\nEkx48THMuv9mLLr370AfYahILImWrl1v5PdFSMQx5cl7UfnmS4hZbPjyd39SHCjRa1WYPNo14M4d\n8ekzAQDO6tVoPOIERTVd3RFIkry9Q9BwEIrEkfef5yEmE9h86s8VBZtSoVGJGF1gy+ia+zK1SsTk\ncieq671wd4f7vLZr3AEI5hagcPFHWHHlbYo6RX3HG+g/+JOO2uZu7KnPlT8cR11LD8oL+XogIiIi\nIiIiIiIiIiKi/df+2UqEaD8hXnghAhMPQMnCBche9fUuj5taGnDo7y7BgfdcC62/B+vOvxIfPfFG\nv6EcAEgaTAgUjkLnpBnYcN4VaD7oKOSsXoqqV5/L6HPQ+jw47OaLUfnmS+geVYmPH/2P4lCOWa/B\n1MrsjIzTSUyaDEmthmPjauU1kgRPT2TAe2dSR6sH5Qv+jag1C/VHnZzx9csLbdCo+a0lFaIoYPwo\nOwqcpv4uRMPhJ0ATCiL/60Up7RFLSAiE+x+ZlQq3LwxfP4GfRndg2H0NpCuRlBBPSP1fSERErJK0\nFQAAIABJREFURERERERERERERLQD3j0l2peJIqIP/hmyIGDqY3dCSPTemBdjMYx76XEcc8nJyFv+\nJdqmH4wPnnoL1ef8CpI2jXFPgoDlV9+BiN2Fic89BNuWjRk5vqVhC47+zc+Qs3opmg75MT55+GXF\nY6SyTDocUOmCTqPKyFlgMCA6biKytlRDjMUUl7l9fXdB2dt0/30Fuh4ftp5wZkodV5TIMukGZVzS\n/kAQBFQVZ6Esz9rndd91ayr5bEHKe3j9meuak5QkbGnuVnTtxgYvYvHUxtYNN0lJwrqtHqyr64Ik\n7alHEBEREREREREREREREdGuGMwh2sdJU6cjcPb5sNVvQeUbLyJ79VL86FenYuI//oKY2YKvfvsg\nvrjnaQQLSwe0TyzLgWXX3g1VPI7Zf7weYmxgIQBjezMOu+kimNpbsO7nv8FXtzyEpKGfjiLfyrYZ\nMLncCbUqs29x0vSZUMXjyNpSrbimsyeCpDQ8umz4g1GUvvJ3SCo1ak86K6Nri4KAqmKOLBqo0jwL\nqoqysKcBY91lVegurUD+14ugCfSktLbXn7nONU0dQUQUhm1iCQkbG3wZ23tvk2QZ6+s88AWj6A7G\nUN3gzej6SUlCdb0Xmxq8aGj3o8MXRiAcRyI5PN43iIiIiIiIiIiIiIiIaGAYzCHaD0RvuQ2JLDsm\nPftnHH79+bA01aH25LPx/jPvounw4wFhTzGA1LTNOgy1J50FW30tJj3757TX+W58lbGzHasuuRHV\n516u+IwFThPGj7JDFDPznHaUnDkTAFIaZ5WUZHT1ZK5TyUBE3/8QtvpaNB52LCKu3IyuXZxjhlGv\nyeia+6sClwkTRjkg7u41LwhoOPJEqOIxFC7+OKV1uwOxjHR7icQSaGj3p1Tj8UfQ2BEY8N57myTL\n2LDNA88O3YbcvrDibkH9SUoS1m7xoN0bQqsnhK2tPdiwzYPlmzrw5dpWfLWuDSs3u3cK7YQiiYzs\nTURERERERERERERERHsHgzlE+wHZ4UR4/l0QE3F4K8bhk7/8Gyt/fQsSJktG1t8xPrDml9ejp6gM\nVa/9Azkrv0p5LXUoiEN/fyksTduw8YyLsPn0XyiuLXKZUVWcBSFDQaMfSkyfAQBwblyTUt1wGWfl\neO4pAMDm087P6LoGrRolueaMrrm/c2UZUFWctdvHGg8/HgBQ8uk7Ka2ZlGV0B5WPYduTLS09SMqp\nB3zqWnvgDw18/71FlmVsqveis3vXTkON7gCa3QMLGn0XyrG/8gKOP+8oWOtqdrkmmkiiOxjbKbSz\nqTGzHXuIiIiIiIiIiIiIiIhocDGYQ7SfiJx9Hrr+twLNb36E+JRpGVlTFATkO4yYOTYXlYW9Y4yS\negOW3nQfJJUaM++/GZoe5SNsxFgMB93+Gzhq1qHumJ9i7UXXKq416zUYXWhN+TmkIllWjoTNDkeK\nwRxP99CPswqtWY/crxehc8I0eKsmZnTtyiIbVCK/nWRansOIIteugadgfjG6xk1BzuqvofO4U1rT\n6x9Y9yZfIJp20EySZVTXe4f8a0GpmkYf2vt4rrXN3ejsTu9zkZQkrK3tQsETf8KMh2+Dqb0FrvXf\nKKqNxJSNECMiIiIiIiIiIiIiIqLhgXdSifYjUkUlcrOtmDE2BxPLHLAatWmtoxIEFLnMmD0uF2NK\n7DDq1SjMNm8P53irJmL9eVfA2NmOaY/cASjpriFJmHn/Tchd+RWaDzwSK66+XfH4KlEQMLbUvvvR\nP5kkCIhOnQ5zayO0Po/isqQso2s3XTf2Jt2TjwMAak79eUbXzc4ywGHVZ3RN+t7oQiuyzLpdPt5w\nxIkQJAnFi95PaT2vP/3XoSzLqG0a2AinUDQx4DX2htqmbrR6Qn1eIwOo3uZFT4pdiJKShLU1boz+\nw28x4YVHkdAZAAB6hSGrWDwJKY2ORURERERERERERERERDQ0GMwh2k+5bAZMq8rGlHIX7Lu58b87\nalFEaa4FcybkoqLIBp1WtdPjO4ZzNp15MTrHT0XJovf6H7kjyzjg8XtQsug9uCdOx5LfPghZpVb8\nXEbnW2E2aBRfPxDyzFkAAOfG1SnVdQzlOCuvB663/4NgTj5aDj4qY8uqRREV3/590+AQBQETRtmh\n/8HXWuPcYyGLIkoWpjbOKhCOI55Ir+NKS1cIgUg8rdodtXpC6PD2HXoZSnWtPWjqVDamKinLWFfX\nhXA0oex6ScL6Da0Y99vLUb7g3/CNHosv7/grAMDQpSyYIwOIsmsOERERERERERERERHRiMFgDtF+\nzm7RYUqFC9OqsuGy7b7ziVYtYnS+FXMm5KIs3wqNWrXb64DvwzmySo2lN96LuMGIaY/cAWN78x5r\nxr30OCrffAm+siosvuOvkHTKO7DYzToU5ew67mewJKbPAAA4qlML5nh6okgkh2iEz7N/hzoSRu0p\n56YUeOrPqHwLdJo9vxYoMzRqFSaWOaHaoSNU1O5C+wFz4Ny4BqbWRsVryQC8gdQ6vABAPCFhW2tP\nynV7UtPYje7AwMZqDYaGdj/q2/0p1cQSEtZu7eo38JSUJFSv2obJV52Hoi8/QseUWVj44PPwVYwD\noLxjDsBxVkRERERERERERERERCMJgzlEBACwGrWYWObEzLE5yLUbIQoC9BoVKgttmDM+DyW5FqhV\nyt4yvgvnBPOLsery30ETCmDm/TcDyV1vJo9+51+Y+PwjCOYW4ot7nkbcbFV8Zo1KxNgSu+LrMyEx\nbToAwLlxTUp10lCNs0okYHnuaST0RtQde1rGlrUYNCh0mTK2HvXNbNBgTOnOr/WGI08EABQvXJDS\nWlubu7GluRtef1TxSKRtbT2IZzBYlpAkrKztxIpNbrR7QsNiNFOTO4CtaYaPQtEE1tV5IEm7fx5J\nSULNkmpM/dUZyF67HI2HHYsv7n4aCZMFcbMVSY02xWCOsg49RERERERERERERERENPQYzCGinZj0\nGowrtWP2+FzMGp+LwmwzRFHov/AHvgvnbPvxqWg6+GjkrFmGqlef2/mazz/AtEfuQMTmwOd//Bsi\nzpyU9qgsztplnNZgk7PsiJRVwLFpLSClFlQYinFWmgVvQd/egm0//gnilsyMnRIAVBVnQRBSf11Q\n+nKyDCjJsWz/c/PBRyOp0faOs0oh2BKJJ9HoDmD1lk4sXtuKdXVdaOkM7jHsEQjH0dIZHPD5d8cf\njqG6wYsl69tQ19qDaHxoOsG0dgVR29w9oDW6g73P5YeSkoQtny7H9EtPQ1ZdDWpPPhtLbn4Aklbb\ne4EgIOLIht7bqXgvdswhIiIiIiIiIiIiIiIaORjMIaLd0mlUEAcYvCjMNqOy2I4VV9+BsMOFSc89\nDNuWagBAzsqvMPve65EwGPHFPU8hUDgqpbVz7UbkZBkGdL50JabPgCYUgKVxa0p1Xv/eH2elffwx\nAMDmn5ybsTULs82wGLUZW4+UK8u3wGntHfWWMFnQOnsubPVbYKurSWu9pCSjszuCmiYflmxox7KN\nHbt006lt7sZg97OJJSTUt/vx9YZ2VG/zoDuY+ritdLV7Q6hp9GVkLbcvjC07BHySkoT6tz7FjMtO\nh6m9BWt/cRVWXvF7QLVzoDDszIbe26U47MdgDhERERERERERERER0cjBYA4RDapClwmlE8qw7Np7\nICbimP3HG+Bc/w0Omv9rAMDi2x6Fr3JCSmvqNSpUFmWm+0s65JmzAADO6tUp1UmyDPde7Jqj/mY5\njN8sQ8vsuQgUlQ14PbNeg0llTlQUDt3nfn8nCALGldph1KkBAA1H9I6zKln4TkbWD0biO3XTWbW5\nE75ANCNrKyHJMtp9Yazc7B70MVexeBL1bX5savApCh7ZtlSj9MM34Fy3Ajpv5x67FDW6A2hyB5CU\nJLS8+Bqm/+YcaAM9WH7NHdh49mXAbgKPEUc2xGQCuu5dO+7sDkdZERERERERERERERERjRzqoT4A\nEe37Cl0m4NSTUPv12ah46584Yl5v95avfv8Q3FPnpLSWAGBsqR1q1dDlChMzZgIAHBvXYNuxp6VU\n6/ZFkO80DcaxdqF/8q8AgM2n/nxA6xh1aozKsyDHbszEsWiA1CoRE8sc+KamE62zDkPcaEbxwgVY\ne8E1gJi5r4ukJMMX3HuhnB/qHXMVw5aWbuQ5TMixG2A2aAa+biiGZncQHb6w4tBP2buvYNpf7oAo\nfd+pJm40IVBQgkBBKQKFpQgUlMBf2Pv7LbIM8aWXcMC9N0NWqbD4tkfQeuCRe1w/4sgGAOg9bkTt\nzn7Pw445REREREREREREREREIweDOUS0VxS6TGi57U70rFwCa+NWrLhyPpoP/XHK6xTlmJFl1g3C\nCZVLjJuApF4P58bUOuYAgC8QRTyRhEat6v/iARBbmqF/+w10l1agY+qBaa2h16hQmmdBnsMIYYBj\nzSizjHoNxpXasa5OQtOhP0bZB69hxp9+jxVXzYesGZoxY8b2ZqhDQfSMqtxtV5h0xRISGjr8aOjw\nw6hTIzvLgOys1EI6kiyj0xdGszuI7lAKY7IkCZOeeRBj//MsojY7qv/vEui9nTA318Pc0gBLYx3s\ntdW7lMUNRmjCIcQsNnx5x1/RNWFan9uEdwjmdJeP7fdYsXgSkiwPeNwgERERERERERERERERDT4G\nc4horykozkb9y2/CvWxNvzeqd8es16As3zoIJ0uRWo3oxCmwfbMMqnAQSYPyDjiSLKOze/C75hj+\n/jcIiQQ2//TnKYcktGoRJbkWFDhNEEXe+B+unDY9RuVZsfbCebDV1aDsw9dham/B/259GHHL3h03\npunx4ejLT4PO342QKxdtMw5B28zD0D7tQCRMloztE4omUN/uR327spBOLJ5Ea1cILZ1BRBOpdZlR\nRcKYdd+NKPryI/QUleHLu55AsKBk54skCXqPG5bmephb6rcHdszN9ZC0Oiy79u7eoFI/vuuYY/C4\nFZ1NBhCNJWHQ8Z9xREREREREREREREREwx3v6BDRXpVXVQpjYT60Xb2jZJKSslEyoiBg3Cj7sOkQ\nkZwxE8Lyr+GoWQ/3lFkp1XZ4w4MbzAmHoX/+WUStWag/8iTFZWpRRHGOGUU5JqgyOBKJBk9pngWB\nSBE+e+B5zLr3BhQt/hhHXnXW7kMkg2j8P5+Azt+NrnFTYG6ux+j3X8Xo91+FpFKjc8JUtM08FG0z\nD0N3WVXGuun0FdLp+XZclTuFcVU70nncOOS2K+DYtBYdU2bhf7f+ZfdhJ1FExJWLiCs35feBHe04\nykpxDYM5REREREREREREREREIwLv6BDRXmc1aWE1aVFRZIPbF0GbJwRfINpnzegCK0x65aNrBps0\ncxbwBODYuDrlG/K+QBSxeBJazeCMs9K98SpErxdb/+8SSDq9opribDNKci3QqBnIGWnGlmRhZSSB\nr255GJP/9iDG/PdZHHXV/2Hx/EfT6kyVKlNLAyre+ieCuYX47P7nIalUcNSsQ96yL5C37Atkr12O\nnDXLMPmZP+3UTadj6hzEzZnpgLVjSEejEhFPSmmvZd22GYfcchlM7S3Y9qOfYPnVtw/6eLCwM51g\nTgLA0I71IyIiIiIiIiIiIiIiov4xmENEQ0YlishzGJHnMCIcTaDNE0K7J4RIfOeRM3azDkXZ5iE6\n5e4lps8EADirV6dcKwNwd0dQ6BqErjmyDMMzT0IWRWw58UxFJSa9BuWFe3f0EWWOShQxcbQD39S4\nseaS6+EvLMW0R+7A3BsuwLLr7kHjEScM6v6T/v5niIk41l54DSRtb4DFM24KPOOmYMPPfw2tz4O8\n5V/2/rfiy+3ddAAgUFACb/k4+CrGwVc+Fr7ycYg4cwZ0noGEcnJWLMZBd14NTSiAtb+4ChvPujRj\nHX76ErG7AACGrtQ65hAREREREREREREREdHwx2AOEQ0LBp0aZflWjMqzwOuPos0TQmd3BCpRwNgS\n+1AfbxdSQSFiOXlwbFwNyHLKN+/d3vCgBHPUK5ZBs2Y1mg86CuGcAkU1+Q5jxs9Be5deq8aEMidW\n13ai7oQzEMotxIF3XY05f7gO5pYGVJ992aAETBzVq1C86H10jZmMxsOP3+01sSwHGo4+GQ1Hnwwk\nk7BvXo/8ZV/AtW45smqrUfzFByj+4oPt10fsrt6wTvnY3sBOxTgE8kuAQR6vVrbgFUx75A7IKhWW\n3PzAoAeadhS1OSCLYsqjrIiIiIiIiIiIiIiIiGj4YzCHiIYVQRDgsOrhsOqRSEqIxJLQaQdn5NNA\nxaZOh/mDBTC4WxWHYL7THYwiGk9Cl+FxVoZnngIA1J5yjqLrRUFALoM5+wSbSYsxJVmorveifcbB\n+PTPL+GQWy7DxH/8BeaWhsyPZJJlTHnqfgDAmkuuVxb8UangHTsZ3rGTt69hcLcha0s17LXVyKqt\nRtbWauQv/wL5y7/YXpbU6hA3WZAwGJHQG3t//eHvDUbEDSYkDCaEcvIRKCxFoKAEkrafcU+StH0E\nWNRmx+L5j6FrwtR0PyvpUakQyXKmMcqKiIiIiIiIiIiIiIiIhjsGc4ho2FKrRJgNg9slYyDkmbOA\nDxbAuXENmlIM5sgA3L5wRkd0CR0d0L39BnqKR6PjgDmKarJtemjUw/dzTKnJtRsRiiRQ3+5HT1kV\nPvnLv3HIbVdg1EdvwNjRgv/d8jDi1qyM7FW4+CO41n+D5oOOQuekGektIggI5+QjnJOP1gOP3P5h\nTY8PWVs2wr6lGllbqmFprIM6FIQ6EoKx2wtNOAhB6n9klSwICLvy4P82pBMoLN0e2AkUlECQJMy6\n9wYULf4YPUVl+PKuJxAsKEnvuQyAw6JDxJENa8MWxR24ouyYQ0RERERERERERERENCIwmENElKbk\nzFkAAEf1ajQddmzK9ZkO5hhe+geEWAy1J5+teGxRnjPz47RoaJXlWxGKJuD2hRF1ZOOz+/+BWffd\niKIvP8JRV5+FL+56csDhEyEew6S/PQhJpcaai6/N0Mm/F7dmwT11DtxT9xAwk2WI8RjU4dD2wI46\nHIQ6HII26IeprQnm5gaYW+phbm5A7qolyF21ZOclBAEJgxGaUBAdU2bjf7c+jLjFlvHn0h+dWoVc\nuxFhZzbstRugDgWQMFn6rYvGk5BkGeIgjCgjIiIiIiIiIiIiIiKizGEwh4goTfHJB0BWqeDcuCat\n+u5gDNFMjepKJKB77hnEDUbUH32KohKjTg27pZ8xPzQijS3JQiSahD8cQ1JvwFe/fwiTnnkQY//z\nLI668kx8fs/f4KuakPb65QtegaWlAbUnn41AUVkGT66QIEDS6hDT6hCz2fu9XBUJw9TaCHNzPSzf\nhnXMLfUwtTWj/uhTsOrSGzM75isFOXYD9FoVIo5sAIChyw2/gmCOjN6uOQYd/ylHRERERERERERE\nREQ0nPFuDhFRukwmRKrGwb55PYREHLJak/IS7d4QSnL7vwnfH+3770Ld2oLak85CwqSsC0+ewzjg\nfWl4UokiJo524JsaN6LxJCCKWPvL6xEoKMX0R27HYTdfhM8eeB49ZVUpr60J9GD8i48hbjRh/blX\nDMLpMy+pN6CnrCqt5zvYch1GqEQBgW+DOXqPG/6S0YpqIwzmEBERERERERERERERDXviUB+AiGgk\ni0+bAVUsCtvWmrTqG9oDvcGJATI88yQA9I6xUkAUBOQ7GczZl+k0Kkwsc0C1w6ijuhPOwLJ5d0Hn\n78bcmy6Cuaku5XXH/vtp6Hp8qP6/SxHLcmTyyMOaShQyPjbKpNfAbNBAt0PHHL3Hrbg+Ektk9DxE\nRERERERERERERESUeQzmEBENxKxZAADnxtVplSckCbVN3QM6gmrTRmgXf4GOKbPhL61QVOO06aFR\nZ2CEFg1rFqMW40p3HvVU/+NT8c2vb4He24m5N1wIY1uz4vWM7c2ofO15hLLzsfnU8zJ93GHLbtZh\n5tgcZGcZMrpuzrfriYKARHYuAMCQUjBn4KE+IiIiIiIiIiIiIiIiGlwM5hARDUBi+kwAgCPNYA4A\nuLvD6PSF0643PPsUAKD2FGXdcgCgwGlKez8aWVxZBozOt+70sS0nn43VF18HY2cb5t54AfRdHYrW\nmvjcw1DFY1h7wVWQdPrBOO6wohIFVBZlYUqFC3qtGoWuzH7d5Ni/D/okc/IApNYxJ8pgDhERERER\nERERERER0bDHYA4R0QAkKyqRMFvh3LhmQOtsbu5GIimlXCf4e6B75WWEXHloOfBIRTUGrRp2iy7l\nvWjkKsm1IM++8+iymjMuwvpzL4e5tRFzb7wQWp+nzzWyataj9JO34a0Yh4YjTxrM4w4L33XJ2TGM\nYzVpYTFoM7K+zaSFQaf+/gP53wZzutgxh4iIiIiIiIiIiIiIaF/CYA4R0UCIIiJTpsLStA2aHl/a\ny0TjSWxt6Um5TvfKyxCDQWw58UzIKnX/BQDyncb+L6J9TlVJFmymnUMlG877NTadfgGsDVsw96aL\noPHvYayaLGPK0/cBAFb/8gZA3Hf/+aASBVTt0CXnhwqzM9M1J+cHQSkhN51RVomMnIWIiIiIiIiI\niIiIiIgGz757Z42IaC9Jzvh2nNWmtQNap6UriO5gTHmBLEP/zFNIajSoO+5nikpEQUCug8Gc/ZEo\nCJhY5oBhx7CJIGDNL6/HlhPPRNbWjTj0d5dAHQruUpv/9WfIWb0ULbPnwj11zl489d71XZecgj5G\nVuVkGaBRDeyfT6IgICdr51FgWrMRUYsttVFW8SQkWR7QWYiIiIiIiIiIiIiIiGhwMZhDRDRQs2YB\nAJzVqwe8VE2jT/GNds0Xi6Cp3YymQ49F1O5UVOOw6qDTqAZyRBrBNGoVJpc7d34NCAK++fWt2Hb0\nKXBuXIODb/0VVJHw9w8nE5j89AOQRRFrLr5uCE49+PrrkrMjURSQ7xxY1xyHRQeNeuevQ51WhYgj\nO6VgjgwgynFWREREREREREREREREwxqDOUREAxSfOgMA4Ni4ZsBrBSNxNLYHFF2r/9uTAIDaU85W\nvH7BAAMFNPIZdGocUOHaOZwjilh+7V1oPPQY5KxZhgPvuApirLd7U9l7r8LauBVbjz0d/tKKITr1\n4FHSJeeHClxGCAPYM8du2OVjOk1vMEcb9EOMRhSvFWEwh4iIiIiIiIiIiIiIaFhjMIeIaIBklwuR\n4lFwbloDZGCsTH27H6FIvM9rxKZG6D58D57KCfCMnaJoXb1GBbtFN+Dz0ci3u3COrFLj65vuQ8vs\nuchf/v/s3Xt8nHWd9//3nJKZSSbnySQ9pGegtCC1LFLZG7GiIAsq9rccxdtbbtd1793lsbqrrvhw\n8fZGdm9Xb71x73UX3YcLeFhkReiKKALKghzaAqXnJmnTpE2bZDKnzPlwXb8/0hRKk+aaZJJMJq/n\n48GjyeT6fuczQKYz17yvz+c/9Y57PiPXSFTr7r9XebdXez76p7NeZ7XToY5Wn9avaFJTif/frXW7\ndP7yJktdct7KXeVUc5178gPH4bDb1Fx/5lq3y6FUs3/061DQ8n6ZHMEcAAAAAAAAAACAckYwBwBK\nILvh7aoaiar2WM+09zJMUwf6Imc9xv3978lmGOr+wC2SzVrvjvbmGtksHovKN244x1WlF774TQ1c\ndKmWPP9rve+TH5I7Mqz9N3xcmSb/rNRlt9nkb/DoghXNunRdQCsX1aml3qMLV7Vo4zl++Rs80+pW\nU19TpQtWNOvi81rV2nBm5xqriumw82b+eo8c9jNfflW57Kf+HXuKGGeVzuanVAcAAAAAAAAAAABm\nB8EcACgB85J3SJKa9+0syX7RRFbHgonxf5hOq/qBf1XGV6/eK66xtJ9NUluTtyS1oXKMF84xqt16\n/svfVvD8DfIGTyjV5NfBLf9txmupdbu0enG9Nq0LaN3yJjXXu88Ikvm8VVq3vEm/d16r2hq9shcR\nNGvyVeui1S3asMY/bseaYjXVueWtLq7TjjT+GCtJstlsyvkDkiR3McGcDB1zAAAAAAAAAAAAylnx\nnygBAM5gXPx7kqSm/a/ryHs/VJI9D/fH1FLvPi00IUnVjz0iZ3hYXTfcLqPaWsCgqc6t6irH5Adi\nwRkL57zWFTw1FqngqdF/3v1PuvB7X1ff5e9XwTMzoS6Xw65Ao1eBJo983irL67xul85b1qjl7T4d\nHUzo+HBChXHGyNkktdR71BGoLWp/qxa11KjrWNTy8dXOs4+TK7ROIZjDKCsAAAAAAAAAAICyRjAH\nAEogv/5CGVXVJeuYI0l5w1Dn0YjWr2g+7faq+/5Jps2m7j+4yfJe7c10y8HExgvn5Gt8euXP7yr5\nfdkkNfrcamv2qqXOLbt96oOp3FVOrV5Sr45ArY4OJdQfTChvGLLbbGptGA3keN2u0hX/Fm1NXh0+\nHlPBODMUNB5/o+es4+TMQJskRlkBAAAAAAAAAABUEoI5AFAKVVVKrV2v+t075UinVHCPP66mWMFo\nWsFISi0No/s5X90h985X1H/pu5VsX2Jpj2qXQ8110x/dg8o2Fs7Z2RWckS4s3mqnAo1etTV5S969\nqcrl0MpFdeoI1GownFJTXbXcVTP/Esd5suNP//AEY+feYqIxVqe0tUsqrmNONmfINM2zBn4AAAAA\nAAAAAAAwd+xzXQAAVIrcxotlL+TV0LW3pPt2Ho0qXzAkSVXf/WdJUtcHbrG8vq3Jy4f2sMRT7dTb\nVrfI7SpNcMZht6m9yasNq1t0ydqAlrX5ZnSkmtNh16KWmlkJ5YxZ1FJj6ThvtVN1k4zTsi06GcwZ\nth7MMUzzVJcjAAAAAAAAAAAAlB+COQBQKpdcIklq3v96SbfN5As61B+TLRiU59GfamTxMg28/Z2W\n1trEGCsUpxThnPqaKp27tEGb1rXp3I5G1ddWl7DC8lLrcamhZvLHF2ic/PewqqFOOY+3qFFWkpTO\nEswBAAAAAAAAAAAoV4yyAoASKVw8Gsxp2rez5Hv3Dyd0zpM/kD2bGe2WY7eWq2z0uWd1RDk7AAAg\nAElEQVS1ewgqw1g4Z6KxVjZJDrtdDodNDvvYP3bV11Yp0OiV172w/p9b5K9RJJE56zGTjrGSVFXl\nULrJX9QoK4lgDgAAAAAAAAAAQDlbWJ+cAcAMMpZ2KNvUUvKOOZKkQkHe+/9F+WqPjrz3Q5aX0S0H\nU+WpdmrDOX6ls4VT4Runwyb7yRAO3tBS71a1yzHhSKk6b5U81ZO/5Kp2OZRubFFtf69shbxMh7WX\naRmCOQAAAAAAAAAAAGWLT9YAoFRsNqUv2ijv0HF5B46VdOtFLz6jmoF+HXnPdcrV1llaU+10qLne\nXdI6sLBUuxyqr6lSrcclT7VTLqeDUM447DabFjXXTPjzgIVuOdLJYE5zq2ymqerwsOX7T2fzlo8F\nAAAAAAAAAADA7OLTNQAoodxV75ckrXj8JyXdd83PHpQkdX3wVstrAk1e2W22ktYBYHztzeP/vtlt\nNktjrMbkWlolSZ4ixlml6JgDAAAAAAAAAABQtgjmAEAJGTfdrExdg1b9/N9kz6RLsmfd4YNq3fmS\nBi66VLEV51hexxgrYPZUuRzyj9OhqqG2Wi6nw/I+hdaAJMldRDCHjjkAAAAAAAAAAADli2AOAJSS\nx6PjH75V1bGIlj29tSRbrn70B5Kkrg99xPKaxtpqeaqdJbl/ANYs8teecVugyXq3HGlqwZxszpBp\nmkXdDwAAAAAAAAAAAGYHwRwAKLH8Jz4pw+HUmp/eL03zw3JXLKJlTz2mRGCx+t9xheV17S0107pf\nAMWrr6mSz+M69b3DZlPLOF10zsZsa5dUXDDHME1lcoyzAgAAAAAAAAAAKEcEcwCgxOrXLNfxzdeo\n/kiXWl99YVp7rXji3+XMpNX1wVslh7VxOC6HvegwAIDSWPSmUFxLvVsOe3EvtWyLRoM5niKCOZKU\nyRLMAQAAAAAAAAAAKEcEcwBgBiT/6FOSpHN++q9T36RQ0OqtP1S+2qPDV33Y8rK2Jq/sNtvU7xfA\nlLU2euRyjL68CjR5i15vb2+TJLmHg0WtSxPMAQAAAAAAAAAAKEsEcwBgBtT9l3dqeP3b1f7ys6rt\nOzylPRa9+IxqBvp15MoPKOert7yuvZkxVsBccdjtamvyqsppV4Ovuuj1rla/Ci5XUaOsJII5AAAA\nAAAAAAAA5YpgDgDMALvdpvDH/kiStOZnD0xpjzU/e1CSRsdYWdRQUy2v2zml+wNQGotaatTaMLXO\nVdVVDqUbW4oeZZXO5ou+LwAAAAAAAAAAAMw8gjkAMEO8N2xRonWRlv/qZ3KNRItaW3f4oFp3vqSB\nDZcqtnyN5XXtLcWPzgFQWp5qp5a3+6a01uV0KNPUKnc4KJmm5XV0zAEAAAAAAAAAAChPBHMAYIa4\n3NUavPljcmZSWvGLh4taO9Ytp/NDt1m/P4dd/npPUfcDYGY4HVN/iZVtaZU9n1NVLGJ5DcEcAAAA\nAAAAAACA8kQwBwBmkPP225V3e7Xm0R/IVrA2asYVi6jj6a2Kty3R8UveZfm+Ak1e2e3Fj84BUF7y\nfr8kyV3EOKtMriCziA47AAAAAAAAAAAAmB0EcwBgBrnb/Dpx7RZ5h45r8fO/trRmxRP/Lmcmre4P\n3CI5HJbvq72ZMVZAJSj42yRJnmHrwRzDNJXNGTNVEgAAAAAAAAAAAKaIYA4AzLDcH/8PSdKan94/\n6bG2Ql6rH/uB8tUeHb7qw5bvo76mSjVu15RrBFA+jLaApOI65khSOmutKxcAAAAAAAAAAABmD8Ec\nAJhhtReer8FN71bL3lfVuP/1sx7b/sIzqhk8riPv/YByvnrL99HeXDPdMgGUCbOtXZLkDhcbzCnM\nRDkAAAAAAAAAAACYBoI5ADALEp/4lCRpzSMPnPW4NY8+KEnq/OBHLO/ttNvlb3BPvTgAZcW+6GQw\np+iOOQRzAAAAAAAAAAAAyg3BHACYBd5r3qfYinO09Nkn5A4OjHtM3eGDat35sgY2bNLIstWW9w40\neeSw83QOVIqxYI6HUVYAAAAAAAAAAADzHp/kAsAssNvtCn3sj2Qv5LV664/GPWbNz052y/mQ9W45\nEmOsgErjam+TabPJPUzHHAAAAAAAAAAAgPmOYA4AzJKqj9yqTH2jVv7Hj+VIp07/WSysjqe3Kt62\nRMcveZflPeu8Var1uEpdKoA55KyuUqahmVFWAAAAAAAAAAAAFYBgDgDMEpevRoN/eJuqR6LqeGrr\naT9b8cS/y5lJq+sDt0oOh+U925u9pS4TQBnItPjlCQWLW5MjmAMAAAAAAAAAAFBuCOYAwCyyf/KT\nMpwunfPI/ZJpSpJshbxWPfZD5as96rn6w5b3cthtam30zFSpAOZQrqVVznRSzmTC8hrDNJWhaw4A\nAAAAAAAAAEBZIZgDALOoatlSDV75B6rr7VZgx+8kSe0vPKOawePqee8Hlauts7xXoNErh52ncaAS\n5f0BSZI7NFjUujRdcwAAAAAAAAAAAMoKn+gCwCzLfepPJUlrHvnX0T8ffVCS1PXBW4vahzFWQOUy\nAm2SJHdoqKh16Wx+JsoBAAAAAAAAAADAFBHMAYBZ5t50icIXXqz2bf+pJc8+odadL2tgwyaNLFtt\neQ+fxyWft2oGqwQwl8zAaMccz3CRwZwMHXMAAAAAAAAAAADKCcEcAJgDI//9jyVJl/zd5yRJnR+6\nraj17c01Ja8JQPmwtbdLomMOAAAAAAAAAADAfEcwBwDmgHvL9UoGFsuRyyrevlTHL7nc8lqHzabW\nRs8MVgdgrtmnGMzJ5OiYAwAAAAAAAAAAUE4I5gDAHLC5XAr9109Ikro+eKvkcFhe29rokdPB0zdQ\nyRyLTwZzwsGi1qWzBHMAAAAAAAAAAADKiXOuCwCAhcrx53+m55qX6fjbLilqHWOsgAWgfZEkyTNc\n7CgrgjkAAAAAAAAAAADlhJYLADBHnFUu1V57lbyeKstrat0u1dVYPx7APOV2K1dbV/QoK8M0GWcF\nAAAAAAAAAABQRiwFc3bu3KnbbrvtjNuffvppbdmyRTfeeKMeeughSVI2m9VnPvMZ3XDDDfr4xz+u\nnp4eSdLw8LA+9alP6dZbb9VNN92k3t7e0j0KAJinFvtrdcnagData9P5y5u0pKVWPo9LtgmOb2/2\nzmp9AOZOtqW16GCORNccAAAAAAAAAACAcjLpKKv77rtPjz32mDwez2m353I53XPPPXr44Yfl8Xh0\n8803a/PmzXriiSfk9Xr10EMP6dChQ/rKV76i733ve/ra176m6667Ttdcc41efPFFHTp0SB0dHTP2\nwABgPql2OdTa4FFrw+hzbb5gKJbIKprIKhrPKpbMyiYp0EQwB1gocv5W1fR0yZ7Nyqiy3ikrnc2r\nns5aAAAAAAAAAAAAZWHSYE5HR4fuvfdeffaznz3t9u7ubnV0dKi+vl6StHHjRm3btk1dXV26/PLL\nJUkrV65Ud3e3JOmVV17Rueeeq4997GNavHix7rzzTksF+v2+oh4QAFSK9jd9XTBMpTJ51Xpcc1YP\ngNk1smSxtE1qzsSUblpieZ23xs3rJwAAygR/JwMAAAAAgPmIcxqlNWkw56qrrtLRo0fPuD0ej8vn\ne+M/Rk1NjeLxuNauXatnnnlGV155pXbu3KmBgQEVCgUdO3ZMdXV1+v73v69vf/vbuu+++3THHXdM\nWuDQ0EiRDwkAKlcqnp7rEgDMlsYW+SQVjh7ViK/F8rLjAzH5qixNKwUAADPI7/dxTgMAAAAAAMw7\nnNOYmrOFmab8qU1tba0SicSp7xOJhHw+n7Zs2aLa2lrdcsstevLJJ7Vu3To5HA41NDRo8+bNkqTN\nmzdr9+7dU71rAACAime2jfbNcg8PFbUunc3PRDkAAAAAAAAAAACYgikHc1atWqUjR44oEokom81q\n+/bt2rBhg3bt2qVNmzbpRz/6ka6++motXbpU0uioq9/+9reSpG3btmn16tWleQQAAAAVyN4+Gszx\nhIoN5hRmohwAAAAAAAAAAABMwaSjrN5q69atSiaTuvHGG/X5z39et99+u0zT1JYtWxQIBORyufSt\nb31L3/nOd+Tz+XT33XdLkj73uc/pi1/8on784x+rtrZWX//610v+YAAAACqFvb1NkuQmmAMAAAAA\nAAAAADBv2UzTNOe6iLNhdhkAAFiIHJ0H1XTZxTp09Rbt+PT/KmrtpnVtqnY5ZqgyAABgBfPYAQAA\nAADAfMQ5janx+30T/mzKo6wAAAAwc4xAQJLkDgeLXpuhaw4AAAAAAAAAAEBZIJgDAABQhkxfnQrV\nbnmGixtlJUnpbH4GKgIAAAAAAAAAAECxCOYAAACUI5tNOX+r3KGpBHPomAMAAAAAAAAAAFAOCOYA\nAACUqbw/IHdkWCoUF7QhmAMAAAAAAAAAAFAeCOYAAACUqUJrQDbDUHU0VNQ6gjkAAAAAAAAAAADl\ngWAOAABAmTLb2iRJniLHWaWz+ZkoBwAAAAAAAAAAAEUimAMAAFCu2tslSe4igzkZOuYAAAAAAAAA\nAACUBYI5AAAAZco2FswZLi6YUzBNZXOEcwAAAAAAAAAAAOYawRwAAIAyZQamNspKktJ0zQEAAAAA\nAAAAAJhzBHMAAADKlNEakFT8KCtJStMxBwAAAAAAAAAAYM4RzAEAAChTxsmOOVMK5mTypS4HAAAA\nAAAAAAAARSKYAwAAUKbM5mYZTiejrAAAAAAAAAAAAOYpgjkAAADlym5XvtkvdyhY9FKCOQAAAAAA\nAAAAAHOPYA4AAEAZK/gDo6OsTLOodekso6wAAAAAAAAAAADmGsEcAACAMmYEAnLksnLFY0WtS2cL\nKhjGDFUFAAAAAAAAAAAAKwjmAAAAlDGzrU2SRrvmFMEwTcUSuZkoCQAAAAAAAAAAABYRzAEAAChj\ntvZ2SZKnyGCOJEXimVKXAwAAAAAAAAAAgCIQzAEAAChjRuBkx5zh4oM50US21OUAAAAAAAAAAACg\nCARzAAAAytipYM4UOubEElkZplnqkgAAAAAAAAAAAGARwRwAAIAyZgQCkqY2ysowTY3QNQcAAAAA\nAAAAAGDOEMwBAAAoY9PpmCNJkTjBHAAAAAAAAAAAgLlCMAcAAKCMGS1+SVMP5kQTmVKWAwAAAAAA\nAAAAgCIQzAEAAChnVVXKNzZPaZSVJEUTWRmmWeKiAAAAAAAAAAAAYAXBHAAAgDJXCASm3DGnYJiK\nJ3MlrggAAAAAAAAAAABWEMwBAAAoc2agTa5kQo5UckrrI3HGWQEAAAAAAAAAAMwFgjkAAADlrq1N\nkuQOB6e0PJrIlrIaAAAAAAAAAAAAWEQwBwAAoMwZgZPBnCmOs4rGszJNs5QlAQAAAAAAAAAAwAKC\nOQAAAGXOCAQkSZ4pBnPyhqF4KlfKkgAAAAAAAAAAAGABwRwAAIAyVxjrmDM8tWCOxDgrAAAAAAAA\nAACAuUAwBwAAoMwZrdMbZSVJkXimVOUAAAAAAAAAAADAIoI5AAAAZW66o6wkKRqnYw4AAAAAAAAA\nAMBsI5gDAABQ5ozA9Dvm5AqGEulcqUoCAAAAAAAAAACABQRzAAAAyp3XK8Pnm1YwR5IidM0BAAAA\nAAAAAACYVQRzAAAA5gHDH5jWKCtJisYzJaoGAAAAAAAAAAAAVhDMAQAAmAeMtjZVR8Oy5abe9SZK\nxxwAAAAAAAAAAIBZRTAHAABgHjACAUmSOxKa8h6ZfEHJdL5UJQEAAAAAAAAAAGASBHMAAADmAaO1\nTZLknu44qwTjrAAAAAAAAAAAAGYLwRwAAIB5wAiUJpgTYZwVAAAAAAAAAADArCGYAwAAMA+MjbLy\nDE+zY06cjjkAAAAAAAAAAACzhWAOAADAPPBGx5zBae2TzhWUzuZLURIAAAAAAAAAAAAmQTAHAABg\nHiisOUem3a7Fz/9aMoxp7cU4KwAAAAAAAAAAgNlBMAcAAGAeMNoXKbPlBjUcPjgazpkGxlkBAAAA\nAAAAAADMDoI5AAAA80Ty038l027X+Q/+w7S65tAxBwAAAAAAAAAAYHYQzAEAAJgnCqvWKHn9H067\na04qm1cmVyhhZQAAAAAAAAAAABgPwRwAAIB5JPOXny1J1xzGWQEAAAAAAAAAAMw8gjkAAADzSGHV\nGoWv/fC0u+YwzgoAAAAAAAAAAGDmEcwBAACYZ3J/9blpd82JJgjmAAAAAAAAAAAAzDSCOQAAAPOM\n/dxzdeKqD452zXnuySntkUjnlMsXSlwZAAAAAAAAAAAA3oxgDgAAwDw0csdfyrTbtW4aXXMYZwUA\nAAAAAAAAADCzCOYAAADMQ3UXrVPv5utU39M55a45UYI5AAAAAAAAAAAAM4pgDgAAwDzksNs18Km/\nmFbXnEg8MwOVAQAAAAAAAAAAYAzBHAAAgHmq/m3n68g0uuYk0jnlC1MbgwUAAAAAAAAAAIDJEcwB\nAACYpxp91er66J9MuWuOKbrmAAAAAAAAAAAAzCSCOQAAAPOUzWZTzfrpdc2JxrMzUBkAAAAAAAAA\nAAAkgjkAAADzWmujR/tu/eMpd82JEMwBAAAAAAAAAACYMQRzAAAA5rG6mioVVqyectecRDqnfKG4\nMA8AAAAAAAAAAACsIZgDAAAwzwWapt41xzBNxRJ0zQEAAAAAAAAAAJgJBHMAAADmudYGr+KLl0+5\na06UYA4AAAAAAAAAAMCMIJgDAAAwz3ndTvk8Vdp36x/LsDuK7poTiWdmsDoAAAAAAAAAAICFi2AO\nAABABQg0eRRfvFy97ym+a85IMqdCEUEeAAAAAAAAAAAAWEMwBwAAoAK0Nnhkk7T3luK75himqXS2\nMLMFAgAAAAAAAAAALEAEcwAAACpAlcuhRl+1EouXTalrTjZHxxwAAAAAAAAAAIBSI5gDAABQIQKN\nXkmjXXNMm02rt/7Q8tpsjo45AAAAAAAAAAAApUYwBwAAoEI017vlsNmUWLxM6Sa/vAP9ltdm83TM\nAQAAAAAAAAAAKDWCOQAAABXC6bCrud4tSUo1+eUJDUmmaWktHXMAAAAAAAAAAABKj2AOAABABRkb\nZ5Vu8suRzciVGLG0jmAOAAAAAAAAAABA6RHMAQAAqCCNddVyOexKN/klSe7QkKV1jLICAAAAAAAA\nAAAoPYI5AAAAFcRus8nf4FGq+WQwZ5hgDgAAAAAAAAAAwFwhmAMAAFBhAk1epRtbJEnucNDSGkZZ\nAQAAAAAAAAAAlB7BHAAAgApTX1MlozUgSfJYHGWVKxgyTHMmywIAAAAAAAAAAFhwCOYAAABUIO/y\npZIkt8VgjkTXHAAAAAAAAAAAgFIjmAMAAFCBfKuWSZLcw0UEc/LGTJUDAAAAAAAAAACwIBHMAQAA\nqEDVi9slWR9lJdExBwAAAAAAAAAAoNQI5gAAAFQgu8etjK9e7nDQ8pocHXMAAAAAAAAAAABKimAO\nAABAhco0t8pdVMccgjkAAAAAAAAAAAClRDAHAACgQmVbWlUVj8meSVs6PsMoKwAAAAAAAAAAgJIi\nmAMAAFChcv5WSZI7ZG2cFaOsAAAAAAAAAAAASotgDgAAQIUq+AOSJI/FcVZZOuYAAAAAAAAAAACU\nFMEcAACACjUWzHGHrQVzMnmCOQAAAAAAAAAAAKVEMAcAAKBCGYGTwRyLHXNyOUZZAQAAAAAAAAAA\nlBLBHAAAgApltrVJktzD1oI5BdNUvkA4BwAAAAAAAAAAoFQI5gAAAFSq9nZJksdixxxJytI1BwAA\nAADmJS60AAAAAMqTc64LAAAAwAxpP9kxp5hgTr4gLy8RAQAAAGDeSGfzOtAbUSyZ1RJ/rZa21srp\n4JpcAAAAoFzwqQsAAECFctXXKV/tkTsctLwmm+cKSwAAAACYL44FEzrUH1XBMCVJRwZG1B9MaGlr\nrRb7a+SwE9ABAAAA5hqvygEAACqUy+VQutlfXMecXGEGKwIAAACA8hdP5bTncGiuyzirdDavnV1B\ndR6NnArljMkVDB06HtPLewd1LJiQYZoT7AIAAABgNhDMAQAAqFAOu13pJr/ckZBUsBa4yebomNN9\nLKqRZHauywAAAAAwB3J5Q3sOhzQUTalvMD7X5YzrWDChbfsHFY5nznpcJl9Q59GIXt43oBOhpEwC\nOkBRToSSc10CAACoEARzAAAAKli2pVU2w5A7MmzteDrmaCia0qudQR0LJua6FAAAAACzyDRN7e0J\nKZXNS5IOH4+VVWg/lZm4S87ZpLMF7e8Na/uBIQ1FUjNYIVA5kum8uo5GlS9wARMAAJg+gjkAAAAV\nLNfslyS5w0FLx2fzC/uEUy5vKJ0tyDBNdR6NaF9PSAVjYf87AQAAABaKQ/2x07rQGKapfUfCZfHB\n/LFgQtsPTN4l52wS6Zz29IS048CQItPYB1gIhmNp5Q1Dx4fpmgMAAKaPYA4AAEAFy7cGJEnu0JCl\n4xd6x5x4Knfa9wORlHYcGFIinZtgBQAAAIBKMBBKqm/ozNFVycxo14y5ksrk9doUuuSczUgqq9e6\nguo+FpXBeCtgXMOxtCTp6GCc3xMAADBtBHMAAAAqWN5/MpgzbC2Yk1vgHXPeGsyRRk/Ev3JgSAPM\nlgcAAAAqUiyZ1YG+yIQ/PxFOaiA8++8HhiIpbT8wOGPdbfqG4nr14JCSXIgAnCZfMBRLjI6xy+QL\nnA8AAADTRjAHAACgghlto8Ecj9WOOfmCzAV8Jdh4wRxJKpim9vWGdbAvIqNEV6kCAAAAmHvZXEF7\nDocm7YjR2RdVKpOfpaqk3oER7ekJlaxLzkRGUjntODCk/mBiRu8HmE9CI5nTnhP6BuML+lwJAACY\nPoI5AAAAFcxsbZNkfZSVqYXdNWeiYM6Y/uGEXu0cmtUT8gAAAABmhmGa2tMTUsbCSN+8YWjfkfCM\nj7QxTFMHesM6dDw2o/fzZgXT1MGjEe0+PKxcfmGPNwYkKRRNn/Z9MpNX8C23AQAAFINgDgAAQCVr\nPxnMCQctL8ku0GCOYZhKJ1Jq2rfzrMeNXVEajKRmqTKg/LzWGdSREyPKFxbm8wUAAKgMXUejip4c\nV2NFLJlVz/GRGasnXzC0q3tYx+dobE4wmtb2/UMKj8zM6CxgPjBNU8OxM0M4vQPxOagGAABUCoI5\nAAAAFcze4pfhcFrumCONtnJfiOLpnFY89kO9546b1Lrj+bMemzcM7e4JqXdg5k7KA+Uqly8oksjo\n8ImYXthzQt390QX7vAEAAOav/mBC/cPFj2/qGxyZkeBKKpPXq51BheNzG4rJ5Ava2R1U97HojHcH\nAspRLJlTbpwLEEZSWUJrAABgygjmAAAAVDBXlVPpxmZ5hosI5izQjjnxZE7+XTskSW07fmdpzfHh\nubmSFZhLkfgbV5UXDFN9g3G9uHdAB/sijHkDAADzQjSeUdex6JTWmpL2HwmXdORTLJHVq51DSqTP\nPlp3NvUNxfXqwSEly6gmYDaExumWM6ZvkItzAADA1BDMAQAAqGAup13pJv9oxxyLVzsu1M4X8VRO\njZ17JEktu7dbWpPK5pVZoP++sHBF42eOezBMU/3DCW3bP6h9R8J8gAMAAMpWJlvQnp7QtLrBZPIF\nHeiNlKSewUhKO7uCZXmBxNgY38EwFyRg4RiOThzMCY1kNJK0Pv4OAABgDMEcAACAClblGg3mOHJZ\nueIxS2uyufI7ITwbMgNDqhk4Jklq7NwrR8rayefoHLeaB2Zb5Cz/zxumqYFwUi/vH9Tuw8OKcdIa\nAACUEcMwtfvwcElCMMFYWseG4tPao3dgRHt7QiqU8ciogmmqd2B6jxOYLzLZguKTXGTQO8jvAwAA\nKB7BHAAAgArmsNuVaWqRJLnDQUtrsiVsyT5fmKYp166dkqSCyyV7Ia+m/a9bWhsZp3sIUKnyBcPy\niIVgNK1XDg7ptc6gjpwYUSSekWGU74dOAACg8h3oi2gkVbrOft39McWnsJ9hmjrQG9ah49Yunphr\niXROuTLs6AOUWvAsY6xOHRNJMcIXAAAUzVIwZ+fOnbrtttvOuP3pp5/Wli1bdOONN+qhhx6SJGWz\nWX3mM5/RDTfcoI9//OPq6ek5bc3WrVt14403Tr9yAAAAWJJtaZUkuYeHrB2/ADvmJDN51R/cLUnq\ne9c1kiT/7h2W1kYTBHOwcETjWRUbrYkkMjp8IqbXuoJ6btdxvXpwSN39UQ1H03zAAwAAZs2xobgG\nSjySyTBN7TsSVsGY/DWNaZrKFwylMnnt6h7W8dDcjYdyDw9qybNPWB53bEqKJugUisoXshDMMSX1\n0TUHAAAUyTnZAffdd58ee+wxeTye027P5XK655579PDDD8vj8ejmm2/W5s2b9cQTT8jr9eqhhx7S\noUOH9JWvfEXf+973JEl79+7Vww8/LLOMW3MCAABUmrw/IEnyhCwGcxZgx5x4KqfGzr2SpM4P3abl\nv35ULbu3W1o7evVoQS6nYyZLBMrC2cZYjafjqa069yf/ou1/8T8VPvcCGaapaDKraDKrPo2ezK51\nu1RXU6WG2irV11ar2sXvEgAAKK1oIqvqr35F7zx0QL+769uSzVayvRPpnHYdCsntcqhgmCoYhgoF\nUwXDVP5NXxvlcE7cNLXsyUd10T9+VVWJET3/N/eq/7IrLS2NJrJqqfdMfiAwTxUMQ5ERa+93ToSS\nWt7mUxXvXQAAgEWTdszp6OjQvffee8bt3d3d6ujoUH19vaqqqrRx40Zt27ZNXV1duvzyyyVJK1eu\nVHd3tyQpHA7rG9/4hr7whS+U+CEAAADgbPKto8Ect9VgzgLsmBNP5tTYtVdZX70ia85XdPkaNe/d\nKVveWlv6KOOssEBY7RBlK+R14T//b73j7z6rhkP7te7+M99Tjomnc+ofTmjvkbBe2jtAFyoAAFBS\n2VxBnbsO65yHvqvFLzytpn2vlfw+IvGMToSTGoqmFBrJKJrMKp7OKZ0tKFcwyiKU4w4O6LIvfUqX\n/P1fy5lOSZL8r2+zvJ73PKh0kZGsChZ/Vw3T1NGhxAxXBAAAKsmkHXOuuuoqHQzUnFsAACAASURB\nVD169Izb4/G4fD7fqe9ramoUj8e1du1aPfPMM7ryyiu1c+dODQwMqFAo6M4779Rf//Vfq7q6uqgC\n/X7f5AcBAABgQtFVyyVJdSMh+WrdltY0NdXI4bA09bQi9Hb3q7a/V8Hfu0w+n0fRDe9QfU+nFh/r\nUnTdhknX26qcvG5FxcsXDMkx+fOIKxbR2770Z2rZ9pziHStlVLvVvu0/1RY8psTyVZPeT28woUvb\n6uR1u0pVOjBn+LsBAOaWaZratm9AHc8+IUduNHS/+rlfat8lm+a4sllkmlr0i59q7Te/LFd8RMGL\nL9O+T39Zl/3XaxTY96rl94iy2Rbc+0QsLIMjWeu/D5JGMgU1NNbI5eR3AgBQmTinUVqTBnMmUltb\nq0TijURwIpGQz+fTlVdeqe7ubt1yyy16+9vfrnXr1mnPnj06cuSI7rrrLmUyGXV1denuu+/WnXfe\nOen9DA2NTLVEAAAASIp56yVJ9oEBjcQnn5cuSceOR+WpnvJLxXkn9fyLkqTgyrUaiafVf95F6tCD\n8r78go4uWzvp+p4+Q81eQgSobKFYWrGR1FmPqTt8UO/48p+ptr9X/e94l176/NcUePUFvfN/3qH2\nH35Xr/7531i6r99u69VFa1rk5IMfzGN+v49zGgAwBZlsQdVVpRkP090fVd9gXJu3/kSm3a6cp0aB\np36ul2//K8lR+SNo3MEBbfzW32jRS79VzuPVjj+/S4f+4AbJZlNozTo179+p1OCw8t4aS/t1Hwmp\n0VfchbfAfHGoN6R0rrjR3q/vP6GOQPEfWibTeXndC+ecCwBg/uGcxtScLcw05bOcq1at0pEjRxSJ\nRJTNZrV9+3Zt2LBBu3bt0qZNm/SjH/1IV199tZYuXaoLL7xQP//5z/XAAw/oG9/4hlavXm0plAMA\nAIASaBsdZeWxOMpKkrL5hTPOKp3Ny7d/tyQpvPp8SVJw/UZJUsvuHZb2iKeyo91EgAo22YipRc89\nqffccbNq+3u17+ZP6vm7/kH5Gp+ObXqPEoHFWv7ko3LFIpbuK57Oad+RsMwyGPsAAABm14G+sPb0\nhGQY03sdMBRJqW8wLt+RLjUfeF0nNl6mvne9X+5wsKgRTvOSaWrZrx7RVZ+4Tote+q0GNlyqX/3T\nYzp07Y2SzSZJCl6wUTbDKGq0VySemamKgTkVT+WKDuVI0rGhRFHPValMXrsPD2vHgcFpP8cBAID5\npehI7tatW5VMJnXjjTfq85//vG6//XaZpqktW7YoEAjI5XLpW9/6lr7zne/I5/Pp7rvvnom6AQAA\nYJHT41amrkHuIoI5uSmckJqv4smcGrv2SpLCa9ZJklL+NiUCi0eDOYYh2c+eZzclxRJZNdVZb3sN\nzDcTfhBjGDr/wf+ndQ/+g/LVHr3wxf+jo5df/cbPHQ51fvAjuuif/04rf/ETHbjxE5bubziWVnd/\nTKsX15egegAAMB/EUzmFRkZfc2SyBa1f0aQqV/GdbZLpvA70jgaClz/5M0lSz/uuV6ahWasef0gd\nv3lcQxsuLV3hM8UwZDMKMp3Wu3O6gwO6+JtfUvvLz57RJefNguveLklq2fOKBjdeZmnvaPzsQW1g\nvhqOWusu/FaZfEED4aTam8/edSpfMHRkYGQ0yHPy4oNIPMM5BAAAFhBLwZwlS5booYcekiRdd911\np27fvHmzNm/efNqxTU1N+v73v29pLwAAAMw8l9OudJNfnqETltdkFlDHnHg6pyWde5StrVOifemp\n24cu2Kjlv35Mdb3dii1fM+k+UYI5qGAFw9BIMnfG7c5kQpf83ee0+IWnlAgs1vN3fVvRVeedcdzh\n92/Rugfu1epHf6iDWz5m+cOlo0NxeaudWtRibbwCAACY3/oG3miXH0tm9UrnkC5c2Syv23owpWAY\n2tMTUt4wZCvktezXjylbW6f+TZtlOJxKNfm1+Llf6ZU//aJMV9VMPIyScKSS2vwXt6r+8AFl6hqV\nbmpRurFF6Sb/6NdN/lPfp07etvj5X+uif7xHVYkRDWzYpO2f/oqSgcXj7j8WzPHvstYlVBr9b2KY\npuxvCfkA810oNrVgjiT1DcbV1uSVbZzfC9M0dXw4qZ4TsTM6Ew/H0pxDAABgAWGIJQAAQIWrcjqU\navKrvqdT9kxaRvXkJ36yC6hjTmpwWL5jRzRw0aWnXUUaXD8azGnZvcNSMIe27qhksUTu1JWdY2qO\nHdFld/0P1R/p1sBFl+rFO7+hbH3juOvzNT71vO/DWvPog1r83JM6esU1lu+761hUnmqnGn3V03oM\nxeADJwAAZl86m9fQW7pWpLMFvXIwqHUrmiy/FjjQG1EiPRooDuz4nTyhIXVde5OMqtH1fe+6Wuc8\n8oACr76gE5e8q7QPooQu+s7fquHQfsU6VkmGIe/gcTUcPjjpupzHq+13fFmHr/nDM7rkjLHbbPIE\n/IouX6Om/Ttly+csBacN09RIIqv62tl7XQbMtFy+oFhy6t2gkpnR567WBs9pt4dHMuo+FlU8feYF\nDtJoMGfyMw0AAKBSEMwBAACocKMdc1okSe5QUMn2JZOuWUjBHOeu1yVJkdXnn3Z7cP3FkiT/ru06\ndO1Nk+4zkszJMEzZ7XyYj8oTTZwePAtsf06XfvUzqorHdPD62/T6H31WpuPsby87P/QRrX7sBzrn\nkfuLCuYYpqm9PSFtWOOX1z1zb2FN09RwLK1jQwnl8oY2nNMixyRj7AAAQOkcfdOIlzfLG4Z2HRrW\nmiX1k46LOToU12Akder75U8+IknquerDp27ru+IanfPIA+p45udlG8xZ/OwvtfIXP1F41Vo9/a0f\ny6ga7ezjSKdUHR6WJzQkd3hI7tCQ3KGg3OGg3KEh5WrqtPu/3TFhlxxpNJSzfkWTcnlDQ+s3qr6n\nUw1d+xQ+70JLtUUJ5qDCDMcyOvOZpzh9AyOngjmpTF7d/VEFJxmPlc4WlEjnVFNERzAAADB/EcwB\nAACocC6nXdEmvyTJExqyFMzJLZBRVrl8Qd59uyVJ4TWnB3NGlq5Qur5JLbt2SKY54dWmYwzTVCyZ\nVQMnqVGBIvE3riBd/Owvtemrn5bhcOjlv/yqjrzvekt7JBYvU/+l79biF55W077XFFp7keX7zxUM\n7T48rA1r/HI5SxuWyRcMHR9O6lgwrnT2jVDiwb6o1i4bvwMQAAAordG/jxMT/twwTR3oiyiVKWjl\norpxj4kmsjrUHzv1vWskqkW/e0rRZasUPmf9qdtD571NicBiLfrdU5Y7is4mz2C/Lv7ml5Sv9ujF\nL3z9VChHkgpuj5LtSyy9pxvPWCinqc6tZDqn4+s3avV//Fj+3TssB3Mi8aw6AlO6e6AsDU9jjNWY\nkVROQ5GUYomsjgXHDxmOe9/RNMEcAAAWCC7/AwAAqHBOh12Z5lZJkjs0ZGlNJrcwgjnxVF6NnXsk\nSeFz1p3+Q5tNwQs2yhs8Ie9Av6X9ovGpt78GytXYyIIx5/3bfTJl02/+/n7LoZwxndd/VJK05pEH\niq4jmclrT0/I8knuySTSOR3si+iF3SfU3R89LZQjSQPhpI4FJ/6AEAAAlE5/MKGCMfnf8b2DI9rT\nE1LBOP39SjZX0N7Dp79OWPqbx+XI5dTz3utPD9nbbOq94hq5Ukm1v/xsyR5DKdgKeb3jbz+rqnhM\nr/7JFxRfuqJke785lCNJXrdL4QtHu4S27N5heZ9YIiuzRK/HgLlmmKbCsdKMpd7TE1LfULyo9yul\nCAUBAID5gWAOAADAApBrKS6Yk8svjFFWI8msGjv3KOetVby944yfB9dvlCS17N5uab+3jvsBKsFI\nIqvCyZPLvt5Daurco4GLLyuq482YobddosjKc7Xk2V/KM3Si6PWReEadfZGi140xTVPBSEqvdQW1\nbf+g+ocTpx7beLqPRRVLELgDAGAmGaapY0PWw7BDkZR2dg2fGr87OvYyrMxb3sOs+NUjMu129b7n\nujP26Ds5VnPpbx6fRuWlt/YH35F/9w71vetq9Vy9pWT7vjWUM8a5bJkSre1q2fPKaJdQC/KGoXgq\nV7LagLkUjWeVN+buwqRYIrtgOhYDALDQEcwBAABYAAr+4oI52QVyYigdDMt3rEfh1Wsl+5kvjYfW\nj15B6t9l7QrSaCJbsm4eQLmIvimY0vH0VknSkc1nfsBlic2mzus/KrtR0KrHfjilLY6Hkjo6GLd8\nfC5vKJbIqm8wrpf2DWh3T0iRuLUQnWGa2tMTWjBhRQAA5sJAKHlGqGYysWRWr3QOKZHO6XB/TJG3\nBOTrejrVdGCXTlz8+0qf7B76ZtGV5yq2dKUWvfQbOZPl0SGvZdd2nf/Df1QisEg77vjypKN0rZoo\nlCNJPq9LwXUbVR0Ny9d32PKedApFpQjNcccaU1JohK45AAAsBM65LgAAAAAzrxAISJI8FoM5hmkq\nlzfkclZ2jtu263XZTFPhNevG/Xl01bnKebyWW7sXDFPxVE513qpSlgnMqVMhFtNUxzM/V97tVf+m\nzVPer/fdf6ALvvt1rXr8Ie279VMquD1F79HdH5Wn2qnm+tEPmHJ5Q6lMXqlsfvTPdF6pbEGpTF65\nwvSChplcQXt7wrpwVbNsJfqADAAAvOFoEd1y3iydLeiVg0PjjsBa9uTPJEk9E43dtNnUd8U1WvfA\nt7Xod0+p98oPTKmGUnHFInrH335Wpmx66fN/r1xtXUn2PVsoRzoZzLlgo5Y98x9q2b1dIx0rLe0b\nSWS0RLUlqRGYS5ONknIm4nIl43KmknKmk6N/JhMnv06Mfn/yT9ls2n/Df1eurqGoGkLRtAKN3uk8\nDAAAMA8QzAEAAFgAzEC7JOsdcyQpmy9UdDCnYBjy7n1dkiYM5pgOp4bP36C2Hc+rOjysTGPzpPtG\n41mCOagYpmme6pjTtO811R7v05HN16ngmfqJY6OqWt3X3aR1D/4/Lfv1ozp07U3F1yVp75GQatyu\nkoRvJhOOZ3T4+IhWLirNh2QAAGDUcDStRHrqY5HGC+XYCnkte+oxZX316r/03ROu7T0ZzFn628fn\nNphjmrr4m1+Sd+i4dn/0zzS8bkNJtp0slCNJPm+Vjq57uySpZfcrOnzNDZb2pmMOKkEqk1cyk5/w\n5+f96J+1/vvflK2IrrjphhZ1/n8fK6qO0EhGpmlyEQAAABWOYA4AAMACYK+vU97tlTsUtLwmmzNU\nM/E53HkvkcqrsXOPpImDOZIUXL9RbTueV8ueHTr2+++bdN9oPKOlrVw9isowksqd+sBr2dP/IUnq\n3XzttPftvvYmrf3xfVrzyAM6dM0N446Sm0zBMBVLWvtQyDN4XLXH+zT0tkuKvp8xvYMjqvO61NJQ\nfIcfAAAwvr4ixlNaFdjxvDyhoLquu1lGVfWEx8WXrlB49Vq1bX9erlik6C4XpbLi8Z9oyXNPauiC\ni7Xv5k+WZE8roRxJ8lQ7lVp5jrK+estdQiUpVzCUSOdU43ZNt1RgzgxHJ+6WU3f4oNbdf6/Sjc0a\nfNulynu8J/+peeNrt/fU1850Spfd9adqOvB60XXkCqOjd+trJ36+AgAA8x/BHAAAgAWgymlXqqnF\n8igrabRjTiUbSeW0snOvch6v4ouXTXjc0AUbJUktuywGcxJcPYrKMXY1tC2f09Lf/kLp+iYNbHzn\ntPfNNPnVe8U1Wv7rRxXY8bwGfu+/THvPidgzaV3xlx9V7Ymj+u0939XgxsumvNf+3oje7nbJ6+at\nNAAA0xVLZhVJZEq+7/JfTTLG6k36rrhGjV1f15Lnn9Th9/9hyWuZjO9Ily76zj3K+ur10uf+t+Rw\nTHtPq6GcMbU11Qqev0GLXvqN3MEBpVsCltZF4lmCOZjXJhxjZRja+H+/LHshr+2f/l86ccm7Jt/M\nNJXx1avp4O4p1RKMpQnmACiJXL6gXN6Ql7+jgbJTubMJAAAAcIrLaVe6ya/qaEgqWAvcZHMzOxpm\nriWHI/L1HVJk1dqzdusInXuhDKfL8hWkuYKheGrq7fiBchKNj35YFtjxvKqjYfVdcY1MR2lCKZ3X\n3yZJOueR+0uy30TO+7fvqvbEUUnSxd/8khypxJT3yhuG9vaEVDAq+/kRAIDZMBPdclyxiBa98JSi\ny1YpfM76yWu4/P2SpKW/ebzktUzGns3o0q9+Rs5MWtv+4itKtbZPf88iQznS6Dir4NjFCHtesbwu\nFi99qAqYLfmCMeFFNSt++e9q2fOKjv7++6yFciTJZlP43AtUe7xPVbFw0fWEYvw+AZg+wzS153BY\nXceic10KULRc3lB4JKO+wbj29YS0bf+gnt3Zr51dQfUHE8pVwEXEBHMAAAAWgLFgjs0w5I4MW1qT\nzc3/F7tnY3/9ddlM86xjrCTJqHYrdO4FauzeJ2fS2gf6UU5SowKYpqnIyY45pRxjNSayZp2GLrhY\nbdufk+9IV8n2fbOa/l6d92/3KdXcqoPX36aagX5d8C//Z1p7xtM5HeyNlKhCAAAWplQmr2AkVfJ9\nO37zuBy5nHree71ks016fLJtsYLnX6TWnS+ruojuoqVw4X1fU8Phg+q+9kb1//57p72fTSo6lCNJ\nPq9LwXUngzlFjLOK0CkU81h4JCPDNM+4vSoS0oXf/bpyHq9e/ZMvFLVn6GQYsPFA8V1zEumcUpl8\n0esA4M06+yKKJDIKjWQUmqgrGFAG0tnR9wI9J2LafWhYL+45oed3H9fO7qC6+6MaiKSUSOdkmKbC\n8YwOHo3od7tPzPuQDsEcAACABcDldCjd5JckuS2ecM7mK7cjhGGacu/ZKUmTBnMkaWj9RtkMQ817\nX7O0P+OsUAkS6bzyhiFHKqFFv3ta8UUdCp13YUnv4+D1H9X/z959x0dV5f8ff01PJn3SSEIKJdTQ\ni6BYsLv2dddddXV1i6hfu2t3bauu2MvPtrqWVdd1i32tyAoKAtJJQgqEkF4m03u59/fHQKQk5M5k\nEkg4z8eDByVzzr2EMLn3nvf5fABKP3grrvPuNv2FP6MJBth0+S1s+e0fcBSNofTDt8nasrZf87bb\nvDR3xn+XvyAIgiAcLpo6Xey/JN5/JV99gKTW0HDCmYrHNB77E1SSROHyLwbgjHqW9/1SSj98G3vx\nWDYuui0uc47OT4s6lAORYI61dDJhvYGscuUVc/zBsAgSCENWl73nBetpLz+K3mmn/NLrFLd1280y\nfgoApuotsZ2TWEQXBKEfGtqdtFo83b+va3Eg9xBAFISDxRcIUdfiYGV5K6sq2ymvt1Df5sTs8OFT\nsEFYhr1COhuHYEhHBHMEQRAEQRAOA3qtGm+0wZxhXDHH4wuRXlMBgLV0Up+v7y7tXq5sMd/uEsEc\nYeiz7ar8VLDia7R+LzuPP0PRzvNotMw/HnduAcVLPoyp5PuB5H3/P/JXf0PHtCNoPO4nSHo9P9z0\nILJazezH70Tj698u/e0tDhHCEwRBEIQYBENh2ro8fb8wSqn1tZiqt9A2ZwG+zBzF45qOOQVZrR60\ndlYJ5nbmPH4nYZ2eVXc8jmSIPkyzr+y0RApzkmM7H70WrTFSJTS9rgqt26l4rLgWEoYqi3P/EEz2\npjWUfPUB1rET2X7WhVHPubt9nqkm+oo5gKhuIQhCzMw2LztaHXv9mcsXpM0S/+stQYiWzeWnYoeF\n1ZXtNHQ4FW0GNljNFH/5ATOfuZe0uur9Pi7vmneohXREMEcQBEEQBOEwsLuVFUCiwmBOcBhXzHF5\ng2RsqySUYMQ5clSfr++aNANZpSJbYZUNf0jsHhWGvt0Bs6IBaGPVTaOh9pxfofX7GPXpv+M2rdrv\nY8bzDyJptKy/+q7uQJFl4jRqfvprUloamPy3Z/t1DEmWqay3DOsQoyAIgiAMhBazh/AA7OAu/uoD\ngEgbqyj4MnPomDqXrMoNGNub435ee1KFghyx+FYMDhubFt2KY9S4fs9pNGgZX5TerzmSE/WYy2ah\nkmXFVUJBtPAVhiaHO7DfoqA6EGDmM/chq1Ssu/ZeZI026nl9mTl4skZEKubE8B5ncwUIS8P3OYwg\nCAPD5Q2ydae1x0qE9W1O8b4iHBRhSaK1y83aqg42bjPTafcesFqmKhwis2I9k197ihOvOo+zfnE0\ncx+7nTGfvMvCG39F9qY1vY7tKaTTfIiGdEQwRxAEQRAE4TCg1agJmLIASLCYFY3xD+PFZo/FQWrD\ndmxjJoBG0+frg8mp2EeNx1S1GXVA2a5Qm3hILQxxNpcfg9XMiPUrsIyfgktBiK0n6j6q7Ow49TyC\niUbGfvQ2qlAwpmPsa8K7r5DU3kztuZfgLB6718cqLrkGZ34R4957A9NW5QtPPfEHw1TutIry0IIg\nCIKgUFiSaBqAdpCqcIjirz8ikJJG67yFUY9vPO40AEYu+zzep9ZNFQoy76E/kLNpNc3zT2D7mRf0\ne06NSsXkUSa0mv495k8x6ugsi1QJzS5fp3icTVQKFYagnlpGjfv3q6Q21rH9zAuw9qN9r2V8GQlW\nM4mdbVGPlWQZq0M8RxAEQTl/MEx5XVevgWd/MExTh3uQz0o4nPkCIba32FlV0U51ow2Xr/fnfAZL\nJ8Vfvs+8B2/grJ8fxfE3XMSkd14irb6W9unz2PT7m1l/9R/RBPwcfcfvKPj2yz6PvzukU3uIhnRE\nMEcQBEEQBOEwEcqJ9EdX2soqGJaQhulis2rLZlSShLV0suIxnVNmoQkGyKhVVpZatLMShjKPL0gw\nLFH4zWeoJCnSxioGapWKWeOzKcpJobd4TigphfpTzsNobmekgpvsviS1NDDh3ZfxZuZQ+aur9vt4\nOCGRtTc+gEqSmPP4XYrDdr2xufzU7VMyWhAEQRCAYXstDZGATUO7E38guofcbRYvwXD8d27nrltB\nosVMw8LTkfT6qMc3LzgJSaOl6Jv/xv3c4MdQzsjvvqRj6hxW3/ZIXFqEji9KJylB1+95Uow6uiZN\nR1apyIoimOMNhIb1hg5heNq3ZVRSSwOT/v4iXlMWWy67vl9zW8dNAcBUsyWm8T2FhgRBEHoiSTIV\nOyz4+vg+3NDhFJV+hQFndfop39HF6sp2GjtcvV7v622WXVVxfspZvzyGuY/dQeGyzwkak9h++i9Y\nce//48N/f8/yR16j5ue/YftZF/LtAy8iaXXMf+B6Rn/8juJzOhRDOiKYIwiCIAiCcJgIRxnMAQgG\nh2e5U8OWTQBYSycpHmPetYM0a4uyB9U2t9jpJgxd1j3aWMlqNY3HnhbTPAVZSSQl6Bidn8rUMVkY\ndD1XqKo951fIKhWl7/0tprLve5r+wkNoggE2LrqVkDGpx9eYp85h21kXktqwnYlvP9+v4wE0drgw\n27z9nkcQBEEY+vYs275pm5nQAIRQDgXbmuzUtTpYvbWdinqLopZGsizT1BH/ajkAJV+8D0D9ydG1\nsdotkJpB+6wjydi2leTGHfE8tf1COd/96UXCicZ+zzsyK5mcjP7PA5Bi1BNKSsE2egKm6i1RBZdF\nOythKAlLEi7vHrv3ZZmZ/+9PaAJ+Ni26jVBSSr/mt0yIBHMyqpVt6NlvvKiYIwiCQlUNVhyevr9f\nhyWZ+jbnIJyRcLhxuANsb7azqqKNTdvNmO2+A7ar0tutHHfzJUx65yVSd26jfcY8Nl1+C5+//DGf\nvvk166+7l5YjT9jvWV7HzCP55tG/4U8zMevZ+5n0t2ejfnbYU0jnYNyniWCOIAiCIAjC4SIzE0mj\nJTGKYI7/ECnzGE9ef4jU2goArGOjD+Zkl69V9HpfIBz1DmJBOFTYXX6Sm+vJrN5M+4z5+E3ZUc9h\n0GooHvHjg+2MFAOzx+eQnZa432vd+UW0zDuezOrN/Wovlff9/8hfvYz26fNo6iNMtOU3N+LOzWfC\nu6+Qvq0y5mPuVtVgw+ML9XseQRAEYWjqqWy73R1gY6152F0Ttls8tFo8QKQqUKfNy4ZtZtZWddDa\n5UaSen5Qbrb78Abi/71S77CSv2op9uKxUVXE3FfDcT8BoHDZp/E6tQEL5aQl6RldkBqHM4ww6DQY\ntBrMZTPRBPxk7LpfUsLuFpVChaHD7QvttWg4cvnnjFj7HW2zjqJx13tAf+x+D4q1Yo4/FMapYKFd\nEITDW32bg44oNge1WTx4DtBSSBCUcrgDbNsVxllf20ljp6vPqk0AOpeDY27/LWk7t1N79q8iVXEW\nv0bNzy6LtKDvo5Kkbdxklj75Nq68Qia/9Twzn74XVTi2+4rdIZ2DUe1eBHMEQRAEQRAOEzqdFl9G\n1mFfMcflDZJRW0HIkICzaLTicb7MHFz5RWRWbICwssUVUTVHGKrsrgBFX38CQEOMbaxG5aei1ex9\ny6nTqpk8ysT4wnQ0+9x01/70EgDmPXQTpq2boj6e2u9jxvMPImm0bLj6rj5v6kPGJNZefz9qKcyc\nx+5EFerfQ6qQJFFZbyEsDb/3TUEQBKF3Vqefih2WXsu2u3xBNtR2DpvFEI8vSE2jrcePuXxBqhtt\nfF/RRl2LA98+IZzGAaqWU/jNp2iCwUi1nH60h2qZfwJhvYGi/33a7wp+MHChHINWw6QSE+o4tMLa\nU0qS7scqoRXK21mJFr7CUOLeo1qO1u1k+gt/JqzTs/7qP8alvVwwORXnyBJM1eUQ432BaGclCMKB\ndFg9UVfAkWSZuhbRgluIjX2fME6TwjDObhqvmwV3LSJj21bqTvs5G6+6g3BizxWu9xqnUjF1dCb5\nmZHXuguKWfrU37GOnciYT//J/D9dj9of+/dM20Go+iiCOYIgCIIgCIcJnVaDz5RFgsWs+EFzYBhW\nzHFbHaTWb8M2ZgKyRhvV2M4ps9G7naTV1yp6vXhILQxFXn8IfzBE0dKPCRkSaD7qpKjnSDXqGWHq\nfeEpLzOJWeNzSEnUd/9Z59Q5bLnseozmdhbedDFj338zqkWxCe++TFJ7MzU/vQRn0RhFYzpmHUXd\nqeeRXlfFhHdfUXys3rh8QWoael6sFARBEIaPvdpVbTfTafcesGy7Lxhmw5YNkgAAIABJREFUQ60Z\nxyBXFvH6Q1TssGB1xuehc1iSqKy3Eu7j+3MwLNHQ4WR1ZTsVOyy7dqT6FbVbAEjo6kDj9Sg+r5Iv\nP0BSa2IOE+8WSkqmde6xpDbWkbajpl9zDVQoR61SMbEko9f2oP2RkqiPun0vRK5/giERTBaGBrf3\nx8Bg2evPkGjpZOsFi3AXFMftGJZxU9B5XCQ374xpfJddbPARBKFnDneAqhifOZgdvrhdEwpDk6ex\nhfY2K20Wj6IfVfUWVlW0sSGGMM5uar+PBXf/H1mVG9l5/Jmsu/YeRUFYFTCxOANTagLjCtOZUZpN\ncoIOf0YW3zz6N9pnzKNg5dccc/vv0DntMXw2RDBHEARBEARBGEA6rRqfKRtNMIDOpWyXRGAYVsxR\nbdmCWgrHVOa+u53VFmXtrERZd2Eosrn8ZFRvIaWlgZb5x+/X21mJsQVpfb7GmKBlxrgsinJSUAGo\nVFRdsIhlf/4rgeRUZrzwEPMeuAGtu+/d9UktDUx49xU8WblsveiqqM5106Jb8WTlMuntF0jt5yIc\nQLvNS1PnwFQEEARBEA4iWUb9+qt0/eM/e7WrUioYlti0zUyXfeArIUiyTEO7k7VVHXTavZTXdcVl\nIWZbkz2qv7MMdNq9bNxmZvP2LkVjCr79kjMuWsi558zmlN/8hCMeuonx/3yF3LUr0Nss+70+dUcN\npppy2uYswJeZo/jcetPdzuqb2NtZRUI5N0VCOdPmxi2UAzAqL5X0ZENc5tpXilEXqRKaV0hW5Yao\nqn3YRaVQYYjY/R6WUVPO2I/exjFyFNXn/y6ux7CMnwKAqTq2dlZObwB/DIufgiAMb75AJHAt9aOq\nX11LbAEGYehzfPYVhUdMYdz8MlKuXoT9n+9Rs62dqgZrrz/qWx0xhXF2UwUDHPmn68jZtJqmo07k\nh5sfAo2ycPnYgjSy0hO7f5+WpGfm+GzG5KchJ6fw3Z9eovHYU8kuX8fCmy4mwdwe9fm5vIMfLhfB\nHEEQBEEQhMOEXqfGa8oGUNzOajhWzNFv2QyAbeykqMd27t5BWq5sB6nbFyQ4DD+HwvBmdwUoXhp7\nG6sRGUZSk/R9v5DIru/R+alMG5tFwq6d350z5vHVC+/RWTaLwm+/4MT/O4+07VW9TyLLzHj+QTTB\nAJsW3Rp1kCiUlML6a+9BHQoy54m7Yu5Rvae6FocI5gmCIAwTYUmizeLBecsdZN5yPWNuuwbJ7Y5t\nLlmmot5Cm0V5NZho2V1+1lV3Utfq6K5sE5blfodz2i0eWvtx3n1V2QHIrNjAEYtvIWRIoHPKbBKs\nZoq++ZSprzzOMXf8jrPPP4rTLzyOo/54BZNff5qC776k9IO3AKg/6dyYz21PbXOPIZhojARzYlj4\n+jGU81UklHP/C3EL5WSnJ1KYkxyXuXqSYtQBYJ48E73TTurObYrHikqhw4cky8hxaOV2qHJ7gxAO\nM+upe1DJMuuvvQdJr+zeRSnL+DIATDXlsc8h2lkJgrCHsCRRXmfB389njE5vkHbrwF2HCoceSZZp\nWF9FwXWXgywTMiZTsuRDFtx9FWf+YgFzHrmVvFX/Qx2I77WcKhxi3p9vJm/NclpnH83q2x9XXLm+\nMDuZguz9r3nVKhWFOcnMmZiDKSuVVbc/Tu3ZvyKtvpbjr7+AlIa6qM5RJnLvNJhEMEcQBEEQBOEw\nodNEKuYAJCoN5gyzijmBYJjkXbvWYqmY484vwmvKIqt8reIH9eIhtTDU2O1uCr/5FH9qOm2zF0Q1\nVqNWMSo/NepjpicbmDU+h5xdu2F8mTkse/R1qn7xO1JaGjjhul9S8tm/e/x/l7fqf+StWU779Hk0\nHXNq1McGaJ23kJ0nnImpegul/3kjpjn2JMkylfUWAmKnqyAIwpBldweobrDyfXk7LF7M6DeeQ1ar\n0Xlc5K/8OuZ5JVmmqsFKQ7szjmcLwVCY6gYrG7aZcfdQ1aY/4RyPL0hN48C2akxurueoe65CFQrx\n/V1Pseyxv/Hhe6v57xtfsfLup6m88ApajjgOgPzVy5j09xc58v7rGP3Zv/CnpNE6b2FcziOckEjL\n/BNIbmvCVLU5qrEDGcoxGrSML0yPy1y90Wk1JOg0mMtmApBVsV7xWJu45xk2drQ6aDHHFj481PmD\nYYJhibEfv0PGtkrqTzyLzulHxP04tjETkTRaTNXRvYfsqUsEcwRB2ENNY3RVCw9kR4sDSRq+AUzh\nR8FQmC1VrRTfuIgEWxebLr+F/771NV8//Q+qz7uUYFIyJUs+YsHdV3HW+UfFL6QjScx+/M7u6pEr\n73lGcQg2Oz2RMX1U4U7QaykbnUnZ6CyqrvsjWy67gaSOVhbecCHpNRVRnepgX8MqiyYJgiAIgiAI\nQ55Oq8a+u2JOl9JgzvBaVHZ5g+TUVhLWG3AUj4l+ApUKc9lsCpd/TlJLg6I+9DZ3YK/Sm0o4PQES\nDVq0GpGjFwaXLxAidfV3JNi62HbGL5G1uqjGF+emYNApK0u7L51WzaQSE4WeAA3tLsx2L1t+exPm\nSTOZ+9jtzHnyj2SXr2P9NXcTToj8n1L7fcx4/iEkjZYNV9+lqE91bzZeeTu561ZS9sYztMw/Hlfh\nqJjngsiD/8qdVqaNyUTVj/MSBEEQBo8/GKbd4qHN4sHjj1RQG/v+m0x57UncOXmsvelBjr31N4z6\n4j0aY6gqt6e6VgeBoMTYkX23f+xLa5ebuhYHwfCBQ/W7wzllozPJSFHWDiksSVTWWxVVvImV3mbh\n6DsXYXDYWHvD/bTPOTryAZUKT95IPHkjaV5w8l6vT9++lYztW0mrq6F17jFxrXjRsPAnFC/9mMJv\nPsUycZqiMQMZytGoVUweZRqUe4OUJD3mstkAZG1ZR90Zv1Q0zu0LEpYkNGpx/zKUWZ1+Gjtc6DRq\ncjIS0Wlju64/VLm9QRLM7ZS9/hSB5FQ2//6WATmOZEjAXlJK+vYqVKFg1PdUEPm3kGQZtbiPEITD\nXmuXO65VbnzBME2dLopyU+I2p3DocXmDlO/oYsKTD5BVuYGGhaez7ZxfgUqFZeI0LBOnsfnyWzBV\nbWbkt18wcvnnlCz5iJIlHxE0JtN85PF0nXwm7klzo7vOlmVmPns/JUs+omviNFbc9zySIUHR0LQk\nPROLMhQfKis9kYxUA/XX3shaUxazH7+TqX99jOWLX1M8h3WQK+aIYI4gCIIgCMJhQqfV4DNlAZBg\nNSsaExjkPqsDzW1zklZfi7V0kuLymfsyl82icPnnZJevUxTMibYkptnuZWu9lRnjsklOFA+2hcEV\naWP1MQANJ5wV1VijQcvIOLRXSDHqmTzKhMcXpKHdRfuRx/PVc/9h/gPXU/LVB2TUVvD9XU/hLBrN\nhHdfJqm9marzf4uzKIaw3R4CqRmsv+ZujvzTdcx54i6+eeQ1ZF3/FvlsLj91rQ7G5Pd/0VUQBGEo\nsDh8uLxBEgxajAYtCXrN4AeNw2F0y/+Hf858MPYdjJCRsTj8tFk8WBw+9oyflHz2b2a88BBeUzbL\nFr+Gu6AY8+SZ5GxcRWJHC96c/H6dapPZRTAUZnxxRkyLr5FKNnZsbuXXm9GGc7Y1xW+Hdk80Pi8L\n7r6S5JYGKi+8gh2n/bzPMYF0Ex2zjqJj1lEDck7tM48kkJJG4bJPsY2ZqGhMwYqvKPh+adxDOQDj\nizJISoh+YT8WKYk6OgtH4U/LIKtCWfteiFSCsrsCmFKVLbwIh55gKEzVTmvk12GJHa1Oxg1wlabB\n5vaFmPLqk+g8btZedx/+jMwBO5Zl/JRIeLC+NqY22mFJxub0i/9TgnCYc3mDbGuyx33ehnYXeZnG\nYRfAFCI6bF6qd1rJX/oJpR++hb14LGuvv3//zWx7hnR+f3OPIZ2pu0I6TUefSvusow4c0pFlpr20\nmDH/fRfrmIl8++BfFLebNxq0lI0yoVZHd0+kUasZU5CG69orcH7wJlkVG1AH/Eh6ZZsQ3L4ggWAY\nfYybDKMlgjmCIAiCIAiHCZ1WjXd3xRzFrayGV8UcubwCdTiENYYHY7t1TpkFQFb5OupP+Wmfr3d5\ng4TCkqJFqaZOF9ub7ciAPxAmOXFwHsALQ0tYkggEJQLBMP6QRDAYJhCK/L7756BEMCyRkWJgVF6q\n4q8lR6eVCSu+xjViJF2Tpkd1XmML0uK6o9OYoGNCcQYleSk0ZhpZ/uTfKXvpYcZ+9HdOuObnVF58\nNRPefQVPVi6VF10Zl2M2H30yjUefQuG3X3DKorPZdPkttB5xXL8q8TR2uEg16smOsnKWIAjCUCLL\nMvU7zeTedj2h/CIqL/6/7vdOg1ZDgkGD0aAl0aAdkNBOMBTG7gpgdwfIffR+Rv39ZZz5Rfzwh4fo\nKpsV05yFSz9h9lN3409NZ9niV7sD2fUnn0NWxXqKl3xE1YVX9Pvc221ejOvXMOWdF/HcfhehmbP7\nHBOWJBraXTR2uJBiqGSjNJzTbvHQaonfDu39TyTMEQ/fTGbVZupPPIuKX18b9RQ56YmYUhPY1mQn\nJMVnU4Gs09N49CmM+fSfzH3sdsXjognlqFUq9Do1eq2m+2eDLvJrnVaNXqfBoNWg06kHtWJGilEf\nqRI6eSYFK7+OKoBmd4tgzlBW1WDDH/rx/r+1y01+VtKwuid1eYNM2LgarymbHaf9bECPZR1fBp/+\nk4zq8piCOQAWhwjmCMLhLBSWqKy3DEjVwpAksbPNFZfKjcKhQ5ZldrQ6aehwkrqjhtlP/JGgMYmV\n9zzT9/VpDyGd0auWkPP1f/erpNNbSGfy355l3Htv4Cgaw/I/v0IwWVmre71WzZTRmf0KiiUn6mDh\nQjSvVJG5dROd0+YqHmtz+cnJiF+o/kBEMEcQBEEQBOEwodOqCWTmAJCoMJgTlmXFoZKhQL9lIwDW\n0skxz2EvGUfQmEz2lrWKXi8Djj4eUsuyzLZmO81md/ef+YZZKEqIj/o2B/VtTsWv73L46HL4yElP\npGREKsaEA98CJn75GVqfh4aFF0cVRslMTRiwh8YJei2lI9Mpzk2h6f5HsEyZw4wn7mTaXx4BYNOi\nWwknKtuBo0T7w0+R9dcnSH7jVRbcfRVtM49k0xW34SgpjXnO6gYbSQm6Pj//giAIQ5E/GGbrTitF\nj/+pu+paormNddfdBxoN/lAYfyiM3R3Yb2ysoR1fINQdxLG5/N1tpzIrNlDyziv4U9JIbm1k4U0X\nU3vOxZRfdn13G0Ql8lcsYe4jtxE0JrP84b/iLB7b/bHGY05l+vMPUfLl+1RdsKhf4U0AZJnRT/4J\nQ/UWtCu/Y8P199Fw8rkHHgIxBXL21Fc4J1KNx9avYxyQLDP9xYcpWPk1HdOOYO0Nf4rpczkyO5nU\nJD0ZyQZqmmx0OXxxOb0tv70Rc9lM1GFl1+ShhERa5i3ss1R/epKBMQWpkQDMISjFGAlhmMtmUbDy\na7LK19N4vMJgjmv//+PC0NDU6drv/45MpGLW9NKsg3NSA8BrdWA0t9Ex7QgY4LZrlnFTADBVb2bH\n6efHNEeXw8dYxKK5IByuahtt3de4A6Gly01BdhKJBvGcYjgIhSW27rTS5fChdbs48k/XofV7WXn3\n07hGRtmqfVdIJzjnCNZeeuMB213tDumUvv8Gk95+AVd+EcsWv0og3aToUBqVirJRmXH5OpSOPQ5e\neYHsTaujDOYERDBHEARBEARBiL9wVnQVcwACweERzAmFJZIqtwBgHRd7MAeNBvPkGeT98C0JXR34\ndoWdDsR2gLLue9447Wm4VSsS4qPd4o1pXIfNi9nuIzcjEtAx6PffheIPhsn98kMAGk44U/HcapVq\nUFo16XUaRuenErr6MqrmziT/9utx5+bTdMypcTvGiAwjxcUZuB5+HO+lv0N72y2MWLmM3CvOYfvp\nv6DikmsIpCnvd71bSJKoqLcwc1wWmgFeBBAEQRhMVqefqp1W0r//hvH/eR3nyBKCiUmM/vw/aH1e\n1tzyMLK292oL0YR2NGoVDnckjNNTgFnj9TDn0dsAWHH/84CKOY/fwbj3/0be6m8UV8/JXfsd8x66\nEUlv4NsHX9qv0kEoKYXmo06ieOnHZFZuoGvyzD7nPJDMivWYqrdgHTuJpLYmZj96O6nbKtl8+S0x\nt15VqrdwTliSqKi3DsgO7d1K33uju7T+ynueial9ZKpRT2pSZJxBr2HK6EzaLJ64VM8JpqTRcOLZ\n/ZpjTwl6DWPy0w75CnpajRqjQUtn2Y9VQhuPP0PRWIcngCTJUbcgEA4ulzdIXYujx4/Z3H46rJ5B\nW6waSJIso66vA8CpoCV1fzlKxhIyJGCqKY95Dm8ghMcXxDhIrewEQTh0tHa5abfF9vxHKUmWqWtx\nMHmUsgCFcOjy+IKU77BEglyyzJzHbielqZ6q839L84KT+zf5PpV0Mqq3ULj8871DOolGdF4Pnuw8\nli1+VdGzcgAVMLEko/t6vr+C849EVqvJ2biaykuuUTzO5lLeFri/xBNBQRAEQRCEw4g2MQF/ajoJ\nXcqDOcHQ8AiIuL1BMmorCOt0OPbY9RyLzilzgMiDaiXs7p4v8P2BMBtrzT3u7PUFhsfnXYgfhyeA\nNxD7bilJlmm1eFi9tZ1tzfb9/m+7GpoZ8cN3WMdOxFk0RvG8BdlJg1oJRqtRM2L+DIJL/8eOxc/1\nv1LBLhnJBsYVpXf/PjxhIv73P2LnS2/hyi9i7MfvcNqlp1D6n9dRBaPfEe72BalqsBEKx6fNhiAI\nwsG2s83J5u1m6Ghj7qO3E9bpWHXH4yx75DU6y2ZR9M2nHHn/dagDsT3o3B3YabV4qGt1UNtsp93m\n7bWq4JRXnyClpYGa8y6ja/JMuibP4MsX3qf6Z7/prp4z7YWH0Ph6X+TI2ryGo+69GlRqvrv/eSyT\nZvT4uvpTIhVtSr58P6a/257G//s1ADZeeTtLnv0n9uIxjHv/TY6+/ffo7dZ+z9+X3eEcq/PHf6dt\nTXbcvuCAHbNg+RdM+8sjeDNz+PbBvyguc7+vkdn7V8wbYTIyZ0IOmYdI+xeNWsXovFTmTsg95EM5\nu6Uk6rCNnUjIkEi2wvsdiFxrOj2ias5QEpYibVIOVIGrrsVBOE5t4g4mrz+EsWknAK4ogjmaGO81\nZI0W29hJpNZvQ+ONvSWg2R6fKmCCIAwdLm+QbU32QTlWp91Lh83b70qMwsFjdfpZX2Purq40/l9/\nZeSKJXRMO4Lyy66P78FUKqwTprL58lv49M2vWfLMu1T/7DICKWl4skawbPFf8eQWKJ5ubEEaWWnx\nuz6WU9NwTZhCZtXmqL73evwh/IP0HF4EcwRBEARBEA4jOq0anymbBKtZ8Rh/aOg/hANw292k1ddi\nHzX+gDu3lTBP+XEHqRJOTxBJkvf5swDrazpx9bLo4RcVc4R9dFjjs1tKkmWaOl2sqmxnR6ujOyii\n++B91FKYncefpXgug1ZDcW5KXM4rWhq1mkklJkZmJfd7ruQEHZNHmVDv++BdpcJ47lm0LlnJ5qvu\nAJWK6S8t5pTLzyLv+/9BlA+vOm1eVpa3UVlvweLwIYuHX4IgDEHBUJjN27vY0eZAliTmPno7CbYu\ntvz2JmxjJxFKSuHbB/9C28wjyV/1Pxb88Yp+LUoqkb1hFaUfvo2jaAzll17b/eeSIYHNl9/M0iff\nxlVQzLj33+TkK84hq4eWpKatm1jwxytRSRIr736GzulH9Hq8jmlH4MnOo3DZZwcM+vQlqXkn+d8v\nxTJ+CuayWbgLiln69Ls0H3kCuRtXceLVPyetrjrm+ZXaM5zTZvHQahm4f6/MivUcsfgWQgmJfPvA\ni3hz8mKax6DTkNVL0GV39ZwJRRloD1KlOhWQZzJyxMRcinJThlQVmWSjHlmro2viNNLqa9E5lS8O\n2kQ7qyFlW5O9zzYpvmCYhnbXIJ3RwHF7g6S0RB/MGVeUji7GCsKWcWWopTDp27fGNB7A4hi8XfyC\nIBx8oXAkMDmQVQv3VVlvYeWWNip2WGjtcg9aQEHoP1mWqW2ydVeKzN64mimvPok3M4dVdzzWr+qb\nGpWKpATd/s/JdtsnpPPft76OqmVWYXYyBdn9f563L8/8BahDQbIqNkQ1zjpIVXNEMEcQBEEQBOEw\notOq8Zqy0budqP3Kdl4Nl5ZKUkU56lAQa2k/2ljtYi0tI6zTk71FWTBHkmUce+weNdu9bKw14z9A\nNSJxIyzsSZZlOuMUzNktLMnsbHeyurKdhnYnpk/eQ1apaFz4E8VzjMpPPeit7saOTGN0Xmw77SGy\nsDdldOYB/x4ZpmRSbr2Jr9/8itqzLyKptYkF91zF0bf/jtQdNVEdT5JlOmxeNtd1sXpXOMo7gH3j\nhaFhOOxEFw4PDneAddWdWJyR68hx773BiHUraJ1zNLXnXtL9unCikRX3P0/z/OPJ3bCKY+74PVq3\nc0DOSet2MefxO5DUGtbc8jCS3rDfayyTfqyek9TWxHF/uCRSPWdXYCht+1aOvvNyNH4/q+54jLa5\nxxz4oGo19Sedjc7jpmDFkpjPfdz7f0Mly9T89NfdFeBCxiRW3v0MFRdfTVJ7M8dfdwEjl38e8zGU\n2h3OqW20Ddgxkpt2cNTdV6EKh/n+j09jHzMx5rkKspJ6XyjYZYTJyJyJsVXP0ahUJOg0xBKnSU82\nMGt8DuOLMtDr9m8feqhLMUY2MZjLIm3asirWKx7bW6XQ3kiyLILKB0mHzas4hNfY4Rry16sub4jk\n5kgwJ5pWVqlGPWWjM/t8v+mJZfwUAEzVW6Ieu5vDExAVNwXhMFLbaOszMDkQQpJEp91LdaON7yvb\nWFvVwfYWO1anX1TTOYR12X3dXy8J5nbmPXQTskrN93c9hT8jK+Z5E/VaZozL5ugZBSyYmscRE3OZ\nOjqT0oI0RmYlk5magNGg/fF7o0oFfYTh1SoVOo2aBJ2GPJORMQVpMZ/fgQSOOhqAnE2rohpncw5O\nMGfw6o0LgiAIgiAIB51eq8FnygYg0dKJO6+wzzGBYOwPgcKShCxz0BfuAXSbNgJgLZ3U77kkvR7L\nhKlkla9D53IoKr9vdwVITzbQ1OFie4udvm5rRcWcgSfLMqo4tUEaaDZX4IBBrv4IhiXa11cwq2ID\n7TPmKe4FnWrUM8JkHJBzilZRbgo6rZqaRluf/7f2pFGrmDI6E4O+70Wz5EQdk2eXssV0L9vP+CXT\nX1rMiLXfkXvlubjyi3DlF+EsKMaVX4yroBhXfhGe3PwD7lDyBcPsbHeys91JepKBEZlGstMT0Byk\n3f3CwREKS6zZ2o4xQUeeyUiW+BoQDlFNnS7qWhzdD+fTayqY8uqT+DKy+OEPf96vtaCkN/D9H59i\n7qO3U/S//3LczZey/M+vEEjLiOt5TfvLYpI6Wqm86Eqs48p6fd3u6jlNC05kzmN3Mu79N8lfvYzK\ni65k6l8eRed2submh2lecLKi49afdA6T/v4iJV++T8MJZ0Z93jqHjZIv3sedk0fTMafs/UG1msqL\n/w/b6PHMfeRW5j9wA1svqKL819f2+dC7PwZyd7bB2sXRdy7C4LTzww1/on32gpjn0qhU5GXu38aq\nx+PuCuC2WTxsa7J37yjePU+iQbvHD033rw27AjWSLOPzh/D6w3j9IbyBUORnfxhfILTXdUeiXsvo\n/NQh07KqN8mJOlSAefKPwZzWeQsVjbW7A4qusV3eIG1dHtqtHkoL08kZ4p+zocYXCFHToDyEJ8ky\ndS0OJo8yxXzMsCRhdwUwHaQ2c25fkFHNO5FVKkXPQXbTadUkGrSML0xna0N07QW7gzk15VGN25Mk\ny1gcPnIyDo37LkEQBk5rl5t2W3w3ZMXK5Qvi8gVp7HChVatJT9GTmZqAKTWh+xpJOPgaOyIV7VTB\nAPMfuJ4EWxfr/+8uuib33I5XCVOKgYnFJnTayD2Heo/r5X1Jsow/ELlGDoYlNCoVGo0ajVqFRqOK\n/KxWo9GoYgq4xkJ99AIkjZbsjWuiGmcbpIo5IpgjCIIgCIJwGNFp1fgyI8GcBIXBnGA/wgDbmuzd\nu/AiF+e7LsjVe/xao0KjUqHVqsnJSCTVqI/5eL2RZBljZWSXWjwq5gB0ls0ie8taMis30Db32D5f\nb3X58TeGaelyK5pfkmWCoTA6rbjhHSiddh9NHS4KspLIzkgctJvEWHRYB7YFSNHXHwPQcLzyhcWx\nIwdmd0us8jKT0GnVbK23KlpYVKtUTC4xkZyovLVdokHLjNIsNqsn8e1DLzNizXImvPsyqTu3kddU\nz77NOCSNFveIAlwFxd2hneYFJ/UYfrK5/djcfmqbVOSkJzIiM4m0pPi/HwqHnvo2J4GQRMDlx+by\no21Sk52eQF5mEqnia0A4BITCEtWNNjr3WCjQetzMe+hG1KEga25+GH9GZo9jZa2O1bcsJpSQyOjP\n/s1xf7iY5Q+/qjgE2pcRa5Yx+rN/Yx0zkcoLr1A0xjJpBl+98B5lbzzLuPdeZ+6jtwOw9rr7aDhR\neTtHd0ExnWWzyNm4isSOFrw5+VGd++hP/4XW76XinGt6DXG2HHUiS5/+B0fdezUT33mJtLoqVt/2\nKKGkg9NGMlYan5ej7r6K5NZGKi+6kvrTftav+XJNxu7FAqVGmIxkpBiwOHz7hW8ORK1SYUzQYUzY\n/3ohEtqJLEaEJInstMQh1bKqN1qNGmOCDsvE6UhqDVkKq4RCpCKj0xvs8Z4uGJJot3pot3hwen9s\n59vS6RbBnEEkyzJbd1r3Cqkp0Wn3YnX6yUjZvypZX/zBMOV1FnyBEEdMyj0oG3fc3iApzTvxZI/o\nsbJaT9QqVfe55pqMePwhdrYrr/7mzi8ikJJGRj8q5kCkIoII5gjC8ObyBqltUt46cjCFJAmz3YfZ\n7kOtUlEyIoXCnOQhs9FtuLK7/Nh3VWef9pdHyKrcyM6FZ7D9rAtjnrMwO5nR+amK/20PFNo5WPRp\nqVgnTMW0dSNat1PxfZMvGLmmH+i/y6HzmRIEQRAEQRAGnE6rxrchHjqjAAAgAElEQVSrlGWCxaxo\njL8fFXMse5SBDMsy4ZAM9D5fU6eLjGQDRbkpMT3w643HFyJ9WyWSVoejuDQuc5qnzIZ3XiJryzpF\nwRzbrgXXaPgCIpgzkJzuAA5PAEdDgO0tdvIyk8jPSjrkdv9IskynTVnruVhklq9j/L9fJWRIoGnB\nSYrG5JmMAxKi66+stESmjtVQXtdFsI+S76Uj02LasavTapg2NpPKegttc4/pbneic9pJbmmI/Giu\nJ7mlgZTmnSS3NJC3Znl3aCd3/UpW3vdcr/OHJZlWi4dWi4e5E3IxJojb9uHM4wvSYt47sBmSpO6v\nAaNBywiTkVyT8ZB7bxIOD20WDztaHPtVbZvx3AOktDRQ9fPf0D77qANPotGw7vr7CSUkMu79N1l4\n08UsW/wqntyCfp2bzmFj9hN/RNLqWHPLw8g65d+X9qyeM+W1p2g89jR2nH5+1OdQf9I5ZJevo3jJ\nR1QpDAZBZFdr6YdvETQmUddHSMVRUsqSZ95l3p//QP7qZZxwzS9Ycd9zuApHRX2+B4MqFGTegzeQ\nWb2Z+hPPouKSa/o958hsZdVy9mXQaRRX2lEiEtrRDsvv1SmJOtzGJGxjJmCqKUft9yEZlF032V2B\n7utEWZaxOv20Wjx02X09tsOwuf24vMGowtJC7OrbnNjdgb5f2IPtzXZmjs+OakODyxukvK4L366K\nsC1mN0W5gxsuDIUlgg4niV0dtM+Yp3jcvgHAUXmpeHwhOu0KK1qoVFhKJzNi/Up0DhvB1PRoTrub\nxeknFJYOiUrEgiDEXygsUVlvGRItoyRZpq7VgdnuY0JReo/BZWFwNHZGquUUff0xpR++jb2klHXX\n37dfFVMl1CoV4wvTyT1EqmL3l23OkWRWrCd781pa5yur+giRZ/cDHcwR38kFQRAEQRAOIzqtGq/p\nx4o5SsRaMcflDcbUjsnq8rNpu5n1NZ2YlT7w6oPT7iatrhp7SSmSPj5hgq6J05HVarIq1sdlvp6I\ndlYDy+H58YF0ICSxs93J6sp2ttZbcMT4sHogWOy+qHe0KpWzbgXH3P47NH4/P/zhIUU7SXQaNaPz\n+27fdrCkJemZUZpFwgFCDMW5Kf1amNNq1JSNziR3j93dwZQ0rOOn0LjwdLb+6v/44ZbFLH36H3z0\nr5V88N5qlvy/f+HOySOrfB0ofOC259eoMDxta7Yf8AGsxx+irtXB6sp2ttR10WnzDokHtsLQZ3cH\nWFfdSVWDdb9QTuHSTyj56gMs48oov/Q6ZROqVGy64nYqL7yC5JYGFt54MclNO/p1jjOef4hESycV\nF1+NY9S4mOawTJrBskffoO6MX8Y0vumYUwkZEij58n3F7+0Ahcs+I7Grgx2n/kzR995gajrfPfAi\n1T/7DalNOzjxmvMZ969X0TkPzZ3V3SSJ2U/cRf7qZbTNXsDaG/4U02LBnkwpBrEINAiSjZHPsbls\nFupQMKpWPHa3H48vRF2Lg1WV7WxW8P1r35CqMDBsLj8NUVR82Zerh0DxgVgcPjbWmrtDORBpuxEe\noHub3ri9QZJbGgBwFRQrHqfrIQgzoTidlChCZD+2s6pQPGZfwbDE9uZD/P1eEISY1Tba8PhDvX48\nuXEHcx69nclvPIMqFOz1dYPJ4QmwtrqThnYn8iDen8qyjGPXJrvDmccXosvuI6WhjllP3UPQmMzK\nu58mnBh9sMag0zC9NGvYhHIAPPOPBiBn0+qoxtmcA9/OSgRzBEEQBEEQDiN6rRrfrmBOosJgTiDG\nijkWR/8qfDg8Acp3WFhb1UG71dOvGz25ohJNMBC3NlYAoaRk7CXjIjtIAwNzQ9ifakXCgUmyjMuz\n/wMNSZZpt3lZX9vJuupO2i2eg74IPlA9xvNXfs2Cu69EJUmsvOcZmo49TdG4sSPTDvlKTsYEHTNK\ns0nqYeFuRIaRUXn9DxapVSomlpgoykmhryXGYHIq1nFlmCfPwuC0k9yyU9ExDqWAmBB/Zpt3r8py\nByLJMl0OHxX1FlZVtLGj1YE/IMKbQvz5AiEq6y1sqO3E6d3/PSiptZFZz9xLMNHIqtsfi6pKDSoV\nFZdex+bf3oixs5WFN11C6o6amM6z4LsvKV76MV3jp1J9/m9imiMeQknJNC84iZSWBjKVhrVlmfH/\nfh1Zrab23IsVH0vWaNl8+c2svvURVJLEtJcf5YwLj2PmU/fE/HkcaFNfeYySJR/RNWEqK//4dHRf\nL70YmZ0chzMT+pKyq+KNuWwWQCRYrFCX3ceaqnYaOpyKNxq0Wz2E+qh2KPRPMCRRtdNKf+9sdrY5\nFW3eaTa7Kd9h2W+DQTAs0Woe2Da9+3L5Qt3BHGd+ieJxet3+y2cadSSgr7SSoXVXMCejpn/trHZX\nnRIEYXhpMbt7feZjbG9m9uN3curvz6Dkqw+Y9PYLHHfzpSSY2wf5LHu2u3rOhlozbt/ABYYCwTDt\nFg9b6y2sLG9jfW0nG2o6qW9zDGoo6FDS1OlClmWmP/8gWr+XH258ANfI6KtppiXpmTUu+5CsiN0f\n4TlzCOv05GyMMpjjGvhncCKYIwiCIAiCcBjRadX4MqOsmBOWYrrRsTj9EIedcC5fkK07razZ2kGL\n2Y0kKTsXSZLx+kPY3QHUGyILJfEM5gCEjpiHJuAnfVvsu98ORCy6Dhy3N0i4j69rpzfA1gZr9yL4\nwVgsCIUlLAPwALbwf/9l/v3XIWt0fPfAi7TOU1baNSstgdyMobGLxqDXMH1sFmlJPz5gyEg2MK4o\nthLyvRmdn8rsCTmYFLTfs0ycBoBp6yZFc4tgzvAlSTLbWxwxje2u8LW1nYp6C/Yo2yQKQk/CksSO\nVgdrtnbQ0cvigCoU5IiH/oDO42b9NXfjjqLqwJ6qf/F71l99FwlWMyde/XNmPHMfxtYmxeMN1i5m\nPn0fYb2BH27+M7Lm4LYRqj/5XIBI1RwFsjeuJr2uiqajT46pnVfDCWfyydtL2XT5Lfgyshjz6T85\nZdHZHHvzpeSvWALhQ+P6cdw//8r4f7+Go2gM3z3wYkw7ePeVlKCLqQ2lEL3kRC1qlQpz2UwgumBO\nLEtkYUmmzTK4YY3DhiSR+MwTtH26dK/KNbEKhiV2tPZedUeWZbY326ltsvW6waGxw6X4vj4e3N4g\nyc2RYHx/K+ZApLpA2SgTGgUVwLor5lQrrzrVm5pGG8GQCLAJwnDh9gXZ1kM1LIOlk+nPPchpl53G\nqC/ew1E4mu/vfILGY08lq2I9J195LjnrVsTlHHJ/+JapLy0msaMl5jkcnkilzX5VzwkGu6tPyrKM\n3R1gR6uDddWdrKxoY2uDlXabt7tluUykNePGWjPeA1QbGo4CwTBtFg8j1ixjxPqVtM06iuajT456\nnvzMJKaNzUI/DFtmG9NSME+eSXpdFXq7VfE4fyiMZwBDZgDDrwGuIAiCIAiC0CudVvNjK6suZcEc\nSZYJhqSoLtTDkoR6/TrOu/aXrLj/OdrmHhvT+e7JGwhR02RjZ5uTSdVrSO5qw3LqOXgNiQRCEoFg\n+Mefg9JeO/NmbI3sTrOWTur3eexmSjGgP2YBvPM6WRUbsEyaEbe5d/MHDq+by8Hk6KFaTm92L4Kb\n7T4ml5gwJgzebVSX3ddngChaoz77V3ep2+8eeImuycq+dnUaNaUj4xtqGWg6rZqpYzLZWm/FFwgz\neZQJdT9baPQkKUHH1DFZmO1e6locvZah7toVzMms3EjDiWf3Oa/bFyQUltD2siggDF2NHS68/XyP\nl2SZTpuXTpuXlEQdBdnJ5KQnolbH/2tcGN7aLB52tDj2a1m1r8l/+39kVm9m5/FnKnoPO5DWn/+a\n7aMKKXjiQcZ+8g9Gf/ovGo4/napf/B5n8djeB8oyM5+9jwS7hY1X3IazaHS/ziMeOqYdgSc7j8Ll\nn7Pxyjv6DKCM/89rAFSfd1nMxwympFHzs8uoOfcS8tYso/SDN8ndsIqcTatx5+az7cwL2XHqeQRT\nD8737ZIv3mPaK4/hyRrB8odeJpCaEZd5C7Jib0MpREejVmM0aHFlZOEsKCarYkMk9KUZuMWbFrNb\nVEQaAPr/fkzyA/dSMn4K25/9Z1zmbO1yk5+VRPI+LZ3CksTWnVbMfWws8IfCtHa5KRikf2+3N0h+\ncz0QZTDnAM9AUox6JhRnUFFvOeAcvswcvJk5mKo3Kz5ub/yhMNuabEwsMfV7LkEQDr7Wrr0rNOuc\ndsb/61VK338Trd+LK6+QiouvpmHh6aDR0HTMqXSWzWb6S4s55o7fU3nRVVRedGVM35tTdm5j2kuP\nkLf2WwDGfPIuFZdcTe25FyNro28Zurt6jtnuY3xReo/Vi/elrtuOfulX6L/+Ct2K7winZ1Bzw93U\nzjqOoMLwpn1XKKh0ZNqwasV0IM1mN3IwwLSXHkFWq9m06NaoWsWqVSrGFKQN6+tqY4KWjulHkLtx\nFdmbf4gquGR1BQa0ba54uicIgiAIgnAY0WnVyMZkQglGEqxmxeMCUe7KsjkD5K1YgloKM/LbL6M9\nzQOfi99P8U2LGHHXHyg9Zhopd9+GdWMFHTYvNpcfjz+0X7nsjNoKJI0W+6hxcTuP4twUgnPnAZCl\ntHVBlEQrq4HjjKESidsXZH1NZ7/btEWj3RrfNlal773B7CfvJpCSxrJHXlMcygEYU5CmuGT7oUSj\nVjN5lIlpYzMHPOCSlZbI7Ak5jM1PQ6ve/1i20eMJ6w1kVimrmCMDzihCZMLQ4A+EaWjvfad5LJze\nIFUNVr4Xba6EKNhdftZVd1LVYO0zlJO9YRUT3n0ZV14h66+5O6bjadQq8kxGZpRmM3diLqkXX4Dz\nh42Yn34JT/EYSpZ8xKm/P5P5911DRnXPLT+Kln7CyO++onPKbGrPUd4GakCp1dSfdDY6j5uCFUsO\n+NKUhu3krVmOefJMrBOm9v/YGg2t849n+eLX+OIvH7H9jF9gsFmZ9spjnHHRQmY9efegt7nK+34p\ns568G39KGsv//DLenLy4zKvTqMk1JcZlLkGZFGNkUcJcNgudx0Vafe2AHs/jDw3qdfbhQAqF0fz5\nQQBM1Vuiqk52IDJQ22Tb68/8wTAba7v6DOXs1tjhGrSWwW5fiOTmnchqNe4RIxWP661izm7Z6YmM\nVtAi1zJ+ComWzri0n2nfFcoWBGHoM+/6v6zxupnwzkv85JKTmPiPvxBMSmbdtffw+Suf0HDiWT8G\nb1Qqtp99EUufeAtPTh6T33qOY+74PQZrl+Jj6h1Wpj/3ICcvOoe8td/SPn0eG6+4jbDBwLSXH+XE\nq3+OqXJDzH+n3qrnSLKM1+bA9/GnyDfcQPLsaWTOm0HKHbdg+PorXNl5qLs6mXzrFcy98wqMbc2K\njxmSJLY2WNlabxn2bTHDkkSL2c2Yj/9BatMOtv/kfBwlpYrH6zRqpo3JHNahHIhUtrPOjDyzz9m4\nKqqxNoXtxmMlKuYIgiAIgiAcZrQaFV5TFokKW1lBpEwmicrT4hanj7G7buTiHVpJ216NzuPGNno8\nBpuFce+/ybj336R17jHUnnMx7TOPhD0WxFXhEOl11dhLSpH0fbeaUSI92UBasgEpqZBAzggyKzZE\nSq7GuRKHPw6lxoWeuaxOjr/2QpoXnET1+b9TPC4kSWyp62JUXipFuSkDeIYQDIWx7dGiJrGjlWNv\n+w3OgmLqT/4pLfOOQ9Yp7AMty0x45yWmvP40XlM2yxa/euCKBPswpSQwYgjvPlKpVOi0gxMqUqtU\njMxJJteUyI5WJ61d7u6WDrJOj7V0Mqatm9B4PYraejjcATIUtMkSho66FnvcK2HtFgxHKnw1drjI\nTEtgZHbyXu3cBAEiD3RrGu20W5W1jdHbrRyx+BZktYZVtz9GKCm6CgfpSQZGZBrJTk9As29oUatF\nvuACvL/4BV3/+YDUZ59g5IoljFyxhLaZR1J1wSI6p84BlYqErg5mPPcAoQQjP/zhob2u9w62+pPO\nYdLfX6Tkq/cjCyi9GPefNwCoPu/SuJ+Do6SU9dfey5bLbqDki/cZ+9HbjP7sX4z+7F9UXrCIisuu\nj/sx95W1ZS3zH7wRSafnuwdejOpaoy95mUn7f/0IAyrZqAeLB3PZLEZ98R4nXnM+ksJd+dvP+CWb\nF90a9TFbzG7RrixOgqEwHa/+nenbqvBlZJFgNTPy2y+oOf+3cZnf7g7QbvWQm2HE5Q1SXtcVVass\nXzBMW5eH/AFeHPTu2riT3LITT3Yekl75dZFe1/d7TlFuCh5fiLYDfE+1jJ9CwcqvMVVvoSUrV/Hx\ne1PTaCM9WT9o9zeCIMSfwxMg4PYy9r/vMvGdl0iwdeFPSWPT729m21kXIhl6/15onTCVr577D3Mf\nvY381cs46aqf8v2dT9BVNqvXMapQkDEf/4PJbz2H3mnHlV/EpstvoWX+8aBSsfPEs5jyyuOM/vw/\nnHD9hWz/yfls+e2NBFPSov677a6e02H1ktbWQMp3S8n6fhn5m39A64+EN4OJRpqPPIHWOcfQNmcB\n3px8kht3MPPZ+8lf/Q05G1dR+aurqDnvUsUVfNptXuyeABOLMkhLHp7PUFq7PGC1MPmt5wgkpVBx\nyTVRjR9flD5sPzf78k+bQSjBSM6mNVGNsw1wq3ARzBEEQRAEQTjM6LUafKZskivWowqHkDV9XxJG\nWzHHanFhqoqUak5pqsdg7cKfkRnT+e4rq2IdANU/u4zGY09j5HdfMfbDt8lbs5y8Nctxjiyh9uxf\nsfOkcwgZk0jduR1NwB/XNlbFuwMZKhX+ufNI+eQDklt24iooidsxQARzBkooLGGo2ERm1WbS6rdR\nd9rPo3rYIAN1rQ7c3iDjitIHbJGow+bbaxfp2I/eJqWpnpSmevJXL8OflsHO48+g/uSfYh8z4QAn\nLDPl1SeY8O4ruHPzWbb4Ndz5RYrPQ6NWMa4w+ocxhzudVsO4wnQKspPY3mzHsmvXTdfEaWRVrCej\ntgLz1Dl9zmOPobqTcOiyu/y0D8Iu5z3bXE0dnSkWOYVuXn+Iih0WXL69q3GpggG0Xg9anwedx939\na63Xw5hP/kGipZPNv71RcZWXBJ2GXJORESYjiQYFjx/Vaow//ym+c8+m/MPPyf7L04xYv5IR61fS\nNXEaW3+5iDGfvIPe5WDdtffgziuM5a/fLxq1iuy0RCxO337Xxu6CYjrLZpGzcTXG9mY8uQX7jdfb\nLBQv+RBXflFkEWSABFPSqP3ZpdSeezF5a5Yx4/mHmPjuyzQuPD2qHbXRSqur5qi7r0IVDrPi/mex\nTJwet7nVKtWw39l7KErdVTGnef7xFM5egN5pVzTO2NbM+P+8TvNRJx5wkbAnXQ4fvkCIBL1YtugP\njy/Ilm1mFvz1aWS1mhX3PsvCG35FYRyDOQB1LQ7UKhXVDbb9qtYq0dDhZESmcUBaze7m9gXRetwk\nWsy0zTwyqrF9VczZbVxROt5AqNfrdsu4MgBMNeW0HHViVOfQk2BYorrRRtmo+DxjEQRh8Fl3tnLy\n5WeS0tJAMNFIxa/+j5rzfk0oSdkGsGBqOivue57x//wrU15/iuP+8Gu2/PZGan522X6bBkesWc60\nlxaT2lhH0JjMpstvYdtZF+0VVAykZrDuxgeoP/lcZj19L2M+/ScFK5awadGtNJxwpuKNiGq/j5xN\naxjxw7eM+GE5KS0N3R+zF4+lbc4xtM49BvPkGfttNHMVjmL54lcp+vpjpr20mKl/fYLirz9m3XX3\n0jV5pqLj+wJhNm4zU5SbQsmIFFQD+P1lsMmyTFOni0lvP4/eaWfT5bcQSFfe2jA7PZGstMOn+qQx\n2Uhn2Szy1n5LQlcHvswcReOCYQmXN7hfu854EVe4giAIgiAIhxmtVo0vMxuVLGOwWRRdmAaiCIh4\n/SEMlVvQ+n2EdTo0wSCZFetpWXBSf067W/aWSDDHXDYbWaenceHpNC48nYyacsZ+8BaFyz5l5nMP\nMOW1J6k/+acEkiM3tdbSyXE5flqSfq/qFfL8I+GTD8is2BD3YI4kywSCYfRDsH3QoczpCXYHx7S+\nyIJj1QWLop6n3ebF4w8xeZRpQBYPOvbYdakO+Bn1xXv4U9NZ/tArFP3vE4qXfNRdMco6dhI7Tvkp\nDQtPJ5ia/uMkksSM5x9k7Ed/xzmyhGUPvxp1S4nR+WlicaQfkv4/e2ceHldZt//P7JOZSSaZ7GuT\npnu6l26UspWyyY6AigqyKCryvqK+oj8V3BXcUEARRQVkpyAF2feltNA9S5MmafY022T2feb8/pgk\ntDTLOZOZbnk+19UraXK+z3nSTuac8zz3976NOhZW5jDgDNDU5WRgziIAsvfslCXMcfuEMOd4QZIk\nGjvlbWomk/o2ByfMyRVd1QIG3UFqW+zkv/Ycqx77G3q3A63fh87vQx0ZPzavZ8kq6i8bfzPXZNCS\naTGQYzWSlW5IaCFcq9WQf+mncJ29nqaX3mTav/5M8abXOOnWrwGwf+mJNH/qCsXjTgarWU+BzURu\nZhpajRqHJ8iupoFDIlha1l9EbvVWpr36LHVXfvWQcWZsfARNOETDxV/8OJIglQzFXKFScdKPvsai\ne3/NO7+4L+kOjwCm7g7Wfv869F43H9xyBz3L1yZ1/ByrEYNevIcdbsxpOtQqFeGMzPhrRya22u2s\n+9/PsezO23jlnqfkOzwSF8B39fuYXjRxPJBgdAbdQWr22cl/8wUy9zXQcsaF2OcupnfJKgq2voep\nuwNfofw4p/EIhqPUtNgTrg+EovQO+lPqzOn1RzB3xzeGPcXTFNXqZD6Hq1Uq5lfY2NrQR2CUONHB\nYWHO0DNoMuh3BkYciwQCwbFH2pOPkd7VRuvp57PjhlsUCSxGUKup/8z1DMxbxKpffItF991BTvVW\nPvz2LwinW0lvbWTRvbdT+NE7SGo1TeddQfUXbxr3XAPzl/HKPU8xa8O/mPfQPay8/btUvLSBrTfd\niqe0YtQac2crhUNCnLydW9CE4k1Jo7niTIhKRdsZF9C94mQW3P97Kv/7OKd/80qaz/k0u6+9mVBG\n1oRDSEBrjxuHO8icaVnymgSOAfocfrRNjcx49hE8RWU0XnCl7FqtWs2M4qnVcGc2auldvJLCj94h\nd+cW2k8/T3atwx0UwhyBQCAQCAQCQXLQadX4bbkAGAf65AlzFDjm2F2Bkfiq1jMuZPoLT5KTLGGO\nJJFTsw1fTj6+/IMf6AZnzefD//sVu67/DtP/+ziVGx9h5jMPjnzfMSM5jjnTPhFfFF0Zz6zNqdlG\n65kXJ+UcBxIUwpyk4/KGyGuoBiCq0zHzmYdouPTqhKLO3P4wW+v7qKqwkZlEO9jAJzouS95+CYNz\nkD2XX4tjVhWOWVXsvuabFG55m/KXn6Zw81ssvftnLPrrr+k6cR37zrqU3kUrWHbnbVS8/DSOilm8\n/au/E8zKUTSPTItBdKgniWyrkQyzjm0dcWGOrW6nrLpwNIYvEMZkTM2igODwsd/uw+0fX/yQCoKR\nKHWtDhZWiq7qqUxHr4d9LX0s/MsvmfHco0R1OgK2PALZeXjSTESMJiJpH/8Jp5njnxvNhNMzaD/5\nrIOio9QqFWajjkyLHqtZjzXJkRoZZj2Wi9fTedKJ1L3/ETMfu4+M1kY+uvlnKRGWfBKDTkPBGI4/\nmRYDFYUZNHUdLLTrOOUcltzzC8pfeYa6z91w0DzVoSCVzz5MyJJBy5kXpXz+B+I6ZT09S1ZTsPU9\nCj58m/0rTknq+IbBfk7+3rWk2fvZ/tXvK1r0lktJrrL4NEFyGP49d/uViYTt85bQdO7lVP73cWZt\n+Bf1V1yvqL57wEt5QTpq9fHT5X642G/30dDuIBaNUvXQ3UhqNXVX3gBAx8lnUbD1vaTGWSWDth43\n+VlpKXM18ATCpHe2xj9XKsyR6ZgDcbfMuWVZbG/sP+R74XQr7uJpZO2tSWoEdmOHk0yLAYNYLxAI\njik8/jBFL2wgptaw8yvKXE9Go3/hCl65ZwOrfvkdije9jvXrn6Z3yWrKX9qAOhalZ8kqdtzwPVwV\ns2SNJ+n01F9xPe2nnMuSu39K0ea3OPOGC9lzxfXs+cyXQZLGdsUpn0n38rXsXz66K45cwhmZbPvf\nH9O6/iKW/vE2pr/wJMXvv8bO6/+P1vUXynofdfpCfFTfS1W57bhwkG3v9bDor7ejjkbYef13FEUz\nVhZnTLlrhcmoo3VxfM0+b+dmZcIcT5CSvNQ8fwhhjkAgEAgEAsEUQ69VE8gaEuYM9smqUeKYY3cH\nmVWzHYCGS66i/OVnRoQ6k8Xc1YZxsJ+2U84Z8yEsmJVN3ZVfZc8V11H87ivM/M+/UYeCOCrnTvr8\n6Wn6Qx7mIvPmE00zkTP0MyebYChKumiCSypuX4g59bsJpVtpPvtS5jxxP9Nee5Z951yW0HjhaIxd\nTQNUFmVQnKSNo97Bg6NuKp97FEmlOsglQNLp6VpzBl1rzsBg72PaaxupeGkDpW+9SOlbLxJOM6Hz\n+7DPXsDbP//rwU46MtCoVMwuVVYjGB+dVoO2rBRfTj7ZdTtkL8w7vSEhzDnGiURjNHe5jtj57e4A\nHb2epC0u+QJhXL5wSjvcpzoxScLtDaHTajAZE1++i8UkGtoduGobOPXn38TWUI2zfCbv//DOMbte\nR0OjUpFp1g8JcQxkmHUpi3IcRq1SUZpnIffck2hctIB+ZyDl58u2Gim0mSZ0/CnNs+Dyhuhzfny9\njpjMdKxdT/mrz5Jds+2gCJ9prz2L0Wmn7orriaYdHsGrWqWiojCDklwzjd/8IXlXn8eie2+nZ+mJ\nSNrkXFO0Xg9r/9+XSe9qo/azX6Hx4i8kZdwDyTDpyTAntqkjmDzpJuXCHIDd13yT4vdeZd5D99B+\nyrn4Cg6NdxuLcDRGryO1LirHI/u6XbT2uAEofvcVrC17aTnjwhFX1841Z7D0zh9T+vaLR5UwxxeM\n0Ovwp8z5xesPkz0kzHErFObodcquc9Yh17jRrlf2WQuY9g9HSPIAACAASURBVMZzSY3ADkdj1LcJ\n8bVAcKzh/Wg7FY21dK08VXHz1FgEbbm89au/U/XgXcx7+C9YXngCd/E0dn75u3SvOjUhQaCvoJj3\nfvJnit97hcX3/IKqh+5h+n+fQO9xfeyKYzLTseYM9i9fy/4T1ip2aJ6IgaolvHr3k8x8+kGqHriL\nFb/5HuUvb2DbTbfiLqucsD4ak2jv9RzzwpxBd5C0d9+kaPOb9C5aQdeJ62TXZpoNFGZPvYY7S5oW\nR+UcQpYM8nZsVlTr8ISQJCklomEhzBEIBAKBQCCYYui1GgJDjjlpdpnCHJmOOTFJwuEKkF27DX92\nHu6ySgZnziNrby2agJ+ocXJZtrnVQzFWC5ZNcCRIWh0dp55Lx6nnTuqcBzKtYJQNTa2WwJJlZLz/\nDnrXoCxbVSUEFYiiBPLwd/dg6Wpj/7I17L3kqngc1BP/YN9Zlx7kBqCEmCSxt9OJxx9mZmkm6kk+\nvB0ozLE27SGndjvdy9fiLSwd9figLZeGy66h4dNfwrZnF+UvP03ZG8/Tu2gl7912FxGz8s34isKM\n48by92giM92Afc4iSt59mbS+bll2zi5vaEoupBxPtHS7CUdHuZZGoxRtep38HR/gKSpjcMZcHJVz\niZjTDz12kjR3u7Ba9KSbJrfBHQxF2dU0gEqlSmmH+1QjEo3h8oZwekM4PSFcvtBIVJIt3UhJrlnx\ngnIwFKV6nx3L6y+x/o5b0Htc7DvzYrbf+ENF92QzSzIpzDZN+tqWKEa9lvkV2fgCYWLSxMcPE41J\nRKOx+MdDPpeIxuJ/j8UkstIN5GWZ0Gnl3wfMLsvE2xDGF4yMfK1l/cWUv/os5S8//bEwR5KY9dS/\niGm0NF4o33J+MlhNemaXZY6IOm2rT6D5nMuofP4xKp97jMaLPj/pc6hDQdbcdiNZjXU0n3MZNVf/\nz6THHI2SXHH9O5Kkm3QwoLwunJHJzq98l5W3f5cld/+U937yZ0Wbgp19XiHMkUksJrGnbZBeh3/4\nC4e45QCEMrJSEmeVDNp6PCkR5sRiEv5gBEsCjjlqlQqtAsecYaYXZmB3BQ+JOxycPZ9pbzxHVn11\nUiOw7e4A3QNe8awgEBxDmJ58HCDu/JJMNBpqrv4fepesxtLVSssZFx7kWKMC1GoVWrUajUaFRq1C\nrY5/HA//Oeez5eTTmP63P1Dy1EN4SsrpXr6W7hPWTsoVRy6SVkfDZdfQfsrZLLn75xRvep11N32G\n/z7wsqw1WIcnSOgYdyPv6HKw7N5fI6lU7LjhFtn3VGqVillTtOFOp9Wg0+voW7Cc4k2vYerpxJcv\nTygeicVw+8IpaQ4Qq6wCgUAgEAgEUwytVo3rgCgrOch1zHF6Qhi720mz99N+8tmgUtE/fxnZe3Zh\nq99N36IVCc8bIGdYmFM1sTAn2ViMOnKso29ixVathvffIbtmB92rT0vqeYNh+TFigokJhCJYancB\nYJ+9gEB2Hq2nn0fFy09TuPlNulefPqnxu+0+fIEIVRW2hB/6fYEwnsDHcTeVzz0KQNN5n524WKXC\nPncR9rmL2HbjD+NCowQ2Uq0mPcViIywlZFkMDMyNC3Oy63bSIUeY4zv88UeC5OENhOka8B70NZ3L\nwfQXn6Ry4yOYe7oOqfEUluKonIujck5crDNjXlxUOwlhREySqGsdZNns3ISdTsKRGLuaBwgM3RcM\nOAPkZE5OdDtVCYWjOLwhXJ4QTm8Qjz/MWJoTuzuA3R3AZNBSlGOmwGaacLPQ6Q1R19jLzPt+y5zH\n/05Ub+DDm39Gy9mXKppneUH6URNpeLQ5h2k1aqoqbGyr7yM6tAHbt2gF3rxCSt9+kR1f/T7RNBMF\nH75DRlsTLWdcQCAnP6VzOtAl50DRXLbVyK4v30zZG88z78G7aF13PuF0a+InkiSW//b/kbdzMx0n\nrWfrTbemJGLMqNOI95gjzGTEnG3rzqfipQ0UbX6LovdeVRRt7PaHcHlDwi1pAsKRKNXNdpy+j12N\nRnPLGab95LOPyjgrbyBMr8NPXpJ/372B+LU1vbMVSa3GK3NDDpTFWB2IyaijwGY65N7PPnshALb6\nXUmP/GvsdJKVbsCoF9t9AsHRjs8bpPDlZwhZMuhalfj6oVqlQq9Vo9dp0OvU6LUHfCw/G51WzTKN\nGs2Q8CYuxJmM22UO/PEPDNz5e1CpyJIk0kJRCoMR/MEI/mAUfyj+eSAUPUScmAz8eUW8/+O7mX//\n75n76F8p2PI2bWdMLG6SgD5n4Kh5plGKxx/G+sRDWFv20nz2pTgVOMJPy0+flPvqsY45TUfv4pUU\nb3qN3J1baD3zYtm1Dk9QCHMEAoFAIBAIBJNHp1Xjzx4S5sh1zJEpDrG7A2QPxVb1Vy2Jf5y3hNn8\ng5zqrUkR5oTM6TjLZ05qnESYVjC2e0F05WoAcmq3JV+YE4pMfJBANi5fGFv9sDAnvjja8OkvUfHy\n08x+4v5JC3MgnmO9q2mAxTNzEuqy7DnALUfr9TDttY148wrpXnGysoE0iQmD1CoVs8syhQtGirBa\n9HTPWwwQF+accs6ENd5AmEg0ltDrSXDkaexwjixMZuxrYOYzD1H2+ka0wQARQxpN511B22nnkdbf\nQ2ZjLVmNdWQ21VHy7suUvPvyyDiBzOy4UGdmFXsv/kJCtue+YITGDiezy5S7u0VjMXY3D+A9QDjY\n0ecVm+YKCT36OO1RPe3zTlAsZPAFIzR2OtnX7aLQZqYoxzzqQmv3gJf2HQ2s+vnN5FZvxV08jU0/\n+APOyjmKzldoM1FekKGoZqphNuqYXZZJbetg/AtqNa3rL2Lev+O2/21nXMisp/4JQMOlV6d0Lp90\nyfkk+bOnUfu5G1j0t98w76F72PnV7yV8rtlP/J2yN56nf94SNt9yR8L3HBNRlGM+Yk5NgjhmoxaN\nSjUiPlOESsXWm27lzBsuZMk9P6d36YlETPI3xTr7vUKYMw6+QJjdzXb8Bz4vjuGWM0zXmnXE7rzt\nqIuzAmjb706BMCf+b2PpbMWbX6zI1UGJg9onqShMp3fQTyT28TqKo3IOMbUGW311wuOORTQmsafN\nweIZyYnEEQgEqSP48iukDfTS9KkriOkNsuvS9FpmlWaOiG8m8x41KYbuy1QqFWkG7aguy5IkEQhF\n8QUidPR5GPQEkzqF1nXnM/fRv1K06Q1ZwhyAvkH/MSvM6W7uYtm//kg4zUS1AodKi1FHaX5yoqyP\nVcxGLb2LVwKQt+MDxcKcsvzkOxkLYY5AIBAIBALBFEOvVRMY2syTG2UVicWIxSTUE9ibDrqCzKrZ\nDsBA1dKDPmYPfT1RDIP9pHe20r18bcoW/8fCYtSRO84iYeSE5Uhq9aR/xtEIiCirpOL2higbWgy1\nz54PgKt8Jt0rTqZwy9vY6nZgn7t40ufxBMJUN9tZWJk94e/NJzkwxmraa/9BG/BR99kvH7bXfXlB\n+lHnSnA8oVGriS5cTEyjxbZnp+w6lzd0zOeiT0X6HX4cTi9Fm95g5n8eIm/nFgA8BSU0XnAlLWdd\nfJBrRftpn4p/IklDQp24SCezqY6sxjoKtr4X//PRO7zxu38nFBHZbfeRlWFUtPkVkyRq9g3iOqAj\nH8DhDeL2hSYdjzVV0Lz9JsU3XUcxMHdaJY0Xfp7WdRcQTVMW3xGNSXT0e+jo9xwUcxWTJBo7nERe\neYV1v/wORqed9rVn8dHNP1McaWhLNzBzitqeKyUvy4TLG6aj3wNAy5Awp/zlZ3BWzCZ/+yZ6Fq9S\n1N2qhLFccj5JblYaH112NZXPP8aMZx+m6bzP4CmtUHy+/A/fYcHff4cvJ5/3f3Sn7E2lomwzoUiU\nQXeQqIxMMo1KJaJZjgJUKhWWNN1BjixK8JRWUH/5dcz795+peuBP7LzhFtm1fQ4/M4oz0GmP3eiJ\nVDHoDlKzz36Q8APGd8uBozvOyhMI0+/0j+lSmwhefxit14PRMcD+Gcregyez6a3TaijNs7Bvv2vk\na1FjGq7ymWQ21aGKhJG0yX3ecniCdPR5KMmd2puwAsHRjuXJxwBolSkoGabAZiIrXb6Q50hyoGgn\n22qk3+mnuct1UPzrZHCXVeIpKqNg67uoQyFi+omfRZ3eIMFwFMMRjLOSJElxA1wwFCXnnt9jcA6y\n+0vfJDjkgD8RKmBWaeaUF7ibjDo6p80gYLWRt2MLSJLs5hinJx4tnex/Q9FuJxAIBAKBQDDF0GnV\nhDIyiWm0GAf7ZdcFJxCIBMNRPIEwOTXbiBjScEyfHf96VjbuknJyardDNHGRSU71kBPP/BMSHiNR\nyiboMJDSMwjMnoetfjfqUGKL1mMx0b+7QBkubxBb/W68eYUHPdDWXxbvGJ39xP1JO5fDG6S21Y6k\noMPY5Q193PUqSVRufISYVsc+hdEjiZKepqc0TyzmphprbiaO6bPJ2lsr+z3jk4IIwdFPtH8A6be/\n4ZyrzmTNT24ib+cWepas5t0f380L/3iRvZ++euwoGZUKf24B3atPo+7zX2PTrX/ivw++yjMbNtN8\n9qVkNdZxwu9/GF9YSoCGNgd+BQuj9a2D2N2BUb/X2ecd9euCTyBJ6H/2EwA6V68jvbONZX/8Medd\neRoL7/015u72hIa1uwPsah5gS10PO+p7sd55Oyd/7zr0Xjfbv/p9PvjB7xWLcixGHfPKbVN+IVcJ\n04szsA45e3iLyuibv4z8HR+w6K+/BqDh0qtScl6rSc8Js3MpzbNMuNCvVqkoKrGx6/pvo45GWHTf\nHYrPZ+lsYdUvvkVMq+P92+6SvTmQYdIzqzST+RXZrFlQyKLKHErzLFjGEQLn20xHrhtccBCTFV/W\nffYreIrKmPnMg2Q21squi0kS3QO+SZ37eKR7wMvu5oFDRDkTueUM037y2QCUvvNiKqeZEK37PUkd\nz+MPY+lqBcBdPE1RrX6S7z8leeZDNoDtsxegDQbIaG2c1Nhjsa/LhS8gHHcFgqOV4ICdvLdfwl1U\nxsA8ZQ1heVnHrktpjjWNE+bkUVlkRTupOK0hVCq6Vp2Gzucld9eHskok4oLfI4XLG2JLXS9d/V5i\nMgTqw/Rt282Mpx/Em1+k6HmiOMciXAeJO+agVtO3aAWm/v0j9wRyiEoSbm/y1+HE041AIBAIBALB\nFEOvVYM67pojN8oKIBwZP87K7gqgczuxtuzFPmfhQR1g/VVL0fk8WFv2JjzvnOqt8bHmL014jEQw\nGbTjuuUME125Ck04RGZjTVLPLzdGTDAxMUki2tKK0THA4KwFB32vb+Fy7LPmU/zeq1g6W5J2zn5n\ngIZ2h+zjD3TLydn9EdbWJjpOWp9QZI1SRITV4SMz3YB97iI04RDW5j2yalwpWBAQpA7jQ/9CVVrK\nvHvvwOB00HTeFbx430be/vVQZF6CDlhhSwbbvvEj+uctoeyN55mVoJgwEouxp3VwJGJrPBo7nPSM\ns4jZ6/ATEiLSCVG/+jKWHR/ReeI63v/xXTz/4KvUfP7rxHR6Zj/1T865+ixOvPXr5G17X7HgSuv1\nYNi9g0XfvJr5D9yFP6eAN377II0Xf0FxXJZBp2HB9GwRnacQtUrFvHIbhiFnj5Yhm/T87R/gKp3O\n/uUK4yhlnK+yyMrimTmKXO4Ks030nnwWvQuXU/TBG/HXm0y0Xg9rbr0RvdfNR9/8CYOz5suqUwEz\nSz4WIapVKrLSDVQWWTlhTh6r5xUwuzSTXGvaQZs1JbnCLedoId00OWePmN7Atht/hCoWY+mdP1bU\nrNHV71Ukcj/eae5yUd/uGPX6PeyW03r6+aO65QzTtWYdMbWGkrdfSuFME8PtD2F3jS4ETgRvIIyl\nM74J5ylSJsyZrFOTRq2movDgOMhhx1Zb/e5JjT0WUUmivm1Q/M4IBEcp0Sc3oA0G4m45Cu7RrWb9\nqJFRxxJqlYrSPAsr5+VRlG1msqtOXUMx9EUfvC675kgKc1r2u/CHIjR0ONhc20N7r4dIdPz13kg0\nRv7tP0UdCbPrum/Ldqk06jSUFyY/gulYxDwU+zwSZ7V9s6J6h0cIcwQCgUAgEAgEk0SrUaMCAtm5\ncWGOzEWbiTbd7O4g2XU7AOivWnLQ9/rnLwMgp2ar8gkPkVO9lahOh332gokPTiJl+emyhAqxVasB\nyElynFVMkoRrTpLw+sNk7tkFgH3OJ15HKhX1l12DSpKY9dQ/k3rebruP5i7XhMdJknTQQkHlxkcA\naDr/s0mdz1iU5VuwpIkIq8NBuknH4FCHXHadvDgrlzecyikJkoiqpwfzD24hqtez48vf5bmH32Db\nTbfhnjYjKeNLOj3v/+hOfDn5LLz/d+R/9G5C4zh9IVr3u8c9pq3HPRLPMxYxSaKzX7jmjIskof/5\nTwGo+eI3AAhk51H7xRt57qHX2Pzd27HPXkDxptc55ZZrOfPL5zP9uUfR+D92itB6PWTuraHkzf8y\n5+G/sPyO73Ha/36O8y8/iYsvXs4ZN15Gwdb36F5xMq/8+SnscxcpnqZWrWbB9GwMehEbkwgGnYa5\n5VmoVSo6Tj6biCEu7G645CpQ0B2s06ixGHXY0g3kZ5kozbMwo8jK3GlZLKrMYcWcPE6cXyDLJeeT\naNRqSvLS2fmV7yKpVCy699fyRBKxGCtu/y4ZbU00XHIVbQriFwqzzeM6rhj0GgqzzVRV2DhxQQGL\nZ+QwqyRTxGoeRUxWmAPQc8Ia2k49l+z6XUz/7+Oy6wLhKAPO5Ak1jlViMYmaFjttvWNct4fccmJq\nDbVXfnXcsYbjrGwN1Zi6O1Iw28kx0b2JXELhKKFIjPRhYY5Cx5xkOHblZ6WRfsDz1fBahm0oWjkV\nOH0halsHiX7SUUkgEBxx0jckHmN1vKDTaphVmskJc/KwJRDNpdeqsaUbcC8+gVC6laJNb8he13Z6\nQwRDh3991eUNYXcHR/4ejERp6nKyubaHlv2uMRth3S+8StG7r9BftZSOIbc7OcwsyRRNFkPotBr0\nWvWIMCd3pzJhzqAnOPFBCjm2JXYCgUAgEAgEAsWoVCq0GjV+Wy62+t3o3E7CGZkT1gXHccyRJAmH\nO8jsIVFKf9XBrjbDQp2c6m00XXCl4jlrfV6ymuoYmLtYdodAMkjTa2XbxYZXrAIgp2YbDZddk9R5\nHOkc5OMFly+MbU+8O9E+e+Eh3+88aT2eghLKX36Gmi98g2BWdtLO3dbrRqdVjxsT5fCECEbiiwQG\nex8l772Kc9qMEWFbMlGrVJiNWixpupE/6cLm9rChVqmILFsOQPaenTTyhQlrIrFY3I5fiKeOesy/\n+zVqn5e67/yMvetTE0MXtOXy/q1/4rSbP8+qX3yLV//0OF6FG04QF95kpRvItBx6be0e8NLcPbGo\ncPjYafnpqNXCcWs0Ys8+S3rtLtpPORvnUNTnMJJOT9u682lbdz62up3M+M+/KX37RZb98ccs+Pvv\ncE2rxNLVjtExcOi4ag2+gmK6Z8zDU1yGffYC2k4/X5EIZBi1SkVVhU28x0ySTIuBisIMmrok9l70\neQq2vkvrGReMebwKsFoM5GamYUs3YNBrUh4hVpRjpm3WfFrOvJiKlzZQ8eJT7PvU5ePWzHvoboo3\nvU7PklXsuv7bss+l0xzqGDEeapWKTMvo70mCI0eaQYtGrSKqIHphNHZ+5bsUbnmbBff/ns41Z8iO\nQuvs95Ijw8H0eCUUjlK9zz5urGnJuy9jbdlLy/qLZN0PtJ98NgVb36P0nRepv/y6ZE530jh9IQbd\nQbIS2LA9EO9QpNOwY47iKCvd5Dc1VSoV04us7GyKR4i7ps0gqjeQ1ZA6YQ7EXSH8gQhVFbZj3mVD\nIDheiDTvI3f7ZnoXLsdXUCy7Tq1SyXLxPtYwG3UsrMyh3+mnucuFb5SY5TS9FotJh8U4tG5l0o2s\njbbsd9G9/GSmvb4Ra/MenJVzZZ231+E/7PHtLftdqENBtD4voUzbyNfD0Rgt+92093ooyjZTkmcZ\n+flikQj5v/ghADtuuEW2w1JuZhrZVmPyf4hjGJNRh6O4HH92Hnk7t8SFXDL/PV3eELGYlNR1DnFV\nFggEAoFAIJiC6HUaAkPROGn2PlnCnHBk7K4Cty9MOBoju2Ybkkp1SFayp7icgNWWsJuMrW4Hqljs\nsMdYleVbZG+OxEpKCRUUkV2zXdFNvhxCoSgcPw0yRwy3N0RRw24klYrBmVWHfF/SaGm49GqW3v0z\nKjc+TO2Qq0GyaOpyoteqyR+j26l38GNnhIoXn0IdCcfdcib5WtKq1R8LcEzxjyajNuUbf4LxMc6Z\nRTAjE5tMxxwAty8kNs2PcjTNjRgf/Cfu4ml0nH85BFLXkTc4ewFb//fHrLjje6y57eu8fudjREzK\nol8koK51kBNm5x3UGd7v8CuK4QtFYvQM+ijMFtEzhxCLYfr1z5HUamq+cOO4h9rnLmLL3EXs/PJ3\nqHz+caY//yi2PbsPEN9Mw1NUFv9YXIY3vxiVTo9eq0an1cS740dZ1JbDrNLMSW+CCuKU5llw+UJU\nX3sz1dfefMj3DxTj5FqN6A+z+FqnVVOYY6b66v+h9K0Xmf/PO2k/9Rwi5tEt74vefYWqh+7BU1DC\nB//vd0ga+cvJ04sykuI6ITiyqFQq0tP0OLyT6xoOZOex+5pvsvSun7Lo3tvZ8r07ZNUNeoL4AuEp\n6aLkC4TZ1TxAYLwO/1iMeQ8OueV87gZZ43atWUfsztsoefulo06YA3HXnEkLc/xxt0lLV2tcyJpf\npKhelyS3gax0A7Z0I3Z3AEmrY3DGPGx7dqEJ+IkaU7fZ7gmE2dbQx7xym7i+CwRHAw//G1DulpOd\nYTyu3U9yrGnYMox09XnjjUimj5vHxvu5czPT6Fp9GtNe30jRptdlC3P6DrMwx+kNYXf4OP1bXyS7\nfhd+Wy6Oyjk4ZsxjsHIujso5eAtLae/z0NnvpcAWd8tUP/BP8hvraDnjAgZlOsfrNGpmFlsnPnCK\nYTHqcHiC9C5eybTXNpLR2oirfKas2pgk4fSGknodFcIcgUAgEAgEgimITqMmMNShaBzsl3VDGgqP\n7ZhjdwdQRcLY6nfjrJh16MK+SkX//KWUvPcqab1d+POULYrl1GwDoC8FziFjYdRpxhRQjEV4+UrM\nG5/G0tWKp7g8aXMJiCirpOBy+7E11OAqqxxz87rlzIupeuBPzHj2Yeovvy7pi6X17Q60GvUhHSyx\nmESfY8imPxql8vnHiRhNtK4bu8t+InKtaUwvyhBdkkcpmRlGBuYuomjzWxgG+wkOiSXHw+UNHbXC\nh5gkEQhGMRmn9uvN9MufoYpE2P2lbyJpdUBq379b119EZmMds55+gBW//i7v3/pHxW4pwXCU+vZB\n5lfEXcIcniC1rYMo9UXo7PMeta/PI0no8SfJbdxDyxkX4C6rlFUTtOVS+4WvU3flV8k0adEbDeh1\nmvgfrZp8nYZSnXpEkHMgLl+I/QM+egf9RGTGWFQUZBxXFvlHA7NLM/H6wyPdv0dajPNJSnMtdPXn\nU/eZ61nwzzuZ+8i97L7uUCecjJa9rLjjFiKGNN6/7S5CGVmyz5Fh0ov3hOOIdJNu0sIcgKZPXUH5\nK88w7Y3naDnrYnqXniirrrPfy8ySiZtJAKKxGH2OAN5AmMqiY3eDatAdpGaffcL38pJ3X8ba2ijb\nLQeG4qyWrqbgo3cxdXfgKyxJxpSThsMbxOkJYp2Ee5ZnSJiT3tmKt6B46L5MPskUFVYWZzC4J4AE\n2GfPJ6d2O5lNexj4RAR4sglHY+xuHmB6UQYluYfXIUIgEByAJJHx9ONEDEY61p6lqDRfpov3sYxa\npaJEoVjGbNThOvFUYlodRZveoO7zX5dV5/KF8Acjh22drHW/i8rnHyO7fhfuknI0wSCFH75D4Yfv\njBwTNplxTJ+Do3IujhlzaSyr5MTf/IKIwUj1l74p+1zTizKO+DPG0cjwGlXv4lVMe20jeTs2yxbm\nQHx9RAhzBAKBQCAQCASTQqc7QJgz0CerJjSOOMTuCpLZWIc2GKB/3uiLS/1Vyyh571VyqrfRfroy\nYU7u7q1DTjypXbg6kNL8dMWOIrETT4SNT5NTvS2pwpygEOZMmkg0hnZvPdqAD/s43SbRNBNNF3yO\nef/+M+Uvb0goem08YpJEbYudhTNysB4QHWV3BUYW3Qu3vIWpr5um864gYk5sAdVi1DFnWiaaBOJM\nBIcHS5qO/nmLKdr8FrY9u+heffqENU7v2BEGh4O4+CaCPxjFH4zgC0YIhOIfg6EoEjC9MIOy/NFd\nF453tNu3YvzPBgZmL6Rz7Zko+VfQadSoVBCNSkQlZZKYXV/+DtZ9DRRveo15D91D7RfHd2UZjX5n\ngM5+L1aznupmOzGFc4B4Z3YyoieOJ2KRCBm//WXcxeDKrymuz7WZmVdum/jAA8gw6ckw6ZlRbKXP\n6Wf/gI9Bz9ib6YU2E9MKpubvbCrRatTMr7DR2Okk23p0iHEOxKDXkJeZRsOlVzP9v48z8+kHaP7U\nFXgLS0eO0bkcrLntRnR+H+//4A+HxLCNhwqYWXLsCiIEh1KUYyZDZuxpJBqjfizXNY2GrTfdyhnf\nuJylf/oJL9/7H1lRxfvtPioKM8btnnd6Q+wf8NLr8I/EbqlQMb1Ifpza0UL3gJe9Hc6Jr8cJuOUM\n0772LAo+eveojLMCaO1xs3ASwhxvIIzO48LgHMQ+a77i+k8KXyeD2aijwGai2+5jcFb8WTSrYXfK\nhTkQv39v7HTi8YWZVZopYkcFgiPB5s2Y21toPe08RWs8Oo0am4glGpOskjx6Fy6nYNv7pPXtx59b\nIKuuz+E/LGsWTm8Ib1sXa/95JyFzOm/89kGCWTnonYNkNtWR2bSHzMY6sprqyKndTm711oPqaz7/\nddk/U6bFIATxY2AeFuYsWglA3o4PaLzo87LrHe4gFCZvPkKYIxAIBAKBQDAF0WnU+LOHhDl2mcKc\nyOideuFIDLcvxIwhV5uBqtHjpoZjqHKqt9J++nmybDLuSQAAIABJREFU56qKhLHt2YmzfCbh9MOz\nwG/QaihMoHM8smIVANk122g565KkzSc4nnW5QBZuX9zRCRhXmAPQeMGVzH7ifmY99S+aPvUZ0CR3\nIy0qSVQ3D7B4Zg7mIUv+Hod/5PuVGx8FoOm8zyY0vk6jpqrCJkQ5xwChZcvhH5Bdt1OWMMcXjBCO\nxA5bLIiqr4/0Sy+g4cqv0LL27BHxzXjs63ZhNuqmXq65JGH+6a0A7L7uW4oi6HQaNSvm5h20ARSJ\nxojGpLhQJxYjFpOIxiQiMQmPL0xbr/vjU2u0fPD/fscZN15G1UN345g+m66T1iv+EZo6nWg1Ktku\nK6PR2ecRwpwD8D/wb/Jbm2g++1LZLgYHMpkFY7VaRX6WifwsE4FQhB67n26796A4FFu6gZml8hwo\nBMoxGXUsrJzYDe1IUZZvYf+gj93XfotVv/w2C+/7DZt+dCcAqmiEVb/8NpauNmo/+xU6T1bW3V2Y\nbSbdJE/EITg2SDNoFXWXt+53j+n66ZhZxd4LP8+spx9gzqP3yRKURmMSPYN+inMO3nQKhqP02H3s\nt/tGHKoOpK3XjcmoPaZcwZq7XAdd58cjEbecYY72OCu7OxiPNUkgxlWSJHyBCBldbQAJNc3odcm9\n3y4vzKB30I99TvxZ1FZfndTxJ2L/YPx3pKrChuEoEooKBFMB9b8fBKB1vbIYq9zMNBFBPg65mWl0\nrzqNgm3vU7j5TZrP+4ysusMlzGnd72LB/b9D73Gx7es/GHFJDlmz6F164kGugZqAH+u+hhHBjjoc\nov6ya2SdR61SMVs8043JcBSqr6AYT0EJubs/gmhU9lqv2x+ON3smKVJOrNQKBAKBQCAQTEH0Bzjm\npMkV5oyxsDrojlsy59RsB6B/DGGOY8ZcIgYjObXbFc01a29t3IlnjHFTQWm+JaFOssjcKqIm88i/\nRbIQjjmTx+UNHSDMWTjuscGsbFrWX4Slu52S915JyXzC0Ri7mgYIhCJEojHszniMlbmrjcKP3qG/\naqmizvRhVMC8cpuIrzpG0KxYjqRSkV23U3aN6zC65hifeRLDnhoKHvsXARmiHAAJqGsdxBc4dHPs\neEb3xmvo332b7uVr6Vu0QlHtjGLrIV3ZWo0ag06Dyagl3aTHajFgyzCSl5lGeWE6+k+Is0LWLN77\n8d1EDGmsuOMWMlr2Kv4ZYpI0pghXLgOuAP5RNkanIuFAiJw//YaYVkfdlV9VXJ9rTUtoM3I0jHot\n0wrSWTWvgEWVOeRnmbCa9Mwrt4nF/imMyagjx2qk/dRzGZi7iJJ3XyZn14cALPj77ynY+h5dK0+l\n5qqbFI2r06ipKDz2HEoEyWWiCKKaq27Cl5PPnMf+iqVj38ffkCTUoSB65yCm/Z1k7GvAVreDvK3v\nEd3wNLpN7xGTJPocfnY3D/BBzX6au12jinKGaWh34BzHOexIIkkS/mAEuytAZ5+HXU0DskU5k3HL\ngY/jrGwN1Zi72xXXHw7aez0J1fmDEaKShKWzFQC3QtGSWqVK2gbcMAadhtJ8C56iaYQsGdjqdyV1\nfDm4fCG21fcdcRdOgWBKEQiQ8d//4Lfl0rNktaLSY0lUeiSwpOkYPPkMAIo2vS67zu0Pp/yZ1ekN\nweYPqHhpA4OVc2k+74pxj48a07DPXUTzeZ9h2//cxkff/gXRtLH//406DZkWA0XZZuZNyxJrgOOg\n06oxDK239C1agd7tJLN5j+z6mCQldR1O/E8JBAKBQCAQTEF0GjWBIaW+cbBfVs1Ym3V2VxAkiZya\nbfiz8/Dljx5TJWl12OcsJHfXh+g8LsIWeQv2OUNOPP0LTpB1/GTRa9UUZif48KvVElx6AhnvvoXe\nNUgoIyspcxKOOZPH7QtRWb+bqE6Ps2LiLOGGS69i+n8fZ/YT98czwFOwcRkMR9nVNEBhtnkkumb6\n848B0CSz0+eTVBZZhVvFMURGYS6ussq4aExmx47LFzpsbjS6Z58BIKd2u6L3tEgsRvW+AZbOyk36\npsZRSSyG5ae3IqlU7L7mZkWltnQD+QoXXNUqFQU28yEbd87ps/nwO79g9c++yZrbbuTVPz5GOOPw\nds5JQGeflxkiwgbf3/5BUWcrjed/Fl9+seL6svzEogwnIivdIK4TghHK8tLpdwbYccP3WPc/n2Hx\nX35FwyVXMfvJ+3GVVLD5lttBoQPf9KKMw+bsJjh6ybTo6Rn0jfn9iMnMjq9+nxN/+j+c/r+fI6o3\novV70fp9qGPjP/u8/tf/MFA+S/ZcYpJE9T47S2flHpGNK0mSCITiMaD+4UjQUPzzQCiaUHwkTM4t\nZ5jhOKuSd45O15w+h5+KwnSMemX/b54hgbilsyX+d4X/ProU3b+W5lno7vcxOLOK/O2bFK2LJItg\nJMrOxn5mllhF7IlAcBjQvvQCOreLpsuuUeTGnKbXyo6QnMqY58zEMX02eTs+QOP3Ek2T977WO+hP\naZxva+cgS//0UwC23/hDJI3y+w+jToPRoMU05FqYpteQZtSSpteKWEKFmIxagp4ovYtXUfHSBvJ2\nbMYxs0p2/aAniC0jOetw4ilJIBAIBAKBYAqi02kIZGUD8qOsYpJEeBRxzqA7iLm7HeNgf9zVZhwB\nQ3/VUlSSRHbtDtlzzdm9daQ2lWjUKqxmPZXF1klFAMVWxTtgsmvk/4wTEYrEkBJcsBXE8Qy6sO5r\nwDFjLpJu4sUNT0kFXatPx1a/m5zdH6ZsXr5ghKYuJwDqUJCKlzYQtGbFxUAKKcgyUZKXmo1cQWpI\nM2hxVi1BG/BhbW2UVXO4HHPUPfvRb/kAAFUsRsGH7yqq9wUj7GkdTMXUjjoMG55AW7Ob1nXn46yc\nI7tOo1IxsyQx4UxhtonRrrYdJ59N3We/gqWrjVW//Daq6OF3r+m2e4lEJ+e8c6zjc3kpvPf3RHV6\n6j77FcX12RlGEQMkOCxkmPVkmg3Y5y6i9bTzyGqsZcUdtxA2WeIuXGZlGxYZJr3Y6BUAYDVPLADs\nPGk9+868GEmlJqbT4csvwj5nIfuXraHjpPW0rL+Ixgs+x54rrqP6qptovOBzABS//Izi+YSjMar3\n2Q/79ckbCPPOrm421/Wwq3mAvZ1OOvo9DLgC+IKRhEU5k3XLGaZrzTpiGi0lb7+U8BipJCZJdPZ5\nFdd5/WEA0occcxQLc1IkLtSo1ZQXpo9EK2c1HN44q2FikkR9u4OGdkfir0GBQCALzcMPAdB6hrIY\nq3xbWiqmc9yRm2mka9VpaMJhCra+J7uu74A4+WTj9IbIevRfZDXVse/MixmoWqKo3mTQsmZ+Aauq\nClg8I4dZpZmU5lnIyUzDbNQJUU4CmIfirHoXrwQgb+dmRfUOd/KcF4VjjkAgEAgEAsEURKdRI+n0\nBK1ZGAfkCXMAwpHoQYtUHn+YYCRKwbCrzQQPG/3zlwFxF5z9K06e+ISSRE7NVrz5RfjzCmXPcyL0\nWjWWND2WNB0Wkw6LUYfJmJxb48iKVQDk1G6je/VpSRlzOF5EZMEnhj8YwVRfgzoawT5rgey6+suu\npfj915j9xP30L1QWTZMIJW+/iMHlYM8V1xHTK9uQTU/TM0tkSh+TBJcug/8+ga1up6z4MpcvhCRJ\nqFIcP6N/fiMqSaL5nMuY/sITFG55i7Z15ysao98VYF+36/iONAkGMf/yp0R1Omq+qCzupbwwI+HO\n/TSDlqx0I3Z34JDvVV91E9bmPRRtfosFf/89u778nbEHkiTU4TDaQNylIGi1ETVObhE4GpPoHvBR\nOoWFgoF7/4a5p4uGi79IICdfcX0quzcFgk9SmmfBsS/I7mtvpvj9V9GEgnzw/d/gKa1QNI4KmCnc\nsgRDmIxaDFoNwcg47jcqFR99+xeyx1SHQpS9/hxlbzzPrmu/pch5AOIimdoWOwumZ6f8PmqYve3O\nlAgfit9/ddJuOTAUZ7VkFQUfvYu5ux1vYWkSZ5kcuga8TCtIV+TC6A3EhTmWzlZiGi0+hWsJqXT9\nKrCZaF+wBB4FW/1uepeemLJzTUTXgBeDTiPuOwSCFKHq6yP97dcZnDEPV4V8pzeA/CwRYyWHdJOe\nzpPXw8N/oWjTG3SedKasOk8gjC8QxmRMTnTwgXTVNrPqH3cSMqez+9pvKarVadTMr8g+JOpaMDnM\nafF1l0B2Hq6SCnJ2f4QqEkbSyvj/j8XI/s8TpAX78H/vB8Q0GkLhKKFwLP4xEiMUOfjvZ+WOfV0V\nwhyBQCAQCASCKYheF19o8ttyMfd0ya4LhmOYDnButLviG4LZNdsB6K9aNm79wNxFSCoV2UNCnolI\nb2/G4HKw/4S1suc4GtkZRjJMetJNOsxpupQKXCInLEdSq0f+TZJFMBQVwpwEcftC8aggGOlOlMNA\n1RL65y2haPNbpLc24p42I1VTBGDGxkeQVCqazh0/e/qTGLQa5lfYRNfMMYpqVVzMl71nJ/s+dfmE\nx0djEt5ABEta8heQDkS/Md6NXvv5r5G/9V0KPnwHVTSi2IK5tceNJU1Hbubx2fGX9sD9aNrbaLjk\nKnwF8uOK0tN0lOROzlWiKNs0qjAHtZrNt9zBum9cwewn78fS2YpKiqH1+9AGfPGPPu/I5+oDXHWC\nGZls+b9fyxPPjkNnv4eSXPNh2/hMJh5/mD6HH18gQmm+hQyFzjWDfQ5K/3EXEUMaez5zveLz29IN\nis8pEEyGbKsRi1GHJ6+Qd37+VzShED0nrFE8TmG2WTg9CQ7CatHTm8SO9JheT8fas5j+whPk7vqQ\nviWrFI9hdwdp6nQdlsjF7gEvDm/yOqwPZOaGBwDYc8Xk46eO9jiraEyiq99LWb588YjH/7Ewx1tY\novj+VZ9CYY5KpcJ62knAx7HdR5I+R2rjXASCqYx+w+OoolFa1l+kqM5q0h+R6MVjFd2KE/Dbcinc\n/KbsiHCAXoef8oLkrqs4vSFK//gr9F43277+A4JDbvVyUKtUzCu3Ja1xVPAxBwqwehevZMZzj5K1\ntwb73MXj1mW07GXpH39MbnXczX+vzkbj2ZdOai4iykogEAgEAoFgCjKcmR6w5aLzedAE5C2Yhj7R\n8WgfsnLMqdlGxGjCWTm+20PEnI6zYjbZe3ahCk8cx5IzdOM77LSTCDqNmqoKG9MK0rFlGFMubpEs\n6QTnVmGr3406lLzImWB4nG5Twbi4fGFse4aEOXPkC3MA6i+7BoDZT/4j6fM6kMzGWrLrdrJ/+Vp8\nhSWy69QqFfMqbBj0QrR1rGJaNJ+wyUx23U7ZNc4Ux1mp+vrQb3qP/nlL8OcW0L3yVPQeV8KCwz2t\ngyMbJMcTKreLtN/eTthsURRXpFapmFWaOWnRSrZ17GtaxJzO+7fdRdCaRfGm1yj64A3ydm4mo2Uv\neucgMa0WX24B9tnzRyJD2k49F63fy9offIWqf/whvqiZIIFQlH7nKKKhoxSPP0xzl4stdT18VN9L\na4+bPqefbQ19VO8bGOm8nwhJkoj85a+Y+ntovOhKglk5iucyTcHGo0CQLErz4w5X/QuXJyTK0WnU\nTC86jt3RBAlhtUwcZ6WU1nXnATDt9Y0Jj9HR76GzX3k8khLCkSjNXa6UjJ3ZUENu9Va6T1iLu6xy\n0uONxFm99WISZpcaOvu8sp2HItEYgVAUncuBwe3EnYCjUKqdCqwzpuEtqyCneusRiR09EE8gjD94\nZOcgEByv6B55mJhGS/up5yqqy7MJtxwl5GaZ6Vp1GgaXg+y6HbLr+hzJf151vPwGFS9tYLByLs3n\nKWu6m1liJSs9+fdOAjAfIHbqXRwXduftGDvOShPwM//vv2P9Vy8ht3ornavXETEYmfOvP8reQxkL\nIcwRCAQCgUAgmIIMWzMHhjaMjIP9supC4djI55FoDJc3hM7txNrayMCchbI60frnL0UTCpLVWDvh\nsTnV20ZqEiXHakR9mDv2oytXoQmHyGysSdqYQpiTOG5vCFvDbkKWDDxFyhZmu1afjruknGmvbcQ4\n0JuiGULlxkcBaDz/s4rqZhRbsZpFd/qxjM6gxzl3ERltTeg88jZw3CkW5hheeA5VLEbH2rgNdPfK\nUwDiHWgJEJUkavbZCUdiEx98DJF29x/R2AfYc/l1hKxZsuuKc5PjKqFSqSjMHnvR1l02necffI2N\nD7/J009v4ckXdvP0xu1sfOI9XnjgFV659z+88YdHeOeXf2PTj/7I5u//ltf/8AieghLmPXIvp9xy\nLQa7/LjLT9LR50m49nDg9oVo7nKxuTYuxmnrdeMbZWOq3xngoz291LUOTrhx1d3Rz/SH/kLYZB4R\ndioh02JIyUa2QDAReZlpGCch8p1elKEoZkYwNci0JP8etX/+CfhyCyl552XUocTdaJo6nSPur6mg\nuctFOJqa+56Zz8TdcvZe8sWkjDccZ2XbW4O5uz0pYyabYCRKj90n61hvIH6ttnS1ASh+/oPURlkN\nE15zMjqfl8y9E6+LpJpjSUwtEBwraGprSKvdzf7laxW7puQdp26zqSLDrKf/pHUAFG16XXadNxBO\nagOR0+mj8vYfAbD9xh8qcmsrzbVQmD05R13B2Gg16pGmpr5FKwDI2/HBqMcWbH6Ts64/n7mP3Yc/\nJ593fvpn3v/xXey95CrSBnqZ8cxDk5qLeGISCAQCgUAgmIKoVCp0GjWB7FwAjDI33g50zHF4gsQk\naaQbYaBqiawx+qviIpth0c145FRvJZRuxTWJTsAjEZ8SXbkakPczyiUYEsKcRIhJEoGePtI7W7HP\nmg9qhY9AajX1l34JdSTMzGceTMkctV43Za8/hze/SFFsW1G2maIc8eB+PBBYcgIAtj27ZB2fascc\n/bPxGKthYU7vopVEDEYKt7yV8Jj+UITaFjuSzG7nox1VTw9pf74Lvy2XvRd9QXZdml5LeRLjAgpt\nZsaTnkaNaQRy8omY02UtDDpmVvHqPU/ReeI68nZuZv3XLiFn15aE5ub0hnD7UvtaVYIkSQeJcbY2\n9NHW68YfmrhLXAJ6Bn18uKeXhnbHqGLZSDSG5t6/YBzsZ+/FXySUIV+sNYxwyxEcKVQqFaW5loRq\nrSa92EgQjIrZqBtxak0aajVtp52Lzueh8IM3Ex4mJknUtgzik+mIpgSnJ0i3TBGJUowDvZS9+QKu\nskp6lil3txqL9rVnAVDyzktJGzPZdPTJcznyDm2ypne2AuBJyDEn9dtm0ilx4XvezrE79g8X/c7k\nRc4JBII4hscfBlAcY2XLMByW96DjjtNOI2JIo2jTG4rK+pIYuRn981/Iaqpj31mXyF4jB8jOMArn\nycPAsGtOyJqFY/pscmq2H+R0n9a3n9U/uYm1P/wqaf091F1xPS/dt5H9K08FYM/l1xJMtzLnsfvQ\nuwYTnof47RYIBAKBQCCYoui0avy2IWHOgExhzgGOOXbXcIxVPNpkWHAzEcOxVBOJVoz9PVj2d8TH\nVSqmGEKnUZN5BGxAwyvitpg5Cca+jIZwzEkMrz9MZn01AIOzlcVYDdO6/kICmdlUbnwUrdedzOkB\nUP7Kf9AG/TSfe4XsLGyrWc+MEmvS5yI4QqxcCSA7zsofihCOpOY9QWUfQP/e2wzMWYg/rwiAmMFI\n75LVWFubJtVJPegJpizW4XBj/u2vUPt91HzhRqJp8q3GZ5VmoknwmjYaBr2G7Axj0sYDCFsyeP/W\nP7Hzy/+HwTHIqf/3JeY88leIKe/8l7uJliwkScIfjDDoDtLZ76Wp00l18wBb6np4Z1e3IjHOaMQk\nia4BL1tqe2jqdB70e9je1M3MR+8jZMmg4dKrFY9tNeuFdbngiFKQbVIsolCBuB8RjEtmSuKsLgAm\nF2cFEInF2N1sT+o9VUySaOhwJm28T1K58RHUkXBcFJxEV9hjIc7KGwgzIMPZZTh+0jIkzEkkykp/\nGDbFo2viDRl5OxMTQCcTlzdESKw3CATJIxLB8MRjhNKtdA9t6sslP0vEWCVCdoGNnmUnktGxD0v7\nPtl1yRLmeFo7qbj3t4QsGey+5mbZdRajjrnTsiYdcy2YGLNRN/J576IVaEJBbHt2oIpGmLnhX5x1\n3acoefcV+uYv45U/b6D62puJGj9u9o2Y06n73A3ovW7mPHpfwvMQwhyBQCAQCASCKYpeqyEwJMxJ\nk+mYc+Ci5aB7SJhTvRVJpWJg7iJZY/hzC/DmFZJTuw3GcU7Iqd4KHHsxVgCx4hLChcVk124f92dU\ngnDMSQyXL4ytPu5CYk9QmBPTG2i9/EvofB5mPPtIMqcHkkTlc48S0+rYd/alskqMOg1V5bYj8toW\npAbdiXExn02mMAdS55pjeOF5VNEoHUOd08N0DS0oFm5O3DUHoL3PIzuKQAnRWIw+h5/aFjubqvfT\n1uMmliJ3Hk3TXowP/hN3STktZ18iu64gy5QS4UVKnCpUKho+/SXe/O0D+G25LPjH71lz69fQuRyK\nhulz+FMqLPUFwoeIbzbX9bCzqZ+9HQ7a+zz0uwL4gpGkvh6ikkR7n4fNtb207Hfh9oUw/+0vGFwO\n6j/9JcIW5R2Pwi1HcKTRqNWUKHTNKcpJTjSf4PjFmoI4K1fFLBwVsyj48G107smJYPyhCDX7BpN2\njejo9YwIQ5KNOhig8vn4Rm/rGRckdexjIc4KoL134pjM4VgSy4hjTrni8xwWx5z8fLzlM8ip3oYq\nkprXjOy5IOKsBIJkonv7TbR9vbSdcg4xvfzroE6jJtua3KaLqYLVrKf3pDMAKPpAvmuOLxhJisur\n4bYfoPe6qb76JtnRZXqtmvnTbSIO9jBhMn7sINy7OL4GV7nxUdZ943IW/+VXxLQ6Prz5Z7z5mwdw\nlc8cdYym8z+HN7+IGf95CFNPZ0LzEP/bAoFAIBAIBFMUnVY9IsyRHWU15JjjC0TwhyKowiFs9btx\nVswiYpa/odRftQyDcxBLR8uYx+TUxB11+oYcdhLhSMRYDRNesRKj046lsyUp4wnHnMRwe+OvUUhc\nmAPgu+paoukZzNzwLzSB5Fnd5u7cQkZbEx1rz5T18K5RqaiqsKHXyXPWERwbqHNz8ZZMI7t+l2xX\nEpc3NQv4uuEYq5POPOjr+1ecDEDh5jcnfY76dgeuJCx+HSjGeX/3fmpa7PQ6/AQjUZq7XXxY10t/\nEq2phzH98meoolF2X/NN2bnxOo2ayuLU2FPbMgwYU/SeMFC1lFfu2cD+ZWso2vwW6792CVkyI9dg\nyGGmPzWuOR5/mO17+1MmvpFDJBajZb+bXduamPnkPwhmZNKoINpsmAyTHluSnY8EgkQoyjFTkmOh\nLC+dioIMZhRbmV2aybxyGwunZ7NkRg7LZuWyYk4+q6sKqCwWbjmC8UmFYw5A2+nnoQmHkxK95PAG\nqW9zTDpu0x+M0Lr/YHdNVSQ8afHQMGWvP4fBOUjTuZcf1MGdLNpPPhuAkrePXtcchzc44T2k1x93\nxUvvaiWq0+HLLVB8nsMVI+NZuQZtwIdtyOH1SCLirASC5GF8LB5j1br+QkV1uZlpogFrEkTOPBtJ\npaJo0+uK6vockxMmBt96h6Lnn2JwxlyaPvUZWTVqlYqqimyMennrCYLJc6BjTv+CE5DUasreeoGs\nxjr2nXkxL97/Ai1nXzqua39Mr6f6qpvQhMNUPXBXQvMQwhyBQCAQCASCKUpcmJMDgHGwX1bNsDhk\n0B1/aMlqrEMTCtI/T352LnzsgjPsijMaubu3EtUbGJxZpWjsYY5UjNUw0VWrgeTFWYUisUkvFk9F\nXN4gtvrd+HIKCGTnJTxOdlk+/uu+jNH5/9m77/i66vqP469z7l65M7nJzU6a1XQ3nbRAgVIEmTJU\nRJShgijTAaIICPpTZIiiAoLiBJS9R6EUWlq6d5u2adomaXZyk9zc3Pn7I0lJ24w726T9Ph+PPpTk\nnO85aW/uPed7Pt/3p4X8t/6XmJMLhyl/5lEAKs+/PKJdctNNYmX6cap7ynTUHe0HV/eOxJ2ExByp\nrRXN0g9pKSrHk5F16PmlptNaWEbqhpUouuMrtAiFw2yuaqGpvRu3x0ePLxhxQcVQxTjBQfbv9gXY\ntKeFdTubDq6ejpdyzSq0r7xIc+kkak5aGPF+47LMqJTJKZ6RJCkhqTkpejXjMs0oDpsM9llsLP3F\nn9n09RvQNx7gtFu+xriX/hFxIlxtUxehUGI/v9xdPtbvbMIfjL69VjIU/++vqDvdbLv0GgL66P8t\nRFqOMFqolDLjsswUuFLITTeRlWokw24gzaLDlqLFbNRg0qvRa5VoVArx8EgYkUGrRJnAFo799i44\nB+gtVkmE+lYPm6paCMTxubKzpv2Q6xEp4GfBrVdw9jcWoWuoje8Ew2GKX3yGkELJrvO+Gt9YQ6iZ\n29fO6qP4i50GIwUDqN2tcY8zXGqO1xcg0FfkbqzdS1d6dsStggdK1jXb4Xx97axSNxz7dlZtnb64\nXv+CIPSSOtyo33iNjsxcWkojSxbv57Qeu8WFxwNrQRbNZVNwbFmLuj3yz5uGtjgSfQMBzHfcBsCa\nG34a8WdOSY4Fs0HM7R1NAxNz/MYU9p56Dq3jxvPBA39j1W334zNbIxpn74Iv0lZQQu57L5NStSPq\n8xCFOYIgCIIgCCcolVKmuz8xpznCVlbBEKFwmJa+Nlb2vqKTpihTbfq370/FOZyyqwNz1XaaSycR\nVsV2o3Ks2lj188/sLcyxD/EzRisUDh9MLBIiEwiGCO/fj7a1iZbS2NNyUvRqdBol3m99l6BWR8nz\nTyH54y+KSF+5hNRNq6mdvYCWCIrbtCpF1C0mhLEjXDETAHuE7aw6PL6Ep4Oo33oDKRA4oo1Vv7pZ\np6Dw+3GuWR73sXr8QTZVtbBmRyPLtxzgo/W1fLKxjlXbGtiwq4mt1a3sqm1nf0Mn9a0eGlo9ERXj\nDKats4fV2xvYvrcVXzzpY+EwhnvvAmDDNbdChJ8xNpMWp1Uf+3EjkG7Xx/WZp5AkynKtZKUaqShN\nw2I4rLBVoWDr177LR798Ep/BxNTH7mPWL2+HzroJAAAgAElEQVSD4Mh/n/5giLrmxKXmtHb0sH7X\nsSnKUXi7MdTtw755LZlL36HwlX9S/tdHKHrhb3itjpgelpp0KhFZLwjCcUuSpKS0s+pOc9E4sYK0\nDZ/FX/TSp9ntZV1lU0wthBvbuml2H7rivvQ/j2Pfuh51RzvTHr0nrhbHaes+xbynkv0nL6I7hgSY\nSPhTLAlrZ6Xo9mDbspbCV/7F9Id+xuk3XMKF503n/Ivnxn1/3NTWTXdPYNDv9aflqN2tqDva6czM\njXp8WZKOWmIO83sTKdPWrTg6xxtGKBw+4jUsCEL0NK+8hNzjZc/CCyK+XwTQqhWYk5Qyd6JIMahp\nOOl0pFCIjJWRt+D2+oKxJ/o+/mdMlVupWnRRRPN60LsoI9nzA8KRlAr5kKThlT/+Ne899j+aJs2M\nbiCFgo1X3YIUDjPxqQejP4+o9xAEQRAEQRCOCyqlTFBnwK/To4uwlRVAjy9IW19hjmNL76Rac3l0\niTnu3HH4DKYhC3Mcm9cihcM0lU+LatyBjmUbK4Dg+HKCBmPCEnOg90G2Ri1aGEXKPbCNVXHshTlp\nfauWwnY7nZdfifkvfyL3/Vd7I05jFQwy6S8PEpZlNn7zpoh2yU03IctiZfrxSp7b2+Pavm0d1Wde\nMOL2wXCYrm5/QhOU1K/2trGqmT94EkzdrFMZ/68/kbHiQ2pPOiNhx+3nD4Z6iy2S8EwgDNS1eGhs\n85LjNJKVZoy6kEX1wXuoP1lK7axTIp68UUgSRVnJb/WiUSmwp2hpjLENQWGmGZ2md4pIp1EypchB\nTWMnu2vdhxRANUyby7t/fIG5995IzodvsO+UL0T0WqisaafLG6DAlYJSEfvDrha3l81VLREXZcVK\n11BL0Uv/QNd4AF1LI9rWJrQtTag8Q6/SX/ed22NqLZIj0nIEQTjOmQ3qpDzwrz7tXFI3riLng9fZ\nftm1CRmz0+tnzY5GJhTYIr7GCgRD7Kw5tF2VZecWxv/zT3gc6XRlZOFasYSsJW+y/9SzYzqvohee\nAWDHhV+Paf9I7Tv5LNJXfUzWkrfYfunVEe2jdrdh2bUV666tWHb2/jHV7EEa8FkdVKnoSs8mZd9u\ncha/RnMc9/lhYH9jJ0VZliO+1+XtTUjsT6DsiKEwRxXHdUq0NC4n7XlF2LesRfb5CKmPbXpCU5tX\nPCwWhDhpnvs3AHtPPzeq/cTvXvwkScK76AvwxAO4ln9A9cKR51X6NbZ2kxLl3IrU0ID5gfvxGVPY\neNUtEe2TatGRn5GcFtfCyPRaFd54Fmv1OTBjPg2TZ+JasQTHhpVRFfeIwhxBEARBEIQTlLpvFZjX\nloo2isKcxv6UgnAYx+a1eBxOPGmu6A4uyzSPn0LGZ0vRtDbRY3Uc8u3+gp2miRXRjdvnWLexAkCh\nwDetgpSlH6J2t+JLiSwSczhefxBx+xa5Do8f2/YNALSUxFaYIwFpA4q8At+7kdDf/kLps0/0roCK\nIRodIPf9VzHvqaRq0UW484tH3N6oVZFuExM1x7NQ+USCag22rRsi3sfd5UtYYY7kbkf94Qe0FZTS\nmZk36DYtJRPxmm29q89CoWF7b49WgVCI3XVu6po9FLpScERQxBkKhwm3t2P56R2EJSniSTeAvIyU\ngwUvyeZyGGIqzHGkaHE5jmy/lJlqxJaiZfveNtq6eg5+3etwsuqme1j07fMpeP25iIu0apu7aHF7\nKcmxYo3hM7qxrZut1a0Hk6KkYIAFt3yNHrONZXf9jrAiMX/PSk8XJ99+LSn7dgMQliR6zDa60jPx\n2lLxWh14bQ66B/x/T1omnvTMqI9l1KqOeSGxIAhCslmSlACw/+RFTH3sF+Qsfi1hhTkAPYEg6yqb\nKMuz4jCP/B6950DHwZbPALLPx8xf/xg5GGDVLb+gMyOLRd8+n6mP3U/9tLn4U44sKBmOsWYPrhUf\n0jR+Cq2lk6L+eaJRM/d0pj/ycyY99SCTYlgFDuAzmGicWEFbYSltheNpG1eGO6cAJInzLp2Ha/kH\nrL3hp1ElSRzuQLOHvHTTES2nuroPLcyJJTHnqKXl0PsQua1iDub/VmLbviHm+Y9EaXF7CYZCKMbg\nNb4gjAaKyh2ol39Cw+RZeJzR3RuIwpzEME6ZSIcrh/RVHyP7egipI7sGaWzrpjAz8gU1fn8Q9Y9+\niKqzgzU3/JQeq33EfUw6NaU50V0DCIll0Cpp6UjAQJLEhqtv5YzvX8akJ3/L4kf+E/F1jSjMEQRB\nEARBOEH1T2J1ZuSQsWop6Ss+5MCsU0fc70BLb+9dQ90+tK1N7DvlrJgm1ZomTCfjs6U4Nq+hZt6Z\nh3zPsXEVYVmmuWxK1OPCsW9j1S80ew4s/RD75nXUzVkQ93i+GGLVT2Ruj4+c7RsJSxKtxeUxjWE1\naVAPiDoNuTJpu/AybM//g6yP32H/KV+IekzZ18OEv/2OoErN5ituiGifvAwT0ih4TQtJpFLRPWEy\nlnWrUHR7COpGnphzd/nITE3M4dXvvIXs97F//plDbyTLHJh5MnnvvoR15xZaiyck5uDHQLcvwKY9\nLZgNarRqJcFQiGAwTDAUJhQKEwiGCIZ6/zvs9zHvzu+gqtzOjguviKiYDsBsVJOVemTBS7JYTRp0\naiXdvsHbOwxGrZQpzh56cnCo9Bx3fjFN46eSvvpj9HX78WRkRXQ8rz/I+l1NuOyGqNJzDrR42L63\nlYE5OZmfvHew9dukx3/D+utuj2isYYXDVDx4Jyn7dlN5/uVs+/K36DFbCStV8Y89iBynaE8oCMLx\nz6hXoZAlgqHEpp35TWYOzDiZzGXvk1K1I+LP50gEw2E2V7VQmGketpVsZ7efmsZD09TG/+MPmPdU\nsuuLl1FfcRIAm6/4LpP+8iCTn/gNq269L6pzGffSPwCoTHJaDoAp00nbD3+C9sP38XgDhCL4Nwvo\n9LQVlNA2roy2wjK60rOGnB+om3kyue+/iqVyC20x3p9B779PbZOH3PRDU+e6vL3XQKYxUpgD4Jk1\nD/77DKnrVxzzwpxgOEyruyeiwnVBEAbo7kb7p99jeOS3AFRFma6colej14rH9YlgMWmoP+l0xj3/\nNKnrV1I/Y35E+3n9Qdq7fJgNwy986vEHqdnbSPpPf4DrvZdpHVfGrnMuG3F8rVrBhAKbKHw8xgy6\nxN3Xt5ZOYv+8M8n6+B0yP3n3iGcbQxGvAEEQBEEQhBNU/4TTxqtvJqhSM/PXP0bXUDfifp6+fu6O\nTX2pNuNji6Hub1PVP04/2dfbfqgtv4SAIbYHVqNl9bl/Zm9rGsfm1QkZrycBcZsnEre7G2vlZjqy\nCwgYYmsVMthrKXTLLYRlmbJ/Pw4xtFMZ98q/0DfWUXnB1+hOyxhxe7NBHdFqXWHsC1TMRAqFsFZu\nimj79lj7oA9C/UpvG6v98xcNu11tXwFnxorIe7YfTVLAT+raT5F9kf3dtHf5qG/10NTupbWzB7fH\nR6fXj9cfxB8MEQqFmP7Iz0lfs4zaWaey4Vs/jGhchSwxodBx1AvqMuzRrbQsybYeUnw4lMxUIxWl\naYekHuz64mVI4TAFbz4f9XnWNnexalsDrR09I25b09TFtsOKcgiHKXn+KcKSRGdGNsUvPkPuuy9F\nfR6HK/rf38j+6C0aJ0xn/bd/hNeelrSiHL1GOWquVwRBEJJJlqQRH3TFqvq03lYhuYtfTfjYYWBn\nTTuV+9sID3LNHw6H2bGv7ZDPJ9vWdZQ+9ySd6Vmsv/YHB7++40vfoK2glPy3XyB13YqIz0HV6Sb/\n7RfxpGZQM2/wVqOJoNcomZhvZ1Khg+DNt9L18hv433iLrU88y5Lf/HXYP5/c8xibv3EjNfPOpCsj\ne9hFOzVze1P2Mpe9F/c572/sJBgKHfzvUDh8cK4irlZWR7kwJ3DSPMKSRNr6lUf1uENpak9CT1lB\nOE6FQiH8/34W0+zpmH55Lz6VllU33c3e074Y1ThOq7gnSBRJkuhe2LuAzrV8cVT7NrYOnT7b3RNg\nx742NixZT9GVF5H73ss0l0zi43v+OGKStkalYHKhA00E991CciW6AG7jN28iJCuY+NRDSMHIFkiJ\nwhxBEARBEIQTVP+EU3thGeuuuwNNRzuz778FKeCPaP+D7aZi7A/fUjKRkFKFffPaQ75urdyEwu+j\nacL0mMZVKeSYWmQkQ2B6BWFZxnHYzxirRPTBPVF09wTQVu9C5emKuY2VLEmDPjQNF46j+cxzseze\nRvrK6IoTVJ1uyv79Z3zGFLZFGLlf4Io8TlcY26RZswAOpoCMxOsL4kvA+4LU2YF68Xu0546jI6dg\n2G3rp59ESKEkY8WHcR830cy7t3P69y/j1B99k5NvvxpVpzvuMcv++Rj5b79AS1E5n97x24jaJcmS\nRHmeLWFtxqKRYddHnBjnshuwm7URj63TKJkyzkFRphmFJLF//iJ8JjP5b/0PyR99kVh/es6OfW0E\ngqFBt9lb30Hl/rYjvu7Y+Bm27RupmXs6S+9/HJ8xhekP34V1W+St4I4Yc8NnTHryAbptDj79yYNJ\nK8jpl+sUSWiCIJw4zIbk3J/VzT4Vv95IzuLXe9tsJkFNUxebqlqO+KyqbfbgHlAkrfB2M/M3t0M4\nzGe33U9Q93lqXlipYtUt9xKWZaY//DPknsiKH/Lf+h9Kr4ed5381YS0bB1IpZMZlmqkoTTvimkCp\nkBmfZ6Msx4pCTszn1YGKkwiq1FE/LB2MPxjiQMvnD1E93sDBdpfGmmqCKjXdjvSox1Urj+6DU116\nKm0Fpdi3rEP2jVywPBJlVye6htqY9292ew/+PQqCcKRQOEyL20vNW0tQnHE6rhuvRdVUz7ZLr+bN\nv75F1dmXRpUqLksSaaIwJ6HUJ8/DZzLj+vSDqBbTNbYdWZjT2e1n654WVm6tp+ejpZz23Yux7dhE\n1ZkX8uFvn8HrcA5/LkqZyYX2o9beWhieIcGFOZ3Z+VR94WJM+/eQ99YLEe0jCnMEQRAEQRBOUANX\ngu0+51L2nno2ji3rmPD0wxHtb9+yhoBWT3thSUzHD2m0tBaNx7pzC4puz8GvOzb1pss0TYit4Mdh\n1o6aB11howlfWTnWHZsiTm8YjmhlFbkOT2/yEkBLSWztduwp2iHbrPhuuQ2Asn//Oaob/ZJnn0Td\n0c62L1+LP2Xk3tIOszZpK4yF0SdQMQOIvDAHettZxUv93jvIvp4R03IAAgYjjZMqsO3YhLa5Ie5j\nJ4IU8FP2jz9wxg2XYN25FXdOIakbV3HqrVfEdY6577zEhGd+T5czk4/v/WNE7cUkoDTHgi0l8oKX\nRFIpFTgiKLbRa5QUZqbEdIz+9Byd2cSehRegbWsmM44HbEOl51TVudldN3hxVcnzTwGw/ZKr6MzM\n49PbH0AOBph7z/fRtDRGfQ7a5gZm338LAJ/+5CG89rSox4iGTq0UE/CCIJxQLMbkXM+G1Br2zz8T\nfWPdwfvIZGh2e1lX2URP3/2Yzx+kqvbQz6gJTz+Maf8eKi/8Ok2TZhwxRmvxBCovuAJT7V7G//OP\nIx5TCgYY99LfCWh07D7r4sT8IH1kSSLTYWBmmZOsVOOwRb1Om56KkjRSElBwHNQZaJg6G0vVDvR1\n++Meb39D58E0o67uvgVG4TDG2r10urIhhpYhRzsxx6BT0Th5Jgq/L6p7gKHMvv8WFn3r/EPmWKLh\nD4Zo70xcKqcgHA/6i3G2721l7YfrUV//baZ8/Vwcm1azf95C3n7iNTZec1tMSc02kwbVUS4IPN5Z\nrAbqZ52Cvqkey84tEe/XEwjS3tl7T+ru8rFpdzOrtjdQ39ZN3hvPceoPvoG6vZW1193BqlvvI6Qe\nvuhYpZCZVOhAr03ugg8hcgpZRqtO7O/blq9dT0Cjo/zvv0fhHTp1qZ8ozBEEQRAEQThByZKEqr/o\nQJJYfePddGTmUvr8U2R8+sGw+6rcbZird9FcOimulXtN5dORg4GDBRQwsDAntsSc0dYWIjhrDgq/\nD2vl5rjHEok5kXN7/Nj6khNaSibFNEbqMA9NVVMm0zDvDBxb1uHY+FlE42mb6il+8Rk8DieV539t\nxO0loCAjtgfnwtgUynDhS3dh27Y+4oKvRLSzUh1sYxVZT+y6vnZW6Ss/ivvY8TLv2sbp37uMCc/8\nHq/FxtJf/Jm3//wyO8/7KpaqHZx201cw7quKety01Z9Q8dBP8ZnMLL3vcXpsqRHtNy7TTJo1unZS\nieZyGIb9vixJlOZY4+pvr9MoyUkzsvvsSwEoeO3ZmMeCI9NzdtW0U13fMei2puqduFYsoal8Gi3j\npwJQP2M+G6+6GX1TPXPvuTGqYlgp4Gf2fbega2liw7W30TSxIq6fJRI5TuOoKSIWBEE4GkwGNYok\nve/1twzJfT/x7awG6vT6WbOjkQ6Pj1017QQGJPSkrl9J8YvP4M7KZ+M3bxpyjE1Xfo8up4uS55/C\nvHv7sMdzffI+hoY69iw8P6KC/kjZTFoqSlIpyrJEXISi0yiZUuToTXuL8/g1c04HIHP5+3GOBN2+\nwMHWS53e3sIcdXsr6q4OOl15MY15tAtzlAqZtum9LbBT10fe5mww+voaMj5bisrTiblq+NfXcAZL\njRCEE5XHG2DF5no2ba3B/PsHOePKs8h/50XaCkr58Nd/ZfnPfkeXKyfm8dNsx/be8XgkSxKdZ5wF\ngGv58PPbh6uu72TdzibWVDbS5PYi+X1M/d3dVDx8F369gY9++SQ7L7xixFQkhSwxsdCOUSeKckYb\nQ4ILpbz2NHZc9HV0LY0Uvfj3EbcXhTmCIAiCIAgnsIGTTgGDkeV3PkRQpWbGb24fNv7YvnUdEHuq\nTb/+/Q+ubgyFcGxeS2dGdkyr1UdTG6t+gdlzALD3tf6Kh88fPLgiUBheR1dvYk5QpaI9P/pUJ6Us\n4xgh8aLzezcDUPavP0c0Zvnff4/C18Pmr3+PkGbkRIt0m16srDkBBaZXoGtpQh9hBH3ciTldXWje\nfwd3Vj7uvKKIdqmbdQoArmPYzuqQlJxdW6ladBHvPP4KB2aeDAoFa797Jxu/cSOG+lpOu/mrUbU4\nMu/eztx7byQsS3zy89+P2N6rX67TRGaqMdYfKWEsRg36YaKyc50mUhKQxJVq0eHNH0fD5Jk4132K\nsWZP3GPWNnexfPMB9jV2DrlNyX+fBnrTcgbafsnVfel/a5ny2H0RH3PSEw+Qumk1+045i8qLrozp\nvPUaJRajJqI/DrMWp5iAFwThBCNLEqYkpUA2TJpJtz2NrKVvJySldDg9gSDrKpuoH1C4oPR0MeOB\nOwjLMp/94JfDXucHdQZWf//nyMEAFQ/9FIJDL7wofvEZAHZecEVCzl2vUTKpwM6kQntM9xiyJJGf\nkcKUcQ60qthXm9fNPhUgIe2sAPY19F4zdHUHADDVVAPQmZkb03hHuzAHoGfWXMKyTNq6+Apzct99\n+eD/t+7cGvM4ze2RtVoThONdjy/Ihp2NpL7/Gmddcw4T//oIAa2OVTffw7t/+C+NU2bFNX4k805C\nbJSLFhFSqnB9Gt1nTUuHl7a+1BxNazOn/Ogqxr32H9oKSnjv0edpnDp7xDEUksSkAntCkuaExNPH\n2M5quGuf7ZdeTU+KhdJnn0Dtbh12HFGYIwiCIAiCcAI7fNKpvbCMddfdgaajndn334oU8A+6n2Pz\nWgCax8dZmNO30t3RV7SSUr0Tdac75rSc0dTGqp9/Zu9NW//fWTzCgM8fGnG7E10oHKarvRPL7u20\nFZQRUkd/M+wwa5Hl4V9LhlPn0Th1NulrlmEdkPo0GNPeXeS//QLunEKqF54/4vEVkkSeSMs5IYVm\n9E7u2SKMsu/w+AnFUbCnXvwecnd3b1pOhO+fnZl5dGTl4VyzPOkPwAZzSEqO1c7SX/yZVbfeh984\n4HdGktj21e+w6uZ7UHe6OfUH38D52dIRx9Y1HmDend9G5eli5Q9+FXF6istuIH8U/c667IOn5qTo\n1eQ4E1M8JMsSTpv+89Sc159PyLjB0NCvZ21zA7nvv4o7K5/a2QsO/aYkseqWX9BaWEbhG89R8Np/\nRjxW1pI3exMOcgr57JZfRPw7MJDToqOiJI0p4xwR/ZmQbx+2ZYggCMLxKlntrFAo2LvgHNSdbtI/\nS36aX/Cw665JT/wGQ30N2y67lpayySPuXz9jPtULvoht+0bGvfLPQbexbt+IY/Ma6mbMj7hAeDhO\ni46K0rSEtNo0GzVUlKbhjDGp1mtPo7l0Eo6Nq1G52+I+H7fHR3tnz8FWVsa+wpyOGAtz1MegMEeb\nZqe1sAz7tg0RtcEYVDhM3rsvEe67xrDsir0wpycQpD0B7XIjFQ6HCYbEPIcwuvgDITbsbqbk9/cz\n575b0LY0su2ya3jz6beo+sIloIi/HU66TT/ivJMQmxSXg8Yps7Du3IquoS7q/S2Vmznjhkt6F3Cc\nfBaLH/oXnoysEfeTJYnyfBtm4+haNCp8LpbEnDSLjtnl6UwrSsVlN6A8LH04YDCx9avfQeXppPTf\njw87lijMEQRBEARBOIENthps9zmX9q04X8eEpx8edD/H5jWEZZnmCCYeh+Oz2HBnF/Qm8ASDA9pY\nxVbwc6zbhwwm5MrE78rCvmVtxK1phiPaWY2sq9tPys6tyMEALaUTYxojbZg2Vv1kSaLxut6o+tL/\nDH/jNfGph5BCITZedXNE7d8yU41o4liJKoxd/ukzALBHWJgTCofp7B68iDIS6ldeBGD/yYui2q92\n1qkovR5SN0TWyi0RpICf8X8/NCXn7Sde7U3JGULVFy7hk7seRQqHmPez68l57+Uht1V2dTDvzm+j\nb6pn/TW3sf/UsyM6r1SLjqIsc9Q/TzI5bfojij8UskRZrjWhBawuu56akxbiNdvIe+cFZF9PwsYe\nTNFLf0cO+Nlx8TdgkFZcQa2OZT9/lB6zlal/uA/HxlVDjmWq3smM396JX6dn2c9+R1A3fAuwweQ6\nTZTl2cSEuiAIQgTMhuQ9pOpvZ5Wz+LWkHWMwzlUfU/j6s7TlF7Pl8usj3m/9d35Mj8nMxKcfQV9f\nc8T3+1shVF4YW5LbQFqVgqJsS0KLQpUKmbI8G2U5VvQaJVq1IqI//Q+yauecjhwKkrFySULOZ3ed\nm55A731yf4LfWErMMWhVNE6ehRzw984bxMCxaTXGun3sO/VsgioVljgScwCajmI7qz0HOvhsawP1\nrZ6jdkxBGE4wFGLT7mbU61ZT9OIzdGTl8fYTr7Hx6lsJGBKzyEEhSWQnaMGEcCRZkuhYsBAA16fR\ntbPKXvwap918ObqmA2z85s18+pMHCepGnm+WJYnxedaEFMEKyWOIMjFHp1ZSnN3bUjTFoKY428Kc\nCU7KcqxYBhRg7friV+hyuoYsuu4nCnMEQRAEQRBOYGrlIA/+JYnVN95NR2Yupc8/RcZhNzCSv7dF\nUHtecUJuSJvKp6LydGHeswPHpt7knMYJkSUUDKRSyMlbhRmnwKzZaNtbEtLmo0cU5ozI7fFj60uw\naS2eEPX+amXkLdGMZy2kuXQSWZ+8h6l656Db2DevJXPZ+zSNn0rtnNNGHFOlkBOWaCGMPYFJkwkr\nldi3RVaYA3G0s+ruRv3uW3S6cmgvKI1q17pZpwKQcZTaWfWn5JT//fd4rQ4+uu9xVt16HwGDacR9\n6+acxpL/e4qATs+sX/+Y4uefOmIbye9j7j03Yqnawc5zv8KOw9okDcVq1CS82CURVEqZtMNWso/L\nNKMbpsVVLPRaFSlWE3sWXYjG3Ubmx+8mdPyBlJ4uCl57Fq/VQfUZQyePeZyZLL/zYQiHmXPvTYOu\nkFR2dTL37u+j9Hr47Nb7o04jkCWJshzrqEpJEgRBGO1SDKqkJYa1FZbhzinE9ekHKLs6knKMw6k6\n3VQ8eCchhZKVP/xVVCmdPVY767/9Y5ReD9MeveeQBRza5gayl7xJe24h9dPnxn2exdkWlIrkPAZy\n2vTMLHMye3x6RH+Kc3ofbNXM7b0nylyWmHZWA9NdTLXxtrI6+osjjDoVDVNmApC6fmVMY+S901ts\nv/sLl+DOLcK8Z8eQCciRaDpK7aya2rupru/A6w+ytbqVtTsa42/VKwhxCIXDbNnTirvDw/Tf/Rwp\nHGbVTXfT5cpJ6HFcDoNYjJVs5/QW7Q5XmCMF/OgaD2DdsYmMTz9gyh/uY/avfkBIqeLjex5j21e+\nFVGqqgSU5lhwmGNLkxOOHr1WSaRXo/0JSIdfRylkGadNz5RxDmaVOclLN6E26Nh05Y0o/MN/9orC\nHEEQBEEQhBPYUKvBAgYjy+98mKBKzczf3I6uofbg96w7t6Dw9dBUPjUh59DftsqxaQ2pm1bjNdvo\nzMqLepzR2MaqXyCB7ax6fKIwZyQdXT5s2zcA0FIyKer9Uy26iF9LOq2K/VfdAEDZYKk54TAT//Jb\nADZcc2tEN/Q5TlPSJs+FMUCnw18+EcvOLRG3iYp18lr9wfsoPJ6o2lj1a5owDb/e2FuYk4A0sKHo\nGmqZ8of7DkvJeYX6GfOjGqe5fBofPPgPPA4nk5/4DZP+/H/QH5kfDlPx8F041y6ndvYC1l7/k4j+\nPkw6FeX5tlHblijD8XkCjMOsJWOI9lbxcjk+b2dVGEH7qFjlv/E86q4OKs+/nJB6+OLJxskzWXfd\n7Wjbmjnp5zcg9wx4uBQOM+O3PyFlfxXbv/QNaqJMi1IpZCYV2nHaRl9KnyAIwmimkGVM+ujbB0RE\nkqg+7Yso/D6yklgkOtCUx+5H31TPlsuvo72wLOr9qxeeT/3UOWSs/IjsD984+PXCV/6FHAxQeeHX\nY2qxOJDLbhhVK/cdKVpUCpmOnEI6XDmkr/o44Wl7xpq9BNUauu1pUe8rS9IxSczRaZS0TqwgJCtI\ni6EwR9HtIeujt+hyumicNIPWcWUo/H5M+6piPqduXyCuVM6IjtETYFv1oe3M2j0+1lQ2srW6Vcx9\nCMfE9r1tNLu9FL7yL6w7t7Jn4QU0TRONr54AACAASURBVJqZ0GMoZEksxjoKTGXjaCssJW3dCor/\n+zQTn/gNM379I+b/+GrO/NZ5nHfJXC4+exJfvHwBZ9xwCfN+dj1FL/8Dd1Y+7z36HAf6FiNFojjb\nMipT3IUjKWQZrTqyBUuFmWaMuuGvXXUaJXnpKcwuT8d67TfoLBr+mlDM9gqCIAiCIJzAhpt0ai8s\nZe31P0Hd0c6c+245uNqqv7ikqTy2dlOH6x8n54PX0DfW9baximECcjTfAPn7C3P6WnXFQyTmjMzt\n6U118uuNdMRQ5BXta0l13rm05xWR/cEbGOr2HfK9jE8/JHXTamrmnEZzXxHacLQqBZmO5Dw8F8aO\nYMUMFH4/ll2RRdDHXJjzyksA7J8fXWECQFip4kDFPIwH9mPatzum4w/HtHc3FQ/cwdlXLqLo5X/Q\n7XBGlZIzGHdeEYsf/hfunEJK/vdXZv76x0h+H+P//gfy3n2JlpKJfHr7A6AYeeWiXqNkUqF9VBfR\nmQ1qjFoVaqVMSV/0cjI4LDp82XkcmDaX1E2rh0wPi4cU8FP84jMENDp2f/GyiPbZdd5XqVp0Edad\nW6h46GcHC8iK//dXsj5+h8aJFWy8+paozkOnVjK1KPWQyGpBEAQhckltZ7Wgr53V+68m7Rj9XMve\nJ++9l2kpnsC2L18b2yCSxOobf05Ao2XKY/ejdrci93gpfP1ZelIsVJ9+XlznqFMrKcwcXclusiyR\natGBJFE79wyUXg9pa5cn7gDhMMbaajpdOYO2vByJUnHsiq21diutReXYtm9E0d0V1b5ZH7+DqtvD\nnoUXgCzTNq73oaB155a4zqmpPXntrIKhEJurWgj0F8ofpr7Vw8qt9ew54CY4xDaCkGg7a9qpb/Wg\nbapnwl8focdkZv21P0j4cTIdxmOSznWikSWJ9gWLkAN+Jj/+a0qff4q8914hfc0ydE319KRYaZg8\ni70LzmHHRVey/prbWPGjX/P+o8/RmZ0f8XGKMs1JWwQjJEck7azSLLqo52etZh3+h3437DaJzTAW\nBEEQBEEQxpSRVoNVnX0JaRtWkvPB60x86mE2fOsH2Df3tptqTlBiTpcrB6/VgWPLOgCaykcuXjjc\naG5jBRAcX05YqUzIw2tRmDO8QDCEv7kF0/491E+dHfWErFatwGyI7rVkt+rZefl1TL/vFkqe/wtr\nvv/z3m8Eg0x86reEZZlN37wporHyMlKQ5dGZviEcPf7pM9D95XFs29bTUjZ5xO29/iA9/mB0Udg9\nPajffoMuZyatReUxnWfdrFPI/ugtMj79kI6cwpjGOJylcjOl/3mCrI/fQQqHcWcXsO3L17J3wTmE\nlZGtsreZNITCvatwD3/P7E5z8cGDf+ekn11P7uJXMVdtx1K1g870LD6+57GIesdrlAomFtjHxGRq\nhsOAVqVI6rnKkkS6Xc/ucy4jfc0yCl9/jnXX35HQY2R/+Cb6xjoqz/8avhRrZDtJEmu+dxcpe3eR\nu/hV2saV0VJczsQnf0u3LZXlP3kw4tcU9BY6Tci3jYl/d0EQhNHKYlSztyE5Y3sysmgqn0ba+hVo\nm+rxOpxJOY66vZXpD99FUKVm5Q9+GdVnyeG6XDlsvuIGJj/5AJMe/w3N5VPRuNvY+pVvE9LEnnQj\nASU5FhQxFKckW7pNT21zFzVzT6Pkv0+RuWxxVKkEw9G0NaPydNERYxurQVt9HyUGnYrGKTOxb9+A\nY/Na6ivmRbxv3ju9xfb9rT7bCscDYNm5leqFF8R8Tk1tXvLSk1PctWNfO53e4RN5guEwew50cKDZ\nQ74rBecoXowljH176zvY39gJwJQ//hJVt4fPbr4Xn8WW0OMoZZnsNJGWc7R0f/dGVlrT8esMeO2p\neK2peG2OERNYI1WQkUJmqvj3HGv0WhW4h27ZqNcoKY5xcVNg5qxhvz/6rswEQRAEQRCEo2bEiSdJ\nYvWNd9ORmUvJf58iY/kHODavxeNw4klzJeYkJOmQtlhNE6JP4hnNbawAUCgIZrjQN9TFPZSIcx6e\nu8uHdccmILY2VmmW6Cf7ZEkieNFFdLpyyHv7BbTNvU8b8t57GXP1LvYsvAB3XtGI4xi1KpxW0Y9a\n6C3MAbBvXR/xPlurW3F7Ik/OUS9ZjKKrszctJ8b3z7oZJxOWJFwrPoxp/4EcG1cx745vsfC7F5O9\n9G1ax41n2c8e4e0nXqV64QURPfTSKBVMyLcxqdDBlHEO5pSnM39SBhUlaUzIs1GQkUKGTY/elc6K\n3/6N2lmnYqnaQY/JzNL7HqfH6hjxGCqFzMRCOzrN2Fjn5LLrsZuT38LCZTdQO2cB3TYHue+9jMKb\nwBXW4TAl/32KsCyz46Iro9o1pFaz7Ge/o9uWyqQnH2Du3d8HSWL5nQ/RY0uNeBynRcfkQocoyhEE\nQYhTikGd1BaQ1ad9ESkcJmdAa6iECoWY/shdaNua2fSNG+nIHRf3kJVfupLWcWXkv/MiE55+hJBC\nyc5zvxLXmJmpxlGb7pZiUGPQqmgum4LXbCNjxQeftxeNk7GmGoDOGAtzlMegjVU/g05Fw+Teh3lp\n61dEvJ/+QA1p61fQOLGCLlcOAG0FxYQlKeL0zaF0ev109wTiGmMwNU1d1Ld6It7e6w+ytbqVNTsa\nY04KFYTh1DV3sbvODUD6yiVkL32bpvJp7Fl0UcKPlZVmOCYt805U1gw7+xddSO28hbSUTcGTnhlX\nUY5KIeNI0VKQkcK0olRynLGl+QrHlkE39HyOLEmMz7MlLR1Z/PYLgiAIgiCcwCK5GQzoDSy/82GC\nKjWzf3kb2rbm3vZTCZxQ7W9nFdDoDsYuR2M0t7HqF8rMQtfSiBSMb2JLJOYMr9ntxbZ9IwAtxROi\n3j8txsKYDGcK2y+9GoXfT/H//orc46X8b48SVGvYfMUNEY2Rn5EyugvMhKMmlJdP0O4gbf3KiAsc\n2jp7WLOjkU1VzXSNsPoUQHWwjdWZMZ+nz2KjuWwy9s1rUbnboh8gHCZ95UecesvXWHDrFWSsWkrD\n5Jl8dP+TvP/756mZd2bEqVdOq56K0jQc5kN/hxWyjFGnwmHRkeM0UZJjZco4BzOn5yP/77803/t/\nHPjPy+SfXMH4XCsl2RbGZZrJT08hJ81EpsNAulVPqlmHzaRhQr5txB7jo8nRek/RaZRYrUaqFn0J\ndaebrI/eStjYztXLsOzezr75i/BkZEW9v9eexrK7HiWkUKDpaGfDtbdF1FqwX166ibI8m0gzEwRB\nSAClQsagTd7n6P6TzyKkUJKzOAntrEIhKh76KVkfv0vjhOlRF4sOJaxQsuqmewnLMtq2ZvadfFZc\naT96jZKCjNHVwupwTqsOFArqZp+KrqUJ2/YNCRnXFGdhjvoYPiw36lQ0lU8lpFCSum5lxPvlvtd7\nTb/nzAsPfi2oM9CZmYtl17aDrTxj1dQ+dKJALNxdPnbVtMe2r8fHmspGmhN8TsKJramtmx37eu9l\nFd5upj16LyGFktXfvyumlnjDUSlkskS6ylElyxKZDiN6jRJlDP+eGpUCp0VHUZaFipI0TpqYwYQC\nOzlOEylRpm0Lo8dw16KFmeakzvmMjSVegiAIgiAIQlJEukqjvbCUtdf/hIpH7gKguTz6VJvhNPU9\nIGsumxx1FPhob2PVL5SZhRQKoW1uoDuOtCGfP0goHE7qStOxyusLUNfsIXdbX2FOaXSJOUatKuab\nL61aifuiy/D84zEKX3uWsEKBvukA2y69mu60jBH3txg0RyXVQhgjJImer16B/tGHKH32CTZf+f2I\nd21q99Lc7iXNqicv3TR4sovPh+atN/CkZkT9e3K4upmn4NiyjvTVn7BvwTkR75e+cgkTnn4Ea99K\n3tpZp7Lty9+Kuk2iRqmgKNt8REFOJBRqNaFvX4ceGP3lnaNfht1A1dmXUPafxyl8/VmqBzwgikfJ\n838BYPslV8c8RkvZZD6+90+Y9lWx67yvRrSPLEmUZFtw2sSrQxAEIZEsRjUd3clJvfCZrRyomIdr\nxYeY9u5KWKvN/qKc/LdfoKWonE/u/gMoEpei1lZczvZLr6H4v0+z4+JvxDyOBJTmWEd9ManTpqeq\nzk3tnNPIf/sFXMsW01I2Je5x+xNzYm1ldSxTLAxaJUGdgZaSCdi2bUTZ1UnAMMID/FCIvHdeIqDV\ns+/kRYd8q7WwjJwlb2I4sJ+ujOyYz6uprTthbXf8gSBb9rQQirtYqFvcOwsJ0dbZw5bqVvpfkWX/\n+hOG+hq2XXo17vzihB8vO82YtBQOYWgFrhQKXL0Fq8FQCJ8/hC8Qwu8P0hMI4fMHe/8EQgQCIfRa\nJRajhhSDeswk5QrR0WuUSMDhn0ZpFh2ZDkNSjy3eAQRBEARBEE5g0Uw8VZ19CdWnnUtYlqmfNifu\nYytkCaNWRapFR8q82Ry47mZ2X3NT1OOkWnRjImUklNm7yj/edlZheotzhCPtre8kFAph276ebnta\n1CtNY03L6ZeeYWXHxd9E6fVQ+uyT+IwpbLvs2oj27Z8kEIR+XTf/gEB6BiXP/QVD30OGSIWB+lYP\nn21rYMe+tiOStlQfL0Hhbmf/vIVxp5/VzToVgIwVSyLaXuVuY+b//ZD5d34HS9V29i44h3f+9BKf\n3PvHqItyhkrJEY4Nu1lLMDOHAzPmY9+6HvOubXGPadm5Befa5TRMnkVbcXlcYzVMm8uu8y+P6DUv\nSxITC+yiKEcQBCEJzHEsqohkccLe074IQM77CUrNOawo56Nf/QW/yZyQoSV6C/SLMs0YH/gVDRt2\noJ05I+bxstPGxgp+jUqB1aSlftpcAhotmcsXJ2Tcz1tZ5cW0/4itvpNIqZDRqZU0Tp6FHAri2Lx6\nxH0cm1ZjPLCf/fPPJKg79EFifxKxZWd87azaPb6EpPaGw2G27GnFm4CxWtw9cY8hCJ3dfjbt/rxQ\nLGVPJSXPP0WX08WWy69P+PFUCpnM1OQ+8BdGppBldBolZoMaR18RRn5GCiU5ViYW2JlanEpJjhWn\nTS+Kco5jsiwd8e+r1ygpzrYk/9hJP4IgCIIgCIIwasmSFHmUpySx8oe/4o2/vRPxykOF9HnxTa7T\nREm2hanjHMwpT2f+JBcVpWmU59nIz7SguPtu8i8+K+rK9FTL2HggG3RlAqBvPBD3WD3+UNxjHG+6\newIcaPGga6pH19JES8nEqMeI97VkT9FSc96X6UnpvZHb+uVvRTRpn2rWjYkJdOEoMxrx3PtLFH4f\nUx+7L6YY+lA4TG1zFyu31LOrph1/oHciXN3fxuqwlbWxaC8oweNIJ/2zj0Zs1ZexfDGLvnUuue+/\nSkvJRN7544usuP0B2gtKojqmRqlgYr6dslzrMV3ZLBxKliTS7Xp2nfNlAApefzbuMYuffxqA7Zdc\nFfdY0SjKMmM1aY7qMQVBEE4UFqOGWMqCbSYNs8Y7cY7Qxrh2zmn4dXpyF78WdxufZBTlDCzGmV2e\nzpQiB5mpRjRqJQqHndJcK+NzrVG33DBqVeRlmOI6t6Mp3a4nqNVRP20uKXt3YazZE/eYxtq9BDQ6\nvLbUmPZXHuPrSqNORcPkmQCkRdDOKu/dI9tY9WsrHA/0FjnHKxHtrKrqOmjtTExBTU8gSIcnOalb\nwokhGAqxcVczgVDf3FooxLTf3Y0cDLD2u3cS1CW+OD/HaUKR4NZYgiDETq/9vDBHliTG59mOSqKV\neBcQBEEQBEE4walVUVwSyjIeZ2bEm+emmz4vvslIIcNuwGzUoFENvhJNIcsUZVmYmG9HFcHF8Fhp\nYwUQyupPzKmNe6we3/APv09E1Qc6CIXDWLf3tbEqia49j1kff0StJEmkZTlYd90d7Ju/iJ3nXz7i\nMcfnWinLs8Z1XOH41XPehXTOmU/GZ0txxbGSOBgOs6+xkxVbGqje14z69dfotqXSnICWAUgSdbNP\nQdPRjm3r+kE36U/JmXfXd1F3tLPh6ltY/PC/YooHT+9LyRHx9aNThl1P/cz5eBzp5C5+FUV3V8xj\n6etryF7yJu15RRyYMT+BZzm87DQjGXaxmlUQBCFZlAoZgza69rF6jZLxeTY0KgVluVYmFzrQD3Ht\nHtTqqDlpIYb6Goqff2rEwuEhJbAoZ8hinCHui9OseipKUzFHWLwvSxKludYx1e7YkaJFpZCpnXMa\nAK5lcabmhMOYaqrpzMyJORFSPQoKc5rHTyWkVJG6fsWw2yq6u8he8hZdzkwaJ1Yc8f3WvsSc/rax\n8Whu745r/6b2bvY2dMR9HgOJ1BwhHg2t3fQEPk9vynv3JVI3rWb/SWdQN3tBwo+nUSpwOUQSpyCM\nJgOvRcdlmjHqors2jZUozBEEQRAEQTjBRVIAE6toJ1z72c1aZpSmYTMN/+B1rLSxAgi6+gpzRGJO\nwnm8fupbPQDYDhbmTIhqjHjbWPXLsBnYd/q5fPrThwlpjnz9ypJEulXP9OJUphankmbVj6kJdOEo\nkyS8v3mQkFLFlD/ej8Ib36R4IBTC+9qbKNtb2T//TEjQir3avnZWrhUfHvG9w1Ny3n3sBbZfdi1h\nRXSFcP0pOaUiJWdU06qVWK1Gdp99MSpPFzkfvB7zWEUvPIMcCrL94qvibrkWKYdZS0GGaC0oCIKQ\nbBZj5KlkKoXMxAL7IauYrSYNFSVp5KWbBr2Wrrzo6/j1BiY/+QALv3MBzlWfRHeCCSzKKXRFVoxz\nOK1ayZRxDvLTU0a8X8h1mo7aA6VEkWWJVIuO2tkLCMsymcvej2s8bUsjSq+HTlduzGMc68Icg1ZJ\nUKujuXQS1l1bUXW6h9w26+N3UXo97Fl4waDX9D6LDY/DGXcrK4C2Th+BYGxzEN09AbZVt8V9Dodr\ndsef4iOcuOqaPQf/v7q9lUlP/IaAVs+66+5IyvFynEaRliMIo0x/Yo7TosMVZXp/PMQ7gSAIgiAI\nwglOFU1iTpQGxkJGS61SMKnQzrhM85ATkWOljRV8npijS0Rhji/+vuzHk+oDHfSH1PcX5rQWR16Y\nI5G415JGrRg0yUOjVJCfnsKccieluVZM+rGR9CQce+HiEuq/fi2G+lpKn30irrH0B2qoePBOQrKC\nPQuPjLyPVePkWQTVGjJWLDn4NZW7jZm/OjIlpyN3XNTjmw1qKkpTRUrOGJFh11N11sWEZAUFrz8X\n0xiqjnYK3vwvHoeTvQvOTvAZDs6oVVGWax0zBb+CIAhjmTnC1FNZkijPtw2abCnLEnnpKVSUpGE9\nrNCnbdx43nz6LXadfSkpe3dz8h3XcNJPv4NxX9XIBx1YlFM8Ia6iHJ1aSXZa5MU4h5Mkidx0E1PG\nOdCpB7+3NunUZDuNMY1/rKXb9fgsNprGT8W+ZS2a1uaYxzLWVAPQkRl7Yc6xLv429BVXNUyZhRQK\n4di4esht897pbWNVvfD8IbdpKyxD19KIprUprvMKhcM0x9DOKhgKsbmq5fN2QQnU4fEdbNMrCNHo\n7PbjHtAKbdKTD6Bxt7Hp69+jOy0j4cfTqhQijVMQRiGDVoVeo6Qo23JUjysKcwRBEARBEE5wyUrM\nkSUJrTq2CciBslKNTCtOPSJ9Zyy1sQIImy2E9Ab0DXVxj9XjFxNQ/Tq7/TS09aWIhELYdmzEnZWP\n3xh54oHVpEEd42T5YFwDJl3621XNKneSm25CpUzccYQTR+jHt+NJTafkuScx9D10iJayq5N5P7sO\nbXsL666/nbbi8oSdX1Cro37qbMx7KtEfqMG17H3OuvZcchfHl5ID4LTqmTzOIX53xhB7ipZwhou6\n2adiq9yMdcemqMcoeP05lF4PlRdcQViV/M96jVLBhAKbWMkqCIJwlER6H1eUZR4xXUevVTJ5nIOy\nXOshiSc9Vgdrbrqbdx97gYbJM3GtWMKib53H5D/ej8o9RILH4UU5v3wy5qIcAFtK5MlAw0kxqJle\nkkq69dBWKL0trCxjNoEzRa/GoFVRO+c0pHCYjEHSFyPVX5jTOYYLc3QaJUpZpnHSTADShmhnpT9Q\nQ9r6FTRMmkFXRvaQ47X1tbOy7NoW97k1xtDOase+djq9/riPPZgwop2VEJu65s9b7To2riL/7Rdo\nKyhl54VfS8rxcpwmZHlsvkcLwvGsv02qMomdBAYjZhwEQRAEQRBOcMl62KnXKBO26tyoUzG9OJXM\nAdGSY6mNFQCSRNCVib5RFOYk0sC0HNP+KlSeLlpKJ0Y1Rpo1sb2+rSYN2alG0a5KSBi1xcyem3+K\nwu9n6mP3QTg88k4DBYPM/uWtmPdUUnn+5ew67/KEn2NdXzur+Xd+m5N+fgOqzvhScgDy0k2U5VrF\n788YI0kSGXY9u865DICC15+Nan/Z56PopWfw6w3sPufSZJziocfrS2PQDpFEIAiCICSeSqkYse1x\ndpoxqpQBp1XPzDInLruBgVcO7YWlLPn1X/nkrkfxOF0Uv/h3vvDNsyh8+Z9IgQFFAwkuygFGbM0c\nDaVCpjTXyvhcK8q+QtK8dFPM7aNHC6dVR+3c0wBwLV8c8zim2vgKcySSNzcSDYNOSfP4KQRValLX\nrxx0m9z3etNy9pw5fAJma2FfYU4C2lm1unsIDpN8Ew6HD7aY3lXbzrqdTQfbTSeLaGclRCsYClHf\n0ltkJvl9TPvdzwlLEqtv/HlMi0hGolUrSLcndr5JEITEkGXpmLQBFYU5giAIgiAIJ7hk9VGPp43V\nYGRZoijLwsR8O2qlPKbaWPULZ2Whcbeh8Ea/2mwg0cqqV4fHd8jKvbR1vSsKW0onRzyGLEk4Etwe\nR5IkCjPNol2VkFCaL19K/dQ5ZHy2NOqHFpMf/zUZKz/iQMU81n/nx0k5v7qZpwCQsncXzSWT4krJ\nkSWJshwreemRJ18Jo0uGzUDD9JPocmaSs/h1lF0dEe+bs/hVdC1N7D77UgIGUxLPsldpjoUUg3i/\nFgRBONrMw7z3OsxaCjKivw5QKmSKsy1MLUrFOLBgRZKoPekM3n78VdZf+wPkYJBpf/gFZ37nQpyr\nPk5KUY4sSVhMif98SbPqqShNJSvVSHba2GxhNZDTpqcrMw93TiHONctivlc21uwFYm9ldazTcvoZ\ndSpCag3N46dg2b3tyHSnUIi8d14ioNWzf/6Zw47VNm48ANZdW+I+r2A4TGtfQk0oFMbt8VHb1MWO\nfW2s2dHIxxvqWLmtga3Vrexr6KStM/lpNq0dPYSjXbAgnNAa27wHW6sV/+9vmKt3sfucS2kpi3wO\nKRp56SlikYkgCIcYHVcbgiAIgiAIwjGjUo2Nwpx+drOWipK0MdXGql8wMwsAXeOBuMbxBYKExAQU\new4c+qDXtex9AGpnL4h4DHuK9qjHlgpCLFKMGipvu5uQUsWUP94f8UOL/Nefo/jFZ3DnFLL8Jw8m\nZSUgQHdaBuu+82PWXv8TPnj4nzGn5KgUMpML7ThtYmXhWKZRK7Bb9ew++1KUPd3kvv/qsNvLPh+m\nvbvJWP4Bpc89SUihpPKCK5J+nnnppoSnpgmCIAiRGep+zqhVUZZrjSsdtb/1U0m25ZCFKCG1mh2X\nXMWbT7/FrrMvxbS/ipPvuJazrvpCQotyoPfnS1aLRK1aybhM89hKkB2CRqXAlqKlZs5pKHu8ONcs\ni2kcY201fp2eHqsjpv3VoyAtBzi4er9h8kykcJjUDZ8d8n3HplUYD+xn//wzCeqGT5TyOF34TOaE\nJOYA7K5zs2pbAx9vrGPNjkZ27G+jtrkLt8dH8BjMT/iDIdxdvqN+XGHs6m9jpa/bz/h/PobXYmfj\nN29OyrH0GiVO69hbUCgIQnKJnF5BEARBEIQTnCpJRQn6JEZqq1WjY9IsWqG+whx9Yx2d2fkxjxMG\nfP7gCd12w93lOyS6WtXRTtr6lbQUldOdlhHxOGliokQYQywVk9jxpSspffZJSv/zOJu/ceOw26eu\n/ZRpv7+XnhQLH9/7x6Snj1RedGVc++s1SiYW2NFpTtz3tuOJy25g+6ILKX/mUQpef5aqsy7GcGA/\nxppqjLXVff+7F1NNNfrGOqQB7RGqFl0U1Xt5LJwWnUhlEgRBOIbMRs0RX9MoFUwosCWkoKW3taKB\nVIuO6voOahq7Di5u6LHaWXPT3ew69ytM+dOvSFu/IqFFOZDYNlbHO6dNT+3c0yh79glcyxdTO/f0\n6AYIhzHW7KUjKw9iLFZSjpLEnP7WZI2TZwG/J239SmrnLTz4/bx3ImtjBYAk0VZQStr6FSg9XQT0\nkbeGG4ynJxDX/snQ7O4Z9L1EEA7X5fXT3lfINfnx/0PZ42X1Tfck7D3/cLnppuOieFIQhMQSs12C\nIAiCIAgnuGRFNuvFg9Uj9Cfm6Bvq4h6rxze6CnPcXT4a2ropdKUclcmHPQfch/x3xsqPkIMBak46\nI+IxlLKMPUVMmAtjR6pFx6qvf5ec91+j5Pm/sGfhBXQNEddv3F/F3HtvBEli2V2P0pWRfZTPNjoW\ng4byfNuoaSMgxM9q0iClp1Nz0hlkf/QWF507BWmQ1dTdtlSayqfR6cqhIzOPzqzcqJLPYpGiV1OS\nY03qMQRBEIThaVQKdGol3b7eh/2yJFGeb0v4PY5SIVPoMuOyG9hd6z6kFW57YSlLfv00lsotdOQU\nENQmrmjfliKKBSLlSNFSOX4K3TYHGZ9+CMEgKCJfjKNtbkDZ001njG2sYPS0sjLolEhAS8kkgmoN\nqRtWHvyeoruL7I/epsuZSePEiojGayvsLcwx795G84TpSTrrY6fF7aXAJQqthZHVNXsA0DbVk7l8\nMS3FE9h72heTciyDVkWaRSwCEwThSKNnJl8QBEEQBEE4JpIR2SwhCnMGE3JlAqCPs5UVQI8/GPcY\nidTa0cP+xk68PQHK8qxJi20HaO/soaXj0J71B9tYRbG60p6iQZbFCiZh7JAlibTsVNZ958fM/cVN\nTH3sPj7+xZ+PWBmscrcx76fXoe50s/K2X9IU4cT9seK06inJsSCLFYXHFUmScNkNbLvsGsx7Kukx\nWz8vvnHl0JmZS6cre8Q2DImmrcA8MAAAIABJREFUVSmYkG8T7/+CIAijgMWoprultzCnNMdCiiF5\n7Yp1GiXl+TZaO3rYVdNOp9ff+w1Joq24PKHH0qoVSU2QPd7IskSqzUDdrAUUvPk89q3roioiMdVU\nA8RVmKMeJYU5CllGp1HiAZrKp+Jc+ynqthZ8FhtZS99F6fWw/eJvQoT3263jygCw7tx6XBbmdHr9\neH2BUbVoSRh9QqEw9S29hTk5i19DCoWoWnRRzAlbI8kTaTmCIAwhok/v9evXc8UVR/b2Xrx4MV/6\n0pe47LLLeO655wDw+XzceuutXHrppVx11VXs2bMHgK1bt/LVr36VK664gquvvpqmpqbE/RSCIAiC\nIAhCzFSqxE9AadVK8cBrEKGs/sSc2rjH8vpGWWFOZ2+hTJPby7rKpqQWDlXVdRzy33KPl4zPltLh\nysGdOy7icexmkZYjjD0ZdgN1Jy/iwLS5ZHy29GBRWj8p4GfuvTdhqqlm22XXUH3mBXEdz2xQk2bR\nYU/RYjFoMOlU6DVKNCoFSlkm3nf6vHQTZblWUZRznEq36XEXT+DtJ1/jw9/+nVW3/j97dx4fV1nv\nD/xzzpl9n8k6mexp0qYbbaF0ZWkBAUHRC4jg9brggtcrelUQF/QKsqmAuCII6k8UBERZZJWCbIVS\nWrovadJm3zNLttnOmd8faUPTTJJzZibJ0H7er1dfr2bmnOc8SZr0zDPf5/u5Cfs+/nm0nn4uglXz\nZrwoRxIFLKzMed9GYhIRHW+ORNCUF9qR77bMyDXddiNOnpuHuSWuaSvGYIyVdoU5FrSuGdlk4Tvm\n/nYqttZDAID+tApzsufewGoeKerqOmkFACBv+9sAgPIX/g4AOHSO+vv7QNVIYY6rfk8mp5hVekOR\nqQ+iE1p3cBgxWQESCZS/8A/Iej2azzh/Wq5lN+uRx245RDSBKctI7733XjzxxBMwm8f+IonFYrjl\nllvw6KOPwmw24/LLL8f69evx7LPPwmKx4OGHH0ZDQwNuvPFG3Hfffbjppptw/fXXo7a2Fg899BDu\nvfdefPvb3562T4yIiIiI1BEFATpRRFxRMjam1cTdSsnI3pGOOeYMdMyJxjL3/UqXoiQQOpzVDQD9\nwzFs2d+NRZU5sJkzu1PU3x9BYHDswlvB1o3QhYdGYqxUvrkvCgI8jLGi9yGjXkKey4ytX/4ezv3i\nRVhy9y3oPHnNSPRCIoFlv7gR+dveQuvqs7DjM/+b8nUkURiJfcidunBCVhQoSgJxOQFZOfxHVpL/\n/aiPc5wmFMzQm3A0Owx6CTlOE7oDw1MfPM3MBh3m+JwZ/3+JiIhS57KNFACXF85sFI0gCPDmWJHn\nMqOpcwAt3QNQksQtpooxVto5LAbUrTgNcZMFRW+8iO2fv0b1aztbWxOA9Drm6LKkYw4A2Ex6dGMY\n3YcLc/K3vQV/9QLkb9uErpNOxZC3WPVY/aWVkA1GuA4cv4U5faEwfCpes9CJ60iMlevAbjgbD6Bl\n7QcQc7gyfh2LUYd5ZYzLJaKJTfmOSWlpKX7xi1/g2muvHfN4fX09SktL4XQ6AQAnn3wy3n77bRw4\ncACnn346AKCyshL19fUAgDvuuAP5+fkAAFmWYTTy5pSIiIgoW5gMEgbCmSv0YNvuCVgskD05GYmy\nCsfiGZhQZgQHo+MWsiMxGVvrujG/zJPRzjSH2kPjHnsvxups1eM4rAbopOxZfCXSwpdvw5aSCuy7\n+NOo/eu9mPfQPdj16a+i+rE/ovKZR+CfU4u3vvVj1S3uj+WxG1FT4lLdEl4SRUgioGdNJiVRlGOd\nlcIcURDgshngcZjgsZtgYdEwEVHWMRlm901MnSSissiBXKcJW+q6MzLmyP8/fO8jFXmFLnScshbF\nrz0Pe1M9+lV2Q7UdibIqKk352vpsKsw5XETcN3ch4kYz8rdtQsSVAwA4dM5HNY2VkHQIVtTAVb8X\nQiyKhH764uJmS6A/AkVJsGszJTUUjiNwuMNz+QuPAwAOnXNRxq+T7zKjpsTFdSYimtSUqxLnnnsu\nWlpaxj0+MDAAu90++rHVasXAwABqa2vx0ksv4eyzz8a2bdvQ2dkJWZZHi3K2bNmCBx54AH/+859V\nTTAvzz71QURERESUFl8wjLbuwYyNV1zkRF6eLWPjHU8SpaWw7N0Lu9WYVp61yWzImntl/3Acdlvy\n4pvGnkGYbUaUZWAXbJd/CIoojr2WLMP35suIeHIRXb4CdpWFCNXlnqz5+hFplQegKxRFyxe+hvKX\n/4l5j9wPIS8f8+75McK5+Xj3p/fBkufRPK5OEjC3zIOSAv5sZAp/z4x8DTqDEQyGY9N+LYtJh1yX\nGbmH49ckLowTEZEKeXlAZygypgtoqnKcJngLnRmY1YnH7jRj//pzUfza86h85xU0LFio6jxnezPi\nFhsMxT4YUnyN7S1wZE1HVZvDjEPdgwBMCJx0CnI3vYo5/3wIcbMFwfM+BLtF2zwH5y2EZ98OeLua\n0T93wfRMepaJBj3y3IwPovH2NfbBbjNBiMdQ9vI/EXV5MLjuHNh1mdlQKAgCasvdKJ3hzm9EM4Vr\nGpmV8nYhm82GwcH33rwZHByE3W7H2Wefjfr6elxxxRVYtmwZFixYAEkayed8+umn8Zvf/Ab33HMP\nPB51i4Td3f2pTpGIiIiIVJIjcfQPhDM2Xngwgm5krhX48cRR6IXx3a0It3em1To3Eo5mzb3yoWY/\n+ocmXsTetKMNbe0hVPkcENIoRtqyrwv9w2Pf2M3dsRnGQC/qP/ixSedwLFGWs+brR5QKu1FEiyxi\n6xe+hdU3fhW1d92AuNGE1/7vV/Bb3IDG3+keuxE1PidMIl+HZ0penp1fy8MKnEa0RmPo649kNCpk\nwq44cRl9fZkrOCYiouOfRS+iNQOvifMdRv7/n4bAmvVQRAk5Lz+Hbf/x2XHPC/EY7M0H4T6wG64D\ne+Bq2AvboToEKueh/5jIYy36g0OQI9NfRKxWeDiKmKygbeFy5G56Fca+Hhz8wEcRUCTN9/ldZTUo\nAWDYuQ39vqrpmfAsqzvUA8QzH01E729KIoE99T2IyQq8G1+CIdCHuo98EqGwDEBOe3yTQcL8cg/M\nksDf+3Rc4ppGaiYrZkq5MKeqqgqNjY0IBAKwWCzYvHkzrrzySuzYsQOrVq3Cd77zHezYsQNtbW0A\ngMcffxx//etf8ac//QkuF/+DJCIiIsomNktmo6cYFzExxTeSB2/pbkcwjcKcaFyBkkhATKPQJRPi\nsjKuWCaZlp4BhKNx1Ja7IaUQr9MTGE56nfdirM5SPZbFqIPZyH+j9P6W5zKjoTWE1rXnoP2U0+Dd\n/Co2XXMr/DXqdhYfIYkCqoqcKMq1TtNMiQC33Qi33Yi4rKA3FEZ3YBh9odSKdMwGHTwOIzx2E1x2\nQ0r/pxARER2rwG1GQ2sQcpoFpB4HY6zSkVNRhJ5FJyN/2yZYWxthCvTBVb9n5M+BPXAeqoMUe29D\nRkIQ0O8rR91HPpnWdbMpygoArCY9AoMRdJ906uhjhz7wkZTGClTVAgBcB/YA52ZkelmnL5R6URYd\nv3qCYcRkBQBQ/sI/AGQuxirHYcK8UnfW/e4gouymeTX6ySefxNDQEC677DJcd911uPLKK5FIJHDx\nxRejoKAAer0ed911F+6++27Y7XbcdNNNkGUZN910E7xeL77yla8AAJYvX46rr746458QEREREWl3\nJMM8E4x6iZnKk5CLDhfmdHUgeHiBLFWRqDzrBSbBgajqN1Z7QmG8W9eDhRU5MBokTdc51JFkh0Yi\nAd8bLyJmtqBryUrVY+VkSYtyonSIggBvrgWHOvrxxv/9EpauVgwUV2gaw2M3oqbEBZOBhWo0M3SS\niAK3BQVui+oinZGuOMbRYhwW/xIR0XTQSSJyXWZ0+odSHsOkl2A1ZXbTy4km12FC55qzkL9tEz74\nmfPGPCfr9QiW1yBQNQ+BObUIVM1HoLIGsjm9AnMByLo1DJt5pDDHX7MAEYcLUZsDPQtPSWmsYEUN\nEqIIV/2eDM8yewxH4xgKx2Dhzx8dpb1npIOmPhSA962XECybg8Cc+WmNKQoCygvtKGX8MxGlQNVq\nRnFxMR5++GEAwIc+9KHRx9evX4/169ePOdbj8eAPf/jDuDE2bdqUxjSJiIiIaDrpJBFmgw7D0Xja\nY1nYiWRSSvF7HXPSFY3NfmGOf0DbzrT+4Ri21HWjJM8GSRIgSSJ0ogBJFCCKAiRRHHlcFEYXR7v8\nQxgIj++W4zy4H7b2ZjSfcR4Ug0H1HHKcLMyh40NRjhVNnQNQDAZNRTmSKGCOzwlvDrvk0OyZrEjH\nqJfYFYeIiGacN8eSVmGOhxsA0iaKAsIfvQT+5x9HzGJFoKp25M+cWoRKK5HQZb7wQq8T04pcng5W\n88jr/ISkw0t3/BmywQikeD8km8wIlVSMFOYoSsrjZLveUISFOTRqOBIfXa8q+fczkGIxNJ5zEZDG\nz7pRJ2F+uRtOGzujEVFq+K4JEREREQEYibPKRGEOdwhObrRjTgYKc8IxGc60R0lPoF97y+j85x6H\n+eA+7Pjs16dcFJEEARP14yl6418AgNbVZ6u+tl4S4bSqL+IhymYGvYQ8DTu7jToJ3lwLinKsMOi1\nda0imk5HF+lkQ0wjERGdmFw2IyxGHYYiqb0u9tj5Zm0meKrL8K9f/23GrqfXZd99sfWorsb9pZVp\njxeomg9nYz1s7U0Y8JWnPV426g2FUZJvm+1pUJZo733vNXL5vx5HQhTReNaHUx7PbTOitszN19FE\nlJbjszSWiIiIiDSzZyjOysyIiUkpPh8AwNzVkfZYkaic9hjpiMXlpJ1sJuM4uB+n/vQ7mPfX38H7\n5stTHi8nEhPGm/jeeBGKTo/2U09XfX2P3Zh1uyGJ0uHLm7rrjcNiQG2ZGysWFKC80MHFRMpqLMoh\nIqLZVOixpHSeKAhwsTAnIxwWA2wzuOFHr8u+t8lsJj0yeUcUmDMSo+06cPzGWYUGo4jLymxPg7KA\nkkigs2+kMMfWchA5e7ahc+kqhHPyUxqvJN+GxVU5fB1NRGnLvjsOIiIiIpoVtgwV5jDKanJKoRcJ\nUcxIx5xIbHYLc/wDUU3HC7EoTv3xdRDjMSQEAQv/+PORVtopsHS2wn1gD7qWrEDcqj7bmzFWdLxx\nWAxwWMZ3gRIFAQUuM5ZV52FZTR4K3BYWPBARERFNodCT2j2Tw2oYjeKl9BXlWjNamDKZbCzMEUUh\no7HVgap5AI7vwhwlkYA/hY6+dPzpC4YRiY+sl5W98DgA4NA5H0lpLKfFgKoiJzd4EVFGZN8dBxER\nERHNCrslM4U5VnbMmZxOB7mg8LgozNEaY1X74G/hrt+Dg+f+B5rWXQhXw174XnshpWsXvfEiAG0x\nVqIgwONgYQ4df47ummPUSSgvtGPF/ALUlnvgYHQbERERkWoGvQSPQ3vnG8ZYZVZRrhUrFxSi0uuY\n9s0/hiwszAEyt3kKAPxVIx1z3PXHb2EOAPSFwrM9BcoCbUdirBQFZS8+gZjZgrbVZ2keRwBQXeLK\n7OSI6ISWnXccRERERDTj9DoJpjTbsuolka1dVVCKS2Du6QLk9AprZjvKKjCgvjDHvX8nav/yWwzm\ne/HuVd/G7k/+NxRRwoI//SKlr4PvcGFO26p1qs/hLlY6XuW5zMhxmMbEVRn5u5iIiIgoJV7P1FGh\nx+IGgMwz6iWUFthxam0BllbnweuxQCdm/vVcNnbMATJbmBNzuDCY7x3pmDNBVPTxoC/EjjknunA0\nDn//SIFW3va3Ye1qR8vp50E2mTWPVZRrzejPIRFRdt5xEBEREdGssKXZNYcxVuooPh9EOQ6Tvyet\ncWazY04kKmMoEld1rBiNYPlProOoyNj8jZsQt9ow4CtH4zkXwdlYj5J/P6Pp2oaQH3k7NqO39iRN\nGeG5XCyn45QoCFhUmcO4KiIiIqIM8DiMMOrUFzkb9RLfvJ1mTqsBc0vdWLWwALWlbrhsmetQpNfw\nvZ5JVlNm/00FqubDFOiFqa87o+Nmk0hcRv+QtshtOr609w7hSOlZ2b+OxFhdpHkcg05EhdeRwZkR\nEbEwh4iIiIiOYjenF3liYYyVKkpRMQCkHWcVjStQlNnZ7ebX0C1nwR9/DmdjPQ58+Ap0LV01+vju\nK74ERdJhwZ9+CUFWV+QDAN43X4agKGjV2Io4x8nCHCIiIiIimpwgCCjMsag+njFWM0cSRRR4LFgy\nJxcragtQVmBPv/PvCdAxBwACc0birFwHdmd03GzDrjknrkQigY6+kRgraXgIxa8+h8GCIvQsPEXz\nWJVFTnZcJqKM428VIiIiIhplNadXWGPJ8I6u45VcfLgwpyu9whxg9rrmBPrVLXbl7NqKuY/+HgNF\npdh+5TfGPDfkLcbB8y+GvbURZf96QvW1fa+PxFi1rjlb9TkWow5mdnQiIiIiIiIVCj3qC3Pc7Mw5\nK8xGHSq8DpwyLx/p9Iw0ZGlhjtEgQZ/BwgD/4cIc94E9GRszG/WGwprPicZk7Gn0T8NsaCb1hSKj\na2S+1/8F/fAQGs/6MKAxAs9pMWj6P4CISK3svOMgIiIiolmRdsccFj6o8l7HnI60x5qtwhw1HXOk\n4SEs/8l1AIBN19wC2Tx+YWPP5VdB1hsw/4FfQ4hN3XJaCg+jYMvrCJVWYaC4QvV82S2HiIiIiIjU\nMht1quKSREFgx5xZppPEtGKfsrVjDgBYNXbNyXeZUehOXlAQqDrcMad+b9rzymb9Q1HE4urXSQbD\nMWzZ341O/xCCGjoDU/Zp7x0c/fuRGKtGjTFWAoDqElcmp0VENCp77ziIiIiIaMYZDVJau8UYZaWO\ncrhjjjnNKCsAiERnvjBnKBxXVRC06P47YG9rwv6LP4PeBcuSHjOcV4iGCy6DtbMVFc/9fcoxC955\nHbpIWHOMVS53sRIRERERkQZeFXFWdouecSdZwGFNfZNRtnbMAbTFWZUV2DG/3IMqnwO6JB1ChvMK\nEXG44Ko/vjvmJAD0qoyz6guFsXV/D8KH1zeOxCDR+084Gh/tlmTu7kDB1o3omb8EA75yTeMU5Voz\nHiNHRHRE9t5xEBEREdGssKXYNUcSBEYFqSQXvb+jrNR0y8nb+iaqH/8zQqVV2Pnpqyc9ds/HP4+4\n0YTav9wNMTr52L7X/wVAW4yVXhLTWqglIiIiIqITT57TPGWUkMfODQDZINXXewKQ1YVVagoEREHA\nvFI3KrwOAIBeJ6G80D7+QEFAoKoWtvZm6Ab7Mz3VrKImzqqtZxA7D/Yhriijj3UFhiEf9TG9f9S3\nhZA4/PfSDU9CSCTQePZHNI1h0ImjP0dERNMhe+84iIiIiGhW2C2p7Qxhtxz1Ejk5UIymjERZhWeh\nY05gisIc3eAAlt/+HSiihE3X3ALFMHlr94gnDwc+fAUsPR2o/OfDEx4nyHEUvfUyhnIL4K9eoHq+\nHocJgiCoPp6IiIiIiEgUBeS7zZMe43EwxiobOCypFeboJDGrXytap1hn0UsiFlfloNAztrtTUZ41\nabyXf86ROKvju2uOPxSBkkgkfS6RSKC+NYj9LYFxx8hKAl3+4ZmYImVQXyiM7sDh71sigfIXHoes\n16P5jPM0jVNZ5MzqQj0iev/jbxgiIiIiGiPVlq0WdstRTxAgF/ky0jEnqqFjzmA4hs4MtGYO9E9e\nmHPSPbfB2tWOvZd/Af65i1SNue9jn0PMbEHtQ/dACidfCMvd8Q4M/UG0rVoPJGnNPZEcJ3exEhER\nERGRdt4c64TPGXUS7CkWhFBmWUy6KbsbJWPQS9Mwm8yxmvQQJygcMht0WFqdB5dtfHGYKAiY43OO\nezwwZz4AwH3g+C7MiSsKQoPRcY/LioJdh/rQ3D0w4bmMs3p/kRUFdS3B0Y/ddbvgaKpH28r1iNnH\n/wxMxGk1jCtwIyLKNBbmEBEREdEYKRfmJNmNRRNTfD6YAr1TRjdNRU2UVWgwip0He/H23i7saw5g\nOBJP+XoDwzHE5IlbOxdu+jcqn3kU/qpa7L7iKtXjRp1u1H3kkzD5e1D15INJjxmNsVp9lupxRUGA\nx85drEREREREpJ3NrId9gtfIbr7OyCqpxFmlUswzk0QxeWS402rAsprcSTsXu+1G5B6zSSVQdbhj\nTpYU5ghyHKfeei1O+el3Mj72sXFWkZiMd+t60ROcPOYqOBjFUDj1NROaWU2dAxiOvvf9KnvhcQBA\n4zkXqR5DAFBd7Mr01IiIxsnuuw4iIiIimnFmow46Dd1IjmCUlTaJ4hIAgDnNOKvJoqz8/RG8e6AH\nW+q6RxeflEQCh9pDKV/PP0m3HH0ogFPuuB6KTo+3r7kFCb22hdH9l3wGUasd8x7+HXRDg2OfTCTg\ne+NFRK12dJ90quoxHVYDWxETEREREVHKCifomsMYq+ySSpyVXp/9rxVtx6y1FLjMOKkqF3rd1N1+\nqoqcYzru9PvKEDeasybK6qS7b0XZhidR8fzfYW1tzOjYfaH31i4GhmPYur8b/cPju+gkw6457w+D\n4Riau97rfiTEoih96SmEnR50nLJW9Ti+XFvKmxSJiLTI/rsOIiIiIppxNov2F6QszNFGLvIBACxp\nFubEZAWKMjYXvScwjC37u7GtvgeBgfGFNJ2BYQwMx1K6XrLxjlj665th7uvGrk9+GcHKuZrHjtmd\n2H/xp2AM+jHn8QfGPOc6sBuW7na0rzgTCZ36f5+5DsZYERERERFR6grcZkjHxAkJANx2vtbIJsdj\nxxwAsB5VMFBWYEdtuQeimDze6lhmow4l+bb3HpAkBCtr4GisT7t7b7qqnvgLqh//M2Lmkfig0pef\nzuj4g+EYwtE4+kJhvFvXg7CGGPBO/xASicTUB5JmDW2hcWtYqaprDkI56vvkfftVGEMBNK2/UPW6\nkUEnotxrz8h8iIimkv13HUREREQ04yZq1T0RUUjeXpkmpviKAQCW7vb0BpJlxLp6kEgk0Nk3hLf3\ndmHnoT6EhibfCdbQFpz0+WSURGLCwhzfa8+jbMOT6J27GPs+dqXmsY+o++inELE7MfeR+6EfeK+z\nj++NFwFoi7ECgBwnF8uJiIiIiCh1OklEnss85jGHxQC9jm+vZBO7RQ915SrvMbwfOuaY9RAFAbWl\nblR4HZrPLy2wwah/r7uOv6oWoiLDeaguk9PUpGDz61jy65sRduVgw88ehKw3oHTDU0CGi2H2Nwew\n82Af4srEcdzJRGLymI47x4OD7SHEJ4klnwmRmIzmrn7safSnXfjU0TeEwODY71HZC/8AoC3GqrLI\nyS7LRDRj+NuGiIiIiMbR2jHHZJDGtEemqclHCnO60ivMWfDAr+BdPh97nngJe5r8GAyr64TT1x+Z\nNJYqmf6hGOQkO5uEWBRLf3kjZINxJMJKSr1IK261Yd/HroRhIITqx/44+rjv9X9B1hvQsVx9O2KL\nUceCMSIiIiIiSps3xzLmYw87c2YdnSTCatK2lqEmDmq22S16LK7KQYHHMvXBSUiiiMqi9wp6AnNq\nAYx0pZ0N9qZ6rPrR15CQJLz+f79AqKIGbSvXwdHcAGfD3oxeq68/MqajihbHU5xVY0c/Gjv7x8Q+\nzYbuwDASALqDw6hvSz1iPRaXUd86drOZIeRH0Vv/RrC8GoGqWlXjOK0GFKb4c0VElAoW5hARERHR\nOFo75jDGSrsjHXPMaUZZFWx5A1Ikgvl33ah5d1mDxoWQwASFPEVvvgxzXw/qL7gM/aWVmsZM5sCH\nP4GwKwc1j/0RhpAf1tZGOA/VoXPZashmq+px2C2HiIiIiIgywWkzwnJU0b/bYZzF2dBE7Bo3Gb0f\nuh7pdRJctvT+vRW4LXAejvoKzJkPAHAd2JP23LQyBP1Ye/2XoB8awOav/wh985cCAJrXfRAAUPrS\nP2d8ThPpDYURi6uPv8pWnf4hHOwYWftp6RpAJDp7n1N3YHj07y3dA2jpTq1QqKEthNgx3X9KXn4G\nYjyGQ+d8BFCxcVAAUF3sSun6RESpyv67DiIiIiKacWajDpKGDjgWo7bFLwIUnw9Aeh1zBDkOZ8M+\nAEDezndQ/O9nNJ3fPxxFl1/9LjD/BDFWFc88CgA4eP4lmq4/Edlswd7LPgf90CBqHvk9fBs3ANAe\nY5XLXaxERERERJQhRzorGHQiHBbDLM+GknFYtX1f9CdQhM0cnxMCgGB5NRRRgivD3WmmIsSiWH3D\n1bC1N2P3FVeh6awPjT7XfuoZiFlsKH3paUBj7NR0URIJdPqHpz5wGq6bKf7+CPY1BUY/lhMJHGxP\nvVNNOiIxGaHBsZHr9a3BMcU6agQHImhP0s2o7IXHkRBFNK2/UNU4vlwbbBo3JRIRpevEuesgIiIi\nItUEQdD0AtXKjjmaJWx2yA4nLN2pF+bYmxqgi4TRuWQlZL0eJ93zE0jD2totH2zvV7XwoyiJcYso\nAGDuakfhO6+ht/YkhMqrNV17MvUXfhzDOfmo/scDKHvhH0iIItpXrlN9vl4SNS/KEhERERERTaTQ\nY4EoCHDbuQEgWzk1vgY06E+ct8jslpHYHsVgRKisCq76fYA8Q91TEgmc/PMfIm/HZjSfdi52/ddX\nxjytGIxoOe0DsHS3I3fXlpmZkwodvTMfZ7V1fw+CE2yK0mIwHMOug33j1ns6/UMYGFYXgZ5JR2Ks\njpYAsLfRj2CStaZklEQCdS3BcY87Du5Hzr7t6Fi2BuGc/CnHkQQB5V67qmsSEWXSiXPXQURERESa\n2DS0gDazMCclcpEPljSirNx1uwAALad9APsv+SwsPR2Y9/DvNI0xHI2jvWdwyuOCg9GkBTzlzz8G\nIZFAw3mZ6ZZzhGI0Yc/lX4QuMgzXwf3omb8UEXeO6vM9DhMEDV2fiIiIiIiIJmPQS/A4jPAwxipr\nWUx6TV1wDO+DKKtMqixyQCeKCFTVQhcZhr21cUauW/PI/ah47jH01SzE29fcAojjv+5NZ47EWZVk\nUZzVQDiG/iF1RSOZEBonevEvAAAgAElEQVSMon84im31vWhTsU4zkUhMxo76XsSTdB9KYKRTzUyb\nqDOOnEhgZ0MvhiPxKcdo6RrAQHh8UVHVkw8CABou+JiqubgdRuhOoG5ZRJQ9+JuHiIiIiJLS0jHH\nYmRhTioSxSXQDw1AN9if0vme/TsBAP7qBdjz8c9jOCcfcx++D5b2Fk3jNHb2Iy5P3i46kGzHlqKg\n4rnHEDNb0Hzm+ZquqcbB8y7BYL4XANC6+mxN5+Y4uYuViIiIiIgyqyjHCo+dhTnZzK4yZkwATrg3\n5/U6CeVeOwJzagEArvo9035N78YNWHzf7RjKLcDrP/wVZJM56XHdS1Yg7M5FySvPQojPfEeXibTP\nYNecnmAYwEhnmP0tAexvDmiOtorLCnY29CIcm7gbkn8ggt7D15oJkZg8aVecmKxge30vYvGJ5zwc\niaOxY/zamW5oEGUvPoGh3EK0rzxT1Xxyncn/DRIRTbcT666DiIiIiFRTu5hl0ksn3GJWpii+YgCA\npSu1OCt33S4okg7ByrmQzVZs/9w3IcWiOOneH2saJxpX0NI9MOkx/v7xhTn5WzfC2tmG5jPOh2y2\narqmGorBgHf/+7vwz5mP5nUfVH2eKAhcLCciIiIioozzOEzQ66TZngZNQm2clU4ST8guq0W5VoTn\nLwIAuA7sntZrOev3YOUt10A2mPD6D381acxQQtKh+YzzYQwFULDljWmdlxbdgWEoirbimFT1BMd2\nlWnrHcS2Az2ITlJkczQlkcDuQ370q4iqamgPIaGx6CdVE3XLOdpwNI4dDX2Qk3T5AYADrUHISeZb\n+uIT0A8PoeGDlyIhTb1pUBQE5Di4kYuIZgffQSEiIiKipCwmHUQVi1QWxlilTC4+XJjTrb0wR5Dj\ncDbsQ7C8GophpAilaf2F6Jm/FMWvvYD8rRs1jdfcNTDhYk9cVpK2b6589lEAwMHzMxtjdbS21Wfh\nX7/+m6qc8COcVgOLxYiIiIiIiE5AdpWx3PoTLMbqCFEQkHv6SgCA+8D0dcwx9XZh7fX/DV14CG99\n6zYEqhdMeU7T4Q05pRmIs7K0t2DJr26COY34cGCkm8uxBTPTYTAcw1CSOKfgYBRb9neritSqaw6g\nr19dJ5zBcAwdfTPTDUhNYQ4AhIai2NPoH1cw1B0YRm8oyeeVSKDqqYegSDrV61JOq+GE/dknotnH\n3z5ERERElJQoCLCqKLqxmNRHXtFYSpEPAGDp0r5QZG9qgC4Shr96/nsPCgK2fvm7SAgClvz6Zk3t\nn2UlgcbO5JFawYEojt2XZAj64Xv9RQTL5qBv3kma5z+dGGNFRERERER0YnKo7JhjOIE7HzmL8jDs\nKx2JspqGriliJIzV//cVWHo6sP2zX0fb2nNUndc37yQMFBbD9/qLkMLpFcOc/IsfovrxB7D6hqsh\nRqcuapnMTBSw9AQmLqgJx2S8W9eDTv/E82js6Ee7xnkeau+fsENNpkwVY3WsnmAY9a2h0Y/jsoID\nrcGkx+bs3grXwf1oXXO26s1cuS7GWBHR7GFhDhERERFNyGaeuujGYmTHnFQdibIyp9Axx7N/JwDA\nf8yus0D1Ahw87xI4Gw+g6smHNI3Z3juE4SQ7tPwD42Osyl58AmI8hoPnXQxkWftvtiUmIiIiIiI6\nMekkEVYVG4j0+hP77bHE4sUwhgJpd5QZP3ACy3/6HeTs245DZ1+EfZd9Tv25goCmdRdAFx6C982X\nUp5C/taNKNz8GmS9AZ59O7DkNzenPBYwEu0djo5fK8mkqbryyIkE9jT6Ud8aHNdRptM/hIMdoQnO\nnFgkLqO5a/JY83Sp7ZZztJaeAbQcntehjn5EJujuXPXEgwCA+gs/rnrsXG7kIqJZdGLfeRARERHR\npGyWqXeaqemqQ8nJvtSjrNx1uwAA/pqF457b8ZmvIWq1Y8GffglDoE/1mEoigYPt4xdzAv3HFOYk\nEqh45lEoOj0az75I28SnmdWkh5nFYkRERERERCcsh4o4K/0JHn+srFoNAKh98LcZHbfqyQdR+u9n\n0LNgGd752g2aN/I0r7sAQBpxVoqCRb+7HQDwyq33wV9Vi6p//hVlz/89tfEAJAB09k1fnNVwJI7+\nYXUdj5u7B7CjoRex+EinG39/BPuaAilfu7lzYMLCl0xIpTAHAOrbgjjUEUJrd/LCIaO/F8WvPYdQ\nSSW6TzpV1ZhOiwFG/YnbKYuIZt+JfedBRERERJOyq+mYw8KclCneIiQEAZYUdqi563ZBkXQIVtSM\ney7q8mDXf/0PDAMhLPzjzzWN2xUYHpNdHovLGAiPXSDy7N0OZ+MBtK45C1GnW/Pcp4tRJ6G80D7b\n0yAiIiIiIqJZpCbOSq87sd8eG/705xBbsAhV//wrfK89n5ExHQf346Tf3oaIw4WN37sTikFdrNjR\nQuXVCFTOhfftV6HvTx5hNJniV5+Dp24Xms44Hz2LTsHG79+FqM2Bk3/+Qzjr92ge74j2vsGUz51K\nb3DiGKtk+voj2LK/G12BYew62AcljTgyOZHAoSQbtDJBa4zV0RIY6ZYz0WdW/txjkGKxkW45Kou/\nGHtORLPtxL7zICIiIqJJ2cx6iJO8wNVLIvQncC572gwGyHn5sHRp65gjyHE4G/YhWF4NxWBMekz9\nhy5HsKwKlU8/DNeB3ZrGP7prjn9g/CJKxbOPjhx37iWaxp0ueklEpdeBU+fnI4954URERERERCc0\nNYU5hhO8MAcmE/p/ez8Ukxmn3HE9zF1taQ0nhYex8uZvQIpF8fY3bkY4Jz/lsZrWXQAxHkOxxoIh\nIR7Dot//DIqkw85PfxUAMOgtwaZrb4UUjWD1D69OqdgHAMJRGf5juwlnSPcUMVbJDEfj2H2oD3FF\nSfv6HX1DGFDZsUeLVLvlTEmWUfXPvyJuNKPxHPVdnLleRESz7QS/8yAiIiKiyYiiAMsksUDslpM+\nxVcMc08HoGExxd7UAF0kDH/1/AmPSej0ePeqb0NIJLDk1zcDGnZQ9fVHRhecjo2xkoYHUfLy0xgs\nKELnslWqx5wOkiigrMCOFfMLUFpghyTy5Q0REREREdGJzmrSQzfF60M9I20g18zF4E23wTAQwopb\nrwXk1CONTrrnNjgbD6Duok+gfdW6tObVfOYHAQClG7TFWVU+/QhsbU1ouOBjGPSVjT7evnIddn/i\nS7B1tGDFbddqWn85WkffUErnTSYakxFKsatMpiQANLRlvmvOdBXmFG5+FdbOVjStvwAxm0PVOTbG\nnhNRFuDKNRERERFNyjZJnJXVNHXUFU0u4SuGFIvBGOxTfY5n/04AgL96waTHdZ28Bq2rz0LezndQ\n8vLTmubV0Dayi+zYHWEl/34W+uEhHPrAfwCzVAgjCgJK8mxYOb8AFV4HdBJf1hAREREREdF7HNbJ\n1yv0fB0JAAj/56cwdMFFyNv5DmofvDulMXyvPY+qp/6KQEUNtn/+mrTnNFTgQ8+CZcjbvgmm3i5V\n50jDg5j/wK8RN1mw+xNfGvf8rv/8MjpOXgPvpldQ+5fUPs+ewDDicvodao7WGwpPGNc0k/r6wxnt\nCJROjNVUqp56CABGYqxUynUxxoqIZh/vPIiIiIhoUjbLxItZk3XTIXVkXzEAaIqzctftAgD4axZO\neey2L34Lst6Axff+BNKw+t1d/cMxNHX2YzgaH/N4xbOPIiEIOHjuR1WPdSyLUYeTa/JQW+pGcZ4N\nLptxyt2MwEhBTlGOFStqC1DlczJGjYiIiIiIiJKyWyaPs9Kf6FFWRwgChu78OaJeHxY88Gvk7HxH\n0+nmrnaccuf3ETea8OZ3bp8wblurpnUXQEgkVG8yqvnbH2EK9GLfJZ9BxJ07/gBJwlvf/gkG871Y\n8KdfomDza5rnJCcS6PJntgtMdyCc0fHSUd8aREJDt+XJJOuWY2+qx7Kf/QBGf2/K41raW+Dd9Ap6\n5y1GYIrNakfLdTLGiohmH+88iIiIiGhS9kk65jDKKn2KzwcAsHRrK8xRJB2CFTVTHjvoLcG+Sz4D\nS08n5j10j6a5HWwf28rY3ngAubvfRcfJazGcX6RprKPNLXHBbjGgwGPBHJ8TS+bkYu1iL1bUFmBh\nuQdlBXbkOEwwHm4tLgAocJmxfF4+akpcMBpYkENEREREREQTc1onL8wxsDBnVMLlxuBv7wMArLj1\nGuj7g+pOlGWsuO1aGPqDePeqb6O/bE7G5tR8+nlQRAmlL00dZ2UI9GHuI/ch7PRg/yWfmfC4qMON\njdffBUWnw4pbvglLR6vmeWUyziouKwgMZK5LTboGwjF0ZqjwKFlhztxH7kfV0w9j5c1fhyDHk5w1\ntcqnH4aQSKD+Q5erPsds0E3aDZyIaKbwzoOIiIiIJmVlYc60kn0lANR3zBHkOFz1exEsr1a9E23v\nx7+AodwCzH3097C2N6ue27H7pCqe/RsA4OB5F6se41jFuTY4bcnnbTbqkOsyo8LrwKLKHKxaUIg1\nCwtxam0Bass9zAMnIiIiIiIiVRxTFOawY85Y8ZWr4b/6m7B2tePkn/0AUNE5pfbB3yJvx2a0rD0H\nBz94aUbnE3V50LlsNTz7d8LWemjSY+f/5W7oh4ew+z//G3GLddJj/XMXYeuXvwdjfxCrbvwqxKi2\nwpjQUBSD4ZimcybSGwpDyVCHmkw52B6CrKQX15U0xkqW4X3zZQBA/rZNWPj7n2keV4xGUfnso4jY\nnWg+43zV5+U6GWNFRNmBdx5ERERENCmdJCaNrJIEASYDCyXSdaRjjrm7Q9XxjsZ6SNEI/NXzVV9D\nNluw/fPXQIpFcdJvb0tpnmI0ivJ/PY6I0422VetSGsNkkFBRZNd0jl4nsSCHiIiIiIiINJloLQMA\n9JIIQRBmeEbZT772OoSWnoqSV59DxbOPTnpszq4tWPDArzCU58Xmr90ATMPXs2n9BQCAkkm65ljb\nm1H11EMY8JagQWVx0MHzL8XBc/8DnrpdWPqrH2meV0dvZrrm9ARnKMZKllH64pOwdE7dISgSk9HS\nNZjW5ZJ1y8nZux2mYB+azzgP/b4yzHv4Pvhee17TuL7Xnocx6Mehcy/WFJmW62KMFRFlBxbmEBER\nEdGUkrV8ZbeczFB8xQAAi8rCHHfdLgCAv2ahpus0n/lBdC88Gb43XkTF0w9rmySAojc3jCyAnPMR\nJPST7zycyNwSNySRL0GIiIiIiIho+k0UZ8VuORPQ6TB8z32I2hxY8uubYW+qT3qYfiCEFbd8EwDw\n1nU/RszhmpbptK0+G7LBiNIN/5ywg8+CP/wcYjyGnZ/+qvq1CkHAlv+5Hv45tah85lGUH+4OrFZH\n3xDicnpdZRQlgb4ZKMwRo1GsvPkbWHHbtVjzgy8DsjzlOU1d/RhKoytQssIc75svAQAa138Yb3z/\n54gbzVj+0+/A1nxQ9bhznnwQAFB/wcdUn2PUSVPG2hERzRTefRARERHRlJIX5jCfOROUvHwk9HpY\nutpUHT9amFO9QNuFBAFbvvJ9ROxOnPKzH2Dh/XcCGtoTpxtj5fVY4Lar39FERERERERElA67Jfkb\n8gadNMMzef8Qy8rQccud0EXCWHnzN8dHPSUSOPlnP4C1qx27r/gSehadMm1ziVusaFu5Do6Wg3DV\n7xn3vOvAbpS99BT8c+ZrijYCAMVowsbr70LU7sSyX9wA1+G1FjVisoJDHf2arnesvlAY8jTHWOkG\n+3Had7+AklefQ9xkgathHyqef2zK82Qlge31vYhEpy7iOVbSGCuMbPaKG03oWroSoYoabP76jdAP\nDWL1DVdDGp66Q4+zYR9yd21BxylrMegrUz2fHMZYEVEWYWEOEREREU0p2WLWRC2hSSNRRLywSFPH\nHEXSIVhRo/lSoYoabLjrQfQXlaL2oXuw8uZvQIxMvUPL0tmKgndeR8/8pegvrdJ8XaNeQpXPqfk8\nIiIiIiIiolQ52DEnJebLLkXrRy6Hq2EvFv/u9jHPlT/7N5S88ix6FizDnk9cNe1zaVo3EmdVumF8\nnNWi++4AAGz/3DeAFLrzDnpL8Na3boMYj2H1DV+FPhRQfW5bzyAGhlPvKjPdMVbGvm6c+c1PIX/b\nW2hdfRae/+0/EDdZsPD3d0E3ODDl+eGYjO0NvYjFtXUGStYtx9raCGdjPTqXrYZsGomVal53Aeou\n+k84Gw/glDu/P2FHpCOqnjrcLefCj2uaTy4Lc4goi/Dug4iIiIimlKxjjpVRVhmjFBfD1NcNITZ+\nV9HRBDkOV/1eBMurNeVpH22guAIb7noI3QtPRskrz+LMaz8No7930nPKn/s7hEQi5W45NcUu6CS+\n9CAiIiIiIqKZYzXpoEtSsMHCnKkpP/4JQqVVqP7Hn0ZjiOxN9Vj665sRtTnw1nU/RkKa/nWhjuWn\nI2q1o+Tlf47p+pu/5Q0UvvM6OpatRtey1amPf+oZ2P2JL8Ha2Yp5f71X9XlKIoEDLcGUrqkkEugN\nTV9hjq31ENZ/7Qq46/eg/oLL8Mb1d2HQW4K9l30OpkAv5j10j6pxBsMx7Gjohayh23Kywpyiw/9+\n2lauG/P4ti9cg575S1D68tOY848HJhxTNziA0hefxFCeF+0rzlA9F50owsXOzUSURXj3QURERERT\n0utEmPRjWz1bWJiTMQlfMYREAube7kmPczTWQ4pG4K/RGGN1jKjTjVduvR+N6z+EnD3bcNbVl8He\neCD5wbKM8ucfQ8xsQfMZ52m+VqHbwtbBRERERERENOMEQYDdMn6jEQtzpmZyOdByx92Q9QYsv/27\nsLS3YOXN34QuMozNX7sBQwW+GZmHYjCgde05sPR0Infn5sMPKqPdcnZc+fW0r9H1ua9AMZpQ+M7r\nms4LDEbQ2Tek+XrBgShisrZONGq59+/Euq99AraOFuz65P9gy9U/AKSR9bx9l3wGQ3le1Dz2R1ja\nW1SNFxqKYtdBPxQVsVuR6EQxVi8hIQhoX3nmmMcTegM2fu9nCLtycNI9P0bOri1Jxy178Qnoh4fQ\n8MFLNRWD5ThNEAVB9fFERNONdx9EREREpIrtqMUsURBgYpRVxii+YgCApbt90uPchzPP/dXpFeYA\nI4tbm751G3Z98n9g7WzF+q9dgfytG8cdV7B1I6xd7Wg+8wLIZqumaxh1jLAiIiIiIiKi2ZMszsrA\nwhxVck47FXv/+zoYg3584EsfhathLxrOvxStp587o/NoWn8hAKD0pacBAMWvPAtP3S40rbsAgTTX\nRzx2I+bPK0J8xSq4GvZN2VH4WA1tIcQ1Ftkk6yqTCQWbX8eZ3/wUjP0BvHP1D7D7k18GjipMUYwm\nbP/cNyDFolh83+2TjDRWX38Y+5qmjvnqDo7/vPShAHJ3vIO+eYsRceeOez6cW4A3v3sHkEhg1Y1f\ng7HvmA1riQSqnnoIiqRDw/mXqJ4zAORxkxgRZRnefRARERGRKnbze4tZZqOOu04ySD5SmNM1c4U5\nAABBwO5PfhlvXXsbpGgYp33nCyh/5tExh1Qc/jiVGKvqYid3IhIREREREdGscVjGF+bwdao6oiDA\nePX/oG3lOuiHBhAqqcS7V1034/PoWnwqhj25KH7lWUjDQ1j0h7ug6PTY+emvpjWux27EwoociKKA\n6OkjEUl5297SNEYkLuNQR7+mc3qDmY+xKtnwFNZefxUEOY6N37sTDRd+POlxzWd+EL21J6HklWeR\ns/Md1eN3+odwoHXy6K5kBUfet1+FqMhoW7l+4vNOOhU7Pvu/MPd1Y9VNX4cQj40+l7NrC5yH6tC6\n9mxEPHmq5ysJAtwOxlgRUXbh3QcRERERqWIzv9cxx8JuORml+EZaQJu7OyY9zr1/JxRJh2BFTUav\n33T2h/HKrfcjZrFi+Z3XY+F9dwCKAkOgD76NGxAsr0bfvMWaxsxzmZHrMmd0nkRERERERERaJOuY\no9dJSY6kZJx2E5p+dCf2XPZ5vH7DryCbLTM/CUlC8xkfhLE/iJU3fwO2tibUX3AZBr0lKQ/psZtG\ni3IAIHbaSGFOwdY3NY/V1jOIgeHY1AcCCA1GEYnLSZ8zd7Wh+m9/QOGmV2Dq7VJ9/epH/4CVt16D\nuMmMV275HVrXfmDigwVhtLhqyW9uART13X5augfQ1Jm8CGniGKsNAIC2VesmHXv/pZ9Fy9pzkLdj\nMxbdf+fo43OefBAAcOBDl6ueJwC4HUZIIt8CJ6LswndUiIiIiEiVo6OsLCbeRmaS7BtZTLJ0tU14\njCDH4WrYh2B5NRRD5nf99Cw6BRt+/hDWfu8q1P71XtjamxGonAsxHhtpF6yhQ5JeElFTzAgrIiIi\nIiIiml16nQiLUYehSHzMY6Re6fwybPrCNxHTGNmUSU3rLkDN3/8fit56GTGzBXuuuCrlsUaKcjyj\nRTkAEF+8BLLDmTTieypKIoG6lgCWVk/d0SVZ3BMAiNEo1n7/y3A17B19LOzOhb+qFoE5h/9UzcOA\ntxQ4UnCiKFh03+2Y98j9GPbk4ZVbfoeQio1cfbVL0LjuQpS99BTKXnwCjed8RN0nCqChPQS9ToQ3\nZ2zUebLPS4hFUfj2qxjwliBUNmfygQUBb3/jZjgOHcDcR3+P3nknoWfRKSh+9XkEy6rQs2i56jkC\nQJ6TG8WIKPvwHRUiIiIiUsWol2DUSYjEZRbmZNiRjjmWSTrmOBrrIUUj8NdkKMYqiQFfOTbc9SBW\n//BqlLzyLEpeeRayXo+msz6kaZw5xU7uQCQiIiIiIqKs4LAYxhTmGFiYo4leJ6Hc60BdS2DW5uCf\nuwgDRaWwtTVh36WfRcSdk9I4yYpyAACShNia02B75ilY2lsw5C3WNG5wMIrOviEUeCbvKDRRjNWC\n//dzuBr2omXtOQiW18BVvwfuA3vg3fwqvJtfHT0uZrEiUDkPgapamPq6UfLqcwgVV+DVW+7FUIFP\n9Xx3XPm/KH79BSy6/060rP2Apk5I+5sD0EvimC7JyWKs8ra/Df3QIA6ee7GqzV5xqw0bv38XzvrK\nZVh++3fQcvp5EOMx1F94uabNYqIgIMdpUn08EdFM4TsqRERERKSazaJHJCQzyirDEg4nFKt10sIc\nd90uAIC/evoKcwAg6nDjlVvuwyl3fg9lLz6J1rUfQNThVn1+rtOEAvcstLYmIiIiIiIiSsJuNaDD\nPzT6sY6FOZoVuM1oaAtCVhKzMwFBwK7//DJKX3oK+y/+dEpDTFiUc1js9DNheuYpFLy7EQe9l2oe\nv6EthBynCTop+b+vgeHYmAKxI3K3b8LcR+7HQFEpNl1zC2Tze91oDCE/XPV74TqwZ+RPwx7k7t6K\nvJ3vAAB65y3GazfejahT/boNAAznF2HfpZ/F/D//BnMfuQ+7/+srqs9NANjd6MdinQiXzThJjNVL\nAIC2VetVjx0qr8bmr9+Ilbd8ExXPPYa40YzGsz+s+nwAcNkME34PiIhmE99RISIiIiLVbGY9ekNh\ndszJNEFAvKgYlo72CQ9x798JYPoLcwBAMRiw6drbcOgDH0VfzSLV5+klEdXFrmmcGREREREREZE2\nTqth9O96SYSoofsGjdBJIvJdZrT3DU198DRpOvvDaNJYpHHEVEU5wEhhDgDkb30TB8/XXpgTics4\n1N6PORNEeyfrlqMb7MepP74OEAS8de2tY4pygJHNU11LV6Fr6arRx6TwMByH6mDu7ULnyWsgm1KL\nbdr7sStR8cyjmPvI/Th43iUYzveqPldJJLCzoQ9LqnMRGIiMPyCRQNHGDYjaHOhZuEzTvJrXXQDP\n3m2o+fuf0HjWhxC32jWdn8MYKyLKUiwZJCIiIiLVbGY9TAYJksjbyExTfMUw9AchDQ8mfd5dtwuK\npENQRV54RggCupauQtxqU31Klc8Jo54RVkRERERERJQ9rCYdpMMFGXp2y0lZYY516oOmmdNq0Lzu\noKYoBwDkOdWI5Rcif+ubgKKkNL/WngEMDMeSPpcs7mnZL2+Etasdu6+4Cn3zl6q6hmwywz9vMdrW\nnJ1yUQ4AyGYrdnz269BFwlh0/52az48rCrbX96C9d3yxlrNhH6xd7WhffjoSOr3msbd//hq8de2t\n2PHZ/9V0noCRTs5ERNmIdyBEREREpJrNrIfFqP0FNU0tUVICAEnjrAQ5DlfDPgQrqqEYjDM9tSlZ\njDrMLXGhcIosdSIiIiIiIqKZJggC7JaRrjkszEmd02qA1TR7a0ImvYQlc3KxakEh1iwsxOLKHFR6\nHch3mWEx6pCs7EZtUQ4AQBAQWXs6TME+OA/VpTTHBIC6lsC4x4cjcQyExxbsFP/7GZS9+CT65i7C\nniuuSul66Wo8+8Poq16Asg1Pwr13u+bzo3EFg+HxhUhFGzcAANpWrUtpXgmdHk1nX4SYQ1tXZodF\ne+EWEdFM4R0IEREREalmNurGtICmzFGKfAAAS9f4whxHYz2kaGRGYqy0sJn0mF/uwfJ5+fBmwc45\nIiIiIiIiomSOrGUYdHzTPh2zuSHHm2OFIBzpfCTB4zChtMCO+eUenFpbgLWLvVhanYfqYhe8Hgu8\nHov6opzDlHXrAQD5WzemPM/gYBSdx0R+9RwTY2Xu7sDJP/8h4kYz3vrWbSl1lckIUcS2q64DACy5\n+xYgkcjIsEVvvgRF0qFj+WkZGU+tXBdjrIgoe7Ewh4iIiIg0yXfzRe50kH3FAABzd/u459z7dwJA\nRgpzJEH9gtREnFYDFlXk4JR5+ch3mUcXxoiIiIiIiIiykd0yUvjAjjnpKfSYIc7CGoAoCCjMmbwo\nSBJFOK0G+HKtmFvqxtxSt6aiHACInX4mAKAgjcIcAGhoCyEuvxeH1RM8KsZKUbD8p9+GoT+IbV/8\nFgaKK9K6Vrp6Fp2C5tPORe7ud1Hy8tNpj2fq6YRn/050L16OuNWegRmqxxgrIspmvAMhIiIiIk3M\nRt1sT+G4pBwuzLEkK8yp2wUgM4U5NSUurFpQiPnlHhTn2mA365O2e07GYzdiyZxcLK3OQw4XO4iI\niIiIiOh94kjHHAtS78cAACAASURBVBbmpEevk2ZlPcDjMM5IRJHiLcJweRVyd2yGEB8f0aRWJC7j\nUHv/yN9jMkKD0dHnqv/xJxRsfRNtK85EwwUfS3vOmbDjc9+ArNdj0X23Q4yEpz5hEkVvvgwAaFu1\nPgMzU89m0nPNkoiyGu9AiIiIiIiygOI7HGXVPT7Kyl23C4pOj2DF3LSvY7foYdRLyHeZMafYiZPn\n5mPNIi8WV+agrMAOp9UwZvebACDPZcbJNXlYXJULl82Y9hyIiIiIiIiIZpJeJ8Fs0LEwJwO8sxBn\nVTSD8dnhNadDPzwEz74daY3T2jOAgeEYeoNhHAmIchzcj0X33YGw04PNX78RyJIOxIPeEtR99L9g\n7WpHzd/+kNZYRW9uAAC0rVyXgZmpl+viBjIiym68AyEiIiIiygKy93BhTlfbmMeFeAyuhn0Ils+B\nYjCkdQ2dKMJiGp9brpNEeBwmVHgdWFqdh7WLvFg6JxdzipxYPi8fC8o9sFvSuzYRERERERHRbHJY\nDTCwMCdtbrsRphnoXnOE2aCDxzFzRReJ9SOdXvLTjLNKAKhrCYzGWInRKFbcdi2kWBSbv34jIu7c\ndKeaUXsuvwphVw5qH7oXpt6ulMaQhgeRv/VNBCrnYqjQl+EZTi7XaZ7R6xERacU7ECIiIiKibGA2\nI+7JHdcxx9FYDykayUiMlc0yvignGVEU4LQZUZxvS1rIQ0RERERERPR+47AaoNfNXEHJ8UoQBBTm\nzFzXHO8MXgsAlNNOR0IUUbAlvcIcAAgORtHXHwEALPjjXXA17EPD+ZeifYZjntSIW23Y+amroQsP\nYdF9t6c0RsE7b0CKRWe8W47HboLNzPUrIspuLMwhIiIiIsoSis8Hc3cHkEiMPuau2wUAGSnMsass\nzCEiIiIiIiI63jgsekZZZUihx4KZCGESBQGFMxydlXC5MTB3IXL2boc0PJSRMXO3b8LcR3+P/qJS\nvHvVtzIy5nQ4eN7F8M+Zj/J/PYGKpx/WfH7Rmy8BANpmqPAox2HC0uo8LK7KmZHrERGlg3cgRERE\nRERZQikugS4ShiEUGH0ss4U5jKMiIiIiIiKiE5PVrIfJwI45mWAy6OC2G6f9OjlOEwwzGJt1xNCa\n0yHGY8jd+U7aY+kHQjj1x9chIYjY9K3bIJutaY8pCcL0/FuWJLxx/V2IOFxY9ssfIWfXFvXnyjKK\n3noZw568jKxhTUQAkO8y45S5+VhUmQOnlWtdRPT+wMIcIiIiIqIsofhG8rct3e2jj7nrdkHR6RGs\nmJv2+Ha29SUiIiIiIqITlCgI0El8WyxTCnPSLzCZStEMXCMZZd1IFFPB1jfTHmvpL38Ea1c79lxx\nFfpql6Q0hl4Skes0oarIiWU1eViz2IvFldPTJWbIW4yN370TUBSsvuGrI52dVcjZuw3GoH8kxkrM\n/M+ZKAjweiw4tbYA88s9jK4iovcd3oEQEREREWUJxVcCALB0jRTmCPEYXPV7ESyfA8WQ3g4gvSTC\nbNSlPUciIiIiIiIiolynCfppLHSyGGemK08y0po1kPUG5G/dmNY4xS8/jbINT6J37mLsueKLqs8z\nGSQUuC2YW+LCqfPysWaRFwsrclCSb4PDYoAoCLCY9HBZp+fr0710JbZ98VqY/D1YfcPVEKORKc8p\n2rgBANC2al1G5yIJAorzbFhRW4C5pW6ubRHR+xZ/exERERERZYkjHXOO7EZyNNZDikUZY0VERERE\nREREWUUUBBR4LGjpHpiW8b2z1C0HAATL/2/v3sPsrMu70X/XWnM+z2RyJiGZEJCDCCEvgVcbLYWC\n11Uu3WqFYGMRLrFstza8CgRJCJZEQDy8iG1F3LVujsK2CrRF3y0ewgYMUApbg0qBEJDQQJDEJOQw\nmVn7D0sk5DCZZNbMJPl8/mKt9fye5/eEi2fCPd913w1Z89bj0vHog6lZ82o2t7b3+xyljRtyzNeu\nzJbaujw09+qUq/ru8HLI+NaMbK1P7W6OqRrX2ZDV6/sOzeyJp947O+1P/TKT/p/v5bj/uSAPX3hl\nUijsfC8P/jhbauvz0jEnDMj1q4rFjB/ZmINGNqa6ygg6YN+nYw4AAAwTPeMPSvKHUVbt/7E0SQYo\nmKPFLwAAADBwxo5oqMh5i4VCxnTUV+Tcu2v9iX+UJBn1+JI9Wj/ln29L/W9X5T/e95dZN35Sn8e3\nNdXmoJFNux3KSZLOtvrKdS0qFPJvf315Xjns6Ez64Z2Z+t3/a6eHNv1mWVqefyYrp/339NbW7fWl\nG2qrctxhIzN5bItQDrDfEMwBAIBhovf1YM5LbwrmHHrUXp+7RcccAAAAYAA11lWntQL1hpGtdUMe\nyNjyrnclSUb9+8/6vba0YX3e8u0b0t3QlF+//+zdWtM1tqXf1ykWChlToXBUkvTW1OaBBV/Jho7O\nHP31a3Y62mvcz36SZGDGWDXX1+TYqZ1GVgH7HcEcAAAYJnpHj0m5VErDf42yan9yaXqrqrNm0qF7\nfe4mHXMAAACAAVaJYMi4zqEbY/W66uP/W7obmjJ6J2GUXZn6vZtSu+bVPPn+s9Pd0tbn8Z2tdWlp\n3LOA07gKj/za2Dk6D87/SlIs5oSFF6Txxee338ODP0q5UMiLM965V9fqaK7N2w4ZMeShLIBKEMwB\nAIDholTKltFj0/DSiyls6U7bM7/KmkmHpLdm7759VltdSm21ogYAAAAwsEa116dULAzY+RrrqtPa\nVDtg59tTtfW1eeWYGWla8VwaVr6w2+uq1q/NYf/3N7OpuTVPvu/DfR5fSDJ5D7rlvK6+tiodzZX9\n83rlyGPz6Cfmp3btmvz3y/+PlDas3/pZze9eTefSR/PK4W/LpvbOPb7G6Lb6HNU1IlWVGs0FMMQ8\n3QAAYBjpHT8+da+8lNZlT6bUvTmvTj1yr8/ZrFsOAAAAUAGlYjGj2uoH7HxjKziaqb/WnfiOJP0b\nZ3Xod76VmrVr8us/PzdbGpv7PH5Ue0Ma6/aubjN2ALvmNNdXp30Hwahl7/7zPHX6rLQtezL/7QuX\nJuVykmTMQ4tT6O3NihNO2uNrThjZlMMndaRYGLiAF8BwI5gDAADDSO9BE1Ls7cnYJT9JkgEJ5rRU\nYN47AAAAQDJwwZBSoZAxHcMnmNM984+TZLfHWdX87tUc+k/fysbWjjz1nrP6PL5YKGTSmL7DO30Z\n0VqX2gEa/zRlfGuOnNyR5vrta0mPnX9JXn7r9Ey47wd5y63XJ0nG/ewnSZIVJ/7xnl1vXGumjG/d\n4/0C7CsEcwAAYBgpjz8oSTL+/nuTJK8eetRen7OpXsccAAAAoDJaGmvStJddX5JkZFv9sBplVPPW\nI7OhY2RGPbZka4eYXTn0jm+m+rV1+dUZH01Pfd9hpTEdDamvrdrrfRYLhYwZgE5DnS11aWuqTVWp\nmKOndKThTXsrV1XnwXn/M6+NHJujvvWVjP9//1fGPHJf1o2bmLUTp/R7z4dPbM+EUU17vW+AfcHw\n+ekGAACkZ/z4JEn7079Mb1V11kw6dK/P2axjDgAAAFBBA9HpZlznwI1kGghNDTV5+dgTUvfqqrQ8\n+x+7PLb21Vcy9Xs3ZUPHyDx9+pl9nrtUKOTgAeiW87qxIxqyN4OgioVCusa1bH1dXVXK0VNGpLZ6\n2048m9pH5P7Lr0tPTW1OWPg/Uv3a+qw44Y+TfoyhKhUKOWpyR0YPo+5IAJUmmAMAAMNI7/gJW/95\nzaRD0luzd6Ga+pqqVFf5az8AAABQOaM76lPsRzjjzZrqqtPSOLy+WFQsFrLm+HckSUY99rNdHnvY\n7d9I1aYN+eVZH0tvbV2f5x4/smm70MveqKupSkdL39fdmTEdDWl4U9ejupqqHD1lRKrf1MVo9dQj\n88gFV6TY25MkWXHiSbt9nepSMW87pHOv9gqwL1KhBwCAYaT3vzrmJMmrU4/c6/O1NBhjBQAAAFRW\ndVUpI1r3PGwxdph1y3nd5ne8M0ky+tEHd3pM3Ssv5ZC7b81rI8dm2Wl/3uc5q4rFioxwGruH46xK\nxUIm7aR7T2NddY7qGpHSm0JXz5/0Z/n/zvkfWTHjnVl11LTduk5dTSnHTh057AJYAINh7wcXAgAA\nA6Zn/EFb//nVqUft9fmajLECAAAABsHYjoa8vHpDv9eVioWMbq+vwI72Xt0hk7J2/MEZ+fOHU+jZ\nknJp+1+tvuW2r6e0eVOe+NBf7Vbn4wmjmirS3XhES11qq0vZ1N3Tr3UTRzWnZhfde1oba3LEpI4s\nffa36S2Xt77/6zM/ml/no32ev5Bk7IjGTB7bnOqqgesSBLAv0TEHAACGkXJ7R3rrfl+MevVQHXMA\nAACAfUNHS13qavofvBjd3pCq0vD8lWVzQ01eOvaEVL+2Pu2//vl2n9e/tCJd/3p71o2dkGf/9H/r\n83w1VcUcNKoy3YEKhUK/u+bUVpd2az8jWuty2IS2fu+po7k2098yKodOaBPKAQ5ow/OnHAAAHKgK\nhWwZf1B6q6qzZtKhe3eqJE2COQAAAMAgGdvR/9DJno5gGgz1tVX57XFvT5KM/vefbff5ETd/LaXu\n7jzxF/97ylV912Amjm5OqVi5X8+O7WhMoe/Dtpo8tmW39zO6oyFTxrXu1rENtVV56+QROXpKZxrr\n1KYAjLICAIBhZs3Cq/PUL57drfbHu9JYV13RYg8AAADAG43rbEx1VTHrNnRn3YburN/QnZ43jD96\ns+b6mjQP8zHcG9/+jpQLhYz69wfzyw+dv/X9xhefz6T/9d387qDJWX7S6X2ep666lHGdlemW87ra\nmlJGtNZl1ZqNfR7bVFfd7xFiE0Y1ZfOWnjz/0rodfl5dKubgMc0Z19mYYqE/ESGA/ZtgDgAADDd/\ncnJWdK5IdlG42h1N9b6RBAAAAAye6qriNuGTcrmcDZu2ZO2G7qx7rXtrYKe7pzdJMq5z+HbLeV3D\n2NFZPeXwjPjlYylt3JCe/xpBfsRNf5diz5Y8MfvjSanvMU0Hj2kelLDKuBGNuxXMmTK+NYU92M+U\nca3ZsqU3L/72ta3vFf9rjNakMS2prvIlMYA3E8wBAIBhqL25Nq/8ru8iyq40Nw7vb5wBAAAA+7dC\noZCGuuo01FVndPsf3t+4eUvWbehOe3Pt0G1uNzU31GTlsSek/akn0vmLR7Ny+tvT/NwzOfjeu7Jm\n0tQ8/85393mOhtqqjOkYnBBSe3Nt6mpK2bi5Z6fHdDTX7dWf/aET2tLd05tVazamo7k2U8a3GlkF\nsAsiiwAAMAz1t5XwjjQ3KIgAAAAAw09dTVU6W+v3iRHcLY3VefnYE5Mkox57MElyxE1/m0Jvb37x\n4U8ku3EPk8a27FF3mj1RKBQybsTOR2YVkkwZ37LX1zji4I68bUpnjp7SKZQD0Ifh/9MOAAAOQJ2t\n9anai+JUsVAwygoAAABgL5WKxWw4bkZ6q6oz+tEH07LsyUz46T159ZAjsuLtJ/e5vrm+OqPa9v4L\nWP0xpqNhp2OzxnQ0DEiQplgs7BMdjwCGA8EcAAAYhorFQka21e3x+sa6qkGZWw4AAACwv2vsbMuq\nI45J29O/zDF/f2UK5XJ+8ZefSHaj9jJ57N51p9kTNdWljGjdvq5UKhQyaQj2A3CgE8wBAIBham9m\njzc31AzgTgAAAAAOXC2NNXnpmBNSKJcz+rGf5ZXD35b/PP6dfa5ra6xNR8uef/Fqb+xonNWE0U2p\nrS4NwW4ADmyCOQAAMEy1NtWmvqZqj9Y2NxhjBQAAADAQWhqq89KxJ259/Yu//GSf3XKKhUImjxu6\n7jTtzbVpqP1DXam2qpQJo5qGbD8ABzLBHAAAGMZGd+zZDHIdcwAAAAAGRkNdddYecXReGzk2/zn9\nHduEdHakulTM0VNGpLVxaOszY9/QNWfS2OaUin41DDAU9uzrtwAAwKAY3d6QZ/9zbb/WlAqFNNb5\nqz4AAADAQGlqacz3/89/SW+ptMtuOc311Tlyckfq9rAL8kAa01GfZS/+LvW1VXs1Mh2AvTP0PxEA\nAICdqq+tSmtjTdas37zba5oaqlPoo50yAAAAALuvpbE6v127687Go9vqc+jEtmHTmaa6qpSRrXUZ\n1d6gVgQwhARzAABgmBvT0dCvYI4xVgAAAAADq2UX9ZZCksljWzJxdPPgbWg3dY1rTW1Naai3AXBA\nGx5xTQAAYKdGttWn1I9vNTU3VFdwNwAAAAAHnpbGHQdzqorFvLVrxLAM5SQRygEYBgRzAABgmKsq\nFTOitW63j2+u1zEHAAAAYCBVlYppqN12GEljXXWOO2xkOlp2v24DwIFHMAcAAPYBYzoaduu4qmIx\nDXUm1gIAAAAMtDeOs+psrcuxUztTX6sOA8CuCeYAAMA+oL25NrVVfbceNsYKAAAAoDJeH2d18Ojm\nHDV5RKpKftUKQN/8tAAAgH1AoVDIqPb6Po9rbjDGCgAAAKAS2ppqctSkjkwe2zLUWwFgHyKYAwAA\n+4jRuzHOSsccAAAAgMpoqKtOZ1vfX5wCgDcSzAEAgH1EU311mup2HbwRzAEAAAAAgOFDMAcAAPYh\nY3bRNaemqpi6mqpB3A0AAAAAALArgjkAALAPGdVen2KhsMPPmhtqBnk3AAAAAADArgjmAADAPqSm\nupT25todfmaMFQAAAAAADC+COQAAsI8ZvZNxVs31OuYAAAAAAMBwIpgDAAD7mM6WulQVt/+rvI45\nAAAAAAAwvAjmAADAPqZYLGRUe/0279VVl1JTXRqiHQEAAAAAADuyW8Gcxx9/PLNnz97u/R/96Ed5\n//vfnzPOOCO33357kmTz5s351Kc+lQ9+8IM555xz8uyzzyZJli9fnlmzZuWss87KggUL0tvbO3B3\nAQAAB5g3j7NqbjDGCgAAAAAAhps+gzk33HBD5s2bl02bNm3zfnd3d6688sr8wz/8Q2688cZ8+9vf\nzqpVq3L77benoaEht99+e+bNm5crrrgiSXLllVdmzpw5ueWWW1Iul3PvvfdW5o4AAOAA0NpYk/qa\nqq2vjbECAAAAAIDhp6qvAyZOnJjrrrsuF1100TbvP/3005k4cWJaW1uTJMcdd1wefvjhPPXUU5k5\nc2aSpKurK08//XSSZOnSpTn++OOTJDNnzsz999+fU045pc8NjhzZ3L87AgCAA8RbpvTkqedXJ0km\nTWjPiNb6PlYAMJjUNAAAAIB9kZrGwOozmHPqqafmN7/5zXbvr1u3Ls3Nf/iX0djYmHXr1uXwww/P\nj3/845x88sl5/PHHs3LlyvT09KRcLqdQKGw9du3atbu1wZdf3r3jAADgQFOTctau25gk2bxhc17e\nvGWIdwTA60aObFbTAAAAAPY5ahp7Zldhpj6DOTvT1NSU9evXb329fv36NDc35+STT87TTz+ds846\nK9OmTcuRRx6ZUqmUYrG4zbEtLS17emkAACBJfW1V2hprs3lLT6pKfU6pBQAAAAAABtkeV++nTJmS\n5cuXZ/Xq1dm8eXMeeeSRHHvssfn5z3+eE088MbfeemtOO+20TJgwIUlyxBFHZMmSJUmSxYsXZ/r0\n6QNzBwAAcAAb3VGf5vrqod4GAAAAAACwA/3umHP33XfntddeyxlnnJG5c+fm3HPPTblczvvf//6M\nHj061dXVufbaa/O1r30tzc3NWbRoUZLk4osvzvz58/OlL30pXV1dOfXUUwf8ZgAA4EAzsq0+5fJQ\n7wIAAAAAANiRQrk8vMv4ZpcBAMCu9ZbLKRYKQ70NAN7APHYAAABgX6SmsWdGjmze6Wd7PMoKAAAY\nHoRyAAAAAABgeBLMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACA\nChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAA\nAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAA\nAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDM\nAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACA\nCiiUy+XyUG8CAAAAAAAAAAD2NzrmAAAAAAAAAABABQjmAAAAAAAAAABABQjmAAAAAAAAAABABQjm\nAMNWb29vLrvsspxxxhmZPXt2li9fnldeeSXnn39+PvShD+XMM8/Mc8891+eaJFm+fHlmzZqVs846\nKwsWLEhvb+9Q3BIwCB5//PHMnj07SfLLX/4yZ511VmbPnp1zzz03q1at2uZYzwwg2f658cEPfjCz\nZs3KJZdcst1//54bAMDuUNMA9oSaBtAf6hkA+w7BHGDY+uEPf5jNmzfn29/+dj71qU/lqquuyjXX\nXJPTTz89N998c+bMmZNnnnmmzzVJcuWVV2bOnDm55ZZbUi6Xc++99w7FLQEVdsMNN2TevHnZtGlT\nkmTRokWZP39+brzxxpxyyim54YYbtjneMwN483Pjq1/9aj7+8Y/n1ltvzebNm/OTn/xkm+M9NwCA\n3aGmAfSXmgbQH+oZAPsWwRxg2Pq3f/u3/NEf/VGS5JhjjskvfvGLPProo1m5cmXOPvvs3H333Tn+\n+OOTJBdddFFWrFixwzVJsnTp0q3Hzpw5Mw888MAQ3BFQaRMnTsx111239fWXvvSlHH744UmSnp6e\n1NbWJvHMAP7gzc+Nww8/PKtXr065XM769etTVVWVxHMDAOgfNQ2gv9Q0gP5QzwDYtwjmAMPWunXr\n0tTUtPV1qVTK8uXL09LSkn/8x3/M2LFjt35T5POf/3zGjRu3wzVbtmxJuVxOoVBIkjQ2Nmbt2rWD\nezPAoDj11FO3/k9nkowaNSpJ8uijj+amm27K2WefncQzA/iDNz83Jk2alEWLFuXd7353XnnllcyY\nMSOJ5wYA0D9qGkB/qWkA/aGeAbBvqer7kIHT29ubyy+/PL/+9a9TU1OThQsXJknmzp2bQqGQqVOn\nZsGCBSkWi7tcc/DBB2f58uW7XAfs+5qamrJ+/fqtr3t7e9PZ2ZmTTjopSXLSSSfly1/+cp9rqqqq\ntnk+rF+/Pi0tLRXePTBc/Ou//mv+/u//Pl//+tfT0dGxzWeeGcCbLVq0KDfffHOmTp2am2++OVdd\ndVUWLFiw9XPPDThwqWkA/aGmAQwENQ1gd6lnALuipjH0BvVPaEfzC/uaXWjmIRy4pk2blsWLFydJ\nHnvssRx66KE57rjj8tOf/jRJ8vDDD+eQQw7pc02SHHHEEVmyZEmSZPHixZk+ffpg3QYwhO68887c\ndNNNufHGGzNhwoTtPvfMAN6stbV16zfIRo0ald/97nfbfO65AQcuNQ2gP9Q0gL2lpgH0h3oGsCtq\nGkNvUIM5O5pfuLPZhWYeAqecckpqampy5pln5sorr8wll1ySiy++OHfeeWfOPPPM3Hffffmrv/qr\nJH94ZuxoTZJcfPHFue6663LGGWeku7s7p5566lDeGjAIenp6smjRoqxfvz6f+MQnMnv27HzlK19J\n4pkB7NzChQtzwQUX5C/+4i9yyy235IILLkjiuQGoaQD9o6YB7A01DaC/1DOAXVHTGHqDOspqZ/ML\ndzS78POf//wu15h5CPu/YrGYv/mbv9nu/W9+85vbvff6MyPJDtdMnjw5N91008BuEBiWDjrooNx+\n++1JkoceemiHx3hmAG/0xufG9OnTc9ttt213jOcGoKYB9IeaBrAn1DSA/lDPAHaXmsbQG9SOOTua\nX9jX7EIzDwEAAIChpqYBAAAA7IvUNIbeoAZzdjS/sK/ZhWYeAgAAAENNTQMAAADYF6lpDL1CuVwu\nD9bFent7c/nll+fJJ59MuVzO5z73uRSLxcyfPz/d3d3p6urKwoULUyqVctFFF2XOnDkZM2bMdmum\nTJmSZcuW7XAdAAAAwEBT0wAAAAD2RWoaQ29QgzkAAAAAAAAAAHCgGNRRVgAAAAAAAAAAcKAQzAEA\nAAAAAAAAgAqoqvQFuru785nPfCYvvPBCNm/enPPPPz9jxozJggULUlNTk8MPPzyXXnppisVtM0Jz\n587N0qVL09bWli1btqS9vT2XXHJJJkyYUOktAwAAAKSnpyfz5s3LsmXLUigU8tnPfja1tbWZO3du\nCoVCpk6dmgULFqhpAAAAAMPGjuoZhx56aJLkc5/7XCZPnpxZs2Ztt049o3IqHsy566670tbWlmuu\nuSarV6/Oe9/73nR0dGTevHmZNm1avvzlL+fuu+/Oe97znu3WXnjhhZk5c2aS5JFHHsmcOXPyne98\np9JbBgAAAMiPf/zjJMltt92WJUuW5Mtf/nLK5XLmzJmTGTNm5LLLLsu9996bU045Zbu1ahoAAADA\nUNhRPWPRokW56KKL8uyzz+bcc8/d6Vr1jMqoeDDntNNOy6mnnpokKZfLKZVKWblyZaZNm5YkmTZt\nWu69994dBnPeaPr06amurs7y5ctTU1OT+fPnZ9OmTamtrc0VV1yRsWPH5u/+7u/ywx/+MD09PZk1\na1bOPPPMSt8eAAAAsJ86+eST8653vStJsmLFirS0tOSBBx7I8ccfnySZOXNm7r///h0Gc95ITQMA\nAAAYLDuqZ6xfvz6f+MQnsnjx4t0+j3rGwCn2fcjeaWxsTFNTU9atW5dPfvKTmTNnTiZMmJCHHnoo\nye/TWhs2bNitc40YMSKvvvpqrr766syePTs33nhjzj333HzhC1/IE088kcWLF+eOO+7IHXfckWef\nfTblcrmStwYAAADs56qqqnLxxRfniiuuyOmnn55yuZxCoZDk9zWPtWvX7tZ51DQAAACAwfLmesaE\nCRPytre9rd/nUc8YGBXvmJMkL774Yj7+8Y/nrLPOyumnn54jjzwyixYtyt/+7d9m+vTpqampyfe/\n//3cfPPNXfIrcwAAB2BJREFUSZKLL754h+dZsWJFxowZkyeffDLXX399vvGNb6RcLqeqqirLli3L\n0UcfnVKplFKplLlz5w7GrQEAAAD7uauvvjqf/vSn88EPfjCbNm3a+v769evT0tKipgEAAAAMO2+s\nZ/zLv/xLGhoatvlcPWPwVDyYs2rVqpxzzjm57LLLcuKJJyZJfvrTn+YLX/hC2tvbc8UVV2TmzJl5\n5zvfmdNOO22n57n//vtTV1eXMWPGpKurK+ecc06mTZuWp59+Og8//HC6urpy6623pre3Nz09PTnv\nvPNy/fXXp6amptK3CAAAAOyHvve972XlypX52Mc+lvr6+hQKhRx11FFZsmRJZsyYkcWLF+eEE07I\naaedpqYBAAAADAs7qmcUi9sPU1LPGDyFcoV7CS1cuDD33HNPurq6tr73kY98JNdee23q6+szY8aM\nXHDBBdutmzt3bpYuXZq2trYUi8U0NjZmwYIFGT16dJ5//vlcfvnl2bRpUzZu3JhLL700xx57bK6/\n/vr86Ec/Sm9vb2bNmpX3ve99lbw1AAAAYD/22muv5ZJLLsmqVauyZcuWfPSjH82UKVMyf/78dHd3\np6urKwsXLkypVNpmnZoGAAAAMFR2VM84+eSTkyTXXXddOjs7M2vWrO3WqWdUTsWDOQAAAAAAAAAA\ncCDavl8RAAAAAAAAAACw1wRzAAAAAAAAAACgAgRzAAAAAAAAAACgAqoG+4Ld3d35zGc+kxdeeCGb\nN2/O+eefn0MOOSRz585NoVDI1KlTs2DBghSLv88M/fa3v82sWbNy1113pba2NuVyOTNnzsykSZOS\nJMccc0w+9alPDfZtAAAAAAAAAADALg16MOeuu+5KW1tbrrnmmqxevTrvfe9785a3vCVz5szJjBkz\nctlll+Xee+/NKaeckvvuuy9f/OIX8/LLL29d/9xzz+XII4/M1772tcHeOgAAAAAAAAAA7LZBH2V1\n2mmn5a//+q+TJOVyOaVSKUuXLs3xxx+fJJk5c2YeeOCB32+uWMw3v/nNtLW1bV2/dOnSrFy5MrNn\nz85HP/rRPPPMM4N9CwAAAAAAAAAA0KdBD+Y0Njamqakp69atyyc/+cnMmTMn5XI5hUJh6+dr165N\nkrz97W9Pe3v7NutHjhyZ8847LzfeeGM+9rGP5cILLxzsWwAAAAAAAAAAgD4NejAnSV588cV8+MMf\nznve856cfvrpKRb/sI3169enpaVlp2uPOuqo/Mmf/EmSZPr06XnppZdSLpcrvmcAAAAAAAAAAOiP\nQQ/mrFq1Kuecc04uvPDCfOADH0iSHHHEEVmyZEmSZPHixZk+ffpO13/1q1/Nt771rSTJr371q4wd\nO3Zrtx0AAAAAAAAAABguCuVBbjezcOHC3HPPPenq6tr63qWXXpqFCxemu7s7XV1dWbhwYUql0tbP\nTzrppNxzzz2pra3NmjVrcuGFF+a1115LqVTKZZddlilTpgzmLQAAAAAAAAAAQJ8GPZgDAAAAAAAA\nAAAHgkEfZQUAAAAAAAAAAAcCwRwAAAAAAAAAAKgAwRwAAAAAAAAAAKgAwRwAAAAAAAAAAKgAwRwA\nAAAAAAAAAKgAwRwAAACA/dDcuXPzT//0Tzv9/JJLLskLL7wwiDsCAAAAOPAI5gAAAAAcgJYsWZJy\nuTzU2wAAAADYrxXKKjAAAAAA+7xyuZyrrroqP/nJTzJq1Kj09PTkAx/4QJYvX54HH3wwa9asSXt7\ne6677rp897vfzVe+8pVMnDgxN998c55//vlceeWV2bhxY9rb2/PZz342EyZMGOpbAgAAANjn6ZgD\nAAAAsB/4wQ9+kCeeeCL//M//nGuvvTbPPfdcenp68swzz+S2227LD37wg0ycODF33313zjvvvIwa\nNSpf//rX09jYmHnz5uWLX/xivvvd7+YjH/lI5s+fP9S3AwAAALBfqBrqDQAAAACw9x566KH86Z/+\naaqrq9PR0ZGZM2emVCrl4osvzh133JFly5blsccey8SJE7dZ9+yzz+b555/P+eefv/W9devWDfb2\nAQAAAPZLgjkAAAAA+4FCoZDe3t6tr6uqqrJ69eqce+65Ofvss3PqqaemWCzmzVPNe3t7c9BBB+XO\nO+9MkvT09GTVqlWDuncAAACA/ZVRVgAAAAD7gRNPPDHf//73s3nz5qxZsyb33XdfCoVCjj/++Mya\nNSuHHHJI7r///vT09CRJSqVSenp60tXVlTVr1uSRRx5JknznO9/Jpz/96aG8FQAAAID9ho45AAAA\nAPuBk08+OT//+c/zZ3/2Z+ns7MyUKVOycePG/OpXv8rpp5+e6urqHHbYYfnNb36TJHnXu96V8847\nL9/4xjdy7bXXZtGiRdm0aVOamppy9dVXD/HdAAAAAOwfCuU39y8GAAAAAAAAAAD2mlFWAAAAAAAA\nAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAA\nAAAAAABQAYI5AAAAAAAAAABQAf8/+TJBU5zSnn4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low_bid',y2='high_bid', data=df, alpha=0.4)\n", + "plt.title(\"entire history\", fontsize=30)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200', fontsize=30)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close_bid')\n", + "high_index = df.columns.tolist().index('high_bid')\n", + "low_index = df.columns.tolist().index('low_bid')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Create y_scaler to inverse it later\n", + "y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + "t_y = df['close_bid'].values.astype('float32')\n", + "t_y = np.reshape(t_y, (-1, 1))\n", + "y_scaler = y_scaler.fit(t_y)\n", + " \n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back_rows=20)\n", + "y = y[:,target_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 98% training / 1% development / 1% test sets\n", + "train_size = int(len(X) * 0.99)\n", + "trainX = X[:train_size]\n", + "trainY = y[:train_size]\n", + "testX = X[train_size:]\n", + "testY = y[train_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_9 (LSTM) (None, 20, 20) 2960 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 20, 20) 3280 \n", + "_________________________________________________________________\n", + "lstm_11 (LSTM) (None, 20, 10) 1240 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 20, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 4) 240 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 4) 20 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 5 \n", + "=================================================================\n", + "Total params: 7,745\n", + "Trainable params: 7,745\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "\n", + "# create a small LSTM network\n", + "model = Sequential()\n", + "model.add(LSTM(20, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(4, return_sequences=False))\n", + "model.add(Dense(4, kernel_initializer='uniform', activation='relu'))\n", + "model.add(Dense(1, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.26399, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.26399 to 0.17870, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.17870 to 0.07720, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.07720 to 0.02238, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error improved from 0.02238 to 0.01324, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error improved from 0.01324 to 0.01135, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error improved from 0.01135 to 0.00217, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00009: val_mean_squared_error improved from 0.00217 to 0.00062, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00010: val_mean_squared_error improved from 0.00062 to 0.00048, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00011: val_mean_squared_error improved from 0.00048 to 0.00037, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00012: val_mean_squared_error improved from 0.00037 to 0.00028, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00013: val_mean_squared_error improved from 0.00028 to 0.00020, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error did not improve\n", + "Epoch 00016: val_mean_squared_error improved from 0.00020 to 0.00020, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00017: val_mean_squared_error improved from 0.00020 to 0.00018, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error did not improve\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error improved from 0.00018 to 0.00016, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error improved from 0.00016 to 0.00016, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error improved from 0.00016 to 0.00015, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error improved from 0.00015 to 0.00014, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "Epoch 00034: val_mean_squared_error improved from 0.00014 to 0.00013, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00035: val_mean_squared_error improved from 0.00013 to 0.00013, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error improved from 0.00013 to 0.00011, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error improved from 0.00011 to 0.00011, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error improved from 0.00011 to 0.00010, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error improved from 0.00010 to 0.00009, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error improved from 0.00009 to 0.00009, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error improved from 0.00009 to 0.00008, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error did not improve\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error improved from 0.00008 to 0.00008, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error improved from 0.00008 to 0.00007, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error improved from 0.00007 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error improved from 0.00006 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00100: val_mean_squared_error did not improve\n", + "Epoch 00101: val_mean_squared_error improved from 0.00006 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00102: val_mean_squared_error did not improve\n", + "Epoch 00103: val_mean_squared_error did not improve\n", + "Epoch 00104: val_mean_squared_error did not improve\n", + "Epoch 00105: val_mean_squared_error did not improve\n", + "Epoch 00106: val_mean_squared_error did not improve\n", + "Epoch 00107: val_mean_squared_error did not improve\n", + "Epoch 00108: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00109: val_mean_squared_error did not improve\n", + "Epoch 00110: val_mean_squared_error did not improve\n", + "Epoch 00111: val_mean_squared_error did not improve\n", + "Epoch 00112: val_mean_squared_error did not improve\n", + "Epoch 00113: val_mean_squared_error did not improve\n", + "Epoch 00114: val_mean_squared_error did not improve\n", + "Epoch 00115: val_mean_squared_error did not improve\n", + "Epoch 00116: val_mean_squared_error did not improve\n", + "Epoch 00117: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00118: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00119: val_mean_squared_error did not improve\n", + "Epoch 00120: val_mean_squared_error did not improve\n", + "Epoch 00121: val_mean_squared_error did not improve\n", + "Epoch 00122: val_mean_squared_error did not improve\n", + "Epoch 00123: val_mean_squared_error did not improve\n", + "Epoch 00124: val_mean_squared_error did not improve\n", + "Epoch 00125: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00126: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00127: val_mean_squared_error did not improve\n", + "Epoch 00128: val_mean_squared_error improved from 0.00005 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00129: val_mean_squared_error did not improve\n", + "Epoch 00130: val_mean_squared_error did not improve\n", + "Epoch 00131: val_mean_squared_error did not improve\n", + "Epoch 00132: val_mean_squared_error did not improve\n", + "Epoch 00133: val_mean_squared_error did not improve\n", + "Epoch 00134: val_mean_squared_error did not improve\n", + "Epoch 00135: val_mean_squared_error did not improve\n", + "Epoch 00136: val_mean_squared_error did not improve\n", + "Epoch 00137: val_mean_squared_error did not improve\n", + "Epoch 00138: val_mean_squared_error did not improve\n", + "Epoch 00139: val_mean_squared_error did not improve\n", + "Epoch 00140: val_mean_squared_error did not improve\n", + "Epoch 00141: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00142: val_mean_squared_error did not improve\n", + "Epoch 00143: val_mean_squared_error did not improve\n", + "Epoch 00144: val_mean_squared_error did not improve\n", + "Epoch 00145: val_mean_squared_error did not improve\n", + "Epoch 00146: val_mean_squared_error did not improve\n", + "Epoch 00147: val_mean_squared_error did not improve\n", + "Epoch 00148: val_mean_squared_error did not improve\n", + "Epoch 00149: val_mean_squared_error did not improve\n", + "Epoch 00150: val_mean_squared_error did not improve\n", + "Epoch 00151: val_mean_squared_error did not improve\n", + "Epoch 00152: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00153: val_mean_squared_error did not improve\n", + "Epoch 00154: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00155: val_mean_squared_error did not improve\n", + "Epoch 00156: val_mean_squared_error did not improve\n", + "Epoch 00157: val_mean_squared_error did not improve\n", + "Epoch 00158: val_mean_squared_error did not improve\n", + "Epoch 00159: val_mean_squared_error did not improve\n", + "Epoch 00160: val_mean_squared_error did not improve\n", + "Epoch 00161: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00162: val_mean_squared_error did not improve\n", + "Epoch 00163: val_mean_squared_error did not improve\n", + "Epoch 00164: val_mean_squared_error did not improve\n", + "Epoch 00165: val_mean_squared_error did not improve\n", + "Epoch 00166: val_mean_squared_error did not improve\n", + "Epoch 00167: val_mean_squared_error did not improve\n", + "Epoch 00168: val_mean_squared_error did not improve\n", + "Epoch 00169: val_mean_squared_error did not improve\n", + "Epoch 00170: val_mean_squared_error did not improve\n", + "Epoch 00171: val_mean_squared_error did not improve\n", + "Epoch 00172: val_mean_squared_error did not improve\n", + "Epoch 00173: val_mean_squared_error did not improve\n", + "Epoch 00174: val_mean_squared_error improved from 0.00004 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00175: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00176: val_mean_squared_error did not improve\n", + "Epoch 00177: val_mean_squared_error did not improve\n", + "Epoch 00178: val_mean_squared_error did not improve\n", + "Epoch 00179: val_mean_squared_error did not improve\n", + "Epoch 00180: val_mean_squared_error did not improve\n", + "Epoch 00181: val_mean_squared_error did not improve\n", + "Epoch 00182: val_mean_squared_error did not improve\n", + "Epoch 00183: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00184: val_mean_squared_error did not improve\n", + "Epoch 00185: val_mean_squared_error did not improve\n", + "Epoch 00186: val_mean_squared_error did not improve\n", + "Epoch 00187: val_mean_squared_error did not improve\n", + "Epoch 00188: val_mean_squared_error did not improve\n", + "Epoch 00189: val_mean_squared_error did not improve\n", + "Epoch 00190: val_mean_squared_error did not improve\n", + "Epoch 00191: val_mean_squared_error did not improve\n", + "Epoch 00192: val_mean_squared_error did not improve\n", + "Epoch 00193: val_mean_squared_error did not improve\n", + "Epoch 00194: val_mean_squared_error did not improve\n", + "Epoch 00195: val_mean_squared_error did not improve\n", + "Epoch 00196: val_mean_squared_error did not improve\n", + "Epoch 00197: val_mean_squared_error did not improve\n", + "Epoch 00198: val_mean_squared_error did not improve\n", + "Epoch 00199: val_mean_squared_error did not improve\n", + "Wall time: 8min 11s\n" + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training.\n", + "#simname = \"15_min_replication_1\"\n", + "from keras.callbacks import ModelCheckpoint\n", + "checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "\"\"\"\n", + "it seems batch size controls convergence speed a lot! Batch size tells how many examples are propagated through the network.\n", + "Weights are adjusted based on results with these examples. This is useful if the full dataset takes too much memory\n", + "It also speeds up training, as you will converge quicker (dont have to wait for a full iteration of each example to adjust weights).\n", + "\"\"\"\n", + "callbacks_list = [checkpoint]\n", + "%time history = model.fit(trainX, trainY, epochs=200, batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 200\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACO8AAAJoCAYAAAA0mVe1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WmYpGV99+9vVVcv1dOzMTMsCiI7KBoERNRBHyWKC7Io\ni0Q2IRr/xpjHJQmo8CAicgQxJBiMII5CJKjjCgJucLiMijIRBXFgQGNEZBtn66W6u7rq/6JnSkdm\nYJbuvgfqPF/dXXXfVb+eoy9fcHy8rlKz2WwGAAAAAAAAAACYcuWiBwAAAAAAAAAAgHYl3gEAAAAA\nAAAAgIKIdwAAAAAAAAAAoCDiHQAAAAAAAAAAKIh4BwAAAAAAAAAACiLeAQAAAAAAAACAgoh3AAAA\nAJ5A7rvvvuy1117Za6+9cvbZZxc9DgAAAABbSLwDAAAAAAAAAAAFEe8AAAAAAAAAAEBBxDsAAAAA\nAAAAAFAQ8Q4AAAAAAAAAABREvAMAAAAAAAAAAAWpFD0AAAAAABNr6dKl+cxnPpNbbrklDzzwQJrN\nZrbddts897nPzQknnJB99913g8/W6/V89atfzfXXX58777wzK1euzLRp0/KUpzwlBx98cE444YTs\nvPPOE/4sAAAAQLsqNZvNZtFDAAAAALBx7rvvvhx66KFJkuOPPz7nnntu671ms5mLLrooV1xxRRqN\nxnqfL5VKecMb3pAzzzwzlcq6/7+u1atX581vfnP++7//e4Pf39HRkfe+9715wxveMGHPAgAAALQz\nO+8AAAAAPEmcf/75ufLKK5Mks2fPzqmnnpoDDjgg5XI5P//5z/PJT34yDz30UP7zP/8zAwMDueCC\nC9Z5/kMf+lArvjnmmGPyspe9LHPmzMnKlSvz4x//OFdddVUGBwdz3nnn5YADDsjee+89Ic8CAAAA\ntDPxDgAAAMCTwOLFi1vhzi677JIrr7wy2267bev9Aw44IEcffXROO+20/OIXv8iXvvSlvPSlL83L\nX/7yJMnIyEiuvfbaJMmxxx6b8847b53Pnz9/fg444IC8+c1vTqPRyOc///mcddZZW/wsAAAAQLsT\n7wAAAAA8CVxxxRWt63/+539eJ9xZa9asWbn44ovzile8ImNjY7n88stb8c6qVasyMjKSJNl5553X\n+x0vfvGLc9JJJ2XmzJl59rOf3Xp9S54FAAAAaHfiHQAAAIAnuHq9nh/96EdJkmc+85mPGcc87WlP\ny/z58/Od73wnt99+e5YvX57Zs2dnzpw5mTVrVlasWJGPf/zjmTt3bl75ylemp6dnneff9773Peoz\nt+RZAAAAgHZXLnoAAAAAALbM/fffn4GBgSTJX/zFXzzu/WvvaTabWbp0aZKkVCrlr//6r5Mkq1ev\nzhlnnJGDDjoop512Wi6//PL88pe/TLPZXO/nbcmzAAAAAO3OzjsAAAAAT3ArVqxoXc+ZM+dx7587\nd27reuXKla3rN73pTWk0Grn00ktTq9UyPDycRYsWZdGiRfnwhz+cbbfdNocddlhOPfXU7Ljjjut8\n5pY8CwAAANDO7LwDAAAA8AS3qbvajI2Nta5LpdI67/3N3/xNvvvd7+aDH/xgDj300EybNq313kMP\nPZSrrroqr3rVq3LTTTc96nO35FkAAACAdmXnHQAAAIAnuJkzZ7auly1b9rj3/+k9s2bNWu/nHXPM\nMTnmmGNSr9dz++23Z9GiRbnxxhuzdOnSDA8P54wzzshNN92Uvr6+CXsWAAAAoB3ZeQcAAADgCW6n\nnXZKb29vkuRnP/vZ495/2223ta532WWX1vUDDzyQH/zgB6nX663XKpVKnvOc5+Rtb3tbrr322hx2\n2GFJxo/bWrx48YQ8CwAAANDOxDsAAAAAT3AdHR05+OCDkyS/+MUvcscdd2zw3t/85jf54Q9/mCTZ\ne++9M2fOnCTJpZdemhe/+MV54xvfmJ/85CfrfbZUKuWQQw5p/TwyMrLFzwIAAAC0O/EOAAAAwJPA\nG9/4xtb1P/7jP+aRRx551D0rV67MO97xjoyNjSVJTjvttNZ7L3nJS1rXH/nIRzI8PPyo5xuNRq6/\n/vokSblczjOe8YwtfhYAAACg3VWKHgAAAACALXfQQQflpJNOylVXXZV77703RxxxRE455ZQccMAB\nKZVKuf3227NgwYI88MADSZLDDz88Rx55ZOv5ffbZJ4cddli+/vWv5+c//3mOOOKInHzyydl1113T\n2dmZ++67L9dcc01++tOfJkmOPvroPPWpT93iZwEAAADaXanZbDaLHgIAAACAjXPffffl0EMPTZIc\nf/zxOffcc1vvNRqNXHjhhVmwYEE29J98SqVSTj311LzrXe9KZ2fnOu+tXr06b3nLW3Lrrbc+5gwv\nf/nLc9FFF6Wrq2tCngUAAABoZ+IdAAAAgCeQx4p31lqyZEmuvvrq3HLLLXnwwQdTLpfzlKc8Jc97\n3vNy7LHHZu+9997g5zcajVx33XW5/vrr88tf/jLLli1LR0dH5s6dm/333z9HHnlk5s+fP+HPAgAA\nALQr8Q4AAAAAAAAAABSkXPQAAAAAAAAAAADQrsQ7AAAAAAAAAABQEPEOAAAAAAAAAAAURLwDAAAA\nAAAAAAAFEe8AAAAAAAAAAEBBKkUPsKUefnh10SPwZ2bP7s3y5YNFjwFMMWsf2pO1D+3J2of2ZO1D\ne7L2oT1Z+9CerH1oT9b+1Jk3b/oG37PzDhOuUukoegSgANY+tCdrH9qTtQ/tydqH9mTtQ3uy9qE9\nWfvQnqz9rYN4BwAAAAAAAAAACiLeAQAAAAAAAACAgoh3AAAAAAAAAACgIOIdAAAAAAAAAAAoiHgH\nAAAAAAAAAAAKIt4BAAAAAAAAAICCiHcAAAAAAAAAAKAg4h0AAAAAAAAAACiIeAcAAAAAAAAAAAoi\n3gEAAAAAAAAAgIKIdwAAAAAAAAAAoCDiHQAAAAAAAAAAKIh4BwAAAAAAAAAACiLeAQAAAAAAAACA\ngoh3AAAAAAAAAACgIOIdAAAAAAAAAAAoiHgHAAAAAAAAAAAKIt4BAAAAAAAAAICCiHcAAAAAAAAA\nAKAg4h0AAAAAAAAAACiIeAcAAAAAAAAAAAoi3gEAAAAAAAAAgIKId5hQt/x+cd5xw/tTq9eKHgUA\nAAAAAAAAYKsn3mFC/Xb17/K7VQ/k4aFlRY8CAAAAAAAAALDVE+8woaqVniTJ4OhQwZMAAAAAAAAA\nAGz9xDtMqN7O3iTJUH3T45177lk60eNskre97c2ZP//AvPSlLyh0DgAAAAAAAACgfYh3mFCtnXfq\ntY1+pr+/Pxdf/OGcfvqJkzUWAAAAAAAAAMBWqVL0ADy5VCvVJMlgfXCjn7nkko/ka1/76mSNBAAA\nAAAAAACw1RLvMKF618Q7Q5uw806j0ZiscTbJRz96WdEjAAAAAAAAAABtxrFZTKjezrXxzlDBkwAA\nAAAAAAAAbP3EO0yoaqUnSTI4Kt4BAAAAAAAAAHg8js1iQv3x2KzHj3euuOLjWbDg8nVemz//wCTJ\nfvvtn49+9LJ88IPn5IYbrsvuu++ZT3ziylx++cdy443XZfXq1ZkzZ15e8pJD89a3vr31/PDwcL7+\n9evzwx8uytKld2XlyhWp1+uZPn1Gdtllt7zwhfPzmtccnWq1+qh53va2N+e22/47XV1duemmH6x3\nrre//Z057ri/yne+c1OuvfbLufvuu7J69arMnr1N9t//wBx33AnZc8+9N+0fDQAAAAAAAABoW+Id\nJlR3R3fKpXIG67UJ/+wPfODsfPvb32j9/Pvf/y49PT2tn++6a0nOPPNdeeihBx/17B/+sCx/+MOy\nLF7843zxiwtzySX/kXnztt3kGcbGGnn/+9+Xb37zxnVef+ihB3PjjV/LN75xQ9797jNzxBFHb/Jn\nAwAAAAAAAADtR7zDhCqVSpnWWc3gRuy8c9RRr8uLXvR/8olP/EcWLfpekmTBgs8kSarV3nXu/dWv\n7sk999ydZz3rL3LSSW9MT09PFi36Xl71qiOSJCtXrsg73vG3WbVqZTo6OvKqV70mL3jB/MyePSer\nV6/M0qV353OfuzorVqzIfff9bz760Yvz/vefv8m/3zXXXJVly5bl6U/fJccd91fZbbc9snr1qtxw\nw7X59re/mUajkYsvvjAHHfT8bL/99pv8+QAAAAAAAABAexHvMOF6u3ozNPL48c6cOXMzZ87czJgx\ns/XaHnvstd57G41GnvrUHXPxxf+e7u7x3Xb23//A1vuf/ezVWbVqZZLkb//273PccX+1zvPPf/78\nvPKVh+ekk45Lf39/vve976Rer6dS2bQlsGzZshxwwEH553/+l3R3d7deP/jgF2T69Bn58pe/kJGR\nkXzrWzfmxBNP3aTPBgAAAAAAAADaT7noAXjymdZZzdBG7LyzqV75ysNb4c6fe+SRhzN37rzMmTMn\nr33tceu9Z968bfOc5xyQJBkZGW7FPpvq//7fd68T7qx15JGvbV3fc8/SzfpsAAAAAAAAAKC92Hln\nI33upnvykyUPFT3GlHru3tvmuJfuvsnPTevqzUhjNPVGPZXyxP2JPfOZz9rge+95z/9LMr5DT7m8\n4SZtm23mtK5HRkY3eYZ587bNLrvsut73nvrUHVvXg4ODm/zZAAAAAAAAAED7Ee8w4aZ19iZJhuq1\nTO/qm7DP3W677R73nrXhTr1ezwMP/D733/+7/Pa3v8m9996TX/zi9tx77z2te5vNxibPsP32O2zw\nvWq1t3U9Nja2yZ8NAAAAAAAAALQf8c5GOu6lu2/WLjTtqLermiQZrA9NaLzT2/vYn1Wr1fLFL34+\n3/rWjbn33nvWG9CUy+U0Gpse7az1p4HOnyuVSq3rZrO52d8BAAAAAAAAALQP8Q4Trq9rPHAZHB2a\n0M/9kzbmUe6//3d55zvflvvu+23rtc7Ozuy009Oy8867ZK+99s5++x2Qr3/9+nzpS5+f0LkAAAAA\nAAAAADaXeIcJ19s5vvPOUH1i453Hcs45722FO3/5l4flmGOOz957PyOVyrp/4l/5yhembCYAAAAA\nAAAAgMcj3mHCTesc33lnquKdJUvuzJ133pEk2X//A3POOR/c4L0PPvjAlMwEAAAAAAAAALAxykUP\nwJPPtLXHZm1kvFN6rPOwNsKfHpW11177bPC+3//+/tx++89aP4+NjW3R9wIAAAAAAAAAbCnxDhNu\nWteaY7NGaxt1f1dXV+t6cHBwk79v5sxZretbb70l9Xr9UfcsW/ZIzjrrjIyOjrZeGxkZ2eTvAgAA\nAAAAAACYSI7NYsKtPTZrY3femTNnbuv6ssv+Pa94xatTLpez5557b9Tzz372fpkzZ26WLXskS5fe\nnb//+/8vr33tcdl++x2yatXK3Hbbf+drX/tKVqxYsc5zAwP9G/kbAQAAAAAAAABMDvEOE25Tj82a\nP/9F+dSnPpGxsbEsXPjZLFz42Wy33fb5wheu26jnu7u7c9ZZ5+af/ukdGR4ezs9+9tP87Gc/fdR9\nO+30tBx++JH52McuSZL8+te/yrOe9Rcb+VsBAAAAAAAAAEy8SYt3Go1GzjnnnNx1113p6urKeeed\nl5133rn1/nXXXZdPf/rT6ejoyJ577plzzjkn5XI5Rx99dPr6+pIkO+64Yz70oQ9N1ohMkmmda47N\n2sh4Z4899soFF1yUT3/6k7n33nvSaIylUqmkVtu4Y7eS5MADD8qCBZ/Jf/3Xf+bWW3+SRx55KMn4\nkVq77LJrXvKSv8xhh70yY2NjWbDg8tRqtdx00zdzxBFHb/ovCAAAAAAAAAAwQUrNZrM5GR/8jW98\nIzfddFMuuOCC3Hbbbfn4xz+ej33sY0mSWq2Www8/PNdee22q1Wre+c535tWvfnXmz5+f448/Pl/+\n8pc3+nsefnj1ZIzPFpi5TU9OXPj27D17j/zdc95U9DjAFJk3b7r/TYY2ZO1De7L2oT1Z+9CerH1o\nT9Y+tCdrH9qTtT915s2bvsH3ypP1pYsXL84hhxySJNlvv/1yxx13tN7r6urKNddck2p1fIeWer2e\n7u7uLFmyJENDQznttNNy8skn57bbbpus8ZhEXR2d6SxXMlTf+J1zAAAAAAAAAADa0aQdm9Xf3986\n/ipJOjo6Uq/XU6lUUi6XM3fu3CTJVVddlcHBwbzwhS/M3XffndNPPz3HHnts/ud//idvetObcuON\nN6ZS2fCYs2f3plLpmKxfg800ras3I83hxyzHgCcfax7ak7UP7cnah/Zk7UN7svahPVn70J6sfWhP\n1n7xJi3e6evry8DAQOvnRqOxToTTaDRy4YUX5te//nUuueSSlEql7LLLLtl5551b17NmzcrDDz+c\nHXbYYYPfs3z54GT9CmymefOmp7vck9XDA7bXgjZiSz1oT9Y+tCdrH9qTtQ/tydqH9mTtQ3uy9qE9\nWftTp5Bjs/bff/9897vfTZLcdttt2XPPPdd5/+yzz87w8HAuvfTS1vFZCxcuzAUXXJAkefDBB9Pf\n35958+ZN1ohMot5KNYP1oTSbzaJHAQAAAAAAAADYak3azjsve9nLsmjRorz+9a9Ps9nM+eefn2uv\nvTaDg4PZd999s3Dhwhx44IE55ZRTkiQnn3xyjjnmmJx55pk54YQTUiqVcv755z/mkVlsvaqdPWk0\nGxlpjKa7o6vocQAAAAAAAAAAtkqTVsaUy+Wce+6567y22267ta6XLFmy3ucuuuiiyRqJKTLWaKa3\nMr6b0uDooHgHAAAAAAAAAGADJu3YLNrTtxffl5P+3w3pTHeSZKheK3giAAAAAAAAAICtl3iHCfWH\n1bWsHhxNfbQjSTJYHyp4IgAAAAAAAACArZd4hwk1u298x51mffxEtiHxDgAAAAAAAADABol3mFCz\n1sQ79eHxeGdwVLwDAAAAAAAAALAh4h0m1Ozp4/HOyPD4n9ZQvVbkOAAAAAAAAAAAWzXxDhNq7c47\ntaHxP63B+mCR4wAAAAAAAAAAbNXEO0yomX1dSZLBgfGf7bwDAAAAAAAAALBh4h0mVKWjnFl93env\nbyZJButDBU8EAAAAAAAAALD1Eu8w4baZ2ZNVq8avh0bFOwAAAAAAAAAAGyLeYcJtM6Mnw7VSEjvv\nAAAAAAAAAAA8FvEOE27OzJ4k5XSVuzJUrxU9DgAAAAAAAADAVku8w4SbM7OaJOkq99h5BwAAAAAA\nAADgMYh3mHDbzOhJklSaXRkS7wAAAAAAAAAAbJB4hwk3fmxWUm52pVYfTqPZKHgiAAAAAAAAAICt\nk3iHCbc23mnWK2mmmVq9tlHP3XPP0skca4v8/vf3Z3BwoOgxAAAAAAAAAIAnGfEOE27tsVmNeiVJ\nMvg48U5/f38uvvjDOf30Eyd9tk01MjKSBQsuz4knHpuVK1cWPQ4AAAAAAAAA8CRTKXoAnnxmTOtK\npaOU0eGOpCsZqg895v2XXPKRfO1rX52i6TbN1VdfmSuu+HjRYwAAAAAAAAAAT1J23mHClUqlzOrr\nzkht/M9rcPSx451GozEVY22WsbGxokcAAAAAAAAAAJ7ExDtMill93akNjf95Pd7OOwAAAAAAAAAA\n7Uq8w6SYNb07jfr4qWyD9VrB0wAAAAAAAAAAbJ0qRQ/Ak9Osvq40H+hMkgzWB9d7zxVXfDwLFly+\nzmvz5x+YJNlvv/3z0Y9ets57t9zyw1x//Vdzxx23Z/nyP6Srqzs77rhTnv/8F+Z1rzs+s2bN2uA8\nDz/8UL74xc/nllt+mN/+9n9Tr49mxoyZ2W23PfLCFx6Sww8/It3dPa37r7/+2px//vvX+Yxjjz0i\nSbL99jtk4cJrN/JfAgAAAAAAAABgw8Q7TIrZ07uTsfE/r6Et3HlnaGgoH/jA2fnud29e5/WRkZEs\nWXJnliy5M5/73NU566wPZP78Fz3q+cWLf5L3vOfdGRgYWOf1ZcseybJlj+THP/5h/uu/rspHPvLR\nPO1pO2/RrAAAAAAAAAAAm0K8w6SY1dedZn3NzjujQ+u956ijXpcXvej/5BOf+I8sWvS9JMmCBZ9J\nklSrvUmSRqORM854ZxYv/kmS5AUvOCSHHfaq7LDDDhkcHMzixT/Jl770+fT39+e97/2HXHTRJTnw\nwINa37F69eqcddYZGRgYyKxZs/OGN5ySffZ5Rrq6uvLggw/ka1/7an70ox/kgQd+n/e//335xCeu\nTKlUyvz5L8qCBZ/Jl7/8hXzlK19Mklx44cWZO3deKpXOyflHAwAAAAAAAADajniHSTG770933ll/\nvDNnztzMmTM3M2bMbL22xx57rXPPwoXXtMKdd7/7zBx11OvWef/AAw/K4Ycfmbe+9fQsW7Ys55//\n/nzuc19JpTL+3d///neyatXKJMn551+YZz97v9azz3jGvnnJS/4yZ511Rm6++Vu5665f5q67lmTv\nvffJjBkzM2PGzGyzzZzW/U9/+q7ZYYenbO4/CQAAAAAAAADAo5SLHoAnp1nT/7jzzobincfTaDRy\nzTXjO/EcfPALHhXurPXUp+6Yt7zl75IkDz30YL7znZta7y1b9kjreqednrbe508++Y056qhj8ta3\n/n2mT5++WbMCAAAAAAAAAGwOO+9spC/ec11++tDtRY8xpZ6z7bPy2t0P36xnZ/V1JY2OpFnK4GbG\nO/feuzQPPfRgkuS5z33eY9578MEvaF3feutPcuihL0+S7Lzz01uvv+c9/5C3v/2d2WefZ67z7B57\n7JV3v/uMzZoRAAAAAAAAAGBLiHeYFD1dlVS7Kyk1OjNYr23WZ9x9912t60su+Zdccsm/bNRz99//\nu9b1858/P7vttkfuvXdpbr/9Z3nTm07J3Lnz8tznPi8HHnhQnvvc561zNBYAAAAAAAAAwFQS72yk\n1+5++GbvQtOuZvV1Z0W9kqHRzdt5Z+XKFZv13OrVq1rXlUolF130b7nggg/kRz/6QZLkkUcezg03\nXJcbbrgupVIp++zzzLziFa/Oa15zVDo7OzfrOwEAAAAAAAAANod4h0kze3p3/lCvbPaxWWNjY63r\nd73rjOy777M26rnu7u51fp47d14+/OF/y69+dU9uvvnb+eEPF+Xuu5ek0Wik2WzmzjvvyJ133pGv\nfOWL+dd//VhmzZq1WfMCAAAAAAAAAGwq8Q6TZlZfd5qjnRltrMpoo57O8qb9uU2fPqN1PW1aX/bY\nY68tmmfXXXfPrrvuntNP/5usWrUqP/3prfnRj36Qm2/+Vvr7+3PvvUvzsY/9W8488+wt+h4AAAAA\nAAAAgI1VLnoAnrxmT+9OxsaDnVq9tsnP77rrbq3rO++8/THvXb58eT75yctyww3XZenSu1uvj46O\n5le/ujdLlvxynftnzJiRF7/4pfmnf3pfPvWp/0pf3/QkyQ9+8P1NnhMAAAAAAAAAYHOJd5g0s/q6\n06x3JkkGRwc3eF+pVFrv6/vs88zMmDEzSfLNb96Y/v7+DX7GF77w2Xzyk5flgx88J9///ndar594\n4rE5+eTj8973/sMGn91++x2yyy67JklGRobXea9ctkQAAAAAAAAAgMmjTGDSzOrrTnNsTbzzGDvv\ndHV1ta4HB/8Y+XR2duZ1rzsuSbJy5cp84ANnZWRk5FHP//znt+Xqq69KknR3d+c1rzm69d4LXnBI\nkuTBBx/INdf853q//ze/+Z/cffeSJMneez9znfc6Oztb10NDGw6QAAAAAAAAAAA2R6XoAXjymjW9\nK6mP/4kN1Yc2eN+cOXNb15dd9u95xStenXK5nD333DsnnnhqFi36Xu6+e0kWLfpe3vjGv8qxx56Q\n3XffM/39q3PrrT/Ol770+daOOW95y99l7tw/ft4JJ5yYG264Nv39/fn3f//X3H77z/LSl7482223\nfQYG+vPLX/4iCxdek+Hh4ZTL5ZxyymkbnO1Tn7oir3/9G9JoNLPvvs+akH8jAAAAAAAAAKC9lZrN\nZrPoIbbEww+vLnoE/sy8edPz8MOr84dVtfzTwmvS9fQ788Zn/lUO3G6/9d6/dOld+eu/PjljY2Ot\n17bbbvt84QvXJUlWrlyRs88+M4sX/2SD39nR0ZHTT/+bnHzyaY96b/Hin+S97/3H9Pdv+G+lp6cn\n73rXGXnlKw9f5/VHHnkkJ5zw2nV23alUKvnmN7+3zq48wB/XPtBerH1oT9Y+tCdrH9qTtQ/tydqH\n9mTtQ3uy9qfOvHnTN/ienXeYNDOmbdzOO3vssVcuuOCifPrTn8y9996TRmMslUoltVotPT09mTlz\nVv71Xz+W73//u/nGN27IL35xe5YvX54k2W677bL//gfmta89Lrvttvt6P/+AA56bq69emC99aWF+\n/OMf5X//9zcZHBzItGl92X77HfK85z0/Rx31umy33faPenbu3Lm5+OJLc9lll+auu+7MyMhIttlm\nTh588IHsuONOE/CvBAAAAAAAAAC0MzvvMOH+tMz7+wVfSH3nW3Lkrq/My5/+koInAyaTKhfak7UP\n7cnah/Zk7UN7svahPVn70J6sfWhP1v7Ueaydd8pTOAdtaHrXtCTJQH3wce4EAAAAAAAAAGg/4h0m\n1czqeLyzeli8AwAAAAAAAADw58Q7TKrZvePxzqraQMGTAAAAAAAAAABsfcQ7TKo5feNnttl5BwAA\nAAAAAADg0cQ7TKo506el2ShnsD5U9CgAAAAAAAAAAFsd8Q6Tavb07qTemdpYrehRAAAAAAAAAAC2\nOuIdJtXsvu40xyoZaQwXPQoAAAAAAAAAwFZHvMOkmjW9O816Z+oZTrPZLHocAAAAAAAAAICtiniH\nSTWtp5JSozMpNTPSGC16HAAAAAAAAACArYp4h0lVKpXSWepOkgyODhY8DQAAAAAAAADA1kW8w6Tr\n6ehJkgyMDBU8CQAAAAAAAADA1kW8w6TrrVSTJA/3ry54EgAAAAAAAACArYt4h0nX19WbJFnWv6rg\nSQAAAAAAAAAAti7iHSbd9O7xeOcPA/0FTwIAAAAAAAAAsHUR7zDpZvVOS5KsqIl3AAAAAAAAAAD+\nlHiHSTend3qSZNXwYMGTAAAAAAAAAABsXcQ7TLo508fjnYGRoYInAQAAAAAAAADYuoh3mHTbTp+R\nJBmsi3civ82KAAAgAElEQVQAAAAAAAAAAP6UeIdJN6valyQZHqsVPAkAAAAAAAAAwNZFvMOk6+no\nTpKMNocLngQAAAAAAAAAYOsi3mHSdZQ7UmpU0iiNZGR0rOhxAAAAAAAAAAC2GuIdpkRnupPKaFb0\n230HAAAAAAAAAGAt8Q5ToqvcnVJHPctXi3cAAAAAAAAAANYS7zAlejqqKVXq+cPqWtGjAAAAAAAA\nAABsNcQ7TInezmqS5OHVqwueBAAAAAAAAABg6yHeYUpM7+5NkvxhQLwDAAAAAAAAALCWeIcpMbNn\nWpJk+WB/wZMAAAAAAAAAAGw9xDtMiZnV8Xhn5dBAwZMAAAAAAAAAAGw9xDtMiWmd48dmrR4ZLHgS\nAAAAAAAAAICth3iHKdFbqSZJBkaH0mw2C54GAAAAAAAAAGDrIN5hSlQrPUmSRmkkA7V6wdMAAAAA\nAAAAAGwdxDtMieqanXfSUc+K/uFihwEAAAAAAAAA2EqId5gSvZ3j8U6pMpoVq8U7AAAAAAAAAACJ\neIcp0tvaeWc0y+28AwAAAAAAAACQRLzDFKlWepIkpUrdzjsAAAAAAAAAAGuId5gS3R3dKaWUdIxm\nRf9I0eMAAAAAAAAAAGwVxDtMiVKplGqlmlJHPcvtvAMAAAAAAAAAkES8wxTq7aymVBnNin7xDgAA\nAAAAAABAIt5hCvVWqilV6lku3gEAAAAAAAAASCLeYQr1VqpJeSyrBmsZazSKHgcAAAAAAAAAoHDi\nHaZMtdKTJGmWR7NqYLTgaQAAAAAAAAAAiifeYcr0dlaTJKXKaJavdnQWAAAAAAAAAIB4hylTrYzH\nO+moZ0W/eAcAAAAAAAAAQLzDlFkb79h5BwAAAAAAAABgnHiHKdO7Nt6x8w4AAAAAAAAAQBLxDlOo\nt9IzftExmhV23gEAAAAAAAAAEO8wdaqdfzw2y847AAAAAAAAAADiHabQ2mOzOrsbWd4/UvA0AAAA\nAAAAAADFq0zWBzcajZxzzjm566670tXVlfPOOy8777xz6/3rrrsun/70p9PR0ZE999wz55xzTpI8\n5jM8sVXXxDvdPY2s+L2ddwAAAAAAAAAAJm3nnW9961sZGRnJZz/72bzrXe/KBRdc0HqvVqvl4osv\nzpVXXplrrrkm/f39ufnmmx/zGZ74etccm1XpGsvgcD3Do2MFTwQAAAAAAAAAUKxJi3cWL16cQw45\nJEmy33775Y477mi919XVlWuuuSbV6njMUa/X093d/ZjP8MRX7ehJkpQ760mSFf123wEAAAAAAAAA\n2tukxTv9/f3p6+tr/dzR0ZF6fTzaKJfLmTt3bpLkqquuyuDgYF74whc+5jM88XV2dKazXEmpYzRJ\nsmK1eAcAAAAAAAAAaG+Vyfrgvr6+DAwMtH5uNBqpVCrr/HzhhRfm17/+dS655JKUSqXHfWZ9Zs/u\nTaXSMfG/AFtk3rzp6329r2ta6vXxeGesVN7gfcATkzUN7cnah/Zk7UN7svahPVn70J6sfWhP1j60\nJ2u/eJMW7+y///65+eab86pXvSq33XZb9txzz3XeP/vss9PV1ZVLL7005XJ5o55Zn+XLBydlfjbf\nvHnT8/DDq9f7Xne5O0ON8ff+9/6VeXinmVM5GjCJHmvtA09e1j60J2sf2pO1D+3J2of2ZO1De7L2\noT1Z+1PnsSKpSYt3Xvayl2XRokV5/etfn2azmfPPPz/XXnttBgcHs++++2bhwoU58MADc8oppyRJ\nTj755PU+w5NLtVLNQ41HkjSz3LFZAAAAAAAAAECbm7R4p1wu59xzz13ntd122611vWTJkvU+9+fP\n8OTS21lNI42kPJYV/eIdAAAAAAAAAKC9lYsegPZSrfQkScqVepaLdwAAAAAAAACANifeYUr1VqpJ\nkukzSlnh2CwAAAAAAAAAoM2Jd5hSa+OdvmnNrOgfSbPZLHgiAAAAAAAAAIDiiHeYUtXO8XinOi2p\njzUyUKsXPBEAAAAAAAAAQHHEO0ypaqUnSdJTbSRJljs6CwAAAAAAAABoY+IdplRvpTdJ0tU9Hu+s\n6BfvAAAAAAAAAADtS7zDlFq7805H5/hxWSv7R4ocBwAAAAAAAACgUOIdplRvpTp+0TGaJOkfGi1w\nGgAAAAAAAACAYol3mFK9nePxzlhpPNoZqIl3AAAAAAAAAID2Jd5hSlUra+Od8eOy7LwDAAAAAAAA\nALQz8Q5TqlrpSZLUm8NJkgHxDgAAAAAAAADQxsQ7TKlyqZyejp4MN2pJ7LwDAAAAAAAAALQ38Q5T\nrlrpydBYLdXujvQP1YseBwAAAAAAAACgMOIdplxvZzVD9aFM6+nMQM3OOwAAAAAAAABA+xLvMOV6\nK9UM1WuZVq04NgsAAAAAAAAAaGviHaZctVJNkvT2JqP1RoZHxwqeCAAAAAAAAACgGOIdply10pMk\n6ak2kiQDdt8BAAAAAAAAANqUeIcp19s5vvNOV894vOPoLAAAAAAAAACgXYl3mHJrj83q7B4/LsvO\nOwAAAAAAAABAuxLvMOV618Q7HZ31JEl/rV7kOAAAAAAAAAAAhRHvMOXWxjvltfGOnXcAAAAAAAAA\ngDYl3mHKVSs9SZJSh3gHAAAAAAAAAGhv4h2mXG9nb5KkWR5JkgyIdwAAAAAAAACANiXeYcqt3Xln\nrDwe7dh5BwAAAAAAAABoV+IdplxvpZokGYuddwAAAAAAAACA9ibeYcpV18Q7w2O1dJRL6a+JdwAA\nAAAAAACA9iTeYcp1d3SlXCpnaGwo03oq6R+qFz0SAAAAAAAAAEAhxDtMuVKplGqlJ4P1WqZVOx2b\nBQAAAAAAAAC0LfEOheitVDM0Opi+amcGaqNpNJtFjwQAAAAAAAAAMOXEOxSiWqlmsF5LX7UzzWYy\nWHN0FgAAAAAAAADQfsQ7FKK3Us1oYzTV6vifoKOzAAAAAAAAAIB2JN6hENXOapKkp6eRJOmviXcA\nAAAAAAAAgPYj3qEQvZWeJEnXmnjHzjsAAAAAAAAAQDsS71CIamV8551K11iSpF+8AwAAAAAAAAC0\nIfEOhehdE+90dNaTJP1D9SLHAQAAAAAAAAAohHiHQqzdeadcWRvv2HkHAAAAAAAAAGg/4h0K0VPp\nHr9YE+8MiHcAAAAAAAAAgDYk3qEQ1UrP+EV5TbxTE+8AAAAAAAAAAO1HvEMhejrGd95plhybBQAA\nAAAAAAC0L/EOhehec2zWSHM43Z0d4h0AAAAAAAAAoC2JdyhET8f4sVm1+nD6qpUMiHcAAAAAAAAA\ngDYk3qEQ1craeKeWadXO9A/VC54IAAAAAAAAAGDqiXcoRE/H+LFZtbHh9FU7Mzw6ltF6o+CpAAAA\nAAAAAACmlniHQlTKlZRL5TXHZnUmSfodnQUAAAAAAAAAtBnxDoUolUqpdvSkNjZ+bFaSDNTEOwAA\nAAAAAABAexHvUJieSvf4zjs9a+IdO+8AAAAAAAAAAG1GvENheio9qY0Nt3becWwWAAAAAAAAANBu\nxDsUprujO7V6LdN6OpKIdwAAAAAAAACA9iPeoTA9le4000xPz/jP4h0AAAAAAAAAoN2IdyhMtWO8\n2unsbiZJBobqRY4DAAAAAAAAADDlxDsUpqfSnSSpdI4lsfMOAAAAAAAAANB+xDsUprtjPN4pr4l3\nBmriHQAAAAAAAACgvYh3KExPZfzYrGa5nlLJzjsAAAAAAAAAQPsR71CY6pqdd0bGRjKtp1O8AwAA\nAAAAAAC0HfEOhemujMc7tXot06qdGRDvAAAAAAAAAABtRrxDYXo6xo/Nqo0Np69ayUCtnmazWfBU\nAAAAAAAAAABTR7xDYXoqa+Kdei19PZ0ZazQzNDxW8FQAAAAAAAAAAFNHvENhqmuPzRobTl+1M0nS\nX3N0FgAAAAAAAADQPsQ7FKa7Y028Ux/OtDXxzsCQeAcAAAAAAAAAaB/iHQrT07Hm2KyxWmvnHfEO\nAAAAAAAAANBOxDsUpnVs1p/svNMv3gEAAAAAAAAA2oh4h8K0js0aG27tvCPeAQAAAAAAAADaiXiH\nwnSUO9JZ7kytXktfTyWJeAcAAAAAAAAAaC/iHQrVU+lObazWOjZrYKhe8EQAAAAAAAAAAFNHvEOh\nqh09qdX/eGzWQM3OOwAAAAAAAABA+xDvUKjxnXf+GO84NgsAAAAAAAAAaCfiHQrV3dGdkbGRVCql\ndFbK4h0AAAAAAAAAoK2IdyhUT6UnSVpHZ4l3AAAAAAAAAIB2It6hUD0da+KdsVqm9XRmoCbeAQAA\nAAAAAADah3iHQlUr3UnW7rxTydDwWOpjjYKnAgAAAAAAAACYGuIdCtXdsSbeGRs/NitJBmr1IkcC\nAAAAAAAAAJgy4h0K1VNZc2xWvfbHeGfI0VkAAAAAAAAAQHsQ71Consofd96Ztibe6RfvAAAAAAAA\nAABtQrxDoaoda3feGc60HjvvAAAAAAAAAADtRbxDobpbO+/88dgsO+8AAAAAAAAAAO1CvEOhejrW\nxDv1P4l3auIdAAAAAAAAAKA9iHcoVLWy5tissWE77/z/7N19sOQFfef7Tz+c7j7n9HliGGAQRUCJ\n60Mkoq5mY65hg240WaVEwZvC2shNpbK5KetuYl29qVLjA1KVWLmVrNe72UqyCbtbhcUmMaxGVtSU\nNyQxyu4oRNBEFnziYRjmPJ/unn64f5wHmDADM8P06e7Tr1cV5Uw/nPOlip9/vev7BQAAAAAAAADG\njniHgarubN5pZnqynCRZE+8AAAAAAAAAAGNCvMNA1cpPPpu1ttEe5EgAAAAAAAAAALtGvMNA1UqP\nn82arjmbBQAAAAAAAACMF/EOA1UtVVJIIY12M8ViIVPVclYb4h0AAAAAAAAAYDyIdxioQqGQaqma\nRqeRJKlPTti8AwAAAAAAAACMDfEOA1crV9NoN5Mk05MTWds4ml6vN+CpAAAAAAAAAAD6T7zDwNXK\ntWM277Q7vTSPdgY8FQAAAAAAAABA/4l3GLjJUjXNrc079clykjidBQAAAAAAAACMBfEOA1ctVdPu\ndXK028705ESSZG2jPeCpAAAAAAAAAAD6r9yvH9ztdvOBD3wg3/zmN1OpVPLhD384F1544TGf2djY\nyM/93M/lIx/5SC655JIkyVVXXZV6vZ4kueCCC/LRj360XyMyJGrlWpKk0W6kvhXvrDZs3gEAAAAA\nAAAA9r6+xTu33357Wq1Wbr755hw8eDA33nhjPvGJT+y8f9ddd+X9739/Hn744Z3Xms1mer1ebrrp\npn6NxRCqlatJkka7mena9uYd8Q4AAAAAAAAAsPf17WzWnXfemde85jVJkssuuyx33333Me+3Wq18\n/OMfz8UXX7zz2r333puNjY28853vzDve8Y4cPHiwX+MxRCZLW5t3Os3HN++IdwAAAAAAAACAMdC3\nzTurq6s756+SpFQqpd1up1ze/JWXX375k75Tq9Vy/fXX561vfWvuv//+/PzP/3w++9nP7nzneBYW\nplIul878vwDPyP79Myf92YWHNj9bqxfzrPNmkyS9YvGUfgYwHDy3MJ48+zCePPswnjz7MJ48+zCe\nPPswnjz7MJ48+4PXt3inXq9nbW1t5+/dbvcpI5wkueiii3LhhRemUCjkoosuyvz8fA4dOpQDBw6c\n8DtHjqyfsZk5M/bvn8mhQysn/flus5AkeejwY5ltTydJHn509ZR+BjB4p/rsA3uDZx/Gk2cfxpNn\nH8aTZx/Gk2cfxpNnH8aTZ3/3PFUk1bezWS972cvypS99KUly8ODBXHrppU/7nVtuuSU33nhjkuTh\nhx/O6upq9u/f368RGRK18tbZrHYz05Obgdeas1kAAAAAAAAAwBjo2+adK6+8MnfccUeuvfba9Hq9\n3HDDDbn11luzvr6ea6655rjfufrqq/Pe9743b3/721MoFHLDDTc87bYeRt9kqZokaXSaqU9OJEnW\nGu1BjgQAAAAAAAAAsCv6VsYUi8V88IMfPOa1Sy655Emfu+mmm3b+XKlU8rGPfaxfIzGkquWteKfd\nSHWilFKxkFWbdwAAAAAAAACAMdC3s1lwsmqlrbNZnWYKhULqkxPiHQAAAAAAAABgLIh3GLhaeSve\naTeSJPXJiayJdwAAAAAAAACAMSDeYeAmt89mdZpJkunJiaw32ul2e4McCwAAAAAAAACg78Q7DFy1\ntBXvtDfjnfrkRHpJ1hq27wAAAAAAAAAAe5t4h4F78tmscpJkrdEe2EwAAAAAAAAAALtBvMPATRTL\nKRdKx5zNSpLVDZt3AAAAAAAAAIC9TbzDUKiWqzvxTr0m3gEAAAAAAAAAxoN4h6FQK9V2zmZtb95Z\nE+8AAAAAAAAAAHuceIehUCtX02hvbd5xNgsAAAAAAAAAGBPiHYZCrVRLs9NMr9cT7wAAAAAAAAAA\nY0O8w1ColavppZdmp+VsFgAAAAAAAAAwNsQ7DIVaqZokaXQaj2/eabQHORIAAAAAAAAAQN+JdxgK\ntXItSdJoNzNdKyexeQcAAAAAAAAA2PvEOwyFWnlz806z00y5VEytUsqqeAcAAAAAAAAA2OPEOwyF\n7bNZG+1GkqQ+OSHeAQAAAAAAAAD2PPEOQ2HnbFanmSSZnpxwNgsAAAAAAAAA2PPEOwyFWmkr3nnC\n5p1Wu5vW0c4gxwIAAAAAAAAA6CvxDkOhVt48m7W9eac+OZEkTmcBAAAAAAAAAHuaeIehUCttxTvt\nrXinthnvrDXaA5sJAAAAAAAAAKDfxDsMhVr52LNZ05PlJDbvAAAAAAAAAAB7m3iHobCzeWfrbNb0\n1tmsNfEOAAAAAAAAALCHiXcYCpM7m3e2zmZtxTs27wAAAAAAAAAAe9lJxTtf//rX8wd/8AdptVp5\n5zvfmVe96lW57bbb+j0bY6S6s3ln82yWeAcAAAAAAAAAGAcnFe98+MMfzotf/OLcdtttqdVq+ZM/\n+ZP87u/+br9nY4zUylvxTlu8AwAAAAAAAACMj5OKd7rdbl7xilfkL/7iL/K6170uBw4cSKfT6fds\njJFioZhKqZJGZ/Ns1vRWvLMm3gEAAAAAAAAA9rCTincmJyfz+7//+/nyl7+cn/iJn8gf/uEfZnp6\nut+zMWYmS9U025vxTr22Fe802oMcCQAAAAAAAACgr04q3vnN3/zNrK+v57d/+7czNzeXRx55JB/7\n2Mf6PRtjplquZqOzeTZrslpKsVBwNgsAAAAAAAAA2NPKJ/OhhYWF/ORP/mRe8IIX5NZbb023202x\neFLdD5y0WqmWI42lJEmhUMj0ZFm8AwAAAAAAAADsaSdV4Lz73e/Obbfdlq997Wv5nd/5ndTr9bzn\nPe/p92yMmVq5lqPdo+l0O0mS+uSEeAcAAAAAAAAA2NNOKt753ve+l3e961257bbbcvXVV+eXfumX\nsrS01O/ZGDO1UjVJ0uw0kyTTkxNZaxxNt9cb5FgAAAAAAAAAAH1zUvFOp9PJY489ls9//vN57Wtf\nm0OHDqXRaPR7NsZMrbwZ72y0N+Odem0ivV6y0WwPciwAAAAAAAAAgL4pn8yHrr/++rztbW/LFVdc\nkUsvvTSvf/3r8653vavfszFmaqVakqTR2QzD6pMTSZK1jaOZrk0MbC4AAAAAAAAAgH45qXjnZ37m\nZ/L6178+999/f+655558+tOfTrl8Ul+Fk7a9eaexvXlnK95Z3WjnnIWBjQUAAAAAAAAA0DcnVeDc\nddddede73pX5+fl0u908+uij+fjHP56XvvSl/Z6PMVIrbcU7nc14Z3py8z/P1Y2jA5sJAAAAAAAA\nAKCfTire+chHPpLf+q3f2ol1Dh48mA996EO55ZZb+joc46VW3jqb1d48mzX9hLNZAAAAAAAAAAB7\nUfFkPrS+vn7Mlp3LLrsszWazb0Mxnh7fvLMZ79Rr22ezxDsAAAAAAAAAwN50UvHO3Nxcbr/99p2/\nf+5zn8v8/HzfhmI8Pb55ZzMMq0+KdwAAAAAAAACAve2kzmZ96EMfyrvf/e782q/9WpLk2c9+dn7j\nN36jr4Mxfh7fvPOP4p2GeAcAAAAAAAAA2JueMt657rrrUigUkiS1Wi0XXHBBer1eJicn8/73vz9/\n9Ed/tCtDMh5q5a14p715Nmt6K95Zs3kHAAAAAAAAANijnjLe+eVf/uXdmgOOczZr8z9P8Q4AAAAA\nAAAAsFc9Zbzzyle+crfmgNRKm/FOc+ts1kS5lMpEMasb7UGOBQAAAAAAAADQN8VBDwDbts9mbXQa\nO6/VJyeyavMOAAAAAAAAALBHiXcYGpXiRAop7JzNSpJ6bSKrDfEOAAAAAAAAALA3iXcYGoVCIbVy\nLY3245t3picn0mx10u50BzgZAAAAAAAAAEB/iHcYKrVSNc3OEzbvTE4kidNZAAAAAAAAAMCeJN5h\nqNTK1WPPZm3FO2viHQAAAAAAAABgDxLvMFRqpVo2Oo30er0km2ezEpt3AAAAAAAAAIC9SbzDUKmV\nq+n2ujnabSdJ6rVykmR1oz3IsQAAAAAAAAAA+kK8w1CplWtJkmZn83TW9uadtYbNOwAAAAAAAADA\n3iPeYajUStUkyUa7kSSpO5sFAAAAAAAAAOxh4h2GSq28Ge80Ov8o3lkX7wAAAAAAAAAAe494h6FS\nK22ezWq0N89mzdUrSZKltebAZgIAAAAAAAAA6BfxDkNle/NOs7MZ68zXN/9+ZEW8AwAAAAAAAADs\nPeIdhkqttBnrbLQ3z2aVS8XMTE1kcbU1yLEAAAAAAAAAAPpCvMNQqZWPPZuVbG7fWVy1eQcAAAAA\nAAAA2HvEOwyV7c07jU5j57X5ejWNVicbzfagxgIAAAAAAAAA6AvxDkNle/NO8wmbdxZmKkli+w4A\nAAAAAAAAsOeIdxgq25t3NjrHns1KksXV1kBmAgAAAAAAAADoF/EOQ2V7806jfezZrCRZXLF5BwAA\nAAAAAADYW8Q7DJVaeTPUaTxx887M9uYd8Q4AAAAAAAAAsLeIdxgq22ezmu3HQ52Frc07R2zeAQAA\nAAAAAAD2GPEOQ6VcLKdcLGej84SzWTbvAAAAAAAAAAB7lHiHoVMrVdN4wuadmamJFAuFLK62BjgV\nAAAAAAAAAMCZJ95h6NTKtTTaj2/eKRYKmatXnM0CAAAAAAAAAPYc8Q5Dp1aqptk5NtRZmKlmcbWZ\nXq83oKkAAAAAAAAAAM488Q5Dp1auptFpptvr7rw2X6+m0+1ldePoACcDAAAAAAAAADizxDsMnVqp\nliRpdlo7r83XK0nidBYAAAAAAAAAsKeIdxg6tXI1SY45nbUws/na4mrruN8BAAAAAAAAABhF4h2G\nTq20Geo02o2d1+br2/GOzTsAAAAAAAAAwN4h3mHo1MqbZ7M22o+HOjvxjrNZAAAAAAAAAMAeIt5h\n6NRKm/FOo/OEzTszNu8AAAAAAAAAAHuPeIehUytvhjrNJ2zeWahXkiRHbN4BAAAAAAAAAPYQ8Q5D\np1bajHc2Oo+HOpPVcioTxSyutgY1FgAAAAAAAADAGSfeYejUyltns9qPn80qFAqZr1edzQIAAAAA\nAAAA9hTxDkNn+2xWo31sqDNfr2Z5rZV2pzuIsQAAAAAAAAAAzjjxDkNn+2xWs3NsvLMwU00vyfKa\n01kAAAAAAAAAwN4g3mHobJ/N2ug0jnl9vl5JkiyuincAAAAAAAAAgL1BvMPQ2d6802j/43hn8/Uj\nK80nfQcAAAAAAAAAYBSJdxg625t3Gu0nn81KksVV8Q4AAAAAAAAAsDeIdxg61dLmeaxm59hIZ3vz\njngHAAAAAAAAANgrxDsMnWKhmGqpcpyzWZtRz6KzWQAAAAAAAADAHiHeYSjVSrVs2LwDAAAAAAAA\nAOxx4h2GUq1ce9LmncpEKdO1chZXWwOaCgAAAAAAAADgzBLvMJRqpWqanSdv2JmfqeaIs1kAAAAA\nAAAAwB4h3mEo1crVHO220+62j3l9vl7NerOd5tHOgCYDAAAAAAAAADhz+hbvdLvdvO9978s111yT\n6667Lg888MCTPrOxsZFrr7023/72t0/6O4yHWrmWJGn8o+078/VKkmRx1fYdAAAAAAAAAGD09S3e\nuf3229NqtXLzzTfnV37lV3LjjTce8/5dd92Vn/3Zn813v/vdk/4O46NWqiZJGu1jI52Fmc3XF53O\nAgAAAAAAAAD2gL7FO3feeWde85rXJEkuu+yy3H333ce832q18vGPfzwXX3zxSX+H8VErb0Y6zSdt\n3tmKd1Zbuz4TAAAAAAAAAMCZVu7XD15dXU29Xt/5e6lUSrvdTrm8+Ssvv/zyU/4O46NW2jybtdFu\nHPP6drxzxOYdAAAAAAAAAGAP6FsVU6/Xs7a2tvP3brf7tBHO6XxnYWEq5XLpmQ3LGbd//8wz+v6+\nR2eTJNXp4jE/66KNdpKk1e09498BnHmeSxhPnn0YT559GE+efRhPnn0YT559GE+efRhPnv3B61u8\n87KXvSxf/OIX84Y3vCEHDx7MpZde2pfvHDmyfibG5Qzav38mhw6tPKOf0WkUkiQPP3Ykhyae8LPa\nnSTJDx5Zeca/AzizzsSzD4wezz6MJ88+jCfPPownzz6MJ88+jCfPPownz/7ueapIqm/xzpVXXpk7\n7rgj1157bXq9Xm644YbceuutWV9fzzXXXHPS32E81cqb57Ga7WPPY81OT6RQSBadzQIAAAAAAAAA\n9oC+xTvFYjEf/OAHj3ntkksuedLnbrrppqf8DuOpVtqMdzY6jWNeLxWLmZ2uZHG1NYixAAAAAAAA\nAADOqOKgB4DjqZVrSZJG+8kbdubr1SyuNtPr9XZ7LAAAAAAAAACAM0q8w1DaPpvV+Eebd5JkoV5N\nq93NerO922MBAAAAAAAAAJxR4h2G0vbZrObxNu/MbL63uPLk9wAAAAAAAAAARol4h6G0fTZro3O8\ns1mVJMmRVfEOAAAAAAAAADDaxDsMpVppM95ptI9/NitJFldauzoTAAAAAAAAAMCZJt5hKE0UyykW\nig69pG4AACAASURBVGkeb/PO9tksm3cAAAAAAAAAgBEn3mEoFQqF1ErVNNrHO5u1Ge84mwUAAAAA\nAAAAjDrxDkOrVq5l43hns7Y376yIdwAAAAAAAACA0SbeYWjVStU0jnM2a7pWTrlUyOJqawBTAQAA\nAAAAAACcOeIdhlatXE2z00yv1zvm9UKhkPl6NYvOZgEAAAAAAAAAI068w9CqlWrp9ro52j36pPfm\nZ6pZWm2l2+0d55sAAAAAAAAAAKNBvMPQqpWrSZKN9pM37MzXq+n2ellZdzoLAAAAAAAAABhd4h2G\nVq1US5I0Oo0nvbdQ3wx7jjidBQAAAAAAAACMMPEOQ2t7807zeJt3ZipJksUVm3cAAAAAAAAAgNEl\n3mFo1Uqb8c7xNu/Mb23eWbR5BwAAAAAAAAAYYeIdhlatvHk2a+M4m3d2zmatiHcAAAAAAAAAgNEl\n3mFobZ/NarSPs3lnxuYdAAAAAAAAAGD0iXcYWttns5qdJwc68/VKkuSIeAcAAAAAAAAAGGHiHYbW\n9tmsxnHOZtUq5UxWS1lcae32WAAAAAAAAAAAZ4x4h6FVK23GOxudJ5/NSpL5etXZLAAAAAAAAABg\npIl3GFq18ubZrONt3kk2453VjaM52u7u5lgAAAAAAAAAAGeMeIehVSttxjvNzonjnSRZsn0HAAAA\nAAAAABhR4h2GVq28eTar0T7B2ayZSpJkcbW1azMBAAAAAAAAAJxJ4h2G1vbmnY0TbN5Z2Nq8c8Tm\nHQAAAAAAAABgRIl3GFqlYikTxYkTb97ZincWV8Q7AAAAAAAAAMBoEu8w1Gqlapon2LwzP7MV79i8\nAwAAAAAAAACMKPEOQ61Wrp5w846zWQAAAAAAAADAqBPvMNRq5Vo2TrB5Z65eSeJsFgAAAAAAAAAw\nusQ7DLVaqZpWp5Vur/uk98qlYmamJnJktTWAyQAAAAAAAAAAnjnxDkOtVt48jdU8wfadhXo1i85m\nAQAAAAAAAAAjSrzDUKuVakmSRvv4gc78TDXNVicbzfZujgUAAAAAAAAAcEaIdxhqtfJmvLPRbhz3\n/fn65mYe23cAAAAAAAAAgFEk3mGo1UpPfTZrvl5JkiyuiHcAAAAAAAAAgNEj3mGo1cqb8c5Tnc1K\nksXV1q7NBAAAAAAAAABwpoh3GGq10tbZrM7xz2YtbJ3NOuJsFgAAAAAAAAAwgsQ7DLWn3byzFe84\nmwUAAAAAAAAAjCLxDkOtVtqMc5qdpzubJd4BAAAAAAAAAEaPeIehVitvns1qtI9/NmtmaiKlYsHZ\nLAAAAAAAAABgJIl3GGrbZ7PW2xvHfb9YKGSuXsniSms3xwIAAAAAAAAAOCPEOwy1mYmZJMlKa/WE\nn5mvV7O42ky319utsQAAAAAAAAAAzgjxDkNttroZ7yy1Vk74mYV6NZ1uL6sbR3drLAAAAAAAAACA\nM0K8w1CbKJYzPTGVpebyCT8zX988rbW40tytsQAAAAAAAAAAzgjxDkNvrjKb5dZTxDszlSTJ4qp4\nBwAAAAAAAAAYLeIdht5cdTYb7UZandZx39/ZvLN6/PcBAAAAAAAAAIaVeIehN1uZSZIsNVeO+/78\njLNZAAAAAAAAAMBoEu8w9Oaqs0mSpROczlrY2rxzxNksAAAAAAAAAGDEiHcYenOVrXinefx4Z+ds\nls07AAAAAAAAAMCIEe8w9Garm2ezllvHP5s1WS2lMlHM4mprN8cCAAAAAAAAAHjGxDsMvfnqU2/e\nKRQKWahXnc0CAAAAAAAAAEaOeIehN7t9Nqt1/Hgn2TydtbLWSrvT3a2xAAAAAAAAAACeMfEOQ2+u\nsnk260Sbd5JkfqaaXpLlNaezAAAAAAAAAIDRId5h6E2UJjJVnsxSa+WEn1moV5PE6SwAAAAAAAAA\nYKSIdxgJc9XZLD/V5p16JUmyuGLzDgAAAAAAAAAwOsQ7jIS5ymzW2xtpdY4e9/35mc3NO4s27wAA\nAAAAAAAAI0S8w0iYq84mSZZPcDprvi7eAQAAAAAAAABGj3iHkTBbmUmSLJ3gdNbO5p0V8Q4AAAAA\nAAAAMDrEO4yE7c07S63jxzsL9UoKSb7/6NouTgUAAAAAAAAA8MyIdxgJO/HOCTbvTJRLeckl+3L/\nQyv51ncXd3M0AAAAAAAAAIDTJt5hJGyfzVpurZzwMz/96ucmSf7rX92/CxMBAAAAAAAAADxz4h1G\nwvzTbN5JkuddMJcXPGc+d//Px3L/Qyf+HAAAAAAAAADAsBDvMBJmK08f7yTJG3/0uUmST//VA/0e\nCQAAAAAAAADgGRPvMBIqpYlMlief8mxWkrzwwoVcdGAmd37rUL7/6NouTQcAAAAAAAAAcHrEO4yM\nucrM027eKRQK+elXPzdJ8pm/vr/vMwEAAAAAAAAAPBPiHUbGbHU2a+31HO22n/JzL33+2XnW/ul8\n+RuP5JHFjV2aDgAAAAAAAADg1Il3GBlzldkkyfLTbN8pFgp546svTLfXy2f/5oHdGA0AAAAAAAAA\n4LSIdxgZc9WZJMlSa+VpP/vKF5ybcxYm85d3PZgjK81+jwYAAAAAAAAAcFrEO4yMuerJbd5JkmKx\nkDe86sK0O73c9rff6fdoAAAAAAAAAACnRbzDyJirbG7eWWw9fbyTJD/64vOyMFPNXxz8flbWW/0c\nDQAAAAAAAADgtIh3GBlz1bkkyXLz6c9mJUm5VMy/+KfPSetoN5/76vf6ORoAAAAAAAAAwGkR7zAy\nZrc27yydxNmsbT/+0vMzMzWRz9/5vaw32v0aDQAAAAAAAADgtIh3GBlz1dkkydJJns1KkupEKa97\nxbOz0Wzni//D9h0AAAAAAAAAYLiIdxgZ1VIltVIty62TO5u17Sd+5IJMVsv5b1/5bppHO32aDgAA\nAAAAAADg1Il3GClz1ZlTOpuVJFO1cv755RdkZf1ovnTwB32aDAAAAAAAAADg1Il3GClzldmsHl1L\nu9s+pe9d+fILUpko5rN/+520O90+TQcAAAAAAAAAcGrEO4yU2epMkpzy6ayZqUpee9mzcmSlmb+6\n+6F+jAYAAAAAAAAAcMrEO4yUuepskmSpeWrxTpK8/pXPSblUyGf++oF0urbvAAAAAAAAAACDJ95h\npMxVtuKd1vIpf3dhppofe8mBPLK4ka/c88iZHg0AAAAAAAAA4JSVBz0AnIrtzTvLzVOPd5Lkp151\nYb70tQfze5++J//pc99KqVRMqVjY/KdUTHnnz4WUisWUS4WUy8VMlIqZKG//U9r5e2XrtdnpSl75\nT87NRFkPBwAAAAAAAACcPPEOI2WuMpMkWWqd+tmsJNk/P5mrfvyifOWeR9Lp9tLu9tLpdNPp9tJq\nt3f+3On20un00u31Tvpnf/M7i/m5N7wghULhtGYDAAAAAAAAAMaPeIeRMru1eWfpNDfvJMkbX/3c\nvPHVzz2pz3a7vRztdHO0vflP+wl/fuLrf/L/3Ze/vOvBXPys2bz2smed9mwAAAAAAAAAwHgR7zBS\nHt+8c/rxzqkoFgupFkupTpSe8nPnnz2VX/+Dr+Q/f+5bec45M7n4/NldmQ8AAAAAAAAAGG3FQQ8A\np6JWrqVaqjyjzTv9cPbcZH7hTS9Kp9PL//Ond2V5vTXokQAAAAAAAACAESDeYeTMVWez3FwZ9BhP\n8uKL9uXNP35xHltu5t996u/S7fYGPRIAAAAAAAAAMOTEO4ycucpsVo6uptPtDHqUJ3njqy/MZc87\nO/c8cCR//KX7Bj0OAAAAAAAAADDkxDuMnLnqbJJkuTV823eKhUL+t5/+JzlnYTKf+ZsHcuc3Dw16\nJAAAAAAAAABgiIl3GDmzlZkkwxnvJMlUbSL/+1UvSaVczO99+ht56LH1QY8EAAAAAAAAAAypvsU7\n3W4373vf+3LNNdfkuuuuywMPPHDM+1/4whfylre8Jddcc00++clP7rx+1VVX5brrrst1112X9773\nvf0ajxG2vXlnsbk84ElO7IJz6vlXP/WCNFqd/Ns/viuNVnvQIwEAAAAAAAAAQ6jcrx98++23p9Vq\n5eabb87Bgwdz44035hOf+ESS5OjRo/noRz+aW265JZOTk3n729+eK664IjMzM+n1ernpppv6NRZ7\nwFxl+2zW8MY7SfKqF52X+36wnNvv/F7+w5/fm1/4ly9KoVAY9FgAAAAAAAAAwBDp2+adO++8M695\nzWuSJJdddlnuvvvunfe+/e1v5znPeU7m5uZSqVRy+eWX5ytf+UruvffebGxs5J3vfGfe8Y535ODB\ng/0ajxE2V908m7U0xJt3tr3tiufleRfM5W/veSSf++r3Bj0OAAAAAAAAADBk+hbvrK6upl6v7/y9\nVCql3W7vvDczM7Pz3vT0dFZXV1Or1XL99dfn937v9/Lrv/7r+dVf/dWd78C27c07S82VAU/y9Mql\nYn7xTS/O3HQln/zCP+Sb3zky6JEAAAAAAAAAgCHSt7NZ9Xo9a2trO3/vdrspl8vHfW9tbS0zMzO5\n6KKLcuGFF6ZQKOSiiy7K/Px8Dh06lAMHDpzw9ywsTKVcLvXrX4PTtH//zNN/6DRNz2/+d7SR9b7+\nnjNl//6ZvPdfvTL/1yfuyL+79Rv5v/+P/yX75iYHPRb0xSg8k8CZ59mH8eTZh/Hk2Yfx5NmH8eTZ\nh/Hk2Yfx5NkfvL7FOy972cvyxS9+MW94wxty8ODBXHrppTvvXXLJJXnggQeyuLiYqampfPWrX831\n11+fW265Jd/61rfygQ98IA8//HBWV1ezf//+p/w9R46s9+tfgdO0f/9MDh3q31acXq+XSqmSR1ce\n6+vvOZPOmankra+9JDd/4R9y83+7N2997fMGPRKccf1+9oHh5NmH8eTZh/Hk2Yfx5NmH8eTZh/Hk\n2Yfx5NnfPU8VSfUt3rnyyitzxx135Nprr02v18sNN9yQW2+9Nevr67nmmmvynve8J9dff316vV7e\n8pa35Nxzz83VV1+d9773vXn729+eQqGQG264YWdbD2wrFAqZq8xkqTVa/wfyz15yIDd/4R/y/UNr\nT/9hAAAAAAAAAGAs9K2MKRaL+eAHP3jMa5dccsnOn6+44opcccUVx7xfqVTysY99rF8jsYfMVmZz\n39L96XQ7KRVH42xafXIiM1MTeeiwbVEAAAAAAAAAwKbioAeA0zFfnU0vvawcXR30KKfkwFlTObS0\nkaPtzqBHAQAAAAAAAACGgHiHkTRb3bwFt9RcHvAkp+bA2dPp9ZKHHtsY9CgAAAAAAAAAwBAQ7zCS\n5iqzSZLl1sqAJzk1B86aSpI8eHhtwJMAAAAAAAAAAMNAvMNImqtuxjuLI7h5J0kePLw+4EkAAAAA\nAAAAgGEg3mEk7WzeGbV4Z5/NOwAAAAAAAADA48Q7jKS56kySZGnEzmadNVtLZaJo8w4AAAAAAAAA\nkES8w4jaPpu1NGKbd4qFQs47ayoPPbaebq836HEAAAAAAAAAgAET7zCSaqVaJooTWW6NVryTJAf2\nTedou5vDS41BjwIAAAAAAAAADJh4h5FUKBQyV5kZuc07SXJg31SSOJ0FAAAAAAAAAIh3GF1z1dks\nt1bT7XUHPcopObBvOkny4OG1AU8CAAAAAAAAAAyaeIeRNVudTS+9rLRGK4KxeQcAAAAAAAAA2Cbe\nYWTNV2aTJEutpQFPcmrOXZhKoWDzDgAAAAAAAAAg3mGEzVZnkiTLzZUBT3JqJsrF7J+ftHkHAAAA\nAAAAABDvMLrmtjfvNJcHPMmpO3DWVFY3jmZlvTXoUQAAAAAAAACAARLvMLLmqttns0Yw3jl7Okls\n3wEAAAAAAACAMSfeYWTNVjbPZo3q5p0kefDw2oAnAQAAAAAAAAAGSbzDyJrf2byzMuBJTp3NOwAA\nAAAAAABAIt5hhE2WJ1MulrPcHMF4Z9/25h3xDgAAAAAAAACMM/EOI6tQKGSuMpul1uidzZquTWR2\nuuJsFgAAAAAAAACMOfEOI22uOpPl1kq6ve6gRzll5++byuGlRlpHO4MeBQAAAAAAAAAYEPEOI22u\nMptur5vVo6O3wea8fdPpJXnoMaezAAAAAAAAAGBciXcYabPV2STJUnNlwJOcugP7ppIkDx4W7wAA\nAAAAAADAuBLvMNLmK9vxztKAJzl1j8c7o7c1CAAAAAAAAAA4M8Q7jLTZ6kySZLk1ept3zt83ncTm\nHQAAAAAAAAAYZ+IdRtpcZXTPZi3MVFOdKNm8AwAAAAAAAABjTLzDSJurbsU7reUBT3LqCoVCzts3\nlYce20i32xv0OAAAAAAAAADAAIh3GGk7Z7OaoxfvJMmBfVNpd7p5dGlj0KMAAAAAAAAAAAMg3mGk\nTZenUi6UsjiCm3eS5MC+6STJg4fXBzwJAAAAAAAAADAI4h1GWqFQyGx1NsvNlUGPcloOnDWVRLwD\nAAAAAAAAAONKvMPIm6vMZqm1nG6vO+hRTtmBs7c376wNeBIAAAAAAAAAYBDEO4y8uepMur1u1o6O\n3vaacxcmUywUbN4BAAAAAAAAgDEl3mHkzVZmkyTLrdE7nVUuFbN/YTIPHl5Lr9cb9DgAAAAAAAAA\nwC4T7zDy5qqb8c5ic3nAk5yeA2dNZa3Rzsr60UGPAgAAAAAAAADsMvEOI2+uMpMkWR7VeOfsqSTJ\ng4fXBjwJAAAAAAAAALDbxDuMvO3NO0ut0Yx3zt83nSR58PD6gCcBAAAAAAAAAHabeIeRtxPvNFcG\nPMnpOW/f9uYd8Q4AAAAAAAAAjBvxDiNvrjLam3cOnLW9ecfZLAAAAAAAAAAYN+IdRt70xFRKhVKW\nm6MZ70zVypmrV8Q7AAAAAAAAADCGxDuMvEKhkNnKTJZao3k2K0nO3zedw8vNNFudQY8CAAAAAAAA\nAOwi8Q57wlx1NsvN5fR6vUGPclrO2zeVJHnosfUBTwIAAAAAAAAA7CbxDnvCXGUm7V4na+3RjF/O\n3zedJE5nAQAAAAAAAMCYEe+wJ8xVZ5MkS83lAU9yerY37/zg8GjGRwAAAAAAAADA6RHvsCfMVjbj\nneXmyoAnOT3bm3cesnkHAAAAAAAAAMaKeIc9YWfzTms0N+/M1yupVUp50OYdAAAAAAAAABgr4h32\nhLnqTJLRPZtVKBRyYN9UHj6ynk63O+hxAAAAAAAAAIBdIt5hT5irbG/eGc2zWUly3lnTaXd6eXSx\nMehRAAAAAAAAAIBdIt5hT9g5mzWim3eS5Pyzp5LE6SwAAAAAAAAAGCPiHfaE6Ymp1Cemc+9jf5+l\n5mhu3zmwbzpJ8uDhtQFPAgAAAAAAAADsFvEOe0KxUMwbL3pdGp1GPvXtzwx6nNNyYJ/NOwAAAAAA\nAAAwbsQ77Bk/9qx/mmfXz8+XH7oz3168f9DjnLL985MpFQs27wAAAAAAAADAGBHvsGcUC8W87Yeu\nSpJ88lt/mm6vO+CJTk25VMw5C5N58PB6er3eoMcBAAAAAAAAAHaBeIc95eK5C/Oq816e763+IH/5\n/b8Z9Din7MC+6aw321leaw16FAAAAAAAAABgF4h32HPe9LyfymS5lj+777astFYHPc4pObBvKkny\n4OH1AU8CAAAAAAAAAOwG8Q57zmxlJm+86HXZaG/kz77954Me55Q8Hu+sDXgSAAAAAAAAAGA3iHfY\nk378Wa/O+dPn5a8e/EruX/7OoMc5aQf2TSexeQcAAAAAAAAAxoV4hz2pVCzlbZe+OUly8zf/NN1e\nd8ATnZzzzrJ5BwAAAAAAAADGiXiHPev5Cxfn5edelu+sfC9//YOvDHqckzJZLWdhppof2LwDAAAA\nAAAAAGNBvMOedtXz3phqqZJP3ffnWTs6GkHMgX1TObLSzEazPehRAAAAAAAAAIA+E++wp81X5/KG\ni67M2tH13HrfbYMe56QcOGs6SfLQY6MRGwEAAAAAAAAAp0+8w573Exf8WM6bOid/+f2/yXdWvjfo\ncZ7WgbOnkiQPOZ0FAAAAAAAAAHteedADQL+ViqW89dI35XcO/vt88pufyr+5/BdTLDx1t/bI+qF8\n/dFv5Lsr30+7206720mn19n5c7vXTmfrf9vdTsrFUl534RV51XmXp1AoPKN5D5y1Ge/84PDaM/o5\nAAAAAAAAAMDwE+8wFl5w1vPzI+f8cP7HI1/Plx/673n1gZcf83631839y9/NXY9+I18/9Hd5aP2R\nE/6sUqGUcrGUcqGcUrGUcrGcI42l/Md7PpmvHborb/+hqzNXnTntWQ+cvXk267uPrJ72zwAAAAAA\nAAAARoN4h7Hxluf9dP7u0XvyqX/4TF569otSLpbzzSN/n68f+kbuOvyNrLQ2Y5mJ4kR++OwX5SVn\nvzCXLlySWqmacrGUUrGccqF03M06hzeO5D/e88nc9eg9uW/xY7nmh67K5ee+9LTmnJuu5Nnn1HPX\nfYfz4OG1HNg3/Yz+vQEAAAAAAACA4SXeYWws1ObzL577z/Nn9302v3nnx/NY40iOdo8mSWYm6vnR\nA6/IS85+YV5w1vNTKVVO6Wfvm1zIL//Iz+dL3//r/Ok/fCa//3f/KV87dHfe9kNvTn3i1OKbQqGQ\nN/3YRfm3f3xX/uyO+/ML//JFp/R9AAAAAAAAAGB0iHcYK1c858fz5Yf+ex5efyTnTp2THz77hfnh\n/S/Mc2efk2Kh+Ix+drFQzGsv+Gd54VmX5o++8cnc+cjX8veL9+V/fcFb8pKzX3hKP+tHnn92nnNu\nPX/7jYfz06++MM/aX39GswEAAAAAAAAAw0m8w1iZKJbzq5f/66y3N3L25L6+/I5zpvbn31z+i/n8\nd76U/3rfbfl/v/4f8qoDL8/Vz/+ZTJYnT+pnFAqFvPnHLs5v/5ev51N33J9//eYX92VWAAAAAAAA\nAGCwntmqERhBUxNTfQt3thULxVx54Wvzf77iXXl2/fz8zYNfzUe+/Fu597G/P+mf8dLn7ctzz5vJ\nV+99JN99ZLWP0wIAAAAAAAAAgyLegT46v35e3v3yX84bnvuTWWot53cO/vvc8f0vn9R3C4VC3vya\ni5Mkn/rL/9nPMfn/27vXMCuqe8/jv1W1dzcNzR3xSKABUQiaIKIGPYpnYoajjxMDUY+KUYz6PBON\nidGMMWjGOyKGRPPEqImaFzOYRDKIF05iMseYPOQoJ1EJGuTijbRHgoyCCN3Y3XtXrXlRl1371t1A\nN9Xs/n6wrXvVqtq1LtX7X6sBAAAAAAAAAAAAAEgJwTtAL3MdV//t8H/Wt477mhoyDVrx5q+0q2N3\nt7b99OEjNGnMEK15/X01v9e9bQAAAAAAAAAAAAAAwMGD4B3gAGkaMlafP/yf1ea16am3nunWNsYY\nzZk1URK97wAAAAAAAAAAAAAAUIsI3gEOoFljTtQnGg/Tf2x9SZs/au7WNkdPGKEjxg7V2jc/0Oat\nu3o5hQAAAAAAAAAAAAAA4EAieAc4gFzH1XmT50qSfvn6k/Kt3+U2xhh98RR63wEAAAAAAAAAAAAA\noBYRvAMcYEcMm6gTDj1W7+zeotV/f7Fb23xy/HBNGTdMr761XW/9/aNeTiEAAAAAAAAAAAAAADhQ\nCN4BUjD3iDNV79bpqbefUWtuT5frG2M0d1bY+84f6X0HAAAAAAAAAAAAAIBaQfAOkIJh9UN15sTZ\nas3t0b++/dtubTOlabimjh+udZt36I13d/ZyCgEAAAAAAAAAAAAAwIFA8A6Qkv8y9mQdOvAQ/XHL\nf+g/d2/p1jZzTgl633mS3ncAAAAAAAAAAAAAAKgJBO8AKck4Gf3LkXNkZfXL15+UtbbLbSaPG6aj\nJ47QhuYPtemdDw9AKgEAAAAAAAAAAAAAQG8ieAdI0dSRkzX9kE/p7Y+a9ef31nRrm7lh7ztP/Tu9\n7wAAAAAAAAAAAAAAcLAjeAdI2dlHnKWsk9ETb/1KH+fbulx/0ieG6tOHj9TGd3ZqQzO97wAAAAAA\nAAAAAAAAcDAjeAdI2ciG4Tp9/Gna3dGiZzY/261t5s4Ket958o9vd+vPbQEAAAAAAAAAAAAAgL6J\n4B2gD/ivTf+kUQNG6Pfv/ru2tm7rcv2Jhw3R9CNG6Y13P9L6v9H7DgAAAAAAAAAAAAAAByuCd4A+\nIOtmde7kL8i3vv7P6091qzedOacEve/8r99s1L+99J/a2dLe28kEAAAAAAAAAAAAAAA9jOAdoI/4\n1MipOmrkFG368E395f2/drn++H8YrNM/M07bd7XpF8++of/xo+f13Z+v0R/WbtHuPR0HIMUAAAAA\nAAAAAAAAAGB/ZdJOAICAMUb/cuQXdOeOe7TijX/V0SM/qXq3rtNtzj/tSJ3xmSa9tOl9/WnDNm18\nZ6c2vrNTj/72dR01cbhmTj1Uxx55iAYOIKsDAAAAAAAAAAAAANAX8Y0+0IeMHniITms6Vf+3+fd6\n+K//WzP/4ThNHTlZjdlBVbcZ2livzx03Vp87bqx27GrTnzf8P/15wzate3uH1r29Qxl3oz59+EhN\nP2KUhg+p15CBdRoyqE6NDVllXDrfAgAAAAAAAAAAAAAgTQTvAH3MGRM+p/XbN2nDjte1YcfrMjIa\nP2Scjho5RUePnKKmwWPlmMpBNyOGDNAZM5t0xswmbftwTxzI85c3PtBf3vigbP1BAzIaMqhOgwfW\nacjArAYPqtPghqzqs66yGUd1WVd1GUfZjKu6rFMYzzjKZh1lXUeuY+SGw4zryHWNHGN6+zIBAAAA\nAAAAAAAAAFATei14x/d93Xrrrdq0aZPq6uq0cOFCjR8/Pl7+3HPP6f7771cmk9E555yj8847r8tt\ngP6g3q3Tt0+4Wltatuq17Zu0fvsmbd7VrL/teke/3vxvaswO0tQRk3XUyCk6asQUNdZV7pXn0OED\nddY/TtBZ/zhB777foje3fKTdrR3atSen3Xs6tCsc39Xaofe275HtwXNwjJHrGmVcI9cJAnoypUE+\nRcNgmWOMHMfImGAfxiiYlpHjBH9azDFGjpGMY+TIyDgK5yXWj7cP1y3bb7X5iX2V7jfaLpxvs25i\nbAAAG6hJREFUnEJanGjcKaxvEgFM1nZ+dbtKT+n8eN0q5wwAAAAAAAAAAAAAOHj0WvDOs88+q46O\nDi1btkxr167V4sWL9eCDD0qScrmc7rrrLi1fvlwNDQ2aN2+eTjvtNK1Zs6bqNkB/4hhH4wZ/QuMG\nf0JnTDhNe3Ifa+OHb2j99k1av32jXtz2F7247S8yMho+YJgyxpXjuMoYV65xg4CZeDyY72RcucMc\nZYZnNMRxNDxc5hpXjhx5nlE+Z5XLS9Y3stbI94ysb+T7Rr4veflgPO9Jfl7y/GBdz5N8X7LhMO8b\n+Z6V51n5vlXes/I9qzbry+sI5nmeL89aeX53wob2IyClaPemyjIjGRvMMFbG2KLpovHkfmxif8lx\nmXDfpvgYkmy8XmKdOC0V9pvch+NLxpdx/Hhcji9jfMnxCtPWkcIfY91g3Hdl5MTLjHWD05aVcRSe\ntx/MC8/ZOOG1CNMRbC/JuDLWhPNMOB4EYvl+uLYJloYHCc/MhPOCfUtWchQcV1bW8WVkw1P2ZYwN\ntjMmSHeQuOAjMUF6CnsNljnWFNZTtK5TWMtE6StcYxNeh2jCRLdElOpoG9l4O5ucb6KzC69jYiMT\nj4bnZTxZ+bLGl+QXxk1hPDizjBy55T/GlStXxriJY4bHUZzQ6ucQr2KK1otOyhir4J8vq+S4L1Vc\nllgeTdvCuo6cMN0ZuXLj88qYrByF96SJUx6nv5NJyZg4IM6Exyx8JjZMh4qG4ckl5trwTrQKwwDl\nGCceN3Kq9nCWvI4V01glgK5qKVZlQbX19yZAr9qq1dNSvsRaK195eTanvM3LU055m1M+mqe8BtS7\n6mi3ck1GGWXkmvBHhWHWycoJ79tusVZ526EO264O21Y89INhzrbLVUb1zgDVmQGqi4amXnXOANU7\nA5Q1dUWfpWe98Fxyytlc8bhysrJhveiG5+Eqo2xYp2bC+UFeTOYF3/rxvWVtNN8P1rBW1vhx/oiX\n2eh+LeSX+NpFdXh8HaPjB+cS7MGL9+1bX758+dYL0+PJSEHeC8sNxyTLkOLP2re+crZN7X6b2vyP\n1eZ/rPZwGI13+O3Kmrrw2tarzqkPrr0TXm9TmHaMG+Ws4FhV78UKC/Y6T1S7iarkxe4fcu/S3en6\ne3PMyvlQ4X2W/Jw960nGhp+vE9+bTnTdy3a9d+2p6mVIsOCDlpx27tzT6UmZMP02Tr8nzwb1hpc4\njygPuSZqz2bkFI13P0C5q3R3195cri7itMN1rPI2H5Shfj4oU60nSXHelkxYL5q4biq0YQrzjTGS\nrTK/i3NIzqt0TSpvk2jrFDYuH+2BIPK93UN0f1lZBf8F/4wpBNBHLYLCMcqvW6HN1POB8D2xz0p7\nsMl6xMa1UMk1sUHZ74Rlg7P/ackbRzs+3NP1ip3poevcE3vpsU+8B3a0t+VU1f30kfc5+tKLJT2V\nlB7ZTQplZU/sqK6lXbv2dPRaWg7k/bI3h9qLp6+qS3zry/M9+fLDF7Kc8Pmze+2b4JnMl+/74fOM\nH7afvPCZIrFulVfzHGOUcRLPOOHvA5N14F6e1n599vv+ce/7UdMqkvb1uPtVJ/TgptbaLl9KlPpW\nmb8/4t831cj51ALf+vKsLyPF5RYA7Avf+rLWBu0wyhL0Yb0WvPPyyy9r1qxZkqTp06dr3bp18bK3\n3npLTU1NGjp0qCTpuOOO04svvqi1a9dW3QbozwZmGzRj9DTNGD1N1lptadkaBPLs2KT3P96uj/2c\n/Fzw8J63njzfq/rA3iPc8CfdXaCH2ZIh+i5rTfc/qGQ7NPkLl5LtjSmf19usleS7QcCaSR7chulO\nzDPRL1AOYNqsCYPparQxb6udVxTl5cu4Xtf7aenm4aJrGh2jLGgxnGckuflE8OC+s1aSFzZ3HS8M\nHDx4WdszecD6JgzsdMLrnevVvBWXWTYMUIjzVjfta9oqBfCWBNWWbdKNdHV9b0YBoV0mqsI6yXIv\nCIbcl/s2/oytI/lGNrz2ldNuE+koTXtpeku3r7BtvG4wr0fu2ej+8Z3CfbT3e+nGOsn7pFIgVek8\nU/2eigOuvXD8wJQ/hTZCJ+Vs6bLu7LNbEutVPN1O9lMpv5YF1wd5ovDj93jZFTeVOq2vSuYnllcM\n1LcqzieJNk4hTybmJ9tAJjlM5s99y1uFsiEYWr8wfuDsY16o0eaYpAqXZF+/6Y3yRcmLKMmfite/\ntI7sIj2Vyr2obg/LGhuXOaXlTeV7vZDmTs5vP6/TXpdl1cr3KE+HaTal1zc5ndxHN8vkquVIUdRk\n8nrZkrIkeaFKy67S61Bh37Z8m+L67gCL75dCHVBeJ4Tjla5ZxevZjWu9V23VQhqCl6uS6eu8rqra\nTk7Wdb3YhihuMzrdzCdd1fcl6+yXPvD8tt+n0nvn0P1n5irPJxXag5XvgSpt3mrlR8XtEuuWtulU\nIV9HhW3cbgnrFls8r+sPKPl8VVqWlObXQnka5I2ojWSkMK8UpUGmsP+ScllGMsllReVOtTLKFNcl\nif0G10eFZYmyuqjOjT+HxHRcPtmya6DwhcrgVBJ1eXR+pdd+XzNEZ2VL/Fn4RWWnws+n9D4vKrei\ntMafj5M47+7kj8p5w5Tm24rJ72z/1fJM6YEqPAvEm5TU55XyUoU8XFZ/FyW3lhvUVZQ+T3X6wraU\nvO8rjktd3M9dJWg/64SK6Zek4KXs8vZ+aRs0mchK7VOVjJcOK6W/MK+4zVNh3UrXp7M2ftX7tsI6\nybKj4njJZ11Wp5QM97Y92C3p5EHXDtD/nPXfNXrokFSOj73Xa8E7LS0tamxsjKdd11U+n1cmk1FL\nS4sGDx4cLxs0aJBaWlo63aaa4cMHKpMhBKCvOeSQwV2vhH02evQQHXv4lE7Xid7syftBME/eesr7\neXnRdLTMRtN55cO3eKL18ol1g/mJfVhPnu/H0e++H7zxE70F5NvCW0H71STpzqvM1TaVCkFMtjAe\nvZkbjVuFf+rLuIlh9Ge8iufF21hbYah4Wjbok0FW8uWHw+T8rpcH+/PjVGecjLJuVnVOVhk3Uxi6\nGWWcbDjMyPN95fyccl6+MPRyyvnFQxO+8eUaV47jyC0ad+WaQu8jvk181omhH94D0Y9NXP3C287R\ndOGzcR2n/NiOWzhuuDy6PtZa+TbotcKXjaOkg/mJ3i1KpuP15MuLugUqYorGKt1t1d926rqxZaLH\nPRt8foVzLPR8lTGZxDV3gx4w/LzyfvD55b3g7fycF83LK+/n4nsuPpYpZJdkmm2nKS1e4oQ9zkTR\n545xwh4cnHhZcn7yjcHCeGG9qDzJh2nO+3nlbE55PxefY97PyVfQE07UW1Oy5yYjhZHwJj63Qs9B\nRVsp6jmp0AtR4k36CttFV8izfnBvxb1ahNMq3Nu9YT+Kt/0/dsndXvomXaEHjKyyTjYc1ikTjxeG\nRiboTcIPe+fxw54lynqYyMfHiv9FZWZiWlLQq4sb9J5T7wY96gxwG8KeXYLxOqdeOT+nDq9NbX6b\n2v2P1e63qd0rjHf4bWrz2mSkQtpNcB5Zk1XGqQuGJquMk5WRI8/m5Vsv7hXDKxoGP758Rb00FXpv\nSLxBKyNjnKJ1nHjdxDoy8Ta+fHk2X3RcPxwm50kK86CbyH9uIU8metaJ3sj1rBf2eOLF+4ymJane\naSj/MQNU7zRogDNQ9U6DsqZOeduhdtuuDj/oASkXjdu2cF4w7oc9qxT3NhSNB9OlbwlH9u4xtvpT\nf/kdXbLM2rKl1bcvrS3Kl1RbXn27StsW5gdlX1imJspho0Q5m+yJyQY9u/kK38J2gx56wlpTvvWK\n929Kj2yK0lp+VpXWrbTcJKajGsjE5xDkAFflvZ6F+SDsnceXF6fbkycbzovOqfck7wZbdq8Ur2HL\ntkhOu6Yu0XteJsynUU9YUQ97TsmebNkwebxkbyqFdUqWVRq3pfsuP4+isQr5s/qLAZXzTNV9V91P\n8jjBOkEp6RbKUhXfL8lhtL7CsdL/l/6ysfR6xOMmXGZKr1XpdoltquwzOV1Im5NouSTzS3GLRUXj\nleapk2XFeTRIQVgeOH5hXMXjB8x+tX/27Zed1bbqLCk90QtO916o6fwX4JWmqz2zBGnOVMkjhenk\nXoryZoVTrngOiS+UCvd7oidO2aJpxdPJ+zb60rPyvVz9TLuZxm5uX75taWlVvjyo3aJzSLTrbMl1\ntiXXOtlLqKlcXiTLnvKyJsqn0ZVyEnndFPWOW35+0YOiLTrn4uXJ9lJ5+debujpCfD/bqF5wVHxf\nOzJ+ocwLLn/pNe2i/C/6bHxVv68KqUqOGevIKJNIa9hjsQ3a50GPeU7x8aPeOZP5xVhZYwv3mHVk\nvOjcC/WgbKE+7N41top6zQ16BfWKx40vm+msPqhUDnW3jNuf8jSdL7nK9PiXd/uj2jNE9bnVlxU/\nB1VvryU+8WSwQYUtS/dZtE70q5pkeWmNFLb3gvs6Gkb79YP87BTuYRmveFm1Uyo596J8pahX8aCX\ncuMX0hTsxo/3bxUElsTjxpdVXsnnnTgvxmWxpERdFyj8jre0vC9uMyb2Ge+vEOBnZMLZxc8OUZmS\nLE+Cyx7WV/H5uorrLz+ZxmQ5FPWqHZZPUa/p+9Rm7LysKC7Tsole44PyT3GZr7jsSvZgLuPLuuFn\nYkrL7715Pq+yzFaZr8rtxaLPNdFmKl5W8uxioznJtlDpvqs8x3VyjLL8aNTVx1GjKuUpI1m3eH78\nLBjd91H7yxbaFd1qG/VmnVFo8xXagI6C1+STy6Sye8aU3pOJtp+RCm3NZNs1uX5xOorEt2O1c+/q\nmpQfo+heNpXXKZtnE/WJDcsTP9F2il40iNp7cQBjWHY4UT2zn8/I+/VCas9nUmN9DRs5QIcM7973\n9ny/n75eC95pbGxUa2trPO37fhyEU7qstbVVgwcP7nSbaj7c3+6a0eMOOWSw3n9/d9rJQBkjKStH\nWTmSsqWLnfAH2EfkfaB/Iu8D/RN5H+ifyPtA/0TeB/on8j7QP5H3gRqTV7fyNHn/wOksSKrXvqqf\nMWOGVq1aJUlau3atJk+eHC+bNGmSmpubtXPnTnV0dOill17Sscce2+k2AAAAAAAAAAAAAAAAQK3p\ntZ53Zs+ereeff14XXHCBrLVatGiRVq5cqT179uj888/XggULdPnll8taq3POOUeHHnpoxW0AAAAA\nAAAAAAAAAACAWmWsrfAH7Q8idN/U99CtFtA/kfeB/om8D/RP5H2gfyLvA/0TeR/on8j7QP9E3gf6\nJ/L+gZPKn80CAAAAAAAAAAAAAAAA0DmCdwAAAAAAAAAAAAAAAICUELwDAAAAAAAAAAAAAAAApITg\nHQAAAAAAAAAAAAAAACAlBO8AAAAAAAAAAAAAAAAAKSF4BwAAAAAAAAAAAAAAAEgJwTsAAAAAAAAA\nAAAAAABASgjeAQAAAAAAAAAAAAAAAFJC8A4AAAAAAAAAAAAAAACQEoJ3AAAAAAAAAAAAAAAAgJQQ\nvAMAAAAAAAAAAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAAAAAAAAAAAAApIXgHAAAAAAAA\nAAAAAAAASAnBOwAAAAAAAAAAAAAAAEBKCN4BAAAAAAAAAAAAAAAAUkLwDgAAAAAAAAAAAAAAAJAS\ngncAAAAAAAAAAAAAAACAlBC8AwAAAAAAAAAAAAAAAKSE4B0AAAAAAAAAAAAAAAAgJcZaa9NOBAAA\nAAAAAAAAAAAAANAf0fMOAAAAAAAAAAAAAAAAkBKCdwAAAAAAAAAAAAAAAICUELwDAAAAAAAAAAAA\nAAAApITgHQAAAAAAAAAAAAAAACAlBO8AAAAAAAAAAAAAAAAAKSF4BwAAAAAAAAAAAAAAAEhJJu0E\noHb4vq9bb71VmzZtUl1dnRYuXKjx48ennSwAvSCXy+nGG2/Uli1b1NHRoSuvvFKHHXaYvvKVr2jC\nhAmSpHnz5unMM89MN6EAetwXv/hFNTY2SpLGjh2rK664QgsWLJAxRkceeaRuueUWOQ7x4UAtWbFi\nhZ544glJUnt7uzZs2KBly5ZR7wM17JVXXtH3vvc9LV26VM3NzRXr+l/+8pd67LHHlMlkdOWVV+qz\nn/1s2skGsJ+SeX/Dhg2644475Lqu6urqdPfdd2vUqFFauHCh1qxZo0GDBkmSHnjgAQ0ePDjllAPY\nV8l8v379+optfOp8oPYk8/61116rDz74QJK0ZcsWHXPMMbr33nup84EaUuk7vSOOOIJn/T6I4B30\nmGeffVYdHR1atmyZ1q5dq8WLF+vBBx9MO1kAesHTTz+tYcOGacmSJdq5c6fmzp2rq666Spdeeqku\nu+yytJMHoJe0t7fLWqulS5fG86644gpdc801mjlzpm6++Wb97ne/0+zZs1NMJYCedvbZZ+vss8+W\nJN12220655xz9Nprr1HvAzXq4Ycf1tNPP62GhgZJ0l133VVW10+fPl1Lly7V448/rvb2dl144YU6\n+eSTVVdXl3LqAeyr0rx/55136qabbtLUqVP12GOP6eGHH9YNN9yg1157TY888ohGjBiRcooB7K/S\nfF+pjf/+++9T5wM1pjTv33vvvZKkjz76SPPnz9cNN9wgSdT5QA2p9J3eJz/5SZ71+yBei0aPefnl\nlzVr1ixJ0vTp07Vu3bqUUwSgt5xxxhn6xje+IUmy1sp1Xa1bt05/+MMf9KUvfUk33nijWlpaUk4l\ngJ62ceNGffzxx7rssss0f/58rV27Vq+99po+85nPSJJOPfVUvfDCCymnEkBv+etf/6o333xT559/\nPvU+UMOampp03333xdOV6vpXX31Vxx57rOrq6jR48GA1NTVp48aNaSUZQA8ozfv33HOPpk6dKkny\nPE/19fXyfV/Nzc26+eabdcEFF2j58uVpJRdADyjN95Xa+NT5QO0pzfuR++67TxdddJFGjx5NnQ/U\nmErf6fGs3zcRvIMe09LSEv8ZDUlyXVf5fD7FFAHoLYMGDVJjY6NaWlp09dVX65prrtG0adN0/fXX\n62c/+5nGjRun+++/P+1kAuhhAwYM0OWXX66f/vSnuu2223TdddfJWitjjKSgbNi9e3fKqQTQW37y\nk5/oqquukiTqfaCGnX766cpkCh01V6rrW1pairrMHzRoEEF8wEGuNO+PHj1akrRmzRo9+uij+vKX\nv6w9e/booosu0pIlS/TII4/o5z//Ob/MBw5ipfm+UhufOh+oPaV5X5K2b9+u1atXx73uUucDtaXS\nd3o86/dNBO+gxzQ2Nqq1tTWe9n2/rAEAoHZs3bpV8+fP15w5c3TWWWdp9uzZ+tSnPiVJmj17ttav\nX59yCgH0tIkTJ+oLX/iCjDGaOHGihg0bpu3bt8fLW1tbNWTIkBRTCKC37Nq1S5s3b9aJJ54oSdT7\nQD/iOIVfHUV1fenzf2tra9Ev+ADUhl//+te65ZZb9NBDD2nEiBFqaGjQ/Pnz1dDQoMbGRp144ol8\nkQfUkEptfOp8oH/4zW9+o89//vNyXVeSqPOBGlT6nR7P+n0TwTvoMTNmzNCqVaskSWvXrtXkyZNT\nThGA3vLBBx/osssu07e+9S2de+65kqTLL79cr776qiRp9erVOvroo9NMIoBesHz5ci1evFiStG3b\nNrW0tOjkk0/Wn/70J0nSqlWrdPzxx6eZRAC95MUXX9RJJ50UT1PvA/3HUUcdVVbXT5s2TS+//LLa\n29u1e/duvfXWW/wOAKgxTz31lB599FEtXbpU48aNkyT97W9/07x58+R5nnK5nNasWUMbAKghldr4\n1PlA/7B69Wqdeuqp8TR1PlBbKn2nx7N+30S3KOgxs2fP1vPPP68LLrhA1lotWrQo7SQB6CU//vGP\ntWvXLj3wwAN64IEHJEkLFizQokWLlM1mNWrUKN1xxx0ppxJATzv33HN1ww03aN68eTLGaNGiRRo+\nfLhuuukm3XPPPTr88MN1+umnp51MAL1g8+bNGjt2bDx966236o477qDeB/qBb3/722V1veu6uvji\ni3XhhRfKWqtrr71W9fX1aScVQA/xPE933nmnDjvsMH3961+XJJ1wwgm6+uqrNWfOHJ133nnKZrOa\nM2eOjjzyyJRTC6CnVGrjNzY2UucD/cDmzZvjYF1JmjRpEnU+UEMqfaf3ne98RwsXLuRZv48x1lqb\ndiIAAAAAAAAAAAAAAACA/og/mwUAAAAAAAAAAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAA\nAAAAAAAAAAApIXgHAAAAAAAAAAAAAAAASAnBOwAAAAAAAAAAAAAAAEBKCN4BAAAAAADAXlmxYoUW\nLFiQdjIAAAAAAABqAsE7AAAAAAAAAAAAAAAAQEoyaScAAAAAAAAAveOhhx7SM888I8/zdMopp2je\nvHn66le/qnHjxqm5uVljxozRkiVLNGzYMP3+97/XD37wA/m+r3Hjxun222/XqFGj9MILL2jx4sWy\n1mrMmDH6/ve/L0lqbm7WxRdfrL///e866aSTtHDhwpTPFgAAAAAA4OBEzzsAAAAAAAA1aNWqVVq3\nbp2WL1+uJ598Utu2bdPKlSv1+uuv65JLLtGvfvUrTZo0ST/60Y+0fft23Xzzzbr//vu1cuVKzZgx\nQ7fffrs6Ojp03XXX6e6779bKlSs1ZcoUPfHEE5KkrVu36r777tMzzzyjVatW6Y033kj5jAEAAAAA\nAA5O9LwDAAAAAABQg1avXq1XX31VZ599tiSpra1N1lpNmDBBM2fOlCTNnTtX1113nU4++WRNmzZN\nY8eOlSSdf/75euihh7Rp0yYdeuihmjp1qiTpm9/8piRpxYoVOv744zVs2DBJUlNTkz788MMDfYoA\nAAAAAAA1geAdAAAAAACAGuR5ni655BJdeumlkqRdu3bpvffe07XXXhuvY62V67ryfb9oW2ut8vm8\nstls0fzdu3ertbVVkpTJFH6tZIyRtba3TgUAAAAAAKCm8WezAAAAAAAAatCJJ56op556Sq2trcrn\n87rqqqu0bt06bd68WRs2bJAkPf744zr11FN1zDHH6JVXXtG7774rSVq2bJlmzpypiRMnaseOHXrz\nzTclSY888oh+8YtfpHZOAAAAAAAAtYiedwAAAAAAAGrQaaedpo0bN+q8886T53maNWuWTjjhBA0d\nOlQ//OEP9c4772jKlClauHChBg4cqNtvv11f+9rXlMvlNGbMGN15552qr6/XkiVLdP311yuXy6mp\nqUnf/e539dvf/jbt0wMAAAAAAKgZxtKnMQAAAAAAQL/w7rvvav78+XruuefSTgoAAAAAAABC/Nks\nAAAAAAAAAAAAAAAAICX0vAMAAAAAAAAAAAAAAACkhJ53AAAAAAAAAAAAAAAAgJQQvAMAAAAAAAAA\nAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAAAAAAAAAAAAApIXgHAAAAAAAAAAAAAAAASAnB\nOwAAAAAAAAAAAAAAAEBK/j8f2/XossdQIgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOkAAAJoCAYAAAA5hyfyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX6//HPJJNMSA9JaNKR5oIiIixdEL8CgiKISBFU\nWCvqsoKLuijIirK66gosyk8FQUB6F1hKBAQEQVqkhCItBBJCJm1In98fMWczpBCSmYRl3q+/Ts5z\nznPuMzPPXtfqx/sx2e12uwAAAAAAAAAAAAAAAAC4jEdFFwAAAAAAAAAAAAAAAADc6gjpAAAAAAAA\nAAAAAAAAAC5GSAcAAAAAAAAAAAAAAABwMUI6AAAAAAAAAAAAAAAAgIsR0gEAAAAAAAAAAAAAAABc\njJAOAAAAAAAAAAAAAAAA4GKEdAAAAAAAACrA0qVL1bhxYzVu3Fhr1qyp6HJKJa/+4cOHu+wZGRkZ\nOnnypMvmBwAAAAAAKC+EdAAAAAAAAHBT2rFjhx5++GF9//33FV0KAAAAAABAmZkrugAAAAAAAADg\nWjExMXr66acrugwAAAAAAACnoZMOAAAAAAAAbjrZ2dkVXQIAAAAAAIBTEdIBAAAAAAAAAAAAAAAA\nXIyQDgAAAAAAAAAAAAAAAOBi5oouAAAAAAAAOEfjxo0lSePGjdPgwYO1cuVKLVq0SFFRUcrMzFTN\nmjX18MMPa9iwYfL29pYk7d69W998840OHDggq9WqKlWqqFOnTnrxxRdVpUqVIp919epVzZ8/Xxs3\nbtSpU6eUkpKi4OBgNWvWTL1791aPHj3k4VH8fxv0ww8/aP369dq3b5/i4+Nls9nk7++vmjVrqm3b\nthoyZIiqVatW4L4pU6Zo6tSpCggI0J49exQXF6eZM2cqIiJCMTExMpvNatCggXr06KFBgwYZ7+oq\ne/bs0apVq/TLL78oNjZWKSkp8vPzU9WqVdW6dWsNGjRIDRo0uO48V65c0eeff65Nmzbp0qVLCg4O\nVosWLdS/f3917ty5yPvS0tK0cOFCbdiwQVFRUUpNTZW/v79q1aql9u3ba9CgQcV+l9nZ2Vq/fr1W\nrVqlQ4cOyWq1ys/PT3Xr1lXnzp01ePBgBQUF3dBnsmvXLg0dOlSS9Nprr+nZZ58t9Lp169bp1Vdf\nlSS9//776tu3r6T//pbzTJ06VVOnTpUkzZ49W23atHEYt1qt+vbbb/XDDz/o7Nmzunr1qkJDQ3XX\nXXepb9++xX5+zmK327V27VqtWrVKkZGRSkhIkJ+fnxo0aKD7779fTzzxhPz8/Aq9N+9933jjDd13\n332aOHGi9u7dK7PZrNq1a2v06NFq166dunbtqujoaA0dOlTPPfecJk6cqG3btslut6tmzZp69tln\n1bt3b2PejIwMLV++XOvXr9eRI0eUlJSkgIAA3X777erWrZsGDBggHx+fMtUEAAAAAABKjpAOAAAA\nAAC3mMzMTL3wwguKiIhwOB8VFaWPPvpIO3bs0FdffaVp06Zp2rRpstvtxjXR0dGaP3++Nm3apMWL\nF6tq1aoF5j948KBGjhypS5cuOZyPi4tTRESEIiIiNGfOHH322WeFhkMSEhI0cuRI7dmzp8CY1WqV\n1WpVZGSk5s6dq3//+99q27Ztke+6Z88evfTSS7JarQ7n9+/fr/3792vp0qWaPXu2goODi5yjtNLS\n0vT6669r/fr1BcYSExOVmJioqKgofffdd3r//ff18MMPFznXqVOn9P777ysuLs44FxcXpw0bNmjD\nhg3q1auXJk+eLLPZ8R/lxMTE6JlnntGpU6cczickJCghIUEHDx7UzJkz9c9//lPdunUr8Nzo6GiN\nGjVKBw4ccDhvtVqNz3DWrFn66KOP1KlTpxJ9LuVty5YtGj16tJKSkhzOx8TEKCYmRuvWrVPXrl31\n4Ycfyt/f3yU1xMfHa+TIkfrll18czlutVu3du1d79+7VrFmz9Nlnn+nuu+8ucp6LFy9q4MCBunLl\ninHu8OHDql27tsN1KSkpGjx4sE6fPm2ci4qKclivR48e1Z///Gf99ttvDvdeuXJFu3fv1u7duzVz\n5kxNmTJFzZs3L3NNAAAAAADg+gjpAAAAAABwi/niiy+UkJCg5s2ba+jQoapZs6aOHz+ujz/+WFar\nVTt27NDzzz+vLVu2qH79+ho+fLgaNmyo2NhYzZgxQwcPHlRsbKw++eQTffDBBw5zHz9+XMOGDZPN\nZpOfn58GDRqktm3bKiAgQNHR0Vq9erU2btyoffv2afjw4VqwYIF8fX0d5njllVeMgE67du306KOP\nqkaNGsrMzNSZM2f07bff6vjx47LZbBo7dqw2b94sT0/PAu+ZlpamF198UampqRo4cKDuv/9++fv7\n6/Dhw/r8888VGxurY8eO6ZNPPtGECROc/jm/8847RkCnWbNmGjhwoGrXri0PDw+dO3dOCxYs0L59\n+5SVlaV33nlHHTt2VEhISKFz5YWlOnXqpAEDBigsLExHjhzRF198oZiYGK1evVrBwcEaN26cw31j\nx47VqVOn5OnpqWHDhql9+/YKCgrSlStXtGXLFi1YsEBpaWkaM2aM1q9f7xCaunLlip555hkj6HHP\nPfdowIABqlu3rqxWqzZu3KglS5YoMTFRzz//vL788sty65yyfPlyxcbGGh14BgwYoIEDB0qSQzhk\n586deuGFF5Sdna3Q0FANHjxYrVq1ko+Pj06fPq3Fixdr9+7d2rx5s0aOHKmvvvqq0N9SWdhsNg0d\nOlQnTpyQyWRS79699eCDD6pKlSqyWq3aunWrFi5cqNjYWD3zzDNauHChGjZsWOhc33zzjex2u0aM\nGKEuXbro8uXLOnLkiGrWrFng88nJydFjjz2mPn36KDk5WTt27FDr1q0lSadPn9bTTz9tBGu6dOmi\nPn36qEaNGoqNjdXq1au1du1axcTEaOjQoVqwYIEaNWpUppoAAAAAAMD1EdIBAAAAAOAWk5CQoPbt\n2+vzzz83tnpq2bKlqlWrZoQetmzZoubNm2v27NkOIZqOHTvqwQcf1MWLFxURESG73S6TyWSMjxkz\nRjabTdWqVdOcOXMcAhN33nmnevTooblz5+rdd99VVFSU/v3vf2v06NHGNTt27NDu3bslSQ888ICm\nTJniMH/btm3Vv39/DRw4UAcOHNDFixe1b98+tWrVqsB7ZmZmKiUlRZ9//rlDl5e7775bnTp1Uu/e\nvXX16lWtXr1af/vb3+Tl5VXWj9Zw+vRprVixQpJ011136dtvv3XYVqtVq1Z69NFH9corr2j9+vWy\n2WzaunWrHnnkkULnywtBjBkzxjjXokULPfjggxo8eLBOnTqluXPn6vHHHze2IYqOjtZPP/0kSXr5\n5Zf1wgsvOMzZuXNnNWjQQO+++65sNptWr16tZ555xhj/+OOPjYDOk08+qbfeesvhu+jcubO6d++u\n5557TpmZmRozZow2btyoSpUqleGTK5mmTZsqICDA+Ds8PFxNmzZ1uCYvfJSdna1GjRrpm2++UeXK\nlY3xu+66S4888og+/PBDffnll9q5c6cWLlxohH2c5ZNPPtGJEydkNps1depUdenSxWG8U6dOeuSR\nR/Tkk0/KZrPprbfe0sKFCwudKycnR88//7xGjRplnOvevXuh1/Xq1Uvvvfeeca5r167G8YQJE4yA\nztixY/X000873N+tWzd17txZY8eOlc1m0+jRo7VixQqH7/9GawIAAAAAANdX/ObwAAAAAADgf9Jf\n//pXh9CIlBsWyB+wGDNmTIEuNz4+Pmrfvr2k/249lWf79u06cuSIMX9R290MHjzY6Ogxf/58ZWZm\nGmO//fabatWqJS8vL40cObLQUICnp6d69uxp/B0bG1vkez7wwAOFbsNUq1Yto+tLSkqKzp8/X+Qc\npXH8+HHVqVNHFotFzz33XIHPOk/+La6u3R4sv8aNG+svf/lLgfOVK1c2ugDZ7XYtWLDAGLt8+bJx\nXKdOnULnfeyxx9S/f3+9+uqruvPOO43zV65c0bJly4xnv/HGG4V+F+3bt9fzzz9vPC/vnpvBypUr\nje3B3nvvPYeATn6jRo0yPp/Zs2c7tYakpCQtWrRIktS/f/8CAZ08zZs314gRIyRJBw4cKLC9WH4l\nDREVdd2RI0e0Y8cOSdJ9991XIKCT59FHH1Xfvn0lSceOHdPWrVvLXBMAAAAAACgeIR0AAAAAAG4x\noaGhRreV/Ewmk7Hdkbe3t+65554i789js9mM4x9++ME4zgvyFKVz586ScgMyhw4dMs4PHjxYGzdu\n1MGDB9WkSZMi7w8PDzeOMzIyiryuQ4cORY7lDxGlpqYWW++NeuCBB7R+/XodOHDAoYPJtcLCwozj\n4t7jscceK3IbptatW+u2226TlBuUylO7dm2ZzblNkj/44ANt3LjRIRAlSRaLRX//+9/14osvOnQj\n+umnn5SVlSUpN1xS3BZQ+QMaxQU5ylve7zEgIMAhgHQts9ls/F5PnTpVbFjqRu3evVtXr16VdP01\nkT9MtnPnzkKvqVq1qqpVq3bd55rNZjVv3rzQsW3bthnHAwYMKHae/N9t/vtKUxMAAAAAALg+trsC\nAAAAAOAWkxfoKExex5eQkBAj4FHUNVJu95Y8eV10JBmdckri3LlzatmypcM5Dw8PY/7Y2FidO3dO\np0+f1okTJ3To0CGHTiM5OTlFzl3cu+bvEpSdnV3iem9E/u4zly9f1rlz53TmzBmdPHlSkZGR2rdv\nnzGe/7O81l133VXsc5o2baro6GidPn1a6enpslgsCgkJUf/+/TV//nxdunRJL730kvz8/NSmTRu1\na9dO7du3V/369QudLyoqqsTPDg0NVa1atXTu3DmH+ypa3u8xOTm50FBaUc6dO6eqVas6pYbDhw8b\nxyNHjryhGgpTvXr1Et0fEhIii8VS6Njx48eN4xYtWhQ7zx133CEvLy9lZmbq2LFjZaoJAAAAAABc\nHyEdAAAAAABuMX5+fte9pqiATnESEhJKU46SkpIc/rbb7Vq7dq0WLlyoAwcOOHTryZMX4rmea7fr\nyi9/gKa4gExZbNu2TfPmzdPPP/+s5OTkAuMlfY+itmrKExISYhwnJiYaHZHeeusteXt7a+7cucrK\nylJqaqo2b96szZs3S8rtttOzZ08NGzbM4Rn5tzHL3zmpKGFhYTp37pwSExNL9D7lwVm/x5upBn9/\n/xLdX9waz/tuPTw8HH43hTGbzQoODlZcXFyR321JawIAAAAAANdHSAcAAAAAgFtMcVsXlUXe9kgh\nISGaOXNmie/L37UkPT1dr7zyisPWWSaTSTVr1lT9+vXVtGlTtWzZUlarVa+//rrTanc2u92ucePG\nadGiRQ7nq1evrvr166tx48a6++67FRAQoKeeesopz8uTv9ORl5eX3nzzTf3pT3/S+vXrFRERoT17\n9igtLU2SdPbsWX3++eeaN2+evvrqK2NbqBsNLeV1Iipp6KikiuuSdD15v8fGjRtr8uTJJb6vZs2a\npX7mtfJ3aJo2bVqxnZ3yK2vwJX8A7Vo3+t3mfQfO/m4BAAAAAEBBhHQAAAAAAECJBAcHS5JsNpsa\nN25cqn+p/9lnnxkBnWbNmumll15S69atC4QWli5dWuZ6XWn+/PlGQKdu3bp65ZVX1L59e+MzyrNr\n164SzZeYmKhatWoVOR4fHy8pt/NJQEBAgfHw8HANGTJEQ4YMUUZGhn755Rdt375da9asUXR0tJKS\nkjRmzBitXbtWHh4eDnXGx8dfN1yS9/ygoKASvU9JuxilpKSUaL7C5HWASU9PV9OmTUs9T1nk/zwq\nV65cYXXkl1dTTk6OEhISiu3SlJmZaXT1Kel3CwAAAAAASo//RAYAAAAAAJRIw4YNJeV2wzly5Eix\n127dulVff/211q9frytXrkjK7Try3XffSZICAwP1zTffqGvXroV2Fblw4YKTq3euefPmScrtWvTl\nl1/qoYceKhDQkaSYmJgSzXfixIkix+x2uyIjIyXldo3J65SUk5Ojc+fOaefOnQ7Xe3t7649//KNe\ne+01rVu3Ti1atJAknT59Wr/99psxT56DBw8WW1tsbKyio6MlSfXr1y/R++Tv5nT16tUiryvL95z3\nezxz5ozxGyvKmjVr9M0332jjxo2Fbq9W1hok6cCBA8Ve+9tvv2n69OlauXKlTp8+7bQarpX/u71e\nTb/++qsyMzMllfy7BQAAAAAApUdIBwAAAAAAlEiHDh2M47yQSmGys7M1YcIETZ48Wa+88ooR0rhy\n5YrROaV27dpFbvmTmZmpdevWOcx3szlz5oyk3LBRcR1wVq1aZRznbc9UmO+//77IsR9++EFxcXGS\npI4dOxrnx40bp27duumpp57SuXPnCr03L7CTJz09XZLUpk0beXl5SZIWLVpU7LZTecEqSWrXrl2R\n1+UXGBhoHOcFfAqzdevWIseu16kp7/dot9sdarxWcnKyxo0bp0mTJmnMmDHFbhV1o9q2bSuzObdR\n9aJFi4zAS2GmT5+uTz/9VGPGjNH+/fudVsO18q/TBQsWFHvt/PnzjeP27du7rCYAAAAAAJCLkA4A\nAAAAACiRbt26GYGUJUuWaOXKlYVe9/777+v8+fOSpPvvv9/YSikgIMAINJw4caLQLioZGRl65513\ndPz4cYdzN5uQkBBJUkJCgg4dOlRg3G6367PPPtOPP/5onCvuPbZs2aKFCxcWOB8TE6N3331XkmSx\nWDRo0CBjrEuXLsbx+++/X+i2UlevXtWmTZskSX5+fqpXr54kKTQ0VL1795YkHT16VP/4xz8KrWvH\njh2aMWOGpNztnB599NEi3yG/2rVrq1KlSpKkjRs3FtpRaNasWfr111+LnMPb29s4Lqz7Tf/+/Y2g\n1/Tp0wt0FJJyuw2NHTtWqampkqTHHnvMqMsZwsPD1atXL0nSyZMnNXHixEK/h7Vr1xqBrfDwcHXv\n3t1pNVzrjjvuUOvWrSVJERERmj17dqHXLV++XMuXL5eU20Xnvvvuc1lNAAAAAAAgl7miCwAAAAAA\nAP8bzGazJk+erGHDhikzM1Ovv/66IiIi9NBDDyk8PFzR0dFasGCBfvrpJ0lSUFCQ3nzzTeN+Hx8f\ndenSRRs2bFBaWpqefPJJjRgxQo0aNVJGRoaOHj2qhQsX6tSpUw7PTU5OLtf3LIkePXpo1qxZkqTn\nnntOI0aMULNmzWQymXT8+HEtXbq0QHgnr4tQYSpVqqRx48Zp37596tmzp/z9/bV//37NmDHD2Mpp\n7Nixqlq1qnFP165d1bx5cx06dEibNm1Sv379NHDgQNWtW1d2u12nTp3St99+awSehg8f7hBQ+etf\n/6pdu3YpOjpaM2fO1KFDhzRgwADVrVtXVqtVGzdu1JIlS5SVlSWTyaTJkycrKCioRJ+PxWJRjx49\ntHTpUtlsNg0ePFgvvPCCGjZsqMuXL2vFihX6z3/+o9q1a+vs2bOFzhESEiIvLy9lZmZq9erVateu\nnQIDA1WnTh0FBwcrMDBQEydO1KhRo5SRkaERI0aoX79+uv/++xUYGKjTp09rzpw5RhCoZs2aevnl\nl0tU/43I+xxjYmK0YMECHT16VIMGDVK9evUUHx+vzZs3a9myZcrJyZHJZNL48ePl4+Pj9Drye++9\n99SvXz8lJSXpvffe086dO9WnTx9Vr15dcXFxWrNmjdG9yWKx6JNPPjECdAAAAAAAwHX4f98AAAAA\nAKDE7rnnHs2YMUOjRo2S1WrV999/X+hWTdWqVdO0adNUs2ZNh/Pjxo3TkSNHdP78eZ0/f17jx48v\ncK+/v7/eeOMNvf3228rOznboqnOzePnll7Vnzx5FRkYqPj5ekydPLnCNl5eXXnvtNc2cOVOXLl0q\n9j0mTpyoCRMmaOnSpVq6dKnDmKenp0aPHu3QRUfK3Q5q6tSpGj58uE6cOKFff/1Vf/vb3wrMbTKZ\nNHDgQL344osO54ODg/Xtt9/qpZde0uHDh7Vnzx7t2bOnwP2VK1fWP/7xD4ettkpizJgxioyMVFRU\nlKKjowvUVq9ePU2dOlUPPfRQofd7enqqa9euWr9+vWJjYzVixAhJ0qRJk9SvXz9JUs+ePZWVlaW3\n335bV69e1YIFCwrd4qlhw4aaPn26wzZczlK5cmXjczx69KgOHDigAwcOFLjOx8dH48ePV7du3Zxe\nw7Vq166tOXPm6KWXXtL58+e1efNmbd68ucB1tWrV0ieffKImTZq4vCYAAAAAAEBIBwAAAAAA3KB2\n7dpp06ZNmj9/vn744QedPHlSycnJ8vX11e233677779fTzzxhLEVUX5Vq1bVsmXL9PXXX2vTpk06\ne/assrKy5O/vr3r16qlDhw4aMGCAwsPDtXTpUu3du1dbt26VzWaTr69vBbxt4fz9/TVv3jzNmTNH\na9eu1alTp5Seni4/Pz/VqlVLbdq00aBBg1SrVi0dPnxYK1eu1MGDBxUdHW1s/5XfnXfeqeXLl+vf\n//63fvzxR125ckWhoaFq27atnn76aTVu3LjQOqpVq6Zly5ZpyZIl2rBhg6KiomS1WuXl5aUqVaqo\nTZs26tevn+66665C769Ro4YWL16s1atXa+3atYqMjJTValVwcLBq166t7t2765FHHilxB538Kleu\nrMWLF2v+/Plas2aNTp48Kbvdrjp16qhHjx4aNmyYsrOzi51j0qRJCg0N1aZNm3TlyhUFBgYqISHB\n4ZqHH35Y7dq109y5c7Vt2zadPXtWqamp8vf3V5MmTdSjRw/17dvXYfssZ6tZs6aWLl2q1atXa926\ndYqMjFRCQoLMZrNq1aql9u3ba/DgwcZ2ceWhSZMmWrt2rRYtWqQNGzbo2LFjSk5OVmhoqOrVq6de\nvXrpoYcecur2XwAAAAAAoHgme2EbZQMAAAAAAAAAAAAAAABwGo+KLgAAAAAAAAAAAAAAAAC41RHS\nAQAAAAAAAAAAAAAAAFzMXNEFAAAAAAAAlIfU1FSdPXu2zPPUrl1bfn5+TqgIFeXEiRPKzMws0xxB\nQUGqUaOGkyoCAAAAAADuwGS32+0VXQQAAAAAAICr7dq1S0OHDi3zPLNnz1abNm2cUBEqSteuXRUd\nHV2mOR599FF98MEHTqoIAAAAAAC4A7a7AgAAAAAAAAAAAAAAAFzsf6aTTlxcckWXgEKEhPgqIcFW\n0WUAKGesfcA9sfYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNrv/yEhwcUOUYnHZSJ2exZ0SUAqACs\nfcA9sfYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNr/+ZASAcAAAAAAAAAAAAAAABwMUI6AAAAAAAA\nAAAAAAAAgIsR0gEAAAAAAAAAAAAAAABcjJAOAAAAAAAAAAAAAAAA4GKEdAAAAAAAAAAAAAAAAAAX\nI6QDAAAAAAAAAAAAAAAAuBghHQAAAAAAAAAAAAAAAMDFCOkAAAAAAAAAAAAAAAAALkZIBwAAAAAA\nAAAAAAAAAHAxQjoAAAAAAAAAAAAAAACAixHSAQAAAAAAAAAAAAAAAFyMkA4AAAAAAAAAAAAAAADg\nYoR0AAAAAAAAAAAAAAAAABcjpAMAAAAAAAAAAAAAAAC4GCEdAAAAAAAAAAAAAAAAwMUI6QAAAAAA\nAAAAAAAAAAAuRkgHAAAAAAAAAAAAAAAAcDFCOgAAAAAAAAAAAAAAAICLEdIBAAAAAAAAAAAAAAAA\nXIyQDgAAAAAAAAAAAAAAAOBihHQAAAAAAAAAAAAAAAAAFyOkAwAAAAAAAAAAAAAAALgYIR2USlpW\nmt796SNtPb2roksBAAAAAAAAAAAAAAC46RHSQanYsq7qki1W+2IiK7oUAAAAAAAAAAAAAACAmx4h\nHZRKkHegTDIp3pZQ0aUAAAAAAAAAAAAAAADc9AjpoFQ8PTwVZAksdUjnxInjTq7oxowc+aw6dGil\nrl3bVWgdAAAAAAAAAAAAAADAPRDSQamFWIJ05apVOfacEt+TkpKiTz/9SMOHD3FhZQAAAAAAAAAA\nAAAAADcXs6smzsnJ0fjx43Xs2DF5e3vr73//u+rUqWOMz5o1S4sWLVLlypUlSRMmTFD9+vVdVQ5c\nINgnWL8lnVVyRoqCLIElumfKlI+1Zs1KF1cGAAAAAAAAAAAAAABwc3FZSGfjxo3KyMjQggULtH//\nfn3wwQeaPn26MR4ZGanJkyerWbNmrioBLhZiCZIkJaRbSxzSyckpedcdV5o6dUZFlwAAAAAAAAAA\nAAAAANyIy7a72rt3rzp27ChJatGihSIjIx3Gf/31V82YMUMDBw7UF1984aoy4EIhPsGSpIS0xAqu\nBAAAAAAAAAAAAAAA4ObmspBOSkqK/P39jb89PT2VlZVl/P3QQw9p/Pjx+uabb7R3715FRES4qhS4\nSHC+TjoAAAAAAAAAAAAAAAAomsu2u/L391dqaqrxd05Ojszm3MfZ7XYNGzZMAQEBkqTOnTvr8OHD\n6tKlS5HzhYT4ymz2dFW5KIX6HjWkSCndZFN4eECx106ZMkVTp051ONehQytJUuvWrTVnzhyNHTtW\ny5YtU5MmTbR48WL961//0vLly5WYmKgqVaqoe/fuGjNmjHF/enq6VqxYoS1btujIkSNKSEhQZmam\ngoKC1LBhQ9133316/PHH5evrW6CeJ598Urt375a3t7cOHTrkMNa4cWNJ0htvvKGnnnpK//nPf7Ro\n0SIdPnxYiYmJCgsLU5s2bTRs2DDdcccdpfrsgFvB9dY9gFsTax9wP6x7wD2x9gH3xNoH3BNrH3BP\nrH3APbH2K57LQjotW7ZURESEevbsqf3796tRo0bGWEpKinr16qXvv/9evr6+2rVrl/r161fsfAkJ\nNleVitJK95IkRVvjFBeXXOylqanpRY5lZGQpLi5ZaWmZkqSsrBy9+upftGnTf4xrzp8/r5wcD+M5\nx44d1RtvvKbY2EsF5rt8+bIuX76snTt3as6cuZoy5XOFh1cp8Mw8RdWelHRVI0e+qg0b1jmcj4mJ\n0fLly7Vy5UqNHv2GHn740WLfHbgVhYcHXHfdA7j1sPYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNr\nv/wUF4ZtYlc0AAAgAElEQVRyWUjngQce0Pbt2/XEE0/Ibrdr0qRJWrVqlWw2mwYMGKBRo0Zp6NCh\n8vb2Vtu2bdW5c2dXlQIXCfQOkKfJQ9a062931adPP3XqdJ++/PJzbd++TZI0c+ZcSVKlSo6dbk6d\nOqETJ6LUvPldevLJp+Xj46Pt27epZ8+HJUmJiVaNGvWSkpIS5enpqZ49e6tduw4KCQlVcnKijh+P\n0sKF82S1WnX+/FlNnfqpJkyYdMPv9913cxQfH6+6devp8ccHqUGDhkpOTtLatau0adMG5eTk6NNP\nP1Tr1m1VrVq1G54fAAAAAAAAAAAAAAC4D5eFdDw8PPTuu+86nGvQoIFx3KdPH/Xp08dVj0c58DB5\nqHKlYCWkJ1732tDQMIWGhikwMMg417Bh40KvzcnJ0W231dSnn06TxeIjSWrZspUxvmDBPCUl5T7z\npZde1eOPD3K4v23bDurRo5eefPJxpaSkaNu2LcrKyjK2Wyup+Ph43XNPa/3jH5/IYrEY5//4x3YK\nCAjU8uVLlJGRoY0b12nIkKduaG4AAAAAAAAAAAAAAOBePCq6APxvC/UNUWJ6krJzsp06b48evYyA\nzrUuX45TWFi4QkND1bfv44VeEx5eRXfffY8kKSMj3Qj13Kg//3m0Q0AnzyOP9DWOT5w4Xqq5AQAA\nAAAAAAAAAACA+3BZJ53/VQs3n9DPR2MruoxydW+TKnq86+2lujfUN0R22ZWUkawQn2Cn1fSHPzQv\ncuzNN9+RlNtxx8Oj6JxZ5cqhxnFGRuYN1xAeXkX16tUvdOy222oaxzab7YbnBgAAAAAAAAAAAAAA\n7oWQDsok1LeyJCkh3erUkE7VqlWve01eQCcrK0sXL8bowoVonTt3RidPntCvvx7SyZMnjGvt9pwb\nrqFatepFjlWq5GscZ2c7t4sQAAAAAAAAAAAAAAC49RDSucbjXW8vdVcZdxRaKTeYk5BmlYKcN6+v\nr3+x42lpaVq6dJE2blynkydPFBqU8fDwUE7OjYdz8uQP4lzLZDIZx3a7vdTPAAAAAAAAAAAAAAAA\n7oGQDsok1DdEkpSQnujUefNlYAq4cCFaf/nLSJ0/f8445+XlpVq1aqtOnXpq3LiJWrS4R+vXf69l\nyxY5tS4AAAAAAAAAAAAAAIDSIKSDMgnLC+mkWcvtmePHv2UEdLp1e1CPPTZATZrcIbPZ8ee8YsWS\ncqsJAAAAAAAAAAAAAACgOIR0UCau6qRTlKNHD+vw4UhJUsuWrTR+/HtFXnvp0sVyqQkAAAAAAAAA\nAAAAAOB6PCq6APxvC7QEyOxhljWtZCEdU3H7WJVA/i2uGjduWuR1MTEXdOjQAePv7OzsMj0XAAAA\nAAAAAAAAAACgLAjpoExMJpOCLUFKSC/Zdlfe3t7Gsc1mu+HnBQUFG8d79uxSVlZWgWvi4y9r3Lix\nyszMNM5lZGTc8LMAAAAAAAAAAAAAAACche2uUGYhliCdsP6mrJwsmT2K/0mFhoYZxzNmTFP37g/J\nw8NDjRo1KdGz7ryzhUJDwxQff1nHj0fp1VdfUN++j6tatepKSkrU/v2/aM2aFbJaHUNDqakpN/5i\nAAAAAAAAAAAAAAAATkJIB2UW4hMsu+yypicprFLlYq/t0KGTZs36UtnZ2Vq8eIEWL16gqlWracmS\n1SV6lsVi0bhx7+qvfx2l9PR0HTiwTwcO7CtwXa1atdWr1yOaPn2KJOm3306pefO7bvzlAAAAAAAA\nAAAAAAAAnIDtrlBmwZYgSVJC2vW3vGrYsLE++OCfatbsTlWq5CuLxSKz2ay0tLQSP69Vq9aaOXOu\nevfuo+rVb5OXl5e8vLwUFhaue+9to9dff0uzZs3To48+Jh8fH0nS5s0bSvdyAAAAAAAAAAAAAAAA\nTmCy2+32ii6iJOLikiu6BBQiPDxAS/b9RwuilmnYHU+odbWWFV0SgHIQHh7A/y4Dboi1D7gf1j3g\nnlj7gHti7QPuibUPuCfWPuCeWPvlJzw8oMgxOumgzEJ8cjvpWNMSK7gSAAAAAAAAAAAAAACAmxMh\nHZRZiCVYkpSQfv3trgAAAAAAAAAAAAAAANwRIR2UWYhPXkiHTjoAAAAAAAAAAAAAAACFIaSDMvM1\nV5K3h5esaXTSAQAAAAAAAAAAAAAAKAwhHZSZyWRSiE8wnXQAAAAAAAAAAAAAAACKQEgHThFiCVZK\nZqoysjMruhQAAAAAAAAAAAAAAICbDiEdOEWwJUiSZE1nyysAAAAAAAAAAAAAAIBrEdKBU4T45IZ0\nEtLY8goAAAAAAAAAAAAAAOBahHTgFCGWYElSAp10AAAAAAAAAAAAAAAACiCkA6cI9vk9pEMnHQAA\nAAAAAAAAAAAAgAII6cApQiy5211Z6aQDAAAAAAAAAAAAAABQACEdOEVIXieddDrpAAAAAAAAAAAA\nAAAAXIuQDpyiktlHPp4+Skijkw4AAAAAAAAAAAAAAMC1COnAaUJ8guikAwAAAAAAAAAAAAAAUAhC\nOnCaYEuQrmZdVVpWekWXAgAAAAAAAAAAAAAAcFMhpAOnCbEES5Ks6Wx5BQAAAAAAAAAAAAAAkB8h\nHThNiE+QJCkhjS2vAAAAAAAAAAAAAAAA8iOkA6fJ66STQCcdAAAAAAAAAAAAAAAAB4R04DQhPnkh\nHTrpAAAAAAAAAAAAAAAA5EdIB04TYsnd7sqaRicdAAAAAAAAAAAAAACA/AjpwGlupJPOiRPHXV1O\nqcXEXJDNllrRZQAAAAAAAAAAAAAAgFsIIR04jbent/zMvkooppNOSkqKPv30Iw0fPqQcKyuZjIwM\nzZz5/zRkSH8lJrJlFwAAAAAAAAAAAAAAcB5zRReAW0uwT5AuX42X3W6XyWQqMD5lysdas2ZlBVR2\nffPmzdZXX31R0WUAAAAAAAAAAAAAAIBbEJ104FQhliClZ2foalZaoeM5OTnlXFHJZWdnV3QJAAAA\nAAAAAAAAAADgFkVIB04V7BMsSUpIL3rLKwAAAAAAAAAAAAAAAHdDSAdOFWL5PaSTRkgHAAAAAAAA\nAAAAAAAgj7miC8CtJcQSJEmypic6nP/qqy80c+b/czjXoUMrSVKLFi01deoMh7Fdu3bq++9XKjLy\nkBISrsjb26KaNWupbdv26tdvgIKDg4usIS4uVkuXLtKuXTt17txZZWVlKjAwSA0aNFT79h3Vq9fD\nslh8jOu//36VJk2a4DBH//4PS5KqVauuxYtX3eCnAAAAAAAAAAAAAAAA4IiQDpwqxNjuKvE6Vxbu\n6tWrmjjxbW3dGuFwPiMjQ0ePHtbRo4e1cOE8jRs3UR06dCpw/969P+vNN0crNTXV4Xx8/GXFx1/W\n7t07NX/+HH388VTVrl2nVDUCAAAAAAAAAAAAAADcKEI6cKqitrvq06efOnW6T19++bm2b98mSZo5\nc64kqVIlX0lSTk6Oxo79i/bu/VmS1K5dRz34YE9Vr15dNptNe/f+rGXLFiklJUVvvTVG//znFLVq\n1dp4RnJyssaNG6vU1FQFB4do8OBhatr0Dnl7e+vSpYtas2alfvpphy5ejNGECX/Tl1/OlslkUocO\nnTRz5lwtX75EK1YslSR9+OGnCgsLl9ns5doPDAAAAAAAAAAAAAAAuAVCOnCqYEugpIKddEJDwxQa\nGqbAwCDjXMOGjR2uWbz4OyOgM3r0G+rTp5/DeKtWrdWr1yN68cXhio+P16RJE7Rw4QqZzbk/4x9/\n3KKkpNznTpr0oe68s4Vx7x13NFOXLt00btxYRURs1LFjR3Ts2FE1adJUgYFBCgwMUuXKocb1devW\nV/XqNcr6cQAAAAAAAAAAAAAAAEiSPCq6ANxavDy95O/lJ+s1nXSuJycnR999l9tZ549/bFcgoJPn\ntttq6vnnX5YkxcZe0pYtm42x+PjLxnGtWrULvX/o0KfVp89jevHFVxUQEHBDNQIAAAAAAAAAAAAA\nAJQWnXSusfTEau2LPVTRZZSru6s0V9/bezltvhCfYF1MvSS73S6TyVSie06ePK7Y2EuSpHvvbVPs\ntX/8YzvjeM+en3X//f8nSapTp65x/s03x+iVV/6ipk3/4HBvw4aNNXr02BLVBAAAAAAAAAAAAAAA\n4CyEdOB0IZZgnUuOVmqmTf7efiW6JyrqmHE8ZconmjLlkxLdd+FCtHHctm0HNWjQUCdPHtehQwf0\npz8NU1hYuO69t41atWqte+9t47ClFQAAAAAAAAAAAAAAQHkhpHONvrf3cmpXGXcU4hMkSUpIt5Y4\npJOYeGPbY+VJTk4yjs1ms/75z8/0wQcT9dNPOyRJly/Hae3a1Vq7drVMJpOaNv2Dund/SL1795GX\nl1epngkAAAAAAAAAAAAAAHCjCOnA6UIswZIka3qiagXcVqJ7srOzjePXXhurZs2al+g+i8Xi8HdY\nWLg++ugznTp1QhERm7Rz53ZFRR1VTk6O7Ha7Dh+O1OHDkVqxYqn+9a/pCg4OLuFbAQAAAAAAAAAA\nAAAAlB4hHThdiOX3TjppJe+OExAQaBz7+fmrYcPGZaqhfv3bVb/+7Ro+/DklJSVp3749+umnHYqI\n2KiUlBSdPHlc06d/pjfeeLtMzwEAAAAAAAAAAAAAACgJj4ouALeeYJ/c7jQJ6Yklvqd+/QbG8eHD\nh4q9NiEhQV9/PUNr167W8eNRxvnMzEydOnVSR48ecbg+MDBQnTt31V//+jfNmjVf/v4BkqQdO34s\ncX0AAAAAAAAAAAAAAABlQUgHTpe33VVhnXRMJlOh9zRt+gcFBuZ24NmwYZ1SUlKKnH/JkgX6+usZ\neu+98frxxy3G+SFD+mvo0AF6660xRd5brVp11atXX5KUkZHuMObhwXIAAAAAAAAAAAAAAACuQSoB\nThdsCZRJJiWkFwzpeHt7G8c2m8049vLyUr9+j0uSEhMTNXHiOGVkZBS4/+DB/Zo3b44kyWKxqHfv\nR42xdu06SpIuXbqo7777ttDazpw5raioo5KkJk3+4DDm5eVlHF+9ahMAAAAAAAAAAAAAAICzmCu6\nANx6PD08Fejtr4S0gttdhYaGGcczZkxT9+4PycPDQ40aNdGQIU9p+/Ztioo6qu3bt+nppwepf/+B\nuv32RkpJSdaePbu1bNkiowPO88+/rLCw/843cOAQrV27SikpKZo27V86dOiAunb9P1WtWk2pqSk6\ncuRXLV78ndLT0+Xh4aFhw54psrZZs77SE08MVk6OXc2aNXf2RwQAAAAAAAAAAAAAANyMyW632yu6\niJKIi0uu6BJQiPDwgEK/m3/smaLzyRf06X3vycP034ZNx48f04gRQ5WdnW2cq1q1mpYsWS1JSky0\n6u2339DevT8X+UxPT08NH/6chg59psDY3r0/6623XldKStG/Fx8fH7322lj16NHL4fzly5c1cGBf\nhy46ZrNZGzZsc+iyA6DotQ/g1sbaB9wP6x5wT6x9wD2x9gH3xNoH3BNrH3BPrP3yEx4eUOSY5/jx\n48eXXymlZ7MV3PoIFc/Pz1Lod3M4PkoxqRfV8ba28jFbjPOhoWFq0qSpYmIuKDk5WZ6eHvL3D1Dv\n3n1kNpvl4+OjHj16qVGjJsrJyZHNZlNmZqY8Pc2qUeM2delyv8aOfVtdutxfaD01atymnj17y8en\nkjIzM5WWlqbs7CwFBASqTp166tmzt956a7xatGhZ4F5fX1/dc8+9v9eWaNTbsWNnBQYGOekTA24N\nRa19ALc21j7gflj3gHti7QPuibUPuCfWPuCeWPuAe2Ltlx8/P0uRY3TSQZkUlbZbfHylIs79qNdb\nvaw6gbUqoDIArkTSFnBPrH3A/bDuAffE2gfcE2sfcE+sfcA9sfYB98TaLz/FddLxKHIEKEZOjl0r\nf/xNZy4mFToeYgmWJCWkJ5ZnWQAAAAAAAAAAAAAAADclQjoolYTkdC3/8TctjThR6HiIz+8hnTRr\neZYFAAAAAAAAAAAAAABwUyKkg1IJDvCW2dOks5cKb4cVYgmSJCWkE9IBAAAAAAAAAAAAAAAgpINS\n8fTwUNXKvjp/KVl2u73AePDvIR1rGttdAQAAAAAAAAAAAAAAENJBqdUI9VNaRrauJKUXGAuyBMrD\n5EEnHQAAAAAAAAAAAAAAABHSQRnUCPOTJF2ITy0w5mHyUJB3oBLopAMAAAAAAAAAAAAAAEBIB6Vn\nhHQuFwzpSFKIT5ASM5KUY88pz7IAAAAAAAAAAAAAAABuOoR0UGo1Qn0lFRPSsQQrx56jpIzk8iwL\nAAAAAAAAAAAAAADgpkNIB6VWtbKvPDxMiom3FToe7BMkSUpIs5ZnWQAAAAAAAAAAAAAAADcdQjoo\nNbOnh6qH+unC5VTZ7fYC4yGWYElSQnpieZcGAAAAAAAAAAAAAABwUyGkgzKpXS1AtvQsJaZmFBgL\nsdBJBwAAAAAAAAAAAAAAQCKkgzKqVTVAknThcmqBsRCfvE46hHQAAAAAAAAAAAAAAIB7I6SDMiku\npBOct91VGttdAQAAAAAAAAAAAAAA90ZIB2VSq4q/JCkm3lZgLMDbT54mTzrpAAAAAAAAAAAAAAAA\nt0dIB2VyWxV/mVR4Jx0Pk4eCLUGy0kkHAAAAAAAAAAAAAAC4OUI6KBMfb7PCgn10Ib5gSEeSQnyC\nlJSRrOyc7HKuDAAAAAAAAAAAAAAA4OZBSAdlViPUT8m2TCXZMgqMhViCZZdd1vSkCqgMAAAAAAAA\nAAAAAADg5kBIB2VWI8xPkhRTyJZXIT7BkqSEdGu51gQAAAAAAAAAAAAAAHAzIaSDMjNCOvG2AmPB\nliBJkjWNkA4AAAAAAAAAAAAAAHBfhHRQZtVDc0M6FwrrpPN7SCchPbFcawIAAAAAAAAAAAAAALiZ\nENJBmVUP9ZUkXYhnuysAAAAAAAAAAAAAAIDCENJBmVWymFU50FJEJ53fQzppdNIBAAAAAAAAAAAA\nAADui5AOnKJGqJ+sKRmypWU5nPfz8pXZw6zE9KQKqgwAAAAAAAAAAAAAAKDiEdKBU9QI85MkxVyz\n5ZXJZJKfuZJsWbaKKAsAAAAAAAAAAAAAAOCmQEgHTlE91FeSCt3yytfLV7bMq+VdEgAAAAAAAAAA\nAAAAwE2DkA6cIq+TzoX4QkI6Zl/Zsq4qx55T3mUBAAAAAAAAAAAAAADcFAjpwCmqh/4e0rlccFsr\nPy9f2WVXWlZaeZcFAAAAAAAAAAAAAABwUyCkA6fwr+SlID9vxRTWScerkiQplS2vAAAAAAAAAAAA\nAACAmyKkA6epEeany4lpSs/IdjjvZ/aVJNmyCnbZAQAAAAAAAAAAAAAAcAeEdOA01UNzwzgxVxy7\n6fh65Z5PzSSkAwAAAAAAAAAAAAAA3BMhHThNjTA/SdKFy44hHb/ft7uyEdIBAAAAAAAAAAAAAABu\nipAOnKZGaF5IxzGM4/v7dlepWVfLvSYAAAAAAAAAAAAAAICbASEdOE1eJ52Y+Gs76eSGdOikAwAA\nAAAAAAAAAAAA3BUhHThNgK+X/Ct5Fdjuyvf37a5SswjpAAAAAAAAAAAAAAAA9+SykE5OTo7efvtt\nDRgwQE8++aTOnDlT6HXjxo3TRx995KoyUI5MJpOqh/oq1npVmVnZxvm87a5smWx3BQAAAAAAAAAA\nAAAA3JPLQjobN25URkaGFixYoNdee00ffPBBgWu+++47RUVFuaoEVIAaYX6y26WLV/4byPH7vZOO\njU46AAAAAAAAAAAAAADATbkspLN371517NhRktSiRQtFRkY6jP/yyy86cOCABgwY4KoSUAFqhPpJ\nksOWVz6ePvIweSiVTjoAAAAAAAAAAAAAAMBNuSykk5KSIn9/f+NvT09PZWVlSZJiY2M1bdo0vf32\n2656PCpIjbDckE5M/H9DOiaTSb7mSrJl0kkHAAAAAAAAAAAAAAC4J7OrJvb391dq6n+DGjk5OTKb\ncx+3bt06JSQk6Nlnn1VcXJzS0tJUv3599e3bt8j5QkJ8ZTZ7uqpclEF4eIBx3Nw79zuOT85wOB/g\n4ydbZprDOQD/21jPgHti7QPuh3UPuCfWPuCeWPuAe2LtA+6JtQ+4J9Z+xXNZSKdly5aKiIhQz549\ntX//fjVq1MgYGzp0qIYOHSpJWrp0qU6dOlVsQEeSEhLownIzCg8PUFxcsvG33W6Xj7enfruQ6HDe\nx+Sj2PR4xcYmyWQyVUSpAJzo2rUPwD2w9gH3w7oH3BNrH3BPrH3APbH2AffE2gfcE2u//BQXhnJZ\nSOeBBx7Q9u3b9cQTT8hut2vSpElatWqVbDabBgwY4KrHooKZTCbVCPPTmYvJysrOkdkzd0c1Xy9f\nZduzlZ6dIR+zpYKrxP9n7+6D3L7re9G/pZX2QdKu7fVDEicOD3mAMwSS8hAokB6SJpw2lIY2FwLN\nEChcCkPTFoahTYeSaZMUGBigtLQzMH2ahHChodycC5feMnmCwuFkgNOEeoCeUiBxcGLHdmzvSmuv\ndqX7x9ob0lAjx9Zq5d/rNeNZ6aeftO8d6/vfez4fAAAAAAAAAGBl9a2kUy6Xc9111z3m2hlnnPG4\n+37aBB2Gz+b19Xx/+/7sfGQumzfUkyS1Si1J0lpoKekAAAAAAAAAAIVTHnQATjyHizkP7m4uX6tX\nJ5IkzfbcQDIBAAAAAAAAAAySkg7H3eYNS1Nztu96tKRTqx6apNNuDSQTAAAAAAAAAMAgKelw3G1e\nvzRJZ/vuRws59UPrrpoLSjoAAAAAAAAAQPEo6XDcTa8Zz2i1/B8m6SytuzJJBwAAAAAAAAAoIiUd\njrtyqZRTput5cHcrnU43SVJfXnc1N8hoAAAAAAAAAAADoaRDX2zeUMvCYie79i2VcmrWXQEAAAAA\nAAAABaakQ19s3lBPkmzftVTKqVt3BQAAAAAAAAAUmJIOfbF5/aGSzu5mkqRWPTxJx7orAAAAAAAA\nAKB4lHToi1OWJ+kcKulUTNIBAAAAAAAAAIpLSYe+2Lh2PJWR0nJJp1wqZ6IynpZJOgAAAAAAAABA\nASnp0Bcj5XJOnq7lwd2tdLvdJEmtUkvTJB0AAAAAAAAAoICUdOibzRvqOdhezJ79B5Mk9eqEdVcA\nAAAAAAAAQCEp6dA3m9fXkyTbdy+tvKpVapnvtNNebA8yFgAAAAAAAADAilPSoW9O2XCopLNrqaRT\nr9aSJK2FuYFlAgAAAAAAAAAYBCUd+mbz+qVSzuGSTu1QSadp5RUAAAAAAAAAUDBKOvTNSdO1lEul\nPLh7qZRTr0wkMUkHAAAAAAAAACgeJR36pjJSzknTE9m+q5lut2uSDgAAAAAAAABQWEo69NXm9fW0\nDi5kX3N+uaTTUtIBAAAAAAAAAApGSYe+OmXDUjFn+67m8rqr5oKSDgAAAAAAAABQLEo69NXm9fUk\nSyWdRyfpzA0yEgAAAAAAAADAilPSoa82b1gq6Ty4u5X6oZKOSToAAAAAAAAAQNEo6dBXJ0/XUsqh\nSTqVw5N0lHQAAAAAAAAAgGJR0qGvRqsjWdMYze79B1KrTiSx7goAAAAAAAAAKB4lHfpu/dR4Hpk5\nmJGMZLRcte4KAAAAAAAAACgcJR36bt3UeBY73exrzqdWrZmkAwAAAAAAAAAUjpIOfbd+aixJsmf/\ngdSrtbRM0gEAAAAAAAAACkZJh76bnhpPkuyZOZhaZSJzCwey2FkccCoAAAAAAAAAgJWjpEPfTU8u\nlXR271uapJMkcwsHBhkJAAAAAAAAAGBFKenQd+vXHFp3NXMgtcpSSadp5RUAAAAAAAAAUCBKOvTd\n4Uk6e/YfXJ6k02or6QAAAAAAAAAAxaGkQ99N1qqpjJSzZ/+B1KoTSZKmkg4AAAAAAAAAUCBKOvRd\nqVTK9NRY9uw/kPqhdVethbkBpwIAAAAAAAAAWDlKOqyI9VPj2d9qZ6y8tPrKJB0AAAAAAAAAoEiU\ndFgR01NjSZKFdiVJ0lLSAQAAAAAAAAAKREmHFTE9uTRBpz239JVrWncFAAAAAAAAABSIkg4rYv2a\npZLO3NxIEpN0AAAAAAAAAIBiUdJhRUxPLq27mp1det5cUNIBAAAAAAAAAIpDSYcVMT21NEln38xi\nKqWRtNrWXQEAAAAAAAAAxaGkw4qYnlqapPPI/oOZqE5YdwUAAAAAAAAAFIqSDitifLSS+ngle2YO\npl6ppbVgkg4AAAAAAAAAUBxKOqyY6anx7N5/ILVqLc12K51uZ9CRAAAAAAAAAABWhJIOK2Z6ciwH\n5xczVh5PN90cXDw46EgAAAAAAAAAACtCSYcVM71mPEky0h1LkjTbVl4BAAAAAAAAAMWgpMOKmZ5c\nKudksZokabVbA0wDAAAAAAAAALBylHRYMeunlibpdNuVJElzQUkHAAAAAAAAACgGJR1WzPShkk77\n4FJJxyQdAAAAAAAAAKAolHRYMdNTS+uuDswtfe2a7blBxgEAAAAAAAAAWDFKOqyYtY2xlErJXLOU\nJGlZdwUAAAAAAAAAFISSDiumMlLO2sZY9s8sPW9adwUAAAAAAAAAFISSDitqemosM/uXHresuwIA\nAAAAAAAACkJJhxU1PTmexXYlSdK07goAAAAAAAAAKAglHVbU+qnxZLGSUkppWXcFAAAAAAAAABSE\nkg4rat3UWJJSRktjaS5YdwUAAAAAAAAAFIOSDitq/dR4kqSSMZN0AAAAAAAAAIDCUNJhRR0u6ZQ6\no2m1W+l2uwNOBAAAAAAAAADQf0o6rKildVdJd6Gahe5i2p32gBMBAAAAAAAAAPSfkg4ranKimmql\nnIX5SpKkaeUVAAAAAAAAAFAASjqsqFKplOnJscwfWPrqtRbmBpwIAAAAAAAAAKD/lHRYcdNT45k/\nMJLEJB0AAAAAAAAAoBiUdFhx01Nj6S5UkyQtJR0AAAAAAAAAoACUdFhx66fGk0MlneaCkg4AAAAA\nAAAAcOJT0mHFTU+N/9gknbkBpwEAAAAAAAAA6D8lHVbc9NRYsnhoko51VwAAAAAAAABAASjpsOLW\n/+UcdpsAACAASURBVPgkHeuuAAAAAAAAAIACUNJhxU1Pjqe7MJokaVp3BQAAAAAAAAAUgJIOK25s\ndCS1yniSpGXdFQAAAAAAAABQAEo6DMT6qVq6i5U0rbsCAAAAAAAAAApASYeBWD81nu5CNc15JR0A\nAAAAAAAA4MSnpMNATE+NJQtVk3QAAAAAAAAAgEJQ0mEgpg9N0ml32ml3FgYdBwAAAAAAAACgr5R0\nGIjpqbF0F6pJklZ7bsBpAAAAAAAAAAD6S0mHgZieHE8Wl0o6c1ZeAQAAAAAAAAAnOCUdBmL9oXVX\nSdI0SQcAAAAAAAAAOMEp6TAQaydHlyfptEzSAQAAAAAAAABOcEo6DMRIuZyJkYkkSbOtpAMAAAAA\nAAAAnNiUdBiYqbF6kmR2XkkHAAAAAAAAADixKekwMGsnGkmSR1ozA04CAAAAAAAAANBfSjoMzHRt\nMknyyNzsgJMAAAAAAAAAAPSXkg4Ds6GxVNLZd0BJBwAAAAAAAAA4sSnpMDAnr1mTJGm2WwNOAgAA\nAAAAAADQX0o6DMymNZPpLpbTWpgbdBQAAAAAAAAAgL6qDDoAxTU9NZYsVjOfA4OOAgAAAAAAAADQ\nVybpMDCNiWqyOJqFHBx0FAAAAAAAAACAvlLSYWBKpVIqGUt3pJ1OtzPoOAAAAAAAAAAAfaOkw0CN\nlceTJPvmZgecBAAAAAAAAACgf5R0GKiJkYkkyfZ9+wacBAAAAAAAAACgf3oq6ezZs6ffOSioxmgt\nSbJDSQcAAAAAAAAAOIH1VNK58sor+52DgpoarydJds3uH3ASAAAAAAAAAID+qfRy09Of/vTceuut\nedaznpXx8fHl65s3b+5bMIphemIyaSV7mjODjgIAAAAAAAAA0Dc9lXTuvffe3HvvvY+5ViqVcvvt\nt/clFMWxvjGZ7E72HZgddBQAAAAAAAAAgL7pqaRzxx13HPUHdzqd/OEf/mH+9V//NaOjo7nhhhvy\npCc9afn1f/zHf8zHP/7xlEqlvPzlL8/rXve6o/4dDL9Nk2uSJDPzrQEnAQAAAAAAAADon3IvN+3Z\nsydve9vb8vznPz/Pfe5zc/XVV2fXrl1HfM9tt92W+fn5fPrTn8473vGOvO9971t+bXFxMR/84Afz\nt3/7t/n0pz+dT37yk9mzZ8+x/SUMpbUTjSRJs62kAwAAAAAAAACcuHoq6Vx77bV55jOfmdtvvz13\n3HFHzj333LzrXe864nu++c1v5oILLkiSnHfeedm6devyayMjI/nCF76QycnJ7N27N51OJ6Ojo8fw\nZzCsapVakuRg50C63e6A0wAAAAAAAAAA9EdPJZ1t27bljW98YxqNRqampvKmN70p27dvP+J7Zmdn\n02g0lp+PjIxkYWFh+XmlUskXv/jFXHbZZTn//PMzMTHxBP8Ehlm9uvT/3inPp3lg4afcDQAAAAAA\nAAAwnCq93FQqlfLggw/mlFNOSZJs3749lcqR39poNNJsNpefdzqdx73npS99aS6++OJcc801ufXW\nW3P55Zf/p5+3bl0tlcpIL3FZYRs3Tj7h93a7jZRSTkba6Y6MHNNnASvLeYVicvaheJx7KCZnH4rJ\n2YdicvahmJx9KCZnf/B6Kun8zu/8Tq644oqce+656Xa7uffee3P99dcf8T3Pfvazc+edd+bSSy/N\nPffck7PPPnv5tdnZ2bzlLW/JX//1X2d0dDQTExMpl4881OeRR1q9RGWFbdw4mYcfnjmmz6hmLIuV\ndv79vj2ZHO1puBMwYMfj7APDx9mH4nHuoZicfSgmZx+KydmHYnL2oZic/ZVzpDJUTyWdU045Jbfe\nemu+9a1vpdPp5I/+6I+yfv36I77nkksuyVe/+tW8+tWvTrfbzXve85587nOfS6vVyhVXXJGXv/zl\nufLKK1OpVPK0pz0tv/zLv3x0fxUnjImRiRyszGb3/gODjgIAAAAAAAAA0Bc9lXTe/va35x/+4R/y\nkpe8pOcPLpfLue666x5z7Ywzzlh+fMUVV+SKK67o+fM4cdWqtexdeCS7988NOgoAAAAAAAAAQF/0\nVNI588wz89GPfjTnnntuxsfHl68/73nP61swimNyrJbSgW52zcwOOgoAAAAAAAAAQF/0VNLZu3dv\n7r777tx9993L10qlUm688ca+BaM41ozXk33J7qb9dwAAAAAAAADAiamnks6ll16a17zmNf3OQkE1\nqvUkyd6Wkg4AAAAAAAAAcGIq93LTzTff3O8cFFitOpEk2T/fSqfTHXAaAAAAAAAAAIDjr6dJOief\nfHKuuuqqnHvuuRkbG1u+fvXVV/ctGMVRq9aWHozMZ+/swUxPjQ82EAAAAAAAAADAcdZTSee8887r\ndw4KrF45XNJpZ89+JR0AAAAAAAAA4MTTU0nn6quvTqvVyv3335+zzz47Bw4cSK1W63c2CuLwJJ1S\npZ09MweSrBlsIAAAAAAAAACA46zcy01f+9rXctlll+Wtb31rdu3alYsuuihf+cpX+p2NgqhXJ5Ye\nVNrZvf/AYMMAAAAAAAAAAPRBTyWdD33oQ/nkJz+ZqampbNq0KZ/4xCfy/ve/v9/ZKIha5ccm6ew/\nOOA0AAAAAAAAAADHX08lnU6nk40bNy4/P/PMM/sWiOKpH153NdLOHpN0AAAAAAAAAIATUKWXm04+\n+eTceeedKZVK2b9/f26++eZs3ry539koiInKeEoppVxdyO49SjoAAAAAAAAAwImnp0k61113XT73\nuc/lwQcfzCWXXJLvfOc7ue666/qdjYIol8qZqIxnZHTBuisAAAAAAAAA4ITU0ySd9evX50Mf+tBP\nfO3d7353rr/++uMaiuKpVWs5WG1ldq6d/a35TNVGBx0JAAAAAAAAAOC46WmSzpFs3br1eOSg4OqV\nWrrl+STJtp2zA04DAAAAAAAAAHB8HXNJB46HWnUinSwmpcVs26GkAwAAAAAAAACcWJR0WBVqlYml\nB5V2tu2cGWwYAAAAAAAAAIDjTEmHVaFerSVJxsYXrbsCAAAAAAAAAE44x1zS6Xa7xyMHBVc7VNLZ\nuGEkD+5upb3QGXAiAAAAAAAAAIDj55hLOi984QuPRw4Krn5o3dX6dSNZ7HSzfVdzwIkAAAAAAAAA\nAI6fnko6P/rRj/Lrv/7reelLX5qdO3fmqquuygMPPJAk+d3f/d2+BqQYDk/SmZpaen7/zpkBpgEA\nAAAAAAAAOL56Kulce+21eeMb35h6vZ6NGzfml37pl/J7v/d7/c5GgdQPlXQm6kvr07btmB1kHAAA\nAAAAAACA46qnks4jjzySF7/4xel2uymVSnnVq16V2VklCo6fWmWppDM61kkpybadvl8AAAAAAAAA\nwImjp5LO+Ph4HnrooZRKpSTJN77xjYyOjvY1GMVSr04kSQ525nLSdC3375xNt9sdcCoAAAAAAAAA\ngOOj0stN11xzTd785jfn/vvvz2WXXZZ9+/blIx/5SL+zUSC1Q+uumgtz2bKpkYe+uzO79x/IhjUT\nA04GAAAAAAAAAHDseirpPOlJT8pnPvOZ/PCHP8zi4mKe+tSn5uGHH+53NgqkVlkq47TarZxxUiNf\n/+7ObNsxq6QDAAAAAAAAAJwQjrju6sEHH8z27dtz5ZVXZteuXanX65mamsqOHTvyxje+caUyUgCV\nciVjI6NptVvZsqmRJNm2c3bAqQAAAAAAAAAAjo8jTtL50z/909x9993ZuXNnrrzyykffVKnkJS95\nSb+zUTC1Su3QuqvJJMn9SjoAAAAAAAAAwAniiCWd9773vUmSj3/84/mN3/iNFQlEcdWrtTw8tytr\nG6NpTFSzbefMoCMBAAAAAAAAABwXRyzpHDY/P5+PfvSjj7t+9dVXH/dAFFetWsvB2fksdhdz+kmN\nfPuHj2Tu4EImxnr6mgIAAAAAAAAArFrlo31Du93OHXfckd27d/cjDwVWr9aSJM12K1s2NZIk26y8\nAgAAAAAAAABOAD2NKPmPE3N+8zd/M294wxv6EojialTrSZZKOqdvmkyyVNI5e8vaQcYCAAAAAAAA\nADhmRz1JJ0mazWa2b99+vLNQcI9O0mlmy0mHJ+nMDDISAAAAAAAAAMBx0dMknYsuuiilUilJ0u12\ns3//fpN0OO5+fN3VU9bXUhkp5f4d1l0BAAAAAAAAAMOvp5LOTTfdtPy4VCplamoqjUajb6Eopnrl\n0ZJOZaScUzc08sDDzSx2OhkpP6GhTwAAAAAAAAAAq8IRSzq33nrrEd/8ile84riGodgOT9KZbTeT\nJFs2NXLfjpk8tGcup26oDzIaAAAAAAAAAMAxOWJJ5+677z7im5V0OJ4ao0tFnGa7lSTZclIj+Zdk\n244ZJR0AAAAAAAAAYKgdsaTz3ve+d/lxu93OD37wgywuLuass85KpdLTpizoWb3y2JLO6ZuWVqpt\n2zmbFzxjYLEAAAAAAAAAAI5ZT02brVu35rd/+7ezdu3adDqd7Nq1K3/+53+ec889t9/5KJDD666a\nC4+uu0qS+3fODiwTAAAAAAAAAMDx0FNJ54YbbsiHP/zh5VLOPffck+uvvz6f+cxn+hqOYpmojKdc\nKmd2fmmSTm28mvVT49mmpAMAAAAAAAAADLlyLze1Wq3HTM0577zzcvDgwb6FophKpVLqldryJJ0k\nOf2kRvY357Nv1vcNAAAAAAAAABhePZV01qxZk9tuu235+W233Za1a9f2LRTFVa/W0my3lp8fXnll\nmg4AAAAAAAAAMMx6Wnd1/fXX553vfGfe9a53pdvt5vTTT8/73//+fmejgOrVWna0Hk6n20m5VM6W\nTZNJkvt3zuacp64fcDoAAAAAAAAAgCemp5LOk5/85Nxyyy1ptVrpdDpJkkaj0ddgFFO9Wk833bQW\n5tKo1rPlJJN0AAAAAAAAAIDh19O6qzvvvDMf+MAH0u1288pXvjI///M/n5tvvrnf2SigRrWWJMsr\nrzasGc/E2Eju3zEzyFgAAAAAAAAAAMekp5LORz/60fzqr/5qvvCFL+RZz3pW7rjjjvz93/99v7NR\nQPVqPcmjJZ1yqZQtGxt5aE8r8+3FQUYDAAAAAAAAAHjCeirpJMkZZ5yRu+66KxdddFHq9Xra7XY/\nc1FQ9eVJOs3la1s2TabbTX60q/mfvQ0AAAAAAAAAYFXrqaSzYcOGXH/99dm6dWsuuOCCvO9978vm\nzZv7nY0COlzSmT00SSdJtpzUSBIrrwAAAAAAAACAodVTSeeDH/xgnvnMZ+amm25KrVbLli1b8sEP\nfrDf2SigR9dd/fgknaWSzradswPJBAAAAAAAAABwrCq93NRoNDI1NZVPfvKTqVQqeeELX5hGo9Hv\nbBTQo+uuHp2kc+qGesqlUu5X0gEAAAAAAAAAhlTPk3T+8i//Mqeeemo2bdqUj3zkI/nYxz7W72wU\nUOMnlHRGqyM5eX0tD+ycTafbHVQ0AAAAAAAAAIAnrKdJOnfddVc++9nPplqtJkmuuOKKXH755Xnz\nm9/c13AUz09ad5Ukp29qZPuuZnbtncumdbVBRAMAAAAAAAAAeMJ6mqSzZs2aNJuPliba7bZ1V/RF\nrTKR5LGTdJJky6al79s2K68AAAAAAAAAgCF0xEk6v//7v58k6XQ6ueyyy3LRRRdlZGQkX/7yl/PU\npz51RQJSLCPlkUxUJh5f0jlpqaRz/47ZPOdpmwYRDQAAAAAAAADgCTtiSef8889/zM/DnvGMZ/Qv\nEYVXr9Yet+5qy6bJJCbpAAAAAAAAAADD6YglnV/5lV9Zfrx3797Mzc2l2+1mcXExDzzwQN/DUUz1\nai0PHNibbrebUqmUJFlTH82a+mi27ZwZcDoAAAAAAAAAgKN3xJLOYR/60Idy8803Z2FhIevWrcuO\nHTtyzjnn5JZbbul3PgqoUa1nsbuYg4sHM14ZX76+5aRGtn5/T5oH2qmPVweYEAAAAAAAAADg6JR7\nuenzn/98vvSlL+XSSy/NjTfemL/5m7/J9PR0v7NRUPVqLUnSbLcec33LpkaSZNsOK68AAAAAAAAA\ngOHSU0ln06ZNaTQaOeuss/Ld7343L3jBC7Jr165+Z6Og/rOSzumbJpMk9+9U0gEAAAAAAAAAhktP\n664ajUZuvfXWPOMZz8gnPvGJbNq0Kfv37+93NgqqXqknSWbbzcdcX56ks3NmxTMBAAAAAAAAAByL\nnibp/PEf/3H27NmT5z//+Tn11FNz7bXX5m1ve1u/s1FQjdGfPEnn5OlaRitl664AAAAAAAAAgKHT\n0ySdk046KW94wxuSJNdcc81jXnvzm9+cj33sY8c/GYVVry5N0vmPJZ1yuZRTN9azbedsFhY7qYz0\n1DEDAAAAAAAAABi4Y2457Nix43jkgGX1yuFJOs3HvbZl02QWFrt5cHfrca8BAAAAAAAAAKxWx1zS\nKZVKxyMHLKtXD5V0Fh5fxNmyqZEk2bZzZkUzAQAAAAAAAAAcC/uCWHUao0vrrmbnHz9J5/STlko6\n9++YXdFMAAAAAAAAAADHQkmHVefRdVePn6Rz2sbDk3SUdAAAAAAAAACA4XHMJZ1ut3s8csCy6kg1\no+XqT1x3NTFWyaa1E9m2c9Z3DwAAAAAAAAAYGsdc0nnFK15xPHLAY9Sr9Z84SSdJtmxqZHaunYf3\nzq1wKgAAAAAAAACAJ6bSy03/9E//lA9/+MPZv39/ut1uut1uSqVSbr/99rz+9a/vc0SKqF6tZefc\nrp/42nlnbcg3//fD+fzX7ssbLv0vK5wMAAAAAAAAAODo9VTSueGGG3LNNdfkrLPOSqlU6ncmSKNa\nzwOz29PuLKRafuzX9GefcXL+v7vvz1f/5cH8t+dtyakbGwNKCQAAAAAAAADQm57WXa1bty4XXnhh\nTjvttJx66qnL/6Bf6tVakqTZbj7utXK5lMtfcka63eTvv/T9lY4GAAAAAAAAAHDUepqk85znPCfv\nfe97c8EFF2RsbGz5+vOe97y+BaPYHi3ptLJ2bM3jXj/3jPU5+7Q1ued7u/JvD+zNWaetXemIAAAA\nAAAAAAA966mk861vfStJ8u1vf3v5WqlUyo033tifVBTekSbpJEvfv//jwjPznpu+mVvu+vf8/pXP\ntooNAAAAAAAAAFi1eirp3HTTTf3OAY9Rr9aTJLPt1n96z5mnrsnPnLUh//xvu3LP93blZ87auFLx\nAAAAAAAAAACOSk8lnW984xv5q7/6q7RarXS73XQ6nWzfvj133HFHv/NRUD++7upILv+vZ+Se7+3K\n33/p+zn3jA0pl03TAQAAAAAAAABWn3IvN/3BH/xBLr744iwuLubKK6/Mk570pFx88cX9zkaBHZ6k\n89NKOps31HPBs07J9l3NfHXrgysRDQAAAAAAAADgqPVU0hkfH8/ll1+e888/P1NTU7nhhhvy9a9/\nvd/ZKLDG8iSd5k+997IXPzXVSjm3/tMPMt9e7Hc0AAAAAAAAAICj1lNJZ2xsLHv37s1TnvKU3Hvv\nvSmVSmm1jjzhBI5Fr5N0kmTd5Fgufu5peWTmYG7/Xw/0OxoAAAAAAAAAwFHrqaTz+te/Pm9/+9tz\n4YUX5tZbb83LXvaynHPOOf3ORoHVj2KSTpJc+oInpT5eyf/7P+5L80C7n9EAAAAAAAAAAI5apZeb\nfvEXfzG/8Au/kFKplM9+9rP54Q9/mKc//en9zkaBjY+MpVwq9zRJJ0nq49W87GefnL+783v5wtfu\nyysvPLPPCQEAAAAAAAAAetfTJJ19+/bl3e9+d6666qocPHgwN910U2ZmZvqdjQIrlUqpV2uZ7XGS\nTpL8/HNOzfTUWG775gPZs/9AH9MBAAAAAAAAABydnko67373u/PMZz4ze/fuTb1ez6ZNm/LOd76z\n39kouEa13vMknSSpVkZy2YufkvZCJ//9Kz/oYzIAAAAAAAAAgKPTU0nngQceyBVXXJFyuZzR0dG8\n/e1vz0MPPdTvbBRcvVrL3MKBdLqdnt/zonNOyakb6vnKvzyYH+3qfQoPAAAAAAAAAEA/9VTSGRkZ\nyczMTEqlUpLkhz/8Ycrlnt4KT1i9Wk833bTacz2/p1wu5fL/eka63eSzX/r3PqYDAAAAAAAAAOhd\nT02b3/qt38prX/vabN++PW9961vza7/2a3nb297W72wUXL1SS5LMto9uIs65Z67PWaetyT//2658\n74F9/YgGAAAAAAAAAHBUeirpnHPOObn44otz2mmn5cEHH8wll1ySrVu39jsbBdcYrSdJmu3WUb2v\nVCrllS85M0lyy13fS7fbPe7ZAAAAAAAAAACORqWXm970pjflaU97Wi688MJ+54Fl9erSJJ3mUU7S\nSZIzT1uTnzlrQ/7533blrR/6ctbUR7OmMXro51jWNkYzVR/N2sbY0rX6aJKkvdhJe2Hp38JiN+2F\nxeVrC4vdLCx0cuZpa7Jx7cRx/VsBAAAAAAAAgBNbTyWdJHnPe97TzxzwOIfXXR3tJJ3Drrzk7IyM\nlLPzkVb2zc7nez/al+MxVGfTuonc8H8+P5WRngZRAQAAAAAAAAD0VtK5+OKLc8stt+QFL3hBRkZG\nlq9v3ry5b8Hg8CSd2ScwSSdJpqfG89ZXnLP8vNPpZqY1n33N+eydnc++2YPZ15zPvtn57GvNp5Sk\nWimnWimnMrL0szpSTuXQz2qlnO/c90j+1/9+OHf+849yyXO3HI8/EwAAAAAAAAAogJ5KOjMzM/n4\nxz+edevWLV8rlUq5/fbb+xYMGqP1JE98ks5/VC6XsqYxljWNsZx+0hP7jOf9l035zn178v985Qd5\n0TknpzZePS7ZAAAAAAAAAIATW08lnS9+8Yv52te+lvHx8X7ngWXHuu6qH6Zqo3nZzz45n7nr3/P5\nr92XV1145qAjAQAAAAAAAABDoNzLTVu2bMm+ffuO6oM7nU6uvfbaXHHFFXnta1+b++677zGvf/7z\nn88rX/nKvPrVr861116bTqdzVJ/Pia9ePTRJZ2H1lHSS5OLnnJbpqbHc9o0Hsmvv3KDjAAAAAAAA\nAABDoKeSTqlUyste9rK85jWvyVVXXbX870huu+22zM/P59Of/nTe8Y535H3ve9/yawcOHMif/Mmf\n5MYbb8ynPvWpzM7O5s477zy2v4QTTq06kVJKmZ1vDjrKY4xWR3L5z52RhcVOPvvl7w86DgAAAAAA\nAAAwBHpad/WWt7zlqD/4m9/8Zi644IIkyXnnnZetW7cuvzY6OppPfepTmZiYSJIsLCxkbGzsqH8H\nJ7ZyqZxaZWLVTdJJkuc/46R88evb8j+/vSOXPG9LnnLK1KAjAQAAAAAAAACrWE8lnfPPP/+oP3h2\ndjaNRmP5+cjISBYWFlKpVFIul7Nhw4YkyU033ZRWq5UXvehFR/07OPHVq7U026trkk6SlEulvOqi\nM/OB/+uf83d3fC+/+2s/k1KpNOhYAAAAAAAAAMAq1VNJ54loNBppNh8tV3Q6nVQqlcc8/8AHPpAf\n/OAH+bM/+7OfWnBYt66WSmWkX3E5Bhs3Tvbts9fUJrN7z55s2NBYdSWYjRsnc9e92/P1b+/ID3Y2\n8/xzThl0JFhR/Tz7wOrl7EPxOPdQTM4+FJOzD8Xk7EMxOftQTM7+4PWtpPPsZz87d955Zy699NLc\nc889Ofvssx/z+rXXXpvR0dH8xV/8Rcrl8k/9vEceWX0rj1g6xA8/PNO3zx/LWBa7nWx7aFcmKuN9\n+z1P1GUvfHK++Z2d+cv/vjWnb6ilMvLTv8twIuj32QdWJ2cfise5h2Jy9qGYnH0oJmcfisnZh2Jy\n9lfOkcpQfSvpXHLJJfnqV7+aV7/61el2u3nPe96Tz33uc2m1WjnnnHPymc98Js997nPzute9Lkly\n1VVX5ZJLLulXHIZUvVpPkjTbzVVZ0tm8oZ6fO/eU3HXP9vzTvdtz4bNPG3QkAAAAAAAAAGAV6ltJ\np1wu57rrrnvMtTPOOGP58Xe/+91+/WpOIPVqLUnSbLeyYWL9gNP8ZJe9+Cn52rd35Nav/CAveMbJ\nmRjr27ECAAAAAAAAAIaU3Tysaocn6cy2V++6szWNsVz6/NMz02rnC//zvkHHAQAAAAAAAABWISUd\nVrVHJ+k0B5zkyF56/ulZ2xjNF7++LXv2Hxh0HAAAAAAAAABglVHSYVX78XVXq9lYdSS/8nNPTXuh\nk//7y98fdBwAAAAAAAAAYJVR0mFVaxxad7XaJ+kkyYvOOSWnbWzkf2x9KPc9NDPoOAAAAAAAAADA\nKqKkw6o2LJN0kqRcLuVVF52RbpK/u/N76Xa7g44EAAAAAAAAAKwSSjqsasNU0kmSc56yPuc8ZTrf\nue+R/Mv39ww6DgAAAAAAAACwSijpsKrVD627mh2CdVeHverCM1MqJZ/90r8POgoAAAAAAAAAsEoo\n6bCqVcuVjI2MDs0knSQ5bVMjZ526JvfvnM3CYmfQcQAAAAAAAACAVUBJh1WvXq0PVUknSdZNjSdJ\n9jfnB5wEAAAAAAAAAFgNlHRY9erVWppDtO4qSdY2RpMkj8weHHASAAAAAAAAAGA1UNJh1atXapnv\ntDO/2B50lJ6tbYwlSfbOmKQDAAAAAAAAACjpMAQao/UkGappOsslHZN0AAAAAAAAAIAo6TAE6tVa\nkqTZbg04Se8Or7tS0gEAAAAAAAAAEiUdhkC9MoQlnUmTdAAAAAAAAACARynpsOrVq0vrrmaHct3V\n/ICTAAAAAAAAAACrgZIOq15jCNddjVVHUhurmKQDAAAAAAAAACRR0mEIHJ6kM0wlnWRp5dXeGSUd\nAAAAAAAAAEBJhyFQPzxJZ2F41l0lydrGaJoHFtJeWBx0FAAAAAAAAABgwJR0WPUOl3Rm54dskk5j\nLEmyd3Z+wEkAAAAAAAAAgEFT0mHVW153NXSTdA6XdKy8AgAAAAAAAICiU9Jh1RsbGU2lNJJme9gm\n6YwmMUkHAAAAAAAAAFDSYQiUSqXUq7UhLOkcmqQzY5IOAAAAAAAAABSdkg5DoV6tp9kesnVX0Coa\nKAAAIABJREFUk9ZdAQAAAAAAAABLlHQYCvVqLXMLB7LYWRx0lJ49uu5KSQcAAAAAAAAAik5Jh6FQ\nr9aTJK2FuQEn6d2a+uFJOvMDTgIAAAAAAAAADJqSDkOhXq0lyVCtvKpWymlMVE3SAQAAAAAAAACU\ndBgOh0s6s+3WgJMcnbWNMSUdAAAAAAAAAEBJh+HQOLTuapgm6STJ2snRzB1czIH5hUFHAQAAAAAA\nAAAGSEmHofDouqvhm6STJPtm5wecBAAAAAAAAAAYJCUdhsKwl3SsvAIAAAAAAACAYlPSYSjUl9dd\nDVdJZ11jNEnyiJIOAAAAAAAAABSakg5DoXFoks5suzngJEdneZLOjHVXAAAAAAAAAFBkSjoMhWGd\npLN20rorAAAAAAAAAEBJhyExURlPKaU0h3WSjpIOAAAAAAAAABSakg5DoVwqp1adGLpJOlP1akpJ\n9s5adwUAAAAAAAAARaakw9CoV2uZHbJJOiPlcqbqoybpAAAAAAAAAEDBKekwNBrVeloLc+l2u4OO\nclTWNsayd/bg0OUGAAAAAAAAAI4fJR2GRr1aS6fbydzCgUFHOSprG6OZb3cyd3Bx0FEAAAAAAAAA\ngAFR0mFo1Cv1JEmz3RpwkqOzdnIsSay8AgAAAAAAAIACU9JhaNSrtSTJbLs54CRHZ21DSQcAAAAA\nAAAAik5Jh6HRqB6epDNsJZ3RJEo6AAAAAAAAAFBkSjoMjcOTdIZu3dXyJJ35AScBAAAAAAAAAAZF\nSYehsVzSWRjSks6MSToAAAAAAAAAUFRKOgyN5ZLO/JCtu5o8PElHSQcAAAAAAAAAikpJh6FRr9aT\nJLNDNklnslZNuVSy7goAAAAAAAAACkxJh6FxuKTTbA9XSadcKmVNY9QkHQAAAAAAAAAoMCUdhka9\nOpFk+Eo6SbK2MZa9swfT7XYHHQUAAAAAAAAAGAAlHYZGpVzJ+MhYmu3moKMctbWN0SwsdtM8sDDo\nKAAAAAAAAADAACjpMFTq1fpwTtKZHEuS7J2x8goAAAAAAAAAikhJh6FSr9aGdJLOoZLOrJIOAAAA\nAAAAABSRkg5DpV6tpd1ZyPzi/KCjHJW1jdEkySNKOgAAAAAAAABQSEo6DJV6tZYkmR2yaTrrlifp\nDFe5CAAAAAAAAAA4PpR0GCqNaj1J0my3Bpzk6Fh3BQAAAAAAAADFpqTDUDk8SWfoSjqTh0o6M0o6\nAAAAAAAAAFBESjoMlfryJJ3hWndVH6+kMlKy7goAAAAAAAAACkpJh6FyeJLO7JBN0imVSlnbGLPu\nCgAAAAAAAAAKSkmHodIY0kk6SbK2MZZ9s/PpdLuDjgIAAAAAAAAArDAlHYbK4Uk6zSGbpJMkaxuj\n6XS7mWm1Bx0FAAAAAAAAAFhhSjoMleEu6YwlSfbOWHkFAAAAAAAAAEWjpMNQqR9adzU7jOuuJg+V\ndGaVdAAAAAAAAACgaJR0GCqj5Wqq5cqQTtIZTaKkAwAAAAAAAABFpKTDUCmVSqlX60Na0jk8SWd+\nwEkAAAAAAAAAgJWmpMPQqVdrQ17SMUkHAAAAAAAAAIpGSYehU6/UcmDxQBY7i4OOclSWSzozSjoA\nAAAAAAAAUDRKOgyd+mg9STI7ZNN0JsZGMlotW3cFAAAAAAAAAAWkpMPQmRptJEn2HNgz4CRHp1Qq\nZW1jzLorAAAAAAAAACggJR2Gztlrz0iSbN31nQEnOXprG2PZ35zPYqcz6CgAAAAAAAAAwApS0mHo\nPH367FTKlXxr17cHHeWorW2Mpptkf7M96CgAAAAAAAAAwApS0mHojFfG8vR1Z2Z786E83No96DhH\nZW1jLEn+f/buMziu/D7z/XNCR3QjEIEkMpgwjMPJQZpkzYykUQ62gq8taX293q3yeu9W3fWt2jd2\neW2Xa/eFvbvWWk67VlwrWFma0WiCJmhGM9JEksOMDAYEooFuoNMJ98XpbgAkB0xogCS+n6rmOX1w\n+vSvwznd7H7692fIKwAAAAAAAAAAAAAA1hhCOrgm7WnaKUl6c+LAKldyaSohnTQhHQAAAAAAAAAA\nAAAA1hJCOrgm7WraIUPGtRfSSYYl0UkHAAAAAAAAAAAAAIC1hpAOrkl1kaS6azt1PDWgTGF2tcu5\naA2lTjpTmcIqVwIAAAAAAAAAAAAAAFYSIR1cs/Y075AvX/snD652KRetMtwVnXQAAAAAAAAAAAAA\nAFhTCOngmrWnaack6c2Jt1a5kotXl2C4KwAAAAAAAAAAAAAA1iJCOrhmbahp0fp4sw5OHlbBLa52\nORclGrYVi1hKpRnuCgAAAAAAAAAAAACAtYSQDq5pe5p2quAVdXjq6GqXctHqExE66QAAAAAAAAAA\nAAAAsMYQ0sE1bU/zDknSm+MHVrmSi1efiCiTLaroeKtdCgAAAAAAAAAAAAAAWCGEdHBN667tVDKc\n0L6Jg/L8ayP0Up8IS5Km6aYDAAAAAAAAAAAAAMCaQUgH1zTTMLW7cYfSxYz6p4dWu5yLUp+ISJJS\nmcIqVwIAAAAAAAAAAAAAAFYKIR1c8ypDXk1cG0NezYd06KQDAAAAAAAAAAAAAMBaQUgH17zehq0K\nm6FrJ6STDEI6U4R0AAAAAAAAAAAAAABYMwjp4JoXtkLa0dirsbkJnZodW+1yLqg+EZZEJx0AAAAA\nAAAAAAAAANYSQjq4Luxp2ilJenP86u+mUxnuKl1Y5UoAAAAAAAAAAAAAAMBKIaSD68LOphtkGuY1\nMeQVnXQAAAAAAAAAAAAAAFh7COngupAI1WhzXbcGZoY1nU+vdjlLCtmWaqI2IR0AAAAAAAAAAAAA\nANYQQjq4buxp3ilfvvZPvLXapVxQfTKiVIbhrgAAAAAAAAAAAAAAWCsI6eC6sadppyRdI0NeRZTN\nO8oX3NUuBQAAAAAAAAAAAAAArABCOrhuNMXWqbVmgw5NHVPOubqHkqpPhCVJqdmru04AAAAAAAAA\nAAAAALA8COngurKneaccz9HBM0dWu5Ql1ScikqRUmpAOAAAAAAAAAAAAAABrASEdXFduvEaGvKqE\ndDKFVa4EAAAAAAAAAAAAAACsBLtaG/Y8T3/8x3+sw4cPKxwO60//9E/V1dW1aJ1sNqvPfe5z+rM/\n+zNt3ry5WqVgDelItqk+Uqf9Ewfleq4s07qoy/m+r4JXVM7JBSc3r5yTL01zypfO5928tjf2akt9\nzxXVOR/SoZMOAAAAAAAAAAAAAABrQdVCOk888YQKhYK+/vWv6/XXX9df/MVf6G/+5m8qf9+3b5/+\n6I/+SKdPn65WCViDDMPQnqYdenb0RR2f7te2hi1Lru/5nn5+4iX94PhPNOvMXdR1/GzkBf2n2/+D\nGmMNl11nfTIsiZAOAAAAAAAAAAAAAABrRdVCOq+88oruueceSdLevXu1f//+RX8vFAr6/Oc/rz/8\nwz+sVglYo/Y07dSzoy/qzfG3lgzpnJ4d09cO/4uOpfoVs6Pa2XiDolZEUTuiiBVR1I5WzkdL50fT\nJ/W9vkf1pYP/rH9/0+/JNC5vxLgGhrsCAAAAAAAAAAAAAGBNqVpIJ5PJKJFIVM5bliXHcWTbwVXe\ncsst1bpqrHFbGzYpakX15sQBfWzrB2QYxqK/u56rnw49o0cHnpDjOdrbvEu/se3DqovUXnDbO9b1\najA9rNfH9+uJoWf0cNcDl1VjbU2pk06aTjoAAAAAAAAAAAAAAKwFVQvpJBIJzc7OVs57nlcJ6FyO\nhoa4bNtajtKwzJqbk6tdwjlubtulF4Z+pWx4Rl317ZXlx88M6guvfkWDqRHVR2v1r27+hO7suPmS\ntv377/iM/t/H/rN+2P+47t58k3oaOi6rxvpEROls8aq8/4CLwXMXWJvY94G1h/0eWJvY94G1iX0f\nWJvY94G1iX0fWJvY91df1UI6N998s55++mk98sgjev3117Vt27Yr2t7U1NwyVYbl1Nyc1Ph4erXL\nOEdvcpte0K/0syMv65GeOhXcgn7Y/7ieGnpOvnzdvfE2fWTL+xQPxS+r/t/s/XV9/o1/1F8+/w/6\n/2779wpboUveRm08pNNTWY2NzZzT7Qe42l2t+z6A6mLfB9Ye9ntgbWLfB9Ym9n1gbWLfB9Ym9n1g\nbWLfXzlLhaGqFtJ56KGH9POf/1yf/OQn5fu+/vzP/1w/+MEPNDc3p0984hPVulpAkrSzsVeWYenN\nibe0qa5b/+fQv2gid0ZN0XX69A0fV++6LVe0/R2Nvbqv/W49M/KCvnv8x/qNbR+65G3UJyMaGsso\nV3AVi1RtVwQAAAAAAAAAAAAAAFeBqiUDTNPUn/zJnyxatnnz5nPW+/KXv1ytErCGxeyYtjVs1sEz\nR/Q/Xv97GTL0rs579f6ehxW2wstyHR/e/IgOnzmmZ0Z+rl2NN2hHY+8lXb4+EZEkpTJ5QjoAAAAA\nAAAAAAAAAFznzNUuAKiWm1tulCS1JTbqP976+/rolvcvW0BHksJWWJ/Z+UlZhqWvHPyGMsXZS7p8\nfSKoJZXOL1tNAAAAAAAAAAAAAADg6kT7Dly37tp4q1oT69WRaJNlWlW5js5ku97f87C+1/eo/s+h\nf9H/veu3ZBjGRV22PlnupFOoSm0AAAAAAAAAAAAAAODqQScdXLcMw1B3bWfVAjplD3bdp811PXp9\nfL9+ceqVi77cwuGuAAAAAAAAAAAAAADA9Y2QDnCFTMPUZ3Z8QlErom8e+a4mspMXdbmGUkhnipAO\nAAAAAAAAAAAAAADXPUI6wDJojK3Tb2z7sPJuQV986+vyfO+Cl6lPhCUx3BUAAAAAAAAAAAAAAGsB\nIR1gmdy+4Wbd1LJHfdMDenzwZxdcPxkPyzQMhrsCAAAAAAAAAAAAAGANIKQDLBPDMPSp3o+qLlyr\nH/U/rsGZ4SXXN01DdYmwUmlCOgAAAAAAAAAAAAAAXO8I6QDLqCYU12/v+IQ839NXDn7zguvXJ8JK\nZQryfX8FqgMAAAAAAAAAAAAAAKuFkA6wzG5Yt1W7GrfrxOwpTeVSS65bn4jIcT3N5pwVqg4AAAAA\nAAAAAAAAAKwGQjpAFWyu75Yk9c8MLbleY11UknRqcq7aJQEAAAAAAAAAAAAAgFVESAeogp7aTknS\nwPTSIZ1t7fWSpMPDU1WvCQAAAAAAAAAAAAAArB5COkAVdNZ2yJBxwU462zqCkM6hoaWHxQIAAAAA\nAAAAAAAAANc2QjpAFUSssNoSGzWcHpHjOW+7Xm1NWG1NNTo6kpLjeitYIQAAAAAAAAAAAAAAWEmE\ndIAq6anrUtFzNJo5ueR62zrrVSh6GjiVXqHKAAAAAAAAAAAAAADASiOkA1RJT22nJKl/eukhr27o\nbJAkHR6aqnpNAAAAAAAAAAAAAABgdRDSAaqku64U0pkZXHK93o56SdLhoVTVawIAAAAAAAAAAAAA\nAKuDkA5QJS2xJtXYcQ1coJNObU1YrU01OjoyLcf1Vqg6AAAAAAAAAAAAAACwkgjpAFViGIa66zo1\nkTujdCGz5Lq9nfXKF10NnkqvUHUAAAAAAAAAAAAAAGAlEdIBqqintjTk1fTFDXl1aGiq6jUBAAAA\nAAAAAAAAAICVR0gHqKLuulJIZ2bpIa96OxskSYeHUlWvCQAAAAAAAAAAAAAArDxCOkAVddd2yJBx\nwU46dTVhbWyM6+jotBzXW6HqAAAAAAAAAAAAAADASiGkA1RRzI5pQ02LBtMjcj13yXVv6GxQvuBq\n8HR6haoDAAAAAAAAAAAAAAArhZAOUGU9tZ0quAWdnD295Hq9nfWSGPIKAAAAAAAAAAAAAIDrESEd\noMq66zolSf0zQ0uu19sRhHQODU1VvSYAAAAAAAAAAAAAALCyCOkAVdZT2yVJ6p8eXHK9ukREGxvj\nOjoyLcf1VqI0AAAAAAAAAAAAAACwQgjpAFW2oaZFUSuqgQt00pGk3s4G5QuuBk+nV6AyAAAAAAAA\nAAAAAACwUgjpAFVmGqa6azt0em5cs8W5Jde9oTMY8urIUGolSgMAAAAAAAAAAAAAACuEkA6wAnrq\nOiVJAzPDS67X2xGEdA4R0gEAAAAAAAAAAAAA4LpCSAdYAd21QUinf3pwyfXqEhFtWBfXkZGUXM9b\nidIAAAAAAAAAAAAAAMAKIKQDrIDuSiedoQuue0NnvfIFV4OnMtUuCwAAAAAAAAAAAAAArBBCOsAK\nSIRq1BJr0sDMkDx/6Q45vZ0NkqTDQ1MrURoAAAAAAAAAAAAAAFgBhHSAFdJT16Wsk9PY3PiS6/V2\n1kuSDg+nVqIsAAAAAAAAAAAAAACwAgjpACukuzYY8qpveukhr+oTEW1YF9eR4ZRcb+muOwAAAAAA\nAAAAAAAA4NpASAdYIT11QUhnYGbwguv2dtYrV3A1dDpT7bIAAAAAAAAAAAAAAMAKIKQDrJDWmg0K\nmyH1X6CTjjQ/5NWhoalqlwUAAAAAAAAAAAAAAFYAIR1ghVimpa7aDp2cPa2ck1ty3d6OBknS4aHU\nSpQGAAAAAAAAAAAAAACqjJAOsIK6azvly9fAzPCS6zUkI1q/Lq4jwym5nrdC1QEAAAAAAAAAAAAA\ngGohpAOsoJ66TknSwMyFh7y6obNeuYKrodOZapcFAAAAAAAAAAAAAACqjJAOsIK6a7skSf3TFw7p\n9HbUS2LIKwAAAAAAAAAAAAAArgeEdIAVVBdJqjHaoIGZIfm+v+S6vZ0NkqRDQ1MrURoAAAAAAAAA\nAAAAAKgiQjrACuuu7VSmOKvx7OSS6zUkI1rfENPRkZRcz1uh6gAAAAAAAAAAAAAAQDUQ0gFWWE9d\nMOTVwMxFDHnV2aBs3tXQ6Uy1ywIAAAAAAAAAAAAAAFVESAdYYT11nZKk/ukLh3Ru6KyXJB0eSlW1\nJgAAAAAAAAAAAAAAUF2EdIAV1p5olW3a6p8ZvOC6vZ0NkqTDQ1PVLgsAAAAAAAAAAAAAAFQRIR1g\nhdmmrY5Em0YzJ1VwC0uu25CMqKUhpiMjKXmev0IVAgAAAAAAAAAAAACA5UZIB1gFPXWd8nxPQ+nR\nC657Q2e9snlXQ2PpFagMAAAAAAAAAAAAAABUAyEdYBX01HVJkvqnL37Iq0ODqarWBAAAAAAAAAAA\nAAAAqoeQDrAKemo7JUn9M0MXXLe3o16SdHhoqqo1AQAAAAAAAAAAAACA6iGkA6yC+kid6sK16p8e\nlO/7S667rjaqloaYjoxMy/OWXhcAAAAAAAAAAAAAAFydCOkAq8AwDPXUdWmmkNZU/sLDWPV21Cub\ndzRwKr0C1QEAAAAAAAAAAAAAgOVGSAdYJT11pSGvpi885NXerU2SpH969KCyeaeqdQEAAAAAAAAA\nAAAAgOVHSAdYJd21pZDOzOAF171pa7N+7eY2jYzP6m+/f4BhrwAAAAAAAAAAAAAAuMYQ0gFWSWey\nXaZhauAiOulI0qce3KqdPev05vFJfePpY1WuDgAAAAAAAAAAAAAALCdCOsAqCVshtSdaNZweVdG7\n8BBWlmnq335ol1qbavT4L4f1s9dGV6BKAAAAAAAAAAAAAACwHAjpAKtoa8MmOb6rX51+/aLWj0dt\n/cHH9ygRC+krjx/RgYEzVa4QAAAAAAAAAAAAAAAsB0I6wCp6oP2dsk1bj/Y/IeciuulIUkt9TL//\n0d0yTel/fme/Tk7OVrlKAAAAAAAAAAAAAABwpQjpAKuoIVqve1rv1GTujF48+auLvty2jnp99r03\nKJt39N+++aYy2WIVqwQAAAAAAAAAAAAAAFeKkA6wyh7qekAhM6THBp5U0b34sM3duzbq/Xd3aSyV\n1V9/e58c16tilQAAAAAAAAAAAAAA4EoQ0gFWWV0kqfvb36FUflrPn3jpki774Xs26dbeZh0ZTulL\njx2W7/tVqhIAAAAAAAAAAAAAAFwJQjrAVeDBrvsUtSL6ycBTyruFi76caRj6nffvUPeGpJ7fd1KP\nvTRUxSoBAAAAAAAAAAAAAMDlIqQDXAUSoRo90HGP0sWMnh154ZIuGwlZ+oOP71FDMqJv/ey4Xjk8\nXqUqAQAAAAAAAAAAAADA5SKkA1wlfq3jHsXsmH46+DNlndwlXbY+EdEffGyPQiFTf//DA3r54Gk5\nrlelSgEAAAAAAAAAAAAAwKUipANcJeKhmB7svE+zzpyeHn7uki/ftSGp3/vAThUdT1/43gH94d+8\noO8+16epdL4K1QIAAAAAAAAAAAAAgEtBSAe4itzf/g4lQjV6cug5zRbnLvnyN21r1n/+nTv0rpvb\nlS+6+v7PB/Qf/+cL+utv79OB/jPyfL8KVQMAAAAAAAAAAAAAgAuxV7sAAPOidkQPdz2gbx/7oZ4c\nelYf3PyeS95Ga1ONfvPhbfrY/Zv00lun9fRro3r1yLhePTKuloaY7t/bpnfu2ahELFSFWwAAAAAA\nAAAAAAAAAM6HkA5wlbmn7S49OfSMnh55Xg90vFPJcOKythMN27pvb5vuvbFVfSdn9LNXR/XyoTF9\n4+lj+vazfbp9e4tu3tastuYaNdfFZJrGMt8SAAAAAAAAAAAAAABQRkgHuMqErZDe3f0ufePId/X4\n4NP62NYPXNH2DMPQ5tY6bW6t0yfetVXPv3lSP3t9VC/sP6UX9p+SJIVsUxsb42prSqituUZtTcFp\nXV1UpkF4BwAAAAAAAAAAAACAK0VIB7gK3d16u346+DM9N/qi3tV5r+ojdcuy3UQspPfc0amHb+/Q\n4aGU+k5M68TErEYnZnVyck5DpzOL1o+ELLU21WjDurga6yJaVxvVumRUjbXBfCzCIQQAAAAAAAAA\nAAAAgIvBN+zAVShk2nqk50F99dC39JOBp/WJ3g8v6/ZNw9D2rgZt72qoLPM8X+OprEZLoZ3R8YxO\nTMxqeCyt/pMz591OPGJrXW0ptFMX1bpkRI210dKyqOqTYVmmuay1AwAAAAAAAAAAAABwLSKkA1yl\n7thwi34y+LR+fuIlPdh5nxpjDRe+0BUwTUPr18W1fl1cN29rrix3XE+pdF6TMzmdmSlPc5qcyevM\nTE7j01mNjGfOu03DkBqS5Q488wGehmREkZClkG0GJ8uszNsLzlumIYPhtgAAAAAAAAAAAAAA1wFC\nOsBVyjItva/nIX3xrX/WYwNP6De3//qq1GFbpprqY2qqj533777vK5t3zhvgKZ/vG53RMd+/5Os2\nDUPxqK1kPKRkLKREPKxkPKRELDifjIeViIfml8XDioSsK73JAAAAAAAAAAAAAAAsO0I6wFXs1vV7\n9ZOBp/SLU6/ooa771RJvvvCFVphhGIpHQ4pHQ2pvSZx3HdfzNJ0pVII8qUxeBcdT0fFUdNzS1FPR\n9ebnHU8Fx9VczlF6rqhTk3O6mJhP2DaD4E7s3ABPMhZSTSykaNhSNGwpFraD+UgwtS2G5gIAAAAA\nAAAAAAAAVAchHeAqZhqm3rfpYf3j/q/ox/1P6LM7P7XaJV0WyzSDIa9qo9qiusvahuf5ms0VlZ4r\nKpMtKj1XUDpbVGauvKyg9FyxsuzkmVkVTnuXdB22ZQbhnUgQ4KmJhVQTLU9DqonZwTQaUiJmKx4N\nKRa25Hr+4tCR66lYnA8dFRxPjuspEQtpXTKi+mREDYmIwnT9AQBcRQpuQX+//8tqjjXq41s/KNMg\nvAoAAAAAAAAAwHIipANc5fY271JbYqN+dfp1mYap1sQGtdVsVGtig2rDSRmGsdolrgjTNIJuOPHw\nRV8mX3SVKYd6SiGeuZyjXMFRruAqmw+mi+eD6elUVvmxTBVvkVQTtdVQCu2sS0ZUn4ioIRlRIhZW\nPGorHrEVK08jliyTL0sBrD0vnHhZY3MT+uDm9xAaqbJ/OfoDvTV5WJJUcIv69A0f4z4HAAAAAAAA\nAGAZEdIBrnKmYerXt35Qf7vvi3rp1CuL/pYI1ai1ZoNaE8GpLbFRG2s2KGJdfJDlehYJWYrUWWqs\ni17W5R3X01zO0WyuqNmso0yuqNlsUbM5pzQtKpt3FbINhSxLoZCpkGUqZAensG3KLs3bpql0tqip\ndE5T6bxS6bzOpIPhv0bGZy/69sQiVtDBJ2LJNk05nifH9eW6wdRxPbleMHVcX67nyTAM1deEVZeI\nqD4RVn0iorrSdH55RLGItWZCXwCuDa+OvamvHvqWpGB4xQ9tfu8qV3T9em1sn54/8ZLaEhtlGZZe\nPPlL2aatT2z7MK8NAAAAAAAAAAAsE0I6wDVga8Nm/Zd7/ljjcxManT2lE5lTOjF7SqOZkzqa6tOR\n1PHKuoYMbahp0aa6LvXUdWtTbada4s18wXYZbMtUbU1YtTXVDT3lCo6m0vnKaTbnaK4UAJrLl6YL\nzs/MFnRq0pHn+7JMQ5ZlyDZN2ZYhywqm0XBIVmmZ6/mani1obDglf8nbG1zeMgyZZnCyTEOmEUyN\nBedrE2GFLTPo+FPq9lMTDSkenZ/Go7bCtlnajnnO9srnDUM8PwGcYyg9oi+99XVFrLASoRo9Pvi0\nOpJturllz2qXdt05k5vSVw99SyEzpH+189NKhpP6b6/9rZ4bfVG2aeljWz7AcRoAAAAAAAAAgGVA\nSAe4RpiGqfU1LVpf07LoC8q8W9DJUmDnRCaYDs4M6+Tsaf38xMuSpJpQXD21XaXgTpe6ajvotnMV\niYZtbWy0tbGx5qIv4/u+fEnmJXxp6rie0nNFpTJ5pTJ5TWcKpflgmp4ryvU8eZ4vz5dcz5fnefI8\nqeh6cou+PC/ozjM6kZG/VOLnEpVDO6ZpVEJCC4M85allGoqELIVDlsK2qUjYUti2SstMhUPBfLmb\nkW0Zsi1TlmkqZJdCTKYhu9TdyC6vc858ECbiS2lgXtEtrth1TefT+ts3vyjHc/Svd/+2mmKN+q+v\n/LW+fPAb2hBvUWtiw2Vv2/d9nZob0/p4M0M5SXI9V/904J+VdbL69A0f04aa9ZKkf7f3d/VXr/2t\nnh5+XiEzpA9ueg/HRAAAAAAAAAAArhAhHeAaF7HC6q7tVHdtZ2WZ67kanT2p/ukh9U29bLDnAAAg\nAElEQVQPqH96UPsnD2r/5EFJQeCnPbFRWxs2a3fjDm2q65JlWqt1E3AZDMPQpX5ValumGpIRNSQj\nV3z9jY0JDY9Olbr+BJ1/ZnOO5vJOZYiwubwjxwlCP65fDvi8zfSsv5+9TtHxlPN8OY6nguPKcZcx\nIfQ2DKkS3Cl3AjIW/NHQfAcgo3ReMmRbQZAoEg4CQ283H7LNxUGks8JJZqWjUdAhq3Kd5StUuYZS\nSUZwvdGIpWjYVjQcBJmW80t11/NUKHoqFF3li64KRU95x5XvS9GQpWjYUjQSXLdtEX64Xni+px/1\n/1Q/GXhKD2y6W+/veG9Vg55Fz9Hf7/uSUvlpfXDTe7Sneack6be2/4b+cf9X9Hf7vqg/vPUPFA/F\nLnnbrufqywe/qV+eflUdyTZ9bMsHtLVh03LfhPPyfV9ncimFLFu14eSKXOfFeGzwKR2f7tdNzbt1\n98bbK8uT4YT+YO+/1l+99jd6fPBphUxbj/Q8tIqVAgAAAAAAAABw7TN8fzl7IVTP+Hh6tUvAeTQ3\nJ3lsrhHT+Rn1Tw+qr3QaTo/I8V1JUtyOaUdjr3Y37dCOddsUD8VXuVpciOM58n1fISu0Kte/2vv+\necMiRbd0vhzk8eS4fmXqup6KZ827rl+aLl43mC6e98qvlqUuRvIlX36lo5BfWui4vvJFV/mCu+Tw\nYivBMBQEZ0qhnfK8YUieF9Tu+X5w8oIQwcJ5x/Uq9+/bhqOsomT4krM4tBEMu7b4eiOhUmjICIJH\nC/NDZ4eeygGtCwW5LDPollTpnGSbCpXOh6xyh6Ty3+eXL+y0tHiZWdmGbZ9//WCYtrXRUSTvFvSl\nt76u18f3yTRMeb6nlniTPrfz0+pMti/79fm+ry8f/IZeOvWKbl2/V5/d8alF9/X3jj+qxwef1s7G\nG/Rv9nz2kjrh5N2C/mH/l/XW5GE1ROo1lU9JkvY279ZHtjyipljjst4W13M1kjmhvulBHZ8eUF9q\nQNOFGVmGpYc679O7u9+l8Codw8uOpfr1V69+QfWROv2n2/+f877+T+VS+stXv6DJ3Bl9aPN79XDX\nA6tQKVbTar/mA1gd7PvA2sS+D6xN7PvA2sS+D6xN7Psrp7n57X+sS0gHV4Qd+dpVcIs6MnVM+yYP\nav/EQaXy05KCLjub67q1u2mHdjdtV0u8eZUrxUJFt6hnR1/UTwaeUtF3dPfG2/RAxz1qiq1b0TrY\n9y/M94MOQOXATr7oKltwdHz6uF5P/UpZd07b47eoPbxFnq9K8GR+qLEgMON6/nwwSCqFg4Ltz19X\nEBjKFzzlCo5yBbd0cpTNu4uWOa63qE5DCroEGaWuPUapi48RdBKK2MFQYguHGbPCRc1FRjVtD2ra\nHJUvqdXbpabsjSoUtOj6F85fyTuOszsNBd2HJM+Xik4QpHK9lXlLYxhBZ6pKtyNDi7sfGaX7sbTM\n8+cfz3Me5wXLLMuYDwedFTRaODWM0mNeel5U5v1gu8F8UKtlBXXY5oLOTVZ5+Lj5ZQu7RAUTQ3ll\ndND4qTLGhOr8jbrBeEBjobfUX3xdhkxtD9+l3ujN8/VZ80Gmyv1x1n1hmKXH0ghCWq7nz4friq7e\nmHlZr2aeVb3ZolvtD8l1TBWKrhzPL23L10HzcU0ZI+rSTdps3V56zqryvAjbVmkovPnnrWvm9P0T\n39TJ7Ki21W3Vb/V+WmPZ0/rBwI81kB6SZVi6t/UderjzAcVC0eAeMOafdxdjrjhXCcL2TQ9ocGZY\nBW9+iLBkOKFNdd0amhnRVD6lplijPtn7EW1ft+2Kno+u515WN7y54pz+/OW/Uio/rf9w87/V5vru\nt113MntGf/nqFzSVT+njWz+oBzreeQUV41qznK/5BbeoQ2eOqDnepI2lodXWgmOpfp3JTWlr/SY1\nROtXuxzgovB+H1ib2PevPulCRoMzw3J8V67nyvVdub4nz3flel7pvCvP8xSyQrpjw838+A6XjH0f\nWJvY94G1iX1/5RDSQdWwI18ffN/XSOak9k+8pX0TBzWYHq78rSXepF2N29XbsEVb6nsUtaOrWOnq\nKLgFzRbnlCnOabY4q9niXOVU8AraEG9Re7JVG+ItVRs2zPM9vXzqVf2w73FN5VOK2VFFrIhS+WkZ\nMrS3eZfe1Xmfeuo6L7yxZcC+f2lyTk6/OPWKnh15QafnxiUFIQhfvjqSbfrQpvfqhnVbV6Q7Szmk\nUw5JXOx1ZgqzemNiv14b26fDU8fk+cF2OpNtmi1mNZk7o8boOn2q96Pa3nhu6KDcmccvhYzKnYiC\nv2nBNFhqGqUgiVUOdFy4Ts/zS92SvCC44wQdk4qlqeME3ZHKoZ7igr877vmW+SqWOgidb1vndiCa\n70RU7lDk+zpPiMeodOOxSkOamYYhx/Pnaz9nurJv14yaaUW2viojnJcz1q7i4A7JD7rWmHXjCvfs\nkxEuyJ1uVKFvt1S88tcGs25c4W2vSMWIcgfuevttWgVFdr4oM5pV/uhN8qaW/qLfCGcV7v2VzNis\nnIlWFft3VW6L5Mtad0p2x2GZkZz8YljFka1yx9tVTixZphEMH1ca0i1SmpqRvJzohHLhcc2apzVn\nTM1fqS/F/AYl/BbVuC2Ku82yvYR8Typ6BZ0Ov66p6GHJ8BWd7VT8zB55hfA5zy/LXNzFaf7kKVcz\nonT8qPKhSdUVu9VRvF0xK6GQZQaBL3txcCoIlknllNcvZn+skeIx7YrdqV3xOxd1uCp32Vo47GDa\nmdLPc99W3p/TdutetRo7ZBpSPGIrGrEVj9iKRWxFI1awLBwsC4eWd9i9hXzfV8HxlMsHwy3mCq6y\n+SCcmM07ypbCgfPDCOqssJ9ZWRayTIXPGaIwWLacw/f5/vwwjuXH2lgYQiwFJhcOfWgYhjLFWYXN\n8Kp0X1qO1/xTs6f1/OhLeunUK5pzsjJk6N72u/X+nocva+i6a4XjOfre8Uf11PBzlWUtsSZta9hc\nOm1RMpxYxQqBt8f7fWBtYt+/ekxkJ/Xk0LN68eQvVfSci75cIlSjD295n+7YcPMldR7F2sa+D6xN\n7PvA2sS+v3II6aBq2JGvT9P5tA5MHtS+iYM6dOZIpROAaZjqru1Qb8NW9TZsUU9dp2zTXuVql4fn\nezqRORUMSTI9oJOzp0tBnNmL/jDENm211mxQR7JV7Yk2dSRb1ZbYqLAVvvCF34bv+zoweUjfO/6o\nTsyekm3auq/9br2769cUtSJ6ZewNPTX0rIYzJyRJm+q69a7Oe7WnacdFfRgzU0hrcGZYgzMjOpOb\nUmtigzbVdasj2abQEo/tle77qfy0jk316WiqT0dT/fJ8Vx3JNnUm29WZbFdHsu26+NJubG5cz4y8\noF+c/JVybl62Yenm9Tfq/vZ3KGbH9KP+x/Wr069LkrbVb9YHN793xYJWFyNdyOiN8SCYcyR1fEEw\np103t+zRTS271RRrVMEt6Mf9T+jJ4Wfl+Z5uW3+TPrb1A3zxuIym82m9MXZA+ybeUtSO6o6W27Sp\nrnu+C1IpcFUOXpUjEeUhw1y31Jmp1HHIKYcvztOB6K3UAT164vtyfVf3r39Qt6wLutX4vpRMxjQ+\nmVG6kNZT4z/WcK5PESOm2xMPab3dUwpCeQtCS+cOo7YwyGSZhiIhSwUrpRfy35YvVw83fkJt8bYg\nMFHq5GRZpvxyCMr3NZY9ra8O/JMMGfqNjs+oIdRUun1BsKo8TNtEflwvzn1POc2q1dut1uItKhaD\nIenK74A935cnR1PRQ5qKH5BvOAoX67Uuc5Mi+fUqukGHqqw/o3x4XE5sQqo5IzOardxnvmvJm62T\nl26Ql6mXl6mX3KXDFEZ8RuHuAzIT05Jryzy1XeF0j0KWpVCpG9E5Q+9ZGbkNgzIbh2WEikHorRAN\nAkaOHQSMxjolLR2KsZqHFe45IHemQYVDt19w/UrN0Ywi21+WESqo0LdL7sSFhzwzDUORsKkgAlTa\nTrlj04LwTmkkvMoZQ1rQ2encQGGh6Cqbd+WtwH9lys/TSNhSyDZLtQX7nbRgn6vchuDfReG/BaG7\ni6/Yl1k3IXv9kMy6cckJyxjfJGOyW5YRWhT6WxzyMd7mb5K5oIOWaRpBiMsMwlyWdXYgLAgy1dVF\nNZvJV27r+RgLHqsyV65GC8fUV9inCSd4nxIx4uoM9+pUsV9pL6WIEdeN8XeqJ7Jdhlm+9+aHQ1w0\npOFZQxOWA2wh2yoFH+fv//nn2PzjYxjn+ZuMyuN29m1zPU+O488HNB13QbgqONYUXU+2ZQYBtbCl\nWMRWLByE087kUvpfB76qgZkhrY83666Nt+lYql/HUv3KubnK9awLNasl1K46v1XRQovcol3p5FWp\nv9yVbMF5yzRUEwspGQsrGQ8pGQ+ptiaseMReM0MyLuT7vnJuXtP5GU3nM6oNJ7Q+3iTTvPQvJ8th\nOtf15XilMJ1pqCZqy7qM7VWL53sazZzS8VS/+mcG1RRdp4e6HlDUjizL9vm/PrA2se9fmQOTh/TY\nwJOyzZBuat6tvS27VBt++w/mz2c4fUI/HXxar469KV++GqMNumPjrYrZUVmGJcswg6lpySzPG6Ys\n09Jw+oR+MvCkCl5RPbVd+kTvh9WRbKvSrcX1ZK3t+77vq+g5qz4ENeZ5vqcnh57VgclD+uDm92hT\nXfdql7QmrLV9H2tD0XP05vgBbanvUV2kdrXLuSqx768cQjqoGnbk61/RLer49IAOTx3T4aljGpoZ\nqXS/CJshba7vUW/DFvWu26K2mo3KujllCrNKFzLKFMvTBfOFWc06c5XtG+Uv7SpfKhuVL0xMGYrZ\nMdWEapQIx5UIJZQIxZUI1agmVKNkOJjWhOKX/OugvFvQwPSQ+qYHdHx6QP3TQ4u+MIlYYSVCCdWE\n4gtONZX5hB2ct0xLJ2ZPaTR9QsOZEzqZOSXHdxfdvpZ4cym406qOZJvak61KhGouWGPf9KC+e+zH\nOj7dL0OG7th4i97X85DWRRsWref7vo5MHdeTw8F/ZCSpOdaoX+u4R3duvLUSEso6WQ3NjGowHYRy\nBmeGNZVPnfe6bdNWZ7Jdm+q6tKmuSz11XYs+WLrUfT+Vn9bRqT4dTR3X0VSfxuYmFt3XtmEvel6U\nb0Nnsl2dte3qTLapI9mmmH31B3c839PBM0f1s5Hn9dbkYUlSXTipe9ru0jva7jjnA7rh9An9oO+x\nymN3Y9NOfWDze1Z8GBDf9zWenQieG+lhDc4Ma2BmuBLM6artCII5zbvV+DbDqw2nT+hrh76lofSI\nauy4PrL1/bpzwy2r8mXhXHFOb00e1r7Jg3pr8rAs09Luxh3a07xDvQ1br4kPYlL5ab0+vl+vj+3T\nsVS//LO+2l8fb9E7W2/X7RtvuahjyoX4vq8f9/9UPx54QlEros/t/LR2NW1ftM7Cfd/3fT0z8oK+\nc/xHcjxH97bdrY9sed8l37ezxTn9l1/9D01kJ/XZHZ/SbRtuuqjLvXL6df2vA19TS6xJf3jbvzvn\n+NA3PagvvPG/NevM6cObH9FDXfdfcJvT+Rl9v+8xvXTyFfnytatxu8JWSMdS/ZopzB/zYnZMPcku\ndSa61BrtUIPdIkPnHwJt4bBZhmHMD2tmmTJNXz8/8ZK+d/wx5dycemq79KkbPqq2xMbKdXm+pwOT\nh/Ts6Is6OHlEvnwlQjW6c8NtumP9bUrYtXrx1Mt6fPinyrk5bYhu1IMb3qum8IYgNOXNd4LyfWnK\nmdCPJ74qy7D0yLrfUtwMjknlYfOC7k9nhTsWhD5Szri+e/Jryns53d/0bnVFdqhYUKmDjaNspZvN\nfEeb+VBUqXvW/OzbDN+nSoutt+u8FQlbioWDzj2xsK1YZD4gEY3YioUtRSP24iHnSqG18vmFnYIc\ntzQ8YdGtDMFWHqqwcioEoQwtqLGccSvfhkr9kkLljka2VZk/3xB2voJAnV+qpaicpsPHNR09KsfO\nBNsqNMixM/LNogw3osjUVoVSPfJcqxIomL99WnT7ViLItJARzchqHpHdNCojFAS93elGOWMd8lIt\nQScrw5O9oV92a58My5WbrldxYIf87Op/eFJ+xbqSe82qH1N40z7JLiqc6VBj+jbJtZWeKyg9l1c+\nNCWr9ozM2kmZiSkZVvBa6/uSl6mXO94ud3Kj5F96h0bLNJSIhUrBnbBqYiH5XtB1qhw0KjiLg0fl\n80al25RZGhZxfohE0zRll5bNB6rmw0/SgrBdOQBVmT83hLfwrUH5fcJSYT3J11zopPJGRkVl5RhZ\nOWZOrpmVZ+UlOyeZi4f09B1b3lytNFcnI1cnM1cvs5gIhoAsdeqTtDgM6QYB1rd7/OMRW4lYSDWx\nkBKLTsHyaMQO7tPifGC04ATT8vGlUPq7Vxqz0tdZxzpfpWNLUIVpBCE6w/TkRs4oHx5XLjSuOXtc\nnlFcVF9UCe0I3afWcLfCdhAsLB97wiFzUajtQurr40ql5i64nqHgeXJ297aQHTyPytPleD9YHtLT\nPeuYPn/eO+dYWD5fvmz5te7sYULLw4hWhhy1zcpQr7ZtKmybCttWZRhMz/c1l3OUyRaVmSsG00Wn\ngjJZR77vl4bfDC4fXjBf7thWvp7wovUWr3Op96Hv+yvyHvzsx6T8mlMOVF4tfN+vvJbniq5s01Q8\nGgQsr/R+cj1X6WJGdeHay97Wwk57bilIX+7st9L/l7raP+c7MnVcmeKsdjbeoMh5fhDleX5w3HWC\n14R4xL7i56Lv+8rmXc3liwqHrPNu8+TsaX376A/11pnDla65UnCM3FLfo5ta9mhv8663/aKo/LnO\nT4d+poNnjkiS2hIb9VDn/bq5Zc8ldW2eyqX0L8d+qNfG3ix1L7xL7+95d+WHUJ7nK1dwFA3bFz20\n79WsUHRl22bldR2X52rf95fTydnT+uaR7+loqk/3t79Dj/Q8pNga6Bzv+77G5sbVHG+66rpsTeVS\n+uJb/6yjqT5JwbHzwc779L5NDy/5I1JcubW072NtGJgZ0pcPflOnZk8rbIX1YOd9elfHvcv2Y5br\nBfv+yiGkg6phR1575opZHU316fDUUR0+c0yn5sYueRtRK1LpylD6mLTyZVf5KzlfwReT5YDAUgwZ\nilgRRe2IonZUUSsSnMrz9vz56fyMjk8PaCRzYtG218ebtamuW5vqurW5vlstsabL+jDM8Rydmh3T\ncOaERtKjGk6f0GjmhHJuftF6DZF6tSdb1ZFoVXuyTe2JVq2L1sswDJ2aHdP3+x7TG+P7JUm7m7br\ng5veq9bEhgte/8nZ03pq6Dm9fPpVOZ6jGjuubQ2bdWL2VGWYpbJkOKGuZIe6atvVVduhxug6jWRO\nqG96QH3TgxrNnFx0HzXFGoPATm2nmhvqNTOTrTx2wUuJX/liwZcv1/c0kj6hY6k+jWXnQzlRK6LN\n9T3aWr9JWxs2qSPRJtMwNZmb0lB6RMPpUQ3NjGgoPaI5J7uo5qboOrXUNGt9vFktsWa1xJu0Pt6s\nukjtiv8H0/d9zRbnlMpPK5Wf1lR+WlO5lF4be7NyezfVdem+9ndob/OuC3adOjrVp+/3Paq+6cEg\nlLXhFj3S85AaYw1LXu5ypfLTlS5KgzPD59zfhgx113Zob8tu3dS856Lr8HxPz4y8oO/3PaaCW9C2\n+s361A0fVUu8uSq3o6z8YcO+yYPaP3FQx6cHKs/f+kidHM9RpjgrKQgYbm/s1e6mHdrduF2J8JUH\nXJbLRHayEszpnxmqLO+p7dLell3a27xLqfyMnh/9hV4b3yfHc2Sbtm5q3q13tt2pzXXdl3XsKrhF\nffng1/Xq2JtqjK7Tv9nz2fMec873uj+aOan/feBrOjl7Whtr1utzOz+9KGSyFNdz9fk3/lGHp47p\n4a4H9KHN772kur9z7Ed6YugZ7Wrcrt/b85nKcWD/xEH9w/6vyPVdffqGj+uujbde0naHZkb0raM/\n0PHpfklSbTipLfU92lK/SVvqe7SxZv2yHnOm8zP61tHv69WxN2Uapn6t4x7d23aXXjn9hp478Qud\nyQVDaW2q69I9bXfpppY953xQNVNI69tHf6Rfnn5Vhgzd03aXPrDp3Yu6khXdov7rK3+t0cxJ/e7u\n39be5l2XVe9QekT//bW/U9bJKWyFtXNdr/Y079Suxu3XRRe01TKcHtWzIy/ol6dfV9ErKmTaunX9\nTbq3/S51Jts1V8zq6eHn9NTw88q5OSVDCT3Udb/uabtzya59i75AXRBQKn8J6JSm5S8GFwYVHNdX\nPBHRzPTi12P/rO0XvaKG88d0dG6fThWCYVOjZkybYzu1JbZbtXbDomBWeSbjTuuV9DMaLhyTIUNb\nozdqV/xOhY3gQ3L37GEMK8MZ+iq6roqlTjeuOx9yqdzmSn0LzpcDEW8XrloQmKh8Ub+wk8+C8+Wg\nleN686G0QkEj1itKxQ9Knqnw6T0qjrcpl/dkmlIyHq4EaIJpWDVRU4XIpKZ1QqedYZ3KjcqXr6gZ\n1c76G7Wn7mbVhRrOCRU4rq9MtqD0XLF0Ks0vWJbNn9sN0jKNIKxhBYGN+fngmOacp/vawudLEHbQ\ngvd88/ezSuEHLVjmL1jpsj54MDxZTaOyN/Yt6mA2fyWGDCcq04vI9mKyvahsReVYc8rbZ+RY6cUt\nnjxbVj4I7RjZOlm5BtlurUKWNR8wMYNQTDlcYlumPN/XbCl8kc4WNZstLttQlAuDTUHXJF+yHBmR\nrIxwVoqnpMQZmTXTMsz56/SycXmZhkoXN6vphOwN/TJMX87ERhWHtkvO5Xf0XG62VQqsVm7nfGBr\nUTfA8rCLZ4UNy+dXm2Uasm1ThQVd+VaCaZT2XXvp9x9+bEpeY5/82pOS4QfByIUnzzxnmeHZkmtL\nni25oeD8wmWeLTkh+bka+a4tzzs3lPN2NYdCC0JiZx13bMtY0HXx/N0Xy8e+cuD5fCFia0EXuaLj\nKVdwlSs4QSCnFMopFNzzHoMs01AsYqsmaiseDakmaqsmFlI8GiwLWWYQ4vO8oLvWgi6HWW9Wk9YR\nnYkckWtmZbkxRQpNCheaFMo3yyrUyveMc25T+fV24ZC7b3c8KXdNK9eVWFBjuWYpCEuXb3d5+M9c\n+faXlvm+X+r8Vgo3Lwg7RyPzy5oaa5ROBz9gmg9OlifzoUrflwrlsGcxCH6WQ58Fx1OxOH9+4fOk\n8hp81uvI2a/RwaL5MwUzrana15SLBt35DM9WKNMqI9Uhd6YheE/gnNslVJKiYSsIWEZDqonZpWnp\nvoyGFI1YypZDd6XT7ILj/WzOOWe7kXAQ1onFXRWbDisTPyYZvur9Nu0Iv0M14bjG/T6NFo9pvHii\ncrn2eKd2rdupPU271FLTIMdz9cqpfXru5PM6lQvWa7bb1WPtVbzQqmze0WzOUdHxSh0ESx0Pz+ow\nWO4uaBqqXOZUYVCD9osqWGkZbkShsR0qjG1UNu9VHsfaeFh1NWHVJSKlaVj1C+brasJBWGxh18bS\n8KwLh2a9XOX3qcH+vnjoaMfxND1bCE6ZgqZn85rOFJSaLWg6k68szxddGaVheGsWPM7B/lLan0uP\nt+sFAcv5HxUEw+YunGbzwfYq79tiISXi5fdvYSXL7+XiIUXDduV5Wgnflm5P6Wk9/0PHcgCz1DE2\nFLq4YFHlxwSFxT8eMIxzfwRwdsfJS3lsVvozft/39erYG3p04El1Jtv1wc3vUX2kbtHfy0OQF0rH\nFVNSuBRgDNuXPqxy1snp0f4n9PTI8/J8TzE7pqyTVW04qY9seZ9uW39T6fNqvxKwzheD41zYNhUJ\nW4qG7Uu+b68GJ2dP6+uHv6OjqT611mzQ+zY9rBubdl4Vt+O1sX362qFvac7Jak/TTt3depu+deT7\nmsidUWvNBn1mxyfVnmxddBnXC35UU37PfiUhPddzdTTVpwOThxQyQ9rR2Kue2s5LCkdey66X7/e8\n0n/qr4fw6cXKOXmdyU2pKdZ4TfwYtdoKblE/6n9cTw49K1++bm7Zo6OpPqULGdWGk3p/z8O6c+Ot\na2bfvpDrZd+/FhDSQdWwIyOVn9aRqeM6fOaYxrMTlQ43iVBCyXBCiVDNOdNLeSHMu4Wg+05xVpkF\np9nC4vNZJ6eck1fODabugm42Z7MMS53Jdm2u7y4Fc7qqOiyP53uazE5pODOqkfSJynRhVwZJqrHj\naok3a2BmSL589dR26cNbHtGW+p5Lvs6ZQlrPjryoZ0df0GxxTlErqs7adnUlg0BOV227GiL1S/5n\nLOfkNZQe1vHUoPpmgm5DWec8X45cQNSKakt9t7Y2bNbW+k1qT7Re1HPA931N5s5oaEFoZzRzshK0\nWChshtQcb1JLvFnrY01aF21QwSsq7+ZLz4u8ck6uMi0vz7sF2aaliBVR2AorYoUr0/n5iMJmSFkn\np6l8qhTKmVEqPy3nPEOh2YalW9bv1X3td6urtuOS7ivf97V/8qC+f/yxYHgzw9IdG2/VumiDQqat\nkGnLNkML5oNTyAzJNi0V3ELpNga3Ob/gdudLy7JOTicyJzV91vOvOdYYPDeS7eqq7VRHsvWKhmo7\nk5vS1w9/R/snD8k2bb23+0E92HnvorCS67nKujnlnJyyC055Ny/LsBS2QgqZocr07HnLMNU3Paj9\nkwe1b+ItjWcnJc0HjHY1bdeuxu1qS2yUL1/900N6c+KA3pw4UOnmZMjQprpu7WneoT1NO9USbzrv\n4+L5nlzfk+u7cv3gQ+7gS6bSB5MyZBimDC08H+xf5cclv+hxWTw/W5zTwTNHNFIaus6Qoa31m7S3\nZbdubN656MOqskxxVi+ffEXPn3ipEsLbEG/RO9ru0B0bblFNKH5Rj1UqP62/e/NLGkwPa3Ndt353\n92+/7THx7V73C25R3zn2Iz07+oJs09bOdb1qijWqKdao5nijmmONaojUn7Pvf+PId/XMyAva07RT\nv7v7ty45+OL5nj7/+j/q0NRRPdL9oN636WG9dPIVfeXQN2UZpn5n1/+l3U07Lm89ByYAACAASURB\nVGmbZb7vazA9rLgdV3OscUU+vDoweVhfP/wdTebOVJaFzZBu23Cz7mm7Sx1nfTB1PofPHNPXj3xH\np+fGlQwn9LEtH9Ct6/fKMAx948j39MzIz/XOtjv1qd6PXlGtp+fG9cKJl/XG+P7KvmcZlrY1bNaN\nzTu1p2nnJbWUDfaDWVmmJdsoH9vs6/4/z47n6LWxfXp29AX1TQ9KCgKp97TfpTs33nreLllzxTk9\nNfycnh5+Xjk3r9pwUg913a93tt5ZlQ9m3m6/z7sFHZg8pFfH3tSBiYOV4VG31W/WO9vu0J7mXRf9\nq8eDk0f0jaPf1djchJKhhD685RH9/+3deZRcdZ03/vddat9639d09sQQQiAJSwQ06iAIAg+LIzjK\nc87oODo6j+Ogc9wAGRxmdM446LjMc87vh+OIwyIiKo4CE4EQICH73unu9L5WV9d+1+ePe+t2VaeT\ndCdd6ZB+v84pblV307ldVd97b93v+34+V9Ssu+Cu8DydaGYc/3f/T3E81olKXznuW32PM2ZzH7ln\nsh0ZTUfxat92vNq33TnmWVG2FJvrN2F1xYpZPSeabiCZ0axqJrkT2BfAScv8EFUu3D013KMZKrYP\n7MTvu19CNDsOWZCxoWY92kpaEPGEEHaHEPaE4Jd9p31OMloGPYl+dMd7nVt/crCgOl3A5UdbpBVt\nJS1os9u+nilcnavKkUipSGQmJ3UzWR0uWXQqp3jyqqTk7rtkAXEthmh2HGPZcYxnxjGWGbceZ8YR\nzUSd8ZQjCiLqg3VoDTWjJdSMhkAT/FLACdrlJvr7kgP474HnMZTth0f0YV1gM+rlZfYk12TYbSb8\nfjdSKeWMP2eFACfbw+m63RYuP9CgGVD16avZ5Cbl8ydq8yu6nSqckZssPim0Md3PCwIEEQUBoamt\nQnNDQ80PGUypNqWoutMCz+uSrJZz/ukqK7mcikuSKFgVlXLVlezfk6uyNLXiUu57WU0v+Lnc99Rp\nXj8TBtRgL7KRY9C9VrBXVIIQdA8gGDAFAxAMQNCd+ybsr4kzez8AAAwJnmQj/Mk2eLQySKJ40msl\niYITRJl8LvUpz6sBzVQgeNIws37AsPb1k63+rADA5HE2TgqZnonHJcHrluwJVQlel1VhL9e+Ure3\nj6mMhmRGdZYzCd8JgRjk6i5IZf0QRNNqexovg+ifgOCevDjH1GUgWQokSyEkyyFmSiFBgiyLVqtJ\n2QoFFiydaosCsoqOZGYyJJLMqIXBMFGDGBqDqXlgJsOYrn2pLIl2O0brObYCPPqMtwMXBFGDXNcO\nuaYTgmhCnygDkqUQy/usICMAQfXBm2xCMNsKv1lib2utfUMqo9nPoYpE2qrwOBMCAL9XLhjPAa8M\nRTWs1yWjIOY7CrX8ECCrMDJ+qCeWwxivxEmvhSsDqWwAUukgxFDUqWamx0sguBSI3pS1/YtWQ+1v\nhZksmaMnD3b1wk7Ide0QJB1yphyVifUIi5VIZtSCoMtZ/xOAXTU092jK96d8aTJ4XLj/n9W/mQsY\nBd0I+d1QVN2qbpY5+yCtxyXB75Xh88gwDBPxlIJkZso5H1GD6I9DCMQgBiYgSKrV9jgZgZGIAPrs\nzqGcVEVNFu12y9Y+IKNo0KUMRG8KgicFwZt07kMwAUOCaYjWdjT/vinCNCSIpgQJLkiGGxI8kE0P\nZMEDt+CFR/DCJbmcoI/f70Y2q555pWfBMOFUC51siW0iLY5iLLQTimck74clyCNLYAwtgqoCqnrm\nNsG5Y63cMZbHfpxf6Sp3SWHC04mxwC7oUhqyHkR5fB082RqMefcjEToIiAaEZBn0E6uQjZ/+Qi5J\nFPL2MbKzz/G6rW3t1IC7Ybcczw/CA7lxY1fiFaxqlWLePtCQ0hBEDZIWLggyTh5HWX9hbreYq3op\nSVbVSFkUIYgaRn17Mew+AAgm/EY5UsIYIJgIohxt4hWolpohy6JTTTPXCjkXVi+sljj5tVyVYAhw\nQpenqpJrYjKArWrW8WJay+KV0T/gcHIPJMi4NLAZza7V0DQDE5k0DiivYlA8BJgiIvFVkEYXI5Ux\nkMpaQdx8LrvqYX4lRJddkdAlSxAEOwxoV1vUoSDtHkDK04O0tw+mOOXY23ShxKxHldSMOk8LSr0R\nu4KvFWp12++zXOXRXKVOWcp7DkXruVHzjyPtYyFF06GqecebuuEcpzrHQgLs98TkMREEIJPVC45d\nrOMZ+1ghPfl1wAqUWpUZCz+b5Co1elwSSiI+6Kpm/Zy78HNL/v+Xu4DhVMfds634ON172cx7H+Vf\nWJPKaHZAczKwGcsPbCYVTCQVGIbpHJ+H7IticiHLgNeFuNyDw5mdmNCieFfJWqwvuwJ++9xprhI2\n8j4nANZnal2f8jlHKwxu64Zh70Mmg95+jxWmPlPAfjY0e//QOzGI1wZex57obihGFgIElLhLUemt\nQpW3EtX+KtT4a1Dtr4DH5S54T872fIBhmtbnGDv47gRGFR2aXrhtzy1zF/bkHrsk0XodfNbrEbQD\n8XNRAc+wL+w6OtaB/2p/CiOZUZS4S/EndTei1tOEiWwKb42+jr3xN6FDQ1AowyJsgE+tRTZrOGF2\ntywiHHA7t0jAjbB/8nHAe/G1Fefc/vnDkA4VDQcyXahUQ3PCGGktay/T8Mk+NIca4LoA0sWxbBw9\nTnDHqrwznB5Fjb8KH2r7E6ypWHnOO39FVzGhxFHmLTnniS7DNDCYGsaJiR74AjISiSxgBxGsNga5\nq+oEp41Zpb8CjaH6OZ1kS6lpDKdHMJgaxlBqGEOpEQylhjGYHoGin3kiAbAmvb2yF27JDc3QoOgK\nsrpy2nBXjgABIXcQJZ4ISj0RROxliTeCEk8YdYHac67MYpgG3hrchV8dfwGjdgWNuRRxh9ESbkST\nHdhqDjU4H0rmkmmaeHt4L35+5BeIKwmUekrgltzIaGmktcxJE1DnwiO5saJsGVZXrMCq8mUntRWb\naiA5hL0jB7BnZD86YiecybqgK2CVmzd1J5Qzk4pec0ESJCwvW4K1lauxpmLVjN9Hpmni2PhxvNK3\nHbuG9kIzdciijMWRVsiiDEkQIQh2KyZBnLzZ7Zn2jR7CeDaGjbXrcdeyW087qX6m/f7ekQP4z0NP\nI6ZMnPQ9URBR7i21gju+cgDA1t5tqAvU4P9c9hfwnmV56YSaxD+8+S8YzUSxoeYybB/YAZ/sw6fW\nfBxtJS1n9Tvnk6IreKHzRbTHOnFJ5WpsrL1s1q3+VEPDH078D37b+QeohoZlpYuxpnIV/uvIs6gN\nVOOL6z87Z2EO0zTRnxzE7uH92D2yD93xXud7reEmXFK5Gm0lLUipaUwocecWy8YLHp9q+y1AcEKJ\nrrxgYrmvDDWBKtQGalAXqEa1v2reS9capoGUmrbbfKaQUlNIaenJpZZG0r6fVq3HsewEMrp1UmVl\n+TJsrt+EleXLZrTfTKopvHhiK17qeQVZXUHEHcKW5uuwoeayvLEvnPM+OH/cO8Gcwd3YP3rI2Y5X\n+SpwadUabKhZh+pA1Vn9O6qh4aUTf8RvOn8PxVCxKNKM9zdfjwpfGSKeyKxL0Cu6mne8YB0rRDPj\nVts5QbJOQgsSJEGCOOWxLEqo9JWjLliLukDNGStE7R89jP//wM+QUJNYV7UGH1l++zmXzFcNDbuH\n9mJr7za0xzoBWJUYr6nfiCvrrpg2TGmaJjJ6Fik1haSWQlJNIaNlEfGEUO4tR9gdvOBPLKmGhtf7\n38QLnXY4R5Rxdd0GbGm+dtrA6tlQdAW9iX6ciPeiI9aF9linU7EMAFyijJZwE9oiLWgraUVrpPmc\nXk9FV9A10YOOmBV8Px7rQlKdvo1UwOVHmacEpd5SlHpLUOqJoCFUh9Zw04z3k4Zp4OWeV/Hc8Reg\n6AqWly7B3ctvRYW9752p+fqsrxma1ULrHEKaiq5iMDWE/uQg+pODSKpJNIYa0BZpQU2g6h0VADyd\nhJrEq73bsbV3G8azMQgQsLpiBa5vvBpLStpmNN5N04RiqFaw3w73p/MubshdDJPSUtg9vN8JEjcG\n63B1/Uasr1474/fmeDZmHX8PH8CR6DFopg4BAip8ZagN1KA+WOMsK30Vp30PTNe60jBMKyTnls7q\npL9pWq0B84M7ueolgmiiPXkIO8feRF/aOtap8FbgqtpNuLxqHQJuLwQBGFOiVkvt8Q60xzoK2jzL\ngoSmcANaw81oiTShNdyEUu/MwxiaoaNjrBd7Rw7i8PhR9KV6YMD6nBKWS7AivAprytagIVwDr8dq\n5XWqNk9WxSGrTWkmr2VpJqvB7XUhHs8UhCnzFgWlbmR5MljgskMGuYnShDGB9vhhdCY6Ue2vwrvK\nVk2eG5jsiHhS28Tc0jRN7BjchV8c/zUmlDhKPSW4dcmNuLTyXdbktWmgfbwTbwzswM6hPU714uZQ\nI66oXYf1VWun/TylagZSGRWJXHgnrSKj6PDlBXKCPhf8nlO3gto/eghPHf0VBlND8MlefKD5PVhf\ncQUUxXTCXxlFK6jEkbsl1AQGjeMYEzqQlIYgQECZ3oZmcS0qvRXweQsrO+WWbll0wo+qZjiVBjXN\ntCd4re/phgmfR5qsION1weeREFNiePror/D28F6n6uYVNZeiNlANr+xFRtGcSc/xvCo1sWTWqVBk\nGCdXZ3Qm5k4RuDnVrIMoFk5E50/25iZKJUlExD9Z0ScS9KDEvh/yu0/5+uTGshNws0NaueCy32NN\ntOcCOblJd0ksHC+qrqI73oejYyfQGetGb7IXY8rISW2o83nNMIJmJUKoQghVCKIckmBtyxTNqvwx\n2QZTsy4eM9NQzDQUpKEJGUi+NERvCnAnYbiSMMVpKiNChgAJBjQYOPuAlamLgO6CqblgZn3Qx6ug\nR6uLV4lPzsLVcBRSZY8VmohWQ+9dDlckCtQeAmQFgupHaHwNgmoTPLJUsF0x7ApeWbtCWjYv8Go9\nt9b4yCf44nA1H4AUjsI0RGh9i6D1tyLXVlaWBLj9WQgNB2CEBgBTQDC5GBXZS+CXffDa4YTc65dR\nNGRUq1JZVtGRVrNQvENAaAhiKGo9j2M10MerrOp0gNVmdUpLWWCyklz+ODKgQSgZgFDeAzE0Zj1P\niQi0wSYY0RoIpmwHjAHADhnbIZnCIKsJsXQIrqaDED0ZGFkv1K6VMMarIHgTkOvbrbCp/fvV3sUw\nYhWYLmhXDII/Bnfbboi+FIxkCEr7JTAzJ3++ESPDcLfus0KwyRL4BtcjKJbYLStlaIZhh13s198O\nOucCMAWhVDkLqXQIUukQxPAoBDuobGa9MMarYcaqYUCDGBmGWDIC0TN5oaqRDEGPVcCIVcJIlFjV\nCOeCpEAMRyH64k6FzHP53S5ZdLb9AjDZzlszTllVcK4IApxwfH4IH3n3i/Hvy5Lo7BskUUA8bVWV\nTaZV698TDEjlfZBrOiH6rXbipi5BkHSYugRtqBHaQAugFqflnVsW7X27y26XKUwGkHI/lHue8v4/\nTc+1ap2slmiGh6ygeMS6UM5UPNBj5RA8aYj+BAS58Dy7aQgwMwEY6SDMdBBGogRmMgIJbkiSWBjs\ny1uq2mQoR1Hzt6kmhMAEpNAYxFAUEEyYqgum5gFUN0zNDdNe5h7nwvhTCQKcY65coMrjlgqPc+yl\ndaGJdbzjXHxif1+Hau1Xqq2L3vTBZqg9S6xKoPlcGbjqjzn7Hz1WBrV7OczUzC4ulEQBIb8LPrvl\n6WRrcNEJQOW3C5fEU4wD+46dSyuovGctT1EVGrnjZsFpE567nwvwCfYFE9evq8eShjN/xuDc/vnD\nkA4VDQcy0dxSdKu9xYU+gXIhjn3TNBFTJuxJuBjckrug1ZlX8sAjeeCR3Kc84asbOrK6gqyetYI7\nhoKspkAxFPhkL0o8EUTc4fNW2UEzNHROdEPRFaiGBs2+qYbqPM6/75bcTos3z5S2bx7ZA6/ktb93\nflsfpNQUftH+G7w1+DZcdkDKL3vhlX3wyV74JC98shde2Vp6JDd007D+Nl2FkrdUdNX+m62v1QVr\n8K6KlWgraT3rPtUTShz7Rg7ZFXaGIQr5E7eifZWwBMn5uhV6sa7yMGHAhGka9tK+YXKZe108+a9N\nwWtkLRtCdbMOY0yVUJJ4feAtvNq3vWBS4HQECLhl8Q14T+PmM257ZjL2TdNEQk1iOD2KkfQohlMj\nGE6PWffTIwXVsIKuAP5m/WdQ4Sub0bqeSne8D/+04zGohoqIO4y/XPu/Z9Qi8GI3kh7FE0d+gQOj\nhwEAsijji+s/M+N2ZGdjNB3FnpH92D28D8fGO057EluAgLA7iLA7hJAnhKArAMM07G2blrdUoRk6\nVHuZ1bMntUMEgHJvKWoC1ajNu/ll/2RjTXtMOh+C88apkauUZejQ7KVu6tDsZe7rqq4goaacIE7C\nruyXVJNIqqnT/r35JEGCX/Yh4PJjVcVyXFO3CZX+2U2g5yTUJP5wYite7nn1lGGnyXDeZFjPJcp2\nNZIwItMt3WGEPSGUlfvxP4ffws7B3dg3eghqXjBnXdUaXFq1BvXB2jk7dhnLRJ1JpHxeyYOIxwrE\nlngiebcwZFG2gjjpYQwmhzGUHkE0Mz7j1+NMSjwR1AVqUBessZe1qPFXQhRE/Lrjv/HbrhchCxJu\nW3ITrqnfNOfHcT3xPvyxdxveGHwbiq5AEiSsLF8KwAprJdW0E8w5XbDULblR4S1DpV3prMJX5lQ9\nK/eWQhREZHUFGT3jVH/Lr1SZqwqnmidPFk3HJcoo85SgzFeKMm8pwu7QKcMRqq7itf438buulzCe\njcElyri6fiO2NF07q6pcZyuaGUe7M7Heib7EgPP+ESCgyl9hHQd6woi4w9bSE0aJ/TjsCTvHIdHM\nOI7HuqxQTqwL3Ynegtel3FuKlnATqvwVKPWWoMxjB3K8JXN6jDaajuJnR57GgdHDcIku3Ljofbiu\n4eoZH8fO5fG+aZrI6llMKAk7qDkx/VKZQFJNQYBgP78RJxhvBeIjeUH5MEzTxEBqGP3JAfQnBzGQ\nHEJ/cgAj6bFTjn+/7MOiSLPd5rgVTaGGGQdXFV3BhBJHXEnAa382ONdA3tnoSwzg5Z5X8cbATqiG\nCo/kxpW1V+DdDVed9b5kJgzTwKGxo3ilbzv2jhyAYRrwSG6r4l/dxpNaUVivzxB2D1uVLLsmup3v\nNQTr0BRqwHB6BH3JgZOCa7IgoTpQNWXbW3PGarCnWu+h1Ag6J0447X4NGM74nRzPEedx0BWAIAiI\nZeN4pe91vNL7OiaUOAQIWFW+HNc2XIVlZYvPGPiaUOI4Pt6JY7EOtI93oDveV/DeLPFE0BJuQmuk\nCS3hJjSF6guqmcaVBA6NHcWBscM4OHoEcdWaXBIgoCnUgOVlSzCaGcOe4f1OcLYhWIf11Wuxvnrt\nrEJAOWc79k3TxIl4D/aMHMCe4f3oSw6c9DOlnhKsrVzthLhP9fydmOjBfx19FsdjXXCJMrY0XYst\nzdeestKroqvYM7IfbwzsxMGxIzBMA6IgYlnpYtQFa1Djr0ZNwLqyfKbVRqf7+/qTg3jm2PM4MHYY\nAgRcVb8BN7a+76wrMyeUJARBOOt1Ohv51Qtzyr1lqAtWoy5Q64y3an/lafcXqq5OVre2j4dV5yIc\nIe+/AATBuS9AgFf2oCFY77R8LxbN0HAi3otj48dxbLwDx2OdUHUVsl2J2GVXKZ6sTjx5UUAsG0Nv\ncqBg/+0WXWgM1aMp3ICmkHWxk1f24US8G50T3eiMnUBXvBtpLeP8P7IgoSFUj7pANTJ61nmucrfT\nHrfZFaMrfRWoKliWI+wOOc9d7vNT7ryJOuW8SVrLFlw8kMwtp9zP6Lk2dwJaQs1YWboSK0tXnnVI\n2rTbzlgV1jS8OrAN/939ErJ6FrWBGty+5CYsL1vi/Hxay+CFzhfxUvcfoZk62iKt+F9LP4TGUP2s\n/l3DrjCY1tP4befv8Urf6zBg4F3lK3FL240F5x6sUMHkdmj/6CH8/MizGEmPIuQO4sNtH8QVNesK\n3qemaWIwNYT9o4dxYPQwjo0fh2Zf8CeLslNxO3cR1rqqNVhTseq0oX/DNHAk2o7tAzuwa2ivsz1v\ni7TAI3lxcOwwTJgIugLYVHs5rqnfiPJTnEOx1m8E/3XkWRyKHoEkSLi65ipcU7MZImToeq4qnYHB\n1CBeG/4jjiUPAQCq3fW4NHwVquRGq0piXgtkzbAmxCfvT37NRGHo0glc2k9yLospClY1j15hD46b\nb8KEgTbXWqz2XQmP7MqrzmNVtfLb7SghKfhl1/PYMbQLLtGFWxbfgM31m067DzZMAyPpMQwkhtAd\n78fB6CGncj0A1AVqsKZiFS6pWoXGYH3eeDKRVXSkMip6JgZxePwI2uPH0JfpdgJxMtwImzXwm2Xw\nGmXw6CWQtaDVDtR+frW8KkquvEpZoqwj4xpGXOpHDH2Io/C8nVvwokZuRa3chkqxAQLkyXag9oS9\n150Lc9rtG/MDna5Tb7etFnKGFW5TJ6s5+gIeDA3HnccFwR7n56wQlDElHK3nBTbzg9P5rW2Rdz/3\nnshlLHPPu2i/gUxo0OQ4FDkGRYo5Sxe8KJfq0eBtQnO4GRWhoBPM8Xmmn0dJKim8eGIbXul7DQnN\nOoZrdC9Fg7kGohpEn3kQPdgLRUhCMEVUmUtRa7wLHtOqXGXYKQpJsqqN5SpH5R4XVJUSBWRVu8JR\nNlepUUM6V+nI/loqo52yVaww5YEkWtUQPV4dZvkJKOEO6LJ1PjWgV6HWXIVauQ1uWXLecxk9hYQ5\nioQZRUqIIi1GkRVjMIS88I4JyGoEcrYcUqYMQqrMChfqKAy9uyS43SIk3wQ0/wiy7iEk5cHC3zUD\nsuCCXwzChxK49TAkNQgjHYCS8iOdEJ0Wo6c6c5NrNTy17bhLEqH7hxErfROanIRbD6MhcyVKhBrn\n+7Is2lXOZPjcVlXNFMbwxvjL6EwdhwABl1ZegpsWfQBBKeRUZJpIqdYyqWAipTj3Y0kFGUV3tqG5\n8X4yExB1O6B0/uf4brqyBR/evOiMP3chzu9drBjSoaLhQCZamDj2iS5spmlCNVTopmEFiEzTug8D\numEv7e/5ZN+MJ0DnYuyntQxG0mMYTY+iLliDKn/lOf2+nL0jB/B6/w7cuvhGlPtK5+R3XgxM08Su\n4X14oetFXNdwNTbUXnbe/u2EksTekQPoSw4gZIdxwu4QIp4wwu4QAi7/WVczSKhJZzK2P5mrljCA\nuJKY47/i9ARYEysBVwBBVwBBdwBB+3HA5Ydf9sPv8jmBHL/sg9/lh1t0zfmkREJJ4qXuP6I70QfD\nNApa9Zkw7BN7ur00oOgKYko8b0JleqIgOhMIVf4KrKuc+2DOdI5G23F0/HhBm8nxbOyUFUjyRdxh\nVPkrUO2vtFph+itR5a9Audc6mZ1rXagbxrT3FV3FUGoYfckB9CUG0JccwHg2VvBviIKIgMuPuJJA\nubcM/3v1R9EUbijKc5GT1tLYPrATf+zZhoHUEIDJ96Df5UNADiDgst5jAZcfAdkPj+RGTInbQUkr\nPJmdJsyVmz4rzvWNFkmQUOqJoMxbat9KUOYtRVpL4w/df7TDOS5cU78R7226FhHP6aviFVNKTaNj\nogvt4504Nt6BgeQgktrp33sBlx+yIBW0FJUECY2heicU0hppmrOKQDNhmibeGtyFJ4/+Egk1icZQ\nPW5oeS8EQXCC6VndCqVn9SwUY/K+4AIM1bTaqwoyZFFyWq3mf00SJWQ1KzxptS5NI6VlkLGXafvr\nZ6pM6JO9CLutkKBuGs6YP12lSwHCSe/ZgMtvBzVr8gKbPnRNdFtBrFgnRuw2jUCuFXI9FpW0oDnU\n4FQiLbjZ1d9ylTryeSUvSrxWcKg0FyLyljhLWZCtCVNDsUPnmj2Bqtihc80JoZowCsLeTgA8b9mX\nGMCh6FEA1sT6tY1XYVPt+nMOes/WeDaG1/rewKt9bzjbx5ZwE66u34hKX7nVYnZ4v9MSUxRELC5Z\nhDUVVovZ/GM10zQxoSTQl+xHf2IAvckB9Ces/frUypteyYu6oPX65od38ttDTihxa7J8wpo4nzpp\nbgXxBajTtC7O/5mIJ4xYdgK6qcMne7Gp9nJsrr/ynIJQGS2L7ngPOiZOoDN2AscnugqOXURBREOw\nFvXBOvQlBnAi3uO8x0PuIFaWLcPKsqVYXra0oEpMVlewd3g/3hrahf2jh53x1hZpxeU1a3Fp5ZoZ\nV+mczfG+Zmg4Em3HnpED2DtywHkvyKKM5aWLsaZiFZaVLUFPog+7h/dh78gB57UIugK4pHIVLqlc\njaWli+ESZcSVBJ47/lu81vcmTJhYW/ku3Lr4g6ecjJ5OLBvHjsG3sX1gp9NKOF/QFbDaQAQqUeOv\nQnWgCmXe0pOqPk5MqfoYVxLO9mhZ6WLctuSmogbfi0k1NOwc3I3ueC96kwPom6atuCRIdtXKaoiC\n6IRxkmoScTU54yrGpxNw+dEUarCCL6EGNIXqUeYtPevjS0VX0BE74YRyOiZOFBznVvkqEHAFoNkX\nOuUuBlDzLhDIjTeXKFthQjuQ0xRqmFEltvxQYOdENzonTqA30V+wD/TJXutzgytgfYZwB5zHQVcA\n5b4yVPkrEHGHz+sFfIYvgxcPb8fu4X1OG17Aqk61tnI1LqlajepZfnbPtXR/6uhzGE6PIuDy48bW\n9+OquitOGQIbTo3imWO/wu6R/RAgYFPtetzU9oEzVkt2/g7TwPaBnXj22K8RVxOo8lXg9qU3Y1X5\nshn9/6qu4vcntuKFrhehGioWRVpw6+IPYkJJ4MDoIRwYO1JQgbEhWIeV5cuwqnw5WsNNGEmP4u3h\nvdg5tAe9iX4Ak4GdS6vW4JKKlU4l64HkELYP7MAbAzud7We5twwbatbhiprLnP3NSHoMr/S+jtf6\n33DCzKsrlmNz/ZVYXrbEeV+quorfnXgZv+t6CZpdUffOpbecsdJpd7wPodJ2EwAAHQZJREFUz3f8\nDntHDgAAlpQswgdb34cqf2XeNrBwe5i/jXRLblT4ylDpq3AqJ1farc/zj0/GszH8fweewJHoMUTc\nIdyz8k6sKFs6o9cFAHYO7cHPDj+NpJrCstLFuGfFHfC7/BhKDWMgOYTB1BAGUsMYTA5hKDXshKeA\nyVb3udbcs92XZ3UFR6PtdjjrEEbyWpQD1jbDqgZYa99qUBeohVtyoyPWhSPRYzgcbUdXvNvZHsiC\nhNZIM5aWtqEuUIPD0XbsHt7nVKb2SG6sKl+OtZWrsap8+VlXnz6T2Z7nK6jCaFdezDgXeGSgGErB\nxY+SmHfRoyg5XxcEASPpUafy5UBycNqgfUD2I61PfpYQBREt4UYsLWnDktI2LIo0F4R4o5lxvNTz\nCl7t3Y6MnoVHcuOqug24rvFqlHkLzxWqhoY3Bnbgd10vYyQ9ClEQcVnVWryv+do5u/AvrWXQm+hH\nX6IfvQkr/BnIfV53+a3P7vLkZ3i/7IdbcqE73ov/6XkNbw2+DdXQ4BJduKLmUmyuv/KkYPzpmKaJ\naHYcvYl+50KSzonugv1j0BVAa6QJi8ItaAjVYSA1hCPRdhwb70A67wK5Sl85lpa2YUlJG5aULoJX\n8iChJhFXEvYyiYSSQFxNWPfVBBJKAqOZ6LQX2gVkP6rsczWlrjKE5BKE3AEEPD6E3H6EPNb5jan7\ni4yWwTPtv8Yrva9DgID3Nr0bN7RumVXF8INjR/DMsefRm+iHLMpYWbYMtYFq1ASqrJu/6pTh8Hyq\nrqI3PoATcatLRk+iD/2pASiGYl+cZ52XCbgC1n1X0HkcdAXgl33OZ+pcVWdnKUqQBQmyKELMVcu2\n6uIDEApaxhlOmR4g5J/Z+UbO750/DOlQ0XAgEy1MHPtECxPHPl3opoZ3snoWYq4po5Br0Sg4/d4n\n7wt2i6jCD8SSYH0oFu0Pxy7JZZ9A9yPoCsLv8r2j26ZY7ZEymMjGEVPimMhOIGZXs8h9zRQ0tIUW\nYV31JagL1Mx7tT9FVxGzQzuxbAzRbAyaoaHSV46qQCWqfBVFOYGZVFPoSwygPzlgT2gNYCg1jGWl\ni3HXslvP2BJrLpmmifFszKnMNpv34NRqZ9ZtDCNp60Szz6n4NlmJzzelIp8syJjJ2yCrKxjLjGM0\nM4axzDjGMlGMZaLThuncogvXNGzCe5vePeNJmPNN1VVrfGQnEFMmrGV2AuN5j7N6Fk2hBiyKNKM1\n0jyrKi3FlFCSePrYr7B9YMd5+zfdogs+2Qefy2dXUPQi5Ao61YjCnpBdtcQKcE53EtQwDSTVFKLZ\ncYxnrNBO1A7vjGdiMGA4FdTqAtWoCVQj5DpzW7dYdgLHY11oj3WgfbwTPXa4cToCBARdAYTt9Qy7\nQwi6A8hoWWt9MuMYz8amPfFcLEtKFuG6xqvxroqV874P0g0dB8YO45Xe17F/9HDBxIpbcmNV2TKs\nqVyFVeXLZ10txDANjKaj6Ev2oy8xaC8HMJQeOen1CrtDqPZXYtTezuSr8legOdSElkgjWsKNqA/W\nQRYkpLV0wfjNje1xZ2zHEHD5cXXdRlxRs64obTVN08RYZhydE11OcKc73gvN1CEKItoiLVhZtgwr\nypehPlgzo9c7oSaxa2gv3hrc5VQ1FAUR9cFauEWXVT1EkiHbVURcU5bhkB/xRNpuX2RVC9VN3Qn/\nWu1YDCSUJA6NHXHCawHZj9UVK7CmYiWWly2d9vnSDA1Ho8exa3gvdo/sd/YHXsmL5WWLcTh6DGkt\ng9pANW5f8qGCKhtnI6EmMZgctiduhzCYHMZAagijp6m2NZVTedAOml9Rc9mctCa/0EwocSeYnFv2\nJwqDci5RRtAVdEIlAZcfIVfQDpr44RYnt+O55zfX1sG5DyChJnAi3ovuiZ6TJroDLj8ag1a1mtpA\nNQQI0waqjbz7GT2Lzlg3TsR7nCCVAAF1wRosLmnF4pJFaIu0njH8m2t7rRoq3OKpKzDPlqKrGMuM\nwSf7EXT5z1tl5tnK/6wfy05Y7YyH9+HIeLuzza0NVGNV+XIEXQF4JDc8kgduyT3t/bgSxzPHnseh\n6FGIgojN9ZtwQ+uWGe8LDo0dxVNHn0NfcgBeyYMPtLwH66rWIK4mpoToEnnBOqsyn2pocIsu/EnL\ne3Fd0zVnVXV5NB3FU8eew+7hfQVf98k+LC9bglVly7CyfNlpL3gaTA3j7aG9eHtojxMalAQJy0oX\nI6mm0BW3Ksx5JS/WVa3BhtrLsCjSfMptvaKr2Dm0G1t7tjn/b6WvHJvrN6HcV4anjz2PkfQoIu4Q\nbltyE9ZVXTKrbVXXRDd+1fE7pxLvmQRcfoTcISi6csoqpgGX3w7vlOHg6BEktRTeVbESH13+v2Yc\nHs0Xy8bx00NPYt/oQUiCNG2Y2yO57TBmlbX0V6KtpPWsq55NJ64k0Jvod259iX70JwcLgkFA4QUv\noiCiOdSApaWLsXSacAlgHft0TXRj1/A+7Bra62wjZVHGirIlWFOxGmXekoL2zZOVv0WnjbNoT+bD\n2Raf/NrkpoWDJW50Dw471YEnb3mPtRRSatqpsFqMCzuCroAdkiisjhxyB5HRMmiPdeFotB1Hxttx\nYmIyxCwJkhXaKW3DWGYcbw6+DcM0EHaHcF3D1bi6fuMZP6vrho63h/bgha6XnEqAl1Sswnua3o1y\nX6lz/CSfpvtB7ri1N9GHnrz3xuiU/dxM5FflqvCWYXPDldhUu94J+J0r3dCd0M7xWCc6Jk6cdPyc\n+7eXlLbZwZxFZ1WhEZg8B2G1IreOxYZSwxhMDWMkPXbGizk8khs+2br4zSd7MZqJYjwbQ22gGves\nuAPN4cazWi/DNPDGwE483/HfJ/39AgSUeUud0E6t33pv6qaOnngfuhO96In3oT85WLAdEgUR1f5K\nlHpKkNLSSChWFe5ctbq5Itpj3ukEYG8PZFHGB1u34IqadWf8HTzHf/4wpENFw4FMtDBx7BMtTBz7\nRAsPxz3NNVVXMZadDO0ouor11Wvn9MQ5Te+IXaHKc4oJtfxlTVUJBodi0Mz8lqu63YJQg2bo0EwN\nuqE7LUutm3XyVD7LNqTzIasr6IydQG+iD17Zh7A76FR9C7oCM5pQzWhZJzgYtUNE0ew4dFO3TuxL\nrryAxMn3JVGCCHEyTCoIEPPu55Z+2YcKX/FaWp2L0XQU2/rfRFJNYVX5MiwrXQxXEUJqqqFhMDnk\nhAn6kwPoTQwgmh1H0BVAS7gRLWG7fVS44by2EpoLub+v3Fd2zu3Uoplx7BjajR2DuzCQHIKaVylk\nLlR4y7CmcpXVfjjSMqvwgWEaOB7rwu7hfdg1vA9jmSh8shcfbH0fNtdvKmqQQdVVDKdHneBONBtF\nwBWwwziT1R/DnhC8kveiC+TMlGEaGMuMW2FFd6AobbNTasoK7MR7cSLegxPTBHdmQhRENIbqsbik\nFUtKFmFRpOUdN/bn26mO+ZNqCntHDmDX8D4cHDviTBzP1IqypbhtyU2oDVTPep10Q8erfW/gVx0v\nnLGapiiIzthtCNbihtYtZz2hnO/A6GG82rcd1f4qrCxfhtZw01ltn4ZSI3h7aA/eHtqD7kQfBAhY\nUb4UG2ouw5qKVbMOdXdNdON/el7DjqHdzmsiCiKubbgKN7RuOaf9x/FYF17ufgUGzMnt4ZRtY9AV\nKDjWUw0NY+kxDNvVO4ftducj6VGMpqPQTR0u0YXbltyIq+s2ntN21TRNbOt/Cy91/xFBdxA1/kpU\n25UvagJV570KVY5u6BhKjxQEdxJqCosizVhWuhhtJa2zel1M00RfcgC7hvZi1/C+adtIni9eyYuA\nyzflQg7rAo78Czy8sgce0W0FfHOtxE0dhqFDt1uM51qKG6aBMm8pagNVqA3UzOqzYFrLoH28A0fH\nj+NItB3d8V7n+KbGX4X3NL0bl9dcOuuAnmEa2DdyEL/terGgTWuOAMFpjZh/HC8KIobTIydVrA26\nAmgI1qEuWGMva+ESZaQ0K/yUUtN2AMpqYZ1Uk0hp1jLiCePquo1YWb7svITyx7MxHI91oTfehyp/\nJZaULjqp8lAxaIaGkfQYBlPDiGbG7aqs6ckqrWraqdSaq9AqCSK2NF+L97e856xCmFOZpom4msBA\nchD9ySEMJIes+6nB01brdoky6oK1aAzWoSFUj8ZQnV1B6+TtuWpoSOa1CM3dUmoKet74sELJeY+n\nfM84RTVo3RlXJm5o3YIr6y4/49/Nc33nz7yEdAzDwNe//nUcPnwYbrcbDz30EJqbm53vv/jii3js\nsccgyzJuu+023HHHHaf9fXyzXJg4kIkWJo59ooWJY59o4eG4J1qYOPbpnUbRVbhOc4UzwamGo9hh\nO0VXoRlWG7Zc259g2I2JWAaiIObd7OL6eY9dohtl3pI5eb5N08Rgahhhd+i8VqajC1MuuDOUGobg\nXCUu5rVJKbwviy7UBqqLUu1qIZnJft9q2ddrt8vMIqurTutMxW6jaS0V6KaBjbWXYXX5inPeTqTU\nFH5/YivGMtGCynb5oRG//M6pcDqWiUK2q3Sdq4SSxLb+NzGYGsZ1jVdfkG34coE/r+wpaE9JszOU\nGsb+0cNIa2mnrXXhpL3hhF904+QKQ9ONQwECgn4fZN1d0IIp174710L5Qq0AlpPW0mgf74Qsylha\n2nbO2wLTNHEk2o63BnfZLYEnj5vU3H1Dhapb91VTQ4W3zAnj5Nqehd0hHpfOsVxr9/P1nkyqKSe0\nk2s53hiqR0OwDtX+ygt+bJwOP++fP/MS0vnd736HF198EY888gh27dqFH/zgB/j+978PAFBVFTfc\ncAOefPJJ+Hw+3H333fjBD36AioqKU/4+vlkuTBzIRAsTxz7RwsSxT7TwcNwTLUwc+0QLE8c+0cLE\nsU+0MHHsEy1MHPvnz+lCOkWLF+/YsQPXXHMNAGDt2rXYt2+yf2d7ezuampoQiUTgdrtx2WWX4c03\n3yzWqhARERERERERERERERERERERzauihXQSiQSCwck+gpIkQdM053uh0GRyKBAIIJE4dW83IiIi\nIiIiIiIiIiIiIiIiIqJ3MrlYvzgYDCKZTDqPDcOALMvTfi+ZTBaEdqZTWuqHLL9z+7tdzE5XqomI\nLl4c+0QLE8c+0cLDcU+0MHHsEy1MHPtECxPHPtHCxLFPtDBx7M+/ooV01q1bh5deegk33HADdu3a\nhaVLlzrfa2trQ1dXF8bHx+H3+/HWW2/hvvvuO+3vi0ZTxVpVOgfsW0e0MHHsEy1MHPtECw/HPdHC\nxLFPtDBx7BMtTBz7RAsTxz7RwsSxf/6cLgxVtJDOli1b8Oqrr+Kuu+6CaZp4+OGH8dxzzyGVSuHO\nO+/E/fffj/vuuw+maeK2225DdXV1sVaFiIiIiIiIiIiIiIiIiIiIiGheFS2kI4oiHnjggYKvtbW1\nOfevv/56XH/99cX654mIiIiIiIiIiIiIiIiIiIiILhjifK8AEREREREREREREREREREREdHFjiEd\nIiIiIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIi\nIioyhnSIiIiIiIiIiIiIiIiIiIiIiIqMIR0iIiIiIiIiIiIiIiIiIiIioiJjSIeIiIiIiIiIiIiI\niIiIiIiIqMgY0iEiIiIiIiIiIiIiIiIiIiIiKjKGdIiIiIiIiIiIiIiIiIiIiIiIiowhHSIiIiIi\nIiIiIiIiIiIiIiKiImNIh4iIiIiIiIiIiIiIiIiIiIioyBjSISIiIiIiIiIiIiIiIiIiIiIqMoZ0\niIiIiIiIiIiIiIiIiIiIiIiKjCEdIiIiIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiI\niKjIGNIhIiIiIiIiIiIiIiIiIiIiIioyhnSIiIiIiIiIiIiIiIiIiIiIiIpMME3TnO+VICIiIiIi\nIiIiIiIiIiIiIiK6mLGSDhERERERERERERERERERERFRkTGkQ0RERERERERERERERERERERUZAzp\nEBEREREREREREREREREREREVGUM6RERERERERERERERERERERERFxpAOERERERERERERERERERER\nEVGRMaRDRERERERERERERERERERERFRk8nyvAL3zGIaBr3/96zh8+DDcbjceeughNDc3z/dqEVER\nqKqKL3/5y+jt7YWiKPjUpz6F2tpa/Pmf/zlaWloAAHfffTduuOGG+V1RIppzH/7whxEMBgEADQ0N\n+OQnP4n7778fgiBgyZIl+NrXvgZRZN6b6GLy9NNP45lnngEAZLNZHDx4EE888QT3+0QXsd27d+Mf\n//Ef8fjjj6Orq2vaff3Pf/5z/OxnP4Msy/jUpz6F6667br5Xm4jOUf7YP3jwIB588EFIkgS3241v\nfetbqKiowEMPPYSdO3ciEAgAAL73ve8hFArN85oT0bnIH/sHDhyY9jif+32ii0/+2P/85z+PkZER\nAEBvby8uueQSfOc73+F+n+giMt283uLFi/l5/wLDkA7N2u9//3soioInnngCu3btwiOPPILvf//7\n871aRFQEv/zlL1FSUoJHH30U4+PjuOWWW/DpT38aH//4x/GJT3xivlePiIokm83CNE08/vjjztc+\n+clP4nOf+xw2bNiAr371q/jDH/6ALVu2zONaEtFcu/XWW3HrrbcCAL7xjW/gtttuw/79+7nfJ7pI\n/ehHP8Ivf/lL+Hw+AMDf//3fn7SvX7t2LR5//HE89dRTyGaz+MhHPoKrrroKbrd7nteeiM7W1LH/\nzW9+E1/5ylewYsUK/OxnP8OPfvQjfOlLX8L+/fvx4x//GGVlZfO8xkQ0F6aO/emO84eHh7nfJ7rI\nTB373/nOdwAAsVgM9957L770pS8BAPf7RBeR6eb1li9fzs/7Fxhe/kyztmPHDlxzzTUAgLVr12Lf\nvn3zvEZEVCwf+MAH8Fd/9VcAANM0IUkS9u3bh5dffhl/+qd/ii9/+ctIJBLzvJZENNcOHTqEdDqN\nT3ziE7j33nuxa9cu7N+/H1dccQUAYPPmzXjttdfmeS2JqFj27t2LY8eO4c477+R+n+gi1tTUhO9+\n97vO4+n29Xv27MGll14Kt9uNUCiEpqYmHDp0aL5WmYjmwNSx/+1vfxsrVqwAAOi6Do/HA8Mw0NXV\nha9+9au466678OSTT87X6hLRHJk69qc7zud+n+jiM3Xs53z3u9/FRz/6UVRVVXG/T3SRmW5ej5/3\nLzwM6dCsJRIJp/0FAEiSBE3T5nGNiKhYAoEAgsEgEokEPvvZz+Jzn/sc1qxZgy9+8Yv4j//4DzQ2\nNuKxxx6b79Ukojnm9Xpx33334d///d/xjW98A1/4whdgmiYEQQBgbRvi8fg8ryURFcsPfvADfPrT\nnwYA7veJLmLvf//7IcuTBZan29cnEomCMveBQIBhPaJ3uKljv6qqCgCwc+dO/OQnP8Gf/dmfIZVK\n4aMf/SgeffRR/PjHP8ZPf/pTnrAneoebOvanO87nfp/o4jN17APA6Ogotm3b5lTS5X6f6OIy3bwe\nP+9feBjSoVkLBoNIJpPOY8MwTtrJE9HFo7+/H/feey9uvvlm3HTTTdiyZQtWr14NANiyZQsOHDgw\nz2tIRHOttbUVH/rQhyAIAlpbW1FSUoLR0VHn+8lkEuFweB7XkIiKZWJiAh0dHdi4cSMAcL9PtICI\n4uQpoty+furn/2QyWXASj4guDr/+9a/xta99DT/84Q9RVlYGn8+He++9Fz6fD8FgEBs3buRkHdFF\nZrrjfO73iRaG3/72t7jxxhshSRIAcL9PdBGaOq/Hz/sXHoZ0aNbWrVuHrVu3AgB27dqFpUuXzvMa\nEVGxjIyM4BOf+AT+5m/+BrfffjsA4L777sOePXsAANu2bcOqVavmcxWJqAiefPJJPPLIIwCAwcFB\nJBIJXHXVVdi+fTsAYOvWrVi/fv18riIRFcmbb76JTZs2OY+53ydaOFauXHnSvn7NmjXYsWMHstks\n4vE42tvbeQ6A6CLz7LPP4ic/+Qkef/xxNDY2AgA6Oztx9913Q9d1qKqKnTt38hiA6CIz3XE+9/tE\nC8O2bduwefNm5zH3+0QXl+nm9fh5/8LD8ic0a1u2bMGrr76Ku+66C6Zp4uGHH57vVSKiIvm3f/s3\nTExM4Hvf+x6+973vAQDuv/9+PPzww3C5XKioqMCDDz44z2tJRHPt9ttvx5e+9CXcfffdEAQBDz/8\nMEpLS/GVr3wF3/72t7Fo0SK8//3vn+/VJKIi6OjoQENDg/P461//Oh588EHu94kWgL/92789aV8v\nSRLuuecefOQjH4Fpmvj85z8Pj8cz36tKRHNE13V885vfRG1tLT7zmc8AAC6//HJ89rOfxc0334w7\n7rgDLpcLN998M5YsWTLPa0tEc2m64/xgMMj9PtEC0NHR4QRzAaCtrY37faKLyHTzen/3d3+Hhx56\niJ/3LyCCaZrmfK8EEREREREREREREREREREREdHFjO2uiIiIiIiIiIiIiIiIiIiIiIiKjCEdIiIi\nIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIiIioy\nhnSIiIiIiIiIiIiIiIiIiIiIiIqMIR0iIiIiIiIiIjqlp59+Gvfff/98rwYRERERERER0TseQzpE\nREREREREREREREREREREREUmz/cKEBERERERERHRufvhD3+I3/zmN9B1HVdffTXuvvtu/MVf/AUa\nGxvR1dWFuro6PProoygpKcFLL72Ef/7nf4ZhGGhsbMQDDzyAiooKvPbaa3jkkUdgmibq6urwT//0\nTwCArq4u3HPPPejr68OmTZvw0EMPzfNfS0RERERERET0zsNKOkRERERERERE73Bbt27Fvn378OST\nT+IXv/gFBgcH8dxzz+HIkSP42Mc+hueffx5tbW3413/9V4yOjuKrX/0qHnvsMTz33HNYt24dHnjg\nASiKgi984Qv41re+heeeew7Lli3DM888AwDo7+/Hd7/7XfzmN7/B1q1bcfTo0Xn+i4mIiIiIiIiI\n3nlYSYeIiIiIiIiI6B1u27Zt2LNnD2699VYAQCaTgWmaaGlpwYYNGwAAt9xyC77whS/gqquuwpo1\na9DQ0AAAuPPOO/HDH/4Qhw8fRnV1NVasWAEA+Ou//msAwNNPP43169ejpKQEANDU1IRoNHq+/0Qi\nIiIiIiIionc8hnSIiIiIiIiIiN7hdF3Hxz72MXz84x8HAExMTGBgYACf//znnZ8xTROSJMEwjIL/\n1zRNaJoGl8tV8PV4PI5kMgkAkOXJU0iCIMA0zWL9KUREREREREREFy22uyIiIiIiIiIieofbuHEj\nnn32WSSTSWiahk9/+tPYt28fOjo6cPDgQQDAU089hc2bN+OSSy7B7t270dPTAwB44oknsGHDBrS2\ntmJsbAzHjh0DAPz4xz/Gf/7nf87b30REREREREREdLFhJR0iIiIiIiIione466+/HocOHcIdd9wB\nXddxzTXX4PLLL0ckEsG//Mu/4MSJE1i2bBkeeugh+P1+PPDAA/jLv/xLqKqKuro6fPOb34TH48Gj\njz6KL37xi1BVFU1NTfiHf/gHvPDCC/P95xERERERERERXRQEk/WJiYiIiIiIiIguOj09Pbj33nvx\n4osvzveqEBERERERERER2O6KiIiIiIiIiIiIiIiIiIiIiKjoWEmHiIiIiIiIiIiIiIiIiIiIiKjI\nWEmHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIiIioyhnSIiIiIiIiIiIiIiIiI\niIiIiIqMIR0iIiIiIiIiIiIiIiIiIiIioiJjSIeIiIiIiIiIiIiIiIiIiIiIqMgY0iEiIiIiIiIi\nIiIiIiIiIiIiKrL/B8QZwLn1LW59AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACO8AAAJoCAYAAAA0mVe1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmAV2W9P/D3rDAwA8iieEXNBdHSMkVNQSvJvGZ6lXLf\nbpndm5VWVmo3zaXU6mYmaWop7itSuZsaaWKuv9xSFlETcQERkGFmmPX3B/HNiRlkmeHLdV6vv873\nnPOc8zmH8/gHvP08JW1tbW0BAAAAAAAAAADWuNJiFwAAAAAAAAAAAD2V8A4AAAAAAAAAABSJ8A4A\nAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAPcLEiRMz\nYsSIjBgxIo888kixywEAAABIIrwDAAAAAAAAAABFI7wDAAAAAAAAAABFIrwDAAAAAAAAAABFIrwD\nAAAAAAAAAABFIrwDAAAAAAAAAABFUl7sAgAAAIA1Y8SIEUmSU045JYcddlhuueWW3HTTTZk2bVqa\nmpoybNiw7LvvvjnqqKNSWVmZJHn00UdzxRVX5Kmnnsr8+fOz7rrrZrfddsuxxx6bddddt9N71dfX\n57rrrsu9996bF198MbW1tRkwYEC23nrr7LPPPtlrr71SWrr8/6foT3/6U+6+++789a9/zdy5c1NX\nV5fq6uoMGzYsO++8cw4//PAMHTp0mXHjxo3LL3/5y9TU1OTxxx/PnDlzMn78+EyaNCmvv/56ysvL\ns9lmm2WvvfbKoYceWnjW7vDMM8/khhtuyGOPPZbXX389paWlGThwYLbddtt85jOfyZgxY1JSUtLp\n+L/85S+55ppr8re//S1z587NeuutlzFjxuTLX/5yysvLs8MOOyRJzj777IwdO7Yw7qSTTspvf/vb\nJMmDDz6YIUOGdHj9//qv/8qf/vSnJMnUqVM7PGfmzJm56aab8uijj2bmzJlZsGBBKisrM3DgwHzk\nIx/J2LFjM2rUqGXGvfrqqxkzZkyS5IILLsiQIUNy9tln57nnnkvv3r2z2Wab5Qc/+EG23HLLwpjV\n/W7a2trypz/9Kdddd12mTZuWt99+O+uvv3723HPPHHPMMZ2O62qr+hyPPPJIjjzyyCTJ7373u8ye\nPTs///nPM2PGjPTt2zcjRozIT37ykzQ1Na30u507d26uu+663H///Xn55ZdTX1+fgQMH5sMf/nD2\n2WeffPrTn+7wW1zRmtZbb73ueJUAAADQIwjvAAAAQA/T1NSUr3zlK5k0aVK7/dOmTcv//u//5qGH\nHsqll16aCy64IBdccEHa2toK58yaNSvXXXdd7rvvvkyYMKHDf7B/+umn87WvfS1vvvlmu/1z5szJ\npEmTMmnSpFx11VU5//zzOwwAzZs3L1/72tfy+OOPL3Ns/vz5mT9/fp599tlcc801ufDCC7Pzzjt3\n+qyPP/54vvrVr2b+/Pnt9j/55JN58sknM3HixFx55ZUZMGBAp9dYVb/+9a/zs5/9rN37S5a8w1mz\nZuX222/PLrvskgsuuCB9+vRpd05zc3NOP/303Hjjje32v/LKKxk/fnzuuOOOjBs3rstr/lcXX3xx\nzj///DQ3N7fb39TUlEWLFmXmzJm57bbbcsghh+S0007r9DrPPfdcLr300jQ0NCRJFi9enClTpmTD\nDTcsnLO6301DQ0NOOOGE3Hvvve32v/zyy7n44otzyy23ZP/991/ZV7DSVvc5lrr//vvzi1/8Iq2t\nrUmSxsbGzJo1K+uuu25mzZpVOG9F3u0dd9yRU089NQsXLmx3jzfffDP33HNP7rnnnuywww45//zz\nM3DgwFWqCQAAAFh1wjsAAADQw1x88cWZN29ettlmmxx55JEZNmxYpk+fnnPPPTfz58/PQw89lP/+\n7//O/fffn0033TRHH310hg8fntmzZ+eSSy7J008/Xei+cc4557S79vTp03PUUUelrq4uffv2zaGH\nHpqdd945NTU1mTVrVm677bbce++9+etf/5qjjz46N9xwwzLBleOOO64Q3Nlll12y//7759/+7d/S\n1NSUv//977n66qszffr01NXV5aSTTsof//jHlJWVLfOcDQ0NOfbYY7No0aIccsghGTNmTKqrq/Pc\nc8/loosuyuzZszN16tT8/Oc/z+mnn96l7/ixxx4rBHe23HLLHHXUUdlkk03S2tqaF198MZdffnle\neOGFPPTQQzn//PNz0kkntRv/4x//uBDc2WCDDfLlL385W265ZebMmZPrr78+Dz74YI4//vgurflf\n3XzzzTn33HOTJEOHDs3hhx+eD37wg+nbt29ee+21TJo0KbfddltaW1tz3XXXZcyYMdl11107vNav\nfvWrVFRU5IQTTsjIkSPzyiuv5O23307fvn2TdM13893vfrcQ3BkxYkS++MUvZpNNNsmbb76Z66+/\nPpMnT85FF13UjW+sa55jqV/84hepqanJ8ccfn6222irTpk1LZWXlMt1x3uvd/uEPf8gJJ5yQ1tbW\nVFRU5IADDsjuu++efv365cUXX8y1116bp59+Oo899liOPPLI3HDDDYWxq1oTAAAAsHJK2v71f/8C\nAAAA3peWLpuVJKNGjcpFF13Ubsmo+++/P1/+8pcLv7fZZptceeWV7cIFDQ0N2XPPPfPGG29kwIAB\nefjhh9v9w/1+++2X559/PkOHDs1VV12VjTbaaJk6rrnmmpxxxhlJkmOOOSbf/va3C8ceeuihfOEL\nX0iS7LHHHhk3btwywYCWlpYccsgheeqppwrXGzlyZOH40mWzkqSsrCwXXXRRdtttt3bXmDlzZvbZ\nZ5/U19enuro6Dz/8cCoqKt7rFa6wk08+ORMnTsyAAQNy7733pqampt3x2tra7L///nnllVdSU1OT\nRx55pBBAmjJlSsaOHZuWlpZsvvnmueaaa5bpDPSjH/0oV155ZeF3Vy+b1dbWlk984hN544030q9f\nv0ycOLFdJ5elrr766px55plJks9//vP50Y9+VDj27mWzkuTMM8/MgQce2GEdq/vdTJ48OV/84heT\nJDvvvHMuueSSZZZD++EPf5irrrqq8PvKK6/MTjvt1GE9q2p1n+PdS1QlyWWXXfaeS5Ilnb/b2tra\njBkzJvPnz09VVVV+85vftJsrSdLa2ppTTjklEyZMSJIcccQR+f73v7/SNQEAAACrbvmLywMAAADv\nSyeeeOIy4YbddtstVVVVhd/f+c53lukK0rt378I/3C9dwmqpyZMn5/nnny9cv6PgQpIcdthh2XHH\nHZMk1113XZqamgrHXnrppWy44YapqKjI1772tQ47epSVleUzn/lM4ffs2bM7fc499thjmeBOkmy4\n4YbZZZddkiwJOLz66qudXmNVzJkzJ0kyaNCgZYI7SVJdXZ1vfOMb+cIXvpBvfvObWbx4ceHYxIkT\n09LSkiQ57bTTOlzS68QTT8zw4cO7tOZ3mzVrVvr375+ampqMHTu2w+BOkuy7776F7X9dJurdevfu\nnf3226/DY13x3dxwww1JlnwbZ5111jLf9tJrb7zxxp3WuLq64jnebaONNlqhkMzy3u2ECRMKc/Tr\nX//6MsGdJCktLc0PfvCDfOADH0iS3HjjjcssM7eyNQEAAAArR3gHAAAAephBgwa168KzVElJSdZd\nd90kSWVlZbbffvtOxy9VV1dX2F7awSXJe/4D/8c//vEkS4IzzzzzTGH/YYcdlnvvvTdPP/10ttxy\ny07Hv7uTTGNjY6fnjR49utNj7w5XLFq0aLn1rqxNN900STJjxox8//vfz6xZs5Y5Z++9985JJ52U\nww47rF1Iaul7XH/99bPDDjt0eP3y8vIccMABXVrzuw0bNiy33HJLHn/88Zx44omdnldTU5PevXsn\nWf6fwwc/+MEOAzXJ6n83zc3NmTx5cpJku+22y7/92791OLaioqJd2KirdcX3/24f+chHVui+y3u3\nDz74YJIloablfS+VlZWF44sXL86jjz66WjUBAAAAK6e82AUAAAAAa9YGG2zQ6bGlIYB11lkn5eUd\n/7XBu4MC716Ne2nXkSSFziIrYubMmdluu+3a7SstLS1cf/bs2Zk5c2ZefvnlvPDCC3nmmWcKS2Yl\nS5b96czynvXdgZmlnW66ymGHHZYJEyZk0aJFuemmm3LTTTdl+PDh2WWXXbLLLrtkxx13XKar0dI6\nZs6cmSTLDS8lyUc/+tEurbkzS/8samtrM3PmzLzyyiuZMWNGnn/++TzxxBNpaGhI0v5b+Ffrr79+\np8dW97uZPXt2amtrk7z3O9tmm21W+Porqyu//2T572xFz5s+fXqSZJNNNkm/fv2We51tt922sD1t\n2rR8+tOfXuWaAAAAgJUjvAMAAAA9TN++fd/znM6CO8szb968VSkn77zzTrvfbW1tufPOO3PjjTfm\nqaeeatfdZ6mlgZL30lFAZql3L8m1vODJqth4441z6aWX5nvf+15efPHFJEuCFNOnT88VV1yRysrK\njBo1KgcffHA+8YlPFMbNmzevEEZaZ511lnuP9dZbr0tr7siMGTMyfvz4PPDAAx0ui9XRsmYdqa6u\n7vTY6n43b731VmFfR0uMvdvgwYNX6V4roqu+/6WW985W9Lyly18NHDjwPa/z7o5anS2btaI1AQAA\nACtHeAcAAAB6mLKysm65bnNzc5IloZPx48ev8Lh3h1AWL16c4447rt0SRCUlJRk2bFg23XTTbLXV\nVtluu+0yf/78fPe73+2y2rvDRz/60dx+++155JFHcs899+TPf/5zXnnllSRLlpiaNGlSJk2alH33\n3Tc//vGPU1pausKhpGTJMlCra3ldi26++eaceuqphT/XZEk4ZtNNN83w4cPzkY98JKNGjcpee+3V\nYcBqRa3ud7OiAaJk1UJpK6orvv93W5nn6szKhNLe/S109h12RU0AAADAsoR3AAAAgC6xtOtJXV1d\nRowYsVJBlKXOP//8QnBn6623zle/+tXsuOOOy3T8mDhx4mrXuyaUlpZm5513zs4775wkefXVV/OX\nv/wlkyZNyv3335/m5ubccsstGTVqVPbbb7/069cvZWVlaWlpydy5c5d77QULFnR6bEW7Ci1cuLDD\n/VOnTi0Ed/r27Zuvf/3r2WOPPTJs2LB257W2thaWzVpVq/vdrLvuuoXtt99+e7nnLu+dra6u+P67\nWv/+/TN79uz3fC9J+w5G/fv3786yAAAAgH9R/L9FAAAAAN4Xhg8fnmRJ95znn39+uec+8MADueyy\ny3L33XcXggUtLS25/vrrkyT9+vXLFVdckd13373DpXpee+21Lq6+a9XW1ubpp5/OzJkz2+0fNmxY\nDjjggFx44YU5//zzC/uXBpbKy8szYsSIJMnf/va35XbGWd47fnd3peWFa15//fUO999www2FTjKn\nnnpqvvCFLywT3EmSN954Y7k1rojV/W4GDx5cCM4888wzyx3/XtdfHav7HN1h6bf00ksvdbo811JP\nPfVUYXvTTTfttpoAAACAZQnvAAAAAF1i9OjRhe1rr7220/NaWlpy+umn58c//nGOO+641NfXJ1nS\nNaW2tjZJstFGG3UY2kmSpqam3HXXXe2utzZ5/fXXs/322+eAAw7IuHHjOj1v1113LXRnWbx4cWH/\nJz7xiSRLOqFMmjSp0/G///3vOz1WU1NT2J41a1aH50ydOjVvvPFGh8f+/ve/F7Y/9KEPdXqfW265\npbD97uW1VsbqfjdlZWUZM2ZMkuTpp5/O1KlTOxzf1tbWrt6utrrP0Z01tbS0ZMKECZ2e19jYmJtv\nvjnJkgDZTjvt1G01AQAAAMsS3gEAAAC6xKc+9alsuOGGSZKbb76506DE2WefnVdffTVJMmbMmGyw\nwQZJlgROysuXrPD9wgsvdNhdp7GxMT/4wQ8yffr0dvvWJuuvv3623HLLJMmdd96Zv/71rx2ed/vt\ntxe61myzzTaF/YccckiqqqqSJGeccUaH4ZsJEyYUuvV0ZGnHlSS5+uqrlzm+aNGinH766Z2OX2ed\ndQrbDzzwQIfn3H///bngggsKv1f1z2F1v5skOeKIIwrdhk488cQOu8xcfPHFefbZZ1epxhXRFc/R\n1T73uc+lX79+SZJx48Z1+C22trbmjDPOyMsvv5wk2W+//TJw4MBuqwkAAABYVnmxCwAAAADeH8rL\ny/PjH/84Rx11VJqamvLd7343kyZNyt57750hQ4Zk1qxZueGGG/Lwww8nSfr375/vfe97hfG9e/fO\nJz/5ydxzzz1paGjIEUcckS996UvZYost0tjYmClTpuTGG2/Miy++2O6+CxcuXKPPuSKOP/74fOUr\nX0ljY2P+8z//MwcffHB23HHHDB48OG+99VYeeOCBQqeTgQMH5tBDDy2MXXfddXPqqafm5JNPzhtv\nvJGxY8fmmGOOyXbbbZf6+vrcfvvtmThx4nLvv/vuu6dfv3555513cu+99+bYY4/NgQcemH79+uX5\n55/PlVdemZdffjkbbbRRXnnllWXG77XXXrn11luTJD//+c8zZ86cjBo1KtXV1Zk1a1buvvvu3HPP\nPWlrayuMWdo1aWWt7neTJFtttVW+9KUv5eKLL87zzz+f/fbbL8ccc0w++MEPZt68eZk4cWLuvvvu\n9OnTJ3V1datU55p4jq5WU1OTH/7whznuuONSV1eXI444IgcddFA++clPpqamJi+99FKuvfbawpJZ\nH/jAB7q9JgAAAGBZwjsAAABAl9l+++1zySWX5Jvf/Gbmz5+fO+64I3fccccy5w0dOjQXXHBBhg0b\n1m7/Kaeckueffz6vvvpqXn311Zx22mnLjK2urs7JJ5+cU089NS0tLe268Kwtdt9993znO9/Jueee\nm4aGhlx++eW5/PLLlzlv6NChufDCCzNgwIB2+8eOHZuGhoacddZZmT9/fn7605+2O15TU5PPf/7z\nGT9+fIf379evX84+++x84xvfSFNTU+67777cd9997c459NBDs9lmm+XMM89cZvyYMWNy0EEH5YYb\nbkhTU1PGjx/f4b3Gjh2bBQsW5L777susWbNSX19f6Bq0Mlb3u0mSb37zm2lubs6ll16aWbNmLfPt\nDBgwICeeeGJOPvnkla5vRXXFc3S1PffcM+eee26+//3vp66uLldffXWH3ZhGjRqVn/zkJ+nbt2+3\n1wQAAAC0J7wDAAAAdKlddtkl9913X6677rr86U9/yowZM7Jw4cL06dMnm2++ecaMGZODDz441dXV\ny4xdb7318tvf/jaXXXZZ7rvvvrzyyitpbm5OdXV1Ntlkk4wePToHHXRQhgwZkokTJ+aJJ57IAw88\nkLq6uvTp06cIT9u5L33pSxk9enSuu+66PPHEE3nttdeyePHiDBgwIJtttlnGjBmTAw88sNOwy6GH\nHpqPfexjueyyyzJ58uTMmTMnAwcOzCc+8Yl85StfKXRL6cynPvWp3H777bn00kszefLkzJ49OzU1\nNdlmm21y6KGH5uMf/3iHIY6lzjjjjHzsYx/LhAkT8re//S0LFy5Mr169MnTo0Hz4wx/OAQcckJEj\nR+amm27Kfffdl6amptxzzz3Zd999V+l9rc53kyQlJSX57ne/mz333DNXXHFFnnrqqcyePTuDBg3K\nbrvtlmOPPTZz5sxZpdrW5HN0h7333js77bRTrr766jzwwAOZOXNmFi9enKFDh2arrbbK2LFjs9tu\nu6WkpGSN1QQAAAD8U0nbu/sbAwAAAPB/wl133ZXjjz8+SXL22Wdn7NixRa4IAAAAgFVRWuwCAAAA\nAAAAAACgpxLeAQAAAAAAAACAIikvdgEAAAAAa4NFixbllVdeWe3rbLTRRunbt28XVER3a2xszIwZ\nM1b7Ouuvv34GDBjQBRUBAAAAPZHwDgAAAECSZ599NkceeeRqX+fKK6/MTjvt1AUV0d1mz56d/fbb\nb7Wvc/bZZ2fs2LFdUBEAAADQE1k2CwAAAAAAAAAAiqSkra2trdhFrI45cxYWuwT+xTrr9Mm8eXXF\nLgNYw8x96JnMfeiZzH3omcx96JnMfeiZzH3omcx96JnM/TVnyJCaTo/pvEOXKy8vK3YJQBGY+9Az\nmfvQM5n70DOZ+9AzmfvQM5n70DOZ+9AzmftrB+EdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAA\nAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEd\nAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAo\nEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAA\nAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAA\nAAAAAAAoEuEdutQjrz+Rb955ehqaG4pdCgAAAAAAAADAWk94hy41c+GszHrnjcypn1vsUgAAAAAA\nAAAA1nrCO3SpqvLeSZK6pvoiVwIAAAAAAAAAsPYT3qFL9anokySpb1758M4LL0zv6nJWyte+9uWM\nHj0yu+++S1HrAAAAAAAAAAB6DuEdulSh805zwwqPqa2tzXnn/W+OPvrw7ioLAAAAAAAAAGCtVF7s\nAnh/qSqvSpLUNdet8Jhx487N7bff0l0lAQAAAAAAAACstYR36FJ9/hHeqV+Jzjutra3dVc5K+eUv\nLyl2CQAAAAAAAABAD2PZLLpUn4ql4Z36IlcCAAAAAAAAALD2E96hS1WV906S1DUJ7wAAAAAAAAAA\nvBfLZtGl/rls1nuHdy699OKMH//rdvtGjx6ZJNl22+3yy19ekh/96LTceedt2XzzLfKb31yZX//6\nV7nrrtuycOHCDBo0JJ/85Jgce+xxhfGLFy/O3Xffkb/8ZXKmT5+aBQvmp7m5OTU1/bLJJptl1KjR\n2Wef/VNVVbVMPV/72pfz5JP/L5WVlfnjHx/qsK7jjvtWDjzw0Nx//x9z662/y7RpU7Nw4TtZZ52B\n2W67kTnwwEOyxRZbrtxLAwAAAAAAAAB6LOEdulSvsl4pLSlNXXNDl1/7zDNPzX33/aHw+/XXZ6V3\n796F31OnTsnJJ5+Q2bPfXGbs22/Pzdtvz80TTzyaiRMnZNy4izJkyLorXUNLS2tOP/37ueeeu9rt\nnz37zdx11+35wx/uzLe/fXL23Xf/lb42AAAAAAAAANDzCO/QpUpKStK3oip1K9B5Z7/9PpfddvtE\nfvObizJ58p+TJOPHX5Mkqarq0+7cF198IS+8MC3bbPORHHHEF9K7d+9MnvznfOYz+yZJFiyYn29+\n86t5550FKSsry2c+s0922WV01llnUBYuXJDp06flxhuvzfz58/Pqq6/kl788L6efftZKP9/111+V\nuXPn5gMf2CQHHnhoNttseBYufCd33nlr7rvvnrS2tua8836aHXfcOUOHDl3p6wMAAAAAAAAAPYvw\nDl2uT2Wf1De+d3hn0KDBGTRocPr161/YN3z4iA7PbW1tzQYbDMt5512QXr2WdNvZbruRheM33HBt\n3nlnQZLkq189PgceeGi78TvvPDp77fXZHHHEgamtrc2f/3x/mpubU16+clNg7ty52X77HfOTn/w8\nvXr1Kuz/2Md2SU1Nv/zudzensbEx9957Vw4//D9X6toAAAAAAAAAQM9TWuwCeP/pW1GV+hXovLOy\n9trrs4Xgzr966605GTx4SAYNGpSxYw/s8JwhQ9bNRz+6fZKksXFxIeyzsr7xjW+3C+4s9R//Mbaw\n/cIL01fp2gAAAAAAAABAz6Lzzgq68Y8v5LEps4tdxhq1w5br5sDdN1/pcX0r+6SxtSnNrc0pL+26\nT+xDH9qm02Pf+94Pkizp0FNa2nkmbeDAQYXtxsamla5hyJB1s8kmm3Z4bIMNhhW26+rqVvraAAAA\nAAAAAEDPI7xDl+tb0SdJUt/ckJrK6i677nrrrfee5ywN7jQ3N+eNN17Pa6/NysyZf8+MGS/kb397\nJjNmvFA4t62tdaVrGDp0/U6PVVX1KWy3tLSs9LUBAAAAAAAAgJ5HeGcFHbj75qvUhaYn6lNZlSSp\na67v0vBOnz7Lv1ZDQ0MmTrwp9957V2bMeKHDAE1paWlaW1c+tLPUuwM6/6qkpKSw3dbWtsr3AAAA\nAAAAAAB6DuEdulx15ZKAS11TfZde913ZmGW89tqsfOtbX8urr84s7KuoqMiGG26UjTfeJCNGbJlt\nt90+d999R37725u6tC4AAAAAAAAAgFUlvEOX61OxpPNOfXPXhneW57TT/qcQ3PnUp/bM5z9/ULbc\n8oMpL2//if/+9zevsZoAAAAAAAAAAN6L8A5drm/Fks47ayq8M2XKc3nuuWeTJNttNzKnnfajTs99\n88031khNAAAAAAAAAAArorTYBfD+03fpslkrGN4pWd56WCvg3UtljRixVafnvf76a3nmmacKv1ta\nWlbrvgAAAAAAAAAAq0t4hy7Xt/Ify2Y1NazQ+ZWVlYXturq6lb5f//4DCtuPP/5Impublzln7ty3\ncsopJ6Wpqamwr7GxcaXvBQAAAAAAAADQlSybRZdbumzWinbeGTRocGH7kksuyL//+94pLS3NFlts\nuULjP/zhbTNo0ODMnftWpk+fluOP/0rGjj0wQ4eun3feWZAnn/x/uf3232f+/Pntxi1aVLuCTwQA\nAAAAAAAA0D2Ed+hyK7ts1ujRu+Xyy3+TlpaWTJhwQyZMuCHrrTc0N9982wqN79WrV0455YyceOI3\ns3jx4jz11F/z1FN/Xea8DTfcKJ/97H/kV78alyR56aUXs802H1nBpwIAAAAAAAAA6HrdFt5pbW3N\naaedlqlTp6aysjI//OEPs/HGGxeO33bbbbniiitSVlaWLbbYIqeddlpKS0uz//77p7q6OkkybNiw\nnH322d1VIt2kb8U/ls1awfDO8OEjcs45P8sVV1yWGTNeSGtrS8rLy9PQsGLLbiXJyJE7Zvz4a3Ld\ndVfn8ceoAuYZAAAgAElEQVQfy1tvzU6yZEmtTTbZNJ/85Key5557paWlJePH/zoNDQ354x/vyb77\n7r/yDwgAAAAAAAAA0EVK2tra2rrjwn/4wx/yxz/+Meecc06efPLJXHzxxfnVr36VJGloaMhnP/vZ\n3Hrrramqqsq3vvWt7L333hk9enQOOuig/O53v1vh+8yZs7A7ymc19B/YO4dPOC5brjM8X//oMcUu\nB1hDhgyp8d9k6IHMfeiZzH3omcx96JnMfeiZzH3omcx96JnM/TVnyJCaTo+VdtdNn3jiiey6665J\nkm233TbPPvts4VhlZWWuv/76VFUt6dDS3NycXr16ZcqUKamvr88Xv/jFHHnkkXnyySe7qzy6UWVZ\nRSpKy1PfvOKdcwAAAAAAAAAAeqJuWzartra2sPxVkpSVlaW5uTnl5eUpLS3N4MGDkyRXXXVV6urq\nMmrUqEybNi1HH310DjjggLz88ss55phjctddd6W8vPMy11mnT8rLy7rrMVhFfSv7pLFt8XKTY8D7\njzkPPZO5Dz2TuQ89k7kPPZO5Dz2TuQ89k7kPPZO5X3zdFt6prq7OokWLCr9bW1vbhXBaW1vz05/+\nNC+99FLGjRuXkpKSbLLJJtl4440L2wMGDMicOXOy/vrrd3qfefPquusRWEVDhtSkV2nvLFy8SHst\n6EG01IOeydyHnsnch57J3IeeydyHnsnch57J3Ieeydxfc4qybNZ2222XBx54IEny5JNPZosttmh3\n/NRTT83ixYtz4YUXFpbPmjBhQs4555wkyZtvvpna2toMGTKku0qkG/Upr0pdc33a2tqKXQoAAAAA\nAAAAwFqr2zrv7LHHHpk8eXIOPvjgtLW15ayzzsqtt96aurq6bL311pkwYUJGjhyZo446Kkly5JFH\n5vOf/3xOPvnkHHLIISkpKclZZ5213CWzWHtVVfROa1trGlub0qusstjlAAAAAAAAAACslbotGVNa\nWpozzjij3b7NNtussD1lypQOx/3sZz/rrpJYQ1pa29KnfEk3pbqmOuEdAAAAAAAAAIBOdNuyWfRM\n9z3xao74wZ2pSK8kSX1zQ5ErAgAAAAAAAABYewnv0KXeXtiQhXVNaW4qS5LUNdcXuSIAAAAAAAAA\ngLWX8A5dap3qJR132pqXrMhWL7wDAAAAAAAAANAp4R261IB/hHeaFy8J79Q1Ce8AAAAAAAAAAHRG\neIcutU7NkvBO4+Iln1Z9c0MxywEAAAAAAAAAWKsJ79Cllnbeaahf8mnVNdcVsxwAAAAAAAAAgLWa\n8A5dqn91ZZKkbtGS3zrvAAAAAAAAAAB0TniHLlVeVpoB1b1SW9uWJKlrri9yRQAAAAAAAAAAay/h\nHbrcwP698847S7brm4R3AAAAAAAAAAA6I7xDlxvYr3cWN5Qk0XkHAAAAAAAAAGB5hHfocoP6905S\nmsrSytQ3NxS7HAAAAAAAAACAtZbwDl1uUP+qJEllaW+ddwAAAAAAAAAAlkN4hy43sF/vJEl5W2Xq\nhXcAAAAAAAAAADolvEOXW7JsVlLaVpmG5sVpbWstckUAAAAAAAAAAGsn4R263NLwTltzedrSlobm\nhhUa98IL07uzrNXy+uuvpa5uUbHLAAAAAAAAAADeZ4R36HJLl81qbS5PktS9R3intrY25533vzn6\n6MO7vbaV1djYmPHjf53DDz8gCxYsKHY5AAAAAAAAAMD7THmxC+D9p1/fypSXlaRpcVlSmdQ31y/3\n/HHjzs3tt9+yhqpbOddee2UuvfTiYpcBAAAAAAAAALxP6bxDlyspKcmA6l5pbFjyedU1LT+809ra\nuibKWiUtLS3FLgEAAAAAAAAAeB8T3qFbDKjulYb6JZ/Xe3XeAQAAAAAAAADoqYR36BYDanqltXnJ\nqmx1zQ1FrgYAAAAAAAAAYO1UXuwCeH8aUF2ZtjcqkiR1zXUdnnPppRdn/Phft9s3evTIJMm2226X\nX/7yknbHHnnkL7njjlvy7LPPZN68t1NZ2SvDhm2YnXcelc997qAMGDCg03rmzJmdiRNvyiOP/CUz\nZ76S5uam9OvXP5ttNjyjRu2az3523/Tq1btw/h133Jqzzjq93TUOOGDfJMnQoetnwoRbV/BNAAAA\nAAAAAAB0TniHbrFOTa+kZcnnVb+anXfq6+tz5pmn5oEHJrXb39jYmClTnsuUKc/lxhuvzSmnnJnR\no3dbZvwTTzyW733v21m0aFG7/XPnvpW5c9/Ko4/+Jdddd1XOPfeX2WijjVerVgAAAAAAAACAlSG8\nQ7cYUN0rbc3/6LzTVN/hOfvt97nsttsn8pvfXJTJk/+cJBk//pokSVVVnyRJa2trTjrpW3niiceS\nJLvssmv23PMzWX/99VNXV5cnnngsv/3tTamtrc3//M938rOfjcvIkTsW7rFw4cKccspJWbRoUQYM\nWCeHHXZUttrqg6msrMybb76R22+/JQ8//FDeeOP1nH769/Ob31yZkpKSjB69W8aPvya/+93N+f3v\nJyZJfvrT8zJ48JCUl1d0z0sDAAAAAAAAAHoc4R26xTrV7+6803F4Z9CgwRk0aHD69etf2Dd8+Ih2\n50yYcH0huPPtb5+c/fb7XLvjI0fumM9+9j9y7LFHZ+7cuTnrrNNz442/T3n5kns/+OD9eeedBUmS\ns876aT784W0LYz/4wa3zyU9+KqecclImTbo3U6c+n6lTp2TLLbdKv379069f/wwcOKhw/gc+sGnW\nX//fVvWVAAAAAAAAAAAso7TYBfD+NKDmn513OgvvvJfW1tZcf/2STjwf+9guywR3ltpgg2H57//+\nepJk9uw3c//9fywcmzv3rcL2hhtu1OH4I4/8Qvbb7/M59tjjU1NTs0q1AgAAAAAAAACsCp13VtDE\nF27LX2c/U+wy1qiPrrtNxm7+2VUaO6C6MmktS9pKUreK4Z0ZM6Zn9uw3kyQ77LDTcs/92Md2KWw/\n/vhjGTPm00mSjTf+QGH/9773nRx33Ley1VYfajd2+PAR+fa3T1qlGgEAAAAAAAAAVofwDt2id2V5\nqnqVp6S1InXNDat0jWnTpha2x437ecaN+/kKjXvttVmF7Z13Hp3NNhueGTOm55lnnsoxxxyVwYOH\nZIcddsrIkTtmhx12arc0FgAAAAAAAADAmiS8s4LGbv7ZVe5C01MNqO6V+c3lqW9atc47CxbMX6Vx\nCxe+U9guLy/Pz352fs4558w8/PBDSZK33pqTO++8LXfeeVtKSkqy1VYfyr//+97ZZ5/9UlFRsUr3\nBAAAAAAAAABYFcI7dJt1anrl7ebyVV42q6WlpbB9wgknZeutt1mhcb169Wr3e/DgIfnf/z0/L774\nQiZNui9/+cvkTJs2Ja2trWlra8tzzz2b5557Nr///cT84he/yoABA1apXgAAAAAAAACAlSW8Q7cZ\nUN0rbU0VaWp9J02tzakoXbnPraamX2G7b9/qDB8+YrXq2XTTzbPpppvn6KP/K++8807++tfH8/DD\nD2XSpHtTW1ubGTOm51e/Oj8nn3zqat0HAAAAAAAAAGBFlRa7AN6/1qnplbQsCew0NDes9PhNN92s\nsP3cc88s99x58+blsssuyZ133pbp06cV9jc1NeXFF2dkypTn253fr1+/fPzju+fEE7+fyy+/LtXV\nNUmShx56cKXrBAAAAAAAAABYVcI7dJsB1b3S1lyRJKlrquv0vJKSkg73b7XVh9KvX/8kyT333JXa\n2tpOr3HzzTfksssuyY9+dFoefPD+wv7DDz8gRx55UP7nf77T6dihQ9fPJptsmiRpbFzc7lhpqSkC\nAAAAAAAAAHQfyQS6zYDqXmlr+Ud4ZzmddyorKwvbdXX/DPlUVFTkc587MEmyYMGCnHnmKWlsbFxm\n/NNPP5lrr70qSdKrV6/ss8/+hWO77LJrkuTNN9/I9ddf3eH9//73lzNt2pQkyZZbfqjdsYqKisJ2\nfX3nASQAAAAAAAAAgFVRXuwCeP8aUFOZNC/5xOqb6zs9b9CgwYXtSy65IP/+73untLQ0W2yxZQ4/\n/D8zefKfM23alEye/Od84QuH5oADDsnmm2+R2tqFefzxR/Pb395U6Jjz3//99Qwe/M/rHXLI4bnz\nzltTW1ubCy74RZ555qnsvvuns956Q7NoUW2ef/5vmTDh+ixevDilpaU56qgvdlrb5ZdfmoMPPiyt\nrW3ZeuttuuQdAQAAAAAAAAA9W0lbW1tbsYtYHXPmLCx2CfyLIUNqMmfOwrz9TkNOnHB9Kj/wXL7w\noUMzcr1tOzx/+vSp+dKXjkxLS0th33rrDc3NN9+WJFmwYH5OPfXkPPHEY53es6ysLEcf/V858sgv\nLnPsiScey//8z3dTW9v5t9K7d++ccMJJ2Wuvz7bb/9Zbb+WQQ8a267pTXl6ee+75c7uuPMA/5z7Q\ns5j70DOZ+9AzmfvQM5n70DOZ+9AzmfvQM5n7a86QITWdHtN5h27Tr++Kdd4ZPnxEzjnnZ7niissy\nY8YLaW1tSXl5eRoaGtK7d+/07z8gv/jFr/Lggw/kD3+4M3/72zOZN29ekmS99dbLdtuNzNixB2az\nzTbv8Prbb79Drr12Qn772wl59NGH88orf09d3aL07VudoUPXz0477Zz99vtc1ltv6DJjBw8enPPO\nuzCXXHJhpk59Lo2NjRk4cFDefPONDBu2YRe8JQAAAAAAAACgJ9N5hy737mTe8eNvTvPGj+Q/Nt0r\nn/7AJ4tcGdCdpHKhZzL3oWcy96FnMvehZzL3oWcy96FnMvehZzL315zldd4pXYN10APVVPZNkixq\nrnuPMwEAAAAAAAAAeh7hHbpV/6ol4Z2Fi4V3AAAAAAAAAAD+lfAO3WqdPkvCO+80LCpyJQAAAAAA\nAAAAax/hHbrVoOola7bpvAMAAAAAAAAAsCzhHbrVoJq+aWstTV1zfbFLAQAAAAAAAABY6wjv0K3W\nqemVNFekoaWh2KUAAAAAAAAAAKx1hHfoVutU90pbS3kaWxcXuxQAAAAAAAAAgLWO8A7dakBNr7Q1\nV6Q5i9PW1lbscgAAAAAAAAAA1irCO3Srvr3LU9JakZS0pbG1qdjlAAAAAAAAAACsVYR36FYlJSWp\nKOmVJKlrqityNQAAAAAAAAAAaxfhHbpd77LeSZJFjfVFrgQAAAAAAAAAYO0ivEO361NelSSZU7uw\nyJUAAAAAAAAAAKxdhHfodtWVfZIkc2vfKXIlAAAAAAAAAABrF+Edul1NryXhnbcX1Ra5EgAAAAAA\nAACAtYvwDt1uQJ++SZL5DcI7AAAAAAAAAADvJrxDtxvUpyZJ8s7iuiJXAgAAAAAAAACwdhHeodsN\nqlkS3lnUWF/kSgAAAAAAAAAA1i7CO3S7dWv6JUnqmoV3AAAAAAAAAADeTXiHbjegqjpJsrilociV\nAAAAAAAAAACsXYR36Ha9y3olSZraFhe5EgAAAAAAAACAtYvwDt2urLQsJa3laS1pTGNTS7HLAQAA\nAAAAAABYawjvsEZUpFdS3pT5tbrvAAAAAAAAAAAsJbzDGlFZ2islZc2Zt1B4BwAAAAAAAABgKeEd\n1ojeZVUpKW/O2wsbil0KAAAAAAAAAMBaQ3iHNaJPRVWSZM7ChUWuBAAAAAAAAABg7SG8wxpR06tP\nkuTtRcI7AAAAAAAAAABLCe+wRvTv3TdJMq+utsiVAAAAAAAAAACsPYR3WCP6Vy0J7yyoX1TkSgAA\nAAAAAAAA1h7CO6wRfSuWLJu1sLGuyJUAAAAAAAAAAKw9hHdYI/qUVyVJFjXVp62trcjVAAAAAAAA\nAACsHYR3WCOqynsnSVpLGrOoobnI1QAAAAAAAAAArB2Ed1gjqv7ReSdlzZlfu7i4xQAAAAAAAAAA\nrCWEd1gj+lQsCe+UlDdl/kLhHQAAAAAAAACARHiHNaRPofNOU+bpvAMAAAAAAAAAkER4hzWkqrx3\nkqSkvFnnHQAAAAAAAACAfxDeYY3oVdYrJSlJypoyv7ax2OUAAAAAAAAAAKwVhHdYI0pKSlJVXpWS\nsubM03kHAAAAAAAAACCJ8A5rUJ+KqpSUN2V+rfAOAAAAAAAAAEAivMMa1Ke8KiXlzZknvAMAAAAA\nAAAAkER4hzWoT3lVUtqSd+oa0tLaWuxyAAAAAAAAAACKTniHNaaqvHeSpK20Ke8saipyNQAAAAAA\nAAAAxSe8wxrTp6IqSVJS3pR5Cy2dBQAAAAAAAAAgvMMaU1W+JLyTsubMrxXeAQAAAAAAAAAQ3mGN\nWRre0XkHAAAAAAAAAGAJ4R3WmD5Lwzs67wAAAAAAAAAAJBHeYQ3qU957yUZZU+brvAMAAAAAAAAA\nILzDmlNV8c9ls3TeAQAAAAAAAAAQ3mENWrpsVkWv1syrbSxyNQAAAAAAAAAAxVfeXRdubW3Naaed\nlqlTp6aysjI//OEPs/HGGxeO33bbbbniiitSVlaWLbbYIqeddlqSLHcM/7dV/SO806t3a+a/rvMO\nAAAAAAAAAEC3dd65995709jYmBtuuCEnnHBCzjnnnMKxhoaGnHfeebnyyitz/fXXp7a2NpMmTVru\nGP7v6/OPZbPKK1tSt7g5i5tailwRAAAAAAAAAEBxdVt454knnsiuu+6aJNl2223z7LPPFo5VVlbm\n+uuvT1XVkjBHc3NzevXqtdwx/N9XVdY7SVJa0ZwkmV+r+w4AAAAAAAAA0LN1W3intrY21dXVhd9l\nZWVpbl4S2igtLc3gwYOTJFdddVXq6uoyatSo5Y7h/76KsopUlJanpKwpSTJ/ofAOAAAAAAAAANCz\nlXfXhaurq7No0aLC79bW1pSXl7f7/dOf/jQvvfRSxo0bl5KSkvcc05F11umT8vKyrn8AVsuQITUd\n7q+u7Jvm5iXhnZaS0k7PA/5vMqehZzL3oWcy96FnMvehZzL3oWcy96FnMvehZzL3i6/bwjvbbbdd\nJk2alM985jN58skns8UWW7Q7fuqpp6aysjIXXnhhSktLV2hMR+bNq+uW+ll1Q4bUZM6chR0e61Xa\nK/WtS4698tqCzNmw/5osDehGy5v7wPuXuQ89k7kPPZO5Dz2TuQ89k7kPPZO5Dz2Tub/mLC8k1W3h\nnT322COTJ0/OwQcfnLa2tpx11lm59dZbU1dXl6233joTJkzIyJEjc9RRRyVJjjzyyA7H8P5SVV6V\n2a1vJWnLPMtmAQAAAAAAAAA9XLeFd0pLS3PGGWe027fZZpsVtqdMmdLhuH8dw/tLn4qqtKY1KW3J\n/FrhHQAAAAAAAACgZystdgH0LFXlvZMkpeXNmSe8AwAAAAAAAAD0cMI7rFF9yquSJDX9SjLfslkA\nAAAAAAAAQA8nvMMatTS8U923LfNrG9PW1lbkigAAAAAAAAAAikd4hzWqqmJJeKeqb9Lc0ppFDc1F\nrggAAAAAAAAAoHiEd1ijqsp7J0l6V7UmSeZZOgsAAAAAAID/z979B0le0Peff/WPmf70zsz+iIJK\nUAKikgsETiJKSlLgwZ1C6gJqghRZy+hRsSxMgpYpqYgaJGCs0uQPjZVUmbuCmCqM8bgyiYkBvMQk\nfPkilUW5+OOCATUsIMfO7szsdM/2j/ujZwY27EIvTE/PzOfxqKJq59Pds2+qtv971vsNACUm3mFd\nbatvS5JMNgbxzuy8eAcAAAAAAAAAKC/xDutqZfNObWJwLmv//NI4xwEAAAAAAAAAGCvxDutqW705\n+EPtUJJkfvHQGKcBAAAAAAAAABgv8Q7ratvEIN7pVgbRzkJLvAMAAAAAAAAAlJd4h3XVrK/EO4Nz\nWTbvAAAAAAAAAABlJt5hXTXrRZKk028nSRbEOwAAAAAAAABAiYl3WFfVSjVFrUi710pi8w4AAAAA\nAAAAUG7iHdZds15ksdtKs1HL/GJn3OMAAAAAAAAAAIyNeId1t22imcXOYqaKiSy0bN4BAAAAAAAA\nAMpLvMO621ZvZrHTylSz7mwWAAAAAAAAAFBq4h3WXbPeTJJs25Yc6vTSPtQd80QAAAAAAAAAAOMh\n3mHdNetFkqRo9pIkC7bvAAAAAAAAAAAlJd5h3W2bGGzemSwG8Y7TWQAAAAAAAABAWYl3WHcrZ7Mm\nGoNzWTbvAAAAAAAAAABlJd5h3W1bjndqE50kyXyrM85xAAAAAAAAAADGRrzDuluJd6or8Y7NOwAA\nAAAAAABASYl3WHfNepEkqdTEOwAAAAAAAABAuYl3WHfbJrYlSfrVpSTJgngHAAAAAAAAACgp8Q7r\nbmXzTrc6iHZs3gEAAAAAAAAAykq8w7rbVm8mSbqxeQcAAAAAAAAAKDfxDuuuuRzvtLut1KqVzLfE\nOwAAAAAAAABAOYl3WHeN2mSqlWoWu4uZKuqZX+yMeyQAAAAAAAAAgLEQ77DuKpVKmvUiBzutTDUn\nnM0CAAAAAAAAAEpLvMNYbKs3s3joYKabE1loHUqv3x/3SAAAAAAAAAAA6068w1g0680c7LQy3ZxI\nv58cbDmdBQAAAAAAAACUj3iHsdhWb+ZQ71CazcE/QaezAAAAAAAAAIAyEu8wFs2JZpKkKHpJkvmW\neAcAAAAAAAAAKB/xDmOxrV4kSSaX4x2bdwAAAAAAAACAMhLvMBbN+mDzTn2ymySZF+8AAAAAAAAA\nACUk3mEsti3HO7WJTpJkfrEzznEAAAAAAAAAAMZCvMNYrGzeqdZX4h2bdwAAAAAAAACA8hHvMBZF\nvTH4w3K8syDeAQAAAAAAAABKSLzDWDTrxeAP1eV4pyXeAQAAAAAAAADKR7zDWBS1weadfsXZLAAA\nAAAAAACgvMQ7jEVj+WzWUr+dxkRNvAMAAAAAAAAAlJJ4h7EoaoOzWa1OO9PNehbEOwAAAAAAAABA\nCYl3GItmfSXeaWWqOZH5xc6YJwIAAAAAAAAAWH/iHcaiqA3OZrW67Uw3J9I+1M2hTm/MUwEAAAAA\nAAAArC/xDmNRr9ZTrVSXz2ZNJEnmnc4CAAAAAAAAAEpGvMNYVCqVNGtFWt3B2awkWWiJdwAAAAAA\nAACAchHvMDZFvTHYvFMsxzs27wAAAAAAAAAAJSPeYWyKepFWt726ecfZLAAAAAAAAACgbMQ7jE2j\n1kir08pUUUsi3gEAAAAAAAAAyke8w9gU9Ub66acoBj+LdwAAAAAAAACAshHvMDbN2qDamWj0kyQL\ni51xjgMAAAAAAAAAsO7EO4xNUW8kSeoT3SQ27wAAAAAAAAAA5SPeYWwatUG8U12OdxZa4h0AAAAA\nAAAAoFzEO4xNUR+czepXO6lUbN4BAAAAAAAAAMpHvMPYNJc37yx1lzJVTIh3AAAAAAAAAIDSEe8w\nNo36IN5pdVqZak5kQbwDAAAAAAAAAJSMeIexKWqDs1mtbjvTzXoWWp30+/0xTwUAAAAAAAAAsH7E\nO4xNUV+OdzqtTBcT6fb6WWx3xzwVAAAAAAAAAMD6Ee8wNs2Vs1nddqabE0mS+ZbTWQAAAAAAAABA\neYh3GJtGbTne6bQztRzvLCyKdwAAAAAAAACA8hDvMDZFbflsVre1unlHvAMAAAAAAAAAlIl4h7FZ\nPZv1lM078+IdAAAAAAAAAKBExDuMzerZrG57dfOOeAcAAAAAAAAAKBPxDmNTq9YyUZ1Iq9PKdFFP\nIt4BAAAAAAAAAMpFvMNYFfVGWt3W6tmshcXOmCcCAAAAAAAAAFg/4h3Gqlkr0uo8eTZroWXzDgAA\nAAAAAABQHuIdxmqweefJeMfZLAAAAAAAAACgTMQ7jFWj1shSdyn1eiUT9ap4BwAAAAAAAAAoFfEO\nY1XUiyRZPZ0l3gEAAAAAAAAAykS8w1gVteV4p9vKVDGRhZZ4BwAAAAAAAAAoD/EOY9WsN5KsbN6p\nZ7HdTafbG/NUAAAAAAAAAADrQ7zDWDVqy/FOd3A2K0kWWp1xjgQAAAAAAAAAsG7EO4xVUV8+m9Vp\nPRnvLDqdBQAAAAAAAACUg3iHsSrqT27emVqOd+bFOwAAAAAAAABASQwV7zzxxBOjnoOSatZWNu+0\nM1XYvAMAAAAAAAAAlMtQ8c6VV1456jkoqcbq5p0nz2bZvAMAAAAAAAAAlEV9mDeddtppue222/Kz\nP/uzKYpi9fkJJ5wwssEoh6K2HO90WvmJlXinJd4BAAAAAAAAAMphqHjnvvvuy3333XfYs0qlkjvu\nuGMkQ1Eezfry2axu2+YdAAAAAAAAAKB0hop37rzzzlHPQUk1VjfvtDPVHPxzXBDvAAAAAAAAAAAl\nUR3mTU888UR+67d+K6997Wvzcz/3c7n66qvz+OOPj3o2SqCoP3k2a2XzzsJiZ5wjAQAAAAAAAACs\nm6HinQ9/+MM544wzcscdd+TOO+/MmWeemd/5nd8Z9WyUQFF78mzWVOFsFgAAAAAAAABQLkPFOz/8\n4Q/zrne9K9PT09m+fXuuuuqqPPzww6OejRJo1CZTSSWtTjvVaiXbGvXMt8Q7AAAAAAAAAEA5DBXv\nVCqV7N27d/Xnhx9+OPV6fWRDUR6VSiWNWiOtbitJMt2csHkHAAAAAAAAACiNoQqc3/zN38zll1+e\nM888M/1+P/fdd18+9rGPjXo2SqKoN9LqtJMkU82JPPFYK/1+P5VKZcyTAQAAAAAAAACM1lDxzkte\n8pLcdttt+eY3v5ler5ff/d3fzQte8IJRz0ZJFPUic0tzSQabdzrdftqHuikmbXcCAAAAAAAAALa2\noeqIa665Jl/5yldy/vnnj3gcyqhZa+TxzuNJkunm4J/k/OIh8Q4AAAAAAAAAsOUNVUeceuqp+fSn\nP50zzzwzRVGsPn/Na14zssEoj0atkU6/m0O9TqaaE0mShcVOXrhjzIMBAAAAAAAAAIzYUPHO7Oxs\n7r777tx9992rzyqVSm6++eajfqbX6+WjH/1ovvvd72ZycjI33HBDTjrppMPes7i4mF/7tV/L7/3e\n7+XlL395kuSyyy7L9PR0kuTEE0/MTTfddMz/U2wuRX0QhLU6rUwvxzvzrUPjHAkAAAAAAAAAYF0M\nFTahQqYAACAASURBVO9cfPHFueKKK47pF99+++1ZWlrKrbfemj179uTjH/94PvvZz66+/q1vfSsf\n+chH8uijj64+a7fb6ff7ueWWW47p72JzK+qNJEmr085UsbJ5R7wDAAAAAAAAAGx91WHe9PnPf/6Y\nf/G9996b8847L0ly1lln5f777z/s9aWlpXzmM5/JKaecsvrsO9/5ThYXF/POd74zb3/727Nnz55j\n/nvZfJq15c073faTm3fEOwAAAAAAAABACQy1eefFL35x3v72t+fMM89Mo9FYfX711Vcf9TPz8/Or\n56+SpFarpdPppF4f/JVnn3320z5TFEXe9a535Zd/+Zfz4IMP5qqrrsrf/u3frn7mSHbt2pZ6vTbM\n/wbr6LjjZoZ+765HBu8tpqv5yRdvT5L0q9Vj+h3AxuB7C+Xkuw/l5LsP5eS7D+Xkuw/l5LsP5eS7\nD+Xkuz9+Q8U7Z5111jH/4unp6SwsLKz+3Ov1njHCSZKTTz45J510UiqVSk4++eTs3LkzP/7xj/OS\nl7zkqJ/Zt+/gMc/GaB133Ex+/OO5od/fa1eSJI/8f09ke2cqSfLo4/PH9DuA8TvW7z6wNfjuQzn5\n7kM5+e5DOfnuQzn57kM5+e5DOfnur59niqSGineuvvrqHDx4MD/4wQ/yyle+Mq1WK9u2bXvGz7z6\n1a/O1772tVx88cXZs2dPXvnKVz7r3/PFL34x3/ve9/LRj340jz76aObn53PccccNMyKbWFFfPpvV\naeclzcE/yQVnswAAAAAAAACAEqgO86a77rorv/RLv5T3vOc9efzxx/OGN7wh//RP//SMn7nooosy\nOTmZt73tbbnpppty7bXX5stf/nJuvfXWo37mrW99a+bm5nLFFVfkmmuuyY033vis23rY/Jq1wSm2\nVred6eZEkmSh1RnnSAAAAAAAAAAA62KoMuZTn/pU/vzP/zxXXXVVjj/++PzZn/1Z3ve+9+X1r3/9\nUT9TrVZz/fXXH/bs5S9/+dPed8stt6z+eXJyMp/85CeHnZ0tolFfjnc6rTQmaqlVK5m3eQcAAAAA\nAAAAKIGhNu/0er3DzledeuqpIxuI8ilqy2ezuu1UKpVMNyfEOwAAAAAAAABAKQy1eefFL35xvva1\nr6VSqeTAgQP5/Oc/nxNOOGHUs1ESRX053um0kiTTzYnMzrfHORIAAAAAAAAAwLoYavPO9ddfny9/\n+cvZu3dvLrroonz7299+2kkseK6aK2ezuoNgZ6o5kYOtTnq9/jjHAgAAAAAAAAAYuaE277zgBS/I\npz71qSO+dt111+VjH/vYmg5FuTRqy/FOZxDvTDcn0k+y0DqUmW2TY5wMAAAAAAAAAGC0htq880zu\nv//+tZiDEnv62axBU7bQ6oxtJgAAAAAAAACA9fC84x14viaq9dQrtcPOZiXJ/OKhcY4FAAAAAAAA\nADBy4h02hEa9sRrvTBfiHQAAAAAAAACgHMQ7bAhFrVg9m7WyeWdBvAMAAAAAAAAAbHHPO97p9/tr\nMQclV9QbaXWWN+84mwUAAAAAAAAAlMTzjnd+/ud/fi3moOSKWpF2t51+vy/eAQAAAAAAAABKo/5M\nL+7evTuVSuWor99888357d/+7TUfivIp6o3000+7u+RsFgAAAAAAAABQGs8Y77z3ve9NknzhC19I\nURS59NJLU6/X81d/9Vdpt9vrMiDlUNQaSZJWt5XpZjNJMt/qjHMkAAAAAAAAAICRe8Z455xzzkmS\n/P7v/37+8i//cvX5WWedlTe/+c2jnYxSKepFkqTVaeeFxUwSm3cAAAAAAAAAgK2vOsyb2u12/uM/\n/mP15+9+97vpdGxFYe0U9cHmnXa3nXqtmmKylnnxDgAAAAAAAACwxT3j5p0VH/zgB7N79+686EUv\nSq/XyxNPPJFPfvKTo56NElk5m7XYaSVJppsT4h0AAAAAAAAAYMsbKt55/etfnzvvvDPf+973UqlU\n8qpXvSr1+lAfhaGsns3qtpMkU82J7H18YZwjAQAAAAAAAACM3FBns/bv35/rr78+n/jEJ3LCCSfk\nuuuuy/79+0c9GyVS1Jbjnads3lnq9LJ0qDvOsQAAAAAAAAAARmqoeOe6667LGWeckdnZ2UxNTeX4\n44/PBz7wgVHPRokU9cHZrJXNO9PNiSRxOgsAAAAAAAAA2NKGind+9KMf5fLLL0+1Ws3k5GSuueaa\nPPLII6OejRIpasvxTmc53ikG8c5CqzO2mQAAAAAAAAAARm2oeKdWq2Vubi6VSiVJ8uCDD6ZaHeqj\nMJSifvjZrKlmPYnNOwAAAAAAAADA1lYf5k2/8Ru/kd27d2fv3r15z3vekz179uTGG28c9WyUyOrm\nneWzWVPLZ7MWxDsAAAAAAAAAwBY2VLxz3HHH5U//9E/zzW9+M91uN9dff31e+MIXjno2SqS5unln\n+WzWcrxj8w4AAAAAAAAAsJUNFe9cc801+cpXvpLzzz9/xONQVo3VzTuDs1niHQAAAAAAAACgDIaK\nd0499dR8+tOfzplnnpmiKFafv+Y1rxnZYJRLUV+OdzriHQAAAAAAAACgPIaKd2ZnZ3P33Xfn7rvv\nXn1WqVRy8803j2wwyqVaqWayNplWd3A2a2o53lkQ7wAAAAAAAAAAW9hQ8c4tt9wy6jkgzVoj7c4g\n3pkuluOdVmecIwEAAAAAAAAAjNRQ8c43vvGNfO5zn8vBgwfT7/fT6/Xy8MMP58477xz1fJRIo97I\n4vLZrGajlmql4mwWAAAAAAAAALClVYd504c+9KFceOGF6Xa7ufLKK3PSSSflwgsvHPVslExRK9Ja\n3rxTqVQy1ayLdwAAAAAAAACALW2oeKcoirzlLW/JOeeck+3bt+eGG27IPffcM+rZKJmiXuRQ71C6\nvW6SZLo5Id4BAAAAAAAAALa0oeKdRqOR2dnZnHzyybnvvvtSqVRy8ODBUc9GyRS1RpKk3R1s35lq\nTmShdSi9fn+cYwEAAAAAAAAAjMxQ8c473vGOXHPNNbngggty22235ZJLLsnpp58+6tkomaI+iHcW\nl09nTRcT6feTxXZnnGMBAAAAAAAAAIxMfZg3velNb8ob3/jGVCqVfOlLX8qDDz6Yn/7pnx71bJRM\nUSuSJK1uK8ngbFaSLCweylQxMba5AAAAAAAAAABGZah459prrz3i85tuumlNh6HcVjbvtFY27yzH\nO/OLnRy/a2xjAQAAAAAAAACMzFDxzjnnnLP6506nkzvuuCOnnHLKyIainIracrzTHcQ7U83BP8/5\nxUNjmwkAAAAAAAAAYJSGincuu+yyw35+61vfmiuuuGIkA1FeRX35bFZncDZr6ilnswAAAAAAAAAA\ntqLqc/nQAw88kMcee2ytZ6Hknty8M4h3pouVs1niHQAAAAAAAABgaxpq885pp52WSqWSfr+fJPmJ\nn/iJvO997xvpYJTPk5t3BmezppviHQAAAAAAAABgaxsq3vnOd74z6jngKZt3/ku80xLvAAAAAAAA\nAABb01Dxzqc//elnfP3qq69ek2Eot6K+HO90BmezppbjnQWbdwAAAAAAAACALao6zJv27t2bv/u7\nv8vExESazWa+/vWv51//9V9HPRsl8/SzWYO2TLwDAAAAAAAAAGxVQ23eeeCBB3Lrrbdm27ZtSZLd\nu3dn9+7dNu6wporaIN5pL5/NmqjXMjlRzfxiZ5xjAQAAAAAAAACMzFCbd/bt25dKpbL689LSUg4e\nPDiyoSinlbNZi93W6rPp5kTmbd4BAAAAAAAAALaooTbvvPWtb82b3/zmnH/++en1evmHf/iHvPvd\n7x71bJTMZHUilVRWz2YlyXQxkUdnF8c4FQAAAAAAAADA6AwV71x11VV57Wtfm3vuuSdFUeSP/uiP\ncsopp4x6NkqmUqmkqBdpdZ7cvDPVnEj7sfl0ur3Ua0MtigIAAAAAAAAA2DSGqiFmZ2czPz+fd73r\nXZmbm8sf/uEf5t///d9HPRslVNQaaXefsnmnOZEkTmcBAAAAAAAAAFvSUPHO+9///nz/+9/PXXfd\nla9+9at5wxvekI985COjno0SKuqNw89mLcc7C+IdAAAAAAAAAGALGire2b9/f371V381t99+ey69\n9NJceumlWVxcHPVslFBRK7LYbaXf7ycZnM1KbN4BAAAAAAAAALamoeKdXq+X+++/P7fffnsuuOCC\nfPvb30632x31bJRQUW+k1+/lUK+TJJku6kmS+cXOOMcCAAAAAAAAABiJ+jBv+sAHPpBPfOITeec7\n35mXvvSl+ZVf+ZVce+21o56NEirqRZKk3W1nsjaxunlnoWXzDgAAAAAAAACw9QwV75x77rk599xz\nV3/+whe+sPrnX//1X88f//Efr/1klFJRayRJFjutzExOZ9rZLAAAAAAAAABgCxvqbNYzefTRR9di\nDkgyOJuVJK1uK0mejHcOincAAAAAAAAAgK3necc7lUplLeaAJElRG5zNanXaSZId05NJkv0L7bHN\nBAAAAAAAAAAwKs873oG1tLJ5p90dxDo7pwc/75sT7wAAAAAAAAAAW494hw2lqA1incXO4GxWvVbN\nzLaJzM4vjXMsAAAAAAAAAICReN7xTr/fX4s5IElS1A8/m5UMtu/Mztu8AwAAAAAAAABsPc873rn0\n0kvXYg5I8uTmnVa3tfps53QjraVuFtudcY0FAAAAAAAAADAS9WHe9PWvfz1/8Ad/kAMHDqTf76ff\n76dSqeSOO+7IO97xjhGPSJmsbN5pP2Xzzq6ZySTJ7Hw7zcZQ/2QBAAAAAAAAADaFoUqIG264IR/8\n4Afzile8IpVKZdQzUWIrm3cWu4efzUqS2fmlvOQFU2OZCwAAAAAAAABgFIaKd3bt2pULLrhg1LPA\n6uadVufws1lJMjvXPuJnAAAAAAAAAAA2q6HinbPPPjs33XRTzjvvvDQajdXnr3nNa0Y2GOVU1Af/\nvlpP3bwzs7J5R7wDAAAAAAAAAGwtQ8U73/zmN5Mk//Zv/7b6rFKp5Oabbx7NVJTWytmsdufJUGfX\n8uadfTbvAAAAAAAAAABbzFDxzi233DLqOSBJUq/WU6/Ws9h9ytksm3cAAAAAAAAAgC1qqHjnG9/4\nRj73uc/l4MGD6ff76fV6efjhh3PnnXeOej5KqKg10nrK5p2ZbROpViqZnV8a41QAAAAAAAAAAGuv\nOsybPvShD+XCCy9Mt9vNlVdemZNOOikXXnjhqGejpIp6kVbnyc071UolO6Ynnc0CAAAAAAAAALac\noeKdoijylre8Jeecc062b9+eG264Iffcc8+oZ6Okiloj7e7hoc6umUZm59vp9/tjmgoAAAAAAAAA\nYO0NFe80Go3Mzs7m5JNPzn333ZdKpZKDBw+OejZKqqg30uq20+v3Vp/tnG6k2+tnfvHQGCcDAAAA\nAAAAAFhbQ8U773jHO3LNNdfkggsuyG233ZZLLrkkp59++qhno6SKWpEkaXeXVp/tnJ5MEqezAAAA\nAAAAAIAtpT7Mm970pjfljW98YyqVSr70pS/lwQcfzGmnnTbq2Sipot5IkrS77TTrg5Bn18zg2ez8\nUl72orGNBgAAAAAAAACwpobavLN///5cd911efvb3552u51bbrklc3Nzo56Nkipqg1Cn1WmtPts5\nvRLv2LwDAAAAAAAAAGwdQ8U71113Xc4444zMzs5mamoqxx9/fD7wgQ+MejZKqljetrPYeTLUWY13\nnM0CAAAAAAAAALaQoeKdH/3oR7n88stTrVYzOTmZa665Jo888sioZ6Okitog3ml1n7J5Z8bmHQAA\nAAAAAABg6xkq3qnVapmbm0ulUkmSPPjgg6lWh/ooHLOiPgh12k/ZvLNrejJJss/mHQAAAAAAAABg\nC6kP86b3vve92b17d/bu3Zv3vOc92bNnT2688cZRz0ZJFbVBvLPYfTLUaTbqmZyoZnZ+aVxjAQAA\nAAAAAACsuaHW55x++um58MILc+KJJ2bv3r256KKLcv/99496NkqqqC+fzeo8eTarUqlk53TD2SwA\nAAAAAAAAYEsZavPOVVddlVe96lW54IILRj0PrJ7NanUOD3V2Tjfy//5wNp1uL/Was20AAAAAAAAA\nwOY3VLyTxJks1s3K2ax29/B4Z9dMI/0kBxaW8hPbizFMBgAAAAAAAACwtoaKdy688ML8xV/8RV73\nutelVqutPj/hhBNGNhjltXI2a7HbOuz5zunJJMnsvHgHAAAAAAAAANgahop35ubm8id/8ifZtWvX\n6rNKpZI77rhjZINRXiubd1qd/xrvDJ7vm2s/7TMAAAAAAAAAAJvRUPHOV7/61dx1110pCttOGL2V\nzTutztPPZiXJ7Lx4BwAAAAAAAADYGqrDvOmlL31p9u/fP+pZIEnSqA3OY7W7h0c6K5t3xDsAAAAA\nAAAAwFYx1OadSqWSSy65JK94xSsyMTGx+vzmm28e2WCUV7VSTaM2eYSzWYOoZ9bZLAAAAAAAAABg\nixgq3nn3u9896jngMEWtyKLNOwAAAAAAAADAFjdUvHPOOeeMeg44TFEvsnBo4bBnkxO1TBX1zM4v\njWkqAAAAAAAAAIC1VR33AHAkRa2RdvfpG3Z2zjSyz9ksAAAAAAAAAGCLEO+wIRX1Rg71Oun0Ooc9\n3zndyMF2J+1D3TFNBgAAAAAAAACwdkYW7/R6vXz4wx/O5Zdfnt27d+ehhx562nsWFxfztre9LQ88\n8MDQn6EcinqRJGn9l+07O6cnkySz87bvAAAAAAAAAACb38jindtvvz1LS0u59dZb8/73vz8f//jH\nD3v9W9/6Vq688sr88Ic/HPozlEdRayRJWp3DI51dM4Pns05nAQAAAAAAAABbwMjinXvvvTfnnXde\nkuSss87K/ffff9jrS0tL+cxnPpNTTjll6M9QHkV9EOm0n7Z5ZznemV9a95kAAAAAAAAAANZafVS/\neH5+PtPT06s/12q1dDqd1OuDv/Lss88+5s9QHkVtcDZrsdM67PlKvLPP5h0AAAAAAAAAYAsYWRUz\nPT2dhYWF1Z97vd6zRjjP5TO7dm1LvV57fsOy5o47buZ5ff4Fj29PkjSmqof9rpMXO0mSpV7/ef8d\nwNrzvYRy8t2HcvLdh3Ly3Ydy8t2HcvLdh3Ly3Ydy8t0fv5HFO69+9avzta99LRdffHH27NmTV77y\nlSP5zL59B9diXNbQccfN5Mc/nntev6PbqiRJHn1iX3488ZTf1ekmSR5+bO55/x3A2lqL7z6w+fju\nQzn57kM5+e5DOfnuQzn57kM5+e5DOfnur59niqRGFu9cdNFF+ed//ue87W1vS7/fz4033pgvf/nL\nOXjwYC6//PKhP0M5FfXBeax25/DzWNunJlKpJLPOZgEAAAAAAAAAW8DI4p1qtZrrr7/+sGcvf/nL\nn/a+W2655Rk/QzkVtUG8s9htHfa8Vq1m+9RkZueXxjEWAAAAAAAAAMCaqo57ADiSol4kSVqdp2/Y\n2TndyOx8O/1+f73HAgAAAAAAAABYU+IdNqSVs1mt/7J5J0l2TTey1OnlYLuz3mMBAAAAAAAAAKwp\n8Q4b0srZrPaRNu/MDF6bnXv6awAAAAAAAAAAm4l4hw1p5WzWYvdIZ7MmkyT75sU7AAAAAAAAAMDm\nJt5hQypqg3in1Tny2awkmZ1bWteZAAAAAAAAAADWmniHDWmiWk+1Uk37SJt3Vs5m2bwDAAAAAAAA\nAGxy4h02pEqlkqLWSKtzpLNZg3jH2SwAAAAAAAAAYLMT77BhFfUii0c6m7WyeWdOvAMAAAAAAAAA\nbG7iHTasotZI6whns6aKeuq1Smbnl8YwFQAAAAAAAADA2hHvsGEV9Uba3Xb6/f5hzyuVSnZONzLr\nbBYAAAAAAAAAsMmJd9iwilqRXr+XQ71DT3tt50wj++eX0uv1j/BJAAAAAAAAAIDNQbzDhlXUG0mS\nxc7TN+zsnG6k1+9n7qDTWQAAAAAAAADA5iXeYcMqakWSpNVtPe21XdODsGef01kAAAAAAAAAwCYm\n3mHDWtm80z7S5p2ZySTJ7JzNOwAAAAAAAADA5iXeYcMqaoN450ibd3Yub96ZtXkHAAAAAAAAANjE\nxDtsWEV9cDZr8Qibd1bPZs2JdwAAAAAAAACAzUu8w4a1cjar1TnC5p0Zm3cAAAAAAAAAgM1PvMOG\ntXI2q919eqCzc3oySbJPvAMAAAAAAAAAbGLiHTaslbNZrSOczSom62k2apmdW1rvsQAAAAAAAAAA\n1ox4hw2rqA3incXu089mJcnO6YazWQAAAAAAAADApibeYcMq6oOzWUfavJMM4p35xUM51Omt51gA\nAAAAAAAAAGtGvMOGVdQG8U67e/R4J0n2274DAAAAAAAAAGxS4h02rKI+OJvV6hzlbNbMZJJkdn5p\n3WYCAAAAAAAAAFhL4h02rJXNO4tH2byza3nzzj6bdwAAAAAAAACATUq8w4ZVq9YyUZ04+uad5Xhn\ndk68AwAAAAAAAABsTuIdNrSi1kj7KJt3ds4sxzs27wAAAAAAAAAAm5R4hw2tqDeOunnH2SwAAAAA\nAAAAYLMT77ChFfUii0fZvLNjejKJs1kAAAAAAAAAwOYl3mFDK2qNLHWX0uv3nvZavVbNzLaJ7Jtf\nGsNkAAAAAAAAAADPn3iHDa2oD05jtY+yfWfXdCOzzmYBAAAAAAAAAJuUeIcNragVSZJW58iBzs6Z\nRtpL3Sy2O+s5FgAAAAAAAADAmhDvsKEV9UG8s9hpHfH1ndODzTy27wAAAAAAAAAAm5F4hw2tqD3z\n2ayd05NJktk58Q4AAAAAAAAAsPmId9jQivog3nmms1lJMju/tG4zAQAAAAAAAACsFfEOG1pRWz6b\n1T3y2axdy2ez9jmbBQAAAAAAAABsQuIdNrRn3byzHO84mwUAAAAAAAAAbEbiHTa0ojaIc9rdZzub\nJd4BAAAAAAAAADYf8Q4bWlEfnM1qdY58Nmtm20Rq1YqzWQAAAAAAAADApiTeYUNbOZt1sLN4xNer\nlUp2TE9mdm5pPccCAAAAAAAAAFgT4h02tJmJmSTJ3NL8Ud+zc7qR2fl2ev3+eo0FAAAAAAAAALAm\nxDtsaNsbg3hn/9LcUd+za7qRbq+f+cVD6zUWAAAAAAAAAMCaEO+woU1U65ma2Jb97QNHfc/O6cFp\nrdm59nqNBQAAAAAAAACwJsQ7bHg7JrfnwNIzxDszk0mS2XnxDgAAAAAAAACwuYh32PB2NLZnsdPK\nUnfpiK+vbt6ZP/LrAAAAAAAAAAAblXiHDW/75EySZH977oiv75xxNgsAAAAAAAAA2JzEO2x4Oxrb\nkyT7j3I6a9fy5p19zmYBAAAAAAAAAJuMeIcNb8fkcrzTPnK8s3o2y+YdAAAAAAAAAGCTEe+w4W1v\nDM5mHVg68tmsZqOWyYlqZueX1nMsAAAAAAAAAIDnTbzDhrez8cybdyqVSnZNN5zNAgAAAAAAAAA2\nHfEOG972lbNZS0eOd5LB6ay5haV0ur31GgsAAAAAAAAA4HkT77Dh7ZgcnM062uadJNk500g/yYEF\np7MAAAAAAAAAgM1DvMOGN1GbyLZ6M/uX5o76nl3TjSRxOgsAAAAAAAAA2FTEO2wKOxrbc+CZNu9M\nTyZJZuds3gEAAAAAAAAANg/xDpvCjsntOdhZzFL30BFf3zkz2Lwza/MOAAAAAAAAALCJiHfYFHY0\ntidJDhzldNbOafEOAAAAAAAAALD5iHfYFLZPziRJ9h/ldNbq5p058Q4AAAAAAAAAsHmId9gUVjbv\n7F86cryza3oylST/+fjCOk4FAAAAAAAAAPD8iHfYFFbjnaNs3pmo13LGy1+QBx+Zy/d+OLueowEA\nAAAAAAAAPGfiHTaFlbNZB5bmjvqeXzz3p5Ikf/UvD67DRAAAAAAAAAAAz594h01h57Ns3kmSU0/c\nkdNetjP3/8cTefCRo78PAAAAAAAAAGCjEO+wKWyffPZ4J0ku+fmfSpL89b88NOqRAAAAAAAAAACe\nN/EOm8JkbSLNevMZz2Ylyf9w0q6c/JKZ3Pu9H+c/H19Yp+kAAAAAAAAAAJ4b8Q6bxo7JmWfdvFOp\nVPKL5/5UkuRv7npw5DMBAAAAAAAAADwf4h02je2N7VnoHMyhXucZ33fmK16YnzxuKnf/22N5bHZx\nnaYDAAAAAAAAADh24h02jR2T25MkB55l+061Uskl556UXr+fv/1vD63HaAAAAAAAAAAAz4l4h01j\nR2MmSbJ/ae5Z33vOaS/K8bua+adv7c2+ufaoRwMAAAAAAAAAeE7EO2waOxrDbd5Jkmq1kotfd1I6\n3X7+7r//YNSjAQAAAAAAAAA8J+IdNo0dk4PNO7NLzx7vJMnPn/7i7Jpp5P/e85+ZO7g0ytEAAAAA\nAAAAAJ4T8Q6bxo7GjiTJgfazn81Kknqtmje+9mVZOtTL33/jR6McDQAAAAAAAADgORHvsGlsX968\ns3+Is1krfuHMEzKzbSJ33PujHGx1RjUaAAAAAAAAAMBzIt5h09jR2J4k2T/k2awkaUzU8j+/5qVZ\nbHfytX+1fQcAAAAAAAAA2FjEO2wajdpkilqRA0vDnc1accH/eGKajXq+es8P0z7UHdF0AAAAAAAA\nAADHTrzDprKjMXNMZ7OSZFtRz/909omZO3go/7jn4RFNBgAAAAAAAABw7MQ7bCo7Jrdn/tBCOr3O\nMX3uop87MZMT1fztf/9BOt3eiKYDAAAAAAAAADg24h02le2NmSQ55tNZM9smc/5ZP5l9c+38y/2P\njGI0AAAAAAAAAIBjJt5hU9nR2J4k2d8+tngnSf6Xc16Weq2Sv7nroXR7tu8AAAAAAAAAAOMn3mFT\n2TG5HO8sHTjmz+6aaeT1Z7wkj80u5p5vP7bWowEAAAAAAAAAHLP6uAeAY7GyeedA+9jjnSR50+tO\nyj/etzef++tv5/N//73UatXUqpXBf7Vq6qt/rqRWraZeq6Rer2aiVs1EfeW/2urPk8vPtk9NTNs1\nGQAAIABJREFU5pyfflEm6no4AAAAAAAAAGB44h02lR2TM0mS/UvHfjYrSY7b2cxlv3By7vn2Y+n2\n+un0+ul2e+n2+lnqdFb/3O310+320+v3h/7d3/3BbH7t4tNSqVSe02wAAAAAAAAAQPmId9hUti9v\n3tn/HDfvJMkl5/5ULjn3p4Z6b6/Xz6FuL4c6g/86T/nzU5//n1//fv7pW3tzyk9uz/ln/eRzng0A\nAAAAAAAAKBfxDpvKk5t3nnu8cyyq1Uoa1VoaE7VnfN8JL9yW3/3f78mf//338rLjZ3LKCdvXZT4A\nAAAAAAAAYHOrjnsAOBZFvUijNvm8Nu+Mwgt3NPPrv/Qz6Xb7+aPbvpUDB5fGPRIAAAAAAAAAsAmI\nd9h0djS250B7btxjPM3pJ78gl/7CKXniQDt//H/9P+n1+uMeCQAAAAAAAADY4MQ7bDo7Jrdn7tB8\nur3uuEd5mkvOPSlnnfrCfPuhffnSP35/3OMAAAAAAAAAABuceIdNZ0dje5LkwNLG275TrVTyv/3i\nT+f4Xc38zX97KPd+98fjHgkAAAAAAAAA2MDEO2w62ydnkmzMeCdJthUTufqyMzJZr+Zzf/1veeSJ\ng+MeCQAAAAAAAADYoEYW7/R6vXz4wx/O5Zdfnt27d+ehhx467PU777wzb3nLW3L55ZfnC1/4wurz\nyy67LLt3787u3btz7bXXjmo8NrGVzTuz7QNjnuToTjx+Ou9402lpLXXz6S99K62lzrhHAgAAAAAA\nAAA2oPqofvHtt9+epaWl3HrrrdmzZ08+/vGP57Of/WyS5NChQ7npppvyxS9+Mc1mM1dccUXe8IY3\nZGZmJv1+P7fccsuoxmIL2DG5cjZr48Y7SfK6n3lxvv/wgdx+74/yf3zlO/n1//VnUqlUxj0WAAAA\nAAAAALCBjGzzzr333pvzzjsvSXLWWWfl/vvvX33tgQceyMte9rLs2LEjk5OTOfvss3PPPffkO9/5\nThYXF/P/t3fncZLV9d3oP6eql9l6dpZBGBhWQUXEBYzik5CH6DUqKATEKEZ53RuNidFcYsDnuiNq\njJpXjJq43Ne9DyYRLy5IovGJ0bxIkBgVR2RfHQQHhAFmpnuY6e6qc/+opat7umfvqenu9xvHOvv5\nnlPn9/ud0/WtX73xjW/MRRddlLVr105XeMxgS/obP5u18QDueafl/DOPzbGHL8l/3far/MuPHuh2\nOAAAAAAAAADAAWbakncGBwezaNGi9ni1Ws3o6Gh73sDAQHvewoULMzg4mHnz5uXiiy/OF77whbzv\nfe/LJZdc0l4HWlo972zctrnLkexcT7WSN5/99CxZ2Jcvf/fu3HH/490OCQAAAAAAAAA4gEzbz2Yt\nWrQoQ0ND7fF6vZ6enp5J5w0NDWVgYCBr1qzJkUcemaIosmbNmixdujSPPPJIVq1aNeV+li1bkJ6e\n6nQdBnvooIMGdr7QHlq4tHEdPZkt07qffeWggwZy2e89L+/8zPX522tvzV++/b9lxZL53Q4LpsVM\nKJPAvqfsw9yk7MPcpOzD3KTsw9yk7MPcpOzD3KTsd9+0Je+ceuqp+d73vpeXvvSlWbt2bY4//vj2\nvGOOOSbr1q3LE088kQULFuRHP/pRLr744lx99dW588478973vjcPP/xwBgcHc9BBB+1wP48/vmW6\nDoE9dNBBA3nkkenrFacsy/RV+/Lo5semdT/70sEDffmdXz8mV3337lz1v27P7/z6sd0OCfa56S77\nwIFJ2Ye5SdmHuUnZh7lJ2Ye5SdmHuUnZh7lJ2d9/dpQkNW3JO2eddVauv/76vPrVr05Zlrniiity\n7bXXZsuWLbngggty6aWX5uKLL05Zljn33HNzyCGH5Lzzzstll12WCy+8MEVR5Iorrmj31gMtRVFk\nSd9ANg7PrArkBc9Ylau+e3cefGRo5wsDAAAAAAAAAHPCtGXGVCqVvP/97x837ZhjjmkPn3nmmTnz\nzDPHze/r68vHPvax6QqJWWRx3+Lcu/HnqdVrqVZmxs+mLZrfm4EFvXlog96iAAAAAAAAAICGSrcD\ngD2xtH9xypTZPDLY7VB2y6rlC/LIxiczMlrrdigAAAAAAAAAwAFA8g4z0uL+xm/Bbdy2qcuR7J5V\nKxemLJOHHnuy26EAAAAAAAAAAAcAyTvMSEv6FidJNg1v7nIku2fV8gVJkvUbhrocCQAAAAAAAABw\nIJC8w4y0pL+RvPPEDOx5J0nWb9jS5UgAAAAAAAAAgAOB5B1mpHbPOzMteWeFnncAAAAAAAAAgDGS\nd5iRlvQPJEk2zrCfzVq+eF76eit63gEAAAAAAAAAkkjeYYZq/WzWxhnW806lKHLo8gV56LEtqZdl\nt8MBAAAAAAAAALpM8g4z0rzqvPRWerNpeGYl7yTJqhULMzJaz4aNW7sdCgAAAAAAAADQZZJ3mJGK\nosiSvoEZ1/NOkqxasSBJ/HQWAAAAAAAAACB5h5lrSf/ibBoeTL2sdzuU3bJqxcIkyfoNQ12OBAAA\nAAAAAADoNsk7zFiL+xenTJnNwzMrCUbPOwAAAAAAAABAi+QdZqylfYuTJBuHN3Y5kt1zyLIFKQo9\n7wAAAAAAAAAAkneYwRb3DyRJNm3b3OVIdk9vTyUHLZ2v5x0AAAAAAAAAQPIOM9eSVs872zZ1OZLd\nt2r5ggw+OZLNW4a7HQoAAAAAAAAA0EWSd5ixlvS3fjZrBibvrFyYJHrfAQAAAAAAAIA5TvIOM9bi\nvsbPZs3UnneSZP2GoS5HAgAAAAAAAAB0k+QdZqyl7Z53Nnc5kt2n5x0AAAAAAAAAIJG8www2v2d+\neio92bRtBibvrGj1vCN5BwAAAAAAAADmMsk7zFhFUWRJ3+JsHJ55P5u1cF5vFi/s87NZAAAAAAAA\nADDHSd5hRlvSP5BNw5tTL+vdDmW3HbZiQTZs3JrhkVq3QwEAAAAAAAAAukTyDjPakr7FqZf1DI7M\nvB5sDl2xMGWShx7z01kAAAAAAAAAMFdJ3mFGW9y/OEmycdvmLkey+1atWJAkWb9B8g4AAAAAAAAA\nzFWSd5jRlva1knc2djmS3TeWvDPzeg0CAAAAAAAAAPYNyTvMaIv7B5Ikm4ZnXs87h61YmETPOwAA\nAAAAAAAwl0neYUZb0jdzfzZr2UB/+nuret4BAAAAAAAAgDlM8g4z2pL+ZvLO8KYuR7L7iqLIoSsW\n5KHHnky9XnY7HAAAAAAAAACgCyTvMKO1fzZr28xL3kmSVSsWZLRWz6Mbn+x2KAAAAAAAAABAF0je\nYUZb2LMgPUU1T8zAnneSZNWKhUmS9Ru2dDkSAAAAAAAAAKAbJO8woxVFkcX9i7Np2+Zuh7JHVi1f\nkETyDgAAAAAAAADMVZJ3mPGW9C3OxuFNqZf1boey21atbPW8M9TlSAAAAAAAAACAbpC8w4y3pH8g\n9bKeoZGZ13vNIcvmp1IUet4BAAAAAAAAgDlK8g4z3uK+xUmSTcMz76ezeqqVHLRsftZvGEpZlt0O\nBwAAAAAAAADYzyTvMOMt6W8k7zyxbVOXI9kzq5YvyNDW0WzeMtLtUAAAAAAAAACA/UzyDjPekr6B\nJMmmmZq8s3JBkmT9hqEuRwIAAAAAAAAA7G+Sd5jxWj3vbByemck7h61YmCRZv2FLlyMBAAAAAAAA\nAPY3yTvMeO3knW2buxzJnjl0RavnHck7AAAAAAAAADDXSN5hxlvSN7N73lm1vNXzjp/NAgAAAAAA\nAIC5RvIOM97C3gWpFtVs2jYzk3cWzOvJkkV9kncAAAAAAAAAYA6SvMOMVxRFFvcNZOPwzPzZrCQ5\nbMXCbNi0LduGa90OBQAAAAAAAADYjyTvMCss6V+cTds2pSzLboeyRw5dsSBJ8tBjW7ocCQAAAAAA\nAACwP0neYVZY0jeQ0bKWodGZmfxy2IqFSeKnswAAAAAAAABgjpG8w6ywpH9xkmTjtk1djmTPtHre\n+eWGmZl8BAAAAAAAAADsGck7zAqL+xrJO5u2be5yJHum1fPOQ3reAQAAAAAAAIA5RfIOs0K7553h\nmdnzztJFfZnXV816Pe8AAAAAAAAAwJwieYdZYUn/QJKZ+7NZRVFk1YoFefjxLanV690OBwAAAAAA\nAADYTyTvMCss6Wv1vDMzfzYrSQ5dvjCjtTKPPrG126EAAAAAAAAAAPuJ5B1mhfbPZs3QnneS5LCV\nC5LET2cBAAAAAAAAwBwieYdZYWHvgizqXZjbH7srG7fNzN53Vq1YmCRZv2Goy5EAAAAAAAAAAPuL\n5B1mhUpRyW+v+a1srW3NNfd8s9vh7JFVK/S8AwAAAAAAAABzjeQdZo0XPuW0HLHosPzgoR/nnid+\n3u1wdttBS+enWin0vAMAAAAAAAAAc4jkHWaNSlHJ+Se8Mkny5Tu/nnpZ73JEu6enWsnBy+Zn/YYt\nKcuy2+EAAAAAAAAAAPuB5B1mlaOXHJnTD31OHhj8Zf7jwf/sdji7bdWKhdmybTSbhoa7HQoAAAAA\nAAAAsB9I3mHWOfvY/y3ze+blG/d+O5uHB7sdzm5ZtWJBkmT9hi1djgQAAAAAAAAA2B8k7zDrLO4b\nyG+v+a08OfpkvnHPt7odzm4ZS94Z6nIkAAAAAAAAAMD+IHmHWelFT3l+Dlt4aL6//of5+ab7ux3O\nLlu1YmESPe8AAAAAAAAAwFwheYdZqVqp5vzjz0mSXHXH11Mv612OaNcculzPOwAAAAAAAAAwl0je\nYdY6btnRec4hp+T+zQ/khl/+sNvh7JL5/T1ZNtCfX+p5BwAAAAAAAADmBMk7zGqvPPa301/tyzX3\nfitDIzMjIWbVigV5fPO2PLlttNuhAAAAAAAAAADTTPIOs9rS/iV56ZqzMjSyJdfe++1uh7NLVi1f\nmCR56LGZkWwEAAAAAAAAAOw5yTvMer9x+Atz6IKD8x8P/mfu3/xAt8PZqVUrFyRJHvLTWQAAAAAA\nAAAw6/V0OwCYbtVKNb9z/Nn55NrP5ct3XJM/efabUyl2nLf2qy2P5KZHb80vNj+Y0fpoRuu11Mpa\ne3i0HE2t+Tpar6WnUs1vHXlmTj/02SmKYq/iXbW8kbzzyw1De7UdAAAAAAAAAODAJ3mHOeGpy4/L\nsw4+OT/51U35wUM35vmrnjNufr2s5+ebfpGfPXprbnrkljy05VdTbqtaVNNTqaan6Em1Uk1PpSeP\nb92YL9725fz0kZ/lwhPOy5L+gT2OddXKxs9m/eJXg3u8DQAAAAAAAABgZpC8w5xx7rEvyy2P3pZr\n7v5mnrnyaemp9OSOx+/KTY/cmp9tuDWbhxvJMr2V3py88ml5xsqTcvyyYzKv2p+eSjXVSk96iuqk\nPetsePLxfPG2L+dnj96We5/4WC444ZV59iHP3KM4lyzsyxEHL8rP7t2Q9RuGsmrFwr06bgAAAAAA\nAADgwCV5hzlj2byleclRv5lv3PvP+YsffyqPbX08I/WRJMlA76L82qrn5hkrT8pTlx+Xvmrfbm17\nxfxl+aNn/e+57sEb8vW7v5n/+5a/y08fuTnnn3BOFvXuXvJNURQ5+4Vr8tdf/Vm+cf3P8/uveNpu\nrQ8AAAAAAAAAzBySd5hTzlz9ovzgoRvz8JZf5ZAFB+fklSfl5INOylGLV6dSVPZq25Wikl8//AU5\nafnx+Z+3fjk//tVPc9cT9+Y1Tz03z1h50m5t61nHrczqQxblv259OC97/pF5ykGL9io2AAAAAAAA\nAODAJHmHOaW30pNLnv0H2TL6ZFbOXzEt+zh4wUH5k2e/Of96/3X5x3u/nb+56f/J6auek/OOe3nm\n98zfpW0URZFzXnh0/uorN+Wa63+ePzjn6dMSKwAAAAAAAADQXXvX1QjMQAt6F0xb4k5LpajkrCN/\nPX/23D/OEYsOy3+u/1E++INP5PbH7trlbTzz2BU56tCB/Oj2X+UXvxqcxmgBAAAAAAAAgG6RvAPT\n6LBFh+ZPn/NHeelR/z0bhzflk2s/l+sf/MEurVsURc454+gkyTX/cd90hgkAAAAAAAAAdInkHZhm\n1Uo1v330b+VPn/2Hmd8zP1+9+5+yaXjzLq37jKOX55jDFufGOx/Juod2bR0AAAAAAAAAYOaQvAP7\nyerFh+dlR/9Wtta25pp7vrVL6xRFkbPPWJNE7zsAAAAAAAAAMBtJ3oH96IzDTs9TFq3Kf67/Ue7b\nuG6X1nnaUctz7OFLsvbuR3Pf+k3THCEAAAAAAAAAsD9J3oH9qFqp5vzjz0mSfPnOr6de1ne6TlEU\neeUL9b4DAAAAAAAAALOR5B3Yz45duibPPeRZuX/zg7nhlz/cpXWeeuSynHDE0tx0z4bc88uN0xwh\nAAAAAAAAALC/SN6BLjjn2Jemv9qXa+79VoZGtux0+aIocs4Zzd53/l3vOwAAAAAAAAAwW0jegS5Y\n2r8kL11zVoZGtuQf7/32Lq1zwuplOfHIZbn5vsdy1wNPTHOEAAAAAAAAAMD+IHkHuuTXD39BDllw\nUP79wf/MLzY/uEvrnP3CRu87X9f7DgAAAAAAAADMCpJ3oEt6Kj35nePOTpkyX77z6ynLcqfrHH/E\n0jxtzfLctu7x3HH/4/shSgAAAAAAAABgOknegS46ccXxOeWgp+fejevyXw/duEvrnNPsfeea/9D7\nDgAAAAAAAADMdJJ3oMtedezL01vpydfu+ac8Obp1p8sf85QlecbRK3L7/U/ktnV63wEAAAAAAACA\nmUzyDnTZivnL8uIjz8zm4cF8677v7NI655zR6H3n6/9+7y793BYAAAAAAAAAcGCSvAMHgP+++r9l\n5bzl+d4D/5H1Qw/vdPk1qxbnlGNX5q4HNubWn+t9BwAAAAAAAABmKsk7cADorfbmvONfkXpZz/93\n5zW71JvO2S9s9L7z//7z7fmXH/0iTwxum+4wAQAAAAAAAIB9TPIOHCCevuLEnLTihNzx+N35ySM/\n2+nyRx46kBc/74hs2LQ1//Cdu/J//vX1+fO/vzH/tvbBbN4yvB8iBgAAAAAAAAD2Vk+3AwAaiqLI\n7xz3inzwsY/nq3f9Y5624qnpr/btcJ0LzjwuL3ne6vzojkfyg9sezu33P5Hb738iX/z2nTlpzbKc\nduIhedZxB2XBPEUdAAAAAAAAAA5EPtGHA8jBCw7KmatflP+17nv53M/+Z0479Nk5ccXxWdS7cMp1\nlizqz28++/D85rMPz2Obtua/bvtV/uu2h3PzvY/l5nsfS0/19jzj6BU55diVWba4P4sX9GXxwr4s\nmt+bnqrOtwAAAAAAAACgmyTvwAHmJUf9Zm7dcEdue+zO3PbYnSlS5MjFR+SkFSfkaStOyOqBw1Mp\nJk+6Wb54Xl5y2uq85LTVefjxLe1Enp/c9Wh+ctej2y2/cF5PFi/sy8CCvixe0JuBhX0ZmN+b/t5q\nensq6eutpq+nkt6eavp6K2PDPZX09lbSW62kWilSbb72VCupVotUimK6TxMAAAAAAAAAzArTlrxT\nr9fz3ve+N3fccUf6+vpy+eWX58gjj2zP/+53v5tPfepT6enpybnnnpvzzz9/p+vAXNBf7cufPfet\neXBwfW7ZcEdu3XBH7tu0Lj/fdH++ed+/ZFHvwpy4/PictOKEnLT8hCzqm7xXnkOWLcjLf+2ovPzX\njsoDjwzm7gc3ZvPQcDZtGcnmLcPZ1BzeNDSchzZsSbkPj6FSFKlWi/RUi1QrjYSenolJPuNeG/Mq\nRZFKpUhRNLZRFGmMp0il0vhpsUpRpFIkRaVIJUWKSprTOpZvr99cdrvtTjW9Y1sTt9tarzm9qIzF\nUmkNV8aWLzoSmMpyx2d3Z/FMnN5edopjBgAAAAAAAGDmmLbkne985zsZHh7OVVddlbVr1+bDH/5w\nPvOZzyRJRkZG8qEPfShXX3115s+fnwsvvDBnnnlmbrzxxinXgbmkUlRyxMBTcsTAU/KSo87MlpEn\nc/vjd+XWDXfk1g2354cP/yQ/fPgnKVJk2byl6SmqqVSq6SmqqRbVRsJMe7gxvdJTTXVpJT3LerK4\nUsmy5rxqUU0lldRqRUZHyoyMJmW9SFkWqdeKlPUi9XqRej2pjTaGR2tJfTSp1RvL1mpJvZ6UzdfR\nepF6rUytVqZeLzNaK1Ovldla1lMbbkyr1eqplWVq9V1JG9qLhJRxmy+mmFckRdmYUJQpinLc+Ljh\nzu2UHdvrHE7R3HYxfh9JyvZyHcu0Y5lku53bqNSTop6iUm8Pp1JPUdSTSm1svKwkzX9FWW0M16sp\nUmnPK8pq47BTpqikedz1xrTmMReV5rloxtFYP0lRTVEWzWlFc7iRiFWvN5cuGnObO2keWdGc1th2\nUiaVNPabMmWlniJl85DrKYqysV5RNOJuBNd4S4pGPGNbbcyrlMXYcmktWxlbqmjFN3aOi+Z5aI0U\nrUuiFXVrnZTt9crO6UXr6JrnsWOloj3YPK6iljL1lEU9SX1suBgbbhxZTyqpbv+vqKaaaoqi2rHP\n5n7SDnTqY2gvUoxbrnVQRVGm8V89ZTqH68mk8zrmt8bLsWUrqTTj7kk11fZx9RS9qaR5TRbtyNvx\n72A0KYp2QlzR3OfYe1I248i41+bBdUwtm1dimWYaYCpFpT1cpDJlD2ed53HSGKdIoJuyFptixlTL\n706C3lSLTh3L9nPKskw9o6mVIxktR1PLSEbLkYy2pmU08/qrGd5Wplr0pCc9qRbNfxl77a30ptK8\nbndJWWa0HM5wuS3D5dbxr/XG60i5LdX0pL8yL33FvPS1Xov+9FXmpb8yL71F37j3slbWmscykpFy\nZPxwRlKmbLaL1eZxVNOT3mab2tOc3iiLnWWhXtbb11ZZtqbXG0uUZcqi3i4f7Xll63odKy/tc9dq\nw9vnsbX/xrE0tlBrb7te1lNPPfWy1oynliJplL1mvVEpOuuQ8e91vaxnpNyabfWt2Vp/MlvrT2Zb\n87U1PFzflt6ir3lu+9NX6W+c+0rzfBdj45Wi2ipZjX1NeS1OMmO3y8RUF9EUZXHXd7l7ce9w+d3Z\n5+TlMM3rrPN9rpW1pCib72+lfW1WWud9u03v3v3U1HVIY8ajgyN54oktOzyoohl/2Y6/llrZaDdq\nHcfRKkPVonU/25PKuOFdT1DeWdy7andO107ytJvLlBktRxt1aH20UaeWtSRpl+2kaLaLRbttGruH\nGZteFEVSTjF9J8fQOW2yczL5Oh33OmMrbz+4D5LId3cLreurTJnG/xr/FcVYAn3rjmBsH9uft7F7\npn2fCL8vtjnZFsrOdqRst0ITzknZqPsrzbqhsvexjBaVPPb4lp0vuCP76Dzvi63ss3d8H2xod+up\nKbdzgHyf40D6Ysm+CmWfbKYLdeW+2FDf4LZs2jI8bbHsz+tld3a1G09fU86pl/XU6rXUU29+IavS\nfP7ctfubxjNZPfV6vfk8U2/eP9WazxQdy07x1bxKUaSn0vGM0/x7YGcbuJuHtVfv/Z6/3Xu+125V\nSXu6371qE/bhqmVZ7vRLicmBVefvjfbfm2bJ8cwG9bKeWllPkbTrLYA9US/rKcuycR+mLuEANm3J\nOz/+8Y9zxhlnJElOOeWU3Hzzze1599xzT1avXp0lS5YkSZ797Gfnhz/8YdauXTvlOjCXLeidn1MP\nPjmnHnxyyrLMg4PrG4k8j92RR57ckCfrI6mPNB7eR8taavXalA/s+0S1+a+7m2AfKye8cuAqy2LX\n36jO+9DOP7hMWL8otp823coySb3aSFgrOndeNuPumFa0/oCyH2Mri2Yy3Sy9mS+nOq5Wllc9RbW2\n8+0M7uLuWue0tY/tkhab04ok1dGO5ME9V5ZJas3b3UqtmTg4c5XlvikDZb1oJnZWmud7ZFrLVrvO\nKpsJCu2ytYv2NLbJEngnJNVut8ouxLXza7OVELrToCZZprPeayRD7sl1236Py0pSL1I2z/3ksZcd\ncUyMfWK8E9efZN32so1p++SabV0/9crYdbT7W9mFZTqvk8kSqSZOK6a+ptoJ17Xm8P6pf8buEXZQ\nz06ctyvb3CUdy016uDvYzmTldbvk+kaZGPtX3+d1V/tWaYft1YTpHfMnTdQvM76cdNzjjJXJjumd\n90BF52tn+dyzsjVWNzRey/rY8P6zh2Vhlt6OJZnklOzpJ72tcjHhiyid/yY9/xPbyJ3EM1m912rb\nm3VN2a5zJtY3k1/rYzHv4Pj28jztdl02Vf3eKtPNmIuJ57dzvHMbu1gnT1mPjMua7Dxf5YS6pPNE\nTay7Jp6HSbZdbr/O+PZuP2tfL2NtwPZtQnN4snM26fnchXO9W/eqYzE0vlzVGd+O26op75M727pp\nvIcYf89Y2cVysrP2fsIye+UAeH7b60OZvmPY9WfmKZ5PJrkfnPwamOKed6r6Y9L1OpadeE+XScp1\nq7Jt37c025Zy/LSdv0Gdz1cT65KJ5XWsPm2UjdY9UpE0y8q4GFKMbX9CvZwiKTrnjat3pqqjivFt\nScd2G+cnY/M66upxbW77fegYb9dP5XbnIM0vVDYOpaMtbx3fxHO/pwViR3VL+72oj6s703x/Jl7n\n4+qtVqzt96fScdy7Uj4mLxvFxHI7afg72v5UZWbijiZ5FmivMqE9n6wsTVKGt2u/x4U7m2+opzDx\neWqHX9hOOq/7SYeTnVzPOwtoL9uESeNPksaXsre/3594D9oZ5GT3p5kwPPF1svjHpo2/55lk2cnO\nz47u8ae8bidZprPumHR4wnu9XZsy4XV37wd3SXfKYLWcl//rjP8jBy9Z3JX9s/umLXlncHAwixYt\nao9Xq9WMjo6mp6cng4ODGRgYaM9buHBhBgcHd7jOVJYtW5CeHikAB5qDDhrY+ULssYMPXpxnHX3C\nDpdpfbNntN5I5hktaxmtj6bWGm/NK1vjoxltfountdxox7KN6R3bKGup1evt7Pd6vfGNn9a3gOrl\n2LeC9uqWZFe+yjzVqslYElM5Ntz6Zm5ruEzzp76Kasdr62e8xk9rr1OWk7ymPZ6y0SdNduOdAAAS\n60lEQVRDyqSeevO1c/rO5ze2V29H3VPpSW+1N32V3vRUe8Zeqz3pqfQ2X3tSq9czUh/JSG107LU2\nkpH6+Nei+Y2valFNpVJJddxwNdVirPeRetnxXne81pvXQOtf2XH2x77t3Bofe2+qlcr2+65Ux/bb\nnN86P2VZpl42eq2op2xnSTemd/RuMWG8vVzqqbW6BRqnGDc02dU29beddn6zVbQe98rG+zd2jGM9\nX/UUPR3nvNroAaM+mtF64/0brTW+nT9Sa00bzWh9pH3NtfdVjBWXzpjLHUY6fk6l2eNMK/u8UlSa\nPThU2vM6p3d+Y3BseGy5Vn0y2ox5tD6akXIko/WR9jGO1kdST6MnnFZvTZ09NxVJMxO+aB/bWM9B\n49ZKq+eksV6IOr5JP8l6rTNUK+uNa6vdq0VzPGPX9nTYi+pt7/c94Wqf+E26sR4wetNb6W2+9qWn\nPTz2WqRo9CZRb/bOU2/2LLFdDxOj7X21/2vVmR3jSRq9ulQbvef0Vxs96syrzm/27NIY7qv0Z6Q+\nkuHa1mytb822+pPZVt+abbWx4eH61mytbU2RjMVeNI6jt+hNT6Wv8Vr0pqfSmyKV1MrR1Mtau1eM\n2rjXxr966mn10jTWe0PHN2hTpCgq45aptJftWCZFe5166qmVo+P2W2++dk5L0iyD1Y7yVx0rkx09\n67S+kVsra80eT2rtbbbGk6S/Mn/7f8W89FfmZ15lQfor89Nb9GW0HM62cluG640ekEZaw+XW5rTG\ncL3Zs8r43oZaw43xid8Sbtm9x9ipn/q3v6InzCvL7eZOvf7E1mL7OVPNn3q9ydYdm96o+5p1akc9\nXKSjnu3sials9OxWT/Nb2NVGDz3NVjP1sjZ++8XEPRfjYt3+qCZbdrL5Rcd4qwUq2sfQKAHVbN/r\nWbMcNHvnqafWjruWWsrmtNYxTZ/Oq6Hc7loZv0S53Rqd49Wir6P3vJ5mOW31hNXqYa8yYUvldq+d\n++vsTWVsmQnzJhsuJ257++MYNzRJ+Zz6iwGTl5kptz3ldjr301imUUtWx+rSjL9eOl9by6c5NPH/\nJ/6xceL5aA8XzXnFxHM1cb2OdabYZuf4WGyVjjuXzvIy/o4l44Ynm5YdzBtfRhsRNOuDSn1sOOOH\n95u9uv/Zsz92TrXWjkLZF73g7NoXanb8B/DJxqd6ZmnE3DNFGRkb79zKuLI5ySFPegwdHyiNXe8d\nPXGmHDee9njnddv60HPya3nqI93FGHdx/e3XnVhbbT+/0bq1jqHjvq6ccJ7LCee6s5fQYvL6orPu\n2b6uaZXT1pmqdJT1YlzvuNsfX+tBsRx3zOPnd94vbV//Taed7aF9PZetdqGS8dd1JUV9rM5rnP6J\n53Qn9f+496aeqa+rsag6h4qykiI9HbE2eywuG/fnjR7zKuP33+qds7O8FGXKohy7xspKilrr2Mfa\nwZRj7eGuneMyrV5zG72C1sYPF/WUPTtqDyarh3a1jtub+rQ7H3JtZ59/eLc3pnqGmHrq1PPGPwdN\nfb/W8Y53JhtMsubEbY5bpvWnms76siyS5v1e47puvba2W2+U58rYNZyiNn7eVIc04djHlau0ehVv\n9FJe1Mdiamym3t5+mUZiSXu4qKfMaDqfd9plsV0XJ+lo6xrG/sY7sb4ff8/Ysc329sYS/IoUzcnj\nnx1adUpnfdI47c32qn281bTbr3pnjJ31UKtX7Wb91Oo1fY/uGXdcV4yv03o7eo1v1H9p1/lp112d\nPZinqKesNt+TYmL9vTvP51PMK6eYnsnvF8e9rx33TOPnTXh2KVtTOu+FJm57iue4Hexju/JYZGdv\nxyw1WZkqkrI6fnr7WbB13bfuv8qx+4pdujeazjZj7J5v7B6wksbX5DvnJdtdM8XEa7Lj3q9Ixu41\nO+9dO5cfH8c47ctxqmPf2TnZfh/jruVi8mW2m1Z2tCdlsz6pd9w7tb5o0LrfaycwNuuOSqud2ctn\n5L36Quq+L6RFWc/SFfNy0LJd+9ze5/vdN23JO4sWLcrQ0FB7vF6vt5NwJs4bGhrKwMDADteZyuN7\n210z+9xBBw3kkUc2dzsMtlMk6U0lvakk6Z04u9L8B3tI2Ye5SdmHuUnZh7lJ2Ye5SdmHuUnZh7lJ\n2YdZZjS7VKaV/f1nR0lS0/ZR/amnnprrrrsuSbJ27docf/zx7XnHHHNM1q1blyeeeCLDw8P50Y9+\nlGc961k7XAcAAAAAAAAAAGabaet556yzzsr111+fV7/61SnLMldccUWuvfbabNmyJRdccEEuvfTS\nXHzxxSnLMueee24OOeSQSdcBAAAAAAAAAIDZqijLSX7QfgbRfdOBR7daMDcp+zA3KfswNyn7MDcp\n+zA3KfswNyn7MDcp+zA3Kfv7T1d+NgsAAAAAAAAAANgxyTsAAAAAAAAAANAlkncAAAAAAAAAAKBL\nJO8AAAAAAAAAAECXSN4BAAAAAAAAAIAukbwDAAAAAAAAAABdInkHAAAAAAAAAAC6RPIOAAAAAAAA\nAAB0ieQdAAAAAAAAAADoEsk7AAAAAAAAAADQJZJ3AAAAAAAAAACgSyTvAAAAAAAAAABAl0jeAQAA\nAAAAAACALpG8AwAAAAAAAAAAXSJ5BwAAAAAAAAAAukTyDgAAAAAAAAAAdInkHQAAAAAAAAAA6BLJ\nOwAAAAAAAAAA0CWSdwAAAAAAAAAAoEsk7wAAAAAAAAAAQJcUZVmW3Q4CAAAAAAAAAADmIj3vAAAA\nAAAAAABAl0jeAQAAAAAAAACALpG8AwAAAAAAAAAAXSJ5BwAAAAAAAAAAukTyDgAAAAAAAAAAdInk\nHQAAAAAAAAAA6JKebgfA7FGv1/Pe9743d9xxR/r6+nL55ZfnyCOP7HZYwDQYGRnJO9/5zjz44IMZ\nHh7Om9/85qxatSq///u/n6OOOipJcuGFF+alL31pdwMF9rlXvvKVWbRoUZLk8MMPz5ve9KZceuml\nKYoixx13XN7znvekUpEfDrPJV7/61Xzta19Lkmzbti233XZbrrrqKu0+zGI//elP8xd/8Re58sor\ns27duknb+i9/+cv50pe+lJ6enrz5zW/Ob/zGb3Q7bGAvdZb92267LR/4wAdSrVbT19eXj3zkI1m5\ncmUuv/zy3HjjjVm4cGGS5NOf/nQGBga6HDmwpzrL/a233jrpPb42H2afzrL/9re/PY8++miS5MEH\nH8wzn/nMfOITn9Dmwywy2Wd6xx57rGf9A5DkHfaZ73znOxkeHs5VV12VtWvX5sMf/nA+85nPdDss\nYBp84xvfyNKlS/PRj340TzzxRM4555y85S1vyRve8Ia88Y1v7HZ4wDTZtm1byrLMlVde2Z72pje9\nKW9729ty2mmn5d3vfnf+9V//NWeddVYXowT2tVe96lV51atelSR53/vel3PPPTe33HKLdh9mqc99\n7nP5xje+kfnz5ydJPvShD23X1p9yyim58sor85WvfCXbtm3La17zmrzgBS9IX19fl6MH9tTEsv/B\nD34w73rXu3LiiSfmS1/6Uj73uc/lsssuyy233JLPf/7zWb58eZcjBvbWxHI/2T3+I488os2HWWZi\n2f/EJz6RJNm4cWMuuuiiXHbZZUmizYdZZLLP9J761Kd61j8A+Vo0+8yPf/zjnHHGGUmSU045JTff\nfHOXIwKmy0te8pL88R//cZKkLMtUq9XcfPPN+bd/+7f87u/+bt75zndmcHCwy1EC+9rtt9+eJ598\nMm984xtz0UUXZe3atbnlllvyvOc9L0nyohe9KN///ve7HCUwXX72s5/l7rvvzgUXXKDdh1ls9erV\n+eQnP9ken6ytv+mmm/KsZz0rfX19GRgYyOrVq3P77bd3K2RgH5hY9j/+8Y/nxBNPTJLUarX09/en\nXq9n3bp1efe7351Xv/rVufrqq7sVLrAPTCz3k93ja/Nh9plY9ls++clP5rWvfW0OPvhgbT7MMpN9\npudZ/8AkeYd9ZnBwsP0zGklSrVYzOjraxYiA6bJw4cIsWrQog4ODeetb35q3ve1tOfnkk/OOd7wj\nf/d3f5cjjjgin/rUp7odJrCPzZs3LxdffHG+8IUv5H3ve18uueSSlGWZoiiSNOqGzZs3dzlKYLr8\n7d/+bd7ylrckiXYfZrEXv/jF6ekZ66h5srZ+cHBwXJf5CxculMQHM9zEsn/wwQcnSW688cZ88Ytf\nzO/93u9ly5Ytee1rX5uPfvSj+fznP5+///u/98d8mMEmlvvJ7vG1+TD7TCz7SbJhw4bccMMN7V53\ntfkwu0z2mZ5n/QOT5B32mUWLFmVoaKg9Xq/Xt7sBAGaP9evX56KLLsrZZ5+dl7/85TnrrLPy9Kc/\nPUly1lln5dZbb+1yhMC+tmbNmrziFa9IURRZs2ZNli5dmg0bNrTnDw0NZfHixV2MEJgumzZtyn33\n3ZfTTz89SbT7MIdUKmN/Omq19ROf/4eGhsb9gQ+YHb75zW/mPe95Tz772c9m+fLlmT9/fi666KLM\nnz8/ixYtyumnn+6DPJhFJrvH1+bD3PDP//zPednLXpZqtZok2nyYhSZ+pudZ/8AkeYd95tRTT811\n112XJFm7dm2OP/74LkcETJdHH300b3zjG/Onf/qnOe+885IkF198cW666aYkyQ033JCnPe1p3QwR\nmAZXX311PvzhDydJHn744QwODuYFL3hBfvCDHyRJrrvuujznOc/pZojANPnhD3+Y5z//+e1x7T7M\nHSeddNJ2bf3JJ5+cH//4x9m2bVs2b96ce+65x98AYJa55ppr8sUvfjFXXnlljjjiiCTJz3/+81x4\n4YWp1WoZGRnJjTfe6B4AZpHJ7vG1+TA33HDDDXnRi17UHtfmw+wy2Wd6nvUPTLpFYZ8566yzcv31\n1+fVr351yrLMFVdc0e2QgGnyN3/zN9m0aVM+/elP59Of/nSS5NJLL80VV1yR3t7erFy5Mh/4wAe6\nHCWwr5133nm57LLLcuGFF6YoilxxxRVZtmxZ3vWud+XjH/94jj766Lz4xS/udpjANLjvvvty+OGH\nt8ff+9735gMf+IB2H+aAP/uzP9uura9Wq3nd616X17zmNSnLMm9/+9vT39/f7VCBfaRWq+WDH/xg\nVq1alT/6oz9Kkjz3uc/NW9/61px99tk5//zz09vbm7PPPjvHHXdcl6MF9pXJ7vEXLVqkzYc54L77\n7msn6ybJMccco82HWWSyz/T+x//4H7n88ss96x9girIsy24HAQAAAAAAAAAAc5GfzQIAAAAAAAAA\ngC6RvAMAAAAAAAAAAF0ieQcAAAAAAAAAALpE8g4AAAAAAAAAAHSJ5B0AAAAAAAAAAOgSyTsAAAAA\n7JavfvWrufTSS7sdBgAAAMCsIHkHAAAAAAAAAAC6pKfbAQAAAAAwPT772c/mW9/6Vmq1Wl74whfm\nwgsvzB/8wR/kiCOOyLp163LYYYflox/9aJYuXZrvfe97+cu//MvU6/UcccQRef/735+VK1fm+9//\nfj784Q+nLMscdthh+djHPpYkWbduXV73utfll7/8ZZ7//Ofn8ssv7/LRAgAAAMxMet4BAAAAmIWu\nu+663Hzzzbn66qvz9a9/PQ8//HCuvfba3HnnnXn961+ff/qnf8oxxxyTv/7rv86GDRvy7ne/O5/6\n1Kdy7bXX5tRTT8373//+DA8P55JLLslHPvKRXHvttTnhhBPyta99LUmyfv36fPKTn8y3vvWtXHfd\ndbnrrru6fMQAAAAAM5OedwAAAABmoRtuuCE33XRTXvWqVyVJtm7dmrIsc9RRR+W0005Lkpxzzjm5\n5JJL8oIXvCAnn3xyDj/88CTJBRdckM9+9rO54447csghh+TEE09MkvzJn/xJkuSrX/1qnvOc52Tp\n0qVJktWrV+fxxx/f34cIAAAAMCtI3gEAAACYhWq1Wl7/+tfnDW94Q5Jk06ZNeeihh/L2t7+9vUxZ\nlqlWq6nX6+PWLcsyo6Oj6e3tHTd98+bNGRoaSpL09Iz9WakoipRlOV2HAgAAADCr+dksAAAAgFno\n9NNPzzXXXJOhoaGMjo7mLW95S26++ebcd999ue2225IkX/nKV/KiF70oz3zmM/PTn/40DzzwQJLk\nqquuymmnnZY1a9bksccey913350k+fznP59/+Id/6NoxAQAAAMxGet4BAAAAmIXOPPPM3H777Tn/\n/PNTq9Vyxhln5LnPfW6WLFmSv/qrv8r999+fE044IZdffnkWLFiQ97///fnDP/zDjIyM5LDDDssH\nP/jB9Pf356Mf/Wje8Y53ZGRkJKtXr86f//mf59vf/na3Dw8AAABg1ihKfRoDAAAAzAkPPPBALrro\nonz3u9/tdigAAAAANPnZLAAAAAAAAAAA6BI97wAAAAAAAAAAQJfoeQcAAAAAAAAAALpE8g4AAAAA\nAAAAAHSJ5B0AAAAAAAAAAOgSyTsAAAAAAAAAANAlkncAAAAAAAAAAKBLJO8AAAAAAAAAAECX/P/F\nN2YK5ZjUdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "print(\"epoch\", epoch)\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k, fontsize=30)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0034859505006226755" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error did not improve\n", + "Epoch 00001: val_mean_squared_error did not improve\n", + "lr changed to 0.0005904900433961303\n", + "Epoch 00002: val_mean_squared_error did not improve\n", + "Epoch 00003: val_mean_squared_error did not improve\n", + "lr changed to 0.0005314410547725857\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "lr changed to 0.00047829695977270604\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error did not improve\n", + "lr changed to 0.0004304672533180565\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "lr changed to 0.00038742052274756136\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "lr changed to 0.0003486784757114947\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "lr changed to 0.00031381062290165574\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error did not improve\n", + "lr changed to 0.0002824295632308349\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "lr changed to 0.00025418660952709616\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error did not improve\n", + "lr changed to 0.00022876793809700757\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "lr changed to 0.00020589114428730683\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "lr changed to 0.00018530203378759326\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "lr changed to 0.00016677183302817866\n", + "Epoch 00026: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00027: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "lr changed to 0.00015009464841568844\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "lr changed to 0.0001350851875031367\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "lr changed to 0.00012157666351413355\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "lr changed to 0.00010941899454337544\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "lr changed to 9.847709443420172e-05\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "lr changed to 8.862938630045391e-05\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "lr changed to 7.976644701557234e-05\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "lr changed to 7.178980231401511e-05\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "lr changed to 6.461082011810504e-05\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "lr changed to 5.8149741380475466e-05\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "lr changed to 5.233476658759173e-05\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error did not improve\n", + "lr changed to 4.7101289601414466e-05\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "lr changed to 4.239116096869111e-05\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "lr changed to 3.815204618149437e-05\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "lr changed to 3.4336842873017304e-05\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "lr changed to 3.0903160222806036e-05\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "lr changed to 2.7812844200525434e-05\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error did not improve\n", + "lr changed to 2.5031560107890984e-05\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "lr changed to 2.2528404588229024e-05\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n" + ] + } + ], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler) # do sth to learning rate\n", + "\n", + "callbacks_list = [checkpoint, lr_decay] # checkin with these once in a while\n", + "history = model.fit(trainX, trainY, epochs=int(epoch/3), batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAJoCAYAAAATN9ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fW9x/H3GcnJHmRvkjACJGyQEQcuHIgbtI66WrX1\n1jraqq1eOxy3VmuvvVrroHUV3FtcKEjYKySBQAYGsvceJ2fcPwJHIgFZ4SQnr+fjwSPnnN/v+zuf\nk8DnnId5+/kanE6nUwAAAAAAAAAAAAAAAAAGHaO7CwAAAAAAAAAAAAAAAABwdAj/AAAAAAAAAAAA\nAAAAAIMU4R8AAAAAAAAAAAAAAABgkCL8AwAAAAAAAAAAAAAAAAxShH8AAAAAAAAAAAAAAACAQYrw\nDwAAAAAAAAAAAAAAADBIEf4BAAAAAAAYYkpLSzV69GiNHj1aDzzwgLvLAQAAAAAAwDEg/AMAAAAA\nAAAAAAAAAAAMUoR/AAAAAAAAAAAAAAAAgEGK8A8AAAAAAAAAAAAAAAAwSBH+AQAAAAAAAAAAAAAA\nAAYpwj8AAAAAAAAAAAAAAADAIGV2dwEAAAAAAAAYeAoKCvTqq69q7dq1qqyslNPpVGRkpKZNm6Yr\nr7xS6enpB11rs9n0/vvv6+OPP9a2bdvU1NQkf39/xcbGasaMGbryyiuVlJR03NcCAAAAAAAMRQan\n0+l0dxEAAAAAAAA4cUpLS3XGGWdIkhYuXKg//OEPrmNOp1OPP/64XnjhBTkcjj7XGwwGXXXVVbr3\n3ntlNvf+f8taWlr005/+VJs2bTro85tMJv32t7/VVVddddzWAgAAAAAADFVM/gEAAAAAAIDLww8/\nrJdeekmSFBoaquuuu05TpkyR0WjU1q1b9eKLL6q6ulqvvPKK2tra9Oijj/Za/8gjj7jCO5dddpnO\nOusshYWFqampSevWrdPLL7+s9vZ2/elPf9KUKVOUlpZ2XNYCAAAAAAAMVYR/AAAAAAAAIEnauHGj\nK/iTnJysl156SZGRka7jU6ZM0cUXX6wbbrhBeXl5euedd3T66afr7LPPliRZrVZ98MEHkqTLL79c\nf/rTn3pdPzMzU1OmTNFPf/pTORwOvfHGG7r//vuPeS0AAAAAAMBQRvgHAAAAAAAAkqQXXnjBdfvP\nf/5zr+DPPiEhIXryySd1zjnnyG6367nnnnOFf5qbm2W1WiVJSUlJfT7HqaeeqmuuuUbBwcEaP368\n6/FjWQsAAAAAADCUEf4BAAAAAACAbDab1qxZI0kaN27cIcM1iYmJyszM1PLly5WTk6OGhgaFhoYq\nLCxMISEhamxs1LPPPqvw8HCde+658vHx6bX+d7/73QHXPJa1AAAAAAAAQ5nR3QUAAAAAAADA/crL\ny9XW1iZJmjBhwg+ev+8cp9OpgoICSZLBYNBNN90kSWppadE999yj6dOn64YbbtBzzz2n7du3y+l0\n9nm9Y1kLAAAAAAAwlDH5BwAAAAAAAGpsbHTdDgsL+8Hzw8PDXbebmppct3/yk5/I4XDo6aefVmdn\np7q6upSVlaWsrCz95S9/UWRkpObOnavrrrtO8fHxva55LGsBAAAAAACGKib/AAAAAAAA4Iin6tjt\ndtdtg8HQ69jNN9+sFStW6KGHHtIZZ5whf39/17Hq6mq9/PLLOu+887Rs2bIDrnssawEAAAAAAIYi\nJv8AAAAAAABAwcHBrtt1dXU/eP7+54SEhPR5vcsuu0yXXXaZbDabcnJylJWVpaVLl6qgoEBdXV26\n5557tGzZMgUEBBy3tQAAAAAAAEMNk38AAAAAAACghIQE+fn5SZKys7N/8PwtW7a4bicnJ7tuV1ZW\natWqVbLZbK7HzGazJk2apNtuu00ffPCB5s6dK6lnu7CNGzcel7UAAAAAAABDFeEfAAAAAAAAyGQy\nacaMGZKkvLw85ebmHvTckpISrV69WpKUlpamsLAwSdLTTz+tU089Vddff73Wr1/f51qDwaCTTz7Z\ndd9qtR7zWgAAAAAAgKGM8A8AAAAAAAAkSddff73r9q9//WvV1tYecE5TU5PuuOMO2e12SdINN9zg\nOjZnzhzX7SeeeEJdXV0HrHc4HPr4448lSUajUWPHjj3mtQAAAAAAAEOZ2d0FAAAAAAAAYGCYPn26\nrrnmGr388ssqKirS/Pnz9eMf/1hTpkyRwWBQTk6OFi1apMrKSknSvHnzdOGFF7rWjxkzRnPnztWn\nn36qrVu3av78+br22muVkpIiLy8vlZaWavHixdq8ebMk6eKLL1ZcXNwxrwUAAAAAABjKDE6n0+nu\nIgAAAAAAAHDilJaW6owzzpAkLVy4UH/4wx9cxxwOhx577DEtWrRIB/vPRgaDQdddd53uuusueXl5\n9TrW0tKiW265RRs2bDhkDWeffbYef/xxeXt7H5e1AAAAAAAAQxXhHwAAAAAAgCHmUOGfffLz8/Xa\na69p7dq1qqqqktFoVGxsrE466SRdfvnlSktLO+j1HQ6HPvzwQ3388cfavn276urqZDKZFB4ersmT\nJ+vCCy9UZmbmcV8LAAAAAAAwFBH+AQAAAAAAAAAAAAAAAAYpo7sLAAAAAAAAAAAAAAAAAHB0CP8A\nAAAAAAAAAAAAAAAAgxThHwAAAAAAAAAAAAAAAGCQIvwDAAAAAAAAAAAAAAAADFKEfwAAAAAAAAAA\nAAAAAIBByuzuAgaCmpoWd5eA7wkN9VNDQ7u7ywCA447+BsBT0d8AeDJ6HABPRX8D4KnobwA8Ff0N\nQEREYJ+PM/kHA5LZbHJ3CQDQL+hvADwV/Q2AJ6PHAfBU9DcAnor+BsBT0d8AHAzhHwAAAAAAAAAA\nAAAAAGCQIvwDAAAAAAAAAAAAAAAADFKEfwAAAAAAAAAAAAAAAIBBivAPAAAAAAAAAAAAAAAAMEgR\n/gEAAAAAAAAAAAAAAAAGKcI/AAAAAAAAAAAAAAAAwCBF+AcAAAAAAAAAAAAAAAAYpAj/AAAAAAAA\nAAAAAAAAAINUv4V/HA6HHnjgAS1cuFDXXHONSkpKeh1ftmyZLr30Ui1cuFCvv/76IdeUlJToyiuv\n1I9+9CP993//txwOh+s69fX1mjt3rrq6uiRJLS0tuuWWW3T11Vdr4cKF2rx5c3+9RAAAAAAAAAAA\nAAAAAMCt+i3888UXX8hqtWrJkiW666679Oijj7qOdXd365FHHtGLL76ol19+WUuWLFFtbe1B1zzy\nyCP65S9/qddee01Op1NffvmlJOmbb77RDTfcoJqaGte1Fy1apBkzZuiVV17RI488oj/84Q/99RIB\nAAAAAAAAAAAAAAAAt+q38M/GjRt18sknS5ImTpyo3Nxc17GioiIlJiYqODhY3t7emjJlitavX3/Q\nNXl5eZo+fbok6ZRTTtGqVat6ijcatWjRIoWEhLiufd111+mKK66QJNntdlkslv56iQAAAAAAAAAA\nAAAAAIBbmfvrwq2trQoICHDdN5lMstlsMpvNam1tVWBgoOuYv7+/WltbD7rG6XTKYDC4zm1paZEk\nzZ49+4DnDQoKkiTV1NToV7/6le67774frDU01E9ms+noXij6TURE4A+fBACDEP0NgKeivwHwZPQ4\nAJ6K/gbAU9HfAHgq+huAvvRb+CcgIEBtbW2u+w6HQ2azuc9jbW1tCgwMPOgao9HY69x9AZ+D2bFj\nh+688079+te/dk0MOpSGhvbDfl04MSIiAlVT0+LuMgDguKO/AfBU9DcAnoweB8BT0d8AeCr6GwBP\nRX8DcLAAYL9t+zV58mStWLFCkrRlyxaNGjXKdSw1NVUlJSVqbGyU1WrVhg0bNGnSpIOuGTt2rNau\nXStJWrFihaZOnXrQ5y0sLNTtt9+uxx9/XKeeemp/vTwAAAAAAAAAAAAAAADA7fpt8s9ZZ52lrKws\nXXHFFXI6nXr44Yf1wQcfqL29XQsXLtQ999yjG2+8UU6nU5deeqmioqL6XCNJv/nNb3T//ffriSee\nUEpKiubOnXvQ53388cdltVr10EMPSeqZMvTMM8/018sEAAAAAAAAAAAAAAAA3MbgdDqd7i7C3RiN\nNvAwsg6Ap6K/AfBU9DcAnoweB8BT0d8AeCr6GwBPRX8DcMK3/QIAAAAAAAAAAAAAAADQvwj/AAAA\nAAAAAAAAAAAAAIMU4R8AAAAAAAAAAAAAAABgkCL8AwAAAAAAAAAAAAAAAAxShH8AAAAAAAAAAAAA\nAACAQYrwDwAAAAAAAAAAAAAAADBIEf7BgPPhqm91x5PL1dTa5e5SAAAAAAAAAAAAAAAABjTCPxhw\nLN4mFe5p1JNvbFVHl83d5QAAAAAAAAAAAAAAAAxYhH8w4Jw5JV5zZySppKpFz7ybK5vd4e6SAAAA\nAAAAAAAAAAAABiTCPxhwDAaDbr1kvManhil3V73+vTRfTqfzsNYWFhb0c3WHdtttP1Vm5lSdfvos\nt9YBAAAAAAAAAAAAAACGBsI/GJBMJqNuvTBdyTGBysqp1Lvf7Drk+a2trXryyb/oxhuvPkEVAgAA\nAAAAAAAAAAAAuB/hHwxYFm+Tbr9sgiJDfPXBqm/19Zayg5771FNP6M03F8tut5/ACgEAAAAAAAAA\nAAAAANzL7O4CgEMJ8vfWHQsn6KGXNurlT3coJMCiiSPCDzjP4XC4oboD/f3v/3R3CQAAAAAAAAAA\nAAAAYAhh8g8GvKhQP91++Xh5mYz6x3u5Ki5vdndJAAAAAAAAAAAAAAAAAwLhHwwKqbHBuuWidHXb\nHHryjWxVNbS7uyQAAAAAAAAAAAAAAAC3Y9svDBoTR4Trmrmj9dLSHfrrkmzdd80UvbF4kRYteq7X\neZmZU3vOnzhZf//7P/XQQw/qk08+1IgRo/T88y/pueee0dKlH6qlpUVhYRGaM+cM/exnv3Ct7+rq\n0qeffqzVq7NUULBDTU2NstlsCgwMUnJyqmbPztQFF1wsX1/fA2q87bafasuWTfL29tayZav6rOsX\nv7hTCxb8SMuXL9MHH7yrnTt3qKWlWaGhwzR58lQtWHClRo1KO97fPgAAAAAAAAAAAAAA4IEI/2BQ\nOW1inOqbu/Thqm/1tzezFWV3HtH6P/7xAX355Weu+xUVZfLx8XHd37EjX/fee5eqq6sOWFtfX6f6\n+jpt3LhOb7/9pp566h+KiIg84tdgtzv0+9//Tp9/vrTX49XVVVq69CN99tknuvvuezV//sVHfG0A\nAAAAAAAAAAAAADC0EP7BoHPxyclqaOlUVk6lvKLH6vkXXtGiF59VVtY3kqRFi16VJPn6+vVaV1xc\nqMLCncrImKBrrrlePj4+ysr6RuedN1+S1NTUqDvu+Lmam5tkMpl03nkXaNasTIWGhqmlpUkFBTv1\n+uuvqbGxUaWlu/X3vz+p3//+4SOuf/Hil1VXV6fhw5O1YMGPlJo6Ui0tzXr3vXe18ptlcjgc+utf\nH9P06TMVHR19jN8tAAAAAAAAAAAAAADgyQj/YNAxGAz68Tlpamq1KndXvdYUS4GBQa7jI0eO7nOd\nw+FQXFy8nnzy/2Sx9Ez7mTx5quv4kiWvqbm5SZL085/frgULftRr/cyZmTr33Hm65poFam1t1Tff\nLJfNZpPZfGT/jOrq6jRlynT9+c9/lcVikSRtLqhRa+Q8BSe1q6lkjbq7rfrz06/o9p/drKTowCO6\nPgAAAAAAAAAAAAAAGDqM7i4AOBpmk1G3XpSupKhArcguV2lN62GtO/fcea7gz/fV1tYoPDxCYWFh\nuuSSBX2eExERqUmTpkiSrNYuV1joSP3yl3fLYrHI7nDoja8L9dRbOeq2O3Tlgu+ed3t+vn7/r/V6\ncNE6fbWpVO2dtqN6LgAAAAAAAAAAAAAA4LmY/HMCvb6sUOvzq91dxgk1LS1SC04f0S/X9rWY9cvL\nx+uhlzcqd8vhhX/Gjcs46LH77vtvST0TgozGg+fihg0Lc922WrsPs9rvREREKjk5RY2tXfrHe3na\nuadRkaG++tlF6QoPNOofj/WclxRh0dgR4dpaVKeXP9upJV8ValpapE6ZEKsRccEyGAxH/NwAAAAA\nAAAAAAAAAMCzEP7BoBYcYNEdCybo5pWHN8QqKirqB8/ZF/yx2WyqrKxQeXmZ9uwpUVFRofLyclRU\nVOg61+l0HHHN0dExyi9p0D/ez1Nzm1VTRkXo+vPGyM/HLKfT6TrP38ekX1w2Xg0tXcrKqdCK7HJl\n5VQqK6dSseH+OmV8jGamRyvQz/uIawAAAAAAAAAAAAAAAJ6B8M8JtOD0Ef02BWcoiwnz15ikUGWV\n9NzfVdGs5JigPs/18ws45LU6Ozv19ttv6IsvlqqoqFB2u/2Ac4xGoxyOIw/97NPaZdBjizfLaDDo\nitNH6KxpCa4pPvtP89kXBAoNtGjerOE6b2aS8ksatCK7XJt21mjxskK9ubxIk0dF6JQJsUpLCpWR\naUAAAAAAAAAAAAAAAAwphH/gEYL8v5t+87c3snXftVMVGeJ7wHmHysaUl5fpzjtvU2npHtdjXl5e\nSkhIVFJSskaPTtPEiVP06acf65133jjqWqsa2pURYNGtF6ZrRHzwYa8zGgwaO3yYxg4fppZ2q1bn\nVmp5drnWba/Wuu3Vigjx0cnjY5U5PkYhAZajrg8AAAAAAAAAAAAAAAwehH/gcZrbu/XXJVt03zVT\njmhLrAcf/K0r+HPmmXN12WULlZY2VmZz738m77331hHXtKui2XU7wNdL/339NAUdw3ZdgX7eOnt6\nos6alqDCsiatyC7X+u3VentFsd79ZpfGp4bplImxykgZJpPx8LZEAwAAAAAAAAAAAAAAgw/hH3ic\nc2ck6pM1u/W/b27V3VdOOqw1+fnbtG1briRp8uSpevDBhw56blVV5WHX4nQ69fXmMv3nywLXY8Oj\nA48p+LM/g8GgkfEhGhkfoivPGKW123qmAW0prNWWwlqFBlo0OyNGp4yPUXgfk5AAAAAAAAAAAAAA\nAMDgRvgHHsGw335el56aqoaWLq3Jq9I/38+T0+n8wfX7b/U1evSYg55XUVGunJxs13273X7Qczut\nNr306Q6tyatSgK/X/tX+YD1Hw8/HrDmT4zVncrxKKlu0PLtca/Iq9eGqb/XRqm81NnmYTpkQq0kj\nw2U2MQ0IAAAAAAAAAAAAAABPQPgHHsHb+7tJOp0dHbrhvDFqarVqc0GtVN58iJU9goNDXLc3bFgr\nm812wHZfdXW1uv/+e9Td3e16zGq19nk9p1P64783qKKuXamxQbr1onTNf+NIX9XRS4oO1LXRo7Vw\nzgitz6/Wiuxy5e2qV96uegX6eWl2eoxOnhCjmDD/E1cUAAAAAAAAAAAAAAA47gj/wCOEhYW7bv/z\nn/+nc845X3PTvdXSHqANW9p/cP348RMVFhauurpaFRTs1O2336pLLlmg6OgYNTc3acuWTfroo/fU\n2NjYa11bW2uf17PZHaqoa9eZU+O1YM4It03asXiblDk+RpnjY1RW26Zvssu1KrdSS9ft1tJ1uzUq\nPlinTIzV1NGR8vYyuaVGuIfT6VR1Q4dCAiyyePOzBwAAAAAAAAAAAIDBivAPPEJm5in617+el91u\n15tvLtGbby5RVFS0nv/XW7r+6x8ONlgsFt1//x/0m9/coa6uLmVnb1Z29uYDzktISNS8eRfqmWee\nkiTt2lWsjIwJkqRum0NVDR2uc2+9KF3T0iKP0ys8dnHh/rrijJG69NRUbS6o0fIt5dpe0qCdpU16\n9fMCzRwXpQkjwpUQGaBgf+9eW6nBc9Q3d2p1XqVW5Vaqoq5dZpNRaUkhmpAarvGpYYoI8XV3iQAA\nAAAAAAAAAACAI0D4Bx5h5MjRevTRx/Xvf7+ooqJCORx2mc1m+Xo5NW74MC3f1XPejt2NmrXflKD9\nTZ06XYsWvar//OcVbdiwXrW11ZJ6tgRLTk7RnDlnau7cc2W327Vo0XPq7OzUsmWfa/78i1Xb2KFn\n3stVY0uXJMlsMg6o4M/+vMxGTR8TpeljolTd2KFvssu1MqdCyzaVadmmMklSgK+XEiIDlBAZoPiI\nnq+x4X7yMjMhZjDqstq1aWeNsnIrtP3bBjnV83d00shw1TR2Kre4XrnF9Xr1cyk23F/jU8M0ITVM\nqXHBbptaBQAAAAAAAAAAAAA4PAan0+l0dxHuVlPT4u4S8D0REYHH9eeyY3eDHl+yRWaTUfdcNVmJ\nUYHH7drZhbV6/sNtauu0aVZ6tK6ZO1qWQbaFlt3hUN6uehWXN6u0pk17qltU09jZ6xyjwaDoMD/F\nR/j3CgaFBlqYEjQAOZxO7dzdqFW5lVq/o1pdVrskaURcsGZlRGt6WqT8fLwkSXVNndpaXKethbXa\nXtIgq80hSfKzmJWeMkwTUsOVnjJMgX7ebns9nuR49zcAGCjobwA8GT0OgKeivwHwVPQ3AJ6K/gYg\nIqLvrAPhHxH+GYj6441rfX61/vFuroL8vfXba6coPPjYtjeyOxx695td+mh1icwmo646a6ROmRDr\nMUGYji6bymrbtKe6VaXVrdpT0/O1c2+IZB9/H7NrOlB85L4pQf6DLgDlKaoa2rUqp1Kr8ypV29QT\n4AoLsmhmeoxmp0crapjfIddbu+3K392g7KKeMFBdc880K4OklLgg1/ZgCZEBHvN3/UTjgzkAT0V/\nA+DJ6HEAPBX9DYCnor8B8FT0NwCEfw6BBjnw9Ncb12fr92jxlwWKCfPTvVdPUYCv11Fdp6nNqmff\ny1X+7kZFhPjoZxdlKCn6+E0TGqgcTqfqmjp7wkD7BYKqGzq0fyMxGKSoUD9XGCghIkDxkf4KC/Ih\nMNIP2jttWp9fpazcShWWNkmSLF4mTU2L0Oz0GI1KDJHxKL7vTqdTZbVt2lpUp+zCWhWWNWnfO0Zo\noEUTUsM0PjVcY4aHEvY6AnwwB+Cp6G8APBk9DoCnor8B8FT0NwCeiv4GgPDPIdAgB57+fONa/GWB\nPlu/RyPjg3X3FRPlZT6y0MLOPY165r1cNbVaNWlkuG48f4xr+6ShqtPaMyWotLpVpdU924btqWlT\nR5et13m+FrMSIvwVv9+UoPjwAFm8CY4cKYfDqbxv65WVU6HNBbXqtjlkkJSWFKrZGdGaMiryuH9f\nWzu6lVtcp61FdcoprlNbZ8/P18tsVFpiqManhmlCapjCQ45tqpan44M5AE9FfwPgyehxADwV/Q2A\np6K/AfBU9DcAhH8OgQY58PTnG5fD6dQ/38/Tuu3VmjI6QrdemC6j8YenojidTi1dt1tvfV0sSbrs\ntFTNnZ7AJJuDcDqdqm/u6jUhqLSmVZX17dq/6xgkRYT6amR88DFNqRkqSmtatSq3Z1uvplarJClq\nmJ9mp0dr5rhohQX7nJA67A6HisqatbWoTluLalVa0+Y6Fhfu3xMEGhGu1LggmYzGE1LTYMEHcwCe\niv4GwJPR4wB4KvobAE9FfwPgqehvAAj/HAINcuDp7zeubptDTyzZoh17GnXmlHhdeebIQ4Z42ju7\n9cJH27W5oFbBAd669cJ0jUoI6bf6PFlXt13le6cE7dkbCNpT3eqaIhMe7KPZGTGanR7NBJm9Wtqt\nWrOtSqtyKlVS1fPvws9i1vSxUZqdHq2U2CC3h9BqmzqUU1Sn7KI6bS9pULfNIUny9zErPSVM41PD\nlJESdtRb7XkSPpgD8FT0NwCejB4HwFPR3wB4KvobAE9FfwNA+OcQaJADz4l442rv7NYjr2xSWW2b\nFswZoXNOSuzzvJLKFj39bo5qGjuVlhiimy9MV7C/d7/WNtQ4nE4V7GnUyq0VWr+jWtbunuBIWmKI\nZmfEaOro47+F1UBnszuUXVinVbkV2lpUJ7vDKaPBoIyUYZqdEaMJI8KOeMu6E6Wr2678kgZl750K\nVN/cJUkyGKTUuGBNSA3T+NRwxUf4uz205A58MAfgqehvADwZPQ6Ap6K/AfBU9DcAnor+BoDwzyHQ\nIAeeE/XGVd/cqYde3qiGli79dP5YzRgb7TrmdDq1Irtcr35eIJvdoXmzknRRZsphbRGGo9fRZdPG\nHTVamVOhnXsaJUkWb5OmpUUqMyNGI+ODPTYw4nQ69W1li1blVGrt9iq1dnRLkhIiAzQ7PVonjYse\ndMEzp9Opspo2ZRfVKruoTkVlTa5t34wGg/x8zPL39VKAj1l+Pl7y9zXL38dL/j57v7ruf3fbz8cs\ns2nwbiXGB3MAnor+BsCT0eMAeCr6GwBPRX8D4KnobwAI/xwCDXLgOZFvXKXVrXrk1Y2ydjt058KJ\nGpMUqi6rXS9/tkOrcivl72PWTfPGasKI8BNSD75T3dCuVbmVysqpVF1zpyQpMsRXszOiNSs9RmHB\nPm6u8PhoaOnSmrxKZeVWqry2TZIU5OelGeOiNSs9WolRfTfwwai1o1s5xXXKKa5TTWOH2jttauvo\nVlunTXbH4b8dWbxN3wWG9gaI/HvdNn/vfk9oyMfb5PbwGB/MAXgq+hsAT0aPA+Cp6G8APBX9DYCn\nor8BIPxzCDTIgedEv3FtL2nQE0u2yNvLqBvOG6N3V+5SWU2bkmMCdetF6QoP9j1hteBADqdTO0oa\ntDKnUht3VMtqc8ggaczwUM3OiNHkURGyeA3MLbD60mm16duKFu2qaNa2kgZt+7ZeTqdkNhk0cUS4\nZmXEKD152KCebnOknE6nurrtauuwqa2zJwzUEwrqVnunTa2d3WrrsKm917Geczut9sN+HpPRIH8f\ns0ICLUqMDFRiVIASowKVEBkgX4u5H1/hd/hgDsBT0d8AeDJ6HABPRX8D4KnobwA8Ff0NAOGfQ6BB\nDjzueONas61S/3x/m+v+6ZPjtPD0kfIyD50AxmDQ0WXT+vxqZeVUqKC0SZLkazFpWlqUMjNilBoX\n5PbJLvuzOxwqq2nTropmFZc3q7iiWeW1bdq/86bGBmlWRoympUUqwNfLfcUOUja7Q+1d+wWCOvYP\nDPXcdgWKOrvV2mFTfXOnum0O1zUMkiJDfZUY1RMISooKVGJUoIL6YZs1PpgD8FT0NwCejB4HwFPR\n3wB4KvobAE9FfwNwsPDPiRlzAAwCM8ZGq6W9W0vX7tblc1I1Y2y0u0tCH3wtZp0yIVanTIhVVX27\nsnIrlJXrgoKdAAAgAElEQVRTqRXZ5VqRXa6oYX7KzIjWzHHRGhZ0YrcFczqdqm/uUnFFs3aVN6u4\nvEnfVrXI2v1dyMTby6iRccFKiQ1WcmyQUmODTnidnsZsMirIz1tBfocf1LE7HKqsa9fuqlaVVLVo\nd1WLdle1an1+tdbnV7vOCwnw3hsIClTS3ilB4cE+Aypg9kOcTqc6umxqaOlSV7dDw6MDZTQOnvoB\nAAAAAAAAAAAAHBqTf8Tkn4GI1CqOhMPh1PaSBmXlVGjjzhp12xwyGKRxw4dpdkaMJo0Ml3c/bAvW\n3tmtXZUtKi7fG/apaFZzm9V13GCQ4sL9lRwTpJTYICXHBCkuwl8mI9OkBiKn06m6pk6VVLXuDQO1\naHd1qxpaunqd52cxu7YL2/c1JszvsH+ux7O/OZxOtbZ3q6GlS/UtnWps6VJ9S5cavvenq/u7rdEm\nj4rQzfPHMdUMwHHH5zcAnoweB8BT0d8AeCr6GwBPRX8DwOQfAB7LaDRoXPIwjUsepvZOm9blVykr\np0K5u+qVu6tevhazThoTqdnjY5QSc3TbgtnsDu2pbnVt37WrolkVde29zgkNtGjK6Ail7A37JEYF\nytdCmx0sDAaDwkN8FR7iqymjI1yPN7dbXZOB9n3dsbtR+bsbXed4mY2Kj/BXQuR3E4LiIwNkOYbQ\nmd3hUFOr1RXg6Qn1dPYK9TS2dslmP3iGN8DXS1GhvgoJtGhYoEWlNW3atLNGT729VbddnNEvoTgA\nAAAAAAAAAAAAJxaTf8Tkn4GI1CqOh4q6NmXlVGpVboUaW3sm8sSE+Wl2RoxmjotWaKClz3VOp1M1\njR0q3hf0KW9WSVWrbPbvtu/y8TYpOSao11Sfg10PnqfTalNpdVuvLcPKalt7BXEMBil6mJ+S9m4b\ntm9KUHLiMJVXNPYK9Rw4sadTTW1WHewd2mCQQgIsCgnoCfWEfv9PkI9CA7zlZe4d7rF22/X0u7na\nWlSntMQQ/del4wmoAThu+PwGwJPR4wB4KvobAE9FfwPgqehvAA42+Yfwjwj/DES8ceF4cjic2vZt\nvVbmVGjTzlrZ7D3bgqUnh2l2RrRGJYRod1XvqT6tHd2u9UaDQfGR/kqJDVZyTKBSYoMVM8xPRuOR\nTxCC57LZHSqvbdtvQlDPtmGdVnuv8/x9zGrrtB30OmaT4btQT5CPQgMODPcEB3gf9fZxNrtDz76f\np407apQaG6RfLpggfx+vo7oWAOyPz28APBk9DoCnor8B8FT0NwCeiv4GgPDPIdAgBx7euNBf2jq7\ntW57tVZurdCuiuY+zwkP9lFKbJBSYoKUvHf7rmPZvglDl2PvFKl9gaCSqhY1t3fL32LeG+6xKDRw\nv4BPkEWBvl5HtTXdkbA7HHrxo3ytzqtUYmSA7rxiooL8vPv1OQF4Pj6/AfBk9DgAnor+BsBT0d8A\neCr6G4CDhX/Y6wPAkOLv46U5k+I0Z1KcymrblJVTocq6diVEBri27wryJwSB48NoMCgq1E9RoX6a\nlhYpaWB8MDcZjbpx3hhZvE36enOZ/ufVTbr7iklsXQcAAAAAAAAAAAAMQoR/AAxZceH+WjBnhLvL\nANzCaDDomrNHydts1Gfr9+jRVzfqV1dMUniIr7tLAwAAAAAAAAAAAHAEjO4uAAAAuIfBYNDC00do\n/uzhqmns1KOvbVJlfbu7ywIAAAAAAAAAAABwBJj8AwDAEGYwGHTRySmyeJn0xtdFevTVTbp74UTF\nRwa4u7Tjwul0asOOGpVUtsjhdMrhcMru2O/r3se+f3//c5zOvtcc+hy5bgf4mnXS2ChlZsQoLsIz\nvq8AAAAAAAAAAAAYOAj/wKMUFhZoxIiR7i6jTxUV5QoODpafn7+7SwGAA5w7I0neXia9+vlO/c9r\nm3TnwolKjglyd1nHpKGlS/9emq+tRXXHfC2DQTIZDTIaDT1fDT2397/v7WX87pz9jlfVt+vTdXv0\n6bo9So4JVGZGjKaPjZK/j9dxeJUAAAAAAAAAAAAY6gj/wCO0trbq+ef/oXfeeUPLl691dzm9WK1W\nvfrqv/XKK//SK6+8QfgHwIB1xpR4WbxMWvTJdj32n8365eUTNCohxN1lHTGn06k1eVV69fOdau+y\naezwUM2bOVzeXiZXOMdoNMjYK9Bj7OOxfecZZDAYjrqebptD2YW1WplToZziOu2qaNF/vizU5FHh\nysyI0djhw2Q0Hv31AQAAAAAAAAAAMLQR/oFHeOqpJ/TRR++7u4w+vfbaS3rhhWfdXQYAHJbM8THy\n9jLquQ+26YnXt+i/Lh2vccOHubusw9bUZtVLS/O1uaBWFi+Trpk7WqdNjD2m8M6x8jIbNTUtUlPT\nItXQ0qXVeZVaubVC67ZXa932aoUGWjQrPVqZGTGKGubntjoBAAAAAAAAAAAwOBH+gUdwOBzuLuGg\n7Ha7u0sAgCMyfUyUvM0mPf1ujv72xlb97KJ0TRwZ7u6yftC67VV65bOdau3o1uiEEF1//hhFhvi6\nu6xeQgMtOm9Gks49KVHF5c1amVOhddur9NHqEn20ukQj4oOVmRGjaWmR8rXwMQ0AAAAAAAAAAAA/\njN8qAQCAA0wcGa7bL5+gp97aqv97J0c/uWCspo+JcndZfWppt+qVz3ZqfX61vM1GXXnmSJ0xJV5G\nN077+SEGg0GpccFKjQvWFWeM1KadNcrKqdD2bxtUWNqk177YqamjI5WZEaNRiSED+rUAAAAAAAAA\nAADAvQj/AACAPo0bPkx3Lpiov72ZrWffz5O126HM8THuLquXTTtr9NLSfDW3d2tEXLBuOH+MogfZ\n1lkWL5NmjovWzHHRqm3q0KrcSmXlVGhVbqVW5VYqPNhHmRkxmpUerfABNskIAAAAAAAAAAAA7mdw\nOp1OdxfhbjU1Le4uAd8TERF4WD+XF154VosWPdfnsYkTJ+vvf/9nr8fWrl2tjz9+X7m5OWpoqJe3\nt0Xx8QmaOXO2Lr10oUJCQg76XDU11Xr77Te0du1q7dmzWzZbt4KCgpWaOlKzZ5+sefPmy2LxcZ3/\n8ccf6OGHf9/ntaKjY/Tmmx/84OsD4HkOt78NJLsqmvXEki1q67Tp6rNH6fTJ8e4uSW2d3Xrt851a\nnVcls8moS05J0dnTEmQ0esaEHIfTqYI9jVq5tULrd1TL2t2zveWYpFBlZsRo8ugIWbxMbq4S6G0w\n9jcAOFz0OACeiv4GwFPR3wB4KvobgIiIwD4fZ/IPhoSOjg798Y8PaMWKr3o9brValZ+/Tfn52/T6\n66/p/vv/qMzMUw5Yv3Hjet13391qa2vr9XhdXa3q6mq1bt1q/ec/L+uJJ/6uxMSkfn0tAHCiJccE\n6Tc/mqy/LNmiVz7bqa5uu849yX29bmtRrRZ9kq+mVquSYwJ14/ljFRvu77Z6+oPRYNDoxFCNTgzV\nj84apQ07qpW1tULbSxq0vaRBvp+bNC0tSpkZMUqNC5KBbcEGjPZOmyrq2mR3OOVwOGV37v3qcMq5\n96vD6fzu+N77rtuO793+/rl7r+n83v19x30tZs0cG6W0pFD+XgAAAAAAAAAAMEQw+UdM/hmIDje1\nWldXq/r6Oj3//D+UlfWNJGnRolclSb6+foqPT5DD4dAdd/xcGzeulyTNmnWy5s49TzExMWpvb9fG\njev1zjtvqLW1VSaTSY8//pSmTp3ueo6WlhYtXHiRmpubFBISqquu+rHGjBkrb29vVVVV6qOP3tea\nNaskSaNHj9Hzz78kg8Gg5uYmVVVV6t1339J7770tSXrssScVHh4hs9lLyckpx/V7BmBwGMyp/Mr6\ndj32n81qaOnS/NnDdWFm8gkNF7R32rR4WYFWbq2QyWjQhZnJOndGokxG4wmrwd2qGtqVlVOhrJxK\nNbR0SZKih/lpdka0ZqXHKDTQ4uYKh7ac4jo9/+E2tbR3u7sURQ3z06kTYpU5PkYBvl4n5DkHc38D\ngB9CjwPgqehvADwV/Q2Ap6K/AWDyDzxSWFi4wsLCFRQU7Hps5MjRvc55883FruDP3Xffq4suurTX\n8alTp2vevAv1s5/dqLq6Oj388O/1+uvvyWzu+eexcuVyNTc3SZIefvgxjR8/0bV27Nh0zZlzpu6/\n/x599dUX2rFju3bsyFda2hgFBQUrKChYw4aFuc4fPjxFMTGxx/ebAAAnSPQwP9171WQ9tniz3s/6\nVl3ddi2YM+KEBIDydtVr0SfbVd/cpcSoAN10/ljFRwb0+/MONFGhfrrklFRdlJmi7SUNWplToY07\navTW8mK9vaJY6clhyhwfo4kjwuVlHjqhKHez2R16e0Wxlq7dLbPJoNMnx8nPxyyjwSCj0SCTce/X\n790/4Ph+jx/w2EEe33fNfX8q69q1fEuZ1ufX6PWvCvX2imJNTYvQaRPjNDI+mGlAAAAAAAAAAAB4\nIMI/8GgOh0OLF/dMApoxY9YBwZ994uLidcst/6WHHnpQ1dVVWr58mc4442xJPdOF9klISOxz/bXX\nXq/g4BDFxsYpMLDvpB0AeILwEF/dc9UU/WXxZn26bo+6uh26+uxRMvZToKCjy6Y3virU11vKZTIa\nNH/2cM2bNVxm09AOthiNBo1LHqZxycPU3tmttdurtXJrhXKK65RTXCd/H7NOGhulmenRSogIkLeX\nyd0le6yaxg49+36eisubFRXqq1suTFdStPs+CwT5eWtUQoiuPLNbWTkV+npLudbkVWlNXpViw/11\n6sRYzU6Plp/PiZkGBAAAAAAAAAAA+h/hnxPo7cIPtbk6x91lnFCTIjN0yYh5bnv+oqICVVdXSZKm\nTTvpkOfOmDHLdXvDhvWu8E9S0nDX4/fd9yv94hd3asyYcb3Wjhw5Wnfffc9xqhoABrbQQIt+c9Vk\nPbF4i77eXKYuq103nJ923Lffyi9p0Isfb1dtU6fiIvx10/lj3RqqGKj8fLw0Z1Kc5kyKU1lNq7Jy\nKrUqr1LLNpVp2aYySVJIgLciQ3wVEeq731c/RYb6nrAtoTzRhvxqLfokXx1dNs0cF6Wrzx4tX8vA\n+Hgd4OuludMTdfa0BO3Y3aivt5Rp444a/eeLAr31dZGmjYnUaZPilBITxDQgAAAAAAAAAAAGuYHx\n2wmgn+zcucN1+6mn/qqnnvrrYa0rLy9z3Z45M1OpqSNVVFSgnJxs/eQnP1Z4eISmTTtJU6dO17Rp\nJ/Xa2gsAhoIgP2/96keT9NfXs7U6r1LdNrt+On/ccZnI09Vt15tfF+nLjaUyGKTzZyZp/uxktrE6\nDHERAVpw+ghdelqKcorrtbWwVlUNHapu6FBBWZN2ljYdsMbPYnaFgiJDfRUR8t3tkEBLv011Gsys\n3XYtXlaorzeXydvLqBvOG6PZGdEDMkRjMBiUlhSqtKRQNbdZtTKnQsu3lCkrp1JZOZVKiAzQaZPi\nNGNs1IAJLgEAAAAAAAAAgCPDf+E/gS4ZMc+tU3CGoqamxqNa19LS7LptNpv1+OP/q0cf/aPWrFkl\nSaqtrdEnn3yoTz75UAaDQWPGjNM555yvCy64SF5eTFAAMDT4+3jproUT9b9vbtWGHTWyvp2jn12U\nfkxbTBWUNuqFj7aruqFDMWF+uvH8sUqJDTqOVQ8NJqNRE0eEa+KIcNdjNrtDtU2dqm7oUE1jx3df\nGztUVtOmksqWA65jNhkVEeLTKxC0LyAUHuw7JANZFXVteubdPJXWtCo+wl+3XJiu2HB/d5d1WIL8\nvXXejCSdc1Kitn1br+Wby7W5oFYvf7pDry8r1IxxUTptYhwTtgAAAAAAAAAAGGQI/8Cj2e121+27\n7rpH6ekZh7XOYrH0uh8eHqG//OV/VVxcqK+++lKrV2dp5858ORwOOZ1ObduWq23bcvXee2/rb397\nRiEhIcf1dQDAQOVrMeuXCybo/97J0daiOj35RrZ+cdl4+Xgf2UeMbptd76zYpU/X7ZYkzZ2eoItP\nTjmmIBF6M5uMih7mp+hhfgccczidamzpcoWCqht7B4Qq6toPWGOQNCzI0hMM2jcxKNSvZ1uxEF/5\n+XjWx0yn06msnEq98vkOWbsdmjMpTgtPHzEo/44aDQalJ4cpPTlMDS1dWrm1XCuyy7V8S8+f4dGB\nOm1SnE4aEyWL9+B7fQAAAAAAAAAADDWe9VsZ4HsCA7+bFuHvH6CRI0cf0/VSUkYoJWWEbrzxZjU3\nN2vz5g1as2aVvvrqC7W2tqqoqEDPPPO/uvfeB461dAAYNCxeJv3XJeP17Pt52rSzRo8v2aI7Lp8g\nP5/Dm4RWXN6sFz7apoq6dkWG+urG88doZDwhyhPJaDBoWJCPhgX5aHRi6AHHWzu6eweD9gsI5e9u\nVP7uAyftBfp5aea4aJ17UqKCAywHHB9MOrpseuWzHVqdVyVfi1k/u2ispqZFurus4yI00KILZifr\n/JnDlVNcp+VbypVdVKt/fZKvJcsKNHNctE6bGKf4yAB3lwoAAAAAAAAAAA6C8A88WkpKquv2tm05\nOvvscw56bkNDg9555w3FxMRqxIhRGjlylCSpu7tbe/bsltVqVVraGNf5QUFBOvXU03Xqqafrxz++\nUddd9yO1trZo1aqV/feCAGCA8jIbdetF4/TCR9u1Jq9Kf/7PZt21cKIC/bwPuqbb5tD7Wbv08ZoS\nOZ3SmVPidempqUwaGYACfL0U4Oul5JgDt2CzdttV09TZEwhqaFf13q3Edle16rP1e/T15jKdNilO\n585IUrD/wf8+DFQllS36x3u5qmroUEpskG6eP04RIb7uLuu4MxoNmjAiXBNGhKu+uVMrsnumAS3b\nVKZlm8o0Ii5Yp06M1bS0yEE57QgAAAAAAAAAAE9G+AcewWAw9Pn4mDHjFBQUrObmJn3++VLddNOt\nCgjo+/9cf+utJfrXv56XJN14482u8M/VV1+usrJSRUVF6623PuxzbXR0jJKTU5STky2rtavXMaPR\neLQvCwAGFZPRqJvmjZXFy6TlW8r1P69t1t1XTFRIH1NfSipb9MJH21Ra06bwYB/dcN4YpSUdOHEG\nA5+3l0lx4f6KC/fv9Xi3zaGVORX6cNW3PSGgLWU6fVK8zjkpUUGDIATkdDr15cZSvf5VoWx2p845\nKVGXnJIis8nz39eHBfnoopNTdMHs4courNPXW8qUV1yvwrImLf6yQLPSY3TapFjFhPn/8MUAAAAA\nAAAAAEC/8/zfXmBI8Pb+7peI7e3trtteXl669NIFkqSmpib98Y/3y2q1HrB+69Yteu21lyVJFotF\nF1xwsevYrFknS5Kqqiq1ePErfT5/Scm32rkzX5KUljau1zEvr++2venoaBcAeDKjwaBr547WWVMT\nVF7bpkdf2aTapg7XcZvdofdW7tKfXtqg0po2nTYpTr+/YTrBHw/kZTZqzqQ4PXrzTF199ij5+3hp\n6brd+vU/VumNrwrV0n7g+/FA0drRrb+/naPXviiQj7dZv7x8ghbMGTEkgj/7MxmNmjwqQncumKhH\nb5mp82cmyWQy6vMNe/Tb59bqf17dpLXbqtRtc7i7VAAAAAAAAAAAhjTTgw8++KC7i3C39gH8y6eh\nyt/fckQ/lx078rV580ZJPQGbkJBQ1dfXKSwsXOPGZWjNmlWqq6vVnj279fXXX8pkMslms6u4uEjv\nvvuWnnzyMdfEnttuu0PTpk13XTslJVUfffS+rFar1q9fq6KiAkkGtbe3a9euYn3xxaf6y18eVltb\nm4xGo+6553eKiYl1rS8rK9U333wtqSeAFBUVraqqKkVGRh37NwrAoHOk/W0wMhgMSk8eJodT2lxQ\nq407azQhNVyNLV168s1srdterZAAi35+cYbOmpogL/PQClQMNSajQckxQTp9cpyC/S36tqJZubvq\n9dWmMnVa7UqIDJBlAG0jVVjapMeXbFZxRYvSEkN01xWTNDw60N1luZ2/j5fGDh+mM6fGKz4yQG0d\n3crf3aiNO2r09eYytXR0Kz4qUAPnJwkAx9dQ+AwHYGiivwHwVPQ3AJ6K/gbA3//AHTckyeB0Op0n\nuJYBp6amxd0l4HsiIgKP6OdSULBDN910rex2u+ux/bfpampq1AMP3KuNG9cf9Bomk0k33nizrr32\nhgOObdy4Xr/97a/V2nrwmnx8fHTXXffo3HPn9Xq8trZWV155Sa+pP2azWZ9//k2vqUAAhoYj7W+D\n3Uerv9Vby4sV4Oulji6b7A6nMsfH6IrTR8rPh91Hh6Jum13Lt5TrozUlamq1yuJt0plT4jV3eqIC\nfN33vuhwOvXJmhK9s2KXnHLqwtnJmjdruIzGvrcWhVRV367lW8q1MqdCrR3dMhikOZPidOmpqfK1\n8O8bgGcZap/hAAwd9DcAnor+BsBT0d8ARET0/T8sM/lHTP4ZiI40tRoWFq60tDGqqChXS0uLTCaj\nAgICdcEFF8lsNsvHx0fnnjtPo0alyeFwqL29Xd3d3TKZzIqNjdOcOWfonnse0Jw5Z/R5/djYOJ13\n3gXy8fFVd3e3Ojs7ZbfbFBgYpKSkZJ133gX67W8f1MSJkw9Y6+fnpylTpu2trclV78knn6qgoOCj\n+wYBGLSGWip/VEKI/H3M2rizRkH+3rpl/jide1IS036GMJPRqJTYYJ0+KU6Bft7aVdGsnOJ6fbW5\nTF3ddiVEBsr7BE8Camqz6um3c7Q8u0LBAd66/bLxmp0RI4OB4M+hBPh6aVxyzzSg2DB/VTd2KLuw\nTmu3VSku3F+Rob7uLhHwKCWVLXo/61utzqtUU5tVZpNBgX7e9KoTZKh9hgMwdNDfAHgq+hsAT0V/\nA8Dkn0MgHTnwkFoF4KmGan8rq2lVaKAP035wAGu3XV9vLtPHa3eruc0qX4tJZ05J0NnTE+Tv0/+T\ngPK+rddzH2xTc5tV41PDdOP5YxTo593vz+uJQkL99OJ7Ofp49W45nPumfI2Q3wn4OQKeqtvm0IYd\n1Vq2qVRFZc0HHPe1mDUyPnjvnxAlxwQRsO0nQ/UzHADPR38D4KnobwA8Ff0NwMEm/xD+EeGfgYg3\nLgCeiv4G9K2r266vNpVp6doSNbd3y9di0llTE3T2tIR+CY/YHQ69+80ufby6REajQZedlqqzpyUw\nQeMY7OtvJf/P3p1Gt3XYd97/AQQBkgDBFdwlipv2XbItS5Fly3GS2tlaJ3HTdDKTttP2RXvOvOmZ\nvphp+5ynp9M+PXnZp5NJO5l22nniNk0TO4lTx5ZkybslkZKoheImUtwJkAAIYgfu8wIgRFkStZgU\niavv5xwKy8UFL0ngfy+An/7/iTl972eXNTwVUpnLrm9+dpP2dHhWe/OAvDITjOpE16hOdo0pGE7I\nImlHW5WO7m1UTUWJeq/7dXXEr97rAU35I7n1bAVWtdaXqmNduTqaytXeWEbwdplwDAfArKhvAMyK\n+gbArKhvAAj/LIECufaw4wJgVtQ3YGmxeErHO0f12gdDmgsnVOyw6TOPrdNz+9ct2wfYvkBU33n1\novpGAvKUF+l3v7RdLfXuZbnvR9ni+pZMpfXaB8N69Z1BJVOGnthaq1/7dAddlYAlGIahK0OzOnZ2\nVJ29XqUNQ84imz61s17P7MmEfm7HH4qpdySgq9f96r3u1/WpkBZe5Fss0jqPSx3ryrVxXbk6mspU\n7rp9W2AsjWM4AGZFfQNgVtQ3AGZFfQNA+GcJFMi1hx0XALOivgH3JhpP6vjZUb32wbBCkYRKHDZ9\n5vFMCKjY8eAhoM6r0/qfP7us+WhSj2+p0Tc/u5muGMvkdvVt1Duv7/3ssgbGgiotKdQ3ntuoxzbX\n0GEJWCQSS+rd7gkdOzuicV9YkrS+1qVn9zbp8a21chQW3Nf9haNJ9Y9lw0AjAQ2MBZVMpXPLa8qL\n1bGuTBubMoGgmopinpP3gGM4AGZFfQNgVtQ3AGZFfQNA+GcJFMi1hx0XALOivgH3JxpP6s0zI/r5\nB8OajyblLLLpM4+v16f3Nd1XCCiRTOufjvfpzTMjKrRZ9Wuf7tBTuxr4wHsZ3am+pdOGfnH6un54\nckCJZFp7Oqr17z67ie4jecIwDM2FE/IFo5oJRuULROULxuQLRpVIpnVga632b65Roc262puad0a9\n8zp2dkTvdk8oFk+pwGrRY1tqdHRvk9oa3MtWnxLJtK5NBHNhoN6RgCKxZG6522lXR9ONMFBTjVMF\nVv6eH8cxHACzor4BMCvqGwCzor4BIPyzBArk2sOOC4BZUd+ABxOJZUJA//bhjRDQZx9fr2fvIQQ0\nORPWX/+4W8OTITVUO/W7X9qmJo/rIW35o+Nu9W1yNqz/9bMr6rnuV4nDpq9/ukMHt9cRwFplyVRa\nM3Mx+QKLwz2Z895gTDPZkM9S3CWFOrK7UU/vaVRFKaGupSRTaXX1enXs7IiuDPslSRWlDj29p1FP\n7WpQmXPlR+OlDUOj0/PZMJBfV6/75Q/Fc8uL7AVqayzTxqYybVxXrpZ6t+z32X3IjDiGA2BW1DcA\nZkV9A2BW1DcAhH+WQIFce9hxATAr6hvwyURiSb1xZkSvZ0NAruJCffbxdXp2X5OK7LeGgN67OKG/\n/7cexeIpHd5Zr197buN9j9DBvbmX+pY2DL3VOap/OtGvWDyl7a2V+vef3ayqsqKHtJWPFsMwFIkl\n5Q1ENZPt1nNzB5+oAqG47vSC0FVcqKqyIlW5i1TpdqjaXaRKd1HuumgipRNnR3Xy3JjCsaQKrBbt\n2+TRp/etU1vj8nWuMYNAKKa3zo3pROdoLmizpblCR/c2aXdH1ap22jEMQ95ANBcG6h0J5MaPSVKB\n1aIN9aXa2FSuLc0V2rKh4pHsDMQxHACzor4BMCvqGwCzor4BIPyzBArk2sOOC4BZUd+A5RGOJvXG\nmet6/cPrCscyIaBfemK9ju5tksNeoFg8pX/8xVW9fWFcRfYCffNzm3Rga91qb7ap3U998wYi+vuf\n96h7cEYOe4G+9ky7juxukJWwyH1JG4b8c9lQTzbM48t261m4LhpP3XbdAqtFFaUOVWXDPJXuIlWX\nZT0bJosAACAASURBVEI+VdmQz70G5WLxlN67NKE3z4xodHpektRcV6pP72vS41tqVGh7NAN3hmGo\ndySgY2dHdKZnWqm0oSJ7gQ5tr9czexvVUO1c7U28o2A4rt7rgWwYyK+hiZDS2bcOyl12HdpRr8M7\n61VTUbLKW/rwcAwHwKyobwDMivoGwKyobwAI/yyBArn2sOMCYFbUN2B5haMJ/eL0iF7/6LoisaRK\nSwr17N4mfXB5UuO+sJrrSvW7X9qm2kfoA+rVcr/1zTAMvXNhQt9/s1fhWFKb15frP/zS5kcqTPAg\n0mlDvSN+nb4yrdNXpxRYNK5psWKHTVULQZ6yolu69pQ57bJalzdsZRiGeob9euPMiDp7p2UYme5B\nR3Y36Jk9jap0PxodnmLxlN6/NKFjZ0d1fSokSWqodurZvY06sK3urqMK16JoPKn+saDOXp3W+xcn\nFYklJUmb15fr8K4G7dvoMf1oMI7hAJgV9Q2AWVHfAJgV9Q0A4Z8lUCDXHnZcAMyK+gasjHA0odc/\nuq5fnL6uSCzT6eS5/ev0lafbVGh79MbTrIYHrW+zczH9w+s96uz1ym6z6leeatWn969b9mBKPkul\n07o67NfpnmmduTqt4Hwm8OMssmnLhkp5yjOBnoWvSneRSopWN2DiDUR0vHNUJ7vGNB9NymqxaO8m\njz69r0kdTWWmHAk2ORPW8c5RnTo/rkgs+zNvrNbRvU3atL7cND9zLJHS2Z5pnTw3pp7rfklSicOm\nA9tq9dSuBq2vvf2bD/mOYzgAZkV9A2BW1DcAZkV9A0D4ZwkUyLWHHRcAs6K+AStrPprQya4xNdW4\ntKO1arU355HySeqbYRj66MqU/uH1qwpFEmprcOtbz29Z02ORVloylVbPsF+ne6Z09uq05sIJSZlO\nOns3erR/s0eb11fIVrC2w23xRErvX5rUm2dGcl1w1te49Oy+Jj2xtTbvu8Wk04bO9/t07OyIugdn\nJElup11HdjXoyO4G03c7mpwJ69T5cb1zYVyBbCitubZUT+2q1xNba1VSVLjKW7h8OIYDYFbUNwBm\nRX0DYFbUNwCEf5ZAgVx72HEBMCvqGwCzWo76FgzH9X9+cVUfXp6SrcCiLx5q0eeeWL/mAy7LJZlK\n6/LQrD66MqXOq9Oaj2ZGK7lLCrV3U40e2+TRxvXlKrDm3+/DMAz1jgT0xunrOnvVq7RhyFVcqMO7\n6nV0T5OqyvIrJDMXjuvU+XGd6ByVNxCVJLU3lenZvU3at8nzyDxmF6TSaZ3v9+nUuXGd7/cpbRgq\ntFm1f1ONntpVr43r8r/zEcdwAMyK+gbArKhvAMyK+gaA8M8SKJBrDzsuAGZFfQNgVstZ3zqvTuvv\nX+9RIBTX+lqXfuP5LaYdJZRIpnXx2ozOXJlSZ69X4Vgm8FPmsmv/xhrt3+xRR1O5qcagzQSjOt45\nqre6xhSKJGSxSHs7PHp239ocj5U2DHkDUY1Nz2vUG9LwZEidvV4lU2nZC606sLVOR/c2mvYxer/8\noZjeuTCuU+fHNTUbkSTVVhTrUzvrdWhHvcpdjlXewgfDMRwAs6K+ATAr6hsAs6K+ASD8swQK5NrD\njguAWVHfAJjVcte3+WhCL7/Zp7cvjKvAatHzB5r1+YMbVGjL/44q8URKFwdndLpnSl19XkViKUlS\nRalD+zZ5tH9TjdqbymRdYyGY5ZZIpvTBpSm9cea6hiczI8GaPE49u69JB7bVyfGQR4KlDUO+QFSj\n3nmNeec1Op05HffNK55M33TbmopiHd3TqEM76+U00Wir5WQYhq5e9+vkuTGd7plWIpmW1WLRzrYq\nHd5Vr51tVXnVxYpjOABmRX0DYFbUNwBmRX0DQPhnCRTItYcdFwCzor4BMKuVqm/dAz793c+vyBeM\nqaHaqW89v1ltDWXL/n1WWiyR0oV+n073TOlcv0+xeCbwU+Uu0v7NmcBPS4Pb9IGf2zEMQ32jAb15\nZkRneqaVShtyFtl0eGeDju5tVHV58bJ+v7RhaGZxyCf7Ne6bVzxxc8jHVmBVfVWJGqudaqh25k49\nFcWP5N/qQYWjCX1waVInz41raDJTJ8pcdh3aXq/Du+pVW1Gyylt4dxzDATAr6hsAs6K+ATAr6hsA\nwj9LoECuPey4AJgV9Q2AWa1kfYvEkvrBW/06fnZUFov02cfW68uHW2R/yJ1h7lc0ntT5fp9O90zr\nfL83FyypLivSY5trtH9zjTbUla65MVeraXYulh0JNqq5cGYk2O72aj27r0lbmivu63dlGIZ8wWgu\n4DOW+worlkjddFtbgUV1lU41ej4W8ikvyqvuNPlgaGJOp86P6b2Lk4pkx9xtWleup3Y1aN8mz5p9\nXnMMB8CsqG8AzIr6BsCsqG8ACP8sgQK59rDjAmBW1DcAZvUw6lvP8Ky+99oVTc1GVFtRrG89v0Ub\n15Wv6Pe8X5FYUuf6vTpzZVoXBny5cVE1FcWZwM+mGq2vdRH4uYtEMq2PrkzqjdMjujaReVw1VGdG\ngh3cVieH/UZAxDAMzQRjGvPdGNU16p3XmG8+12FpQSbkU3JTwKeh2qmaimJCPg9ZPJHSmavTOnVu\nTFeG/ZKkYodNB7bV6qmdDWquu/2bGKuFYzgAZkV9A1bOyFRILx/vU99IQAe21eqFJ5tVXba8XS1x\nZ9Q3AGZFfQNA+GcJFMi1hx0XALOivgEwq4dV32KJlH50akCvf3RdhiEd3duoF4+0qdhhW/HvfSfh\naFLn+rz66MqUugdnlExlAj/1VSXavynT4afJ4yTw8wAMw9DAWFBvnhnRR1emlEobuYBIIpnOdfOJ\nfizkU2C1qK6qRA1VN0I+jR5CPmvV5GxYb58f19sXxhUIxSVJ62tdOryzQQe21cpZVLjKW/jwj+EW\nxtONz4RVX1my7OPv1rq0YWgunJCzyCZbgbmes2nDUCAUly8YlS8QlS8YlTdw4/zsXFT2wgJVuByq\nKHWovNShcpfjpssVLoeKHQXsV7AseI0KLL/AfFw/OjWgk+fGZBiSq7hQoUhCBVaLDu2o1+efbH7k\n9u2rgfoGwKyobwAI/yyBArn2sOMCYFbUNwBm9bDrW/9YQN/72RWNeedV5S7S5vXlMiQZhmTIkIzM\nB6ySlM4uyCzLBEoMI3uavb90duHCdbnli9fJnmrRdem0NDIdUiqduadGjzMT+NnkUaPH9dB+H48C\nfyimE52jOtE1puB8JiBSYLWodlEnn8ZFnXzMFhh4FKTSaV0YmNGpc2M61+dT2jBUaLNq3yaPDu2o\n17oal0qLC1cl8LBSNe6W8XTTmdNx343xdAVWi47ubdIXDm2Qq3j1g1Ar7fK1Gb18vE/DkyFJkrPI\npnKXQ26nXWUuu8qcdpU5HSpz2uXOXi53OeQssq2JMEwyldbMXCwT5skGehafzsxFlUzd/q24YodN\nlW6H4omUZufiuTDp7TgKC1Tust8UCPr4aZnLTi3EXT3MYzjDMHR9KqRzfV519fmUSqW1taVSO1oq\n1d5UrkIbj1fkt3gipV+cvq6fvDekWDylhmqnXjrarq0bKvThpSm98u41Tc6EsyGgOr3w5AZ5CAGt\nGN6DA2BW1DcAhH+WQIFce9hxATAr6hsAs1qN+pZIpvXqu9f02vtDufDNSrFk/7FmP1i2WCyyWDLX\n11aWaP8mj/ZvrlF9lXNFtwOZD9Z7RwJyO+2qJeRjWoFQTO90T+jUuTFNzkZy1zvsBfKUFctTXiRP\nebGqyzKnC+fthQVL3OuD+6Q1bmE83ah3YTRdKNO5yhdecjxdTUWxPrg0qWl/VM4im75wcIOO7msy\n5eN+dDqkfz7Rr/P9PknStg0VShuZ7gmBUEzz0eSS6xdYLZmA0MKXyy53NiRU7soEhhbCQo5P8DiJ\nJVK3DfV4s+f9czHdaY/kdtpV5S5SVVmRqrOnVYtOS4pudLEzDEPz0aRm52Lyh2KZ07mYZhed94di\nCoYTd9xWi6RSp/1G1yCXPRcMyoWGSh0qcayN4BRWx0ofwyVTaV0ZntW5Xp+6+qblC8YkZZ6zFosl\nF3JzFBZoS3OFtrdWantrlWoIRCCPGIahDy5P6l9O9MsXjKm0pFBfPtyqp3bV39R1Mp3O3O7Vd65p\nIhsCenJ7nT5/cAOP+RXAe3AAzIr6BoDwzxIokGsPOy4AZkV9A2BWq1nfQpGEIrFkNoyTDeUsCudo\n0fkb1y/cLnM+E+yRtPh6iyW3DoDVYRiGrl73q7PXq2l/JPMViN4SmFlQ5rLnwkHVZcXZYFAmIFTu\ncshqfbDn873WOMMwNDuXCfmMTs/f6Ojjm79lmxfG0+VG0y3qXLX4g8JEMq03z4zoJ+9eUziWVE15\nsb7ydJv2bfKYoj75QzH96NSgTp3PjEbZvL5cX32mXS317ptul0imNReOyx+KKzAfU2A+rmAongkH\nzWevy15OJO/cMUeSiuwFi0JCjkVhoUxIyFlkU2A+fnO4J3saitw+bGO1WFRR6rgp0FO96HxlqWNF\nwmnJVFr+UEz+ufgtwaDZbFjIPxdTfInfid1mVXm2Y1Cl26Hqsszzp8qd+Rkq3UV0ZDGxlTiGC0US\nutDvU2efV90Dvtx4zhKHTTvaqrS7vVo7WitVUGDV1et+XRjwqXtgRhMz4dx91FYUa3trlXa0VmrT\n+opPFNoDVlLviF/ff7NPg+NB2Qoseu6xdXrhwIabAp0fl04b+vDypF5995rGfWFZLRYd3F6nzx9s\nVk1FyUPcenPjPTgAZkV9A0D4ZwkUyLWHHRcAs6K+ATAr6huAh8UwDM1FEvL6o5r2R+QNZENB2csz\nwVhu7N9itgKLqtzZjkELoaBFAaGSojuP1Pp4jVsI+SyEe0a98xrPhnwisduEfBaNp2uodqrRc2vI\n525CkYReeXtQxztHlUob6mgq00tHO9Ta4L77ymtQNJ7Uzz8Y1r99eF2xREr1VSX66jPt2tVW9YlC\nTYZhKBJLKTAfU3AhGBSKyz8f+1hYKK65+fgdu/R8XKHNqkp3kardHw/4ZEIy5aX2+/p7PkyGYSgc\nu10XoXjmdKGL0BK/j3KXPffzVpfd2r1opbpuYeUt1zHc5ExYnb1edfV51Tvi10IZ9pQXaXe7R7s7\nqtXRVLZk57Jpf0TdgzPqHvDp0tBsLjRpK7Bq07oybW+t0vbWKjVUlZgi/Ij8NuWP6Acn+nX6ypQk\n6fEtNXrxSNt9jfFKpw19dGVKr7wzmAsBPbm9Vp8/uEG1hIA+MV6jAjAr6hsAwj9LoECuPey4AJgV\n9Q2AWVHfAKwVqXRaM8FYNhgUvdExyB+VNxDR3B3GJJU4bNlgUHaUWHakWIW7SGmrVZf7pjXmy3by\n8YYVid08hqrAalHtopDP4k4+yzmma2ImrB+c6NfZq9OSpCe21urFI62qLsuPcSGpdFpvnx/Xj04N\nKjAfl9tp15c/1aLDHxuN8rC2JRROKDB/o6NQcD6u+UgyM6JrUcjHXVJo+rBBMpWWfy6WG2HmDWSe\nMwtjze4UrJMyI82qF3U7ygSEbgSF6Nqydj3oMVw6bahvNKCuPq+6er25rj0WSa2Nbu1ur9buDs8D\nB3WSqbT6RgK5MNDwVCi3rNLt0PaWTFegLc2VS3ZYwcOTNgyFwgnNzsU0MxfNdB+bi2kmeON8VVmR\nntxWp70bPSp25OffLRxN6ifvXdMbp68rmTLU2uDWrz7bofbGsge+z3Ta0OmeKb3yzjWNeedltVh0\nYFutvnBwg2orCQE9KF6jAjAr6hsAwj9LoECuPey4AJgV9Q2AWVHfAOSLSCwp3+JQUCCaCwp5/ZEl\nxyNJmZBPTUXxoi4+LjVUO1W7zCGfu+kZntX3j/VpaGJOtgKrnnus6a5jRlaTYRg63+/TP5/o15h3\nXvZCqz73+Hp99vH1efsB8KMmlU7LPxfPBoOyz5lAZhzawoi0VPr2bzOWlhQuCgYV3xiLlr2Ox8Dq\nuZ9juEgsqYuDM+rq8+p8vy83Bs9eaNW2DZXa3V6tne3VKnPal307/aGYLg7O6MKATxcHZzQfzQQw\nrRaL2hvd2RFhVVpX65LV5EG91ZA2DAXn49kwT0yzi8M92YCPPxRTMnXnjxpcxYU3HjM2q/Zu9Ojg\n9jpt2VCxZjunLZZKp/VW15h+dGpQoUhCVW6HvvJ0ux7fUrNs4dC0Yej0lSm9+s41jXrnZbFIB7bW\n6QuHNqiOENB94zUqHoaJmbC6er0yDEMHttWpotSx2puERwD1DQDhnyVQINcedlwAzIr6BsCsqG8A\nzMDIfrg57Y9qOjtObCYYU0NNqcpLbGqsdqq2suShhnyWkjYMfXBxUv9ysl8zwZhcxYX68uEWPbWr\nYc1soyQNTczp5WO9ujLsl8UiHd5Zry99qpUPR0wmnTbkD8UWdQ1aCAZFct2E7hQMcBUXqtxlV5Hd\nJoe9QEWFBSqyF8iR/Sqy21RUuHA+u6wwe/3C7bLLCX7cn7sdw80Eo5nuPn1eXRmazf0Ny1z2THef\n9mptaa54qKPf0mlDgxNBdQ9kugINjAdzY8bcJYXalu0KtLWlUu6S5Q8imU06bSgwH8916JmZuxHu\nmZmLaTaYGQ14p3CfRZnHQ0VpkSpLHaoodajC7VBlaZEqSh2qLHWovNQhW4FVU7NhvXdxUu91T2jK\nH5EklTntemJrrQ5ur9P62tt/iLGaDMPQhQGfXj7Wp3FfWEX2Ar3wZLOe279uxR73acPQ2Z5p/fid\nQY1OL4SAMuPA6qucK/I9zYjXqFgJ6bShgbGgOnun1bmo852UCaTuaq/Skd2N2t5SKauVYxKsDOob\nAMI/S6BArj3suACYFfUNgFlR3wCY2VqvcfFESr84fV0/fW9I0XhK9VUl+uoz7drVVrWqo6p8gah+\neLJf712clCTtaK3SV59pU5PHtWrbhNWz0Dlk8TixhZFi3kBUgfm4YvHUHUeL3SvH4pBQ4Y3w0MdD\nRUUL1xcuChTZbw4UFdsLZCuwmnrk28frm2EYGpqcU1dvJvAzPHlj3Na6Gld2nFe1mutK10zQKhRJ\n6NK1TFeg7oEZBebjkjKhlA31pdkRYVVqaSjNiw4zy80wDPlDcY16QxrzhuULRG8K9wRC8Ts+76wW\ni8pL7ZlAz+JwT2km3FPpdsjttN934NQwDPWPBfVu94Q+ujyZ6+TU5HHqye11OrB1bXTPGJkK6eVj\nvbp4bVYWi3RkV4O+dLh1Rbpb3c5CCOiVdwY1kg0BPbE1Mw6MENDdrfXjN+SPWCKlS9dm1Nnr1fk+\nr4Lhmzvf7enwKJntDjY0kXnMVbmL9NTuBh3eWa9y1+rXM5gL9Q0A4Z8lUCDXHnZcAMyK+gbArKhv\nAMwsX2pcYD6uH789qLe6RmUY0pbmCr10tP2hd1IIRxP66XtD+sXpESVTaa2vcemrR9u1bUPlQ90O\n5B/DMJRMpRWNpxSNpxSLpxRNpBSNJzPn4ynFEqmbl8eTuesWbhNNpBSLJ3PXfZI3PwuslkxAyHFz\nt6EbgaFFlwsLVOSwLepMdPPtFzoUraUwkcdTqrFxvy4Pzaqrz6dzfV7NzsUkZX72zc0V2t1erV3t\nVaouK17lrb07wzA0Mj2v7gGfLgz41DsSyHWsKXHYtHVDhba3VmlLc4Wq3EWm68oQDMc1Oj2vMe+8\nRqdDGvXOa3R6XuFY8pbbFlgtKnctdOm50alncecet7NwxQNTiWRa5/t9erd7XOf7fUqlDVks0tbm\nCj25vU57N3pUZH+4owEDoZj+9dSgTp0fk2FI21sq9bWj7asWXk0bhjqvTuuVd67p+lRIFkmPZ0NA\nDdWEgO4kX47fsDYF5uM61+dVV69Xl67N5EYDu532XBB26206312bCOpE55g+uDSpWCKlAqtFu9ur\ndWRPg7ZuqFwzwVnkt0epviVTaQVCmdGjwXBcG+pKVekuWu3NAlYd4Z8lPCoFMp88SjsuAI8W6hsA\ns6K+ATCzfKtxo9Mh/dPxfl0Y8Mki6eCOOv3KU20r3kUhmUrreOeoXn3nmkKRhCpKHfqVp1r15PY6\nPujAqjEMQ/FkOhcUWhwgyoWFFgWIorGUoonkLQGjaPxG6CiZSj/w9likW8aZFRRYZLFkuqxYLRZZ\nrRZZLZLFarnlOmv2OovFIqtVi85nl+fOW2Sx3nqfi9eXpOveeZ29MqVYIiVJchbZtLOtWns6qrWt\npVLFjocbulhukVhSV4Zn1T2Q6QzkDURzywqsFlW5i1RdXqTqsiJVlxVnzxfLU1Ykt9O+poJai4Wj\niVywZ3RR0Gcu241igcUi1VaUqNHjVGO1Uw3VTnnKi1VZ6lCp077manMoktBHlyf1bveE+seCkjLd\nvPZu9Ojg9jptaa5Y0cBWPJHS6x9d10/fH1IsnlJDtVMvHW3XjtaqFfue9yNtGOrq9eqVtwc1nA0B\nPbalRl841KJGQkC3yLfjN6wuwzA0MRNWZ69Xnb3TGhgN5sLDDdVO7enIjLpsaXDfU+2MxJJ6/9Kk\n3uoc1fBUpotedVmRjuxu0Kd2Njy0DmIwJ7PUt0QyLX8olu1GmO1KGMxcnp2LamYupmAofkuQf12N\nS7uy42c31K+dbpTAw0T4ZwlmKJBmY5YdFwB8HPUNgFlR3wCYWb7WuIuDM3r5WK9Gpudlt1n12cfX\n65cOrF/2DgqGYehMz7R+8Fa/pmYjKrIX6IUnm/Xc/nW3/G9owAySqXQmLBS70Zno40GhWDylSPzm\nrkWZ65O57kQLt0ul00qnM8+l1XijtraiWHs6PNrVXqX2pjLTjsYyDEOTsxFdGPBpYCworz+i6UBU\nweyYsI+z26yqWhQK8pQVZ0JC2YCQs8i24uGgaDypMW9Yo97QjY4+3vlcd6bFPOVFaqx2qdGTCfk0\nVjtVX1WiQlt+1uHJmbDeuzihd7sncqGtcpddB7bV6eC2OjXVLF8XnrRh6INLk/qXt/o1E4yptKRQ\nXz7cqqd21a/J54ORDQH9+J1BDU8uCgEd3KBGRmvmrOTxWyKZ1lw4rmA4ruB8XMH5xI3z4bgssuQ6\njRHyWLvSaUN9owF1ZQM/k7MRSZngZEdTeSbw01Gt2oqSB/4ehmFocHxOJ7pG9eHlScUTaRVYLdrT\nUa0jexozoUaCC7hP+fD6NJFMaWYuptngzeGehbGjs8FoboTe7dgKLLkxoxXuTGfCEodNPcN+XRme\nVTKVOWouc9q1s61Ku9urtXVDpRz2/DzuAe4X4Z8lrPUC+SjKhx0XADwI6hsAs6K+ATCzfK5x6bSh\nty+M619PDigwH1eZ065ffqpVn9pRvyzdE/pGAnr5eK/6R4MqsFr09O5GfeFTG+Qu4YMu4EEYhqG0\nYSidVvbUyF6XeT4vXJc2DBmGFl2WjIXld1rfMG7cJrt8a7tHRWsv2/BQxRIp+QJReQMRTfuj8gWi\nmg5E5PVnrpuP3joyS5KKHQWqchfLkw0DLQSDPNmw0P0ELRPJlMZ94Vs6+SzuVLSgotSR6+STC/tU\nOU37YZdhGOodCei9ixP68PKUItkRZutrXHpye50ObK1VmevBO9v1jvj1/Tf7NDgelK3Aqucea9IL\nBzaopGjtd70yDENdfV698vY1DU3OySJp/+YafeHQhlUbUbaW3M/xm2EYiiVStwZ55uMfO59QcD5+\n21F6d9JcV6odrVXa2VqllobSNRkoe5TE4il1D86oq29a5/p8CkUy4QNHYYG2t1Rqd0e1drZVqXQF\njmXD0aTevzShE51jGpnOdAOqKS/Wkd0NOrSjXm6CYrhHq/36NJZIZYI8wUx3nplsqGc2GM2Fexae\nW7dTaLOqcmHUaGmRKrMjSCsWRpC6HSotLrxjyDoSS+rStRmd6/PpfL83FyKyFVi1pblCu9urtKu9\nmvFgMDXCP0vI1zfwzGy1d1wAsFKobwDMivoGwMzMUOOi8aR+/sGwfv7BsOLJtJo8Lr10tF3bWiof\n6P4mZ8P6wYl+nemZliTt3ejRV55uU13lg//PaAAPnxnq20oLR5PyBiLyBqKZL//C+UznoFg8ddv1\nXMWF2UBQJhjkyZ53l9g1ORvOdfIZ8c5rajasj79L73baswEfpxo8TjVVu9RQXaKSosKH8FOvTYlk\nSuf6fHq3e0IXBnxKpQ1ZLNK2lkod3FanPRs9ctxjx7kpf0Q/ON6n09n92ONbavSVI22qLi9eyR9h\nRRiGoXN9Pv34nUENTWSez/s3efTFQy3L2iEp31RVuTQ0MntriOd23Xrm44onlx7paJHkKimU22mX\nu8S+6LTwxuXsdZF4Mjdu8Op1v1LpzBPcWWTT1g2V2tFapR2tlZ8ouIZ7FwjF1NXnVVevV5eGZpXI\n/q3LXHbtbs+MutzSXPHQOqUZhqGBsaBOdI3qo8tTiicz3YD2bvTo6d0N2txcsWbHTq62WCKlnuFZ\nXRiYUc/wrFzFhWquK9WGOrc21JXKU1H8SHRSepjHb4FQTANjQQ2MB9U/GtD1qdAdg9GSZC+0qjIb\n6MmFe3JBH4cq3UXL2j0xbRgaHAuqq8+rc31ejUzP55atXxgP1lGt5jrGg8FcHnr4J51O60/+5E/U\n09Mju92uP/3TP1Vzc3Nu+bFjx/RXf/VXstlsevHFF/W1r33tjusMDQ3pD//wD2WxWNTR0aE//uM/\nljWbjp6ZmdHXv/51vfLKK3I4HIpGo/qDP/gD+Xw+OZ1O/cVf/IUqK5d+I4sXuGsPbzwAMCvqGwCz\nor4BMDMz1bjZuZh+eLJf716YkCFpe2ulXnqm/Z7HhMyF43r1nWs63jmqVNpQa4NbX3umXRvXla/s\nhgNYEWaqb6vBMAyFIombgkHT2WBQpnNQVMnU0oECZ5EtG/BxqbHaqabs2K6V6DphJsFwXB9dntK7\n3RMaHA9Kkhz2Au3f5NHBbXXadIdROuFoQj95d0hvnLmuZMpQW4NbLz3bofbGsof9Iyw7wzB0vt+n\nH789qGvZENC+TR699Ex7XoaaHpTXH9H3XrtyU+jmTgqslo+FeQpvCvHcOF8oV0nhA3XticSSbi6m\nJQAAIABJREFUujI0qwsDPl0Y8MkXvDG2b32tKxsEqlJbo5uuQMvEMAyNeefV1edVZ69XA2PB3LJG\njzMb+PFoQ/3qhwHC0YTe7Z7QW11jGvVmQgu1FcU6srtRh3bUPfL7AsMwNDET1oWBGXUP+HRl2J/b\nr9ptViWS6ZtGphY7bGqudWXCQPWlaq4rVU15senCVCt1/BZLpDQ0MZcL+wyOBW6qWZJUW1mi6rKi\n7EiuTJgnF+wpdajYsfJjUZfi9Ud0rt+nrj6vej42HmxXe5V2tTEeDObw0MM/r7/+uo4dO6Y///M/\nV1dXl77zne/or//6ryVJiURCzz//vH7wgx+ouLhYX//61/Wd73xHZ8+eve06v/u7v6tvfetbeuKJ\nJ/RHf/RHOnz4sJ577jmdOnVK3/72tzU8PKz33ntPDodD3/ve9xQKhfT7v//7+ulPf6rOzk79l//y\nX5bcVl7grj288QDArKhvAMyK+gbAzMxY44Yn5/TysT5dHpqVxSId2dWgLx1uVdkdxg0kkim9cXpE\nP3lvSJFYUp7yIn3l6Xbt3+Qx3ZvpwKPEjPVtLUkbhoLzcXn92VFigaiC83F5yoszXX08TpU57dTR\nT2jcN6/3Lk7ove5J+YKZUWkVpQ49ua1OT26vU2O1U8lUWm91jenHbw8qFEmoyl2krz7Tpsc215ju\n928Yhi4M+PTjt69pcDyoYkeBfv0zm/TktrrV3rQV9+HlSf3dz3sUiSXV2lCmMmcmzFNaYleZ89aA\nT8lD/pDaMAyN+cK60J8JAvWO+HMfTJc4bNraUqkdrZXa3lKlilK6At2PVDqtvpGAOnszHX6m/BFJ\nktVi0cZ1Zdqd7f5RU7E2u1QahqG+0YDe6hrTR1emlEimZSuwaN+mGj29u0Eb15WbrlbdSTSe1JUh\nfy4wt3gEZpPHmQvMtTeVKZFMa3hyTtcm5jQ0kTmdnAnfEgjaUFea7RCU+fLkeSBoOY7f0oahyZlw\nJuiT/bo+FVJ6UWygtKRQrfVutTaWqbXBrZY6d16MxVwQiSV1cXBG5/q8Otd/Y8xfoS0zHmxXe7V2\ntVUxHgx56aGHf/7bf/tv2rlzp1544QVJ0uHDh3Xq1ClJ0pUrV/SXf/mX+tu//VtJ0p/92Z9pz549\n6urquu06hw8f1smTJ2WxWPTGG2/onXfe0R//8R/rnXfe0datW/Xiiy/qtddek8Ph0O/93u/pt37r\nt7R7927Nzc3pV3/1V/XTn/50yW3lBe7awxsPAMyK+gbArKhvAMzMrDXOMAyd6/fpn4/3adwXlsNe\noBcONOszj62TPTs2JW0Y+uDipH54sl++YEzOIpu+cKhFz+xpVKGN/50O5Duz1jc8mtKGod7rfr3b\nPaHTPVOKxDIj2ZprSxVPpjTuC6vIXqDPH9yg5/Y3PbQRP6vFMAy92z2hf/jFVcXiKR3YWqtf/8ym\nvPrg9l7F4in94xtX9fb5cdkLrfrGcxv1y0c3yusNrfamLSkaT+ryUGaE0YV+Xy68Jknraly58WBt\njWWyFXDc9XH+UEzdAzPqHvTp4uBMbhSRw16gHS2V2tPh0Y62KrmK82tcYiiS0HvdEzrRNapxX1iS\nVF9VoiO7GnRwR33e/Tx3s9Cp6UJ2VN7iUFyxw6ZtGyq0PRv4uZdQXCSWzAWCri0KBC1W4rDlwkDN\neRgIepDjt2A4rsGxoPrHMh19BsbnFIndGN9lK7Cqudal1oZM0Ke1wa3qsqK8+Z3cTTptaGA8qHN9\nXnX1eTW6eDxYrUu726u1q53xYMgfdwr/rNhRXigUkst1o2V0QUGBksmkbDabQqGQSktvbJDT6VQo\nFLrjOoZh5IqL0+nU3FymoB06dOi233fhvhffFgAAAAAAADdYLBbtbq/W9pZKnTw3ph+dGtQPTw7o\neOeoXjzSqnKXQ/98vF9Dk3OyFVj0ucfX64WDzXIWmesDBwCAOVgtFm1aX6FN6yv0jec2qqvPq3e7\nJ9Q9MCNDhp7e06gvf6pF7jt0uTMbi8WiQzvq1dFUpu++eknvX5pU70hA//ELW001rnNoYk7feeWi\nJmbCWl/r0u98cZvqq5x58YF1kd2mPR0e7enw3BhvlO0K1HPdr+tTIf3s/SEVOwq0dUNlruPJo9oV\nKJlKq380kAuJXJ+6Ee6qdDv02JZa7emo1ub1FXkdUncVF+q5x9bp0/ub1DsS0ImuUZ2+Mq3vH+vT\nD94a0P7NHj29u1EdTWV58Ti/nUgsqUvXMuPwugd9mrnDOLzWBvd9B9+KHbbcvmBBOHojEDQ0Oadr\n40FdHprV5aHZ3G2cRTatr812B6p3q7muVJ48Db8sdERaGN81MBbQtD96021qK4q1u70qF/ZZV+My\ndcjQarWovbFM7Y1levFIm7z+iLr6vDrX59WVYb+GJ0N65Z1rKnPZtautSrvas+PBCs0dFIb5rFj4\nx+VyaX7+RmounU7LZrPddtn8/LxKS0vvuI510ZzT+fl5ud3ue/q+d7vtgoqKEtlMnvLPR3dKrAFA\nvqO+ATAr6hsAMzN7jXuprkyff6pd//zmVb1yakB/85PLuWVH9jTp3z2/RbWVa3NMAoBPxuz1DY+u\nxoZyvfBUuwKhmFJp45Ed6+HxlOrb/8mjl9+4qpd/0aP/5/+c1Vef3ahf/cymvP6g1zAMvXJqQP/r\nJ5eUTKX15SNt+ubzW27q6JRv9a2mxq2dmzPj2aKxpM73e3Xm8qTOXJnSmZ5pnemZliRtqHdr3+Ya\n7dtcqy0tlXn9d7ybqdmwzl6Z0tmeKXVdnc51KrEVWLV7o0f7Ntdo76YarastzcuQxt3U1Lh1aO86\nBefjOnZ6WD9/b0jvX5zU+xcnta62VJ870Kxn9q9TacnaDjUahqFr48HMY/nKpC4PziiVznT3cRUX\n6vDuxtzfsmKFanXzugodXnR5PpLQwGhAvdf96h/xq2/Ef0sgyFVcqPamcrU1laljXYXamspUW1my\nJh5rC/XNMAyN++Z1dWhWPcOz6hma1eBYINc9Scr8HHs312jT+gptzH49KkHYO/F4SrWlo0ZflxSO\nJtR5dVofXpzQ6cuTOnluXCfPjctus2pnh0ePb6vT41trVVVWLCnzO08bmW5ChmEonTaUzp6m0oYM\nQ7nLuWU3XdZN6yxeZmSXpRYtM9KG6qqcaq6/e+YBWLHwz969e3X8+HE9//zz6urq0saNG3PL2tra\nNDQ0JL/fr5KSEp0+fVq/+Zu/KYvFctt1tm7dqg8++EBPPPGETp48qQMHDiz5fd966y3t3LlTJ0+e\n1L59++66rbOz4bveBg8XLYcBmBX1DYBZUd8AmNmjVONeeGK9ntjk0b+eGlQoktCXD7eopd4tpVKP\nzO8AeJQ8SvUNmJ5OrPYmrKrn9jZqQ41T3331kl5+46o+vDih3/7iVtVW5F+4Nzgf19/+9LIuDPjk\nLinUb35+h3a0Vsm/6LMeM9S3Fo9TLZ5WvXi4JdMVaGBG3QM+XRn269p4UP9yvE9F9oWuQJnOQPke\nckskU7p6PZDtCDOjMe+NhgE15cU6uK1O21srtXl9hRz2G0GvtT7ibTkc2lqrg1tqdPW6Xye6xnSm\nZ0rf/XG3vvvjbpU4bCpz2VXmtKvc5ciez5yWO+0qy15X4rA9tOBKOJrQxYXuPgM++UNxSZJF0ob6\nUm1vqdKOtiq11rtltWa2KRlLPNRaXVfmUF1ZrQ5vr81uc1JDk3MampjTtYmgrk3Mqat3Wl2907l1\nnEWZkWGV7iIVWC2yWiyyZk8LrBZZrLrp+o/fJndd7rJuWv/m+7KoYGHdRfdlKSxQ5+VJDYwFNTge\nVChy43dWYLVoXY0rN7qrraFMNRU3jzSLhWOaDt/otgRpY32pNtaX6teOtmtgLJjrCnT68qROX57U\n/6vM7zZtZAI6q6Gtwa2n9zTqsc01uTHdeHTdKeBsMYyVeYim02n9yZ/8ia5evSrDMPRnf/ZnunTp\nksLhsF566SUdO3ZMf/VXfyXDMPTiiy/qG9/4xm3XaWtr0+DgoP7rf/2vSiQSam1t1Z/+6Z+qoODG\ng/ro0aN67bXX5HA4FIlE9J//83/W9PS0CgsL9e1vf1sej2fJbc33A0AzMsOBOQDcDvUNgFlR3wCY\nGTUOgFlR34BHTzia1D/+okfvXZyUo7BAv/Zchz61o35NdLK4F92DPv3NTy4rOB/X9pZK/ebnt6rs\nNh0szFzfYomUeoZndaE/M/5qyh/JLauvKlGTx6XayhLVVRartrJEtRUlchWv3bGtk7NhdWdHeV0Z\nnlU8kZYk2W1WbW6u0I7WKm1vrczLoNpKCobjevfChLoHfQqE4vKHYpqPJpdcp9BmVZnTfvtw0KLg\nkLvEngvk3Ku0Yej6ZEjnBzKj6wZGg0obN7r7bM8G1La1VMq9xjsVLRaOJjJhoIVQ0PjcTc+51VZd\nVpQN+mTGdzXXum7qgIZPZjo7Hqx7YEbhWCIT2LJYZLHopkCXRTcuW6wWWS3K3i4b8Mqdv/0yqzV7\nn5bb38eV4Vld6PfJUCaAdmhHvZ7Z00h33kfYQw//5BOzHgDmMzMfmAN4tFHfAJgV9Q2AmVHjAJgV\n9Q14dL1/cUL/+/UeRWIp7d9co29+dtOaDogkU2n98K0B/fzDYRVYLfrK02167rF1st4htPQo1bfJ\nmXAucHH1uj8XnlnMVVyo2spi1VWUZINBmdOaimI5HnIHiVg8pSvDs5nAz6BPU7M3h5d2tFZpR2uV\nNq4rI8RwnxLJtILzcfnnYwqG4vLPxxUIxeQPxTPXh2IKzGfOL4zduh2LRSotuTkYVObKhoMWwkMu\nh+w2a+5v2T04o+B8PLd+a4NbO7LdfZrrSu/4XM1H4WhCoUhCaUNKpT823ik7+umWy8aNkU+pdDq7\nTiY0dcf7WDT66cZtpMryYtWWFamlwX3b8CPMadof0clzYzp1bkzBcKbb05bmCj2zp1G7O6pNPQIS\ntyL8s4RH5QAwnzxKB+YAHi3UNwBmRX0DYGbUOABmRX0DHm1ef0Tf/ckl9Y4EVFHq0H/8/FZtbq5Y\n7c26xeRMWP/9lYsamphTbUWxfudL27Shzr3kOo9qfUsbhvxzMU3OhDUxG8mczoQ1ORuR1x+5beCj\n0u1Q7UIoqKI4Fw6qKitalg+TDcPQmC+s7uz4p57rASVTmYDSwtiy7a2V2t5Sqeqy4k/8/XB3acNQ\nKJJQIHQjHBSYj2U6CM3HFQzFssGhuGKJ1D3dp9tp146WSm3PdvdZy2HCfPeo1jdkJFNpnemZ1onO\nUfVc90uSylx2PbWzQUd2N+T9+EfcG8I/S6BArj3suACYFfUNgFlR3wCYGTUOgFlR3wCk04Z++v6Q\nfnxqUIZh6HMH1uuXD7euiQ4ChmHo3e4J/cPrVxVLpPSpHfX6tec6VGS33XVd6tutkqm0fIFoJgy0\nKBw0ORvWTDB2y+0LrBZVlxfnAkGLw0HlpY4lO7lEYkldujar7sFM4Me36P7X17i0vbVKO1or1dZY\ntiYea7izSCx5U9egxUGhcDSZ6fDTWqV1tS5TdfdZy6hvWDDqndeJzlG92z2hSCwpi0Xa3V6tp/c0\naltLJc9JEyP8swQK5NrDjguAWVHfAJgV9Q2AmVHjAJgV9Q3Agv6xgL77yiVN+SNqri3Vb39xq+qr\nnKu2PeFoUv/79R59cGlSxY4CffOzm/XE1tp7Xp/6dn9iiZSmFncKmglrYjasyZmIQpHELbe3F1pz\n3YJqK4pVV1miylKHBsaD6h6YUd9oINdlyFlk07aWSm1vqdL21kqVuxwP+8cDTIX6ho+LxVP64PKk\njneOamgi89jwlBfp6d2NOrSzXu4SxsOZDeGfJVAg1x52XADMivoGwKyobwDMjBoHwKyobwAWi8SS\n+v/e7NXb58dlL7Tq68926KldDbI85M4B/aMBfeeVi/IGomprcOu3v7hNnvL7GwdFfVs+oUhCk7PZ\nQNBMtltQNhwUT6Rvub1F0oZ6t3a0ZkZAtda7ZbXSfQJYLtQ3LGVwPKjjnaP68NKk4sm0bAUW7d9U\no6f3NKqjqeyh79OxMgj/LIECufaw4wJgVtQ3AGZFfQNgZtQ4AGZFfQNwOx9dmdLfvXZF4VhSezqq\n9R9+abNKH0LXgHTa0M/eH9KPsiPIXjjYrC8eanmgsVDUt5VnGIb8oXguCOQLRNVY7dTWlkq6TAAr\niPqGezEfTejd7gmd6BzVuC8sSWr0OPX07kYd3F6nYsfdR2hi7SL8swQK5NrDjguAWVHfAJgV9Q2A\nmVHjAJgV9Q3AncwEo/qbn1zSlWG/ylx2/dYLW7WtpXLFvt/sXEzfffWirgz7VVHq0G99fqu2NFc8\n8P1R3wCYFfUN98MwDPUM+3Wia1RneqaVShtyFBboia21emZPo5rrbh8iwdpG+GcJFMi1hx0XALOi\nvgEwK+obADOjxgEwK+obgKWk04b+7cNh/fDkgFJpQ595bJ1ePNKmQtv9d+JZSmfvtL73sysKRRLa\n01Gtbz2/Ra7iwk90n9Q3AGZFfcODCszH9fb5MZ3oHJMvGJUktTa49fTuRj2+pUb2woJV3kLcK8I/\nS6BArj3suACYFfUNgFlR3wCYGTUOgFlR3wDci2sTQX3nlUuanAmryePS73xxqxo9rk98v/FESv90\nvE/Hzo6q0GbVS0fb9cyeRlkslk9839Q3AGZFfcMnlU4bujDg04nOUZ3v98mQ5Cyy6dCOeh3Z3aD6\nKudqbyLugvDPEiiQaw87LgBmRX0DYFbUNwBmRo0DYFbUNwD3KhZP6eVjvTrRNaZCm1Vfe6ZdR/c+\neFBndDqk//7KRY1Oz6ux2qnf+dI2NS1DoGgB9Q2AWVHfsJy8gYje6hrTqXNjCoYTkqQtzRV6Zk+j\ndndUy1awvN3+sDzuFP6xPeTtAAAAAAAAAAAAQB5x2Av0zc9t1o7WKn3vtSv6x19c1YUBn37j+S1y\nO+33fD+GYehE15i+/2avEsm0ntnbqJeeaWfUCAAAq6C6rFgvHmnTlz7VorNXp3Wic1SXh2Z1eWhW\nZU67PvPYOn3uifXL0pUPK4/wDwAAAAAAAAAAAO5qz0aPNtS79T9/eknn+336o7/9QL/xwlbtbKu6\n67qhSELf+9lldfZ65Syy6Xe+uE17N3oewlYDAICl2AqsenxLrR7fUqsx77xOdI3qnQsT+vHbgzq6\nr0kOQrp5gbFfYuzXWkTLOgBmRX0DYFbUNwBmRo0DYFbUNwAPKm0YeuOj6/rBW/1Kpgw9u69JX326\n7Y4dfHqGZ/U/Xr2k2bmYNq8v1299fqsq3UUrtn3UNwBmRX3DwxJLpBSNJVXmcqz2puBjGPsFAAAA\nAAAAAACAT8xqsegzj6/X5uYK/Y9XL+nNMyO6MjSr3/7iNq2rceVul0qn9crb1/STd6/JYrHol59q\n1QsHmmW1Mj4EAIC1zFFYQMefPGNd7Q0AAAAAAAAAAABA/llfW6o/+vf79ezeJo165/V//91Hev2j\n60obhrz+iP7iHzv16rvXVFVWpD/89b36wsENBH8AAABWAJ1/AAAAAAAAAAAA8EDshQX6xmc2antr\npb73s8v6/pu9OtMzpZHpeUViST2+pUbf/OxmlRTxkRQAAMBKofMPAAAAAAAAAAAAPpFd7dX6v37z\nCe1orVLvSEDptKHfeH6LfueL2wj+AAAArDCOtgAAAAAAAAAAAPCJlTnt+k9f3amuPq8aPS7VlBev\n9iYBAAA8Egj/AAAAAAAAAAAAYFlYLBbt6fCs9mYAAAA8Uhj7BQAAAAAAAAAAAAAAAOQpwj8AAAAA\nAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAA\nAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAA\nAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAA\nAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8A\nAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAA\nAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8\nAwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAA\nAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQp\nwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAA\nAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABA\nniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAA\nAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAA\nAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAA\nAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAA\nAABAniL8AwAAAAAAAAAAAAAAAOQpwj//P3t3HxznYd8H/rsLEMQ7SJEAKYoE+CLSL7HeKEdJr3Uu\ndl6UetLO9dxRMs3lbiZu08l0HCeXycSdJmMncaNM07qdJr5cm7F7rVOP5EuTpk6m1cV2EjdO6+qN\nerEtkSIJECRFAnzBO/G6e38AC1uWSIIkFstdfj5/kdjd5/ktRT3ELr77+wIAAAAAAAAAQJ0S/gEA\nAAAAAAAAgDol/AMAAAAAAAAAAHVK+AcAAAAAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAAAAAAAKhT\nwj8AAAAAAAAAAFCnhH8AAAAAAAAAAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwDAAAAAAAA\nAAB1SvgHAAAAAAAAAADqlPAPAAAAAAAAAADUKeEfAAAAAAAAAACoU8I/AAAAAAAAAABQp4R/AAAA\nAAAAAACgTgn/AAAAAAAAAABAnRL+AQAAAAAAAACAOiX8AwAAAAAAAAAAdUr4BwAAAAAAAAAA6pTw\nDwAAAAAAAAAA1CnhHwAAAAAAAAAAqFPCPwAAAAAAAAAAUKeEfwAAAAAAAAAAoE4J/wAAAAAAAAAA\nQJ0S/gEAAAAAAAAAgDol/AMAAAAAAAAAAHVK+AcAAAAAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAA\nAAAAAKhTwj8AAAAAAAAAAFCnhH8AAAAAAAAAAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwD\nAAAAAAAAAAB1SvgHAAAAAAAAAADqlPAPAAAAAAAAAADUqeZqHbhUKuVjH/tYXn311bS0tOTjH/94\nBgYGVm//0pe+lE9+8pNpbm7OBz7wgTz22GNXfczQ0FA+8pGPpFAo5ODBg/noRz+aYrGYz33uc3ni\niSfS3Nycn/qpn8p73/veTE5O5md/9mczMzOTlpaW/MZv/EZ6e3ur9TQBAAAAAAAAAKBmqrb55wtf\n+ELm5+fz5JNP5ud+7ufy67/+66u3LSws5PHHH8+nP/3pfOYzn8mTTz6ZCxcuXPUxjz/+eH7mZ34m\nn/3sZ1Mul/PFL34xo6Oj+cxnPpMnnngin/rUp/KJT3wi8/Pz+f3f//0cOnQon/3sZ/P+978/n/rU\np6r1FAEAAAAAAAAAoKaqtvnn2WefzXve854kyYMPPpiXX3559bbjx4+nv78/PT09SZKHH344Tz/9\ndI4cOfKWj/na176WRx55JEnyPd/zPfnKV76SYrGYhx56KC0tLWlpaUl/f39eeeWVHDp0KCdOnEiS\nTE1Npbm5ak8RAAAAAAAAAABqqmrJmKmpqXR2dq7+vqmpKYuLi2lubs7U1FS6urpWb+vo6MjU1NRV\nH1Mul1MoFFbvOzk5edVj3HXXXfnKV76S97///RkfH8+///f//rqzbt3anubmpvV42qyj3t6u698J\noA65vgGNyvUNaGSucUCjcn0DGpXrG9CoXN+At1K18E9nZ2emp6dXf18qlVa38Hz7bdPT0+nq6rrq\nY4rF4hvu293dfdVj/NZv/Vb+7t/9u/nRH/3RvPLKK/nQhz6Uz3/+89ec9fLlmVt+vqyv3t6ujI5O\n1noMgHXn+gY0Ktc3oJG5xgGNyvUNaFSub0Cjcn0DrhYALL7lV9fB4cOH8+UvfzlJcuTIkRw6dGj1\ntgMHDmRoaChjY2OZn5/PM888k4ceeuiqj3nnO9+Zr371q0mSL3/5y3n3u9+d+++/P88++2zm5uYy\nOTmZ48eP59ChQ+nu7l7dCLRt27Y3BIQAAAAAAAAAAKCRFMrlcrkaBy6VSvnYxz6Wo0ePplwu59d+\n7dfy9a9/PTMzM/mRH/mRfOlLX8onP/nJlMvlfOADH8iP/diPveVjDhw4kJMnT+aXfumXsrCwkP37\n9+fjH/94mpqa8rnPfS5PPvlkyuVy/v7f//t59NFHc/78+fziL/5iZmZmsri4mJ/+6Z/OX/2rf/Wa\ns0pH3n6kVoFG5foGNCrXN6CRucYBjcr1DWhUrm9Ao3J9A662+adq4Z964gJ5+/EPF9CoXN+ARuX6\nBjQy1zigUbm+AY3K9Q1oVK5vwIbXfgEAAAAAAAAAANUl/AMAAAAAAAAAAHVK+AcAAACL/VsDAAAg\nAElEQVQAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAAAAAAAKhTwj8AAAAAAAAAAFCnhH8AAAAAAAAA\nAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwDAAAAAAAAAAB1SvgHAAAAAAAAAADqlPAPAAAA\nAAAAAADUKeEfAAAAAAAAAACoU8I/AAAAAAAAAABQp4R/AAAAAAAAAACgTgn/AAAAAAAAAABAnRL+\nAQAAAAAAAACAOiX8AwAAAAAAAAAAdUr4BwAAAAAAAAAA6pTwDwAAAAAAAAAA1Kk1hX9efPHF/Jt/\n828yPz+fn/iJn8h3f/d356mnnqr2bAAAAAAAAAAAwDWsKfzz8Y9/PO9617vy1FNPpbW1NX/wB3+Q\nf/2v/3W1ZwMAAAAAAAAAAK5hTeGfUqmU7/zO78yf/dmf5Qd/8Adz9913Z2lpqdqzAQAAAAAAAAAA\n17Cm8E9bW1s+/elP56tf/Wre+9735t/+23+bjo6Oas8GAAAAAAAAAABcw5rCP//0n/7TzMzM5F/+\ny3+Znp6ejIyM5J/9s39W7dkAAAAAAAAAAIBraF7LnbZu3Zrv//7vz9vf/vZ8/vOfT6lUSrG4ptwQ\nAAAAAAAAAABQJWtK8Pz8z/98nnrqqbzwwgv5zd/8zXR2duYjH/lItWcDAAAAAAAAAACuYU3hn9On\nT+fDH/5wnnrqqfztv/238w/+wT/I+Ph4tWcDAAAAAAAAAACuYU3hn6WlpVy6dClf/OIX873f+70Z\nHR3N7OxstWcDAAAAAAAAAACuoXktd/rgBz+Yxx57LO973/ty6NChPProo/nwhz9c7dkAAAAAAAAA\nAIBrWFP452/8jb+RRx99NIODg/nGN76RP/7jP05z85oeCgAAAAAAAAAAVMmaEjwvvfRSPvzhD2fL\nli0plUq5cOFCPvnJT+aBBx6o9nwAAAAAAAAAAMBVrCn884//8T/OP//n/3w17HPkyJH86q/+an7v\n936vqsMBAAAAAAAAAABXV1zLnWZmZt6w5efBBx/M3Nxc1YYCAAAAAAAAAACub03hn56ennzhC19Y\n/f2f/MmfZMuWLVUbCgAAAAAAAAAAuL411X796q/+an7+538+/+gf/aMkyZ49e/Ibv/EbVR0MAAAA\nAAAAAAC4tmuGf378x388hUIhSdLa2prdu3enXC6nra0tH/3oR/Pv/t2/25AhAQAAAAAAAACAN7tm\n+OdDH/rQRs0BAAAAAAAAAADcoGuGfx555JGNmgMAAAAAAAAAALhBxVoPAAAAAAAAAAAA3BzhHwAA\nAAAAAAAAqFPCPwAAAAAAAAAAUKeEfwAAAAAAAAAAoE4J/wAAAAAAAAAAQJ0S/gEAAAAAAAAAgDol\n/AMAAAAAAAAAAHVK+AcA7gDlcjlDE8MplUu1HgUAAAAAAABYR8I/AHAHePniN/JPnvnNPH3u+VqP\nAgAAAAAAAKwj4R8AuAMcvXw8STI8dabGkwAAAAAAAADrSfgHAO4AQxOnkyQjMxdqPAkAAAAAAACw\nnoR/AKDBlcql1Y0/o8I/AAAAAAAA0FCEfwCgwZ2bHsn80nyS5MLspSyVlmo8EQAAAAAAALBehH8A\noMENTS5XfjUVmlIql3Jx9nKNJwIAAAAAAADWi/APADS4UxPDSZLv2Pb2JMnIzGgtxwEAAAAAAADW\nkfAPADS4oYnTaSo05cHedyVJRq9crPFEAAAAAAAAwHoR/gGABrZYWsyZqbO5p/Pu7OrcmSQZmblQ\n46kAAAAAAACA9SL8AwAN7MzU61ksL2Wge09627YlSUavCP8AAAAAAABAoxD+AYAGNjRxOknS37U7\nrc2t6W7pysjMaI2nAgAAAAAAANaL8A8ANLChyeEkyUD37iRJb9v2XJody0JpsZZjAQAAAAAAAOtE\n+AcAGtipidNpKW7Kzva+JMmO9u0pp5yLVy7WeDIAAAAAAABgPQj/AECDmluaz+vT57On6540FZuS\nJL3t25MkIzMXajkaAAAAAAAAsE6EfwCgQQ1Pnkk55Qx071n9Wl/bSvjnivAPAAAAAAAANALhHwBo\nUKcmhpMkA127V79m8w8AAAAAAAA0FuEfAGhQQ5OnkyT937L5p7dtW5JkVPgHAAAAAAAAGoLwDwA0\nqKGJ4bQ1t60GfpKkpaklWzdvUfsFAAAAAAAADUL4BwAa0MzCTEavXMxA1+4UCoU33Nbbvj1jc+OZ\nX5qv0XQAAAAAAADAehH+AYAGdGryTJKkv3v3m27rq1R/Xbm4oTMBAAAAAAAA60/4BwAa0NDEcJJk\noHvPm27rbd+eJBmZUf0FAAAAAAAA9U74BwAa0NDk6STJQNebN//saO9NkowK/wAAAAAAAEDdE/4B\ngAY0NDGc7paubNnc86bbettWNv9cEf4BAAAAAACAeif8AwANZnxuMmNz4xno3p1CofCm27e33ZVC\nChmZGa3BdAAAAAAAAMB6Ev4BgAZzanI4SdL/FpVfSdJcbM5drVtt/gEAAAAAAIAGIPwDAA1maGI5\n/DPQveeq9+lr357J+alcWZzdqLEAAAAAAACAKhD+AYAGMzR5Okky0HXt8E+SjNr+AwAAAAAAAHVN\n+AcAGki5XM6pidPZ1ro1nS0dV71fb9tK+GdG+AcAAAAAAADqmfAPADSQS7OXM7Uwnf5rVH4l39z8\nMyL8AwAAAAAAAHVN+AcAGsg3K792X/N+lc0/I2q/AAAAAAAAoK4J/wBAAxmaGE6SDHRfO/yzrXVr\nioWi2i8AAAAAAACoc8I/ANBAhiaGU0ghe66z+aep2JTtbXfZ/AMAAAAAAAB1TvgHABpEqVzK8OSZ\n9LX3pq259br372vbnumFmUwvzGzAdAAAAAAAAEA1CP8AQIMYmbmQ2aW561Z+VfS2b199HAAAAAAA\nAFCfhH8AoEEMTQwnSQa69qzp/n1tvUmSUdVfAAAAAAAAULeEfwCgQQxNnk6SNW/+6bP5BwAAAAAA\nAOqe8A8ANIhTE8MpFoq5p3PXmu7f21YJ/4xWcywAAAAAAACgioR/AKABLJWWcnrqbHZ17ExL06Y1\nPWZra0+ai81qvwAAAAAAAKCOCf8AQAM4O30uC6XFNVd+JUmxUExv27aMzFxMuVyu4nQAAAAAAABA\ntQj/AEADGJoYTpIMdO25ocf1tW3P7NJsphamqzEWAAAAAAAAUGXCPwDQAE5Nnk6S9HffWPint317\nkmRkRvUXAAAAAAAA1CPhHwBoAEMTp7Op2JxdHTtu6HF9bZXwz2g1xgIAAAAAAACqTPgHAOrc/NJC\nzk6fy+7Oe9JUbLqhx65u/rli8w8AAAAAAADUI+EfIKVyKU+++h/zwujLtR4FuAmnp86mVC5loHv3\nDT+2byX8M6r2CwAAAAAAAOqS8A+Q18ZO5stn/jJPDf5prUcBbsLQxHCSpL/rxsM/PS3daWlqsfkH\nAAAAAAAA6pTwD5DnR15MkgxPncn80nyNpwFu1NDE6STJQPeeG35soVBIb9u2jM5cSLlcXu/RAAAA\nAAAAgCoT/oE7XKlcyvOjL63+uhIiAOrHqcnhtDa1rlZ43ai+tu2ZLy1kfH5inScDAAAAAAAAqk34\nB+5wr42dzOT8VLZs7kmSnBwfqvFEwI24sjib8zOj6e+6J8XCzf2z3tfemyQZmVH9BQAAAAAAAPVG\n+AfucJXKr7+5/4eSJCcmBms4DXCjhidvvvKrondlY9Co8A8AAAAAAADUHeEfuINVKr86N3Xk3Tse\nzLbWrTkxPpRyuVzr0YA1qlT19Xfvvulj9LUth3/OXxldl5kAAAAAAACAjSP8A3ewSuXXA73vSlOx\nKft6BjK9MJORK7Z/QL0YmhhOkgx03fzmn77VzT8X12UmAAAAAAAAYOMI/8Ad7LmVyq/DffcnSfb3\n7E2SnBgfqtVIwA0amjydzk0duat1y00fo3NTR9qaWwX/AAAAAAAAoA4J/8AdqlQu5chK5dfBLfuT\nJPt6+pMkJ8cHazgZsFaT81O5NHs5/d27UygUbvo4hUIhvW3bc+HKxZTKpXWcEAAAAAAAAKg24R+4\nQ1Uqvx5cqfxKkns67k5LcZPNP1An1qPyq6KvfXsWS4u5PDt+y8cCAAAAAAAANo7wD9yhKpVfD61U\nfiVJU7Epe7v78/r0+cwsXKnVaMAanZo8nSQZ6N59y8fqbdueJBm5MnrLxwIAAAAAAAA2jvAP3IFK\n5VKOjLyx8qtif89AkuTkxKlajAbcgKGJSvhnfTb/JMnozIVbPhYAAAAAAACwcYR/4A702tiJTC68\nsfKrYl8l/DM+WIPJgLUql8sZmhzO1s1b0t3SdcvHq4R/Rq4I/wAAAAAAAEA9Ef6BO9BzIy8leWPl\nV0Ul/HNifGhDZ6qV89Mj+W+vP5NyuVzrUeCGjM2NZ3J+al0qv5Kkr83mHwAAAAAAAKhHzdU6cKlU\nysc+9rG8+uqraWlpycc//vEMDAys3v6lL30pn/zkJ9Pc3JwPfOADeeyxx676mKGhoXzkIx9JoVDI\nwYMH89GPfjTFYjGf+9zn8sQTT6S5uTk/9VM/lfe+971ZWlrK448/npdffjnz8/P50Ic+lPe+973V\neppQd65V+ZUkHZvas7O9L4MTp7JUWnrTZqBG8x9e+6N87eIr2dnel309/bUeB9ZsaGI4SdLftT7h\nn/ZN7enY1J4R4R8AAAAAAACoK1Xb/POFL3wh8/PzefLJJ/NzP/dz+fVf//XV2xYWFvL444/n05/+\ndD7zmc/kySefzIULF676mMcffzw/8zM/k89+9rMpl8v54he/mNHR0XzmM5/JE088kU996lP5xCc+\nkfn5+fzhH/5hFhcX88QTT+S3f/u3MzR0Z2wvgbW6VuVXxf6egcwtzefs9PkNnm5jLZWW8trYiSTJ\ncyMv1HgauDFDk6eTJAPde9btmH1t23Nh9lKWSkvrdkwAAAAAAACguqoW/nn22Wfznve8J0ny4IMP\n5uWXX1697fjx4+nv709PT09aWlry8MMP5+mnn77qY772ta/lkUceSZJ8z/d8T/7yL/8yL774Yh56\n6KG0tLSkq6sr/f39eeWVV/IXf/EX2bFjR37yJ38yv/iLv5j3ve991XqKUJeuVflVsa9nb5Lk5Pjg\nBkxUO6cmz2RuaT5J8vzIS6q/qCvrvfknSfrae1Mql3Jx9vK6HRMAAAAANtITr/5BPv3ck7UeAwBg\nQ1Ut/DM1NZXOzs7V3zc1NWVxcXH1tq6urtXbOjo6MjU1ddXHlMvlFAqF1ftOTk5e9RiXL1/OqVOn\n8q/+1b/K3/t7fy//8B/+w2o9Rag716v8qtjfs1zRd2K8sTdnHbt8PEnStakzl+fGMjhxqsYTwdqU\ny+Wcmjydvrbtad/Utm7H7W3bniQZvaL6CwAAAID6c2XxSv7izH/Pnxz/r1lYWqj1OAAAG6a5Wgfu\n7OzM9PT06u9LpVKam5vf8rbp6el0dXVd9THFYvEN9+3u7r7qMbZs2ZLv/d7vTaFQyCOPPJLBwcHr\nzrp1a3uam9+6/oja6e3tuv6duCEvn381kwtT+f4D78nOHVuuer9t2zvS+XxHhqZONfR/h8GvL4eb\n/rcH/1Z+++nP5BuTr+SRe99V46m4E9zq/1evT47kyuJsHt5137r+P3rvld3JyWSmONnQ/+8D1ePa\nATQy1zigUbm+AY3kubODKaecpdJSpprHcmj71T8EC1CvfP8GvJWqhX8OHz6cP/3TP8373//+HDly\nJIcOHVq97cCBAxkaGsrY2Fja29vzzDPP5IMf/GAKhcJbPuad73xnvvrVr+a7vuu78uUvfznf/d3f\nnfvvvz//4l/8i8zNzWV+fj7Hjx/PoUOH8vDDD+fP//zP8+ijj+aVV17J3Xfffd1ZL1+eqdYfAzep\nt7cro6OTtR6j4fzpsa8mSd7Z9Y7r/vnu7dqTly++ktdOn0nP5u6NGG9DLZWW8o3R17KzvS9v73hH\n2prb8pWhZ/JD9/xAioWqLUWDdbm+PX/ulSTJjs071/VauXmxI0lyYuRMRre6BgM3xvdvQCNzjQMa\nlesb0GieHnp59dfPn3olW8u9NZwGYP35/g24WgCwauGfH/iBH8hXvvKV/OiP/mjK5XJ+7dd+LZ//\n/OczMzOTH/mRH8lHPvKRfPCDH0y5XM4HPvCB7Nix4y0fkyS/8Au/kF/6pV/KJz7xiezfvz+PPvpo\nmpqa8uM//uP5O3/n76RcLudnf/Zns3nz5jz22GP56Ec/msceeyzlcjm//Mu/XK2nCHXlWyu/7t2y\n77r339ezNy9ffCUnx4fyYN99GzDhxhqaPJ35pfkc2nogzcXmPLD9O/Lfzz2TwYlT2d+zt9bjwTUN\nTQ4nSQa69qzrcfvUfgEAAABQx167fHL114Pjp5L1ffsMAOC2VbXwT7FYzK/8yq+84WsHDhxY/fX7\n3ve+vO9977vuY5Jk3759+d3f/d03ff2xxx7LY4899oavtbS05PHHH7+V0aEhvTZ2IpMLU/lru74r\nTcXr19zt7xlIkpxo0PDP0cvHkyQHty5flw7vuD///dwzee78i8I/De7/PfqHGZo4nf/z4Z+q2y1P\nQxOnU0ghu7t2retxW5tb093SlZEZ4R8AAAAA6suVxdmcmjyd/T0DGZ29mMGJU7UeCQBgw9TnTz2B\nG/bsyItJksN9D6zp/gPde1IsFHNifKiaY9XMsUr4Z8ty5/Pbtt6b9ua2PD/6UkrlUi1Ho4rK5XKe\nPvd8Tk4M5dXLr9V6nJuyVFrK8OSZ3N2xI5ubWtb9+L1t23Np9nIWSovrfmwAoH6VyqXMLy3UegwA\nALiqE+ODKaecg1sO5OBde3Nx9nIm56dqPRYAwIYQ/oE7QKlcygsjL6+58itJNje1ZHfn3RmePN1w\nIYDF0mKOjw9mV8fOdLV0Jsly9VfvuzI2N56T4z4R0qhGr1zM9OJMkuR/nHuuxtPcnHMzI1koLWSg\nuzo7i/vat6ecci5euViV4wMA9ek/Hf8v+cW//MeZXpip9SgAAPCWjl0+kWT5A5/3blt+H9z2HwDg\nTiH8A3eASuXXg333ranyq2Jfz94slpe3jDSSwYnhLJQWViu/Kg733Z8keW7khVqMxQYYmhhe/fWR\n0ZcztzRfw2luztDE6STJQPfuqhy/r317kqj+AgDe4OuXXs30wszqBk0AALjdHBs7kWKhmH09Azm0\nEv7xQU8A4E4h/AN3gNXKr977b+hx+3sGkiyvS20klR9YHFqp/Kp429Z709HcnudHXlT91aAqn/R5\n29Z7M780nxdGX67xRDduaHI5wDTQVaXNP20r4Z8rwj8AwLL5pYW8Pn0+SXJ0TPgHAIDbz+zibE5N\nns5A1+60Nm/OgbuW39u2+QcAuFMI/0CDWyot3XDlV0Ul/HNyfKgao9XM0bETKaSQe7e+MfzTVGzK\nA73fkfH5yZxosOfMsqGJ4RQLxfyv9/5wkvqs/jo1MZzmQlN2de6syvF7Vzb/jNr8AwCsODv9+mo4\n/qjNPwAA3IZOjA+lVC6tbnvvaGnPzva+DE0M+6AnAHBHEP6BBvfa2MmbqvxKkq2bt2TL5p6cGB9K\nuVyu0oQba6G0mJPjg9nVuTOdmzredPvhvgeSqP5qRIulxQxPnc3uzruzu2tXBrr35JVLxzI+N1Hr\n0dZsobSYM1Pnck/XrjQXm6tyjt62bUnUfgEA31SpAS4Winl9+nwm56dqPBEAALzRsbETSZJ7v2Xb\n+97u/swuzeXc9EitxgIA2DDCP9Dgnhu9ucqvJCkUCtnXM5CJ+clcnL283qPVxOD4UBZKizm05cBb\n3n5o64F0bGrPkZGXfCKkwZyZej2LpcUMdPcnSR7ZeTjllPP0+edrPNnanZk6m6XyUga6dlftHC1N\nLdmyuUftFwCwqhL+eaj3viTf/MEKAADcLo5dPpFioZgDK9vsk2Rvz54kyeDEcK3GAgDYMMI/0MCW\nSks5MvJSujZ13nDlV0Wl+uvE+OA6TlY7R1d+UFFZ//rtmopNebD3XRmfn8zxscENnIxqq7zIH+he\nftH/7r4HUywU66r6a2jidJKkf+U5VEtfe2/G5sYzvzRf1fMAAPVhePJMmovNec89fyWJ6i8AAG4v\nc0vzGZoczp6ue9La3Lr69b3dy+9tD04M1Wo0AIANI/wDDey1sZOZWpjOA33vuuHKr4pK+OfkeGO8\nQDp2+XgKKeTgNcJQ36z+enGjxmIDDK2Ef/atBGc6WzryHdvenjNTr+fM1Ou1HG3NKs+hmpt/kqRv\npfpr9MrFqp4HALj9LZYWc3bqXO7puDv7ewbS0tSSY8I/AADcRk6MD6ZULr1p2/uujh1pKW6y+QcA\nuCMI/0ADq1R+Pdx345VfFbs7d2VTsTknGiD8M7+0kJPjQ9ndeXfaN7Vf9X4Ht+xP56aOPD/6ouqv\nBjI4cSqtTa3pa+9d/dojOw8nSd1s/zk1eTotTS3Z2dFX1fP0tm9PkozMqP4CgDvd69MjWSwvZU/X\nrjQVm3KgZ2/OzYxkfG6y1qMBAECS5cqvJG/aft9UbEp/9+6cnTqX2cW5WowGALBhhH+gQb2x8mv/\nTR+nudic/q49OTP1emYXZ9dxwo03ODGUxfLSVSu/KpqKTXmg912ZnJ/Ka2MnN2g6qmlm4UrOz4xm\noHt3ioVv/tN337Z3pK25NU+fe/62D3rNLs7l3PRI+rvuecNzqIa+tuXwz6jwDwDc8YYnl2tH93Td\nkySrn6Y+Nmb7DwAAt4djYydSSCEH3mLb+97u/pRTzqmV72sBABqV8A80qG+t/LrVoMD+noGUU677\n9ahHV+oJDl0n/JMkh1e2Jan+agxDkyt1WSuVXxWbmjblcN/9GZ+fWP37cbsanjyTcsoZ6Npz/Tvf\nosp2pJErwj8AcKcbnjyTJOlfqR2tBOlVfwEAcDuYX5rP0MRw9nTdk7bm1jfdvre7P8nyVnAAgEYm\n/AMN6rmRF5LcWuVXxf6egSTJyTqv/jp6efkTIN++/vWtVKq/joy8dNtvhOH6hlaCa5UX+9/qkZ0P\nJ7n9q7++GWDaXfVzbW+7K4UU1H4BABmePJNioZi7O3cmSfq77snmppYctfkHAIDbwInxoSyVl3Jw\n61tvv9/XsxL+GRf+AQAam/APNKCl0lKOjL58y5VfFftWwj8n6jj8M780n8GJUyufAGm77v2bik15\nsO++TC5M5bWxExswIdU0uBr+efPWnP09A9nWujXPj76UuaX5jR5tzU5NLK8m7t+AzT/Nxebc1bo1\nI1dGq34uAOD2tVRayump17OrY2c2FZuTLH+ffGDLvozMXMjY3HiNJwQA4E53bOW924NXeR98y+ae\nbNnck5MTp1IulzdyNACADSX8Aw2oUvn1YN99t1z5lSRdLZ3pa9uekxNDdbsF53qfAHkrla1Jz6r+\nqmvlcjmDE6eydfOW9GzuftPtxUIx37nzcOaX5vPC6Ms1mHBthiaG09Hcnu1td23I+frat2dyfipX\nFmc35HwAwO3n/MxoFkoL2dN1zxu+fmhLpfpLSB4AgNo6trLt/UDP1be97+3uz8T8ZC7PjW3gZAAA\nG0v4BxpQpfLrcN9963bMfT0DubI4m3PTI+t2zI107PJyLUHlBxVrce+W/ena1JkjIy9lqbRUrdGo\nsstzY5mcn8rAW2z9qXhk5+Ekt2/119TCdC7MXkp/9+4UCoUNOWdf+/YkyegV1V8AcKcanjyTJG8O\n/2xd/p766GXVXwAA1M780kKGJk5ld9eutG+6+rb3yjbwynZwAIBGJPwDDWa9K78q9q9Uf52s0+qv\no2PHUywUc2DL1T8B8u2KhWIe7LsvUwvTq+tjqT/Xqvyq2NHem4HuPXnl0rGMz01s1GhrNjyx/IO3\nga7dG3bO3raV8M+M8A8A3KmuFv7Z3bkrrU2tOTom/AMAQO0MTgxlsbx01cqvir3d/cv3Hz+1EWMB\nANSE8A80mGNjJ9a18qtif8/eJMv1WfVmdnEugxPD2dN1T9qaW2/osYdXqr+eV/1VtwYnll/UXyv8\nkyxv/ymnnGfOH9mIsW7I0ORygKn/Os9hPVU2/4zMXNywcwIAt5dTk2dSSCG7O+9+w9ebik25d8u+\nXLhyMZdnVScAAFAbR1dqaK8X/unv3p1ioZiTE8I/AEDjEv6BBlMJqaxn5VeS7OzoS2tTa05MDK7r\ncTfCyfGhlMqlG6r8qrh3y750tXTmyOjLqr/q1OD4cAopZM91tua8u+/BFAvFfPXcsxs02doNTZxO\nkgx0b/zmn5Eroxt2TgDg9lEql3J66kx2dvSlpanlTber/gIAoNZeGzuRQgq59zrb3jc3tWRXx84M\nT572Hi8A0LCEf6CBVKvyK1muwNrX05+RmQuZmp9e12NXW6WO4ODWGw//FAvFPNR7v+qvOrVUWsrw\n5Onc3bEjrc2br3nfzpaOfMe2t+XM1Os5M/X6Bk24NkMTw+lp6c6WzT0bds5trVtTLBTVfgHAHWr0\nysXMLc2/qfKr4uDW5dcbqr8AAKiFhaWFnJw4lXs67077pvbr3n9vT38WSou33ft+AADrRfgHGki1\nKr8q9vUMJElOTtRX9dfRy8dTLBRzYKW67EZVtig9N/LCOk7FRnh9+nzmSwurvd7X88jOh5Mk/+Pc\nc9Uc64aMzY1nfH4i/Ru49SdZrvPY3nZXRq4I/wDAnWh48kySXDX8s7tzV9qa23LssoA8AAAbb3Di\nVBZLi6uh9OupvD84qPoLAGhQwj/QQKpV+VWxfyX8c2K8fsI/s4uzOTV5OgNde667+eVqDmzZl+6W\nLtVfdWhoYjhJsrd7z5ruf9+2d6StuTVPn3s+pXKpmqOt2WrlV9fansN66mvbnumFmUwvzGz4uQGA\n2loN/3S+dfinWCjm4Jb9uTh7KRevXN7I0QAAIEdXtrQf3LK2be/7Vt4fHFx5vxAAoNEI/0CDqGbl\nV8Xe7v4UUsiJ8cGqHL8ajo8PplQurfkTIG+lWCjmob77Mr0wk6OX1RrUk8oneZA2X+kAACAASURB\nVPb2rG3zz6amTXmo9/6Mz0/cNv+tT628ITGwwZt/kqS3fXuSZET1FwDccSrhn91du656H9VfAADU\nymuXT6SQQu7dsm9N9+9r701bc2vdbbUHAFgr4R9oENWu/EqStubW7OrcmaGJ4brZgFMJcBzaurZP\ngFzN4b4HkiTPrWxXoj4MTgynpbgpO9v71vyYR3YeTnL7VH8NTS5v/tno2q9kefNPkoyq/gKAO0q5\nXM7w5Jn0tW1PW3PrVe93aOVT1sduk9A0AAB3hoXSYk5ODGVX5850bGpf02OKhWIGuvZkZOaCLdcA\nQEMS/oEG8c3Kr/urep59PQNZKC3m9NTZqp5nvRy7fCJNhabs79l7S8fZ3zOQnpauvKD6q27MLs7l\n9enz6e/enaZi05ofd2DL3tzVujXPj76UuaX5Kk54feVyOacmTmd7613p3NSx4efva+9NYvMPANxp\nLs5ezszilezpeuvKr4pdnTvT0dyeo5ePp1wub9B0AADc6YYmhrNQWszBG9yAv29lO7jqLwCgEQn/\nQANYrfxq6VzzmtObtb97IElyYvz2X496ZfFKTk2ezkD3nmxuarmlYy1Xf92f6cWZvHr5tXWakGoa\nnjydcsoZWOnzXqtioZhHdjyU+aX5vDD6cpWmW5uLs5cyvThzw89hvfTa/AMAd6RK5df1wj/FQjH3\nbt2fy3NjuTh7aSNGAwCA1c2TB29w2/ve7kr459S6zwQAUGvCP9AAViu/eqtX+VVR2aBzYnywqudZ\nD6+NnUw55Vuu/Kp4aGWrkuqv+lD5BE/lRf2NuF2qv4ZWnkMtKr+SZGtrT5qLzRmZGa3J+QGA2lhr\n+Cf5ZvXX0csnqjoTAABUHBtb/t7z3p4b+yBs5QN2wj8AQCMS/oEG8NwGVX4lyfa2u9K1qbMuNv8c\nW/kBROUHErdqufqrOy+MvpzF0uK6HJPq+Wb458a35uzo6MtA1568culYxucm1nu0NRuaOJ0kGeiq\nTfinWChme9u2jMxcVOUBAHeQGwr/bK2Ef45XdSYAAEiSxdJiTowPZVfHznS2dNzQY7taOrO9bVuG\nxoe91wUANBzhH6hzS6WlvLBBlV9JUigUsr9nIGNz47k8O1b1892Ko2PH01xoyr6egXU5XrFQzOG+\n+zOzeKUhqr8a/QXu4MSpdLd0ZevmLTf1+EfuPpxyynnm/JF1nmzthiaHU0hhTT94q5YdbdszuzSb\nqYXpms0AAGyccrmcU5Ons611azo2tV/3/nd37Ejnpo4cGzve8N9fAgBQe0MTp7NQWsjBrftv6vF7\nu/dkenFGzT0A0HCEf6DOVSq/HtqAyq+KSpjmdq7+mlm4ktOTZ7O3pz8tTZvW7biHdzRG9de56fP5\nhf/6y/nKma/WepSqGJsbz9jceAa696RQKNzUMd7d92CKhWLNqr9K5VJOTZ7Jjo6+tDa31mSGJOlt\n354kGZnxhggA3AnG5ycytTC95vBxoVDIwS37MzY3ntErF6s8HQAAd7pjY8sbJw/e5Lb3fd3L722f\nHFf9BQA0FuEfqHOVEMpDG1D5VbG/Z2+S2/sF0mtjJ1JO+aZfBF7N3u7+bNnckxdGv1bX1V//4bU/\nyvTiTL5ao2BLtQ3dQuVXRWdLR75j29tyeupszk6dW6/R1uz8zGjml+ZrVvlV0de2Ev7xaSgAuCOc\nWqkdvZHNg5Xqr2OqvwAAqLJjl08kyU1vwd/bs/x+4eDK+4cAAI1C+Afq2EZXflX0d92TpkJTTowP\nbdg5b9TRlU+AVH4QsV4q1V9XFq/klUvH1vXYG+UbF4/m6xdfTZKcnBjK7OJcjSdaf4Or4Z/+WzrO\nIzsfTpKabP+pBJgGbiHAtB6+uflntKZzAAAbY3jyTJKbC/9UvgcHAIBqWCwt5sT4YO7u2JGuls6b\nOsY9nbvSXGjK4MTt+8FWAICbIfwDdawWlV9JsqlpU/q77snw1JnML81v2HlvxLHLJ9JcbM6+Wwx/\nvJXKlqV6rP4qlUv5/df+KIUU8q5t70ipXMprYydqPda6q4R/+m9xa859296RtubWPH3++ZTKpfUY\nbc2GVj51P9Bd480/K+GfUbVfAHBHGJ668fDPjva+dLV05tjl4ymXy9UaDQCAO9ypydOZLy3k4Jb9\nN32MTcXm7Om6J6enzmZ+aWEdpwMAqC3hH6hjtaj8qtjXM5BSubQaULidTC/M5MzU69nX3Z9NTZvW\n/fh7u/dk6+YtefHC17JQZ9Vf/+3s0zk7fS7fffe7833970mSvHK5PjcYXU2pXMqpieHsaO9L+6a2\nWzrWpqZNeaj3/ozNjefoBtdYDE0Op6nQlHs6d23oeb9dT0t3Woqb1H4BwB1iePJstmzuSXdL15of\nUygUcmjLgYzPT9oWCABA1VQqvw7e4rb3vd39KZVLOb0SfAcAaATCP1CnalX5VbG/Z2+S5ORtWP11\nbOxEyimve+VXRbFQzEN99+XK4mxeuXS0KueohtnF2Xz+xFNpaWrJD+//wezr2ZtNxU159dJrtR5t\nXZ2fGc3s0lz2rlNd1iM7DyfZ2OqvxdJizkyeza7OndlUbN6w876VQqGQ3vbtGZ254JP8ANDgJuYn\nMzY3nj1dNx4+Prha/dV4WyUBALg9HFv5XvNW3w/f27O8Lf7kuOovAKBxCP9AnapV5VfFvpUXSCcm\nBjf83NdzbGVDy6Gt91btHIf7HkiSPD/yUtXOsd7+ZOjPMrkwlR/s/95s2dyTTcXm3LtlX85On8v4\n3EStx1s3lcqv9Qr/HNiyN3e1bs2R0Zc2rObu7NS5LJaXMnCLtWXrpa9te+ZLCxmfb5y/JwDAmw1P\nnk2S7Olce+VXxaGV6oVjG7wtEQCAO8NSaSnHxwezs73vhrZUvpW93cvvbQ9OCP8AAI1D+AfqVC0r\nv5Jky+aebGvdmhPjQ7fdNpCjl49nU7E5A+sU/ngrleqvF0bro/rr0uzlfHH4y9myuSff1/89q19/\n+10HkySvXm6c7T+VF+3r9d+/WCjmkR0PZW5pPi+Mfm1djnk9Q5PLAaZq/h2+Eb3t25MkIzOqvwCg\nkQ1PLlf67um68fBPX3tvelq6cnTs+G33+gAAgPp3avJ05pfmc+/W/bd8rG2tW9O5qWP1Q4QAAI1A\n+Ae+TalcqvUI11Xryq+KfT0DmV6YyciV2ycQMDk/lbPT57K/Z29V65IKhUIO77g/s0v1Uf31n47/\nlyyUFvM39/9QWppaVr/+9q3L4Z9XLh2r1WjrbmhiOM3F5tzTefe6HXOjq79OTSz/4O12Cf/0tfcm\nSUaFfwCgoQ1Pnklyc+GfQqGQg1sPZHJ+KudnRtZ7NNgw5XI5gxOn6uK9AQC4k1QqvyobJ29FoVDI\nvp7+XJq9nPG5yVs+HgDA7UD4B77FX559Oh/5i1/Jyxe+UetRrqnWlV8V+3v2JklOjA/VbIZv99rY\nySTJoa0Hqn6uwytbl549/2LVz3UrBidO5enzz2dP1z35zp0PveG2XZ0707mpI69cOtYQn9CeX1rI\nmanXs6dzV5rXMfy1o6MvA1178o1LRzfkDYGhydPZVNyUne19VT/XWvS1rWz+uY2CfgDA+huePJOu\nTZ3Zsrnnph5/aMvy9+BHVX9Rx545fyS/8cxv5QtDf17rUQCAb3Hs8nL4594t6/O+r+ovAKDRCP/A\niiuLs/mPx/840wsz+Z2XP5NXL92+NUiVyq/DNar8qtjfM5AkOTk+WNM5vlXlBw0H1+lF4LUMdO3J\nXa1b89KFr2VhaaHq57sZ5XI5v3/sj5IkH7j3h98UFisWinn7XQczPj+Rcw3wCe3TU2dSKpdWX7yv\np0d2Hk455Tx7/vl1P/a3ml+az+vT57On6540FZuqeq616lP7BWv2zPkjeWrwS1kqLdV6FIAbMr0w\nk4uzl7On654UCoWbOsbBrcI/1L+nV77f//9O/WmmF2ZqPA0AkCxvwj8+fjI72nvTs7lrXY4p/AMA\nNBrhH1jxp8P/NdMLM3mg911JuZz/+6X/57baaFPxrZVfB2pY+ZUkuzp2pqWp5bb6czo6djwtxU0Z\n6N5d9XMVCoUc7rs/s0tz+cZtWv11ZPTlHB8fzAPbv2P1hzHf7m0NVP1V6emuRl3WwzseSLFQrHr1\n1/Dk2ZTKpQ35O7xWnZs60trUavMPXMf80nw++8rv5T+d+C/5zSO/k8n5qVqPBLBmt1L5VdHbti1b\nNvfk2NiJhtgqyZ1nZmEmr1w6lmKhmCuLs/mToT+r9UgAQJLhqTOZW5rPvetQ+VUx0L0nhRQyOC78\nAwA0BuEfSDK1MJ0vnvpyOjd15H9/x4/kJ971Y1ksLeb/euFTGZ48W+vx3uB2qfxKkqZiU/Z29+f1\n6fOZWbhS01mSZHJ+Kuemz2d/z951rXy6lsr2pco2ptvJQmkx//G1P06xUMz/cu/7r3q/t991b5IG\nCf+svFivxuafrpbOvPOut2V46mzOTp1b9+NXDE0uB5j6u26f8E+hUEhf+/ZcuHIxpXKp1uPAbevF\nC1/P3NJ8ulu6cmzsRP7JM795230fAXA16xH+KRQKObjlQKYWpvP69Pn1Gg02zAsXvp6l8lIeHXhv\ntmzuyZ+d/krG5yZqPRYA3PEqlV+H1jH809bcmh0dfRmaHPZ+FwDQEIR/IMmfDP1ZZpfm8kN7vy+t\nzZvzQO+78uPveCyzi3P5rSO/k3PTt08d0nMjLySpfeVXxWr1122wHrVSL3DoKhtuqqG/a3e2td6V\nFy98LfO3WfXXl0//ZS7MXsr/fM//lL723qve767Wrelr355jY8frvqZmaGI4HZvas73trqoc/5Gd\nh5Okqtt/hqq4vehW9LVvz2JpMZdnx2s9Cty2nj63XBPy0w/9ZH543w/m0uzlfOLZT96WAVGAb7ce\n4Z/km9+Lq/6iHj2/8m/2Izsfzl/f+31ZKC3kPw9+scZTAQDHxpbDP/duXb/wT5Ls6+7P3NK84DoA\n0BCEf7jjjc2N589PfyVbN2/JX9v1Xatff2Tn4fzo2/5Wpham85tHficXrlyq4ZTLliu/vnZbVH5V\nrIZ/xgdrO0i++SJwI8M/leqvuaX5fOPSqxt23uuZmp/Ofx78Qtqb2/LX933/de//9q2HMrc0f1uE\nuG7W5PxULsxeWl7ZWyhU5Rz3bX9nWpta8/T556v2iaBTE6fT1tya3rZtVTn+zept254kGVX9BW9p\nan46X7/0avZ07srdHTvy1/d9f37yvv8jhUIhn3r5d/P5E0/5JCFwWxuePJO25rZsa916S8epfC9+\nbEz4h/pSqfza07krfe3b81fu/s70tm3LV85+NReuXKz1eAD8/+zdd3hb93n3//fBIkGCBLj3HqK2\nRE1vW5ElD3nHSWrXSZPG2bN10j6/J+31+zW/tk+z2sZ22szGaewkdbwl25L31t4SKe69B0iQAEiM\n8/xBQpYdSiIpAOeAvF/X5UuxCHy/txRLxDnn/t4fsWgFggEanS1kWtNxxNnDunbx9OG7lhi+JyqE\nEEIIESLNP2LRe7HlVXxBPzeVbMVsNH/ga1fmbeaO8ptxTozw4yM/wzmh7cSL9yO/Vmke+RVSMh2v\n1DTSqnElU6eLLUZL1OOS9Bj99XzLy3j8Xm4s2UqiOeGirw9Ff52J4eiv0MSc4qTITcyxGM1UZ67E\nOTFydtxwOLl9Hvo8AxQm5evmz3hIZsJU80+fu1/jSoTQp8N9xwmqQdZnrz37c6szlvPAuq+Qbk3j\nxZZX+NmJR/D4vRpWKYQQM/P4vfR5BihIyrvkJuq0+BRS4hzUDzdJ06OIKaHIr7XT13dGg5EdJdsI\nqkF2Nr2kcXVCCCHE4tUx1oU34KU8jJFfISXTB1tbRqT5RwghhBCxT19PFoWIsgHPIO907SPTms6m\n7HUzvmZr4TXcVLyVQe8QPz7yc1yTY1Gu8n3vR36t1KyGD0swJ5CdmEXLaJumkVEjE6P0uvsot5dg\nNBijundBUh7p8akcHziti+iv3vE+3up8jwxrGlfnXTar91SmlKGgUDscu80/LaHmH3thRPcJRX/t\n6zkU9rXbXB2A/iK/4JzmH5n8I8SMDvQeQUFhfdaaD/x8ri2bb6//KlUpFZwYqOEHhx6mzy1/joQQ\n+tLh6gKg8BIjv2BqMmZlShnjfjddYz2XvJ4Q0RKK/Fp7TsR2ddZq8mw5HOw9QudYt1alCSGEEIta\naNp7RZgjvwByErOwGC1n7ysKIYQQQsQyaf4Ri9rzzS8TVIPcXLrtgg0jN5Vcz0cKrqbX3cdDR3+B\n2+eJYpVTAsEAR/tP6iryK6Q0uYiJwCRdGmYjaxH5FaIoCtVZq5kMTHJaB9FfTzU+T1ANcnv5zZgM\nplm9x2qyUpxcQMtoe8xOpQhN/imK4OQfgDJHCSlxDo72n2AyMBnWtdtGp5t/ojy9ajYyQ7Ff0rQg\nxJ8Y9AzRNNJChaN0xhHkieYEvrT6M2wpuIqe8V6+d/BBagbrNKhUCCFm1j7WCUw1tYfD+9Ff4Z+U\nKEQkfDjyK8SgGLi19AZUVJ5r2q1hhUIIIcTiFZq+XRGByT8GxUBRUj7d4714Y/SeqBBCCCFEiDT/\niEWra6yH/T2HybPlnI1tOh9FUbij/GauzN1Ex1gXPzn2S7z+iShVOqXO2ci4z62ryK+Q0unxqM0j\nLZrVUDfcCETmBMhsnI3+6j2myf4hdcMNnBg4TbmjhNXpy+f03qrUCoJqkPrp38tYoqoqraPtpFvT\nsFkSI7qXQTGwMbuaicAkx/pPhXXtVtd0A5MOJ/8kmBNINCfI5B8hZnCg9ygAG86J/Powo8HIXRW3\ncN/Sj+ELTPLwsV/yStubqKoarTKFEOK82l3hbf6pcEw1/9TF4OdKsTh9OPLrXMvTqii1F3Ni4LQu\n4q6FEEKIxSSoBmkcaSbdmkZKvCMiexQnF6Ki0jp9KE8IIYQQIlbpq4NAiCja1bwHFZVbSrfPqplG\nURQ+vuQONmStpXm0jZ+eeARfFCOeQiPI9RT5FRJq/tHyRmj9cCPxxjgKbOF5YDFX+bZcMqxpnBis\nCfs0mNkKqkGeqN8JwJ3lO1AUZU7vX5JSAUDtcEPYa4u0fs8g4343xVFqmglFf+3vORzWdVtHO0gy\n22acHKIHmdZ0BjxDmkb8CaE3qqpyoPcIJsXImoyLf4/enLOeb1R/kWSLjScbdvLfNf8T1c8TQggx\nk3ZXJ3FGCxnWtLCsl2ZNIS0+lXpnE0E1GJY1hYikmSK/QhRF4bayGwF4tvEFadwVQgghoqhjrAuP\n3xuRqT8hxfZCAFpG2yK2hxBCCCFENEjzj1iUWkfbOdp/kpLkIlakLZ31+wyKgfuWfozV6cupG27g\nFyd/G5WH4KHIr2RLku4ivwAyEzJINCVo1vzjnBihzzNAuaPkgvFtkaQoCmszVzEZmOTUoDbRX/t6\nDtMx1sXG7Op5TY4psRdiMVo4M1QfgeoiK3RxXpxcGJX9shMzKUoqoGaojpEJV1jWHJ10MTzhpCg5\nf86NW9GSkZBOUA0y6B3WuhQhdKNjrJue8V5WpC8lwWyd1XtK7IV8e8PXKE4uZF/PIf718H/inBiJ\ncKVCCDGzycAkPeN95NvywjphtDKlDI/fQ+dYd9jWFCISzhf5da5yRwnL0pZQ72yidjj2rpeEEEKI\nWNUQwcivkNBhwmZp/hFCCCFEjJPmH7EoPde0G4Bby26Y80N2o8HIp1fcy9LUSk4O1vDI6d9H/DRr\nKPJrTcZK3UV+wVTjS4m9iEHvECMTo1Hf//3Ir7Ko732u6szVABzui37010RgkucaX8BsMHNr6Q3z\nWsNkMFHhKKXH3cew1xnmCiOrdTT6cVkbs6tRUTnUeyQs64V+DYU6jPwKybRmANAv0V9CnHWgd2oC\n2Ias80d+zcQRZ+cbaz/Ppux1tLra+ZcDP6ZZokSEEBroGOtGRaUwTJFfIaEHNBL9JfTuQpFf5wpd\nZz3b+KJM/xExT1VV9nUf4n+/84/89tiTWpcjhBDnVeecbv5JiVzzjyPOTkqcg5bRNvkeL4QQQoiY\npr8uAiEirH64kZqhOqpSKqicZ7OI2WDicys/SZm9mEN9x3is9omINgDpOfIrJBT9pcWDy/rpBwqV\nDm2bf/JtOWRa0zk5EP3or5dbX2dk0sVHCq++pPzrqtSp6K8zMRb91TLajkExUGDLjdqe67JWY1AM\nYYv+apvOFS9Kyg/LepGQmTAVBdLnluYfIWAqbvFQ7zGspniWp1XN+f1mo5n7ln6MuypuwTU5xr8d\n/k/e6zoQgUqFEOL82l2dABSEufkndK0lzT9C7y4U+XWugqQ8qjNX0ebq4Gj/yWiUJkRE9LsHeejo\nL/hNzR9wToywu/4NvH6v1mUJIcSfCKpBGp3NpMWnkhqfEtG9ipMLcE2OMRRjByKFEEIIIc4lzT9i\nUVFVlWenp/7cUrb9ktayGC18cfWnKUzK473uAzxR/1xETgboPfIrJNT8o0X0V52zCaspnvyk6DV+\nzERRFKozVzEZ9HFysDZq+zonRni57Q2SLUlcX3jtJa1VlTLV/FMbQ9Ff/qCfDlcn+bYczEZz1PZN\nsthYlrqE9rEuusZ6Lnm9Vtd084+OJ/9kTMcgSPOPEFManM04J0ZYm7Fy3n//KIrCloKr+Mqaz2Ix\nWvht7eP8se7ZqMSKCiEERK75JyXeQYY1jQZnc8QnpQoxX7OJ/DrXjtLtGBQDzzXtlu/VIuYEggF2\nt7zKP+7/IbXD9SxLW8JVeZcxEZjkcN8JrcsTQog/0TnWg9vviWjkV0ixvRCAllGZyCuEEEKI2CXN\nP2JROTVYS9NIC6vTl1OcXHjJ61lNVr685rPkJmbzesc77JxuLAonvUd+hRQlF2BQDFFv/hn2Ohnw\nDFLuKNHF7091Vij663jU9nyucTeTQR+3lG4n3hR3SWvlJGaRbEmidrg+Zsbcdo5141cDFIXhz/Rc\nbcyuBrjk6T+qqtI62k5qfApJFls4SouITOvUAxGJ/RJiyoGeqdi/Ddlzi/yaSVVqBd9e/zVyErN4\nreNtHjr2S8Z845e8rhBCXEy7qxOzwUxWQkbY165wlOENeM82GAmhN7ON/ArJSshgc/Z6et19YZsA\nKkQ0NI+08n8O/DvPNr1IvCmezyy/hy+t+gzbiq5FQWFv90GtSxRCiD/REIXIr5DQs4KW0faI7yWE\nEEIIESnaPykXIkqCapDnmnajoLCj9NKm/pzLZk7kK2vuJ8Oaxoutr7Kn5bWwrQ3nRn7N7makVixG\nC/m2HNpdHfgCvqjtW6eTyK+Q3MRsshIyODlQw0QUor/aXZ3s6zlEni2HzTnrL3k9RVFYklKBa3KM\nrvFLn2YTDaGL8mINJuasTF9GvDGeA71HLulE+5DXyZhvXNeRXwDxpniSLUky+UcIwBf0c6T/BI44\nO+VhOoWYkZDGA+u+zKr05dQNN/D9Aw+GZbKYEEKcjy/op2u8h3xbDkaDMezrS/SX0LvZRn6d66aS\nrZgMJnY1v4Qv6I9UaUKEhcfv4Q9nnuKHh35C13gPV+Ru5O83PcC6rDUoikJqfAorspbQONIs13lC\nCN2pn/4MGY3JP4VJeRgUA80jbRHfSwghhBAiUqT5RywaR/pO0DHWxfqsteTassO6tj0uia+u+Rwp\ncQ6eaXqB1zveCcu6H4z8Kg7LmpFUYi/GrwZoH4veyd465/RFYIo+mn8URWFt5ip8QR8nB2oiupeq\nqjxZvxMVlTvLd4Rt8lFVajkAZ2Ik+qtldOqiXIvmH4vRTHXmSpwTI9QPN817nVbXVANTYbK+m38A\nMqzpDHmH8cuDDrHInRqsxeP3sC5rdVgnz8Wb4rl/5X3cWLyVAe8Q3z/0EEf7T4ZtfSGEOFf3WA9B\nNRj2yK+Q0Cnteuf8PycJESlzjfwKSYl3cHXeZQxPOHm7c28EKxRi/lRV5WjfCb6794e82fkeWQkZ\nfLP6i9xT9VESzAkfeO21xZcBsK/nkBalCiHEjIJqkAZnM6nxKaRZUyO+n8VoIc+WQ/tYp9zzEkII\nIUTMkuYfsSgEggF2Ne/BoBi4ueT6iOyRZk3ha2vvJ8li4/G6Z3gvDCOTYyXyK6TUXgQQ1eiv+uFG\nEkxW8mw5UdvzYkJTmiId/XVi4DR1zkZWpFVRlVoRtnVDa9UMx0bzT+toO/HGeDIjEFUxG+GI/mob\n7QCgKCn6DUxzlZmQjorKgGdI61KE0NTZyK+s6rCvbVAM7CjdxmdX3Aeqys9P/Ibnm1+6pAljQggx\nkzbX1GeQSDX/OOLsZCak0+hsJhAMRGQPIeZrrpFf59pWdB1xRgsvtryC1z8RgeqEmL9hr5OfnniE\nn5/8b8Z94+wo2cbfbvwG5Y6SGV+/MX8N8cZ49nUfks+bQgjd6B7vZdzvjsrUn5Di5EL8QT+dY91R\n21MIIYQQIpz0300gRBjs7zlMr7ufy3M2kJGQFrF9MhMy+Oqa+0k0JfBozeOX3PxxuDc2Ir9Cot38\nM+gZYtA7TIWjVFfNUVPRX5mcGqyJ2I3gQDDAU427MCgG7ii/OaxrO+LsZCdk0jDcpPuTLm6fm153\nP0XJ+Zr9N1DmKCElzsGR/uNMzjPqrXU0NPknMg/ewinTOnUqus/dr3ElQmjH4/dwcrCG7MQs8iPY\nfLo2cyUPrP8KafEp7Gp+iV+e/K08YBRChFW7a2piZ6Saf2AqntcbmKDNFb3poELMxnwiv0KSLDY+\nUnA1Y75xXmt/O9ylCTEvQTXIa+1v8919P+DEwGkqHKX8Pxu/yY0lWzEbTOd9X5zJwrqsVQxPOCWm\nUQihG6EJ29Fs/ilJLgSgeVSiv4QQQggRm/TztFyICPEF/exqfgmTwcSNJVsjvl+eLYcvr/lL4owW\n/uvUY/OOfgoEAxwbiJ3IL4CUOAeOODtNIy2oqhrx/eqm4wP0EvkVoigK1Zmr8AX9nBqMTPTXW517\n6XMPcGXuJrITs8K+flVqBZNBH81RnOI0H63Tp9WLpy/OtWBQDGzMrmYidLYvSQAAIABJREFUMMnx\n/lNzfn9QDdLm6iQrIQOryRqBCsMrFInQ5xnQuBIhtHOk7yT+oJ8NWWtRFCWie+XZcvj2+q9R6Sjj\naP9JfnjoYQY8gxHdUwixeLS7ujApRnIi8HkypHL6s3q9Ux4oC/2Yb+TXubYUXk2iOYGX295gzDce\n5gqFmJt2Vxc/OPgwf6x/FqNi5N6qu/n62s+TlZg5q/dvzlkPwN4wTLEWQohwCH12jOZ93+LkqYnc\nLSPtUdtTCCGEECKcpPlHLHjvdO5jeMLJNXmX44izR2XPouQCvrDq0xgVI784+d/zOjkVivxamxkb\nkV8w1fRSYi/CNTnGoDfykUD107+vlTpr/oHIRn+5fW6eb36JeGM8N0Uoxi4U/VU73BCR9cMldDFe\nlKxtXFYo+mtf79yjv/rdA3gDXgpjIPILIGP64Ui/W5p/xOJ1oHcq8mt91pqo7GezJPKVNZ/lmvzL\n6Rrv4XsHHuTMkL7/fhZC6F8gGKBzvJtcWzamC0yEuFTljqnP6jJNQujJpUR+hVhN8Wwv2oI34OWl\n1tfDV5wQczARmOSphl187+CPaXW1syFrLX+/+VtcnrthTk3qJclFZCakc7T/BB6/J4IVCyHExQXV\nIA3OZlLiHKTFp0Rt34yEdKwmKy2j+j4MKYQQQghxPrHRUSDEPE0EJnmx5RXijBa2FV0X1b0rUkr5\n3MpPElRV/uP4f815gkoo8mttRmxEfoVEK/pLVVXqhhtJNCdE9KTyfOXasslOzOLUYC1evzesa7/Q\n8grjfjc3FG8hyWIL69ohoSi12qH6iKwfLq2uqTG8xRo3/2QnZlKYlE/tUD2jk645vTc0vagoOT8S\npYVdhnUqOrFPJo+IRco5MUL9cCOl9iLSralR29doMPKxytu5p+ouvIEJHjr2C15vfycqk/aEEAtT\nj7sPf9Af0cgvAHtcEtkJmTSOtBAIBiK6lxCzdSmRX+e6Ou8yHHF23uh4B+fESDhKE2LWTg2e4R/3\n/ZCX294gJc7BV1Z/lr9Y/mfzuk+gKAqbs9fjC/rP3o8SQgit9Iz3MeYbpyKlNOLTds9lUAwUJxfQ\n7xmUqX5CCCGEiEnS/CMWtNfb38blG+MjBVdjsyRGff9laUv4zIp78Qf9PHzsV7S7umb1vliM/AoJ\nNf9EOi5q0DvE8ITzbJOKHlVnrMQX9M87+m0mfe4B3uh4l7T4FK7NvyJs635YvCme4uRCWkfbcfv0\neepPVVVaRtpJiXNgj0vWuhw2ZlcTVIMc7D06p/e1jupjetFsWYwWHHF2+tz9WpcihCYO9h5FRWVD\n1lpN9r8idxPfqP48ieYEHq9/hkdr/4gv6NekFiFEbGtzdQJEvPkHpiZ1TgYmzzY9C6GlcER+hZiN\nZm4q2Yov6OeFllfCVKEQFzY66eK/Tj3GT479kuGJEa4vvJbvbPorlqZVXtK6G7OrUVDY2yPRX0II\nbdU7m4Cpw4nRVpxcCLx/v04IIYQQIpbo84m5EGHg9nl4qe0NEk0JbCm8WrM61mSs4L6lH8Pr9/LQ\n0Z/TM9530ffUDcde5FdIvi0Xs8EU8ck/odiAaOY+z9XaCER/PdP4AgE1wG1lN2E2msO27kyqUitQ\nUalz6jOiYcjrxOUb03zqT8j6rDUYFAP7e+YW/dU62oFBMZBvy4lQZeGXaU3HOTHCZGBS61KEiLqD\nPUcwKAaqM1drVkOpvZi/Wf81CpPyeK/7AP9++KeMTIxqVo8QIja1R7H5J/SZXaK/hB6EI/LrXJuz\n15NpTefdrv30u2U6poicoBrkna59/MPeH3Cw9yhFyQX8zfqvcXv5TViMlktePyXeQVVqBU0jrfTO\n4t6VEEJESn3ovq8j+vd9S+xTzT/NI21R31sIIYQQ4lLFVleBEHPwStsbePweri+6FqspXtNaNmZX\n8/EldzDmG+fBoz9nwDN0wdeHmkViLfILwGQwUZhUQOdYd9jjrs5VNzx1AqRSg4vA2cq1ZZOTmMWp\noTNh+b1ocDZztP8EJclFVIfpRvWFVKVUAHBGp9FfLaNTF+F6mZiTZLGxLLWSdlcn3eO9s3pPIBig\nY6yTnMSssNysjZbQCel+if4Si0zPeC/tY10sS63UZKLguVLiHXyz+ktsyFpL82gr3zv4oJxMFELM\nSbtrqgE5NzHyDcihU9v10vwjdCBckV8hRoORHaXbCKpBdjbvDsuaQnxYz3gf/37kpzxW+wSqGuTu\nytt4YN2XyU/KDes+m3PWA7C351BY1xVCiNlSVZV6ZxOOOHtUo7ZDQvcZQ/cdhRBCCCFiiTT/iAVp\ndNLFqx1vY7ckcU3+5VqXA8BVeZu5o/xmnBMjPHjkZzgnRmZ8XSjyyx6DkV8hpfYiVFRaIvQQcuoi\nsBGbOZGcxKyI7BEu1Zmr8Af9nLjE6K+gGuSJ+ucAuKtiR1TyrouTC4g3xlGr0+af0EPu0DhePdiY\nXQ0w6+k/XeO9+IJ+ipL00cA0Wxmh5h/3gMaVCBFdB6Zj/bSK/Powi9HMp5Z9gjvKb2ZkYpQfHf4P\n9nXLgxohxMUF1SAdri6yEzKxRHiaJEw1SecmZtM40oJfogqFhsIZ+XWutZmryLflcqj3GJ1j3WFb\nVwhf0M+upj388/5/pcHZzOqMFXxn019zbf4VEZkUvSp9OVZTPPt7DhNUg2FfXwghLqbH3ceYb5wK\nR2lU7n9+mM2cSIY1jZbRdvl7UAghhBAxR5p/xIK0p+U1JgOT3FC8VVfTNLYWXsONxVsZ8A7x4JGf\n45oc+5PXhCK/1sRg5FdIqb0IgOYIRX/1ewZwToxQkVKmyUXgXFSHKfrrYO9R2lwdrMtcTcn072+k\nGQ1GKlJK6fMMMOgZjsqec9Ey2oaCEpWoitlamb6ceGM8B3qOzOoGQZtrqoGpKDk/0qWFVaZ16kFJ\nnzT/iEVEVVUO9hzBYrSwMmO51uWcpSgKWwuv4YurP4PZYOI3NX/gp8cfYcirv7+3hRD60efuZzLo\ni+rnqIqUUnxBX8QOCAgxG+GO/AoxKAZuLbsBFZVnG18M69pi8aofbuSf9/8rz7e8jM1i43MrP8nn\nVn6SlHhHxPa0GM2sy1yNc2JEtweBhBALW/30tPfQ5EgtFCcX4fF75NCbEEIIIWJObHYWCHEBQ95h\n3up8j7T4VC7P3aB1OX/i5pLr2VJwFT3uPh4++gvcPs8Hvh7LkV8hoeaUpgg1/9SfjfzS7iJwtrIT\ns8hNzOb0YC2eeUZ/TQYmeabxBUwGE7eV3RjmCi+sKqUSgDPD+rrpFwgGaHN1kmvLJt4Up3U5Z1mM\nZtZmrmR4wkmDs+mir28d7QD0E102W6FT0n0euQkiFo/m0TYGvEOsTl9BnI4ai0OWpy3h2+u/Srmj\nhOMDp/juvh/yctsbBIIBrUsTQuhQm6sTgMKk6DUgh+J6JfpLaCnckV/nWpa6hDJ7CScHa2gaaQn7\n+mLxGPe5ebTmcf7tyE/pcw9wTf7lfGfTX7M6Y0VU9t+cM3UvbW/3wajsJ4QQ56p3Tn1WrEjRsPnH\nHor+kqZ1IYQQQsQWaf4RC84LzS/jVwPcXHI9JoNJ63L+hKIo3Fm+gytyN9E+1sV/HP8VXv8EMB35\n1R/bkV8wNdY/05pO82hrRMaj1k1fBFamlIV97UiozlyFXw1wYuD0vN7/avtbOCdGuC7/StKinHVd\nlVoOoLsTf93jvfiCPl3GZW2ajv7aN4vor7bRdswGE7mJ2ZEuK6zSrGkoKDL5R5yX2+fhtzWP0+Hq\n0rqUsDnQcwSADdn6iPyaSWZCBt9Y+wXuW/oxzAYTTzXs4l8O/jhik/iEELGrfbr5J5qTf8qnH+DU\nzaJBWohIiFTkV4iiKGcPazzb+CKqqoZ9D7GwqarKgZ4jfHfvD3i3+wB5thz+et2X+Vjl7VhN8VGr\nozi5gKyETI4NnMLtc0dtXyGEUFWVemcTdksSGdbwf6+erZLkQmDqEJAQQgghRCyR5h+xoPS6+9nb\nc4jsxCxdP5xTFIVPLLmD9VlraBpp5acnHsEX8E1FfvljO/IrpMRehMfvpWe8L6zrqqpK3XAjSRYb\nWQmZYV07Utaejf46Nuf3jky42NP6GjZzItuLrwt3aReVlZCJ3ZLMmeEGXeVct0xffIdO4uhJmaOE\nlDgHR/tOMBmYPO/rfAEfneM95NtyMRqMUazw0pkNJlLjU+iXyT/iPF5rf4v3ug/w2JknFsSDr0Aw\nwOG+YySZbVSllGtdzgUpisLmnPX8/eZvcXnOBjrHuvnhoZ/wu9on5OGNEOKsdlcnCgp5tpyo7Wkz\nJ5Jny6F5pAVf0B+1fYUIiVTk17nKHMWsSKui3tlEzVBdxPYRC8+AZ4iHj/2SX5/+Hd7ABLeX3cTf\nrP8aJfbCqNeiKAqX5azHH/RzaB73MYQQYr563f24JseoSClDURTN6siz5WAymM7efxRCCCGEiBWx\n3V0gxIfsatpDUA1yS8k23TfPGBQDn1z6cValL6duuIFfnvotB3qnpgpUZ67WuLpLVzod/RXuaQN9\n7n5GJ11UOrS9CJyL7MRM8mw51AzW4fF7Lv6Gc+xq3s1EYJIdpduwmqwRqvD8FEWhKrWCMd84nWM9\nUd//fFqnx+4WJ0f/RujFGBQDG7Or8QYmOH6BaU8dY10E1SCFydGL2winzIR0Ridd846zEwvXZGCS\nNzrfBab+rF7oz0GsqBmqY8w3TnXW6php1rOZE7l36d18s/qLZCdm8nbXPv5h7w/Y33N4QTRkCSHm\nL6gGaXd1kZmQEfX41EpHGb6gnxaZSCY0EMnIr3PtKL0BgGebXtTVAQqhT0E1yEutr/P/7/shNUN1\nLE2t5Dub/orri67V9HPnhuy1KCjs7T6kWQ1CiMWnfnpCZLlDu8gvAJPBRIEtj86x7gse7BNCCCGE\n0Bt9d0cIMQcdri4O9R2jMCkvajnol8poMPKZFfdSlVLBiYEa9vUcwm5JOts4E8tK7cUANIX5xn7d\n2dzn2Ij8CglFfx3vn/1D8M6xbt7tOkB2YhaX52yMYHUXVpVaAcCZYf1Ef7WMtmMxWshJzNK6lBlt\nnI7+2n+B6K/W0Q4AXUaXzUZo/LJM/xEf9l73QcZ9btZlrkZBYWfT7ph/8BVqzt2Qpd+pgudT7ijh\nbzd8ndvKbsQbmOCR07/nwaM/p9fdr3VpQgiNDHiG8Aa8FCTlRn3v0Gd4if4S0RbpyK9zFSTlsi5z\nNe2uTo72n4zoXiK2qarK43XP8HTj88QZLXxq2Sf48uq/JN2apnVpOOLsLE2rpGW0jZ7xXq3LEUIs\nEvXDU/d9KzVu/gEosRcSVIO0TcflCiGEEELEAmn+EQvGc027Abi19MaYmQgDU/E5n1v1Kcqmm2UW\nQuQXTE27iTfG0zTaEtZ160IXgTHW/PN+9NfxWb1eVVWerN+Jisqd5TdreuJvScpU80/tkD6af7x+\nL93jvRQm5en2z0p2YiaFSfnUDNUxOuma8TWtrqnpRUUxPPkHoN8tzT/ifYFggFfa3sRsMHF35W1s\nzK6ma7yHw72xGxfg9U9wvP8U6dY0ipNjs1nPZDCxreg6vrPpr1meVsWZ4Qb+ad+P2NX8Er6AT+vy\nhBBR1j79AKMgKS/qe1c4SlBQzj7YESJaohH5da4dpVPTiHc27SYQDERlTxF7djbv4c3O98iz5fB3\nmx5gY3a1ru5nXZazAUCm/wghokJVVRqcTSRZbGQmZGhdztnrf4n+EkIIIUQs0edTUyHmqGmkhZOD\nNVQ4Ss9OKYklcUYLX1z9aW4tvYHtRVu0LicsDIqBEnshfe4BxibHw7KmqqrUDzdhtySRaY3sac1w\ny0rIIN+WS81QHW7fxaO/Tg+doXa4nqWplSxLXRKFCs/PHpdEbmI2Dc5mXTwkbnN1oqLqMvLrXBuz\nqwmqQQ72Hp3x622jHcQb43RxQ2M+Qs0/fe5BjSsRenK0/wSD3iE252wgyWLjppLrMSpGdjbvidkH\nX8cHTjEZ9LEha42uHsbMR7o1lS+u+jSfXXEfieZEnm9+iX/a/6+6ae4UQkRHqPmnMCn6DcgJ5gTy\nbTk0j7QyqYPPlWLxiFbkV0hmQgaX5Wyg193PvgtMAxWL1yttb/JiyyukW9P48urPYrMkal3Sn1iZ\ntpQEk5X9PYdi9rO8ECJ29HkGGJl0Ueko08W1d3Hy1GT+lhFp/hFCCCFE7JDmHxHzVFXl2cYXAbil\n9AZdXBzMh9VkZXvxFuxxyVqXEjah+LLm0fBEf/W4+3D5xqhI0cdF4FytzVxFQA1wfODUBV8XCAZ4\nsn4nCgp3lN+si19rVWoFvqAv7DFu89E6GpqYo+8JHOuz1mBQDDNGf3n9Xnrd/RToeHrRxUjsl/gw\nVVV5qe0NFBS2FFwFTDWbXJG7kX7PIHt7Dmpc4fzEcuTXTBRFYW3mSv5+8wNcV3Al/Z5BHjz6c359\n6nfnnVQmhFhYQs0/+bbox37BVPSXXw3QEqZrBCEuJpqRX+e6qWQrZoOJ52XSnviQd7sO8GTDTuyW\nZL625n7scUlalzQjs9HM+qw1jEy6qBmq07ocIcQC1zA8FQtbroPIL4DUeAdJFhst0/chhRBCCCFi\nQWw+cRTiHGeGG6h3NrE8rYoyR7HW5YhzlE5HmYWrYeT93OfYivwKqc5cCVw8+uudrv30uPu4PHcD\nebacaJR2UUtSygGoHdZ+OkRo3G6Jzif/JFlsLEutpN3VSfd47we+FppepPcGpgtJi0/BoBjoc/dr\nXYrQibrhRtpdnazJWPGBB2vbi7dMP/h6OeYefLkmx6gdqqcwKY+sxEytywmreFM8H624lW9v+CqF\nSfkc6D3CP+z9AW917iWoBrUuTwgRIaqq0j7WSbo1jQSzVZMaQvG9dRL9JaIk2pFfIY44O1fnX87w\nhJO3uvZGdW+hX0f6TvBY7R9JNCfw1bX3k2ZN1bqkC9qcsx6AvT0S/SWEiKw65/R93xR9NP8oikJx\nciHDE06cEyNalyOEEEIIMSvS/CNi2gen/mzXuBrxYUXJBSgoNI20hGW90AOCipTYbP7JTMigwJZL\n7VA9bp97xtd4/B52Ne8hzmjh5hL9/Ddd7ijFqBh1EQ3TMtpOsiUJR5xd61IuamN2NcCfTP+JlelF\nF2I0GEmPT6VPJv+IaS+1vQ7A9UXXfuDnQw++nBMjvN21L/qFXYJDfccIqsEFM/VnJoVJ+Xxr/Vf4\nWOXtqKrK7888yY8O/YQOV5fWpcUM1+QYHv/FIz2F0IPhCSfjPjcFSXma1VDuKEFBkeYfETXRjvw6\n17bC64g3xrG75VW8fm/U9xf6UjNUx69PPYbFaObLq/+SnMQsrUu6qMKkfHISszjRf4rx89zHEEKI\nS6WqKvXDTSSZbWQl6OfgTejgoUz/EUIIIUSskOYfEdOOD5yi1dVOdeYqTW9gi5lZTfHk2rJpHW2/\n5Hz4oBqk3tmEI85OhjUtTBVGX3XmagJqgGMDp2f8+u6W1xjzjbOt6Dpdjf6ON8VRYi+k3dWp6Q0/\n58QIzomRqcYyHcShXczK9OXEG+M50HPkA5M0Wl0dwNSN1FiWmZDOuM993mY2sXh0uLqoGaqjwlE6\nY1PbBx98TWhQ4fwc7DmKgsK6rDValxJRBsXANfmX8/ebH2Bd5mqaR9v4l4M/5sn6nTH1/5cWRiZG\n+e6+H/Cdd/6ZV9vevOTPO0JEWtt05FehTbtrJ6vJSkFSHi2j7UwGJjWrQywOWkV+hdgsiXyk8GrG\nfOO82v5W1PcX+tE00srPjj8CisIXVv1FzBwEURSFzTnr8asBDvYe1bocIcQC1e8ZZGRylPKUUl3d\n7ysONf+MtGlciRBCCCHE7Ji0LkCI+QqqQZ5r2o2Cwo6SbVqXI86j1F5M51g3HWNdl3Rzq2e8jzHf\nOBuyqnV1EThXazNX8UzTCxzuO8Zl0+OzQwY9Q7zW/hYpcQ62FFytUYXnV5VSSYOzmTPDDVRrcGoW\n3p+YU6zzyK8Qi9HM2syVvNd9gAZnE5XT8Wlto+0kmhNIi0/RuMJLk5GQDoPQ5xmg2Bwb/5+IyHi5\n7U0AthZeM+PXbZZEthRcxfMtL/N6xzvcULwlmuXNy4BnkObRVqpSKrDHJWtdTlTY45L5zIp72Ty4\nnj/UPc0r7W9yqO8YH6u8jdUZK7QuT3dUVeUPZ55i3OfGbDDxRMNO3u7az0crbmFZ2hKtyxNiRu3T\nzT9aH5yoTCmjzdVB00grVakVmtYiFjatIr/OtaXgKt7oeJdX2t7k6rzLsVkSNavlQnrG+/hj/bN0\nj/diVAwoiuEDPxpQMChGDIqCQTHM8E/o6x987UxrKYqCUTFOv+79NTITMliTsSKmr/ln0jnWzU+O\n/Qq/GuD+FfedvS6MFRuyqnmm8QX2dh/kmvzLtS5HCLEA1U9HflU49BH5FVKUnI+CQsuoNP8IIYQQ\nIjZI84+IWQd7j9I93stlORvIStTPOFDxQaX2It7qfI+mkdZLav4JxQJUxmjkV0hGQhqFSXnUDtUz\n7nOTaE44+7VnGl/Arwa4tewGLEazhlXOrCq1nJ3NuzkzVK9Z80/L2eaf2DglCVPRX+91H2Bfz2Eq\nU8oZ9boY9A6zLHVJzN/UzrROnZ7ucw/ETEOWCL9BzzCH+o6Sm5jN8rSq875uS+HVvNHxLi+3vcHV\neZeRYLZGscq5O9AzdbJ5ffbCjfw6n2VpS/jfG/+K3a2v8lLr6/zsxG9Ymb6MuytuI80a202L4XS4\n7zjHBk5R7ijh/hWfZFfzHt7q3MvDx37JyvSl3Fl+iyZTJoS4EL00/1Q4Snm57Q3qhhul+UdElJaR\nXyHxpni2F2/hifrn2NP2GneW79Cslpn4g372tL7G7pZX8asBUuIcBFWVYNDHBEGCanDq39XA9I9T\nP6eiRqSejdnV3LPkLsw6vCaejz73AA8e/Tkev4dPLv04qzKWa13SnNnjkliWuoSTgzV0jfWQa8vW\nuiQhZi2oBvH6J/D4PVhN8SSccx9O6Ef9cDOgv+afeFM8OYlZtLo6CAQDGA1GrUsSQgghhLggaf4R\nMSkQDLCraQ9GxciNxVu1LkdcQKm9CICmkRauK7hy3uvUORdG8w9M3Xhuc3VyrP8Ul+duAKZGgB/q\nO0ZhUj7rdRovU5iUj9UUT+1QvWY1hJp/ipJjJy6r3FFCSpyDo30n+Hjl7XQO9wCx9Ws4n4yE95t/\nxOL1WsdbBNUgWwuvuWBDm9UUz/VF1/J04/O80vYGt5TdEMUq50ZVVQ70HsFsMLFmkU68sRjN3FK6\nnQ1Za/n9mSc5MXCaM0P13Fy6jevyr1z0Nz3HJsf5n7qnMRvM3Ft1NzZLIh9fcgdX5G7ij/XPcmKg\nhprBOrYUXs32oi3Em+K0LlkIYKr5JyXOofnkkXJHCQbFcPaUtxCRoHXk17muyt3Mq21v8WbHu2wp\nuApHnF3TekIanS08duYJesZ7sVuS+fiS22c97S+oBlGnm4ECahCV6R9VlYAamP4xeLZZ6Ow/H2go\nev/n/UE/L7S8wv6ew/S6+/ncyk/q5vdpvpwTIzx09Oe4Jse4u+I2NuWs07qkeducs56TgzXs7T7I\nnRX6amATC5uqqviCPtx+D26fB4/fi9vvnv7Rg8fnmfqaf+proX/3+D24/V68fu/ZZkWbOZG/2/wA\nNrM+J7AtVqqqUu9sxGZOJCcxS+ty/kRxcgFd4z10j/eSn5SrdTlCCCGEEBckzT8iJr3bfYAB7xDX\n5F8hJ9B1Li0+lSSLjaaR1nmvEVSDNAw3kRLniPmYJIDqzFU80zgV/XV57gZUVeXJ+ucAuKviFgyK\nQeMKZ2Y0GKl0lHFs4BQDnkHSrWlR3T+oBmkbbScrIROrSd8TQ85lUAxsyF7LntbXOD5wmnHFBXBJ\nk7D0ItOaAUC/R5p/Fiu3z807XftxxNlZl7X6oq+/Jv9yXm1/i1c73ubagitJstiiUOXctY910uvu\nY23mKqymeK3L0VR2YiZfX/t59vcc5smGnTzVsIt93Yf4s6o7KbUXa12eZh6vf4Yx3zh3lu/4wAPl\n/KRcvr728xzuO85TDbvY0/oa+7oPcXv5TWzIWhvzE99EbBuZGGV00sXqdO2nTsSb4ilMyqdltB2v\nf0Ia5ERE6CHyK8RsNHNTyfU8Wvs4zze/zD1Vd2laj8fv4ZnGF3mr8z0UFK7Ou4xby26Y03WWQTGA\nAkaMhGtGz5KUch478wT7ew7zvQMP8vlVn4rZ66Yx3zgPHv0Fg95hbi65nmsLrtC6pEuyMn0pieYE\n9vce5rayGxd9I7iYu0AwgHNiBJdvDI/Pe07DTqipx3O2oeeDP+8loAbmtFec0YLVZCUlzo41MZsE\nczwT/knqnI3sbnmVuypuidCvUszHoHcI58QIazJW6vJ6qdheyLvdB2gZbZPmHyGEEELonjT/iJgz\nGfDxQvPLWAxmthdt0boccRGKolBqL+ZY/0mGvU5S4h1zXqNrrIdxv5sV6Ut1eRE4V+nWNAqT8jkz\n3MCYb5wzQw00j7axJmMl5Y4Srcu7oKrUCo4NnKJ2qJ4r86Lb/NPr7scbmGB1DN783ZRdzZ7W19jf\nc5j4uKlb44VJsffr+LCUeDsmg0km/yxib3buZTIwyc0l12MyXPxjpcVo4cbij/CHuqfZ3foqH624\nNQpVzt2BniMAbMhafJFfM1EUhU0561iRvpRnGp/nna79/PDQT7gidxO3ld34gQjLxeDEwGkO9h6l\nOLlwxqmGiqKwLms1K9OX8lLr67zU9jqPnP49b3a8x92Vt8bsQ0wR+/QS+RVS4SilZbSNppEWlqUt\n0bocsQDpIfLrXJuyq3m57XXe6z7A1sKryUzI0KSOY/0n+cOZpxmZHCU7MYt7q+7STUOv2Wjmk0s/\nTp4th6cbnudHh/+De6s+ysbsaq1LmxOv38tPjv6KnvFeriu4ckFMrDYZTKzPWssbHe9weugMK9OX\naV2S0BlVVRn3uxn0DDHgGZr60Tv9o2eQoQknQTU4q7WMipEEk5XeniHoAAAgAElEQVREcwLp1rSp\nuC6TFavZSoJp6h+rKR6ryUqC+f1/TzAlYDXFz9ic5gv6+e7e7/Nmx7tck38F6dbUcP8WiHmqG24C\n9Bf5FRKKuW8ZbefKvM0aVyOEEEIIcWHS/CNizpud7zIyOcq2ouuwxyVpXY6YhVJ7Ecf6T9I00sK6\n+LlHWi2kyK+Q6sxVtLk6ONR7jFfa3sCoGLm97Caty7qoJakVANQON0T9grdlpA2YGrcba7ITsyhM\nyqNmqA6rKQ5HnH1B/P1lUAykW9Pocw+gquqCaM4Ts+cL+Hi9/W2spniuyN006/ddnruRl9ve4K2O\n9/hIwdXzagqNpKAa5FDvURJMVpbLw+gPSDQncE/VR9mUvZ7fn3mSd7r2caz/JHdV3LJoGqXcPg+/\nq30Sk2Lk3qqPXnBan8Vo4ebSbWzOWc9TDbs40n+C7x98iMty1nNr2Y26nXwlFi69Nf9UppTxUtvr\n1DubpPlHhJ2eIr9CjAYjO0q388uTv2Vn0x4+s+LeqO7vnBjhf+qe4Vj/SUyKkZtLruf6ouswz6KB\nO5oURWFr4TXkJGbzX6ce5ZHTv6drrIdby27Q7ZTcc/kCPn56/BFaXe1szl7PneU7Fsx10uacdbzR\n8Q57uw9K888i5Qv4GPIOM+D9YIPPgGeQQc8w3oB3xvclmW0UJeWTZk3FbknGarJiNcef08gz1cQT\navIxG8xh/3NjNpi4pfQGfn36dzzX9CKfXn5PWNcX89fgnG7+SdFn809OYhZxRgvNo21alyKEEEII\ncVH6usIX4iI8fi97Wl/Daorn+sJrtC5HzFKpvQiAppFW1mXNvfmn/uwJkIXV/PN04/M81bALX9DH\nloKryEiI7iSd+ci0ppMS56BuqIGgGozqzdcWVzvw/ombWLMxex1t9c8y7vOwOl2fNzTmI9OaTs94\nL2O+cXmQvcjs6zmEyzfGtqLr5hSNZTKYuLHken5b8z+80PIy91R9NIJVzl3dcCMjky6uyN04q2lG\ni1GZo5i/3fB1Xm1/i13NL/HI6d/zXtcBvnTZn2MmUevyIuqphp2MTI6yo2Q7ubbsWb0nzZrKZ1fe\nR91wA4/XPcu73Qc40n+Cm4q3ck3+FRKbIaKmTWfNP6X2YgyKgbrhRq1LEQuQniK/zrUmYwUFSXkc\n6jvG9a7rKIhCfEhQDfJO1z6ebngBb8BLmb2Ye6ruIjsxK+J7X4rlaUv41rqv8J8nfs1Lba/TNd7D\np5f/ma4joAPBAL869Rh1zkZWZ6zgnqq7YqJhabYKbHnk2XI4MVDD2OQ4NsvC/ty3GAXVIKOTrhkm\n9wydjWaaicVgJs2aSrq1hPT4tOn/nUpafCpp1lTijJYo/0pmti5rNa+0v8nB3qN8pOBqCpPztS5J\nMHUNnmhKIEen35cMioGipALqnU14/B5dfx8SQgghhJAnGiKmvNr+FuM+N7eUbidhkUVMxLICWx4m\nxUjTSOuc3xtUg9Q7m6ZvGKREoDptpFlTKUoqoNXVTqIpgRuLP6J1SbOiKApVqRW8132ADldXVG+U\ntI60YTKYZv2wVW/WZ63hyYadBNUghTE4veh8Qiep+9wD0vyziATVIK+0vYlJMXJt/hVzfv/GrLW8\n1Po673UfZGvhtbo5kQ9woFciv2bDaDByfdG1VGeu4n/qnuHkYA0P7P5H7l9xHyvSl2pdXkTUDNXx\nbvcB8m25bCu6ds7vr0wp5283fJ23uvayq2kPTzTs5O2u/dxdcStL0yrDX7AQH9Lu6iTZkoQ9Llnr\nUgCIN8Wd/Tzs9XuJn0MjqRAXo7fIrxCDYuDW0ht4+Ngv2dn0Il9c/ZmI7tcz3stjtU/QONJCvDGe\nTyy5kytyN8ZMQ0pWYibfWvdVfnXqUU4N1vL9gw/z+VWfIkujyLQLCapBHq39I8cHTrEkpZxPL/uz\nBdfgqygKm7PX8UTDTg70Hpkx/lTo30Rgkn73AIPT03tCjT2hH/1B/5+8R0EhJd5BhaOUdGsaafFT\nzT3p1qnmniSzLSYmXBkUA3eU3cyPj/6Mpxqf52tr7o+JuheyQc8QwxNOVmes0PX3pmJ7IXXORlpH\nO6ianoouhBBCCKFH0vwjYsaYb5xX297EZk7k2ny5wRBLzEYzBUn5tLramQhMzunET8dYFx6/h9UZ\nyyNYoTY2ZK+l1dXOTSXXx1QzW1VKOe91H6B2uD5qzT+TAR+d4z0UJRXE7CSOJIuNpamVnBqspWgB\nnS7LtE43/3gGKHMUa1uMiJrjA6fp8wxwec6GeT1Enoq92MYvT/6WXc17dDNy3RfwcbTvJClxDsoc\nJVqXExPSrKl8YdVfcKz/JL+u+T2/Pv07vr3+q2Tq8KHcpfD6J3is9gkMioE/X3r3vB/mGQ1TDXPr\nM9ews3kPb3fu5aFjv2Bl+jLuKr8lJqYAitjkmhxjeMLJ8rQqrUv5gMqUMppHW2kcadFdbSJ2uX0e\n3UV+nWtpaiUVjlJODtbS6GyJyGdoX9DPntbX2NPyKn41wJqMldxdeSuOOHvY94q0BLOVL63+DE83\nPM8r7W/y/YMP8ZfL79VV46yqqjxR/xz7eg5RnFzI51Z+CrPRrHVZEbEhu5qnGp9nX/dBaf6JQe2u\nLn585Ke4/Z4/+VqiKYHcxCzSrGmkT0/sCU3vSY13xOy9mA9bklrOsrQlnB48w+mhOol61lhdKPLL\noe8J2aEp5C2jbdL8I4QQQghdWxif2sWi8FLr63gDE3y0dDvxpjityxFzVGovonm0lbbRdipSZh/f\nFYr8qlxAkV8h1+RfTlFyPiXJRVqXMidLpi9ya4fq2VZ0XVT2bHd1ElSDFMf4xJw7y3ewNLuMJSnl\nWpcSNhnTD1T63QMaVyKiRVVVXmp9HYCPXEIE55qMFeTbcjnUe4ztRVt0MdXrxGAN3oCXq/I26/rU\nod4oisKazJV8PtHIQ/t+zc9O/IYH1n1lQX1ee7bpBYa8w2wv2hKWyCSbJZFPLLmDK3M38Xj9M5wY\nOE3N4Bm2FF7N9qItC+r3TuhDh6sLgEKdRH6FVKaUsbv1VeqGG6X5R4TN8YFTuoz8ClEUhVvLbuSH\nhx7mmcYX+Gb1F8I6eaLR2cJjtX+kx92HI87Oxypvj/nDNAbFwJ0VO8iz5fBY7R95+NgvubP8Zq4r\nuEoXUzueb36J1zveIScxiy+t/syC/j6eZLGxIm0pxwdO0eHqIj8K0XUiPHwBH4+c/h1uv4fLczaS\nlZgx3eSTRro1ZVFFGd1edhM1g3U83bCLpakVcu2noYbh2Gv+EUIIIYTQM/lkK2KCc2KENzreISXO\nwZW5m7QuR8xDiX2qwWWu0V91w43A1IOBhcagGCi1F+viZuVcJFls5NlyaBxpYTLgi8qerdMX17He\n/JOdmMnHVuxYUDeW3o/96te4EhEtjSMttIy2sTJ9GdmJmfNex6AYuKV0OyoqO5t2h7HC+TvYMx35\nlS2RX/NxdfEmrsm/gu7xXh6tfRxVVbUuKSwanM280fEuWQmZYY/pzE/K5Rtrv8Bnlt9DkiWJPa2v\n8Q97v8/+nsML5vdP6EO7qxMgLM1r4VRqL8KoGM9+5hciHA7rNPLrXKX2IlamL6VxpJnTQ2fCsqbH\n7+F3Z57kR4d/Qq+7n6vzLuc7m/465ht/zrUpZx3fqP4CSRYbTzTs5Lc1j+ObIaIoml5rf5vnW14m\nPT6Vr6z5LIkxNNV3vjbnrANgb89BjSsRc/FM0wt0j/dyTf7l3Lv0o2wtvIY1mSspSMpdVI0/AHm2\nHDZlr6NrvId9PYe1LmdRq3c2kmCy6uIw0IXY45JIjU+heaRNrtOEEEIIoWsL5+mjWNBebHkVX9DP\nTSVbF+zo5IWuxD51QmIuzT+BYIAGZzPp1jRS4h2RKk3MQ1VqBf6gn8aR5qjs1zLaDkDR9EkboR92\nSzIWg5k+j0z+WSxebnsdgOsLr73ktZanVVFqL+LYwCnNT9C5fW5ODdaSm5hNni1H01pi2V3lOyiz\nF3O47zivtL+pdTmXbDLg49Gax1FQ+POld0fkc6iiKKzLWsPfb36AG4u34va7eeT07/nR4Z/QNtoR\n9v3E4tQ2ps/mH4vRQnFyAe2uTjwzRJAIMVehyK98nUZ+neuW0htQUHi28UWCavCS1jraf5Lv7v0h\nb3fuJTsxi79a90U+vuR2rKb4MFWrHyX2Iv5mw9coTMpnb89B/v3wTxmZcGlSy97ug/yx/lnsliS+\nuvb+mIxVm48VaUuxmRM50HMEv8bNV2J2aobqeK39bbISMrm97Caty9GFHaXbMBtM7GzaHbWDbeKD\nBj3DDHqHKXeUxsQhueLkAsZ84wx6h7UuRQghhBDivPT/qUosegOeQd7p2kemNZ1N2eu0LkfMkyPO\nTlp8Cs2jrbM+IdEx1oU34F2QkV+xriplKvrrzFBDVPZrGW0n0ZxAujU1KvuJ2VMUhYyEdPo9g3L6\naRHoHu/lxEANpfYiyhzFl7yeoijcUnoDAM81ajv950j/CfxqgA1ZMvXnUhgNRv5yxX3YLUk83fA8\ntUP1Wpd0SZ5vfok+zwDXFlxBqT2yMZ0Wo4Udpdv4u00PsCZjJU0jrXzv4IM8WvNHXJNjEd1bLHzt\nrk4SzQmkxOmvob4ypQwVlQZndJrKxcIWivyq1vHUn5A8Ww7rslbTMdbFkb4T81rDOTHCz078hp+f\n+A3jvnF2lGzjf234OqX24vAWqzOOODvfrP4i67PW0DzayvcO/pjW6QMj0XKs/ySP1v6RBJOVr6y5\nn3RrWlT315LRYGRD9lrGfOOcGqzVuhxxEeM+N/99+n8wKAb+YvknsBgtWpekCynxDq4ruArnxAiv\nt7+tdTmLUoNzOvIrRd+RXyFno7/mONVeCCGEECKapPlH6N6u5pcIqkFuLt2G0WDUuhxxCUrsRYz7\n3LOeELKQI79iXbmjBJNipHaoLuJ7uSbHGPQOUZRcEHMRaYtFpjWdycAkI5OjWpciIuzltjcA2BqG\nqT8hlSllVKVUUDtcr2nsy4HpyK91WWs0q2GhsMcl8dmVn8SgGPjVqUcZ9MTmycjW0XZebnuD9PjU\ns01q0ZBmTeX+lffxtTWfIzsxk3e79/P/7f0er7a/RSAYiFodYuFw+zwMeAYpsOXp8rNUxXSjv0R/\niXCIhcivc+0o2Y5BMbCzefec/o4PqkHe6nyP7+79Icf6T1JmL+F/bfwmN5ZsxWQwRbBi/bAYzfzF\nsj/jtrIbGZkY5V8P/wcHe49GZe/aoXp+dfJRTAYTX1r9l7qPq4mEzdnrAdjbfUjjSsSFqKrK7888\nycjkKDeXbKMwKV/rknRlW9G1JJoT2N36GmOT41qXs+jUh5p/HLHR/BOaat8S5WZTIYQQQoi5kOYf\noWtdYz0c6DlCni0nJk7uiQsLnT6cbfRXfYydAFlMLEYLpfZi2se6In6DJHSCs1giv3QrYzpSoc8t\n0V8LmXNihAM9R8hKyGBl+tKwrn1L2XYAnmt6UZMJUsNeJw3OZsrsJaRZU6K+/0JUai/i7spbGfe5\n+cXJ38TcKH1/0M9vax5HReXepR8lToMT0ktSy/lfG77B3ZW3AQpP1D/HP+3/V2qi0HgrFpYOnUZ+\nhZTYizApxrOf/YWYr1iK/ArJSEjj8tyN9LkH2NtzcFbv6Rnv5d8O/ye/P/MUigL3LLmLb1R/nuzE\nzAhXqz+KorCt6Do+v+pTGBUj/3XqMZ5pfOGSY9QupHmkjZ+eeASAz6/81NmHwYtNflIuBbZcTg7W\nyIRCHTvQe4TDfccptRezreharcvRHavJyo3FW/EGvLzY8orW5Sw69cONWE3WmIndzrflYVAMmkeW\nCyGEEEJciDT/CF3b1bwHFZVbSrfHRPavuLBQXEbzSMtFXxsIBmh0NpOZkI4jzh7hysR8VKVOR38N\nRzbSJXRRXZxcENF9xPxlWqcervRL88+C9nr7OwTUAB8pvDrs35OLkwtZlb6cppFWTaIDDvYeRUVl\nQ7ZEfoXTlbmb2ZyznjZXJ38481RMRQPubnmVrvEerszdRGVKuWZ1GA1Grs2/gv9387e5Mm8zve5+\nHjr6C356/BEGPIOa1SViS5tL380/FqOZEnsRHa4u3D631uWIGBZLkV/nurH4I5gNZp5vfhnfBZpl\nfUE/u5r28E/7/43GkRbWZqzk7zY9wBV5mxb9/ZKV6cv41vqvkGFNY0/ra/zsxCN4/N6w79M11sN/\nHPsVvoCPTy+/5+w18WK1KWc9QTXIgZ7DWpciZjDoGeYPZ54mzmjhU8s+sej/njifq/I2kx6fypud\n79Hvls/X0TLsdTLgHaLcURwz/21ajGbybbm0uzrxBf1alyOEEEIIMaPY+GQlFqXW0XaO9p+kJLmI\nFWnhnTAgtJGbmI3FaJnV5J82VyfewASVDon80qvQjc7aoYaI7hMap1skzT+6lZmQATDrSD8Rezx+\nD2917iXZksTGrOqI7LGjdBsKCs817Y7oae2ZHOg9glExxtzDQr1TFIVPVN5BYVI+e3sO8lbnXq1L\nmpXOsW5ebH0VR5yd28tv1rocAGyWRP5syZ38zYavU2Yv4fjAKb679wc82/giXv+E1uUJnWufbv7R\nc9RHhaMUFZV6Z7PWpYgYFmuRXyGOODvX5l+Bc2KENzvfm/E1Dc5m/s/+f+P5lpdJstj4/MpP8dmV\n92GPS45ytfqVnZjFt9Z/laqUCk4M1PCDQw+HdTLpgGeQh47+nHG/m3uX3s2azJVhWztWbchai1Ex\n8l73wZhq8l4MgmqQ/675A96Al7srbiPdmqp1SbplMpi4tewGAmqA55pe1LqcReP9yK/Yuu9bnFyI\nXw3QOdaldSlCCCGEEDOS5h+hW881/V/27ju+zeps/P9H05Is2Zb33jPOdnZCEjKAsFcYCWFTZsto\n++vT3e/TFto+paWFUsqGsBIgrDADWWQ7TjzjvfeUt2Vr/f7wgJSELMu3JJ/368UrJtJ935djWTr3\nOde5rs8BuDzhImQymcTRCONBIVcQ6xNNY18z/ZaB731uaWc5AElG97oJnEyiDBHolFqKTKVOm+hz\nOBxUd9cSqA1Ar/J2yjWEczfaVkFU/vFce+oPYraZOT9yCSqFyinXiNCHkREyg7reBrJb851yjRNp\n6G2ivreRKQEpeKt0E3bdyUKlUHHXtA3oVd68U/ohFadR/U9KNruN1wo3Y3fYuTHlarRKjdQhHSfK\nEM7Ds+/h9vR16NV6Pq/ezu8P/lWSilmC+6jtaUCr1Lj0wl/yyJh/9B5AEM6UO7b8+rZVMcvQKDR8\nXr39uIo1A9YB3izewt+P/Jvm/laWRiziV/N/zPSgdAmjdV3eKh33zbid86OW0NTXzP8dfpKijnOv\nVNs12M2TR5+ja6iHa5IuY2HYnHGI1v3p1d5MC0yjoa+J2pEWk4Jr+KpmN6WdFcwMmsoC8Xo9pVnB\n04kxRJHVkjPWel5wrlLTaPJPvMSRnJnRquSVXaL1lyAIgiAIrkkk/wguqaClhMKOElKNSWMTwYJn\nGGv9dYr+yCWmkeQfN9sBMpnIZXKSjYl0mE20Oqn1SOtAG/3WAdHyy8XpVd5oFBqaReUfj2S1W9lR\nuwcvhZolEQuceq1L4i5ALpOzteILbHabU681KrP5KABzQ2ZOyPUmI3+NkdvT12N32Hk+byNdg91S\nh3RS22u/pqannnmhs5ka6JqVJ2UyGRkhM/nNgp9yUexKuod6eDrnRV49tok+0TJJ+C9m6yAt/a1E\n6sNdekNFrE80Krly7B5AEM6Uu7b8GqVXebMqehl9ln62134NQHZrPr8/8Dh76g8Q5h3CIxn3cX3K\nlS6XmOpqFHIF1yZdzvrUtQzahvhXzgvsqN1z1htW+iz9PJX9PG3mDtbErmRF1HnjHLF7G00sOdCY\nJXEkwqjangY+qvgcH7WBG1OucenPf1chl8m5MvFiAN4r+1hUspoApZ3laBQaIg3hUodyRuJ8owGo\nOsW8tiAIgiAIglRE8o/gchwOB2/lfgDAZQkXShyNMN7Gkn++Z+e/zW6jvKuKEF0wvl6GCYpMOBvf\ntP46992UJzLa8ivWJ9op5xfGh0wmI1gXQNtA+4S3axKcL7M5m66hbhaHz0en0jr1WsG6QBaGzaG5\nv4VDI0k5zmR32DncnI2XQs20wClOv95kluKfyJWJF9M11MPz+a9htVulDuk7mvta2Fr5BQa1nmuT\nLpc6nFPyUqi5LP5C/mfug0QbIjjYlMUfDj5OzgRWzhJcX11vAw4cRBkipA7le6kUKuJ8YqjvbaTX\n0id1OIIbcteWX992ftQSDCo922t285/cV3gu71X6LH1cGjf8Xj96Ly2cnkXhc3lw1t14K3W8U/oh\nbxS9g+UMxx9m6yBP57xIQ18TyyIXc0ncBU6K1n1N8U/BoNJzuOnoGf/7CuPPYrPwyrE3sTls3JR2\nHXq1qKB8upKNCUwNSKO0s0JU1XSyzsEuWgfaSfSLRS5zr+WpIG0g3krd2HylIAiCIAiCq3Gv0ZUw\nKRS0F1HcXsGMwHSx4O+B4kZ+phVd1Sd9TnVPHUO2IVH1yQ2kGoeTf4pNzk7+EZV/XF2wLgir3YrJ\n3CV1KMI4sjvsfFmzC7lMPmG7nNfErkIpU/BJ5TanLyBUdFXTYTYxM2gaaoXaqdcSYGXUUjKCZ1DR\nVcWWsq1Sh3Mcu8POa0XvYLVbuT75KrdqARehD+MnGQ9wRfwa+i39PJv3Ki/mv07PUK/UoQkuoLZn\nuA2Lqyf/wDetv8o6KyWORHA37t7ya5RG6cWFsSsw2wbJbSsg0S+OX8x7mDVxK1HKlVKH55YS/GL5\n2dwfEWWIYF9jJv88+izdQz2ndazFbuW5vFep6q5hXuhsrk26TFRQOQGFXMG80Nn0WfvJbyuUOpxJ\n74OKT2nsa2ZpxCLSA1KkDsftXJGwBhky3iv/ZMIq0U5GYy2/3HDeVyaTEeMbRdtAu7jfEgSGN3E3\n9jWLimmCIAguRCT/CC4nqyUHGTIujRdVfzyRTqUj1DuEqu6ak95Ij5b7F8k/ri9Q60+Axkixqdwp\nFV+qu2uRy+RE6t2rDPBkFKQdXmhpFa2/PEpBexFNfc3MCZmJUeM3Idc0avw4L3IhHWYT+xoOOfVa\n37T8muXU6wjDZDIZ69PWEu4dyq66fRx0ofYQu+v2U9FVxaygacwKniZ1OGdMIVdwQez5/HzeQ8T5\nRJPVksMfDj5OVnOOmISb5EaTf6LdIPlndAFItP4SzpS7t/z6tiURCzg/cgnrU9fy4Ky7CfEOljok\nt2fU+PHI7HvHEpD/kvnk2HvjydjsNl4ueIMiUynTAqdwU+pat6tOMZG+af11WOJIJreijlJ21O4h\nRBfMVSMtrIQzE64PZWHYXJr6mjnY5Dr3Kp6mtHMk+ccvXuJIzs7oZuVqUf1HmMTaBtr5qPwzfr3v\nMf5w8HFeL3pHVIMXBEFwEeLOVXA5l8ZdwP9b8Qjh+lCpQxGcJN4nhkHbEA19zSd8vHRkwt9dbwIn\nE5lMRqp/EgPWAWp66sb13Ba7lbqeeiL1YagUqnE9tzD+RndZt/SL5B9P8mXNLgBWRS+b0OteGLMC\ntULNZ1VfMWQbcso1rHYrR5tzMaj1Itl0Ankp1Nw17Wa0Sg1vFr877p8dZ6NtoIMPKj7FW6njupQr\npQ7nnIR6h/BIxn1cnXgpg7ZBXix4nefzN9I1eHpVDgTPU9tTj1qhJlgXJHUopxTjE4VKrhq7FxCE\n0+UJLb9GqeRKrk2+nEXhc0WyyThSK9Tclr6Oy+IvwjTYyeNZT5PVnHPC59oddt4ofpfs1nyS/OK5\nI309CrligiN2L+H6UKINkRzrKBZjDon0WfrZWLgZuUzOrVNuEFVNz8El8atRyVVsrfiCQSfdi052\npZ3laBRebrvRbzT5p7K7RuJIBGFiWWwWDjdn88+jz/Lb/X/ms+rtDNqGCNQGsL8xk1ePbRZV0wRB\nEFyAmEkQXE6A1p/UoESpwxCcKN43BoDKrqrvPGa1WynvqiLMOwSDWj/BkQlnI2Wk9VdRx/i2/mro\nbcTqsIn2f25itPJPy0CrxJEI46Wyq5qyzkqmBKQQoQ+b0Gsb1HrOj1xC91APu+r2OeUahR0l9Fn7\nmRM8UyzoTLBgXSC3TrlxpJ3GRnqH+iSLxeFw8GbRuwzZhrg2+XJ81AbJYhkvcpmcldFL+cW8h0nw\njSO7NZ8/HnycQ01HRBWgSWbIZqGpv4VIfbhbJBGo5EoSfGNp6GsSbRSE0+YpLb8E55PJZFwUu4K7\np92CXCbjxYLX+aji8+N2qTscDt4r+5gDjYeJNkRyz/RbxUaU07QgbA52h53M5iNShzLpOBwONhW/\nR+dgF5fErSbaJ1LqkNyan5cvK6POo2uomx21X0sdjsfpGuympb+NeL9Yt70Pj/WJAqCqSyT/CJND\nfW8jb5d8wC/2/oGXCt6g2FRGgm8cN6ddz2NLfsXP5vyIOJ9oMpuP8PKxN0UCkCAIgsRcfwZQEASP\nM5r8U9FV/Z3HqrprsdgtogqDG0kxJiJDNu7JP6M7aGJGbqoF1za62NIqKv94jNGqP6ujl0ty/VXR\nS9EqtWyr3smAdWDcz5/ZNNLyK1S0/JLC1MA0Lo5bTYfZxEsFb0g2ObS/MZMiUylTA1I9rv1bsC6I\nh2bfzdrkK7A4rLxy7C2eyX2ZzsEuqUMTJkhDXyN2h50oN2j5NWq09ddoOwhBOBVPavklTIzpQen8\nJOMBAjX+fFb1Fc/lbcRsNQPwWdV2ttd+TagumPtn3IFGqZE4WvcxJ2QmSpmCA42HRbLxBMtsPkpW\nSw7xvjGS3bt5mlUxy9GrvNlWvVMkJI+z0TFesp/7zvt6q3QE6wKp7qkVbY4Ej2W2mtlbf5C/HH6S\nRw/9nZ11e1HIFKyOXs5v5v+ERzLuZX5YBmqFGp1KywMz7yTBN44jLbm8kP8aFrtV6m9BEARh0hLJ\nP4IgTLhgXRDeSt0Jk3++afnlvjeBk41e7U2kIZyKrupxLSvJqMEAACAASURBVIk82jtbVP5xD94q\nHd4qHS0DIvnHEzT3t5LTWkC0IVKyFow6lY5V0cvos/azvWZ8d1yarWZy244RrA0k2iB2xkplTexK\npgWmUWQq5aOKzyf8+p2DXbxbuhWNQsMNKVcjk8kmPAZnk8vkLI9czC/nPUKKMZH89kJ+f+Bx9jUc\nEgtzk0BtTz2AWyX/JBuHP3NE6y/hdHlSyy9h4oTrQ/np3B+S7JdAblsBf836F1srvmBr5ef4a4w8\nMPNO9GpvqcN0K94qHdOC0mnsa3aJtq6TRfuAiU3F7+OlUHPLlBvctpKKq9EqNayJW4XZNsinVV9K\nHY5HGU3+SZRonmG8xPnEMGA109Ivql8LnsPhcFDRVcXGws38fO8feKP4XWq660gPSOWuaTfzx8W/\n5MrEiwnxDv7OsRqlhvtn3kGyMZGctgKey3sVi80iwXchCIIgiOQfQRAmnEwmI843hnZzB12D3cc9\nVjJyEyjVYrNwdlKNSdgcNso6K8ftnFXdNWiVGlG+340EawNpG+gQ5V09wPaa3ThwsDpmuaQJEcsj\nF2NQ6dle+/W4tobKaS3AYrcwJ3SWRyZ8uAu5TM4tU24gWBvItpqdYwu4E2G43dcWzDYzVydeglHj\nN2HXlkKg1p8fzryLG1OuBhy8XvQOT2U/T/uASerQBCeq6R5O/ol2o+SfGEMUaoV67J5AEL6PaPkl\nnAu9ypsHZt7JsshFNPY182nVlxjUen448y6PHxc4y4LQDAAONB6WOJLJwe6ws7FwE2abmbVJVxCo\nDZA6JI+yJHw+QdoAvq4/IBI8xlGpqQIvhdqtxqcnMtr6q3Jk46IguLOeoV6+qtnNHw4+zuNZT3Og\n8TAGlTeXxl3I7xf9nPtm3M7MoKmnTDD1Uqi5d/ptTPFPoaC9iGdyX2ZoHDcKC4IgCKdHJP8IgiCJ\n0dZfld+q/mOxW6nsqiJCHyZ22bmZVP8kAIrHqfVXv6Wflv42YgxRyGXio8pdBOkCsTvstJvFYrI7\n6x7q4UBTFoEaf2YGTZU0Fo3SiwtjV2C2DfJFzY5xO29m80jLLw9r8+SOtEotd027GbVCzcbCzTT2\nNU/IdQ83Z5PfXkiyMZFF4fMm5JpSk8lkLIlYwK/m/5gp/ikUmUr546HH2V23X5Sr91C1vfUo5UpC\ndd/dmemqFHIFCb6xNPU10z3UI3U4gosTLb+Ec6WQK7gu+UrWp15Lgm8sD8y4UySSnYM0/2R81QYO\nN2eL3f4T4Kua3ZR2VjAjaCoLwuZIHY7HUcqVXJ6wBrvDzofln0kdjkfoHuqhub+FeN9Yt69SNVql\nvOoEVe0FwR3YHXaOtRfzfN5Gfrn3j2wp20rbQDsZwTP44cy7+N3Cn7EmbuUZJ0SrFSp+MP2WsSrP\nT+e8iNk66KTvQhAEQTgRp62o2u12fvOb33D99dezYcMGqquPHwht376da665huuvv57Nmzd/7zHV\n1dXceOONrFu3jt/+9rfY7cOT05s3b+bqq6/muuuuY8eO4xeEysvLycjIYHBQfLAIgisaTf75duuv\nqq4aLHarqPrjhhJ8Y1HJlRSZxif5p7p7uEx4zMhOGsE9BGuHJ8pbResvt7ardi9Wu5WV0UtdIvlu\nSfh8/Lx82V23j87BrnM+X/dQD0UdpcT4RInFHRcRrg9lQ9p1DNmGeDb3FQasA069Xs9QL2+XfoBa\nrmJ96jWTrvqTUePHfTNuZ0PadchlCjaVvMc/jz5La3+71KEJ48hqt9LQ20SEd5jbLa4kj7T/Fa2/\nhFMRLb+E8bIofB6PZNxHpCFc6lDcmkKuYF5oBv3WAXLbjkkdjker62ngo4rP8VEbWJcy+cazE2VW\n0DRifaI52pp33OZF4eyUmoYrO46O9dxZhD4MlVxJlaj8I7iZDrOJjyu38Zt9f+JfOS9wtDWPYF0g\n1yRdxh8X/4rbp64n1T/pnOYDVXIld07dwMygaZR2VvCvnOedPs8jCIIgfMNpKzpffvklQ0NDbNq0\niR//+Mf86U9/GnvMYrHw2GOP8eKLL7Jx40Y2bdpEW1vbSY957LHHeOihh3jjjTdwOBx89dVXtLa2\nsnHjRt566y1eeOEF/va3vzE0NFxCrre3lz//+c+o1WpnfXuCIJyjGJ/hii7fTv4p6Rye4E82uv9N\n4GSjUqhI8I2jvrdxXHZpj948x4rkH7cymkjR0i+Sf9yV2TrI7vr96FXeLrN7VKVQcXHsKix2K59V\nbT/n82U15+DAIar+uJjZwdNZFb2MloE2Xjn2llMr0WwueZ8+Sz+XJ6yZtO0RZDIZC8Lm8Kv5jzAt\ncAqlnRX88dDf2F77tagC5CEa+5qxOWxEueFCdtLIvYBo/SV8H9HySxBc0/ywkdZfTa7f+svhcEgd\nwlmx2Cy8fOxNbA4bN6WtFZWznUgmk3FV4iUAvFf2idu+ZlxF2cjYLtHo/ps+FXIFUYZIGvqaGBRt\njQQXZ7VbOdKSy7+yX+A3+/7EJ5Xb6LP2syhsHj/JeIBfznuEFVHnjevniVKu5Pb0dcwJmUlFVzVP\nHn2efkv/uJ1fEARBODmnJf9kZWVx3nnnATBz5kzy8/PHHisvLyc6OhpfX1/UajUZGRlkZmae9JiC\nggLmzRsux7906VL27dtHbm4us2bNQq1WYzAYiI6OpqioCIfDwa9//WseeeQRtFqts749QRDOkVqh\nJlIfTm1P3Vg56FJTOTJkJIrKP27pm9ZfZed8rqruGgBiRsroCu4hSCcq/7i7/Y2Z9FsHWBa5CLXC\ndZKoF4TNIUgbwN6Gg7QNdJzTuTKbjyJDxuzgGeMUnTBeLo+/iBRjInlthXw+DoleJ5Ldms+Rllzi\nfWNYFrnIKddwJ35evtw97RZum3IjaoWKd0s/4u9H/k1TX4vUoQnnqLanHoBoQ6TEkZy5aEMEXgq1\nqPwjfC/R8ksQXFOYdwgxPlEUtpeMS9VOZxiyWXi54C1+vuf3YxXE3MmHFZ/R2NfM0oiFpAekSh2O\nx0v0i2N6YDrlXZXkiYpW56SkswK1XEWMG45PTyTOJxq7w07NSPVyQXA1TX3NbCndyi/3/pEX8l/j\nWEcxsT5RrE+9lscW/4r1adcS5xvttOpxCrmCW6bcwPzQDKp7avnn0WfpHepzyrUEwRM5HA76LP3U\n9jSQ21pAZVeNSEQWTovSWSfu7e1Fr9eP/b9CocBqtaJUKunt7cVgMIw95u3tTW9v70mPcTgcYx9A\n3t7e9PT0nPQcTz31FMuWLSM1Vdz8CIKri/eNoaanjtreeqL0EVR21xChD8NbpZM6NOEspPgnQjkU\nmUqZG3r2FTUcDgfV3bUYvfzw9TKc+gDBZYy2/RKVf9yTzW7jq5rdqOUqlrpYUoRCruCSuAt4+dib\nfFK5jZunXH9W52npb6W6u5Y0/2Tx/uKCFHIFt6ev50+Z/+Djym1EGSKYGpg2bufvt/Szqfg9lHIl\n61PXukRbO1cgk8mYEzqLFP8kNpW8z9GWXB7LfIJL4lazMmqp27WMEoaNJv9EGSIkjuTMKeQKEvzi\nONZeTOdgF35evlKHNGnZ7DYcOFDKnTZ1dNaOipZfguCyFobNobq7lkNNR7gg5nypwzlO52AX/8l9\nhZqe4cX6F/JfozBsLtcmX4GXC21+OJmijlK2135NiC5orCKN4HxXJKwhv72Q98s/JT0gVYyPz0LP\nUC9Nfc2kGpM85t8v1jcaaoc3MCZ5QDUjwTMM2oY40pLLvoZDVHRVAeCt0rEi6jwWhs0lXB86ofHI\nZXJuSluLUq5gb8Mh/nH0P/xw1l34qMWcnCDY7Da6h3poN5swmTvpMJvoGBz509yJyWz6TnW5OJ8Y\nVscsZ1pgmpjXFE7KaTM4er2evr5vsjjtdjtKpfKEj/X19WEwGE56jFwuP+65Pj4+Jz3Hhx9+SGho\nKO+++y6tra3cfvvtvP76698bq9GoQ6n0jEGnJwkKEgMATzdzIJWddXtptjbhLVNjtVuZEZ4mfvZu\nKiAwBUOON6Wd5QQG6s9610BLXzs9ll4WRM722NeCp35fYMBX40P7YLsHf4+e6+uqQ5gGO7kocTlx\n4RM7GXA6Lgpcwlf1uzjUfITrZ11CpE/YGZ9jZ/4uAFYkLhSvUSc513/XIAz8THsPv/7qr7xa+BaP\nrf4fQg3B4xLb0wffo3uoh3XTr2RarGgx+t+CMPDziHs5UHuEF7Le4oPyT8k3HePeuRuI9nO/BJLJ\nrjG7EYVMzvTYRFQKldThnLHZkVM41l5Ms62RpCDX2R0+mT47zNZBfr/jCZr62rhn7k3MjXCdinl9\nQ/0UmkqJ9YskPSZO6nAEwSOM5/vbBb6Lebf0Iw63HGVdxmVOqyhwpsraq/hr1jOYzF0sj13IJSkr\n+NfBV9jXmElVbw0PLryDOKPrth7vHerj9f1vo5DJeWjxHUT4T872tVIICjKwom0xX5Z/TX5vHqsS\nzpM6JLdTXlsKwMzIiZ/3ddb1MnRpvJAPDYMNk2qMKLgeh8NBeUc12yv2srfmMANWMwDTQ9JYEb+Y\nuRHTJb8n/FHQrRiO6PisbCdP5TzHr89/EH+tn6QxeQLx3uPazNZB2vo7aOsz0dbfTlt/B619HSN/\n10H7QCd2h/2Ex3qrtIQaggnUGQnSBRCgM1LUVkZWQx7P5r1ChCGUy1JXc17MXMl/vwXX47Tkn9mz\nZ7Njxw4uvvhisrOzSU5OHnssISGB6upqOjs70el0HD58mDvuuAOZTHbCY6ZMmcLBgweZP38+u3fv\nZsGCBUyfPp0nnniCwcFBhoaGKC8vJzk5mW3bto1dZ8WKFbz44ounjNVkEr0mXU1QkIHW1h6pwxCc\nLFAWAkBeQwntXcPloCO9IsXP3o0l+SVwpCWXguoKQrzPbrH2SHMhAGGaMI98LXj6+1ugVwAVXVU0\nNptccpe4cGIOh4MtBZ8hQ8bCoAUu+xpdE72aZ/NeYePh97hz2oYzOtbhcLCr4iAquYp4TYLLfo/u\nbLze3wz4c0PK1Wws3Myfdv2bn8x54Jx3Yhe0F7Ozaj9RhggW+M8XP//vkaBJ4hfzHuGdkg/JbD7K\nz754jDWxq7ggZrnH7NL1dDa7jarOOsK8Q+nsMANmqUM6Y+Gq4YSfrJp8UnSuUdXX08dw32Z32Hk2\n71VKO6oA+L89z7A0YiFXJV6K2gUmFg80HsZmtzHdf+qk+ZkIgjM54/1temA6WS05ZJYXEOcbM67n\nPhtZzdlsLNyM1W7jqsRLWBm1FJlFxkMz7+PD8k/ZXvs1v9z2Z65IWMPyqCUut5Pa4XDwUsEbdAx0\ncmnchfjY/MX73wRbEbqc3VUHeSv3I1J0aWiUXlKH5FayagqA4THeRL52nTl+cziU+KoNlLRWit9H\nQTJ2h523irewt+EQMNzae3nkYhaEzSVQ6w/gMveEl0atwTJo56va3fx62195cNbdGDUiAehsTab7\nU1fkcDjotfQdV6Wn47+q9/RZTpx7IEOGr5cPsT5R+GuMGL388NcY8dcM/2nU+KFVar5z3KLAhVwU\n2cRXNbs51HyEZzI38mbOB6yIPo/F4fNPeIzg2U6WAOi0VbnVq1ezd+9ebrjhBhwOB48++igfffQR\n/f39XH/99fzP//wPd9xxBw6Hg2uuuYaQkJATHgPws5/9jF//+tf87W9/Iz4+ngsvvBCFQsGGDRtY\nt24dDoeDhx9+GC8vMegWBHdi1Pjh5+VLRVcVvUO9yJCR6CfKpLqzVGMSR1pyKTSVnnXyT1V3DQAx\nBtfdcSecXLAukPKuStoGOgg9y9eAMPGKOkqp720kI3jG2OSAK5oeOIUYnyiOtuZR01NHtOH0q0HU\n9NTRMtBGRvAMNOJmyOUtGGkXsbt+P68Xvs1t6evOetf4gNXMm0XvDpebTl0rElhOg17lza3pN5IR\nMoM3i7awtfJzslvzuCltrVu2kZpsmvtbsditbv2zitSHo1FoKDGVSx3KpLSlbCt5bcdIMSZyVeIl\nvHpsE7vr91PSWcHt6euI0J959b3xJFp+CYLrWxA2h6yWHA40HpY0+cfusPNJ5TY+rfoKjcKLO6dv\nOK6trEqu5Jqky0j1T2bjsU28W7aVwo5SNky5zqVakmQ2HyWrJYd43xguiFkudTiTkq+XgVVRS/mk\n6ku21+7m4rjVUofkVkpNFajkKmJ8XKei47mSyWTE+kST01aAydwpkhiECedwONhSupW9DYeI0Idx\nRcIa0vyTXS6BdZRMJuOqxEtQyZV8Vr2dvx/5Nz+adbdLz0MKwiiTuZMddXuo72mkY3C4TZfFbj3h\nc1VyFf4aP6INkf+V2DP8tZ+X71nPTYbrQ9kw5Toujb+AHbV72NNwgPfKPuazqq84L2IhyyOX4Ovl\nOmNYQRpOS/6Ry+X87//+73F/l5DwTXn9FStWsGLFilMeAxAXF8drr732nb+/7rrruO66604aw/bt\n2880bEEQJli8bwxHWnLpHeojyhCOTqWVOiThHKT6JwFQ3FHG8sjFZ3WO6u5aZMiI9qAJgckkWBsI\nQOtAm0j+cSPbanYCsCpmmbSBnIJMJuPy+It4Mvs5Pqr4nPtn3HHax2Y2HQVgbugsZ4UnjLNrki6j\nrreBrJYcYnyiWBm99KzO80H5p5gGO1kTu5JIQ/g4R+nZpgVOIWF+HFvKtrK/MZO/HH6SC2LO56LY\nlahEdTeXVdtTD+DWyT8KuYJEvzjy2wvFYsoE21W3jx21ewjVBXPn1A3oVFp+OueHvF/+Mbvq9vGX\nw09yVeIlLItYJEkrn37LAIUdpUTqwwnWBU749QVBOD2p/kn4efmS1ZLDNUmXS1I1bNA2xKvHNpHd\nmkeAxp97pt9KuP7E7Y3TA1L4xfyHefXYJo51FPPoob9zc9r1TAlImeCov6vDbGJzyft4KdTcMuUG\nkcguoZXRS/m6/gDbanaxJGKBSyWIubLeoT4a+ppIMSZ6XIXoWN/h5J+q7loxXhUm3MeV29hRt4dQ\n7xB+NPMH6NXeUod0SjKZjMsSLkIpV7K18gueOPIMP5r1AzGuF1yWydzJ59U72NdwCJvDBgxvmAvz\nDsE4mtQzluAzXLVHr/J2+r2yUePH1UmXclHsCnbXH2Bn7R6+qN7B9prdzA/LYGX0MkJ0QU6NQXBd\nit/97ne/kzoIqfX3D0kdgvBfvL29xM9lkuga7OZYRzEAc0JmkRaQfIojBFemU2k51HSExr5mVkUv\nPeOdBja7jbdLPyTUO5jzo5Y4KUppefr7W/dQL0dacokyRBDvGyt1OMJpqOmp44PyT0kxJnJBzPlS\nh3NKARp/SjsrKDaVkWJMxF9jPOUxdoedjUWbUcmU3JBylcvugnJ34/3+JpfJmRKQwuHmbHLbjpHo\nF0vAGe4IKzGVs7nkfcK8Q7gl/UYU4md/xlQKFdOD0on3iaHEVE5+eyE5rflE+0Ti5+UrdXjCCRxo\nPExVdw1rYle69SJE91APhR0lRBkiJK80A54/hgPIbyvk1WOb0Ku8eXD2Pfh6+QDDyVjpAalEGyI4\n1l5M9kgFvlT/pHNuy3imslpyyG7NZ3nkYhL94ib02oLgqZzx/iaTyei19FFsKiPcO4TwCX4fN5k7\neSr7OUo6y0nyi+eHM+865TjSS+HFnJCZaJUa8tsKOdiUhdlqJsmYINkYcrQNY3N/KzekXE2Kf6Ik\ncQjDlHIlaoWa3LYChmyW46pICSd3rL2YIy25LAybS5JxYiu+O3v8ZnPYOdiUhb/GSJq/mNMWJs5X\nNbv5qOIzAjT+PDT7bnzcrNJHkjEelVxJdms+2S25pAekuUXykiuZDPenUjKZO/mw/FM2Fm6mqruG\nAK0/1yRdxq3pN3JR7EqWRCwgI2QGUwJSiPONIdQ7BF8vH7wU6gndJKNSqEj0i2Np5CKMGj8a+pop\nNpWxu24/9b1NBGiNYu7Og3l7n7gjlpj9FgRBUvHfKv+cbEz4nmcK7iLVPwmzzUx1T90ZH9vQ14zF\nbiHWR7T8clejOzVa+9skjkQ4XV9W7wJgdfRyaQM5TTKZjMsTLgLgo4rPcDgcpzym2FRGz1Avs0Km\ne9xOQ0/n5+XLnVM3APBC/uuYzJ2nfeyQbYjXi95Bhoyb0taKSjXnKC0gmV/Of4TzIhbS2NfMXw//\ni/fKPsZmt0kdmvBfanrqkSFziYSZczG6OCRaf02Mup4GXix4HaVcwT3Tbz1h+f1pgVP4xbyHSTUm\nkd9exKOH/k5hR8mExilafgmC+1gQmgHAgaasCb1uZVc1fz78T2p7G1gcPo8HZt552guKcpmcldFL\n+cmc+wnWBbK99msez/oXzf2tTo76xLbXfk1pZwUzAtNZGDZHkhiE4y0On0ewLpC9DQdp7muROhy3\nUNpZATDhiT8TIdoQiQwZlV01UociTCJ76w+ypWwrvmoffjTrLrdd2L8g5nyuSbqMrqEenjjyDA29\nTVKHJAiYzJ1sKn6f3+3/M7vr9+Pn5ctNadfxm/k/YUHYnAnf/HK61AoV50Us4LcLfsodU28iyhBO\ndmse/3f4KZ448gwF7cWnNYcueAaR/CMIgqQi9eGo5CpkyEgQOzc9QqpxuPVX0VksBFR1D98sx4jk\nH7cVpA0AoGWgXeJIhNPRNtDBkZZcIvRhY2373EG8byxTA1Ip66ykqKP0lM8fa/kVIlp+uaMEv1iu\nTbqcXksfz+a9isVmOa3jPqr4nLaBdlZEn0esT7STo5wctEoNN6RcxYOzfoC/xsiXNbv4V84L9FsG\npA5NGGF32KnrrSfUOxi1i05Kna5IfThapZZSkfzjdJ2DXfw79yUGbUPcPOUG4r61QeO/+Xr5cP/M\nO7gq8RL6LP08lf08W8q2YrVbnR6naPklCO4lxDuYOJ8YijpKzyiB+1wcajrCE0f/Q+9QH9cmXc6N\nKdecVfJ/tCGSn815kAVhc6jtqedPmf9gf0PmhC6a1Pc28lH5ZxjUem5MvUaSVovCdynkCq5IuBi7\nw84HFZ9JHY5bKO2sQCVXeuRcn0bpRbg+lNqeOrEpQpgQh5uzebN4C94qHT+cdReBI/Ow7mpF1Hlc\nn3wVPZZenjj6zFgLa0GYaJ2DXWwuGU362Tec9JO6lt8s+CkLw+a4TdtVuUzO7ODp/H9zfsSPZv6A\nNP9kSjsreDrnBR7LfIJDTUfE59UkIJJ/BEGQlEKu4MKYFayOWY5WqZE6HGEcpBgTkCGjqKPsjI+t\n7q4FEIu0bkytUOPn5Ssq/7iJ7bW7ceBgVfQyt5tMvjR+uPrPh6eo/jNks5DTmo+/xnhctTnBvSyN\nWMj80AxqeurYVPL+KRdeKruq2VG7hyBtAJfGXTBBUU4eycZEfjHvYaYFplFsKuNvR56mfcAkdVgC\nw5X3Bm1DRBkipA7lnMllcpL84mkzd9BhFq8vZzFbB3km5yU6B7u4ImENs0+joo5cJmdV9DJ+knE/\nwdpAvqrZzV+z/uX0Cgi5bQXYHLbTilEQBNewMGwODhwcbDri1OvYHXY+KP+UV469hUqu5L4Zt3N+\n1JJzusfRKL3YkHYdt6evQ46c14re5qWCNyYk6dlis/BywZtYHTZuSl2LQa13+jWF0zcjMJ143xhy\nWvOp6KqSOhyX1mfpp6G3iTifGI+txBrrE8WQ3UJDX7PUoQgeLq/tGK8cewsvhRcPzLiTMO8QqUMa\nF0sjF7I+dS39lgH+cfTZsc3BgjARhpN+PuC3+//Mrrp9+Hr5sn406Sd8rtsk/fw3mUxGin8iD8y8\nk/+Z+xBzQmbS0NvEK8fe4ncH/sLO2r0M2kTbOE8lkn8EQZDcmriVXJGwRuowhHGiU+mINkRS2V2N\n2Wo+o2OrumtQK9Qec/MyWQVrAzENdjIkBpAurXeoj30NmRi9/MgIniF1OGcsyhDOrODp1PTUkdNW\ncNLn5bUdw2wbZE7ITOQyMfR1VzKZjBtSribKEMH+xkz2NBw86XMtdiuvFb6NAwfrU9e6ffUTV6VR\nevGDabewPHLxcBuwrKfGkngF6YzulPSE5B/4pi2waP3lHHaHnZePvUFtbwOLwuaecQvQaJ9Ifjb3\nQRaGzR2rjLHPiZUxRMsvQXA/s0Omo5IrOdh42GnvDWarmefyNvJF9Q6CtAH8JOMBpgSkjNv5M0Jm\n8ot5DxHnE0NWSw6PZT7h9ISPDys+o6GvifMiFjI1MM2p1xLOnEwm46rESwB4r+xj0Ubje5R1VuDA\n4ZEtv0bF+gxvMqrqrpY4EsGTlZjKeD7/NRQyBffOuI1on0ipQxpXi8LncvOU6zFbzTx59DmRWCk4\n3fFJP3vxVfuwPnUtv13wUxa5cdLPiUQZwrktfR2/W/gzlkUuomeol7dLP+DX+x7l44ov6B3qkzpE\nYZyJFRBBEARh3KX6J2F32CnrrDztY8xWM019LcQYIsUCvZsLGmnD0Cpaf7m03fX7sNgtrIxe6rY3\nNJfGXYAMGVsrPsfusJ/wOZnNouWXp1ArVNw19Wa8VTreLvmAyq4TT65+VvUVTf0tLI1Y6NGTzK5A\nLpOzNvkKrk26nJ6hXp448gw5rSdPxhOcr6Z3JPlH7xnJP0l+w7/DpaYKiSPxTFvKtpLXVkiKMZEb\nUq4+qwoZGqUXN6Wt5fb09SjkCl4vepsXCl6n39I/rrGKll+C4J60Si0zgqbSMtBGxUnGbueifcDE\n41lPk9tWQLIxkZ/O+SGh3sHjfp0ArT8Pz76HNbErMZk7+fuRZ/i08suT3oOci6KOUrbXfk2wLpCr\nRxJMBNcT7xvLzKCpVHRVf+9mlMmutHN4DDc6pvNEsSPtzKq6xEYIwTkqu2p4JvdlHA4HP5h2M4l+\ncVKH5BTzQmdzW/o6huwWnsx+XrR/Fpyia7Cbt49L+jGwPvVaj0z6+W+BWn+uS76S3y/6OWtiV4ED\nPqn6kl/te5TNJR/QPtAhdYjCOBGrq4IgCMK4S/VPBIYnrU5XTU89Dhwe2QN8shldkBGtv1zXkG2I\nXXX70Cm1LAybK3U4Zy3UO5j5oRk09jVzuDn7O4/3BTz9PAAAIABJREFUWfo51l5MhD6McH2oBBEK\n4y1Aa+T29PXYHXaey9tI12DPcY/X9jTwRfUOjF5+oqrgBDo/agk/mHYzAM/lvcqO2j0SRzR51fY0\nABBpCJc4kvERrg/FW6WjpFNM/I63XXX72FG7h1DvEO6cuuGcJzkzQmbw87kPE+8by9GWXB499MQZ\nbQQ4FdHySxDc1+j9xoHGw+N63vLOKv5y+J809DWxNGIhD8y4A2+Vblyv8W0KuYJL4y/kwVl346M2\nsLXyC/5x9D+YzJ3jdo1+Sz8bCzcjl8m5dcqNooKli7s8YQ1ymZwPyj/BZrdJHY5LKjVVoJQrifWJ\nljoUpwn1Dkaj8KJStCoSnKC+t5Gnc15gyGbhtvR141rZzhVlhMzgzqk3YbPb+FfOi2e0tiAI36dr\nsJt3Sj7kt/v/xM66vfioDaxLvYbfLPgpi8LneXTSz38zqPVcGn8Bv1/8C65Nuhy9yptddXv53YG/\n8FLBG9SNzCsJ7ksk/wiCIAjjLs43FpVcRZHp9Afoo/18RfKP+wvWDif/tAyI5B9XdaDxML2WPpZG\nLESj9JI6nHNycdwqFDIFH1d88Z0J1yMtudgcNlH1x8Ok+idxRcIauoa6eSH/tbGfu81u4/XCzdgd\ndtanXotGqZE40sllelA6D8++F4NazzulH7K55AOn7IYXTs7hcFDbU0+wLhCth7z+5TI5SX7xdJhN\ntIldaOMmv62Qt0s+wKDSc+/029CptONy3gCtkYdm3c3FcavpHOziiSPPsPUEn89nQ7T8EgT3lWxM\nwOjlx5GWnHFrDb2/8TD/OPof+q0DXJ98JdenXDVhizZJxnh+Me9hZgZNpayzkkcP/Z3slrxxOfdb\nxe/ROdjFxbGrxdyIGwjRBbEkfD4t/W3sbTgkdTiSsNgsNPW1UNBexO66fWwp28pzeRv5U+Y/+Onu\n31LX20CcTzQqhUrqUJ1GLpMT4xNFc38L/ZYBqcMRPEhLfytPZj9Hv3WAm9LWMit4mtQhTYgZQVP5\nwbSbceDg37kvkd9WKHVIghvrGuzmndLhpJ8ddXswqA2sS7mG3y74KYvD56OUK6UOUTJeCjXnRy3h\n/y38GbdMuYFQXTCHm7N5LPMJnsp+nhJTmWht6qYm76taEARBcBqVXEmiXxyFHSV0DXbj6+VzymOq\nu4fL48Z58G6gyWK08k+LqPzjkuwOO1/V7EYpV7IsarHU4ZyzAK0/i8Pns7t+H/sbM1kSsWDsscym\no8iQMSdkpoQRCs6wKnoZ1d21HG3NY0vZVtYmX8G2ml3U9jawIGwOaQHJUoc4KUX7RPKTjAf4d+6L\n7KrbS4e5g1unrHP7JEN30W42MWAdYIq/Z73+k/wSyG7Np9RUTqDWX+pw3F5dTwMvFryOUq7g7um3\njvu/qUKu4JK41aQak3j52Jt8WvUlxaZSbp1yIwFneS3R8ksQ3JtcJmd+6Gw+q95Odms+80Jnn/W5\n7A4775d9wle1u9Eptdwx9SZS/ZPGMdrT463ScefUDextOMg7pR/xXP5GFofP59qky866Wk9m01Gy\nWnKI84nhgpjl4xuw4DRr4lZxsCmLTyq3MS90lsdtQLDZbXQOdtFu7qBtwES7uYP2gY6xP7uGek54\nnEquIkBjJM43hlXRyyY46okX6xNNsamM6p5a0jxsLC5Io8Ns4p9Hn6NnqJe1yVewIGyO1CFNqKmB\nadwz/Vb+k/sKz+a9yh1T1zMjaKrUYXkEh8PBoG0Is82M2TrIgNV8gq/Nw19bBzHbvvu13WEn1DuE\nKH04kYZwIvXhhOiCXKp6TtdgD1/W7OTr+v1Y7FaMXn6siV3J/LCMSZ3wcyIKuYJ5obOZGzKLYx3F\nbKveSWFHCYUdJcQYolgVs4yZQVORy0Q9GXchXuGCIAiCU6T6J1HYUUJRRynzwzJO+fyq7lp81Ab8\nvHwnIDrBmQK0AciQieQfF5Xdmk+buYMl4fPxURukDmdcXBS7gv2NmXxa9RXzQzNQKVS0D5go76ok\nyS8eo8ZP6hCFcSaTybgpbS2N/S3srNuLVqllW/UOfNUGrkm8VOrwJrUArZEfZ9zH83mvkddWyBNH\nn+He6bedViKwcG5qe+oBiDJESBzJ+Eo2JgBQ0lnOwnD3bVXpCjoHu/h37ksM2oa4Y+pNxPk6L+k+\nwS+Wn899iLeKt5DVksOjh57gxtSrzyohV7T8EgT3Nz9sDp9Vb+dA4+GzTv4ZsJp5ueAN8tuLCNEF\ncc/0WwnWBY1zpKdPJpOxJGIBCX5xvFTwBnsbDlLeWclt6evOuP1mh9nEppL38FKouWXKDS61eCZ8\nPx+1gdXRy9la+QVf1uzm0vgLpA7pjDgcDrqHekaSezpoHzDRYe6gzWyifaAD02DnCat5ymVyjF5+\nJBsTCdQYCdD6E6DxH/vTR61HJpNJ8B1JY3RMVdVVI5J/hHPWPdTDk9nPYRrs5LL4i1ge6f4b985G\nmn8y9824nX/nvsTz+a9xW/o6cT8wwmwdpLyjg4aOdsy2wZMk65gx2wZP+LWDM6/mIpfJ0So0aJQa\nFDI5JaYySkxlY4+r5ErC9WEjCUERROrDidCHoZ7gym8nSvq5KHYFC8LmiKSfU5DJZKQHpJIekEpl\nVw1f1uwkp7WAF/JfI1Ifzk/nPCD+Dd2E+CkJgiAITpFqHN59V2wqO2XyT+dgF52DXUwPTJ9UkwOe\nSiVX4q8x0irafrkch8PBtuodyJCxMnqp1OGMG18vH5ZFLuLLml18Xb+fFdFLyWrOBhAtvzyYRqnh\nB9Nu5i+ZT/Jp1ZcAXJ9yNTqVTuLIBK1Sy30zbuet4i3sa8zk/w4/xb0zbiNCHyZ1aB6tpqcO8Lzk\nnzDvEPQqb0pM5TgcDjFWPEtm6yDP5LxE52AXVyZcPCET5zqVltvS15EWkMLmkvd5qeANjrUXc13y\nFWdUGUG0/BIE9xesCyTBN5YSUzntAyYCtMYzOr5toJ1/575MU18zaf7J3J6+ftxaFp6rMO8Qfprx\nAO+Xf8LOur38X9ZTXJVwCcsiF53WZ5bdYefVY5sYsJpZn3otQbqACYhaGE8ropeyu34/X9Xs4ryI\nBS6X9D5gHaB1oJ32b1XuaTN/k+hjsVtPeJyv2kCsT9RxST2BWiMBGn/8vHxFktq3xI5UMa/qrpE4\nksnL7rDTM9SHXqVz69dmv6Wfp7Kfp6W/jdXRy7kw5nypQ5JUsjGBB2bcydM5L/Bi/utYp1jPqYKg\nOxuyDZHfXsSR5hzy24uw2C2ndZwMGRqlBo3CC6OXLxrvEDRKr7FEnuGvtWiUXmiUGrQjz9UqRx5X\nDP+dSq48blwzYDVT39tIbU89dT0N1PbWU9tTP9bdYfTaId7BYxWCovQRRBrC8XbCvF33UA/bqnfy\ndf0BLHYLRi8/LoxdwUKR9HNW4nyjuWvazTT3t/JVzW46B7uQIeZi3IV4xQuCIAhOEa4PxaDSU9RR\ncsqFmqqRQaHoae85gnWBFHaUYLaaPa7stTsr7SynpqeemUFTJd0l6wyrY5azp/4An1fvYFH4PDKb\nj6KUKSZNT/TJKkQXxK3pN/Cf3FeYEzKTGUHpUockjFDIFaxLvZZAbQAfVnzG37Ke5s6pG0RLNify\n1Mo/MpmMJL94jrbmUWwqI8WYKBKAzpDdYeflY29Q29vAorB5E9p+QyaTsTBsDgm+MbxU8AYHm7Ko\n6KritvR1pzX2Fy2/BMFzLAibQ3lXFYeaslgTt+q0jys1lfNc/kb6LP2cH7mEqxIvcbmFXZVCxdrk\nK0j1T+K1wrd5u/QDCjtKuCltLQa1/nuP3V77NaWdFcwITGdhmKhw5468FGouiVvNm8Vb+LhyG+tS\nr5E6JCx2K7mtBexvzKSoo/SEVR50Si2h3iEjyT1GAr+V5OOvMU54tQZ3ZlDrCdAYqeyuEcnqTmS1\nW2k3m2gbaKd1oJ22kf9aBzpoH2jHYrcSoDFyXfKVTA1MkzrcM2a2DvJ0zovU9zayJGIBVySsEa8l\nhiuK/nDWXTyV/QKvHtuE1W5j0SSpCGuxWSjoKOZIcw55bccYGkn4CdEFMSsiHblVNZKsM5LEM5as\n4zWWuOOlUDvldaRVakj0iyPRL+6beO1Wmvqaqe1poK63ntqeBup7G2jqayaz+ejY84xefkQZIkYS\ngsKJMkTg5+V7VnF2D/XwZfUudtfv/1bSz/ksCJuLSiT9nLMQXZBLjGuEMyNe+YIgCIJTyGVyUvwT\nOdycTVN/C2HeISd97mhGeKxI/vEYQdpACimhdaDd4xYh3dm2ml0ArIpeLm0gTqBXebMieimfVG7j\njaJ3aehrYkZguqgCMwlMC5zCHxf/8pQLK8LEk8lkXBi7ggCtPxsLN/N07ovckHIVi8PnSx2ax3E4\nHNT21BOgMTplF53UZgZP42hrHk9mP0eUPpwlEQuYEzJTJBifpi2lW8lrKyTVmMQNKVdJsogQrAvi\nxxn3s7XiC7bV7OSvWf/isvgLWRW9DLlMftLjRMsvQfAcs4On83bJBxxoPMxFsStP671ob/1B3ip5\nD4B1KdewOMK1xxDTAqfwi3kP8+qxTeS3F/LYob9z85QbSPVPOuHz63sb+aj8MwxqPTemXiMWed3Y\nwrC5bK/dw76GQ6yIWkLo98yBOVN9byP7Gg6R2XSUPms/MFyVJsYn8jsVfLRK16ie5SlifaLJasmh\nbaBDVPA6B2armdaBjm8l9nyT5NNh7jxhIptWqSHUOwQftYHCjhL+nfsSM4KmsjbpcrdpA2+xWXg2\n7xUqu2uYGzKL65OvFJ8J3xLrE82PZt3FU9nP83rR29gcVs6LWCh1WE5hsVsp6ighayThx2wbBCBI\nG0BG8Axmh8wg3DuU4GAfWlt7JI72eCq5kihDxMhawHCClt1hp22gfSQhqGGsUlBuWwG5bQVjx3qr\ndER+q0JQlCGcYF3QSe8Ve4Z62Vazk911w0k/fl6+I+29RNKPIIjfAEEQBMFpUoxJHG7Opqij9HuT\nf6q6apAhI8YncgKjE5xpdGd2S3+rSP5xEfW9jRxrLybRL26sH72nWRF1Hrvq9pLVkgPAnFDR8muy\ncLXS+sLx5oTMxOjlx3/yXuaNondpG+jgsvgLv3fBXzgznYNd9Fr6jtt150nmhMzEW6VjT/0BctuO\n8WbxFraUbWVu6GzOC19ApCFc6hBd1s66veyo20Oodwh3TrtJ0moZSrmSKxMvJtU/iVePvcUH5Z9S\n2FHKLVOux8/L94THiJZfguA5NEoNM4OncajpCGWdlSQZ40/6XJvdxntlH7Ojbg/eKh13Td1AkjFh\nAqM9e75ePtw/8w6+qtnNhxWf8VT286yKXsal8Rcc13bCYrPwcsGbWB02bko9dYUgwbUp5AquTFjD\nf/Je4f3yT7ln+q0Tdu1+ywCHm7PZ33iImpFKkAaVnpXRS1kYNvd75+OE8RPrO5z8U9VdI5J/vofD\n4aDX0kfrQBut/d9U7hlN8Omx9J7wOF+1gXjfGAK1AQSN/BeoCyBQG4C3UjeWKNPQ28RbxVvIac2n\nsKOES+JWc37kEperGPdtNruNFwpep9hUxvTAdDakXSfulU8g2hDJg7Pu5smjz/FW8XtY7TbOj1oi\ndVjjwmq3UtRRypGWXHLbChiwmgEI0Bg5L2Ihs0OmE6WPcMuEMLlMTrAuiGBdEBkhM8b+vmuwezgR\nqLdhLDGo2FRGsals7DkquYoIfdhxFYJ81AZ21u1ld90+hkaSfi6MWcHCcJH0IwijxG+CIAiC4DSp\n/okAFHWUnnQwbnfYqempI0QXJHYdeZBvkn/aJY5EGPXlWNWfiWv1MdG0Sg0XxJzPe2Ufo1FomBbg\nfmWeBcFTJfjF8pOM+/l3zkt8Ub2D9oEONqRdh0q0ExgX37T88txE6jT/ZNL8k+kc7GJ/QyZ7Gw6x\np/4Ae+oPEOsTzZKIBWQET0etUEsdqsvIbyvknZIPMaj03Df9NpcZa6f6J/HzeQ/zetHb5LUV8uih\nv7M+de13WjeKll+C4HkWhM7hUNMRDjQdPmnyT79lgBcLXqewo4RQ7xDunX4rgVr3WkiXy+SsjllO\nsjGBFwveYFvNTopNZdyWvm7s/ezDis9o6GtiScQCt2xPI3zXtMApJPjGkdd2jLLOSqcmZdsddso6\nK9jXkEl2ax4WuxUZMqYGpLEofC5TA9JcOtnBE8X6DG+yquyuYe4k34hkd9jpMHeeoD3X8J+DtqHv\nHCOXyfHXGIk0hBOoDSBQ6z+S5BNIoNb/tMf44fpQHpp9Dwcas3i//GPeK/uYg41Z3Jh6NfG+seP8\nnZ47u8POq4WbyGs7RooxkdvT14nf3e8RoQ/jodl388+jz/JO6YdY7VZWxyyXOqyzYrPbKDGVk9WS\nQ05rPv3WAWC4JdaisHnMDplOjCHKLRN+Toevlw++Xj7HjYEGrAPU9TR+UyGot4Ganjqqumu+c7yf\nly9XxZzPwvB5IulHEP6L+I0QBEEQnMZfYyRYF0hpZzk2u+2ENy9NfS2YbYPEiJZfHiVIOzyh2TrQ\nJnEkAoDJ3Mnh5mxCvUNID0iVOhynWhqxiJzWfNL8k0VSgSC4mGBdED+ecz/P5r5CVksOpsFO7p52\nK3q1t9Shub1vkn88v9qen5cva+JWcWHsCgrai9hTf4CC9mKqumt4t/Qj5ofOZknEgkm/y722p4EX\nCl5HKVdwz4xbCdD6Sx3ScQxqPXdPu5Wv6/ezpWwrz+a9wtKIhVyVeCnqkc9v0fJLEDxPkjEef42R\nIy25rE26Ao3S67jHW/pbeSb3ZZr7W0kPSOW29HVo3bjFY4xPFD+f+yCbSz7gYFMWf8p8guuTr8LP\ny5fttV8TrAvk6sRLpQ5TGCcymYyrEi/hr1lP8V7Zx/wk4/5xX7Q1mTs50JjFgcZM2swdAARrA1kY\nNpd5YbNPWklPcL4ofTgKmeKEi9STQUNvE4ebs8lpK6C1vw2bw/ad56jlqrHKPYEj/wVpAwjSBWD0\n8hu3pBe5TM6i8LlMD5rCB2WfsK8xk8eznmZR2DyuSFyDXuUa958Oh4NNJe9zuDmbOJ8YfjDtFjGP\ndRpCvUN4aPY9/OPos7xf/glHW/OI8A4lzDuEMO9QwvQh+Kp9XDJpxu6wU2qqIKslh+zWPPosw+0Z\nfdU+nB+ZweyQGcT6RE3ayk9apZYkY/xxCeIWu5XGvibqeoYrBLUNtDM1MI1FIulHEE5K/GYIgiAI\nTpVqTGZ3/T4qu2tOuOupursW+GaHjOAZAjRG5DI5Lf0i+ccVbK/9GrvDzqroZR5/A6lWqPhxxv1S\nhyEIwknoVd78cOZdvFb0Noebs/lr1lPcN+N2gnVBUofm1mrGkn8mT/sruUzOtMApTAucQvuAiX2N\nh9jfcIiddXvZWbeXBN84zotYwMzgaZNuUrBzsItncl9iyDbEnVM3uOw4WyaTsTRyEYl+8bxU8Aa7\n6/dT0lnB7enriNCHiZZfguCB5DI580Mz+LTqS7Jb81gQNmfssaKOUl7If41+6wAro5dyZcLFHnHv\nolFquHnK9aT5J/NW8RZeLdyESq5ELpNz65Qb8RIV6zxKnG80s4Knc7Qll6OteeOSwGqxW8lrO8b+\nhkwKO0pw4EAtVzE/NINF4fNI8I11yUXuyUalUBGpD6eupwGLzTIpkjjaBjrIas7mcHM2DX1NwHCC\nT5QhYqxyzzdJPoH4qPUT+lrVq7xZn7aWBWFzeat4C/saD5HbVsCVCRezIGyOpL83DoeD98s/YU/9\nASL0Ydw34/bvJMQKJxesC+Lh2ffycsGbVPfUjq0vjNIqtSPJQMP/hY8kBRlUE/sahOGEn/LOSo60\n5HK0JW+stZ1BrWdpxCIyQmYQ7xvjEWMeZ1D9/+3dd3xb9b3/8beWLdmyLXnv2I5HpnESOzsBApRV\nNpfRXwOFll4oHdDSW9rSlkJugY5fB+1tGYX+mgJlFkjbkEISCNl7OIkdJ3G894j3ks7vDzsmuQkl\nQGxZyuv5eOQRWdKRPueB80XnnLc+H7NVqWHJSg3gLsfAmXZ2nQEDAIy6CZGZWlO1XkXNJacM/xz7\nRkwanX8CisVsUbQ9UvXdDb4u5azX1d+lddWbFBEUroK4PF+XAwCyWWy6ddJNirZH6q2yVfr51t/p\ny7m3juhohEBX0V4lV3CEwoPCfF2KT0Q53Loi42Jdlnah9jTu0/tVG1XUUqJDR0sVWvKGZifka37i\nrLMiZNYz0Ks/7HpWrb1HdfX4yzQtdqqvS/pIic54fTv/a3r90D/0XuV6/XTr47o8/SJGfgEBanbC\nYPhnY83W4fDPmsr1ernkTZlk0ucn3qA5x4WCAkVB/DSlR6Tqmb3Pq6ytQp9N/wwdkAPUlRmXaFdD\nod48tFy50ZNk/YQh5KqOGm2o2aLNtduHu0Okh6dqTkKBpsed49ddsQJVWkSqytorVNlRrfSIcb4u\nZ0S09bVre91uba3bqdK2MkmSxWTR1OhJKojL05ToSWMu1Djelab7C76h1ZVr9Y/St/WXope1oWar\nbsq5RonOeJ/UtKJsld4pf09xITH6Wt4dCrGNjfG8/iTaEan78u/WgHdA9V2NqumsVU1nnWo661Td\nWavSo2U6fPTICduE2kKGOwQlDoeD4s94N2Kv4VXp0fLBDj/1u3W0r13SYCDt2LjqTFcGgR8AI4Lw\nDwBgRGW7x8skk4pbSvRZfeakx8vaKmQ1W5XkTPBBdRhJMSHRqm8qUld/l0JsIb4u56z1ftVG9Xr6\ndGnahZ/4pCMAnGlmk1lXjL9EUY4ovVD8qh7f8aQ+P/EGFcRP83Vpfudob7uO9rVpavREX5ficxaz\nRXmxU5UXO1X1XY1aX71ZG2q2aGX5Gq0sX6Mcd6bmJ83WOdGTz9hYgbHEa3j17N7nVdFRrXmJM3Vh\n6rm+Lum0BVlsuiH7ak2MzNbS/S/pjUPLJYmRX0AAinZEKcuVoZLWw6rvatDqirVaU7VBTluovjz1\nVo13pfm6xBET7YjSt6Z/RVWdNUpxBv6ozrNVbEi0FiTN0XuV67S2epPOS5532tt2D3Rra91Obaje\nqrL2wU4WTluoLkhZqNkJ+T4LKuD0pIWn6D1JR9oqAir809XfrV0Nhdpat1PFLQdlyJBJJmW7M1UQ\nl6e8mClj/ryfxWzRhannakbsOXq55E3taijUI1t+pQtSFurS9AtHNbD0bsU6LTu8Qu5gl76Wd4fC\ngpyj9t6ByGq2KtEZf9L62O/pV11Xw3Ag6Fgo6FDrER1sLT3huWE252AQyBl/XLeguI/1e20Yho60\nVWh7/S5tr9+t1t6jkqRQa4jmJszUjLhzlOXKCMjjUABjC1eAAAAjymF1KC08RUfaKtQ90C2H9YNv\nMvR5+lTVWatxYSl88A1AsSHR2tsk1Xc3Ks02NsdNBLp+T7/erVwnu8Wu+UmzfF0OAJxkbmKBIu0u\nPbVnqf607wU19TTr4nGLGF3wMVR2DI384iLiCWJDonV15mW6POMz2tVQqLVVG1XcclDFLQcVFuTU\n3ISZmpc4U1GOSF+Xesa8WrJMhU37NcGdpRuzr/HLf0dToyfpezPv1dJ9L6msvUL5dC0EAtKshHyV\ntB7Wz7f+Tp0DXUpyJug/p35BUQ63r0sbcRazhdEVZ4FL0y7QppqtWl76jmbFz/i3XXoMw1BJ62Ft\nqNmiHfV71O/tl0kmTYmaoDmJMzUlagJf5PETx0atlh4t0/kp831czafT5+lXYdN+ba3dob1NRRow\nPJIG9zE/Lk/TY3MVERzu4yo/PrfdpS9PvUV7GvfppQNv6O3yd7W1bqduyL5KuTGTR/z9N9Rs1csl\nbyg8KExfn/Zlue2uEX/Ps5XNYlNyWKKS/9do7D5Pn2q76lXTcSwUNNgx6EDrIR1oPXTCcyOCwpQw\nNDLsWJeghNC44TXdMAyVt1dqe/1uba/freaeFkmSw2rX7Ph8TY87RxPcmVz3ADCq+NQIABhxEyKz\nVNpWrpKWwyccSFW0V8treJUWQavrQBTrGBzRUN/VOHwCBKNrc912tfW166LU804I3gHAWDIhMkvf\nmvEV/c+uZ7Ts8Ao1dDfpcznXcYLsNFW0D4V/wgj/nIrNbFV+XJ7y4/JU21mntdWbtKlmm1aUrdK/\nylZrYlS2FiTO1uSoCX79O/duxTq9W7lOCaFx+tLUz/v1vriCI/S1aXfI4/X49X4A+HDTYqbqpQOv\nq3OgS7nRk3XrpJtktwb7uizgjAkLcuqicedr2eG39E7Zu7pi/CUnPae196g21mzThpotauxukiTF\nOKI0J6FAsxJmyBUcMdpl41OKcUQp1BaiI20Vvi7lE/F4PSpqKdGW2p3a3VioXk+fJCk+NE4FcXma\nEZunmJAoH1d5ZkyNnqQcd6aWH1mpd8rf0xN7/p+mRk/Sf2RdNWJB1B31e/Tc/pcVYnXoq3lfYrSt\njwRZgpQalnxSELdnoFd1XfWqPhYIGgoHFbWUqKil5ITnuoNdig+NVUN30/D6bbcEa2b8dE2PzdWE\nyGzZCG0C8BFWHwDAiMtxZ2n5kZUqaik5IfxzpK1ckpQWRvgnEMWEfBD+wejzGl69U/6eLCaLzks5\n/TbjAOALic54fTv/a/rD7me1sWarWnpa9aUpixViI7j4UY6Ff1LD6SLwUeJD43R91pW6MuNS7ajf\nrferNmpfU7H2NRXLFRyhuYmD3YD87WLbnsZ9eqXkTYUFOXVX7m0BE/gl+AMELrs1WLdOukltvW2a\nnzRbZpPZ1yUBZ9yilPlaU7leKyve14LkOXIFR2jAO6A9jfu1oWaL9jUVy5Ahm9mmWfEzNCehQJmu\ndL/s3IdBJpNJaeGp2ttUpPa+Dr8Y5+Q1vDrUekRb63dqR/1udfZ3SZIi7W6dmzxP+XF5SgyND8jf\nyyBLkK4af6lmxk/Xi8V/057GfSpuLtFl6RdpUcqCM/pZdF9TsZ7d+7yCLDbdnfdFJTkTzthr48yw\nW4M1LjxF48JPvE7RPdCj2uNHh3UMdgra33wIiaDIAAAdQ0lEQVRAQZag4U5YkyJzZLPYfFQ9AHyA\n8A8AYMSlR6QqyBKkouaDJ9xfNvRNmLQIusIEomOdfxq6Cf+MtuqOWr1buU71XY2anZDvdxcxAZyd\nIoLDdM/0O/WnvS9od+Ne/WL7/+grubefFSNAPo2K9iqF2ZyKCPK/tvu+EmSxaVbCDM1KmKGqjhqt\nrdqozbXb9c/St/XWkZWaEjVR85Nma2Jk1pi/IF3RXqVn9j4vq9mqO3O/EFBjzAAEtryYKb4uARhR\nQZYgfTbjYj1X9LJePvCmIu0uba7dro7+TkmD45PmJORrRlzevx0LBv+SPhT+OdJWrqnRk3xdzikZ\nhqHKjmptqduhbXW71Np7VJIUZnPq3OS5yo+bpvTw1IAM/JxKQmicvjHtP7W5drteO/h3vX7on9pU\nu0035VyrTFf6p379g62lenLPn2U2mXRn7m10R/czDqtd6RHjlB4x7oT7u/q7ZTNbCfwAGHMI/wAA\nRpzVbFWWK0N7m4rU0tM6PM/4SFu5nLZQRdm5SBGI3HaXrGYrnX9GSfdAj7bV7dT6mi3DwbqIoHBd\nPG6RjysDgNMXbAnSHVMX67WDf9fqirX62bbHdVfubSd9+w6DOvo71dTTokmROWfNyfkzLcmZoBtz\nrtFV4y/TtvqdWlu1Ubsb92p3415F2d2alzhLcxILFKMwX5d6kpaeVv1+17Pq9/Tri1M+z4UEAADG\nmNkJM7SqYo12NuyRJDltoVqUskBzEgqU6Iz3cXUYCcc+jx05OvbCP3VdDdpat1Pb6naqrqtBkmS3\n2DU7Pl/58XnKdo0/azsvmkwmzUqYoSnRE/XGoeVaV71Jv9z+e81OyNc14y+XMyj0E71ueVulfr/r\nWXkMj/5z6q3Kdo8/w5XDV+hSDGCsIvwDABgVEyKztLepSEUtBzUnIV/tfR1q6mnR5KgJXKwKUGaT\nWdGOKDV0N8owDP47jwDDMHSwtVQbarZoe/1u9Xv7ZZJJk6MmaG5CgaZET5SVGdMA/IzZZNb1WVcq\n2hGlVw68qV9u/4Num/w5nXPc6FAMqmyvliSlhCX5uBL/Z7cGa17iLM1LnKWytgqtrdqkrXU79Obh\nt/T30n9pYkymMpzpynFnKjUs2ecXRnoGevWH3X/S0b42XZN5uabFTvVpPQAA4GRmk1mLJ96g9yrX\na2r0JE3lGD3gHfvSQmlbuY8rGdTS06pt9bu0rW6nyofGBdvMVk2LzVV+XJ4mM6roBKG2EH1uwnWa\nk5CvF4pf08aardrTsE9XZV6qOQkFH6sraE1nnX6762n1enp12+SbNSV64ghWDgDAID5pAgBGxQR3\nliSpqPmA5iTk68jQQTDf5A9ssY5o1XbWqaO/0y9mnfuL1t6j2lyzXRtqtqh+aKxatCNKcxIKNCt+\n+nB3LQDwZ+clz1OU3a1nCp/TU3v+rGuzPqvzk+cTJj1OxdAJfMI/Z9a48BSNC0/RtVmXa0vtDm2o\n2ap99SXaW39Ay7RCdotdWe4MTXBnKScyU/EhsaP6e+k1vHp273Oq7KjWvMRZuiBl4ai9NwAA+HjG\nhafolkk3+roMjJIQm0NxIbE6fLRMf9r7giwmiyxmi6xmy+Bt07HbVlnMZllNFlnMVllMZlnM1qGf\nj3/ecbeP3X/cNlaz9YP3MFlkNpnVOdClHfV7tK1upw62lsqQIbPJrElROcqPzVNuzGRGzX2E9Ihx\n+k7+1/Ve1Xr9/fAKPV/0qjbWbNVNOdcqyZnwkds3djfp8R1PqbO/S5+bcJ1mxOWNQtUAABD+AQCM\nkoTQOIUHham4+aAMwxgeS8R4gsAWExIlSarvaiT88yl5vB4VNu3X+uot2tdcLK/hlc1sVUHcdM1N\nLFCmK/1jfQMJAPzB1OhJunfGXfrDrmf1askyNXY36fqsK1nvhhD+GVkOq0MLk+dqYfJc2cNNWn9w\nl4qbS1TcclB7GvdpT+M+SVJEUJiyh4JAE9yZIx7CfaVkmQqbijQxMls3Zl9NIA4AAGAMyY2epLfL\n39WWuh2+LkXjI9KVH5enabFTOS/3MVnMFi1KWaBpMVP1asky7WjYo0e3/FrnJ8/XZekXyW4NPuV2\nrb1H9ZsdT+loX5uuy/ys5iXOGuXKAQBnM8I/AIBRYTKZlOPO0pa67arurNWRofDPuPBkH1eGkRTn\niJEk1Xc3arwrzbfF+Knaznqtr9mszTXb1d7fIUlKDUvW3MQC5cflyWFlxjSAwJYalqz78r+q3+96\nVu9VrldTd4tum/y5Dz3ZejapaK9SiNWhKLvb16UEvLBgp6bH5mp6bK4kqam7RcUtB1XcUqLi5oPa\nUrddW+q2S5JiQ6KV487SBHemst3jFWILOWN1rK5Yq/cq1ykhNE5fnPJ/fD5+DAAAACe6avyluiB1\noQa8A/IYHg14PfIYHnm8Hg0M/T14/4A8hveD28fuP+45J2/jkccYkMfr1YBxbJvjb3tk1mCXnxlx\n5yiS44RPzW136UtTF2tvU5FeKn5dKyvWaFv9Lv1H9lU6J3ryCUH8jr5OPb7jKTX1NOuytAu1KJUO\nnQCA0UX4BwAwaiZEZmpL3Xbtbz6gI20VinFEyWkL9XVZGEExIdGSpIauRh9X4l96Bnq0vX63NtRs\n0eGjZZKkUGuIzk+erzmJBafVYhgAAkmk3a1vzviK/lj4FxU27devtv9eX5h8s+JD43xdms90D/So\nvrtROe5MOr/4QJTDrbmOAs1NLJBhGKrprFPRUBCopPWQ3q/aoPerNsgkk1LCkpTjztSEyCxlRKQp\nyGL7RO+5p3GfXi1ZprAgp+7KvZ0AMAAAwBhkMpnoshOAJkdN0PdnfUsrylbp7bJ39dSeP2tK1AT9\nR/bVinZEqnugW7/d9bRqu+q1KGWBLku/yNclAwDOQoR/AACjZkJkliRpXfUmdQ90a3JUjo8rwkiL\nHQr/1Hf7JvxjGIZaeltlGJLbHjGmx8QYhqHDR8u0oWaLttXvUp+nTyaZNDEyW3MSCpQbM1k2Mx/d\nAJy9HFa77sq9TS8e+JvWVW/Wkk3/V3kxU3Rx2gVKCUv0dXmjrrK9WhIjv8YCk8mkRGe8Ep3xWpSy\nQB6vR2XtFSpuPqiilhKVHi1XeXul3i5/V1azVRnh45QTmaUcd6ZSw5JOq3tPRXuVntn7vKxmq+7K\nvU1RDr7FDQAAAIymIItNV2RcrJlx0/TXA6+rsKlIxZt+oUvSLtC+piJVtFdpbkKBrs38LF/QAAD4\nBFeQAACjxhUcofiQWNV21UuS0sJTfVwRRlpEULiCzDbVdzWM+Ht19XerurNW1R01quqsVXVHrWo6\na9U90CNJsposinJEKcYRpZiQKMU4ogdvO6IVaXf5bGzG0d52ba7dpg01W1U39G8jyu7W7NRzNTsh\nnxbNAHAci9mim3Ou0+SoiXrryErtaNijHQ17NCVqoi5JW6T0iHG+LnHUVLRXSiL8MxZZzBZlRKQp\nIyJNl6ZfqF5Pnw62lg6PCDvQekgHWg9pmQZDbVmu8UOdgTIVFxJ70oWClp5W/X7Xs+r39OtLUxdr\nXHiKb3YMAAAAgOJCY/X1vDu0pW6HXiv5u5YdfkuSND02VzdPuI7gDwDAZwj/AABG1YTIrOPCP1y4\nCHQmk0kxIdFq6G6SYRhn5OB3wDuguq4GVXXUqLqjdijwU6uW3tYT31smxYbEaEJktiwmsxq6mlTf\n3TgYsGk68TXNJrOi7O7BQFBIlKKPhYQc0YpyRJ7xjjser0f7mou1vnqLCpv2y2t4ZTVblR+XpzkJ\nBcp2jx/TXYoAwJdMJpPOiZms3OhJ2t98QG8dWanCpv0qbNqvHHemLkm7QFmujIA/4VpO5x+/EWwJ\n0uSonOGulx19nTrQekhFzSUqbjmo3Y17tbtxr6TB4HROZKZy3IN/HFa7/rD7Tzra16ZrMi9XXswU\nX+4KAAAAAA0el86Mn64pURO1/Mg76vcO6PqsKzifBwDwKcI/AIBRNSEyS+9WrpPFZFGy8+wb0XE2\ninVEq6qjRkf72uQKjjjt7QzDUHNPq6o7Twz51HbVy2t4T3huRFCYJkZmKzF0cORGkjNB8SGxslls\nJ71uZ3+XGrob1dDVNPh3d5MauprU2N2kfc3FUvOJzzfJJLfdNRQGilJMyAcdg6IdkQqyBJ32PtV1\nNWhD9RZtqt2mtr52SVKKM1FzEmcqPy5PobaQ034tADjbmUwmTYrK0aSoHJW0HNZbR1aqqGUwTJER\nMU6XpF2gSZE5ARsCquioUrAlSDGOKF+Xgo/JGRSq6bG5mh6bK0lq6m5WcctBFTWX6EDLIW2u3a7N\ntdslSQ6rQ90D3ZqfOEsXpCz0ZdkAAAAA/pcQm0PXZV3h6zIAAJBE+AcAMMqyXBmyma1KdiadMpiB\nwBMTEi1Jauhq/NDwz0eN7DomyBKk1LDkE0I+iaHxcgaFnnY9obYQhdpSTzl2rnugR43dTUOBoKFg\n0FBQqLjloIpbDp60jSs44oNgkCNa0cMjxSJlt9rV6+nT9vrd2lC9RYeOlkoavJC3MGmu5iYW0LEB\nAM6ALHeGstwZOtJWrreOrNKexn36n13PKCUsSZekXaDc6EkB9Q3MXk+f6jrrlRGRFlD7dbaKckRq\nrmOm5ibOlGEYqu6sVfFQV6CS1sOaEjVRN2RfHbBBNgAAAAAAAHx6hH8AAKPKbrXrnul3KtR6+mEN\n+LdYx2D4p76rUekR4z72yK6k0HglOhOU5IxXpN09ohc5HVa7UsKSThnI6fX0nSIYNHj7YGupSloP\nn7RNmM2pPm+fej19kqQcd6bmJhQoN2aKggi/AcAZlxaeqjtzv6DK9mqtKFulHfV79NSePyshNE4X\nj1uk6bG5spgtvi7zU6vqqJEhQ6nhBEgDjclkUpIzQUnOBC1KXXjGxqYCAAAAAAAgsBH+AQCMulN1\nXEHgOtb55/VD/9RfD/zt347sSnImKNEZ/6Eju3wp2BI0fDHuf+v39Kupp/m4QNAHI8WCFaxFcXma\nnVCgaEekDyoHgLNPcliivjjl86rtrNe/ylZrS90O/WnfC/pH6b/0mXGLNDN+mqxm/z0crmivkiSl\nOAn/BDqCPwAAAAAAADgd/nu2EwAA+IUkZ4KctlD1efuHR3YdC/kkOuPltPl/Fyibxab40DjFh8b5\nuhQAwHHiQ2N1y6QbdVn6RXq7bLU21mzVc0Uv65+lb+uicedpbkLBmAubno7y9kpJYnQkAAAAAAAA\nAEmEfwAAwAhzWO36ybwHZDKZRnRkFwAAHybaEambJ1ynS9Iu0MryNVpbvUkvHXhdbx1ZqQtSF2p+\n4mzZrcG+LvO0VbRXyWa2KS4kxtelAAAAAAAAABgDCP8AAIARZzFbfF0CAABy2126PvtKXZy2SKsq\n3td7lev0t4P/0L/KVmtRygItTJqrEJvD12X+W/2eftV01mlcWDL/fwUAAAAAAAAgifAPAAAAAOAs\nExbk1FXjL9WFqefq3cp1erdirZYdXqG3y97TeclzdX7KAjmDxuZYyurOWnkNLyO/AAAAAAAAAAwj\n/AMAAAAAOCuF2kJ0efpFuiBlgd6v2qiV5Wv0Vtkqrap4X/OTZuvC1HMVERzu6zJPUNFeJUmEfwAA\nAAAAAAAMI/wDAAAAADir2a12XTTuPJ2bPFfrqjfrnfL3tKrifa2p2qC5CQW6MPU8RTncvi5T0vHh\nn2QfVwIAAAAAAABgrCD8AwAAAACApCBLkM5Pma/5SbO1uWabVpSt1pqqDVpbvUkz46fr4nHnKzYk\nxqc1VrRXy2qyKCE01qd1AAAAAAAAABg7CP8AAAAAAHAcm9mqeUmzNDshX1vrdmpF2WptrNmqTTXb\nNCPuHOVGT1ak3SW33aXwoDCZTeZRqcvj9aiqs0aJznhZzRzOAwAAAAAAABjE2UIAAAAAAE7BYrZo\nVsIMFcRP086GQr11ZKW21u3U1rqdw88xm8xyB0fIbXfJHeyW2x4xGAwKHgwHRdpdclgdZ6Sems46\nDXgHlBKWdEZeDwAAAAAAAEBgIPwDAAAAAMC/YTaZNT02V9NipupAyyFVd9aqpbdVLT2Df5p7WnWo\n9YgMlZ5ye7vFrki7Sy57hCKDXXLb3UMBoQi57W65gsNPq5NPRXuVJBH+AQAAAAAAAHACwj8AAAAA\nAJwGk8mknMhM5URmnvTYgHdAR3vb1NzTOhwMaj4uINTS26rqztpTv65MCg8KG+weZHcNBYROvO20\nhaqig/APAAAAAAAAgJMR/gEAAAAA4FOymq2KckQqyhH5oc/pHuhWS89RtfQOdgs61jWodejn8vZK\nHWkrP+W2NrNVhga7ECWGJozQXgAAAAAAAADwR4R/AAAAAAAYBQ6rQw6nQ4nO+FM+7jW8autrPy4g\n1KLWnqNDHYRa1NzTqomR2Qqy2Ea5cgAAAAAAAABjGeEfAAAAAADGALPJLFdwhFzBEUpXqq/LAQAA\nAAAAAOAnzL4uAAAAAAAAAAAAAAAAAMAnQ/gHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/\nRfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAA\nAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA\n8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAA\nAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAA\nAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAA\nAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/ZTIMw/B1EQAAAAAA\nAAAAAAAAAAA+Pjr/AAAAAAAAAAAAAAAAAH6K8A8AAAAAAAAAAAAAAADgpwj/AAAAAAAAAAAAAAAA\nAH6K8A8AAAAAAAAAAAAAAADgpwj/AAAAAAAAAAAAAAAAAH6K8A8AAAAAAAAAAAAAAADgp6y+LgA4\nntfr1YMPPqji4mIFBQVpyZIlGjdunK/LAoBPZdeuXfr5z3+upUuXqqysTPfff79MJpOysrL0ox/9\nSGYzWVwA/qW/v1/f+973VFVVpb6+Pt11113KzMxkfQPg9zwejx544AGVlpbKZDLpxz/+sYKDg1nf\nAASMpqYmXXvttXrmmWdktVpZ3wAEjGuuuUZOp1OSlJycrDvvvJM1DkBAeOKJJ7Rq1Sr19/fr5ptv\n1syZM1nfAJwSKwHGlHfeeUd9fX168cUX9a1vfUuPPvqor0sCgE/lqaee0gMPPKDe3l5J0iOPPKJ7\n7rlHzz//vAzD0MqVK31cIQB8fG+++aZcLpeef/55Pf3003r44YdZ3wAEhNWrV0uS/vrXv+qee+7R\nL3/5S9Y3AAGjv79fP/zhD2W32yVxfAogcPT29sowDC1dulRLly7VI488whoHICBs2rRJO3bs0Asv\nvKClS5eqtraW9Q3AhyL8gzFl27ZtWrBggSQpLy9PhYWFPq4IAD6d1NRUPf7448M/7927VzNnzpQk\nLVy4UOvXr/dVaQDwiV1yySX6xje+IUkyDEMWi4X1DUBAuPDCC/Xwww9LkqqrqxUeHs76BiBgPPbY\nY7rpppsUGxsrieNTAIGjqKhI3d3duv3223XLLbdo586drHEAAsLatWuVnZ2tu+++W3feeafOO+88\n1jcAH4rwD8aUjo6O4dackmSxWDQwMODDigDg07n44otltX4wZdMwDJlMJklSaGio2tvbfVUaAHxi\noaGhcjqd6ujo0Ne//nXdc889rG8AAobVatV3vvMdPfzww7riiitY3wAEhNdee02RkZHDX7qTOD4F\nEDjsdru++MUv6o9//KN+/OMf67777mONAxAQWlpaVFhYqF//+tesbwA+EuEfjClOp1OdnZ3DP3u9\n3hMumgOAvzt+9m5nZ6fCw8N9WA0AfHI1NTW65ZZbdNVVV+mKK65gfQMQUB577DGtWLFCP/jBD4bH\nt0qsbwD816uvvqr169dr8eLF2r9/v77zne+oubl5+HHWNwD+LD09XVdeeaVMJpPS09PlcrnU1NQ0\n/DhrHAB/5XK5NH/+fAUFBSkjI0PBwcEnhH1Y3wAcj/APxpTp06drzZo1kqSdO3cqOzvbxxUBwJk1\nadIkbdq0SZK0Zs0a5efn+7giAPj4Ghsbdfvtt+vb3/62rr/+ekmsbwACw+uvv64nnnhCkuRwOGQy\nmTRlyhTWNwB+77nnntNf/vIXLV26VBMnTtRjjz2mhQsXsr4BCAivvPKKHn30UUlSXV2dOjo6NG/e\nPNY4AH5vxowZev/992UYhurq6tTd3a05c+awvgE4JZNhGIaviwCO8Xq9evDBB3XgwAEZhqGf/OQn\nGj9+vK/LAoBPpbKyUt/85jf10ksvqbS0VD/4wQ/U39+vjIwMLVmyRBaLxdclAsDHsmTJEi1fvlwZ\nGRnD933/+9/XkiVLWN8A+LWuri5997vfVWNjowYGBnTHHXdo/PjxfH4DEFAWL16sBx98UGazmfUN\nQEDo6+vTd7/7XVVXV8tkMum+++6T2+1mjQMQEH76059q06ZNMgxD9957r5KTk1nfAJwS4R8AAAAA\nAAAAAAAAAADATzH2CwAAAAAAAAAAAAAAAPBThH8AAAAAAAAAAAAAAAAAP0X4BwAAAAAAAAAAAAAA\nAPBThH8AAAAAAAAAAAAAAAAAP0X4BwAAAAAAAAAAAAAAAPBThH8AAAAAAAAw6l577TXdf//9vi4D\nAAAAAADA7xH+AQAAAAAAAAAAAAAAAPyU1dcFAAAAAAAAYOx68skntXz5cnk8Hs2fP18333yzvvKV\nryglJUVlZWVKTEzUz372M7lcLq1evVq/+tWv5PV6lZKSooceekjR0dFav369Hn30URmGocTERP3i\nF7+QJJWVlWnx4sWqrq7WnDlztGTJEh/vLQAAAAAAgP+h8w8AAAAAAABOac2aNSosLNQrr7yi119/\nXXV1dVq2bJkOHDigW2+9Vf/4xz80fvx4/fa3v1VTU5N++MMf6ne/+52WLVum6dOn66GHHlJfX5/u\nu+8+PfbYY1q2bJlycnL0t7/9TZJUU1Ojxx9/XMuXL9eaNWtUUlLi4z0GAAAAAADwP3T+AQAAAAAA\nwClt2LBBu3fv1rXXXitJ6unpkWEYSktL06xZsyRJV199te677z7NmzdPubm5Sk5OliTdeOONevLJ\nJ1VcXKy4uDhNnDhRkvTNb35TkvTaa68pPz9fLpdLkpSamqqWlpbR3kUAAAAAAAC/R/gHAAAAAAAA\np+TxeHTrrbfqtttukyS1tbWptrZW99577/BzDMOQxWKR1+s9YVvDMDQwMCCbzXbC/e3t7ers7JQk\nWa0fnJoymUwyDGOkdgUAAAAAACBgMfYLAAAAAAAApzR79my98cYb6uzs1MDAgO6++24VFhaqtLRU\n+/fvlyS9+uqrWrhwoc455xzt2rVLlZWVkqQXX3xRs2bNUnp6upqbm3Xw4EFJ0tNPP60XXnjBZ/sE\nAAAAAAAQaOj8AwAAAAAAgFNatGiRioqKdMMNN8jj8WjBggUqKChQRESEfvOb36i8vFw5OTlasmSJ\nQkJC9NBDD+mrX/2q+vv7lZiYqP/+7/9WcHCwfvazn+m//uu/1N/fr9TUVP30pz/VihUrfL17AAAA\nAAAAAcFk0E8ZAAAAAAAAp6myslK33HKLVq1a5etSAAAAAAAAIMZ+AQAAAAAAAAAAAAAAAH6Lzj8A\nAAAAAAAAAAAAAACAn6LzDwAAAAAAAAAAAAAAAOCnCP8AAAAAAAAAAAAAAAAAforwDwAAAAAAAAAA\nAAAAAOCnCP8AAAAAAAAAAAAAAAAAforwDwAAAAAAAAAAAAAAAOCnCP8AAAAAAAAAAAAAAAAAfur/\nA6FZTqEsfzMdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPQAAAJoCAYAAADr1y2qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fW9x/H3yd6TDCAEwkpAloBsQRAvoOIEKaDgal1I\nayutVmm1XrW2vdWrOOpVEVCQISqCgCxBmYIQVkISQggJIftkj7PuHyHHRBIIkJBw8no+HjzyO7/x\nPd8z8jmn6dvP12Cz2WwCAAAAAAAAAAAAAAAA0CI4NfcEAAAAAAAAAAAAAAAAAPyMQA8AAAAAAAAA\nAAAAAADQghDoAQAAAAAAAAAAAAAAAFoQAj0AAAAAAAAAAAAAAABAC0KgBwAAAAAAAAAAAAAAAGhB\nCPQAAAAAAAAAAAAAAAAALQiBHgAAAAAAgBZu5cqVio6OVnR0tNasWdPc07kk1fN/6KGHmuw+Kisr\ndfz48SYbHwAAAAAA4Eoh0AMAAAAAAICr3o4dO3Tbbbfpm2++ae6pAAAAAAAAXDaX5p4AAAAAAAAA\ncDkyMjL0wAMPNPc0AAAAAAAAGg0degAAAAAAAHBVs1gszT0FAAAAAACARkWgBwAAAAAAAAAAAAAA\nAGhBCPQAAAAAAAAAAAAAAAAALYhLc08AAAAAAABcedHR0ZKkuXPnavr06Vq1apWWL1+uhIQEmUwm\nRURE6LbbbtPMmTPl5uYmSdqzZ48WLFig2NhYGY1GhYaGauTIkXr88ccVGhpa732VlZVpyZIl2rhx\no5KTk1VcXKyAgAD16tVLEydO1IQJE+TkdP7/5ui7777T+vXrtX//fuXm5qq0tFQ+Pj6KiIjQ0KFD\nde+99yo8PPyc69566y3NmzdPvr6+2rt3r7KzszV//nxt2bJFGRkZcnFxUZcuXTRhwgRNmzbN/lib\nyt69e/X111/rp59+UlZWloqLi+Xt7a2wsDANGjRI06ZNU5cuXS44Tl5ent577z1t2rRJmZmZCggI\nUL9+/TR58mSNGjWq3uvKy8u1bNkybdiwQQkJCSopKZGPj486dOig4cOHa9q0aed9LS0Wi9avX6+v\nv/5ahw4dktFolLe3tzp16qRRo0Zp+vTp8vf3v6jnZPfu3ZoxY4Yk6Q9/+IN+85vf1HneunXr9Nvf\n/laS9Oqrr+quu+6S9PN7udq8efM0b948SdLChQs1ePDgWseNRqM++eQTfffdd0pNTVVZWZmCg4PV\nt29f3XXXXed9/hqLzWbT2rVr9fXXX+vw4cPKz8+Xt7e3unTpohtvvFG/+tWv5O3tXee11Y/32Wef\n1Q033KCXXnpJ+/btk4uLiyIjI/X0009r2LBhGjNmjNLT0zVjxgw98sgjeumll/T999/LZrMpIiJC\nv/nNbzRx4kT7uJWVlfryyy+1fv16xcXFqbCwUL6+vuratavGjh2rKVOmyMPD47LmBAAAAAAAGo5A\nDwAAAAAArZjJZNJjjz2mLVu21NqfkJCgf/3rX9qxY4c+/PBDvf3223r77bdls9ns56Snp2vJkiXa\ntGmTVqxYobCwsHPGP3jwoGbNmqXMzMxa+7Ozs7VlyxZt2bJFixYt0ptvvllnkCQ/P1+zZs3S3r17\nzzlmNBplNBp1+PBhffrpp3rnnXc0dOjQeh/r3r179cQTT8hoNNbaf+DAAR04cEArV67UwoULFRAQ\nUO8Yl6q8vFx//OMftX79+nOOFRQUqKCgQAkJCfrss8/06quv6rbbbqt3rOTkZL366qvKzs6278vO\nztaGDRu0YcMG3XrrrXrttdfk4lL7zz4ZGRl68MEHlZycXGt/fn6+8vPzdfDgQc2fP1//8z//o7Fj\nx55zv+np6XrqqacUGxtba7/RaLQ/hx9//LH+9a9/aeTIkQ16Xq60rVu36umnn1ZhYWGt/RkZGcrI\nyNC6des0ZswY/fOf/5SPj0+TzCE3N1ezZs3STz/9VGu/0WjUvn37tG/fPn388cd68803de2119Y7\nzpkzZzR16lTl5eXZ9x09elSRkZG1zisuLtb06dOVkpJi35eQkFDr9zU+Pl6/+93vdOLEiVrX5uXl\nac+ePdqzZ4/mz5+vt956S717977sOQEAAAAAgAsj0AMAAAAAQCv2n//8R/n5+erdu7dmzJihiIgI\nJSYm6t///reMRqN27NihRx99VFu3blXnzp310EMPqVu3bsrKytL777+vgwcPKisrS6+//rr+/ve/\n1xo7MTFRM2fOVGlpqby9vTVt2jQNHTpUvr6+Sk9P1+rVq7Vx40bt379fDz30kJYuXSovL69aY8ye\nPdse5hk2bJjuvPNOtWvXTiaTSSdPntQnn3yixMRElZaW6plnntHmzZvl7Ox8zuMsLy/X448/rpKS\nEk2dOlU33nijfHx8dPToUb333nvKysrSsWPH9Prrr+vFF19s9Of5r3/9qz3M06tXL02dOlWRkZFy\ncnLSqVOntHTpUu3fv19ms1l//etfdf311yswMLDOsaqDVSNHjtSUKVPUpk0bxcXF6T//+Y8yMjK0\nevVqBQQEaO7cubWue+aZZ5ScnCxnZ2fNnDlTw4cPl7+/v/Ly8rR161YtXbpU5eXlmjNnjtavX18r\nYJWXl6cHH3zQHgoZMGCApkyZok6dOsloNGrjxo36/PPPVVBQoEcffVQffPDBFevI8uWXXyorK8ve\n2WfKlCmaOnWqJNUKkuzcuVOPPfaYLBaLgoODNX36dA0cOFAeHh5KSUnRihUrtGfPHm3evFmzZs3S\nhx9+WOd76XKUlpZqxowZSkpKksFg0MSJEzVu3DiFhobKaDRq27ZtWrZsmbKysvTggw9q2bJl6tat\nW51jLViwQDabTQ8//LBGjx6tnJwcxcXFKSIi4pznx2q1atKkSbrjjjtUVFSkHTt2aNCgQZKklJQU\nPfDAA/YQzujRo3XHHXeoXbt2ysrK0urVq7V27VplZGRoxowZWrp0qbp3735ZcwIAAAAAABdGoAcA\nAAAAgFYsPz9fw4cP13vvvWdfbqp///4KDw+3ByS2bt2q3r17a+HChbUCN9dff73GjRunM2fOaMuW\nLbLZbDIYDPbjc+bMUWlpqcLDw7Vo0aJa4Yo+ffpowoQJ+vTTT/W3v/1NCQkJeuedd/T000/bz9mx\nY4f27NkjSbrpppv01ltv1Rp/6NChmjx5sqZOnarY2FidOXNG+/fv18CBA895nCaTScXFxXrvvfdq\ndY+59tprNXLkSE2cOFFlZWVavXq1nn/+ebm6ul7uU2uXkpKir776SpLUt29fffLJJ7WW9ho4cKDu\nvPNOzZ49W+vXr1dpaam2bdum22+/vc7xqgMTc+bMse/r16+fxo0bp+nTpys5OVmffvqp7rnnHvtS\nSOnp6dq1a5ck6cknn9Rjjz1Wa8xRo0apS5cu+tvf/qbS0lKtXr1aDz74oP34v//9b3uY57777tNz\nzz1X67UYNWqUxo8fr0ceeUQmk0lz5szRxo0b5enpeRnPXMP06NFDvr6+9tshISHq0aNHrXOqg0oW\ni0Xdu3fXggULFBQUZD/et29f3X777frnP/+pDz74QDt37tSyZcvswaDG8vrrryspKUkuLi6aN2+e\nRo8eXev4yJEjdfvtt+u+++5TaWmpnnvuOS1btqzOsaxWqx599FE99dRT9n3jx4+v87xbb71VL7/8\nsn3fmDFj7NsvvviiPczzzDPP6IEHHqh1/dixYzVq1Cg988wzKi0t1dNPP62vvvqq1ut/sXMCAAAA\nAAAXdv4F6gEAAAAAgMP705/+VCtgIlUFC2qGMebMmXNO9xwPDw8NHz5c0s/LX1Xbvn274uLi7OPX\nt+TO9OnT7Z1ClixZIpPJZD924sQJdejQQa6urpo1a1adAQJnZ2fdfPPN9ttZWVn1Ps6bbrqpzqWg\nOnToYO8mU1xcrLS0tHrHuBSJiYnq2LGj3N3d9cgjj5zzXFeruczWL5coqyk6Olq///3vz9kfFBRk\n7y5ks9m0dOlS+7GcnBz7dseOHescd9KkSZo8ebJ++9vfqk+fPvb9eXl5+uKLL+z3/eyzz9b5Wgwf\nPlyPPvqo/f6qr2kJVq1aZV+i7OWXX64V5qnpqaeesj8/CxcubNQ5FBYWavny5ZKkyZMnnxPmqda7\nd289/PDDkqTY2NhzljirqaGBo/rOi4uL044dOyRJN9xwwzlhnmp33nmn7rrrLknSsWPHtG3btsue\nEwAAAAAAOD8CPQAAAAAAtGLBwcH2Li41GQwG+5JLbm5uGjBgQL3XVystLbVvf/fdd/bt6tBPfUaN\nGiWpKkxz6NAh+/7p06dr48aNOnjwoGJiYuq9PiQkxL5dWVlZ73kjRoyo91jNwFFJScl553uxbrrp\nJq1fv16xsbG1OqP8Ups2bezb53sckyZNqncpqEGDBql9+/aSqkJV1SIjI+XiUtWo+e9//7s2btxY\nKzwlSe7u7vrv//5vPf7447W6HO3atUtms1lSVRDlfMtQ1QxznC/0caVVvx99fX1rhZV+ycXFxf5+\nTU5OPm+w6mLt2bNHZWVlki78O1EzeLZz5846zwkLC1N4ePgF79fFxUW9e/eu89j3339v354yZcp5\nx6n52ta87lLmBAAAAAAALowltwAAAAAAaMWqwx91qe4kExgYaA+D1HeOVNUVplp1dx5J9g48DXHq\n1Cn179+/1j4nJyf7+FlZWTp16pRSUlKUlJSkQ4cO1epgYrVa6x37fI+1Zvchi8XS4PlejJpdbXJy\ncnTq1CmdPHlSx48f1+HDh7V//3778ZrP5S/17dv3vPfTo0cPpaenKyUlRRUVFXJ3d1dgYKAmT56s\nJUuWKDMzU0888YS8vb01ePBgDRs2TMOHD1fnzp3rHC8hIaHB9x0cHKwOHTro1KlTta5rbtXvx6Ki\nojoDbPU5deqUwsLCGmUOR48etW/PmjXrouZQl7Zt2zbo+sDAQLm7u9d5LDEx0b7dr1+/847Ts2dP\nubq6ymQy6dixY5c1JwAAAAAAcGEEegAAAAAAaMW8vb0veE59YZ7zyc/Pv5TpqLCwsNZtm82mtWvX\natmyZYqNja3VBahadeDnQn65ZFhNNcM25wvTXI7vv/9eixcv1o8//qiioqJzjjf0cdS3XFS1wMBA\n+3ZBQYG909Jzzz0nNzc3ffrppzKbzSopKdHmzZu1efNmSVVdfG6++WbNnDmz1n3UXEqtZkem+rRp\n00anTp1SQUFBgx7PldBY78eWNAcfH58GXX++3/Hq19bJyanW+6YuLi4uCggIUHZ2dr2vbUPnBAAA\nAAAALoxADwAAAAAArdj5lk+6HNVLNAUGBmr+/PkNvq5mN5SKigrNnj271vJdBoNBERER6ty5s3r0\n6KH+/fvLaDTqj3/8Y6PNvbHZbDbNnTtXy5cvr7W/bdu26ty5s6Kjo3XttdfK19dX999/f6PcX7Wa\nHZRcXV315z//Wb/+9a+1fv16bdmyRXv37lV5ebkkKTU1Ve+9954WL16sDz/80L401cUGnKo7HDU0\noNRQ5+u+dCHV78fo6Gi99tprDb4uIiLiku/zl2p2fnr77bfP2zGqpssNydQMq/3Sxb621a9BY7+2\nAAAAAADgXAR6AAAAAABAowsICJAklZaWKjo6+pICAG+++aY9zNOrVy898cQTGjRo0DkBh5UrV172\nfJvSkiVL7GGeTp06afbs2Ro+fLj9Oaq2e/fuBo1XUFCgDh061Hs8NzdXUlVHFV9f33OOh4SE6N57\n79W9996ryspK/fTTT9q+fbvWrFmj9PR0FRYWas6cOVq7dq2cnJxqzTM3N/eCQZTq+/f392/Q42lo\nd6Ti4uIGjVeX6s4yFRUV6tGjxyWPczlqPh9BQUHNNo+aqudktVqVn59/3u5PJpPJ3i2ooa8tAAAA\nAAC4dPznNAAAAAAAoNF169ZNUlWXnbi4uPOeu23bNn300Udav3698vLyJFV1M/nss88kSX5+flqw\nYIHGjBlTZ7eS06dPN/LsG9fixYslVXVD+uCDD3TLLbecE+aRpIyMjAaNl5SUVO8xm82mw4cPS6rq\nRlPdgclqterUqVPauXNnrfPd3Nw0ZMgQ/eEPf9C6devUr18/SVJKSopOnDhhH6fawYMHzzu3rKws\npaenS5I6d+7coMdTs0tUWVlZveddzutc/X48efKk/T1WnzVr1mjBggXauHFjnUu8Xe4cJCk2Nva8\n5544cULvvvuuVq1apZSUlEabwy/VfG0vNKcjR47IZDJJavhrCwAAAAAALh2BHgAAAAAA0OhGjBhh\n364OtNTFYrHoxRdf1GuvvabZs2fbAx15eXn2jiyRkZH1LjtkMpm0bt26WuO1NCdPnpRUFUw6X2ed\nr7/+2r5dvURUXb755pt6j3333XfKzs6WJF1//fX2/XPnztXYsWN1//3369SpU3VeWx3uqVZRUSFJ\nGjx4sFxdXSVJy5cvP+/SV9UhLEkaNmxYvefV5OfnZ9+uDgPVZdu2bfUeu1AHqOr3o81mqzXHXyoq\nKtLcuXP1yiuvaM6cOeddrupiDR06VC4uVc2yly9fbg/H1OXdd9/VG2+8oTlz5ujAgQONNodfqvl7\nunTp0vOeu2TJEvv28OHDm2xOAAAAAACgCoEeAAAAAADQ6MaOHWsPr3z++edatWpVnee9+uqrSktL\nkyTdeOON9uWcfH197eGHpKSkOruzVFZW6q9//asSExNr7WtpAgMDJUn5+fk6dOjQOcdtNpvefPNN\n/fDDD/Z953scW7du1bJly87Zn5GRob/97W+SJHd3d02bNs1+bPTo0fbtV199tc6lrcrKyrRp0yZJ\nkre3t6KioiRJwcHBmjhxoiQpPj5e//jHP+qc144dO/T+++9LqlpS6s4776z3MdQUGRkpT09PSdLG\njRvr7FT08ccf68iRI/WO4ebmZt+uq6vO5MmT7aGwd99995xORVJVF6NnnnlGJSUlkqRJkybZ59UY\nQkJCdOutt0qSjh8/rpdeeqnO12Ht2rX2cFdISIjGjx/faHP4pZ49e2rQoEGSpC1btmjhwoV1nvfl\nl1/qyy+/lFTVneeGG25osjkBAAAAAIAqLs09AQAAAAAA4HhcXFz02muvaebMmTKZTPrjH/+oLVu2\n6JZbblFISIjS09O1dOlS7dq1S5Lk7++vP//5z/brPTw8NHr0aG3YsEHl5eW677779PDDD6t79+6q\nrKxUfHy8li1bpuTk5Fr3W1RUdEUfZ0NMmDBBH3/8sSTpkUce0cMPP6xevXrJYDAoMTFRK1euPCfo\nU92dqC6enp6aO3eu9u/fr5tvvlk+Pj46cOCA3n//fftyUs8884zCwsLs14wZM0a9e/fWoUOHtGnT\nJt19992aOnWqOnXqJJvNpuTkZH3yySf2cNRDDz1UK8zypz/9Sbt371Z6errmz5+vQ4cOacqUKerU\nqZOMRqM2btyozz//XGazWQaDQa+99pr8/f0b9Py4u7trwoQJWrlypUpLSzV9+nQ99thj6tatm3Jy\ncvTVV1/p22+/VWRkpFJTU+scIzAwUK6urjKZTFq9erWGDRsmPz8/dezYUQEBAfLz89NLL72kp556\nSpWVlXr44Yd1991368Ybb5Sfn59SUlK0aNEie2goIiJCTz75ZIPmfzGqn8eMjAwtXbpU8fHxmjZt\nmqKiopSbm6vNmzfriy++kNVqlcFg0AsvvCAPD49Gn0dNL7/8su6++24VFhbq5Zdf1s6dO3XHHXeo\nbdu2ys7O1po1a+xdodzd3fX666/bw3YAAAAAAKDp8L++AQAAAABAkxgwYIDef/99PfXUUzIajfrm\nm2/qXC4qPDxcb7/9tiIiImrtnzt3ruLi4pSWlqa0tDS98MIL51zr4+OjZ599Vn/5y19ksVhqdetp\nKZ588knt3btXhw8fVm5url577bVzznF1ddUf/vAHzZ8/X5mZmed9HC+99JJefPFFrVy5UitXrqx1\nzNnZWU8//XSt7jxS1ZJU8+bN00MPPaSkpCQdOXJEzz///DljGwwGTZ06VY8//nit/QEBAfrkk0/0\nxBNP6OjRo9q7d6/27t17zvVBQUH6xz/+UWu5r4aYM2eODh8+rISEBKWnp58zt6ioKM2bN0+33HJL\nndc7OztrzJgxWr9+vbKysvTwww9Lkl555RXdfffdkqSbb75ZZrNZf/nLX1RWVqalS5fWucxUt27d\n9O6779ZaCqyxBAUF2Z/H+Ph4xcbGKjY29pzzPDw89MILL2js2LGNPodfioyM1KJFi/TEE08oLS1N\nmzdv1ubNm885r0OHDnr99dcVExPT5HMCAAAAAAAEegAAAAAAQBMaNmyYNm3apCVLlui7777T8ePH\nVVRUJC8vL3Xt2lU33nijfvWrX9mXQ6opLCxMX3zxhT766CNt2rRJqampMpvN8vHxUVRUlEaMGKEp\nU6YoJCREK1eu1L59+7Rt2zaVlpbKy8urGR5t3Xx8fLR48WItWrRIa9euVXJysioqKuTt7a0OHTpo\n8ODBmjZtmjp06KCjR49q1apVOnjwoNLT0+1LkNXUp08fffnll3rnnXf0ww8/KC8vT8HBwRo6dKge\neOABRUdH1zmP8PBwffHFF/r888+1YcMGJSQkyGg0ytXVVaGhoRo8eLDuvvtu9e3bt87r27VrpxUr\nVmj16tVau3atDh8+LKPRqICAAEVGRmr8+PG6/fbbG9yZp6agoCCtWLFCS5Ys0Zo1a3T8+HHZbDZ1\n7NhREyZM0MyZM2WxWM47xiuvvKLg4GBt2rRJeXl58vPzU35+fq1zbrvtNg0bNkyffvqpvv/+e6Wm\npqqkpEQ+Pj6KiYnRhAkTdNddd9VawquxRUREaOXKlVq9erXWrVunw4cPKz8/Xy4uLurQoYOGDx+u\n6dOn25esuxJiYmK0du1aLV++XBs2bNCxY8dUVFSk4OBgRUVF6dZbb9Utt9zSqEuQAQAAAACA8zPY\n6lqsGwAAAAAAAAAAAAAAAECzcGruCQAAAAAAAAAAAAAAAAD4GYEeAAAAAAAAAAAAAAAAoAVxae4J\nAAAAAAAAtDQlJSVKTU297HEiIyPl7e3dCDNCc0lKSpLJZLqsMfz9/dWuXbtGmhEAAAAAAGgNDDab\nzdbckwAAAAAAAGhJdu/erRkzZlz2OAsXLtTgwYMbYUZoLmPGjFF6evpljXHnnXfq73//eyPNCAAA\nAAAAtAYsuQUAAAAAAAAAAAAAAAC0IA7ZoSc7u6i5p4A6BAZ6KT+/tLmnAQCNjvoGwFFR3wA4Kuob\nAEdGjQPgqKhvABwV9Q1o3UJCfOs9RoceXDEuLs7NPQUAaBLUNwCOivoGwFFR3wA4MmocAEdFfQPg\nqKhvAOpDoAcAAAAAAAAAAAAAAABoQQj0AAAAAAAAAAAAAAAAAC0IgR4AAAAAAAAAAAAAAACgBSHQ\nAwAAAAAAAAAAAAAAALQgBHoAAAAAAAAAAAAAAACAFoRADwAAAAAAAAAAAAAAANCCEOgBAAAAAAAA\nAAAAAAAAWhACPQAAAAAAAAAAAAAAAEALQqAHAAAAAAAAAAAAAAAAaEEI9AAAAAAAAAAAAAAAAAAt\nCIEeAAAAAAAAAAAAAAAAoAUh0AMAAAAAAAAAAAAAAAC0IAR6AAAAAAAAAAAAAAAAgBaEQA8AAAAA\nAAAAAAAAAADQghDoAQAAAAAAAAAAAAAAAFoQAj0AAAAAAAAAAAAAAABAC0KgBwAAAAAAAAAAAAAA\nAGhBCPQAAAAAAAAAAAAAAAAALQiBHgAAAAAAAAAAAAAAAKAFIdADAAAAAAAAAAAAAAAAtCAEegAA\nAAAAAAAAAAAAAIAWhEAPAAAAAAAAAAAAAAAA0IK4NPcE0Dq88+Vhubk56/5x0XJxJkcGAAAAAAAA\nAAAAAABQH5IVuCJcnQ3acTBDi9Yfk81ma+7pAAAAAAAAAAAAAAAAtFgEenBFzBgXo64R/vr+YIa+\n2XWyuacDAAAAAAAAAAAAAADQYhHowRXh7uasuQ8NUZCfuz7fmqw9cZkNvjYpKbEJZ3Zhs2b9RiNG\nDNSYMcOadR4AAAAAAAAAAAAAAKB1INCDKybIz0O/m9RXHm7O+mB1nJLSC857fnFxsd5441966KF7\nr9AMAQAAAAAAAAAAAAAAmh+BHlxREaE+evyOXrJabXpzxUFlGcvqPfett/6tFSs+k8ViuYIzBAAA\nAAAAAAAAAAAAaF4EenDF9eocrHvHdVdxmUlvLItVSbmpzvOsVusVnlnd5s17Xz/8sFebN+9o7qkA\nAAAAAAAAAAAAAIBWgEAPmsUN/dpr/OBInckr1dsrD8lsaRnhHQAAAAAAAAAAAAAAgOZGoAfNZtIN\nXTQgOkTxqUYtWBsvm83W3FMCAAAAAAAAAAAAAABodi7NPQG0Xk4Ggx6+tafyCvdr++EzCg301MTh\nUfrww/9o/vz/q3XuiBEDJUn9+vXXvHnv6+WXX9DatavVtWt3ffDBQv3f/72rdetWq6ioSMHBIRo9\n+kY9/vhs+/UVFRVav/4b7dy5XYmJx1RQYJTZbJavr5+iorpo+PARmjjxTnl6ep4zz1mzfqMDB36S\nm5vbOctuVc9r9uzf6557pmnr1s36+usvlZBwTEVFhQoMDFL//gN1zz1T1b17TGM/hQAAAAAAAAAA\nAAAAwAER6EGzcnd11uxJffTfC/bqi+9PKCTw3EDNhbz00l+0adO39tsZGeny8PCw3z52LF7PPvsH\nZWVlnnNtXl6u8vJytW/fHq1cuUJvvfWeQkJCL3oOFotVL774vDZsWFdrf1ZWptatW6Nvv12rp59+\nVrfddudFjw0AAAAAAAAAAAAAAFoXAj1odv7ebvrd5D565ZN9+mhNnH49/ibNH3mDPvjgPW3f/r0k\naf78TyVJnp5eta5NTk5SUlKCevfuq/vue0AeHh7avv173XzzbZKkggKjnnrqCRUWFsjZ2Vk33zxR\nw4aNUGBgsIqKCpSYmKBlyxbLaDQqLS1V8+a9oRdffOWiH8Nnny1Sbm6uOnWK0j33TFOXLt1UVFSo\ntWu/1qZNG2S1WvXGG//UoEFDFR4efpnPGAAAAAAAAAAAAAAAcGQEetAitA/x0eN39tYby2K1aHO6\nnpsxQH59BFGRAAAgAElEQVR+/vbj3bpF13md1WpV+/YReuONt+XuXtWVp3//gfbjS5cuVmFhgSTp\niSd+q3vumVbr+qFDR2jChFt13333qLi4WN9/v1Vms1kuLhf3q5Gbm6sBAwbpH/94Xe7u7vb9Q4YM\nk6+vn7788nNVVlZq48Z1uvfe+y9qbAAAAAAAAAAAAAAA0Lo4NfcEgGrXdArSfeOiVVxm0hvLYmUy\nWxt03YQJt9rDPL+Uk5OtNm1CFBwcrLvuuqfOc0JCQnXttQMkSZWVFfYA0MX63e+erhXmqXb77XfZ\nt5OSEi9pbAAAAAAAAAAAAAAA0HrQoecyLNucpB/js5p7GlfUdTGhumdM1yYbf2TfdsrKL9M3u06q\nNDW/Qddcc03veo/9+c9/lVTVycfJqf78WlBQsH27stLUwNn+LCQkVFFRnes81r59hH27tLT0oscG\nAAAAAAAAAAAAAACtC4EetDh3jeqsLGOZVh+obND5YWFhFzynOsxjNpt15kyGTp9O16lTJ3X8eJKO\nHDmk48eT7OfabA3rDFRTeHjbeo95enrZty0Wy0WPDQAAAAAAAAAAAAAAWhcCPZfhnjFdm7RbTWvl\nZDDo4Vt6aOsqVxU24HwvL5/zHi8vL9fKlcu1ceM6HT+eVGeoxsnJSVbrxQd5qtUM7dR0OqdEh5Jz\n7bdtNtsl3wcAAAAAAAAAAAAAAGgdCPSgRXJzdVaPjkFKT6i6vfPwGQ3tFV7nuQZD/eOcPp2u3/9+\nltLSTtn3ubq6qkOHSHXsGKXo6Bj16zdA69d/oy++WN5o8zeZrVqzM0Vrdp6UxfpziOdMXqlOZBSq\nU7ivDOebOAAAAAAAAAAAAAAAaLUI9KDFcnVxsm9/9E2cgvzcFR0ZeFFjvPDCc/Ywz9ix4zRp0hTF\nxPSUi0vtt/5XX31++RM+K+GUUQvWxSsjt1SBvu4aPzhSL66uOpZTUKaXFuxVG38PXdcjVNfFhKpj\nGOEeAAAAAAAAAAAAAADwMwI9uGrMW3lIf75vgNoGezfo/Pj4ozp69LAkqX//gXrhhZfrPTcz88xl\nz6+03KwVW4/ru/3pMkga3b+9Jo3qIk93F7149pyOYb66rmeY9iflaO2uVK3dlaqQAA9dFxOm62JC\nFRnmQ7gHlyw9u1gnM4vUt2sbeXu4Nvd0AAAAAAAAAAAAAACXiEAPWqyawZaZ42P00Tdx+t/lB/Xc\njAENur7mMlvR0T3qPS8j47QOHYq137ZYLBc918LSSj3/wS4ZiyvVro237h8fo64R/uec5+vlpt/c\ndo0qTRYdPpGnH+OzdCAxR9/sOqlvdp1UaKCnroup6tzTIZRwDy4sr7Bcu+MytetIpk5lFUuSfL1c\nNfmGrhrWO1xOvIcAAAAAAAAAAAAA4KpDoActlpubm327f1d/ZQ3rpNU7UvTWykOyWm0XvN7fP8C+\nvXfvbpnN5nOW2srNzdHcuc/IZDLZ91VWVl70XFMzi9Spi0l3jIjShCEday0XVhc3V2f17x6i/t1D\nVGmy6FByblW4JylHa3ae1JqdJxUW6Hl2Wa4wRYR4E+6BXUm5SXvjs7TrSKYSThllk+TsZFC/rm3U\nto2XNu1L00ffxGlb7Gnd+1/dFRnm29xTBgAAAAAAAAAAAABcBAI9aLGCg9vYt99//22NG3ezjgWX\nKzFNMqcZL3h9nz79FBzcRrm5OUpMTNBvf/uY7rrrHoWHt1VhYYEOHPhJa9Z8JaOx9lglJcUXHNtq\ns2nbgdP2294eLnrhgUFq16Zhy4HV5ObqrAHRoRoQHaoKk0WHjleFe2KP52j1jpNaveOkwoO87J17\n2hPuaZVMZotik3K188gZHUrOldlSFWrrHuGvIdeEa2BMqHw8q5bZurF/hD7blKi9x7L14sc/akz/\nCN15fZS8WIYLAAAAAAAAAAAAAK4KBHrQYo0YMVIff/yBLBaLVqxYqhUrliosLFwD7nxRPxwov+D1\n7u7umjv3b/rTn55SRUWFYmP3KzZ2/znndegQqVtvvV3vvvuWJOnEiWT17t233nEzcku0YG28EtIK\n7Pui2vpdUpjnnDm7OmtgTKgGxoSqotKig8m5+jEuUweP5+rrHSn6ekeK2gbXDPf4XPZ9ouWyWm2K\nS83XriNn9FNCtsoqqpaDax/irSE9wzS4Z5ja+Huec12Qn4cev7O3Dp/I1acbErVpX5p+jMvU5NFd\nNaxXOIEwAAAAAAAAAAAAAGjhCPSgxerWLVp///v/aMGCj3T8eJKsVotcXFz065u7ae+3zipswBgD\nBw7S/PmfasmST7R374/KycmSVLUcV1RUZ40ePVbjxk2QxWLR/Pn/p/Lycm3evEG33XbnOWPZJK3a\nfkKrd6TIbLGpf/cQJdiPNn5Awt3N2R7cqai0KPZ4jn6Mz9LB47latT1Fq7anqF0bb113NgDUvhEC\nRWh+NptNKWeKtPtopnbHZaqguGoJuCA/d91wbXsN7RmuiNCGBbl6RQXrbw8G6tsfU/X19hR9uKZ6\nGa5odWjgGAAAAAAAAAAAAACAK89gs9lszT2JxpadXdTcU0AdQkJ8G+21OZNXqpcX7lV5pUW/v6ev\nenQKapRx65OUXqAFa+OVnlMifx833XtTtAZEhzTpfdanvNKs2KSqZbkOJefKZLZKktqfDfdc1yNU\nbYMJ91xtsvJLtetIpnYdzdSZvFJJVUu5DYwJ1ZCeYerWIUBOl9FZJ7egXJ9tStS+hGw5GQwaM6C9\n7hjRWV4e5DobQ2PWNwBoSahvABwV9Q2AI6PGAXBU1DcAjor6BrRuISG+9R4j0IMrprE/jI6l5utf\nnx2Qu6uz/nzfgEZZ8uqXyirM+nzrcW35KV02STdc216TRnVpMSGIsgpzVeeeuCwdSs6T2VIV7okI\n8a5auis6VMH+HnJ1cbqsMAiaRkFJpX6MqwrxJJ+u6jnl6uKkfl3baMg1YerdOVguzk6Nep+HknP1\n6YYEZeWXyc/bTVNGd9WQa8JYhusy8WUbgKOivgFwVNQ3AI6MGgfAUVHfADgq6hvQuhHoQYvQFB9G\nOw+f0f+tPqo2/h56fsZA+Xm7NdrYBxJztOjbY8ovqlDbYC/NHB+j7h0CGm38xlZWYVZsUo69c4/Z\nUvtX28XZIFcXZ7m5OMnVxUlurs5yrd52cZKbi7N929XVWa7OTnJzrT5e85iTXJ2d5eZ69nb1mK5O\nZ6/5eVxCROcqqzBrf2K2dh3J1NGUfFltNhkMUs9OQRrSM0z9u4fI071pA2Mms1Xr9qRqzY4UVZqt\n6h7hr3v/K7rBS3nhXHzZBuCoqG8AHBX1DYAjo8YBcFTUNwCOivoGtG4EetAiNNWH0Vc/nNBXP5xQ\nl3Z+mjP1Wrm5Ol/WeAXFFfp0Y6L2xmfJ2cmgW4Z21C1DO8nVpXE7pTSl0vKqcM/B5FyVlJtkMllV\nabbKZLbIZK7etqrSbJHJZFVTFYHwIC/FdAxUj46Bio4MkJ9X4wWuriZmi1WHk/O06+gZHUjMUeXZ\nZdKi2vpqSM9wDeoRKn8f9ys+rxxjmZZsStT+xBw5GQwaOzBCt4+IavJAkSPiyzYAR0V9A+CoqG8A\nHBk1DoCjor4BcFTUN6B1I9CDFqGpPoxsNps+WH1UO49kamBMqB69/ZpL6gxjs9n0/cEMLducpNIK\ns7q099P942PUPsSxu5bYbDaZLbZaYZ/q8E+lqSr4Yw//VB8zWeyhoOpj9pCQySKTxaqKSotSs4pV\nUWmx31dEiHdVwCeyKuDj5eHajI+8aVltNiWlFWjX0Uz9GJepknKzJCks0FNDrgnXkJ5hCgvyauZZ\nVjl4PEeLNyQqy1gmf5+qZbgG92QZrovBl20Ajor6BsBRUd8AODJqHABHRX0D4Kiob0Drdr5AD20Y\ncNUzGAy6f0IP5RZWaG98llYGeGrSDV0uaowzeaVasDZex04Z5eHmrHv/q7tuuLZ9q1gyymAwyNXF\n0CQdiMwWq06eKVLcyXzFp+YrMa1Aadkl2rg3TQaDFBnmqx4dAxUTGajuHfzl4Xb1liSbzabCkkql\n5ZQo/mS+dh3JVG5huSTJz9tNYwdGaOg14eoU7tvigjJ9urRRj46BWrs7VWt2ntT7Xx/VttjTmn5T\nd4cPtF3NzBarjqbk60xeqW7o1+6yu5MBAAAAAAAAAAAAaDno0IMrpqnTpcVlJr28aJ8y80p1/4QY\njezb7oLXmC1WrdudqlXbU2S2WHVttzaaflN3Bfl5NNk8WzOT2ark0wVVAZ+T+Tp+ulAWa1UJcnYy\nqFPbnwM+Xdv7t9iAQmm5Sek5JUrPLlFadrHSs0uUnlOi4jKT/RwPN2cN6B6iIdeEK6ZjgJydro4l\n27KNZVqyMVEHknLk7GTQTQM7aOLwTizDdQFXKj1vtdl0PL2681OW/T0X1dZPT97dWwHNsHQbAMfG\nfx0EwFFR3wA4MmocAEdFfQPgqKhvQOvGkltoEa7Eh1FmfqleXrhPpeVmPXVPX10TFVTvucdPF2jB\n2nilZZfI39tN02/qrgHRIS2ue4ojqzBZlJRWoPjUfMWdzFdKRpGsZ0uSi7NBXdv7KyYyUDEdA9W5\nnZ9cnK9sKKbSZFFGbqk9tJOWU/Uzv6ii1nkGSSGBnmrfxlsRIT6KDPNV785BLTaQ1BAHknK0eEOC\ncgrKFeDjpl/d2E3XxYTy+1GPpq5vaVnF2nU0U7uP/tz5ydfLVYNiwlRSYdKuI5kK9HXX7Lv7qGN4\n/R/6AHCx+GMCAEdFfQPgyKhxABwV9Q2Ao6K+Aa0bgR60CFfqwygxzah/LtkvVxcn/fneAecsGVRW\nYdYX25K1aV+abJJG9m2nyaO7yNvDtcnnhvMrqzAr4ZTRHvA5lVms6gLl5uqkbhEBiokMUI+OQeoY\n7tNoXW/MFquy8stqddtJzy5WVn6ZflkgA33d7cGd9iHeah/irbbB3nK/isM79ak0WezLcJktVvXo\nGKjpN3VXuzbezT21Fqcp6luOsUy74zK162im0rNLJP3c+WnwNWHq0TFQzk5OstlsWrcnVSu2HJer\ni5MeurWnrosJbdS5AGi9+GMCAEdFfQPgyKhxABwV9Q2Ao6K+Aa0bgR60CFfyw2jX0TN6f9VRBft5\n6PkZA+R/dhma2KQcLfr2mPIKKxQW5KX7x0crOjLwiswJF6+4zKRjqVUBn/iT+UrPKbEf83R3VveI\nAMV0DFSPjoGKCPWR0wW6x1htNuUVlCstu0TpZ7vtpGWX6ExeicyW2qXQ28NF7UN8FBHirfYhPmrf\npiq80xqDX1n5pVq8MVEHj+fK2cmg/7quahkuD7fmWYarvNKsHGO5sgvKqn4ay5RTUC5vDxd1jfBX\n14gAtQ32uuD7oTE1Vn0rLKnUj/FZ2n00U0npBZKqulX16dJGQ3qGqU+X4Ho7Px1IzNF/vj6iikqL\nbh8RpduGd6KjEoDLxh8TADgq6hsAR0aNA+CoqG8AHBX1DWjdCPSgRbjSH0Zf70jRF9uSFdXWV4/d\n3ksrth7XnrgsOTsZNGFIR00c1lGuLo7XVcWRFZRU6tjZ7j3xJ/OVmV9mP+bt4WJfniumY6B8PFyU\nllNS1XEnu7iq605OiSoqLbXGdHN1OhvW8VHE2Z/tQ7zl7+1GGKIGm82mA0k5WrIxUTkF5Qr0ddev\nbuymgU2wTJ3ZYlVeUYVyzgZ1so1lZ/+VK6egTEWlpguO4e3hoi7t/dW1vb+6RfirU1u/Ju2idDn1\nrazCrP2J2dp1NFNHT+TLarPJICmmY6CG9AzTgOgQeTUwSJaWVaw3Pz+onIJyXRcTqgdv6eGQ3aMA\nXDn8MQGAo6K+AXBk1DgAjor6BsBRUd+A1o1AD1qEK/1hZLPZ9NE3cdp+6IwMkmySOrfz0/3jYxQR\n6nOhy3EVyCssty/PFX8yX7mFFfWe6+xkUHiw1y+Wy/JRG3+PK9rJ5WpXYbLom50ntXb3SZktNvXs\nVLUMV9vghi/DZbPZVFhqUo6xTNkFZ4M6Z0M7OQXlyiuskLWOjyZnJ4Pa+HuoTYCnQgI8FWLf9lAb\nf08ZiyuUlFagxLQCJaUblW0sr3VtZJivukX8HPKp7tzVGC62vpnMVh1KztXuo5k6kJQjk9kqSYpq\n66vBPcN1XUyoAn0vbX6FpZV6Z+UhJaQVqGO4r2bf3eeSxwIA/pgAwFFR3wA4MmocAEdFfQPgqKhv\nQOtGoActQnN8GJktVv3vioNKSi/Q3SM7a0z/CDk5Ed5wRDabTdkF5Yo/G+6pMFl+XjKrjbfCgrzk\n4uzU3NN0GJn5pVq8IVGHkquW4Ro3KFITh3WSu1tVN5iay2JVB3bs3XYKylRpstY5boCPW1VIx//n\noE5IgIdCAjwV4ON+Ub+/BcUVSkqvDvgU6OSZIlmsP3/ktfH3qAr4RASoW3t/tQvxvuRwV0Pqm9Vq\n07HUfO06mql9x7JVWmGWJIUHeWlIzzAN7hmmsCCvS7r/XzJbrFq4/ph+OJghfx83zb67j6La+jXK\n2ABaF/6YAMBRUd8AODJqHABHRX0D4Kiob0DrRqAHLUJzfRhZbTZZLFaW1wIamc1m0/7EHC3ZmKDc\nwgoF+rorwMf9vMtiebo7nw3reKqNPbBTFdoJ9vOQWxMuD1VpsuhERqE95HM8vUAl5eYac3NRl/Z+\n6ta+KuTTua2fPaB0IfXVN5vNppQzRdp9NFO74zJVUFwpSQr0ddfgHlUhnsgwnyZZ3s1ms+nbH09p\n2ZYkuTg76cGbe2hwz7BGv5/mUFxm0uaf0mQyWxXo617jn4d8vVzpugU0Iv6YAMBRUd8AODJqHABH\nRX0D4Kiob0Drdr5Aj8sVnAfQLJwMBjkR5gEancFgUP/uIbomKkhrdqZo3e5TKiqtVLCfhzqG+Z7t\ntONRK7zj7eHSJOGVhnBzdVZ0ZKCiIwMlVYX9MnJLlZRmVNLZLj6Hk/N0ODlPUlXtiAzzUVf7Ml0B\nDV66KiO3pCrEczRTmfllkiRvDxeN6tdOQ3qGqVuHgCYPnRgMVZ2T2gZ76b2vjug/q44oPadEd1wf\nddUGXixWq77bf1pffp9cK4xVk7OTQQE+7r8I+tT45+OuAF93OnYBAAAAAAAAAACgRaNDD64Y0qWA\nYzOZrXJ2MlzVy9oVllQqKb1ASWkFSkw3KiWj9jJdwX7Vy3RVhXwiQnzk5GRQSIivEpJztCcuU7uO\nZurkmapa5+bipH7d2mhIz3D16hzUbCGS9JwSvbkiVtnGcg3oHqKHb+3Z4O5DLcWRlDx9tjFR6Tkl\n8nR31sRhUYpq66v84grlF/38z1hUobyiChUUV8p6nq84fl6uCvT1sAd9AnzdFVTzp4+7PN3JPQN8\nfwPgqKhvABwZNQ6Ao6K+AXBU1DegdWPJLbQIfBgBuNqYzBadyCiyh3yS0gtUXPbzcmKe7s7q3M5f\nTk5OOnw8RzZVdfbp1TlIg3uG6dpubeTh1jJCIUWllXrni8M6dsqoyFAfzZ7UR0F+Hs09rQvKzC/V\n0k1JOpCUI4Ok6/u2010jO8vP2+2811mtNhWUVMpYXKG8woqqn0XlMhbVDgBVmq31juHh5lxHlx8P\nBfq4q20bL4UGeDZbxym0HharVQaDodk6a/H9DYCjor4BcGTUOACOivoGwFFR34DWjUAPWgQ+jABc\n7Ww2m87klSrxbLgnKa1AZ/JKJUndI/w1uGeYBsSEys/r/GGT5mK2WPXJtwnaFntaft5uevKu3urS\n3r+5p1WnsgqzVu9I0bc/npLFalP3DgGaemM3dQyv/0vNxbLZbCqtMCu/sOIXnX7KlV9UefZnRb3L\newX4uCkmMlDRkQGKjgxUWCABH1wem82mvMIKHT9doOTThUrOKNTJM0XycnfRlBu7anCPsCv+HuP7\nGwBHRX0D4MiocQAcFfUNgKOivgGtG4EetAh8GAFwREWllQoM9Ja5wnThk1sAm82mjfvS9NmmRDk7\nOemBCTEa2iu8uadlZ7XZtP1ghj7flqzCkkoF+3loypiuGhAd0mxhmQqTRcbiCnvwJ6+wXCczi3Us\nNV9FpT+/7v7VAZ8OAYqODFB4kBcBH5xXWYVZKWeKlFwd4DldqIKSSvtxg0Fq38ZHmfmlMpmt6hUV\npHvHRSs0wPOKzZHvbwAcFfUNgCOjxgFwVNQ3AI6K+ga0bgR60CLwYQTAUV2N9e1wcq7e/eqIyirM\nunlIR901qnOzLelTLTHNqMUbE3XyTJHcXJ10y5COGjcoUm6uzs06r/rYbDadzi1VQmq+4lONOpaa\nr8KaAR9vN3v3nhgCPq2e1WrT6dySs8GdqgBPek6Jan4TD/R1V+d2flX/2vqpU7if3N2clWUs06L1\nx3TkRJ5cXZx02/BOGjcoUi7OTk0+76uxvgFAQ1DfADgyahwAR0V9A+CoqG9A60agBy0CH0YAHNXV\nWt8yckv0vysOKiu/TNd2a6NfT+wpDzeXKz6P3IJyLf8uSXvisiRJQ68J092juijIz+OKz+VyVC/J\nVh3uOZZqrNVtxc/bTdEdAhQTGaDukYFqF0zAx5EVFFfYl806nl6gE2eKVFFpsR93c3VSp/Cq8E6X\ndn7q3M5fgb7u9Y5ns9m0Jy5LSzYlqrCkUu1DvDVzXIy6RjTtsnlXa30DgAuhvgFwZNQ4AI6K+gbA\nUVHfgNaNQA9ahEv9MEpKSlTXrt2aYEaXLyPjtPz9/eXl5d3cUwHQjK7mL9vFZSa9++VhxZ3MV0SI\nj2ZP6q02/ldmOZ8Kk0Vrd53Uut2pqjRbFdXWV1PHdlfX9k0bULhSqgM+x04ZdSzVqPjUfBUU1wj4\neLmq+9klumIiA9SujTcBn6tUpcmik5lF9mWzkk8XKrewvNY5bYO91KWdv70DT/sQbzk7XXyHnZJy\nkz7/7ri+O3BaknRDv3a6+4Yu8vZwbZTH8ktXc30DgPOhvgFwZNQ4AI6K+gbAUVHfgNaNQA9ahIv9\nMCouLtYHH7ynL75Yrq1bdzfhzC5eZWWlPv10gT755GN98slytW3brrmnBKAZXe1fts0Wq5ZsTNSW\n/eny9XLVrLt6q1tEQJPdX3WnkeXfJSmvsEL+Pm6aNKqLhvYKb/Zlv5qSzWZTVn6Z4lPz7SGf/KIK\n+3EfT1dFRwYoJjJQ0WcDPo78fFytbDabMvPLlHy6QMfPhnfSsoplsf78ldrXy1Wd255dOqu9v6LC\n/eTl0bjdrxLTjFq47pjSc0rk5+2mqTd206AeoY0eCrva6xsA1If6BsCRUeMAOCrqGwBHRX0DWrfz\nBXqu/LoaQAO99da/tWbNquaeRp0WL16oDz/8T3NPAwAahYuzk+4bF632Id5avCFR/1i8XzPHx2hE\nn7aNfl8pZwq1eGOiktIK5OLspFuGdtQtQzs2y1JfV5rBYFBYkJfCgrw0ql/7qoCPsUzHzi7RFZ9q\n1L5j2dp3LFvS2YBPhwB1PxvyaR9CwKc5WK22swGsfCVnFOrE6UKVlJvtx12cDeoU7quos513Orfz\nV4i/R5N3W+oWEaC/PnCd1u9J1artKfrPqiPafihD946LVmjAlemyBQAAAAAAAAAAmo7j/79nuGpZ\nrdbmnkK9LBZLc08BABrdmP4RCgvy0rtfHNZH38TpdE6JJt3QRU5Olx9MKCiu0Odbk7X9UIZskgZ0\nD9HkMV1bdfDAYDAoLNBLYYFeGtm3nWw2m7ILynXsZFW459ipfO1LyNa+hKqAj7eHi7p3CFBUWz95\nurvIw81ZHm4u8nB3loerc+3bbs6XtJwTfpaZX6rthzK04/AZ5RX+3EkpNMBTvTsH28M7HUJ95OrS\nPM91VSiuk66LCdWibxN0+ESe5n6wW7cN76RxgyLl4sx7AAAAAAAAAACAqxWBHgAAYHdNpyA9P3Og\n/nfFQa3bk6qM3BL95rZr5Ol+aV8ZTGarNu49pa93pKi80qKIEB9NHdtNPToGNvLMr34Gg0GhAZ4K\nDfDU9WcDPjkF5YpPzVdCqlHxqUbtT8zR/sScBo3n6uIkDzdnubvWDvp4uFWHgeq6XbXtfnbb8+x+\n91YSECqrMOvH+CxtP5ShxLQCSZKHm7NG9m2ra7uFKKqdn/y83Jp5lucKDfTS7+/pq91xmfpsY6I+\n35qsXUczNXN8jLq292/u6QEAAAAAAAAAgEtAoAcAANQSHuSl52cM0HtfHlbs8Vy9smifnpzU56K6\n6dhsNh1IzNHSzUnKMpbJx9NV943rqpF927aKYEhjMBgMCgnwVEiAp67v006SlGMs0+ncEpVXWqr+\nVZirfprO3q40q7zi7M9KiyrO7s8tLFN5hUW2/2fvvqMjy+sz4T+Vc1YlxVZqtVrqnLsn9AQwYbBZ\nj20YMwZsvMd47d19MX73Ndj4xQfvmD02ToAxNn4xZteMhwGM08wA090TOk3nUWhJ3WrlUCWpcg73\nvn/cUkk1LamTYun5nKNzb926t+qqSvWrW7pPfb8PsD9qpRwGnQqtdTbsaqpAe739voNe64kgiugd\nCuLNjklc6vMjkxUgA7B9iw3Hdnixd6sTGpVirXfzjmQyGQ5v92BHgwMvnurHa1fH8UffvoRH91Th\n5x5tgF6rWutdJCIiIiIiIiIiIiKieyATRfFBzu2sS1NT0bXeBVqA02m6q+fm7/7u6/jmN/92wet2\n796Lr3zlb0qWnT9/Fv/xH/+Czs4OBIMBqNUaVFfX4MiRY3j66Q/BarUuel9TU358//vfxfnzZzEy\nMoxcLguz2YLGxmYcO/Ywnnrqp6HRaIvr/8d//Cuee+4PFrwtj8eLF1/81zv+fkRUfu52fNto8oKA\n51+9iVcvjcKoU+E3/lM7WmrvXFlndCqG51+9ge7BIBRyGR7fW42ffmgLDAwUrClRFJHJClLYJ5sv\nCf4Uwz/pucvzr5udD0TTiMQzAACFXIatNVbsaqrA7iYHXDb9Gv+G98YfSuJMxwROd0xiJpICILXT\nOrbDg6PtXjgs2jvcwvp2YzSEb73ci/HpOCwGNZ55shkHtrkgk91bC71yHd+IiDi+EVE54xhHROWK\n418oWHMAACAASURBVBsRlSuOb0Sbm9NpWvS6jf+1atq0kskkvvCF38frr58sWZ7JZNDT042enm68\n8MI/4nOf+wIeeuiR27a/dOkCPvvZ30Y8Hi9ZPjMzjZmZabz11ll85zvfxp/+6VdQW1u3or8LEdF6\npJDL8ZF3bUVVhQH/58d9+JPnr+KXfqoFj+yqXHD9WDKLf37jFk5dGYcgimhvsOOZJ5rhdRhWec9p\nITKZDJpC+6z7bcIkiCKGfVFcuzmDazencX0oiOtDQTz/6g14HXrsaqrArkYHmqot67ISUyqTw8We\nKbzZMYG+kRAAQKNW4KGdXjy0w4vmass9B17Wq+ZqKz7/ywfw8vlh/OuZQfz1D7vwZscEfundLXDe\nQ7UtIiIiIiIiIiIiIiJaG6zQQ6vmbtOlMzPTCARm8I1v/DVOn34DAPDNb/4fAIBOp0d1dQ0EQcCn\nPvUbuHTpAgDg6NGH8VM/9T54vV4kEglcunQBP/jBdxGLxaBQKPClL30Z+/cfLN5HNBrFhz70QUQi\nYVitNnzkIx9Da+t2qNVq+HyT+Pd//xecO3cGANDS0opvfOMfIJPJEImE4fNN4p//+Xv44Q+/DwD4\n4z/+c1RUOKFUqlBf37CsjxkRbQybIT1/fSiIv/pBB+KpHN59oAY//1hjMbCRyws4dWUMP3xzAPFU\nDm67Hs880YSdjRVrvNe00oLRNDpuzeDqjWl0DwaQyQkAAINWiR0NDuxscmBHg2NNqzMJoogbIyG8\n+fYELvZOIZ3NAwBa62w4tsODfVtd0KjXf0utB+ELJvC/X+lF12AQaqUcP/NQPd51oAZKxZ1DV5th\nfCOizYnjGxGVM45xRFSuOL4RUbni+Ea0ubFCD20oDkcFHI4KmM1z9QOam1tK1nnxxeeLYZ7f/u3P\n4IMffLrk+v37D+Kpp34G/+W/fAIzMzN47rk/wAsv/BBKpfQn/+abryESCQMAnnvuj7Fz5+7ittu3\nt+Oxx57E5z73Ozh58ifo7b2O3t4ebNvWCrPZArPZArvdUVx/y5YGeL0LV6sgIioXrXU2/N7H9uMv\nX3wbP7owgvGZOD750+0YmIjgO6/ewPh0HDqNEh9+vAmP76u+q6AAbXw2kwaP7KrEI7sqkcnm0TMc\nlKr39E/jXLcP57p9kMtkaK62SNV7mhyrVrFpOpTE6c5JnO6YwHRYaqlVYdHivTtqcbTdg4pNVKXG\nbdPjtz60G+e7fXj+1Rv47ql+nO2axMfesw2NVfdbr4mIiIiIiIiIiIiIiFYSAz204QiCgOeflyr2\nHD589LYwz6yqqmp88pP/Ff/zf34efr8Pr712Ak888W4AUhWgWTU1tQtu/9GP/jIsFisqK6tgMi2e\niiMi2izcNj1+95f246//pROdtwL4f/76DOKpHGQAju+uxAcfaYBZr17r3aQ1olYpsLOxAjsbK/Cs\nuBUj/hiu9UutufpGQugdCeGFkzfhtumKrbmaa6zLGv5KZ/K42OvH6Y4J9AwXWmqpFDi2wyO11Kqx\nQl4mLbXulUwmw+E2D9obHHjxVD9evzaO5759Ccf3VOHpRxugX8MqSkREREREREREREREdDsGeh7A\n92/+G674O9Z6N1bVHtcO/GzTU2u6D/39N+D3+wAABw4cWnLdw4ePFucvXrxQDPTU1W0pLv/sZ/9v\n/Lf/9ltobW0r2ba5uQW//du/s0x7TURUHvRaJf77z+3ECyf68eOLI2ipseKZJ5tR62bwkebIZDLU\nuk2odZvwgaNbEI5n0FEI93QOBvCjCyP40YUR6DQKtNc7sLupAjsaHTDq7j1UIooiboyG8WbHBC70\n+JHOSC21WmqseGinF/tanNCqecg7y6hT4ePv3Yaj7R78wyu9OHllDJf7pvDMk804sM0F2SYNPBER\nERERERERERERrTc8u0EbTl9fb3H+y1/+M3z5y392V9uNj48V548ceQiNjc3o77+Bjo5r+M//+WOo\nqHDiwIFD2L//IA4cOFTSVouIiOYo5HI882Qz3nekDma9igEAuiOLQY2Hdnrx0E4vsjkBvSOF1lw3\np3Ghx48LPX7IZEBjlQW7C9V7KisMS/5tzYRTONM5gdMdk/CHkgAAh1mLnzpQg6M7vHBtopZa92Nr\njRWf/+UDePn8MP7l9CD++oddONM5iWfftXVTtSMjIiIiIiIiIiIiIlqvGOh5AD/b9NSaV6vZjMLh\n0H1tF41GivNKpRJf+tJf4otf/ALOnTsDAJiensJLL/0bXnrp3yCTydDa2ob3vOf9+MAHPgiVim0o\niIjeyWJgey26dyqlHO31DrTXO/CLTzZjfDpebM11cyyMm6NhvHiqHxUWLXY1VWB3UwW21lihUsqR\nzuZxuW8KpzsmcH0wCBGAWiXH0XYPju3woqV287bUuh9KhRxPHd2CA60ufPuVXrzdP4PfGzqPn3m4\nHu/aX7Os7dCIiIiIiIiIiIiIiOjeMNBDG04+ny/Of/rTv4P29h13tZ1Goym5XFHhxJ/8yV/i1q2b\nOHnyVZw9exp9fT0QBAGiKKK7uxPd3Z344Q+/j7/4i6/BarUu6+9BRES02clkMlQ5jahyGvG+w3WI\nJjLovBXA1ZvT6ByYwauXRvHqpVFo1Ao0VZrRPx5BqtBSa2u1Bcd2eLF/mws6DQ9pH4TbpsenP7Qb\n57p9eP7VG/juyX6c7fThY+9pgdPJdnpERERERERERERERGuBZz9owzGZzMV5g8GI5uaWB7q9hoYm\nNDQ04ROf+DVEIhFcuXIR586dwcmTP0EsFkN//w187Wt/ic985vcfdNeJiIhoCSa9GkfaPTjS7kEu\nL+DGaBjXbk7j6s1pdA0GYTdr8OT+Ghzb4YHbpl/r3S0rMpkMR9o82NHgwIunbuL1axN47tuX8O4b\n0zjW5ka107jWu1j2YsksznRO4s23x5HJCaj3mgs/JtS6TdCoFGu9i7QC0tk8hiajUCrkcNt1MGhZ\nGZSIiIiIiIiIiIgkDPTQhtPQ0Fic7+7uwLvf/Z5F1w0Gg/jBD74Lr7cSTU1b0dy8FQCQzWYxMjKM\nTCaDbdtai+ubzWY8+ujjePTRx/Gxj30CH//4LyIWi+LMmTdX7hciIiKi2ygVcrTW2dBaZ8OHn2hG\nOJ6BSa9iS60VZtSp8PH3tuJouxfferkHr5wbwivnhlDrMuJouweHtrthMWrufEN0V0RRxK3xCE5d\nGcNbPX5kcwKUChnUSgXOd/twvtsHAJDLZKhyGooBn3qvGVVOAxRytkXbaBKpLG6MhtE3EkLfaAiD\nE1HkBbF4vVGngtuug9umh9umg9uuh9umh8umYzUyIiIiIiIiIiKiTYb/EaR1S7bICbvW1jaYzRZE\nImH8+Mcv41d/9ddhNC78rfHvfe+f8Pd//w0AwCc+8WvFQM+zz/48xsZG4XZ78L3v/duC23o8XtTX\nN6Cj4xoymXTJdXKePCEiIlpVFoN6rXdhU9laY8Uf/MpB3PLF8fKZAXTcmsHzJ27ihZP9aKu340i7\nG3uanawac5+S6RzOd/tw6soYhv0xAIDLqsPxPVU4tsMDo04FfzCJgYkIbk1EMDgRxZAvihF/DK9f\nk25DrZSj1m2aC/lUmuGy6hY9hqa1EY5ncGMkhN6REG6MhDDij2E2viOXyVDnMaK52gpRBHzBBHyB\nBAYnougfi9x2W2aDGh6bDi57Iexj08Ntl8I+fC0SERERERERERGVHwZ6aN1Sq+dO3CUSCej1UmsN\nlUqFp5/+BXzzm3+LcDiML3zhc/jCF/5XyfoA8PbbV/GP//htAIBGo8EHPvCfitcdPfowvvvd78Dn\nm8Tzz/9vfPjDz952/0NDg+jr6wEAbNvWVnKdSjVXCj+ZTDzgb0pERES0/igVchzbVYmtlSZEEhlc\nuO7Hmc4JdNyaQcetGWjVCuxvceFouwdba62snnQXRvwxnLwyhrNdk0hn8pDLZNi31Ynje6vQWmcr\neQzddimscbjNAwDI5QWMT8cLAZ8Ibo1HcWs8gptj4eI2Bq0SW+ZV8an3mmFlRaVVNR1OStV3RkLo\nHQnDF5j7rKBUyLG1xormGitaaqxorDJDq779I3kuL2AmkoIvkCyGfHzBJHyBBG6MhdE3Gr5tG5tJ\nU1LRx10I/risWqiUDPsQERERERERERFtRAz00LrlcFQU5//mb76K97zn/ZDL5di6dRueffbjOH36\nDfT19eD06Tfwy7/8i/j5n38GTU1bEYtFcfHiW/jBD75brKzzyU/+V1RUzN3eM888i5de+lfEYjF8\n9at/gY6Oa3j88XfD7fYgHo/h+vUuvPji80in05DL5fjYx35l0X37+7//O3z4wx+BIIhob9+xwo8K\nERER0eoz69V4Yl81nthXjYmZOM50TuJc1yTe7JjAmx0TcJg1ONzmwdF2D7wOw1rv7rqSyeZxoceP\nU1fHilVXbCYN3nuoFg/vrITNdHeBG6VCqshT6zYBu6sAAOlsHsO+KAbGIxiYlKZdAwF0DQSK29lM\nmpJWXVs8Zui1/Bi4HERRxMRMAn2joWKIJxCZq+ypVSvQ3mBHS40VzdVW1HvNUCnvXOlTqZAXQjl6\nAI6S67I5AdPh5O1hn2ACPcMh9AyHStaXAbCbtXNtvOxzrbwqLFooFaw8SkREREREREREtF7JRFEU\n77zaxjI1FV3rXaAFOJ2me3pubtzoxa/+6keRz+eLy+a3yAqHQ/j93/8MLl26sOhtKBQKfOITv4aP\nfvRXbrvu0qUL+N3f/R+IxRbfJ61Wi09/+nfw3vc+VbJ8enoazzzzsyXVeZRKJX784zdKqvcQ0eZw\nr+MbEdFGsdT4Jogi+oZDONM1iYs9fqQy0jFbvdeEI20eHNzuhlm/eVulTQYSOHVlDKc7JhBP5SAD\n0N7gwGN7qrCj0Q7FCrVwjSWzGJyIYGAigoGJKAYmIgjHMyXreOz6kio+tW4jq7jcBUEQMeKPFdtn\n9Y2GEE1ki9cbdSpsrbEWfiyocRlX7HleSCabhz+ULKnoMxv2Cccyt60vl8lQYdHCZdfBMxv2KQR/\nHGYt5PLyrrrF4zciKmcc44ioXHF8I6JyxfGNaHNzOk2LXsdAD62a+3kzOnv2TXzrW/8f+vtvQhDy\nqKhw4lvfeh5arba4zptvvo4f/egldHV1IBgMAgDcbjf27t2Pn/3ZX0BjY9Oitx8IzOAHP3gRb711\nDsPDQ0gk4jAYjPB4vDh06Ag++MGn4XZ7Fty2q6sTf/M3f4Xe3m5kMhnY7Q78+Z//Faqra+7pdySi\njY8H20RUru52fEtn87h6YxpnOifRNRCAIIpQyGXY0eDA0XYPdjU5NkVgJJcXcOXGNE5dGcP1Iem4\n1KxX4eFdlXhkVyWcVt2q75MoighG0yUBn8HJCJLpudC8Qi5DtdOIeq9UAchp08Fp0cJu3twVXLI5\nAYOTkUL7rBD6x8Ilj5vNpEFLMcBjhdehh2ydtp5LpnPwF8I9vmAS/kLYZzKQQCyZvW19pUIGp1UH\nz2wLr3kVfqxG9br9Pe8Fj9+IqJxxjCOicsXxjYjKFcc3os2NgR5aF/hmRETliuMbEZWr+xnfwrE0\nznf7cKZrEsO+GABAp1HiYKsLR9o8aK62lEUYYL7pcBKvXxvH69cmEClUw9lWa8XxPVXYu9W57kIx\ngijCF0iUhHyGfTHk8kLJejIZYDdp4bRqUWHVwWnVwWnVwmmR5k16VVk9l6lMDv3jEfQNS+2zbk1E\nkM3NPSZuux5bqy3YWmNFS40VDou2LH7/RCpbrOgzGUjAXwj6+IJJJNO529bXqBRwFdp2uW2loR+j\nbuP8TfD4jYjKGcc4IipXHN+IqFxxfCPa3BjooXWBb0ZEVK44vhFRuXrQ8W10KoaznZM42zWJUKHl\nj9OqxZE2D460e+C26ZdrV1edIIjouDWDk1fG0NE/AxGAXqPEsR1eHN9TCa/DsNa7eE9yeQGjUzGM\nTcUxFUpiOpzCVCiJqVCy+Ny9k0alQEUh4FNh1UqBH4uuGADSqNa+KpMgikikcogmMogls4glsogm\ns/PmM4glsgjFMhjxxyAUPh7LAFS7jHMttKotsBg1a/vLrDJRFBFNZKWqPoFCdZ9AApOBJPzBBDI5\n4bZt9BplsXWXx6aHa7ayj00PvVa5Br/F4nj8RkTljGMcEZUrjm9EVK44vhFtbgz00LrANyMiKlcc\n34ioXC3X+CYIIq4PB3GmYxKX+6aQzkptixqrzDja7sWBbS4YdaoHvp/VEI6l8frbE3j96hhmImkA\nQEOlGcd3V+FAq2tdhFiWWzaXLwR85kI+8wM/qUx+we3MBnWxok+FVWrj5bRK4R+7SQu5/N4quYii\niGQ6j1gyI4VyElIwJ1qYxpKZefPS8ngqi7v5xKtUyFDnNmFrjRXNNVY0V1tg0G6Mv8m1IIgiQtG0\nVNmnEPSZDf34g0nkhdsfdLNeVajqM9fCy+vQw+PQQyFf/SpWPH6jlZTN5THsi+HWRASDExGMTydg\n0quKY+D8ICTHGloJHOOIqFxxfCOicsXxjWhzY6CH1gW+GRFRueL4RkTlaiXGt1Qmh8t9UzjbOYnu\nwSBESGGKXY0VONLuwc5Gx7prUSWKIq4PBXHqyhiu3JhGXhChUSlwuM2N47urUOdZ/ANXuRNFEfFU\nrhjueWfYJxBJLxjuUMhlcFi080I+OlgMaqmaTrGCjlRVZ354Z6HbeicZAINOBZNeBaNO+pHm1fPm\nVTDqVTDppOU6jWLDtIpa7/KCgJlIGv5CC6/5oZ/pcOq2gJVSIUe104Batwl1biNq3SZUO43QqFc2\nHMfjN1oueUHA+LTUxnBwIoJbExGMTcVLxiulQoZcfuHxS6dRlgQeKwqVzpxWHSosWqiU5RcUpZXH\nMY6IyhXHNyIqVxzfiDY3BnpoXeCbERGVK45vRFSuVnp8C0bTONc9iTOdkxibigMADFolDm5341Cr\nG1aTBiqFHCqlHCqFHEqlbFUrecSSWZzumMCpq+PwBRIAgGqnAY/tqcLhNg90mvXVQmg9ygsCgpE0\npsILV/eJJrJ3vA29RjkvfDMbxFHDWAjmmArLpLCOGnqN8p6r/9DqyOUFTIWS8AWSmAwkMD4Tx7Av\nelv4QSYDPHY9at0m1LqkkE+t2wiTXr1s+8LjN7ofoihiKpTEwEQUAxMRDExEMOSLIpOda0GnVMhR\n5zZii9eMBq8ZW7wmuO16pDNStbPp2QBkYX52TFyojR0AWIzqQktDKexTYdXCZdWhwqKDzaTheEcL\n4hhHtHJiySyu9E0hlc3j8Hb3sh6f0J1xfCOicsXxjWhzY6CH1gW+GRFRueL4RkTlarXGN1EUMeKP\n4UznJM51+xCJZxZdVy6TQaWUQ6mYnc4FfuZffue0eL1SVggHyUumqnmXBUHEhR4/3rruRy4vQKmQ\n48A2Fx7bW4XGSjMruSyjVCaH6VAKU+EkIvEMDNr5FXTUMGiV665iEy2/XF7A+HQcw74Yhn1RDPtj\nGPFHkUyXtnOzmTTzAj5SRR+HRXtfr8nVPn7L5vIIxTIIxdKIJbNoqLTAYtg8JwCHfVGcujIGXzAJ\nq1EDu1kDu0kDm0kLm0m6bNSp1t34Go6lMTARLbbOGpiIIJ7KFa+XyYCqCkMxvFPvNaPKabjncUsU\nRUQS2UXDPoFIGsIC/76bX+2solDRx2nVFav7rMfHlFYHP6NuHtmcgNGpGJxW3YZpYbsRxZJZXO6b\nwoUeP3qGgsUgskopx5E2N57cV4Nql3GN93Jz4PhGROWK4xvR5sZAD60LfDMionLF8Y2IytVajG95\nQUD3YBBv35xBKptDNicgmxOQy4vI5vKFqYBcXlqezQsll++mJdPdctt0OL6nCsd2eHmChGiVCaKI\n6VBSCvn4oxj2xTDkiyIcKw386TVK1BZaddW4jKhzm+Bx6O8YqFiu8S2VySFcCOqEYhmEY2mE4oVp\nYXk4lkEinSvZTiGXYe9WJ47vqcK2WmtZhi5yeQGX+6Zw4tIo+kbDd1xfqZDDXgj32Aphn9l5u0kL\nm1kD0woGVBKpHAYnI4XWWVKIJxhNl6zjtGpRXwju1HvNqHObVrw9HCA9lsFouqTKWXEaSiKySLUz\njVoBp0ULi0ENg04Fg1YFg04Jg1YKTs6/LF3PEGW54GfU8iYIInpHQjjXNYlLvVPF9xiHWYs6jxR4\nlaYmWIyaNd7bjWt+iOf6YLAYrNziMeHANhcUchlevTyKqVAKANBaZ8OT+6uxq7GC1dNWEMc3IipX\nHN+INjcGemhd4JsREZUrjm9EVK424vgmiCJyCwZ+xEI46O5CQc3VFrTW2cryJDvRRhaOZzDii2LI\nFy1W9PEFkyXrKBVyVDsNxaBPrduEGqexJHix1PgmiiKS6VxJQGc2mFOcFpalM/kFb2OWQauE1aiB\nxaguTjUqBS72+DFaaDXosetxfE8VjrZ7yiI8GI6l8drVcZy8OlYMYLXX2/H43mq0brEhEs8gEEkh\nGE0jGE0jEEkjEJUuB6LpJau0KRVy2Ezq28I+dpMGNrMUAjLpVZDfYezO5vIY9sWKbbMGJqKYLLRW\nnGU2qIsts6Sped0+P6lMrtDOS6p4Nh2aDf1I1X7u9Hc6n0atgFFbGvJ5ZxhICgSVrqNWrXywie7e\nRjyGo6WJooghXxTnunx467oPocL4ajNpsKPBgWA0jaHJyG0BP4tRjTq3FO6ZDfnYzRoe4y5iyRBP\nqwv7W1xwWnXF9QVBxLX+afzk4iiuDwUBSOHPJ/bV4KEdXui1bNG73Di+EVG54vhGtLmtSaBHEAR8\n/vOfR29vL9RqNf7wD/8QdXV1xetPnDiBr371q1AqlXj66afxC7/wC4tu86lPfQrT09MAgLGxMeza\ntQt/9md/tuh9c8Bbn/hmRETlaq3Gt0Q2iYHIMNocLat+30S0OfD4jYg2gmQ6h9GpWLGKz4gvhrHp\nGHL5uX93yAC47XrUuqUqPlvrHZj0RxesrBOOZZDJCYvenwyASa+CZTaoY9DAalLDYtDAalTDYtTA\nalDDYlRDpVw45CCKIvrHIjh5ZQwXeqT2fiqlHAe3uXB8bxUavBurvd/s7/Pq5VFc7PEjL4jQaRQ4\ntsOLx/dWw2PX3/Vt5fICQoVwz2zQJxiRLgejKSn0E8tgsX9mKRUyqa2XSQO7WVuo9qOBUinH8GQU\nAxNRjE7FSiq66TQKbPHMhXfqvWbYTOVzwjuTzSOeyiGeyiKezErzs9PCslhxWRbxpLQ8dQ9BIJVS\nXhr+KcxbDGo4zFrYzVo4LFo4zBpo1TzBvdJ4DFc+fIEEznf7cK7bVwwe6jVK7N/mwuHtbmytsRar\nwYiiiFAsI4VeJ6Xw65AvikCktNqYUadCnduIWs9c0Mdp1d0xDFmuFgvx1HtN2L/t9hDPYkb9Mfzk\n0gjOdvmQzQnQqBV4aIcXT+6rhvse3gdpaRzfiKhccXwj2tzWJNDzox/9CCdOnMAXv/hFXL16FV//\n+tfxta99DQCQzWbxvve9Dy+++CJ0Oh2eeeYZfP3rX8fly5cX3QYAwuEwPvrRj+Jv//Zv4XK5Fr1v\nDnjrE9+MiKhcrdX49i/9L+OVoRP47MFPocroXfX7J6Lyx+M3ItqocnkB49PxkpZdI/4okunFAwoy\nGWAxzA/kSAGdkgo7BjXMBvWytiWKJjI43TGJU1fH4C9UG6p1GXF8TxUOt7nXdfghk83jfLcPr14e\nxbAvBgCoqjDg8X3VOLKC+57LCwjF0gtX+YlIwZ/wIqEfpUKOWrex0DbLhHqvGW67ftOeyF5KLi8g\nUQz95BC7LRD0jvlCECiRyi0auAKkylXFkE8h6GM3a4rzZoN6XT8feUFANJFFOJZBOD5XtStSuByK\nZ5DJ5NFQaUbrFjtaaq0w69Wruo9rcQwnCCLGZ+JQyGVwWnVs3/YAQrE03rrux/nuSQxMSM+jSinH\n7qYKHG5zo73eAZXy7h/fSCKDYV8UQ5NRDPliGJ6Mwh8qrW6n0yhQ65qr4lPrMcFr15dt66hoIoMr\nN6Zx4boP14dC9x3iWey2X782jhOXxxCMpiEDsKPRgXftr8H2LawA+qD4GZWIytVmGt9EUcTETAJ9\nIyFMhZPYUe/A1lrruv4MQLTSlgr0rNh/hS5duoSHH34YALB79250dnYWr+vv70dtbS0sFgsAYN++\nfbhw4QKuXr266DYA8OUvfxnPPvvskmEeIiKizcKX8AMAAqkgAz1ERERE80ihDandFiAdJwmiiOlQ\nEsO+GOJZATJBkCrqFCrrmPTqNTlxadKr8Z5DtXj3wRpcHwri1JUxXOmbxj+80osXTt7EkTYPju+p\nQo3LuOr7tpipUBInr4zhjWvjiKdykMtk2NfixBN7q9FSa13xk5VKhRwVFh0qLIufbM3lBYRjmUIr\nL6ntVK3bhCqngUGDu6RUyGEuhNjuhSCISKSloE8oJoWspiMpBCIpzIRTmImkMBlMYNgfW3B7hVw2\nF/Apqe4jBX/sZi00y9ziSxRFpDJ5hGcrdcUzhaBOuhDUyRSviyaySwaWZDJAIZdj2B/DqavjAIAa\nlxGtdTa01tmwtcYKnWb9BvXuVi4vYHAiir7REPpGQrgxGkYynQMgPYcumw5ehwFehx4eux5ehwEe\nu54tiBaRSOVwqc+Pc10+9AwHIYqAXCZDe4Mdh7e7safZed9/N2a9Gu31DrTXO+bdX7ZY2W6oEPbp\nGwmhdyRUXEetkqPGZSxp2VVZsXHH0Ggig8t9U7jY41/2EM98Jr0a7z+yBT91sBaX+6bw44sjeLt/\nBm/3z6CywoAn91XjSLtn2cexzSAYTUOhUUEURQajiIg2EEEQMeKPoW8kVDzeiCXn2oS+dG4YDrMG\nh9s8ONrugddhWMO9JVp/VuwTVCwWg9E4988mhUKBXC4HpVKJWCwGk2kuZWQwGBCLxZbcZmZmBmfP\nnsVnPvOZldplIiKiDSWQkvqzx7KJNd4TIiIiovVPLpPBZdPDZdOvy28/ymUytG2xo22LHcFoBzHO\nJQAAIABJREFUGm++PY7Xro3j5JUxnLwyhsYqMx7bU4UD21yLtvJaSYIoonsggBOXx3Dt5jREAGa9\nCk8drcPx3VWwm7Wrvk9LUSrkUgjEogVgWevd2VTkchmMOhWMOtWibWZEUUQ8lcNMuBD0Kf6ki8Gf\nnuHQgtsCUtu7YoUfs9TKa37wx6RXQSaTIS8IiMSzxUo67wzsSEEd6XImu3irPQDQqhWwGNTw2PVS\ny71Caz2LQVOYSpW9TDoVBFHE0GQU3UNB9AwFcWM0jBF/DD+6MAK5TIZ6rwmtW2xorbWhqdqyJq/p\ne5XO5HFzPIwbhRMxt8YjJe0JXTYd9m6tAERgIpDAxIz0805Wo1oK9zj08BaCPl6Hvqza3N2tbC6P\nazdncL7bh2v9M8jlpcezqcqCQ9vdOLDNdc+Burul16qwrc6GbXW24rJUJodRf7wY8BnyRTE4EUX/\nWKS4jlIhQ5XTWAz41LqNcFp1MOpU6/Jb9UuFeA5sc2N/ixMVyxDiWYhSIcfBVjcOtroxMBHBjy+O\n4MJ1P/7hlV5877V+PLKrEo/vrS68T9Fi8oKAqzdmcPLKKLoHpf+DadUKuO3SGOK26+G26+C1G+Cy\n6coiMElrLy8I6BsJI58X4LLpYDdrN2yYkWgtzAa/e0eC6BsJ4+ZYqKRart2swZEGN5prrLCbNLjY\nM4WLvX78+9kh/PvZIWzxmHCk3YNDre4VOxYi2khW7OjGaDQiHo8XLwuCAKVSueB18XgcJpNpyW1e\nfvllPPXUU1Ao7vwB12bTQ7kBPghvRkuViyIi2sjWYnwLZsLSjDrH8ZWIVgzHFyIqV+t5fHM6Tdja\nUIGPfaAdl3r8eOnsIC71+NA/FsE/nbiJJw7U4r1HtqDSufJVe+LJLF69MIx/Pz2A8WnpfzYtdTY8\ndawex3ZVboggAq1f9Utcl83lMR1KwR9MYCqYxFQoianifAIT03EMTS4czFMr5dBqlIgmMhCXKKcj\nlwFWkwY1bhNsJi1sJg1s5sLUpIXNrCku197jSWKvx4LDu6sBSO3prg8G8PbNaVy7MYUbIyH0j0fw\nb2eGoFLK0brFjp3NFdjV7ERztRWKZThp+KBjXDSRQfetGXTemkH3wAxujoYhCNKDKZMBdR4z2hsc\n2N7gQFuD47ZQnyiKCEXTGPXHMOqPFqZS+8PrQ0FcHwqWrK9VK1DlMqLGZUK1y4jqwtRbYYC6jCqZ\n5AURHTen8NrlMZzpGEciJVU1qnGbcHxvNR7ZUwXPGn4rvabKhiPzLmeyeQxNRnBzNIz+0RD6x8IY\nHI9Ir71rc+sp5DJYTZria8hu1sJqkoJ2xWUmadlKP5/hWBrnOifw5rVxvH1zuvh3u7XWimM7q3Bs\nV+WiYcOV4nSacHBnFQKRFP7jzABePjuIl84P45W3hnFkRyU+8HADttfbN12obSnBSAqvnB/Cy2cH\nMRNOAQDaGhwwG9QYn4phfJH3ALtZgyqnCZVOA6qcRlS5jKhyGuG26xnIoCUJgojrgwG8dmUUp6+N\nIxLPFK+Ty2Vw2/RSGLXCIP04DPBUGOBxGFhxi5bNev6MupRUJofeoSC6bs2g69YMeoaCyGTnAjxV\nTgPaGirQ1uBAe4MDrne8Dz9xuB6pTA5vdU3i5KVRXO71Y/AnN/BPJ25ib4sLj++rwUFWt6NNTCaK\nS32svX+vvPIKTp48iS9+8Yu4evUqvvKVr+Ab3/gGACCbzeL9738/XnjhBej1enz4wx/G1772NVy9\nenXRbX7zN38Tv/7rv462trY73vd6+5YdSdbjNyCJiJbDWoxv6XwGv/Xa7wEA3lV7HB9set+q3j8R\nbQ48fiOicrURx7epUBKvXxvHG9fGEUlI5clb62x4bE8VdjdXLPtJqtGpGE5cHsPZzkmks3koFXIc\n2u7C43urUe81L+t9Ed0PURQRTWSlyj7FSj/pYrWfVCYPi0ENq1FqGybNS5V1zIV5o061Jq32kukc\n+kZCxWDLyLz2Y1q1Ai01VrQWqqdUu4z3XPnkfsa4YDRdbIPQNxrC2NTcly4Vchm2eEzYWmNFc40V\nzdUWGLSqe7r9+dKZPCYDCUwE4picmavmMxlIFKvUzJLJAKdFJ51EdcxV9PE6DDDq7n8fVpMoihiY\niOJc9yQuXPcjXDhJbDdrcKjVjcNtHlQ7DRsmzJHLC1KYwhfFiC+GYDSNUKEKViiWue05fCeDVll8\nDb6z0pXVoIbZKLXC1GuUd/2YzFbiudDjR09JJR4zDmxzrWglnvuRzeVxvtuPn1wcKbYfrHOb8OT+\nahxsdUOl3JzBE1EU0TcSwskrY7jUO4W8IEKjVuBouweP76lCldNYHN8EQUSg0MLRF0hiciZRmE9g\nJpy6rTWiQi5DhVUHj00Ht10KZnhsUoUfq1G9YV5/tLxEUcTgZBRvXffhret+BKNpAFIVyv3bXDDr\n1fCHkvAHk/CHkiUhn/lsJg1cVh2cNh3cNh2cVh1cNh1cVraapLu3kT6jJlI53ByTWmf1jYQwOBFF\nfjb4DaDKaURLjRVba63YWm2Bxai5p9sPxzM43+3D2c5JDPmkx0SnUWBfiwvH2j1orrGuy8qARA9i\nqUDfigV6BEHA5z//efT19UEURTz33HPo7u5GIpHAhz70IZw4cQJf/epXIYoinn76aXzkIx9ZcJvG\nxkYAwPvf/3585zvfgdl8538abZQBb7PZSG9GRET3Yi3Gt8m4D184/yUAwBHvATzb+vOrev9EtDnw\n+I2IytVGHt9yeQGX+6Zw6spYsSWRxaDGw7sq8eiuygdq3ZEXBFzpm8aJy6PF23aYNXhsbzUe3umF\nSc9y50QrIZLIoHe4EPAZDMAXTBavM+qk1kjb62xorbPBZdPd8cTzncY4URThDybROxLCjRHpZMx0\noQIGIFU4aqyyYGuNdBKmodICjXrlvxEtCCJmIikp3DMTx3hhOhFIIFoIMs5n1KkK4R49PHYDKixa\nGLRK6LUqGHRKGLQqaNWKNTtRPzETx/luH851++AvPKcGrRIHWt04vN2NpmpL2Z2MEkURyXQO4bgU\n7iltcZeWlhVa38UL1YkWo1TIS0J5JQGgwvywL7phQjwLmQ2w/OTiKC7fmIIoAmaDGsd3V+KxPVX3\nfAJ0o0qmczjbNYmTl8cwVqgGWOU04PE9VTjc5ilpo3U3x3CZbB7+kBTy8QWlsOBkQAr+xJK3jyUa\ntaIQ7tHBY9fDU2jl5bHrV7SFlyiKyAsi8nkROUGQpnkBOUFEPi8gV7icz4tQKGRw2XQPFKakOWPT\n0vj81vW58VmnUWJfixOHWt3YVmeFQn57sC6ZzmGqEPCZCiXhK0z9wQQCkfRtQTJAeq+Swj1SyMdp\n1cFt08Np08FcaBFKBKzvz6iReKYY+u4bCWHEFyv+vctlMmzxSsHvrcsQ/H6nsek4znZO4lz3JAIR\nKXTnMGtwuM2Do+0eeNewsiHRclqTQM9aWq8D3ma3nt+MiIgexFqMb10zvfira38HANhRsR2f3Pnx\nVb1/ItocePxGROWqXMa3iZk4Tl4Zw5mOSSTSOchkwK7GChzfU4n2esddVx6JxDN47do4Tl0ZK34z\nefsWG57YW41dTRVrUsGEaDMLRFLF6j3Xh4LF1yUgVXVprZWq97TW2W5rdQXcPsYJgojRqVjhREwY\nfSOhkioDeo2yUH1HCvHUuU3rrjVNLJktVPORAj6z8/5Q8g5t1WTQa5XQa5UwaKWQj36RqaG4nrTs\nfsJAwWga57t9ON/tK36jXK2SY2+zE4e2u9FWb193j+1ayeYEROKZYnWf2aDPbAAoVJiPxDPFb/0v\nphji2eZEhWV9h3gWMx1K4sTlMbx+bRyJdA4KuQwHW91414FqbPGUZ2W80akYTl4ew5muSaQzeSjk\nMuxrceLxvdVorrYs+Pp70GO4WDJbCPfMD/ok4Asmkc3dXl3KYlAXwz1GnaoYsMkJwtz8bPhGKL2c\nL4RzpPXmAjrzAzv3yqhTScEjmx6u2fCRTQqIrEbwciPzh5K4cN2H891+jE5JlbHUKjl2N1Xg0HY3\n2usdD1QdK5sTMB0uVPMpVPSZnU6HkguOYxq1ohj0KZ3qYTNryi70SUtbT59RA5FUsfpO30gIEzOJ\n4nVKhRyNlWYpwFNrRWOlGVr1yleiEkQRvcMhnO2cxMVeP1IZqaXXFo8JR9o9ONTqhtnAL6DQxsVA\nD60L6+nNiIhoOa3F+PbG2Dk83/t9AECDpQ6f3vcbq3r/RLQ58PiNiMpVuY1v6WweF677cerqGG6N\nRwAAFRYtHt1diYd2VsKywD82RVHErYkITlwaxYUeP3J5EVq1AsfavXhsbxUqK/hNR6L1QBRF+ILJ\nYvWenuFQSYUJt12P1kIFn5ZaK0x6Naw2Ay52jBe/RX1jNIxkeq4aisWoRkuNFc3VVrTUWFHpNGzY\nk4bZnAB/UGrZFYimkUhlEU/l5k1ziM9bdi8n0BVyGXQaJQy628M+7wwHRRNSa4je4RDEwrZt9XYc\n3u7G7uaKVTnRVa4EUUQ8mZVCPiXhnwzsZg32tWzcEM9C0pk8znRO4CeXRosnUJuqLXjX/hrs3Vqx\nYNWQjWS20uCJy2PoG5GqAdpMGhzfU4VHdnrvWJVopY7hBFFq4eULJEuCPpOLtPBaigyAUimHUiGD\nQi5NlQo5FIrCfGFZ8bJCDoVcms4tl0Mpn91OhkxWgC8oBY8WC4fYTBop3GPXw22brTQkVYTZrEHC\nYDSNiz1+nL/uKx4jK+Qy7Ghw4NB2N3Y3VaxaBbpAJAVfKImpksBPAv5QEpns7WEyjVqBxkozmqos\naK62oqHSvKIVo2jtzY5v80/bl7zSxfmz89ZZYIASF9lQFBdaCoSi6ZIAz/zKjRq1As2zlRtrrKj3\nmte8NWQ6m8fVG9M42zWJzlsBCKIIuUyG9gY7jrZ7sLupAmoVQ460sTDQQ+tCuf3DlIho1lqMbz/s\nfwk/GjoJAHDpKvD/Hvkfq3r/RLQ58PiNiMpVOY9vQ5NRnLo6hnNdPqSz0rfd92514vieKmyrtSKX\nF/DWdT9evTSKwUnpMfA69HhiXzWOvKOtBRGtP4IoYtQfK1bv6R0JIV34hjIAeOx6BKJpZLJzy1w2\nHbZWSxV4WmqscFrv3LarHImiiExOKIZ8imGf5DsCQOls6TpJ6bo7VYkBgOZqCw5vd2P/NhfbFNID\nEUQR3QMB/PjiKDpuzQCQKnQ9vrcaj+yqhFG3sVovBSIpnLo6jtevjRcrhLVtseGxvdXY1eS466DS\nWhzDZXN5+IJJpNJ5KJVSIEehmA3gFObnBXdWurJhLi9gJpwqtBNLFioMSQGkhdo+yWSA06KDq1DZ\nx10I+nhsetjN2rKrxBhLZnGx14+35oUsZTJge50NB1vd2NviXFety0RRRDieKWnj5Q8mMOKPlVRF\nkcmAaqcRTdUWKeRTZYHDot2U7+flIBLPYGAiUviJYmAismBLwLVg0EqVG1tqrGiusaLWbVzXYdJw\nXApVn+2cLFZH1GkU2NfiwrF2D5prrBs2uE6bCwM9tC6U8z9MiWhzW4vx7e+7voMLvivQKrSQy2T4\n40f+YFXvn4g2Bx6/EVG52gzjWzKdw9muSZy8MoaxqTgAqZJHPJlFLJmFTAbsaXbiib1V2FZn48kA\nog0qlxcwOBktVvC5NRFBZYURDV6T1Ear2gqbaemKF3RnoigikxVKgkCJVA6xwlQul2FPc0VZVYqh\n9WNiJo5XL43idMdkMazrdehR4zKixmVCjduIGpcR5nUWIhNEEdeHgjh5eQxXbkxBFKUWfw/t9OL4\nnip47Pp7vs3NcAz3IDLZPPyhZLGN2PyWYvNbLc5SKuRw2XRw23SFij764rzZoN4wx4fJdA5Xb0zj\n/HUfugYCxQBmU7UFh1qlkOVCFSvXu1gyi5tjYdwcDePmaAgDk9GS1nBWoxpNVRY0VVvRVGVBrdu4\naasxrWfJdA7DvihuTUQwMC4FeGYiqZJ1KixauB0G5AqB7MVeeou9Jucvli2wsGSrknWlCwatEs3V\nUhUeb8XGrdw4Nh3H2c5JnOueRCAitax1mDU43ObB0XYPvI7Vr0IriiJSmfy8ILkUFI+nsnBadWiu\ntkClZDUhYqCH1gkebBNRuVqL8e1PL/0VboWHUG+pw63wIP7y+B9BIeeBHxEtLx6/EVG52kzjmyiK\n6B+L4OSVMVzo8UOrVuDR3ZU4vrsKDot2rXePiFbAZhrjiDaTRCqLN96ewMUeP0amYre16bEa1VLA\nx2VEbSHk47bpV70CSzyVxekOKVTsC0gVRmrdRjy+txqHtruheYA2KBzf7l8ilSu07UrAN6+yz2Qg\nWdKWcZZGrYDHpofLpoPNpIHVqIHFqIbVqIHVqIbFoIFOo1iz0E8mm0fHrRmc7/bhWv9MMehS6zbi\n0HY3Dm5zl92xbi4vYMgXlQI+haBPeF5QS62Uo95rLlbxaayybLhqXhtdLi9gxB/D4EQEtyYiGJyI\nYnw6XlI5y6RXod5rLv5s8Zpg1qs5vi0jQRTROxzC2c5JXOz1I1WoZrnFY8KRdg8OtbphvseQnyCI\nSKTnqjuWhHOS2WLIe35g526qPKqVcrTU2tBeb0dbvR1eh37DhClpeTHQQ+sC34yIqFytxfj2e6ef\nAwBsMdfgylQH/uihz8GsXvwNn4jofvD4jYjK1WYd3zLZPORyGb+5S1TmNusYR7SZCIIIfyiJEX8M\nI/4ohn0xjPhjCEbTJeuplXJUOY2Faj5zPyvRYnNoMoqTV0ZxrsuHTE6AUiHHwVYXHttbhQaveVlO\nUHJ8W36iKCKazMIXSGAykIB/XmUffzCJTE5YdFu1Sg6rYS7oYzGqYStMLUZNMfyj1yiX5fnP5QV0\nDwbx1nUfLvdNFU/Se+x6KcTT6lqTChxrRRRFTIdTuDkaxo1CwGdsKlYSHvE69GiulsI9zdVWuG1r\n23ZTFEXEUzmE4xlE4hmE42lE4llECpfjqSyMOhWsRo0UJDNpYDNKU5Neta4qxwiiCF8gIbXNGo9i\nYDKCYV8UufzcM6BRKbDFY5LCO5Vm1HtMi7ZK4/i2MtLZPK7emMbZrkl03gpAEEXIZTK0N9hxeLsb\nGrViLqAzP6xTDOcU2rMuEHxcjFwmg0GnhF6rglGrhEGngkGrhEGrgkGngl6rhE6txOhUDF0DAYxN\nx4vb2s2aQrjHge1bbOuqRSCtLAZ6aF3gmxERlavVHt/yQh7//dRn0WCpQ6XRizfGzuJ3D/4WKo2e\nVdsHItocePxGROWK4xsRlTOOcUSbVyyZxYgvWgj6xDDsj2F8On5bdQCnVYsalwm180I+i51kXko2\nl8eFHj9OXh5D/3gEgNQ65rG9VXhohxemZW4DxvFtdQmiiHAsg1AsjVAsPW8+M3c5nkYknsFSZxpV\nSjkshnnVfQrT0qo/Ghi0twd/BFHEjZEQznf7cLF3CrFkFgDgMGtxcLsLh1rdqHEZWdGiIJHK4da4\nVMHnxmgYt8YjSBfaOAGAUadCU5WlGPKp95oeuN2PIIqIJ7OFgE6mGM4JJ2bns4XgTgbRRHbJaiVL\nUchlxb+X2ZCP1aguVpCana5EYFEURQSjaSm8MxHFwEQEg5MRJNNzj61CLkO1y1iovGNCg9cMr8Nw\n11XSOL6tvHA8g/PdPpztnMSQ786PtVopLwnj6AvhHKNWBYOuNKBj1BbW06mgVd9b9bJAJIWugQA6\nBwLoHgwgnpLCQzIZ0OA1o63ejvZ6B+orTVDI+eWccsVAD60LfDMionK12uPbTDKA3z/7RRxw70GF\nzo6XBl/F/7Xn19Bsa1y1fSCizYHHb0RUrji+EVE54xhHRPPl8gImZhIYnhf0GfHHisGIWTqNshju\nqXUZUeM2oqrCsODJ/qlQEqeujOGNtycQS2YhA7Cj0YHH91ahvd6xYm2+OL6tT4IgIpKYC/uE3zGd\nDQRF4lkIS5ySVCpksBjmQj86tQJdgwGEYlJbKbNBjQPbpBBPY9XyVH0qd3lBwKg/LrXoGgvj5mgI\nM5G5Sl5KhQx1HhOaqixoqrKiqdoCi0ENQRQRS2YRic0P5swL68wL7cTuIqSjVslh1qthMahhNsxN\nzQY1zPq5ZQadCtFERvq7iaYRjKXnpoX5UCyz5P1p1Aop8DMv7DO/0s9sFamlqpbGU9m58M54BAOT\nEYRjmZJ1PHY96r1z1XdqXcYHCkdxfFtdY9NxXLs5XaymYyyEcwxaqbKOQauE+gFaRN4vQRAxOBlF\n58AMugYC6B+LFMdNnUaJ7XU2tDXY0V5vR4VFt+r7RytnqUDP8scUiYiIaEUFUkEAgF1rg0EllZGN\nZuNLbUJERERERERERJuQUiEvBnVmiaKIUCyDEb8U8plt2XVjJIS+kVBxPblMBo9DX6zkYzVqcP66\nDx39MxAhVft47+FaHN9dBaeVJxY3K7lcVqyysxRBkNp7haJphOPzwz6l4Z/BySjyglTxSa9R4uGd\nXhza7kZLrZXVKe6RQi5HnceEOo8JT+yrBiBVA7lZaNF1cyyMgfEo+scieAUjAKTXdSKVWzJ8BUjt\npMwGFbZ4TYuHdQqXteq7Px1t1KmWbJ0miCJiiSyCUSnkEywGfaS/oWA0jWA0jclAYsn7MetVxbCP\n1aiB2aDGdCiJgYkIfMFkybo2kwZ7tzqLAZ4tHhP0bIW0oVVVGFBVsf5a9MnlMjRUmtFQacZPH6tH\nIpXD9aEgugYD6Lw1g0t9U7jUNwUAcNv1aK+Xwj0ttdZ7ep3RxsJnloiIaIMJpKR/rNi1VmgV0gfl\nOAM9RERERERERER0F2QyGWwmqUXNzsaK4vJ0Jo/R6bkqPiO+GEampLZd57p9xfUaK814bG8VDmxz\nPXC7Hto85HIZLIWAB7B4JYLZwEY0mYXLqoNKyRDPcrKbtTho1uJgqxuA9Lq/NREphnz8oSQ8dn1J\nIGe2ko40r4L5HkM6y0kukxX3rW6Jv6NsTigGxRaq9BOMpjEZTGDYHyvZTq9Rom2LDVu8ZjR4zdji\nNcNmWjqsRrRS9Fol9rU4sa/FCVEU4Q8m0TkQQNdAANeHgnj10ihevTQKhVyG5moL2hscaNtiR43b\nCDmrmJUNBnqIiIg2mPkVemZLy8YyS3/jgIiIiIiIiIiIaCkatQKNlRY0VlqKywRRxHQoiWFfDFPh\nJLbX2VHnWfwkOtGDmh/YoJWnUSvQWmdDa51trXdlWamUclRYdahYonqYKIpIpvMIxdIIx9KwmbVw\n2XQMQtC6JJPJ4Lbr4bbr8cS+auTyAvrHwugcCKDzVgA9wyH0DIfwIvph1qvQVm8v/DgKQUraqBjo\nISIi2mDmB3qygtTvPJaNLbUJERERERERERHRPZPLZHDZ9HDZ9Gu9K0REy0omk0GvVUKvVaJyHbZf\nIlqKUiFHS60NLbU2PP1oIyKJDLoHAsUKPme7fDjbJVXXq3UZ0VZoz9VUbWXlsw2GgR4iIqINZn7L\nrXhWqswTY8stIiIiIiIiIiIiIiKiTcesV+NwmweH2zwQRRGjU3F0DsygayCAvpEQhv0xvHR+GGqV\nHE/uq8HPHW9c612mu8RADxER0QYTSAVhVBmgVqgBSOU/Z4M9REREREREREREREREtDnJZDLUuIyo\ncRnx3kN1SGfz6B0OoWsggO7BAAKR1FrvIt0DBnqIiIg2EEEUEEiHUGnwAADUChXUCjViGbbcIiIi\nIiIiIiIiIiIiojkalQI7Gx3Y2ehY612h+8AGaURERBtINBNHTsjBrrUVl5lUBsRYoYeIiIiIiIiI\niIiIiIiobDDQQ0REtIEEUkEAgF1rLS4zqAyIZeNrtUtEREREREREREREREREtMwY6CEiItpA5gI9\ncxV6jCoDskIW6XxmrXaLiIiIiIiIiIiIiIiIiJYRAz1EREQbyIKBHrUBABDLsEoPERERERERERER\nERERUTlgoIeIiGgDCaRCAG6v0AMAcbbdIiIiIiIiIiIiIiIiIioLDPQQERFtILMVehxaa3GZoRDo\niTLQQ0RERERERERERERERFQWGOghIiLaQAKpIDQKNXRKXXGZiRV6iIiIiIiIiIiIiIiIiMoKAz1E\nREQbSCAVgl1rg0wmKy4zqKVAT4yBHiIiIiIiIiIiIiIiIqKywEAPERHRBpHMJZHKp2DX2kqWG2cr\n9GQY6CEiIiIiIiIiIiIiIiIqBwz0EBERbRCBVAgAFg30RFmhh4iIiIiIiIiIiIiIiKgsMNBDRES0\nQQRSQQCAXWstWV6s0MNADxEREREREREREREREVFZYKCHiIhog5gpBnpKK/ToVTrIIEOMgR4iIiIi\nIiIiIiIiIiKissBADxER0QYRWCTQI5fJoVfpEMsw0ENERERERERERERERERUDhjoISIi2iACqRCA\n21tuAYBRZWSFHiIiIiIiIiIiIiIiIqIywUAPERHRBhFIBaGUKWBWm267zqjSI55NQBCFNdgzIiIi\nIiIiIiIiIiIiIlpODPQQERFtEIFUEFatFXLZ7W/fRpUBIkQkcsk12DMiIiIiIiIiIiIiIiIiWk4M\n9BAREW0A2XwW0UwMdq1tweuNagMAIJ5h2y0iIiIiIiIiIiIiIiKijY6BHiIiog0gkA4BAOxa64LX\nG1RSoCeWTazaPhERERERERERERERERHRymCgh4iIaAMIpIIAsHiFnmKgJ7Zq+0RERERERET/P3t3\nHuTqYZd7/nm1qyW1pJb6LH2623bsOIuv7UBIYKikKmNuwp0MVHLJgMO4kiG4gAJSBRRTJAyQIjZz\nkyEkqaQ8BQGGhITkErbrGdeFGm5ihztQwTchFTteshAvvZ2lta+v1nf+0Puqz9Z91N16Jb3q7+ev\n45b06udzTveRXj3v8wMAAAAAwB0EegAA8IDRAz2s3AIAAAAAAAAAAAC8jkAPAAAeUDAHK7cy+6zc\niocGgZ56m5VbAAAAAAAAAAAAgNcR6AEAwANGbeipsnILAAAAAAAAAAAA8DwCPQAAeEBf2uY4AAAg\nAElEQVTBLMqQoVQ4ed3bnUBPvUNDDwAAAAAAAAAAAOB1BHoAAPCAgllSMryogC9w3dtjdqCn1qlP\nciwAAAAAAAAAAAAALiDQAwDAjOv1eyq1ylqKpPa9T9gfUsAXUK1NoAcAAAAAAAAAAADwOgI9AADM\nuHK7or7V11Ikve99DMNQPBijoQcAAAAAAAAAAACYAwR6AACYcQWzJEkHBnokKR6MqU6gBwAAAAAA\nAAAAAPA8Aj0AAMy4glmUJKXD+6/ckgaBHrPXUqffncRYAAAAAAAAAAAAAFxCoAcAgBm319Bzg0BP\nKCZJtPQAAAAAAAAAAAAAHkegBwCAGec09Nxo5VYsOAj01NoEegAAAAAAAAAAAAAvI9ADAMCMGzXQ\nEw8uSJJqNPQAAAAAAAAAAAAAnkagBwCAGVcwS4oFFhQJhA+8XzwYl0SgBwAAAAAAAAAAAPA6Aj0A\nAMwwy7JUMItaiqRueN94yF65RaAHAAAAAAAAAAAA8DQCPQAAzLBap65Ov3PDdVvS3sqteptADwAA\nAAAAAAAAAOBlBHoAAJhhBbMoSSMFemJBGnoAAAAAAAAAAACAeUCgBwCAGVYwS5I02sqtYFwSgR4A\nAAAAAAAAAADA6wj0AAAwww7T0OOs3Kp1Gq7OBAAAAAAAAAAAAMBdBHoAAJhhhwn0+H1+RQMR1do1\nt8cCAAAAAAAAAAAA4CICPQAAzLC9lVs3DvRIUjwYU52VWwAAAAAAAAAAAICnEegBAGCGFcyiQr6g\nYvY6rRuJB2OqdRqyLMvlyQAAAAAAAAAAAAC4hUAPAAAzrGAWtRRJyzCMke4fC8bUs3oye6bLkwEA\nAAAAAAAAAABwC4EeAABmlNk11eg2R163JUnxUEySVGs33BoLAAAAAAAAAAAAgMsI9AAAMKMKZkmS\ntBRJjfyYeNAO9HTqrswEAAAAAAAAAAAAwH0EegAAmFEFsyhJh2voGQZ6aq7MBAAAAAAAAAAAAMB9\nBHoAAJhRxwv0sHILAAAAAAAAAAAA8CoCPQAAzKi9lVuHCPSEBoGeOiu3AAAAAAAAAAAAAM8i0AMA\nwIzaa+hJjfyYmNPQ0ybQAwAAAAAAAAAAAHgVgR4AAGZUwSzKZ/iUDC+O/Ji9lVsEegAAAAAAAAAA\nAACvItADAMCMKpglpcNJ+YzR/7km0AMAAAAAAAAAAAB4H4EeAABmULffVaVd1VIkfajHRQMR+Qwf\nK7cAAAAAAAAAAAAADyPQAwDADCqaZVmyDh3oMQxD8WBMdRp6AAAAAAAAAAAAAM8i0AMAwAwqmEVJ\n0lIkdejHxoMxVm4BAAAAAAAAAAAAHkagBwCAGbQX6DlcQ48kxYILanSb6vV74x4LAAAAAAAAAAAA\nwAQQ6AEAYAYdJ9ATD8UlSfVuY6wzAQAAAAAAAAAAAJgMAj3AHKu0q+pb/WmPAeAICmZJ0tFXbklS\nrc3aLQAAAAAAAAAAAMCLCPQAc2qjsqX/7R9/R49f+Nq0RwFwBE5DTzp8lEDPgiSp1iHQAwAAAAAA\nAAAAAHgRgR5gTn2r+K+yZOmFysa0RwFwBAWzqMVQQkF/8NCPjTkNPQR6AAAAAAAAAAAAAE8i0APM\nqc3qtiQp3yxMeRIAh9W3+iq2ylqKpI/0+IQd6KkT6AEAAAAAAAAAAAA8iUAPMKc2qluSpLxJoAfw\nmkq7qp7V01Lk8Ou2JCkWsht62o1xjgUAAAAAAAAAAABgQgj0AHOo2W1qt5mXJBWaRfWt/pQnAnAY\nBbMoSUdu6IkPV27VxjYTAAAAAAAAAAAAgMkh0APMoc3qzvDXXauncqsyxWkAHFahOa5ADyu3AAAA\nAAAA4H19qy/LsqY9BgAAwEQR6AHmkLNuKxtZkiTl7bYPAN5QMEuSdPSVW3agp95h5RYAAAAAAAC8\nrdVr6zf/6X/X55/6f6Y9CgAAwEQR6AHm0GZ1W5L0PafukiTlm4VpjgPgkPKt4zX0hPxBhfwh1dqs\n3AIAAAAAAIC3XWxcUrld1bO73532KAAAABNFoAeYQxvVLUUDEb0sfZskKdfMT3kiAIdRMI8X6JGk\nRDCmGg09AAAAAAAA8LicfcFqvsGFqwAA4GQh0APMmWbX1KVGTqvxFWWirNwCvKhglhQNRBUNRI58\njFgwplqnPsapAAAAAAAAgMnLNQYXrOabJfWt/pSnAQAAmBwCPcCc2aruSJLWE6taiqRkyBhewQBg\n9lmWpYJZ1FIkdazjxIMxdfodtXrtMU0GAAAAAAAATN6u3UDf6/dUbXMBGwAAODkI9ABzZrO6JUla\nT5xTwBdQKpxU3iTQA3hFvdtQu9c+1rotSYqHYpKkGic5AAAAAAAA4GG5y85vF1u00QMAgJODQA8w\nZzbshp61xVVJUja6pHKrok6/O82xAIyoYK/IG0dDjyTVWbsFAAAAAAAAD8vZDT2SVDTLU5wEAABg\nsgj0AHNms7qliD+s5WhGkpSJLMmSNQwJAJhtRbMkScdu6InZgZ4qgR4AAAAAAAB4VLffHZ4vk6Ri\nq3TAvQEAAOYLgR5gjpjdli42drWaWJHPGHx7Z6NLkqR8k7VbgBcUxhToSdDQAwAAAAAAAI/Lm0VZ\nsnRm4ZQkXRHuAQAAmHcEeoA5slXbkSVL64nV4dcyTqDHJNADeMG4Vm7FQoNAT41ADwAAAAAAADwq\nZ1+o+tL0rZKkYouVWwAA4OQg0APMkc3qtiRpLXFu+LVMxGnoYeUW4AV7gZ7jNfTE7YaeWptADwAA\nAAAAALwp18xLkm5ZXJff8KlEQw8AADhBCPQAc8QJ9KxfHuiJDkIBORp6AE8omEUFfQElgvFjHWcY\n6KGhBwAAAAAAAB7lBHpOLWS1tJCmoQcAAJwoBHqAObJR3VLIH9KpheXh1xZDCQV8AeXtNz4nwSef\n/pz+z6//X9MeAziSgllSOpKSYRjHOo4T6KkT6AEAAAAAAIBH7drntbPRjLILaZVbFfX6vSlPBQAA\nMBkEeoA50eq1daF+SWvxFfmMvW9tn+FTJrJ0YlZuWZalp3LP6pnCt9TsNqc9DnAorV5btU5dS+Hj\nrduSpIVgVIYMVVm5BQAAAAAAAI/KNwuK+MOKB2PKRNOyZKncrkx7LAAAgIkg0APMie3aeVmytHbZ\nui1HJppWvdtQs2tOYbLJqnXqMnstSdJ27cKUpwEOp2gOgndLkeMHenyGT7HgAg09AAAAAAAA8CTL\nspRr5pWJLskwDGUWBufMiiZrtwAAwMlAoAeYExvVLUnSemL1mtuykSVJg6sZ5t1uMzf89WZ1e4qT\nAIeXN0uSxhPokaRYMKYagR4AAAAAAAB4UKVdVbvf0XI0I0l7gZ5WaZpjAQAATAyBHmBObFYG4ZXr\nN/QMAj058wQEehr54a+3ajtTnAQ4vMKwoSc1luPFgwuqdxrqW/2xHA8AAAAAAACYlJx9gWrWDvRk\nhw09BHoAAMDJQKAHmBObtW0FfUGdiZ265rbMCW3o2aoS6Dkp/u/v/p3+afvxaY9xbIUxrtySpHgo\nLkuWGt3mWI4HAAAAAAAATEquObh4Mzts6Bmc56ahBwAAnBQEeoA50O51dL5+UavxFfmMa7+ts3ZD\nT/4kNPTYb/KSoYTO1y+q2+9OeSK4rdPr6O9ffEx/98IXpz3KsY090BNckCTV26zdAgAAAAAAgLfs\nDgM9g/Pbw5VbZnlqMwEAAEwSgR5gDmzXzqtv9bW+eO26LemkNfTkFTD8uiPzCvWsns7XL017JLis\n3K5IGlyZU/N4cKVgluQzfEqFF8dyvFgwJkmqdrz9+wIAAAAAAICTx2noWbYbehKhmIK+AA09AADg\nxCDQA8yBzeqWJGktsXrd2xeCUUUDUeXs9o95lmvklYlmhuGmrRprt+ZdqVUZ/nqztj3FSY6vYBaV\nDC3K7/OP5XhxO9BTJ9ADAAAAAAAAj8k1C/IZPqXDKUmSYRhKh1MqmgR6AADAyUCgB5gDm9VBiGE9\ncf2GHknKRtLKNwuyLGtSY01cvdNQvdvQcnRJq/EVSdJW1dsBD9xYqbVXsbtZ8e6fd6/fU7lVGdu6\nLWkv0FMj0AMAAK7j+fKGvlt6YdpjAAAAANeVa+a1FElfcfFbKpJSrVNXp9eZ4mQAAACTQaAHmAMb\n1W0FfQGdWTi1730y0Yw6/Y4q7doEJ5usvQrWrM7Fz8qQQUPPCXB5oGfDww09xVZZlqzxBnpCdkNP\nuzG2YwIAgPnx6Wf+XH/81GemPQYAAABwDbNrqtqpKRtZuuLrS3ZbT/Gyc4IAAADzikAP4HGdXkc7\n9Qs6F185cE1PJjoICeTNwqRGm7jdRk6SlF3IKOQP6dTCsraq5+e6lQhXN/RsTXGS4ynYK/EykdTY\njuk09FQ78xvkAwAAR2NZlgpmUZV2VY1Oc9rjAAAAAFfINQfnsbMLmSu+no4kJUmlFmu3AADA/CPQ\nA3jcTv2C+lb/wHVbkoZXMuSbcxzouayhR5LWEisye+Zch5gglVoVSdJK7IxyZkGNjjfbaJxAjxsr\nt+oe/T0BAADuaXSb6lo9SXtNlwAAAMCsyNnndJejVwV6nIYek4YeAAAw/wj0AB63UR2sGFpLrB54\nv0zUDvTMcbhlL9AzeJO3Gl+RJG1VWbs1z8qtsnyGT6/I3C5Jnl2z5kagJ2YHemqd+tiOCQAA5kPZ\nDkVL0m4zN8VJAAAAgGs5ofPsVYGeVMRZuUVDDwAAmH8EegCP26wOVgyt3aChJ2M39OTmuqEnJ5/h\nU8YORKwmBoGeTY8GPDCaUquixVBCNyXWJO2F3LymYA5OQiyNceVW2B9SwBdQrU2gBwAAXKncvjzQ\nQ0MPAAAAZovzGtVpnnekw4OVW0WTQA8AAJh/BHoAj9uobivgC2gldvrA+zkhl7leudXIaymSlt/n\nl0RDz0nQt/oqtcpKhZNat1uqNj0a6HFOQqTHGOgxDEPxYIyGHgAAcI0rGnoaBHoAAAAwW3INp6Hn\nqkCPfe6sQEMPAAA4AQj0AB7W7Xe1U7ugc7GzwxDLfoL+oJKhxbldudXsmqp2alfsVE6E4kqFk55d\nwYQbq3Xq6lt9pcJJZaNLigYi2rBbq7ymYBYVD8YU8ofGetx4MKY6gR4AAHCVSqs6/DUrtwAAADBr\ncmZBiWBckUDkiq9HAxFF/BGVzPKUJgMAAJgcAj2Ah+3UL6hn9bS2ePC6LUcmuqRiq6xev+fyZJPn\n7FRejmav+Ppq/KxKrbKq7do0xoLLSq3BG/dUeFGGYWg1vqJLjZyaXXPKkx1O3+qr0CppyW7SGqd4\nMCaz11Kn3x37sQEAgHeV7JVbhgxWbgEAAGCm9Po9FcyispddvHm5dCSpIg09AADgBCDQA3jYZmWw\nWmg9PmKgJ7KkvtWfyzc7zocQywtXvslbTQx+b2jpmU/OqoiUvTvbWbu1XTs/tZmOotquq9vvuhPo\nCcUkiZYeAABwhYr9OmolfkaVdlVmtzXliQAAAICBYqukvtW/Zt2WIx1Oqdk1ZXrsoj4AAIDDItAD\neJizWmjUhp5sdBAWyDXnb+3WbmOwJmD5qqs2VuMrkqStKoGeeeQ09CTDi5KkNTvA5bW1WwWzKEla\nsneAj1MsOAj01NoEegAAwJ5yuyKf4dMtyZsk7TVeAgAAANPmXLx5UEOPJBVbrN0CAADzjUAP4GGb\n1R0FDL9WYmdGun/GfgOUN+cv0LP/yi070ENDz1wqXdPQMwj0bFa3pzbTUewFetxYubUgSarR0AMA\nAC5TblWVCMZ1emFZkli7BQAAgJnhXJB69cWbjnR4cFFc0Zy/JnoAAIDLEegBPKrX72m7fl4r8TMK\n+AIjPSZrhwXyzaKbo03FbjMvQ4YyV9WwZqJpRfwRGnrmVMkcXIWTsht6lheyCvtD2iDQMxQPxiUR\n6AEAAHssy1KlXVEyvDj8kGS3mZvyVAAAAMCAc/Hm1ed6HWm75brYItADAADmG4EewKN26hfV7XeH\nK4ZG4bwBmseGnt1mXulISsGrwk0+w6dz8bO62NhVu9ee0nRwi7Nyy2no8Rk+rcZXdLF+SS0P/XkX\n7KuJXAn0hOyVWwR6AACArdltqtPvKhlODBsudxs09AAAAGA27LWx36ihh5VbAABgvhHoATxqs7ol\nSVpLrI78mFQ4Kb/hH1aWzot2r61Sq7zvTuW1xIosWdquXZjwZHBbqV3RQiCqkD80/Np6YtX+8z4/\nxckOx2noydhXF43TcOVWm0APAAAYKLerkqRkaFGZ6JIMGTT0AAAAYGbkmgWFfEEthhLXvT0dGVzc\nR0MPAACYd64Fevr9vt73vvfp3nvv1Tve8Q69+OKLV9z+6KOP6m1ve5vuvfde/cVf/MWBj8nn8/r5\nn/953XfffXr729+ujY0Nt8YGPGPTXim0foiGHp/h01IkpfycBXputFN5Nb4iSdqqsXZr3pRb5WE7\nj8NprdqwQ29eUDCLivjDigaiYz+2s3KrTkMPAACwlVsVSdJieFFBX0DpSEq7TRp6AAAAMH2WZSnX\nzCsbzcgwjOveJ2U39JRo6AEAAHPOtUDPF77wBbXbbX3+85/Xr/7qr+qDH/zg8LZOp6MPfOAD+pM/\n+RN95jOf0ec//3nlcrl9H/OhD31IP/qjP6rPfvaz+uVf/mU999xzbo0NeMZGdVs+w6eV2JlDPS4T\nWVK1U/PUOqIbca4m3jfQYwc8tuwQFOaD2W2p2TWVDC9e8XUn0LPpoT/vglnSUiS970mK44gFWbkF\nAACu5AR6UqHB66jlaEalVlntXmeaYwEAAACqdeoyey1lokv73ifkDyoejNHQAwAA5t5IgZ5C4fBt\nHv/yL/+i17/+9ZKkV73qVXrqqaeGt333u9/V+vq6ksmkQqGQXv3qV+srX/nKvo/52te+posXL+qn\nfuqn9Mgjj+i1r33toecB5kmv39N2bUcrsTMK+oOHeqzzRmieWnqcq4mXF7LXvf1s7JT8hl9bHlrB\nhBsrtwZX4Fzd0HN6YVlBX9AzgZ5GpymzZ2rJhXVbEiu3AADAtcptp6FnsMLACcbnaOkBAADAlDmv\nSfe7eNORDidVMEuyLGsSYwEAAEzFSIGe++6779AHrtVqisfjw//2+/3qdrvD2xKJvd2nsVhMtVpt\n38dsb29rcXFRn/rUp3T27Fn90R/90aHnAebJhcYldfrdQ63bcmQjdqDHnKNAT+Pghp6AL6CzsdPa\nrp1X3+pPcjS4qORcWX5VoMfv82s1flbn6xfV8cBV5gWzKElaiqRdOb7f51c0EKWhBwAADFVaVUka\nNh06wXjWbgEAAGDacvaFqNkbBHpSkZQ6/Y7q3cYkxgIAAJiKwCh3evnLX66HH35Yd911lyKRyPDr\nKysr+z4mHo+rXt/78LDf7ysQCFz3tnq9rkQise9jUqmU7rnnHknSPffco49+9KMHzptOLygQ8I/y\nv4YJW15O3PhOuKGna4P2qleu3Hro39NbmivSc5Lpr8/Nn0f56UG16svXblIkEL7ufW7L3qStF3bU\niTS0unh2kuPBJc/WB2vj1rKnrvm7fPupW/R8ZUONYEW3ZW6eyDxH/X56sW1KktYyZ1z7nkxG4mp2\nm3PzPQ9gsvjZAcyf5ncGH3q85OyK0tGEbm2tSv8qNX21E/U9f5L+XwGcPPyMA+BVjUs1SdJtZ1av\n+7PM+dpKalnfyElGtKPlND/zAHgfr98AXM9IgZ4nnnhCTzzxxBVfMwxDX/ziF/d9zPd+7/fqscce\n05vf/GZ9/etf1+233z687dZbb9WLL76oUqmkhYUFffWrX9X9998vwzCu+5hXv/rV+od/+Ae99a1v\n1Ve+8hXddtttB85bLJLInkXLywnt7lanPcZceHrnXyVJKWUP/Xsa6gzW77yYO6/d9Hz8eWyXLykZ\nWlS12FZV7eveJxtcliQ9+eJ3FD4Tv+594C2buxclSf52+Jrvg2zglCTpyc1vK9k/+GqecTjOz7fn\nLw5WwYV7Udd+RkZ9Ue22Crp0qSLDMFx5DgDziddvwHzarRRkyFC7Ku3Wqgp3YpKk53PbJ+Z7np9v\nAOYZP+MAeNmLuR1JUqB97bmyy3++RazBee7nLuwo1nVnlT0ATAqv34CT7aBA30iBnkcfffTQT/rG\nN75R//RP/6S3v/3tsixL/+E//Ac98sgjajQauvfee/Xe975X999/vyzL0tve9jadPn36uo+RpPe8\n5z36zd/8Tf35n/+54vG4PvzhDx96HmCebFS25TN8Ohc/fNNMxlm51SyOe6yp6PS7Kpol3Zq6+cD7\nrcYHjWJbtR29Rt8zgcngtlK7LElKXrVyS9JwHd1mdXuiMx2F2yu3JCkWjKln9WT2TEUDUdeeBwAA\neEO5VdFiKC6fMdjCnY0O3iPkGqzcAgAAwHTlmnkZMpS5wbmydHgQ4imapUmMBQAAMBUjBXoKhYIe\neOABffnLX1av19MP/MAP6Ld/+7eVzWb3fYzP59MDDzxwxdduvfXW4a/vueee4Rqtgx4jSefOndMn\nP/nJUUYF5l7f6murtqOzsdMK+YOHfnwsuKCwP6S8WXBhusnLNwuyZGk5uv/PI0laTQzCT1vVnUmM\nhQkomYNATyq8eM1tZ2OnFTD82iDQI0mKhwZX3dfaDQI9AACccJZlqdyu6kzs1PBrIX9IqXBSu83c\nFCcDAAAApFyzoHQkpYDv4I+v0hE70NMqT2IsAACAqfCNcqf3ve99uvPOO/XFL35Rjz76qO6++279\nxm/8htuzAbiOC/VL6vQ7WrMbSA7LMAxlIkvKNfOyLGvM002e86HDcvTgtUrRQFTZyJK2ajtz8f8N\nqdSqKGD4FQ/GrrnN7/NrJX5WO7UL6va7U5hudAWzpIDhVyLk3io45/eo1qm59hwAAMAbml1TnX5H\nydCVoejlaEYFs6TOjL92AgAAwPxq9zoqtyvK3uBcr0RDDwAAOBlGCvRsbm7q/vvvVzwe1+Lion7m\nZ35GOzu0XADT4KwQOmqgR5Iy0SW1em3VO41xjTU1u83BWoDlhYMbeiRpNbGiWqeuEldtzIVSq6xk\nOCnDMK57+3rinHpWT+frFyc82eEUzKLSkdRw5YUb9gI9ddeeAwAAeEOlXZEkJcNX7uZejmZkyVKh\nOR9NngAAAPCenH2uNxtZuuF9U+FFGTJUbBHoAQAA82ukTw8Nw9D58+eH/72zs6NAYKRtXQDGbKO6\nJUlaT6we+RjZ6OAN0Tys3XLe5N2ooUeSVuODENRWjUCi1/X6PVXa1euu23I4oTfne2YWtXsdVTs1\nV9dtSZcHerwf4gMAAMdTatmBnmsaegYBeScwDwAAAEzaYc71+n1+LYYSKppcvAkAAObXSKmcX/ql\nX9K9996ru+++W5Zl6YknntCDDz7o9mwArmOzui1DhlbjZ498jIx9hUOuWdBNi2vjGm0qdhv2VRuj\nBHoSg9+zreqO7sy+0tW54K5qpyZLllLh5L73cUJvm9XZDXA5VxA5O7/dEg8NAj11GnoAADjxKu2q\nJGnxqmB0dmHweppADwAAAKYlZ1+A6rw2vZF0JKXN6rb6Vt/V9msAAIBpGSnQc/bsWT388MN68skn\n1e/39f73v1+ZzGgvqACMT9/qa7O2o7Ox0wr5Q0c+zjw19Ow2c0oE44oGIje8r9PYQkOP9zlr05IH\nNPScjZ+Rz/DNdENPwSxKkusNPTGnoadNoAcAgJOubDf0XN10uNfQk5v4TAAAAIB0uJVbkpQOJ/VC\nZUPVdu3A84QAAABeNVKg51d+5Vf0d3/3d3rDG97g8jgADnKpsat2rz0MphzV5Q09Xtbr95Q3i7p5\nxJahZGhR8WBMWzPc2ILRlOwq3YMaeoK+gFZiZ7RdO69evye/zz+p8UY2qUDP3sotAj0AAJx05fYg\n0LMYSlzx9WU79O80YAIAAACT5rRFjtLGLu21XhdbJQI9AABgLo0U6Lntttv00EMP6e6771YksteC\n8ZrXvMa1wQBca6O6LUnHDvQ44YG8xwM9BbOkvtUf+Q2eYRhaja/om8XvqNltKhqIujwh3FIaXlm+\nf6BHktYT57RV29GFxiWdO8aaOrcUzMHKrYzbK7cI9AAAAJvT0HP1Bx6RQESJUJyGHgAAAExNvllQ\nLLCgheBo523T9rnBolnWzeR5AADAHBop0FMqlfT444/r8ccfH37NMAx9+tOfdm0wANfatAM964nV\nYx0nEggrEYx7fuWW82HD8oiBHklaTQwCPVvV83pp+iVujQaXOSu3bhToWUuck85/RRvV7RkN9Eym\noScaiMhn+Fi5BQAAVG5VZchQIhi/5rblaFYvVDZmtt0QAAAA86tv9ZVvFnQuvjLyY1KXNfQAAADM\no5ECPW9+85v1kz/5k27PAuAGNqpbMmRoNTH6m5r9ZKJL2qxuq2/15TN8Y5hu8pwK1uVoduTHrNlv\nCLdqOwR6PGyvoefgS2/W7PDbZnVb/93Z73N9rsMqmEUZMm4YTDouwzAUD8ZUp6EHAIATr9KuKBGK\nXzewsxzN6LnyCyqYJS0vjB6aBwAAAI6r1Cqra/WUtVfBjiIdtgM9JoEeAAAwn0b6FP+zn/2s23MA\nuIG+1ddWdUenF5YV9oeOfbxMJK2e1RtW7nvRsKHnEB82OGGoreqOKzNhMsp2Q8+NdmOfi5+Vz/Bp\ns7o1ibEOrWAO9nsHfCPla48lHoyxcgsAgBPOsiyVWxUlQ4nr3u4E5Vm7BQAAgEnL2RdvZg/Rxp6O\n2Cu37HOFAAAA82akTxDPnDmjd77znbr77rsVDoeHX3/3u9/t2mAArrTbzMvstYaNI8eVsa90yDXz\nStvVpF6z2zh8Q8+phWUFfUFt1rbdGgsTUGqVFQ/GbhiECfmDOrNwSlvVnZlro+r1eyq1yrp5cW0i\nzxcLLminfoEVGgAAnGBmr6V2v7NvKNoJyjtNmAAAAMCk5JoFSYcL9CyGEvIZPpVo6AEAAHNqpE82\nX/WqV+m1r33tFWEeAJO1WRk0jKwvnhvL8Zzq0pxZHMvxpmG3mddCIKpYcGHkx2QpyZoAACAASURB\nVPgMn87Fz+pC/ZK6/a6L08EtlmWp1CqPvKZqLXFO7X5Hlxq7Lk92OOV2RX2rr6VIeiLPFw/FJUn1\nbmMizwcAAGaP0865GNon0BN1Aj009AAAAGCynFD58iFWbvkMn9LhJA09AABgbo3U0PPud79bjUZD\nGxsbuv3222WaphYWRv8AHcDxbVQHjTLr42roiQzeGOXtKx+8pm/1lW/mdS6+cujHrsbP6oXKhs7X\nL2otMZ6AFCan2TXV7ncOFeh5/MK/aKO6rTOx0y5PN7qCfeXQxAI9wZgkqdaua3GfNRsAAGC+VdqD\nQM++DT1OoKdBQw8AAAAm6ygrtyQpFU7pufILtFIDAIC5NFJDz5e//GW95S1v0S/8wi8ol8vpnnvu\n0T/+4z+6PRuAy2xUt2TI0Gr87FiO5zT05E1vBnqKZlldqzdcC3AYq3aIZ6u6M+6xMAEl+4qb1D4f\nRF3NCcFtVmdrzVrBbsdamtDKu7jdZFXr1CfyfAAAYPaUWk6g5/rh3oXggmLBBVZuAQAAYOJyzbwC\nvsC+4fP9pCNJWbJUtsPrAAAA82SkQM9HPvIRfe5zn9Pi4qJOnTqlP/uzP9Pv/u7vuj0bAFvf6muz\nuqNTC1lFApGxHDMdTsmQMdxN7DXOGoDlQ16xIUmrdqvPZo1Ajxc5qyJGbeg5Fz8rQ8YMB3om1dAz\nWLlFoAcAgJOr0q5KkpL7rNySpOVoVvlmXn2rP6mxAAAAAOWaBWUiS/IZI31sNZQODy6WK5qs3QIA\nAPNnpFdG/X5fy8vLw/++7bbbXBsIwLVyzYLMnjnW9VB+n1/pSMqzK7f2dipnD/3Yc/EzMmTQ0ONR\nTkNPcsRATyQQ1qmFZW1Wt2fqg6nJB3oGDT11Aj0AAJxY5dbBK7ekQWC+a/X4QAQAAAAT0+g01Og2\ntWy3yh9GOuIEeorjHgsAAGDqRgr0nDlzRo899pgMw1ClUtHv//7va2Vlxe3ZANg2q1uSNNZAjyRl\nI0sqtyvq9DpjPe4kODuVj7JyK+QP6fTCsrZrOzMV8MBoDrtyS5LWE+dk9lrDvzezoGCWJE0u0BML\nxSRJtTaBHgAATion0LMYuv7KLWmvAdNpxAQAAADc5ly8mTlCG3vavuiv2CKQDgAA5s9IgZ4HHnhA\njzzyiM6fP683vvGNevbZZ/XAAw+4PRsA24a9Kmg9sTrW42bsKx4KHrx64TgNPZK0mliR2Wsp3/Te\n//tJtxfoGa2hR9oLw23M0NqtgllULLigsD80kedj5RYAACi3KzJkHBzoWRi8vt6doSA0AAAA5tvw\n4s2jBHqchp5WaawzAQAAzIKRAj2ZTEYf+chH9M///M96/PHH9fGPf1ynTp2SJP3Wb/2WqwMCkDbt\nEMJaYrzNWJnIINCT82Kgp5FTxB9WPBg70uNX44Pfy60aa7e8pmRfWX6YQM+6HejZnJFAj2VZKpil\nibXzSHsrtwj0AABwclVaVcWDMfl9/n3vQ0MPAAAAJi3XLEiSskdZuRV2Vm7R0AMAAObPSIGegzz1\n1FPjmAPAPizL0mZ1W6eiWUUD0bEeOxMdhAnyHrv61rIs7TbzWo5mZBjGkY7hNLZszUjAA6Mrt8oK\n+YKKBiIjP2bVDsPNSqCn1qmr0+9MNNATC7JyCwCAk67Urih5g7WlTgNmruGt9wgAAADwruM09MSC\nCwr6AjT0AACAuXTsQA8Ad+XNghrd5jCAMk7OFQ85szD2Y7up3K6o0+8oe4Q3eA4aeryr1KooFU4e\nKswVDUS1HM1os7oty7JcnG40zpq7JbsSeBJC/qBC/pDqNPQAAHAimV1T7V5bi+H9121Jgw9EooEI\nK7cAAAAwMc5rz6XI4Rt6DMNQOpxS0STQAwAA5g+BHmDGbQzXbY0/0JOJDAIx+aa3Vm7t2lcLLy9k\nj3yMeCimVDipzSqBHi/p9Luqdmo3vLL8etYTq2p0m8rPwIq5/DDQM7mGHklKBGOqdRoTfU4AADAb\nys7a0tDBr6MMw9ByNKPdZl59qz+J0QAAAHDC5ZoFpcJJhfzBIz0+FUkNGrF7nTFPBgAAMF0EeoAZ\n56wIWk+sjv3Yi6G4gr6g8h5r6Nk9RgXr5VbjKyq3K6q2a+MYCxNQcT6ICicP/VgnFLdR3RrrTEdR\nmFKgJxaMqdapzURLEQAAmKxyuypJWhwhGL0czarT76hiPwYAAABwS6ffValVHrbJH8VSeNCCXWyV\nxzUWAADATDh2oIcPBQF3bVQG4QM3GnoMw1Amklau6bVAT07SGAI9CXvtFi09nlEaQ6DHCclNk1MB\nPMmVW5IUD8bU6XfV7nO1EgAAJ43T0JO8QUOPtPc6e7eRc3UmAAAAoNAsyJKlbOTo53rTkcG5wlKL\ntVsAAGC+HDvQ84M/+IPjmAPAdViWpc3qtrKRJS0Eo648Rya6pGa3qUan6crx3TBs6DnGyi1JWovb\ngZ4agR6vKNlX2Xg90FNwAj3hyTb0xEMxSVKtXZ/o8wIAgOkrt+1ATzhxw/tm7dfZzutuAAAAwC3O\na87sMS7eTDsNPSYNPQAAYL6MFOjZ3t7Wu971Lr3pTW/SpUuX9M53vlNbW4PWkF/7tV9zdUDgJCuY\nJdW7Da0tjn/dlsOpMvXS2q1cI6egL6jF0I0/jDiI09AzCwEPjKY8DPTc+Mryq8WCC8pE0tqsbk+9\nXa5gFhXyBRULLkz0eeNBO9DTYc0cAAAnzbChZ6SVW3ZDD4EeAAAAuCxnn5dePsbKrVTEWblFQw8A\nAJgvIwV63ve+9+n+++9XLBbT8vKyfuRHfkTvec973J4NOPE2q4Pg3LoL67YcmYgd6PHI2i3LsrTb\nzGs5mpHPOF7JWCaypIg/oq3a+TFNB7eVhh9EHb6hR5LWEquqderDpp9pKZhFLUXSMgxjos8bGwZ6\nGhN9XgAAMH2VdlXSqCu37IYeVm4BAADAZTmnoWfhOA09g3OFTis2AADAvBjp0/BisajXve51sixL\nhmHoJ37iJ1SrcXU/4LYNuzlmPeFeQ0/GvvIh55GGnlqnLrPXGl41fByGYWg1cVaXGrtq9dpjmA5u\nKx2joUfaW7u1YYflpsHsmmp0m1qKTHbdliQl7EBPvcPKLQAAThqnoWeUlsvFUFwhf4iGHgAAALhu\nGOiJHCPQQ0MPAACYUyMFeiKRiC5cuDBsEvjqV7+qUCjk6mAA9kIHzmooN3itoWe3ObhK+DhXbFxu\nLX5Olizt0NLjCaVWWYaMI69bc9quprlmzblSaMk+0TBJsZDT0EOgBwCAk6bcrigejMnv89/wvoZh\naDma0W4zN/VVpQAAAJhvu82CIv7IsVbTRwMRRfwRlczptnIDAACMW2CUO733ve/Vz/3cz2ljY0Nv\nectbVC6X9bGPfczt2YATzbIsbVa3lYmkFbdbNdyQjQ5aQrzS0LPbGFyx4awBOK5zdlhqs7qjW5I3\njeWYcE+pVdFiKDHSB1HXszYTgZ6iJE2locf5WVJrE+gBAOCkqbSqw3bOUSxHs9qunVe1UztymBoA\nAAA4iGVZyjfzOrNw6tir6dORJA09AABg7owU6Lnpppv0V3/1V3rhhRfU6/X0kpe8RLu7u27PBpxo\npVZZtU5dt6Ve4urzRANRxQILyjeLrj7PuDi1/+NYuSVJa/FBoGertjOW48E9lmWp3K7oXOzskY+R\nCMWVCieH6+ymYSYCPTT0AABwopjdlsxeS8nQ6GtLndfbu408gR4AAAC4otyuqNPvKjuGc73pcErn\n6xdldk1FApExTAcAADB9B67cOn/+vHZ2dnTfffcpl8spFotpcXFRFy9e1P333z+pGYETyVm35awI\nclMmmlbBLHiiTt9ZuTWuhp4zsVPyG/65CPQ8X97Q+//5d3Whfmnao7ii3mmo2+8qFR79g6jrWU+s\nqtKuqtyqjGmyw9lbuTW9QE+dQA8AACdKpT143ZM8xOuoYaDHfv0NAAAAjFuuOWiNH0ugJ5KUJBVb\nrN0CAADz48CGno9//ON6/PHHdenSJd133317DwoE9IY3vMHt2YATzWkQWZtEoCeypI3qtirt6qFO\n8k/DbjOvgOEfvkE7roAvoJXYae3UzqvX7x15ldMs+P+2v6xLjZy+WfiOzsROTXucsXPejCfDx/uz\nX0us6Mnc09qobunO8CvHMdqh7DX0pCb+3AvBqAwZqrJyCwCAE8UJMicP0bSzvOAEevKuzAQAAAA4\nrzWzh1gNu590eHCurWiWdDZ2+tjHAwAAmAUHBno+8IEPSJL+8A//UD/7sz87kYEADGzagZ71xKrr\nz5Wx3zDlmoWZD/TkGnllohn5jAMLxg7lXGJFm7UdXWrmPPtmr9fv6an8s5KknDmfH7qU7UDPOBp6\npMH32J3Z6QR6fIZvKt9rPsOnWHCBhh4AAE6Ycrsq6bANPYNGzN0GDT0AAABwR34Y6BlHQ48d6GmV\njn0sAACAWXFgoMfRbrf10EMPXfP1d7/73WMfCIBkWZY2qltKh1OKh2KuP18mMgj05M2CbtXNrj/f\nUdU7DdW7Dd2SXB/rcVfjK5IGAQ+vBnqer2yo3mlI2quqnTelYaDnuA09g9arzep01qwVzKLS4dRY\nQ2mHEQvGVCPQAwDAieI09CweItCTDC8q4AvQ0AMAAADXOK81l8cR6Bk29LByCwAAzI9Df5rY6XT0\n6KOPKp/npB7glnK7omq7pvVF99t5pL1K0/yMB0Fywzd42bEe1wl4bNWmE/AYhyd3nx7+etb/HI+q\nZH8QddxATzK8qMVQQhvVrXGMdSidflfldnUq67Yc8eCC6p2G+lZ/ajMAAIDJKrcPv3LLZ/iUjWa0\n28zJsiy3RgMAAMAJlmsW5DN8xz7fJ0npyOAYNPQAAIB5MlJDz9VNPL/4i7+on/7pn3ZlIAB767bW\n4ucm8nzDlVvmbAdBnLr/7MLxr9i43Ln4WUnS1pQaW47Lsiw9mXtaIX9I6XBKObMgy7JkGMa0Rxur\nca3ckqT1xDk9lf+mqu2aEqH4sY83qqI5OKGwFElP7DmvFg/FZclSo9tUPOh+AxgAAJg+p6HnsCs/\nl6MZXahfVL3b4HUDAAAAxi7XzCsTScvv8x/7WCm7oadEQw8AAJgjR9r3Ua/XtbPjzQ++AS/YqAya\nQ9YXJxPoWYqkZciY+WaXXZcaeqKBiLLRjLZqO568+vhiY1e7zbxeuXS7zsZOqd1rz+VKpdLwg6jj\nX7HjtDJt2OG5SSmYRUlTDvQEFyRJ9fb8/R0BAADXV2lVJUmLh2jokfZWH+w2aOiFt/X6vWG4HgAA\nzIZm11StU1d2DOu2JCnkDyoejKnQKo7leAAAALNgpIaee+65Z9j0YFmWKpUKDT2Ai5yQgRM6cFvQ\nF1AyvKicZwI9423okaTV+Iq+vvsNlVplpae4DukonswN1m3dlb1D27XzkgZXt0yyeWYSSq2yIv6I\nIoHwsY+1lhiss9usbuuOzMuOfbxRFWagoSdmX11f7dR1empTAACASSq3K4oHYwr4RjoFMOQE6Xeb\nOd2SXHdjNGAi/svGP+g/P//3+vXX/LJW4memPQ4AAJCG56LHea43HU7qQmN3LtvLAQDAyTTS2bzP\nfOYzw18bhqHFxUXF4/P1QTEwSzarW0qFk4e+gvY4MpElPVd+Qb1+bywVp27YbebkM3zKuBCGWEsM\nAj1btR3PBXq+kXtGhgzdkXm5Wr2WpMEb4luSN015svEqtcpKRY7fziMNVm5Je+vtJmWvoWd6f8cS\ndqCnPoctTgAA4PrKreqRXn8s26tunWA94FX/WnpOfauvJ3NPE+gBAGBG5OzXmJno0tiOmYqktFnb\nYWUsAACYGwcGeh5++OEDH/zWt751rMMAkMqtisrtqu7MvnKiz5uNLum75edVMEvDE/ezZreR19KY\ndipfbTW+ImkQ8Jj07/1xVNpVPV/e0K2pmxUPxZSxr2iZ9balw2r3Omp0m1q3m3WOKxVOKh6MabO6\nNZbjjWoWVm45DT3zuJYNcEun35Xf8MlnHGlbLQBMVavXltkzlQwvHvqxw4YeVm7B43ZqFyRJT+e/\nqX938w9NeRoAACDtBXrG29AzCLEXzTKBHgAAMBcODPQ8/vjjBz6YQA8wfk5jyPqE1m05nNabvFmY\nyUBPs2uq2qlpNbHiyvGd427ZK6u84qncN2XJGoaQsvYVLTlzvj50KbXKkgZBnHEwDENriXN6tvBt\n1TsNxYILYznujTiBnmm2QMVDdqCnTaAHGEWv39Nvf/n/0ErsjH7+7ncR6gHgOeVWRZKUDB0+0JMO\nJ+U3/Mo1c+MeC5iYeqehcnvwffB8eUO1Tp0P+AAAmAFOoCc7zkCP3e5dapW05tJ5ZAAAgEk6MNDz\ngQ98YPjrTqej559/Xr1eTy996UsVCIy0rQvAIW3YjSHjaiIZlVNtOngj9dKJPvco9q7YyLpy/GRo\nUfFgTFvVHVeO75Ync09Lku6yAz1LkbQMGcrPWUNPeRjoOfwHUftxAj2b1W29fGkyf+cLZknJUEJB\n3/T+DY3T0AMcyoXGJZVaZZVaZX3hxX/Qm27+76c9EgAcyjDQc4TXUX6fX5lompVb8LQd+6KNsD+k\nVq+tb+a/re878z1TngoAADgN45nI+FZu7TX0lMZ2TAAAgGka6RLjp556Sj/8wz+s9773vfr1X/91\nveENb9ATTzzh9mzAibRhN/SsTbyhZ/DGKW83iMwa50MEt9qDnMaWvFlQo9N05TnGrd1r65uF7+jM\nwimdWliWJAV9AaXCyblbuVW0Az3JMTX0SHuhOacVy219q69SqzzVdVvSXqCn3mlMdQ7AK7Yva257\n5Pn/Vy9UNqY4DQAcXsVuJlkMJ470+OVoVrVO3TOvkYGr7dQvSpJet/IDkqSn8t+a5jgAAMC228wr\nEYorEgiP7ZhOK7ZzLhEAAMDrRgr0/M7v/I4++tGP6m/+5m/08MMP66GHHtKDDz7o9mzAibRZ3VYy\nlDjSFbTH4axqmtVml1xj/DuVr7YaH9Swbte80dLzzcJ31Ol3dNfyHVd8PRNNq9Qqq9vvTmmy8XOu\nLHdqc8fBCc1NKtBTaVfVs3pTXbclSTE70FPt1KY6B+AVTqDnf7j538qyLH3y6f8os2tOeSoAGJ3z\nOip1hJVb0t7r7xwtPfAop6HnNWe+V8lQQs8WvqW+1Z/yVAAAnGy9fk/FVmns53pp6AEAAPNmpEBP\no9HQ3XffPfzvV73qVWq1Wq4NBZxU1XZNpVZZaxNetyUNKvgDhl85czYDPbvNnCT3Vm5J0mr8rCRp\n0yOBnm/knpEk3Wmv23JkIxlZslSY0baloygNG3rGF3TLRNJaCESHa+7c5vx5TLuhJ+wPKeALqN6m\noQcYhRPouWftdXrjTW9QrpnX57/98JSnAoDRldtVSdLiEV9HOa+/ndfjgNfs1C/IZ/h0JnZKd2Re\nrlqnrhcrk3kPAAAArq9gltS3+sqOOdCTCi/KkKFii0APAACYDyMFepLJpL7whS8M//sLX/iCUqnp\nNgwA88gJFqxPeN2WJPkMn5Yi6Zlt6Nlt5mXIUCY6vp3KV1u1f9+3qrMf6OlbfX0j96wSwbhuXly7\n4janbWme1m6VnCvLx7hyy1mzttvMq9l1f4VEoTkbgR7DMBQPxlTr1Kc6B+AV27XzSodTWggu6Edu\neZNuSqzpv134mv7bha9NezQAGEm5NQj0JI/a0GOvvN2loQceZFmWdmoXdWphWUFfQHdkXyFJejr/\nzSlPBgDAyea0P2Yj4z3X6/f5tRhKqGiycgsAAMyHkQI9Dz74oD7xiU/o+7//+/Xa175Wf/AHf6D3\nv//9bs8GnDjO6p+1KQR6JCkTXVKtU5fZnb0Grt1mXulISkFfwLXnOLWQVcgX1JYHGnpeqGyq2qnp\nzuwr5DOu/FGemcNAT7lVlt/wK26vixqXvbVb7v+ZF+yq36Upr9ySZAd6WLkF3Ei1XVOlXdU5u8HN\n7/PrXXf8zwr7Q/r8t/4T62cAeEK5PQhGL4YTR3q8swZht8HPPHhPwSzJ7JlaiZ2WJL0sfZv8hp9A\nDwAAU+aExcfd0CNJ6UhKpVaZFZsAAGAujBToufnmm/WXf/mXeuyxx/Too4/qU5/6lF7ykpe4PRtw\n4mzYgZ71xcmv3JIGK4gkKT9ja7favbZKrbIrb/Au5zN8Ohc/q/P1i+r0u64+13E9ufu0JOmu5Tuu\nuc35fZq1P8fjKLUqWgwlrgkvHdf6MNCzPdbjXk++NRsNPdIg0NPqtdXpdaY9CjDTnHVbzkpGadBU\nce/t/15mr6VPPv0f1ev3pjUeAIyk0qooFlw4cjB+KZKWz/CxcguetFMf/Fu+Ehv8Wx4NRHRr6hZt\nVLdUsdfRAQCAycuZg0CP0wY5TulwUj2rp2qbi9kAAID3jfTJ6GOPPaYPfehDsixLP/7jP64f+qEf\n0mc/+1m3ZwNOnI3KlhKh+JHr8I9rGASZsWYXp2lm2eVAjySdS6yob/V1vn7B9ec6jm/knlHQF9TL\n0rddc9u8rdzqW32V25WxrttyrE0w0FMwZyjQExo0HdW7jSlPAsw2J9CzclmgR5K+/+yr9ZrT36MX\nKhv6z8//l2mMBgAjK7crx3p/EfAFtBROsXILnnS+dlGStBI/M/zaHZmXSZKeyX9rKjMBAIC985Zu\nNfRIUrFVGvuxAQAAJm2kQM9DDz2kH/uxH9Pf/u3f6q677tKjjz6qv/7rv3Z7NuBEqbXrKrZKWk+s\nyjCMqczgrGrK28GDWeFcDTyJQM9afEWStFU97/pzHdWlxq4uNC7pFUu3K+QPXXN7IhhXyBdUfk4+\ndKm2a+pbfaUi4w/0ZKMZRfzhYTuWmwpmSdFAVNFAxPXnupGYvbqs2q5PeRJgtl2vocdx78v+vTKR\nJf39i4/p28V/nfRoADCSdq+tZtdUMny8CwaWF7KqtKszuZoXOMi23dBz7rJAz7/JvFySWLsFAMAU\n5Zp5hfwhJYLxsR87bV8UWDTLYz82AADApI28u+TWW2/Vl770Jd1zzz2KxWLqdFjTAYyT0xDiNIZM\ng7NyKzdjQRDnauDlhazrz7WasAM9NfcDHkf1ZO4ZSdKd2Vde93bDMJSJLmm3WZBlWZMczRWl1uDN\nd+qYH0Rdj8/waS1xTpcau65+QGVZlgpmUUv2FULTFg8uSJLqHQI9wEG2a+cV9AWv++9PNBDRu+74\nSRmGoT995vOq8f0EYAaVW4OVQouhxLGO4wTrZ+19AnAjO7ULCvlDV7Rknl44pUwkrWcL32Z1JuYS\nf68BzDrLsrTbzCsbWXLlwtYUDT0AAGCOjBToyWazevDBB/XUU0/p9a9/vT74wQ9qZWXF7dmAE2Wj\nuiVJWp9moGfY0DNbq5p2G5Nr6FmJnZUhQ1vVHdef66ie3H1GhgzdmX3FvvfJRpdk9kw1us0JTuaO\nUqsiSa6s3JIGITpLlrZq7v2Z17sNtXvtmVi3JUlx++onAgjA/nr9ni7UL2oldkY+4/ovmW9J3qT/\n8ZY3qdQq63PP/tVchCgBzJdye/A66tgNPfbrcNZuwUt6/Z4uNnav+bfcMAzdkXm5ml1Tz5VfnOKE\nwPg9lXtW/+t/fZ/+6wuPT3sUANhXrVNXu9d27VxvOmwHekwCPQAAwPtGCvR8+MMf1p133qnPfOYz\nWlhY0Nramj784Q+7PRtwojgrf9YTq1ObIRZYUMQfUb45ayu3Bh8cuLFT+Wohf1CnY6e0VdtR3+q7\n/nyHVWvX9Vz5Bd2SXFcitH8lbTYyP1dRl52GntD4G3qkvVasTRfXbhXsNXYzE+gJDVZuEegB9nex\nsauu1btiRcf1vOmmN+ilqZfoidzT+sedf57QdAAwmrIdjE4e83WU01TmrMIFvOBiY1c9q6eV2Olr\nbruDtVuYQ9u18/rk059Tu9/R188/Pe1xAGBfbp/rTUfslVstVm4BAADvGynQE4/Htbi4qM997nP6\nvd/7Pd1yyy2Kx8e/2xQ4yTarW4oHY661kIxisKoprZw5W6uadpt5JUOLCvtDE3m+tfiKWr22cs3Z\naiqSpKfyz8qSpbuydxx4v722pdkKZx2F8+Y76dL3xvpEAj2DK4JmbeVWrU2gB9iP09p1Ln5wK6XP\n8Ol/eeXbFQss6K+/84h2ahcmMR4AjKTSHqzcGltDT8P7YXGcHDv1wb/JK/Gz19x2e/pWBXwBAj2Y\nG5V2VX/w5Kdk9lryGT69WNqa9kgAsK/cMNCz5MrxF0MJ+QyfSjT0AACAOTByQ88f//Ef69y5czp1\n6pQ+9rGP6ROf+ITbswEnRr3TUN4sai1xzpW9wYeRjSyp3WvPTHNHp99V0SxpecH9dh7HamLw4a2b\nK5iO6hu5ZyRJd2ZfeeD9nDfE89HQM7iy3Lm6ZtxOLSwr5A+drIYee+VWfUa+z4FZ5ARzbtTQI0np\nSEr3veJ/Uqff1Sef/pw6vY7b4wHASIYNPeHEsY6TiSzJkEFDDzzF+bd8JXbtv+Uhf0i3p27VTv0C\n6zjgeZ1eR3/45KdVMIv6kVvepJsX17VdvchrUgAzy+2GHp/hUyqcpKEHAADMhZECPV/60pf0p3/6\np3rHO96hd77znfr0pz+tRx55xO3ZgBNjcwbWbTkywyDIbLTT5JsFWbK0HM1O7DlX7TaGrepsBXo6\nvY6eKXxbpxayOhM7deB9M5HZ+nM8jpLT0OPSyi2f4dNqfEXn6xfV7rVdeQ4n0JOZkUBPLMjKLeBG\n9hp6rr2q/3ruXv43et25H9BO/YL+03f/1s3RAGBk5fYg0LN4zNdRQX9QqXBy+OEL4AU79fOSpJV9\nwrms3cI8sCxLf/bNv9TzlRf1fadfpX938w9pNX5Wfauv8/WL0x4PAK4rb5+vdCvQI0np/5+9Ow+P\n467TRf9W9b7vWluyvEq2bCckIQkECI4dEhKWkBBCFmfhDNvcYQbOnBlgzsC9c4aBuZdz+APuXBiY\nQ0JMErKQyQJJWBJCSFjihNiSJUuWF60tyb3ve9X9o7vadmJJLalW6ft5DMcXtAAAIABJREFUHj8E\nW131syW1uqve3/s1uZEsplDlqpKdgxBCCCFEDk0FelwuF7LZMzf9yuUyjdwiREST6VoVsjD6R0lC\nECRaUEcQRGiYCUj4Bu/NGoEelTX0jMaPo1QtLdnOA5xp6ImuiUBPCjaDFQadQbJzdDk6wYPHTGZW\nkuOfGbmljkAPjdwiZGkzmVl4TG5Y698vzbhpywfQZmvFb6dfaTSqEUKIkhoNPcbVNfQAQMDqR6KY\nRIkaH4hGhDJzcBjtcBjPf/1qh68XADAUHZVzWYSI6rnx5/Ha/CFsdG7AHX03g2EY1V7TIIQQQTgf\nBQNG0tH0HrMLPPhGwJ0QQgghRKsWDfR8+ctfxpe//GVwHIcPf/jD+Kd/+id87Wtfw4033gi3W7oX\nW4SIieM51dcMT9YberpU0NCjtiCIsAs4YJWvocdutMFtcmFawhFMKzFQvzm829+/5McadUY4jY41\nMnIrCbdJmnFbAiFMJ9XYrVghDgNrgL3ejKM0HauDRW+hhh5CFpAuZZAqpZtu5xEYdUZ8ov826Fk9\nfnz00caNdEIIUUqylIZVbxElGC0E7NfC60uy9hUqBUQLcXTaFv5Z3mL1o8Xqx0h8DGWuIuPqCBHH\n6/OH8bNTv4TX7MGndt/ZeK7vdNS+7qcl2rBCCCGrFclH4TW7oWf1kp3DY6rdv4rRaE1CCCGEaNyi\nr5guvfTSc/5X0N+/9M1kQtTioZHHMRgZxpcu/RvJQwErNZWegU1vlXRXQrOEkVtqaegJ5yMA5G3o\nAYAuRwcGI0eRKqXhFGFH82pxPIcjkWHYDTZscm1o6jF+ixfjqSlUuSp0rE7iFUojXymgUC3CZZJm\n3JagS4ZAj9fsBsMwkhx/JewGK7IU6CHkvIS2ruUGeoTHfGTz9Xh07EncP/ww/o8L/wtYpqlSTEII\nEV2ymIJbpNdRwuvxcD664AgjQtQiVB811G5vXfTj+n19+M3UyziROIU+71Y5lkaIKMZTkzhw9GGY\ndEZ8Zvfd51y36LC1gWEY1Y0RJ4QQAChVS0iV0uj1bJH0PJ76dfYEBXoIIYQQonGL3l34yEc+0vi1\nZ88eXH755bjssstwySWXoK2NLuAR9StzFbx++hDS5QweHn0CPM8rvaS3yJXziOSj6HJ0quJmv68+\nEiiajyu8kppwrrYDWMqZyufTqKhWyQWwyfQ0kqU0dvq2N31j2Gf2geM5xItJiVcnnWR97W6jtGG8\nNmsLDKy+0ZYlpmK1hGw5p5pxWwK7wYZMOafK50VClLaaQA8AXBl8J3b6tmMkPobnJ18Sc2mEENK0\nUrWMfCUPl1GkQE+9MVMI3BOiZrOZOQBAxyINPUAt0AMAQ9ERyddEiFjihQT+feBHqHBVfKL/9re8\nZjXqjOiwt2ImM0vv9wghqhOpt8JLfa3XU9/Yq+XrooQQQgghwBKBHsG3vvUt7N27F9deey1uu+02\nvO9978O3vvUtqddGyKodj59EsVoCAwYDkSG8ER5UeklvITSCdDuVH7cF1C78OIx21VTph/MROAx2\nWPRmWc8brDe2qGXm/GC4Nm5rV2BH049R2/i0lUjUx9W4zdIGenSsDp32DoSyc6LX7ccKtXCcGhq4\nzmY32lDlqyhUC0ovhRDVEQI9wRUGehiGwR3bb4bL6MBTJ5/DRGpKzOURQkhTUqXa6yixmg7Pbugh\nRO1msrVAT+cSbVJb3JtgZA0U6CGaUagU8d2Be5EqpXHT1g9ip3/7eT9ugyeIQrU2eo4QQtREeC0p\nXLeUitDQEy9SQw8hhBBCtK2pQM/PfvYz/Pa3v8V1112H+++/H/feey+8XmlfcBEihoFILQRxa++N\nMLB6PDL6BLLlnMKrOtdUphboEUb+qIHf7EWsmADHc4quo8pVES3EZW/nAdTX0DMQGYae1WO7d1vT\njxHGp0UK2r3pkhAaeiQeuQXUvgc5nkOofiNfLGcCPepq6LEZbACATEldz4mEqMFMZhYG1tBoo1gJ\nh9GOO3d8HBzP4d6hB1GoUHiOECKvZDENAKKNjxVek0dy2n1tSdaPUGYWDBi02xYfuWVg9ej1bsV8\nLtxohyVErTiew33DD2EmM4t3dVyG9wavWPBje9y1TWMzKtmkRAghgkhenjZ2j6ke6ClQQw8hhBBC\ntK2pQE9LSwvsdju2bt2KkZERXH755YhEqGabqBvP8xiMDMOit+Dy9ktw3carkS5n8PjYz5Re2jkm\nU9MAgG4VBXp8Fm9tVJPCb3hihVqoKGCVP9DjM3tg0ZtV0dATyUcRys6hz7MFJp2x6cf5zfVAz1po\n6DFJ29ADnPkenBJ57FasPqtbbYEeuxDoKWcUXgkh6lLlqpjLzqPD1tb0iMOF9Hm3Yl/3lQjno3jk\n2JMirZAQQpqTFLmhx6QzwmV00sgtono8zyOUnYPf4oWxifdPjbFbMWrpIer25IlnMRgZRq9nCz62\n7YZFx7YLgR61bFIihBCBcJ0yIHGgx2awwsDqqaGHEEIIIZrX1F0Ku92OJ554Av39/Xj66adx6NAh\npFIpqddGyKrMZGYRLybQ7+uFjtVhb9d70GXvwB/nXsPR2DGll9cwlZ6BVW+Bz6ye1ishCBItKBsE\nEW4WSP0G73wYhkHQ3oHTuQgKlaLs5z+b0DS129+/rMethZFbyUZDj/SBni7JAj21hh5hZ5BanAn0\nZBVeCSHqMp8Lo8JXlxzR0awPbroG3Y4g/jT3Ol6be0OUYxJCSDOSRXEDPQAQsPoQKyREH1FKiJhS\npTSy5Rw6bM39LO/39QIAjd0iqvb70Kv49eRv0WL14y923gEdq1v04zc0GnrEbaAlhJDVisg0coth\nGHhMbsQLFOghhBBCiLY1Fej5l3/5F8RiMVx22WXo7OzEV7/6VXz+85+Xem2ErMpgPQSxy78DAKBj\ndbh9+81gGRYPjfwUxWpJyeUBAPKVPE7nI+hydC66s0pujVFNCgdBhJnKAcvKR56sRtDRAR613Z1K\nGgzXvpZ3+rcv63EukxN6Rqf453E14vVAj5g3ohbSbmuFntFhUqJAj3obemjkFiFnE5rZOuujF1dL\nz+pxT/+tMOqMeGj0PzX9nEwI0ZZUqTZyy2UUMdBj8YMHjxg9lxEVC2Vq7986mgznes0edNjaMBY/\ngZIKrhMQ8mbH4ifw0OjjsOmt+Ozue2A1WJd8jNvshMNgV0XrMCGEnC2Sj8JmsMKit0h+LrfZjUw5\ni3K1LPm5CCGEEEKk0lSgp7W1FZ/4xCcAAF/60pfw1FNP4frrrwcAfPrTn5ZudYSswmDkKFiGxQ5v\nb+P3uhyd2Nv1HkQLcfzs5C8UXF2NUH3cpaJxWwAabUGqaehRYOQWAATrN3OnRQ54LEe2nMPx5Cn0\nOLuXHWphGRY+ixeRQlSi1UkvWUzCwOph0y99wXK19KweHfY2hDKzqHJV0Y4bKyTAMizcMoSSlsNu\nrAd6SjRyi5CzCTcBxWroAYAWawC3bLsBhWoB9w09JOpzDCGELORMQ49DtGMKzZlC8J4QNRI2ZHTY\n25t+TL+vD2WugmPxE1Iti5AVOZ2L4D8GD4ABg0/u2o8Wa6CpxzEMg057O6KFOPKVvMSrJISQ5nA8\nh2ghDr9MbeyeeuO3sGGQEEIIIUSLmgr0LGZ+fl6MdRAiqkQxiYn0FLa4N8FqODftf93Gq9Fi8eM3\nUy9jPDWp0AprhCaQbrUFelQyqimcU7ihRwj0KLijbSg6Ao7nGk1Ty+WzeJEt55CvFERemTwSxRRc\nJpdsDVZdjk5U+CpCWfF+tsUKcbiMziUr0eVmqzf0ZKmhh5BznGnoaf4mYDMua7sYF7dcgFOpCTwz\n/mtRj00IIecjBHqcYjb0WGuvyynQQ9Ss0dDT5Mgt4OyxW6OSrImQlciVc/jewL3IVnL4eO+N2OrZ\nvKzHBx21axozGWVbhwkhRBAvJFHlq42QuNS8ZjcAIFGksVuEEEII0a5VB3rUNCaIEMFQZAQAsPs8\nIQijzoDb+m4CDx4PHH0MFa4i9/IaJtPTAIAuR1CxNZyPx+QCy7AqaOiJwqq3wNZEnbQU2mwt0DM6\nTKeVmzk/UB8dd76v5Wb4zbU3yEqHs1aiylWRLmVkbbYRvhenRGplqnJVJIsp1Y3bAs4euZVVeCWE\nqEsoMwuPyd3UKIPlYBgGt/bdCJ/Zg1+Mv4AxagAghEgsWUrBorfAqDOIdswzDT0R0Y5JiNhC2Vno\nWf2ybhZucvXAojdjKHoUPM9LuDpCmlPlqviPIz/GfC6Mfd1X4p0db1/2MYSAutAOTQghSovUQ+Hy\nNfTUAj3xAjX0EEIIIUS7Vh3oIUSNhBDELv/28/75Vs9mXNFxGULZOfxq4kUZV3auqfQMLHqzbLsS\nmqVjdfCY3IqGQDieQzQfVaydB6iNYGq3tSKUFXcEU7PKXAVHo6Pwm71ot7Wu6Bg+Sy1IElE4nLUS\nqVIaPHi46/W4chDassQK9MSLSfDgVR7ooZFbhAjSpQySpbTo7TwCi96Cu/tvA8MwuG/4J9SQRQiR\nVKqYXvbI1qUIN1+EJk1C1IbjOcxm59FubVlWQ6aO1aHPuw3RQhzzubCEKyRkaTzP45FjT2A0fhy7\n/Dvw4c3vX9FxhNbhGQVbhwkh5GyNQI/ZK8v53PWGnliBGnoIIYQQol0U6CFrTqlawmh8DO221kXT\n/h/Zch1cRieeG38ecyKO12lWoVLA6VwEQXuHKpuufBYvkqU0StWyIudPFJOo8FUErMqGnYKOTpS5\niiIXdcfiJ1CoFrErsGPFXyPC90BEg2MRhPnWYt+IWkyHrQ0sw2Kq3p61WrFCHADgq19AUBOL3gyW\nYZEpUaCAEMFMptbIJlWgBwA2uTbgup6rkSgm8eDIY9QCQAiRRLlaRraSg8voEPW4Fr0ZDoOdGnqI\naoXzUZS5CtrtzY/bEvT7+gDUxh4ToqQXp1/By6E/odPejrt33AqWWdnl21ZrAHpWr+gYcUIIOVtY\n9oae2ibBOI3cIoQQQoiGrTrQQzchiNqMxMZQ5irYtcSIIoveglt6P4IKX8UDI4+B4zmZVlgznZkF\nDx7dKhu3JfDXG0ViCjW7CLt+lW4vEna0KXEBbLAxbqt/xccQdrxoceRWoh7okbOhx6AzoN3WiumM\nOK1MQqBHjQ09DMPAbrAhSyO3CGmQI9ADANf07MEW90YcCh/BK6E/SXouQsj6lCqlAUgTjA5YfYgW\n4oo0WBKylNnMHIBaUH+5dnh7AVCghyjrSOQofjr2NJxGBz67+x6Y9aYVH0vH6uqtw/P0nE0IUQWh\nQVyuDZye+gY7CvQQQgghRMtWHei54YYbxFgHIaIZjBwFgCUDPQBwQaAfb2vZjZPJCbw08wepl3aO\nyXoDiDDiR218jWYXhQI99V2/So7cAoCgox7okXnmPM/zGIgMw6q3YLOrZ8XH8VlqgR6lPo+rkSym\nAMgb6AGALkcnylxZlFYmNQd6gNrYrTQFeghpkCvQwzIs7t5xK6x6Cx4bexqzCjQFEkLWtmSp9jrK\nZZQg0GPxg+M5Gl1AVGkmWw/0rOBnucvkQLejE8cTp1CoFMReGiFLmsnM4t6hB6FndfjM7rsbN6JX\nI2jvQEWh1mFCCHmzSD4KA6uHU+QWyYVY9GaYdWYkCklZzkcIIYQQIoWmAj2/+93vcOONN2Lfvn3Y\nu3cvrrrqKuzduxcAcPfdd0u5PkKWheM5DEaHYTfY0OPsauoxH9v2YVj1Fjx14tnGzXc5TKVnAABd\nTnU39ERl/Dc5m1DBqvTILeGm7pTMDT1TmRkkikn0+7ZDx+pWfByL3gy7wYaoQk1Lq6FEQw+ARmuW\n8D26GsKNLq8KR24BgM1gRb6Sp92ahNTNZGZhYA1osUofJvWY3bi976Moc2XcO/QgygqNuCSErE3J\nooQNPfXgP43dImoUqjf0dK5g5BZQG7tV5asYjR8Xc1mELCldyuB7A/ehUC1i//ZbsKHJa1pLEa5p\nCMF1QghRCs/ziOSj8Jm9Kx4luBIes4saegghhBCiaU29cvra176Gz33uc7jvvvtw//3348CBA7j/\n/vulXhshyzaZnka6lMFO//am3xg4jQ7cuPWDKFZLeGj0cdnGyE2mZ2DWmRQfKbUQodlFqVFNjUCP\nwg09Fr0ZAYsPM+mQrCMGB8L1cVuBpZumluKzeBHNx2QfK7daZwI94t+IWkxXvTVLnEBPLRDnUWtD\nj9EOAMhWcgqvhBDlVbkq5rLz6LC1yXZx8cKWXbii4zLMZGbx5IlnZTknIWR9EJoOpdj9fCbQExX9\n2ISsVig7C6vesuJ2qn5fHwAau0XkVa6W8e8DP0KsEMcHNr4PF7deINqxlRwjTgghZ8tV8shXCvDL\nfC3cY3IjXylQ+x4hhBBCNKupuxUejwd79uxBMBhEZ2dn4xchajMohCCaGLd1tsvbLkafZyuGo6M4\nOP+GFEs7R7Fawnz2NIKODll3JCxHY1STQs0u4VwEZp0JdoNNkfOfLWjvQLaSk3U3x2BkGHpGhx3e\nbas+lt/sRYWvNm7saEWymAIDRpJREYsJ2tvBgGmMxVuNWCEOh8EOo84gwsrEJ3x/ZUo0douQ+VwY\nFb664h39K3XT1g+i1dqC30y/jCP1saGEELJajZFbUjT01FvMqKGHqE2pWkY4F0W7rQ0Mw6zoGBuc\nXbAZrBiKjsq6oYOsXzzP48cjj+JUagKXtF6Ia3v2inp8aughhKhFpLF5U+ZAj7nW/B0v0tgtQggh\nhGhTU0mCiy++GN/4xjfw8ssv4+DBg41fhKjNYPQo9KwefcsMQTAMg1v7boKRNeCxsaeQLmUkWmHN\ndDoEHnxjtI8aOQx2GFmDIg09PM8jnI/Cb/Gt+EKsmIL1xpbptDw72qL5OKYzIWz1bIZZb1718Rrh\nLIXallYqXkzCbrStauTYShh1RrTZWjCVCa2q1YjjOcQLCXhV2s4DAHaDFQCQKVOghxBh13JnfRez\nXEw6Iz7Rfxv0jA4Hjj6iufAlIUSdhOcSKYLRjYaeHDX0EHWZy86DB7+qcC7LsNjh7UWimEQoOyfi\n6gg5v+fGX8Br84ew0bkBd/TdLPo1EKvBAp/ZI9v1DEIIWYjQ7ihcp5SLx+QGAMQLNHaLEEIIIdrU\nVKBnYGAAw8PD+Pd//3d8+9vfxre//W185zvfkXpthCxLNB/DTGYWvZ4tMOmMy3683+LFBzddg2w5\nh8fGnpJghWcIo3yE0T5qxDBMbVSTAg09yVIKZa6smnFkwfqOtimZKqoHo0LTVL8ox/Mr3La0EjzP\nI1lMwmNyKXL+LkcnStUSTudWvvM8XcqgwlfhNbtFXJm47IbayC0K9BAChDK1m3ZyN/QAQNDRgRu2\nXI9MOYsDRx/R3IhEQoj6pEppAIDLJP7ILavBCpveSiO3iOoIAZyOVf4sb4zditDYLSKt1+cP42en\nfgGv2YNP774LBomaXTvtHUiXM0gW05IcnxBCmqFUQ4+7fl1OzuZ1QgghhBAx6Zv5oAMHDki9DkJW\nbbA+pmKXf/uKj/HernfhtdOH8dr8Iby99W3YuYpjLUYY5dOt4kAPAPjMXsxm55Er52CtN3nIQdjt\nK9T5K00IXs3ItKNNGB23mq/ls/nNtTfKUQ3ddMlV8ihzFbgUCvR0O4J4de7PmErPoM3WsqJjxApx\nANBEQ0+WAj2EnNXQ067I+d8bvALDsVEMR0fxwtTvsK/7SkXWQQhZG5LFFCx6M4wr2OjQDL/Vh5l0\nrc1QrSOEyfojhHM7bKv7Wb7dtw0MGByJHsX7evaIsTRC3mIiNYUDRx+GWWfCZ3ffA4fRLtm5gvZ2\nDESGMJ0JwWXqlew8hBCyGKE53C9zoMfbaOihkVuEEEII0aamrry99tpr+OxnP4u77roLd955J+64\n4w5cddVVUq+NkGUZjNRCEDt9Kw9BsAyL2/s+CpZh8ZPR/0ShUhBreeeYSs/AqDOixRqQ5PhiUWpU\nU1ihHRsLcRodcBjssjT05Ct5HEucQLejEx6Rml38Ghy5lajPtXYr2NADnGnTWgktBHpsRhsAIFOi\nQA8hocwsPCa3rAHWszEMgzu33wKH0Y6nTjyHydS0IusghKwNyVIKTgnGbQkCFh8qfJVujBBVOdPQ\n07qq49gNNvQ4u3EyOYFcOSfG0gg5R7yQwPcG7kOFq+Ke/ttW3Sq1lE5HbaTsjEytw4QQcj6RfBQM\nGPhkvk7mMdeuLVJDDyGEEEK0qqlAzz/+4z9i3759qFaruP3227Fhwwbs27dP6rUR0rR8pYCxxEl0\niRCC6LS345oNexAvJvDkiedEWuEZpWoJs9l5dNk7VL+b1V9/gyX3qKZwvjbmSC2BHoZhEHR0IFaI\nS35Bdyg6Co7nsMu/Q7Rjuk0usAyryPi0lUoUUwAAt0m6G1GLCdrbwYBptGmtRKw+m5tGbhGifulS\nBslSWrF2HoHDaMdd2z+OKl/FvUMPolApKroeQog2lbkKsuUcXBK+jgpYak2awut2QtRACOda9JZV\nH6vf1wcePI7GjomwMkLOKFSK+O7AvUiV0rhp6wcla4Y+W9BeC/RMy9Q6TAgh5xPOR+EyOSUbL7gQ\nd6OhhwI9hBBCCNGmptIEZrMZN910Ey699FI4nU587Wtfw8GDB6VeGyFNOxo7hipfFS0EcU3PXrRZ\nW/C7mT/gRGJclGMKZjKz4MGj2xEU9bhSEBp6oko19Khk5BZw1gWwzKyk5xGapnb7+0U7po7VwWty\na6yhp/YmW6mRW2a9GS1WP6bqoyRWQgsNPcLILQr0kPVupv7crnSgB6iN+djb9R6czkfw2NhTSi+H\nEKJBqWIaAOAyOiQ7hxC8D2topCtZ2zLlLJKltGhNJ/3+2liioeioKMcjBAA4nsN9ww9hJjOLd3Ve\njvcGr5DlvD6zB2adufGalxBC5FaulpEsphTZvGnUGWA32KihhxBCCCGa1VSgx2QyIZFIYOPGjTh8\n+DAYhkEuR7XDRD0GwrUQxC6RdjYZWD1u3/5RAMADI4+hXC2LclwAmKyP8BFG+qiZMNM4Wg8myCWS\ni8DAGuCU8CbEcgUdwo62lY9gWkqVq2IoOgKv2SP6TWW/xYdUKY1StSTqcaWidEMPUPseLVQLiOZX\n9vWvjUAPjdwiBFBXoAcAPrT5WnQ5OvGH2YN4ff6w0sshhGhMslR7HSVpQ4+VGnqIuoQy9XFbNnEC\nPUF7B5xGB4aiIysO+BPyZk+eeBaDkWH0erbgY1s/DIZhZDkvwzDotLdjPhdGScTrW4QQ0qxoIQ4e\nfONas9w8JhfihSR4nlfk/IQQQgghq9FUoOfuu+/GF77wBezZswdPPPEErr/+euzcuVPqtRHSlCpX\nxXB0BG6TC1128UIym1w9eE/wHZjPncZzEy+IdlxhhI8WAj3CTGM5G3p4nkc4H0XA4lPVSLIuGRp6\nxhInka8UsMu/Q/QLe0LbklZaepLFJIDaG26lCN+jKx27FSskYNaZYTWsvvJfKgadASadEVlq6CHr\nnNoCPXpWj3t23Aoja8BDoz+VvSmPEKJtqXowWo6GnkiOGnqIOoSy9UCPSA09LMNih68XmXIWUxJu\n6iDrx+9DB/Hryd+i1RrAX+y8AzpWJ+v5g4528OAxW/9eIYQQOUXqrY5KBXrcZjfKXBnZCm1SJ4QQ\nQoj2NHW3/P3vfz9++MMfwm634/HHH8c3v/lNfPOb35R6bYQ05WRyAtlKDjv920UPQXxo07XwmNz4\n5cRvRKsmnkrPwMAa0GZrEeV4UjLrzbAZrIgU5LtQnylnUagWFalgXUzA6oeRNUh6MXegMW5LnNFx\nZ/ML49MK2rgpLDT0KDVyCwC664GelX7OY4UEvGa3mEuShN1gQ6ZMFzTI+jaTmYWB1aNFRaMeW20t\nuHnbDchXCrh36CFUuIrSSyKEaESyVB+5JWFDj91gg1lnppFbRDWEhh4xw7n9vj4AwJHoiGjHJOvT\nWPwEHhr9KWx6Kz6z+x5Y66OP5dQYI54OyX5uQggJNwI9XkXO7zHVrs/FC0lFzk8IIYQQshpNBXqS\nySS+8pWv4M4770SxWMSBAweQTqelXhshTRmMSheCMOvNuLXvRnA8hweOPrbqqu1ytYzZ7DyC9g5V\ntc8sxmf2IpaPy1Yz3niDZ1VXoIdlWHTaOzCXOy3qCDYBz/MYjAzDojdjq3uT6McXdsBopaEnUUzC\npDPCojcrtoagfeWBnlw5j0K1oIlAj81gQ6acodphsm5VuSrmsvNot7Wp7mfzO9ovwcUtF+BUagKP\nH/+50sshhGhEsh6MdhqlC/QwDIOA1YdwPkrjiIgqhDJzYBkWrdaAaMfc7t0KlmExRIEesgqncxH8\nYPAAGDD45K79igXIhbCblK3DhBCyEKGhR6kNnB5zbcNgophQ5PyEEEIIIavR1F2Lr3zlK9i1axcS\niQRsNhtaWlrwd3/3d1KvjZCmDEaGYdQZsc29WZLj9/v68PbWt2EiPYXfTL28qmPNZGfB8Ry6neof\ntyXwW7yo8FWkSvKE+MK5CAAgYFFPS4Ig6OgAx3OYzc6LfuxQdg6xQhw7vL2SVG/7zfWGHo0EepLF\nFNwKtvMAgNVggd/iw1R6Ztlhl1ghDgDw1sfWqZndaEOZq6DEiR9UI0QL5nNhVPgqgioZt3U2hmFw\nW99H0WZrxW+nX8Grc39WekmEEA1IloSmQ+kCPUDthkyZK8v2PoGQhfB8bYxQizUAPasX7bgWvQWb\nXT2YTE0jXcqIdlyyfuTKOXxv4F5kKznc2nsjtnqkuW7VDCG8Pp2hhh5CiPyEDYZKjdw609BDgR5C\nCCGEaE9TgZ7p6WnccsstYFkWRqMRX/jCFzA3RzOXifLms6dxOhfBdu82GHQGyc7z0a0fgt1gw9Mn\nf9HYUbASk6la00eXIyjW0iTnqwdB5Gp2CSu8Y2MxXUJFtQQXwAbCQwCA3YF+0Y8NAL56pa2c49NW\nqlwtI1POKjpuS9Dl6ES2kkNsmW/4NRXoMdgAAJlSVuGVEKIMYaTesuwxAAAgAElEQVRmhwoDPQBg\n1pvwqV13wqwz48GRn2KKxiQQQpaQLMoV6KkF8IVAPiFKiRXiKFSL6LS1iX7sfl8fePAYjo6Kfmyy\ntlW5Kv7jyI8xnwtjX/eVeEfH2xVdj1FnQIs1gFBmlprVCCGyi+SjsOgtsCkwchAAPPUG7XiRRm4R\nQgghRHuaCvTodDqk02kwDAMAGB8fB8uqayQBWZ8Go0cBALt82yU9j91ow0e3fghlroyHRh5f8Wga\nYXRPt0M7DT1CEESuZpdwXt0NPQAkuZk6EBkGy7DY4e0V/dgAYNVbYNGbNTFyS9hV7lFBoEf4Xp1K\nTy/rcUIASAsjtxqBnjLtOibrkxDoUWNDj6DVGsBdO25BmSvjB4P3I1vOKb0kQoiKpUppmHVmmHRG\nSc8jBPDDq9jwQIgYQtnahrMOuzSBHgA0dossC8/zeOTYExiNH8dufz8+vPn9Si8JQO31bqFaRDQf\nV3ophJB1hOM5RAox+OvXmJUgXGOkhh5CCCGEaFFTqZzPfe5z2L9/P0KhEP7yL/8St912Gz7/+c9L\nvTZCljQYGQYDBjv90gZ6AOCS1gvR7+vDSHwMf5x9bUXHmEpPw8Dq0WZtEXl10hFGNUUK8jX06Bld\nY7axmkhVUZ0oJjGZnsY292ZYDRZRjy1gGAZ+sxeRfGzFgTS5JGTaVd6MrkagZ2ZZj9NSQ4+tEeih\ngABZn4Tn9E4VB3qAWoPbtT17ES3EcN/QQ7SzmhCyoGQxBZfJIfl5AtZ6Qw8FeojCQpl6oEeChp52\nWys8JjeOxo6hylVFPz5Zm16d+zNeDv0JnfZ23LXj42AZdWyKDNZbh2do7BYhREbJYgoVrqLYuC0A\ncJtcYMAgXqRADyGEEEK0p6l3lDt37sS+ffsQDAYxOzuLq6++GkeOHJF6bYQsKlPO4kRiHD3ObjiM\ndsnPxzAMPt77EZh0Rvz0+M+QLKaX9fgyV0EoO49Oewd0rE6iVYrPZ6kFEuRq6InkovBZvKq54HU2\no86AVmsAM5mQqDdSByPDAIBd/h2iHfN8fBYfylwZqZK6m1gS9fpbtwoaeoRAz+QaDvQ46oGebJlG\nbpH1KZSZhcfkhlWh6u/luH7j1djh7cVwbBTPnPqV0sshhKhQhavURpcapQ9GNxp6aOQWUdiZhh7x\nw7kMw6Df34dcJY/x1JToxydrT5Wr4uenfgU9q8end90Ns96k9JIaghKOESeEkIUIbeEBBQM9OlYH\np9GBeIFGbhFCCCFEe5q6Y/7JT34SoVAIe/bswd69exEIBKReFyFLGo6OggeP3RKHIM7mNXvw4c3X\nIV/J49FjTyzrsaHMLKp8VVPjtoDa35kBg6gMDT3Zcg7ZSk7RN3hLCdo7UKyWEBFxJ/JAWJ5Aj1Bt\nGy2oexf1mUCP8g09doMNXrMHk+npZTUbxQoJ6BmdLGHD1bIZ6w09Kg96ESKFdCmDZCmt+nYeAcuw\nuLv/VvjMXjw7/jwGwkNKL4kQojKpUm3TgVOGhh6n0QEja6CGHqK4UGYOJp1RsnG3O2nsFlmGg/Nv\nIFqI4Z3tlzY2SKlFp6P2mne6PnKWEELkIFxDFVrgleIxu5EoJqntlhBCCCGa03QFxte//nX81V/9\n1Tm/CFHSgNBqEpAv0AMA7+68HJtcPXgjPIhD4eabqoSRPV2OoFRLk4Se1cNtcskyY114gxew+CU/\n10oFHbUdbVNpcXa0FSoFHIsfR6e9XfKLfUKgJyJT29JKqamhB6i19GTKWSRLqaYfEyvE4TG7Vdk0\n9WZ2GrlF1rGZ+s0MrQR6AMBmsOJTu+6EgTXgR8MPYz4XVnpJhBAVEVpE5RhdyjAMAlY/wvmI6ke6\nkrWrwlUwlzvdGI8shW2eLdAzOgr0kCVxPIdfjL8AHaPD+za8V+nlvIXT6IDT6Gi8BiaEEDk0Aj0K\nb+D0mFyo8lWkaUMbIYQQQjSmqasd+/btw6OPPoqpqSmEQqHGL0KUUuEqOBodhd/sRZu1RdZzswyL\n2/s+Cj2jwyOj/4lcOd/U4yYbgR5tNfQAtbFbiWISZa4i6XmEun6/Vd0NPYB4FdXDsWOo8FXs9veL\ncrzF+Oo7YeQan7ZSiWItOCPHjahmCK1ak6nppj6+VC0jXc5oYtwWcHagh0ZukfVHi4EeoBYuva3v\nJhSqBXx/8H4UKkWll0QIUQkhgCzHyC2gNjqhWC0hXaYbI0QZ87kwOJ5Dh61NsnOYdEZs9WzGdCbU\n2HxAyPm8Pn8Yp/MRXN5+CTwSNUatVqe9HbFCHDna0EEIkUmk3vqueKCn/rwcLyYUXQchhBBCyHI1\nFehJp9P4+te/jrvuugt33HEH7rjjDuzfv1/qtRGyoLHESRSqRewK7ADDMLKfv83Wgmt79iFZSuM/\nj/+8qcdMpaehZ/XosLVKvDrx+cxe8OARL0jb0hPWUEOPWIGewXrTlByj47TS0JMsJsEyLJxG6UdF\nNEMI4QktW0sRvk8o0EOI+mk10AMAl7ZdhCuDV2AuO48HRh6ldgxCCAAgJXMwWnjdHs7R2C2ijNnM\nHACgwy5doAcA+utjt4ajo5Keh2gXx3N4bvx5sAyL923Yo/RyFiRsUqKWHkKIXML5KHSMDh6zsk3c\nnnoTeLxA4VxCCCGEaEtTgZ5f/vKX+MMf/oAXXnih8ev555+Xem2ELEgIQezyyTtu62xXb7gSHbY2\n/H72VRyLH1/0YytcBaHMHDpt7dCxOplWKB6fRWh2kSvQo96GHrvBBo/JjWkRRm5VuSqGIiNwm1yy\nNDd5zR4wYBApqPuGS6KYgtPoUM24KuFzM9lkoCdWqO308ap0R+abWQ0WMGCQKVGghywumo/j0WNP\nolApKL0U0cxkZmFg9WixqjdIupgbt1yPza4e/Pn0AJ6feknp5RBCVCApBHpkCkYLr9vD+Ygs5yPk\nzWaytUBPp+SBnl4AoLFbZEGHwkcwlzuNS1svamymUaNgPcg+TYEeQohMIvkofGaP4tf53NTQQwgh\nhBCNaupVVFdXF5JJSi4TdeB5HoORo7Dozdji3qjYOvSsHndsvxkMGDww8lOUqqUFP3Y2O48KX0WX\nU3vjtgDAXx/VJFSkSiWcj4BlWPhU3mwSdHQgVUojWUyv6jgnk+PIVnLY5ZenaUrP6uE2uVTd0MPx\nHJLFFNwmZXftnM1pdMBtcjXd0BPTWEMPy7CwGazIUkMPWcJvZ17Bi9Ov4OD8IaWXIooqV8Vcdh7t\ntjbFLyyulJ7V47/svAMuowNPHH8Go7HFA8aEkLUvWaq9PnXK1dBjFQI96g6Mk7UrJDT02KRt22ux\nBhCw+DASG0NF4lHURHuEdh4GDK7pUW87DyB+6zAhhCwmX8kjW84pPm4LADymeqCnQIEeQgghhGhL\nU3cvGIbB9ddfj1tvvRV33nln4xchSghl5xArxLHD26t4280GZxf2dL0LkXwUPz/1qwU/bjI9DQDo\ntmsz0HOmoUfqQE8UXrNH8c/rUoSK6tVeABuQcdyWwG/xIllMoVwty3bO5ciWc6jyVbhlugnVrC5H\nB5KlVFMhLq0FegDAZrDRyC2ypPHkFABgJDam8ErEMZ8Lo8JXG7uUtcplcuIvdu0HwzD44dADdHGS\nkHVO/oYeYeQWNfQQZYSyc3AaHbAbbZKfq9/Xh0K1iJPJccnPRbRlMDKMmcwsLmm9EC3WgNLLWVTA\n4oeB1WNGhNZhQghZirCpUBWBnvrIr3iRNq4TQgghRFv0zXzQZz7zGanXQUjTBhUIQSzmA5uuweHw\nEJ6ffAkXt1yAbmfwLR8jjOrRbEOPRfqGnkKlgHQpg6C3Q7JziKWrvqNtJh1qVK8vF8/zGIgMw6wz\nYatns5jLW5Tf4sNY4iRihThabS2ynbdZQu2tS0UNPQDQ5QhiMHIUU+lpuEzbF/3YaGPklnYCPXaD\nFadzYXA8p9mmEiKtKlfFVD2ceix+fE18rczUxwx0aDzQAwCbXD346NYP4ZFjT+AHgwfwhYs+A4PO\noPSyCCEKSJZSMOmMMOvNspzPZXJCz+qpoYcoIl8pIFaIo8+zVZbz9fv68OL0KzgSHcE2zxZZzknU\nj+d5PFtv57m25yqll7MkHatDh60dM5kQqlxV9RuqCCHaJrxGDKhgFKHT6ADLsEjQJhhCCCGEaExT\nd2IuvfTS8/4iRAkDkWGwDIsdKwxSiM2kM+K2vpvAg8ePRx5Flau+5WOm0jPQMzp02NoUWOHqOY0O\n6Fm9pA094fqxhV2+aiY09ExlmhvBdD6z2XlE8lFs9/XCwDaVrRTFmXBWXLZzLoewq9yjskBPt6MW\nxptqYhdjrBAHA0Z1f4fF2I128OCRq+SVXgpRqVB2HiWu1uyVq+SbHkGnZkKgR+sNPYL3dL4Dl7Vd\njIn0FB4de1Lp5RBCFJIspuCSsemQZVj4LT6E8xHwPC/beQkBgNlsfdyWXZ732Vvdm2BgDRiKjspy\nPqINQ9ERTKVn8LaWXWiztSq9nKZ02ttR4auYy51WeimEkDUuUg/0+FTQ0MMyLNwmFzX0EEIIIURz\ntL21mqw7yWIaE6kpbHFthNVgVXo5DX3erbi8/RLMZGbx68nfnvNnVa6KmcwsOuxt0MsY3BATy7Dw\nmT2IStjQE87XavoDVuXf4C3Fa/bAoresauSWUk1TPrMwPk2du6gT9TfVct6IakZXI9AzveTHxgpx\nuExOTe10tNefT7MlGrtFzm88NQEAjR3wo7HjSi5HFEKgp3ONBHoYhsHHe29E0N6BV0Kv4pWZPym9\nJEKIzKpcFZlyFi6jvK+jAhYf8pUCspWcrOclJJSpB3pk2jhj0BnQ69mCuey85OOoiTYI7TwAcG3P\nXoVX07yg0Dpcfz1MCCFSiTQaetRxvddjciNZTJ13Qy4hhBBCiFpRoIdoypFoLQSxy7/4yBsl3LTl\nA3AY7Xhm/NeYz57Z5TSbnUeFqzQCAVrlM3uRLedQqBQkOX4kp643eIthGAZBezvCuSgKleKKjiE0\nTfX7+kRe3eIaDT0qvQCdqDf0uFXWbuMyOuEw2hvj8xZS5apIllKaGrcFADaDDQCQLlOgh5zfeHIK\nAHBNzx4AwEh8TMnliGImE4LH5FZVQHi1jDoDPrnrTlj1Fjxy7AmMpyaVXhIhREapUhqA/MFo4fV7\nOKfOwDhZu0IyN/QAaLx/o5YeAtReE4+nJnFBYKemQuLCWqebaKAlhJDVEK4/+lUwcgsAPGYXePBI\nllJKL4UQQgghpGkU6CGaMhg5CgDY5e9XeCVvZTVY8bFtN6DCVfDAyE/B8RwANAIAXY6gkstbNV/9\njVdUolFNjYYeDYzcAmo72njwCGWXv6MtWUxjPDWJza4e2GS+keyv33CJSNi2tBpCQ49bZQ09DMOg\ny9GJeDGBzCItNoliChzPwWt2y7i61XPUAz1ZCvSQBYynJmHWmbDFvQmd9nacSI6jVC0rvawVS5cy\nSJbSmrrx0iy/xYt7+m9Dlefwg8EDSJcySi+JECIT4caE0+iQ9bzC63fh9Twhcgll5sCAQbuMY476\n66O/h6Ijsp1zNapcFU8cfwZPnXgOh8NDjfdbZPV4nsezp34NALi25yqFV7M8wmtgaughhEgtko/C\nZXTAqDMqvRQAtYYeAIgVEgqvhBBCCCGkedqc/0PWpVK1jJHYGNqsLaody/S2wC5c4O/H4cgQXgn9\nCe/ufAem6oGebs039NQaRyL5qCQ3QMP5KBgwjeCQ2nXZhRFMIWxy9SzrsUcUGrcFAHaDDUadsVF5\nqzaJghDoUVdDDwB0O4IYjo5iKj2D7b5t5/2YeLF2QUCrDT0ZCvSQ88hX8pjPhbHVsxksw6LPsxUz\nmVmcTI6jz7tV6eWtyFobt/VmO3y9+MCma/D0yefwwyMP4K8u/AtNjQFUg2K1BCNrAMMwSi+FkKYl\niwo19NTfm4VV+vqSrE08zyOUmYPf4pX1JqHP4kWbrRWj8eMoV8sw6AyynXslfnbql/jV5Ivn/J7L\n6ESPswvdzi5scAaxwRFcU42FchlLnMSJ5Dh2+vrQrbENXBa9GX6zF9OZEHiep9c7hBBJVLgKYoUE\nNro2KL2UBk99A16CAj2EEEII0RAK9BDNGI2PocyVsUuBEESzGIbBx3pvwLHECTxx/Bns9G3HVHoa\nLMOiQ+M3DRsNPRKNagrno3CbXDCw2nhaEmbOr6SieiAijI6Tv2mKYRj4zV5E8zFVXrhLlFKw6C2q\n2blzNmFs3mKBnli9wUprgR67sR7oWaR9iKxfE6lp8ODR4+wCAPR5t+L5qZcwEhujQI+KvW/DezGZ\nmsLhyBCePPksbtzyAaWXpBnxQgL/44/fxNtadmP/9o+p7mclIQtJ1keXuoxyj9yqN/TQyC0io2Qp\nhWwlhy2eTbKfu9/Xi+cnX8KxxMlGY48ajcaO41cTL8Jv9uLmbR/GdCaEidQ0JlKTOBwZwuHIUONj\nWyx+dDuD6HF2Y4MziKC9E0aVh5WU9uz48wCAa3v2KbySlel0dOBw+AiSpZQqN9QQQrQvVoiDB98Y\nz6oGnvrzXZwa6wghhBCiIdq4c04IgMFGCEK9gR6g1izykS3X48GRn+Ino49jOjOLDlubZoIqCxFm\nHUckGLlVqpaQKCaxzbNF9GNLpc3aAj2jw3RmZlmPK1ZLGI2Pod3WqljTlN/iQyg7h2wlB3u9mUUt\nksVko/5WbYRWpsn09IIfcybQo86/w0Ls1NBDFnEqOQkA6HF2AwA2uzdCz+gwEh9Tclmrsh4CPSzD\nYv+OWzD72rfx/ORL2ODowsWtFyi9LE04FD6CElfGn+ZeR4vVj2t79iq9JEKakqqP3JK7ocdjckHH\n6BChkVtERqHMHACgw9Ym+7l3+vrw/ORLGIqOqDbQkyln8aPhn4BhGNyz8zb0OLux07+98eeJYhIT\nqSmMp6YwmZrGRHoKr80fwmvzhwDUXkd02NrqDT5d2ODsQrutlRr/6k4kxnEsfhzbvduw0dWt9HJW\nJGhvx+HwEUynQxToIYRIIlLfFOpXURu70NAjNGwTQgghhGiBthMGZN3geA6DkaOwG2yauFjyzvZL\n8drcIRyJjgDQ/rgtAPCbpWvoEd7gqWnHxlJ0rA7t9jaEsvOoctWmL2yOxI6hzFWwW4F2HoHPUmuP\nieZjqgr0FKsl5CsF9DjlvQnVLK/ZDZvB2hijdz6abeipfx1kyzmFV0LUaDx1bqDHpDNio2sDjidO\nIVPKNhqetGQmMwsDq0eL1a/0UiRl0ZvxqV134f957Tv48cijaLe1osMu/41PrRFC5C6jE0+f/AXa\nrC24sGWXwqsiZGlnGnocsp5Xx+rgs3ho5BaRVShbD/Qo8HNtk6sHZp0JQ5Gj4Ld+SHVNbjzP48Gj\njyFZSuFDm65tvIY7m9vkgjvgwgWBnQBq11zC+Sgm6gGf8dQUpjMzmM6E8ApeBQAYWAO6HB3Y4Oxq\nhHwCFp/q/v5yeHb81wCg6dBvp73WOjyTmT0n7EWI2pW5CgqVAvKVAgrVAgIWPyx6s9LLIucRqb82\n9Kvoeq+wiTBeoIYeQgghhGgHBXqIJkylZ5AqpXFZ28VgGVbp5SyJYRjc2ncTvv7qt1DmKujS2Dz1\n87EarLDozYgUxA/0hOu7ebUU6AGALnsHptIzmM+Fm76QPBBWvmnKb679O0fyUWyoj9BRg0S97lat\nuwMZhkGXvRMj8THkyjlYDda3fEysPoNba4EeWz3Qky5nFF4JURue5zGemoTX7IHLdOYGcZ93K8YS\nJ3EscQIXtexWcIXLV+WqmMvOo8PeronXFKvVbmvF/u0fw/8+8mP8YPB+/P3bPweL3qL0slQrV85j\nLHES3Y4gbu/7KP7Xn/8//Gj4J/BZvI3Ri4SoVbKUBiB/Qw9QG7s1lBtBrpyH1UDPMUR6QkNPpwIN\nPXpWjz7vVhwKH8HpfASt1oDsa1jMy6E/4nBkCNvcm3H1hvc29RiWYdFqDaDVGsClbRcBqL1mCmXn\nMJGaqo3qStcafU4mJxqPs+ot6HYE0ePsQrezCxucQdW+nxPLeGoSR2PHsM29GVvcG5VezooF64Ge\n6czyx4gTshJVrop8tYBCpXhOICdfqf/eef+79itfLTb+u8JXzznuVvcmfP6izyj0tyKLCasw0GMz\nWGFg9dTQQwghhBBNoUAP0YSB+k7p3Soft3W2FqsfH9nyATxx4hn0ebUzSmoxPrMXp3Nh8Dwv6i48\n4Q1eQGNNCZ2ODmC2FjhrJtDD8RyORI/CaXRgg1O5kFdjfJoEbUurkWwEetTZ0AMA3c4gRuJjmEqH\n0Hue7+tYIQ6bwQqTzqjA6lbOpDPCwOqRLVFDDzlXtBBHppzFRZ7N5/x+r2crnsYvMBIb01ygZz4X\nRoWvIriGx2292UUtuzHZ/V78avJF/Gj4YXxq153rIsy0EsPREXA8h93+fgQdHbh7x8fx/cH78b2B\n+/D3l/z1OcE2QtQmWUzBqDPCrMAudSGYH8lH0W3Q/mYGon6h7Bz0rF6x95D9vj4cCh/BUHREVYGe\n2ew8fjr2NGx6K+7cccuqft7rWB26HJ3ocnTiXfVMa6lawlQ6hInUJCbS05hITWEkPnbOKFaX0XlO\nwGezayOMOsNq/2qq8dz48wCA92/UbjsPUGugtegtjVG0hKxEopjEQHgYyVLqrJDO+QM7Za68onOY\ndEaYdWbYDTb4LT6YdSZY9GaY9WYci5/A8cSpBTddEWVFVdjIzjAMPCY34gUK9BBCCCFEOyjQQzRh\nMDIMPaNDn3eb0ktZliuD78S7Oy9fMzfNfBYvpjMhpMsZOEWs8g/ntNrQU7uqOZ0J4TJcvOTHn0xO\nIFPO4oqOSxX9mlBroEeou3WpeEen0M4wlZl5S6CH53nECgm02VqUWNqqMAwDm8GGTDmr9FKIyrx5\n3Jag29EJi96M0djY+R6masJNi451FOgBgA9uugYT6WkMRobxi/HfaP4mlFQaIfJALUR+QWAnPrTp\nWjx18jl8f/BH+PzbPg3DGropSdaWZCkFt1GZYHTAUgtVhPMRdCsYXCfrA8dzmMvOo93aotj7qh2+\nXgDAUGQEV3W9W5E1vFm5Wsa9Qw+izFVwT/9t8Jjdop/DqDNis7sHm909jd/LlnOYPKvBZyI1hcOR\nIRyODAEAOmxt+G+X/JXmNj2cz1R6BoORo9jk6sFW9+alH6BiDMMgaG/H8cQpFKulNfH5IfJIlzJ4\n4/QgXj99CCcS4+DBn/fjDKweZr0ZFp0ZHpO7/t8mmOthHIvefE44p/bfFpj19d/TmWHWmxZ9nn/m\n1K/w81O/wmj8BN5GI3JVJ5yPwqQzNsa8q4Xb7MbpeATlapne2xFCCCFEEyjQQ1Qvmo9jJjOLHd5e\nmPUmpZezbGslzAMAfnMtCBLNx8QN9KiwgrUZnfY2MGAwnW6uonqw0TTVL+WyluStfx6lGJ+2Gsli\nCgDgUXOgpx7imkxNv+XPMuUsylxZc+O2BHaDrTH+jhDBePL8gR4dq8M292Ycjgwhko9q6vlbCPSs\np4YeoPY5+0T/bfi/D34bPz/1S3Q7g+iv34wkNRWugqHoKHxmDzrOGuHyvg17MJs9jYPzf8YDI4/h\nrh0fF7WpkBAxVLkqMqUsWt3KNIUErLWfA8LrekKkFM5FUOYqioZz3SYXgvYOHE+cRKFSVMW1iidO\nPIOZzCze1Xk5LgjslO28NoMV233bsN1X24DF8zwSxSQm0tM4OPdnHAofweNjT+PWvptkW5NUhHae\n63r2rYnXAp32dowlTiKUmcNGV/fSDyDrVq6cx+HIEF6fP4TR+HFwPAcA2OLeiItbLkC7rRVmvQUW\nvakRztGz0t926PNuw89P/Qoj8TEK9KgMz/OIFGIIWHyqe74UrjvGi0m0aKwtnhBCCCHrEwV6iOod\niR4FAOzS0LittcpnORPo2ejaINpxI/koXEan5naEmfVmBCw+TGdCTY0hG4gMwcgasM2j7Ag2o84A\nl9HZqL5Vi0RJ/Q09fosXFr0ZU5mZt/xZrBAHUKsu1yK7wYbpTIh2KJFzjKcmwTJso53qbH3erTgc\nGcJo7Dj8ndoL9HSus0APADiMdnxy135868/fxX1DD+KLb/9rTYWxpDaWOIlCtYB3tF9yzs90hmFw\ne99NiOQjODj/Btptrbim5yoFV0rIW6XLGfDg4VKsoace6MlRoIdIL5SdB4Cmxh5Lqd/Xh+lMCMfi\nx7E7oOymjSORo3hx+hW0WVtw05YPKLoWhmHgMbvhMbvR7+3FN1//f/Fy6E/Y4evDBQr/O61GKDOH\nQ+Ej2ODsQp93q9LLEUXQ3gGg1jpMgR7yZsVqCYORYbw+fxjD0RFU+CoAYIOjCxe3XoCLWnZL0gS2\nHBscQZh1ZoxosDl2rUuVMihVS6p8vylct0sUExToIYQQQogmSFYdwnEcvvrVr+KWW27B/v37MTEx\ncc6fv/DCC7jppptwyy234JFHHln0McPDw3j3u9+N/fv3Y//+/XjmmWekWjZRIaHVZJd/u8IrIb56\n84iYzS5lroJYIdHY1as1nY4O5Cp5xJaYvTyfPY3TuQi2+3phVEFYwmfxIl5MoMpVlV5KQ6Le0OM2\nKXMjqhkMw6DL3onTuQjylcI5fxZtBHo02tBjrFUgZys5hVdC1KLCVTCVCSFobz/v81Zv/UbG0bi2\nLp7OZELwmNywGqxKL0URG5xduGXbR5Cr5PH9wftRqpaUXpJqnHnN+dYQuUFnwKd23wWPyY2nTj6H\nw+Ejci+PkEUJTYcuhV5Hec0esAxLbX9EFiFhfKZN2UDPTn8fAGAoOqLoOpLFNA4cfQR6Rod7+m+D\nUUUbZQw6A+7ecSsMrB4PjDzaeK7SIqGd5/09e1XXNrFSnY5awF0IvBNS5io4HB7CD488gC/97p9w\n79CDGIgMocUawAc3XYv/6/Iv4u/f/jns7X6P4mEeoN4c69mMSD6qurHy6120ILSxexVeyVt5TLWv\n3XghqfBKCCGEEEKaI1mg59e//jVKpRIefvhh/O3f/i3+9dqgyDwAACAASURBVF//tfFn5XIZ3/jG\nN/DDH/4QBw4cwMMPP4xIJLLgY4aGhnDPPffgwIEDOHDgAK677jqplk1UJl8p4Fj8BLrsHap4o7je\n+c9q6BFLLB8DDx4BizZ3RJy9o20xA4vcJFSC3+IFx3OIFxcPIskpUUxCz+hUN1v7zbqctaaSN49a\ni2k80GOr/7unS1mFV0LUYiYziwpXecu4LUGLxQ+PyY1jsTOV62qXLmWQLKXRqfCOfqW9s+PtuKLj\nMsxkZvHQ6OPgeV7pJSmO53kMhIdh0Vuwxb3xvB/jNDrw6d13w8gacN/wT5oeuUmIHJQO9OhZPbwm\nN43cIrIIZecAKN/Q0+Pshk1vxVB0VLGfpRzP4cDRh5EpZ3HDlusRdHQoso7FdNjbcMOW65Et53Dg\n6COaed14trnsafz59AC67B3Y6Vs7m83ara1gGZZe06xzVa6K4egoDgw/gi+//D/w/cEf4fXTh+Ey\nOXFtz17890v/K/77Zf8V1/ZcpcrNeEJj1ii19KiK0NoYUGFDj7t+j2GpzZmEEEIIIWohWaDn9ddf\nx7vf/W4AwIUXXogjR87sYj1x4gS6u7vhcrlgNBpx8cUX4+DBgws+5siRI3jxxRdx++234x/+4R+Q\nyWSkWjZRmaOxY6jyVexUSQhivfOaa4GeSD24IAbhor8a3+A1o6t+wXQ6/dYRTGcbiAyDAYOdvj45\nlrUkv/C5VNEOpkQhCZfJqfrdjt32WqDnzWO3hAsB2h25VWsryZYp0ENqTiUnAWDBQA/DMOj1bkG2\nklsy1KgWZ8Ztqe9ml9xu3vZhbHB24dW5P+O3M79XejmKm86EEC8m0O/rhY7VLfhxXY4O3NV/K0rV\nEr43cB9SpbSMqyRkYclSLdDjNDoUW0PA6keqlEahUlRsDWR9CGXmYNVbFBsxJ2AZFtt92xAvJjBb\nHwMmt99MvYyjsWPY4evFe4NXKLKGZlzZ+U70+/pwNHYML06/ovRylu0XEy+AB49rN+5T/fvV5TDo\nDGiztmAmO6vJoBVZOY7nMBY/iZ+M/if+4ZWv4d8O/2/8ce41mHQm7O1+D754yV/j/7z87/HBTdco\nHp5cSl99rL3WmmPXukj9eq/frL7rvR6TCwBUtcmREEIIIWQxeqkOnMlkYLfbG/9fp9OhUqlAr9cj\nk8nA4ThzodFmsyGTySz4mN27d+Pmm2/Gzp078d3vfhf/9m//hi9+8YsLntvjsUKvX/hCPFFOILC8\nC8xjJ2tvxq7cegkCXuUuTpMzPGYXEqX4sj+XC8nHawG9zW1B0Y4ppwvs24DDwOlyeMH1JwspnEpO\noNe/CZs622Ve4fltzHQC40BRn1XFv3uVqyJVTmObb5Mq1rOYC0zbgGHgdGn+nLVmudpN3W2dXXCY\n7As9XLXakz7gFMBaqqr/HBB5zJ6ohV8u6ulDwHn+r4lLc7vwx9nXMF2cwsWb1L9b+U+xWiB1e4f6\nn2vk8KUrP4sv/vLreHzsaewKbkFfYMt5P249/Fu9OH8cAPCuTZcs+fe9OvAOpJHATwafwr1HH8BX\n93xeFeM0yfpWma+FaDa0tCr2PdvlbattyDAXEPBoo31zPTy/rTXFSgnhfBR9gS1oaVF+VO/lPRfi\ntflDGC+cwgUbt8p67lPxKTx58lm4zE584V2fgMus/L/HYv7mXffgvz33z3jyxLO4fNNubHAHlV5S\nU+bSp3Fw/g10uTqwd/tlYBnJ9kaKrpnnuM3+boQm5sBZimh1tMiwKqIUnudxIjaB30++ht9PvY5Y\nvhZmcJkcuGbLlbii+xJs82/S1Nc4APj9dvgGPRhLnIDPZwPLamv9a1X6RC1svi3YjYBd/Ndbq3kN\nZ3PrgVeBHJ+h14KEENWh5yVCyPlIFuix2+3IZs/s8uc4Dnq9/rx/ls1m4XA4FnzM1VdfDaezdmHi\n6quvxj//8z8veu54PCfmX4WIJBBwIBxufhczx3N4fWYQLqMT9opnWY8l0vGY3BhPTWFuPrHoDvZm\nnQrXWk5MZZtGP8csHEY7TkQmFlz/H0KvgQeP7e4+1fwdjZVaG8up0yGEncqvKVFMgud52Fm7av6N\nFqLjLTDpjBg763MeCDgwmwrDqDMin+RQYNT9dzgfvlj7GR2KRBG2aG/9RHyjp0/AqrdAV7AgXDz/\n10S7vnYj5vWpI3in/x1yLm9FRudOAQAcnFv1zzXy0OOeHbfjO4d+gP/58vfxpbf/zVvG9Sz39ZtW\n/XHiDegYHYKG7qb+vu/yX4ETrVM4OP8Gvv3yfbhz+y1rasc+0Z5QLAIA4PMGxb5nHag9fxwLTcJW\ncSmyhuVYL89va81Eaqo2stkYUMXnL2joBgMGr04elvW1ULFawrcO/gBVroo7em9GKc0gnFb+32Nx\nDG7vvRnfHbgX33r5P/D3l/y1JgKxDx39GXiex9XBPYhGtNNm2uxznN8QAAAMTI5B32KRellEAaHM\nHF6bP4TX5w8hUqi1NFv0Fryj/e24uPUCbHNvblzf09LX+Nm2ubbgD7MH8capUXQ7tREWXOtmEvO1\ncFjWgHBe3J9PYryGM+vMmE9FVfFaghBCBPQelZD1bbFAn2SR9YsuuggvvfQSAODQoUPYtm1b4882\nb96MiYmJ/5+9+w6P4z7vRf+d2d4reicIohHsVu8mLUuy3GSruVC2EiuJc05uTsrNc3Nz006Se3MS\n5zlJHDsukVzULMmSLduSrWJ1URKbAKISJEB0YHexve/O3D92ZylZLCi7+5vZfT9/6RGJ3VciCe7M\nvL/vF4FAAKlUCocPH8bu3bvP+zX33nsvBgcHAQBvvvkm+vv7SzU2kZHTwTOIpmMYcPfSAxIZcemd\nEEQB/mSwKK8ndSq7FVq5BQDN5kb4kwFE0+deJhz0jgAABmRUHec2SPVp8qjcCuR/P/3mg2Q54jke\nzeYmLEdXkMymCv9+NRGAU+9Q7PcrqXIrQpVbBLnfB564D23Wlgue0LRqLWg01eNUcArpbLqME27M\nQmQRGl6NWqMykiPKYZujE5/svBmhVBjfOfFDZIQM65HKzp8IYDaygG2OThjU+jV9Dcdx+FzPZ9Bu\nbcXbS0fx3MxLpR2SkIsI5Su3bDq2lVsA4Il7mc1AKt9CvtpKLhUwFq0ZbdYWnApOI56Jl+19H5/4\nKZZjHtzQcjX6XN1le9/N2u7uxTVNV2AxuoynTv2c9TgX5Yuv4q2lI6gz1mJ37QDrcUqiOV9FOx9W\nRoUuWZuVmBfPTL2A//nWP+Pv3v4afnnmRYRSYeyr24Xf2XEP/uGqv8Dnez+LXue2ohzWY02q3Rpb\npdotufDEfXDq7LL9/eXQ26hyixBCCCGKUbKEngMHDuD111/HnXfeCVEU8fd///d4+umnEYvFcMcd\nd+DP/uzPcO+990IURdx2222oq6s759cAwF/91V/hb//2b6HRaOB2uy+a0EMqw5AMlyAI4Movgvji\nq4WlkM3wxL0wa0xrfoAmRy2WJoyuTmAuvIBu5/vrSlLZNEZXJ1BnrEWdsYbRhB9k1Vqg5tXwxeWy\n0JN7CGXXyf80NwC0WptwKjiF+cgCttjaEUvHEc/E0WFrZT3ahpk1uZqwKC30EOROvwNAu/Xiv6d7\nnF1YmF3C6eCZD3wPlJOskMVidBmN5gbFxciX2g0tV+NMaBZHVt7Fjyd/htu3fZL1SGW10cVbjUqD\nrwwcxD8e/lf89NSzqDfWYkcNHTwgbASTIWh5DfQqdp+pa/IL+tLCPiGlsBDJVYI2yWShBwD6Xd2Y\nDs1gdPUk9tTuKPn7HV0ZxBuLb6PF3IiPd95U8vcrtk9tvQUTgVN4ee4N9Dm7sd0t39rWX535NQRR\nwEfbb6jYz49N5lwt+Fz+zxZRLn8igCMr7+LI8nHMhHNp2GpejZ0127G3die2u3uhU2kZT1ka3c5c\n5eGo/yQ+0n4942lIIpNEOBVBk6O8VZTr4dDZsRhdRiKTgF7B96QJIYQQUh1KttDD8zz+5m/+5n3/\nrrOzs/DPN9xwA2644YaLfg0A9Pf345FHHinNoES2hryj0PIabHPI9+FgNXLr8ws9RUh2yQpZ+BJ+\ntFlaNv1aLDUXboB9cKFn3H8SaSGNHTJbTOM5Hi69Uz4LPYlcQo9dAQk9ANBibgIAzITnscXWDm80\n9//RqXewHGtTTBoTACBMCz0EwFRwBgDQbr349+ceZxdenH0VY/6Tsl7oWY55kBGzhe/Z5CyO4/C5\n3s9iMbqMl+feQJulBZc27GU9VtlIS+Qb+bvaprPgd3bcg68d+Q/cP/Iw/njvVwsPxggpp2AqDKvO\nyjQp0KV3ggNHCT2kpBYiSwCABpOcFnp68POp5zDsGyv5Qs9qwo+Hxp6AltfgS/13Q8OX7LZeyWhV\nGnyp7y78r8P/hh+OPob/69I/hFXLLl3sfPyJAN5cPIwagwt7a3eyHqdkLFozbFor5mmhR7GCyRDu\nH34IJwOnAeTu9/Q5u7G3bid21vTDoK78KjWL1oxmcyNOB6aQyqagrdDFJaWQ7hkX4yBoqTj0uQOF\n/mQQDbTQQwghhBCZq8zjJUTxlmMeLMdW0OPcpohO9Wry3oSezVpNBCCIAmqMyq3bAoBmS265Yy7y\nwYjqQU/+IWGNvBZ6gNyFdTQTQyxdvmj48zlbuaWMhJ6W/K/5bCh36s0Ty/15cOmUu9AjVW5FU7TQ\nQ4DpkLTQc/GEnk5bB1ScSvbx5tJDikZatjgnnUqL3x74AgxqPR4efwKz+VO9lS6eiWPCfwotliY4\n9PYNvUaLpQkH++5EKpvCN969H+FUpMhTEnJhWSGLcCoCm5btYrRGpYFdZ4MnTgk9pHQWoktw6Oyy\nSnhtsTTBojFjxDcOQRRK9j6CKOCB4UcQz8TxmW0fR52ptmTvVWrNlkZ8ovMmhNMR/HD0MYiiyHqk\nD3hu5iVkxSxubLtBtpUxxdJkabhgjTiRtxdmXsHJwGlssbXjzu5P4x+u/At8dde9uKxhX1Us80i6\nnVuREbM4FZhmPUrV8+Y/C7oN8r3f69Dlrv38CardIoQQQoj80UIPkSWq25IvVz6hx1uEhB7p9G6N\njC/w1qLG4IJWpcXcb3TOC6KAId8IzBrTmh6Kl5t0UqYYaUubJVVuORSy0FNvqoWG12A2kl/oieZu\nVjg3+DBYDlS8Cga1ARFK6Kl6oijiTGgWNQYXzFrTRX++Xq1Dh60Vs+F5WT8EkBZ6KKHn/GqNNTjY\ndyfSQgbfHvq+rH89i2XEN4GsmN30Z85dtQP4WMeN8CcD+NbQ95EWMkWakJCLC6cjECHCpmOfcFFj\ndCOQDCKVTbMehVSgSCqKUCosq7otIJ+G4epGKBU+5yGPYvnl9Is4FZzCrpoBXNFwScnep1yua7kK\nPY4uDPvG8Mr8m6zHeZ9gMoTXF96GS+/AJfV7WI9Tcs3mRgDAfAl//5LSEEURR1cGoVfp8d93fwVX\nN122pmu4StTr2AYAGPVPMJ6ESMvdcr7fa8/fv/MnaaGHEEIIIfJHCz1Elk54R8GBw3Z3D+tRyG9w\n6G3gOb4oCT1nL/Dcm34tlniOR7O5AUuxFaTf8/DiTGgW4VQEA+4+8Jz8vt1K9WleGdRuBQsJPcqo\n3Mr9mjdiMbqMdDYNbz6hx2lQbkIPkEvpoYUeshL3IpaJr2sRscfRBREiJvynSjjZ5kgLPVSHdGED\n7j7c1L4fvoQf9w8/BEEoXdKAHAx6hwEAO9z9m36tj7bfgH11u3A6OI2Hx56QZdoAqUyhZBiAPD5H\nSQ9uvJTSQ0pgISrftL1+V+7exbB3vCSvfzo4jV9MPw+Hzo7P9dzGtF6vWHiOxxf6bodJY8STkz8r\n1KnJwfMzLyMjZPCRtusrPp0HeE+NeJgWepRmOjQLfzKAHTV9iqzgK6ZOewfUvBrjq5OsR6l60n1G\nl4wXepyFhJ4g40kIIYQQQi5Ofk+YSdWLpmM4FZxGu7VFlj3q1Y7neDh19uIm9Ci8cgvInWgTRAEL\n0bM3IQdlnjTlktEDl0AqCLPGBLWCbkC1WpsgiALmo4vwRvMLPXqlL/SYEElH6SF0lZsOrr1uS9Lt\n7AIAjPnlW7s1H1mAQ2eHMV8vR87v5o796Hf1YHR1Aj8afpr1OCWTFbIY9o3DobMXJbmJ4zh8ruez\naLO04K2lI3h+5uUiTEnIxQVTuaRD1pVbwNmFHqrdIqWwEFkGADSa5JXQAwC9zi7wHI9h31jRXzue\nieOB4YchiiIO9t1ZUZ9l7DobPtfzGaSFDB4YeVgWCXfhVASvzh+CXWfDpQ37WI9TFlJCz1x+AZ4o\nx9GVdwEAe2p3MJ6EPa1Kgy22dsxFFqgClzFv4QCnk/Ek5+fQ5xLCqXKLEEIIIUpACz1EdoZ9YxBE\nAdtlugRBch3I4VQEqWxqU6/jiVVGQg/w3htgZ0+0DXpHoOHV6M0/6Jabs5VbfqZziKKIQDIEu0Lq\ntiQt5iYAwGx4Hp7YKlScSvFLiGatCYIoIJFNsB6FMDQdyi/02FrW/DVtlmboVTqMr8pzoSeciiAo\nw4oOueI5Hvf03Qm33okfjzxbSDeqNJOBKcQzceyo6Sta0oFWpcF9Ow7CrrPhJ6eewaBnuCivS8iF\nBPPVpbJI6DHmPtdLi/uEFNPZhB75/X1u1BjRYW3DdGgGkVTxEi9FUcQj40/Cl/DjxvYb0OXYUrTX\nloudNdtxZeOlmI8s4qennmE9Dl6YeQVpIY0DbddVTeJJjdENDa8paWUcKT5RFHFsZQh6lR49zm2s\nx5GFXkfu/ptcr0urhTfug1ljgl6tZz3Kedl1VLlFCCGEEOWghR4iO0P5VJMdtNAjW658rdBmF0G8\ncR+MagNMFXDCsNmSX+jJR1SvxLxYii6jx9kFrUrLcrTzcuXTZFgn9MQzCaSyKdhl8BBqPVosuYWe\nmdA8vNFVOHQ2WVarrYdJYwIARFIxxpMQlqZDM1BzKjTlFxXXQsWr0OXohCfuK0olY7Gdrdta+39T\ntTNqjPjU1lsAAG8uvsN4mtIYKlGSnk1nxX07DkLNq/HAyMMVuxBF5ENa6JHDYjEl9JBSWogsged4\n1BlrWI9yTttdPRAhYnR1omiv+fbSURxePo4Oaxtubt9ftNeVm9u6bkWt0Y0XZ18t6v+/9Yqko3hl\n/g3YtBZc2XAJsznKjed4NJkbsBRdQUYGKUlkbaZDM/AnA9hZ0181y2cX01NIjqXaLVayQha+hL/w\nmVCutCoNzBoTLfQQQgghRBGU/eSRVJyMkMGIbwIuvQMNpjrW45DzcOlzyS6bWQQRRAHeuK8i0nmA\nXOw7z/GFE21nF9P6WY51QXq1HmaNifnD90Ay11dtU1hCT4OpDmpejanQGfgTQTj0dtYjbZpZWuhJ\nUzx1tUpl05iLLKLF0rTum8LSzdNxGd48XSgs9MjvRL+cbXf3wqIz452lYxX3cEcURQx6h6FX6dFl\nL37aQaulGV/suwPJbArfHHyAYv9JSQVTYQCQxXK0W6p0jdFCDykuqd64zlgj25refncPABStdmsl\n5sWjE09Cr9Lhnv67oOJVRXldOdKptPhS393gOR4/GHm0qClH6/Hr2deQzKawv/VaaFQaJjOw0mRu\nQFbMYim6wnoUskZHVwYBUN3WezVbGmFSGzG2epKqxBnxJ4MQRAEuGddtSRw6G/yJIP1eIYQQQojs\n0UIPkZXJwBQS2QQG3MWrPiDFJ12U+eIbT+gJJIPIiFnUGOV9YmOtNCoN6o21mIssQhAFDHqHwYHD\ndncv69EuyG1wwZfwQxAFZjNIp8odClvoUfEqNJkasBhdBgA484lHSnZ2oYfNDXTC3lxkHoIooN3a\nuu6v7cnHm4/JMN58jhJ6NkTNq3FN26WIpKM44R1lPU5RLUSX4Ev40e/qLtmD4T21O3BLxwGsJvz4\n1tD3ka6wpSgiH2cTetgv9OhUWti0VqrcIkW3mgggmU2h0STf5dxGUz3sOhtGVsc3fX2VETJ4YPhh\nJLMp3Nn96UJdciVrtTbj1i03IpgK48Gxx8v+gDWWjuOl2ddh0ZhxVdNlZX1vOZBqxClZUBkEUcCx\nlSEY1PrCwQqSS5va5twKfzKAlZiH9ThVSTr8KfeEHgCw6+1IC2lEM5RSTQghhBB5o4UeIiulqj4g\nxSUl9PgSG0928cSUc4G3Vk3mRqSyKUyHZnEqMI12a6ssqg8uxG1wIitmCyk5LCg1oQcAWqxNhX+u\nrIUeuplRraaDMwCAdmvLur+2zlgDu86Gcf8k0yXBc1mILELDq1FrrIxUuHK6vuNyAJVXuzXoKU/F\n603t+7G3didOB6fxyNiP6fQnKYlQKgQNr4FBrWc9CgCgxujCaiJAS2ykqKS0vUZzA+NJzo/jOPS7\nuhFNx3AmNLup1/r51HM4E57FpfV78aH63UWaUP72t16LbfZODHqH8frCW2V975fnXkcim8CHW6+R\nbW12KTVbcn+2pNRhIm/ToVn4kwHscPfLNrWMlV4H1W6xJC30uBVwv9ehyyVt+xPs7okSQgghhKwF\nLfQQ2RBFEUPeEehVemy1d7Aeh1yAu5DQs4mFnvyp3Uqp3AKAFkvuRNsvp1+ACLHkDwmLwV2oT2NX\nuxXInyqXQ03EerWaK2yhR5tf6KFqmKo1Fcov9NjWn9DDcRy6HVsRSUcxH1kq9mgblhWyWIwuoyFf\njUjWp9XehFZLM4Z940yXP4tt0DsMnuPR5+op6ftwHIfP996OVkszDi0dxguzr5T0/Uh1CiZDsGkt\nskk4rTG4IULEKuNaV1JZFvKpmHKvz+x3bb52a3x1Es+deQluvRO3b/tEsUZTBJ7j8cW+O2BUG/D4\nyafLVv8UzyTw4uyrMKmNuLoK03mAXMIUB66QbEnk7ejKuwCobutcup3yTY6tBtL9RUUs9OhzBwsD\nyQDjSQghhBBCLoyeahDZWIwul7z6gBSHWWOCVqWFdzMJPVIEa4VUbgFnI6pP5G/e7qiR/0KPK3+B\nvZnlrM2SLpztSkzosbx3ocfOcJLikBJ6opTQU7WmQ7Mwa0yFJLb1kuLex/3yuXm6HPMgI2bRLOMT\n/XJ3ecM+iBDx9tJR1qMURSAZxEx4Dl32LTBqDCV/P61Kg/t2HIRNa8VTk78oJFISUgyCKCCUisAm\no8VoKYFT+rxPSDEUEnpkXLkFAN2OrVBxqg0v9ERSUXxv5BFwHIcvbb8bepkkb5WTQ2/HXT23IS2k\n8cDIw8iUIe3r1bk3EcvEcUPr1VX5/xwA9Go93AYn5sMLlCgoc2frtgxUt3UOboMTboMLE/5TyApZ\n1uNUHU8hoUf+VZFnE3pooYcQQggh8kYLPUQ2BvMPN7a7exlPQi6G4zi49U744qsbvtFTWOipoISe\n5nxCD5B7kFFnrGU4zdq4DblUmc0sZ22WkhN6Gsz1UHEqAJWR0GMqVG5FGU9CWAilwlhN+NFubd1w\nykO3YysAeZ2GnFdARYfc7avbBTWvxpuL71TEAx5poWaHu79s72nX2XDfjoNQ82rcP/wQFmSUYkWU\nLZyKQIQIq4w+R9Xk6w1poYcU00J0CTqVFg6ZL9Hr1bnE4ZnwPIL565y1EkURD449jmAqhFs7bkS7\ndf2JiZViT+0OXNawD7Phefzs9K9K+l7JbAovzL4Cg9qAa5uvKOl7yV2zuRHRTKyiUhkr0XRoBoFk\nEDupbuu8epxdSGQTOBOeYz1K1fHFfdDwGti08vlsej7SZwo/fc8jhBBCiMzRQg+RjRPeEfAcX4io\nJvLmMjiQyCYRzWwsycMT80Kn0hYSQSqBSWMsnO7Y4e6XTe3Bhbj0uRPUXoYPXILJILS8BgZ16VMS\nik3Dq9FkroeKV8n+4cJamAsLPVS5VY2mg/m6rU08PLLprGgw1WEyMIV0GU5Tr4W00EMJPRtn1Bix\nq2Y7VmJeTIXOsB5n06Ql8oEyV2O2WVvwhd7bkcym8M3B+xGmekNSBMFUfjFaRg9Nzib0eBlPQipF\nRshgOeZBo0LqM6V7GiO+8XV93avzhzDoHcY2eyf2t11bitEU5bNdH4fb4MLzMy9jwj9Zsvd5df5N\nRNJRXNd8pSKvSYupKZ86PBdZYDwJuZCjy4MAgD11VLd1Pj0OqXZrgvEk1UUURXjiq3AbnIq4J+rI\nJ4VTQg8hhBBC5E7+d0JIVQilwpgOzaLT1g6Txsh6HLIGbv3Gq5pyF3g+1BjcirjAWw+pgqncDwk3\nyqG3ged4xpVbIdh1NsX+Xri75zP4kyt/B5oKOBlnUOvBczwiKarcqkbToVkAQLutZVOv0+PoQlpI\nYyooj8UPaaGniRZ6NuWyhn0AgDcX3mE8yeYkMglMrE6iydwAl6H8yWp763bi5vb98CX8+PbQD8pS\nI0Iqm5QAYtVZGE9yllta6IlRQg8pjuWYB4IooNEs77otibTQs57arYXIEn48+TRMaiMO9t+piMWl\nUtOr9bin7y5wHIfvjTxaklrgVDaN52dehl6lw/UtVxX99ZWm2ZL7vCx9fibyI4gCjnmGYFQbCumo\n5IO6HZ3gwMkqObYaRNMxJLIJRdRtAbkUVQ4c/Ela6CGEEEKIvNEdAiILJ7xjECEqZgmCAK78xZkv\n4V/31wZTIaSFdOH0biW5peMAPrX1FnTa21mPsiY8x8Old8DLaKEnI2QQTkdgk1FNxHq1WJqwp3E7\n6zGKguM4mDUmRKlyqypNhXIJPW2WTS70OHOnIcdlcvN0PrIIh84OIy0Mb0q3YyscOjuOrLyLZDbF\nepwNG109iYyYxQ6Gnzlv6tiP3bU7cCo4hUfGn6yIGjPCTigZBgBZ1RoY1HpYNGZK6CFFI9UUNpqU\nsZxbZ6yBW+/E6OpJZIXsRX9+OpvG/cMPIS1k8Lnez8CeTwwgQIetFTe3H0AgGcTDY08U/e/MNxbe\nRjgVwTXNV9DhMuQqtwBgLkwJPXI1FczVbe2oobqtCzFqjGi1NmMqNINEJsF6nKoh1a26FXK/V8Wr\nYNVaKKGHEEIIIbJHCz1EFoYK1Qe9jCcha+XS5061h6sdcAAAIABJREFUb6SqSTqtW2N0F3UmOWi2\nNGJ/67WKOlHpNrgQTkeQyCTL/t7B/EMoumktH2aNCWFa6Kk6gihgJjSLOmMtjJrNVQ1stXeA53iM\n+tkv9ERSUQRTITQp5ES/nPEcj8sa9iGZTeHYyiDrcTZs0DsMIFeNyQrP8fhi7+1otTThzcV38OLs\nq8xmIcoXyFduyW05usbogi/hX9MyAyEXsxDNL/Qo5O9zjuPQ7+5BIpvA6eD0RX/+k6d+gYXoEq5q\nugw7ayrjoEAx3dh+PTpt7TjmGcKhpSNFe920kMFzMy9By2twQ8vVRXtdJbPrbDCqDZTQI2NHV94F\nAOyp3cl4EvnrcXRBEAWcDJxmPUrV8ClsoQcAHHo7AskQBFFgPQohhBBCyHkp54kzqVipbBqjqxOo\nM9ai1ljDehyyRoWEng0ku0gnNioxoUeJzqYtlT+lJ5AMAqCFHjkxaYyIZ+L0AK7KLEVXkMgm0WFt\n3fRr6dV6dFhbMROaQ6wE1QjrMRfJnS5uyp82JptTqN1aVGbtVlbIYtg7BrvOVqjIZEWr0uK+HffA\nprXgycmf44R3lOk8RLlCUuWWVj6VWwBQY3BDEAWs0olnUgQL+eWCRpMyFnqA99ZujV/w553wjuLl\nuddRb6rDbVs/Vo7RFIfneBzsuxN6lR6PTTyFlVhx0r8OLb6DQDKIq5svh0VrLsprKh3HcWg2N8IT\n9zE58EMuTBAFHFvJ1W31UN3WRUnJsVS7VT6e/D1iJd3vdehsyIpZhFMR1qMQQgghhJwXLfQQ5ib8\nk0gLaUrnURiXfuOVW1L8vpIu8CqZW7/x5azNkhZ65HaqvJqZ8zezoxm2ixikvKZDswCAdtvm6rYk\n3c4uiBAxwfg0pPQAkBJ6isNtcGKbvROTgamiPUwrp9PBaUQzMQy4+8BxHOtxYNfZcN+Oe6DmVbh/\n+KFCpQwh6xHMJ/TYZfZZSvqcT7VbpBjmI0uwai0wa02sR1mzLnsnNLwaw76x8/6cYDKEH4z+CGpe\njS/33w2tSlvGCZXFZXDiru5PIZlN4Xsjj2z68EFGyOCX07+Ghlfjwy3XFmnKytBkaYAIsZCMReTj\ndPAMgqkQdtZsh4pXsR5H9jpsbdDyGoz5J1mPUjWkFHfpPqMSOPR2AIA/SUvohBBCCJEvWughzA0W\n6rb6GE9C1kOv1sGsMW1oCUS6wKvEyi0lkhJ6vAwSeoL5hR4HJfTIhlmTe1ASSVHtVjWZDs0AANqL\nkNAD5OLNAWCc8WnIucJCDyX0FIuU0vPW4mHGk6yfHD9ztllb8IXe25HIJvHNwQfoey9Zt2AyDDWv\nhkG9ubrEYju70LP+el5C3iueicOfDCgqnQcAtCoNtjm2YiG6hNVzHIIRRAHfH3kUkXQUn+y8GU3m\nBgZTKsu++t34UN0eTIdm8Ivp5zf1Wm8vHYU/GcCVjZfCppNXwhlrzfnPzXPhBcaTkN90NF97u6d2\nB+NJlEHDq7HVvgVL0eXCYTJSWp64Dxw4OA0KWujJ34/0J+j3CCGEEELkixZ6CFOCKOCEdxQmjRFb\nbG2sxyHr5DI4sZrwr7tn2BP3QcNrZFcNUK3c0kIPk4Se3KlyGy30yIZZYwQARNL0ULmaTIdmoOE1\nRXtY1m5tgU6lxZif7ULPQmQRGl5NiXBFtLt2AHqVDoeWjqz773+WRFHEoHcEOpUW2xydrMd5n711\nu3BT+374Eqv49onvIyNkWI9EFCSYDMGmtcoideq9pMV9Sughm7UQWQYANCowbe9CtVsvzr6KMf9J\n9Lt6cF3zleUeTbHu6P4EXHoHfjn9IiYDUxt6jayQxS+nX4SaU+FA23XFHbACSIvw8xFa6JETQRRw\nfGUQJrUR3VS3tWZUu1VevsQq7DobNLya9ShrZqeEHkI+YDIwhZ+d/hXSdG+CEEJkgxZ6CFOz4XkE\nUyFsd/WC5+i3o9K49U5kxCyC+aWMtRBFEZ6YDzUGF/2ay4Rbn3vQ7WNwglo6JSW3mohqZtbkKrdo\noad6JDJJLESW0GppKlp0u4pXocveiZWY95yn0sshK2SxGF1Gg6meIumLSKvSYm/dLgSSQUXdGF+M\nLsMb96HP2S3LG8w3d+zH7poBTAam8Oj4UxBFkfVIRAEEUUA4HZFlukQhoSdGCT1kc6Tan0YFJtj0\nu7oB4AO1WzOhOfz01LOwaM34Qu/tslvIkzOD2oCDfXcBAB4YfhixdHzdr3F4+Ti8iVVc3ngJ7HSw\n5AMaTLVQcapC0iWRh1zdVhg7a/rp2mYdzi70UO1WqaWyaQSSQcUdpnHo8gs9CVroIQTIfU7612Pf\nwjPTzysymZkQQioVPU0nTA15RwEA2929jCchG+HaQLJLJB1FIptQ3AVeJTNqDDCqDYwSeoLgwFFa\nk4wUEnqo9qVqzIbnIEJEu604dVsS6ebpOKObp8sxDzJiliosSuDyfO3Wm4vvMJ5k7YbydVs7avoZ\nT3JuPMfji313oMXShDcW38ZLc6+zHokoQCQdhSAKsGnltxht1BhhUhupcots2kIkt9DTpLDKLQBw\nG1yoM9ZifPVk4YRzIpPE/cMPIStmcbD3Tli0ZsZTKk+nvR0fbf8w/MkAHp14cl1fK4gCnj3zAniO\nx4HW60ozoMKpeTXqTbVYiCwqKo2x0h1deRcAsKd2J+NJlKXRVA+L1oxx/0lamC8xXyJ3T9GtoLot\nAHDo85VbVMtGCF6cfRX3Dz8EDa+BmlPhhZlX6LMAIYTIBC30EKaGvCNQcyr0ObexHoVsgEvvAHD2\nom0tpJv6biMt9MiJ2+CEL7Fa9hscgWQIVq2ZTpjJiElrAgBEKaGnakyHZgEA7dbSLPSwqt2az58q\npoWe4mu3tqLeWItBzzCi6RjrcdZk0DsCnuML9SdypFVpcd/AQVi1Fjw5+XPMhOdYj0RkTkrJtMo0\n6dBtdMEX99FNYLIpC9FFcOBQb6plPcqG9Lu6kRLSmAycBgA8cfKnWIl78eGWa9DrovsgG3VT+4fR\nYW3F4eXjeHvp6Jq/7ujKIFZiXlxWvw8ug6OEEypbs7kRKSENT4xqE+VAEAUcWxmCSWOUXXWs3HEc\nhx5HF0KpcCHxjZSGV7rfq7ADnFatBTzHI0AJPaSKiaKIpyZ/gSdOPg2r1oI/3PM7uKR+L1biXrzr\nGWY9HiGEENBCD2HInwhgLrKALkcn9Go963HIBkgXab51JLtIN4RqDO6SzEQ2xqV3Ii1kEEqFy/ae\noigimArBno+3JfJAlVvVZzo0AwDoKPJCT72xFjatBWOrJ5k8zJUWepppoafoOI7DZQ37kBGzeGf5\nGOtxLiqYDGM6NINOWztM+RQyuXLo7fhi7x3Iilk8MPwIUtkU65GIjEkLPXYZJvQAudqtjJiFP0En\nnsnGiKKIhcgSagwuaFVa1uNsiLRIOuwbw9GVQbyx+A5azI24tfOjjCdTNhWvwsG+u6BTafHo+FNr\nSpsVRAHPTufSeW5sv74MUyqXtBBPtVvycCowjVAqjF012+kw1AacTY5VTl2wEknfh5W20MNzPOw6\nGyX0kKqVFbL4weiP8NzMS6g1uvHHe7+KZksj9rdeAw4cnjvzEiWcEUKIDNBCD2FGqj4YcPcxnoRs\nlEufr9zaQEIPVW7Ji3TBXc7arWg6hoyQgV2mp8qrVaFyixZ6qsZUcAY2rQV2na2or8txHLqdXYik\no1iMLhf1tdeCEnpK65L6veA5HocU0Kl+QuZ1W7+p17UN1zdfheXYCp6c/AXrcYiMBVNSQo88q0ul\nBX5PnBIeyMYEUyHEMnE0mpVXtyXptHdAp9Li2MoQHhp7HFpegy/13w0Nr2Y9muLVGF24fdsnkcgm\n8L2RR5AVshf8+e96hrEYXcaH6nYr7oFzuTWbGwGc/TxN2Dq6MggA2F27g/EkyiQt9IwySo6tFoVE\ndoVVbgGAQ2dHMBm66N8jhFSaZDaFbw49gLeWjqDN2oL/sef34Mr/Ga4z1WJHTT/OhGcLSZOEEELY\noYUewsyQdxQAMODuZTwJ2Sin3g4O3PoSeuKU0CNH0od1KSK3HAL50y+2Ii8RkM0xa3KVW5EULfRU\nA38igGAqhHZrKziOK/rr9zjytVsMTkPORxbh0NlhlHkii1LZdBb0u3owG57HbHiB9TgXNCgt9Cho\nifzjnTehwVSHV+bfwIn8Z2ZCflMomUtWtMl0OVpa4PeU8fMlqSzzkVw9SqNJuQs9Gl6NHkcXAskg\n4pkEPrvtE6hTaH2YHF1avxd7anfgdHAavzrz6/P+PFEU8cz08+DA4cY2Sue5mCaLlNAj78941UAQ\nBRzzDObqtuxUt7URdp0N9cZaTPpPIy1kWI9TsbwKPsDp0NsgQkQgn35JSDWIpKL438f+EyO+cfS5\nuvEHu++DRWt+38850HotAOC5mZdZjEgIIeQ9aKGHMJHIJDDhn0STuQFOPfWWK5WKV8Gus8GX8K/5\nazxxH1ScCg49LXHIiXSCZj1pS5slLfRQQo+8aFQa6FRaRCmhpypMh2YBAO224tZtSbqdWwEAY2U+\nDRlJRRFMhdCk4BP9SnB5wz4AwKHFdxhPcn7JbArj/pNoNNUr6jS+VqXBPX13Qc2p8MOxxxBORViP\nRGQokE/oscm1cstICT1kcxaj+YUehaftbc8fYtpdM4DLGz7EeJrKwnEc7ur+NBw6O34x/TymgmfO\n+fOGvCOYjyxib91OWqhaA7PGBLvORgk9MnAqMIVwKoJdNQNUt7UJPc4upIQ0ps/zPYJsnje+CqPa\noMgDNQ6dHQDgTwYYT0JIefjiq/jno1/HmdAsLq3fi98ZuAe6c9Tbdtja0GnrwLBvjD4TEEIIY7TQ\nQ5gYWz2JjJhV1Elpcm5ugxPBZGjNp1y8MR/cBid4jr79yIlbn3vIuZ60pc06u9BDy11yY9aYEKaF\nnqowHZoBALRbS7PQ897TkJkynoY8W7fVWLb3rEbbXb2waMx4Z/mYbE+7jq1OIC1kFFnx2mxpxK2d\nH0U4FcGDY49Tbz35AKUk9HhjlNBDNmZBSuhR+ILupfV7cbDvTnyh746SJCJWO6PGiIN9d0AURTww\n/DASmcT7fjyXzvMCAODGthtYjKhIzeYGBJJBSm5lTKrb2kN1W5si1W6xSI6tBoIowJdYVdQBivdy\n6HMLPYEELfSQyjcXXsA/Hfk6VmJeHGi9Dl/ovf2CC6MH2nIpPS/MvFKuEQkhhJwDPVEnTEjVB0p8\nuELez2VwQoSI1TWk9ETTMUQzMUXGr1Y6qT6tvJVbuVPltNAjPyaNCdF0lB4eV4Hp0Aw4cGi1NJfs\nPbrzpyGngjMle4/fNJ+vB6CEntJS8SpcUr8H0XQMQ/nPdnIz6MnXbdUo8zPnDS1XY5u9E0PeEbyx\n8DbrcYjMBJMhqHk1jGoD61HOyawxQa/SU+UW2bCFyCI0vFrx14/S35fnOvlMiqPL0YkDbdfBm1jF\njyZ+8r4fG1mdwEx4DrtrBhS/HFZOzfnFeKrdYidXtzUEs8aELvsW1uMoWpd9C3iOx5h/kvUoFSmY\nDCEjZArp30rjyN+X9OcPHhJSqSb8p/AvR7+JUCqMz3R9HJ/cevNFl837XT2oN9XhneVja3r+Qwgh\npDRooYeUnSAKGPaNwaa1oMXSxHocsklufb6qaQ3JLmf7lN0lnYmsn4pXwaG3r6s+bbOCVLklW2at\nCWkhg5SQZj0KKaGskMVMaA4Npjro1bqSvU9v/jTkeBlrt+bzJ/opoaf0LivUbh1mPMkHCaKAE75R\n2LSWki6tlRLP8fhi3x0wqA14/ORPsRLzsB6JyEgwFYJNa5Ft4gfHcagxuuCJ+yCIAutxiMJkhSwW\nYyuoN9VRuitZk1s6DqDV0oy3lo7gyPJxAPl0nqnnAQAfbf8wy/EUp8lCCz2sTRbqtrZT3dYm6dV6\ndFhbcSY0i1g6xnqciiMtbys9oYcqt0glO7oyiK8f/w7SQhpf6r8b17dctaav4zke+1uvhSAK+PXs\nayWekhBCyPnQXRFSdlPBGUTSUWx399KNuQrgyp++WEtVkyfmBQC4jcq8wKt0br0TgWQQ6Wx5ljik\nhB4bJfTIjlljAgCKV69wC9FlpIR0yeq2JFul05BljDefjyxUxIl+JWg016PN2oIR33ihSlEuTgfP\n5D9z9in6M6dDb8dd3Z9CSkjjgZFHkBWyrEciMiCIAkKpMKxaeS9G1xhcSAtphFJh1qMQhfHEfcgI\nGTSaKFGFrI2aV+Oe/rug5TV4ePxJrCb8GPdPYip0BgPuPjRbaNF7PZrNDQDOVtmS8pPqtnZT3VZR\ndDu7IELEhP8U61EqjnTIU6nX3w5dfqEnIa/rWUKK5eW5N/BfJx6Emlfj93Z+Gfvqdq3r6z9Utwt2\nnQ2vLbxFS5GEEMKIcu9sE8UaorqtiuLKJ/T4EmtY6KGEHlmTonHLldITSAahV+lLmgxCNqaw0JOO\nMJ6ElNJ0KFeB1WEr7UKPQa1Hu7UF06FZxDPxkr4XkD/RH11Gg6meTrKWyeUN+yBCxFuLR1iP8j6D\n3mEAwI4K+My5t24XLqnfgzOhWTwz/QLrcYgMRNMxCKIAm8yTDqXP/dJiPyFrtRDNpe1RRRJZjzpj\nDT6z7eOIZ+L43sgjeGY6l85zE6XzrJvb4IJWpcVcmBJ6WMgKWRxfobqtYpKSY6l2q/i8Ck/oMWmM\n0PBqSughFUcURTx96ln8aOIpmDUm/MGe+9CT/164HmpejetbrkIqm8Ir84dKMCkhhJCLoYUeUnZD\n3hFoeA26Hev/8EDkx72ehJ7CQo8yL/AqnSv/6yJdiJdaIBmkui2ZOrvQQ6cuKpm00FPqhB4A6HZI\npyFPl/y9lmMeZMQsmvKniknp7a3dBQ2vxqHFwxBFkfU4BUPeEWh5DbodW1mPUhS3b/sEnHoHnp1+\nAaeD06zHIYydTTq0MJ7kwqTP/Z4yfb4klWNBqs800d/nZH2uaLgEO2u2YzIwhcnAFPpc3WiztrAe\nS3F4jkeTqQFLsRWkhQzrcarOZGAK4XQEu2oH6JBCkbRZWqBX6TC2OsF6lIpzdqHHyXiSjeE4Dg6d\nHf4ELfSQypEVsnhw7HE8e+ZFuA0u/NHer26qivzKxkthUOvx0uxrZUv3J4QQchYt9JCyWol5sRRb\nQY+zC1qVhvU4pAisWgs0vHrNCT08x8Old5RhMrJe0oW3dw2/lpuVyqYRy8Rhp7otWZIWeqJpqtyq\nZNOhWehUWtSbakv+XtIJoHF/6Wu3pFoAWugpH6PGgF01A1iJe3FKJosmS9EVrMS86HV1Q1MhnzkN\nagMO9t0JAHhg+BEkMgnGExGWQqn8Qo/cK7eM+YQeWugh6yQl9DSY6xhPQpSG4zjc3XNb4fvjTe37\nGU+kXE2WBgiigKXoMutRqs5RT65uay/VbRWNilehy9EJT9y3pkOJZO08cR/UnErR9/jsejsi6Sgt\nKpCKkMqm8K2h7+PNxXfQamnCH+/9KmqMmztgbVDrcXXT5QinI3hrSV7pzIQQUg1ooYeU1YlC3VYv\n40lIsXAcB6feWehLvhBP3Aun3kGni2RqPWlLmxVI5nqplXyxX8lM2nxCT4oqtypVPBPHcnQFbZYW\n8FzpPw62W1ugVWkxtlr6eHNa6GHjsoZ9AIBDi4cZT5IjVbxWQt3We221d+BA23XwJVbx2Mmfsh6H\nMBTMJ/RYZZ52WEjoocotsk4LkUWY1EbZL60ReTJrTPj9Xb+Fe7d/HltsbazHUaxmcyMAYC7/+ZqU\nh1S3ZdGYsZXqtoqqp1C7VfqDJtXEF1+Fy+Asy72FUnHk70/68/crCVGqSDqKfz32bZzwjaLH0YU/\n2H0fLFpzUV77uuYroeZUeH7mZQiiUJTXJIQQsjbK/ZRFFGkw/3Blu6uyHq5UO5fBgVgmjngmft6f\nk8gkEE5FqG5Lxlz6fEJPGRZ6goWFHrpBL0dUuVX5zoTmIEJEu630dVtArm+7y74Fy7GVksdYSws9\nzbTQU1bbHJ1w6h04svIuEpkk63Ew6B0GBw7bXZW3RH5LxwG0WJpwaPEwjq0MsR6HMBJMhgEANq28\nK7esWgu0vIYSesi6JLMpeOOraDTXg+M41uMQhWo012MPpZtsivR5ej68wHiS6nIycBqRdBS7agcU\nvSAhR72O/ELPKi30FEssHUc0E4Nb4fd7nXo7ACCQpNotolyrCT++duQbmAqdwb66XfjdnV+CXq0v\n2uvbdFZcUr8XnrgP73qGi/a6hBBCLo6uCkjZRFJRnApOo83aAptO3jeeyfq4C4sg/vP+HE9+SaTG\n4C7LTGT9zBoTdCrtmurTNiuQP1Vuo4QeWTq70EOVW5VqOjQDAGi3lmehB3hv7VZpU3rmI4tw6Oww\naowlfR/yfjzH47L6vUhlUzi2Msh0lnAqgqngDLbY2mHOJ45VEjWvxj19d0HDa/Dw2BOF1DtSXYJS\n5ZbMl6M5jkON0Q1P3AtRFFmPQxRiKboMESIazfWsRyGkqjWaG8CBw1yEFnrKSfosTQtpxVdrrIFd\nZ8O4f5LSJYrEm1/allK/lcqhyy30rJb4ABIhpTIfWcQ/Hf46lmMruKHlahzsuxNqXl3099nfeg04\ncHjuzEt0fUcIIWVECz2kbI4vDkMQhYqrPiCAS6pqusAiiCeei9nfbF8rKR2O4+A2uOCN+0r+gTxA\nCT2yRgs9lY/JQk8ZTkNGUlEEUyE00QNAJqTarTcZ124NeUchQsSOmsr9zFlvqsWnt34M0UwMPxj5\nET2QqEIhaTlaAXVENQYXktkUwmmq8iRrsxBZAgA0mujvc0JY0qm0qDG6MBdZpId2ZZIVsjjuOQGL\n1oyt9g7W41QcjuPQ4+xCNB2jRbUi8RQWepR9v9eeT+jxJ+iwBFGek/7T+Jej30AwFcKntt6C27pu\nLVnCW52pFjtq+nEmPIvJwOmSvAchhJAPooUeUjaHF3KVAAO00FNxzib0nD9K3xvL/RhVbsmbW+9E\nMpsq+SLH2YUeSuiRI6PGAA4cIila6KlEoihiOjgLh85e1sS8BlMdLFozxvwnS/ZAQKrbajI3luT1\nyYW5DE50O7biVHAKKzEPszmG8hWvlb5EfnXTZeh39WDMfxIvz73BehxSZoFUCCpOBZMC0sikhE5P\njGq3yNosRPMLPVSfSQhzzeZGxDNx+KmGpiykuq3dNVS3VSpUu1VcvkIiu7Lv9zry9yfpex1RmuOe\nE/j3d7+DZDaFg313Yn/rtSV/zwP593hu5uWSvxchlSyQDCKdTbMegygEXRmQssgKWRxfHIZT76BT\ndhWokNBzwcqtfEIPVW7JmvRr6Y2XtnZLqtyy62mhR454jodJY0SUEnoqki/hRzgdQbutfOk8QP40\npKML4VQEi9HlkrzHfP6UJSX0sCOl9BxaPMLk/VPZFEZXJ1BvrEWtsYbJDOXCcRw+3/tZmDUmPHXq\nF4VEC1IdQskwrFoLOI5jPcpFSQ94pOsBQi5G+n7WYKpjPAkhRFqUnwtTmkk5HKW6rZLrdtJCTzFV\nSkKPQ0rooYUeoiCvzr+J7wz9ADzH43d3fAmX1O8py/t22NrQaevAsG+scLCOEHJxyWwKJ7yj+NHE\nU/jrN/8Rf/763+Ffjn4TiUyC9WhEAWihh5TFZGAKsXQcA+5eRdx0Juvj0q+lcssHDlxhYYTIk3QB\n7rtA2lIxBJNBqDhVodqJyI9JY6LKrQp1tm6rpezvXbh56i/NzdP5/ANASuhhZ1fNAAxqPQ4tHmZS\nAzXun0RaSFdNIqRVa8Hnej6DjJDBAyMPIy1kWI9EykAQBQRTIcVUl0qVu54Sf74klWM+ugin3gGD\nWs96FEKqXnM+KYse2JVerm5rCBatGZ1Ut1UyFq0ZTeYGnApOI0Wn4jdNSmuX7g0rlUGth16lR4Aq\nt4gCiKKIn53+FR4ZfxImjRH/x+770OfqLusMB9pyKT3PU0oPIecliiLmI4t47sxL+N/HvoU/feUv\n8Y3B+/Hy3BsIpkJoMjfgTHgW/zn4PUrqIRelZj0AqQ5S9UG1PFypNkaNAQa1oRCzei6euA92nQ0a\nnr7tyJlbSui5wHJWMQSSIVi1FoqQljGzxoiVmAeCKNCvU4WRFno6rG1lf+8ex1YAwPjqSdzQcnXR\nX38+sgANr1Z83LeSaVUa7K3bhdfmD2F0dQL9rp6yvv+gZxgAsKOmv6zvy9KOmn5c2XgpXl94C0+f\nfhaf3vox1iOREoumYxBEAValLPQUKrcooYdcXDgVQTgVwXZXL+tRCCEAmi35hJ6I/BN6crUFmcIi\nqdJMBE4hmo7hmqYr6Bq8xHqcXZiPLOJUcAq9zm2sx1E0b2IVNq0VWpWG9Sib5tDbKKGHyF5WyOLR\niafw+sJbcOmd+P1d9zJJJ+539aDeVIfDy8dx65Yb4dQ7yj4DIXIUSUcxtnoSo74JjK6OI5gKF36s\nxdKEXuc29Dm3ocPWBg4c/mv4QRz3nMB3hx/Eb2//AlS8iuH0RM7oyTopizH/SRjUenTZt7AehZSI\n2+DEUnQZoih+IIUplU0hkAxiW/5BLpGvQtpSCSu3pFPlbZbyp4OQtTNrzRAhIpaJU5JShZkOzoLn\neLRYmsr+3g69HXXGGkwETiMrZIt6kZIVsliMLqPR3EAXP4xd3rAPr80fwpuLh8u60COIAoa8o7Bo\nzEwSqFi6retWnPSfwoszr6Lf2YNuJ33mqmSh/A0hm1YZCz02nRVqXk0JPWRNpLqtRqrPJEQWbFor\nzBoT5mSe0JPOpvG1I/+BaDqOv7jsj2DXKa/e+xjVbZVNj6MLL8y8grHVk7TQswkZIQN/IoAttnbW\noxSFQ2fHYnQZiUwCekoJJDKUyqZx//BDGPQOo9nciN/beS9sOguTWXiOx4HWa/GD0R/h17Ov4bau\nW5nMQQhrWSGL6dAsRlfHMbI6gZnQHESIAACzxoQP1e1Gn6sbPc4uWLUf/PN6T//d+Ma7/4Uh7wge\nHHscn+/9LC12k3OihR5SFlc0fAi1DgfUlM49tbpcAAAgAElEQVRSsVx6J2bD8wilwrD9xmlhb345\nhBIT5M+V36b3lnChJ5yKQBAFxdREVCuzxggAiKSitNBTQTJCBrOReTSZG5idoOtxduHluTcwFZrB\n1iJGyS/HPMiIWTTlawEIO22WFjSY6jDkGUYkXb7vIdOhWYTTEVzR8KGqu/jVqbS4p/8u/NORr+P7\no4/izy/5Qxjz38dJ5QkkQwDA7ObtevEcD7fBBU/ce87lf0LeayGar8800UIPIXLAcRyazA0Y908i\nnknItgrv1YVD8CX8AIAnTj6Ne7d/nvFE65Or2zoBq9aCTns763Eq3lZ7B9ScCuOrpamCrha+hB8i\nxELat9I59LlFQH8yiAaZfq8j1SuajuGbgw/gdHAa2xxb8ZWBLzL/O3lf3S48ffqXeG3hLdzU/mG6\nB0GqxmrCj1HfBEZWJzDuP4l4JgEgd++j096OXmc3+lzb0GxuvOj9SQ2vxlcGDuLfjn8bby0dgUGt\nx2e6Pk73TcgHVNedbsLMDa3X4PotV7Aeg5SQy5BbBPGdo6rJE8/F69NCj/xpVBrYdbaSVm4Fkrk+\naiWemKsmpvwD+Eg6yngSUkzzkUVkhAzara3MZuh2dAFA0W+eLuRPDdNCD3scx+Gyhn3IiFkcXjpe\ntveV6raqteK1zdqCm9sPIJAM4uHxH0MURdYjkRIJSQs9CknoAXLXAfFMAtFMjPUoVU0QBfzzkf/A\nQ2OPsx7lvM4m9NDf54TIRbM5V7sl/fmUm3gmgV9Ovwi9So9WSxOOrgxi1DfBeqx1mfDn6rZ21w5U\n3WI6C1qVFlvsHZiNLCCcirAeR7G8+fTFSrnf69DZAQD+BNVuEXnxJwL42tFv4HRwGntrd+L3dn6Z\n+TIPAKh5Na5vuQqpbAqvzB9iPQ4hJZPKpjHiG8fjJ3+Kvz30T/iLN/4BD40/geOeIRjVRlzVdBm+\nMvBF/OPVf4U/3PO7+Gj7DWi1NK/5M51ercPv7vwSGkx1eGnudTwz/XyJ/4uIEtEVAiGkKNz5qqZz\nJbtI8fo1RndZZyIb49I74U8EkBEyJXl96VS5XU8LPXJmyS/0RGmhp6JMhWYAgGkd0TbHFnDgMOYv\n7kLPHC30yMol9XvAczzeXHynbO855B2Bhtegx9lVtveUm4+0XYcttjYcXRnEO8vHWI9DSiSYyn2W\nsioo7VB60OOJUe0WS2OrJ3E6OI3XF97GiG+c9TjntBBdAs/xqKVrR0JkQ/p8PRdZYDzJub0w8woi\n6SgOtF2Lu3s+Cw4cHp14EulsmvVoa3a0ULe1k/Ek1aPHkauoHfdPMp5EuaR7wO4KWeix6/MLPUla\n6CHysRhdxj8d+TqWosu4vvkq3NN/FzQyasG4svFSGNR6vDT7mqL+3iXkQkRRxGJ0GS/OvIJ/P/4d\n/Omrf4mvv/td/Hr2Nawm/Nju6sFnuz6Bv7zsT/DXl/+fuKv709hZs31Ti3ZmjQm/v+u34NI78fOp\n5/DS7OtF/C8ilYAWegghReHKX7z54v4P/Jinwk5sVDq3wQkRIlZLdCIlKCX0KOhUeTUqJPSkaKGn\nkkwHZwEAHQwTegxqA9qtLZgOzRYiSYthPkoLPXJi1Vow4OrFXGQBs+H5kr/fSsyDpdgKep3boFVp\nS/5+cqXiVTjYdyd0Ki0eHX8KvhJWaBJ2gskwACiqvrTGkFvOkJI7CRtvLR0p/PNjEz9BukQL/Bsl\niAIWokuoN9ZSXTchMtJsySX0zMtwoSeUCuOF2Vdg0ZpxfcvVaLE04rqWK+GJ+/CrM79mPd6aZIUs\n3vWcgE1rwRZbG+txqoZ0CIBqtzZOSuiplIUeZyGhJ8h4EkJyTgWm8bUj/4FAMohPdN6E27pulV2K\nm0Gtx9VNlyOcjuDQe641CFGaWDqOoyuDeHD0cfzfb/w9/udb/4wnJn+G0dUJ1Bjc2N96Lf7brt/G\nP17z1/jdnV/GdS1XotZYU9RqLLvOhv+267dh1Vrw2Mmf4K1F+jNFzpLXd39CiGK59eev3PLGKusC\nr9JJ3deleggoJfTYqHJL1sxaqtyqRGdCMzCoDcwT07qdXRBEAZOB00V7zfnwIuw6G0zU2S0blzXs\nAwC8uXi45O816B0BUL11W+/lNrjw2W2fRCKbwPdGHoUgCqxHIkVWSOjRWhhPsnY1xnxCT5wSeliJ\nZ+J413MCtQY3rm2+AitxL16ceYX1WO+zmvAjlU2h0VzPehRCyHvUGWug5lSYCy+yHuUDnp1+Aals\nCje374cuv9T9sY6PwK6z4Vdnfo2VmIfxhBc37p9ENBPDrtodsntQW8laLE0wqY0YXT1JVbUb5Cks\n9DgZT1IcjnySOFVuETkY9o3h345/C4lsEl/ovR0fabu+qIsDxXRd85VQcyq8MPMy3X8gipIWMvjV\nmV/jn498HX/66l/huyd+iDcW30Y6m8be2p34fO/t+Lsr/xx/fun/wKe23oIeZ1fJE7JqjC78/q7f\ngkFtwA/HHsOgZ7ik70eUg64SCCFF4cwv9HjPcZPeE/fCprUWbq4QeXNJ9WnnWM4qhoCU0EMLPbJm\n1tBCT6WJpKNYiXvRbm1hfqNYijcfK9JpyEgqimAqhGZK55GVflcPLFozDi8dK3kKxKBnBBw4DLh7\nS/o+SnFZ/V7srhnAqeAUnjvzEutxSJGFkiGoOJWiFhgLCT1UucXM0ZVBpIUMLm3Yi4913AiLxoxn\npl/AauKDCauszEeWAACNJlroIURO1Lwa9aY6LEQXkRWyrMcp8MZ9eG3+LbgNLlzZeGnh3+vVetzW\ndSsyYhaPjj8l+2WNs3VbOxhPUl14jsc2Ryf8yQBWKEFwQ7xxH/QqXeH+kdLZdVS5ReQhI2Tww9HH\nAAD3DRwsHJaSK5vOikvq98IT9+FdWj4gCiGIAr4/8gh+cuoZTAVn0GFrxS0dB/An+34f/+/V/w++\nvP1zuLxhH5NnWE3mBvzezi9Dzanw3eEHMeE/VfYZiPzQQg8hpCg0Kg1sWit8v3FDOC1ksJoIFE7l\nEvlzF+rTSrvQY1NQTUQ1ooWeynMmlKvbare2MJ4EaLe1QctrMOafLMrrzUekuq3GorweKQ4Vr8Il\n9XsQzcQwlE/QKYVIKorTwWl02Fph0ZpL9j5KwnEc7uz5NGxaK3429SvMhOZYj0SKKJAMwaq1MF/O\nXA+HzgYVp4KXHpgx89biEXDgcEn9Hhg1Bnxy681IC2k8cfJp1qMVLEbzCz2U0EOI7DSbG5EWMrKq\nTvzZ6V8hK2Zxa8dHoOJV7/ux3TUD6HN2Y8x/EkdX3mU04cWdrduyUt0WA1S7tXGiKMIbX4Xb4JJt\nash6aVUamDUmWughzB1dGUQoFcbVTZdju0IOLe1vvQYcODx35iXZL9ISAgBPTv4cR1cG0WnrwP93\n9V/ij/Z+FTd3HEC7tVUW91q22NrwlYGDEEUR/zn4QOG+Pqle7H9XEkIqhsvghD8ReN+JrdX4KkSI\nhVO5RP6kqNxzpS0VQyAZgkljhFalKcnrk+Iw0UJPxZkOzgAA2q2tjCcBNLwaW+1bsBRdLiz5bcZ8\nZAEA0EQPAGXn8oYPAQDeXHinZO9xwjcKESJ2uPtL9h5KZNaY8IW+2yGIAh4YeRipbIr1SKQIRFFE\nKBVW3GK0ilfBZXBQ5RYjnpgPp4LT6HJ0FpJVL6nfgy22dhz3nMCIb5zxhDkLlNBDiGw1WXJJmHMR\nedRuzYUXcHj5OFrMjdhTt/MDP85xHG7f9kloeDWeOPk04pkEgykvbsw/iVgmjt21A7J4eFRtepzb\nABQvObaahFJhpIV04VBgpXDobPAngrSQQJgRRREvzb4ODhyubb6C9ThrVmeqxY6afpwJz2IycJr1\nOIRc0Aszr+DF2VdRb6zFfTsOyjb9uNe1Dff034VkNoWvv/tdLEWXWY9EGKIrBUJI0bgNTogQ33eS\nQbppX1NhF3iVzKq1QMOrS1a5FUwGqW5LAXQqLTS8GtFUjPUopEimCwk97Bd6gPeehtx8So9U0UEJ\nPfLTYKpDh7UVo6sT8CdKc9JRSv8ZcPeV5PWVrNe5Dde3XIXlmAdPTv6c9TikCKLpGLJiFjathfUo\n61ZjcCOSjiKWjrMepeq8tXQEQK6OT8JzPO7Y9klw4PDYxE9KXo24FvPRJehVusLSESFEPprzn7Pn\nZbLQ89PTz0KEiI933nTeRZgaows3tt2AYCqMn53+ZZknXBspPWhP7QeXkkjpuQ1OuPVOjPtPyapO\nTgmk+73SocBKYdfbkRbSiGboXhhhYyo0gzPhWQy4+xS3MHeg9VoAwHMzLzOehJDzO7x8HD+e/Bls\nWiu+uute2S7zSPbU7sDdPbchmo7h345/B764fCqzSXnRQg8hpGhceinZ5ewiSGGhx0gJPUrBcRxc\nBtf7fh2LJZFJIJFNKu5UeTXiOA4mjQmRdIT1KKQIRFHEmdAs3AYXzFp59NsXFnqKULs1H1mAhlfT\n8qhMXdawDyJEvLV0tOivnc6mMbI6gVqjG/Wm2qK/fiX4xJab0Giqxyvzb+KEd5T1OGSTgqkQAGVW\nl0rfo0uVAknOTRAFvL10BFqVFjtrtr/vx5otjbim+QqsxL14ceYVRhPmpIUMVmIeNJjqK6a6g5BK\n0mzOJ/SEFxhPApz0n8awbwxd9i3ozSesnM/+tutQa3Tj5bk3MBOWVwVpRshg0DMMu86GDps8Dl1U\nox5nFxLZhOx+f8idt7DQU1nX4A6dHQDgT2w+SZiQjXhp9jUAwHXNVzKeZP06bG3otHVg2DcmmwVg\nQt5rwn8KPxh5FHqVHl/dda9iDpJc0XgJPrX1FgSSQfz78W8jlAqzHokwQAs9hJCiceVPZfjet9CT\n61enh6zK4tY7Ec/EEUsX90RKIJl7CGXXUkKPEpg1JqrcqhCeuBfRTAzt1hbWoxQ0mOpg0Zgxtjqx\nqTjrrJDFYnQZDaZ6qHhVESckxbK3bic0vAaHFt8penT5uH8SqWyK0nkuQKPS4J7+u6DmVPjh6GMI\np2hRU8mC+c9SVq0SF3pyC/7S9QEpj1OBKfgSfuyuGYBerfvAj3+s4yOwaMx4ZvoFrCbYnfZbjq5A\nEAU0Un0mIbJk1Bjh0NkLVbesiKKIn5x6BgDwic6bL7oAqOHVuGPbpyBCxCNjT0IQhXKMuSbjUt1W\nDdVtsUS1WxsjHQKstPu9Dn3ufmUgWZp0WUIuJJAM4phnCI2memxzdLIeZ0MOtOVSep6nlB4iM/OR\nRXxr6HsQAXxl4Itoyi+rK8X+1mvxkbbrsRL34uvHv0vJx1WIrhYIIUXjzm+0vreqyROrzBMblU5a\nzip2Sk8gmTvhYlfgqfJqZNaYkMymkM6mWY9CNmkqOANAPnVbQK7qo9u5FcFUGEuxlQ2/znLMg4yY\nVdyFWDUxqA3YXTsAT9yHU8Hpor72YL5ua4e7v6ivW2mazA34eOdNCKcjeHDssaIvVpHyCeZPYtl0\nCqzcMuauBzyU0FNWh6S6rYa95/xxo8aAT269GWnh/2fvvqPbuu88778vGgECLGDvvalLlKxiFcuW\nJVfZlpO4JOMkTmInmdSZ59mdfXJmd5+ZZ3cy2dmdlJk0p0zsZGLHHnfZli3JKlbvEiWSIin23kCw\nAUR9/mCxFVsSSQG8APh9nZNzcg6Aiy8tErj3dz+/79fNy7U757K0q7SPjI/PlECPEKErKyYdu2tI\n1XBwRW8lDYNNLEtePO2uNmUJxaxKXU7TUAuH2o4HucLpO9N1AYDy1KUqVzK/lVgLUVCokkDPjER+\nhx4J9Ii5d7D1KD6/j83Z68O2Y+WixDLSzKmc6jqn6mYBIT7K5hzgZ+d/i8Pj5IkFj1CaUKR2SbPy\nQMHdbMhYQ+twO7+48G+4vC61SxJzSAI9QoiAuVaHHovejElnVKssMQuTM7A/Gs4KhA8DPdKhJxxM\njmaS2eHhr3GwBQitQA9AqXV87NbN7IZsn2jjK4Ge0LYufRUAR9tPBuyYPr+Pit5KLHozBXG5ATtu\npLo9ewMl1iIqeqs43B46N7PEzEx26AnnkVuTgX8RfGNeF2e7L5BgtFIUX3DN561OK6cgLo9zPRVU\n9l2ewwo/1D48HujJNEugR4hQlWXJAKBVpS49Pr+PN+p3oaDwQMFdM3rtw0XbMWqNvFH/TkiMKfD4\nPJzvHR+3FWrXaPONWR9NTkwWDYNNOD1japcTNnodfWgUDdYIW9+zGicCPWMyckvMLZfXzaH2Y5h1\n0dySukLtcmZNo2jYmnMbPr+PfRPjw4RQ06jbwU/P/4aBMTs7iu7jlrTw/ftSFIVHS3ewMmUZV+yN\n/Ori7/H4PGqXJeaIBHqEEAETHxWHVtHSN5G+9vq89DltU+31RfhIMn48nBUIUyO3jJF1wR+pzPrx\nQM+QS8ZuhbvGwWZ0ipasmAy1S7lK2cSOiMu22Qd6WiXQExaK4gtINCZwpvs8To8zIMdsHmpl0DXE\n4sQFMqZgGjSKhs8veASTzsTLtW/SNdqjdkliFgZd4TtyK8FoRaNoZOTWHDrfc5Exr4vVaeXX/ZzU\nKBoeLXkIBYWXal7HrcKi4GSHnnTp0CNEyMqcDPQMqRPoOdF5ho6RLtamryLNnDqj18ZFxbC98C4c\nHiev1L4VpAqnr7q/FofHQXnKUjmPDQFlCcX4/D7qBurVLiVs9Dr6STBaI27s9WRASTr0iLl2qusc\nI+5R1meuwaA1qF3OTVmVupz4qDgOtR9n1C2bRIV63F43z1Q8S8dIF5uz1rMle5PaJd00jaLh8wsf\nZWFiKZV9l3mu8k8hNVJWBI9cMQghAkajaEgwxk+1Xe13DuDz+6ba64vwMdkytzfAIxHs0qEnrMRM\nBHpG3BLoCWcur5vW4XayYjLRa3Rql3OVBKOVFFMStbZ6vD7vrI7RNiKBnnCgUTSsTV+Jy+fmTHdF\nQI55oWdi3FbywoAcbz6wGuN5vPRhXD43z156YdZ/d0I9kx16wnF8qU6jIyEqXkZuzaHjHePjttak\nld/wuVkxGWzKupVuRy/vNx8Mdmkf0z7cSZwhBsvE+acQIvRMduhpmwjUzyW3183O+vfQaXTcl791\nVsfYlLmOnJhMTnadocZWF+AKZ+ZM9/i4rRUpMm4rFExuNLmZzrHzidPjZMg9PNV9MZLER8WhoNAv\ngR4xh/x+P/tbD6FRNGzKXKd2OTdNp9Fxe/YGXF4XB9uOqV2OmKd8fh/PVf2J2oF6ViQv4VPF28N2\nlN2f02l0PLX4CQri8jjdfZ4/1byG3+9XuywRZBLoEUIEVKIxgWH3CE7P2NTu20i8wIt0k+PTeoPU\noSccx0TMR5MdeoYl0BPWWofb8Pl95MVmq13KJypLKMbpHaNpqGVWr28b6iA+Kg6zPjrAlYlAW5O2\nCgWFox2BGbtV0VuJXqOjLKEkIMebL1amLmN1WjlNQy283bhH7XLEDNnHhtAomrD9zEuOTmLQNSQj\nLeaAzTnAZVsdBXG5pEQnT+s19+dvI0Zv4Z3GvfRPdF2dC6NuB7axATIknCtESEs0WYnSGlQZufVB\n21FsYwPclnnr1EicmdIoGh4rfRgFhRcuv6baiAKPz8OF3ktYo+JD9hptvsmPy8Og0VN9E51j55PJ\ntcKkCFzv1Wq0xBpiGBiTQI+YO3UD9bQNd7AsefGsv+NCzfqMNZh0Rva3HMLldatdjpiHXq17izPd\nFyiMy+cLCx+LuI6IBq2Bry99kkxLOofajvFm/btqlySCLLJ+g4UQqpsMgvQ7bVPdXWTkVviJ0hqI\nMVjodQY60GNHp9Fh1oXnTaj5xmKYCPTIyK2w1mhvBiAvNkflSj5ZaUIxMLvdkMOuEeyuQbLkBmBY\nSDRZKbUWUW9vpGuk+6aO1evoo32kk1JrMVFh3o5aDY+UPESi0cq7je9zZaBR7XLEDNhdg8QaYsJ2\nMSo5SF0gxced6DyDHz9r0lZO+zXRehMPFd2L2+fm5dqdQazuapPjtjLMMm5LiFCmUTRkWjLoGu3B\nPYc35xweJ7ua3seoNbIt7/abOlZubDYbM9fRNdrNHhW6kcHkuC0nK1KWhO33eaTRa3QUxRfQMdLF\nwERnaXFtk+dxSRNrwJHGaoxnYGxQRpiIObOv9TAAt2dtULmSwDHpjGzMXMeQe5jjnafVLkfMM3ub\nD/J+ywekmVP52tIvoNfq1S4pKKL1Jr65/CskmxJ5t+l99jQfULskEURy1SCECKjJi7k+Z/9UO30Z\nuRWekowJ9DttAb2AHRizE2+IjZj2hpHOMrH7Xzr0hLfGwfHON6Ea6CmJL0BBmVWgZ7Ldv+zoDx/r\n0lcBcOwmF3Qu9E6M20qScVuzYdIZ+fzCxwB4tvIFHB6nyhWJ6fD7/QyODRJnCN9Oh5OBHhm7FVx+\nv5/jnafRaXSUpyyb0WtXp5VTEJfHuZ4KqvpqglTh1TomAz0WCfQIEeqyLOn4/D46Rrrm7D33Nh9g\nxD3K1tzbAjKWb3vBXcQYLOxq3BPwrsTTMTluq1zGbYWU0omxW5f71R3HFg4mN/9FYoceAGtUHF6/\nlyHXsNqliHmgz9HPhZ5L5MRkUhCXq3Y5AbU5az06Rcve5gMSkBNz5lTXOV6p20mcIZZvLPsS0WHa\n3Xi6Yg0xfGv5U8RHxfFq3VscaT+hdkkiSCTQI4QIqETjh6OaPhy5JR16wlGiKQGf34fNGZjdSV7f\n+MVwvDEuIMcTwWfRWwAYkUBPWGscbMaiN4fs7rlofTQ5sVk0DDbjnGGooG1kPNAjHXrCx9LkxZh0\nJo53nMLr8876OBd6LgGwWAI9s1YUn8+23Nvpc/bzHzVvqF2OmIZRjwOP3xvWo0uTo8evCyavE0Rw\nNA620DXaw7KkRUTrTTN6rUbR8GjJQygovFj7Gu45GEnTPiwdeoQIF1mWDABaJ4L1wTboGmJvywfE\nGCzcnr0xIMeM1pv4VNF23D4PL9W8ht/vD8hxp8N91bit0NxwMV8tmBjjK2O3bmxqA2ekBnomRh7Z\nZOyWmAMH2o7gx8/mrA0RtwE2LiqWNekr6XH0cX5iDUeIYKqx1fH7yj9h1Br5xvIvk2C0ql3SnEg0\nJfDN5V/BrI/mj9Uvc7a7Qu2SRBBIoEcIEVBTHXoc/fSM9hGtM2GO8BRspJrcadPnDMwO6kHXEH78\nxEdJoCdcmCd2Pw5JoCdsDbqG6HPayIvNDumFgTJrMT6/j7qBhhm9rm1o/EZCpgR6woZBq2dV6nLs\nriGq+mfX+WHEPcoVeyN5sTnERcUEuML55d78O8mJyeRY56mp3eIidNnHBgGIDePf+6kOPaPSoSeY\nJtvar0mf/ritj8qKyWBT1q10j/by/hyMpGkb7kRBIc2cGvT3EkLcnMyY8fPu1uH2OXm/XY17cXld\n3Jt3Z0DHrK5KXU6ptYiLfdWc7527m4zV/TU4PE7KU5aG9PXZfJRhTiNGb+Fyf+2chrzCUe/EeVxi\nhN4otU6sWwZqg6MQ1zLmdXGk/SQxBgvlqTPrqhkutmRvQkFhd9N++WwVQdU23MEvLzyHH3h6yefn\n3VpxujmVbyz7Mgatnt9d+uOs11xF6JJAjxAioCY79PQ4+uh19El3njCW9JFuS4EwOYc8nHeVzzeT\nI7dGXBLoCVeN9mYgdMdtTSqbaG8+092QbSMd6DU6+a4JM5Njt452nJrV6y/1VePz+2TcVgDoNDq+\nsPBx9Bo9z1e/PPVdLUKT3TUe6IkP45FbicYEFBTp0BNEbp+H013niDXEUGYtnvVx7s/fRozewjuN\ne+l32gJY4dX8fj/tI50kRydi0OqD9j5CiMDIMKehoNA2B4GeXkcfh9qOk2RKZH3GmoAeW1EUHi15\nCJ2i5aWa13F6xgJ6/GuZDFCvkHFbIUdRFEoTirC7huZ0pFw46nX0EaO3YNQZ1S4lKOKlQ4+YIyc6\nT+PwONiYsRa9Rqd2OUGRak5hafIimoZaqBuoV7scEaFszgF+dv63OL1OPr/gkakxmvNNbmw2X1v6\nRVAUnql4jgZ7k9oliQCSQI8QIqDM+miitAbq7Y14/F6SoyOz/ep8MNltKXCBnombUNKhJ2xoNVpM\nOhPD0qEnbDUOtgChH+jJj81Fr9Fzub9u2q/x+rx0jHSRbk5Dq9EGsToRaDkxWWSY06jorWR4FoHB\nyXFbSyTQExBp5hQ+VXw/ox4Hv698UWbbh7BI6NCj1+qJj4qbGtUgAq+it5JRj4Nb0lbc1PdjtN7E\nQ0X34va5ebl2ZwArvNrAmB2Hx0GGeX7toBQiXBm0BlKik2kb7gj6Tvud9e/h9XvZnr8tKOf7qeYU\n7szdzMCYnbcbdgf8+H/O7fNwoadyYtxWdtDfT8xcmYzduiGvz0v/2MBUV+9IZI2aCPQ4JdAjgsfv\n97O/5TBaRcuGzHVqlxNUW3NuA+C95v3qFiIi0qh7lJ+e/w0DY3Z2FN3HqrQVapekqhJrEV9a9Dk8\nPg8/O/9b2uZoTK4IPgn0CCECSlEUkkyJjHocQOTOU54PJi/OewN0w2Vy178EesKLRR8tgZ4w1jg4\n3qEnN8QXjPVaPUXx+bSPdGIfG5rWa7pGe/D4PPOuhWokUBSFdemr8Pq9nOw6O6PXun0eKvsvk2RK\nJF1GswTMhoy1LE4so9pWy/7Ww2qXI65hcOLzMS6MO/QAJEcnMTBmx+V1q11KRDreMT5ua23aqps+\n1uq0cgricjnXU0FVX3BadrePdAKQYUkLyvGFEIGXZUnH4XEGtXtX61A7p7rOkW3JCOoYkrty7yDJ\nmMC+1kNBv+FR3V+D0+ukPFXGbYWqMutE59h+CfRci21sAJ/fF9mBHuPEyC3pXiqCqLq/ls7RbspT\nlkX8KPH8uFwK4/Kp7Lss4QIRUG6vm19WPEvHSBe3Z21gS/YmtUsKCcuSF/EXZZ9h1OPgX8/9OmD3\n94S6JNAjhAi4ybFbgIxBCWNxUbFoFS29zsCO3IqXkVthxaI3M+wekTnHYcjn99E02EpqdArRepPa\n5dxQWcL4WJDL09wN2T6xCCCBnvB0Sy1RoaAAACAASURBVFo5GkXD0Y6TM/p8qbFdYczrYmnSQrkR\nEkCKovC5BZ/Bojfz+pV3ZDdqiBqYGLkV7uNLkwMcGhcfGnQNUdl/mZyYzIAEZDSKhkdKdqCg8GLt\na7h9ngBUebX24fFAT6ZZAj1ChIssSwYArUEcu/VG/S78+Hmg8B40SvCWrw1aPY+UPoTP7+OFy68E\ntVPh6a7xcVvlMm4rZFmN8aRGp1A7UI8nCN954a5tuINX694CPuzqHYliDTFoFA0Dck0kgmh/6yEA\nbs9er3Ilc2Nr7niXnj3NB1SuREzy+DzU2Op4re5tvn/iR/z9sf/N0faTeH1etUubFp/fx7NVf6Ju\noIEVKUt5uPh+WSf8iDXpK/l08QMMuob4ydlfTd2bE+FLAj1CiIBLNFmn/r+M3ApfGkVDotFKX8BG\nbkmHnnBkMZjx+X04vU61SxEz1DXag9PrDJt27qXWiUDPNMdutUqgJ6zFGCwsTVpI23AHLcNt035d\nRW8lAEtl3FbAxRpieKjwXjw+D7sa96pdjvgEg2ORFeiRsVuBd6rzLD6/jzUB6M4zKTsmg01Zt9I9\n2sv7zQcDdtxJkx160qVDjxBhIzNmMtATnF32tbZ6LvVVUxxfwIKJEUjBtCixjOXJS6i3N3Gs41RQ\n3sPtdVPRe4kEo5XcmPC4PpuvyhKKcXldNNib1S4lJPj9fmptV/jZ+d/yDyd+yLmei6SbU1mfsVrt\n0oJGo2iIj4qTDj0iaLpHe7jYV01+bG7Id9QOlEWJZaSbUznVdS6oHf7E9XWP9nKg9Qi/uPBv/KcP\n/l9+fPYZdjfvp3O0mz5nP3+ofmnqsz6UN/f6/X5eqd3J2e4LFMXn84UFjwY1AB6ubs/ewL15d9Ln\n7Oen537DiHtU7ZLETdCpXYAQIvJ8tENPJLdgnQ8STQl099fg9Dgx6ow3dSz72CAKStiPiZhvzHoz\nAEOuEUy60O/yIj40uQCZF5ujciXTk2lJw6I3U22rxe/333BXRduIBHrC3dr0VZzrucjR9lPklGbd\n8Pl+v5+K3krMumgK4vKCX+A8tDqtnN3N+znScZKtuZvlPC7E2F2DaBQNlonv5nCVHD3ewbPH0aty\nJZHnWOdptIqWVanLA3rc+/O3cabrPLsa93JL2goSjNYbv2ia2oc70Wv0MqpZiDCSNXH+3TYU+A49\nfr+f16+8A8CDhffO2U7rTxdvp6r/Mq/Vvc3SpEVYDIH9rq3qr8HpHWND5lrZPR7iFiQUc6D1MNW2\nWoqtBWqXoxqf38eF3kp2N+2fGuVdGJfH1tzNLEosi/gbp9aoeOrtjXh9XrQardrliAizv/UIMH+6\n88B4UO7OnNv4fdWL7Gs5xKeKt6td0rzg9DipsV2hqr+Gyv6aq7rkpkYnszChlAWJJRTHFzDiHuXt\nhj0c7TjJryqeIzc2m4cK76FkYhxlKNnbcpB9rYdIM6fy1SVfQK/Vq11SyLo3fyujHgf7Ww/zs/O/\n5VvLn8Koi1K7LDELEugRQgTcZNvVKK2BGL1F5WrEzZi8kdfntN30TfOBMTsWg1kuhMPM5E3DEfcI\nICP0wsnkolteXHjs9tEoGkqtRZzuPk/XaA9p5pTrPr9tqIP4qDjM+ug5qlAE2sKEUmINMZzsOsvD\nRffd8AK8ZaiNgTE7q9PK5bskSLQaLfflb+W3l/7I2w17+PzCR9UuSXyEfWxoagRAOJMOPcHRMtRO\n23AHy4JwIzpab+Khonv5fdWLvFy7k6eWPBGQ43p9XjpHu8kwp4b977UQ80msIYYYvSUoHXou9FbS\nMNjEsuTF5MfN3cYEqzGe+/O38XLdTl678jZ/seAzAT3+mW4ZtxUuiuIL0Cgaqvtr2V5wl9rlzDm3\nz8PJzjPsaT5A12gPAEuSFrItd/O82lRhNcbht/sZGBu8qhO9EDfL4XFyrOMk8VFxLE9eonY5c2pV\n6nLerH+XQ+3HuSdvC9GynhdwPr+PtuFOqvouU9l/mXp7E17/+Agto9bIsuTFLEwoYUFC6cc+2wxa\nA59b8Gm25GxiZ/27nO2p4Mdnn2FBQgkPFNxNTuyNN+LNhVNd53i17i3io+L45rIvy+/RDSiKwqeK\ntzPqcXCi8wy/qniOry17Er1G4iHhRv7FhBABN9mhJ9mUJDuPwtxkOKvX0XdTgR6/38/AmJ00c2qg\nShNzZDLQM+weUbkSMVONg83oNToyzeHTwaY0YTzQU22rvW6gZ9g1gt01yOLEsjmsTgSaVqNlTdpK\ndjfv50LvJVbeoKPEhd5LACxNWjQX5c1bK1KWktm0jxOdZ9iWu1m+u0OE3+/H7hokwxz+Y4kmA+O9\noxLoCaTjneNjYtakrwzK8VenlXO4/Tjneiqo6qthQeLNj8HpcfTi8XnICKNzFSHE+I2BTEs61bZa\nHB5HwDq5+vw+3qjfhYLCAyoEKW7LWs+xztMc7TjJuvRbKIzPC8hxx8dtVZJotJITExo3w8S1mXRG\n8mJzaLA3Mep2EK2fH52KHR4nh9qOsa/lEHbXIFpFy9r0VWzNuW1eXg9Yo+IBsI0NSKBHBNSxjlOM\neV1sy71j3m1U0ml03J69gVfr3uJg21HuztuidkkRYcg1TFV/zdT/hlzDACgoZMdkjgd4EkvJj82Z\n1u9cmjmFryx5gqbBFt64smvquOUpS7m/4C5So5OD/SNd0+X+Op6r/BNGrZG/XPYlrMZ41WoJJxpF\nw1+UfQaHx0lFbyW/u/RHvrToc/PuMyjcyRYoIUTAJZsSiTPEUBSfr3Yp4iYlGScDPf03dZxRjwO3\nz0N8lIzbCjdTgR6XBHrCyZjXRftwJzkxWWF1cl5mLQbGL9Cup21iN3CGjNsKe2vTVwFwtOPUDZ97\nobcSnaJlQUJxsMua1zSKhvvzt+HHz86G3WqXIyY4PA48Pg9xEXAuFaU1EGeIlZFbAeT1eTnZeRaz\nPppFQQq7ahQNj5TsQEHhxdrXcPs8N33MtuFOADIs4R9UE2K+yYrJAD78Ow6E451n6BzpYm36KlUC\nBFqNlsdKHwbghcuv4PV5A3LcyolxW+Upy2TTW5goSyjGj5+agStqlxJ09rFBXqt7m789/A+8duVt\nnF4nW7I38Xfr/oYnFjwyL8M8wNRN4gHngMqViEji8/vY33oYnUbHhow1apejivUZazDpjOxvOYzL\n61a7nLDk9XmptdXzxpVd/ODkj/l/Dv1/PFv5Aic6zwCwJm0lX1z4ON/f8F/5m1u+zfbCuymKz5/x\n+nBubDbfWvEU31r+FLkx2ZzpvsD/OP5/+GP1ywyM2YPxo11X23AHz1Q8B8BXl37+pqdJzDdajZYv\nL/ocxfEFnOu5yPOXX8Hv96tdlpgB6dAjhAg4vVbP3637L2F1E1l8ssTJHdQ3GeiZPMmLj5LUdLiZ\nHNkgHXrCS/NgK3785MXOXZv6QEg0JZBkSqTGduW6s+rbRsYDPVly8Rb20swpFMTlUt1fi805cM3d\nNX2OftqGO1iYWIpRZ5zjKuefJUkLyY3N5mz3BVqG2siOyVS7pHlvYGwQgDhDjMqVBEZydCJXBhpx\n+zzS6jkAKvsvM+we4bas9eiC+N8zOyaDTVnrONB6hPebD3JX3h03dbyOkYlATwR0nhJivpm8idI6\n1B6QzVxur5u36t9Dp9FxX/7Wmz7ebBXE5bI+YzWH20+wr/UQd+bcdtPHPNN9HpBxW+GkzFrM2w27\nqe6vZXnyYrXLCYru0R72NB/geMdpPH4vMXoLW3PvZlPmWhlfAlij4gCwqXDTWkSuS33V9Dr6WJd+\nS8BH5IYLk87Ixsx1vNe0j+Odp9mYuVbtksJCr6Ofqv7LVPXVcNlWh9M7BoBW0VIcX8CCxBIWJpSS\naUkPeHi4LKGYUmsR53ou8mb9Lg63H+dE52k2Z21ga+5mzHPwndHvtPHTc7/B6XXy5KLPUmItCvp7\nRiK9Vs9Xl36Rn5z9JUc7ThIXFTsvx4uGK1k5E0IEhV6rV7sEEQBJE21l+5w3G+gZvwklHXrCz2SH\nnhH3qMqViJloHGwGIC8uvAI9MH6heKjtGM1DreTH5X7ic9qGxgM9shsjMqxNX0W9vYljHae5J/+T\nWy5X9FYBsDRp4VyWNm8pisL2grv413O/Zmf9e3x92ZNqlzTvDbqGACKiQw+Mj+atG2ig39FP6nVG\nLIrpOdZxGoC1acEZt/VR9+ffxemu8+xq3MstaStIMM5+DEW7dOgRImxlWSY79LQH5HgftB3FNjbA\nluxNqo9PeLDwXs73XOKtht2sTFl2U/W4psZtJUhAOozkxWZj1EZxub9W7VICrmmwhfea9nO+5yJ+\n/CSZErkzZxNr0lZhkLXcKZN/97Yx6dAjAmd/y2EAbs/eoHIl6tqctYH3mw+yt/kA6zNWo1FkkMyf\nG/O6qLVdobK/hqr+y3SPftjdNsmUyOqElSxMLKE4vhCjLiro9SiKwoqUJSxNWsjxztO81bCb3c37\nOdR+jK05m9mcvYEorSEo7z3qHuWn53+L3TXIjqL7WJW6PCjvM1+YdEa+sewr/PjsL6mx1QES6AkX\nEugRQghxTSadCbMu+qY79NgndrTETexwEeHDPBHoGXIPq1yJmImpQE9stsqVzFyZdTzQU91fd+1A\nz0gHeo2OZFPSHFcngqE8ZRn/UfMGxzpOclfe7Z+4mHOh9xIw3jlGzI0yazFF8flc7Kuiwd50zb9H\nMTfsUx16IiXQM94FssfRJ4GemzTiHuVibyXp5tQ5uVkcrTexo+g+fl/1Ii/X7uSpJU/M+lhtI52Y\n9dHERkjnKSHmk9ToZHQaHa0BCPQ4PE52Nb2PUWtkW97tAaju5pj10TxUdB9/qHqRl2rf4Okln5/1\nsar6LzPmdbEpc6mM2wojWo2WYmshFb2V9DlsJJpmH14NBX6/n8r+GnY37aN2oB6AnJhMtubezvLk\nxXIz/RNYJzqM25zSoUcERsdIF9W2WorjC+b95rS4qBjWpK/kcPsJzvdcYkXKErVLCgm9jj6OVh/j\nZPMFrgw04PGPj/40aA0sSVrAwoRSFiSUkhydqFqNWo2WWzNWsyp1BQfbjvBe4z7eqN/F/tbD3JN3\nJ+szVgd0aofb6+YXF56lc6SL27M3sCV7U8COPZ9ZDGb+yy3fwY+M3AonEugRQghxXYmmBNpHOvH5\nfbO+yP9w5FZk3ISaTz7s0CMjt8JJ42ALsYaYqUWocFJiLURBodpW84ndWrw+Lx0jXWSYU2W0Y4Qw\n6YysSFnK8c7TXBlooNhaeNXjo24HtQP15MRkES/B0Dkz3qXnbn545ue8Wf8u317xtNolzWt213ig\nJzYqMoIPydHjgcweR5/KlYS/013n8Pi9rElbOWc3i1enlXO4/Tjneiqo6qthQWLJjI8x5nXR5+in\nKD5fbnILEYa0Gi0Z5lTaR7quOyp3OvY2H2DEPcr2grumrj/VtjZtJUfbT3K+5yIVvZWzDpWf6b4A\nQHmqjNsKN2XWYip6K6m21bDetEbtcmbF6/NypvsCu5v30zY83uW2zFrM1tzNlFqL5Pv3Osz6aPQa\nnXToUZHX56VpqIWmwVZWpCwJ+7WA/S2HANg8z7vzTNqSvYkj7SfZ3bSf5cmL5/Xnkd/v50DrEV69\n8hYenwcY74S4IKGEhYmlFMTlBnWs8mwYtHruzLmN9Rmr2dN8kPebD/KnmlfZ23KQ7fnbKE9ddtNh\nUZ/fx7OVL3DF3sCKlKU8XHT/vP49CTRZUw8/ofUpIIQQIuQkmRJoHmpl0DU064unDwM94X3xNR+Z\ndEY0ioZhl4zcChcDY3YGxuwsS1oUlhc6Zn002TGZNNibcXrGPtY6ttvRi8fnIXOizb+IDOvSV3G8\n8zRHO059LNBT2VeNz+9jadIilaqbv4ri81mQUEJVfw01tjqZU66iqQ49ERKO/rBDT+8Nnilu5Fjn\naRQUVqeVz9l7ahQNj5Ts4Acnf8yLta/xPetfo5/hInPHSCd+/GTM8x3KQoSzTEsGzUNtdDt6STen\nzuoYg64h9rZ8QIzBwu3ZGwNc4ewpisJjpTv4/skf8VLN65RaizDMcJSEy+vmQm8lScYEsi0ybivc\nlCUUA3C5v471GeEV6HF5XRzpOMn7zQfpc9pQUFiZsow7c28jJyZL7fLCgqIoWKPisTkl0DNXfH4f\nrcPt1NiucNlWR91AAy6vC4CTnWf5v1b+ZdjegB5xj3K88wyJRquMEZ+Qak5hafIizvdcpHagnpI/\nWweaL4Zcw/yh6iUu9lVh1kfzpfJHyYsqIC5MNvKYdCa2F9zFbVm3sqtxL4fajvNvlc/zXvN+Hiy8\nh4UJpbNam/b7/bxc+yZneyoois/nCwselW5yYt6TQI8QQojrSpq44dLr6L+JQM/4TSjp0BN+FEXB\nojczLCO3wkajfXLcVo7KlcxeWUIxzUOtXLE3sCix7KrH2obG2/rP9xbFkaYovoAkUyJnuy/wmZIH\nMemMU49d6K0EYGmyLHypYXvBXVT11/Bm/bv8dXlhWAYFI4HdNQREzsityfPLnlHp0HMzOke6aRps\nYWFC6ZyHvbJjMtiUtY4DrUfY1/zBjMfktA93AZBpTgtGeUKIOTB5Pt461D7rQM+uxr24vC52FN5L\n1AwDM8GWYUljS/Ymdjfv553GvTxYeM+MXl/ZfxmX10V51jI5fwpDqdHJxEfFcdlWd1Mdq+fSsHuE\ng61HONB6hGH3CHqNjk2Z69iSs2nq3EtMX7wxnm5bL26vG71Wr3Y5Ecfv99M52s1lWx01tivU2q4w\n6nFMPZ4anUyJtQibc4CLfVW83bCb7YV3q1jx7B1pP4Hb52ZT1q1h8VkyV7bm3Mb5novsbt4/LwM9\n1f21PFf5AnbXEKXWIj6/8FGKs7Lo6RlSu7QZizXE8EjJQ9yRvZGd9bs51XWWn53/LUXx+TxYeA8F\ncXkzOt7eloPsbz1MujmVry75gnwGC4EEeoQQQtxAkjEBGJ/jWhSfP6tjDIzZidIaMGqNN36yCDkW\nvRnbmMwNDxcNgxOBnrhslSuZvVJrEe817aO6v/bjgZ6RTkACPZFGURTWpq1iZ8O7nOk+P7UL1uPz\ncKnvMolGKxly01cVubHZLEtaxPneS1zqq2Zx0gK1S5qX7GODKCjEGCxqlxIQJp2RGL1FOvTcpOOd\npwFYk75Slfe/P/8uTned553GPaxKW06C0Trt17aPjI/+SLfIZ7sQ4SpromNm23AHt7Bixq/vdfRx\nqO04SabEkO2Ack/+nZzqOsfe5oOsSSsnbQbBpTNd5wEoT5FxW+FIURTKrMUc6zxF63B7SHe26XPY\neL/lIEfaT+DyuYnWmbg7bwubs9ZHzLmjGqwTmxptY3ZSJsbFitnz+/30OvqpGaib6sIz5Ppw82CC\n0cqy5MWUWAspsRZObSp1eJx8/8SPeLdpHwsSS2e9Nq0Wr8/LgdYjGDR6bk2/Re1yQkp+XC6FcflU\n9l2mbbhj3qzzeXwe3qx/lz3NB9AoGh4qvJctOZsiIuyVZErki4seY2vubbxxZRcX+6r4P6d/xpKk\nhTxQcDcZ07j2O9V5llfr3iI+Ko5vLPsy0froOahciNAngR4hhBDXlWiaDPT0z/oY9rFB4qPiZFda\nmLLozbSPdOL1ecO2ve180jjYjIIS0guON1IYl4deo+Oyre5jj7UOS4eeSLU2fSVvNbzH0fZTUzd1\nagfqcXqdrE1fKd8hKrqvYBsXeivZWf8uixLL5N9CBYNjg8QaLBGxyDcpOTqRxsEWOb+YJZ/fx4nO\nM5h0RtVGEkbrTewouo/fV73Iy7U7eWrJE9N+bfvweEA3Y5ZdPYQQ6pvq0DNxfj5TO+vfw+v3sj1/\nW8h+D0RpDXym5EGeqXiWFy6/yndWfHVa50Eur5uKviqSTYlTwScRfsoSxgM9l/vrQvL6um24g91N\nBzjdfQ6f30d8VBzbszdya8aaj42uFjOXYIwHwOYckEDPLA2M2bnc/2GAxzb24QizWEMMq1KXU2ot\nosRaRNLE+vOfM+mMfGHhY/zwzM95tvIFvrf6u5h0prn6EW7ahd5KbGMDbMxcJ8GET7AtdzM/v9DA\nnuYDfGHhY2qXE3Tdoz3826XnaR5qJdmUyJOLPktubPhuyLyWTEs6X1/2JFcGGnn9yttU9FZysbeK\n1Wnl3Je/dep+05+73F/Hc1UvYtQa+ctlX8I68TkshJBAjxBCiBuYvKDqc84u0OP2uhl2j5AhN9/D\nltlgBmDEM0qsITxm+M5XXp+X5sFW0s2pGHXh2xFLr9VTGJdPta2WQdfQVb93bUMdxEfFYZaFkIhj\nNcZTllBMVX8NnSPdpJlTqJgct6XSzWoxLtOSzsrUZZzqOse5nousSFmidknzit/vx+4aIt2conYp\nAZVhSafe3sQrdTv5dPEDEhSbocu2OgbG7KzPWI1BxRbkq9PKOdx+nHM9FVT11bAgsWRar2sf7iTR\naA3r8xUh5rtovYlEo3VWgZ7WoXZOdZ0j25JBeeqyIFQXOMuSF7EkaSEVvZWc6Dwzra5olX3VuLwu\nVqQsle+3MFaaUASMj0XZmrtZ3WI+on24k9euvM2lvmoA0s2pbM3ZzMrUZeg0crsnUKxRE4Gej4RQ\nxPUNuYapHaifGKNVR/foh904zbpolicvocRaSKm1kNTolGl/PhbG53F33h2807iXF2teD6vgx/7W\nQwBszrpV5UpC08LEUtLNqZzqOsf2grtm1PEznPj9fo53nuZPNa/h8rpYk7aSR0oejPhrocL4PP6q\n/Otc6qvmjfpdHO88zamuc2zMXMvdeVuu6iLXNtzBMxXPoQBfXfp52cgpxJ+RMzwhhBDXZY2KR6No\nZt2hx+4aBCA+KjaQZYk5ZNGPB3qGXSMS6AlxHSNduHxu8mJz1C7lppUlFFNtq6Wmv45VaeMt/Idd\nI9hdgyz+szFcInKsS19FVX8NxzpO8WDhPVzoqcSkM4VdW+1IdG/+Vs50X2Bnw3ssS14UUZ1iQp3D\n48TtcxNriKxzqe35d3FloIH9rYcxaA08UHC33PScgeMdE+O20lapWodG0fBIyQ5+cPLHvFj7Gt+z\n/jX6G9xMHHINM+QeZkmcjPATItxlWjK40HsJ+9gQcVHTv1Z8o34Xfvw8UHhPWJxTfKb4QS731/JK\n3U6WJC24YZeFM90XAChPCe2wkri+WEMMmZZ06uwNuLxuVQO0MH5D+FD7MV6ufRO3z0NhXB5bczez\nKLEsLP6Owk38VIceGUF/LQ6Pg7qBhokAzxXahjumHovSGlicWEbJRAeeTEvaTf2e3pN3J5X9NZzo\nPMPixDJWpi4PxI8QVC1D7dQNNLAgoWRGIxvnE42i4c6c2/h91Yu83/IBny5+QO2SAs7hcfB89Suc\n7j6PUWvkyYWPT61zzgeKorA4aQELE0s53XWenfXvsr/1MEc6TrIlexNbcjbh8Dj46bnf4PQ6eXLR\nZymxFqldthAhRwI9Qgghrkur0WKNiqfP0Ter1w+MTQZ64gJZlphDU4Ee94jKlYgbaRxsBiAvLvzb\ntZYmFMEVqLZ9GOiZXBySjl+Ra2nSIqJ1Jo53nmZFyhJsYwOsSl0esmMY5pPU6GTWpK3kaMdJTnWd\nY3VaudolzRuDE+HouAgLR1sMZr61/Gl+dObnvNe0D4PGwD35W9QuKyw4PE7O9Vwk2ZRIQVyu2uWQ\nHZPBpqx1HGg9wr7mD9iWd/t1nz/1fW6W73Mhwl2WJZ0LvZdoG24nLqp0Wq+ptdVzqa+a4vgCFiRM\nr6uX2hJNVu7Jv5PXr7zD6/W7eLz04Ws+1+V1UdFbSYopiSy5bgl7ZdZi2oY7qLc3UpZQrFodI+5R\n/lj9H5zruYhZF82Tiz7LsuTFqtUzH1gn1jGlQ8+Hxrwu6gcapwI8zUOt+PEDoNfopsZnlVoLyYnJ\nCuh1vFaj5YsLH+P7J3/M85dfpSAuL+TH8XzYnWe9ypWEtlWpy3mz/l0Ot5/gnrw7I6ojd729id9d\n+iN9Thv5sTl8cdFnrzleLtJpFA23pK1gRcoSjrSf4O3GPbzTuIeDbUcwaY3YXYM8XHQ/q8IgrCeE\nGiTQI4QQ4oaSTAlcttXh8rowaA0zeu3A2PhOFgn0hC8J9ISPhslATwR06MmyZGDWRVPdX4vf70dR\nFNpGOiYek4XxSKXX6lmVuoKDbUd4qeZ1QMZthZJ78rZwovMMbzXsZmXKMglazZHJcHRcBHbJi4uK\n4dsrnuafz/ycnQ3vYtDq2ZKzSe2yQt7Z7grcPjdr0laGTFej+/Pv4nTXed5p3MOqtOXXbZffMdIF\nQIYlba7KE0IESWZMBgCtw+0sTLxxoMfv9/P6lXcAeLDw3pD5DJuOO7I3crzzDIfbjrMufdU1r7ku\n9lXj8rll3FaEKE0oZm/LQar7a1UL9NQNNPC7S89jGxugOL6ALyx8LOSDDJFg8r/xfA/0jLpH2d96\nmOr+OhoHm/H6vcD4zfmCuNypAE9ebA76IHexSolO5tPF2/lj9cs8W/kC317xdMh2pxpyDXOq6xwp\npqRpfT/OZzqNjtuzN/Bq3Vt80HaUu/PCf5OHz+/j3cZ9vN24G7/fz915W7g3705ZQ2H833tT1q2s\nSV/FvpYP2N10gF53P3dkb5S1ACGuIzS/7YQQQoSUyeR4n9M249d+GOiJrF3l84llYmfEsEsCPaGu\ncbCFKK2B9Aho5atRNJQkFGEbG6DbMT53vW1oPNAjc5Qj27qM8fExDYPNaBWtLH6FkERTAusz1tDr\n6ONYxym1y5k3Bl1DQOR16JlkNcbznRVPE2eI5ZW6nXzQdlTtkkLe8c7xv79Q6pQVrTfxUNF9uHxu\nXqnded3ntk916JFAjxDhLssyHuj56JiV67nQW0nDYBPLkheTHxdemxB0Gh2PlezAj58Xql/B6/N+\n4vPOTo3bWjqX5YkgKY7PR6doqbbVzvl7+/w+3m7YzY/O/IKBMTv352/j2yueljDPHDHpjBi1Rgbm\n8citIdcwPzzzC95q2E29vZFMJLiXWwAAIABJREFUSzpbczbzjWVf5p82/h1/vfIvub9gG8XWwqCH\neSbdmr6aZUmLqB2oZ2/zwTl5z9k41HYcj8/DbVnrQzZ0FErWZ6zBpDOyv+UwLq9b7XJuis05wI/P\n/pKdDe8Sa4jhOyueZnvBXRLm+TNRWgN3523h7279G7657CvsKLpP7ZKECGnyTSKEEOKGEo3jgZ7e\nWYzdssvIrbBnNox36BmRDj0hzeFx0jXSTU5MVsQsFpRNzEy+3D++eNo20oFeoyPZlKRmWSLIsi2Z\nU6GtEmshJp1R5YrER92Vdzt6jY63G/fgDvOFtnAxeS4VqYEegCRTIt9e8TQWvZkXLr8qgbHr6HX0\nUzfQQHF8AYkh1q59TVo5BXG5nO2poKqv5prPaxvpRKtoSY1OnsPqhBDBkGi0YtQaaR1qv+FzfX4f\nb9TvQkHhgYK75qC6wCu2FrAmbSUtw+0c/IQA6pjXxcXeKlKik2QTQoQwaA0UxOXROtQ+p5ucJm8I\nv9Wwm/ioOL5b/jXuyb8zYq71w4XVGDdvO/QMjNn54Zlf0D7SycbMdfyvjf+dv7nl2zxUdC8LE0sx\n6qJUqUtRFD5b9mliDTG8Wf8uLUNtqtRxPV6flw/ajmDUGlmbvlLtcsKCSWdkY+Y6htzDHO88rXY5\ns3auu4J/OPFD6gYaWJa8mO+t/iuKrYVqlxXSLHozCxJL5PtNiBuQvxAhhBA3NNWhxzH7Dj2RfBMq\n0ln0FkBGboW6psEW/PjJj8tVu5SAmWxpXm2rw+vz0jHSRbo5VXa1RDhFUbg1YzUAy5IXq1yN+HPx\nUXFsyrqVgTE7h9qPq13OvGB3TY7ciuxzqTRzCt9e8TTROhN/qHqJ013n1S4pJE0ucK9JX6VyJR+n\nUTQ8UrIDBYUXa1/D7fN87Dk+v4+OkS5So5Pl+1yICKAoCpmWdLpGe264o/545xk6R7pYm76KtDDu\nKLqj6D6idSZ21r87td4x6dLEuK3yZBm3FUlKE4rx4+fyHHXpOd9zke+f+BF1Aw0sT17C91Z/l6L4\n/Dl5b3E1a1Q8Do8Tp8epdilzqt9p40dnfkHXaDdbsjfxaMlDRE907w4FFoOZJxY8gtfv5XeXnsfl\ndald0lXOdl/A7hpiXcYqjLJBado2Z21Ap2jZ23wAn9+ndjkz4vK6+GP1y/zq4u9x+zw8XvowTy1+\nAnMI/d0IIcKbBHqEEELcUJIpEYBe58w79AyM2dEoGmINMYEuS8yRqZFbEugJaY2DLQDkxWarXEng\nJJkSSTQmUGOro3O0G4/PQ+ZEW38R2TZlruOby77C+olgjwgt23JuJ0pr4N2m9xkLscXTSDTZoSc2\nKvLPpTIt6Xxz+VeI0hr4XeXzVPRWql1SSPH7/ZzoOI1Bo2dFiAYes2My2JS1ju7RXvY1f/Cxx/sc\nNlxeFxkWGbclRKTIiknHj5+Okc5rPsftdfNW/XvoNDruy986h9UFXozBwoOF9+D0jvFy7ZtXPXZm\nctxW6jI1ShNBsmByo0l/XVDfx+V186fLr/JMxXO4fC4eL32Yryz+i5AKUsw3VuN4t3Hb2PwZu9Xr\n6OdHZ35Bj6OPu3PvYEfRfSEZUFyYWMrmrPV0jnbzat3bapdzlX2th1FQuC1zvdqlhJW4qBjWpK+k\nx9HHD8/8nP0thz8WnA1FrUPt/OPJn3C4/TiZlnT+5pZvsyFzbUj+3QghwpcEeoQQQtzQZDv/Xkf/\njF87MDZIrCFG2iaGMYt+fOTWXLaXFjPXONgEQF5sjsqVBFZZQjEOj5OjHScBpHX9PKFRNNJyN4RZ\nDGbuyN7IkGuYA62H1S4n4tnHhlBQiJnomBfpcmOz+fqyL6FTtPy64vdU9V97dNN8c8XeSK+zn+Up\nS0J6t+/9+Xdh0Zt5p3EP/c6rO3y2j3QAkGmW73MhIkXWROC+dfjaY7c+aDuKbWyA2zJvxWqMn6vS\ngubWjNXkx+ZwpvvC1IjByXFbqdHJZJgltBhJsmMyidaZqLbV4vf7g/IeHSNd/NOpf+Fg21EyzGn8\n51VyQzgUWKPGP69szvkxdqtrtIcfnvk5fU4b9+ffxfbCu0P6d/DBwntJN6dysO0IF3ur1C4HgAZ7\nM42DzSxOKiM5OlHtcsLOvflbKY4voMHezEu1r/O3h/+B/3P6Z+xrORRyf4d+v599LYf4p1P/Qtdo\nN5uz1vOfVn6T9DDuQiiECF2yQi6EEOKGzLpojFojfTMM9Pj8Puxjg8RHxQWpMjEX9Fo9UVoDI9Kh\nJ2T5/X4a7S1Yo+Ijbrzd5NitI+0nAAn0CBEq7sjehElnYnfTfhweh9rlRDS7a5AYg2VejScqis/n\nq0u/CIrCLy88S62tXu2SQsLxjlMArElbqXIl1xetN/FQ0X24fG5eqd151WPtw10ApFtkoVuISDF5\nft461PGJjzs8DnY1vY9Ra2Rb3u1zWVrQaBQNj5Y+jILCn2pexe11c7G3CrfPzYoUGbcVaTSKhhJr\nEf1OGz2O3oAe2+/3c6jtGD84+RPaRzrZlLmO/7TqW9LJLkTETwQQbWOhFSQIhvbhTn545ucMjNnZ\nUXQf9+RvUbukGzJo9Xxx4ePoFC1/qHqJIdew2iWxv/UQMD4+SsxcfFQc3y3/Gv9j/ff4TMmDFMXn\n02Bv4j9q3+Bvj/wD//vUT9nbfJA+h+3GBwuiIdcwP7/wb/xH7RsYdUa+vvRJPlPyIHqtXtW6hBCR\nSwI9QgghbkhRFJJMCfQ6+ma0G2nEPYrX7yU+wgIG85FFb2ZIAj0hq99pY8g9HFHjtiaVxBeioEyN\n9ZFAjxChIVpvYmvObYx6HLz/CWN1RGD4/X4GxwYjLqw5HWUJxTy1+Am8fi8/v/BbGgeb1S5JVS6v\nizPdF7BGxVNiLVS7nBtak1ZOQVwuZ3sqruqyNNmhJ0M69AgRMdLNaWgUDW3X6NCzt/kgI+5Rtube\nNtX9NRJkx2SwOXs9PY4+3mvax9nJcVspS1WuTARDWRDGbo26R/nNxT/w/OVX0Gt0PLXk8zxaugOD\n3BAOGQnzpENPy1A7Pz77S4Zcw3ym5EHuzLlN7ZKmLSsmg+2FdzPkHubfq18KWhet6RgYs3Om+wLp\n5lRKrUWq1REJ4qPi2Jy1nu+Wf43/uf5vebRkByXWIhoHm3mlbif/7ej3+V+n/oXdTftnNVHgZlT1\n1fA/T/wzl/qqKbMW873Vf8XipAVzWoMQYv6RQI8QQohpSTQl4PK5GXJPf7fD5JzbOOnQE/bMejMj\n7hFVL4zFtU3e5MyLi6xxWzA+2icrZryNf3xUHGZ9tMoVCSEm3Za1nhi9hfdbPmBYQp9B4fQ6cfnc\nxBli1C5FFYuTFvDkos/i8rr513O/oXXo2uNcIt35nks4vWOsTisPi3GEGkXDIyU7UFB4seY13D4P\nML7726g1khABI3eEEOMMWj0p0cm0DXfg8/uuemzQNcTelg+IMVi4PXujShUGz/3524iPiuO9pn1c\n7KsiNTpFxm1FqAWTgR5bbUCOd2WgkX848SPO9lRQGJfP91b/FcuTFwfk2CJwrMbx9Uyb065yJcHT\nNNjCj8/+khH3KJ8t+xSbs9arXdKM3ZG9kVJrERW9VRxqP65aHYfajuHz+9ictV46tQVQXFQMm7LW\n8Z0VT/P9Df+Vx0sfpsxaTMtQG69deZv/fvQf+cHJH/Ne4z66RwPbRe2jPD4Pr9Tu5F/P/5pRt4Md\nRffxjeVfnpebb4QQcy/0V4GEEEKEhCRjAsCMxm5NBnqkQ0/4sxjMuH0eXD632qWIT9A42AJAXmzk\nBXoAyqzji6dZ0p1HiJBi1EWxLe92nN4x9jQdULuciGQfGwKY14uE5SlLeWLBIzg9Tv7l3K/oHOlS\nuyRVHO88DYx3vgkX2TEZbMpaR/doL/uaP8Dt89Dt6CXDkio3OYSIMFmWdJzeMfqdV4/A2NW4F5fX\nxb15dxKlNahUXfAYdUY+Vbwdj9+L2+ehXMZtRawkUyKJxgRqbHV4fd5ZH8fn9/FOw56p0Ub35m/l\nOyuexipB15AUHxXZI7euDDTyk7PP4PQ4eWLBI6zPWKN2SbOiUTQ8seARonUmXq59k66R7jmvwe11\n80HbMaJ1JlaH0fl6uIkxWNiQuZZvrXiK76//r3yu7NMsTCildbiD1+vf4e+O/S++f+JH7GrcS9do\nT8Det2u0h/99+qfsbTlIiimJ/3vlN7gz57aw2GghhIgM8mkjhBBiWpJM44GembSx/DDQIx16wt1k\na/ThEJhHLT6uwd6MRtGQE5OpdilBsSixFIDcCBwpJkS425ixlvioOPa3Hp4Kn4jAsY8NAhBrmL+B\nHoA16St5tHQHw+4RfnL2GXpG+9QuaU4NjNmp7q8lPzaHVHOK2uXMyP35d2HRm3mncQ/V/TX4/D7p\nXiFEBMqyjHfU/GgntV5HH4fajpNkSgzbm8TTsSJ5CQsTS1FQWJm6TO1yRBCVJRTj8DhpHmqb1ett\nzgF+cvYZdja8R3xUHN8t/xr35W9Fq9EGuFIRKAatHoveHJGBnhrbFf71/K9x+dw8ueizrElfqXZJ\nN8VqjOfxsk/h9rn5XeXzeCa6Q86V093nGXaPsD5jDYYIDLCGIovBzK0Zq/nG8i/zjxv+G3+x4BEW\nJZbRMdLFm/Xv8vfH/on/efyfeadhz6w3hfj9fo62n+QfT/6YlqE21qav4m9u+Q45sVkB/mmEEOL6\ndGoXIIQQIjwkmhKBmQZ6xm9CSaAn/E0FetwjJE6Eu0Ro8Pg8tAy3kWlOi9hFg2JrId9d8TW5YBYi\nBOm1eu7O28ILl1/h3ab3eaTkQbVLiih21/i5VFzU/By59VEbM9fi9rl5ufZNfnLuGf6q/GskGK1q\nlzUnTnSewY+fNemr1C5lxqL1Jh4quo8/VL3IH6peAiBDOu4JEXGmAj3DHSxPWQLAzvr38Pq9bM/f\nFtGBBUVR+MriJ+gZ7SXdnKp2OSKIyhKKOdx+fDxkO8Nx1+d7LvHvVS8x4hllWfJiPlf2aRknHSas\nUXF0jvbg9/sjpgNXZd9lnql4Fp/fz1cWP8Gy5EVqlxQQ5SlLuZS2imOdp3i7YQ8PFN49J+/r9/vZ\n33IIBYVNWevm5D3F1cz6aNalr2Jd+ipG3Q4qeis523OBqr4adja8x86G90gzp1KevIQVKUtJN9+4\nY+io28Hzl1/mTPcFTDojX1r0WVamLp+jn0gIIa4mgR4hhBDTMtWhxzn9HdEycityfBjoGVW5EvHn\n2oY78Pg85M5wQTHcFFsL1C5BCHEN69JXsbtpP4fbjnFnzqZ5E7KYC5MdeuLmeYeeSXdkb8TldfFm\n/bv85Owz/FX51yN+HJnf7+d4x2l0Gh0rU8Kz88OatHKOtB+n3t4EQIbc8BYi4mTGjAf1WofHO/S0\nDrVzqusc2ZYMyudB15oorYGsmAy1yxBBVmItREGh2lbDPflbpvUat9fNq1fe4kDrEfQaHY+V7mBD\nxtqICYbMB/HGeFqG2xnxjE6tjYWzit5Kfl3xexRF4atLv8CixDK1SwqoT5c8QO1APe817WNhYilF\n8flBf88r9kZahttZnrxEroVDQLTexJr0laxJX4nD4+RibxVnuy9wqf8ybzfu4e3GPaRGp7AiZQkr\nkpeQaUn/2GfylYFGflf5PP1OGwVxuXxx4eOywVUIoSoZuSWEEGJaEoxWFBT6ZtChxy4deiKGjNwK\nXY2DLQDkx0Z2oEcIEbp0Gh335W/F4/fyTsNetcuJKIOu8TFmkR5amYm787ZwV+4d9Dj6+Mm5XzEU\n4ecmzUOtdI52szRpIdF6k9rlzIpG0fBIyQ4UxhfKpUOPEJEn1hBDrCGGtuEOAN6o34UfPw8U3oNG\nkeVnERksejPZMZk02JtxesZu+PzOkS7+6fS/cqD1COnmVP7zqm+zMXOdhHnCjDUqHgCb065yJTfv\nbHcFz1Q8h0bR8LWlT0ZcmAfApDPyxUWPAfBs5Qs4PI6gv+f+lkMA3J69IejvJWbGpDNyS9oKnl76\nBX6w4b/xpUWfZXnyEvqdNnY17uX7J3/E3x/7J16/8g4tQ214fV7ebtjND8/8HJtzgHvy7uS7K74m\nYR4hhOqkQ48QQohp0Wt0xEXFznDklh2TzhSxY4DmE7NhPNAz4h5RuRLx5xoHmwHIk0CPEEJFt6St\n4N2mfRzrPMXW3M2kRCepXVJEmOrQI4Geq2wvuAuX18W+1kP89Nyv+faKr4Zt2OVGjnWcBmBN2kqV\nK7k52TEZPFx8P/1Om4wYESJCZVrSqeqv4ULPJS71VVMcX8CChBK1yxIioMoSimkeaqVuoJ7FSQs+\n8Tl+v58jHSd4qeYN3D43GzLX8qmi+2VtLExZjeObFAfGBsgO405cJzvP8lzVnzBo9Hx92ZfmpHON\nWgri8rg7bwvvNO7hT5df44uLHg/ae/U7bZzvvUS2JYPCuLygvY+4eUadkZWpy1mZupwxr4tLfdWc\n7b7Axd4q3mvax3tN+zBqjTi9TqxR8Xxx0eMR/XcihAgvskVCCCHEtCWZEhgYs+P2eab1/IExu4zb\nihAycit0NdqbMemMcvNcCKEqjaLh/oJt+Pw+3m7YrXY5EcPuGkRBIUZvUbuUkKIoCp8q3s76jDW0\nDLfzs/O/welxql1WwLl9Hk53nSPWEBMRN8XvyN7Ip4sfULsMIUSQZFnGb3T/ofolAB4svFc6kYiI\nU2YtBqDaVvuJj4+6Hfzm0r/zx+qX0Wl0fGXxEzxe+rCEecLYhx16BlSuZPaOtJ/k2coXiNIa+Oby\np+ZFSOGevC3kxeZwsusspzrPBu19DrYexef3cVv2BvnOCyNRWgPlKUv58uK/4Acb/ztPLX6CVanL\n0Wm0rExZxvdWf3de/J0IIcKHdOgRQggxbUnGROpowOa0kRKdfN3njnldODxO6RoSIT4M9ET2WItw\nM+IepdvRS5m1WFrZCyFUtzx5MZmWdE51nWNb7u1kWNLULinsDY4NYTGY0Wq0apcSchRF4bHSHbi8\nbk52neEXF37HXy77UkTdMLvU+/+3d+fRURZm+8ev2TPJJJNksgFJCAkkJOyLgrKoqFVftb5Va6W+\nYsXW4lK32lartlZp1W621da1aotVUVzRWlxQqaIoaICQDQgkbAGyTfbMZGZ+fyRE+QnKkuSZTL6f\nczgnZDIz1xySh8nM9dx3iVo6W3Vyxmy+BwCEvfTudXot/lZNSB6rEW5eC0DkyY7Pks1sU1ndpi9d\nVuHdqsc3PK269nrluLP0vTFzlRiVYEBK9KaEqO5CT8fAXLm1YvuHWlz+omJs0bp64veVGZtudKR+\nYTFbdEnBhbrrkz/pmfIXlR2f1es/j76ATx/sXCWXLUZTUyb06m2j/9gtdk1MGaeJKeOMjgIAB8U7\nPwCAQ5bUvS/2UNZuNXT/ohvvcPdpJvQPJvSEp62N2yRJWbxYDiAMmE1mnZ19mkIK6bUtbxgdJyI0\n+BrltjPt8GDMJrMuzv+2JiaP08aGCj28/p+HPElyIPiounvd1pCBvW4LwOCQ3r2KxiSTvpl9msFp\ngL5hM1s1Mn6EdrZU96xGDYaC+s/Wt3Xvpw+qvr1B/5N1iq6d9EPKPBEioft1zYE4oWd51QotLn9R\nsTaXrpu0YNCUefZJiU7St0d9U22d7fpn8WIFQ8Fevf2Pqz9Va2ebZg2bLpvF1qu3DQDAF1HoAQAc\nMs9hFHq8PYUe3oSKBNE2p0wyqdnXYnQUfMHWxipJ0ggmYQEIE2M9+cqKy1Th3iJVNW43Os6A1t7Z\nLl/AJzfPpb6SxWzRpWPmaqxntErqyvV40b8UCAaMjnXUmnzN2lBbqgzXUA3rnnoBAOEsJTpZOe4R\nOnX4iUqLSTU6DtBnRid2r92q26iGDq/u++wRLa1Ypjh7rK6ddLnOzP4Gk/UiSLzDLZNMqhtghZ5l\nW5fr+U2vym2P03WTFwza6anHDTlGE5LHamNDhd6qeq/XbjcUCund7R/IbDJr5rDpvXa7AAAcCIUe\nAMAhS3J6JEk17bVf+7UN3WcquZnQExHMJrNibNFq9lPoCSf7Cj3D4zIMTgIAXUwmk87uPit/6ZZl\nBqcZ2Pad9e22xxqcJPxZzVZ9f+zFyksYqbU1G/SP4md6/Qzc/vbJ7s8UDAU1bchUo6MAwCExm8y6\nYcoVOifnDKOjAH1qdEJXoefd7R/oNx/fq/KGzRqfNEY3H3udRiXkGJwOvc1itijOHquGjoFR6AmF\nQnq14g29UvEfJTjidf3kK5QWk2J0LMOYTCZ9d/R5cttj9WrFG6pq6p2TTsrqN2lXy25NThnPdHoA\nQJ+j0AMAOGT7Vm7VHsrKrXYm9ESaGFuMWij0hI1QKKRK7zYlRSUq1u4yOg4A9MhLGKlR8dkqri3T\n5oatRscZsLy+JkliQs8hslls+uH47ynbnaU1e9bqqdLnB3SpZ9WuNTKbzJqaOtHoKAAA4AuGutIU\na3Opqmm7OgI+fSf3f3X5uHk9q8oReRKi4tXQ0Rj2zy1DoZBe3vy6Xt/6lpKiEnX95CuUHO0xOpbh\nXLYYXZz/HQVCAT2x4Wn5Ar6jvs13t78vSTopY+ZR3xYAAF+HQg8A4JDF2lyym22HtHKrwbev0MNZ\nCpHCZYtRi7817F/AGCz2ttWopbNVWW7WbQEIL11Tek6XJC2t+I9CoZDBiQamfRN64uwUeg6Vw2LX\nlRMuVWZsuj7c9YmWbHxlQH7/7Wjepe3NOzXGM5rSLgAAYcZsMmtO5iyNis/WT6f+SLPTj5fJZDI6\nFvpQgsOtQCigJl+z0VEOKhQKacnGV/Rm1btKjU7W9VOukMeZYHSssJHvydVJ6TO1u3WvXtz02lHd\n1t7WWhXVlCorLlNZcbwmBwDoexR6AACHzGQyyeNMVE1b3de+ObJv5RaFnsjhsscopJBaO9uMjgJJ\nWxu3SRIvHgAISznxWSrw5GljQ4XK6jcZHWdA8vr2rS+l0HM4nFanrpp4mYbGpOm97Sv18ubXB1yp\n56NdqyVJ09OmGJwEAAAcyDeGn6TrJi/QMNcQo6OgHyRExUuS6sN07VYwFNTTZS/o3e0faGhMmq6b\nvIDXYw/gnJwzNDQmTSt2fKiimpIjvp33dnygkEI6KX1GL6YDAODgKPQAAA5LkjNR7YH2ry11NHR4\nZTVZGDkcQVy2aElSs4+1W+Fga2OVJAo9AMLX2SNOkyQtrVg24AoV4WDfhB63I9bgJAOPyxajH036\ngVKjk/Vm1bt6fetbRkc6ZIFgQJ/s/kwx1miNSco3Og4AAMCgl9Bdjqlv9xqc5MuCoaCeLHlOH+xc\npQzXUF076YeKs/P7w4HYLDZ9b8xcWU0WPVny3BFNXGrvbNeHO1fLbY/TpJTxfZASAIAvo9ADADgs\nSVFdu5dr2mq/8uu8HY1yO+IYOxxBYrrLWc1+Cj3hYKt3m6wmi9JjhxodBQAOKDMuXROTx2prY5WK\nao/8DMjBqtHXJElys3LriMTZY/WjiT+QJypRr215U29VvWd0pENSUleuJl+zpqROlM1sNToOAADA\noBcfphN6AsGAntjwtFZVr9HwuAxdM+lyueycWPlVhrmG6JycM9Tkb9aTJc8e9oknH1WvUXugXbOG\nHSeL2dJHKQEA2B+FHgDAYfE4EyVJNW11B/2aQDCgRl+T3Ix3jSix3YWeFgo9hvMH/NrevFPDYofy\nZh+AsHbmiG/IJJOWVixTMBQ0Os6A4u1olEkmzrA9CglR8bpm0uWKd7j14qbXtGL7SqMjfa2PqtdI\nkqYPYd0WAABAOEhwdBd62sOn0OMPdurvRU9qzZ61ynFn6UcTf6Do7sna+GonZszU6IRRKqot1fs7\nPzrk6wVDQb237QNZzVbNHDatDxMCALA/Cj0AgMOS1F3oqf2KQk+Tv1nBUFDxDs4ojyQ9E3pYuWW4\nbc07FQgFWLcFIOwNdaVpaupE7WjepcK9RUbHGVC8vka5bDGc+XmUkpyJumbS5Yq1u7S4/CV9uPMT\noyMdVKu/Vev3blBadIoyY9ONjgMAAABJCVHdK7c6wmPllj/g1yPr/6m1NRuUmzBSV038vpzWKKNj\nDRhmk1kXF1ygGGu0nt/4qqpb9hzS9Ypry7SnrUZTUycq1u7q45QAAHyOQg8A4LB4oron9LQffOVW\nQ/cvuPFM6Iko+8b2snLLeFsbqyRJIyj0ABgA/mfEqTKbzHq14g2m9BwGb0ej4hxM5+kNqdHJumbi\n5YqxRutfpUu0Zneh0ZEOaM2eteoMBTRtyBTW1gIAAISJOHuszCazdjZXq6S2XDubq9Xibz3sdU29\noSPg04PrntCG2lIVJObpivGXymGx93uOgS7e4dbc0efJH/TrieKn1Rns/NrrvLv9A0nSiekz+zoe\nAAD76bMdDcFgULfffrvKyspkt9u1cOFCDR8+vOfy5cuX669//ausVqvOO+88XXDBBV97naVLl+rJ\nJ5/U4sWL+yo2AOBrfD6hp/6gX9PQ0SiJQk+kcdko9ISLrd6uQg8TegAMBCnRSZqeNlUrd32sT6o/\n0zRWCX2t9s52dQR8cjPtsNcMdaXp6onf158/e1hPFD8jT0KcsuzZRsfaz6pda2SSScemTTY6CgAA\nALqZTWalOJNU3bpH9699tOfzVrNVbnuc3I6uP/Ff+PiLn4+yOHqlrN3e2a6/rX1cm71bND5pjOaP\nvYg17EdhUso4TR8yVR/tWq3Xtrypc3LOOOjXVrfsUUlduUbGj1BG7NB+TAkAQB8Wet566y35fD4t\nXrxYhYWFuvvuu/XAAw9Ikvx+v+666y4tWbJETqdTc+fO1Zw5c/Tpp58e9DrFxcVasmSJIa1nAMDn\n7Ba74uyxqmk7lAk9vAkVSSj0hI+tjdvkssX0FOwAINydMeJkfVy9Rq9teVNTUifIygvPX8nra5Ik\nue08l+pNmXHpumrifN1X+KjuXfmoTsk8QSdnzFa0zWl0NO1u2aMtjVXKT8ylFA8AABBmFoy/VBsb\nNsvb0agGX6O8HZ//2eLo3bwLAAAgAElEQVStVEgHf9/KbrF/qewTv+9jh7u7/BMr+1dM2mn1t+lv\na/+uLY1VmpQyXpcWzGU1by/49qhvalN9hd6sfFcFibkalZBzwK97r3s6z0lM5wEAGKDPXkVds2aN\nZs2aJUmaOHGiioqKei7bvHmzMjMz5XZ3vUg1ZcoUffLJJyosLDzgderr6/XHP/5RP//5z3Xbbbf1\nVWQAwCFKciZqa+M2BYKBA/7y6O2e0OPmzYiIEkOhJyw0+ZpV216nMZ7RrOMAMGAkRiVoxrDpem/7\nB/pw12rNGjbd6EhhrXHfcyk7K7d6W7Y7S1eMv1RPFD+l/2x9W+9tX6mTM2brpIwZirJGGZZrVfWn\nkqRpaUywAgAACDfJ0R4lR3sOeFkwFFSTr7mr4ONrVMMXyj7eL5R/9rTVfOV9OK3OA076iXPE6o3K\nd7StaYeOTZus/xv9bco8vSTKGqVLxszVvZ8+oH8UL9bPj73+S2X/Vn+bPqpeowRHvMYlFRiUFAAw\nmPVZoae5uVkul6vn7xaLRZ2dnbJarWpublZs7OcvTMbExKi5ufmA1/H5fLrlllt08803y+FwHNJ9\nJyREy2rlCU04Sk7mBWkgEgyLT1WFt1LmmE4lu+K/dHnb5q7CR86QoUp2DY6f+8FwfAuFXLJZbOoI\ntQ+KxxuuKndskSSNGTKSfwf0C77P0Fsucp2tD3d9rDeqluuscSfKbrEZHSlslbX6JUnDPCn8DPaB\n5OSJmpKdr2Ub39PLpW/o1S3L9N6O93VO/mk6beQJclgPfnZ0XwiGglr90WdyWqN0cv70fr9/AJGJ\n/z8ARKpwPL6lyi1p2Fd+TWegUw0djapv86q+zau6toaej+vbG1TX/XF1y+4DXn9O9gxdPuW7MpvN\nffAIBq/k5LE6t/0MLdnwml6ufFXXHDd/v8uXlq6SL+DTBWPPVFrql18HB3pTOB7fABivzwo9LpdL\nLS2fn8EfDAZltVoPeFlLS4tiY2MPeJ3S0lJVVlbq9ttvV0dHhzZt2qRf//rXuuWWWw563/X1rX3w\niHC0kpNjtXdvk9ExAPQCl6lr/UPZjiqZEr9cttzt7VrH1dli0d62yP+5H0zHtxhrtBpaGwfN4w1H\n67aVSZJSLGn8O6DPDabjG/qDWScMm6E3q97Vi2vf1JyMWUYHClvba/ZIksx+Oz+DfSQ5OVbHJx2n\nSdMn6d1t7+utqhV6cu0LeqXkTZ02fI5mDJsmWz+thiut26ja1nodP+QYNdZ3SOrol/sFELl4Dgcg\nUg3845tN8UpSvCNJIxySDtAP8Qf88vqa9pvwE2116pi0SaqtZWp2X5idPFNr4tbr/apPNNI1Usek\nTZLUVbz/d9ly2c02TYibMMC/9xDuBv7xDcDR+KpCX59VeSdPnqwVK1ZIkgoLC5Wbm9tzWU5Ojior\nK9XQ0CCfz6fVq1dr0qRJB7zO+PHj9dprr2nRokX64x//qJEjR35lmQcA0Pc8zkRJUm1b3QEvb/B5\n5bLF9NubIOg/LlsMK7cMtrVxmyRpeFyGwUkA4PCdMvwERVkcWrZ1udo7KS0cTM/6UnucwUkin9Ma\npTNGnKI7j79Jpw+fo/ZAh57b+LJu//Aevb/jIwWCgT7PsKp6jSRp2pCpfX5fAAAACG82i01JzkTl\nxGdpcsp4nZQxU9OGTJHZxGSevmIxW3RJwVzZLXY9U/aiatvqJUnra4pV216vY9MmK9oWbXBKAMBg\n1WfPAE499VTZ7XZdeOGFuuuuu3TzzTdr6dKlWrx4sWw2m2666SZddtlluvDCC3XeeecpNTX1gNcB\nAISfpKiuQk9N+5cLPaFQSA0djYp3uPs7FvqByxajjoBP/oDf6CiDUjAU1NbGbUqNTv7STm8AGAhc\nthjNyZilZn+L3tv+gdFxwpbX113ocTBuu79E26J1ds7puuO4m3Ry5my1+Fv0dNkL+tVHv9NHu1b3\nWbGnvbNdhXvWKykqUTnurD65DwAAAABfLTnao2+POkftgXb9o/gZBUNBvbPtfUnSiRkzDU4HABjM\n+mx0gtls1h133LHf53Jycno+njNnjubMmfO11/mi9PR0Pfvss70bFABw2JK+YkJPe6BdvoBP8Q7O\nKI9ELnuMJKnZ36IEC3uj+9vu1r1qD7RrQtwYo6MAwBGbkzlL721fqTer3tOsYcdRUDyAxo6uMdtx\ndgo9/S3W7tK5I8/SyRmztazyHX2w4yMtKnlWyyqX68wR39DklPG9enb0Z3uL5Av6deyQKTKZTL12\nuwAAAAAOz3FDpmpDbYkK9xbpyZLntLGhQqMTRmlITKrR0QAAgxgz+gAAh83tiJPVZFHNAQo9DftW\nRDChJyLF2PYVeloNTjI4bfVWSZKyWLcFYABzWp06ZfgJauts0/JtK4yOE5a8vka5bDGysr7UMG5H\nnC7IPUe/PO6nmjF0mmra6vT4hqd018d/UuHeIoVCoV65n1W7VkuSpqVN6ZXbAwAAAHBkTCaT5o4+\nT257XM9a3BMzZhicCgAw2FHoAQAcNrPJLI8zUTXttV+6rKHdK0lM6IlQsd2FnhZ/i8FJBp9AMKDC\nvUWSpCx3psFpAODonJA+Q7F2l5Zv+6+afM1Gxwk73o4muXkuFRYSoxL03dHn6ZfTf6JpaVO0q2W3\nHln/T92z+i8qqik5qmJPbVudNjZUaGT8iJ4JmAAAAACM47LF6OKCCyRJyU6PxnhGG5wIADDYUegB\nABwRjzNRLf5WtXW27ff5ho59hR7WMUWingk9vPnarzoCPj1S9E8V1ZYoMzZdw2KGGB0JAI6Kw2LX\nacPnqCPg05tV7xodJ6x0BHxqD7SzbivMJDk9mlfwHd067ceakjJB25p26IF1j+sPa/6q0rqNR1Ts\n+bj6U0nS9LSpvR0XAAAAwBHKT8zVlRMu0+XjLunVdbsAABwJ/icCAByRpKius4hr2ur3+/y+lVtM\n6IlMLjsrt/pbk69Zf/70Ia2vKdHohFG6ZtLlspgtRscCgKM2c9h0JTjitWL7yp5CMCRvz/pSnkuF\no7SYFM0fe5F+fuz1mpA8Vlsaq3Rf4SP682cPaVPDlkO+nVAopFXVa2Q32zQpZVwfJgYAAABwuMZ4\n8jTUlWZ0DAAAKPQAAI6Mp3stQG3b/mu3Gnz7JvS4+z0T+p5r34QeVm71iz2te/X71fersmmbpqdN\n1ZUT5stpjTI6FgD0CpvZqjOyTpY/2KllW98xOk7Y6Cn02Cn0hLNhriG6fNw8/XTqj1TgydPGhgrd\n++kDur/wUVU2bvva61d4K7W3rVYTkscpiv/bAQAAAAAAcABWowMAAAamJKdHklTTXrff5709K7d4\nEyoSUejpPxXeSj247nG1+Ft1RtYpOnPEqTKZTEbHAoBeNX3IVL1R9a4+2LlKp2TO7ikMD2aNPib0\nDCTD4zJ01YTLVOHdqqUVb6ikrlwldeUal1Sgs0Z8Q+mxQw94vVXVqyVJ04dM6c+4AAAAAAAAGECY\n0AMAOCL7Vm7Vtu1f6Glo98pmtslpdRoRC30shkJPvyjcW6S/fPaQ2jrbddHo83VW9jco8wCISBaz\nRWeOOFWBUECvb33b6Dhh4fMJPbEGJ8HhyHZn6dpJl+vaSZcr252l9TXFuuuTP+nRoie1q2X3fl/r\nC/i1Zvc6xTvcyk3IMSgxAAAAAAAAwh0TegAAR2TfGfQ1/3+hp6NR8Y44ygcRymWLliS1+Cj09JV3\nt32gJRtfkc1i04Jx8zTGM9roSADQp6amTtSyyne0qnqNZg2bruFxGUZHMpTX1ySJCT0DVW7CSN0w\nOUcldeVaWrFMn+1Zp8I96zU1dZL+Z8QpSolO0rqaDWoPtGt2+nEymzjPCgAAAAAAAAdGoQcAcESc\n1ii5bDGqaa/t+VxnsFNN/malxaQYmAx9yWK2yGl1MqGnDwRDQb20+d96u2qFYu0uXTlhvjJj042O\nBQB9zmwy67yRZ+lvax/Tg+ue0E+mXq3EqASjYxlm34SeODuFnoHKZDKpwJOn/MRcra8p1qtb3tAn\nuz/Vmj2Fmp42Rbtb90qSpqexbgsAAAAAAAAHx6lgAIAj5olKVF1bvYKhoCTJ29F1Rnm8w21kLPQx\nly2aQk8v8wf8emLD03q7aoVSo1P0kylXU+YBMKgUePJ03qiz1ehr0gNrH1dbZ5vRkQyzb0JPnIOV\nWwOdyWTS+OQxuumYa3XZ2P9TsjNJK3d9os3ercqKy1QqJXgAAAAAAAB8BQo9AIAjluRMVGco0HMm\nudfnlUShJ9K5bDFq9rcoFAoZHSUitPhbdf/aR7Vmz1rluEfox1Ou7FlpBwCDyUkZM3VC+gztbKnW\no+ufVCAYMDqSIbwdjYqxRctmZqBupDCbzJqcMl63TrtBlxRcqJHxI3TmiFONjgUAAAAAAIAwxyuE\nAIAjtq90UNNWp4SoeNW3dxV63A5WREQylz1GwVBQ7YF2Oa1Oo+MMaLVt9frb2r+runWPJqeM17z8\n78hmsRkdCwAMc/6os1XXXqf1NSV6puwFfXf0+TKZTEbH6leNvkYlOOKNjoE+YDaZdWzaZB2bNtno\nKAAAAAAAABgAmNADADhiSfsKPe11kiRvBxN6BoMYW4wkqcnH2q2jUdW0Xb9fc7+qW/fo5IzZunTM\ndynzABj0zCazLh1zkTJjh2nlrk/0RuU7RkfqV76AT22d7ZSjAQAAAAAAAFDoAQAcuaQojySptq1W\nktTQvXqLQk9kc3UXelr8FHqO1IbaMt376YNq8jXr/FHf1LmjzpLZxNMyAJAkh8WuBeMvVYIjXq9U\n/Eerqz8zOlK/8XY0SZLcdgo9AAAAAAAAwGDHO0cAgCOW9IWVW5LU0DOhhzehItm+Qk8zhZ4jsnLn\nJ3pw3eMKhYL6/tj/00kZM42OBABhx+2I05UT5ivKEqVFJc9qU8MWoyP1C6+vqxwd54g1OAkAAAAA\nAAAAo1HoAQAcsXiHW2aT+QuFnkaZZFKcnTehIllPoYeVW4clFArptYo39K/S5+S0RumaSZdrYso4\no2MBQNga6krT98f9n4IK6eF1/9Ce1r1GR+pz3u5ph0zoAQAAAAAAAEChBwBwxCxmixId8app71q5\n5e3wKs7uksVsMTgZ+pLLzoSewxUIBvRk6XP699a35IlK1I+nXKVsd5bRsQAg7OUn5mpu3rlq6WzV\n39Y+FvFl0n0TetxMOwQAAAAAAAAGPQo9AICjkuT0qMnXrI6ATw2+RrkdbqMjoY/tm9DT4m81OMnA\n0N7ZrgfWPa6Pdq1WZmy6bpx6lVKjk42OBQADxvFDj9Vpw+dob1utHlr/hPwBv9GR+kxjR5Mkyc3K\nLQAAAAAAAGDQo9ADADgqHmeiJKmqcZs6g52Kp9AT8WK6Cz1N/maDk4S/hg6v7v30QZXUlWusJ1/X\nTV7ASjoAOAJnZX9DU1ImqMJbqUUlzyoYChodqU/0TOhh5RYAAAAAAAAw6FmNDgAAGNiSugs9mxq2\nShKFnkHg8wk9/bv2pCPg08b6zSquK9fG+s2Kd7g1LqlA45LylRAV369ZDsXO5mr9be1jqu9o0Mxh\n03XBqHNYRwcAR8hsMuvi/AtU3+HVmj1r5XEm6pycM4yO1eu8HV2FHsqfAAAAAAAAACj0AACOSpLT\nI0na7N0iSYp3cEZ5pHNao2Q2mdXs69uVW6FQSLtadqu4rkwlteXa1FChzlBAkmQzW7WzpVrFdWVa\nXP6iMlxDu8o9yQXKcA2TyWTq02xfp7x+sx5e/w+1dbbrnOwzdOrwEw3PBAADnc1i0w/HXaI/rPmr\n3qh8R0lRiZoxbJrRsXqV19ekGGu0bBab0VEAAAAAAAAAGIxCDwDgqCRFdU3oqfBulcSEnsHAZDLJ\nZYtRcx+s3Gr1t6q0fpNKastUXFeuhg5vz2XprqEq8OSpIDFXI9zD5e1o0vraYhXVlKi8frO2Ne/U\nv7e+pXiHW2OT8jU+qUC58Tn9/qbo6t2FWlS8WCFJlxRcqGPTJvfr/QNAJHPZY3TFhPn6/Zr79Uz5\ni0qMSlC+J9foWL3G29FIORoAAAAAAACAJAo9AICj5OleudUR8EmS3LwJNSi4bDGq/0LZ5kgFQ0FV\nNW1XSW25iuvKtMVbpZBCkqQYW7Smpk5UQWKeRifmyu3Yf/2Ix5mgE9Nn6MT0GWrrbFdJXbnW1xRr\nQ02p3t/xkd7f8ZHsFrvyE3M1zpOvsUn5irW7jjrzwYRCIb1V9Z5e2vxvRVmidPm4ecpLHNln9wcA\ng1VKdJJ+OO57+kvhw3q0aJFumHKlhrmGGB3rqPkCfrV1tml4bLrRUQAAAAAAAACEAQo9AICjEm11\nymmNUltnuyQm9AwWLluMdrZUKxAMyGK2HNZ1vR1NKq3rKvCU1JWrxd+1usskk0a4M1WQmKcCT54y\nYofJbDIf0m06rVGanDJek1PGKxAMqMJbqfW1xVpfU6y1e4u0dm9Rz+2P83St5kqLTum1NVjBUFDP\nlb+iFTtWKt7h1pUT5kfEm8sAEK5y4rM0L/8CPbbhKT2w9nHdOPWqAf8cpNHXKIlyNAAAAAAAAIAu\nFHoAAEfFZDIpKSpR25p3ShJrIgaJGHuMJKnZ3/qlyTn/v85gpyq8lSqpK1dxbZm2d3+vSF0FsOOH\nHKN8T55GJ4xUtC36qLNZzBaNSsjWqIRsnTvyLO1u2aP1tSVaX1OszQ1bVeGt1MsVryspKlHjkgs0\nPqlAOe4Rh11M2scX8OnxDU9rXc0GDY1J05UT5ishKv6oHwcA4KtNSZ2o2rZ6vVzxuh5c+7ium3yF\noqwOo2MdMW9HkyQKPQAAAAAAAAC6UOgBABw1j9Ojbc07FWWJUpQ1yug46AcuW1ehp8XfcsBCT01b\nnUrqylRcW66y+o09K9msJotGJ4xSvidXBYl5GhKT2mtTcg4mNSZFqTEpOiXzBDX7W7ShplTra0tU\nUlumd7a9r3e2vS+n1akxnjyNSypQQWKeom3OQ7rtJl+zHlz3hLY2VikvYaR+MO5iOa2Hdl0AwNE7\ndfiJ2ttWq5W7PtbjG57SD8dfcsjT3cKNt3tCT5z9q4uyAAAAAAAAAAYHCj0AgKOW5EyUxHSewWRf\noafZ3yKpa0rNxoYKFdeWqbiuTHtaa3q+NsWZpHxPngoSczUqIUcOi92QzFJX7mlDpmjakCnyBzu1\nqb5C62uLtW5vsVbvLtTq3YUym8waGZ+tcUn5Gp9UoCSn54C3tae1Rn9b+3ftbavVsWmTddHo82U1\n89QKAPqTyWTShXnfUn1Hg4pqS/Rc+Su6IPecPi+L9gVvByu3AAAAAAAAAHyOd50AAEft80KP2+Ak\n6C/7Cj3v7/hIy7Yu1ybvFnUGOyVJdou9Z9JNgSf3oIUYo9nMVuV7cpXvydW3R52jnS3VWre3WOtr\nilVev0nl9Zv0/MalGhKTqnFJBRqXVKCsuAyZTWZt8VbpwXWPq9nfotOHz9FZ2acNyDePASASWMwW\nXTb2Iv1xzQNasWOlkp2JmpM52+hYh62n0GOn0AMAAAAAAACAQg8AoBd4oroKPZxRPnjE2l2SpDV7\n1kqShrmG9BR4st1ZA25Sjclk0jDXEA1zDdEZI06Wt6NRRTUlWldTrLL6jXqj8h29UfmOYm0u5SWO\n1Nq9G9QZ7NTcvHM1c9h0o+MDwKDntDp15YT5+t3q+/TCpteU6EzUxOSxRsc6LI2+Jkk8nwIAAAAA\nAADQZWC92wYACEtZcZnKisvUhOQxRkdBPxmXlK/Th89RUnSS8hNHRdx0JrcjTjOGTdOMYdPkC/hU\nWrdR62tKtL62azWX3WzTgvHf09ikfKOjAgC6JUTFa8GES3Xvpw/qiQ1P67rJP1RWXKbRsQ7Z5xN6\nYg1OAgAAAAAAACAcUOgBABy1aJtTP5l6tdEx0I/sFrvOzjnd6Bj9wm6xa3zyGI1PHqNgKKhtTTsU\nbY1WcnR4rhIDgMEsMzZd88d8Vw+t+4ceXPuEbpx6dc9q0HDn9TUq2uqUzWIzOgoAAAAAAACAMGA2\nOgAAAMBAYTaZNTwugzIPAISxcUkF+nbuOWryN+uBtY+p1d9qdKRD4u1oVBzrtgAAAAAAAAB0o9AD\nAAAAAIgoJ6QfrzkZs1TdukePrF+kzmCn0ZG+kj/gV2tnm+LtFHoAAAAAAAAAdKHQAwAAAACION8a\neaYmJI9VecNmPVX6vEKhkNGRDsrra5IkxTliDU4CAAAAAAAAIFxQ6AEAAAAARByzyazvFVyo4bEZ\nWlW9Rq9vfcvoSAfV6GuUJLmZ0AMAAAAAAACgG4UeAAAAAEBEslvsWjDhe/JEJei1LW/q4+pPjY50\nQA0d3YUeB4UeAAAAAAAAAF0o9AAAAAAAIlacPVZXTJgvpzVKT5Y8p431m42O9CWNHd0rt+ys3AIA\nAAAAAADQhUIPAAAAACCiDYlJ1Q/GzlNIIT20/p+qbtljdKT9eH1M6AEAAAAAAACwPwo9AAAAAICI\nl5c4UheNPl9tnW3629rH1ORrNjpSD+++lVt2Cj0AAAAAAAAAulDoAQAAAAAMCtOHTNUZWaeotr1O\nD617Qr6A3+hIkqRGX9fKLbeDlVsAAAAAAAAAulDoAQAAAAAMGmeOOFXHpE7WlsYq/aP4GQVDQaMj\nydvRKKc1SnaL3egoAAAAAAAAAMIEhR4AAAAAwKBhMpl0Uf75GhWfrcK96/XS5n8bHUleXyPrtgAA\nAAAAAADsh0IPAAAAAGBQsZmtunzcPKVGJ+vtqhX6744PDcviD3aqxd+qOAeFHgAAAAAAAACfo9AD\nAAAAABh0om3RunLCfLlsMVpc9pKeKl2itXs3qL2zo19zNHY0SRITegAAAAAAAADsx2p0AAAAAAAA\njJDk9GjB+O/pofX/0Ac7P9YHOz+W1WTRyPhsjfHkaYxntFKik2Uymfosg9fXKElyO2L77D4AAAAA\nAAAADDwUegAAAAAAg9YI93D9Zsat2tq4TRtqSrShtlSl9RtVWr9Rz296VUlRiRqTNFpjPPkaFZ8t\nu8XWq/ff2LGv0MOEHgAAAAAAAACfo9ADAAAAABjUzCazst3Dle0errNzTldDh1fFteVd5Z66cr23\nfaXe275SNrNNeQk5GuMZrTGe0fI4E4/6vhv2TeixM6EHAAAAAAAAwOco9AAAAAAA8AXxDreOH3qM\njh96jDqDnarwVmpDbak21JaqqPuPJKVFp2iMZ7TGJo1WtjtLVvPh/4rd2NEkSXI73L36GAAAAAAA\nAAAMbBR6AAAAAAA4CKvZqtyEHOUm5OhbI89UbVudNtSWaUNtqcrqN+ntbSv09rYVirI4NDpxlMZ4\nRqvAk6f4QyzoeLtXbsUxoQcAAAAAAADAF1DoAQAAAADgEHmciZqdfpxmpx8nf8CvjQ0VPZN7CvcW\nqXBvkSQp3TW0Z3pPVlymzCbzAW/Pu2/lliOu3x4DAAAAAAAAgPBHoQcAAAAAgCNgs9hU4MlTgSdP\n39Y52t26t2s1V02pNjVUaHvzTi2rXK4Ya7TyPbka4xmt/MRcxdpdPbfh7WhUlCVKDovdwEcCAAAA\nAAAAINxQ6AEAAAAAoBekRicrNTpZczJmqb2zQ+X1m3qm96zeXajVuwtlkknD4zI0xpOnMZ7R8voa\nmc4DAAAAAAAA4Eso9AAAAAAA0MuirA6NTx6j8cljFAqFtKtld9f0ntpSbfZu1dbGKr225U1J0rCY\nIQanBQAAAAAAABBuKPQAAAAAANCHTCaThrrSNNSVplOHn6hWf5tK6zdqQ02pNjZs1rjkAqMjAgAA\nAAAAAAgzFHoAAAAAAOhH0TanJqeM1+SU8UZHAQAAAAAAABCmzEYHAAAAAAAAAAAAAAAAAPA5Cj0A\nAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAA\nAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQ\nAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAA\nAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQR\nCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAA\nAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABA\nGKHQAwAAAAAAAAAAAAAAAIQRUygUChkdAgAAAAAAAAAAAAAAAEAXJvQAAAAAAAAAAAAAAAAAYYRC\nDwAAAAAAAAAAAAAAABBGKPQAAAAAAAAAAAAAAAAAYYRCDwAAAAAAAAAAAAAAABBGKPQAAAAAAAAA\nAAAAAAAAYYRCDwAAAAAAAAAAAAAAABBGrEYHQOQLBoO6/fbbVVZWJrvdroULF2r48OFGxwKAo7J2\n7Vr9/ve/16JFi1RZWambbrpJJpNJo0aN0i9/+UuZzXRmAQwsfr9fP//5z7Vjxw75fD5dccUVGjly\nJMc3AANeIBDQrbfeqi1btshkMulXv/qVHA4HxzcAEaO2tlbnnnuuHnvsMVmtVo5vACLGt771Lblc\nLklSenq6FixYwDEOQER46KGHtHz5cvn9fs2dO1fHHnssxzcAB8SRAH3urbfeks/n0+LFi/XjH/9Y\nd999t9GRAOCoPPLII7r11lvV0dEhSbrrrrt03XXX6amnnlIoFNLbb79tcEIAOHyvvPKK4uPj9dRT\nT+nRRx/VnXfeyfENQER45513JEnPPPOMrrvuOt17770c3wBEDL/fr1/84heKioqSxO+nACJHR0eH\nQqGQFi1apEWLFumuu+7iGAcgIqxatUqfffaZnn76aS1atEjV1dUc3wAcFIUe9Lk1a9Zo1qxZkqSJ\nEyeqqKjI4EQAcC+M3toAAAcESURBVHQyMzN133339fx9w4YNOvbYYyVJs2fP1sqVK42KBgBH7PTT\nT9e1114rSQqFQrJYLBzfAESEU045RXfeeackaefOnYqLi+P4BiBi3HPPPbrwwguVkpIiid9PAUSO\n0tJStbW1af78+Zo3b54KCws5xgGICO+//75yc3N11VVXacGCBTrxxBM5vgE4KAo96HPNzc09YzEl\nyWKxqLOz08BEAHB0TjvtNFmtn2+tDIVCMplMkqSYmBg1NTUZFQ0AjlhMTIxcLpeam5t1zTXX6Lrr\nruP4BiBiWK1W/exnP9Odd96ps88+m+MbgIjwwgsvKDExsedEOonfTwFEjqioKF122WX6+9//rl/9\n6le68cYbOcYBiAj19fUqKirSn//8Z45vAL4WhR70OZfLpZaWlp6/B4PB/d4IB4CB7ou7bFtaWhQX\nF2dgGgA4crt27dK8efN0zjnn6Oyzz+b4BiCi3HPPPVq2bJluu+22ntWpEsc3AAPX888/r5UrV+ri\niy9WSUmJfvazn6murq7nco5vAAayESNG6Jvf/KZMJpNGjBih+Ph41dbW9lzOMQ7AQBUfH6+ZM2fK\nbrcrOztbDodjvwIPxzcAX0ShB31u8uTJWrFihSSpsLBQubm5BicCgN5VUFCgVatWSZJWrFihqVOn\nGpwIAA5fTU2N5s+fr5/85Cc6//zzJXF8AxAZXnrpJT300EOSJKfTKZPJpLFjx3J8AzDg/etf/9KT\nTz6pRYsWKT8/X/fcc49mz57N8Q1ARFiyZInuvvtuSdLu3bvV3NysGTNmcIwDMOBNmTJF//3vfxUK\nhbR79261tbXpuOOO4/gG4IBMoVAoZHQIRLZgMKjbb79d5eXlCoVC+s1vfqOcnByjYwHAUdm+fbtu\nuOEGPfvss9qyZYtuu+02+f1+ZWdna+HChbJYLEZHBIDDsnDhQr3++uvKzs7u+dwtt9yihQsXcnwD\nMKC1trbq5ptvVk1NjTo7O/WDH/xAOTk5PH8DEFEuvvhi3X777TKbzRzfAEQEn8+nm2++WTt37pTJ\nZNKNN96ohIQEjnEAIsJvf/tbrVq1SqFQSNdff73S09M5vgE4IAo9AAAAAAAAAAAAAAAAQBhh5RYA\nAAAAAAAAAAAAAAAQRij0AAAAAAAAAAAAAAAAAGGEQg8AAAAAAAAAAAAAAAAQRij0AAAAAAAAAAAA\nAAAAAGGEQg8AAAAAAAAAAAAAAAAQRij0AAAAAAAAoFe88MILuummm4yOAQAAAAAAMOBR6AEAAAAA\nAAAAAAAAAADCiNXoAAAAAAAAAOhfDz/8sF5//XUFAgHNnDlTc+fO1ZVXXqmMjAxVVlZq6NCh+t3v\nfqf4+Hi98847+tOf/qRgMKiMjAzdcccdSkpK0sqVK3X33XcrFApp6NCh+sMf/iBJqqys1MUXX6yd\nO3fquOOO08KFCw1+tAAAAAAAAAMPE3oAAAAAAAAGkRUrVqioqEhLlizRSy+9pN27d2vp0qUqLy/X\nJZdcotdee005OTm6//77VVtbq1/84hf661//qqVLl2ry5Mm644475PP5dOONN+qee+7R0qVLlZeX\npxdffFGStGvXLt133316/fXXtWLFCm3cuNHgRwwAAAAAADDwMKEHAAAAAABgEPnwww+1bt06nXvu\nuZKk9vZ2hUIhZWVladq0aZKk//3f/9WNN96oGTNmaPz48UpPT5ckfec739HDDz+ssrIypaamKj8/\nX5J0ww03SJJeeOEFTZ06VfHx8ZKkzMxM1dfX9/dDBAAAAAAAGPAo9AAAAAAAAAwigUBAl1xyiS69\n9FJJUmNjo6qrq3X99df3fE0oFJLFYlEwGNzvuqFQSJ2dnbLZbPt9vqmpSS0tLZIkq/Xzl5tMJpNC\noVBfPRQAAAAAAICIxcotAAAAAACAQWT69Ol6+eWX1dLSos7OTl111VUqKirSli1bVFJSIkl6/vnn\nNXv2bE2YMEFr167V9u3bJUmLFy/WtGnTNGLECNXV1WnTpk2SpEcffVRPP/20YY8JAAAAAAAg0jCh\nBwAAAAAAYBCZM2eOSktLdcEFFygQCGjWrFk65phj5Ha79Ze//EVVVVXKy8vTwoULFR0drTvuuENX\nX321/H6/hg4dql//+tdyOBz63e9+p5/+9Kfy+/3KzMzUb3/7Wy1btszohwcAAAAAABARTCHmHgMA\nAAAAAAxq27dv17x587R8+XKjowAAAAAAAECs3AIAAAAAAAAAAAAAAADCChN6AAAAAAAAAAAAAAAA\ngDDChB4AAAAAAAAAAAAAAAAgjFDoAQAAAAAAAAAAAAAAAMIIhR4AAAAAAAAAAAAAAAAgjFDoAQAA\nAAAAAAAAAAAAAMIIhR4AAAAAAAAAAAAAAAAgjFDoAQAAAAAAAAAAAAAAAMLI/wN+hAwRaafF+AAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAJoCAYAAAATN9ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vF7JpOeSa8QAiF0CSAgColYUPnaWEQFRdG1\n7uq6ltW1/da+iq4r7op9VRRBqqgoNkAECUoTQgKhJZQQ0ntvM78/QsbEFBJImGR4v66LKzPnPOfM\n50wOn5lLbp/HYLVarQIAAAAAAAAAAAAAAADQ7RjtXQAAAAAAAAAAAAAAAACAE0P4BwAAAAAAAAAA\nAAAAAOimCP8AAAAAAAAAAAAAAAAA3RThHwAAAAAAAAAAAAAAAKCbIvwDAAAAAAAAAAAAAAAAdFOE\nfwAAAAAAAAAAAAAAAIBuivAPAAAAAAAA0EbLli3TwIEDNXDgQG3cuNHe5QAAAAAAABD+AQAAAAAA\nAAAAAAAAALorwj8AAAAAAAAAAAAAAABAN0X4BwAAAAAAAAAAAAAAAOimCP8AAAAAAAAAAAAAAAAA\n3RThHwAAAAAAAAAAAAAAAKCbMtm7AAAAAAAA0H0MHDhQkvTEE0/ohhtu0PLly7VkyRLt3btX1dXV\nCg8P16RJk3TzzTfLxcVFkrRp0yZ99NFHio+PV0FBgYKDgzV+/HjdfffdCg4ObvG1ysvLtWDBAq1a\ntUopKSkqKSmRr6+vhg4dqiuvvFKXXnqpjMbW/7+mH3/8Ud999522bdum3NxclZWVycvLS+Hh4Ro7\ndqxuvPFGhYaGNjlu9uzZev3112U2m7VlyxZlZ2drzpw5WrNmjdLT02UymRQVFaVLL71U06dPt11r\nZ0hISNCiRYu0efNmpaeny2g0yt/fXyNGjNBll12mCRMmyGAwtHj8zz//rPnz52vnzp3Kzc1VSEiI\nJkyYoDvvvFMmk0lnnXWWJGnmzJmaMmWK7bhHH31Un332mSRp/fr1CgoKavb8f/rTn/Tjjz9Kkvbs\n2dPsmNTUVC1ZskSbNm1SamqqCgsL5eLiIn9/fw0fPlxTpkxRTExMk+OOHDmiCRMmSJLeeOMNBQUF\naebMmdq1a5fc3NwUFRWlp556SoMGDbIdc7L3jdVq1Y8//qgFCxZo7969ysvLU1hYmCZOnKg77rij\nxeM62olex8aNG3XTTTdJkj7//HNlZWXp1VdfVXJysjw9PTVw4ED961//UnV1dbvf29zcXC1YsEBr\n167VwYMHVV5eLn9/fw0bNkxXXnmlLrnkkmbvxbbWFBIS0hlvJQAAAAAADo/wDwAAAAAAaLfq6mrd\nddddWrNmTaPte/fu1b///W9t2LBB77//vt544w298cYbslqttjFpaWlasGCBVq9eraVLlzb7D/47\nduzQPffco8zMzEbbs7OztWbNGq1Zs0Yff/yxXnvttWYDRPn5+brnnnu0ZcuWJvsKCgpUUFCgxMRE\nzZ8/X2+++abGjh3b4rVu2bJFf/nLX1RQUNBo+/bt27V9+3YtW7ZMc+fOla+vb4vnOFH/+9//9Mor\nrzR6/6S69zAtLU0rVqzQuHHj9MYbb8jDw6PRmJqaGj3zzDNavHhxo+2HDx/WnDlz9PXXX2v27Nkd\nXvPvvfPOO3rttddUU1PTaHt1dbVKS0uVmpqqr776Stdff72efvrpFs+za9cuvf/++6qoqJAkVVZW\navfu3erVq5dtzMneNxUVFXrwwQe1atWqRtsPHjyod955R8uXL9dVV13V3reg3U72OuqtXbtW//3v\nf2WxWCRJVVVVSktLU3BwsNLS0mzj2vLefv3113ryySdVXFzc6DUyMzO1cuVKrVy5UmeddZZee+01\n+fv7n1BNAAAAAADgxBD+AQAAAAAA7fbOO+8oPz9f0dHRuummmxQeHq59+/Zp1qxZKigo0IYNG/Tn\nP/9Za9euVd++fXXbbbepf//+ysrK0rvvvqsdO3bYZv948cUXG5173759uvnmm1VWViZPT09Nnz5d\nY8eOldlsVlpamr766iutWrVK27Zt02233aZFixY1Cb7ce++9tuDPuHHjdNVVV6lHjx6qrq7WoUOH\nNG/ePO3bt09lZWV69NFH9cMPP8jJyanJdVZUVOjuu+9WaWmprr/+ek2YMEFeXl7atWuX3n77bWVl\nZWnPnj169dVX9cwzz3Toe7x582Zb8GfQoEG6+eabFRkZKYvFopSUFH344Yfav3+/NmzYoNdee02P\nPvpoo+NfeuklW/CnZ8+euvPOOzVo0CBlZ2dr4cKFWr9+ve67774Orfn3Pv30U82aNUuSFBoaqhtv\nvFFDhgyRp6enjh49qjVr1uirr76SxWLRggULNGHCBJ177rnNnuutt96Ss7OzHnzwQY0ePVqHDx9W\nXl6ePD09JXXMffPwww/bgj8DBw7UrbfeqsjISGVmZmrhwoWKi4vT22+/3YnvWMdcR73//ve/MpvN\nuu+++zR48GDt3btXLi4uTWbnOd57+/333+vBBx+UxWKRs7Ozrr32Wl144YXy9vZWSkqKPvnkE+3Y\nsUObN2/WTTfdpEWLFtmOPdGaAAAAAABA2xmsv/9fxwAAAAAAAFpQv+yXJMXExOjtt99utOTV2rVr\ndeedd9qeR0dHa+7cuY3CCRUVFZo4caIyMjLk6+urX375pdE//E+ePFlJSUkKDQ3Vxx9/rIiIiCZ1\nzJ8/X88++6wk6Y477tBDDz1k27dhwwbdcsstkqSLL75Ys2fPbhIsqK2t1fXXX6/4+Hjb+UaPHm3b\nX7/slyQ5OTnp7bff1vjx4xudIzU1VVdeeaXKy8vl5eWlX375Rc7Ozsd7C9vsscce07Jly+Tr66tV\nq1bJbDY32l9SUqKrrrpKhw8fltls1saNG20Bpt27d2vKlCmqra1Vv379NH/+/CYzEz3//POaO3eu\n7XlHL/tltVp1/vnnKyMjQ97e3lq2bFmjmWTqzZs3T88995wk6ZprrtHzzz9v29dw2S9Jeu655zR1\n6tRm6zjZ+yYuLk633nqrJGns2LF69913myzn9s9//lMff/yx7fncuXN19tlnN1vPiTrZ62i4xJYk\nffDBB8ddUk1q+b0tKSnRhAkTVFBQIHd3d7333nuN/q5IksVi0RNPPKGlS5dKkmbMmKF//OMf7a4J\nAAAAAACcmJYXOAcAAAAAAGjFI4880iQcMX78eLm7u9ue//3vf28yK4mbm5vtH/7rl+CqFxcXp6Sk\nJNv5mws+SNINN9ygMWPGSJIWLFig6upq274DBw6oV69ecnZ21j333NPsjCJOTk667LLLbM+zsrJa\nvM6LL764SfBHknr16qVx48ZJqgtIHDlypMVznIjs7GxJUkBAQJPgjyR5eXnp/vvv1y233KIHHnhA\nlZWVtn3Lli1TbW2tJOnpp59udkmyRx55RP379+/QmhtKS0uTj4+PzGazpkyZ0mzwR5ImTZpke/z7\nZa4acnNz0+TJk5vd1xH3zaJFiyTV3RsvvPBCk3u7/ty9e/duscaT1RHX0VBERESbQjatvbdLly61\n/R3961//2iT4I0lGo1FPPfWU+vTpI0lavHhxk2Xy2lsTAAAAAABoO8I/AAAAAACg3QICAhrNAlTP\nYDAoODhYkuTi4qJRo0a1eHy9srIy2+P6GWQkHTcgcN5550mqC94kJCTYtt9www1atWqVduzYoUGD\nBrV4fMOZbKqqqlocFxsb2+K+huGM0tLSVuttr759+0qSkpOT9Y9//ENpaWlNxlx++eV69NFHdcMN\nNzQKWdW/j2FhYTrrrLOaPb/JZNK1117boTU3FB4eruXLl2vLli165JFHWhxnNpvl5uYmqfXfw5Ah\nQ5oN5Egnf9/U1NQoLi5OkjRy5Ej16NGj2WOdnZ0bhZU6Wkfc/w0NHz68Ta/b2nu7fv16SXWhqNbu\nFxcXF9v+yspKbdq06aRqAgAAAAAAbWeydwEAAAAAAKD76dmzZ4v76kMEfn5+Mpma/08PDYMGDVck\nr5/1RJJtZpO2SE1N1ciRIxttMxqNtvNnZWUpNTVVBw8e1P79+5WQkGBb8kuqW7aoJa1da8PATf1M\nOx3lhhtu0NKlS1VaWqolS5ZoyZIl6t+/v8aNG6dx48ZpzJgxTWZVqq8jNTVVkloNP0nSmWee2aE1\nt6T+d1FSUqLU1FQdPnxYycnJSkpK0tatW1VRUSGp8b3we2FhYS3uO9n7JisrSyUlJZKO/55FR0e3\n+fzt1ZH3v9T6e9bWcfv27ZMkRUZGytvbu9XzjBgxwvZ47969uuSSS064JgAAAAAA0HaEfwAAAAAA\nQLt5enoed0xLwZ/W5Ofnn0g5KioqavTcarXqm2++0eLFixUfH99odqF69YGU42kuYFOv4ZJirQVX\nTkTv3r31/vvv6/HHH1dKSoqkuiDGvn379NFHH8nFxUUxMTG67rrrdP7559uOy8/Pt4WZ/Pz8Wn2N\nkJCQDq25OcnJyZozZ47WrVvX7LJezS3L1hwvL68W953sfZOTk2Pb1twSaQ0FBgae0Gu1RUfd//Va\ne8/aOq5++S5/f//jnqfhjF4tLfvV1poAAAAAAEDbEf4BAAAAAADt5uTk1CnnrampkVQXWpkzZ06b\nj2sYYqmsrNS9997baAklg8Gg8PBw9e3bV4MHD9bIkSNVUFCghx9+uMNq7wxnnnmmVqxYoY0bN2rl\nypX66aefdPjwYUl1S2StWbNGa9as0aRJk/TSSy/JaDS2OdQk1S1jdbJamzXp008/1ZNPPmn7vUp1\n4Zq+ffuqf//+Gj58uGJiYnTppZc2G9Bqq5O9b9oaQJJOLNTWVh1x/zfUnutqSXtCbQ3vhZbuw46o\nCQAAAAAANEb4BwAAAAAAdBn1s66UlZVp4MCB7Qqy1HvttddswZ+hQ4fqL3/5i8aMGdNkxpFly5ad\ndL2ngtFo1NixYzV27FhJ0pEjR/Tzzz9rzZo1Wrt2rWpqarR8+XLFxMRo8uTJ8vb2lpOTk2pra5Wb\nm9vquQsLC1vc19ZZjYqLi5vdvmfPHlvwx9PTU3/961918cUXKzw8vNE4i8ViW/brRJ3sfRMcHGx7\nnJeX1+rY1t6zk9UR939H8/HxUVZW1nHfF6nxDEo+Pj6dWRYAAAAAAGjA/v8FAQAAAAAA4Jj+/ftL\nqpu9JykpqdWx69at0wcffKDvvvvOFkyora3VwoULJUne3t766KOPdOGFFza71NDRo0c7uPqOVVJS\noh07dig1NbXR9vDwcF177bV688039dprr9m21weeTCaTBg4cKEnauXNnqzPztPYeN5zdqbVwTnp6\nerPbFy1aZJvJ5sknn9Qtt9zSJPgjSRkZGa3W2BYne98EBgbagjcJCQmtHn+885+Mk72OzlB/Lx04\ncKDF5cXqxcfH2x737du302oCAAAAAACNEf4BAAAAAABdRmxsrO3xJ5980uK42tpaPfPMM3rppZd0\n7733qry8XFLdrC0lJSWSpIiIiGZDP5JUXV2tb7/9ttH5upL09HSNGjVK1157rWbPnt3iuHPPPdc2\nO0xlZaVt+/nnny+pbiaWNWvWtHj8F1980eI+s9lse5yWltbsmD179igjI6PZfYcOHbI9PuOMM1p8\nneXLl9seN1werD1O9r5xcnLShAkTJEk7duzQnj17mj3earU2qrejnex1dGZNtbW1Wrp0aYvjqqqq\n9Omnn0qqC6CdffbZnVYTAAAAAABojPAPAAAAAADoMi666CL16tVLkvTpp5+2GLSYOXOmjhw5Ikma\nMGGCevbsKakusGIy1a1yvn///mZn96mqqtJTTz2lffv2NdrWlYSFhWnQoEGSpG+++Ubbtm1rdtyK\nFStss+ZER0fbtl9//fVyd3eXJD377LPNhneWLl1qmy2oOfUzvkjSvHnzmuwvLS3VM8880+Lxfn5+\ntsfr1q1rdszatWv1xhtv2J6f6O/hZO8bSZoxY4ZttqNHHnmk2Vlu3nnnHSUmJp5QjW3REdfR0a6+\n+mp5e3tLkmbPnt3svWixWPTss8/q4MGDkqTJkyfL39+/02oCAAAAAACNmexdAAAAAAAAQD2TyaSX\nXnpJN998s6qrq/Xwww9rzZo1uvzyyxUUFKS0tDQtWrRIv/zyiyTJx8dHjz/+uO14Nzc3XXDBBVq5\ncqUqKio0Y8YM3X777RowYICqqqq0e/duLV68WCkpKY1et7i4+JReZ1vcd999uuuuu1RVVaU//vGP\nuu666zRmzBgFBgYqJydH69ats8204u/vr+nTp9uODQ4O1pNPPqnHHntMGRkZmjJliu644w6NHDlS\n5eXlWrFihZYtW9bq61944YXy9vZWUVGRVq1apbvvvltTp06Vt7e3kpKSNHfuXB08eFARERE6fPhw\nk+MvvfRSffnll5KkV199VdnZ2YqJiZGXl5fS0tL03XffaeXKlbJarbZj6mdtaq+TvW8kafDgwbr9\n9tv1zjvvKCkpSZMnT9Ydd9yhIUOGKD8/X8uWLdN3330nDw8PlZWVnVCdp+I6OprZbNY///lP3Xvv\nvSorK9OMGTM0bdo0XXDBBTKbzTpw4IA++eQT25Jfffr06fSaAAAAAABAY4R/AAAAAABAlzJq1Ci9\n++67euCBB1RQUKCvv/5aX3/9dZNxoaGheuONNxQeHt5o+xNPPKGkpCQdOXJER44c0dNPP93kWC8v\nLz322GN68sknVVtb22gWoK7iwgsv1N///nfNmjVLFRUV+vDDD/Xhhx82GRcaGqo333xTvr6+jbZP\nmTJFFRUVeuGFF1RQUKCXX3650X6z2axrrrlGc+bMafb1vb29NXPmTN1///2qrq7W6tWrtXr16kZj\npk+frqioKD333HNNjp8wYYKmTZumRYsWqbq6WnPmzGn2taZMmaLCwkKtXr1aaWlpKi8vt81a1B4n\ne99I0gMPPKCamhq9//77SktLa3Lv+Pr66pFHHtFjjz3W7vraqiOuo6NNnDhRs2bN0j/+8Q+VlZVp\n3rx5zc4GFRMTo3/961/y9PTs9JoAAAAAAMBvCP8AAAAAAIAuZ9y4cVq9erUWLFigH3/8UcnJySou\nLpaHh4f69eunCRMm6LrrrpOXl1eTY0NCQvTZZ5/pgw8+0OrVq3X48GHV1NTIy8tLkZGRio2N1bRp\n0xQUFKRly5Zp69atWrduncrKyuTh4WGHq23Z7bffrtjYWC1YsEBbt27V0aNHVVlZKV9fX0VFRWnC\nhAmaOnVqi2GZ6dOn65xzztEHH3yguLg4ZWdny9/fX+eff77uuusu22wtLbnooou0YsUKvf/++4qL\ni1NWVpbMZrOio6M1ffp0nXfeec2GQOo9++yzOuecc7R06VLt3LlTxcXFcnV1VWhoqIYNG6Zrr71W\no0eP1pIlS7R69WpVV1dr5cqVmjRp0gm9Xydz30iSwWDQww8/rIkTJ+qjjz5SfHy8srKyFBAQoPHj\nx+vuu+9Wdnb2CdV2Kq+jM1x++eU6++yzNW/ePK1bt06pqamqrKxUaGioBg8erClTpmj8+PEyGAyn\nrCYAAAAAAFDHYG04tzIAAAAAAABOG99++63uu+8+SdLMmTM1ZcoUO1cEAAAAAACA9jLauwAAAAAA\nAAAAAAAAAAAAJ4bwDwAAAAAAAAAAAAAAANBNmexdAAAAAAAAgKMoLS3V4cOHT/o8ERER8vT07ICK\n0NmqqqqUnJx80ucJCwuTr69vB1QEAAAAAABON4R/AAAAAAAAOkhiYqJuuummkz7P3LlzdfbZZ3dA\nRehsWVlZmjx58kmfZ+bMmZoyZUoHVAQAAAAAAE43LPsFAAAAAAAAAAAAAAAAdFMGq9VqtXcR9pad\nXWzvEvA7fn4eys8vs3cZANDh6G8AHBX9DYAjo8cBcFT0NwCOiv4GwFHR3wAEBZmb3c7MP+iSTCYn\ne5cAAJ2C/gbAUdHfADgyehwAR0V/A+Co6G8AHBX9DUBLCP8AAAAAAAAAAAAAAAAA3RThHwAAAAAA\nAAAAAAAAAKCbIvwDAAAAAAAAAAAAAAAAdFOEfwAAAAAAAAAAAAAAAIBuivAPAAAAAAAAAAAAAAAA\n0E0R/gEAAAAAAAAAAAAAAAC6KcI/AAAAAAAAAAAAAAAAQDdF+AcAAAAAAAAAAAAAAADopjot/GOx\nWPTkk09q2rRpmjFjhg4dOtRo/w8//KCrr75a06ZN0+LFi1s95tChQ7r++us1ffp0PfXUU7JYLLbz\n5OXlaeLEiaqsrJQkFRcX689//rNuvPFGTZs2Tdu2beusSwQAAAAAAAAAAAAAAADsqtPCP6tWrVJV\nVZUWLVqkBx98UC+++KJtX3V1tWbOnKkPPvhAH3/8sRYtWqScnJwWj5k5c6buv/9+ffLJJ7JarVq9\nerUk6aefftKtt96q7Oxs27nnzJmjc845R/PmzdPMmTP17LPPdtYlAgAAAAAAAAAAAAAAAHbVaeGf\nrVu36txzz5UkjRgxQomJibZ9ycnJioiIkI+Pj1xcXDRq1Cht3ry5xWN27typMWPGSJLGjx+vDRs2\n1BVvNGrOnDny9fW1nfuPf/yjrrvuOklSbW2tXF1dO+sSAQAAAAAAAAAAAAAAALsyddaJS0pK5OXl\nZXvu5OSkmpoamUwmlZSUyGw22/Z5enqqpKSkxWOsVqsMBoNtbHFxsSQpJiamyet6e3tLkrKzs/X3\nv/9djz/++HFr9fPzkMnkdGIXik4TFGQ+/iAA6IbobwAcFf0NgCOjxwFwVPQ3AI6K/gbAUdHfADSn\n08I/Xl5eKi0ttT23WCwymUzN7istLZXZbG7xGKPR2GhsfcCnJXv27NHf/vY3Pfzww7YZg1qTn1/W\n5uvCqREUZFZ2drG9ywCADkd/A+Co6G8AHBk9DoCjor8BcFT0NwCOiv4GoKUAYKct+zVy5EitW7dO\nkrR9+3YNGDDAti8qKkqHDh1SQUGBqqqqtGXLFp155pktHjNkyBBt3LhRkrRu3TqNHj26xdfdv3+/\n7rvvPr3yyis677zzOuvyAAAAAAAAAAAAAAAAALvrtJl/Lr74YsXFxem6666T1WrVCy+8oC+//FJl\nZWWaNm2aHn30Ud12222yWq26+uqrFRIS0uwxkvTII4/oiSee0KxZs9S3b19NnDixxdd95ZVXVFVV\npeeff15S3SxDb731VmddJgAAAAAAAAAAAAAAAGA3BqvVarV3EfbG1GhdD1PWAXBU9DcAjor+BsCR\n0eMAOCr6GwBHRX8D4KjobwBO+bJfAAAAAAAAAAAAAAAAADoX4R8AAAAAAAAAAAAAAACgmyL8AwAA\nAAAAAAAAAAAAAHRThH8AAAAAAAAAAAAAAACAborwDwAAAAAAAAAAAAAAANBNEf4BAAAAAAAAAAAA\nAAAAuinCP+hyvtpwUA/8Z60KSyrtXQoAAAAAAAAAAAAAAECXRvgHXY6ri5P2pxboP0t2qLyyxt7l\nAAAAAAAAAAAAAAAAdFmEf9DlXDQqXBPP6a1DmcV66/NE1dRa7F0SAAAAAAAAAAAAAABAl0T4B12O\nwWDQXVOGaVhUgBIP5Omjb3fLarW26dj9+/d1cnWtu+eeOxUbO1oXXjjOrnUAAAAAAAAAAAAAAIDT\nA+EfdElOTkbd9YehigwzKy4hQ5//dKDV8SUlJfrPf/6t22678RRVCAAAAAAAAAAAAAAAYH+Ef9Bl\nubo46b5rhivY111fbjioH7entTh29uxZWrp0oWpra09hhQAAAAAAAAAAAAAAAPZlsncBQGu8PV30\nwLThen7uVn383R75erlqRL/AJuMsFosdqmvq9dfftXcJAAAAAAAAAAAAAADgNMLMP+jyQvw8dN+1\nw+TsZNTbXyQq5WiRvUsCAAAAAAAAAAAAAADoEgj/oFuI6uGjP08equoai/6zJF6Z+WX2LgkAAAAA\nAAAAAAAAAMDuWPYL3caIfoGaMXGg5n67R68uitfjM0ZpycI5mjPnf43GxcaOrhs/YqRef/1dPf/8\n0/rmm6/Ur98AvffeXP3vf2/p22+/UnFxsQICgnTBBRN099332o6vrKzUd999rZ9/jtO+fXtUWFig\nmpoamc3eioyMUkxMrK688iq5u7s3qfGee+7U9u2/ysXFRT/8sKHZuu6992+aOnW61q79QV9++bn2\n7t2j4uIi+fn5a+TI0Zo69XoNGDCoo98+AAAAAAAAAAAAAADggAj/oFs5f0RP5RVV6qsNB/XfpfEK\nqbW26/jnnntSq1d/b3uenp4mNzc32/M9e3brscceVFZWZpNj8/JylZeXq61bN2nZsqWaPfttBQUF\nt/saamsteuaZf2jlym8bbc/KytS3367Q999/o4ceekyTJl3V7nMDAAAAAAAAAAAAAIDTC+EfdDtX\nnRup/OIKxSVkyDl0iN57f57mfPCO4uJ+kiTNmTNfkuTu7tHouJSU/dq/f6+io4drxoxb5Obmpri4\nn3TZZZMkSYWFBXrggb+oqKhQTk5OuuyyKzVuXKz8/AJUXFyoffv2avHiT1RQUKAjRw7r9df/o2ee\neaHd9S9c+LFyc3PVp0+kpk6drqio/iouLtLnX3yu9T/9IIvFoldffVljxoxVaGjoSb5bAAAAAAAA\nAAAAAADAkRH+QbdjMBh08/8NUmFJlRIP5OmXFMls9rbt799/YLPHWSwW9ewZrv/85w25utbN9jNy\n5Gjb/kWLPlFRUaEk6S9/uU9Tp05vdPzYsbG69NIrNGPGVJWUlOinn9aqpqZGJlP7/hrl5uZq1Kgx\n+te/XpWrq6skadu+bJUEXyGf3mUqPPSLqqur9K835+m+u/+k3qHmdp0fAAAAAAAAAAAAAACcPoz2\nLgA4ESYno+6aPFS9Q8xaF39UR7JL2nTcpZdeYQv+/F5OTrYCA4MUEBCgKVOmNjsmKChYZ545SpJU\nVVVpCwu11/33PyRXV1fVWixa8uN+zf40QdW1Fl0/9bfXTdq9W898uFlPz9mkNb8eUVlFzQm9FgAA\nAAAAAAAAAAAAcFzM/HMKLf5hvzbvzrJ3GafUWYOCNfXCfp1ybndXk+6/dpie/3irEre3LfxzxhnR\nLe57/PGnJNXNEGQ0tpyL8/cPsD2uqqpuY7W/CQoKVmRkXxWUVOrtL3Zqb2qBgv3cdffkoQo0G/X2\ny3XjegcVre1KAAAgAElEQVS5aki/QO1IztXH3+/VojX7ddagYI0f3kP9evrIYDC0+7UBAAAAAAAA\nAAAAAIBjIfyDbs3Hy1UPTB2uP61v2yRWISEhxx1TH/ypqalRRka6jh5NU2rqISUn79fOnQlKTt5v\nG2u1Wtpdc2homHYfytfby3eqqLRKowYE6ZbLBsvDzSSr1Wob5+nmpHuvGab84krFJaRrXfxRxSVk\nKC4hQz0CPTV+WJjGDg2V2cOl3TUAAAAAAAAAAAAAAADHQPjnFJp6Yb9OmwXndBYW4KnBvf0Ud6ju\n+YH0IkWGeTc71sPDq9VzVVRUaNmyJVq16lslJ+9XbW1tkzFGo1EWS/tDP/VKKg16eeE2GQ0GXXdh\nP118Vi/bLD4NZ/OpDwL5mV11xbg+umxsb+0+lK918Uf1695sLfxhv5auTdbIAUEaP7yHBvX2k5HZ\ngAAAAAAAAAAAAAAAOK0Q/oFD8Pb8bfab/y6J1+M3jVawr3uTca1lY44eTdPf/naPjhxJtW1zdnZW\nr14R6t07UgMHDtKIEaP03Xdf67PPlpxwrZn5ZYr2ctVdfxiqfuE+bT7OaDBoSB9/Denjr+KyKv2c\nmKG18Ue1KSlLm5KyFOTrpnOH9VDssDD5ermecH0AAAAAAAAAAAAAAKD7IPwDh1NUVq1XF23X4zNG\ntWtJrKef/n+24M9FF03UNddM06BBQ2QyNf5r8sUXn7a7pgPpRbbHXu7OeuqWs+R9Est1mT1cdMmY\nCF18Vi/tTyvUuvij2pyUpWXrUvT5Twc0LCpA40f0UHRffzkZ27YkGgAAAAAAAAAAAAAA6H4I/8Dh\nXHpOhL755bBeW7pDD11/ZpuO2b17l3btSpQkjRw5Wk8//XyLYzMzM9pci9Vq1Y/b0rRg9T7btj6h\n5pMK/jRkMBjUP9xX/cN9df2EAdq4q242oO37c7R9f478zK6KiQ7T+GFhCmxmJiQAAAAAAAAAAAAA\nANC9Ef6BQzA0WM/r6vOilF9cqV92Zurd5TtltVqPe3zDpb4GDhzc4rj09KNKSIi3Pa+trW1xbEVV\njeZ+t0e/7MyUl7tzw2qPW8+J8HAz6YKR4bpgZLgOZRRrbfxR/bIzQ19tOKgVGw5qSKS/xg/voTP7\nB8rkxGxAAAAAAAAAAAAAAAA4AsI/cAguLr/NpFNRXq5bLxuswpIqbduXIx0tauXIOj4+vrbHW7Zs\nVE1NTZPlvnJzc/TEE4+qurratq2qqqrZ81mt0nMfbVF6bpmienjrrslDNWlJe6/qxPUONeum0IGa\ndkE/bd6dpXXxR7XzQJ52HsiT2cNZMUPDdO7wMIUFeJ66ogAAAAAAAAAAAAAAQIcj/AOHEBAQaHv8\n7rtv6P/+73JNHOqi4jIvbdledtzjhw0boYCAQOXm5mjfvr267767NGXKVIWGhqmoqFDbt/+qFSu+\nUEFBQaPjSktLmj1fTa1F6bllumh0uKZe0M9uM+24ujgpdliYYoeFKS2nVD/FH9WGxAx9u+mwvt10\nWAPCfTR+RA+NHhgsF2cnu9QI+7BarcrKL5evl6tcXfjdAwAAAAAAAAAAAEB3RfgHDiE2drw+/PA9\n1dbWaunSRVq6dJFCQkL13oef6pYfjx9scHV11RNPPKtHHnlAlZWVio/fpvj4bU3G9eoVoSuu+IPe\nemu2JOnAgRRFRw+XJFXXWJSZX24be9fkoTprUHAHXeHJ6xnoqesm9NfV50Vp275srd1+VEmH8rX3\nSKHmr9ynsWeEaHi/QPUK9pKPp0ujpdTgOPKKKvTzzgxtSMxQem6ZTE5GDertq+FRgRoWFaAgX3d7\nlwgAAAAAAAAAAAAAaAfCP3AI/fsP1IsvvqKPPvpAycn7ZbHUymQyyd3ZqjP6+Gvtgbpxew4XaFyD\nWYIaGj16jObMma8FC+Zpy5bNysnJklS3JFhkZF9dcMFFmjjxUtXW1mrOnP+poqJCP/ywUpMmXaWc\ngnK99UWiCoorJUkmJ2OXCv405GwyaszgEI0ZHKKsgnL9FH9U6xPS9cOvafrh1zRJkpe7s3oFe6lX\nsJfCg+p+9gj0kLOJGWK6o8qqWv26N1txielKOpgvq+ru0TP7Byq7oEKJKXlKTMnT/JVSj0BPDYsK\n0PCoAEX19LHbrFUAAAAAAAAAAAAAgLYxWK1Wq72LsLfs7GJ7l4DfCQoyd+jvZc/hfL2yaLtMTkY9\nesNIRYSYO+zc8ftz9N5Xu1RaUaNxQ0M1Y+JAuXazJbRqLRbtPJCnlKNFOpJdqtSsYmUXVDQaYzQY\nFBrgofAgz0bBID+zK7MEdUEWq1V7DxdoQ2KGNu/JUmVVrSSpX08fjYsO1ZhBwfJwc5Yk5RZWaEdK\nrnbsz1HSoXxV1VgkSR6uJg3t66/hUYEa2tdfZg8Xu12PI+no/gYAXQX9DYAjo8cBcFT0NwCOiv4G\nwFHR3wAEBTWfdSD8I8I/XVFnfHBt3p2ltz9PlLeni/7fTaMU6HNyyxvVWiz6/KcDWvHzIZmcjLrh\n4v4aP7yHwwRhyitrlJZTqtSsEh3JKlFqdt3PimMhknqebibb7EDhwfWzBHl2uwCUo8jML9OGhAz9\nvDNDOYV1Aa4Ab1eNHRqmmKGhCvH3aPX4qupa7T6cr/jkujBQblHdbFYGSX17etuWB+sV7OUw9/qp\nxhdzAI6K/gbAkdHjADgq+hsAR0V/A+Co6G8ACP+0ggbZ9XTWB9f3m1O1cPU+hQV46LEbR8nL3fmE\nzlNYWqV3vkjU7sMFCvJ1092To9U7tONmE+qqLFarcgsr6sJADQJBWfnlathIDAYpxM/DFgbqFeSl\n8GBPBXi7ERjpBGUVNdq8O1NxiRnaf6RQkuTq7KTRg4IUMzRMAyJ8ZTyB991qtSotp1Q7knMVvz9H\n+9MKVf+J4Wd21fCoAA2LCtTgPn6EvdqBL+YAHBX9DYAjo8cBcFT0NwCOiv4GwFHR3wAQ/mkFDbLr\n6cwProWr9+n7zanqH+6jh64bIWdT+0ILe1ML9NYXiSosqdKZ/QN12+WDbcsnna4qqupmCTqSVaIj\nWXXLhqVml6q8sqbROHdXk3oFeSq8wSxB4YFecnUhONJeFotVOw/mKS4hXdv25ai6xiKDpEG9/RQT\nHapRA4I7/H0tKa9WYkqudiTnKiElV6UVdb9fZ5NRgyL8NCwqQMOjAhToe3Kzajk6vpgDcFT0NwCO\njB4HwFHR3wA4KvobAEdFfwNA+KcVNMiupzM/uCxWq95dvlObkrI0amCQ7vrDUBmNx58VxWq16ttN\nh/XpjymSpGvOj9LEMb2YyaYFVqtVeUWVjWYIOpJdooy8MjXsOgZJQX7u6h/uc1Kz1JwujmSXaENi\n3bJehSVVkqQQfw/FDA3V2DNCFeDjdkrqqLVYlJxWpB3JudqRnKMj2aW2fT0DPeuCQP0CFdXTW05G\n4ympqbvgizkAR0V/A+DI6HEAHBX9DYCjor8BcFT0NwCEf1pBg+x6OvuDq7rGolmLtmtPaoEuGhWu\n6y/q32qIp6yiWu+vSNK2fTny8XLRXX8YqgG9fDutPkdWWV2ro8dmCUo9FghKzSqxzSIT6OOmmOgw\nxQwNZQaZY4rLqvTLrkxtSMjQocy6vxceriaNGRKimKGh6tvD2+4htJzCciUk5yo+OVdJh/JVXWOR\nJHm6mTS0b4CGRQUoum/ACS+150j4Yg7AUdHfADgyehwAR0V/A+Co6G8AHBX9DQDhn1bQILueU/HB\nVVZRrZnzflVaTqmmXtBP/3d2RLPjDmUU683PE5RdUKFBEb760x+GysfTpVNrO91YrFbtSy3Q+h3p\n2rwnS1XVdcGRQRG+iokO0+iBHb+EVVdXU2tR/P5cbUhM147kXNVarDIaDIru66+Y6DAN7xfQ7iXr\nTpXK6lrtPpSv+GOzAuUVVUqSDAYpqqePhkcFaFhUoMKDPO0eWrIHvpgDcFT0NwCOjB4HwFHR3wA4\nKvobAEdFfwNA+KcVNMiu51R9cOUVVej5j7cqv7hSd04aonOGhNr2Wa1WrYs/qvkr96mm1qIrxvXW\n5Ni+bVoiDCeuvLJGW/dka31CuvamFkiSXF2cdNagYMVGh6l/uI/DBkasVqsOZhRrQ0KGNiZlqqS8\nWpLUK9hLMUNDdfYZod0ueGa1WpWWXar45BzFJ+cqOa3Qtuyb0WCQh5tJnu7O8nIzycPNWZ7uJnm6\nOcvT7dhP2/PfHnu4mWRy6r5LifHFHICjor8BcGT0OACOiv4GwFHR3wA4KvobAMI/raBBdj2n8oPr\nSFaJZs7fqqpqi/42bYQG9/ZTZVWtPv5+jzYkZsjTzaTbrxii4f0CT0k9+E1Wfpk2JGYoLiFDuUUV\nkqRgX3fFRIdq3NAwBfi42bnCjpFfXKlfdmYoLjFDR3NKJUneHs4654xQjRsaqoiQ5ht4d1RSXq2E\nlFwlpOQqu6BcZRU1Ki2vVmlFjWotbf84cnVx+i0wdCxA5Nnosel3z+tCQ24uTnYPj/HFHICjor8B\ncGT0OACOiv4GwFHR3wA4KvobAMI/raBBdj2n+oMr6VC+Zi3aLhdno269bLA+X39Aadmligwz667J\nQxXo437KakFTFqtVew7la31ChrbuyVJVjUUGSYP7+CkmOkwjBwTJ1blrLoHVnIqqGh1ML9aB9CLt\nOpSvXQfzZLVKJieDRvQL1LjoMA2N9O/Ws9u0l9VqVWV1rUrLa1RaURcGqgsFVausokYlFdUqLa9R\nWaN9dWMrqmrb/DpORoM83UzyNbsqItisiBAvRYSY1SvYS+6upk68wt/wxRyAo6K/AXBk9DgAjor+\nBsBR0d8AOCr6GwDCP62gQXY99vjg+mVXht5dvsv2/MKRPTXtwv5yNp0+AYzuoLyyRpt3ZykuIV37\njhRKktxdnXTWoBDFRocpqqe33Wd2aajWYlFadqkOpBcp5WiRUtKLdDSnVA07b1QPb42LDtNZg4Ll\n5e5sv2K7qZpai8oqGwSCyhsGhuoe2wJFFdUqKa9RXlGFqmsstnMYJAX7uSsipC4Q1DvErIgQs7w7\nYZk1vpgDcFT0NwCOjB4HwFHR3wA4KvobAEdFfwPQUvjn1ExzAHQD5wwJVXFZtb7deFjXXhClc4aE\n2rskNMPd1aTxw3to/PAeyswrU1xiuuISMrQu/qjWxR9ViL+HYqNDNfaMUPl7n9plwaxWq/KKKpWS\nXqQDR4uUcrRQBzOLVVX9W8jExdmo/j191LeHjyJ7eCuqh/cpr9PRmJyM8vZwkbdH24M6tRaLMnLL\ndDizRIcyi3U4s1iHM0u0eXeWNu/Oso3z9XI5Fggyq/exWYICfdy6VMDseKxWq8ora5RfXKnKaov6\nhJplNHaf+gEAAAAAAAAAAAC0jpl/xMw/XRGpVbSHxWJV0qF8xSWka+vebFXXWGQwSGf08VdMdJjO\n7B8ol05YFqysoloHMoqVcvRY2Ce9SEWlVbb9BoPUM9BTkWHe6tvDW5Fh3uoZ5CknI7NJdUVWq1W5\nhRU6lFlyLAxUrMNZJcovrmw0zsPVZFsurP5nWIBHm3+vHdnfLFarSsqqlV9cqbziChUUVyqvuFL5\nv/tTWf3b0mgjBwTpT5POYFYzAB2O728AHBk9DoCjor8BcFT0NwCOiv4GgJl/ADgso9GgMyL9dUak\nv8oqarRpd6biEtKVeCBPiQfy5O5q0tmDgxUzLEx9w05sWbCaWotSs0psy3cdSC9Sem5ZozF+ZleN\nGhikvsfCPhEhZrm70ma7C4PBoEBfdwX6umvUwCDb9qKyKtvMQPU/9xwu0O7DBbYxziajwoM81Sv4\ntxmCwoO95HoSobNai0WFJVW2AE9dqKeiUainoKRSNbUtZ3i93J0V4ucuX7Or/M2uOpJdql/3Zmv2\nsh2656roTgnFAQAAAAAAAAAAADi1mPlHzPzTFZFaRUdIzy1VXEKGNiSmq6CkbkaesAAPxUSHaewZ\nofIzuzZ7nNVqVXZBuVLqgz5Hi3Qos0Q1tb8t3+Xm4qTIMO9Gs/q0dD44noqqGh3JKm20ZFhaTkmj\nII7BIIX6e6j3sWXD6mcJiozw19H0gkahnqYz9lSosLRKLX1CGwySr5erfL3qQj1+v//j7SY/Lxc5\nmxqHe6qqa/Xm54nakZyrQRG++uvVwwioAegwfH8D4MjocQAcFf0NgKOivwFwVPQ3AC3N/EP4R4R/\nuiI+uNCRLBardh3M0/qEdP26N0c1tXXLgg2NDFBMdKgG9PLV4czGs/qUlFfbjjcaDAoP9lTfHj6K\nDDOrbw8fhfl7yGhs/wxCcFw1tRYdzSltMENQ3bJhFVW1jcZ5uplUWlHT4nlMTobfQj3ebvLzahru\n8fFyOeHl42pqLXpn+U5t3ZOtqB7eun/qcHm6OZ/QuQCgIb6/AXBk9DgAjor+BsBR0d8AOCr6GwDC\nP62gQXY9fHChs5RWVGtTUpbW70jXgfSiZscE+ripbw9v9Q3zVuSx5btOZvkmnL4sx2aRqg8EHcos\nVlFZtTxdTcfCPa7yMzcI+Hi7yuzufEJL07VHrcWiD1bs1s87MxQR7KW/XTdC3h4unfqaABwf398A\nODJ6HABHRX8D4KjobwAcFf0NQEvhH9b6AHBa8XRz1gVn9tQFZ/ZUWk6p4hLSlZFbpl7BXrblu7w9\nCUGgYxgNBoX4eSjEz0NnDQqW1DW+mDsZjbrtisFydXHSj9vS9NL8X/XQdWeydB0AAAAAAAAAAADQ\nDRH+AXDa6hnoqakX9LN3GYBdGA0GzbhkgFxMRn2/OVUvzt+qv193pgJ93e1dGgAAAAAAAAAAAIB2\nMNq7AAAAYB8Gg0HTLuynSTF9lF1QoRc/+VUZeWX2LgsAAAAAAAAAAABAOzDzDwAApzGDwaDJ5/aV\nq7OTlvyYrBfn/6qHpo1QeLCXvUvrEFarVVv2ZOtQRrEsVqssFqtqLQ1+Htv2++cNx1itzR/T+hjZ\nHnu5m3T2kBDFRoepZ5BjvK8AAAAAAAAAAADoOgj/wKHs379P/fr1t3cZzUpPPyofHx95eHjauxQA\naOLSc3rLxdlJ81fu1Uuf/Kq/TRuhyDBve5d1UvKLK/XRt7u1Izn3pM9lMEhORoOMRkPdT0Pd44bP\nXZyNv41psD8zr0zfbUrVd5tSFRlmVmx0mMYMCZGnm3MHXCUAAAAAAAAAAABOd4R/4BBKSkr03ntv\n67PPlmjt2o32LqeRqqoqzZ//kebN+1Dz5i0h/AOgy5owKlyuzk6a802SXl6wTfdfO1wDevnau6x2\ns1qt+mVnpuav3KuyyhoN6eOnK8b2kYuzky2cYzQaZGwU6DE2s61+nEEGg+GE66musSh+f47WJ6Qr\nISVXB9KLtWD1fo0cEKjY6DAN6eMvo/HEzw8AAAAAAAAAAIDTG+EfOITZs2dpxYrl9i6jWZ98Mlfv\nv/+OvcsAgDaJHRYmF2ej/vflLs1avF1/vXqYzujjb++y2qywtEpzv92tbfty5OrspBkTB+r8ET1O\nKrxzspxNRo0eFKzRg4KVX1ypn3dmaP2OdG1KytKmpCz5mV01bmioYqPDFOLvYbc6AQAAAAAAAAAA\n0D0R/oFDsFgs9i6hRbW1tfYuAQDaZczgELmYnPTm5wn675IdunvyUI3oH2jvso5rU1Km5n2/VyXl\n1RrYy1e3XD5Ywb7u9i6rET+zqy47p7cuPTtCKUeLtD4hXZuSMrXi50Na8fMh9Qv3UWx0mM4aFCx3\nV76mAQAAAAAAAAAA4Pj4VyUAANDEiP6Buu/a4Zr96Q698VmC7rhyiMYMDrF3Wc0qLqvSvO/3avPu\nLLmYjLr+ov6aMCpcRjvO9nM8BoNBUT19FNXTR9dN6K9f92YrLiFdSQfztf9IoT5ZtVejBwYrNjpM\nAyJ8u/S1AAAAAAAAAAAAwL4I/wAAgGad0cdff5s6Qv9dGq93lu9UVbVFscPC7F1WI7/uzdbcb3er\nqKxa/Xr66NbLByu0my2d5erspLFnhGrsGaHKKSzXhsQMxSWka0NihjYkZijQx02x0WEaNzRUgV1s\nJiMAAAAAAAAAAADYn8FqtVrtXYS9ZWcX27sE/E5QkLlNv5f3339Hc+b8r9l9I0aM1Ouvv9to28aN\nP+vrr5crMTFB+fl5cnFxVXh4L40dG6Orr54mX1/fFl8rOztLy5Yt0caNPys19bBqaqrl7e2jqKj+\niok5V1dcMUmurm628V9//aVeeOGZZs8VGhqmpUu/PO71AXA8be1vXcmB9CLNWrRdpRU1uvGSAbpw\nZLi9S1JpRbU+WblXP+/MlMnJqCnj++qSs3rJaHSMGXIsVqv2pRZo/Y50bd6TparquuUtB/f2U2x0\nmEYODJKrs5OdqwQa6479DQDaih4HwFHR3wA4KvobAEdFfwMQFGRudjsz/+C0UF5erueee1Lr1q1p\ntL2qqkq7d+/S7t27tHjxJ3riiecUGzu+yfFbt27W448/pNLS0kbbc3NzlJubo02bftaCBR9r1qzX\nFRHRu1OvBQBOtcgwbz0yfaT+vWi75n2/V5XVtbr0bPv1uh3JOZrzzW4VllQpMsys2y4foh6Bnnar\npzMYDQYNjPDTwAg/Tb94gLbsyVLcjnQlHcpX0qF8ua900lmDQhQbHaaont4ysCxYl1FWUaP03FLV\nWqyyWKyqtR77abHKeuynxWr9bf+x57bHlt89/v3YY+e0/u55/X53V5PGDgnRoN5+3BcAAAAAAAAA\nAJwmmPlHzPzTFbU1tZqbm6O8vFy9997biov7SZI0Z858SZK7u4fCw3vJYrHogQf+oq1bN0uSxo07\nVxMnXqawsDCVlZVp69bN+uyzJSopKZGTk5NeeWW2Ro8eY3uN4uJiTZs2WUVFhfL19dMNN9yswYOH\nyMXFRZmZGVqxYrl++WWDJGngwMF67725MhgMKioqVGZmhj7//FN98cUySdLLL/9HgYFBMpmcFRnZ\nt0PfMwDdQ3dO5WfklenlBduUX1ypSTF99IfYyFMaLiirqNHCH/Zp/Y50ORkN+kNspC49J0JORuMp\nq8HeMvPLFJeQrriEDOUXV0qSQv09FBMdqnFDw+RndrVzhae3hJRcvffVLhWXVdu7FIX4e+i84T0U\nOyxMXu7Op+Q1u3N/A4DjoccBcFT0NwCOiv4GwFHR3wAw8w8cUkBAoAICAuXt7WPb1r//wEZjli5d\naAv+PPTQY5o8+epG+0ePHqMrrviD7r77NuXm5uqFF57R4sVfyGSq++uxfv1aFRUVSpJeeOFlDRs2\nwnbskCFDdcEFF+mJJx7VmjWrtGdPkvbs2a1BgwbL29tH3t4+8vcPsI3v06evwsJ6dOybAACnSKi/\nhx67YaReXrhNy+MOqrK6VlMv6HdKAkA7D+RpzjdJyiuqVESIl26/fIjCg706/XW7mhA/D00ZH6XJ\nsX2VdChf6xPStXVPtj5dm6Jl61I0NDJAscPCNKJfoJxNp08oyt5qai1ati5F3248LJOTQReO7CkP\nN5OMBoOMRoOcjMd+/u55k/0NtjfZ1sL2+nPW/8nILdPa7WnavDtbi9fs17J1KRo9KEjnj+ip/uE+\nzAYEAAAAAAAAAIADIvwDh2axWLRwYd1MQOecM65J8Kdez57h+vOf/6rnn39aWVmZWrv2B02YcImk\nutmF6vXqFdHs8TfddIt8fHzVo0dPmc3NJ+0AwBEE+rrr0RtG6d8Lt+m7TamqrLboxksGyNhJgYLy\nyhotWbNfP24/KiejQZNi+uiKcX1kcjq9gy1Go0FnRPrrjEh/lVVUa2NSltbvSFdCSq4SUnLl6WbS\n2UNCNHbo/2fvvsPbSsw7339RiEKAABvYKYpNlZKoNmrWqEyzp9gTj+1xyTqbjLP27k327q43G+8m\ncXyf+PE6m/huNrlerx+v42ziJJ54XGY843GmqI7ajCRSIiWRYhN7A0gARG/n/gEQJFU4kkYkwcP3\n8zwUwHNwwEMSeM8h8NP7llDpsGLI0i31LqvWuDvId1+5QveQl+I8M1/6WANVJUt3LmDLNrCmMpfP\nPBrlVMswx5qHOHtllLNXRikrtHCgsYx9DSVkmxanG5AQQgghhBBCCCGEEEIIIRaehH8W0U87X6Vp\nrGWpd2NRbS3axMfrnl6yr9/V1cHY2CgAO3fumve2u3fvTV8/f/69dPinqmp1evl/+S+/x7/9t/+B\n9es3ztm2vn4t//E/fuUB7bUQQmS2vBwjv/+5bfy/P2rmWNMg4Uic33pq3QMfv9XWO8lf//IaTk+I\ncoeFLzy1YUlDFZkq25TFoa3lHNpazuC4j1MtI5y+MsKRi4McuTgIQK7VQFGuGUeeedZlNkV55kUb\nCaVG59vG+MHrbQTDMfZsLObXH1+L2ZgZp9dWcxZPPLSKx3dW0t7n5ljzIBfax/nHtzr4ybEudq4v\n4uDWcmpKbdINSAghhBBCCCGEEEIIIYRY5jLj3QkhFsj16+3p63/1V/+dv/qr/35X2w0NDaav79nz\nIWpr6+nq6qCl5RK//du/QWGhg507d7Fjx0Ps3LlrzmgvIYRYCWzZBn7vs1v57/90iTNXRojG4vyr\nj258IB15wtE4Lx3r4u0LA2g08NSeKj66r1rGWN2FcoeVTx2u47mDNbR0T3C508noZJCxySAdgx6u\nD3hu2SbbqE+HgoryzDhyZ67n5hgXrKvTchaJxvnRkU6ONQ1iyNLyW0+uZ9+mkowM0Wg0GtZV5bGu\nKg+vP8I7LcMcbx7kVMsIp1pGqCyycnBrObs3FGdMcEkIIYQQQgghhBBCCCGEEPdGXuFfRB+ve3pJ\nu+CsRB6P+762m5rypq/r9Xq+9a2/5Jvf/BPOnj0NgNM5zuuvv8rrr7+KRqNh/fqNfPjDT/HMM8+S\nlSUdFIQQK4PFlMWXn2/kL1+6zPn2cSI/beHfPNvwgUZMdQy4+f5r1xibDFJakM0LT22gpsz2APd6\nZdBptTTWFdJYV5heFosncHpCjE0GGXcHZy7dQQbH/fSOTN1yP3qdFkeuaU4gaDogVGg3r8hA1rDL\nz+SlUIIAACAASURBVHd+foWBcR8VDgtf+lgDZYWWpd6tu2KzGHhydxUf3rWKqzcmON40RFOHk7/7\n53b+6UgnuzcWc7CxXDpsCSGEEEIIIYQQQgghhBDLjIR/hKrF4/H09S9/+Ss0NGy6q+2MRuOczwsL\nHfz5n/8l3d2dHD36NmfOnOL69TYSiQSKonD1aitXr7by8ss/5X/8j++Qm5v7QL8PIYTIVGajnn/3\nqS18+2ctXO5y8Rc/vsS//cRmTIZ7O8WIxuL87EQP//xuHwBPPFTJr+2v+UBBIjGXXqelJD+bkvzs\nW9YlFAX3VDgdChpzzw0IDbsCt2yjAfJtxmQwaLpjUF52cqxYrplsk7pOMxVF4VTLCD98s51INMGh\nreU8f7huWT5GtRoNDdUFNFQXMDkV5p3LQ5y4NMTx5uTH6pIcDm4tZ9f6YoyG5ff9CSGEEEIIIYQQ\nQgghhBArjbrelRHiJjk5M90iLBYr9fVrP9D91dTUUVNTxwsvfBGv10tT03nOnj3N0aNv4fP56Orq\n4Dvf+Uv+83/+6gfddSGEWDaMWTp+9+Ob+e4rV7h4fZxvvdjMv//kFrJNd9cJrXvIy/dfu8qwK0BR\nnpkXnlpPfYWEKBeTVqMh32Yi32Zi7aq8W9b7gtG5waBZAaG2Pjdtfbd22svJzmLPxhI+smsVdqvx\nlvXLSTAc44dvtHPmyihmo55/8+wGdqwrWurdeiDycow8s6+ap/aspqXbxfHmIS51Ofmb19t48UgH\nezaWcLCxnIoi61LvqhBCCCGEEEIIIYQQQggh7kDCP0LVampq09evXm3h8cc/fMfbTk5O8rOf/ZjS\n0jLq6tZQX78GgGg0Sn9/H5FIhHXr1qdvb7PZOHDgMAcOHOY3fuMF/uW//Cw+3xSnT7+zcN+QEEJk\nqCy9ln/97Ea+/9o1zl4Z5b/9YxNffr6RnGzDHbeJxhK8cqqHX57tRVHg0e0VPHegVjqNZCCrOQur\nOYvq0ltHsEWiccY9oWQgaDLAWGqUWN+ojzfe6+dY0yAHt5bzkd1V2C13fjxkqt6RKf7Xy62MTgap\nKbPxxY9uxJFrXurdeuC0Wg1b6grZUlfIhDfEiUvJbkBHLg5y5OIgdeV2DjSWsXNd0bLsdiSEEEII\nIYQQQgghhBBCqJmEf4QqaDSa2y5fv34jNpsdr9fDm2/+ii984V9jtd7+f67/5Ccv8jd/878BeOGF\nL6bDP7/+659kcHCA4uISfvKTV2+7bUlJKdXVNbS0XCISCc9Zp9Vq7/fbEkKIZUWn1fKFpzdgzNJx\nvHmIP/2HJv7jpxvJvU3Xl96RKb7/2lUGxv0U2k381pPrWVd1a8cZkfkMWTrKCy2UF1rmLI/GErzT\nMsyrp28kQ0DNgxzeWsGHd63CtgxCQIqi8PaFAf7paCexuMKHd63i4w/XoNep/7iebzPx7P4antm3\nmkudLo41D3Kle4LOQQ8/eruDvQ2lHNxaRmmB5f3vTAghhBBCCCGEEEIIIYQQC079716IFcFgmHkT\nMRAIpK9nZWXx3HOfAsDj8fAnf/JHRCKRW7a/fLmZf/iHvwPAaDTyzDO/ll63d+9+AEZHR/jRj354\n26/f23uD69fbAFi3buOcdVlZM2NvgsEAQgihZlqNhs8/sZbHdlQy5PTzzR9exOkJptfH4glefqeH\nr//teQbG/RzcWs7/81sPSfBHhbL0Wg5tLeebX9zDrz++Bospi1+928d/+l+n+fHRTqYCtx6PM4Uv\nGOX/+2kL//BWByaDnn/3yS186lDdigj+zKbTatm2xsF/+FQj3/zSHp7aU4VOp+XN8/38wffO8ad/\nf5FzV0eJxhJLvatCCCGEEEIIIYQQQgghxIqm+9rXvva1pd6JpRbI4DefViqLxXhPv5f29jaami4A\nyYBNbm4eExMuCgoK2bhxE2fPnsblctLf38exY2+j0+mIxeJ0d3fx85//hL/4iz9Ld+z5nd/59+zc\n+VD6vmtqannttVeIRCK89945uro6AA2BQICenm7eeuuf+fM//wZ+vx+tVstXvvKHlJaWpbcfHBzg\n5MljQDKAVFxcwujoKEVFxR/8ByWEWHbutb4tRxqNhobqfBIKNHU4uXB9nC21hbinwvzFS5d499oY\nuVYj/9evbeKxHZVk6VdWoGKl0Wk1VJfaOLytHLvFyI1hL609Exy9OEgoEqeyyIoxg8ZIdQ54+NaL\nTXQPT7FuVS5f/vRWVpfkLPVuLTmLKYsNq/N5dEcFFUVW/MEobX1uLrSPc6xpkKlglIriHDLnNymE\nEA/WSjiHE0KsTFLfhBBqJfVNCKFWUt+EEBbLrRM3ADSKoiiLvC8ZZ3x8aql3QdzE4ci5p99LR0c7\nX/jC54nH4+lls8d0eTxuvvrV/8yFC+/d8T50Oh0vvPBFPv/537pl3YUL7/EHf/Cf8PnuvE8mk4kv\nf/krfOQjT89Z7nQ6+cxnPj6n649er+fNN0/O6QokhFgZ7rW+LXevnbnBT453YzVnEQzHiCcUPrS5\nlE8frifbJNNHV6JoLM7x5iFeO9uLxxfBaNDx6PYKnnhoFVbz0h0XE4rC62d7+dmJHhQUPravmqf3\nrkarvf1oUQGjEwGONw/xTsswvmAUjQYObS3nuQO1mI3y/BZCqMtKO4cTQqwcUt+EEGol9U0IoVZS\n34QQDsft/8OydP5BOv9kontNrRYUFLJu3XqGh4eYmppCp9NitebwzDPPotfrMZlMfOQjT7NmzToS\niQSBQIBoNIpOp6esrJxDhx7hK1/5KocOPXLb+y8rK+fJJ5/BZDITjUYJhULE4zFycmxUVVXz5JPP\n8Ad/8DUaG7fdsm12djbbt+9M7Zsnvb/79x/AZrPf3w9ICLFsrbRU/prKXCwmPReuj2OzGPjSRzfy\nkV1V0u1nBdNptdSU2Tm8tZycbAM9w15auic42jRIOBqnsigHwyJ3AvL4I/zPn7Zw/NIwdquB//sT\nm9m3qRSNRoI/87Gas9hYnewGVFZgYcwd5FKni3NXRykvtFCUZ17qXRRCVXpHpnjl1A3OXBnB44+g\n12nIyTZIrVokK+0cTgixckh9E0KoldQ3IYRaSX0TQkjnn3lIOjLzSGpVCKFWK7W+DY77yMsxSbcf\ncYtINM6xpkF+ea4Prz+C2ajj0e2VPP5QJRbTwncCunJjgu/94ipef4TNtQW88NR6crINC/511Sg3\nL5u/frmFX57pI6FMd/mqI3sRfo9CqFU0luB8+xhHLg7QNei9Zb3ZqKe+wp76yKW61CYB2wWyUs/h\nhBDqJ/VNCKFWUt+EEGol9U0IcafOPxL+QcI/mUgOXEIItZL6JsTthaNxjl4c5FfnevEGopiNOh7b\nUcnjOysXJDwSTyT4+ckefnmmF61WwycO1vL4zkrpoPEBTNe33pEpfvDLa/SN+bBbDXz+ibVsrXcs\n9e4JsaxMeEMcax7kRPMQ3kAUDbCptoDD28opysumo9/N9QE3Hf0extzB9HZ6nZaa0hzqK3Opr8il\nrtwuwdsHRM7hhBBqJfVNCKFWUt+EEGol9U0IIeGfeUiBzDxy4BJCqJXUNyHmF47EOdo0yOvnepkK\nRDEb9Ty+s5LHdlQ+sDewXZ4Q3/3FFToHPDhyTXzpYw1Ul9oeyH2vZLPrWyye4PVzffziVA+xuMKu\nDcV89tF66aokxDwURaGtd5IjFwdp6nCSUBQsJj0f2lzKoa3J0M/tuH1hOgY8XO9309Hvpn/Mx/Qf\n+RoNVDqs1FfmsqYyl/oKO7nW27cFFvOTczghhFpJfRNCqJXUNyGEWkl9E0JI+GceUiAzjxy4hBBq\nJfVNiLsTisQ4enGQ18/14QtGyTbqefyhZAjIbLz/EFDT9XH++pfX8IdiPLS+iM8/sU66Yjwgt6tv\ng04/P/jlNbqHvORkZ/G5x9awc12RdFgSYpZgOMbp1hGOXBxg2BUAYFWxlUe2VfDQhmKMWbp7ur9A\nKEbXUCoMNOChe8hLLJ5Iry/KNVNfaWdNRTIQVJRnlufkXZBzOCGEWkl9E0KoldQ3IYRaSX0TQkj4\nZx5SIDOPHLiEEGol9U2IexOKxHj7wgC/OteHPxTDYtLz+EOreHR7xT2FgKKxBP90tJO3LwyQpdfy\n2UfreXhLmbzh/QDdqb4lEgpvnu/npye6icYSbK0v5F88sVa6jywTiqIwFYji8oaY8IZweUK4vGFc\n3hDRWILdG4rZsa6ILL12qXd12Rl0+jlycYDTrSOEI3F0Wg071xdxeFsFtWW2B1aforEEN0a86TBQ\nx4CHYDiWXm+zGKivmAkDVRRZ0Gnl93kzOYcTQqiV1DchhFpJfRNCqJXUNyGEhH/mIQUy88iBSwih\nVlLfhLg/wXAyBPTP786EgJ54aBWP3EUIaHQiwHdebqVv1EdZoYUvfWwjFQ7rIu35yvF+9W10MsDf\n/LKN9n432UY9n3m0nr0NJRLAWmKxeIKJqTAuz+xwT/K60xtmIhXymY8tO4sDjeUc3FpOXo6EuuYT\niydo7nBy5OIAbX1uAPJyjBzcWs7DW8qwWxZ+NF5CURgc96fCQG6u97tx+yLp9SaDjtpyO2sq7Kyp\nzKW61IbhHrsPqZGcwwkh1ErqmxBCraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CfDDBcIy3Lgzw\nRioEZDVn8cRDlTyyvQKT4dYQ0JkrI/ztP7cTjsTZv7mUzz625p5H6Ii7czf1LaEoHG8a5J+OdRGO\nxGmoyec3nlhHgd20SHu5siiKQjAcw+kJMZHq1jO3g08Ijy/Cnf4gtJqzKLCbKLCZyLcZKbSZyLeZ\n0stC0TjHLg5y4tIQgXAMnVbD9rUOHt1eSW35g+tcowYeX5jjl4Y41jSYDtqsr8rj8LYKGusLlrTT\njqIoOD2hdBioY8CTHj8GoNNqWF2aw5qKXNZX5bF+dd6K7Awk53BCCLWS+iaEUCupb0IItZL6JoSQ\n8M88pEBmHjlwCSHUSuqbEA9GIBTjrQv9vPFuP4FwMgT0kV2rOLytAqNBRzgS5+/fvM47LcOYDDo+\n/+G17N5QstS7rWr3Ut+cniB/+6t2WnsmMBp0fOpQHQcay9BKWOSeJBQF91Qq1JMK87hS3Xqml4Ui\n8dtuq9NqyMsxUpAK8+TbTBTakyGfglTI526DcuFInDNXR3j7wgCD434AqkpyeHR7BQ+tLyJLvzID\nd4qi0DHg4cjFAS60jxNPKJgMOvY1lHJoWzllhZal3sU78gYidPR7UmEgN70jPhKplw5yrQb2bSpl\n/+ZSivKyl3hPF4+cwwkh1ErqmxBCraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CPFiBUJQ3zw/w\nxnv9BMMxcrKzeGRbBeeujTLsClBVksOXPraR4hX0BvVSudf6pigKp1pG+NHbHQTCMdatyuVffmTd\nigoT3I9EQqFjwM35tnHOXx/DM2tc02xmo56C6SCP3XRL1x67xYBW+2DDVoqi0N7n5q0LAzR1jKMo\nye5BBxrLOLS1nHzbyujwFI7EOXt1hCMXB+kf8wFQVmjhkW3l7N5Y8r6jCjNRKBKja8jLxevjnL0y\nSjAcA2Ddqlz2bylj+xqH6keDyTmcEEKtpL4JIdRK6psQQq2kvgkhJPwzDymQmUcOXEIItZL6JsTC\nCISivPFeP2+e7ycYTnY6eWxHJZ84WEuWfuWNp1kK91vfJqfC/PCNdpo6nBj0Wj7+cA2P7qh84MGU\n5SyeSHC9z8359nEuXB/H608GfiwmPetX5+PITQZ6pj/ybSayTUsbMHF6ghxtGuRE8xD+UAytRsO2\ntQ4e3V5BfYVdlSPBRicCHG0a5OTlYYLh1Pe8ppDD2ypYuypXNd9zOBrnYvs4Jy4N0d7vBiDbqGf3\nxmIe3lLGquLbv/iw3Mk5nBBCraS+CSHUSuqbEEKtpL4JIST8Mw8pkJlHDlxCCLWS+ibEwvKHopxo\nHqKiyMqmmoKl3p0V5YPUN0VReK9tjB++cR1fMEptmY3ffHJ9Ro9FWmixeIL2Pjfn28e4eH2cqUAU\nSHbS2bbGwY51DtatykOvy+xwWyQa5+zVUd6+MJDugrOqyMoj2yvYtaF42XeLSSQULne5OHJxgNae\nCQBsFgMHtpRxoLFM9d2ORicCnLw8zKmWYTypUFpVcQ4Pbyll14Zisk1ZS7yHD46cwwkh1ErqmxBC\nraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CCLV6EPXNG4jwD29e591rY+h1Gj66r5oP71qV8QGX\nByUWT3Ctd5L32sZouj6OP5QcrWTLzmLb2iJ2rnWwZlUuOu3y+3koikLHgIe3zvdz8bqThKJgNWex\nf0sph7dWUGBfXiGZqUCEk5eHOdY0iNMTAqCuws4j2yrYvtaxYh6z0+KJBJe7XJy8NMzlLhcJRSFL\nr2XH2iIe3lLKmsrl3/lIzuGEEGol9U0IoVZS34QQaiX1TQgh4Z95SIHMPHLgEkKoldQ3IYRaPcj6\n1nR9nL99ox2PL8KqYiu/9eR61Y4SisYSXLkxwYW2MZo6nATCycCP3Wpgx5oidqxzUF+Rq6oxaBPe\nEEebBjnePIQvGEWjgW31Dh7ZnpnjsRKKgtMTYmjcz6DTR9+oj6YOJ7F4AkOWlt0bSji8rVy1j9F7\n5faFOdUyzMnLw4xNBgEozjPzoc2l7NtUSq7VuMR7eH/kHE4IoVZS34QQaiX1TQihVlLfhBAS/pmH\nFMjMIwcuIYRaSX0TQqjVg65v/lCUF9/u5J2WYXRaDU/uruLpvavJ0i//jiqRaJwrPROcbx+judNJ\nMBwHIC/HyPa1DnasLaKuwo42w0IwD1o0Fufc1THeutBP32hyJFiFw8Ij2yvYvbEE4yKPBEsoCi5P\niEGnnyGnn8Hx5OWwy08klphz26I8M4e3lrNvcykWFY22epAUReF6v5sTl4Y43z5ONJZAq9GwubaA\n/VtK2VxbsKy6WMk5nBBCraS+CSHUSuqbEEKtpL4JIST8Mw8pkJlHDlxCCLWS+iaEUKuFqm+t3S7+\nz6/acHnDlBVa+M0n11FbZn/gX2ehhaNxWrpcnG8f41KXi3AkGfgpsJnYsS4Z+Kkus6k+8HM7iqLQ\nOejh7QsDXGgfJ55QsJj07N9cxuFt5RTmmh/o10soChOzQz6pj2GXn0h0bshHr9NSWpBNeaGFskJL\n+tKRZ16Rv6v7FQhFOXd1lBOXhukdTdYJu9XAvoZS9m8ppTgve4n38P3JOZwQQq2kvgkh1ErqmxBC\nraS+CSEk/DMPKZCZRw5cQgi1kvomhFCrhaxvwXCMl453cfTiIBoNPLFzFc/ur8awyJ1h7lUoEuNy\nl4vz7eNc7nKmgyWFdhM71xWxY10Rq0tyMm7M1VKanAqnRoINMhVIjgRrrCvkke0VrK/Ku6eflaIo\nuLyhdMBnKP0RIByNz7mtXqehJN9CueOmkE+uaVl1p1kOekemOHl5iDNXRgmmxtytrczl4S1lbF/r\nyNjntZzDCSHUSuqbEEKtpL4JIdRK6psQQsI/85ACmXnkwCWEUCupb0IItVqM+tbeN8kPXm9jbDJI\ncZ6Z33xyPWsqcxf0a96rYDjGpS4nF9rGael2pcdFFeWZk4GftUWsKrZK4Od9RGMJ3msb5a3zA9wY\nST6uygqTI8H2bizBaJgJiCiKwoQ3zJBrZlTXoNPPkMuf7rA0LRnyyZ4T8CkrtFCUZ5aQzyKLRONc\nuD7OyUtDtPW5ATAb9ezeWMzDm8uoKrn9ixhLRc7hhBBqJfVNiIUzMObjxaOddA542L2xmKf2VFFo\nf7BdLcWdSX0TQqiV1DchhIR/5iEFMvPIgUsIoVZS34QQarVY9S0cjfPzk9288V4/igKHt5Xz3IFa\nzEb9gn/tOwmEYlzqdPJe2xitPRPE4snAT2lBNjvWJjv8VDgsEvi5D4qi0D3k5e0LA7zXNkY8oaQD\nItFYIt3NJ3RTyEen1VBSkE1ZwUzIp9whIZ9MNToZ4J3Lw7zTMozHFwFgVbGV/ZvL2L2xGIspa4n3\ncPHP4abH0w1PBCjNz37g4+8yXUJRmApEsZj06HXqes4mFAWPL4LLG8LlCeHyhnB6Zq5PToUwZOnI\nsxrJyzGSm2Mk12qc83me1YjZqJPjingg5G9UIR48jz/Cz092c+LSEIoCVnMWvmAUnVbDvk2lPL2n\nasUd25eC1DchhFpJfRNCSPhnHlIgM48cuIQQaiX1TQihVotd37qGPPzgl20MOf0U2EysW5WLAigK\nKCigJN9gBUikViTXJQMlipK6TN1fIrVyell6/extUpfMWpZIwMC4j3gieU/lDksy8LPWQbnDumg/\nj5XA7QtzrGmQY81DeP3JgIhOq6F4Vief8lmdfNQWGFgJ4okELd0TnLw0xKVOFwlFIUuvZftaB/s2\nlVJZZCXHnLUkgYeFqnG3jKcbT14Ou2bG0+m0Gg5vq+CZfauxmpc+CLXQrt2Y4MWjnfSN+gCwmPTk\nWo3YLAbsVgN2iwG7xYjdYsCW+jzXasRi0mdEGCYWTzAxFU6GeVKBntmXE1MhYvHbvxRnNurJtxmJ\nRONMTkXSYdLbMWbpyLUa5gSCbr60Ww1SC8X7WsxzOEVR6B/zcanTSXOni3g8wYbqfDZV51NXkUuW\nXh6vYnmLROO8eb6fV8/0Eo7EKSu08PzhOjaszuPdq2O8cvoGoxOBVAiohKf2rMYhIaAFI6/BCSHU\nSuqbEELCP/OQApl55MAlhFArqW9CCLVaivoWjSX4xekbvH62Nx2+WSia1D/a1BvLGo0GjSa5vDg/\nmx1rHexYV0RpgWVB90Mk31jvGPBgsxgolpCPanl8YU61jnDy0hCjk8H0cqNBh8NuxpFrwpFrptCe\nvJy+bsjSzXOv9++D1rjp8XSDzunRdL5k5ypXYN7xdEV5Zs5dHWXcHcJi0vPM3tUc3l6hysf94LiP\nHx/r4nKXC4CNq/NIKMnuCR5fGH8oNu/2Oq0mGRCa/rAasKVCQrnWZGBoOixk/ACPk3A0fttQjzN1\n3T0V5k5HJJvFQIHNRIHdRGHqsmDWZbZppoudoij4QzEmp8K4feHk5VSYyVnX3b4w3kD0jvuqAXIs\nhpmuQVZDOhiUDg3lGMk2ZkZwSiyNhT6Hi8UTtPVNcqnDRXPnOC5vGEg+ZzUaTTrkZszSsb4qj4aa\nfBpqCiiSQIRYRhRF4dy1UX5yrAuXN0xOdhbP7q/h4S2lc7pOJhLJ2/3i1A1GUiGgPQ0lPL13tTzm\nF4C8BieEUCupb0IICf/MQwpk5pEDlxBCraS+CSHUainrmy8YJRiOpcI4qVDOrHAOs67PLJ++XfJ6\nMtgDzF6u0aS3EUIsDUVRuN7vpqnDybg7mPzwhG4JzEyzWw3pcFCh3ZwKBiUDQrlWI1rt/T2f77bG\nKYrC5FQy5DM47p/p6OPy37LP0+Pp0qPpZnWumv1GYTSW4O0LA7x6+gaBcIyiXDOfOFjL9rUOVdQn\nty/Mz0/2cPJycjTKulW5fPJQHdWltjm3i8YSTAUiuH0RPP4wHn8Ery+SDAf5U8tSn0djd+6YA2Ay\n6GaFhIyzwkLJkJDFpMfjj8wN96QufcHbh220Gg15OcY5gZ7CWdfzc4wLEk6LxRO4fWHcU5FbgkGT\nqbCQeypMZJ6fiUGvJTfVMSjfZqTQnnz+FNiS30O+zSQdWVRsIc7hfMEoLV0umjqdtHa70uM5s416\nNtUW0FhXyKaafHQ6Ldf73bR0u2jtnmBkIpC+j+I8Mw01BWyqyWftqrwPFNoTYiF1DLj50dud9Ax7\n0es0PLazkqd2r54T6LxZIqHw7rVRfnH6BsOuAFqNhr0NJTy9t4qivOxF3Ht1k9fghBBqJfVNCCHh\nn3lIgcw8cuASQqiV1DchhFpJfRNCLBZFUZgKRnG6Q4y7gzg9qVBQ6vMJbzg99m82vU5DgS3VMWg6\nFDQrIJRtuvNIrZtr3HTIZzrcM+j0M5wK+QTDtwn5zBpPV1Zoodxxa8jn/fiCUV55p4ejTYPEEwr1\nFXaeP1xPTZnt/TfOQKFIjF+d6+Of3+0nHI1TWpDNJw/VsaW24AOFmhRFIRiO4/GH8U4Hg3wR3P7w\nTWGhCFP+yB279NwsS68l32ai0HZzwCcZksnNMdzT73MxKYpCIHy7LkKR5OV0F6F5fh65VkP6+y20\n39q9aKG6bomF96DO4UYnAjR1OGnudNIx4Ga6DDtyTTTWOWisL6S+wj5v57Jxd5DWnglau11c7Z1M\nhyb1Oi1rK+001BTQUFNAWUG2KsKPYnkbcwd56VgX59vGAHhofRHPHai9pzFeiYTCe21jvHKqJx0C\n2tNQzNN7V1MsIaAPTP5GFUKoldQ3IYSEf+YhBTLzyIFLCKFWUt+EEGol9U0IkSniiQQT3nAqGBSa\n6RjkDuH0BJm6w5ikbKM+FQxKjRJLjRTLs5lIaLVc6xxnyJXq5OMMEAzPHUOl02oonhXymd3J50GO\n6RqZCPDSsS4uXh8HYNeGYp47UEOhfXmMC4knErxzeZifn+zB449gsxh49kPV7L9pNMpi7YsvEMXj\nn+ko5PVH8AdjyRFds0I+tuws1YcNYvEE7qlweoSZ05N8zkyPNbtTsA6SI80KZ3U7SgaEZoJC0rUl\nc93vOVwiodA56KG500lzhzPdtUcD1JTbaKwrpLHecd9BnVg8QeeAJx0G6hvzpdfl24w0VCe7Aq2v\nyp+3w4pYPAlFwReIMjkVZmIqlOw+NhVmwjtzvcBuYs/GEratcWA2Ls/fWyAU49UzN3jrfD+xuEJN\nmY1PP1JPXbn9vu8zkVA43z7GK6duMOT0o9Vo2L2xmGf2rqY4X0JA90v+RhVCqJXUNyGEhH/mIQUy\n88iBSwihVlLfhBBqJfVNCLFcBMMxXLNDQZ5QOijkdAfnHY8EyZBPUZ55VhcfK2WFFoofcMjn/bT3\nTfKjI530jkyh12l5bGfF+44ZWUqKonC5y8WPj3Ux5PRjyNLy4YdW8cRDq5btG8ArTTyRwD0V8r3i\ntgAAIABJREFUSQWDUs8ZT3Ic2vSItHji9i8z5mRnzQoGmWfGoqWWyWNg6dzLOVwwHONKzwTNnU4u\nd7nSY/AMWVo2rs6nsa6QzXWF2C2GB76fbl+YKz0TtHS7uNIzgT+UDGBqNRrqym2pEWEFVBZb0ao8\nqLcUEoqC1x9JhXnCTM4O96QCPm5fmFj8zm81WM1ZM48ZvZZtaxzsbShh/eq8jO2cNls8keB48xA/\nP9mDLxilwGbkEwfreGh90QMLhyYUhfNtY/zi1A0GnX40Gti9oYRn9q2mREJA90z+RhWLYWQiQHOH\nE0VR2L2xhLwc41LvklgBpL4JIST8Mw8pkJlHDlxCCLWS+iaEUCupb0IINVBSb26Ou0OMp8aJTXjD\nlBXlkJutp7zQQnF+9qKGfOaTUBTOXRnlJye6mPCGsZqzeHZ/NQ9vKcuYfQToHZnixSMdtPW50Whg\n/+ZSPvahGnlzRGUSCQW3Lzyra9B0MCiY7iZ0p2CA1ZxFrtWAyaDHaNBhytJhMugwpj5MBj2mrOnr\nqXVZqeXTt0utl+DHvXm/c7gJbyjZ3afTSVvvZPp3aLcakt196gpZX5W3qKPfEgmFnhEvrd3JrkDd\nw970mDFbdhYbU12BNlTnY8t+8EEktUkkFDz+SLpDz8TUTLhnYirMpDc5GvBO4T4NycdDXo6J/Bwj\neTlG8mxG8nNM5OUYyc8xkptjRK/TMjYZ4MyVUc60jjDmDgJgtxjYtaGYvQ0lrCq+/ZsYS0lRFFq6\nXbx4pJNhVwCTQcdTe6p4bEflgj3uE4rCxfZxXj7Vw+D4dAgoOQ6stMCyIF9TjeRvVLEQEgmF7iEv\nTR3jNM3qfAfJQOqWugIONJbTUJ2PVivnJGJhSH0TQkj4Zx5SIDOPHLiEEGol9U0IoVZS34QQapbp\nNS4SjfPm+X5eO9NLKBKntCCbTx6qY0ttwZKOqnJ5Qvz0RBdnrowCsKmmgE8eqqXCYV2yfRJLZ7pz\nyOxxYtMjxZyeEB5/hHAkfsfRYnfLODsklDUTHro5VGSaXp41K1BkmBsoMht06HVaVY98u7m+KYpC\n7+gUzR3JwE/f6My4rcoia2qcVyFVJTkZE7TyBaNcvZHsCtTaPYHHHwGSoZTVpTmpEWEFVJflLIsO\nMw+aoii4fREGnT6GnAFcntCccI/HF7nj806r0ZCbY0gGemaHe3KS4Z58mxGbxXDPgVNFUega8nK6\ndYT3ro2mOzlVOCzsaShh94bM6J4xMObjxSMdXLkxiUYDB7aU8bH9NQvS3ep2pkNAr5zqYSAVAtq1\nITkOTEJA7y/Tz9/E8hGOxrl6Y4KmDieXO514A3M7322tdxBLdQfrHUk+5gpsJh5uLGP/5lJyrUtf\nz4S6SH0TQkj4Zx5SIDOPHLiEEGol9U0IoVZS34QQarZcapzHH+Hld3o43jyIosD6qjyeP1y36J0U\nAqEor53p5c3zA8TiCVYVWfnk4To2rs5f1P0Qy4+iKMTiCUKROKFInHAkTigaJxSJJa9H4oSj8bnr\nI7H0sunbhKJxwpFYetkHefFTp9UkA0LGud2GZgJDsz7P0mEy6md1Jpp7++kORZkUJnI4chgadnOt\nd5LmTheXOp1MToWB5Pe+riqPxrpCttQVUGg3L/Hevj9FURgY99Pa7aKl20XHgCfdsSbbqGfD6jwa\nagpYX5VHgc2kuq4M3kCEwXE/Q04/g+M+Bp1+Bsf9BMKxW26r02rItU536Znp1DO7c4/NkrXggalo\nLMHlLhenW4e53OUinlDQaGBDVR57GkrYtsaBybC4owE9vjA/O9nDyctDKAo0VOfzqcN1SxZeTSgK\nTdfHeeXUDfrHfGiAh1IhoLJCCQHdyXI5fxOZyeOPcKnTSXOHk6s3JtKjgW0WQzoIu+E2ne9ujHg5\n1jTEuaujhKNxdFoNjXWFHNhaxobV+RkTnBXL20qqb7F4Ao8vOXrUG4iwuiSHfJtpqXdLiCUn4Z95\nrJQCuZyspAOXEGJlkfomhFArqW9CCDVbbjVucNzHPx3toqXbhQbYu6mEjz9cu+BdFGLxBEebBvnF\nqRv4glHycox8/OEa9jSUyBsdYskoikIklkgHhWYHiNJhoVkBolA4TigauyVgFIrMhI5i8cR9748G\nbhlnptNp0GiSXVa0Gg1arQatBjRazS3LtKllGo0GrZZZ11Pr09c1aLS33ufs7QH6nX4uto0RjsYB\nsJj0bK4tZGt9IRur8zEbFzd08aAFwzHa+iZp7U52BnJ6Qul1Oq2GApuJwlwThXYThXZz6roZh92E\nzWLIqKDWbIFQNB3sGZwV9JlKdaOYptFAcV425Q4L5YUWygotOHLN5OcYybEYMq42+4JR3rs2yunW\nEbqGvECym9e2NQ72NpSwvipvQQNbkWicN97r57WzvYQjccoKLTx/uI5NNQUL9jXvRUJRaO5w8so7\nPfSlQkA71xfxzL5qyiUEdIvldv4mlpaiKIxMBGjqcNLUMU73oDcdHi4rtLC1PjnqsrrMdle1MxiO\ncfbqKMebBukbS3bRK7SbONBYxoc2ly1aBzGhTmqpb9FYArcvnOpGmOpK6E1+PjkVYmIqjNcXuSXI\nX1lkZUtq/Ozq0szpRinEYpLwzzzUUCDVRi0HLiGEuJnUNyGEWkl9E0Ko2XKtcVd6JnjxSAcD434M\nei1PPLSKj+xe9cA7KCiKwoX2cV463sXYZBCTQcdTe6p4bEflLf8bWgg1iMUTybBQeKYz0c1BoXAk\nTjAyt2tRcnks3Z1o+nbxRIJEIvlcWooXaovzzGytd7ClroC6CrtqR2MpisLoZJCWbhfdQ16c7iDj\nnhDe1Jiwmxn0WgpmhYIcdnMyJJQKCFlM+gUPB4UiMYacAQadvpmOPk5/ujvTbI5cE+WFVsodyZBP\neaGF0oJssvTLsw6PTgQ4c2WE060j6dBWrtXA7o0l7N1YQkXRg+vCk1AUzl0d5SfHu5jwhsnJzuLZ\n/TU8vKU0I58PSioE9PKpHvpGZ4WA9q6mXEZrpi3k+Vs0lmAqEMEbiOD1R/D6ozPXAxE0aNKdxiTk\nkbkSCYXOQQ/NqcDP6GQQSAYn6ytyk4Gf+kKK87Lv+2soikLP8BTHmgd599ookWgCnVbD1vpCDmwt\nT4YaJbgg7tFy+Ps0GoszMRVm0js33DM9dnTSG0qP0LsdvU6THjOaZ0t2Jsw26mnvc9PWN0ksnjxr\ntlsMbK4toLGukA2r8zEalud5jxD3SsI/88j0ArkSLYcDlxBC3A+pb0IItZL6JoRQs+Vc4xIJhXda\nhvnZiW48/gh2i4Ffe7iGD20qfSDdEzoHPLx4tIOuQS86rYaDjeU886HV2LLljS4h7oeiKCQUhUSC\n1KWSWpZ8Pk8vSygKisKsz0GZXn+n7RVl5jap9RvqHJgyL9uwqMLROC5PCKcnyLg7hMsTYtwTxOlO\nLvOHbh2ZBWA26iiwmXGkwkDTwSBHKix0L0HLaCzOsCtwSyef2Z2KpuXlGNOdfNJhnwKLat/sUhSF\njgEPZ66M8O61MYKpEWariqzsaShh94Zi7Nb772zXMeDmR2930jPsRa/T8tjOCp7avZpsU+Z3vVIU\nheZOJ6+8c4Pe0Sk0wI51RTyzb/WSjSjLJPdy/qYoCuFo/NYgjz9y0/UoXn/ktqP07qSqJIdNNQVs\nrimguiwnIwNlK0k4Eqe1Z4LmznEudbrwBZPhA2OWjobqfBrrC9lcW0DOApzLBkIxzl4d4VjTEAPj\nyW5ARblmDjSWsW9TKTYJiom7tNR/n4aj8WSQx5vszjORCvVMekPpcM/0c+t2svRa8qdHjeaYyE+N\nIM2bHkFqM5JjzrpjyDoYjnH1xgSXOl1c7nKmQ0R6nZb1VXk01hWwpa5QxoMJVZPwzzyW6wt4arbU\nBy4hhFgoUt+EEGol9U0IoWZqqHGhSIxfnevjV+f6iMQSVDisPH+4jo3V+fd1f6OTAV461sWF9nEA\ntq1x8ImDtZTk3///jBZCLD411LeFFgjFcHqCOD2h5Id7+nqyc1A4Er/tdlZzVioQlAwGOVLXbdkG\nRicD6U4+A04/Y5MBbn6V3mYxpAI+FsocFioKrZQVZpNtylqE7zozRWNxLnW6ON06Qku3i3hCQaOB\njdX57N1YwtY1Dox32XFuzB3kpaOdnE8dxx5aX8QnDtRSmGteyG9hQSiKwqVOFy+f6qF3JPl83rHW\nwUf3VT/QDknLTUGBld6ByVtDPLfr1uOPEInNP9JRA1izs7BZDNiyDbMus2Y+Ty0LRmLpcYPX+93E\nE8knuMWkZ8PqfDbVFLCpJv8DBdfE3fP4wjR3OmnucHK1d5Jo6ndttxporEuOulxflbdondIURaF7\nyMux5kHeuzZGJJbsBrRtjYODjWWsq8rL2LGTSy0cjdPeN0lL9wTtfZNYzVlUleSwusTG6pIcHHnm\nFdFJaTHP3zy+MN1DXrqHvXQNeugf890xGA1gyNKSnwr0pMM96aCPkXyb6YF2T0woCj1DXpo7nVzq\ndDIw7k+vWzU9Hqy+kKoSGQ8m1GXRwz+JRIKvfe1rtLe3YzAY+PrXv05VVVV6/ZEjR/j2t7+NXq/n\nueee41Of+tQdt+nt7eUrX/kKGo2G+vp6/viP/xhtKh09MTHBZz7zGV555RWMRiOhUIjf+73fw+Vy\nYbFY+NM//VPy8+d/IUv+wM088sKDEEKtpL4JIdRK6psQQs3UVOMmp8L89EQXp1tGUICGmnyeP1R3\n12NCpgIRfnHqBkebBoknFGrKbHzqUB1rKnMXdseFEAtCTfVtKSiKgi8YnRMMGk8Fg5Kdg0LE4vMH\nCiwmfSrgY6W80EJFamzXQnSdUBNvIMJ718Y43TpCz7AXAKNBx461DvZuLGHtHUbpBEJRXj3dy1sX\n+onFFWrLbDz/SD115fbF/hYeOEVRuNzl4uV3eriRCgFtX+vg+UN1yzLUdL+c7iA/eL1tTujmTnRa\nzU1hnqw5IZ6Z61lYs7Puq2tPMByjrXeSlm4XLd0uXN6ZsX2riq2pIFABteU26Qr0gCiKwpDTT3On\nk6YOJ91D3vS6coclFfhxsLp06cMAgVCU060jHG8eYtCZDC0U55k50FjOvk0lK/5YoCgKIxMBWron\naO120dbnTh9XDXot0VhizshUs1FPVbE1GQYqzaGqJIeiXLPqwlQLdf4WjsbpHZlKh316hjxzahZA\ncX42hXZTaiRXMsyTDvbkGDEbF34s6nyc7iCXulw0dzppv2k82Ja6ArbUyngwoQ6LHv554403OHLk\nCN/85jdpbm7mu9/9Lt/5zncAiEajPPnkk7z00kuYzWY+85nP8N3vfpeLFy/edpsvfelL/OZv/ia7\ndu3iq1/9Kvv37+exxx7j5MmTfOtb36Kvr48zZ85gNBr5wQ9+gM/n43d/93d57bXXaGpq4g//8A/n\n3Vf5AzfzyAsPQgi1kvomhFArqW9CCDVTY43rG53ixSOdXOudRKOBA1vK+Nj+Gux3GDcQjcV56/wA\nr57pJRiO4cg18YmDdexY61Ddi+lCrCRqrG+ZJKEoeP0RnO7UKDFPCK8/giPXnOzq47Bgtxikjn5A\nwy4/Z66McKZ1FJc3OSotL8fIno0l7GkoobzQQiye4HjzEC+/04MvGKXAZuKTh2rZua5IdT9/RVFo\n6Xbx8js36Bn2Yjbq+PXH17JnY8lS79qCe/faKP/nV+0EwzFqyuzYLckwT062Abvl1oBP9iK/Sa0o\nCkOuAC1dySBQx4A7/cZ0tlHPhup8NtXk01BdQF6OdAW6F/FEgs4BD00dyQ4/Y+4gAFqNhjWVdhpT\n3T+K8jKzS6WiKHQOejjePMR7bWNEYwn0Og3b1xZxsLGMNZW5qqtVdxKKxGjrdacDc7NHYFY4LOnA\nXF2FnWgsQd/oFDdGpugdSV6OTgRuCQStLslJdQhKfjiWeSDoQZy/JRSF0YlAMuiT+ugf85GYFRvI\nyc6iptRGTbmdmjIb1SW2ZTEWc1owHONKzwSXOp1c6poZ85elT44H21JXyJbaAhkPJpalRQ///Nf/\n+l/ZvHkzTz31FAD79+/n5MmTALS1tfFnf/ZnfP/73wfgG9/4Blu3bqW5ufm22+zfv58TJ06g0Wh4\n6623OHXqFH/8x3/MqVOn2LBhA8899xyvv/46RqOR3/md3+ELX/gCjY2NTE1N8elPf5rXXntt3n2V\nP3Azj7zwIIRQK6lvQgi1kvomhFAztdY4RVG41OXix0c7GXYFMBp0PLW7isd3VmJIjU1JKArnrozy\n0xNduLxhLCY9z+yr5tDWcrL08r/ThVju1FrfxMqUUBQ6+t2cbh3hfPsYwXByJFtVcQ6RWJxhVwCT\nQcfTe1fz2I6KRRvxs1QUReF06wg/fPM64Uic3RuK+fXH1y6rN27vVjgS5+/fus47l4cxZGn53GNr\n+LXDa3A6fUu9a/MKRWJc602OMGrpcqXDawCVRdb0eLDacjt6nZx33cztC9PaPUFrj4srPRPpUURG\ng45N1flsrXewqbYAq3l5jUv0BaOcaR3hWPMgw64AAKUF2RzYUsbeTaXL7vt5P9OdmlpSo/Jmh+LM\nRj0bV+fRkAr83E0oLhiOpQNBN2YFgmbLNurTYaCqZRgIup/zN28gQs+Ql66hZEef7uEpguGZ8V16\nnZaqYis1ZcmgT02ZjUK7adn8TN5PIqHQPezlUqeT5k4ng7PHgxVbaawrZEudjAcTy8edwj8Ldpbn\n8/mwWmdaRut0OmKxGHq9Hp/PR07OzA5ZLBZ8Pt8dt1EUJV1cLBYLU1PJgrZv377bft3p+559WyGE\nEEIIIYQQQggxQ6PR0FhXSEN1PicuDfHzkz389EQ3R5sGee5ADblWIz8+2kXv6BR6nYYPP7SKp/ZW\nYTGp6w0HIYQQ6qDVaFi7Ko+1q/L43GNraO50crp1hNbuCRQUDm4t59kPVWO7Q5c7tdFoNOzbVEp9\nhZ3v/eIqZ6+O0jHg4bef2aCqcZ29I1N895UrjEwEWFVs5Ysf3UhpgWVZvGFtMujZWu9ga71jZrxR\nqitQe7+b/jEfvzzbi9moY8Pq/HTHk5XaFSgWT9A16EmHRPrHZsJd+TYjO9cXs7W+kHWr8pZ1SN1q\nzuKxnZU8uqOCjgEPx5oHOd82zo+OdPLS8W52rHNwsLGc+gr7snic304wHOPqjeQ4vNYeFxN3GIdX\nU2a75+Cb2ahPHwumBUIzgaDe0SluDHu51jvJtd7J9G0sJj2rilPdgUptVJXk4Fim4ZfpjkjT47u6\nhzyMu0NzblOcZ6axriAd9qkssqo6ZKjVaqgrt1NXbue5A7U43UGaO51c6nTS1uemb9THK6duYLca\n2FJbwJa61HiwLHUHhYX6LFj4x2q14vfPpOYSiQR6vf626/x+Pzk5OXfcRjtrzqnf78dms93V132/\n207Ly8tGr/KU/3J0p8SaEEIsd1LfhBBqJfVNCKFmaq9xz5fYefrhOn789nVeOdnN/371Wnrdga0V\n/Isn11Ocn5ljEoQQH4za65tYucrLcnnq4To8vjDxhLJix3o4HDl86985ePGt67z4Zjv/7R8u8slH\n1vDpx9cu6zd6FUXhlZPd/M2rV4nFEzx7oJbPP7l+Tken5VbfiopsbF6XHM8WCse43OXkwrVRLrSN\ncaF9nAvt4wCsLrWxfV0R29cVs746f1n/Ht/P2GSAi21jXGwfo/n6eLpTiV6npXGNg+3riti2tojK\n4pxlGdJ4P0VFNvZtq8Trj3DkfB+/OtPL2SujnL0ySmVxDh/eXcWhHZXkZGd2qFFRFG4Me5OP5bZR\nrvVMEE8ku/tYzVnsbyxP/y7zFqhWV1XmsX/W5/5glO5BDx39broG3HQOuG8JBFnNWdRV5FJbYae+\nMo/aCjvF+dkZ8Vibrm+KojDs8nO9d5L2vknaeyfpGfKkuydB8vvYtq6ItavyWJP6WClB2DtxOHJY\nX1/EZ4BAKErT9XHevTLC+WujnLg0zIlLwxj0WjbXO3hoYwkPbSimwG4Gkj/zhJLsJqQoComEQiJ1\nGU8oKArpz9Pr5nzOnG1mr1NS6+Kz1ikJhZICC1Wl7595EGLBwj/btm3j6NGjPPnkkzQ3N7NmzZr0\nutraWnp7e3G73WRnZ3P+/HleeOEFNBrNbbfZsGED586dY9euXZw4cYLdu3fP+3WPHz/O5s2bOXHi\nBNu3b3/ffZ2cDLzvbcTikpbDQgi1kvomhFArqW9CCDVbSTXuqV2r2LXWwc9O9uALRnl2fzXVpTaI\nx1fMz0CIlWQl1TchxsejS70LS+qxbeWsLrLwvV9c5cW3rvPulRH+1Uc3UJy3/MK9Xn+E7792jZZu\nF7bsLF54ehObagpwz3qvRw31rdphodpRw3P7q5NdgbonaO120dbn5sawl58c7cRkmO4KlOwMtNxD\nbtFYnOv9nlRHmAmGnDMNA4pyzezdWEJDTT7rVuVhNMwEvTJ9xNuDsG9DMXvXF3G9382x5iEutI/x\nvZdb+d7LrWQb9ditBuwWA7lWY+p68jLXYsCeWpZt1C9acCUQinJlurtPtwu3LwKABlhdmkNDdQGb\naguoKbWh1Sb3KRaOLmqtLrEbKbEXs7+hOLXPMXpHp+gdmeLGiJcbI1M0d4zT3DGe3sZiSo4My7eZ\n0Gk1aDUatKlLnVaDRsuc5TffJr0s/Tlztp97Xxp009vOui9Nlo6ma6N0D3npGfbiC878zHRaDZVF\n1vTortoyO0V5c0eahQNhxgMz3ZYErCnNYU1pDp89XEf3kDfdFej8tVHOXxvlf5L82SaUZEBnKdSW\n2Ti4tZyd64rSY7rFynWngLNGURbmIZpIJPja177G9evXURSFb3zjG1y9epVAIMDzzz/PkSNH+Pa3\nv42iKDz33HN87nOfu+02tbW19PT08Ed/9EdEo1Fqamr4+te/jk4386A+fPgwr7/+OkajkWAwyO//\n/u8zPj5OVlYW3/rWt3A4HPPu63I/AVQjNZyYCyHE7Uh9E0KoldQ3IYSaSY0TQqiV1DchVp5AKMbf\nv9nOmSujGLN0fPaxej60qTQjOlncjdYeF//71Wt4/REaqvN54ekN2G/TwULN9S0cjdPeN0lLV3L8\n1Zg7mF5XWpBNhcNKcX42JflmivOzKc7LxmrO3LGto5MBWlOjvNr6JolEEwAY9FrWVeWxqaaAhpr8\nZRlUW0jeQITTLSO09rjw+CK4fWH8odi822TptdgthtuHg2YFh2zZhnQg524lFIX+UR+Xu5Oj67oH\nvSSUme4+DamA2sbqfGwZ3qlotkAomgwDTYeChqfmPOeWWqHdlAr6JMd3VRVb53RAEx/MeGo8WGv3\nBIFwNBnY0mjQaJgT6NIw87lGq0GrIXW7VMArff3267Ta1H1qbn8fbX2TtHS5UEgG0PZtKuXQ1nLp\nzruCLXr4ZzlR6wngcqbmE3MhxMom9U0IoVZS34QQaiY1TgihVlLfhFi5zl4Z4e/eaCcYjrNjXRGf\nf2JtRgdEYvEEPz3eza/e7UOn1fCJg7U8trMS7R1CSyupvo1OBNKBi+v97nR4ZjarOYvifDMledmp\nYFDysijPjHGRO0iEI3Ha+iaTgZ8eF2OTc8NLm2oK2FRTwJpKu4QY7lE0lsDrj+D2h/H6Irj9ETy+\nMG5fJLncF8bjT16fHrt1OxoN5GTPDQbZralw0HR4yGrEoNemf5etPRN4/ZH09jVlNjaluvtUleTc\n8bm6HAVCUXzBKAkF4ombxjulRj/d8rkyM/IpnkiktkmGpu54H7NGP83cBvJzzRTbTVSX2W4bfhTq\nNO4OcuLSECcvDeENJLs9ra/K49DWchrrC1U9AlLcSsI/81gpJ4DLyUo6MRdCrCxS34QQaiX1TQih\nZlLjhBBqJfVNiJXN6Q7yvVev0jHgIS/HyG8/vYF1VXlLvVu3GJ0I8L9euULvyBTFeWa++LGNrC6x\nzbvNSq1vCUXBPRVmdCLAyGQweTkRYHQyiNMdvG3gI99mpHg6FJRnToeDCuymB/JmsqIoDLkCtKbG\nP7X3e4jFkwGl6bFlDTX5NFTnU2g3f+CvJ95fQlHwBaN4fDPhII8/nOwg5I/g9YVTwaEI4Wj8ru7T\nZjGwqTqfhlR3n0wOEy53K7W+iaRYPMGF9nGONQ3S3u8GwG418PDmMg40li378Y/i7kj4Zx5SIDOP\nHLiEEGol9U0IoVZS34QQaiY1TgihVlLfhBCJhMJrZ3t5+WQPiqLw4d2r+LX9NRnRQUBRFE63jvDD\nN64Tjsb50KZSPvtYPSaD/n23lfp2q1g8gcsTSoaBZoWDRicDTHjDt9xep9VQmGtOB4Jmh4Nyc4zz\ndnIJhmNcvTFJa08y8OOadf+riqw01BSwqSaf2nJ7RjzWxJ0Fw7E5XYNmB4UCoViyw09NAZXFVlV1\n98lkUt/EtEGnn2NNg5xuHSEYjqHRQGNdIQe3lrOxOl+ekyom4Z95SIHMPHLgEkKoldQ3IYRaSX0T\nQqiZ1DghhFpJfRNCTOsa8vC9V64y5g5SVZzDv/roBkoLLEu2P4FQjL97o51zV0cxG3V8/ol17NpQ\nfNfbS327N+FonLHZnYImAoxMBhidCOILRm+5vSFLm+4WVJxnpiQ/m/wcI93DXlq7J+gc9KS7DFlM\nejZW59NQXUBDTT65VuNif3tCqIrUN3GzcCTOuWujHG0apHck+dhw5Jo42FjOvs2l2LJlPJzaSPhn\nHlIgM48cuIQQaiX1TQihVlLfhBBqJjVOCKFWUt+EELMFwzH+8e0O3rk8jCFLy2ceqefhLf8/e/ce\nXXd9n4n63ZIsS7YlY2zJ4JuwDQ4QLgYS07RJihloLvRk0pCBhNQ5nJA0bSeZhnalJWuATEgmtFkz\ntKsrM2l6DukpNFlAmxxacprTDJArSSk3mzjBXHyR71g21s2yLUt7nz9sqaHB8ratbXlvP89arCX9\nbnrlxF/J0ru/nzkpnOCdA9Zu6cmX/+Gn2dmzL4vntOa33vX6tJ12dOOgrG/jp3/vgbwQbemsAAAg\nAElEQVS8+1Ah6JVDuwUdKgcNHij+wvWFJGed2ZoLFx0cAbXozNbU1dl9AsaL9Y2xrN/Wm+88syX/\n8rOXMzhUTEN9IW94XXuuuGRuzpk3/YR/TacylH/GYIE8+fjCBdQq6xtQq6xvQC2zxgG1yvoGvJYn\n1uzIX39rTQb2D+WSc2blxnecm5YTsGtAsVjKP/5zZx48NILsml/uyLt+ZeExjYWyvlVeqVRKd//g\naBFoV8++zJ01NecvPN0uE1BB1jfKsWffgfxo9fZ895kt2bZrIEkyt21qrlg6N798wRlpnnzkEZqc\nvJR/xmCBPPn4wgXUKusbUKusb0Ats8YBtcr6BhzOK7378n9982dZs7E706c15sPXnJ/XLzy9Yh9v\nd9/+/J8P/TRrNnZnRsvkfPjXz895HTOO+XnWN6BWWd84GqVSKc9v7M53V27JU893ZbhYyuRJ9bn8\n/NlZfsncdJzx2iUSTm7KP2OwQJ58fOECapX1DahV1jegllnjgFplfQPGUiyW8k//sjHf+P66DBdL\n+bU3zs+1v7o4kxqOfieesTzzYlf+6h/XpH/vgVxyzqz8H+88L9OaJx3XM61vQK2yvnGsevYM5ofP\nbs13n9maXb37kiSL5rTmiqVzs+y89jROqp/ghJRL+WcMFsiTjy9cQK2yvgG1yvoG1DJrHFCrrG9A\nOTZs782X/+FnefmVgcxrm5aPvuv8zG2bdtzPHTwwnAe+81IefXpLJjXU5forz87yS+amUCgc97Ot\nb0Ctsr5xvIrFUn6yble++8yWPLt2V0pJpjY15FcuPDO/unROzpw5daIjcgTKP2OwQJ58fOECapX1\nDahV1jegllnjgFplfQPKtX9wOPc/+mK+u3JrJjXU5brlZ+fKS4+9qLOlqz9/8Q8/zZauPZk7a2o+\n+u9fn3njUCgaYX0DapX1jfG0s2dvvrdya36wamt6Bw4kSc7rmJHll8zN0nNmpaF+fHf7Y3wcrvzT\ncIJzAAAAAAAAUEUmN9bng28/Nxcumpm/+taafPV/vZCfrNuVD73zvLRObSz7OaVSKd9duTX3PfJi\nDgwVs/zSubl++dlGjQDABJg1vTnX/uri/Ps3L8zTL3Tlu89syXOdu/Nc5+5Mn9qYX3vj/Lz98gXj\nsisflaf8AwAAAAAAwBFdsqQtZ53Zmq/8vz/Ls2t35fa7H8+Hrjk/Fy2eecR7+/ceyF/943N55sWd\nmdrUkI++6/W5dEnbCUgNAIylob4uy86bnWXnzc7WnXvy3ZVb8thPtufvf7g+V142L5OVdKuCsV8x\n9utkZMs6oFZZ34BaZX0Dapk1DqhV1jfgWBVLpTz8xKb83ffWZmi4lH932bz8hysWH3YHn+c37s5f\nPvSz7O7bn3MXnJYP//r5Ob21qWL5rG9ArbK+caLsPzCcffuHMn3a5ImOwr9h7BcAAAAAAADHra5Q\nyK8tW5BzO2bkLx/6WR55anPWdO7Ob73r9ZnfPm30uuFiMf/www355o82pFAo5DfeuijX/FJH6uqM\nDwGAk9nkSfV2/KkydRMdAAAAAAAAgOqzYHZLbv/f35B/d+m8bNm5J5/96yfy7Sc2pVgqZWf33vzJ\nV5/JQz/akJnTm3LLb16a/+2Xz1L8AQCoADv/AAAAAAAAcEwaJ9XnA7+2JBcsOj1/9Y/P5b5HXsxT\nz+/I5q492bt/KMvOa88H33ZupjT5lRQAQKXY+QcAAAAAAIDjcvHZs/KZmy7PhYtm5sXNPSkWS/nQ\nO8/LR9/1esUfAIAK890WAAAAAAAAx2361MZ84j9clJUv7czctmlpP615oiMBAJwSlH8AAAAAAAAY\nF4VCIZec0zbRMQAATinGfgEAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAAAAAAAFVK+QcAAAAA\nAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8AAAAAAAAAAKBKKf8A\nAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACqlPIPAAAAAAAAAABU\nKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAAAABAlVL+AQAAAAAA\nAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAAAAAAAAAAqFLKPwAA\nAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAAAAAAAFVK\n+QcAAAAAAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8AAAAAAAAA\nAKBKKf8AAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACqlPIPAAAA\nAAAAAABUKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAAAABAlVL+\nAQAAAAAAAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAAAAAAAAAA\nqFLKPwAAAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAA\nAAAAAFVK+QcAAAAAAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8A\nAAAAAAAAAKBKKf8AAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACq\nlPIPAAAAAAAAAABUKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAA\nAABAlVL+AQAAAAAAAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAA\nAAAAAAAAqFLKPwAAAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJUqq/zzyiuvVDoHAAAA\nAAAAAABwlMoq/3zgAx+odA4AAAAAAAAAAOAoNZRz0bnnnpsHH3wwF110UZqamkaPz5kzp2LBAAAA\nAAAAAACAsZVV/lm1alVWrVr1qmOFQiGPPPJIRUIBAAAAAAAAAABHVlb559FHH610DgAAAAAAAAAA\n4CjVlXPRK6+8kk984hO5/PLL84Y3vCEf+9jHsnPnzkpnAwAAAAAAAAAAxlBW+ef222/PhRdemEce\neSSPPvpoLr744vzn//yfK50NAAAAAAAAAAAYQ1nln02bNuWmm27KtGnT0tramo985CPZunVrpbMB\nAAAAAAAAAABjKKv8UygUsm3bttH3t27dmoaGhoqFAgAAAAAAAAAAjqysBs/v/d7v5frrr8/FF1+c\nUqmUVatW5bOf/WylswEAAAAAAAAAAGMoq/xz5pln5sEHH8yzzz6bYrGYz3zmM5k5c2alswEAAAAA\nAAAAAGMoq/xz880351vf+lauuOKKCscBAAAAAAAAAADKVVb55+yzz84Xv/jFXHzxxWlqaho9/sY3\nvrFiwQAAAAAAAAAAgLGVVf7p7u7O448/nscff3z0WKFQyD333FOxYAAAAAAAAAAAwNjKKv+8853v\nzPvf//5KZwEAAAAAAAAAAI5CXTkXffWrXz3qBxeLxdx+++25/vrrs2LFinR2dr7q/KOPPpprr702\n119/fR544IEx7+ns7Mz73//+3HDDDfn0pz+dYrGYJHnggQfynve8J9ddd12+853vJEn6+vry4Q9/\nODfccENuvPHGdHV1HXV2AAAAAAAAAACoBmXt/HPGGWfkgx/8YC6++OJMnjx59PjHPvaxw97z8MMP\nZ3BwMPfff39WrlyZP/7jP86XvvSlJMmBAwdy55135u/+7u/S3Nyc97///bnyyivz9NNPv+Y9d955\nZz7xiU/k8ssvz+23355HHnkkS5cuzb333puvf/3r2b9/f2644Yb8yq/8Sr7xjW9kyZIl+cM//MM8\n8MADufvuu3PLLbcc5x8TAAAAAAAAAACcfMoq/yxduvSoH/zUU0/lLW95y+j9q1evHj23du3aLFiw\nINOnT0+SXHbZZXniiSeycuXK17znpz/9aZYtW5Ykeetb35rHHnssdXV1ueSSS9LY2JjGxsYsWLAg\na9asyZIlS7Ju3bokSX9/fxoayvoUAQAAAAAAAACg6pTVjPnYxz6WgYGBbNy4MUuWLMm+ffsyZcqU\nMe/p7+/PtGnTRt+vr6/P0NBQGhoa0t/fn5aWltFzU6dOTX9//2HvKZVKKRQKo9f29fUd9hmnn356\nHnvssbzzne9MT09PWSPLZsyYkoaG+nL+KDiB2tpajnwRQBWyvgG1yvoG1DJrHFCrrG9ArbK+AbXK\n+ga8lrLKPz/+8Y9z++23Z3h4OPfdd1/e9a535b/9t/+WN7/5zYe9Z9q0admzZ8/o+8VicXQXnn97\nbs+ePWlpaTnsPXV1da+6trW19bDP+OIXv5gPf/jDed/73pc1a9bk4x//eB566KExP7/duwfK+WPg\nBGpra0lXV99ExwAYd9Y3oFZZ34BaZo0DapX1DahV1jegVlnfgMMVAOte8+i/cdddd+VrX/taWltb\n097enr/5m7/JF77whTHvufTSS/P9738/SbJy5cosWbJk9NzixYvT2dmZ7u7uDA4O5sknn8wll1xy\n2HvOP//8PP7440mS73//+3nDG96Qiy66KE899VT279+fvr6+rF27NkuWLElra+vojkAzZ858VUEI\nAAAAAAAAAABqSVk7/xSLxbS1tY2+f/bZZx/xnquvvjqPPfZY3ve+96VUKuXzn/98HnrooQwMDOT6\n66/PLbfckptuuimlUinXXnttZs+e/Zr3JMkf/dEf5bbbbstdd92VRYsW5W1ve1vq6+uzYsWK3HDD\nDSmVSrn55pszefLk/N7v/V5uvfXWfO1rX8vQ0FA++9nPHuMfDQAAAAAAAAAAnNwKpVKpdKSL/uN/\n/I9573vfmz//8z/PX//1X+erX/1qVq1alb/4i784ERkrztZoJx9b1gG1yvoG1CrrG1DLrHFArbK+\nAbXK+gbUKusbcFxjv+6444489NBD2bZtW66++uo899xzueOOO8Y1IAAAAAAAAAAAcHTKGvs1c+bM\n3HXXXa957rbbbjNaCwAAAAAAAAAAJkBZO/+MZfXq1eORAwAAAAAAAAAAOErHXf4BAAAAAAAAAAAm\nhvIPAAAAAAAAAABUKeUfAAAAAAAAAACoUsdd/imVSuORAwAAAAAAAAAAOErHXf755V/+5fHIAQAA\nAAAAAAAAHKWGsU6uWLEihULhsOfvueee/OEf/uG4hwIAAAAAAAAAAI5szPLPxz/+8STJAw88kKam\nprz73e9OQ0NDvvnNb2b//v0nJCAAAAAAAAAAAPDaxiz/LFu2LEnyJ3/yJ/n6178+enzp0qV5z3ve\nU9lkAAAAAAAAAADAmOrKuWj//v1Zv3796PvPP/98hoaGKhYKAAAAAAAAAAA4sjF3/hlxyy23ZMWK\nFZk9e3aKxWJeeeWV/Pf//t8rnQ0AAAAAAAAAABhDWeWfN7/5zXn00UfzwgsvpFAo5HWve10aGsq6\nFQAAAAAAAAAAqJCyxn719PTkjjvuyBe+8IXMmTMnt912W3p6eiqdDQAAAAAAAAAAGENZ5Z/bbrst\nF154Ybq7uzN16tS0t7fnk5/8ZKWzAQAAAAAAAAAAYyir/LN58+Zcf/31qaurS2NjY26++eZs3769\n0tkAAAAAAAAAAIAxlFX+qa+vT19fXwqFQpJkw4YNqasr61YAAAAAAAAAAKBCGsq56D/9p/+UFStW\nZNu2bfnd3/3drFy5Mp///OcrnQ0AAAAAAAAAABhDWeWftra2fOUrX8mzzz6b4eHh3HHHHZk1a1al\nswEAAAAAAAAAAGMoq/xz880351vf+lauuOKKCscBAAAAAAAAAADKVVb55+yzz84Xv/jFXHzxxWlq\naho9/sY3vrFiwQAAAAAAAAAAgLGVVf7p7u7O448/nscff3z0WKFQyD333FOxYAAAAAAAAAAAwNjK\nKv/ce++9lc4BAAAAAAAAAAAcpbLKP08++WTuvvvuDAwMpFQqpVgsZuvWrXn00UcrnQ8AAAAAAAAA\nADiMunIuuvXWW3PVVVdleHg4H/jAB9LR0ZGrrrqq0tkAAAAAAAAAAIAxlFX+aWpqyrXXXptly5al\ntbU1n/vc5/LEE09UOhsAAAAAAAAAADCGsso/kydPTnd3dxYuXJhVq1alUChkYGCg0tkAAAAAAAAA\nAIAxlFX+ufHGG3PzzTdn+fLlefDBB3PNNdfkggsuqHQ2AAAAAAAAAABgDA3lXPSOd7wjb3/721Mo\nFPKNb3wjGzZsyHnnnVfpbAAAAAAAAAAAwBjKKv986lOfes3jd95557iGAQAAAAAAAAAAyldW+WfZ\nsmWjbw8NDeWRRx7JokWLKhYKAAAAAAAAAAA4srLKP7/xG7/xqvff+9735v3vf39FAgEAAAAAAAAA\nAOWpO5ab1q5dmx07dox3FgAAAAAAAAAA4CiUtfPPueeem0KhkFKplCQ5/fTT8/u///sVDQYAAAAA\nAAAAAIytrPLPmjVrKp0DAAAAAAAAAAA4SmWVf774xS+Oef5jH/vYuIQBAAAAAAAAAADKV1fORdu2\nbcs//dM/ZdKkSWlubs4PfvCDPPPMM5XOBgAAAAAAAAAAjKGsnX/Wrl2b+++/P1OmTEmSrFixIitW\nrLDjDwAAAAAAAAAATKCydv7ZvXt3CoXC6PuDg4MZGBioWCgAAAAAAAAAAODIytr5573vfW/e8573\n5IorrkixWMz3vve9/PZv/3alswEAAAAAAAAAAGMoq/zzkY98JJdffnmeeOKJNDU15X/+z/+ZRYsW\nVTobAAAAAAAAAAAwhrLGfnV3d6e/vz833XRT+vr68md/9md56aWXKp0NAAAAAAAAAAAYQ1nlnz/4\ngz/IunXr8uMf/zjf/va3c+WVV+bTn/50pbMBAAAAAAAAAABjKKv809PTk9/8zd/Mww8/nHe/+915\n97vfnb1791Y6GwAAAAAAAAAAMIayyj/FYjGrV6/Oww8/nOXLl+e5557L8PBwpbMBAAAAAAAAAABj\naCjnok9+8pP5whe+kA996EOZP39+rrvuunzqU5+qdDYAYJyUSqVs7Nuc+S1zU1coq/sLAAAAAAAA\nVIGyyj9vetOb8qY3vWn0/QceeGD07Y9+9KP58pe/PP7JAIBxs3rXc/mLZ//vfPC863P5mZdNdBwA\nAAAAAABgnBz3S/9ffvnl8cgBAFTQC7vXJkk29W+Z4CQAAAAAAADAeDru8k+hUBiPHABABXX2bk6S\n7BjYOcFJAAAAAAAAgPF03OUfAODkViwVR3f86VL+AQAAAAAAgJqi/AMANW77nh0ZHB5Mkuzc90qG\ni8MTnAgAAAAAAAAYL8dd/imVSuORAwCokM6+gyO/6gv1KZaK2bVv9wQnAgAAAAAAAMbLcZd/3v3u\nd49HDgCgQjb2bkqSvH7muUmSHQNdExkHAAAAAAAAGEcN5Vz0gx/8IH/6p3+a3t7elEqllEqlFAqF\nPPLII7nxxhsrHBEAOB6dvZtTX6jP0rYL8uzOn6Zr766JjgQAAAAAAACMk7LKP5/73Odyyy235Jxz\nzkmhUKh0JgBgnAwVh7Klf2vmTjszc6adkSTZMbBzglMBAAAAAAAA46Ws8s+MGTOyfPnySmcBAMbZ\nlv5tGSoNp6N1ftqaZyZJuvYq/wAAAAAAAECtKKv8c9lll+XOO+/MW97ylkyePHn0+Bvf+MaKBQMA\njl9n7+YkyYKWeWlqaEprY0t2DHRNcCoAAAAAAABgvJRV/nn22WeTJD/72c9GjxUKhdxzzz2VSQUA\njIvOvk1Jko7WeUmStuZZWdezIQeKQ5lUV9a3AQAAAAAAAMBJrKzf+t17772VzgEAVMDG3s1prJuU\nM6a0J0lmT5mVtT3rs2vvrpwxdfYEpwMAAAAAAACOV1nlnyeffDJ33313BgYGUiqVUiwWs3Xr1jz6\n6KOVzgcAHKP9w4PZtuflLJrekfq6+iRJ25RZSZIdAzuVfwAAAAAAAKAG1JVz0a233pqrrroqw8PD\n+cAHPpCOjo5cddVVlc4GAByHTX1bUkopHa3zR4+1Nx8q/+zdOVGxAAAAAAAAgHFUVvmnqakp1157\nbZYtW5bW1tZ87nOfyxNPPFHpbADAcdjYuylJ0tEyb/TYz+/8AwAAAAAAAFS/sso/kydPTnd3dxYu\nXJhVq1alUChkYGCg0tkAgOPQ2bc5SbLg53b+aWuemSTpUv4BAAAAAACAmlBW+efGG2/MzTffnOXL\nl+fBBx/MNddckwsuuKDS2QCA49DZuynNDc2jhZ8kaaxvzIzJpxn7BQAAAAAAADWioZyL3vGOd+Tt\nb397CoVCvvGNb2TDhg0599xzK50NADhGAwcG0rV3V86dcU4KhcKrzrVNmZUXdr+UweHBNNY3TlBC\nAAAAAAAAYDyUtfNPT09Pbrvttnzwgx/M/v37c++996avr6/S2QCAY7Sxb0uSZEHrvF841z4y+mvv\nrhOaCQAAAAAAABh/ZZV/brvttlx44YXp7u7O1KlT097enk9+8pOVzgYAHKPO3k1Jko7W+b9wrm3K\nrCTJjgGjvwAAAAAAAKDalVX+2bx5c66//vrU1dWlsbExN998c7Zv317pbADAMers25wk6Wj5xZ1/\nZk9pS5J0Kf8AAAAAAABA1Sur/FNfX5++vr4UCoUkyYYNG1JXV9atAMAE6OzdlNbGlpw2efovnGtr\nPrTzz17lHwAAAAAAAKh2DeVc9PGPfzwrVqzItm3b8ru/+7tZuXJlPv/5z1c6GwBwDHr296V7f08u\nnHXeaHH3581qPj2FFLJjoGsC0gEAAAAAAADjqaztey644IJcddVVmTdvXrZt25arr746q1evrnQ2\nAOAYbOzblCRZ8Bojv5Kkoa4hpzfNsPMPAAAAAAAA1ICydv75yEc+kte97nVZvnx5pfMAAMeps/dg\n+aejdf5hr2mfMivPvfJC9g7tS3ND04mKBgAAAAAAAIyzsso/SYz5AoAq0dm3OUnS0XLk8k/X3p2H\n3SEIAAAAAAAAOPmVNfbrqquuyt/+7d9m06ZN2bp16+h/AMDJpVQqZWPv5sxsmpFpjVMPe11b86wk\nSdeA0V8AAAAAAABQzcra+aevry9/+Zd/mRkzZoweKxQKeeSRRyoWDAA4eq/s253+A3tyzozFY17X\nPuVg+WeH8g8AAAAAAABUtbLKP9/+9rfz4x//OE1NTZXOAwAch38d+TX2KK+RnX927FX+AQAAAAAA\ngGpW1tiv+fPnp6enp9JZAIDj1Nm7KUnS0Tp2+Wdm04zUFeqM/QIAAAAAAIAqV9bOP4VCIddcc03O\nOeecTJo0afT4PffcU7FgAMDR6+zdlEIKmX+EnX/q6+ozq/l0O/8AAAAAAABAlSur/PPbv/3blc4B\nABynYqmYTX1b0j6lLc0NRx7V2d48K6sH1mTPgYFMnTTlBCQEAAAAAAAAxltZ5Z9ly5ZVOgcAcJx2\nDOzMvuH9uegII79GtE2Zlew6eN/C6QsqnA4AAAAAAACohLqJDgAAjI/O3k1Jko6W+WVd397cliTp\nMvoLAAAAAAAAqpbyDwDUiM6+zUmSjjJ3/mmfMivJwZ1/AAAAAAAAgOqk/AMANWJj76bUFeoyd9qc\nsq5vax4p/3RVMhYAAAAAAABQQco/AFADhovD2dy/NXOmnpHG+kll3TOjaXoa6hqM/QIAAAAAAIAq\npvwDADVg657tOVAcKnvkV5LUFerS1jwzOwZ2pVQqVTAdAAAAAAAAUCnKPwBQAzp7NyVJOlrmH9V9\n7c2zsm94X/oP7KlELAAAAAAAAKDClH8AoAZs7NucJFnQenTln7Yps5IkOwaM/gIAAAAAAIBqpPwD\nADWgs3dzJtU1ZM7U2Ud1X3vzSPmnqxKxAAAAAAAAgApT/gGAKjc4fCBb92zPvGlzU19Xf1T3ju78\ns9fOPwAAAAAAAFCNlH+AFEvF3P/8g1nVtXqiowDHYHP/1hRLxXS0zjvqe9sPlX+6jP0CAAAAAACA\nqqT8A+Sl7vX5/pYf5Z82fGeiowDHoLN3U5JkQcvRl3+mN7amsb7Rzj8AAAAAAABQpZR/gDyz49kk\nyab+LRkcHpzgNMDR6uzdnCTpaJ1/1PcWCoW0Nc9M18DOlEql8Y4GAAAAAAAAVJjyD5ziiqVinun6\nyejbIyUCoHps7NuUpvqm0RFeR6u9eVYGiwfSM9g7zskAAAAAAACASlP+gVPcS93r0zfYn9MmT0+S\nrO/pnOBEwNHYO7QvLw90ZUHL3NQVju3LevuUtiTJjgGjvwAAAAAAAKDaKP/AKW5k5Ne7Fr09SbKu\nd8MEpgGO1qa+Yx/5NaLt0I5BXco/AAAAAAAAUHWUf+AUNjLya9qkqXnD7KWZ2TQj63o6UyqVJjoa\nUKaRUX0LWucd8zPamw+Wf17e2zUumQAAAAAAAIATR/kHTmEjI78ubrsg9XX1WTi9I3sODGTHXrt/\nQLXo7N2UJOloOfadf9pHd/7ZNS6ZAAAAAAAAgBNH+QdOYU8fGvl1aftFSZJF089Kkqzr6ZyoSMBR\n6uzbnGmTpub0ptOO+RnTJk1Nc0OT4h8AAAAAAABUIeUfOEUVS8WsPDTy65zTFiVJFk5fkCRZ37Nh\nApMB5eob7M8r+3ZnQeu8FAqFY35OoVBIW/Os7Ny7K8VScRwTAgAAAAAAAJWm/AOnqJGRX0sPjfxK\nkrlTz0xj3SQ7/0CVGI+RXyPap8zKUHEou/f1HPezAAAAAAAAgBNH+QdOUSMjvy45NPIrSerr6nNW\n64Js2/NyBg7snahoQJk29m1OknS0zjvuZ7U1z0qS7NjbddzPAgAAAAAAAE4c5fE1akMAACAASURB\nVB84BRVLxazc8eqRXyMWTe9Ikqzv3TgR0YCj0Nk7Uv4Zn51/kqRrYOdxPwsAAAAAAAA4cZR/4BT0\nUve69B149civEQtHyj89GyYgGVCuUqmUzr5NmTH5tLQ2thz380bKPzv2Kv8AAAAAAABANVH+gVPQ\n0zt+kuTVI79GjJR/1vV0ntBME+XlPTvy421PplQqTXQUOCrd+3vSN9g/LiO/kqS92c4/AAAAAAAA\nUI0aKvXgYrGY//Jf/kuef/75NDY25nOf+1w6OjpGzz/66KP5H//jf6ShoSHXXnttrrvuusPe09nZ\nmVtuuSWFQiHnnHNOPv3pT6euri4PPPBA7rvvvjQ0NOR3fud3snz58gwPD+fOO+/M6tWrMzg4mI9/\n/ONZvnx5pT5NqDpjjfxKkqmTpuSMKe3Z0Lsxw8XhX9gZqNZ8/aVv5qe71uSMKe1ZOH3BRMeBsnX2\nbkqSLGgZn/LPlElTMnXSlOxQ/gEAAAAAAICqUrGdfx5++OEMDg7m/vvvzx/8wR/kj//4j0fPHThw\nIHfeeWe+8pWv5N57783999+fnTt3HvaeO++8M5/4xCfyta99LaVSKY888ki6urpy77335r777svd\nd9+du+66K4ODg/n7v//7DA0N5b777suXvvSldHaeGruXQLnGGvk1YtH0juwfHszWPS+f4HQn1nBx\nOC91r0uSPL1j1QSngaPT2bc5SdLROn/cntnePCs7972S4eLwuD0TAAAAAAAAqKyKlX+eeuqpvOUt\nb0mSLF26NKtXrx49t3bt2ixYsCDTp09PY2NjLrvssjzxxBOHveenP/1pli1bliR561vfmh/96Ed5\n9tlnc8kll6SxsTEtLS1ZsGBB1qxZkx/+8IeZPXt2fuu3fiu33nprrrzyykp9ilCVxhr5NWLh9LOS\nJOt7NpyARBNnY9+W7B8eTJI8s+MnRn9RVcZ7558kaZ/SlmKpmF37do/bMwEAAADgRLrv+f8nX3n6\n/omOAQBwQlWs/NPf359p06aNvl9fX5+hoaHRcy0tLaPnpk6dmv7+/sPeUyqVUigURq/t6+s77DN2\n796djRs35stf/nI+8pGP5FOf+lSlPkWoOkca+TVi0fSDI/rW9dT2zlkv7l6bJGmZNC2793dnQ+/G\nCU4E5SmVStnYtzntzbMyZVLzuD23rXlWkqRrr9FfAAAAAFSfvUN788Mt/5z/tfYHOTB8YKLjAACc\nMA2VevC0adOyZ8+e0feLxWIaGhpe89yePXvS0tJy2Hvq6upedW1ra+thn3HaaafliiuuSKFQyLJl\ny7Jhw4YjZp0xY0oaGl57/BETp62t5cgXcVRWv/x8+g7056rFb8kZs0877HUzZ03NtGemprN/Y03/\n77DhZwfLTb+59DfypSfuzXN9a7Ls7AsmOBWnguP9e7Wtb0f2Du3LZXMuHNe/o2fvnZesTwbq+mr6\n7z5QOdYOoJZZ44BaZX0DasnTWzeklFKGi8Ppb+jOklmHfxEsQLXy/RvwWipW/rn00kvzne98J+98\n5zuzcuXKLFmyZPTc4sWL09nZme7u7kyZMiVPPvlkbrrpphQKhde85/zzz8/jjz+eyy+/PN///vfz\nS7/0S7nooovyZ3/2Z9m/f38GBwezdu3aLFmyJJdddlm+973v5W1ve1vWrFmTM88884hZd+8eqNQf\nA8eora0lXV19Ex2j5nznxceTJOe3nHfEP9+zWuZn9a41eWnzlkyf3Hoi4p1Qw8XhPNf1Us6Y0p5z\np56X5obmPNb5ZN4+9+rUFSq2KRqMy/r2zPY1SZLZk88Y17Vy8tDUJMm6HVvSNcMaDBwd378Btcwa\nB9Qq6xtQa57oXD369jMb12RGqW0C0wCMP9+/AYcrAFas/HP11Vfnsccey/ve976USqV8/vOfz0MP\nPZSBgYFcf/31ueWWW3LTTTelVCrl2muvzezZs1/zniT5oz/6o9x222256667smjRorztbW9LfX19\nVqxYkRtuuCGlUik333xzJk+enOuuuy6f/vSnc91116VUKuUzn/lMpT5FqCo/P/Lr7NMWHvH6hdPP\nyupda7K+pzNL2y88AQlPrM6+zRkcHsySGYvTUNeQi2e9Pv+8/cls6N2YRdPPmuh4MKbOvk1Jko6W\n+eP63HZjvwAAAACoYi/tXj/69oaejcn4/vgMAOCkVbHyT11dXe64445XHVu8ePHo21deeWWuvPLK\nI96TJAsXLszf/M3f/MLx6667Ltddd92rjjU2NubOO+88nuhQk17qXpe+A/1585zLU1935DF3i6Z3\nJEnW1Wj554Xda5Mk58w4uC5dOvui/PP2J/P0y88q/9S4v33h79PZuzm/f9nvVO0uT529m1NIIfNa\n5ozrc5samtLa2JIdA8o/AAAAAFSXvUP7srFvcxZN70jXvl3Z0LtxoiMBAJww1flbT+CoPbXj2STJ\npe0Xl3V9R+v81BXqsq6ns5KxJsyLI+Wf0w7OfH7djLMzpaE5z3T9JMVScSKjUUGlUilPbH8m63s7\n8/zulyY6zjEZLg5nU9+WnDl1dibXN47789uaZ+WVfbtzoDg07s8GAKpXsVTM4PCBiY4BAACHta5n\nQ0op5ZzTFuec08/Krn270zfYP9GxAABOCOUfOAUUS8Ws2rG67JFfSTK5vjHzpp2ZTX2ba64EMFQc\nytqeDZkz9Yy0NE5LkoOjv9ouSPf+nqzv8YqQWtW1d1f2DA0kSf5l+9MTnObYbB/YkQPFA+lorcye\nxe1TZqWUUnbt3VWR5wMA1ekf1v5/ufVH/zV7DgxMdBQAAHhNL+5el+TgCz7Pnnnw5+B2/wEAThXK\nP3AKGBn5tbT9wrJGfo1YOP2sDJUO7jJSSzb0bsqB4oHRkV8jLm2/KEny9I5VExGLE6Czd9Po2yu7\nVmf/8OAEpjk2nb2bkyQdrfMq8vz2KbOSxOgvAOBVfvbK89lzYGB0B00AADjZvNi9LnWFuiyc3pEl\nh8o/XugJAJwqlH/gFDA68qvtoqO6b9H0jiQHt0utJSO/sFhyaOTXiNfNODtTG6bkmR3PGv1Vo0Ze\n6fO6GWdncHgwq7pWT3Cio9fZd7DA1NFSoZ1/mg+Vf/Yq/wAABw0OH8i2PS8nSV7oVv4BAODks29o\nXzb2bU5Hy7w0NUzO4tMP/mzbzj8AwKlC+Qdq3HBx+KhHfo0YKf+s7+msRLQJ80L3uhRSyNkzXl3+\nqa+rz8Vtr0/PYF/W1djnzEGdvZtSV6jLe87+9STVOfprY++mNBTqM2faGRV5ftuhnX+67PwDAByy\ndc+20XL8C3b+AQDgJLSupzPFUnF0t/epjVNyxpT2dPZu8kJPAOCUoPwDNe6l7vXHNPIrSWZMPi2n\nTZ6edT2dKZVKFUp4Yh0oDmV9z4bMmXZGpk2a+gvnL22/OInRX7VoqDiUTf1bM2/amZnXMicdrfOz\n5pUX07O/d6Kjle1AcShb+rdnbsucNNQ1VORjtDXPTGLsFwDwr0bGANcV6rJtz8vpG+yf4EQAAPBq\nL3avS5Kc/XO7vZ/VuiD7hvdn+54dExULAOCEUf6BGvd017GN/EqSQqGQhdM70jvYl137do93tAmx\noaczB4pDWXLa4tc8v2TG4kydNCUrd/zEK0JqzJb+bRkqDqWjdUGSZNkZl6aUUp54+ZkJTla+Lf1b\nM1waTkfLvIp9jMb6xpw2ebqxXwDAqJHyzyVtFyb511+sAADAyeLF3etSV6jL4kO72SfJWdPnJ0k2\n9G6aqFgAACeM8g/UsOHicFbu+ElaJk076pFfI0ZGf63r2TCOySbOC4d+UTGy/eu/VV9Xn6VtF6Rn\nsC9ruzecwGRU2sg/8jtaD/6j/w3tS1NXqKuq0V+dvZuTJAsOfQ6V0j6lLd37ezI4PFjRjwMAVIdN\nfVvSUNeQt8x9UxKjvwAAOLnsHx5MZ9+mzG+Zm6aGptHjZ7Ue/Nn2ht7OiYoGAHDCKP9ADXupe336\nD+zJxe0XHPXIrxEj5Z/1PbXxD6QXd69NIYWcM0YZ6l9Hfz17omJxAnQeKv8sPFScmdY4Na+feW62\n9G/Llv5tExmtbCOfQyV3/kmS9kOjv7r27qroxwEATn5DxaFs7d+euVPPzKLpHWmsb8yLyj8AAJxE\n1vVsSLFU/IXd3udMnZ3Gukl2/gEATgnKP1DDRkZ+XdZ+9CO/RsybNieT6hqyrgbKP4PDB7K+pzPz\npp2ZKZOmHPa6c05blGmTpuaZrmeN/qohG3o3pqm+Ke1T2kaPLTvj0iSpmt1/NvZtTmN9Y86Y2l7R\nj9M2ZVaSZMeA0V8AcKrbtmdHhkrDmd8yJ/V19Vk8/axsH9iRnv19Ex0NAACSHBz5leQXdr+vr6vP\ngtZ52dq/PfuG9k9ENACAE0b5B2rUq0d+LTrm5zTUNWRBy/xs6d+WfUP7xjHhibehtzNDpeHDjvwa\nUV9Xn4vbLkjfYH9e6l5/gtJRSQMH9ublga50tM5LXeFfv/RdOPO8NDc05Yntz5z0Ra99Q/uzfc+O\nLGiZ+6rPoRLamw+Wf7qUfwDglLep7+DY0fktc5Nk9NXUL3bb/QcAgJPDi93rUkghi19jt/ezWhek\nlFI2Hvq+FgCgVin/QI36+ZFfx1sUWDS9I6WUqn571BcOjSdYcoTyT5Jcemi3JKO/akNn36FxWYdG\nfo2YVD8pl7ZflJ7B3tH/f5ysNvVtSSmldLTMP/LFx2lkd6Qde5V/AOBUt6lvS5JkwaGxoyNFeqO/\nAAA4GQwOD6azd1Pmt8xNc0PTL5w/q3VBkoO7ggMA1DLlH6hRT+9YleT4Rn6NWDS9I0myvspHf72w\n++ArQP7t9q+vZWT018odPznpd4ThyDoPFddG/rH/85adcVmSk3/0178WmOZV/GPNaj49hRSM/QIA\nsqlvS+oKdTlz2hlJkgUtczO5vjEv2PkHAICTwLqezgyXhnPOjNfe/X7h9EPlnx7lHwCgtin/QA0a\nLg5nZdfq4x75NWLhofLPuiou/wwOD2ZD78ZDrwBpPuL19XX1Wdp+YfoO9Oel7nUnICGVtGG0/POL\nu+Ysmt6RmU0z8kzXT7J/ePBERyvbxt6DWxMvOAE7/zTUNeT0phnZsber4h8LADh5DReHs7l/W+ZM\nPSOT6hqSHPw+efFpC7NjYGe69/dMcEIAAE51Lx762e05h/k5+GmTp+e0ydOzvndjSqXSiYwGAHBC\n/f/s3XeUW+d5Lvpnow3qAJiC6Zg+JCW2GRZRsqxm9WrZsZ0TLzsnjksclzTHybrHJ2vd5OTkxrGT\nE8t24shO4sRx4mNLtrqo3iX2YRPJwRRgML2hd2Dv+wewRyNpSE4BsIGZ57eWFpdmgO97SZEi9t7v\n9z5s/iHagOTIr92OHeuO/AIAi84Mh6EGI0FP2U7BudwJkOXIU5OOMfqrrEmSBHdwFPYKG6wVle/7\nvkpQYV99H5KZJE7OnlGgwpXxBL0waYyoMVQVZT+HsQahZBixdLwo+xEREVHpmY7OIiWm0GJpetfX\ne2xy9Beb5ImIiIhIWa7ctPdO68WnvbdVOhFMhuBL+ItYGREREVFxsfmHaAOSI7/6HDvytma7tRWx\ndBxTkZm8rVlMLl82lkB+ULESXbYOWLRm9M+cRkbMFKo0KjBfwo9QMozWZab+yPbX9wEo3eivcCqC\nufgCnJXNEAShKHs6jDUAgNkYo7+IiIg2K29oHADe3/xjz36mHvAx+ouIiIiIlJPMpOAJjqLZ0gij\n9uLT3uVp4PJ0cCIiIqKNiM0/RBtMviO/ZB256K+RMo3+GvAPQSWo0Gm7+AmQ91IJKux27EA4FVkc\nH0vl51KRX7I6Yy1aK1twfsGFQCJYrNJWzBvMPnhrtTQXbc9aQ675J8rmHyIios3qYs0/zeZG6NV6\nDPjZ/ENEREREynEHPUhLmYtGfsnaKp3Z1wdGi1EWERERkSLY/EO0wbj8w3mN/JJ1WNsAZOOzyk08\nnYA76EWLpQkGjX5V7+3LRX+dYPRX2XIHsxf1l2r+AbLTfyRIODrdX4yyVsUTyjYwOS/zc8gnefLP\nTHS+aHsSERFRaRkNjUOAgGZzw7u+rlap0WVrx1xsHr44oxOIiIiISBkDuRjayzX/OCuboRJUGAmy\n+YeIiIg2Ljb/EG0wcpNKPiO/AKDe5IBercdw0J3XdYthJOCBKImrivySddnaYdGZ0T97htFfZcod\n8EKAgJbLTM3Z69gNlaDCoaljRaps5TzBMQBAa2XxJ//MxGaLticRERGVDlESMRYeR73JAZ1a977v\nM/qLiIiIiJQ26B+GAAFdl5n2XqHWodFUD29ojPd4iYiIaMNi8w/RBlKoyC8gG4HVbnViJjqHcDKS\n17ULTY4j6LavvvlHJajQW7uT0V9lKiNm4A2NocFUB72m4pKvNetMuLJ6C8bDkxgPTxapwpXxBL2w\n6iphq7AWbc9qvR0qQcXYLyIiok1qNjaPRCb5vsgvWbc9e73B6C8iIiIiUkIqk8JIcBRN5gYYtcbL\nvr7N6kRKTJfcfT8iIiKifGHzD9EGUqjIL1m7tRUAMBIsr+ivAd8QVIIKnbnostWSpygdnzmZx6qo\nGCYj00iKqcVc78vZX78HAHB46nghy1oVfyKAQDIIZxGn/gDZOI8aQxVmYmz+ISIi2oy8oXEAuGjz\nT7O5EQaNAS4fG+SJiIiIqPjcwVGkxfRiU/rlyPcH3Yz+IiIiog2KzT9EG0ihIr9kHbnmn+FA+TT/\nxNNxjIbG0Gppuezkl4vptLWjUmdh9FcZ8gS9AIC2ypYVvX5H9TYYNHocmToBURILWdqKLUZ+WVb2\nc8gnh6EGkVQUkVS06HsTERGRshabf8zLN/+oBBW6bR2Yjy9gPuYrZmlERERERBjITWnvtq1s2nt7\n7v6gO3e/kIiIiGijYfMP0QZRyMgvWVulEwIEDAfcBVm/EIYCboiSuOITIMtRCSr0OnYgkopiwMdY\ng3Iin+Rps65s8o9WrUVv7U4EksGS+W89mrsh0VrkyT8AUGusAQDMMPqLiIho05Gbf5otjRd9DaO/\niIiIiEgpg75hCBDQZWtf0esdxloYNPqym2pPREREtFJs/iHaIAod+QUABo0ejeZ6eILespmAIzdw\n9NhXdgLkYvocuwAAx3PTlag8uINe6FRa1BsdK37P/vo+AKUT/eUJZSf/FDv2C8hO/gGAWUZ/ERER\nbSqSJMEbGofDUAODRn/R1/XkTlm7SqRpmoiIiIg2h5SYxkjQg0ZzPUxa44reoxJUaLW0YCY6xynX\nREREtCGx+Ydog3gn8mtnQfdpt7YiJaYxFp4o6D754vINQy2o0WFtW9c6HdZWWHUWnGT0V9mIpxOY\njEzDWdkMtUq94vd12tpQpbfjxOxpJDLJAlZ4eZIkYTQ4hhp9FcxaU9H3dxhrAXDyDxER0WYzH/ch\nmo6hxbJ85Jes0VwPk8aIAd8QJEkqUnVEREREtNl5gl6kxDS6VzkBvz03HZzRX0RERLQRsfmHaANY\njPzSmVc85nStOipbAQDDgdIfjxpLxzAaGkNrZQsq1Lp1rZWN/tqJSDqKC77BPFVIheQNjUGChNZc\nnvdKqQQV9tf1IplJ4uTsmQJVtzLz8QVE0tFV/xzypZaTf4iIiDYlOfLrcs0/KkGFLnsHfAk/5uML\nxSiNiIiIiGhx8mT3Kqe9t1XKzT+jea+JiIiISGls/iHaABYjv2oLF/klkyfoDAfcBd0nHwb9I5Ag\nrTvyS9abm6rE6K/yIJ/gkS/qV6NUor88uZ+DEpFfAGDXW6FRaTATnVVkfyIiIlLGSpt/gHeivwZ8\nwwWtiYiIiIhI5vJnP3t2WVd3EFY+YMfmHyIiItqI2PxDtAEcL1LkFwDUGKpg0ZrLYvKPK/cAQn4g\nsV7Z6K9KnJw9g7SYzsuaVDjvNP+sfmpOncmBVksLzi+4EEgE813ainmCYwCAVosyzT8qQYUaQzVm\novOM8iAiItpEVtX8Y5ebf4YKWhMREREREQCkxTSGAx40muph1plW9V6LzowaQzU8AS/vdREREdGG\nw+YfojKXETM4WaTILwAQBAEd1lb4EwH44v6C77ceA/4haAQ12q2teVlPJajQ59iJaDq2IaK/NvoF\nrjs4ikqdBfYK25rev7+hDxIkHJ3uz3NlK+cJeSFAWNGDt0KpM9QgnokjnIooVgMREREVjyRJGA2N\noVpvh0lrvOzrG0x1MGtNcPmHNvznSyIiIiJSnic4hpSYQre9Y03vb6tsQSQdZcw9ERERbThs/iEq\nc3LkV28RIr9kcjNNKUd/RVMxjIUm0GZ1QqfW5m3dvrqNEf01FZnGn7z6/+L18UNKl1IQ/kQA/kQA\nrZUtEARhTWvsdeyGSlApFv0lSiJGQ+OoMzmg1+gVqQEAao01AICZKG+IEBERbQaBZBDhVGTFzceC\nIKDb1gF/IoDZ2HyBqyMiIiKizc7lz06c7F7jtPf2yuy97ZEAo7+IiIhoY2HzD1GZk5tQeosQ+SXr\nsLYBKO0LpEH/MCRIa74IvJi2SidsFVacnD1b1tFfDw0+jkg6ikMKNbYUmmcdkV8ys86EK6u3YCw8\ngYnwVL5KW7Hp6CySmaRikV8yhyHX/MPTUERERJvCaC52dDWTB+XoLxejv4iIiIiowFy+YQBY8xT8\nNmv2fqE7d/+QiIiIaKNg8w9RGSt25JfMaWmCWlBjOOAp2p6rNZA7ASI/iMgXOforlo7h/IIrr2sX\ny7n5Abw9fwEAMBL0IJ5OKFxR/rkXm3+c61pnf/0eAFBk+o/cwNS6jgamfHhn8s+sonUQERFRcXhD\n4wDW1vwjfwYnIiIiIiqEtJjGcMCNBlMdLDrzmtZoMjdCI6jhDpbuwVYiIiKitWDzD1EZUyLyCwC0\nai2cliZ4w+NIZpJF23c1XL5haFQatK+z+WM58pSlcoz+EiURDw8+DgECtldvgyiJGPQPK11W3snN\nP851Ts3ZUb0NBo0eR6ZPQJTEfJS2Yp7cqfvWSoUn/+Saf2YZ+0VERLQpeMOrb/6pMzpg0Znh8g1B\nkqRClUZEREREm9xoaAxJMYVuW8ea19CqNGixNGEsPIFkJpXH6oiIiIiUxeYfojKmROSXrN3aClES\nFxsUSkkkFcV4eBLtlU5o1dq8r99W2QJ7hQ2n5s4iVWbRX29OHMFEZAoHGvbiQ84PAgDO+8pzgtHF\niJKI0aAXdUYHjFrDutbSqrXord0JfyKAgSLHWHhCXqgFNZrMjUXd972sukroVFrGfhEREW0S3tAE\nbBVWVOosK36PIAjosXUikAxxWiARERERFYwc+dW9zmnvbZVOiJKIsVzjOxEREdFGwOYfojKlVOSX\nrMPaBgAYKcHoL5d/GBKkvEd+yVSCCr2OHYil4zi/MFCQPQohno7jseGD0Kl1uLvjVrRb26BVaXFh\nYVDp0vJqOjqLeCaBtjzFZe2v7wNQ3OivtJjGeGgCjeZ6aFWaou27HEEQUGuswWx0jif5iYiINrhg\nMgR/IoAWy+qbj7sXo7823lRJIiIiIioNrtxnzfXeD2+zZqfFjwQY/UVEREQbB5t/iMqUUpFfsvbc\nBdJw0F30vS/HlZvQ0mPvKtgefY5dAIATM6cLtke+Pet5CaFUGLc6b4CtwgqtSoMuWzsmIlMIJIJK\nl5c3cuRXvpp/Om1tqNLb0T97umgxdxPhKaSlDFrXGVuWLw5DDZJiCoHkxvl9QkRERO/nDU0AAFrM\nK4/8kvXkohdcRZ6WSERERESbQ0bMYCjgRr3Rsaoplctpq8ze23YH2fxDREREGwebf4jKlJKRXwBg\nq7CiWm/HcMBTctNABnxD0Ko0aM1T88dy5Oivk7PlEf21EPfhee8rsFVY8SHndYtf31rVDQC44Ns4\n03/ki/Z8/fdXCSrsr+tFIpPEydmzeVnzcjyhbANTIX8Pr0atsQYAMBNl9BcREdFG5g1lI31bLKtv\n/nEYa2HVWTDgHyq56wMiIiIiKn+joTEkM0l02TvWvVa13g6z1rR4iJCIiIhoI2DzD9F7iJKodAmX\npXTkl6zd2opIKoqZWOk0BISSYUxEptBhbStoXJIgCOir24l4pjyivx4dehopMY17O26HTq1b/PpW\ne7b55/yCS6nS8s4T9EKj0qDJ3JC3NYsd/TUazD54K5XmH4exFgAwy+YfIiKiDc0bGgewtuYfQRDQ\nbe9EKBnGdHQm36URFY0kSXAHR8vi3gAREdFmIkd+yRMn10MQBLRbnViI+xBIhNa9HhEREVEpYPMP\n0RJvTBzBn7725zgzd07pUi5J6cgvWYe1DQAwHPAoVsN7DfpHAAA99s6C79WXm7p0bPpUwfdaD3dw\nFEemT6DF0oR99b3v+l6juR5mrQnnF1wb4oR2MpPCeHgSLeZGaPLY/FVncqDV0oJzCwNFuSHgCY1B\nq9Ki3ugo+F4r4TDkJv+UUKMfERER5Z83NA6L1gxbhXVN7++xZT+DDzD6i8rY0el+/M3R7+I5z8tK\nl0JERERLuHzZ5p8uW37u+zL6i4iIiDYaNv8Q5cTScfxq6AlEUlE8eObfcWGhdGOQ5MivPoUiv2Qd\n1lYAwEjArWgdS8kPGrrzdBF4Ka2WFlTp7Tg9dxapTKrg+62FJEl42PU4AOCjXXe/r1lMJaiwtaob\ngWQQUxvghPZYeByiJC5evOfT/vo+SJBwbPpE3tdeKplJYjIyjRZLE9QqdUH3WikHY7+IVuzodD8O\nul9ARswoXQoR0apEUlHMx31osTRBEIQ1rdFtZ/MPlb8juc/7z4y+iEgqqnA1REREBGQn4Q8FRlBn\nrIW1wpKXNdn8Q0RERBsNm3+Icl70vopIKopdtdsBScI/nv7XkppoI1sa+dWpYOQXADSa6qFT60rq\n12nAPwSdSovWyuaC7yUIAvocOxHPJHCuRKO/+mfPYCjgxq6aKxcfxrzXlg0U/SXndBciLmtP3S6o\nBFXBo7+8oQmIkliU38MrZdaaoFfrOfmH6DKSmSR+ev4XeHT4aTzQ/yBCjwtROwAAIABJREFUybDS\nJRERrdh6Ir9ktYZq2CqscPmHN8RUSdp8oqkozi+4oBJUiKXjeNbzktIlEREREQBveByJTBJdeYj8\nkrVWtkCAAHeAzT9ERES0MbD5hwhAOBXB86OvwKw14dPbPoHPbP8k0mIa3z/5I3hDE0qX9y6lEvkF\nAGqVGm2VTkxGphFNxRStBQBCyTCmItPosLblNfLpUuTpS/I0plKSEtP41eATUAkqfLjrzou+bmtV\nF4AN0vyTu1gvxOQfi86MK6q2wBuewER4Ku/ryzyhbAOT01I6zT+CIMBhrMFcbB6iJCpdDlHJOjX3\nNhKZJCp1Frj8w/jm0QdK7nMEEdHF5KP5RxAEdNs6EU5FMBmZzldpREVzcu5tZKQMbmu9EbYKK14a\nex2BRFDpsoiIiDY9OfKrJ4/NPwaNHnUmBzwhL+93ERER0YbA5h8iAM96XkI8k8DtbR+CXlOBXbXb\n8altH0c8ncB3+x/EVKR04pCOz5wEoHzkl2wx+qsExqPK8QI9F5lwUwhOSzOq9VU4NXcWyRKL/npl\n7A3MxRdwfdM1cBhrL/q6Kr0dDmMNXP6hso+p8QS9MGmNqDFUFWT9/fV9AFDQ6T+eAk4vWg+HsQZp\nMQ1fPKB0KUQl68hUNibkq72fx93tt2Ih7sPfHvteSTaIEhG9Vz6af4B3Posz+ovK0Ync39n76/fg\njrYPISWm8JT7eYWrIiIiIpc/2/zTZc9f8w8AtFc6kcgk2bhOREREGwKbf2jT8ycCeHnsddgrbLi2\n8arFr++v78Ovb7kf4VQED/Q/iLnYgoJVZmUjv86WROSXbLH5J+BWthC8cxFYzOYfOforkUni3MKF\nou17OeFkBE+5n4NRY8Ad7Tdf9vVb7T1IZJIl0cS1VqFkGHPxhezIXkEoyB47aq6AXq3HkekTBTsR\nNBocg0GjR62huiDrr1WtoQYAMMvoL6JlhZMRvL1wAS3mRjSY6nBH+834/I7fhCAI+NGZn+Cx4YM8\nSUhEJc0bGodBY0C13r6udeTP4i4/m3+ovMiRXy3mRjiMNbi6YR9qDdV4feIQ5mLzSpdHRES0aWXE\nDIb8bjgMNbBVWPO6dlvu8J27jO+JEhEREcnY/EOb3tPuF5AS07iz/WZo1dp3fe/apgO4v+su+BMB\nfOfEP8GfUHbixTuRXzsVj/yStefilYYDHoUryZ4u1ql1RY9LKsXoryfdzyGWjuOO9pth0hov+3o5\n+utCGUd/yRNz2iyFm5ijU2vR59gBfyKwOG44n6KpGGZic3Bamkvmz7jMYcw2/8xEZxWuhKg0HZ85\nBVESsbe+d/Fru2qvxNf2fBk1hmo87X4e/3T6x4il4wpWSUS0vFg6jpnYHFosTetuoq7W22GvsMHl\nG2bTI5UVOfKrN3d9p1apcXf7rRAlEY8PP6twdURERJvXWHgC8UwcXXmM/JK15w62ugNs/iEiIqLy\nV1pPFomKbC42j9cnDsFhqMFV9XuWfc3NzutxZ9vNmI8v4DsnHkQoGS5yle94J/Jrh2I1vJdRa0S9\nqQ7u4KiikVGBRBDT0Rl0WduhVqmLuneLpQk1+iqcmnu7JKK/piMzeHX8TdQaqnFd09Urek+PvRMC\nBJz3lW/zj1tu/rE6C7qPHP11aOpY3tceDY0BKL3IL2BJ8w8n/xAt68j0CQgQsLdu97u+3miux9f3\nfgVb7d04PXcO3zr2PcxE+eeIiErLWGgCAOBcZ+QXkJ2M2WPvRCQdxUR4at3rERWLHPnVuyRiu69u\nF5rMDTg6fQLj4UmlSiMiItrU5Gnv3XmO/AKABlMddGrd4n1FIiIionLG5h/a1J4ceQ6iJOKujlsv\n2TByZ/st+FDLdZiOzuC7/T9ENBUrYpVZGTGD/tkzJRX5JeuobEUik8SEgtnISkR+yQRBQF/dLiQz\nSbxdAtFfvxx6EqIk4sNdd0Gj0qzoPQaNAW2VLXAHvWU7lUKe/NNawMk/ANBpa4e9wob+2dNIZpJ5\nXXs0mGv+KfL0qpVwyLFfbFogep/52AKGA2502zqWHUFu0hrxu7s+g5taPoipyDS+efQBnJsfUKBS\nIqLlecPjALJN7fnwTvRX/iclEhXCeyO/ZCpBhXs7bocECY8NH1SwQiIios1Lnr7dXYDJPypBhVZL\nMyYj04iX6T1RIiIiIhmbf2jTmghP4fDUcTSZGxZjmy5GEATc33UXrm28CmPhCXz/5I8QTyeKVGnW\ngH8IkVS0pCK/ZB258agjAbdiNQz4hgAU5gTISixGf02fVGR/2YBvEKfn3kaXrR27aq5c1Xu3VnVD\nlES4cr+W5USSJHiCXtQYqmHWmQq6l0pQYX99HxKZJE7Ons3r2p5QroGpBCf/GLVGmLRGTv4hWsaR\n6X4AwL4lkV/vpVap8dHue/CpbR9HKpPE907+CM+PvgJJkopVJhHRRXlD+W3+6bZlm38GyvBzJW1O\n7438WurK6q3osLbh9NzbJRF3TUREtJmIkoihwAhqDNWw620F2aOt0gkJEjy5Q3lERERE5aq0OgiI\niuiJkWcgQcI9HbetqJlGEAR8Ysv92FfXi5HgKH5w+sdIFTHiSR5BXkqRXzK5+UfJG6Eu3xD06gq0\nmPPzwGK1ms2NqDVU4/T8ubxPg1kpURLxkOtxAMBHuu6GIAirev8WezcA4LxvMO+1FdpsbB6RdBRt\nRWqakaO/Dk8dz+u6nuAYLFrzspNDSoHDUIO52IKiEX9EpUaSJByZPgGNoMbu2sv/HX2gYS9+v++L\nqNSZ8fDg4/j3c/+3qJ8niIiW4w2No0KtQ62hOi/rVRvsqNZXweUfhiiJeVmTqJCWi/ySCYKA+zrv\nAAA8OvQUG3eJiIiKaCw8gVg6XpCpP7I2qxMA4A6OFmwPIiIiomJg8w9tSp6gF/2zZ9Be2Yrt1dtW\n/D6VoMKntn0cu2quxIBvED8885OiPASXI78qdZaSi/wCAIexFiaNUbHmH38igJnYHLps7ZeMbysk\nQRDQ69iJZCaJs/PKRH8dmjqOsfAE9tf3rWlyTLvVCZ1ahwsLrgJUV1jyxXlbpbMo+9WbHGi1tODc\nwgACiVBe1gwmQ/Al/GitbF5141ax1BprIEoi5uM+pUshKhlj4UlMRaaxvWYbjFrDit7TbnXi6/u+\nirZKJw5NHcPfHf9H+BOBAldKRLS8ZCaJqcgMms1NeZ0w2mPvRCwdw3h4Mm9rEhXCxSK/luqyteOK\n6i1w+Ydx3ld+10tERETlarCAkV8y+TDhCJt/iIiIqMyx+Yc2pceGDwIA7u28fdUP2dUqNX5r+yex\nraoHZ+bP4cdv/1fBT7PKkV+7a3eUXOQXkG18abe2Yj6+gEAiWPT934n86iz63kv1OXYBAI7PFD/6\nK5FJ4rGhp6BVaXFvx+1rWkOj0qDb1oGp6Ax8cX+eKywsT7D4cVn76/sgQcKx6RN5WU/+OThLMPJL\n5jDUAgBmGf1FtOjIdHYC2L66i0d+LcdWYcXv934BV9XvgSfkxV8f+Q5GGCVCRAoYC09CggRnniK/\nZPIDGkZ/Uam7VOTXUvJ11qNDT3P6D5U9SZJwaPIY/sfrf4mfnHxY6XKIiC5qwJ9r/rEXrvnHVmGF\nvcIGd3CUf8cTERFRWSu9LgKiAnP5hnBuYQBb7d3oWWOziFalwed3fBqd1jYcmzmJn55/qKANQKUc\n+SWTo7+UeHDpyj1Q6LEp2/zTbG6Aw1CDM3PFj/56zvMSAskQPuS8bl3511urstFfF8os+ssd9EIl\nqNBibizannvqdkElqPIW/TWayxVvtTTnZb1CcBizUSAzUTb/EAHZuMVj0ydh0OhxZfXWVb9fq9bi\nU9s+jo9234NQMoz/c/wf8ebEkQJUSkR0cd7QOACgJc/NP/K1Fpt/qNRdKvJrqRZLE/ocOzEaGkP/\n7JlilEZUELPReXy3/4f4t3M/gz8RwEHXy4in40qXRUT0PqIkYsg/gmp9Far09oLu1VbZglAyjIUy\nOxBJREREtBSbf2hTkSQJj+am/tzTedu61tKpdfjirt+C09KENyeP4CHXYwU5GVDqkV8yuflHieiv\nAf8wDBo9mi3Fa/xYjiAI6HPsRFJM4cz8+aLt608E8Nzoy6jUWXCL84Z1rbXVnm3+OV9G0V9pMY2x\n0DiazQ3QqrVF29eiM+OKqi3whicwEZ5a93qeUK75p4Qn/9TmYhDY/EOUNegfgT8RQG/tjjX//0cQ\nBNzU8kF8efdnoVPr8JPzP8cvBh4tSqwoERFQuOYfu96GWkM1Bv0jBZ+USrRWK4n8WurujtugElR4\nbPgg/66mspMRMzjofgF/efjbOO9z4YrqLfhg09VIZJI4PnNa6fKIiN5nPDyFaDpW0MgvWZvVCQBw\nBzmRl4iIiMoXm39oUzk7fx7DATd21VyJtkrnutczaAz40u7PotFUj5fGXsfjucaifCr1yC9Za2UL\nVIKq6M0/vrgfc7F5dNnaS+LXp69Ojv46VbQ9Hxs6iKSYwj0dt0GvqVjXWg2mOlTqLDjvc5XNmNvx\n8CTSUgatefgzvVr76/sAYN3TfyRJgifoRZXeDovOnI/SCsJhyD4QYewXUdaRqWzs37761UV+LWdr\nVTe+vveraDDV4cWx1/Ddkz9COBVZ97pERJfjDY1Dq9Kizlib97W7bZ2IZ+KLDUZEpWalkV+yOmMt\nDtTvxXR0Jm8TQImKYSTgwf935O/x6PDT0Gv0+MyVv4Hf3fkZ3Np6AwQIeGvyqNIlEhG9z2ARIr9k\n8rMCd9Bb8L2IiIiICkX5J+VERSJKIh4bPggBAu7uWN/Un6XMWhO+vPtzqDVU42nPC3jG/WLe1gaW\nRn6t7GakUnRqHZrNDfCGxpDKpIq270CJRH7JGk31qDPW4szcOSSKEP3lDY3j0NQxNJkbcKBh77rX\nEwQBW+zdCCXDmIisf5pNMcgX5W0KTMzZUXMF9Go9jkyfWNeJ9oW4H+FUpKQjvwBAr9GjUmfh5B8i\nACkxjROzp2GrsKIrT6cQa43V+NqeL2FnzZUY8A3ib448kJfJYkREF5MS05iITKHZ3AC1Sp339Rn9\nRaVupZFfS93ZfjM0Kg2eGHkWKTFdqNKI8iKWjuFnF36Jbx/7PiYiU/hA43782VVfw5663RAEAVV6\nO7bXbcFQYITXeURUcly5z5DFmPzjtDRBJagwEhgt+F5EREREhcLmH9o0Tsycxlh4AnvretFors/r\n2tYKC76y+/OwV9jwyPBTeGns9bys++7Ir7a8rFlI7dY2pKUMvOHinewd8OcuAu2l0fwjCAJ6HTuR\nElM4M3euoHtJkoSHXY9DgoSPdN2dt8lHW6u6AAAXyiT6yx3MXpQr0fyjU2vR59gBfyIAl294zet4\nQtkGJmdlaTf/AECtoQYLcR/SfNBBm9zZ+fOIpWPYU7crr5Pn9Bo9PrfjU7ij7WbMxRfwN8e+i/7Z\nM3lbn4hoqcnwFERJzHvkl0w+pe3yr/1zElGhrDbyS2bX23Bd09XwJfx4bfytAlZItHaSJKF/5jT+\n4q1v45XxN1FnrMUf9H0Rv7H112DUGt/12hvargYAHJo6pkSpRETLEiURg/4RVOntqDZUFXw/nVqH\nJnMDvOFx3vMiIiKissXmH9oUMmIGT4w8A5Wgwl3ttxRkj2qDHV/t/RwsOjN+PvAI3szDyORyifyS\ndVhbAaCo0V8u3xCMGgOazA1F2/Ny5ClNhY7+Oj33Ngb8Q9hevRVbq7rztq681jlfeTT/eIJe6NV6\nOAoQVbES+Yj+Gg2OAQBaLcVvYFoth7EGEiTMxRaULoVIUYuRX3V9eV9bJahwd8et+Oz2TwGShAdP\n/xueHHl2XRPGiIiWMxrKfgYpVPOPrcIKh7EGQ/4RZMRMQfYgWqvVRn4tdWvrjahQ6/C0+3nE04kC\nVEe0dr64Hz84/WM8eObfEUlFcHf7rfjT/b+PLlv7sq/f37wberUehyaP8fMmEZWMycg0IuloUab+\nyNoqnUiLaYyHJ4u2JxEREVE+lX43AVEeHJ46junoLK5p2IdaY3XB9nEYa/GV3Z+DSWPEf5z7+bqb\nP45Pl0fkl6zYzT/zsQXMx33otnWUVHNUNvrLgbPz5wp2IzgjZvDLoSegElS4v+uuvK5tq7Ci3ujA\noG+45E+6RFNRTEdn0VrZrNjvgU5bO+wVNpyYPYXkGqPePEF58k9hHrzlk8OQPRU9E51VuBIi5cTS\nMZyZP4d6Ux2aC9h82uvYga/t/TKq9XY8MfIsfnTmJ3zASER55Q1lJ3YWqvkHyMbzxjMJjIaKNx2U\naCXWEvkls+jM+FDLdQinInjR+1q+SyNaE1ES8aL3NfzFoW/h9Nzb6LZ14P/Z/we4o/1maFWai76v\nQqPDnrqd8CX8jGkkopIhT9guZvNPe6UTADASZPQXERERlafSeVpOVCApMY0nRp6FRqXBHe03F3y/\nJnMDvrT7t1Gh1uFfzv50zdFPGTGDk3PlE/kFAPYKG2wVVgwH3JAkqeD7DeTiA0ol8ksmCAL6HDuR\nEtM4O1+Y6K9Xx9/CTHQO1zZehXpTXd7X31rVjaSYwkgRpzithSd3Wr0td3GuBJWgwv76PiQySZya\nPbvq94uSiNHQOOqMtTBoDAWoML/kSISZ2JzClRAp58TMGaTFNPbV9UIQhILu1WRuwNf3fhU9tk70\nz57Bt499D3Ox+YLuSUSbhzc0AY2gRkMBPk/KenKf1V1+PlCm0rHWyK+lbnJeB5PWiOdGX0Y4Fclz\nhUSr4w1N4FtHv4dfuB6FWlDjk1s/ht/r/QLqTI4Vvf9Aw14AwFt5mGJNRJQP8mfHYt73bavMTuR2\nB7xF25OIiIgon9j8Qxve6+OH4Ev4cX3TNbBVWIuyZ2tlC35n529BLajxwzP/vqaTU3LkV6+jPCK/\ngGzTS7u1FaFkGPPxwkcCuXK/rj0l1vwDFDb6K5qK4smRZ6FX63FngWLs5Oiv877BgqyfL/LFeGul\nsnFZcvTXoenVR3/NRucQz8ThLIPILwCozT0cmY2y+Yc2ryPT2civvXW7i7KfWWfCl3d/Ftc3X4OJ\nyBS+eeQBXFgo7f8/E1Hpy4gZjEcm0Wiuh+YSEyHWq8uW/azOaRJUStYT+SUzaPS4rfUmxDNxPOt5\nKX/FEa1CIpPELwefwDePfgeekBf76nrxZwf+GNc07ltVk3p7ZSscxhr0z55GLB0rYMVERJcnSiIG\n/SOwV9hQrbcXbd9aYw0MGgPcwdI+DElERER0MeXRUUC0RolMEk+7n0eFWodbW28s6t7d9g58fsen\nIUoS/uHUv6x6gooc+dVbWx6RX7JiRX9JkoQB3xBMWmNBTyqvVaO5HvWmOpydP494Op7XtZ9yP49I\nOorb226CRWfO69oyOUrt/IKrIOvniyeUHcPbpnDzT73JAaelGecXXAgmQ6t6rzy9qLWyuRCl5V2t\nIRudOMPJI7RJ+RMBuHxD6LC2osZQVbR91So1Pt7zYfzG1o8inknguyd/iJe8rxdl0h4RbUxT0Rmk\nxXRBI78AwFphQb3RgaGAGxkxU9C9iFZqPZFfS13XdDVsFVa8PPY6/IlAPkojWrGz8xfwl4e+jedG\nX4a9woYv7/os/vuV/21N9wkEQcCB+r1IienF+1FEREqZiswgnIqg295R8Gm7S6kEFdoqWzAbm+dU\nPyIiIipLbP6hDe0l72sIpcL4UMt1MOtMRd//iuot+Mz2TyItpvG9k/8Mb2hiRe8rx8gvmdz8U+i4\nqPn4AnwJ/2KTSinqq92BlJhec/Tbcmaic3h57A1U6+24ofkDeVv3vfQaPdoqnfAEvYimSvPUnyRJ\ncAe8sFfYYK2oVLoc7K/vgyiJODrdv6r3eYKlMb1opXRqHWwVVsxEZ5UuhUgRR6f7IUHCvrpeRfb/\nQONV+P2+L8CkNeLnrkfwH+d/gZSYVqQWIipvo6FxACh48w+QndSZzCQXm56JlJSPyC+ZVq3Fne03\nIyWm8ZT7+TxVSHRpwWQI/3L2p/j+yR/BlwjgFucN+MZVf4ht1T3rWnd/fR8ECHhritFfRKQsl38Y\nQPZwYrG1VToBvHO/joiIiKiclOYTc6I8iKZieHb0ZZg0RtzkvE6xOnbXbsentn0c8XQc3+1/EFOR\nmcu+Z8BXfpFfsmZzI7QqTcEn/8ixAcXMfV6t3gJEfz0y9BQyUgb3dd4JrVqbt3WXs7WqGxIkDPhL\nM6JhIe5HKBVWfOqPbG/dbqgEFQ5PrS76yxMcg0pQodncUKDK8s9hqIE/EUAyk1S6FKKiOzp1AipB\nhT7HLsVq6LC24U/2fhVOSxPenDyCvz/+AwQSQcXqIaLy5C1i84/8mZ3RX1QK8hH5tdSB+r1wGGrw\nxsRhzEY5HZMKR5REvD5xCH/+1rdwdLofrZUt+JO9X8WHu+6ETq1b9/p2vQ1bq7oxHPBgegX3roiI\nCsUl3/e1Ff++b7s12/wzEhgt+t5ERERE61VeXQVEq/D86MuIpWO4pfUGGDR6RWvZX9+HT2y5H+FU\nBA/0P4i52MIlXy83i5Rb5BcAaFQaOC0tGA9P5j3uaqkBX/YESI8CF4Er1WiuR4OpDmcXLuTl12LQ\nP4L+2dNor2xFX55uVF/KVns3AOBCiUZ/uYPZi/BSmZhj0ZlxRVUPvKFxTEamV/SejJjBWHgcDaa6\nvNysLRb5hPQso79ok5mKTMMbnsAVVT2KTBRcyq634Q/6fhf76noxEvTgm0cf4MlEIloVbyjbgNxo\nKnwDsnxq28XmHyoB+Yr8kqlVatzdcStEScTjIwfzsibRe01FZvD3J36An55/CJIk4mM99+Fre76E\nZktjXvc50LAXAPDW1LG8rktEtFKSJMHlH4atwlrUqG2ZfJ9Rvu9IREREVE7Y/EMbUjAZwgtjr8Gq\ns+D65muULgcA8MGmA7i/6y74EwE8cOKf4E8Eln2dHPllLcPIL1mHtRUSJLgL9BAyexE4BLPWhAZT\nXUH2yJc+x06kxTROrzP6S5REPOR6DADw0e67i5J33VbZAr26AudLtPlHfsgtj+MtBfvr+wBgxdN/\nJiLTSIlptFpKo4FppWrl5p/onMKVEBXXkVysn1KRX++lU2vxm1f8Ou7vuguBRBB/e/wfcGiSD2qI\n6PJEScRYaAL1Rgd0BZ4mCWSbpBtN9RgKuJFmVCEpKJ+RX0v1Onai2dyIY9MnMR6ezNu6RCkxjSeG\nn8FfHf47DPpHsKt2O75x1R/hhuYPFGRS9M6aK2HQ6HF46jhEScz7+kRElzMVnUE4FUG3raMo9z/f\ny6w1odZQDXfQy/8PEhERUdlh8w9tSM+4X0Qyk8TtbTeX1DSNm53X4462mzEXX8ADJx5EKBl+32vk\nyK/dZRj5JeuwtgIARgoU/TUbm4M/EUC3vVORi8DV6MtT9NfR6X6Mhsawx7EL7blf30JTq9Totndg\nJjaH+ZivKHuuhjs4CgFCUaIqVmpHzZXQq/U4MnViRTcIRkPZBqbWyuZCl5ZXDkP2QckMm39oE5Ek\nCUenTkCn1mFH7ZVKl7NIEATc7LweX9z1GWhVGvzbuZ/hB6d+jIV46f1/m4hKx0x0FkkxVdTPUd32\nDqTEVMEOCBCtRL4jv2QqQYV7O2+HBAmPDj2d17Vp83L5hvBXh/8OT7qfg1lnxud3fBqf3/Fp2PW2\ngu2pU2uxx7EL/kSgZA8CEdHG5spNe5cnRyqhrbIVsXSMh96IiIio7JRnZwHRJSzEfXh1/E1U66tw\nTeM+pct5n7vab8FNLR/EVHQG3+v/IaKp2Lu+X86RXzK5OWW4QM0/rsXIL+UuAleq3lSHRlM93p4/\nj9gao7+SmSQeGXoKGpUG93XekecKL22rvQcAcMFXWjf9MmIGo6FxNJrroddUKF3OIp1ai17HDvgS\nfgz6hy/7ek9wDEDpRJetlHxKeibGmyC0eYwERzEXX8Cumu2oKKHGYtmV1Vvw9b1fQZetHafmzuIv\nDn0bz42+jIyYUbo0IipBo6FxAIDTUrwGZDmul9FfpKR8R34tdUXVFnRa23Fm/hyGA+68r0+bRyQV\nxX+c+zn+z4kfYCY6h+ubr8E3rvoj7KrdXpT9DzRk76W9NXm0KPsRES3l8mc/K3bbFWz+scrRX2xa\nJyIiovLC5h/acJ4aeQ5pKYO72m+BRqVRupz3EQQBH+m6Gx9ovAre8AT+4dQ/I55OAMhFfs2Wd+QX\nkB3r7zDUYCToKch41IHcRWCPvTPvaxdCn2Mn0lIGp+feXtP7X/C+Cn8igBubr0V1kbOut1Z1AUDJ\nnfibjEwjJaZKMi7rqlz016EVRH+NBr3QqjRoNNUXuqy8qjZUQ4DAyT90UdFUDD8593OMhSaULiVv\njkydAADsqy+NyK/lOIy1+P3e38Gntn0cWpUGvxx8An999DsFm8RHROXLm2v+Kebkn67cA5yBFTRI\nExVCoSK/ZIIgLB7WeHToaUiSlPc9aGOTJAlHpk7gL976Ft6YPIImcwP+aM+X8PGeD8Og0RetjrbK\nFtQZHTg5dxbRVLRo+xIRSZIEl38YVp0FtYb8/129Uu2VTgDZQ0BERERE5YTNP7ShTEdn8dbUMdSb\n6kr64ZwgCPj1Lfdjb91uDAc8+MHpHyOVSWUjv9LlHfkla7e2IpaOYyoyk9d1JUnCgG8IFp0ZdUZH\nXtculN7F6K+Tq35vIBHCM54XYdaacFvbjfku7bLqjA5YdZW44BssqZxrd+7iWz6JU0o6be2wV9jQ\nP3MayUzyoq9LZVIYj0yh2dwItUpdxArXT6vSoEpvxywn/9BFvOh9FW9OHsFPLzy0IR58ZcQMjs+c\nhEVrxlZ7l9LlXJIgCDjQsBd/duCPcU3DPoyHJ/HtY9/Hf55/iA9viGiRNzQOAQKazA1F29OsNaHJ\n3ICRgBspMV20fYlkhYr8WqrT1obt1Vvh8g/j3MJAwfahjWcutoDvnfwR/vXt/0Q8k8CHO+/En+z9\nKtqtzqLXIggCrm7Yi7SYxrE13McgIlqr6egsQskwuu2dEARBsTpAz4fgAAAgAElEQVSazA3QqDSL\n9x+JiIiIykV5dxcQvccTw89AlETc035ryTfPqAQVPr3tE9hZcyUGfIP40dmf4Mh0dqpAn2OXwtWt\nX0cu+ivf0wZmorMIJkPosSl7Ebga9SYHmswNODc/gFg6dvk3LPHEyEEkMknc3XErDBpDgSq8OEEQ\nsLWqG+FUBOPhqaLvfzGe3Njdtsri3wi9HJWgwv76PsQzCZy6xLSnsfAEREmEs7J4cRv55DDWIJgM\nrTnOjjauZCaJl8ffAJD9s3qpPwfl4tzCAMKpCPrqdpVNs55Za8Int30Mf9D3RdSbHHht4hD+/K1v\n4fDU8Q3RkEVEaydKIryhCTiMtUWPT+2xdSIlpuHmRDJSQCEjv5a6u+N2AMCjw0+X1AEKKk2iJOJZ\nz0v4X4e+jXMLA9hW1YNvXPWHuKX1BkU/d+6r74UAAW9NHlOsBiLafFy5CZFdNuUivwBAo9KgxdyE\n8fDkJQ/2EREREZWa0u6OIFqFsdAEjs2chNPSVLQc9PVSq9T4zPZPYqu9G6fnzuHQ1DFYdZbFxply\n1mFtAwAM5/nG/sBi7nN5RH7J5OivU7Mrfwg+Hp7EGxNHUG+qwzUN+wtY3aVtreoGAFzwlU70lzvo\nhU6tQ4OpTulSlrU/F/11+BLRX57gGACUZHTZSsjjlzn9h97rzcmjiKSi2OPYBQECHh8+WPYPvuTm\n3H11pTtV8GK6bO34032/h/s670A8k8CP3/4vPND/IKajs0qXRkQKmYstIJ6Jo8XSWPS95c/wjP6i\nYit05NdSLZZG7HHsgjc0jv7ZMwXdi8qbJEn4+cAj+NXQk6hQ6/CbV/w6vrTrt1FjqFa6NNgqrNhW\n3QN3cBRTkWmlyyGiTcLly9737VG4+QcA2q1OiJKI0VxcLhEREVE5YPMPbRiPDR8EANzbcUfZTIQB\nsvE5n9/5m+jMNctshMgvIDvtRq/WYzjozuu6A/JFYJk1/7wT/XVqRa+XJAkPux6HBAkf6bpL0RN/\nW+zZ5p/zC6XR/BNPxzEZmYbT0lSyf1bqTQ44Lc04tzCAYDK07Gs8oez0otYynvwDALNRNv/QOzJi\nBs+PvgKtSoOP9dyH/fV9mIhM4fh0+cYFxNMJnJo9ixpDNdoqy7NZT6PS4NbWG/GNq/4IV1ZvxQXf\nIP73ob/FEyPPIpVJKV0eERWZN/cAo8XSVPS9u23tECAsPtghKpZiRH4tdXdHdhrx48MHkREzRdmT\nys/jI8/glfE30WRuwP+86mvYX99XUvezrm7YBwCc/kNERSFJEgb9w7DozHAYa5UuZ/H6n9FfRERE\nVE5K86kp0SoNB9w4M38O3baOxSkl5aRCrcMXd/0W7u24Hbe13qR0OXmhElRotzoxE51DOBnJy5qS\nJMHlG4ZVZ4HDUNjTmvlWZ6xFs7kR5xYGEE1dPvrr7YULOO9zYVtVD66o2lKECi/OWmFBo6keg/6R\nknhIPBoahwSpJCO/ltpf3wdREnF0un/Z748Gx6BXV5TEDY21kJt/ZqLzCldCpaR/9jTm4ws40LAP\nFp0Zd7bfArWgxuMjz5Ttg69Tc2eRFFPYV7e7pB7GrEWNoQpf3Plb+Oz2T8GkNeHJkWfxvw//Xck0\ndxJRccjNP05L8RuQjVojms0NGAl4kCyBz5W0eRQr8kvmMNbi6oZ9mI7O4tAlpoHS5vX86Ct42v08\nagzV+NKuz8KsMyld0vvsqN4Go8aAw1PHyvazPBGVj5nYHALJEHpsnSVx7d1WmZ3M7w6w+YeIiIjK\nB5t/qOxJkoRHh54GANzTcXtJXByshUFjwG1tN8FaUal0KXkjx5eNBPMT/TUVnUEoFUa3vTQuAler\n17ETGSmDU3NnL/m6jJjBw67HIUDA/V13lcTPdWtVN1JiKu8xbmvhCcoTc0p7Asfeut1QCaplo7/i\n6Timo7NoKeHpRZfD2C96L0mS8OzoyxAg4KaWDwLINpt8oHE/ZmPzeGvqqMIVrk05R34tRxAE9Dp2\n4M8OfA03tlyL2dg8Huh/EP969j8vOqmMiDYWufmn2Vz82C8gG/2VljJw5+kagehyihn5tdSd7TdD\nq9LgSU7ao/d4Y+IIHh58HFZdJb66+3OwVliULmlZWrUWe+t2I5AM4dzCgNLlENEGN+jLxsJ2lUDk\nFwBU6W2w6Mxw5+5DEhEREZWD8nziSLTEBd8gXP5hXFm9FZ22NqXLoSU6clFm+WoYeSf3ubwiv2R9\njh0ALh/99frEYUxFZ3BN4z40mRuKUdplbbF3AQDO+5SfDiGP220v8ck/Fp0ZV1T1wBsax2Rk+l3f\nk6cXlXoD06VU6+1QCSrMRGeVLoVKxIBvCN7QOHbXbn/Xg7Xb2m7KPfh6ruwefIWSYZxfcMFpaUKd\nyaF0OXml1+jxa9334uv7vgKnpRlHpk/gz9/6Fl4dfwuiJCpdHhEViCRJ8IbHUWOohlFrUKQGOb53\ngNFfVCTFjvyS2SqsuK75GvgSfrw68VZR96bSdWLmNH56/hcwaY34Su/nUG2oUrqkSzrQsBcA8NYU\no7+IqLAG/Ln7vvbSaP4RBAFtlU74En74EwGlyyEiIiJaETb/UFl799Sf2xSuht6rtbIFAgQMB9x5\nWU9+QNBtL8/mH4exFi3mRpxfcCGaii77mlg6hidGnkGFWoe72kvn93SXrQNqQV0S0TDuoBeVOgts\nFValS7ms/fV9APC+6T/lMr3oUtQqNWr0VZjh5B/KeXb0JQDALa03vOvr8oMvfyKA1yYOFb+wdTg2\ncxKiJG6YqT/LcVqa8cd7v4yP93wYkiThvy48jL899n2MhSaULq1shJJhxNKXj/QkKgW+hB+RVBQt\nlibFauiytUOAwOYfKppiR34tdavzRujVFTjofgHxdLzo+1NpObcwgH89+1Po1Fp8addvo8FUp3RJ\nl+W0NKPBVIfTs2cRuch9DCKi9ZIkCS7fMCxaM+qMpXPwRj54yOk/REREVC7Y/ENl7dTcWXhCXvQ5\ndip6A5uWZ9Do0WiuhyfoXXc+vCiJcPmHYauwotZQnacKi6/PsQsZKYOTc28v+/2D7hcRTkVwa+uN\nJTX6W6+pQLvVCW9oXNEbfv5EAP5EINtYVgJxaJezo+ZK6NV6HJk68a5JGp7QGIDsjdRy5jDWIJKK\nXrSZjTaPsdAEzi0MoNvWsWxT27sffCUUqHBtjk71Q4CAPXW7lS6loFSCCtc3X4M/O/A17HHswkhw\nFH999Dt42PV4Wf33UkIgEcRfHPoWvvH6X+GF0VfW/XmHqNBGc5FfTrNy104GjQEtlia4g14kM0nF\n6qDNQanIL5lZZ8KHnNchnIrgBe+rRd+fSsdwwIN/OvVjQBDwOzv/e9kcBBEEAQca9iItZXB0ul/p\ncohog5qNzSOQDKLL3lFS9/va5OafwKjClRARERGtjEbpAojWSpREPDZ8EAIE3N1+q9Ll0EV0WNsw\nHp7EWHhiXTe3piIzCKci2FfXV1IXgavV69iJR4afwvGZk7g6Nz5bNh9bwIveV2GvsOGmlusUqvDi\nttp7MOgfwQXfIPoUODULvDMxp63EI79kOrUWvY4deHPyCAb9w+jJxaeNBr0waY2o1tsVrnB9ao01\nwDwwE5tDm7Y8/ptQYTw3+goA4Gbn9ct+36wz4aaWD+JJ93N4aex13N52UzHLW5O52DxGgh5stXfD\nWlGpdDlFYa2oxGe2fxIH5vfiZwO/wvPeV3Bs5iQ+3nMfdtVuV7q8kiNJEn524ZeIpKLQqjR4aPBx\nvDZxGL/WfQ+uqN6idHlEy/Lmmn+UPjjRY+/EaGgMwwEPtlZ1K1oLbWxKRX4tdVPLB/Hy2Bt4fvQV\nXNd0Dcw6k2K1XMpUZAa/cD2Kycg01IIKgqB6148qCFAJaqgEASpBtcw/8vff/drl1hIEAWpBnXvd\nO2s4jLXYXbu9rK/5lzMensT3T/4z0lIGn9v+qcXrwnKxr64Pjww9hbcmj+L65muULoeINiBXLvKr\n21YakV+y1spmCBDgDrL5h4iIiMoDm3+obB2d7sdkZBpXN+xDnal0xoHSu3VYW/Hq+JsYDnjW1fwj\nxwL0lGnkl6zWWA2npQnnF1yIpKIwaY2L33tk6CmkpQzu7bwdOrVWwSqXt7WqC4+PHMSFBZdizT/u\nxeaf8jglCWSjv96cPIJDU8fRY+9CMB7CfNyHK6q2lP1NbYche3p6JjpXNg1ZlH/zMR+OzfSj0VSP\nK6u3XvR1Nzmvw8tjb+C50ZdxXdPVMGoNRaxy9Y5MZU82763fuJFfF3NF9Rb8j/1/iIOeF/Cs5yX8\n0+l/w46aK/Cx7vtQbSjvpsV8Oj5zCifnzqLL1o7Pbf80nhh5Bq+Ov4XvnfwRdtRsw0e67lFkygTR\npZRK80+3rQPPjb6MAd8Qm3+ooJSM/JLpNXrc1nYTHnI9hmdGX8RHuu5WrJblpMU0nvG8iIPuF5CW\nMrBX2CBKEkQxhQREiJKY/Xcpk/sx+zUJUkHq2V/fh9/Y8lFoS/CaeC1monN4oP9BxNIxfHrbJ7Cz\n9kqlS1o1a4UFV1RtwZn5c5gIT6HRXK90SUQrJkoi4ukEYukYDBo9jEvuw1HpcPlGAJRe849eo0eD\nqQ6e0BgyYgZqlVrpkoiIiIguic0/VJYyYgZPDD8DtaDGHW03K10OXUKHtRUAMBxw48aWa9e8zoB/\nYzT/ANkbz6OhcZycPYtrGvcByI4APzZzEk5LM/aWaLyM09IMg0aP8wsuxWqQm39aK8snLqvL1g57\nhQ39M6fxiZ4PY9w3BaC8fg4XU2t8p/mHNq8Xx16FKIm42Xn9JRvaDBo9bmm9Ab8aehLPj76Mezpv\nL2KVqyNJEo5Mn4BWpcHuTTrxRqfW4p6O27Cvrhf/deFhnJ57GxcWXLir41bc2Hztpr/pGU5G8H8H\nfgWtSotPbv0YzDoTPrHlfnyg8Sr8wvUoTs+dw7n5AdzkvA63td4EvaZC6ZKJAGSbf+wVNsUnj3TZ\n2qESVIunvIkKQenIr6U+2HgAL4y+ilfG3sBNLR+ErcKqaD2yIb8bP73wEKYi07DqKvGJLR9e8bQ/\nURIh5ZqBMpIICbkfJQkZKZP7UVxsFlr8510NRe98PS2m8ZT7eRyeOo7p6Cw+v+PTJfPrtFb+RADf\n7X8QoWQYH+u+D1c17FG6pDU70LAXZ+bP4a3Jo/hId2k1sNHGJkkSUmIK0XQM0VQMsXQc0XQ092MM\nsVQs+7109nvyv8fSMUTTccTT8cVmRbPWhP954Gswa0tzAttmJUkSXP4hmLUmNJjqlC7nfdoqWzAR\nmcJkZBrNlkalyyEiIiK6JDb/UFl6Y/II5uILuL75AzyBXuKq9VWw6MwYDnjWvIYoiRj0DcNeYSv7\nmCQA6HPsxCND2eivaxr3QZIkPOx6DADw0e57oBJUCle4PLVKjR5bJ07OncVcbB41huqi7i9KIkaD\nXtQZHTBoSntiyFIqQYV99b14xvMiTs29jYgQAoB1TcIqFQ5DLQBgNsbmn80qmori9YnDsFVYsadu\n12Vff33zNXjB+ypeGHsNN7RcC4vOXIQqV88bHsd0dAa9jp0waPRKl6OoepMDv9f7BRyeOo6HBx/H\nLwefwKHJY/hvWz+CDmub0uUp5ueuRxBORfCRrrvf9UC52dKI3+v9Ao7PnMIvB5/AM54XcWjyGD7c\ndSf21fWW/cQ3Km+BRBDBZAi7apSfOqHX6OG0NMMd9CKeTrBBjgqiFCK/ZFq1Fne234L/OP9zPDny\nHH5j60cVrSeWjuGRoafx6vibECDguqarcW/n7au6zlIJKkAA1FAjXzN6tti78NMLD+Hw1HF888gD\n+MLO3yzb66ZwKoIH+n+I+bgPd7XfghtaPqB0Seuyo2YbTFojDk8fx32dd2z6RnBavYyYgT8RQCgV\nRiwVX9KwIzf1xBYbet799TgyUmZVe1WodTBoDLBXWGEw1cOo1SORTmLAP4SD7hfw0e57CvSzpLWY\njy/Anwhgd+2OkrxearM68cbkEbiDo2z+ISIiopLH5h8qO8lMCk+NPAedSovbWm9Suhy6DEEQ0GFt\nw8nZM/DF/bDrbateYyI8hUg6iu0120ryInC1agzVcFqaccE3iHAqggsLgxgJjmJ37Q502dqVLu+S\ntlZ14+TcWZxfcOHapuI2/0xHZxHPJLCrDG/+XlXfh2c8L+Lw1HHoK7K3xp2W8vt5vJddb4VGpeHk\nn03slfG3kMwkcVf7LdCoLv+xUqfW4Y62D+FnA7/CQc8L+LXue4tQ5eodmToBANhXt/kiv5YjCAKu\natiD7TXb8MjQk3h94jC+fez7+EDjVbiv8453RVhuBqfn3sbR6X60VTqXnWooCAL21O3CjppteNbz\nEp4dfQk/fvu/8MrYm/hYz71l+xCTyl+pRH7Jum0dcAdHMRxw44rqLUqXQxtQKUR+LXVVfR+eG30J\nb04ewc3O6+Aw1ipSx8nZM/jZhV8hkAyi3lSHT279aMk09GrVWnx62yfQZG7ArwafxN8e/wd8cuuv\nYX99n9KlrUo8Hcf3+/8ZU5Fp3Nhy7YaYWK1RabC3rhcvj72OtxcuYEfNFUqXRCVGkiRE0lHMxxYw\nF1vI/hjP/Ribx0LCD1ESV7SWWlDj/2fvvuOrrM//j7/us5KTc05O9t47zEDYICBLUZyIAxx1VWu1\njq/+7LLt92tbu2xtq611VUUcuBUVRUCQnTACCQnZe+95krN+fyTBBZLAObnPOfk8H48+tJ7c9/0O\nCefc4/pcl49Ki07tQ5A2cHBcl0qLVq3FRzX4P63KG61Ki4/6q//vo/JBq/I+ZXGa2Wbh0X1/Zmf1\nHhZFzSdIG+DoPwLhLBW2lQKuN/Jr2PCY+/LOKhZEzpE5jSAIgiAIwvcTxT+C29lZs4eOgU5WxJ6P\n0csgdxxhBBKMseQ05VLaUU6m9+hHWnnSyK9h00OmUNlVzcGGHLZW7kApKbk88SK5Y51RakAyAAVt\nxWN+wVveUQkMttt1N2G6UGIMkeS3FqJVeeHnZfSI9y+FpCBIG0hjbzN2u90jivOEkTNbzXxRtQut\nypv5EbNHvN28iFl8XrmDL6v3sjR64VkVhTqTzW7jYMMRfFRaJoqH0d+gU/uwNu0qZofN4PUT77C7\ndj85TbmsTr5k3BRK9Zr7eK3gHVSSknVpV31vtz6NUsPFCSuYEz6Dd4s/4nDTMf6c/SRzw2dwaeJK\nl+18JXguVyv+SfFPZEvlFxS1l4riH8HhXGnk1zClQsmqhAt4PvcVNpV+xi2T1o3p8dv7O9hY+D45\nTbmoJCUXxy9neez5qEdQwD2WJEliWcwiwnVh/DdvAy8df53a7nouTbzQZbvkfp3ZauY/R1+ioquK\nOWEzuDJplcdcJ80Jz2RH9W721WWL4p9xymw102pqo9n0zQKf5r4WWvraMFlNp9zOoNYTa4giUBuA\nUeOLVqVFq/b+WiHPYBHPcJGPWqF2+N8btULFJQkX8uLx1/iwdDM3T1zr0P0LZ6+4faj4x981i3/C\ndaF4KTWUdVbKHUUQBEEQBOGMXOsKXxDOoM9i4rOK7WhV3iyPWSR3HGGEEoyxAJR2VJAZOvrin6KT\nK0A8q/jnvZKPebf4I8w2M0uizyPYZ2w76ZyNEG0Q/l5+FLYWY7PbxvTma3lXFfDViht3Myssk8qi\nD+gx9zE1yDVvaJyNEG0Q9T0NdJt7xIPscWZ//UG6zN2siD1/VKOxVAoVK+OX80r+Rj4p/5y1aVc5\nMeXoFbaV0DHQxfyIWSPqZjQeJfrF8dOZ97Kt6ks+KtvCS8dfZ29tFnfNvR41OrnjOdW7xZvoGOhk\nVfwFROjDRrRNoDaA2ybfQGFbMW8WfsCeuiwONx3jorhlLIqaL8ZmCGOm0sWKfxKMcSgkBYVtJXJH\nETyQK438+rqM4ElEGyI52JjD8q7ziR6D8SE2u43dtft5r/gTTFYTicY41qatJkwX6vRjn4uJgak8\nlHk3Tx97kS2VX1DbU8/NE69z6RHQVpuVF/JepbC9hKnBk1ibttotCpZGKlofSaQ+nGPN+XQP9KDX\nePZ533hks9voHOg6Reee1pOjmU5Fo1ATqA0gSBtPkHfg0L8HEOgdQKA2AC+lZoy/k1PLDJ3K1qqd\nZDccYWn0QmJ8o+SOJDB4Da5T+RDuop9LCklBrCGaovZS+ix9Lv05JAiCIAiCIJ5oCG5lW9WX9Jh7\nuSThAnzG2YgJdxatj0QlKSntqBj1tja7jaL20qEbBv5OSCePQG0AsYZoKrqq0Kl8WBm3VO5IIyJJ\nEmkByeyty6K6q3ZMb5RUdFSiUqhG/LDV1cwIzeCd4k3Y7DZi3LB70ekMr6Ru7G0WxT/jiM1uY2vl\nTlSSksVR80e9/azQaWyp+IK9ddksi1nsMivyAbIaxMivkVAqlCyPXcz0kClsLHyf3JZ8Hvz0d9w+\n6QYmBaXLHc8p8lsL2VOXRZQ+ghWxi0e9fYp/Ej+deS9f1u7jo9LPeLt4E7tqD7Am+VLSA1McH1gQ\nvqWqqwZfjQGjl6/cUQDwVnmdPB82WUx4j6KQVBDOxNVGfg1TSAouTbiQp3KeZ1PpZn409RanHq++\np4FXC96mpKMcb6U316ZeyfyIWW5TkBKqC+GhzHt4IW8DeS0F/Dn7Ke6YchOhMo1M+z42u40NBW9x\ntDmPVP8kbp5wnccV+EqSxJywTN4u3kRWw+FTjj8VXF+/dYCm3mZahrr3DBf2DP/TYrN8ZxsJCX9v\nP5L9EgjSBhLoPVjcE6QdLO4xqPVu0eFKISm4IvFi/nHkGd4t+ZifZNzuFrk9WUtfK2397UwNnuTS\nn01xxhgK20uo6KwmbagruiAIgiAIgisSxT+C2+g297Ctcid6tY7FUeIGgztRK9VEG6Ko6Kqi3zow\nqhU/1d219Fn6mBo80YkJ5TEzbBoVXVVcFL/crYrZ0vyT2FuXRUFb0ZgV/wxYzdT01BNriHbbThwG\njZ70gBTyWgqI9aDVZSHaoeKfvmYS/eLkDSOMmaPNx2nsa2Ze+Myzeog8OPZiBc/nvsJHZZ+5TMt1\ns9XMkcZc/L38SPSLlzuOWwjUBnDnlB+Q05TLi/mv8+Lx1/h/M+4hxAUfyp0Lk6WfVwveRiEpuD59\nzVk/zFMqBgvmZoRksKnsM3bV7OPJnOeYHDSB1UmXuEUXQME9dQ1009bfzsTANLmjfEOKfyJlnRWU\ndJS7XDbBffWa+1xu5NfXpQekkOyXQG5LASXt5U45hzbbLHxWsZ3PyrdhsVvJCJ7MmpRL8fMyOvxY\nzuaj1nLX1Ft4r/hjtlbt5M/ZT3LrxHUuVThrt9t5u+hD9tcfJM43hh9Ovgm1Ui13LKeYGTadd0s+\nZn9dtij+cUNVXbX84/B/6LX0fec1ncqHCF0ogdpAgoY69gx37wnw9nPbezHflhqQxITAVI63nOB4\na6EY9SyzwuGRX36u3SF7uAt5eWelKP4RBEEQBMGlecZZuzAubKn4ApO1n6sSLsBb5SV3HGGUEoyx\nlHVWUNlZRbL/yMd3DY/8SvGgkV/DFkXNI9Y3injfWLmjjErq0EVuQWsRK2LPH5NjVnXVYLPbiHPz\njjlXJq0iPSyRVP8kuaM4TPDQA5Wm3maZkwhjxW63s6XiCwCWnsMIzozgSUTpIzjYkMMFsUtcoqvX\nsZZ8TFYT50XOcelVh65GkiQyQiZzh07Jk/tf5JljL/Ng5t0edb72QekntJrauCB2iUNGJuk1Oq5N\nvYIFEbN5s+h9jjUfJ7/lBEtiFnJB7BKP+rMTXEN1Vy0AMS4y8mtYin8in1Zso7CtRBT/CA5ztDnP\nJUd+DZMkiUsTV/L4wad4v+QT7p9+p0M7T5S0l/NqwVvU9zbi52Xk6pTL3X4xjUJScGXyKiL14bxa\n8BZP5TzPlUkXc370eS7RtePjsi18Ub2bcF0od029xaM/xw0aPZMC0znanEd1Vy1RYzC6TnAMs9XM\nS8dfo9fSx7zwWYTqgoeKfAIJ0vqPq1FGlydeRH5LIe8Vf0R6QLK49pNRcZv7Ff8IgiAIgiC4MnFm\nK7iF9v4OdlTvxt/LjwURs+WOI5yFeONggctoR38VtpUAgw8GPI1CUpBgjHOJm5WjYdDoidSHU9JR\nzoDVPCbHrBi6uHb34p8wXQhXT1rlUTeWvhr71SRzEmGslHSUU95ZyeSgCYTpQs56PwpJwSUJF2DH\nzqbSTx2Y8Oxl1w+N/AoTI7/OxsK42SyKmk9dTwMbCt7EbrfLHckhitvL2FG9h1CfEIeP6YwyRHDf\ntDu5ZeJaDBoDn1Vs5//2/ZkD9Yc85s9PcA1VXTUADilec6QEYyxKSXnynF8QHOGQi478+roEYyyT\ng9Ip6SjjeOsJh+yzz9LHayfe4a+H/kVDbxMLI+fxy9n/4/aFP183OzyT+6bfiUGj5+3iTbyS/ybm\nU4woGkvbq3bxcfnnBHkHcHfGbejcqKvv2ZoTngnAvvpsmZMIo/F+6SfU9TSwKGoe69KvYlnMIjJC\nJhNtiBhXhT8AkfpwZodlUttTz/76Q3LHGdeK2kvwUWldYjHQ9zF6GQjw9qeso1JcpwmCIAiC4NI8\n5+mj4NE2l2/DbLNwUfwyj22d7OnijYMrJEZT/GO1WSluLyNIG4i/t5+zoglnIS0gGYvNQklH2Zgc\nr7yzCoDYoZU2guswanzRKNQ09onOP+PF55VfALA8ZvE572tiYBoJxlhymvNkX0HXa+4lr6WACF0Y\nkfpwWbO4s9VJq0g0xnGo8Shbq3bKHeecDVjNbMh/EwmJ69PXOOU8VJIkMkMz+NWcB1kZt4xeSy8v\nHX+dvx76F5Wd1Q4/njA+VXa7ZvGPRqkhzjeaqq4a+k4xgkQQRmt45FeUi478+rpLEi5EQuKDks3Y\n7LZz2teRplwe3fc4u2r2EaYL5YHMH3FN6uVoVd4OSus64o2xPDzzJ8QYothXn83fD/2Hjv4uWbLs\nq8vmraIPMGoM3DPtdrccq3Y2JgWmo1fryKo/jEXm4ithZBjiarkAACAASURBVPJbC9letYtQnxAu\nT7xI7jguYVXCCtQKFZtKPx2zhW3CN7X0tdFiaiPJL8EtFsnF+UbTbe6hxdQmdxRBEARBEITTcv2z\nKmHca+5rYXftfkK0QcwOy5Q7jnCW/LyMBHr7U9ZZMeIVEtXdtZisJo8c+eXu0vwHR3+daC0ek+OV\nd1ahU/sQpA0Yk+MJIydJEsE+QTT1tYjVT+NAXU8Dx5rzSTDGkugXd877kySJSxIuBODDEnm7/xxu\nOobFbmVmqOj6cy6UCiW3TroBo8bAe8UfU9BaJHekc/Jx2RYa+5pZHD2fBKNzx3RqlBpWJazgkdkP\nkhE8mdKOCv6U/U825L9F10C3U48teL6qrhp0ah/8vVyvoD7FPxE7dorbx6aoXPBswyO/prtw159h\nkfpwMkOnUt1dy+HGY2e1j/b+Dp459jLPHnuZHnMPq+JX8LOZ95JgjHNsWBfj52Xk/uk/YkZoBmWd\nFfwp+x9UDC0YGSs5TblsKHgLH5WWuzNuJ0gbOKbHl5NSoWRm2DS6zT3ktRTIHUc4gx5zL+uPb0Qh\nKfjBxGvRKDVyR3IJ/t5+nB99Hu39HXxRtUvuOONScfvQyC9/1x75Nezk6K9RdrUXBEEQBEEYS6L4\nR3B5H5VtwWa3cXHCCpQKpdxxhHMQb4ylx9w74g4hnjzyy90l+cWjkpQUtBY6/VhdA920mFqJ9Y12\nuxFp40WINogB6wAdA51yRxGc7PPKHQAsc0DXn2Ep/omk+SdT0FYk69iXrKGRX5mhGbJl8BRGLwO3\nTb4RhaTghbwNtPS558rIis4qPq/cQZB3wMkitbEQqA3g9sk38JOMHxKmC2FP3QH+d9+f2Fb1JVab\ndcxyCJ6j19xHc18L0fpIlzyXSh4q9BejvwRHcIeRX1+3Kv4CFJKCTWWfjuo93ma38WXNXh7d9zg5\nTbkkGuP52az7WRm/DJVC5cTErkOjVPODCddxWeJKOvo7+duhf5PdcGRMjl3QWsQLuRtQKVTcNfVW\nlx9X4wxzwmYAsK/uoMxJhO9jt9t5/cQ7dAx0cnH8CmIMUXJHcikrYhejU/vwacV2ugd65I4z7hQN\nF//4uUfxz3BX+/IxLjYVBEEQBEEYDVH8I7i02u56suoPE6kPd4uVe8L3G159ONLRX0VutgJkPNEo\nNSQY46jqrnX6DZLhFZxxYuSXywoeGqnQ2CtGf3my9v4OsuoPE+oTzOSgdIfu+5LECwD4sHSzLB2k\n2kztFLeXkWiMJ1DrP+bH90QJxljWpFxKj7mX53JfdrtW+habhVfy38SOnXXpV+Elwwrp1IAkfjbz\nPtakXAZIvF30Ib8/8Dfyx6DwVvAs1S468mtYvDEWlaQ8ee4vCGfLnUZ+DQv2CWRexCwae5vZV589\nom3qexp44tDTvH7iXSQJ1qau5r7pdxCmC3FyWtcjSRIrYs/njik3oZSU/DfvVd4v+eScx6h9n7KO\nSv5z7CUA7ph808mHweNNlCGCaH0EuS35okOhC8tqOMyhxqMkGONYEbtY7jguR6vSsjJuGSaric3l\nW+WOM+4UtZWgVWndZux2lD4ShaSQfWS5IAiCIAjC9xHFP4JL+6jsM+zYuSThAreY/St8v+FxGWUd\n5Wf8WqvNSkl7GSE+Qfh5GZ2cTDgbaQFDo7/anDvSZfiiOs432qnHEc5eiHbw4UqTKP7xaF9U7cZq\nt7I0ZqHDP5PjfGOYEjSR0o4KWUYHZDccwY6dmWFi5JcjLYiYw5zwGVR21fDGiXfdajTgp+XbqO2p\nZ0HEbFL8k2TLoVQoWRw1n9/M+X8siJxDQ28TTx55jv8cfYnmvhbZcgnupbLLtYt/NEo18cZYqrtq\n6TX3yh1HcGPuNPLr61bGLUWtUPNx2eeYv6dY1myz8FHpZ/z+wBOUdJQzLXgyj8x+kPmRs8f9/ZLJ\nQRN4aMbdBGsD+axiO88ce4k+i8nhx6ntruffOS9gtpq5eeLak9fE49Xs8BnY7Day6g/JHUU4hZa+\nNt448R5eSg03Tbh23L9PnM55kXMI8g5gZ81emnrF+fVYaTO102xqJckvzm1+NzVKNVH6CKq6ajDb\nLHLHEQRBEARBOCX3OLMSxqWKziqONOUS7xvLpEDHdhgQ5BGhC0Oj1Iyo809lVw0maz8pfmLkl6sa\nvtFZ0Frs1OMMt9ONFcU/LivEJxhgxCP9BPfTZ+njy5p9+GoMzAqd7pRjrEpYgYTEh6WfOnW19qlk\nNRxGKSnd7mGhq5MkiWtTriDGEMW++my+rNknd6QRqemuY3PFNvy8jFyedLHccQDQa3Rcl3olD8+8\nl0RjPEeb83h031/4oGQzJku/3PEEF1c1VPzjyqM+kv0SsGOnqL1M7iiCG3O3kV/D/LyMLI6aT3t/\nBztr9p7ya4rby/jDgSf4uPxzDBo9d0y+idsm34DRy3eM07quMF0oD824hzT/ZI415/OXg085tDNp\nc18LTx55lh5LL+vS15ARMtlh+3ZXM0OnoZSU7K3Ldqsi7/HAZrexPv8NTFYTa5IvI0gbIHckl6VS\nqLg08UKsdisflm6WO8648dXIL/e67xvnG4PFbqWmu1buKIIgCIIgCKckin8El/Vh6acAXJp4IZIk\nyZxGcASlQkmcbwx1PQ30mvu+92uL2ksASPZ3r4vA8STaEImPSktBW5HTbvTZ7XYqOqsI0gaiV+uc\ncgzh3A2PVRCdfzzXrpr9mKwmzo9agFqpdsoxIvXhZIZOpbq7liNNuU45xqnUdtdT013HhMBUdGqf\nMTvueKFWqrl98g3o1TreKvqA0hF0/5OT1WbllfyN2Ow2rku9Eq3KW+5I3xBtiOD+6Xdyy8S16DV6\nPq3YxqP7/yJLxyzBfVR11aJVebv0g7+UoXP+4WsAQRgtdxz59XXLYhfhrfTm04pt3+hY02fp47UT\n7/C3Q/+mobeJhZHz+OXs/2FK8EQZ07oundqHu6bewvnRC6jvaeDP2f+koPXcO9V29Hfyz8PP0jHQ\nxerkS5gbPsMBad2fXqNjclA6tT31VA2NmBRcw9bKnRS1l5IRPIk54vf1jKaFTCHWEM3BxpyTo+cF\n5ypqGy7+SZA5yegMdyUv6xCjvwRBEARBcE2i+EdwSXmNheS3FpLmn3zyRrDgGU6O/jrDfOTCtqHi\nHzdbATKeKCQFKf5JtJraaHLS6JGmvmZ6LX1i5JeL06t1eCu9aRCdfzySxWZhe9UuvJQaFkTOceqx\nLo5fgUJSsKn0M6w2q1OPNSyr4TAAM0MzxuR441GAtz+3TFyHzW7juWPr6ejvlDvSaW2r+pLKrhpm\nhU1nUpBrdp6UJInM0Ax+NechLoxbSudAF//KeYGXj79BjxiZJHyLydJPY28TUfoIl15QEecbg1qh\nOnkNIAij5a4jv4bp1TqWxSyix9zLtqovATjSlMuj+x5nV80+wnWhPJB5F9ekXu5yhamuRqlQclXy\npaxLW0O/dYCncp5ne9Wus16w0mPu5ckjz9FsamVl3FKWRJ/n4MTubbiwZF/dQZmTCMOqumr5sPRT\nfDUGrktd7dKf/65CISm4POkiAN4t/kh0shoDRe0leCu9iTJEyB1lVOKNMQCUn+G+tiAIgiAIglxE\n8Y/gcux2O68ffR+ASxIvkDmN4Ggni3++Z+W/1WalpKOcUJ8QjF6GMUomnI2vRn+d+2rKUxke+RXn\nG+OU/QuOIUkSIT6BNPe1jPm4JsH5shqO0DHQyfyI2fiotU49VohPEHPDZ9DQ28iBoaIcZ7LZbWQ3\nHMFLqWFy0ASnH288Sw1I4vKki+gY6OK53Few2CxyR/qOhp5GNpV9hkGj56rkS+WOc0ZeSg2XJFzA\nT2feS4whkv31B/nt/sfJGcPOWYLrq+6uxY6daEOk3FG+l1qpJt43lpruOrrNPXLHEdyQu478+rrz\noxdgUOvZVrmT/xx9iWePvUyPuYdV8YPv9cPX0sLIzIuYyb3T7kCn8uGtog94teAtzKM8/zBZ+vlX\nzgvU9tSzKGo+F8evcFJa9zUhIBWDWk92/eFR//kKjme2mnnp+GtY7VauT78avUZ0UB6pFP9EJgWm\nU9ReKrpqOll7fwdNfS0k+cWhkNzr8VSwNgidyufk/UpBEARBEARX415nV8K4kNdSwImWUqYGTRQP\n/D1Q/NDPtLSj4rRfU9FVzYB1QHR9cgNp/oPFPyfanF38Izr/uLoQn2AsNgttpg65owgOZLPb+Lxy\nBwpJMWarnFfGLUMlKfm4bIvTHyCUdlTQamojI3gyGqXGqccSYGn0QjJDplLaUc47xZvkjvMNNruN\nVwrewmKzcE3KFW41Ai5SH86DmXdzWcJKes29PHPsZV7I3UDXQLfc0QQXUNU1OIbF1Yt/4KvRX8Xt\nZTInEdyNu4/8Guat8uKCuCWYrP0cbc4jyS+en8+6n5XxS1EpVHLHc0uJfnE8PPMnRBsi2VOXxT8O\nP0PnQNeItjXbLDx77GXKOyuZFTadq5IvER1UTkGpUDIrbDo9ll5ym/PljjPuvV/6CXU9DSyMnMfE\nwFS547idyxJXIiHxbsnHY9aJdjw6OfLLDe/7SpJErDGa5r4Wcb0lCAwu4q7raRAd0wRBEFyIKP4R\nXM7BxhwkJFYliK4/nshH7UOYLpTyzsrTXkgPt/sXxT+uL0gbQKC3PyfaSpzS8aWiswqFpCBK715t\ngMejYO3gg5YmMfrLo+S1FFDf08CM0Az8vf3G5Jj+3n6cFzWXVlMbe2oPOPVYX438mubU4wiDJEli\nXfoaInRh7Kjew34XGg+xs3ovpR3lTAuezLSQyXLHGTWlQsmKuPP52az7iPeN4WBjDr/d/zgHG3LE\nTbhxbrj4J8YNin+GHwCJ0V/CaLn7yK+vWxA5h/OjFrAubQ33TruDUF2I3JHcnr+3Hw9M/9HJAuQ/\nZf3z5Hvj6VhtVl7Me5WCtiImB03g+rQ1btedYix9NforW+Yk41tBaxHbq3YR6hPCFUMjrITRidCH\nMTd8JvU9Deyvd51rFU9T1D5U/OOXIHOSszO8WLlCdP8RxrHmvhY+LNnMI3se47f7H2dDwVuiG7wg\nCIKLEFeugstZFb+C/13yABH6MLmjCE6S4BtLv3WA2p6GU75eNHTD310vAscTSZJIC0imz9JHZVe1\nQ/dttlmo7qohSh+OWql26L4FxxteZd3YK4p/PMnnlTsAWBazaEyPe0HsEjRKDZvLtzJgHXDKMSw2\nC4cbjmLQ6EWx6RjyUmq4ffKNaFXevHbibYd/dpyN5r5W3i/9BJ3Kh6tTL5c7zjkJ04XyQOZdXJm0\nin5rPy/kbeC53PV09I+sy4Hgeaq6atAoNYT4BMsd5YxifaNRK9QnrwUEYaQ8YeTXMLVCxVUplzIv\nYqYoNnEgjVLDzRPXcknChbT1t/P4wX9xsCHnlF9rs9t49cTbHGnKJdkvgVsnrkOpUI5xYvcSoQ8j\nxhDF8dYT4pxDJj3mXtbnb0QhKfjBhGtFV9NzcHHCctQKNZtKP6PfSdei411RewneSi+3Xeg3XPxT\n1lkpcxJBGFtmq5nshiP84/Az/HrvH9lcsY1+6wBB2kD21mXx8vGNomuaIAiCCxB3EgSXE6gNIC04\nSe4YghMlGGMBKOso/85rFpuFko5ywnWhGDT6MU4mnI3UodFfBa2OHf1V212HxW4V4//cxHDnn8a+\nJpmTCI5S1lFBcXsZEwJTidSHj+mxDRo950ctoHOgix3Ve5xyjPzWQnosvcwIyRAPdMZYiE8QP5hw\n3dA4jfV0D/TIlsVut/NawdsMWAe4KuVSfDUG2bI4ikJSsDRmIT+fdT+JxniONOXyu/2Pc6D+kOgC\nNM4MWM3U9zYSpY9wiyICtUJFojGO2p56MUZBGDFPGfklOJ8kSVwYt4Q7Jt+EQpJ4IW8DH5Z++o1V\n6na7nXeLP2JfXTYxhijunPIDsRBlhOaEz8Bmt5HVcEjuKOOO3W7njRPv0t7fwcXxy4nxjZI7klvz\n8zKyNPo8OgY62V71pdxxPE5HfyeNvc0k+MW57XV4nG80AOUdovhHGB9quut4s/B9fr77t/w371VO\ntBWTaIznxvRreGzBL3l4xk+I940hq+EQLx5/TRQACYIgyMz17wAKguBxhot/SjsqvvNaeWcVZptZ\ndGFwI6n+SUhIDi/+GV5BEzt0US24tuGHLU2i84/HGO76szxmsSzHXxazEK1Ky5aKL+iz9Dl8/1n1\nQyO/wsTILzlMCkrnovjltJra+G/eq7LdHNpbl0VBWxGTAtM8bvxbiE8w902/gzUpl2G2W3jp+Os8\nffRF2vs75I4mjJHanjpsdhvRbjDya9jw6K/hcRCCcCaeNPJLGBtTgifyYObdBHkHsLl8K88eW4/J\nYgJgc/k2tlV9SZhPCD+eeiveKm+Z07qPGaEZqCQl++qyRbHxGMtqOMzBxhwSjLGyXbt5mmWxi9Gr\ndWyp+EIUJDvY8Dleip/73vfVqX0I8QmioqtKjDkSPJbJYmJ3zX7+lP1Pfn/gb3xRvRulpGR5zGJ+\nNftBHsj8EbPDM9EoNfiotdydcRuJxngONR7l+dxXMNsscn8LgiAI45Yo/hEEYcyF+ASjU/mcsvjn\nq5Ff7nsRON7oNTqiDBGUdlQ4tCXy8Oxs0fnHPejUPujUPjT2ieIfT9DQ20ROUx4xhijZRjD6qH1Y\nFrOIHksv2yodu+LSZDFxtPk4IdogYgxiZaxcVsYtZXJQOgVtRXxY+umYH7+9v4O3izbhrfTm2tQr\nkSRpzDM4m0JSsDhqPr+Y9QCp/knktuTz6L7H2VN7QDyYGwequmoA3Kr4J8V/8DNHjP4SRsqTRn4J\nYydCH8ZDM+8hxS+Ro815/OXgU2wq/YxNZZ8S4O3P3Rm3odfo5I7pVnRqHyYHT6Sup8ElxrqOFy19\nbbxx4j28lBpumnCt23ZScTValTcr45dhsvbzSfnncsfxKMPFP0ky3WdwlHjfWPosJhp7RfdrwXPY\n7XZKO8pZn7+Rn+3+La+eeJvKzmomBqZx++Qb+d38X3B50kWE6kK+s623ypsfZ9xKin8SOc15PHvs\nZcxWswzfhSAIgiCKfwRBGHOSJBFvjKXF1EpHf+c3XiscugiU62GzcHbS/JOx2q0Ut5c5bJ/lnZVo\nVd6ifb8bCdEG0dzXKtq7eoBtlTuxY2d57GJZCyIWR83HoNazrepLh46GymnKw2wzMyNsmkcWfLgL\nhaTgpgnXEqINYkvlFycf4I6FwXFf72Cymrgy6WL8vf3G7NhyCNIGcE/G7VyXeiVgZ0PBWzx55Dla\n+trkjiY4UWXnYPFPjBsV/8QaotEoNSevCQTh+4iRX8K50Kt13J1xG4ui5lHX08An5Z9j0Oi5J+N2\njz8vcJY5YZkA7KvLljnJ+GCz21if/wYmq4k1yZcRpA2UO5JHWRAxm2BtIF/W7BMFHg5U1FaKl1Lj\nVuenpzI8+qtsaOGiILizroFutlbu5Lf7H+fxg/9iX102BrWOVfEX8Oi8n3HX1FvICJ50xgJTL6WG\nH025mQkBqeS1FPD00RcZcOBCYUEQBGFkRPGPIAiyGB79Vfa17j9mm4WyjnIi9eFilZ2bSQtIBuCE\ng0Z/9Zp7aextJtYQjUISH1XuItgnCJvdRotJPEx2Z50DXeyrP0iQdwAZwZNkzeKt8uKCuCWYrP18\nVrndYfvNahga+eVhY57ckVal5fbJN6JRalifv5G6noYxOW52wxFyW/JJ8U9iXsSsMTmm3CRJYkHk\nHH45+3+YEJBKQVsRvzvwODur94p29R6qqrsGlUJFmM93V2a6KqVCSaIxjvqeBjoHuuSOI7g4MfJL\nOFdKhZKrUy5nXdpVJBrjuHvqbaKQ7BykB6Rg1BjIbjgiVvuPga2VOylqL2Vq8CTmhM+QO47HUSlU\nXJq4Epvdxgclm+WO4xE6B7po6G0kwRjn9l2qhruUl5+iq70guAOb3cbxlhM8d2w9v9j9O94p3kRz\nXwuZIVO5J+N2fjP3YVbGLx11QbRGqeaHU2462eX5XzkvYLL0O+m7EARBEE7FaU9UbTYbv/rVr7jm\nmmu44YYbqKj45onQtm3bWL16Nddccw0bN2783m0qKiq47rrrWLt2Lb/+9a+x2QZvTm/cuJErr7yS\nq6++mu3bv/lAqKSkhMzMTPr7xQeLILii4eKfr4/+Ku+oxGyziK4/bijRGIdaoaKgzTHFPxWdg23C\nY4dW0gjuIUQ7eKO8SYz+cms7qnZjsVlYGrPQJYrvFkTMxs/LyM7qPbT3d5zz/joHuihoLSLWN1o8\n3HEREfowbki/mgHrAM8cfYk+S59Tj9c10M2bRe+jUahZl7Z63HV/8vf2466pt3BD+tUoJCVvFL7L\nPw4/Q1Nvi9zRBAey2CzUdtcTqQt3u4crKUPjf8XoL+FMxMgvwVHmRczigcy7iDJEyB3FrSkVSmaF\nZdJr6eNo83G543i06q5aPiz9FF+NgbWp4+98dqxMC55MnG8Mh5uOfWPxonB2itoGOzsOn+u5s0h9\nOGqFinLR+UdwM62mNj4q28Kv9vyBp3Ke53DTMUJ8glidfAm/m/9Lbpm0jrSA5HO6H6hWqLht0g1k\nBE+mqL2Up3Kec/p9HkEQBOErTnui8/nnnzMwMMAbb7zB//zP//CHP/zh5Gtms5nHHnuMF154gfXr\n1/PGG2/Q3Nx82m0ee+wx7rvvPl599VXsdjtbt26lqamJ9evX8/rrr/P888/z17/+lYGBwRZy3d3d\n/PGPf0Sj0Tjr2xME4RzF+g52dPl68U9h++AN/hR/978IHG/USjWJxnhquuscskp7+OI5ThT/uJXh\nQorGXlH8465Mln521uxFr9a5zOpRtVLNRXHLMNssbC7fds77O9iQgx276PrjYqaHTGFZzCIa+5p5\n6fjrTu1Es7HwPXrMvVyauHLcjkeQJIk54TP45ewHmBw0gaL2Un534K9sq/pSdAHyEHU9DVjtVqLd\n8EF28tC1gBj9JXwfMfJLEFzT7PCh0V/1rj/6y263yx3hrJitZl48/hpWu5Xr09eIztlOJEkSVyRd\nDMC7xR+77e+MqygeOrdL8nf/RZ9KhZJoQxS1PfX0i7FGgouz2CwcajzKU0ee51d7/sDHZVvosfQy\nL3wWD2bezS9mPcCS6PMc+nmiUqi4ZeJaZoRmUNpRwT8PP0evuddh+xcEQRBOz2nFPwcPHuS8884D\nICMjg9zc3JOvlZSUEBMTg9FoRKPRkJmZSVZW1mm3ycvLY9aswXb8CxcuZM+ePRw9epRp06ah0Wgw\nGAzExMRQUFCA3W7nkUce4YEHHkCr1Trr2xME4RxplBqi9BFUdVWfbAdd1FaChESS6Pzjlr4a/VV8\nzvsq76wEIHaoja7gHoJ9ROcfd7e3LoteSx+LouahUbpOEfWc8BkEawPZXbuf5r7Wc9pXVsNhJCSm\nh0x1UDrBUS5NuJBU/ySONefzqQMKvU7lSFMuhxqPkmCMZVHUPKccw534eRm5Y/JN3DzhOjRKNW8X\nfcjfDv2b+p5GuaMJ56iqqwaAGEOUzElGL8YQiZdSIzr/CN9LjPwSBNcUrgsl1jea/JZCh3TtdIYB\nq5kX817nZ7sePdlBzJ18ULqZup4GFkbOZWJgmtxxPF6SXzxTgiZS0lHGMdHR6pwUtpeiUaiJdcPz\n01OJ943BZrdROdS9XBBcTX1PA+8UbeIXu3/H87mvcLz1BHG+0axLu4rH5v+SdelXEW+McVr3OKVC\nyU0TrmV2WCYVXVX84/AzdA/0OOVYguCJ7HY7PeZeqrpqOdqUR1lHpShEFkZE5awdd3d3o9frT/5/\npVKJxWJBpVLR3d2NwWA4+ZpOp6O7u/u029jt9pMfQDqdjq6urtPu48knn2TRokWkpYmLH0FwdQnG\nWCq7qqnqriFaH0lZZyWR+nB0ah+5owlnITUgCUqgoK2ImWFn31HDbrdT0VmFv5cfRi/DmTcQXMbw\n2C/R+cc9WW1WtlbuRKNQs9DFiiKUCiUXx6/gxeOv8XHZFm6ccM1Z7aext4mKzirSA1LE+4sLUiqU\n3DJxHX/I+jsflW0h2hDJpKB0h+2/19zLGyfeRaVQsS5tjUuMtXMFkiQxI2waqQHJvFH4Hocbj/JY\n1hNcHL+cpdEL3W5klDBouPgn2hApc5LRUyqUJPrFc7zlBO39Hfh5GeWONG5ZbVbs2FEpnHbr6Kwd\nFiO/BMFlzQ2fQUVnFQfqD7Ei9ny543xDe38H/zn6EpVdgw/rn899hfzwmVyVchleLrT44XQKWovY\nVvUloT7BJzvSCM53WeJKclvyea/kEyYGponz47PQNdBNfU8Daf7JHvPnF2eMgarBBYzJHtDNSPAM\n/dYBDjUeZU/tAUo7ygHQqX1YEn0ec8NnEqEPG9M8CknB9elrUCmU7K49wN8P/4d7pt2Or0bckxME\nq81K50AXLaY22kzttJraaO0f+qepnTZT23e6y8X7xrI8djGTg9LFfU3htJx2B0ev19PT81UVp81m\nQ6VSnfK1np4eDAbDabdRKBTf+FpfX9/T7uODDz4gLCyMt99+m6amJm655RY2bNjwvVn9/X1QqTzj\npNOTBAeLEwBPl9GXxhfVu2mw1KOTNFhsFqZGpIufvZsKDErFkKOjqL2EoCD9Wa8aaOxpocvczZyo\n6R77u+Cp3xcYMHr70tLf4sHfo+f6svwAbf3tXJi0mPiIsb0ZMBIXBi1ga80ODjQc4pppFxPlGz7q\nfXyRuwOAJUlzxe+ok5zrn2swBh7W3skjW//Cy/mv89jynxJmCHFItn/tf5fOgS7WTrmcyXFixOi3\nBWPgZ5E/Yl/VIZ4/+Drvl3xCbttxfjTzBmL83K+AZLyrO1KHUlIwJS4JtVItd5xRmx41geMtJ2iw\n1pEc7Dqrw8fTZ4fJ0s+j25+gvqeZO2dez8xI1+mY1zPQS35bEXF+UUyMjZc7jiB4BEe+v60wzuft\nog/JbjzM2sxLnNZRYLSKW8r5y8GnaTN1sDhuLhenR2o6cgAAIABJREFULuGp/S+xpy6L8u5K7p17\nK/H+rjt6vHughw1730QpKbhv/q1EBozP8bVyCA42sKR5Pp+XfElu9zGWJZ4ndyS3U1JVBEBG1Njf\n93XW8TJ90nk+F2r7a8fVOaLgeux2OyWtFWwr3c3uymz6LCYApoSmsyRhPjMjp8h+TfiT4B9gOOTD\n5uIveDLnWR45/14CtH6yZvIE4r3HtZks/TT3ttLc00ZzbwvNva009bQO/bdWWvrasdltp9xWp9YS\nZgghyMefYJ9AAn38KWgu5mDtMZ459hKRhjAuSVvOebEzZf/7LbgepxX/TJ8+ne3bt3PRRRdx5MgR\nUlJSTr6WmJhIRUUF7e3t+Pj4kJ2dza233ookSafcZsKECezfv5/Zs2ezc+dO5syZw5QpU3jiiSfo\n7+9nYGCAkpISUlJS2LJly8njLFmyhBdeeOGMWdvaxKxJVxMcbKCpqUvuGIKTBUmhAByrLaSlY7Ad\ndJRXlPjZu7Fkv0QONR4lr6KUUN3ZPaw91JAPQLh3uEf+Lnj6+1uQVyClHeXUNbS55Cpx4dTsdjvv\n5G1GQmJu8ByX/R1dGbOcZ469xPrsd7lt8g2j2tZut7OjdD9qhZoE70SX/R7dmaPe3wwEcG3qlazP\n38gfdvybB2fcfc4rsfNaTvBF+V6iDZHMCZgtfv7fI9E7mZ/PeoC3Cj8gq+EwD3/2GCvjlrEidrHH\nrNL1dFablfL2asJ1YbS3mgCT3JFGLUI9WPBzsDKXVB/X6Orr6edwX2ez23jm2MsUtZYD8OddT7Mw\nci5XJK1C4wI3FvfVZWO1WZkSMGnc/EwEwZmc8f42JWgiBxtzyCrJI94Y69B9n42DDUdYn78Ri83K\nFUkXszR6IZJZ4r6Mu/ig5BO2VX3JL7b8kcsSV7I4eoHLraS22+38N+9VWvvaWRV/Ab7WAPH+N8aW\nhC1mZ/l+Xj/6Iak+6XirvOSO5FYOVuYBg+d4Y/m768zzN7tdhVFjoLCpTPx9FGRjs9t4/cQ77K49\nAAyO9l4cNZ854TMJ0gYAuMw14arolZj7bWyt2skjW/7CvdPuwN9bFACdrfF0feqK7HY73eaeb3Tp\naf1W954e86lrDyQkjF6+xPlGE+Dtj7+XHwHe/gR4D/7T39sPrcr7O9vNC5rLhVH1bK3cyYGGQzyd\ntZ7Xct5nScx5zI+YfcptBM92ugJApz2VW758Obt37+baa6/Fbrfz+9//ng8//JDe3l6uueYafvrT\nn3Lrrbdit9tZvXo1oaGhp9wG4OGHH+aRRx7hr3/9KwkJCVxwwQUolUpuuOEG1q5di91u5/7778fL\nS5x0C4I78ff2w8/LSGlHOd0D3UhIJPmJNqnuLM0/mUONR8lvKzrr4p/yzkoAYg2uu+JOOL0QnyBK\nOspo7msl7Cx/B4SxV9BaRE13HZkhU0/eHHBFU4ImEOsbzeGmY1R2VRNjGHk3iMquahr7mskMmYq3\nuBhyeXOGxkXsrNnLhvw3uXni2rNeNd5nMfFawduD7abT1ogClhHQq3X8YOJ1ZIZO5bWCd9hU9ilH\nmo5xffoatxwjNd409DZhtlnc+mcVpY/AW+lNYVuJ3FHGpXeKN3Gs+Tip/klckXQxLx9/g501eyls\nL+WWiWuJ1I+++54jiZFfguD65oTP4GBjDvvqsmUt/rHZbXxctoVPyrfirfTitik3fGOsrFqhYnXy\nJaQFpLD++Bu8XbyJ/NYibphwtUuNJMlqOMzBxhwSjLGsiF0sd5xxyehlYFn0Qj4u/5xtVTu5KH65\n3JHcSlFbKWqFmlhf1+noeK4kSSLON4ac5jzaTO2iiEEYc3a7nXeKNrG79gCR+nAuS1xJekCKyxWw\nDpMkiSuSLkatULG5Yht/O/RvfjLtDpe+DykIw9pM7Wyv3kVNVx2t/YNjusw2yym/Vq1QE+DtR4wh\n6luFPYP/7udlPOt7kxH6MG6YcDWrElawvWoXu2r38W7xR2wu38p5kXNZHLUAo5frnMMK8nBa8Y9C\noeD//u//vvHfEhO/aq+/ZMkSlixZcsZtAOLj43nllVe+89+vvvpqrr766tNm2LZt22hjC4IwxhKM\nsRxqPEr3QA/Rhgh81Fq5IwnnIC0gGYATrcUsjpp/Vvuo6KxCQiLGg24IjCch2iAAmvqaRfGPG9lS\n+QUAy2IXyRvkDCRJ4tKEC/nnkWf5sPRTfjz11hFvm1V/GICZYdOcFU9wsNXJl1DdXcvBxhxifaNZ\nGrPwrPbzfskntPW3szJuKVGGCAen9GyTgyaQODued4o3sbcuiz9l/5MVsedzYdxS1KK7m8uq6qoB\ncOviH6VCSZJfPLkt+eJhyhjbUb2H7VW7CPMJ4bZJN+Cj1vLQjHt4r+QjdlTv4U/Z/+SKpItZFDlP\nllE+veY+8luLiNJHEOITNObHFwRhZNICkvHzMnKwMYfVyZfK0jWs3zrAy8ff4EjTMQK9A7hzyg+I\n0J96vPHEwFR+Pvt+Xj7+BsdbT/D7A3/jxvRrmBCYOsapv6vV1MbGwvfwUmq4acK1opBdRktjFvJl\nzT62VO5gQeQclyoQc2XdAz3U9tST6p/kcR2i44yDxT/lnVXifFUYcx+VbWF79S7CdKH8JOOH6DU6\nuSOdkSRJXJJ4ISqFik1ln/HEoaf5ybQfivN6wWW1mdr5tGI7e2oPYLVbgcEFc+G6UPyHi3pOFvgM\ndu3Rq3VOv1b29/bjyuRVXBi3hJ01+/iiahefVWxnW+VOZodnsjRmEaE+wU7NILgu5W9+85vfyB1C\nbr29A3JHEL5Fp/MSP5dxoqO/k+OtJwCYETqN9MCUM2whuDIftZYD9Yeo62lgWczCUa80sNqsvFn0\nAWG6EM6PXuCklPLy9Pe3zoFuDjUeJdoQSYIxTu44wghUdlXzfsknpPonsSL2fLnjnFGgdwBF7aWc\naCsm1T+JAG//M25js9tYX7ARtaTi2tQrXHYVlLtz9PubQlIwITCV7IYjHG0+TpJfHIGjXBFW2FbC\nxsL3CNeFctPE61CKn/2oqZVqpgRPJME3lsK2EnJb8slpyiXGNwo/L6Pc8YRT2FeXTXlnJSvjlrr1\nQ4jOgS7yWwuJNkTK3mkGPP8cDiC3OZ+Xj7+BXq3j3ul3YvTyBQaLsSYGphFjiOR4ywmODHXgSwtI\nPuexjKN1sDGHI025LI6aT5Jf/JgeWxA8lTPe3yRJotvcw4m2YiJ0oUSM8ft4m6mdJ488S2F7Ccl+\nCdyTcfsZzyO9lF7MCM1Aq/Imtzmf/fUHMVlMJPsnynYOOTyGsaG3iWtTryQ1IEmWHMIglUKFRqnh\naHMeA1bzN7pICad3vOUEhxqPMjd8Jsn+Y9vx3dnnb1a7jf31Bwnw9ic9QNzTFsbO1sqdfFi6mUDv\nAO6bfge+btbpI9k/AbVCxZGmXI40HmViYLpbFC+5kvFwfSqnNlM7H5R8wvr8jZR3VhKoDWB18iX8\nYOJ1XBi3lAWRc8gMncqEwFTijbGE6UIxevnipdSM6SIZtVJNkl88C6Pm4e/tR21PAyfaitlZvZea\n7noCtf7i3p0H0+lOPRFL3P0WBEFWCV9r/5zin/g9Xym4i7SAZExWExVd1aPetranAbPNTJyvGPnl\nroZXajT1NsucRBipzyt2ALA8ZrG8QUZIkiQuTbwQgA9LN2O328+4zYm2YroGupkWOsXjVhp6Oj8v\nI7dNugGA53M30GZqH/G2A9YBNhS8hYTE9elrRKeac5QemMIvZj/AeZFzqetp4C/ZT/Fu8UdYbVa5\nownfUtlVg4TkEgUz52L44ZAY/TU2qrtqeSFvAyqFkjun/OCU7fcnB03g57PuJ80/mdyWAn5/4G/k\ntxaOaU4x8ksQ3MecsEwA9tUfHNPjlnVU8Mfsf1DVXcv8iFncnXHbiB8oKiQFS2MW8uCMHxPiE8S2\nqi95/OBTNPQ2OTn1qW2r+pKi9lKmBk1kbvgMWTII3zQ/YhYhPkHsrt1PQ0+j3HHcQlF7KcCYF/6M\nhRhDFBISZR2VckcRxpHdNft5p3gTRo0vP5l2u9s+2F8Rez6rky+hY6CLJw49TW13vdyRBIE2Uztv\nnHiP3+z9Iztr9uLnZeT69Kv51ewHmRM+Y8wXv4yURqnmvMg5/HrOQ9w66XqiDREcaTrGn7Of5IlD\nT5PXcmJE99AFzyCKfwRBkFWUPgK1Qo2ERKJYuekR0vwHR38VnMWDgPLOwYvlWFH847aCtYEANPa1\nyJxEGInmvlYONR4lUh9+cmyfO0gwxjEpMI3i9jIKWovO+PUnR36FipFf7ijRL46rki+l29zDM8de\nxmw1j2i7D0s/pbmvhSUx5xHnG+PklOODVuXNtalXcO+0HxLg7c/nlTt4Kud5es19ckcThtjsNqq7\nawjThaBx0ZtSIxWlj0Cr0lIkin+crr2/g38f/S/91gFunHAt8V9boPFtRi9ffpxxK1ckXUyPuZcn\njzzHO8WbsNgsTs8pRn4JgnsJ1YUQ7xtLQWvRqAq4z8WB+kM8cfg/dA/0cFXypVyXuvqsiv9jDFE8\nPONe5oTPoKqrhj9k/Z29tVlj+tCkpruOD0s2Y9DouS5ttSyjFoXvUiqUXJZ4ETa7jfdLN8sdxy0U\ntZeiVqg88l6ft8qLCH0YVV3VYlGEMCayG47w2ol30Kl9uGfa7QQN3Yd1V0uiz+OalCvoMnfzxOGn\nT46wFoSx1t7fwcbC4aKfPYNFP2lr+NWch5gbPsNtxq4qJAXTQ6bw/2b8hJ9k/JD0gBSK2kv5V87z\nPJb1BAfqD4nPq3FAFP8IgiArpULJBbFLWB67GK3KW+44ggOk+iciIVHQWjzqbSs6qwDEQ1o3plFq\n8PMyis4/bmJb1U7s2FkWs8jtbiavShjs/vPBGbr/DFjN5DTlEuDt/41uc4J7WRg5l9lhmVR2VfNG\n4XtnfPBS1lHB9qpdBGsDWRW/YoxSjh8p/kn8fNb9TA5K50RbMX899C9a+trkjiUw2Hmv3zpAtCFS\n7ijnTCEpSPZLoNnUSqtJ/H45i8nSz9M5/6W9v4PLElcyfQQddRSSgmUxi3gw88eEaIPYWrmTvxx8\nyukdEI4252G1W0eUURAE1zA3fAZ27OyvP+TU49jsNt4v+YSXjr+OWqHirqm3cH70gnO6xvFWeXFD\n+tXcMnEtChS8UvAm/817dUyKns1WMy/mvYbFbuX6tDUYNHqnH1MYualBE0kwxpLTlEtpR7nccVxa\nj7mX2u564n1jPbYTa5xvNAM2M7U9DXJHETzcsebjvHT8dbyUXtw99TbCdaFyR3KIhVFzWZe2hl5z\nH38//MzJxcGCMBYGi37e59d7/8iO6j0YvYysGy76iZjpNkU/3yZJEqkBSdydcRs/nXkfM0IzqO2u\n56Xjr/ObfX/ii6rd9FvF2DhPJYp/BEGQ3cr4pVyWuFLuGIKD+Kh9iDFEUdZZgcliGtW25Z2VaJQa\nj7l4Ga9CtEG09bczIE4gXVr3QA97arPw9/IjM2Sq3HFGLdoQwbSQKVR2VZPTnHfarzvWfByTtZ8Z\noRkoJHHq664kSeLa1CuJNkSyty6LXbX7T/u1ZpuFV/LfxI6ddWlr3L77iavyVnnxw8k3sThq/uAY\nsINPniziFeQzvFLSE4p/4KuxwGL0l3PY7DZePP4qVd21zAufOeoRoDG+UTw8817mhs882RljjxM7\nY4iRX4LgfqaHTkGtULG/Lttp7w0mi4lnj63ns4rtBGsDeTDzbiYEpjps/5mhGfx81n3E+8ZysDGH\nx7KecHrBxwelm6ntqee8yLlMCkp36rGE0ZMkiSuSLgbg3eKPxBiN71HcXoodu0eO/BoW5zu4yKi8\ns0LmJIInK2wr5rncV1BKSn409WZifKPkjuRQ8yJmcuOEazBZTPzz8LOisFJwum8W/ezGqPFlXdoa\nfj3nIea5cdHPqUQbIrh54lp+M/dhFkXNo2ugmzeL3ueRPb/no9LP6B7okTui4GDiCYggCILgcGkB\nydjsNorby0a8jclior6nkVhDlHhA7+aCh8YwNInRXy5tZ80ezDYzS2MWuu0Fzar4FUhIbCr9FJvd\ndsqvyWoQI788hUap5vZJN6JT+/Bm4fuUdZz65urm8q3U9zayMHKuR99kdgUKScGalMu4KvlSuga6\neeLQ0+Q0nb4YT3C+yu6h4h+9ZxT/JPsN/h0uaiuVOYlneqd4E8ea80n1T+La1CvPqkOGt8qL69PX\ncMvEdSgVSjYUvMnzeRvoNfc6NKsY+SUI7kmr0jI1eBKNfc2Unubc7Vy09LXx+MF/cbQ5jxT/JB6a\ncQ9huhCHHydQG8D90+9kZdxS2kzt/O3Q03xS9vlpr0HORUFrEduqviTEJ4grhwpMBNeTYIwjI3gS\npR0V37sYZbwrah88hxs+p/NEcUPjzMo7xEIIwTnKOip5+uiL2O12fjj5RpL84uWO5BSzwqZz88S1\nDNjM/PPIc2L8s+AUHf2dvPmNoh8D69Ku8siin28L0gZwdcrlPDrvZ6yMWwZ2+Lj8c3655/dsLHyf\nlr5WuSMKDiKergqCIAgOlxaQBAzetBqpyq4a7Ng9cgb4eDP8QEaM/nJdA9YBdlTvwUelZW74TLnj\nnLUwXQizwzKp62kgu+HId17vMfdyvOUEkfpwIvRhMiQUHC1Q688tE9dhs9t49th6Ovq7vvF6VVct\nn1Vsx9/LT3QVHEPnRy/gh5NvBODZYy+zvWqXzInGr6quWgCiDBEyJ3GMCH0YOrUPhe3ixq+j7aje\nw/aqXYTpQrlt0g3nfJMzM3QqP5t5PwnGOA43HuX3B54Y1UKAMxEjvwTBfQ1fb+yry3bofkvay/lT\n9j+o7alnYeRc7p56Kzq1j0OP8XVKhZJVCRdw77Q78NUY2FT2GX8//B/aTO0OO0avuZf1+RtRSAp+\nMOE60cHSxV2auBKFpOD9ko+x2qxyx3FJRW2lqBQq4nxj5I7iNGG6ELyVXpSJUUWCE9R01/GvnOcZ\nsJq5eeJah3a2c0WZoVO5bdL1WG1Wnsp5YVTPFgTh+3T0d/JW4Qf8eu8f+KJ6N74aA2vTVvOrOQ8x\nL2KWRxf9fJtBo2dVwgoenf9zrkq+FL1ax47q3fxm35/4b96rVA/dVxLclyj+EQRBEBwu3hiHWqGm\noG3kJ+jD83xF8Y/7C9EOFv809oniH1e1ry6bbnMPCyPn4q3ykjvOObkofhlKSclHpZ9954brocaj\nWO1W0fXHw6QFJHNZ4ko6Bjp5PveVkz93q83KhvyN2Ow21qVdhbfKW+ak48uU4IncP/1HGDR63ir6\ngI2F7ztlNbxwena7naquGkJ8gtB6yO+/QlKQ7JdAq6mNZrEKzWFym/N5s/B9DGo9P5pyMz5qrUP2\nG6j1575pd3BR/HLa+zt44tDTbDrF5/PZECO/BMF9pfgn4u/lx6HGHIeNht5bl83fD/+HXksf16Rc\nzjWpV4zZQ5tk/wR+Put+MoInUdxexu8P/I0jjcccsu/XT7xLe38HF8UtF/dG3ECoTzALImbT2NvM\n7toDcseRhdlqpr6nkbyWAnZW7+Gd4k08e2w9f8j6Ow/t/DXV3bXE+8agVqrljuo0CklBrG80Db2N\n9Jr75I4jeJDG3ib+eeRZei19XJ++hmkhk+WONCamBk/ih5NvxI6dfx/9L7nN+XJHEtxYR38nbxUN\nFv1sr96FQWNgbepqfj3nIeZHzEalUMkdUTZeSg3nRy/gf+c+zE0TriXMJ4TshiM8lvUETx55jsK2\nYjHa1E2N399qQRAEwWnUChVJfvHktxbS0d+J0cv3jNtUdA62x4334NVA48Vw559G0fnHJdnsNrZW\n7kSlULEoer7ccc5ZoDaA+RGz2Vmzh711WSyInHPytaz6w0hIzAjNkDGh4AzLYhb9//buO76t+t7/\n+FvLlmx5yHvvmeEsO4skQICyy54ts6VldNCW3rb3tr0d3BY6fu0ttJRRoKVsCCNQoEAIIXs6sZ14\nJY733ntJvz/smOQmQIDYspTX8/Hww4qtY32UyN8cnfM+n48qu6q1q7lAq8pf0xUZF+ntqvdV3VOn\nxdG5yg7NcHeJJ6WEwDjdteAbemDPo3q/ZoPaBtp044xrPT5k6ClaB9rVP9KvGSHe9fpPD05VfnOh\nytr3K8wW4u5yPF5Nd50eLXpSZqNJX8+58YT/nZqMJp2ffJayHOl6fO/TeuPgOyppL9ONM65R6Gd8\nLEZ+AZ7NaDBqUdR8vVm5RvnNhVoYNf8z/yyny6mXy/+ld6vXyc9s01dmfVlZIeknsNrj42/x01dn\nXacNdVv0QtlqPVz4hE6JWaTL0y/8zN16tjXs0o6m3UoOTNQXEk87sQVj0pybfKa2NOzQvyre1sKo\neV53AcKoc1Qdg51qHWhTS3+7Wgfa1NrfNvG5c6j7mNtZjBaFWh1KDkrUmQmnTnHVUy8pMEEl7eWq\n7K5Wtpfti8M92gba9addD6t7qEdXZFykxdG57i5pSs0Ky9atOTfqwT1/10MF/9BXZn1Jc8Jnubss\nr+ByuTQ4OqSB0QENjAyqf2TgGLcHxm6PDGpg9OjbTpdTUf6RirfHKC4gRnH2GEX6hU+r7jmdg916\np2qtPqjdpGHniBy+wTo36Qwtil5wUgd+jsVkNGlh1HzlRc7T3rYSvV25VvvaSrWvrVSJAfE6M/FU\nzQ2fJaOBfjKeglc4AGBSZIWka19bqYrbyrQoesEn3v9gV7UCfQIU7Bs0BdVhMoXaQmWQgfDPNJXf\nXKiWgTYti1mkQJ8Ad5dzQpyTtFKb6rfpjYPvalHUAllMFrX2t2t/Z4XSg1PksAa7u0ScYAaDQV/O\nvkL1fU1aW7NBNrNNb1e+pyCfAF2WdoG7yzuphdoc+t6C2/VIwT9V0LJPf9z1V92Wc9NxBYHx+VR3\n10qS4gNi3VzJiZXhSJUklXbs15IYzx1VOR10DHbqgT2PaXB0SF+Z9WUlB01e6D41OEk/yrtTz5Ss\n0o6m3frV1j/qmqxLP1Mgl5FfgOdbFJ2rNyvXaHP99s8c/ukfGdDjRU+psLVYkX7hujXnRkX4hZ/g\nSo+fwWDQstjFSg1O1mNFT2lD3Rbt76jQTTOv/dTjN9sG2vVs6UvyNfnohhlXT6uTZ/h4gT4BOivh\nNL1W8W+9U7VOF6R8wd0lfSoul0tdQ93j4Z42tfa3q22gTS0D7Wrtb1P7YMcxu3kaDUY5fIOV4UhT\nmNWhUFuIQq0hE58DfewyGAxueEbucWif6mBnFeEffG5dQ926L/9htQ926MKUc3RanOdfuPdZZIdk\n6PY5N+uBPY/pkcJ/6qaZ1/J+YNzAyKD2t7Wprq1VA6ODHxHWGdDA6OAxb7v06bu5GA1G2UxWWc1W\nmQxGlbaXq7S9fOL7FqNZMfbo8UBQrOLsMYq1R8tniju/HSv0c07SSi2OziX08wkMBoNmhmZpZmiW\nKjqr9E7VWu1uLtLfCv+pOHuMvp/7Df4OPQT/SgCASZHlGLv6rqS9/BPDPx2DneoY7FRO2MyT6uCA\nt7IYzQqxOtTM2K9px+Vy6e3K92SQQWckrHB3OSdMkG+gTo1bqneq3tcHtZu0MmGFdjTmSxIjv7yY\n1WzV12Zfr99su09vHHxHknRV5qXys/i5uTLYzDbdPudmPVOyShvrt+m32+/XbXNuUqw92t2lebWq\n7hpJ3hf+ifaPlN3ir9L2/XK5XOwrfkYDI4P66+7H1DHYqYtTz5uSA+d+FptumnmtskMz9Vzpy3qs\n6CntbS3RlRkXfarOCIz8AjxfhF+YUoOSVNq+X6397Qq1OT7V9i39rXpgz+Nq6G1UdkiGbp75pRM2\nsvDzivaP1PcXfEMv7/+X1tZs0G933K9LUs/XqXFLj+v/LKfLqX/sfVb9IwP6UtblCvcLnYKqcSKt\nTFihdbWb9G7V+1oeu3jahd77R/rV3N+q1sM697QMfBj0GXaOHHO7IJ8AJQXGHxHqCbM5FGoNUbBv\nECG1wySNdzE/2FXl5kpOXk6XU91DvbJb/Dz6tdk33Kf78x9RU1+Lzko4TWcnnu7uktwqw5Gqb8z5\nqv6y+296tPBJjcwY+VwdBD3Z0OiQCluLtbNxtwpbizXsHD6u7QwyyGq2ymrylcM3SFb/SFnNvhNB\nnrHbNlnNvrKarbKN39dmHv++aexrFqP5iP2a/pEB1fbUq7q7VjXddaruqVV1d+3EdIdDjx3pHzHR\nISjeHqu4gBj5T8Jxu66hbr1duVYf1G7WsHNYDt9gnZ20UksI/XwmyUEJumX29Wrsa9a7VevUMdgp\ngzgW4yl4xQMAJkWMPUoBFruK20o/8UTNwfGdQmbae48IvzDtayvVwMiA17W99mRlHftV1V2rueGz\n3HqV7GQ4K/E0ra/drLcq39PSmIXa1rhLZoPppJmJfrKK9AvXjTOv1oN7/q7cyLmaEz7T3SVhnMlo\n0rVZlyvMFqpXD7yp/7fjL/rqrOsYyTaJvLXzj8FgUHpwinY1F6ikvVyZjjQCQJ+S0+XU43ufUnVP\nnZZGL5zS8RsGg0FLonOVGpSox4qe0paGHTrQeVA3zbz2uPb9GfkFeI/F0bna33lQWxt26NzkM497\nu7L2/Xq48An1Dvfp9LhluiTt/Gl3YtdisuiKjIuUFZKuf+57Xs+XvaJ9baX6cvYVCvCxf+y2a6o/\nUFnHAc0Jm6kl0XS480S+Jh+dn3yWni5Zpdcr3ta1WZe5uyQNO0e0p7lIm+q3qbit7JhdHvzMNkX5\nR46HexwKOyzkE2J1THm3Bk8W4GNXqNWhiq4qwuqTaMQ5otaBdrX0t6q5v1Ut4x/N/W1q7W/VsHNE\noVaHrsy4WLPCst1d7qc2MDKov+x+VLU99VoWu1gXpZ7La0ljHUW/Oe8W3Z//N/1j77MacY5q6UnS\nEXZ4dFhFbSXa2bhbBS17NTQe+In0C9e82JkyjljGwzrjIZ6JsI7vRHDH1+QzKa8jm9mqtOBkpQUn\nf1ivc0QNvY2q7q5TTU+tqrvrVNtTp4beRm15s/4EAAAgAElEQVRr3DVxP4dvsOIDYscDQTGKD4hV\nsG/QZ6qza6hb71S+r3W1mw4L/ZyuxdF5shD6+dwi/cKnxX4NPh1e+QCASWE0GJUZkqbtjflq6GtS\ntH/kR973UCI8ifCP1wi3hWmfStXc3+p1JyE92dtV70uSzkw4zb2FTAK7xV8rE1boXxVv66niF1XX\n26A5YTPpAnMSmB02Q/9zyn994okVTD2DwaCzk1Yq1BaiJ/Y9p7/seVRXZ16iU2IWubs0r+NyuVTd\nXatQq2NSrqJzt7kRs7WruUD35T+seHuMlsUuVm7kXALGx2lV2WsqaNmnLEe6rs68xC0nESL8wvW9\nBXfotQP/1ttVa/W7HX/WhSln68yEU2U0GD9yO0Z+Ad5jfkSOni99RZvrt+ucpDOOay3aULtFz5S+\nJEm6NvMynRI7vfchZofN0H8u/I7+sfdZFbbu06+3/kHXz7haWSHpx7x/bU+9Vu9/UwE+dl2TdRkn\neT3Ykug8raler411W7UyfpmiPuYY2GSq7anXxrqt2tawS70jfZLGutIkBsYd1cHHZp4e3bO8RVJg\ngnY07VZLfxsdvD6HgZEBNfe3HRbs+TDk0zbQccwgm81sVZR/pAJ9ArSvrVQP7HlMc8Jn6Yr0L3rM\nGPjh0WE9VPB3VXRVKS9ynq7KuJj/Ew6TFJigb827RffnP6Ini5/XqGtEy2OXuLusSTHsHFFxW6l2\njAd+BkYHJUnhtlAtiJij+ZFzFOMfpYiIQDU3d7u52iNZjGbFB8SOnwsYC2g5XU619LeOB4LqJjoF\n7Wkp0p6Woolt/S1+ijusQ1B8QIwi/MI/8r1i91CP3q5aq3U1Y6GfYN+g8fFehH4AfgMAAJMm05Gu\n7Y35Km4r+9jwz8HOKhlkUGJg3BRWh8l06Mrspr5mwj/TRG1Pvfa2ligtOHliHr23WRm/XO/XbNCO\npt2SpNwoRn6dLKZba30cKTdyrhy+wXqw4HE9VfyiWvrbdGHK2R97wh+fTsdgp3qGe4+46s6b5EbO\nlb/FT+trN2tPy149XbJKq8pfU17UfC2PWay4gBh3lzhtra3ZoPdq1ivKP1Jfnf1lt3bLMBvNujjt\nPGWFpOsfe5/RK/vf0L62Mt0w4yoF+wYdcxtGfgHew2q2am7EbG1t2KnyjgqlO1I+8r6jzlG9VP66\n3qtZL3+Ln26ZdZ3SHalTWO1nF+QbqDvmfkXvVq3Tqwfe1P35j+jMhFN1QcoXjhg7MTw6rMeLntaI\na1RfzvrkDkGY3kxGky5OPVcPFvxdL+9/Q7fm3Dhlj9033K/tjfnaVL9VVeOdIAMsdp2RsEJLovM+\n9ngcTpykoLHwz8GuKsI/H8PlcqlnuFfN/S1q7vuwc8+hgE/3cM8xtwvyCVBKUKLCbKEKH/8I8wtV\nmC1U/ma/iaBMXU+DnilZpd3NhdrXVqrzk8/S6XHLpl3HuMONOkf1t6InVdJerpywmbou+0reKx9D\nQkCcvj3v67pv18N6puQljThHdXr8MneXdUKMOEdU3FamnU17tKelSP0jA5KkUKtDy2OXaH5kjuLt\nsR4ZCDMajIrwC1eEX7gWRM6Z+HrnYNdYEKinbiIYVNJerpL28on7WIwWxdqjj+gQFOgToLU1G7Su\nZqOGxkM/Zyeu1JIYQj/AIfwmAAAmTVZImiSpuK3sI3fGnS6nqrprFOkXzlVHXuTD8E+rmyvBIe9M\ndP2ZulEfU81mtuoLiafrpfLXZTVZNTvU89o8A94qNThJdy24Qw/sfkz/rnxPrf1tui77SlkYJ3BC\nfDjyy3uD1NkhGcoOyVDHYKc21W3ThrqtWl+7WetrNyspMEHLYhdrQUSOfEw+7i512ihs2acXSl9V\ngMWu23Numjb72lkh6frRwu/oyeLnVdCyT7/a+gd9KeuKo0Y3MvIL8D6Lo3K1tWGnNjds/8jwT99w\nvx4telL72koV5R+p23JuVJjNs06kGw1GnZV4mjIcqXq06Cm9XbVWJe3lumnmtRPr2asH3lRdb4OW\nxS72yPE0ONrssBlKDUpWQctelXdUTGoo2+lyqrzjgDbWbVN+c4GGnSMyyKBZodlaGpOnWaHZ0zrs\n4I2SAscusqroqlLeSX4hktPlVNtAxzHGc419HhwdOmobo8GoEKtDcQExCrOFKswWMh7yCVOYLeS4\n9/Fj7FG6c/6t2ly/Qy/vf10vlb+uLfU7dE3WpUoJSjrBz/Tzc7qc+se+Z1XQsleZjjTdPPNafnc/\nRqw9WnfO/7r+tOshvVD2qkacIzor8TR3l/WZjDpHVdq+Xzuadmt3c6H6RvoljY3EWhq9UPMjc5QY\nEO+RgZ/jEeQbqCDfwCP2gfpH+lXTXf9hh6CeOlV11+hgV9VR2wf7BumSxNO1JGYhoR/g/+A3AgAw\naUKsDkX4hamsY79GnaPHfPPS0NukgdFBJTLyy6uE28YOaDb3t7i5EkhS+0CHtjfmK8o/UjNDs9xd\nzqRaEbtUu5sLlR2SQagAmGYi/ML1vdw79NCev2tH0261D3bo67NvlN3H392lebwPwz/e320v2DdI\n5yafqbOTVqqotVjrazerqLVEB7uq9GLZai2Kmq9lsYtP+qvcq7vr9LeiJ2U2mnTrnBsVagtxd0lH\nCPCx6+uzb9QHtZu0qvw1PVTwd62IXaJL0i6Qz/j/34z8ArxPuiNFIVaHdjbt0RXpF8lq9j3i+019\nzfrrnsfV2NesmaFZumnmtbJ58IjHxMB4/Sjv23qu9BVtadihe7b9UVdlXKJg3yCtqf5AEX5hujTt\nAneXiRPEYDDokrTz9bsd9+ul8td114I7TvhJ2/aBDm2u36HN9dvUMtAmSYqwhWlJdJ4WRs//yE56\nmHzx9hiZDKZjnqQ+GdT1NGh7Y752txSpua9Fo67Ro+7jY7RMdO4JG/8It4Uq3C9UDt/gExZ6MRqM\nWhqTp5zwGXql/F/aWL9Nv9/xFy2NXqiL0s6V3TI93n+6XC49W/qytjfmKzkwUV+bfQPHsY5DlH+k\n7px/q/5310N6ef+/tKu5QLH+UYr2j1S0f5Si7ZEK8gmclqEZp8upsvYD2tG0W/nNBeodHhvPGOQT\nqNPjFmh+5BwlBcaftJ2fbGab0h0pRwTEh50jqu9tUE33WIeglv5WzQrL1lJCP8BH4jcDADCpshwZ\nWle7URVdVce86qmyq1rSh1fIwDuEWh0yGoxq6iP8Mx2sqf5ATpdTZyac6vVvIH1MFn1vwR3uLgPA\nR7Bb/PXNubfon8XPa3tjvn63437dPudmRfiFu7s0j1Y1Ef45ecZfGQ1GzQ6bodlhM9Ta366N9Vu1\nqW6r1tZs0NqaDUoNStby2MWaGzH7pDso2DHYqb/ueUxDo0P66qzrpu1+tsFg0Iq4pUoLTtFjRU9p\nXe0mlXYc0M0zr1WsPZqRX4AXMhqMWhS1QG8cfEf5zQVaHJ078b3itjL9rfCf6hvp1xkJK3Rx6nle\n8d7Farbq+hlXKTskQ8+UrNI/9j0ri9Eso8GoG2dcI1861nmV5KAEzYvI0a6mPdrVXHBCAqzDzhEV\ntOzVprpt2tdWKpdc8jFatChqgZbGLFRqUNK0PMl9srGYLIqzx6imu07Do8MnRYijpb9NOxrztb0x\nX3W9DZLGAj7xAbETnXs+DPmEKdDHPqWvVbvFX1/KvkKLo/P0TMkqbazfqj0tRbo49Twtjs516++N\ny+XSy/v/pfW1mxVrj9btc24+KhCLjxbhF67vzL9Njxc9rcru6onzC4fYzLbxMNDYR8x4KCjAMrWv\nQWks8LO/o0I7m/ZoV1PBxGi7AB+7VsQu1YLIOUoJSvSKfZ7JYDGalRAQpwQv7nIMnGgn1xEwAMCU\nywpJ07rajSpuKztm+OfQFTFJdP7xKiajSWHWEDX1N7u7lJNe33CfNtRtUZBPoPIi57q7HACQxWTR\nDTOuVpg1RG9WrtHvtv9ZX8u5YVJHI3i76u5aBfsGKdAnwN2luEWozaELU87WeUlnqqBlrz6o3azi\n9jLt76yQf9krWhydq2Uxi06KkNnAyKD+uvsxdQx26uLU8zQvYra7S/pEMfYofT/3m3p5/+t6v2aj\nfrP9Pp2ffBYjvwAvtTh6LPyzuX77RPhnXc1GPV/2qgwy6MvZV2rJYaEgb5EXNU/JQQl6tOgpVXZV\n64LkL9AB2Ut9MeUc7W4u1Kv731BO2AyZP2MIubanXpvqt2lrw86J7hDJgQlaEp2n+ZFzPLorlrdK\nCkpQZXe1anrqlByU6O5yJkXXULd2Nu7R9sZ8VXRVSpJMBpNmh81QXuRczQqbMe1CjanBSfph3rf1\nXs16vV7xtv5Z/Lw21W/X1ZmXKMYe5Zaa3qpco3eq3lekX7i+OfcW+Vmmx3heTxJmC9FduXdoxDmi\npr4W1fc2qL63UfW9jarrbVBFZ6UOdB48Yht/i99Eh6CYiXBQ1AnvRux0OVXRWTXW4adpjzqHuiWN\nBdIOjatOC04h8ANgUhD+AQBMqgxHqgwyqKS9TBfoC0d9v7KrWmajWbH2aDdUh8kU7hemptZi9Q33\nyc/i5+5yTlof1G7W4OiQzk068zMfdASAE81oMOrC1HMUagvV0yUv6r5dD+nL2VcqL2qeu0vzOJ2D\n3eoc6tLssGx3l+J2JqNJcyNma27EbDX1tWhj3VZtqt+md6vW6d2qdcp0pGlZ7GLNCZt5wsYKTCdO\nl1OPFT2l6p46nRKzUGcmnOruko6bj8miKzMuVnZIhp7Y95xe2f+GJDHyC/BCYbZQpQenqKzjgJr6\nmvVe9Xqtq90ku8VfX5t9g1KDk9xd4qQJs4Xqe/NvV21vveLt3j+q82QV4Rem5bFL9H7NBq2v26LT\n4k457m37R/q1vTFfm+q2q7J7rJOF3eKvM+JXaHF0rtuCCjg+SYHxel/Swa5qrwr/9A33a3dzobY3\n5qukvVwuuWSQQRmONOVFztXc8FnT/rifyWjSmQmnakHEHD1f9qp2Nxfq19v+qDPiV+jc5DOnNLC0\ntnqDVh94Sw7fYH1z7i0K8LFP2WN7I7PRrBh71FHr4/DosBr7micCQYdCQfs7Dqq8o+KI+wZY7GNB\nIHvUYd2CIj/V69rlculgV7V2Nu3WzqY96hjslCT5m/20NHqhFkTOUXpwile+DwUwvXAGCAAwqWxm\nm5IC43Wwq1r9I/2ymT+8kmFodEi1vQ1KDIhnx9cLRfiFqahVaupvUZJleo6b8HbDo8NaW7NBVpNV\ny2IXubscADjK0pg8hViD9XDBE3p879NqHWjT2YkrGV3wKdT0jI/84iTiESL8wnRx2nk6P+UL2t1c\nqPW1m1XSXq6S9nIF+Ni1NHqhTolZqFBbiLtLPWFeLFutwtZ9ynKk66qMSzzy92h22Az958Lv6Im9\nz6myu1q5dC0EvNKi6FyVdRzQ77b/Wb0jfYq1R+vrs29UqM3h7tImncloYnTFSeDcpDO0pX673qh4\nR4uiFnxslx6Xy6WyjgPaVL9Nu5oKNOwclkEGzQrN0pKYhZoVmsWFPB7i0KjVis5KnR6/zM3VfD5D\no8MqbN2n7Q27VNRarBHXqKSx55gbOVfzI3IU5Bvo5io/PYc1WF+bfb0KWvbqudJX9HbVWm1vzNeV\nGRcpJ3zmpD/+pvrter7sFQX6BOhb874mhzV40h/zZGUxWRQXEKO4/zMae2h0SA19TarvORQKGusY\nVNqxX6Ud+4+4b5BPgKLHR4Yd6hIU7R85saa7XC5VdddoZ9Me7Wzao7aBdkmSzWzV4qhczY+coyxH\nGuc9AEwp9hoBAJMuKyRdFV1VKms/cMQbqeruOjldTiUF0eraG0XYxkY0NPW1TBwAwdTa2rhTXUPd\nOivhtCOCdwAwnWSFpOt7C27XX3Y/qtUH3lJzf6uuzbyMA2THqbp7PPwTQPjnWCxGs3Ij5yo3cq4a\nehu1vm6LttTv0FuVa/TvyveUHZqh5TGLNTM0y6Nfc2urN2htzQZF+0fqq7O/7NHPJdg3SN+cd4tG\nnaMe/TwAfLR54bP1XOnL6h3pU07YTN0w42pZzb7uLgs4YQJ87Dor8XStPvCm3qlcqwtTzznqPh2D\nndpcv0Ob6reppb9VkhRuC9WS6Dwtil6gYN+gqS4bn1O4LVT+Fj8d7Kp2dymfyahzVMXtZdrWkK89\nLYUaHB2SJEX5Ryovcq4WRMxVuF+om6s8MWaHzVCmI01vHHxX71S9rwcL/q7ZYTN0RfpFkxZE3dVU\noCf3PS8/s03fmPtVRtu6iY/JRwkBcUcFcQdGBtXY16S6Q4Gg8XBQcXuZitvLjrivwzdYUf4Rau5v\nnVi/rSZfLYyar/kROcoKyZCF0CYAN2H1AQBMukxHut44+K6K28uOCP8c7KqSJCUFEP7xRuF+H4Z/\nMPWcLqfeqXpfJoNJp8Uff5txAHCHGHuUvp/7Tf11z2PaXL9d7QMd+uqs6+RnIbj4SQ6FfxIC6SLw\nSaL8I3V5+hf1xZRztatpjz6o3ay9rSXa21qiYN8gLY0Z6wbkaSfbClr26oWyVxXgY9dtOTd5TeCX\n4A/gvaxmX90w42p1DXZpWexiGQ1Gd5cEnHAr45dpXc1GvVv9gZbHLVGwb5BGnCMqaNmnTfXbtLe1\nRC65ZDFatChqgZZE5yktONkjO/dhjMFgUFJggopai9U91OMR45ycLqf2dxzU9qZ87Wrao97hPklS\niNWhU+NOUW7kXMX4R3nl69LH5KOLUs/Vwqj5erbkJRW07FVJW5nOSz5LK+OXn9B90b2tJXqs6Cn5\nmCy6Y+5XFGuPPmE/GyeG1eyrxMB4JQYeeZ6if2RADYePDusZ6xS0r61UPiafiU5YM0IyZTFZ3FQ9\nAHyI8A8AYNIlByXIx+Sj4rbyI75eOX4lTFIQXWG80aHOP839hH+mWl1Pg9bWbFBTX4sWR+d63ElM\nACenIN8A3Tn/Vj1e9LT2tBTp9zv/ottzbj4pRoB8HtXdtQqw2BXk43lt993Fx2TRougFWhS9QLU9\n9Vpfu1lbG3bqXxVv682D72pWaLaWxS5Wdkj6tD8hXd1dq0eLnpLZaNatOTd61RgzAN5tbvgsd5cA\nTCofk48uSDlbTxY/r+dLX1WINVhbG3aqZ7hX0tj4pCXRuVoQOfdjx4LBsySPh38OdlVpdtgMd5dz\nTC6XSzU9ddrWuEs7GnerY7BTkhRgsevUuKXKjZyn5MAErwz8HEu0f6S+Pe/r2tqwU6vKX9PL+/+l\nLQ07dHXmpUoLTv7cP7+8o0IPFfxDRoNBt+bcRHd0D2MzW5UclKjkoMQjvt433C+L0UzgB8C0Q/gH\nADDpzEaz0oNTVNRarPaBjol5xge7qmS3+CvUykkKb+SwBstsNNP5Z4r0jwxoR2O+NtZvmwjWBfkE\n6uzElW6uDACOn6/JR7fMvk6ryl/Te9Xr9dsd9+m2nJuOuvoOY3qGe9U60K4ZIZknzcH5Ey3WHq2r\nMi/RRannaUdTvtbXbtaeliLtaSlSqNWhU2IWaUlMnsIV4O5Sj9I+0KEHdj+m4dFhfWXWlzmRAADA\nNLM4eoHWVK9TfnOBJMlu8dfK+OVaEp2nGHuUm6vDZDi0P3awc/qFfxr7mrW9MV87GvPV2NcsSbKa\nrFoclavcqLnKCE49aTsvGgwGLYpeoFlh2Xpl/xvaULdFf9j5gBZH5+qS1PNl9/H/TD+3qqtGD+x+\nTKOuUX199g3KcKSe4MrhLnQpBjBdEf4BAEyJrJB0FbUWq7i9XEuic9U91KPWgXbNDM3iZJWXMhqM\nCrOFqrm/RS6Xi3/nSeByuVTeUaFN9du0s2mPhp3DMsigmaFZWhqdp1lh2TIzYxqAhzEajLo8/YsK\ns4XqhdJX9Yedf9VNM6/VnMNGh2JMTXedJCk+INbNlXg+q9lXp8Qs0ikxi1TZVa31tVu0vXGXXj3w\npl6r+Leyw9OUYk9WpiNNCQFxbj8xMjAyqL/ueVydQ126JO18zYuY7dZ6AADA0YwGo67LvlLv12zU\n7LAZms17dK936KKFiq4qN1cypn2gQzuadmtHY76qxscFW4xmzYvIUW7kXM1kVNER/C1+ujbrMi2J\nztXTJau0uX67Cpr36qK0c7UkOu9TdQWt723U/bsf0eDooG6aeY1mhWVPYuUAAIxhTxMAMCWyHOmS\npOK2Ui2JztXB8TfBXMnv3SJsYWrobVTPcK9HzDr3FB2Dndpav1Ob6repaXysWpgtVEui87Qoav5E\ndy0A8GSnxZ2iUKtDjxY+qYcL/qFL0y/Q6XHLCJMepnr8AD7hnxMrMTBeiYHxujT9fG1r2KVN9du1\nt6lMRU2lWq23ZDVZle5IUZYjXZkhaYryi5jS16XT5dRjRU+qpqdOp8Qs0hnxK6bssQEAwKeTGBiv\n62dc5e4yMEX8LDZF+kXoQGelHi96WiaDSSajSWajaey24dBts0xGo8wGk0xGs0wGo0xG8/ifD7/f\nYbcPff2wbcxG84ePYTDJaDCqd6RPu5oKtKMxX+UdFXLJJaPBqBmhmcqNmKuc8JmMmvsEyUGJ+kHu\nt/R+7Ua9duAtPVX8ojbXb9fVmZcq1h79idu39Lfqvl0Pq3e4T9dmXaYFkXOnoGoAAAj/AACmSLR/\npAJ9AlTSVi6XyzUxlojxBN4t3C9UktTU10L453MadY6qsHWfNtZt0962EjldTlmMZuVFztfSmDyl\nBSd/qiuQAMATzA6boe8suE1/3f2YXixbrZb+Vl2e/kXWu3GEfyaXzWzTirilWhG3VNZAgzaW71ZJ\nW5lK2stV0LJXBS17JUlBPgHKGA8CZTnSJj2E+0LZahW2Fis7JENXZVxMIA4AAGAayQmbober1mpb\n4y53l6LUoGTlRs7VvIjZHJf7lExGk1bGL9e88Nl6sWy1djUX6J5t/6vT45bpvOSzZDX7HnO7jsFO\n/WnXw+oc6tJlaRfolJhFU1w5AOBkRvgHADAlDAaDMh3p2ta4U3W9DTo4Hv5JDIxzc2WYTJG2cElS\nU3+LUoOT3FuMh2robdLG+q3aWr9T3cM9kqSEgDgtjclTbuRc2czMmAbg3RIC4nRX7jf0wO7H9H7N\nRrX2t+ummdd+5MHWk0l1d638zDaFWh3uLsXrBfjaNT8iR/MjciRJrf3tKmkvV0l7mUrayrWtcae2\nNe6UJEX4hSnTka4sR5oyHKnys/idsDreq16v92s2KNo/Ul+Z9SW3jx8DAADAkS5KPVdnJKzQiHNE\no65RjThHNeoa1ahzVCPjn8e+PqJRl/PD24e+fth9jt5mVKOuEY06nRpxHdrm8NujMmqsy8+CyDkK\n4X3C5+awBuurs69TUWuxnit5We9Wr9OOpt26IuMizQmbeUQQv2eoV/ftelitA206L+lMrUygQycA\nYGoR/gEATJmskDRta9ypfW2lOthVrXBbqOwWf3eXhUkU7hcmSWrua3FzJZ5lYGRAO5v2aFP9Nh3o\nrJQk+Zv9dHrcMi2JyTuuFsMA4E1CrA59d8Ht+lvhP1XYuk9/3PmAbpx5jaL8I91dmtv0jwyoqb9F\nmY40Or+4QajNoaW2PC2NyZPL5VJ9b6OKx4NAZR379UHtJn1Qu0kGGRQfEKtMR5qyQtKVEpQkH5Pl\nMz1mQctevVi2WgE+dt2WczMBYAAAgGnIYDDQZccLzQzN0n8t+p7eqlyjtyvX6uGCf2hWaJauyLhY\nYbYQ9Y/06/7dj6ihr0kr45frvOSz3F0yAOAkRPgHADBlskLSJUkb6raof6RfM0Mz3VwRJlvEePin\nqd894R+Xy6X2wQ65XJLDGjStx8S4XC4d6KzUpvpt2tG0W0OjQzLIoOyQDC2JzlNO+ExZjOy6ATh5\n2cxW3ZZzk54tfUkb6rbq7i3/T3PDZ+nspDMUHxDj7vKmXE13nSRGfk0HBoNBMfYoxdijtDJ+uUad\no6rsrlZJW7mK28tU0Vmlqu4avV21VmajWSmBicoMSVemI00JAbHH1b2nurtWjxY9JbPRrNtyblKo\njau4AQAAgKnkY7LowpSztTBynp4pfVmFrcUq2fJ7nZN0hva2Fqu6u1ZLo/N0adoFXKABAHALziAB\nAKZMsG+Qovwi1NDXJElKCkxwc0WYbEE+gfIxWtTU1zzpj9U33K+63gbV9dSrtrdBdT0Nqu9tUP/I\ngCTJbDAp1BaqcFuowv1CFW4LG7ttC1OINdhtYzM6B7u1tWGHNtVvV+P470ao1aHFCadqcXQuLZoB\n4DAmo0nXZF6mmaHZevPgu9rVXKBdzQWaFZqtc5JWKjko0d0lTpnq7hpJhH+mI5PRpJSgJKUEJenc\n5DM1ODqk8o6KiRFhpR37VdqxX6s1FmpLD04d7wyUpki/iKNOFLQPdOiB3Y9peHRYX519nRID493z\nxAAAAAAo0j9C35p7i7Y17tKqste0+sCbkqT5ETm6Jusygj8AALch/AMAmFJZIemHhX84ceHtDAaD\nwv3C1NzfKpfLdULe/I44R9TY16zannrV9TSMB34a1D7YceRjy6AIv3BlhWTIZDCqua9VTf0tYwGb\n1iN/ptFgVKjVMRYI8gtV2KGQkC1MobaQE95xZ9Q5qr1tJdpYt02FrfvkdDllNpqVGzlXS6LzlOFI\nndZdigDAnQwGg+aEz1RO2AztayvVmwffVWHrPhW27lOmI03nJJ2h9OAUrz/gWkXnH4/ha/LRzNDM\nia6XPUO9Ku3Yr+K2MpW0l2tPS5H2tBRJGgtOZ4akKdMx9mEzW/XXPY+rc6hLl6Sdr7nhs9z5VAAA\nAABo7H3pwqj5mhWarTcOvqNh54guT7+Q43kAALci/AMAmFJZIelaW7NBJoNJcfaTb0THySjCFqba\nnnp1DnUp2DfouLdzuVxqG+hQXe+RIZ+GviY5Xc4j7hvkE6DskAzF+I+N3Ii1RyvKL0IWk+Won9s7\n3Kfm/hY197WOfe5vVXNfq1r6W7W3rURqO/L+BhnksAaPh4FCFe73YcegMFuIfEw+x/2cGvuatalu\nm7Y07FDXULckKd4eoyUxC5UbOVf+Fv6bJWAAABElSURBVL/j/lkAcLIzGAyaEZqpGaGZKms/oDcP\nvqvi9rEwRUpQos5JOkMzQjK9NgRU3VMrX5OPwm2h7i4Fn5Ldx1/zI3I0PyJHktTa36aS9nIVt5Wp\ntH2/tjbs1NaGnZIkm9mm/pF+LYtZpDPiV7izbAAAAAD/h5/FpsvSL3R3GQAASCL8AwCYYunBKbIY\nzYqzxx4zmAHvE+4XJklq7mv5yPDPJ43sOsTH5KOEgLgjQj4x/lGy+/gfdz3+Fj/5WxKOOXauf2RA\nLf2t44Gg8WDQeFCopL1cJe3lR20T7Bv0YTDIFqawiZFiIbKarRocHdLOpj3aVLdN+zsrJI2dyFsR\nu1RLY/Lo2AAAJ0C6I0XpjhQd7KrSmwfXqKBlr/6y+1HFB8TqnKQzlBM2w6uuwBwcHVJjb5NSgpK8\n6nmdrEJtIVpqW6ilMQvlcrlU19ugkvGuQGUdBzQrNFtXZlzstUE2AAAAAAAAfH6EfwAAU8pqturO\n+bfK33z8YQ14tgjbWPinqa9FyUGJn3pkV6x/lGLs0Yq1RynE6pjUk5w2s1XxAbHHDOQMjg4dIxg0\ndru8o0JlHQeO2ibAYteQc0iDo0OSpExHmpZG5yknfJZ8CL8BwAmXFJigW3NuVE13nd6qXKNdTQV6\nuOAfivaP1NmJKzU/Ikcmo8ndZX5utT31csmlhEACpN7GYDAo1h6tWHu0ViasOGFjUwEAAAAAAODd\nCP8AAKbcsTquwHsd6vzz8v5/6ZnSlz52ZFesPVox9qiPHNnlTr4mn4mTcf/X8OiwWgfaDgsEfThS\nzFe+Whk5V4uj8xRmC3FD5QBw8okLiNFXZn1ZDb1N+nfle9rWuEuP731ar1f8W19IXKmFUfNkNnru\n2+Hq7lpJUryd8I+3I/gDAAAAAACA4+G5RzsBAIBHiLVHy27x15BzeGJk16GQT4w9SnaL53eBspgs\nivKPVJR/pLtLAQAcJso/QtfPuErnJZ+ltyvf0+b67Xqy+Hn9q+JtnZV4mpZG5027sOnxqOqukSRG\nRwIAAAAAAACQRPgHAABMMpvZql+d8mMZDIZJHdkFAMBHCbOF6Jqsy3RO0hl6t2qd1tdt0XOlL+vN\ng+/qjIQVWhazWFazr7vLPG7V3bWyGC2K9At3dykAAAAAAAAApgHCPwAAYNKZjCZ3lwAAgBzWYF2e\n8UWdnbRSa6o/0Ps1G/RS+ev6d+V7Whm/XCtil8rPYnN3mR9reHRY9b2NSgyI4/9XAAAAAAAAAJII\n/wAAAAAATjIBPnZdlHquzkw4VWtrNmht9XqtPvCW3q58X6fFLdXp8ctl95meYynrehvkdDkZ+QUA\nAAAAAABgAuEfAAAAAMBJyd/ip/OTz9IZ8cv1Qe1mvVu1Tm9WrtGa6g+0LHaxzkw4VUG+ge4u8wjV\n3bWSRPgHAAAAAAAAwATCPwAAAACAk5rVbNVZiafp1Lil2lC3Ve9Uva811R9oXe0mLY3O05kJpynU\n5nB3mZIOD//EubkSAAAAAAAAANMF4R8AAAAAACT5mHx0evwyLYtdrK31O/RW5XtaV7tJ6+u2aGHU\nfJ2deLoi/MLdWmN1d53MBpOi/SPcWgcAAAAAAACA6YPwDwAAAAAAh7EYzToldpEWR+dqe2O+3qp8\nT5vrt2tL/Q4tiJyjnLCZCrEGy2ENVqBPgIwG45TUNeocVW1vvWLsUTIbeTsPAAAAAAAAYAxHCwEA\nAAAAOAaT0aRF0QuUFzVP+c2FevPgu9remK/tjfkT9zEajHL4BslhDZbD1yGHNWgsGOQ7Fg4KsQbL\nZradkHrqexs14hxRfEDsCfl5AAAAAAAAALwD4R8AAAAAAD6G0WDU/IgczQufrdL2/arrbVD7YIfa\nB8Y+2gY6tL/joFyqOOb2VpNVIdZgBVuDFOIbLIfVMR4QCpLD6lCwb+BxdfKp7q6VJMI/AAAAAAAA\nAI5A+AcAAAAAgONgMBiUGZKmzJC0o7434hxR52CX2gY6JoJBbYcFhNoHO1TX23DsnyuDAn0CxroH\nWYPHA0JH3rZb/FXdQ/gHAAAAAAAAwNEI/wAAAAAA8DmZjWaF2kIUagv5yPv0j/SrfaBT7YNj3YIO\ndQ3qGP9zVXeNDnZVHXNbi9Esl8a6EMX4R0/SswAAAAAAAADgiQj/AAAAAAAwBWxmm2x2m2LsUcf8\nvtPlVNdQ92EBoXZ1DHSOdxBqV9tAh7JDMuRjskxx5QAAAAAAAACmM8I/AAAAAABMA0aDUcG+QQr2\nDVKyEtxdDgAAAAAAAAAPYXR3AQAAAAAAAAAAAAAAAAA+G8I/AAAAAAAAAAAAAAAAgIci/AMAAAAA\nAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAA\ngIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAA\nAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAA\nAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMA\nAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAA\nAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KIPL\n5XK5uwgAAAAAAAAAAAAAAAAAnx6dfwAAAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAAAAAA8FCEfwAA\nAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAAAAAA8FCEfwAAAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAA\nAAAA8FBmdxcAHM7pdOpnP/uZSkpK5OPjo7vvvluJiYnuLgsAPpfdu3frd7/7nZ544glVVlbqhz/8\noQwGg9LT0/Xf//3fMhrJ4gLwLMPDw/rP//xP1dbWamhoSLfddpvS0tJY3wB4vNHRUf34xz9WRUWF\nDAaDfv7zn8vX15f1DYDXaG1t1aWXXqpHH31UZrOZ9Q2A17jkkktkt9slSXFxcbr11ltZ4wB4hQcf\nfFBr1qzR8PCwrrnmGi1cuJD1DcAxsRJgWnnnnXc0NDSkZ599Vt/73vd0zz33uLskAPhcHn74Yf34\nxz/W4OCgJOnXv/617rzzTj311FNyuVx699133VwhAHx6r776qoKDg/XUU0/pkUce0S9/+UvWNwBe\n4b333pMkPfPMM7rzzjv1hz/8gfUNgNcYHh7WT3/6U1mtVkm8PwXgPQYHB+VyufTEE0/oiSee0K9/\n/WvWOABeYcuWLdq1a5eefvppPfHEE2poaGB9A/CRCP9gWtmxY4eWL18uSZo7d64KCwvdXBEAfD4J\nCQm67777Jv5cVFSkhQsXSpJWrFihjRs3uqs0APjMzjnnHH3729+WJLlcLplMJtY3AF7hzDPP1C9/\n+UtJUl1dnQIDA1nfAHiNe++9V1dffbUiIiIk8f4UgPcoLi5Wf3+/br75Zl1//fXKz89njQPgFdav\nX6+MjAzdcccduvXWW3XaaaexvgH4SIR/MK309PRMtOaUJJPJpJGRETdWBACfz9lnny2z+cMpmy6X\nSwaDQZLk7++v7u5ud5UGAJ+Zv7+/7Ha7enp69K1vfUt33nkn6xsAr2E2m/WDH/xAv/zlL3XhhRey\nvgHwCqtWrVJISMjERXcS708BeA+r1aqvfOUr+tvf/qaf//znuuuuu1jjAHiF9vZ2FRYW6n//939Z\n3wB8IsI/mFbsdrt6e3sn/ux0Oo84aQ4Anu7w2bu9vb0KDAx0YzUA8NnV19fr+uuv10UXXaQLL7yQ\n9Q2AV7n33nv11ltv6Sc/+cnE+FaJ9Q2A53rxxRe1ceNGXXfdddq3b59+8IMfqK2tbeL7rG8APFly\ncrK++MUvymAwKDk5WcHBwWptbZ34PmscAE8VHBysZcuWycfHRykpKfL19T0i7MP6BuBwhH8wrcyf\nP1/r1q2TJOXn5ysjI8PNFQHAiTVjxgxt2bJFkrRu3Trl5ua6uSIA+PRaWlp088036/vf/74uv/xy\nSaxvALzDyy+/rAcffFCSZLPZZDAYNGvWLNY3AB7vySef1D//+U898cQTys7O1r333qsVK1awvgHw\nCi+88ILuueceSVJjY6N6enp0yimnsMYB8HgLFizQBx98IJfLpcbGRvX392vJkiWsbwCOyeByuVzu\nLgI4xOl06mc/+5lKS0vlcrn0q1/9Sqmpqe4uCwA+l5qaGn33u9/Vc889p4qKCv3kJz/R8PCwUlJS\ndPfdd8tkMrm7RAD4VO6++2698cYbSklJmfjaf/3Xf+nuu+9mfQPg0fr6+vSjH/1ILS0tGhkZ0S23\n3KLU1FT23wB4leuuu04/+9nPZDQaWd8AeIWhoSH96Ec/Ul1dnQwGg+666y45HA7WOABe4Te/+Y22\nbNkil8ul73znO4qLi2N9A3BMhH8AAAAAAAAAAAAAAAAAD8XYLwAAAAAAAAAAAAAAAMBDEf4BAAAA\nAAAAAAAAAAAAPBThHwAAAAAAAAAAAAAAAMBDEf4BAAAAAAAAAAAAAAAAPBThHwAAAAAAAAAAAAAA\nAMBDEf4BAAAAAADAlFu1apV++MMfursMAAAAAAAAj0f4BwAAAAAAAAAAAAAAAPBQZncXAAAAAAAA\ngOnroYce0htvvKHR0VEtW7ZM11xzjW6//XbFx8ersrJSMTEx+u1vf6vg4GC99957+uMf/yin06n4\n+Hj94he/UFhYmDZu3Kh77rlHLpdLMTEx+v3vfy9Jqqys1HXXXae6ujotWbJEd999t5ufLQAAAAAA\ngOeh8w8AAAAAAACOad26dSosLNQLL7ygl19+WY2NjVq9erVKS0t1ww036PXXX1dqaqruv/9+tba2\n6qc//an+/Oc/a/Xq1Zo/f75+8YtfaGhoSHfddZfuvfderV69WpmZmXrppZckSfX19brvvvv0xhtv\naN26dSorK3PzMwYAAAAAAPA8dP4BAAAAAADAMW3atEl79uzRpZdeKkkaGBiQy+VSUlKSFi1aJEm6\n+OKLddddd+mUU05RTk6O4uLiJElXXXWVHnroIZWUlCgyMlLZ2dmSpO9+97uSpFWrVik3N1fBwcGS\npISEBLW3t0/1UwQAAAAAAPB4hH8AAAAAAABwTKOjo7rhhht00003SZK6urrU0NCg73znOxP3cblc\nMplMcjqdR2zrcrk0MjIii8VyxNe7u7vV29srSTKbPzw0ZTAY5HK5JuupAAAAAAAAeC3GfgEAAAAA\nAOCYFi9erFdeeUW9vb0aGRnRHXfcocLCQlVUVGjfvn2SpBdffFErVqzQnDlztHv3btXU1EiSnn32\nWS1atEjJyclqa2tTeXm5JOmRRx7R008/7bbnBAAAAAAA4G3o/AMAAAAAAIBjWrlypYqLi3XllVdq\ndHRUy5cvV15enoKCgvSnP/1JVVVVyszM1N133y0/Pz/94he/0De+8Q0NDw8rJiZG//M//yNfX1/9\n9re/1X/8x39oeHhYCQkJ+s1vfqO33nrL3U8PAAAAAADAKxhc9FMGAAAAAADAcaqpqdH111+vNWvW\nuLsUAAAAAAAAiLFfAAAAAAAAAAAAAAAAgMei8w8AAAAAAAAAAAAAAADgoej8AwAAAAAAAAAAAAAA\nAHgowj8AAAAAAAAAAAAAAACAhyL8AwAAAAAAAAAAAAAAAHgowj8AAAAAAAAAAAAAAACAhyL8AwAA\nAAAAAAAAAAAAAHgowj8AAAAAAAAAAAAAAACAh/r/siyjDnpideMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss']) # get epoch length from any of the columns\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k]) # this is for train\n", + " plt.plot(history.history['val_' + k]) # this is for test\n", + " plt.title(k, fontsize=30)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0035122722055874436" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is not small enough. The model is still not an usable model in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visually compare the delta between the prediction and actual (scaled values)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAJMCAYAAABkexbrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8leX9//HXmdl7QiaEvUEBRYaKiii4wIraClWL9Wtb\nbdVf1W9rreKotv3W1tVWK25ciAU3iuw9AgESCIHsvXdyzrl/f4REMZBFQkLyfj4efUhy7vu6Pydc\nxuad6/pcJsMwDEREREREREREpE8xd3cBIiIiIiIiIiJy5ikUEhERERERERHpgxQKiYiIiIiIiIj0\nQQqFRERERERERET6IIVCIiIiIiIiIiJ9kEIhEREREREREZE+SKGQiIiItElGRgbDhw/n6quvbvrf\nVVddxQcffHDaY99xxx0sX74cgKuvvpqysrJTXlteXs4tt9zS7md8/vnn/OQnP2nz9Vu3bmXOnDnt\nfk5P9/777/PWW291+P6MjAzGjx/fiRWJiIhId7F2dwEiIiJy9nB3d+fjjz9u+jg3N5c5c+YwatQo\nhg0b1inP+P74J1NaWsq+ffs65Vl90c6dOxk8eHB3lyEiIiI9gEIhERER6bCwsDBiYmI4duwYBw4c\n4IMPPqC6uhpvb2/eeOMN3n//fd555x1cLhf+/v78/ve/Jy4ujtzcXB544AHy8vLo378/hYWFTWMO\nHTqUzZs3ExgYyD//+U8++ugjrFYrMTExPPXUUzz44IPU1NRw9dVXs3z5co4dO8bjjz9OSUkJTqeT\nn/zkJ8yfPx+AZ599lpUrV+Lv709MTMwp38cHH3zAq6++itlsJiAggD/96U8nvF5eXs4f//hHEhMT\nMZlMTJs2jd/85jdYrVb+/ve/89VXX2Gz2QgICODJJ58kNDSUI0eOnLKuRhs2bOBPf/oTK1euBKCs\nrIyZM2eyevVqPvnkE5YtW4bNZsPNzY1HH32UQYMGnXB/QUEBDz/8MIWFheTn5xMREcHf/vY3goKC\nOHr0KA8//DBFRUWYzWbuvPNObDYb33zzDRs3bsTd3Z2ioiKKi4t5+OGHAfjHP/7R9PGePXt45pln\nqKurIz8/nylTpvDEE090fLKIiIhIj6NQSERERDps9+7dpKWlMXbsWDZv3kxycjLffPMN3t7ebNu2\njRUrVvDWW2/h4eHBhg0b+OUvf8mnn37Ko48+ytixY7nnnntITU3lmmuuaTb2119/zfLly3nvvffw\n8/PjySef5M033+TJJ59k7ty5fPzxxzgcDn71q1/x9NNPM3LkSMrLy7nhhhsYNGgQBQUFfPnll6xY\nsQJ3d3fuuuuuk76HxMRE/vznP/PRRx/Rr18/li5dyosvvsiVV17ZdM2SJUvw9/dn5cqV1NfXc+ed\nd/Kf//yHuXPn8tprr7F582bsdjv/+c9/2Lt3LxdeeOEp6xo3blzTuBdccAGVlZXs27eP0aNHs2rV\nKmbMmIG3tzdPPPEE33zzDaGhoaxYsYKdO3c2C4U++eQTxo0bx+LFizEMg8WLF/Pxxx9z66238pvf\n/Ib58+dz8803k52dzU9+8hNWrFjBxRdfzODBg7n55pv5xz/+ccq/29dff51f/epXTJ48mcrKSmbO\nnElCQgL+/v7tnSYiIiLSQykUEhERkTZrXKED4HQ6CQgI4JlnnqFfv35Awyofb29vAL799ltSU1NZ\nsGBB0/2lpaWUlJSwadMmfvvb3wIQExPD5MmTmz1r8+bNXH755fj5+QHw4IMPAg09bRodO3aMtLQ0\nHnrooRNqPHDgAEeOHOHSSy9tqmfevHm88cYbJ33O1KlTm97DokWLgIaeQo3WrVvHO++8g8lkwm63\ns2DBAl577TVuv/12hg0bxrXXXsv06dOZPn06559/PsnJyaes6/uhkMlkYv78+Xz00UeMHj2a5cuX\nc//992OxWLj88stZsGABF154IRdccAFz585tVvvChQvZsWMHr776KseOHePw4cOMHTuWkpISEhMT\nuf766wHo168fq1evbnZ/S5566inWrVvHSy+9REpKCjU1NVRVVSkUEhER6UUUComIiEib/bCn0A95\neno2/dnlcnH11Vdz//33N32cl5eHn58fJpMJwzCarrVam/9fEovFgslkavq4rKysWQNqp9OJr6/v\nCTUVFBTg4+PDM888c8IzLBbLSWv+4XNqamrIzMw84RqXy9XsY4fDgdls5s0332Tfvn1s3ryZJ554\ngsmTJ3P99defsq4fmjdvHtdccw3XX3895eXlTQHZn//8Zw4dOsSmTZv497//zQcffMCLL754wr3P\nPPMMe/fuZd68eUyePBmHw4FhGE1fz++/r5SUFPr373/C/T/8e6ivr2/6880338ywYcOYNm0as2fP\nJj4+/oRrRURE5Oyn08dERESkS1xwwQV88skn5OXlAfDOO++wcOFCAKZNm8a7774LQFZW1gmrchpN\nmTKFr776ioqKCqCh383SpUuxWq04nU4Mw2DAgAG4ubk1hS/Z2dnMmTOHhIQEpk2bxueff05ZWRku\nl+uUYdbkyZPZvHlzU53Lli3jmWeeOeGaqVOn8tZbb2EYBnV1dbz33ntMmTKFxMRE5syZQ1xcHHfc\ncQeLFi0iKSmpxbp+KCwsjLFjx/Lwww839RwqKipixowZ+Pv7s2jRIu655x6SkpKa3bthwwYWLlzI\nNddcQ1BQEJs2bcLpdOLt7c3IkSNZsWJF0/NvvPFGysvLsVgsOBwOAAICAti/fz+GYVBVVcWGDRuA\nhhVdCQkJ3HfffVx22WXk5uaSlpbWLBwTERGRs5tWComIiEiXmDZtGj/72c+49dZbMZlMeHt789xz\nz2EymfjDH/7Agw8+yOzZswkPDz/pyWUzZswgOTmZG2+8EYBBgwbx2GOP4eHhwYgRI5g9ezbvvPMO\nL7zwAo8//jgvv/wyDoeDu+++m3POOQeApKQk5s2bh6+vL8OGDaO4uLjZc4YOHcr999/P7bffDkBI\nSAhPPPEEx44da7rmd7/7HUuWLGHu3LnU19czbdo0fv7zn2O325k9ezbz5s3D09MTd3d3fve732G3\n21us64euv/567r777qaVQIGBgdx5550sWrQId3d3LBYLS5YsaXbfXXfdxdNPP80LL7yAxWJhwoQJ\npKWlAfCXv/yFP/7xj7zxxhuYTCYef/xxQkJCmD59Oo899hgAN910E+vXr+eyyy4jLCyM8ePHYxgG\nfn5+LF68mGuvvRZ/f38CAgKYMGECqampREVFtXUKiIiISA9nMrQOWERERERERESkz9H2MRERERER\nERGRPkihkIiIiIiIiIhIH6RQSERERERERESkD1IoJCIiIiIiIiLSBykUEhERERERERHpg3rMkfQO\nh5Pi4qruLkN6oYAAT80t6XSaV9JVNLekq2huSVfR3JKuorklXaWvza2QEJ9TvtZjVgpZrZbuLkF6\nKc0t6QqaV9JVNLekq2huSVfR3JKuorklXUVz6zs9JhQSEREREREREZEzR6GQiIiIiIiIiEgfpFBI\nRERERERERKQPUigkIiIiIiIiItIHKRQSEREREREREemDFAqJiIiIiIiIiPRBCoVERERERERERPog\nhUJd7A9/eJBdu3awZcsmPv54+Smv+/jj5TgcjjaNuWLFB7zyyj87q0QRERERERER6YOs3V1AX3He\neVNafP2NN17l8suvxGrVX4mIiIiIiIiIdD0lEC349NOVrF//LVVVVZSUlPDTn97OK6/8k6ioGGw2\nK/ff/7889dSjlJaWAnDPPfcTFzeIDz98j1WrVhAUFExxcXHTWKmpx7jzzl+ydOnLrF+/FqfTyTXX\nzMNqtVBUVMgjjzzEk0/+hZdeeo74+N24XC5uuOFmLr74EuLj9/Dss3/Gx8cXi8XCyJGjuvNLIyIi\nIiIiIiJnubMmFHrvm2S2J+Z16pgTh4Xyo4sHtXhNdXU1//d/z1NSUszPfrYQl8vFokW3MWTIMF54\n4e+cc84krr12PunpaTzxxB95/PGnef/9Zbz++jLMZjO33fbjE8Y7dCiRrVs38a9/LcXlcvHSS8/x\ni1/cw9Klr/DII0+wefNGsrMzefHFV6itreWOO37KxImT+ctfnmTJkqeJjo7hz39+slO/DiIiIiIi\nIiLS95w1oVB3GTduAmazmcDAIHx8fElNPUp0dCwAKSnJ7Nq1g6+//hKA8vIyMjMzGDBgIHa7HYDh\nw0eeMF5aWirDh4/EYrFgsVj45S9/fcLrKSnJJCUl8otfLAbA4XCQk5NFUVER0dExAIwePZaMjPSu\nfNsiIiIiIiIi0sudNaHQjy4e1Oqqnq6QlJQIQFFRIZWVlQQEBGIymQCIiYnlsstGcNlll1NcXMTK\nlSuIjIzm6NEUamtrsFptHDqUxGWXzW4aLyYmlhUrPsTlcuFyubjvvl/x9NN/w2QyYxgGMTGxjB9/\nLr/97f/icrlYuvRlIiIiCQkJ4dixo8TGDuDgwQP4+Pic8a+FiIiIiIiIiPQeZ00o1F2Kigq5++47\nqaio4N57f3vC1q1bbrmVp556jP/+dzlVVZXceutiAgIC+PGPF/Lzn9+Kv38AHh4eJ4w3ePBQJk8+\nnzvvvA2Xy8W1187Hbrczduw47rvvV/zjH/9k9+6d/M//3E51dRXTp1+Ep6cX99//EEuW/AEvLy88\nPT0VComIiIiIiIjIaTEZhmF0dxGN8vPLu7uEE3y/ObScvUJCfHrc3JKzn+aVdBXNLekqmlvSVTS3\npKtobklX6WtzKyTk1ItKzGewDhERERERERER6SG0fawFV1wxt7tLEBERERERERHpElopJCIiIiIi\nIiLSBykUEhERERERERHpgxQKiYiIiIiIiIj0QQqFRERERERERET6IIVCneDIkWT27NnV7vsef/wR\ntmzZ1AUViYiIiIiIiIi0TKFQJ/j22685diylu8sQERERERERkT5kU9Y2Ht/6VyrqKjt0v46kb0Fl\nZQVPPbWEiopyCgryue66HzFkyDD+/ve/4HK5CAkJ5de/vp/PPluF1WpjyJBhPPzwg7z11ge4ubnx\n4ov/ICYmllmzruCZZ54gLy+XwsICLrhgOosX/093vz0REREREREROUsZhsHqtHXkVuWxLXcXF0dN\na/cYrYZCLpeLRx55hKSkJOx2O0uWLCEmJqbZdb///e/x8/Pjvvvuo66ujgcffJD09HS8vb15+OGH\niY2NbXdx37c8eRW78/ad1hg/ND50NNcNmnPK1zMyMrjkksuYMeNiCgry+cUvFuPu7sEjjzxObOwA\nVq1aQVFREbNnzyEoKIgRI0addJy8vFxGjhzNAw/8ntraWq677gqFQiIiIiIiIiLSYVmVOeRW5QGw\nNXvnSUOhiup6QloYo9VQaPXq1dTV1fHuu++yZ88ennrqKV588cUTrlm2bBmHDh1i4sSJALz33nt4\nenry3nvvkZKSwmOPPcYrr7zSjrfWMwQGBvLee2+zdu0aPD29cDgcFBUVEhs7AIA5c64BYMOGtSe9\n3zAMAHx9fTl4cD+7du3Ay8uLurr6M/MGRERERERERKRX2pkbD4CXzZOMiiwyK7KJ8O7X9HpmQSVL\nXt/BB0+eejFMq6HQzp07mTatIW0aN24cCQkJJ7y+a9cu4uPjueGGG0hJaeirk5yczPTp0wEYOHAg\nR44caedba+66QXNaXNXTFZYte5NRo8Zw7bXz2bVrB5s3byA4OJj09DSioqJ5882lREXFYDabcbka\nAiC73U5hYQH9+vUnOfkQsbED+PTTVXh7+/D//t//kpGRzn//+1FTYCQiIiIiIiIi0h6GYbAzLx67\nxc78wVfx2oFlbMnewbzBcwGod7j413/3U1vnbHGcVkOhiooKvL29mz62WCw4HA6sVit5eXk8//zz\nPPfcc3z22WdN1wwfPpw1a9ZwySWXEB8fT25uLk6nE4vF0uKzQkJ8WivnjLriilksWbKEdeu+xsfH\nB7vdxpIlj/GnPz2O2WwmJCSEu+66g02bNvH0008zduwI7rhjMQ888GsiIiIIDg7Ex8edKVMmcu+9\n93LPPT/HbrcTExODYVTj7m7Dz8+jx73v3khfY+kKmlfSVTS3pKtobklX0dySrqK5JV3lbJ9bKUVp\nFFQXckH0uVw2YgofJq9kZ348PzvvBixmCy9/nEB6XgWzzmve/uf7Wg2FvL29qaz8rou1y+XCam24\n7fPPP6e4uJjFixeTn59PTU0NAwcOZN68eRw5coSbbrqJCRMmMHLkyFYDIYD8/PJWrzmT4uJG8uqr\n7zT7/LPP/rPpz6WltYwceQ6vvfZu0z0zZsxqds8rr7zV7HP33vu/QM97371NSIiPvsbS6TSvpKto\nbklX0dySrqK5JV1Fc0u6Sm+YW18nbwZgpN8ISopqmBAylnWZm1iXtBOjLJSP1x0hPNCTa6bEtjhO\nq6HQhAkTWLNmDVdccQV79uxhyJAhTa/dcsst3HLLLQAsX76clJQUrrvuOnbv3s3555/PQw89xL59\n+8jKyjqNtyoiIiIiIiIiItCwdWxXXjzuFndGBA4F4Lx+57AucxMbMraTuH4gFrOJO64aiZu95QU6\nrYZCl156KRs3bmTBggUYhsETTzzBypUrqaqq4oYbbjjpPTExMTz77LO89NJL+Pj48Pjjj3fgbYqI\niIiIiIiIyPcdK0unsKaYSeETsFlsAET7RBLuGUpC4QGqasL40YzhxIS3vkWu1VDIbDbz6KOPnvC5\nuLi4Ztddd911TX8ODAxk6dKlrT5cRERERERERETabldew6ljE0LHNH3OZDIR5BpEjimPqMGlXDYp\nqk1jmbukQhERERERERER6VQuw8WuvL14WD0YHvhde5+MvAr2bHMHAzz65WI2mdo0nkIhERERERER\nEZGzwNHSNEpqSxkbMhKruWHzV129k3+u3I+jxk6ERyzplenkVua1aTyFQiIiIiIiIiIiZ4GdTVvH\nxjZ97v01R8jMr+Si8RFcOvB8ALbm7GrTeAqFRERERERERER6OJfhYk/eXrxsngwLGARAfHIBX+/K\noH+wFz+6eBBjQ0bibnFjW84uXIar1TEVComIiIiIiIiI9HBHSo5SWlfOuJBRWMwWKqrrefWzRKwW\nE4vnjsDNZsFusTMhdAzFtSUcKj7S6pgKhUREREREREREerideXuB77aOvfllEmWVdVw7bSDRYd8d\nPz+537kAbM3Z2eqYCoVERERERERERHowp8vJ7ry9eNu8GOw/kG0Hc9l2MI+4CF9mTYo+4do4v1iC\n3QPZk7ePGkdNi+MqFBIRERERERER6cEOl6RQUV/J+NAxVFQ5eOOLJOxWM7dfOQKz+cTj500mE5P6\nnUOdq57d+QktjqtQSERERERERESkB9vVeOpYyBiWfpZIZY2D6y8aRFig50mvnxx+DgBbs3e0OK5C\nIRERERERERGRHsrpcrInLwFfuw856e7EHylkeEwAF02IOOU9wR6BDPIfwOGSlBbHVigkIiIiIiIi\nItJDJRYnU+moYrjfCN79Jhl3u4WfXjEMs8nU4n2Tw89tdWyFQiIiIiIiIiIiPVTj1rHUJB+qa53c\nOHMwwX4erd43IXQ0fnafFq9RKCQiIiIiIiIi0gMVVBcRn78fD5M3R5MtjIkLYuqYfm26193qzmNT\nHmrxGmtnFCkiIiIiIiIiIp3DZbhYk76BVSlfUOeqx5U1BC93G4tmD8PUyrax77OYLS2+rlBIRERE\nRERERKSHyCjP4u3ED0ktT8fb5oVXwTlkZfix6Kqh+Hu7deqzFAqJiIiIiIiIiHSzOmc9nx1bzeq0\ntbgMFxPDJhBZN5G3N6Zy7tAQJo8I6/RnKhQSEREREREREelGh4uP8Hbih+RVFxDoHsCNQ69jgHcc\nD/5rC3abmQUzB3fJcxUKiYiIiIiIiIh0k2/TN/L+4Y8xYeKiqKnMGTALd6sbH649QlllHddMHUCg\nr3uXPFuhkIiIiIiIiIhIN3AZLr5M/QYPqzt3jb2dAX7RABSUVPPFtnQCfNyYNTm6y56vI+lFRERE\nRERERLrBoeIjlNaVMyF0bFMgBPD+t0dwOF3MvzAON1vLJ4idDoVCIiIiIiIiIiLdYHvubgAmho1v\n+tyh9BK2J+YxsL9vlzSX/j6FQiIiIiIiIiIiZ1i9s549eQkEuPkT5x8LgMsweOfrwwDcOHMwZpOp\nS2tQKCQiIiIiIiIicoYlFCZS46zh3LBxmE0N8czmhBxSc8o5b0QYcRF+XV6DQiERERERERERkTOs\naetYeMPWsZo6Bx+sPYLdamb+hXFnpAaFQiIiIiIiIiIiZ1BVfRX7Cw7SzyuM/l7hAHy6JY3Sijou\nnxzdZUfQ/5BCIRERERERERGRM2h3/j4chpOJYeMxmUwUltbwxbY0/L3tzJ4cc8bqUCgkIiIiIiIi\nInIG7cjZA8C5x08d+2DtEeodx4+gt3fdEfQ/pFBIREREREREROQMKakt5XBJCnF+sQR5BJCcUcrW\nA7kM6OfDeSPDz2gtCoVERERERERERM6QHbl7MDA4N2w8hmHw7pqGI+gXnIEj6H9IoZCIiIiIiIiI\nyBmyI2c3ZpOZCaFjiE8u5EhmGROGhDA40v+M16JQSERERERERETkDMipzCW9IosRgUPxtHmyfN0R\nTCa4dvrAbqlHoZCIiIiIiIiIyBmwPWc3ABPDx7P1QC4Z+ZVMGRlORLBXt9SjUEhEREREREREpIsZ\nhsH23D3YLXaGBwxjxfoULGYTV08d0G01KRQSEREREREREeliR8vSKKwpYmzwKLbtLyS/pIYLx0UQ\n7O/RbTUpFBIRERERERER6WKNW8fGBY/hvxuPYreZmXNBbLfWpFBIRERERERERKQLOV1OduXF423z\nIjPFg9KKOi49Nwo/L3u31qVQSERERERERESkCyUWH6aivpKxQaP5fGs6Xu5WZk+O7u6yFAqJiIiI\niIiIiHSlxq1jtfnhVNY4mH1eDJ7utm6uSqGQiIiIiIiIiEiXqXHUEl+wn0C3ALbtqMPPy87McyK7\nuyxAoZCIiIiIiIiISJf5b8pn1Dnr8KoeQG29i7kXxOJms3R3WYBCIRERERERERGRLpFQcJC1GZsI\ndQ8lZU8wwX7uTB/bv7vLaqJQSERERERERESkk5XXVfDmwfexmiwElpyHw2Hm2mkDsVp6ThTTcyoR\nEREREREREekFDMPgzYPvUV5fwUX9LmHPvjoiQryYPCKsu0s7gUIhEREREREREZFOtD5zMwmFiQwL\nGEx5WgSGAXOnxGI2m7q7tBMoFBIRERERERER6SQ5lbksT16Fl9WT+XHXsWlfLoG+bpwzNKS7S2tG\noZCIiIiIiIiISCeodzl4df871Lsc3DR8PvEHK6mtdzJzQiQWc8+LYHpeRSIiIiIiIiIiZ6FVKV+Q\nUZHFlH6TGBM0km92ZWC3mpnWg04c+z6FQiIiIiIiIiIipympKJmv09YR4hHEvMFz2X24gILSGqaM\nCsfbw9bd5Z2UQiERERERERERkdNQWV/F6wffxWQy8dORN+FudeOrHekAzDw3qpurOzWFQiIiIiIi\nIiIip+HDwyspqS3lygGXEuMbRVpuOYfSSxg5IJCIYK/uLu+UFAqJiIiIiIiIiHRQcU0J23N3098r\nnMtiLgJoWiV06bmR3VlaqxQKiYiIiIiIiIh00LrMzbgMFxdFTcNsMlNaWcfWA7mEBXoyamBQd5fX\nIoVCIiIiIiIiIiIdUOesY2PmVrxtXkwMGwfA2t2ZOJwGl5wTidlk6uYKW6ZQSERERERERESkA7bn\n7KbSUcUF/Sdjs9iod7hYszsTDzcrF4wO7+7yWqVQSEREREREziq1zjrqnHXdXYaI9HGGYfBtxkbM\nJjPTI88HYHtiLqWVdUwb0w93u7WbK2xdz69QRERERET6PJfhIrkkhU1ZO9iTv5cgjyB+N+k3mHr4\n1gwR6b0OFR8hqzKHc0LH4u/mh2EYfLUjA5MJZp7TsxtMN1IoJCIiIiIiPVZxTQlbsneyJXs7BTVF\nAFhMFnIqc0kvzyTa9+z4wUtEep81GRsAuChqKgDJmaWk5pQzYUgIIf4e3VlamykUEhERERGRHsUw\nDPbkJ7ApaxsHiw5hYGA325gcfg5T+k+ivK6ClxPeIL5gv0IhEekW+VWFJBQcJMY3igF+MQB8tf3s\nOIb++xQKiYiIiIhIj7IrL57/7H8bgAG+0ZzffyITQsfiYXUHGnoK2cxW9ubvZ+7AWd1Zqoj0UWsz\nN2JgcFFkwyqhwtIadh0qICrUmyFR/t1cXdspFBIRERERkR7lWFnDb9vvGL2QMSEjm73uZrEzLHAw\n+woOkldVQKhn8JkuUUT6sBpHDZuzduBn92F86GgAvtmVgcswuPTcqLOq15lOHxMRERERkR4lsyIb\ngCEBcae8ZkzwKAD2Fuw/IzWJiDTakr2TGmcN0yKmYDVbcThdrN+bjbeHjckjQru7vHZRKCQiIiIi\nIj2GYRhkVmQT7B6I+/HtYiczOng4JkzszVcoJCJnjstwsTZjI1azlakRkwHYc7iAiup6powKx2a1\ndHOF7aNQSEREREREeoyyunIq6iuJ8O7X4nU+dm8G+sWQUppKeV1Fm8cvqC4iueTo6ZYpIn3UgcIk\n8qoLODdsHD52bwA27GtY3Th1TMvft3oihUIiIiIiItJjNG4day0UAhgTMhIDg30FB9s0tstw8dye\nf/N/u17k06NfYRjGadUqIn3PmvTjx9AfbzBdXF7LvpRCBvTzJTLEuztL6xCFQiIiIiIi0mO0KxQK\nbmhCvbcgoU1jx+fvJ7+6EBMmPjn6FcuSluMyXB0vVkT6lOzKXBKLDzPYfyCRPv2BhlVChgHTxp59\nq4RAoZCIiIiIiPQgjaFQ/zaEQqGewfT3Cudg0WFqHLUtXmsYBl+lfYsJE3ePX0ykd382ZG3l5X1v\nUOes75TaRaR3+zZjIwAXRjWsEnIZBhv2ZmG3mpk0LKw7S+swhUIiIiIiItJjZFZkY7fYCfYIbNP1\nY0JG4nA5SCw61OJ1ySVHSS1LZ0zwCAYHxHHPhJ8zNGAQ8QX7+ceef1NZX9UZ5YtIL1VeV8G27J0E\nuQcwJngln73ZAAAgAElEQVQEAIfSSsgvqeHcYaF4ulu7ucKOUSgkIiIiIiI9Qr3LQU5VHhFe4ZhN\nbftRZezxLWTxrRxNvzrtWwAuiZkBgIfVnf8Zeyvnho0jpfQYf935AkU1xR0vXkR6reKaEv62+5/U\nueq5KGpa0/en9XsbVjZOOwsbTDdSKCQiIiIiIj1CbmUeLsPVpn5CjaJ8IvB38yOh4CBOl/Ok12RX\n5pJQmMhAv1gG+sU2fd5qtrJwxAIujppGTlUef9n5AlkVOaf7NkSkF8mqyOHPO58npzKXi6KmMiNy\nCgBVNQ52JuURGuDBkCj/bq6y4xQKiYiIiIhIj9CeJtONTCYTY4JHUuWoPuVR86vT1gJwSfSMZq+Z\nTWbmDZ7LtYOupKS2lL/ueoGjpWkdqF5EepvkkqP8ddeLlNSWcu2gK5k3aG7TKqGtB3Opc7iYNqYf\nJpOpmyvtOIVCIiIiIiLSI7SnyfT3jQ1pPIWs+RayktpStufsJswzhNHBw085xiXRM1g4YgE1jlpe\nSXiTqvrqdtUgIr3LnvwE/rHn39Q6a1k4YgGXRM84IfzZsDcLkwmmjDp7t46BQiEREREREekhvlsp\nFN6u+wb7D8TD6k58/n4MwzjhtW/TN+I0nMyMnt5qn6JJ4RO4PHYmxbUlvHvoo/YVLyK9xvrMzby8\n7w3MJjN3jvkpk8InnPB6Rl4FR7PLGT0wiAAft26qsnMoFBIRERERkR4hsyKbIPcAPKwe7brPYrYw\nKmg4xbUlZFRkNX2+2lHD+swt+Ni9mRQ2oYURvjM7diYDfKPZkbuHbTm72lWHiJzdDMNgVcoXLEv6\nCC+bJ/eMv4MRQUObXdcbGkw3UigkIiIiIiLdrqyunPL6CiK8+3fo/jHHt5DF53+3hWxj1lZqnDVc\nFDkVm8XWpnEsZgsLR9yIm8XOu0krKKwu6lA9InL2+fjIZ3x27GuC3QO595y7iPGNanZNvcPF5v05\n+HjaGDsouBuq7FzW7i5ARERERERa9m36Ro6VpXPLiB+1+aj2s01mece2jjUaETgEq8nC3oL9zBl4\nGQ6XgzXpG7Bb7EyLOK/pOpfLoKCshpLyWkoqaimpqDv+z1pKymupqHYwckAAVw64kuVHP+K1A8u4\nZ8LPe+3XXUQaOF1O1mVuwt/Nj3vPvQtfu89Jr4tPLqCiup5Zk6KwWs7+7wsKhUREREREerAt2Tt4\n//DHAMyOvZgwr9BurqhrZFY2hkIdWynkbnVnaOBg9hcmUlBdSHLJUUpqS7koaiqeNk8cThebEnJY\ntekYBaU1pxzHZjWTkV+BdSeEjY/lSOkxvkxdw+WxMztUl4icHTIqsqh11nFu2PhTBkIA6/Y2bFGd\nOqZj36t6GoVCIiIiIiI9VFJRMm8lftD0cXp5Zu8NhTrYZPr7xgaPZH9hIvH5+9mcvR2zycz0flNZ\nszuTTzcfo7CsFqvFxMRhoYT4e+Dvbcff2w1/Hzf8ve34eTU0jN2UkM2nW1LJ3D0Q99HZrDzyJUHm\nKCZGD+mMtyoiPdDhkhSgoXH9qRSV1bA/pYi4/r5EBHudqdK6lEIhEREREZEeKLsyl38nvI4ZE1cM\nmMWqo1+QVpHJuYzv7tK6RGZFNnazjWCPoA6PMSp4BKak5Xxx7BsqHVVE2Ybyp9cOUlxei81q5pJz\nI5k9OabV04JmjItg6ph+bE/MY8XuesrC1/OfhLfZvOMqrpoyiNhw3w7XKCI9U/LxUGiQ/4BTXrNx\nXzYGMLUXNJhu1Goo5HK5eOSRR0hKSsJut7NkyRJiYmKaXff73/8ePz8/7rvvPurr63nggQfIzMzE\nbDbz2GOPERcX1yVvQERERESktymtLeeF+P9Q7ahh0YgbGRU8nFVHvyC9PKv1m89CDpeDnMo8onwi\nTqt3j5+bDwN8o0kpSwXg8K4gbPUNvT8unxSNn3fbj462mM2cNyKcScPn8K8dNewr387+sg3ELy1h\n9nkxXDNtQK/oJyIi4DJcJJccI8g9kAB3/1NcY7B+bzZ2m5lJw8POcIVdp9XvYqtXr6auro53332X\ne++9l6eeeqrZNcuWLePQoUNNH69duxaHw8GyZcu46667+Nvf/ta5VYuIiIiI9FK1zjpe2vsqRTXF\nzB04i4nh4/GwuhPqEUx6eSaGYXR3iZ0utyofp+E8ra1jjXyd0QAYZcFcPmYUT985hRsuHtyuQOj7\nzCYTt51zLZHe/bGGZuAfWcSnW1J5/PWdZBdWnna9ItL9sitzqXZUt7h1LCmthILSGiYOC8XDrfds\numo1FNq5cyfTpk0DYNy4cSQkJJzw+q5du4iPj+eGG25o+tyAAQNwOp24XC4qKiqwWnvPF0xERERE\npKu4DBev7n+btPIMzu83kVkxFze9FuUTQbWjmqKa4m6ssGt810/o9Bq3GobBsf1+OIvCuXPyj7j+\nokH4etlPuz6b2cpPR96IzWzFHJ3AlNEhpOaW88dXt7Nmd+8M6kT6ksPFrW8dW3+8wfS0XtJgulGr\naU1FRQXe3t5NH1ssFhwOB1arlby8PJ5//nmee+45Pvvss6ZrPD09yczMZPbs2RQXF/PSSy+1qZiQ\nkFN3+BY5HZpb0hU0r6SraG5JV9Hcaps6Zz02sxWTyXTGn/3qrvfYV3CA0WHD+OXUhVjNlqbXhoUP\nZGdePKXmIoaFNG/n0J1Od24VZRYAMDJy4GmNtTMxl+w8BxdGzuHiMaNPq6YfCgnxYWbhVD5P/pbr\n5oQxfXwsz72/hze+SCIpvZRf/mgc/q30KpL20/etBg6X84TvB3L6vj+30g+lAzA5bjQh3s3nXEV1\nPbuS8ukf7MWU8ZHd8t+HrtJqKOTt7U1l5XfLIl0uV9PKn88//5zi4mIWL15Mfn4+NTU1DBw4kKSk\nJKZOncq9995LdnY2CxcuZOXKlbi5tfxNMj+//DTfjkhzISE+mlvS6TSvpKtobklX0dxqm8Siwzy3\n52VsZiuBHoEEuQcQ5B5IkMfxf7oH0M8rDJvF1unPXpO+gc8Or6G/VzgLh95IcWHVCa8HmoMB2J+R\nzEC3QZ3+/I7qjLmVnJ8GgGe932mN9e6XSQDMGNOvS+Z7qK2hj8jetMNcGHUBj/x0Iq98cpBtB3K4\n6+mvufXK4YyJC+705/ZV+r7VsHrws6Or+SJ1DRf0n8R1g+diM2snzun6/twyDIP9uYfwd/PDVOVG\nfnXzObdmVwZ1DhfnjwyjoKDiTJd72loKV1udTRMmTGDNmjVcccUV7NmzhyFDvjuG8ZZbbuGWW24B\nYPny5aSkpHDdddfx/PPPY7M1/IfSz88Ph8OB0+k83fchIiIiItKljpWlY2DgY/ehtLaMnMrcZtfE\n+Ebx/879Zac+Nz4/gQ8Pr8TP7sOdY3+Kh9Wj2TWRPg1bFtIqMjv12T1BZkU2ge4BeNqav++2Ssst\n52BqMcNjAogJ75rVJdG+kQ3PKs8AINDXnXsXjOOr7el8uPYIf3t/LzdfOoSZ50R2yfOlb6moq2Tp\ngXc4WHQIEybWZW4mtSyD20b9mCCPgO4ur9fIrcqnvL6Cc8PGnXIF0Lq92ZhNJi4Y3XtOHWvUaih0\n6aWXsnHjRhYsWIBhGDzxxBOsXLmSqqqqE/oIfd+iRYt46KGHuOmmm6ivr+fXv/41np6enV68iIiI\niEhnKqsrA+Bno28hyqc/VfXVFNYUU1RTRGFNMWvTN5JWlkGdsx57J60WOlaWxqv738FmsfHzsT8l\n0P3kP+x527wIcPMnvayhh01v2b5QXldBWV05o4OHn9Y4X2xrWG00a1J0Z5R1UmGeIdgtdtLLvwvm\nzCYTsyZFMzwmgKff3s1/Nx5l2ph+2G3a6iMdd7Q0lZcT3qSktpRRQcNYMPQ6VqZ8wdacnfxp+7Ms\nHLmAkUHDurvMXuG7o+hP3mQ6Lbec1Jxyxg0Kxr+DDet7slZDIbPZzKOPPnrC5052vPx1113X9Gcv\nLy+effbZTihPREREROTMKa1t2Dbg59aw0sTT5oGnzYOo46t0civz2JC1lbyq/KaVO6ejoLqIl+KX\n4nA5+PmYRUT7tLzCJNongviC/ZTWleHv5nfaz+8JOqPJdFFZDdsO5tE/2IvRAwM7q7RmzCYzUd79\nSSlNpc5Zh93yXRPr6DAfLhwfwadbUtlyIJfpY3tXM1o5MwzD4NuMjSxPXoVhGFw18HIujbkQs8nM\nT4b/iDi/WN47/DEvxP+Hy2NncuWASzGbTn1+lGEYZOZX4u1p65WBRmc4fDwUGnyKJtMb9jZ8j5o6\npvetEoI2hEIiIiIiIn1FWV05Jkx427xO+nq4V0NPmZzK3NMOharqq3gh/j+U11dww5BrGNWGlTJR\nx0Oh9PLMXhMKZVQ0nOgT4d3xH7hW78jA6TKYNTGqy1dQRftEcqT0GBkVWQz0iz3htZnnRPLFtjS+\n2JbG1DH9MPeS1VxyZtQ4angr8QN25e3Fx+bNT0fexNDA7/qHmUwmLoiYTJRvBC/ve5PPj33NsdI0\nFo28ER+7d7PxyqvqeP3zJHYeygcgxN+dwZH+DIr0Y3CkP/2CPPv8HDUMg+SSo3jbvAjzDG32er3D\nxeb9Ofh62hgTF9QNFXY9hUIiIiIiIseV1Zbha/c+5W/e+zWGQlV5p/WcepeDf+17ndyqPGZGT2d6\n5JQ23RflEwFAenkmo4NHnFYNPUVWRQ4AEV7hHbq/utbB2vhMfL3snDeyY2O0R+PfQVpZZrNQKMDH\njUnDw9i8P4eElEI1nZY2y6rI4eWEN8itymegXyy3jbr5lMFvtE8kD0z8Fa8ffJd9BQd5avuz3Dbq\n5hPmY3xyAa9+lkhZZR1xEb54udtIzihlU0IOmxIa/p3zcrcSF+HH6IFBzBjXH6vl1CuOeqvCmiJK\naksZFzL6pIHy7sP5VNY4uHxSdK/9+igUEhERERGh4TfGZXXlhHk1/21xo/Djr2VXdjwUMgyDtw5+\nwOGSFMaFjOaauCvafO93oVBWh5/f02RUZGEz2wjx7FiAsi4+i+paJ7Mnx2Czdv0PbT9sNv1DsyZF\nsXl/Dl9sS1coJG1SVlfO33f/i/L6Ci6OmsY1cVdgaeX4eU+bJ4tHL2R16lr+m/I5z+95hT+e/wBW\n3Fj2dTLr4rOwWkxcf1EcsyZGYzabcBkG2QWVHM4o5XBGKcmZJew9UsjeI4Vs2JvNbXOGExnSfMVR\nb3a45CgAg06xdWx9L986BgqFREREREQAqHHWUueqx9d+6pOr/Oy+uFvcT3oqWVt9cvQrtufuYoBv\nNAtHLGixH0iz57v54mv3OaHR8dnM6XKSU5lHpHf/dn0dGjmcLr7akY7dZubC8RFdUGFzJ2s2/X3R\nYT4MjwngYGoxabnlRId1zUlo0jsYhsGbB9+nvL6Ca+Ku4NKYC9t8r9lk5rLYi7CYLSxPXsWHB77i\nwJZQ8ktqiAzx5mdzRxAV6v29601EhHgTEeLd9O9LcXkty9ceYWNCDn98dTtXTR3AFedFYzH3zlUx\nP5Tc1E+oeZPpwtIaDhwtIi7Cl/7BJ99S3Bv0jb9pEREREZFWlNU2nDzm10IoZDKZCPcKJa+6AKfL\n2e5nbM7ewWfHVhPsHsgdYxZ16ASzKJ8IimtLqKirbPe9PU1uVT5Ow9nhfkI7kvIoKqtl2uj+eHt0\nzmlwrWlsNp1dmUuds+6k18yaFAXAF9vSz0hNcvZan7mZ/YWJDAsYzMzo6R0a4/zwSdhwZ2veNgrK\ny5l9XjS/X3juCYHQqQT4uHHbnBHcPX8M3p42PlqXwpLXd5KRX9GhWs42ycUpeFg96O/dfOvpxn3Z\nGMC0Mb27abxCIRERERERGrZwAC2uFIKGLWQuw0V+dUG7xk8sOszbiR/gZfXkf8bddtLGsG3RtIWs\n4uxfLXQ6TaYNw+CLremYTHDpxJZPbets0T6RGBhkHD857YdGDQyiX5An2w7mUlxee0Zrk7NHdmUu\ny5NX4WX15CcjftSh1XL1Dif/eP8AVenRmKwOLry0nusvHNTurZRjBwWz5PbJTBkVTmpOOY8u3c6q\nTcdwulztrulsUVxTQkFNEXF+sc2+9i7DYMO+bNxsFiYOO/WW4t5AoZCIiIiICFDaGAq5+bZ4XVOz\n6Xb2Ffr4yKcALB6zkDDPkA5U2OD7zabPdk1NpjsQCiWmlZCaW86EISGEBnh2dmkt+q7Z9Mn7CplN\nJi6bGIXTZfD1zpNfI31bvcvB0v3vUO9ycNPw+R06TdDlMvjXfw+QlF7CCO/xeFo92Fe2gxpHTYdq\n8nK3cfucEfxq/hi8PGwsX5fC46/vJLeoqkPj9XTJx/sJDQ5ovnUsMbWYgtIaJg4LxcOtd3fdUSgk\nIiIiIkLbto8BhHu2v9l0vbOejIpsYnwiT9nQtK2ivHtPKPTdSqH2nxr2xbY0AC6fFN2pNbVFa82m\nAaaMCsfH08a3uzOpqXOcqdLkLLEq5QsyKrKY0m8i40JGtft+wzB4a/Uhdh7KZ1i0P3ddPZ6Lo6ZR\n6ahifeaW06pt3PdWDR3LKecv7+6horr+tMbsiRr7CZ3se/KG4w2mp43tvQ2mGykUEhEREREByuoa\nemj4urW2fazxWPq2N5vOqszBZbiawoTTEejuj5fVs8eHQlkVOaxOW9ti76OsimwC3PzxtLVvpU9m\nQSV7jxQyKNKPuIj2r7A4Xa01mwawWS1cPCGSqloHG/flnMHqpKdLKkrm67R1hHgEMW/wVR0a45PN\nqazZlUlkiDe/uG4MNquZGZEX4G5x5+u0dafsd9VWjauG5k6JpaC0hhc+2ofD2bu2kiWXHMVusTcF\n7Y0qa+rZkZRPeKAng7rh+8uZplBIRERERAQorWtYKeRrb3n7WKC7PzazrV3bx1KPbzOK8jn9UMhk\nMhHlE0F+dSHVjurTHq+z5VXl8+r+t3li2//xUfInPLb1z+zI2Y1hGCdcV15XQWldeYe2jn15fJXQ\nrIlnfpUQtK3ZNMBF4yOwWsx8uT0Nl8s45XXSd1TWV/H6wXcxmUwsGnkj7la3do+xYW82y9elEOTr\nxq9/NBZP94btTZ42Dy6MnEJ5fQUbsrZ2Sr1XTxvAhCEhJKaV8M7XhztlzJ6gtKaMnKo84vxisZgt\nJ7y2ZX8uDqeLaWP6YTKZuqnCM0ehkIiIiIgIUFbbtkbTZpOZcM8QcqvycBlt+815+vFtRtE+nXNs\nemNPm4zyrFavzSjPYnXa2g6dltYehdVFvHnwfR7b+hd25O6hv3c4l0ZfSK2zjlcPvMOLe1+lqKa4\n6frM402a2xsKlVfVsXl/LqH+HowfHNyp76E9Wms2DeDrZWfKqHDyS2rYfbh9jcml9zEMg3cSP6Sk\ntpQrYi8l1rf9oebeIwUs/SwRL3crv/7ROAJ8TgyVLoqaht1iZ3XqWuqdp7/ly2wycfuc4USGeLNm\nVyZrdvfsFYptdTA/GTj11jGzycSUUe3f1no2UigkIiIiIkLD6WMeVvc2HRMf7hVGvctxQsjRkrTy\nTGxmW1M/otMV6dNwRHJrW8gMw+DNg+/xUfInrDr6Zac8+4eKqkpYlvQRf9zyDJuztxPqEcxto37M\nAxPv5ppBV/C/k37D0IBB7C9MZMnWv/BtxkZchousDoZC6/dm43C6uPicSMzm7vstfmvNphs1HU+/\nPa3La5KebUvOTnbn7yPOL5ZZsRe1+/6UrDJeWJGAxWLi7vlj6R/s1ewab7sX0yPOp7SujM3ZOzqj\nbNztVn41bzTeHjbe/uoQialt+77Xkx3Ib1j1NMj/xCbTabnlpOaWMyYuCD/v9q/iOhspFBIRERER\noWH7WGtbxxqFezU2m269r1C9s56syhwivfs126bQUU2BRCsrhZKKk0k/3sz5y9Q1xOcndMrzG32S\n8iW//OT3rM/cTIC7PwtHLOB/J/+GCaFjmo54DvEM4pfjfsaPh12PxWTh/UMf89edL5JQmAi0LxRy\nuQzW7MrAbjMzdXT3/ha/Lc2mAfoFeTEmLojkjFKOZJWeidKkByqoLuL9Qytwt7izcMSCdh8/n1NU\nxd/ej6fe4eLnV49kUOSpe91cHDUdm9nKl6lrcLg6p8l5sL8Hd13b0BD7hRUJ5Jf0vK2r7XEwPxmr\n2UqMb9QJn1/fhxpMN1IoJCIiIiJ9nsPloLK+qtWTxxqFt+NY+sYm053RT6hRiEcQbhY76RUtrxRa\nnbYWgJuHXY/NbOP1A++RV5XfKTUcKEzi02Or8XXz4eZh83l48n1MCp9w0h92TSYT5/efyO8m38eE\n0DEcLUslqTgZm9lKiEdQm5+5J7mAwrJapowMx9O99RVdXaktzaYbzZrY8IPnl9vSu7osOQ2GYfD5\nsa/ZV3Cg08f+/NjX1DrruH7IVQR5BLbr3qKyGv56/ASwn8wayvjBIS1e7+fmwwX9J1NcW8K2nF2n\nU/YJhkYH8OPLhlBRXc/fP9xLde3ZeapeVX0VaSWZDPCNxmb+7rj5gtJq1sdn4edtZ/TAtn9fOtsp\nFBIRERGRPq+8jSePNWrcBtaWUKixyXRnnDzWyGwyE+kdQW5l3ikbHWeUZ3Gw6BCD/Qcypf9Ebho2\njxpnDf/e9wa1p3kykctw8VHyJ5gw8dtpdzKl/6Q2rYLyc/PhtlE/5o7RCwlyD2BU0PB2rZ76emfD\n1/Liczrva9lRbW02DTAsJoDoUG92JOVRVFZzhiqU9kooPMjKlC94J3F5p/bgKqktZXvOLkI9g5kU\nPqFd9x7NLuOx13ZQUFrDVRfEcuG4tvUluyR6BlaThS9S13Tqe5kxLoKZEyLJzK/k5VUHcBlnXwP1\nI6XHMDCabR17Z/Vh6hwu5s+Iw2rpO1FJ33mnIiIiIiKn8N3JY20LhUI8grCYLGS34Vj6zm4y3Sja\nJwIDo6lh8w+tTlsHNPxwCDApfALTI6aQVZnD24kfNDsNrD02Z28nqzKHyeHnEBsQ1foNPzAmZCSP\nTnmQ20b9uM33ZBVUcjC1mGHR/kSGeLf7mV2hLc2moWGl1IzxERgG7Ehs+6l1cua4DBcrU74AGr4f\nHChK6rSxv03fiMNwcknUjHZtG9uZlMef3tpFWWUdC2YO5uqpzZsin0qAuz/n9TuXgupCdubFN3u9\ntLaM7Tm7eevg+7x36OM2N80HuGHmIIbHBLD7cAEfrj1y1p2sd7gkBTixyfTeIwXsPlzAkEi/PtNg\nupFCIRERERHp8xpPHvNza1tPIYvZQqhnMLmVea2GK53dZLpRY1+hk21fKqopZmfeHvp5hTEiaGjT\n5+cNnsMA32h25O5hbeamDj23xlHLqpQvsZttzI2b1bHij2vPcc9f72oI12b2gFVCjb7r7dRyXyGA\nc4aEYDLB9iSFQj3R7rx9ZFZkE+PTEHJuytreKePWOGrYkLUFH7t3m1cJGYbBZ1tSef6jBEwmE7+c\nN4bLJka1+3j0y2Iuwmwy8/mxbyivq2BP3j7eTVrBY1v+zEMbl7D0wDtsyt7O2oyNHCtreyN0q8XM\nndeMItTfg8+2pHHfCxt5/9tksgoq21Vfd0kuPorFZGagXwwAdfVO3vrqEGaTiR/PGtonjqH/PoVC\nIiIiItLnlda17Tj67wv3DKXGWUtJ7ambB3dFk+lGLYVCa9I34DJczIw+cWWC1WzltlE/xsfmzYeH\nV5JSeqzdz12dtpayunJmRs/A3+3UzW47U1WNg037cgjwcWNcNx5D/0NNzaZbOYEMGo6nHxYdwJHM\nMm0h62GcLiefHP0Ss8nMopE3EuUTQULhQUpry0577I1Z26h21HBh5FRsbTjZ0OF0sfSzRN7/9ggB\nPm48+OMJHZ7zQR6BTAqfQG5VHg9seJR/J7zBusxNFNWWMCJwKNfEXcH8wVcBsDO3+Wqilnh72Ljv\nxnFcOD6C2noXn21J43cvb2XJ6ztYsyuDypr6DtXc1WocNaRXZBIXGIvdYgfg0y2p5JfUcOnEyB6z\nCvFMsrZ+iYiIiIhI71ZW277tY3C82XT+PnKq8ghw9z/pNV3RZLpRmGcINrO1WShUVV/Fxqyt+Nl9\nmRg2rtl9Ae7+3DrqJv6++9+8vO9NHph0d5vfd0ltKavT1uJr92nalnYmbEzIprbeyZXnx2Ax95zf\na7en2TTAxGGhHEwtZkdiHpdNiu7i6qSttuXuJrcqnwv6TyLUM5gp/Sby7qEVbM3eyWUdODq+kdPl\n5Jv09dgtdqZHnNfq9ZU19Ty/fB+JaSXEhPnwq/ljCPA5vWPRZ8fO5GhpKn52X4YEDGJIQBwxvpFY\njzdYdrqcfPb/2bvv8LbP897/b0ySIMG9N8UtkqL2smVbsi0vObblOLYTx5l2mibtr02TtOlxezJ6\nmvYkHacnaeP8kjiJk3oksR3vJdmWZO3FvfcGSYAEB4j5PX9QpCRLJAEQHCLv13Xluhzi+33wQAZp\n4eZzf+6WdzlnKuf+3Lt9am+LjQjh0dvyeWhPDucbBzhS0UNVi5nmbivPHGhkQ24sxVnRpMaHkRwT\nSpA+sIVxf9SaG/AoHgrjcgAwWcZ5/Xg7kWF6Pnad9+15K4kUhYQQQgghxKpndfjWPgYXx9L3jpko\njM676jXtC5QnBJMtbClhyXSMdOH0uKan6BzuOo7d7eCOzFumP/h9VF5UDvdk38FLTa/zi8rf8mfr\nH/PqJNMrTW/h9Dh5YM3HCNbO78OqtzyKwsGzXWg1Km5Yn7woz+mtqbDp5uE2HG7H9MmDmWzMi+Pp\nt+s4JUWheanvGOJUjYm0hDAyE42kxIX6XSx0eVy80fIOWpWGOzJvAWBzwgZeaHyVoz0nuTXjJr/b\niU73nWfIPszutOsx6AyzXts9MMaPXqig1zzOhtxYHr+7KCBFlNiQGP5++zdmfFyj1lAaV8zRnpM0\nDbWSG7Vmxms/6kTPGY73nOYLJY+wtTCBrYUJWEbsHK/q5UhFD6dqTZy6kKGlAuIiQ0iJCyUlLozU\nuFAyk8KJjwyZ70v0mmm8n/+u/QNqlZrtaRtRXAq/facBl9vDQzfnEhK0Ossjq/NVCyGEEEIIcQl/\n2uQE9V0AACAASURBVMeSLoyl7xmbOWy6fQEmj10qzZhCq7WdnrFe0o2pOD0u3u/8kGBNMNenbJv1\n3lvSb6TV2s75/kp+W/t7Hs7fP2t7S8dINyd6z5AcmsiOpC2Bfikzqm4102ceZ2dxIuGG2YsuSyHd\nmErTcCudoz3TGSUzmWohq2mzMDg8QUxE8CLtcuWwO908+XIVlhH79Nf0WjXpiUayEsPJSjaSdaHY\n4E0x52j3SQYnLOxOvX76xJ9BF8KG+HWc7D1L41AzuVHZPu9TURTebf8AtUrN7tRdVzw+anNS22ah\nus1CTauZPosNgNu3pfPxm7JRL2KuzcaEdRztOclZU5nXRSG3x83LzW8yZB/mhYZXeXTtgwBEGYO4\nY3sGt29Lp71vlJZeK139Y3T1j9LZP8a5hslA5yl3bEvnvhvWLPi0rxHHKD8u+wVjrnE+VfBxsqMz\nePNIMxXNg6zNjGJLQWAz364lUhQSQgghhBCrntU+glalwaD1/rfW8SGxqFDNOpZ+MmRaG/CQ6Slp\nxsmTMx0jXaQbUznVexarY4Rb0m8kZI7XolKpeKTwEwzazJzoPUPPWC9fKP40sSHRV1yrKAovNr6K\ngsL+nH0+tZjM14HTyy9g+lKXhk3PVRSCS1rI6kzcJqeFfPb2yXYsI3ZuWp9MeqKR1h4rzd0jNHdZ\naey8mO91/bokPndHwayFIYfbwZutB9CrdVe0ie1M2srJ3rN82H3Kq6KQoigMDk8wYnOiKNA82kj3\nWC8FxiLMgyoGlSFsdhd1HUPUtFpo7xthKqI+WK+hNDuGnSVJS1KcyIvMJkwXyjlTBR/P/ZhXpwYr\nB2sZsg+jQsWJ3jNsSlhP0SWh9iqVioxEIxmJFwvtiqJgHXfS2T9Kl2mUg+e6eONEO3UdQ3zpY0XE\nLdCpIYfbyZPlv2LANshtGXvYmbyVCbuLZw7Uo1Gr+NSteasuXPpSUhQSQgghhBCrntUxglFv9OmD\ngU6jIzYkmt4ZxtJPhUxnGFMDHjI95WLYdDcexcO77R+gUWnYnXa9V/eHaIP52qav8Hz9SxzrOcU/\nn/o/fGbtQxTHFl52XdVgLXWWRgqj8yiMuXqr3EIwDdkobxpkTXI4WUnet/YtJl/CpgE25k+2kJ2u\nlaKQr4ZG7bx+vJ1wg44HdudMtvusn/wesDvdtPeN0NJt5UhFL0fKe0iOCeX2bTP/GR/qOsawY4S9\nGbuvOCWYE5lFfEgs5/vLGXd+7Ir2r+ExBy09Vlp7rLT0jNDSY2XUdjFcWV9wEk04nD8Wwbnxs5fd\nq1GryEuLpDAzirWZ0WQmGhf8pMxsNGoN6+NLONJ1nIahZgqic+e853DXMQAeXfsgT9c8zzO1f+CJ\nbV8jWDvz6TeVSkVEqJ6I0GiKMqPZVZrMb96u41hVH99+6iSfub2ArYUJAXtdAB7Fw69rnqPF2sbm\nhPXsW7MXgOfercdstXPXjgySYkID+pzXGikKCSGEEEKIVU1RFKyOkekCiy8SQxOoGKhmxDGKUX/5\n1JqFDJmekhSaiFqlpmOki8qBGvrG+9meuNmnqWB6jY5HCh9gTUQmz9e/yH+VP8VtGXvYt2YvapUa\nt8fNi42voULF/px9C/Zarub9s10owM0bl+cpIfA9bDrcIC1kM1EUhabhVo52n6RyoIZPb9hPiXHd\n9OMvHGrG7nTz4M05V+S/BOk05KZGkpsayZbCBL77q1P87v1GUuNDKc6KueK5bK4J3m57jxBtMLde\nJTRdpVKxM3krLzW9zqm+89yYupOugTFePtJCc/cwg1b7ZdfHRgRTmBFFlDGIMdUAZzETRQrr15Uw\nVWvWadSsSQ4nNzVyWYQuX2pTfClHuo5z1lQ+Z1Gof3yQGnM9ayIyL0w36+fN1gP8selNHsy/1+vn\nDAnS8tjdRazNjObpt+v4yR+rqG618PAtuQTpAvPn83LTm5wzlZMdkcUjhZ9ArVLTPTDGi+83EhMe\nzL6dmQF5nmuZFIWEEEIIIcSqNuYcx624ifAhT2hKoiGeCqrpHeu7oii0kCHTU3RqLcmhiXSN9vB2\n2/sA3Jx+g19r7UzeQpoxhZ9VPs1bbQdpsbbzuaKHKeuvpHfcxHXJW0kOSwzg7mdnd7o5XN5NuEHH\n5mWc96FWqUkNS6bFy7BpgC2Fq6OFzOlxoVGp52w3HLZbOdFzhmM9pzDZLubNHGw+SknpZFGovW+E\nD8t7SI0L5YZ1sweORxmD+Or+Ev75t2d58o9V/N1nNhMfdflJn/c6DjPmHGdf1m0zhkBvTdzEy81v\ncrT7JFm6En747HlGbU6MBh3rsmPISpo8wZaZZLws7+rnlSfABI+sv5OCaN/ziJZCTmQW4Xoj5/sr\neDDv3llPNx7pPg7ArgsT1W7PvJnzpgoOdR1lU0IpOZG+TfG6riSJNcnh/OSPVRwq66axa5g/uado\n3uPhD3cd553294k3xPL4ukfRqbUoisJv3q7D7VH4ZACLT9cyKQoJIYQQQohVbWrymDHI96LQVNh0\n77jpityRhQ6ZnpJmTKFztJsWaxvFMQXzKtykGZP5681/zm9qnqdsoIp/OvnvuBUPeo2eu7JuC+Cu\n53aiuo+xCRf7dmai0y6fMfRXk2FMpdnLsGmYnEL2m7fqObWCW8h6x0x8/9S/AxATHEV0cBQxIdHE\nBkcTExJNTHAUQ/Zhjnafotpch0fxoFNr2ZKwgR1JW3i15S0azC2MO8cJ0Ybw3MFGFODBPbmo1XO3\neWYnR/Dp2/J56vVa/u8fKvjbT2+aPl005hznQPthwnSh7E67bsY1IoKMlMQUUjZQxQ9eep9xWyif\nvaOAXeuSZmw1HbANcs5UQWpYMvlROb7/wS0RtUrNhvgSPug8Sp2lkbWX5ANdyul2cqznFGG6UDbE\nTxbsdGotnyp8gH8985/8tuZ3fGvrX6KfJbT+apJiQnni0U08/14TB8508r1fneYzt+ezszjJr9dT\nNVjH8/UvEaYL5U/XfYEw3WSL2IEzndS2D7G5MIH1ubF+rb3SSFFICCGEEEKsasMOK4B/J4UujKXv\nuUrY9EKHTE9JCL5YBNqd6t8poUsZdCE8VvIo77Z/wMvNb+JRPOzL2kuEH0UzfymKwoEznahVKnZv\nWLiTVoHia9h0uEFPQUYk1a0WBoZtxEYs3ljuxVJrbsDlcRETHM2oc4y+8f4Zr003prAjaSubE9Zj\n0E3+WTQPt9I83EatpRHVcBI1bRbWZcdQlHVlEPpMdq1Lpr1vlANnOvn5azX86X3FqFUq3ml7nwn3\nBPuz9s2agQOQayihjCoc4a18dsf97JrjlNLBjsMoKNyafuM1F168Mb6UDzqPcsZUNmNR6Fx/BWPO\ncW5Nvwmd+mI5YU1EBjelXcd7HUd4o/Vd7sm+w+fn12k1fOrWPNZmRPGL12v42as1uNwKN5TO/mf+\nUZ0j3fy88mnUKjVfWvdZ4gyT7YOna008824D4aF6vrx/HSq32+c9rkRSFBJCCCGEEKua1T55UihC\n73uQcYIhDoDej4ylnwqZTl/AkGkAl9vDiTMTEA2e0Qh+/UI/D98cRcmaKzNUfKFSqbg14ybWRGRS\nY67n5qtkriykI+U9dJhG2VwQT5QxaFGf2x9Tp8E6rN7lCgFsLoinutXC6dr+WcOQr1VT7ZNfLv0c\nSaEJ2FwTmCcsDNjMmCcsDNrMqNVqtiZsJNV45Yf+tTH5vNryNlUDtVQfHkOtUvHAbt9P3jy4J4eu\n/lHO1vfz6oet3Lgllvc7PyRCH86ulB2z3tvWO8IfXrWiFAQRktjHtqLZT5aMOsY42n2K6OCo6VM0\n15I1ERlEBkVQ1l/Fw/kutOorywWHu46hQsX1KduueOzuNbdT3l/Nu+0fsCG+hHQ/89Q25MXxzcgQ\nfvDMOX71Ri0qYJeXhSFFUfhF1W+xux18ofiR6SJtTZuFn75SRZBew18+UEp8tIH+/hG/9rfSLO9z\nmEIIIYQQQiywqfaxcD9OwgRrg4kKirxiLP1UyLS/H4q89cyBBpob1cSOlbI+aA99Zhv/9nwZ//67\nMnrN4/NePzsyk31r9vrcCuIvm93Fz16t5qk3agnSa7hr+9ynbpaDqbDpqUKINzbmxaFWqThdd+Up\ns5WgfaQTvUY/XTgN0QaTEpZEaVwRu9Ou5+N5H2N/zr6rFoRg8vSVUR9KWV8tfZZxbtyQTEqs71Oi\ntBo1X763mJjwYF460sJz5W/j9Di5I+vmWd/Xbb0j/PDZc9gmPBRHrsepODhnqpj1uQ51HcXpcbIn\nbdeCFoMXylQLmc1lo9bccMXjXaM9NA+3URidR2zIlYXnII2eTxbcj0fx8Jua3+H2+H8SJy0+jG88\nvIHQEB2/fKOWw2XdXt3Xbxugb7yf9XElbIy/mEf1oxfKURT4s/0lZCQu3qnHa4EUhYQQQgghxKo2\n1T720ZHU3koMjWfYYcXmsk1/bTFCpg+c6eS9s12kxhn5m70P8qXbdvDtz22lID2S8qZB/u5nJ3j+\nYCPjE64F20MgtfRY+c4vT3G0spesJCPf/tyWa+bD21TYdM9YHw63w6t7plrImrutDAzb5r7hGmJ3\nO+gdM5EWljxnyPRM1Co1hbH52JRRQsInuOd638KLL2U06Pmz+0vQa1WcH6hAp9axPXHzjNe39lr5\nwTPnGJ9w8fm7CvlE6W4APuw+edXrh+zDPFf3Im+2HsSgDWFH0ha/97rUNsWXAnDGVHbFY4cujKGf\nCpi+moLoXHYmbaFrtId32t+f116uKAyVz10YqrM0Tu8DoH9oslA+YXfz2N1rKcz0vv1wtZD2MSGE\nEEIIsapNt48F+d4+BpNh0zXmenrHTGRdaFVov9BGtFAh05Utg5PZGAYdf/7xkukA3akPUWfq+nnu\nYCNvnmznaGUP+2/M5vqSJK8CehebR1F460Q7Lxxqxu1RuGNbOvfdsAat5tr6/bWvYdMAWwLUQmaZ\nGEKn0U2H6S61rtFuFJR5n5QbM0UCsHad67LpXv5ITzBy3954Xh4Yxz2UzFOv1xMWosNo0GM06DBe\n+Ge7082Tf6zC5nDxxX1r2VE8mdlVEJVLraWBvjETCReyxKyOEd5ue4/DXcdxeVzEhsTwUN59BGuX\nf8vjTDLD04kKiqS8vwqn24nuwmmqCdcEp3rPEhUUSXFs4axr3Jezj6rBWt5oeZf1ccUkXgjk90da\nfBhff2g9P3z2PL98vXaydW3dzOHTdZYmAPKjsrGOO/jX584zPObg4Vty2Vro/z5WMikKCSGEEEKI\nVc3qGEGFCqPOv/HHU0HSPZcWhUY6FyxkuntgjP96qQq1WsVX7193RUixSqVic0E867JjeOtkO68d\nb+OXb9Ty9qkO9t+whg25scsmAHdo1M7PXq2mutVCRJieL+5bS9E1+pt8X8OmYbKF7OkLU8j8LQqN\nOsf4Xyf/jQxjKn+24TG/1gi0qaJo2jxOyvWaxzl3RkFfCu7QwLTYKeG9MAAT/bEcH+yb8TqVismC\nUNHFEPedyVuotTRwrOc0t2TcyLttH/BB54c4PE6igiK5M+sWtiVuuibbxi6lUqnYmLCOA+2HqDbX\nURpXDMDJ3nPY3Q5uTd895+kvgy6EB/P389OKX/Fi42t8ufTz89pTeoKRrz+0nh88c46nXq9BpZoc\nY/9RHsVDvaWRqKBIjJpIfvjsefosNu7cnsGtm9PmtYeVTIpCQgghhBBiVRt2WAnVGfz+MDf1W/Cp\nsOmFDJketTn5j9+XY7O7eOzuteSkRMx4rV6n4e7rsriuJIk/HmnhSEUPP3qhguzkcD5+Uzb56VEB\n3ZuvyhoH+PlrNYzanJRmx/C5uwrnfRpkKWVcOBXWMtzGTakzjzm/lNGgpzAjkqpWCwNDNmIjfZ9C\n9l7HEWwuG+0jnSiKsiwKftPtk/M4Kfe79xpx24OI0sbRNNyCw+1Ar5nf+6O8vxq1Ss0PPnUvbqeW\nEZuD0XEnI+NORsYdjNicjNmcrM+NY1325Zk56+KKCdUaONx1nMNdx5hw24nQh3Nf5j52Jm+5aijz\ntWpTfCkH2g9x1lROaVwxiqJwuOsYapWanclbvVqjNK6IrPB0qgbrGLCZiQ2ZX7E3PcHINx7ewA+e\nOccvXqvBoyhsX5uIVqOafs93j/Yy5hynKKGA/3qpipaeEa4rSeT+G9fM67lXupXzzhVCCCGEEMIP\nVvsoMSH+F0imxtL3jk+eZrgYMh3YPCGX28OPX6jANGRj386My04xzCY6PJjP3VnIbVvTefFQM2fq\n+/nn/z5H8ZpoPn5jNukJi5vb4/Z4eOlwC68da0OrUfOpW/PYszFlWRQz5iPBEE9kUAQ1g/W4PW6v\nC4KbC+KparVwus73FrJxp433Oz6c/GeXjVHnGEa9fyfeAumjIdO+aumxcq5hgLVZ0WQnreXdjg9o\nGGqhaIYx6d6wTAzRNtJBQVQukYbJP6OYiNnH0V9Kp9ayLWkTBzsOY9SFcdeavVyfvH3RQtgXU7ox\nldjgaMoHqnG4HXSMdNM91suG+HVE+BDIf33Kdlqs7XzYfcKvEfVX7CvByNcf2sAPnz3HU6/X8tTr\ntahVKoL0GoL1GohrhliorFAz2GpmXXYMn7m94Jr/2bLQrq1GXSGEEEIIIQLI4XYw4Z7wO2QaIFRn\nwKgPmz4pdDFkOnB5Qoqi8PRbddR1DLEpP457d/n+m+/k2FC+sr+EJx7dTEF6JJXNZr791CmefLmK\n8qZB+izjuD2egO35aobHHPzLs+d57Vgb8ZEhPPHoJm7elLoiPrSpVCqKYwoYc43TYm33+r6pKWSn\nan1vkfqg8ygT7glCdQYA+sb7fV4j0AIRMn3w7OT30IO35LP2QiGoxlw3r31VDFQDsC6uyO817l5z\nG4+VPMp3dv4Ne9J2rciCEEy1kJXicDuoHKzl8IWA6RtmCZi+mo3xpRi0IRztPonTE5jA+4xEI9/8\n5Ea2FsZTlBXNmuRwYsKD0WpU2PWTP4MHu8Ioyoziy/cUX3PZZEtBTgoJIYQQQohVa/hCyPR8ikIA\nSYYEGoaasbsdAQ+Z9igKfzzcwuHyHjISjHzxrrWo51FEWZMczjce3kBVq5nfv9/Eieo+TlRPfpjS\nqFXERASTEGUgISqE+KgQUuLCyE+LnHdIdUPnEP/1UiVDow425MbyhbsKMQSvrA/VJbFrOdJ9gsqB\nGnIivZuW5W8L2YRrgvc6DhOqNXBH5i38vuFlTOP9Xj/vQplvyPTYhJOTNSbiI0NYnxdHb78OvVpH\nzWA95Pq/r7L+KgDWxa71ew29Rs/6Cxk7K93G+NLJEO3OYzQPt5JgiCc3MtunNfQaHduTNnOw4zBl\npgo2J24IyN7S4sP4k3su//fg9rj5xuHXiQyK44mv3TGvn5GrjRSFhBBCCCHEqmV1BKYolBgaT/1Q\nE33jpoCGTA+POfjZq9VUtZiJDg/iz+4vIUg//5wilUpFcVYMazOjqWwepLV3hD6zDdPQOH1mGxXN\ng1Rccn1sRDB7NqayqzSJUB8LOYqi8M6pDn73fhMeReGBm7K5fVv6ijgd9FF5UTno1DoqBqq5N+dO\nr+/bUpjgcwvZ4a7jjLnG2Ze1dzrQeTmcFJpvyPSHFb04XR5u3JCMWq1Cp9aSF5VN5WAt5gkL0cG+\nt3qOO23UDzWRbkwhKjjSr32tNqlhScQbYqkfmpzmtStlu1/fs7tStnOw4zCHuo4HrCh0NW0jndjd\nDvKicqQg5CMpCgkhhBBCiFVr2GEF/B9HP2UqbLrzQvZGIEKma1rN/PSVaobHHKzLjuHzCxDErFap\nWJcdy7rs2Mu+Pj7hpM9io88yTm2bheNVfTz/XiMvHW5mR3EiN29MJTV+7uwam93FU6/XcLqun/BQ\nPX/ysSIKMpY24Hoh6TU6CqJzqBiooX98kDhDzNw3MTWFrI7D5d3s3Zo254dah9vBgfZDBGuCuTH1\nOjzKZNvfsigKzSNkWlEU3j/XhVaj5vpLpksVRudTOVhLzWA916Vs83ndqsFaPIqHdbGr45RPIKhU\nKjbFl/JG6wF0ah3bEjf5tU68IY6CqFxqLQ10j/aSHOZdFpqv6syNAORH5SzI+iuZFIWEEEIIIcSq\nZQ1U+9iFsOkzfWXzDpl2ezy8fKSVV4+2olar+MTuHK8KBYFkCNaRlaQjKymc7WsT+fhNORwp7+Hg\n2U4+ON/NB+e7KUiP5OZNqaxXq+notTI24WLM5mRswsX4hJMxm4tzDf30WWzkpUbwJ/cWExkWtGiv\nYamUxKylYqCGisFq9hh2eXVPWIiOrYUJHKvqpbJ58Ioi3Ud92H2SEecot2fswaCbbDcL1RowLZOi\nkL8h07VtFnrN4+woSsB4SQF0bUweNEC12b+iUNnAZOtY6TzyhFajzQnreavtPbYlbZp+n/ljV8p2\nai0NHO46zoP59wZwhxfVWRpQoSI3SiaN+UqKQkIIIYQQYtUKVPtYgmHypFCdZfK31Wl+5qlYRuw8\n+XIV9R1DxEYE86V7ishOnnns/GIJC9Fx+7Z09m5Jo6xpgANnOqlutVDbPgQvVs567+1b09l/45pV\nE/haHFsIdVAxUMOeNO+KQgC3bU3jWFUvb53smLUo5PS4eKftffQaPbsvWT/eEEfbSIdPk88CbSpk\nek1Ehl8h0++dm2w9u2nD5UXVuJBYYoKjqbM0+Pz6nB4X1YO1xIbEkHThRJ/wTmJoAv9z+zeICJrf\nz6CS2LVE6MM52XuGe7LvIFgb2OKww+2kZbiN1LAkwnShAV17NZCikBBCCCGEWLUuto/NrygUrg/D\noA1h3GUD8OukUHnTAD97tYZRm5NN+XF87o6CZRfErFar2JAbx4bcOLoHxjhU1o1LAa0KDMFaQoN1\nhAZrCQ3RYQjWEhUWRHS492O/V4KIoHDSjak0DjVjc9kI0Xp3wiI9wUhhRhQ1bRba+0ZIT7j6e/J4\nzymGHVZuSb+RMP3FD8AJhjharG0M2AZJCJ1/npU/5hMyPTRq51zDAKlxoeSkXF6EUKlUFMbkcaTr\nOK3WDrIjM71et97SiN3t4PrYohWZY7XQYkO8a4GcjUat4brkrbze+i6n+85xvY9TzObSPNyKS3GT\nJ61jfpGikBBCCCGEWLUuto/NL1NIpVKRGBpP83AbOrXWpxMJXQNjvPBBE+caBtBq1DyyN4/dG1KW\n/QfY5NhQHro5l7g4I/39I0u9nWWlOLaQ9pFOqgfr2ZRQ6vV9t21No6bNwlsnO3js7iunZLk9bt5u\nex+dWsuetBsue2yqXatvvH/JikLzCZk+VNaN26PM+N5fGz1ZFKox1/lUFJqeOiatY0vqupRtvNl2\nkMNdx7kueVtAf75NndDMj5aikD9WxxlOIYQQQgghrsLqGEGv0QeknSHxQgtZSliyV+0tg8MT/OK1\nGv7+5yc41zBATkoETzy6iT0bU5d9QUjMriS2EJhsIfNF8ZoYkmIMnKzpwzJiv+Lxk71nMU9YuC55\n2xWn2+JDLxaFloq/IdNuj4cPzncTpNewvejqQcSTU6XUVA/We72uR/FQPlBFmC6UNREZPu1JBFZk\nUAQlsWvpHO2m1doe0LXrLI2oVWqyI7ICuu5qIUUhIYQQQgixag07rETMM09oylTY9FytYyPjDp49\n0MC3fnqcIxU9JMeE8mf3l/CtRzbO2DIkri1pYSlEBkVQPViL2+P2+j61SsVtW9NxexTePdNx2WNu\nj5u32g6iVWm4Jf3GK+6dOim0lGHTHSNdfoVMlzcNYhmxs6MokZCgqzezhGiDWRORQftIJ6OOMa/W\nbbV2MOIYpSR2rV8ZRyKwdl1oGzvcdTxga9pcNtqtnWSGpwc8q2i1kO8MIYQQQgixKnkUD6OOsXm3\njk0piM4jRBtMadzVx15POFy88mELf/PkMd4+1UFEqJ4v3FXIdz6/lQ25cXI6aAVRqVQUxxQw5hqn\nxcdTETuKEgg36PjgXDcTDtf018+Yyui3DbI9aTNRwZFX3BcbEoNapV6yk0J2t4OesT7SwpJ9LsBM\nBUzv3jB7QbUwOh8FhVpLg1frlvfL1LHlJD8qh7iQGM6Yyhh1elfYm0uDpRkFhfyo7ICstxpJUUgI\nIYQQQqxKI45RFBTC5xkyPSU5LJEf3vBdCqJzr3yucQf/6+kzvHi4BY1azcM35/KPj2/nupIk1Gop\nBq1EJbGTmUCVXrSQuT1uflPzO35a/iv+2PIa2aVmJkK6efVcBRMuOx7Fw1utB1Gr1OzN2H3VNXRq\nLTHBUUtWFPI3ZNo0ZKOq2UxOSgRp8WGzXrs2Jg+AGi9byMoGKtGrdeRHXfk9KRafWqXm+pTtuDwu\njvecDsia9ZYmYLLgJPwjQdNCCCGEEGJVmp48FqD2sZmMTzj51+fK6Oof44bSZB7ckzNji4xYOfKi\nctCpdVQMVHNvzp2zXvtu+wcc6zl12deC8uC9sbO8dwhCtCHYXDa2J24mJiR6xnUSDHFUDtYy5hwn\nVGcIyOvwlr8h0x+c60Jh7lNCAKlhyYTpQqkx16Eoyqyn63rHTJjGB1gfV4xes7ym+K1m25M280rz\nWxzpOs6etF3zbuurszSiU+vIlMwov8lJISGEEEIIsSpNTR6LCFD72NXY7C7+7fky2vpGuKE0mc/c\nni8FoVVCr9FREJ1D77iJ/vHBGa/rHTPxeuu7hOuNfHv7X/ONzV/l80WfItW1GZcpjZSgTIz6UGKC\no7g98+ZZnzPesHRh0/6ETDtdHg6X9xAWomNzwdw5RGqVmsLoPIYdI3SP9c567VTr2LpYaR1bTsJ0\noWyKL6XfNjg9Ncxf1gvvg+yITHRq+bnqLykKCSGEEEKIVcnqmCwKGQPUPvZRdqeb//uHcpq6rewo\nSuDR2/IlN2iVKYmZbCGrGKy+6uMexcNva3+Hy+Piwfz7iDPEkBmezqaEUj676S6crUUozVv5n9u/\nyXd3fos4Q8ysz5ewhEUhf0KmT9eZGLU5ub4kCZ127ol9AIXRky1k1YN1s15XNlCFWqWm+MIkiH2f\n6gAAIABJREFUOLF8BCpwerp1TEbRz4sUhYQQQgghxKo0PH1SKPBFIafLw49fqKC2fYhN+XF8/q5C\nyQ5ahYpiC4CZR9Mf6jxG83AbG+LXsf4jAeVJMaGUZsfQ1GWlsWvYq+dbqglkDj9Dpt+/EDB944Zk\nr+8pvJArVG2eOVdoyD5Mq7WdnMg1i95GJ+aWGZ5OalgyFQPV8xpPX2eePGkkeULzI0UhIYQQQgix\nKk2dFAoPcFHI5fbwkz9WUtliZl12DF/6WBEatfy1ezWKDIog3ZhC41AzNpftsscGbWb+2PwGoVoD\nn8i756r337Y1HYC3Tnr3wTneEA9ceVJIURRft+6TTj9CpjtNozR0DlOUFU1ClPeFm3C9kbSwZBqH\nmvll1TMc7T7FoM182TUVA5Mns0qldWxZUqlU3Jl1K4qi8H/O/ZSqOU59zaTe0kiINtjnHCtxOWm8\nE0IIIYQQq5J1Kmg6KHCZQh6Pws9ereZcwwCFGVF85b5itBopCK1mxbFraR/ponqwnk0JpcBkkeaZ\nuhdwuB08VHjfjIXJ/PRIMhKMnK3vxzRkIz4yZNbnCteHEawJvqwodKism2cPNKDXqok0BhFtDCbS\nGERUmJ4oYzBRxiDWJIfPK+vKn5Dp9857N4b+am5Ov5HfN7zMqb5znOo7B0BMcDT5UdnkRmVzpq8M\nuDgBTiw/pXFFPFbyaZ6q+m9+Uv4UjxQ8wLakTV7fP2gzMzBhZl1s0bzDqlc7KQoJIYQQQohVadg+\nglqlDlh7iUdR+OUbtZysMZGTGsGf37/O65wUsXKVxBbyess7VAzUTBeFjveeocZcz9rofLYmbpzx\nXpVKxW1b0/jpK9W8e6qDT96aN+tzqVQqEkLj6BrpxqN4qGw286s3awnWawgJ0tJrHqe9b/SK+xKj\nDXzn81v8fr/6GjJtd7o5XtVLZJie0pzZc5KuZkviBjYnrKdnrI96SxP1lkbqh5o52nOKoxemuKWF\nJRMTEuXz2mLxlMYV89X1j/GT8l/y65rnsDpGuCX9Rq+y1+pkFH3ASFFICCGEEEKsSlbHCEZdWMB+\ny1zWMMCRih4yE438xcdLCdJLQUhAWlgKEfpwqgdrcXvcjDrH+UPDKwRp9DxcsH/OD8CbC+L53ftN\nHC7v4fZt6USHB896fYIhjjZrB+UdHTz5UitajZqvfWI92SkRKIrCuN2FZcTO0Igd84idssYBzjUM\n8M7pTu7c7t9Yb19Dpk/XmrDZ3dy8Kc3v1kqVSkVyWCLJYYnclHYdHsVD50g39UNNtAy3sSNpi1/r\nisWVE5nF1zZ+mR+X/ZyXml5n2G5lf+6+OX8u11kaAMiLyl6Mba5ocs5KCCGEEEKsOoqiYHVYiQjg\n5LHqNgsAD92ciyFYfvcqJqlUKopjCxlzjdNibef5+hexuWzcm30n0cFzn2TRatTcuT0Du9PN9359\nmpYe66zXTxVmnjp4GofTzeN3ryU7JWJ6L6HBOlLjwiheE8MNpcl84a5CwkJ0vHq0leExh8+vz5+Q\n6UNl3QDsWpfk8/PNRK1Skx6eyi3pN/JYyaMydewakhyWyNc3fYWk0ATe6zzCU1X/jdPjmvF6RVGo\ntzRh1IeRFJqwiDtdmaQoJIQQQgghVh2bawKnx0W4PnB5QvUdQ+i0arKSAremWBlKLhQofl//R873\nV5IdkcX1F8Zye2PPxhQe2pODddTBP//2LKdrTTNeG6mNBsDGEA/uyWFTfvysaxuCddy3K4sJh5sX\nDzV7vacpvoZMdw+MTQZMZ0YRN0dGklg9ooIj+drGL5MdkclZUzn/ef7n9I33M2gzX/G/hqEmrI4R\n8qNyvGo1E7OTX2EIIYQQQohVJ9CTx8YmnHSaRslPj0Snld+7isvlR+WiU+voGO1Gq9byqcKP+9S2\nqFKp2Ls1nfhoA0++XMV/vlTJfTesYd+OjMs+FLvcHg4eG4IYSE1VceuWNK/Wv2F9MgfPdnG4vJs9\nG1NIT/D++8LXkOnD5RdOCZV6P4ZerA4GnYGvrn+MX1Y/Q1l/Jd89/oNZr5fWscCQopAQQgghhFh1\nLk4eC0xRqKFjGAXIS4sMyHpiZdFrdBRE51AxUMNdWbd6nb3zUetzYvnbRzbxH78v48VDzfQOjvHZ\nOwrRadUoisKv36yjsdlFSDQYoxxen6LQqNU8eHMO//pcGc8dbOTrD633+l5fQqZdbg8fVvQSFqJj\nQ65/fwZiZdNrdHyx+BEOtB+iZ6xvxuuCtcFsil+/iDtbuaQoJIQQQgghVh2rfeqkUGBaveo7hgDI\nl6KQmME92XeSE7mG3anXz2udtPgwnvjMFn70h3KOVfXRPzTBV/eX8P75rgtB55E4g6Mw2frnXuwS\nxVkxrMuOobxpkPONA14XbXwJmT7XMMCozcneLWlyok7MSK1Sc2vGTUu9jVVDvhOFEEIIIcSyY3c7\nMI0PLNj6w1PtYwE6KVTXMYRGrWLNhUBfIT4qKTSBW9JvRKOe/1S6iFA93/zkBratTaCxa5i//8VJ\nXjrcQmxEMP/fA6UkhMZhdYxgc034tO6De3JQq1Q8d7ARl9sz5/W+hkxPBUzfIK1jQiwbUhQSQggh\nhBDLhsPt5ED7If7+6Pf57vEfTLemBNrwVPtYADKFJhwu2npHyEwyEqSTMfRicei0Gh6/ey33Xp+F\ndcyBIUjLXzxQSkSonkTDZLi0ady300JJMaHs3piCyWLjwJm5v/c6R3u8DpkeGLJR3WImJzWC5NhQ\nn/YlhFg40j4mhBBCCCGWnNPj4mj3Sd5qPcCwYwStWouCwoddJ0gv8G6qkS+s9lEgMO1jTV1WPIoi\neUJi0alUKj52fRaFmVEYDXoSow0AxF9o5eodM5ER7l3Y9JR7rs/ieFUvL3/Yys7iRIwG/YzXtlsn\nC0fehEwfLu9BAW5YJ6eEhFhO5KSQEEIIIYRYMm6Pmw+7T/CdY/+b5+tfwuaaYG/Gbv5h598SGRTB\n6b4y7G5HwJ93Kmg6XB8277XqJE9ILLHc1MjpghAwne/j60khgLAQHR+7Lgub3cVLR1pmvdbbkGmP\nR+FIRQ8hQRq2FMT7vCchxMKRk0JCCCGEEGJJnDNV8FLT6wzYBtGptexJ28XejN0YLxRqdiRt5o3W\nA5wzlbM9aXNAn3vYMYJBG4JOo5v3WvUdQ6iAnBQpConlISF0sijU50dRCGD3xhQOnuvig3Pd7NmQ\nQkrclcVTp8dFnaWRIC9CpiuaB7GM2LlpQwpBemmxFGI5kZNCQgghhBBi0ZnG+/l55W+wTAxxQ8pO\nvr3jr7k/9+7pghDAjqQtqFBxtPtkwJ9/xD5CeND8W8ecLjfN3VbSEsIwBMvvW8XyEKEPJ0ij97so\npNWoeXBPDh5F4bmDjVe95kjXcYbsw1yfsn3OkOmLAdNJfu1HCLFwpCgkhBBCCCEWXeVgLQoKn8i7\nhwfz7yUy6MqpXTEh0eRH5dA03ErvmClgz+30uBhzjRMegJDp5m4rLreH/LSoAOxMiMBQqVTEG+Lo\ntw3gUeaeInY1pdkxrM2MorLFzInqvsses7sdvNV6kGBNEHvTd8+6ztConbLGQdITwshMnH8hVggR\nWFIUEkIIIYQQi656sA6A4tjCWa/bmbwVgKM9gTstZLVPjqMPxOSx+gt5QhIyLZabBEMcTo8Ly8SQ\nX/erVCo+eUseQXoNP3+tmrp2y/Rj73ccYcQ5yu60XYTpZ58k9mFFDx5FkTH0QixTUhQSQgghhBB+\nURSFo90nGbIP+3Sf3e2gwdJEaljyVU8IXWpdXBGhOgMnes7g8rjms91pVsdkUSgQJ4WmikK5abO/\nDiEW21TOj78tZADJsaF8dX8JigL/8YcKOk2jjDttvNP+AQZtCDen75r1fkVROFzWg16rZvvaBL/3\nIYRYOFIUEkIIIYQQfukY6eK3tb/n9w2v+HRfvaURl+KmKKZgzmt1ai1bEzcy6hyjcqDG361eZnry\nWND8ikIut4fGLivJsaGEzzK2W4ilEIiiEEBRZjRf2FeIze7iX58/zysNB7C5bNyacRMh2pBZ761t\nH8I0ZGNzQTyG4PmHugshAk+KQkIIIYQQwi/9tkEAKgdqmHDZvb6vcrAWwKuiEMDOpMkWsg+9bCEb\nsJl5reWdGU8wDU+3j80v36S9bxS70y2tY2JZijdMjn6fb1EIYPvaRB7ak8PQxCiHuo8SpgvjxtTr\n5rzv8HTAtLSOCbFcSVFICCGEEEL4xTwxmTHi9DipHPTuFI+iKFQN1BKiDSEzPM2re5LDEskKT6dm\nsH7OfJQJ1wT/VfYLXm95h+8d/xcOdx2/Img3UO1jF/OEpHVMLD/xhlggMEUhgL1b08nd2A9qFxpT\nLnhmHi2vKAp17RZO1/WTGG0gN1W+R4RYrqQoJIQQQggh/GK+pEBztq/Mq3t6xvqw2IdYG52HRj3z\nh8qP2pG8BQWFYz2nZrxGURR+U/t7esdNFEbnoVLBs3Uv8O9nn6TvkullU+1jEfNsH5sqCsnkMbEc\nBWn0RAVFYgpQUcgyMUSvugadJ5Texjh+8lIlbs/lBdexCSfvnO7giZ+d4J//+xwut4e9W9JQqVQB\n2YMQIvCkKCSEEEIIIfxinjADEBUUSZW5DptrYs57qnxsHZuyKb4UvUbPsZ7TM47Yfq/jMOdM5WRH\nZPLldZ/jiW1/RWlcMU3DLfzjqX/nzdYDuDyuS04K+d8+5lEU6juGiI8MIcoY5Pc6QiykBEMcQ/Zh\nn9o7ZzL1/fPxgtspyoylrGmQX71Zh6IoNHUP8/PXqvmrH33IM+82YLLY2FoYzzcf3sCN66V1TIjl\nTLvUGxBCCCGEENcm88QQwZogdiZv4bWWd6gYqGZr4sZZ75kqCq2NyffpuYK1wWyOL+VozynqLI0U\nRudd9niDpZkXm14nXG/kC8WPoFFriAyK4PGSRzlvquD5+pd4pfktzvSVMeG2o1VrCdEG+/aCL9Fp\nGmXc7mJjXpzfawix0OINcdRaGjDZ+kk3pvq9zoBtkKM9p4g3xLIjeTOb7lX438+c40h5DzWtZgat\nk0WnuMhgblyfwvUlSYSHSvi6ENcCOSkkhBBCCCF8pigK5gkL0cFRbIwvBeDMHC1kNtcETcOtZBjT\nMOrDfH7OncmTgdNHuy8PnB62W/lF1W8B+ELxI0QEXX4CaH18CU9s+zrXJW+je6wX84SFCL1xXi0t\nF/OEJGRaLF9TE8hMY/NrIXut5R08ioe7svaiUWsICdLylw+UEh8VgmXEwaa8OL72YCnf/9IO7tye\nIQUhIa4hclJICCGEEEL4zOayMeG2Ex0cRWJoPClhSdSY6xl3jmPQGa56T525AY/iocjHU0JTMsPT\nSQxNoKy/ilHHGGH6UNweNz+r/A1Wxwj35+wjJzLrqvcadCF8suB+tiSs5/n6P5IVke7XHqZMF4XS\npSgklq+E0PmPpe8Z6+NU7zlSwpLYGL9u+uvhoXq+/bktuNwKYSEybl6Ia5WcFBJCCCGEED4bvBAy\nHR08GbK8Mb4Ut+KmbKB6xnum84RifcsTmqJSqbguaQtuxc3J3jMAvNj0Gs3DrWyMX8futF1zrpEb\nlc3/2PY1Plnwcb/2AJOnpOo7hogyBhEX4X8LmhALbeqk0HyKQq82v42Cwr6svahVl398DNZrpSAk\nxDVOikJCCCGEEMJnUyHT0cGTJ2U2XWghm2kKmaIoVA3WEqYLnVe2ydbETWhUGj7sOcXpvvO813GE\nREM8nyp4YNEmHPWax7GOO8lLi5SpSmJZiwyKQKfW+V0U6hzp5nx/BRnhaZTErg3w7oQQy8Gc7WMe\nj4dvf/vb1NXVodfr+Yd/+AcyMjKuuO7v/u7viIiI4Otf/zovvPACL774IgB2u52amho+/PBDwsP9\nn/AghBBCCCGWD/NHTgrFGWJIN6ZQa2lg1DlGmC70sus7R3sYdoywNXHjFacNfBGmD6U0roizpnJ+\nXf0cQRo9j5U8SrB28SaAXRxFL61jYnlTq9TEG2IxjffjUTw+f++dMU0Wefdm7JYCqBAr1Jw/Fd59\n910cDgfPPfccf/VXf8U//dM/XXHNs88+S319/fT/379/P08//TRPP/00RUVFPPHEE1IQEkIIIYRY\nQcwTFgBiQqKmv7YxvhSP4qGsv/KK6/0dRX81O5MmA6fdiptPFz5IYmj8vNf0hYRMi2tJgiEOh8fJ\nsN3q871Vg7Vo1dorpv0JIVaOOYtCZ86cYdeuyf7s9evXU1l5+X/kz549S1lZGQ8++OAV91ZUVNDY\n2HjVx4QQQgghxLVrqig0dVIImA6hPdtXfsX1VYO1qFAF5MNlfnQOmxPWc2/2nWyIL5n3er6q7xgi\nLERHUszVA7WFWE6mcoV6x0w+3TdkH6ZrtIfcyDUEaWSamBAr1ZztY6Ojo4SFXRwZqtFocLlcaLVa\nTCYTP/7xj/nRj37EG2+8ccW9Tz75JF/5yle83kxcnNHra4Xwhby3xEKQ95VYKPLeEgslkO8tq8uK\nTqNjTXLSdFtJHEZy6zKpszSiNypEBE+eFB+1j9FibSMvdg2ZyQkBef5vxn8pIOv4qs88zqDVzo6S\nJOLj5ST8FPm5tXyVOgt4o/UArbYWbojb5PV95U2TrWPbMkqX9N+vvLfEQpH31qQ5i0JhYWGMjY1N\n/3+Px4NWO3nbm2++icVi4fHHH6e/v5+JiQnWrFnD/v37sVqttLS0sH37dq83098/4sdLEGJ2cXFG\neW+JgJP3lVgo8t4SCyXQ7y3T6CBRQREMDIxe9vV10cU0mFt5t+Y4N6TuAOB033kURSEvPPeaf38f\nq+gBIDM+7Jp/LYEiP7eWt0RNCsGaYI62n+X2lL1eZwOdaJssCmUEZS7Zv195b4mFstreW7MVwOZs\nH9u4cSOHDh0C4Pz58+TlXTzy++ijj/LCCy/w9NNP8/jjj7Nv3z72798PwKlTp9ixY8d89y6EEEII\nIZYZu9vBqHOM6KCoKx7bMNVCZro4hSyQeUJLTfKExLVGp9ZSEluIecJC+0inV/e4PC5qzQ3EhcQQ\nf6H9TAixMs1ZFLr11lvR6/U89NBDfP/73+db3/oWr7zyCs8999ys97W0tJCa6v+4USGEEEIIsTxd\nLWR6SlRwJGsiMmkcamHYbsWjeKgerCNCbyQ1LGmxtxpwde1DhARpSIsPm/tiIZaJ9Reyt85fJQT+\napqHW5lw21dEIVcIMbs528fUajXf/e53L/tadnb2FddNnRCa8sUvfnGeWxNCCCGEEMvR1UKmL7Up\nvpTm4VbOmSrIikhn1DnGjqQt1/xIa9OQDdOQjQ25sajV1/ZrEavL2ug89God500VfGzN7XN+L1au\noNN9QojZzXlSSAghhBBCiEvNVRTaEF+CChVnTGUr6sNlVfMgAMVrYpZ4J0L4Rq/RUxRTgMk2QPdY\n75zXVw3WoVPryI1cswi7E0IsJSkKCSGEEEIIn5gnJnN1ZioKRQSFkxOZRfNwKyd7zqBWqSmIzlnM\nLS6IyhYzAMVZ0Uu8EyF8N91CZqqY9bpBm5nesT7yo3LQaXSLsTUhxBKSopAQQgghhPDJxZNCM4ct\nb4wvBWBgwkx2RCYh2pBF2dtCcbk91LRZSIgKIS7y2n4tYnUqjilAq9Zyrn/2olDVYB2wMk73CSHm\nJkUhIYQQQgjhk0GbBbVKTYQ+fMZrplrIYGV8uGzqGmbC4aY4S1rHxLUpWBtMYXQePWN99I2ZZrzu\n4rTA/MXamhBiCUlRSAghhBBC+MQ8YSEqKAKNWjPjNUZ9GPlRky1jK6EoNNU6ViStY+IatiFusoXs\n3AxTyJxuJ3WWRhJDE4gJkfe6EKuBFIWEEEIIIYTXXB4XVsfIjHlCl/pkwf08XvIZksMSF2FnC6uy\nxYxGraIgY+aWOSGWu5LYQtQqNednaCFrGGrG6XHKKSEhVhEpCgkhhBBCCK9ZJoZRULwqCsWERFMa\nV7QIu1pY1nEH7b0j5KZGEKzXLvV2hPCbQWegICqXjpEuBmzmKx6fah0rXgGn+4QQ3pGikBBCCCGE\n8Jo3IdMrTXWLGQVpHRMrw/r4YoCrnhaqGqwlWBPEmojMRd6VEGKpSFFICCGEEEJ47WJRaO6TQgvF\n6XLz4qFmDpV141GUBX++i6PoJWRaXPvWxRahQnXFaHrTeD/9tkHyo3PRquVEnBCrhXy3CyGEEEII\nrw0ucVFocHiCH71YQVvvCABHK3v57B0FJEYbFuT5FEWhqsVMuEFHWkLYgjyHEIvJqA8jN3IN9UNN\nWCaGiLpw6u/iKHrJExJiNZGTQkIIIYQQwmtLeVKops3Cd355irbeEXYWJ7IhN5b6jiH+/ucnee1Y\nKy63J+DP2WEaZXjMQVFWNGqVKuDrC7EU1sdPTiEr66+a/trFUfSSJyTEaiJFISGEEEII4bWpolDU\nImYKKYrCWyfb+Zdnz2Ozu/j03jy+cFchX91fwp/eW4whWMsfPmjmH359evoEUaBUSeuYWIFK4y60\nkF3IFbK7HTRYmkgJSyIyKGKJdyeEWEzSPiaEEEIIIbxmnhgiQm9Et0iZI3aHm6feqOFkjYmIUD1/\nel8xuakXC1KbC+IpyIji+YONHKno4Xu/Os1t29K457os9DrNvJ9/Kk9IQqbFShIZFEFWRAaNQy1Y\nHSO0WTtwKW45JSTEKiRFISGEEEII4RWP4sFiHyLDmLooz2eyjPOjFyrp7B8lJyWCL99bTJQx6Irr\nwkJ0fP6uQratTeBXb9byxvF2ztb189X9JaTE+Z8DZHe4aegcIj0hjPBQ/XxeihDLzoa4YpqHWynr\nr6JztBuQ1jEhViNpHxNCCCGEEF4ZtlvxKJ5FyRNq6hrme786TWf/KLs3pPDNT264akHoUkVZ0Xzv\nC9u4dXMafRYb3//NWeraLX7vobbdgsutSOuYWJFK4yZzhc6bKqgaqCVEG0JWePoS70oIsdikKCSE\nEEIIIbyymJPHnj3YwNiEi8/dUcCnb8tHq/Hur61Beg0P35LLF/cVYne6+ZfnznOq1uTXHi6OopfW\nMbHyxIREkWFMo9bSgMU+xNroPDTq+bdcCiGuLVIUEkIIIYQQXlmsyWMtPVaauqysy45hV2myX2vs\nLE7iLx4oRaNR85OXKnnndIfPa1S2mAnSa8hJleBdsTKtjy+e/mdpHRNidZKikBBCCCGE8Ip5YgiA\n6AWePDZVwLll8/yyi4qyovmbT24kPFTPM+828Px7jXgUxat7B4Zs9JnHKUyP8vqUkhDXmvUXWsgA\n1sbkL+FOhBBLRf4LJ4QQQgghvLIYJ4WGRu2cqjGRFGOgKHP+bVsZiUb+x6c3kRht4M0T7fz/r1Tj\ndHnmvE+mjonVIN4Qy7rYIjbFl2LU+x/KLoS4dsn0MSGEEEII4ZXFKAq9d7YLt0fhls1pqFSqgKwZ\nGxnC3356E//x+3JOVPdhHXPwlftKMATP/Ffh6TyhNVIUEivbl9Z9Zqm3IIRYQnJSSAghhBBCeMU8\nYSFUZyBYO/sUMH85XW7eP9+FIUjLzqLEgK4dFqLj6w+tZ0NuLDVtFr73q1M0dg1f9VqX20NNm5m4\nyGASogwB3YcQQgixnEhRSAghhBBCzElRFMwTQwt6SuhkjYmRcSc3rE8mSB/4KUh6nYav3FfC7dvS\nMVlsfP83Z3j+YCMOp/uy65q7rdjsbhlFL4QQYsWTopAQQgghhJjTqHMMp8e5YEUhRVF453QHKhXs\n2ZiyIM8BoFar+MTuHP76UxuJiwjhzZPtfOeXp2jqvnhqSEbRCyGEWC2kKCSEEEIIIeZ0MU9oYSaP\nNXQO0943ysa8OGIjQhbkOS6VlxbJdz6/lVs2pdIzOM4/Pn2G373fiNPlpqplEI1aRUHGwp2KEkII\nIZYDCZoWQgghhBBzGlzgkOmpMfS3bk5bkPWvJkiv4ZO35rEpP45fvF7DG8fbOd8wQO/gOLlpkYQE\nyV+VhRBCrGxyUkgIIYQQQsxp6qRQzAIUhQaGbZyt7yc9IYzc1IiArz+X/PQovvP5rezZmELP4DgK\n0jomhBBidZBffwghhBBCiDkt5Dj6g2e7UJTJU0KBGkPvq2C9lkf25rMpP54T1b3csD55SfYhhBBC\nLCYpCgkhhBBCiDktVFHI7nBz6Hw34QYdWwsTArq2PwozoiiULCEhhBCrhLSPCSGEEEKIOZknhgjS\n6DFoAxsCfbSql3G7i5s2pKDTyl9NhRBCiMUk/+UVQgghhBBzMk9YiA6OCmh7l6IovHu6A41axe4N\nCzeGXgghhBBXJ0UhIYQQQggxK5vLhs01EfDWsapWMz2D42wtjCciLCigawshhBBiblIUEkIIIYQQ\nszJPDAGBnzz27ulOAG5ZxDH0QgghhLhIikJCCCGEEGJWgzYzENiQ6aFRO+VNg2SnhJOVFB6wdYUQ\nQgjhPSkKCSGEEEKIWU2dFIoOjgzYmo2dwwBsyI0L2JpCCCGE8I0UhYQQQgghxKwWYhx9Y9dkUSgn\nJSJgawohhBDCN1IUEkIIIYQQs1qoopBGrSIz0RiwNYUQQgjhGykKCSGEEEKIWZknhtCqtRj1YQFZ\nz+F009Y7QnqCEb1OE5A1hRBCCOE7KQoJIYQQQohZDU6YiQ6KRK0KzF8dW3tHcHsUaR0TQgghlpgU\nhYQQQgghxIwcbgejzrGAto41TeUJpUpRSAghhFhKUhQSQgghhBAzWpDJYxeKQtnJMopeCCGEWEpS\nFBJCCCGEEDMKdMi0oig0dg0THR5EdHhwQNYUQgghhH+kKCSEEEIIIWYU6KJQ/5CNkXGn5AkJIf4f\ne3ceXedZ2Pv+9+55b01bs2TZli1Z8jw7cwIkEAIhARKSJgGOy9DS0pZz7j3lwO26hzaHwwn09NLb\nsw4UuG0phYYECklIIHEhA5A4ieN5tmVNtjWPW9Kep/f+ocExnvd+JW1J389aWpre/bzPtvey5Z+f\n5/cAyAGEQgAAALikc9vHrAmFpraOEQoBADDrCIUAAABwSYPRIUlWhkKjksRKIQAAcgDQPA3MAAAg\nAElEQVShEAAAAC5pIDIku2GX321NKXRzx4hcDpuWVORbMh4AAMgcoRAAAAAuyjRNdYd6VOkrl91m\nz3q8SCypzv6gllcXymHnx1AAAGYbfxsDAADgooaiAcVScVXnVVoyXmvXqExJKxazdQwAgFxAKAQA\nAICL6g71SJKq86osGY+SaQAAcguhEAAAAC6qO9QrSarOt2al0FQotMiafiIAAJAdQiEAAABc1GQo\ntMiC7WNp01Rr14gqS3wq8LmyHg8AAGSPUAgAAAAX1RXqkdPmUJm3NPuxBkKKxFJaUcMqIQAAcgWh\nEAAAAC6QNtPqCfWp0lchm5H9j4yTW8dW0CcEAEDOIBQCAADABQYjw0qkE5aVTLd0EAoBAJBrCIUA\nAABwga6Jk8es6BOSxlcKed0OVZflWTIeAADIHqEQAAAALmDlyWOj4bh6hyOqrymUzTCyHg8AAFiD\nUAgAAAAX6J5YKWTF9rEW+oQAAMhJhEIAAAC4QHeoVy6bUyUef9ZjTZZM1xMKAQCQUwiFAAAAcJ5U\nOqXeUJ+q86osOXmspXNUhiHVVXMcPQAAuYRQCAAAAOfpjwwqaaZUbUHJdDKVVlv3qBaX58vrdlgw\nOwAAYBVCIQAAAJzHypLps31BJZJp+oQAAMhBhEIAAAA4T5eFJdPNHZRMAwCQqwiFAAAAcJ7JlUKL\nLNg+NlUyvZhQCACAXEMoBAAAgPN0h3rlsXvkd2cf5DR3jqgwz6XyIo8FMwMAAFYiFAIAAMCUZDqp\nvnC/qvMqZRhGVmMNjUY1PBbTipqirMcCAADWIxQCAADAlL7wgNJmWossKJme2jpWw1H0AADkIkIh\nAAAATLG0ZLqTkmkAAHIZoRAAAACmTB1Hb0HJdEdfUJK0tLIg67EAAID1CIUAAAAw5VwolP1KoZ6h\nsEoLPXI77VmPBQAArEcoBAAAgCndwR7lOXwqdOVnNU4kllQgGFdVqc+imQEAAKsRCgEAAECSFE8l\n1B8ZVJUFJ4/1DIUlSdUlhEIAAOQqQiEAAABIknrDfTJlalG+NVvHJLFSCACAHEYoBAAAAEnWlkx3\nD7JSCACAXEcoBAAAAEnnQqFFFoRC51YK5WU9FgAAmB6EQgAAAJAkdQV7JFl08thgSG6XXf58V9Zj\nAQCA6UEoBAAAAEnjK4UKnPnKd2W3uiedNtU7HFFViS/rwmoAADB9CIUAAACgaDKmweiQqi0omR4c\njSqRTNMnBABAjiMUAgAAgHrDfZKsKZnm5DEAAOYGx5UuSKfTevTRR3Xy5Em5XC595StfUW1t7QXX\nfelLX1JRUZE+//nPS5K+853v6OWXX1YikdAjjzyiBx980PrZAwAAwBJdFpZMT548VsVKIQAActoV\nVwq9+OKLisfj+tGPfqQ///M/19e+9rULrnnyySfV1NQ09fmuXbu0f/9+PfHEE/rBD36gnp4ea2cN\nAAAAS3VbWTI9sVKompPHAADIaVdcKbR3717ddtttkqRNmzbpyJEj531/3759OnjwoB566CG1trZK\nkl577TU1NjbqT//0TxUMBvWFL3xhGqYOAAAAq0weR2/J9rHBkAxJlcXerMcCAADT54qhUDAYVH5+\n/tTndrtdyWRSDodDfX19+uY3v6lvfOMbeuGFF6auGR4eVldXl7797W+ro6NDn/3sZ7Vjxw5OnwAA\nAMhRXaEe+d1F8jmzD3K6h8IqLfLI5bRbMDMAADBdrhgK5efnKxQKTX2eTqflcIw/bMeOHRoeHtZn\nPvMZ9ff3KxqNqq6uTn6/X3V1dXK5XKqrq5Pb7dbQ0JBKS0sve6/y8oIsnw5wcby2MB14XWG68NrC\ndLnUayscjygQG9HGqtVZv/7C0YRGgnFtWVnBa3kB4fca04XXFqYLr61xVwyFtmzZoldeeUV33323\nDhw4oMbGxqnvbd++Xdu3b5ckPfXUU2ptbdX999+vV155Rd///vf1yU9+Un19fYpEIvL7/VecTH//\nWBZPBbi48vICXluwHK8rTBdeW5gul3tttY6cliSVOsuyfv21dY9KkkoKXLyWFwj+3MJ04bWF6bLQ\nXluXC8CuGArdeeed2rlzpx5++GGZpqnHHntMzz33nMLhsB566KGLPub222/X7t279cADD8g0Tf3l\nX/6l7HaWDwMAAOQiK0umuwfHV5hXc/IYAAA574qhkM1m05e//OXzvlZfX3/Bdffff/95n1MuDQAA\nMDdYWjI9cfJYFSePAQCQ8654JD0AAADmt67Q5EqhiqzH6h6cCIVYKQQAQM4jFAIAAFjgukO9KvEU\ny+PwZD1Wz1BYHpdd/nyXBTMDAADTiVAIAABgAQsmQhqNj1mydSydNtU7FFFViU+GYVgwOwAAMJ0I\nhQAAABawnlCfJGv6hAZGo0qm0qouZesYAABzAaEQAADAAjYUHZYklXlLsh6rZ+LkMfqEAACYGwiF\nAAAAFrBAbESS5HcXZT1Wz0TJdDUnjwEAMCcQCgEAACxg50Ihf9ZjdQ9x8hgAAHMJoRAAAMACFoiN\nSpL87sKsx+oZDMuQVFnizXosAAAw/QiFAAAAFrBAdEQOw658Z/ZbvrqHwiot8sjpsFswMwAAMN0I\nhQAAABawQCwgv7so6yPkw9GERkNx+oQAAJhDCIUAAADmgK5gj7pDvZaOmUqnNBoPyu/JvmSaPiEA\nAOYeQiEAAIAcl0qn9L/2f0ffPPBPMk3TsnFH42MyZVp88hihEAAAcwWhEAAAQI5rCrQomAhpOBZQ\nX2TAsnGHrTyOnpVCAADMOYRCAAAAOe5A3+Gpj08Nt1g2bsDKUIiVQgAAzDmEQgAAADksbaZ1sP+o\nnDanJKlpGkKhYgtCoe6hsLxuuwrzXFmPBQAAZgahEAAAQA5rCbRpLBHU9VVbVOgq0KlAq2W9QoHo\neChUlGUolEqn1TccVlVJXtanmAEAgJlDKAQAAJDD9vcfkSRtrlivBn+dRuNj6gv3WzL21EqhLE8f\nGxiJKpky6RMCAGCOIRQCAADIUeNbx47I5/Cq0V+vhuJ6SePF01YYjo3IZthU6CrIahz6hAAAmJsI\nhQAAAHLU6dGzCsRGtKFsrew2uxonQqFTw62WjD8SG1Ghq0A2I7sfCbsHOXkMAIC5iFAIAAAgR+3v\nHz91bFPFOklShbdMRa4CNQVasu4VSptpBWKjlh5Hz0ohAADmFkIhAACAHGSapg70HZbH7taqkkZJ\nkmEYaiiu11g8qN5wX1bjBxMhpcyURcfRh2QYUkUxoRAAAHMJoRAAAEAOOhvs1GB0WOvKVstpc0x9\nvdE/0SuU5RayyZPHrDiOvmcorPIir5wOfrQEAGAu4W9uAACAHHSgb+LUsfL15329obhOUvZl05Mn\njxW5C7MaJxRNaDScUBVbxwAAmHMIhQAAAHKMaZo60H9YLptTa0pXnve9cm+Z/O4inRrOrldo6jj6\nLFcK9VAyDQDAnEUoBAAAkGO6Q73qDfdrTekqueyu875nGIYa/HUKJkLqDvVmfI/hiVDI7/FnN9fJ\nUIiVQgAAzDmEQgAAADlm8tSxzeXrLvr9yS1kpwKZ9wpNrhTKtmh66uQxVgoBADDnEAoBAADkmAN9\nh+WwObS2bPVFv9/oXyFJahrOvFcoEBuVlH2nUPdgSJJUVZqX1TgAAGDmEQoBAADkkL5wv7pCPVpd\n0iCvw3PRa8q8JfK7i9QcaFXaTGd0n0AsoHxn3nknm2WiZygsn9uhQp8zq3EAAMDMIxQCAADIIZOn\njm36nVPH3s4wDDUW1yuYCKkn1HfN9zBNU4HoSNYl06l0Wn3DEVWV+mQYRlZjAQCAmUcoBAAAkEP2\n9x+WzbBpQ9may17X4K+XlNkWskgyong6Ib8nu1CobziiVNrk5DEAAOYoQiEAAIAcMRgZ0pmxDq0s\nXiGf8/JBS+NU2fS1h0Ln+oSyC4WOtg1JklbUZDcOAACYHYRCAAAAOeJA/+TWsYufOvZ2pZ4SFbv9\nOjV87b1Ck8fRZ7t97EDzgCRp44qyrMYBAACzg1AIAAAgRxzoPyxDhjZeRSg02SsUSobVHeq9pvsE\nYgFJ2R1HH44mdfJMQLVVBSoucGc8DgAAmD2EQgAAADkgEBtR68hprfAvV4Er/6oe01CcWa/Q5Pax\nbEKhI22DSqVNbWaVEAAAcxahEAAAQA44PHBMkrSp4tKnjv2uRv9Er9C1hkLR8e1j2YRCbB0DAGDu\nIxQCAADIAaeGWyVJa0oar/oxpd4SlXiKdSpwbb1CgdhkKFR4bZOckEqndbhlUMUFbi2tvLpVTQAA\nIPcQCgEAAMwy0zR1KtCqQleByr3XtvKm0V+vcDKizmDPVT8mEBuR1+GRx+G51qlKkpo7RhSKJrVp\nRZkMw8hoDAAAMPsIhQAAAGZZf2RAo/ExNfjrrjlkabiKo+kTybQiseTU54HYSFbH0U9uHdvUwNYx\nAADmMkIhAACAWdYcaJMkrfAvv+bHNvgvXza992Sf/su3Xtd/+vqvlUylFUvFFU5GsjqO/sCpAbmd\ndq1a6s94DAAAMPscsz0BAACAhe5UYLxPaMVEcfS1KPUWq9RTouZAm9JmWjZj/P/8RkJxPf6rJu05\n0SdJGg3FdbhlUIsWjz8u05Lp7sGQeocj2tpYLqfDntEYAAAgN7BSCAAAYJY1B9qU5/SpKq8io8c3\nFNcpkoyoM9gt0zT1xtEe/dd/eFN7TvRpRU2R/vhDayVJrx7qzvrkMbaOAQAwf7BSCAAAYBYNRoY1\nFB3WxrK1U6t8rlWjv15vdu/RwZ4mPXVgQAdbBuVy2vTIexr07i2LZbMZ+uWeDh1qGdSGbRFJmZ88\nduDUgAxJ6+tLM3o8AADIHawUAgAAmEXNk1vHiq9969ik+qJlkqQXDu/XwZZBra4t1pc/fYPu3LZE\nNtt4cfV7rluqtGnq8NlOSZmtFBoLx9XcOaL6xUUq9Lkyni8AAMgNhEIAAACzKJuS6UlnOlIy426Z\neUPaflejPv/wJlX4vedd884ti+WwG2obGO8YKvZce0n0oZZBmaa0aQVbxwAAmA8IhQAAAGZRc6BV\nHrtHi/MXZTzGoZZBpcaKZTjjWr3SfdFj7QvzXNrcUK5wOigps5VCByf7hAiFAACYFwiFAAAAZslI\nbFR9kQHV+5dl3CckScfah+WIjAc1LRMrjy7m1g3VMlxRGaZdPof3ktddTCKZ1uG2IVX4vaou9WU8\nVwAAkDsIhQAAAGbJVJ9QFlvH+gIRDYxEtaywVpLUEmi/5LVrl5XI5o7JjLsVT6av6T4nzw4rFk9p\nU0PZRVciAQCAuYdQCAAAYJZM9gk1+DMvmT7ePiRJ2rx4ubwOj5pHLr1SKK2U5IgpFfNo38n+a7rP\ngVPjW8c2snUMAIB5g1AIAABgljQH2uSyObWkoCbjMY6fHpYkrV1eqrqiZRqIDGokNnrRaye/bsY9\neu1w91XfwzRNHWgekM/tUMPia+8iAgAAuYlQCAAAYBYE4yF1hXq0vKhWDpsjozHSpqnjp4flz3ep\nqsQ3dTR9y0j7Ra8PTIRCxZ4iHT89rP5A5Kruc7YvqKHRmDbUl8ph58dHAADmC/5WBwAAmAUtI9lv\nHevsD2ksnNDq2hIZhqH6iW6iS5VNB2IBSVJjVZUkaedVrhY60MzWMQAA5iNCIQAAgFlwyoKS6ck+\noTXLiiVJtQWL5TDslwyFhmMjkqQNS2rkdtm183CP0qZ5xfscbB6Q3WZofV1JxnMFAAC5h1AIAABg\nFjQH2uQw7KotXJrxGMcm+oRW146HQk67U7WFS9QR7FYkGb3g+sBEKFSeV6zrV1VocDSqExNjXMrw\nWExt3WNqXOKXz+PMeK4AACD3EAoBAADMsEgyoo6xLtUWLpXLnlnQkkyldfJsQJUlPpUUeqa+Xu9f\nLlOm2kZOX/CYyU4hv7tIt26oliS9dujyW8gOtYxvHdvE1jEAAOYdQiEAAIAZ1hJolylTDVlsHWvr\nHlUsnpraOjbpcmXTgeiIbIZNBa58ragpUmWJT3ub+hWOJi64Np5I6Ve7z+rp345vc9vYQCgEAMB8\nQygEAAAww5onOn9WZFEyfbx9fNvXmtrzQ6G6omUyZFy0VygQG1GRq1A2wybDMHTbhmolkmntOt43\ndU08kdIvd5/VF7/9hp546ZRiybQevL1eFX5vxnMFAAC5KbPzTwEAAJCx5kCrbIZNy4tqMx7j2Olh\nGZJWLj0/FPI5vVqUX6X20TNKppNTx92n02mNxEdVW7Bk6tqb1lbpp79p0WuHunTzuir9Zn+nXth1\nRiOhuNwuuz5wU63ee90SFfhcGc8TAADkLkIhAACAGRRLxXV6rENLCmrkcbgzGyOeUkvniJZWFSjf\ne2EnUX3RMnUGu3V2rHMqeBqJjSltpuX3FE1dV1zg1vq6Uh1qGdQXvvW6xsKJqTDoruuXXnRsAAAw\nf7B9DAAAYAa1jZxW2kyrIYutY6c6AkqlzQu2jk2qn+gqan7bFrLB8Ph2s2J30XnXvnPjIklSIpnW\nPTfX6m8+e7M+8s56AiEAABYAVgoBAADMoObAeHHziixKpqeOol92iVDobWXTd058bSgSkDR+8tjb\nbWoo0xc/ulk15fkEQQAALDCEQgAAADOoOdAmQ4bqi7IIhdqH5LAbaljsv+j3iz1+lXqK1RpoV9pM\ny2bY3hYKFZ53rWEYF/QSAQCAhYHtYwAAADMkkUqobfSMavKr5XNmdppXMJLQ2d6gVtQUye20X/K6\nuqLlCiXD6g33Szq3fczvvniQBAAAFh5CIQAAgBlyeqxDyXQyq61jJ04Py5S0+hJ9QpNW+JdJOtcr\nNHiJ7WMAAGDhIhQCAACYIef6hDIvmT7XJ1Ry2esmy6ZbAu2SpKHwsAwZKnIXZHxvAAAwvxAKAQAA\nzJBTw9mXTB9vH5LHZdfy6suHO1W+CuU5fWoZGV8pNBQJKN+VJ4eNSkkAADCOUAgAAGAGJNNJtY6e\nVpWvQgWu/IzGGBqNqnc4olVLi2W3Xf7HOMMwVFe0TEPRYQ1HAxqMBC44jh4AACxshEIAAAAzoHWk\nXfFUXCtLGjIe41j7xNaxK/QJTZpckXRw4KgSqQQl0wAA4DyEQgAAADPg2GCTJGlNSWPGYxw/PSRJ\nWr3s6kKh+qJlkqS9vQclXXgcPQAAWNgIhQAAAGbA8aEmOQy7GorrM3q8aZo61j6swjyXasryruox\nSwpq5LQ51TrSLomTxwAAwPkIhQAAAKbZSGxMHcEu1fuXy213ZTRG12BYI6G4VtcWyzCMq3qMw+bQ\nssIlU58TCgEAgLcjFAIAAJhmJ4bGt46tzmbrWPvE1rGr7BOa9PaTzoo9hEIAAOAcQiEAAIBpdmzo\npCRpTenKjMc4fnq8ZHrNVfYJTaovOhcKFbFSCAAAvA2hEADMsHA0oUQyNdvTADBD0mZaJ4ZOqchV\nqEV5VRmOYarpbEDlfo/KirzX9NjlRUtlaHy7GdvHAADA2zlmewIAsFB0D4b01G9atbepX5LkddtV\n4HWpIM+pQp9LBT6XCnxONSwu0ob6slmeLQCrdIx1KZgI6caqbVfdBfS7egbDCkWTGf3Z4HF41FBc\nr7HEaMZ9RgAAYH4iFAKAaTY0GtWzO9v06qFumaZUW1mgPK9Do6GExiJxDXRFlTbN8x5zx5YaPfzu\nBjnsLOgE5rrJrWOrSzPvE2rpGpEk1ddkdqT8Z9ZvV0mpT5GRdMZzAAAA8w+hEABMk2AkoeffPK2X\n9nYokUyrutSnj7yzXpsbys5bLZA2TYWjSY2F4xoajenJl0/p5X2dOtMb1Gc/vE7FBe5ZfBYAsnVs\nsEmGDK0qach4jJbOUUlS/aLMtn95HR7lu/IU0VjGcwAAAPMPoRAAWCyWSOnFPWf1wptnFI4lVVzg\n1odvW65b1lXLZrtw64jNMJTvdSrf61R1aZ7+63/Ypu/tOKFdx3r13763W5/90FqtXHptxbIAckMk\nGVXb6GktLVysfGdexuO0dI3I7bRrcUXmYwAAAPwuQiEAsFDvcFh/9+OD6h2OKM/j0O/dvkJ3bKmR\ny2m/6jHcLrs+c+8a1VUX6kcvN+tvnjigh+5YofdsW5xxHwmA2dE03Ky0mdaaLI6iD0eT6uoPaeVS\nv+w2tpQCAADrXDEUSqfTevTRR3Xy5Em5XC595StfUW1t7QXXfelLX1JRUZE+//nPS5Luu+8+5efn\nS5IWL16sr371qxZPHQByS0vXiP7Xvx1SMJLQe7Yt1odvXS6fx5nRWIZh6M7rlmhpZb6+9bOjeuKl\nU2rrHtXvv2+V3K6rD5gAzK5jg9kfRd/WPSpTUl2GW8cAAAAu5Yqh0Isvvqh4PK4f/ehHOnDggL72\nta/pW9/61nnXPPnkk2pqatJ1110nSYrFYjJNUz/4wQ+mZ9YAkGP2n+rXd352VIlUWtvvWql3ba6x\nZNyVS4v1V5+4Tn//zGG9eaxXHf1B/eG9a7WkIt+S8QFMH9M0dXyoSV6HR7UFSzIeJ9uSaQAAgEu5\n4hrkvXv36rbbbpMkbdq0SUeOHDnv+/v27dPBgwf10EMPTX3txIkTikQi+tSnPqXt27frwIEDFk8b\nAHLHK/s79Y2nDkuG9LmPbLAsEJpUXODWFz+6RXdsqVFHf0iP/vNb+pcdJzQSilt6HwDW6osMaDA6\nrJXFDbLbMl/hl23JNAAAwKVccaVQMBic2gYmSXa7XclkUg6HQ319ffrmN7+pb3zjG3rhhRemrvF4\nPPr0pz+tBx98UO3t7frDP/xD7dixQw4HFUYA5rZ4KqHXOt/QkYPH5DI8Gh60qbU9KV9FgT7+zk1a\ntXR6VvA47DZ9/L0rtXFFmZ586ZR+c6BLu4716p6bl+nObYvldLClDMg1xwebJCmrPqG0aaq1a0QV\nfq8K81xWTQ0AAEDSVYRC+fn5CoVCU5+n0+mpcGfHjh0aHh7WZz7zGfX39ysajaqurk733HOPamtr\nZRiGli9fLr/fr/7+flVXV1/2XuXlBVk+HeDieG0hW4lUQi+3vq6njr+g4cjIed9z1UppSd9v3y21\nSwWuPN227Ab9/qYHLC+GvqO8QO/ctlQ73jytx3ec0E9+3aJXD3XrE/es0S0bFlFEPU/wZ9b80Hy8\nRZJ0a8MWleVl9nt6tndMoWhS162psuR1wWsL04XXFqYLry1MF15b464YCm3ZskWvvPKK7r77bh04\ncECNjef+t2v79u3avn27JOmpp55Sa2ur7r//fv3whz9UU1OTHn30UfX29ioYDKq8vPyKk+nvH8vi\nqQAXV15ewGsLGUulU9rVs1fPt72o4VhALptTd9S8U2eOVupw64AW19h0161lCqdHNRgd1mBkSB3B\nLj3f9LKqnFXaWrlpWuZ1fWOZ1i29Qc/ubNdLezv019/fo4bFRXrkPQ1aVkXvyFzGn1nzQyKd1NHe\nk6ryVcgMO9Ufzuz3dM+RbklSTakv69cFry1MF15bmC68tjBdFtpr63IB2BVDoTvvvFM7d+7Uww8/\nLNM09dhjj+m5555TOBw+r0fo7R544AH9xV/8hR555BEZhqHHHnuMrWMA5pS0mdbunv16vv1FDUQG\n5bQ5dMeS23RL5a36h6eb1dY9qk0rFumPPrRW7t85br4vPKDH3vpb/bjpZ1pZ3KB8V960zNHncerh\ndzfo9s01+vErzdp/akCP/WCf/uLjW7S8mmAImE0tgTbF0wmtLs1865h0rmR6RQ19QgAAwHpXTGps\nNpu+/OUvn/e1+vr6C667//77pz52uVz6+te/bsH0AGDm9Yb69E9HH1dnsFt2w6531Nysu5bdLlvS\nq//nyQPq6A/q3dct0SO3r5DNduF2rQpfme6pu0tPN/9CPzn1rD6x9pFpnW9liU+f+8gG7T3Zr79/\n+rC++fRh/eUnrlOhj/4RYLYcH5rsE8r8KHpJaukckcth0+KK6QmXAQDAwnbF08cAYCHZ13dI/3PP\n/1ZnsFs3VG3VX934BT208sMy4x597fF96ugP6vYtNfqPv7f5ooHQpNsX36ragiXa3btfRwaOz8jc\nt64s133vqNPQaEzf+dlRpdLpGbkvgAsdGzwpp82hFf66jMeIxJLq7A9pWXWh7DZ+ZAMAANbjJwwA\n0Hh30E9OPat/OvKvSsvUJ9d+VNvXPKRSb7EGAhF97fG96hkK633XL9XH72y8bCAkSXabXR9b/YBs\nhk1PnHxKkWR0Rp7H3TfVanNDmY6fHtZPf9M6I/cEcL5AbERdoR6t8NfJZXdmPE5r96hMSfU1bAcF\nAADTg1AIwIIXiI3o7/Z/W6+cfU1Vvgp9YdvntG2iILpnKKyvPr5P/YGoPnjLMj14e/1Vn/BVk1+t\nu2rvUCA2op+1vDCdT2GKzTD0B/esUWWJTzt2ndHuE30zcl8A5xwfOiVJWp3FUfSS1No50Se0iD4h\nAAAwPQiFACxoJ4ZO6atv/Z1aR05ra8VG/Zdtn1N1XqUkqaM/qK89vk/DYzE9+K56ffi2ums+8v2u\nZXeoOq9Sr3a+oVPDM7Nyx+t26M/uXy+3y67v/uK4OvuDM3JfAOOOD56UJK0pzbJPqGtUklRHyTQA\nAJgmhEIAFqS0mdaO9pf0jQP/qEgyqgcbP6RPrv2oPA63JOl0z5j+5w/3azQU18fubNT7b6zN6D5O\nm0MfW/WgDBn64YmfKJ5KWPk0LqmmLE+fvnu1YomUvvHUYYWjyRm5L7DQpc20Tgydkt9dpCpfRcbj\nmKapls4RlRV5VJRHaTwAAJgehEIAFqQXT/9Gz7X+u/zuIv2fW/5Y71p8iwzDkGmaeu1Qt772+D6F\nIgl98v2r9O6ti7O61/Kipbp9ya3qiwzo+bZfWfQMrmzbqgq9/4al6h2O6B9/fkxp05yxewML1Zmx\nDoWSYa0pabzmlYVv1zMUViia5Ch6AAAwrQiFACw48VRcL539rXwOr7543X/U8qLxVUDhaELfefao\nvvv8cdls0mc/vE63bVxkyT3vqbtLZZ4SvXjmNzo9etaSMa/G/e+s0+raYh1oHoEwM24AACAASURB\nVNAvXm+fsfsCC9WJoWZJ0uost461TmwdqycUAgAA04hQCMCC82b3XgUTIb2j5iYVuPIlSU1nA/qr\n776lt473aUVNkf7bJ6/XtlWZb/34XW67Sx9d9YBMmXr8xE+USqcsG/ty7Dab/uhDa1Va6NYzr7bp\naNvQjNwXWKgmQ9+6osy2nE5qmSiZ5uQxAAAwnQiFACwoaTOtl87+Vg6bQ+9ccotS6bSeebVVf/3D\nfRoai+mDtyzTFz+2WWV+r+X3XlmyQjdXX6/OYLd+efrXlo9/KYU+l/7kvvWSIT358im2kQHT6MxY\nh4pcBfK7s1vh09w5KpfDpsXl+RbNDAAA4EKEQgAWlAP9RzQQGdQNVVsVDzv014/v17M721VS4NYX\nP7pFH76tTnbb9P3ReN+KD6jIVagd7S+qO9Q7bff5XcurC3Xjmip19oe072T/jN0XWEhG42MKxEa0\npCC7HrJILKnOgaCWVRXIYedHNQAAMH0csz0BALBSNJ7UaCiu0VBCI6G4wrGEorGUIrGkwvGE9qV3\nSIZ05ki5/uqFtxSJpXTdqgr9/vtWyudxTvv8fE6vHl55n75z+F/0+PGf6D9v/axsxtX9o880TbWM\ntKu2YLGc9muf6723LNObx3r07M52bVlZLlsWJbgALnRmtEOStLSgJqtx2rpHZZr0CQEAgOlHKARg\nzkinTQ2ORtU7HFbfcES9QxENjEQ0Go5rNBTXSCiueCJ9ycfbCobkXj2g1FClmpqT8rkd+tTdq3XL\n+qqsTgm6VhvK12prxUbt7Tuo33S8rtuX3HpVj/t52y+1o/0lva/2Dt1b/75rvm9ViU83rKnUm0d7\ntb9pQFtXll/zGAAu7exYpyRpaWF2K4VaKJkGAAAzhFAIQE5Jp00NjUbVOxx5W/gTVu9wRP2BiFLp\nC/tw7DZDBT6nqkp8KsxzqcjnUmHe+Fuexymv2y6v26EX+n6i1qD0J7d8UCs/WCeX0zajYdDbPdj4\nIZ0YPqVnW17Q+rI1KvOWXPb617t2a0f7S5KkN3v26gN1773qFUZvd+/Ny7TraK+e29mmLY1ls/b8\ngfnozEQotCTLlUJTJdOLKJkGAADTi1AIwLQwTVOxREqhSFKhaELReErxZErxRFrxREqxxMTHyZTG\nwonx8Gc4rP5ARMnUhcFPnsehpZUFqizxqsLvVWWJT5XFPpX5Pcr3Oq+4Faor2KPW1mbVFy3ThuqG\n6XraV63Ala8HGj6ofzn2pJ448VP92aY/uGRAc3yoSU+c/KnyHD7VFi7RsaGTOjncrNUljdd83+rS\nPF2/plK7jvXqwKkBbW5ktRBgFStKpk3TVGvXqMqKPCrKd1s4OwAAgAsRCgG4JqZpKhRNqj8Q0cBI\nVAOBiPpHogqMxRSKJhSKJhWMJBSKJC66qudy8jwOLakoUGWxVxXF48FPRbFXlcU+5Xuz6/t56cxv\nJUnvWfrOrMax0nWVm7Wn94CODp7Qm917dNOi6y64pjPYrX88/K+yydBnNvy+JOnY0Ent6t6bUSgk\nja8WeutYr362s02bGlgtBFhhsmR6XenqrMbpHY4oGElo7fLLrx4EAACwAqEQgAtE48mJwCeq/pGI\nBgJRDYxE1D/xPhpPXfRxhiHleZzK8zhUXuRRnnf84zyPU26XXW6nXS6nXS6nTW7H+Mdup01ej8OS\n4OdSArER7e7dr0pfhdaVZfcPNisZhqFHVt6vr+z6un7a/HOtKV2pIve57SKB2Ii+dfCfFU1F9cm1\nH9UK/3KZpqkyb6kO9B9RJBmV1+G55vsuKsvTdasr9NbxPh1sHtSmhjIrnxawIFlVMs3WMQAAMJMI\nhYB5YnIFTyiSUDiWVDSWVCQ+fupWZOLjaDypZNJUMp1WMplWMmUqlR5/n0ylNRZOaGAkorFw4qL3\ncLvsKi/yqKzIqzK/R+Vve19c6JbX7cjJE61eOfuaUmZK71n6jox6eKZTscevD6+4W0+efFo/bnpG\nf7h+uyQpmozp24e+p+FYQB+qe7+2VW6SNB4k3Vi1VT9v+6X29x3WzRdZXXQ17r15mXYf79PPdrZp\n44pSVgsBWaJkGgAAzEWEQsAcEYunNDQW1dBoTEOjUQ2ORjU0FtPwxPuh0ZhiiYuv4LlaDruh0kKP\nllYWjIc/fq/Kijwqn3if73XOufAgkozotc5dKnQV6LqqLbM9nYu6ZdEN2tN7QAf6j2hf3yFtLFur\nfz76uM6OdeqWRdfrztp3nXf99VVb9PO2X2pXz56MQ6Ga8nxtW1Wh3Sf6dKhlUBtXsFoIyIaVJdNO\nh01LKvKtmBYAAMBlEQoB0yCdNieKlM8VKseSKcXjKcWSaSWSaZmmqbRpyjTHV/mk05r6WjCSmAp/\nxgOfqELR5CXvl+91qrLYq5JCjwp8TnndDvncDnncDnld4ydved0OuV12Oe02ORw2OeyGHLaJ9w6b\nHDabnE5bTq70ycZrnbsUTUV1V+3tctpy8488m2HTx1Y9oMfe+n/145PP6OjgCR0ZPKHVJY16qPG+\nC4K4Um+JGvx1OhVo1UBk6Ionl13Kvbcs0+4TfXp2Z5s21LNaCMiGFSXTkVhSHf1BragpksOeW6sa\nAQDA/JSb/0ICclQyldZoKK5AMK6RYEyBYGz849DE+2BcgWBMo+G4zGvrWL4kt8uukgK3llcXqqTQ\nrZICj4oL3Sop9Ki00KPiArfcTrs1N5tnkumkXjn7mtx2l26tuXG2p3NZFb5yfWD5e/VMy/N6s3uP\nFuVV6dPrPi677eK/tzdUb9OpQKt29ezVB5bfmdE9F5fna9vKcu052a/DrUPaUF+azVMAFiyrSqbb\nu0dlmmwdAwAAM4dQCPNG2jQVjiY1Fo5rLJwYfx9JyO1xamQkqkQqrVTqXH9OKmUqZZoyDMkmQ4Yx\n3tcy/n58zGAkMRH0jAc/l+rameRy2OTPd2tFTZF8bsdEkfJEsfLbSpZdDrts591v/L1t4n2ex6nS\nQo9KJnp6WMGRmd29BzQSH9UdS26Tz+md7elc0R1LbtORweMajgb0Jxs/ddkS6c3l6/Tjk09rV/de\nvX/ZuzPuSvrgLcu152S/nt3ZpvV1JbzWgAxYVTLd2j3RJ0TJNAAAmCE5Ewo98t1HZTMM2W2TbzbZ\n7OMfO2yG7HbbxLYXQw67TXabTfzbJXeZpqlUeuItZU4cTW5OfG/imrd/ovMDEpshSecCmtREkJNM\nTZYkn1+QPPm9aeGUbCWSs8KmkqmtVzY5HbaprVhOu23idWlIb3tdmpKiE29XdO6XSApNvHVb+1QW\nmjNjHbIZNt2x5LbZnspVsdvs+k+b/0imaV5yhdAkj8OjTRXr9VbPPrUE2tVQXJfRPRdX5GtrY7n2\nNvXraNuQ1tWxWgi4VlaVTLdOlEzXLWKlEAAAmBk5Ewql8nqVknTBOgxTUmriDZhkm3h72yt4ujdQ\nJSfepky+LuPTfGNk5R01N6vY45/taVw1m2E7L1i8nBuqtuqtnn3a1bM341BIGu8W2tvUr5/tbNPa\n5awWAq6VFSXTpmmqtWtUxQVuFRe4rZoaAADAZeVMKPT9j/ydBgaC4wW98aTC0aTC8fFjtYORpMYi\nCY0GYxqNJDQajGs0EtdoMK6xSFyplCmbzRh/MybeJlYcTa4+mvr87W+GoVTaVGKiDHiyGDieTM/2\nL8cl2QxDDruRk3OcLDf2uR3yehzKm3jv8zjkcTlktxnnVgPJOG/7lGlKqfTktq70+MfpySPTTeW5\nHcr3uVTgcyrf61CBz6UCr0t5Xqecjstvmykry9fAQHCGfhWQSwxJLrtrtqcxbRqL61Xs9mt/3yH9\nXuOHMn6uSysLtLmhTPtPDejY6WGtXZZZcTWwUFlRMj08FtNIKK4tjeUWzgwAAODyciYU8jjcctvj\nkl3yOt3y583eXNKmqXgipWg8pVAkoWAkoWAkqVB08uPxt2QqLZfDJqfdLqdjYhvRxFYip8M2/r23\nv9ltcjrGrzUMTW19muy6SSQnPk+mFUukFI4lFTnvLaVILKlEKi2P0y6Pyy63a/y9x+WQ+3e+5nY6\nJr438TWnXU6nXebEiVfptHneCVhp01Qimf6dk7ImTs5KpJRKmfK67fJ5nPJ5HMrzOMY/ngiCbLbc\nXF0w9doC5hmbYdP1VVv076df1oH+I7q+akvGY917yzLtPzWg53a2EwoB18CqkunJrWPLqwusmBYA\nAMBVyZlQKJfYDEMe1/jqFn8+S7gB5K4bJkKhXd17swqFllUVakN9qQ61DOrkmWGtXFps4SyB+cuq\nkum2bvqEAADAzMvsuBoAQE6ozKvQ8sJanRxu1nA0kNVY9968TJL03Ovt2U8MWCCsKplu6x6VIWlZ\nFSuFAADAzCEUAoA57obqrTJlanfP/qzGqa8p0pplxTrWPqyWzhGLZgfMb1aUTKfTptp6xlRdliev\nm0XcAABg5hAKAcAct7Vioxw2h97s2SvTNLMai9VCwLWxomS6azCkWDyluupCC2cGAABwZYRCADDH\n+ZxebShbo95wn06Pnc1qrJVLi9W4uEiHWgZ1umfMohkC89NkyfSSguy2jk2VTC8iFAIAADOLUAgA\n5oEbqrZKknZ17816rHtvWS6J1ULAlVheMs1KIQAAMMMIhQBgHlhd0qhCV4H29B5QIp3Maqw1y4pV\nt6hQ+5r61dEXtGiGwPxjWcl016icDptqyvOsmBYAAMBVIxQCgHnAbrPrusrNCicjOjJwPKuxDMPQ\nPRPdQj9/oz3ruQHzlRUl07FESh39IdVWFshh58cyAAAws/jpAwDmiRuqJ7aQ9ezJeqyN9aVaWpmv\n3cf71D0Yyno8YD6yomT6dM+Y0qap5WwdAwAAs4BQCADmiZr8ai3JX6Sjgyc1Gs+uJNowDN178zKZ\nkn7++mlrJgjMI1aVTE/1CVEyDQAAZgGhEADMIzdUb1PaTGtPz/6sx9rcWK6asjztOtar9v4BpdIp\nC2YIzA9WlUxz8hgAAJhNhEIAMI9sq9wkm2HTmz3Zn0JmMwx94OZape1Rff3Q3+pHTU9bMENgfrCs\nZLp7VPlep8qLPFZMCwAA4JoQCgHAPFLgyte60tXqDHarY6wr6/GuX1Wp4sUBpY2k3uzeq7H41Z1G\nFowktK+pXz98sUlf/t5ufftnR3SmN7stbUAusaJkejQU18BIVHWLCmUYhlVTAwAAuGqO2Z4AAMBa\nN1Rv1aGBo9rVs1eLCxZlNZbNZqh08Yg641LKTOm/P/e0ltk3q7LYqwq/V5UlPlUUe+V02NR0NqCT\nZwI6cXpYZ/uCMifHMAy194zpreN92lBfqg/cVKuGxf7snygwi6womW6d6BOiZBoAAMwWQiEAmGfW\nla5SntOn3T379eH6u2W32TMeK55KqD95Vm4zXzEzoqCvWXsOLpJ06VUNDrtNK5f6tWppsVYu9atu\nUaFOngno52+c1qGWQR1qGVTjEr/uualWa5eXsEICc85kyfS60tVZjdPWRSgEAABmF6EQAMwzDptD\n2yo36Tcdr+vY0EmtL1uT8VhNw82KpxN6T+3NCiXCeqN7t/7oYxXym4vVOxxR33BEfcNhRWJJ1dcU\nadXSYtXXFMrpOD+IWldXqnV1pWo6G9Dzb46HQ397NqDaygLde8sybWksz/ZpAzPGqpJpTh4DAACz\njVAIAOahG6q26jcdr2tX996sQqHDg8clSevL1shpc+iN7t3aP7xHf7xhvVYuLb7m8RqX+NW4xK/T\nPWN6/s3T2nOiT9946rA+95H12txAMIS5wYqSadM01dY9qgq/V/lep1VTAwAAuCYUTQPAPLS0YLGq\n8ip1eOCYQolwRmOYpqkjA8flc3i1vHCpaguXaGnBYh0ZOKGh6HBW86utKtBnP7xO//f2bTIk/fz1\ndpmmecXHAbnAipLpvuGIQtEkR9EDAIBZRSgEAPOQYRi6sWqrkmZKe3sPZjRGR7BLgdiI1paumuol\nuq3mJpkytbNzlyXzrFtUqC2N5WrrHtOx09kFTcBMsbJkuo4+IQAAMIsIhQBgnrquarMMGdrVszej\nxx8ZmNw6dq5Md1vlRnkdXu3sfkvJdNKSed59U60k6fk3TlsyHjCdxuJBBWIjWa0SkqTWyZJpVgoB\nAIBZRCgEAPOU312kVSUNah89o95Q3zU//vDAcdkMm1aXrJz6msvu0o1VWzUWD+pg/1FL5rm8ulBr\nlhXr+OnhqX8oA7mqK9gjSarJX5TVOG3do7LbDNVW5lsxLQAAgIwQCgHAPHZj9TZJ0pvXuFpoJDaq\n02NntaJouXxO73nfu63mRknSq51vWDNJSR+4aZkk6RdvtFs25kIUiSWVpptpWnWGuiVJi/KrMh4j\nmUrrTO+YFlfkX3BSHwAAwEzi9DEAmMc2lK2V1+HRWz37dG/dXbIZV/d/AUcGL9w6Nqkyr0KNxSvU\nNNysnlCvqvIqs57nqqV+1S0q1P5TA+rsD6qmnNUT1+rZnW165tU2GYaU73Uq3+tUgdepAp9L+b7x\nzzfUl6phsX+2pzqnnVspVJ3xGGf7gkqmTPqEAADArGOlEADMYy67U1sqNigQG9HJ4earftyRgROS\npHWXOM7+3GqhN7OfpMaLsT9w40S30JtnLBlzIenoC+q5ne0q8Dm1oqZI+V6nxsIJneoY0d6mfv3m\nQJd+8cZpffVf9+kHvzypaNyaPqiFqCvYI4dhV4W3LOMxJrdJ1tEnBAAAZhkrhQBgnruhapt2dr2l\nXd17tbqk8YrXJ1IJnRhqUqWvQhW+i//Dd2PZWhW5CrSrZ68+WP9+ue2urOe5saFMNWV52nWsV/fd\ntlxlfu+VHwSl06a+t+OEUmlTn/7Aam2oLzvve6FoQmPhhPoDEf3br1v0yr5OHW4Z1CfvXq3VtcWz\nOPO5J22m1RXqUWVexdSJfJlomzh5bDkrhQAAwCxjpRAAzHN1RbUq95bqQP8RRZLRK15/crhZ8XRC\n68pWXfIau82umxddr0gyqj29+y2Zp80wdPeNtUqbpna8xWqhq/Xyvg61do3qhjWV5wVCkmSzGSrw\nubSoLE8bV5Tprz6xTXffWKvB0aj+5on9rBq6RgORQSXSiay2jknjK4W8bruqSn0WzQwAACAzhEIA\nMM8ZhqEbqrYqkU5ob++BK15/eLJPqPTiW8cm3bLoBhky9GrnmzItKje+fk2Fyoo8evVQt0ZCcUvG\nnM+GRqP66W9bledx6JF3N1zxeqfDrgfeVa//un2bFpXl6ZV9nfrLf3pLx08Pz8Bs577JPqFFeZmX\nTIejCfUMhbWsqlA2w7BqagAAABkhFAKABeCG6q1y2hx6puV59YcHL3mdaZo6MnBcPodXdUW1lx2z\n2OPX+rI1OjvWqdNjZy2Zp91m0/tvWKpEMq1f7bZmzPnKNE394N9PKhZP6aE7GlSYd/Vb+JZXF150\n1VAimZ7GGc99ncHJk8cyXynU1j0miT4hAACQGwiFAGABKPEU6+GV9yuSjOofjnxf8dTFV+F0BLsV\niI1obemqq+pMeUfNTZKkVzusKZyWpFs3VKswz6VX9ncoHE1YNu58s/tEnw62DGp1bbFuWX/tK1cu\ntmroX3950rJVX/NRV2jy5LHMVwq10icEAAByCKEQACwQN1Zv062LblBnsFtPnnz6ov/4PzJwTJK0\n7iJH0V/MypIVKvOWam/fAYUTYUvm6XTY9d7rligSS+nlfZ2WjDnfBCMJ/fBXTXI6bNr+vpUystiG\ntLy6UF/6/W2qrSrQq4e6+TW/jK5gj/IcPhW5Mg902jh5DAAA5BBCIQBYQB5o/JBqC5ZoV89evdZ1\n4eqewwPHZTNsWlOy8qrGsxk23VS9TYl0UkcHT1o2z9s318jrduhXe84qlkhZNu588eNXmjUaTuhD\nty5XZXH2ZcVup12fu3+9Cn1OPfHiKTqGLiKWiqs/MqhF+VUZh3Cmaaq1e1TFBW75890WzxAAAODa\nEQoBwALitDn0B+s/rjynT//W9KzaRs6d8jUSG9XpsbNaUbRcPufVHwe/rnR8VdHRwROWzdPrdujd\nW2s0Fk7otUPdlo07Hxw/PazXDnVrSUW+3nvdEsvGLSn06E/uWy/DkL71zBH1ByKWjT0f9IR6ZcrM\nqk+oLxDRaCiu+poiC2cGAACQOUIhAFhgSjzF+uTajyptpvWPR36gsXhQknRk8tSxq9w6Nqkmv1pF\nrkIdGzqptGldUfF7ti2Ry2HTi3s76LmZEE+k9C87TsgwpE+8f5Ucdmv/Gm9c4tfH3tuoYCSh//3T\nwxxX/zadEyeP1WRx8ljT2YAkaeUSvyVzAgAAyBahEAAsQKtLGnVP3V0KxEb0z0d/qLSZ1pGB8ZU+\nV9snNMkwDK0tXaVQIqzTo9adGFboc2lDfal6h8LqGghZNu5c9tzr7eobjujObUumraj4XZtqdPvm\nGnX0B/XdXxwnkJvQZcHJY5OhUCOhEAAAyBGEQgCwQL239l1aX7ZaJ4eb9XTzL3RiqEmVvnJV+Mqv\neay1ZaskydJeIUna0jg+l71N/ZaOO9ckU2n95Nctev6N0yor8ui+2+qm9X6PvKdBjUv82nOyXz9/\n4/S03muu6Jw4eaw6rzLjMZrOBuRzO1RTnmfVtAAAALJCKAQAC5TNsGn76odV5i3Vy2dfVTyduOZV\nQpNWFq+Q3bBb2iskSRvqy2S3Gdp3cuGGQj1DYT32g716/s3TKvN79Kf3rZfbZZ/WezrsNv3Jh9ep\ntNCtp3/bqv2nFu6vvzReEN0V7FaZp0QeR2YF0UOjUfUHompc4pcti9PiAAAArEQoBAALmM/p1WfW\nb5fT5pQkrS9dk9E4XodH9f7lOjPWodH4mHXz8zi0ZlmJzvQFF1zxsWma+u3BLj36z2+pvWdMt6yr\n0qOfvF61VQUzcv/CPJf+7P4Ncjls+ofnjqlzAW/hG40HFUyEVJPN1rEOto4BAIDcQygEAAtcTX61\n/mDdx3XHkttU71+W8ThrS8ePsT9m8RayrSvHt5DtW0BbyIKRhP7+mSP63gsnZLfZ9McfWqtP37NG\nXrdjRudRW1WgT31gtaLxlL71zBElU9YVic8lXaHJPqFsSqZHJBEKAQCA3EIoBADQurLV+kjDvbIZ\nmf+1sK50slfI2i1km1aUyTAWTq/QoeZ+/dV339Lek/1qXFykL3/qel2/OvMem2xdv7pS79i4SF0D\nIb2yv3PW5jGbOi0omT51NiCX06allflWTQsAACBrM/tfjgCAeavSV6FST7GODzUplU7JbrOm96Yw\nz6XGxX41nQ0oEIzJn59Zp0uua+se1Ut7O/TG0R4ZMnT/O+p09421stlmv3/m/nfWafeJPv3s1Tbd\nuKZSBT7XbE9pRnVleRz9WDiuzoGQ1iwrlsPO/8cBAIDcwU8mAABLTB5NH0lG1TZ6xtKxt6wslylp\n/6kBS8edbclUWm8e7dH/+P4e/fd/2aPXj/RocUW+/uI/bNE9Ny/LiUBIkgp9Ln3o1uUKx5J65tW2\na3psJBlVKBGeppnNjK5Qj5w2h8p9ZRk9/lQHW8cAAEBuIhQCAFhm7TRtIds6cTT9vpN9lo47W4bH\nYnrm1VZ9/u9f1//33DG1do1qQ32p/vPvbdQ3Pn+H6hcVzfYUL3DHlhpVl/r06wOdOtsXvOrHffPA\nP+nLb/6NhqOBaZzd9EmlU+oO9aoqrzLj7ZVNZ8ef+0pCIQAAkGMIhQAAlmksrpfD5rA8FCop9Gh5\ndYFOnAkoGElYOvZMSqbS+u4vjusL33pdz+5sVyKZ1nuvW6Kv/tGN+j8e3Kh1daU5szrodznsNj38\n7gaZpvTEi00yTfOKj4ml4mofPaNgIqR/OPIDJdLJGZiptfojg0qmk6rJy7xP6OTZgBx2Q8urCy2c\nGQAAQPYIhQAAlnHZXWr016sz2G35ypAtjeVKpU0dbJ67W8he2d+p1w53q6LYq+13rdTf/uktevjd\nDaoo9s321K7K+rpSbawv1Ykzgas6De7sWKdMmXLZXTo9elY/PfXcDMzSWl2h8T6hTE8ei8SSOtM7\npuXVhXI5renZAgAAsAqhEADAUpNbyKw/mr5C0tw9mj4SS+rnr7fL47Lr//rYFr1rc43crrkXEjz0\n7gbZbYZ+9HKz4onUZa89M9YhSXqw4YOqya/Wq51vaFf33pmYpmXOnTyWWSjU0jki06RPCAAA5CZC\nIQCApdaUrpRkfa9QVYlPNWV5OtI2pGj8/2/vzuOrLO/8/7/us2U92fd9IxAIiIAsCrh0qNraaq0t\nDBZr25n+2vqdLuP067d1dJyZ6tRf58d0frXaUTvTFms37bS1arV2cKOKghAIEEL2kH1PTtaz3N8/\nDgmyhGwnOYG8n3+Zc+77uq8D14PEd67r87n4jiH9cV89fQNublibdVF370qJC2fLmkzae4Z46d36\nC15b2+t/vyAml78q3kGYLZSfHX+W+r7GuZhqQIx1HptmO/rjqickIiIi85hCIRERCaik8ASSwhMo\n6zoR8BoyqwoTcXt8lFZ1BnTc2dY3MMJL79ThDLez5YrMYE9nxm66MoeocDvPv1VDV9/wuNfV9Z0k\nzBZKYph/TdxRtBW3z8OTh3/CwEXSkazB1USkPYIoh3Na95fXd2MYkJ8+/4qHi4iIiCgUEhGRgFsW\nt4Rh7wiV3VNrXz6R1Yv9Xcj2X2RHyF54u5bBYS83bcghLMQW7OnMWHiojVuvzmfE7eOZVyvOe82A\ne5DWgXaynBkYhr949orEZdyQfR3tQ538+Ogv8Jm+uZz2lA15hugY6pz2LqERt5fqpl6ykp2XxN+7\niIiIXHoUComISMDNVmv6zKRIEqJDKalox+2Z34HCqM7eIf60v4H4qBCuuTw92NMJmI3LU8lOdvLW\nkRYqGnrOeb++rwGA7Kgzd0Z9OO+DLIldRGnHMV6q2T0nc52upv4WYPr1hKqbevF4TR0dExERkXlL\noZCIiARcQUwuDoudIwEuNm0YBqsXJzI04uVY7cVxhOx3e6rxeH3cvDEP/JQNjgAAIABJREFUu+3S\n+bZrsRhs37II8Leo953Vor62z19PKMuZceZ9hoXPLNtObEgMz1e/HPCC5IE0VmR6mu3oR+sJqci0\niIiIzFeXzk+nIiIyb9itdhbHFdAy0Er7YEdAx15d6O9Ctv/4/D9C1tTRzxuHmkiND+fK4untNpnP\nFmXEsG5pMtVNfew53HTGe3W9/s5j2VEZ59wX6Yjgr5fvwGpY+NGRn9ExOD8DvtF29OnT3Cl04lQo\ntChD9YRERERkflIoJCIis+L0EbLA7gTJS48iOsLBgRPteH3z+wjZf79RjWnCrZvzsViMYE9nVnzi\nmnwcdgvPvFpJ/5B77PXavpNE2iOIDTn/LpnsqEw+UXgz/Z4BHjv0Xwy4B+dqypPW6GrGwCA1InnK\n93q8PioaeklPiLiou82JiIjIpU2hkIiIzIqlcbNTV8hiGFxemIhr0M2J+nNr2cwXNc297CtrJTc1\nilWFCcGezqyJiwrlI1fm0Dfg5jev+wuL94246BzqIjsqc6zI9PlsTF/PtRkbaepv4YnSXXgC3K1u\nJkzTpMHVRGJYPA7r1EOduhYXw26vjo6JiIjIvDZhKOTz+bj//vvZunUrO3bsoLa29rzX3Xffffzr\nv/7rGa91dHRw9dVXU1lZGZjZiojIRSM+LJbUiGTKuyoY8bonvmEKVhfO/y5kz75WBcBtV+ddMBi5\nFFy/NovkuHD+58BJ6lr6qOvzHx07u57Q+dy66CZWJCyjvKuCn5X9GvOs2kTB0jPSy4BnkLRpdh4r\nHz06lqmjYyIiIjJ/TRgKvfLKK4yMjPCLX/yCu+++m29/+9vnXPPzn/+c8vLyM15zu93cf//9hIaG\nBm62IiJyUVkWvwS3z8OJ7sD+cmBxVgzhITbeK287p8DxfHCstosj1Z0sy4mlKCcuIGP6TB/PV/+R\n8q7594sWm9XC7VsWYZrw1B/Lqe31F5k+Xz2hs1kMC3cu+0uynBm83byPP9T8z2xPd1IaXP56QtPt\nPDYaChVmaKeQiIiIzF8ThkL79+9n06ZNAKxcuZLS0tIz3n/vvfcoKSlh69atZ7z+8MMPs23bNpKS\nkgI4XRERuZjMVmt6m9XCykUJdPUN81Zpc0DHninTNHn2NX9wc+vV+QEbt7a3nheq/8hzVS8FbMxA\nKs6NZ3VhIhUnezjY4P/8Wc7MCe7yC7E6+MKKzxAXGsvvq1/ineb3AP+fpccbnLpRjac6j6VHTD0U\n8pkmJ052kxgTSlyUfjkmIiIi85dtogtcLheRkZFjX1utVjweDzabjdbWVr7//e/zyCOP8OKLL45d\n8+tf/5q4uDg2bdrE448/PjszFxGReS8/OgeHxU5Fd3XAx77m8nTeOdbKD58/xnvlbXzqg4uJdYYE\n/DlTdeBEO1WNvaxZnEhualTAxi1pOwJAXW89bq8bu9UesLEDZdsHFnG4qp2G/gaiI6KJDnFO+t7o\nECdfuuyz/H/7v89Tx35Fd6fBG38eobG9n/joUNISIkiJCyc1PpzU+AhS4sOJmsUCzqd3Ck39+Fhj\nWz/9Qx5WLrp0a0mJiIjIpWHCUCgyMpL+/v6xr30+Hzab/7Y//OEPdHV18fnPf562tjaGhobIy8vj\n2WefxTAM3nrrLY4dO8Y999zDY489RmJi4gWflZg4+R8eRaZCa0tmg9bV5OTFZXG8owpnrINQW+BC\nm8REJ99Li+aRX5Vw4EQ7x+u7ufPDS7l+fU7QOn2ZpskLP9mPxYDP3rx82mvkfPcdfde/28pjeumx\ndlCUuGhGc50NiYlOPnJdOi90D+PwpE358ycmOvn00B38x8En+c3JX+HuX09hViYtXQMcquzgUGXH\nGdc7wx1svCyNW67JJy0hcpxRp6d1uJUQq4OirGwsxtT6crxz3F/ras3SlHn378R8m49cOrS2ZLZo\nbcls0drymzAUWrVqFbt37+ZDH/oQBw8epLCwcOy9O+64gzvuuAPw7w6qqqri1ltv5dZbbx27ZseO\nHTzwwAMTBkIAbW190/kMIheUmOjU2pKA07qavLSwNMrMSg5UH6cgJjegY4cY8LVPrOCNkkZ+ubuS\nR589xB/31vLpG5aQlhAR0GdNxtGaTqoae7hiSRKhlul9Xzvf2mrub6Whr5kwWyiDniH21RwlgenV\nupltKWnD0A1NdXYOHGkiI2lyYY1r0M3v3qxm94EGiF2GI/8wiatK+eK6a4lyOHENumnuHKCpo5/m\njgGaOgaoae7lxbdq+MNbNaxenMiN67MDsjvL6/NysqeJDGcaHe39E99wlv3HWgBIjQmdV/9O6N8t\nmS1aWzJbtLZktiy0tXWhAGzCUGjLli3s2bOHbdu2YZomDz30EM899xwDAwPn1BESERE5W06Uv65M\nTW9dwEMh8Leov3plOpcVJPDTP5az/3gbD/zXO9y0IYcPbcjGZp3aLo+Z+MPeOgBuWJcV0HEPtfuP\njl2ffR2/qXyByp7AH8cLlMb+BgC8riieevk499y+6oLd1zxeH68dbOQ3b1TRP+QhKSaMrVffQKMt\nmRdqXmHn/ke5PGkFi2MLyEvJpiD9dDcvr8/H/uNtvPh2HfuOt7HveBtLsmK4YV02y/Pipt31rWWg\nDa/pnVY9IdM0Ka/vJibSQWJM2LSeLyIiIjJXJgyFLBYL//RP/3TGa/n55xbOfP/uoPfbtWvXNKcm\nIiKXguwof0Ay2pFqtsREhnDXx5ZzoLyNXS8f5zdvVvNOWSt33rCEgozZbwte3+qitLqTxZkxAa0l\nBHCo7QgWw8KGtCv4c+M7VHXX4jN9Uz7WNBdqT7WjL07J5VB5D28fbWHDsjPDFdM0qW91UVLZwVul\nzTR3DhAWYuWT1xbwgdUZ2G0WVppb6PcM8kbDW7xcu5uXa3djM6zkRmdTGJtPYWwBOVGZrC1K5ool\nSZTVdvHi3jpKqzspq+smPTGCD2/IZl1R8pTDodEi09OpJ9TaNUhP/whri5KmHUqJiIiIzJUJQyER\nEZGZiA+NJdIeMeuh0KjLCxNZnBXLs69VsvtAA//y1H6uXZXOx6/OJyxk9r7tvfyOf5fQ9QHeJdQz\n3Et1bx2LYvKItEeQF5PD2037aHQ1k+FMC+izZso0Tep6T5IQGsft1xVzrGovv/yfClYWJGC1GJTV\ndVFS0UFJZTudvcOAf6fXNSvTuGVTHlERpwtHG4bBJwtv5qN511PRXU15dyXlXZVUdFdzoruK56v/\niMPqYFvhx1iXupqinDiKcuKoa+njpXfq2Hu0lcd/d5Sy2i4+9cHFU9ox1tDvLzKdPo129MdHW9Fn\nqhW9iIiIzH8KhUREZFYZhkF2VCZHOsroG3HhdAS2IPD5hIfa2HH9YtYtTebHfyjjf95r4MCJdj71\nwUIuXzRxjbsL6R7u4fsHf8hH829gecJSALr6hnn7aAup8eGsyI8PxEcYc7j9KACXJRYDUBCdy9tN\n+6joqZ53oVDHUCf9ngGWxC0iMSaMD63P5rdvVvOtn+yjo2eIEY+/vXxEqI31S5NZURBPcW48kWHj\nd1ILtYVSnFBEcUIRAP3uAU50V1HeVcE7zQd4uuwZkiMSyTm1Iy0r2clff2QZN2/K49H/PszrJU00\ndw7ypY8VT7pbWVVPDQYGGZHpU/4zePdUPaGlOXFTvldERERkrs2/feciInLJyT5VV2iudgsB/Gfp\nT9nT+wIPfGYtH70qh97+Eb737GEe/U0pPa7haY/7TtN7NPY382bD22OvvbKvHq/P5Pq1WVgCfGSo\n5FQ9oRWnAqj8mBwAqrprJj2Gz/Tx3fd+wCMHn6R1oC2g83u/2l7/0bGsqAwAblyXRVJsGE0dAyTE\nhHHjuiz+z+2r+O6XN/L5jy5j/dKUCwZC5xNhD2dlYjGfLLyFzxXfjtf08eThp+gbcZ1xXVJMGN+4\nfTVrFidSXt/Nt368j5OtrnFGPW3E66amp44MZxrh9qnVBGrrHuRITReLMqJJiQuf0r0iIiIiwaBQ\nSEREZt3pYtNzEwrV9tazv7WE/S0lmIaHWzbl8cBnriA/PYp9Za3c+8ReXi9pxDTNKY99oO0QAOVd\nlbh9HgaHPbx6sIGoCAcbliUH9HMMeoYo76wgIzKN+DD/zpPEsAScjkgquqsnPf/K7hpOdFdxrLOc\nh975N16u3Y3X5w3oXAFq+/x/v9lOfyjksFu579Nr+H+/uIFv/dU6PnFtAYWZMVgtgfnxoyiukJvy\nrqdruJv/OvI0PtN3xvshDitfuKWYmzfm0t4zxINP7efAiQuHYtU9tXhML4ti8qY8nzcONQKw+bL5\ntYNLREREZDwKhUREZNZlO+d2p9Du+jcBMDFpcJ2qD5MYyTc+tZpPfbAQn2nyoxfLeObVyimN2zHY\nSV2fv7vWiM9NZXc1b5Q0MjjsPVUg2RrQz3G04zge0zu2Swj8x/Hyo3PpGemlY6hrUuMcbDsMwHWZ\nmwi1hvLbyhf5zr7vUXeqKHSg1PWexMAg03n62FVEqJ2E6NnrwvXB7GtYnrCU410VPFf10jnvWwyD\nmzfm8qVbijF9Jo88e5jn36oZN1A70e1fE4Wx5zbVuBCvz8cbh5oIC7GxZknSlD+HiIiISDAoFBIR\nkVkX6YggITSO2t76ae3OmYqe4V7eaz2Egf8YV/2pEAf8AcF1qzL41l+tIzkunBf31rHncNOkxz7Y\nVgqcru9zpP04L++rx2G3cO3lU68/M5HRVvQrTj1vVEFMLgCV3RO3pveZPg62lRJuC+OW/A9x3/q/\nY33qGupdjXxn3yP8puIFRrwjM56rz/RR39dAcngiobbQGY83WRbDwh1FW0kIi+fl2t2UtB0573Vr\nliTxjU+tJsYZwrOvVfHE74/i9py7W6q8qwoDY+zPeLIOVXTQ4xphw7JkQuyBDQdFREREZotCIRER\nmRPZUZn0ewZoH+yc1ee80fA2XtPLpvT1wJmh0Ki4qFC+ctsKwkNs/PgPZVQ09Exq7INthzEw+HjB\nR7BZbBxoPkpn7zCblqdNuTbORDw+D0c6yogLjSXjrNbo+dE5AFT2TBwK1faepHu4h+UJS7FarETY\nw9lR9En+ZuVfExsSwx/rXuXBd/6N450VM5pv60A7Q97hsXpCcyncHsbnl9+B3WLnJ0d/MW7dpOwU\nJ/d/eg35aVG8faSFHz5/7Iz3R7wj1PTWkelMJ8w2td1Nr5Xo6JiIiIhcfBQKiYjInMgZKzZdN2vP\ncPs8vNnwNmG2MD6afwN2i41617mhEEBKXDhfvKUYnw8eefYQHT1DFxy7e7iHqp5aCmJyiQ+LpSA6\nly5PO4ZjiC1rMwP+WU50VzHoGeKyhGUYZxWvTo9MJcTqoGISxaZHj45dnrT8jNeXxC3i3nV/ywcy\nN9Mx2Mn/f/BxXq7ZPe2dXKNHA0ePCs619MhUti/5OEPeIZ44vIvhcXY/RUeG8L+3X05+WhTvHGvl\nQPnpAKmqpxav6WVR7NTqCXX2DnG4qoPcVCdZyc4ZfQ4RERGRuaRQSERE5kT2qZbhNX2zV1dof8tB\n+twurkpbS5gtjLTIVBpdzXh8nvNevyw3jm0fKKB3wM33nj3E8Mj4xZdHj46tPBWuxBv+HTF5i0dI\nigl8zZxDbaNHx5ad857VYiU3KpuWgdZzum69n2maHGg9TIjVwZLYRee8H2J1cOuim/j6mv9FbEgM\nv616kV+d+N05BZsnY7Q+UTB2Co1am7KKzelX0tjfzNNlz4wbcNltVj7zoSJsVoNdLx9nYMgNwImu\nU/WEYqZWT+jNQ02YpnYJiYiIyMVHoZCIiMyJTGcaFsMya8WmTdPk1fo3MTDYnH6l/5mRaXhNL039\nLePe94HVGVy9Mo26VhdPPn8U3zhBwsFW/46blafq+9RV+oMgZ1J3ID8G4K/Pc6j9KBG28LGjYmcb\nrXlT1VMz7jgnXY10DHVSHF+E3Tr+8bbsqEzuXv0l0iJSeO3kHv7zyNO4ve4pzbm29yQWw0JGZHCD\nkY8vuoncqCz2tRzktYY/j3tdWkIEH7kql27XCL/c7T86V97tryeUP4V6Qj6fyRuHGgmxW1lbFNju\ncyIiIiKzTaGQiIjMCYfVQWpEMvV9DbPSDr2yp4Z6VyOXJRYTHxYLMNYF63x1hUYZhsHtWwpZnBnD\n/uNt/O7Nc+v09I24qOiuJjcqm5iQaE62uSg/4cXqDePkUM20dtZcSH1fA93DPRQnFGG1nL9ocX5M\nDuBvNz+esSDrrKNj5xMbGsPXVn2RgphcDrQe4vslP2TQMzip+Xp9Xk66GkiNSMZxgfBpLtgsNj5X\n/Cki7RH8+sTv6RnuHffaG9dlkZEYyeslTZRUNVPbW0+WM4OwKRTKPlLTSUfvMOuWJhEWYgvERxAR\nERGZMwqFRERkzuREZeL2eWjsbw742KNt6K/N3Dj22ulQqPGC99qsFr70sWISokP53Z4a3jl25s6i\nQ21HMDHH6vK89E4dYJAfVUC/eyDgrd0vdHRsVE5UFhbDQsUFik0faCvFbrGzLH7JpJ4bbg/jf132\nV6xMXM6J7ip27n+M7uGJi3A39bfg9nmCVk/obLGhMXw4dwte08u7LQfGvc5mtfDZDy/BMOAnb/oL\nlE+1Ff3rB/1r6+qVge8+JyIiIjLbFAqJiMicyT5VbLomwEfIOga7KGkrJTMy7YzjVmkRKVgMywV3\nCo1yhjv4ym0rCHFY+c/nj1Fa3UHFyR72lbXySuW7AJSXhrLzlwd5+0gLKXHhXJXjD4mOdZQH9POU\ntB/BbrFRFFc47jUOq4MsZwb1fQ3nLarc1N9Cy0ArS+MXE2J1TPrZdqudzxXfPlab51/3fZ/mCxy/\ng/lRT+hsq5NXYjOs7G3af8Hi2TkpUdywNos+iz+onEqR6R7XMAcr2slMiiQnRQWmRURE5OKjUEhE\nROZMzqli03UBDoXeaHgLE5OrMzee0anLbrWTGpHMSVfjpI54pSdG8v98dBluj4+dvyjhoaf28+hz\nB2gZqcfXH8W7h1yUVnXisFu5dXMeRXGFGBgc7QxcKNTU10pTfwtL4gonDHPyY3LwmT5qes7t6HZ2\nDaSpsBgWPll4Mx/Ju4Gu4W527n+MY53l44YrY53H5lEoFGEPpzhhKY39zeN2oBt188ZcQmO7MU0D\ny0DcpJ/x5uEmvD6TzZelndMhTkRERORioMPvIiIyZ1LCk3BY7AHdKTTsHWFP414i7RGsSbrsnPcz\nnek0uJpoGWgjNWLiQsArCxL44i3FlFS0ExXhoCekigNDJldmXs6Wq9YTHekg1HH622dOVCY1vXUM\nuAcJt8+8C9m7DSUAXJYw/tGxUfnRufyJ16nsqWZxXMEZ7x1oO4zNsLI8oWha8zAMgxtyriM6JIqn\ny57hkYNPkhKexIa0K1ibsooox+mdMXV9J7EZVtIiUqb1rNmyPnU1B9sO83bTfrKc4wdWPsODGdaN\n6Yripy9V8w93JmC3Xfj3Zj7T5I2SJhw2CxuWqcC0iIiIXJy0U0hEROaM1WIl05lBU38LQ57hgIz5\nTvN7DHgG2ZS+/rwdtiZTbPpsa5Yk8bmblvKJawvwRPrv21K4luS48DMCIYCiuEJ8po/jXRUz+BSn\nvdtQgoFB8STCnNGjcmcXm24b6KDB1cSSuEWE2WYWVG1IXcPfrvoiq5Muo32wg/+ueJ579zzI44d+\nzOH2owx7R2hwNZPuTMNmmV+/a1oat5hIewT7Wg7g8XnGva6qpwYfPjLCsmls7+f5t2omHPt4bRet\n3YOsWZJEeGhwi2uLiIiITJdCIRERmVM5UZmYmFMKacZjmiavntyD1bCyKX3Dea/JmkYoNGrIM8Sx\nzhOkRaSQHJ543muWxi8G4Fjn8SmPf7a+ERfl7VXkRefgdEROeH2kI4KU8CSqemvP6Oh2sG306NjE\nXccmIzc6m88W385DG+/jE4tuJjUimZL2I/zg0I+4d8+DeE0v2RfYiRMsVouVK1Iup989wJGOsnGv\nO9FdBcCHl68iLiqE59+qpb7VdcGxXyvxF5jefFla4CYsIiIiMscUComIyJwaLTZd2zfzI2RlXSdo\n7m9hVdIKokOizntNemQaBsa0QqHSjjI8Ps8FW7pnR2USbgvjaMf4NXcm63D7UUxMLrtA17Gz5cfk\nMuId4aTrdIe1A62HsRgWlicundF8zhZhD+eazKv45tqvcc8VX2Zz+gbA/5kXTbFr11xZl7IGgL1N\n+8e9pryrEothYUlCPndcvxivz+TJ3x+lpKKdweFzdxj1DYzwXnkbqfHhLMqInrW5i4iIiMy2+bXP\nW0RELnk5AexA9up52tCfLcTqICk8kfo+f7FpizH534eMFmu+/AI7biyGhcVxizjQeoiWgVZSJlG3\naDyl7ccAWJ4w+TCnICaXPY17qeypITsqk86hLmr76lkSu4hIe8S05zKRLGcGWYsz+FjBTTT3t4wd\n05tvMp1ppEemUtpRhmukn0jHmX8mQ54h6vpOku3MINQWwor8EK5ansKew838+zOHsBgG2SlOlmTH\nUJQVS0FGNG+VNuPxqsC0iIiIXPwUComIyJyKC40l0h4x1rFquloH2ijtKCM3Knts99F4Mp1ptAy0\n0j7YSVJ4wqTGH/GOcKSjjKTwhAkLVC+NW8yB1kMc7Syfdijk9Xk53lVJcmTipOcI768rVM11mZs4\n2FYKwMqkqXcdmw6H1T6vWtGfz7qU1fy64vfsaznINZlXnfFeZU8tPtN3xk6nz9xYxPplKZTVdlFW\n10VNUx/VTb28+HYdVouBzWrBZjW4snh+FdYWERERmSodHxMRkTllGAY5p3a09I70TXuc0fBjU/r6\nCa+dTrHpox3HGfG5WZm4fMLdIEVxiwA41jH91vS1fScZ8g6xPHnJlO6LC40lJiSayu4aTNPkYOth\nDAxWJMxNKHQxuCLlciyGhb3N+85570RXJQCFMadDIYvFYFlOHB+/Op97d6zhe1/dxN9+8jJuXJ9F\nVrKTEY+XK4tTcYY75uwziIiIiMwG7RQSEZE5lx2VSWlHGbW99VM6KvV+ozuNCidRy+b9xaZXJ5/b\ntv58DrRNfHRsVGxoDKkRyZzormLE68Zxni5oEynr9AdKK6YYChmGQX50DvtbS6jorqaqp5a86Byi\nQ5wT37xARDmcLI0rpLSjjEZXM2mRp3f4lHf76wnlxeSMe3+ow0ZxXjzFefEAuD0+bFYdGxMREZGL\nn3YKiYjInMuOygKY0RGymt56ohxOYkImLvSbEekPhd5fjPlC3D4Ppe1lxIfGTrpWTlFcIW6fm8ru\n6kldf7ayzhP+VvTJi6d8b0FMLgD/XfE8JiaXX6Aw9kK1LvVUwenm0wWnBz1D1Pc1kBOVSYh18rt+\n7DaLagmJiIjIJUGhkIiIzLnsUzVopltsunu4h+7hHrKjMif1P+fh9jASQuOo72uYVIew450nGPIO\nTero2KjR1vRHp9GafsgzRHVvHVlRGecUQp6M/FOh0GhHt5WJOjp2tuXxRYTbwni3+T28Pi/gr8Pk\nM30sipmfndNEREREZptCIRERmXOR9ggSQuOo7a2fVhv32t6TwOlOZpOR6UzH5e6ne7hnwmsPnOo6\ndqFW9GcriM7FbrFzrHPqdYVOdFfhM30UxS6a8r0AqRHJhNlCAciJyiI2NGZa41zK7FY7q5NX0jPS\nR1lXBeD/c4fJHUEUERERuRQpFBIRkaDIjspkwDNI22DHlO8dPXY2Udex9xs9BlY3QbFp10g/+1tL\niAuNnVLoZLfaWRSTR1N/C11D3ZO+D/xHxwCWxE0vFLIYFvJOdSHTLqHxrUtZDcDeJn/B6fKuSqyG\nlbzo7GBOS0RERCRoFAqJiEhQjAYu06krNBYKOSffCj1jkh3IXm/4M26fm2szN2IxpvZtcvQI2VR3\nC5V1nsBhsZMzg3BiXcoqEsPiuSLl8mmPcanLicokOTyRkvYjdA51jdUTckyhnpCIiIjIpUShkIiI\nBMV0i037TB+1fSdJCk8g3B4+6fsynWnAhUOhEa+b107+mXBbGFemrp3SvMBfbBrg6BRCoa6hbpoH\nWimIzcNumX5T0NXJK3lgwz2TKry9UBmGwbqU1Xh8Hn5Z/ltMTBbp6JiIiIgsYAqFREQkKDKdaVgM\ny5SLTbcNdjDoGSTbOfmjXcBYp7ILhUJvN+3D5e5nU/oGQm0hUxofIDk8kdiQGMo6T4wVM57IaH2b\n6dYTkqlZm7IKA4PD7UcBWBSTF+QZiYiIiASPQiEREQkKh9VBWkQK9a6GSQcoML16QqMynWn0jPTS\nM9x3zns+08ef6l/HZli5OuOqKY8N/p0oK5OKGfQMcqDt8KTuKTu1q2jJqV1GMrtiQ2NYHFsAgE31\nhERERGSBUygkIiJBkx2VicfnocHVNOl7RncWTaUI9KjMSH9doZOuc3cLHWwrpX2wg3Wpq4kOcU55\n7FGb06/EwODV+jcnvNY0TY53VhDtcJIakTztZ8rUrEv1F5zOjspSPSERERFZ0BQKiYhI0BTE5AJT\nq8FT21uPxbCQEZk25edljlNs2jRNXql7DQODD2RunvK475cUnsCy+CVU99ZR01t3wWsb+5vpc7tY\nHLcIwzBm9FyZvJWJy1mddBl/kTWzv2sRERGRi51CIRERCZql8YsxMChtPzap6z0+Dyf7GsiITMVu\ntU/5eeOFQhXd1dT21rMiYSnJEUlTHvds12ZuBGD3BLuFRruULVE9oTnlsNr5bPHtrEhcFuypiIiI\niASVQiEREQmaSHsEedE51PTW0TfimvD6BlcTHtM71rlsqmJCoom0R5wTCr1S9yoAf5F99bTGPdvi\n2AJSIpJ5r/UQ3cM9415X1nnCf31cQUCeKyIiIiIyFQqFREQkqJYnFGFiUtpRNuG1MykyDf5C0JnO\ndDqGuhhwDwDQ1N9CaUcZedHZ5EXnTGvc8z3nmoyr8Jk+3mx4+7zXuL1uKrqrSY1IVht5EREREQkK\nhUIiIhJUyxOKACZ1hGwmRaZHnT5C1gjAK3WvAfAXWddMe8zzWZcC7JftAAALtUlEQVSyinBbGG80\nvI3b6z7n/aqeWtw+N0vidHRMRERERIJDoZCIiARVcngSCWHxHOs8jtvnueC1tb31hFpDSA5PnPbz\nxkIhVwPdwz2823yA5PDEsXAqUBxWB1elrcPl7mdfa8k575d1+Y+OqZ6QiIiIiASLQiEREQkqwzBY\nnlDEsHeEiq6qca8b9AzSMtBGljMDizH9b1+jbenr+xp4tX4PXtPLBzI3z2jM8WzO2IDFsPBq/ZuY\npnnGe2WdJ7AaVgpi8gL+XBERERGRyVAoJCIiQbc8fikAhzuOjntNXW8DJua06wmNSgiLI8wWSmV3\nDW80vI3TEcnalFUzGnM8caGxXJawjJOuRiq6q8ded7n7qe9rIDc6i1BbyKw8W0RERERkIgqFREQk\n6PJjcgi1hlLafuycHTWjagNQTwj8O5MyItPoGu5myDvENRkbp9XefrKuOdWe/tWTp9vTl3dVYmKy\nJLZw1p4rIiIiIjIRhUIiIhJ0NouNpfGFdAx10dTfct5ravpm1nns/UbrCjmsDjanr5/xeBeSH51D\nZmQaJW1H6BjsAqCssxxARaZFREREJKgUComIyLywPOHUEbL28x8hq+2tJ9rhDEj79tHdRlelrSXc\nHj7j8S7EMAyuydyIicnrDX/GNE3KOk8QZgsjOypjVp8tIiIiInIhCoVERGReWBq/GAODw+dpTd89\n3EP3cA/ZUVkYhjHjZ61MXM4dRVv5aN4NMx5rMlYnr8Rpj2RP4zs09jfTMdTF4tj8WSluLSIiIiIy\nWfppVERE5oVIewR50dnU9NbRN+I6473a3pNAYI6OAVgtVtalrsZhdQRkvInYLTY2pq9n0DPIU8d+\nBejomIiIiIgEn0IhERGZN5YnLMXE5EhH2RmvB6rIdDBtSt+A1bBS1+cPuBbHKhQSERERkeBSKCQi\nIvPG8oQigHOOkI2GQlnOi7cGT3SIk1VJlwEQHxpLYlh8kGckIiIiIgudQiEREZk3ksOTSAiL51jn\ncdw+DwA+00dtXz1J4QmE28OCPMOZuS5zIwYGxQlLA1IbSURERERkJhQKiYjIvGEYBsvjixj2jlDR\nXQVA20A7g54hsp1ZQZ7dzGVFZfD36/6WW/JvDPZUREREREQUComIyPxSfNYRsppLoJ7Q+6VEJM9Z\ngWsRERERkQtRKCQiIvNKQUwuodZQStuPYpomtX3+UChQncdERERERMRPoZCIiMwrNouNpfGFdAx1\n0dTfQk1vPVbDSkZkarCnJiIiIiJySVEoJCIi805xvP8I2cG2wzT0NZIemYrdag/yrERERERELi0K\nhUREZN5ZlrAEA4NX6/fgMb2XTD0hEREREZH5RKGQiIjMO5H2CPKis+n3DACqJyQiIiIiMhsUComI\nyLy0PGHp2H9rp5CIiIiISOApFBIRkXlptDV9qDWEpPDEIM9GREREROTSYwv2BERERM4nJTyJ5QlL\nSQiNw2LodxgiIiIiIoGmUEhEROYlwzD4woo7gz0NEREREZFLln71KiIiIiIiIiKyACkUEhERERER\nERFZgBQKiYiIiIiIiIgsQAqFREREREREREQWIIVCIiIiIiIiIiILkEIhEREREREREZEFSKGQiIiI\niIiIiMgCpFBIRERERERERGQBUigkIiIiIiIiIrIAKRQSEREREREREVmAFAqJiIiIiIiIiCxACoVE\nRERERERERBYghUIiIiIiIiIiIguQQiERERERERERkQVIoZCIiIiIiIiIyAKkUEhEREREREREZAFS\nKCQiIiIiIiIisgApFBIRERERERERWYAUComIiIiIiIiILEAKhUREREREREREFiCFQiIiIiIiIiIi\nC5BCIRERERERERGRBUihkIiIiIiIiIjIAmSYpmkGexIiIiIiIiIiIjK3tFNIRERERERERGQBUigk\nIiIiIiIiIrIAKRQSEREREREREVmAFAqJiIiIiIiIiCxACoVERERERERERBYghUIiIiIiIiIiIgtQ\nUEMhn8/H/fffz9atW9mxYwe1tbXBnI5c5NxuN1//+tfZvn07t912G3/605+ora3lL//yL9m+fTv/\n8A//gM/nC/Y05SLW0dHB1VdfTWVlpdaWBMx//Md/sHXrVm699VZ+9atfaW1JQLjdbu6++262bdvG\n9u3b9e+WBERJSQk7duwAGHc9/fKXv+TWW2/lk5/8JLt37w7mdOUi8f51dezYMbZv386OHTv43Oc+\nR3t7O6B1JdPz/rU16rnnnmPr1q1jX2ttBTkUeuWVVxgZGeEXv/gFd999N9/+9reDOR25yP3ud78j\nJiaGp59+mieffJJ//ud/5l/+5V/46le/ytNPP41pmvzpT38K9jTlIuV2u7n//vsJDQ0F0NqSgNi7\ndy8HDhzgZz/7Gbt27aK5uVlrSwLitddew+Px8POf/5y77rqL7373u1pbMiNPPPEEf//3f8/w8DBw\n/u+DbW1t7Nq1i5///Of88Ic/ZOfOnYyMjAR55jKfnb2uHnzwQe677z527drFli1beOKJJ7SuZFrO\nXlsAR48e5ZlnnsE0TQCtrVOCGgrt37+fTZs2AbBy5UpKS0uDOR25yN1www185StfAcA0TaxWK0eO\nHGHt2rUAbN68mT//+c/BnKJcxB5++GG2bdtGUlISgNaWBMSbb75JYWEhd911F1/4whe45pprtLYk\nIHJzc/F6vfh8PlwuFzabTWtLZiQrK4vvfe97Y1+fbz0dOnSIyy+/HIfDgdPpJCsri7KysmBNWS4C\nZ6+rnTt3UlRUBIDX6yUkJETrSqbl7LXV1dXFzp07+eY3vzn2mtaWX1BDIZfLRWRk5NjXVqsVj8cT\nxBnJxSwiIoLIyEhcLhdf/vKX+epXv4ppmhiGMfZ+X19fkGcpF6Nf//rXxMXFjYXYgNaWBERXVxel\npaX8+7//O//4j//I3/3d32ltSUCEh4fT0NDAjTfeyH333ceOHTu0tmRGrr/+emw229jX51tPLpcL\np9M5dk1ERAQul2vO5yoXj7PX1egv39577z2eeuop7rzzTq0rmZb3ry2v18u9997LN77xDSIiIsau\n0drys018yeyJjIykv79/7Gufz3fGPwoiU9XU1MRdd93F9u3b+chHPsJ3vvOdsff6+/uJiooK4uzk\nYvXss89iGAZvvfUWx44d45577qGzs3Psfa0tma6YmBjy8vJwOBzk5eUREhJCc3Pz2PtaWzJdP/rR\nj9i4cSN33303TU1NfPrTn8btdo+9r7UlM2WxnP7d8uh6Ovtn+/7+/jP+h0tkMl544QUee+wxHn/8\nceLi4rSuZMaOHDlCbW0tDzzwAMPDw1RUVPDggw+yfv16rS2CvFNo1apVvP766wAcPHiQwsLCYE5H\nLnLt7e189rOf5etf/zq33XYbAEuXLmXv3r0AvP7666xZsyaYU5SL1E9/+lOeeuopdu3aRVFREQ8/\n/DCbN2/W2pIZW716NW+88QamadLS0sLg4CAbNmzQ2pIZi4qKGvvBNjo6Go/Ho++JElDnW08rVqxg\n//79DA8P09fXR2VlpX6+lyn57W9/O/YzV2ZmJoDWlczYihUreP7559m1axc7d+6koKCAe++9V2vr\nlKBuy9myZQt79uxh27ZtmKbJQw89FMzpyEXuBz/4Ab29vTz66KM8+uijANx7771861vfYufOneTl\n5XH99dcHeZZyqbjnnnu47777tLZkRq699lreffddbrvtNkzT5P777ycjI0NrS2bszjvv5Jvf/Cbb\nt2/H7Xbzta99jeLiYq0tCZjzfR+0Wq3s2LGD7du3Y5omX/va1wgJCQn2VOUi4fV6efDBB0lNTeVv\n/uZvALjiiiv48pe/rHUlsyIxMVFrCzDM0dLbIiIiIiIiIiKyYAT1+JiIiIiIiIiIiASHQiERERER\nERERkQVIoZCIiIiIiIiIyAKkUEhEREREREREZAFSKCQiIiIiIiIisgApFBIRERERERERWYAUComI\niIiIiIiILEAKhUREREREREREFqD/CyM3fMbHfs4CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAJaCAYAAADpktlZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcU/W9//H3yTpLMivDLojCiKAoLrhQVOq1aKt1qVKl\nxbq0VWtrwUeraG3xikWrrddK1Xp7/d326m0pD5d77XLvraVFWxeKG5sOKLKvs08ySzJJvr8/ZhJA\nYBjmZCbJyev5FzNJTj45k8y8+X6/5/O1jDFGAAAA6DNXpgsAAADIdQQqAAAAmwhUAAAANhGoAAAA\nbCJQAQAA2ESgAgAAsIlABcfYtm2bjj/+eF166aW69NJLdckll+iKK67Qf/3Xf6Xu89Of/nS/rw/m\nZz/7mf785z8f9LZ9H3/cccepoaHhiGpctWqVfvCDH0iSVq9erdtuu+2IHt8X8Xhct9xyi2bMmKFn\nn322x/vedNNNeuGFFyRJl156qVpaWg54/AsvvKDzzjtPN954Y7/Xnq1CoZCuvfZaW8eYN2+enn76\n6T4/vjfv5Ww1efJkbdu2rVefgX0/M0fivvvu06JFi/paInDEPJkuAEingoIC/fd//3fq6+3bt+u6\n665TYWGhZsyYoW9/+9uHPcby5cs1duzYg97Wm8f35KOPPtLu3bslSSeeeKIee+wxW8frjd27d+vv\nf/+73nvvPbnd7l4/Lnked+zYsd/jr732Ws2dO1eXXnppf5Wc9Zqbm7V69eqM1mD3vZgNevMZ2Pcz\nA2QzAhUcbcSIEbrtttv09NNPa8aMGZo3b57GjRunG2+8UY899phefvlleb1elZeX64EHHtDLL7+s\nNWvW6KGHHpLb7dbSpUvV1NSkrVu36rzzzlN9fX3q8ZL06KOPavXq1UokEpozZ46mT5+uF154Qf/3\nf/+np556SpJSX99777167LHHFAqFdNddd+myyy7TggUL9Pvf/16hUEj//M//rJqaGlmWpWnTpun2\n22+Xx+PRiSeeqK9//et67bXXtGfPHl177bW67rrrDnitb731lh566CG1t7fL6/Vqzpw5OuWUU/TV\nr35VsVhMV1xxhRYtWqRRo0alHrN7927NmzdPe/bs0fDhw1VfX5+67bjjjtOyZcv2e/zIkSO1evVq\nbdu2TY2NjZo1a5Z+/OMfa8WKFYrH45owYYLuueceBQIBffrTn9akSZO0bt063X777Zo0aZLuu+8+\n7dy5U52dnfrc5z6nm2++Wdu2bdN1112nc889VytXrlRzc7Pmzp2rz372s4rFYnr44Ye1bNkyud1u\nTZ48WfPnz5fP59OTTz6pP/3pT0okEhoxYoTmz5+vIUOG6E9/+pOefPJJWZYlt9utO+64Q6effrqW\nLl2qxYsX6xe/+MUB5+65557Tb3/7W3V2dqq5uVlf+9rXNGvWLEnSU089pRdffFEej0ejR4/Wgw8+\nqLvuuksdHR269NJL9cILL2jChAl64403VFFRkTp3b7zxhsrKyrRw4UKtXLlSra2tMsbo/vvv16mn\nnnrI9+y8efPk9/u1evVq1dXV6aKLLlJFRYX++te/qra2Vvfff7/OOuus/d7Lh3qPHOq9+NRTT+mt\nt97Sgw8+qEQiIalrdHLGjBn71bJ8+XI99NBDGjJkiLZu3aqCggI9+OCDOvbYYzVv3rz9Phvf/va3\nD/leeOutt7RgwQJZlqUTTzwx9ZzLly9PfQZaW1t1//3365133pHb7dY//dM/6ZprrtnvM/PAAw/o\nL3/5i5588kl1dnaqoKBAd955pyZPnqxwOKzvfe97qqmp0eDBg+V2u3s8z0DaGcAhtm7dak4++eQD\nvr9+/Xpz0kknGWOMufPOO82//du/mR07dphTTjnFRCIRY4wxTz/9tHn55ZeNMcZ8+ctfNv/zP/+T\nuv9XvvKV1LGSjzfGmOrqavPUU08ZY4xZt26dmTJliqmvrzfPP/+8+frXv556zL5f7/vvN99803zu\nc58zxhhzxx13mAULFphEImEikYi54YYbUseurq42zzzzjDHGmNWrV5sTTjjBdHR07PcaGxoazFln\nnWXee++91GueMmWK2bJlyyHPizHGfOMb3zD/8i//YowxZtOmTebkk082zz//fOp56+vrD3j8vudn\n0aJF5sEHHzSJRMIYY8xPfvITM3/+fGOMMdOnTzc/+9nPUo+bPXu2Wbp0qTHGmI6ODjN79mzzhz/8\nwWzdutVUV1ebv/zlL8YYY/73f//XnHfeecYYY371q1+ZL33pS6a9vd3E43Hz7W9/27z44ovmxRdf\nNHPmzDGdnZ3GGGMWL15svvrVrxpjjDn//PPNu+++a4wx5m9/+5tZtGjRQV97UjgcNjNnzjQNDQ3G\nGGPefffd1Ov985//bD7zmc+YpqYmY4wxCxcuNE888cQB5yR5rj759TvvvGO+9a1vmXg8bowx5qmn\nnjI33XSTMWb/99K+7rzzTnPVVVeZaDRq9uzZY6qrq81//Md/GGOM+eUvf2muv/76Ax5/qPdIT+/F\na6+91vz+9783xhjzwQcfmHvvvfeAWt58800zfvx4s2LFCmOMMb/+9a/N5Zdfnnr+fT8bh3ovRCIR\nc/bZZ5vXX3/dGGPM7373O1NdXW22bt2632dg4cKFZu7cuSYWi5lIJGK+9KUvmTfffHO/mjdu3Ggu\nvvji1M9q/fr1ZurUqaa1tdX88Ic/NHfccYdJJBKmvr7enHPOOeaxxx474DUB/YURKjieZVkqKCjY\n73tDhgzR+PHjdfnll+ucc87ROeeco7POOuugj+/pf7nXXHONJKm6ulrHHnus3n333T7V+Oqrr+o3\nv/mNLMuSz+fT1VdfrV/96lf6+te/Lkk6//zzJUkTJ05UNBpVW1ub/H5/6vGrVq3SqFGjdNJJJ0mS\nxo0bp1NOOUX/+Mc/dMYZZxzyeV9//XXdeeedkqTRo0f3eN+DWbZsmUKhkF5//XVJUmdnpyorK1O3\nn3baaZKktrY2rVixQs3NzfrpT3+a+l5NTY0mTZokr9erc889V5I0YcIENTU1peq79NJLUz+/Rx99\nVFLXdNfq1av1hS98QZKUSCTU3t4uSfrc5z6nb37zmzr33HM1depUfe1rX+vxNRQXF+vnP/+5Xnnl\nFW3atEk1NTVqa2uTJL3xxhu68MILVVpaKkm66667JHWt1+uNyZMnq7S0VIsXL9bWrVu1fPlyFRcX\nH/Zx06dPl9frVVVVlYqKijRt2jRJ0qhRo1Ln5pMO9h7pyUUXXaT77rtPf/nLX3T22Wfr9ttvP+j9\nxo8fn/o5fuELX9B9992nxsZGSft/Ng71Xli/fr08Hk/q83XxxRcfdE3U66+/rrvuuktut1tutzu1\n3i+5pk9SagRu3xFay7K0ZcsWvfHGG7r77rtlWZYqKip0wQUX9Pj6gXQjUMHxVq9ererq6v2+53K5\n9Oyzz2r16tV64403tHDhQp1xxhm65557Dnh8UVHRIY/tcu29rsMYI4/HI8uyZPbZIrOzs/OwNSan\nQPb9OhaLpb5OhifLslLP1dPjk/fZ9xgH88laPZ4j+5WQSCR09913p8JQa2urIpFI6vbkuUskEjLG\naPHixSosLJQkNTQ0yO/3q7GxUV6vN3Uuk6/xYPXU1dUpkUgokUjoq1/9ampaLhqNqrm5WZI0d+5c\nXXnllfr73/+uF154Qf/6r/+qF154Yb+f1b527dqlL37xi5o5c6ZOPfVUXXjhhfrrX/8qSXK73fvV\n09LSopaWlh7PSTQaTf172bJl+uEPf6jrr79e559/vo455hi99NJLPT5eknw+335f9+bncrD3SE/v\nxauvvlrTp0/Xa6+9pr/97W/62c9+ppdeeknBYHC/435y3Z0xJvW9fT8bh3ov7Ny584D368FeT/Kz\nk7Rz584D/iOUSCR01llnpYJ18n6DBw9O1XaouoH+xlV+cLSNGzfqiSee0A033LDf92tqanTxxRfr\n2GOP1U033aTrrrtO69atk9T1i/hwQSTpxRdflCStXbtWmzdv1kknnaSKigp9+OGHikQiisViqT/O\nPR37U5/6lP7zP/9TxhhFo1EtWbJEZ599dq9f50knnaSNGzdq1apVkqQPP/xQK1as0JQpU3p83LRp\n0/Tb3/5WUtfi8+XLl/f6OfetOxqNKpFI6Pvf/74eeeSRA+4XCAR08skn69///d8ldQWTa665RkuX\nLu3x+GeddZZ+//vfp45/77336g9/+IM+9alP6bnnnlM4HJbUdcXbHXfcoVgspk9/+tNqa2vTNddc\no/nz52vDhg09/jzXrFmjiooKfeMb39C0adNSP694PK6zzz5bL7/8cup5Fi1apF/+8pfyeDyKx+Op\nP+AVFRWpReovv/xy6tivvfaapk+frlmzZunEE0/Un//8Z8Xj8d6eXtt6ei9effXV+uCDD3TFFVdo\nwYIFamlpSYXSfdXU1KimpkaS9Nvf/lannHKKSkpKDrjfod4L1dXVMsbolVdekSQtXbr0oM9z1lln\n6cUXX1QikVA0GtVtt92mFStW7PeZOfPMM/Xaa69pw4YNkqRXXnlFn//85xWJRDRt2jQ999xzSiQS\nam5uPux7C0g3RqjgKMmFwlLX6JHf79ftt9+u8847b7/7jR8/XhdddJG+8IUvqKioSAUFBanRqenT\np+tHP/pRr0aWtm7dqssuu0yWZemRRx5RWVmZpk6dqtNPP10XXXSRqqqqdMYZZ6TC2uTJk/Xoo4/q\n1ltv3e+y+3vuuUf333+/LrnkEnV2dmratGm6+eabe/26Kyoq9NOf/lQLFixQR0eHLMvSAw88oDFj\nxvQ4PTV//nzddddduuiiizR06FCNHz++188pSd/4xjf0ox/9SJdffrni8biOP/54zZs376D3/fGP\nf6wFCxbokksuUTQa1cUXX6zPf/7zPdZ39dVXa/v27briiitkjNGUKVM0e/ZsuVwu7d69WzNnzpRl\nWRo2bJgefPBBeTwe3X333frOd76TGvFYuHChfD7fIRelT506Vc8995wuvPBCFRYWatKkSaqoqNDm\nzZt17rnn6qOPPkpN7Y4dO1YLFixQYWGhJkyYoIsuuki/+c1vdM899+i+++5TSUmJzj77bFVVVaXq\n/853vqNLLrlEbrdbp512Wmoh/UDo6b34ne98RwsXLtSjjz4ql8ulb37zmxo5cuQBxxg0aJAeffRR\nbd++XRUVFXrooYcO+lyHei94vV49/vjjuvfee/XII4/o+OOP329aOOmb3/ymfvjDH+rSSy9VPB7X\nZz/7WX3mM5/Rli1bUp+Zxx9/XPfdd59uv/321Ijwk08+qaKiIn3rW9/S/PnzU4v4PzkqDfQ3y3xy\nLBYAAO1/FR6AnjHlBwAAYBMjVAAAADYxQgUAAGATgQoAAMAmAhUAAIBNGW2bUFsbyuTTZ1x5eZEa\nG3vuZoze43ymF+czvTif6cX5TC/OZ+9UVQUPeRsjVBnk8dDJN504n+nF+Uwvzmd6cT7Ti/NpH4EK\nAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAA\ngE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACb\nCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABgkyfTBQDIrGXvbT/o94OBAoXCHb0+znknj0hX\nSQCQcxihAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIA\nALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABg\nk6enGzs7O3X33Xdr+/btikajuuWWWzRs2DDddNNNOvrooyVJ11xzjT772c9qyZIlWrx4sTwej265\n5RZNnz59IOoHAADIuB4D1UsvvaSysjI9/PDDampq0mWXXaZbb71V119/vW644YbU/Wpra/XMM8/o\n+eefVyQS0axZszR16lT5fL5+fwEAAACZ1mOguvDCCzVjxgxJkjFGbrdba9as0caNG7V06VKNHj1a\nd999t1atWqXJkyfL5/PJ5/Np1KhRqqmp0aRJkwbkRQAAAGRSj4GquLhYkhQOh3Xbbbdpzpw5ikaj\nuuqqq3TCCSfoySef1OOPP67x48crGAzu97hwOHzYJy8vL5LH47b5EnJbVVXw8HdCr3E+j1wwUNCn\n2z6Jc394nKP04nymF+fTnh4DlSTt3LlTt956q2bNmqVLLrlELS0tKikpkSRdcMEFWrBggU477TS1\ntramHtPa2rpfwDqUxsY2G6XnvqqqoGprQ5kuwzE4n30TCncc9PvBQMEhbzsYzn3PeH+mF+czvTif\nvdNT6OzxKr+6ujrdcMMN+u53v6srr7xSknTjjTdq1apVkqQ33nhDEydO1KRJk/T2228rEokoFApp\nw4YNqq6uTuNLAAAAyF49jlD9/Oc/V0tLi5544gk98cQTkqR58+Zp4cKF8nq9GjRokBYsWKBAIKDZ\ns2dr1qxZMsZo7ty58vv9A/ICAAAAMs0yxphMPXm+Dy8yxJpenM++Wfbe9oN+/0in/M47eUS6SnIk\n3p/pxflML85n7/R5yg8AAACHR6ACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGo\nAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEA\nANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACw\niUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOB\nCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUA\nAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAA\nmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYR\nqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlAB\nAADYRKACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAA\nsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGCT\np6cbOzs7dffdd2v79u2KRqO65ZZbNHbsWM2bN0+WZWncuHGaP3++XC6XlixZosWLF8vj8eiWW27R\n9OnTB+o1AAAAZFSPgeqll15SWVmZHn74YTU1Nemyyy7T+PHjNWfOHJ1xxhn6wQ9+oKVLl+rkk0/W\nM888o+eff16RSESzZs3S1KlT5fP5Bup1AAAAZEyPgerCCy/UjBkzJEnGGLndbq1du1ZTpkyRJJ1z\nzjl67bXX5HK5NHnyZPl8Pvl8Po0aNUo1NTWaNGlS/78CAACADOsxUBUXF0uSwuGwbrvtNs2ZM0c/\n+tGPZFlW6vZQKKRwOKxgMLjf48Lh8GGfvLy8SB6P2079Oa+qKnj4O6HXOJ9HLhgo6NNtn8S5PzzO\nUXpxPtOL82lPj4FKknbu3Klbb71Vs2bN0iWXXKKHH344dVtra6tKSkoUCATU2tq63/f3DViH0tjY\n1seynaGqKqja2lCmy3AMzmffhMIdB/1+MFBwyNsOhnPfM96f6cX5TC/OZ+/0FDp7vMqvrq5ON9xw\ng7773e/qyiuvlCRNmDBBy5cvlyS9+uqrOu200zRp0iS9/fbbikQiCoVC2rBhg6qrq9P4EgAAALJX\njyNUP//5z9XS0qInnnhCTzzxhCTpe9/7nu6//3498sgjOuaYYzRjxgy53W7Nnj1bs2bNkjFGc+fO\nld/vH5AXAAAAkGmWMcZk6snzfXiRIdb04nz2zbL3th/0+0c65XfeySPSVZIj8f5ML85nenE+e6fP\nU34AAAA4PAIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYC\nFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAE4KGOMEsZkugwAyAkEKgAHSCSM/vDaRr34yseKxROZ\nLgcAsh6BCsABVtTs0eZdIbV2xLRldyjT5QBA1iNQAdhPzeZGrdvSpLKAX5K0fmtzhisCgOxHoAKQ\nsqOuVStq9qjA59bnzzlGwyqLtKexXU3hSKZLA4CsRqACIElqDkf0yns7ZMnS9MkjFCzyqfqoMknS\nh4xSAUCPCFQAJElv1dSqM5bQ2ScOUVV5oSRp5OCACnxubdjRzOJ0AOgBgQqAjDHa09SukiKvjhle\nmvq+22Vp7IhSRTsTLE4HgB4QqACopbVTnbGEBpUVHnDbuKO6AhaL0wHg0AhUAFTX3C5JqiwpOOC2\nYJGPxekAcBgEKgCqb+6QJA0qOzBQSWJxOgAcBoEKgOqaO2RZUkXQf9Db912cznY0AHAgAhWQ5+IJ\no4aWiMqDfrndB/+V4HZZGj6oWNHOhMJtnQNcIQBkPwIVkOeaQhEljNGg0oNP9yWVdY9eNYZYRwUA\nn0SgAvJcckH6oNIDr/DbV3n3VjQsTAeAAxGogDxX170gvfIwI1TlQZ8kRqgA4GAIVECeq2/ukMdt\nqTTg6/F+hX6PfF6XmghUAHAAAhWQx9ojMTWFo6osKZDLsnq8r2VZKg/4FWrrZBsaAPgEAhWQxzbv\n6tpO5nDTfUllQb+MpOZwtB+rAoDcQ6AC8tjGXS2SdNAtZw4muTCddVQAsD8CFZDHNu7oDlRHMEIl\ncaUfAHwSgQrIYxt3hlTgc6u4wNOr+5dxpR8AHBSBCshTza1R1bd0qLK0QNZhFqQn+Txd4YtABQD7\nI1ABeWrjziOb7ksqD/rVEY2rIxrrj7IAICcRqIA8tamPgYotaADgQAQqIE9tOsKWCUmpLWhCtE4A\ngCQCFZCndje2K1DoVYGvdwvSk1IjVFzpBwApBCogDyWMUX1zu6rKjmx0SpJKi31yWWILGgDYB4EK\nyENNoYhicaOqXjb03JfLZamk2KemcETGmH6oDgByD4EKyEO1Te2SpEGlRx6opK4r/WJxo3B7ZzrL\nAoCcRaAC8lBdc4ck9WnKT+JKPwD4JAIVkIeSI1R9mfKT9r3Sj0AFABKBCshLtU1dI1S93RT5k/Ze\n6UfrBACQCFRAXqptbpfLslTRHYyOVHGBR16PixEqAOhGoALyUG1TuypK/PK4+/YrwLIslQX8ammN\nKp7gSj8AIFABeSbaGVdzONrn9VNJwSKvjKS2Dq70AwACFZBn7F7hlxQo9EoSrRMAQAQqIO/Y7UGV\nlApUbQQqACBQAXlm7whVmgIVI1QAQKAC8o3dHlRJgSICFQAkEaiAPJOa8rO5hqrI75FlEagAQCJQ\nAXmntqlDfp9bwe4pu75yuSwVF3gJVAAgAhWQV4wxqm1uV1VpoSzLsn28QKFX7ZG44vFEGqoDgNxF\noALySKi9U5Fo3HbLhKS9C9NjaTkeAOQqAhWQR+qa0nOFX1Kg0COJdVQAQKAC8ki6rvBL4ko/AOhC\noALyyN6mnumZ8iumFxUASCJQAXmlrjnNI1TdgaqVQAUgzxGogDxS272GKl0jVEV+j1z0ogIAAhWQ\nT2qb2lUa8MnndafleJZlqbiQXlQAQKAC8kQsnlBDSyRt031JgUKvOqJxRaLxtB4XAHIJgQrIEw2h\niBLGqKo0/YFKkupaOtJ6XADIJQQqIE/sbZmQnvVTSalA1X18AMhHBCogT9SluQdVUipQNTNCBSB/\nEaiAPFGb5i7pScnmnsmWDACQjwhUQJ5IBp50tUxIYoQKAAhUQN6ob+6Q22WpLOBP63ELfG65XVZq\nn0AAyEcEKiBPNIYjKgv45HJZaT2uZVkKFHqZ8gOQ1whUQB5IJIyaQlGVBdM7OpUUKPSqtSOm9kis\nX44PANmOQAXkgZa2qBLGqDyY3vVTScWsowKQ5whUQB5oDEUkSeVpXj+VFCj0SKIXFYD8RaAC8kAq\nUPXXlF+RTxIjVADyF4EKyAP9Hqi6R6hqWZgOIE8RqIA80P+BqmsNVT0jVADyFIEKyAP9Haj8Xrf8\nXjdTfgDyFoEKyAONoa6gk+6mnkmWZWlQWYHqmttljOmX5wCAbEagAvJAYziqYJFXXk//feQrSwrU\nHomrPRLvt+cAgGxFoAIczhijxlBHv7VMSKronk5sCDHtByD/EKgAh2uPxBTtTPTb+qmk8pKupqHJ\n9VoAkE8IVIDDNfTzgvSk1AhVCyNUAPIPgQpwuKYBD1SMUAHIPwQqwOGSI1T9tTFyUgVTfgDyGIEK\ncLjkCFVFP22MnFTGonQAeYxABThcY3hgRqj8XrcChV5GqADkJQIV4HCpLun93DZB6lpH1dASobkn\ngLxDoAIcrjEUkd/nVqHf3e/PVR70K9IZV1sk1u/PBQDZhEAFOFxjKKLygF+WZfX7c6UWpnOlH4A8\nQ6ACHKwzFle4vbPfWyYklbMwHUCe6lWgWrlypWbPni1Jev/99zVt2jTNnj1bs2fP1h//+EdJ0pIl\nS3TFFVdo5syZ+utf/9p/FQPotcYB6kGVVFGSDFSMUAHIL57D3eEXv/iFXnrpJRUWFkqS1q5dq+uv\nv1433HBD6j61tbV65pln9PzzzysSiWjWrFmaOnWqfD5f/1UO4LAGPFB1t2aguSeAfHPYEapRo0Zp\n0aJFqa/XrFmjZcuW6Utf+pLuvvtuhcNhrVq1SpMnT5bP51MwGNSoUaNUU1PTr4UDOLyBDlTl3SNU\njWw/AyDPHHaEasaMGdq2bVvq60mTJumqq67SCSecoCeffFKPP/64xo8fr2AwmLpPcXGxwuHwYZ+8\nvLxIHk9adbg1AAAgAElEQVT/X3mUzaqqgoe/E3qN87m/TrNLknT0iLJDnptg4NANP3u67ZOqqoIq\nLSuSJIUjMX4WB8E5SS/OZ3pxPu05bKD6pAsuuEAlJSWpfy9YsECnnXaaWltbU/dpbW3dL2AdSmNj\n25E+vaNUVQVVWxvKdBmOwfk80NadLZIkl0kc8tyEwgcfTQoGCg5528Ekjx8o9GpXfRs/i0/g/Zle\nnM/04nz2Tk+h84iv8rvxxhu1atUqSdIbb7yhiRMnatKkSXr77bcViUQUCoW0YcMGVVdX971iAGmR\n7JI+EE09kypK/Gps6aC5J4C8csQjVPfee68WLFggr9erQYMGacGCBQoEApo9e7ZmzZolY4zmzp0r\nv3/gfoEDOLimUERul6Vg8cBdIFIRLNCW3WG1dsQUKPQO2PMCQCb1KlCNHDlSS5YskSRNnDhRixcv\nPuA+M2fO1MyZM9NbHQBbGkIRlQV8cg1AU8+k5ML0hpYOAhWAvEFjT8ChEgmj5nBU5cHeLyxPh4ru\nKwrZJBlAPiFQAQ7V3BpVwhiVDVDLhKTk9jM09wSQTwhUgEM1dS9IrxjoQBXcO+UHAPmCQAU4VLJb\nedkAXuEnSeXJDZIZoQKQRwhUgEOlRqhKBjhQBRihApB/CFSAQzWEugLNQI9QeT0ulRR5GaECkFcI\nVIBDNYUys4ZK6pr2awhFaO4JIG8QqACHSo4QlQ7wCJXUFeI6YwmF2zsH/LkBIBMIVIBDNYWjChR6\n5fUM/Me8IsjCdAD5hUAFOFRTODLg66eS9nZLJ1AByA8EKsCB2iMxdUTjKgsO3B5++0r1ogpxpR+A\n/ECgAhyouTUqaeCv8EuqoBcVgDxDoAIcKHmFX8am/OiWDiDPEKgAB0o29SwPZGbKrzzolyVGqADk\nDwIV4EBN4cxO+XncLpUU+1iUDiBveDJdAIC+Wfbe9kPetvrjeknShp3Nam6LDlRJ+ykP+rWttlXG\nGFmWlZEaAGCgMEIFOFB7JCZJKvJn7v9MFSUFisUTCtHcE0AeIFABDtTWHagKfJkLVMmF6Y1M+wHI\nAwQqwIHaIzEV+t1yuTI31VZRQi8qAPmDQAU4jDFGbR0xFWZwuk/au/0MC9MB5AMCFeAwnbGE4gmT\n0fVT0j69qBihApAHCFSAwyTXT2V8hKp7yo9eVADyAYEKcJi2ju4r/AoyG6jKAl3NPZnyA5APCFSA\nw7RnyQiVx+1SScCnRqb8AOQBAhXgMNnQgyqpIligxlBECWMyXQoA9CsCFeAwqTVUGZ7yk6SKoF+x\nuFGojeaeAJyNQAU4THtH9oxQlacWpjPtB8DZCFSAw7RFYrIsqcDnznQp9KICkDcIVIDDtEfiKvR7\nsmJD4lS39BZGqAA4G4EKcJBkl/RsmO6T9o5Q0YsKgNMRqAAHiXQmlDAm4y0TkvZ2SydQAXA2AhXg\nIKmWCVlwhZ8klQV9siypkSk/AA5HoAIcJNklPVtGqNwul8oCfkaoADgegQpwkGxq6plUHvTT3BOA\n4xGoAAfJlo2R91UR9CueMAq1RjNdCgD0GwIV4CDZtoZKksqTvaiY9gPgYAQqwEGybQ2VtG8vKgIV\nAOciUAEO0h6JyWVZ8nuz56NdUZIcoeJKPwDOlT2/dQHY1haJqaggO7qkJyV7UTUyQgXAwQhUgEMY\nY9QeianQn/k9/PZVkWruyQgVAOciUAEO0RGNy5jsapkgSWUBv1yWxaJ0AI5GoAIcItUyIYuu8JMk\nl8tSacDHlB8ARyNQAQ7R3pF9TT2TKkr8agpHlEjQ3BOAMxGoAIfIxqaeSeXBAsUTRs009wTgUAQq\nwCGysalnUnJheiPrqAA4FIEKcIhsbOqZlOpF1cKVfgCciUAFOEQ2boyctLd1AiNUAJyJQAU4RGtH\nTB63Ja8n+z7W5SXJKT9GqAA4U/b95gXQJ+2RmIr82dUlPakiuUEyrRMAOBSBCnCAeCKhjmhcRQXe\nTJdyUKXFPrldFovSATgWgQpwgOSC9Gy8wk/qau5ZFvCx/QwAxyJQAQ7QlsUtE5LKSwrUFIoqnkhk\nuhQASDsCFeAAbVncJT2psqRACWPUFKK5JwDnIVABDpDtU35SV6CSpHp6UQFwIAIV4AB7A1V2LkqX\npMru1gkEKgBORKACHKAti5t6JlWWdo9QNROoADgPgQpwgLaOTlmWVOB3Z7qUQ2LKD4CTEagAB2jr\niKnQ75ErC5t6JlUQqAA4GIEKyHHGGLV1d0nPZoV+j4oLPEz5AXAkAhWQ4zqicRkjFWfxFX5JlSUF\nqm/pkDEm06UAQFoRqIAclwtX+CVVlhYo2plQuL0z06UAQFoRqIAcl7zCrzBHRqgk1lEBcB4CFZDj\nWju6RnuKs3wNlbTPwvRmNkkG4CwEKiDHtedAl/SkQaWMUAFwJgIVkONyYduZJJp7AnAqAhWQ41pz\noEt6EmuoADgVgQrIce0dMfm9brnd2f9xDhZ55fW4CFQAHCf7fwMD6FFrR2dOTPdJkmVZqigpYMoP\ngOMQqIAcFo3FFYubnAlUkjSoxK9we6ci0XimSwGAtCFQATkstSA9B9ZPJVVypR8AByJQATksl67w\nS0ouTG8gUAFwEAIVkMNyMVAlm3vWEagAOAiBCshhbamWCdm/j1/SIHpRAXAgAhWQw9q6t53JpREq\nelEBcCICFZDDklN+xTkUqMqCflmW1MAIFQAHIVABOawtEpPHbcnryZ2PssftUlnAzwgVAEfJnd/C\nAA7Q1hFTod8jy7IyXcoRqSwtUGMoqngikelSACAtCFRAjoonEuqIxlVckDsL0pMGlRQoYYwaQ5FM\nlwIAaUGgAnJUe0dXp/FcWpCelGzu2dBCoALgDAQqIEe1Rbqu8CvMoS7pScleVLROAOAUBCogR7Xm\n4BV+SZU09wTgMAQqIEe152CX9KRKmnsCcBgCFZCjWnM4UA1iPz8ADkOgAnJULm47k+T3uRUo9NKL\nCoBjEKiAHNXa3inLkgr87kyX0icVJX7VN3fIGJPpUgDANgIVkKNaOzpVXOCVK8eaeiZVlRUqGkuo\npTWa6VIAwDYCFZCDOmNxtUfiChTm3nRf0uCyQknSnqb2DFcCAPYRqIAcVN/dELO4MPcWpCdVlXcH\nqkYCFYDcR6ACclCy3UAuj1BVdY9Q1TJCBcABCFRADkpeHZfLgYopPwBOQqACclBdc1cIycWNkZMq\nSvxyuyzVMuUHwAF6tQBj5cqV+vGPf6xnnnlGmzdv1rx582RZlsaNG6f58+fL5XJpyZIlWrx4sTwe\nj2655RZNnz69v2sH8lY2Tvkte2/7ET+mqMCj7XWtqceed/KIdJcFAAPisCNUv/jFL3TPPfcoEula\nBPvAAw9ozpw5+vWvfy1jjJYuXara2lo988wzWrx4sZ5++mk98sgjika5FBroL3XNHbKUm13S9xUs\n8qojGldnLJHpUgDAlsMGqlGjRmnRokWpr9euXaspU6ZIks455xy9/vrrWrVqlSZPniyfz6dgMKhR\no0appqam/6oG8lx9S4eKCjxyuXKzB1VSsMgnSQq18R8wALntsIFqxowZ8nj2/i/YGCOru5FgcXGx\nQqGQwuGwgsFg6j7FxcUKh8P9UC6AWDyhxlBExVk03ddXwe7XEGrrzHAlAGDPEc8XuFx7M1hra6tK\nSkoUCATU2tq63/f3DViHUl5eJI8nN7fNSJeqqsOfJ/RePpzPXfWtMkYqCxYoGCjo1+fq7+NXVRZL\nqlU0bhQMFDj+5+f01zfQOJ/pxfm054gD1YQJE7R8+XKdccYZevXVV3XmmWdq0qRJevTRRxWJRBSN\nRrVhwwZVV1cf9liNjW19KtopqqqCqq0NZboMx8iX87l+c6Mkye91KRTuv82Fg4GCfj2+JHm6Zyzr\nm9oUCnc4+ueXL+/PgcL5TC/OZ+/0FDqPOFDdeeed+v73v69HHnlExxxzjGbMmCG3263Zs2dr1qxZ\nMsZo7ty58vv9tooGcHCpK/xyfEG6tPcqRab8AOS6Xv1GHjlypJYsWSJJGjNmjJ599tkD7jNz5kzN\nnDkzvdUBOECqB5UD1lB5PS4V+t0EKgA5j8aeQI5xQpf0fQUKfWrt6FQiYTJdCgD0GYEKyDHJKb9c\n3hh5X8Eir4yRwu2MUgHIXQQqIMfUNXeoNOCT2+WMj2+wiHVUAHKfM34jA3kikTBqDEU0qLR/2xkM\npFRzz3aaewLIXQQqIIc0hSOKJ4wqS5wUqLpGqMKMUAHIYQQqIIfUda+fGlRamOFK0ocpPwBOQKAC\nckhyQXqlg6b8/F63vG4X+/kByGkEKiCHJHtQOWkNlWVZChR5FW7vlDG0TgCQmwhUQA5J9qBy0hoq\nqWvaLxY3amlllApAbiJQATmkzoFTftLedVR7mtozXAkA9A2BCsgh9c0dChZ55fe6M11KWgULu1on\n7GkkUAHITQQqIEckjFF9S4ej1k8lBbpHqGoZoQKQowhUQI5oaY0qFndWD6okpvwA5DoCFZAjnLp+\nSpKKC7yyLKmWKT8AOYpABeSIegc29UxyuSwFCr2MUAHIWQQqIEcke1A5ccpPkkqKfAq1daqtg47p\nAHIPgQrIEfUtEUnOauq5r9JA15V+O+rbMlwJABw5AhWQI+q6p8OcuIZKkkqLuwLVzrrWDFcCAEeO\nQAXkiF0NbSot9qnQ78l0Kf2ipHuEaicjVAByEIEKyAHRzrjqmzs0tKIo06X0m9JivyRpRz0jVABy\nD4EKyAG7G9tlJA2rdG6gKvC5FSzyahcjVAByEIEKyAG7GrpChpNHqCRpWGWxapvb1RmLZ7oUADgi\nBCogB+zsngYb6uARKkkaXlkkY6RdDfSjApBbCFRADkiNUFUWZ7iS/jWs+/XtZB0VgBxDoAJywK76\nNnncLg1yaFPPpGGDukbgdtA6AUCOIVABWc4Yo50NbRpSXiiXy8p0Of1qeGqEioXpAHILgQrIck3h\nqCLRuOPXT0lSedAvv9fNlB+AnEOgArJcvlzhJ0mWZWloZZF2NbQrkTCZLgcAeo1ABWS5fApUUteV\nfrF4IrUZNADkAgIVkOWS01/DHH6FX1LydbJJMoBcQqACsly+jVDROgFALiJQAVluV32bSop9Kipw\n5qbInzS8u3XCzjpGqADkDgIVkMWSmyIPy5PRKUmqKiuU22UxQgUgpxCogCy2p3tT5HxomZDkcbs0\nuLxQO+rbZAxX+gHIDQQqIIvl2/qppOGVxWqPxNTcGs10KQDQKwQqIIvtvcIvvwJVckRuJ1vQAMgR\nBCogi+XzCJUk7WxgYTqA3ECgArLYroY2edyWBpUWZrqUATWMK/0A5BgCFZCljDHa1dCmweVFjt8U\n+ZOGVSSbezLlByA3EKiALNXcGlV7JJ5XLROS/D63Kkv8tE4AkDMIVECW2tW99Uo+tUzY14iqgJrC\nUYXbOzNdCgAcFoEKyFL5uiA96ajBAUnS5t2hDFcCAIeXH3tZIO8te297Wo5z3skj0nKc3tiZ5yNU\no4cEJUlbd4c18eiKDFcDAD1jhArIUjvqwpKUl2uoJGnUkK4Rqi2MUAHIAQQqIAsZY7RpV0iDywtV\nVODNdDkZMaisUAU+N1N+AHICgQrIQnua2tXaEdMxw0oyXUrGuCxLowYHtKuhTZHOeKbLAYAeEaiA\nLLRxR4sk6eg8DlSSNGpIUMZI22rDmS4FAHpEoAKy0Mc7uwJVPo9QSV2BSpK27CZQAchuBCogC23c\n2dI15dW9MDtfsTAdQK4gUAFZJhZPaPOusEYOLpbP6850ORk1fFCx3C6LQAUg6xGogCyzvbZVsXgi\n76f7JMnjdmlEVbG21bYqnkhkuhwAOCQCFZBlkuunxhCoJHWto+qMJVJb8QBANiJQAVlmYzJQDSdQ\nSXs7prMwHUA2I1ABWWbjzhb5vW4NryzOdClZgT39AOQCAhWQRdojMe2obdXRQ4NyuaxMl5MVjhoc\nkCWu9AOQ3QhUQBbZsjskI6b79lXo92hweaG27gnLGJPpcgDgoAhUQBahoefBjRoSVGtHTPUtHZku\nBQAOikAFZJG9W84EM1xJdtnb4JOF6QCyE4EKyCIbd7aopMirypKCTJeSVfZuQcM6KgDZiUAFZInm\n1qjqWyIaM6xElsWC9H2xpx+AbEegArIE/acOrbTYp9KAj9YJALIWgQrIEsn1UyxIP7gxQ0vUGIqo\nMRTJdCkAcAACFZAl1m1plCXpaALVQY0dWSpJ+mh7c4YrAYADEaiALNAUjujDbc0aN7JUgUJvpsvJ\nSmNHdAWqD7c1ZbgSADgQgQrIAu+sr5WRdOr4wZkuJWsdPTQot8vSR9sYoQKQfQhUQBZ4q2aPJOnU\n6qoMV5K9fF63jh4a1JbdYUWi8UyXAwD7IVABGdbSGtW6rU0aO6JUFfSf6tHYkaVKGJO6IhIAsgWB\nCsiwd9bXyhjptOMYnTqcsSPKJEkfsjAdQJYhUAEZ9ta67um+41g/dTipK/1YRwUgyxCogAwKtUVV\ns7lJY4aVqLKU6b7DKS32aXBZoTZsb1bCmEyXAwApBCogg979sE4JY3TaeKb7emvsyFK1RWLaUdea\n6VIAIIVABWRQ8uq+05ju6zWm/QBkI0+mCwCyUUtrVKs/rldDS0SVJQWqKi/UkPJCGWPStnFxuL1T\nH2xu1OihQVWVFablmPlg3Ii9HdPPmzwiw9UAQBcCFbCPUFtUqzbU6+MdLTJGsiypMRRJbXfy91U7\ndf1nj9fxo8ttP9d7H9YpnjBc3XeEhg0qVpHfwwgVgKxCoAK6fbCpUW+t2yNjpNKATycdW6lRQ4Jq\nCke0p6ldexratWV3WD/+zbu66MzRumzaGHncfZs1jycSWvr2NklM9x0pl2Xp2BGlWv1xvZpboyot\n9mW6JAAgUAGStLuhTW/V7FGB363Txg/W6KFBubqn9ipKClRRUqDxo8p11OCA/vWltfrjm5v1/qYG\n3fT5iRpSUXTEz/enf2zV5t0hnTVxaJ8en+/GjuwKVB9ta6LdBICswKJ05L2OaEyvrtwpWdK5Jw/X\nmGElqTD1SccOL9W910/R1BOGatOukO795Qq9u772iJ5vZ32rXvzbRpUU+3TNP41Lx0vIO+NSGyUz\n7QcgOxCokNeMMXpt1S61R2I6edwgDS4//GhRod+jGy+eoK9fMkHGGC16YbV+9/ommV70RUoYo3//\nnxrF4gl9+YJqBQq96XgZeWfM8JKujZLpmA4gSxCokNfWbmrU9rpWDR9UpBPGVBzRY8+cOFR3f/lU\nVZb49eKrH+upl9Yq0tnzpr1/eXubPtrWrNOOq9Jp45mq6iu/161RQ4LavCuk9kgs0+UAAIEK+au2\nqV3vrq9Vod+tqScO61M7hFFDgvr+V07X2JGl+scHe/TD/3hL731Ud9DRqj1N7XrulQ0qLvDoS585\nLh0vIa9NHFOueMKoZktjpksBABalIz8ZY7Tig64r+qZNGq5Cf98/CiXFPn336sn6zZ/Xa9l7O/TY\nc6s0siqgz501WsePLtfKDXV6e12t3t/UoFjc6CszxnNlWhqcMKZSv399s9ZsbNDkcbSeAJBZBCrk\npd0N7apr7tBRgwMaWmn/Kjuvx6VrLxyvT586Un98c7OWv79bT720dr/7HDU4oE9NGqYzJw6x/XyQ\njhleogKfW2s+rs90KQBAoEJ+WrOxQZJ0wjFHtm7qcEZWBfT1SybqsmnH6P+Wb9HO+ladeEylTjmu\nSkN6seAdvedxuzTh6Aq9s75WuxvbOL8AMopAhbzT0NKhHXWtGlJe2G9bvgwuK9TsGayT6m8njOkK\nVGs+btCQUwlUADKHRenIO2u7R6cmpnl0CgMveWVm8mcKAJlCoEJeCbd1atOukMoCPo0YVJzpcmDT\noLJCDa0o0gebGxWLJzJdDoA8RqBCXlm7qUHGdK2d6kubBGSfE8ZUKNIZp2s6gIwiUCFvdERj+mhb\ns4oLPDp6aEmmy0GaJC8sWLORq/0AZA6BCnlj3ZYmxRNGE8ZUyOVidMopjjuqXB63pbUfs44KQOYQ\nqJAXjDHasL1FHrelsd0b68IZ/D63qo8q05Y9YTWHI5kuB0CeIlAhL9Q2tSvc3qlRQ4LyenjbO80J\nYyol7e0vBgADrc99qC6//HIFAgFJ0siRI3XzzTdr3rx5sixL48aN0/z58+Vy8YcL2eHjHSFJXd21\n4TwnjKnQkr92tU+YeuKwTJcDIA/1KVBFIhEZY/TMM8+kvnfzzTdrzpw5OuOMM/SDH/xAS5cu1QUX\nXJC2QoG+isUT2rwrpAKfW0MraP7oRCOqilUW8GnNxgbFEwm5+c8cgAHWp0BVU1Oj9vZ23XDDDYrF\nYrr99tu1du1aTZkyRZJ0zjnn6LXXXiNQISus2digSGdcx48uZzF6llv23vY+P3ZweZHWb23Skr9+\npGvOr05jVQBweH0KVAUFBbrxxht11VVXadOmTfra174mY0yqr09xcbFCoVBaCwX66s21uyRJY5ju\nc7Sjhwa1fmuTNu/idw+AgdenQDVmzBiNHj1almVpzJgxKisr09q1a1O3t7a2qqTk8H+8ysuL5PG4\n+1KCY1RVBTNdgqN88ny2dXTqvY/qVRbw6+jhpbabeWbTzysYKHDEc6RLcbFfhat2asvusCoqiuV2\nZ9+0Xza9f5yA85lenE97+hSonnvuOa1fv1733nuvdu/erXA4rKlTp2r58uU644wz9Oqrr+rMM888\n7HEaG9v68vSOUVUVVG0t/5tOl4Odz9dW71S0M67jR5cp3Gr/kvps+nmFwh39evxgoKDfnyPdRg0J\naN2WJv3tna2aeHR27dXI5z29OJ/pxfnsnZ5CZ5/+C3fllVcqFArpmmuu0dy5c7Vw4UJ973vf06JF\ni/TFL35RnZ2dmjFjRp8LBtLlzfd3S5LGDGO6Lx8cPbTrl92KD/ZkuBIA+aZPI1Q+n08/+clPDvj+\ns88+a7sgIF2awxG9v6lBxwwvUUmxL9PlYABUlReq0O/WO+tr9eXPVMuThdN+AJyJ3zZwrOUf7JEx\n0pkThmS6FAwQl2Vp1JCgwu2dqtnSmOlyAOQRAhUc6611e2RZ0unHE6jyCdN+ADKBQAVHammNasO2\nZo0dUapSpvvyyuDyQpUGfHpnfa1i8USmywGQJwhUcKSVH9XJSJo8rirTpWCAWZal048brNaOmD7Y\nzLQfgIFBoIIjvfthnSRp8rhBGa4EmXD68YMlMe0HYOAQqOA4kc643t/UoGGVRRrC3n156dgRpSoP\n+vX2+lpFOuOZLgdAHuhT2wQgm72/sUHRWCKrp/vs7FmHw3t15Q6NrCrW6o8b9Oyf1unYEaV9Os55\nJ49Ic2UAnIoRKjgO032QpLEju0LU+q1NGa4EQD4gUMFREgmjlRvqVFrsYzPkPBcs8mn4oCLVNnWo\nMWR/2yEA6AmBCo7y0fZmhdo6ddLYQXLZ3AgZua/6qDJJ0oeMUgHoZwQqOMq7H9ZKkk6pZroP0siq\ngAr9bm3Y0UJPKgD9ikAFxzDG6N0P6+T3unX86PJMl4Ms4HJZGjuiVJ2xhDbvCmW6HAAORqCCY2zd\nHdKexnadcEyFvB53pstBlhjXPe3H4nQA/YlABcdYvnaXJK7uw/4ChV6NGFTM4nQA/YpABcdY8f5u\nWZY06VgCFfY37ihaKADoXwQqOEKoLaqazQ0aO6JUgUJvpstBlulanO7RxztaFKVzOoB+QKCCI6z5\nuEHGSJOOrcx0KchCLpel40eXqTOW0LotjFIBSD8CFRxh5Yau7ugnMd2HQ6geVSavx6UPNjfSQgFA\n2hGokPPiiYTWfNygqvJCjagqznQ5yFI+j1vjR5WpIxrXR9uaM10OAIdhc2RkvcNtJLy7oU1tkZiO\nGVGqV1buyGgtyG7HH12u9zc1au3GBlUfVSaXi276ANKDESrkvG21rZKk0cPYuw89K/B5NO6oUrV2\nxLRxZ0umywHgIAQq5LzttWG5XZZGVAUyXQpywMSjK2RZ0uqPG5QwJtPlAHAIAhVyWritU03hqIZW\nFsnr4e2Mwysu9OrY4aVqaY1q6+5wpssB4BD8BUJO21bb9QdxJIvRcQQmjqmQJK3+uF6GUSoAaUCg\nQk7b3r1+iuk+HInSgE9jhgXV0BLRxztYSwXAPgIVclZnLKGdDW0qC/jojo4jNrm6Sm6XpXfX16kz\nRl8qAPYQqJCzdjW0KZEwGsnoFPogUOjVhKPL1RaJae3GhkyXAyDHEaiQs7Z3r58aMZj1U+ibE46p\nVKHfrbUbG9Ta0ZnpcgDkMAIVcpIxRlv3tMrvdauqtDDT5SBHeT0uTR5XpXjC6N31dZkuB0AOI1Ah\nJzW0RNQeiWlEVTHdrmHLsSNKVFHi18c7WlTb1J7pcgDkKAIVctLWPV3TfUcNZv0U7LEsS6ePHyxJ\nWvHBHpp9AugTAhVy0tY9YbksS8MHsX4K9g2pKNLRw4Kqa+7Qmo9ZoA7gyBGokHPC7Z1qDEXojo60\nOuP4ISrye7TyozrVMfUH4Ajx1wg5Z1tquo/RKaSP3+fWpyYNkzHS31btpDcVgCNCoELO2bvdDOun\nkF5DK4s0cUy5Qm2dWlGzJ9PlAMghBCrklGgsrl31baoo8auY7ujoByePG6SKEr8+2tast9cRqgD0\nDoEKOWVnXZsShtEp9B+3y6VPTRomt8vS//vjB9q8K5TpkgDkAAIVcgrtEjAQygJ+nX3iUHVE4vrJ\nb9/T9rrWTJcEIMsRqJAzEgmjbbVhFfk9qijxZ7ocONyYYSX6ykXjFW7v1I8Xv6s9jW2ZLglAFiNQ\nIWfUNrUr2pnQyMEBWRbd0dH/zjlpuK4+f5yaw1E9/Jv31NDSkemSAGQpAhVyBtN9yITPnH6ULps2\nRvUtHXrwP9/Rhh3NmS4JQBYiUCEnGGO0eVdIXo9LQyvZDBkD65Kzj+4KVc0deuCZd/S71zcpkWCL\nGgB7EaiQE+qaOtTaEdOowQG5XbxtMbAsy9Lnp47Rd6+ZrNKATy+++rEe+s27qm9mChBAF/4yISds\n3DUqgnQAABjcSURBVNUiSTp6WDDDlSCfjR9drn++YYpOra7S+q1Nuutf39Qv/6dGO+u5ChDId55M\nFwAcTqJ7us/ndWlYJdvNILMChV594/IT9PqaXfrda5v06sodenXlDp10bKWmnzJSx48uk9fjznSZ\nAAYYgQpZb09ju9ojcY0dWSqXi6v7kHmWZWnqicN01sShevfDOv3fP7Zo5YZ6rdxQL5/XpQmjKzTp\n2EpNHFOhQaUFXJUK5AECFbLepp1dnaqPHsp0H7KLy2Xp1OOqdOpxVdqwvVkravZo1YZ6vfdRnd77\nqE6SVBbwaeyIUp103BANLfNr9JCgPG5WWwBOQ6BCVosnEtqyO6QCn1tDK4oyXQ5wSMeOKNWxI0p1\n9fnjtKexTas21Gvd1iZ9tK1Zb62r1VvraiVJXo9LY4YGdezIUo39/+3deXCT550H8O8r6dV92pJ8\nyzYGAjYQ7gABmhQIaeolWwilJcv+sU0m6W7T6THTdDqlzQyZlP2jx7QwzbRNurM7mSG0TZspzULI\nEgIUYgMJh20MxCc+JZ86ret99w/ZCk4wJbZsyfb3M6PB9vu+0vP+eGz99JzD15j16jSXnogmigkV\nZbT61gEMReKYX2Rldx9NG06bHptX6rF5ZRFkWUbP4BDc3jA+qO9GQ9sgbrYP4kbbx+tZ5WTpMbfA\njLkFFswttCIvWw8FuwmJphUmVJTRquu6AXB2H01fgiDAYdWhfJ4TFS4rACAUjqGx04uGtkF81D6I\nho5B/P1qF/5+tQsAoNeoUFZgQWmeCYUOIwocBjhtOi4ZQpTBmFBRxorFJXxwwwOdRgmnjYt50syh\n06hQUZKFipIsAIl9Kjt6AviofTD5uNrYi6uNvclrVEoBedkGFDgMKLAbUOAwotBuQJZFy9YsogzA\nhIoyVl1zHwJDMSwotvINg2Y0hUJAodOIQqcRDy0rAAB4AxG0un1o9wQSjx4/2nsCyS2YRmjUykSC\nZTdgboEFy+Y7YNSJ6bgNolmNCRVlrHO1w919ueY0l4Ro6pkNaiwqzcai0uzkzyRZRs9ACO2eANp6\nAmj3JJKsli4fGju8OH2lE/997DoWFNuwaoETK+5zwKBlckU0FZhQUUbyBiK4UO9GXrYeDqs23cUh\nyggKQYDTpofTpsey+Y7kz2NxCV29QVxt7MX5ejdqm/pQ29SHQ/93E4+udmHLqiLoNPxzTzSZ+BtG\nGen0lQ7EJRkPLyvgoohE/4BKqUh2GX5hTTHcAyFU13Xj+IVb+MuZJrxzsQ2Va4vx8PICruJONEk4\nZYQyjiTJOPlhB9SiAusW5aW7OETTjtOqQ+W6Eux/Zi2+tKEUcUnCoRMfYe8r1Wjs8Ka7eEQzEhMq\nyjhXGnvR6x3CmvJc6LVsRCUaL51GhX96sBT/+ew6bFlZBE9/CC/9z0X89WwzJElOd/GIZhS+W1HG\nefeDdgDA55cXpLkkNNudvNSesucyGbXw+YdS9nyfVZ5dj82rCvH3K13486lGnL3aiQeX5I17RuBD\nS/n7SXQ7tlBRRnEPhFDT2IuyAjNcOVzMkyiV8rINqHywBK4cI7r7Q/jb2RZ09wXTXSyiGYEJFWWU\n9z5shwzg4WX89Es0GbRqJT63NB8PlOcgEovj+PlbuNk2kO5iEU17TKgoY0RjcZy+0gmjTsSqBc50\nF4doxhIEAfe5rNiysggqlQLnarpxod4NSea4KqLxYkJFGeN8vRv+UBQbluRxajfRFMjN1uOxNcWw\nGNSoa+7Hux+0IxKLp7tYRNMSEyrKCLG4hL+ebYFCEPA5dvcRTRmzQY0vrHEh365HuyeAo++3wheM\npLtYRNMOEyrKCKcvd6C7L4iNS/PhtHIjZKKppBaV+PzyQiwotmLAH8Fb51o5WJ3oM2JCRWkXCsfw\n5pkmaNRKPL6+NN3FIZqVFAoBqxfmYM1tg9Vv3BqAzHFVRPeECRWl3f9WtcIbjOILD7hgMajTXRyi\nWW3+bYPV36/txunLnYhEOa6K6B9hQkVp1e8L4+3qVliMamxd5Up3cYgIicHqletK4LBq0dzlw5Gz\nLfD0h9JdLKKMxoSK0uovpxsRiUn40oY50Kg5s48oUxh1IraudmFJWTb8oSiOVrfiw5s9iMakdBeN\nKCMxoaK0afP4ceZqJwrsBqxfzE2QiTKNQiFg6Tw7HlldBJ1GhasNvfjzqUZcb+1HLM7Eiuh2TKgo\nLcKROH53pA6yDOx8uAwKhZDuIhHRGHKz9Hh8fSmWlGUjFpdQVefG3t9V4cyVToTCsXQXjygjcHNk\n+pRUbQg71uapsizjlbeuobXbj43352HxnOyUvB4RTR5RpcDSeXbc57LiSkMvbtwawKtvXcN/Ha1H\nocOA0jwz8u0GiKqp+Zx++2bT3KiZMgETKppyfz3bjAv1bswrtOBfHrkPgsDWKaLpQqdR4YHyHJSX\n2NDU4UVTpw+t3X60dvshADAb1cg2a5Ft1sJqUsOoE2HQimyFphmPCRVNqYvXPfjL6SZkmzX4jy8t\nhkrJXmei6cikV2PJXDsWl2VjwB9GU6cP7v4Q+rxDGPRH0NjhTZ4rCIBBK8KoG37oE/9aDGpYjWoo\n+XeAZgAmVDRlmjq9+N2ROqhFBZ7bsQRmrjlFNO0JggCbSQubSQsAkGQZvkAEvd4wvIEI/KEofMEo\n/KEouu6w+rogAGa9GjaTBnaLFjlZetjMGijYck3TDBMqmnSSJONYdSveONWIuCTj3/95EVw5pnQX\ni4gmgUIQYDFqYDFqPnUsFpcQCEWTSdZgIII+bxgDvjAGAxE0d/kAJMZrOW065GcbUOg0wKTnhy/K\nfEyoaFJ5BkJ45UgdbrQNwmxQ498eW4AlZfZ0F4uI0kClVNwx2ZJlGf5QFJ6BELr6QujuC6LdE0C7\nJ4Dz9YDVqEahwwhXjhHZFi3HXVJGYkJFKSdJMtwDIbx+4iZOXupAOBLHivsc+Net9/GTJhF9iiAI\nMOnVMOnVmJNvAQAEhqJo9wTQ5vajszeImqY+1DT1wagTUZJnQsUcO9RKMLmijMGEigAkPiH6QlH0\nDAyh3eNHOCohHI0jFpMgKAQohERTvkIhDP/78R+yaExCNCYhEpPgC0TQ0RNAZHg1Zb1GhacqF2Jt\nRS7/8BHRPTNoRcwvsmJ+kRWxuITO3iCaO7245fajprEPNY19sBjUKMkz4b4iK/KyDekuMs1yTKhm\noXAkjla3D02dPtzq9qGrL4iuviACQ6lZoM+gVaE034zH1hRjgcsKUcUtZYho/FRKBYqcRhQ5jYjF\npUTLlSeA5k4vLn/Ui8sf9cLlNGJ1eQ5WL3DCbtWlu8g0CzGhmuGiMQltHj+aOxPrxTR3edHeE4As\nf3yOUiHAYdVhXqEVTpsOnoEQNKISarUSolKALCdm7kiSDEnG8L+J74HEAFK1qISoUkCnVsFsECEI\nAhfsJKKUUykVKM41YdFcB/oGgrjl9sMXiKCmqQ9/PNmAP55sQFm+GasX5mDVQiesdxgcTzQZmFDN\nIIOBCNrcftxy+9Hm8aPN7UdHbwCx+MfZk1pUYG6BBSW5ZpTmmVCca4LDqhu1HlSqVkonIppMokqB\nOflmPLS0AP5QFB/c8KD6WjeutfSjocOLQyduorwkC+sqcrFsvh1aNd/yaPKwdk1DkWgcnb3BRNI0\nnDjdcvvhDUZHnadWJZrJS3LNKMkzoTTPjLxsPZQKLqJHRDOLUSdi4/352Hh/PgYDEVyod+NcbRdq\nm/pQ29QHjajE8vl2rF2Ui/LiLK7cTiknyPLtnT9Ty+PxpeulM4LDYUrG4E6tQiNTift9YfT7Emu1\n9Psj8AUi+OR/mlEnwmrSwGbSIGv4X6NenFWL492+txdNHOOZWoxnat1rPL2BxKrtjR1e+EOJD506\njRKleWbMyTcjy6xNnptJewJOdU/B3eKZSXFJN4dj7DUU2UKVQSRJRq93CO7+UPIRjsZHnSOqFHDY\ndLAaNbCZ1IkkyqiBWuTAbyKiTzIb1Fg6z47752bDMzCExo5BNHf5UNfcj7rmfmSZNSjLt6A0n4sN\n08QwoUozXzCCq429OHWpY9RyA0Bitlye3YQskyaZOOm1Ki4/QET0GQmCAKdNB6dNh1ULnWj3BNDQ\n7kWbx4/z9W5cvO5GQ7sXDy7Ow+I5WRwaQZ8ZE6o0GIrE8MENDy5cv4rLNz3J7juDVoWSPBNysvRw\nWnUw6MS0lpOIaCZSKhRw5ZjgyjEhFI6hqcOLj9oHcfG6Bxeve2AxqLF2US7WVuSi0GHgh1i6J0yo\npogkyahv7cfZmi5cvO5JduWV5ZuxbL4D4WgcVqOav7hERFNIp1GhvDQLC0tsKM0z48yVTlTVdeNo\nVSuOVrUiL1uPVQucWL0wB/l2Lh5KY+Og9EnW3hPA2ZpOvF/bjX5fGABgt2ixblEuvrixDOJw+LlU\nwcRx0G9qMZ6pxXim1mTEc2TwdTQm4fJHPai61o0rDb2IDg/FcNp0WFhsw8JiGxa4bDAbxreVliTL\nGPRH4BkIjXp4AxH4QzH4Q1F4AxFIw+8PI5+zVUpFYo1AMbH2n0ZUQj28DqBaHDk2/LVKCYVCGF5z\nUIYMIBaXEY3FEztbRKXhXS7iiaEmgoBAKJr4PiohGpcgDL+mw6qDRlTCatLAadUhZ7jrNCdLP2rJ\nndmAg9KnmDcQQdW1bpyt6ULL8O7pOo0KG+/Px7pFuZhXaIEgCHDYjbMiqSQimk5ElQIrFzixcoET\noXAMlxt6cKHeg2stfXjvUgfeu9QBAMg2a5GTlUgscmx6GHUqqJQKKBUClAoFhqIx+IJR+INR+EJR\n9HmHhpOnIcTi0h1fWy0qYNSJiVnaCgG4PSGKSRiKxOENRjCZTSGCkIgBZCAWl9AzeOfEVa1SoDTP\njLmFFpQVWDCv0AKDdvYOVWFClSIjv3TVdW5cbexFXJKhEATcX5aNdYvzsHRuNrdgISKaZnQaFdaU\n52JNeS7ikoSWLj+utfShvqUfbT2B5GzBe2XUiShyGuCw6pIPu0ULu1UHm1GdfJ+4W6+FLMuIxWWE\no3FEookWpZGvwzEJkUgckVgcw5tZYGQgiUqpgFpUQFQpIKoSrVuiSgG1SgGrRYdoJAZRlUgIbx9+\nsn5xHiLROHq9Ybj7g3D3h9DVF0RTpw83bg3g+q2BxOsIQEmuCeUlWSgvtmFuoWVWve8xoZqA4FAM\nNU29OH/NjSuNHzcLF+easK4iFw+U54y7SZiIiDKLUpFYmX1OvhlfXFsCIDHJyN0fQnd/CKFwDPG4\nhFhcRkySoBGVMOnVMOlEmPQibCYt9NqJv+0KggBRJSRakVI0eeluXagqpQIqpQJ6rYgip3HUseBQ\nDE2dXtxsG0D98Ar1TZ0+/O1cC0SVAvMLLVhYkoXyEhtcTtOMXlA1pQmVJEl44YUXcP36dajVarz4\n4osoLi5O5UukVSwuoaXLh9qmPtQ09aGxw5vs487L1if2jlrg5MBFIqJZQqtWJWcMzkZ6rQoVpVmo\nKM0CNiQSzBu3BpItd7XDDyAxk31hsS2ZYDmtuhk1ESulCdU777yDSCSC119/HZcuXcL+/fvx61//\nOpUvMSVkWYYvGIV7IITOngCau31o7vThltuf7PcWBGBOvhkVJVlYucCJAjun1hIR0eymVauwpMyO\nJWV2AIk9Zq+19KGuuR/Xmvtw4boHF657ACS6P105RricJhTlGJGXrYfdooNhmq63mNKE6uLFi9iw\nYQMAYOnSpaipqUnl049LZ28AgaFYcjZDNCYhEhuZ3SAhEo3DF4zCG4wkHv4I3AMhDEVGr1CuVAgo\ndBpRmmdGebENC0tss3rwHRER0T9iMaiTY9BkWYZ7IJRIrlr60dLlveMYNJ1GBYdFC4tRA5M+0V1q\n1InQqlXD478UEEfGgykT48E0aiUKHIa0breW0oTK7/fDaPy4f1WpVCIWi0GlSs9QrYvXPTj456uf\n6RqNqITDqoXDqkOOTQ+nTYfiXBMKHcZEfzURERF9ZoIgIMeWmBH58LLEEhXBoRhuuRM9QO7+EHoG\nEzMhu/qDaHX7P9PzP/FQGR5bk75hRinNdIxGIwKBQPJ7SZLumkzdbT2HVHjUYcKj6+dM6mtM1EgM\ndm5ZkOaSEBFRpphN7wnFRbZ0FyElUtrksnz5cpw6dQoAcOnSJcyfPz+VT09ERESUkVK6UvrILL8b\nN25AlmW89NJLKCsrS9XTExEREWWktG49Q0RERDQTcJQ1ERER0QQxoSIiIiKaICZURERERBPEhGoS\nDA0N4bnnnsPu3bvx9NNPo6+v71PnHD58GNu3b8eXv/xlvPvuu6OOHT9+HN/97neT31+6dAk7d+7E\nV77yFRw4cGDSy59pxhvPsa47fvw4Nm/ejD179mDPnj2orq6e0vtJF0mS8KMf/Qi7du3Cnj170NLS\nMur4iRMnsGPHDuzatQuHDx++6zUtLS346le/it27d+PHP/4xJEma8vtJt1TGs66uDhs2bEjWybfe\nemvK7yfdxhPPEZcvX8aePXuS37N+pjaerJ/3SKaUe/XVV+Vf/vKXsizL8pEjR+R9+/aNOu52u+XK\nyko5HA7LXq83+bUsy/K+ffvkrVu3yt/61reS52/btk1uaWmRJUmSn3rqKbm2tnbqbiYDjDeeY133\ns5/9TD569OjU3kQGOHbsmPz888/LsizLH374ofzss88mj0UiEXnz5s3ywMCAHA6H5e3bt8sej2fM\na5555hn5/fffl2VZlvfu3Su//fbbU3w36ZfKeB4+fFh+5ZVXpv4mMsh44inLsvyb3/xGrqyslHfu\n3Jk8n/UztfFk/bw3bKGaBLdvwbNx40acO3du1PErV65g2bJlUKvVMJlMcLlcqK+vB5BYy+uFF15I\nnuv3+xGJROByuSAIAtavX4+zZ89O2b1kgvHGc6zramtr8ac//Qm7d+/G/v37EYvFpvaG0uRuW0M1\nNDTA5XLBYrFArVZjxYoVOH/+/JjX1NbWYvXq1QASsZ1tdRJIbTxrampw8uRJPPnkk/jBD34Av/+z\nrRA9E4wnngDgcrnwq1/9atRzsX6mNp6sn/eGCdUE/eEPf0BlZeWoh8/ng8mUWAHdYDDA5/ONusbv\n9yePj5wzUkEfe+yxUZtCfnI7nzs930ySynje/vPbr3vwwQexd+9evPbaawgGgzh06NAU3V16jbU1\n1MixsWJ4p2tkWU7W05leJ8eSynguWbIE3/ve9/Daa6+hqKgIBw8enLobyRDjiScAbN269VM7crB+\npjaerJ/3Jj2b7M0gO3fuxM6dO0f97Bvf+EZyC55AIACz2Tzq+Ce36AkEAqMq9z8695PPN5OkMp63\n//z263bs2JH8etOmTTh27Nik3U8mudvWUPcSw9uvUSgUo86dyXVyLKmM55YtW5Ix3LJlC/bt2zdF\nd5E5xhPPsbB+pjaerJ/3hi1Uk2D58uV47733AACnTp3CihUrRh1fsmQJLl68iHA4DJ/Ph4aGhjG3\n6TEajRBFEa2trZBlGWfOnMHKlSsn/R4yyXjjeafrZFnGtm3b0NXVBQA4d+4cKioqpvaG0uRuW0OV\nlZWhpaUFAwMDiEQiuHDhApYtWzbmNeXl5aiqqgKQiO1sq5NAauP5ta99DVeuXAEwu+rk7cYTz7Gw\nfqY2nqyf94YrpU+CUCiE559/Hh6PB6Io4qc//SkcDgd+//vfw+VyYdOmTTh8+DBef/11yLKMZ555\nBlu3bk1eX1VVhUOHDuHnP/85gMQvw0svvYR4PI7169fj29/+drpuLS3GG8+xrjtz5gx+8YtfQKvV\noqysDD/84Q8himK6b3PS3WlrqLq6OgSDQezatQsnTpzAwYMHIcsyduzYgSeffHLM7aSampqwd+9e\nRKNRzJkzBy+++CKUSmW6b3FKpTKetbW12LdvH0RRhN1ux759+0Z118wG44nniLa2NnznO99JzlZj\n/UxtPFk/7w0TKiIiIqIJYpcfERER0QQxoSIiIiKaICZURERERBPEhIqIiIhogphQEREREU0QEyoi\nmhG+//3v4+WXX8bTTz8NAOjo6MCjjz6K7du3w+fzYfv27Xj88cfR1NSU5pIS0UzEhIqIZgyn04nf\n/va3AIDq6mpUVFTgjTfeQH19PdRqNd58802UlpamuZRENBNxHSoimpZkWcb+/ftx8uRJOJ1OxONx\nPPHEEzhw4AAOHjyIr3/96wgGg9i0aRMuXLiAnp4ePPDAA3j55ZfTXXQimoG4lx8RTUvHjh1DXV0d\njhw5Ap/Ph23btiWPLVy4EN/85jdRXV2Nn/zkJ6iqqsKBAweYTBHRpGGXHxFNS9XV1XjkkUcgiiKy\nsrKwcePGdBeJiGYxJlRENC0JggBJkpLfq1RscCei9GFCRUTT0tq1a3H06FFEIhEMDg7i9OnT6S4S\nEc1i/EhHRNPS5s2bcfXqVVRWVsJut6OsrCzdRSKiWYyz/IiIiIgmiF1+RERERBPEhIqIiIhogphQ\nEREREU0QEyoiIiKiCWJCRURERDRBTKiIiIiIJogJFREREdEEMaEiIiIimqD/ByGdJ8mPqkEAAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 1.47740581385e-05\n", + "MAE : 0.00256412901334\n" + ] + }, + { + "data": { + "text/plain": [ + "count 149.000000\n", + "mean 0.000289\n", + "std 0.003846\n", + "min -0.009856\n", + "25% -0.001409\n", + "50% 0.000065\n", + "75% 0.001438\n", + "max 0.015438\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "\n", + "# Benchmark\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + "pred = model.predict(testX) # predict on testset\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['actual'] = testY\n", + "predictions = predictions.astype(float)\n", + "\n", + "predictions.plot(figsize=(20,10))\n", + "plt.title(\"Predicted close vs actual\")\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['actual'] - predictions['predicted']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences: actual minus predicted')\n", + "plt.show()\n", + "# if predicted minus actual is positive, this is \n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + "predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Compare the unscaled values and see if the prediction falls within the Low and High\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJuCAYAAAAe1Z9iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjXX/x/H3WWY3M8xi30sUkZL1lpsUWcKUQrc2qbuS\nSinUHTeitCmKqO6KklsmUf2ikiyRNSNrxjDGzJh9P+fMWa7fHzJ304wZmjMz5PV8PDyYc32vz/d7\nXXPO4zHHec/nazIMwxAAAAAAAAAAAAAAAAAArzJX9wIAAAAAAAAAAAAAAACAvyKCOQAAAAAAAAAA\nAAAAAEAlIJgDAAAAAAAAAAAAAAAAVAKCOQAAAAAAAAAAAAAAAEAlIJgDAAAAAAAAAAAAAAAAVAKC\nOQAAAAAAAAAAAAAAAEAlIJgDAAAAAMBFICEhQZdffrkGDRpU9Ofmm2/Wp59+WuHaDzzwgKKjoyVJ\ngwYNUk5OzhnH5ubm6s477yz6urzxVS0jI0Nt27bVc889d1bj/3g9f8aECRP07rvvlnosLy9Po0aN\nkt1uL3NcddqzZ4969epV4vGEhAS1b9++1HOWLFmiBQsWlFn3p59+0oABA7yyxj87z/l4z5955hn9\n+OOPf/r8F154QT/99JMXVwQAAAAAAMpire4FAAAAAACAquHv76/PP/+86OuTJ09qwIABatOmjVq1\nauWVOX5fvzTZ2dnas2fPWY+vasuXL9f111+vL7/8UuPGjVPNmjXLHP/H6/G2l19+WUOHDpW/v3+l\nzVEdhg8fXt1LuGA9//zzFTr/4Ycf1ogRI7Rs2bK/3PMKAAAAAIDzER1zAAAAAAC4SNWpU0dNmjTR\n0aNHFR0drREjRmjIkCEaOXKkJGnZsmWKiorS4MGDdffddys2NlbSqUDPPffco/79+2v06NFKTU0t\nqtmyZUtlZGRIkt5++2317dtXAwYM0MMPP6zc3FxNnDhRdrtdgwYNktvtLjb+zTffVL9+/TRw4ECN\nHTu2qO7IkSP1yiuv6I477lCvXr00fvx4eTyeYtcSFxenTp06qbCwUJLkdrt13XXX6fDhw1qzZo2G\nDBmiqKgoDR06VNu2bSv1fng8Hi1dulRDhgxRhw4dtHTp0mLHz/V6fn8/PB6Ppk+frqFDh6pfv366\n6aabtGPHjjK/P0lJSVq3bp169+5d4tj27dt12223aeDAgYqKitL69evldrvVuXNnHTt2TJK0YMEC\n9ezZs+ice+65Rz/88EOxOgUFBXrqqad02223qU+fPoqKitKRI0fKve8ff/yx+vTpo1tuuUUff/zx\nGa/B7Xbrueee05AhQ3T99ddr9erVkqQ5c+Zo6tSpkqSYmBhFRUVp4MCBevjhhzVkyJCiji4FBQV6\n/PHHNWjQIPXt21fbt28vMUdZ93b79u269dZbFRUVpaioqKL5/6igoEBjx47VoEGDNHLkSMXFxZUY\nc6bvrSStXbtWQ4cO1eDBgzVs2DDt2rWrxPkJCQnq0aOH7r33XvXp00cpKSnauXNn0esuKipK33//\nfdF9mzlzpm644QZFRUVpypQpRa/LkSNH6uuvv5Ykffvttxo8eLAGDhyo4cOHKyYmpuj+TpgwQaNG\njVLfvn01YsQInTx5UpIUHBys9u3bl3h+AwAAAACAykEwBwAAAACAi9SuXbsUHx+vdu3aSZIOHz6s\nRYsWadGiRdq6datWrFihjz76SCtWrNB9992nRx55RJI0depUtWvXTl9++aWeffbZUkMM3333naKj\no7V06VJ98cUXatiwoRYvXqyZM2cWde6xWCxF45cvX64NGzbo008/1apVq9SiRQtNmDCh6Hh8fLwW\nLVqklStXasuWLdq6dWux+Zo1a6YWLVpo7dq1kqSNGzeqQYMGuvTSSzVr1ixNnjxZ0dHRevTRR8+4\njc+GDRtks9nUtWtXDR48WB999JGcTuefup4/2r17t1JSUrR06VJ99dVXGjJkiBYuXFjm9+e7775T\n586dZbUWb3icmZmpsWPH6plnntGqVav04osvavz48UpMTFTPnj21YcOGoutxOp2Ki4tTbm6u9u/f\nry5duhSrtX79eoWEhOi///2vVq9erTZt2uijjz4q877v379fc+fO1eLFi7V8+XL5+Pic8RocDoe6\ndeumzz77TBMmTNBLL71U7LjL5dIjjzyiRx99VKtWrdLIkSO1f//+ouPJycm6++679fnnn2vYsGGa\nM2fOOd3bOXPm6J577lF0dLRmzJihLVu2lLrOpKSkonkGDBigp5566ozX9EdHjx7Va6+9pgULFmjF\nihWaNm2aHnnkERUUFJQYm5ycrIceekirV6+Wn5+fJk6cqFmzZumzzz7TvHnzNGXKFCUmJmrZsmXa\nu3evvvjiC33yySc6fvx4iVqxsbGaPHmy5syZo1WrVmns2LF66KGHlJeXJ+lUKOn111/X119/rZCQ\nkGJBnF69eumbb74562sEAAAAAAB/HltZAQAAAABwkTjd2UU61ZGjVq1aeumll1SvXj1JpzqA1KhR\nQ5K0bt06HTt2TMOGDSs6Pzs7W1lZWfrxxx/19NNPS5KaNGmiTp06lZhr8+bN6tu3r0JDQyVJEydO\nlHSqa0hp1q9fr6ioKAUGBkqS7rzzTs2fP7+oA07Pnj1lNptVo0YNNWnSRNnZ2SVqDB06VJ999pn6\n9u2r6OhoDR06VJLUv39/jRkzRj169FC3bt00evToUtewZMkSDRw4UFarVddff70mT56sr7/+WgMH\nDjzn6/mj9u3bKzQ0tChk8dNPPykoKKjMc44cOaLGjRuXeDwmJkaNGzcuClS1aNFCV199tbZu3aob\nbrhBn3zyiQYPHqyUlBQNGDBAP/74o0JDQ9W9e3f5+voWq9W3b181atRIixYt0rFjx7R161a1b9++\n6Hhp933fvn3q1q2bIiMjJUm33367Nm7cWOo1+Pj4qE+fPpKkVq1aKT09vdjxQ4cOSZJ69OghSerc\nubNatGhRdLxRo0ZF19mqVSstX768xBxl3dubbrpJU6dO1dq1a9W1a1eNGzeu1HW2bNlSV199tSRp\nyJAhmjJlinJzc0sd+0ebNm1SSkqK7r777qLHTCaT4uPjS2wRZ7VaddVVV0mSfv75Z6Wmpurhhx8u\ndt7Bgwf1ww8/aNCgQfLz85N06h4vWrSoWK0tW7aoc+fOatSokSSpS5cuCgsL0y+//CJJ6tixY9Hr\n+Yorrij2mmnUqFGpgToAAAAAAOB9BHMAAAAAALhInO7scianQzHSqe2BBg0apPHjxxd9nZKSotDQ\nUJlMJhmGUTT2jx1dJMlischkMhV9nZOTo5ycnDPO/ft6p+dzuVzF1n7aH+c/rW/fvpo5c6ZiY2O1\nbds2vfDCC5Kkxx9/XLfeeqs2btyo6OhoLViwQNHR0TKb/9dI+MSJE/rhhx+0d+9erVmzRtKpbi4f\nfPCBBg4ceM7XI6koVCSdCjo9//zzuueee3T99derefPmWrlyZZnnm83mElt2nb43f2QYhlwul7p1\n66Znn31WP/zwgzp16qSuXbtqyZIlCggIUL9+/Uqc9/HHH+u///2v7rjjDg0cOFA1a9YsFjYq7b7/\n8f6X1Sno9910fn//fn/uH7+Xv6/3x/NL+76XdW+HDRumnj17atOmTdqwYYPmzp2rlStXKjg4uFiN\n3z8XTs9V2vP6tN9/bz0ej7p06aLZs2cXPZaUlKTatWuXOM/X17eortvt1iWXXKJly5YVHT958qTC\nwsIUHR1d5vqkkq+Z04+dft2U9ZrxeDyl1gQAAAAAAN7HO3AAAAAAAFBCt27d9OWXXyolJUXSqW4y\nd911lySpe/fuRdviJCYmlro1VNeuXfXNN98UbaszZ84cvf/++7JarXK73SVCBX/7298UHR1dtP3P\nokWLdO2115bo8FIWPz8/9e/fXxMmTNCNN96ogIAAuVwu9erVSwUFBRo+fLgmT56s2NjYYqEfSVq6\ndKmuueYabdiwQWvXrtXatWsVHR2tffv2aceOHWd9PWFhYdqzZ48kFdsqaNOmTerZs6dGjBihK6+8\nUt9++63cbneZ19O0adNStzBq166d4uLiFBMTI0n69ddftW3bNnXs2FF+fn669tprNXfuXHXr1k0d\nO3bUzz//rO3bt6t79+4lam3cuFFDhgzR0KFD1axZM61du7bcdXXt2lWbNm1ScnKyJOmzzz4rc3xZ\nLrnkEvn6+mr9+vWSTnUDOnToUKkhnjMp694OGzZM+/fvV1RUlKZNm6acnJxSuy0dPHiwaAut08+F\ngICAYmPO9L3t3LmzNm3apNjYWEnSDz/8oJtvvlkOh6PMdV911VU6duyYtm3bJknav3+/+vTpo5SU\nFPXo0UMrV65UYWGhXC5Xqff49LynnyObN29WUlJSUYehshw/flzNmzcvdxwAAAAAAKg4OuYAAAAA\nAIASunfvrtGjR+vee++VyWRSjRo1NHfuXJlMJk2ePFkTJ07UTTfdpLp165bYrkc6tTXR4cOHNXz4\ncEnSpZdeqmnTpikgIEBXXHGFbrrpJi1ZsqRo/K233qqkpCQNHTpUHo9HTZo00csvv3zO6x46dKgW\nL16sKVOmSDrVzWfSpEl68sknZbVaZTKZNGPGjGKBn8LCQn366aeaMWNGsVpNmzZV//799cEHH+iN\nN944q+t59tlnNXXqVIWEhKhr165F2z0NGzZMTz75ZFH3nQ4dOmjNmjWldr85rXfv3nrnnXfkdruL\ndZEJCwvT66+/rmnTpslut8tkMmnmzJlq1qyZJOmGG27QmjVr1LlzZ/n7+6tVq1YKDQ0t2hbp9+69\n914999xzio6OlsViUevWrYu2lzqTli1bavz48brrrrsUFBSktm3bljm+LFarVXPmzNHkyZP16quv\nqmnTpoqIiJC/v79sNttZ1Sjr3j755JOaMWOGZs+eLbPZrDFjxqhhw4YlajRv3lxz587V8ePHFR4e\nXtRt6ffO9L1t0aKFpk6dqnHjxskwDFmtVs2bN69YB6rShIWF6Y033tCsWbPkcDhkGIZmzZqlBg0a\nKCoqSnFxcRo8eLACAwPVsGHDEkGhSy+9VJMnT9aYMWPkdrvl7++v+fPnl+gGVJoNGzaob9++5Y4D\nAAAAAAAVZzJK63sLAAAAAACAavevf/1LXbp0KXUbqr+KF198UaNGjVJERISSkpI0aNAgffvttwoJ\nCanupVWbjRs3Kj09XYMGDZIkTZ8+XX5+fkVby1VEbm6uhg8fruXLl5ca1gIAAAAAAN5FMAcAAAAA\nAOA8lZOTo7Fjx2r+/Pny9/ev7uVUisWLF+uTTz6R1WqVYRh6+OGHdeONN1b3sqrVyZMnNWHCBKWn\np8vtdqtVq1aaMmXKWXXDKc/MmTPVo0cPde3a1QsrBQAAAAAA5SGYAwAAAAAAAAAAAAAAAFQCc3Uv\nAAAAAAAAAAAAAAAAAPgrIpgDAAAAAAAAAAAAAAAAVAJrdS+gLC6XW5mZBdW9DAAAAAAXgVq1Ann/\nAQAAAAAAAAA4Z5GRwWc8dl53zLFaLdW9BAAAAAAXCd5/AAAAAAAAAAC87bwO5gAAAAAAAAAAAAAA\nAAAXKoI5AAAAAAAAAAAAAAAAQCUgmAMAAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAAAAAAQCUgmAMA\nAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAAAAAAQCUgmAMAAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAA\nAAAAQCUgmAMAAAAAAAAAAAAAAIBq9dVXqzRv3pxKq79z53ZNnjyxxOOvv/6KkpOTiz127NhRjRlz\nv1fmtXqlCgAAAAAAAAAAAAAAAHCBefTRJyq1PsEcAAAAAAAAAAAAAACAi1jQlGflt2qFV2s6Bg5W\n/pTpZz7usGvGjH8rOTlZTqdTPXteX3RsyZLF+u67NbJYLGrXrr0eemisYmJ+1ty5s2W1WuXv76/p\n01+Ur6+fXnpphhISjsvj8Wj06Ad19dUdzjjn8ePHNW7cGGVnZ2vIkFs0YMBgjRlzv8aPn6SgoBqa\nOvVZGYahsLBwr90HgjkAAAAAAAAAAAAAAACoUitWLFfduvX173/P1PHj8dq8eaPy8vIUG3tYa9d+\no/nz35PFYtEzzzylTZs26Oefd6pXr9667bYR2rhxvXJycrV58/8pNLSmJk58TtnZWXr44fu1ePF/\nzzin2+3Siy++Jo/HrbvuGqFu3XoUHfvww3fVu3cf3XzzEH333Rp99tmnXrlOgjkAAAAAAAAAAAAA\nAAAXsfwp08vsblMZ4uOPqXPnrpKkRo0aa8+eYKWnp+vYsaNq3fpKWa2nIi3t2l2luLhYjRx5jz78\n8D09+uiDioysrSuuaKPY2MOKidmlfft+kXQqeJOVlaWaNWuWOucVV1wpHx8fST5q1qyZkpMTi44d\nPx6vgQOHSJKuvLKd14I5Zq9UAQAAAAAAAAAAAAAAAM5SkybNtH//PknSiRMJevvtN397vKn27ftF\nLpdLhmHo5593qVGjJlqz5iv16zdAc+a8rWbNmmvlymg1adJUvXv30dy5C/TKK2+oZ8/eCgkJOeOc\nv/56UC6XSzabTUePxqlBg4ZFx5o2ba69e2MkqWhd3kDHHAAAAAAAAAAAAAAAAFSpQYOiNHPmVI0Z\nc7/cbrduv/0OZWdn6ZJLLlWvXr314IOjZBiG2rZtp+uu+7v27durF16YroCAAJlMJj311DOKiIjU\niy9O15gx9ys/P09DhgyV2XzmHjW+vr568smxysvL07333q+QkNCiY3fdNUpTpz6rb79do/r1G3jt\nOk2GYRheq1YJUlNzq3sJAAAAAC4CkZHBvP8AAAAAAAAAAJyzyMjgMx6jYw4AAAAAAAAAAAAAAAD+\nEv7zn4XasWNbiccnTZrs1U44Z4uOOQAAAAAgOuYAAAAAAAAAAP6csjrmnHljLQAAAAAAAAAAAAAA\nAAB/GsEcAAAAAAAAAAAAAAAAoBIQzAEAAAAAAAAAAAAAAAAqAcEcAAAAAAAAAAAAAAAAoBIQzAEA\nAAAAAAAAAAAAAMAFafLkidq5c7u2bPlRn38efcZxn38eLZfLdVY1V6z4VO+++7ZX1mf1ShUAAAAA\nAAAAAAAAAACgAmwOl/bGZcjHapa/r0X+vlb5+Vrk72uRn49Ffr4WmU2mUs/t3LlrmbUXLfqP+vbt\nL6u1aqMyBHMAAAAAAAAAAAAAAAAuYlOm+GnVKu9GSAYOdGnKFEeZY776apU2bFingoICZWVl6bob\nh+rLFYsVUbu+LBarBg1/SJ99NEcF+bmSpAG3jlaTppfopw1facuG1aoVFq68nGzlFhRqxecrlJgY\nr4ceHKv3339HGzb8ILfbrcGDb5HValFGRrqmTJmkmTNf0fz5c7V79y55PB7dfvsd6tWrt3bv/lmv\nv/6ygoNDZLFY1Lp1G6/cB4I5AAAAAAAAAAAAAAAAqBY2m02vvfamduw9pimTHpJhePT3vrerfqPm\nWr3iAzVv2U6dut+ktJRERS9+QyPum6C1q1fokUlvyGQ26a0Xxyk2MUdZGTnKTCvQpq27tGXLj1qw\n4H15PB7Nnz9XY8Y8pvfff1dTpszQ5s2blJR0QvPmvSuHw6EHHrhH117bSa+8MlPTp89S48ZN9PLL\nM712fQRzAAAAAAAAAAAAAAAALmJTpjjK7W5TWa666mql5TiU7/ZVQGANpZ48rog6DSRJJxOP6cih\nGO3ZsVGSZCvIVUZakmrXaySrj48kqWGTFkW1XB6PdsQcUFjd5srMK1REaIAeeeTxYvMdOXJYBw8e\n0Jgx9586x+VScnKiMjIy1LhxE0nSlVe2U0LCca9cn9krVQAAAAAAAAAAAAAAAIBztH//fh2Kz1Je\nTpYc9gIF1QiVyWSSJEXUaaCuPW/WfY89r2GjxqvdtX9XeGR9pSQdl7PQIY/HraSEuGL1Ius2VPzR\nXxUTm6Yd+5M15pEHVVhYKJPJLMMw1KRJU7Vv30Fz5y7QG2/MV69evdWgQUNFRkbq6NG439a0z2vX\nR8ccAAAAAAAAAAAAAAAAVDnDMHQi6aQWzH5Gdlu+Bt7+T638ZF7R8b/3GarPPp6rbZvWyGEvUK9+\nwxQUHKrrbrxFC159WoE1QuXj61esZr2GzdXi8qu18NUJMgyPOna/Sb8m5qlNm3Z68smxmjPnbe3a\ntUMPPXSfbLYCXXddTwUGBmn8+EmaPn2ygoKCFBgYqODgYK9co8kwDMMrlSpJampudS8BAAAAwEUg\nMjKY9x8AAAAAAAAAUIX+s3ipDsXGqs+guyp9LrPJpPrhQWpSt4Z8rBav1o6MPHOIh445AAAAAAAA\nAAAAAAAAqFKpWTZl5jmqbD6PYSghLU/JGQVqXKeGGkbWkNlsqvR56ZgDAAAAAKJjDgAAAAAAAABU\nFZvDpR0HU+XyeKptDf4+FjWtF6I6tQJkMlUsoFNWxxxzhSoDAAAAAAAAAAAAAAAAZ8ljGNp3NLNa\nQzmSZHe6dSA+UzsOpiojx15p8xDMAQAAAAAAAAAAAAAAQJU4ciJHubbC6l5GkTy7UzFH0nXgWGal\n1CeYAwAAAAAAAAAAAAAAgEqXlmVTQlpedS+jVMmZBTp8ItvrdQnmAAAAAAAAAAAAAAAAoFLZHC4d\nPJ5V3csoVaPvv1Tvh6KUs3Wn4k/merX2WQVzdu/erZEjR5Z6zGazadiwYYqNjS3znH379ql79+4a\nOXKkRo4cqa+++qoCywYAAAAAAAAAAAAAAMCFwGMY2n8sU063p7qXUkJw/BF1ePVZ1Tq8X93+/YiO\n/5qgpPR8r9W3ljdg4cKFWrlypQICAkoc27NnjyZPnqyTJ0+We87evXt1zz336N577/XCsgEAAAAA\nAAAAAAAAAHAhOJKYo5yCwupeRgnmwkJ1euFJWR12nWzfRXV2bVbHWRP045S58rGYFVGzZFbmjxyO\ncuYor0Djxo01Z86cUo8VFhbqzTffVPPmzcs955dfftG6det0xx13aNKkScrLOz/3DAMAAAAAAAAA\nAAAAAIB3pGXblJB6fmZE2rz/umod3q+4PlFaP2Ohkq/uqvpbvlerJW9r37FMZeWVnbrZudOs3r0D\nyxxTbsecPn36KCEhodRj11xzzVmf07ZtWw0dOlRt2rTRvHnz9Oabb+rpp58ub3pFRgaXOwYAAAAA\nvIH3HwAAAAAAAADgPTaHSzFHMxVcw7+6l1JC+LaNavnpe8pv1FSHx09VcGCQ9k6fo9B7Bqr1h3Nk\nb3e1joX0VJ3aIQoJ8i12rs0mTZ4svfKK5Clnd65ygznecsMNNygkJKTo39OmTTur81JTcytzWQAA\nAAAg6VQoh/cfAAAAAAAAAOAdHsPQz7+mnZdbWPlmZ6rNv8fJY7Fq81OzlOWxSHl2yRqoTf96XT0f\nH6ErJz+qb99crnX5Dl3VIkIBfqciNlu3mvXYY/46fNiiJk08mj3bLunMXXPK3crKW0aNGqWYmBhJ\n0ubNm9W6deuqmhoAAAAAAAAAAAAAAABVKC4x57wM5cgw1OHVfykgI1W/3DVWmS2vLHY487I22jXm\nX/LLzVbXqWPlzM9XTGy6snPceu45Pw0cGKjYWLPuv79Q69blq1s3d5nTnXPHnFWrVqmgoEC33377\nOZ03ZcoUTZs2TT4+PoqIiDjrjjkAAAAAAAAAAAAAAAC4cKRn23U8Na+6l1Gq5l/+Vw02f6eUdh11\ncOi9pY6Ju2mowg7EqPn/faqr507Tohte0QN3BCrxhK+aNz/VJadz57IDOaeZDMMwvHkB3kYreQAA\nAABVga2sAAAAAAAAAKDi0rJtOhifJafbU91LKSE4Pla9H75VHl8/rZm/QrbIumccay50qONjo/Xy\n4Ts0R2Mlk3TLsBzNet6kGjVMxcZGRgafsc45d8wBAAAAAAAAAAAAAAAAfs/p8ujwiWydzCyo7qWU\nylxYqE4zx8vqsOvHp14sM5QjSXv219KYnHVKVqBa6YAefOyE6t3UQEdT/dU6KEwmk6nM808jmAMA\nAAAAAAAAAAAAAIA/LT3brkPHs+Rwnd32TtWhzfuzVSt2v470vUUnut94xnF2m0mL36mtNatqyWQ2\nNLzHbr27vouMRaH6pstypSlMh45nqWXjWmc1r9lbFwAAAAAAAAAAAAAAAICLh8vt0YFjmdoTl35e\nh3Jq79iklp/+R7kNmujnByeecdyeXYF64v5mWrOqlho2cej52cc05Bk/Hb77nwpMS1bnGU/I5HYp\nKaNARxJzzmpuOuYAAAAAAAAAAAAAAADgnFwIXXIkyTc7Ux1fmiiPxaqfJr4sd0BQiTG2ArMWLYzU\nt1/WktlsKGp4mm65I10+voYk6cDt9ynsQIwabP5Obd5/XXtGPaH4lFz5Ws1qWLtGmfMTzAEAAAAA\nAAAAAAAAAMBZcbk9OpyQreTMgupeSvkMQx1efVYBGamKGTVOmZe1KTHkwC8BmjurnlKSfdW4mV0P\nPZGk5pc5ig8ym7X1qZnqPWaoWi19Rxktr9SJv92ow4nZ8vExKzIy+IxLYCsrAAAAAAAAAAAAAAAA\nlCs9265tB1IujFCOpOZf/lcNNq9VSrtOOjh0VLFjLqf08buRmvxEY6Wm+GjI8DS9MPdoyVDO6fFB\nwfrxuTfk8gvQtS9PUnD8EUnSwfisMtdAMAcAAAAAAAAAAAAAAABn5HJ7dDA+U3vi0uVwnt9bV50W\nHB+rdm+/oMLgUG196gXJ/L+IzPGjvpo0tqlWLA1X7bpOTX0lXsPvSZPVp+yaOc0u0/Zx0+RTkK+u\nU8fKWpAvj2GUeQ7BHAAAAAAAAAAAAAAAAJQqI+dUl5ykjAujS44kmQsL1WnmeFkddm1/fKpskXUl\nSR6P9NVntTTh4aY6GuuvXjdlada8o2rZ2nbWtY/37K9DQ+5USHysOrz6rFROMMdaoSsBAAAAAAAA\nAAAAAADAX47L7VHsiewLKpBzWpv3Z6tW7H4duelWnfjbjZKk9FSr3nq5nvbsClJIqEuPPZ6oa7vm\n/an6MaOfVK1f96rR+q+V0aqtdOOLZxxrMoxyojvVLDU1t7qXAAAAAOAiEBkZzPsPAAAAAAAAANCp\nUM72Aylj8w+7AAAgAElEQVSyXyDbVv1e7R2b1GPifcpt2FTfvLlc7oBAbfo+WO/Mqav8PIuu7pSn\nf45LUs1aFbs2v4xU3fDQLfLLypDZ7TrjODrmAAAAAAAAAAAAAAAAoEhiWv4FGcrxzc5Ux5cmymP1\n0ZYJLyvbVUPvzayjjd+Hys/Po/sfTdL1/bJlMlV8LkdYpDb/a7b+/uRdZY4jmAMAAAAAAAAAAAAA\nAABJkscwdCItv7qXce4MQx1efVYBGamKue8Jbci/Vm89UE/paT5qcblNjzyVqLoNnF6dMr311dr1\n8DO6powxBHMAAAAAAAAAAAAAAAAgSUrNsslxAXXLsebnqu62DWq0/ms12LxWx9pep0npE/XlO+Ey\nmw3ddmeqhgxPl8VSOfMfGTCMYA4AAAAAAAAAAAAAAADKl5CSV91LKFdgUoLqb/le9bd8r8iYbTK7\nXZKkjXX6646MpYqPCVL9hg6NeTpJl7a0V+taCeYAAAAAAAAAAAAAAABAWXkO5dq8u92TV3g8Cju4\nR/V+C+PUjDtUdCjjsjY60amn5jtGaUF0W7lcJvW5OVP/uC9Ffv5GNS76FII5AAAAAAAAAAAAAAAA\nUELq+dMtx2K3qfauLaq/Za3qb1kn/8w0SZLbx1eJnXooqVNPJXfpKWvDxlr4Rm0tXxaoiAiPHp2Q\nrJZts6t59f9DMAcAAAAAAAAAAAAAAOAiZ3O4lJ5dvds+WWz5arzuK9Xf/L3q7PxRlkKHJMkeGqa4\nPlFK7NJLGR26qWadMIWH+qup018P3B+oTZusatPGrQ8/tKl+/SD9muBUUkZBtV7LaQRzAAAAAAAA\nAAAAAAAALnIJqXmqzo2fTM5C9ZgwSuH7d0uSsptcqsQuvZTY+e+yt71a4WFBqhPirxZBvjKZTDp4\n0Kx//CNAx46Z1a+fU2++aVdQkCSZ1LJxLdUI9FXsiWx5jOrdzopgDgAAAAAAAAAAAAAAwEXM5fYo\nOb16O8xc+d5rCt+/Wwl/u1F77ntC1hYtFB7qrxah/grwKx5v+e47i+6/P0C5uSY9/rhDTz9dKLO5\neL0GEUEKDvDR3qMZcjjdVXglxRHMAQAAAAAAAAAAAAAAuIglpuXLXY2dZept/l4tl7+vnEbNlTX7\nLbWrHyEfq7nEOMOQ3n7bR1Om+MnHR5o3z6ZbbnGdsW5IkK+uuSxS+45mKivfUZmXcEYEcwAAAAAA\nAAAAAAAAAC5SHsPQibT8aps/ICVRHV+eKLevnxLfWKg6jWuXOq6wUJowwU+LF/uqdm2PPvjApmuu\n8ZRb39fHoraXhuvIiRwlpOV5e/nlIpgDAAAAAAAAAAAAAABwkUrNslXbVk8ml1Ndnh8n39xsHZz0\ngsK7XVvquPR0k+6911+bN1t15ZVuLVpkU/36Z9/hx2wy6dKGoQoO8tGh+Kwq7Q5Usu8PAAAAAAAA\nAAAAAAAALgoJKVXfRea0Nv+ZrfD9u3Wi90CFjHmg1DEHDpjVp0+gNm+2asAAp1auLDinUM7v1akV\nqPaXRcrf11KRZZ8TgjkAAAAAAAAAAAAAAAAXoaw8h3JtzmqZu+5P69Rq2XvKbdhUhbPfkNVaMizz\nzTcW9esXqPh4s8aNc+idd+wKCqrYvDUCfHTNZbUVFuxXsUJniWAOAAAAAAAAAAAAAADARSghtXq6\n5QSkJKnjrAly+/jqxOsLVaN2eLHjhiG99ZaP/vGPALlc0oIFNk2YUCizl1IuPlazrmweriZ1gr1T\nsAzWSp8BAAAAAAAAAAAAAAAA5xWbw6X0bHuVz2tyOdV5xhPyy83WwaefV3j3TsWOOxzSU0/5a8kS\nH9Wp49GHH9rUvr3H++swmdSsXoiCA3x0ID5LLo/355DomAMAAAAAAAAAAAAAAHDRSUjNk1EN87b5\n4A1F7NulEz37KeTRh4odS0sz6dZbA7RkiY/atXNrzZqCSgnl/F5EzQBdfVmEAnwrp7cNwRwAAAAA\nAAAAAAAAAICLiMvtUXJ6QZXPW3frerVa+o7y6jeR4403ZbVaio7FxZnUr1+gfvrJqptvdurzzwtU\nr17VRIcC/X3UrH5IpdQmmAMAAAAAAAAAAAAAAHARSUzLl9uo2n45AanJ6vjSBLl9fJTw+gIF1wkv\nOhYTY1b//oE6etSsxx5zaOFCuwIDq3R5igj1l5+PpfyB54hgDgAAAAAAAAAAAAAAwEXCYxg6kZZf\npXOa3C51mvmk/LIzdfixfym8R5eiYz/8YNGgQYFKTzdp5ky7Jk0qlMlUpcuTJJlNJtUPD/J+Xa9X\nBAAAAAAAAAAAAAAAwHkpNcsmh9NdpXO2/nCuIn/ZocQefRX82CNFjy9fbtWIEQFyOqV33rFr1Chn\nla7rj+qFB8rs5VQQwRwAAAAAAAAAAAAAAICLREJKXpXOV2f7Rl2+5G3l1Wskxxtvyee37aLmzfPR\ngw8GyN9fWrrUpoEDXVW6rtL4+lgUGerv1ZpWr1YDAAAAAAAAAAAAAADAeSkrz6FcW9V1pfFPT1HH\nF5+W28dHx2cvVES9CHk80tSpfnrrLV/VqePRJ5/Y1Lq1p8rWVJ76kTV0MsvmtXoEcwAAAAAAAAAA\nAAAAAC4CCalV1y3H5Hap08wn5Z+doUPjJiuiZ1cVFkqPPuqv5ct9dOmlbi1dalOjRkaVrelshAb5\nKjjAx2sBJrayAgAAAAAAAAAAAAAA+IuzOVxKz7ZX2XxXLHpTtWO2Kan7jarxxGPKy5P+8Y8ALV/u\no2uuceuLLwrOu1DOafUjgrxWi2AOAAAAAAAAAAAAAADAX1xCap6qKgZTe+ePunzJ28qv21C2ufOU\nlWVVVFSg1q2z6oYbXPr00wKFhVXRYv6EOrUC5WPxTqSGYA4AAAAAAAAAAAAAAMBfmMvtUXJ6QZXM\n5Z+eok4vPCXDYlX8a28rzV5b/fsH6uefLRo+3Kn337cpyHsNaSqF2WxS3fBA79TyShUAAAAAAAAA\nAAAAAACclxLT8uU2Kr9fTs1De3XdhHvln5Wuw49MVGJkD/XvH6ijR816/HGHZs+2y8en0pfhFfXD\ng2TyQh2rF2oAAAAAAAAAAAAAAADgPOQxDJ1Iy6/UOUzOQl3x0Ty1+mShzB63jkTdqZ0dn9R9gwJV\nUCDNnGnXqFHOSl2DtwX4WRUe4q+0HHuF6hDMAQAAAAAAAAAAAAAA+ItKzbLJ4XRXWv2av+7VtS9P\nUs24Q8qvXU87n3he23xv1YQ7a8hkkt55x66BA12VNn9lqh8RRDAHAAAAAAAAAAAAAAAApUtIyauU\nuiZnoa74eL5aLVkgs8et2H63KWb0eG3Z1kKzZgQrONjQhx/a1K1b5YWCKltYiL8C/awqcPz5YBHB\nHAAAAAAAAAAAAAAAgL+grDyHcm3e30Kq5uF9p7rkHDmogsh62jZumlKu6aZdmyI0a0aoatf2aOlS\nm1q39nh97qpWPyJIh09k/+nzCeYAAAAAAAAAAAAAAACch/JsTiWm5ctqMctqMcny299Ws1lW6+//\nbZLFbC5xfkKqd7vlmJyFunzJ27p8yQKZ3S4duWmodt//lFxBNbR3Z6hmTQ9XzZqGli2z6fLLL/xQ\njiTVDQtUXFKO3B7jT51PMAcAAAAAAAAAAFzwPIYht9sjl9uQ0+2R223I5fb89ufUv4se83jUtG6I\nagT4VPeyAQAAynT4RLay8hxnNdZsMsliNhUL8WSf5blnIzR2vzq+NEk1jxxQQWQ9bX98mk526CZJ\n+nVvoF6YXFe+vtLixQV/mVCOJFktZtWpFajE9Pw/d76X1wMAAAAAAAAAAFBpHE630rPtysixq8Dh\nKgrbuI1z+w3m7LxCtb0kXMGBvpW0UgAAgIrJyLGfdShHOhVU9vwWUvYmk7NQl3+yUJd/PP+3Ljm3\n/tYlJ1iSdOyIn154rqHcbun9923q2PGvE8o5rUFkEMEcAAAAAAAAAADw15Rncyo92660bLtybYVe\nqel0e7T7cLraXhKukCDCOQAA4PxiGIaOJOZU9zIUGntAHV+aeKpLTkRdbR83TSc7/K3o+MkkH73w\nbGPl5pr11ls2XX+9uxpXW3mC/H1Us4bfOQWlTiOYAwAAAAAAAAAAzisew1BWrkPpOXalZ9tld1bO\nBzwuj0e7Y9PUtnm4Qmv4VcocAAAAf0ZyRoHy7M5qm9/kcuryJQv+1yWn7y3a/cDTRV1yJCkrw6KZ\nkxorPc2i55+369ZbXdW23qrQICKIYA4AAAAAAAAAALgwOV0eZeTYlZZjV2aOQy5P1WyB4PYYiolN\nV5vm4aoVTDgHAABUP7fHo6PJudU2v8VuU/dJoxX5y45TXXIen6qT13YvNqYg36yZzzRW4gkfjRvn\n0OjR1RciqioRof7y97Gcc2icYA4AAAAAAAAAAKgWTpdbyRk2pWfblZ3vkFFN63Abhn45kq7WzcIU\nFuJfTasAAAA4JSElX45K6hhYHpPLqS7TH1PkLzuU8LcbtO2J54t1yZGkQodJs55rqLhYP915Z6Ge\nfto7W42e70wmk+qFByku+dy2GDNX0noAAAAAAAAAAADKdCghW7GJ2cqqxlDOaW7D0C9xGUrPtlfz\nSgAAwMXM6XLreEpe9Uzu8ajDq8+q3tb1SurQXVsmvlwilON2S7Nn1Ne+PYEaONCpF190yGSqnuVW\nh/oRgTKf4wUTzAEAAAAAAAAAAFUut6BQqVm26l5GMR7D0N6jGUo7z9YFAAAuHkeTc6tsS89iDENt\nF76kpt+uVHqrttr8r9kyfHz/OEQLZtfV9s3B6t7dpbfesstiqfqlVicfq0WRNQPO6RyCOQAAAAAA\nAAAAoMrFJZ3bFgBVxWMY2ncsUymZBdW9FAAAcJEpsLuUlF49P4O0XPauWi5/XzmNL9HG6fPlDggs\nMeajdyP1/eqaatfOrQ8+sMnPrxoWeh5oEBF0TuOtlbQOAAAAAAAAAACAUmXmOpSR66jyeX2zMlTz\nyAGFHv1VaVe0V2artqWO8xiG9h/LlGFIdcJKfigFAABQGeKScuQxqn6Dz6ZfL1fbd15RQWQ9rZ+x\nUIUhtUqMWbksTCv/G65LLnFryRKbatSo8mWeN0KCfBUc4KtcW+FZjSeYAwAAAAAAAAA4LzmcbjkK\n3QoJ8i1/MC4old0tx+RyKvh4nGoeOajQuIOn/j5yQAEZaUVjHMGhWv3OF3LUiii1hiHpQHymPIah\neuHn9lvRAAAA5yo7v1Cp2VW/nWa9zWvVYfZzcoTU1PqZ78hWu16JMevWhGrxwtqqU9etZctsioio\n+vDQ+aZBZJAOxBPMAQAAAAAAAABcwA4dz1JOfqGuahGhIH+f6l4OvCQty6acgrP7EONsFHXBOXLo\n1N9xhxQSf1gWp7PYuPza9ZTYuaeyml0mn4J8tfh8sdrPna4t/5p9xtqGpIPHs+Qxzn3LAgAAgHNx\nJDG7yueMiNmmLs+Pk9vXXxumv63cxs1LjNm+uYbmv1pXoaEefbrMroYNCeVIUu2aAYo9kS2n21Pu\nWII5AAAAAAAAAHABcns8crkMuTweudyGXC5P0b/d7t8ec3t++2PIYxi6snmYLGZzdS/9rCSl5ys9\nxy5JiolNV/sWEfL35b+0L3SGYSguObfihdxuXfvKJNXZ+WOxLjiS5PLzV3bzVspq3lLZzVqe+rt5\nSzlrhPxvkMejWof3qdGG1Tq+frVOXNenzOl+TciS4THUsHbl79lgGIYKnR7ZC12y/9Y1yl7olr3Q\npeBAXzWpGyyzyVTp6wAAAFUnLcum7HzvBZfPRmjsAXWb/LBMHo82TXmz1C0+98UE6LXp9eXra2jJ\nEptatiw/hHKxMJtNqhcepPiU8n+25V0MAAAAAAAAAFwgYhOzlZxeILfnVNDmXCWlF6hhZOUHCyrK\n5nDp8In//caww+kuCuf4WC3VuDJU1MlMm/LtzvIHlqPOzh/V9NuVstcML+qCk31JK2U1a6m8+o0l\nSznPE7NZ256Yrhv/OURXz52m1HYdVRhaq8xTDidmy2MYalwnuEJr9xhGsbCNw+mW3eGW3Xnq60Kn\n54yv74xch7JyHbq8aS2CagAA/EV4DENHKnmbzz8KSjqu7s+Mlm9+rrZMfFknO3QrMeZorJ9efK6h\nDMOk994rUIcOhHL+qH5EoI6n5Kq8d2b81AYAAAAAAAAAF4Ck9HwdT8mrUI2ElDzVjwg677ttHIzP\nkttT/L+3CxwuxcRmqN2l4bJaLoyuPyjOYxg66qUPnZqtjpYkbZw2T5ktr/xTNfIaNtMvd41Vu4Uv\n6ap5M7V1wqxyzzmSlCOPYahBRNDvulL9rzuV2/1bFyvXb4+doYtVRTaAyC4o1PYDqbqscU3VrhlQ\ngUoAAOB8kJReoAKHq8rm88tM03UT71NARpp2PThJx3v2LzEmM92imc82lN1m1uw38tW7N9tXlcbf\n16rwUH+lZdvLHEcwBwAAAAAAAADOc9l5Dv2akF3+wHLYnW6lZNpUNyzQC6uqHAkpecrKd5R6LNdW\nqH1HM9Smefh5Hy5CSYlp+bI73RWu45udqQY/fqfspi2UeVmbCtU6FHWXGq5frSZrV+l4j5uU1KVn\nueccTc7VUW9sx1UBLo9H+45mKCs8SJc0CLlgtqgDAADFudweHUuuum451vxcdZ90v2okxmvfiH/q\n8JCRJcY4C016eWpDZab7aNxTeRp+O6GcsjSIqFFuMIef1AAAAAAAAADgPGYvdGnv0Yw/tXVVaeJP\nVm+goCwFdme5bfwzch06cCxThpfuB6rGqQ+dvPPca7z2C5ldTsX1iZIqGtCyWLT9iely+/jomtcn\nyyevcj8Ys9htsuZ77zWYmJ6vnYfSlGer+PZgAACg6h1PyVOhq2q2iDIXOtRtyhjVit2v2H63ae9d\nY0uMMQxp4Zw6+nV/gPrfbNfTT/Azd3lqBfspyN+nzDEEcwAAAAAAAADgPOX2ePTLkQyv/md9gcOl\ntCyb1+p5i8cwtP9Y5lkFkFKybDp8ouIdhFB1ElLz5HR74XlsGGq2erk8FquOXX9zxetJymnaQvvu\neEgBGalq9/aLXqlZmoDUZN34wCDdfNvfdO1LE1Xz0F6v1M23O7XzUKpOpOV7pR4AAKgaDqdbCRXc\nqvasud3qNPNJ1d69VQl/u0E7H3mu1IDz15/X0rrVNdXmSpfemuOscAb6YlE/IqjM4wRzAAAAAAAA\nAOA8dSA+S3l273fCiK+qDwDOQfzJXOWeQ9ePE2n5XuvAgsrldLl13EvPuZqH96nmkYNK7NJThTXD\nvFJTkg7eNkqZl16uZqujVWf7Rq/VPc0/PUU9nrpbNZKOqzA4VE2/WaEbxtyqno8NV6Pvv5TJWVih\n+h7D0K8JWdoblyFnFf3WPQAAqJijSTlyV0UXSMPQNW/8Ww03fauUdp3004SXJIulxLBfdgXqg7dr\nKzLSo8WL7AoIqPyl/VXUqVX2zSKYAwAAAAAAAADnoaPJOUqtpM42OQWFysx1VErtPyOnoFDxJ889\nuBGXnEOXkAvAsZN5cnu886FTs9XRkqSjNw7xSr3TDKuPtj3xvDwWqzq89pys+d4Lr/lmZei6Cfcq\n+MQx7b99tL74eJ3WP79ASR2vU/j+3eo880n1H3m9rlj0pvwyUis0V2q2TTsOpig77/x5fQMAgJLy\n7U4lZxRUyVyt339dzf9vmTIvvVybpsyVx9evxJiUJB+99nwDWczSe+/ZVb8+W1idC6ul7OiNZcqU\nKVOqZil/TkFBxVLiAAAAAHA2goL8eP8BAADOG6lZNv2aULlbNTldbtUJC6zUOc6Gx2MoJjb9T2/X\nlZljV6C/j4L8fby8MniDvdClA/FZ8sZHO+ZChzq+NFGFNYK165HnJLN3f/fYERYps9ul+lu+l29+\njpI6/b3CNX1ystRjwijVjDukQ0Pu1J7R4yWzWfkNmii+10Ad6zVAhsWisIO/qN72jWqxYrFC4mNl\nC4+ULaJuqVtMlMflMXQyo0AmmRQa5CsTe1AAAHDeORifpQKHq1LnMDvsavXJArX+6C3l1m+sH2a9\nL2dIzRLj7DaTXnimiZKTfPTSSw7161e56/qrCgoqGXg6jY45AAAAAAAAAHAeybM5deBYZqXPk5Hr\nUO55EEw+kpRToQ8lDEkHjmWeVx2A8D/HknPl8dIWDfV//E6+eTk6dsNgGRarV2r+0b4R/1R20xa6\n5Iulity1pUK1rPm5uu6Z+1Urdr9iB9yu3f+cUCJok9+giXb/c4K++Ph77Rg7WbkNGqvx91/q+sdG\n6PoxQ9VkzQqZC8/9uW3oVEep3YfT5Sh0V+g6AACAd2XmOpSeY6+0+oEnT+jKd17WgBF/V5sP58gW\nFqH1M9+Vo1ZEibGGR/pgbmPFHvbVvfcWauRI72+jC8lkGFWxadmfl5rKHsEAAAAAKl9kZDDvPwAA\nQLUrdLq181Cq7M6q+SA9smaAWjcNq5K5SpOV59DPh9O8UstiNumqSyMUHOjrlXqouAK7U9sOpHil\nW44kdZ94n+ru2KT/e/cr5TVq5qWqJdU6uEfXPzpM+bXra83bn8sdcO6dpSy2fF03cbQi9u1S3I1D\ntH3c9LPr8GMYivz5J7X4fLH+n737DnOqTPs4/k2bJJPpvQADDAwdBBVBVMCGqODay1qwru6urLhi\nV1zLur7WtbtWlCI2pIiISBFQREDpMJTpvSQz6e2c948RpAzDTJIZUO/PdXEBSc5znmSSk0ye37nv\nrNVL0SgK3vhE9px7GbvPvwJ3akab52LQaenVJYGUeHObtxVCCCFE5K3bUYPdHeGAfAufIXaNvwpP\nctohm+g0GpbNz+al/8Zw8skBPv7YjUGKUIYsNTX2sNdJMEcIIYQQQgghkGCOEEIIIY4+RVXZsKuW\nBmfHVbHRAEP7pGM2tk/1kZYEggprd1TjiWA1D4NOy+CeqUSbOv7+iENtLqijtiEyZ4Obq8s575oz\nqes7mKXPT4/ImC0Z8Paz9J71FvkXXsOG2+5v07Y6j5tTHrqVtA1rKB59Hj/c/RTodG2eQ3RlGbnz\nZ9Lty08w2htQtDpKRo5lw633NHvG+5H075pESoKEc4QQQoijqcrqYlsEq2Pq3C5yvplLjznTiS/a\nBUB9z37suuBqSkaNRYlqvr2S0aCjYmc6t94SR+fOCl995SIl5ZiOjhzzJJgjhBBCCCGEEEcgwRwh\nhBBCHG07iq1U1Ls6fL+ZSdH06pLY4fttr/tritIxuGcqRkPbgxAichqdPtbvrInYeH2mvUr/91/i\nxzsfp/CciyM27uFofV7OuvVCYssKWfrcNOr6DWn1diOm/I2MdasoPeVsVj/wbNhtt7ReD12WzKfn\nnGkk7NmBNy6B9X9/iNKRYw9pjdWSeEsUg3umhjUXIYQQQoROUVXWbKuKSDDdUl5Mj7kz6PrVZ0Q5\n7Sg6PaWnjWHnBX+mvs9xLX5GiDUbMPhTuWBcLKoK8+a5GDBACXtOf3QSzBFCCCGEEEKII5BgjhBC\nCCGOptIaB7vKGo7KvrUaDSf1Te/QIEtdg4dNBXXtNn6MycCgHikY9K1oHSTaxc+7arE5vJEZTFEY\nO2EMJls98z78lkC0JTLjHkHylp8YfeefcWTnsOi12ShGU4u31/h9nPzYHWStXkr5SaP47uH/ohoi\n2FpNUegxZzoD3nkOvddD6Slns/72h/EmJrd6iOPzUqXdmxBCCHGUlFQ72F0exmd+VSV93Xf0mDON\nzDXL0agqnsQUdp93GXvOu7zZdlUHS4k3kRGXxLljYygs1PLWW27Gjw+EPiexT0vBHPmtRAghhBBC\nCCGEEEIIIY6i+kYPu49SKAeaztwtrXZ02P78gSD5JbZ23YfD42dzQR1BRc78PRrqGz2RC+UAqRt/\nJKaylJKR53RYKAegrt9gdv7pGmJLC+n3/kst3lYTDDDsyclkrV5K5ZCT+f6hFyIbygHQatl14TUs\nev1zavofT6eVixhzyzg6fbuw1UOU1TgjOychhPgd8fqCbNpTR31jZNowCrG/QFChuCq0kwL1Lie5\nc6Yz5sbzOO3+m8j6YRn1vQbwwz3/x/xp37D12ttbFcrpnBpDr05J3HZrNIWFWiZN8koop4NIo10h\nhBBCCCGEEEIIIYQ4SlyeANuKrBztsubldU66pMd2SIWZ/NIGvIHwy/cfSWODk6JdPrrnZbf7vsSB\nCioiW4my21efNo075qKIjtsam6+/g6wfltHr0/coPXUM1t4DD71RMMiJ/3cfnVYuonrgiXz3yMso\nUcaI7D/gB49bi8ejxePWYjQpqFk5LHvmfXp+/gH9332B4Y9PouS0r1j/94fwJSS1OF61zU33rDii\npNWbEOIYFwgq6LQaNG1o2ReOynoXu0obCCgKPn+QpLiWq6QJ0Va7yxrwB9seGte5XZx965+wVJYS\nNBgoOvMCdl7wZ6y9BrR6DK1GQ4/seLJSLDz8sJHly/WMGRPgnnt8bZ6PCI0Ec4QQQgghhBBCCCGE\nEOIoCAQVNhfUhfQFfaQFFZXyWic5GYcvvx4JVVYXNTZ3u+6DYJCui+fQb+qLaINBypetITYzpX33\nKfaptrmxuyO3yKN32um0YhH27Bzq+g2J2LitFTSZWTvpMUZNvo4Tn72fxa98hhK1XyUcReGEFx4m\nZ+l8avsex8rHXiNoMh8yjqpCdaWB7ZvNVFca9oVt3K6mwI33l+CN2930d9P1GgL+Q8NyCUkB8vq6\n6dV3EsfddQGXf3YHnb9dSOqGNayfOIWyU88+7P1RVJWKOle7v9aFECJU6i/HqYKKRowGHd0y40iO\nb7+QjNffVMmvbr8qOXa3n2qbm7SEQ4/nQoSivtFDRb0rpG17zJ2OpbIUz2VX4nj4MaLT0hioqgSC\nKoGg8ssflWBQIaCoBAIKAeXXy/xBhaxkC0lxJmbN0vP661Hk5QV59VU3Wumv1GEkmCOEEEIIIYQQ\nQgghhBAdTFVVthZacXmPndLxpTUOOqVZ0LXTN/Ref5Bdpe3YsktVyfhxBQPfeob4wp37Lna9OxXL\nvSetEw8AACAASURBVHei1XbMGfd/ZIqqUljRGNExuyxdgM7npfDsi6CDqiYcrGbQUHaNu5Ie82bS\nZ8ZrbJnwj6YrVJXBLz9Gt68+oz6vPyue+B9Bc1OrrWAQinYb2b4lmu1bzOzYbMZab2hxPwaDgsms\nYDKrJCb7MZlVTKa9lymYzQqNDTp2bDWzZmUsa1bG8gFp3KP/jn7pxZxR8xmnPLaU7sNXU3rn7fji\nE5vdT3mtk87pMWiP0uMphBCHY3f52FnaQKOrKeDpDypsKqgjIcZIblYcsdGRbRG4f5WcgxVWNJIS\nb5JjpQhbIKiE3MZV73TQ66O3UeLjcTzxFGp8AgAajQaDXtOmapfr12u56y4T8fEq77/vJlYyuh1K\ngjlCCCGEEEIIIYQQQgjRwfaUN1Jv9xz5hh3IH1SorHORnRrTLuPvKLa2W3WghPwtDHzrGdJ/Xo2q\n0VAw5iJ2jb+KM/5xJZ1nT2P7dTfRPTu+XfYtflVV74p42KzrV5+harUUnnVBRMdtq003/pPMNcvp\n/eGblJ1yFrbcPgx64yl6zP8QW/defPXQ22zLT2f7ZjPbN0eTv82M1/PrYllikp/hIxvp1ddN565e\nzNG/BG72C97oW7lio6pQV6NnxxYzO7aayd9qZtPuHDYod/Icd8L30O3yAvL6eek8KoG8vm66dPWi\n/aV7lTcQpMbqJj0puh0eKSGEaLtAUKGgopHyWmez7T1tDi/r8mtISzDTLTMOszG8Je7mquQczOUN\nUFnnIivFEta+hNhT3ojHH1ob156zp2K0N+C8/+F9oZxQVFVpmDDBjN8PU6e66d79aDfS/eORYI4Q\nQgghhBBCCCGEEEJ0oPpGDyU1jqM9jWaVVDvITLFE/Ozwslon9XZvRMcEiK4opf97/yVn6XwAKoae\nxsYb/0ljtzwASk85iy7LFuD+ZimNl5xLXITPtBe/UhSVwkp7RMeMK9xJ8o6NVAw9DU9KekTHbqtA\ntIW1dzzKyPtu4sRnHmBT/3PZONfBf2PfYZHmUvZcZ0FRfn3ddMrx0rufi9793fTu5yY1w49GA3qt\nFo2GsEJqGg2kpAVISbMzYnTTY+5xa9i1w0z+ZiOlS+vZUpLOV5uSYFPTNuboIL36uhl2qp0TR9gp\nrXFKMEcIcUyoqnexu7wBX+DIx8Vqm5vaBg9ZKRZy0mPbVC1k//3tKmto1XG4qMpOepK53aoJit8/\nm8NLeZ0zpG0NjTZ6ffIewaRkXDfdGvIcvF6YMMFMZaWWKVM8nH56aCEhER4J5gghhBBCCCGEEEII\nIUQHqrG5j/YUDsvjj3wlDZvDy56yyLawMjTa6DPzDXrMnY7O78faoy8bbp5MzeBhB9xu9/lX0GXZ\nArrP/5AtQ09mSK9UaUnRDLc3QEWdC40GTFE6TFF6TFE6jAZdq1uAldU68YZ4NvjhdF00G4CCMRdH\ndNxQVR8/go1n/pk7F0/gmz1nNl1oB51bpWdvN71+CeH06uciNq75Bd+umbEEgkrEQ0wms0r/41z0\nP84FV2uwFK4m8T9vsnVPEiuiTmep+Vx+XpvIz2tjePPFDPoPdnL5pXDxn1QSm+94JYQQ7crp8bOz\npAGbs23BXUVVKa1xUFnnokt6DJ1SY1r1XuX1B9lZYqO2hSo5zW1TVuOkS7r0/BFtF1QUdhSH1sIK\noNen72FwOXDcfR/EhFbRUlXh7rtNrFun4+KL/fz1r/6Q5yPCI8EcIYQQQgghhBBCCCGE6EDWdqgc\nE0nF1Y6IBXNKqh0UVDSiqJEpl6/1eenx+TT6fPg/ohyNONOz2XTDJEpGjoVmzmavHXACDTk96LTy\na36uqKAo3kS3zLiIzOX3wOUJUFxlp9rmPuzPyKjXYYzSNQV19oZ2DL9eptdpCQQViqsiGzTRBPzk\nfD0Hb3wi5cNGNXub5DgT0UY91VY33kD7n/3t9Wi4svxVthLHMMOP5F2YRO5JenLzPEQZj/wcjzEZ\nyEqxEAwqFFc5Iva6aI6za3ecrzzOCZ++x4SpN6Cr87H81Nt4M28K338bx4a1MWxYCw8/oHLaaUEu\nuMDP2LEBEkLvkiGEEK0SVJrCiWU1zrCOgwFFYc8v7a+6ZsaRnmhGc5jwbZXVxa7S1lXJOVhJtYOs\nFAt6nVTNEW1TUGHH7QutxWeUrZ6esz8gkJaOe8KNIc/h7bcNzJxpYNCgIM8950Hy6UePBHOEEEII\nIYQQQgghhBCig7g8fjwRrioSaU6Pn9oGNynx5pDH2HuGcHWkqgMpCjnfzKX/ey8SXVOBLzaen/9y\nD7vHXYUS1UJ7Ko2G3eOuYMjLj9Nt4afkJ91KaoKZGLMhMvP6jXJ6/BRXNgVyjrQk6g0E8QaCNLqa\nv96g06LTasJqzdSczB+WY2qoJ//Ca1ENh/6M9VoteZ0TMBp0dM+Kw2r3UlXvorbBQ7AdAi9+n4Zn\nH81m69YYhp9s5R/3GtGa/EDrzzzPzY5Hq9Gg1etITzRTUX+YBzVSdDryL7uRimGjOOk/kxm54jU0\nY4/ngstHUFVhYPW3cWxck8iSJXqWLNFz112/hnTOOUdCOkKIyKuxudld1hDRz0Ief5DtxVZKqx10\nz4ojKc607zqfP0h+qY3ahtZXyTmYP6hQUu2QYK9okwanj7IwWtf2/ugt9B4X9imPQnRogfkVK3Q8\n9JCR1FSFqVPdmEP/aC8iQKOq7RjJjoCamsim7IUQQgghhBCiOampsfL7hxBCCCHaXVmNg50htnXS\n+nwMf/wOjNY6/JYY/DFxTX9bYvf98cXs/XcMfktc079jYvGbLaDTtXpf8dFRDM5LDWmebm+ALQX1\nODyRKZWftm4Vg958hoQ92wkaoth54TVsv/xm/LHxrdpe73Qw7sqReOPiWTD1a2JjTAzO+2O2tLK7\nfBRXOahpOHbbqe014uG/krV6KV+9MYfGbnmHXN+zUwLZKZZDLg8EFWobPFTWu2hweI8YPGqNYBCe\nfzybNatiGTzUweQppejbmO1KTTDTr2vSvv87PX5+3F4dgdm1TmL+Zs78+6WUDxvNqkdf3Xd5l7RY\nNN545s0zMGeOnk2bmo4TBoPKqFFBxo1rqqQT37qXmxBCNMvtDbCztIF6e+gBmdbQu5zkrV1Kt1WL\n8BtNbBsxltIhI5oNeLaFTqNhaN90jIbWf5YSf1yKorJ2RzUub2jVckx11Zx73dkoySnY1vwMRmOb\nxygq0nD22RYcDvjsMzcnnXRsnxjwe5Gaevi2d1IxRwghhBBCCCGEEEIIITpIOG2sknZsJGv1UlSN\nBk0I51v6o2PYdsUt7Lji5iPetsHlw+bwkhDTtoWAugYP24qsBJTwq6fE797GwLeeJWPdKlSNhsIz\nL2DzhIm407LaNE7AEkPRGePI/WIWmWu+pWL4aEqqHORkHP6L89+bRqePoio7dY3tuyAaKaa6ajLW\nfEt9z37NhnLiLVHNhnIA9DotGUnRZCRF4/UFqbK6qLK6cYYYFFMUeOXpTNasiqX/cU7++VBZm0M5\nOo2G3KwDKy1YTAaSYo3Ud1BrO2tef+p6DyTzh2VEV5TiyuwEQEWdk2H9Ypg4UWXiRB979mj2hXS+\n/rrpj8Ggcs45AZ57ziMBHSFEmyiKSnG1vV3b92mCAdJ+Wk3O13PI/m4xeu+v73XDFs7DG5dA8ejz\nKDpjPNZeAwill09QVSmqtJPXWUqJiSMrrLSHHMoB6DPzDXQ+L67J94YUynE44NprzVitGp591iOh\nnGOEBHOEEEIIIYQQQgghhBCiAyiqis3hC3n7xPzNAPxw79OUjTgTg9OOwWHH4LQT5bBjcNkxOBox\nOB1N1zn3u85pJzF/C70+eYf8SyagtiJZUFzlaFMwp7CykcLK8CsQmqvL6f/ei+R8MxeNqlJ/0qms\nnTCJhtw+IY+5+/wryP1iFrnzZ1IxfDRFVXZSEkxYTL/vllY2h5eiSjtWR8eEPyIl55u5aJUghWMu\nOuQ6rUbT6oVRY5SOLumxdEmPxe7yUVXvptrmwhdoXXBMVeGtF9NZuSSevL4u7v5XKVHGti8sd0mP\nxRR16HJMp9SYDgvmAOwa/2dO+r97yJ0/k003TwaaWrRUW91kJjcFnbp3V/nHP3z84x9NIZ25cw3M\nnq1n3jwDFRVaPvrIRUxMh01ZCPEb5vT42VZojVgFvYPF795Ozjdz6bJkHub6WgDsWV0oOnM8xWeM\nx+BoJGfxHLosXUDPOdPpOWc69k5dKTzzAorPGIcrPbtN+6usd9E5LQazUZbXjwVFlXY6pVnQabVH\neyoHaHT5KKkO/fNwdFUZ3Rd8jK9zDp7Lr2rz9ooCEyea2LZNx/XX+7jmmvZ5/Ym2kyOHEEIIIYQQ\nQgghhBBCdAC70xdWJZnE/C0A1Of1R4ky4o0y4k1MafX2x73yBD3nTCPtp9VUnXjqEW9fb/fgcPuJ\nMbccXgkEFbYXWakNsxqLwd5A7w//R8/Pp6Hz+/D17Y9rymPYh59GY5gtfxpye1Pb9zgy1q7cVy1k\nR7GNwT1T0PwOW1rVN3ooqrLT4Aw9CHbUqCpdF35G0BBF8ejzDrm6c1pMSIGq2OgoYqOj6J4dh7XR\nS6XVRY3t8C29VBWmvp7G4gWJdOvh4b7HSzGZ2x7KMUXp6JzWfJIlKc5EjMnQbovWBys97RwGvfEU\n3Rd+ytZr/k7QZAagrMa5L5izv+7dVe64w8fEiT7+9jcTn35q4LrrzEyf7sZk6pApCyF+o8prnewu\nayAY4So5prpquiyZT87iOSQU5APgi41n1/lXUHTmeOr7HHdARRxbz35svHky6eu/I2fxXLK/+4YB\n7/2XAe/9l5oBJ1B45gWUnjaGgOXIVfQUVaWwopE++7UlPFhdnYaaGg1ZWQqxsSEV5xGtEFQUiqvt\nBBWV7gdVpDuaFFUlv9gWVhvNPjNeRxvw47nnfjC0/fPO889HMX++geHDAzz++G8rmP17J8EcIYQQ\nQgghhBBCCCGE6ADhVi1J2rkZnyUWZ1aXkLYvGXUuPedMo8uyBa0K5gAUV9np28IClNPjZ0tBfVjl\n+rU+H7lzZ9B35utE2RvwZmTheOBhfJdcDjod0UB6YjSVVlfI+4CmqjkpW38md8EsNt34z1/OaHbQ\nJf2329IqEFQIBlUCikIgqOL1BSitcdLo+g0Gcn6RvPVn4koLKB59Hv7YA/smRRv15IT589JqNCTH\nm0iON7G7vIGSakezt/vo/RQWzE6iU46XB54swRITWqguNyserfbwK7PZqRZ2lNhCGrutlKgo9px7\nKX1nvkHnZQsoPOdiABweP1a7l8TY5itkabXw4osenE5YuNDALbeYePttTyjrhUKI37lAUGFHia3F\n4GNb6dwuslctJmfxHNJ/Xo1GUVD0BkpHnEnRGeOpHDoSJSrqsNuregOVQ0dSOXQkeqedTisWkfPN\nXNI2rCF101qGvPI45cNHU3jmBVQdP6LFqoLVNjedDwotV1Vp+OILPfPn6/nuOx2K0nTMt1hUsrMV\nMjNVsrJUMjMVsrNVsrL2XqYQHy/hnVDUNXoJKiqlNQ7SEs1HDJF3lKJKe1hhW0tZEV2/mo2new+8\nF1/W5u2//FLPU08Z6dRJkffpY5AEc4QQQgghhBBCCCGEEKIDWBtDD+bonXZiSwupGjws5BWcuj6D\ncKVmkr1qMev+8a8WF7H2qrG5cXsDzbZtqLa52VFsJaiEeF6wotB52QIGvPsClqoy/JZYqic/hObv\nfwez+YCb5mTEUm1zo4Rx5n3paedw3Ov/odvCT9lyze0oUVEUVtpJiTcTbTo2vir3+oPY7F78AWVf\n2Caw37+DwV8uCyoEFTWsx+NY1fWrTwEoaKaNVV7nhBZDLm3VPTMOlydA3UHVnj6flcSn01NIz/Lx\n4H9KiIsPhjR+YoyR1ARzi7dJT4ymoKKx1e21wrXnvMvpPestesyZ3tQq7JfjSVmt47DBHGg6af9/\n//Nw9dUaFi40cPvt8OqrHo6xDiJCiKOoweljW2E9Hn9ox8yDpWxaS7cvP6bTysXoPU3h3Nq+x1F0\nxnhKR56DLy6xzWMGLLEUnnMxhedcTHRV2S/Vd+bSeflCOi9fiCc+ieLTz2P3+Vfi6NztkO1VoKCi\nkRRzCl98oWfePD2rV+tQ1aZj6QknBOnTJ0hlpZbycg3l5Vry8w//vhUdvX9QR6VnT4UxYwLk5SkS\n2GlB9S9hbUVVyS85NiogOtz+w4Z9W6vv9FfRKkE89z4AOl2btt2+Xctf/2rCbFaZOtVNSsrv7zPi\nb12rftvYsGEDzzzzDB988MEh17ndbq6//nqeeOIJcnNzj7jNvHnzmDZtGrNmzQpz6kIIIYQQQggh\nhBBCCPHbEAgq2N2hn0GbuHMrANa8/qFPQqulZORYen3yDhlrV1B+8hlH3EQFSqod5HVO+PUyVWVP\neSMlNaEvPqT+tJpBbz5N4q6tBA0Giq64EcMD92NIT2329majnoykaMrrnCHvU4kyUjDmInp//A6d\nVnxF8RnjUFSVHSVWjutx9BZ0HG4/dQ0eahvcYT1Hfg90bhedl3+JMy2T6uOGHXBdZlI0CTGHD46E\nQqPR0CcnkfX5NfuqPi2cm8CMt9NITvXz8FPFJCWHVg1Kq9HQs1P8kW+n1ZCVYqGw0h7SftrKnZZJ\n+cln0GnlIpK3/kxdv8EA1DV4DhvC28tkgqlT3Vx2WTSffWYgJkbl6ae9sngsxB+cqqoUVzkoqrJH\nJDBqcDQy6PX/0G3RbAAcGZ0oOnMCxWeMw5HdNezx93KlZ7P9yr+w/YpbSMzfTM7iuXRZ9gV5sz+g\n+5efsuLx16gdOHTf7Wur9axeEcsPK2LZsTUaAI1G5aSTgowbF+C88wJkZR16/10uqKxsCumUl2uo\nqNBSVtb0d9P/Neza9WsI4/HHjeTmKowd6+fccwMMGaJICHI/gaBC/X5h90aXj7JaJ51Sm28b2REU\nVWVHsTWs539s8W5yvpmHO68v/vEXtmlbqxWuvdaM06nhzTfdDBjQMWFf0TZHDOa8+eabzJ07F7P5\n0FT3pk2bmDJlClVVVa3aZuvWrXzyySeov8MUvxBCCCGEEEIIIYQQQhyOze4N68v6xPzNANT3DCOY\nAxSPOpden7xD52ULWhXMAaisd5GTEYvRoMMfCLK10BpyW664gnwGvvUMmT+uaJrP6edju+sBMo7v\ne8RgTE56LJX1rrAexz3nXU7vj98hd/6HFJ8xDmg6w78jF3QUVcVm91Lb4KG+0ROxygK/B51WLMLg\ndpF/8fXsvwoZpdfSPevIIZdQ6HVaBnRPZn1+DV9/Gcs7L2cQnxjgoaeKSU0PvUVbVoqFaFPrekhk\np1gornJ0WAWkXRf8mU4rF9Fj7vR9wRwVKKt10iO75cfZYoEZM1xceGE0778fRUwMTJki4Rwh/qi8\n/iDbiqzYwmzXuVfGmm85/oWHia6twjdgEOX3/ou1KXmo7XmQ0Wiw9hqAtdcANvzlbros+YITXniY\nUx/4Cx9PfJ8F1pGsXhHLrh1N694arcqgIW6uvEzDeecFSE9v+dgdHQ3du6t0737493uPByoqNKxb\np2PBAj1Lluh5+WUjL79sJCND4ZxzApx7boARI4J/+PZENc1UUCyoaCQl3oQp6uhUQCypcoQdru73\nwctoVBXP/Q/QliRWIAC33GKmsFDLHXd4ueCC0D+7iPZ1xGdnly5deOmll7j77rsPuc7n8/HKK68c\ncl1z21itVp577jnuv/9+HnrooVZPMDX1t9vfVwghhBBCCPHbIr9/CCGEEKK91Dh8xMaYQt4+rWAb\nAP7Bx4c1TnDwEJydupK1eikJOoWgObpV27kCKrFxUWzJryGAps1zMFZX0PPN58le8AkaVaVuyHAK\n7nyQ3PGn0yW29WPZfQpFlY1t2vcB8vKoGTaS1NXLyawswNGjDwC1dh+9uptaHaRoK38gSI3VTbXV\nRa3NTSDYtKBkMBowGP/gK2z76bG4qTpC7YVXHPAcG9QzlcwUS7vue9HXFl5/zkBsXJAnX6yiW64O\naFsbib2iDDpO6J+FQd/6hbVergClYbbAaC3Pyadi75ZHp2+/Yvekh/GmpAHg9CkkJlnQ61qed2oq\nLFkCp50Gr74aRWZmFA8+2BEzF0IcS6qtLvKLrARD+FxwML2jkd4vPkGn+R+h6A0EHvkXUfffR1eD\nAV2VnS176iI06yMxsW34n/lgy5l8t1DL+qeHAKDVqQw+0c0po52cfJqLhCSFIb3TSEuMXKi3c2cY\nOhRuuw3cbli8GGbPhrlztbz3XhTvvRdFQgKcfz5ceCGMGdMUlvyjKaxxNvt8q7H7GdK77e3NwuVw\n+ah31Yf1GojdubWpldrAwSRee2Wb2tbedRcsX970vHj2WSNabWSrC4rIOWIwZ8yYMZSWljZ73fHH\nH9+qbYLBIA888AD33XcfRmPbngw1NR1TvlEIIYQQQgjxx5aaGiu/fwghhBCi3RSUWPe1yglF7NaN\neOMSqI5JBocnrLkUnTqGvjPfIGbJV5SOHNuqbTbne9kEIVX06DH7Awa+/Sw6n5eGrj3ZeNNdBM86\nm15dEgl4/NR4Wn+GcaxRi8vpJRhGZZEdYy9rCuZ8NJX1Ex/Zd/mqn0o5rkdKyOMezOUJUNfooa7B\nQ4PTi9SRb1lMWSFJP6+h6rhhVMem7HueJ8eZ0KtKu35W/+orHbfdYsZsVrn/3yWkpHuwh5GR6dU5\nAZu1bW3XYqK02MN8bbdF/rgrOf7Ff5H6yQdsu/pv+y7fvKOK7FZWj/rwQw3jx0fz0ENaNBoPt9zy\nx27FJsQfhaKq7ClrpLQ2MmHC9LUrOeG5h4iuraShRx88r/0P7aBBYPMAHkxaSImJoiCcYG4rWOt0\nfDo9hW++TCAY7IxOqzCGr7hE8wlZ/zwJ55mn7Lut3QHrNldwQu+0dpvPsGFNf554An74oamSzoIF\neqZN0zJtGphMKqNGNVXSOfvsAElJ7TaVY4bXH6SozNbsZyq7w4NJB6kJh3YBai+qqvLTzloaXb6w\nxhnw+rMAOO99EHsbXlcffaTn2WfN9OwZ5IUXXNR1VH5NHFZLJ312SEe6LVu2UFRUxCOPPMKdd97J\nrl27eOKJJzpi10IIIYQQQgghhBBCCHFUeXyBsEI5hkYbMRUlWPP6t+kM2sMpGXUuAJ2XLWj1NkFV\nDSmUY6qtYtAbT+E3W/jxzsf55vXPibtoPP26JR+xKkdzjAYdWWFWTqkYOhJXaiZdvpmH3vnr4ofN\n4aW8tm1hiv2pqkqDw8vu8gbWbKtizfYqdpc3YJNQTqt0XfQ5AIVjLtp3mU6joWen9mlhtdfy5Tpu\nusmMwQAzZ3o4ZVh4yyZx0VFkJrf9OWoxGUiK7biz3IvOGIc/Oobc+bPQBH4N1JS14TWQlaXy8ccu\n0tMVHnzQxIwZR6eFiBCi47g8AX7Kr4lIKEfvdHD88w9x2v03Y7LWsn3CRBq/XtYUyjlITkZsu7Wc\ndNi1TH87ldsn5LJofiJpGX5uvbOCNz/exb3/V8WEqBmc8+xtdPp24YHbefxUWV3tMqf96fUwYkSQ\nJ57wsn69k6+/djJpkpecHIWFCw1MnGimX78YLr/czIYNHbL0f9TU2NwtfqbaVdpAIKh02HxKa5xh\nh3ISd2wi+/slNB53IsoZZ7Z6u59+0vLPf5qIi1N5/303cXFhTUN0gA55dQ4cOJAvvviCDz74gOee\ne44ePXrwwAMPdMSuhRBCCCGEEEIIIYQQ4qiy2r1hbZ+4cwsA9T37EW+JQhtmOKexWx4NOT3IXPPt\nAcGU9pD7xSy0SpDN1/+D2j9dwZC+GWEHa7qkx6DThvEY6HTsOfdSDG4XOd/MPeCq3eUNeHytD1EF\nggo1Njfbi6x8t7mSn3bVUlLtCCuI9YcUDNJ10Wx8llhKTzlr38VdM+MwRbVf2OOHH3Rcd50ZVYWp\nU90MGxakZ+cE4i1RIY/ZIzv0IFF7LTo3J2i2UDDmQsz1NWSvWrzvcpc3QH1j6yv3dOum8vHHbpKS\nFO6808ScORLOESJS3N4ANTY3BRWNbC6oY31+DTU291GbT2W9i3X51djd4VfHSlu3ijG3jKf7l59g\n696bb1/7hOjHHsFkOXy1kx7Z8aRHsBqK16Ph8w+TuP26XObMSsYSE+SWOyp49s09nH5OAzGxCjWD\nhvLtk28SNBoZ9u9/0nnJ/APGKKywhxRcDpVGA4MGKdx3n48VK1x8/72Dhx7yctxxCkuX6jn77Ggm\nTTJSXR1+kPtYVG1t+fnvDQTZU96+lZX2cnkCFFSEv6/+U18EwHv/w60O4FdVabjuOjN+P/zvf25y\ncyUC/lvQ5mDOvHnzmDVrVnvMRQghhBBCCCGEEEIIIX53wg3mJOU3BXOsef1JTTCTHG8Ke04lo85F\n5/eR9f03YY91OFqfj+5ffIQvJg7/JZczOC8Fi8kQ9rgGvS7sAMOesZeg6PTkzv8Q9ltQCyoq+SW2\nFrf1+oKU1TrZuLuO7zZXsqWwnkqrC38HnqF91CkKcQX55M6dzrAnJjF2whhOnvI3un75CUZrbZuH\ny1i3CnNdNSWjz0UxNj2/Y80GOqWGF+JqyYYNWq66yozPB2+95WbUqCAAWo2G/t2SMBl0bR4zIzGa\nuDBCPUlxJmIi8Bpprd3jrgSgx5zpB1xeWtO2wF7v3gqzZrmJjobbbjOxeHHbHzsh/sgCQYUGp4+y\nWif5JTZ+yq9hxcZyfthWxZbCeoqq7NQ2eGh0+dhSWM9P+TU0OMOr0tHW+W0rrGd7sZWgEl4AQO90\nMOSFKYy87yZM9TVsufpvfPvax3Q751TMxiMH+3rlJJIUG97noIAfvpqbwO0TcpnxThoaDVx9czUv\nvbeHM89tQH/QNOr6DeHbJ9/Gb7Zw0lN30/Wrz/Zd5/YFqAij2l64cnNVbr/dx5dfuvj0Uxe9eytM\nnx7FsGEWXn7ZgDe8j6DHFLc30KrqNOV1Thoc7XvHVVVlR4k17FBW8uZ1ZKxdiW3oCBg1slXbcU0Y\nIQAAIABJREFUeL1w/fVmKiu1PPigl9NPD4Y1B9FxNKragTG+ELRn31ghhBBCCCGE2Cs1NVZ+/xBC\nCCFEu1i1qSKs0MbwRyfSaeXXzJ++lL4jBqAoKj/tanv4YX8xZYWMvX4sFUNPY+Xjb4Q11uF0XjKf\nYf+ZTOEVN2J58fmIjh0IKqzeUkVACf1xHfbEJDovX8iS56ZR1//4A67r1TnhgHZEdpePukYPdQ2e\nVlUK0AQDqLrfT+UQTTBAwu7tpGxcS+qmtaRsXovR3rDven90DAZXU5hD1Wio7z2Q8mGnUz58NI05\nPY54Bviwx+6g84qvWPzSR1h7DUADDMlLJTY69JBLS3bt0nD++dFYrRreeMPDn/50aIUjh9vPT/k1\nBFu5hKLXahnaJ42oEAI9+6uoc7LjCOGwSDr1/pvJWLuSRa/NpiG3977Lh/ZOI7qNIaHVq3VcfnlT\nBaKZM92MGCGLhUIczOsLYnf5cHj8ONx+nO4A7jZUattfSryJ7pnxRJva5/3G7Q1QXueksi4y4dO0\n9d9xwnMPYqmuwNYtjx8nP4mzV38G9Ughxtz6401QUdiwq67NLYQUBVYtjeOj91OoqojCaFI476J6\nxl9aT7TlyPcvYecWTrv3Roz2BtZNfIQ9518OgFGvY2jfNHTao99GKhCADz4w8NRTUdTXa+nWTeHR\nRz2cfXYwEt1Qj6qiSjsFla2rUGMxGTi+V2rYVSYPp7TGwa6yhiPfsCWqysjJ15G28UcqZi9EP+Lk\n1mzCnXcamT49iosu8vPaa57f/M/19yY1Nfaw1/1+fjMQQgghhBBCCCGEEEKIY4zd5Qt7MSsxfzOe\nxBR8aRnEmA1oNBpizYawWkk4srti7dGX9HXfEdVoxReXGNYcm9Nj7nRUjQb/DTdFfGy9TkvntJhW\nL9A0Z/f5V9J5+UJy5314SDBnd1kjOp0Wm91LXaMHr7+VAQNFYchLj9J10Wx2XHYj2664ZV8FmN8S\njd9HUv4WUjf+SMqmtaRsXY/B9WtFAGd6NhUnjaJm4InUDDgBZ1YXYsqLyPx+GVmrl5CyeT3J2zYw\n4N3ncWR2pnzYaMqHn05t/yGo+gMXX6MarGR/v4SGrj2x5vUHmlo6tVcop6pKwxVXRFNfr+XZZ5sP\n5QDEmA30yUlkc2F9q8bNyYgNO5QDkJ4YTUFFI75Ax1Rg2jX+KjLWrqTH3Bmsm/TovstLa5zkdU5o\n01jDhgV5910311xj5uqrzXz6qYshQ/5AlaSEaEEgqFBYaaesxkGkKibUNniob/SSkRRN1wgdg6Cp\n0l9ZrYO6Bk9E5qp3ORn45tPkfjELRatj659vY+tVt6IzmhiUm9ymUA6ATqtlQPdkft5Vi9Nz5M9C\nqgrrf7Dw4XupFO0xodOrnHNBPRddVUdCYusDhLae/Vj+9FROu+cGjn/xEbQBP7v+dDXeQJDSaic5\nGYdfkO8oej1cf72fCy/088wzRt5+28A110QzalSAxx7z0qvXb/eYXN2GNm5Oj5+SKke7/ExcngAF\nEWiXlfbzatI2/kjdyaNbFcoBeOcdA9OnRzFwYJDnn5dQzm+NVMwRQgghhBBCCKRijhBCCCHaR3GV\nnT0VoX95b7TWMf7yUyg/aSRbn3+XQT1SAKiqd7Gt2BrW3PI+eptBbz3D2kmPUjD20rDGOlhC/hbO\n+vslVJ00EubObZczlgNBhR+2VoUefFJVxtw8jpjyYuZPX4o3MTm8Cakqg19+jB7zZqJqNGhUFUdG\nJ376+4NUDm1de4KjRlVJ2byOtJ9/IHXjjyRt34De69l3dWOnbtQOOIGaASdQM/AE3GlZLQ5naLSR\n+eMKslYvIePHFftCPb6YOCpPPJXyYaOpPPFU/DFx9Jj9PoNfe5Kf/3IPOy+egClKx4m926fygN0O\nF1wQzebNOiZP9jJ58pGrLbTmDP1oo54TeqdF7HleWNlIYWUH/W4SDDL2+nMwWWuZP2MZ/th4AHQa\nDcP7Z6DXtf3nMH++nptuMhEXB59/7qJv36OzEBwIKiHNX4hIq7a62F3WiDfQflWkdFoNXdJi6ZRm\nCen4GVQUKuvdlNc6WxV2aa3Un1Zz4nMPYKkqp6FrT9bc9SS2vH7otBoG5aaE1f7P6wvy084aPC2E\nZ7dtMjPjnVR2bIlGo1E59YxGLru2lrSM0O9jbNEuRt5zPeb6WjbcPJn8S29Ar9VyUt90DPrQjzlu\nb1NQtDUtvVprxw4tDz9sZOlSPTqdyvXX+5k82Uti5PPY7crh9rN2R3WbttFqNJzQKy2iFaVqbW52\nlNjCryClqoyedBUpW3+mZN5iTCcNPeImK1fquPRSM4mJKl9/7SI7+5iOePxhtVQxR/fII4880nFT\naTtXG8uQCSGEEEIIIUQoLBaj/P4hhBBCiIgrrLTj8YW+EJe6aS05S+ZTPPp8dKNHkRBjBCDapKey\nzkVQCf1LeXdKOnmz30fndVN01p9CHqc5/d/7L4m7t1F+/6NE9+sT0bH30mqbQhBWhze0ATQaNIpC\n1g/L8MYlHFI1p01UlYH/+z/yPp+GrXsvlrz4IapOR8baVXT9Zh4Ju7dT2/c4Apajfzb9wTR+Hye8\nMIXBr/6btI1rsFSV0dilOyUjzyH/0hv46a8PsOOKW6gYPpqG7r1adR8Uo4mG7r0oPe0cdlw8gZoB\nJ+CPicVSVUbqlvV0WrmIvE/eI3XTj2SuWYHe42bN5P8QNJnpm5OEpY0tlFrD54NrrzXz4496rrnG\nxyOP+Fp1pnlCjBGnJ4DLc/hWM31yEtvc9qklFpOeshpnxKpqtEirRRsIkLXmWzwJydT3PQ4AFTDo\ndcSHsGiel6fQubPC7NkGvvhCz9ixgQ5fBHZ6/KzPryEx1hSxKiJCtJXL42droZWSGkdY79fQ1FIw\nacdG3Emp0EzwRlXB5vBSVedGp9Xsq7B3JG5vgKIqO9uLbNQ2uPFHsFpXl2/mMeJft6N3udh2xS2s\nufdp3GmZ6DQaBuYmE//LZ5pQ6XVakuKMVFvdKAfVodiz08jrz2cy89006moMnDDczp0PlnHW+Q1Y\nYsK7j76EJMqHjSZ71WI6r1yEotNT/ctniKTY1lfJc3n81Ng8lFY72F3WQFGVnbJaJ41OPwa9NiIB\nnZQUlUsuCTB4cJD16/V8842e6dOjiI5WGThQae6pdEwqrXHS4Gzbd3Yq4HQHyEiODnv/iqKys7SB\n3RWNhzzXQpHx47f0mfUWVSPPxjBp0hFvv2iRjptvNhMMwowZnqMWeBVHZrEc/rgmFXOEEEIIIYQQ\nAqmYI4QQQojICyoKqzZVhvUFfp9pr9L//ZdY+eirpF51CUlxvy74RKKqxug7riR5+0bmzVyONzEl\nrLH2imq0cv5Vo3Enp2Fb8zNGY+RDFnsFFYU1W6tDrkKgd9oZd8VIvAlJLHjvK9CFtoDf790X6Dvz\nDRq75LLs6an7qu/EFeQz5KVHSd28joDRzNarbyP/outQDe3TpqmtDI02Tn7sH6RtWEN9z35s+/Nt\n1PQ/Hn9c21oYtZqqEr9nB1nfLyFr9VKS8jcDUHrKWXz/8IukJ5jp0zUp4rtVFPjb30x8+qmBMWMC\nvPuuG30b1juDisLPO2ubbR+XEm+if7cwqy01Y0exlYp6V8THbY6h0ca4q0bhTk7jy3cX7lv0N0Xp\nOKlPeqsW95vz9tsG7rvPRHa2wsKFLtLTO2Y5yh8Isj6/FrcvgDlKz/G9UqVyjuhQQUWhuMpBSbUj\nIov4Oo+bYU9MIuuH5ew+73LWT5zCkZKF0UY93bPiSIk3N3t9faOH0hon9XZPs9eHK/vbrxj2738S\nMEez4ok3qO87GGiqYjKgezKJseGFcvbX6PKxYVctLhd8tzyOxV8ksHN70/3uN8jJlTfUkNcn8vfT\nUlHCyLsnYKkqZ+ufb2P7dRMZ2jcDY1TznyUcbj82h5cGp48Gh/eILQujjXqyUixkJEVH5Bjm88Fb\nbxl49lkjdruG3r2DPP64l9NOa79KTpGyektli5WRWtKrcwKZyZaQ9+30+NlWaMURqUpSqsqZf7uE\nhN3bKJy/lJgThxz2psEgPP10FM89Z8RkUnnxxcO34BTHBqmYI4QQQgghhBBHIBVzhBBCCBFpNruX\nSmt4C+t5n75HXGkBG2+5m2552fuqxEDTgk1ZbXhVNfRuN5k/foszIxtrr4FhzXWv3DkzyPxxBSU3\nTsQy+rSIjHk4Wo0GjQbq7aFVzVGijFiqykj/eTX1vQfg6NS1zWP0mf4a/aa9ij2rC8ufnoo3KXXf\ndd7EZArPvhBnRidSN64h+/sldFr5NY1dcnFldAppzpESU1bIqHuuJ2nnFkpHnMmqf71KY/deKMbW\nn+3fZhoN3qQUageeSMG5l7Hn3Muw5vVn1wV/RhsTQ//uyejaIUDx2GNRTJ0axfHHB/ngAzfGNq4H\nazWafVUZ9q96odVo6N8tOazWJYdjNuopr3VGfNzmKEYT0ZWlv7wOBuLI7gpAIKgSazaEXA1oyBAF\nnQ6+/NJAfr6Wiy8OtKpKUTgUVWVzQT2OX0JUgaCC0xMgPTH8iglCtEZtg5vNBfXUNXoiUvXK0Gjj\n1Af+QvrPqwkaDCRv34g3IfGI79n+oEK1zY3N7iPapMcYpSMQVCivc7K92EpprRO3r30W+DO/X8rw\nJyYRNBpZ8eTb+ypxNR0zkw4IGUfCnl0Gpr2bwNOPp/L98jisdXoGD3Vy498quey6OlJS2+d++mPj\nKRtxJlmrl5L93TdovB7KB55ESoIZRVWxu/xU29yUVNnZWdpAaY2DersXlyew771E77QTW1JA0o6N\nZKxbRXRVGY1dezaNH1Sot3spq3Xi9QUxG3UY9KFXANPp4MQTFa66yo/dDkuX6vnooyg2bdIyaFDw\nmG1v1eDwUhrG+2Gj00dGUnRIny/Ka51sLaiPaBu6rFWLyZv9PpVnnI9p4t8PezurFW64wcyMGVF0\n6aLw0UduRo489kNUf3RSMUcIIYQQQgghjkAq5gghhBAi0naXNVBS4whrjPOvHImq0fDt7FUc3yvt\nkOu3FVmpCiP8Y6qr5vyrRlHbbwjLnpsWzlSbBIOcO2EMRlsdxas3EZudHv6YR6AoKmu2VYV8JnXC\nrq2c9deLKT9pJKsee71N2+Z9/A6D3nwaZ3o2S5/9AHda5mFva7A30P/dF8j9YhYaVaXo9HFsuGXy\nAUGejpKy8UdO/tftGO0NbL/sRjbdcGezrVE6UrhntB/Om28aeOABE7m5CvPnu0hODn1JpMHZVJVh\nbwWMnPRYumXGRWqqh9i4u67dqlkcbO/roOLEU1n5xP9+vdxi5LieoVfTUhS44gozy5bpefJJDzfe\nGKGKA4eRX2KjvO7QBdxuGXHkZBx7reTE74fbG2B3WQO1jZF7zZprKjn1/puJL9pF8ejz2Hzt7Zx+\nx1VE2Rv49sm3qBk8rNVjJcQYsbt8YbfUOpL0tSsZMeWvqFo9K/79P2oHnAA0hXL65iSSktB8BZ+2\ncrth3jw9779vYM2aphJoqalBTjvLyuljbaSmd1xVEVNtFaPunkBsaSE7L7yW4slTaHD5CQYVjLZ6\noqvLia4qx1JVRnR1OZaq8n2XRTkP/R5q1cMvUn7KWc3uKzHGSHaqheQ4U8jVzPbatEnLgw8a+f77\npscvK0uhb1+FPn2Cv/yt0KOHQtRRLvJ3uON6W6QlmOnbhop8gaDCjhIbNTZ3WPs9RDDI2bf+ibiS\nPexasIKEIQOavdnGjVpuuMFMcbGWM84I8Oqr7mM2OCUO1FLFHAnmCCGEEEIIIQQSzBFCCCFE5K3d\nXh1W2XtTXTXjrhxJ2fAzKHrlXXp2OrS9kN3lY11+TTjTZOTk60jbsIb505a0GCxpjczvl3LKlL9S\nPO5yzG+/GdZYbVFe6yS/1Bby9qdPvJykHZtYMPVrXBnZrdomd850hrzyOK6UDJY++wGuzNZVwEnc\nsYkhLz1KUv5m/NExbJ7wD3aPuwJV14beSmHI+fpzTnj+YVBV1k2cQuHYSzpkvy1JiDFyXI/ItFLb\n37x5em66yURqqsoXX7jIyQl/OaSizsmOEhsmg44T+6Sha8dAU32jh4176tpt/IONnvRnUrasZ8G7\nC3Fm5+y7/IReacSYQ29JV1mpYdSoaFwuDYsXu8jLa7l9S6jKap3sPMxxQAMM6J4c8UodIjT+QJAG\nhw+b04eiqMRbooiPicIU1THHwUhSVJWSKgfFVXaCEVxyjS3ew6n334SluoL8C69hw1/uBa2W5C3r\nGTV5An5zNN+89BHOrC4R22e4Ujes4dQHbgFVZeXjr1M9eDjQ9Prr0zWJtAiEcnbu1PL++wZmzTJg\ns2nQaFRGjQpy7bV+zj47QLXNwc6yhrD301bG+hpG3nM98UW7qe/ZD73bRXRNBXpv80Etf7QFV1oW\nzvQsXGlZuNKz8MXGM/iVJwgYTSx6Yw6elMOHm01ROrKSLWQmW8Kq2qaqTe+VM2YY2LpVS2XlgWMZ\nDCo9eij7gjr9+gXp00chM1Nt9wpo0PT6+n5zJf5g+O8bA1v5HtDg9LGtsD7kwHdLOi/9gmFP3kXJ\nORdinPpes+GqmTP13H23CZ8P7rrLxz//6Tva2WnRBi0Fc35773BCCCGEEEIIIYQQQghxjPP5g2GF\ncgAS87cAYM3rR7yl+dOVY6OjiLdE0eAMvSVnychzSduwhs7fLiT/kutDHgegx9zpAHhuuJnInBPf\nOhnJ0ZRUO0Juy7H7/CtJ3r6R7gs+YvMNk454+24LPmLIK4/jTkph+f+90+pQDoC11wC++e+HdF/w\nEQPefYHBrz5B10Wfsf72h6nvc1xI828VRaHf1BfpO/MNfDFxfPfQf9tUbaG9aDUa8poJnYXr++91\n/PWvJqKjYeZMd0RCOQCZyRacngBxlqh2DeUAJMWZiDEZwj6WtNau8VeRsmU9PebNZMOt9+67vKzG\nQa8uoZ+qn5Gh8swzXm64wcxtt5n48ktXxCsw2BxedrewGK/SVGFsSF4qZqMsjXU0rz9Ig8OLzeGj\nwenDedBzem81DFOUjgSLkfiYKOItRqJNx/bPymr3srPUhssb2eosids3cuqDf8HYaGPT9ZPYfsXN\n7E1B1PUbwrqJUzjxuQcZMeWvLHnhQwKWmIjuPxTJW9ZzykO3oVEUVj3y8gGhnN5dEsMK5Xi9MH9+\nU3WcvdVdUlIUJk70cfXVfrp2/fX4np0agy+gUFTVsSdeeZNSWfb0+5z60K0k7diENy6hqW3lL8Gb\n/QM4zvRs/DFxNJds0QQCHP/Sowx9+l6+ffLtw1az8/iC7KlopKjSTlqimezUmJAClBoNjB8fYPz4\npudwfT1s26Zj2zYt27Zp2bp1778PbKGVkKDSp09TSKdXL4W0NJXkZJWUFIXkZJWEhGbvXpvZ7N6I\nhHIA8kttnNj78IFaVVUprnJQVGXfVxkvkuIKd9L/vf+i6PQ477wH00EPkNcL999v5IMPooiPV3n3\nXTdnnimtq35PpGKOEEIIIYQQQiAVc4QQQggRWVVWF9uKrGGN0ff9l+g37VW+feJ/dL/uUoxRumZv\nV21zs7WwPuT9RDVYGXf5qdh69uWblz4KeZyYkgLG3ngutQNOIPD14nYPLRysst7F9uLQHnOt18P5\nV41C1er4YvpSlBZSAzlff86Jz9yPLy6Bpc+8jz2nR6hTxmitY+Bbz9D1688B2DP2UjbdOAlfXGT7\nFWi9HoY+cx+dly/EkdWFlY++hr1L94juI1S5WfF0TovsovK2bVrGjYvG5YIZM9yMGhXZhS1VVcNu\nIdJaeyv0dASN38d515yBzutl/oxlBM3RQFN4ani/dAz65o9BrXXHHUZmzIhi4kQvDz4YepjwYG5v\ngPX5Na1avI0xGRicl9Lhx6c/Grc3QIPTR4PDS4PTF3JwxajXNYV0YozEW6LCqty0vx9/1DJ3roGk\nJJWMDIX0dJW0NJX09KZwwZGeHl5/kN1lDVRHus0NkL52FSc/OhGdz8O6fzxCwdhLm73doNf+Td7s\nDyg/aRSrHnkZdOG9PsORuH0jI++9AZ3Xy/cPvUD5yWcATT+/vM4JJMe3vVKVwwEFBVo+/dTArFl6\n6uqafiinnhrguuv8nHNOoMWAXyTaH4VEVdF5PQRNIQaRVJWTH/k72d8vYcNNd5F/2Y2t3tRk0DUl\nodooc9mX5Cz4hKpJ92EePpS46AMfWEWBoiIN27bp2LpVuy+0s2ePFkVpfod6vUpS0t6wTtPfe//s\n/X9Kikp6ukK3boevvhNuy9aDdU6NITc7/pDLvf4g24qs2BzeiO1rL1NdNf3ef4luX32GRlHYdfmN\nxL74HNr97nRpqYYbbzTz0086+vcP8s477gMCZ+K3QyrmCCGEEEIIIYQQQgghRAeyNob/xX5S/mYA\n3H0HHjaUA5ASb8Jk0IVcct8Xn0j1kOFkrF2Jpbw45LYYPebNBKD+6htIPAqL3umJZoqr7CEtACtG\nE4VjLqLXJ++SveprSkaf1+ztOi1bwInPPoA/Jo7l/3knrFAOgDcxmR8nP0nBmIsY8tKjdP/yYzqt\nXEThmeMpOuMCbD37hn3KudFay4gpfyN5+0Zq+h/Pd1Newhcf2eBPqBJjjBEP5ZSVabjySjONjRpe\neSXyoRzg/9m77+ioqrWP498zfSaTTCa9QxJI6F2lqUhR4drAfu0FOzbsDUXRK3a9FtRXvdgbKIKi\nUqSLgvQWIEB6TybT63n/GIoIIcnMJCDuz1pZE5hz9tlh2iH7d56n3UI5AMlmA7vKG/H42qb905/J\nag2FYy6m+0evk7VgNrv+dREQbCVSUGKhe8e4sMZ/6ik3y5ereO01DcOH+xk8OPzHxucPsGlXXYsr\nKthcXrYXW+jS4dh4DRwrai0uthbVo1Iq9n5Jf7lVoNz3vUJCpdr7dwoJtUqBxxvAYt9bEcfmjlgL\nGLfPT1WDc38ARq1UYDJq9lfVMerVrX49fvKJinvv1eH1Nh0o2BfSSU4O7L098OdYs5c6Tw26qMhW\nyYFgm5sTn3sQWZJY/ugrlA0Z2eS262+4j5g9O0lb+Qs9P3iZDddNjPh8WsK0cwunPDQelcvJrw8+\nvz+Uk2I2kJtuarLNks0GxcUKiosliosVFBUFvy8pCd7uC+IAxMcHuPVWD1dc4SEnp2VhhbzMWHLS\nYkL+uYqrbKFV3ZGk0EM5e/dfddeTxG1bT88PXqGq70AaOndv0a6hvO4S1/xKvycnovD7iL/iV9Zf\ndzebLr6WeJOe+Bgd5mgtCoVEdrZMdraPMWMO7Ot0QkGBgu3bFdTUSNTWBr9qaiRqahTU1kqUlirY\nsuXIr9Hs7ABjx3oZN853UKtDfyBAjSWy4beSahtJZj3Rfwof7Xv/i1Rlnn1Udhv5X/4feV9/gMrt\nwtIhlw3XTcQw9lxMf3rfWrxYyY036qitVXDRRV6mTnVhMER0KsIxQlTMEQRBEARBEARBQFTMEQRB\nEAQhslZsrMDtC2NhUpY5++KT8Wu1rP5uOV2bWRAvqrRSWN4Y8uE6/DSTE59/iA3X3MnWS29s9f4q\nh52z/j0Mn05P9aqN6I3t2cjqgKp6B5tDrFRkLN3N6GtGU92jP7+8+NEh96ctm8egJ+/Er9Oz6Nn3\nqM/vGe50DyL5vHSe+SFdPn8HbWOwQkpjVi67R55L0fCzcCaltnrMmF0FDH3sZqIqy9gz4mxW3fXU\nEasBtSe1UsGALklo1ZGr8mCxwNlnG9i6Vcmjj7qZMCFyVVmOpj0VVnZVhP76bg1dbRX/unwEjVk5\n/PzWNwcFwzKTjOSmHVppoDVWrQpWM0pNlVm40I4pvOHYuKuWGour1ft1zoglPSEqvIMfR1Zvq8Lq\nbJ+WaZGUaNLTtaP5oMoTTfH74ckntbzxhgazWeb5511ERclUVkpUVCiorJT2fh343uM5/LgKhczp\nZ9dz0ZU1GKMjs5jfaeaH9H3zabwGI0snv05NrxOb3UdttTDi9ouJLt3DyvunUjTi7IjMBUCWwW5V\nUFerwtKgwu+TkOVgWzj2rizrK8vo8d7LKB0OCsZeSXXvk1ApFKTGG4g2aIPby1BVJe0P3uwL49TV\nHT6wo9XKZGYGyMyUycgIMHSonzFjfGi1EfvRWqy02sb2I7TIa0tJq5dx6oPXY83oyM+vf72/glkk\nRe/ZwfA7/43K7WLjVRPI+/p/6BpqKT/xFH6f+DRuczxKScIcoyU+RkeCSRdS5TSPB+rq9gV2DgR4\namslduxQMG+eCqcz+Frr3t3P2LE+xo71oo12hFURsinRejX98hKRgcKyRkqqbREdX/J5yfn+C7p9\n+AY6Sx3OuEQ2XTWB3aePRaXRcFK3ZFRKBbIMr72m4emnNSiVMGWKm6uu8kakBZhw9BypYo4I5giC\nIAiCIAiCICCCOYIgCIIgRI7d5eX3rVVhjaGvKuesy4dTMvR0at7+X7MLyF5fgF83VeAP8de9alsj\nZ188FGvm3sX4Vsr57lP6vzaZwvF3ET3liZDmECmrtlZhc4W2wHzyg9eTsnoZP077lsbsvP1/n/Lb\nIoY8PoGASs3iZ96ltnvfSE33EJLXQ8qqpXSYN4u0Xxeg9HqRJYnqXieye9S5lA49HZ+h+UBB8qql\nDHrqTtQOOxuvnMCWy24Ou/pOJPXoGEdCbOQCXC4XXHyxnhUrVIwf7+Gpp9zH0o8bFq/Pz4pNlQTa\naTnnpCl3k7XoBxY+P52aXiccdF8kAi1Tp2p4/nkt55/v5c03Wx+q2WdXeWNoFS0Itufq0ymBmKhj\nI6h2NFU3ONnUBovfbU1ltyL5/cRlpdKlg/mIlXNsNrjlFh1z56rp1MnPRx85m628IsvQ0ACVlQoq\nKiTKymHtZieVlRJrfjNSUaYh2uTj0muqGX6GBUWoGUNZpvsHr9Dt02k44xJYMuUdLLldWrx7dFEh\nw++4BKXHzcIXPqS+S68jbh8IgNWipL5ORUOdivo6FfW1e2/3ft9Qp6KhTonXG/nqdzrn2UhNAAAg\nAElEQVTdwcGbrKx9fw7+XWJi863E2lNVvYOtRQ3t9v77Z72mPUv+1x9QOPpCVt81OaJja+uqGXHH\nJURVlu0PdWnrqjlx6gOk/LEcZ1wCv90/laq+g/bvIwExBg3xJh3xJh1Rusi0lrPZ4McfVcycqWbh\nQuX+albde7k46eQGBp5iJdYc2ep3GYlGLDZ3ZAOJskz60p/p+d6LRJfuwas3sO2i6ykYdxV+vYHE\nWD2d0kxoNUoaG2HCBB0//KAmNTXAe+856d+/7SvjCW1PBHMEQRAEQRAEQRCaIYI5giAIgiBESkm1\njR1hXmGdtvRnhky+nfXX3k30pIcx6ptf/NhWVE95nSPkYw6edBvpK+Yz953vWteiSZY5/YaziS4t\nonDJH5hyO4Q8h0ioaXCyMcRF5rRl8xjyxAR2nH0payY8BkDSmhUMfeQmZIWCJVOmtaiKQaSorRYy\nFv9Ih/mzSNy4GgCfVkfZ4BHsHnkuVf0GIStVh+yX892n9H19CrJSye/3PN1ka66jJS0+irzM2IiN\nFwjA+PE6vvtOzdlne3n7bRfKyBXiOSaE+/pujfiNqxl+9+UUn3Imvz7y0kH3SUDPnHjiYnQhj+/z\nBSsbrV6t5K23nIwb1/qWQOFUx9pHq1bSPy8RTQSrNv3dyLLMqm3V2EMMM7aLQABjeRGmnduI3bUN\nU+E2Ygu3ElVZhtdg5Me3Z2HKz22yPVlpqcTll+vZtEnJKaf4ePddJ7GtfPvxBwKs31GLxRGswuX1\nSHz/jZmvP47H5VSS3cnFtbdWkt+9dW13JL+Pfq8G2xha07JY8sy72FMzWzc5IPn3JZz86E24YuOZ\n9/pXuOKT9t/n88LShSYWzDVRXaGmoV6F3990iEmplIk1+4iN92GO82GO9xFr9qFW711OlkBrbSB3\n9mdoHFZKB4+gsVd/Es3BoIYkHciA7vs+MVE+KHjzdwtN1jW62LS7Dn+gfZfUFR4Pw++4BPPOLSx7\n7FXKho6KyLhKp4Nh915FXMHGYHD38lsO3BkIkPfV+/R8/2WkgJ+tF49n05W3IasOPQ/Va1TEm3Sk\nxhsiFtKpr4fZs9XMmKFi+XIlsiwhKWR69nEw5LRGThpqxRB17AVY4jeupvc7zxG/ZR0BpYrCf13E\n5stuwW2OR69R0TnDtP9zc+tWBddco2fnTgVDh/qYNs1FYuIxHdcQWkEEcwRBEARBEARBEJohgjmC\nIAiCIETKhsJaahtDrwIB0OP9l+n66TSWPvs+eVePO2IlgH1sTi+rtoVeqSdz4RwGPnMPmy6/hc1X\nTmjxfolrVzLsvqspHXEWmk8/Cfn4kRRqWxbJ72PMFaNQO6zM/mQRsTu3cPJD45ECfpY98SaVA4a0\nwWxbJqq8mKz5s+gwbxbRZUUAuMwJFJ32L3aPOhdLThcIBOj99lTyZk7HZYpj2RP/pa5b21X3CYVB\nq6J/fiLKCJVEkGV45BEt77yjYdAgH59/7kQXembkmBWJSlwtJsuMunkcMbu3M+ej+bgSkg+6W6mQ\n6Ns5sUWBwaYUFkoMHx6FSgW//GInI6PlS1VWh4e122tCrhD2Z7FGLb1z41v0Hns8qqx3sCXMgJOh\nvATT7u14jdF4o6Lx7L316aNobekTld2GaXcBsTu3BgM4u7Zh2rUdlevgUJorNh5Hchpx2zZQdOpo\nVj784mEDf3/8oeDKK/VUVSm4+moPU6a4UbfyaRuQZTbtqjvs53pdrYqP301kyfxgT7aTR1i47Ppq\n4uKbD5spPG4GPj2R9OXzqe/UlSVT3sZtTmjd5P6k81cf0OftZ6nL78nC56fjCOhZMDeW776Ko7Za\njUIhE5/owxzvJTbOHwzd7A3emON8xO79c7TJf8SHTV9VxmkTrySqspR14+/FMv5WOmXEolYdQ2Vu\n2kCj3cOGwlq8/vYNhUQX7WTkrRfg12j5+a1vcCamhDeg38/gyXeQvmI+u04fy6qJUw5bTc+8dT0D\nn7kHY3kxtV178+sDz+NIzTjskGqlgv75ieg0hwaFQ1Vea2fFWhu/Lo5m2cIYtm8NVthTqQP0PcHO\n0OGN9D/JhkZ7dGMO0UWF9HzvRdKXzwegZOjpbLj2TmwZ2SgkiQ7J0WQmGVEogq3gZsxQMXGiDodD\n4rbb3Dz0kAdV5P7ZhGOACOYIgiAIgiAIgiA0QwRzBEEQhH86r8+PPyBH9Jfq/0QBWWbZhvKwr6re\n11Jp0Y9r6NY3t8X7rdtRQ73NHdIxlU4751w0FEdiKj/+35wWtz0aNPl2Mpb+TMGH32I+47SQjh1p\ntRYXG3bVhrRv14/eoMf019h25iXkLJqF0uNh+aRXKR94bPxsyDJxW9fR4edvyVz0A1prsDqTpWNn\n3DGxJK3/HUuHXJZOfqvJRbSjRSFJ9MsLL9DxV//9r5rJk3V06eJn1ixHqyth/J2s31lLnTW80F9L\nZf/wJQNeeozNl93MpqtuP+R+rVpJv86JaDWhV5v5+GM1d92lY/BgH19/7WxRlSO3188fBdW4vZFr\na5KZaCQ33RSx8f4uZFnm961VONytr1i0j+TzMubK0zHUVBw6viThNRj3B3aCoZ0YvFFGvFF7b40x\nqBx2YguDQRxjRclBYwSUKhqzcrDk5NOQnY8lpwsNufnBAEsgwPA7LyV+63oWPv8/anqdSEaikU57\nH8tvvlFx++06PB546ik3113nDalSy5Y99VTWH7la1dZNet5/PZldO3To9H7Ov6yWMefVo9Yc/lxA\nZbcyZNKtJK3/nareJ7Hs8f/iizK2fnJ/JssMeOFhTD/9wlPZr/Fu7cVYG1VotQFGjGngrPPrSEgK\n/bEG0NVWMWziFUSXFbHlmjvgwYci2pLwWOdweVm/sxZXBN9/WiJn9mf0f/UJqnqfxKL//B/hlITr\n/eYz5M2cTmXfgSx5ahqyuul2fiq7jf6vPk7Wwjl4DUZW3TWZklNHH3Zbo05N37yEiIVu/3o+W1mu\nZtkvMSxbGE3x7mD6Vqf3M2K0hbMvqCMuIbzndmtp66rp/tHrZH//FYqAn5ru/Vg3/p79Yei4aB2d\nM0zotcH/Vy1frmTKFC2//64kKkrm1VddnH12+85ZaB8imCMIgiAIgiAIgtAMEcwRBEEQ/smqGpxs\nL24gPkbXZCsIoWUabG7W7qgJbxBZ5pwLBuGNNrF17go6pDT9C96/qrE42bgrtDZOAAOn3EXmorn8\n9OYMLLldm91eX1XGv64chSWnC87Fy1Cpjp2WMGsKqve3HWmNwmUuvn7Cyx/0ZSAr6XqqguxxqeTm\nuVAcOz8eAJLXQ+pvi+kw71vSVi5C4fNS0W8wKx59GV9Uy5837SU3zURmUpiLz3vJMnzxhYoJE/Sk\npQX4/nsHaWnH9HJH2OoaXawvDC1w1lpKl5Oz/j2MgErNnI8WENAcunhr1Knp0zkBlTK0hVhZhquv\n1vHDD2oee8zFbbcducpVICCzdkcNjSG8rpvTrWMcSf+ggAEEK1JsK24Ia4yMRT8waMrdVAwYSl3n\n7mjsVtR2K2rb3tu9XxqbFbXDdsSx3CYzDTn5NOR0CQZxcvKxZuYe9rm3j3nbBkZOuIiG7DzmvfE1\nslJFZmI0Mz9NYOpULUajzDvvOBkxIrQgxc5SC8XVR573PgE/LJhr4tP3E7E2qkhN93D1zZX0PdF+\n0HbaumpOeegGYgu3UjL0dFY+MJWARhvS/P6srkbFnC9MzP82CodsIEbj4PSLHJx5bj0xpvCDJNr6\nWobdcyUxxYXsueY21FOeRH0Mfea3F7fHz/rC2vZt/ybLDH58Aukr5rP+urvZdvH4kIbpNPND+r75\nNJYOuSx86RO8xpgWHbvDz9/Q77UnUbmdFI6+gLU3PYhfbzhk00STnu7ZcSHN7c/cXj+/bqqgqU/0\nol0alv0Sw+KfTdTWqFGqZE4dZeHci2pJTW/jx0WW6fLZ23T99G1ULgfWjI6sv24iZYNHgCShUyvp\nlG7aH1hbt07B009rWbgwGNAZPdrLpElucnKO7/OVfzIRzBEEQRAEQRAEQWiGCOYIgiAI/0Ren5/t\nJRaqGpxAsJrFiV2TRNWcMOwqb2RPZXjnFIbyEv511SiKTh2N673pmKNbvmAnyzK/banC6QntKtz0\npT8xePIdbL34ejZcN7HZ7fe13Nr+2HPE3nZjSMdsK/VWN+t2tjwkVVWu5qP/S+TXxcGFqu5sZIvU\njYAcDB1ERfvp2cdO7wF2eve3h115INLUjQ3EFWykqs9JyKrIVaSJlLhoLb1yQ2/Tss/OnRIzZ6r5\n9lsV27YpMZlkZs1y0LVr+7YXOVr2VFipsThDatXWWr3enkr+V+/z6wPPUTz8rMNuExetpUdOPIoQ\nW0HV1kqceqqB+nqJuXMd9OzZ9OO4dU89Fc1ULgmVUiHRPy8Rg+7Ye+20hYAs89uWSlye8AIbw+6+\nnMSNq/nhve+xZWQfeWO/H7XT/qfQTiNqu42ASo0lJx9XXGKLK7X92YAXHib7xxn8cdsjbDnjct58\nMYVlC01kZQX48ENnyO8NRZVWCssbW72fzargi+kJ/PSdmUBAot9JNq6+qZKUdC+GylJOve8ajOXF\n7DzrYv649dGwqp8AlJWomfVFPIvmmfD7JOLMbu71PMMt9hdZ/8SzlA8Kv9qbprGeU++9mthdBdRe\nezOBZ/4T0mN1vPD6AmwsrA0p/BsqjaWe0288F62lngWvfEp9Xo9W7Z+6YgFDHr8NlzmeBa98hiM5\nvVX7G4t3MfDpiZh3bqExM4dfH34RS07+Idt1TImmY0oLAj9HUFJtY0eppdntfF5YssDEN5/HUV6i\nRVLIDDrZynmX1NIxN7Tqkc3Z1/bVFRvPpitvY9eZ5yOr1CgkiYxEIx1SjCgVCgoKFDz7rIbvvgt+\nppx8so+HH3bTr98/41zln0wEcwRBEARBEARBEJohgjmCIAjCP011g5PtJQ14fAf/gjgjwUinjGO/\npYfL46PW4kKpVJASd+hVu0fLHwXVYVdzyFg8l0FP3cX6G+4lafLDrW4LUFJlY0dZ8wsah6Nwuzjn\n4qF4omP5fvrPR1x4U3jcnHXZaRAIUL5qE1Hm8BZi2kJVvQOrw4vd5cXm9B7yfAdw2BXM/CyeOTPM\n+LwKOndxctX1pfROKaZan87GtVGsX21g3Woj1ZUHFu3TMtz06h8M6XTv7UCnP6Z/1X5UqZUKBnRJ\nQqsObQG6qEjim2+CYZwNG4JjaLUyI0f6uPNOD717//MWutwePzWNLmotLhpsbgJtsNQTVVbE6GvO\npLZrbxa+/GmT26XGGcjPCr3a2oIFSi65xEBenp+ff3agP0zhmuIqGztDfF9rKYNWRb+8xJArAP2d\nlNbY2V4SXrUc086tnH7zWCoGDGXJ0+9EaGatp62vYfQ1oymXUhmVtpqC7dHkd3fw2uuN9OkWFdKY\nkagmVLRLy/tvJLFpXRQqdYCzxtbx4sZxZG9eEmwRd+WEsMIthdu1fPNZPCuXRiPLEqnpHs69qJaT\nRzSSuGcjp919ObJCwYJXPqOxY+fWH0CWiS7eRcKGVXT67hNiC7dhv/p6HM++8I8O5ezjDwTYvLue\n2sb2aS8IkPTHck594Dqs6R34+Y2v8etb9vw2F2xk2MQrAfjlhemtDvXso/B46Pl/z5M380P8ag3r\nbryPnWf/+5DnQ7gVyFp7Lh3ww2/Lopn5WTy7dgTbXPU90cbYS2vp0t0Z8jz+SuHxcMb1/8JQU8nc\n/5uDPTUTgFijlrwMEwadmuJiieef1/L556pgMK+fn4cecnPKKe3b/kw4ekQwRxAEQRAEQRAEoRki\nmCMIgiD8U/y1Ss5fKSWJgd2Tj8n2BI0OD7WW4EK0bW8LAa1KyUndk0Ou1hBJPn+AZRvKmyy931I9\n332eLl/8H7+9+jHZl5wd0jxWbKrAHwhtJidMvZ+O82Yx/5XPqOvau8ntsuZ9y0lTH2D3v28g6uXn\nQzpWe/N4/dicwZBOo93HzK90TH83DkuDivhEL5ddX8WQYdbDrjnKMpSXqlm/Ooq1q4xsWmfA7Qou\n4CtVMl26O+jVLxjU6djJTSvzVMe1HtlxJJhat0hXUSExa5aKmTPVrF4dfD9SqWROO83Peed5OfNM\nH9HHXreuo8LnD1BvdQffHxtdeP2RCyoNefQm0lYu4uf/fkVDXvcmt8tJjSErOfQH5KGHtLz7robr\nr/fw9NMHVzqoa3SxobA27PfWlohUK5ZjWSAgs3JLJW5veAvF/V96jJwfvmTp5DcoHxisyqKQJJQK\nCZVSgUopodx7q1Yq9n8fvE+BShG8v7jKSp01vOoW8js/cu+X51FEB04ZaeHGOytQa2Q6pZvISGxd\n+7yaBiebdtdF5Pkmy/DrkmimT0uitlpNGqXc3elTXLedj1YHWm0AjVZGs/dWrZaPmHmRZdi0zsC3\nn8exbnXw58ru5GLsJbWcOMR6ULvFfW3GbKmZzH/tczwxzYTn/H5Mu7eTuP53EjesImHDKnSWA60x\nnVdcg+25lxAfbgcEZJmCooY2q+R1OL3efo78r96j8MzzWX33U81ub6gsZcTtl6BtqGXZ4/+lfNDw\nsOeQ+utCTnjhYbSWekoHjWDVxCcPen4pJYm+eYkY9a2vQOZ0+1i5pTKkeckyrFsVxcxP49myMRja\n79rTwdhLa+nd3x52nqzzjP/R563/UDD2Stbd/CBalZKc9BiSzQaqqiReeUXD//6nxuOR6NLFzwMP\neBg92idybP8wIpgjCIIgCIIgCILQDBHMEQRBEP4JahqcFBymSs5fdUiOJjv16Fc/CQTk4GLz3qoQ\nbt/hFxG7d4wjMYwrcyOleu9iXrhOue8aktf+ym+LN5PdJSOkMXaUWCipsYW0b8pvizj5kZv2Lzw0\nZfiEi4kr2MD2eSsx9+wS0rGOlkWLlDz2mJYtW5QYDDI33+Lk4sut+GXv/uBOc+EGnxcKtuhZuyqK\n9aujKNx+4DkYbfLRraeD7n0c9OjtID3L849dmEmLjyIvM7ZF29bUSMyereKbb1SsWKFEliUUCpmh\nQ/2MHetjzBgv5tALs/wjyLJMo92zv5qOwx1ey7Xk35dwysM3sOuMcayaOOWI24ZTJcHphNNPN7Bt\nm5LPPnMwfHjw/d7h8vJHQQ2+QPtVRepmLaXzy09hv/dBfAMHtdtx20tL28Qcidpq4ax/D8NlTmDx\np/Pp1TkJlUpqdYU3CFbAW7W1OuTHeNUKI6/+JxWXU8lTPMwJr/fH0rnb/vvzMmJJS2hZZRGLzc26\nnbURr0Cl2FPO2ptW8Jz/btzomtxOkuT9QR2tVj44uKORsTYq2b0zuH/33nbGXlJLz36OJj9fun/w\nCt0+eYuq3iex+Jl3DmpzKPm8mLdvJmHDqmAQZ9MfaGwHWnc5EpKp7X0C2tOGoRp2Kv68Q9sWCUE7\nSy0UV4d2ztVaktfDiDsuwbxjC8sffYXSk09vclu1rZHT7roM054drLnlYXacd3nE5qGrreKk/9xH\n0rqVOBJSWPTse9gyD7Sz06mV9MtLRNPKSnl7Kqzsqmh9C7m/2rpRz8zP4lnz25EDbC2ltjUy+qrT\nkQIB5v7vRxJzMumYGo3dpuCNNzRMm6bB4ZDIygpw331uzj/fF26XOuFvSgRzBEEQBEEQBEEQmiGC\nOYIgCMLxzOsLsKOkgcomquT8lVqpYGD35JAW2MLl9fmp2Vv1ob7Rjb8Fv740G7X07pTQDrM7soLi\nBspq7eENEghw7vkDcZkTKF7wa8iL3A6Xj9+2hnbFseT1cM4lp+DXaJn98cLDXh1v3rqekbdfTMXg\n4UgzZx4TFYtaYscOiccf1/HTTyokSebSS708+KCH5ORDn2e7KxrZXdHy88PGBiXr1xhYvzqK9X9E\nUVdzYAHUFOujW28H3XsHgzqpGcdOUEcCks0G0hOjKK22R/TK/yidmn55CUd8L7FY4PvvVXzzjZrF\ni5X4/cF/mIEDfZx7ro+zz/aRlHRML2Mc0xwu3/5wo8Xubn0VkECAM68djaG6gu+n/4wrPqnJTRWS\nRO/ceExGbUhz3bBBwZlnGjCbZeb+1IhbtlFe62jXUE7s9k2c8sB1aK0W3P86h8b3P2q3Y7cHfyDA\nys2VzQZ0m9P5qw/o8/azrLv+HpT33kOyObyWkmU1dgpa2VpLlmHO12Y+fCcJtUbm4QsW8tjHI6np\n3o+FL350UHudLlnmZtte2pxe1m5vgxCYLHPyg9eT8sdyvhn/Bp97L8DhUOBxK3C7JDweCbdLgdcj\n4XYrcLsUeDzSwfe7FciB4M9zwmAr511cS+euLWihFAgw6Mk7yFg2jx1nXULxsDEkblhF4vrfid+8\nFpX7wHmhLS2L6p4D9n6dAB060DM3Ab1WFdl/j+NUUaWVwvLwAyUtEV1UyMhbzyeg0fLTmzNxJqUe\nso3k9XDyIzeSvOZXCsZewbqbH4r8RPx+un46jR7TX8OWmsmClz/FbY7ff7cpSkPvTgmtOkf8fWsV\n9r1VMSNh1w4t33wez6+L97Z8y3Bz3sV1nDzcgqoVBX32VbNcf/1EvHfcTUJ0NO++q+G11zRYLBJJ\nSQHuvtvD5Zd70WgiNn3hb0gEcwRBEARBEARBEJohgjmCIAjC8aqmwcn2EkuT1Waa0inNREZS69o/\nhMrh8lFjcVJrcdHo8ITUPuLELskYdEd38Wjl5kqcnvCqUxhLdzP6mtHsGX42yg+no23llcZ/tqGw\nltrGFizcHUb/lx4l54evWPj8dGp6nXDI/SdMfYCO876l4K1PMI87K+Q5tpf6enj+eS3vv6/G55MY\nPNjHk0+66dmz6QXYQEDm961VIT2msgyVZWo2rjOwaZ2BTeuiaKg78Pw0x3kPCuokp3mPSlAnLlpL\nTprpoHYTFpub7SWW/e3iQqWQJPo10crC44H581V8+aWKn35S4fEEf/h+/fyce66Xc87xkZ5+TC9d\n/C1tK6qnvK71wavsOV8w4JVJFJ96Jr8+/NIRt1UrFfTLSwx5Mf+5FySee9bICYOt3DOptF1fF+at\n6znlofGo7VZ8UdGo/F5qNhdCVMuqrfwdRCQ8EAgw+poz0ddWMe/LJfQdmI8UgQdq7Y4aGmwta2kl\nyzB9WhJzZsRhjvdy/xMl5OS5GTT5djKW/szK+6dSNOJAK0gJ6NLB3GSAyOn2sXZ7TavPlVqi4w9f\nccJLj1J+4iksffItQnlSyzL4fSDLCtSa1gWHlE47w+/8N7G7Cg76e0uHXGr2hnCqew7AlZC8/75Y\no5buHeNQq0TbqtaoqHNQUNwQ8YpLh7Pvfbmq94ks+s97HFSeRZYZ8OIjZP84g9JBI1j+2CscrnyL\nUiGRaNKTHGfA5fGxrbh14bh9uk1/je4fvUFtl1788tz/CGgPVIVKjTOQn9WyUnc2p5dV26pCmkNz\nykrUfPt5PIvnm/D7JOISvGRkeVCpZZRK+aBblUpGpQq2z1SqZPTuRrrM+h8KvZqiy68hPjaO99/X\nUFWlIDZW5rbbPFx3ned4+qgQwnCkYI6IOQqCIAiCIAiCIAiCIAjCcai1VXL+qrjaRlpiVJtXQvF4\n/fxREHoLi33Kau10SjdFaFat53T7wg7lAJgLNgFg7dqT5DBCOQDpCVEhB3OKh40h54evyPzl+0OC\nOZqGOjIXfY81oyNR/zojrDm2Na8XPvhAzXPPaWlokOjYMcCkSS7GjPE1uzaqUEh0zjCxvrC21ceV\nJEhJ95KSbmHkGAuyDOUlmv1Bnc3rDCxbaGLZwuBzNj7hQFCnSw8HsWY/ekOgzUIJRp2anLQY4mIO\nbaliMmrpl59IabWd3RWN+AOhLTDmpMYcFMqRZVizRsEXX6j55hsVdXXBBd8uXfyMG+fjvPO8dOwo\nwjhtKTnOEFIwZ9foC+j480wyF81lz4hzKB94WpPbev0BNhTW0rdzAmpVy97DfP4AlXUOSmvs9B/m\no/vcTH5fHs2CuSZGjA6v5VJLxW9aw8kPj0flcvLbvf8hpriQrp9OQ7NgHp6zz22XObQ1nz9AcVX4\n7XZSVi3BWF7MrjPGkZqXGZFQDkB+Ziyrtla1qFLe9zPNzJkRR0YHN488U0xcQvDzd90N95P622J6\nvfMcZYOG4zMEV8plYFtRAwpJOqT1pcfrZ/3O2jYJ5eirK+gz7Vm8BiOr73gipFAOBHeL0ivp0zmB\nqnoneyqtLQ5/+PVRLHviDfq8+Qz2lDSqe55ATY/+eGLjDrt9apyBzpmxf5tKeMeSlDgDaqWCLXvq\n27zS164xF5KyagkZy+aR/+V7bLtk/P77un7yFtk/zqAuvycrH5h6UChHAszRWpLjDCSYdPsr2smy\nhrIaO1Zn60O5m6+4DWN5MR3mf8dJz97Pikde2l9tsbzOQZRO3aKwf1V9aP9naYm0DC83T6zgwitq\nmP11HPN/iGX9Hy1N0sQDj4MdmBb8G4NB5q673NxyiwfT0fvvh/A3IyrmCIIgCIIgCIIgICrmCIIg\nCMeXGouT7cWtr5LzV/mZsaTGt+3ln1t214UcHvqzo9l+C0Jrw3E4vaY9S/7XH7D2na9IP/f0sMf7\nbUslDnfrA0OS38dZlw4DWWb2Z4uQlQeu8ezy6dv0fP8ldkychOn+iWHPsS3YbMH2SC+/rGHHDiUx\nMTJ33+3muuu8aFvZZWfT7jqqI/Ac/TNZhtKivUGdtQY2rzdgbTz4OlqFQiYq2o8x2o/RGCDKGPw+\nKjoQvN37Z+Of/hxj8hMT629y7VenVpKdGkNyMy1d9nF7/Owos7T654+L1tIrN9herrhY4quv1Hzx\nhZqdO4Ovz4SEAOef7+Oii7z06NF2ASThUL9uqsDlbf1nQ8yuAkbdcj6uuETmvvsdfv2RPxtMURp6\n5yagUDT94DpcPspq7FTUHdyuqqZKxT03ZuP3SUx9axep6ZFra3I4Cet/4+RHbkbhcbPywecoOXU0\nsQWbGHXbBbjGXYj1rf9r0+O3lz0VVnZVhN9qZ+jDN5D6+xIWT5tJ/nnDIxrgKL6AIjEAACAASURB\nVKm2saP0yGGs35YZeWFyOrFmH1Ne3UNC0sGfcd2m/5fuH73O1ouvZ8N1B39GKSSJ7h3jiDcFQ4k+\nf4B1O2pCCiM0S5YZ+uhNpP62mFV3TWbX6AtDHkohSfTpnECMIdgjx+n2saPUEnL4tik5qTFkJTdd\n7UFoGZ8/QGW9k7Iae0TbMv2VprGe0288D21DHQte/oT6/J5kzf+Ok569D3tyGvNf/Ry3OfhZbNSp\nSY4zkGTWN1mNsd7qZt3OmpDmovB4OPmh60la/zvbLriW9Tfcu/8+CeiZE3/YMPCfhfr5FIpAAPw+\nCb8ffF4Jn1/C55Xw7731+ST8PtDt3kOf5ydRn5LLpolTyEyKxe+HE0/0izabwmGJVlaCIAiCIAiC\nIAjNEMEcQRAE4XgRaquSwzFoVZzQJSliV8P/VTgLAIfTHkGipkQqvDFs4hUkbPqDjSsLSOmQFPZ4\npTV2tocYGOr73yfpNOsTFj3zLlX9hwDBwM6YK09HY7VQvHIjxtSEsOcYKW43LFyoZMYMNT/+qMLp\nlFAqZa680su993pISAjtV+Fuj5/ftlaGXDmmJQIBKNmjZeNaA4XbddisSmxWBXarEptNic2qxO9r\n2evQFOsjJ89FTmcXuXkucvJcJCUGyEo2kpFoPGJQoil1jS52lFpaFPJSKxXkpyfx01wtX3yhZvny\nYOBIp5MZPdrHhRd6GTbMj0rU8z8qCssaKaoK7f893d9/mW6fTqNg7JWsu/nBZrdPitXTreOhVTlq\nLS5Ka+zUWZsOFSxbGM0rz6TTKd/J5Jf2tNnzJemP5QyZdCsKv58VD79I2ZCRwTtkmTFXjUJvt1K7\neSetTvQdY7y+ACs3V4ZdxSOqdA+jrx1Nbdc+lHw5h/TEyLe8XLO9Govdc9j7dmzT8fg9WUgSPPHC\nHnI6H9r6Sulycsb1/0JfV8OP78zClt7xoPsVkkSP7DhijVrWF9a2uH1Wa2XN+5aTpj5AZd9BLP7P\n/4VcLQegaxNtuGoanOwotYQdZlBKEl06mA+pJiSEr97qprTGRq3FFVKr1uYkrVnBKQ9chy0ti7U3\nP8jgJybg1+hY8PIneHLzSTIHW1Udrq3k4WzcVUuNJbTAl9pqYfgdlxJTsovVEx6j8OxL99+nUgTb\nHDbVdtZic7NmR+T+TxARsswpD1xH8poVLHrmXTIvPY/oveE4QWiKaGUlCIIgCIIgCIIgCIIgCP8A\nPn8gYqEcAIfbR43F1SYLNQFZDjkw0pSyGsdRCebIskyDNQILe34/sTs205iZgzHJHP54QEqcnt3l\njXj9rV+MLRo2hk6zPiHrl+/3B3NSVyzEUF1O0XmXHROhHL8fVqxQMmOGiu++U2OxBBc+c3MDjBvn\n4YILvGRnh7cUptUo6ZgSw86ytmupo1BAVrabrOzDP49kGdwuCZtViX1vUMduVewP7dhtCmxWJfW1\nKnbv1LHmNyNrfjuwYJ6UFKBPnwC9evnp08dP794BkpNb/u8SF6NjgFFLcZWNokrrYVvN+P2wbnUU\n61cksmC+Fpcr+FgMHhysjHPWWT5iYlr5DyNEXJJZH3IwZ8tlN5O5eC6dv/2IouFnUZ/f84jbVzU4\n0ZU1kpMWg88foKI22K6qJW3/hpxmZfVKC0sXmJj2Uio3Tywn0gXRUn5bzOAnJgCwbNKrVJw07MCd\nkkTJkFHkf/0BmiW/4Bl5bLfta05JtS0irXVyZ3+GJMvsGXsFGW30eZufaWb1tkNbWlVVqHn20Qy8\nXon7Hi85bCgHwK/Ts+7GBxj85B30fus/LHvyrYPuD8gym3bVEW3Q0GBvm1COtq6avm8+g09nYNVd\nT4YVyslKij5sKAcgIVaPOUbLngobJdW2Fre3OmiuKiXdc+L2V+MRIsscrcUcrcXp9lFWa6ei1hHS\nOVlTqvoOYtsF19Dly/c4+ZGbCChVbJ06jezTTsIcrW11uD43zURdozuk55I32sTSKdMYfvsl9Hv9\nKRzJaVSceCoAvkCAjbtq6ZeXiEp56Jt5ZRu2sQpV8uplJK9ZQcWAoShGjhKhHCFsIpgjCIIgCIIg\nCIIgCIIgCMcJWxu0YiiqtLVJMKekyhZSi6UjsTo9NDo87b64ZHV6I7LIEl26G7XTQUN+zxZf2dwc\npUJBSpyB4mpbq/et7dYXR0IK6cvm8ceESQQ0GjrN+gQA13XjOVrX1csyrFun4Ouv1Xz7rYqKiuAC\nT0pKgH//28v553vp2TOy7ZHSE6OorHNga8OWFEciSaDTy+j0vkPathxOY4OSuvIYqkpi2LRRxbp1\nSn76ScVPPx1YEkhJCdCnj59evYK33bsHUCqDlYdcLgmX68D3B/7OjNVmorjSRUOjH69HwuOWaGxU\n8vvyaCz1wfE7dfJz4YU+zj/fS1bWMV20/x/HqFdj1KlDei4HNFpW3/EEw+67mgEvPca8/36BrDry\ne1VRlRWHy0u91X3YQNeRjL+9ksoyDYt+NqHTB7j21sqIva5TVyxg0FN3gqRg2eOvUzlgyCHblA7d\nG8yZPetvHczx+vyUhPAZ8FdKp4PsH2fgMieguGBcSNW3WsKgU9Ex9eAwpN2m4JlHMrA0qLj2tgr6\nD7QfcYzSoaOo7DOQtJWLSFn5y8GhK8Avy20WykGW6ffaZDRWC3/c9giOlPSQh0qI0ZGdeuTWUkqF\ngpy0GFLi9BSUWFpVAcioU9MjJw6dRiwXtzW9VkVumomOKdFU1TsprbZH5JxCKUkU3XIvGRt+w7h1\nI40vvkrqhWeFNc/0hKiQzhsB7KmZLJv8BsPuvYpBT93Nwhc/pKFTNyAY+N+8u56eOXEHBYYCshzx\nlqFh8/vp9e7zyJLEpuvvIT9NJIuF8Il3WkEQBEEQBEEQBEEQBEE4TrRFMMfq9FBvdWOOjlwbD5fH\nx56KtmkhWV5jJyarfYM59Y2RWdwzF2wEwNWzN4e/Nj406YlRlFTbWt9CQaGg+NQzyf/6A5JXL8OW\nnkXy2l+p7nMSphP6RnCGLbNjh8SMGWpmzFBTWBgM48TGylxxhYdx43wMHOhHqWybYyskic4ZpmOv\nzcJhxBq19M+L2Xtlt2/vF1RVSaxfr2DdOiXr1gVv585VM3duKEc5tFJGjMnPtde6uegiH337RjYY\nJURWklmPrTy0z4vqPiex64xxZP84g84zplNw0XXN7lPTGFpbFL0hwINPFfPEfVn8OMuM3uDn39eG\n/xpMX/wjA5+5h4BKzdIn36S6z0mH3a62ax+ccQlofpgDz7/C37X/WlGlLSKt+LIWzkZja2TrFbeS\nmhobgZk1LSMxiuoGJ40ODz4vPP9EOqVFWv41ro4zz2lBtT1JYu0tDzHqprH0efMZfuo7mICmfc4N\nMhbPJWPZPKp7DmDnWZc2v0MTonRqunQwt7jiiUGnpk+nBCrrHRSWNuL2Hbm9VXyMjq4dzIetXiK0\nHaVCQWp8FKnxUTTY3JTW2Km1uFpUoUanVmLUq4na+2XUqdFrlUiShGvOXLyFO/H1Dv/8rENKNBV1\noVf2qevam5UPTGXQk3cy9JGbmP/q5ziTUoP3WV0UljWSm27av32D1R3RKkKR0GH+LGILt7F71HmY\nBp+AVt1GJ5jCP8rf8yxCEARBEARBEARBEARBEIRD2NsgmANQVGmNaDBnR6ml1ZUTWqqq3kluuqld\nF5rqW3F1+pHEFWwCINCnX0TG20enUZFg0lNtaf3VyMXDxpD/9QdkLvoBrzF41X79FddhbqNKCX+1\nZ4/EnDkqZsxQs359cFFEr5cZO9bLuHFeTjvNTzuttWIyakkxG6ioj1y7uEjrmmUmOe7wsa6kJJmR\nI/2MHHlgsbayMhjWWbtWydatChQK0GpBp5PR6UCr3Xd78N/p9cFbtUamweHA6rJz9sgY4kyRqfQk\ntK1ks4Fd5Y2tD+vttX78PaT++gvdP/wvpSefjj01M6Lz+zNjTICHnylm0t0d+OazBPT6AGMvrQt5\nvMwFszlx6gP4dTqWPDWN2h79m95YoaB08Eg6zf4M9YpleE8+NeTjHi1ur5+ymiNXl2kRWabTrE8I\nKFW4r7oWZaT7iv2FJEnkZ8Wyams1015OYdO6KE4cYuWK8VUtHqOxY2d2nPtv8mZ+SOcZ/2PbJePb\ncMZBmoY6+v73KXxaHb/f/RSh9l9TKxX0yI4L6Vwm2WwgPkbH7nIrpTWHD+VmJBjJTY9pdZsjIbJi\njVpijVrcHj9ltXbKaux4/QGUkoRBp8aoVwUDOHu/jvR8kKNjIhLKAVApFXRMjQmr5Wzp0NNZN/4+\n+rz9LEMfvYmFL36MLyrYYrO42kaUXk3K3vOVqmOsjZXC7aLHB6/g12jZfv1d9Exq/za5wvFJBHME\nQRAEQRAEQRAEQRAE4Thhc0a2NdQ+9TZ3xFpE1Vpc1FhCq57QEn5ZpqLOQUaisc2OcdDxAgEa7Z6I\njGUu2EhAoUTdv09Exvuz9MSokII59Xk9sKVmkr58PrIEjoQU9OefF/H57VNSIrF0qZJly1QsX66k\nuDi4CKVSyYwa5WPcOC9nnOHD2D4P7yFy02OobXQdc1d2A2SnxDQZymlKcrLMqFF+Ro06cmWFI9Ph\n82tE1YW/Ea1GicmobVXLmz/zxJhZe/ODDPzPvfR79QmWPP0ObVkiKdbs59Fni3js7g58+n4SekOA\nM89t/YJxh5++4YQXHsJrMLLk6Xeo69q72X1KTz6dTrM/Qztn1t8ymFNUaY1IEDZh42piC7dRcupo\nkrrnRmBmzYvSqZn3bSqLfo4hN9/JhPvLULSyaMXmK24ja8Ecun3yFntGnoMrIbltJrtX3zemoLPU\nsfaG+7GndwhpDIUk0a1jHHpt6Eu4KqWCThkmkuP0bC+x0OgInqdIQKd0E+ntdI4ktIxWoyQ7NYYO\nydG4PP79VXCOprR4A2U1duxhtNvafv5VGMuL6PTdpwx66k6WPvnm/vaHBcUN6LUqovXqkM5P21Ln\nmR9iqKlky8XjSe2T3+ZBROGfQzyTBEEQBEEQBEEQBEEQBOE4IMsyjjB+ed6c4kpb2GP4AwG2l4Z+\n9W1LRaQ6QAtZbJ4WtR9ojuT3EbtzC40dO2OMi4nAzA4Wa9Ri1IVQzUSSKB42BpXLgdrpoOLCy9EZ\ndBGbV3m5xJdfqrjzTi0nnBBFv35Gbr9dz+efq7HZJMaM8fLccy42bLDz8cdOzj//6IVyANSq4OLZ\nsSYxVk+HlOijdnwRyvn7STbrw9q/+LR/UTFgKCmrl5G1YHaEZtW0hCQfjz5bhMns473XU/jlp9a9\nDrO//4ITXngIjzGGRc++36JQDkB1zwG4o02oZ8+CwLEXyDsSl8dHeW1kKnx1mvUxAI1XX99ur/cv\nv1Qx7fUYklO93D+5BK2u9Z+1XmMMG669C5XLQa93X2iDWR6QtmweWb98T23X3mwfe0XI4+SmxUSs\nSmG0QUO/vETyM2PRaZT0zIkXoZxjmEIhYdCpjnooB4JVq3LTwjzf2dtSruykU0lZvYx+r02GvefM\nAVlm8646ymrsEWm1Fymahjq6fvY27phYyq65lWRzJJvLCv904mxZEARBEARBEARBEARBEI4DTrev\nzdpDAdRYnGEHf4oqbbg84VTmaBmH20e9NTLtpZpTF6HjRBcVonK7sHXr1WZX5mYkhbYYV3zqaAD8\najXy1deGNYfKSokZM1RMnKhl4MAoevc2cuutej75REN9vcSZZ3p58kkXCxbY2bLFxgcfuLjqKi/x\n8cfOok1qvCEi1aMiJVqvpktW7NGehvA3kxirRxHO4q8ksXrCJHxaHX3eegZNY33kJteE1HQvj/6n\nGGO0nzdfTOXXJS0Lo+XO+pgBL0/CExPLoqkf0JDXvcXHlFVqygaPQFVViWrV76FO/ajYU2GNSHBU\nV1NJ+tJ5NOTkE3v6aRGYWfOWL1dy5506YmJkpk+3ExcXeihq9xnjqMvrQYcF3xG/cXUEZ3mAurGB\nfq89gV+t4feJU0DZytI+e6XFR7VJcCY1PoqB3VKIi4lcsFY4/sXF6IiLDu85IytV/PrQC9R36krO\nD1+R//m7++9z+/zsKLOEO82I6vbJW6gdNjZfdgsd8jOO9nSE44wI5giCIAiCIAiCIAiCIAjCccDm\nbLtqOQAyUFwVetUch8sX1v6tVVbbPlVzGiIUzIkr2AiAp1fk21jtkxJnYFD3FHrlxJOTGkNyrB6j\nTt3s4rwlO4/C0Rey/Zo7iMlu3SKFLMOCBUruvVfL4MEGevY0ctNNej78UENVlcSoUT4ef9zFvHl2\ntm2zMX26ixtv9NKjR4BjtXOAJEl0zjBx9K9nB41KQffsONFmQWg1lVJBfJiL9I7UDDZdOQGtpZ5e\nbz8XoZkdTOF2gf9AoDMr281DTxej1QZ45Zk01v4edcT9O3/1Af3++xQucwK/PPc/LLldWj2H0iEj\nAVDP/rbV+x4tTrePyvrItIfJ+f4LFH4fdZddi1odenulltq+XcFVVwUrOr3/vpO+vZVkhhgsBUCh\nYM2tDwPQ9/UpBz2fIqXPtGfR19Ww6YrbsGaF1uorNkpLpwxThGcmCOHplB4TXogT8OujWPrkWzgS\nUuj13otkLpwTodlFVlTpHnK/+xRbaibWy6/GFHXshLCF40Pbf4IKgiAIgiAIgiAIgiAIgtDmbE5f\nmx+jst5Jx5QYtJrWXwm+vaQhIlfut1StxYXb60erDu2q9ZZwe/3YItQ+zLw3mEP//hEZrylatRKt\nWnnQVfMBWcbh8mFzerE7vdj2fnn9eysUSBKr75pMp/SWLxjKMvz4o5IXXtCybl3wMTAYZIYP9zFk\niJ+hQ3307BlA9Tf9DXW0QUNaQhSl7dg27a8UkkT37Hh0mr/pP6Jw1CWb9VRbwgtvbB93JVkLZpP9\n00z2jDiH6r4DIzI3hdtF72nPkjvncyRZxqs34I2KwWuM5rSoaPI6DuWybVN54dFk3hn2Kr1zKvBE\nxeCNMuI1Bm+TVy+nx/TXcMYn8cvUD7BlZoc0l8p+Q/AaolB/9y3OJ6bAMdBmpjm7I1QtR/J6yJ3z\nBR5jDNorL4vAzI6sulri0kv1WCwSr77q5OSTgyGaDinR1FpcIX/m1nXtw+5R59Hx52/I+eFLCs+6\nJGJzTvltMR1//oa6zt0puPCakMbQaZR0zzaHHYAQhEgz6NSkxhvCPt9xxSexZMo0ht/1b054/iEc\niSnU9mjbc97W6vn+yyj8PjZedzfZHRKO9nSE45A4YxcEQRAEQRAEQRAEQRCE44A9QgGRIwnIMsXV\ntlYFNACq6h3U29qntdQ+AVmmotZBh5SWtToJRaSq5QCYCzYRUKnR9u0dsTFbSiFJGPVqjHr1QX/v\n9vr3B3XsLh8pcYZmxwoE4PvvVbz4ooaNG5VIksw553i5/nov/fv7UaubHeJvIzs1hpoGF25f27dn\nO5zOGSZxNbcQljiTDrVScSCEFwJZqWL1XZMZcfvF9H9lEj9N+5aANrxKPDG7tzPw6YmYdm/HmpaF\nMzEFtc2K2m5FX1tFTNFOzg/8gYECzuVbbl1wA/MXjOAEVh0ylj0plUVTP8CelhXyfAIaDeUnDSNr\n4RxUG9fj69n+79Ot4XB5qap3RGSsjKU/o6uvofSy8WhMMREZsylOJ1x5pZ6iIgUTJ7q55JIDgWOF\nJJGXFcuagmpCjRutv+5u0pf9TI/3X6b4lDPxxoTfAlBlt9L/5UkEVGpWTZyCrGz9sqtSIdEjOx61\nqu2CxIIQjo4p0VTWOfEFQv+sAGjMzmPFI68w9JEbGTLpVha8+hm29I6RmWSY4rasI3PxXGrzeyGd\nf4EIPQttQjyrBEEQBEEQBEEQBEEQBOE40NatrPYpr7XTITkataplrXN8/gA7SxvbeFaHV1ZrJyvZ\niNRGV6DXRSiYI3k9xBZupTEnH42x+fBLezlcdZ2mBAIwe7aKF17QsGVLMJAzbpyXO+/00KVLeAs5\nxyqVUkFOegxb9tS3+7EzEo2kxh+5hY8gNEchSSTG6sNu/Vef14Pt511B3oz/0e2Tt9h4zZ2hDSTL\nZH//JX3eegaV28WOsy9l3Q33HRr0kWVUTgdqu5X7Fq3jmXf6M1K3hDcv/ZQuhl2o7VbUtkYkGbaf\ndxnOpLSwfj6AkiGjyFo4B+mbmXCMB3N2VVhDDq/8VadvP0aWJBQ33RihEQ8vEIBbb9WxerWSCy/0\nct99nkO2iTFoyEyKpqjKGtIx3HGJbL78Vnq/PZUe019jzW2Phjtter3zPIaaCjZdcRuWnPyQxuia\nZT4kGCsIxxK1SkmHlGh2llnCHqtywBD+uGMSA156jKEP38iCVz7DYzJHYJZhkGV6vRNsx7jlpvvJ\nbcNQv/DPJhrPCoIgCIIgCIIgCIIgCMLfnNcXwO1tn6od/oBMWSvK2e8utx61iiJur59ai6vNxo9U\nxRzTnh0ovR6cPY7txd7D8fth5kwVp55q4Prr9WzbpuCCC7wsXergrbdcx20oZ59ks4FYo7ZdjxkX\nrSU3rW0rVwj/HMlmfUTG2XjVBOxJqeR/8X/E7Cpo9f5qq4WBT93FgFcmEdBoWTbpNdZMeOzw1Xck\nCZ8hCmdiCr0viOamiZU0OnXc+s0VLO1/FVsvvZEN4+9l/Q33RiSUA1Bxwsn4NVo0s7+LyHhtxeb0\nUt0QXnuyfWK3byJh8xrqBw9DlZ8XkTGbMnmyltmz1Qwe7OPFF11NdgvrmBKNQRt6zYHt515GY0Y2\nubM/w7Rza8jjACStWUHu91/QkJPPlkvGhzRGdkoMCbGReQ0KQltKT4wK67X3Z7tGX8iWS24guqyI\nIZNuRdNQF5FxQ5W2YgGJG1dTOmg4MWcOR6UU8QmhbYhnliAIgiAIgiAIgiAIgiD8zbVXtZx9Sqpt\n+FtQzt7m9FJaY2uHGTUt3EoQTbE5vRELHJkLNgLg79M3IuO1B58PvvpKxSmnGLjxRj07dii45BIv\ny5fbeeMNF507H9+BnD/LyzChaKOqTH9l0Kro1jGuzapACf88JqMWnTr8Fjp+fRR/3D4Jhd/HgJce\nDab2Wih+0x+MunksmUt+pLrnAH56cyZlQ0a2eP9hp1u45pZKGupUPHl/FjVVkW8W4dcbqBgwFMOu\n7Ujbwgt0tKXdFZGrUNdp1icA+G68KWJjHs7776t54w0NnTr5+eADJ9ojZB0VCon8LDOhvgPKag1r\nb3kYKRBgwMuPkblwDvGb1qCrqQyW7WkhpdPOgBcfJaBQ8vvdU5DVrW8rmBSrb9N2m4IQSQpJIic1\ncqHgjVffQdGwMSRsXsNZl53GCc89SGzBpoiN31KS30fPd/+fvfsOk6o+2zj+PWd62d5ggaV36SAo\nRGNXLCGa2I29d14LRmOLvSaWGAtq1Nh7jUbRWAFBqdJ732UXdnfKTn//WEWRBXZ3zja4P9e115o5\nZ57zGyBzZubc8zz3kjRtLLng6nqNbRVpLI2yEhERERERERERaeOCzRzMiSWSrCsP0bHAv8P9Fq3a\nbNk4jcaqqI4QjsTxWPQt35+sszDwk/PjhQhzxHDLajaVeBxee83O/fe7WLrUxG5PcdJJUS65JErX\nri39t90yvG4HHQv8jR6vUl9202SPrnn6JrdYrjDHa8m/3/V77svKfQ+j5H8f0P29F1ly1Ek7vkMi\nQd8XH6Pfsw9jkGLuKRfxw4nnga3hQaHDxm0iHDZ58akCbrumhEeeLCMrO8H6TaFGPpptrR5zMB2+\n/oTk669jXPPnOvdZscJg4kQn4TD4/ZCRkcLv/+mH7f63s+G5jm1UBqNstKhLnLNqEyWfvke4Y2eM\ngw+xpGZdPv7YxjXXuMjPT/L882Gys3d+nyyfkw4FflaXNS74u2H4aFaPOZiOX37EqNuv2HJ7wuEg\nXNCeYGExoaJiQoXFBIuKCRV1IFhYTLigiJS9duTUgCfvx7dhDfOOP4fNvfo3eA0ZHge9S+rxYEVa\nkfxsD9l+F5sDFnSMNE2mXnk75X0H0+Ptf9Plv2/S5b9vsrHfYBb/7mRWjzmoUYG3hur6wWtkrl7G\nksOPo93eQxV8liZlpFKpVv1uqaysad/MiIiIiIiIABQUZOj9h4iItFnzV2yy9OJjfbgdNvbsV7Td\nTiHryoMsWLW5Wde0PZ0K/HTvkGVZvRXrq1lmYVeCAy84hswVi6lYvg4cDsvqWikWq+2Qc//9LpYv\nN3E4Uhx/fIxLLonSuXOr/oi5WSSSSb6dV0pNE42UM4AB3fLIzaxjrI9ImoI1Mb6dX2pJLVdFGYee\ndQRGMsGHj79LuKBdnfu5N25g5J1XUThzKqH8dky55m42Dqh/ONEAPC47Po8Dv9uBz2PH73Fwz11e\nHnjARb9+CV59LcC81etJWHQZzBGo4qhjxxDs1ouaL7/ZaltFBdx/v4unnnIQjTb8wq7TmSIjI0VG\nBhx/fIzLLotiNiCDl0yl+G5BGYEaa4K6vV6eyKAn7qHi+ltIXHSJJTV/bf58k8MO85JIwOuvhxg+\nvP4daxLJJNPmlxGOxht1bCMeo+i7r/GtX413w1p8pWtrf29Yi3vTxjrvkzJNwrmFhArbk//D91SV\ndOe//3iNpLNh4wxddhtDexXgcqbfqUqkuQXCMaYvKLU2eJ9MUjT9K3q+9Rztp34OQDi3gKWHH8eS\nw48lkltg5dG2sIeCHHb6odjDIaa8/hm9hvdpkuPI7qWgYPud0BTMERERERERQcEcERFp26YvKKW6\nmbvmAPQpyamz5XssnmDqvFJiidYxzshhM9mrfztMM/1vwa7cUM3SddaFcsxohN+PG0F17/5EP/3c\nsrpWisXg8MO9zJhhw+lMceKJtYGcjh1b9UfLzW7j5jBzllc0Se0exVl0LNxxhyqRdEybX2pZqKPr\nB68w/P7rWbP3AXx940PbbG//zaeMuPfPuKo2s2bvA/h2/C3EMrffPcRumvg8dnxuB35P7Y/PY8dW\nR3IllYIJE1w89ZSTYcMSXHPTepJO697njfnzObSf9gXrvv4ee4/uhMPwWJt+JwAAIABJREFU+ONO\nHnjASVWVQUlJkgkTIuyxR5JAAAIB48efrf+7unrr24NBg+pqWL/epLra4IgjYjz4YA0+X/3WZWlg\nNJFg7GmH4K6sYNOs+aSyc6yp+wvl5QaHHuplxQqTxx4LM25cwwM2mwMRZiyuO0STDjMawftTUGdL\nYGdN7e+ydXjK1pOyO1jz4ltEhjS8053LYeJ2aqCJtF0LVm5iXUXTfCHAv2Y53d9+nq4fvoEjFCBp\nd7Bqn0NZ/LuTqOg7yNJj9XvmIfo/9zA//Oki/LfebHl3Tdk97SiYo39hIiIiIiIiIiIibVgylSJY\n07hvjKdr5YbqOoM5S9dWtZpQDtSO3irdHK5zrQ2xuixgaSgHIGvZQsx4jMiAwbTW5vkvveRgxgwb\nBx8c5667aiguViCnLvnZHvIy3ZRXWTNK5iftc70K5UiTK8r1ElhbaUmtZYccQ+eP36bD159Q/OV/\nWTvmIKA28DDwiXvp+eazJBxOpl98PUuPOB7q6LxmGgbtcr10LPDhdde/k5hhwO23RwgEDF55xcGx\nRxUzeESQA8duZsiegcZMydrKmjEH0n7aF0RefYNXu0zgjjtcrF1rkp2d4uabazj99BiuhjVQ2Up5\nucEZZ7h5910HK1eaPPNMeKfPuaGaOCs2WBc+aj/1c3wb1lB1wilNEsqJRuHMM92sWGEyfnykUaEc\ngGy/iyE9C9hYGaa8soZQxJrXQkmni0DHrgQ6dgXAZhoUZHkoyvWS8jsJJhIQieD2+VAPM9kddWmf\nSenmMImk9a8HAx26MPP8PzPntEvp8t+36PH283Se9A6dJ71DRe8BLPrdSaze5zCSac7/c5eX0vvV\np6jJySdw7kUUKJQjzcB244033tjSi9iRUCja0ksQEREREZHdgM/n0vsPERFpk0KROGs2Blvk2LFE\nEr/bsdVF08pglEVrrLm4a6VoLEn7vHq2HqjDuvIgi1Zb/7iKv5lE8dT/EfjTGRiDB1teP12RCJx1\nlodoFF55JUz79grl7Eim18n68pBlIx6yvE76dc3F2M7IOBGruJ021pQFrClmGJT3HUzXD16hcNa3\nLD3sD/jWr2GfP59Dh28mUdm5O5/fPpH1I3+7TSjHZhh0yPfTr0suRbleHPaGJ2kMAw49NE6nTkk2\nbDD5bpqbrz7L5LMPswgFbRS1j+L1NS48Gsprx7LX1nH6d1fxzLvtiEbh/POjPPFEmDFjktjTvLbr\n9cIxx8TZsMHg448dvPGGnVGjEjt87p27vKLRI53qMuQft+Jft4rgA4+QKiyyrC783NHo3XcdHH54\njLvuitSVy6o3t9NGboabDgV+CrO9uJ12UkmIpDlW0AByM9x0aZ9B75JsCnO8eFz22udi04Q0QwEi\nbZndZmIAmwKRJjtGyuFkU+8BLDnyBDbuMRRHMEDhzKl0/Opjur3/Co5gNdUduxL3Ni64PPCxu8if\nN4M5511N8ZEHWtJVUwRqP1/eHo2yEhERERERQaOsRESk7dqwKcS8FZta7PiZXidDexUAkEqlmL6g\nzLJxKFYb1quADG/DL6atrwixYOUmy8IWvzT83mvp+uHrbPz0G1L9+zfBEdLz5JMOJkxwc+65Uf76\n16a7ALMrsWqkjNthY2ivApyONFt8iNTTjMUb2Wzhhda+zz3MHs88RNmA4eQsnIs9EmbJ2GOZed4E\nEm7PVvvaDIPifB+dCv2W/5v/7KsoTzxp8sUnmYRDNgwzxZBGdNFZusjFv58oZPb3PgySHD22kmtv\ncTTJWL9UCh591MGNN7pwOuHvf6/h97/fNnyzrjzIglWbLTuuf9UyDjtzLOERowi895FldX8ycaKD\na65x079/gnffDdV7VFdDxeJJKqpq2FhVQ0VVTb07e/jdDopyvRTmeHDpuVdku5LJFFPnbaAmzRCc\nw2bWOxTjXbeKLm89T8l7r+AM1L7OStoal4Y0E3GqOnVj6buf0aH99kcpijTUjkZZKZgjIiIiIiKC\ngjkiItJ2LVlbyapSi7ocNNKg7vnkZLhYXRpgsUWjUJpC+1wvvUsaNpaj9MfgU1N9iHrQeePIWLuS\niqVrSLvVgsXCYRg50kdVlcG33wYpKGjVHyW3GslUilmLy6kORxs95sFmGAzumd+oIJlIY1kd8jCj\nUQ664GgyVy4h6stg+uU3s3qfQ7fax26adCjw0bHA16juOPWRTKb4Zu56qgMpvv5fJp+8n82i+bXB\noNz8GPsfWsn+h24mv7DurjOl6x28+HQ+X07KAmCvTgt5ZNUf8V/1BzKvuKxJ1vyTjz+2cc45HgIB\ng//7vwhXXhnFNGu3xeIJps4rtXR05OB/3EbPN5+l6vGnifzuaMvqAvzvfzaOP95DTk6KDz8M0alT\n85xTkqkUm6sjlFfVUF5Zs02QwGW3UZjroSjHi99T/7FpIru70k0hfmjglwM8TjvZfidZfhdZPiee\nxoyQCoVwv/Yyrjdfh5owiWSSRCJFMpkikaz9vbNnl5TNxqKzx9P9uMMx1ZVQLKRgjoiIiIiIyE4o\nmCMiIm3VrCXlVFTXtOgacjNc9C7JYeq8DY0OIjQHm2Gw1x7tsNvMeu2/cXOYH1ZsItlEH6HaasKM\nGzeCwMChRD76pEmOkY5HH3Xwl7+4ufjiCH/5i0Z+NkYsnqQmGicSTVATS1ATTfz8v6OJ7V5Q79cl\nl8JsT53bRJpKPJHk6znrLX3Oy1y2kG7vv8zCY04n1K7DltsdNpOOBX46FPjq/ZycjiVrKln1i1Fd\ny5e4+Pj97J+76BgpBo8IctDhP3fRCVSZvP5CPv95O5t4zKRrjxpOOquUkZ2WcsRJ+1E6ZBTJD/6D\nzWza9c+fb3LyyR5WrjQ58sgYDz5Yg9cL85ZXsGFz2LLj2ENBjjjxtxh+H5u+/wEc1oVUli41OOQQ\nH6EQvP56mJEj0+uykY5AOFYb0InGKcj2kJPh0rhAkUb6fmEZlTsYC+9zO8jyObeEcZqjE1UqlSIc\niROoiRMMxwiEYwTDsW1CeQO75ZGb6W7y9cjuZUfBnNb1FQwRERERERERERFpkGC45cdGVVRHmLus\notlDOd4Na/CtX0PZwBFQj4tqiVSK9RUhOhb4d7pvRVVNk4ZyALKWzsdMJogPGtxkx2isYBD+/ncn\nfn+KCy9UKKexHHYTh91Jhrfu7Ylkkppogkg0QfjH3y6nTaEcaRF2m0lelpsyC8MeVV17MePC67b8\nb6e9NpBTnN88gZyfFOf7tgrmdOke4ayLN3DyWaV883kmH7+fzfdT/Xw/1U9OXoyhewaZ/EUGwYCN\ngqIYx5+2ntH7VWGaEKYd5X0Gkj/zW+YvW0NB905NuvY+fZJ8+GGI00938847DlauNHng4c1sCFn3\n9wRQ8snbOEIBghddYmkop7ISTj7ZQ2WlwQMPtGwoB8DvcagzjohFunfI4rtFZQAY1P7/K8vvItvn\nJMvvbLJOaDtiGAZetwOv2wG/eD0ViycJ1tQGdRKJlEI50uwUzBEREREREREREWmjYvEEkXjLXuD6\nSdUOvi1riVQK/5rlFMyeRv7saRTM+hZf6ToAfjjpfOaeekm9yqwr33kwZ1N1hDnLKpo0lAOQu3Au\nAMbwYU16nMZ48kknGzeajB8fITe3pVez67KZJj63ic+ti8TSOhTleCwN5vzE5bDRqdBP+zxvk3eY\nqYvHZSc3w0VFdWSr292eFPsdUsl+h1SyfImLTz7I5vOPM/nkg2x8GQn+dM4GDj5qM07n1ueD1WMO\nJm/+LJJvvwOXX9Dk68/LS/Hqq2GuusrF8887+f3vsrjypmq697KoY14qRY+3/03K4SB8yunW1AQS\nCTj3XA+LF9s4//woxx9f97gwEWmbMn1OenfKxuWwkelzNmvgsqEcdpNsv4tsv6ullyK7KQVzRERE\nRERERERE2qhAeBe+wJVMkrliMQWzv90SxvFUbNyyOZKZzerRB5KzeB79/v0IlV16snrfw3ZaNlgT\nY1N1hJyMuj+UrwxEmLO0vMlDOQA5C+cAkBo6vMmP1RCBADz8sIOsrBTnn69uOSK7k9xMNw6bud0x\naw1lAN2Lsygu8GG28Lig4jzfNsGcX+rSPcKZF23gpDNLWTTfQ9ceNfgz6v5zWDPmIAY9cQ95n7xP\n6Pxz8Lqb/nKb0wn33x8hv12IB+/P4vrxJVx45Tr23jf9kcwFM6eStWIJNUf/gVRRkQWrrXXTTS4m\nTbJzwAFxrr9++3/2ItJ2tc/ztfQSRNoEBXNERERERERERETaqEArGGNlFSMRJ2vJgtogzqxp5M+Z\nhqu6csv2cG4BK387lrIBw9k4YDhVJd3BNMlcvoj9LzuBEff8mUBxCZt79t/psdaWB+sM5lQFo8xa\nWk6iGUI5ADmL5hD3+kh079Esx6uvxx5zUlFhMmFChKysll6NiDQn0zAoyPawtjxoSa0+nXNazWi2\nvCw3boeNmtiOO825PSkGDAntcJ9gcQmbu/Wh8Ptv+H7Fejr37mjlUrcrEI7ym0PL8OZU8/fbi/nb\nrR1YvWIjfzxlY30mOtYtlaLnG88AED7jXMvW+vzzdv75Tyc9eyZ49NEwtuafaCMiItJqKJgjIiIi\nIiIiIiLSRgV3gWBO5rKFDJx4L/lzpuMI/XwhOFjUgXUjf0vZwBGUDRhOsLiEuq46VnXpyZSr72b0\njRcy+oaL+Pihl4nkFuzwmOWVNURiCVyOn68SVoeizFpSTiLZPKEcWzhI5sqlBIePghYY67I9lZXw\nyCNOcnOTnHOOuuWI7I6KctIP5piGQb8uOeRntY5QDoBhGLTP87FsfZUl9VaPOZA9npmP8Z8PSPU6\nC6OJOwKlUikWrqokBQwdGeSWv63gzus78upz+axZ5eSC/1uHy93Ac1gyyeBHbqfDN5OIDRlKfMSe\nlqx18mQbV17pJjs7xbPPhsnMtKSsiIhIm9V63vGJiIiIiIiIiIhIg7T1jjlGLMqo28bTfurnhHML\nWXrYH5ly1Z28+9wnvP/sx3x71R0sP/QYgh061xnK+cm6vfZj9umX4924nr1vvgQzuuNASTKVYn35\nz90QAuEYs5aUE09aM7qlPnIWz8NIpUgMGdpsx6yPRx5xUllpcOGFMfz+ll6NiLSELL8Lt7Px7U1M\nw2CPrrmtKpTzk3Z5XstGaq0ZczAARf/7DxVVTT+maU1ZkOrwz+e3Tl2i3PbACvrsEeKb/2Vy4xUl\nlJfV//v4RizKyDuupOdbzxHr3Zeqp5/f4bm2vlatMjjjDDfJJEycGKZbt+YJvIqIiLRmCuaIiIiI\niIiIiIi0QclUilAk3tLLSEuvN54ha8USlhxxHB8++T7TL7+ZlQceRbiwuMG1Fhx3Fiv2O4L8H2Yw\n9IEbYSfjqNaVB0mlUoRqYsxaspFYovlCOQA5C+cAYAwb1qzH3ZHycoPHHnOSn5/kjDPULUdkd1aU\n423U/WyGwYBueeRmui1ekTVcDht5WdasrapzD6o7dqHdt19QurbckprbUxONs2zdtp1+MrMT/OWO\nVfz2kM0sWejhsjO68cJT+QQDO778ZwsHGXP9BZR89j7RESOpfPsDku0bfu79tUAATjnFw8aNJrfe\nGuE3v9nx2DAREZHdhYI5IiIiIiIiIiIibVCoJk5yJ+GT1sxTupZ+z/6DmqxcZp9+efoFDYNp4/9K\nRe8BdP3oDXq+/q8d7l4TS7C6LMjMxeVE480bygHIWTgXgNigIc1+7O15+GEHgYDBpZdG8flaejUi\n0pKKchre7cZmGgzonkdOhqsJVmSd4jyLnuAMg9VjDsYeqcHxyX+JxZsuhLJodSWJ7ZzzHc4U549f\nz3mXr8PrS/DGC/lcdGp33nwpl0jNth1wnJsr+O1Vp9Nu+lfUHHQIla+8RSonN+01JpNw4YVufvjB\nxqmnRjnjjLbd1U9ERMRKCuaIiIiIiIiIiIi0QUGLx1j1fe5hDjpvHM7KTZbW3Z7Bj9yOPRJm1tlX\nEsvIsqRm0uXmqxseJJxbwKDH76Zo2pc73H/J2koiTXghdUdyF80hnpFJsmu3Fjn+r5WWGjz5pJN2\n7ZKceqoupors7rxuBxkeR733t5smA7vnk+1v3aEcgJwMF15X/Uc+7cjqH8dZFX/5XzZsCltS89dK\nN4Uor6rZ4T6GAfsfVskDTy/l5LNKAXh+YiEXn9adD9/OJv7j07p3wxr2G38yuQtmEzr2BKqffh68\njeuO9Gt33eXkgw8cjB4d57bbmn60l4iISFuiYI6IiIiIiIiIiEgbFLAymJNK0e2D18heuoDh9/1l\np2Og0tVuymd0/OpjyvYYxoqDfmdp7Zr8Ir668SGSNjujbh2Pf9UyS+v/xBGoqm0P0Aj2YDUZq5cT\nHTi49mpqK/Dgg05CIYPLL4/ibp0TaESkmRXWc5yVw2YysEceWT5nE6/IOsX51nTN2dyzH8GiYoon\nf0rpOuuDrfFEksVrKuu9v8ud4qhjK3j4mSUcfeJGwiGTiQ+147IzuzH1hTD7XHYKmauXUX3BJQQf\n/Cc46h++2pE33rBz330uOndOMnFi2KqyIiIiuwwFc0RERERERERERNqgYI11wRzf2pV4y9YB0OGb\nT+j23kuW1f41M1LDkIdvJWna+O7i65skmLKpz0CmXf5XnMFqxtxwAY7q+l/U3BlXRRl73nEV444e\nyZEn7Muw+66j/TeTsNXUv1NCzqIfAEgNGWrZutKxbp3B00876NQpyUknqVuOiNQqzPGws2doh81k\nYPc8Mr1tJ5QD0C7Xi82K849hsGb0QThCAbyTv6Q6FE2/5i8sWVPZqHGLXl+S40/byIP/WsJh4yrY\nVGbjnqeGsFf5Rzx/7IuEb7jFkvNvMglff23j0kvd+P0pnnsuTG76U7FERER2OQrmiIiIiIiIiIiI\ntEFWdswpnDEFgHknnEs0I4tBj95JxsolltX/pT4vPY5//WoWHf0nqrr2apJjAKw88CjmH3smGauX\nM+r2KzAS8bTqGYk4Pd58jsPOGEvnSe9QVdIdkkm6/ec1xtxwIb/7w16Mvv4Cun7wCq6Ksh3Wylk4\nB4B4Kwnm/O1vTiIRg/Hjozjb1rV1EWlCLodth6OpnHaTQT3yyWhjoRwAu82kMMdjSa3VYw4CoMOX\nH7GuPGRJTYDNgQjrKtKrl52T4JphLzPP1o/TeIp5Rj9Oevk4xo718sUXtgbVisVgzhyTF1+0c+21\nLo46ykOPHn7GjfMSicCjj4bp3btxneRERER2ddYM0RQREREREREREZFmE4klGvUN+u0pnFkbzFl+\n4O/Y1LMfe998KaNuu4JPHniJpIVJDf+a5fR56XFC+UX8cPKFW27P8DiotnI0149mn345mSsWUzzl\nfwx8/B5mnjehUXVy581g6IM3k7N4HlF/JtMvvp6lY4+t3bZgFsXffErx5EkUT/6U4smfAlDeeyBr\n99qPtXvtT1WXnlt1Jshd9GMwZ9CQNB9h+latMnjuOQdduiQ59lh1yxGRrRXletkUiGxzu8tuY1CP\nPLzutjuzqDjfl3bwBaC83xDCufl0+GYSs8ur6dEhC9NMrxtNMpli4arNaa+t83/fZPi915FyOLjr\nX17O6h7mjjucvPuug2OO8bLPPnGuvTbCkCFbv6YIBmHuXJPZs23MmVP7e/58k2j058dlmil69Eiy\nxx5Jxo2LcdBBibTXKyIisqtSMEdERERERERERKSNCVoZYkmlKJwxhXBeIYGOXQh06srSw/5Atw9e\nZY+n7mfWuVdbdpwhD92CLRZjxnnXEPf6AOiY76d7h0yWrq1iVVnAmmP9xGZjyoR7OODS4+n1+r+o\n7NKT5YceU++7O6s2MWDi/XT74BUAlh80jllnXUEkJ2/LPhX9hlDRbwhzzhyPb+3K2nDON5+SP3sa\neQtmMeDpvxMsKmbtqP1Zu9d+lA0YTs7CucRzckl2KrH28TbC/fc7icUMrriiBkfbvb4uIk0kP8uN\nzTBIpFJbbnM5bAzqno/X3bYvMWV4nWR4nFSH0xw/ZZqs3fsAur/7ElkzvqWscx5FOd60Sq7YUE0o\nkl6nt16vPMmgx+8mmpFFxTMvYhs9ml4kefLJGmbMiHLbbS4++8zO55/bGTs2xrBhyR9DOCZLlpik\nUj+HcFyuFP36JRkwIMEee9T+7ts3ic+X1hJFRER2G0Yq9YtXU61QWVl1Sy9BRERERER2AwUFGXr/\nISIibcbKDdUsXVdlSa3M5Ys45JyjWHHAkUy9+i4AbOEQB114DBmrl/P5bU+wYfjotI/T8fP/sNct\nl7N++Bi+uPUxMAxyM1wM6JaH8WM3mXXlQRatriRp8UeWvjUrOPCS47CHQ3x299OU99/JCKlkki4f\nvs7AiffiqtpMZecefHfx9WwcOKLex3RUV9Ju2pcUfzOJdt9+gTNY+zoj5vXjCAWo+e0BVL/8RjoP\nK23LlhnsvbePbt2SfP55CFvDppqIyG7ih+UVlG4OA+B21oZyPK62Hcr5yfqKEPNXbkq7TuF3X7Pv\nhDNZfNSJLPi/myjI9uB22nA77bgcNtxOW7276IRqYkxbUNb4c2EqxYAn7qHPK08Szi9i0wuv4xg0\noM5dv/rKxi23uJg+/ecTQEZGigEDEgwYkGSPPWp/9+yZVHhTRERkJwoKMra7bdd45SQiIiIiIiIi\nIrIbsbJjTuGM2jFWpYNGbrkt4fEyecI9HHDZCYy4ZwIf/fMtotm5jT6GPRRk8CO3k3A4+e7C68Aw\n8Lrs9O2cuyWUA9A+z4fbaWfusgriSetGdQU7dOab6+7nN9eczd43XcLHD71MuLC4zn2zlsxn6IM3\nkf/DDOJuLzPPuYpF404mZW/YFclYRhar9jucVfsdjhGPkT97eu24q28+xREKEN93PyseWlruvddF\nImFw5ZVRhXJEZLsKczyUbg7jcdoZ1CMPt3PXubRUkO1myRqTWCK9c07ZwBFEM7Lo8NXHfH/Btayo\no9uNy27D5awN6bh+DO24HT/fZreZACxYtbnRoRwjHmP4/dfT5b9vUt2pK5teehNPj67b3X/06ATv\nvx/iiy9sVFYaDBiQoHPn1C+nL4qIiIgFdp1XTyIiIiIiIiIiIruJYE164y1+qXDGZABKB4/a6vbN\nvfoz+7RLGfTEPYy47zq+uulhGnulrt+zD+EpL2XuyRcS7NAZu2myR9dcHHZzm31zMlwM7ZXP7KUV\nhKPWPc7SIXsx87wJDPnHrYy+4SI+ve85Ep6fR43YgwH6P/MAPd/6N0YyyarfHMLM8yYQLmi309qm\nYeCwmdhsBnabid1mYLOZP99mmtg7H0J03GGsNgx8lRtxd6w7GNRcFi0yefVVO337JjjqKOv+nEVk\n15Ob6SbL56Rfl1xcjl0rxWczTYpyvaxOc5Riyu5gzV770/WjN8idP5OKfkO22ScSTxCJJ6gK1V3D\nYTNx2M1Gj7Cy1YQZdet4iqd8RkXvAVS98Cq+ju13ej/DgH32STTqmCIiIlI/CuaIiIiIiIiIiIi0\nIclUqtEX7baRSFAwexqBdh0JteuwzeaFfziddtO/pHjyp3R790WWHnlCgw+RtXQBPd94lkBxCfOP\nOwsD6NclB697+x1ovG4HQ3vlM2dpBZWhaIOPuT2Lf3cSWcsW0u2DVxhx77VMvvY+ADp99j6DHr0T\nT0UZ1cUlfH/RX9gwfMwOa3UvzqIox4PdbmI2NLCU3amxD8Ey99zjJJk0uOqqKOa2+SgRkS1Mw2Bw\nj/ytOpztSorzfGkHcwDWjDmIrh+9QccvP64zmLMzsUSy0Z17jESc31x7DgWzp7Fh2GiC//o3GYWN\n73QnIiIi1lIwR0REREREREREpA0J1cQbPeLi17KXzsdZXcnq0QfWvYNpMvXKOzj43N8x+NE7KRs4\ngurOPep/gGSSoQ/chJlM8P0F15J0uelenEVupnund3XYbQzqkc+ClZvYsDlc/2PuiGHw3UXXkbFq\nKZ0+/w81OflkrlxM0feTSThdzPnTxSw49kySTtcOy7gdNjoU+BoeyGkl5s0zefNNOwMHJhg7Vt1y\nRGTndtVQDoDXbSfH72JTIJJWnQ1D9ybm8dLhy4+YdfYVje4y1xg93vo3BbOnsXbvAwg++QzZuRnN\ndmwRERHZOX0XQkREREREREREpA0JhGOW1SqcMQWAskEjt7tPTX4R08bfgi0aYdTtV2JG69/Bpst/\n3yT/h+9ZPeZg1u+5D+1yvHQq9Nf7/qZp0LdLLl3aWXeBMeVw8vX1DxAsKqbnW89R9P1k1u25Dx8+\n/g7zTr5gp6EcgE5FGW02lANw111OUimDq6+ONOd1YxGRVqs435d2jaTTxbqRv8W/fjVZS+dbsKr6\ncW/cQP9/PUAkI4vQ3x9WKEdERKQVUjBHRERERERERESkDbE2mDMZgNLB2w/mAKwdfSBLxh5L9tL5\nDHjyvnrVdlZtYuDjdxN3e5lx3gQyvU56dcpu1Dq7tMukb+ccy8Iw0excvrz5EdbsfQBf3fAgX/71\nnwTb12+8lNtho32e15J1tITZs03ee8/BsGEJDjww0dLLERFpFfKy3LgctrTrrBlzEABd//Na2rXq\na9Cjd+IIh1h7+Z/J6lzcbMcVERGR+lMwR0REREREREREpA2xKphjxGMUzJ5OVadu1OQV7nT/mede\nTVXHrvR6/V8UTftqp/vv8eTfcFVtZu4pF5Ls0JH+XXMxzcYHa4pyvAzqnofDZs1HmlVde/H1jQ+x\ndvSBDRo30ta75dx5Z21HIHXLERH5mWkYloQu1478LdXFJfR4+3ny5ky3YGU7Vjj9K0r+9wEVfQfh\nOe/sJj+eiIiINI6COSIiIiIiIiIiIm1I0KJgTs7COdhrQjvtlvOThMfLlD/fQ9LuYMQ9E3Burtju\nvrnzZtDtg1eo7NyDpUf/iT265lrSiSDL72JorwK8LnvatRrD1ca75UyfbvLRR3ZGjYqz777qliMi\n8kvt83xpBy+TLjffXnkHGAZ73n0NtnDQotVty4xGGfrQX0mZJuXvH4/WAAAgAElEQVS33oPN3jLn\nRhEREdk5BXNERERERERERETaiEgsQSyRtKRW4YwpAJQOHlXv+2zu0Y/Zp1+Gp2IjI+69FlKpbfYx\nEnGGPngzRirFd5fcQK9uBWR4nZasGcDjsjO0VwHZfpdlNeurZBfpljNhQlTdckREfsXlsJGX6U67\nTnn/Icz/45n4161i0GN3W7CyuvV+ZSIZa1aw4uhTyB5Tv5CtiIiItAwFc0RERERERERERNoIq7rl\nwM/BnLKBIxp0v4XHnMaGIXtRPOUzur/zwjbbu7/zIjmL57H8oHH4DtyPwhzrO8zYbSYDu+fRPrf5\nute4HLZmPZ7VJk2y8dlndn7zmzh7761uOSIidSnO91lS54dTLmJzt950f+8l2k393JKav+Rbt4q+\nLzxKODef5HXXW15fRERErKVgjoiIiIiIiIiISBsRsCiYY0Yj5M/9js3d+hDNymngnU2mXnUHkcxs\nBj12F5nLF23Z5C4vZY+n/07Un8nqy6+la/tMS9Zb5zIMg94lOXQq8DfZMX6ppNCPabbNNjPRKFx3\nnQvTTHHzzZGWXo6ISKuVk+GyZFxi0ulk6pV3kLQ7GH7fdTiqNluwuh+lUgx5+BZs0QjLLvsLGcUF\n1tUWERGRJqFgjoiIiIiIiIiISBthVTAnb95MbLEopYMbN/qiJq+QaeNrLwqOvONKzGht2GPg4/fg\nCAVYeO4VdB/S05K17kzX4kwyPI4mPYbLYaN9njVdFFrCxIkOFi+2ceqpMfr3t2YUmojIrqrYouf7\nyu59mHvKRXgqyhj68C2W1AQo/voT2k/9nNLBo/CfdrJldUVERKTpKJgjIiIiIiIiIiLSRgRr4pbU\nKZwxGaDRwRyAtXsfwJLDjyN76QIGTLyXghlT6DzpHTb1HkDmxedjtzXPR4+mYdCncw6m0XTdbNpy\nt5wNGwzuvttFTk6Kq69WtxwRkZ0pyvVis+icsuDYMyjvO4iST9+j4/8+SLueLRxiyD9uI2l3sPaG\n2/G4mzaYKiIiItZQMEdERERERERERKQNSCZThGqs6ZhTOGMKSdNG2YARadWZee7VVHXqRq83nmXk\nHVeQMgyq7rwfj9dlyTrry+d2NNnYrLbeLee221wEAgYTJkTIzW3p1YiItH4Ou0lhjseSWimbnalX\n3UHc5WHoAzfhLi9Nq16/5x/BW7aOxcedSdGoIZasUURERJqegjkiIiIiIiIiIiJtQLAmRsqCOrZw\nkNz5s9jUsz9xnz+tWgm3hynX3E3S7sBTsZGNJ5yGd+89LVhlw3Us8JHtsz4Q1KkNd8v57juTF15w\n0K9fgj/9yZpQl4jI7qBTod+yTmyBDl2Ydfb/4aquZPj9f4FU487mGSsW0+vVpwkWFVMz/spm60wn\nIiIi6dNZW0REREREREREpA0IhK0JVuTP+Q4zEU9rjNUvbe7Rj2/H30LFvgdh3HSTJTUbwzAMepdk\nY7MwROOy2yhuo91ykkm49lo3ALfdFsFma+EFiYi0IV63w9Ln/yVHnMD6oXvTfurndP3Pqw0vkEox\n9MGbMRNx5l92A+065lu2NhEREWl6CuaIiIiIiIiIiIi0AcFw3JI6hTOnAKQVzDEAv9tBx3w//bvk\n0umyc0i88hqprGxL1thYHpedHh2yLKvXqajtdst5+WU706fbGDcuxt57J1p6OSIibU7ndhk4rOpK\nY5pM+79bifoyGPTPO/CuW92gu5d88g6Fs75lzV774//j7zEs6uYjIiIizUPBHBERERERERERkTYg\nUGNNx5zCGVNI2h2U9x9a7/uYhkGm10mnQj8DuuYxekB7hvcppEfHLAqyPTjsracdS/s8H3mZ7rTr\ntOVuOdXV8Ne/uvB4UtxwQ6SllyMi0iY57CadizIsqxcuaMf3F16LIxxiz7snQKJ+oUlHoIpBj91F\n3OVmxZU3kWvBOU5ERESal4I5IiIiIiIiIiIibUDQglFWjupKchb/QHnfQSTcnu3uZxoG2T4XnYsy\nGNQ9n9ED2jG0VwHdi7PIy3Jjt6qDQBPp1Sl7h10OUilYusjFO6/m8sMsT53XRttyt5x773VRVmZy\nySVROnRItfRyRETarOICH16X3bJ6Kw84itVjDqJgznR6vfFMve7T/18P4N5czvyTzqfD8H6WrUVE\nRESaj3WvJkRERERERERERKRJ1ETjxBLJtOsUzJ6GkUxSOqjuMVYlhRnkZbrI8DrbbCgFwOWw0bNT\nNj8sr9jq9spNNr6YlMlnH2WxctnPHQf8GQmGjgwwfFSAQcODZGcabbZbzuLFBo8/7qCkJMkFF0Rb\nejkiIm2aaRh0K85kzrKKne9cH4bB9EtuJH/Od+zx1N9YP3wMVV16bnf37IVz6fHOC1R17Erg3Iso\ncjusWYeIiIg0KwVzREREREREREREWrlgOG5JncIZUwAoHbxtMMflsNGtONOS47QGhdkeNmZ7WFsW\n5rupfj77KIvvp/pJJAxsthR7jq5m2KgAixe4mfaNn88/zuLzj7OwO5LsOTLK746EQw+N07592+k4\nk0rBdde5icUMbrqpBs/2myKJiEg95Wd5yPG72BSwZjRgNDuX6ZfdxOgbL2LPuybwyQMvkrLXEbhJ\nJBj24E0YySSzLr2Bbp3yLDm+iIiIND8Fc0RERERERERERFq5gAVjrAAKZk4h7nJT0WfQNtvyMt11\n3KPtmjPH5PkX2vHyyzaqKms/Bu3ao4Z9D6pkzH5VZGbXzq/a75BKzrp4A8sWuZg2OYPp32Tw9Zdu\nvv4Srr4aBg1KcMghcQ49NE7//kmMVtxI6L//tTFpkp3f/CbO2LHWhLlERAS6d8hi+oJSrIpqrt37\nAJYd/Hu6fvQGfZ//Jz/86eJt9un2wavkLpjNyv0Oxzf2YBz21j1GUkRERLavXmfxmTNncsopp9S5\nLRwOc/zxx7NkyZId3mfx4sWccMIJHH/88UyYMIF4XG8MRURERERERERE6iNQk34wx7WpnOxlC9nY\nfyhJp3Ob7btCMKe83OCxxxzsv7+X/ff38cTjLmymydjfV3DXI8u48x/LGfv7TVtCOT8xDOjWK8Kx\nf9rIa29VMH16gNtvr2GffeLMnWty110u9t/fx7BhPq65xsVnn9mItrIpUZFIbbccmy3FrbdGWnWA\nSESkrfF7HLTL9Vpac8b51xAsbE/f5x8lZ8Hsrba5NpUz4Kn7iXl9LLz4zxTnt83xiiIiIlJrp8Gc\nxx9/nOuuu45IZNsWfbNnz+akk05i1apVO73Pfffdx/jx43nxxRcB+PTTT9Ndu4iIiIiIiIiIyG4h\naEHHnIJZUwEoG7TtGCubYZCdsW1Ypy2IxeDDD22cdpqbgQN9XHedm/nzTQ49NMbTT4eZPTvIn68L\n0qX7zkeQuOw22ud76dQpxZlnxnj11TDz5wd47LEwRx8do6rKYOJEJ8ce66VvXz9XXuli3rzW0cHg\n0UedLF9ucuaZMfr0Sbb0ckREdjld22diM61LPcZ9GXx7xe2YyQR73jUBM1KzZduAiffirK5kzqmX\n0nFAT0ylLUVERNq0nb5rLCkp4cEHH6xzWzQa5eGHH6Zbt247vc+DDz7IiBEjiEajlJWV4ff701i2\niIiIiIiIiIjI7iGRTBKOpN99unDGFABKB28bzMnOqO0s09ZMmmRj8GAfp5zi5f33HfTsmeSvf61h\n5swgzzxTw9ixcZxO6Facicdp32m9ToX+bf4cMjNh3Lg4//xnDfPmBXjttRDnnBMlIyPFv/7lZN99\nffz+9x7eecdOSzUJX7/e4L77nOTlJbnyyp0HkEREpOGcDhudizIsrVk2eCSLxp1C5qqlDHjyfgDy\nZ0+j60dvsKl7XypOOI28rLbf0U5ERGR3t9N3o4cccgirV6+uc9uwYcPqfR+bzcaaNWs4/fTT8fv9\n9OnTp14LLCiw9kWOiIiIiIjI9uj9h4iItEabqyP4/elflGs3eypxr5/4kGFk2Lf+WLBnl7w2dx78\n+ms4/XRIpeCSS+C002DwYBuGYatz/9FeF1N/WE8qVXc9l9PGwD5F2Gw7DigdfXTtTzwO77wDDz0E\nkybZ+eorOx07wnnnwdlnQ2Fhmg+wAcaPh1AI/vY3gx492tbfo4hIW5Kb5ycQtSYw+5Nll1xD++++\notcbz1C574H0efhWABZMuJU9h3Umw9s2O9qJiIjIz3b+NRELdejQgY8++ohXXnmFO+64gzvvvHOn\n9ykrq26GlYmIiIiIyO6uoCBD7z9ERKRVWlcepDpQs/Mdd8BTth7fymWsHflbqmriwNYXFI14ok2d\nB+fNMznqKC/RKDz7bJgDD0wAsHHjju+X5bGzqjRQ57ai4iwqKoINWseYMbU/CxaYPPWUg5decnDd\ndQY335ziyCPjnHlmlGHDkjTlBJIpU2w895yXgQMTHHlkiLKypjuWiIhAfoaTH8rrPpc0jsHkK25n\n/8tOZOiVZ2KLxVh62B9JDB1OTTBCTVCd0ERERNqCHX3Zpdn605533nksX74cAJ/Ph9kGW+OKiIiI\niIiIiIg0t0A4lnaNgpnbH2OV4XHgctbdZaY1WrXK4LjjPFRWGvz97zVbQjn10bVdJn63Y5vbXXYb\n7fO9jV5T795J7rgjwqxZAW6/vYbOnZO89pqDsWN9HHywlxdftBMON7r8diUScO21LgBuvTWCre38\nNYqItFmF2R6yfNZ2sdnUZyDzTzgHWyxGJDObeWf9H13aqQOaiIjIrqLBHXPeeecdQqEQxx13XIPu\nd8455zBhwgQcDgcej4dbbrmloYcWERERERERERHZ7VgRzCmcsf1gTm5m+mOymsvGjQbHHutl/XqT\nm26q4dhjGzZKxDQN+nTO4buFZSR/MdOqY6EfmwVfJMzIgDPPjHHGGTG++MLGxIkOPvzQziWXeLjx\nxiQnnhjjtNNilJRsZ55WAz3/vINZs2z84Q8xRo6sf0BJRETS071DFt8ttLZF2Q8nnoeRTLJ+2N60\n69UJp0NpSxERkV2FkUptb6py69CWWuiKiIiIiEjbpVFWIiLSWn05ax3xZLLxBVIpxp5yAPZwiLdf\n+Rp+FUAZ2quATK+13/xvCoEAHH20lxkzbFx8cYS//CXa6For1lezbH0VAE67ych+RZYEc+qyerXB\nv/7l4LnnHJSXmxhGikMOifPHP8bZf/84Pl/j6lZWwqhRPsJhg8mTg7Rr16o/5hUR2eXMW7GJDZtC\nltd1O23s2acI02zCOYgiIiJiuVYxykpEREREREREREQaJhyJpxfKAXzrV+MrXUfZoJHbhHJcdlub\nCOVEInDqqR5mzLBx4olRrruu8aEcgJIi/5bH3akwo8lCOQAdO6a49too338f5MEHwwwenOQ//3Fw\n5pke+vb186c/uXnxRTubNjWs7t13uygvNxk/PqpQjohIC+jWPhObYX14pltxlkI5IiIiuxgFc0RE\nRERERERERFqpoCVjrCYD2xtj5Uq7flNLJODCC9188YWdQw+Ncc89EdK9DmoYBn1KcnA7bRTne61Z\n6E643XDccXE+/DDEJ58EGT8+QufOtSGdSy7x0K+fn2OO8fDkkw7Wr9/xA5w/32TiRAdduiQ599z0\nQkoiItI4LqeNTkV+S2u2z/VSmO2xtKaIiIi0PHtLL0BERERERERERETqFqyJp12jcMYUAEoHj9pm\nW16mO+36TSmVgj//2cXbbzsYNSrOo4/WYLfoE02v287QngVN2i1newYMSDJgQJQJE6IsXmzw/vsO\n3n/fzhdf1P5MmADDhiUYOzbO4YfH6Nbt5444qRRce62LRMLgllvCuFp/tkpEZJfVqdDPuvIQkVgi\nrTpel52eHbPJydCTuoiIyK7ISKVSrbrPaVlZdUsvQUREREREdgMFBRl6/yEiIq3O3GUVlFWGG18g\nleLI4/chZcC7L3zOL1vNmIbB6AHtWiSYUl933+3k7rtd9OuX4K23QmRltfSKmtbatQYffGDn/fft\nfP21jUSi9u+rb98Ehx0W5/DD46xYYXLGGR723z/OCy+E0+4eJCIi6dlQEWLeygbOI/yRzTDo3C6D\njoV+TD2hi4iItGkFBRnb3aZgjoiIiIiICArmiIhI6zTlhw2Eo43vmpOxYjGHnn0kK/Y7gqnX3L3V\nttwMNwO756W7xCbz5JMOJkxwU1KS5L33QhQVteqPMS1XUQEffWTnvfccfPaZjUik9oKtaaYwTfj8\n8yA9euxefyYiIq3V9AVlVIcbNlowP8tNjw5ZuJ0abiEiIrIr2FEwR2d7ERERERERERGRViiRTKYV\nygEonPnTGKuR22zLy2q9Y6zeesvONde4yM9P8vLLu18oByA3F44/Ps7xx8cJBGDSpNpOOp99ZuPs\ns2MK5YiItCI9OmTy/eKN9drX7bTRs0N2qz4Pi4iIiLUUzBEREREREREREWmFguH0QjkAhTN+CuaM\n2mZbXqYr7fpN4X//s3HBBW58PnjppTDduimA4vfDUUfFOeqo9P9NiIiI9bL8LgqyPZRt3v74SdMw\n6FTop6TI36rHSIqIiIj1FMwRERERERERERFphQLhWHoFkkkKZ04lWNSBUPuOW23yux2tcnTG99+b\nnHqqB8OAZ58NM2BAsqWXJCIiUi/d2mdSXllDMrVtoDQ3w0WPDtl43a3v3CsiIiJNT68ARERERERE\nREREWqF0gznZS+fjrK5kzd4HbLOtNY7PWLzY4MQTPdTUwBNP1DB6dKKllyQiIlJvHpedjgV+VpZW\nb7nN5bDRvUMWhdmeFlyZiIiItDQFc0RERERERERERFqhYJrBnIIZUwEoHTRym215ma0rmLNuncGx\nx3opLze5994ajjhCI5tERKTtKSnys74iSDyRokO+j87tMrDbNLZKRERkd6dgjoiIiIiIiIiISCsU\nqEkvmFM4czIApYO3DuY47SaZPmdata20eTMcd5yH1atNrrkmwimnpDnCS0REpIXYbSa9O+Xgctrw\nexwtvRwRERFpJRTMERERERERERERaWXCkTiJZKrR9zfiMQpmfUtVx67U5Bdtta21dcu56SYX8+fb\nOPvsKJddFm3p5YiIiKSlNY6LFBERkZal/nkiIiIiIiIiIiKtTLpjrHIWzcURDlE2eM9ttrWmYM6a\nNQYvv+ygR48EN98cwTBaekUiIiIiIiIi1lIwR0REREREREREpJVJe4zVjCkAlA4etdXtpmGQneFK\nq7aVHnnESSxmcMklUWy2ll6NiIiIiIiIiPUUzBEREREREREREWllAml2zNkSzBm4dcecbL8Tu611\nfCS4caPBs8866NgxyTHHxFt6OSIiIiIiIiJNonW8CxcREREREREREZEt0gnmmNEo+XO/Y3O33kSz\nc7fa1prGWD32mINw2ODCC6M4HC29GhEREREREZGmYW/pBYiIiIiIiIiIiOzukskU1aEomwNRKoMR\naqKJRtfKnT8DWzRC6aCR22zLy2odwZyqKpg40Ul+fpITT0yvO5CIiIiIiIhIa6ZgjoiIiIiIiIiI\nSDNLJJNUBWNsDkSoDESpCkVJplKW1N4yxmrw1sEcv9uB29k6Pg586ikn1dUGl14axeNp6dWIiIiI\niIiINJ3W8U5cRERERERERERkFxZPJKkMRNkcrA3iBMIxy4I4v1Y4Ywop02TjgOFb3Z7bSsZYhULw\n6KMOMjNTnH56tKWXIyIiIiIiItKkFMwRERERERERERGxWCqVoryyZstoqkA4RtPEcLZmC4fImz+L\nTT37E/NnbrWttYyxev55Bxs3mowfHyEjo6VXIyIiIiIiItK0FMwRERERERERERGxWCAcY87yimY/\nbv7c7zHjsW3GWDlsJpleR7Ov59eiUXj4YSdeb4qzz4619HJEREREREREmpzZ0gsQERERERERERHZ\n1VSHWiZ0UjhzMgClg0ZtdXtephvDMFpiSVt57TU7a9aYnHJKjLy85ughJCIiIiIiItKyFMwRERER\nERERERGxWHUo2iLHbfftlyTtDjb2H7LV7a1hjFUiAQ884MLhSHH++S3z5yMiIiIiIiLS3BTMERER\nERERERERsVgg3PwdczKXLyJ76XzWDx9DwuPdcrtpGORkuJp9Pb/23nt2liwxOe64GMXF6pYjIiIi\nIiIiuwcFc0RERERERERERCyUTKUI1sSb/bglk94FYMUBR251e7bfid3Wsh8DplJw//1OTDPFRRep\nW46IiIiIiIjsPhTMERERERERERERsVAgHCOZauaOMMkkJZ++S8zrY+2o/bbalJvZ8mOsPvnExty5\nNsaNi9Otm7rliIiIiIiIyO5DwRwRERERERERERELBULNP8Yqf+53+DasZfWYg0m6tg7i5LVwMKe2\nW07tKK2LL1a3HBEREREREdm9KJgjIiIiIiIiIiJioepQ84dPfhpjtXL/I7a63ed24HHZm309vzR5\nso1vv7VxyCFx+vdPtuhaRERERERERJqbgjkiIiIiIiIiIiIWCoSbt2OOEYvS6fP/EM4toHTQyK22\ntXS3HIC//c0JwKWXRlp4JSIiIiIiIiLNT8EcERERERERERERiySTKYI18WY9Zvtvv8BZXcnK/Q4H\nm22rbXmZrmZdy6/NnGny6ad2xoyJM3y4uuWIiIiIiIjI7kfBHBEREREREREREYsEamIkU6lmPWbJ\nJ+8AsPKAI7e63WEzyfQ5m3Utv/b3v//ULef/2bvvMKnqs//jnzN1e1+WulRBOkoHC2IUCyomKtZo\nNBoxah6fGI3tieZJniQaTeyJXcHYor8oiB1BsYBI36VJXWDZwtbp5ZzfH6sossDulN1F3q/rmmuW\nOed8v/dgrjA785n7bvvxXgAAAAAAdAQEcwAAAAAAAIAEafS17Rgrh7dRXT//UA3FfVXXd+Bex/Ky\nUmQYRpvW813r19v05psOHX10VMcdF223OgAAAAAAaE8EcwAAAAAAAIAE8fjatjNM94/flT0c0tYT\nz5C+F8LJz05p01q+74EHXLIsQ7/6Vej7pQEAAAAAcNggmAMAAAAAAAAkSFt3zCmeN0eStO2EqXs9\nbjMM5WW627SW79q2zdCrrzp05JFRTZkSabc6AAAAAABobwRzAAAAAAAAgAQwTUu+YNuFUFKqK9Rp\nxSJVDRkpX+duex3LSnfJYW+/t/4eftilaNTQ9deHZOMdSAAAAADAYYxfiwEAAAAAAIAE8ATCMi2r\nzfYr/vBNGZalbZPP2OdYQVb7jbGqqDD0r385VVxsato0uuUAAAAAAA5vBHMAAAAAAACABGjrMVY9\nP5gt0+FU2XFT9jmWn91+wZx//tOpYNDQddeF5HC0WxkAAAAAAHQIBHMAAAAAAACABPD4Qm22V9bm\n9crZtFblo49TOCtnr2NpbodS3e2TiKmrk55+2qWiIlPTp7dtUAkAAAAAgI6IYA4AAAAAAACQAG3Z\nMad43hxJ0rYTp+5zrD275Tz5pEter6Frrgkppf3KAAAAAACgwyCYAwAAAAAAAMTJNC35gpG22kzF\nH85ROC1DO8dO2udwflb7JGI8Humxx1zKzbV0ySV0ywEAAAAAQCKYAwAAAAAAAMTN4w/LtKw22atg\n9ZdKryzX9mNPluneO4STmepSToa7Ter4vlmznKqtNXTllSFlZLRLCQAAAAAAdDgEcwAAAAAAAIA4\nNfrbrkNMzw9mS5K2Tj5jn2NHdM9uszq+KxiUHnnEpfR0S1dcEWqXGgAAAAAA6IgI5gAAAAAAAABx\n8vjaJoxiC4XU/eN35M/vpKpho/c61jk3TVnprjap4/teftmpXbtsuuyysHJz26UEAAAAAAA6JII5\nAAAAAAAAQJwafW3TMafz4gVyeRq07YSpkt2+53GHzaY+XbPapIbmvPCCUzabpauvplsOAAAAAADf\nRTAHAAAAAAAAiINpWvIFI22yV895cyRJW0+cuvfjnTPlctqbuyTpdu40tGSJXRMmRFVUZLVLDQAA\nAAAAdFQEcwAAAAAAAIA4ePxhmVbyAylOT4O6LPpQ9T37qb7PkXseT3M71K0wPen778/cuQ5J0tSp\nbRNOAgAAAADgUEIwBwAAAAAAAIhDo79txlh1+/hd2cNhbZt8hmQYex7v1y1btu/8ua3NmeOQYVg6\n/XSCOQAAAAAAfB/BHAAAAAAAACAOHl+oTfbpOW+2JGnb5NP3PFaQnaK8rJQ22b85lZWGPvvMrtGj\nGWMFAAAAAEBzCOYAAAAAAAAAcWj0Jb9jTmpluQpXfqGqISPlK+omSbIZhvp2zU763gfy1lsOWZah\nM86gWw4AAAAAAM0hmAMAAAAAAADEyDQt+YLJD6UUz39ThmVp64ln7nmsR6cMpbodSd/7QObMadqf\nMVYAAAAAADSPYA4AAAAAAAAQI48/LNNK/gin4nlzZDqc2n7syZKkFKddxUUZSd/3QGpqpIUL7Trq\nqKi6d2eMFQAAAAAAzSGYAwAAAAAAAMSo0RdK+h5Zm9crZ9M6lY85TuGsHElSn27Zstva9629d95x\nKBo1NHUq3XIAAAAAANgfgjkAAAAAAABAjDz+cNL36DlvtiTtGWOVk+FWp5zUpO97MHPmOCVJU6cm\n/+8AAAAAAIBDFcEcAAAAAAAAIEaNviSHUkxTxfPeVCg9U+Vjj5chqV+37OTu2QINDdKCBXYNHhxV\n796MsQIAAAAAYH8I5gAAAAAAAAAxiJqmvIHkBnMKVi9RWlW5th97skyXW90KMpSR6kzqni3x7rsO\nhUKMsQIAAAAA4GAI5gAAAAAAAAAx8PojSnavmJ4fNI2x2jb5DDntNvXqkpnkHVtmzhyHJOmMMwjm\nAAAAAABwIARzAAAAAAAAgBg0+kJJXd8WCqr7R+/IV9BZVcNGq3eXLDns7f92nscjzZvnUP/+UfXv\nb7Z3OQAAAAAAdGjt/5s8AAAAAAAAcAhq9CV3jFWXxQvk8jZq2wmnKTPdrS75aUndr6XmzXMoEGCM\nFQAAAAAALUEwBwAAAAAAAIiBx5/cYE7xN2OsTjxT/brnyNPyBdUAACAASURBVDCMpO7XUt+MsSKY\nAwAAAADAwRHMAQAAAAAAAFopapryBpIXzHE21qvL4gWq73WEUkYepex0V9L2ag2/X3rvPYd69TI1\neDBjrAAAAAAAOBiCOQAAAAAAAEArefwRWUlcv/vH78geDqvsR2eqT9esJO7UOvPnO+T1Gpo6NawO\n0sAHAAAAAIAOjWAOAAAAAAAA0EqNvlBS1y+eN0eSZJ43XW6nPal7tcY3Y6zOOIMxVgAAAAAAtATB\nHAAAAAAAAKCVPL7kjbFKrdypTiu/0O4RY1Q0fEDS9mmtUEh65x2Hunc3NWIEY6wAAAAAAGgJgjkA\nAAAAAABAK3n8yQvmFH/4piQpfM502TrQvKiPP7arocHQ6adHGGMFAAAAAEALEcwBAAAAAAAAWiFq\nmvIGkhfM6TH/LZlOlxznnZO0PWLxzRir009njBUAAAAAAC1FMAcAAAAAAABoBY8/IitJazs9Dcrd\nuEah0WNl5eQmaZfWi0Skt95yqKjI1Jgx0fYuBwAAAACAQwbBHAAAAAAAAKAVGn2hpK2dX7pckhQd\nOzZpe8Tis8/sqqmx6bTTIrLxjiIAAAAAAC3maO8CAAAAAAAAgESxLEuhsKlAOKpAKKJIxFS3woyE\n7uHxJW+MVX7pMklSZMy4pO0Ri9mzm95GnDqVMVYAAAAAALQGwRwAAAAAAAAcMkzLUjAUVSAUVfDr\n8E0wFJU/FFXw68dMa+9BUy6nXYU5qQmrodGfzGBOU8ec8MjRSdujtUxTmjvXofx8U+PHM8YKAAAA\nAIDWIJgDAAAAAACADm1HtVeVtT4FQlGFwlFZB79kL5vLG5SfnSKbYcRdS9Q05QskJ5hjRCPKX7tS\nof5HysrJTcoesVi82K7KSpsuvjgkB+8mAgAAAADQKkyEBgAAAAAAQIdVWefXhu11qveGFIwhlCNJ\nvmBE5dXehNTj8YVjqqElsjetkyPgU3TM2CTtEJs5cxhjBQAAAABArAjmAAAAAAAAoEOq94a0dmtt\nzNfb/T6N/dON6j5/rrZWNCoSNeOuKZljrApKlkmSwmPGJW2P1rIs6c03HcrOtnTMMYyxAgAAAACg\ntQjmAAAAAAAAoMPxByNavWm3TCv2/jRDn7pPxR++qZEP/l5WXZ3KKj1x19XoS14wJ7+0KZgT6UAd\nc5Yts2nHDpumTInI5WrvagAAAAAAOPQQzAEAAAAAAECHEo6YWrVpt8JxdLjptPRTHfH684o6XXI1\n1qv/K09pe6VHwXB8XV88Se6YE8nLV7R336Tt0VqzZzslSVOnJu95AwAAAADwQ0YwBwAAAAAAAB2G\naVpavXm3fMFIzGs4PQ0a/dfbZNodWvCXp+TPK1T/156TY3eltpQ3xLxu1DTlCyQnoJJaWa60qnKF\nR4+VDCMpe7SWZUlz5jiUnm5p0iTGWAEAAAAAEAuCOQAAAAAAAOgw1m2rVb03FNcaIx75o9Kqd6n0\noqu1e8hIlV78SzmCfg361z+0q8YXc9cbjy+s2AdrHdg3Y6yiY8cnaYfWW73apq1bbTr55IhSUtq7\nGgAAAAAADk0EcwAAAAAAANAhbC5vUEWdP641ui18V73ef0M1/Ydo7flXNa17yo/V2LVYfea+orTy\nMm2OsWtOYzLHWJUul6SmjjkdxJw5DknS1Kmxdy8CAAAAAOBwRzAHAAAAAAAA7a58t1dbKxrjWsNd\nW62R99+pqMutxTf9WZbDKUmyHE6VXHq9bJGwBj/3oHY3BFTbGGz1+o2+5AVz8kuWynS6FBk+Iml7\ntNacOQ6lplqaPJlgDgAAAAAAsSKYAwAAAAAAgHZV2xjUhu318S1iWRr59zvlrq/VqstvUGNx370O\nlx1/qmr7DlTxvDnK3rROm3a2fr9GX3wjtvbH7vcpZ+NaBYcOV0eZGbVunU0bNtg1eXJE6entXQ0A\nAAAAAIcugjkAAAAAAABoNx5/WCWba2RaVlzr9HzvP+r22QeqHD5GG6Zdsu8JNptWXX6DDMvSkKf/\nrkZ/WBW1vhavH4ma8geT0zkmb90q2cyozLHjkrJ+LGbPZowVAAAAAACJQDAHAAAAAAAA7SIYjmr1\npt2KmGZc66RV7NBRj/yfwmnp+uLG/5Nszb/lVTHqGFUOG62ui+Yrf/WX2lzeINNsWSDI6w8rvujQ\n/uWXLpMkRcZ0nGDOnDkOuVyWTj6ZYA4AAAAAAPEgmAMAAAAAAIA2FzVNrd60W4FwNL6FTFOj/3qb\nnD6Pls+4Vb6ibvs/1zC06vIbJEnDnrxPgWBEO6q9Ldqm0ReOr84DKChZKkkKjx6btD1aY9MmQ6Wl\ndk2aFFVmZntXAwAAAADAoY1gDgAAAAAAANqUZVlas6VWjf74wy79Xn9enVYs0s5xJ2jLyWcf9Pya\nQUdpx/jJKihZqs6LF2hbRaPCkYN37ElErc0yTeWvWaFgcS9ZnTolZ49WmjPHKUmaOjV5YSQAAAAA\nAA4XBHMAAAAAAADQpr7aUa/qhkDc62Ru26RhT96rYHaultzwe8kwWnTd6st+JcswNPTpvyscjmhb\nReNBr2n0heItt1lZ2zbK5WnoMN1ypKYxVg6HpSlTGGMFAAAAAEC8WhTMWbFihS655JJmj/n9fp1/\n/vnauHHjAa9Zs2aNLrzwQl1yySW64oorVF1dHUfZAAAAAAAAOBRtr/S0eHzUgRjRiEbfc4vsoaC+\nvP5OBXMLWnxtQ+/+2nrimcrZtE495s/VjmqvAqH9h1AiUVP+YHJCKvmlyyRJ1rjxSVm/tcrKDC1f\nbtcxx0SVm9ve1QAAAAAAcOg7aDDn8ccf1+23365gMLjPsVWrVumiiy5SWVnZQa/54x//qDvuuEMz\nZ87USSedpMcffzwB5QMAAAAAAOBQUV3n18ad9QlZ68gXH1f+upXaeuIZ2nHsya2+vuSn18l0ODXk\n2QdkhYLavLNhv+d6/WFZ8RR7AAUlTcGc8JhxSdqhdd580yFJmjqVbjkAAAAAACTCQYM5xcXFevDB\nB5s9FgqF9PDDD6tPnz4Hvea+++7TwIEDJUnRaFRutzvWmgEAAAAAAHCIafSFtGZrbUICLjkbSjRo\n1iPyFRRp2S9vj2kNX+du2jj1fGWUl6nPW/9WRZ1/v+OqGn3heMo9oPzSZYpkZik64Mik7dEas2c7\nZbNZOvVUgjkAAAAAACSC42AnTJkyRdu3b2/22MiRI1t8TadOnSRJS5cu1axZs/T888+3qMDCwswW\nnQcAAAAA8eL3DwBInk2ry5WWHv8XtWzBoMb99VbZohGV3H6PUjp3UkqMa5X9/Hr1fudVDf7Xo9p9\n9vmq9obVp2f+PuftrAsoMyPWXfbPVVOtzB1bFTzxJBUWZSd8/dbauVP64gvp+OOlQYMy2rscAAAA\nAAB+EA4azEmkuXPn6tFHH9Vjjz2mvLy8Fl1TVdWY5KoAAAAAoCmUw+8fAJActY1BbStPzAirYY/d\no8zN6/XVGRdoy6DRkicQ+2KuDK37yWUaPOsRdZ71uNZe8Atlu+3Ky9o7hLO9vF6+YOI7yHRdskiS\nFDx6tBo6wL9Bzz3nlJSiU04JqKoqeV2CAAAAAAD4oTnQlz4POsoqUV5//XXNmjVLM2fOVI8ePdpq\nWwAAAAAAALSzLbsaErJOwaol6v/q02rsWqyVP78xIWuu/8nPFMzK0YCXn5SzoU6bdjbIsr4duBWJ\nmvInIZQjSfklSyVJ5rjxSVm/NYJB6amnnDIMS6edxhgrAAAAAAASpdXBnNmzZ+ull15q1TXRaFR/\n/OMf5fV6dd111+mSSy7RAw880NqtAQAAAAAAcIipbQyq3huKex2Hz6vR99wiGYYW3/RnRVPTElCd\nFEnP0JrzfyGXt1FHvvyEPIGwdtX49hz3+MOyDnB9PApKl8uy2xU+qvlx8W3p7393acMGuy6/PKwu\nXZL1jAEAAAAAOPwY1ne/AtQB0UoeAAAAQFtglBUAJMfyDdWq8wbjXufov/9Ofee+rDXnX6XVl9+Q\ngMq+ZQsFdeplp8jdUKu5z7wjq0tXjRnYSXabTdsrPfpqZ2LGcO29Z0jTzh6t4BED5J3/ScLXb421\na2068cQ0FRZaWrjQq4yMdi0HAAAAAIBDTocYZQUAAAAAAIDDS21jMCGhnM6LF6jv3JdV12eASi/+\nZQIq25vpcqvkp9fKHgpq0KxHFAxHtb3SK0lq9MXf7ac5OV+VyB4OKTx6bFLWb6loVLrhhhSFw4bu\nvjtAKAcAAAAAgAQjmAMAAAAAAICk2Lor/k5kTk+DRt13h0yHU4tv+otMlysBle1r60lnqaFHH/V+\n+1VlbN+sskqPwpGoGv3hpOxXULJMkmSNH5+U9VvqmWec+vJLu6ZNC+vkk6PtWgsAAAAAAD9EBHMA\nAAAAAACQcInqltP/1WeUWlOl0guvVn2fAQmorHmW3aHVP/uVbGZUQ559QBHT1MYdDfIFI0nZL7+0\nKZgTHTMuKeu3xI4dhv7wB7dyciz94Q/x/7cCAAAAAAD7IpgDAAAAAACAhEtEtxxXfa2OeO1ZBXLy\ntf4nl8Vf1EHsmHiSagYMVY8FbytnQ4l21fqSs5FlqaBkmYJFXWR275GcPQ5egm6+OUVer6G77gqo\nUyerXeoAAAAAAOCHjmAOAAAAAAAAEqrOk5huOQNeeVJOv09rLrhK0dS0BFR2EIahVZffIEka+vTf\nk7ZNenmZUup2K3D06KTtcTCvv+7Qu+86dOyxEZ1/fnK6AgEAAAAAAMnR3gUAAAAAAADgh2VLArrl\nuGuq1O/15+UrKNKm06cnoKqWqTxqvCqOGq/OSxaqcPkiVY0Y2+JrIxGpdGWalnyWqS8/T1fvI4K6\n4bYdstv3Pq+gZKkkKTpufCJLb7HaWunWW91KSbF0zz0BGUa7lAEAAAAAwGGBYA4AAAAAAAASps4T\nVJ0n/m45A198XI5gQCt+cbNMlzsBlbXcqstvUNF1n2noU/dp3v0v6kDJFb/PpuVL0vXFpxlatjhD\nXk9TCsdms1RV4dILTxXq4iur9romv3S5JMkY3z7BnDvvTFF1tU133BFUnz6MsAIAAAAAIJkI5gAA\nAAAAACBhEtEtJ7WyXH3efFHeom7aPOXHCaiqdWoHDFXZsVPU4+N31PXTD7Rz4o/2Ol5XY9eSzzL0\nxWeZWrUsTZFw07T4/MKwjj2xXqMneNSrb0B3/FdPvfFKvnr1C+iYE779eykoWapoSqoig4e26fOS\npI8+suuFF5waMiSqGTNCbb4/AAAAAACHG4I5AAAAAAAASIiEdct54Z+yh8MqvfgaWU5XAiprvdWX\n/UrdPnlfQ565XzvHT9bOHSla/GmGvvg0U1+tTZFlNXXR6dknoNETPBo9oVG9+gb3aq5z0107dMt1\nPfWP+7qoW4+QevcLyulpUNbWr+QZNU5yOtv0Ofl80o03pshms/S3vwXk4J1BAAAAAACSjl+/AQAA\nAAAAkBCJ6JaTVr5dvd9+VY3demrrj85MQFWx8fTorQ/GztAHn3XTCxd11rbdeZIkw2Zp0DCfRo33\naPR4jzp1Ce93ja49Qrru5nLd/bvuuufO7vrzQ1t0xIYVMixLodHj2uqp7PHXv7q0ZYtN11wT0vDh\nZpvvDwAAAADA4YhgDgAAAAAAAOJWn6BuOYOef0S2aEQll1wry95+b11Vljt18ZK/KyS7Umv8GjOh\nQaMmeHT0WK+ysqMtXmfUeI/O+2mVXn6uUH/7Y1c9P2iFJMmYMD5ZpTdr1SqbHn3UpeJiUzfdFP9/\nJwAAAAAA0DK29i4AAAAAAAAAh77NCeiWk1G2Wb3ef131Pfup7PhTE1BV7P71dKFCYbtuOeJpVVv5\n+tuJz2jSyQ2tCuV848cX7taYiY0qWZGuh987VpJkjhmb6JL3KxKRbrghRdGoob/+NaC0tDbbGgAA\nAACAwx7BHAAAAAAAAMQlUd1yBs96WIZpquTS6yS7PQGVxeartSn6dH6W+vb3a+JvuyjVFtSgWQ9L\nZmzjn2w26Ze/KVf34oAer56uxwt/IysnN8FV798//+nUypV2TZ8e1qRJrQ8WAQAAAACA2BHMAQAA\nAAAAQFy2JKBbTtbm9eoxf65q+w3UjoknJaCq2FiWNPOxTpKkS66qlK9HL22dPFU5m9er2yfvx7xu\napqp//3ZfOWoVtft/oOWL2+bt+W2bDF0991uFRSYuuuuQJvsCQAAAAAAvkUwBwAAAAAAADGr9wRV\nm4huOTMfkmFZWn3p9ZJhJKCy2HzxaYbWrE7TqPGNGjTML0lac+HVsmw2DXr+kZi75kjSsOpP9IIu\nUMhy6rLLUlVZmdznaVnSjTemyO839Ic/BJWXl9TtAAAAAABAMwjmAAAAAAAAIGaJ6JaTs75E3Re+\np91HDtOuMccnoKrYRCLS8090ks1m6eKfV+153NO9t7adcLpyNq1Tt09j75pTULpMp+gd3X51uXbu\ntOmKK1IUCiWi8ua99JJDH33k0IknRnT22ZHkbQQAAAAAAPaLYA4AAAAAAABikqhuOUOee0CStPqy\nX7Vrt5z35+aofIdLPzq9Tl177J2YKb1wRlPXnFmxd83JL1mqUE6+rv1dhs48M6xFixy64w53Ikrf\nR1WVod/9LkVpaZbuvjvQnn+tAAAAAAAc1gjmAAAAAAAAICZbK+LvlpNXukxdFn+kymGjVXnU+ARU\nFRuf16ZXZhYoNS2qcy+u3ue4p0dvbZvU1DWn66cftHr91KpdSq8sl2fEKBk2Q/ffH9DAgVE9/bRL\ns2Y5E/EU9nLHHW7V1hq67bagevSwEr4+AAAAAABoGYI5AAAAAAAAaLV6b0g1jQnolvNsU7eckkuv\nb9duOf95MV+N9Q5Nm75b2bnRZs9Zc+HVsmw2DY6ha05+6TJJUnj0GElSerr07LN+5eZa+u1v3fri\ni8S9Tff++3a99ppTI0dGdfnl4YStCwAAAAAAWo9gDgAAAAAAAFpt666GuNcoXLFYRcs+166RE1U9\ndFQCqopNdaVDb/6/XOUXhHX6j2v3e15jcZ+vu+asVdfP5rVqj2+COcbECXse69XL0mOP+RWJSJdf\nnqpdu+IPJnk80m9+kyKHw9K99wZkt8e9JAAAAAAAiAPBHAAAAAAAALRKQrrlWJYGf90tZ/Wl1yeg\nqti9+EyhwiGbzv9ZlVzuA499WnPh1bIMQ4NmPSJZLR8RVVCyTFGnU8bRI/d6/Pjjo/qf/wmqosKm\nn/0sVcEY/lojEWnFCpsee8ypCy9M1Y4dNl13XUiDBrWuqw8AAAAAAEg8R3sXAAAAAAAAgENLIrrl\nFH35iQpXf6md405Q7ZHDElBVbDZtcOuj97PVq29Ax5548Of1Tdecnh/OUddPP9DOiT866DV2v085\nX61R4+DhUkrKPsdnzAhr5cqm8VO33OLWvfcGDzjVy+eTli61a9Eiuz7/3K4lS+zyer+9YPToqG64\nIXTQugAAAAAAQPIRzAEAAAAAAECLNSSoW86QPd1yrktAVTGXoZmPdZIkXXJVpWwt7C295qKrVTz/\nTQ2a9Yh2TjhRB0zRSMpbv1o2M6rA0aObbV9tGNJ99wW0YYNNs2a5NGyYqcsuC+85XlMjLVrk0KJF\nTWGcFStsikS+3fOII6IaO/bbW8+e1sFKAgAAAAAAbYRgDgAAAAAAAFpsSwK65XT5/EPlrVulsmOn\nqL7vwARUFZtli9NVsiJdR43xaOhRvhZf11jcV2WTTlPxh2+q62fzmsI5B5BfukySZI6fsN+58mlp\n0jPP+HXyyWm69Va3vF5p0yabFi2ya/16+57z7HZLw4ebGjMmqnHjohozJqqCgpaP1AIAAAAAAG2L\nYA4AAAAAAABaJCHdckxTQ559UJZhqOSn1yamsBhEo9LMxzvJsFm6+OeVrb6+9KIZ6jF/rgbNelg7\nx08+YNecgpKlkiTHxAkHXLNHD0tPPBHQOeek6q67mkZepaVZOu64iMaObQriHH10VOnprS4XAAAA\nAAC0E4I5AAAAAAAAaJGtFY1xr9F94bvK2bRWWyefocae/RJQVWw+fDtbO7a5deKpderRK9Tq6xuL\n+6rs+FNVPH+uunz+ocrHT27+RNNU/poV8nYrloqKDrruxIlRzZrl18aNNo0ZE9XgwaaczlaXBwAA\nAAAAOogWTs4GAAAAAADA4czjD2t3QyC+RaJRDX7uIZk2u0ovuSYxhcXA77PppecK5U4xdd5Pq2Je\np/SiGbIMQ4NnPiRZzY+TyizbJFdjvbwjRrV43RNPjOqqq8IaMYJQDgAAAAAAhzqCOQAAAAAAADio\nsgR0yyn+8E1lbduoLSdPk6dbr/iLitEbr+Spvtahs87brdz8aMzrNPbsp7LjTlHuV2vU5fP5zZ5T\nULpMkhQePS7mfQAAAAAAwKGLYA4AAAAAAAAOyB+MqLLOH9caRiSswbMelulwas1FMxJUWevVVDs0\n+995ys0La+pPauJeb81BuubklzQFc4wJE+LeCwAAAAAAHHoI5gAAAAAAAOCAyio9an5QU8v1fO91\nZezcpk2nniNfUbcWX2czDBVkpSjFaY+zgiYvPVugUNCm6ZdWKyU13mclNfQ64uuuOaXNds0pKF2m\ncHqGnMOGxL0XAAAAAAA49DjauwAAAAAAAAB0XKFwVBU1vrjWsIVCGvT8I4o6XVpzwS9adE1OultF\neakqzEmVw9703bI6T1AVNT5V1QUUMc1W17F1k1vz381Wj14BTTq5vtXX78+ai2aox0dva9Csh1U+\nbpJkGJIkV12NMrdv0e6xx0k2vh8HAAAAAMDhiGAOAAAAAAAA9mtHtVfRZkY0tUa/12cpvbJc6398\nqQIFRfs9L83tUFFumoryUpXi2vdtq5wMt3Iy3OrX3dTu+oAqav2qbQzKbGF9s54olGUZuuTKKtkS\n04BHUlPXnO3HTVGPBW+ry6L5Kh93giQpf81ySZJ/1Bi5E7cdAAAAAAA4hBDMAQAAAAAAQLMiUVM7\nqrxxrZGyu1KDZj2sYGa2Si+8ep/jTrtNnXJTVZSbpqx0V4vWtNts6pSbpk65aQqFo6qs86uixqdG\nf3i/1yxfkq4VSzI07Givho+K7zk1p/TCGeqx4G0NmvmwysdOkgxDBSVLJUnW2HEJ3w8AAAAAABwa\nCOYAAAAAAACgWTurvTGNjPquoU/eJ6ffpy+v/53CWTmSJJthKD87RUW5qcrLSpHt69FPsXA57epe\nmKHuhRnyBsKqqPGrotanYDi65xwzKs16vFCGYeniKysVx3b71dC7v8qOO0U9PnpbnRcv0K6xk5Rf\nulyWzSbHuLGJ3xAAAAAAABwSCOYAAAAAAABgH6Zpxd0tJ690mXq9/7pq+w7UplPPVXa6S0W5aeqU\nmyqH3ZagSr+VnuJUn65O9e6SqTpPSBU1PlXV+/XhO1natjlFk06uU6++wYTv+43Si2aox0dva/DM\nh1V51ATlrVulhr5HypGTnbQ9AQAAAABAx0YwBwAAAAAAAPvYVeNTMBI9+In7Y5o66uE/SpKW/fI2\n9emeq+KizARVd2CGYSg3063cTLe6NmbrqmfT5XKbmn5pdVL3bejdX2XHTlGPj9/RwBf+IXs4JM+I\nUWrZgC4AAAAAAPBDlPivJgEAAAAHYFpWe5cAAAAOwrIslVV64lqj9zuvKm9DibaeMFU1Q0aqKDct\nQdW1zuOPpWh3tUPTL2pQfmEk6fuVXnyNJGngv/4hSQqPGZf0PQEAAAAAQMdFxxwAAAAkTTAcldcf\nlscfbroPROQPRmS3GcrJcCs7w6WcDLfSUxwyDKO9ywUAAF+rqvPLH4o9xOL0NGjoU39TJCVNK6+8\nUTkZbrld9gRW2DK7dxt68EGXCgpM3XmbTbvq07WjOr7xXAfT0Lu/th9zsrovfFeSZBs/Pqn7AQAA\nAACAjo1gDgAAAOJmWpZ8gci3AZyvb+GoKUmyLGlHmUsly9O1ZlWaAgGbXG5Tbrclt9tUSmpE2Vk2\nZWfalJdtV062TenpUmqqpdTUb+/T0y117WopJaWdnzAAAD9w2yri65YzaOZDctfXauXl/61AQZF6\n57VPt5wnnnDK5zN0661BZWYayszMkcth1+ZdDUndt/Tia9R94bvyFxTJ3a93UvcCAAAAAAAdG8Ec\nAAAAHJBlWYpELUWipqJm030kYsoXjMjrD8sbiMgXjOw1osqypF07nSpZnqnVK9JVujJNdTWJeemZ\nmWlp2rSwzjsvojFjoqLRDgAAiVXTEJAnEI75+qzN69Xv9X+psWuxNvz4UtkNQwU5bZ+q9XikJ590\nKS/P1EUXfft8enbOlNNh04btdUrWgM36PgP0xX//QY6iTupuY5I8AAAAAACHM4I5AAAAhyHTtLS7\nISB/MLJX2Cby9c/Rr4M44a/DOAdjWVLlLqdKlqdp9Yo0la5MU021c8/xnLyIJp5Qr8HDfRoy3Kec\nvIiCAVvTLWgoGLQpFDT2fSzwzTGbrKhDkZBDS79I1cyZLs2c6VLv3qamTw/rvPPC6t49WR+tAQBw\neImrW45lacSjf5LNjGr5jFtkulwqykmVvR3CKc8/71RdnaGbbgopPX3vY10L0uV02LRma+1e4eJE\n2nLKT9SjMCMpawMAAAAAgEMHwRwAAIDDSJ0nqIoan6rqAoqYZlxrVVc6tHp5mkpWpKtkRZqqK78N\n4mRlRzT++AYNHubT4OE+de0R2qezTUpqVFK01fv+d2aqdm8v1IsvOjV3rkN//rNbf/mLS8ccE9X0\n6WGdfnpknw/fAABAy9R7Q6rzBmO+vtvC91S0/HOVjzlOu8ZOkiR1bocxVqGQ9OijLqWlWbr88lCz\n5xTmpMpht6lkc03cr4v2JzPdlZR1AQAAAADAoYNgDgAAwA+cLxBRRa1PFbU+BUKtD8J8l6fRpvnv\nZOuDt3K0o8y95/GMzKjGHNOoIcO9Gjzcp+499w3iJEp1o1/9BtXr0Ucz1NgovfGGUy+95NDHHzfd\nbr7Z0plnRjR9eljjxkXF9AgAAFqurKIx5mvtAb+GsKtRCwAAIABJREFU//PPMh1OLZ9xiyTJ7bQr\nJ6PtwymvvebQzp02/eIXIeXl7f+83Ey3hvfL16pNuxWKJD6ck5XmPPhJAAAAAADgB82wrCT1602Q\nqqrY3xACAAA4XIUjUVXW+lVR61eDr/lvibfGlo1uvf1GrhbOy1IoaJPTZWr4yKYQzuDhPhX3DrZp\nAMZmGBreN1/ZGd+GgzZtMvTyy0698opTZWVNxRQXmzrvvKZRV716deiXvegACgsz+f0DwGHNGwjr\ni7WVMV8/6LmHNHjWw1o7/edadcWvJUk9OmWob9fsRJXYIqYpHXtsmjZvtumLL7zq1u3grwH8wYhW\nbtwtfyiSkBpSXQ51zktTz86ZCVkPAAAAAAB0bIWF+38PgGAOAADAD4RpWtrdEFBFjU81jUGZcb7M\ni4Slzz/O0jtv5GhdadMIiqIuIZ00tU4nTKlTZlZyRj60lNth19EDCuV22vd63DSlTz+166WXnJo9\n2yGfr6l1z/jxEZ19dkSTJkUI6aBZBHMAHO7WbK1VRa0vpmvTdu3QKT8/XaGMLL391FuKpDXNlRx9\nZCelp7Rt15i33nLo0ktTdf75YT3wQKDF1wXDUa3auFueQDimfZ12mwpzUlWUm7pXeBgAAAAAAPzw\nEcwBAAD4Aav3BFVR61dVnV/haPxhmd1VDr33Zo4+eCtH9bUOGYalEaO8mnJWrUaM8nao0VDZ6S4N\n71cg237mZnk80pw5Dr30klOffPLtFNeePU0dd1xEkyZFdcwxEeXmtlXF6MgI5gA4nAVCES1eUxlz\nsHf8769X94XvadHNd2vbiWdIkjJTnRo5oFMiyzwoy5JOOy1NX35p18KFXvXv37rXRpGoqdWbalTn\nDbbofJthKC/LraLcNOVnpchmS9IsTwAAAAAA0KERzAEAAEiylRt3KxI1leKyy+2yK8XlUIrzm5/t\ncthjT7NETVOBUFTBUFT+r++DoYgCoaj8oYhCkZZ/4JRWsUMFq5aocNUS5a9ZIUkKZWQplJahj0LH\n6JldZ+qDipGKWnZluf06fUSJzjhmozoVS+H0TIUyMhXOyJLp6jjfAu9emKF+3Q4+ImPbNkPvv+/Q\nggV2LVzoUGNj0wdnhmFpxAhTxx8f0fHHRzVqVFTujvP00IYI5gA4nH21vV7bqz0xXdtp6ac6/rdX\nqHrQUfrwb89LXwdm+3XNVvdOGYks86A+/dSuadPSdMopYT33XMu75XyXaVoq3Vqj6vr9X5+V5lJR\nbqo65abK6bDv9zwAAAAAAHB4IJgDAACQROW7vVpXVnfAc5x2m9xOu1LcdqU4Hd8J8NjlctgVijQF\nbgLhqAKhqAKhSNOfQ9HYu+BYljJ2blXhyi/2hHHSK3buORxOTVO9PU8ves/SI9Y1WqNBkqQRWqZr\n9ZAu0AtKk7/ZpaNOl7ZNnqrlM27dM6qiPQ3qmatOuWktPj8SkZYvt2nBgqagzpIldkUiTR8ipqVZ\nGjcuuieoM3Cgqf005MEPDMEcAIercCSqz0sqFI3hLSIjEtbJV5+tzLJNev+hV1R3xGBJTZ1kxg0q\nksvZtqGV889P1bx5Ds2d69WoUbF3ErQsS+vL6lRe8+1orxSXXUW5aSrKTVNaiuMAVwMAAAAAgMMN\nwRwAAIAkiURNLV5T0aquNUljmsra+pUKVy1R4aqmME5qTfWew8GsHFUPGamqYaO1vGiSXlw6Sgve\nz1HAb5fDYWrimEqddcwGDSvaJre3QU6vR85v7j1N9y5vg5yeRmWUlylj5zY1duupz2+9d8+HcO3F\nbhg6qn+hMlKdMV3v8TR9w37BAoc++siudeu+/RCxsNDUccdFNXVqRKedFiGk8wNGMAfA4WpzeYO2\nVsT2/39HvPasRvzjz9p4+nQt/dWdex7Pz0rR0D75CaqwZVavtmny5HRNmBDRf/7TfLi4tTaXNygU\njqooL005GbTUAwAAAAAAzSOYAwAAkCRf7ajX9qrYxj7EzbKUs3GNClcsVuGqJSpY/aXcDd927vHn\nFahq6GhVDx2lqmGj1VDcV+vXpumNf+fri08yZFmG8gvCOmlqnSafWqec3GiLtzbCIQ155n4d+cpT\nMh1Orfz5r7Xh7J+qPVMraW6Hju5fGNfYsG+UlxtasODboE5VVdOaEydG9Kc/BXXkkR0giIWEI5gD\n4HAUiZpaVFoRU4c+d+1unfqzU2TZ7XrrqbcUys7dc6y13ewS4eqrU/Taa069+KJPkye3/HUNAAAA\nAABAvAjmAAAAJIEvENaSdVUy2/jlVFr5dvX84A31/OANZe7Yuudxb1FXVQ0draqvgzjersWSYciM\nSks+z9DsV/K0rrTpA7J+AwI698J6DRtTK3scEyaKlnyiMXffrJS63Sofc5wW3/gnhXLy4n2KMSvI\nTtGQ3on9dr5lNX0D/557XHr7baccDktXXhnWb34TVEZGQrdCOyOYA+BwVFbp0cad9TFdO+re29T7\nnde09NrbtfHMi/Y87rDZNGFIZ9lsbRfY3bLF0Lhx6Ro40NS8eT463AEAAAAAgDZFMAcAACAJVm6s\nVk1jsE32cnoa1P2jt9Xz/TdUuPpLSVLEnaKd4yerfMzxqh46Ur6ibk3n2m1KcTlkmA598E6mXno+\nU9u2OiRJP/pRWNdeG9b48VEZhrS+rE47d3vjqs1dW60xd/9Wnb/8RP68Qi26+W5VHTUuvicch96d\ns9Sz8/5fAMfj3XftuvXWFG3bZlPnzqbuuiuoadMYb/VDQTAHwOHGtCwtKqlQMNL67jK5a1fqR9dP\nV13v/nr/kVdl2R17jnXJS9OA4twDXJ14N93k1jPPuPSPf/j14x9H2nRvAAAAAAAAgjkAAAAJVl3n\n1+otNUndw4iE1fmLher5wRvq+tk82cMhWYahqmFjtO2ks1R30mnK6JSvVLdDKS67Ulx2uV121dbY\n9fTTTj31lFO7d9vkclk699ywrr46rAED9h5TYVqWVm+qUU1jIL5iTVP9//20hj79dxlmVGunX6mS\nn14ry+GMb90YGJKG9slXXlZKUtb3+6WHHnLpgQdcCgYNHXNM03ir7//d4tBDMAfA4aZ8t1fryuoO\nfuL3maYm/9cFyl+7Uh/+9VlVDxuz1+ER/QqUk+FOUJUHV1lpaNSodHXqZOnzz71yOA5+DQAAAAAA\nQCIdKJjDWxUAAACtZJqWvopx5MNBWZZy169Wz/ffUI/5c5VS3xT+aSjuq4pTz5b37HOVdkQfdU93\nqqfNttelmzYZevRRl156yalAwFBOjqX/+q+grrgirKKi5rPYNsPQoF65Wr6hWp5AOPa6bTatP+8K\nVQ0brXF/ulEDX3xMnVYs0ue33Ctf526xrxsDS9KarbUaOaBQKa7Ev9xNTZV+85uQzj03rNtvT9G7\n7zp0wgl2XXVVWDfeyHgrAMChwbIslVV6Yrq25/uvK3/tSm07/tR9QjkpTnubhnIk6Yknml77/PKX\nQUI5AAAAAACgw6FjDgAAQCtt3dWozbsaErpmauVO9fxgtnq+/4ayyjZJkkK5+ao9dZpC0y+Qa8wo\n2ey2Zq9dvNimRx5x6a23HLIsQ8XFpq6+OqTzzw+3OCQSDEW1dEOVguHWj7L4PofXo5EP3KniD99U\nKD1TX97we20/7pS4122tzFSXjjqiQDZbcudMvfOOXbfd9u14q9//PqizzmK81aGIjjkADieVdX6V\nxtD9z+Ft1KmXnyaHz6O3n5wrf6cuex3vWZSp3l2yElXmQTU2SkcdlSGXy9KXX3qVmtpmWwMAAAAA\nAOxBxxwAAIAECYQi2laRuA/u03ds1cj771TR8s8lSabLLc/pZyl8wUWKnHCibE6nmhvIVF1taM4c\nh156yakvv7RLkkaMiOqXvwzp9NMjrf62uNtl19A++Vq2oUpRM77cdiQ9Q4t+e492jZyoox/8X43/\nww3adOqnWj7jFkVT2u7TskZ/SBu212lAcW5S95kyJarjjvPqwQddevBBl666KlUzZzaNt+rfn/FW\nAICOqSzG1zODnn9UKbXVWn3p9fuEciSpKDct3tJa5bnnnGpoMHTrrSFCOQAAAAAAoEOiYw4AAEAr\nlGypUVWdPyFrpe3aoRN+fYnSqsoVGj9RwfMuUPCMs2RlZTd7fm2tNHeuU//5j0MLF9oVjTa1ZDn5\n5IiuuSak8eOjcXdpqWkIaPXmGpkJeomYUbZZ4/7v18rduEYNxX312W33qaF3/4Ss3VIDeuSoS356\nm+y1ebOh229P0XvvOeRwWPrFL8L69a8Zb3WooGMOgMNFTUNAKzftbvV1Gds3a8qVZ8pX2FnvPDFH\npmvvkVVZaS4d3b8wUWUeVDAojRqVLq/X0LJlHmU3/xIKAAAAAAAg6Q7UMaf5eQgAAADYR21jMGGh\nnNSqXTr+psuUVlUuz+13qf71txS46Kf7hHIaG6WXX3boootSNWRIhm64IUULFjg0fLipu+4KaNky\nj2bN8mvChPhDOZKUl5Wift0S96mWp0dvzbv/BW2Ydomytm3Uj649V33f+JfUhtnwDdvr1eALtcle\nvXtbev55v2bO9KlrV0sPP+zSxInpmj2bRpUAgI5jW6Unpuv6v/asbNGIVv381/uEciSpKLdtW9a8\n8opTFRU2XXppmFAOAAAAAADosOiYAwAA0AKmZWnpuip5AuG413LXVOmEG3+qzO1b5L3xt/LddOte\nx71e6b33HPrPfxz64AOHgsGmxM2QIVFNmxbRmWeG1atXcl/CbdxZr7IYP7Tbny6ffajR994qd0Od\ntk/8kZbc8L8KZ+UkdI/9SXHaNXJAoZwOe5vsJ0l+v/TAAy499JBLwaCh//mfgK69Nv7//SB56JgD\n4HDQ4A1p6YaqVl/n9DRo6gWTFMzO0dxn35Pse/+bajMMjR9c1Gb/1kaj0sSJ6dq+3dCSJV517tyh\n394CAAAAAAA/cAfqmMNXdwEAAFpgZ7U3IaEcV12Njr/5Z8rcvkW+626Q7ze3SJICAemDD5rCOO+9\n55DP1xTGGTAgqrPOimjatLD69Wu7D5z6ds1WIBRNWIcgSSoff4Le/cd/NPYvN6n7J+8rb32JFv32\nblUPHZWwPfYnEI6qdEuthvXNl5GI1kItkJoq3XxzSGefHdF556Xq979Pkddr6KabQgnpbgQAQCy2\nVcYWQOz53n/kCPpVesaMfUI5kpSX5W7TAOzcuQ5t2mTTxReHCOUAAAAAAIAOjY45AAAABxGORLWo\ntFIR05TUNIUpEjYUDBgKBGwKBmwKBg1FwobCYZvC4W9+3vve9ATV4/V/y15TJ89RE+QZP1mhkKHq\nakPvv++Qx9OU1ujTx9S0aWGddVZEAwea7fa8TdPSiq+qVZ/oMVDRqAa++JgGz3xIklRy8TVac8HV\nzX7Il0gOr0edc1PUb1DPpO7TnG3bDP3kJ2nautWmGTNCuvPOIOGcDoiOOQB+6HyBsBavrWz9haap\nU644TWmV5Zrzr/kKZefuc8rgXnkqzGmbUVaWJU2ZkqYVK2z69FOv+vbt0G9tAQAAAACAwwAdcwAA\nACSFw1JdnaH6+qb7b2719YZqaw01NBjyeiWfz5DP9829odr6qDyeXnsFcUwz1lTFr5vuln19+1qP\nHqYuu6ypu8qQIWaHCG3YbIaG9MnT0vXV8ociiVvYbteai2aocsRYjf3TjRry3EMqWva5Fv32HvkL\nOydun2+28/vU/7VnNeDlJxROz9LaF+eqx7B+Cd/nQIqLLb3xhk/nnJOqRx91yeeT/vKXoGy2Ni0D\nAHCY21YR25jKoqWfKnPHVm0++exmQzlOu0352SnxltdiH39s1/Lldp1xRphQDgAAAAAA6PDomAMA\nAA4ppik1NEi1tU2BmuYCNt8P3nxz83pbn3ax2y253KZSUky5Uyy5U8ymm7vp5+8+7nRZcjotOZxf\n3zssOZ2mXApo2KuPqWD7Wum4CYpeO0PuFJtcLksul5SWZql3b6tDhHGa4wtEtGxDlcLRxHfvcTbW\na9Tf7lD3he8pmJmtJb/+o3ZOODEhaxvRiHq9+/80+NkHlVpTpUhKmhwBn6qGjtL2515V9277frCY\nbFVVhs47L1UlJXade25Y998fkIOofIdBxxwAP2SBUESL11TKjOFtoIl3zFDXRfP13kP/Vl3/wfsc\n75qfrv49chJRZoucc06qPvrIoXff9WrEiPbrLggAAAAAAPCNA3XMIZgDAABiZllSMCgFAlIwaMjv\nlwIBY8+fIxHtuYXDUjhsKBpt+rnpMUPhsL7zWNOfAwF9L2jzbbimoUGyrJYnWDIzLeXkfHvLzraU\nm9t0n5OjvR7PzraUnt4UlGm6SSVbqtTgj32Ukz3g1zF3XK1OKxbLP+0n8jz6RNJHNiVDvSeoFRt3\nx/Rh3kFZlvq8+bJG/ONPsoeC2nDWRVp55W9kutwxr9dl0XwNffJeZW/dqIg7VevPuUzrzrlco++9\nVd0Xvqd1P7lM4f/7s4py0xL7XFqgrk664II0ffll0zf9H300IJerzctAMwjmAPgh+2p7vbZXt75j\nTnp5mU69bIpqjhymefe/2Ow5Rx1RqOz0tvnHbMUKm046KV3HHhvRq6/622RPAAAAAACAg2GUFQAA\nkNQUgGlslOrrm8Y2fXOrr9d3fjb2nOP1NoVsAgFDwaDk9+/950CgdSGZWKWlNYVmunY1NWjQN+Ea\nfR2uaf6Wnd10PJ5uJP+fvfuOj6LO/zj+mu0lvUDovQmCiHqWU89ez3p2zysqigXrz/M8e7tTz9M7\n7HqevXdsZ8EueiBIkSaEXtLbZvvO/P5YAoQkkGyyIcD7+XjMY2dnvvOdb5LdTbLz3s93XWWwXaEc\nWzTKvrdcmgzlHP1rAg8+tl2GcgCyM9wM65vD/OVVHd+5YVB87GmUjxzL3ndexZC3n6dwznS+u+5e\n6voOalNXuQvnMPrxe+g2exqWzUbxUafw0zmXEM7vBsC0q+4ka/kShr3+FN8PH03lH84mL6vzpt4A\nyMmBV18NctZZXiZPdhIKGfz73yG83k4dhoiI7ERi8QRrK+pTOnbQ5JcwLIvFx53V7H6vy9FpoRyA\nSZOS55o4MfW/0UREREREREREOpMq5oiIiGxHwmEaBWc2DdPU1m4ermkauAkEUgvReDwWHk9rbpPr\nbnfy1uEAhwOcTtZP69T4/sZ11k/9lFz3eJLVbBqCN+4UC6e0RzxhMm1+KZF4IqXjjViUfW+7nJ7f\nfUbokMMJPP0CO0JZlOXr6li6rjZt/dvDIcY8eheD3nuZuNvLzIuuY9mRJ7O1eb78a1cy6sn76PvF\nBwCs2fsgZp97JXX9Bjdpm7liCYdceiqGBZ9NepmBh+5DVideUGwQDMIf/uDls88c7L9/nKefDpGR\n0enDkE2oYo6I7KiWratl2bq2v77ZwyGOPesgTLuD956bgtnM3zL9izLpX5TVEcPcquJig3328TN6\ntMlHHwW77DSgIiIiIiIiIrLzUcUcERGRNorHIRCAurpkmKWuDgIBg3DYIBpNTt8UjW5cj8WM9duS\nUzhFo6xfNrZJJJLTOCUSYJpsWE8kjM3ub7o/eUwwmBxLJNK2qw+GYZGVlQy49Otnkp1tkZW1cVtm\nprV+G+u3W43aZGQkQzE740WP5SV1qYdyEnF+8bdrkqGcXx5I4D/P7RChHIB+RZmEo3HWVgbT0n/C\n42XGZTdTMnYf9rj/Rva87wa6z/iWHy6/hbi/6R+1rtoqRjz/CIMnv4gtHqNy2K7MOv9qykfv1eI5\n6voOYtpVd7Lv7Zez9y2X8kW31xg1dgB+jzMtX1NLfD545pkQ48d7+OADJ6ed5uOFF4JkZ3fqMERE\nZAeXME1Wl6VWLafPZ+/hqqth3pkXNhvKATp1WsgHH3RhWQaXXhrdKf8+FREREREREZHtkyrmiIjI\nDsOyIBRqCNOwPlDTsGwM2TQEbhq2N7TbNIATDHbOO/2GYWG3s2Gx2RrWrU3Wwetlk8CMtT5U03Tb\n5gEbvz/Zp7RNMBxj+sIyzFT+TEok2OueP9NvymRCe+1D4JU3kwmMHYhpWcwtrqCyLpLW8/hKVvOL\nv/4fBfNmEijqzfd//juVI8YAYIuEGfLWswx/6XFc9XUEevRhzh+vYNUBR7Y6STb6sXsY9tqTrN73\nEH64/SHGDi3E4+r83HosBpde6uGNN5yMHp3g5ZdD5Od36T/Rd1iqmCMiO6JVpQEWr6lp+4GWxaEX\nnUz20kW8/+wnhAqLmjTJ9rsYO6SwA0a5dSUlBuPG+enVy+Lbb+u319lBRURERERERGQHpYo5IiKS\nMstKTp9UX29QX9/4Nhg0iMeTF5VjMYjHjfW3rN++cX/D/URi433LaryYptFkW3OLaSbP3zSAk6ww\nkwqfz8LvT4ZdevQwycy0yMiwyMiAzExr/f3kFEsuF7jd4HIlq8k4neB2J7c3bGtYT94m9zscNArb\n2O07ZyWa7cHi1bWphXJMk3H/vCkZyhm7B/UvvbbDhXIAbIbByAF5rCkPsqo0kHJloa0Jdu/F5/c+\nwy7PPsiIFx/loCvPZu7vJhLOK2TUU//EV76OSFYOMyf8meJjTm/xk/wtmXPuFeT+PJde335KxXOP\nMvt3Exg7pACno3Ov9Dmd8OCDYXw+i+eec3HiiV5efTVE9+4K54iISPuYlsXKskBKx+bPm0nukvms\n3P+IZkM50LnVch591Ek0anDJJRGFckRERERERERku6KKOSIiO5CGKY8ah2iaBmpaWt94bONjTLNr\npkfs9mSQprkQTUOQJiOj4f7GfX5/03YORVVlvfKaEHOXVrb9QMti7AO3MXjyi4RGjqb+rXexsnM6\nfoBdjGlarK2oZ2VpgHAsPQEdgO6zvucXd/8Jd1kJAAmXm0UnnsPC084jlpGVcr/uqgoOvfhkvJVl\nfHnn44T2+xVjBufjsHd+qSnLghtucPPYYy4GDDB5/fUgvXt36T/VdziqmCMiO5q1FfUsXFmd0rG/\nuPMq+n7+Pp/9/elmp4i0GQb7jirqlN+ZtbWw224Z+P0W06fX43an/ZQiIiIiIiIiIm2y3VbM+e8r\nNVSW1OJxmckKBC4Lj9vC5TSTty4Lj8vC7TZxOlR1QETaLpGAYNhGKGwQWn8bDNsIhWwEQw3bbAQ3\n2d+wrX6T/Q3bI1GDhAlmInmbWH9rmslKMQnTwDTX3yZo1AZr/YuYYWEYydc0AzauN2zfZBvr1zd+\nHe1/U9zvS+D3mfi9JoU9zQ3rfl9y8Xk33vd6LFxOC4fDwrl+cTjA6bCw29dvc9Jov92e3O+wWxi2\nhq8zOW3Txq81ua3R/U2+DzYb+L3J87f7tb9+/SJCMmSyekkF3mi8zccOfePpZChn6C7Uv/72ThHK\nAbDZDHoVZtCjwE9JZZDlJXWEox0X0PE47fQs8NNj1PHUHXsg1g3XErE5+eq4PxLq1qPd/Udy85l6\nw/0cdNU57P3Xq/n4wdeY5zAYNTAfWyf/cWkYcNttEXw+i/vvd3PccT5eey3IwIEK54iISNtZlsXK\n0tSq5XgqSun91UfU9B9C+a57NtsmP9vTaUHWZ55xEggYXH55VKEcEREREREREdnudOmKOW29FuIh\nhIcwbiJ4COMjSAYB/NS3eskggI8gBhYmtg2LhdHofirbW9PWTgInMVxEcRJrtN7ctk3XPYTxEsJL\nCBdRumpOycQggZ04DiwM7CQ2LF11zKlIYCOGkyguorjW/7ScwPrAwWaLDbPZ7ZvudxDHSQwH8Q79\nXsWxE8bTZIngbnZ7W9oksG/4KoAtfIWNl4bvU8Njw4bZ6LGy+f3Nt8VwEsTX4lKPnyA+onTcu7oG\nJm4iTcbV3NLS+Nvy/dn0vg2TDALtXryEsNFlfy2IdHmhgUOon/whVmHhth7KNmNaFqVVIVaU1BGM\ntD3g1CDH76ZXoZ+CbA9GM38UzimuoKI23J6hNjJw8ouMm3QrlUNH8dk/nqOgWw679M/rsP7b6v77\nXdx5p5vu3U1eey3EsGHmNhvLzkQVc0RkR1JWHeKnZSlUAQR2efZBRj77AD9MvIniY09vts2oAXkU\nZHvbM8RWicVgzz39VFcbzJoVIDs77acUEREREREREWmz7bZizmP7P0tptY1owknYdBJOOImYTiLr\nb8MJJ1HTQTjhIrLh1knEdBBK+CmL57Es4SaU2Pk+TmVg4rVH8dqjeOyxDetee6TZ7TbDJG7aiVt2\nEpaNuGVbf99GwrJvWI9vtp6wbMn264/d2nEJKxlAaokNE7th4rAlkrdG8nbzxWFL4DBM3LYYLlsc\ntz22YX3j/Xhymz2Gy0g0amM3TOKWnZhpJ2o6Nixxq/H9mOlo1CbWcLu+XWxDWzvxTY6Lmo4tfp0d\nwW4kcBoJnLY4TltyPfl9SSTv2+KNtsVMx/rnkavRcydsOklY9rSOtStwGnF8jgheewSfPUquoxav\nvRzf+vs+RyS57kg+R3zrnyvJ7cnnjn99m823N6y7bbHtpHKXE8hdvzQW7fSxiHRtFslPm1tWMnBi\nWcmqOhu2YWGZyX1kZ+P4y3U7dSgHktNaFOX56J7rpaw6xIqSAIFwrFXH2g2DbrleehVmkOF1brHt\nwJ5ZVNaGOyxKWHzs6eQvmE3/j99i7IN38MMVt+JaVcPg3tvm6t/ll0fx+Syuv97DCSd4eeWVELvu\nqnCOiIi03oqS1KrlGLEoA997iZgvg+WH/LrZNk67jbwsT3uG12rvvONgzRob558fVShHRERERERE\nRLZLXTqYc/6Xv+2AT6xGSSSihEJQX28QDEIwmLxN3m+6LRRKHmmzsWFqlU1vG2+3muxrbbvN+zYM\nMM3kp8GSi7HJOsTjBtEoxOMQjRrE4xv3RaPJfeEwhEIG4TCEw07CYSehkEFNCErCBuFgst/2sNmS\nU9U4HMmxOxzgcCenp3E4wG4HnyM5dU3Dto1tTRwOc8N2SE7BY5rJ23g8Oa2PaTrWr2+6JKcCiicg\nHN/4fYiGIRLpnDSEYVi43cmxu1zJKXpcLvDYzJpQAAAgAElEQVRudt/hMHG5zE3uW7hcye8NgGUl\nl03Xkxd7G9/ftJ1pbvyZJxLJn2M8bicWs6/fntwfj0MoxsZt6x8zLhd4PBYuP7jdkO1Jfi1ut4Xb\nHcfjaVjf9DZ5TMO2ZJvk17pp+8br1vo2yW12e+NpiJLfx60vDd+bTR8fDeumufHx0LCv8a2Bw2Hh\n84HPlxyrc8P1Xef6xd+hj43Y+kVEdk4NUUzFJjYyDINuuT665foorw6xvKSOulDzr5Qel51eBRkU\n5flwOloXbPV7nBTl+VhbGeyoAfPDxJvILl7IwA9epWL4aJYd9RucDhv9ilpOuafT+PExfD646io3\nJ5/s45VXguy2mx5lIiKydVV1EepCqcXue33zCd7Kchad+FsS3ub/b+qe6+uUKR8tCx5+2IXNZnH+\n+foYgYiIiIiIiIhsn7p0MKej2O2QkQEZGQ2fqd65p2lJJCAUgnC4IcADlmVgt1sbgjUbb5tus3XO\nFPJtYlkNAaWGxSAS2RhYikaT4Z2G9UQiGdRoWBpCNZuvb37fvuMXlulSDGNjgKupLT2Pd+7nuIhI\nV1OQ46Ugx0tlbZjl6+qoCSYvrOVmJKerys9qfrqqrenfI4vSqhCJDpqZ1XR7mHrjPzn0klPY/YHb\nqBk0nKWMwumw0bOgYwOdrXX22TFcLouJEz2cfLKPl14KsueeCueIiMiWrShJ/UNOg995AYAlvz6j\nxTbd8tI/hRXA1Kl2Zs+2c+yxMfr31/95IiIiIiIiIrJ92imCOdJY06ASbO9BBsNIVmhxuRq2KIQl\nIiLS1eRlecjL8lBVF8HttOHzbHm6qq1xO+307pbB8nZcfNxcfY8+fP+nu/nlDReyz60T+eTB1/kZ\ncDpsFOZ0zkXIzZ16ahyXK8yECR5OPdXHCy+E2GefxDYZi4iIdH11wShVgUhKx2YvmU/h3B9Yt8cv\nCfQe0Gwbn9tBls/V7L6O9vDDyfNMmKBqOSIiIiIiIiKy/eqCtU9EREREZEeWm+ludyinQZ9uGbha\nOf1Va63b6wB++u3F+EvX8ou/Xo2VSDB/eRWl1aEOPU9rhCJxFq6oYuQe5dxxdyWRCJx2mpd33o9T\nWRumtj5KMBwnGktgmgoki4gIrCgJpHxsQ7Wcxced2WKbojxfyv23xZIlBv/9r4M99kioWpyIiIiI\niIiIbNdUMUdEREREtlsOu41+RVn8vKq6Q/udf+YE8hbOoef3XzDymUn89IfLmbeskrrCDAb2zEpp\n6q22qqwNM395FbFE8mLkwF3ruerGIPfe1osJ47P5v5tWs9ue9Y2OsRkGDruBw27DYbfRLcdL724Z\naR+riIh0DcFwnPKa1IKkztpq+k55l0BRb9bueUCzbeyG0WnTOz7yiKrliIiIiIiIiMiOQRVzRERE\nRGS71iPfh8/dwXlzm43/XXMXgR592OXFR+n57acArCwLMHtJBbF4eqeSWlFSx5ziig2hnAbj9q7n\nT7esAuDum3sxfWrj0I1pWUTjJsFInNpglOK1tdQGdUFTRGRnsbK0LuUJnQd89CaOSJglvz4jOQd2\nM4ryfTjs6X8rqaLC4OWXnfTta3L00fG0n09EREREREREJJ0UzBERERGR7ZrNMBjYI6vD+41lZvPt\njf8i7vaw193XkrFqKQBVgQg/LCyjLg2Bl3jC5KellRSvrW3xwuqYPYL8+bZV2G1w7629+O6rzBb7\nMy2LBcurNM2ViMhOIBJNUFKV4rSLpsmgyS+ScLlZesRJzTYxgN6FnVOF7emnnYTDBuPHR1vKCImI\niIiIiIiIbDcUzBERERGR7V5Bjpdsv6vD+60ZNJwfLrsFZzDAvrdMxB4KAhCOJZj5cznrKoMddq5g\nOMaMRWWUtWIKklFjg1x350qcLpP77+jJ11NaDiYFI3GK19Z22DhFRKRrWlUWwLRSC2IWTf+KjLUr\nWX7wscSycpptk5/twdvRFeqaEQ7Dv//tJCvL4swzY2k/n4iIiIiIiIhIuimYIyIiIiI7hIE9s9PS\n74pDj+Pn488ie/li9rjvBlh/0dO0LBasqGLRyuqUL4Q2KK8OMWNROcFI66frGLFriOv/thKP12TS\nXT34/KOWwzmrygJU1UXaNUYREem6YnGTNRX1KR8/+O3nAVhy3JkttunTSdVy3nzTQVmZjXPOiZLR\nOacUEREREREREUkrBXNEREREZIeQ7XdRmO1NS9+zxl9D+S5j6fv5+wx+69lG+9ZU1DPr53IisUSb\n+7Usi6Vra5m7rJK4abb5+KEjwtx41wp8GSYP39uDT95vOZy0cGUV8UTbzyEiIl3fmvJ6EilOW+hf\nvZwe076ifOTuVA/epdk2mV4X2Rnu9gyxVSwLHnnEhcNhcd55qpYjIiIiIiIiIjsGBXNEREREZIcx\noEcWNsPo8H4tp4upN9xPOLeAMY/dQ8Gc6Y321wSjzFhYRk2g9VVpYnGTOcWVLC+pa9fYBg6NcNPd\nK8jISvDY/T348O3mpyAJRxMsWV3TrnOJiEjXkzBNVpUFUj5+8OQXAVi8hWo5vbv5U+6/LT77zM78\n+XaOPz5Oz57tq0YnIiIiIiIiItJVtCqYM2vWLH772982uy8UCnH66aezZMmSVh1z55138uKLL6Yw\nVBERERGRLfN5HPTI96Wl73B+N6b+5V6wLPa+4wo8FaWN9kfiCWYtqWjVxdFAKMaMRWVU1oU7ZGz9\nB0W4+Z4VZOfGefLBIia/loctGiFv3swNU28BrK0MUlHTMecUEZGuYW1FkFiKFdHsoSD9//sGobwC\nVv3ysGbbuJ12CnPSU5Fuc4884gJgwoRop5xPRERERERERKQzbDWY8/jjj3P99dcTiTT99O+cOXM4\n66yzWLly5VaPqays5LzzzmPKlCkdMGwRERERkeb1L8rEYUtPYcjy0Xsx+/yr8VaWs8/tV2DEGl84\nNC2LxatrmL+8ikQLU1OVVAWZuaiMUDTeoWPr0z/KLX9fQW5+jGcf68a0i6ZzyOVnMvzFRxu1W7iy\nili87dNutVY8DhUVxqZ5IBERSRPTslhVmnq1nL5T3sVVX0fx0adhOV3NtulV4E9LNbrNzZtn4/PP\nHey3X5zRozX1ooiIiIiIiIjsOBxba9C3b18mTZrENddc02RfNBrlwQcfbLKvuWPq6+u59NJL+fLL\nL9s0wMLCzDa1FxEREREZnYCfV1anpe9151zA2sU/0ePTd9njqftYcMVNTdoEYyZLSuoZO7QQn8cJ\ngGlaLFxexaqKED6/Oy1jGzYC/v5wCX8Zn81dK87FpIJfPzUZm3c64SMPJCPLxO22KK2LstvQbimd\no74eVqxILsuXJ5dN11evhkQCuneHfffduOy+O3g8HfwFp4H+/xCR7cnqsgBOtxOn29n2gy2LYe++\ngGl3UHrKb8nMaPoi7bAbjB5ehNOR/pnQn346eXvttQ69FouIiIiIiIjIDmWrwZwjjjiCVatWNbtv\n3LhxrT6mT58+9OnTp83BnLKyuja1FxERERHxOw2ikRiRWHoqw0ydeDOHLJ5P/1efYt2gkaw8+Ngm\nbeoCYcrKA4zol0uG18m8ZVVU1zetQtnRcp11fM7xHMWr3MM13MM18DDJBXA6TfyZJnm5cfLzDHJy\nLLKzrQ23ubnJW48H1q41WL3axsqVBqtW2Vi92qCiovmLs4ZhUVRksfvuyb7mzLHx5ps23nwzud/l\nshg92mSPPRLsuWeCvfZK0L171yqrU1iYqf8/RGS7MmtBKfXhWErHFsyeRuaShaw48CjKvdkQaDrV\nYe+CDKqr6ts7zK0qKTF4/nk/gweb7LlnkLKytJ9SRERERERERKRDbemDRlsN5oiIiIiIbG/sNhv9\nizJZmKaqOQmvn29vnMShl57CHvfdQG3/IdQMHNakXSxhMqe4AofdRizROdNy7PrkfQyunsGTpzzB\nU/mXkVi4jozPp1JpL2DJ8AOpiWVQH7BTXm5j+TIbiUTrpifxeCx69bIYNSpOnz4mvXpZ9O5t0rt3\n8rZnTwvnJgUbLAtWrzaYNs2+YZk508b06XYeeSTZpm/fxkGdESNMHPoPRUSkVcqrQymHcgAGv/MC\nAIuPP6vZ/QbQq9Cfcv9t8eSTTqJRgwsuiJGm2ShFRERERERERLYZve0tIiIiIjukojwfq8vqCbTj\nouWWBPoM4H//9zf2u+VS9r11Ip888CqxjKwm7SzotFBO3ryZDHr3JWr7DqLid6dzjKsKcNNvXBV7\n/X0CgYo+TLn/RSK5+QDkZrgZ2L2A6mqD6mqDmpqNt6EQdO9ubQjhFBRYGK3L8ABgGKwP7cQ58cQ4\nkJwGa9Yse6OwzhtvOHnjjWSix+ezGDcuwY03RhgzpnO+ZyIi26tVZalXsvGUl9Dr64+pHjicipG7\nN9smP9uD153+t42CQXjqKRd5eSannJKe39kiIiIiIiIiIttSm99hmTx5MsFgkNNOOy0d4xERERER\n6RCGYTCwZxaziyvSdo41+x3K/NPHM+Klx9jr7mv55uYH2FYf9TdiUfa4/yYMy2L65bdgulwb9i0/\n/ET861Yx8rmH2O/mi/n87qcw3R6qAhFqc+rp08dPnz7pn1bK74d9902w777JKcYsC5YsSVbVmT49\nGdT56isHJ59s59VXg4wdq3COiEhzQpF4u6ZHHPTey9jMBIuPP5OWUpd9CjNS7r8tXn7ZSVWVwZVX\nRvH5OuWUIiIiIiIiIiKdyrAsK/3vwLdDWVndth6CiIiIiGzHZi0upyqQ+sXLrUokOOC68+k+cypz\nfzeR+WdNSN+5tmD4i4+y63/uZ8kxpzHjspubNrAs9rznWvp/8g6rfnk4U6+/D2w27IbBHsO7dUpV\nhNZ44w0HF13kISODTg/nFBZm6v8PEdkuLF1by/KS1F6vbNEox5x9MLZ4jHdf+JyEx9ukTabXxbhh\nhe0c5daZJuy7r59VqwxmzKinW7cu/RaViIiIiIiIiEiLCgszW9ynmbtFREREZIc2sGfT6aU6lN3O\nd9fdS323Hox8ZhLdp3+d3vM1I2P1MnZ57iFCeQXMOffK5hsZBj9cfhulo/ek99cfMfqJewFIWBYL\nllfRVfL6J50U56GHwgQCcMopPmbO1L8sIiKbsiyLdZXBlI/v9c3HeKorWHrkyc2GcgB6d/On3H9b\nfPSRneJiG7/5TUyhHBERERERERHZYeldbhERERHZoWX6XHTPaf7CY0eJZucy9YZ/Yjoc/OKvV+Nb\ntzqt52vEshh3/83YY1FmXnQ9sYyWg0imy8W3N02its9Ahr32JIPeeQGAmmCUlaWBzhrxVimcIyLS\nsqq6CJFYIuXj+//3DQCKjz6l2f1up53CNP/ebPDww8lpFy+8MNYp5xMRERERERER2Rb0DreIiIiI\n7PAG9MzCZhhpPUfVsF2ZeckNuOtq2PfWidgi4bSer0G/j9+i26zvWbP3Qaze//Ctto9lZvPV7Y8S\nzsln7EN3UPT95wAsW1dHINR1LowqnCMi0ry17aiW4y1dS/eZUykfuTuB3gOabdOrwJ/235kAP/5o\nY+pUBwcdFGf48M6btlBEREREREREpLM5tvUARERERETSzeNy0KvAz8qy9FaFWXrUKeTNn8XAD19n\n9wduY/qVt0MaL266qyoY8+hdxLw+ZlxyQ6vPFezRm69vfYhf/d/v2OeOq/jsH89SPXgXFiyvYvdh\nhZ1yQbY1TjopDoS56CIPp5zi49VXg4wdq4u30rnef9/BAw+4sCzweCy83sa3Pl/j+x4P+HzJW6/X\nIiMDdtstgb9zZgaSHVwsnqCiJvXgZ79P38GwLJYddnyz++02g54FnfNgfeSRZLWcCROinXI+ERER\nEREREZFtRcEcEREREdkp9CvKJBxLUFkbJmFaaTvPzEtuIGfJAgb89w0qho9h6TGnpu1cYx69C3dd\nDTMnXEeoW482HVs1fDTf/+lu9r3tMn55/YV8+q+XCXTrwfJ1dQzo0fJ0WJ1N4RzZViIRuPVWN48/\n7sJms3A4IBpNLbTm8Vj86ldxjj46zuGHx8nL6+DByk6jpCqEaaX4O8yy6P/xWyRcblYeeFSzTXrk\n+XHY01+hbNUqg7ffdjBiRIIDD0x9Wi4RERERERERke2BgjkiIiIislNw2G2M7J+HaVlU10WoqA1T\nURMmHOvYC4Kmy83UG//JoRf/hrEP3U71oOFUDR/doecA6D79a/pNmUzlsF1ZfNyZKfWx5peHMWv8\nNez26F3sf/0FTLnveVaUQH6Whyy/q4NHnDqFc6SzFRcbjB/vZfZsO0OHJnj88TAjRpgkEhAKQThs\nbLgNhyEYTN42t62szMYnn9j58EMnH37oxG632HffBEcfHeeoo+L07Jm+oKDseNZVpD6NVd78H8lc\ntYzlBx1L3J/ZZL8B9CrsnGo5TzzhIpEwmDAhms7CciIiIiIiIiIiXYJhWal+1KpzlJXVbeshiIiI\niMgOLBCKUVETprwmTF2o46bT6PbDNxxw3fmE8rvzyYOvEcnN77C+7aEgR4w/Dm/ZOj558DVqBg1P\nvTPLYreH7mDI28+zbvd9+fr2R/D6vYwbVojdlv6qCW3xxhsOLrrIQ0YGaQnnFBZm6v8P4e23HVxx\nhYdAwOCMM2LceWe4Q6ahWrLE4L33nHzwgYMffrBv2D52bDKkc/TRcYYMUeBMWlYXjPLDorKUj9/9\n/psY9P4rfHnnE5TssV+T/QXZHkYN6LjfVS2pq4PddsvA67X44Yd63O60n1JEREREREREJO0KC5t+\nEKpB13qnXURERESkk2V4nfQrymTcsEL2GVnE0N455Gd5sLXzI/yl4/Zj7u8vw1e+jn1uuwx3ZeoX\nUze3y3MP4i9ZzaJT/tC+UA6AYfDjhX9mzd4HUTTjW3b/1y0EwzGWret6AZWTTorz0ENhAgE45RQf\nM2fq3xnpOKEQXH21m/PP92Ka8MADIf75z44J5QAMGmQxcWKUDz4IMmtWgL/9LcwBB8SZM8fGHXe4\n2W8/P/vt5+OOO1zMnGmja3+ERraFdZWpV8uxRcL0+eIDggXdKRm7d7Nt+hRmpNx/W7zwgpO6OoNz\nz40plCMiIiIiIiIiOwVVzBERERERaUbCNKmqXT/lVW2YaDyFShamyT63X0Hvrz8i5stg7u8vY8mv\nT8eypz6jbM7ieRxyyakEu/fko0ffJuHxptzXpuyheg666hxyF89jzh+uYNGZF/CLEd1xu+xbP7iT\npatyjirm7LwWLzY47zwv8+bZ2WWX5NRVnVW9proaPvrIwXvvOfj8cwehUDIU2LOnydFHxznvvCgD\nB3bpf9ulE5imxdSf1hFLpPa47PPZe+z916uZf/p45v7xiib7M70uxg0rbO8wtyoeh1/8wk95ucHM\nmQHy8tJ+ShERERERERGRTqGKOSIiIiIibWS32SjI8TKsby77jCyif1HLf1S3yGZj6l/+wQ8Tb8Ky\n2Rj70B0ccump5M3/MbVBJRKMu+9GbGaCHybe1GGhHICE18/Xtz1MsLAHu/7nPnpNeZdl62o7rP+O\npMo50pFeecXBoYf6mTfPzjnnJCvadOaUUjk5cOqpcZ5+Osz8+QH+858Qp5wSo77e4IknXOy/v59b\nb3URCHTakKQLKq8JpRzKAej/8VsALDvshGb39+7WQaWhtuK99xysXGnj9NNjCuWIiIiIiIiIyE5D\n72CLiIiIiGyFYRj0L8piYI+sth9st1N87Ol8+O/3WXbYCeQuns8hl53BuPtuxFVb1aauhrz9HHk/\n/8SyQ4+jdNx+bR/LVoTzu/HV7Y8Q82Ww59//TOR/0wmG4x1+no6gcI60V309TJzo4ZJLvNhs8Nhj\nIf7+9wjejsu7tZnPB8ccE+fBB8PMmxfg8cdDFBVZPPCAm7339vPyyw7MzssMSRfSnmmsPOUldJ/x\nLRUjxhDoM6Dpfqedwpz0P/AtCx5+2IVhWFxwQTTt5xMRERERERER6Sr07rWIiIiISCv17Z7J4J7Z\nKR0byc1n2v/9lc/ufZaa/kMY+MGrHPnHo+n/wWu05kq7r2Q1o576F5GsHGaN/1NKY2iN2gFD+e66\ne7HHYoz9580sXd228FBnUjhHUrVggY0jj/Tx0ktORo9O8Mkn9ZxwQtcKoTmdcPzxcb7+up5rrolQ\nV2dw6aVejjlGj/WdTTgap6oukvLx/T59B8M0WXbYic3u71ngx2YYKfffWt99Z2fGDDtHHBHX9Gwi\nIiIiIiIislPRu3kiIiIiIm3Qu1sGQ3rnpHx8+a578PFDrzNr/DXYo1H2vO8GDrryLLKXLGj5IMti\n7AO34QgHmTX+T0Rztj7/hwE47an9ub9urwNYcdAx5C2cQ+aLz1IX7LqVDTYP58yZo39xpGWWBc8/\n7+SII3wsXGjn/POjvPdesEuHBLxeuPrqKN98U8/xx8f44Qc7Rxzh57LLPJSWpj9MIdteSWWIlB+h\nlkX/j94i4XSx8ldHNdlttxn0LOicaazuvtsFwMSJXfd3ioiIiIiIiIhIOuhdaxERERGRNupV4GdY\nnxxSvSRuOZws+s0f+PDf77Fy/yMomPcjh118MmMevhNHfaBJ+95ffkjP77+gZLe9WX7Y8VvsO9Pr\nZHDPbPYeWcTgXqlV9wGYNf4aYj4/u/7nPlb9VJxyP52hIZxTVwfjx3sJpj7ji+zAAgG46CIPV1zh\nweWCp54KcccdEdzubT2y1und2+Lxx8O89VaQXXZJ8OKLTvbZx89DDzmJdqGcQ10wSn04tq2HsUNZ\nW1mf8rF5C2aTtbKY1fseQiyj6XSMPfL8OFIMcbbFV1/Z+eYbB4ceGmePPTQfm4iIiIiIiIjsXOw3\n33zzzdt6EFsS7MKfzhURERGRnVemz4XH5aCiJpxyH3F/BqsOPJKKEbuRP+9Hek77iv4fv0Uovxu1\n/YeAYeCsq2H/GyZgmAm+uv1RYllNq/W4nXZ6FvgZ2juH/kVZZPldOOw2fG4Ha8rrMa2211qI+/zE\n3V56f/MJZnk59YcdjdftSPlrTbcRI0xqaw0+/thBKGRw8MGJNvfh97v1/8cOKBCAyZMdTJjg5Ztv\nHIwbl+DVV4PbbTigTx+Ls8+O0a2bxbffOvjwQyfvvONgwACTAQM6v/KPaVpU1UVYWRpg0apqVpYF\nWFNez+qyeuqCMaLxBIYBLocNoxOmS9rRVNVFWF2eejBn+IuPkrdoLrPGX0N9r36N9hnAiH65OB3p\nDeZYFlx8sYfVq2088kiIoqKuW6FKRERERERERCRVfn/LnwA0LCuFd+k7UVlZ3bYegoiIiIhIi0qr\ngixYUZ1S+GVTtmiEYa88wYgXH8Mei1Ky297MvOQGhr7+FAM/eJU5f7iCBWeM39DebjMozPbSPc9H\nToarxQveS9bUsLK0aRWe1jAScQ655FRyl8zn+wdfYuApR6fUT2cJheDgg/0UFxu8/XaIvfduWzin\nsDBT/3/sIOrr4ZNPHLz1loNPP3UQDiefHxddFOUvf4ngdG7jAXaQykq46y43Tz/txDQNjjgizi23\nhNM+NVcsnqCiNkJ5TYiquggJc+vnc9hsZGe4yPa7yMlwk+FzYlNQZ6vmL6ukpDqU0rG2aIRfn34A\nCbeHd5+bAnZ7o/0F2R5GDcjviGFu0ZQpdk4/3ceRR8Z45pnUw6wiIiIiIiIiIl1ZYWFmi/sUzBER\nERERaaey6hDzl1e1O5wD4F+zgrEP3UGP/32J6XBii8eo6T+Ejx96HRxOcjPddM/1UZDjwW7bepWD\nUCTO9/NLUh5P3vwfOeSyM6jpP4Q1731GQWHTqVC6kunTbRx7rI8+fSw++6yejIzWH6tgzvYtFIJP\nP3Xw9tsOPv7YQTCYDH0MGZLg+OPjnHhinCFDts8qOVvz0082/vIXN99+68DlsrjwwiiXXx5t0+N/\na4LhGOU1YSpqw9TWR2nvq53dMMhaH9LJznCR5XNhsymos6l4wmTq3HUkUvzd0vuLD9jnjitZcOq5\nzDnv6ib7xw4uIDsjvXO5WRYcdZSPGTPsTJlSz6hRO+ZzUEREREREREREwRwRERERkTSrqAnz07LK\nDgnnYFn0/OYTxj78VzyVZXz/wIu499+Pbrle3E771o/fzOwlFVTWpV6lYNx9NzLwg1eZf9G15N/0\n5y4/Hc1tt7mYNMnNH/4Q5a67Iq0+TsGc7U8kAp99Zuett5z8978O6uuTj80BA0xOOCHG8cfHGTHC\npIs/ZDuEZcE77zi4+WY3q1fbKCoyuffeMIcd1vZp3ZL9WdTUR6lYH8YJRuIdPOLGbIZBls/F0D7Z\n+Dw7SEmjdlpTXs+iVdUpH//L6y+gx/++5MPHJ1PXb3CjfZleF+OGFbZ3iFv10Ud2zj7bx69/HePf\n/1a1HBERERERERHZcSmYIyIiIiLSCSprw/y0tDLl6gabcjvsdPdCD8J4B/VvV1/lNSHmLq1M+XhX\nbRVH/vFobLEoi9//ioKRQ9o1nnSLROCww3wsWGDntdeCHHDA1oMJpVVBBvTNo74dASbpHNEofPll\nMozzwQcO6uqSqZu+fU2OPz7GCSfEGTVq5wjjNCcYhAcecDFpkotoFK67LsrEidE2fT/KqkMsWllN\nLNH51U08Lju7DynElUIIcUczY1EZtcFoSsd6Kko59qyDqBwyiimTXm6yf3jfXIryfO0d4hZZFhx6\nqI+5c2188UWQ4cNVLUdEREREREREdlxbCuZsvfa9iIiIiIi0Sl6Wh1ED87GnmAiwGwbdc7yMHpjP\n3iO7M3BQUbtDOQD5WR487bjIHc3KZfZ5V+MMBcm++XpMs0tn+3G7YdKkMHa7xeWXe6jbSta/Phxj\nwYpqvv9pHYFQrHMGKa1mmrB4scFrrzm4/HI3o0ZlcOaZPl55xUl2tsVFF0X573/rmTatnhtuiLLr\nrjtvKAfA54Nrrony3ntBeva0uOMONxde6CEYbN3x0Vhim4VyAMLRBHOXVpIwd+4QR304lnIoB6Dv\np5MxTJNlh5/QZJ/dMCjI9rRneK3y/jMWm98AACAASURBVPsO5syxc+KJcYVyRERERERERGSnpoo5\nIiIiIiIdrCYQYXZxBYlWBFgMICfDTfc8HwXZHhz29GTnl6+rY+m62tQ7ME0OuvJsCubNZPGjL5B9\n4rEdN7g0uesuF/fe6+ass6Lcd1/zU1qZpsWMRWUEwjEyMzyEglFGDcwjJ8PdyaMVSIZwli0z+PFH\nO7Nm2Zk1y8bs2XYCgY1Jm6Iik+OPj3PccTHGjTOx6eMmLSotNfjDH7xMm2Zn9OgETz8dolevLb8u\n/bSskrLqUCeNsGWF2V526Z/b5afOS5clq2tYWRZI7WDL4vDxx5GxZjmTX/ySWFZOo92FOV5G9s/r\ngFG2zDThoIN8LFxo4+uv6xk8uEu/9SQiIiIiIiIi0m6aykpEREREpJPV1keZvaSCeAtVH/weJ91z\nvXTP9eF2pX/KlmgswXfzSjDb8ed/9pIFHHbxydT36EPd19/j8Kd3GpT2ikbhyCN9zJ1r54UXghx6\naNMprRavqmFVefLid2aGh7pAGJthsEu/XApyvJ095J2KZSVDOMkAzsYQTm3txiCGYVgMGWIyZozJ\nmDEJdt89we67K4zTFpEIXHutm+efd1FYaPKf/4TYa6/mX5fKqkP8tCz1ae9IJPjljRMwnS5mjb+G\n+p59U+8L6FOYwaBe2e3qY3tkWhbf/bSOaDy1KjO5i+Zy6CWnsPKAI/nu+vua7B/VPy/tr29vv+3g\n/PO9nHpqjAce0BSBIiIiIiIiIrLj21Iwx9GJ4xARERER2Wlk+V2MGZzP7CUVG6aEcTlsdMv10T3X\nS6bP1anjcTntFGR7KG1HJYyaQcP5+fizGfrmM9Tccw/cfFMHjrDjuVzwwANhDjvMx5VXevjyy3py\nNikcUVkb3hDK2ZRpWfy0rJKhfXLoke/vxBHv+JYsMXjhBSc//mhn9mw7NTWNQziDBpkcdlgyhLPb\nbiajRiXIyNiGA94BuN3wj39EGDnS5IYb3Jx0ko+77w5z5pnxRu1i8QQ/r6pu17l6Tp1Cj2lfAVA0\n7SsWnD6eBaedh+lKrQLVyrIAHreDXgU71/OwsiaccigHoP9HbwI0O42Vw2YjLyu901glEnDPPS7s\ndosrr2y+WpmIiIiIiIiIyM5EFXNERERERNIoEIqxsjRAtxwvuVlubNtwWpbqQIQfF5e3qw9HfYAj\nzz0aV10N5V98h23w4A4aXfrcf7+LO+9085vfxHjooWTlhmgswfSFpY0ufjdUzNnUgKIs+hW1/EkH\nab1vv7VzzjneDRVxBg402W23BKNHJ0M4u+6aIFPf6rT64gs755/vpbra4IILotx0UwTH+o/rzF9W\nSUk7p7A68Opz6DZ7GrPPu4ohbzyDt7KMQM++zLj4ekr23D+lPg1g1IB88rPTGybpSuYUV1BRm1qV\nGVs0yrFnHIDpdPLe859h2Rt/HqtHno9hfXM7Ypgteu01Bxdd5N3iNIIiIiIiIiIiIjuaLVXMUQFw\nEREREZE0yvA6GdEvl/xszzYN5QDkZLjxe5zt6iPuz+DHC6/FHoviuvrK5HxEXdwll0QZOzbBa685\nef/95EXqhSurW1WRYum6Whavqkn3EHd477zj4NRTvQSD8Pe/h1m8uI7vvqvnkUfCXHRRjH33VSin\nMxx4YIIPP6xn2LAEjz7q4owzvFRVQUVNuN2hnOwl8+k2exrrdt+Xhaeex4f/fp9FJ56Db91qDvjL\nePa59TK8pWvb3K8FzFtWSV0w2q7xbS8isQSVKYZyAHp8/znuuhpWHHxck1AOQLfc9E5BGI/D3//u\nxum0uOKKneNnJiIiIiIiIiKyNQrmiIiIiIjsRHrkt/+i7KoDj6Jk7D7kfvs5xttvtX9QaeZwwKRJ\nYdxui6uvdjN3UX2bqlGsKg8wf1kl5nYQQuqKnnjCyfnne3A64YUXQpxzToysrG09qp3XwIEW778f\n5PDD43zxhYMjj/Tx6df17e53yFvPAfDzib8FkiG+WRP+zCcPvkb5LmPp/fVHHHnesQx99UmMeKxN\nfScsi7nFlYSj8a033s6VVAZpzyvNhmmsDju+yT63w05ORnqnUXztNQfFxTbOPDNG3756zRQRERER\nERERAQVzRERERER2KkV5PuztrdxjGMy49AYSTieZ118LgUDHDC6Nhg41ufbaCOXlNq7/S9vDSSXV\nIeYWV5Awt15lR5IsC26/3cV113koKLB4++0gv/pVYlsPS4DMTHj66RCXXRZh6VI7/3dxH2Z870+5\nP1d1JX2nvEtdz76s2/OARvtqBg3ns388x7QrbyfhcjHm8Xs4bMJJFMye1qZzROIJ5hZXEk/s2M/B\ndZXBlI91V5VTNO0rKoeMpHbA0Cb7C3O8GGms3BaLJavluFwWl1+uajkiIiIiIiIiIg0UzBERERER\n2Yk47Da65Xrb3U+g9wAWnnIu7tK1uO76aweMLP3Gj4+yy64hvv0ii2+/aPu8SZV1EWYtriAWV7hk\na2IxuPRSD//6l5uBA03eey/I6NE7dqBie2O3w4RLa5n459XE4wZ33dibt17OS2l2uoHvv4I9FmXx\n8WeDrZm3GWw2lh15Mh8++T5Ljj6VrBVLOOjqc9jz7mtxV5W3+jyBcIx5O3D1qppAhGAk9apAfT99\nF5uZYNnhJza7vyNe+7fkpZecrFhh45xzYvTqtWP+jEREREREREREUqFgjoiIiIjITqZnQeqVMTY1\n/4wLCBT1JvOJh7EvmN8hfabT8pJaLrhyDS63yb8ndae6yt7mPmqDUWb+XL5TTKmTqkAAzj7byyuv\nONl99wTvvhukf39dpO9q4gmTRSur+eVBddz6jxXk5sd54d/dmPS3HkQjra+qYsRjDJ78IjGfv8VA\nSINoVi4zLr+FKfe/SNXgEfT/5G2O/OPRDHrnBUi0LvBWWRfh55XVrR7f9qQ91XKwLAZ89Aamw8nK\ng45ustvrcpDlT980VpEI/OMfLjwei8suU7UcEREREREREZFNKZgjIiIiIrKTyfS5yPK1/wKt6fbw\n40XXYUvE8V59OSmV2ugklbVhVpUH6NErxlnnllFX6+Cx+4tSGnIwEmfmz+XUh2MdP9A2CEXirK2o\n36Zj2FxpqcGJJ/r47DMHhx4a5/XXgxQUdNzjonhNLbX1289F/4RpsnRtLdFY16uyVLymlvD6cQ0a\nGuZvDyxj6C5Bvv4sm5uu6ktFmaNV/fT+6iO8FaUsPeIk4v6MVh1TOWIMn0x6lRmXXA/A7g/cxiET\nTyN34ZxWHb+2MsiKkrpWtd1eJEyT0upQysfnLJ5H9rKfWbP3QUSzcpvsT3e1nOefd7J6tY3f/z5G\n9+5d93eBiIiIiIiIiMi2YL/55ptv3taD2JJgcPt501VEREREZHthGAblNeF29xPoPYCcJQvI++5L\nEv0HkBi5aweMrmNFYwlmF1eQMJMXiwcNDTN/jpdZ0zMo6hml38AIAG6Xg2grK+EkTIuyqhDZGW48\nrrZX3ukIy9fVsXRdLbX1MXIy3Djs2/ZzF8XFBied5GPhQjtnnhnl4YfDeDwd139JVZAla2pYWxmk\noiaCzWbgczswjNZXd+lMkViCOcWVlFaHKK0Oke134d5Gj5XNVdVFWLy6ptE2j9di/4NrqSx3MPN/\nmXz9WRZDhoco7L7l58Qe992At6KU/11zF7GsnNYPwmajatholh1+Ap6qcnpM/5oBH76Gt7yEqqEj\nifu2XNmrKhDB53bg9zpbf84urLQqRFk7gjnDX36C/AWzmX3uVQT6DGiyf2ifHFyO9Dz+QiE47zwv\npglPPBHG3zFF2UREREREREREtit+v7vFfaqYIyIiIiKyE+qW48XZQUGOHyf8mbjbi++mv2BUV3VI\nnx1p4cpqonFzw32bDSZctQ6PN8GTD3ansrx1lUE2F0uYzF5cTkUHBJzafO64uaFaTmVdmGkLSts3\nDU47/fijjWOP9bFsmY0rr4xw330RHKl9W5tlmhZL19RuuF8XirJgRRVTf1rH0rW1RKJdqyJNIBRj\n5qIyatd/0CQSS/Dj4nLWlG/7CkcJMzmFVXOcLosJV63j9xNKqKuxc+s1fXn/zdwWK0vlzZ9F/oLZ\nrN3rQOp79UtpPJG8Qv73p7v5/J6nqe07kIEfvMpRvz+SXZ6ZhCO45e/XghXV1AQiKZ23q2lP9Ssj\nFqXvlMmEc/JZt+cvm+zP8Djxe9IXYHr2WSfr1tk499wohYWqliMiIiIiIiIisjlVzBERERER2QkZ\nhkEsbm4IDrRHLCMLy26jxzefYgQCRA87ogNG2DFWlQVY3UwYwp9hkpmV4Luvsli13MUvD67F7W59\nxZwGFlBeE6Yo39epFWtWlQao3CSQYFoW5TVh6oKdXz1nyhQ7Z5zho67O4K67IlxySYyOLmKzqqye\nspqm1URMy6KmPsqa8noC4Rhuhw2PqwMTQSmorA0zp7iSaMJstN0CKmrDRKIJ8jI926zST/HqWirr\nWg6TGQYMGRFml9FBZnyfwfdfZ1G6zsmYcfVNwla7PnEvOcsWMePSG6jv0add4woW9aL4mFMJFhRR\nMG8mPf/3BQP++wZxr4/qgcPA1rTaiwVU1IQpyPbidGy/nzsKhuMUr63desMW9Jw6hQEfvcmSY06j\nZK8DmuzvXZhBdkbLn9hqj2AQzj3Xi2HA44+H8fnSchoRERERERERkS5PFXNERERERKSJngUdN9/I\nopN+R23fQXie+jeOH2d0WL/tEQjFKF7T8sXuQ46uYcweAX6cnsGUD7NTPo9pWawsDaR8fJvPZ1qs\nLm/+fBW1YabN77zqOS+95ODss5NT2Dz5ZJjf/z7W4eeIxU1WlNRtsY1pWZRVh5i5uJzpC0pZW1FP\nwmwcjCGU+jRBrbW6LMCc4grim597E2srg/y4uHybVPmpqY+2+NjZ3C6jQ/ztwWUMHhbiy0+yueGK\nfpSu21h1xVNRSp8vP6Sm32BKx+7TIeOz7A6WHnMq7z/1IXPPuQRHKMi4f93C4eOPp+c3n9Bc6Z5Y\nwmROcQWxeNeqmtQW7X2+9v/4bQCWH3ZCs/u75Xrb1f+WPPmkk7IyGxdcECU/X9VyRERERERERESa\no2COiIiIiMhOyut2kJfZMVUULKeLGZfcgGFZZFxzBSS27UVy07RYsLwKs6U5eEhWBrnwinX4/Ame\nebQbq5anXmllbXk9kVjnfM0lVcFGU3NtLm6aLFhRxZziirSNybLgn/90MXGil4wMePXVEEcf3bZq\nQ621oqSOWKLlr3dzgXCMhSur+e6nEpasqSEcjeN9aBIFg3vjmPZ9WsZoWRaLV9Xw8+oaWhNNqA1G\n+WFRKVV1nTcNk2laLFxR1arxNcgvjHPLvSs4+Khqli3xcO3F/Zn9Q7IkyqDJL2JLxPn5hN/S0SWS\nEl4/88++mPef+pDFx55OxpoV7HfLpRx05dnkzZvZpH0oGmducSX14RjxNjxWugLLsiipSj2Y466q\noMf/vqBq8AhqBg5rsj/b70pbFalAAB54wEVWlsWFF6rasYiIiIiIiIhISzSVlYiIiIjITsxuMyit\n7phKIsGi3mSsXkHe1C9I9OtPYtToDuk3FYtX11BR2/J0PQ18fpOcvARTv8hi8utZ/PCdn+oqB16f\nSU5uotV5g4awQ16WJ/VBt9L85VWtCqqEInFKKoO4nXYyvM6ttm+tRAKuu87Nv/7lplcvkzfeCDFm\nTHrCEKFInAUrqtsUJmlgWha19VHqpv3IsGsvxhaLYV+5kshpZ3ToGOMJk3nLqtocrkiYySo/NptB\ntt/VoWNqTvHa2lY9JzZnt8Me+wTIzY8xbWoGX3ySjcsW45y3L8FyuZh29Z1Yjo57fG0q4fWz7he/\nYtUBR+ItL6FoxrcM/PB1spf+TPXgEUSzcjBNWLbEzccfZPDW2wZffBNj6vQYc+ZFWbwsytqyGHX1\ncSziYFjYDLDbus5nlCprI6ypaDrdXmsN/OBVekz7kgWnjadyxJgm+/t2yyArTY+vhx5y8dFHTi67\nLMrBB2+/FYtERERERERERDrClqayMixrCx8h7QLKyrZcslxERERERFJnWRbfzSvpsMoq3tI1HH3O\n4SSGDaP686kdXkmjNSpqwsxZWtHq9pYFn3+UzdQvcpgz00MikRxzfmGMcb8IsMc+AUaOCeJ0bflf\nJ7th8ItduuNy2ts1/i0prw4xd1llm48ryPIwpE8O7naOLZGAiy/28MYbTkaMSPDSSyF69Ejfv5Tz\nl1VS0p7gWCLBwZefSf7C2dR374W/ZDU/P/sWmYf9qkPCGeH1lVoC4fZN4dUtx8uwvjlpC4zUBqPM\nXFSWUsBpU4vme/jHbb2oLHfyG17l2hM/p3jCpR0yxtbIn/sDYx6/h9D8cv5rHMmbPf/I13V7UFPb\nuuCJx5sgM8skMytBTo5Jdo5JXp5FXh4M7G+w794GQ4ea2NP3FG4knjD5aWklVYHUKycdOuEkspf9\nzOQXvyCak9don80w2Gdkd5yOjv+Camthjz0yAPjhhwCZmR1+ChERERERERGR7UphYctvkKSnnrGI\niIiIiGwXDMOgZ76fpetqO6S/ULeerPp/9u47PKoybQP4feZMn8lMJjOTMumVJPRelK6CivopuwoW\ndC1rw7arghV73V27a28rdlQUGyrSpBN6CyUkkN6TKZn+/RFBAimTmROw3L/r4sLlvO9z3pTJtTPz\n5H7GTELK4q+hWLoY3rHjJakbKo/Xj50l9d3aIwjA+EmNOHuqG5WVHmxcq8O6VXpsWKvHwgUmLFxg\ngkodQP8hDgwZYcegYXYYoo9tZPIHgyipsiMr0SjVh3OMA9X2sPbVNLWgcWcVshKNiIvRhlUjEABu\nuaW1KWfYMB/mznXB2HMfKpqdnsiacgDkfPYOzLs2o2T8mdhz9kWYcMuFMPzncaxIyEO8WYtEiw4a\nVXhPi5ucHmzbVwe3L/KmtqoGF5wtPvROjwn7PB0JBIMoDDN16Gg5eS147PkivHlZEz5p+StWrzkd\nt55diYTEyBqTuuJyyrBtkxabC07HFvtfUApVa0xVKWBDGcZmHkDGObGwpgqwN4tobvr1j71JRHPz\nL383iWhuFHGwRIl9u9tvgtLrgxg40I8hQ/wYNMiPQYMCsFqlbT4LBIMor3WiuKKp07F0XTHu3QHT\n3h0oHTXxmKYcAIjWK3ukKQcAXn5ZiYYGAXfd5WZTDhERERERERFRF5iYQ0RERET0J+f2+rF6eyUC\nEj01MO3cjFNuvAAtE05F8wfzJKkZqs17a1HX3P1xPQAQpVej2f7rXr8f2LVNg3Uro7BupR4VZa2p\nHIIQRE6eC4NHtKbpJKZ4DgcD9WRqTqPDgw27qyOuYzGqkZ3UvfScYBCYPVuFN99UYuBAPz75xNnj\nb8Zv3FODhgiSRPQHi3DaNefCq9Hhu9cWwGM0YfTsKxBfsAKL/vMuavsMBgCYDWokWnTdGkNW0+DC\njuJ6+CV+Oi2XyZCXaoLZKN1ItKLyJhRXSve82rJ5LU6+9XJcbfsYb5b9HzRaP26cXYbBI8Ifx3Q0\nvx/YW6jG5vU6bCnQoXCH5nCSlUodQO/+TvTr34Qz7Z/gzAX3Q9NUB1eMFXunTIM9MRXOWBsccTa0\nxFiBDlKIPG6hTfNOWakSe3aqsXuHBqUH2sYOp6YGMHhwa7PO4MF+9O4dgDLM6VDVDS4UlTfB6faF\nV+AI/f/7KHI+ewc/3/c8ykZNPOZ6booJ8WE24nWmoQEYPFgPpTKItWsd0OslvwURERERERER0e9O\nZ4k5bMwhIiIiIiJs21+H6gjTSY407h8Xw7p1PeqWrYG/V65kdTtTWuPA7oMNYe8/ujHnSMEgUHZA\nifWr9Fi/So+d2zUIBlobBeISPK1NOiPsyO3rRHqCHpk9kJqztagWNY3hNR0dTSHKMDDbAq1a0eXa\nYBB44AEVXnhBifx8Pz77zAmTSZJjdKi748iOEQhg3K0zYN26Hivv+g8Ojj0dAGDeVoAJt1yEyoEj\nsfTxN9ps0arksFl0iI/RQi52PFKqpLIZ+8qlSZjqSFp8FNLiDRHXsbu8KCislqzpDgBGPnAjkpZ/\nj0X/eRefVYzHy0/Hw+uR4S8X1+AvF9d01AfTIY9HQFWFAhWlSjTWaLBpoxJbNmjhsLc2jgmyIDKz\nW9BvkAP9BjuQk+eC/IhvW7nDjl4fv46ceW9B7m77+PArFHBZE+CItcEZZzvcsOOMS4Qj1gaXNQ5B\n+bGPAXuzDPt3a1FZYkThDg02bBDR0PDrWD6VKoh+/VqbdQYP9mP4cD/i4zv/HDc6PNhX2ohGp6d7\nn6AOCD4vpkwfBwBY8P7iYz4OURAwsk98p9/L4Xr0USWeekqFOXNacP31PZuWRERERERERET0e8HG\nHCIiIiIi6lR9sxub9tZIVi9x+UKMeuAm2C+6FK6nnpOsbkc8Xj/W7KiCLxD+WJjOGnOO1tQoto68\nWqnHpvU6uJytTQRanR8Dhzow/a8iTjs1gOjosI/ThrPFh7U7KyUZR3SI1ahB7/Rjx98c7cknlXjy\nSRWysvyYP98l+VifowWDQazbVQ1HS/hv+GfOn4tBLzyEgyefipX3PIPDkUbAr6k5T81Fbe9Bx+wV\nZQLiY1rHXB3ZuBQIBrH7QAPK65xhn6s7zAY18lJNYTdWBIJBbCisRrNLusYJbUUpzrjsNDRk9MIP\nL8wDBAFFe1T41/2JqK5UYtBwO26YVQadvu3j0N0ioLJcgYoy5S9/FKgsU6K8VInaajmCQaHN+th4\nT2sjziAn+gxwQG/o+nGtqq9BzK4t0FaWQVdZBm1VWet/V5VBXd/+z7agTAZXTCyccTbU5vbDzul/\nh8fQtutMrRSRFm+Ao16HdetErF/f+mf7dtnhFB9BCGLcOD8uvtiLSZN8bdJ0nC0+7CtvlKyp7hDb\nih9x0n0zUXjuJdh07Z3HXLdGa9A7revHd3fV1AgYOlQHrbY1LUcrfSAPEREREREREdHvEhtziIiI\niIioS2t2VEoyXgUA4Pfj9L9Nhqa+GvUbdiBosUhTtwM7iutRWR9Zw0R3GnOO5PUI2L5Zg/WrW0de\n1VS1NnOIYhAjR/px2mk+nHaaDxkZ4T/1KjzQgLJa6UYFZSz4EOq6aqgfvA8GnarDdS+8oMD996uR\nkhLAl186kZDQ808fy2sd2HUg/OQjbflBTLr6HPgVCnz36pdwx1jbXD+UmlMxaBSWPfZ6p7ViolSw\nWXQw6pTYtr8+otFa4VDJRSgV4TXm+ANB6R7Pv+j3ypPo9ckbWHProyg+7f8O/3tzkwzPPJKIzQU6\nJCR6MO60BlRWKFFZ1pqEU1vTfjJTjMWLeJsX2VlA33wR6ekB9O7jQ5WzAi1ev2TnlrlboK0q/6Vh\np/Rww86hJh5NbSWEQABuQzQ2X/FP7J903jEjsKI0CmTYjDBFtT5eHA5g82YR69aJ+OYbOdata23O\ns1gCOP98Hy64oAWivhEVdU5JE4sAAMEgJtw0Deadm7Hwpc/RmNHrmCV90mJgidZIeluvF5g+XYOl\nS+V4+OEWXHUV03KIiIiIiIiIiA5hYw4REREREXXpYLUde0obJauX9dn/MPC/j6Dhn3fAO+sOyeoe\nrcHuxsY9kaf9hNOYo7A3YfDTc1Ax5GTsnzwVwSBQUqRCwSo9dmwyYeMG+eG1OTmtTTqTJvkxZIgf\nohjaPTxeP1Ztr5Tszf3YDSsxdtblAIBNj70M2+XT2133xhsKzJ6ths0WwPz5TqSm9vxTR38ggDXb\nq+D2hdmUEQxizKzLEbdxFVbf/jhKTjm73WVjZl2OuA0rseip91Dbe2CXZWWCENbn37B/N4Y8dQ8a\n07JRNmICqgaOgF8tbbPE8SK6nJhy0XgE5Ap89e4iBI6MhQEQ8APvv2XF/A/Nh/9NEIIwW32It3l+\n+eNt/TvRg7gEL7QaIC/VdEwDSUWdEztL6o/LxwUAgteD7Plzkf+/56FwOVGTPwAFN8xBY+axY/hi\notTIsBmg17RtNtq5U4a5cxX46GM56utam3ry+jgx8YwGDD+5GSq1dI8f288/4KT7b8CB0ZOw6p6n\nj7kul8kwqk88ZDKhnd3hmz1bhTfeUGLSJB/eessV8s8wIiIiIiIiIqI/AzbmEBERERFRl3z+AFZu\nrYBfoqcIcqcDZ140HlCp0LhxO6BWS1L3SIFgEOsjHHt0SHcbc2TuFoy540pYt66HR2/AgvcWt2m6\nSLbqoZdH4/vv5Vi4UMSSJXK4XK1vlJvNAUyc6MekST5MmOCDTtfxfYrKm1BcKc3zIrmjGZP+fg7U\ntVWAIMBpjUf5jysQbW07c+uDD+S48UYNLJYAvvjCiays4/O0sbiiGUUVTWHvT//6Iwx5eg7Kho/F\nzw/8t80IqyOZt67HhH9cjIrBJ2HZo6+Ffb/OCF4PTrnhAkTv23n433wqNSoHjULZiPEoHzEOblPP\nJklJKWPBBxj87P3YdvF12D7jhg7X7d6hRkO9HAmJHsQmeKFUtv+9o5KL6JMRgyit8phrUowzC4em\nugL9X34cyUu/RVAmw+5zLsK2GTfCp9O3WScAiDNpkZ5ggEopHj5zRZ0Tu4vtWL5Ugx+/icaWDa0P\nbK3Oj9ETmzDx9AakZUaYuuT3Y9LV50B/cD++e/VL2JPTj1mSEKNFrxRTO5vD9+abCsyapUZenh9f\nfeWEXt/1HiIiIiIiIiKiP5POGnPE++67777jd5Tuczo9J/oIRERERER/CjKZgBaPD3aXNG+GBxRK\nKJsbELf+ZzhtycCAAZLUPdKBKjuqGlyS1FIp5fB4Qhv9I/h9GPXgzYgvWIEWYwxUzQ2w21LQkJV3\neI3D5UV2qhYDBwRx7rk+XH21B0OG+KHTBVFUJMOaNXJ88YUC772ngMkURH5+4OjpOfAHAthRXC9Z\nWs7gZ+6Ddcs6bL/4ejRk5cO2ZglqPYBm4vjDaz7/XI6ZM9WIjgY+/dSFXr2OT1OOx+vH9uI6hPuh\naqrKcdJ9MxFQqLD84Vfg03X8UN//sgAAIABJREFURNgVa4Nl63rEF6xExeCT4LImhHnqjvV55zkk\nL/sORZPOQ8EN98BtjIG6oRbWrQVIXPUTcua9hfh1y6BqqIMnygC3MabDRqITLhjEsCfvgMJhx5pZ\nT8Cn7biTzGz1ITHZA0N0x6lQerUCA7Is0KrbH3ElCAJUcplkj+1Q+XR6HBwzGbV5A2HevgG2tcuQ\n9v3ncJlj0ZSW3ebrY2/xorzGAX8gCJ8/gO3F9SivcyIoBJCc5sHYU5sw5pRGaDQBHChWYetGHb7/\nyoT1q3QIBgUkJHqg6KBpqTOpP8xHxjefoGjyVBRPOq/dNRkJBmhU8navhWPpUhHXXquG2RzEp5+6\nYLV2vYeIiIiIiIiI6M9Gp1N1eI2JOUREREREdFiz04P1hdWS1dNUleOMGafCmZ4F14o1kjYetHh8\nWLujSrKEn5ATc4JBDPn3XUhf+BkqBo1CwQ334vQrzkB9Vj5+fP7jNkuTrXpkJhqPKREIAJs2yfDl\nl3K88YYSTqeAvn39ePhhN0aM+HWMU2m1HbslGi92aPxNXXZvLHrmfYhuNyZfcToUDjv2ffczTPnZ\n+PZbEZdfroFGA8yb58SAAQFJ7h2KwgMNKKt1hLc5GMTJd1+NhLXLsPaWB7H/9L90ucWyZR3G//MS\nVAw5GcseeTW8+3YgZsdGTLjlIjitCVj48vw2jSy60mLYVv0E26qfYNmyHrJA69fbHp+EspHjUTZi\nAmr6DkZQ3n7TyokQt+5njLnzShRPOAtrZj8RUS2zQY28VBPkoqzLtQWF1Wg6Qb+sI/O40euj15H3\nwSsQPW5UDhiBDTPvQXNKRrdr+f3AhjV6LPrWiILVegQCAlSqAEaObcKpZzYgOy+0pC6Zx43Jl58O\ndX0tvnnrO7is8cesUclFjOgdB0Gin7X79gmYPFkHpxOYN8+F4cPDHDNHRERERERERPQHx8QcIiIi\nIiIKiUohorbRDY9PmjdffbooGEr2wrphFRr6DYGYlSlJXQDYWVIPR0toCTehCDUxp+/r/0b2F++h\nrldfLH/oZbjNVkTv3o64TatRPnwcWsyxh9c6XF7YLFqIR0XhCAKQkBDE2LF+nH++FzU1AhYvluP9\n9xXYtUuGAQP8MBiC2F5cD58/8sYjVX0tRt91NYSAH8sefQ1ukwUBpRJuYwySl34Hd/FBLLWcj7/9\nTQuFAvjgAxeGDDl+TTnOFh8KDzYg3I809Yf5yP34DVQOHIlN18wOqQHMGWeDZct6xBesQMWQk9tt\ncgiH2OLCmDuvgrK5ET/f9xzsSW1HDXkN0ajLH4Di087FnrMvRGN6LwTkckQXFSJ2yzqk/TAfWZ+/\ni+iiXZD5vHDEJyGoOLFNOgNffBhRpcVY94+H0GKJC7tOklWP3JToYx4PHdGo5Kioc4Z9v0gERTlq\n+g1FyfgzoS8rRvz6n5Hx9ccQPW7U5vXvVuOUTAbYkj04aXwzJpzeCL3Bj4pSJbZt0mHRt9FobhLR\ne4Czw4ShQ7Lmz0XKkm+x+7xLUTpmUrtrEmJ0MBulGRvY0ACcd54O5eUyPPVUCyZPZlMOERERERER\nEVFHOkvMYWMOERERERG1IQhAbVNoCQ6hcFoTkPHNJ3CXVwLTL5SkZm1jC/ZXSJuuGUpjTs7Hb6DP\n/55HU1I6ljz+BrxRrWk4Hr0BqYu+hOD3o2zUxMPrDzWaxER1/EZ5VBRw5pk+jB/vw86dIhYvluPt\ntxWobfAjLrkREQenBIMY/vjtiNmzHZuvuhXlIyccvtSYnoP49T9j11oBU7+4AhBkePddF0466fi+\nAV94oAGOlvBGqKlrq3DyvdchKBOx7JFX4Y0yhLzXEZeI9IWfQVNThZKJZ4V1/6P1f/lxJKxdhsKp\nl6HozAs6XRtQqdGY0QulYyZh19TLUN1vKLw6A3RVZbBuLUDS8oXIXPABVI31sNtSDn+/HU/6g0UY\n+OIjqMkfgB0XXxdWDZkgICspGmnxUd1KclEr5WhyeODynLiGEG+UESXjp6AhMxfWrethW70YKYu+\nhD0hBfbk9K4LHEWjDSCvrwuTz6lHbh8n9u1Wo2C1HutX6dG7nxMGY/sfq9xhx6iHbkZQlGPlPU/B\nr9K0uy4r0QiVsosOnxD4fMCMGRps3Cji+us9mDlTmhGHRERERERERER/VGzMISIiIiKikGnVcpTX\nOBGQaERUiyUOsRtWwVqwEpXjz4DKFlkyiT8QwJaiWkmSZI7UVWNO6sLPMfj5B+C0xGHJk2+1SQ5x\nJCQj9ccvYd6xCXvPmo6A6tdGHIez/dSco9lsQVx4oRcZGQGsXStiyWIVfloYjSiDHynp7rCngKX+\nMB95H76Kqn5DUXDjnLZpMoKAVeJIXL7idnj9Il5/w4WJpxzfaceNDg/2loU5risYxLDHZ8O0byc2\nXjMbVYNP6tZ2Z1wirJvXIX7DClQMGR1xak5swQoMeuEhNKVkYtXdTyEoykPfLIpwJCSjYtgY7D53\nBkpPPhXuKCOi9+1CfMEKZM1/F6bd2+A2RMORkCzpWLjO5P/vRZh3bcamq25DU1p2t/fLZTL0To9B\nnEkb1v21ajnKa09Mas5hgoDmlAzsO+OvQDCI+HU/I3XRlzDt3o7avAHw6kNvBjuiJOISvBh3WiOa\nG0VsWBOFxd8ZER3jQ1rmsY/33A9eQcLapdh+0bWoHDK63Zoapbzd0XnhuOsuFT7/XIHTTvPhqada\nEGLIERERERERERHRnxYbc4iIiIiIKGQyQYDXH0CTQ7r/L+7RRSFlyTdobnJCfvZZ3UrNOFpxRbOk\niT6HdNaYk7DqJwx/9DZ49QYseeJN2JPS2i4QBMi8HtjWLkVLjAV1eQMOXwolNeeIMsjPD+Ds8+yo\nbXZi60YtVi0zoGC1DkmpHlhiuze6S1NVhpPvvQ4BhQLLHnntmMSV/XtVuOfR/nB5lPgA03BSfgnk\nI4Z36x6R2rG/Dm5veIkoyYu/Rv77L6Oq31BsuP7usJpVHPE2pC/8HJrayohScxT2Joy54yqI7hYs\ne+hluGITwq4FQYDbZEH1wBHYc87FaE7OgKamEnEbVyPtxy+QvPhrAEBzSiYCCmX49+mC3NGMYU/M\ngjs6BgU33QfIupfEolaI6J9tgbGTFyW6olKIcLb4JB1bF66gQoGqQSNxcPRpMJTs/WW81UcIyuWo\nzR8Y1vefXA4MHuFAUqobBWv0WLnUgLKDSvQb5IBC2frTQ9lQhxGP/ANevQGr73gSwQ6+5okWHUxR\n4X+uD3nrLQWeeEKFvDw/3n/fBbU0k7GIiIiIiIiIiP7Q2JhDRERERETdEqVRoqJWutSc5sQ0pC76\nEjFb1uPgOdOgjQkv1cHZ4sPOknr0RKZLR4055q3rW0cliSKWPvIqGrJ7t7u/OSkd2Z//D/qyEuw9\n+8I2b9KHmppzSHFVIzJymzDmlEY01ovYtF6Pn76LRmmJEpm9XNDpA10XCQQw6sGbYDiwDwUz70X1\nwBFtLh8sUeKB21PgsIu46fo9mLl9FvRrVsA17WIIel1I54xUdYMLB6rtYe1VNtRh9L3XAgCWPfwK\nvEZTWHVaU3PWIr5gZUSpOYOfngPr1vXYfvF1ODDhzLBqtCcoimjM6IWi0/+K8mFjIfO6YdlWgMRV\ni5H1xVyoa6thtyXDYwjv4+9M5oIPkLjqJ+y84CrU9B/Wrb0GrRL9syzQqLqRGtQBnVqB8lpnjzzu\nw+GJjkHxqf+H5qQ0xG5ei8QVP8JtNKE+t1/YNZNTPRg1rhl7dqmxca0eK5ZEITvXBbPVhz5vPo3Y\nLeuw+Yp/orbP4A5r5CRHQymPbIzVsmUirrlGDbM5iE8/dcFqjagcEREREREREdGfBhtziIiIiIio\nW0SZAEEQUN/slqbgLw0pttWLURdUQDVxfFipOTuK6+B090xyRnuNOYaiQoy940qIHg9WzHkO1QNG\ndLAb8Ks1iDpYhLhNq1HddwicCUmHrwUBCBBCSrNwtHixp7R1tJNWF8Dw0Xb0H2xHSZEKm9br8f1X\n0fB6BGT1ckGu6LhO1vy5yPryfZQNH4dNl98Gl0uEvVmGhno5DuxX4Yk5SWisV+CqGysx7mwX/Co1\nklb8AGdVLYQpU7o8Z6QCwSC276+D1x9Ck1E7hvz7Lph3bcHmK/+JiuHjIjqLMy4Rad+Hn5pjW/49\n+r35NOqye2PtbY92O1kmVC2WOJSddCr2nfFXeHVRiC4qRNyGlciePxfmHZvg0Rtgt6VIM+bK78fw\nJ2ZB9LixevaT8Ks1IW+1RmvQN90MuVya+UcKuQxurx/NLq8k9SQhCGhKz8GBcWcgZdECJK74EVUD\nR0aUlKTTBzDmlEYEAkDBaj0WL4yG1t2IGZ9fhxZrPNbe+gggtv+9pVcrkBbf/ZFaR9q3T8D552vh\n8wHvvdeC3r3De2wSEREREREREf0ZddaYIwSDEv0KbA+prm4+0UcgIiIiIvpTCgSCWLOjEi1hjhk6\nmtzpwJkXjUdAocSuRWthS7J0a39VvRPbi+slOUt7ovRqNNt/HZGlrSjFhJunQ1NXjdW3P46SU87u\nsoZ52wZMuOVCHBg9CavuebrNNVEmYER+HBRdJFrsLK5HRb3zmH8PBIDliwyY+7oV9bUKmMxejBjd\nDK9HQEuLDC0uGdwtMrS0yOBp8kEorYVd0KNJYYLH0/49Z1xdiSlTWz+ngs+LU689D4aSvaj+ehGE\nwR0nc0ihtNqO3b80IHWXbfn3OOmBG1GTPwA//fvdDpsVumPsrTMQu3ktfnj2w24ln6jqa3Ha38+G\nwmnH9//9FM0pmRGfJVSCz4vEn39A1vy5sG5dDwCw21Kw56zp2D/pPHj14TdqJKxchJPnXI99k6di\n/T8eCn1fjBa9UqRP73F7/VizvRL+HngJw6hVQiYTUG8PrxHRumkNxsy6HO7oGHz/4jy4YyKPmdm6\nQYvnHk9AfZ0Cp2Ihbr5uNxz/N7HD9RkJBqTERYV9v8ZG4PTTtdizR8Szz7owbdqJHx1GRERERERE\nRPR7YrV2/NoME3OIiIiIiKhdgiBAoZChprGl68UhCCiUUDY3IL5gBcoN8dCNHAJZiMkePn8AW/fV\nwR/oud8rODIxR1Vfi3G3XwpdVRk2XjMbRWdeEFINlzUeiSt+hHXLOhSd/hf4tL+OhAoGu07NcXv9\nKDzQ0O7IHkEAUjPcOPXMBohyYMsGHXZt02Lfbg1KitQoO6hCVYUSjQ0igs1uKIIeqMwqmGwy2JI8\nSE7zID2rBdl5LuT2cWLK1DpMPP2IxhiZiKbkDKR//zkCW7bCd8ml0iSvtMPnD2BbUV1Yo9IUTQ0Y\nc/c1EPw+LH/4FXhMZknO9GtqThVKJoSYmhMMYvjjtyNmz3ZsvupWlI+c0OayWimid5oZcSYNdGoF\nlHIZAAF+f1CasUwyEU1p2dg/6TyUjpoIwe+DZdsG2NYsQdbnc2Hdug7GokKo62sRFAR4ogwhp/kM\nev4B6CsOYu2tj8JtCq2JzqRXIS8tJqw0rK7IRRl8gQCaHNK+RhClUaBflgUGnRLltY6wajjjE1sT\np37+HjG7tqB44lkRpybFJnhxZq+NcC4sxHeYjK92D0JKuhvxtvZTg3qlREMuhpdQ5PMBl12mQUGB\nHNdd58HMmb+hZCIiIiIiIiIiot8JJuYQEREREVHY1u+qkmyEjKaqHGfMOBVNqZnY8/kipCaEluix\np7QRB6vtkpyhI4cSc+ROB8bedilidm/Djml/x9bLb+lWnYwFH2Lws/dh64yZ2HHx9W2udZWas7es\nEQeqQvs4G+tFVFcpoNYEoFYHDv/d5+OX0PetZ1A8fgrW3PFkt84OACMevBnJy75DzdP/RfDCi7q9\nPxRF5U0orgzvud7QJ2Yj7Yf52Hz5P7Br2lWSnutwas5zH6G+V98u16d+/zmGPXkHqvoNxZIn3jo8\nsg0AYqJUyEuNgaKdcU6BQBCOFi8cLT7YXV7YXV44XN6wx3odSdlUj/Rv5yH9m08QVVrc5ppfoUBT\nahYa03uhIaMXGjJy0ZjRCx5j24QbQ1EhJl19Dqr6D8OSJ98O6b56tQIDsi1hN4eEwusLYPX2SvgC\n0oxY0qsV6J9lOfw12lVSj/K6Y9OqQhIMYsRDtyB52XcoPO9SbLpmdsTnG3XfTNhW/IibJi/Hiz+M\ngt8n4Ky/1GL636rbjLEzapUYmBN+Ss+dd6rw2mtKnHaaD2+/7ZIigIqIiIiIiIiI6E+ns8QcNuYQ\nEREREVGn6pvd2LS3RrJ6wx+9FSk/fYXlj7+JjEvObbdx4Uh2lxfrd1VJkzDSiSi9Go66Jpx8z9WI\n27CqdYTPLQ92OzVGdDlw1vSx8Gr1+Pp/PyAoyttcT4mNQobt2IYknz+AVdsiazqI3rMdE2+4AO7o\nGHz3yhfwRhm7XUNbWYpJV06BXx+F5rUbEdSHPx6nPZGMJIpfvRij77kWddm9sejZD4753EbKunE1\nxt1+GcqGj8XPD77U6VpNVRkm/f0cIBjAwpe/gDM+8fC1lNgopCdEdTs5xu3xtzbptHgPN+w43eGP\nFFI0N8JYtAvR+wph3LcT0ft2wbh/N0RP25FNLnMsGjJ6ofGXZh3bykVIWfw1fp7zHMpOOqXL+6jk\nIgbmWKBWSvv1aE9xRTOKKpoirqNVyTEgywKl4tculEjHZcmdDky88QIYSvZi5Z3/xsFxZ4R9vpgd\nGzHxpumoyR+In56ai3171HjmkUSUlyqRmePCTXeUIT6xtWEyO9GIRKs+rPu8/bYCt92mRm6uH199\n5USUtA93IiIiIiIiIqI/DY6yIiIiIiKisGlUcjQ5vHB5wm8QOJIzNgEZ33wMRWMdSiachRiDutP1\n24rq0OL1S3LvzqhEAQMfuAW21UtQOmoi1t7+WFjjaIIKJTTVFYjbuAr1mXloTslsc93u8sJm1kKU\ntW1IKq1xoLYp/LFhMo8bo++6Gpr6Gqy852k0peeEVcerN0AI+GFbtRgetxeB8RPDPlN79hxsDCuB\nSe5oxui7robo8WDZwy/DHRN+QkhHnHGJiN20GvEFK1E+bCxaLHHtLwwEMOrBm2A4sA8FN9yL6oEj\nALQmIuWnxiDJqg9rnJNclEGrlsOoV8EarUGiVQ9TlBqBQBAut7/bzWkBlRrOuETU5fZD+cgJKDrj\nfOy44CocGH8mqvsMhj0xDV6dHur6OsTs2Q7LtgIkLV8I4/7dsMcnYcPMe9qkALVHFAT0yzJDp1Z0\nuk4qUVoFKmtdEY210yjlGJBtgUrR9vEtF2UIBINoDHNcVkChRNWAEUj9/nMkrvwJZSMnwB0dxqi1\nYBDDHp8FXWUZVs9+Es64RJjMfow7rRF1NXJsXKvH4u+NMEb7YTQG0D/HAHkXDY7tWbZMxDXXqGEy\nBfHppy7Exnb/qERERERERERE1IqjrIiIiIiIKCJSp9aM+8fFsG5dj4WvLUD+5JOgUrbfAFNe68Cu\nAw0S3bUTwSCGv/QwUj6bi6p+Q7HskVcRUHb8RKorh0YBVQwahWWPvX7M9aNTcwLBIFZvr4Q7ggak\nvq8+idyP38CeKdOw4cY5YdcBAJm7BZOvnAJNbRUalq6CPys7onpA6xiiXQfqUdMYXvPRwOcfRNYX\n72HbJTOx/ZLru94QJuuGVRg3628oGz4OPz/433bXZH3+Lga++HDrmgdeBAQBWpUcfdJjoO2hBhW3\n14+yGgfKax3w+KQZ5XQkZVM9jPsKYSzaBUPxXhwcOxlVA0d2ukcA0CfdDLOx8+Y6qZXWOLD7YHg/\nF9RKEQOyOk738flbx2VFMlYscdlCjHrwJjQnpuKH5z+GT9e9GJq4dcsx5s6rUD5sDJY/9PIx15f+\nYMBrz8WhxdX6c1MUg7DZgkhKCiApKYjk5Na/ExMDSE4OIDExCI2mbY19+wRMnqyDwwHMm+fCiBE9\n3/xIRERERERERPRH1lliTs/nTBMRERER0e+eXqNAfIwW5XVOSeoVnncprFvXI2ve29g/oC96pZiO\nWeP1BbCvLPKRNaHI/98LSPlsLhoycvHz/S9E1JQDAE3pOajuMxjxBSugL90Pe2Jam+ulNXYkx+qg\nkLe+sV5d74qoKce8dT16ffIm7LYUbL7qtkiODqA1aWXj1bNw0gM3QnXH7XB+9Gm3R3odqdHuxo7i\n+rCTj6KK9yBjwYdoTkzFjmlXhX2OUFQPGI7qPoNhW70YpsKtqM/p0+a6/mAR+r7+b7gN0Vh3ywOA\nIMBiVCM3xQS52P3UklCpFCLSEwxIjY9CdYMLpdUONEmYMOsxmFo/9gHDQ96TlWg87k05AJBg1uJg\nlb3bKV4qhYj+mZ2P3JKLMqTFR2F3aWPY5ysdfRp2nn8Fcj96HcOeuAMr5jzbZfLQYYEA+r7xFABg\ny99uaXfJmFOakJPvwqJvjWhp0qOmSoGDBwWsWiUiGGz/cWqxBJCc3Nqsk5QUxPffy9HQIOCZZ9iU\nQ0RERERERETU03ruVUMiIiIiIvpDSYs3QIygOeNIZSMnwJ6QjNQf5qO+qBTOlmPfYN9X1hhRakWo\nogu3ofe7L8BpS8HSR17pdrpFR/aeNR0AkPHVR8dc8weCOFjtOPy/D1TZw76P6HJg2JN3AIKANbc9\nCr9GG3atI5WddAoqB46EbsmPUC78NqwawWAQ+yuasHFPTUTjyPq//ARkAT82/X0Wggpl2HVCIgiH\nE3ny332x7SW/D8OemA25uwUFN86BJ8aK9HgD+qSbe7Qp50gyQUCcSYtBOVYMyrEizqSFTKLHZXck\nWfVItOqP+32B1s9BWkL3HqcqeWtTjkbV9e8nJVh00IawrjNb/3YzqvoPR+LKH5H74Wsh70ta9h1M\ne7ajePwUNGbmdrgu3ubFxVfU4o3X3fj6ayc2b3bgwAE71qyx49NPnXj2WRduu82N6dO9GD3ah6go\nYNs2GRYsUOCll5TYu1eGa6/1YPp0aUYUEhERERERERFRx9iYQ0REREREIVEpRSTFSvRGvChi97kz\nIHo9SP/yfRRVtE3GaXJ4JEvn6UrOvLcAANtuexDuGKtkdUtPOhUt0Wakf/cpZO5jxzcdrLbD6wug\nrqkF9hZv2Pfp/8qT0JcfwK6/Xo7a3oMiOXJbgoAN19+FgCiH5s7bgZbujaBye/zYtKcW+yuaIxqB\nFr9mKRLWLUPlwBEoHzEugkqhqxowojU1Z9VPiC7cdvjfe334Gsw7N6N4/BRUjj8DfTPMSI2XppEr\nHAatEnmpJozIj0N6vAEqRfsj4aRmMaqRecQothMhzqSFPsSxYQpRhn5ZZmjVoTXbyAQB6QmRfXxB\nUY5Vd/4bTks8+rz9DGLX/9zlHsHnRZ+3nkFAlGPbpTd0ud5sVLdpCFMqgbS0IE4+2Y9p03y47TYP\nnnmmBfPmubB6tQMlJXZs2WLH11878OWXTsyZ447oYyQiIiIiIiIiotCwMYeIiIiIiEKWHKuHQqJk\nkKJJ58Kji0LWF++htqoBzb+M5QkGg9h9sEGSe3RFU12B5KXfojEtG7XDRktaO6BUomjyVCibG5G8\n5NjEmdbUHHtEaTnxa5Yi86sP0ZCeg22XdP1Gfnc1p2RizzkXQXmgGNqXng95X02DC+t2VaHBEdkb\n/4LPi/6vPIGgTIZNV8+OaJxW924sYPvF1wEA8ue2puYY9+5A73dfhMsci8Jb78egHCtiDMd/jFN7\nlAoRqfFRGJ4fh/y0GBh1PZcqdKgZSDgBKT1HC6V5RiHK0D/LAl2ITTyHWKM1MGoj+zy6TWasvOdp\nBEQRIx69FdrK0k7Xp333GaJKi7HvjL/CYUvpdK1aISKlm42SMhkQFxfEkCEBDB/uD3m6FhERERER\nERERRYYvwxARERERUcjkogxpEiWE+DU67Dvjr1A31CLlp69QVN6amlNa40CzK/wEme7I+mIuZH4f\nCqde1iNNH/vOOB9BQUDmgvfbvX6wyo56e3jNK4qmBgz5z90IyBVYc/vjCCh7phlj2yXXoyXaDM1T\nT0JW1nljQSDQ2lS1dX+dJGPIMr7+CIaSvSiaNBWNGb0irtcdVQNHoqb3ICSuXISY7Rsw/PFZkPm8\n2HPvk+g7ODOkkUjHm0wQEButwcBsKwbnWGGN1kDK72q1UkSf9BiIv5GODrNR3WkTklwmQ99MM/Sa\n7jXlHJKRaAz3aIfV5fXHxmvvgqqpASMfvBkyT/uPd7HFhd7vvgCfSo0dF17Tac2EGC2G5MYiKsLG\nISIiIiIiIiIiOj5+G6+mERERERHR70aCRQetRE0Je865GAGZiOxP30ZdUwsq653YX94sSe2uiC4H\nMr76CC3RZpSMP7NH7uGMT0T5sDEw79yM6N3bjrnuD4Y55CkQwJCn50BTV41tl8xEY2ZuhCftmE8X\nhS1X/AMylwva++/pcJ2zxYuCwmqU1jgkua+iuRG933keXq0OWy+7UZKa3SII2HbJ9QCAMXdeBeP+\n3ai+YAbip5/7m2lM6UyUVoneaTEYmhuLOJM24gYdhShDvwwzlMdpXFaoMjpIzREFAX0zYmCIoHnF\nqFPCYow8FWnfmeejaNJ5iCncioEvPNTumqwv5kJTW4Xd585Aizm23TUqhYh+GWb0SjG1GWFFRERE\nRERERES/bXwlh4iIiIiIukUmCCGNkAmFKzYBB8dORnRRIWI3rMSO4nr4ApEnrYQibeHnUNqbsOfs\n6QgoVT12n71nTQcAZC74QJqCwSAGP3MfkpYvRHWfwdh1/uXS1O3E/lP/D7W9+kHz2SdQrPz5mOvl\ntQ6s31UNe4t0SUd5770EVVMDdky/Gm6TRbK63VE1cCRq8gdC4XTAm5IGPPrYCTlHJLRqBfJSTRiW\nF4eEGC1kYSRDyQQB+Wkx0HZzHNTxYNSrYD5qpJgoCOiTYYZRH/njOiPBGNbnrA1BQMHMe1CflY+M\nbz5B+jcft7msaG5E7gevwhNlxK7zr2i3REKMFkNzY38z49OIiIiIiIiIiCh0bMwhIiIiIqJus0Zr\nYJRojErh1MsAADnz3pIZ8fQoAAAgAElEQVSkXkj8fuR89g78CiX2Tpneo7eqGHwyHHGJSFn0FeSO\nCNOAgkEMePERZHzzMeoz8/Dz/S8gKB6HkUoyGTZcfxcAQHfHrYDPBwDw+QPYvr8Ouw40hJ/+0w59\n6X5kz58LR1widp87Q7K63SYIKP7H3fDm5sH+0muAXn/izhIhjUqOXikmDMuLRaJF161mk17J0TBF\n9VzzWqTSEwyHE4FkgoDe6TGSnVerliM+RhtxnYBKjRX3Pgt3lBEDn38Qpl1bDl/r9fEbUNqbsPOC\nK+HVt216VClE9E1nSg4RERERERER0e8ZX9UhIiIiIqKwZNikSc2pz+mD6j6DkbB2GaKK90hSsyu2\nVT9BX1aC4lPOgSc6JuIxP50SRew98wLI3S6kfT8//DrBIPq+9i9kz38XjalZWPrY6/BGGaU7Zxfq\nc/uhaNJ5UGzfBvU7b6LJ4cG6XVWoanBJfq9+r/wLMp8Xm6+6tUfTjDqjEGXISzUh5exT0bB0NXxD\nhp2Qc0hNrZQjOykaw/PjkGzVQ+yiQSctPgpxEjSm9CS9RoHYaM0vyT4myVNl0uKjIMoi/ynhjE/E\n6jv+BZnPh5EP3gRlYz3UtVXI/uwduMyx2HP2RW3Wx5taU3LMEozTIiIiIiIiIiKiE4eNOURERERE\nFBajXgWLRG8YF553KQAg59N3JKnXlZxP3/7lvq1pLJmJRiTHRfXY/fZPOg8BuaJ1nFWYyTL5/3se\nuR+/geakNCx54k14jCaJT9m1LZffAq9WD83DD2Dvj6vR4vFLfg/rxtVIXPkjqvsMxsHRkySvHwqL\nUY2hubGIM/22G1IioVKIyEw0YkTvOKTEtt94Em/SIi1emga8npaWYEBuqgkWo0by2kqFiJRYaX4+\nVA45Gdtm3ABdVTlGPPJP5L/7IuTuFmy7+Hr41a1nV8lbU3JyU5mSQ0RERERERET0R8BXeIiIiIiI\nKGwZCcZujcTpSNnICbAnJCP1h/lQNtRJcLKOmQq3wrplHcqHjEZzahZUchE2sw69M8xIsvTMqCK3\nyYwDoyfBULIX1s1ru70/9/1X0PvdF2FPSMbiJ96C22TpgVN2zW2yoGDm3ZA3N+LkO66Epqpc2hv4\n/Rjw0mMAgE3XzAYk+N7qjkMpOX3SzVAqxON67xNFIReRYTNgRH480uKjoPilESRar0JOSvQJPl3o\nNCo5YqOlb8o5JClWB5Vcmu+JHdOvRtmI8YjbsBKZX32IZlsK9k86F8AvKTl5TMkhIiIiIiIiIvoj\nYWMOERERERGFTauWI16KMTeiiN3nzoDo9SD3w1cjr9eJ7Hm/pOVMbU3pSY7TQ/ZLWkhWkhHJ1p5p\nztl71jQAQOaC97u1L3veW+j75lNwxCZgyRNvosUS1xPHC1nJKedg85X/hLa6HGPuvArKpnrJaqcv\n/BTR+3Zi/ynnoD6nj2R1Q2ExqDHkD56S0xmFXIa0eAOG58chK9GIPukxkjTd/VGIMhnSEiRK1ZLJ\nsOb2x2C3pQAAtl52E5RqNVNyiIiIiIiIiIj+oPhqDxERERERRSQtvv0xON217/S/wG5LQc5n7yB6\n9zYJTnYsTVU5kpd+i8a0bFQNGnU4LedImYlGpPbAWKva3oPQmJaNxOU/QFVXHdKezC/ew4CXH4fL\nHIslj78JZ1zi4WuiTDicbnK87frrFdj1l7/BULIXJ999DUSXM+KacqcDfd56Fj6VBlsuv0WCU4ZG\nIcqQl2JCnwwzVH+SlJzOyEUZkqx6Noe0Iz5GC71aIUktr96AxU++jRX3PAPv/03FkFym5BARERER\nERER/VHxlTYiIiIiIoqIUiEiJTbyRpaASo31N86BEAhgyFP3QvD7JDhdW1lfzIXM70Ph1MsAQWiT\nlnOk9AQD0uMN0t5cELDnrOmQ+X3I+OaTLpenfTsPg55/EC3RZix5/E04ElPbXI8zaZGfFoMTkmki\nCNh85a3Yf8o5MO/cjFEP3gTB64moZO4Hr0BdX4OdF1xx3FKBzIdScqRIfaI/PEEQkJ4g4c+FxCSY\nZkxDXloMFHK+PENERERERERE9EfFV36IiIiIiChiSbE6qOSRp41UDRqF/aecA9Oe7cj67F0JTvYr\n0eVAxlcfocVkQcn4KVDJRSSYO27ISI2PQoaUb8IDKJl4NrwaLTK+/hjw+ztcl7xoAYY8dQ/cUUYs\nefwNNKdkHLMmyaqDKUolbaNAd8hkWPePB1E2fCzi1y3H0H/dBQQCYZXSVpQiZ95bcFriUfiXyyU+\n6LHkMhlyU0zoy5Qc6iazUY1ovSqiGgpRhqxEI4bmxcJi1Eh0MiIiIiIiIiIi+q1iYw4REREREUVM\nlMmQliDN+KdNV8+C2xCNPm8/C21FqSQ1ASBt4edQOpqx56xpCCiVSI7VQ5R1/pQoJS4KWTajZGfw\naXUomXgWtNXlSFizpN01iUu/w7AnZsOr1WPpY6+jKT3nmDXRehW0v4zUSYmLguUEjcAJyhVYdddT\nqMkfiNSfFmDAS48BwWC36/R7/V8QvR5sufwW+NU926hgNqgxNC8W8UzJoTBl2sJrhhMFAalxURie\nH4ckqx4y4YTkXRERERERERER0XHGxhwiIiIiIpJEfIwWul+aRSLhMZqw8ZrZkLtdGPTc/WE1ehzD\n70fOZ+/Ar1Bi75TprWk5ltAaM5Ji9chOio78DL/YO2U6ACDzyw+OuZaw8ieMePRW+FUqLHvkFTRk\n927/TBZdm/+dm2KCViWX7Izd4VdrsPzB/6IxLRvZn/8PuR+80q395m0FSF7yLep69UXJhCk9dEqm\n5JB0orRKxEWH3kAmAEiI0WJYXhzSEwyQi3wphoiIiIiIiIjoz+TEvHJLRERERER/OIIgICPBgC1F\ntRHXKpl4NtK+n4+EtcuQtOQbHBx3RkT1bKt+gr6sBPtO/ys80THICiEt50iJFh1kAlB4oAGRtgk1\nZvRCTe9BSFi3DLqyEjhsKQCAuHXLMfKhmxCQK7D8oZdRlzeg3f1qhQjzUQk5clGG3ukxKNhVDb8U\njUzd5I0yYukjr2LCLRei75tPw200oeiM87veGAi0puwA2HjNHUAnXxNrtAbp8YbOlnRKLsrYEEGS\nSUswoLqxBYEuHm8xUWpk2AzQayJvWiQiIiIiIiIiot8nvipJRERERESSMRvViNarIi8kCFh/033w\nK1UY+OIjUDQ3RlQuZ95bAIDC82Z0Ky3nSAlmHXJTTJBi+MzeKdMAABlffQgAsG5ag5PumwlAwM8P\nvICavkM63Guz6CC0MwJHp1agV6pJgtOFp8USh6WPvga30YTBz96PxOULu9yTsmgBYnZtQcnY01Hb\ne2C7axSiDPlpMeidFgOtWg61Mrw/bMohKWlUciQelVx1pCiNAv0zLeiXaWZTDhERERERERHRnxxf\nmSQiIiIiIkll2AyS1HHYUrDtkuuhbqhFv9f+FXYdU+FWWLeuR/nQ0WhOzUJSN9NyjhQXo0VeWgxk\n7TTGdMfB0ZPgNpqQ/t2niN2wEiffcy2EQAAr5jyHqoEjO9wnEwQkmDtuKoqN1iDJqo/obJGwJ6Vj\n2cOvwKdSY/ijt8K6cXWHa0WXE33f+A/8CiW2XPnPdtdYozUYlheL2G6MDSI6XlLioqA4quFLrRSR\nl2rC4F6xMEVJ0KRIRERERERERES/e2zMISIiIiIiSRm0SsRJ1EhROPUyNGT0QsY3n8CyeU1YNbLn\nvd1a67xLoZTLYAsjLedIsdEa5KeaImrOCSiVKJo8FaqmBoy540rIPG6svOs/qBg2pst7K+Rip2sy\nbAZE605cQ0B9Th+smPMchCBw0n3XI3rP9nbX9frkTWhrKlE49TI44xLbXDsyJaerj5foRFHIZUiJ\ni2r9b1GGTJsRw/LiEGeK7GcMERERERERERH9sbAxh4iIiIiIJJeWYIg4VQYAgnIF1t38AIKCgMFP\n3weZx92t/ZqqciQv/RaNadmoGjQKybFRYaflHMkSrUHvCJNz9p5xAYK/7F89+wmUnXRKl3ts1o5H\n5xwiEwTkp5mgOoENLVWDRmH1rMchdzkx+s6/Q1da3Oa6uqYSvT56HS0mC3ZO+3uba0zJod+TRIsO\n6fEGDM+PQ3KsXpKfe0RERERERERE9MfCxhwiIiIiIpKcRiVHoqXrJpJQ1Of2w55zLobhYBFyP3il\nW3uzvpgLmd+HwqmXQakQI07LOZLZqEaf9BiIYb4R70xIwsq7nsLSR1/DwXFndLneoFXCoFWGVFup\nEJGfHvnIrUgcHHs6CmbeA3VDLcbceRXUtVWHr/V94ynI3S5suewm+LSt3ycKUYb8VBNTcuh3RSYT\nkBofBbnIl1eIiIiIiIiIiKh9fOWIiIiIiIh6REpcFBQSvVm99bKb4LTEI++DVxFVvCekPaLLgYyv\nPkKLyYKS8VMkS8s5UoxBjT4ZZoTb/lI6ZhKqBo4MaW13G52MOiUybYZwjiWZfWdNx7ZLZkJffgCj\n77oaCnsTTIVbkfbDfNRn5mH/aecCAKxGDYbmxiKWI4CIiIiIiIiIiIjoD4aNOURERERE1CMUchmS\nY/WS1PJpdSi44V7IfF4MeXoOEAh0uSf9u8+gdDRjz1nTIdeqJU3LOZIpSoUEszTpQB1RymWwhjHa\nKdGqR9wJbnbZfvF12HPWdETv24mT7r0OA158BACw6epZUCgVyEs1oXd6DJQKpuQQERERERERERHR\nH09IjTmbNm3CJZdc0u41l8uFadOmYe/evZ3uKS4uxvTp03HhhRdizpw5CITwQjoREREREf2+JVn1\nUEvUcFE+cjwOjJ4Ey7YCZHz9ceeL/X5kf/YO/Aol9k6Z1iNpOUfKsBmglPdc/QSzDjJZeLk8OclG\n6NUKiU/UDYKADdfdhQNjJ8O6dT0s2zegdNREBMeOxdDc2BPeOERERERERERERETUk7p85fjVV1/F\n3XffDbfbfcy1LVu24KKLLsKBAwe63PPoo4/i5ptvxnvvvYdgMIgff/xRguMTEREREdFvmUwmID1B\nunFKG6+7Ex5dFPq99i+oa6s6XGdb9RP05QdQfMo5CJotPZaWc4hclCHDZuyR2gIAWwSJPKJMht7p\nMZD3YGNS14cQsea2x1Ex5GR4dVFwzHkQfdLNTMkhIiIiIiIiIiKiP7wuX5lNSUnBc8891+41j8eD\nF154ARkZGV3u2bZtG4YNGwYAGDNmDFasWBHumYmIiIiI6HckLkaLKI00iS0t5lhsueKfUDjth0ci\ntSdn3lsAgMLzZiA5Vt+jaTmHxMdoEa1TSV7XYtRApYysgUWjkiMv1STRicITVCqx57/vorpgG0wD\n+5zQsxAREREREREREREdL/KuFkyaNAkHDx5s99rgwYND3hMMBiEIrdHrOp0Ozc3NIR3Qao0KaR0R\nEREREf12DVXKsXZ7pSS1qs+/BPWLFyB52Xeo2rAM1aNPbXPdsH0TrFvXo3rkOCgH9MOAvHiIYmiN\nOZE+/xipU+HnzeUIBoMR1TlS316xMBs1EdexWqMgquTYe7BRglN1T6xJi5xUE/QSNWgRERERERER\nERER/V502ZgjFdkRv6HqcDhgMIQWZ19dHVoDDxERERER/bYpBKCuuUWSWmtm3otTr5uKvCfvRUmv\nQfBpfx31lD/3VQDA9rMvhlEtR12dI6SaVmuUJM8/jBoRB6rsEdcBAJ1agYDHJ9nzIqNKlPTr0BWD\nVokMmwHRehVc9ha47MfnvkRERERERERERETHU2e/9Nnzee6/yM/Px+rVqwEAS5cuxZAhQ47XrYmI\niIiI6Dcgw2aAIFGtprRs7LzgSmhrKtDnrWcO/7umqhxJS75FY1o26oeejESrrpMqPSMtPgpqRWSj\npw6xWaQ9vyAIyEs1QR3haKyuaJRy5KfFYFCOFdF66cd7EREREREREREREf1edLsx58svv8SHH37Y\n7RvNmjULzz33HC644AJ4vV5MmjSp2zWIiIiIiOj3S69RID5GK1m9HdOvRnNSGrLmvwvTzs0AgKwv\n5kIW8KNw6mVIjouCKDtuv4twmCiTITPRGHEduUyGOFPkI6yOppDL0DstBiqJmofa1BZlyEo0Ymhe\nLGKjpT87ERERERERERER0e+NEAwGgyf6EJ3hKCsiIiIioj8Ot8ePNTsq4ZfoaYhl8xqMv/VSNGT0\nwuIn38YZM05FQKnCwvd+wrCByd1qzJFqlNUhW/bVorYp/NFNSRY9spIib/DpjMvtQ4PdjUa7B40O\nD1weX1h1REFAolWPlDg95OLxb4YiIiIiIiIiIiIiOpE6G2UlP47nICIiIiKiPzmVUkRSrB7FldI0\nwNT0G4Z9k6ci49t5GHv736B0NGPr1MuQmBRzQtJyjpSVaER9sxuBMJuQbBbp0oU6olHJoVHJkWBu\nHZnl9vjR4Ght1Gmwu+F0d96oIwCIM2mRnmCAqofHYxERERERERERERH9HrExh4iIiIiIjqvkWD3K\nahzw+gOS1Nt85a2wrVoM094d8CuUKDnnQgy06P6/vXuPsbI6/wX+3XsPM1yGYUAYhDrUA1irvZlK\n4LRNLVJEGyV6UltBS2O1NSWNFVMrjIrYCKJV26hNWi+1JnhrWi+IUUygVaBaevHYU2mN5xRFqv1Z\nEUEZggN79vmjcRoQRX9lz2Xz+fy33/ddk2eF5GXtle9ez3752/+JAQ11+eDIwXnuv15/32OHDW7I\nwP79qlDVu2uoL2Vk/cCMHPqvUNDOXeVs2dbRFdRp37Ezb8WMhg3un7Gjm9I4oPvrBAAAAADoKwRz\nAACAblVXKubQgwfn/764db/8vZ1NzXlqdlv+5+IL8vy0/5WRHxrTa9optbY05uXXtu/z5Jk9je4F\nwaIk6VdXyojmARnRPCBJsqvcma3bOlIsFjJ0cEMPVwcAAAAA0PsJ5gAAAN1u1PBBeXFT+/sOrLyT\njceemPaDD8n28R/OhF4SakmSYrGQ8R8Ykv+z/tX3PKZ/fSkHNfWvYlX/fXWlYg4a0jtrAwAAAADo\njXrHz0gBAIADSrFQyKGjmvbr39x8xCcyesyIXnNazluGNfXvOnHmvRh90KAUCoUqVgQAAAAAQHfp\nXTvWAADAAaOleUCGDKzfb3+vX6nYa1pA7Wn8B4akVNx32KZUKGTUQb1zDgAAAAAAvH+COQAAQI8Z\nO3r/nJozfEj/fHzcQb3utJy3NPQr5dCD9z3XlqED0q+ud84BAAAAAID3r66nCwAAAA5cQxobMnxI\n/2zauuN9jy0kGd48IB8cOTiNA/rt/+L2sw+MGJSXN2/Pth073/GZ3nriDwAAAAAA/z2COQAAQI8a\nO2pINr/+Zjorlff0fLFQyIjmAfngyMYM7N/7AzlvKRYKOeyQIfnf/2/TXu8PGVifwfuxtRcAAAAA\nAD1PMAcAAOhRA/vX5eBhA/PSq+3v+lyxUMjIoQMyZuTgDGjom19lhjQ2ZNSwgfnH5u1vuzd6hNNy\nAAAAAABqTd/czQYAAGrKoQcPzsuvbU+58+2n5hQLhYw6aGBaWxrTv77vf4UZO7opm7buyM5yZ9e1\nhrpSRjQP6MGqAAAAAACohmJPFwAAAFDfr5QxLYN3u1YqFNI6ojGTjhyZww5prolQTpL0qyvlf4xq\n2u3awQcNTLFQ6KGKAAAAAAColtrY2QYAAPq8Q1oG5aVN7Sl3VjJ6+KC0tgxKv7pST5dVFaMOGpj/\n2rw9r2/vSLFQyOjh2lgBAAAAANQiwRwAAKBXKBWL+cjYYRlQX5d+dbV9uGehUMhhhwzJk8++koOG\n9E9Dv9oMIAEAAAAAHOgEcwAAgF6jaWB9T5fQbQYPrM/o4YMyonlAT5cCAAAAAECVCOYAAAD0kLGj\nm1Iq1vbpQAAAAAAABzI7wAAAAD1EKAcAAAAAoLbZBQYAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEA\nAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQ\nzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAA\ngCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAA\nAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEA\nAAAAAAAAgCoQzAEAAAAAAAAAgCooVCqVSk8XAQAAAAAAAAAAtcaJOQAAAAAAAAAAUAWCOQAAAAAA\nAAAAUAWCOQAAAAAAAAAAUAWCOb3cn/70p8yaNStJ8te//jWnn356Zs2albPPPjubNm3a7dnOzs5c\neumlOe200zJr1qxs2LAhSbJhw4bMnDkzp59+ehYsWJDOzs5unwdArdrzPf3lL385M2fOTFtb29ve\nt97TAADwL3tbG7/66quZPXt2zjjjjMyYMSMvvPDCPsck1tMA1WR/GqB3sz8N0DcI5vRiN998cy65\n5JK8+eabSZJFixZl/vz5WbJkSY477rjcfPPNuz2/YsWKdHR05Oc//3m+853v5Morr0ySLF68OHPm\nzMmdd96ZSqWSlStXdvtcAGrRnu/pH/3oR/nWt76Vu+66Kx0dHXn00Ud3e957GgAA/mVva+Orr746\n06dPzx133JE5c+Zk/fr1+xyTWE8DVIv9aYDezf40QN8hmNOLjRkzJjfccEPX5x/84Ac54ogjkiTl\ncjkNDQ1JkgsvvDAvvfRS/vjHP+azn/1skuSoo47K008/nSRZt25dJk6cmCQ55phj8vjjj3fnNABq\n1p7v6SOOOCJbtmxJpVJJe3t76urqknhPAwDAnva2Nn7yySfz8ssv58wzz8yyZcu61sjW0wA9w/40\nQO9mfxqg7xDM6cWOP/74rv80k6SlpSVJ8uSTT+b222/PmWeemST5/ve/n9GjR2fbtm1pbGzser5U\nKmXXrl2pVCopFApJkkGDBuWNN97ovkkA1LA939OHHnpoFi1alC984Qt59dVXM2nSpCTe0wAAsKe9\nrY03bNiQpqam3HbbbRk1alTXSQzW0wA9w/40QO9mfxqg7xDM6WMeeuihLFiwIDfddFOGDRu2273G\nxsa0t7d3fe7s7ExdXV2KxX//M7e3t6epqanb6gU4kCxatCh33HFHli9fnlNOOaXrKNC3eE8DdJ+9\n9U3fV890vdYBus/e1sbDhw/PlClTkiRTpkzp+gXvu42xngboXvanAXov+9MAvZdgTh+ydOnS3H77\n7VmyZElaW1vfdv+Tn/xkVq1alSR56qmn8qEPfShJcuSRR2bt2rVJklWrVmXChAndVzTAAWTIkCFd\nvzhoaWnJ66+/vtt972mA7rO3vun76pmu1zpA99nb2vjoo4/OY489liT5/e9/n/Hjx+9zTGI9DdBd\n7E8D9G72pwF6L8GcPqJcLmfRokVpb2/Pueeem1mzZuX6669P8u/ekMcdd1zq6+szY8aMLF68OG1t\nbUmSuXPn5oYbbshpp52WnTt35vjjj+/JqQDUrIULF+b888/PV77yldx55505//zzk3hPA/SEvfVN\nf6ee6XqtA3S/va2N586dm6VLl2bGjBlZvXp1vvnNbyaxngboDexPA/R+9qcBeq9CpVKp9HQRAAAA\n+9PFF1+cadOm5XOf+1ySZPLkydm1a1fWrFmTJHniiSdyzz335JprrnnXMStWrMjkyZPfdRwAAAAA\nALwTJ+YAAAA1Z2990/fVM12vdQAAAAAA9jfBHAAAoObsrW/6vnqm67UOAAAAAMD+ppUVAABQczo7\nO3PZZZfl2WefTaVSyRVXXJFisZj58+dn586dGTt2bBYuXJhSqZQLL7wwc+bMycEHH/y2MePGjctz\nzz2313EAAAAAALAvgjkAAAAAAAAAAFAFWlkBAAAAAAAAAEAVCOYAAAAAAAAAAEAVCOYAAAB9Xrlc\nTltbW2bMmJGZM2fm2Wef7bp3xRVX5K677trruHnz5mXChAnp6OjourZu3bocfvjhWbt2bdXrBgAA\nAACgtgnmAAAAfd6vf/3rJMndd9+dOXPm5Ic//GE2b96cr3/96/nVr371rmNHjBiRVatWdX1etmxZ\nWltbq1ovAAAAAAAHBsEcAACgz5s6dWouv/zyJMlLL72UpqamtLe359xzz83JJ5/8rmNPPPHEPPjg\ng0mSzs7OrFu3Lh/72MeSJNu2bct5552Xs846KyeddFLuvPPOvPHGG5k6dWrK5XKS5Oqrr85DDz1U\nxdkBAAAAANBXCeYAAAA1oa6uLnPnzs3ll1+e6dOnp7W1NZ/4xCf2Oe7jH/941q9fn+3bt+e3v/1t\nJk2a1HVvw4YNOfHEE3Prrbfmpz/9aW677bYMHjw4Rx99dNasWZNyuZxVq1Zl6tSp1ZwaAAAAAAB9\nlGAOAABQM6666qo88sgjmT9/frZv3/62+8uXL8+sWbMya9asPP30013XP//5z2flypVZtmzZbifs\nDB8+PCtWrMgFF1yQH//4x9m1a1eS5Etf+lLuvfferFq1Kp/+9KdTX19f/ckBAAAAANDnCOYAAAB9\n3v33358bb7wxSTJgwIAUCoUUi2//unPCCSdkyZIlWbJkST760Y92XT/ppJNy//3355VXXklra2vX\n9VtvvTVHHXVUrrnmmpxwwgmpVCpJkgkTJmTjxo355S9/mVNPPbXKswMAAAAAoK+q6+kCAAAA/lPT\npk1LW1tbzjjjjOzatSsXXXRR+vfv/57Hjxs3Lq+99lq++MUv7nb92GOPzcKFC/PQQw9l8ODBKZVK\n6ejoSH19faZPn57ly5fnsMMO29/TAQAAAACgRhQqb/3kEwAAgPfslltuSXNzsxNzAAAAAAB4R07M\nAQAAeJ/mzZuXf/7zn/nJT37S06UAAAAAANCLOTEHAAAAAAAAAACqoNjTBQAAAAAAAAAAQC3SygoA\nAKhZO3fuzEUXXeoahOsAAAUqSURBVJQXX3wxHR0dmT17dsaPH5958+alUCjksMMOy4IFC1Is/us3\nC5s3b87MmTPzwAMPpKGhIeVyOYsXL87TTz+djo6OnHvuuTn22GN7eFYAAAAAAPQVgjkAAEDNeuCB\nB9Lc3Jyrr746W7ZsySmnnJIPf/jDmTNnTiZNmpRLL700K1euzHHHHZfVq1fn2muvzSuvvNI1funS\npdm1a1fuvvvuvPzyy3n44Yd7cDYAAAAAAPQ1WlkBAAA164QTTsh5552XJKlUKimVSlm3bl0mTpyY\nJDnmmGPy+OOPJ0mKxWJ+9rOfpbm5uWv8mjVrMnLkyJxzzjm55JJLMmXKlO6fBAAAAAAAfZZgDgAA\nULMGDRqUxsbGbNu2Ld/+9rczZ86cVCqVFAqFrvtvvPFGkuQzn/lMhg4dutv41157LS+88EJuvPHG\nfOMb30hbW1u3zwEAAAAAgL5LMAcAAKhp//jHP/LVr341J598cqZPn55i8d9fg9rb29PU1PSOY5ub\nmzN58uQUCoVMnDgxzz//fDdUDAAAAABArRDMAQAAatamTZty1lln5bvf/W5OPfXUJMmRRx6ZtWvX\nJklWrVqVCRMmvOP4o48+Oo899liS5JlnnsmoUaOqXzQAAAAAADWjUKlUKj1dBAAAQDUsXLgwDz/8\ncMaOHdt17eKLL87ChQuzc+fOjB07NgsXLkypVOq6P2XKlDz88MNpaGhIR0dHFixYkL/97W+pVCq5\n7LLL8pGPfKQnpgIAAAAAQB8kmAMAAAAAAAAAAFWglRUAAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4A\nAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4AAABADZo3b17uvffed7zf1taWF198\nsRsrAgAAADjwCOYAAAAAHIDWrl2bSqXS02UAAAAA1LRCxQ4MAAAAQJ9XqVRy5ZVX5tFHH01LS0vK\n5XJOPfXUbNiwIU888US2bt2aoUOH5oYbbsh9992X66+/PmPGjMkdd9yRjRs3ZvHixdmxY0eGDh2a\n733ve2ltbe3pKQEAAAD0eU7MAQAAAKgBjzzySP7yl7/kwQcfzHXXXZcXXngh5XI569evz913351H\nHnkkY8aMybJly3LOOeekpaUlN910UwYNGpRLLrkk1157be6777587Wtfy/z583t6OgAAAAA1oa6n\nCwAAAADgP/e73/0u06ZNS79+/TJs2LAcc8wxKZVKmTt3bn7xi1/kueeey1NPPZUxY8bsNu7555/P\nxo0bM3v27K5r27Zt6+7yAQAAAGqSYA4AAABADSgUCuns7Oz6XFdXly1btuTss8/OmWeemeOPPz7F\nYjF7djXv7OzMIYcckqVLlyZJyuVyNm3a1K21AwAAANQqrawAAAAAasCnPvWpLF++PB0dHdm6dWtW\nr16dQqGQiRMnZubMmRk/fnx+85vfpFwuJ0lKpVLK5XLGjh2brVu35g9/+EOS5J577skFF1zQk1MB\nAAAAqBlOzAEAAACoAVOnTs2f//znnHTSSRk+fHjGjRuXHTt25Jlnnsn06dPTr1+/HH744fn73/+e\nJJk8eXLOOeec3HLLLbnuuuuyaNGivPnmm2lsbMxVV13Vw7MBAAAAqA2Fyp7nFwMAAAAAAAAAAP8x\nrawAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAA\nAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAK/j9FTXzeTL/yawAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAJaCAYAAAAcbFLpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8VNW9///33HKdyT1yFQUlomgUUBARFG9UqxVtyynx\nUO8X6lHBnwqlICpFi1aK0KK9eGwPVpGK7Wlrzzm1VESBWuVXBWxBRS4CEXLPTJKZSTLr+0eYASQk\nJMyePUlez8ejj0czs/fM2msm8c1aa3+WwxhjBAAAgLhy2t0AAACA7oiQBQAAYAFCFgAAgAUIWQAA\nABYgZAEAAFiAkAUAAGABQhaSzu7du3X66afr2muv1bXXXqtrrrlG119/vX73u9/FjnnmmWcO+7k1\nP/7xj/WXv/yl1ecOPf+0005TZWVlh9q4ceNGPfzww5KkTZs26d577+3Q+Z3R3NysqVOnasKECXrx\nxRfbPPbOO+/Ua6+9Jkm69tprVVtbe8T5r732mi6++GLdeuutlrfdKq+99pruvPPODp/X1nejK/jN\nb36jX//6150+f/fu3Ro2bFgcW3S4YcOGaffu3Za9/qEee+wxLVmyRJJ0++2369NPP23z+FtuuSX2\n+34sxwPHw213A4DWpKWl6b//+79jP+/Zs0c33XST0tPTNWHCBN13333tvsa7776rU089tdXnjuX8\ntnz66afat2+fJOmss87S4sWLj+v1jsW+ffv0zjvv6IMPPpDL5Trm86L9uHfv3sPO//a3v63p06fr\n2muvtarJSaut70ZXsGHDBg0ePNjuZiSdn//85+0es3bt2g4dDxwPQha6hH79+unee+/V888/rwkT\nJmjmzJkaPHiwbr31Vi1evFhvvPGGPB6PcnNz9cQTT+iNN97Q5s2b9eSTT8rlcmnVqlWqrq7W559/\nrosvvlgVFRWx8yVp0aJF2rRpkyKRiKZNm6bx48frtdde0//93//ppz/9qSTFfn7kkUe0ePFi+f1+\nffe739XEiRM1b948/fGPf5Tf79ejjz6qLVu2yOFwaOzYsbr//vvldrt11lln6Y477tDatWu1f/9+\nffvb39ZNN910xLW+//77evLJJ9XQ0CCPx6Np06Zp+PDhuu2229TU1KTrr79eS5Ys0YABA2Ln7Nu3\nTzNnztT+/fvVt29fVVRUxJ477bTTtHr16sPO79+/vzZt2qTdu3erqqpKJSUl+uEPf6j33ntPzc3N\nOuOMMzR79mx5vV5dcsklKi4u1tatW3X//feruLhYjz32mEpLS9XY2KivfvWruuuuu7R7927ddNNN\nuuiii/Thhx+qpqZG06dP11VXXaWmpiY99dRTWr16tVwul4YNG6a5c+cqJSVFzz77rP785z8rEomo\nX79+mjt3rnr16qU///nPevbZZ+VwOORyufTQQw/pvPPOO6K/ysrKdOutt2r//v3q16+f5s2bp8LC\nQvn9fs2fP18ff/yxGhsbNXr0aD300EN65ZVXYt+NTz/9VL/5zW/01ltvSZJuvfVW5efn68knn1Q4\nHNbYsWP1xhtvqKysTPPnz1d1dbWam5s1ZcoUfeMb35Ak/fWvf9Wzzz6rxsZGpaWlacaMGRo2bJiW\nLFmiPXv2qKysTHv27FFeXp5+9KMfqVevXoe1v7y8XA8//LAqKipUVlamfv36adGiRcrPz9f27dv1\n8MMPq7KyUk6nU1OnTpXH49Ff//pXrV27VmlpaaqsrFRVVVVsZHXJkiWxnz/44AM99dRTCofDKisr\n0wUXXKDHH3+8zd+15557Tn/5y18UCoXU0NCgGTNm6PLLL2/zet5//33NmzdPDodDZ511liKRSKuv\nfckll+iyyy7T+++/L7/fr5tvvlklJSV69913NX/+fGVkZKi+vl6vvvqq3nnnnVb7NRAI6Hvf+562\nbNmiE044QS6XSyNGjIi9/jPPPKOzzjpLr776ql544QU5nU7l5uZqwYIFsX8M3XjjjfrZz36mG264\nIXb8K6+8omXLlsnpdKqgoEBz5szRwIEDNXPmTHm9Xm3dulVffPGFBg0apIULFyozM7PNfgQkSQZI\nMp9//rk555xzjnj8448/NmeffbYxxpgZM2aYX/ziF2bv3r1m+PDhJhQKGWOMef75580bb7xhjDHm\n3//9383//M//xI6/8cYbY68VPd8YY4qKisxPf/pTY4wxW7duNSNHjjQVFRVm5cqV5o477oidc+jP\nh/7/v/3tb+arX/2qMcaYhx56yMybN89EIhETCoXMLbfcEnvtoqIis2zZMmOMMZs2bTJnnnmmCQaD\nh11jZWWlGT16tPnggw9i1zxy5Eiza9euo/aLMcZ85zvfMT/60Y+MMcbs2LHDnHPOOWblypWx962o\nqDji/EP7Z8mSJeYHP/iBiUQixhhjnn76aTN37lxjjDHjx483P/7xj2PnTZkyxaxatcoYY0wwGDRT\npkwxr7/+uvn8889NUVGR+etf/2qMMeZ///d/zcUXX2yMMeZXv/qVueGGG0xDQ4Npbm429913n/nt\nb39rfvvb35pp06aZxsZGY4wxy5cvN7fddpsxxphLL73U/OMf/zDGGPP222+bJUuWHHHdK1euNOec\nc47ZsWNHrN333XefMcaYmTNnmv/6r/8yxhjT1NRkHnjgAfOzn/3siGu/5JJLzNatW01DQ4MZP368\nGTdunDHGmNWrV5vbbrvNNDY2mquuusps3rzZGGNMbW2tufLKK80//vEPs337dnP11VebysrK2Oc1\nZswYU1dXZxYvXmwuvfRS4/f7jTHG3HnnneaZZ5454hp++ctfxr4jkUjE3Hbbbeb55583xhgzceJE\n8+KLLxpjjNm7d2/s9Q79/i5evNg8+uijsdc79Ofp06ebv/3tb8YYYwKBgBk1apTZtGnTUb9Lu3fv\nNlOmTDENDQ3GGGP++Mc/mquvvjr2uq1dTygUMhdccIFZt26dMcaYP/zhD6aoqMh8/vnnR7z++PHj\nzZw5c0wkEjGlpaVm1KhRZsuWLeZvf/ubGTJkiNm9e7cxxrTZr/PnzzcPPfSQiUQipqKiwowbN84s\nXrw49vobN240//rXv8yoUaPM3r17jTHGvPDCC2bOnDnGmIO/D4cev27dOnPZZZfFHl+5cqW58sor\nTSQSMTNmzDD/9m//ZkKhkAmHw2bixInm1VdfPeLagNYwkoUuw+FwKC0t7bDHevXqpSFDhui6667T\nuHHjNG7cOI0ePbrV86P/2m3N5MmTJUlFRUU65ZRT9I9//KNTbVyzZo1efvllORwOpaSk6Fvf+pZ+\n9atf6Y477pAkXXrppZKkoUOHKhwOq76+XqmpqbHzN27cqAEDBujss8+WJA0ePFjDhw/X3//+d40a\nNeqo77tu3TrNmDFDknTSSSe1eWxrVq9eLb/fr3Xr1kmSGhsblZ+fH3v+3HPPlSTV19frvffeU01N\njZ555pnYY1u2bFFxcbE8Ho8uuugiSdIZZ5yh6urqWPuuvfba2Oe3aNEiSS3Ttps2bdLXv/51SVIk\nElFDQ4Mk6atf/ar+4z/+QxdddJHGjBmj22+/vdW2X3DBBTrppJMkSd/4xjdiI0yrV6/Wpk2b9Oqr\nr0qSgsFgq+dffvnlWrNmjYqKijRq1Cht3bpVn3zyiVatWqUrrrhCO3bs0K5duzRr1qzYOcFgUP/8\n5z9ljNH+/fsPG5F0OBzatWuXJGnkyJHyer2x/qipqTni/W+88Ua9//77euGFF7Rjxw598sknOvvs\ns1VdXa0tW7bom9/8piSpT58+HV5H9oMf/EBr1qzRc889p88++0zBYFD19fXKyclp9fh+/fppwYIF\n+sMf/qCdO3fqww8/VF1dXez51q7n448/ltvtjv3eXX311bFRtdaUlJTI4XCod+/eGjt2rNauXauh\nQ4eqT58+6tevnyTFRntb69f169dr1qxZcjgcysvL0+WXX37Ee6xfv14XXnih+vTpI0mtjhgf6u23\n39ZVV12lvLw8SdL111+v+fPnx9aVjR07VikpKZJa/ka09jkCrSFkocvYtGmTioqKDnvM6XTqxRdf\n1KZNm7R+/Xo9/vjjGjVqlGbPnn3E+RkZGUd9bafz4D0gxhi53W45HA6ZQ7b2bGxsbLeNX54miUQi\nampqiv0cDVQOhyP2Xm2dHz3m0NdozZfb6nZ37Fc7Eolo1qxZsYBUV1enUCgUez7ad5FIRMYYLV++\nXOnp6ZKkyspKpaamqqqqSh6PJ9aX0WtsrT3l5eWKRCKKRCK67bbbVFJSIkkKh8Ox/4BNnz5d3/jG\nN/TOO+/otdde089+9jO99tprh31Wkg5bnxb97KJtfeaZZ3TKKadIkmpraw9rU9Tll1+uRYsWaf/+\n/RozZozy8/P1zjvvaM2aNZo2bZrKysqUlZV12BrB8vJy+Xw+rVixQqNHj46FRkkqLS3VCSecoDfe\neOOwfxR8+TOKeuqpp7Rx40Z9/etf16hRo9TU1HTYdRza5s8++0x9+/Y97Py2vqc33HCDhgwZorFj\nx+rKK6/Uhx9+2Goboj766CN95zvf0U033aQxY8bovPPO06OPPhp7vrXrae262vr+HfpcJBKJfZ6H\n/n5GIpGj9qt0+O9Na+sTXS7XYf0WDAa1Z8+e2Hfhy1rrk0N/747lcwRaw92F6BK2b9+upUuX6pZb\nbjns8S1btujqq6/WKaecojvvvFM33XSTtm7dKqnlD2174STqt7/9raSW/8js3LlTZ599tvLy8vTJ\nJ58oFAqpqalJb775Zuz4o732hRdeqF//+tcyxigcDmvFihW64IILjvk6zz77bG3fvl0bN26UJH3y\nySd67733NHLkyDbPGzt2rF555RVJLQvc33333WN+z0PbHQ6HFYlENGfOHC1cuPCI47xer8455xy9\n8MILklqCy+TJk7Vq1ao2X3/06NH64x//GHv9Rx55RK+//rouvPBCvfrqqwoEApJa7vp86KGH1NTU\npEsuuUT19fWaPHmy5s6dq23btrXa5++++6727t0rSXr55Zc1bty42DX98pe/jH0WU6dOjd2Veejn\nN2zYMO3atUurV6/WBRdcoDFjxuhXv/qVTj75ZOXl5WngwIFKTU2NhazS0lJdffXV2rx5s84//3yt\nXbtW27ZtkyS99dZb+trXvnZYQG3PO++8oxtvvFETJ05Ufn6+1q1bp+bmZnm9Xg0dOjR2F2xpaakm\nT54sv99/WPtzc3P10UcfyRij+vp6vfPOO5Kkmpoabd68WQ888ICuuOIK7du3T7t27TrqeilJeu+9\n93TmmWfq5ptv1siRI7Vq1So1Nze32f6ioiIZY2Lr2latWtXmSE/0evbu3au1a9fGPq9DtdWvY8eO\n1auvvqpIJKKamppWv3ujRo3S+vXrtX//fknS8uXL9dRTT0lq/Xf3wgsv1J/+9KfYXYcrV65UTk5O\nbIQU6CxGspCUgsFg7K43p9Op1NRU3X///br44osPO27IkCG68sor9fWvf10ZGRlKS0uLjWKNHz9e\nCxYsOKYRqM8//1wTJ06Uw+HQwoULlZOTE/uX/JVXXqnCwsLYVJLU8h/mRYsW6e6779a3v/3t2OvM\nnj1b3//+93XNNdeosbFRY8eO1V133XXM152Xl6dnnnlG8+bNUzAYlMPh0BNPPKGBAwe2eUv83Llz\n9d3vfldXXnmlevfurSFDhhzze0rSd77zHS1YsEDXXXedmpubdfrpp2vmzJmtHvvDH/5Q8+bN0zXX\nXKNwOKyrr75aX/va19ps37e+9S3t2bNH119/vYwxGjlypKZMmSKn06l9+/Zp0qRJcjgc6tOnj37w\ngx/I7XZr1qxZeuCBB2Kjio8//nhsyuZQRUVFmjVrlsrLyzVo0CA99thjkqTvfe97mj9/fuyzuOCC\nC3TbbbdJOvy7cd111+miiy7Spk2blJeXpxEjRqimpkZXXHGFJCklJUVLly7V/Pnz9Ytf/EJNTU26\n7777YtPPjz32mO6///7Y6NOzzz7b5qjpl91999168skntXTpUrlcLg0fPjw23fj000/r0Ucf1bJl\ny+RwODR//nwVFhZq3LhxmjdvnqSW6be3335bV1xxhXr16qVhw4bJGKPs7Gzdcccduu6665STk6Pc\n3FwNHz5cO3fu1IknnthqW66++mr9+c9/1lVXXSWPx6PRo0erpqYmFoJb4/F49JOf/ESPPPKIFi5c\nqNNPP/2wqeYv2717t66//noFg0HNnj1bgwYNUllZ2WHHDB48+Kj9es8992ju3Lm68sorlZeXd8To\nttRys8eDDz4Y+7wLCwtjC/4vv/xylZSUaOnSpbHjx4wZo5tuukk33nijIpGI8vLy9NOf/vSIUVOg\noxyGcU8AQAIcevcf0BMQ0wEAACzASBYAAIAFGMkCAACwACELAADAAoQsAAAACyRlCYeyMr/dTTgm\nubkZqqqqt7sZPQ79bh/63j70vT3od/t0pb4vLPS1+jgjWcfB7T6y0jCsR7/bh763D31vD/rdPt2h\n7wlZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAW\nIGQBAABYoN29C5ubmzV79mxt375dDodDjz76qFJTUzVz5kw5HA4NHjxYc+fOldPp1IoVK7R8+XK5\n3W5NnTpV48ePVzAY1IMPPqiKigplZmZqwYIFysvLS8S1AQAA2Kbdkaw333xTkrR8+XJNmzZNP/rR\nj/TEE09o2rRpeumll2SM0apVq1RWVqZly5Zp+fLlev7557Vw4UKFw2G9/PLLKioq0ksvvaSJEydq\n6dKlll8UAACA3dodybrssst08cUXS5L27t2rrKwsrVu3TiNHjpQkjRs3TmvXrpXT6dSwYcOUkpKi\nlJQUDRgwQFu2bNGGDRt02223xY4lZAEAgJ7gmNZkud1uzZgxQ/PmzdM111wjY4wcDockKTMzU36/\nX4FAQD6fL3ZOZmamAoHAYY9HjwUAAOju2h3JilqwYIEeeOABTZo0SaFQKPZ4XV2dsrKy5PV6VVdX\nd9jjPp/vsMejx7YnNzdDbrerI9dhm8JCX/sHIe7od/vQ9/ah7+1Bv9unq/d9uyHrd7/7nfbt26c7\n77xT6enpcjgcOvPMM/Xuu+9q1KhRWrNmjc4//3wVFxdr0aJFCoVCCofD2rZtm4qKijR8+HC99dZb\nKi4u1po1azRixIh2G1VVVR+Xi7NaYaFPZWWMzCUa/W4f+t4+9L096Hf7dKW+P1oYdBhjTFsn1tfX\n67vf/a7Ky8vV1NSk22+/XaeccormzJmjxsZGDRo0SN///vflcrm0YsUKvfLKKzLG6M4779SECRPU\n0NCgGTNmqKysTB6PR08//bQKCwvbbGxX6tSu0tbuhH63D31vH/reHvS7fbpS33c6ZNmhK3VqV2lr\nd0K/24e+tw99bw/63T5dqe+PFrIoRgoAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACA\nBY654jsAIH5Wf7CnQ8f7vGnyB4JHPH7xOf3i1SQAccZIFgAAgAUIWQAAABYgZAEAAFiAkAUAAGAB\nQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUI\nWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBk\nAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAF\nAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYA\nAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAA\nABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAA\nWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABg\nAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAXcbT3Z2NioWbNmac+ePQqHw5o6dar69Omj\nO++8UyeffLIkafLkybrqqqu0YsUKLV++XG63W1OnTtX48eMVDAb14IMPqqKiQpmZmVqwYIHy8vIS\ncV0AAAC2ajNk/f73v1dOTo6eeuopVVdXa+LEibr77rt1880365ZbbokdV1ZWpmXLlmnlypUKhUIq\nKSnRmDFj9PLLL6uoqEj33HOPXn/9dS1dulSzZ8+2/KIAAADs1uZ04Ve+8hXdd999kiRjjFwulzZv\n3qzVq1frhhtu0KxZsxQIBLRx40YNGzZMKSkp8vl8GjBggLZs2aINGzZo7NixkqRx48Zp/fr11l8R\nAABAEmhzJCszM1OSFAgEdO+992ratGkKh8P65je/qTPPPFPPPvusfvKTn2jIkCHy+XyHnRcIBBQI\nBGKPZ2Zmyu/3W3gpAAAAyaPNkCVJpaWluvvuu1VSUqJrrrlGtbW1ysrKkiRdfvnlmjdvns4991zV\n1dXFzqmrq5PP55PX6409XldXFzuvPbm5GXK7XZ25noQrLPS1fxDijn63D30fHz5vWlzO4fOwHn1s\nn67e922GrPLyct1yyy16+OGHNXr0aEnSrbfeqjlz5qi4uFjr16/X0KFDVVxcrEWLFikUCikcDmvb\ntm0qKirS8OHD9dZbb6m4uFhr1qzRiBEjjqlRVVX1x39lCVBY6FNZGaNziUa/24e+jx9/INih433e\ntFbP4fOwFt95+3Slvj9aGGwzZD333HOqra3V0qVLtXTpUknSzJkz9fjjj8vj8aigoEDz5s2T1+vV\nlClTVFJSImOMpk+frtTUVE2ePFkzZszQ5MmT5fF49PTTT8f/ygAAAJKQwxhj7G7El3Wl5NpV2tqd\n0O/2oe/jZ/UHezp0/NFGsi4+p1+8moRW8J23T1fq+6ONZFGMFAAAwAKELAAAAAsQsgAAACxAyAIA\nALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAA\nwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAA\nCxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAs\nQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAA\nIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKE\nLAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAEhiDaEm\nGWPsbgaATiBkAUCSKq9p0KtvbtO7/9xH0AK6IEIWACSprTurZSR9/HmNPvyk3O7mAOggQhYAJKFQ\nY7N2fOFXZppb6akurdu4V7v3B+xuFoAOIGQBQBLavrdWzRGj0wbkaPzwfnI6HXr7w1JV+UN2Nw3A\nMSJkAUCSMcbo48+r5XRIp/TLVkF2ui49b4AamyP664bdagg12d1EAMeAkAUASaa8JqjqQFgn9vIp\nPdUtSRp8Yo6KT8lXXbBJW3ZW2dxCAMeCkAUASebjz6slSYP7Zx/2+Bkn50qSymqCCW8TgI4jZAFA\nEgk3NmtHqV/edI/65Gcc9lyKx6WszBRV1AQp6QB0AYQsAEgin5W2LHgffGK2HA7HEc8XZKepsSmi\n2rqwDa0D0BGELABIEsYYffJ5jRwO6dR+2a0ek5+dJqll3RaA5EbIAoAkUeUPqcof0okneGML3r+s\ngJAFdBmELABIEhW1LcGpX0HmUY/J86XK6ZAqCFlA0iNkAUCSqPa3rLPK8aUe9RiXy6lcX6oqa0Nq\njrD4HUhmhCwASBLRau453qOHLEnKz05XxBiqvwNJjpAFAEmiOhCSN90jj7vtP80H12U1JKJZADqJ\nkAUASaAh1KRguLnNqcKoaMhiXRaQ3AhZAJAEolN/ud6Udo/N8qbI7XJwhyGQ5AhZAJAEqgMH1mMd\nw0iW0+FQfnaaagJhNosGkhghCwCSQGwk6xhClnRwynDnF37L2gTg+BCyACAJVAfCcjocyspof7pQ\nkgqy0yVJ20trrWwWgONAyAIAmxljVBMIKdubIqfzyP0KWxPdXuczQhaQtAhZAGAzf32jmprNMU8V\nSlJmmltpKS7tIGQBSav1zbEOaGxs1KxZs7Rnzx6Fw2FNnTpVp556qmbOnCmHw6HBgwdr7ty5cjqd\nWrFihZYvXy63262pU6dq/PjxCgaDevDBB1VRUaHMzEwtWLBAeXl5ibo2AOgSYovej+HOwiiHw6GC\n7DTtLqs7MAp27AENQGK0OZL1+9//Xjk5OXrppZf0i1/8QvPmzdMTTzyhadOm6aWXXpIxRqtWrVJZ\nWZmWLVum5cuX6/nnn9fChQsVDof18ssvq6ioSC+99JImTpyopUuXJuq6AKDL6Oii96jolOH2Uha/\nA8mozZD1la98Rffdd5+kljUDLpdLH330kUaOHClJGjdunNatW6eNGzdq2LBhSklJkc/n04ABA7Rl\nyxZt2LBBY8eOjR27fv16iy8HALqeav+xl284VOwOw32ELCAZtRmyMjMz5fV6FQgEdO+992ratGky\nxsjhcMSe9/v9CgQC8vl8h50XCAQOezx6LADgcFWBsDxupzJS21zBcYSszJbpxbJqttcBklG7v9Gl\npaW6++67VVJSomuuuUZPPfVU7Lm6ujplZWXJ6/Wqrq7usMd9Pt9hj0ePPRa5uRlyu10dvRZbFBb6\n2j8IcUe/24e+jw+ft2UUqqk5In9dWL3zM5XlSz+mc6IyMlLldEjVdWE+FwvRt/bp6n3fZsgqLy/X\nLbfcooeMB80RAAAgAElEQVQfflijR4+WJJ1xxhl69913NWrUKK1Zs0bnn3++iouLtWjRIoVCIYXD\nYW3btk1FRUUaPny43nrrLRUXF2vNmjUaMWLEMTWqqqr++K8sAQoLfSorY3Qu0eh3+9D38eMPtGyJ\nU1ETlJHky/DEHmuNz5vW6vN5WWnaWxbgc7EI33n7dKW+P1oYbDNkPffcc6qtrdXSpUtji9a/973v\n6fvf/74WLlyoQYMGacKECXK5XJoyZYpKSkpkjNH06dOVmpqqyZMna8aMGZo8ebI8Ho+efvrp+F8Z\nAHRh0TsLc33HfmfhoQqy07RlV7Uam5rl6SIzAEBP4TDGGLsb8WVdKbl2lbZ2J/S7fej7+Fn9wR5J\n0vtb9uufO6o0YdSJ6pWbcdTjjzaStX1vrd7eWKr5t49Sn/xMy9rbU/Gdt09X6vujjWRRjBQAbBQr\n39DJOleFOS3ruFj8DiQfQhYA2Kg6EFJGmlspns5N9RXktCyGL6s++nouAPYgZAGATYLhZjWEmjtc\nhPRQjGQByYuQBQA2qYltp0PIArojQhYA2CTQ0CippXxDZ/nSPUr1uFRew3QhkGwIWQBgk2jI8qZ3\nPmQ5HA4V5qSprLpBSXizONCjEbIAwCbxCFlSy5RhMNysumBTPJoFIE4IWQBgk2jIykzv2J6FX1aQ\nzbosIBkRsgDAJoH6RmWkuuVyHt+f4sJYGQdCFpBMCFkAYINIxKg+1KTM45wqlLjDEEhWhCwAsEFd\nsFHGHN+dhVEFsZDFHYZAMiFkAYAN6hpaFqnHYySrIJvpQiAZEbIAwAb+ON1ZKEmpHpeyvSkqryFk\nAcmEkAUANqiLhazju7MwqjA7XRU1ITVHInF5PQDHj5AFADaIV42sqMKcNEWMUWVtKC6vB+D4EbIA\nwAaBhkY5JGWmxStktSx+L2ddFpA0CFkAYINAfaMy0txyOh1xeb1YQVL2MASSBiELABKssSmi+lBT\n3KYKJQqSAsmIkAUACVbpbxltim/IoiApkGwIWQCQYOUHioZ641CINCrHlyq3y0FBUiCJELIAIMGi\n9aziOZLldDiUn51OrSwgiRCyACDBymviP10otazL8tc3qiHUFNfXBdA5hCwASLBoyIrHljqHKjxw\nh2E5dxgCSYGQBQAJVl7dIIdDykiLT7X3KGplAcmFkAUACVZeE1RmmkdOR3xqZEVFyzjsJ2QBSYGQ\nBQAJFG5sVk1dOK53FkblZbWELLbWAZIDIQsAEqii1ppF75KU50uVJFUFCFlAMiBkAUACRetYWRGy\nfJkpcjkdqvYTsoBkQMgCgASqsKBGVpTT4VCON0VVfu4uBJIBIQsAEqgsViMrvncWRuX4UlUdCCti\njCWvD+DYEbIAIIEOFiJNseT1c72pao4Y+evClrw+gGNHyAKABCqvbpDb5VR6qsuS18/1tdxhyOJ3\nwH6ELABIoPKaoPKz0+SIc42sqNzoHYaUcQBsR8gCgAQJhpsUaGhUQXaaZe+RSxkHIGkQsgAgQaLr\nsQoTEbIo4wDYjpAFAAlSeaAQabQyuxUIWUDyIGQBQIJEt7vJy0q17D1yvIQsIFkQsgAgQSoPBJ88\nn3UjWR63U950DyELSAKELABIkKoD04W5Fo5kSS17GFb5QzIUJAVsRcgCgAQ5OJJlbcjK8aUq1Nis\nhlCzpe8DoG2ELABIkEp/SL4MjzxuawqRRuVRxgFICoQsAEgAY4yqaoOxu/+slBO7w5CNogE7EbIA\nIAHqgk0KN0UsXfQeRRkHIDkQsgAgASoTtOhdOhiyqglZgK0IWQCQAFUJWvQuSbnUygKSAiELABIg\ndmehhdXeo3IPTEkSsgB7EbIAIAFiW+okYCQrPdWlVI+LkAXYjJAFAAkQDTy5CRjJcjgcyvWlUsIB\nsBkhCwASILbw3Wv9SJbUsvjdX9+oxqZIQt4PwJEIWQCQAFX+kLIyPPK4E/NnN3aHIaNZgG0IWQBg\nMWOMKv2hhEwVRlErC7AfIQsALBZoaJm2S8Si96gcyjgAtiNkAYDFDtbIStxIVh4jWYDtCFkAYLHK\n2uidhQkcySJkAbYjZAGAxaIbNSdyujA2ksXCd8A2hCwAsFgiq71H+TJT5HI6YgEPQOIRsgDAYrEa\nWQkcyXI6HMrxprBJNGAjQhYAWCxW7T2BIUtqWZdVHQgrYkxC3xdAC0IWAFissjakrMwUuV2J/ZOb\n601Vc8TIXxdO6PsCaEHIAgALRQuRJnLRe1TugZIRlUwZArYgZAGAhfwNjWpqjiR00XtUbGsdQhZg\nC0IWAFioqtae9ViHvidlHAB7ELIAwEKV0RpZCSxEGsX+hYC9CFkAYKFKG0eycrwpkqRqRrIAWxCy\nAMBCduxbGJV9YJPo6gB3FwJ2IGQBgIXsnC5M9biUkepmJAuwCSELACxUWRuSQ1KON/EhSzpQkJQ1\nWYAtCFkAYKEqf1BZ3sQXIo3K8aaoLtikxqZmW94f6MkIWQBgkYgxqrKpEGlUDuuyANsQsgDAIoH6\nRjU1G1sWvUcdDFlMGQKJ5ra7AQDQXUUXvedauOh99Qd72ny+rKZBkrR28xfaU17X6jEXn9Mv7u0C\nwEgWAFgmWiPLzpGsjNSWf0s3BJtsawPQUxGyAMAisRpZNpRviIqGrPoQIQtINEIWAFiksvbAdKGN\nC9/T0w6MZBGygIQjZAGAReys9h6VnuqSJNUzXQgkHCELACxSWRuUwyFlH9hD0A4up1OpHhcjWYAN\nCFkAYJFKf0jZmfYVIo3KSHOzJguwASELACwQK0SaZd9UYVR6qluNTRE1NkXsbgrQoxCyAMAC/rqw\nmiPG1kXvUbEyDoxmAQlFyAIAC1QmwaL3qOgdhkwZAol1TCHrww8/1JQpUyRJ//znPzV27FhNmTJF\nU6ZM0Z/+9CdJ0ooVK3T99ddr0qRJevPNNyVJwWBQ99xzj0pKSnT77bersrLSossAgOQSK0RqY42s\nqIwDdxhSkBRIrHa31fn5z3+u3//+90pPT5ckffTRR7r55pt1yy23xI4pKyvTsmXLtHLlSoVCIZWU\nlGjMmDF6+eWXVVRUpHvuuUevv/66li5dqtmzZ1t3NQCQJGJb6iTBdGE6BUkBW7Q7kjVgwAAtWbIk\n9vPmzZu1evVq3XDDDZo1a5YCgYA2btyoYcOGKSUlRT6fTwMGDNCWLVu0YcMGjR07VpI0btw4rV+/\n3rorAYAkcrDau/3ThazJAuzRbsiaMGGC3O6DA17FxcV66KGH9Otf/1onnniifvKTnygQCMjn88WO\nyczMVCAQOOzxzMxM+f1+Cy4BAJJPtNp7XjKMZEXXZDFdCCRUu9OFX3b55ZcrKysr9v/nzZunc889\nV3V1B3d3r6urk8/nk9frjT1eV1cXO689ubkZcrtdHW2aLQoLfe0fhLij3+1D3x+bQLBJTod06sn5\ncrVSJ8vn7fgIV2fOkaSMjJagF26KtPoafKZto3/s09X7vsMh69Zbb9WcOXNUXFys9evXa+jQoSou\nLtaiRYsUCoUUDoe1bds2FRUVafjw4XrrrbdUXFysNWvWaMSIEcf0HlVV9R2+EDsUFvpUVsboXKLR\n7/ah74/dvop6ZXtTVVlZ1+rz/kCwQ6/n86Z1+JxDpaW45K8Pt/oafKZHx3fePl2p748WBjscsh55\n5BHNmzdPHo9HBQUFmjdvnrxer6ZMmaKSkhIZYzR9+nSlpqZq8uTJmjFjhiZPniyPx6Onn376uC8E\nAJJdJGJUHQjp5N7J86/wjDS3auvCMsbI4XDY3RygRzimkNW/f3+tWLFCkjR06FAtX778iGMmTZqk\nSZMmHfZYenq6Fi9eHIdmAkDXUVt/oBBpEix6j0pPdauyNqTGpohSPF1jOQbQ1VGMFADiLFYjKwkW\nvUdlUMYBSDhCFgDEWZU/ee4sjEqnjAOQcIQsAIizg9Xek2e6MIMyDkDCEbIAIM6Sqdp7FAVJgcQj\nZAFAnCVTtfcottYBEo+QBQBxVlkbktPhUHZmit1NiYlOF7JJNJA4hCwAiLMqf1A5vhQ5nclTjyo1\nxSWHg5EsIJEIWQAQR5GIUZU/nFTrsSTJ6XAoPcWthlCz3U0BegxCFgDEUU1dWBFjlOdLnvVYUelp\nbtWHmmSMsbspQI9AyAKAOIreWZiXlVwjWVLLHYaRiFG4MWJ3U4AegZAFAHFUdaBGVm4yjmRxhyGQ\nUIQsAIijSn/ybakTFbvDkJAFJAQhCwDiqLL2QCHSJJwujI1kUcYBSAhCFgDEUawQaRJOF7JJNJBY\nhCwAiKNKf1AuZ3IVIo1i/0IgsQhZABBHlbUh5XiTqxBpFCNZQGIRsgAgTpojEdUEwspNoj0LD5Xi\nccrldKg+2Gh3U4AegZAFAHFSE4gWIk2+Re+S5HA4lJHmZroQSBBCFgDESWUSL3qPykh1KxhuVnOE\nqu+A1QhZABAnFTUt5Rvys5M4ZFErC0gYQhYAxEm0RlYybqkTlZHmkcQdhkAiELIAIE7KD4Ss/CRd\n+C4dcochi98ByxGyACBOotOFBV1gupAyDoD1CFkAECcVtUGlp7piU3LJiIKkQOIQsgAgTiprg8pL\n4qlCiZAFJBIhCwDioD7YqIZQc1Kvx5Kk9BS3HGK6EEgEQhYAxEF5FyjfIElOp0NpqRQkBRKBkAUA\ncVBx4M7CgiQfyZIUq/puDAVJASsRsgAgDiprD1R77wIhKzPNrYgxCjU2290UoFsjZAFAHHSFau9R\n6aksfgcSgZAFAHHQFQqRRnGHIZAYhCwAiIOKmqBcToeyvSl2N6VdmYQsICEIWQAQBy01slLldDjs\nbkq7MlJbiqXWUcYBsBQhCwCOU2NTs2rqwl1iqlA6dLqQ/QsBKxGyAOA4Re8s7AqL3iXWZAGJQsgC\ngOPUlRa9S5Lb5VSK20nVd8BihCwAOE6VNV0rZEkHC5ICsA4hCwCOU7Tae1eZLpRaQlZjU0SNTRG7\nmwJ0W4QsADhOXakQaVT0DkNGswDrELIA4DhFR7LyfF0oZEUXv4e4wxCwCiELAI5TRW1Q2d4Uedxd\n508qdxgC1us6fxEAIAlFjFFlbahLLXqXCFlAIhCyAOA41ATCao6YrheyoptEU8YBsAwhCwCOQ1dc\n9C4xkgUkAiELAI5DRRcrRBqV6nHJ6XQQsgALEbIA4Dh01ZDlcDiUkerm7kLAQoQsADgOXXW6UGqZ\nMmwINaupmYKkgBUIWQBwHLrqSJZ0cF1WbV3Y5pYA3RMhCwCOQ0VtUOmp7lhg6UqidxhW+UM2twTo\nnghZANBJxhhV1ASVn5Vqd1M6JRoMCVmANQhZANBJ9aEmBcPNXXKqUJIy01r2LyRkAdYgZAFAJ3Xl\nRe/SwZGs6LoyAPFFyAKATiqrbpAkFWSn29ySzvGmt4xkEbIAaxCyAKCT9h8IWSfkds2QlZbiksvp\nUHkNIQuwAiELADqprOpAyMrpmiHL4XAoM90Tm/YEEF+ELADopOhIVmEXDVmSlJnmVqChUaFws91N\nAbodQhYAdNL+qgZlZ6YoNcVld1M6Lbouq5x1WUDcEbIAoBOamiOqrA2psIuux4qKLX6vabC5JUD3\n0/VKFAOAjVZ/sEeS5K8PK2KMIhETe6wryoyFLEaygHhjJAsAOsFf3yhJ8mV4bG7J8fGmt/xbmzsM\ngfgjZAFAJ/jrWzZV7uohK5NaWYBlCFkA0Amxkaz0FJtbcnzSU93UygIsQsgCgE6IhixvFx/Jcjoc\nystKZU0WYAFCFgB0gr8+LLfLobQuXL4hqiA7XTV1YTU2USsLiCdCFgB0kDFGgYZG+TJS5HA47G7O\nccvPatnguqI2ZHNLgO6FkAUAHRQMN6up2XT5Re9RBdkHQhZThkBcEbIAoIO6y52FUfkHQlY5BUmB\nuCJkAUAHdZc7C6MOThcykgXEEyELADqou9xZGFUQG8kiZAHxRMgCgA4KNHSPau9ROb5UORysyQLi\njZAFAB3krw/L4ZAy07pHyHK7nMrzpTKSBcQZIQsAOshf3yhvukdOZ9cv3xCVn5Wm6kBITc0Ru5sC\ndBuELADogMamiILhZnnTu8coVlR+drqMkSr91MoC4oWQBQAdcLB8Q/e4szAqn1pZQNwRsgCgA2Ll\nG7rJoveoAmplAXFHyAKADvB3szsLoxjJAuKPkAUAHRDoptOFBVmELCDeCFkA0AGxQqTdbOF7HlXf\ngbgjZAFAB/jrG5WW4pLH3b3+fHrcTmV7U6iVBcRR9/orAQAWamqOqC7Y2O3WY0UVZKepyh9SJGLs\nbgrQLRxTyPrwww81ZcoUSdLOnTs1efJklZSUaO7cuYpEWgrXrVixQtdff70mTZqkN998U5IUDAZ1\nzz33qKSkRLfffrsqKystugwAsF5lbVDGdL/1WFH5WWlqjhhVB6iVBcRDuyHr5z//uWbPnq1QqOWX\n7oknntC0adP00ksvyRijVatWqaysTMuWLdPy5cv1/PPPa+HChQqHw3r55ZdVVFSkl156SRMnTtTS\npUstvyAAsMoXlS3lDbK67UhWuiQ2igbipd2QNWDAAC1ZsiT280cffaSRI0dKksaNG6d169Zp48aN\nGjZsmFJSUuTz+TRgwABt2bJFGzZs0NixY2PHrl+/3qLLAADrlVbUSZKyvak2t8QalHEA4qvdkDVh\nwgS53e7Yz8YYORwt+3VlZmbK7/crEAjI5/PFjsnMzFQgEDjs8eixANBVxUJWZvecLowWJC2rpiAp\nEA/u9g85nNN5MJfV1dUpKytLXq9XdXV1hz3u8/kOezx67LHIzc2Q2+3qaNNsUVjoa/8gxB39bp+e\n3PdlNSE5HFLfE3xyuRJ/35DPm2bJ60Y/0zMO/H2vqmvs0Z/zl9EX9unqfd/hkHXGGWfo3Xff1ahR\no7RmzRqdf/75Ki4u1qJFixQKhRQOh7Vt2zYVFRVp+PDheuutt1RcXKw1a9ZoxIgRx/QeVVX1Hb4Q\nOxQW+lRWxuhcotHv9unJfW+M0a4vauVN96i+IZzw9/d50+QPWDONF/1MHREjt8upHaU1PfZz/rKe\n/J23W1fq+6OFwQ6HrBkzZmjOnDlauHChBg0apAkTJsjlcmnKlCkqKSmRMUbTp09XamqqJk+erBkz\nZmjy5MnyeDx6+umnj/tCAMAO/vpG1QWb1P8Er91NsYzT6VCvvHR9UVl/2NIQAJ1zTCGrf//+WrFi\nhSRp4MCBevHFF484ZtKkSZo0adJhj6Wnp2vx4sVxaCYA2Ku7r8eK6p2XoT1ldaoOhJXr654L/IFE\noRgpAByDvRUtyxhyvN07ZPXJz5AkfVFR186RANpDyAKAY1Ba3nNGsiTpi8qusTYWSGaELAA4BqUH\nQkdWNx/J6p2XKeng9QLoPEIWAByD0oo65fpSldJFyst0Vmwkq4KQBRwvQhYAtCMYblJlbSgWQLqz\njDS3sjNTmC4E4oCQBQDtKD0wqtM3P9PmliRG77wMVdQEFW5strspQJdGyAKAdkTLN/Qp6P4jWZLU\nOz9DRtL+KrbXAY4HIQsA2hEdyerTQ0ay+hyYFmXxO3B8CFkA0I69B8o39M3vOSNZErWygONFyAKA\ndpRW1Csj1a2sbl4jK4paWUB8ELIAoA1NzRHtr2pQn4KMHrOXX0F2utwuR2yaFEDnELIAoA37qxoU\nMabHrMeSDmwUnZsR2ygaQOcQsgCgDbE7C3vIeqyo3nkZCoabVVMXtrspQJdFyAKANuztYXcWRh1c\n/M6UIdBZhCwAaEN0JKun3FkY1ZsyDsBxI2QBQBtKy+vldjlVkJ1ud1MSipEs4PgRsgDgKCLGqLSy\nTr3zMuR09ow7C6P6UMYBOG6ELAA4israoMKNEfXtIdvpHCojzaOsDI++qKQgKdBZhCwAOIrdZQfW\nYxX0rEXvUb3zM1VeHVRjExtFA51ByAKAo9i1zy9JGtDLZ3NL7NE7r2Wj6H1sFA10itvuBgBAstq1\nLyBJGnCC1+aW2CO2vU5FvfoXJq4PVn+wJy6vc/E5/eLyOkBnMZIFAEexa59f3nSPcn2pdjfFFtG1\naHvKWZcFdAYhCwBaUR9sVHlNUCf18vaYPQu/7KQD06Q7SmttbgnQNRGyAKAVsanCHroeS5KyvanK\nz0rV9tJa9jAEOoGQBQCt6OmL3qMG9slSbX2jKmqDdjcF6HIIWQDQip2xkayeueg9amDfLEnS9lK/\nzS0Buh5CFgC0Ytd+v1I8TvXK7XmFSA81sHc0ZLEuC+goQhYAfEljU7NKy+t14gneHredzped1Nsn\nh6TtewlZQEcRsgDgS3aX1SliTI9fjyVJ6alu9S3I1I4v/IpEWPwOdAQhCwC+JLro/SRClqSWxe+h\nxmbtraBeFtARhCwA+JJo+YYTe2il9y+LLX5nyhDoEEIWAHzJrn1+OR0O9S/smRtDf9mgPix+BzqD\nkAUAh4hEjD4vC6hvQYY8bpfdzUkK/Qoz5XY59RkhC+gQQhYAHGJfVb3CjREWvR/C7XLqpF5e7d5f\np3Bjs93NAboMQhYAHGInld5bNbBPliLGaNf+gN1NAboMQhYAHCK2ZyGL3g/D4neg4whZAHCIg3sW\nErIOxeJ3oOMIWQBwgDFGu/YFVJCdpow0j93NSSon5KYrI9XN4negAwhZAHBAlT+kQEMjRUhb4XA4\nNLBvlvZXNSjQ0Gh3c4AugZAFAAd8dmC90Um9CVmtGXhgynAHo1nAMSFkAcABn+6pkSQN7p9tc0uS\n06ADi9+37Kq2uSVA10DIAoADPtldI5fToZMPjNjgcKeflKsUj1Mbtu6XMWwWDbSHkAUAkkKNzdq1\nz68BvXxK9VDpvTWpHpeKB+VrX1WD9pSxWTTQHkIWAKhlnVFzxDBV2I5zh5wgSXp/636bWwIkP0IW\nAKhlqlCSTu1HyGpL8Sn58ridem8LIQtoDyELAMSi92OVluLWWYPyVVpRrz3lTBkCbSFkAejxIsZo\n254aFeakKdubandzkt65pxVKkjYwmgW0iZAFoMcrrahXXbBJp/bLsbspXcLZpxbI7XKwLgtoByEL\nQI/36e6Wuk9MFR6b9FS3zhyYr91ldSqtYMoQOBpCFoAe71MWvXfYiOiU4dYym1sCJC+33Q0AALt9\nsqdG6alu9S3MtLspXcawwQVyOVumDK++4OS4vW5Tc0Rl1Q3aX9Xyv5q6sE48wauhA3OVlsJ/stC1\n8I0F0KPV1IW1v6pBZw7Kk9PhsLs5XUZGmkdDB+Zp47YK7a+q1wm5Gcf1esYYrf7HHv1m9TYFw82x\nx51Ohz7aXqmtu6o0ZECuziBsoQvhmwqgR9sWLd3AVGGHjTitUBu3VegvG3ar5LKiTr+Ovz6sF/60\nRR98Wq7MNLeKTszWCbkZOiE3XWkpLn3yeY02b6/Q5u2V2rKrShcP66e+BYw6IvmxJgtAjxZbj9Wf\nOws7atTpvdQrN12r3t8dC6sd9c8dlXr4P/+uDz4t1+kn5eqxW0fp/KG9NahvlrzpHrldTp1+cq6u\nGzdI5w05QZGI9PaHpaoPNsb5aoD4I2QB6NE+2VMtp8OhQWwK3WEpHpduvup0GUn/+ad/qbGpud1z\noowx+uO6HXp6+QcK1Dfq6xcN0v/3b+co19d6nbJo2Dp3SKFCjc1a82GpIhE2qUZyI2QB6LEam5q1\n8wu/BvTyKjWFTaE7o+jEHF06vL9KK+r1+7U7jumccGOzfvr7j/Tams+Um5Wq7/77CH119MlyOttf\nE3fagByd1Mur/VUN+nBbxXG2HrAWIQtAj7VtT62amo1OpT7Wcfn6xYOUn5Wm//nbLu38wt/msVX+\nkJ749f+vv/9rv07tl605N56nQX2PfRTR4XBo9Jm95U33aNO2Cu1lax8kMUIWgB5r8/ZKSdKZA/Ns\nbknXlpbi1k1XDVHEGP3nn/6lpubIEcc0NUf09od79dgv39POL/y68Kw+enDyMGVnpnT4/VI8Lo07\np4+cDumdjaVqCDXF4zKAuOPuQgA91ubtFXK7HDrtxFy7m9LlDT05T2OL++jtjaV64CdrNbyoUMNP\nK9QpfbO1dlOp/vfvu1RZG5LL6dC3LjlVl593ohzHUTKjIDtdw4sK9f7WMm3cVqFRZ/SK49UA8UHI\nAtAj1dSFtWtfQKeflMt6rDj51qWD5XE79d6W/Vr9wV6t/mBv7LkUj1NXnHeiJowccNTF7R015KRc\n/WtnlT7dXaOzT82nfhaSDt9IAD3SR9tbFk2fOYipwnhJT3Xr3684TSWXFemT3dXasLVMn+6p0ZmD\n8nXZuf2VldHxqcG2OJ0OnXFynt7bsl9bdlbrnMEFcX194HgRsgD0SNH1WGcNzLe5Jd2P0+nQaQNy\nddoA66dhT+2frY3bKrRlV5WGDsyTx81SYyQPvo0AepyIMdr8WaVyvCnqx36FXZrH7dRpA3IUbozE\nCssCyYKQBaDH2bXPr0BDo4YOzDuuxddIDkNOypHL6dBHOyopUIqkQsgC0ONs/ixauoGpwu4gLcWt\nwf2zVR9s0vbSWrubA8QQsgD0OJs/q5BD0lDqY3UbZ5ycJ4dD+mh7pYxhNAvJgZAFoEdpCDVp295a\nndynZQNidA/eDI9O7u1TdSCsPVSBR5IgZAHoUf61s0rNEUOV927o9JNbPtNte5gyRHIgZAHoUTZ/\n1lIf66xBrMfqbvKzUpWVmaLd+wMKNzXb3RyAkAWg5zDGaPP2SqWnujWwr8/u5iDOHA6HBvXxqTli\ntOuLgN3NAQhZAHqOLyrrVV4T1Bkn58rl5M9fdzSwb5YkcZchkgIV3wH0GL9ZvU2SlJbi0uoP9tjc\nGljBl5Giguw0fVFRr+pASDne+OyTCHQG/5QD0GPsKK2V0+HQiSd47W4KLDSob5aMpL//c5/dTUEP\nR8gC0CPsLa9TdSCsvoWZSvG47G4OLHRSb58cDmk9IQs2I2QB6BHe37JfknRybxa8d3fpqW71LcjU\nzi/8Kq2gZhbsQ8gC0CO8t2W/nE6H+p/AhtA9wcA+LQvg13/EaBbsQ8gC0O3tKQtoT3md+hVkKsXN\nVE6MsRcAACAASURBVGFPcOIJXqV6XHr3n1+wzQ5sQ8gC0O29x1Rhj+NxOzWsqEBl1UFt20s5B9iD\nkAWgWzPG6L0t++VxO9Wfuwp7lFGn95J0cD0ekGiELADd2p7yOpVW1Kt4UL48bv7k9SRnnJyrVI9L\nH3xSzpQhbNHpYqTXXXedvN6WfxX2799fd911l2bOnCmHw6HBgwdr7ty5cjqdWrFihZYvXy63262p\nU6dq/PjxcWs8ALTnvX+1jGKcd/oJqg812dwaJJLH7dKZg/K0YWuZ9pbXqV8hI5lIrE6FrFAoJGOM\nli1bFnvsrrvu0rRp0zRq1Cg9/PDDWrVqlc455xwtW7ZMK1euVCgUUklJicaMGaOUlJS4XQAAHE10\nqjDF7VTxKfn6G3WTepxhgwu0Yev/a+/Og+Oq7nyBf2/vq7pb6ta+S95tecGxDV7GjD045DF4xhs4\nCc4LSwHvkaT4IwWkhoR6AYdUPfJSARLmhUleajKpsEwyIbwKkLwANghkvMi2ZGuxLGtfWkurV/V2\nz/ujbWENlrFltW4v30+VynZ336vfPX19+9v3nnuOGyfaRxiyaN7N6tx5S0sLQqEQ7r33Xhw4cACN\njY1obm7GunXrAABbtmxBfX09Tp06hdWrV0On08FqtaK8vBwtLS1zugFERDPpHvJjcCyIupo8GHSc\nRSwb1dU4oZIknGgfUboUykKzOuoYDAbcd9992Lt3Ly5cuIAHHngAQghIkgQAMJvN8Pl88Pv9sFo/\nvZvHbDbD7+fM6ER0fWY7z+DHzYMAgByzjnMVXsVctc3WVSVzsp65ZDFqsbDMhpZuD8Z9YTisnMuQ\n5s+sQlZVVRUqKiogSRKqqqpgt9vR3Nw89XwgEEBOTg4sFgsCgcC0xy8PXTNxOEzQpMlYNi4XbwlX\nAttdOUq0vdViuO5lIrE4Ogd8sBi1WFSVB9XFL4HpbDbtMJ/mat+Yq+28VM/m1aVo6fagY8iP26ud\ns14Pzb90b/tZhazXX38dbW1teOqppzA0NAS/34+NGzeioaEB69evx6FDh7BhwwbU1dXhxz/+McLh\nMCKRCDo6OrBw4cLPXf/4eHA2Zc07l8sKt9undBlZh+2uHKXa3uefvO5l2no8iMZkLK10IBAIJ6Gq\n+WW1GGbVDvNprvaNudrOS/UsKEp8UB8+3ou1tXnXtQ4eb5STTm0/UxicVcjas2cPnnjiCezfvx+S\nJOHgwYNwOBx48skn8aMf/QjV1dXYsWMH1Go17rnnHnz5y1+GEAKPPvoo9HqeqiWi5Gvv8UACsKDU\npnQppDCn3YhSlwVnu8YQCsdg1LN/Hs2PWe1pOp0Ozz333Gce//Wvf/2Zx/bt24d9+/bN5tcQEc3K\n6MQkRr1hlOZbYDJolS6HUsDqBU78sd6P5s4xrF2cr3Q5lCU4Mh8RZZy2Hg8AYGEZz2JRwuqFib5Y\nJ9rdCldC2YQhi4gySjQmo3PAC7NBg2KnWelyKEVUFFjhsOpxqmMUsbisdDmUJRiyiCijdPZ7EYsL\nLCi1ZcQdhTQ3JEnCqgVOBCZjaO+dULocyhIMWUSUMYQQaOv1QJKA2lK70uVQilldm7hkePIcByal\n+cGQRUQZw+2ZxJg3jFKXBSYD7yCj6RaV26HXqnGyY1TpUihLMGQRUcZoOp/48Fxa6VC4EkpFWo0a\nSysdGBoLYihNxmOk9MaQRUQZYdw3iV53AC67EfkOo9LlUIqqq0kMRnrqHM9mUfIxZBFRRjh9fgwA\nsKImd2oeVaL/rK7mYr+sDvbLouRjpwUiSnveQARdAz44rHqUcNgGxaTaJNwz1ZObo0dL1zj+fLQH\nWs3VzzXs/bvFySiNsgTPZBFR2mvuHIMAsLyaZ7Ho85W4LJAFMDAaULoUynAMWUSU1oKTUXT0eWE1\naVFReOVJWokuV+pKnO3sdTNkUXIxZBFRWjtzYRyyEFhelcvBR+ma5NkMMOjU6HP7IYRQuhzKYAxZ\nRJS2JiMxtPV4YNJrUF2So3Q5lCZUkoRipxmhcBxj3rDS5VAGY8giorTV2D6KWFxgWXUu1Coezuja\nfXrJ0K9wJZTJeFQiorQ07gujvceDHLMOi8o4hQ5dn2KnGZLEflmUXAxZRJR2hBA42jIMAWDtYhdU\nKvbFouuj06qR7zBidGISoXBM6XIoQzFkEVHa6XMHMDAaRFGeieNi0ayVuiwAEvsTUTIwZBFRWpFl\ngaOtbkgAvrA4n+Ni0axdClnsl0XJwpBFRGmltdsDbyCCheV22K16pcuhNGaz6JBj0qJ/JIB4XFa6\nHMpADFlElDZC4RhOdoxAq1FhZW2e0uVQBijNtyAWFxgYCypdCmUghiwiSgtCCNQ3DSISlbGq1gmD\njlOv0o0ry794yXCYlwxp7jFkEVFaaO3xoM8dQFGeCYsrOGQDzQ2X3QidVoWe4QBHf6c5x5BFRCnP\n4w/jWIsbOq0KG1cUsbM7zRmVSkKpy4JQOMbR32nOMWQRUUqLxmQcPjmAuCxwy/JCmAy8TEhz69Il\nwx5eMqQ5xpBFRCnt94fPY9wXRm2pDeUFVqXLoQxU7DRDJUkMWTTnGLKIKGV91DSItxq6YTVp8YXF\n+UqXQxlKq1GhMM+IcV8Y/lBU6XIogzBkEVFKOtbqxr/837Mw6TX4m1XF0Gp4uKLk4cCklAw8ahFR\nymnqHMU/v9EErUaFR/etRG6OQemSKMOVcigHSgKGLCJKKW09Hrzw76cBSPjm7hWoKbEpXRJlAYtR\nC4dVj8HRICKxuNLlUIZgyCKilNFwZgj/67WTiMsC//0fl2NJZa7SJVEWKcu3QBZAPyeMpjnCkEVE\niguFY3j5zTP45zeaAQE8tHMZVtY6lS6Lskx5QeKSYdegT+FKKFNwwBkiUtT5fi/+9xvNGPaEUFlo\nxYN3LkNBrknpsigLOax65Ji06HUHEI3JvNmCbhhDFhHNOyEE2nsn8PaRbjS2jwAAvrShAv+wuQoa\nNT/YSBmSJKGyKAenOkbRO+xHVXGO0iVRmmPIIqJ5E5yM4VTHCP58tBedA14AQFVRDvZsrcGSCofC\n1REBlYVWnOoYxYVBH0MW3TCGLCJKGlkIDIwEcPr8GE51jKC9dwJxWUACsHqBEzvWlWNBqY1zEVLK\nsFv1sFt06HMHEInyLkO6MQxZRDRnorE4Ogd8ONc3gfYeD871TSAwGZt6vqrIihXVediwrBCF7HdF\nKaqy0IrGc6OcZoduGEMWEc2aNxBBR98E2vsm0N7rQdegD7G4mHreaTOgriYPSytzsbw6DzazTsFq\nia5NZVEOGs8lLhkS3QiGLCK6JrG4jHM9HhxtHkBH3wTO9U1gZGJy6nmVJKG8wILaUhsWlNpRW2KD\nw6pXsGKi2ckx6+Cw6tE/EoAvGFG6HEpjDFlE9Bn+UBSDo0EMjAbQPxpAZ78XFwZ9iMTkqdeYDRrU\n1eShujgHC0psqCrOgUHHQwplhsoiK060hfHR6QGsruaguDQ7PCISZTFvMILuQR/6RwIYGAtiYDSI\nwdEAvMHotNdJElDitGB5rRMluUZUF+egMNfEDuuUsSoLrTjRNoLDjX0MWTRrDFlEWWRoLIjjbW6c\n65tA15APY97wtOclAE67AXVFOSjKM6Eoz4zCXBPK8i0w6jVwuaxwu9lPhTKf1aRDns2AU+dG4A1G\nkGNif0K6fgxZRBlueDyII2eH8UnL8LS7pXJMWqyozkNFoRWlLvPFQGWEVqNWsFqi1FFVaMXoxCSO\nnBnC9rVlSpdDaYghiyhDuT0h/MfhTnzcPAgBQK2SUFeThy8szsfSylzYLTpe7iO6iqriHDSeG8G7\nJ/qw7aZS/n+h68aQRZRhPP4w/lh/AYca+xGXBUpdFuxYV4bVC5wwGbRKl0eUNox6DTbWleD9E71o\n7fZgMWcloOvEkEWUIYQQqG8axK//3IZwJI58hxH/sLkK65YUQMVv4ESzcvstlXj/RC/ePdHHkEXX\njSGLKAMEJqP417dbceTsMIx6Ne7ZsQib64o42TLRDVpalYtSlxnH29zw+MOwWzj2G107hiyiFPFe\nY9+slhsaC+LwqQEEJ2Nw2Q3YVFcESQI+OD0wxxUCVosBPv/k57+QKENIkoRb15TiX99uxeGT/fj7\njVVKl0RphF9zidKUEAJnu8bxzpEehCZjWFmbhx3rymHlreZEc2rD0gLodWq819iPuCx//gJEFzFk\nEaUhWRZoODOET84OQ69T47b1ZVhZ64RKxb5XRHPNqNfgluWFGPeFcfLcqNLlUBphyCJKM+FIHH85\n2ou2ngk4rHp86eYKFDhMSpdFlNFuXV0CAHj3xOwu61N2Yp8sojQy4Y/gr8d74QtGUZZvwaa6Img1\n/K5ElGylLgsWltrQ3DmGwbEgCnP5xYY+H4/ORGmifySAP33cBV8wiuVVudi6upgBi2ge/e1NpQCA\nNz7sVLgSShc8QhOlgZbucfy/Y72IxQU2rijEmkUujj5NNM/WLs5HeYEFHzcPoWuQc3jS52PIIkph\ncVlGw5khHDkzDL1WjdvWlaKmxKZ0WURZSSVJ2HdrLQDg1XfPQQihcEWU6tgniyhFeQMRHDrZjzFv\nGHaLDn+7phQWE6fFIVLS0spcLK/ORdP5MZw+P4q6GqfSJVEK45ksohQjhMC53gm8WX8BY94wakts\nuH1DBQMWUYrYt7UWkgS89m4Hx82iq2LIIkohgVAUh04OoL5pEJIkYfPKItyyopAd3IlSSGm+BRtX\nFKFvJIAPTw8qXQ6lMB65iVJAYDKKY63D+P3hTnQN+uC0GXDHLRWoKspRujQiuoJ/3FwNnUaF3x8+\nj3AkrnQ5lKLYJ4tIQeO+MOqbBvBWQzcCkzGYDBqsqnWiuiQHKt49SJSyHFY9bltXhjfru/Drd1px\n739Zwjt+6TMYsiirzXZS5hsxGYmhe9CPzgEvhsZDAACdRoU1C51YXOGARs0TzETp4I6bK9F0fgwf\nNg2iLN+C29aVz/jauTrWbF1VMifrofnBkEWUJPG4DH8oCl8oinFvGKPeSYx5w/CHolOvyXcYUVVk\nRWVRDvRatYLVEtH10mnV+MbuOvyP//MJXnn3HIqdZiyvzlO6LEohDFlENyASjWPcH4YvEIU/lPjx\nBSPwh6IIhT/bT0OvVaPYaUJRnhmVhVaYjbxjkCidOax6PLJ7BX74byfw0h+a8U9fW8spd2gKQxbR\nNYrFZYx4JjE0HsSoN4xx7yQCk7HPvE6SALNBi8JcPSxGLSwmLewWHXJzDDAbNOy3QZRhaopt+K+3\nL8LLb57FT14/hce/sgY5Zp3SZVEKYMgimoEQAqPeMHqH/RgcC2LEMwn5shGeDTo1ivJMcFj1sJl1\nsJi0sBi1MBu0UKkYpIiyyS3Li9DrDuCthm58918a8LXbF2P1ApfSZZHCGLKILhOXBQZGA+gZ8qPX\n7Z+65CcByM3RoyDXhIJcE5w2A4x6/vchok/t2VoDu1mH198/j+f//TQ21RVh/7YFPFZkMb7zlPVk\nITA0FkTngA/dQz5EookRnPVaNWqKc1Cab0FRngk6dkwnoqtQSRJuW1eOZVW5+Pkfz+CDUwNo6RrH\n5pXFiMXjsFv07C6QZRiyKCvJF6euaTgzhK5BHyYvDiZo1GuwpMKGikILnHYjx6oioutW4rLgn762\nFn/4oBNvNXTj94fOAwBMBg1KnGYY9RrotCpoNWpoNSoIISDLArIAhCwgi4s/soBAYogXnVYNvVaN\n7iEfXHYjz46lCb5LlDWEELgw6MORs0M4cnYY474wgMQZq4VldlQVWZHvMPKbJhHdMI1ahd1/U4Md\n68rR1DmKdz7pQb87gPbeiRta71+O9gIAbBYdinITdyqXF1hQWZiDEpeZ4+ylGIYsynh9bj8azg7h\nyJlhDHsSg38a9RpsWlEEg16NwlwTO6oTUVJYjFpsWFqIyUgcsizg8YcRjsYRjcmIRGXE4jIkKXGp\nUaWSIF38U3XxMUhANCojHI0jEo0jN8eAobEgBseCaOn2oKXbM/W7NGoJpS4LKotyUFloRWWhFcVO\nBi8lMWRRRvIGI2hoHkJ90yC6hnwAEmesNiwtwBeW5GN5VR60GpUiI74TUXZSqSTk5hhuaB2Xj/ge\nicYxMBpE15APFwa8uDDoQ6/bjwuDvqnXaNQqlOVbpkJXRaEVRXlmTjo/TxiyKGNEYzJOnhtBfdMg\nTp8fRVwWUKskrKp1YsOyAqysdXJUdSLKGDqtGhUXg9OWlcUAEuP59bkDuDCYCF0XBhM39HQOeKeW\nU0kSCnKNKHVZUOIyo8RpQWm+GS6bkWf155gkxGUD/6QIt9v3+S9KAS6XNam1ptpZllSZM8vlsuK1\nP7cASPSzGpmYREefFxcGvVN3Bubm6FFTbENlkZUdROeQ1WKAzz+pdBlZiW2vjExo97gsw+OLYHRi\nEmO+SYz7wvD4I4jG5GmvU6sk2C162K062C16OKx62C16mAxXPoYm+zMh2Z+xc8nlsl7xcX76UFoK\nhKI43+9FR78X3kAEAGDUq7G00oGaEhscVr3CFRIRpQa1SoU8mwF5tk8vVQohEJyMYdwfhudi6Br3\nhTHuT8yzejmLUQuX3YB8hwkFDiNsFh1vELpGDFmUNiYjMRxrdeNo2ymcbB8BkPjmVVloRU2JDUV5\n7MBORHQtJEmC2aiF2ahFqcsy9bgsC/iCkanQNeadhNszic4BHzoHEmeVTAYNSl1m2M16LKl0sBvG\nVTBkUUqLyzJauz2obxrEsVY3wtHEeFb5DiNqinNQUWjlIKFERHNEpZJgs+hhs+hRUZi4BCaEgDcQ\nwfB4CANjQfSPBNDWM4G2nlPQalRYWZOH9UsLUFeTB62Gx+PLMWRRypFlgfZeD460DONYyzC8wSgA\nwGkzYMfyMtyxpRYfnOhRuEoiouwgSZ8GrwVldsiywMhECGqVCsfb3Djamvgx6NRYs9CFjcsLsajC\nwcGcwZCVEiYjMQyMBjE8HsLweOJPXyiKobEgYnGBmJzonKhRqaBRS1CrVdBqVJeNAvzpaMA6rQo6\njRpqtQQJEi7t43FZIBqTEz9xGZFoHOFIHOHoxZ/I5X/KiMsyLr8lQq2W8FZDN8yGxCTIdosOLrsR\n+Q4jXPbEj9mgmdV1eiEEhj0hnO0aR0vXOM52jcN3MVhZTVpsXV2C9UvysaDMDpUkweU033CbExHR\n7KhUEvIdJmxdVYJdW6rRM+xHw5khHDmbGDanvmkQeTkGbFxRiFtWFCHfblS6ZMUwZClgzDuJ1h4P\nzvVNoKNvAj3Dfsx0j6daJU0NJBeLRxGXk3czqCQlxpIy6NTQqDUAEgPhAUA8LiMciWN0YnLGGox6\nNVy2ROByWPWwmLSwmnSwGrXQqFWIy3IiNMZlePxhDI2FMDSeGFTvUqgCAIdVjy0ri/CFJQVYXG6H\nWsXxXIiIUpEkSSgvsKK8wIrdW2vQ3uPBh02D+KRlGG98eAFvfHgBC8vs2LSiCGsXu2DQZVfsyK6t\nVUg4EkdrzziaOsfQ3DmGgdHg1HMatQq1JTaUF1hR4DBOu3vjo+bBz5wZEkJMBZVLIwBHpkYDlhGJ\nxadGEQaAS3FIJUlTZ7+0GhV0WhX0F89+6XWJP7Ua1VXPRG1dVQIhBMLROMZ9Ybg9IQyPh+D2TMLt\nCcE9EcLgeBDdw/5rbhtJAlw2IxaW2bG0woHFFQ4U5pp45woRUZpRSRIWlTuwqNyBL29fgGOtbnx4\negAt3R609Xjwb39uw02LXFi/tABLKhxZMRI9Q1YSCCHQM+xHc+cYmjrH0N7rQSyeiDt6rRora/Kw\npMKB2lI7ygssM+5oVwoakiRBq0kEJiXGf5IkCQadBkV5GhTlffaynRAC3mAUHl8YvlAEvmAUvmAU\nsiygVkvQqBKXO60mLQpzTXDZjVnxH42IKJsYdBpsXFGEjSuKMOIJ4cOmQXx4emDqcqLZoMFNi1xY\nuzgfi8ocGTsCfdI/pWVZxlNPPYXW1lbodDo8/fTTqKioSPavnVeyLNDr9qP1Ylpv7fHAH/r08ld5\ngQXLq/KwrCoXtSW2jN2ZgIsdJM062Mw6pUshIqIU4LQbsXNTFf5+YyU6+ibwydlhfNI6jEMnB3Do\n5AB0WhUWlTmwvCoXS6tyE8PxZMjVjKSHrL/85S+IRCJ45ZVX0NjYiGeffRY/+9nPkv1rk0IWAhP+\nCEYmQugbCcDtDaOtaww9w/6pkcaBRJ+im5cVYnl1LpZW5jJwEBFR1lNJEhaU2rGg1I67ty1Ae68H\nJ9pH0NQ5htPnR3H6/CiARP/eigIrllY7kW/To8BhQr7DmJazdyS94mPHjmHz5s0AgFWrVqGpqSnZ\nv/JzRWNx9I0EEIkm7rSbuusuFp/6eygcS1zqCkXhC0Yu9kGanOrrdIlaJaEoz4zKIisWldmxsMwO\np83APkVEREQzUKk+7b8FJG4Ia+4cQ0v3OC4M+tDa7UFLt2faMlaTFk6bETazDlaTFjlmHcwGLfRa\nFTSX+htr1FP9jzUaFRwW/Q1Pyn0jkh6y/H4/LJZPR5NVq9WIxWLQaJRLpD/7j2Y0nhu5rmXMBg1K\nXObEcAU2AwpyTVi5uAAmNTj4GhER0Q3IzTFg88pibL440XUoHMPEZByn2obhHg9hyBOEezyE7iHf\ndd1lL0nA//xvGxWbai3pScdisSAQCEz9W5blzw1YM020OFe+//DGpK5/ruz9u8VKl5Cy2DZERJlv\nRa1T6RJuSNJ7YK9ZswaHDh0CADQ2NmLhwoXJ/pVEREREipOEmGkYzLlx6e7CtrY2CCFw8OBB1NTU\nJPNXEhERESku6SGLiIiIKBtl7oBNRERERApiyCIiIiJKAoYsIiIioiRIv+FTk2RychLf/va3MTo6\nCrPZjB/+8IfIzc2d9ppXX30Vv/3tb6HRaPDwww/j1ltvvepy8Xgcjz76KPbs2YMtW7YAAB5++GGM\nj49Dq9VCr9fj5ZdfnvdtTTXz1fYvvPAC3nvvPWg0GnznO99BXV3dvG9rKpnrdm9sbMQzzzwDtVqN\nTZs24ZFHHgHAff6Sz5ti7K9//StefPFFaDQa7N69G/v27Ztxma6uLjz++OOQJAkLFizA9773PahU\nqiu+XzQ/bf/000/j+PHjMJsTc7r+9Kc/hdWa3OGI0sFctv0lBw8eRFVVFfbv3w/gyseplCFICCHE\nL37xC/GTn/xECCHEm2++Kb7//e9Pe354eFjccccdIhwOC6/XO/X3mZbr6uoSd911l9i6dat4//33\np9Zz++23C1mW52mr0sN8tH1TU5O45557hCzLoq+vT+zatWsetzA1zXW733nnnaKrq0vIsizuv/9+\n0dzcLITgPn/J22+/LR577DEhhBAnTpwQDz300NRzkUhEbN++XXg8HhEOh8WuXbuE2+2ecZkHH3xQ\nfPzxx0IIIZ588knxzjvvzPh+UfLbXggh7r77bjE6Ojqfm5UW5rLtR0dHxX333Se2bdsmfvOb3wgh\nZj5OpQpeLrzo8ul/tmzZgo8++mja86dOncLq1auh0+lgtVpRXl6OlpaWGZcLBoN45plnsH79+ql1\njIyMwOv14qGHHsL+/fvx7rvvztPWpbb5aPtjx45h06ZNkCQJxcXFiMfjGBsbm6ctTE1z2e5+vx+R\nSATl5eWQJAmbNm1CfX099/nLXG2KsY6ODpSXl8Nms0Gn0+Gmm27CJ598MuMyzc3NWLduHYDEe1Bf\nXz/j+0XJb3tZltHV1YXvfve7uPvuu/H666/P8xamrrls+0AggG984xvYuXPn1DpSfb/PysuFr732\nGn71q19NeywvL2/q1K7ZbIbP55v2vN/vn3bq12w2w+/3T3v88uUWL/7siOTRaBT33nsvDhw4gImJ\nCezfvx91dXXIy8ub0+1LZUq1vd/vh91un7YOn8/3mctjmSrZ7f6fp88ym83o6enhPn+Zq00xdrW2\nvtIyQoip+VEvfw+utA5KftsHg0F89atfxde//nXE43EcOHAAy5cvv+KxKNvMZduXlZWhrKxsaoDz\nS+tP5f0+K0PW3r17sXfv3mmPPfLII1PT/wQCAeTk5Ex7/j9PDxQIBGC1Wqc9fqXlLud0OnH33XdD\no9EgLy8PS5YsQWdnZ1Z94CjV9jOtI1sku92v9NqcnBzu85e52hRj19LWly+jUqmmvXam9yCb9vGr\nSXbbG41GHDhwAEajEQCwYcMGtLS0MGRhbtv+Wtafavs9LxdetGbNGrz//vsAgEOHDuGmm26a9nxd\nXR2OHTuGcDgMn8+Hjo4OLFy48HOXu1x9fT2+9a1vAUjsCO3t7aiurk7SFqWP+Wj7NWvW4IMPPoAs\ny+jv74csy1lzFmsmc9nuFosFWq0W3d3dEELggw8+wNq1a7nPX+ZqU4zV1NSgq6sLHo8HkUgER48e\nxerVq2dcZunSpWhoaACQeA/Wrl074/tFyW/7CxcuYP/+/YjH44hGozh+/DiWLVs2z1uZmuay7a8k\n1fd7jvh+USgUwmOPPQa32w2tVovnnnsOLpcLv/zlL1FeXo5t27bh1VdfxSuvvAIhBB588EHs2LFj\nxuUuefzxx/GlL31p6g63Z555BidPnoRKpcL999+P7du3K7XJKWO+2v7555/HoUOHIMsynnjiCaxd\nu1apTU4Jc93ujY2NOHjwIOLxODZt2oRHH30UAPf5S640xdiZM2cQDAZx1113Td1lJYTA7t278ZWv\nfGXGack6Ozvx5JNPIhqNorq6Gk8//TTUavUV3y+an7Z/+eWX8ac//QlarRY7d+6cuvMt281l21/y\n/PPPw+l0Tru7MFX3e4YsIiIioiTg5UIiIiKiJGDIIiIiIkoChiwiIiKiJGDIIiIiIkoChiwiIiKi\nJGDIIqKM9vjjj+Oll17CAw88AADo7+/HF7/4RezatQs+nw+7du3Czp070dnZqXClRJRpGLKIKOPl\n5+fj5z//OQDgyJEjWLZsGX73u9+hpaUFOp0Of/jDH1BVVaVwlUSUaThOFhFlFCEEnn32Wbz3Mm4q\n4wAAAR9JREFU3nvIz89HPB7Hnj178MILL+DFF1/Eww8/jGAwiG3btuHo0aMYGRnB+vXr8dJLLyld\nOhFlmKycu5CIMtfbb7+NM2fO4M0334TP58Odd9459dySJUvwzW9+E0eOHMEPfvADNDQ04IUXXmDA\nIqKk4OVCIsooR44cwW233QatVovc3NypaZWIiOYbQxYRZRRJkiDL8tS/NRqesCciZTBkEVFGufnm\nm/HWW28hEolgYmIChw8fVrokIspS/IpHRBll+/btOH36NO644w44nU7U1NQoXRIRZSneXUhERESU\nBLxcSERERJQEDFlEREREScCQRURERJQEDFlEREREScCQRURERJQEDFlEREREScCQRURERJQEDFlE\nRERESfD/AXZaow4oj9opAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAGkCAYAAABw5S9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVPX+B/D3mY0Z9n0RRQXcchc1TU3DzHZNKy0jS8tr\ndatbv3tLLa8tamU3b2W22ap1S0tTUTMrzS3NLXFHBZFFZN8ZmO38/kAIcIABZubM8n49Dw8MZ5nP\noPCez/d8zzmCKIoiiIiIyG5kUhdARETkbhi+REREdsbwJSIisjOGLxERkZ0xfImIiOyM4UtERGRn\nCqkLsIW8vDKL1w0I8ERRUaUNq5GeO7xGgK/TlbjDawRa9zpDQnxsXA3Zk9t3vgqFXOoSbM4dXiPg\n+q+zqKwaaZdLIchc/9fW1f8ta7nL66SruWTnS+RKDEYTfjqQjo1706A3mODrpULfroGYNDoGAT4e\nUpdHRG3g+m+hiZxYSYUOL39+EGt3pkKlkKFP10CIooi9Jy7j7e+SUKUzSF0iEbUBO18iByWKIj7d\nfApZ+RXo2zUQNwyKhFqlgJ+fBmt+TkZSSgE+3ngKf5/UFzKZIHW5RNQK7HyJHNT2I1k4kVqILuE+\nuPnaKKhVNe+VBUHAjYM7oXOYN46ez8cPu1MlrpSIWovhS+SAsvLKsWbHeWg85Lh1WGcIQsPOVi4T\nMGFkV/h7q/Dj/ovIKXT9mcFEroThS+RgRFHEV9vOQm8w4eahUfDWKM2up1YpMLp/B5hEsPslcjIM\nXyIHc/piEZIzihHdwRfdOvo3u273Tv4IC9TgwOlcXLxs+fntRCQthi+RAxFFsa6LHdk3osX1BUHA\n6P4dAABrd6XYtDYish6GL5EDOZ5aiJSsUnTr6IfwQE+LtukS7ouoMG+cSC3EucxiG1dIRNbA8CVy\nEKIoYv2VrndEn5a73vpq1//5YIbV6yIi62P4EjmIU2lFSLtchh6d/BEaoGnVth1DvBDqr8GRs3ko\nKKmyUYVEZC0MXyIHsfVAOgBgaK+wVm8rCALieoTAJALb/8y0dmlEZGUMXyIHkJFbjpMXCtEp1BsR\nQZYd622sV+cAeHoosPPoJVTrjVaukIisieFL5AC2Xel6h/QMbfM+FHIZ+scGobLKgP0nL1urNCKy\nAYYvkcSKyqqx/1QOAn09ENPBt137GhAbApkA/Ho4E6IoWqlCIrI2hi+RxLYfyYTRJGJwj9CrLiPZ\nWj6eSnTr6I/MvAqkZJVaqUIisjaGL5GEqnQG7DiSBU8PBXp3CbTKPgfEBgMAdnDiFZHDYvgSSWjP\nsWxUVhswsFswlArr/DpGhXkj0NcDB8/koqxSZ5V9EpF1MXyJJGIyidh2MAMKuYCB3YKttl9BEDAg\nJhgGo4i9xznxisgRMXyJJHLkbB7yS6rQu2sgPNXm71zUVr27BkIhF/Dbn1kwceIVkcNh+BJJQBTF\nuotqDO7R9tOLmqLxUKBXVAByi7U4kVpo9f0TUfswfIkkcCa9GKmXShEb6YcgX7VNnmNg9xAAwC+H\neb1nIkfD8CWSwKbf0wAAw3u3/lKSlgoP9ETHEC+cSC1EdkGFzZ6HiFqP4UtkZ+czS3D6YhG6hPsg\nIsjLps8Vd6X7/fUwTzsiciQMXyI727QvDQAwvHe4zZ+rW0d/+Hgqsfd4NiqrDDZ/PiKyDMOXyI7S\nLpfiWEoBOoZ4o1Oot82fTyYTMKhbCKr1Juw+dsnmz0dElmH4EtmJKIr4/rcUAMCIPrbvemv1iwmC\nSiHD1j/SoTfwbkdEjoDhS2QnJy4U4lRaEbqG+6BzuI/dnlfjocDAbsEoqdBh51F2v0SOgOFLZAcm\nk4g1288DAEYPiLT78w/pGQqlXIYt+y+y+yVyAAxfIjvYeyIbWfkV6NM1EKEBGrs/v6daiYHdglFc\nrsPuY9l2f34iaojhS2RjFVV6rNuZCoVcwKh+EZLVMaRXTfe7+feLqNax+yWSEsOXyMZWbz+Pkgod\nrusdDh9PlWR1eKmViOsRgqLyamz8/YJkdRARw5fIpk6lFWLPsWyEBmgwpJftrmZlqeG9w+HnpcJP\nBzKQmVcudTlEbovhS2Qj1Tojvtx6BoIA3Dw0CnKZIHVJUCpkuHFwR5hMIlb+lMw7HhFJhOFLZAOi\nWBNuecVVGNIjFOGBnlKXVCemgx96dPLH+cwS/HyQN10gkgLDl8gGdiZdwr6TlxER5ImREk6yakr8\noI7wUiuwZsd5HD2fL3U5RG6H4UtkZWmXS/G/n89CrZLjzhFdoZA73q+Zj6cSk66Phlwm4KMNJ5Ce\nUyZ1SURuxfH+KhA5sdxiLd757hgMRhG3D+8CPy/pZje3JCLIC7cN64xqvQn/+fYoTlwokLokIreh\nkLoAIldRXF6Nt779EyUVOsQPikR0B1+pS2pRj6gAjNcZ8fPhTPx3dRJuu64zbh3WGWpV838aKqsM\nyMgtQ2ZeBcq1emirDZDLBAT7qRESoEG3jv7wUMrt9CqInA/Dl8gKSip0WLr6KPKKq3Bdn3AM7hEq\ndUkW6x8bjNAAT2zcewGbfr+Inw9mYEjPMPSIqrkdoVIuQ2FZNQpKqpCRV470nDLkFVc1u08PpQz9\nYoJxff8OuKZLAARB+pneRI6E4UvUTpcLK7F09VHkl1RhUPcQu96xyFoigjwx/eYeOJSchxMXCrHn\neDb2HDd/GUqNhxydw3wQFqBBaIAGXmolVEo5jCYTSip0yCvW4lxGCQ6eycXBM7noGeWPyWNiENPB\nz86vishxMXyJ2uFsRjHeW3cM5VoDrusTjhF9wp22y1OrFBjZNwIj+oQjM68CRWXVqKzWw2AU4aNR\nwtdLhSBfNXw8lU2+xo4hNZ9H9++Ay4WV2HviMs6kF2PRysO4cXBH3D06BioORxMxfInawiSK2LLv\nItbvToUIYPyQTugfGyx1WVYhCAI6hXqjU6h3u/YREeSFu0fHID23DNsOZuCXQ5k4eaEQf7uzN6LC\n7HdLRSJHxNnORK2UW1SJt749inW7UuGlVmJqfDeXCV5biAr1wfTxPRHXPQTZBZVYtOow9p28LHVZ\nRJJi50tkIb3BiK1/pCPx9zQYjCJiIn1xy7Wd4enBX6OWKBUyjI3riM7hPti8Lw0rEk8hLbsM98bH\nQC5jD0Duh381iFpgMJqw93g2Nu5NQ1FZNbw1SsQPikSPTv5Oe3xXKrGRfki4qQd+2H0BPx/KQEZu\nGWZP7ANfCe/2RCQFhi9REyqr9NiVlI3tRzKRX1IFhVzA0F6hGH5NODxUnDTUVoG+ajxwU3ds2X8R\nZ9KL8crnB/H3yX3RJdzxz4smshaO9xDVYzCakHQ+Hx8nnsSzy/dizY7zKCnXYVC3YMy6ozfGDIhk\n8FqBh1KOiSO7YlS/CBSVVWPxqsPY28SpTdaSnX0J118/FA89dD8eeuh+TJ8+FTNmPIAff9xUt84n\nn3zY4LE5n3++Art3/2Z2Wf3tR44cjOLi4lbVePr0Sbz55uK6x88880TdPh599FGcP3++Vftri3Xr\n1mHMmDGYOXOmzZ/LHrZu3YqEhIR27eOdd97B+vXrrVRRDXa+5LZEUURxuQ5ZeeW4mFOG5PRinM0s\nhk5vAgD4e6sw/Jpg9IsJgobHda1OEAQM7x2O0AANNv1+EZ9uPo20y2WYEh9rs+f08PDAF1/8r+7x\n5cvZePrpx6DRaDBmzFg88sjsFvdx+PBBdOnS1ewyS7ZvzoULqcjLy617fPDgH3Vfr1ixol37ttT6\n9evxzDPPYMKECXZ5Pmfw9NNPW32f/ItCTksURegNJlTpjajWGVFhEJGdU4pqnRFVOgMqqw3QVtV8\nrqz/uUqP4godisqqoTeYGuwzyFeNLtE+6BUVgIggTx7TtYOYDn5IGN8d63dfwK+HM5GRW44XZ15r\nl+cOD4/AzJmz8b//rcKYMWOxaNFL6No1Bvffn4BPP/0Iu3btgEKhhJ+fH+bNewk7d25HcvJpvP/+\nu5DJ5NizZydKS0uQlZWF664biaKiwrrtAeDjj5fjzJlTMJlEPProYxgxYhS2bEnEb7/9iiVL3gaA\nusf/939z8MknH6KiohyLF79cV+NTT/0Nb775DqZMmYB33nkHffv2xerVq7Fq1SrIZDIEBwdj/vz5\n6Nq1K+bMmQNvb28kJyfj8uXLiI6OxtKlS+Hl5dXgdZeVleHll1/GmTNnIAgCRo0ahWeffRZLlizB\n8ePHkZmZiaKiIjz00EMNttu+fTs++OAD6PV6qNVqPP/88xg4cCCWLVuGo0ePIjc3Fz169EDnzp0b\nPH7ttdfw+uuvY9++fZDL5ejXrx/mzp0Lb29vxMfHo1+/fkhOTsazzz6LcePG1T1ffn4+/v3vf6Og\noAB5eXmIjIzE22+/jaCgIMTHx+Ouu+7Cvn37kJ2djVtuuQXPPfccgJpONTExEf7+/ujcubPZf/s/\n/vgDS5YsQVhYGDIyMqBWq/H6668jJiYGc+bMQXFxMTIyMjBmzBgUFBSgW7dumDlzJpKSkrBw4UJo\ntVoolUo899xzGD58OFJSUrBo0SIUFxfDaDQiISEBd999d5P/9xi+5FC01QZk5pUjr1iL/OIqlFTq\nrgRmTWhWVBlQpTPUBKzeiLbeC95TrUCgrwf8PFUI9tcgxF+DyGAveGuU1n1BZJFAHzWmjeuOH/9I\nx9mMYjzz35146Oae6N010ObPHRvbDampDYdzc3IuY82a/yEx8WeoVCp8881XOHXqBCZPvhc7dvyC\nyZPvxejRN2DPnp2oqqrGV1+tAQAsWvRSg/106BCJ5557Aamp5/H3v/8NX3/9fZN1hIWF45FHZuO3\n337FvHkLANQE87vvfgR/f/+69fbt24dPPvkEq1evRmBgINatW4cnnngCmzdvBgCcOHECK1euhCAI\nuPfee7F161ZMnjy5wXMtXLgQ/v7+SExMhF6vx2OPPYbPPvsM8+bNw+nTpzFt2jTcfPPNDbZJS0vD\nf//7X6xcuRIBAQE4d+4cHn74YWzbtg0AkJWVhU2bNkGhUGDZsmUNHr/77rvIzc3Fhg0bIJfL8cIL\nL2DJkiV45ZVXAADdunXD22+/fdXPZPPmzRgwYABmzZoFURQxa9YsbNiwATNmzAAAVFZW4n//+x9y\ncnIwbtw43HfffUhOTsa2bduwfv16qNVqPPHEE03+zE+dOoW5c+di8ODB+Oabb/Cvf/0L69atAwBU\nVVXV/UznzJkDANDr9XjiiSewcOFCjBkzBidOnMDcuXOxdu1aPPXUU1iyZAl69+6NsrIyTJkyBbGx\nsRgwYIDZ52b4kmQqqvRIv1yGtJwyXLxc85FTpG1yfZlQcxUmlVIGH08VAhUyqBQyKJVyqBQyeHt5\nQDSaoFLKoJTL4KGSQ62Sw0Mpr/n6ymeVQg6ZjB2to/FQyjFhRBf8cSoHu49n463VRzG4RwjujY9F\nsJ/GZs8rCALUanWD74WEhCI2tjtmzHgAw4Zdh2HDrsPgwUPNbt+vX/8m9z1xYk3nEx0diy5duuLk\nyWPtrnf37t249dZbERhY88Zk0qRJWLRoETIzMwEAo0aNgkpVM3u8e/fuKCkpuWofu3btwjfffANB\nEKBSqTB16lR8+eWXmDVrVpPPu3fvXuTm5jbohgVBQHp6OgBgwIABUCj+ipT6j3ft2oVnnnkGSmXN\nm9uEhIQGoTh48GCzzzl9+nQcOnQIn3/+OdLS0nDu3Dn07//Xz3vs2LEAgLCwMAQFBaGkpAT79u3D\nuHHj4O1dc5GYyZMnY9WqVWb337Nnz7rnnjx5Ml555RUUFRUBAOLi4q5a/+zZs5DJZBgzZgwAoE+f\nPkhMTMT58+eRnp6OefPm1a1bVVWFU6dOMXxJOpVVBmQXVuByQSUuFdR8ruluG16c30MpR1SoN0ID\nNAj0VcPPSwVvjbImQFVyKOWyZoeB/f09UVxcaeuXQzYkCAKG9Q5Hvx6h+GHHeRxKzsORc/m4tlco\nbhoShagwb6sfCjhz5hSioxseZ5bJZHjvvY9x5swpHDp0AMuWLcXAgYPxj3/886rtNRrPJvctq3cO\nsyiKkMsVEAQBYr0hG71e36p6RTPDPaIowmAwAECDNxKNn6uWyWS66nHt9k0xmUwYPnx4gw41Ozsb\noaGh+Pnnn+Hp2fDnUP+xueer/7obb1vrzTffxLFjxzB58mRce+21MBgMDV6Ph4dH3de1r7Xxa5bL\nm54g2XhZzb+RvMma5HL5Vf//zp49C1EU4evriw0bNtR9Pz8/Hz4+TV/JjeFLzRJFETq9CWWVOpRp\n9Sir1Nd8XalHRZUe1TojdAYjdHoTdAYTdHojdHojqg0mVFbpUVqhR7XeeNV+NR5ydAn3QViAJ8IC\nNQgP9ISfl4rHWAkA0CHYG/ff2A2n0oqw/3QO9p2s+QgN0GBAbDC6d/JHZIgXQvw07RrFSE+/iC++\n+ARPP90wVM+dO4uXX34RH3/8BXr16o3AwKC6WcxyuaLFoKr144+JmDx5CpKTzyAzMwO9e/fByZPH\nkZqagurqahgMGuzdu7tufblc3mDfjR8DwMiRI/HSSy9h+vTpCAwMxNq1a5s9tmnOyJEj8fXXX2Pe\nvHnQ6/VYs2YNrrvuuma3GTZsGN59912kpKQgJiYGO3fuxD//+U/s3LmzxecbNWoUvv32WwwdOhRy\nuRxff/01RowY0eJ2e/bswZNPPokbb7wROTk5+P3331ucCDZq1CgsXrwYM2fOhLe3d4NAbOzMmTM4\nc+YMevbsidWrV2PQoEHw9W36lLfo6GgIgoC9e/dixIgROHnyJB555BHs3LkTHh4e2LBhAyZMmIDs\n7GzcddddWL58udkOGmD4uh2TKKJCq0d5/SCt93Xd9ytqvl9eqYfeaGp5x40o5ALUKkVd9xrg64Eg\nXzUCr3z29FAwaKlZgiCgd9dAXNMlABeyS3EspQAXLtdcJ3rbwQwAgEwmwFujhJdaUXc4QS4XoJAJ\nNV/LZJDLBMhlArTl+aiqqsKdkyZd2VYGuUKJQSPvRoEYiZ8PZSCnqBIq73IMUAZj4NBReOjhB+Dp\nqYFarcYz//gXAGDEiFFYvvwdiwL40qUsPPzw/RAEAS+/vBi+vn4YMmQYBgwYhGnT7kZ4eBj69h2I\nlJRzAIA+ffrh44/fx9y5/8Rrr/0H119/Ax5/fCZef/2tun2OGDECDz30EKZPnw6TyYTAwEB89NFH\nDbrslrz44otYuHAh7rjjDuj1eowaNQqzZzc/U7tbt2545ZVX8Oyzz0IURSgUCnzwwQdNdq31PfbY\nY3jjjTcwceJEGAwG9OvXD/Pnz29xuyeeeAJLlizB+++/D7lcjkGDBtUNczdl9OjRSE5OxuTJk+Hr\n64uePXvWDSU3FhwcjLfffhtZWVkIDAzEkiVLmt23SqXCsmXLsHjxYixZsgRKpRLLli2DSqXC+++/\nj0WLFuGTTz6BwWDA008/3WTwAoAgmhuTcHJ5eWUWrxsS4tPk+iZRRFW1EZXVelRWGaCtNsBgEmE0\nmmAwijCaRBhNJggQIAg1fywE4K+vBdRb9tdyk1izrclU01n+9Vi88gfjyh+NK39E5DIBcnnt4yt/\nTOQ13zeaRFTpjKiqNtR81hlrAlSrR/mVDrXKYEJhiRbllXqUV+ktmqSkVMig8VDA88qHxkNe81it\nqPu+xkMBlUIGhaLmGKtCLoNSUVOfFMHqLsPO7vA6m3qNBqMJmbnlyCnSIq9Ei+Kyamiv/L83Gk01\nv0ei2OaJeM2RyQRoVHKoVX/9PtR9qORQX/naW6OsuwuUj6cSPp4qeKnNv9ls7u+PuXXJev744w+8\n+uqr2LSp+fO6bcUlO9+k8/morDbAdOUXseYz6h7rDSZU6WpOTxHkMhSXalGtM6Jab4T2SthWXAlb\nV3hrIgBQe8ihUSkQGexV9wfDs16INg5VpYLXXyHHo5DL0CXCF10imr8altjo995Y+9jU8M2uSRRh\nNIp1h0qqdbWHTWoOpVTra/4u1BxO+etxudb84ZSmyGUCvD2V8NGo4OtVE8geSjn8/dQwGYzwUP41\nEVAmEyATAJlQ+7UApUKGWxi+LsUlO987/q/pMf6WKBUyaFQ172rVV97R1oaVh1IOhby265RBIRMg\nyARAFCECEEVc+VzzRe3XNQ+vfE8EBNmVXyyhZvvaX7TaiQI1HXXNH4fa7vqvr8UGX8tlQs1s3rqZ\nvDJ4qhXwUivhpan5HBnhhxIX75QAIDDQG4WF5VKXYXPu8Dqd4TWaRBF6/V/nmVfpakafKqsMKK/S\nXzm8Y0BFVc1hngpt7alylod2fYlv8aIXrsQlO99Hb78G1QZjXcDJZUKDwFMpZfBQ1gwfRYT7oqKs\nqu6UFFc8BSUkxAcerveyrhIS7AWF2Prj087GHV6nK79GvcGIssqaztnTW42c3LIr3bWp3khdw06d\n8yNcj0uG7/A+4RavGxLijTy4XPNPRA5KqZAj0LfmdJaQEB/4efBa4e7IJYedS8qrpS6BiMiqdFod\nTlwowNLVSXjgpu6IH9RR6pLswlUnmnFWDRGRk6i9FnntzT/IeTF8iYicRM3JiuQKGL5ERM6C2esy\nGL5ERE5G5CRRp8fwJSJyEnWNL7PX6TF8iYicRO3pvsxe58fwJSJyGjXp64JniLodhi8RkZPgha5c\nB8OXiIjIzlzy8pJE5PiOH0/C0jffgFyhwLXDhuPRWY+ZXW/H9l/x6y/bsHDxGwCA2bNm1C1LS7uA\n22+fgL8/9Q/J6qyqqsKC+XNRWFgILy8vLHh5IQICAuuWf/7ZCpw/dw6LXqu5V+y7b7+Fo0f/hNFo\nxF13TcbESXdbXEtt48tRZ+fHzpeIJPH64oV4ddEbWPHplzh54jiSz5y+ap233nwd77/3ToNjnB9+\n/Bk+/PgzzP/3KwgNDcOMR2ZJWufa79cgJrYbVnz6JW697Q589snHdct+37sbe/fsrnt86OABZGRk\n4LMvvsKKT7/Eyi8/R2lpqeXFcMKVy2DnS+TANm3cgN9+247KygoUFxfjkUf/hvix43Dk8CF8sHwZ\nZHIZOnbshLnz5qOquhqLXn0J5WVlyMvPxd33TMXd90zB7FkzEBAQiNLSEjz3/Dy8+soCyOVymEwm\nLFz0BsLCw/H20v8g6egRAMD4m2/F1PsfwMsLXoRKpcKlS5dQkJ+Hf7/0Knr2ugZ33jYenbt0Rdfo\naDz7f8/V1frM03+HVvvXrSu7do3G83NfNPu6ysvLodfp0LFTJwDAsGHX4cCB/ejRs1eD9fr1H4DR\nY+Lxw7rvr9rH0rfewN+f+gc8PT0B1HTEH378WYN1Zs+agc5duuJi2gWIoohFr72J4ODguuVrVn+D\n7b/+3GCbl15ehPCICIvrTDr6JxKmPwQAuO66kfj0SvhmZKRj3drvMetvj2PD+nUAgL79+qN7j54A\nAEEQYDQZoVBY/me47gpXbH2dHsOXyMFVVWnx3vsfo6ioCA8/eD+uv34MFi18GSs+/QKBgUH48P33\nsClxA3r2ugY3jb8ZN8TfiLy8XMx+dAbuvmcKAOCm8bfghvix+G7Nt7imdx889dQz+PPPIygvL8PZ\nXcm4dCkLn335NYwGAx6dOR2DhwwFAIRHRGDuC//G+nXf44cf1mJur2uQk3MZK79eDX9//wZ1/ved\n9yx+TRUV5fDy8qp77OnlhayszKvWG3fTzTh86OBV3z937iwqKiowdOiwuu81Dt5a/fr1x9x58/H9\nmm/xxWef4J/Pzalbdu+U+3DvlPvaVWdFRTm8vX3qlleUl6GyshJLXl+Ml15ZhLQLqXXrenh4wMPD\nAwa9Hi8veAF33XV33ZsHS9Te8tRoYvg6O4YvkYMbOGgwZDIZgoKC4OPri7z8PBTk52HenH8BAKqr\nqjB02HBcN3IUvvnmK+zY/iu8vLxgMBjq9tG5SxcAwJ0T7sLKLz/DU08+Bm9vHzz+xFNIS0vFgIGD\nIAgCFEol+vTthwtXAqPHlS4tLDwcSUlHAQD+/v5XBS/Qcudbv8tc8PJCVFb+tW5lRQV8vC2/e82P\nWzZh4sTJFq1b+0aiX/8B2LnztwbLWup8vby8W6zTy8sblRUVdcu9fXzwx/7fUVCQjxfm/gtlZWXI\nz8vFl59/iukPz0RpaSnmPPcs4uKG4KEZj1j8mgFAIWf4ugqGL5GDO3P6FACgoKAAFRXlCA0NQ2ho\nGP7z1jvw9vHBrp07oNF44uuvVqJv3/64+54pOHTwQINjjTKhZnrHrp07MGDAIDw66zH8tHULVn75\nGW6IvxGbEtfj/mkJMOj1OHYsCbfdficAmL2JuyAzP1Wkpc63cZepUCqRmZGByI4dsX//73jk0dkW\n/0wOHfgDD06f0fKKAM6cPo2wsJo3D9ExMc3W1Ji3t3eLdfbvPwB79+5G7z598fvvezBgwCDcEH8j\nboi/EQBw+NBBrFv7HaY/PBNVVVV4YvYjmPbAdNx8620Wv95a8is/e6OR4evsGL5EDq6gIB+Pz34E\n5eXleH7OC5DL5Xj2n8/jmaf/DpNogpeXF156ZREEQcB/3nwNP2/bCh8fH8jlcuh0ugb76tWrN15e\n8CI++/RjmEwmPPPsv9Cz1zU4cvggZjz0AAx6PcaOG4+eva6x+euaM+9F/PvFOTCaTLh22HD06dsP\nAPDk43/D0nfeg1KpbHLbgoKCq7pvc8d8AWBT4gb87+uV0Gg0eOmVxVavc/Ld9+KlBS/i0RnToVAq\n8OqiN5rc17q13yErKwvr16/F+vVrAQDzF7yCyEjL7s0rvzLsbDDxloLOThBd8FIpJeXVUpdAZBWb\nNm5AWtoFm55K4yqW/ucNPPvP5xt8b/asGZgzdz66dO0qUVXWo9PqkJVXjvmfHsANgyKRcFMPqUuy\ni5AQyw9HOBOeakRELmHaA9OlLsHm5PLaYWd2vs6Ow85EDuz2OydIXYLTCAsPv+p7Tc2Adla1w848\n5uv82PkSETkJxZXO18DZzk6P4UtE5CT+6nw57OzsbBq+SUlJSEhIMLtMq9Vi6tSpSElJaXabgoIC\nPPbYY5g2bRqmTp2K9PR0W5ZMROSwas/zNXDY2enZ7JjvihUrsHHjRmg0mquWHT9+HAsWLEBOTk6L\n27z55psXWPqqAAAgAElEQVS44447cOutt2L//v1ITU1FVFSUrcomInJYKqUcAKAzGCWuhNrLZp1v\nVFQUli1bZnaZTqfD8uXLER0d3eI2R44cQU5ODh566CEkJiZi6NChtiqZiMihKeQyyGUCqnUMX2dn\ns853/PjxyMy8+lqtABAXF2fxNllZWfD19cUXX3yB9957DytWrMDTTz9t9XqJiBxZQIAnFAo51Co5\nDCbRZc9/dRcOf6qRv78/4uPjAQDx8fH473//K3FFRET2V1RUc41ppUKGCq0eeXllEldkH676JsPh\nZzvHxcVh586dAICDBw8iNjZW4oqIiKSjUshRreews7OzW/gmJiZi9erVrd7u+eefx4YNGzB16lTs\n3r0bs2dbfvF1IiJXo1LKUMVjvk6P13YmInICOm3NTTIWrjyE1Eul+OS5G+ru7+vKOOxMRESS06hq\nTjeqrDa0sCY5MoYvEZET8VLX3GqxrFLXwprkyBi+REROxEtTG756iSuh9mD4EhE5ES91zRmi5VqG\nrzNj+BIROZG/Ol8OOzszhi8RkRPxvtL5ctjZuTF8iYiciKeax3xdAcOXiMiJeF8Zdi7lsLNTY/gS\nETkRXy8VBAEoKK2SuhRqB4YvEZETkcsE+GiUKChh+Dozhi8RkZPx9VKhuLwaBqNJ6lKojRi+RERO\nxtdLBVEEisp4HXtnxfAlInIyfl4eAIDcYq3ElVBbMXyJiJxMkG9N+GbnV0hcCbUVw5eIyMkE+6kB\nAJcKKiWuhNqK4UtE5GQCfNQQBOASO1+nxfAlInIySoUMfl4eDF8nxvAlInJCIf5qlGv1KOTFNpwS\nw5eIyAlFBHkCAFIvlUpcCbUFw5eIyAl1CPICwPB1VgxfIiInFB7oCUEAUi6VSF0KtQHDl4jICamU\ncoT4aZB2uYyXmXRCDF8iIicVGeIFvcHEoWcnxPAlInJSXcJ9AQDHUwskroRai+FLROSkOod5Qy4T\nGL5OiOFLROSkVEo5OoZ4Iz2nHMXlvMORM2H4EhE5segOHHp2RgxfIiInFnMlfA+eyZW4EmoNhi8R\nkRML9FUjIsgTJy8UcujZiSikLoDInaVlmz9FpEuEr50rIWfWp2sgsgsqsf9kDm6+NkrqcsgC7HyJ\nJJCWXdpk8NZf3tw6RLV6RgVAJhOw90Q2RFGUuhyyAMOXyM5aG6gMYGqJxkOB2A6+yMqrQHpOudTl\nkAVsGr5JSUlISEgwu0yr1WLq1KlISUlpdptTp05h1KhRSEhIQEJCArZs2WLLkolsqq1Byi6YWtI3\nOggA8OuRTIkrIUvY7JjvihUrsHHjRmg0mquWHT9+HAsWLEBOTk6L25w8eRIPP/wwZsyYYatSiWzO\nWsGZll3K48FkVnQHXwT4eGD/ycuYPDoGfl4qqUuiZtis842KisKyZcvMLtPpdFi+fDmio6Nb3ObE\niRP47bffMG3aNMybNw/l5RxSIffGDpjMEQQBcd1DYDCK+OVQhtTlUAts1vmOHz8emZnmhz/i4uIs\n3qZfv36455570KdPH3zwwQdYvnw5nn/+eavXS2QrtghLdsDuJyDAEwqFHCa5HAbBfN80cmBH7D+V\ng+1HsjDt1mvg48nu11E5/KlG48aNg6+vb93Xr776qsQVEVnOll0qA9i9FBVVAgAKi7UoLqlqcr3B\nPULw29FL+N+PpzDp+hh7lWczISE+UpdgEw4/23nmzJk4duwYAGDfvn3o3bu3xBURETmuAd2C4aVW\nYNuBDBSV8aIbjspu4ZuYmIjVq1e3eruXXnoJixcvRkJCAo4cOYLHH3/cBtURWZ89js3y+C81plLI\nMbJfBHQGE9bvTpW6HGqCILrgGdklvMQaSczeocjhZ9en0+oAAPnFWuQ3M+wMACaTiC+2nkFBSRVe\nnD4YXZ34/weHnYnIYbEDpvpkMgFj4zpCBLDyp2SYTC7XYzk9hi+RlUkVhAxgqq9zmA96dwnAxctl\nvPCGA2L4ErkQBjDVN2ZgJDQecqz9LQU5V2ZLk2Ng+BJZUVvCLzWr9KoPe9dArslLrcSNcZ2gM5jw\n6ebTHH52IAxfIitpbeg1F7TtDWEGMNXq1TkAPTr543xmCTbvS5O6HLqC4UtkZ60J1vaEMAOYat00\npBN8PJVYv+cCzmYUS10OgeFLZBWWBl1bg7Q9AcwQJo2HAndc1wUA8NHGkyit0ElbEDF8ieylvcdy\nOQxN7dExxBuj+kagqKwaH244AaPJJHVJbo3hS9RO9gw2BjC1x7XXhKFbRz+cSS/GdztSWt6AbIbh\nS2QH7e16rbUvDkO7N0EQcOuwzgj09cC2gxnYeTRL6pLcFsOXqB0sCTJrBq+19skAdl8eSjkmXx8D\njYcCq35KxonUAqlLcksMX6I2kip4rYVdsPsK8PHApOujIQgC3l9/Auk5ZVKX5HYYvkROylrBzhB2\nT5HBXrh9eGdU6Yx457tjvP2gnfGuRkRt4Ehdb3Skde9YY+4OSZa8Xt5ZybZac1ej1jhwOge/Hb2E\nTqHemDNtEDQeCqvt2xpc9a5GDF+iVrJV8Nbuty0hZu0Abg+GsG3YKnxFUcTPhzJx9Hw+enTyxzP3\n9odKKbfa/tvLVcOXw85EEqod8q0f6M4+DOzMtbsjQRBwY1xH9Ojkj+SMYnyw/gQMRp4DbGsMX6JW\nsFbXa0nAtiaEHW1iFwPYuchkAm4b3hldwn2QlFKAzzafhsn1BkUdCsOXyELWCpTW7ocBTPagkMsw\ncVRXRAZ7Yf+pHHz981m44FFJh8HwJbKAtQKwrYHkrEHmrHW7K5VCjsmjoxHir8aOI1lYtytV6pJc\nFsOXyE7sEUSO1v2S81GrFLh3TCwCvD2wed9FbP0jXeqSXBLDl6gF1uh6rRG8HH4me/HSKHFvfCx8\nNEqs2XEeu5IuSV2Sy2H4EjXD0QLP0eoh1+XnpcK9N8RC46HAlz+eweHkXKlLcikMX6ImSDXByhXx\nZ+CcgvzUuGdMDJQKGT7aeBLJ6UVSl+QyGL5EZrQmLOzdZbL7JXsKD/TExJFdYRKBd9ceQ2ZuudQl\nuQSGL1Ej1uzSbNXxOWMAs/t1Xl0ifHHrtVHQVhuxdM1R5JdopS7J6TF8ieppbUDYepIVkaO4pksg\n4gdGorhch6Wrk1BWqZO6JKfG8CWC81/SsTmO1P2ScxvcMxRDe4XicmEllq07Dr2Bl6FsK4YvubX2\nhK41ut7613ZubS2OfFyaXNfo/h3QM8of5zNL8NW2ZF4Fq40c695RRDbmSN1tU7WkZZe67J2BXPm1\nuQtBEHDLtZ1RVFaN3cey0SnUGzcO7iR1WU6HnS+5vLZ0lS1pb9dryU0VLMHul6SgVMhw16hoeKoV\nWL39PC440JtaZ8HwJZdlq+O47Q0xWwQrkb35eqlw27DOMJpEfLjhBCqrDFKX5FRsGr5JSUlISEgw\nu0yr1WLq1KlISUmxaJvExERMmTLFJnWS63HU4JK6Lna/ZE1dI3xxba8w5BVX4dvt56Qux6nYLHxX\nrFiBF198EdXV1VctO378OKZNm4aMjAyLtjl16hS+//57Htgni9gy4Gx11yJ77c8RuOJrcmcj+0Ug\n1F+DPceycTqtUOpynIbNwjcqKgrLli0zu0yn02H58uWIjo5ucZuioiIsXboU8+bNs1Wp5EIc+Q+7\n1BfcILIFuUzA+KFREATgy5+SefqRhWw223n8+PHIzMw0uywuLs6ibYxGI1544QXMnTsXHh4eNqmT\nXIetQ8jeXa+tpGaVIjqSM46dTUCAJxQKOUxyOQyCY03X8ff3xLDsUuw7no0/Uwpw28joljdycw59\nqtHJkydx8eJFvPTSS6iursb58+exaNEivPDCC1KXRg7G0YPP0etri9o3Iwxy+ygqqgQAFBZrUVxS\nJXE1VxsUG4RDp3LwzbZk9I8OhIdSbpX9hoT4WGU/jsax3j410q9fP2zevBmrVq3C0qVLERsby+Al\ncgD1RwE4iYsAwEutRFyPEJRU6LDvxGWpy3F4dgvfxMRErF692l5PR27EHl2lqww5WwPDlpoysFsw\nBAHYfSxb6lIcniC64BTikvKrZ1iT63KG8G1PjZZcEaq1V41qz1CxuZ9Fa/fHq1y1nk5bcyOD/GIt\n8h1w2LnW97+lIDW7FK8+ci0ig73avT8OOxO5KXZ6f+HPglrSM8ofAHDqAk87ag7Dl5yaOw33OjKG\nMtXqGOoNADiXWSxxJY6N4UvUDGuECt8gkDvx81LBU61A2uUyqUtxaAxfonZiuPJ0I/qLIAjw1ihR\nWqmTuhSHxvAlp8XQq2HPyUsMWbKEp4cCOr0J1Xqj1KU4LIYvUROsdRyzPeHIWcHkjGrPoZEJgrSF\nODCGLxG1SuPul90wNabVGeChlEGpYMQ0hT8ZIjdjjbCMjvRl6JJZoiiirFIPH0+V1KU4NIYvOSWp\nb6JgD7a4uIa1tSWApa6ZbKu4XAdttQHRHfjv3ByGLxERWU1mXjkAIKaDn8SVODaGL5EdtLbbs1XX\ny6FisrUz6UUAgD7RgRJX4tgYvkR2YmlYOsNwM5E55Vo90i6XoWuELyKC2n9dZ1fG8CVqp9YEYUvr\n2jJU2fWSrf15Lg+iCIzoGy51KQ6P4UtkZ+YCtkuEr1U748YcJXjZsbsubbUBh8/mwddLhZF9I6Qu\nx+EppC6AyB0xhMjV/HE6Bzq9CZNGRUGllEtdjsNj50tkBfYKU2fuesl15ZdocehMLoJ81Rg9MFLq\ncpwCw5fISTh78LLbd02iKOLnQ5kwicC0cd3hwa7XIgxfIiuxZbg4e/CS6zqcnIeM3HIM7BaMAd2C\npS7HaTB8iVwQg5fsIa9Yi51Jl+DjqcSDN/eUuhynwglXRFbUJcLX6pe+bE3X66ihyyFn16PTG7Hx\n9zQYTSIevrUX/Lx4LefWYOdLZGXWDBpXCF5yPaIo4scD6SgoqcKNcR0xIJbDza3F8CUyo71BZo0A\ndpXgZdfreg6eyUVyejFiO/rh3vhYqctxSgxfIhtpzYUzzG1rKQYv2dO5zGL8dvQS/LxUeHxiHyjk\njJG24E+NqAnWCrXWXn7SVYKXXM/lwkps+v0iVAoZnr6nH/y9PaQuyWlxwhWRHdQGalOTsVrbITpD\n6LLrdS2lFTqs3ZkCg9GEv0/qiy7h/PdtD4YvOSVbzCo2JzrSF6lZ1nseawQSg5fsrVpnxPc7U1BR\nZcB9Y7thYPcQqUtyehx2JmqBI4WdI9XSFAavazGaRGzYewH5JVUYG9cR44Z0krokl8DOl8gC1u6A\n21qDrTQVmK0dXWDwupaaS0dmIO1yGQbEBuO+sd2kLsllNBu+CQkJEAShyeUrV660ekFEjqo2/KQI\nYVsFr6X3F7YkhBm8rufA6VwcSylAVJg3Zt15DWSypvOAWqfZ8H3yyScBAGvWrIFarcbEiROhUCiw\nadMmVFdX26VAoqbY67hvY/YOYamCt7l16//cGbqu6Ux6EXYmXUKgjweevrs/1CoOlFpTsz/NoUOH\nAgDeeOMNrF27tu77AwYMwKRJk2xbGZGDs0cI2yJ47X0BEHI+WfkV2LzvItQqOf5xT38E+PCUImuz\naMJVdXU1Lly4UPc4OTkZBoOhxe2SkpKQkJBgdplWq8XUqVORkpLS7Dbnz5/Hfffdh6lTp2LOnDkW\nPS+RPUVH+tokJB01eMm1FZdXY92uVIiiiMcn9kHHUG+pS3JJFo0jzJkzBwkJCQgLC4PJZEJhYSHe\neuutZrdZsWIFNm7cCI1Gc9Wy48ePY8GCBcjJyWlxm6VLl+LZZ5/FkCFDMGfOHOzYsQPjxo2zpGxy\nA1INPZtTPyzb2w1bO3gZumQJnd6IH3anQlttwIPje6BPdJDUJbksi8J35MiR2L59O86ePQtBENCj\nRw8oFM1vGhUVhWXLluG55567aplOp8Py5cuvWmZum2XLlkEul0On0yEvLw/e3nwXRo6vrUPSDF2S\niiiK2PJHOvKKqxA/KBJjBkZKXZJLsyh8S0pK8OabbyI9PR3vvPMO5s+fjzlz5sDPz6/JbcaPH4/M\nzEyzy+Li4izeRi6XIysrCw8//DC8vb3RsyfvGUkNOVL321jjMG0qjBm61JKAAE8oFHKY5HIYBOtf\nomH7oQyczShG35hgPDl1EK/ZbGMWhe/8+fMxYsQIHDt2DF5eXggNDcW//vUvfPzxx7auDwAQGRmJ\nbdu24bvvvsPrr7+ON954wy7PS87DkQO4PltfJIOh67qKiioBAIXFWhSXVFl13+cyi/HLwXQE+arx\nyG09UVRYYdX9t0dIiI/UJdiERW9tMjMzMWXKFMhkMqhUKjzzzDO4fPmyrWsDAMyePRtpaWkAAC8v\nL8hkfDdG5rlz8LTnDkrk3gpKq7B5X83NEp6c3Bc+niqpS3ILFnW+crkcZWVldRfcSEtLa3UIJiYm\norKyElOmTGnVdrNmzcKcOXOgVCqh0WiwcOHCVm1P5MoYuNQeBqMJiXvToDOYMHtCb0SFuWaX6YgE\nURTFllbatWsXli5diuzsbMTFxeHo0aNYvHgxxowZY4cSW6+knBcAcXfOMATdXgxe96LT6gAA+cVa\n5Ftp2PnXw5k4fDYPowd0wPSbHXM+jasOO1sUvgBQWFiIY8eOwWg0on///vD19YVK5ZjDEwxfAlw7\ngBm87sfa4XvxchlW7ziPiCBP/PuhIfBQytu9T1tw1fC1aOx4ypQpCAwMxJgxYzB27FgEBgZi8uTJ\ntq6NqF1c9TioK74msi+dwYifDqZDEIBH77jGYYPXlTV7zPfBBx/EgQMHAAA9e/asO+Yrl8sRHx9v\n++qIrKA1NwdwdAxesoa9xy+juFyHW66NQpdw/p+SQrPhW3vXooULF+LFF1+0S0FEtuLsIczgJWso\nKqvG4bN5CPZTY8LIrlKX47YsGna+55578MwzzwAAUlJSMG3aNKSmptq0MCJbccbhaGerlxzXzqRL\nMJlE3D0mBioON0vGovCdP38+Jk6cCACIiYnB448/jhdeeMGmhRHZmrOEsDPUSM4hp6gSZzOKEdPB\nF0N6hkpdjluzKHy1Wi1Gjx5d93jEiBHQarU2K4rInhw5hB21LnJOB07nAgDuHNm1bg4PScOii2wE\nBgbim2++wZ133gkA2LJlC4KCeLcLci3N3TC+qXVa0p7jywxesqbSCh3OpBehY4gX+nQNlLoct2dR\n+L722mt4+eWXsWTJEiiVSgwZMgSLFi2ydW1EkrLFTectDWMGL1nbqbRCiCIwNq4ju14HYFH4dujQ\nAR999JGtayFyeQxVkoIoijh1sQgKucBjvQ6i2fD929/+ho8++gjx8fFm3yn9+uuvNiuMiIiso6RC\nh/ySKgzsFgxPtVLqcggthO+rr74KAFi1apVdiiEiIuvLyC0HAPTqHCBxJVSr2fD9/fffm904MjLS\nqsUQEZH1ZeXX3J+3eyd/iSuhWs2G7x9//AEASE9Px8WLFzF69GjI5XLs2bMHsbGxdef+EhGR4yoq\nq4YAoEOwl9Sl0BXNhu9rr70GAEhISMDGjRsRGFgzPb2kpARPPPGE7asjIqJ2K6vUwddbBYW8dfdh\nJ9uxaLZzbm4u/P3/Gq7QaDTIy8uzWVFE1PJpSZw5TZbSVhsQ4u8pdRlUj0XhO2bMGDz88MO46aab\nYDKZsHXrVtxyyy22ro3IbVlyPnDtOgxhapEgALDo1u1kJxaF79y5c/HTTz/hwIEDEAQBM2bMwNix\nY21dG5Fbau1VsRjC1BKZABhNDF9HYlH4AkBwcDBiY2MxadIkHDt2zJY1Ebmt9lyOkiFMTfHWKFFY\nWgVRFHl1Kwdh0dH3L7/8Em+//Ta++OILaLVa/Pvf/8ann35q69qIqA2c9X7FZDsBPmpU600oqdBJ\nXQpdYVH4/vDDD/j000+h0Wjg7++P77//HmvXrrV1bURuxZqhyQCm+oL91ACA1Ev8f+EoLApfmUwG\nlUpV99jDwwNyOW/CTOTIGMBUq2u4DwDgRGqBxJVQLYvCd+jQoXjjjTeg1Wrxyy+/4LHHHsOwYcNs\nXRuR27BVUDKACQAigrygVsmRdL4ARpNJ6nIIFobvc889h86dO6NHjx5Yv349Ro8ejeeff97WtRGR\nFTCASSYT0DMqAEXl1Th6jt2vIxBEUWxx/vmMGTPw2Wef2aMeqygpr5a6BCKL2SscOQvauem0NZOl\n8ou1yC+pavX2+SVafLblDHpG+eO5+wdZuzybCQnxkboEm7Co862qqkJ2dratayGiFqRmldZ9tBY7\nYPcW7KdBl3AfnEkvxskLhVKX4/YsOs+3sLAQ8fHxCAoKgoeHR933eT9fovaxJBCbCtr634+OtKyr\nTcsuZQfsxq7v3wFpl5Oxevs5vPTwUMhkPOdXKhaF7wcffICdO3di//79kMvlGD16NIYPH27r2ojc\nnqUdbu16loYwuafwQE/06RqIExcK8cuhDNw0NErqktyWRcPOH374IY4ePYp7770Xd911F3bv3o2V\nK1faujYil9ZS19uWoWVLtuHws3sb3b8DPD0U+H5nCrLyyqUux21ZNOHq5ptvxtatW+sem0wm3H77\n7diyZYtNi2srTrgiZ9BcCLYleOuzpAPm8LNzae+Eq/rOZRbjh90X0CnUGy8kxEGldNzrNrj1hKuI\niAhcvHix7nF+fj7CwsJsVhSRO2tv8Nbuo6X9sAN2X906+qN/TBAycsvx2ZbTsKAHIyuzKHwNBgMm\nTJiARx55BLNnz8Ztt92GnJwcPPjgg3jwwQeb3C4pKQkJCQlml2m1WkydOhUpKSnNbnP69Gncf//9\nSEhIwMyZM5Gfn29JyUQOrangay4w07JLzX4QtcXYuI6IDPbCgdO52PR7mtTluB2LJlw9+eSTDR7P\nmDGjxW1WrFiBjRs3QqPRXLXs+PHjWLBgAXJyclrcZtGiRZg/fz569eqFb7/9FitWrMDcuXMtKZvI\nJbQUsM3dzSg1q7TZIWjOfnZfCrkME0d2xaptyfhh9wX4e3tgVP8OUpflNiy+vGRzH+ZERUVh2bJl\nZpfpdDosX74c0dHRLW6zdOlS9OrVCwBgNBobnOpE5ErMdb2t6Wzb0k239jnItXhplLh7TAzUKjm+\n2HoGB07ntLwRWYXF9/NtrfHjxyMzM9Pssri4OIu3CQ0NBQAcOXIEX331Fb7++mvrFkpkZ+bCrr3B\nW3+btnTA5PgCAjyhUMhhksthECzqmyzi7++JmXd64JONJ7Ai8RQC/D1xXT92wLZms/C1pi1btuCD\nDz7Axx9/jMDAQKnLIbK55oK3uWHm2uWtHUrm8LPjKyqqBAAUFmtR3M7Zzo15KWWYfH00vvstBW+s\nPIgZt/XCdX0irPocbeXWs52ltGHDBnz11VdYtWoVOnXqJHU5RDZnLnjNTbBqbtKVpd11S9uQ++gY\n4o0pN8RCpZTjk02nsf2I+ZFLsg67hW9iYiJWr17dqm2MRiMWLVqEiooKPPnkk0hISMC7775rowqJ\npGGNUGQAkzV0CPbC1PhYeKoV+GrbWazZcR4mE09DsgWLLrLhbHiRDXJULQVi4+VtCcPGw8eNH7d0\n7Lctw88t1ckh7faz5kU2WlJUVo21O1NQWFaNgd2C8egd10CtkuYoJYedicjqWjqv15yM7AJkZLf9\nnqzW7n7b2pmT4wrw8cADN3VHVJg3/jyXj9e/OoLCUtsGvrth50tkR41DqKmut/F6LYVtp4igBo/b\n2/2a26Yxa3TlZDl7dr61jCYRPx/KwLGUAvh5q/DU5H7oaud/Q3a+RCQJS7rcxutY46YNlsy4bi12\nwM5FLhMwfkgn3DAwEiXlOrz+9REcOpMrdVkugZ0vkZ20pett7fBycx1wW7rf+ttaMzjZAbeeFJ1v\nfeezSpD4exr0BhNuHdYZk66Ptsv9gNn5EpFdmQvewtzMqz5a2qZWc+HfEmt3rOyAnU9spB8eGNcd\n/t4qbNl/EUvXHEVppU7qspwWw5fIgTQVSuaCtv6y+uoHsCOHnCPXRuaF+Gvw4PgeiIn0xam0Irzy\n+UFc4L9jmzB8iSRmLoTqB2hToVufJeuYY43bF5J7UasUmDQqGiP7RqCwrBqvfXUYu5IuSV2W02H4\nEknA0ms5mwvV0rw0lOalNbtuU92vo3WbjlYPWUYQBFzXJxx3j46BQi7DFz+ewRc/nobeYJK6NKfB\n8CWyg9aETG1wNg7exqFb+7j+95oKYCJbiO7giwfH90BogAa7krLxxtdHUFTGCa+WYPgSScjSUDbX\n6TbFXLfcXPcr9dAzu1/n5u/tgWk3dkfvLgFIzS7Fy18cwNmMYqnLcngMXyIHUBtA5rpeS4K3NeFM\nZG1KhQy3DuuM+EGRKKvUY8k3f2LHn1lwwTNZrYbhS2Rnrek0G4dq/aFmc8tq1Ya3sww9s/t1foIg\nYHCPUNx7Qyw8lHKs+ikZX249w+PATWD4EjmBpiZZmTsO3BRHHnom19E5zOeq48DFvPDRVRi+RDbW\nVFfX1PWba7tWaw0ls/sle/PzUmHajd1xzZXjwAtXHkJWXrnUZTkUhi+RxFoKndYe8639uq3n/hJZ\ng1Ihw23DOmNUvwgUllZj8VeHcTqtUOqyHAbDl8gBNRW4pXmpDT4s2aa+5oKeQ89kbYIgYHjvcNw+\nvDN0ehPeWpOEg7wxAwCGL5FDMXdu719fp6Ixc9+zlCMO8zpiTdR+13QJxD03xEAhF/DhhhPYezxb\n6pIkx/AlsqO2dpfNhWz9ZbVh3Xjo2VmO+5Lrigr1wZQrM6E/3XwaO49mSV2SpBi+RA7AXDjy3F1y\nNRFBXpga3w2eHgqs3JqMA6dzpC5JMgxfIgdz9fm7LQ8tt2f4uT5HOO7LoWfXFhqgwT1jYqBUyrAi\n8RROuekkLIYvkQ21dJpRW4KmqXN+iZxFWKAn7hoVDQB4b91x5BRVSlyR/TF8iZxIcxfUqO1+Gx/3\nbcwenWVqVulVH0T1dQ7zwc1Do1ClM+KD9SegNxilLsmuGL5EDsL87QOvnkzVcPnV32tqv+aOK9si\niAwUglMAABdbSURBVJsKWgYwNda7ayD6xQQhPacca7anSF2OXTF8iRxQa4aVrT0E3Z6QbGlbBjA1\nNnZQRwT5qrH9SCYuXi6Tuhy7YfgSOQFXOsZrSQBz0pX7UCpkGDsoEiKAb3895zZ3QmL4EpFVsKul\ntuoS4YuYSF8kZxTj1MUiqcuxC4YvEbUbg5faa1ivMADA3mPucfUrhi+RC7HW+b62xrCmxjoEeyHA\nxwOHz+ZBW22QuhybY/gS2YkzBU5ranWm10WOSxAEdO/oD73BhAtucMyf4UtERA4hxF8NAMjKr5C4\nEttj+BIRkUMI9K0J39wircSV2B7Dl8hGpDhdxjck2q7PZ8tzgnm6kfuSywSpS7A5m4ZvUlISEhIS\nzC7TarWYOnUqUlJSLNpm8eLF+Oabb2xSJxERSU9vMAEAVErX7wtt9gpXrFiBF198EdXV1VctO378\nOKZNm4aMjIwWtyksLMQjjzyC7du326pUIiJyAIWlVQCAAB+1xJXYns3CNyoqCsuWLTO7TKfTYfny\n5YiOjm5xm4qKCjz55JOYMGGCrUolcni+IV3atMyWOMuZrC0jrxwA0L2Tv8SV2J7CVjseP348MjOv\nvlA8AMTFxVm8TadOndCpUyfs2rXL6jUSOSrfkC4ozUuDb0i005y7S7YVEOAJhUIOk1wOg+B6w7J6\ngwkXc8rh56VC/55hEATXPu5rs/AlIuuqDeTG3/vra/OTrQJDOwIAOkUE2ao0soOiK/e8LSzWorik\nSuJqrO94agEqtHrccm0U8vPL674fEuIjYVW243pvn4icVG1INqdh2HZpdh2phqOJWstkEnHwTC5k\nAhA/qOXfA1dgt843MTERlZWVmDJlir2eksglMVTJ1Rw9n4/8kiqM6BOOID/Xn2wFAILogvdvKim/\neoY1kb01Pk+1/gSl2mW1n2tvdF974/va4eW/Pjd/3Lf+kHPjzrfxsHOXCN8G2zZ+XCs60vz3G7+W\n9mjuOYCma3NHOq0OAJBfrEW+Cw07l1Xq8emWU1DIZFg8axh8vVQNlnPYmYhcDsONpGQyidi8Lw06\nvQl3j4m5KnhdGcOXSEK14dfSZCjfkOgmJ1RZ0vU6I74xcH27j11Cem45BnYLxugBHaQux64YvkR2\nUn+ItalgqQ3LpiZNNQzaaLPBaw5nOpOjOZVWiD9O5yIsQIOZt13j8qcWNcZTjYhswJbXJbb39ZuJ\nrC31Uim27L8ItUqOJyb1hafa/aKInS+Rg7NkdrMlpyABlg/ltjQRqqXl1ngOck1Z+RXYsOcC5HIZ\n/nFPf3QM8Za6JEkwfIkcTOOh58ZfN9bUspYursFjqmRvGbnl+G7HeRhNJjw2oY9bXEayKQxfIok1\nN+mqcQA397jx+kSOJO1yKb7/LQVGk4jZE/pgQLdgqUuSlPsNtBM5uZaubAW0b5Yzh4PJ2s6kF2Hz\nvosQBOCJSX0xINa9gxdg50skGXPDvrXdb/3wbO0xX3P7a+r52qM9Ic2Adw+iKOKPUznYuDcNSoUM\nT9/dn8F7BcOXyEFZGsCNl1nS9bblqlb2xOPRzs9oEvHTwQzsTLqEAB8PzH0gDr27BkpdlsPgsDOR\nHUVH+pq9NGOXCN8WT0+ypAOuH7y27HprNfV6WtqGXFu1zogNey8g7XIZosK88fTd/RHg4yF1WQ6F\nnS+Rg6kfmra4QhW7SrKlkgodvv7lLNIul2FAbDDmTBvE4DWD4UskofpB2NJVr5oTGNqx3V1vWzvS\n1mzHrte1ZeaV46ttycgvqcLYuI74+6S+UKs4wGoOw5fIATU+7ahxuDZeJjVLQpXB67pEUcSf5/Lw\n7a/noK024P4bu2HauO6QydzrkpGtwbckRA6k/rHfThFBdbcarGVJ0DbX9dpyolXtPswdA27N/jks\n7lwMRhN+PpSJ46kF8NYo8fjEPujZOUDqshwew5fIBpqbQNV4klJz65oL4Oa05QYK1u5I2eG6j7JK\nHdbvuYDsgkp0DvPGE5P6IthPI3VZToHhS+RgGoexJQFsLnQt7XqJ2iIzrxwb9lxARZUBw3uHYfrN\nPaFSyqUuy2kwfIkcQOPANRfAAMyGsCXB2xRH61L5BsHxiaKIo+cL8OuRTEAUMXVsN4wb3NHtbgnY\nXgxfIgm05fxYoO335WWokTUYjCb8cjgTx1IK4K1R4LGJfdGLx3fbhOFL5CDMdb9A6+8NbM9JVuQ+\nyrV6rN+diksFlegU6o0nJ/VFsD+P77YVTzUikoi58DMXlJZ2rV0ifJ26w3Xm2l1ddkElVv2UjEsF\nlRh2TRjmJcQxeNuJnS+RjVhyycjW7AtougtuKrjY9VJ7nb5YhB//uAijUcQ9Y2Jw87VRPL5rBQxf\nIgmZO/bbXGi3pjt0puBl1+t4RFHEnuPZ2HcyB2qVHI/f1Zt3JLIihi+RA2pv18wwo/bQ6Y3YvP8i\nzmWWIMRfjacm90NkiLfUZbkUHvMlklhTnWhbA7S57dj1UkvKKmtujHAuswQ9o/wxf/oQBq8NsPMl\nsiFLO9jmbjUIWDbjuaUQc8TgJceSX6LFd7+loKxSjxsGReK+sd2gkLNHswWGL5GD+P/27jUmqnNf\nA/gDcxFkwAsXW09AxSO7qOXowIFe0NYNlrYxsjdqAS2mFxt1H3sxTY/UVG2ioE3aL0UaE00bv5hq\nm+60eNLa3VZBxUJFoYCluikdRa0Ccplhhhlm1ns+KKNU7s6sNWt8fomJzMu7+P9ZMA/vmjVrDfXe\n3zuD9c9BPJKVo68GL1e9vqO5xYIvyn5Dj8OFFYtm4ulknljlTQxfIi/z5FnPfdsbDQYvDedCcwdK\nyn+HJIA1S+Lx2NwHlS7J7zF8iXzIUHcGupftEQ3m7IVWfFd1CXptIF77+8OYGzu2q6jR6PBgPpEM\nlFit+nLwctXrG8rr/sC/Tl+CIViH/11pZPDKiOFLJBM5A5jBS0MRQuD4z1dxovYqIiYEYXNeImZw\nv8jKq+FbU1ODvLy8AcdsNhtycnLQ2Ng45ByTyYTc3FysXLkS27ZtgyRJ3iyZyKvGEsCjDdKxBm/f\n5Sn//M9T1H75S3/RF7yn6v9A5MRg5K8yYsqk8UqXdd/x2mu+e/fuxVdffYXg4Luv/1lbW4tt27bh\n2rVrw87ZuXMn3njjDaSkpGDr1q34/vvvsXjxYm+VTeST7gzUgV4PvpeV7nCB+OfxsZw8xtD1Hafq\nr+HHc9cwZVIw3sqdj8lhQUqXdF/y2so3JiYGRUVFA445HA4UFxcjNjZ22Dn19fVITk4GACxcuBDl\n5eXeKZhIJvcaRH2r4Tv/yVnLSFbH3lo9072pOt/iPtTM4FWW11a+GRkZaG5uHnAsMTFxxHOEEO73\nmoWEhMBsNnu2UCIFjPV2gd6owde2RQObNGk8tFoNJI0GzoDRr5tqLrTg+6pmTDSMQ8E/HsfUCF61\nSkk+/1ajwMDbP2Td3d0IC+MvOfkPT78HeKRfk9Snvd0KALjRYUNHZ8+o5ja3WPD5D/9GkF6Djc/9\nF3RCoKVFHQuZyMhQpUvwCp8/23n27NmoqKgAAJSVlSEpKUnhiog8S84wZPDef9rNdvzz+G8QQuB/\n/v4woqO44vUFsoVvSUkJDh48OOp5mzZtQlFREbKzs9Hb24uMjAwvVEekLDleG2Xw3n8cThf+efw3\n2Owu5GX8BXNmTFa6JLolQAghlC7C0zotdqVLILonSl6OknyTw+YAALR22NA6gsPOQggcPmXCL6Z2\n/NX4H3j+qb94u0Sv4GFnIpKNpwKTwXv/qmlswy+mdsRODUNO2iyly6E/8fkTrojuV0PdyWg0c+n+\nc8Pcg6NnLmN8kBb/+Ntc3hbQBzF8iVRguCBm2FIfSRL4v1Mm9LokvLwknu/l9VEMXyKVYdDSUKrO\nt+BqmxUps6cgOX6K0uXQIHgsgojIT5itDpysvYqQIC1WpvN1Xl/G8CUi8hNHz16GwylhxaL/ROh4\nvdLl0BAYvkREfuCPG1Y0XOzA9AdCkZrwoNLl0DAYvkREfqC0+goAYMWTMxF463r45LsYvkREKne5\nxQLTNTPmTJ+E+Om8ipUaMHyJiFSu4pfrAIAlj01XthAaMYYvEZGK3ejqwb8vd2Lm1DDERU9Uuhwa\nIYYvEZGK1TS2AQAW/3e0+97n5PsYvkREKuV0SahraoMhWIf5syKVLodGgeFLRKRSTVe7YLO78Njc\nB6DT8ulcTbi3iIhUquFiBwAgZTYvI6k2DF8iIhVyuiQ0Xu5ExIQgTH/AP+95688YvkREKnS5pRsO\np4T5syJ5opUKMXyJiFSo6datJR+O5UU11IjhS0SkQpdaLNAEBvC9vSrF8CUiUhmnS8L1dhuiowzQ\n6zRKl0NjwPAlIlKZlg4bXJLAjKlhSpdCY8TwJSJSmattVgBA7IMMX7Vi+BIRqYw7fLnyVS2GLxGR\nyrR22qDTBmLK5PFKl0JjxPAlIlIRIQQ6LHZETQxGIN/fq1oMXyIiFbH2OGHvlRA5MVjpUugeMHyJ\niFSkrasHABA1ieGrZgxfIiIVae28Gb5c+aobw5eISEW6uh0AgPCwIIUroXvB8CUiUhFLTy8AICxE\nr3AldC8YvkREKmKx3Qrf8TqFK6F74dXwrampQV5e3oBjNpsNOTk5aGxsBABIkoStW7ciOzsbeXl5\nMJlMAID6+nosX74cK1euxPbt2yFJkjdLJiLyaX3hGzqeK18181r47t27F++88w7sdvtdY7W1tVi1\nahUuXbrkfuy7776Dw+HAwYMH8eabb2LXrl0AgC1btmDz5s04cOAADAYDSkpKvFUyEZHP67Y5odcF\nYpyeN1RQM6+Fb0xMDIqKigYcczgcKC4uRmxsrPuxqqoqLFiwAAAwb9481NXVAQCuXbsGo9EIADAa\njaiqqvJWyUREPs9mdyIkiIec1U7rrQ1nZGSgubl5wLHExMS7HrNYLDAYDO6PNRoNnE4noqOjUVlZ\nieTkZBw9ehQ2m81bJRMR+axJk8ZDq9XA4ZIwKXQcIiNDlS6J7oHXwne0DAYDuru73R9LkgStVovC\nwkIUFBSguLgYSUlJ0Ov5OgcR3X/a22/eTKHH7oR2QhBaWswKVyQPf/0jw2fOdjYajSgrKwMAVFdX\nIy4uDgBQWlqK999/H/v370dHRwcef/xxJcskIlKM0yXB6RII0vvMuonGSLY9WFJSAqvViuzs7AHH\nFy9ejJMnTyInJwdCCBQWFgIApk2bhhdeeAHBwcFISUnBE088IVfJREQ+pcfhAgAE8WQr1QsQQgil\ni/C0TsvdZ1gTEamZw+ZAu9mON4tPIjk+Cusy5ypdkix42JmIiBTlunWdA00gn7rVjnuQiEglXK6b\nByq1Gt7HV+0YvkREKuGUboavRsOnbrXjHiQiUgmXq++wM1e+asfwJSJSCVffypfhq3oMXyIilbj9\nmi+futWOe5CISCVun+3Mla/aMXyJiFTi9glXDF+1Y/gSEamEuBW+Oh52Vj2/vMIVERGRL+OfT0RE\nRDJj+BIREcmM4UtERCQzhi8REZHMGL5EREQyY/gSERHJTKt0AZ7U09ODt956C21tbQgJCcF7772H\nyZMn9/ucQ4cO4dNPP4VWq8X69euxaNGiIee5XC5s3LgRy5cvx8KFCwEA69evR3t7O3Q6HcaNG4d9\n+/b5ZZ+7d+/GsWPHoNVqsXnzZiQkJKi2x+rqahQUFECj0SA1NRUbNmwAoNy+lCQJ7777Ln799Vfo\n9Xrs2LED06ZNc4//8MMPKC4uhlarxbJly/Dcc88NOsdkMiE/Px8BAQGYNWsWtm3bhsDAwAG/P3KS\no8cdO3bgzJkzCAkJAQB89NFHCA2V9+brnuyzT2FhIWbMmIHc3FwAA/+sk8oJP/Lxxx+LDz/8UAgh\nxOHDh8X27dv7jV+/fl0sWbJE2O120dXV5f7/YPNMJpPIzs4WTz75pCgtLXVv55lnnhGSJMnU1d3k\n6LOurk7k5eUJSZLE5cuXRVZWlowder7HpUuXCpPJJCRJEmvWrBH19fVCCOX25ZEjR8SmTZuEEEKc\nPXtWrFu3zj3mcDhEenq66OjoEHa7XWRlZYmWlpZB56xdu1b8+OOPQgghtmzZIr799ttBvz/+1KMQ\nQuTk5Ii2tjY527qLJ/tsa2sTL7/8skhLSxMHDhwQQgz+s07q5leHnauqqrBgwQIAwMKFC3Hq1Kl+\n4z///DPmz58PvV6P0NBQxMTEoKGhYdB5VqsVBQUFSElJcW+jtbUVXV1dWLduHXJzc3H06FGZurtN\njj6rqqqQmpqKgIAATJ06FS6XCzdu3JCpQ8/2aLFY4HA4EBMTg4CAAKSmpqK8vFzRfXlnnfPmzUNd\nXZ17rLGxETExMZgwYQL0ej0SExPx008/DTqnvr4eycnJ7p7Ly8sH/f7Iyds9SpIEk8mErVu3Iicn\nB59//rms/fXxZJ/d3d149dVXkZmZ6d6GL+xL8jzVHnb+7LPPsH///n6PhYeHuw85hYSEwGw29xu3\nWCz9DkmFhITAYrH0e/zOeQ899NBdX7e3txcvvfQSVq9ejc7OTuTm5iIhIQHh4eEe7a+PUn1aLBZM\nnDix3zbMZvNdh349wds9WiwWGAyGfp976dIl2ffln+u/syaNRgOn0wmtVjtkbwPNEUIgICDgrp4H\n2oacvN2j1WrF888/jxdffBEulwurV6/G3LlzB/x59iZP9hkdHY3o6GiUlZX1277S+5I8T7Xhu2LF\nCqxYsaLfYxs2bEB3dzeAm39BhoWF9Rs3GAzu8b7PCQ0N7ff4QPPuFBERgZycHGi1WoSHhyM+Ph5N\nTU1ee8JWqs/BtuEN3u5xoM8NCwuTfV8OVb8kSdBqtSPu7c45gYGB/T53sJ7lfi3U2z0GBwdj9erV\nCA4OBgA88sgjaGhokD18PdnnSLavxL4kz/Orw85GoxGlpaUAgLKyMiQmJvYbT0hIQFVVFex2O8xm\nMxobGxEXFzfsvDuVl5fj9ddfB3Dzl+DChQuIjY31UkcDk6NPo9GIEydOQJIkXLlyBZIkeWXVO9TX\n91SPBoMBOp0OFy9ehBACJ06cQFJSkqL70mg0ulc31dXViIuLc4/NnDkTJpMJHR0dcDgcOH36NObP\nnz/onNmzZ6OiosLdc1JS0qDfHzl5u8fff/8dubm5cLlc6O3txZkzZzBnzhxZewQ82+dAfGFfkuf5\n1Y0VbDYbNm3ahJaWFuh0OnzwwQeIjIzEJ598gpiYGKSlpeHQoUM4ePAghBBYu3YtMjIyBp3XJz8/\nH88++6z7LOCCggLU1NQgMDAQa9asQXp6ul/2WVRUhLKyMkiShLfffhtJSUmq7bG6uhqFhYVwuVxI\nTU3Fxo0bASi3L/vOdj1//jyEECgsLMS5c+dgtVqRnZ3tPkNWCIFly5Zh1apVA86ZOXMmmpqasGXL\nFvT29iI2NhY7duyARqMZ8PsjJzl63LdvH77++mvodDpkZma6zw5Wa599ioqKEBER0e9sZyX3JXme\nX4UvERGRGvjVYWciIiI1YPgSERHJjOFLREQkM4YvERGRzBi+REREMmP4Eo1Sfn4+9uzZg1deeQUA\ncOXKFTz99NPIysqC2WxGVlYWMjMz0dTUpHClROSrGL5EYxAVFYW9e/cCACorKzFnzhx88cUXaGho\ngF6vx5dffokZM2YoXCUR+Sq+z5doGEII7Nq1C8eOHUNUVBRcLheWL1+O3bt3o7i4GOvXr4fVakVa\nWhpOnz6N1tZWpKSkYM+ePUqXTkQ+SrXXdiaSy5EjR3Du3DkcPnwYZrMZS5cudY/Fx8fjtddeQ2Vl\nJXbu3ImKigrs3r2bwUtEQ+JhZ6JhVFZW4qmnnoJOp8PkyZPdl98kIhorhi/RMAICAiBJkvvjwe4+\nQ0Q0UgxfomE8+uij+Oabb+BwONDZ2Ynjx48rXRIRqRz/hCcaRnp6Ompra7FkyRJERET0u/sMEdFY\n8GxnIiIimfGwMxERkcwYvkRERDJj+BIREcmM4UtERCQzhi8REZHMGL5EREQyY/gSERHJjOFLREQk\ns/8HkrAgsxv62WMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 1.16343369599e-07\n", + "MAE : 0.000227541731508\n" + ] + }, + { + "data": { + "text/plain": [ + "count 149.000000\n", + "mean -0.000026\n", + "std 0.000341\n", + "min -0.001370\n", + "25% -0.000128\n", + "50% -0.000006\n", + "75% 0.000125\n", + "max 0.000875\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(testX)\n", + "pred = y_scaler.inverse_transform(pred)\n", + "close = y_scaler.inverse_transform(np.reshape(testY, (testY.shape[0], 1)))\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['close_bid'] = pd.Series(np.reshape(close, (close.shape[0])))\n", + "\n", + "p = df[-pred.shape[0]:].copy()\n", + "predictions.index = p.index\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low_bid', 'high_bid']], right_index=True, left_index=True)\n", + "\n", + "ax = predictions.plot(x=predictions.index, y='close_bid', c='red', figsize=(40,10))\n", + "ax = predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=ax)\n", + "index = [str(item) for item in predictions.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('Prediction vs Actual (low and high as blue region)')\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['close_bid']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction ')\n", + "plt.show()\n", + "\n", + "g = sns.jointplot(\"diff\", \"predicted\", data=predictions, kind=\"kde\", space=0)\n", + "plt.title('Distributtion of error and price')\n", + "plt.show()\n", + "\n", + "# predictions['correct'] = (predictions['predicted'] <= predictions['high']) & (predictions['predicted'] >= predictions['low'])\n", + "# sns.factorplot(data=predictions, x='correct', kind='count')\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + "predictions['diff'].describe()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "so it looks i improved on the previous results, by using lookback of 1 tick, 100 iterations, and my additional features. However, can i predict fast enough to make trading decisions?\n", + "\n", + "Sim results:\n", + "\n", + "- it got a lot worse when i changed lookback to 20 ticks" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/.ipynb_checkpoints/main_fx_spot_prediction_notebook-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/main_fx_spot_prediction_notebook-checkpoint.ipynb new file mode 100644 index 0000000..ad1113a --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/main_fx_spot_prediction_notebook-checkpoint.ipynb @@ -0,0 +1,3605 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "# Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "I will use 1 year of data, from 1Jan16 to 1Jan17, also in 15 minute intervals, but with tick data features.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "To run on EC2:\n", + "- Enter the repo directory: cd aind2-cnn\n", + "- Activate the new environment: source activate aind2\n", + "- Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "- Find this line in output and copy url to browser: \n", + "- Copy/paste this URL into your browser when you connect for the first time to login with a token: http://0.0.0.0:8888/?token=3156e...\n", + "- change the 0.0.0.0 with EC2 IP.\n", + "- you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd, numpy as np\n", + "import pypyodbc\n", + "import io, datetime, os\n", + "import matplotlib.colors as colors, matplotlib.cm as cm, pylab, matplotlib.pyplot as plt\n", + "from collections import OrderedDict\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "initval = True" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "#kaggle dates: 2015-12-29 00:00:00 to 2016-05-31 23:45:00\n", + "min_date = \"29Dec15\"\n", + "max_date = \"31May16\"\n", + "\n", + "if initval:\n", + " rerunSQL = False\n", + " log = False\n", + " useKaggle = False\n", + " runLSTMBinary = False\n", + " simname = \"500_epochs\"\n", + " sim_desc = \"\"\"\n", + " kaggle params but with 500 epochs to account for more features\n", + " \"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load data" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if log:\n", + " #log = {\"simname\": [\"mine_initial\", simname], \"sim_desc\": [\"kaggle params\", sim_desc]}\n", + " #df_log = pd.DataFrame(log)\n", + " if os.path.isfile(\"sim_log.xlsx\"):\n", + " df_log = pd.read_excel(\"sim_log.xlsx\")\n", + " df_log.loc[len(df_log)]= [simname, sim_desc] \n", + " df_log.to_excel(\"sim_log.xlsx\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
simname500_epochs500_epoch_lookback_40linear regressionlinear regression500_epochs_40_lookback_pca_unshuffled
sim_desc\\nkaggle params but with 500 epochs to account...500 iterations, lookback 401 row lookback1 row lookbackadded directional errors checking and pca as f...
MSE1.59188e-071.97246e-076.79626e-076.55241e-084.82937e-07
MAE0.0002857810.0003408460.0005363070.0002029050.000594482
count102102103103102
mean-9.29131e-07-3.83515e-05-5.08408e-05-2.90581e-050.000506372
std0.0004009530.000444650.0008268490.0002555660.000478296
min-0.00135148-0.00127888-0.00317997-0.000772953-0.00072515
25%-0.000158489-0.000304043-0.000402606-0.0002006290.000192821
50%6.07371e-05-5.84126e-06-3.07747e-05-2.43187e-050.000540495
75%0.0002399680.000177890.000316920.0001162290.000830978
max0.0007556680.001287820.003273720.00053370.00159335
mse train all feature:004.3917e-074.45245e-075.16241e-07
mse test all feature:006.79626e-076.55241e-084.82937e-07
mae train all feature:000.0004235650.0004267730.000505385
mae test all feature:000.0005363070.0002029050.000594482
mean avg bo spread:003.98687e-053.98687e-053.98687e-05
how often sign of price change is same:000.4466020.5339810.882353
if same sign, how often is actual better than 0.1 percent in both directions:000.15217400.655556
if same sign, how often is actual better than predicted in both directions:000.97826110.366667
if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions:000.15217400.0666667
if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions000.10526300.333333
if not same sign, how often is actual worse than -0.1 percent return in both directions000.10526300
\n", + "
" + ], + "text/plain": [ + " 0 \\\n", + "simname 500_epochs \n", + "sim_desc \\nkaggle params but with 500 epochs to account... \n", + "MSE 1.59188e-07 \n", + "MAE 0.000285781 \n", + "count 102 \n", + "mean -9.29131e-07 \n", + "std 0.000400953 \n", + "min -0.00135148 \n", + "25% -0.000158489 \n", + "50% 6.07371e-05 \n", + "75% 0.000239968 \n", + "max 0.000755668 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 1 \\\n", + "simname 500_epoch_lookback_40 \n", + "sim_desc 500 iterations, lookback 40 \n", + "MSE 1.97246e-07 \n", + "MAE 0.000340846 \n", + "count 102 \n", + "mean -3.83515e-05 \n", + "std 0.00044465 \n", + "min -0.00127888 \n", + "25% -0.000304043 \n", + "50% -5.84126e-06 \n", + "75% 0.00017789 \n", + "max 0.00128782 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 2 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.79626e-07 \n", + "MAE 0.000536307 \n", + "count 103 \n", + "mean -5.08408e-05 \n", + "std 0.000826849 \n", + "min -0.00317997 \n", + "25% -0.000402606 \n", + "50% -3.07747e-05 \n", + "75% 0.00031692 \n", + "max 0.00327372 \n", + "mse train all feature: 4.3917e-07 \n", + "mse test all feature: 6.79626e-07 \n", + "mae train all feature: 0.000423565 \n", + "mae test all feature: 0.000536307 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.446602 \n", + "if same sign, how often is actual better than 0... 0.152174 \n", + "if same sign, how often is actual better than p... 0.978261 \n", + "if same sign, how often is actual better than p... 0.152174 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "\n", + " 3 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.55241e-08 \n", + "MAE 0.000202905 \n", + "count 103 \n", + "mean -2.90581e-05 \n", + "std 0.000255566 \n", + "min -0.000772953 \n", + "25% -0.000200629 \n", + "50% -2.43187e-05 \n", + "75% 0.000116229 \n", + "max 0.0005337 \n", + "mse train all feature: 4.45245e-07 \n", + "mse test all feature: 6.55241e-08 \n", + "mae train all feature: 0.000426773 \n", + "mae test all feature: 0.000202905 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.533981 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 1 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 4 \n", + "simname 500_epochs_40_lookback_pca_unshuffled \n", + "sim_desc added directional errors checking and pca as f... \n", + "MSE 4.82937e-07 \n", + "MAE 0.000594482 \n", + "count 102 \n", + "mean 0.000506372 \n", + "std 0.000478296 \n", + "min -0.00072515 \n", + "25% 0.000192821 \n", + "50% 0.000540495 \n", + "75% 0.000830978 \n", + "max 0.00159335 \n", + "mse train all feature: 5.16241e-07 \n", + "mse test all feature: 4.82937e-07 \n", + "mae train all feature: 0.000505385 \n", + "mae test all feature: 0.000594482 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.882353 \n", + "if same sign, how often is actual better than 0... 0.655556 \n", + "if same sign, how often is actual better than p... 0.366667 \n", + "if same sign, how often is actual better than p... 0.0666667 \n", + "if not same sign, how often is actual worse tha... 0.333333 \n", + "if not same sign, how often is actual worse tha... 0 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_log = pd.read_excel(\"sim_log.xlsx\")\n", + "display(pd.read_excel(\"log_results.xlsx\").T)\n", + "#display(df_log)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# create 15 minute data - this fills the 15 minutes table\n", + "if rerunSQL:\n", + " str_query = open(\"get_data.sql\", \"r\").read() # returns prepared data\n", + " str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "\n", + " df = getQueryDataframe(str_query, [min_date, max_date])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# dates only have an effect if a subset of dates is needed.\n", + "if rerunSQL:\n", + " str_query = open(\"get_data_1y.sql\", \"r\").read() # returns prepared data\n", + " str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + " #print(str_query)\n", + " df = getQueryDataframe(str_query, [min_date, max_date])\n", + " df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if rerunSQL:\n", + " df.set_index('datestamp', inplace=True)\n", + " df.index = pd.to_datetime(df.index) # else fill betweeen doesnt work\n", + " print(\"min date\", min(df.index))\n", + " print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if rerunSQL:\n", + " df.to_csv(\"data/eurusd_features.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Create features" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "df = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df.set_index('datestamp', inplace=True)\n", + "df.index = pd.to_datetime(df.index) # else fill betweeen doesnt work" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if useKaggle:\n", + " # load kaggle reference dataset for comparison\n", + " df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + " #df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + " # Rename bid OHLC columns\n", + " df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open_bid', 'Close' : 'close_bid', \n", + " 'High' : 'high_bid', 'Low' : 'low_bid', 'Volume' : 'volume'}, inplace=True)\n", + " df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + " df_kaggle.set_index('date', inplace=True)\n", + " df_kaggle = df_kaggle.astype(float)\n", + "\n", + " simname = \"bm_kaggle\"\n", + "\n", + " df = df_kaggle\n", + " print(\"min date\", min(df.index))\n", + " print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# to include seasonality as a feature\n", + "if simname == \"bm_kaggle\":\n", + " df['hour'] = df.index.hour\n", + " df['day'] = df.index.weekday\n", + " df['week'] = df.index.week\n", + " df['month'] = df.index.month\n", + " df['momentum'] = df['volume'] * (df['open_bid'] - df['close_bid'])\n", + " \n", + "df['avg_price'] = (df['low_bid'] + df['high_bid'])/2\n", + "df['range'] = df['high_bid'] - df['low_bid']\n", + "df['ohlc_price'] = (df['low_bid'] + df['high_bid'] + df['open_bid'] + df['close_bid'])/4\n", + "df['oc_diff'] = df['open_bid'] - df['close_bid']\n", + "df['period_return'] = df.close_bid / df.open_bid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Explore dataset - show some graphs" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOEAAAJKCAYAAABgNMM7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vH7TEvvBJBeFFAUVFwLiCiysijoAnZFrHzt\nZe1lLSwL4i5WcFV+wi5SRFdUUGygoIKyYqOI9JJQQgjpbdr5/ZEwyZBJn2RS3q/r2otTnvOcz4xe\nJy7nzucxTNM0BQAAAAAAAAAAAAAAAKDOLKEuAAAAAAAAAAAAAAAAAGjuCOEAAAAAAAAAAAAAAAAA\n9UQIBwAAAAAAAAAAAAAAAKgnQjgAAAAAAAAAAAAAAABAPRHCAQAAAAAAAAAAAAAAAOqJEA4AAAAA\nAAAAAAAAAABQT4RwAAAAAAAAAnA6ndq+fXuF46mpqerdu7d69+6tJ598MgSV1Uww6ly0aJFvjo8/\n/jjIFUr5+flKSUkJ+rwAAAAAAAChQAgHAAAAAADgKKtXr9bFF1+spUuXhrqUFmvp0qUaMWKEfvjh\nh1CXAgAAAAAAEBS2UBcAAAAAAADQlOzfv1833HBDqMto0dauXav77rsv1GUAAAAAAAAEFSEcAAAA\nAACAcjweT5XnO3XqpM2bNzdSNaE1ZswYjRkzJujzVvcdAwAAAAAANEcsRwUAAAAAAAAAAAAAAADU\nEyEcAAAAAAAAAAAAAAAAoJ4M0zTNUBcBAAAAAABQXmFhoRYsWKBly5Zpx44dysvLU3x8vE488USN\nGjVKI0aMkMVS8XeL1qxZo+uuu06S9MEHH6hnz56aP3++li5dqp07d8rpdKpjx44699xzdeONN6pN\nmzZ+1/fu3bvSmubMmaMzzjhDqampOv/88yVJV1xxhSZOnOgbs2jRIj366KOSpB9++EHLly/X66+/\nrtTUVF/9L730ksLCwnzX7N+/X2+99Za+/fZb7d27Vy6XS8nJyTrttNN05ZVX6pRTTqnTd3h0nc88\n84w+/PBDLVq0SJs3b1ZhYaHatWunwYMHa/z48eratWuFOcp/nueff14XXXSR3/mioiK98847+uKL\nL7Rlyxbl5+crOjpanTt31qBBg3T11Verbdu2AWsKZPny5erUqZPfsa1bt2revHlas2aNDhw4INM0\n1bZtW/3hD3/QVVddpRNPPDHgXK+88oqmT5+umJgY/fDDD5o1a5bmzZungwcPKikpSWeccYays7O1\nYsUKSdKyZcvUuXPnSmubOXOm/vnPf0qSlixZol69elU6FgAAAAAAtE62UBcAAAAAAABQ3rp163Tn\nnXcqLS3N73h6erq++uorffXVV3rrrbf08ssv+wU8jpaRkaGHHnpIW7Zs8Tu+fft2bd++Xe+++65m\nz55daYijvt5++21NmzbNr/78/Hy/AM67776rv/3tbyouLva7NjU1Vampqfrggw90xRVX6K9//avs\ndnuda8nPz9cNN9yg7777zu/4nj17NG/ePL3//vt6+eWXNXjw4BrPuX//ft14443asWOH3/HMzExl\nZmZq3bp1mj17tqZNm6Zhw4bVumbTNDVt2jS9+eab8nq9fud2796t3bt367333tM111yjRx99VDZb\n5X/NNW3aNM2cOdO3f+DAAVmtVo0ePdoXwlmyZIluv/32SudYvHixJKlv374EcAAAAAAAQECEcAAA\nAAAAQJOxdetWjR8/XgUFBYqKitLVV1+ts846SzExMdq7d68++ugjLVu2TD///LNuuukmLVy4UJGR\nkQHneuSRR5Senq7Bgwfr0ksvVYcOHZSamqpZs2Zp/fr1ysnJ0cMPP6yPPvpIhmFIKumec/DgQU2Y\nMEFSSQeZq666SpLUpUuXWn2WF154Qcccc4zuvfdede7cWb/++qu6d+/uO79o0SI98cQTkqROnTrp\n2muv1UknnSSr1apt27Zp3rx52rRpkxYuXCiXy6UpU6bU+vs84qOPPpJU0uln3Lhx6tmzp9LS0rRg\nwQKtWbNGBQUFevjhh/X5558rOjq6RnM+8sgj2rFjh6xWq8aPH69BgwYpLi5Ohw8f1sqVK7Vw4UIV\nFRXpwQcf1Geffaa2bduqbdu2+uCDD7RhwwbfZ7/rrrt83XHKh6omT56sOXPmSJISEhJ0/fXXa8CA\nAbJYLFq3bp1mzZqlgwcPau7cucrPz9ezzz4bsM78/HzNnDlTxx13nO688061adNG33//vc455xz1\n6dNH8fHxysrKqjKEs2nTJl+Ya/To0TX6fgAAAAAAQOtDCAcAAAAAADQZDz74oAoKCtS+fXu99dZb\nfsGXfv36acSIEZo3b54mTpyoLVu26NVXX9UDDzwQcK709HTdeuutuu+++/zmGDZsmC677DL9/vvv\n2rZtm9atW6f+/ftLko4//njFxMT4xicnJ+v444+v02cxDENvvvmmevbsKUkaMGCA71xaWppvGauz\nzjpLr776ql+Y6JRTTtHo0aN9IaFFixZpxIgROuecc+pUiyRdcMEFmjZtmhwOh+/Yn/70J02YMEFf\nf/21MjIy9M0332jEiBHVzrV37159//33kkpCNLfddpvf+SFDhqhnz56aOHGiCgoK9NFHH+nGG2+U\nw+HQ8ccfr5ycHN/YDh06VPiOf/zxR18Ap3v37pozZ45fQGfAgAEaPXq0brzxRm3cuFHvv/++hg4d\nqgsuuKBCrV6vVzExMZozZ44SExMlSaeddprv/MiRIzV37lzt2LFDGzZsCNgZ6cMPP5Qk2e32Ckty\nAQAAAAAAHFFx8XQAAAAAAIAQWLVqlTZt2iRJevjhhyvtPHPNNdfo9NNPlyQtWLBALpcr4Ljk5GTd\nddddFY47HA6/bia///57fUsP6PTTT/cFcI42f/58FRYWymazaerUqQG7+dhsNj399NO+UNCRUEpd\nOBwOTZw40S+AI5UEhY50+pFKOhHVxKFDh3zbXbt2DTjm0ksv1WWXXaZ77rlH/fr1q1W9b775pm/7\nueeeC7jsWHx8vF588UVZrVZJ8ltu6mjDhw/3BXCONmbMGN/2kiVLKpz3eDy+TkJDhgypdB4AAAAA\nAABCOAAAAAAAoElYsWKFb3vQoEFVjh0yZIgkKS8vT+vXrw845swzz5TNFrgJcPmAT35+fi0rrZkj\n3XUCOfJZe/bsqXbt2lU6LiYmRqeeeqokae3atZUGjqrTr18/JSQkBDxXPkSTnZ1do/m6dOni+26f\nffZZLVu2rEJtYWFhmjRpkm6//Xa/zjPVcbvdvi47ffv2rTLA06VLF5199tmSpPXr1yszMzPguJNP\nPrnSOfr27atevXpJkj7++GN5PB6/86tXr1Z6eroklqICAAAAAABVYzkqAAAAAADQJBzpgiPJ1+mm\nJlJSUnxBlfI6duxY6TXlO8+43e4a36s2jjnmmIDH3W63tmzZIknavHmzevfuXaP5CgsLlZGRofbt\n29e6lqquCQsL86utJhISEnTZZZdpwYIFSktL0x133KGoqCidccYZGjhwoAYNGqQePXrUuk5J2rdv\nny8YVVWQ6Yj+/ftr5cqVMk1TW7duDfjvTnXf2dixYzVlyhSlp6fr+++/9wuBHVmKKiEhwRf+AgAA\nAAAACIROOAAAAAAAoEmorItJdXJycgIej4qKqvQawzDqdK/aiI6ODng8JydHXq+3TnPWtFPN0ar6\nLsozTbPGcz7++OMaP368ryNOfn6+vvzyS02aNEkjRozQH//4R73wwgs6fPhwrWrNysrybSclJVU7\nvk2bNr7tyr6fyv5ZHDFq1Cjf5yi/JFV+fr6WLVsmSRo5cqTsdnu19QAAAAAAgNaLTjgAAAAAAKBJ\nONKFJSEhQbNnz67xdVUt5xRKlQV9ynebGTx4sO6///4az1l+6ahQs9vteuyxx3TLLbfos88+01df\nfaW1a9eqqKhIkrRnzx699tprmj9/vt58880ql5UqrzZBIEl+y0dV9p1XF7pKSkrSkCFDtHz5cn3+\n+ed6+umnFR4eri+++EKFhYWSWIoKAAAAAABUjxAOAAAAAABoEuLj4yVJBQUF6t27tyyWltnA98jn\nlCSv16vjjz8+hNXUX3Jysq699lpde+21cjqd+umnn7Rq1Sp9/PHH2rt3r3JycvTggw/qk08+qdE/\n07i4ON92RkZGtePLjyn/3dbWmDFjtHz5cuXn5+vrr7/WBRdcoKVLl0qSevXqpb59+9Z5bgAAAAAA\n0Dq0zL/NAgAAAAAAzc5xxx0nSSouLtamTZuqHPv1119r1qxZ+uyzz2q93FGoORwOX0ebjRs3+nXG\nCWTBggWaN2+eVqxYUe3YxuL1epWSkqLvvvvO77jD4dCZZ56p+++/X59++qlOPvlkSdKuXbu0c+fO\nGs3duXNnRUZGSpJ+/fXXasf/8ssvvu3u3bvX9CNUMGTIECUmJkqSL4xz5PPRBQcAAAAAANQEIRwA\nAAAAANAknH322b7t+fPnVzrO4/HomWee0dSpU3X33Xf7lgsKlsbowHPks2ZlZenjjz+udNzu3bs1\nceJETZw4UX/7299kszWNpsZ//etfNWzYMF1//fVKSUkJOOZIIOeI4uJi33ZV37HVavVdt3HjRm3Y\nsKHSsbt37/YFZfr06aOkpKRafY7y7Ha7Ro0aJUlasWKFVq5cKafTKavV6jsOAAAAAABQFUI4AAAA\nAACgSRg2bJg6d+4sSXrvvfe0ePHigOOmTJmi1NRUSdL555+vjh07BrUOh8Ph2y4oKAjq3Edcd911\nslqtkqTJkydr8+bNFcYUFhbqwQcflNfrlSSNGzeuQWqpi/POO8+3PWXKFJmmWWFMYWGhli9fLkmK\niory61JT3Xd8ww03+LYfeughHTp0qMKY7Oxs3XffffJ4PJKkG2+8sQ6fxN+YMWMklYSjXnrpJUkl\ngank5OR6zw0AAAAAAFq+pvHrUwAAAAAAoNWz2WyaOnWqxo8fL5fLpYceekhfffWVLrroIiUnJ2vv\n3r1auHChvv/+e0lSXFycHnvssaDXkZCQILvdLpfLpY8++kgDBw5UbGysunbtqvj4+KDco1u3brrv\nvvv0z3/+U1lZWbr88st19dVX65xzzpHD4dCWLVv073//W7t27ZIk9evXT9dcc01Q7h0MQ4cO1Ukn\nnaT169dr+fLlGjt2rK666ip169ZNpmlqx44dmjt3rrZu3SpJuummmxQREeG7vnyo5e2331avXr1k\ns9l0/PHHKyIiQqeffrrGjRunt956S9u3b9fFF1+s8ePHa8CAATIMQ+vXr9fs2bN14MABSdLIkSN1\nySWX1Ptz9enTRyeccIJ+++0333f/5z//ud7zAgAAAACA1oEQDgAAAAAAaDIGDBigN954Q/fdd5+y\nsrK0dOlSLV26tMK49u3ba8aMGerUqVPQa7BarRo6dKg+++wzHTx4UDfffLOkko41Y8eODdp9brnl\nFhmGoRdeeEFFRUWaNWuWZs2aVWHcaaedpunTp8tutwft3vVlsVg0ffp03XTTTdq2bZs2btyoJ554\nosI4wzB01VVX6fbbb/c73qFDB/Xt21cbN27U1q1bfV1+/vOf//iWonrsscdkt9s1e/ZsZWRk6Pnn\nnw84//XXX6/7778/aJ9tzJgx+u233ySVBL2GDRsWtLkBAAAAAEDLRggHAAAAAAA0KQMHDtTy5cu1\nYMECrVixQtu3b1dubq4iIyN17LHH6vzzz9eVV16p6OjoBqth8uTJSkpK0vLly3X48GHFxsYqMzMz\n6Pe5+eabNXz4cM2bN0+rV6/Wvn37VFhYqPj4ePXt21cXX3yxLrzwQlksTW9F8fbt2+v999/Xe++9\npy+++EJbtmxRVlaW7Ha72rZtqzPOOENjx45V//79A17/2muv6bnnntPq1auVk5Oj+Ph4v2WnLBaL\nHn74YV1yySWaP3++1qxZo7S0NFksFnXo0EFnnHGGLrvsMvXp0yeon2vEiBGaNGmSb7v80lkAAAAA\nAABVMcxAi3YDAAAAAAAArdDKlSs1YcIESdLChQt18sknh7giAAAAAADQXDS9X6MCAAAAAAAAQmTR\nokWSpGOPPZYADgAAAAAAqBVCOAAAAAAAAICk1atXa9myZZKkq666KsTVAAAAAACA5sYW6gIAAAAA\nAACAUJk0aZLy8/OVm5urlStXyu12q3379ho7dmyoSwMAAAAAAM0MIRwAAAAAAAC0WhkZGVq6dKlv\n3263a/LkyYqIiAhhVQAAAAAAoDlqMiGc9PTcUJcAoAVISIhUZmZBqMsAgAbH8w5Aa8HzDkBD69Pn\nJK1atUrFxcXq1auPbr75VvXq1a/R/66K5x2A1oRnHoDWgucdgNaitT3vkpNjKj3XZEI4ABAMNps1\n1CUAQKPgeQegteB5B6ChjRlzmcaMuSzUZfC8A9Cq8MwD0FrwvAPQWvC8K2MJdQEAAAAAAAAAAAAA\nAABAc0cIBwAAAAAAAAAAAAAAAKgnQjgAAAAAAAAAAAAAAABAPRHCAQAAAAAAAAAAAAAAAOqJEA4A\nAAAAAAAAAAAAAABQT4RwAAAAAAAAAAAAAAAAgHoihAMAAAAAAAAAAAAAAADUEyEcAAAAAAAAAAAA\nAAAAoJ4I4QAAAAAAAAAAAAAAAKDRLF26RP/61ysNNv9PP63VU089WuH4Sy9N04EDB/yO7d69S3fe\nOSEo97UFZRYAAAAAAAAAAAAAAACgCbvnnvsbdH5COAAAAAAAAAAAAAAAAK1A1NNPKGzJB8Gd9IrL\npYeerHJIcXGRJk9+RgcOHJDL5dJ5553vO7dgwVwtX/65rFar+vc/RbfffrfWrftF06e/KJvNpvDw\ncE2aNFUOR5j+8Y/JSk1Nkdfr1S233KZTTz2t0numpKToL3+5U9nZ2Ro9eqxGjvyz7rxzgh588DFF\nRUVr4sQnZJqmEhOTgvZVEMIBAAAAAAAAAAAAAABAg/ngg/fUvn0HPfPMFKWk7NF3332rvLw8bd++\nTV9++YVee22WrFarHn/8Ia1a9Y1++eUnDR06TJdffrW+/fZr5eTk6rvvPlFcXLweffRJZWdn6Y47\nJmju3HcqvafH49bUqS/I6/Vo/PirNWjQEN+5OXPe1LBhw3XxxaO1fPnnev/9/wblcxLCAQAAAAAA\nAAAAAAAAaAXyn56k/KcnBXXO5OQYKT23yjF79uzWmWcOlCR17txF69fHKCMjQ7t371LfvifJZiuJ\nr/Tvf7J27tyuceNu0Jw5s3TPPbcpObmtTjjhRG3fvk3r1v2s337bIKkkZJOVlaX4+PiA9zzhhJNk\nt9sl2dW9e3cdOLDPdy4lZY9GjRotSTrppP5BC+FYgjILAAAAAAAAAAAAAAAAEEDXrt21adNvkqS9\ne1P1+uszSo9302+/bZDb7ZZpmvrll5/VuXNXff75Ul144Ui98srr6t69hxYvXqSuXbtp2LDhmj79\nDU2b9rLOO2+YYmNjK73n1q2b5Xa7VVhYqF27dqpjx06+c9269dDGjeskyVdXMNAJBwAAAAAAAAAA\nAAAAAA3mkkvGaMqUibrzzgnyeDy64oprlJ2dpZ49j9XQocN02203yTRN9evXX+ecc65++22jnn12\nkiIiImQYhh566HG1aZOsqVMn6c47Jyg/P0+jR18mi6Xy3jMOh0MPPHC38vLydOONExQbG+c7N378\nTZo48QktW/a5OnToGLTPaZimaQZttnpIr6Y1EQDURHJyDM8TAK0CzzsArQXPOwCtBc87AK0JzzwA\nrQXPOwCtRWt73iUnx1R6jk44AAAAAAAAAAAAAAAAaHZmz56pH3/8ocLxxx57KqgdbmqKEA4AAAAA\nAAAAAAAAAACanRtuuEU33HBLqMvwqXxxLAAAAAAAAAAAAAAAAAA1QggHAAAAAAAAAAAAAAAAqCdC\nOAAAAAAAAAAAAAAAAEA9EcIBAAAAAAAAAAAA0Cy4Pd5QlwAAQKUI4QAAAAAAAAAAAABo8kzTJIQD\nAGjSCOEAAAAAAAAAAAAAaPJMU3J7zFCXAQBApQjhAAAAAAAAAAAAAGjyvKYpr5cQDgCg6SKEAwAA\nAAAAAAAAAKBZ8BDCAQA0YTUK4fz6668aN25cwHOFhYW68sortX37dt+x119/XVdccYXGjBmjd999\nNziVAgAAAAAAAAAAAGi1LFu3yL7l91CXAQBApWzVDZg5c6YWL16siIiICufWr1+vp556Smlpab5j\na9as0c8//6wFCxaosLBQs2bNCm7FAAAAAAAAAAAAAFqdduecLklK358pWa0hrgYAgIqq7YTTpUsX\nvfLKKwHPOZ1OzZgxQz169PAd+/bbb9WrVy/dcccduvXWW3XuuecGrVgAAAAAAAAAAAAArZt1985Q\nlwAAQEDVdsIZPny4UlNTA54bMGBAhWOZmZnat2+fXnvtNaWmpuq2227Tp59+KsMwqrxPQkKkbDYS\nqwDqLzk5JtQlAECj4HkHoLXgeQegteB5B6A14ZkHoD7istJlTT4l1GXUCM87AK0Fz7sS1YZwais+\nPl49evSQw+FQjx49FBYWpsOHDyspKanK6zIzC4JdCoBWKDk5RunpuaEuAwAaHM87AK0FzzsArQXP\nOwCtCc88AHWVXPqn9U/DlX4wJ6S11ATPOwCtRWt73lUVOKp2OaraGjBggL755huZpqm0tDQVFhYq\nPj4+2LcBAAAAAAAAAAAA0FqYZqgrAACgWrXuhLNkyRIVFBToiiuuCHj+vPPO0w8//KBLL71Upmnq\nySeflNXKMlMAAAAAAAAAAAAA6saSssf/gNcrWYLebwAAgHoxTLNpxEZbU2siAA2ntbU6A9B68bwD\n0FrwvAPQWvC8A9Ca8MwDUBfW9euUeP7Zvv1Dm3fJTEgMYUXV43kHoLVobc+7Rl2OCgAAAAAAAAAA\nAACCyXC7/PYtBw+GqBIAACpHCAcAAAAAAAAAAABA0+Y8KoSzb2+ICgEAoHKEcAAAAAAAAAAAAAA0\naUc64Xi6dJUkmXv2hLIcAAACIoQDAAAAAAAAAAAAoGlzlYZwuveQJNk/+ySU1QAAEBAhHAAAAAAA\nAAAAAABN2pFOOO7jekmSopd9GspyAAAIiBAOAAAAAAAAAAAAgKbNWRLC8bbvEOJCAACoHCEcAAAA\nAAAAAAAAAE1baSccMyqy7JjTGaJiAAAIjBAOAAAAAAAAAAAAgCbNcJWEcGSzq3jEyJJj+XkhrAgA\ngIoI4QAAAAAAAAAAAABo2kpDOKbDITMqSpJk5BHCAQA0LYRwAAAAAAAAAAAAADRpZZ1wbAp7/7+S\npMgX/xnCigAAqIgQDgAAAAAAAAAAAICm7UgIx26X4fFIksLffTuEBQEAUBEhHAAAAAAAAAAAAABN\nmuPTjyVJpsUiT+cukiTXGWeFsiQAACoghAMAAAAAAAAAAACgSQtb8aUkyf7Lz8p77nlJkvN0QjgA\ngKaFEA4AAAAAAAAAAACA5sHrlTcqRpIU/Y/JkmmGuCAAAMoQwgEAAAAAAAAAAADQLBTeeocUHubb\nN7IyQ1gNAAD+bKEuAAAAAAAAAAAAAAAqVa7bjbf9MTLtDt++UVAgMyExFFUBAFABnXAAAAAAAAAA\nAAAANF1Op9+umZTk2zby8hq7GgAAKkUIBwAAAAAAAAAAAECTZeSXBG2KLhpV4Zx91TeNXQ4AAJUi\nhAMAAAAAAAAAAACgyTLy80s2IiIrnIt55P5GrgYAgMoRwgEAAAAAAAAAAADQZBnFxZIkMyIixJUA\nAFA1QjgAAAAAAAAAAAAAmq6iIkmSGRbmO5T92puSpOI/XRSSkgAACIQQDgAAAAAAAAAAAIAmyygu\nCeEovKwTjufEfpIkb9t2oSgJAICACOEAAAAAAAAAAAAAaLKMAJ1wTIej5JyzOCQ1AQAQCCEcAAAA\nAAAAAAAAAE2OkZUp+8zXZOTlSZLM8PCyk6UhHDmdIagMAIDAbKEuAAAAAAAAAAAAAADKM9LTFTdm\npOybN8kbF1dysFwIx3SUdMUxCOEAAJoQOuEAAAAAAAAAAAAAaFIShp8r++ZNkiRLdrYkyQwr1wkn\n7EgnnGIVpuyV3O7GLhEAgArohAMAAAAAAAAAAACgSYi+6TqZiUmypqZUOFd+OSrTXhLCsa1fpy4D\njlfBteOV//wrjVYnAACB0AkHAAAAAAAAAAAAQEh4vaYkyeP1ysjKVMSSDxT5nzcDDw4LK9t2lIRw\nrPv3SZIi5/6nQesEAKAmCOEAAAAAAAAAAAAACAmP1yu53bJNfVaWTb+VHe/UucJYMzKqbMdikWm3\nN0aJAADUGCEcAAAAAAAAAAAAACHh8ZoKn/sftXnhWSVeMsJ33JqaInf7Y1R4zXUl46Jj5Bo4yO9a\n0xEmAACaEkI4AAAAAAAAAAAAAELC4zVlFBYGPGd4vcp7Ybp27cnQwa0pMmNi/c6bERF1uqfb463T\ndQAAVIcQDgAAAAAAAAAAAICQ8HhNmVFRAc9ZD6ZJkmxWi2zWiq81zeho/wOVhHkC3RMAgIZACAcA\nAAAAAAAAAABA43M6Ff32XFm3b/M7nP/AIzItFhVcO16SZLcFfqVpxsT47VsOZ9Totl5COACABmIL\ndQEAAAAAAAAAAAAAWp+IN99Q9FOPVTjuOfY4pW3cIWtCvCTJYhgBrz96eSrL4Qx5O3aq9r50wgEA\nNBQ64QAAAAAAAAAAAABodNad2wMeN+12WZMSJUvVrzKPXsbKyKhZJxxjx3bFXTlG1u1ba1YoAAA1\nRAgHAAAAAAAAAAAAQKMzHY6Ax50XjqrR9faf1vrt12Q5KiMjQ93OO12OL5cp5p47anQfAABqihAO\nAAAAAAAAAAAAgMZns/vt5o8arbSUdMlqrdHl3uS2fvtGdnb1t/z157IdZ3GN7gMAQE0RwgEAAAAA\nAAAAAADQ+Oz+IZyC6a/JEhZW48udQ//ot2/kVB/CqW6JKwAA6oOfMgAAAAAAAAAAAAAanWmz+R8I\nD6/V9QX3PeC3b/32m8rvZZolG+VDOIZRq/sBAFAdQjgAAAAAAAAAAAAAGp/D4dvcs2FnrUMxZmSU\n337Eyi8l05ScTkU9cK/f0lMeb2kIh+ANAKABEcIBAAAAAAAAAAAA0OhMW9lyVBHJibWfoLSTjiep\nje9Q7JWW3buEAAAgAElEQVRjFTnjJUXOmaX4UcN9x90eryTJknHId8z+80+1vycAAFUghAMAAAAA\nAAAAAACg8TnKQjh16lBjGEpZt037/7de2TdMkCSFfbVMUVP+VnK6qMg39EgnnJhbb6p7vQAAVIMQ\nDgAAAAAAAAAAAIBGV74TTl052iXLGhkh59R/yiy3vFV5ln17FfvUYzKys2R4vRXOew6kScXF9a4F\nAABCOAAAAAAAAAAAAAAanddirfccFsOQzVryytNwOv3OFY0eK6mk+03i7NcV8dI0Fdx6p98Y+zcr\n1b7fcYp+9IF61wIAACEcAAAAAAAAAAAAAI2u2F2xK01QWW2SJNuG9ZKkqOkvKeL1GX5D4seOkiRF\nzP1Pw9YCAGgVCOEAAAAAAAAAAAAAaFwulxL/8XdJ0qHpMxvmHh63JMmSl+s7ZJhmw9wLAAARwgEA\nAAAAAAAAAADQyCLe+JdsWYclSRabLShzFl90sSQpe/Y8SZLhctduAper5M/SoI5l5w4lDjhRtv+t\nCUp9AICWLzg/0QAAAAAAAAAAAACgBixrf1D0M0/49q12qzxBmDdn9lzJ5ZJRkC9JMt1uGVmZNb4+\n9prLFLbiS0lS9jOTFbbuF1lT9ij29lt0eO26IFQIAGjp6IQDAAAAAAAAAAAAoNEkXXi+/wEjiK8s\n7XaZ1pI+BF6nUzF331ZhiGkYAS89EsCRpLinHpPl4EFJknXPLsldy646AIBWiU44AAAAAAAAAAAA\nABqH11vxmNUa3HtEREiSIr/8IuBpMzZWRnZ2tdM4vlnh27Zu2SzPCX2DUh4AoOWiEw4AAAAAAAAA\nAACARmHk5lQ8aAnyK8tqQj3e6Bi//ZwXplc7pZEToG4AAI5CCAcAAAAAAAAAAABAozCysioetARe\nHqrBxMb5NjNf+peKr7lOh/67RJJUPPKSgJcYLmejlAYAaN5YjgoAAAAAAAAAAABAo4j+y10VjpkR\nkQ16z4IzByny+1VlBzxu36b7qmtKajhniNIPlnW7sezepfihZ8ta2rnHcBY3aI0AgJaBTjgAAAAA\nAAAAAAAAGoTXNOVye337Yd+srDDGjIoK+n0LL7/Kt13wl4f8zhl5edVe7+3aTYe3pSjvmcklB5yu\noNYHAGiZCOEAAAAAAAAAAAAAaBCFu1PkOZxZ5RgzOibo981/8NGy+c89z++ckZNz9PDADENyl3TN\nibljQtBqAwC0XIRwAAAAAAAAAAAAAARdxBuvqtvpJ6rzid2rHOeNiw/6vc2u3ZT5zgfK+GVThXOu\n886v8TzWPbslSZa83PrXZJoyTbPe8wAAmi5COAAAAAAAAAAAAACCLvqJR8p2XCXLOZkWi4pPP1Ou\nE/r6TplJSQ1yf/e5Q+Xt0NHv2IHX/q38R/9a4zmKLrsyaPWYpf8DALRctlAXAAAAAAAAAAAAAKBl\ns6bslqdLNxler+RwKGvFd7Ju2SxnWrqsVmvj1TFmjDzFxZIk18mnVjve3f9kSZJzyHnVjKyBIwkc\no/5TAQCaJkI4AAAAAAAAAAAAABqUdcN6GdnZJTthYZIkT6/eMnse1yj3z/pgqcxDh3z337VxlyIT\nYqvPw9hKX6e63fWuwSSFAwAtHiEcAAAAAAAAAAAAAEHnTW4rS/pBSVLczePLTjjCfJs2q6VRanEN\nPNtv3xoXK8NWg1elltL6PJ5612CakkH+BgBatMb5qQYAAAAAAAAAAACg1fB4vfJGRckTE1vhnDc+\nPgQV+Qt31LBXgWHItNmCEsKRSoI4AICWixAOAAAAAAAAAADNnNvjDXUJAOBT7PKoaNUa2XbtlBkT\no9zHn/I7byYkhqiyOrJag7IcFQCg5WM5KgAAAAAAAAAAmjGv15TL7W20JV0A4AiP16v8Qrfycwvk\n2bZDxtYtsm3bou6L5ysqbZ8kybZvr4ruuV9Fd9yj5A4l4RtvQkIoy64102oLSgiHLjgA0PIRwgEA\nAAAAAAAAoBnzeL3yeHmzC6DhmKapwmKPCg8ekvf332Vs2SL7tq2K2LVNySk71X3fHlk8gUMqzlMG\nlGzYyl5LGt5m1r3LZg3SclQ8qwGgpSOEAwAAAAAAAABAM+Y1JQ/LUQEolVfoUnSEvc7Xu5wuFW3f\nJe+m32XZukW20rBN25Qdijh8qMJ4Z1SMMnv1VV7nHnIde5yMPn0U3vtYdRx+jiSp4NG/ls19yqmy\n//yTnEOH1bm+UDCtNhmVhIxqNQ8ZHABo8QjhAAAAAAAAAADQnJmiEw4An4zsIkVH2OU1TVkMo9Jx\nnrw8uTdtlvf3zTK2bPZ1tklI3SVbcZHfWNMwlN+uo/afNli5nbsrt3MP5XTpLu+xvRXVpYMSYsMV\nHx2mSEvF+3m7dPFtZy1drkO79qlNz87B+8CNwIyIlGX//pIUTRXfabXzBLEmAEDTRAgHAAAAAAAA\nANCkmKYpox4vOVubxAnXqe0vPyv7l99CXQqAEAufN0fH/PqbjPvvk+Wtt+To1VPuU0+Te+s2X2cb\n+/atCt+1XZEH9la43h0WURayKf0zt3MP5XbsKm9YuBw2ixKiw5QQG67jYsIUZrdWWotzyHmybNgg\nT8dygRurVfZ2bRviozcoT48eCvv2a8ntlux17zIkiSQOALRwhHAAAAAAAAAAAE2Ky+2Vo4oXu/AX\nuXRJyUZBgRQZGdpiAIRUzH13KkaS/v1qleMKk9oq7eQzldupmy9ok9OluwrbtJcsFt84i2EoNsqh\nbjFhSowNr9UyV9kL3pOKi6WwML/jdpulkiuaLjM8QpJkFBfJrEcIx2Q9KgBo8QjhAAAAAAAAAACa\nFFf6ITmS4iu8uEXVLIcz5CWEAyCATVf9X1lnm07d5Y6KrnRsZJhNiTHhSogJU3yMQ1ZLHUMzNlvJ\n/45itzW/kKVx5OdRsVOq/KsDAIAQDgAAAAAAAACg6TDyctXt5ONUNOoS5b75VqjLaV5crlBXAKCJ\n2nDDvZWes1stio8JU2JMmBJiwhTuaNjXh82yE05pCMdwFtdrNSka4QBAy9f8fsoBAAAAAAAAAFos\nS2qqJCl8yYchriS0ip0eebzeWl1jEMIBEMDOC0b77VsMQ3FRDnVvH6tTj0vWwBPbq2+3RB2TFNXg\nAZzmKuzjxZIk29r/hbiS1sf2688Ke/Qhye0OdSkAUCP8JAUAAAAAAAAANB28ZJMkRT/9uBybNir/\n/SU1v8jpbLiCADRbP97ztCIcNiWUdruJjwmTzcrv6deGabPLKC5W3E3XKf1gTt3noRNOrSX8cYgk\nKXvwOXJeODLE1QBA9QjhAAAAAAAAAACaDMNDCMf+zUrF/79XJUn5pikZRo2uM1yEcIDWzPa/NRWO\nZSz6WKf366yIMF4J1kfRNeMU+ca/JEluj7ceISZTRU6PIsP551FbRk52qEsAgBoh5goAAAAAAAAA\naDrohKOo5yaX7VTX3aZ8WwUny1EBrVnCyD9WOOY9ezABnGAwyr1Sfe+/MjIP12mayPlvyfIDS1rV\nCd3eADQThHAAAAAAAAAAoA5M05SXdSWCz+0JdQUh501q49s2iouqHlwutEQnHABoGEXXjvdtH3Pn\nzYq9+fpaz2Hk5ij5kXt13FUsqVQXsQ/cQ1AXQLNACAcAAAAAAAAA6sDtMeVyeUNdRovDclSSNy6u\nbKeouOrBxeXO0yUAaNU8bZIlSc7zzi/5c/C5IaymZfH07qPc62707Tu+WVH7SQrLQpVGXm4QqmoF\njgo72375KUSFAEDN0X8OAAAAAAAAAOrA/snHcnbpJvU/KdSltCz8lru8nbv4to2iQlXVb8koF8Ix\nXCxHBbRm3qQ2sh5KV/bcd+Q9fFiWpKRQl9SiWCxH9TYwTckwany94S57RhsZGTKjY4JVWosVtuhd\nv30jl/ASgKaPTjgAAAAAAAAAUFtFRUq+6Rp1/OOgUFfS7LiqW26KEI7MsHDfdvmQTSCGs3wnnGq6\n5gBo2ZxOOZPbSXa7LO3aSTZ+Fz+Y3KUdho6wbt1Sq+vNcs9zb2ZmUGpq6cI+eM9vP+7qS0NUCQDU\nHCEcAAAAAAAAAKglw8WyP3VhHDyosL89IyMnu/IxLEclecsFlYqKKh8nKXz+W77t6KefaKiKADQH\nRUUywsJCXUWLZYaH++1HvvCPGl8btnC+2pxxsm/feyhDHi9LWlbH/t1qv33D45FjyYdSQYGSenZU\n/LBzZF/1TYiqA4DACOEAAAAAAAAAQG05WfanLmIeuFtJ/3pRUX9/pvJB1XXKaYG8Xv8FpwxP2Xdg\nFFcdwoma+nfftjVlT3ALA9CsWDMPS4RwGo7D4b9fiyUAIydP9NuP/fvTSt+xLxhVtWiW0tBuwcDB\nvmNxN41Tcrf2suTmyr7uF8WPvkjJbWMlQk0AmghCOAAAAAAAAABQSwbL/tSJNSVFkhS+cH6lY4yi\nwsYqJ6S8Zlnwxnl08Kh8CCcvr7FKAtCM2X79WZaiQtm3bw11KS2Wke//PDZjY2t0nSXtgGz7/QM3\nERvX6aSBJyji5eeDVl9Llj/vnWrHRN92s2Sa1Y4DgIZGCAcAAAAAAAAAain8P2+GuoRmyVr6ctgo\nKKh0jH3Vt41VTkh5PKUvCl0utfnzCIW/9e/yJ32b9jXfVTmP6+RTGqA6AM2N48tloS6hxfMmtfHb\n9/Q4tkbXxf75okrPRU96uh4VtXyeuHi5OnSSoqJUNObSKsdGvP/fan9mAkBjIIQDAAAAAAAAALUU\ntviDUJfQPBlGtUMi5sxqhEJCz1O6bIbttw2KWLtGMfff7TtnlgvhmOHhVU9ktfnvu91BqxFA82Fa\nraEuocVzD/iD8ocN9+0b7hosR2WaVXYn8iQmBaO0Fstwu2QmJEiS8p57Qdn3P6KcV2cq/94HlL4/\nU9lz3vYbb9nPEl8AQo8QDgAAAAAAAADUknnUb8OjhpzO2o0P0rIS1q1bFPbmG0GZK1i8XlPm4QxF\n/fXRCuc85Zaniv77M5VPUlgo+48/SJIKRv1ZkmTZszu4hQJoHliGp1EUzH9X++YuKtmpSeixqKjK\n06bdHoSqgs+Tnx/qEiRJRnGxFBEhSTJj4+R8+DEVX3qFCh57UrJa5fzThcpYt7lsfMahUJUKAD6E\ncAAAAAAAAACgltx9Twx1Cc2Sc+gw37ansLD6C1w16DJQA4mDTlPsow/I9vOPQZkvGLymFP3kY3J8\nv9r/hMejuBkv+h0ycrIDzmE5sL9sTGk3Bfv/vg9uoQCaBaNcBy00rPDo0g5lNemE80wVQUpJltyc\nIFQUXPYvl6l992MUPm9OaAtxu2W43VI1HeG87Y+RWRrUseTlNUZlAFAlQjgAAAAAAAAAUEtG5uGy\nHV581pj7pH6+bdvixf7nPN4AFwR3aSUjKyuo89WW01X670pRkTqf2luR7yyoMMax7PMKxyz79vmu\ns6SmyP6PqbJu3ypLerokqWDoH+UacJokyahJuAlAi2M6wkJdQqthHOle43TJrK4D0dSpvs3DH33h\nd8p51iBZCgqa3DKC4fPfkiRFzHgppHUYu3aVbNRgqbWsdz4suSY7W2a5II6XDlEAQoAQDgAAAAAA\nAADUkiWjXAintksstWJGuWWW2tx1i2/b8fknsv9rhiTJdDjKjQ9OJ5wjwmc17pJUxS6P0jILtCUl\nS//blKbVGw/I7fHKujdFtsqWzCiuuHRJ5MP3y3Jgv6KfeERJp/ZV/D/+rsSzBihy+guSJG/3HjKT\nSjrhNLVltwA0LFfpc9XTpYskqeiyK0NZTutQ+nMqavqLCn/kQVl27azRZZ7Tz/DbN+PiJUlGXm5w\n66sH29r/KXzx+yU7R4VfAoZlG1CbgadKkhwrv6p2rBkdLUmKnPGS2vboICMrU/bvVsl8550GrREA\nArGFugAAAAAAAAAACKXwJx6VJe2ACmbOrvE1xuGMsm1nsW8ZhCbB7VZhRrYi2iWFupKKKvlt/7hr\nr5AkpU/4PxnlQ02u4HYHCP/sEzXkq84ip1vZeU5l5RUrK8+pQmdZ/YbbpcQtG+SOLlZYVd2TIiMr\nHAr/7ltZ7rxVjq/9X0SGfbpUkuQ9qZ/MqJIXkI4tv8tIS5PZrl0QPhGApq7Y5ZXdZi1ZtkeS6/Qz\nQ1xRy2fa7L7t2NlvyPP5Uh3++bcK46wbN8iMjpaRl6esD0qe1we27FHUxReq+E8jFb13lyTJyMmR\nGZ/QKLVXJ+HCsmUjZS17jWzk5cr2+RfSJZfUqDNNYzOjovz2I6c9p8jXS8K96ZdfLhlGKMoC0EoR\nwgEAAAAAAADQqsW8UfKSpsYhHK9X9g3ryvadwe3WUl+Rjzyg5DmzlPHzb/J27FThvNvjlc0aoibp\nR3e2KSyUygWYLEd1hzHcLgV9IQnTDNrLuMJit7LzncrKLVZWfrGKnP7hmqj9KWr34yq1X/ut2v6y\nRvaCPDk7dJJnyLmBJ3S7ZVrKXm7mDvuTYpZ9KkkVAjjluYYOk+Vgmm/fkp0lDyEcoMVzLH5fiV98\nIefLM8pCjjZe/TU4u91v17o3tcIQy9oflHjh+ZKk4l7HyzXwbEmSERunjQs+UbvESEU980jJsdym\n0wmnPLNc2Cbm7tsV9tGHys1/WUXjrq/1XA393x5HgqhHWMqHpbOzmkzICUDrwHJUAAAAAAAAAFAL\nRy9pZDiLQ1RJYFFzZkmS7Gu+C3jevWu3nFk5kiSPt3GXljCO6oTjWPaZVK4G+4ov/c5bf98U/Boy\nD1c/qBKFxW7tz8jXpt2Z+n7jAa3ZlKbf92TqQGaBipwe2Qrydcx3X+qU6X/Tn64frgvHX6ABLz+j\njquXqzg+UZLk2JeqiAVzfXPm3n2/b9uxYrkMV1lQqeiGm6utyZ3cVt627fy7ALBEGtAqxN08XnEL\n58qyN1VGfr4k/+AEGoY3sWKnOSMnW5b9+2RJ2SPl5yupNIAjSUZUWYczw5DC7FbZrRaZkSXP7djr\nr5b9268bvvBqGLk5/gdsVhmbN0uFhQr76ENJkvn773Wa++iQam0U3Px/1Y45shyVj6XsFXjU5Il1\nvjcA1EWNQji//vqrxo0bF/BcYWGhrrzySm3fvt3veEZGhoYMGVLhOAAAAAAAAAA0Z5EvPe9/oCkF\nHsyyvjH25V9UOG3k5arzWf3V5sLzpcJCJR/XRRH/nOo7b92wXhGPP1zpslH15vZ/CRd303UKW/y+\nbz/2ntv9zsc8eG/Qg0IRb/yrxmMLilzadyhfm3Yd1neloZvNKVlKyyxQkcsjeb2K37JRfRa8oSEP\nXKdLLj1LZz91h45dPF/hWRnae9b5+vGuJ7X035/pk39/pl8mPOw3f9bL/1LRE0/59i0pKbKs/rZs\nv2fPamvMXrpMslj8lkcxXE3o30kADc/pVMzDf5EkGcVNKxjaEplt2lQ4FnvN5Urq30dJA05Ucvdj\n/E+W605kGIYiwmyyWg2ZpcsP2nbvUvyYkfJOmSLP3Hnyfv2NlLKn4X4WB+L1ynJUwMb+809qM/gP\nSu5a1lktduartf7vHsue3Ur6y+0y0tPrVFrhXfdVPyg8XM4zB5btLpxfdo6lqAA0smp70s2cOVOL\nFy9WRIA1jdevX6+nnnpKaWlpfsddLpeefPJJhYeHB69SAAAAAAAAAGhIHo9Ugw4C1rQDfvuWzMMy\nPloi73Xj5Y2NkxHClz1h777t2454923lzTiqa8/hki4wYds2K2rSU7Lm5ij6ub+r8IGScEji0EGS\nJLN3HxVdd0PwC/RUfKFo5OVVOtx0ueR0eRURVo+m7qb/glZRzz8n59nnyH32ORWG5he5lJXnVFZe\nsXLynCp2V/zN/fCMg2r302q1W7tK7X5arfDsku/UNAxlHtdXBwYMUtppZyvj+P5+wRhJ2jp6nLoY\nBUp8/RVJklG6PEbexMmKfvIxedu0UVzpi3Sp5EXv3lkLlPziVNk3bfTrknOEt0PHkj+7dC072MSW\nSAPQsAxP2bPKm5gYwkpaL0cl3eckyfHDGr/96Ai7bFaLzIhIv+PtXpjit29aLCpq007Fx3SUq0Mn\nuTt2krdTZ6lTZxldu8ravYsssXFBqT9y2lRF/WNK9QMlhb/7toquua7Gc8fce4cc336tIptVua+8\nVrOLSgO4xWcOlPeYDtWPNwxlL/5URnq62vQ9KsBKMA1AI6s2hNOlSxe98soreuihhyqcczqdmjFj\nRoVzU6dO1ZVXXqk33nijwjUAAAAAAAAA0CQ5nVKAX0asdPjgc+X4ZoWin3pc9jXfqXDr7zr83Ety\nhNkb9beuPV6vnC6vDEOKOJzhf9I0/WqxHCgLENk2rC8b5/X6Ld0Q88A91YZw3B6vbNZahmMC/Fa/\nUVhQ6XDTNOV0eRQRVu1fZdfqngljRip9f6bynF5l5RUruzR44/JU7LpjcRarzYYf1e7HVWr/4yrF\n79jsO1eYmKydF4xW2oBBSjt1oJxxCVXXYrWq8PGnpNIQjkqXMjOjY0ruleO/FIgZHiHn+Rcoe+RF\nkkr+WcfffZvC31mgrP8ulpmbI9lLgz6GocP3PqTEF5+Tded2uU4/I6SBMACNyOWSp1t3WXftlHPk\nJaGuptVyd+osW2pKteMc9pKfnUc64RzxzaTXFHlwvyLT9pX8mb5fUWn7FLf+Jxm/rg04lzM6VkXt\nO6q4fQe5jukoT6cu8nbqJHXpIkvXLrJ17CCbveqfoV7TVMRrM2r4KVUh3Hq0o//7wMjKKv0zs8a3\nCPtwUcmf36+ueV0KsCyV6A4FoPFV+/9chg8frtTU1IDnBgwYUOHYokWLlJiYqMGDB9cqhJOQECmb\njXUqAdRfcnJMqEsAgEbB8w5Aa8HzDkBrwfMuRD7/3LeZnLlf6tK/2ku8cfHyduwox5l/kL5ZIfum\njZKkiLfnqePb82SOGiVj8eI6l+T1mnK6/z979x3mNpW1AfyVZLl7aiaVJJBQkpDQwtI7LL0mhITe\n69JhKUvobUNZYOlLh4WPvvQOgQChhNCS0Elv06u7JX1/yJYtd8/Y45nM+3uePCNdXUl3JjO2rHt0\njoJQWEUorJiWg2FFb4ttCytQVH0ybEiNEyOt0UkvQQA0DXU2DaisiB/83NONReuo9YDog/t1994O\nXHedaRx1g9wZg4mC996PyG9/wHXX7fl/Y62t0KKTasHLZ8J28w0AAPcVl2bcRV69CmMmbwLxySeA\nDTZA4MuvYT+5wAw9SYEtMYHzL8Cv58VLQdkdVtgBQNPgWvYnBn01B4O+/hQ1334JKRgAAChWK5r+\nshOatt0FTdvujK4xmxg/I1v0Xy7DRsSzVFTaJaDOA9RVAQA8gc74+G65DXUjauEJRmBPDEJ69mng\n2adRleb/RlnyGwCg4twzYRU12I+cDq2qCoLYg0xCJcLXvPLQNI3BWesKv99YrHFZEK6phbBmNeoG\nV2TZiUrJ8ucfgNOpZ9YDgBdeAKZNA447Lv1r3tBaY7H1+0UYM3wUQmEF4YiKjrCC5rCKYFhBOBCE\nuHo15NUrYa9fDcfaVfrX+tWwr10F56plqPjj57RjUi0yAkOGITRsBCLD14MychQwKpZJZ33YG9bA\nddD+BX2fHpcVniyv4f7WDlhkEbLbpTfY9GBRmyTk99qvqsDpJxmrBb1fqK6UJrugws73HKJewes7\nXQ8eH0jvpZdegiAI+OKLL/Dzzz/j0ksvxf3334+6urqs+7W2Zn7agYgoX3V1HjQ2dubuSETUz/H1\njogGCr7eEdFAwde78qnbZx9jOTLjSLTO+SpLbwDBIOra2xCcuBmCCuACoAUCSJzSFl5/HY3LGyCE\nQ0AoDCEUhBIIIuwLQPEHEAkEofgDUAN6uxIMQvUHoQYC0IIhqKEQxEgYYjgMKRxdjq7bI2E4w/Ht\nxtdwCJIaAb7Vo2rCEzeDvOAHtH3yBcLb72iMrbahEUY4xnPPxQd9/fVoPP08JN7F9Z94KrpuvSP1\nZxCJoO7ss2AD0HzqGVCHDM3jJw1UTjkU1oAezNIw9WiMjAbhJFNtdojRoBdAL/eFgw4CANgBNP8l\nz9IUUUJ9AwYB8B5wCFxvvmq0D/rgLXSerAcAyZ3tGPLdF3q2m28+h7NxjdGvffRY1E/eCWu33glN\nEydDsSdkS/Kan66XBAGyLMJqkWCNfpUtIqwWEbIswWYR0dzcZfycO1o6EWzshDWkoRKAb+lKxPIi\neN1V6GzshKKqkPIMoqlathyxR13tZ58F5YbroYXCCJx3Ifxnnp33z6zU+JpXPuGIApkPRK8TaiZP\nNP7e239djMpv9Uwp/NvqHcmznqHtd0R7exCOmdfCfe1MBPb4Kzp33Qc1EQUtLV4gzf+LNSIgVkwq\nMnwkrND0LDmyCDgSp3DdwPq1ULWJCEdUhCMqAhEVHRE9YCccVqC1tEJatQKWVasgr1kJ6xo9YCeW\nVafqm8zlsgrVtWIN/Fl+z+oG699VyxfzoYzdCFUQIAMI+QJoz/H7GVFUuP99O2LT+P6jjkVXgb/T\nyf83wS4fOvh3QVRyA+36LlvAUdGDcJ5++mlj+dhjj8U111yTMwCHiIiIiIiIiIiIqNzyCSYRGxsA\nANrgwYBsBQAIoVBKv7rRQ4o7uAIpG20MecEPEFpaEAwrsMn6VG3wsKlwPPV42n08Z51qWnc88Uja\nIBx5XjxQSaxfm3cQjvWzOfFj2GR03P0AKs45w9QnPG4COp55Ac6774DjsYfTHygQSN+egbhsCQBA\nGz4c7U89B+eF50JurEfTplthwpN3Y+j8z1Hz6wIIql6KKuSpxIpd98XayTuhfvKOCA8ZDqssQraI\nqIkG1dhkc3CN1aJvz7c8V+dNt8Dzj0sQ2n0vvcGiZwlwPPyA0cciCAgBeQfgAID3uptQdfC+xrq0\nVg8mcl/9jz4VhEPlE4qoDMJZFygKpBXLjVX3ReeVcTAEAKG99wMA+M88GwF3BbC/XkZQyvq+UFhW\nKlEQYJMl4z3dZHglMHF9U5OmaQgqKroiKsJeP7RVqyCsWAFp5XJYVq3CkOefgLWlKeVQ/mkz4Hjh\n2TEArScAACAASURBVMzjaDaXvhSXLgEEAepo8/lrtp+MxoYOyPOjpbTSlHxMJHS0w3X9NXC8/47R\n5r32xqz75IPlqIiotxUchPP666/D5/Nh+vTppRgPERERERERERERUVkIa9ZA1TREIiqs6Sa4YA7C\n0ayZiw/Vb70TVNkKVZb1fxYrVIsMTZaNds0S3WasJ/Q31q3QrDJUi5ywjxWa1Wosx46xxxG7Qm5r\nAaAH4QCAZeGPiAwbDdtWm+nfY1LAUHDCRNh+WggAsL/2v9SfSX09tCHmgKKqQ/aLb89Q6ikX0SYj\nOP0oIBqE01jfDvXPxRDHbACIIoL7HpA5CCdP3kAYLrsM64fvAwCU8RMQ2mc/RJ55AbV/3QUj5+iT\nfJokoXOzyejccVf4dtkDyuZbQrbLGGoRMcoiQRSLX7oncMoZCJx8erzcVzQoQoiVMAEgRMIFHzey\n0SaZNwaDgC2fglm0LguFVbjs5R4F9ZS4do1pXapfW6aRDFzK0GGQ1q5By+y5sH7wLvynn6VvEEUo\nxx0PMY+yb2rd4JKOURAEyBZJD7yzy0BtBbDZeGN7+5X/QOiOuzDitng5yq5zL0Tg/IuyBuEITY2m\n0na12+ilPBsbOkxl0pKJq1ZkHa/j/nvgeuIRU5tWUZmhdwHq63t+DCKiAuQVhLPeeuvh+eefBwAc\nFE37meipp55Ku1+mdiIiIiIiIiIiIqK+Rv7tF2DePISGrQfryNRyR0J7G+wP6ZlKtMFDIQQzZ2QR\n33oL+ecvKY5YAA4ARMZNAAC4bp8F1+2zsHZtm55RJWwO7AiccDIsd/0LUsLEWOft/4bnonMBALaH\nH0TgiqsynlPwebs1ViGa+aX1nY/0QB5BgLjh2HgHS+Zb10I4d3CK0NQE6e13gWOOgvuOW/XGQXrG\ndnXCpghMPQKay43Q7nsivNPO0CqrYAVg7dZ3000JE7Ra9OeRKLLV1oUfU878c5M/eBeRCROhNDZB\n3Gabwo9N/Z7jwXvhefJxdM7+HLD26m87FZm0bGna9rYTT+/dgQxgrR/PhffXP+HcdCL8m040bcsn\nAAcAIttuh4Z/XAd5z91LMcTcZBnSxRdCfeBfELu6EBk8BP6Z1+TcTVi7Bp2dflRUOFO2ua+dmXE/\ny+I/07aHwgqssgTX7bPSnKzwQNjQrrvD+slsAIAmCJCWLyv4GEREPVH0clRERERERERERERE/YG4\nZnVK25AD94LidKLlp8WA02l60tvzt9Nge0/PnqLW1cGy8Me0x2355MvSDToLzWqFEAqh+Z3ZEJMD\nVX77Axi3cUoAi1BVha4bZ6HyhKNMx4kJCtnL1riuvwaazY7wrgVOIEaDbDIGmmQJwhEb6qFsnCXj\nC4BBE8YAANpGDjPatFgWGFlG5/09y7JTdEnf75KX3oU7ms2oEOmCeWIqTj8ZYkgvydG4tg0ooMwV\nrRvcV14OAPD9+guUSZuVeTTUbYqCqkP3T2kOjxyNlqtvhKcMQxqItJpaKJv38KctCPCf8TcI9syv\n3aUmiSLEri59xZ47TZZmt8P+6ScYu+FQNC5ZAyG2LwD4fLB+8L55h0gk6/GExkaM2HRs2m3hDQt/\nHwQA71XXwbrnzgAAZcxYWP78A53NbfDUVnXreEREheJVNhEREREREREREQ1IzliGlCSSzwdpzSrI\nX86F4/ijAa+e7SX2VDUAqIMHQ3O6Uvb177UPlPETSjPgHFo//gId9z8MdavJUMaPN22rPe4IfSEp\nCEetrEJo/wPRPHuu0aZVVxvLg+6cBaG9LeM5Lb/+jKpph6DimOmwz7w8/8HmyMKhSZmDcNzRLD35\nELwJmXrymFwsm6QgHPkv3ciCAwBy5oncWAAOAAgd7d07PpWdqmpQVLVHx0hXeo76D0vCe1EiqbUZ\nFonTfr3JYet5rgN7EY5RLJYcGWM6jjwOQiCeBVD+ai4GTdrIWBdbmqEOqjXtY33jVdO60NBgWpe/\nnItM2j77OueY09Gc8Qw9WjQL3gabrt+tYxERdQffjYmIiIiIiIiIiGhA0rJlW1m7FpUzpsDzzhtw\n3XwdoGkQgvEgBq1uMCClZokRrOV7ml3ZcCMEp+rBNlpFpWmbvHSxvhAOmfeJZltRN52IxiVr0P7k\nswj9dV9ENoxPqg3aaFTOc9veexue/9wL4f778htsriwslswZeExP3edg+XmRsaz15fI7SUEVtu5m\nRcjyO51IbGnu3vGpqMIRpeB9IoqKcKRnQTjOu27v0f5UXtUzpqRtF7u6YJEKL91D3VeMoKd8S1f1\nBi1hLO0PP4GOE041bW+/9U7TetWMqeb1vXeD/O18U1vlaSea1u0vP29aFzs7TOv+v2wH1WaHUjuo\n2xnbNEc8CEcZMhQAIKgq4PN163hERIViEA4RERERERERERENSEqVnvGl7ebbUrZVHXYAhOhkjfzl\nXIhLFpu2q4OHAEkTZ5osw3fJFSUabeHaH/2vuUHTIHZ2mprU9UbGV1wuhPbdHxAEdN7zYNpjapqW\n9ZyDrr4MyNEnL2mCSVSPXvYjsvEmWctbSAsXGMuuW24ylpWRo3s+rlIJhXL3yUeGyVzfQYeZuzUz\nCKfchOZmDNl0LCpnTIH76CNSslRltHgxsGRJaQdHfVfS74mW9DcvMRMOdUPgED2wK7THXkZb6ODD\nEJxlvj6yyRI67v1PxuNITY3Gcsf1N6ft477qH8ay0NQEz/l/M20XamrQvKIBLT8vTt41b5rDYSwn\nBp2KDfXdPiYRUSH4bkxEREREREREREQDj6rCc9s/9cVJm8F77oUZuwqdnVD9fvPuaZ7Qbv51KZQJ\nmxZ/rN0UOvBgdDzwiLFuf+JRoD1ehqht7wMy7hvZKrUckvX1V1GbkBUntN0OUOXU7DLW995JPWCB\ngTlpy1FFs8XYPv8UdcNrYHv1ZYhLU4MRKo+cmtIW3HATaIMHFzSG3iSEixSEA8B3+PSUNu+Dj6Dx\n+dfgO0sv5SW2tBTtfNQ94ttvQmptgfWjD+B4/x1UHHNEXvuN2HkyRu48uUfnTg7coP5DXL3KWA4c\nfBi818UDDX2nnNGnsqpQ/9F1y7/QeexJ8F51vXmDIKDp16Xo2Hp7tD37EgRBQHDaDKz4OHeZKC0h\nox4AhEeMTOnjui01UCe8z36FDT7duaPlQtXqGlg/m2O0Wxb+CPH33yB/9AGkn3/q8XmIiDJhEA4R\nERERERERERENPIFAfNntgW/mNVi+ogUtc75K6WpZshh1u++Q1GhJzYRjd6DPSQgUsv/fUxDa2hAZ\nvT5+X7gMHY88lXVXzW43rVecchykjngQT3D6UWhYugaNq5qx6tufEanTg1wqj50O6c/fzQfLkrkm\nrTSZcESv1zyeU09A7Tabp/RLDGjxx8pzDR9e2PnLaO2KxtydslC32DK10WIBdtsNkXHjAQBic1OP\nzkE9V33xuaZ12+wPgWyl1hQFka9yT3znhYEa/ZaQkM3Me+MsKGPGGuvhnXYpx5BoHaBV1yBw+51Q\nxk9Iu63h+dcQ3uOvRpt9wjjUL1mDpsWr0PnP29F13kWmfZTKKj1YOYGQeE0RK8GYkNmp4+4HENp5\nNwRmHN3zb8hmw9rP5qP5q+/QNfMao7nypGNRu+PWqJoxBTW7bgdp0ULA6zUFtxERFQODcIiIiIj6\noFwp3omIiIiIqGeEYDwIR6vWy1I5bBYo48aj7dW3Edoyc6aJlc+9Hj1IfCJbk6S0gSPlpiUE4Qhd\nXRDb26BWVsFa4YHdKmXdt3X25wCA4H4H6g1JQTmBI4+BJMuALMO63gh0/TNetkL+6kvzwYLBwgZu\nyT62ROLyZfEVr9eU5cXx0vMAAMFmK+z8vSy0+17onHIE2l59G1IPx6pZM++vDhkKALC98GyPzkE9\npGkQYpPQCbIFR3lOPwnDDtor4/aCSPn/fVHfIvj1Mom+cy6AOmQoQnvtg6ZZd2LtnQ8itF/m7GZE\nPeG0yyltossFze1B4KRT4b/8StM2QQCUpMw3WlWVsWx7/RUIDQ2wvfKy0RY84ki0v/Ra0a6lpI03\nAqqqoVVWZexTs/sOqNtgGGq3GA9x9kdFOS8REcAgHCIiIqI+KaKk3owjIiIiIqLiEULxbClqTa1p\nW3j7HdH+7mw0NnSk7Nf07CvATjsBAAJHH2e0J2eN6SvCu+xmLFt+/w1iwA+tpgZWWYSQIxuGGs1s\noykRtHQEoCUHhySV4xISSlNJv/8GKEp8W6iwIBzNkjrhl0nt1pPguuhcQFHgvuKS9J2sqWWz+hRZ\nRvvdDyK8/Y49PlTK/1MCZZNxAADr559CnvNxj89F3RRKX35MbG8zli0LfoD9kQeNjBH21/5n7lxo\ndqkE/hNO7va+VF5CtDSi5ohmXhME+I46DpgxnRmOqGRkS47p5KTrAbGtDVpdnanNf9KpxrLrkgsx\naOKGEDsTrrNK9fubcC2STe30QwsunUlElAmDcIiIiIj6oHCEQThERERERCUVLUcVmDINKCDziLb7\n7rDJehYJdchQhIfpZY40W98MwtGqqtFxgTkwRR0zFhYp961hTdS/T/t772CTDQfnnCATEibTnPfe\nBde18SfjE4Oemv/7Qu6BF/gkvPOpx2F79WVYfv3FaAtvEC/TolnzD+opl5yTnPnKEnCkeTzGctXh\nBxfnfFSwjEFpPr+x6Dn3LHgu/zvkLz5PfwyfN217PrJlhqC+LR6E4zTaLJIAkQE4VGa+ww6HUqVn\nFgwcPj1le/Dw6eh48FEAgNTaYtoW2WR8ycYVPPAQKDW18F58GQA9c6F/tz3Td84QIElEVCgG4RAR\nERH1MZbv5mPw1AMgrlld7qEQEREREa2zYkEhmtuTtV/7488Yy13X3JgSiCJEn/5W+2gmHADQNt3U\nvO6pyG/HpJI1YmursRzYZfeU7qE9/2padz5wT3wlGvTkPeIohPcy98vn3PkQm5sgz59nrGvrxUth\nWN97t+Dj9bZiTaInlqNqWrwKTX+ujG9zukx9bdFyXdTLguknehODcyyLFgAAxBXL0/f1+bp/fmZ7\n6LdiwVeaMx6EI0m5M5sRlVrnA4+g6ZelaPjye3TeeW9qB0FA8MBD0u7b+skXJRuXNngwWn5ZAt8l\n/0BDfTsaVreg6/n/oe35V4w+yqj19SEWmLWPiCgTBuEQERER9TEVpxwPx7wv4bxtVrmHQkRERES0\nzlKbmgCYM4OkkxhYEjjuhNQOsRIMfTQTDgCEkia9tHxLM4mZbx8rW2+d0qbV1GLNnHnmtjY9cEfs\naNcbKishZTlu/AT5lY8IDR1uLLuumWnaJsTOCUD0duV1vHWCLf7/q7k95qArSUJk+AhjteLMU3pz\nZBQldHWa1mMBFbEJ4MoZU4xtYmcHFDU1W64wkH6nyZBSjgrFC+Aj6glRECCKAoQxYzJnZJPNWel8\n51ygZ8fJ57qgCAQhnjUqvNseWPnS2+j49/2IbL6F3iHAIBwiKg4G4RARERH1IYk31oRgoIwjISIi\nIiJat9mjGUAim4zL3tFmw5ola9G4ti191pzoxJHWhzPhJE9uCUllIDLKko0msRRKIsu4Tcyn/vY7\n/Zwt0XPW1OR16sRsLukoo9dH46pmeO++32gTwmFzJ7nvl6AqBc2S/ftunb8QHcee2EujoXTs//eU\nsdx17U3wXnKFvhLNkGP96ANju+25/4N8yd9TjtGdTDhaLFiDmXD6nIiSZ1lyv/7/npgJh6g/aXrt\nXYQ2HofW9z+B98prETzs8LKNxbrTDgjOONoITmYmHCIqFgbhEBEREfUhiqJBi90oDvKDHxERERFR\nIcLhSN593U8+CgAI7bVPzr4WlzPjU9rSyhUAACGS/7nLzf7yC/l1zFYSKiELQ7LGNa3wH3cSAGDQ\njEMBAEK0HFVyOaRMtLo6NNzzMFrmfJV+u90OyDK0ocMyHkMZNTqvc61rBK83ewdJQvD2u6BWV0PJ\nUY6NSiP2dxCaMBH+088CJP31xfHQ/Sl95R+/R+2TD6UexNuNclRGEE6eAR/UK9Qff4TS2Awg9/uY\n2NYGANDc7pKPi6hYWt+KBxZq222P9s++RmTzLcs4Il2sjJtmiwb+8l4sERUJg3CIiIiI+hBF1aC5\n9Jtx0rIlZR4NEREREVH/4XjgHgwfUQOxfm3uzglZILTa2h6dV4iWTZJ//7VHxym19seeNpYDM47J\nb6csJU40e+YgHEhS6gRxLEjJkiWwJ0no0KlQxo1Hx7/jgQnBfQ/Qv+5/IABAGTkq4/6+cy80ltW6\nwXmft78T/PkFZ6g1tZC6OqF2J5iDekQI6Rlv2q++UQ/wi078Wud+BgSyZ8XtvEDPiiP4ulGOKvo3\nLeSbdYVKTmhvw5C9dsKwXbZG3eAKDB9RE3+9TMM160YAgLL+mN4aIlG3KaPXBwBEJv+lvAPJxciE\nEyrzQIhoXcEgHCIiIqI+RFE1hEfoN5FzPr1IREREREQG91X/AADIH3+Uu3N0kkW1O7IGmqxLQgcc\nBP9ofdLWe8XVPT+gxZJ9u2qe5BcieqmoXKWSEsmyfvs6svU2RlvgmOPQ+vq78MXK9zidaHnxNf2U\nSQFVmt2O4H56sI5aXZ33efu7yOStAQAdRx6btZ/lzz8AAEM2GArLd/NLPi6KE6JBNxanXsYucOIp\nxra6UfGAsdarbjDtF9xrbwiDBunH6EkmHJVBOL1Jy1L+S2htBQBIba1Gm+vaK03BohFFRYc3BHHF\ncqNNHaCZvqh/aflsHlYuWtLnr7VimXBYjoqIioVBOERERER9SNU/r4PznTf0Fd4UIyIiIiIqXLYS\nSlGCV88gEdxjr1KPpk9pnvM1li9pAOT8A2G6Swj4jWVt4YKETDg5gncSiLEyEQmlwDRPBSLbbm/6\nf1Z22Q0tX8xHy1ffo+PWO+MHkKR4vwzlxNZFytiNsOiLn9A2686s/cKbbWEsV+27R6mHRQnkT2br\nC9GJX81TkbafNm6caT286+5GKSvB14MHd6IZvKh3qFmCcJBmm/PBe2GZ97WxXnHB2ai+4u8Qmxrj\nnQp4LSUqG5sNtrqeZRzsFVaWoyKi4ho4nzyIiIiI+oHq+++KrzAIh4iIiIiocHk8bS22tugLFekn\nvtdVNocVDpe9KMfScv2c1fjEcsWZp0B+5y19v+5MHCcE3MSeVk+mjN0IWkUlgsefFG+0WOKfq4QB\ndiu8thaynD0gre2N94xlIVuQABWd/MN3+kLC35H3nAtMfVrfnQ2sN9LU5j/tLKOEdXey5wqxYDiV\nQTi9Kdufl5Dh/0Lo6jSWXc/+FzXPPAbXZXopMt/pZxV1fEQDnRYtR6UFg4hEy/WpKt8Xiaj7Btgn\nDyIiIqL+Q1NUfuAjIiIiIipUHhkexGXLAADq6PVLPJiBy3/G34xl+68/w/Ha//SV7gThJGbCsTty\ndo8FCKlDhsaDcAZQJhwAkAQBFinH92wvTkAWdZ9mjQeV+a681lhu/v5nRLacDGWTcWi95kbU33o3\nGr77CRAEaE4nAEDwdaMcVQwf+ulVmqZlLkkVyfGeFQgYi9bvvgEAhLfdoVhDIyLAyErmvuISOK+4\nFLWjh0L44P0yD4qI+jPmqyMiIiIqM1XVIIppniLVNCiqClHMnU6fiIiIiIh0Qh6lBGLlqNSqqlIP\np99b+/WPCIgyxMGD4fn5R1QdtA+EUChj+ZwYZcON0HHbXai4+DzzhjzKhaVI3MeePhNOopbvfkJ7\nQys8Fgt8514A2ztvouuq6wo/bz8mSbkzQlH5qBWVEDvaoYyfYGpvbOgwdxQERM46B6FQBHarPp2j\nudz6pujrWN4SgkAElqPqVaoGaADS/VUKnR1pWmFkSTIytyVQxm5YvMERETRZz4Rj/fknWH/+CQAw\n+JjDU1+TiYjyxCAcIiIiojJTNQ1imlsxmtWKiKJB5hUbEREREVHe8pmYFrr0PrHJbMpMXW8kEFHh\nsMuIbDkZrR98CvWZp6Htd0DOfZUttkxpk7+ci+CUaYUNIrEcVR7/Z+rwERCqBwMAIltvMyAn0aR0\nD3qkERkzFpbFf5Z4NJRMrauDGi1/kg/ZkpANqruZcBIDbxRmwulNGbPgALC99kq2HVG7+biUZmXc\n+GIMi4iiYq+rRETFMrBycBIRERH1QbGbMclPP4ntbVDb28sxJCIiIiKifkvwevPoEwvCcRXtvFp3\nMrz0A6IoQBTiAR3KuPFo+fuVeWW00Wyp5Y7EpqaCx6BJ8ScT1DwDp9wOueDzrEsSgzayUWtqSzwS\nSisUglZAEI6UWJIt9jfgy/1aZ5IYhKMyE05v0rTMgTjKqFEZd0oOKm2bea0eVCgw0xVRMWnV1eUe\nQp+gZgkYJKLCMAiHiIiIqMxipdgrD9rX1G5pasT6Ezcw3ygjIiIiIqLsQrnLUUmrVwMobiYcze0p\n2rH6EkkUU8rn5ptlRbOllo4KHHVMwWPQahMCRYoYOLUus8r5BYVpiUE4nHzrNVowBMj5B+GY9o1l\nbOgqsBxVJBJfVpkJpzdl/dMS0k/TeS69EEJbm7He8tk8hM+9oMgjIyIAUKsyBOEMsNdKXyCSuxMR\n5YVBOERERERlFnvKQP5pYfoOfn8vjoaIiIiIqH8TQmEAgOX7b2GZ/UHaPs577tQX7KmZWrorlEd5\npv4qOauKJOUXhKMOHYbAuAmIjIxneghvtXXhAxAErHrhDTTe+wgzQORJzPPn1HXLv+L7LF9WquEQ\nAFWNR2IIgQA0uXvZmoxyVN7CylEJSiRhmQ/79CZV09IG4kQUFUI4lHYfadlSCK2txrrmWTcDPYn6\nAq2mJm270NXZyyMpH6GlGZ7zzoJQX1/uoRCtExiEQ0RERFRmipr9aUMhmPtJXiIiIhpYxB++g7Iw\nQwAv0UAXCkLoaEf13ruhevoUAFnS64fDPT5d+2NPo3Pn3dE561+5O/dTyQEd+QZ4wG5H/XufwXvD\nrHhbASV4EkW23R7K1Knd2pcyU4ePQOfpZwMAxJbmMo9m3RYM64EvypIlsHS0ITJ2w24dx8jg5S0w\nE05i4A2DcHpVOKKmLUflC0aAcDw4Krjjzljy/e/6PhMmwnXrzcY2ddjw0g+UaIBSBw8xr8deZ/2B\nMoyme8S1a+A+7USIy5Z2a3/Pxedj0CvPYdCkjYo7MKIBikE4RERERGUWjqiQ536WcbsQYCYcIiIi\nMqv9664YuscO5R4GUZ8khMLwnHNmfL21BYFvf0jbN7zTLj0+X+iAg1D/5AuAw9HjY/UXljwz4QCA\n024xlXPQLN3L/iFJIiSRt7NLQfTok41CoeWNKG+W+fMwfNKGsN9wDWzPPwsAUCdu1r2DWa3QJAnw\negvbL5IQeDPASqyUWzCsIKIkBeGEwxg27UA4HnkQALDykf9D+0uvw1Y3CKrFAtXhgO2dN/Wuk7uR\nQYyI8qYOHWYsN338BUL77AsAENT+E7DonHUjHK+8BPcZJ+e3g6JAfuQhCG16xi3Lwh+NTa6Lzy/F\nEIkGFH5qISIiIsoi4xOzRRSOKHA89EDG7UKhN9aIiIiIAAj19fCcdWq3n4Yk6jcUBeJDD8bXwyHY\n3n7DWK04ahpG77cLpAXxyYXIiPUQWm8kIElFGYLVMrBus4piYSWhTA8WdLMET3JJLCoeza2XuWEQ\nTum4r5kJS1sLPP/+F6pvj2Y3cbu7dzBBgOZyQSvwXkFiOSr0o4nlcoooalHuCykNjQgHzFmOpT9+\nh3Pel5BWrwIAWD0uCKIIWZagWa0I+4MIHHEkAKDzjnt7PAYiyo/gcgFi9PqwP2UNi75W2ebPy6u7\n9Z23UHX5Rag6KBpw1NlhbHM++Wjxx0c0wPCTCxEREVEW4scfQ1yzuqTnCCsakKXklPvi80p6fiIi\nIurfgqH0N4fd11wB+4vPwXMRryVo3ea4727UXvH3eEPStbU1Ohlh/fgjo03weqE5uzkBnsZACxAp\nNCONEEgo59DNwKe8S2BRwTSnEwAg+H1lHsk6LE3ATOzn3l3OX3+C7YVn89+B5agKpmkaAr4elgj3\nerHFLpMw4tB9zMe2203rFofNWJZ8Prh/+hHy7A8BAOqIET0bAxHlTautjV+r9KPXSq2yylj2nHkK\nhIaGrP3F1hYAgOXXnwHwIVCiYhtYnw6JiIiICiDWr0Xd9ENQs+0WJT1PJKJCyZIK2vrlXABIWz+c\niIiIKBBOf3NYbG4CAAhdHWm3E/V30p+/w33x+ZC/mmtqlz/7NG3/xCd89SCcnk2AJ7JIvM2aFYM7\n+rRYMIApWIqKSk4o8xGjuVzdPp7Yob+eVfztNKOUSE6RhEw4/WhiuZyGjRmG0RsMhuX7b/Pqny5r\nTuw9yr4o6XcguW80I1UiqVGfRNfSbCOi4uq64mq0TjsamtsDzWIBkJRBrI/TquJBOPaXnkftFuOy\n9hebGk3rakIQj2p3pL5GEVFB+OmQiIiIKAMhelOr1Dciw4oKNZL7BlgowprtRERElERVoSgqpHlf\nQ1z8p3lbbLLN0r3SL0R9nevKy+F48lHY3nvH1G6pX5O2v+CLPuEbDkMMh7pfCoYKptUOAgBExo0v\n80goHSMgjcFS3aJEujdJq9YNLsr5nbfenFc/czkqTq7mI3Y/yPbic7n7NjTAOfUQSH/8bmqvmjHV\n1MdYTvq90bK9JzETGFHJ+c+7CM233KWvGOWo+s+92OTg8uTXGHNnDa6brouvd3UhvMOOAAC1shJi\nwA9x5YpSDJNowGAQDhEREVEGsaceSkpVMemIveGe81HWbuLqVRC+/7704yEiIqL+ZdFC2D77BDUH\n7IXa7bY0bRJCIQCAZrWWY2REJWf74L2s2zWLBV03zkJ4zIYAALG9HQAgxQLWamtLOj6KCx58GJpv\nvBXtL7xa7qFQOg4HAEDw+cs8kP7H+s5bGDq8BpbP02fgyiayxZa5O+XB+dAD+XVMnEzuR9kd+gSr\nLWcX183XwfPZx6g46ZiMfWxvvIqK44+C9f13zJmJAGie9Nlu/MefXNhYiajbnLboveBYhsN+2tiA\nAQAAIABJREFUkDUsEIq+lhQQMCQ0mrPgVB34VwgBvfReaI+99D4sT0XUIwzCISIiIspAUEv/QUtc\ntRLu33/O2a92i/EYccDuQJayVURERDRAJFwP1O25E9Y/YVr6fpGw/rU3AouJ+iDvVdfBf+qZaH/n\nQ70hWrJFrF8LAFA2yZ6mn4pIkhA66VSoQ4aWeySUhmaPBuEEGIRTqFgWGvs9d2XtFxk5ylj2HzoV\na1Y2Q6uuKenYUgeRWI6K9xYKoSaUecnE8ot+b0dojZYHi0TgmHaYqY/jP/fB9vYbqDz6CMhz44Fb\nzS+8Cq0mfWBorFwcEZWebNGnzY0HM/tBEI74zTfQli2Nf/ZLlBxIoyiQFi1Meb+Xf1pktKnR7IWC\nt6sUwyUaMBiEQ0RERJRJKM2HlyJzX3l5YTtEn2gnIiKiASzPm8Fa9KltoaG+lKMh6rM0mz5xqVVU\nAgDs774NBAIQOjuj7RVlG9tAZJF4K7qv0mKZcPx+aBrLFBUkmm3O8eF7kOd+lrJZ+uN31A2ugGXF\ncqPN8cpLsFjLUCoyMQiHD/gURHPlLl8oz5+nL0Tv21i+mw/3Jx+a+lgSSod6/nEJAKDr2BOh7rq7\nqZ/vrHONZXFt+hKLRFQ6QlD/O7Z++H6ZR5JDKIQRh+6NwX/ZDNbXXgEAdFxzo7FZSiop5bx9Fmp2\n3wGOR/6Teiy/H5ogGAGiQkdH6cZNNADwkw8RERFRBkK6JwiKzPbW6wX1T3xSIcIn14iIiAamSOYS\nEraXXzCWtehTjNLixSUfElGfJIrmrwDcMy+D9L5exkrt7SwURH2U5nDqCwE/IoqGcISfNfOl2eJl\niqoO3R8Im+8jVB66f8o+vjPO7vF51epqYzm0cX5ZvRKz/Qr9ILtDXyIEAnn3lVpbAABi9GsuYk3q\ne1F4ux3iK3IZAraIBjjb2/r9WvcNV5d5JNkJbW3GsvXH7wEA2tgN4Tv1DACA7bmnTf3t/31C7/ve\n2ynHklathGZ3ILLpJABAxdmnmz5bElFhGIRDRERElIEa7HtZZ4Rg0FjmjVEiIqKBSVAyB+G4rr4i\n3i+aQlwM+GFP97QjUX+WRxYHIVp+KpHtzVfhfkafgFDGjS/6sIj6JYeeNUrw+RBRVPiCmd9nKElS\ngIRl4Y/GsrhmNaQ02ejCf9m2x6dtfWc21t52DyIj1oPo8+beAYDl++/iK71QfrvfS3ifKbRUm9DV\nCc/Zp2fcrkUzKAEJZW+S9o8JHHFkQecmop6LZVPs66TFf6S0hfbYC+rQ4QAA1z13oW5wBeQvPodt\n5uWQopm1hOhDHcEDD4Ea/V6lFcuh2e2IbLY5AEBsbEDFGSf3xrdBtE5iEA4RERFRBloJgnDyDZzR\nBCH9Bn/8xo/2889AAU9jERER0ToiSyYcqX4tXGedCucdt8L68UdGu+fyi3thYES9R8hj0jm8487x\n5eikt9jcbLSp0TJVRAOdWlGlL7S1IaKoCIUZoJEPRVVTPpNXHbKfsVy7uTlDjRYN2FGHDu3xudUN\nxiAy42jAbgcCwdw7APD8/fz4CjPh5JZwveWadSOEhobMfZPKuIn1ayEmZKhI1PnP26GsNzLekCYI\nRx02PH5opyvPARNRsWj21CActczlGh0P3ouq3XaA0B5/bak+eN/UjrKM4GFTTU1Vh+yHiv/ca6xL\ny5YCAMJbbIXW/z4X7yiK0KqqijpuooGKQThEREREGYjRDyRFE4nA9ffzYYnVCc+i7fX30PjNQqxe\n2WLcqAMSMuHMnYvRe+9ovolGREREA0Mk+8SZ88Xn4Lr5+tQN/sKe4ibqywRv+iCcwKHxSYfI1tsY\nyx3/eSylr+bxFH9gRP2QVlMDTZIgNtRDW7ESrrcLK5s8UFVOORjWr74wtRlli5ImaxtXNKLlmwVo\nvOdhRIqQCQcAbFYJsNkhBLvxcE4e2cQGOqHVnE3NfeWlmTsnBTXVbD85Y1etpgZaZTwIVEtTbiq8\nw07x7XyvIup1yoYbmRt8PtgvuQhCfWp2s97ivvJyyD8thO2lFwBVhZAQWB6z9sW3AADq0GF5HVNz\nOaEmlL+TmpugudxJncobfETUXzEIh4iIiCgDIc/63fmyfvQ+Kp9+HNX77Zm137LXPkRkm22BUaNg\nkSVocjxNsfzeO/rC23rtXvtzzxR1jERERNT3ZStHlU3tpI2LPBKi8omVW0umuVzomHU7uq642tzu\ndKb2dXNikwgAIIqIDKqD0NCA9Q/YFaPPOwXSooW9PoyIokJV+8lkn6bBMXdO2k3ug/aFuHKFse69\n4GLAZoM6bDjUw6cVdxh2G6TOjsJ3ZCacnNwzzUE3YlNT5s5ZshQmU6uqoTkS3pOk1Ew4SMiOrGzE\n6zei3tZ5z4MAgMjIUQCAymOOQOUTD2PQpI2y7VY6XfHrXs9lF6Hqr7vAc8HfUroJO+2oL6TJsJWO\n5qkAbDZ03nFPwkHM2dkd112FusEVcF52UeHjJhrA8vsrJCIiIhqIivy0eGIwTUxwr71h++A9Y71+\n4R9QPdXGuiAIiGyzLWLlJDzXX6XXe/fpN9lUpgglIiIaeAqY6EkkdrQXeSBE5SN0pQ/CgSgieOKp\nKc2apyK1rzX1+pxowLLIsC5faqyKHe3o7TCNcESFRRIgilIvn7kwwvJlkBb/YawrngrUz1uA4eNG\nAwAcX82FY/JEAIA6qA6+y640+opihtLT3SR/Ox8A4PznDfBdNjP/HRVmwsnF8vMi07pms2XuXMC1\nmVZVZQ4MtaT/fW948HGEwipseU6mE1HxaJVViFRWQ40GzEl//pFjj26cQ9MQiqgIR/QykGFFRSic\nbl1B5aqlqEvYV17wI7Dgx5RjJr7HdNz9ABz3/RudDzyKml23AwB0XnAJ7G+8Avn33wAAkYmbAQCU\nYebMOeFNJ0FetAAA4L73LgCA69GHEJpyhP7gKBHlxHdvIiIiogyqb7nBWBY62qFV6OmCVU2DKHTj\nxpnDkdKUnFZYrKyE02q+ROu4/xHU7DgZYouemcd1+yxgxgx9/zSBPURERLSOyzDR45t6BKyffwrL\n2jUIjZsA6y8/AQBCO+wE69zPAACWb742legh6q8ylaOSli5Nv4PFAs1uj5eKISITedUK03rWgINS\n0DRUXnUZQltOhjp9Rvc+c/eSQVtPMq1rdjvkmuq0fQNTDk/JKlAKrn/dUlgQDstR5SaZg2O0qtT/\nY2H+N/q9nhEj8j6s5nRBc7ri65bUclQAoB16GJRg9wKviajnEq8bA0cdq9+PzUFREwJpIko0oCa+\nnhh0E1FU5Jv77a9nz8jZJ5JUgio4/SgEpx8FAGhsiGdMC1w+E9W7bg/Lz4uMslvJr28dTz8P+fNP\nUfG300ztjsceQieDcIjywiAcIiIionR8PtOqWF8PJRqEEworECDo9dcLEQ6nNAnhpBsqspxys1Gr\nrUVor31gf/7/4m0LFkAA+PQuERHRAJSpHFXg3Avhvf9hAID1rTdgPUG/6dr+wquoG1ELALD8+AOD\ncGjdEM2E4730CnhHjUHVc/+Fdc5sCJ2ZMz41/bIU0orl0Gw2CGmuzYkoQW8Hafh8qHzsP8BjgO/x\nh+F/4mmoQ4b27hjyoGqpU6aazQ4A6Pjb+ai4907ztsrSZq/tnPUveC69MGufiKLCIolQRqwHadVK\nAIC85A/YL7kIwauuSSnNZ3viESjjJzLbQVLQs/3F59B530PGuvzZHFRNORAA0PytOWtOMqV2EKRm\nvZyVstHGQGJGpAyZbkRBgNOePkCHiEpPs9sh+vX7w7EM5QBgO/RARJxuhJxuhJ1uBB0uhOwuBOxO\nBB0uhF0eRJxuhJ0uhF1ufdnhSgnsK4S9rSXjtsChU9D4t4uAESNgz/N4rZ98YVqPbDkZq2feAPu+\n+wAA1OEjEDz4MIRefA6BAw5GxcXnAQDExsZujZ9oIGIQDhEREVEa4to1pnUhEC9NFY6o6PSFMXyQ\nK3m37MIh06qqadCiN/9XvfoelE4vHKKYdlf/6WeZgnCERfoNHk3mDRkiIqIBJ5K+QIiWkHVPrUtI\nWC7LaP/vc6g8ZjqEpEBjov5K+vEHAIBaVQ1h2jR0Tt4KzhOOgf+OezPv5HRC2WRcL42QqH8TQqHc\nnYp5voQAU+e384C774D3htxZB0pJWrgAjvv+ja5b7gDcbgBAOJQaCCs16ZOS2vbbA/feicDh02F/\n8TkAgNDeVtIxBk44Ga4rLkVk8y0y9lH/XAxUeqCJIsJDh0PydkLs6IDn8YcgDq6D7+LLjL7i6lWo\n+PsFAMyZEwaiXAFU7ovONZalpUuy9q3/39sYfMg+8N7+b0AQYH/l5fhG3tch6pMEpwNCqx78Is+f\nZ7RXzJ3TreOFHc5ocI7+LxIN0gk73fFgneRtLg8idmfW43bdfDvstbVQ1Xzz6qQhCOg68XTInoQs\neDYb2p/7HwAg8MXnsL/0PCLjJ3T/HEQDDINwiIiIiNIQuzrNDbG09ZqGwaceC1fdMODOO1N3zEII\nmm9iVpxyPOzvvgUAsEyaCIszc1BPZNLmads1T0VBYyAiIqJ1QIZyVFplZbzLX7ZF5023ILzTrvq2\n6HWG4DOX8AmGlMKz+xH1AZ5ZeulYed5XCJx8GtQxY7H6nU9Q4WSmSKKiCAZ793xJ723O/9xf9iCc\nqikHQGxrgzJpc/jPPBsAEGpuTekXKzMd2ns/tH74KSLjJsSDcIIlDmYSBKhuN4QOPQuYfO/dEEaN\nQuigQ4wuI3bayrSLWhUPLhE6zIE2YjRTjtG3u+W41wHB/Q+C/M3XGbdbliw2lmMZcQAgOHw92Fbr\nP8fW199Fx3obQKwbhNU//gGHLc2UnJ8B0kR9kt2RtozpR3c8g84RoyH7uiD7umDxdUH2Rv/5umDx\neVO3Rb9afF2wdrbDVb8KUqjn77ONyxsAu57/RhR79lotW9I/GAoA/rPOgf2l5wE1/cMgRJSKQThE\nRERE6SjmDxWum65D+//ehNDSAvf7b8MNoLHQIJykGyuO118xlkWbzZyOOE9aD1KZEhERUf+UqRyV\nVlFpWg+cckZ8WzRLjuCPZ/eDz4fqE49B+KxzEN519+IPlKiHrG++jopTj0fLZ/Ogjhmbtk9w2nRj\n2WHlrU6i7uq87S54ouUmAEAI924mHCi9XP4qD2JbNItNws8i8u33Kf1MQbDRB2g67n8YFWeegsCx\nx5d2kNDf/4WODiAQQNW1V+htNhuafltuTM6a+gsJE61J9xScd9xqLFfuuTNaL78G2GvPkoy7z4uW\nHus8/2K47r8HmjUhY02Gcm2hXXbHsseex8Zj9YyEyvgJkJ0eKKqKxFimzn/eDs9lFwEApGXLSjN+\nIuoRob0NYigI+1OPm9qDVdUIVdUgVFXTo+PLSgTOkA+OgA/2oA+2gBe2gA9Wfxesfi+s3k5YfF5Y\nvF3wPP6Qad+mP1cW/cFMm5z5HrPmij3QwaBBonzxkykRERFROtGn8DRBgKBpsH7+KQBzWSqEQoBV\nf9JW0zQIOZ4OE1euiK8kBflkqgGeqGXOV6icMQXS6lVGmxAtZ0VEREQDSIZMOMkTaYlimXCQkAnH\n9s6bcM3+AJj9wYAvOUF9U8VZp0CIROB4/BH4zj4ftjdfQ+D4kyAuWwoAUFxuhPbc2+if7QleIsou\neOgUUxAOSp3BJUmmANNeFQpB/vYbiLM/gtCWUEZKin5e7+rCxicdbt5l+Hrw3vNgyqGCU49A49Qj\nSjnauMoKCH80wHPmyUaTEAyibvQQNC5dm9o/4XpB+v5b0ybbB+8Zy9YFP2DwcdPQtLql+GPuD6IZ\nHyLbbI/wJ7NhXbQAAOALhFH9yvNpdwnudwCqPTYE9tkfWLoUWkUlZABqSIOGeKmYwEmnwr/tDnBf\nfD78p59V8m+FiApnWfwnAMCTUHrut1vuR9eI9VP6CtCvQ2WLFP0qQpb0r9bYeuI2i5hXlrFI9J+6\nx56wPfUYuu68D4LPW5LM6NmuozWrXqZK6O0seUT9GINwiIiIiNJQwtEgHJcbQkJpKiEYT0PqPvdM\niC3N8F18OQKT/wKLlOHDUzgMy+dzICakeU68oadZLEAeH7yUceOhbDLOFIQDJZJXABARERGtQ5KC\ncHxHH4+Go09C5sKWgOZ06l+74kE4msyyPdS3GZmbVAUV55wO6+wPIYRDcNytZ6SUvF1lHB3RuiU5\nm1qvZ8LJFGBaSpoG6ZefIc7+CNLsD+H8+gtIaUoDaXZ98lFOClgBgKWffodqj63kQ81Gq6iE5PdB\nevP1lG32Z582rXsvvgyu2/5prNs+/xTw+QCnE0jzkI9Qjv+XPsAXCMMZzXYjWCTAbocQCkFob8Po\njUYZ/cKbbwFp8WKIndH7PTb9d6HzqWfR7g3B+KsSAAHm+zbCppti7UtvwsMyikR9Unjb7SF/9YWx\nrro9kKZNwyaBsBFgkxhcU0qhffdHaN/9AQAa6kp6rnRiQTgI9fK1AVE/xiAcIiIiojQi0af+NJcL\niAbh2O79N8SEp/McL78AAJC//gre31fCkuHhc+c9d8J18/WmNmnZkvhKAQE0mtV8c8ayZDHw5JPA\nMcdkffqdiIiI1h2xTHj+o49DQ+1w2C+7BEowexmPWCYczZsQhONylm6QREUlQPpTfxrZPfMyo1V1\n8HeYqJjaXnsHVQfvq6/09kRbcrbYEhFXr4I4ezaE2R/C+fkcWJsbjW0dI8egfqsd4GlcjaFzPzLa\nPZf/HYGTT4eQkE0OAIJ77wu3ow9MsdjMQUCazW48QBQreRQT3nlXICEIBwDEtauhjtkQ1g/fT3/8\nSCSv7L3rCseD96L6tlkIzThabxBFCNGyXhUnm8uLKRtuDFhkiPPn6V0b6o1tspR7Ut5u5X0cor4q\nvOVkUxBO6+zPUeGyosI1AAPnbPr3bH/tf+jUHi/oXjbRQMUcrURERERpBFfrN05iT40DQMW1M+G+\n4ZqUvqLPC0XRUtpj7I8/ktJmiZa3ApCxlng6XbP+ZVoXgkEM/vs5qN1wZN7HICIiov4t5NOzg6gj\nR6Hp1HMgWiyZM/JFaQ4HAMD91muwvvY/AID006LSDpSoSJz/uQ/KyNTr3fo5X5dhNETrrvB2O6D1\n3ocAALboe0UhlAI+26bsGzJnYYkMGdrtYyUSOtohvfE6xAvPh2ubrVC7xXhUX3AWql57CYqmYdme\nB+GHy2/BvLe+wooP5sJx392oGjE49UCaBgTimXG7rrgaHQ8+BjnT0zi9yPLtN8ZyaMed0bS8Hisf\nfTZtX83tTmmr3W4rWL79BkJbKwDAe9lM03b35X8v4mj7PveVl8PS3gb5i8/1BkmCZtevo9TqagCA\nJssITtwMvvMuQtd1Nxn7KqNGG8uyJX5tJkT/JesLvz9ElF5g+lGmdXXkqAw9131GJhwA4to1ZRwJ\nUf8xcMKXiYiIiAow+oLTAOSfejnbzUZpzeqUNs/1V8dXtMwBPMnU4SPQ8dDjcP7fUxAWLYJUr9d3\nF5mKn4iIaMBwPfMUAP1maOwJ6pwp0BOy6VWcfTqaDj4Mnuuuim/3+4FooA5RX5QYHA8AkY02gWX0\nwJ0MISoVMVp6yfbBewXvGwwpsNsEiN14Ql5JyrxjlPcpVCgE4esvoX34EWyffgL3ou8hRrPsROxO\nrNl2V7T9ZScEd9kN1s0nocpjw/CkQAi1sjLlsNJvv0JICMIJ7XsA4MpWCLL3BI47Cc5/6w/stD/7\nMiAICO2+Z9q+yoj1EJ44CfLCBaZ2+xOPwvF//wUARDYZb9rmeOIRdN16RwlG3k+IIsTmJgCA/dWX\nAQDtz7yI8K67G10a17QiNPtjWPfcw2izJGXCYeIIov5FGT/B3CAO4LwWCZ8lLQt/RGjY8DIOhqh/\nGMCvGEREREQZJNxYi2y8SV67VN12U+5OmRQQhAMAwUOmwPLhB3qpLCIiIhpYIhG43nhFX7ZZjQme\n5ImeFLIcX05T8sN95eXFGiFRcSQFw9vef9e03jXr9t4cDdHAkfC0e1ObP//9VBXDd94a7qu6936i\nhMx/86LPBwSDuXfUNGgLFkC94w5YphyK6o1GYdCUA1F377/gXvg9WjbZDH+ceA4WPfoi/pj/G/DK\nqxh01aUYsdu2qKt2ps1E4vvHVSltQlcnxIYGAIB/m+2hbDKuW99nKQT32ie+Ei1NZbFIiIwZm9JX\nq66B4A+ktMsJ2XTU2kFo+fAz03Zx+bIijbb/EKKBYJooQVyx3LQt5X6MJMGy5x6mSBvBtAykz4VD\nRH1WQtBN28lnlnEgfYAUf6+sPPqIrPeyg6HeKS9J1NcxCIeIiIgoiePRh4zl8C67p+3TtOhPtO6y\nl7Fec8+/0vbLh1BgEI5hANVkJyIioqhwvFyHJlshifqEjpDr8erE7aoKV2JWPgCWBd8XbYhExWB/\n8rGM29RBgxDeaZdeHA3RwKElPO2uvP8+PEdNg+2Wm3PuJ/i8kJctgevB+7p1XjXx/S36Wbdms03S\nBo4qy5Yj/OhjwPHHoWL8WAzec0cMuflqVH/2EXx1w7Ds8OPw212P4c/5vyHy0WxUzroRgw/cG7V1\nFbmDVgFobg/aH37C1Ca2tsB93ZUAgM7jT+nW91gqke22R/vjz6Bpwe9Gm0US0frR52j88Tf4zj4/\n3lkQIAT04Cr/EfFSK5Zff4kfb5ttoUzaDJGxGxpt7pmXlfA76EMS7s9YlizWF0QBQthcLk2tSy1Z\nlisDFDPhEPVfwSnTyj2EsotsOslYtr38gmmbFgxCvnUWhPp6DB87DLZ77urt4RH1OQzCISIiIkoi\nLV0cX8lQn1urq0Prk8/Cd1oZn4SwyLn7EBER0TpFCMfLdWg2G6Q8JhNTjqEocN5tLishtrT0eGxE\nRSVnvtb1n9C3JsCJ1ikJQTgT/3YM7B+8i4rbbk4bDJNI60GWDzUSwdDjjgAAtEw/1igLLbW2QFq6\nGEpLCwIvvgTlnHPg2HoLDP3LRAy/7DzUvf0KNAhYs8+hWHLDnVg890f4v/4WzvvuQfWRU1E1og5S\nN8uHhA4+DK0ffgrvxXrwSeVR8QnY7rz3llpo/wOhDRlirFskAXA6gaFD4b3oUtQffzpW//AbAEDw\n+/ROztQylE2L/jSyP3TNij9sJHS0l3D0fUggNUuQ0NmJyGabm9rU4SMKPDAjcIj6M3HwoHIPoeyE\ntlZj2fpSPAgn3OmF/M+bUHXrjRg0aSOIwQAqokGrRAMZH58mIiIiShLeams4Hn8EAKBJFvhOPQPO\nhx4wtvv2OwgA4LLL5qefNC310SZNgyaKEFS16OPUkicmVHVg1ycmIiIaCMLxch1aRWXOp67z1Vcm\n11RNg2fmpdDCCny3mMsNacEgBJstw560rtHcbgBA17U3oeWoE+Bsb4ZWOwiOp5+A//iTyzw6onWX\nJqWfMrB8Mw9Cw1qEDzo07XYB3czwCkB+7RVYW5oAAGJVlWlbzfaTTZ+pww4nmnbcA/6ddoW2x56w\nbT4RFlGEu9tnzywyaXPIn3yc0i4KQPE/4ReXKUOey4Wua26E26nfQ4hsuDGsX38JZeRoNC5ejYoT\njoJtzscA9AeOYpT1N+jNIfcJgs+X0ia2t6HjwUdRs/l4iD6v3pglUDTtcQVmwiHqj+rnLUD4y69h\nG71+uYdSdl3X3YzKk48FANg/eBeB999FeMedMXzssDKPjKhv4iwNERERURLNlXD7zmKB98ZbsPin\n5Wha+Afql9XD+8TTAABRFKAOjj9phkgEKcLhjAE4/qOP69lAk8pRWb6b37PjERERUZ8nRBLKdVRV\nQZKKM6MT3m5H/WtEhVKC4OF8dXUF4XzoAbgefwhi/Vqj3frGaxg8sg7Wd98u29iod3kuOAcAIDY2\nwFHphjZqNOBywX/aWQCDsYhKJvF9JlH1QXuj6uTjIDQ0pN+xB+8dNWecZCxrU6ag+ZsFpu3tE7fC\nmjMvxKoX3kDr78uh/e8V2C+6AI4tN4NY4gdRhFjQRYJYKcj+xO2UjcDdtsefwZpTzoH/xFMAtxsd\nL76Gptmfo37OPPNOCVmRNK/XVKppXWX95KOUtsiEidAqq9Cy4NceHVtgNhyifkccPRqWaVPLPYw+\nIXTQIWh/5CloDj2LWtXR02D5vWevi0TrMmbCISIiIkoiqPE021r0ppNnUBU0pEYwa4MS0pEGgylP\nQ9lefyXl+G0zr4UwYj0om20Ox9NPdnuciRNTACA2Nnb7WERERNRPhOOTo+FttivaRKAQ8AMA1qxo\nxJL2CJx2GR6HDLdThsdphdth6XZJj7zO39kB+z9vRN1D9xtt8mdzEJyqlydxPnAPAMDx4L0I7bNf\nycZBfUds4tvyw3dlHgnRAJPu4ZIEYkM9lMGDUzcklKuSP/4I4d32yO98SWWuNJsd6qjRqF9aD+sz\nT0E55DBodXXlm8hQU8twaf0wpUli5jytthaNF/0Dw9yueNumk1LvdySUwLb98B3qhlSicWWTKThn\nXeO6ZmZKm7LJOACA5tR/XsqgupQ+eel/vzZEBJT0M1B/EzroELRsOhG1220JzW4HgqHcOxENUHzl\nICIiIkqWeBMwx1O2mhy/+SQEgynbK848JaUtfNY5CE2dlvPmZi7SyhWmdbG5qUfHIyIion4gpN/o\nbD/8SECWexyEo6y/AVSbHdbZH8JzxkmYvO1GqJv/ObyBMNa2+vDHqnZ893sjPl+wFt/80oBfl7di\nVZMXHb4Q1CI+Ee+66Tq4EwJwAED67RdjOVaG0/rZnKKdk/oHhen/iXqVqeRyGq5bbsqwY/w9oeqI\n9CWr0rG98lJSg/4ZW3Q6EDnlNFN5pHIIHnSYsRzaeTcAgLLxuDKNpjgEADZZytkvlu0gke3lF0ow\not4h1Nej4sipkH7LnLlBHbFe5gNIEpq//xmtX3/fvfN3ay8ior5FHTMWqseD8JgNIQQD6fs4XWnb\niQYSBuEQERERJUsIjtGs2YNwwjvsZCxn+uCRIlpGSh2m18wN7b5ngQPMoKEeqrrup4fv284DAAAg\nAElEQVQmIiIayITodYolOkkp9PBp/NY33ocYvYaxv/wiAGD0h6+n9FM1DV2BMNa0+PD7yjZ8+1sj\nPvtxDeb/2oDfVrRhTbMXnT0IzBE6O1PanP++I76S8ASqNgDKYRAQ3moyAMB7aWpWAiIqHWXTieg8\nMHMQje2dN9NvSCpHJXR15pXJynXTdab1xAdd+gJlwqbouPxqtL71Adqffh6rP5wLZdz4cg+rRwRB\ngMWSx9SQK3USVezsKMGISk9oaIDn6Gmwffg+POecnrFf8NApAADvBRen3a4OHwHN7Sn8/ELPr9mI\niPoKze2BtHYNPGkePgWgZ8khGuAYhENERESULOHmYbr67yZWK/xHHasvB7IH4fiPPxmBXXY31rWq\najT8tgzt//dSlr3y57n5eij19UU5FhEREfVNgt+nf3W7C9639cNPTeua1QotXUkR5BfkomoaOv1h\nrG724tcVbZgfDcz59rdGIzCnyx/OK2hGraxMaRMUBZYFPwAAIhM2Ndq9y1blNT7q34TWVkTcnrJn\nwSAaiFrvvB/tBx6Wu2OipCCcyhlT8f/s3Xd4HNXVBvD3zmwvqparLBs3bGObgKnGQAjNlNCrCT0Q\nykcLJRB6D5BgQq+BQIBATK8JAQIYML2Zaty7JVll++6U74/Zna2SVtJKu1q9v+fxo5k7d2bvytJq\nyrnnVO+5K+RF33S6W/jwo9IbushG2++EQOS886Fssx3gcEBMnVrsERWEpaflVaKxrvuUoNoZk2D/\n2shgI0KhtG2Of/wd1jv+aqzEjGBnZfovCvr6DMAhonKiu92QNzVD3pj7PnSuTGpEg03RSqkSERER\nlSqRUo5KXrO66x3iNwlFJAJN16Hres56wf5b5mW1iarqHo8ztvVMWD//DOFDj4DjmaeN8X7yMXDA\nAT0+JhEREZU24fcDAPQeBOEo07dMW/f9+a8dvUq3j52g6Trag1G0B6NAs9EmCwGP0wqvywavywqv\nywqn3ZL2QEqvrjGXgwcdCle8PEn17jujccWGtDE17LYtNi1b1+Mx0sAgmpsRHTU6LQsSEfUPu9cF\n331/Q9T6d2gbNmDY9Ilp2xVVg0VO/m7GFA12PT0Ix/rxQgCAvHwZ1GnTO36x+O946ORToYbC0IYO\nK9C76Bup73sgs8g9/FuvDMwgHJEaJBaLIaaosFpkBDY0o+73ZwEAfG4XPNdcDgDQXS40P/wEtAIF\nzzAEh4jKSVfXorqDQThEDMIhIiIiypQShBM6/qQuu+t2I8WmiIRhv+Fa6OEwlGtv6LPhJbQ/8gRC\nl14Bx3V/MoNwVE1nqkMiIqIylijb1JNSCFnHSjnnSVW19Ads96eLoNrtUG0OqDYbVLvDWLbboVnt\nxja7A6rNbvxLLNsdUFO2a1Y7VKsVbcEo2oJR8zVkScDrNIJyPC4r6qPJcqDB626CHInA/trLRt9V\nKyFSMg7KgYCRcYHBGeVL1yEF/JC83Q82I6Lek4SA3Soby0OHov3EU6HvvAs8f7wQqsUK/f33IY8c\nDnWCEZyzqS2IERmZcEyW3I8gtP++CTkYgwgaGd7Chx8FZettCv9mKKeeBhOJaLTrTiVO+P3QXnsd\neoUHYw//tdnuvfj8ZCerFepuu0NHYcpJMBMOEZWTQlyLEpU7BuEQERERZVKSD4H0PDLVmHVuwxFU\n/fXPAIDGjCCc4FnnFW58cdrwEVh59S2YWFuVbNPyKx9BREREA1OiHJXucvX+YPEgnOApp8H1wL1m\nc9XSH1G19MfeHz9OF8IM4EkP2nFAiwf4VH26INl/yBCETj3dDMJB40YgnF46QjQ2Qh9W2tkSqBci\nEQhV5Q1+olIgBII33gxZkqDecwdsn3yEkYftBwDYsKEN9rffxLSjDoHv5uzMrwBgWfgBfL/YFs5v\nv4a2225mAKW05x6oAeA77mQAgO4swN81ypsk5RcU4rvtLuA//4b31RcBGBmAE1lkBoyMspjyhvWo\nP/noTncRbW0QQjCDDRFRDrrbnbbeftnVqLjuSvj+9Be4/nJT1ucu0WDEIBwiIiKiTFrKrPB8ZivZ\nbAAA5/13Z22KzpoN2wcLEPjjFYUaXZqGoekPJrTYwEwNTURERHmKRACkBAH3QiKQJ3D9zcDKlXD9\n+1WoDWPQ8vrb0ENBRHwBhNv8iLT7EW0PIOoPQg0EIEcikKIRyNEI5EgYcjQMORqNL8fbYhHIEWNZ\nikWT/SIRWMIh2Ntb4/3SZ9S3vPIGIEmIzZqN0DHHwfn4o9C+/gZ6MD0IR1q5AiqDcMqWWXYt4wY/\nERVHotyynlEqSn3933DPuxEA4L0o98QT9923w3337QCA8G57wPfUs2nbvY8+ZBy7EMGlVHDhucci\nstd+ySCclk2IRJSBE4Sj61BXrir2KIiIyoqIX5MmRM4+D0t/eya8Lhtc825hEA4RGIRDRERElKWj\n0gwdSZSjcrz8QvaxAgFoTicg980NKps1PTGyrnRv7ERERDSwmGWZ7PZeHaft6OMQPfAQcz127PHA\nv19F4NIroQ8ZYrxE/F8qVdMQCCkIhGMIhBUEQjEEwjFElQ7KkHRF0yDFohj+1ceYLvugbLu90S4E\nYjvvCufjj2LIlRcjsMectN1q9tsDjWuaAau1Z69LJU0EjCAcMAiHqKTotvTP3JHHH9Gt/R1v/xfh\nDxbAc84Z2cd28fe9VFkdNnPZ+dgj2OyxR9D004q8MgcXW8UJxyQz63VDdL9fd92JiGiQsv3vLXO5\n5bU3AaSUORTCKB1MNMixeDYRERFRJtW4UFhz9c359XfkeAgWj/gXfh+0PryZmKgrHvj9hQCAMeed\nCmn5sj57PSIiIiouEY1nwrH3LBNO+90PoPGCyxCed0daAEt0r32w8edViBx8WKf7y5KECrcNI2rd\nmDCqEltOGIJZ00Zgp2nDseX4IZgwqhIjalyodNkg51PqQpKg2R3YsMOuiJx8atomdbNx5rL1x++z\ndnXNu6Xr49OAZGbCYTkqopISOfDQXu0faxiLqoP2hWXF8qxtzHxVuqQc2fesn3xUhJHkL1GqOzUA\nJzprdlqf8BFHw3/NDVCHj0Bk733SD5BPVmQiokFKq6pKLg8bDgCwWuIhB5LETDhEYCYcIiIiomyK\nAgCQGkbn1V235QjCiUQAhwPw+6G5PYUcXU7aqORYvRefj7Z/PttJbyIiIhqwwvHU37mCgPMQOexI\ntAejqMgRICMqKns8LKtFRrVXRrU3fVzhqJLMnBMysucEIwq0jBuzUo6HXcpWMxFtGAvbyuWwrVoB\nAIhttTWsX3wOAJAX/5RzLJaFH8Ky+EfExoyFNn0G9OqaHr8vKg4RCBgLnr4/jyai/One3gXGWVcu\n73gjy1GVLosFjfPuRt15KRmMtNJ+wGq76QZI9aPS2vw3z0PFycfC8uMPAADfrXcANhtCp/0fbG/+\nB/Z/v1aMoRIRDTgt732M2umT0Hbkb6DVG/ekUzPhCJ2ZcIgYhENERESUQWhGSSeb3Yp8Lhl0my2r\nTUTC0BUFcuNGKFvMKPAIc4zBkjytS6Txtnz5OWLrN0DsPYezuIiIiMqEiBjlqHqaCQcAbJb+S4zs\nsFngsFlQW5kcr6brCEUUMygnEI5BUXI/zIvusx9s991lrrff/whqtzXOrbSGMTn3qT5g7+T+O85G\n2wuvFuKtUD8Sfh8AQGcQDlFJSWQoi42qR/vzr5qfxx1RJk+B5Qcjk5lWNxRS48ac/Va9/i56/leN\n+kPg0CNRedstsK2IZ94t5SwHioLqeTdlt8sSWp95GUOmTUB0x52AlHs50V/ujvbD58K1cAECB/Qu\n4xMRUbnThg3HshXNcNjk7EADZsIhAsAgHCIiIqJsqhGEI1vzC8JRtts+uzEcgRxogtA0KFOnFnZ8\nuUjJh2nasGGwvfQ8Kk8+DgDw6V8eRuSXu8PjtMLjssLjsELKpzwEERERlZ5wPAgnVya+PNmscqFG\n0yOSEHA7rHA7rF32FdXV5nLw9LOgjRmb3BYMQNd1szxnLrYPF/RqrFQciUw4LE9DVFq0+tFYO/9V\naGPHwt5QD12WIeLXz5l0m80MwAGQFoCjDRkCqakJABDZfkfYt9qybwdOvWa3yskAHACIxYo3mC50\nFOylNowFrFY0bmzP3ijLCN15DyJCQNN09F+4MhHRwORyWHJmM4UQ5r11osGM5xJEREREmRIXCpb8\n4pXV8RMR2G7HtDYRCUO0tRnLKXVy+0xqJhyLFY7nk+Wotjn/RDj/dj9aX3oN3334LRZ8vRaf/rAR\nP6xowepGP9r8ESgq04QSERENBHo8CKen5aiA3KWfSpVWmTyP0oYOAwCseulNAIC0di1iGxuLMi7q\nWyLgBwBont6VviGiwhM7zYJttFHmJ3TibzvsF9tuB7TfdT8AYNObC6DVDQUAtF9zA5q/Wwrsuadx\nvFis02BKKg1mmZE4EY0UaSRds73139wbrJ0H/ybOjzhpiYioax1fUwpmwiECM+EQERERZVMV46uc\n/yxxMXo08PGH5roeDkP+6UdjpXZIIUeXW8pYdV2DlhH4s/Vd15nLUbcXvoZxaG8Yj/bR47A+vqw3\njIHH4zAy5jit8LqssFqKO1OeiIiIMoR7X45qIBHBoLmcyIqi19cDAOyvvYxRr70M383zED7hZACA\ntGZ1/w+SCi4RhMNMOESlJzUYQ2pMBkK2Xn8zqi69CKFjjkNb/ThYfnsS9MoqNB5+FADAd9udUJ57\nHtqJpxg7xEsBiUjpBnNQutZ/PoOqo+KlmqLR4g6mE47HHi72EIiIBi+JQThEAINwiIiIiLKIeFYY\nXepGEE5KLXEAUANBSG2tAABl/ITCDa4Dupw8rdM0HaKmNrluseLjC25Axcol8X9LUf3Tt6j9/qv0\nMdvs8NVvhvaGcWhvGIcVDeMRGTcRmDAB7iqPEZjjtMFuY2AOERFR0ZhBOD3PhDOg6MlsfbrDCDyS\nvOnZUbwXnWcG4cjLl4EGPuGPB+F4PEUeCRF1RmptMZdjc4/F2tHjYP3lLghqEryu9Gvk6J5z4J+9\nOzz2eDaSI48EXnkFkYMP688hUy+oU6eZyyKRma8UMbMSEVHR6EIAGjOuEzEIh4iIiChTohyV3I3K\nnRmlq9RACIjEZ4Y5+mGmekomHOtXXyLiNB5YBGbtgndPvwL+YaPSugslBs/aVfCuXIKKVUtRscII\n0PGuWoaqpT+k9dUkGYGRo9E+ejzaG8Zhw9gJUCdNgpg8Ba66angcVrgcGaeVqoqgPwRXJR+cEBER\nFZLrxeeMhf44vygBoVNOh+e6qwAA8soVAACL25nVz/L5p1C23gaipSVrm+3F5xA94OC+HCYVmAgG\njAWnq7gDIaLOKUYW2cj4iYDbDeucvQAAbi33DHiPM6Uc0LHHYsWwcXBtMbnPh0mFoXkrzGURChVx\nJJ3TA8G09RXz7ofzwP3A0Bwion4gSQAT4RAxCIeIiIgoixmE042MLxlBOFooBD0xU93W9zPVU2cg\nOj5ZiMRjufDtd2Hr0Q3wh2LwBaLwBWNoD0YRBOBrGAdfwzisTRu4BlfjOnhXLk3LnONduQSjVr+J\nUR++mfa6wboRaG8Yh7Yx4xEdPxHapMmQpk3FmCvOR90br6NxxQbAmf2gjIiIiHpGigyyTDgp5xFq\nwxgAgJzjHK3yN0eg+bulkFavyj7EY48wCGeAEfEH+KnZHomo9Ih4SSJt+Ii0dknKL9zBseV0o2wF\nDQyuZGCk56pLETrjrCIOJp387SLU7DYL0VmzYfvhO7M9tvlkqAcfApGRmYmIiPqIEBA6M+EQ8UqW\niIiIKJNqzObrzk1/3WpNbwiHoYXi6Zn74SGZVl2Ts133eiEJgQqXDRUpN50UVTMCcgJR+EJR+AIx\nRBQVkCQEh41CcNgobNh255QD6bC3boJ3lRGUk8ycsxTDP3sf+Oz9nK8vbVgPbexmBX2vREREBOj2\nwZEJBwA2XXQZxEcfQTlybod9pKYmyIu+gfeKSwAALa+/heo5vwIAKJM275dxUgElUtjz4TxRaVNi\nxtfM6+E85RusQyVCCPgvu8rMUIdwuGQy89XsNgsAYPtgQVp78OLL4Xb07OeTiIh6QAhAZyocIgbh\nEBERUV40XYc0SOpqix5kwlEnpafQ9rz2IirnPwkA0G19P+MqOmffnO26x5uz3SJLqPbaUe1NBghF\noirag8lsOb5gFGoijbgQiFTXIlJdi6YZ26UfK+CHd9VSIzhn5c+oWLkUIxe+DcDI0KOBQThERETd\noes6RK7zrtSbmYMlEw4A3/+dB/UMHd6U74kuBETGzd2aX+1kLqvjxqP9vr+h4ncnQRuWnqGBBgAz\nCKcb5WGJqN9po0YDX3wOfQQ/ZwcLbdhwc1n4fNBLJAgnl8b1rYAkgX9JiIj6kSQxCCdOUTVYZP4V\nGqwYhENERER50XXdiGQfDNT4Tf9uBOGEjzkOUdkKR+N6uG+4BlXxABygf8pRdfh/040ZiXabjDqb\nE3VVRtkHXdcRjCjJjDnBKAJhBVrGhZTi9qBl8gy0TJ5htk1+8n5Mf3gepOam7r8XIiKiQU7VdFjk\nHH/bY7HkcnfKZg5wQgg47Rnv124HwmFEd90NtnfeztpHd3ugDakz9o+X8KIBJBGEM1iuP4gGqMBl\nVyJYUQ316muKPRTqJ1pdnbks+dqgpqwXi2hszL2BgZxERP1PiOS5/CAmrVwB8fGnwGGHFnsoVCQ8\nCyEiIhpEMoMnumNQBbBHI8ZXazfilWUZ0aPmQh05KntbP81UX3fPI2nrSm3vboYJIeB2WDG8xoVJ\no6swc/OhmD19BLaeWIcJoyoxrMoJpy339yhSUWUsLFqE0I+LezUOIiKiwcbMRJcpGu3fgZQIiyyy\nZxBKRlCOMnkK/Gf9Pnsnq9Us2SUiEbNZ1TSovClc+hIXH3yASlTS1HET0HjtLdArq4o9FOonsd32\ngOb2AABEIFDk0Rhsz803lxOlwmObTynWcIiIBjfBTDgAUL3nLhh+xomwfPYJWnyRrnegssMrWSIi\nokFE6+iBziBl+fB9iPfezWoX7W0AAK2iezcSLbIEPX4zKpXeT0E44X1/Dd8OswEAytBh2PDJNwV/\nDUkSqHDbUF/nwZSxNdh+6jDsNG0EZoyrxWbDK1Bb4YDNIkGNP/SqvP4qNOw8s+DjICIiKmeaphtZ\nCDOImBGEE5yzf38PqajkHCm8w4ceDgBQZm6L0OVXIXTwYdk7OuLnYCmZcNz/dzocd93eJ+OkAtJZ\njopooLBa+Hs6qAiB8AknAwDsTz+J2vGjIJYtKdpw5MU/oeKyPwAA/Oecj/BRxxjL11xftDEREQ1q\nQkDo/TPpQTQ3I/LBwn55re6SWloAGH8r/QEG4QxGPEMmIiIaRDqcVZ2HXA+CBrrqA/fBkEOzH2KJ\n1lYAgF5Z2f2D5sqe009BOLIk4F24AACgTJsBm8fVL69rtUioqXBgzHAvpo+rxaxpIzB+XEYWnjL8\n+SEiIuorUUWDoub42xk1ylEJW/7lJsuBlKMkkf+GW9D08huIHHgIACBwzY1QPV6E9tkfm97+AACy\nMuGIxkZ45z+Jqmuv6KeRU4/FsxXpgrcuiUpdVrlAKnu63QYAcN13NySfD/Z5txZnIMEganbaxlxV\nZ24L/3U3YeUrb0PZbY/ijImIaJDTJQl6P00E9lx+MeoP2gvyosJPRO0N2+uvmsuuhx/E1jPq00tL\n06DAK1kiIqJBpDeZcAZTDIVobYXqcgPW7j/gUqZvmdWm22yFGFaXZCn5gCq215x+ec2OWJ3O9IZw\nOHdHIiIiyjJ87sEYObLKzM6XIPnajYWKiiKMqsTY7dC32x6IB+jow4bhp88Xw/fwP6BuMc1oSwRC\nx4Nwgus2FmWo1H0iUTIsRwAWEZUWmRmrBp94kGtCdO16rFjvw8aWIHzBKBS1fzIgOFLKUAHxey9O\nJyxb/aJfXp+IiHIQwgyo72uO+U8BAOQVy/vl9fIhrVuLyuOOymqv3mOXIoyGiolnyERERINIrzLh\nFHAcpU5qb4NW0YMsOAC0ESPRPmvXtDbd2k9BOHLKQ4oeBBAVUmJmXEKp1IonIiIqeYEAPB++BwCw\n/+ufaZukjRsAANrQof0+rIGg0mOHSH0Y7EhkwjGCgYO+YHLbYIowH4g0lqMiIipZ0Wjaau27b2Dl\n8g34bkULPvupEQu+WYcPFq3DF4sb8ePKFqzc4MPG1hD8oRjUAj6YldatTVtXJ08BAFgtzM5ERFQ0\nug45GIDw+4x1vx/eU09My1ZTjhn3E2q3nJyz3fL9tznbY4ral8OhIuKVLBER0SDSu0w45XtynEm0\ntUHz9nyGeXRkfXqDq3/KQqXNQCz2rOGMwKPEhVe7L1SM0RAREQ0YiUAbAICcLHMpzf8XLF98DgDQ\n6hiEk0vmQ7dEJhwRCgPRKCrnP2luc959R7+Ojbopce3BIBwiopJj+Ta77Id73aq09aiioS0QxbpN\nQSxd147vlm/Cpz9uxHtfr8OHi9bjy8VNZoBOUzxAp7v3rEQo/f6CNnJU998MEREVlHXR1wAA17w/\nAwA8V14Kx/PPoOZXOwEAlJiCaETp8fE1Xc/KuCaUGOSlP8Nx/TWAWppBLdGdd83Z7g/1/HtBpc3S\ndRciIiIqF1ovAmnKOgZH15NBK7oOKeAHvJ4eH06yJk+xtMrKfn14oNXUQtrUDK12SL+9Zu6BpF8M\nOR+4F/bXX0HdqpVo+nYJ9Lq6Ig2MiIiotKVlj4tntrM9/igqz/s/s1kbOqy/hzUwJTIDKgrc114B\n1+MPmpvsL7+A0JlnF2lg1CWNQThERKXKf82NsL/+alqbHIt20DtbRFERUVS05kiY67DKcNotKf9k\nuOwWOOwWSBmTjURrKwAgeMxxiFbVdP+NEBFRwfluvQPe358F5713IrL3vnA+9rC5Tfr0Yww7eH9I\nkTA0twctH34GbfgIeE44Blp9PYLX3dTl8ZvbwrCsX4taT8oE0FAIVb/aGVIwAH2LLRA56NC+eGvd\nEpu+JZTttofzofsBALo7+1mD/MP3cL6/EDjx+JzXPaqmseznAMYgHCIiokGkN5lwyk5qVJGqApb4\naVE4DKGqgNfb40NbU0sx9fOJcsur/4U6/xmIvffp19fNpGyZXoPd9cA95rLtrTcQOXJufw+JiIho\nQBCpD7FiMYimprQAHADQmQknL7oUz4yjKrA/90zaNnXCRACAomqwKDE4/vYAIsceD93T83NAKgxV\n0wA9UY6qyNkdiYgoizZmbFab1I0gnM6EYyrCMRUt/kiyUddhDQXhifjhDfvhDvvhCvpQF3+wG7z4\ncih1dWARKiKi4lMmGeWYRCyG6v33TNtWu+8e5rIU8MPx5D8QPO9COF99CQC6DMKxvfQ8pp58XFa7\nCIchBY3ITudNN0D928PQXC7oLhfgdEN3OSHcbuhuN4T5zwXh8RjtLhd0lxu602l8dbmMzPa9uK8f\nvOBiROfsC/92s1D3uxOAcHZ2+IoT5qJm6RK0brE5YjvMytoeUzTINgbhDFQMwiEiIhpE1EQQjqLA\nfvGF0PbZF7Hd9+x8p7iyK0eVmpoyEjGDcDxXXwYAsH7ycY8PLduSp1iBP1zW4+P0hDZuPNrOOAdV\nRY6S16uqO9yWNsOfiIiI0kWSD7Gk1hazpGMqbSiDcPKSCLJWVcRmbgv5tZfNTY6nnoBYvw4brrkZ\nFa+/CPeN18L26cdof+jRIg2WElRVT2ZVLHaJVSIiypbjs1mKdh2EI0WjsPrbYPO1weZvh629Dbb4\nutXfbrT72mHztcLmb4fV1272ldSOy3XotbXMFEBEVCKUbbfLu6/7xmsRPO/CvPtX5gjAAQARDJrL\n1iWLUb1kcd7H7IzqcEBzOKE7XfGgHjfgckF3ugC3C4gH9CQCeMJTpxv71Q1FdJ/9jIMcdDD0004E\nQtlBOJalSwAAnj+cD8v33yJwyeVp3w/pyy8gRo2APqq+IO+H+heDcIiIiAYJ74nHwNHuR3D+87B/\n9CEqHn0IePQhNG5sz2v/ckuiY/14obksohHobjcAwPm3BwDAjJ7vETl5ihU56JCeH6eHLHJp33wS\n0UjXnYiIiAap1Ew47huuQXDLmVl9NGbCyY8cnxOvKJCWLc3abH/nbTTsui20qioAgOXzT9PLlFKv\n9DR9uqLqZtZKXZT2eS0R0WAV2e8A2F950VyvX/Af1H7/pRFc42sz/6UG11gi2Q8gO6LJFkS9lYh6\nK+Ef1YCYp8JY9xhtmtWK6Q/fZnS28DEXEVHJ6OBaKnzI4XA8+6++ecm2lrT1ZXsfgq9PuQByOARL\nOAQ5HIYlHIwvG22WcBByJBxvC8bb4tsjqf3i25uaYAmvgiUS7nAc7sR4lJTAUSGgO5wQGUE40vp1\n5rLl+2+N/W+8Fmp1NSIn/BZQVYzaf3cAyPv5DZUWnp0QERENEo5XXoIDgE/VIULBLvuXO/cN1yRX\norHCHlxOJkHWHc7CHjsPFrk0Hhxteut9hH/4CSPPODF9Q6G/30RE1OdYi7z/ZAar1h15YNq6OroB\nureiP4c0cMV/ZuV1a81Zhjm7tbYa/dashvOO2xA6+7x+GV5ZCwah33MvxO9O6XaJL0XTIBKZcPi5\nQ0RUktof/gfUDRvh/vcr8F5wDia89GTOfoq3EkpFJcJ1E6BUVEGtrITirYJSWQmlosrYXlkFtSK+\nXmGsa05Xl0GxS2bPQvWU8X3x9oiIqEDChx4B/zU3wvnQfX32GlJLehCOMnkqRO0QhGJqB3v0gqZB\njoTSg3bCIWx7yyWoWL0MABA885z0fRwOMxOOpuuQhIBobMx5+IqLfo/G35wAEfAXfuzUrxiEQ0RE\nNMhomg6EkhHbQxqGYtPHXwH/+Q+0Y4/r8CZHOZSj0jQdkmS8P2XS5mY2HBGNQAeAWDI4RM1R4zxf\neuosLLu9x8fpqVLJhKNOmw5p6hZQr7gIclPywkINdTxjgIiISlMoosLbtNpIg9zpdSMAACAASURB\nVMyH4n2rk2DV4G9PQ+D6m/pxMAOcENAtlk4DcDJ5rrsS2ogRiBx+VB8OrPx5Lr8YzsceQdDfgsCV\n1+a9n/bFl3D+8GOyHBU/b4iISpY8bCjChx4B3eEArFZolVXQq6vNr3pFZdokpQQJgC3+r1dGzUEf\nPF4lIqJeCv3meDj/8XcAgP+WedA9XkT33R/uW2/O7pw47wd6npW0eVPaau2RB2PHCcMRU1T4Qwr8\noRj8wSj8YQXBcAy9esohSVCdbqhON1Knz7w973EcePgsAEDod2ek7aK7XEYmHEWB9b57oc2dCxHu\nODuc2LQJ3jN+m2wIhQBn/0/0TRWJqrDbsv+mU8cYhENERDTIqKqWlglHhMOo2n9vyCuXw6fGED7x\ntzn3G+gxOMLvQ+zLb2CfbZwMK7/YGohfDOhh45RZpETN+/5ye89fLPVhQY4bTn2tVIJwAECWJGz6\n9mfUDas02xiEQ0Q0sIiWTRhxxCFwfPU5gr87E4Frbyz2kMpaZ2UbA9feyFJJ3SXLQGo68Ayx8ROh\nRKJwrl5htlWceSoaGYTTK3K8/Jf1gwV572N//hlUnGpkUAztsbfRyJ93IqLS5nYjcsTRxR4FERGV\nEP+f/wrd60Vs+1lmVkxlxi9yd06ZFOv5w+/hv3le7n45Hk5EttwK9q++gPOl5wAAWnU1/Mf9FuqE\niQAAq0VGtVdGtTc5SVbTdPjDMQRCMfiCxld/KAa1lw8/opXVCE2dDqm6KmtSru5wwLrkZ9SNrDHG\n/dH7CJ1yGgAgeM75iO2wI9SR9ajZdQcAgGP+U7C/+z9zfxEMQi9yEE57MIo6W3HHMNCUzhMaIiIi\n6hf2hQsggunlqOSVywEAlm8XdbjfQM+EU/GbI1F/yBxYvvgMABAJJgNBLLffBv377yC1JoNwtBEj\ne/5iRQi8KWlCYNObC9B+9wMAgIp/PlrkARERUXe4r7kCjq8+BwA4H36gyKMZBKLRnM3Bc87nOUYP\niEjHQU0A0H7TX9C88Eu0XvDHtHbLV1/05bDKnlY7xFhobs57n0QADgBYFn1jLDATDhERERHRwCJJ\nCFx9A6L77p9zs1pRieiv9gAAiLY2s935yEMdHtL+zNPmcvDMc7B6/qtou/3etD7tDz6KyKWXdzE0\ngQqXDSNq3Zg0ugpbTarD7BkjsN3kYZg6tgYNQ72o8Tpgt3T/2nvli2+i/dmXc71o2qr8808QEePZ\nhOatQHT3vaBOnmJu91x1aVp/oXScLbc/SBvWw/uPh9OzFlGXeCVLREQ0yAw/8kBIm3LfDBe+tpzt\nzvvuQs31V/TlsPqcLT4LNxFoVPWX5Cz+qqcew9BddzDTQCpDhkKdOKnnL2ZhssFM6vQZiO28KwDA\nsqkZCAQgOvg5JCKi0iKvXZOykrwRNdADdEuViAfhBP/vXLTP+TVCk7cw1s/5fTGHVTZWvftp2ro+\nbTrsNhmRC/6A9etbzZKk1XvuOvBTQRZTzPg5tq5c3qPvo3X9WmOBQThERERERGVBq6oCAAQOPMRc\nllrSS0llTkqRli2F7d670iZJBK68FvZdZkMaMiStb+Lec3cJIeByWDC0yolxIyswY3wtdpw2HLO2\nGI4Z42oxbkQFhlY54bJb0FmeTlkSOTN5Whb/lLauTtwcwu8HAOhuV2IQ8N16R+4DdzBRp794fn8W\nRl9zMZx3dzA+yolXskRERINBRpSyvmFDzm7C50vuknKz3HP5Jah56J6+GVs/E6EgpNWrYGlrzd4Y\nL5MUPebYXr2GzlnqOWlDh5nLdZuNwJDJm0H+/rsijoiIiLpLl5J/4xSVAQp9In6DTZk+A+G//wMr\nX34by1Y0m2m8qXe0sZuZyz+/sRB6TS0AY0akLEmI7Lm3ud1zEQOfekprSQb3O/54EUQ3MuKk0gVv\nXRIRERERlYPw3OMAAMo220H3VgLIDsKx/fc/aeuVxx2Fyisugeu+u7OOp3v79hrZZpVRU+FAwzAv\npo6twXZThmH2jBHYamIdJtZXYWStG16nDXI88EaS8iulK61bA+/vTgIAaMOT2fgj++TOHJRasqsY\npOYmAIDtzf900ZNS5XUl+9VXX+HYY3M/jAqFQjjqqKOwZMkSAEAsFsOFF16IuXPn4rDDDsObb75Z\nuNESERFRz2RGS3cQhJNKVcs0vWAoBMuP3+fcJMdn3OoZdVu7TWYmnJxyzASwfv5pjo5ERFSy5NQg\nnDI9Vygy+8svAAB0mx1CCHhdNnic1iKPqnxIkkB01mwAgHfKhKzt1o8/Mpedf+84HTp1IhSC68P3\nzFXvQ/eh8oS5ne4irVyRe0OO80ciIiIiIhp4ApdfjeZX34Ry5NFmAI3j9lvT+lSeMBe2e+8CdB2R\nb76F5ccf0ra3/zUlGMfhQHj7WQAA303px+krsiSh0m3DqCFGOauZmxvlrLadPBROe37PBKxffgER\nnwCt19SY7Xptbc7+jvlP9X7gvaBXVQMARDBQ1HEMNF0G4TzwwAO47LLLEMlRQ/ubb77BMcccg1Wr\nVpltL774IqqqqvDEE0/gwQcfxLXXXlvYERMREVG3iVhGGsfGjTn76R6P8UBNUaAoxoM1XVH6fHz9\nyfL1V5A/zR344XjofgCAbnf07kVkztjtiP/s9BnluttdpJEQEVGPpPyNiykMwukLtvfeiS8YgTdW\nC88rCqXtyfmwyBLa/vUCGpevh2SzZfXx3ZsMvFFSsuZQ/uzPP5PVZv3oQwCAtGE9EMi+eVtxxim5\nD8ZyVERERERE5UGWoW2zLYQkQVq9EgDg+G92dpXKKy5B3bBK1O++Y9Y2dcLEtPX2F19D48Z2hE/8\nbd+MOQ9CCLgdVlh68ExAy8h4G5u+JQCg9dF/mm2ORx/u3QB7SY9fN4tocTPyDDRd/jQ0NDTgjjty\n1/iKRqO46667MG7cOLNtzpw5OOeccwAY9eFllmMgIiIqvkh6EI7rk4U5uzmefxb+Fh/qRtag5rQT\ngXAYQ0fW5Ow70Oguo76q48Xn4PnLn8z21SuazGXbwg+Mvs7eBeHoFmbC6YiI/z8k6BnrRERU4hI3\nXfx+iOXLijuWMqdbmP2mEJQxY83l6A47GTdGrVagg3MQdcJENG5sh+b1QnMxWLgnRCiUu725GVWz\nZsJ73NGQVq2E65YbAVU1trW35dxHr6jos3ESEREREVFxhE/oWdCMNnxE2roYAJkzW155A20XXILG\nbxZnbdM9nrT11hdeQ+uzLyM2Z99kn8rKPh9jp6xGEI6eWW2BOtXlE6K9994bq1evzrlt5syZWW3u\n+Gxmv9+Ps88+G+eee25eA6mudsFiYcAOEfVeXV3f1oEkGpCi7Xl3HX3ikQAAz6svwh7zp20b0L9f\nLhcQDKa3ffgh6huy0zx6h1TB25v3WpF8qNOX37MB+f9RV522Wul1AAPxfRBRvxqQn3dlJZnxRowc\nYfx/7L8H6j7+GFizBhg5spN9qaeq6ir5N7IA1D33BB58AKHrbkTd2OF576dXV8Pib0ddnReKqvVo\nVmNPlMXnnTP37cYhU4zMQvJ7/4PjoH2AVavgnjoJOOEEwOXM6q+5PagblTslOxGVh7L4zCMiygM/\n74gyHLgP1F9sBfnLL7rue8klgKIAPh9qt5o68ErW7ruH8Q+AvtlmEMuSE5pqx45Iv+6v8wKb7Wcs\n33YbcO65sBx5RHE/Q7zGsw7r4h9zjiOmqLCmxHhUVrlgszLmo0+maa9btw5nnnkm5s6di1//+td5\n7dPSEuy6ExFRF+rqvGhs9BV7GEQlR1rbjFy3rzdsaIP47lvU7bEzRHwWquOjD8zt6+54EA0p/Qfy\n71eNw4nMU79myQmt0Ye6jPb2qI5IL96rs9WPRAx7X33PBurnnUMRSD1Vb2tsRXQAvg8i6j8D9fOu\nnFRvaDRvHkQrq9He6DMCcAC0LvwcsZ15Q7mQEuclLVFA4c9+ryl/vAatY6ah8oTfwN+N72eVpwLW\n7xah5Za/wvXQ/QjusSciV/ZtyfVy+bxzbWhGlzmE4qXtI08/g/D/3odt86lwfv55eh+LXBbfDyLK\nrVw+84iIusLPO6Lc6lICcNY8/RIcm09E7ZaTzTZ1VD3CU6YhfPQJyQw4Tf7MwwwolcNHwpYShNMY\nBtDB54Nl0jRUAwi2+hEo4meIV9GRqBvQ8vpbUGZua26T1q1F6KNPYT/oAABA7bmnQ12+Eo3Pv1KE\nkfa/zoKjCh6E09TUhJNOOglXXHEFdtwxu1YbERER9T8Ry67XGZu5DSQhgC2moWnlxpyzTBtuu6E/\nhtenNE2HJIncJaLs9pz76M7smbjdoqi927+cqUraqmAaSyKikid8yYx6IhxO39aWu4QM9Z6yVXb2\nYeoBpxP+Aw/FEFv3ynslUn5XX2RkeLb/+B3WXXZ1v2XEGdBCxkQ7dcxYyCuWd9rV/trLsANQtpie\nvVHi95qIiIiIaDBQd9wJmt2C6KzZsH2wAJF99ofv9ruhV1YVe2gFpXszgjYcjtwdAejx8sgiGOjL\nIXVNSd7PT9wDktathevG6+D85z8AAC0Nb0HZcitITzwOJwC/ogC5nscMIt2+mn3ppZfw1FNPdbj9\n3nvvRXt7O+6++24ce+yxOPbYYxHOuElHRERE/UtatzarTR07LrlitUJz9DLwpERpug5N02FZvixr\nm24zgnC0qoyT+Q6Cc/KmZAc9kUEEQ+nrba1QNa2D3kREVAqUyVOTK+GMz/GM9UyarvfFkMqa5nYj\nOGXawEuxXaKEQFpq7HxZvvs2q621tcg3PweIxPmeMmlzAEBkzn5oefF1ROsb0PzVD7n32dSc1Sa1\ntPTdIImIiIiIqGQkJju0Pf4vNH/6Ddr//kTZBeAAgG3Bu+kNnVz36y6jDJQIFrmaUEoQDux2yN8u\nQu2Wk80AHACw338PnPfcaa5La1b35whLUl4hSPX19Xj66acBIGd5qccee8xcvuyyy3DZZZcVaHhE\nRERUCFJTY3ajlp6tpe2FV1F52AGQfOWVHtX6/nvQ29pzb7TbAAD+G/+MitN/azYnosx7KlfmITKI\nUPpFg1ixAqqqI99J5ZqmQwhA8MEkEVG/USZMhP2N1wEAIpSRCaeLSTdi0SKoDifkiRP6bHxlR9Mh\nZNZPLxQBAZul+xlVpLbWrDbbRx8C++5ViGGVtcRN4sAlV8A3YybEb34DbVQ92j5fBHQQfJ04R9z0\n77dRs/du/TZWIiIiIiIqDrV+NOTVRplaixy/1+t2Q3P37t58KetOQI35jKJYQTiKAsstN0FOmdws\nwiHU7LZfVlfXs/+C9s5b5rpl8Y+IjhnbH6MsWczrSkRENBjkKPkjAukzeZWtZqJ5yZrOjzMAZ7MP\nOezXqDv5GHM9PHM7czmRCSfxNUEbNrx3L8ognA6Fj5wLAPBfdT0AwLrgXahaN36uNm5AxZzdYV34\nQV8Mj4iIctBT/q5JkYwgnC7SIg/dfScM32nrPhlX2dJ1CJbhKRhJEnA7up8GO3zE0Vlt4084DNKy\npYUYVllLBNToVVVQLrwI2qj65MYOfrYTac314SOg1dT0+RiJiIiIiKi4Aldeay4PlgmX0VmzAQCB\nSy5H0/fZmftT6fFgJOv77/XfdaiqQn7rv4CmwfbWG6iedxOsX39pbhYZE7jD+x9oLkvNyeym0oYN\nfT/WEse7OkRERIOAyBGEEz7ymBw9k9p22T27cYCXDWr9y+3Y8NzryQabLf1rnDa8d0E4QjWyDOlW\na6+OU460sZthw4Y2hE40Mg/ZF30NvRs/V66H7ofji09RedgBfTVEIiLKFE89rFssWeWnMm/AUAFo\nGktRFZjL0f1zMnXkqJztliWL4bz9VniPOBhQVQi/Lz09dwY9I4hdWrcW0orl3R7PQCJCxueE7nJB\nzhF0EzjjLLQfeFj6PvHvk26zo+XNBfDP2qXD0lVERERERDTw6WWc8aYj7Y88jpb7H0Hw3Aug19Z2\n3tnlgi4E5OYm1G7/i34Zn/PO21Bz1CFw3XIjhN+ftV1e8rO57Lv1Dvj+9hgCc4/LPlAXWZMHAwbh\nEBERlTtNg+fCc7Oao/vnDmJoefM9tN8yD02PPoXo2HFZxxrIJJcLFlmg+Zuf0PjOR+YDLj0jCEf3\neHv3QomMAZbuz7oeDCQhAIfDXNdDoU56p/P+9c8A4oFloRDknxcXfHxERJQukQlH93oh+f2w3HVH\ncmN7W5FGVb4E9A6zhVD/CZ57Qc52y5NPwHPdVXD8701Y33kbQ8aNMkq6PvGPnP0VNf38ueKEuajd\ndgbQjfOfgcbMhON05dwevOp6BO59EBsXLcneaLdBG1WPtY89A23EyL4cJhERERERFVFH1wvlTK+q\nhnLQIflNvBEi7d6AEsmeaF1Ilm++guf6qwEA9ldfzjnpyn2Tkd0+8PsLEf7N8QCA0KVXJjvcfz8A\nINyWHcAz2PCuDhERUZmzvfWGObM0TQcnesr0LRE5/mR4nFa0vfQ6Nt3yV0R32c3YOADKUamahmA4\n92xk3WaDzSob5aamTElukOX0jr2dfR4zToh1CzPhdCj1e9ze3mE3rZOfuarDDkDNrJksC0FE1MdE\nIstH/O9a9dWXmtvc99xZjCGVN2bCKQ0uF1Z+vyKr2f3Sc+Zy1VGHAABsHyxA7blnQF6SHRwcU9LP\nZaxffA4AkDaWcXruRIBRStB1JossQQytQ9NDj6e1J8rEWi28ZUlEREREVM70Tq4XyJDIuA8Alr8/\n3KevVb37zuayvHwpvDkmdifoNcksPvqQIQgecxza77wPGDsWAFD3p6uAZ57p9N5+ueMVLRERUZnz\nnnFKVpueGXSSgyQEMGw41ONPBKT4g6BSz4QTDqNyzu7A44/l3t5BUIy0bm1Bh6GOnwgAiO00u6DH\nLVdDzzi5w22xWMc/c9ZPPgIAyGvXFHxMRESUlMiEIzVuzN0hEIBa6ucIA4nOTDilwlpVCf/l1+Td\nX7S2pjcoCuTPPgVSbpwm1G47A5UH7mOUsyozIhiE5nTlFUxmcTvTG+LlXO1W/g4QEREREZUzdfwE\n4yszYOal7rIL++/FEpn+OxA++jfJFSEQmHcnIkccnTYRo+70ExFemj2xZbDgFS0REVGZk1IeBqj1\no42vkyZ38yDxU4YSj1y2fvQhnF9+hjGXnNNBh9zloaJ7zSnoOMLHnYi1f7kbvjvvK+hxy03gkssB\nAK5PF+bcHomqiCrZD60y6a6uU5cO5qh7IqJe6+Lmi7RxAwKhHFnoUj97GaSTP2bCKRkWWULorHPR\n+sxLefUXbW0Q7W2Qv/8OorkZrttvRf3Be8F5/z1Gh4zfJduH72PIuFGwfPZJoYdeVCIUhOZ0dt0R\nAOx2czE2eoz5s2+1dD1pgIiIiIiIBi69qhqb3lmIljfeLfZQBo4+usctmprS15XclQYAQJkwEbq3\nIvfG7bZLW5XffrPXYxuoGIRDRERU5tSxm5nLyhbT4gudP0zLpCeCcEr8AZpekXLyF4lkb7facu9X\nXVPYgVgs8B90OPSKysIet8wEz0uJ3s84sbc/+y/U11dj3NghyZIGHckjs1M4oiAS6zqgh4iIcoh/\nRms1uf9euu78K2pO/g20aEZ98tTsH119lpNJMBNOydE9ng63+Q8/2lyuOuoQDJkwGjW77oDKow6G\n+0/XAQBs77wFALB++H7OY1i+/KKAoy0BwSB0Z9dB0gCAlM8NKRbtpCMREREREZUbdcpU6EOHFnsY\nA4ZobOyT4zpSSo1HZ3WR3b+zQKCUSRYAUP/H84AyzP6aD97VISIiKnORlCwvutttLHQSyZxTfEaq\n0Es7CCf1fUlrVmdvt+YuRwUA0UmbF3QoksQZ7PkI77s/AEC0t6W1V5yWLFHlvv4qY6GjILAuMjQA\ngOtv90MqtwdcRET9RMSMv68tb3+AlnseytrufOxhVL/1OizxMoGmlCAcEQ736RjzoQRDJR9QbN7M\nYiackqK7s4NwAhdcjKY/zUPgjnugjKrP2m796ktzWWw0SrnpdkdWPwAQuQLkFQXOy/8Iyzdf9XDU\nxSNCIeh5ZsIRavL83XfbnZ30JCIiIiIiGtzkVX1T3inqMK7fdIsF2rBhZrs6bLi5HDzwEGOhi/sq\n/iuvS1vXfl5SoFEOLAzCISIiKnMidRa6xZrdlo8BUo5KpARjWBb/lLVdGzosqy0hvN+BBR0LY3Dy\no1dWATDKN3REaopH+HcUbNNFySppw3rUXXUJRu73K1i+/rLTvkRElEP8IbnmrYBy6OFQNp8CAPDd\ncHN6v3BGFrqU4FgRDPTpEPMxYuwwVP1qp2IPo3OJcy1mwikpZiB7ith2O0A94SRIkoTYnH073d+6\n6Gvj68L0TDih/Q4AAIhA9u+H/cXn4LnvTlTvvnNPh92v3KeeBM8JxwCaBhEMAnmUCwWA6C67mcvK\nNtt10pOIiIiIiGhwik00JhDLq1cV/NiisRE1t1wPAGh7Yj60YSPMbeqkyeayJBv3KUQXQTihM8/G\nxncWJo+RUepqsOBdHSIionIXSz4A0y2WeFv3ylFBDIxyVGnp7Bs3Zm1OjeLOlDh51Av00EtmFE5e\nEiW7pPaOg3ASfeQcgVVA+gzqnPuvTmZFss9/urtDJCIa9Dxvv2EsxM8jWt54B+t+WonY9rPS+mUG\n2qR+Phc9E048uMX63bfFHUdX4ucjgucRJSVXEI5eVWVmPswVRJOL5/qrAQDq6AY0rmtB+PSzjP2D\nQbOP2NQMedE3kFatNNssH39knr9LG9bD9rcHSio43rrgXbienw/nqy/Bc+6ZkELBvL8nsNmw7KNF\naHnjHZZyJSIiIiIiShHZfU8AQPSQwwAA0qrCB+G47rzNXNY9Hmh1yfJgypa/MJcTwTlqjkywmcSU\nqfBf9ydjpaW1QCMdWBiEQ0REVO4iKQ+9EplweliOqtSDcEQ0ZQZ+JJz1cEJ3ZT9AMXmMMgPaiJGF\nGQvLSORF93oBAMLXcW1Y0WacqEsbN+Tu0ElQmeXjjzBkn18lGzopSUZERDmk/i1NfIY6HLBUVUEb\nMyatq/zTj+n7ppWjCvXVCPPT3XOfYkmcazETTknRvRUAgPC2O5htWjybn7Gh659vy0fJmYCt818E\nZDkZ3PPzz+a22q2mouZXO5kBOwBQvf+e8J52EixffYHa6ZNQefH5sL7zdk/fTsHZ/veWuez85+MA\nAOuSxXnv7xxTD2XLrQo9LCIiIiIiogHN98Aj2PDWB4jsbWRf9VxzecFfQxuezHyjV1ZBr6011yP7\n7GcuB/5wKfyn/R/a738kr+PqTiM76sgzTyrMQAcY3tUhIiIqc3oo+VAgeMZZiA0bgfa77u/eQQZI\nOSpEk8EYIhzJHq8sd7hr+ORT0Xr0cWh7+vmCDEXiDPb8JB7opmQxyiQ1NQHRKKqOMurOJtJvmjrJ\nhFO9/55p61pdXc/GSUQ0WKV+PmcEhmRmrZA2ZmShSy0XGCxuEI4jHhiQSivF85r4mASDcEqLLGPZ\nD6vR/K8XzSa9KhmEE/zDpQhvMQMbX3sbTf/+X85DVP96L3NZ22yccYx4ySbXqy8a//fvvQcRyv27\n4njpBVTvuau5bnnoAbQHovAFo/CHYgiGYwhFFISjCiJRFdGYipiiQVE1qJpWmJ93vx/Wf7+Wdo4t\nmpvhuv3WXh1W5s87ERERERFRFt3jhTRtGtRx4wt6XEVNTrZOzWqs1o+GOnx4st/W22DjSWdg/XOv\nAS4XQtfcAH3oUORDtGxKrpTi/Zc+Zin2AIiIiKhvWT/5GADQ/Pm30OpHY9kHX6Paa+/eQRI3xrXk\nyZL1icegr1gJ5ZJLCzXUXkvNhCMi4e5l7vF4sOnGW+F12QoyFomZcPKim9mZkgFU0soVaX1s770D\n27vJ2d7a5CnA4mS2he5kdsq7NAIREQHIyDLX1d+2TZvSVuVlS5Mra1ajmDwXnmsui8ZGwG6D7Zqr\nIQ46CLHZuxRxZBkS5y48jyg5Nq8bspz8f0kNQlPHT8TaV96C12WDDiB8yGFwPDu/y2MmMuwAgPPe\nu4Ar/5j/eD5YgK+/XJY4EgBAJG5spt7gTAR2xftIQkDoAIQxM08IQCD+TwgI6EYf6Ma6AIRu9Jvx\nxzNQtehzRGbNRvvzr0JsakbNdlvmHF9s5jZ5vxciIiIiIiLqhMuFSMNmsAQ6ziafj5iiwvnff8Py\n3LNQb7gJem2tmaG+7aFHAacTsZ1/idAhRyB6yKGALCN6zfXQoaPj6c25RXfbA7juKmNFUQZdhnoG\n4RAREZUx4WuHdd0aAIA2xMgAYpG7/1BHjz8I0lPKSlSdeyYAoPEPl5ROyYTU2frh9CCcwKyuH7A5\n7YU7NSqVb0nJs8VPvmPJQBp51cqsbqnZFZTJU2B/KSVjUazjIBxldAMsqcfztfd8rEREg1Gk40xl\nAOC75Ta4r78KUmsr0Nycti01G1n1aSehadfd0tIa9ye9ogKi1ShvKK9aAc/ll8D6yUfAow+i+bNF\n0EY3FGVcWeIBEzpPJEqOzZpxyzEjw2JqILfuqUA+9CFDzGVPjgCc4CmnI6poqHr4PrOt/a77UXHm\nqbD52nDwwdvm9TqFZv9gARCJwHXrzZBSzq1an3kJVYf+2hjnPQ8VZWxERERERETlSK+qgtiwrhcH\n0CHdNg/VN19jrD/3NBpXbICIX9OpU7Yw2q1W+O990NzNapHSMufkS50+A9Htd4Ttow+BSIRBOERE\nRFQ+hN+fXLEZDwaslh481EkE4SgxZIbwCL8vqxxFsYhYLH05/iArPHY8mu7/O1xd7G+RC/fAi5lw\n8pOaCcf67v8Q22EWRHNTVr/Eg1MA0Cszft46KUeVWdJBXrqkF6MlIhp8RCTc6fbw8SchfPxJqB0z\nHHJLc6d9LQveQezAQwo5vLzFttsB9v+8DgCoOOEYSBs3JMf1w3eIlkoQDjPhlLy2fzyFUFNrp7MA\npXgQfC7td9zb5WvodjtiEzdH4MprEZMs0PbfHzXx4JbI4UehrbUVoVde8ih53QAAIABJREFUT+6Q\n9vMistp00XE/PbVN5NjXPJ7xZdRbrwAA6kanl/hse+QJxGbNTu6XUq6LiIiIiIiIekf3eiFFwrCd\nfiqit90B2LtX7UD+6UfUJQJw4qwfLzSDcHSvN+d+kiQg6T27R6HXGhNPRDQCHZ4eHWOgYhAOERFR\nGROpZSHiM6p7EmgiLzdS3cs//ghtVH3atp8XLYd1/Dh4XTZ4XdaCBrJ0l/f8s5Mrqmo+yIqNboCt\ntrpfxyL48Cw/8Qh4xz/+Dts7byN0zHFwPv6ouVmrqYG0aRM8V6WUPcuoIZsafJVG0yA1NyG87Q7w\nvfIfDBlRDamxseBvgYiorEUiXfeB8Xktt2zqtE/laSejqUhBOKkp6uT16TPHRHvpZElLlAxiSr3S\nFd1rn2TZpw6kZvDL2n/3vdLXZ/wCtq+/TGtbs3Q9LLKALEmwAlB33hWt81+EssV0Y59TToN8ymk9\newO9FPzjhXA9mMzME2sYi9YPPjUD/pXNxsGybCn0SgbhEBERERERFYrz/XcBAJXP/BOBMQ0IXnxZ\n7o5+P+DJDngRoWBWm+vySyDFjAzImrfjjK49feaj243rRBGLofOr6PLDuzpERERlzHPlpVltPTlh\niu6+Z3pDyoMH39qNWLquHV8tacKCb9bh4+834IcVLVjT6Ed7IApNK9LplZYMwrFYLUUNDqKO6fEg\nHOuH7wNAWgBO25PzEbj0qqx9lImbp69HcgfhiGDAeEhWYVxA6C4XkJEZh4iIOifipR4jGZ+9mbTq\nGlhaWzo/lqoa5SKLQHTyuplZ04qKmXAGhK4yHsZmd1wGNbUEFQBseu6VtPXWp583A3DSjrnLL4tW\nzi1V6Kzz0tZjc/YxA3AAoPW/76Jp8Ur+DBMREREREfUR960352y3vf4q6saNhP3Zf0HPmLiaeu9D\nq6kx+v/wHSxLfjYanc7CD9QWz9ZTpHtBxcSnUURERGWsoxSC3T5O/ARM2rjeaEiZFb/rH07Cr84+\nEtv96SJMfewu1L72PCIfLsTyH1bi88WNWPDNOnz240b8tKoV65oD8Idi0LuYPVwIQlUhdONBlmTp\nrGAAFZXFSMyYeMibKvaLmdCqsjMYqVO3wKb3P4Xv5nkAAPsLz2RlxwFSyrFVGL8HutPV4YPWntS1\nJSIaDBLlqMK77NZpP72qCnIwAHSUnSyurmEoPBefD9vLL0J0kTmnoHJk9Gm//R4AgP25Z/pvHF1J\n/D0TvF0zkAUuuTzvvrLXi9CvD0LbeRcBuo7YL3+VFYBTSrThI4zA5rjY9rPStuveCmbBISIiIiIi\nKrCW//yvyz6um28AAFScdjK8B+2XvjHlvrjuyBFw0wcTKbQhRhljkZGReKDLZ+I5y1ERERGVsejs\nnWF/5UW0zruzV8cRigIAqD77dDQedQyEz2duU2tqUb34O9T+8HXWfpGKKvhHNsA/agz8I8fAN2oM\nNo4ag9CoMbAPG4KKeAkrr8sGp73ApyUp5ahY0qGExTPh5KLX1gJ2W3a7kKBNnARLvHSD++3/Qn3h\nWUQOOjStX+LnVPfEM+E4HBDh3EE4qqaDsVpERDlE4kGSDkfn/azxz+tYLOuzfcN5l2DYvBvNdeff\nHoDzbw9AFwKRKdMQ3XkX6LvsitgOs6B3kv64NxLBRAmBiy+DvGolAMD23v/65DV7hJlwyoMt+/wF\nANbfOA+5Tjf8Dz2ao7VECYGm5euBdWvhfPkFRPfdv9gjIiIiIiIiKnvqhInmcviwI7vs7/xkIQLf\nfoPo5lvAapFgeepJc1vgymtR8buT+mScqdQxYwEA3vPOMsoYlwFp3Vq0Wt2oWbMU2KPjLLgMwiEi\nIipjImrMRhe1Q7ro2YV4EI55XF87ACA091j4b7sLfkWBWLUS6uKfof70E8TPS2BZvhSOlcvyCtBp\nHzUGG+vHQhs/HvKkiXANr4PXZYPd2ouoCFVLPsgCH2SVKt2SOwin7ZEnAADq+Alp7b4//xX6sGHG\niiV5Kisv/inrGMKfCMIxauDqDiekeGCOputmKQlF1aCqGtCbnzciojIlokYGGclu77yjzfg8F6qS\nXee7sjJt9Z0/PYTa77/C0C8/Qu13X8Dx3TfAfXdBk2X4p85AcIedEdt5F4gdd4S9sjBZ/UQ4ArWi\nAnJ7/Bzm+JMBScB9y43QSylYN5EJp5TGRD2y9rPvYAkF4fj2a1jvuQv+F16FZrXnDMIZkEaMROiU\n04s9CiIiIiIiokEhNXuNY/5TUMeMRfi4E6GNGGm2i4xs8UN22wlrbn8QdWf/1mzzn3sBIgcfho3D\nRsL9n1fgvvsOM1im0LS6oQAA68/Z9+4HIstnn6B6n91hForupOIDg3CIiIjKWcyYva7bOs420hPe\n444yFhIPiCwW6JuNg7TZOEh77WX2CwPY5A8jvHQZtB9/ApYugXXZUrjWrIB3zYrOA3RGjUGwfgyU\nseOhjx8PefNJsE+ZBDler1T8vBhDZs1E8HdnInDtjVnHgKowE85A0EEmnOhecwAA6viJ0OwOSJEw\nfDfegvBxJ5p9UgN4NFXNOob92fkAAGntGqPB5YQIhxGOxBAJhFFZEy9T9f77UDefCjhqs44h/D5Y\n592K2NnnsLQCEQ1KZgYZRxdBOInP5FzlqCoq0PbQY6g8+VgAwMatdsTGrWfh+2NOhxQJo/a7LzH0\ny4UY+tVHqPn2a1R88wXwwO1QrVZsmrIV2radheCOs6HN3AZOrwtuhxV2WzdDGSJh6HYHQscfDuu/\nX4VeWQlYLFArKqGOHNW9Y/WlREpjZsIZ8Cz1oyCEQGTSJDTtfQC8ThsKe0ZOREREREREg4bFAmV0\nAyzxrL7uv9wEx9NPYtNni8wuonFj1m6jUgJwAECbOMnoO2sWgrNmIbbLblC3mNY3Y5bLZhoKAMD+\n3Py8+zIIh4iIqIyJaLyEhDV3Svy86Vpyed1a2H76EQBgyZF9JJPL44BrxhRgxhSzLRRRsDL0/+zd\nd5hcddnG8fuc6TPbk91NIyEJvcbQFRBsCAiKCsSCIqCoYEEExAIiL4gNVOyKgqgUEV8RXrECSm+G\n3lIhfZNNtk0/57x/TN+Z3Z3dnd2Z2f1+rotrzvmd9iSZnR3m3PP8EurrDctavVbGyhXyr1ujhvVr\n1bDh1VRA5+XnNOOFp4rOF29ulbdne+78P/1hKoRj2wX7GZal7FfxCeHULMdT/Ha097SPFHS56Xp1\ns4x4XMbgLgx5+yQTlmzHkffZp9VywjEKn3aG9NprkiRr0aLUtfwBmZGwdtopFbbpvudBmZs3qX3Z\nu9X39ncofMNvs91xMhq+eKH8N/9WuvY76trSW5E/MwDUE3PNakmS0zlr2P1cLzyXelyxQsmDC0ON\n0RPfLbMxb77xvNda2+dX1+sOVdfrDtVzktzhAc189gl1LH9EHcsf1sxnHlP7049K131XSV9AW/dZ\nqi1LDtG21x2m5D77KdDgV8jvUdDvHjacY8Tjcnw+9X/rGulb1+Q2+HzZbj81If0tqprqzoMxMfKe\n517mvAQAAAAAjNP2+x9T+4LO7Hpmmm1JCl7zLbm2bFbsgIPke+KxIc+R31FHkhJvekvlC01L7r5H\nwXpfOK7G4DjvVVWRuX37yDulEcIBAKCO5U+pU1KmE864Qzi5tnrue/6VXe6/4htjOl3A51bA51ZH\nS0CaP0N641JFYkn1RRJ6LZxQfySu/r6IPBvXp4M5a9WQ7p7T+NrqghBORvDqbxYOWJaMZOrb+A43\nPmrXoOmoNt73iNx77lkwZhqGVGIalPwAT+u139FGudR6bep5EPrpD7Lboss+mFrw+wuO9/7jrzJi\nqRuvjXffqW2xpEL+VD2R3gEFGoNyP10cBAOA6cQYGJAk2Z2dw+7nXrVSkhT62iXqufOvkiTH41F0\nnyXyBH2SYajrtS4ZibgO8wUVjiY1EE1oIJJILyeVtG0lgyFtOvhIbTo4Na+2p3eH2p95PBvKmfXE\nA5r1xAOSpHioUVv3PVBblhyitUsOVc/Ou8rtdivkd2dDOUG/WyGXI3PzJiUXLiqq2/F6pVi8Yn9f\n45YJFdMJZ0rxeAhVAQAAAADGKRAoGjI3bpA9e45CX79ckmS9/nDtuOhLajnlXaXPESw+x0SxFy5S\ncu48udevU9OpJ6np1VfV+9ATk3b9MbFtNZ70Dqm5SX2/vrlgk+vp5dnl/ksuV8MwpyGEAwBAHbMs\nW+YwARMjnp4SYpzTURlWrstM62c/KUmKz5qj5H5LxnXefAXBnLToXrPVF95f/elwTl84Lqe3Vyed\ndFDhwY6j0DevLByzLSkSSS37J++NJUZp0HRU7sWLyz/WWxjMmX3tN0vuZu+8UJLkBIIF487MdjWc\nd252venSL8r6xrek/n7N32WOIieeJGN7d25/xyn4VjsATAdGMplacJX38YGdCZHYtoxEQvL55Hal\nAwg+nxyfTz5JPo9LrY2Fr+OxuJUK5kSTCqcfB8xWbXjDW7ThDalvZvm2b1XH8kfU/tSj6lj+sOY8\nfI/mPHxP6vjmVm3Z/xBt2f9gbVlyqDbO21kyDPm3bta8eFz2boXfwJIk9/p1qYWBASkUGtXfzUQw\nMm38TH7fTCXDhuYBAAAAACiTEwjIyNz3kDRj/8LPOsKf+uywMwPYDU0TVlsp1j77yr1+nXz3/HNS\nrztqtq3gh96v0N/+LzsUfuF5WXvuJc9998humyH3Ky8rdsBB6v71rXK3zyCEAwDAVJW0HJWYzSen\nUp1wBk31JEl9Z59bYsfK8nvd8nvdas8L5sTiHdpw658155QTsmPev9xVfLBly4hGJUnOoA4oqCHx\nQd0HvOU/Vx1vcXecwRK775ntJuA0DHpbPOiGWNuvfqquq74p98pXJEmBO/5YsH3H+q1qnddedn0A\nMCVkQjju8j4+8D/+iPq7t2WDj0bAV3aA0ed1yed1qW3Q50GRWDLXOac1qB1zZmvDm94hy3EU2LJB\nHctTgZyO5Y9op3/frZ3+fXfquBkd2rLkEPXN3VmSZLe0Dnlt98pXKhouHjM64QAAAAAAgCF03/ew\nEq+t16z3HFdyu9PSKjmOokceLf+/7yne3tg40SUWXq9hcq83Vu6nlxcEcCTJe/99ch68X40Xfz47\nljzyjXK3zxh8ePH5Kl4hAACYNJbtDLvdyAQcRhFsKKlECMczb45i4zvrmPi8LumoNxaMNZ/+/qL9\nDMuS+6UXJEnmtm2TUhtGz+jtzS5brW2jO9hXxvM6L4A1OITjeuH54v0HBmT8+98lT7Xb0sXacdsd\nShx51GiqlG07MuloAKBeWakQjlNmJxxJClz3M0U++vHUim/8QdhMt7wZzXmv6Y6jaNzSwM5tGthv\nD716yvv0QiQhY/Uqzfzvw6lQzlOPasE//5w7ZpgPmgbPiV41mSlADaYvAgAAAAAAheydF8q180JF\nPnymAjdcV3onw1DfbX9S//InNfNtR2ngs59X6LvfllSFEE5o0BdjLUtyDT27Q7VkvtCdr+FLFxWN\nWQvL6+TPpzoAANSxkUI4mS4jjmd801GVCuFYCxeN75wTpO+b16QWLEu+36fm7PQ8/GAVK8JwrL33\nzi53PfHsqI4t64ZwXgBtcOre3Li+aHezr1ctl39lyNMFfvWL8gtMS1jFPz+S5Fq1Qu6vfEnu/9b4\nPLgApjUjaaUWhpn+UpIGPndB4UAsHQT2jdy1bCwMw1DA59bMloAWzGrUnju36cA9O7X02EPVfv65\n6v/59Xr2vqf06E1/03OfuUSbTjhF0WUfKDpP/I1HpxYSiQmpc9TohAMAAAAAAEbQ/61r9Op/nlTP\nL27IjvVc9+uCfZwlS7Xpvy8ofHHu8+7JD+EMmvq7Vj5/GSS+clVZ+xHCAQBgivPe9WctXtQu14sv\nDLmPHatUJxyraGjcU1yNU88NNxWNbf/z3xR7z8mpFSupxCGvlyT1X3bFZJaGUbAW7aJVf/y7Nj7y\ntFyDp4sagRGNFI1F3vdB2a256UacvJu/g/8Hw3/H/xYdb27aOPxFh5lPdyjJIUI4bYcuVetPr1Xr\nMUeP+pwAMFmczIcjI0xHlTzokNwx/oCMeLpf3gSFcIZiGIaCfo/aWwJaMLtJC998qDq+9Hm5rvuF\nrD32LNo/uWcqDBoPp36n2M4IAeeJlgnhjOH3DQAAAAAAmD7MRQsVP/EkRU56r8KnvF/xE95VtI9r\n7tyCL/o4jU1F+0wke9bsgnUjWYMhnP5+dZz3SUlSYv/Xaf1LrxZsjr731OyytcuuZZ2ST3UAAKhT\njZ87V4bjKHD9MJ05sp1wxheYMSLFrfg03u464xQ/9nh1rd1cMOa0tckx09/Utyz5f5dKftudsya7\nPIxCcr8lci/cefTHve4AbX/3MvV98tPZsf7v/UgDX7w0uz5wydeyy54H7x/xnI3nnp1d7r73IfW/\n930F250x3ExOJkuHcPJ1//g6rd3Upy07IuoLx4cM7gDApEuWNx2V4817fXS5ZMRSIRynAtNRTah0\nUDk+kHqvkyjjNXtCZUJAhHAAAAAAAMAwvO7UZwf9P/2lBn7wk2H3TRxwYGphkqeCsmfOHFRI7YVw\ngtdenV2OnPsZeVtbFDvyqOxY39XXauvKdeq+72E5M2aUdU4+1QEAoF5l0svDfWM7numEM77AjBEJ\nF6xHDjtc1uJdxnXOiggEFHv78dlVe9as3JtIy5J75YrsMmqX3zvGN/4ulzZ/4/tKvOvdheN5yf7k\nkqXZZWvnhSVPk985x/3Ky5Kk/uPfKWuvvRX50U8L9nUixd13hmP09mjOKe+Q519/Lxg3M8/NtN0v\nPU+rN/Xq+TXdeuLlLt3/zEY9+OxG/feVLr24djsBHQDVk/kdOkInnILAr21L2RBOdTvnjSQzZef8\nU46XEonqh3DSnXAcpqMCAAAAAADDMEbx2cGOu/6hVS9vmMBqSst8SSsrkZz0GkZiz90puxx7Z+pe\nQ+LNb5MkJRfvIvn9chqbZO25V9nnHP5TNAAAUNdCf71L0vg74VjzF2SXt33yPMW+fKk8NXJzKPLJ\nT8l3912Knrws1UoxnaT23fsvWTPb5drapcQbme6nlvk8Y0/f+7wuyR8oGEsc9gZZwaAin7uwYDx8\nzmcUuP66onNYu+wm87FHCsbMOXNKX3D9+mHrcRxHztq18r/4vKxYTJ6tXQo+/oiCy96jri292f1m\nHLa06NgjL/qIBjrnKtw5VwOdc7KPPTM6i76h4HWbCvjcCnjdqUe/WwGvSwGfW24XOXsAFZTuhDNS\nCEe+whCOMTCQWg6GSu9fK/Km7DQ3b1KiuaOKxYhOOAAAAAAAoPJMUw3Nk/8ZTeLAgwvWjURcVZ4I\nvFj6C1G9P8ndO4ic8VFp00bFzvzYmE5JCAcAgKkqv0OOd3whnPCnP6fQ1d+UJFkLdpbHXTs3hhKH\nvl7bnn4pN+VUXljBtbVLyaaWgs4oqD2mOfZ/H6/blLVwkeK77Kb4yam5Wa1dd9PKR19Qa3tLwb5O\nQ+NQBRQN5U9htuP3f5Ln5z+R/8nH5Xv2afXHYtIQ01JZlq3ZB+83fNGZG9P51/P61Pnfh0vubrvc\nCrfPUrhzTiqk0zFHA7NSj72dc7W5vVOOO9ftKhPQCfrc8nsJ6AAYHyMzteUI7YoLA7+O3M8/m1pq\naJio0ioiv+7AT3+kXW78lbbf/5jseTsNc9TEMZx0Jx7euwAAAAAAgAoaTeecSrH22FMrH3lOc37w\nbQVu/JWMnh5p7rxJr2M4Rl+fJMlpzLt/4PMpctkVYz4nIRwAAOrVSNNR5U/B5BnfdFQKBnOn8ntV\naw0D7VmzcyuDAhV2Q41/Ax/j4nGbkuFT9/2PypX3b+9qCBXdwHRmzNC2y78p16KFavnAydnx2Anv\nlOeRhwr2tWflQjiJNx6t2JFHyfXJj8r/h1tldm0Z8uZs20nHjViz/0+3Z5e3/+PfUjSm5MGHSOGw\n9Nqrir68SvGVq2SvWSPfxvUKbl6v0OYN6njq0ZLnc0xTkRmd6e456aBO+nFL51xF2mfLTgfxBgd0\ndrnuuwo+cJ96/vSX8b9OAJiSjHAqOOiERgjT5IUTDdtWw4XnpZa3b5+w2ioib8rO4E9/KEny3/I7\nhc+/aNSnsmy74HfRmGTe1hmEJgEAAAAAQP1rWriT7I5U52Gze5usEfafbMZAOoQz1Jd4x4AQDgAA\n9SobwhliezIvKlPBhLPZ1FSxc02GEW8aoq5l0vuDb3p6huj4Yp/9cdnRaMFY5KyPa9tBh6vl979T\n8y9+JKn4eWMahuyZM1PL3duyIZykZRd0l/ENCvOUYm7ITWmV3G9JbkMwKO2+h/y77yF/eigcTei1\n3pi29UbVt71P/i0bFNy8QaHN6wc9btDM5/8r49kniq7nGIaibe25Ka460o+z5qrle9+SJIWu/JoG\nLr18xNoBTD9Gf+aDiOF/nzr5Qb50G996UGrKTnPdawp+7tOKfPVyOU3NZZ3HtfIVuf7xT1kfO3t8\n77tsOuEAAAAAAICpJRNwyXzZq2ZEIgpdnfqM3CaEAwAApFF0wqkga+eFE3LeCROiE850NOyUaX5/\n4bppyt5jT8WvvEpKh3Cs+QuKDnPaZkiSjG3bsmPRuKWGQPpaeT+L3ad+SO6gX02/+lnxeUYxNUvQ\n71HQ79G8jgZZdpu2981Sd+/e2tgbVTRR+DNuJBMKdG1WaPP6wpDOlg0KbVqvthef0cznl5e+zg+/\npx1f+qo87uGnmwEw/Rj9/XJMs6ArXilOMO/3bd7roRPwl9i7hpSYsjPw219LkowZMzTwpUuHPtZx\nlFz7mtw7z1frm4+QEQ5rx/77KXHo68deT+bvbhxTNQIAAAAAANQSx5/qoGx2dVW5kkKuDeuyy5Wc\nUp0QDgAAU5RhTcykUU4gMCHnnTAVfOOE+uEeohNOhjVjplzbtmbXQ/7U2+K+r31drjWrZe27X9Ex\ndjqEY+YdF4kl1RBId3+IxVLnWHqwold/V42/+3V2PyeQunltO052Ofzxc0f1Z3KZpmY2BzSzOfUz\nOBBNqDvdJad3IC7b7VF49jyFZ89Tqf+VMayk/Nu2KLQpFcyZ+8A/NO+Bf2S3m7f/QTr5ZDWf8HbF\nDz5UkUsuG1V9AKYms79fdqhhxM4sTnt7djn0jbw5s2t8WiVnmKn4jO7uYY8N/OhaNVz2ZfX85hYZ\n4bAkydy4YXwF0QkHAAAAAABMMe6XX5IkNZ53rqInLyv5pahqMLpyn/UzHRUAAJBjFHfCsW1HZuab\n08mJCeHI55uY804QpqNCKVv/9YA69989u56Z1ir68XOGPCYbwulOdcIxN2/SXvvupvguu6nnwcdl\nDKRaaZqdHfJ43AXTsdiNjZLjqL8/ppZ7/ilJShx40Lj+DCG/RyG/Rzt1NChp2drRlwrkdPfFFEsU\nd8JyXG5FOuYo0jFHkrTuyLdr3jty02HNOvcsde+zt7yPPiTvow8RwgEgKTUdlV1OoHWI0Ejk9LMq\nXFFluZ8u3SFMkjRCoDl47dWSJO/f/5Ydy/wuiMSSCvjG8JFLthNObYeXAAAAAAAAyuVauya7bG7Z\nLHveTpNbgOMo+N1vK7r/UtlvenOulq7NuV0aCeEAAID0zS7LtpVI2jIMKRxNqimUThBbqQBA7OBD\nK3pZx1tfIRymo0Ip5uzZWv3AU2psLv/54cxIT0eVDuH4/vB7SZJ3xcup8fR8tq70m3UjEc8ea3d0\nqvWIg9WybZs8mU46rsq9FXe7TM1sCWhmS6pLTn8koe7eqLp7Y+oNx2WXmLbO9vr0xPV36IDTT8yO\ntR11WMVqAjA1GAMD2RDiaFnNLXI6OytcUWVFT/uIgj/7ccltRolAcyJpyWWaqdBzLPU6b/ty394y\ntm+XcfPNcj3zrLzz5yh5/Amj+2ApHeB06IQDAAAAAACmiNjxJ8r7r1RX9vgll+qZL3xj0B6OzFhU\nrmgk+58ZjcgdjcgVjcoVCcsVSz2asfRYNJx9NKPDj3n6eiVJIUlbn1uZ7ehsbt6UK6GCX0AnhAMA\nQJ1zPfSgPDfeIO+WjQq88KISv7pBMozsdFTO3LkVuU7P9b+Tff/9BdNN1AM64WBI8+bJCQw9Dclg\njt8vSTKiqWmn7PyfrURC4W07NEOSkw5+JQ7JC7REo3Knwzq5ExYHYyqlIeBRQ8Cj+Z2NSlq2uvti\n2p4O5cSSeV1yDjhgwmoAMDUYVlKOu7yPDvo+eLoaf3N9bsAu7spVa6zd99D6dd2aO6+teGOJEE50\n/Sa1XnmpQps3ynBSgRn/LTdltzdcfokK3nl85Qvaumq9rEBI5ghTJUqiEw4AAAAAAJhyoh/8sBrP\n/7Qkafadt6lh+eMyE/FsyMYdi1TsWo5pyvIHZAWCsnwBJZqaFZ6/SM3PpbohN31omXr+kupWb27Z\nIknaccfdFZ0anBAOAAB1LrDqFQUu+kx2fWtXl5yODslK3/iqULeN+HHv0MCbjlG99ZVxyplCA9OS\n2zXKN9WedGAnmUg9JhLZTU1nfFDtf/2LJMkJpn5Kkvu/Tusff06zjn+zjGjx/0QY/X2jL3oM3C5T\nHS0BdaS75PSF4+rujam7Nyr3EDeErdYSN6MBTE+OU/aHEH2fvbAghGPkTctXy7zeId4rWYUhInPN\nai06eP+i3Vw9O+S4XDKs0qGjmYtSoc3ey7+u+LIPyGluGbKWTLCnkh/8AAAAAAAAVJVhqGtLrwI/\n/aEC37hCgYE+OYGA7JkzlQwElQgE5ARDcgIBOcGgnGBQSo8pmHkMSoGgFMrsl3rMbM+MyeMp+bnK\njnv/pZZT3iXvE4+lPvNxubKdcOyOjor+cQnhAABQr4a4OWPEY3Kk3Le3Xa6KXTLkL79rSDX1/Ppm\nNX9omaRcVxJgsKECKENx3KnnvxNPhW+cvBCOLx3AkSRz44bssnf+TrIbGmX27Cg6n5lugTnZGoNe\nNQa9WjBr6DlujVh0EisCUNMcR0aZgRBz7uzCMIo9cR2/Ki12+Bs+hq43AAAgAElEQVTlu/++wsFk\n7nXesm3NeMuRQx7vBEMyRnhdb/rKxUrcerN2/PM/Q++U6YRj0AkHAAAAAABMLZGzz1Hk7HOqcu3E\nG4/OLrtWr5L/pt8ocNNvJElWx6yKXotPdQAAqFdDhXAGBlIL6Rtg5U4hMZXE335cdpnpqDAUlznG\nTjjp8E3zZz5Zcjejt6dwIOCX2b2taD+7pXV0158gPb/8jZLNLer9/o8Vfu8yJZYeICMSmdDpsgDU\nkVF0wnG5XLIbcgE/ow6mo8ro/e2t2vae9xWMOYmkPPf+S+allyj84KMyB7++53OXF3r2PPPU8DvY\ndMIBAAAAAACoOMNQ9JTUZz9trz9AwWuvyW2r8IwKhHAAAKhTjoYK4fSnHjPfQjcr1wmnHjnBYLVL\nQI0qt7NDRibQ5sTjsoaZYsXI65AjSY4/UHJKlthJ7x3V9SdK/B0nquvFNYot+4AGfvQzOc0tMhxH\nitINB4BGFcKRJDs//DrE9Ew1KRDQju9cq+TsObmhv/1FLae8SzN+/F0tevfbhj/eLP3xSu9V31H/\nRweFNocLOWZ+XwxxPgAAAAAAAIxN/A1HTMp1+FQHAIC6VfoGjhEOpxYy01GV+c3sqYoQDiomrxNO\nrDc85G6Rsz5esO74/UX7hE95v1RDXaryp+Zygqkp3LKvJQCmN9sZVSDEacyb6m6YwGIt8rjM4sDM\nIMnZc7Th2VVF40Zv8VRU3dfdqNgZH1XkiqsKxtv22VVOd3fpC2QCOoRwAAAAAAAAKsppb5+U6/Cp\nDgAAdcq9aWPJ8aLpqFzTPYQTqnYJmCIcdyqE4yQSarn4c0Xbwx8+Q12vdSl+zLGFG0qEcNRaG1NR\nlZIJrhnhgSpXAqAmjLYTTsF0VPUVwvF6TDmHHz7sPu6NG+SZ2VY0PrgLmiRZJ7yz5DlcXVsUPPvM\ngjEnE76x049MRwUAAAAAAFBRTt7nVnYwpB233aHu+x+r+HUI4QAAMMXkpqNKd8Jx1U63jaoIBqpd\nAaYKbyqE03jXn9T8h5uLNjvtHZLPV3ycv/g5WNAposY4gXQIJxKpciUAasIoQzhOhefQnkwu01Ry\nyVI5JbrQRE77iCTJmtkumaa6H3xiXNdquO+fcj/+qBzHkfeOP8r1/e+mNqTDOKVqAAAAAAAAwNgl\nDjlMfRdcrB033KTuZ15S4sijZO22e8Wvw6c6AABMMYM74dTSlDfV4Hi81S4BU4TT3DLsdmv+gtLH\nleqEU8MdquiEA6DAKEM4pYKH9ea1F9aq/83HZNcjZ35MA1/4svoPO0K9N90mSbJnzRr2HLHDjyxY\n33H7nUX7GBs3yrzxBjWf9WHNuOJSaWBAhpPuHkQjHAAAAAAAgMoyDEUvuFiJY4+X09g0YZeZ3nfl\nAACYgszVK+X09EjJdAinhm/2T4ppHkJCBY3QlSBx6OtLjjuBEjeka3iakVwIJ1zlSgDUAkOORpMI\nca9dPXHFTBJfc5OcJUukf/5VkjRw8VfkNDVr4I93yjRTfxeOr0TAMs3xetVz2x0Ff2uJw49U19rN\ncr/0gnx/uFXBn/5ILWeeVnCcEY9lO+HI4DtTAAAAAAAA9YhPdQAAmGJCP/ieZizdW4adCuE47ukd\nwnHcnmqXgCkk/JGPFo2tf2aVVj21UvbOC0sfZNsTXFVlZUI40e29Va4EQE1wHMksP4TjefH5CSxm\ncpimISM9NZ8kOcFQdjyrRMjXntmeWnC5ZZQKbgYCSi5ZKru9o/SF44nc74waDmsCAAAAAABgaIRw\nAACoU84wHW5cfb1qOfHtqRVzmodwGhqqXQKmECMRLxrzds6Ud2bb0MdEo5JSnRFygzV8czXdhWHW\nR5bJ9fxzVS4GQNVlOrOMQeRDZ1SwkEnm9+WWS3XVK/E6ntxzL0mSM0LnNHPL5pLjRiKe+/se4RwA\nAAAAAACoTXyqAwDAVDdNp2Pa/pd/atvnvygrfUMMqIRMoCYj0zXG4x76bbURi0mS7Nahgzq1xLVu\nXXa56aMfrmIlAGqC48gZY6C3/9vfrXAxk2gs4SNPuvuezzvsbvFj3zHEhrhkpacTJYQDAAAAAABQ\nl/hUBwCAOmVkbtKMYLiOOVNZ8oCDZF/4hdruOIL6Ey/shNPzm1slSeYwzzMjPCBJcmbMzA2Oo7PE\nRBu44OLscnKffatYCYCaYNsypuHvUmP79lEfE3/zWyVJkRJTF+ZLvOEI9Z/3+aJx73/ukyIRSZLj\nD4z6+gAAAAAAAKg+QjgAANSj0dzAd03PTjjARIh+sLAzTOKQw0Y8Jn74G1PHLnt/dszo7a1sYRXk\ndHRo4z8fSC03tVS5GgDVZjiOnFFkcGLHnzhxxUyi8GfOl2MY2n7V1UPu0/XMK4rk/V6InPVxrb/r\nHoUv/OLIF8gPZqb5f3uDQpd+SVKu0xoAAAAAAADqCyEcAADqUboLTnLnhdp07c8lSfEDDspujnzo\njNy+7unZCQeYCImj3lQ4kJl6ZBiRsz+pFTffpcjZ52THYie+q9KlVZS7sVFSrosPgGluFJ1w+q/6\n9gQWMokCAb326jZFP3zG0Pt0dsppaMytG4bcBy4t6+/L8eSmrIoenAp0OqEGeVavTC0H6IQDAAAA\nAABQj/hqPAAA9ci2JUnWgp2VOOk9Wr/X3vLPaFXrW46UubVLyT32yO5qzZ1XrSoBSJLHI9dhh0qG\noVdXblI8nlDzjOZqVzUs0+9LLSQT1S0EQHVlOu+NIoRjd85Szw03Kbn7HiPvXOPcLlOmOfyf3YjH\nJElWS6uk4acnzBc99f2y7rlHzqc+LWPNavkffUhm97bsdicUGmPVAAAAAAAAqCZCOAAA1CE7kUwt\nmKa8Hpe0996yTUPb//FvWQ8/LPfuu2f3ddpmVKlKABlBX+ptt+HzylNG95xqc9ypGo2kVeVKAFTV\nGEI4khQ/9vgJKGbyedxlNA+Ox1OPPt/oTh4MqutHv1RLg0++9eskSUYkkttu0LgYAAAAAACgHvGp\nDgAAdci20iEcl0umYWS/pW3PmSvrnSdJAX92X6YzACorfO5nJUnbLr607GMyP6OGDLnMOngLnpnG\nLpmsbh0AqmuMIZzpxIilOuGMOoQjKeRPBTQdV+o119i+PbfRJgQJAAAAAABQj+rgDgAAABgsHktP\nEVPiZr7bZcpx5ZrdOX5COEAlDXzlMq17eoUi53x21Mcahkac2qQmuNOvIUxHBUxvhHBGlNxnP0lS\n/I1Hj/pYTzrwaESjkiSzZ0d2m2ERwgEAAAAAAKhHTEcFAEAdshLpGzOmq+R2e/6C7LITCk1GScD0\nYRjydrbLGduhpbJzNScT5DN7eqpcCYCqyoRw6uGFq0oiZ50ta9FixY88asznMDduLBpLHHzoOKoC\nAAAAAABAtRDCAQCgDiWH6YQjSTIM9V3zA5nPPl0QyAFQGYZhaCx9IQyjTqaj8nhSD48+LKN7m5y2\nGVUuCEBV2HbqkU44Q/N4FD/m2PGdw1340cy2m26XPXfe+M4JAAAAAACAqiCEAwBAPXrttdSjq3Qn\nHEmKfuBDk1QMgHK56mEqKqngtcW1YoWSB0/NEE6sb0C+xpCUTBbdBAcgpqOaLIN+N9jz51epEAAA\nAAAAAIxXHXwNFwAA5HO98Lx2e+/bJElOMFjlagCMhlEvN7Lz63TGMvFW7fPf8EvNWzxb7R1Nap/T\nJt9tt1S7JKDmNH7uU5Ik9ysvV7mSKS6RLFg1fL4qFQIAAAAAAIDxIoQDAECdcS9/Mruc3GXXKlYC\nYDowYtFql1B5iYQaL/hswVDoqiuqVAxQu/zpcJpr/boqVzK1JY44snDA569OIQAAAAAAABg3QjgA\nANSb/A4VdMIBMMGM/v5ql1BxrpdeLB6sl6nCAEw5ySVL1X362dl1p6WlitUAAAAAAABgPAjhAABQ\nx5xgqNolAJiidlz5LUmS0d9X5Uoqz47Fi8Ycl6sKlQDlM1etVOD710i2Xe1SMAHCV1yl6CGvV3Sf\n/SWmowIAAAAAAKhb7moXAAAARimvE45DJxwAE8To6JAkmVu3VrmSyrP6Ut194oe9Qd6HHkgNejxV\nrAgYWetxb5bZ3S1r190UP/b4apeDCvN5XOq94y8yDLpyAQAAAAAA1DM64QAAUGcC11+XXXYChHAA\nTAxrr30kSe4Xn69yJZXnevq/kqTkvvtlxwg1otaZ3d2px21TLxiHFAI4AAAAAAAA9Y8QDgAAdcbz\nxGO5lWSyeoUAmNKsOXMlScamjaM6znGciSinYozubZr5P5dIkqyFi7PjTlNztUoCRseyql0BAAAA\nAAAAgCEQwgEAoI4Z8Vi1SwAwVQUCkiQjNrrXmcTdf5VqeAorz2OPZpddmzYqdujrJUlOY1O1SgJG\nx7arXQEAAAAAAACAIRDCAQCgjsWOfUe1SwAwVRmGHJdLSozccctOd79xP/OU5n74FLW+420TXd2o\nWenggrl+XW4wPKC+X9+UWk4kqlAVUB738idzK4RwAAAAAAAAgJrlrnYBAABgbAY+eHq2UwUATAiP\nR7JGDuE4d9wh+bwy0/u6V62Y6MpGLZG05fKaMsLh7Fj40+fLcXtSK0lCOKhdoa9+ObfiEMIBAAAA\nAAAAahUhHAAA6kzs7cfJd/f/KXLxV6pdCoApznG5R+wQ4/niRWr/xY8lSVZ7R8VriCUs+TyuUR2T\ntGy5XYVNP+MJW36vZIQHJEk7br9TTmenlJ5uy6ATDmqM4zgyDEOSZG7tyo4bcZ6rAAAAAAAAQK1i\nOioAAOpNetoX+X3VrQPA1Od2ScmhO+EYW7aoJR3AkSRX15bKXt9x1PT5T8t99/+VfYi5cYNCH/2I\njC2pWqxIRNq8Wcaf/yQ5joyBVAjHCYVSB3jSnXDKmHYLtcWa4tMyxRJWdtnx5n7nZ4JkAAAAAAAA\nAGoPnXAAAKg36Rvijjm6zhAAMFqO2zNsCMe1eeOEXt9cvUpNN90o3XSjurb0lnVM4yfOkvfB+xVp\nDKn/ez/SrAWdkqR2Sdv3WCzvX1OBHieYDuGYphzTZDqqOhSNWwr5p+73SmJxS35v+n/Zfd7suBGJ\nVKkiAAAAAAAAACOZup9YAgAwRRmZG+JusrQAJpYRj8u9Yd2Q292PPjyxBZT5OmdnOoRJMjelgkFG\nJKzEr64v2M/ctEnuVSsl5XXCkVLdcOLx8dWKSRdPTO1OONGEJSf93K52Jxxr1uxJvyYAAAAAAABQ\njwjhAABQbzLTbxDCATDBzL5emeGwNETnjeAPvy9JGvj4ubIbm4Y8TyI5xrDEMF14shxHA+s25dZ9\nqbCCa8MGzbno0wW7Gtu7c4f5/Lllj0dGgk449SZpTd0QjvnqWjX97gYlk+kpqTLTpklSODz5BRnG\n5F8TAAAAAAAAqEOEcAAAqDeZm9Imv8YBTJLeXtnhSLYrR0biDUdIkuInnyq7vb3wmLwATSxhjemy\nRhkhHN8fbtWiA3aX89vfSsp1DDFXryra1+zLTWnlzJiRW3Z7mI6qDtm2M/JOdar1TYdr/mUXyXXf\nvZIk28j9zjfGEcKxnTH+nRHCAQAAAAAAAMrC3TsAAOqMYVlyXC5uiAGYcE4gIEkKXfFVde7cKWf5\ncklSdFOXolu7pfQNfbupWU6oofDgWCy7OOaOJSNNEWVZavrkRyVJ7eefI0nyPPVfSZK5tatod6Ov\nT3YgqPj+rysMMno8UqKMrjuoKWMOlNQBs7dHkuRs3yFJMrZty24z1q4Z83mjsTE+z3nPAQAAAAAA\nAJSFEA4AAPUmmUyFcABgghnpaaiCN6e6zPju+KNczz6jnfZbrI7j3iT/rTdJkhx/QH3X/qTw2Fg0\nu5yMjRCmGer6ed1povHi8IBr5YrcvrYtRXPXNEoENIze3lRdeVNRSUqHcBJyP/m4mt5zoowd28dU\nLyaXNYU74WTMOueM1EI0omRziyTJt/zJMZ8v9sxzI4fbSiGEAwAAAAAAAJSFEA4AAPXGtiSXu9pV\nAJiGWn74XbW96Q2SJN+avOmeAn5Ze+0tu7EpN5buLGNs3ao995yr5nceK98fbh3V9Tz/vje73HHI\n/tLgaXh27ChYbT3qMDnDhAWCP742Fdbx+wrGHbdbRjKh5lNOku8/96rh4gtGVSeqw7adoinS6l2p\nKbbMzZvkW/GyXOGB3OAY/tze66/TbscfqcD1vxh9YYRwAAAAAAAAgLIQwgEAoN7QCQfAJOm5/ndl\n7ec0NUuSBi67IjuW6WLjeSrVtcP70ANq+sRZBd1qpOGnqmr4n69ml33rX5Pn0Ydz69+7Wr6f/7hg\nf/eqlSU74BTVmx8WkiSvV4rGslMA+UcZFsLkMzdv0oKLP634pi3VLqVizB/9QMaPf1g0PmPf3SRJ\nRiLXGUqWNerz+25LPa+9f/j96IsjhAMAAAAAAACUhRAOAAD1xrIkQjgAJkH8rceMuE/fN67OLkc/\n+GH1v+fU1EomMGAXhmyMaETGtm3yXvR5matWKvH8C3LKnP7JtWZ19pxNV3xVoT/dXtZxgzmNjQXr\ndken3Nu35bb7fIMPQY1puPBzmnnnHzTr6EPHNr1SlfVHEoMG+jXjq19Ux2VflLF+3ZDHxQ88OLWQ\nSAy5z1D8jz6UWkgWT+02MkI4AAAAAAAAQDkI4QAAUG+SluRmOioAk8DjUXTXPYqGEwccpNjb3i5J\nir37vQXbjIA/9ZgN4RR2pjHCYc3cc6Gaf/Uzhb5+uea/+TB17LagrHKMntT0U0Zfb8F477U/Gfa4\nHbf+b8G6ue61gnV73k4F64mlB5ZVD6rHSWdC3N3b1PCVL1S3mFHy/f5mLVwwQ8aWXBcf39/vzi67\nfz90JyanrU1SrtNUufJ/Zoz+/lEdK0kyCeEAAAAAAAAA5SCEAwBAnTGspByTTjgAJofhL+4Kk9xn\nP/X+5lZt3tQjp7mlYJvp9aYWMiGcQdPmNJz/6exyfvDAc989I9Zi7kiHcHp6CsZj7z11yGO67/6X\nEke9ScmFi7Jjdnt7wT5256zCgwz+N6nWWYt2yS57/3JXFSsZvaZzPiZJajn1JEmS98471HT2Gdnt\nLVd+deiD3Z7UYyQ69D6lhCPZxcEhtnI4TEcFAAAAAAAAlIVPlwEAqDeWJbkJ4QCYJCWmZrI7OiRJ\nZonuGI4nFcJxYjHZtiNz08bC0/3z79llIxzOLrvvu7foXIlDDpMk9RxyeGr/Hdtlrlkt6/Y/Zvfp\nWrOpaIo+a6f5uZXGptS5jjw6O9R/1XcKax70Z/Q++J+iWlBbnEzYS5Jr0HOsXrife0bNb3+TGi77\nctnH+P7vz5Kk0Le/Pqprmf254I17a5fMDevLOs5uT/2sRz5+7qiuBwAAAAAAAExXhHAAAKg3ySTT\nUQGYNK4d24vG7JntJfZM86Q6dVgrViph2Wr8wvllXafhB9co9K7jpUiuY4eSCdker3b85JepWl5+\nSTMO3l8dV14iSRo4/yIpGCw6l7Vg5+yyEwpJkvq/dqW23HCLujZ0y2ltKzygxGuq0dtTNIYa4oy8\nSz3wPvm4XGvXlNwWOXlZwXrs7cfljvvb3YN3H5b/xhsK1geH44YSO+ZYSVLijUeN6noAAAAAAADA\ndEUIBwCAemPZRV0fAGCiuFe8UjTmtLYOub/jTYVwOs45U9bAwKiuFXzwP3L/3525gXToMNgxQ5Lk\nfeyRwgPyOtgMnHV2drkghNPQkFoIBGQce2zpwE1/f3ExieSoasdkK5HCyQ9w1amBz39Bkbe+XVuf\nXyU7v6OTJGvX3ZXYd39JUuKwN4zqvPbs2QXr5tau8g50pkjaCQAAAAAAAJgkhHAAAKgzhpWUXHTC\nAVA9jj8w9Ea3J7u4YLd52eXIh87ILkff9e5smGAwK2HlVpKWHLc7211nsMQBB+Uuu2lT7hx77Z2r\nNdQwdK3Z66QCN7bPP/K+qAn50ZDEAQfKc++/1L6gU76bflO1msplzZg55LbYCe9S/29vlTNzpsKf\nOq9gW/iz56v/mmslSXZrq8zXXpXrxRfKuqaTDp/F3vI2SZJrzepR1eyoeOo5AAAAAAAAAMUI4QAA\nUG8sSw6dcABMsu5vf199510gSUocfMiQ+zlDBGYKutO0zZDnmady5773odx+eZ03jERi+On3bDu3\nb2+vJCn2ugNkt3fk9inn9dJKhXCcvM46sqwhdkatsRYsVOD66yRJ/h98T3aNd2+x23LTofUf/VZt\nu+V/1XPjLdr+l3/K2nOv3I7pqdQynMambGcn18svacYB+6jtyEPKmlrKiMYkSdaee6ePf7m8Ymv8\n7xIAAAAAAACoNYRwAACoM4aVlNyEcABMLiMUUvTir6hrS6+cthlD7+jxlhy229uzy9H3n1a4bV6u\nY07nZ3LTSslKZkM44c+cnx3u/Z9vqPeDpytx+JG5+vpTIRyjuVlOIDjyHyhfen/Dkwv8GBbTUdU0\nOxcOcT/3jIxoaiqqfrn1wNMbtXzFVq3e2Kvu3qiSlj3UWaojHYiRpPj5F8g++k2KH3OsknmdnYbi\nBFPBHN+/782OeR56YMTjMn8/yV13kyQFfv3LghDbyCegEw4AAAAAAABQDkI4AADUm6Q1fGcIAKgg\nu7EptTB33vA7ZnhKvz4l99lPA0e9Rf0fPkvJ/ZbI8eemfnIaGgt3znTfSCaz0+gMpLvwSFLs9DMV\nu/r7BV1ukrvvKUlKLD1Qco3uf3Ni7zhRiY5Z6rv2J3kFE8KpaXmditwvvSijq0uSZHu8shxHO/pj\nWru5T0+v2qYHntmox1/copdf26HN28OKxqv7b2vEotllp3NWWcdY6f2cYHHAzP3QgyNfs3ubJMnu\n6MyONb/3xJEvTCccAAAAAAAAYFTK+nT6qaee0mmnnVZyWyQS0bJly7Ry5UpJkm3buuSSS3Tqqafq\ntNNO09q1aytXLQAASN14NOmEA2BybP/7fdp65XeUPOTQsvZ3hnh9svbZVwO3/EGRb10tSeq5/re5\njaapvm9cnVuPpkMK+dNRBYPavKlHmzf3SN7ibjsDl39dvd/5vsLnXSDHHF0IJ7lkqbY/85Libzkm\nb5AQTi0b3KnI3LFdkjTz+f9q19tvUOfjDyjQtUlyHDmS+qMJbdg2oBfWbtfDz2/Ww89t0vNrurW+\nq1994bicSQybGLGYHNPU+p/eKDtvmrZSuh94XD0f/Ii6n3hWkkp2eQpe/wuZq1cNex7Xpk2SJGvR\n4uyY9/5/j1xr5u+FTjgAAAAAAABAWUb8Gv3Pf/5z3XHHHQoEAkXbnnnmGV166aXavHlzduwf//iH\n4vG4brnlFi1fvlxXXXWVfvzjH1e2agAApjEjb3oWAJho9qLFUt6N+5G4Nm4YcpuRdyPfnrtT4ca8\nYI0RDssJBOQkk5LXlx03zaGDAE5Ts2KnnZ5abm4pu97BtUVOO12BG6+XkddpBTUoWfjvk98hZslP\nrsouJ4Ih9c5frN4Fu6QfF6t3/i4Kd8xWNGFpy47UNE0u01BzyKvmkE9NIa+aQh65RhnmKpcRjyu5\n7/7yvGvkTjTWrrsp9q1r5M50d/J4Su7XcOkX1fvrm4c+UTpU5mQ6W2UvYBV0lBq6aEI4AAAAAAAA\nQDlGvIM3f/58XXvttbrwwguLtsXjcf3whz8s2PbEE0/oiCOOkCQtWbJEzz77bAXLBQAAZd8wA4Aq\niL73VBl33anAypeH3c/adTf1fObzcpYeIEky+nqz24xIWOpxybNlsxKLdx11DcmlB2rD+V+W+9hj\nNOroQOb1lRBOTXPswn8f90svSpJe/P71ivf0yfPyS2pYu0JNa1eodcULmvHi0wX7J30B9c5flA3l\npB4Xa/WseZLLJdMwFPK7U6GcBq+aQ175PBX43es4MmJROT5fQShtOO4hplfrv/R/1HDZlyVJrleG\n/3lTpnOQ16Mtv/iNOs76oCSp6fT3q/fGW4atFwAAAAAAAED5RgzhHHPMMVq3bl3JbQcccEDRWH9/\nvxoaGrLrLpdLyWRS7hG+sd/aGpTbzQ1FAOPX3t5Y7RKAieM4km3LE/DxXAfPAdSm9oO17sHHNa+z\nsONGyefrd7+VW/bl/l9gRrNf+viZkiTPylfG9Fzf+IUvqK01MGSAYUiNqY4qbU0+iZ+xmjH4OZB0\nlw6w7PGBE6S2NknSQCSh3oG4Nu7oV/zFl+U897wCK19Ww5oValjziprXvqK2V54rON7yejWwYLH6\nd95V/TvvooGFu6p75121bt58+UMBtTb51NroV2ujTw3B4mnR5DjDd41JJCTblrcxNO7X8IZ9dpe+\n/nXp4otlLlgw/PlcqZpmdrYo/qFlUjqE4/vrX4Y/zp/qvDNjZiM/D8Ak4f0dgOmE1zwA0wWvdwCm\nC17vUio+l0VDQ4MGBgay67ZtjxjAkaTt28OVLgXANNTe3qiurr5qlwFMnGRS7ZLitqEenuvTGq93\nqGX9vdGC9chpp6t/hOercfIHNfOiiyRJ3Zt3qO3vf89uG8tzvbc3KtO2ZI5yGp1Q3FZQ0vauHiX5\nGasJpV7vAgNRNUiKLD1IgScfy453hW3Jyu3rljSjOSgdskQ6ZInC0YS6IwmtDSfU3xeVvXqVQmtW\nqGntSjW9mnlcpaZXXii4nu32qG/uguy0VusWLFZ44a4yd9tVbXZM+x+1f66GjduH7Fhn9PdppqSY\n6VbvGJ9f7enH3g1dip15jtquuFLWho3Dvi9oDkflldS1PSL5bLnv+rtaj39rqt5hjmuMxOWXtG1b\nv+wQPw/AROP9HYDphNc8ANMFr3cApovp9no3XOCo4iGcpUuX6p577tFxxx2n5cuXa7fddqv0JQAA\nmL6S6ekkRtvZAQAmkcede43a/OoWmX7/iMc4DY3q/dAZavr1L3OvdePgcpmjDuCkD0w9VqAGTKD0\nv8+OC7+swLJ35sa9JbrT5An6PQr6PepslaRmObt3KBI7UH3hhDaGE3o5Eld/f0y+zRvyQjkr1bR2\nhZpeXanmtSsKzmebLpmDpsYy16/TjAP3lSR1beiW8r+UEp2iZgsAACAASURBVIunHn0j/0wMZeC8\nzyt0zbcVe/fJqRo6OmV2bRn+INtOPaaf38mDDpHd1iY7ECzvomP5WQIAAAAAAACmoVGHcP785z8r\nHA7r1FNPLbn9rW99qx544AEtW7ZMjuPoyiuvHHeRAAAgzUrd6HPK6DIHANUS9LtlhxpkDvSXFcDJ\ncHlSU99UIgDjdo0xNJB5fbWs4fdDVRnp4IvT3p4d6/3YOaMOixiGkQvmpGaxkuM4Csc61RfeR/3h\nhDaH4+qPJGTZtgJbNw/qmrNSM597suCcmQCOJPl/c4Oip5+Zu14s1SXKGSEsNJzwxZcofPEl2XWn\no0OeVStSQRtziJBuNsSb69Bjt7TKtWb18FNoOc6Y6wQAAAAAAACmo7Lu4M2bN0+33nqrJOmEE04o\n2n7jjTdml03T1Ne+9rUKlQcAAPIZVvFNNACoNW6Xqe5nXlIyHNVoXq2MdAgn+1o3zhrGwnG70jUQ\nwqlVtuNIydS/j6uxQRsfe1ZGS7Nczc0VOb9hGAr5PQr5PVJeMGcgmlR/pE19ey7W5vDRWhVJyHIc\nyXF08jF7lTyXa/26gnVzw/rU+UKhitQqSU5juvVtOCw1NJTcx7AsOaZZELZxr1opSfLf8MuCoFDh\nydMhHDrhAAAAAAAAAGXha/QAANST7DfZ+RUOoLY5DY1yNQw9L25JtdAJJ/P6ynRUNcn18ksy77oz\n++9j+rwyZ8+Z8OsahqGGgEcNAY9mtaWmcLIdR+FoUn3huLZf/g21fuWiEc9jbtokSbIW7VKx2jKB\nHmNgQE46hBOJJRXw5b1XsJKF02LlabzwPLmf+q8in/psrq6BAZn9fbJsQjgAAAAAAADAaIzt66EA\nAKA6LFuS5NAJB8AUlOkSYvzj7+M+l2uoaXlGPDD9+koIpya1HX6QZnz9MgXv+pMkyahiKNVMB3Nm\nzwgpefYn1HPjLdltAxd/JbUQixUes2WzpAp3wgmlgjfGQL8kqeWYozR/pzaZmzbmdrIsOWbhewcn\nGMwuB377awWu/W52fcZB+2nGvrvJStIRCgAAAAAAABgNQjjAODmZFu0AMAmyU7S4CeEAmHr8f0hN\ngdvynauqVoOT7hZSiSmxMHGy04XV0O/D+DHHauP6bnVt6VXsmOMkSUa8MITT+IXzJUmu116t2HWN\naFSS5Hn0Ycmy5Pnvk5Ik77/+kdvJsrNTrWVs/+u9Betmb29qSitJ5tauwjrphAMAAAAAAACUhRAO\nME52OoQTiXGjBsAkyNx0ZDoqAFOQNWdutUvIvb5adACpOfF48ViNdYZze9LPH6839ZhIlNzP3Lih\nYtfMhNeaPv0JuZ5/Ljte8POUTEiDOuFYiwunxPL9+X/VvvOsgu49of8+VrE6AQAAAAAAgOmAEA4w\nTrYtKR5X4uUV1S4FwHSQuZlXYzcdAaASen/1m2qXkO2s4iQIWNcao6eneLBGfx866RCOk+5SU2Ss\n06WNoO3Nh+dqSD/akYiMcLhg+ilJkrt0oLfxgs8WD9IJBwAAAAAAACgLIRxgnGzHUfCH39PiNx8s\n7z//Vu1yAExxRroLgOP3V7kSAKi85OsOqHYJ2emorHjpDiaoHiNWHGhxAsESe1af09goSTI3lO54\nE132gYpda8cf7yo57rrt9wpedbk6F3TKvXaN7FBD8bG336no3vsWjHn/9peK1QYAAAAAAABMN4Rw\ngHGybUeBH3xPkuT5z7+rXE1t8f/mBvkvu6TaZQBTSyQsSXJ8hHAATE39X72iYL3n1zdPbgHpKXva\nPnHG5F4XIxocwuk74uja7YTT2iaruUVm15aC8fjBh0qSEm84omLXGupcTbf+VqGrv5WrqaGx+NjD\nj9Smm+8oGHOSJaZioxMOAAAAAAAAUBZCOMA42Y4jw2K6glIaP/cpNf7wu9UuA5hSstNa0AkHwBRl\nd3RklyMfPlPxtx83uQWkO+EYtj2518XIorHC9RoN4GQFAtLg6ajCYVmhhoqHWmJvO7aMekq/d3A1\nhgrXe0tM+0UIBwAAAAAAACgLIRxgnGzbya04ztA7AkAlRFI38xyfr8qFAMDEiJ303uyy43FP+vUd\nj2fSrznd2WW+hzbihSGc4OOPTEQ5FWMk4vK+uia7btuOFInI8Qcqfq3+73xv5J283pLDbp9X0SOP\nVviU91e4KgAAAAAAAGD6IYSDspX74fi04jhyP/ygFI9n11EC3yQHKsa17lVJkt3SUuVKAGCC5HU3\ncW3YMOmXN6wSU/FgQtm2I/e9/5J7+ZPD7ud++qmCdVd/30SWNW7mtm2pxw3rJUmJpC0jEpETqHwI\nx+6clV0e+PwXSu80VAjHZarvtj9p4Ac/GfL8juiEAwAAAAAAAJSDEA7KFotzQ2Iw3+2/1/xlJ8pI\nMh3VsBKJaleASeYQSJsw5rZuSZK9YOfqFgIAk8Bz/78n/6L57+syQWtMKMdx1HrKu9T6tqOG3a/x\ngs9KkhL77j8JVVWO0dsrx3GUSCRl9vXKCVY+hFN4vRLTSUmSp3QIBwAAAAAAAEDlEMJB+VavklHj\n3zadbO4nHy8cIHhQGiGlace5+255bvhVtcuYkvx33C5JcrxMRwVg6hs8/dCkSObCw4GfD90ZBJVj\n5U3v6tx8cxUrmSAul5yuLrkfeUiuvl5ZCxdPyGW2PfWitj31omSU/t98Z4hOOGUx6IQDAAAAAAAA\nlIMQDspi9Pdp/pEHqvXwg6tdSo0jhJORP32Z2bWlipWgGjo/fKpaLvgMAawJ4H0mPRXHeG6kAUC9\nqMKUlkZeBz/X2tWTfv3pyE7mOm52fPpj8t3yu+EPcLuG314jImd8NLWQTKrt3e/QTstOTK2HQhNy\nPXv2HNmz5yh84cXa+rFPFe/g8Yx8jvaOCagMAAAAAAAAmD4I4aAsRm+vJMm1YX2VK6kxdL4pLRpV\nZ2dzdjX4g+9VsRhMNmPz5uwyAayJ45RxIw0A6l343M9O/kXjedNoumo37OE4jmx7arwXdWKF0341\nferjw+4fPXnZRJZTMY7bLUmKhaPyvPxidtyY4N/hTmOTEpddrr4LLi4cLyPA2/3AYxo4/SxJUuyY\nY3Mb6IQDAAAAAAAAlIUQDsrDh64lGYNCOI5lDbHn9OJ+8fmCdSMaqVIlqAYjkbuR5vv9LVWsZIqj\nEw6AaSB84Rcn/ZqxU9+XXXZqOISTtOyCzoP1LHj7rQXr8Te9peR+VucsxRcslALByShr/NypsI19\nzz0Fw5MRpHW7TEXPu0Bbz/xkbtAz8nsHp6VV4W9erS2be5R83QETWCEAAAAAAAAwNRHCQXmmyAf8\nlRa47mcF64kdfVWqpLb4/vf2wgGTl5ppJS+E47/991UsZGpzyriRBgD1atsjy7Xtrr9X5T2E3Tkr\nu2zU6rSKjqOZRx2mxi9dWO1Kxs3z0APquPi8wsHwQOmdLUtGurtMXUjXOvebl5Ucn4zrh7/6P9lV\nx1t++McwjMIvYvClDAAAAAAAAKAs3BlHeWr1BkSNabntd9UuoSYEf/T9gvXkvvtVqRJUQzwSyy4n\n99q7ipVMbU4gUO0SAGDC2AsXyT7okKpdP3ziSZIka9HiqtUwrFhM3pdfVMMvfzbyvjUucO01RWPe\nhx+SbdmplWhUMgy1HLifDMtKdSeqk0CIsb275Lj3r3+ZtBp8nlw3J2O0XTsJ4QAAAAAAAACjRggH\n5SGEUz7brnYF1VXiw33HVUffWMb4OI7aPvKB7KrR21vFYqY2e95O1S4BAKas+LveXe0ShmVu2Vzt\nEionL9wRX7xrdjm6ao1kWfI89IAkyfPqGjnJhFTDU4QNFrjx+pLjro0bJq0G08z9/boff2zSrgsA\nAAAAAABMV4RwUJZRf2tyGjP6p/eUVGbXlqIxIxYrsSemIt/Nv5Vv9crcQInnA8YvvmDh5E1lAQDT\nkOFNT/mXqM0getMnzqp2CZWTF8IZ+Pq3FD3lfZKkBW9YotBXviAjnpvm0tXXV1chnOjJy6pdQgEn\nGBzd/gWdcCpcDAAAAAAAADBFEcJBeRKJaldQN1wvvFDtEqrK/ejDxYNxQjjThWv9uoJ194pXqlTJ\n1OWYpuyOzmqXAQBTmuP2SJKMRHyEPavD89gj1S6hcvKCHobfX7Ae/MVPFbr0i4X7m2ZhOKSGhc/5\nTOnxz5w/yZWkOO0dozugTv6eAQAAAAAAgFpCCAdlMaza/BZwLQr8/MfVLqGqPM88XTRmRKNVqATV\n4AQKv2Ht6ustmqIsaU3zKdvGw3Fk2LYMF7++AWBCZTvhEESfcPlBj3BY1qLFBZvdq1YW7p6sn38T\na9fdNHDYEQVjG59dqYEvXjKpdXTf86Biu+6uyJkfG/tJCOQAAAAAAAAAZan5u3iRGOGPmpB3A4Ib\n6MPz3/HHapdQVeZrayVJvdf+JDvGdFTTh9HXWzy2Y0fBOq8h42Cn/+7qaCoOAKhHmU44hHAmQy7c\nYe80X+FPfGr43WPx+gmEeDzaftsdSuy3RJIUe8vb5O5on/T6rb33Ue8Djynx+sNHeWSd/D0DAAAA\nAAAANaSmQzjm+nXy3HlHtcuAJCMczi7bv/yl5DhVrKZy7Ar+OeJLD6zYueqZ//bbJEn2rNm5wRid\ncKaN3v9n777j26jPP4B/bmh6ryxiZwEhgQAh7Bn2HoEyCoVCgTIKlLIplKaUTdmUvSmj8GOHssLe\nYQYIIUD29rZla97d9/fHaZ2GLdmSJSWf9+sFuvve905PZEmWdc89j5mE03v6WdA23AgA4L71X5BX\nrQQA6IYBw1g33j8KIlJViEk4RET5ZY+0oyq+JBx1XWpFBQBy7E9SfaONAacTnmv/ZZli7LprdFkq\nsTanDpsCyRf+WyqhYmDRi08WKpXEJyIiIiIiIiIiogIr6iScml23x8gzToQy/8dCh7Lekzye6PIG\nl50Hx/PPFjCaHBECjisuh332G7k5XH19To6zrhCVldFlyV9aJ0to4MoeMCsg+f9wKtRffwEAuO/9\nN+q2nAQAUD/9GPa33yxYfCWPlXCIiIaGLVIJJwhoGiqOmoGyq2YWMqIoZcni6LJeVV3ASHIkRXKH\n/+Q/ovfcC6Lr8vvvw3/Y4WnnF7vgHnuZt7tOL2wgg1GCjzsREREREREREVEhFHUSjhxuayK3tRY4\nktwJaQYCgeK7orY/UneXZV39/rsCRZI78prVqL73DlQde+SAj6FN2hQAsGrW24DMk+LQzPZxocmb\nQdt4k+iw3NpSqIhoKMVVljIahqHn6ustmwNLV6B+xoEYedJvhzqy4uP3Q8SdRM1YpBKOVNS/vomI\nSp6w2c2Fnh4oC36C87234b795tj7cAEJhyO6XIyVerIl0iSWBg47wrKurFoFADBGjsp7TLnWe/k/\n0PnSa/Aff2KhQ8kOE2+IiIiIiIiIiIiyVhpn8dahL//q9tsdoxvrclZ9ZahI4YSoCH306AJFkkOR\nihKDIQxoNbWQpk2D96xzzSF3iZWZH4RgyHoiKpKsZYwZC5SVoWXuAgCA47VZSc8hWgf5zbZj3s2n\nAmVlCBx4iGXz6G0mFyKqolR92P4Ytu0WsH3yUVb7SQbbURERDQmbCgBwP/k4lOXLosPK0gEkUOZK\nKATbZ59A6u2NDkmhYOHiyRE93PbWcJdZxydZPzfIqyNJOCNRchwOhHbYydJ6qySwHRURERERERER\nEVHWSuJbQCMXyRLFQAg4vvsGAOB84vECB5MdOa4dFQBI4YonpUwEc3DSQtcBWYGqyNAnme12gjvv\nOvjjlgjnHbdA/frL6LrUFU7CqTZbI0huV3SbvGSJZV9NX0de1xQl+X0AAL1hOADAGLUBWlZ3wPe7\n3ydPXlfe1wfI9vVXAIDqww5I3ujzQXrrzZTVFuSlSwEAjrdez2t8RETru2glHADq/HnR5YVf/YzF\nq7vR4QlAH+LfZWWXXYTqQ/ZD+czLo2NSKGSpRFeKpLY2AMDy735N2CCh44130frupwAA3ymnAwD8\nvzuRCSFERERERERERERUtEoiCSdU+KrvOSF1dkSXHa++XMBIsid1J1QxCWlAIICys063JGGUEsPn\ny8FBDEA2TwII1QZg3UhQyoTr37ej7rorUbPfHuaAEKg84RhzsbLKvHU4o/Pl7i4YQpjJaLfdDPXD\nD4Y8Zsov0WNemS+Xx1WDUhSEttsheXIgMERRlZ7yv/8V9cf9Bs5HHrRu6OmB48nHAAB605gCREZE\ntB6x2aKL8tIl0WV/RyeWrvVg7sJWfPz9Gny1oAW/ruxCa6cPIS2Pf7SsWgl3+PeC3NEOIUkIbr+j\nua3EW1LJ7e3Q6hvgrEiuJqlNnQaxqdn+1Xfamfj1ywUI7Tp9iCNcj7ESDhERERERERERUdbUQgeQ\nCeWLzyGm71boMAZN+eWXnBxHCAFpiL8ElRIr4egaHK+8CPczT8L9zJNoaS69VkOGPwdJAIYByOG2\nMGr45RRaP5Jwyv9xuWVd6vHAtuAnAIAIV8KBwxHb3tEBf0BD+dqVqLx6JgCU5POG0vD70TDNPEkm\nJ7Rk0ydukjRd8vsgXK6kcQJs779r3s75FP6T/xgdbxg/Krrs+/3JQx4XEdH6JL4SjuvJWAXL4V9/\nikBVLTyN46G5y+DxBeHxBbGixdzudqioKrOjqtyBqjI7XI7c/LnVsOUky7pRXQNRXm6uBIOA3Z5i\nr9KgdLZDHzYCcn9/38gybMMazGUmhAwNPs5ERERERERERERZK4kknPobr0L74TOgT9io0KEMiuTz\nDvoYvoCGz+evhSxJkCRAliQosgRZliBL8beILUfGw+uKHN5XDu8rSZBkCYquw9bZBltrM2ytLbC1\nNkNtaYbS2gzbe28DANbeejeGn3uGecVtqVd8SazuMxC6DijhglKRJByttK9GHqj4RK1o1ae4L+7l\nNatQffFfIO2QoioKlTx59arYitNp2aZtOgWhseNhW7IoOqYsWQytpnaowist4eQ15wvPwXPvwwhp\nOmyqYpkiXM5UexIRUa7YUv+ZtPHzj2Lj5x8FAHjrR6C7aTw8TRPQ3TTeXG6cgNXVtVjdbn7ud9gU\nMyknnJhT5lRzkkwvqmsAp5nMKvl8sYScEiOvWglbVyeMDD8/O+3m70N9o40BAKGtt81bbJSACTlE\nREREREREREQZKYkkHACQly0r/SSchC+XbTdej9CFF2d+AMNA1cXnYcTkHbBm210BAegQfbfrEgK2\nXg+c7a1wdrTC2d4CtSOybK5Hlh1d7ZCESHso/+gxkEduYK5oIUAuiW5maZU9+/SgjyEJARF5HCQJ\nQlGgF6gSjhACuiGiyVZDyu+3tixL8TxyPf4o1PnzgKceG8LAaMgosSQR4UyocGOzoXPOt6g46zQ4\nn3kKgFkZiZIp99wN9af5lrGuniDqqxMe08THmIiIciq+Ek7Ezzfdh57Fy1GxfBEqly1CxfJFGPH1\nJxjx9SeWeYGKqlhiTuMEeJrGY2XTBPwybCRUVUVVuT2amFPhtkOWs//cZtTWwqipAQDInR3QGxoG\n9g8tsPLLzL+F5N7ejOZHHitt6jQsf+41uKZunrfYCEDcU1OASThERERERERERESZKJkkHN1InxxS\nMjRrtkz1jVej5U9nAwmtW9JR536DqicfwS54BM/NmgtHp5k842pviSXZdMQth2+VYN9tl0Lucvhr\n6+FpHAd/bT38NQ3w19TDX1sPX21DeKweYzcbj9FLzXZDyrJl0CdO6vO4xa7i2SdjK0IM6OpOoWmW\n8v9CVSGCwVyEl/4+hYAvoMPrD6HXr8VuAxpG1LrROKw8Z60P0kqogiS3NFuScLxnn5e0i7xmVdIY\nlT7DEAhpBlxxSXnpqrSI+PZkfn90OaQZsKmlndSXFT0hczIUAmw2yCuWo/YKa2Km4+knMO7G6+G/\n+TbLOFt5ERHlWYr2TsYhh6G9pQdLvSFohgEAUHt7okk5lcsXomLZIlQuW4i6+d+ift7Xlv01hwue\nxrHRxJzmpglYNGYCpA0noLK6AtXldlSW2aEq1t+JyrwfkmKRDB0iXFFOamsDSvRaBb2xCQAQ3Ghi\n1vsGttoGzrLSbcNVElj9hoiIiIiIiIiIKGslk4QT7PGWTrDppGjfJLe1wnA3ZbR7fOWIIw7aos+5\nhqLCX1OPrnEbmwk14aSa2G0DfLUNCNTUQc+wooLDaYdktwEAnM89A23qVhntVxICgaQWOhkxDGtF\nIEUFMryStz9CCPiDOnp9yck2RpqKRZXvvoGmC06F98BD0Pvwf3ISRyqS1/pvlFua4b7hmljscVdj\nG5WVkLu7IaV6XMLJB1S6avadDhHS0PPoE7HBtO8psRM5kt8XXfYGNFSp689JNPd1V1nW5ZZmyM1r\nod56S9LcynPOAAAo/7wCek0tlI52ACmqDRERUW4pStJQXZUTdVXm50WvPwSPNwSPtxyehlosn7SF\n5fOZHAyifOUSVC5fhIplC80knfB/Nb9aK54ZsoKeUU3wNI1HV9MEBCZsBEzaBPbJk1ExvBajd98x\nKRbbN19Dm7IlAKDmkH3R0pyDNqsFIKqrAQCdM6/Ous4K00OGGBNyiIiIiIiIiIiIMlLUeS1GdTXk\nzk5z2efvZ3YJ0M0kHP+MI+B84TkAgNHcAjRmloRTfczh0eWeHXZBsK4BgboGBGrNyjXe6jp4q+vR\nW1UHr6sCuW6KJMuSpTS/4+UXc3wPQ8f5+COWdcnnhRhoEk7cSRrZ2wv3wp/hW7IYxthxGR0immzj\nD8Hr12JJN30k26Ri7+rAlAtOBQC4X30ZuUkFSsNvra4kt7fB8cG7AIDOCy+zJCatfeNDjNxhC0gp\nKgTJ7W0who9IeReGEEPfVouyZp/7DQDAE5dkmMlryfbBewgcfiR0w0DP8tWov+Uq6H+7AsboxrzF\nWhBeL+zvzEbwwIOjJ6/KbrvJMkVevhw1B+/T52Fs382FHq54AKSvNkRERDkiSfDuugfcH7yTcrPb\naYPbacPw8FuzIQR6fZHEnCA8Xhs89o3RPW5j6466jrLmVXGJOQtjlXRWLAY+edsy3Vtv/ZwU3G13\n2N9/F8Hd9wSMvnrSlojw5wfZbkfWdU/5MTH/+FmciIiIiIiIiIgoa0WdhCNcbiCchFN7z23o3XN3\nS4WNUiOFv2QO7bQrjMYxcN9+M6ouOQ9db72f1XFaf/gVYtgwAOYPUAVQBqAuYZ4QAppuIKRFbg3z\nNm5Z0yLrcXPC5fUTyZIEY0TsRIBtzmdZxV1MKs4/x7Iu+XwQNdkfRwoEYNiSK3g4n30a3gsvTRr3\nBbRYsk24uo3Xr0HPItkmneFff2IdSKzSk0NSICEpLi4pxzjoYMsmpbyPdmv+9Ml1gaBuaavFpJzi\n5lvdHF1WFi7sf4dwaypjbTO23HUKAMAvQvDc90g+wiuYikvOh/PpJ+C55gb4TzkdPb4QEn+LVf3h\nd0n7+U46Ba6HH7CMRargAOij2hAREeXKmseeQfUDd6H2qivQ8ca7fc6VJQkVbjsq3HaYn8xhJpp6\n4xJzfCF4A0DvyEb0jmzEmu2mxw4gBBwdrQmJOWaiTjzfyafBe9a50LbYEnJbK1z/eTTH/+ohFv77\nSHE4sr6AgJ8Lh0D8Y8zHm4iIiIiIiIiIKCNFnYSDuGQQ14/fAzdeg54bktt1lIxIpQhVhbx8KYBY\nFYm+CCEgSRJCW06F8tNP0QSc/kiSBJuqwJblTzld8o7LoUCU1SGw7/5wvPFadgctcv6ObthHbZDx\nfI83iAqXDXKPB0ZlZdL2shuvxYrfnwFfVw/83T0IdPci6PECQT+UQAByMAAlFEBlIICaYHg94b/E\nseT1IJSAH0ooACUYhLOj1RKD5O2FKK8Y9GOTihSwVsIpuyKWcKRPmmzZJpelT8JJPE50n2VLUXfa\nKQjcdif0jSeagwK84rkAIu8//Wk8fL/YSgZX5otwe7KGuAowcmtruuklS/3icwCA7bNPoY2bgKqr\nrk6aI7c0W9a9J5yE3n9el5SEE0+Ek5iIiCh/ZFlC4E/nYOUZZ8NuS25P1R9FllFV7kBVeew9O6QZ\n4Uo5IXh85m0gpAOShEBtA1pqG9Cy5XaW4xy5zyQAgLbxRAT33T+aDCF6egbxrysOUihkLmT7BwsA\nmZ8LhxaTcIiIiIiIiIiIiDJS3Ek4CSfolZ8XFCiQ3IhUwhGKAmP4yIz30w0BVZEgBQIDa5mUpf6S\nd3ovvcKShKNXD6CETJEJtbRC1TTIamYviV6PD/YfvoNkGDAqUie6TNwsszZjA6HbbDBsDuh2B3SH\nA6HyChhOJ9yrV0TnSD09eUvCiVSwMSoqIXu6oa5YDgAI7JXcUkf0UbEjqaJOmPuu2+H66nM4jz0S\n7V9+B0MIsxIOs3CGnPzkE1A2nwJtyhY5Pa7e7QE0DbZlS6Jj6ZKySpmoqgIAOF9+Ac6XX8hon95/\n3Zb+eKqK3r33h7bF1JzER0RE6SmyBFWRgezzb9KyqTJqK52orYx9pg+EdHh6zUo5kQSdkB67GKF7\n3MaoXPwzfCeebEmEMGoT62CWHhF3kUK2MkkSpsERrIRDRERERERERESUtaJOwpGCQQibLXqFpCgr\nK3BEgxT3JbP3wkvgvudO6MOG97ubrguoCgCfryiqH+gTNrSsC3cf7YZKxNijDkRw6jR09dNqAADs\ns17GlLj2MSJFJRwAaNlsGoIV1dDtdhjhZBk9LnHGsIfXHeaYYQ9vs6deh9MJe3kZHOVuON12uB0q\nnHYVLocCh02BpOtwj6qN3r+Ux6ujI8kzoqoK8HTHxvUUFVD6OqmSrh2VZh5H8pr/hlDIyFdnLeqD\n1NmB+r+cCQBoae7uZ3aM/9jj0xwwdvLG+cVnCHR0WLeX4A+5v0pBRgbv8fG6b7+7z+2+k05B58xr\n4VBzeEaYiIhSsqlD83vJYVPgqHahvjqWuOwLaOgOJ+T8dPcTmPjOiwieeIp1R7cbgU2nwDHve0DX\nAaX0fjeIQNC8VW1Z78uckCEQ/yCX4Oc0IiIiIiIirenVOwAAIABJREFUIiKiQijyJJwAjKpqKG1m\nixJRVl7giAbH/s5sAICw2yEqKmE4nNBG9tMCKRSCaO8A6mogr1kDbczY/Afan4REICkukcIwDMgl\n+gWt/ZuvMppXdkNCOxktdeudTy+/BYHahqxisClyNLGm3KHC5VDhsitwOlQ4+muDkJDsIvV4rNuF\nyNnZikjFEpFQBUjqzjxRI/44SUT46m/JfC55vEGUuWwD6VRAWQoEdTjs5nNNSpck1YeOP54Fbdo2\nqTfGPf9sba1Qv//Wuj1YepVwNF3ApqZ/XaWrRuU9ZAawwWi4774jOrZqZQdsca/zjrc/hNTejuoj\nD43t6HTBPkQnhYmI1ndKAT/TusKfA4fXANigCsGtLk49ccQIYN73kLo6IUqtMo6mofyR+81lW/ZJ\nODKzcIYWH28iIiIiIiIiIqKMFO+ZPMOApGnRVh4A4HzxuQIGNEheLxz/e8VcjrSUUlXzqtU+1G05\nCY2bbwjll58h+30wxk/Ic6CZ6frr3wGYJcolvw9SVyeqD9wbw0dUQ2ppKXB0+ZV4pa4cThJLpLlS\nVwiyqzKq3HaMqHFj3IhKTBpTg602asBOm43ETlNGYtrEBkweW4txIysxotaNqnJH/wk4YStnfwz/\nvgeYccYnxPT0oGF4Fcr+dmlGx+mP4fMBAPTx1qpI2SZtKIsXpd4ghHkjSXA89wwaLjwbeppkJ8od\nqbkZtUcdAvXrL82B8M85rfDPyXKMLCqW2eZ8Zj1cZVWamcVLNwwYKR6HCKOnN+V47+13Q28aYxlT\nE5JrtClbILTb7gjuslt0TDgcbL9BRERRjrffAgBU/OXsAkeSPfftN0eXxUCScGT+Psw/tqMiIiIi\nIiIiIiLKVvEm4YQrZBgleFI2FUkLRZeFM1xqXpYhGX0nFsgtzQCAinPOMAeKpCVX8Nzz0dLcjdDW\n20Hy+1F54nGwffE5AMD22ccFji7PEtrAxFf9aF24Ar7jT0LbNjujor4GI2vdGD+yEpPH1mLricOw\n85SR2HGzkZi6cQM2GVODMSMqMLzGjcoye05aHtimbAZt510AALW/OQTy6lVmyIt+BQC47/33oO8D\nADxtZoJPaLvtEdhq6+i4UZX69RrcceeU4xXnn5P6DoxIJRwJlWecgvqXnoG8ZPHAA6aMuO+/G+5P\nPkTV0YcDAKS4JByptRX6gp+tO6RIIlRE5slSekcXACC42+4AAGPEyGxDLjjDEDCMFEk4vb2wX3c1\n3K/PsgwHDjwEq39dAbjdgN0eHddHjkqbXOM75fTY/gcdmnIOERGt3xyvzep/UpEpu+6q6LJI8xmy\nL8wJGWJ8wImIiIiIiIiIiDJStEk4IlxRQwwfDv/2OxU4mhyIJBUAEJFKOIpsGe+LsmihuW+a6iqF\nItwuSIYB+8cfRsekfqr7lDq9aaxlvffiy6LLoqISPTfdBuPV/2HLjRowsakGTcMrMKzahXKXDaqS\n35ecJEnQNpkcXXc89yx0w4Cwx1qIiT6qdgAwq1DNm9fnlLJXXjAXgkH0PPgYtLHjIFwu9Fx9Q8r5\n2uRNM/sHhElLlpixxl0VLa1endUxKHsi/PyUus3kGDl8CwD1k8djxC5bQ5n/Y2wHTUs6hm35sozv\nr/Lh+wAAeqTCVwm+d4ieHmgrzWS3QCgWf8VFf0HVzdcnzVd/+A5qZaW5b9zzW7jTv7cH9z8Qqxev\nwfJlrdCzfC0REdH6oa/fI6VgINXwWBluCEishENERERERERERJStok3C8fd4AQDC4UTLY8/ENpTg\nSVoAQFwrHeEOV7OR5Iz/PXKPJ7yvK+ehDYaorU0eLNWfUYZEQ4N1YADl8/NJb2yKrdhUVB59BNSf\nYokTwVDfiV9lV81E/e47wHXnbWnn1L/xsnlf4ybA2GA0OubMRevStdA33SzlfFHfkHI8HecnZlJX\nSIpVHXJ98E5Wx6ABCFfpksKJWvZZLyVNsb/5WnRZXpOcGBU44sis79aorg4vlN57R+NOU9G49WTY\n/jcLfn+s4pn6w3epdwjF5sRXwumvlZta5obTae9zDhERrX+6HvoPACC46+4FjmSQVDXrXWQmheQf\nk3CIiIiIiIiIiIiyVpxJOIYB9emnzGW7HUpZXOJJMFiYmAZJ0mMVI4yGYQAAoSgZV8KJEGXlOY1r\nsERNchKOvOCnaDux/hj9VWXJE23ChgAA79l/yXrfYm+LFJ8k5L7perjffxuVfzwpOua67SbohgE9\n7rmnfvMV5LVrzH3uvBUAUH7l31Iev/zcP0WX9UmTU85J5D3tT/1PCpM83bFYly+JLjfckz4piHIj\nWqUrzH3f3cmTbLFEELmt1bLp128XIrjXvtnfb2U4CUfP7v2wGCgd7QCA6hOPxYSNR0L+5isAgBpf\nMSiO1BWrLhRfCaf38pn5C5KIiNZZwb3N37uSt7fAkQyc5/CjCx0CZYJJOERERERERERERBkpyiQc\n55OPY9SNVwIAhMMBRYlVw5CCmSV3FJ24ti2ivt5ckGWIhKoxWj8noQNHHZPz0AZDOJxJY+W3/gtV\nJxwD9esvIb//bp/7t3T68hVan6RgENqoDaxVYzLd1+vNQ0S5I8orostyZ2fS9robr8KIEdWo2WU7\nQAg47rsHNfvujuo9d8no+K4nH48uGxWVmQVVVgb/LtMtQ3qkIlQCZfGifg+nZ5m8RpkRzv4rbcnt\nbbEVzfr+JVdn30oCAES4PZOUor1VUUtICpV0HTUzDoK8YrllPDRlC4jwiSvP/Q/H5sftHzjiqDwG\nSkRE6yyHA4bDCYSTPENa6VWVk0v177v1ARNviIiIiIiIiIiIslaUSTiSxxNbsdshyxJEpG1HMJR6\np2IXTrbpOvxoQA4/7IqS1LopGIpbT9GeRB83IW8hDkiaVkz2d99GzX57oO7IQ9Pv+s5sNB15QNIJ\n65wTAlK4nZdhhCvvaBqEzW5pB5Px4QJxJ853yixxZUhJEvzTtu13muOXBag+YC9UXn4RAEBpXouG\nYRkm1QAwXG6I4cMznu955gUs+XoBltz/FJrnzIW2ySQIVYVIqIYktzT3f99GYSooreuEw9HvHKmt\nFbZ/3wF58aJoha/ALrthzVsfQVX6+ZWS7jxOIPxeV2Kt7FK145K9vbB9/qllzBg+HKtXtmPNmk5L\npSDL7zoiIqIBEm43JJ8PQgj4AqX1uxRgEk5RYxIOERERERERERFR1ooyCUdUxCp5RNqTBA6ZAaD0\nK+HYnLGkD2X1KjiWLwV6Y+XjQ1qswof97beSj1NkX4QKVc1gUuqEiepjDkfld1+jbqtNcxyVleum\n61E/fgM4H7wP9Rs1Qvl5gVnBwm7LLP54ug7H118AAJa+8RE8jz6Zh4gHz3fxpRnNs331Rdpt+shR\nfe675q0Ps4oJigJlWAMCu+8Jo2kMUF4BSdPgPPUkGP7Y61pqaUl/jPBzSWcSTl5IGSTBuJ54DNX/\nuAx1220ZTZrRdtwZmLIZVGVg70/a1GnmglFiJw7TVO6pPOMUy3po+51gUxUosvVXrtTTk7fQiIho\n/SHcbsDrhTZnDqqvuzLrdreFFto7+1aWRERERERERERERMWqKJNw4k9suh57CABilXACpZmEEzm5\nLanJlWPU+fPM2y/noP6iPwOhcLUfR/ZVWoZcJpVkUlT0Ub+fm4dgksmrVqL8hmsAABWXXgDF0w33\nTddBCgUhVBuUX3/J6nhSR0dsefJkiMqBtd/JN236noM/iK/vVmG2cWOzPqRdVWBTZciSBH3iRABA\n5cvPY3hTA+RVKwEAFeefk/4A4VZg3d4QjDTJXTQI2baDCs8XqgpFlvuvhJNC13EnQZsUTsQrsUo4\nUj+vkdbPv0XXU/8H31l/Trndf9RvoY3fEF2PPpWP8IiIaD0hd3TAtmIZRh28N+ruvR22zz4BgD4/\nK/XXAncoCFmGUVuHwAknFToUSqfILgAhIiIiIiIiIiIqBUWahJOi5VQ42UMKlWg7qsjJ7RQnqUX4\nS/CaA/ZC9f89Ga2AY5Rn3hqoUERcUpF/l91SzklV7cH179vzFpPlfh64N2lM7uiAFAwCdofZEiwb\ncUk4DnuW+5YYpbOj76o0aVqR9UWWJThsCiRJgqiwPr+VRQsBvz/6Gu989qWk/SPPpUBQR2htC/TW\ntqxjoPSkQFzCXNyJu54tpqHl8+TEuUg7Ksjma0HK8ESNCL/u/JOnwH/TrdHXYSaVeIqJ5PP2uV00\nNiG45z6xFoSJ24cNQ8dnXyO4/4H5CI+IiNYTsrfXsh75/dTjS/93U3z1zYIIhSAZBkKbTWGiRzHj\nz4aIiIiIiIiIiChrRZmEI4Vi1RjaP/4SQKwSTqm3o0rV/sh2y7+sA5FEHdWa5OH51215CW0w4k9C\nq62tqef0eDIayzXnow/B9unHyffd2wsEAhAOe1ZJXcbbb6N+p2nRdbnIv5Ru+24BVsz53jLWftHl\nWPLhN/DceKtlvPWXZQhtuVXSMeo3nQAA8AVir0khywhutc2A41LV8PM7IYlH8nlRecoJ0XVts82x\n4ufl+OWbX+E79ngAgNxrPm/GXHIWRm++IUZMHjfgOCiZsmRxdNn58AMITTWfEy0vvg6MS36sJU/4\ndZxhW7fI+59RV4/VX/yA5udfhSxLsWS4kkvC6bsSTqaPCxERUU4JAQgBafZsSC0tEP/7H5y33Iiq\nnbaB1NkB9f57UHn+OWlbxg4FyR/+Hep2FywGIiIiIiIiIiIionwozjOE4cSIhXc/jsqNNjbH7A7z\ntlTbUUWq+6RoR1XxzpsItMUqeginy1wwrF+Mh7baOm/xDZRtzmfR5UhbrURyjweJ19pGT97ni66j\n4sJzU28TApIQgN0OvWlMRodzPvYwKi5I3VKmWBkjRsKRMKYfdzwcw4bDWPBddKzrzvsgqqrR+eZ7\naBiWXH1J+fUX1J91Ovx33A19w40gGQaEPfsqOBHR5KWEEz+S1wvHm69H10VdHVTDQGVVZex1o+mA\n14u6Wc8P+P6pD95YUp3tk48gHE4AgNNpPv6e625CxSXnw6ithdzeDttss2pXYsJg2sP/+QJI8+fD\nP/OfUMc0AZFWGCWahON45MGkMd8fToXrofvhPbOPtmpERER5Zn/7TYw/5Zik8fIjZ8A592sAQMv5\nFwDjxg91aCavmYQjXK7C3D9lpsgvOiAiIiIiIiIiIipGxVkJJ5yw4nA7o2Oi1NtRBc24hSMxLcLk\nvugvsZVwcoJkWE9Ii5qa/MQ2CD3Xxqr4dP73hZRzktpR6TrsKSrU5JLU2Zl2m+3LOeaC3QH/scfD\nN34jS2ypJCbgeI9MPqlREioqoCoyJC1W2UbfbErStNCYWNWTmj13hvvrL+C+8ZpogtxAWlElMRJS\ns3p6oE3YEADgP/w3AABFls2knbjEHbk9oQVVMDj4WAiA9f1V0nUz4UpRoIarc/lPOgUrf1yC4B57\nAwBczz4FABByZkk4YvhwND/1ArQtpgJA9LiQJAhZLqkkHNuH78P1youWsa4ZR6Hnn9dhzfwl6L3i\nygJFRkRE672QBvf116TcFEnAAYCG7bYEAEiebohXXhnSyjiRaprRiw+oODEJh4iIiIiIiIiIKGtF\nmYSj+c1qN66yuISVcBJOyVbCibTRSpO84I47meu67WZzIeGEdDF+Sa1vPBGLHn4Wq667DaHd90w9\nye+3rLpPPSlv8YjwyYP6Sf23KRIOB6CqaP3gc/i33cEcTJHQYXtndtKYVFY2uEALJVLyP+4ki77x\nxKRpXY8+GV2OtNyRV66MJeGkqOiUtYQkHN3TCz18NXbPDbdY50a+/xcCytIl1k3e3sHHsh4T8Sfc\n9FhyFgwD0HUzOSZCkmCvr4Wy6FfrQbJou+R2pnnuKEpJJeHIa9ckjQXuuR+w2aDU1QJyUf56JSKi\ndVBomrVNqOT3wTb3m4z3rzjrdAw7+Tg4n3w816GlZX/CvC9lxYohu08iIiIiIiIiIiKioVCUZwmr\nbr0RACDV1kXHRKRdiVE6J2ktQmZyR7pKOPEcH75nLiQkKWSybyH4dtwF0u9/n35CXJKE1NmBslkv\npp87SIGQDnnRQsuY/+hjU08OJ3Y57SqkSrMNkxSfhBBWfczhSWORxJSSE0kMiE+8iEug6L77AfiO\nOQ5ik0nwH3GUZVdpzRrUTtvMXMlBJRxRXmFd72iH1NkJIcsQFQltseIq4Ujd3ZZNMk/eDEpIi73P\nSKHY819ua4Xtqy8gp6g+1jvzautAFkk46QhZAbTk118pkXi1OBERFUDXsy+i+f3Po+vK4kUZ76v8\n8D0cr80CAFT85ayk7fa334R6792DDzKO1NmBitvMapraVtNyemzKMX62ISIiIiIiIiIiylrxJeHE\nnYQ1xoyJjSvmSV6phColxJMC4QorNntmO+h6clUIpzP13AKTJQmynP4L2uqTfhddrjre2sYpMGEj\nGPbcJRcFNQNSQvJScLfd0fny6wjV1kHEJ4/EJzVFkggyfX6V+hfSadoNBI44Cj233w3IMnquvdGy\nzbZ8KZRwKyhRWZlq96z4TjwZPUcfC8/1ZuWn2luuh/3LOebPL/HxjUvCSUxOK7v+qkHHsj5zPHgf\n1DmfQ3r9NThmvRQdl7rSt3QLbb8jhCtWmcuobxh8IKVWCWf16kKHQEREBMBMbJYmTYquu+66I+U8\no64uaax2j536PHbVb3+Dmr9dnNNEWXek6ieAwMGH5uy4lHui1P/mISIiIiIiIiIiKoCiS8KR2tsB\nAL7tdrRWw4hUwtFK5yStRaQSjj2WhNP681I0//XKlNNrN9sI6o/zrIM5qDaRD4oiQ87wC1rb559a\n1kVdPeRgICmxAjCr2mTD+eC9GLPtppBbW6zH2e9AhLbfEcu/+gmBw46I3bcjLqkp8tgmPL/kuNZH\nvSecFK1GVEpfSItIC6p4KR7vpP2qa6CF20Ml0puaBhsWUF4O3x33ILTTLv3PtSThWH9GoU2nDD6W\n9ZTU0Y76Ky5GzUF7o/6Eoy3b1AU/9b1vXDUofczYwQejyKWVhNPdBQDovORvBY6EiIjIKvI7Kt6i\n2Z+hbd5CrHrpDfh/c3SKvZKTdETc50V5jTX51EiT0N0fZcFPcP/7tth9FGG7XSIiIiIiIiIiIqLB\nKLoknNCqNQAAsckk6wYlHGoJnaT1BcwrRg0hIAUC5mBc9RVRXQPf6WchuNvuSfsqba0on3kZACCw\n1z5YMeeH/Ac8QIqSOiElOH2PtPsEDjoUnbfdBZSFE0Qij0/8nGB2P+uKSy+E2rwWtndmR8fWzrwO\nKC83t5c5oMQlFghXLAlHqJEkL+tVvuWXXxxd9t5wC4za5CuIi137Z9+g66HH0frT4thgpidO3GWp\nx3N4wkRvGmNZ9579l6Q5Ir4dVfiEkLbhRgCA8ptvyFkspUrPIKkqpWByq6lM+Y85Lnb/EzcZ8HGi\nVLWk3t/hN5OQtOl7wHf8Seh84dUCB0REROu77sR2kXFcm24CyDJsO+wAUVaeco7c1gb4/eaKpkFr\naYtuK7voPMvcju5ARok4znv+jYpD9ofU4wEA2N94zTqhhBLb10v8+RAREREREREREWWtuJJwfD6M\n3GdnAICor7dsEtF2VLkrhZ5vvoAGr1+DphmA1wsA1nZIAJx2BV2PPoXgjjunPY7U2wt59Oi8xjoY\nbkfqCj3xVX8itLHjAADdDz6G0G9/BymczCH5fZZ5yqJfUXfpeZBSXMnbn0jC04o/XQhx+umWbbbv\nvo2txFfCSXh+SZ5uoLfX2mZHlmPJKyX0hbQxYiSCBx0KEZdAFDzwYAQ2mYzu+x/pc18RqUCVOO7I\nYWs0pxNGXHsrqb0teU6KdlTBfQ+IblZ++Tl38ZQg98y/wXHX7X3Osb33DpSf5lvGJG3gSTie625C\n818uxbJPv8vJ60HISkm9v7vvvQsAIJeXo+em2zKr6ERERJRH+rbbWdZ7z7sIAOD94xlQldiffcKW\nvrpmzT67Qf3iczSMqsWoKROi49LqVdFl93X/xITtJ0OaPTtpf8fzz8J52imQfvwR/q+/RcUVl8L5\n2cdwPvIQAEBuWRudG9hrH+jhpGoiIiIiIiIiIiKidUXRJOH4O7ogx325qydVwgknA5RQpYRASEd3\ntxfuO29F5YXnmoNxlXAAQJYlwO2GPqHvL6BtatH8qJLEf6nfHykYRKhxTPSkfaQajZRQCafi1JNQ\n/fRjcN/yr6zjkYLmsSobqqDI1ti6734guizifxbhdlRG0GwbVj9hNBrGjYTU2wMAaL3/sYQ7KZ0k\nnFRERSWaZ3+EwKGH9znPkrQUv3+KBKvBaPnqB3i22BoA4L3or8kTwo+3hFgSjh7XKssx66WcxlNS\nNA2V99yBypmX9zmn+qjDULvrdpA6zJZ/0scfRdv/9WXJi2+l3uB2Q7/oYjjGjUm9PVuKAugDrOhD\nREREEC5rC1Lv+Rej5Ydf0fuPa6wTVetFAZZNP81HzYF7Jx87FEvcLbv5RtjaWjHsuCMgL15kmVd5\n+smoeOEZ1E/fHo377Rodl1uaAcSSWAHAe8ElJf+ZmoiIiIiIiIiIiChR0WR2jNh5a8gdsRPCgQMP\nsU4IJ0mURBJOby+01nZseMgemLLZaNRc+4/opkhFnyR9XJEqhRNDSk6qEvWBABCXwBGtqBIpfR8m\nd3Wat2vXZH+/4cdLStFKSR8zNnbfzvh2VObjX/GH4y3Vd5wvPm/GscEG5rxwxRZRZ63UVIqc9vTP\nuf6ovyzIYSSAXFWNzlffREtzN4yRo5InxFfCibwHxCVYGTW1OY2nlEhtKSoHJc7x9kaX6yeOhf21\nV1E/4wBUnnVa0tyV85ZY1o1w9apUVEU2EwlzQVFK4/0dsLy3xb+nEBERFZJwJbQLtdmAYcNiFzOE\npfys1Q/nzz9BamlJGpfXxirb9PV73H33HcmDctH8KUrpMEmKiIiIiIiIiIgoa0XzzaetZS0cs14G\nAPT8/apY0k2YKKFKOPUbjsbIyWPh/mV+0rZIZZVEiW2qLEooCUfEf1Eb/8W6rkP+9htIwYC1iko4\nEUbqjSUJAIBwm1fySuE2XtmQwgk9kWPEs1RYiq+EE06Ocv7wHdzXXZV80PBJje67H0T7YUeh99wL\nso5rXRLcbY+cH7PPpCAp/FwyjGglHMgyPDfcYm7u7s55PKUiUvmpzzk91vedigv+DABQ58+zjHtu\nvBX2BmtCk1yW/DrKixJKwlHeegMA4N1jn6TqZkRERIUiKqsymuc76ZSsjus/5jgAgPum61Bx1AzL\nNknEqthJvn4+tyck6DORtQQwCYeIiIiIiIiIiChrRZOEAwBKuLqGtulmyRvDCR3qj/OStxUZqY8T\nyZEKL0n6KAsf2nX6ICMqjMDhR0aX3Sf/HnX77AbZ47GctNYbzVY2ytIlln1jSTjW5JxMOF59xTyG\nKzl5QJRXxJYdsUo4UGNXCLsfuDdpP6Ox0Yx3yuZovvFOoLw867hKUev3vyBYW4/ev14RHVt4830I\n7nfA0AYSXwknfAJHyDK0zaYAgKWK1vpGCsUl6Wla6jkJSW6RlhDxQlO3gv/3fwAAdL7wanRccQ5R\nkomipI2/2NT+7ihzoaH0K2IREdG6Q1RlloQDpxOhadtkdkyHA8Hd9wQAuB+6H8733rZsV+d8Flvx\nWStb+n73e7R89UN0vezvl0WXl/26GmI9rmRIRERERERERERE667iSsJZvAhAmhLp4eoX7nvuHMqQ\nci64066pN8RV/lm6YDm6/xBrE9N76d/yHVbOBGYcEV02qqoQ2Hd/AEDZ/16Ojovq6tichgYAyUkU\nItxKakCVcCKJO/EVd/oh1PRVWPTyCsuVxVXlmR+31Inhw/HrZ/PgPfcCdD3+X3TPOAr2ww8b+qti\n45JwpLhKOKLWPHkjdXYk7RLSjKSxdVIwFF10Pv1EyinpKnBZxFWuCu20C9rf/ggd/3kWqqr0sVPu\nCJcLUsDf/8QiIjld/U8iIiIaKnGVNSPVa9LpfPUty7pIqOzmn74n2j/+Em1fzUPg4MPSHkcsWQo9\n/NlM/dFMuBHuMnTMegs9198MNDbBCLdzjfwd13XIEXBVJreNpSLESjhERERERERERERZK64knHA1\nFGPYsKRtUqD/livFzrvXftDDlTsSBXfcObpsr6yAPn16bGMWySSF5rn1rtiKJAO25NhFTU1sucpM\nyKn4y1kQzzyDkGZWEYpUwlG/nwvlrjuTytdnQvL7+t4ef8JfSZ+Eo/R4LOuqUlQvm7yrqTBPygT3\n3R++u++H0+3sZ488iK+EE6k0Jcswqs3nkrR6ddIu/mBpVFUZLMeLz0WXbR9/mHJOzT7TMziS9SSL\nPmVzaPvsO2TPd+F2Qx5A0t1Qk1Ysjy6HdtixgJEQEREla2nuxqpvfoLnptv7nijL6Dnp1OiqkVCV\nxj73a+gbbQwxbBigqvCeeU7Kw1Q88Qg0zfycHqlqqo8dB23b7aJJQXJC21Cbs3T+tlnvMQmHiIiI\niIiIiIgoa0WVTSAFzbYqYl2tLjA8ObkoIrTdDgAAo6YGqiKXboUFZ1yChhCQVyxLmqL+ND82JXxl\nLAAMO+sU+PwahBCxdlQ+H2pn/hXqt19nH4uRuhKKPmoD83Z0U1xQ6ZNw1nfxSRiyXKAv4uOTcOIr\n4VRVQzgcUH76MWkXTc8+catU+IMa8O03kFpaUHbzDdHx+CpTUaFYpRwhp3/LF67CvucIdxnkYCCW\nZFWMhED9VptGVwMzflPAYIiIiFKzbTDKUhUnHd/1N8G/824wXG7o4ydYtmkTJ1nWQ1tNs67Xxloy\nll9wjlmtMNxWsvfCS633c9Ip1vULLun/H0HFIe5zJBEREREREREREWWmqJJwolJ8aWw5uTyAqijF\nQEoo827hduOXVz9A+yfhZBNlaFrA5JNk6FAWLUoaV+fHEiYSS99PGN8AzP8Rtk8+tozL7W1Z33/g\ngINTjne++D80//0aBA84KBaHLTkJRx8zFgDAQdJGAAAgAElEQVTQ849rsr5vyrFUSTiKAigK9MYm\n2FatBPxxlY00DbXXXwnl5wVDH2ueuG++AbY/nw0IAWP1GjTssxtq9tjJMkffoNGyrukG5NaW6Lox\nOra95+9XWeb6/nhmHqLOXKQqVny8xUb4E9pl8epwIiIqcZ7nX0HLopUQ5eWW8e5HrC0ugwcdalkP\n7bxLdLn66cchL1sKuc38vG7U1Vvm9vz9KmhjxwMAOp55EcbYcTmLn/LL8fr/Ch0CERERERERERFR\nySnOJJwUCSiBAw+JLkudHUMZTc7YZ73c5/bqbbaEqKszV9aFJJze3mhLqOAee0XHPdf+K7oc35oq\nwvHc/0FpXms9VnNz9gGkSXoyxo6DOPNPlhPokt/a7qztqx/QMestdN12F3yn/yn7+6bciibhABBm\nEk6kqov66y8AgKpjDo9Od7zyIurvuwPV++0xpGHmU9l1V6H6qUdRfukFGLPNZACAsnYNtHHjo3Mk\nb69lH39Qh7x2TXTdc+Ot0eXAoTPQOn8xup76P6yZuwDB/Q7I87+gb3o4QUhetbKgcaRif/kFyMuX\nrVPPJyIioghZUQA59reHNnIURG1dwiQZIv6zc7X1M7zc1QmprRUAYn/PRLjd6JjzLVav6oA2nb9L\nS4rGSjhERERERERERETZKs4knFTVBTIoqV7sEhNL+tRH25hiF6luI1QbAocdAQDwH3lMdLu29TbR\nZX38hkn7GxUVSWNyNo9dBuSE55jU02ONobEJYvhwBH/7O1a7KAZxlXCkSLsiyfoasX/yEaQej7nJ\n6wUAyOH1dYnrofst6+riWLUpyeeLjc/5HBvsNBW2Tz8BAHgu/wdCu++JtutvQee9D8MY3QhRV4fg\nnvtAGTlyaILvi91u3oZbWRQLZcFPqDrl96ibthns8+cVOhwiIqL8iLsAQF29KuWU1mWxpHhRWYmO\nl9+IrsurVsVVwqlL2hcAVLX0LzJY76wDF4YQERERERERERENtdLM9ND0QkeQd0Iu3S88O2Z/iO6z\nz0Nw3/3RM/NqdDz+XwQOPzK6XZSV97E3UHPNzKSx8qv/keswLSIVe4zqaiz6+ue83hdlT6RqR5Ui\nUU1eZZ40EpGEjvVMfCWcmoP2hn3FMpT//a8AADFiBADAOOlkhGYcUZD4+hJpCRdNsioS6vdzU44H\nd5k+tIEQERHlkcgk2cLhQO+FlwIAAocdDm37HaKbKv58BtSvvjCPVZ1c6ZJKVAn/TUpERERERERE\nRFQoJZWE4z3UPHEs6cVVKSFTPZfPzHyyXLrVV/SJmyDwt5mAqkLU10Pbd39LNZlI25mI0OZbJh1D\nm7Rp8oEjyRcpyCtXWNZXP/pMdkEHzHZURsMwOEc0ZLcv5Z8UuRGAIcyVFCeLnHffYW5aumSIAisu\nkQpAqRgjiqDaTV8UMwkHoSJqe+D3o/LMU1Nu8p3BNnVERLQOUTL7s9B7/sVYs2AptPDn9+5LrwAA\n6MNHxKp+lnBFT7ISqlroEIiIiIiIiIiIiEpO0XxDqmVwgliyh1tSFVm7kkyFdtkt88nrYOnvtq9+\nwOIX3gKcTst451vvo3vrHayTdQ16bR3WLlkLvWkMAMD2+adpj60sWxpd7r7gUoi998kqtkglHOF0\nwcZS+cUnnMQlDAP21181x8KJap3PvhSd5n7iMWDlSpTdcE1s3z6St4qdIcIJR+H3vNCWU6FN3CRp\nnu+gQ82F3t6kbdFjDR+R8/hyKnKSR9MgIv/uApO7OlOOt8y8DsG99h3iaIiIiPIo04onsgylJlbp\nRt9zLwCA7af5+YiKCkybOg0A0HNo8VVRJCIiIiIiIiIiKlZFk4QT2nu//ifFnaQtFUZdXXRZ2B2Z\n77gOXkFqNDYBW22VvEGSgB1iSTiG3WGeiFcUyG4X5PBVtWVXXpH+4OHqGd6TT0PgokthU7N7/CSf\n31xISBCiYmEm3GiaAftnnwAA9NFN5u0mk6xTZ8+2rFb8+cz8h5cnPT7zea0sXgQAMIYNR8eHc9A+\n6030zLwavomTsXD+cvTcfhcAwDnrpbTHMkYUdxKOCFfCUZYsRtWBe0P5pfBt4dzXXRVd7jn0N/Ae\nfBg8hx8F3wknFTAqIiKiPBhgxRPhclvWgzvslItoqEj4TjsTC+/5D9puvL3QoRAREREREREREZWM\nosn0CBx0SP+Twl8OSyWUhNP11HOxFbs94/1Eplejlhi3I/UX/EqkyhHMdmPqooVAuBiG54ZbAADB\nvfqobhN+Tgw00UAKmEk4gkk4xSlcCcfo7o4O6ZMmm2PDR8Bwl8XmnniiZVfnf5/Me3j5IDU3o+ao\nw6B+Pxe1O20NIHaiS992e/jOPBvdH3wKd3UFEHcCTJn3A/QU1X9EZdXQBD5Q4ff3iovPg+PLOag8\n/ugCBwS4nngsutx774PwPPAo/Pc8AIeb7xNERLRu0UeOii4Ht9ku8/022tiyHtxjr5zFREVAVeHf\nY2/A6Sp0JERERERERERERCWjaJJw4MigSkykRVMJJeFoW8Yqv4gsknDWxUo4ACCHWwglscUn4egA\nALW1GQBgjG4EACg/fJf2uJJmVgyBMrCreL1/NKul+E4r3aop67RwEk75Yw+l3Bzcd/+hjGZIVFxy\nPmrnfITy886JDSYkicmSBFWRLe3ranffEaEly5IPKKV57RUJx6svW9bl1tYCRZJMSBJkWYIcfgzT\nvo8RERGVKO8558G79fZYePl16HrptQEfR1RV5zAqKgYOVS72j5FERERERERERERFpWgyPURcEka/\nc8JJOPLyZajeZzrUr7+E+o+ZUD//DADgvu6fcBRj9YtsknCEyF8cRUj0UQJfhBO0nK++AsD8uTcM\nq0TlicfFJoXCiVm2gSXhBA8+FAsXrEJwn3UvmWOdEE5KK3tvdsrNks/b7yGMEntNOSKtpUSsqo3U\n2ZF2fnDqtOhy4/abW7a1v/1RboPLA3nNaut6dxeM5csLFI2VVGLPHSIioqyVl6P5+Vfh+92JWbem\n8p58WnRZVDMJZ11jYxIOERERERERERFRVgaWsZAHkqe7/0nhKieSrgGhEOqmbQYAqNlvD3P7v29G\ny6p2lN18IwCg5ehj8xJrn8Ina7UNRqPj5detm+wZVPsJkww9p2EVu9B2O6bfmFAlqWaf6ebw/14x\nH29JAnQzCaevZJ7+OMtZZr1o9ffNv5Q+nzAUrqQUDOlw2ovmLS8lwxCQZcmSbGP7bm502XvWX9Lu\n2/XCq2gYm9yOrfvOe6FP2TzFHsUltPU2UJZbK/gMn7YpVv31KnSceCpkyaz8E6lIY94CkmXMnCMN\n5EyRrkNqb4fc2gK5rdXS0stoGDbYfx4REVHRczlUSMj+d6j3sivgfvBeAIBR7O0vKWs2VYbBfGQi\nIiIiIiIiIqKMFc0Z6dB2O8I3dWuETjsj/aRIgoWmwfnogymnSF1deYguC+ETt/q48UBjk3Wbvf9q\nP1H6+pWEo223PVo+/hINO22dtE3foDG67Lr9ZshtcW1qgkHA4YDr8UcAAHJ7+4BjsNuU/idRYfST\nVOE9/yIYa9bA9c2XSdtsK5ZD8nRDU13QDQNKEbd66/YGUV3ugO2D95K29V5yObTttk+/s9udNNRz\n5TUIHPXbHEaYPz033ALnC88ljY+89m/4ePoRWR1LliRIhgGH1wNXVzucXe1wdLXD2dkOR1cH7J1t\ncHS0wd7ZDntHG+wdbVC7OtJWvOl89qUB/ZuIiIhKiSxJcDuz//NQuMtiy6yEsw6SIIFZOERERERE\nRERERJkqmiQclJVhzYtvoNyVPlElWuVE0yF3dqacY/tqTj6iy1wkeUZJTujIphLO+paEAwDYaOOU\nw6KuDr499obrnbdQftVMyzbJ74NwOGB//10AgP2N1+C98NI8B0pDLiEJp3ffAyzr2uZbouXlNzHy\n8P1h++LzpN1tH30IfbtdoSluKFl0hRtq3b1mEo4oL0/eOID3BGPEyBxENTREVTWCTWNhX7bEMq65\nwslFQkD19sDZ2QZHZwccnW1wdLXD0RlJrmkPj4W3dXZAzqCiWKCiCr7qOgQaxyNQVQt/dS02nPV0\ndLv3rHOhT940l/9UIiKidUtcgrM2cVIBA6F8YCsqIiIiIiIiIiKi7BRPEg4Au9pPhYpwYovk90FU\npS51LsVVQpF6PBDlFTmLr18/zoMcvvpTSpGEA1sWlXC09TAJJ0HHm+9Fl6XK1D9Hye9HsCz2WOmT\nJuc7LCqEhG//ey6bicR3C5dDRfe9D6Fuq+SECbmtFRtusgH8U7eG54138hjo4ISWLoehDIPk8ydt\ns7//btYJZoGDD8tVaEMiVSUaJRjEgcdOh6OrHUoo1O8xQuUVCFXXonuDMQjV1iFUUwettg5aTR20\nunpotfXQ6+qg1zVAr66BbLdDCre2kmWzldWS43+HsUcfBICtqIiIiLJSVtb/HCop5sdwZuIQERER\nERERERFlqqiScGz9JOHYvjSr3FSeeSp8J/8x5Rzni7F2Jsq8eX23b8klrxcN03eIVusRcVeE+o47\nAbaPPrRcJdoffVMzkcB7xtm5jbOE6E1jYiu21OVLHPf8G+p330O4yyB5e9Fz1XVDFB0NJZGQhCNv\nsknKecboRmh/vQzqNVdbxtUfvgMAOL/5Ep78hDhotndmY/tjDgcAdN9jttvzHXcCXE88BgAwho/I\n/qCpkgGLmBQKJg/a7bC7ndAbN4dW3wCjvh6ivgFGfQOMujoY9Q0QDQ0w6uph1NUDDmvFMVv4v6zi\nmDolumzU12f/DyEiIiJaR0iSBLAdFRERERERERERUcaKKglH6qfWtTrvewCA3NIMqbkZAND1+H9R\ndfzR0Tn2d2bHjuftzUOUqdmeNduXSJpmDsSd/O655c6sjycqKrHgl7WorXLlJL5SoY8cBWX1KnNF\njT091R++Tzm//N+3RZdDtXUQVdV5jY8KJIs6+Gq4BZFQVXhuuROVZ5+er6hyyvHma7EVnw8AENpu\nB6gffQjb0sXwXHNjv8fwH3QInLNeBgD0HjwjL3HmU/T9M6zriWcQ3Hu/IY9DuGNX8RvDhg/5/RMR\nEZWa9g/nQNeNQodBeSDF/Z+IiIiIiIiIiIj6l3lpliIgXO7osvuh+wAA2sRNENhzn5TzpUBgSOKy\nv/4/VF94rnVQHnwFCimLyjnriq7nX0Fg4mS0n3MBRGWs5Zg6f150uWP2BwhutnnSvlrj2KEIkQoi\n9sW/6O91EXnd2+2xZAp/cnunYiPiWi0pn31qLrhc6PxiLprXdkEM7z8ZpPdvV8JwOOE590J47n84\nX6HmjaSZj0H3b36L1gVLCpKAAwCwxypv6ePGFyYGIiKiEqJP3ASYzLaw6yJJkrLJhyciIiIiIiIi\nIlrvFVUlnP4IpzN5rLoa3U/9H/Q33sSI439j3RgcmiScqhOOSR7MQRsYWV7/vu3UJ2yE1W99CLsq\np20ho22+JYz6hqRxwbYx6674b/77e20FzZZGwm6HKDMT9+zvvJ2vyHLG6OqOLpf99wkAgHCY73n9\nVQmLHmPceCz9eSXKXTaUViOqsFC4Ek5lJURNbWFjCROVlYUOgYiIiKigMv0sSkRERERERERERCVW\nCQdqclpGpP2QUhU7Uao3NgEApAJWvxC5SMJZT7/rdDtU2FTr49f10H8s65LTkbxjmTt5jNYN8V/8\n91cJJ9LSyGYHwtWzlDWrYtuFyHFwgyQE5LfeQPnLzydvcqR4nvfD5SjJ9BsAsUo4aqrXd4HEV2Aj\nIiIiIiIiIiIiIiIiIupLaSXhJJx8D245LXpyXt5gVHQ8cMgMAIBYtmzoYkukDP6hXV+vOEz17w5t\nv6N1QEku4iTKyvMVEhVa3HOi3zZzl1wC/+Qp6Hr4CQh3igQKw8hxcIOjfPIR6o47MuU2ee2a7I9X\nwm3sRCTRMhQsbCDx4lpTERERERERERERERERERH1paTO1gZ33tWy3nvdjdFlo7EJPaefBe8RRyG0\n1TQAQNUNVwOhUH6D8nohwgkCRm1c+xRp8A+tvJ4m4aQi6uux+uGn0Pb5t+a6LUUntZrqIY6Khkw2\nr4WxY7H6tfegbbsd9DFjkzbLH7yfu7gGSVq1ErUzDky7PbTDTkMYTeH5zvozACC45z4FjiQO34eJ\niIiIiIiIiIiIiIiIKEMllYTTe9nfLevaVltb1n1XXoPeux8A7LFWJpLPm9eYJI8HkhDwH3gwPDfe\nGtuQi3ZUJfXTyT99n/1gjBtvrqSqhLPB6CGOiIZMli2k3E7z+SGqa5K21R19WKxlVYHVbznJsi4k\nCe3Pz4quGymSiNZl3vMuwo9vf4nQHnsVOhS0zf0J7R9/WegwiIiIiIiIiIiIiIiIiKiEpCgnUsSc\nzszmBfyxZZ8fqKzKTzwApGC4NY67DIhrfSNykISzvrajSseuxmUlqclPXX3EyCGMhoaUrmc1vb8q\nUlJXF0Rd3WAiGjR5zeqkMe95F0HfcecCRFMkJAlSY2OhowAAGCNH9T+JiIiIiIiIiIiIiIiIiChO\nydZa8e+zX9ptUiAQW85zJRzXg/cBAITNBuGKJeHkpBIOk3As4pOSvOeeH10ObTLZvE1oV0brDsnI\nLgmn3+N1d+X0eANRt/nEpDHJ7wdkGe2vzkbrS68XIKrCq692FToEIiIiIiIiIiIiIiIiIqIBKa1K\nOPGcmZ2olfz+/icNgvuu2wEAti/nwH/iybENci4q4Qz6EOssfcJGaF2wBNq770GZMQM9vhDK3fZC\nh0X5YhjRxa4HHh304WRPN4z+pw0J37HHQ+7qguPVl6FP2BAAoG+zbYGjIiIiIiIiIiIiIiIiIiKi\nbGVUCWfu3Lk4/vjjk8bfeecdHHHEETj66KPxzDPPAABCoRDOP/98HHPMMTj22GOxcOHC3EYc4XCk\n3RQ48JDocr4r4USoPy+AcJfFBpTBFxmSZWbh9EXU1AKHHQZIEtwuW6HDoXyKa0cVPGRGVruGtppm\n7jdhI3jPPAcAIHV35y62QZL8fnTfeS+673sY/uNOKHQ4REREREREREREREREREQ0QP1mitx///24\n/PLLEYhr8QSYyTbXXnstHnroITz++OP473//i9bWVrz//vvQNA1PP/00/vSnP+HWW2/NS+B6Y2P6\njW43es+7CAAg+Xx5uf9UhCuuOo+cgyQclsLplxJ+nPlYreP0gbejChxxlHl7xlkwRowAAEgd7ZBX\nrshJaIOm60BZGQKHHcHyV0REREREREREREREREREJazfTJGmpibccccdSeMLFy5EU1MTqqqqYLfb\nMW3aNHzxxRcYN24cdF2HYRjo6emBquan45UxbESf24XbbS7485uEI5xOAEDnsy9ZKuEIZfDtqIgo\nTJjNo8QAktt8p5yOJe9/Cf/xJ8IYOQoAUHXyCaibOhnKl1/kNMyB0MeNL3QIRERERERERERERERE\nRESUA/1myOy7775YsSK5YkRPT8//t3fn0VHV9//HX3eW7CEL2VkjS2QH/QFiBDGlWixQtiJ1Vywq\nVVtFRFy+pR61li/8vl8UBKz+oLYKqNEqhUIBBalEZRNZo+xhkQYIWQhJJjP390dgDBAgySRMJvf5\nOIeTe+/c3Pu+c05eZ+7cN5+PIiMjvevh4eEqKipSWFiYDh06pIEDByovL0+zZ8+uViExMWFyOKrf\nuBKZGKvI+MiL7xAXLUmKdkq61H61UFJarpDgM29dly7ybNmq6JFDpEqj7oRFhCqsjs8LWNaZvzfD\nbld8Nf6uzt8nNLKrIkKdUp//c872E5mf6EB8WzkddgU5bHI67Qp22uV02Cp+Om0KclRet8teF9PE\n3XOPdzH8lRcVfonp9QDgUqqTiQDQGJB3AKyCvANgJWQeAKsg7wBYBXlXodbD1EREROjUqVPe9VOn\nTikyMlLz5s3TDTfcoPHjx+vIkSO65557tGjRIgVf5iFzXl5xtc4bf+ZnvtumstzCi+4X4rYpUlLB\nD8dVeon9auOHE8VKiq0YaSemuESGw6Hc3ELJNL31FZe6daqOzwtYVXjhaYWpYoSpY5f5u4qPj6z4\ne6ykzOXW6SK71CRBcYYhwzQlSSkfL5Bz3x65wiPlCouQKyxCpWHhKgqLkCs8QuVnfp59rTwsQkZI\nsJyOH5tznHZbxc8z/7zbz/xz2M8dvce+Z5di337bu55bUCaprE7eJwDWUlXeAUBjRN4BsAryDoCV\nkHkArIK8A2AVVsu7SzUc1boJp02bNtq/f79OnjypsLAwrV+/XmPGjNHu3bvldDolSVFRUSovL5fb\n7a7taS4uNPSSL5tnXjdO1+10VI7Nm+Tcvkf61YiKDeUumY6K65VRaYQMpqMC6s7ZDLHV7u/K4TjT\nCBMSIjMsTMaZBsKwY0fVauWimpXidJ5pzomUKyzc25xT0agTrvLwCBWHRcoVXvGaOzxSZmSkFNlE\nimqi9FEZ3mOdvuveWl0PAAAAAAAAAAAAAKDhqXETzqJFi1RcXKzbbrtNTz/9tMaMGSPTNDVixAgl\nJibq3nvv1TPPPKPbb79dLpdLjz/+uMLCwuq8cDP00sc8+7pRUrdNODE/vVExknLPNuG4XFKQ88Lz\nnzf6BQAfeCqacMxaNrfZKjXIld5wo0KXLZEkrf7XZqmgQCoskFFYIFthoeynCuUsLpKz+JQcxUVy\nniqqWD9VVLFe6bWIk8flLD51sdNeVnnnrrX+XQAAAAAAAAAAAABAw1KtJpzmzZvrvffekyQNHjzY\nuz0jI0MZGRnn7BseHq7p06fXYYlVMy87Ek6IJClsyss6PXZcnZ/f/l223O3TKppwnBc24cigCQeo\nK2U3D1TYG7N0euzDPh/LVu7yLnfsnnrB6+Vuz5l/plzlHrndHpWcWS93e7zbXGfWy8tcMguLZCuq\naOBxnGnSqWjcKZTj1Jnl4oomnqj9u9R0x2ZJUukvb/P5egAAAAAAAAAAAAAADUOtp6Pyt8uOhBPR\nRJJkKyiol/PH3tBTuXuPyHC55AkOuXAHpqMC6oyrX39t+fcWJbVr6fOxiv5nhhw3patw2qtVvu6w\n2+So5UhWlRt4yt0elZd75HJ7VOo2depMA89h01RayxhfLgEAAAAAAAAAAAAA0AAFbhNOzKUfYnta\ntKj3GkIy36sYCSci4sIXacIB6pTZNE6qNK1UbXmSknVix546qOhCvjTwAAAAAAAAAAAAAAACW8A1\n4RQ9N1n66mt5kpIvuZ8nOaXiZ1BwvdXi2LZF9uPH5E5IuPDFOmgWAPAjg78pAAAAAAAAAAAAAEAD\nFnBNOKcfe0KlZW4FV+OBvKtjJ9lycuqtltC5b0qSHJXOYdpsMjweqbS03s4LWBE9OAAAAAAAAAAA\nAACAhiwg500JDqreVE9mSKiMkpJ6rkayFRX+uBJcMfLOlTgvYCU2unAAAAAAAAAAAAAAAA1YQDbh\nVFtYmGyuMsntvmKnNB1OSZJRShMOUJciQp3+LgEAAAAAAAAAAAAAgItq1E04ZkiIJMk4dqxez+OO\ni/9xuV07SZInPqFezwlYTWhwwM2eBwAAAAAAAAAAAACwkEbdhOPYvk2S1OTRB+v82J7IJt7lk/9a\n5V0umPuOcsc+quLf/LbOzwkAAAAAAAAAAAAAAICGqVE34XhatJQkBa369NL7mWaNj5234nMVPfcH\n5ebkytO8xY/HSk5R8XOTpeDgGh8TAAAAAAAAAAAAAAAAgalRN+EUzPl/kqSy9L6X3M/j9qjM5a7W\nMd0tWqosIUme1Kt0+rHHq2y2CQtx1rxYAAAAAAAAAAAAAAAABKxG3YTjSWkmd1i4dPLkJfeLT79W\nzZrFKHTG9Msf1DSlIJpsAAAAAAAAAAAAAAAA8KNG3YQjSZ7YWAVt2yKVl190H8fePZKkiBeev+g+\nZS63PB5T8nhk2Ox1XicAAAAAAAAAAAAAAAACl8PfBdS7sHBJknHypMy4uFofJuTPs6VWLWWWu2UG\nBdVVdQAAAAAAAAAAAAAAAGgEGn0TjrtrNzm/2ynb8WNy+9CE03TypDqsCgAAAAAAAAAAAAAAAI1J\no5+Oyvn1V5KkJnePrtXvm6YpmWZdlgQAAAAAAAAAAAAAAIBGptGPhGM/sE+S5Ni754LXbD8cUcRD\nY7zrptN5wT6utV8qYvfOeqsPAAAAAAAAAAAAAAAAga/RN+GU9b1RQWtWS5JcZeVyBp25ZNNUk9tH\nyrl1i3dfw+WS3G7Jbq9YLypUs2G3XPGaAQAAAAAAAAAAAAAAEFga/XRUBX+e510Oe2mydzk4871z\nGnDOMvLyVJ57TJJk37atvssDAAAAAAAAAAAAAABAI9Dom3DM2Kbe5ehZr3qXw2a+WtXuatqlnZI7\nXSVJMkpOX/B6wbN/0MFvd9VxlQAAAAAAAAAAAAAAAAhkjb4J5wKmKUlybLtwFBxJMtzuioXSUhkF\nBRe87r7xRqlp0wu2AwAAAAAAAAAAAAAAwLos14RjnMyTq9R1+f0KC2UrvLAJxxMVLafdcm8bAAAA\nAAAAAAAAAAAALsFy3STRwwYppcXlR7Kx79kt25HDF2z3JCTKZjPqozQAAAAAAAAAAAAAAAAEKEs0\n4Zx6+jnvsmP7Vu9y8S0/V/Gjj3vXyzIGeJdtx4/JvnfPOccp7dlbCg+vx0oBAAAAAAAAAAAAAAAQ\niCzRhHP63jFVbnfdNlolQ0d41/MXfKjyxCRJkqe0VEZx8Tn7F87/oP6KBAAAAAAAAAAAAAAAQMCy\nRBOOGdtUp4b98oLt7rbt5W7TVpJU8ovhkqTTTz0jSfKUlEqlJeceJyKynisFAAAAAAAAAAAAAABA\nIHL4u4Arpk2bCzaZwcFSWJhyc3KloKCKbU6nJMnYtFHBy5dJko798k6pVSvJZomeJQAAAAAAAAAA\nAAAAANSQZZpwyntcc8E2T+vUioXg4B83nmnGiZ07x7vp6ItTFRkWpNB6rRAAAAAAAAAAAAAAAACB\nyjJDu5hBweeuh4RIhnHBfo71X1+wzWGI1LYAAByPSURBVOmwK8hpmbcKAAAAAAAAAAAAAAAANWSd\nzpIzI9xIUsFrs3X8mx1V7ua+uuMF22w2Q3amogIAAAAAAAAAAAAAAMBFWKazxKzUhONulSoztmmV\n+5WMvuOCbXbbhSPmAAAAAAAAAAAAAAAAAGdZqAnnx+mobKcKL75jUJBKul/rXS38v6+JHhwAAAAA\nAAAAAAAAAABcimWacBT8YxNO5Yacqhx9+z3vcskdd8tGFw4AAAAAAAAAAAAAAAAuweHvAq6UytNR\nuW7od8l9jagoFQ74mcpu6CcZBtNRAQAAAAAAAAAAAAAA4JIs04SjSk04Mi7dVOMMcujYW+8o2GmX\nU5Jxmf0BAAAAAAAAAAAAAABgbZZpwrncFFSVOew2hQUb3mmoGAkHAAAAAAAAAAAAAAAAl2LzdwFX\nTHDQ5fepxFap8YaRcAAAAAAAAAAAAAAAAHAplmnCqclIOAAAAAAAAAAAAAAAAEBNWGY6KgUH6/gr\n/yOzQwd/VwIAAAAAAAAAAAAAAIBGxjpNOJLK7rlPNpthneF/AAAAAAAAAAAAAAAAcEVYqgnHYaf9\nBgAAAAAAAAAAAAAAAHWPrhQAAAAAAAAAAAAAAADARzThAAAAAAAAAAAAAAAAAD6iCQcAAAAAAAAA\nAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAAAAAAAAAAB8RBMOAAAAAAAAAAAAAAAA4COa\ncAAAAAAAAAAAAAAAAAAf0YQDAAAAAAAAAAAAAAAA+IgmHAAAAAAAAAAAAAAAAMBHNOEAAAAAAAAA\nAAAAAAAAPqIJBwAAAAAAAAAAAAAAAPARTTgAAAAAAAAAAAAAAACAj2jCAQAAAAAAAAAAAAAAAHxE\nEw4AAAAAAAAAAAAAAADgI5pwAAAAAAAAAAAAAAAAAB/RhAMAAAAAAAAAAAAAAAD4iCYcAAAAAAAA\nAAAAAAAAwEc04QAAAAAAAAAAAAAAAAA+ogkHAAAAAAAAAAAAAAAA8BFNOAAAAAAAAAAAAAAAAICP\naMIBAAAAAAAAAAAAAAAAfGSYpmn6uwgAAAAAAAAAAAAAAAAgkDESDgAAAAAAAAAAAAAAAOAjmnAA\nAAAAAAAAAAAAAAAAH9GEAwAAAAAAAAAAAAAAAPiIJhwAAAAAAAAAAAAAAADARzThAAAAAAAAAAAA\nAAAAAD6iCQcAAAAAAAAAAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAAAAAAAAAMBFud1u\nf5cQEGjCARBw1q5dq927d/u7DACod+QdgMbONE1J0hdffKG8vDw/VwMA9e+tt95SZmamv8sAgHpH\n3gGwiqVLl+qbb77xdxkAUO9mzpypSZMmSfrxOz1UjSYcAAHj22+/1ejRo5WZmakJEyZo48aN/i4J\nAOoFeQfAKgzD0P79+zVx4kRt2LBBLpfL3yUBQL3IysrS/fffrxMnTqhv377+LgcA6g15B8Aqdu/e\nreHDh2vdunVatmyZ8vPz/V0SANSLlStX6tFHH9VXX30ll8sl0zRlGIa/y2rQaMIBEDA++eQTDRs2\nTNOmTdOQIUP0zjvv+LskAKgXn3zyiYYPH07eAbCEXbt2KS4uTt9++62OHj3q73IAoF789a9/1eDB\ngzV+/HitWbNG//73v/1dEgDUi7fffltDhgwh7wA0ellZWbrrrrv0/PPPKyYmRvv37/d3SQBQ5zZs\n2KAlS5bo/vvv19ixY5WcnCzDMOTxePxdWoNmnzx58mR/FwEAVSkuLtZf/vIXFRYWKjQ0VHl5eUpJ\nSVHr1q21a9cuSVLv3r0liY5LAAHLNE25XC5t2rRJERERCg4O1s6dO5WamqpWrVqRdwAaleLiYq1c\nuVKSFBsbK0nauXOnunXrpiNHjqiwsFAFBQVKSkqS3W73Z6kA4JPi4mLNmzdPRUVFat26tUJDQ/Wn\nP/1J69atU3x8vObOnSu32622bdvK6XT6u1wAqJXK97Ph4eEKCQmRx+PR//7v/+rrr78m7wA0Kmfv\nZz0ej5o2barNmzdr/fr1WrRokVq0aKHXX39dhmGoffv23M8CCGhn72ddLpeSk5P1y1/+UsnJycrP\nz9fatWt144038rnuMmjCAdAgbdiwQb/73e8UGRmpnJwc7d27VyNHjlRaWpokacGCBerevbvat2/P\nA2kAAc0wDK1fv17Tpk1Tt27dlJiYqC5duuiqq66SRN4BaDw2bdqkhx56SDabTUuXLlVoaKhSU1O1\ndu1aXXPNNdq/f7/mzJmjiIgI9evXz9/lAkCtnb2fbdKkiQ4cOKCtW7fq1ltv1Z49ezR69GgNGjRI\naWlpWrBggX72s58pKCjI3yUDQK1Uvp/t0qWLkpKS1K5dO23btk233347eQeg0ajqftY0TeXk5Kh3\n796666671KZNG/3tb3/ToEGDeDgNIGBVfj67d+9e5eTkqGvXrnI4HPrmm2904sQJZWRkyOPx8Lzi\nEhz+LgAAqvLFF1/o0UcfVUZGhj777DN9+eWXioqKkiSdPn1a+fn5ysjI0JdffqnDhw9r2LBhhD2A\ngFRWVqbMzEzl5eUpKytLSUlJio+Pl0TeAWhcduzYoUceeUS33nqrVqxYoc2bN6uoqEiFhYWaOHGi\n0tLS9NOf/lTNmzdXYWGhIiMj/V0yANTK+fezWVlZioiI0COPPKLExERJUo8ePRQcHKyjR48qIiLC\nzxUDQO1Uvp/96quvlJKSovj4eD3++OPe+1ryDkBjUPl+9l//+pe+//572Ww2xcbGau/evZKkXr16\nKTg4WPv379fVV1/t54oBoHaqej4bHBwsSerTp49mzJihH374QUlJSTJNk2cVF0ETDoAGyTAMhYSE\nSJJCQkK0a9cueTwe2Ww2ff755zpy5Ij++7//W3v27NHYsWMJeQAB4WIfSocOHaq7775b7777rrKz\nsxUbGyu73a7Vq1eTdwAajZycHG3evFm33nqr+vTpo4KCAh05ckQul0vPPvusrr32WmVnZ+vvf/+7\nXC6Xv8sFgFo7/3529+7d8ng8io+P17x581RQUKCTJ08qPDxcKSkpfq4WAHxT1f1sQkKC5s6dq8LC\nQuXl5ZF3AAJe5fvZ9PR0FRUV6fDhw+revbtWrlyp//qv/9KpU6cUGhqqZs2a+btcAKixs88uLvZ8\n1jRNNWnSRBkZGfr444/14IMP8qziEmz+LgCAtZ2dO/osj8cjSXr00Ud1/fXXS5JWrVql/v37y2ar\niKzTp0/r8OHDuvrqqzV37lz16dPnyhcOADXkdruVn5/vXT/7wTUoKEhpaWnq3Lmz2rdvr6ysLB06\ndEhSxdyrhw4dIu8ABBSPx6OSkpJz1iVp7Nix2rt3r7Zv367w8HC1atVKubm5uvPOO3XttddKktLS\n0jRx4kTFxsb6pXYAqInz887tdku6+P2sYRhKT0+X3W5Xp06dNHXqVIWGhvqldgCoCbfbrdzcXEk/\nfra72P3sf/7zHzkcDl133XWy2Wzq3LkzeQcgYLhcLmVlZamoqEhSRdZJF97Ptm7dWrm5uerZs6cm\nTJigzp07q3fv3nrttdcY1RVAQDg/78662P2s3W6XJHXt2lVdu3a94vUGGvvkyZMn+7sIANZjmqZO\nnjypKVOmKCEhQQkJCd7XKndOFhcXa82aNRozZoyWL1+uFStWqH379ho/fry6d+/uj9IBoMY++OAD\nTZ061Tv1Sps2beRwOLx5FxYWJklKTU3VihUrZJqmOnTooLCwMD344IPq0aOHP8sHgGpbsGCBZs6c\nqS1btig1NVVRUVHerAsNDVVZWZkWLFigIUOGKCUlRe+++65uuOEGNWnSxM+VA0DNVJV3Z//jyFnn\n38/+85//1C233KK+ffuqS5cufqocAGrm9OnTmjJlir788kvddNNNMgzDO1q1dOH9rNvtVqtWrdSi\nRQtdd9115B2AgPH+++9rypQpioiI0DXXXCO73e4dGeL8+9nk5GTNnz9f6enpatasmTp16qROnTr5\n+xIAoFqqyjvp4s9nV6xYoUWLFqljx47q0KGDWrRo4a/SAwYj4QC4os52jhuGoYMHD+qf//yn1q1b\n5x0dwjAMbdy4UU888YQOHjyoXbt2ae3atXryySe9X1j27t1b4eHh/rwMALiss3m3Y8cOrVy5Ui+8\n8IJ+8pOfaNu2bTp+/LgkefMuJydHpmkqKipKvXr10smTJ+VyudS6dWtFRET48zIA4LLO5t3333+v\nTz/9VJMmTZJpmlq4cKF3nw0bNmj8+PEaOHCgTp06palTp+quu+5SUlKSoqOj/VU6ANRIdfLuYvez\nS5cu1eDBg73DegNAQ3Y27yTJbrfr4MGDOnjwoD799FNJks1mu+j9bH5+vhwOhyQxRQGABs80TZmm\nqdWrV+u9997Tyy+/rFGjRnm/u7PZbFq/fn2V97PJycmKiYnx8xUAQPVcLu8Mw9D69esv+nx28ODB\nioqK8vNVBA6HvwsAYB15eXkKCgryNtBs2LBBP//5z7Vnzx5lZ2erV69eWr9+vRYsWKD+/furefPm\n2rdvn/Ly8nTnnXcqPT3dz1cAANVTOe/WrFmjVq1aqWXLlrLZbHrzzTcVHR2tjRs3av78+crIyDin\nc3zo0KF+rBwAaqZy3q1du1Zt27ZVq1atdP3112v+/PnKzc3Vjh07tGLFCl1//fWKjY3VjBkzdODA\nAXXv3l0DBgzw9yUAQLXUJO/69evH/SyAgHX+93dHjhxRVFSUhg4dqiVLlqhbt27avn27li5dqptu\nuon7WQABKy8vT06nUxEREYqMjFTPnj01f/58bd26VTExMWrXrp1SU1P19ddfKz09nftZAAGrJnnH\n/WzdMMzKbe0AUE/mzZunxYsX65prrlF8fLweeOABfffdd2rfvr1mzZql0tJS3XPPPQoLC1NwcLC/\nywWAWjubd927d1dqaqpuv/12HT9+XE2bNtWuXbs0a9YsTZs2TSUlJfxPaAABrXLetW7dWnfccYd3\nytGnnnpKUVFRio6OVmxsrMaNG+fvcgGg1sg7AFZR+fu7uLg4/frXv9bhw4f1xRdf6MYbb9TDDz+s\niIgIPfXUU+rYsSMj3QAIWGfzrkePHmrWrJnuuecePfzww2rbtq3Gjx+v7OxsffbZZ7LZbBo7dqy/\nywWAWiPv/IORcADUu3379mnNmjWaNWuWXC6XnnnmGcXExGjEiBGSpGHDhmn69OnauHGj+vbtK0ly\nu93eOQgBIFBUlXcOh0OjRo2SaZpasmSJd37onTt3qmXLloqNjfVz1QBQc1Xlnd1u1+jRoxUTE6MZ\nM2YoODhY8+fP905n4HK55HQ6/Vw5ANQMeQfAKs7Pu2effVZJSUmKi4tTZmamPvvsMyUmJsowDDVr\n1kyGYai8vNw79RQABIrz827ixIlKSUnRhAkTVFxcLElKS0vTqlWrlJycLInPdwACE3nnPzZ/FwCg\n8Tt+/Ljat2+vkJAQJScn65FHHtHs2bNVXl4uSUpKSlLXrl21YsUKHTt2TJJowAEQkKrKuz//+c8q\nLy+XYRj6z3/+o+joaE2aNEmZmZnyeDz+LhkAaqWqvHvrrbdUXl6unJwc7dq1SwcPHtTq1au9o35x\nAw8gEJF3AKzi/LwbN26cZsyYobKyMnXs2FEPPfSQXn31VV111VVasmSJJNGAAyAgnZ93jz32mKZO\nnapWrVrJ6XQqKytLP/zwg7799luFhoZK4vMdgMBE3vmPffLkyZP9XQSAxuPsg2bDMOTxeGQYhoqL\ni7Vs2TJ169ZN0dHRSklJ0bZt23T06FF169ZNUkWnZXx8vNq3b+/nKwCA6qlJ3h0/flxJSUmaMGGC\nXC6XBgwYoIceekhhYWH+vgwAuKya5F1xcbGCgoL0t7/9Te+//75GjBihoUOH+vsSAKBayDsAVlGd\nvGvWrJmys7NVUlKiJ598UomJiZIqvsPr3bu3n68AAKqnunm3detWFRcXy263a/78+frggw80bNgw\nDRw40N+XAADVQt41LDThAKgzs2fP1uLFiyVJqamp3pBv2rSptm/frr1796pdu3YKDQ1VQUGBwsPD\nlZaWJo/HI4fD4R3qDAAauprmXWhoqK655hqFhobq2WefVYcOHfx8BQBQPTXJu/z8fDmdTvXv3199\n+/bVqFGjdPXVV/v5CgCgesg7AFZRk7zLy8tTTEyM0tLSVF5eLrvdzn8mARAwavr5zuFwaMCAAbrl\nlls0cuRIPt8BCBjkXcPDdFQAfFZWVqYXX3xR+fn5uu+++1RWViapYkopwzC0detWtW7dWocOHdL8\n+fO1ePFiLViwQE2aNJEk2WxEEYDAUJu8mz9/viIjIyVJY8aMYbhuAAGhNnm3cOFC7+e7kJAQPuMB\nCAjkHQCr8PX7O+5lAQQKXz/f2Ww2Pt8BCAjkXcPFJ2cAPrPb7d7pVd5991253W7t379fv/71r/Xy\nyy9rx44dmjJlinr37q1Nmzbp008/1RNPPKE+ffr4u3QAqJHa5N348ePJOwABh893AKyCvANgFeQd\nAKsg7wBYBXnXcBmmaZr+LgJA4FmwYIEMw9Btt92mw4cPa/bs2UpJSVFCQoL69eunxx9/XD179tSd\nd96p2NhYf5cLALVG3gGwCvIOgFWQdwCsgrwDYBXkHQCrIO8CA+MLAaiVdevWac6cOTp9+rRSUlIU\nHh6u5cuXq127doqLi9Pvf/97rVq1yjukmdvt9nPFAFA75B0AqyDvAFgFeQfAKsg7AFZB3gGwCvIu\nMNCEA6BacnNzvcvff/+9IiIilJqaqqlTp0qSRo8erfj4eGVnZ8vtduvQoUO67rrrvPNF2+12v9QN\nADVF3gGwCvIOgFWQdwCsgrwDYBXkHQCrIO8CE9NRAbikH374Qa+99pqOHz+ujIwMpaenq0mTJsrN\nzVViYqKGDBmiOXPmqG3btlqxYoWysrK0b98+nT59WuPGjdMNN9zg70sAgGoh7wBYBXkHwCrIOwBW\nQd4BsAryDoBVkHeBjSYcAJf0+uuvy+Vyafjw4fr444+Vl5enJ554QuHh4ZKkGTNmaMeOHZo5c6ZM\n05RhGNq8ebO6devm58oBoGbIOwBWQd4BsAryDoBVkHcArIK8A2AV5F1gs0+ePHmyv4sA0LBkZmbq\nL3/5i7Kzs3Xw4EHdfffdatGihRITE7Vz504dOHBA3bt3lyT16tVLr7zyilq2bKk2bdpIkpKSkvxZ\nPgBUG3kHwCrIOwBWQd4BsAryDoBVkHcArIK8azxowgFwjqlTp2rLli26//77tWzZMi1evFhBQUFK\nT09XaGio7Ha7tm3bpi5duigkJESS1KFDBzVv3lyxsbF+rh4Aqo+8A2AV5B0AqyDvAFgFeQfAKsg7\nAFZB3jUuDn8XAKBhKSws1G233aZOnTrpjjvuUEJCgv7xj39o0KBB6tChg5o2barS0lKFhYV5hzfr\n06ePv8sGgBoj7wBYBXkHwCrIOwBWQd4BsAryDoBVkHeNi83fBQBoODwej26++WZ17dpVkrRkyRL1\n69dP48aN00svvaS9e/dq7dq1OnnypDwejwzD8HPFAFA75B0AqyDvAFgFeQfAKsg7AFZB3gGwCvKu\n8TFM0zT9XQSAhqeoqEj33nuvZs2apfj4eM2aNUv5+fk6duyYJk6cqPj4eH+XCAB1grwDYBXkHQCr\nIO8AWAV5B8AqyDsAVkHeNQ5MRwWgSkePHtX111+vwsJCvfjii2rXrp3Gjx8vp9Pp79IAoE6RdwCs\ngrwDYBXkHQCrIO8AWAV5B8AqyLvGgSYcAFVat26d3njjDW3btk2/+MUvNGTIEH+XBAD1grwDYBXk\nHQCrIO8AWAV5B8AqyDsAVkHeNQ5MRwWgSpmZmcrNzdX999+voKAgf5cDAPWGvANgFeQdAKsg7wBY\nBXkHwCrIOwBWQd41DjThAKiSaZoyDMPfZQBAvSPvAFgFeQfAKsg7AFZB3gGwCvIOgFWQd40DTTgA\nAAAAAAAAAAAAAACAj2z+LgAAAAAAAAAAAAAAAAAIdDThAAAAAAAAAAAAAAAAAD6iCQcAAAAAAAAA\nAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAPCzp59+Wh9++OFFX580aZIOHTpU4+Pm5OTo\nmWee8aU0AAAAAAAAVBNNOAAAAAAAAA3cV199JdM0a/x7hw8fVk5OTj1UBAAAAAAAgPMZZm2+wQEA\nAAAAAECtmaapV155RatWrVJCQoLcbrdGjhyp/fv3KysrS/n5+YqJidFrr72mjz76SK+++qpatmyp\nd955Rzk5OfrjH/+okpISxcTE6A9/+INatGihuXPn6qOPPpLNZlPXrl31wgsvaPDgwTp48KCGDh2q\nZ599VpMnT9b333+vY8eOKTU1VTNmzNCxY8f0m9/8Ri1atNB3332nzp07q1evXvroo4+Un5+vmTNn\nqk2bNsrIyFBGRobWr18vSXr55ZfVsWNHP7+TAAAAAAAADQcj4QAAAAAAAFxhy5Yt0/bt2/WPf/xD\n06dP14EDB+R2u7Vnzx4tWLBAy5YtU8uWLbVo0SKNHTtWCQkJeuONNxQeHq7nnntO06ZN00cffaT7\n7rtPzz//vMrLyzVnzhxlZmbqww8/lGEYOnr0qJ577jl17txZv//977Vp0yY5nU4tXLhQy5cvV2lp\nqVavXi1Jys7O1rhx47R06VJt2bJFhw4d0sKFCzVo0CAtXLjQW3d0dLT+/ve/67HHHtPEiRP99fYB\nAAAAAAA0SA5/FwAAAAAAAGA1X3/9tW6++WY5nU7FxsaqX79+stvtmjhxot5//33t3btX33zzjVq2\nbHnO7+3bt085OTl6+OGHvduKiorkcDjUo0cPjRw5Uj/5yU90xx13KDExUfv27fPu17NnT0VHR+ud\nd97Rnj17tG/fPhUXF0uS4uLivKPaJCUlqU+fPpKklJQUHTx40HuMUaNGSZIyMjL09NNP68SJE4qN\nja2X9wgAAAAAACDQ0IQDAAAAAABwhRmGIY/H4113OBw6efKkxowZo3vvvVe33HKLbDabzp9F3OPx\nqHnz5vr4448lSW63W8eOHZMkvf766/rmm2/0+eef64EHHtDUqVPP+d2VK1fq1Vdf1d13363hw4cr\nLy/Pe/ygoKBz9rXb7VXW7XD8+FWSx+O56H4AAAAAAABWxHRUAAAAAAAAV1ifPn20dOlSlZWVKT8/\nX2vWrJFhGOrVq5d+9atfqW3btvriiy/kdrslVTTFuN1uXXXVVcrPz9f69eslSZmZmXryySd14sQJ\nDRw4UO3bt9dvf/tbpaenKzs7W3a7XeXl5ZKkrKwsDRw4UCNGjFBcXJzWrVvnPX51LV68WJK0fPly\ntWnTRlFRUXX4rgAAAAAAAAQ2RsIBAAAAAAC4wgYMGKAtW7Zo0KBBiouLU5s2bVRSUqKdO3dq8ODB\ncjqdSktL804F1b9/f40dO1Zvvvmmpk+frpdeekmlpaWKiIjQn/70J8XGxmr06NEaOXKkQkNDlZyc\nrGHDhsnlcqmwsFATJkzQAw88oCeffFJLly5VUFCQunfvfs5UU9WxceNGffDBBwoNDdUrr7xSH28N\nAAAAAABAwDLM88c1BgAAAAAAAM6TkZGht99+W82bN/d3KQAAAAAAAA0S01EBAAAAAAAAAAAAAAAA\nPmIkHAAAAAAAAAAAAAAAAMBHjIQDAAAAAAAAAAAAAAAA+IgmHAAAAAAAAAAAAAAAAMBHNOEAAAAA\nAAAAAAAAAAAAPqIJBwAAAAAAAAAAAAAAAPARTTgAAAAAAAAAAAAAAACAj/4/LMZTXjsASL8AAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJ8CAYAAABQyzzyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vF7Jj0hPaEEQq/SRJCiqFRxVURhkaUpoivq\nYt/VRVkLYP8hFlR0RV1BUWysKIoFQfALCEiTToCQQHoyaZNM//2RzZiQnkxIAu/Xde2VM+ec5/N8\nzhAhO9w8j8HlcrkEAAAAAAAAAAAAAAAAwKOMDd0AAAAAAAAAAAAAAAAAcC4imAMAAAAAAAAAAAAA\nAADUA4I5AAAAAAAAAAAAAAAAQD0gmAMAAAAAAAAAAAAAAADUA4I5AAAAAAAAAAAAAAAAQD0gmAMA\nAAAAAAAAAAAAAADUA++GbgAAAAAAAAC1M2LECJ06dUoDBw7UsmXL6mWOvXv36vXXX9eePXuUnZ2t\n8PBwDR48WPfee69GjhwpSZo0aZLmzZtXL/NXx8GDB9W9e/daj3e5XPrxxx/13//+V3v37lVGRoa8\nvb0VExOjIUOGaPr06WrXrl2VNVavXq3PPvtMBw4ckNlsVvPmzdW/f39Nnz5dffr0qbKPzMxMvffe\ne1q3bp0SEhLk5eWlNm3a6Morr9S0adMUFhZW62cEAAAAAAANg2AOAAAAAAAAyrVv3z5NnTpVFovF\nfS41NVXe3o3jI6X4+HjNnz9fFoul1sGknJwc3X///dq0aVOp81arVUePHtXRo0f10Ucfac6cOZo6\ndWq5NQoLC3Xvvfdq/fr1pc6fOnVKp06d0ldffaX77rtPs2bNqrCPvXv3atasWcrIyCh1/tChQzp0\n6JA++eQTvf766+rZs2etnhMAAAAAADSMxvEpCgAAAAAAABqdt99+2x3KmTJliq6++moZDAZFREQ0\ncGdFbr31ViUkJGjgwIG1Gu9yuXT33Xdry5YtkqRevXpp6tSp6tSpkwoLC7V582a9//77ys/P17x5\n89SsWTONGzeuTJ25c+e6QzlDhgzRtGnTFBUVpX379unNN99USkqKXnzxRbVo0ULXX399mfGpqam6\n/fbblZmZKR8fH82YMUNXXHGFHA6HvvvuO61YsULJycm644479MUXXygqKqpWzwsAAAAAAM4+gjkA\nAAAAAAAo19GjRyVJLVq00GOPPSaDwVDq+qFDhxqiLTen01mn8WvWrHGHcq666iotXLiw1GpAgwYN\n0rXXXqspU6YoOztbTz/9tEaOHKlmzZq579myZYtWr17trvHSSy+536cLL7xQY8aM0aRJk5SYmKjn\nn39eo0ePVlBQUKk+Fi5cqMzMTEnS4sWLNWzYMPe1wYMHa8CAAXrggQeUmpqqxYsX64knnqjTcwMA\nAAAAgLPH2NANAAAAAAAAoHEym82SpNatW5cJ5ZwLPvvsM0mSv7+/nnjiiXK36OrcubPuvPNOSZLJ\nZNKGDRtKXX/vvfckSX5+fnrkkUfKvE9RUVF69NFHJUkZGRlatWpVqetpaWn66quvJEnDhw8vFcop\ndvXVV2v06NGSpE8//VTZ2dk1fFIAAAAAANBQCOYAAAAAAACgXC6XS5LKDaw0dS6XS7/99psk6aKL\nLlJ4eHiF915yySXu44MHD7qPzWazNm3aJKloC6sWLVqUO37EiBGKjIyUJH377belrv3000+y2+2S\nVO42V8X+/Oc/S5JsNpt+/PHHCu8DAAAAAACNy7n3qQoAAAAAAKgX06dP16+//lqjMeVtdZSRkaEV\nK1Zow4YNOnHihAoKChQREaE+ffpo7NixuvLKK6tcneXIkSP64IMPtHXrViUnJ8vlcql58+a6+OKL\nNXnyZPXq1avcca+++qoWL16ssLAwbd26VYmJiXrnnXe0YcMGpaamKiwsTP369dNf//pX9e7dW5KU\nn5+vd999V2vXrlVCQoKMRqN69OihqVOn6uqrr660z127dunjjz/Wtm3blJqaKm9vb7Vu3VpDhw7V\n9OnTFRMTU+n4tLQ0LVu2TOvXr1dCQoJ8fX3Vu3dvzZgxQ0OHDq10bG1t3bpVN910U6lzv/76q7p1\n6yZJGjhwoJYtW6bExESNHDlSkjRp0iTNmzfPff/nn3+uOXPmSJK2bdumH3/8UW+++aYSExMVFham\nXr166eWXX5afn58kafPmzfr000+1c+dOpaamysfHR9HR0erfv7+uv/56DRo0qFQ/Z34vluxv9uzZ\nuvvuu6t8TqvVqrvuukspKSnq2LFjpfcWB5QkyWKxuI/37t0rm83mfl8qM2DAAK1du1Y7d+6U1WqV\nr6+vJLnDQVXV6N+/vwwGg1wul7Zs2aLx48dXOh8AAAAAAGgcCOYAAAAAAIB64eXlVebcmjVr9Nhj\njyk3N7fU+ZSUFH3//ff6/vvvdfHFF+uVV15RREREmfEul0sLFy7U0qVL5XQ6S12Lj49XfHy8Pvvs\nM02dOlVz5sypdKWXjRs36r777lNeXp77XGpqqtauXauffvpJS5YsUWxsrG677TbFx8eXGrt9+3Zt\n375dR48e1T333FOmtt1u14IFC7RixYpS5y0Wiw4fPqzDhw9r+fLlmjt3riZNmlRuf7/88ovuvvtu\n5efnu8+ZzWZt3LhRGzdu1B133FHhszUmH330kRYuXOh+nZaWpvz8fHcoZ968efrggw9KjbHZbO5f\nz88//1zXXXednnnmGY+u3OPn56fbb7+9WveWDAGVDFPFxcW5j9u1a1dpjdjYWEl/PFuXLl1K1QgJ\nCSn3e75Ys2bNFBERoYyMjFLzAgAAAACAxo1gDgAAAAAAqJYFCxbIbDZXeN3lcumxxx7T3r17JUkP\nPfRQqevfffedHnzwQTmdTvn4+GjixIkaMWKEQkJCdOzYMX344Yfas2ePtm3bpptuukkff/yxgoKC\nStV4+umn9f7770uSwsPDNWPGDPXv319Go1F79uzRO++8o9TUVC1fvlz5+fl69tlny+3VbDbr3nvv\nld1u12233abLLrtMFotFX3zxhb755htZrVY9+eSTMhgMSkxM1JQpUzRq1CgFBATol19+0Ztvvimb\nzaY33nhDN9xwgzt0UWzu3Ln64osvJBWtdHLjjTeqQ4cOslgs2rlzp5YtW6a0tDQ99thj8vX11Q03\n3FBq/P79+zVr1izZbDb5+PhoypQpGjFihHx8fPTrr79q6dKlWrJkiYxGz+9S3qtXL61atUqS9Ne/\n/lVpaWnq2bOnnnrqKUlSYGBgjeotWrRIrVq10n333afY2Fjt3r1bHTp0kCStWrXKHcoZOHCg/vKX\nvyg2NlYWi0UHDx7UO++8o9OnT+vLL79Unz59NH36dEl/fC+W119UVJRH3odiFotF//nPf9yvL7vs\nMvdxSkqK+7iq1Y9atWpValxxMKe4RsnrFWnZsqUyMjJKzQsAAAAAABo3gjkAAAAAAKBaqloRZNGi\nRe5Qzvjx4zVjxgz3tby8PP3rX/+S0+lUQECA3n77bQ0YMMB9vW/fvho3bpz+9a9/6dNPP9WRI0e0\naNEizZ07133Pjh073KGcDh066P3331fz5s3d1/v3768bbrhBM2fO1L59+/TFF19oxIgRuvLKK8v0\narVaZbPZ9O6772rIkCHu81dccYVOnTqlPXv2uFfJWbRoUaktqy666CKFh4dr/vz5cjqdWrdunW6+\n+Wb39R9++MEdypk1a5YeeOCBUnMPHDhQEydO1PTp03X06FHNmzdPw4YNU3h4uPueefPmyWazyWg0\n6o033igVBunfv7/GjBmjKVOmKCsrq7JfkloJCgpSjx49JMm93VLJczVlMBi0dOlSderUSVJR/8U+\n++wzSVLnzp21dOlS93ySdPHFF2v06NG67rrrlJ2drZUrV7qDOcXfi57oryrPPfecEhMTJUmXX365\n+zkkKTs72318ZojsTAEBAe7jnJycMjWqGi/9EYo6c8UpAAAAAADQeHn+n1UBAAAAAIDzzqpVq7Rk\nyRJJUr9+/fTkk0+Wuv7pp5/KZDJJku6+++5SoZxiRqNRjz/+uNq3by9JWrlypXuMJC1dutR9/Pzz\nz5cK5RQLCwvTSy+95N5G69///neFPY8ePbpUKKdYySDPwIEDS4Vyio0cOdJ9fPLkyVLX3n77bUlS\nly5ddP/995c7d0REhB5//HFJRav3fPLJJ+5rhw8f1s6dOyVJEyZMKBXKKdaxY0f94x//qPDZGpOB\nAweWCrOUlJ6eLqlotZmSoZxiLVu21D333KPbbrtN06ZNk8vlqtdez/Tee++5V/QJDAzUnDlzSl23\nWq3u4+KtuSri7+9f7rji46rGl7yn5HgAAAAAANC4EcwBAAAAAAB1sm3bNvfKNjExMXrttdfKhCw2\nbdokSfLy8tLEiRMrrOXr6+u+brFY9Ouvv0qS7Ha7tmzZIknq2bOn+vTpU2GNtm3baujQoZKkvXv3\nVriqTHmhHElq0aKF+3jw4MHl3hMZGek+Lrm9V3Z2tnbt2uUeazAYKuyzf//+7lVSip9NkjZs2OA+\nvvbaayscf80115QKezRWffv2rfBax44dJUkbN27UokWLlJGRUeaeadOm6R//+IcmTZpU6fvpacuW\nLXNvhWYwGLRgwQJ3v8WKA2DF91RXyXuLa9R2PAAAAAAAaNwI5gAAAAAAgFqLj4/X7NmzZbPZFBAQ\noNdff71UaKXYkSNHJBVtQRUSElJpzQsvvNB9fPjwYUnS6dOnlZ+fL6nyoEex4ntcLpd77jO1bt26\n3PMlQ0Xlrcpz5j0lV3E5cOCA+/WyZcvUrVu3Cv93wQUXuJ8pISHBXePYsWPu48q2Z/L391fXrl0r\nvN5YtGrVqsJrM2fOlLe3t1wul5YsWaKhQ4dqwoQJWrhwoTZv3txgK8MsXrxYCxYscP9a/vOf/9Q1\n11xT5r7iraWkoiBZZQoLC93HJVfHKa5R1fiS91RndR0AAAAAANA4EMwBAAAAAAC1kp2drVmzZslk\nMslgMOjZZ5+tMEhSvCVVRERElXVLBnuKx5Xc0qq84M+ZoqKiSvVZnuLVaipTckWU6qhodZ6q5OTk\nuI+LV40xGo0KDQ2tdFx13ouG1qxZswqv9e/fX4sXL1bLli0lSU6nU7///rveeustzZgxQ4MGDdL9\n99+v7du3n5VebTab5syZo1dffVVS0co0jzzyiGbMmFHu/SW/h0qunFSegoIC93HJX9fiGiWvV6R4\njqq+LwAAAAAAQOPh3dANAAAAAACApsdms+mee+7R8ePHJUmzZ8/WVVddVeH9JVeVqYrT6XQfG43G\nGo+XJIfD4T6uaNsfb2/PfyxSct4777xTY8aMqda44ueUSvfrcrkq3bbIx8enFl2eXVVtuzR8+HAN\nHTpUGzdu1A8//KBNmzYpJSVFUlEQZc2aNVqzZo1mzZqlBx54oN76zM3N1ezZs93binl7e2v+/Pka\nP358hWNiYmLcx8nJyerevXuF9yYlJbmPS67EFBMTo9OnT5e6XpHk5OQy4wEAAAAAQONGMAcAAAAA\nANTYE0884Q4wjBkzRn/7298qvT80NFSpqanKzMyssnZ6enqpcSW/Sn+sKFOZkveEhYVVeb+nlOzT\n39+/0q2oKhIdHS2pKKCUlZVV6SpDJVcSasp8fHw0YsQIjRgxQpIUFxenzZs364cfftCWLVvkcrn0\n5ptv6vLLL9eAAQM8Pn96erpmzpypQ4cOSSraXuqll17SFVdcUem4Ll26uI9PnjxZ6b3F25X5+Pio\nXbt27vOdO3fW9u3blZWVpdzcXAUHB5c7Pi8vz/3fT6dOnap+KAAAAAAA0CiwlRUAAAAAAKiRt99+\nW59++qkkqUePHnruueeqXBWlW7dukqTjx4+X2rapPLt373Yfd+zYUZIUGxurwMDAMtcrsmvXLvdx\nhw4dqrzfU7p27VpuD+WxWq1avHixPvnkE+3cudN9vnPnzu7jvXv3Vjje6XTq8OHDdei24ZlMJv32\n229KTU0tdb5Tp06aNm2a3nvvPT3yyCPu8z/99JPHe8jKytLNN9/sDuVERkbq/fffrzKUIxV9XwcE\nBEhSldttFV+/8MILS63WdOGFF7qPd+zYUeH4HTt2uFeOqo9wEgAAAAAAqB8EcwAAAAAAQLX98MMP\nWrhwoSQpKipKb7zxhjuYUJmhQ4dKKtrqqTjUUx6r1arPPvtMUtFWQoMGDZIkeXl5afDgwZKkffv2\n6ffff6+wRnx8vDZv3ixJ6t69uyIjI6vxZJ7RokUL9yoqmzZtcq+SUp4vv/xSr776qubOnauVK1e6\nz1955ZXu4+L3ojzr169v0ivmbN++XYMGDdLkyZO1YsWKCu8rGZCxWCylrlUVCKuK0+nUPffco6NH\nj0qSWrdurRUrVqh3797VGu/v76/LL79ckvTzzz9XuJrTunXr3NdGjRpV6trIkSPdW5J9/vnnFc5V\n/N+Nj4+Phg0bVq3+AAAAAABAwyOYAwAAAAAAqmXfvn36+9//LqfTKX9/f73++utq1apVtcZOmDBB\nISEhkqRXX3211AoxxZxOp+bNm6cTJ05Ikq6//vpS2zjdcsst7uOHHnqo1JZXxbKzs3X//ffL4XBI\nkmbOnFnt5/OU4j5tNpseeOCBclcIOn78uF544QVJReGS6dOnu6/FxMRozJgxkqS1a9eWG9ZISUnR\nggUL6qP9s6ZPnz7u0NQHH3yg+Pj4cu9bvXq1+/jMwIyvr68kKT8/v1Y9vPPOO/r1118lFW159v77\n75faZqo6pk2bJkkqKCjQ3LlzZbfbS11PT0/XU089Jaloq7Px48eXuh4SEqKxY8dKkr777jutWbOm\nzBxr1qzR999/L0kaO3bsWQ2bAQAAAACAuvGu+hYAAAAAAHC+S0lJ0R133KGCggJJ0qOPPqqoqCjF\nxcXJZrO5t9g5U6tWrRQWFqbg4GAtWLBA99xzj8xms6ZPn65JkyZp+PDhCg4O1vHjx/Xhhx+6t6lq\n3759qS2MJGngwIGaPn26li1bpri4OF133XW6+eab1b9/fxkMBu3du1fvvvuukpOTJUnXXnutxo0b\nV4/vSvnGjx+v7777TuvXr9eePXs0duxYzZgxQ3369JHVatWOHTv0n//8xx3Yufnmm3XBBReUqjF3\n7lxt3bpVJpNJjzzyiLZu3aprr71WwcHB2rVrl95++22lpaUpMDBQZrO53D5effVVLV68WJI0e/Zs\n3X333fX74DXk6+uru+66S/Pnz1d2drYmTpyoadOmqW/fvgoNDVVqaqrWrl2rr7/+WlLRtmZXX311\nqRrR0dE6duyYDh06pE8++UTdu3dXaGio2rZtW+X8eXl5euutt9yvZ8yYodzcXB04cKDScaGhoYqJ\niXG/HjhwoK677jp9+eWXWrdunaZOnaoZM2aoVatWOnDggN544w2lpKRIKgqUFQfUSvr73/+udevW\nyWQy6cEHH9Rvv/2m0aNHS5K+//57ffDBB3K5XIqMjNT9999f5bMBAAAAAIDGg2AOAAAAAACo0i+/\n/KLU1FT363/961/VGvfMM8+4VwgZM2aMXnzxRc2dO1dms1nLly/X8uXLy4y59NJL9fzzzysoKKjM\ntUceeUQ+Pj569913lZGRoRdffLHMPQaDQTNmzNCDDz5Y3cfzKIPBoJdfflmPPvqovvrqKyUnJ+vZ\nZ58t996pU6fq4YcfLnO+efPm+uCDD3T77bfr1KlTWrVqlVatWlXqnkmTJiklJUXr16+vj8c4K6ZO\nnaoTJ05o2bJlys7O1muvvVbufZ07d9Zbb73l3vKp2JVXXqmtW7fKbrdr7ty5kopWWnruueeqnPvb\nb79Vdna2+/VLL72kl156qcpxN9xwQ5lfzwULFshkMunnn3/Wrl27dN9995W6bjAYNHv2bP35z38u\nt2ZkZKTefvtt3X777crMzNSyZcu0bNmyMve89dZbat68eZU9AgAAAACAxoNgDgAAAAAAOGuuueYa\nDRo0SMuXL9fPP/+shIQEWSwWtWzZUj169ND48eN1+eWXy2AwlDveaDTq4Ycf1rhx4/Thhx9q69at\nSklJkdFoVExMjAYNGqSJEyeqe/fuZ/nJSvP399fChQv1l7/8RZ999pl27NihtLQ0ORwORUdHa8CA\nAZo0aZL69+9fYY3OnTtr9erVWrlypb7++mvFx8fL6XSqS5cumjx5ssaNG6dZs2adxafyPIPBoLlz\n5+qqq67SJ598ol27diklJUV2u13h4eHq3r27rrzySt1www3y9i77MdbUqVNltVr1ySef6NSpU/L1\n9a1wBaEz7d+/32PP4efnp3//+99avXq1vvjiC+3fv195eXkKCwtT//79ddNNN1X6ay0VbdP1zTff\n6N1339W6deuUmJgoh8Oh2NhYjRgxQrfcckuprd0AAAAAAEDTYHBVtNY0AAAAAAAAmrSsrCwNHjxY\nDz/8sGbOnNnQ7QAAAAAAAJx3jA3dAAAAAAAAAOrHkSNHJEmxsbEN3AkAAAAAAMD5iWAOAAAAAADA\nOSg3N1cvvviiwsLCdNlllzV0OwAAAAAAAOclgjkAAAAAAADnoC+//FLHjx/XK6+8In9//4ZuBwAA\nAAAA4LxkcLlcroZuAgAAAAAAAJ7ldDqVk5OjsLCwhm4FAAAAAADgvNWogzl2u0NZWeaGbgMA6lV4\neCC/1wEAAAAAgCaFzzMAAAAA4A/R0cEVXmvUW1l5e3s1dAsAUO/4vQ4AAAAAADQ1fJ4BAAAAANXT\nqIM5AAAAAAAAAAAAAAAAQFNFMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAAgHpAMAcAAAAA\nAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAAgHpAMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAA\ngHpAMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAA0KDWrFmtN954td7q//bbdj3++Jwy519+\neaGSk5NLnYuPP6HZs2/3yLzeHqkCAAAAAAAAAAAAAAAANDH33vtgvdYnmAMAAAAAAAAAAAAAAHAe\nC3pirvxWr/JoTcvY65X/xIKKr1sK9fTTTyo5OVk2m03Dh490X1uxYrl+/PE7eXl5qW/ffrrrrnu0\nZ88uLV78kry9veXv768FC56Tr6+fXnjhaSUmJsjpdOqvf71TF100oMI5ExIS9MADs5Wdna0bbpig\na6+9XrNn365//OMRBQU107x5c+VyuRQREemx94FgDgAAAAAAAAAAAAAAAM6qVas+U8uWMXryyWeU\nkHBSmzdvUl5enuLijmrduu+1ZMk78vLy0qOPPqRfftmoXbt+04gRo3TjjVO0adPPysnJ1ebN3yg0\nNExz5jym7GyT/va327V8+coK53Q47HruuUVyOh26+eYpuvTSK9zX3n9/qUaNGqPrrrtBP/74nb74\n4lOPPCfBHAAAAAAAAAAAAAAAgPNY/hMLKl3dpj6cPBmvwYMvkSTFxrbV3r3BysjIUHz8CfXs2Vve\n3kWRlr59L9Tx43GaPv0Wvf/+O7r33jsVHd1cF1zQS3FxR7Vnz07t3/+7pKLgjclkUlhYWLlzXnBB\nb/n4+EjyUYcOHZScfNp9LSHhpMaOvUGS1Lt3X48Fc4zVuWn37t2aPn16mfPr1q3ThAkTNGnSJK1c\nWZQ4slqtevDBB3XjjTdq5syZOnHihCRp//79uuyyyzR9+nRNnz5da9as8cgDAAAAAAAAAAAAAAAA\noGlp166DDhzYL0k6dSpRb7752v/Ot9f+/b/LbrfL5XJp166dio1tp+++W6Orr75Wr776pjp06Kgv\nv/xc7dq116hRY7R48VtauPAVDR8+SiEhIRXOeeTIIdntdhUUFOjEieNq3bqN+1r79h21b98eSXL3\n5QlVrpjz73//W19++aUCAgJKnbfZbHrmmWf06aefKiAgQJMnT9aIESP07bffKjAwUCtXrtSxY8c0\nf/58LV26VPv27dMtt9yimTNneqx5AAAAAAAAAAAAAAAAND3jxo3XM8/M0+zZt8vhcGjSpKnKzjap\nU6fOGjFilO6881a5XC716dNXl18+TPv379Ozzy5QQECADAaDHnroUUVFReu55xZo9uzblZ+fpxtu\nmCijseI1anx9ffX3v9+jvLw8zZx5u0JCQt3Xbr75Vs2bN1c//PCdYmJae+w5DS6Xy1XZDWvXrlW3\nbt300EMPuVfFkaSDBw/qhRde0NKlSyVJTz/9tPr166etW7fq0ksv1ejRoyVJw4YN0/r16/X444/r\n+PHjcjgcateunR555BE1a9asygbT0nLr8nwA0OhFRwfzex0AAAAAAGhS+DwDAAAAAP4QHR1c4bUq\nV8wZM2aMEhMTy5zPy8tTcPAfhYOCgpSXl6cePXrop59+0qhRo7R7926lpKTI4XCoT58+mjhxonr1\n6qU33nhDr732mh5++OE6NQ8A5wp+rwMAAAAAAE0Nn2cAAAAAaIwWL16srVu3ljn/9NNPKzY29qz3\nU2UwpyLNmjVTfn6++3V+fr6Cg4M1atQoxcXFacqUKbrooovUs2dPeXl5afTo0e59vEaPHq358+dX\nax7+1QWAcx3/wgwAAAAAADQ1fJ4BAAAAoLGaNOlmTZp0c7nX6uv/x1T2Dxcq3lirCp06dVJ8fLxM\nJpOsVqu2b9+ufv36ae/evRoyZIhWrFihq666yp02uvXWW7Vnzx5J0ubNm9WzZ8/aTg0AAAAAAAAA\nAAAAAAA0ejVeMWf16tUym82aNGmS/vnPf+rWW2+Vy+XShAkT1KJFC/n4+Ojll1/WkiVLFBwcrKee\nekqS9MQTT2j+/Pny8fFRVFRUtVfMAQAAAAAAAAAAAAAAAJoig8vlcjV0E5VhOVQA5zqWfgYAAAAA\nAE0Nn2cAAAAAwB/qZSsrAAAAAAAAAAAAAAAAABUjmAMAAAAAAAAAAAAAAADUA++GbgAAANSey+XS\nriPp8vf1UkgzP4U181WQv09DtwUAAAAAAAAAAABABHMAAGjSMrILlW22KtsspZgKJEk+XkaFNvNV\nWJCfQpv5qlmAjwwGQwN3CgAAAAAAAAAAAJx/COYAANCEJabllzlncziVnl2o9OxCSZK3sSioExrk\nq6hQfwW9CcuRAAAgAElEQVSyog4AAAAAAAAAAABwVhgbugEAAFA7eQU2mfItVd5ndzqVkVOoY0k5\n2n00Q3aH8yx0BwAAAAAAAAAAAIBgDgAATVRial6Nx1jsDp1Iyq2HbgAAAAAAAAAAAACciWAOAABN\nkNXmUKqpoFZjT6XnKa/A5uGOAAAAAAAAAAAAAJyJYA4AAE1QUoZZTperVmNdko4kmDzbEAAAAAAA\nAAAAAIAyCOYAANDEOF0unU7Pr1ONbLNVSRl1qwEAAAAAAAAAAACgcgRzAABoYtKyCmSxO+pc59jp\nHNk8UAcAAAAAAAAAAABA+QjmAADQxCSm5f3xwuWS0VJYqzo2h1PHTud4qCsAAAAAAAAAAAAAZyKY\nAwBAE5KdZ1Fugc39utvHb2vcny9RYPKpWtVLyjQrJ9/qqfYAAAAAAAAAAAAAlEAwBwCAJiQxPf+P\nFy6XOn39sbwtBWqz6bta1zycYJLL5fJAdwAAAAAAAAAAAABKIpgDAEATUWi1K91U4H4dcXCPglKK\nVsqJ2byu1nXzCm06VTLwAwAAAAAAAAAAAMAjCOYAANBEnErPV8l1bWI3fCNJsgUEKnLfTvnmZNW6\n9omkXFlsjjp2CAAAAAAAAAAAAKAkgjkAADQBDqdTyRnmP044nWrz87eyNgvRoYkzZXQ61PLXjbWu\nb3c6dexUtgc6BQAAAAAAAAAAAFCMYA4AAE1AcmaBbA6n+3XUvt8UmJ6iU5eOUuJlYyRJMVt+qtMc\nKaYCZeVa6lQDAAAAAAAAAAAAwB8I5gAA0AScSssr9bp4G6uEK65WbttOyotpq5bbN8potdZpniOJ\nJjldrqpvBAAAAAAAAAAAAFAlgjkAADRymTmFMlvs7tcGh11tfl4rS2i4UvsNkgwGnR48XD7mfEXv\n2VanucwWuxJT86q+EQAAAAAAAAAAAECVCOYAANDIJabll3odvWeb/E0ZShx6pVxe3pKk00NGSJJi\ntqyr83zxybkqtNqrvhEAAAAAAAAAAABApQjmAADQiJkLbcrMLSx1Lnb9/7axGna1+1x6z36yBocq\nZvNPUh23onK4XDp6KrtONQAAAAAAAAAAAAAQzAEAoFE7c7Ucg92m1pu+U0FElNJ69Xefd3n7KGnA\nZQpMS1LosYN1njc9u1AZ2YVV3wgAAAAAAAAAAACgQgRzAABopOwOp1IyzaXOtfhts/xys5V42VWS\nl1epa6eHDJekolVzPOBIokl2h9MjtQAAAAAAAAAAAIDzEcEcAAAaqaQMsxxnbEsVu6F4G6s/lbk/\n+eLL5PTyVswWzwRzCm0OHUoweaRWY5RrtspZx22/AAAAAAAAAAAAgMoQzAEAoBFyuVw6lZZX6pzR\nalXM//0oc3QrZfS4sMwYe1Cw0vpcrIjDv8s/PcUjfaSZCnQ6Pb/qG5uY7DyLdh1N17HTOQ3dCgAA\nAAAAAAAAAM5hBHMAAGiE0rMLVWhzlDrXYscm+ebnKuGKqyRj+X+Enx4yQpIUs2W9x3qJO5WtvAKb\nx+o1tOx8q/Ycy5DD6VJiWp4ysgsbuiUAAAAAAAAAAACcowjmAADQCCWesVqOJLVdv0aSlHBF2W2s\nip0ePFySFLNlncd6cbhcOhCfJYfT6bGaDSUn36o9celyOP/YwurgySxZrI5KRgEAAAAAAAAAAAC1\nQzAHAIBGJr/Qpux8a6lzXoUFitn8k/JaxSqra68Kx5pbtpapQ1c137lFXgWe24Iqv9Cmo4nZHqvX\nEIpCORmlQjmSZHM4dSA+Sy6Xq4KRAAAAAAAAAAAAQO0QzAEAoJFJyjCXOdfy15/lXWguWi3HYKh0\n/OnBw+Vls6rFjv/zbF+ZZqWaCjxa82zJMReFcuwVrPpjyrfoZErZVYoAAAAAAAAAAACAuiCYAwBA\nI+J0uZSSWTaYE7vhG0mVb2NV7PSQEZKkmK3rPdqbJB0+aVKBxe7xuvUpx2zVnqMVh3KKnUjOUXae\n5Sx1BQAAAAAAAAAAgPMBwRwAABqRdFOBbI7SARJvc75itq5XTpsOyu7YrcoaWV17qSAiSq22rJcc\nDo/2Z3cWbfvkbCLbPuWardpbyUo5Jbkk7Y/Pks1e9b0AAAAAAAAAAABAdRDMAQCgEUkuZ7WcVlt+\nkpfVooRhVW9jJUkyGpU0aLj8szMVeXCPx3vMMVt1PCnH43U9Lfd/21edGXSqjMXm0KGTWfXYFQAA\nAAAAAAAAAM4nBHMAAGgkCix2ZeaW3UqpJttYFTs9ZLgkKWbLOs80d4aE1Dxl5hTWS21PyCuw1TiU\nUyw9p1CJaXn10BUAAAAAAAAAAADONwRzAABoJMpbLccnL0ettm2UqUNX5bbrXO1aKf2GyO7nr5jN\nP3myxVIOnsyS1ebZrbI8Ia/Apt1H02sVyil27HSO8gpsHuwKAAAAAAAAAAAA5yOCOQAANAIul6vc\nYE7M//0oo91Wo9VyJMnp56+Uiy5RyMk4NTt1wkNdlma1O3WwkW37lF9Y91COJDldLu0/kSl7HesA\nAAAAAAAAAADg/EYwBwCARiAzxyJLOavPxK6v+TZWxU4PLtrOqtXm9XXqrTKZuRadTMmtt/o14XS5\ndOBEVp1DOcXMFruOJmZ7pBYAAAAAAAAAAADOTwRzAABoBJIy88uc883OUoudm5XZpafyW7erec3B\nw+QyGBSztf62s5KkE8m5ysm31usc1ZGQnKvAX9Yr7Mg+Ga0Wj9RMzjIrpZyVjAAAAAAAAAAAAIDq\n8G7oBgAAON9ZbQ5l5pQNkrTe9L2MDnutVsuRJEt4lDK791HU3h3yyTHJFhJW11bL5XS5tD8+U/26\nRMvPx6te5qiKudAmr7ff0hWvzivqyctbubEdZOrUXaZOPYq+duwua2h4jWsfTjQpONBXgf782AQA\nAAAAAAAAAICa4W+YAABoYMmZZjldrjLnYzcUbWOVeMVVta59evAIRR7YrVbbNurkyLG1rlOVQqtD\nu46kq0+nSAX4nd0fL1wul05sP6BLli6UtVmITg67WmHHDins2CGFnjiidj+udt9rjmr5v5BON5k6\n9VDSoCvk9POvtL7D6dKB+Ez16xoto8FQ348DAAAAAAAAAACAcwjBHAAAGlhyOVsl+WWlq/meX5XR\no6/MLVrXuvbpwcPU+91Fitmyrl6DOZJUYLUXhXM6RyrI36de5yrpdFqeOr/wmHzM+dp2/3yd+NOf\niy44nWqWdFJhcQcVGndQYccOKizuoGK2rlfM1vWSpKSLL9Omp96qco7cAptOJOWqY0xIPT4JAAAA\nAAAAAAAAzjUEcwAAaECmPIvMFnuZ8202rpXB6dTJYVfXqX5O+y7Ka9lGLbdtlMFmlcvHt071qmKx\nF62c07tjpEKC6ncuSSq02lW48hO13rxOqX0H6sRVE/64aDQqr3V75bVur8TL/1h1yNeUqbBjB9Xz\n/cVqtW2jIvftVEbPflXOlZCaq8hQf4WehecCAAAAAAAAAADAucHY0A0AAHA+S8oou1qOJMWu/0Yu\ng6FUoKRWDAadHjJcPuZ8Re/ZVrda1WRzOLU7Ll1ZuZZ6n+vYvpPqu3iBHD6+2nHfk1I1tpqyhkUo\n9aJLtOe2ByVJPT54o1pzuSQdjM+Sw+msS8sAAAAAAAAAAAA4jxDMAQCggdgdTqWbCsqcD0hLVvTv\nO5Teq78KI5vXeZ7Tg0dIkmK2/FTnWtXlcLq091hGuc/nKSlZZsW+9JQCMtO1f9pdymvdvkbjM3r1\nV2rfQWq1faPCD+6p1pgCq11xp3Jq0S0AAAAAAAAAAADORwRzAABoIClZBXK4XGXOt/n5W0lSwhV/\n8sg86b37yxoUrJjN66Ry5qsvTpdL++OzlJJZ/qpAdWGzO5T19ffq+M0nMnXoqkMTZ9aqzv5pd0mS\nLvhwSbXHnM7IV2ZOYa3mAwAAAAAAAAAAwPmFYA4AAA0kOSO/3PNt130ll9GoxMuu9Mg8Lm8fJQ+8\nXEGpSQo9ftgjNavL6XLpwMksnUrL82jduLgUXfjiv+QyGLTjvnlyefvUqk5an4uV1qu/Yrb8pLCj\n+6s97lCCSXYHW1oBAAAAAAAAAACgcgRzAABoALlmq3ILbGXOhx/aq4gj+3R60DBZwqOqVcvXu+o/\nzk8PHi5JRavmNIAjp7IVn5zrkVoZ2YWKfH2RghNP6Oi4acrs0bf2xQwG7Z96pySpxwdvVHuYxebQ\nkQRT7ecFAAAAAAAAAADAeYFgDgAADSApo/ztnTp/+aEkKW7s5GrV8TIYNLBHC3VpEyYfr4r/WE8e\nMFROL2/FbPmp5s16yPHkHMWdyq5TDbvDqeSft6r7yqXKb95Kv8+4t859pV50iTJ69FWbX35Q6LFD\n1R6XYipQqqmgzvOf6wosduWarSqw2GW1OeR0nr3t1AAAAAAAAAAAABqad0M3AADA+cbhdCo1q2yg\nwzcnS7Hr1yg3pq1SLrqkWrWiQv3l7WVU66ggNQ/z17HTOUrKLBv6sQWHKq33ALXYtUWtN34nl9Eo\nL0uhvC0F8rJY5FXiq7elUF6WQhmtVplbxCira09ldu2tguiWksFQp2dPSMuT3eFU19gwGWpR63hi\nlnq/8KiMDrt+u+dx2QOD6tSPJPeqOZfNvUM9VizRlkcXVXvokQSTQoN85efjVfc+zkFWm0M7j6TJ\nai+97ZfRYJCX0SBvL6O8vQzyMhZ99ffzVufWoQ3ULQAAAAAAAAAAgOcRzAEA4CxLMxXK7nSWOd9+\n7RfyslkVd+1kyVi9Re1aRAS6j328vdStbbhaRQbpSKKpzFZZp4cMV4tdW3TJ/NqtMlMYHqXMrj2V\n1bW3Mrv1UlaXXrKER9a4TlKmWaY8q1pEBKhFeKAC/Kr340h2nkUB776tyIN7dHLY1UoeeEWN5y4p\ntnkzJaWbZXc6lXzx5crs0lNtfl6r4GlHlduuc7Vq2BxOHU4wqXfHmr8P54ODJ01lQjmS5HS55HS4\nZHOUvdY6Kqja3xMAAAAAAAAAAACNHX/rAQDAWZaUkV/2pNOpTl99JIevn05ceX216vh5eyk82K/M\n+ZAgX13UNVpJGWYdT8pxhx+O/2mivGxWGRwOOfz8ZfcLkMPPTw6/ADn8/P93zt997PT2UXDicYUf\n3qeIw3sVceh3xWzdoJitG9xz5TdvpayuvZTZtbdOXzJSuW07Vqv3AqtdJ5JzdSI5V2FBfmoZGehe\n/ac8TqdL8TsO6PJ3F8kaHKpdd86p1jzlMRoM6hobppYRgfLz9tLR09lFq+ZMu0tDH/+benz4pn6d\n80K162XkFCopI1+tIj2wes85JDE1T5m5hTUel5pVoHYtg+uhIwAAAAAAAAAAgLOPYA4AAGeRudCu\n7HxrmfMtdvyiZkkJOj5mvGwhYdWq1TwioMLtoAwGg2KighQd5q/jSblKysiXwz9Ah268rUb9FjRv\npdQS22r5ZaUr/PDvijj0u8KPFH1ts+l7tdn0vXouf03bHnxKCcOvqdEcpnyLTPkWeRkMig4LUIuI\nwDKBo/jkHPX4f4/Jp8CsbQ8+JUt4VI3mKOZlNKhn+whFhPhLkmKig3Q6I19mi11Jg4fL1LG72m5Y\no/3T71Jemw7Vrnv0VLbCmvmx0sv/5BXYdCwpp1Zj00wEcwAAAAAAAAAAwLmjevtkAAAAj0jKLGe1\nHEmdV6+QJB0dO6XatVqW2MaqIj7eXuoaG6Z+XaMVHOBb7doVsYRHKXnQMO2/abZ+mb9Eqz/eqK+W\n/6htDz4lp7ePBj/zd/V69yWpnK26quJwuZScZdbuuHRt2Zes40k5KrDYlVdgk/PTTxWzdb1SLhys\nE1feUKve/by91K9LtDuUIxWtntMpJrTohcGg/VPvlMHpVI8Vb9Wsd6dLh06aatXXucbhdGr/iUw5\nXa5ajc8rtMlcaKv6RgAAAAAAAAAAgCaAYA4AAGeJ0+VSSqa5zPnA5FNqtXW9Mrr1kalrz2rVCg7w\nUZC/T7XnDgn01UVdo9QtNkx+3l7VHlclg0EFzWN0Ysx4/fjKR8qNaaseK97UJU/eLW9z+SGk6ii0\nORSfkqutB1K077c4XfjaU3L4+mnHvU9IFawSVJlm/j7q1zVKzQLKvmeRof6KCC4K65y6dJSy23VW\n2x9XK+j0yRrNYcq3KCE1r8a9nWuOJmbLbLHXqUaqqcBD3QAAAAAAAAAAADQsgjkAAJwlGdmFstrL\nriTT8euPZXC5FDd2crVrtajGajlnMhgMahUZpIEXNFeHliHyNnr2x4Dctp304ysfK6XfELXevE4j\n7v2LgpIS6lz3gjefk39WuvZN+5vyW7er8fiwZn66sEuU/H0r3maqc+sQGQ0GyWjU/ql3yuh0qPtH\nNVs1R5KOJ+Uo/zxe7SXVVKCkcsJnNa6TRTAHAAAAAAAAAACcGwjmAABwliRllA0sGK1Wdfz2U1mC\nQ5VwxVXVqmM0GNQiPKDWfXgZjWrXMliDLmiuNlHNigIpHmILCdPGp9/SkXHTFBp/VCPvvlHRu3+t\nVS3fnCx1X/GWOn77mUwdu+vwn2fUuEaL8ED16RQpb6/Kf+QJ9PdRTGSQJCnxsjHKadNB7b//rwJT\nTtVoPqfLpYPxWbXexqkpK7TaddhD23mZ/7eFGQAAAAAAAAAAQFNHMAcAgLPAYnMoK7ewzPk2G9fK\nLztLx6+aIKeff7VqRQT7yccD21H5eHupc5tQXdy9uVqE1T7ocyaXl7d2/e1Rbb/vSfmY83X5P29V\nx9UrqjnYpYgDu3Tx8//UtZOHqfe7i2QLCNT2B+bL5V39rbskqV2LYPVoF17t4FG7lsHy8TJKXl46\nMOUOGR12df/43zWaU5JyC2w6mphd43FNmcvl0oH4LNmdZVeEqq00trMCAAAAAAAAAADnAII5AACc\nBenZhSpvDZVOq1fIZTDo2DWTql2rNttYVSbAz1s92keof9doRQT7eazu8atv1Ibn3pG1WYj6vzpP\nF73yhAz28ldB8SrIV4evV2rUXRM08t7Jav/Df2Vu3kq7Zj2sr5f9qKyuvao9r0FS1zZh6tAqpEb9\n+ngb1f5/YxKGX63cmLZqv/ZzBaQl16iOJJ3OyNfJlNwaj2uq4lNylZ1v9WhNgjkAAAAAAAAAAOBc\nQDAHAICzICO77Go5oXEHFLV/p5IHDFV+TNtq1fHxMioytHor69RUcKCv+nSKUp+OkQoOqNnqNBVJ\n7z1APy5eKVPHbur01ce6fM5t8s3O+mPO+KO68LUFGjt5mAa8/LhCjx9W4tDR2vDsUn27dI2OTJgh\nW0hYtefzMhjUq0OkYqKCatVvTGSgmvn7yOXlrYOTZ8nLZlO3lUtrVetYUo6SM8tuX3auyc6zKD7Z\n8yEks8WuXLNnwz4AAAAAAAAAAABnm3dDNwAAwLnO4XTKlGcpc77zl0XbO8WNnVztWtFhAdXemqm2\nIkL8FRHir1RTgfILbHI6XXI4XUVfXUVfi//ncLrkdBV9tdgc5dYzt2itdYs+0MAX5qjNpu81avZE\nHZx0m9r+9LWi926XJBVENtfh8Tfr2NUTVRjVolZ9Gw0G9eoYqfA6rPpjMBjUqXWodselK37kWF2w\n/HV1XLNSB//yVxVGNq9xvcMJJvl6GxURUj9hqoZmdzh1ID6r3NWgPCHNVKjgQN96qg4AAAAAAAAA\nAFD/DC6Xq77+LsUj0tLOn20gAJyfoqOD+b3uHJduKtDvJzJLnfPJy9G1k4fJEhahNe+tlby8qlXr\noi7RCglqnEGFxLQ8HT2VXfENTqcuWP66ei5/zX0qpd9gxV07WaeHDJfLu26r9HRpHarW0c3qVKPY\n78czlJ5dqA5rVmrAS4/r8PibtfuOf9aqlpfRoAs7R52TAZN9JzLrdcspf18vDb6gZb3VBwAAAFB7\nfJ4BAAAAAH+Ijg6u8Bor5gAAUM8ycspuY9Xu+//K21Kg/ddOqnYoJ9DPu9GGciSpTXQzeRkNOpxg\nKn8FFaNR+2+arawuPRV5cLdOjBqnvNgOHpk7JjLIY6EcSeoUE6rMHItOjL5eF3ywRB2//lgHJ/1V\nlvDIGtdyOF3aeyxD/bpEK8Dv3PnRKykjv15DOZJUaHUox2xVyDkYagIAAAAAAAAAAOeHc+dvhwAA\naIRcLlfZYI7LpU6rV8jh46PjYyZUu1aL8EAPd+d5rSKD5GU06OBJk5wVLMqXNGS4koYM99icYUF+\n6twm1GP1JCnAz1uto4OUkOrSwUm36aLF89VjxZvadeccqRZbiVntzv+Fc6Lk4129IFaj5XTKtmev\n0o+mKqwaCy86vX2U075Lrd43SUrLKiCYAwAAAAAAAAAAmiyCOQAA1KMcs01Wu7PUuea7tigk8bji\nR46VNSyiWnUMklpEBNRDh57XPDxQRqNB+09kVRjO8RR/Xy/17BAuYy1DH5Vp1yJYKZlmHb9qgrp/\n9Ja6rFqmyP07dWDKHTo9eLhkNNaontli195jmerbOVJeNRzbWBSmZSp05jRFb92kmBqM2zXrYR2Z\nMKNWc6aZCtSptWeDVwAAAAAAAAAAAGcLwRwAAOpRRnbZbaw6rV4hSTp63ZRq1wlt5id/36bzx3ZU\naIB6dzTq92MZctRTOMfLaFCvDpH1tgKNt5dRHVqF6FCCUxuef1e93ntFbTau1aVPzJapQ1cdmDxL\niZeNqfZWZJKUY7Zq/4ks9eoQIUM9hInqQ6HVrjRToXIOxqnf32cq5MQRpVw4WNkdu1VrfPvvV+mC\n5a8rftQ4WUPDaz6/zaHsfKtCG/E2bgAAAAAAAAAAABVpOn/DBwBAE3TmNlYBacmK+b91yurcQ5nd\n+1a7TsuIxr+N1ZnCg/3Up1Ok9h7LlN3prHpADfVoG65mAT4er1tSy4hAnU7PV26bDtoyd5GCT8ap\nx4o31fanrzXk6QeV02axDk6+XSdHXCuXV/V+rMrIKdThBJO6ta15SOVsKQ7jpJkKlGO2KvTYIQ2d\nO0uB6Sk6et0U7bzzkWoHkgqat1LfJc/qguWva9ffHq1VP2lZBQRzAAAAAAAAAABAk9Q091EAAKAJ\nKLDYlV9oK3WuwzefyOh0KG7sZKmaK6Z4GQyKDvOvjxbrXWgzP/XtHCkfL8/+yNGhZYiiwup/ay+D\nwaDOJbZRym3bSb8+/Ly+WbpGx66aoGZJCRr4whxddcuf1GHNShmt1mrVTco060RyTn21XSsWq0OJ\nqXnaeThNW/anKO50tnLMVjXf8YuGPzBVgekp2n37Q9r5t7k1WiUo4N67lRfTVp2++kjNEo/Xqrc0\nU4Fc9bwtGgAAAAAAAADg/7N33/F11uX/x99n75O9Z9M9obR0gAwZsgS/iD+WgqCIqDi+XxXFicpQ\ncQOCgMhQEBQHe+9VCnSvtGmbdKTZ4+x5//7ogNKRc9KkzXg9H48+Qs+5r899pZak9n5zXQAGA8Ec\nAAAGyYen5ZiSCdU98ZDiHp+ajj8j43OKcl2ymIfvt2yf267DxxfKMUArp4pzXaop9Q3IWZnI8TpU\n/KEQUKiiRu/+37V64p6nte6sC+XqaNXs3/1Yp11yisb9568yx/ZcYfZhG7cF1NwRGqy2s9LaHdFb\nK7dp3dYe9YTfDxfVPPNvHfODK2ROxPXm936t+k9dmnGgTNr+ezevwKfWb/9Q5lRSM+78db/6iyW3\nr7MCAAAAAAAAAAAYbobvUz4AAIa4jp7dwxkVbzwvV2e7Nn7sbKVcma+mKhmGa6w+zOO06fDxhXLa\nDiyc43PZNLE6d4C6ylxduV85bvsek38ixeVadOUP9cS9z2rNOZfIHujRzD9ep1M/f7ocXe19nlu/\nqXuP3ycHW2dvVKsbu7TbPBrD0OS/3qI5v/qekm6PXvn5Xdp8/OlZnWuSVLsjQOW54P+pc/osVbzx\nvAqXvt2vPtu6I/2qAwAAAAAAAAAAOJQI5gAAMAiSqfQeEz7GPnK/JKnh4+dnfI7TZlGu1z6gvR0q\nLodVh48vlMtu7Ve9w2rRtDEFh2R6kNNu1cwJRTp6epmOnlaqmeOLNKk6TzUlPhXluGStqNCKK76r\nx+97Tg0fP0+e1uaMpsMYklY3dSmeSA3+J7EXPcGYVmzoVPoDa6JMyYRm/faHmnbvzQqVlOuF3/5N\n7dNnZ312ca5LHqdNkmQ2mxW85jpJ0mG33yil01mfxzorAAAAAAAAAAAwHPXvyRgAANivzt7obmEH\n/8a1Kl66UC0z5ytYNSbjc4rz3DJlsTpoqHPat4dz1m/pUSCSUCSWVCZRC7PJpKlj8uWwD8w6rANh\ns1qUY7Uox7NnYCoaL1b4sN+pt365ap/9j9af9il1TJu13/MSqbTqN3VrWl3BYLW8V4FwXMvWdyr1\ngd+n1nBI86/9hkrfeU1d46bo1WtvUyy/KOuzTdIe68ZcxxyllpPPVMmzj6r6xcfVdOKZWZ0ZT6bV\nHYwrz+fIuh8AAAAAAAAAAIBDhYk5AAAMgg+vJxr72N8lSevOvCCrc0rzXQPW01DhsFk0uTZfcyaX\n6CMzynTE+CJNqMxVeYFHOW67LHsJIk2oypV/L0GYocZptyo/z6Pojb+RJB1x889kSiX7rGvvjaq5\nIzTY7e0Sjia0tKFDyQ9MrnF2tOr4b16k0ndeU/OcY/Xir+/tVyhHkkry3HLvmJbzQamf/kwpm03T\n7/qtzLHsV3ixzgoAAAAAAAAAAAw3BHMAABhgacNQZyC26+fWUFA1z/1X4cJSNc//aMbn+N32vYYb\nRhKL2Sy/x67yQo8mVOVq5oQifWRGmeZMKtGU2nxVF/s0tjxHpfnuQ91qVkzz56v9f85T7vo1GvvI\nAxnVrNvSo0is7xDPgYrEklrS0KFE6v1Qjn9DvU74+vnKa1ilhtPP1es/uUUpl6df55tNpj2m5exk\nG1un1k9/Xu62Zo3/931Zn93WHdltEhUAAAAAAAAAAMBQRzAHAIAB1huK7xZ6GPPUP2ULh9Rw5gUy\nLJlvkSwZZmGUgWIymeR2WlWc61JduV9Vxd5D3VK/pK+9TgmvX9Pu+YMcnW19Xp9KG1qzqXtQe4ol\nUiz3z9kAACAASURBVFra0KFYIiVJsvd06fBbrtXJXz5HntZmLbv0G3rv69dk9fv0w0ryXHI59l1v\nufpqxf25mvz3P8nR1ZHV2YlUWt0fCL0BAAAAAAAAAAAMdQRzAAAYYLutsUqlNP4/f1XS4VTDGedm\nfIbZZFJx7shbYzWamIqL1fXt78sWDmrGnb/KqKY7GNPm1uCg9JNIprWsoUOReFLmeFwT/nGXTrvk\nFI3/798ULinXaz/5o1Zf8EVpL6vEMrW/aTk7mfLy1Pn1q2QLhzTlvpuzvgfrrAAAAAAAAAAAwHBC\nMAcAgAHW0ft+MKfijefladmixpM/oYQ/N+MzCvxO2ax8mx7uTJdfrsDEqap97hEVLl2YUc365l6F\no4kB7SOZSmvZ+g4FI3FVvvKUTrnsDB12x42S2azFV3xXT93xaFZr1valNN8tp73vaTuWK76oUPUY\n1T3xD/maGrK6R3tPlHVWAAAAAAAAAABg2OCJHwAAAygcTSgcS+76+YSH75Yk1Z/92azOKcljWs6I\nYLEocuNvJUkzb7lWplSyjwIpbRha1dg1YOGTdNrQ8g2dsr67UB/9309r/rX/K3fbNtWffbGe+MtT\nWvvJz8qw2Q/4PmaTSTUl+5+Ws4vNptCPfipzOqUZd2Q2TWinRCqtrl7WWQEAAAAAAAAAgOGBYA4A\nAAOo/QNrrPJWL1XhykXaOvc4BavGZHyGy25Vfo5zMNrDIWCaN08d51yg3A31GvvI/RnVBCIJNbUE\nDvjeacPQ+jeWauL3rtSJXz9fhSsXafPRJ+npOx/Vki9dndUUp76UF3jksFsyvt505lnqmTVP5Qte\nUtGit7K6V7brrLqDMfWG41nVAAAAAAAAAAAADASCOQAADKAPrrGa8K97JElrP5ndtJyaUp/MJtOA\n9oVDK/3TaxX35WjaPTfJ2dGaUU1TS/DAwiS9PYpd9V3NOe9EVb/0hDrHT9WLv7pXb/74JgUravt/\n7l5YTCZVlXizKzKZFL/u55Kkw27/pZROZ1za3hNVOr3/iULBSELrt/bqrRXbtHhdu5asa1d3kEk7\nAAAAAAAAAADg4CKYAwDAAEkkU+oNbQ9SuFqbVfnK0+qum6jWw+dlfIbbYWWN1UhUVKSe7/xAtnBQ\nM+7MbHVT2jC0urGrzwDK3kSffk6+ubNUfc+tiuXka8FVP9fzNz2k9hlHZn1WJsoLPXLYMp+Ws8sR\nR6jrzHOU17BKNc89knFZMp1WZyC6x+vReFJNLQG9s7pV76xpVVNrQNFESpKUShta1tBBOAcAAAAA\nAAAAABxUBHMAABggnb0x7YxQjHvkbzKnU1p79sVSFtNvakp9MjEtZ2T6/GUKTp6umucfVeHShRmV\nhGNJrW/uzfgWwd6wQt/6jiovPkf27k6tuOhKPXXXE2o66ROSeXD+2GcxmVRVnOW0nA9I//RnStkd\nmnb372SJZr6iqq1r+7WJZFpb20NatLZNb61s0frmXgWjib3WpIzt4ZyuAOEcAAAAAAAAAABwcBDM\nAQBggLTvWGNliYRU9/hDiuYVqumjH8+43uO0qTiXaTkjlsWiyK9+J8Nk0hE3/0ym5N7DIx+2uS3Y\nZ5AkEktq/RtL5D/zFNXee6tCJRV68Td/1cqLvqKUc3B/T1UUeWXvz7ScHdIVler9wpflbm/RhIfv\nzriuvTeq5es79OaKbarf3K2eUGZrv1KGoeXrCecAAAAAAAAAAICDg2AOAAADIG0Y6twRzKl95j+y\nhwJad+b5StvtGZ/BtJxR4Mgj1fmpC5Wzca3G/fdvGZetaepSMpXe4/VEMqV1W3q09U/3aOanT1fB\nqiVq+ugZevbWf6lz8mED2fleWcwmVRV7Dvic1De/pXh+oSY9eKccnW2Z1aQNtfdGlTayX/W1M5yz\n899ZAAAAAAAAAACAwUIwBwCAAdAdiCmVNqR0WuP/fa9SNrvWn3F+xvVepuWMGsZPr1Xcn6up990s\nZ0drRjXRREoNW3p2/TyVTqupJaB33t2oku/9r+Zd+78yJ5N6+1vXa8F3b1TS4xus9ndTWeSVzdr/\naTk7GV6fQt++WtZoWNPu+cMAdLa74vfe0JT7bpHS74ebUoah5Rs6CecAAAAAAAAAAIBBRTAHAIAB\n0LHj4X7Zgpfk29qkxhPPVCyvIOP62tKDE6TAoWcUFKj36h/JFg5pxu03ZlzX3BlWe3dEzR0hvb2q\nVR2vva3jv3yO6p78p7rGTtazf3xYjR87WzpIU5esZrOqir0Ddl7ys5cqMm6ixjz1sHLXrRywc22B\nHs27/puaet/NKlvw8m7vpQnnAAAAAAAAAACAQUYwBwCAAdDRs/3B/oSH75Ykrf3kZzOu9blsKmRa\nzqhiXHKpglMPU82Lj6loydsZ1y3f2Kk1TV2q/Oe9OvFr58m/ab3qz75IL/z+7wpWjRnEjvdUVeyV\n1TKAf5S0WhW9/hcyGYYOv/UGqR8rqvZm6r03ydHbLUma9ODte5y7M5yz899hAAAAAAAAAACAgUQw\nBwCAAxSMJBRNpJS7bqWKly7UtllHq7d2fMb1taX+QewOQ5LFouivfivDZNLMm3+qkndeV8Hyd5Vb\nv0K+pga5W7bI0dUhSyQkpVK7yuy9XTrqmit1xC3XKun26LWf/lFLvvQ9pe32g9q+zWJWRZFnwM9N\nHn+CAieeqqJl76ji1WcO+Dz/hnqNe/QBBSpq1HzkMSpcuViFyxbucV3aMLRiI+EcAAAAAAAAAAAw\n8KyHugEAAIa7nQ/zx//rHklSfRbTcvxuuwpynIPSF4Y2Y9ZsdZ37GeU/eJ+O/d5l+702ZbMp5XDJ\nnEjIGouo9bC5WvDdXypaUHyQut3ObDLJbjOrqmiAp+V8QOK665V++Xkddscv1Tz3OKUd/fz3wzA0\n85ZrZUqntfhL31Pc51fZwlc1+YHb9eqMOXtcvjOcM6U2T4U5TLACAAAAAAAAAAADg2AOAAAHqKM3\nKmdHq6pfelK91WPVMvsjGdfWlvoGsTMMdakbf61VYyYr1bxNlnhMlmhk+8dYRNZoVJZ4VJbY+z/M\nqZQaTzxLq8/9vGSxDGgvZpNJdqtZDrtFDptl10enzSK7fcdH28Dec29SdeMUvOwK+W+7SRMevlur\nL7yiX+dUvvKUipcu1NZ5H9W2OcdKkloPm6vSd19Xbv0KdU+YukdN2jC0cmOXptSI9XIAAAAAAAAA\nAGBAEMwBgFGuKxBTLJFSab77ULcyLMUSKfWG45r2yP0yJxOqP/tiyWTKqDbHY1e+n2k5o5rTKe+V\nV+jdNW1KpNIH5ZZmk0luh1Uep1Uel01up1Uep01Ou0WmDH/vDrb4t7+jxEMPaPIDt2vjx85WtLAk\nq3pLJKzD/vRLpWw2Lf7id3a9vur8L6h4yQJNevAOvfXD3+21Nm0YWtnYpakmE9OsAAAAAAAAAADA\nASOYAwCjWOO2gDZu65Wx4+eEc7LX2RuVJRpR3WN/V8yfq8aTzsq4trbUP4idYbhw2q2aUJWrFRs7\nB/RckySP0yaP0yr3Bz66HEMngLMvhs+v0Pd+pNxvfU3T7/qNFl71i6zqJ/39drnbt2nVBV9UqKJm\n1+utRxylzvFTVfnaM/I1rVegum6v9TvXWk0bk094DgAAAAAAAAAAHBDzoW4AAHDwJZIpLW3o0IYP\nhHLWNHWppSt8SPsajjp6oqp57hE5Aj1q+Pj5Sjsye4if63Uoz+cY5O4wXBTlulRe4BnQM8dV5Gj2\npGJNrs1XTalPhbkuuZ3WIR/K2Snx6YsUmTJdtc89ovxVSzKu82xt0sR/3qVwYYlWnf+F3d80mbT6\n/MtlMgxN/Mef93tO2jC0YkOnugKx/rQPAAAAAAAAAAAgiWAOAIw6vaG43l3Tps5AdLfXDUlrmrrV\n1h05NI0NQ+m0oa6eiMb/+16lrTY1nHlBxrVjSn2D2BmGo7EVfrkdAzPMsLzAo4oi74CcdchYLIr9\n/EZJ0uG3Xi+lM1v1ddiffiFLIqGlX/i2Uq49w05bjj5JvVV1qnnuEblam/d7VsowtHx9h3qChHMA\nAAAAAAAAAED/EMwBgFFkc1tQi9e1K5pI7fX9tGFoVWOX2nsI52SiozeqooWvyr9pvZqOP13RguKM\n6vK8DuV4mZaD3VnMZk2pzZf5ACfa5PscGleZM0BdHVqJeUcpeMYnVLB6qapfeKzP60sWvqqKN19Q\n2/TZ2nT86Xu/yGzW6vMukzmV1ISH/9LnmSnD0NL1HeoNxbNtHwAAAAAAAAAAgGAOAIwGyVRaKzZ2\nat2WHqUNY7/Xpg1DKzd2qbM3ut/r+hKJJbWhuVdGH/cbruKJlNZt7tGEh++WJNWf89mMa8eU+Qep\nKwx3XpdNdeX9//3hdlgHJNwzlMR+cq1SDodm/PnXskRC+7zOlIhr5q3XyzCbtejL35f282vQ9NEz\nFC4qU90T/5C9u7PPHlJpQ0sbOhQIE84BAAAAAAAAAADZIZgDACNcMJLQe/VtWa2oShuGlm/oVFcg\n+/UtqXRaG5p7tXB1qxpbAtq4LZD1GUOdYRha3dQlx9pVKln0ploPm6uesZMzqs33OeX32Ae5Qwxn\nlUVeFfidWdfZLGZNryuQ1TKy/niXrq5R6IqvytXRqkkP3rnP68b/56/ybd6oho+fr56xk/Z7pmGz\na82nLpU1FtX4/9yXUR/JdFpLGzoUjCSy6h8AAAAAAAAAAIxuI+vJDQBgNy2dYS2qb1M4lsy6Nm0Y\nWr6+Q93BzMM5LZ1hvb1yeyBn52SexpbAAU/fGWqaWoLqDMQ04V/3SJLqP5n5tJzaMt9gtYURZFJ1\nrhxWS8bXm00mTanNl8thHcSuDp3Y1/9P8eJSTfznX+Ru2bLH+86OVk356y2K+XO1/OKvZnTmhtM+\npVhOnsY9cr+soWBGNYlUWkvWtSsUJZwDAAAAAAAAAAAyk1EwZ8mSJbrooov2eP2FF17QOeeco/PO\nO08PPfSQJCkej+ub3/ymzj33XH3uc5/Txo0bJUmNjY264IILdOGFF+rHP/6x0un0wH0WAIDdpA1D\n9Zu6taqpS6kDWCWVMgwtW9+hntD+17f0huNaVN+mVU1diiVTe7y/qrFL0Xj24aChqCsQ08ZtvXJ0\ntav6hccUqKhR89zjMqot9DvldzMtB32zWS2aVJOX8fXjKnKU53MMYkeHmNeryI9+Iks8phl3/mqP\nt6f/+TeyRcJafsk3lPDnZnRkyulS/dkXyx7sVd3jD2bcSiKV1tJ1HQpHR8bXNAAAAAAAAAAAMLj6\nDObccccd+sEPfqBYbPeJCYlEQjfccIPuuusu3XfffXrwwQfV3t6uhx56SG63Ww899JB+8IMf6Gc/\n+5kk6YYbbtA3vvEN3X///TIMQ88///zgfEYAAHUHYtraERqQs1JpQ8saOtQb3jOcE0uktLqxS+/V\nt6lnL+/vlEiltXJj164pOsPVzs/XkDTp73fIkoir/pxLJHNmA+hqy/yD2h9GljyfQ1XF3j6vqyz0\nqrzQcxA6OrTinzpPkcNmqerlp1S4dOGu1wtWLFLtc/9V17jJWn/ap7I6s+GsC5VwezThX3fLHM98\nOlgsmdKShnZF+jGNDAAAAAAAAAAAjC597juorq7WTTfdpKuuumq31xsaGlRdXa2cnBxJ0qxZs7Rw\n4UKtW7dOxx57rCSprq5ODQ0NkqQVK1Zozpw5kqRjjz1Wr7/+uk4++eQ+GywqYuUHgJFvoL/WtQbi\n8nmdA3rmxtaQZk/2KsfrUCptqLG5V+u39CiZMjK6lyGpI5TQlDEFA9rXwWIYhhauapHdaZOvrUNj\nH/+7IqUVaj/nQvlsfU/BKc5za0x1/kHoFCNJQYFXxopm9QT3HnwrzHVp1qRimUymg9zZIfKnW6R5\n83TE7b/Qm3/+ryRp1m3XS5LWfOun8uVkGVDyOrXp7M+o7m9/0qSXH9Omsz+dVfn61pDmTi0dsSvE\nAAAAgL7wd7cAAAAA0Lc+nyKccsop2rx58x6vB4NB+Xzv/x8vj8ejYDCoyZMn68UXX9RJJ52kJUuW\nqKWlRalUSoZh7Hpo5PF4FAgEMmqwrS2z6wBguCoq8g3417qGpk7FEnuulDpQL77dqNoyvza3BhXp\nx2qqFeuiMpIpFee6Bry3wbahuVeNLdv/dxp3x+9lice1/NNfVm8sLcWifdaPLfXyPQ39UpHnUnNr\nQKn07hOnPE6bKvKcam8PHqLODoG6KXKdfa5y/v2QCv91v2QYylmzXI0nnqlNddOkYN//Ln7Y8jM/\nrZqH/qKa+27TqhM+IcOSecgmEJRee3eTDh9fmPV9AQAAgOFuMP4+AwAAAACGq/39hwuZ7d7YC6/X\nq1Do/TUpoVBIPp9P55xzjrxery688EI9++yzmjp1qiwWi8wfWPMRCoXk97POAwAGQyAcl9HeLnfL\nFmmAV0clUmmt3dzdr1DOTmuauhSOJgawq8HX2RtV045Qjrt5s+qeeliBiho1nnRWRvV+t125Xsdg\ntogRzOWwakJl7m6v2SxmTRuTL6ul33+UG7Zi1/xUKadL0/7ye03/y++UcLm19LJv9f+8/CJtOOWT\n8m7brKqXnsy6vjsUY6UVAAAAAAAAAADYp34/zRk7dqwaGxvV3d2teDyud955RzNnztSyZcs0f/58\nPfDAAzr11FNVVVUlSZoyZYoWLFggSXrllVc0e/bsgfkMAAC7ae8I6uQvfVJnXHSSzjz3I/rI9y/X\nlHtvUtmbL8rR2Zb1eeZ4TP4N9ap47RlNeuB2Tb3793J2tPa7v1Ta0MqNXUql0/0+42CKJVJa3dSl\nnRGnKfffKnMyoRUXXZnxZI3KYu/gNYhRoSTfrZIdk6bMJpOmjckfteuT0mXlCn/t/+Ts7pCjp0ur\nPv0lRQuKD+jMNf/v80qbLZr04B1SP742tXZFDuj+AAAAAAAAAABg5Mr6ic6jjz6qcDis8847T9/9\n7nf1+c9/XoZh6JxzzlFJSYlsNpt+//vf67bbbpPP59N1110nSfrOd76jH/7wh/rNb36juro6nXLK\nKQP+yQAAJOOVV+Vu36ZAebXMqaTKFr6qsoWv7no/XFiqrglT1TlxurrGT1PnhKlKeHxyt22Tb/MG\n+TZvlHfLRvk2b5Rv8wa5W5tl+tDknfH/+auWXfoNNXz8fMliybrHYDSh+k09mlyTd8Cf72AyDEOr\nNnYpntz+oN67eYNqnv2vemrGadNxp2V0hstuVVGOczDbxCgxvipXveGEqku8yhnlE5iiX/ma7A8+\noKjMqj/74gM+L1xWqU3Hn66aFx5V2YKX1Tz/o1nVt3SFVVO67xGVAAAAAAAAAABg9DIZxgDvORlg\n7CkGMNIN5E72SCyp2JVf1fj//k0v//zPaj3iKDm6OpS3doXy6pcpv377R1dn+251KZtNlsSe66Ui\nBcUKVNYqUFGrYGWtApW1crc2a9rdv5c92KvO8VP13tevUdeEaf3qd2JVrsoKPP2qPRg2NPeqseX9\n/23m3PBt1bz4mN744e+15ZiPZXTGuIocVRYxMQcDI55IyW7LPgw3IoVCCkQS6pVNoUhCwUhCoUhC\nqX7+0da/oV6nfPET6ph8mF743QOSyZRV/RHji+T32Pt1bwAAAGA4Gsi/zwAAAACA4a6oaN//Ae/o\n3IEAACNUR3dEE19/XnFfjtpmHClJiuUVaNucY7VtzrHbLzIMOTtalb9mmfLqlyu/frnswV4Fymt2\nhW8ClbUKVtQq6d57aGbzMadoxh2/VO1zj+jEr56rdWddqOWXfF1JT3YTI9Zu7pHXZZPPPfQeZnf2\nRncL5fg31Kv6pcfVNW6ythx9UkZn2CxmlRW4B6tFjEKEcj7A45HPI33wq45hGIrEkgpGEgpGkrvC\nOrFkqs/jesdM0Jb5J6jizRdUtHSh2g6bk1U7LV1hgjkAAAAAAAAAAGAPBHMAYASJL3hb7vZt2njS\nWTKstr1fZDIpWliirYUl2pphwOTDYnkFWnjVL7TxY5/UEX/4icb/92+qfPVpLfnid7Xp+NMznjSR\nNgyt3NilWROLZLWY+9VLX5KptLa0heRyWuV12uR29v2tLxZPaVVj126vTb3vZpkMQ8s/+zXJnFmv\n5YUeWTK8FsCBM5lMcjttcjttKv7Aprx4IqVQNKlwLKnIzo+xpKLxpD44X2f1+V9QxZsvaNLfb886\nmNPaFdHYihyZs5y0AwAAAAAAAAAARjaCOQAwQiSSaeU896QkactR/QvcZKvt8Ll69rb/aMI/79KU\n+2/TvBu+pdqn/6X3vvojhSpqMjojEk9qdVOXpo0pGPD+Esm0lja0KxB5f02XxWyS12mTx2WTd8cP\nj8u6K0CTNgytbOxUIpXeVZO7doUqX3tWHZMP07Y5x2V0b7PJpPLCobumCxhN7DaL7DaL8nyO3V5P\n75iwsyusk3+UOmfOVem7ryt33Up1j5uS8T0SqbQ6e6IqzHUNdPsAAAAAAAAAAGAY4z/jB4ARoqM3\nqvLXn1PS4VTL7I9kVWs7gGk1abtdqy+8Qk/f/oiaZx+j0vfe0CmXn6XJf71F5ng8ozPae6La1Brs\ndw97k0imtGTd7qEcSUqlDfWE49raEVL95m69t7ZNry1t1turWrRyY6dWbuxUT2j3vqfee5MkbZ+W\nk+E0jJI8lxysHQKGNLPJJI/TpsJcl6pLfJpYnSfLt74pSap77MGsz2vpigx0iwAAAAAAAAAAYJgj\nmAMAI0RkyXL5N61Xy6yjlXJmPrHB7bBq7pQSVRV5D2gFS6i8Wq9d9ye9+YPfKu7P1bR7b9bHrviE\nipa8nVF9w9Yerd/aq7Rh9H1xH2KJlBav61Awmuj7YkmGpHAsqdbuiNp7oru9l79ykcoXvKzWGUeq\ndeb8jHuoKvZm0zKAISJ+wslKlVeq+sXHZA2Hsqrt6I0q+YFpWwAAAAAAAAAAAARzAGAESKcNuZ9+\nXJK05ejs1liVF3hktZg1tiJHsycWKdfr6LtoX0wmbT72VD115+OqP/siebc26fhvf1ZH/OEaWUN9\nT8Rpag1oybp2xeKpfrcQi2+flBPKMJTTl2n3/EGStCKLaTkFfqfcTtuA3B/AQWaxKPqZi2WLhFX1\n4uNZlaYNQ61MzQEAAAAAAAAAAB9AMAcARoCuQEzlrz+ntNmirXOPz7jObDKpJN+96+dup02HjyvU\nlNr8A1rDlPR4teRL39Pzv3tAPTXjNPaxB3XK5WepZOGrfdb2hOJ6Z02rOj40uSYT0XhSi9e1KxxL\n9qftPRQteVsli97StllHq3367IzrKouYlgMMZ9FPXyzDbFbdEw9lXdvSFR6EjgAAAAAAAAAAwHBF\nMAcARoDe+vXKX7NMbYcdqYQ/N+O6ohynbNY9vxUU57o0Z3Kxqot9B7TeqmvSDD13y8Na8Zkvy9nZ\npmO/f7mOvPFq2Xq791uXSKW1bEOHGrb2ZLzaKhJLavHadkXiAxPKkWFo6o5pOcs/+7WMy3wuu/J8\nBzB1CMAhly4rV/zkU5W/doVy61dkVdsTiisyQOFAAAAAAAAAAAAw/BHMAYBhzjAMOZ/q3xqrskLP\nPt+zmM2qK/dr9sQi5WcRNLFZzMrzOlRV5NXY8hyZnA6tvPireu7mf6hz/FTVPvsfnfqFM1X+2rN9\nnrWpNagla9sV7SNsE44mtHhtu6KJPVdg+TfUq/aph2WJZDfFouTd11W0/F1tmX+CuibNyLiuqnjf\nv6YAho/oxZdIkuqe/EfWtayzAgAAAAAAAAAAO5kMI8NRBIdIW1vgULcAAIOqqMh3QF/rekJx+c7+\nuEoWv6VH739J0cKSjOrcDqvmTM7sWklq646oYUvPbuEXt8Mqj8smr9Mmr2v7D4d99xVYwUhCy9Z3\nKJZIyZRKasI//6Kp994sSyKuTceeqkVf+b5ieYX7vbfNYtak6jwV5Dj3eC8UTWjJunbFk+nd3zAM\n1T32dx1+289lScQVy8lT/Scv0bqzLlTS08eqKcPQiV89V/n1y/XMrf9Wz9hJ+79+B6fNorlTSmQ6\ngClDAIaIVEp5s6bJ6OrSYw+8oqQ789Cdy27V3CmZf30FAAAAhqMD/fsMAAAAABhJiop8+3yPiTkA\nMMz1NDaraOlCdUyakXEoR5LKCrKb7FKU69KRk4s1uTpPM8cX6SPTyzRncomm1uarptSnghznHqEc\nSfK6bDpifJG8TpsMi1VrzvuCnrntP2qfMlNVrzylUy77uKqff1TaT05012qrLbuvtgpGtk/K+XAo\nxxoKaN71/6dZN/1USZdba//nIplSKU3/y291xkUnasq9N+13nVbZWy8qv365Nh17asahHEmqLPIS\nygFGCotFsc98VrZIWFUvPZ5VaSSeVG8oPkiNAQAAAAAAAACA4YRgDgAMc5ann5A5ncpqjZXZZFJp\nviv7e5nNKsl3K8djl9WS+bcQh92iw8cXqsC/feJNsGqMXvz1fVr0pe/JEo9r7i+u0tE/+pLc27bs\n95xNbcHtK6viSfWG41qyrl2J1O6hnNy1K3TyVz6lqpefUtu0WXr21n9r8Ze/p8fve17LLv1fGRaL\npv71jzrjohM1/c+/lqOrY/ebpNOads8fZJjNWnHxlRl/jlazWaUF7oyvBzD0RS+8SIbZrLonsl9n\nta0zu/V5AAAAAAAAAABgZCKYAwDDWDiaUNFLT0tSVsGcohynbNY9p9sMJqvFrGlj8lVRuGNSj8Wi\ndWdfpKdvf0QtM+epfMHLOu3SU3XkL78j/4b6fZ7TG47r3TVtWrquY/dQjmFo7CN/0wnfuEDerU1a\ndf7levnGuxUpKpUkJT1erb7gcj1+73Na/MXvKOnyaNKDd+r0i0/SYbfeIGd7iySp8tWnlbt+jRpP\n+LgC1WMz/vzKCz1ZhZUADH3p8gpFT/yY8uuXK3ftiqxq27oju034AgAAAAAAAAAAo5PJMIb2EwP2\nFAMY6Q5kJ/vmDS2accw0Bcsq9cwdj2Vcd/i4QuV6Hf2650DY3BZUw5Ye7foGZBiqfuExTfr7YS9p\nogAAIABJREFU7cppXCdJ2jr3eK0+/wvqmHpEn+dZQwHN/s0PVfXq04rl5GnBVb9Qy5HH7LfGHI9p\nzFMPa9KDd8rd1qyUzaaNp3xSRYvflndrk5768+MKVdRk9PmYTSbNnVIih+3ghp0ADD77M08q5zPn\nqeGM8/Te16/JqnZabb4Kc7OfTgYAAAAMBwfy9xkAAAAAMNIUFfn2+Z71IPYBABhgpmefkSUe05aj\nMp+W43ZYD2koR5Iqi7xy2i1atbFLKcOQTCY1nXimmj56hsoWvKxJD96h8gUvqXzBS2qfeoRWn3eZ\nmuccJ5n3nEiTV79c8677P3mbN6lt+my9dfWvFC0s6bOHtN2hhrMu1PrTPqWa5x7R5L/frrGPPShJ\nWn/apzIO5UhSca6LUA4wQsVP/JgSpeWqfuFRLbn820q5PBnXtnRFCOYAAAAAAAAAADDKWa655ppr\nDnUT+xMOxw91CwAwqDweR7++1sUTKTl+c6NyN9Rr8RVXK1pQnFFddYlPOR571vcbaG6nTfl+hzp7\nYkqld8zOMZkUrBqjjaeeo5aZ8+Xo7lDJordU/eLjqnztWSVcbvVWj5XMFskwNO6/f9P86/5P9kC3\nVl14hd751nVKev3ZNWKxqHv8FDWcdYECFbVKur1aduk3snr4Prk2T/aDvBoMwEFiNkuBXrleeVGh\nskp1j5+acWk0nlJ5oUcWs2kQGwQAAAAOjf7+fQYAAAAAjEQez74HI7DKCgAOsf6Oft7W3KWJR01T\nwuPVE/c9L5n6fvBrNpk0f2qJbEMoRBKNJ7V8faeC0cRe3/dvqNekh+5U1YtPyJxOKVRcpvpzLlHR\nsndU+dqziubka8F3f6nWWUcf5M63y/c5NWNswSG5N4CDw7xls/JnTVPX+Kl6/qaHsqqdUJmr8sLM\ng34AAADAcMEqKwAAAAB43/5WWe25EwQAMCykXnpJ9lBAW486KaNQjiQV5TiHVChHkpx2qw4fX6h8\nn3Ov7/eOmaC3v/NLPXn301r7ic/I0dOlmbfeoMrXnlXrYXP07G3/PmShHEmqKvYesnsDODjSFZUK\nHXeS8tcsU+66lVnVtnSFB6krAAAAAAAAAAAwHBDMAYBhKJVOy//sk5KkLUeflHFdacHQnNpgtZg1\nvS5fVUX7DrmESyu0+Cvf1+P3Pa/lF39VS77wbb3887syXuE1GPxuu/J8+x5LB2DkSH7u85Kkuiey\nm5jTE4orEksORksAAAAAAAAAAGAYIJgDAMNQV3dEZW88r5g/V+3Tjsioxu2wDukQiclk0tiKHE2u\nyZNlPxOA4rn5WvWZL6v+/31Oshya6T9mk0k1JT4dNo4VVsBokTjxZMVKylT9wmOyREJZ1TI1BwAA\nAAAAAACA0YtgDgAMQ7HX35Srs01b558gw2LNqKZsiE7L+bCSPLcOH18op21ordzaKd/n1OyJxRpT\n5pfFzLdRYNSwWhW+4CLZwiFVvfRkVqUtnZFBagoAAAAAAAAAAAx1PFEEgGHGMAx5nn5ckrTlqMzW\nWJlNJpXmuwazrQHlc9s1a2KRcr1DZ8KP027RtNp8zRhbILczszAUgJEl/dlLZJjNqnviH1nVReJJ\n9YTig9QVAAAAAAAAAAAYygjmAMAw0xOMqfS1Z5V0utUy66iMagpznLJZh+YEmn2xWS2aMbZAlYXe\nQ9rHzrVVR04qVmHu8Ak3ARh46YpK9R5zggrWLFVOw6qsals6WWcFAAAAAAAAAMBoRDAHAIaZ0HtL\n5NvapOYjj1HantlEmeGyxurDzCaTxlXmaFJ1nswm00G/f4HfqSMnsbYKwPsSl3xOklT3+ENZ1bV1\nR5Q2jMFoCQAAAAAAAAAADGE8ZQSAYcb15GOSpC1HZ7bGyu2wKs83dFZC9UdpvluHjy+Uw3Zwpv64\n7FZNH1Og6XUFcjlYWwXgfcYppypaVKqaFx6VJZL5FJxEKq3OnuggdgYAAAAAAAAAAIYigjkAMIwE\nIwkVv/KM0labmucel1FNab57kLs6OPxuu2ZNKFKOxz5o9zCbTKot3b62qiDHOWj3ATCMWa3qPfdC\n2cIhVb38ZFal27pYZwUAAAAAAAAAwGhDMAcAhpHAinrlrVullsPnKenx9Xm92WRSWcHICOZIkt1m\n0WHjClU+CKu5/G67Zk0sUm2pX2bzwV+bBWAYufRSGWZz1uusugIxGayzAgAAAAAAAABgVCGYAwDD\niO2J7NZYFeY4ZbMenPVPB4vZZNKEqlwdNrZQOe4Dn55jMZk0tjxHM8cXyuO0DUCHAEY6U3WNOo86\nXgVrliqnYVXGdam0oVA0OYidAQAAAAAAAACAoYZgDgAME7F4SoUvPSXDZNLWo07IqKZsECbLDBV5\nPodmTijStDH58vYzUJPrcWjWxGJVFXtlMjElB0DmohddKkmqe+IfWdUFwvHBaAcAAAAAAAAAAAxR\nBHMAoA+b24JatLZNm1qDisQO3qQDwzAUjCS0pT2kVY1dWrFwtQpXvKeOKTMVyyvss97tsCrP5zgI\nnR5ahTkuzZ5UrCk1eXI7rBnVWMwmja/I0eHjC+V2ZlYDAB9k+/jpihQWq+b5R2WJhDOuC4QTg9gV\nAAAAAAAAAAAYangaCQD7kDYMrdvco60dIUlSTyiuhq098jptKsx1qjDHJa9r4FYfJZJp9Ybi6g3H\n1ROKKxCOK5U2dr0/5pVnZTKMjNdYlea7B6y34aA4z63CXJdaOsNq3BZQNJHa63X5PocmVOXKaedb\nIID+M9ls6vjkBaq8/feqfPVpNX7s7IzqekNMzAEAAAAAAAAAYDThqSQA7EUyldaKDZ3qCsb2eC8Y\nTSi4LaGN2wJy2a0qzHGqMNelHI+9z3PThqF4IqV4Mq14IqVYIq1tvTE1belWuI9pPBWvPydJGQVz\nLCaTygpGVzBHkswmk8oKPCrJc2tre0iNLQElUmlJktVs1tgK/4he7wXgIDvvfOn236vk3TcyDuaE\nY0ml0mlZzAyuBAAAAAAAAABgNCCYAwAfEokltWx9R59BGUmKxJPa1BbUpragHFaLCnKc8nvsiidS\nSuwM3yTTu/55Z0jkg3xeZ5/3Klz2jooXvanuuokKlVXt91qX3aqpY/Jls1r67H+kMptNqiz2qrTA\nrS1tIYWiCY2tyJHDNnp/TQAMPMe0KYr7c1WwanHGNWnDUDCcUI535K8aBAAAAAAAAAAABHMAYDfd\nwZhWbOjca4CmL7FkSls7QrtWXw0EV+tWzbjjV6p++UlJ0rpPfHq/1xfluDSxOldWC5MYJMlqMaum\n1Heo2wAwUplMihw+WzmvPCdHZ5ti+UUZlQUI5gAAAAAAAAAAMGoQzAGAHZo7Qlq7uUdpwzjUrcgS\njWjiP+7SxIfulDUWVefE6Vr0pavVOWXmXq83m0waU+ZXVbH3IHcKAKNbcu5c6ZXnVLBysbZ+5OSM\nanrD8UHuCgAAAAAAAAAADBUEcwCMeoZhaP3WXm1qCx7qViTDUOUrT2nGHTfK09qsSH6h3vvqj9V4\n0lmSee9TcBxWi6bU5jF9AQAOAdO8eZKkwiyCOYFwYjBbAgAAAAAAAAAAQwjBHACjWjKV1urGLrX3\nRg/4LHM8JmdXu8zxuEJllTKstqzqc9et1OF/vF5Fy99VymbT6vMu06oLrlDS7dlnTZ7Xock1ebLb\nLAfaPgCgH1IzZyltsahg5aKMayLxpBLJlGxWvnYDAAAAAAAAADDSEcwBMGpF40ktX9+pYHT/kwss\n0Yi8WzbK2dkuZ9eOH3v5Z3uwd1dN2mJVoLJGvTXj1VszTj212z8GK6plWHb/0mvr6tARt/xSdU/+\nQybD0Jb5J2rJ5d9WqKJmv33VlPhUW+qTyWTq/y8CAODAeL0Kj5usvLUrZI7HlbbbMyrrDSVUkEMw\nBwAAAAAAAACAkY5gDoBRKRhJaFlDh2LJ1F7ft0QjKn37FVW98pTKFrwka2zfE3ViOXmKFJaoa/xU\nRfMLlbZY5W9qkL+pQTmNDbtdm7LZFKgco96aceqtGSfDZNKkf94lWzCgnpqxWnzF1WqddfR+e7dZ\nzJpck6d8vzP7TxwAMOCis46Ud81y5TasVOfkwzOqCUTiKsjh6zgAAAAAAAAAACMdwRwAo048kdLy\n9XuGcsyxqEoXvqqqV55S+VsvyRoNS5ICFTVqOeIoRQqKFc0rVDS/UNG8IkXzCxXLzd/3yirDkKut\nWTkb18nfuP1HTuM6+RsblLuhftdlCZ9fi778fTWcef4e03Q+zO+2a0ptnpx2vnwDwFCRnjtPuv8v\nKli5OONgTm9o/9PaAAAAAAAAAADAyMCTXQCjSjptaMWGTkUT20M55nhMpe+8psqXn1L5Wy/IFtke\nxgmWV2vTcadp07GnqqduotSfdVEmkyLF5YoUl2vbnGM/2ITcrc3yN66Vq7NNPSefoU6ru8/jKgu9\nqqvwy8zqKgAYUkzz50mSClYu1tpzMqsJhOOD2BEAAAAAAAAAABgqCOYAGFXWbOpWTziuwqVva8xT\nD6vijRdkCwclScHSSjWcdaE2HXeausdO7l8YJxNms8KlFQqXVkiSfF6nFNz3qiyr2ayJ1bkqynUN\nTj8AgANTU6tYQZEKVy6SDCOj7x+JVFqRWFIuB38cBwAAAAAAAABgJONJAIBRo6kloJausCpfflLz\nrv+mTIahUEm5Gs44V5uPO01d46cOXhinn3yu7aureHALAEOYyaTgjFkqePEpudqaFSkuz6gsEI7z\n9R0AAAAAAAAAgBGOJwEARoX27ojWN/eqeNGbmvuL7yjpcuuNH9+k1sPnDbkwzk6VRV7VlbO6CgCG\ng/jsOdKLT6lwxSJtyjCY0xtOqDhvkBsDAAAAAAAAAACHlPlQNwAAgy0YSWhVY5dy167QUT/5qgyT\n9PqPb1brzPkDFsoxSSrwOzV9TIHmTy1VbalPDqulX2fZLGZNq83XuIocQjkAMFzMmydJKli1JOOS\nQCg+WN0AAAAAAAAAAIAhgok5wCjS1h2R32OXw9a/wMhwFEuktHx9h5xbGnXM978oaySst77/G7XN\nnDcg59ssZpUVeFRW4N5tHUltqV/VJT61dUe0pS2k3nBmD1/97u2rq5x2vjwDwHBimT1LaatNBSsX\nZVwTjCSUNgxCmAAAAAAAAAAAjGA8+QVGifbuiFZs7JTFZFJ5oUfVJV7Z+jnRZbhIpw2t2NApo7VF\nx159mZzdHXrvyh9q87GnHvDZOR67ygs9Ksp17fOBqtlkUkmeWyV5bvWG4trSFlRbT1Rpw9jr9VVF\nXo1hdRUADEsml0u9E6Yqd81yWaIRpZyuPmtShqFQJCGf234QOgQAAAAAAAAAAIcCwRxgFAhFE1rV\n1CVp+0PATW1BNXeEVVnsUWWRV1bLyNxqt6apS+G2Th3//cvlbd6kFZ/5shrOurDf51nM24M25YUe\neV22rGr9Hrv8nnzVJVLa2h5Sc0dI8WRakmSzmjVtTL4Kc/p+iAsAGLoiM2crd+Vi5dUvV/uMIzOq\nCYQJ5gAAAAAAAAAAMJKNzKfxAHZJJNNavr5TqfTuU1qS6bQ2bgtowcoWbWoNKp3e+xSX4apxW0Bt\nrT06+porlbdulRpOP1crL7qyX2e57FaNr8zV/KmlmlCVm3Uo54McNovGlPk1b2qpJlXnqSTXpaNm\nlBPKAYARIDFnriSpYNXijGsCGa46BAAAAAAAAAAAwxMTc4ARzDAMrWrsVCSe3Oc1iVRaDVt7tLkt\nqJoSn0oL3MN+lVJrd0QbtnRp3i+uUvGSBdp89El676s/krL8vBw2y6D9mphNJpXmu1Wa75bLYVVw\nQE8HABwK5vnzJUkFK7MJ5iQGqx0AAAAAAAAAADAEEMwBRrD1W3vVGYhldG0skVL95m5tag2qtsyn\n4lyXTMMwoNMbjmvNxk7NvPV6Vb36tNqmz9aCq38lWSwZn2GzmFVd4lNFoUdm8/D7NQAAHBqO2mqF\ni8tVuHKRZBgZBUJD0YSSqfSIXSsJAAAAAAAAAMBoRzAHGKFaOsPa1Jb9HJZIPKlVjV1qagmqwO+U\n32NTjscumzXzYMtACEcT6gzE1BuKy2wyyWIxyWoxy2I2yWIxy2oxyWre/tGy43XDMLRifacm/O1W\njXvkfnXXTdTrP7lFabsjo3tazWZVFntUWeTlASkAoF96px+h0ucfk2drk0IVNX1eb2j71Jw8X2bf\nqwAAAAAAAAAAwPAypIM52zpC2tISkMdpk9tplcsxpNsFhozecFxrNnUf0BmhaEKh6PvrNdwOq/xu\nu3weu3I8dnmc1gGdqJNMpdUdiKkzEFNnIKpoPNWvc8Y88ZCm3fMHhUoq9Op1tyvh9fdZYzGZVF7o\nUXWJ96AHkAAAI0t01pHS84+pcOWijII5khQIxwnmAAAAAAAAAAAwQg3ppEt3MKb1zb27fm4xmeR2\n2uRxWuVxbf/odlrltA/pTwM4qOKJlFZs6FTaMHZ73dneogkP360tR5+kjmmzsj43HEsqHEtqW1dY\nkmQxm+R32+XfEdRx2q07ptqYZDFnNm0mEI6rKxBTZ29MveH4Hj1nq/z15zTrDz9RLCdPr9xwh6IF\nxfu93mwyqTTfrZpSnxw2AjkAgAOXnjNXklSwarEaT/6fjGoC4UTfFwEAAAAAAAAAgGFpWCVaUoah\nQCSuQCQudb3/usVsktdpU47XoXy/Q36PXeYBnOQBDBdpw9CKjZ2KJXafNuNrXKdjv3e53G3Nmvjw\n3dr8kY9p6WXfVKi8ut/3SqUNdQVj6grG9njPbDLtWDm1c92Uecc/b187lUob6gpEFU+m9zzYMOTf\nuFZlC15W+VsvqmD1EpnSe7luH5JOt1699k8KVo7Z5zU2i1lFuS5VFXuZxAUAGFC2WTOVdDhVsHJx\nxjWBcHwQOwIAAAAAAAAAAIfSiHginUob6gnH1ROOq6k1IKvZrFyfXfk+p/L9DibqYNRYu6lbPaHd\nH+4VrHhPH/nRl2UP9GjNpy5V4Yr3VPnaMyp/60Wt/cSnterCK5Tw5QxoH2nDUDplaHs+qO+VVOZ4\nXEVLF6pswYsqf+sleVq2SJIMs1ldYycr6XJndl+bXasuuFxdE6fveQ+TSXk+h0ry3SrMcRLeAwAM\nCqfHpe4J01Sw/F1ZQ0ElPd4+a6KJlGKJFNPbAAAAAAAAAAAYgUZkYiWZTqu9J6r2nqgkye2w7grp\n5HjtGa/ZAYaTLe0hNXeGd3ut/PXnNO+Gb8mUSuntb9+wfaWGYajy5Sc148+/0cSH71btM//Wys98\nRQ1nni/Dajto/Tq6OlT29ssqW/CSSt59XbbI9t4Tbq82HXeqts79qLYdeYziOXkHdB+v06aSfLeK\n81w88AQAHBTBw2ercNk7yl+zVK1HHJVRTSAclyPHNcidAQAAAAAAAACAg21EBnM+LBxLKhwLanN7\nUGaTSbleu3I821de+T02gjoY9rqDMTVs6dnttbrHHtQRN/9UKbtTr//4JrUcecz2N0wmbT7+dG09\n6kSN/899mnz/nzTz1us17tH7tfSyb2nr/BOkAZ4mY4mE5G9sUE7jOvkb16lw+bvKX7NMJsOQJAXK\nq7XhtI9q69zj1T591gEHhGwWs0ry3CrJd8nntg/EpwAAQMbis+dI992mgpWLsgjmJFRIMAcAAAAA\nAAAAgBFnVARzPihtGOoMxNQZiEnavt7G47TuCOnY5Xfb5XKMul8WDGPReFIrNnQqvSPkIsPQlPtu\n1tS//lHRnHy9du1te13tlLY7tObcy7ThY5/U1PtuVt3jD+noa65U62FztOTyq9Q9fmrWvViiEfma\n1iunca38G9fuCuJ4Wrbufm+zRW3TZ6t57vHaOu+jClbWHnAYyGYxK9frUHGeSwWsqgIAHEpz50iS\nClYuybik90OrKAEAAAAAAAAAwMhgMoydT/OHntWNnVpW33rQ7+uwWuTz2OR325XjscvnsfOQHwck\nmUrLMCSbdWCnM/1/9u47Tq663OP450zdqbuzfVM2vYckm1ASQKqggCiKgCIKgoiI5dIEQZGOinrx\nIgJ2RVQUVECvXrqUNNJJ75tsrzM7vZ77x0IgpOxsSbKbfN+vV16bPef8fr9nNpnds+c853naQwm2\nNISIJTMAGNkMs//nDsb+60kiVSN59d6fEx0+Kq+5fDu2MOPn9zNs0X8wDYPaD36MlpnHYk0msCUT\nWN//J5XAluj+aE0mcLc04mmq21UF5x2JQCmhUePpevtPaMwEQqMnkPH4+vXarYZBoddBkddJwOfE\n67JjDNH3aVmZj9bW8KEOQ0REBkgynaXwmJk4Q508/dRCyKM6o81i4cQZVQchOhERERGRgaHrGSIi\nIiIiIu8qK9v3/W+VhtmLZCZLMpSlLZQAwGGzUFXioarETYFDXzLpvfU7OukMJxle6mVkuQe7zdqv\n+UKRJFsbuwi95+l6ayLO3HuuY9iiV+gcP5XX7nmUZKA07znD1eN4465HKF82n5k/+z6jn/87o5//\ne97jU4ES2mYcQ2jU+HcTcUaPJ+UP9Oq17YvFMPC57bsScfxKmBMRkUHKabcSnFbDyOefxrdzK+FR\n43sck8nliCXSuAv6185RREREREREREREREQGl8Miy8QWi+Kv3Ywlncx7TLysimjliLza56QyOWqb\nw+xoDlPsL2B4qYeAzzlkq3PIwVXXEtmV5LWjJUx9a4SqUg8jy7047b1L0AnHUmxr7NrViu0djlAn\nJ952NSXrVtI0+3gW3PY/ZNyePsXbfvQJbP7Q84xf8RqWrhAUFGC63JguF2aBC9zdH9/53HS5oKAA\nrNbudlrRFNlwkmRXglQ83acYoLs1lcdlx+fqTsYp9DqwWQe24pCIiMiBEqs5Bp5/mtK1y/NKzAEI\nx5SYIyIiIiIiIiIiIiJyuBlaiTmmiau1iaIt6ynaun7XR2/Djj5NlygqoX3qLNqnzqJtag2dE6aR\ncxbse3mgvStBe1eCAoeVYW9X0elv9RM5fHXFUmxt7NptW9Y0qWuN0NAWpbLYTXWFt8dKTLFEmm2N\nYVpD8T32uZvq+cAtV+Kv20btaefy5vV3Y9odfYq3IuBm7DA/TruV9PBzez3eYhgUep0Uep2MqfKT\nzmTpCCfp6ErSGU6QyuT2Oq7AYcXrsnf/KbDjddtVnUpERIa0zDHHAlCydgXbzrogrzFdsRQVxe4D\nGZaIiIiIiIiIiIiIiBxkg/rOt2PzBqpfeLU7AWfLeoq2rMMZDu12TNJfRHPNXEKjJ5L2ePc6jwHY\nbRbsNgsOqxW7FWxbNuNa9ibD57/I8PkvApCz2giOn0Lb1Fm0T5lF+9Qa4uVVe50zkcqytbGL7U1h\nygoLGFbqodDrHNDXL0NbJptj3fbO7ioye5EzTRraozR1xKgIuKiu8OFy7v6WjCcz1DaFae6M8c4s\nRjqFt3Envrrt+Oq2MeGvv8PV0cr6Cy7nrSuuB0vvq8r43Q7GDy/E7+lbQs++2G1WKgJuKgLdNxnD\nsRQdXUkSqQyedxJxXHZVwhERkcOObcZRpF1uStauyHtMONb3SnMiIiIiIiIiIiIiIjI4Gaa5j6yB\nweB9raLCw6oJjptCcNxkguMmExo7mXhpxa7jLIaBy2nDXWDDU2DDXWDHW2CjwGnDso+2U7kdO0i9\nPh9j0SLcy9+kaPM6LJl3b4rESivYcfq5vHX5dT22vfIW2Bk3vJCATwk6Amu2d9Aa3LPCzb4YQHmR\ni+pKHzYDmt7aROytdXjqtu1KwvHV1+JpqsPIvVt5xjQMVn7xG2w6/7Jex+i0WRkzzE+lns4/pMrK\nfLS2hg91GCIiMoDSmSzWc86iYvlC/v7kAtL+oh7HWAyDE2dU7fO8VURERERkMNH1DBERERERkXeV\nlfn2uW9QV8xJXncD7b5SUlOmk5o0FdPnxTAMXAa4DYPhBhiGgWF038hwOqy9vpFhqa6m4OJquPhT\nZEyTbe0hEouWYlm8EN+qpZStXsrkJ35B57gp1J1y9n7niiTSrN7WTs2EMrwue39eugxx9W3RXiXl\nQHertMwbb2D/8y+pWL6AEYk9xyeKSmibWkN4xGgiI0YTHj6a4LgpxCqH92oti2EwosxLdYVX1WpE\nREQOALvNSuf0OVQsX0jJ+pU0HXtyj2Nypkkklh7wCnYiIiIiIiIiIiIiInLoDOrEHOcP78feGsYO\neA7CeoZh4C8twn/O6XDO6cSTGTavXs/kj57CrEe+S9MxJ5HZR7usd2RzJqu3tTNnYhl2m/UgRC2D\nTSSeZkt9qOcD35HLUbX4P0x+4heUrlkGQFf1OEJjJhAeMYbw8NG7EnHSXn+/4ystLGDcsMI92maJ\niIjIwErMOQYeg5I1y/NKzIHuto9KzBEREREREREREREROXzozvx+uJw2XHOm03DFVxj5yI+Y9thP\nWPmlm3scl0hlWbO9kxnjStSK4AiTyeZYu72DXB4d4oxMmpGv/C+Tn/gFhbWbAWg47mTWX3Ql7dPn\nDGhcNouFsqICKovdFHrVak1ERORgyB19DAAl61bmPaYrlqZ3dfBERERERERERERERGQwU2JOHszr\nbyDyzJOM//vv2X7GeYTGTe5xTDCSZHNdiIkjiw5ChDJYbNoZJJbM7PcYazzGmH8/xcSnfo2npZGc\nxUrt6eey/sIv0DVm4oDFYjEMSvwFVARcFPsLsFiUJCYiInIwuavKCY0aR8n6VRjZDKa151PvcCx1\nECITEREREREREREREZGDRYk5eXAVetl0wx3UXPd5Zj94Jy//6PdgsfQ4rqE9isdlZ3jpwWjEJYda\nY3uU5mB8n/sdXZ2Mf/oPjH/69zi7gmScBWz62CVsPP8yYpUD82y8ARR6nVQEXJQVubBZe/5/KiIi\nIgeGz22nfcosCmu3ULhtI8HxU3scE0tmyGRz+hkuIiIiIiIiIiIiInKYUGJOnhwfOZu6v57JiNef\nY/Tzf2f7hz6R17gt9SHcThsBn9oHHc6iiTSb60J73WdJJpj22E8Y//QfsCXjpHyFrLnSNWdgAAAg\nAElEQVTky2z+6GdIFRUPyPo+l53ygJvyIhdOh3VA5hQREZH+sVkthGfMgX8/RcnaFXkl5gCEY2md\nO4qIiIiIiIiIiIiIHCb0KG6eSgsLWPuVW8kUuJnx8/txdHXmNS5nmqzd3kG8h/ZGMnRlcznWbu8k\na5p77AtsXM0ZXz6fyX/+JSlfISu+dDP/+P2LrP3cVwckKafAbmXOxDLmTCpnZLlXSTkiIiKDTGrO\nsQCUrF2R95iuaO/aWeVMk46uBKl0tlfjRERERERERERERETkwFPFnDxZDIOiKeNY89lrmPnz+5n+\nqwdY9l935DU2nc2xelsHNRNK1ZbgMLS5LkQ0kd5tm5HNMPmPjzL18UewZDNs/Phneevy68g5CwZs\nXbfTxoxxJRQ49DYWEREZrKxTJpPyFVKyLv/EnHAs/8ScrmiKDTuDu85FXA4bfo8Dv8dBoceBp8CG\nYRi9jltERERERERERERERAaG7uj3QlWJm8Uf/yyjn/sbY//1F7Z/6BN0TJmZ19hoIs262k6mjynW\nzZHDSHNnjMaO2G7bvHXbOPZ7N1OyYRWx0krevPFeWmrmDei63gI7M8aV4LCrQo6IiMhg5vM6aZ88\ng6o3X8PZ2UYyUNrjmHAs3eMx2VyO7Y1h6lojjPvb7xj93N959bu/JF4YIJ7K0NzZfX5itRj43N1J\nOn53d8KO3aZEcRERERERERERERGRg0VX5XuhwGEjUOxj2VdvwzBNZj94B2TzbxnQ3pVgW2P4AEYo\nB1M8mWHjzuC7G0yTcc88zhlXf4KSDauoPf1cnvvZ0wOelFPocTBrQqmSckRERIYAr8tO+9QaIP92\nVslMlkRq321Qg5EkSze0srM1QumKRcx69HsEtqxj/NO/3+PYbM4kGElS2xzmrW3tvLG6kcXrmtm4\nM0hrME46k+vbCxMRERERERERERERkbwoMaeXqkrctM04hu0f/BiBzesY948/9Wr8jpYwze+rsCJD\nU0NblGzOBKCgrZkP3HIls39yN1mHk/nfeoDFN32ftNc/oGsW+wqYMa5ELdFERESGCJvVQnTWMQCU\nrF2e97i9Vc3JZHNs3BlkxeY2YskMzs42jvvuDZiGhZTHx4SnH8caj/Y4dyyZoaE9yprtHcxf3cjS\nDS1saQjR0ZUgm1OijoiIiIiIiIiIiIjIQNLd/V4q8RdQYLey6sobSHn9TP/Nj3F2tPZqjg07g3RF\nUwcoQjlYWkNxAEa+/E8+dNXHqFz6Bo3HfIDnfvYM9Sd9aMDXKytyMX1sMVaL3rYiIiJDSWb2HEyL\nhdI8K+YAdMV2P1fs6EqwZH0LDe1vJ95ksxx33424Otp46/Jr2Xj+ZTjCIcb+7196FZsJhONpdrZE\nWLW1nTfeamLFpjZqm8KEoilyptmr+UREREREREREREREZHe6w99LhmFQVeIhGShl9WVfxxENM/Pn\n9/dqjpxpsmZbB8lU/m2wZHDpiqXItrVz3L3XM/e+G7CkUiz92u28fvejJErKB3y9qmI3U0cFsBjG\ngM8tIiIiB5a7tIjgmEkENq7GSOeXnP1OxZxMNsf62k5WbW0nkX733HHq4w9TsWIhDXNPZeMnP8/m\nj15MpsDNxKd+gyXV9wTwnGkSjCbZ1tTF8k2tLFjdRCS+Z/UeERERERERERERERHJjxJz+qCyxI3F\nMNhyzkV0TJjGqBefpXTV4l7NkcxkeWtrO5ms2gUMRR21DZzx5U9Q/cr/0jZ1Fs898je2fuQiOACJ\nMyPLvUyqDmAoKUdERGRI8rsdtE+ZiTWdIrB5XV5jwrEUrcE4b65roalz9zao5cvmM/XxnxKtGMbi\nG+4FwyDtL2LLORfibmum+qVnByz2dDbHqi1txBKZAZtTRERERERERERERORIosScPnDarRT7nWC1\nsuxr38E0DGY/eGfeT0C/I5JIs3prB7mcWgQMNY5nn8HT0siWj1zEKz98jOjwUQdknbFVfsYNKzwg\nc4uIiMjB4XXZ6Zg2G4CSdfm1s8rmTNZs7yCZ2b3CYkF7C8d99xuYVhsLb/kRaX/Rrn2bPnEpOZud\nSX/+JWQHrjJjKpNj5ZY24kkl54iIiIiIiIiIiIiI9JYSc/poWIkHgM5JR7H1nAsprN3CxL/9rtfz\nBKNJ1m7vIGcqOWeoCMdSlL32AgAbPnk5ptXW4xi308b0McWMH1bIiFIvJf4CPAV2rPupgjNhRBHV\nFb4Bi1tEREQODYvFID5rDgCjn/s7rpbGPs1jZDMcd98NFATbWfWF6+mYMnO3/fGySmpPPxd/3TaG\nL3ix33G/VzKdZdWWdpJptWIVEREREREREREREekNJeb0UbG/AJejOyHjrc9fS6KwmKmP/bRPN1ra\nuhJs3BEc6BDlAGlvaKdi2XxCoycQHVad15iyIhelhS5GlHsZP6KQo8aWcMzkcj4wcxjHT6ukZkIZ\nU0YFGFPpp6rYzdRRAYaXeg7wKxEREZGDxTp+HLWnfoSires580vnMeLVf/d6jqm/+wnlq96k7oQP\nsunjn9vrMesv/AKmYTD5iV/AACd+x1MZVm5uI51Rco6IiIiIiIiIiIiISL6UmNMPVSVuANK+QlZd\neSO2ZJxZj9zXp7maOmNsrg8NZHhygBgvPI81naJ+3ml5jynxF+xzn8NupdDjoCLgZlSlj0nVAcoD\n7oEIVURERAYJn8fJ4pu/z5Kv34ElnWLe3ddy9A9uwRaL5jW+YsnrTPnTz4hUjmDJ9ffAPqruRUaO\nof6EMyje8BblKxYO5EsAIJbMsHJzO+lMbsDnFhERERERERERERE5HCkxpx+qStxY3r4pUnvGx2id\nPocRrz9P1YKX+zRfXWuE2qbwQIa4X6FoilVb2nl9VSNvbW2nriVCJJ4+aOsPRZF4mtJXnweg4fjT\n8xrjsFnwexwHMiwREREZ5HxuOxgG2865kBceeorO8VMZ89zfOOPqj1O8bsV+x7pamzjue98gZ7Ox\n4FsPkPb693v8+ou+AMDkP/18wOJ/r0gizVtb28lklZwjIiIiIiIiIiIiItITJeb0g91mpbTw7Uoo\nhsHSr99OzmZn9oN3YIv2LcFmW1MXDW35PTndV53hJCs2t7F8Uysd4QSZXI72rgSbG0Is2dDC/NWN\nrN3eQWN7lHgyc0BjGWpa28JULXqFeEk5nROm5TVmf9VyRERE5Mjgcdl3JXSHq8fy4o//yLqLrsTT\nVMep117ClN8/hJHd87zLyGY47r4bcIY6WXnVTQQn9nz+0TnpKJpr5lKxfAGBjasH/LUAdMVSrN7a\nQTan5BwRERERERERERERkf1RYk4/DSv17Pp7eNR41n36Ktxtzcz45Q/7POemuiAtwfhAhLebjq4E\nyze2snJLG8FIcp/HpTI5WoJxNuwMsmhdMwvXNrFhRyctnTHSmeyAxzWUZF9/HWc4RMO8U8GS39tH\niTkiIiJiMQw8BfZdn5t2B6uvuI7/fP83JIrLmP67n3DK9Z/D3Vi327jpv/kxZauXsvOkD7Pl3Ivz\nXm/9RVcCMOmJXwzMC9iLYDTJmm0d5EzzgK0hIiIiIiIiIiIiIjLUKTGnn4q8TtxO267P133qSkKj\nxjPuH09QuurNPs1pAutrO+noSgxIjG3BOEs3tLBqazuhWKrX4xOpLI0dMdbWdrJwbTO1TeEj8uno\nSDxNyX+621jVH//BvMZYDIOA33kgwxIREZEhwue277GtdeaxPPfo39l50ocpXbucM68+j+oXngHT\npHLRK0x+4heEh1Wz5Nq74O2KO/loqZlHx4RpjHj9Obx12wbyZeymI5xk7XYl54iIiIiIiIiIiIiI\n7IsScwbAe6vmmHYHS667C9MwOPqB27Ck9l2ZZn9ypsmabR10RXufSANgmiYtnTGWrG9h9fYOwvH0\n3g5i9P/9lWm/fgCy+VXCyeZMtjV1sXhdC00dsT7FNlS1dsYYNv9F0m4PrTOOzWtMwOfEmmdlHRER\nETm87S0xByDtK2ThrT9i8Q33gWly3PdvYu7d13Ls928ma3ew4NsPkPF4e7eYYbD+U1/EME0m/fmX\nAxD9vrWFEmyo7cRUco6IiIiIiIiIiIiIyB6UMTAAKgJurO95grljyiw2nfdZfHXbmfr7n/Z53qxp\n8tbWdqKJvSTVvE8uZxKJp2nujLGtsYs317ewtraTyD7GFrS3cOK3ruKYH97K1D8+yrTHftKr2JLp\nLOt3dLJ0Q8t+22IdThLLVuJtqqPpmA+QczjyGqM2ViIiIvKOQs9+zh8Mg9ozz+P5h/9G+5SZjHzt\n/3CGQ6y4+hZC46b0ab36408nPGI0o194hoK25t5PkM1SufhV7OFQj4c2B+Ns3BnsQ5QiIiIiIiIi\nIiIiIoc36+233377oQ5if2J9aL10sFktBvFkZrckmLbpc6h++Z9UvvkaDfNOJVlc1qe5c6ZJeyhB\nWVEBNquFnGkSTWQIRpK0BOM0tEXZ3tTFloYQDe1R2kIJQtEU6ey+W02NePXfnPitqyjatpGm2ceD\naTJ8wUt0TJpBZPioXsWXyuRo6ogRiafxuhzYbYdnrlcknsb2m19RvnIR6z59FV1jJuY1buKIImzW\nw/NrIgPH43EOie91IiLSP3ablXgiQzSR2ecxaV8h2888j7TbS+vM49j0ic/1qoXVbiwWMo4CRsx/\nAQyD5jkn5D3U2dnGCXd8jal/eBhnqIOG40/vcUwknsZmteDfXwKSiIiIiBw2dD1DRERERETkXR6P\nc5/7DHOQ15xvbQ0f6hDy0hVNsWxT627bKpa8wUm3fIHO8VN58cEnMK22Ps/vtFuxWgwSqSy5Pv6T\n2SNd1Pzkbka99CwZZwGrrryBLedeTNHmtZz2XxeTKXDx/MN/JV4+rE/zWwyDYSUeRlX6DrsEne1N\nXYz75Icp2rKeZ/7yBmmvv8cxPpedOZPKD0J0MtSVlfmGzPc6ERHpn2Qqy+J1zWQP0im4JZXi7EvP\nwBaL8M/HXiTtL+pxTNmKRRz33RtwdbQBECut4J+Pv5xXgpDFMKiZUIrPreQcERERkcOdrmeIiIiI\niIi8q6zMt899h1f2xCHk9zjwFth329Z89AlsP+M8ApvXMuGp3/Zr/mQ6SyyZ6XNSTvnyBZz5xY8x\n6qVn6Zh0FM//9K9s+ehnwDAITpjGiqtvwRkOMe+uazHSfXvSJWea1LVFWLyumbqWSJ9jHYzCG7dR\nvHE1rTOOzispB6CkUG2sREREZHdOh5Xqin2fnA+0nMPBxvMvwx6PMf7ZP+7/4GyWqY89xMk3X44z\nFGTFF29i58kfxt3WjG/ntvzWM03Wbu8ks5/qjSIiIiIiIiIiIiIiRxIl5gygqlLPHttWXHUTiaIS\npv/uQTz1tQc9JksywcyH7+Xkmy6noKOVNZ/9Ci/99+NERo7Z7bit51xI7ennUrJhFTN/dn+/1kxn\nc2xuCLF8YyvZ3NC/KRNLpCl65TkA6o//YN7jSvxKzBEREZE9jSz34nL0vZJib209+0JSvkIm/P0x\nrIn4Xo9xdrRy0je/wLTHfkKstIKXf/QYmz55Gc018wAoX7Eg7/XiqQwbdwYHJHYRERERERERERER\nkaFOiTkDqCLgwmrZvcR/2l/E8mtuxZpKcvQD34G+VJHJZqlc9ApVC17Gv20j1ngsr2GBjas548vn\nM/Fvj9E1ciwv/c+fWPvZazBt9j0PNgyWfu12QqPGM+Hp3zPilf/tfZzvE46n2VwX6vc8h1prMMGw\nBS8B0DDv1LzGOO1WtXAQERGRvbJYDMYNy68C30DIuD1s/ujFOEOdjPn3U3vsL1++gDOv/gQVKxZS\nP+80nv/pX+mYMguA5prjAahYln9iDkBLME5DW7T/wYuIiIiIiIiIiIiIDHEH71HdI4DNamFEmZfa\n5t17K9ed9GHqX/oHwxe8xJh/P8m2sy7Ie86S1Uup+em9BDav3W17oqiEaOVwolUjiVaOIFI5gmjl\nCKJVI0kUlzHpz79g6uMPY8lm2HTeZ1l1xXXknPuv4JJ1uVnw7R/zwa9cwNH//W2C46bsUVmntxo7\nYvg9DqpK9qwmNFR01rUwe+ViOsdPIV4+LK8xqpYjIiIi+1Na5CLgddIZSR6U9TZ97BImPvlrJj75\nK7Z85KLuRO1slqmP/5Spjz+MabWx4ks3s+njnwPj3UTzWFX3eWbZysWQzYLVmveam+tD3e1eXXtJ\nChcREREREREREREROUIoMWeAja70EYwkCUVT7240DJZ99TbKVy5mxs/up/HYk0mUlO93HldLIzN+\n+UOqX/4nALWnnUtozAQ8TfV4GnfiaaojsGktJetX7XOOWGklb95wD+1zTsButWC1GlgtFmxWA6vV\nwGaxYLNaiMTTBKPdN4XC1WNZcu2dzL3vBo6/82u8+D9PkHW5+/U12VwXwucemjdlYok03tdfwpJJ\n0zDv9LzHlRYqMUdERET2b/yIQpZuaCXXl4qKvZQqKmbbhz/JhKd/z8hX/peWmnkc990bKV+5mGjF\ncBbc+iM6J8/Y69iWmnmM/ddfCGxas89j9iZnmqzd3sGcSWVYLSrUKSIiIiIiIiIiIiJHprwSc1au\nXMkPfvADHnvssd22v/TSSzz00EPYbDbOP/98LrzwQtLpNDfffDP19fVYLBbuuusuxo0bx9q1a7nq\nqqsYPXo0AJ/+9Kc5++yzB/wFHWqGYTB1VDFLNrSQzuZ2bU+UVrDqCzcw539uZ/aDdzL/Ow/u9jTy\nO6yJOBOf/BWTn/gFtmSCjklHsfzqb9IxtWbPxbJZXO3NeJrq8DbW4Wmqw9NYR1F7I5bp04jcegeT\nSwJY9rLO+9W3Rtja0EXWNNl56jmUrlnG+Gf+wOwH7+TNG+/ba6z5ypoma7Z135SxWYfWTZnWYILh\nb7exqj/+tLzGWA2DIq/zQIYlIiIihwFPgZ1hJR7q2iIHZb2Nn7yMcc/+kem/fRDro9+nINRB/fGn\n8+b195D2Fe5zXHPNXMb+6y9ULF/Yq8QcgFgyw6adISaPCvQ3fBERERERERERERGRIanHxJyf//zn\nPPPMM7hcrt22p9Np7rvvPp588klcLhef/vSnOe2001ixYgWZTIY//elPvPHGGzzwwAM8+OCDrFmz\nhs9//vNcfvnlB+zFDBZOh5XJ1QHe2ta+2/atZ19A9cv/YPj8Fxn+2nPUn/Shd3eaJiNe/Tczfn4/\nnpZGEoFSln31Nmo/+DHY1xPGVivx8mHEy4fRNuNYAArdDmaOL8ViMXpVDml4mZdifwEbdgQJRpOs\n/OJNFG94i9EvPE3bUXN61X5rb+KpDBt2BJk2prhf8xxsba0hZix+lWjFMEJjJ+c1JuB3YrH0PZFJ\nREREjhyjq3w0d8Z2S+g+UGIVw9lx2jmMfuEZcjY7y6++hc3nXdJjAnbLrLkAlC9fwPpPf7HX6zZ1\nxijyOaks7l8VRhERERERERERERGRoajH8iXV1dU8+OCDe2zfsmUL1dXVFBYW4nA4mDNnDm+++SZj\nxowhm82Sy+WIRCLYbN3pIatXr+aVV17hM5/5DLfccguRyMF5MvhQKSksYGSZd/eNFgtLrr2TrMPJ\n7Ifuxt4VBKBwyzpOueFzzLvnOgo621h/0Rf416/+Re2ZH993Us5euBw2po8t7nNSiMtpY9aEUsYP\nK8RwOlnwrf8m5Suk5id3U7R5bZ/mfK/WUJy6lqHz7x5LZHAtno8jGu5uY5Vn1aASv9pYiYiISH5s\nVgtjqvwHbb3Vn7+WrWddwEv//TibP/7ZvM5vUkXFBMdOpnTNMizJRJ/W3bQzSCyR7tNYERERERER\nEREREZGhrMeiKh/60Ieoq6vbY3skEsHn8+363OPxEIlEcLvd1NfXc9ZZZ9HZ2ckjjzwCwIwZM7jg\ngguYPn06Dz/8MA899BA33XRTjwGWlfl6PGawKinxYq5pIhRJvrtx8hQ2X/FfTHr4exz3yL1kPF5G\nPPMnDNOk+cQPsuFrtxIbMRrXvqfdK7vNwtzpVXhc9n7HXVbmY+LYUt7a4uet237EnBuv4IS7r2X+\nr58l4+vfjaOWcIrR1XYCvsGfvLK1PsToJf8BoPO0D+Pz9hyzYcCkcWU47dYDHZ4cZoby9zoREemf\n0lIvkXSOcDR1wNYwjO6Wq5bCMWz5zv1kcya9+cnTedyJFG1dT/XW1bQfc2KfYqjrSDB3ehHWIdba\nVERERET2TdczREREREREetabbke78Xq9RKPRXZ9Ho1F8Ph+/+c1vOPHEE7n++utpbGzk0ksv5dln\nn+WMM87A7+9O6jjjjDO466678lqntTXc1xAHheGBAppawmRy77YneOujl1D+/DNUvfAsAF3V41jx\npW/SfPQJ3QdEevckssUwmDmuhFgkQayXY/dnbLmHurPOYv2yq5j8x0eZcsd1zP/Og3lXjtmX15bu\n5OhJZdhtgzt5ZePWVk569QVSXj87xh+FmcfX1u920BWMHYTo5HBSVuYb8t/rRESkfyp8Dhqau/o0\ntqzQxZgqHxaL0Z1883YSzq5knPedu5mmSVc0RXtXkvauBNE8KtnUTTuGMfwC7/xX2T7l6D7FGY4k\nWLAiw6TqQJ/Gi4iIiMjgousZIiIiIiIi79rfgwt9flx13Lhx1NbWEgwGSaVSLFmyhJqaGvx+/65K\nOoWFhWQyGbLZLFdccQWrVq0CYMGCBUybNq2vSw8pLqeNydVFu20zrTYW3/hdWqfPYfnVt/DcI397\nNymnDyZVF1HodfY31D0YhsHIci+ue+6kffZchs9/kYlP/abf8ybTWdbVdmKaZv+DPEDiyQzWt1bi\nbm2k8diTMW35VSIqLRz8lYBERERk8Cn0Oikv6l3NRJvFwpTqANPGFOMusFPgsOG0W7HbrNisFqwW\nyx5JOdB9jlfodTJ2mJ9jJpdz3JQKxg8vpNjn3OvxAK1HzSFns1OxfEGfXt87GjtiNHcqiVlERERE\nREREREREjhy9rpjz7LPPEovFuOiii7j55pu54oorME2T888/n4qKCi677DJuueUWLr74YtLpNNde\ney1ut5vbb7+du+66C7vdTmlpad4Vcw4HpUUuhpd6qG97t8JQ15iJvPKj3/d77jGVfioC7n7Psz9u\nrwvzt78jddoHOOoXPyRT4GbrORf2q3JORzhJbXOY0ZX9a411oLQG4wxb8BIA9cefnve4Yr8Sc0RE\nRKRvxg7z0x5KkM0jebnI62RydREFjj4XwNzF5bQxoszLiDIvmWyOznCS9lCC9q4E6Wx31cesy0P7\n5BmUrlmGPRwi7Svs83obdwbxuRy4C/ofu4iIiIiIiIiIiIjIYGeYg7lsCUO/ldU7cjmT5ZtaCcd7\nbhWQr6pi90FtBWBbvAj/JRdiDXay45SzWfr1O8h4vH2ezwCOGlsyKJNZlm5oYe6l5+DbuZVn/rKA\njNvT45gCh5W5UysPQnRyuFHpZxERecf2pi62N+37Z4LFMBhb5WdEed/PwfJlmiZtoQRrtncAMOX3\nDzH9dz9h/m0/pv7EM/s1t89lp2ZCGRZL/1qkioiIiMiho+sZIiIiIiIi7zograykdywWg6mji7FZ\nBuZLHvA6mTCyqOcDB1Dm2OMIvvwGiTnHUv3K//LBa86naPPaPs9nAutqO0mmsgMX5ACIJzNkt26j\naOsGWmbNzSspB6DU37v2EyIiIiLvN7LcS4Hdutd9PpedOZPKDkpSDnS3vCorcuF6uypPS808AMqX\nL+z33OF4ms5wst/ziIiIiIiIiIiIiIgMdkrMOYhcThsTR/a97P87PAV2po0pxtKPVlJ9lRs+gvAz\n/yL85a/ha9jBaV//FGOf/SP0sfBSOptj7fYOcoOocFNrMM6whd1trBrm5d/GqqRw8FX+ERERkaHF\narEwdvju54sGMKrCR83EMjwF9oMeU0Vxd/Jxx6SjSLvcVCxfMCDzBiNKzBERERERERERERGRw5/t\nUAdwpCkPuAlGUjS0R/s03mGzcNTYYmzWQ5hTZbeTuP1u0sefiPeaq5jz4J2Ur1zMkmvvJOPZd3mm\nfQnFUmypD1FZ7CabM8lkc2SzJpmcSTabI5N9Z1vu7f0m44b78bkdB+DFQVsoQc38dxJzTs1rjM1i\nodB7YOIRERGRI0t5kYsGr5NgJInbaWNydQC/59CdZ5QXudneFMa02WmdcQzDFv0HV0sj8fKqfs2r\nijkiIiIiIiIiIiIiciRQYs4hMH54IV3RFJFEulfjrIbB9LElFDgGxz9b9swPE3rlDRyXXcrIV/9N\nYNMaFtz63wQnTuv1XPVtUerb8k9W2tLQxazxpb1epyeJVIZ4Uwulby2hffIMEiXleY0L+J2HpIKR\niIiIHJ7GDy+koS3KuOF+rAPUCrWv3AU2/G4HXbEULTXzGLboP5SvWEjtmR/v17yRRJp0JovdtvfW\nXSIiIiIiIiIiIiIihwO1sjoELBaDqaMDWHuRyGEAU0YF8B+gKjF9NnwEqX/9H/WXX4O3cSenXftp\nxj39eI+trezhEOVL32DyHx9l3h1f5axLz2TK4w/nvWwwkqSjK9Hf6PfQGkxQtfg/WHLZXrWxKlUb\nKxERERlAXpediSOLDnlSzjvKA93trJpr5gEMWDurzkhqQOYRERERERERERERERmsBkfplSOQu8DO\nzPGlJFIZDMPAMMBiGLv+bsC7fzcMrBYDl3OQ/nPZbDi+ex+bjjuB6m9cw+yH7qZ85SKWXHc3aa8f\nazxKYNNaijeuJrBxNcUbV+Nt2LHbFKZhMOUPj7Dtw+fnXaVma0MXAZ8TY4Aq1aQzWXY0hzn67TZW\n9cefltc4Ayj2KTFHREREDl/lRS62NnTRNXoCiaISypcv6E7E7ud5WDCcpLzINUBRioiIiIiIiIiI\niIgMPoM00+PI4Pc48HsGWQWcfij6+EfYNmUKJddcyYjXn6d4w2rSbjf+HVsx3lNBJ+UrpGn28XRO\nOoqOidPpnDidysWvcvSPv8PEp37Dqi9+I6/1Iok0TR0xqko8AxL/lvousvE4lWKtSZQAACAASURB\nVEteJzysmnD1uLzGFXqc2G2D42l2ERERkQPBYbdS5HXSEU7QUjOX6pf/iW/HFsKjxvdr3mAkOUAR\nioiIiIiIiIiIiIgMTkrMkQFVMnkcnU8+S/uddzLpj49ijxTQNn0OHe9JwolWjdzj6eraM85j6uM/\nZdw/nmD9RVeSKgzktd72pjDlAVe/2zx0hpM0dcaoXLEQWyJGw/Gn5/0EeInaWImIiMgRoCLgoiOc\noHlWd2JOxbIF/U7MiSUzJNNZnHbrAEUpIiIiIiIiIiIiIjK4KDFHBlwg4CF8z1388+IvErfYwdrz\njZacw8GGCy6n5uH7mPC337Hmsq/ntVYynaW+NUp1ha/P8eZMk011QQCGvd3GqmFefm2sAEr8SswR\nERGRw19pUQHWnQYts+cBUL5iIZs//tl+zxsMJ6kodvd7HhERERERERERERGRwUiJOXJA+NwO5swe\nQyqdw8TENLsTYEwTzL18zOZMNp99IVP+8Cjjn36cDRdcTsaTX7LNjuYIVSVu7La+PWm9szlCLJmB\nXI5hC18iWRigbWpNXmPdThvuAr2NRERE5PBntVgoLSyg2RxOZFg15SsXY2QzmNb+nQt1KjFHRERE\nRERERERERA5j/ev/I7IfNqsFd4ENT4Edr8uO3+2g0OOgyOsk4HNS7C+gpLCA0iIXFcVuKkaUsvH8\ny3BEw4x/5g95r5PJ5ahtivQpxlgiQ21zGICSdStwdbTRMPfUvKr8gKrliIiIyJGlPNCdQNNcMw97\nLEJg4+p+zxmMJPs9h4iIiIiIiIiIiIjIYKXEHBk0RlV42f6xi0l5/Uz862+xxmN5j21ojxJPZnq9\n5qa6IDnTxNXaxHHfvRGAHaecnff4kkIl5oiIiMiRI+B3YrdaaKmZC0DFsgX9njORzvbpPE5ERERE\nREREREREZChQYo4MGnablaoxlWw67xKcoU7G/usveY/NmSbbGrt6tV5zR4zOSBJHsIOTbr4CT3MD\nqy/9Gi1zTsgvXquFQo+jV2uKiIiIDGUWw6A84KJl5nGYhkH5ioUDMq+q5oiIiIiIiIiIiIjI4UqJ\nOTKojCjzsv0TnyNT4GbSX36FJZXKe2xLME5XLL/j05kcWxpC2KJhTrrlSvw7t7Lhk59n3cVfynu9\nkeVeDMPI+3gRERGRw0FFwE2qMEBw3GRK1i7Hmoj3e87OsBJzREREREREREREROTwpMQcGVRsVgvD\nJlaz+dxP4WpvYfRzf+vV+K0N+VXN2doQIhuJcuK3ryaweS1bz/okq668EfJMtBlb5ae6wter2ERE\nREQOB36PA5fDRnPNPKzpNKWrl/V7TlXMEREREREREREREZHDlRJzZNAZVuphx6euIGt3MPmJn2Nk\n0nmPDUaStIcS+z0mFEnS1Bxk3p1fp2z1Unae/GGWfu32vJNyJowoUlKOiIiIHNHKAy5aauZ1/335\n/H7Pl8rkiMTzP+cTERERERERERERERkqlJgjg47FYlA5dSxbz74AT3M91S//s1fjtzZ2YZrmXvfl\nTJONtR0c972bqFryGo3HfIBF3/geWK09zmsAk6sDDC/19CoeERERkcNNRcBN27TZZO12KpYvHJA5\nVTVHRERERERERERERA5HSsyRQamy2M2Oz3yRnNXG5D/+DLLZvMdGE2maOmJ73VfXHGby925h5Kv/\npvWoo1nw7R9j2h09zmkxDKaMLqay2J13HCIiIiKHK3eBDXdxEe1TZlG0ZR2Ors5+z6nEHBERERER\nERERERE5HCkxRwYlwzComjWZ7Wd8DH/dNka88Xyvxm9vCpPN5XbbFk+k8d9xK2P//RQdE6bx+p0P\nky1w9TiXxTCYNrqY8qKejxURERE5UlQUd7ezMkyTshWL+z1fMJzaZ9VDERGRI008maElGCeezBzq\nUERERERERESkn5SYI4NWWZGLuku/jGmxMOUPj0IvbtQk01nqWqK7bcvceTcTnvotXdXjeO3en5Px\neHucx2oxOGpsCSWFBb2OX0RERORwVl7koqVmLgAVyxf0e75MLkc4nu73PCIiIkNNMp2lLRRnW2MX\nq7a088ZbjSxa18za7R0s3dBKS+feqwKLiIiIiIiIyNBgO9QBiOxP5bEz2HnyWVS//E+qFr1C49xT\n8x67syXCsFI3dpuVzI9/zNhf/DfRiuH857u/JFUY6HG8zWLhqHElFHp6bnUlIiIicqRx2K0w52jS\nbg/lA5CYAxAMJ/G7de4lIiKHr0w2R1c0RTiWJhxPEY6mSWb23b47k8uxtraTznCS8SMKsVr0jJ2I\niIiIiIjIUKPf5mVQC/ic1F/+FQCm/OGRXlXNyeRy1DZFsD/+O6ru+Tbx4lL+871fkSit6HGs3Wph\n5ngl5YiIiIjsT3mZn9YZx+Jr2IG7ub7f8wUjyQGISkREZPDJ5nLsaA6zaG0zq7a2s62pi7ZQYr9J\nOe/V2BFj6YZWIqouJyIiIiIiIjLkKDFHBr3yDxxD/fGnU7J+FeUrFuY9zhaN4H3oAQqv/xpJXyGv\n3vdLosOqexzntFmZNaEUn57WFhEREdmvksICWmfPA6B8ef7nafsSiqTI9SIRW0T6JpnKYuq9BoBl\ny2Yy0RiZbI50JksynSWRyhBPZogl0kTiacKxFF3RFKFIklxOXzfpnZxpUt8WZfHaFrY2dpHO5vo8\nVyyZYdnGVupaIwMYoYiIiIiIiIgcaGplJYOe3+1gxxe/zvD5LzLlD4/SUjNvv8e7WhqY8LfHGPuv\nv2CPRUl5fLx2z8/oGjOxx7UK7FZmji/F5dRbQ0RERKQnNquF1AdOgZ/eS8XyBWz/8Pn9mi9rmoSj\nKQq9zoEJUET2kM7kWLKhBdPsrlBa7HcS8DkpcBxZvwMlUhlSv/kd4771X7RPmckr9/+OnKPnhzO8\nBXamji7GXXBkfb2k90zTpLkzzvamLhKp7DsbqXzzVYxslvYps0gVFfd63pxpsrk+RDCcZFJ1EXab\ndYAjFzk8ZVMprN+6FWPnTjZ+5wfk3J4exxR5nVQUuw9CdCIiIiIicrjTlSQZEkpPO4Gmo0+kcsnr\nlKxZTvu0mj2OCWxczcQnf82IV/8PSy5LvLiU9RddyZZzLiLtL+pxDQOYNqZYSTkiIiIiveCbM5N4\ncWl3xRzTBMPo13ydkaQSc0QOoG3vqdjRGorTGooD4CmwU+zrTtIp8jqxWPr3Xh6sOroSNLRFKfjH\n35l77/UAlKxbycxH7mP5177T4/hIIs3SjS1MHFlERUA3a2XvWoNxtjeFiSbebTtlSaWY88BtjH7h\n6V3bwsOqaZ9aQ/vUWbRPmUVo9ASw5pdo09aVILyhlcnVAQI+/dwU2ZdwLEVTYyejbryGytefAyDb\n0cHrdz1CzrH/905TRwyrxaC0yHUwQhURERERkcOYYQ7y+tWtreFDHYIMEo1P/x8zrryAxmNP4vW7\nH+3emMtRtegVJj35a8reWgJAcMxENp7/eXaecnZeTzy+Y1iJh4kje07gERloZWU+fa8TEZEhK2ea\npC6+hJEvPsv/Pfp0XlUK96fQ46BmQtkARSci79UVTbF8Uys9XQSwGgaF3u5qOsW+giFfHSadydLY\nHqOxPUY8laFy0SuccPtXyTqdvH7nT6n56b0Ubd3A4hvupfbMj+c9b1Wxm/EjCrFa1CVcunV0JdjW\nGCYcT+223RHs4IQ7vkrpmmW0T5pB43EnUbJ2JSXrV+KIdO06Lu320DHpqO5knSmzaJ8yk7SvcL9r\nGkB1hY/RlT6MfibHivTWYL2ekcnmaO6M09QeJdYR4vg7vkrlsvm0zDyWtNvL8AUvUT/vdBbc9gCm\ndf8/46yGwczxpfg9ankvIiIiIiL7V1bm2+e+oX11TY4ogbNOp/Woo6la/Cola5ZRuG0jE//6W3x1\n2wFoOvpENpx/GS2zj+/1k9p2q4UxVf4DELWIiIjI4c1iGCROPAVefJaK5Qv6nZgTjqXJ5nK60S0y\nwEzTZFNdsMekHOhuK9cRTtARTgAhHDYLfrcDv6f7j89tHxLv0VA0RUNblNZgnNzbzySVL1/A8Xd+\nnZzNxut3PULbUUcz/7b/4YNfuYA5P76d0JiJBCdMy2v+xo4Y4ViaqaMDuAvsB/KlyCAXiae720tF\nknvs82/fxAm3fRlvUx07Tj6LN2+4l5yzoHtnLodv51ZK1q6gdO1yStatpGL5QiqWL9w1vn7eaSy8\n9Uf7rOxhArXNYYLhJFNGB464tnQi7xWKJGlsj9EajJM1TezhECd9+0uUrl1Bw9xTWXDrj8AwOPHb\nX2L4ghc5+oe38uYN98F+fqZlTZO3trYze2KZqmyLiIiIiEifqWKODCmtTz7D1C9fsuvzrN3OjtPO\nZeMnLu3XTaCJI4oYVtpzb2mRA2GwPmEmIiKSr+imbYw+YSYNx53MG3c90u/5ZowtodhfMACRicg7\n6lsjbKoPdX/Sz7ZzFsPAU2Cn0OPA77Hj9zgGTTJANJGmM5ykqT1G5D1thABK1izjpJu/gJHL8Pqd\nD9My54Rd+yoX/4cTv301sfIqXnjoSVL+QN5rWg2DCSOLqCxWa6sjUTqTY8n6FpKZ7B77Kt58jXn3\nXIc9FmHNJdew9rPX9Pjes4dDlKxbScm6FVQufpXiTWvyruxht1qYOrpYra3koBkM1zOS6SwtnXEa\n26PEkpld250drZx0y5UUbd1A7Wnn8uYN92DaupMorfEoJ998BSXrVrL5oxez/Jpv9fjedDtt1Ewo\nxW7Lr92ciIiIiIgcefZXMcd6++23337wQum9WCzV80FyxHBMGEf85VexxSJsPP8yFn3zB+w8/VyS\ngZI+z+lz2Zk4skgln+WQ8Xic+l4nIiJDmqMkgPmnJyjcupENn/w8WPt3w8Jpt+mmosgASqWzrNnW\nSc40Gf2vJznlhs9hi8domzYHsw/vVxNIZbJ0xVK0hhLUtUZpbIvRFU2RSGXI5kwsFgOb9cBW1TFN\nk0g8TWtnnB0tYTbVhdjZGqEjnCSVye12bNHGNZz8zS9gTSVZcNuPaT725N32R4aPBmD4/Bcp2ryO\nHad+ZL8VFHaLA2gLJUgkswT8Tiz63fKIsr62k673ta7CNBn/9OMcd//NYJosvul7bDnvkrwS4nLO\nAiLDR9E66zhqzziPknUrqHrzNVytTTTMO22/c+RMk5bOGJa329GJHGiH6npGOJaisT3KlvoQWxq6\n6AwnSWff/b7vbqrnlBsvpXDHVjZ/9GKW/ted8J7ENtPuoO7EM6h881WGLXoFI5uhtWbuftdMZ3N0\nRVJUBNy6higiIiIiInvl8ez7d3El5siQYrVaqD39XBaddQmtNfPIuvpf5Wb6mJJB83SnHJmUmCMi\nIoeD5Np1+Fe8ScusucQqR/RrrlwOVTMUGUAb60KE4ynKli9k3r3XY0slKVu9lOHzX6R90gwSJeX9\nXiObM4klM3RGkjR3xqlrjdDQFqUznCSSSJPO5DCM7ooefb2hmTNNumJpWjpj1DZH2FwXor4tSkc4\nSSyZ2dWu6v382zZy8k2fxx6LsPjm71P/gQ/t9bjWo44msGktVUtew5LL0tLDTdr3iyTStIeSFHkd\nOFRR4YjQ1BFjR8vu1UKMTJqah+5m2uMPkywq4bV7f0bzMSf1aX7TaqX+hDOoWL6AYYv/gy0RozmP\n9t2dkSSReJpifwEWixII5MA5WNczsrkcHV0JdrZE2LSzOwkzGEntkYQJ4NuxhVNuvBRvcwNrP30V\nq774jb0mWuacBdSf8EGGzX+REQteIuN00T5t9n7jSKazxBIZyooKlJwjIiIiIiJ7UGKOHFa8bgct\noQSZbP+7sFUVuxle5h2AqET6Tok5IiJyODByOTxPP0WiuJSW2cf3a650JsuIMq9uJooMgGAkyZaG\nEN767Zz8zS9gyXS3cUq7vQxb/Cpj/v0URi5L29Safle7er9sziSeytIVTdEWStDQFqWuJUJbKEE4\nliIS72471RlO0tGVoKMrSVsoQVsoTlswQWswTmtLEO/dt+O/7Zu0L1/LFqufZquHeGrfiTjv5a3f\nzik3XkZBqJMl19/Djg9+bN8HGwZNx57EiNeeY/iClwiOnUy4emyvXnM6k6O5PYY72EZhQy25ispe\njZehI57MsHpbO+/9b2iPdHHCd75C9av/Jjh2Eq/c/xvCoyf0a52c3dGdPLDwZYYvfJmsw0n79Dk9\njoslM7SFEgR8TrXekQPmQF7PSKayNHfGqW0Ks2lniObOOJF4mmxu39/7AxtXc/I3Po+rs52VX/wG\n6z9z9X4T2bIuDw3zTmPEa88x8vXniBeXE5w4bb9xxZIZsllTbVdFRERERGQP+0vMMUwzjytZh9Ch\n7lMsg1MskWH5ptbdytT2ls1i4dgp5TjsukAlh9Zg6MkuIiLSb9EoxROr6aoezwsP/7Xf000fXUxp\nkWsAAhM5cuVMk6UbWkm1tnH61z+Fr247i2+4l9ozPw5A+bL5HP2jb+FpaSQ4djKLb7yP0LjJhzjq\nd3nrtjH33hsIbF6LabFg5Lp//2ubNputZ32Sug98iKzLvc/x7uZ6Tr3us7hbG1l2zbfY8rHP5LVu\n4dYNnPb1T2Farbzw4F+IjByTd8zWeIxJT/6aSX/+JbZknPoPnceGr3+bbFEAq8XAYjGwGm9/fPtz\ni2HgsFsI+Jyq5jpEmKbJik1thN6TkOCpr+XEb1+Nv24bDXNPZdHN95NxD1z1N1dLI6dd+xncrY0s\n+a872Hb2hXmNs1oMJlUHKNfPVDkABvp6RjKdpbUzTnNnnPD7W8T1oHTVYk687cvYEvH/Z+++w+Oo\nrj6Of2d7r+rVtuTejSs2zRgCwZQECKEkQAqEkoQkQEhoIZQk9BBCIAECeektFIMpwQUMtsHg3pss\nW71rtX135v1DxthYlnZl2Zbl83kePStp5965K6200sxvzmHJL2+j7NRzUh7rLN/C8b/5AebWJhbf\ncA/bTzityzGleW4KsuRiPyGEEEIIIcTXMjOd+7xPKuaIw5LRoMPjNFPbFKa70bIBeS68Trm6RRx6\nUjFHCCFEn2AykZw7D8+qL9k88/udnixPaTqDXq5EFmI/ba9to66+lal/uBrfhlWsO/dHbPjej3fd\nH8wtZOu3zsbc2kTu5+3VcwAaho0B3aG9gKH4g9eZduvV2Gsr2fqt7zL/z0/QNGgExmAbmSs+p+DT\nDyl98zlstZWEfZl7teOyNNRy/HWXYK+pYMWPf83Gsy9Jed9RbwbBnAKK575N9rJFbJtxJqrR1Pkg\nVaX4g9eZetvPyVs0l5jLQyC/mKzPF5D7zms0+HKoySkmFEnQFokTCMdpDcVoCcZobovS0BphR12Q\n+uYI0XgSva49rCOtUnqn8po2qptCuz7OWPEZx93wY+z11aw/50cs+dXtqOZ9XyXXHQm7k+oJx1A4\nfzaFH79HS1EpgeLSLsdpGtQ1h0kmNbxOszynRI/qieMZiaRKbXOYzRUtbKpooTEQJZZIpjVH7qK5\nTLv1anSJBIt+dx/bZ5yR1viY20vtuCkUznuHwvnv0jRwGG0F/Tod0xSIYrcYsVuMae1LCCGEEEII\n0XdJKyvRJ5mNepxWI3XNEdLN5jgsRgYXeeSAlOgVJJgjhBCir0hWVmP/ZD7NAwbTMmD/qm6oqkZe\nRs9VGhDiSBOJJVhT1sToR+6kaP5sKiefwJJf3Q463R7bqSYTVVOm0zBkNFnLFpG/cA45n31Ew7Ax\nRL3+lPalJOI4d5SRuXIJ+khkr5BMOgyhIOPvv4nhzzxC0mTi82v/xLoLfoZqttBaXEr5jDMoO+ks\nEjY7rvLNZC9bTMk7L5G3cA6oKoGCfhhCQY6//hKcO8pYc+EVrL3wyrTX0dp/EMa2VvIWz8NRsY0d\nx35rn+1QMpcu4ujbf0np2y+iqEnWnfcTFt14P5vPOJ+E1UbO5x9TPPdtXGWbqBs1vtPgYiyh0hKM\nUdUYoqohSDCcQKP9/9902/upmkY8oaLX67reWKSsNRRjfXnzruMQ/We/zJS7rkUfj7HkmttY//2f\n7vVz1lNibi+1YyZRNGcWhR+/S8PQ0QRzC1Ned0swht9lRn+A1ieOPN09nqFqGg0tEbZWB9iwvZm6\nljCR2NdhHFtNBfbqHVhrq7DXVGKv3o6jYhvO7Vtxlm/GvW0j7i3r8WxaS+7ieRz10G1oej2f3PZ3\nqqZM79ZjifgyqR95FEVzZlE0/13qh48jlJPf6ZiGlggepxmLSapxCyGEEEIIIaSVlejjappCrN3W\nlNaYsaUZuB09e/WaEN0lrayEEEL0FbpVK/BPn8a26afz2Q137/d8Rw/PkbajQnTT6q2NuP7vccY9\nfAfN/Qcx94HnumyrY2xrZfSjf6b/+/8laTSy+gc/Z8O5l6Lp29srKckE9srtuLdtxFW2Cde2Tbi3\nbcK5owxdIr5rnsaBw9k88/tsP+E0kpbU2+d4N6xi8l2/wVFZTsPgUSz+/b2dhg6UZILsJQsY8M4r\n5C6eh05NkjBbiLm82OqqWH/2Jay47Pp9Bmq6oiTiHHf9pWSu+oLlP7l2j2pDAI7tWxn9r3vIWzQX\ngLIZZ7DqkmsIZ+Xutd2E+28iY/WXRJ1ull3xe8pPPD2tdekUBY/DhN9lweu0oKERi6vEEsn223iS\nWKL9Np5QicaTu1o/e+xmSgvcOKxS1WF/JVWVL9bXEYomUJIJRj/6Fwa+8QxRp5uFtzxE3eiJB2Ud\nmUsXccxNl6Hpjcy7+980DRmV8lizUc/wfj5c9i6qQAmRgnSPZzS3RalpDFHfEtmrPb2ptYnCue/Q\n7/3/4tu4Oq11xOxOFtzxKA3Dx6U1riPZSxYw7ZYrSRqNzL/7KZoGj+x0e6Nex9iBmdgs0opQCCGE\nEEKII11nrawkmCP6hB11bWyqaElp22yPlaH9fAd4RUKkToI5Qggh+gxNwzWsFC2R5K0XP97vigHD\nir1kefevJZYQR6LG1gjVL7/JMTdeTszl4cO/vUgou/Or/neXu2guRz14C9bGehoHj6QtrwjXtk04\nt29FH9+zMkLcaqO1qJTWfqUECvvjX72MvMVzUVSVmMNF2UlnsuW07xMoGrDvHaoqg157mpFPPoAu\nEWfdeT9h1cW/QDOkHiSxNNRS/MEbDHj3FRyV5Ww+7Ty+/MWt6PU6jAYdxt1uDYbd3tfraAvHaWiN\nEIom9prX3FjHSVedg6Wpnvl/eoK6sZMxtTQx7Jm/UzLrRXTJBLWjJrD8st/SPGh4p4+x5K3nGfXE\n/RgiIaomHssXv/jDXiGefVEScbwb15CxcgnezWtpGjic8uO/TSQjO7XxQK7fTv9cJ0aDBB67a315\nE1WNIYytzUy581dkL11ES3Epn/zxkZQr1+T6bKiqRl1LBHU/DsnlLfiAo++4hpjdydwHniVQVJLy\nWJ2i0C/HSa7fjtEg1XNE96V6PEPVNJZvrKflG9V1lEScnM8X0O+D/5K3aB66RBxVp6fmqKNpy++H\najCg6g1oBgOqXo+mN7Z/zmBA0399X+3oSV1Wt0lH/sfvM+XOXxG3O1lzwc/Y8u3vdVrtzGoyMG5Q\nxl6/XzVNI6lqqOrOW639fVUDh9Ug1auEEEIIIYToYySYI44IWypbKa/t/Pmi1ylMHJqNWa68Fr2I\nBHOEEEL0Jfqf/hjfGy/zwd9foXlgJyepU5DrszG4yNtDKxPiyKCqGmveW8jUK89FH4sw/+6naRg+\nNu15jK3NjH3kLornvAVAwmyltbiE1uJSWorbgzitxaWEsvL2qvxira1iwDsv0f/dV7A21gNQO3oS\nm04/n8qjp+8RuDE31TPxnt+Rs2QBEW8Gi6//M7VHTe3WY3dYjGS4TGQ1V6MvLcVo1KNLoypNKJKg\noTVCQ2uE1mBsV2jCv3opx193MXG7g41nXsSgV5/CFAwQyCtixU+vo/LoE1OufmOrrmD8AzeTvXQh\ncZud5T+9nq3fPnev8bpYFN+65WSuWELmyiX41yzDEA3vsY2mKNSOnkT59JlUTDuJuMPV5f4NOh39\ncpzkZdrT+toIqG8Js2prI87yzUy95UqcleVUTJnOZ7+9u8tqVF8ZkOuiKLv9IF0klqCiLkhVQ4iE\nqnYxsmP93n2VCfffRCgjm7kPPJtWAA/aAzqZbgs5fjtep1QVFulL9XjG1qpWttV8vZ17y3r6vf9f\niubMwtLcAEBLcSllJ3+H8ukz02qJ6LKZUBQIhOL7FXb7pqL/vclRD92GIRIi4vax4exL2Hz6+STs\njg63Nxl06HW6PUM4naxHr1PIdFvJ8lrxOs0o8jtZCCGEEEKIw54Ec8QR46ur1/alJM9NYVbH/0AL\ncahIMEcIIURfonvxBfw/v4yVl/6Kdedftl9zWU0GJg1LrRoEQDyhUt8SJtef2glSIfqi7eu2Mej7\np+GoLGfx9X+mfMaZ3Z7LbjEyIlZLS1xhk97D3vVkOqck4uR/+iElb71A1vLFAIR9mWw99Ry2fPt7\nuLZtZuI9N2Bpqqdq/DF8ft2fiHr9ae3DbTOR4bGS4bZgNfdcG5FEUqWxNUJDS4TGQJSi/z7DuIdv\nByDmdLP6oivZPPP7aMZutAPSNPq9+yqj/3k3pmCA2tGTWHrl77E21JGx8nMyVy7Bt34F+vjX7cFa\nikupGzme+pHjaS4ZSubyxRTPmUXG6i8BSBpNVE06jvLpM6maeByqqfOQhc1soDTfjc9lSX/9R6BY\nPMnn62rxfzqHyX+6FmMoyNrzL2fVxb9IqTqcTlEYUuTpsApcIqlS1RCioq6NSDyZ9toGvfQEox+/\nl0BBP+be90zaP0NfsZoM5PptZPtscjGTSFkqxzOa26Is31SPsbmRormz6PfB63g3rQUg6nRTPv10\nyk46i+aBw9Jq8edxmCnOdu4KlSWSKk2BKI2tEZoC0W79PH1FryjYLEYMzY3kvfAkpa8/gykYIOZ0\ns/GsH7DxrIuIO93dnv+bzAY9mR4rWT4rLpu0mRNCCCGEEOJwJcEcccTQmdQ19QAAIABJREFUNI3V\nWxupb43sdZ/NbGD8kCy5KlD0OhLMEUII0Zco9fX4h5dQN3I88+/9z37PN3lYNhZT5yfbE0mVirog\n22vbSKgqeX47gwo9+71vIQ434UAIy3fPIGv5Z6z9/mWs+tGvuj1Xnt9OSb5rV5uNeCLJ1qoAVQ1B\nunMQwVm+mZJZL1L8weuYggE0nQ5FVVENRlb86Nds/O4PUw44eBwm/O72MM7BCBBomkZLWxTz/feQ\naG1j9VkXE+mBE7KW+hqOeug28hbN3XN/Oh3NA4ZQN3I8daMmUD/iKGLujquH2aorKJo7i6I5b+He\nthmAmN3JjmNOpnz66dSNmtDp19XvslCa70471KTbugVdYwOJceNRgWRSJZFsrxKRSKokkurO9zWS\nyfZqMB6n+bA94bxycz0ZT/ydkU/cj2o08flv7mT7CaelNNao1zG8vw+Po/OwlKpp1DeH2V4bJBCO\ndbrtN418/F6GvPQETaVD+eiux4l5ut++W6co+Fxmcn12fC6p4iE619XxjHhC5Yv1tWR88BaT7r6h\nvVWV3kDVxGMpO+ksqiYdl3bA0edsD+S4u/iZCkXiNLZGaQxEaG6L7bN6jcmgw2E1Yrcacex8s5kN\nKIqCqmqsLW+iqaKW0jeeZdBrT2NubSZus7Pp9AvYcPYl+/Xz1hGb2UCW10qWx4bN0nOBUyGEEEII\nIcSBJ8EccURJqiorNjXs1bd6dEmGlGYWvZIEc4QQQvQ11uOnYVu/hjdeXZRye499GVLkJce3d4UB\naG/ZU1kfZFtNgHhyzzYghZkOSvJ77kpmIXo9TSN22eXkv/ECFUefyKe3PJRS0OWbjHodgwo9ZHqs\nHd4fjMTZUtlKQwcXQ6RCHw5ROO8dSt5+EX00wufX/YmmQSM6HfNVUCDTbcXvtmDQp/+4epKmaYSj\nCdrCcdrC7bfBcJxoohvVGTSNwnnvUDRnFq39SqkbOYH64WNJ2Pd9IGdf87i3rKdozlsUzX0HW301\nAKGMbCqmnUzlpOOoGzWhwxPgOkUhP9NOcbZzj6+tqmpE48n2t1iSZHUNzrdfxz/7ddyrlgKw49hT\nWHLNbSm10QKwGPVk7Pw+ehymwyL0UVnRgPu6X9Lvf28Sysjm0z883OVz9isWo55RJX5sFmPXG++m\npS3K9ro2GloiqQXhNI2jHryVAbNfJpBXxMd3/pNgfnFa++yI2agnx2cjx2fr0YpUou/o6njG6rJG\nEos/44RfX4RqNLH6h1dTfsLMblV2ynBZKMpxdivgl1RVWtpiNLZGiSWSuwI4dqsxpYDn5ooWtte1\noQ8HKXn7JQa//CSWpnoSZgtbTjuP9ef+KK32W6lyWk1k+6wUZEr1byGEEEIIIQ4HEswRR5x4QmXZ\npnqCkfbS35luK8P79+wVLEL0FAnmCCGE6Gv0f7gF3yMPsuC2v1M1Zfp+zZXttTG0eM9KEaqmUdMY\nYlt1oNM2BcXZTvrnpnayWIjDXfKvfyXnzptpKhnK3Pv/j6Q1/VCc225iaLG3yypVAI2tEbZUttIW\niXe5bXcZ9TryMuzk+e2YTb2/tU4sntwZ1mkP6gTCcULRdBuA9QBVJW/tl/Sf9zZZc2djaG0BIG6z\nU33UNKomHU/VxGP3qvJgMuhw2U1EY+1hnFhCRR8Okv/JhxTNmUX2l5+iU5NoOh01YyZjiITJWLOU\nYHYei2+4l4bhY9NaplGvI8NtIcNtxes0o9P1vpBOdNt2bD84H9+6FTQMGcWnt/4t5ZPvTquREQP8\n+1XVKRRJsLmyJbUgnKYx4qm/MvT5x4i6vSz44yM0Dh3T7X1/k8NixOsy43NacDtMUo1YAJ0fz6hu\nDFG2dD0zrjoHS3MDH9/+KDUTjklrfgXI8FgpznbisKYXcOtpO+ra2FzRggboohH6v/sqQ158HFt9\nNUmjibKTzqJlwGDiNgdxe/tbwubY+bGTuM3evfaHwKgBfmk9KIQQQgghxGFAgjniiBSNJVm6sY54\nQmXC0KyUDi4LcShIMEcIIURfY/h0Ad6zvs2m089n6c9v2a+5zEY9U4bn7Pq4pilEWVWAcCy1k90D\ncl0UZadZeUKIw4iaTBJ9/N8U3notUbeP//3tJcJZuWnNoQBF2U765TjTqmCiaVr7ideqQPeqxeyD\n02okL8NOttfWK8Ma6YgnkrQG47SGYrQEYwSCMZI9fBhGpyg4rEZcdhMuuwm3zfR1kCkWw7joU5R3\n3sb03mysFeUAaIpCw9DRVE06gcrJx9PabyDs/N4riTjZX3xC8ZxZ5H06B0M0DEDjoBGUT5/J9uNO\nJeLPQkkmGPrsowx77h9oKKz+4dWsO++noE8/iKLXKfhcFjLdFnyuQ18VCUD35RLsF52Ppb6Gshln\n8MU1f0Q1pVaF1+e0MKyft8ceR1VDkE0VLSTVrp87/d9+iXF/+yOawcCi391L5dQZPbKG3ekVBY/T\njM9pxueySDWdI9i+jmeEowm+XFHOsb/+Ab71K1l22W/ZeM4lKc+rAFleG8XZjrQrTh1I9c1h1m5r\n2vV7XInH6PfB6wx54V84qnd0OT5pNLWHdOwOVv/garZPn5nSfjM9Vob3kwsOhRBCCCGE6O0kmCOO\nWKFInKZAlHwp+Sp6MQnmCCGE6HPicbyDigm7fbz71Hv7NZWloZapaz+m9pwL2dqc7FZ1joH5bvl7\nUPQ5mqoSfu0NvPfehWvLehJmC/PvforGoaPTmsds1DO02IvH0f22v4mkyvbaNnbUtnU7dKJTFPxu\nCwUZdtz7sZbeTtM02sJxWoMxWoMxWkIxIrHUQk16RUGnU9DrdwZxbCbcdhNOmym1AJOmEVu1hugb\nb+Kc+wEZq79EUdvbAAaz86iadHx7a62P3sXc0gRAW14R26bPpPyEmbQV9u9w2owVnzHpz9djq6+h\ndvQkFv/2L0QyslN6TB3RKQoumwmv04zHYcJp75nqLKqmEY0l0TTQ0NC09s9pWvv35atb46aNuF59\nHu9//oUuFmPFT65lwzmX7goudSXXZ2NgoafHK8qEownWlTfREox1uW3OZ/OZcsev0UfDLLvi92w6\n66Ju79dWXUG/91+jauJxNA0Z1eE2VpMB385qOh6nCX032uiJw1NHxzNUTWPZhjqG3HINxXNnsfXk\n77DkN3em/DOk1ymMHODfr9elA6k1GGPlloY92qgqyQSZKz7H1NKEMdSGMdiGMdSGIdSGMRTEGAxg\nDLZh2Pm+o7KcYG4B7z45O6Wvi05RmDwsG9N+VOASQgghhBBCHHgSzBFCiF5MgjlCCCH6IvP538P1\n4bu88/T7BHMLuz3P0bdeRf7COeyYdhILb3oQunmyb3Chh1x/+q19hOiNQrPfx/WX2/GuWY6m07Ht\nxDNYfdFVhHIL0ponw2VhcJEHo6FnTvRFY0ma26JE40kiO9shfdUWafcTmLsz6nXk+u3kZdiO2Cqn\nX7XAUhQFvW5n+EanoFN2e7+HKweFowmqNu5Aef89chbNJefzjzEF2/8niXj8bD/uVMqnz6RxyKiU\nThqbWpsYf9/N5C/8kKjLw+fX3kXV5BN6ZK16nYLHYcbjMON1mlNqZxNPqLvain3VWiwUTaDu4xCY\nMdBC4bx36PfB6/jXrQAg6vLw2fV/pnricSmvtX+Oi+KcA1elTdM0tte2UVYd2Odj+Ypnw2qOufln\nWJrqWX/Opaz4ybVpvYbaaioY+txj9Hv/v+iSCTRFYdOZF7Hqkl+SsO379VSnKBRnOynMdki7qyNA\nR8cztla1YnnofkY9cT/1w8Yw/+6nUU2ptXAy6nWMLPHjsnWv5dPBEo4mWLG5IeUKjt806a7fUDTv\nHf73t5doGjwypTFSBVIIIYQQQojeT4I5QgjRi0kwRwghRF9kfOKfeH53LV/8/Ba2nH5+t+Zw7NjK\nKT8+DWXnvyzrzvsJK3/8m27NpQBDi71keW3dGi9EbxD66BPsf7qdjC8+BWDHtJNZdfHPCRSXpjWP\nTlEYkOei4CBWkkqqKtGY2h7W2RnYMRl1faJd1eEsGkuyvbaN6ppmPKu/REmq1I8aj6bvRkhK0yh5\n63lGP/YX9PEYG8/6ASt+cm3KJ+RTZdTr8DjNeHcGdYC9QjiReNdViJRkguwvPqHfB6+T9+kc9PEY\nmk5H9VFTKTv5O1ROmZ5y6yqdojC40EO27+C8xrSF46zb1tRlFTlb1Q6OuelyXNu3sP24U/jsuj93\n+ZistZUMff6f9H/vNXSJOK0F/dly2vcY8PZLuHZsJZSZy5c/v7nL4JXTamRIsRd7L2pDJHreN49n\nNLdFqf2/lzn6D1cR9mfzv4dfIurLTGkuk0HHqJKMlMJ3vUE8kWTllkZaQ11Xsfqm3EVzmXbLlWz4\nzg9YfsXvUxpjMxuYOLT71ciEEEIIIYQQB54Ec4QQoheTYI4QQoi+SFe2Ff/E0VRMOZFPb3u4W3OM\nfeg2Sme9wBe/uJVBrz6Fs2Ibn//mTsq+9d3urUlRGNbPS4bb2q3xQhwq4S+WYbnrdrI+/gCA6vHT\nWHXJL2kaNCLtuVw2E4MKPYfNiU9xcMTiSbbXtdEciKIoCooCiqKg23m762OAnZ9PqBqtbTGiiT1D\nMO4t65l8129wlW+mqWQoi35/3z7bYB0KrrKNFH/wOsUfvom1sR6AluISyk76DuUnnk7En5XWfB6H\nmQF5roNe4UNVNbZWtbKjro3ODuwZW5uZ+oeryVz1BXUjjuKTPzxM3OXZaztrXTVDnn+MAe++ii4R\nJ5BXxJqLrqL8hNNAr0cXizL0+ccY8uLj6BJxth93Ckuv+H2noQudotAvx0lhlgNFquccFqKxJAaD\nknI7st2PZySSKutmf8K0q85FUVXm3v8MzQOHpzSP2ahndEkGNsvhVTktqaqs3dZEfUsk5TE6RcFE\nkpPPnoqm0zPr+XkphyFHl2TsCiQKIYQQQggheh8J5gghRC8mwRwhhBB9lXP8KPT1dbzxykI0Q3oh\nAFNrE6ddOJ2ox8fsp97DXr2D6b/4PsZQkI/+9Dh1YyZ1a006RWFEfx8+l6Vb44U4mCJr12O86w6y\n338TRdOoHz6OlZf+kvpRE9OeS69T6J/rIj/DLifIRY8KRxM0t0VpaYvRHIwSiSXRh0OMefTPDJj9\nMgmzlaVX/p7yE8/o8eo5nVGSCay11Tiqt2Ov3oG9agfZX36Kb8MqAGJON+UnnEbZSWe1h9zS/Llw\n2Uz0z3Ud8pPkzW1R1pU3EYntu0qQLhZl4j03UDj/XVoLB/Dxnf8klJMPgKW+hqEv/JP+s19GH4/T\nllfEmguuoPzEmR2GBVxlGznqwVvIWLOMmMPFip9ey9ZTzun06+eymRhS5MEm1XN6hURSJRRJEI4m\nCO18C+/8OKlpu1oM5mfaMRs7b3W4+/GM9cs2M+biM3BUbWfhjfez47hTU1qP1WRgVIkfq/nwCuV8\nRdM0NlW0UFEf3OPzZoMeq8WAzWzAav761mLWgwbBy65gwJvP8dFd/6Jm/LSU9pXlsTKsn+9APAwh\nhBBCCCFED5BgjhBC9GISzBFCCNFXma79Fe7/PMHce/9D/agJaY0d8vxjjPz3gyy7/LdsPPsSADJW\nfMZxN/yEhNXGh399nraC7lVg0CsKo0r8uB1yxbHonRob27D+8RYKXnwKXTJBU8lQVl36S6onHJt2\neADA77IwsMCNxXR4nvQUh5dILEFLMEZzIIp11huMvOdGTMEAqt5Aa3EJzQMG0zxgKM0lQ2gpGUzM\n5e3WfpRkAnNzI7baqvbgTfUO7FXbsVdX4KjajrWuGp26Z1hF1empnnAMZSedRdXkE7oVFHJYjPTL\ncZLh6T3V1xJJlc0VLVQ1hva9kaoy6vH7GPzKk0S8GXz+mzvJWbKAAW+/iD4eoy2ngLUXXsG2GWd0\nXb1DVSmZ9QIjn7wfYyhI7agJfPHL2zqtjKRT2sOBBZkSDjxYIrEEwXCCYCT+dQgnkiCeVFMar1MU\nMj1WCrMc+6yy9tXxjOqaFrIvOoes5YtZc+EVrL74Fyntw2Y2MLo0o8sA0OGgtqn958+6M4Bj0Hde\ndaj67Q8Zeel3KJtxBp9f/5eU9qFTFKYMz8ZoOPy/XkIIIYQQQvRFEswRQoheTII5Qggh+irTe7Nx\n/+A81p5/OasuvSblcbpYjG//8EQMkTCznp1Hwu7YdV/x+68z8d7fEcgrYs5DL3T7hK5epzC6NOOg\ntx4Rh0ZrMEZtUxiP04TXaU65RUdX2sJxAqEYDqsR534+l5KqSnVjmOpt1Yy+5Rfkfv4xgbwiVl16\nDTuO+RZ0Y81mg56SAjdZvShAII48yS1bMf3trxhXLMO6cS2GSHiP+0OZue1hnZIhNJcMpaX/QJRk\nEktjPZbmBiyNdVia6ts/bqrf9b65pRFlH4e0wr5MgrmFBHPyacstJJjT/n5rcSkxd/deN6wmA/1y\nnWR5rL02WNLcFqWsOkBzW3Sf25S88SxjH7lz19cumJ3HmguuYNtJZ6Zd3c5aV83Yh+8gf+GHJI0m\n1l7wM9Z978doxn3/PnTbTQwp8h621VF6o0isPXATjCQIReIEI+1hnKTac4d8vQ4zhVmOvSoOZmY6\nKd/RRPyqqyl58zl2TJ3Bwpv/mtJrlsNiZHSp/4gNmYTCMfyTxmBpbuTNFz8mabWlNK4kz01hlqPr\nDYUQQgghhBAHnQRzhBCiF5NgjhBCiD6rrQ3/oGKa+w/iw7+/kvKw4g9eZ+I9v2P92Zew4vLf7nX/\niH8/yNDnH6Nu5Hg++tMT3W6NYjbomTQsG52ud55gFftP0zTKa9rYVhNA3fmvr05RcNlN+JxmfC7L\nPqsAdOSrlj1NgSjNbVFiia+rDpiNevwuC36XBY/TlHL4JxxNUFEfpLohhLGmkmk3/wzPlvVUjT+G\nRTfev0cwLR25Phsl+e4ur9gX4qBKJlG2bCHx5VJYvhzj6pXYNqzB2lCb8hRxm52IN6P9zZdJOCO7\nPXyTW0Awp4Bgdj6quefaFZqNeoqzneT4beh6aSDnm1qCMbZVB2gMRDq8P+/TDxn0yr/ZduIZlJ18\n1j6DNDazgbwMOzk+G0lV2xn+iO+6DYYTJFSV/AXvM/bhO7A21tFSXMpn1/2Z5kHD97k+vaLQP89F\nQaaEC1KlahrhnS2nQtH2tlPtQZz278G+2Cu2UTLrBVB0NA4eQdOgEQRzCrpVfQ3AbjFSkGkn22tD\np1Pw+x2s/e2dDL/3ZpoHDGbOA8+StNq7nMdlMzGqxH/Ev0YFrvs9A55+mEW/u5ftJ5yW0hib2cDE\nodkHeGVCCCGEEEKI7pBgjhBC9GISzBFCCNGX2U4/BdtnC3nzxQXEPL6uB2gaJ13xXVxlG5n99HuE\nsvP33kZVmXznryn8+D3KTjqLz6+9q9snmAYXesj1d30CSRx+wtEE68qbaAnGOt3ObNDjdZrxucx4\nnRaMhq9PEsbiSZraojQHojS1RYnEkp3M9DW9ouBxmncFdcymvasBNAWiVNS10dAaQQM8G1cz7ZYr\nsTbUsnnmeSy96qau28l0wGY2MKjQg0datYnDSKyyiviXy1CWr0C/fi1RnYGIL2O3AE4GEW8mUa+f\npKV7FaB0ikKG24KqaaiqhqpCUtVQNY2kqqLt9rGqaRj1OoqyneRn2A/bAGcgFGNbTYD6lo4DOh3R\nKQp+t4U8vx2vs+vfI9F4kmA4TqSukax77yD31WeIOVzMefA5AkUlnY712M0M7eftE22M9pdh+VLM\nr75M24xTaBo9gXAsSTiabG8/FY0TjSVJ5wCuc9smhj7/T4rmvY3yjeBO1OWhadAIGgcOp2nwSBoH\njyTiz0prvSaDjvwMB1mrl1Bw0dnEHC4+fPiljv9u+waPw8yI/r4jPpQD0LxkOQO/fQyVk47jk9sf\nTXnc2NIMackqhBBCCCFELyTBHCGE6MUkmCOEEKIvMz94H667bmPRDfewffrMLrfPWrqQ4377I8qP\nO5XFN96/z+30kTDHX3cxvvUrWXnpNaw7//Jurc9uMTJhSHono0TqVFVjS2UrTruRTLf1oJ3crmkM\nsXFHy64qAta6arwbVhHKziOYU0Dc4epwnAI4bSbsFgOBUJy2SLxH1uO0GvHtDOkEwnEq64MEd5s7\nd9FcJt91LfpomOU/vZ6NZ1+cdthMpygUZjkoznYetiECIaC90tXabU3UNoe73jhFCjC0ny/ltm67\nV9jqC9rCccprAtQ1h/cZ7rAY9eT67eT4bfsVlDG/9Dyuqy+nLaeAOX99gajX3+n2NrOB0aUZR244\nR9NQ/v4wvrv+gC7R/roQKOjHllPOYdtJZxL1ZqQ1nXvzWoY+9xgFC95H0TSa+w9i7fmXE/Fl4Fu/\nCu+GVfg2rMJRtX2PcWF/Fo2DdlbUyc5P6TVISSYY8697MATbmP+XJ6kfOb7LMX6XheH9fPI6tZOq\naZinHY1r8zreeuGj1ELsQLbXxtDi7rXlE0IIIYQQQhw4EswRQoheTII5Qggh+jLDyuV4TzyGshln\n8vn1f+5y+2k3XU7uZx/xv4depGnIqE63NTfWceIvzsNeW8XCmx5gx7GndGuNowb48bl6ru2JaJdU\nVVZtaaSpLQqAUa8j22sjx29Lq31UOhJJlY3bm6nZ7YS+sbWZGVefi6N6x67PxZxugtn57e1vcvIJ\n5ha2t8DJySeUld/t9mjdUfr6M4x59E8kjSYW//ZuKqedlPYcPqeFknwXdsuB+boKcbCpmsaassa0\nKr10RqqjtQtFEpTXBKhtDqNqGgrgdVrIy7Dhd1lQeiiIZLn7Lpz3/pmGIaOYd8/TXbYWs5oMjCnN\n6LC6WF8VT6jUl1WS9dtfkvPxB0TcPlZd8ksyVy6h4OP30MdjqHoDlVOms+XUc6gZdzTo9/318a5b\nwbDnHiVv0VwAGgeNYM2FV1A16XjooLWiqbUJ74Y1eDesxLehPbBjq6/p1mNZ8qs/svXUczvdRqco\nZHutDCz09JnAW08J/eU+iu+7jS+vvonNZ1yY0hidojBleM4eVf6EEEIIIYQQh54Ec4QQoheTYI4Q\nQog+TVXxDCslAcx6/qNOr8B2lm/mlJ/MpH74OOY+8GxK07u3rOeEX12ALplk3j1P0zh0dNpL9DnN\njCpJ74p00blEUmXl5gZaQh23kXLZTOT6bWR6rD3WyqKlLcrabU1E4ru1m0ommXbzFeQu+ZhtJ8wk\n5nJjr96Bo2oH9uod6GPRvebRFIWox4/ayQnQPbbX6agfOZ7tx55KzVFTUw/1JJOMeewvDHz9/4h4\nM1jwx0doGjwytbE7Oa0mBuS5Umo3I8ThRlU1Vm1toDGw989pOkrz3BRkOXpoVX1DOJqgviVChtuC\n1Zx+y7wuaRrmK36K67WX2DHtZBbe9ECH4ZDdWU0GRpf6sZgOwHp6kaZAlOqGIInFnzHpjmuw11RS\nO3oii2+4Z1c7KWNrM8VzZtF/9st4tm4AIJiVS9m3zmbrt75LOCt313wZK5cw9Nl/kPPlpwDUDx/H\nmguvoOaoqWlXXrM01OLdsApLU33KY9QBpWwbMq7D+8wGPT5Xe1tHr8uMvovnwJEqWr6D/IkjaBgy\nirkPPp/yuNJ8NwWZ8rtNCCGEEEKI3kSCOUII0YtJMEcIIURfZ738xzj++zLv/+O/tJQM2ed24x68\nlZJ3XuLTW/5KxbSTU54/57P5TLvlSqJuHx8+9AKh7Py01zh+cNYBq+JypIknkqzY3EAg3HUbKL1O\nIctjJddvx2XvXpUaVdMoqwqwvTawV4uW4U8/xLBn/0HVhGNY8Md/7FltQNOwNNZhr67AXrUde/WO\nXW/WhlqUFP9VNoSCWJobAIjbHFQcfSLbjzuFmnFHoxk7fkz6cJDJf7qOvEVzaSkuZcEdj6b1vLWa\nDPTPc6XclkeIw1VSVVmxuYGWYMchv64UZzvpn9tx6zpxgMVimM86HdeShaw/50esuOy6Lof01XBO\nLJ6kujFEdWOIUCTOwNeeZtTj96GoSdZceCVrLryi42o4moZ3/UoGzH6FwnlvYwyH0BSF6vHTqJwy\nnaK5b5O5cgkANWMns/aCK6gbNSGtQI5ep2DU6zAadr7pdagaRGIJwtHkrpaQ++J0WAi0fV3Zalfr\nRrcFl+3gVZ873OlOOxX/55/wzlPvEcwrSmmMw2JkvLRjFUIIIYQQoleRYI4QQvRiEswRQgjR15lf\nfgHXVZex4ie/Yf33ftLhNqbmRmZeNJ2wP4vZT87utF1DR0pff4axj9xJc/9BzL3/WRL29K4gzvXZ\nGFzkTWuM2Fs03h7KCUa6DuV8k8NiJMdnw2o2oNcrGPQ69DoFg15Br9d12PoiFEmwdlsTgfDeJ+1z\nF85l2q1X0pZTwP8efpm4y9Otx9QlTcO7YRWF82dTOP9dbHVVAMQcLiqmzmD7sadQO3YymqE9+GVp\nqGXazT/Du2kt1eOOZuHND5Kw7/uf9t2ZDDqKs53kZtilFYg4YiSS7eGc1n1U4NqXggwHpQXuA7Qq\nkQqtqRHbSdNxlG/hi1/cypaZ3+9yjMWkZ3RJxoGp5HMQxeJJmgJR6lrCNLZGUTUNY2szE+67kfyF\nc4h4M1h8w93Ujp2S0nz6cJDCebMZMPtl/OtW7Pp81cRjWXPBz2gcNnbX5ww6HRaTHpNRj8Wkx2zU\n7wreGHYP4Rg6fm3dXTyhtod0Ykki0QSRWJJI7KvbJC6nBT0afpcFv8tyRLUj60nxJ58i74ZfsOqH\nP2ftRVemPG7cwMxuB5uFEEIIIYQQPU+COUII0YtJMEcIIURfp9TVkTG8hJoxk/no7n93uM3QZx5h\nxH/+xtIrb2TTWRd1az9jH76d0jefY+Wl17Du/MvTGqtTFCYPy8ZklBNK3RWJJVi+qYFwLHFA5tcr\nym6BHR0GvUJrMEayg39pHRVlzLjqXJRkgjkPPt9ppaYepWn41i2ncP67FHz0Hrb6agBiTjc7ps6g\nbtRERj75ALb6araceg5f/vyWXYGdzugVhYIsB4VZjh5r/SXE4SS7q7deAAAgAElEQVSeUFm+qZ62\nFEN/ErbsPWIbNuGfOQNzazML/vgPqice2+UYi1HP6NLDK5yjahqtwRiNrVGaApG9qsb51i5j8p2/\nxl5bRc2YySy+4W6ivsxu7ctTtoHi5YsITp5KcvRYTEYd5p0hHJNRf9BeJzRNIyPDSUND20HZX1+m\ntbbgH1ZKMCuP9554O+WqR/K7TgghhBBCiN5FgjlCCNGLSTBHCCHEkcB5/FSMG9fxxiuLSFpte9yn\ni0U57aIT0cVjzHpuLkmrvVv7MLY2c+b3plI/bCzz7n8m7fHS8qT7QpEEKzbXE4knD/VS0IeDnPjL\n83GXbWTx9X+hfMYZh2Yhqop/7XIKPppN4UfvYW2o3XXXip/8hvXn/rjLE286RSHHZ6NfjlNCY+KI\nF4snWbapnlC08/BfptvKsH5eFKkq1Wu0fPgR/S8+G1WvZ+79z6YUljyQ4ZykqhKOJglFE4QjCSKx\nBDqdgtmox2zSYzG2B1zMJn2nFWUisQSNrVEaAxGaA7GO2z6pKoNefYqRTz6AoqmsvuhK1p7/s7Qr\nAxr1ul0tonxOc68JacrxjJ6ju+hC/O+/xf8efpmmQSNSGqNXFKaMyOk1zwchhBBCCCGOdJ0Fcw6f\nS0+EEEIIIYQQh63kiTOwrFlJ5orPqJ50/B73Fc2ZhaW5gXXf+3G3QzkAcZeHxsEj8a9ZhiEYSLk9\n0Fcq64MUZzvR6eRkbjrawnFWbm4gmjj0oRw0jfH334y7bCMbz7zogIdybGYDNrOB+tbI3nfqdDQM\nH0vD8LEsv/wG/GuWkv/ph9SNHE/VlOldzu2ymRhS5MVmkX/bhQAwGdtbHC3dVEck1vHvG5/TzFAJ\n5fQ67hOPZd1tDzD8d1cy7eaf8eFDLxLJyO50TGRnEGtMN8M5mqYRiSUJRxOEoglCkQThaPtbOiFS\ns2HPllBmk55oPElja6TLkJi5qYHx999E3uJ5hH0ZLL7hXurGTEp533aLcWeLKDMuu0me132cev75\n8P5bFH34VsrBnKSmUdMUJj+j+38/CyGEEEIIIQ4OOcInhBBCCCGEOODi02fA3x4gZ8knewZzNI1B\nrz6Fqjew6czutbDaXevRx+Nfu5zspQupmHZyemtMqlQ3hsiTkxspC4RirNjcQDzZQZWAQ2Dga09T\nNH829cPHsfyy63p0br1OwWUz4bKbdt0aDe1XqDe0RFhX3rTvr4NOR8OIo2gYcVRK+8rz2yktcHda\nqUGII5HZ1B7OWbapnug3whVuu4nh/X3yc9NLeS++gDVlZQx77G6m3XwF8+77PxK2zl9vozvDOaNL\nMroMKSZVldZgnJZglOa2GIF9tDr8JmtdNf1nv0LU46Ny8vGEs/L2XEMiSTSRJBDu+jEC6CNh8hbO\noWjOLHKWLECXTFA97mg+++1fiHozOh2rUxQ8DlN7ZRyX5bBq5SV6wEknE3d5KJz/Disuuw5Nn9r3\nv7ohKMEcIYQQQgghDgPyH54QQgghhBDigItPmETSZifniwV7fD77i09xb9vEthNmEs7M2a99ZHus\nOM48DZ74K9lLPkk7mAOwo65NgjkpammLsnJLY8etOw6BzOWfMepf9xL2ZbDwpgfQjKb9ms9qMrSH\ncOwm3HYTdothn9UK/G4LRw3OZPXWJgLhWLf3qVcUBhZ6yPHZut5YiCOU1WxgdImfZZvqiSXaf/84\nrUZGDvCj10k7l97KaNBhuO5aNu/YRsnbLzL5rl/zyW1/7zJ8EI0nWb6pntGlfmwW467PJ5IqrcEY\nzW0xWtqiBMJx1BSCOF8xNTcy5MV/Ufrmc+jj7b+3xz18O80DBlM56XiqJh9P4+BRkMJzSkkmyFq6\niKI5b5H/yf8whkMANJUMZeupZ7N55vmdzmMx6snPdJDrt0lLoiOZyUTbaWfiff5pspYupmb81JSG\nBcJxAqEYTtv+/d0jhBBCCCGEOLAkmCOEEEIIIYQ48EwmYlOPwfnBu9iqKwjl5AMw6LWnANhw9iX7\nNb3FpGdgoQcKxhN3utsDQJoGaVZOCEUTNLRE8Lst+7Wevq6xNcLqrY1dVyNQVTJWLcHc2oySSKBL\nJlGSCXSJOLpEov39ZLL9vkQcRVVpGDaWmnFTUjoZ+hVrXTWT7/w1KAoLb/4rEX9Wtx6XTlHI8dko\nznZiNunTGmsxGRg7KINNO1qobAimvW+LSc+I/n4cVmPXGwtxhLNZjIwqyWD5pnqMBh2jSvwSaDgM\neF0Wttz2F2w1leR+9hFjHrmLpVff3OVrdTSRZPmmBgbkuQiE47S0RWkLx0k9hvM1QzDAoFefYtCr\nT2EMhwhm57H2gp+hi8fJXTyPrGWLGbZlPcOef4yIx0/VpOOomnQcNeOm7lnhR9Pwrl9J8ZxZFM6f\njaWpHoBgdj4bz/oB5dNnEigu7XQtTquRgiwHmR6rVHoS7S64AJ5/mqI5b6UczAGoagj1qmBOXXMY\nnaLI39NCCCGEEELsRoI5QgghhBBCiIMiMX0GfPAuOUsWsGXmebi2biBnyQJqR02gedDwbs+rUxSG\nFft2npTVEZhyDL73Z+HcvpVA0YC059te1yYnEjqgaRoNLREqG4I0BqKpDGDcQ7dR8s5Lae8rmJ3H\n1m+dTdm3vttlJSVdLMaUO67B0tzAl1fdRMPwcWnvDyDTY6V/jqvLdimdrkVRGFTowe0wsaG8OaU2\nKgA+p4Whxd5drbGEEF1zWI2MKvFjNOgwGtIL0olDp1+hlxV3/A3rledR+tbzqAYjdaMnEsrMIZSZ\nS8zt7TCoE00kWVve1O396iNhSt58jiEv/gtzoIWIN4OVP/o1W089F9XUHmjYfMYF6MNBsr9cSO7i\neeQtnk//916j/3uvkTQaqRs1kapJx2NqbaZozls4K8vb1+b2sun08ymffjoNw8Z0GTTKcFkoyHLg\ncZi7/XhE35SYOJloXiH5n3zAl5FbSVqsKY2raQpRku/qFVXDGloirN3WhKpp+JwWSvNde1S7EkII\nIYQQ4kglwRwhhBBCCCHEQRE74UQAsr9oD+YM/O9/gP2vllOc7cRl//oq4eSJJ8H7s8j+YkG3gjnN\nO6/El8ol7aLxJNUNIaoagkTiyZTHDfu/hyl55yWaBwxh67e+g6Y3oOoNaIb2W9Xw9fvazo91iQT5\nn3xA0dx3GPGfvzH8mb9TNeEYtp5yDlWTjkMz7P09GfPoXfjXLmfbiaez+YwL0n58HruZAXmuPZ5D\n+yvba8NpNbJqayOhaKLTbYuznfTLce6zTZYQYt96U4UIkRqdojBoWBEL73iM43/+PQb99z8M2vn3\nAEDSaCKcmUMoM4dwRjahzNyd7+cQysolmFNAwu5IeX9KPEb/d19l2LP/wNpYR8zhYsWPfs2mMy8k\nad27bWDSaqdy6gwqp87gC1XFu2EVeYvnkbtoHjlffELOF58AkDBb2XbCTMqnn0bNUVM7fH3anV5R\nyPbZKMi0S0hB7JuiED37XFx/u5+8hXPYfsJpKQ1Lqhq1TWFy/Ye2HWtzW5Q1ZY272so1BiIsWR8l\nL8NOvxynVDYTQgghhBBHNEXT0mjAfAjU1QUO9RKEEOKAysx0yu86IYQQRwz3+FEo9fW8+/gsvn3x\nSYQyc3n3ydlptS3ancdhZnSJf49Qg66yAv+YoVRNOIYFd/6zW/PmeG0MKfZ2a2xf0RSIUtkQpKEl\nsusES6pK3nyOcQ/fTltOAXMefI6oLzOt8YZQkML579D/nVfwr18BQNiXQdlJ32HrKWcTzC8GoN97\nrzHhvhtpHjCEOQ8+l/KV5QAOi5H+ua4DWh0pqapsKG+mpjm8130GnY6hxV6pziSEOCJVNQTZunIL\n2UsXYq2vwVZXjbWuqv22vhprY/0+x0ZdHoI5BQRzCwjmFNCWU0gwJ59gbiGhrNz2kEwySdHcWQz/\nz8M4qneQsNjY8J0fsOHcHxF3uNJer16nUBBtpt+KhehdDgInnEzUZCWWUInFk8TiKrHEnrcJVcVk\n0JGf4SAvw9YnKzvJ8Yyep1+/Dt8xE6mcdDyf3P6PlMe5bCbGDUrv762e1BqKsXxTPUm1478ZjXod\n/XNd5PptEkYWQgghhBB9Vmamc5/3STBHCCEOMTmQJYQQ4khiv/5X2J56gpqxU8heupAvr765W1VO\noP0A//jBWZhNe5/osk0Zj3lHOW+8ugjVlH6rCJ2iMGlYNmZj3zuJ1plEUqW6MURlfbDLSi/7kv/R\ne0y581dE3T7mPPDsrhBNd7m3rKf/7Fco/vBNTG2tANSOnkTl5OMZ+eQDJM0W/vf3VwjmFqY0n8Wo\npzjHSY7v4J0YqqgPsrmiZVfAyWExMry/D6tZitgKIY5cq7c2Uteyd3AR2ivdWOtrsdVXY62rxlZX\nha22Cnv1DuxVO7DXVKCPx/Yap+l0hDJzAAV7TQVJo5HNM7/Puu9fRtSbkfYaXTYTuX4bmR5r2tU+\nVFUDpf1vir5KjmccGM4TpmJat5a3Xviovb1bisYPzjokFR+DkTjLNtYTT6pdbuuwGCktcEsrNyGE\nEEII0SdJMEcIIXoxOZAlhBDiSGKa/Tbui88HIOp08/YzczpsJZGKEf18ZHg6rpCiv+F6fE8+yvw/\nPU7tUVO7NX9RlpMBeelfVX84UjWNjdubqW0Kk9yPfxEzly3mmBt/imowMu/e/9A8cHiPrVEXjZD/\nyf8YMPtlspZ/BoCmKCy4/VGqJx7b5XiDTkdRtoOCTAc63cE/SdoairFmayNuu4lBRR703awSJYQQ\nfUU8obK1qpVILEk0niQaS5JQuz6xD4CqYmmsw169A0fVdtx1lThrKrBX78BaUY6hpZn6b5/Fhh9e\nRYM7i1gixXlpD/5me23k+G3S1rILcjzjwLA+8jccf7gx7QB7foadgQWeA7iyvYWjCZZtrCeaSL3d\nKUCmx0pJnguLSULKQgghhBCi75BgjhBC9GJyIEsIIcSRRAm04h/cDyWRYO35l7Pq0mu6NU+e386g\nwn2feNDP/RDfed9h/dmXsOLy33ZrH0a9jsnDs4+IAEV5TYAtVa37NYdn0xqOv/aH6GMxPr7zMWrH\nTumh1e3NUVFG8f/eJJBfTPmMMzvcxmLS47Aa298sRjxOc9rVDnpaUlWPiOeTEEJ0VyKp7grpROPJ\nPd5PJDUsJj0WkwGruf3WYtJjNun3rkqjabDb56LxJMFwnLbd3sLRBLsfFPU4zO3VcdzWQxLgPBzJ\n8YwDQ1ddhW/0EBqGjmHug8+lPM6g0zFlxMH72zUaT7J0Yx2RWHqhnK/oFYWCLAfF2U75mRNCCCGE\nEH1CZ8EciaQLIYQQQgghDhrN6SJ69DEYF33Kpm62sLJbjJTkd17JJjllKkmzhZwlC7odzIknVaob\nw+Rn2Ls1/nARjSXZVr1/J9XsleUcc+PlGMIhFv3+vgMaygFoy+/H6ot/AbS3CLFbDNgtRhw2464w\nzqEO4XREQjlCCNE5g16HQa/DbtnPSjXfCOqYjXrMRj0+l2XX55KqSjCcIBiJ47absVnkMKnoHdSc\nXGJTjyVjwXzsVdtTbteZUFVWbG5gcKH3gD+f44kkKzY37BXK0UfCjP37HdSNmsC2k87qdI6kprGt\nJkBzW5QR/f0YDfJ3khBCCCGE6Lvkr10hhBBCCCHEQdX26BOsf+0D1OyctMfqFIWhxd6uAw4WC8GJ\nR+PetglrXXU3VwoVdW3dHnu42FTZghqPoYtGujXe3FTPsb//KZamepZd8Xt2HHdqD69wbzazgQG5\nLsYPzmLaqFyOGpzFkGIvBZkOPI5DXxlHCCFE76fX6XDZTeT67RLKEb1O9NzzACiaMyutcS3BGEvW\n11JeE+BAFcpPJFVWbG4kGInveYeqMvHuG+j/3msc9eCt2GoqUpqvJRhj6cY6wtHEAVitEEIIIYQQ\nvYMcrRRCCCGEEEIcVFpGBpkTxzBpWDal+W7MRn3KY0vyXDisqV1FnzxxBgDZSxZ0a50AoWiC+pZw\nt8f3dk2BKHVNIY658TLO+u4kJt35a7I//xiSqbUkMATbOObGy3BUlrPm/MvZdNZFB2ytekUh22tj\nTGkGE4dmU5TtxGE17t2+RAghhBDiMBc77XRUs6U9mJNmwEbVNLZUtfLlhnrawvGuB6Qzt6qxaksj\ngXBsr/tGPPVXCha8TygzF308xsjH70t53lA0wdKNdQRCe88rhBBCCCFEXyDBHCGEEEIIIcQhodfp\nKMh0MGlYNoMKPFhMnQd0MlwW8jMdKc+vnXQyADlffLJf69xRG9yv8b2Vqmlsqmghd9E8spcuQtPp\nKJo/m2NvvIyZF57AyMfvxblt0z7H62Ixjv7jz/FuWsuWU89h9SW/PCDrdFiMDMx3M2VEDkOLvXgc\n5gOyHyGEEEKI3kJzuYl961Rc27fg2bSmW3MEwjG+3FBHWXUrag9Uz1E1jdVljTQHo3vd1++91xj6\nwj8J5BfzwSOv0jh4JEXzZ+NfvTTl+WMJlWUb62lo6V4VRyGEEEIIIXozCeYIIYQQQgghDimdopCX\nYWfi0GyGFHmxmfduJ2E26Blc5Elr3mTpQKK5BWQvXYiS7H5p/OZgtE9evVtRF/x/9u47Su66+v/4\na3rf3rMpm56QkAAJRYr0JgKCSJEuICKKihR/FmIFRaRKEaSIUhUQvtIUKdISIAXS+ya72Wzf2en1\n8/sjJJRkN7Mzsy15Ps7h7Ml8Pu/7vsMfe2bfcz/3KhSKavoDN8swm/WfO57UK7c+ptUnnCFLPKbJ\nT/xZx178ZR3xna9p3LOPyNbd9cnidFr73niNKhe8q8YDjtD8714n5bFzjcVsUk2pR3tPLNesyRUa\nUe5lPBUAANitxE79miRp9CvPZR0jbRhavzmg+Sta1Z3D51nDMLS8vlPt3dsXzZQvmqd9bp2juK9Q\nb/7yLsULi7Xw0h9Jkmbefb2UTme8T8owtHhduza17ZqF8QAAANh9WebMmTNnsJPoTXgXPAAHgE/z\neBz8rgMAQJLJZJLXZVNNmUcep1WRWErxZFomSXvUlcqT4QirTwVUetkyeebPU9PsgxUpr846t3TK\nUHmRK+v1Q00skdLS9Z2qfeU5jfvX41p/9Fe0/rjTFCmv0ub9DtWqr5wrf91EWWMRlS/+QDVzX9eE\np/+iwrUrlHI4NP7ZR1T30tNqnbaP3vr5HTJs9rzk5XHaNLa6QJNHF6u8yNWnMWcAAGBgcZ7Rv1Kj\nx8j1wH0qWvahNu1/mGLFpVnHiifT2tweViptqMjjkGknBdWGYSgSS6ozEFNzZ0T1zQF1BLbvlONt\nWKcv/ugimZMJvfnLu9Q1cZokKVJRLd/Gdar64C0Fa0bJP3Zyn/Jt744qnZaKfXRKBAAAwPDh8fT8\n+dVkGHnoY9mPWlsDg50CAPSr8nIfv+sAAOhBW1dE0URKtX0YYfVptv/7p4ouPEdLzv62lp57edZ5\nmE0mfWFa1S7TtWVZfadaWrp03IXHy9nRohceeFGRipod3utsb9GoV57TmH8/o8JPjbbyj5mgV296\nWAlfYc75mCTVVnhVV10gcx477wAAgP7DeUb/sz/7tAovOk/B6pH6z+1PKFHQtw6SO+J2WDVpZJEK\nbZIcDqXSaYUiSQUiCYUiCQU//pnaydcG9u5OHX7FmfI11uu9K3+t9cec8tl9mht17De+pLivUC/c\n/4JSLnefc60sdmvSqCI+HwIAAGBYKC/39XiNjjkAMMh4wgwAgJ65nTYVeLLvxmJUVcv1x9tkiUe1\n7rivZh9HUpHXIdcOxmwNN/5gTKs3+TXu/x7T6Ff/pdUnna2GQ4/v8f6k26P2PfbWmi+fqab9D1Xa\nalO8oEjv/ORmxXN4cnsrp92i6XWlqi717PTpbQAAMHRwntH/UpOmSMmEvP9+UcWrlmrD4V+SzLkV\niieSKZXf+EuNuuTralu2RvOLxqohbKijO6pAJKFYIqWdPclrSsR10M8uU8nqpVp2+sVaedqF2+/j\nLZA5FlXNvDeUttrUOmPfPucaiibkD8VVVuiU2cznRAAAAAxtvXXM2TUe9wQAAACAHTAKChWeOUsl\nKz6Srbsrp1j+0PD/4skwDK1q8MsSCWnqI3cr4XJr2ZnfzGyxyaTOidO0+qpfSM89p9F7TZLTntuo\nqeoSt2ZNqlChlzEFAAAAOxK+5ieKHXOcKhe8o+n33ZRbMMPQtAdv1eQn/izDZNbo5x7XsRccqwlP\nPSRTMpFxjFm3XKeKD99Tw0FHa/EF3+vx1uVnXKxISZkmPflnuVqaskq5KxjTwlVtisVTWa0HAAAA\nhgIKcwAAAADs0lKHHylTOq3KBe/kFGdXKMzZ1BZSMJrQhKcflrOzTStPvUDxopKM15tNJk0eXSyL\n2azqUo/2nVKpSSOL5LT1rUDHbjVrWl2JJo0q3mXGgwEAAPQLs1mBO+9VYvxETfrHgxr972eyDjXl\nb3dqyqP3KDBitJ5/6GUtuOzHksmkmXffoKO/ebIq3/vfTmNMfuxejfn3M+qYNF3zrr6h1w4+KZdH\nH134A1ljUU2//+as8w5GE5q/qlXhaIbFQwAAAMAQwwkoAAAAgF1a6qijJElV77+ZU5xAOC7D2Flj\n/6ErkUxp/eaA7N2dmvzEnxUrLNbKU8/vU4wxVT55nLZt/zabTFsKdKZWamJtZgU6ZYVOzZ5cobJC\nV1/fAgAAwG7J8BUo8PCjSvkKtM8t16l4xUd9jjHp8Xs17S93KFhVq9d/96AiFdVaffLZeuGBF7X6\nhDPka1yvQ358iQ786bfkbVy/wxgj3nhJ0x+4WeHyar015w6lnDv/PFd/5EnqHD9Vo//7nEqWLepz\n3lvFEiktXtehZCqddQwAAABgsFCYAwAAAGCXltxzphLFJVsKc3IorEmlDQUjw/cp3bWbupVIpTXp\n8ftkCwe17IxLlPR4M15f6LZrZMWO7zebTKop21KgM6G2SI4dFOhYzWZNHlWsaXWlsllzG4EFAACw\nu0mNm6DAvQ/InEzowDmXy9nekvHaCf94UHv++Q8KVVRvKcopr9p2LV5YrAXfvU7/vvMptczYVzVz\nX9MxF5+o6ffeKGsouO2+4uUfar/fXaOEy603f3mXoqUVmW1uNmvht34kSZp59/U5fR4Px5JatTG3\n8bQAAADAYLDMmTNnzmAn0ZtwePi3iweA3ng8Dn7XAQDQn0wmadFCeRa+r4aDj1asuDTrUB6nTQUe\nex6TGxjdobhWNfrlbGvW/r+9WtGSCs27+gYZFmtG6y0mk6aPK5N9Jx1xTCaTCtx2jSjzyG41KxRN\nKpU2VORxaM/xpSryOvLxdgAAwBDAecbAS9eNk+F0yfPi/6l02UJtOPxEGZbeP5+Ne/YR7XXXbxQp\nrdBrv/+LwtUjd3hfrLhM9UedLP/YiSpdulA1895Q3UtPKe4rVNxbqEOvuVC2SEhv/+xWtU+f1ae8\nw5U1Kli/WlUfvKXAyDp1103s0/pPC0WTslst8rmH32dyAAAA7No8np7PPumYAwAAAGCXZxx1tKTc\nx1l1h4bfl0+GYWhVg1+SNPWvd8oSj2nJuZcrbc+8SKaupkBuZ2ZFPJJkNps0otyr/aZUanpdqWaM\nL5XTnvl6AAAA7Fjk8isU+cpXVbZ0ofa64xe9dqCpe+FJ7X3HLxUtLtNrv3tQoZpRvQc3mdR40NF6\n8b7/00fnXyFrJKzZf/iJjv3G8XJ2tmnhN6/V5v0OzSrvDy/6oVI2m/a87yZZopGsYmy1utE/rDtZ\nAgAAYPdDYQ4AAACAXV780CMk7Z6FOZs7wgpE4vI2rFPdi/9Q98ixqj/yxIzXF3kdqi3PfOTVp5nN\nJpUWOmUymbJaDwAAgM8xmRS8+Q7Fpu2psS/+Q+Oee2SHt43+9zPa55brFCss1uu/vV/BkXUZb5F2\nOLX8rEv1wgMvqP7wL8uSiGvVSWdr9clnZ512uLpWK085X+7WJk38+wNZx5GktGFo6foOJVPpnOIA\nAAAAA4XCHAAAAAC7PKOyUtHJe6hs8fuyRMJZx4kmUorGk3nMrH8lkmmt3dQtSZr20G0yp1NafMEV\nmY+wMps0aWRRf6YIAACAvnK7FfzLo0qWlGrmXTeofNG8z1yufe15zb7px0p4C/T6Dfere8yErLaJ\nllVq3rW/0zN/f0cLL/t/W0bE5mD5GZcoWlymyY/fJ2d7S06xwrGkVmzsyikGAAAAMFAozAEAAACw\nW0geeZQsiYTKP3ovpzjDqWvOuqZuJVJpFa1aopGvv6iOSdPVeOBRGa8fP6JQLgcjqAAAAIaadO1I\nBR/4qyTpgF99T+7NjZKkEW++rP1uuFpJp1tvXH+f/OMm57xXoqBop0U5DqtF5YUuja0uUJFnxyNT\nkx6vFp//XVljEU2//+ac82rtiqixLZRzHAAAAKC/UZgDAAAAYLeQPPxISVLV+2/lFMc/TApzWroi\namrf8kXF9AdukSR9dOH3M37SucTnVHWpp9/yAwAAQG4SBxyo4G9+J4e/UwfOuVy1rz2v/X/zQ6Uc\nDr1x/b3qnDitX/Y1m0zyueyqLfNq6uhi7T+1UgdMq9IedSUaVenTzAllmjqmRE6bZbu1644+RV1j\nJ2vMv59R8crFOeeyptGvQHh4fD4HAADA7ovCHAAAAAC7hcS++yvlcqvy/TdzijPUO+YkU2ktq+/U\n0vUdMiSVL5qnqvffVPNeB6hlrwMyimE1mxlhBQAAMAzELrhIga+fp6K1y3XAb65U2mLVm7+6Rx1T\nZuZtD5vFrLICp8ZWF2jm+DIdOL1K+0wq1/jaQlUUu+W0b99hsaLIpdlTKjSmyifLpwvDLRYtvPRa\nSdLMu66XDCOn3NKGoaXrO5VMpXOKAwAAAPQnCnMAAAAA7B7sdsUOPEQFDeu2tfrPRjCSGLIH/52B\nmN5f3qLmzvCWFwxD0+//g6SPu+VkaEJtoRz27Z9wBgAAwNAT/e1NCs0+QEmHU2/+4k61TZ+Vc0yz\nyaSyQqemjSnRAdOqNG1sqUZV+lTkdchizuxrBYvZrDFVBf1+PKcAACAASURBVJo9pUIVRa5tr7fO\n3E8NBx6psiXzVfu/l3LONRJPasWGrpzjAAAAAP2FwhwAAAAAu43UEVvHWWXfNceQFAgn8pRRfqTT\nhlY3+rVoTZuiidS212ve+a9Kly1Sw0FHq3PS9IxilRU6VVni7q9UAQAAkG92u8LPPq+NcxfLe9zR\nKvI6ZM5wfOnn+Vw2jR9RqAP2qNS0ulKVFbmyjrWV027V1DEl2mt8mXwumyTpw4t+qLTVppl3/lq+\n+tU5xZekVn9EDa3BnOMAAAAA/YHCHAAAAAC7jfhhR0iSKj/YdcZZBcJxfbCydfsvIlIpTXvgFhlm\nsxaff0VGsWwWsybWMsIKAABg2LFY5K2p0Ogq37ZxU3uOLdWoCp98Lrt6K62xW80aWe7VrEkV2mdS\nhWrLvbJZ8989sdDr0N4TyzVpZJESo+u06JKr5epo02E/OFslyxbmHH/tpu4h9TkdAAAA2Gr74a8A\nAAAAsItKjx2n+KgxqlzwjkzJhAyrLas4/lBMki+/yfWRYRja0BxUfXNAacPY7vro/z6nwvrVWnfM\nKQqMGptRzAkji2S3McIKAABguLOYzSopcKqkwClJSiTT8gdj6gzG1BmIKRpPqbTAqaoSt4oLsu+w\n01cmk0nVpR6VF7lUf/Glet/l1j43/1RfvPpCvX3dbWqedVDWsdOGoaX1HdpnYoVsVp5JBgAAwNBB\nYQ4AAACA3Ury8CPlfvA+lS5bpLbps7KK0R1KyDAMmQboC4zPC0eTWrlqsxIbNqi0rVmu1ia5WzfL\n1bp5y8+2Zvka1ills2vJOd/OKGZFkUsVRa5+zhwAAACDwWY1q6zIpbKPP++lDWPAinF2xGoxa9yI\nQnVedonmFhVr9i++p4N++i3Nu/oGbTzsS1nHjcZTWrGxU9PqSvOYLQAAAJAbCnMAAAAA7FYShx8p\nPXifKt9/M+vCnGQ6rVA0Ka8ru4472TD5u+T52f+TsXChfE2bNLqro+f8nG6FK2q04rQLFamo2Wns\nEp9DExhhBQAAsNsYzKKcTyv2OeQ8/wzNKyzSrGsv0f7X/1AOf6dWn3x21jHb/FHVbw5odNXgdrgE\nAAAAtqIwBwAAAMBuJXHQwUpbbap6/00tueB7Wcfxh+IDV5hjGPJe/X05n/6HUnaHwuVV8o+ZqEh5\nlcJllYqUVytcUaVwebUiZZVKeAukDL5ssZhNGldTqJoyzwC8CQAAAGB7LodVY047XguKH9ee3z1P\ne935azn8HVpy7ncy+ky7I+s2dyuZSmvciMI8ZwsAAAD0HYU5AAAAAHYrhten+Oz9VPLOm3J0titW\nnF2b++5gTCMGqKDF8cSjcj79D7VNnanXbnpYhiX3P+WKvA5NGlkkl4M/CwEAADC4rBazxhx9kJY/\n/E+Nv/gMTf3bXXJ0dWj+5T+VLJasYm5sDSqeTGvSqKIh0yEIAAAAuyfzYCcAAAAAAAMtecSRkqTK\n+W9nHcMfjucrnV6Z162V99orlXB7NPeaG3MuyrGYTJowolAzx5dRlAMAAIAhw2QyacS+09Xw5L/U\nNXayxv3rce3/mytljmf/ubu5M6zFa9uVTKXzmCkAAADQNxTmAAAAANjtxA/bUphT9d7/so4RjacU\nS6TyldKOJRLyXXaxzKGQ5l/+M4Wra3MKV+ixa9bkCo0o9+YpQQAAACC/SieOUeczz6ttz9ka+b+X\ndNBPvilrOJR1vI5ATItWtyne35/dAQAAgB5kVJizaNEinXPOOdu9/t///lennnqqTj/9dD3xxBOS\npEQioSuvvFJnnHGGzjrrLK1Zs0aSVF9frzPPPFNnnXWWrrvuOqXTVKgDAAAAGBypadOVqKlVzbuv\n5vQErj/Uv11z3Df9VvYP3lP9YSdow5EnZh3HYjJpfA1dcgAAADA8eKvKFH36WTUffKQqF76rL151\nnhyd7VnHC0QSWrCqTZFYMo9ZAgAAAJnZaWHOvffeq5/85CeKxWKfeT2RSOj666/X/fffr4cffliP\nP/642tra9PrrryuZTOqxxx7Tt7/9bd1yyy2SpOuvv17f+9739Mgjj8gwDL3yyiv9844AAAAAYGdM\nJiVOPFm2cFCV89/KOkx3PxbmWN99R+5bfq9QZY3mf/dnWccpdNu1z6QK1VZ4ZTKZ8pghAAAA0H8c\nPo/06OPafOLXVLJqiQ698pycOudE4knNX9mq7gEaSQsAAABstdPCnFGjRun222/f7vU1a9Zo1KhR\nKiwslN1u1z777KP33ntPdXV1SqVSSqfTCgaDslq3PI25ZMkS7bvvvpKkQw45RG+//Xae3woAAAAA\nZC524smSpNo3Xsw6hj/YP4f6Jn+XvN+6SJI099oblfT4+hzDbDJpbHWBZk4ok9tJlxwAAAAMP2a7\nTZZ771XL6eepoGGdxj33SE7xEqm0Fq1qU0d3NE8ZAgAAADu309PZY445Rg0NDdu9HgwG5fN9cjjs\n8XgUDAbldrvV2Nio4447Tp2dnbr77rslSYZhbHs60+PxKBAIZJRgeXnfD6ABYLjhdx0AAIPg2MOV\nGlGrEe+8qhV2kwy7o88hTCaTSko8slgymhKcGcNQ+ruXyNy4Uasv/K7i+31B2XxSGFnp0x5jS/OX\nFwAAwOdwnoEBc8+tSj3/tCb/40E1n/UNpVzunMKtbw3LW+DSiHJvnhIEAAAAepb1Y5Ner1eh0Cdt\nI0OhkHw+nx588EEddNBBuvLKK9XU1KTzzjtPzz33nMxm82fuLSgoyGif1tbMCngAYLgqL/fxuw4A\ngEHiPuEkee75ozxv/FdN+x+WVYw19R0q9vW9qKcnjicfU8Fjj6l9ygwtPO1iGcG+P81rkuQbWchn\nDAAA0G84z8DAMstywSUque33qnj8Ia386gU5R3x7YYPGVhdoVCUFZgAAAMhdbw8uZP1Y57hx41Rf\nX6+uri7F43G9//772muvvVRQULCtk05hYaGSyaRSqZSmTp2quXPnSpLeeOMNzZo1K9utAQAAACAv\n4tvGWb2UdYzuUP7GWZnXr5Pn6h8o4fZo7rU3yrBk9yxFWaFLLgfjqwAAALDrSH/7ciXcHk168n6Z\nY/kZRbW2qVurG/15iQUAAAD0pM+FOc8995wef/xx2Ww2XXvttfrGN76hM844Q6eeeqoqKyt1/vnn\na8mSJTrrrLN03nnn6fvf/77cbreuueYa3X777Tr99NOVSCR0zDHH9Mf7AQAAAICMJfeZrUT1CNW8\n81+Z49kV2HSH81SYk0zK/c2LZAkFNf/ynypUPTLrUCMraMkPAACAXYtRXKK2My+Qs7NNY59/Mm9x\nG1qDau4M5y0eAAAA8HkmwzCMwU6iN7RDBbCro/UzAACDy/3Ta+W5507975d3afN+h/Z5vc1i1oHT\nq3POw3HDr1Xwh99qw2Ff0txrb5RMpqziFHkcmjmhLOd8AAAAesN5BgZDrKlZVfvNUMLj1fMPvay0\nPT8jZS1mk2ZNqqDrJAAAALLWL6OsAAAAAGBXED/xK5KkkVmOs0qk0gpFEznlYJ37jny33KhQZY3m\nf+dnWRflSHTLAQAAwK7LUV2pjad8Xa72FtW9+I+8xU2lDS1d36H00H6OGQAAAMMUhTkAAAAAdmvJ\nfWYrXlWjmnf+K1Miu7FU/mD246xM3X65L/mGJGnuNb9TwluQdSy3w6rSQmfW6wEAAIChLnzpd5R0\nODX58fuy/vy+I4FIQms3dectHgAAALAVhTkAAAAAdm9ms+JfPkn2YLcqF7yTVYjuUPZfCNi+f4Uc\nTQ1aduY31T5tn6zjSHTLAQAAwK6vZMIorfvS6XK3NmnMv5/Ja+yG1qDa/dG8xgQAAAAozAEAAACw\n20ucdIokqTbLcVb+LAtzzH9/UoXPPaX2KTO09OzLsoqxlcNqUWWJO6cYAAAAwFBntZjVeuFlStns\nmvLon2RK5jZW9vOWb+hULJHKa0wAAADs3ijMAQAAALDbS86arXhltUa8/UpW7fAj8aTifT287+qU\n96fXKmV3aO7Vv5VhsfZ5308bUe6R2WTKKQYAAAAwHBRPGqO1x58mT3OjRv33//IaO5FKa1l9pwzD\nyGtcAAAA7L4ozAEAAAAAs1mxEwZ2nFX6pz+To71VS7/+LYVGjM5qz60sZpNqyjw5xQAAAACGi5IC\np9aecbHSVpumPHK3TKlkXuN3BWPa0BzMa0wAAADsvijMAQAAAABJyZMHbpxV+K25qnjiL+oeOVYr\nvnpBVvt9WnWpR1YLf94BAABg92A2meSbNFbrjjlFvk0bNPLV5/O+x/rN3fIHY3mPCwAAgN0PJ7cA\nAAAAICk5e9+cxlll2jEnEYur8Jrvy2QYmv/d62TY7H3e69PMJpNqy+mWAwAAgN1LZbFby0+/WGmL\nVVMeuVtK9XG07E4YkpbVdyqRTOc1LgAAAHY/FOYAAAAAgLRlnNWXvvzxOKt3+7w8EEkonTZ2ft8t\nd6ho5WKtP/JEtc7YN5tMP6O80Cmn3ZpzHAAAAGA4KfDYpdGjVX/kiSpoWKfa/2XX+bI30URKKzZ2\n5j0uAAAAdi8U5gAAAADAx5Jf+aokZXWonzYMBcK9d83ZvHi1xt51o+LeAn148dVZ5fh5Iyt9eYkD\nAAAADDeVxW4tO/ObSpstmvq3u6R0/rvbtPmjamwN5j0uAAAAdh8U5gAAAADAx5Kz91W8omrLOKtk\nos/r/b2MswqE4yr6xU9kC4f00YU/UKy4NJdUJUklPoe8LlvOcQAAAIDhqKLYpVDNKG04/AQV1q/W\niLf+0y/7rNnUrWCk738fAAAAABKFOQAAAADwCbNZkS+dKHvAr4osxll191CYk0yl1fLksxr52vNq\nnzJDa48/LddMJUkjK+iWAwAAgN2Xy2FVoceuZWd+U4bZvKVrjrHz8bJ9lTYMLV3foVQ/dOQBAADA\nro/CHAAAAAD4lPRXTpUkjXzjxT6v7aljzurVm7XHzXNkmM364LvXSebc/xTzuWwq9jlyjgMAAAAM\nZ1UlbgVH1mnjF49T0drlqn731X7ZJxxLatVGv4x+KPwBAADAro3CHAAAAAD4lOS++yleXpnVOKtE\nKq1w9LNrNneEVXLP7fJt2qBVJ58j/7gpecmztsKblzgAAADAcFZe5JLZZNrSNcdk0tS/3tkvXXMk\naXNnWG8v3qzF69rV2Brc7rM/AAAAsCMU5gAAAADAp5nNCh+f/TirT3fNCUeTanpngSY//ieFyyq1\n5Nzv5CVFp82i8iJXXmIBAAAAw5nVYlZpoVPdYyao4eBjVLJqiaree6Pf9kuk0mrzR7Wq0a95y1v0\nzpLNWlbfqc0dYcXiqX7bFwAAAMMXhTkAAAAA8HmnZj/Oqvvjwpx02tDSde2acdsvZEkktPDSHynp\n9uQlvdpyr8wmU15iAQAAAMNdZfGWovVlZ10qSf3WNccW8MsSCX/mtVgipebOsJZv6NQ7Szdr3rJm\nrdzYpdauiNJpxl4BAACAwhwAAAAA2E5i3/0VL6tQTRbjrLZ2zFmzya/iF/+pygXvqGn2wWo8+Oi8\n5GY1m1VV6s5LLAAAAGBXUFLglM1iln/sJDV+4QiVLv9Qe/3xV7L7O/MS3xoKaPp9v9eXzzhYX7z6\nAimd7vHecCypTe0hLVnfofrmQF72BwAAwPBGYQ4AAAAAfJ7ZrNBxX5Yj4FfFwrl9WhqOJdXUHlLL\n+ibNuOcGpewOLbj8p1KeOtzUlHlktfCnHAAAALCV2WRSxcddcz686EoFq2o1/tlHdPx5R2vyo/fI\nEo1kFdeUSmrcs4/o+POP0eQn/ixTKq3SFR9q5OsvZLR+Y0tQkVgyq70BAACw6+A0FwAAAAB2wPh4\nnFVtFuOsVm7s0rQHb5Wro01Lz7pUoeqRecnJbDJpRHl+xmEBAAAAu5LK4i1dJYO1dXrpvn9pwbd+\npLTVqukP3KLjzj9Gdc8/IVMqwyIZw1DV3Nd09CUnae87filzPKaPLvi+Xr7nGaWtNk178FaZEvGd\nhkkbhtZu6s7lbQEAAGAXQGEOAAAAAOxAar8DFCur0Ii3/tPncVZFKxdr3HOPqru2Tiu/emFe8nHZ\nrZpQWyiHzZKXeAAAAMCupMBjl9thlSSl7Xat/sq5ev6hl7X0zG/KFgpo1i3X6ehLTlLNW/+RDKPH\nOIVrluuQay/UwT/9lnyN67Xm+K/phQdf0vIzL1Fg9Hit+dLp8jZt1NgXnswor1Z/RJ2BWF7eIwAA\nAIYnCnMAAAAAYEcsFoWOPeHjcVbzMl+XSmnvW+fIZBia/93rlLbbs07BJKmswKk9x5Zqv6mVqi6l\nWw4AAADQk61dc7ZKenxacsH39MKDL2ntcafJ17heB/78OzrsB2erdMn8z9zrbG/RrJt+rKMuO0WV\nC97V5lkH6eW7ntb87/1cseKybfctO+tSJVxuTf3rXbJEQhnltabRL6OXYiAAAADs2ixz5syZM9hJ\n9CYc3nk7SAAYzjweB7/rAAAYokxej9yPP6KU3a6mAw7v9V5zPK6KBe9oj4f/qOoP3lL9EV/Wqq9e\nkNW+dqtZteVeTR5drJoyr1wfP/kLAAAwVHCegaHIabeooXX7Ypmk26OmAw7TxkOOlautWVXz31bd\nS0+paPVyBWpHq+6Fv+uA31yp0hUfqnv0eM27+gYtPfdyxYpLt4uVcrllTiRUM+91pewOte05e6d5\nxZNp2a1mFXiyL9oHAADA0ObxOHq8ZjKGeJl2a2tgsFMAgH5VXu7jdx0AAENVKqWCaROlRELPPfaG\nDKvtM5cdnW2qnveGqt99VVUfvC1rNCxJClXW6JXbHv/Mk7WZKPI4VFPmVlmRS2aTKW9vAwAAIN84\nz8BQtXBVm7pCvY+OKl0yX3ve+3uVLV2w7bVoUakWn/ddrT/2FBmW3gvjreGQjjvvaFkSMT3/4MuK\nF5XsNC+bxax9p1TIZmU0LQAAwK6ovNzX4zUeuwQAAACAnlgsCh5zgkofeUDli+apZe8vqHDtClXP\nfU01776qkhUfyfTxsw6BmlFq2v8wbdr/MLVN23u7Ip6eWM1mVZa4VFPmkceZ2RoAAAAAO1ZZ4tpp\nYU77Hnvr1Zv/ppp3/qux/3pcXeOnavnXLlLS481oj6Tbo2VnXaq97vqNpjx6jxZ960c7XZNIpbWu\nKaCJI4sy2gMAAAC7DjrmAMAg4wkzAACGNvP/3lDpqSfIP3qcrJGwPC1NkqS02aK2aXurab9DtWn/\nwxQcWdfn2F6nTdPHlcph46lZAAAwvHCegaEqmUrr7cWbld7BVx9mk0lOu0Uuh1Vuh1Uuh3Xb+KuO\nQLRP+5jjcR37jePl7GjRi/e/oHDliJ2uMUnaZ1KFvC4K8gEAAHY1vXXMoTAHAAYZB1kAAAxxqZR8\nM6bK2dKkuLdAm2cfrE37H6bN+xyoREH2T7sWuO2aPrZUNqs5j8kCAAAMDM4zMJSt3NilcCy5rfhm\nWxGOw9LjyNiWrojWNPgVS6Yy3mfUf57Vfr+7RuuPPEnvXX1DRmuKvA7NHN+3kbcAAAAY+ijMAYAh\njIMsAACGvrYPFqtp2Vp1TN4z4xFVvSn2OjRtbIksZopyAADA8MR5BnZFyVRa65sCamwLKqMvTtJp\nHXXZKSpct1Iv3/2MuusmZrTP1DElqihy5ZQrAAAAhpbeCnM4BQYAAACAnSjYc4q6ps/KS1FOeaFL\n08eVUpQDAAAADDFWi1njawu198Ry+Vz2nS8wm/XRhd+XyTA0/f6bM95nbaNfqXQ6qxw7uqN6b3mL\nwtFEVusBAAAw8DgJBgAAAICdsNssmj2lQuWFuT3VWlXs1tQxxT22zwcAAAAw+Hxuu/aeWKYJtUWy\n7qSgfvPsQ9Q6fZZq5r6m0sUfZBQ/mkipoSXUp5zShqE1jX59uLZdoWhCH65pVzSe7FMMAAAADA4K\ncwAAAAAgA067VXvUlWjPsaVyO6x9Xl9b7tXk0cUyUZQDAAAADHkmk0kjyjyaPaVClb2NnTKZ9OFF\nV0qS9rzvJsnIaAiWNjQHMi6sicSSWrCyTRtbg9teiyZS+nBNuxLJVEYxAAAAMHgozAEAAACAPigp\ncGrW5AqNrS6QJcMim7qqAo0fUdjPmQEAAADIN4fNoiljSjRjXFmPBfodU2aq8QtHqGzpAlW/+2pG\ncVOGobWbund6X3NHWO+vaFEgEt/uWjiW1IdrOpRMZTcWCwAAAAODwhwAAAAA6COzyaRRlb4t4616\ne3pW0vgRhRpd5RugzAAAAAD0h2KfQ7MmVchpt+zw+kcXfl+G2azp998spTLrYtPSFVFXMLbDa8lU\nWsvqO7VsQ6dS6Z678AQicS1Z16F0L/cAAABgcFGYAwAAAABZctqt2qOHp2fNJpOmjCpWbbl3kLID\nAAAAkE9ms0ljqgp2eC0wapzWH3WyCutXa/Qrz2Ycc3WDX8bnxl8FwnF9sKJVzZ3hjGJ0BmNaVt+5\nXRwAAAAMDRTmAAAAAECOin2OT8ZbmU0ym0yaOrpYlSXuwU4NAAAAQB5VFrt6HGm15JzLlbLZNe2h\n22WO77gTzucFowk1tX9SgLOxJagFq9oUiSf7lFerP6KVG7v6tAYAAAADg8IcAAAAAMiDreOt9p1c\nqRnjy1S2kxFXAAAAAIYfk8mkMdU77poTqajW6pPOlru1SeOefTTjmOuauhWOJvXhmnat2eRXOsvO\nN00dYa3d1J3VWgAAAPQfCnMAAAAAII8cdosKPfbBTgMAAABAP6kocsnrtO3w2rIzLlbc49OUR++W\nNRTIKF4ildZ7y5vVEYjmnNuGloA2NGe2LwAAAAYGhTkAAAAAAAAAAAB9UNdD15xEQZGWn36xHAG/\nJj3x54zjZdcjZ8fWNnWrqT2Ux4gAAADIBYU5AAAAAAAAAAAAfVBa6FSBe8edMleffLYipRWa+NRD\n8tWvHuDMtli5sUttXZF+i98djqvdn3uHHwAAgN0BhTkAAAAAAAAAAAB91FPXnJTTpfnf/omssaj2\n/82VMscGvoDFkLS0vlOdgVjeY7d1RbRoVZvWNXXnPTYAAMCuiMIcAAAAAAAAAACAPir2OVTkdezw\n2qaDjtLqE85Q0bqVmvGn3w1wZlukDUOL17ZrU1v+xlptbAlqyfoOpQxDwWiiX7vyAAAA7CoozAEA\nAAAAAAAAAMjC2B665kjSom9eo666iRr/3KMa8ebLA5jVJ1KGoZUNXfpobbtiiVTWcQzD0MqNXVqz\nyS/jU6/XNwdzTxIAAGAXR2EOAAAAAAAAAABAFgo8dpUWOHd4Le1w6t0f/0FJh1Oz/vBTuZsbBzi7\nT7R3R/X+8ha1ZtHhJplK66O1HdrUvn3nnUAkro7ugR/VBQAAMJxQmAMAAAAAAAAAAJClul665gRG\njdOCy34se7Bb+11/lUyp5ABm9lmJVFpL1ndoWX2nkql0Rmui8aQWrmpTR6Dn4pv65kC+UgQAANgl\nUZgDAAAAAAAAAACQJa/LpvIiV4/X1x97qjYcerzKli7Q1L/cMYCZ7VhzZ1jvL29RZyDW632BcFwL\nVrYpGE30ep8/FJc/2HssAACA3RmFOQAAAAAAAAAAADmoq/LJ1NNFk0kfXDFHwapaTXnsTypf8O5A\nprZD0URKi9a0aXWjX+m0sd31Nn9EC1e1KZZMZRSPrjkAAAA9ozAHAAAAAAAAAAAgB26nTZXF7h6v\nJz0+vfv/bpJhtmi/314lR2f7AGbXs4bWoD5Y2apAOP6Z15as61DK2L5gpycdgZi6PxUDAAAAn6Aw\nBwAAAAAAAAAAIEejq3wym3rsm6POyXvqowu/L1dHm2b//kdSOj2A2fUsFE1owao21W8OaHWDX6sb\n/cq8JOcTG+iaAwAAsEMU5gAAAAAAAAAAAOTI5bCqqqTnrjmStPLU87V51kGqfu9/mvjUQwOU2c6l\nDUPrNneroS2YdYw2f1TBSCKPWQEAAOwaKMwBAAAAAAAAAADIg9FVPll66Zojs1nzrrpBkZIyTb//\nZhWv+Gjgkvt8KrGoSpYu0PinH9bs312jYy46QQf84gqZktkX19A1BwAAYHsmw+jDkNBB0NrKhzgA\nu7bych+/6wAAAAAAwLDCeQbQszWNfm1s7b3zTMX8t3XIjy5SqKpW/77zKSU93n7NyZSIq3DdKpWs\nXKzilR+pZOUSFaxfJXM6te2etMUqcyqpNcd/TfOvmCP1VmDU0z6SZk+ulNtpzV/yAAAAw0B5ua/H\na3wyAgAAAAAAAAAAyJNRlV5tag8ple75ueiWvb+g5adfrCmP/Un73DZHc6+9MatCmB0xx6IqXL9K\nRWuWqWj1MpWsWqLCtctlSXzSCSfpcKpj8p7qmDRNnROmqWPSdEVLK3Toledo3PNPqHv0eK3+yjl9\n3tuQtLEloEmjivPyXgAAAHYFFOYAAAAAAAAAAADkic1qUW25V/U7Geu05NzLVf7hPI169V9q3vsL\nWn/MKX3ey9HZrqI1y1W0dtmWn2uWy9ewTqZ0ets9aatNXXUT1TlpmjomTFPnpOnqHj1OhmX7r4je\n+vkfdeR3vqaZ99ygQO0YNc8+uM85NXdGNLrKJ6edr6AAAAAkRlkBwKCj9TMAAAAAABhuOM8AepdM\npbV0fafSaUOGDBmGZBhbfqaNT/7tbGrQoRefJEskrFhRiVIOp1IOp5IOl1IOx7Z/pxxOpexOJZ1O\nyWSWb+NaFa1ZLldH62f2Tbg96ho7WV3jJqtr7GT5x02Wf8xEpe32jHMvWbZIh/7wXKVtdr1y66MK\njB7f5/c/osyjCbVFfV4HAAAwXPU2yorCHAAYZBxkAQAAAACA4YbzDCB/bK++Iuevfq5ER6cssags\nsaissags8Viv68Ll1VsKcLb9N0WhyhGS2ZxzTiNf/Zf2v/6HClaP1Cu3Pa54Yd9GU5lNJu03tVIO\nmyXnXAAAAIYDCnMAYAjjIAsAAAAAAAw3nGcA+bdmk18bW4KfvJBOyxKPfVysE5ElFpM1FpE5kVBg\nxGglCvq3I80eD92mqX+7S63TZ+n1G/4sw5Z51x1JKfiMGQAAIABJREFUGlnu1bgRhf2UHQAAwNDS\nW2EOAz4BAAAAAAAAAAAGWV11gboCMQUiiS0vmM1KOV1KOV2S+taxJh+WnHO5fBvWauT/XtI+t/1c\n7//gV5LJlPH6Te0hjar0ymalaw4AANi95d7PEAAAAAAAAAAAADkxm0yaMrpElj4Uv/Qrs1nvXXW9\nOibsobqXntKEfzzUp+WptKGG1lA/JQcAADB8UJgDAAAAAAAAAAAwBLidVo2vHTrjn1JOl976+R8V\nKa3QjHt/p+p3X+3T+sbWkJKpdD9lBwAAMDxQmAMAAAAAAAAAADBEVJd6VF7oykussdUFmjK6WDWl\nHnmctqxiRMsq9dbP/6iU3aH9rv+hCtatzHhtMp3Wpja65gAAgN0bhTkAAAAAAAAAAABDyMSRRXLY\nLFmvN0maPKpYoyp9qix2a+LIIs2eXKEDp1VpjzElqi3zyueyKdOhWZ0Tp+m9q66XLRLWQT+7TI7O\n9oxz2dgSVCpN1xwAALD7ssyZM2fOYCfRm3A4PtgpAEC/8ngc/K4DAAAAAADDCucZQP+ymE3yumxq\n7gz3ea3ZZNIeY0pUUezeQVyzPE6bSgqcqinzqLbcq0KPQw67RTKkeCLVY9zu0eNlmMyqffs/Kl22\nUBsO/7IMy86Lh9KGoWgspXgipWgipWQyLcOQzOYtuQIAAOwKPB5Hj9dMhmEYA5hLn7W2BgY7BQDo\nV+XlPn7XAQAAAACAYYXzDGBgrNnk18aWYMb3W0wmTRtbqmJfz18M9SaRTKm1K6qWroj8wZi2+wLJ\nMLTf9T/UqNee14ZDj9eCy3+ieEFxVnttzddus8huNctus8hmNctpt6jI65DPbZOJwh0AADBMlJf7\nerxGYQ4ADDIOsgAAAAAAwHDDeQYwMNKGoQUrWxWIJHZ6r81i1vSxpSrw2POydzyRUqs/qtbOiPyh\nT4p0zLGoDr3qPJUu/1Apu0P1R3xZq086W/6xk/Ky71Z2q1mlBU6VFDhV7HPIajHnNT4AAEA+UZgD\nAEMYB1kAAAAAAGC44TwDGDjhaEIfrGhVqpevcxxWi6aPK5XXZeuXHGKJlNq6Imrpiqg7FJc5EtLY\n55/U+H/+Td7NDZKklhn7atVJZ2vTAYdLGYy46guzyaQir12lBU6VFjrltFvzGh8AACBXFOYAwBDG\nQRYAAAAAABhuOM8ABtamtpBWNnTt8JrTbtGMcWVyOQamWCWWSKm1K6KG1qCikbiq572hCc88rMoF\n70iSQpU1Wn3i17Xu2FOV8BX2Sw5ep00lBU6VFTrz1iEIAAAgFxTmAMAQxkEWAAAAAAAYbjjPAAbe\n4nXtavNHP/Oax2nTnuNK5bDlt0NNJmKJlBatblM4lpQkFaxfpfHP/k2j//2srLGIkg6n6o88SatP\n+rq6x0zotzxmTarot05BAAAAmaIwBwCGMA6yAAAAAADAcMN5BjDwEsmU3l/eqlgyJUnyuezac1yJ\nbNaBL8rZ6vPFOZJkC/hV99JTGv/Pv8nT3ChJattjb0WLy5S2WpW2WmVYrEpbrDKsH/+0WLddS9sc\nWn/0yYqWVmSUQ2mBU9PHlvbL+wMAAMgUhTkAMIRxkAUAAAAAAIYbzjOAwdEZiGnRmjYVeR2aVlci\nq8U82CntsDhHkpRKqWbuaxr/zF9VufDdPsVsmn2w3vz1nzK+f+8J5Yy0AgAAg4rCHAAYwjjIAgAA\nAAAAww3nGcDgaekMq6zQJbPZNNipbBNPpLRoTbtC0cQOr1vDIZnjMZlTSZmTCZlSKZmTSZk+/e9U\nUuZkUlMfvkMVH76nN379JzXPPjij/Yu8Ds0cX5bPtyR/KC6P0zokip8AAMDQR2EOAAxhHGQBAAAA\nAIDhhvMMAJ+XSKa0aHW7gj0U52SqcO0KHXXZKQrU1unle56RYbFmtG7GuDIV+xw57b1VVzCmhavb\nZJLkcdpU5HWowGtXkccuu23wRocBAIChq7fCHMp8AQAAAAAAAAAAkBOb1aIZ40vlddpyiuMfO0lr\njztNBRvWaOy/Hs943bqm7pz23SqdNrRyY5ckyZAUjCbU0BbU0vUdenvJZs1b1qyVG7vU3BlWLJ7K\ny54AAGDXRmEOAAAAAAAAAAAAcpav4pwl535HCbdXezx0u2wBf0ZrusNxtfujOe0rSRtaAgrHkj1e\nD8eS2tQe0rL6Tr2zdLPeXbpZazd1a4gPqAAAAIOIwhwAAAAAAAAAAADkxZbinDL5XNkX58SKS7X0\nrEvlCPg19a93Zrwu16454WhCG5qDfVoTjae0oSWwrcsOAADA51GYAwAAAAAAAAAAgLyxWc3ac1xu\nxTmrTz5HweqRGv/sI/I2rMtoTTCaUEtXJOs9V270K51l55umjrBWbOjMem8AALDrojAHAAAAAAAA\nAAAAeWWzmj/unGPPan3abteii6+SOZXUjD/dmPG69U3ZjZVqag+pKxTr87rPxOgI0zkHAABsh8Ic\nAAAAAAAAAAAA5J3VYtaM8aUqdGdXnLPpwCPVsuds1bz7qio+eCujNeFYUs2dfeuaE0+ktHZTbmOw\nttrUHqI4BwAAfAaFOQAAAAAAAAAAAOgXVotZMyeUadLIItksffxaymTSokuvlWEyaeY9v5Uplcxo\n2frN3X0aSbWm0a9EKt233HpBcQ4AAPg0CnMAAAAAAAAAAADQb0wmk6pLPdpvaqVqy70ym0wZr+0a\nP1XrjjlFhetXqe6Fv2e0JhpPqak9nNG9Hd1RNXd9tsOO3d+p8oVzpSxGYm21qT2kVQ0U5wAAAApz\nAAAAAAAAAAAAMACsFrPGjyjUrEnlKvE5M163+PwrlHC5Ne2h22QNBTJas2FzQKl0711wUum0Vn6u\neKZ4+Yc6+tKTdejV52vaA7fkVJzT2BbS6gZ/1usBAMCugcIcAAAAAAAAAAAADBi306Y9x5Vqel2p\n3A7rTu+PlZRr+RnflMPfqal/uzujPWLJlDa19d41Z/3mgKLx1LZ/j3npKR125dlydrYpUlKuKY/9\nSXs8eGtOxTkNbUGtbqQ4BwCA3RmFOQAAAAAAAAAAABhwpYVOzZpcoXE1hbKae//KauWp5ylUWaMJ\nzzwsT2N9RvE3NAeUTO24a04wklBja0iSZEomNPOPv9Lsm36slNOt//3qT/rPHU8qUDNKUx+9R1Mf\nvqNvb+xzGlqDWkNxDgAAuy0KcwAAAAAAAAAAADAozCaTRlZ4te+UClWXuGXq4b603aEPL75K5mRC\nM+69MaPYiVR6W/HNpxmGoZUbu5Q2DDk62/XFay7UhH/+Tf4xE/Sf259Q86wDFS2r1Os3PqRg9Ujt\n8dc7NfXhP+bwLqWNrUGt2URxDgAAuyMKcwAAAAAAAAAAADCo7DaLJo0q1t4Ty1VZ5JLZtH2JTsPB\nx6h12j4a8fYrKl84N6O4G1uCSiQ/2zWnsS2k7nBcRSuX6MjLT1P5R++r4aCj9cqtjypUM2rbfZHy\nKr1244MKVtVqj4fv0JS/3pnTe9zYsmWsVU9dfAAAQP+IJVLqDMTU0BpUR3d0wPc3GUYOgzEHQGtr\nYLBTAIB+VV7u43cdAAAAAAAYVjjPANDfYomUNrWF1NQeUvxThTXFKxfryMtPU9fYyfr3H/8uWSw7\njTWqwqexNQVb4sZTmre8WSNefkazbrlO5kRci8+/QsvPuETaQTGQJLmbG3XoD8+Tp7lRH51/hZaf\ndWlO781iNqmiyKXqUo8KPPacYgEAgE8kkikFI0mFowmFokmFo0mFogklPlcU63PZNbrSq7IiV972\nLi/39XjNMmfOnDl526kfhMPxwU4BAPqVx+Pgdx0AAAAAABhWOM8A0N+sFrOKfQ6NKPfK7bAqFk8r\nnkwpWlohz+ZGVX3wpiIVVeqasMdOYwXDCVWVumW1mLVibavG3fprzfjzTUo63XrnZ7dq/bGn9liU\nI0kJb4Eav3CERrz9H9W+9R+lbA61T9sn6/dmGFIwklBTR1htXVGlDUMuh1UWc885QApFE7Jbd16I\nBQDYfcSXLJPz0ouUeuLv2tDk11IVqimYVEcgpkAkoWgipfQOetXEkym1dEXU1hWV1WKS22mVqZfP\nApnweBw9XqNjDgAMMp4wAwAAAAAAww3nGQAGgz8UV2NrUME19Trm/GOVdLn1wgMvKunx7nRtbZlX\npfGACi+9UJUL31X3qHF6a87tCtbWZby/u6lBh151rjwtTfrwoiu14msX5fJ2PsNsMqm80KmqUo+K\nfT1/sTfUBSMJeV22fon7wYoWjSjzqq7GJ4vZnPc9AADDQzKVVktnRMbTT2uPX18lWzi07VrKZlfT\nvoeo4ZBjtWn/Q5VyeTKK6XZYNarSp4riHY/TzERvHXMozAGAQcZBFgAAAAAAGG44zwAwmGKJlPSb\n36j2jzfKP3qcImVVSjmcSjmcSn78c8t/LqUcDiUdLslq1eTH7pW7uVGNBxyheVffkFFBz+d5mjbq\n0CvPlbttsxZdfJVWnnZh3t+fy25VdalblSVuOWzDo0NMuz+qDS0B+UNx7TWhXIV5HtG1bH2Hmrsi\nkrb8/5k8qkiF3uFbwAQA6BvDMNQZiKm5I6y2jpCmPHirpjz2JyUdLr3/g1+qa9xk1b7xoka+/oIK\n69dIkpIOp5r2/aIavnismmYfopTLvdN9XHarRlV6VVni7nOBDoU5ADCEcZAFAAAAAACGG84zAAy6\nSERFJxwl6+KPZOrDV11LzrlcS7/+Lf1/9u47PKoybQP4fc70nplk0ishIaEjRRAFe19dBdfVVSyL\nuoqr7oqiiIK66q69oWtZ3XV1XfvaPntDQOm9hBDSezKZ3mfO90cggqTMJAGSeP+uKxeTOed9zzuJ\nTOQ9d54H3VRckYkCLEY1Wh3+Tttf6OqqcPz8OdC2NGLj1QtQOvvyzieKRqFpaYShtgL6mgoYasqh\nbapH7fRTUHXyOT2uVRQEpCVqkZtqhEI+8CrERCUJzW0+VDe54faHOp5PNKoxZlhiv13HHwxj9Y6m\nA74XAoBMqx55aUaIbAFGRDRkef0hNNh8aGzzIhCKQOlow9EPzEfq+pVwp2djxeKn4MwrPGCMsaK0\nPaTz7Scw1pQDAMIqDeqnzkT1jDPQeNQxPYZz1QoZMpP1SEvUxlyljcEcIqIBjBtZRERERERERDTY\ncD+DiAYMSUJLkx1luxsh+byQB3yQBQKQBXyQ+f2QBf2QB/yQBfxwZebBVjyu2+lMWiWKcszQqOQI\nhCKoaXKjrtWDSPTA22m62kqcMH8ONK1N2HTVLWgZPRH62goYan760NdWQh7wdXqdilN+jfXX3xnT\nb+8rZCJyUw1IT9JB6GV7jf4UiUZR3+pFTZMb/lCk03MmjUjut5ZWu2sdqGl2d3pMq5KjKNsMYz9X\n6CEiGugkSUIk2v4RjUqISvs93ve81P4YANISY2vpNBB4/aH26jhtPji9wY7nzbu2Yto9N0DXVI+6\no4/H6gV/Q0hv7HoiSYKxohRZ332CrO8+gaG2suNQwGSGOzULntQMeFIz4UnL3PtnFrzWVEjyn36G\nqeQyqJV7P1RyqJUyaPb+qVLIOn42M5hDRDSAcSOLiIiIiIiIiAYb7mcQ0UDjC4SxvaINLl+w55M7\nIQDISTUgJ8VwUPglHImittmD2hY3guFox/P62gocf/McaGzNB80XVmngysyFOzMHrsw8uDJy4crM\nRUSlxuRHF8FSsgXO7Hz8sOgxOHMLYlqjXq1AfoYJZsORaeEUCkdR1+JBTbMboUi023OTEzQYmWvp\n8zXDkSh+2NZwUDBqfwKAzGQ98lJZPYeIfhl8gTA27W7pMhzZmbxUI3JSuw6OHEmBYARt7gDaXAHY\n3YH2lpU/k/vJ2zjq6XshhkPYdun12HHxH7qtfncQSYJpTwlyl3+GxLLtUNVWQ9NQA1kodPCpogiv\nNRWe1CzYCkdh+yXXIaLpPNgkCgJUChk0KhlOmprX5eUZzCEiOsK4kUVEREREREREgw33M4hoIIpK\nEvbUOlHT0nl1la5olHIU5Zhh6qHqSjQqod7WXinGFwwDAPQ15Rjx5j8Q1ujgymoP4Lgzc+FLSgG6\nqG4jhIIY++IjKHzvFYRVamyYtwgVp53f5fk/l2RSIz/dBI1KHtfr7C1/MIyaZg/qWzyIxHhbUQAw\nuSgFWnXf1ljV6MKeemdM5+rUCozIToBRy+o5RDR0+QJh1Lz9MXLfeAlbL7sBjvyimMeOyUtEokl9\nCFcXm1A4Cvt+QRxvINzluWIwiAlL/4Jhn7yFoMGEH297CI2Tj+vVdc16FYpzzFAqZAAAKRJBqLoG\nkbJySHv2QKysgLyqEsraKmjrqqFpbQIA2PMKsXLJ0/CkZXU7/wWndP29YDCHiOgI40YWERERERER\nEQ023M8gooGsxe7Dzio7wtHuq7oAQKpZi+GZJshlsf/WvSRJaLL7UN3ohtt/8G/axyp9xZeY/Mgd\nULqdqDj5HKz/411d/kb+z4mCgEyrHtkp+rjWHiunJ4jWNg/0/3wR2W//CxuuuwMNU2bENUeaRYsR\n2eZeryEqSVi1rRGBcOwVIURBQFayHjmpBogDoO0XEVF/8gfDaHvkSYx+8i8QI2F4UjLwxdK3ETIm\nxDReLoo4qjAJWnX/tBqMRSgcgTcQgS8QhscXgt0dgNsXQiwhFU1TPY6590ZYSragLb8YK+96Et60\nzLjXIADITTUiO0Ufc0vISDQKv90F9eI7kfrGPxE0mPDDwkfQNHF6l2MYzCEiGsC4kUVERERERERE\ngw33M4hooPMFwthR2Qant/PWVnJRRGF2ApITNH26js3pR22LB25vKK4AyT7ahlpMve/PSCzZDGfW\nsPbWVnmFMY9XyWXISzci1aKN+9r7i0SjaHMG0Or0w+YMQL1rOyY+dhcSSzYDABy5Bfj8ufdjruoD\ntIdkphQnQ63sXdWc+lYPSqrtvRqrVcmRnWJAslnDgA4RDQl+jw+RG29C7gevI2Ayo37yccj98gPU\nT5mB5fc8G3NbJ61KjqMKrf0a6oxGJXgDYXgDYfj8Yfj2PQ6Ee2x92BkhEoZ14ypM/estUDnaUHHK\nr7HuhsWIquKv9qOSy1Cca0aCvvdtID3PvYisexZAjESw+fc3Y9fsKzr9echgDhHRAMaNLCIiIiIi\nIiIabLifQUSDQVSSsKfOiZrmA1tbJehVKMpO6HVgpCvhSPSAm5E+f7jjRmUk2vXtOCEUxJiXHsOI\nd/6JiFKFDfPuQPnps+MKwRi1SqQlaiGTiZCLAuQyETKZALm4989ObsD6g2G0OgNodfhhdwcQlSSI\nAT9GvvYsRrz1EsRIGFUnnAWZ34+MH77C9/c+i4ajj4/ra5KZpMfwTFNcY/ZZvaOx2/YmsdAo5chO\n0SPFomVAh4j6zOsPodnuhygKMBtU0GsOT+WZUEMTlHN+h6SNq2AfNgIr7l4KrzUNxy76A9LWfo+t\nc/6IHZdcF/N8FoMaY4ZZYq4e05VWhx+ltXb4g90HU5V2Gyy7tsJYVQaF2wmF1wO51w2FxwWF1w2F\n1wOFx7X3OQ/kAR8AICpXYMO1t2PP2b+N62fiPhaDCkXZP7Wu6gvHN8uRcd3l0LQ2oeqEs7D2T/ci\noj4w3MtgDhHRAMaNLCIiIiIiIiIabLifQUSDSYvDh5IqOyJRCbmpBmQlx97Kor8EQnvbePjDaLJ5\n4eikkk/aD19jysMLoXQ5UHnC2Vh/4xKEtbG1tuqJAEAmipDLBMhkIiRJOij0Yt3wIyY+sRiGuip4\nUtKx/o+L0TBlBkx7SnDqH36N5tET8e2jr8Z1XZkgYOqoFCjk8d0UbXX4saW8Na4x3VErZMhM1iM9\nUQdRZECHiGK3L4zTZPfB87P2hQqZiASDCma9CmaDChpV/wY+ASCyeQsMl14IXX0Nao49BatveaCj\n7aHS2YaT582Gtqke39/3PBonHRvzvFnJeuSn9y44CQBVjS6U1zsPakkl97hg3rUNll1bYCnZCnPp\nVuga67qdK6xSI6zVI6TVIaQzIKTVI2hMwK5Zl8FWPD7ute1rXZWTaoh7bHfsuythmTsHids3tLfW\nWvwUvKkZHccZzCEiGsC4kUVEREREREREgw33M4hosPEHwwiFozBolUd6KQAAhyeImiY3Why+A25q\nahtrMfX+m5G4YxNcmbn4YdHjcAwbcUjXonS2YewLDyPvs3chiSJ2nTcH2+Zc33HjFwCOveNqpK35\nHl89/h/YRk6Ia/7sZAOGpRvjGrOxtAV2TyCuMbFQyfcGdJK0kMXY9oWIfnm8/jCa7T40231w/yyM\n0x21QgazQYUEgwoJehVUfazUInz0IRLmXQ25z4Ntl8zD9kuuO6hllXnXVpzwp4sRVmvx5TPvwJuS\n0cVsByvOMSPFHF8rxGhUQklVGxrtPgjhECwlW2Ap2QJzyVZYSrfCUFNxwPl+kwVtI0bDVjga9mFF\nCBoTENLpEdIaENbpENLoICkO/tksCgKivYiyqBQyFOf0rXVVdxw2F8T5N2PYR/9FwJiAH+54DM0T\npgJgMIeIaEDjRhYRERERERERDTbczyAi6h++QBi1zR7U2zwd7a6EcAhjXnocI95+CQGTGV8+/VZc\nN1pjJknI+vb/MP6Z+6F22NA2vBhrb7oX9sJRB52atHk1Tph/GWqnnYSVdz8d12Xkooipo1I6bafV\nGacniPWlzXFdI14KmYhMqx4ZVl3M6yKioc0XaA/jNLXFF8bpjk6tQKJRjWSzJr62V5IE5aMPwfjg\nfYgoVVhzywOomXF6l6fnffwmJj2xGLYRY/DNI68iqowthCoTBIwvSIo5tBoIRbB1jw0uXxD66nIc\nc88NMFXu7jge0uphKxy9N4gzBm2Fo+BNTo+7DZVKLsP4giTIZSLcvhA8vhDcez+8gXCXgR2LQY3i\nnIS4q7TFy+0LwfnEUox58l4gGsXmq29B6XlzcMGpxV2OiSmYs2nTJjz88MP497//fcDzX3/9NZYu\nXQq5XI5Zs2bhN7/5Dd5991289957AIBAIIAdO3ZgxYoVqKmpwTXXXIPc3FwAwEUXXYQzzzyzxxfF\nf9wR0VDHjSwiIiIiIiIiGmy4n0FE1L/CkSjqWjyobfEgEIoAAIZ9+DomPnUP2oYX45tHX0NErem3\n62kbanHUU3cjbc33CKvU2Hbp9SiddRkkWRdtWCQJJ974WyTu3IxPX/wIruz8uK6XF0dLkW3lNjQ7\nfAc8p6uvhmXHJtTMPL3rNfaCXBSRs7e9GRH9MgVCEZRU2WFz+Q/pdfRqBZLNGiSbNVAru3kf83qh\nu/E6aN9/F15rGlbc/TTsw0d2P7kkYdIjdyDv8/dQdtaFWH/jkpjXpVbIMHGEtccwi9MTxLZyGwLh\nCDK/+wSTHl0Ehc+LyhN/hYbJx8E2YjTc6TkHVfSJl1wUMb4gqcsgU1SS4PGF4PGH4fa2h3U8/hCy\nkvXITunf1lXd8QXCqPngC0y4cx40thZUnHwOcr94v8vzewzmvPDCC/jggw+g0Wjw5ptvdjwfCoVw\n5pln4u2334ZGo8FFF12E5557DklJSR3n3H333SgqKsKFF16It956Cy6XC1deeWVcL4j/uCOioY4b\nWUREREREREQ02HA/g4jo0IhKEprbfKhucsPtC2Li43dh2Cdvo/LEX2H1gr/FXXWgMxnLPsOUh26H\nPOBDw1HHYP2NS+BJy+pxXPryLzD9nhtQfup5WDv//riuqZC1V83pqX2ULxDG6h2NB7T30leX44Sb\nL4Xa3gpbwSisvfm+fm/vNXZYIixGdb/OSUQDX6vDj907qpH/+vNQeFwIafV72yzpEd7v8QGtl7R6\nSPI4qt90IkGnQrJZA2uCBgr5T++LYl0tDHMugnLzRrSMnICVi59EwJzUzUw/kfl9OPGmi5GwZydW\nz38Alaf+Oq71jB2eCLGLnzGNbV6UVNkhBQMY9/xDKHj/VYQ0Wqz9072oOb7nYiyxEgUBY4Ylwmw4\nNG2o+lswFMGu1dsx9vZrkbhzM9BN9KbHSGl2djaeeuop3HrrrQc8X1ZWhuzsbJhMJgDAxIkTsWbN\nGpxxxhkAgC1btmD37t1YvHgxAGDr1q0oLy/HV199hZycHCxcuBB6PdOnRERERERERERERERERED7\nTckUixYpFi3aXAFsvWExTOW7kPP1h2grHIXS8y/r0/zpy7/A1PtvRkStxqpb/4qqk86JOexTd8xJ\ncGbmIefrj7Dtshvgs6bGfN1QJIr6Vi8yrd3fG6xuch8QytHW12DmgiugtreiadwUJG9ajZPnzcaO\ni67GjouugaSIrf1KT3bV2DG5KLnH4BARDQ1RScKeOidqG+yYfs9NSFv7fVzjW0ZOwPZL5qFx4jG9\nCkzaPQHYPQHsrnXAYlAhOUGN9FXfwHjLnyBrakT5aedj/R8Xd9uSShSEA1o6RdQarLzrCZw8bzYm\nPrkE9vwiOPKLYl7P7hoHCrMSDnhekiTsqXeiuskNTVMdpv3lT0jcuRmOnOH44c4n4MoeFvdr74oA\noDjHPGhCOQCgVMhQNHUUNvz9DQz76yJ099XoMZhz2mmnoaam5qDn3W43DIafSgHpdDq43e6Oz597\n7jnMmzev4/OxY8figgsuwOjRo/Hss89i6dKlWLBgQY8vxmo9fOWGiIiOFL7XEREREREREdFgw/0M\nIqJDy2o1QG9UY/PfnsO0K8/B2BceQnDUWNgmTuvdfCu+woT7b0ZUpcK6x/4F+5iJiPedvHLOHzDm\n/gUY9eGrKLlhUVxjHb4wxiXqIYqd38QOhiLw7rHBoG+vXKNqbsDRt18JbUsjdl5/OyouvhpJK7/B\nqAfvwKhXn0H2yq+wZeHf4Bw5Ls5X0Tm7L4KiXFO/zEVEA5fHF8Km0mY4vSFMee4BpK39Hk3TTsCu\n626F3ONu/3C7IPe4IPfue7z3eY8LKlsLkrasw4yFc9E2ZiJ2z70JrZOm9yqgI4RDSPz4HWS/+jwM\n5bsgiSJ23HgnKn9zBXRdzKdRyZGfaUJakh5ykmawAAAgAElEQVT1LW6U1TjgC4TbDxYWYsviRzHx\n1qsw/S834YeXPkDYYIxpLa5ABP4okLW3HVQoHMXm3c2we8PI27oKY5fcBKXTjrpTz8W2BfcDGm3c\nP0O6MzLPguzU2NY60CQnG7E59Zluz+l1E0a9Xg+Px9Pxucfj6QjqOJ1OlJeXY+rUqR3HTznlFBiN\nxo7H9957b0zXYTlUIhrqWPqZiIiIiIiIiAYb7mcQER0eCgBiWhpWLnocx8+/DOMWzcOXT78Fb0pG\nXPOkrF2B8YuvRVQmw/f3/h0teaMAtz/u9ew65nQMT3wEme+/jk0XXIWQIfYgiwvA1l2NSEvUdXq8\nosEJu9MHAFC1teKY+XOgravGtkuvx/Zz5gBuP1xjp6H6uQ8w9sWHkf/xG5h29fkomXU5ts35I6Kq\nvrWi2lrqhwISjLr+qcJDRANPg82L0ho7IlEJhW/+A9n/+w/a8oux/LaHENF0/t7UmYTd2zHy388g\n44evMPnGS9E8eiK2zfkjmscfHdN4mc+LvE/fQeE7L0PXVI+oKEPFyeeg5ILfw5lXCHgCB41RK2TI\nSTUgxaKFKAC2VjdUAlCUaUSjzYvKRhf8wQhc44+F9qJrUPz6cyhe8iesXPwUEGM1sNVb6hDwJkKp\nkGHLnlZ4vQGMfO0ZjHztWUTlcqy7YQn2nPUbICL06mdIV3JSDNDIhEH974sMc/c/g2RLlixZ0tMk\nTqcTn332GS644IKO50wmE5555hn86le/giiKePLJJzF37lzo9XosX74cADBjxoyO8y+55BIUFRUh\nJSUFH3/8MTQaDaZPn97jC/B6gz2eQ0Q0mOl0Kr7XEREREREREdGgwv0MIqLDJ0GvQoU8AR6DCVnL\nPoN1y1pUnHwuJHlsv39v3bgKx951LQBgxT3PoHn81B5GdE2SyQBJQvqq7xDS6tAyZlJc473+MDKS\ndBB+VgkiEo1iR0UbopIEhdOOmbddCVPlbpTMvhJbr7jxgEoUUaUS9VOPR/OYybBuWYv0Vd8ha9mn\nsOcXwZuS3uvXBgAubwipidqD1ke/TOFItMsKTzS4hCNRlFS1obLRBUkCMpZ9hsmP3wVvUgq+e+if\nCJnMcc3nt1hRfcKZqDv6BGham5C64QfkfvE/WDethic1o8vwpNLRhhFv/gNT/zofmSu+gBgOo+xX\nF2HVwodRedr5CJgTDxqjVsgwLN2EETlmGLXKg96fBEGAQatEepIOKoUMHl8IdaMmIWn7eqSt+R5R\nhQotYybG9LokADanH/WtXkjNzZh+9x+R9/l78KZkYNn9L6J+2gm9qgzUnfREHYZnDP5qZYIgQKfr\nug1X3MGcDz/8EBs3bsTYsWORkZGBRYsW4e2338asWbMwbVp76byvv/4aCQkJGD9+fMcco0aNwn33\n3Yf3338fDocDCxYsgLKbnmj78B93RDTUcSOLiIiIiIiIiAYb7mcQER0+MlGAViVHiXUYNC0NSF+9\nDNrmetQdc3KPN0gTt67DcXdcA0GKYOXip9E46dg+r8eRW4D8j/4Ly66t2H3u72IOCAHtN8d1ajl0\nGsUBz9e3etHs8EHucWPGwqtg2b0du391ETZde3uXr9Gbmony02dBFgwgbc0y5H32LlSONrSMnoSo\nondVb4LhKERBQIK+65urNPT5AmHsqGxDaY0D/mAYWpUCCnlsFUdo4HF6g9hc1gq7p/3/XS07NuLY\nJdcjolRh2d9ehiczt9dz+xOTUX3i2aifMhOa1kakrv8BeZ//D9bNa+FJy+wIC2qa6jD6X09hyoO3\nIXXDSkSUKpT85vdYtfAR1B53KkL6g1s4qfYGcopyzDDqDg7k/FxHQMeqg1KpQNnoaUj/6iNk/Pg1\nWkYdBU9aVkyvKRKVYN66HjNvuxLmPTtRd/Tx+P7+F+BNj218PKwmDYqyE4ZMGLK7YI4gSZJ0GNcS\nt8FcroiIKBYs/UxEREREREREgw33M4iIDr+SqjY0Nthx/PxLkbhzMzZcuxC7z7u0y/MtOzZixu1z\nIQsEsPKuJ1A/7cR+W8volx5D8X+fx/rr70TZORfHNVavVmBSUXLH55IkYfWOJgSdLhy38CpYt65D\nxSm/xpqb74u5/Ypl+wZMfvROGKvK4ElJx9qb7kHTxJ47d3RGFARMGmGFVq3o+WQaUqKShOpGN6oa\nXYjsdwtdAJBk0iArRQ+jlq3OBpOqRhcqGlyI7v1+6uqrceINv4XS5cDye59F4+Tj4p5TIRMhl4nw\nBcMHHbPs2ISR/16KtLXfAwAaJ0yDL9GK7G/+D2IkDG9SKnbNvhx7zpjdZesslUKG7GQ90hJ1farY\nFJUkOL7+HsMvPQ9BnQGbr74FkAAxEoIQDkMMhyFEIhAjob2PwxAjEShdduR98g4EKYotV9yEkgt+\nH/N7cTwSdCqMzU8cUlWprFZDl8cYzCEiOsK4kUVEREREREREgw33M4iIDr9wJIp1Jc2Q6mpxyrzZ\nUDrasOxvL6F53JSDzk3YtQ0zF1wBuc+LHxc+gtoZp/XrWlRtLTjrkpPgS0zGpy9/AkkWe9UcABid\nZ0GSSQMAaLL7sHNXA6Yvvg6p61agesbpWHX7Q3HPKQYDKH7tWRS98SLEaAQ/LHoMNTNOj2uOfUxa\nJcYXJA2ZKg7UszZXAKU1dngDB4ct9pegVyE7WQ+LUX2YVkadkSQJ4UgUofDej72PwxFp73MRePxh\nOPer8Khw2nHiTRfDWFOOdTcswZ6zL4z7unJRxPiCJOg1CvgCYdjdAdhdAbS5AwiGox3nWbZvwKhX\nnkbq+pUAAEdOPkoumIuqE86E1ElFL7VSBr1GAbNe1edAzs+pXnwexoXz4xrjNyfhx4WPdPrzpT/o\n1QqML0iCXDa0KlExmENENIBxI4uIiIiIiIiIBhvuZxARHRkOdwAbd7fAsnUdjr/lcgT1Rny59C34\nktM7zjGV7cTxt14OhduJVQseRPWJZ/f6egKA0XmJqG52w+4OHHDsqCeWIP/jN/Dj7Q+j+oSz4prX\nqFXiqEIrAGDD9jqMun0eMn74CnVHH4+Vdz3R6Y3rWJl3bcXxN1+KiFqDT1/4CMEES6/mKcgwIcOq\n7/U6aHAIhSPYXetEY5s3rnEGjQJZKQZYTWoGuPogEIyg2eFDNCohEpUO+DMqSQc9H4nuDeREoj1P\nvh8xGMRxC+ciefMa7LzgSmy56pa41yoTBIzNT4Spi1Z3bl+oI6hjdwcRjkZhLtkCudfTHnARRYiC\nAJ1aDr1GAZ1GAf3ej0MaUJEkKL/+At7SctQ6gojIZJBkckTlCkTl8vbHMhmkvZ9HZXK4svMR1nZe\n0Wd/mUl65KUb4PaG4PKG4PIG4fKFug24qZUyTCiwQqWQ9eerHBAYzCEiGsC4kUVEREREREREgw33\nM4iIjpyyWgeqm93I/+A/OOrpe2ErGIVvHn0VUZUaxopSHH/LZVA52rB6/v2oPPW8Pl0r06rH8AwT\nolEJO6ra0Gz3dRzT1VbijN+fCXveCHz5zDtAnOGEcflJEKIRqK66Etnf/h8aJ0zF8nv/jqiy85ve\n8Sh4558Y/9zfUD3zdPx4x2O9mkMmCphclAy1Mr7KPTR41LV4UF7vjDvksT+NUo6sZD1SLVoIAjqC\nI+HI3iBJJIpwJLr3+fZj0agEs0EFs0H1iw71ONwBbKuwHVBp5pCQJEx+6DbkfvkBqo87DT/e8Wjc\nrZlEQcDoPEvMlZIkSYLLG0KbK4BwJNoRxNGq5RCP4Pe81eHHtgpbR2uvvshNNSA31djpsXAkekBQ\nx+UJwh+KQCkXMaHACo1qaL6vdhfMkS1ZsmTJ4VtK/Lz7lZciIhqKdDoV3+uIiIiIiIiIaFDhfgYR\n0ZGToFeh1eFH47CR0DbXI331MmibG+DMzsfxt14Otd2GtTfejYozZvfpOlqVHCNzzRAFAYIgIDlB\ng3BY6mgNEzImwFi5GykbfkTryAnwpGfHNX8wEELGXfOR+fn/0DLqqPZQjlrTpzXvYxsxBikbViJt\n7XI48grhys6Pew5JArz+CFIs2n5ZEw0cbl8I28ptqGv1dBpQEIMBmHdthaGmHJ7k9G5DHOFIFK1O\nP6qb3KhocKGqyY2aZg/qWj1osHnR2OZDs8OPVqcfba4AHJ4gnN4gGtt8aLB5EQpHoVKIUMiHXvWQ\n7tS2eLCjsg3h6KGvITLy30tR+L9X0Vo8DiuWPA1JoYh7jqIcM6wJsb8/CYIAlVKGBL0KFqMaeo0C\nSoXsiAextGo5DFoFWux+9OUrPzzDhOyUrkMooihAo5LDpFchOUGDzGQ9MpJ0SLVoh2woB2j/N1JX\nWDGHiOgI42+YEREREREREdFgw/0MIqIjy+UNYkNpCxDw4/ib5yCxZDNCGi0UPi/WX78IZef8rk/z\nCwDGF1hh0h3cUqqq0YU99U4AQELpNpwybzYax0/Fsgdfjnl+VVsLxr7wEHK//AC2glH47sGXEdZ1\nfZM3VqIgQAAgAdBVluGUa89DSGfAZy9+iKDR3Ks5i3PMSDEznHO4eP1huP0hJMcRgohVVJJQXudE\nbctPgRwhHIKpohTmXVthKdkK866tMFWUQoy0t+JxZg3DjouuRvUJZ0GSHbpAgVGrRIpFixSz5tC2\nNTrCopKE0mo76m3xtQ7rrZwv/ocpD90Od2omvn7ivwiYE+OeY3iGCZlDrK2d3R3Alj2tiMQZjBIA\njMg2I5WBxU6xlRUR0QDGjSwiIiIiIiIiGmy4n0FEdORVNrhQ3uCEprkBJ8+bDbW9FRuvXoDS2Zf3\nee4sqx75GaYujzfavCiptiMqSZix4EqkbPgBXz71JtpGjOl2XoXLgRFvv4yCd1+BPOCDfVgRvnvw\npR5DM2qFDKOHJUIua6/eI6C9IoUg7A3jCDigEoUvEMb6Xc3Ie/0FjHvxYVSe+Cusvu3BuL4GHWuW\niZhSnPyLq2hyuEQlCQ53EDZne1UZb6A9EFOQmYCMJF2/XmtXpQ2ujVtg2bV1bxBnCxLKdkIW+qkK\nYESpQtvwYrQVjIbc70XOlx9AjIThTsvCzgvnouKUX0NSHBxY6y+iICDRpEaaRTvkWl0FQhFsK7d1\nVN061KybVmPG7XMR1mjx9WP/gSt7WNxzdNeuabBzeILYUtaKcDS2VmKiIGBkjhlJhyA0N1QwmENE\nNIBxI4uIiIiIiIiIBhvuZxARHXmSJGFDaQuc3iB0dVXQ11WjcdL0Ps+rVckxaUQyRLH7QIDN6ce2\nChsS167AzNt+j5pjT8UPdz3R6bkynxcF/3sVI976B5RuJ3wWK7b/7lqUnz6rx5CDTBAwviAJBm18\nYQiHO4BNu5pw/I0XIbFkM5bfvRT1006Ma459UhI0KM619GrsUOYPhiGXiXFXeAmFo7C5/Gh1+GFz\nBjoNBoiCgHH5iTDpu24NE4/aJhdSLv8t0tZ+3/FcVCaHI68AtsIxaBsxGrbC0XDmDIck/6nVkaap\nDkVv/gN5n7wNWSgIb1Iqdl44F+Wnz0JUpY5vEZEIjFVlSCjbgcaJ0xEwJ3V7ukouQ7JFg9xUA2Td\ntNMaDByeILaX2xAIR+IbKElQOu3QNdRAV18Ntd0GIRyGGAlBDIchRMIQIxEI4fbPxUh47/EwMlZ8\nCbnfh+/++iJaxk6Je80ZSToUZCbEPW4wcXrbwzmhSPfhHJkoYHReIsyG/vn7OFQxmENENIBxI4uI\niIiIiIiIBhvuZxARDQxefxjrSpoQ6afbfQKACQVWGDtpYdUZpzeIrWUtmHHN+Ugo24FP//Ex3Jl5\nHcfFYBDDPn4Dxa8/B7W9FQGDCTsvvApl51yMiDq2qgvF2Wak9LJtSlObF9XL1uCU685H0JCAz174\nECFD15WAujMmLxGJpjiDGEOY/5XXIHvrv2geMxnNU46Dv6AYSoUMSoUMCrkI1d4/lQoRSrkMoijA\n5mwP4jg8AcTyX6xSLuKoQivUyr61kGpzBeD4+4uY/NDtaC0ai8qTzkFb4WjY84sQVcYWNFC3NqHw\n7ZeR/9EbkAd88FmSsGv2lSg76zeIaDqv7KNwO2HZuRmJ2zcgcftGJO7cBIXXAwBoLR6Hbx59Nab2\nWGa9CmOGJfYYlhuo6ls9KK1xdLQP+zkx4IeusRa6+mroGmqhr69uD+Ls/dj3NYtXVCbHmpvvQ9XJ\n58Q99pcUxnN5g9jcTThHIRMxZlhizD8XfskYzCEiGsC4kUVEREREREREgw33M4iIBo6aZjd21zr6\nZa6sZD3y0+MLrvgCYTS/+G9MvPtG7DnjAqz70z0QImHkfPE+Rr66FLqmeoQ0WuyadQV2zboMYV3X\nNy5/LtOqx/BuWmrFoqrRBeWjD2HMy4+j4pRfY80tD/RqHrVChklFyXFXhxmKnN4gkqdPhKG2suM5\nX2IyGiYdi4ZJx6JxwjSEjP1TacSgUWB8QVKvK8b4AmFsWV+Gky47HXKfF5/+42P4ktN6vR6l3YbC\nd/+F4R+8BoXXg4AxAbvOvwxl51wMta2lPYSzYyMSt2+AsWoPhP1uxTsz89A6agI0zQ1IXb8SWy+7\nATt+d21M17UY1BidZzki4ZyoJKHR5oVcJkKvUUCjii0oFZUk7K5xoK51v2CNJEHXUIOkLWth3bwG\n1i1roa+v7nR8WK2FOy0TntSfPnyJyYgqFJBkckRlMkhyBaJyOaIyORQqJTR6NbR6LbR6NRRJFrTI\ndGiy++Jqn2UxqDF6mAXiEGoj1hO3L4TNZS0Ihg8M56jkMozJT4Reo+hiJO2PwRwiogGMG1lERERE\nRERENNhwP4OIaGDZtLsFbe5An+aItYVVZ4L+IBKmHQV1Uz02XLcII955GYaaCkQUSuw+93fY+Zu5\nCCbEV30iQa/C2PzEfrk5vmtPE0Zecg7Mu7fj+788h4YpM3o1T3qiDoVZQ7u1TU8CoQhKvl6Dky49\nFQ0Tp6PypHOQunY5Utcth8rRBgCQRBGtRWPROLE9qGMrHA3IZL2+Zm+rl4QjUWwobcHwx+5G4Xv/\nxpYr/oSdF13d63XsT+G0o+D911Dw3itQup2QBOGAEE5YrUVr0Vi0Fo9D68jxsBWPQ9Bobh/rcuDU\na34NdVsLvn7idbQVjo7pmklGNUbmHd7ASIvDh7JaJ3zBcMdzclGETiOHXqOAXqOATqOAXq044L0j\nEIpge4UNDncAhuo9sG5eC+uWNUjashbalsaO84I6A+zDR7YHcNKyOgI47rQsBE1moIvXqpCJMGiV\nMGgVMGqV0GsVUCm6/m/MHwyj2e5HU5sPLl/XIR2TVomxwxMHfeuw3vD6Q9i0u7Wj3ZhaKcO4/KSY\ng1jEYA4R0YDGjSwiIiIiIiIiGmy4n0FENLD4g2GsK2nushVJT+JtYdUZ5UsvwnTbnwG0t5ApP30W\ndlz8B/isqXHPpVbIMHGEFQp578Mc+4tKEio+X47JV/wa/gQLPnvhw7gq9+zPYlAjL80Ag/aX19Yl\nKknYVNoC62svYsKzD2Dtn+5B+RkX7D0YhXn3dqSsXY7UtcuRuH0jxGj7Df6AwYT6o4/Hxj/c1utK\nOsPSjMhOif17JkkStpXbENy0Gadcez48qRn4/PkPEVX27/dN7nEj/6PXkbH8S7gzc9BaPB4toybA\nmVvQZZsqg0YBzcplmLngSjizhuHLpW/H3NrNatKgONd8yMM5Hn8IZbUO2FyxBf5EQYBGJYdeLYe5\noQr4/HOYN65C0pZ1UDtsHef5ExLRPGYSWsZMQvOYSXDkFvQY2hIFAQaNAkadEgadEkatok/tzXyB\nMJrtPjTbfXD5Qh3P69UKjBueBIX8lxfK2ccXCGPT7hbIZCLG5id2G3aigzGYQ0Q0gHEji4iIiIiI\niIgGG+5nEBENPMFQBGV1TjS2eeMe25sWVgfx+2G8/GK4tCasmXUV3Bk5vZpGFARMKEjq9+BLOBKF\n+47FKHjpCew5YzbW/enePs1nTdAgL9UArfqX0+KlpKoN9TYvjrt9LlLXrcCH//kW/qSUTs9VuJ1I\n3vBjezWdtcuhba5H3dEzseLuZ4BeVCMRAIwZlgiLUR3T+XvqnKhqdGLmLZchefOaPlVK6i8KmYj8\nDBNSLVrsqXPCfPdCFL73CkrPvQQb590R8zwpCRoU5ZghHIJwTjgSRUW9C3WtHkR7ESPI+eJ/mPTI\noo5QljcpFc1jJ3eEcVxZeV1WwdlHpZDBqFPCpFXCqGuvhnOogkj7Qjp2dxAjshMYREF70FMmCv0W\njPwlYTCHiGgA40YWEREREREREQ023M8gIhq42lwBlNbY4Q2Eez4ZgE6twMRCa69aWHW3hp2VbR0t\nUeJRnG1GikXbb2vZn9/jg/HkmTCV7cSy+19E46TpfZpPAJBq0SIn1dCnCh6DQW2zG6W1Dsh8Hpw7\nexqc2cPx5bPvxjY4EsFxi65B6roVfWonJRdFHFVohVbd/de6sc2LHZVtyPrmY0x9YD5qp52IlXcv\n7dU1+0uSSY2CzAODHzt31mHspWfBVFkW93+PqWYtinLM/bY+SZJQ1+pFRb2z15W3hv/vVUx45j4E\nDSZsmjsfTROmwZuS3mMQx6hVtn/o+14Nh+hI6i6Y88utw0REREREREREREREREQ0xJgNKkwqSkZe\nqrHHKhMCgBHZCf0ayvlpDVYkxljdZJ/MJP0hC+UAgFqngeuJZxCVyTHx8Tsh93r6NJ8EoN7mxeod\nTdhd40AwFH8QaTCwuwMoq3MCAJI3roIsFIqv+oxMhlULHoQ3KRWj//UErBtX9Wod4WgUW8tbEe4m\nOOL0BlFSZYfc68G45x9ERKHEpj/c1qvr9QeFTMTIXAtG5x3cFqiwMA3bFz+GqFyByY8shMJpj3ne\nhjYvSqra+mWNba4A1pU0o7TG3rtQjiSh+NWlmPDMffBZrPjm4VdQccZseFMzug3liIKAkbkWHFVo\nxfBME5ITNAzl0JDFYA4RERERERERERERERHRECIKAnJSDZhclAyLoetwTFayAcZ+bhm1j0Iuw5hh\niRieYYqpDU2CXoVhGcZDspb9qaZMgu2aP0LXVI+xLz7UL3NGJQk1LW6s2t6IPXXOboMjg40/GMa2\ncltHW6O0Vd8BAOqnzIxrnmCCBT8sehSSIGLqA/Ohbm3q1Xq8gTB2VLahs6YwgVAE2/a0r7X4P89C\n09qEnRdeBU9aVq+u1VcpCRpMKU5GcoKm0+OiKCDn9ONQcsUN0LQ2YeJTdwNxNLupt3lRWhN7mGd/\n8k0boL71ZuxZth6bylrg9od6NQ+iUYz7+18x+pWn4U7NxDePvgpnXmGPwxQyEePyE7v82hANNQzm\nEBEREREREREREREREQ1BGpUcY/MTMTLXApX8wGodOrUCualdt93oL5lWPSYUJEGr6roShlohw6hc\nc0wBnv4g3b4QvuEjkP/RG7Bu+LHf5o1IEqqaXPhxWyMqG1wdYZbBKhKNYuse209VVCQJaauXIWAw\nobVobNzz2UZOwOar5kPd1oKp998MIRJbu7Wfa3X6UdFwYEvNaFTC1j02BMIRGKr2oPDdV+BJycDO\nC+f26hp9oZLLMDrPguJcCxQ/+3v3cwq5DNqFt6F11ARkffcpsr75OK5r1bZ4UFbriPl8pzeI+rXb\noLvgPBj++QImXXQqil9dCjEYjOu6ACBEwpj06CIUvvcKHDn5+Oax1+BJz+5xnFopw4SCJJj0qriv\nSTRYsRYUERERERERERERERER0RCWnKCBxaBCRb0LtS1uCIJwSFpYdcWgVWLiCCtKqx1oaPMecEwU\nBIzM6znA0K9UKviX/h3qM07CpMfuxI8LH4Hc74PC44LC64bC44bc6+54rPDu/dzjRtWJZ2PP2b/t\ndvpwNIryBifUStkhbc11qJVU2Q+opGKsKIW2pQGVJ5wNyHr3/So9bw6Stq5H5vLPMfqfT2DL72/u\n1TyVjS7oNIqOiislVW1w+YKAJGH8M/dBDIew8Q+3IaqKr51aX6VZtMjPMEEui70+hlangmvp8zCe\nMRNHPXUPWkZPhC85Lebx1c3tf6eHpR9ccSoYiqDNFYDN6YfNFYDkdOLEmy6F0m5D2dkXIn3l1xj9\nytPI+fojrP/jXWiaMC2ma4rBII7+63xkLv8CthFj8P19zyFoNPc4zqBRYPSwg9t6EQ11DOYQERER\nERERERERERERDXFymYjhmSakWDRweUOHrIVVV2SiiKIcM8xGFUqrHQhH26uwFGYlHPa1AEB4wkR4\nr7sB+qcfx8k3XBjzuIQ9Jag8+VxE1D234Klr9QzaYE5VowtNdt8Bz+1rY9UwZUbvJxYErLn5LzDt\n2YmiN15Ey8gJqJ92Yq+mKqlsg1Ylh83pR+PetWas+AKp61eiYdKxqDvmpN6vM05qpQwjsswwG3pX\nBUY3cgSa7vgLMhb9GZMfXohlf/0HIMYe7qlqckEUgewUA5yeIGzOANpcfrh8+7WoikRw7AM3w1S5\nG6XnXoKN8+7A5t/Px+h/PYnhH7yGmQuuROWJv8Kma25FwJzU5bVkPg+OufsGpK5fiaZxR2PF3UsR\n1up6XGOiUY2RuWbI4nhdREOFIHXWgG8AaW529XwSEdEgZrUa+F5HRERERERERIMK9zOIiKgvfIEw\ntle0wahToCAz4cgtxO+H+pEH0VTXCr9ah5BWh5DOgJBWj7BWj5Bu78fex0X/fQEjX38Oq279K6pO\nPjemS0wpSoZWrTjEL6R/tTr82Freip/fRD7+z5cgadt6fPDWipiqo3THVLYTJ934W0SUKnyx9B14\n0zJ7NY9SLiIUjkICIPP7cNrcs6CxteCz596HOyuvT2vsiSgISDSqkWrRwmxU9b0VmyRBfuEFMH/7\nOTb+4TaUnn9Z3FPIRAGRaOe3/8c+9zeMeOefaJg4Hcv/8ndIsp9qeCSUbsPEJ5bAsmsrgjoDtvz+\nz9hz5m8OCgcpXA4ct+gaJO7YhNppJ+HHOx5BVNlzGCnNokVhVgKEw9SujuhIsFq7bg/JYA4R0RHG\njSwiIiIiIiIiGmy4n0FERH0V3XuLstPb6BkAACAASURBVM9hhn7Q5gpgU1lLj+fp6qtx5mWnomns\nZHz38CsxzZ1l1SM/w9TXJR42Xn8I63e1dFQ02kfhcuCcC6bDVjQG3zz+er9cK/ezdzH5kTvQNnwk\nvn78PzEFPLoz6l9PYuRrz2LnhXN73SIrFgaNEqkWDZLNWijk/Vv9RWhuhvHYKZC5XfjimXfgyhne\nL/PmffIWJj12F5xZw/D1E68jpD+47RUiEeR//AbGvPQYFF43WovGYt2NS+DILwYAqGzNmHH7XCSU\n70LFyedg7c33HRDu6fLaqUbkpHYdWCAaKroL5rBOFBEREREREREREREREREdVqIgDIhQDgCYDSpk\nJul7PM+TloWmcUcjefMa6GorY5q7webtCCENdOFIFFvLbQeFcgAgZd0KiNEI6qfM7LfrVZx2PspP\nOx/m3dsx/u8P9GkuXV0VRrz5D3iTUrD94j/00wp/opLLkJWsx+SiZEwcYUWGVd/voRwAkKxWeB9/\nGrJQEEf/7VYIoWCf57RuWo2jnrwHAYMJy+99tvNQDgDIZCg752J8+o+PUXXCWUjcuRmnzJuNcc8+\nAGP5Lpz450uQUL4Lpef+DmvmP9BjKEcUBBRnmxnKIQKDOURERERERERERERERET0C5eXboBW1XP1\nj/LTZ7Wf//l7Mc0bikTRYvf1aW2HS2WDC95AuNNjaau/AwA0TJnRr9dcf/2dsA8bgfyP3kD2Vx/2\nep7xzz4AWSiITVffiohG1y9rEwUB1gQNxg5LxNRRKchPN0F3GNqShc44C96L58C8ewdGvfpMn+bS\n1VVh2j03AABWLn4SnvTsHsf4E5Ox6vaH8d0DL8KdmonC917BadecC31dFbb/7lpsvO6Og1pc/Zxc\nFDFmWCJSLNo+rZ9oqGAwh4iIiIiIiIiIiIiIiIh+0WSiiKJsM3qq4VNz7CkI6gzI/fw9IBKJae66\nVm/fF3iIuX0h1LZ4Oj8YjSJtzffwWayw721r1F+iKjV+uPNxhLQ6THx8MQyVu+OeI+3Hb5C+6ls0\njZuCmpln9Gk9clFESoIGxTlmHDM6FaNyLbAY1RAOc3Un718eQDgnF0VvvICkLWt7NYfc48Kxd14L\nlcuBdTcsRsvYKXGNb5o4HZ8//wG2XTIPAZMZG69ZgG2X3QB087VQyESYtEqML0iC2dC31mREQwmD\nOURERERERERERERERET0i2fUKZGd0n3bnahKjaoTzoKmtQmp65bHNK/dHYCvi0o0A0Vptb3LlluW\nki1QOdpQP2VGt6GM3nJn5GLNzfdDHvDhmHtuhMzXRUCoE2IwgPF//yuiogwbrrujV+vTquTIsuox\nLj8Jx4xJRXGuBSlmLeSyI3crXdIb4Hr6eQDAzFsux9H3/Rnmki0xjxciYUy7788wVu9ByazLUXHG\n7F6tI6pUYfuc6/HBWytROutyyAQBWpUciUY1MpJ0GJ5uwuhcCyaNSMaxY9IwfUwaJhRaodcc+spC\nRINJz/XYiIiIiIiIiIiIiIiIiIh+AXJSDbA5/XD5Ql2eU3H6LAz/6L/I+/QdNEyZGdO89a1eDEs3\n9tcy+1V9qwcOb7DL46lrlgHoWxsrURC6DP4AQO1xp2LX+Zeh8N1/YdLji7HqtocgRCMQwmGIkQiE\ncAhiJAwxHIYQiUCMhCCEw8j98n3o66qw67w5cOYVxrwWo06JRKMaiUY1tOqBecs8fPRUOF9+Ddq/\n/QXZ332C7O8+QfPoidg1+wrUHX08IJN1OXbccw8ide1y1E+Zgc1z5/dpHSZte2BNr1VApej6mkTU\ntYH5LkNEREREREREREREREREdJiJgoCiHDPWlTR3GSRpKxgF+7ARSP/hGyjtNgQTLD3O22DzIDfN\nAPEwt0TqSSgcwZ46Z7fnpK36DlG5Ao0TjunVNURBwJTiZDjcQVQ3ueH2dx562jz3Zlh2bkL2Nx8j\n+5uPY57fb07CtjnXd3uORilHgl4Js0EFi1F9RKvhxCN4xlkInn4mFMu+heqZp2D95ktYt66DKz0b\npedfhopTz0NErTlgzLCP/ouC//0bjpzh+PH2R7oN8HRHr1YgL82IRJO6P14K0S+aIEndRBMHgOZm\n15FeAhHRIWW1GvheR0RERERERESDCvcziIhoqKtucqOsztHl8eHvvYIJzz6AjVcvQOnsy2Oac1Su\nBdYETc8nHkY7K9vQ0Obt8rjK1oxzfjsDjeOnYtmDL/fqGplJegzPNHV83urwo6rJBYfn4Co9muYG\njH/2fqjsNkTlCkhyOaIyOaJyOSRZ+2NJ3v55+2MFqmeejtZRRx0wj16tgFGnRIJeCZNeNWQqvch2\n7oDs6SdheO9NiKEQAgYTys7+LXaf+zsELFZYN/yIGbfPRchgxJdPvglvWmbc19Cq5MhNNSDZrD0E\nr4Bo6LJau26FyGAOEdERxo0sIiIiIiIiIhpsuJ9BRERDnSRJ2LS7FXZPoNPjSmcbzr5oJtzp2fj8\n+Q+BGCrhWAwqjM1P6u+l9prdHcDG3S3dnpPz+XuY8vDCuAJI+xMFAUePTOk0GONwB1DV5Ear0x/3\nvPsTAOg1CiToVTDp2oM4CvngqIjTa42NiDzzDMyvvQyV046IQoHqmWcgfdV3kPu8+PbBl9E6emJc\nU6oVMuSkGpBi0Q64yk5Eg0F3wRy2siIiIiIiIiIiIiIiIiIi2o8gCBiRnYC1JU2IRA+ucxA0mlE3\n7SRkLfsUlp2bYSse1+OcNlcAvkAYGtWRv0UblSSU1nRdEWiftFXfAQAapszo1XXSE3VdVqsx6VUY\no1fB4w+hqtGNZruvy/Zh+yhkIrRqOXRqBXRqObRqBQxaxaBpTdVvUlIgu/tu2G6+Bd6X/oXkV55D\n7pcfAABWz78/rlCOUi4iO9mA9CQdRJGBHKJD4ci/6xMRERERERERERERERERDTAalRzDM0woqbZ3\nerz89FnIWvYpcj97N6ZgDgA02LzISzP25zJ7pabJDY8/1O05QjiE1HUr4E7LgisrL+5riIKArBR9\nj+fp1AoU55iRl2ZATZMH9a0eCIKwN3gjh06jgE6tgFYtHzItqfqL3KiH8aZ5sF09F2Vvvw+v04Pa\nY0+NbawoIitZj8xkHWTiLyzYRHSYMZhDRERERERERERERERERNSJtEQdWhz+TtstNU6YBq81Ddnf\nfoxN1yxARKPtcb6GVi9yUw0QjmCrIF8gjMqGnltSJm3bAIXXjYpTzo2pVdfPdVctpzNqpRzDM00Y\nlm5k5ZY4abUqaOf8BqFwBDndFx3qIJMJDOQQHSb8m0ZERERERERERERERERE1IXCrAQoOmuVJJOh\n4tRfQ+H1IHP55zHNFQhH0Oo4OORzOO2udSDSQ8soAEhdvbeN1eT421jFWi2n07EM5fSaQi6DUhHb\nB0M5RIcP/7YREREREREREREREREREXVBpZChICuh02Plp54PAMj79J2Y56u3eftlXb3RYvd1Wv2n\nM2mrv0NYpUbTuClxXyfeajlEREMZgzlERERERERERERERERERN1ITtAgOUFz0PPetEw0jp8K65a1\n0NdWxDSXzemHPxju5xX2LByJYnetI6ZztQ21MFWWoWn80Yiq1HFdpy/VcoiIhiIGc4iIiIiIiIiI\niIiIiIiIelCQmQCV/OAqMOWnzwIA5H72XkzzSAAajkDVnMoGF/yhSEznpu1tY1U/ZWbc12G1HCKi\nAzGYQ0RERERERERERERERETUA4VcREGm6aDna6efjKDOgNzP34MQia0STkOrF5Ik9fcSu+T2hVDb\n4on5/NQ1ywAADVNmxHUdVsshIjoYgzlERERERERERERERERERDFIStDA+rOWVlGVGlUnng2NrRkp\na5fHNI8/FIHNGTgUS+xUabUd0RiDQGLAj+SNq+DIGQ5vSkZc12G1HCKigzGYQ0RERERERERERERE\nREQUo4IMExSyA2+zlp/W3s4q79N3Yp6n3hZ7BZu+qG/1wOENxnx+8qbVkAf8qGe1HCKifsFgDhER\nERERERERERERERFRjJQKGYZnHNjSyl4wEvZhRUj/8Vuo2lpjmsfmDCAQihyKJXYIhSPYU+eMa8y+\nNlb1R8+Maxyr5RARdY7BHCIiIiIiIiIiIiIiIiKiOKRYtEg0qn96QhBQftr5ECNh5Hz1QUxzRCUJ\nDa3eQ7TC9vm3VbQhFInGPkiSkLbqO4S0erSOnBDzMFbLISLqGoM5RERERERERERERERERERxKsxM\ngFz86XZr1UlnI6JQIPezdwBJimmOQ9nOane1HYYP34V55+aYxxiqy6FvqEHDxOmQ5IqYx7FaDhFR\n1xjMISIiIiIiIiIi+v/27j1cy7LOF/j3XUeBxeIQRwVEQE1wOySKOW7JoQhtYsbSEc1wa5g78tKw\nTEBBLEFsMvckWlvtqtkhFtekjllJO5kUT0OecDyglhwEDyhyEFBYrLXe/Yd7loOCsBbrBdTP57/3\nfZ/7fn7Py3U91/P++K77BgCAZqquKk+/fWubXtfVdspLf/3pdFj2fDo/8/hOzbGpriGr39jU6rWt\neG1DOv2vK/PJGRfmM+ePzqe+fWa6P3zfDgNDPf90T5LmbWNltRyA9yeYAwAAAAAAANAC+3Zpl441\n1U2vl4w8OUlywNxbdnqOl1t5O6vVb2xK4/U3ZODsH2dDz955Zcgx6fb4ggy7+Kv5zNdPSu8//jaF\nhvptju3xp/lJkleO+O87fT6r5QC8P8EcAAAAAAAAgBY6uHfHlBcKSZKVn/hk3uzaM73v/l3K39q5\nwM3rb2xK3ZaGVqll46YtWTP7X3L4td/N5g6dcu8VN+TeGT/JH677VV741AnpuOTZfHLGhTn+K59L\nv9/8MmWb31mtp2LjhnR94uGsPujQbO7cdafOZ7UcgB0TzAEAAAAAAABooTbVFenb8/9vaVVeniUj\nv5DKt95Mr3t/v1PjG4vFLFq2Jpt3MZyzpb4hK+6YlyOnfzMNldW59/L/nQ379U2SrD1wUBZccnXu\n/Omdef7zo9Nm1coMueY7+dsxn8nHf3FDKje8ke6PPZCyhvq8PHTYTp/TajkAOyaYAwAAAAAAALAL\nenVtl9q2VUmSpSO+kKR521mt2bA5jzz7ala/sWnHB29DY7GYJXc/kiMnfjWF+vo8OPnqrPn4Ye85\nbuO+ffLo+Zflt7PuyqJTz0l53eb8t5/9r/ztl4fn0J/+U5Lk5aGf2qlzWi0HYOcI5gAAAAAAAADs\ngkKhkIP7dExZoZA3e/bKK0OOSdcnH0nnpx/b6Tnq6hvzH4tfz/Mvrktjsdis8y997NkMvuCMVK9f\nl0fGfyevHHXc+x6/uXPXPPmVC/Kb2X/M42dfmPp92qZ2xZJs6tA5aw46dKfOabUcgJ1TKBabeVff\nzV57bf2eLgGgpLp2be9eBwAAAHyg6GcAwLYte2V9lrzyRj725CMZ/s0vZ+Unjs787/202fO0b1OZ\ngX07p011xQ6PfXHxy9n/9BPT6flFefKM87Loy19v9vnK6urS697fZ2OP/fL6oMO3e1x5oZAONdXp\n1L46PTq3TWWFdSAAkrd/I23Pju/kAAAAAAAAAOxQ7+41eW3tW3n90CF5Zcgx6fHI/enyHw9l1WFH\nNmue9W9tycPPvpqDenVM985tt3vc66+9kZ7j/kc6Pb8oz3/ulCw6fVyL6m6sqsoLnx71nvfLCoXU\ntq1Kp/bV6VhTlfbtqlJWKLToHAAfVSKMAAAAAAAAAK2g7L9safXUGeclSQ79P9ckLdjEpKGxmEUv\nrMmiZWtS39D4ns83bNyctuePS/fH/j0vHj08j503JdnF0Ewhb6/W07tbTQ7r97Ec8996ZPCBXbJ/\nj/bpUFMtlAPQAlbMAQAAAAAAAGgl7dtWpVfXmrxwyF/lpaM+lX0X3JNuC/89r37i6BbNt3LNm3lj\nY10G9u2U9m2rkiRb6hvScPHFOWDeHXn9kL/KgklXpVje8v/6LSTp1a0mfbq1tz0VQCtzVwUAAAAA\nAABoRX17tE+bqoo8NebtVXMG/Z+ZLVo15z+9VVefx/68Kstf3ZDGxmLe+MerM+AXN2Z9r76577s/\nTsM+bVo8d3VleQ7r3yX99+0glANQAu6sAAAAAAAAAK2orKyQvj3aZ+1Bg/LiX386XZ5+LN0fvm+X\n5mwsFvP8S+vywo/+OQf/cFre6twl86/4Seo6dGrxnF07tskRB3dLp/bVu1QbANsnmAMAAAAAAADQ\nyrp1apN2+1TmqTPeXjXn0J/v2qo5SfKxpx7L4TMuTP0+bXLftOvzZo/9WjRPeVkhH+/TKYP6drZK\nDkCJucsCAAAAAAAAtLJC4e1Vc9b1OzjLhx2fzs8+kZ7/fneL56te/VqOvvwbKWtoyINTrsnaAQNb\nNE9t26occXC39OjctsW1ALDzBHMAAAAAAAAASqBrxzZp36YyT3/56ykWChnUwlVzCvVbcvS0C9Jm\n9Wv5j7Hfysojjmn+HEn2794+gw/skjbVFc0eD0DLCOYAAAAAAAAAlMgBPWvzRt8D88Jxf5tOzy/K\nfvf/odlz/NUN30/XJx/J8mHH57mTz2r2+H2qyjN4QJcc0LM2ZYVCs8cD0HKCOQAAAAAAAAAl0rl2\nn3RoV/X2qjllZRn082uTxsadHt9n3h058F9nZd3+/fPQt6YlzQzWdO/UNkcc3C0daqqbWzoArUAw\nBwAAAAAAAKCEDuhZmw29D8iyT/9dOiz9c3rNn7tT4zo8/0yG/NOl2dK2XR64dGYa2rRr1nl7danJ\nIft3SkW5/xYG2FPcgQEAAAAAAABKqGNNdTq3r87Tp49LY1l5Bs26LmloeN8xlevX5a+/e34qNm/K\nn759ZTb0PqBZ56yqKEvfnu13pWwAWoFgDgAAAAAAAECJ9e1Zm4379snSkV9I7fLF6fPH327/4MbG\nHPW9i1Lz8vIsOu1/5qVjPtPs8x3Qs9ZKOQB7AXdiAAAAAAAAgBKrbVuVLh32yaIvfS2NFZUZeNN1\nKTTUb/PYgTf9KD3/ND+vDDkmT55xXovO1fNjzdv2CoDSEMwBAAAAAAAA2A369qjNW933y+LjT0r7\nl17I/nf9+j3H9Pz3P2bQTddlY/f9smDS95Py8mafZ0CvDq1RLgCtQDAHAAAAAAAAYDeoaVOZbh3b\n5JnT/mcaKqsy8KYfpVC/penzdi8uy9DvTUhDVXUeuPSHqavt1Oxz9OzcNrVtq1qzbAB2gWAOAAAA\nAAAAwG7St2dtNnfrmcV/OzrtVr6Yvv/3tiRJ+Vtv5q+/e36qNq7PI+dflrUHDmr23BVlZTmgZ21r\nlwzALhDMAQAAAAAAANhN2lRXpHunNnlm9NlpqKrOwNn/O2V1dTniny5NxyXP5S+jTsuyz57Yorn7\n9mifqsrmb30FQOkI5gAAAAAAAADsRvv3aJ+6Lt3zl1Gnpe1rL2fYpLHp88ffZtXAwVn4tYktmrPd\nPpXZt2u7Vq4UgF0lmAMAAAAAAACwG+1TVZF9P9Yuz55yduqr26TrEw9nU6cueXDyP6VYWdWiOQfs\n1yFlhUIrVwrArhLMAQAAAAAAANjN+nSvSX3nLnn6y+OypW1NHrzk6mzq0r1Fc3Xt0Cad2le3coUA\ntIaKPV0AAAAAAAAAwEdNVWV59utak2dHfzXPffF/tHilnPJCIf33q23l6gBoLVbMAQAAAAAAANgD\nenerSUVZWYtDOUnSu3tN9qmyHgPA3kowBwAAAAAAAGAPqKwoS+9uNS0ev09Vefp0a9+KFQHQ2gRz\nAAAAAAAAAPaQ/bq2S2V5y/7btv++HVJWVmjligBoTYI5AAAAAAAAAHtIRXlZhhzcNQf0qE2bZmxJ\n1ammOl07tilhZQC0BpsNAgAAAAAAAOxB+1RVZP8e7bN/j/ZZt2FzXln9Zl5d+1YaGovbPL6sUMiA\nXh12c5UAtIRgDgAAAAAAAMBeokNNdTrUVGdArw5ZtXZTXln9ZtZu2Jz/GtHZt0u7tNunco/VCMDO\nE8wBAAAAAAAA2MuUl5Wle+e26d65bTbV1Wfl6reycs2bqW9oTN8e7fd0eQDsJMEcAAAAAAAAgL3Y\nf93qqm5LQyrKy/Z0SQDsJHdsAAAAAAAAgA+IqsryPV0CAM0gmAMAAAAAAAAAACUgmAMAAAAAAAAA\nACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAA\nAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMA\nAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUg\nmAMAAAAAAAAAACUgmAMAAAAAAAAAACVQsTMHPf7447nqqqsya9asrd7/t3/7t1x33XWpqKjISSed\nlFNOOSW33nprbrvttiTJ5s2bs2jRotx///1Zs2ZNJk6cmEKhkAMPPDBTp05NWZlcEAAAAAAAAAAA\nH047TMbceOONmTx5cjZv3rzV+1u2bMmMGTPy05/+NLNmzcqcOXOyatWqfPGLX8ysWbMya9asDBo0\nKJMnT05tbW1mzJiR8ePH5+abb06xWMy8efNKdlEAAAAAAAAAALCn7XDFnD59+mTmzJm56KKLtnr/\n+eefT58+fdKhQ4ckyZAhQ/LQQw/lhBNOSJI88cQT+ctf/pKpU6cmSZ566qkMHTo0STJs2LDcf//9\nGTFixA4L7Nq1ffOuCOADyL0OAAAA+KDRzwAAANixHQZzRo4cmRUrVrzn/Q0bNqR9+3d+eLVr1y4b\nNmxoen399dfn3HPPbXpdLBZTKBSajl2/fv1OFfjaazt3HMAHVdeu7d3rAAAAgA8U/QwAAIB3vN8f\nLuxwK6vtqampycaNG5teb9y4sSmo88Ybb2TJkiX55Cc/+c6Jysq2Ora2tralpwYAAAAAAAAAgL3e\nDlfM2Z7+/ftn2bJlWbt2bdq2bZuHH344Y8eOTZI89NBDOfroo7c6fuDAgVmwYEGOOuqozJ8/f6vQ\nzvuxHCrwUeBeBwAAAHzQ6GcAAADsWLODOXfccUfefPPNjB49OhMnTszYsWNTLBZz0kknpXv37kmS\nJUuWpFevXluNmzBhQqZMmZKrr746/fr1y8iRI1vnCgAAAAAAAAAAYC9UKBaLxT1dBAAAAAAAAAAA\nfNiU7ekCAAAAAAAAAADgw0gwZyc9/vjjGTNmTJJk0aJFOeWUU3Laaadl0qRJaWxs3OrYxsbGXHrp\npRk9enTGjBmTZcuWJUmWLVuW0047LV/60pcyderU94wDAD5atvXM8Prrr2fcuHE5/fTTc+qpp+aF\nF17Y4ZjEcwZ8lLz7t8mXvvSljBkzJmPHjs2qVau2OtY9A0j0NACA1qenAbSEngbQHB+mfoZgzk64\n8cYbM3ny5GzevDlJcu211+bcc8/NL37xi9TV1eXuu+/e6vi77rordXV1mTNnTr71rW/lyiuvTJLM\nmDEj48ePz80335xisZh58+bt7ksBAPYi23pm+P73v59Ro0Zl9uzZGT9+fBYvXrzDMYnnDPioePdv\nk+nTp2fKlCmZNWtWRowYkRtvvHGr490zAD0NAKAU9DSA5tLTAJrjw9bPEMzZCX369MnMmTObXh9y\nyCFZu3ZtisViNm7cmIqKiiTJRRddlJdeeimPPPJIjj322CTJ4MGD8+STTyZJnnrqqQwdOjRJMmzY\nsDzwwAO7+UoAgL3Jtp4ZHn300axcuTJnnnlm7rjjjqZnB88ZQPLe3yZXX311DjnkkCRJQ0NDqqur\nk7hnAO/Q0wAASkFPA2guPQ2gOT5s/QzBnJ0wcuTIpn/YJOnbt2+mT5+eE044Ia+//nqOOuqoJMk/\n/uM/Zt99982GDRtSU1PTdHx5eXnq6+tTLBZTKBSSJO3atcv69et374UAAHuVbT0zLFu2LLW1tfnn\nf/7n9OzZs+kvRTxnAMl7f5t069YtSfLoo4/mpptuyplnnpnEPQN4h54GAFAKehpAc+lpAM3xYetn\nCOa0wPTp0zN79uzMnTs3J554YtMySP+ppqYmGzdubHrd2NiYioqKlJW983Vv3LgxtbW1u61mYPfY\n1v6FO9q7cG/f8xAonW09M3Tp0iXDhw9PkgwfPrwp1f1+YzxnwEfb7373u0ydOjU33HBDOnfuvNVn\n7hnAu+lpANujpwE0h54G0Br0NICd9UHvZwjmtECHDh2a0lbdunXLG2+8sdXnhx9+eObPn58kWbhw\nYQ466KAkycCBA7NgwYIkyfz583PEEUfsxqqB3WFb+xfuaO/CvX3PQ6B0tvXMMGTIkNxzzz1Jkoce\neigDBgzY4ZjEcwZ8VN1+++256aabMmvWrPTu3fs9n7tnAO+mpwFsj54G0Bx6GsCu0tMAmuOD3s8Q\nzGmBadOm5YILLsiXv/zl3HzzzbnggguSvLN/2YgRI1JVVZVTTz01M2bMyKRJk5IkEyZMyMyZMzN6\n9Ohs2bIlI0eO3JOXAZTAtvYv3N7ehR+UPQ+B0tnWM8OECRNy++2359RTT829996br33ta0k8ZwDv\n1dDQkOnTp2fjxo0577zzMmbMmFxzzTVJ3DOA7dPTALZHTwNoDj0NYFfoaQDN9UHvZxSKxWJxj5wZ\n4EPokksuyWc/+9l86lOfSpIcd9xxqa+vz3333ZckefDBB3PLLbfkqquuet8xd911V4477rj3HQcA\nAADQWvQ0AAAASsOKOQCtaFv7F+5o78K9fc9DAAAA4MNPTwMAAKA0BHMAWtG29i/c0d6Fe/uehwAA\nAMCHn54GAABAadjKCqAVNTY25rLLLstzzz2XYrGYK664ImVlZZkyZUq2bNmSfv36Zdq0aSkvL89F\nF12U8ePHp0ePHu8Z079//yxZsmSb4wAAAABam54GAABAaQjmAAAAAAAAAABACdjKCgAAAAAAAAAA\nSkAwBwAAAAAAAAAASkAwB6AV4CuOHgAACspJREFUNDY25tJLL83o0aMzZsyYLFu2rOmzO+64I6NH\nj37f8StWrMgpp5xS6jIBAAAAmmyrn/H000/n2GOPzZgxYzJmzJj87ne/2+54/QwAAIAdq9jTBQB8\nGNx1112pq6vLnDlzsnDhwlx55ZX58Y9/nKeffjq/+tWvUiwW93SJAAAAAFvZVj9j+PDhOeuss/KV\nr3xlT5cHAADwoSCYA9AKHnnkkRx77LFJksGDB+fJJ5/MmjVrcvXVV+fiiy/OlClTdnquuXPnZvbs\n2amvr0+hUMi1116bP//5z7nxxhtTWVmZFStW5HOf+1zGjRtXqssBAAAAPgK21c/o1q1blixZknnz\n5mX//ffPxRdfnJqamh3OpZ8BAACwbbayAmgFGzZs2KpJVVZWlokTJ2bSpElp165ds+ZaunRpbrjh\nhvziF7/IgAEDct999yVJXnrppcycOTNz5szJT37yk1atHwAAAPjoeXc/o7y8PIMGDcpFF12U2bNn\np3fv3rnuuut2ai79DAAAgG2zYg5AK6ipqcnGjRubXq9duzYrVqzIZZddls2bN+cvf/lLpk+fniFD\nhmT27NlJkgkTJqR3797p0KFDkqRQKCRJPvaxj2XChAlp165dFi9enMGDBydJDjrooFRUVKSioiL7\n7LPPbr5CAAAA4MPm3f2MxsbGHH/88amtrU2SjBgxIpdffnnTajiJfgYAAEBzCeYAtILDDz88f/zj\nH/O5z30uCxcuzJFHHtn0V2ArVqzIN7/5zVxyySVJkuOPPz7J23+V9nd/93eZN29eXn311XTu3Dnr\n16/PNddck7vvvjtJctZZZ6VYLCZ5p9EFAAAA0Bre3c846KCDMnbs2EyZMiWHHXZYHnzwwQwaNCjH\nH3+8fgYAAEALCeYAtIIRI0bk/vvvz6mnnppisZgrrrhih2NqamoyatSo/MM//EMaGxtz6aWXpqam\nJocffnhGjx6dioqK1NbW5tVXX02vXr12w1UAAAAAHyXb6mds2rQpl19+eSorK9OlS5dcfvnlW43R\nzwAAAGieQvE//3QBAAAAAAAAAABoNWV7ugAAAAAAAAAAAPgwEswBAAAAAAAAAIASEMwBAAAAAAAA\nAIASqNjTBQB8GG3ZsiUXX3xxXnzxxdTV1WXcuHEZMGBAJk6cmEKhkAMPPDBTp05NWdnb+cjVq1fn\ntNNOy69//etUV1enoaEhM2bMyJNPPpm6urqcd955+Zu/+Zs9fFUAAAAAAAAANIdgDkAJ/PrXv07H\njh3z/e9/P2vXrs2JJ56Yj3/84xk/fnyOOuqoXHrppZk3b15GjBiRe++9Nz/4wQ/y2muvNY2//fbb\nU19fn1/+8pdZuXJl7rzzzj14NQAAAAAAAAC0hK2sAErg+OOPzze+8Y0kSbFYTHl5eZ566qkMHTo0\nSTJs2LA88MADSZKysrL87Gc/S8eOHZvG33fffenevXvOOeecTJ48OcOHD9/9FwEAAAAAAADALhHM\nASiBdu3apaamJhs2bMj555+f8ePHp1gsplAoNH2+fv36JMkxxxyTTp06bTV+zZo1eeGFF3L99dfn\nq1/9aiZNmrTbrwEAAAAAAACAXSOYA1AiL7/8cs4444z8/d//fUaNGpWysnduuRs3bkxtbe12x3bs\n2DHHHXdcCoVChg4dmqVLl+6GigEAAAAAAABoTYI5ACWwatWqfOUrX8m3v/3tnHzyyUmSgQMHZsGC\nBUmS+fPn54gjjtju+CFDhuSee+5JkjzzzDPp2bNn6YsGAAAAAAAAoFUVisVicU8XAfBhM23atNx5\n553p169f03uXXHJJpk2bli1btqRfv36ZNm1aysvLmz4fPnx47rzzzlRXV6euri5Tp07N888/n2Kx\nmMsuuyyDBg3aE5cCAAAAAAAAQAsJ5gAAAAAAAAAAQAnYygoAAAAAAAAAAEpAMAcAAAAAAAAAAEpA\nMAcAAAAAAAAAAEpAMAcAAAAAAAAAAEpAMAcAAAAAAAAAAEpAMAcAAABgLzVx4sTceuut2/180qRJ\nefHFF5s97/Lly3PxxRfvSmkAAAAA7ATBHAAAAIAPqAULFqRYLDZ73EsvvZTly5eXoCIAAAAA/qtC\nsSXdGwAAAABaXbFYzJVXXpm777473bp1S0NDQ04++eQsW7YsDz74YNatW5dOnTpl5syZue2223LN\nNdekT58+mT17dpYvX54ZM2Zk06ZN6dSpU77zne+kd+/e+dnPfpbbbrstZWVlOeyww/Ld7343o0aN\nyooVK3LiiSfmkksuyWWXXZY///nPWbVqVQ444IBce+21WbVqVc4999z07t07zz33XA499NAMHTo0\nt912W9atW5frrrsu/fv3z/DhwzN8+PA8/PDDSZIrrrgiAwcO3MPfJAAAAMDewYo5AAAAAHuJ3//+\n93n66afzm9/8Jj/84Q/zwgsvpKGhIYsXL84vf/nL/P73v0+fPn1yxx135Jxzzkm3bt1yww03pF27\ndpk8eXJ+8IMf5LbbbstZZ52VKVOmpL6+Ptdff31uueWW3HrrrSkUClm5cmUmT56cQw89NFOnTs1j\njz2WysrKzJkzJ3/4wx+yefPm3HPPPUmSZ599Nl//+tczd+7cPPHEE3nxxRczZ86cfP7zn8+cOXOa\n6u7YsWP+9V//Neeff34mTJiwp74+AAAAgL1OxZ4uAAAAAIC3/elPf8pnP/vZVFZWpnPnzhk2bFjK\ny8szYcKE/Mu//EuWLFmShQsXpk+fPluNW7p0aZYvX55x48Y1vbdhw4ZUVFTkE5/4RE4++eR8+tOf\nzumnn57u3btn6dKlTccdeeSR6dixY2bPnp3Fixdn6dKlefPNN5MkXbp0aVr9pkePHjn66KOTJPvu\nu29WrFjRNMcpp5ySJBk+fHgmTpyY1atXp3PnziX5jgAAAAA+SARzAAAAAPYShUIhjY2NTa8rKiqy\ndu3ajB07NmeeeWZGjhyZsrKyvHtn8sbGxvTq1Su33357kqShoSGrVq1KkvzoRz/KwoULM3/+/Jx9\n9tm56qqrtho7b968XHPNNTnjjDPyxS9+MWvWrGmav6qqaqtjy8vLt1l3RcU7LabGxsbtHgcAAADw\nUWMrKwAAAIC9xNFHH525c+emrq4u69aty7333ptCoZChQ4fmtNNOy4ABA3L//fenoaEhydtBmYaG\nhvTr1y/r1q3Lww8/nCS55ZZbcuGFF2b16tU54YQTctBBB+Ub3/hGjjnmmDz77LMpLy9PfX19kuTB\nBx/MCSeckJNOOildunTJQw891DT/zvrtb3+bJPnDH/6Q/v37p0OHDq34rQAAAAB8cFkxBwAAAGAv\n8ZnPfCZPPPFEPv/5z6dLly7p379/Nm3alGeeeSajRo1KZWVlDj744KZtpI477ricc845+clPfpIf\n/vCHmT59ejZv3pyampp873vfS+fOnXPqqafm5JNPTps2bdKzZ8984QtfyJYtW7J+/fp8+9vfztln\nn50LL7wwc+fOTVVVVQYPHrzVNlU749FHH82vfvWrtGnTJldeeWUpvhoAAACAD6RC8d1rHwMAAADA\nTho+fHh+/vOfp1evXnu6FAAAAIC9jq2sAAAAAAAAAACgBKyYAwAAAAAAAAAAJWDFHAAAAAAAAAAA\nKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKIH/B9d82iYe\n1IBXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low_bid',y2='high_bid', data=df, alpha=0.4)\n", + "plt.title(\"entire history\", fontsize=30)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200', fontsize=30)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- there are periods where the price doesnt move, probably weekends. Maybe dont consider these for training" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def pltGraph(xname, yname, irow, icol, df, xval=None, yval=None, title=None, norm_axis=None):\n", + " x_axis_col = xname\n", + " y_axis_col = yname\n", + " if xval is None:\n", + " xval = df[x_axis_col]\n", + " if yval is None:\n", + " yval = df[y_axis_col]\n", + " if title is None:\n", + " title = x_axis_col + \" vs \" + y_axis_col\n", + " if norm_axis is None:\n", + " norm_axis = \"x\"\n", + " \n", + " axarr[irow, icol].scatter(xval.values, yval.values, color=\"green\", lw=0, cmap=pylab.cm.cool, alpha=0.8, s=2)\n", + " axarr[irow, icol].set_xlim(xval.values.min(), xval.values.max())\n", + " axarr[irow, icol].set_ylim(yval.values.min(), yval.values.max())\n", + " axarr[irow, icol].set_xlabel(x_axis_col)\n", + " axarr[irow, icol].set_ylabel(yname)\n", + " axarr[irow, icol].set_title(title)\n", + " axarr[irow, icol].grid(False)\n", + " return icol + 1" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQEAAAT7CAYAAAAkHuRgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WeYVdWhBuBvaAoOiBiDiteGCteOEo0FiUQfURERRBEf\nIrYUvfYkgg3FhsbYUK/lWlFQVEQp9m5AYtRYg4mNCCqCogIKMzBzf3A5lzYwJjIzB9/3Tzhn7732\nWuscM+tZ+ztrlVRWVlYGAAAAAAAAAAAoWvVquwIAAAAAAAAAAMC/RwgIAAAAAAAAAACKnBAQAAAA\nAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAHXOX/7yl+y1\n117ZZpttMmzYsNquTp0ye/bstGnTJhMmTEiS9OnTJ5dccskKr6usrMzw4cMzd+7cKs/p169fTjzx\nxCTJiBEjsvPOO/9bdX388cfzySefJEkmTJiQNm3aZPbs2f9WmQAAAAAsW4PargAAAADAkq699tps\nvPHGue2229K8efPark6dNnjw4DRosOIpnpdeeilnn3129t9//6y22mrLPOfMM89MZWXl91KvKVOm\n5L/+678yatSorLfeemnXrl1eeOGFNGnS5HspHwAAAIDFCQEBAAAAdc7XX3+djh07ZoMNNqjtqtR5\n1Q1JVSfc07Rp03+3OlXer1GjRllnnXW+t/IBAAAAWJztwAAAAIA6pVOnTnnzzTdz7bXXpk2bNkmS\nNm3a5Morr8yuu+6arl27Zv78+fnggw9y9NFHZ7vttsuee+6ZSy+9NGVlZYVyXn/99Rx66KHZbrvt\n0qtXr9xxxx3p1KlTkmVvTTV48OB079698Hp55U+ePDlt2rTJI488ks6dO2ebbbbJYYcdlvfff79w\n/cSJE9O3b9+0a9cuHTt2zA033JAkOffcc9O7d+/F2nz//fenU6dOywzqfPvttznzzDOz4447pkOH\nDnn44YcXO77odmBTp07Nr3/96+y4445p3759TjzxxHz++eeZPHlyfvGLXyRJdthhh4wYMSKDBw/O\nMccck6OPPjo77rhjHnjggcW2A1vo+uuvz84775ydd945F110UebNm5dk2duFLXr9z3/+8yTJAQcc\nkMGDBy/V59OnT8/pp5+eXXbZJTvssENOOumkfPbZZ4Wy2rRpkxEjRqR79+7ZZptt0rVr17z66quF\n4/fcc0/23nvvbL311uncuXNGjhy5VN8BAAAA/JAIAQEAAAB1yn333Ze2bdvmqKOOygsvvFB4f8yY\nMbnjjjtyySWXZN68eTn66KOz8cYb54EHHsill16a559/PhdccEGS5IsvvsjRRx9dCJJ07do1V1xx\nRbXrMHfu3OWWv9C1116bCy64IPfdd19mzJiRP/zhD4X7H3HEEfnxj3+ce++9NwMHDsyNN96Y++67\nL127ds0rr7ySTz/9dLG2denSJSUlJUvV5bzzzsvLL7+cm266Kddcc03uuOOOKut93nnnpby8PMOH\nD8+dd96ZKVOmZNCgQVlvvfUyePDgJMkTTzyR/fbbL0ny/PPPZ6eddsrw4cPTsWPHpcr78ssv88IL\nL+T222/PpZdemtGjR+d//ud/qtWH9957b5JkyJAhOeqooxY7Nm/evPTt2zdTpkzJTTfdlNtvvz1T\np07N8ccfv1gQ6uqrr85JJ52UBx98MKWlpRkwYECS5O233865556b0047LY8++mh+8YtfpF+/fvnw\nww+rVTcAAACAVZEQEAAAAFCntGjRIvXr10+TJk0W2z6qZ8+e2WyzzfKf//mfGT16dBo2bJizzz47\nm266aX7yk5/kvPPOy7333ptZs2Zl7NixWW211XL22WendevW6d27dyH4Uh0rKn+h3/zmN2nfvn3a\ntGmT3r1754033kiSPPzww2nYsGEuuOCCbLbZZunYsWMGDBiQJk2aZIcddsgGG2xQWNFn+vTpefHF\nF9O1a9el6jFr1qyMHj06/fr1yw477JDtttsuAwcOrLLekydPTmlpaTbYYIO0bds2l19+eY488sjU\nr18/a665ZqF/V1999SRJ48aN88tf/jKtW7dOixYtliqvfv36ueyyy9K2bdt07Ngxv/nNbzJ06NBq\n9eHC8po3b5411lhjsWPPP/98Pvzww/zxj3/M1ltvnW222SZXXnll3n777YwbN65wXu/evdOxY8ds\nuummOfroo/POO++krKwsU6ZMSUlJSdZbb720atUqvXv3zs0337zMNgAAAAD8UDSo7QoAAAAAVMd/\n/Md/FP797rvv5qOPPkq7du0K71VWVqaioiIffvhh3n333bRp0yYNGzYsHG/fvn3Gjx9frXutqPzm\nzZsnSTbaaKPC8dLS0sJWWQvv36hRo8LxRUM+Xbt2zdixY3PkkUfm4YcfzhZbbJHNNttsqXq8//77\nKS8vz5Zbbll4b+utt069esv+Xdevf/3rnH766dl5553z05/+NHvttdcyw0ULtWrVapmrDy3UsmXL\nrLvuuoXXW221VaZOnZqvv/66ymuq4913383666+fli1bFt5bd91106pVq/zjH//IbrvtliTZeOON\nC8dLS0uTLFhFqEOHDtl2221zyCGHZNNNN83PfvazHHTQQWnWrNm/VS8AAACAYiYEBAAAABSFhavX\nJAuCINtvv30uvvjipc5r2bJlGjdunIqKisXeXzSQs6zgy8IAT3XKnz59epIsFjJKUtjKqmHDhott\na7Wkrl275rrrrsvkyZMzZsyYKoM6C+u5aFn169dP/fr1l3n+fvvtl5/+9Kd5+umn8/zzz+fCCy/M\nqFGjcvvtty/z/NVWW63KOiZZKmy0sE8bNGiwwj5cnqruW1FRsdjntmT/Jgv6YvXVV8+wYcPy6quv\n5tlnn81TTz2VO++8M9dff30hQAQAAADwQ2M7MAAAAKDotG7dOpMmTcq6666bjTbaKBtttFFmzJiR\nSy+9NOXl5dl8880zceLEzJkzp3DNm2++Wfj3wnDJ7NmzC+9Nnjy52uWvyMYbb5y///3vi517zTXX\n5KSTTioc32abbXL//ffnzTffzP7777/McjbZZJM0bNgwr7/+euG9d955p8o6XHnllZk8eXJ69OiR\nK6+8Mtdcc01efPHFTJ8+fbkr/lRl6tSp+fLLLwuv//rXv6ZVq1Zp0qRJGjZsmG+//XaxgNKifbi8\n+7Vu3Toff/xxpk6dWnjv008/zSeffJLWrVuvsF6vvvpqBg8enB122CGnnHJKRo0ala222iqPPfbY\nd20iAAAAwCpDCAgAAAAoOl27dk29evVy+umn5+9//3teeeWV9O/fP+Xl5WnatGm6dOmSxo0b58wz\nz8x7772X0aNHZ9iwYYXrN99886y++uq54YYb8tFHH+W+++7LM888U+3yq1O/+fPn57zzzsv777+f\nZ599Nrfffns6duxYOOfAAw/MzTffnPbt2y+2LdaiSktL07Nnz1x88cWZMGFC3nrrrZxzzjlVBmze\nf//9DBw4MG+88UYmTZqU0aNHp1WrVmnRokWaNGmSJHnrrbcWCz8tz/z583Paaadl4sSJefzxx3PD\nDTfk2GOPTbJgW7K5c+fmpptuykcffZQbb7wxb7/9duHahff729/+lpkzZy5W7q677po2bdrktNNO\ny5tvvpk33ngjp556ajbeeOPssssuK6xX48aNc8MNN+SOO+7I5MmT88ILL+S9997LtttuW612AQAA\nAKyKhIAAAACAotOkSZPccsst+frrr9OzZ88cd9xx2X777XPZZZclWbD110033ZTPPvss3bp1y623\n3ppDDjmkcH1paWkuuuiiPPPMM9l///3zxBNP5L/+67+qXf6KlJaW5qabbsr777+fAw88MOeee26O\nO+64dO/evXDOfvvtl/Ly8hxwwAHLLat///7p1KlTTjjhhBx99NHp1q3bMrfJSpLzzjsvG220UY45\n5ph07do1H3/8cW644YbUq1cvW2yxRfbcc88cddRRGT58eLXa0bp162y99dY5/PDDc84556Rv377p\n1atXkgWrGfXv3z933HFHunbtmvfeey9HHHFE4dq11lorPXv2zFlnnZWrr756sXJLSkpy3XXXpUWL\nFunTp0+OPPLIrLvuurntttsW27atKm3bts0f/vCHDB8+PPvuu2/OPPPMHHnkkenRo0e12gUAAACw\nKiqpXN4G9QAAAACriDvvvDO33HJLnnrqqdquSpLkH//4Rw4++OD86U9/SmlpaW1XBwAAAIAi16C2\nKwAAAADwQ/L555/npZdeyp133pkuXboIAAEAAADwvbAdGAAAAEAN+uabb3LGGWdkzpw5OeWUU2q7\nOgAAAACsImwHBgAAAAAAAAAARc5KQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJAQEAAAAAAAAAQJET\nAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAAABQ5ISAAAAAAAAAA\nAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAAAAAAAIAiJwQEAAAA\nAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAAAABQ5ISA\nAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAARU4ICAAAAAAAAAAA\nipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJAQEAAAAA\nAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAAABQ5ISAA\nAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAAAAAAAIAi\nJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAA\nAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAARU4ICAAA\nAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJ\nAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAA\nABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAA\nAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJA\nAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAA\nRU4ICAAAAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAA\nAAAAoMgJAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAA\nAAAAAAAAABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECR\nEwICAAAAAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAA\nAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAA\nAAAAAAAARU4ICAAAAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSE\ngAAAAAAAAAAAoMgJAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAA\nAIqcEBAAAAAAAAAAABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAA\nAAAAAECREwICAAAAAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEg\nAAAAAAAAAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCApIkjzzySPr0\n6ZMkueqqqzJy5Mjlnn/NNdfkiSeeWGn1OfbYY/Puu+9+p2t+9atfZcSIEd9bHV5//fWcc84531t5\nAEDdU9fGQCsyYsSI/OpXv6q1+68sAwcOzODBg2u7GgBQ5/Xr1y8333zzMo+1adMmX3zxxUq9/9Sp\nU9OrV6+Veo+6ZPLkyWnXrl1tV+N7t+gYGABWBZ4p1Q0TJkxIly5darsa37ubb745/fr1q+1qQLU1\nqO0KAHXPSSedtMJzJkyYkM0222yl1eGmm25aaWVX17vvvpupU6fWdjUAgBpSF8ZAAAB1WcuWLXP3\n3XfXdjUAABbjmRLA/xMCgh+wq666KqNGjUrz5s2z0UYbFd7v169fNt988xx99NG5+uqr8/jjj6dh\nw4ZZa621cvHFF+fxxx/Pm2++mUsvvTT169fP3nvvXbh2woQJufTSS9OyZct89NFHWX311TNo0KC0\nbt06ZWVlueyyy/LSSy9l/vz52XLLLXPWWWeltLQ0nTp1yrbbbpt33nknp556ai6++OJcddVV2Wab\nbXLPPfdkyJAhqVevXn70ox/l7LPPziabbJKpU6emX79++eyzz7L++uvn888/X2GbR4wYkfvuuy/f\nfvttSktLM2TIkNx7770ZNmxYKioq0rx585x99tlp0qRJrr766sycOTP9+/dPt27dcv7552f06NGF\ndi58PXjw4Pz1r3/NZ599ljZt2mSjjTbKlClTMm3atEyZMiUtWrTIFVdckZYtW37/HyIA8J2tjDFQ\nRUVFLrroorz22muZPXt2Kisrc8EFF2SLLbZIx44d8+ijj2adddZJkhxyyCE5/vjjs80226R///75\n5z//mebNm2edddbJ5ptvnhNOOGG59Z82bVqOPvrofPbZZ2nVqlXOP//8rLPOOvn0009z7rnnZsqU\nKamsrEy3bt1yzDHHLLes9957L2eeeWbKyspSWVmZgw8+OIcffngGDx6cf/zjH5k+fXo+//zztG3b\nNhdeeOEyx23bbrttBg4cmE8++STl5eXZf//98+tf/zpJcv311+eJJ57I3Llz8+233+b000/P3nvv\nnVmzZuXMM8/MxIkT8+Mf/zj169fPjjvu+K9+pACwyqlqLiRJXn311fTq1SvTp0/P5ptvnj/+8Y9p\n0qTJYtffcMMNeeCBB9KgQYNstNFGGTRoUJo2bVrl/fr06ZPWrVvnzTffzIwZM3LggQfmxBNPzOTJ\nk3P44YendevWmTJlSgYNGpSjjjoqr776aubNm5c//OEPeeaZZ1K/fv20a9cuAwYMSKNGjfLf//3f\neeyxx1JRUZFWrVplwIABS82L9OrVK3379k3nzp2TJJdddlkqKyvTt2/fnH766ZkxY0aSpGPHjjn5\n5JOXqvN9992Xe+65J+Xl5fnqq69y7LHHpnfv3lWWe+qpp+bSSy/NU089laZNm2bbbbfNe++9lyFD\nhiz3s6ioqMiZZ56Zt956Kw0aNMhZZ52V7bffPuXl5Rk0aFDGjx+f+vXrZ9ttt03//v1TWlpaZVmz\nZ89O//79M2nSpNSrVy9bbbVVBg4cmJdeeqnK+bR+/frlyy+/zEcffZSf/exnOemkk6qcX3v66adz\nww03pKysLF988UW6detW6LuqxsAAUJs8U6reM6WKiorsueeeueaaa7LNNtskSU455ZT85Cc/yc47\n77zMuZ0lLWuO5uc//3mV5R500EEZMGBAXnvttTRt2rTwo7hBgwYtt8+++eabnHjiiZk0aVKaNWuW\ngQMHZpNNNsnMmTNz3nnnZeLEiSkpKUmHDh1y6qmnpkGDquMK06ZNW+a4cMSIERkzZkwqKioyderU\ntGzZMoMGDUrLli3Tp0+frLnmmnn//fdz2GGHpVu3brnwwgvz97//PeXl5dlll13y+9//Pg0aNKhy\nPFleXp4LLrgg48aNy9prr5211157uWNpqGtsBwY/UE888UQee+yxjBw5MnfffXdmzZq11DmffPJJ\nbr/99tx///0ZMWJEdtttt7z++us5/PDDs/XWW+f3v//9Yg+/Fnr77bdz1FFHZdSoUenevXt+97vf\nJUluvPHG1K9fPyNGjMhDDz2UH//4x7nssssK122++eZ5+OGHFytz/Pjx+Z//+Z/ccccdeeihh9Kl\nS5ccf/zxqayszMCBA7PddttlzJgxOeuss/LBBx9Uq+3vvvtuhgwZkiFDhuTPf/5zRo4cmbvuuisj\nR47MMccckxNOOCHrrbdeTjzxxLRv3z4XX3zxCsucMmVKHnjggUJ7/vKXv+Sqq67KI488kmbNmuWe\ne+6pVt0AgJVrZY2BXnvttXz22We55557Mnbs2Bx00EG56aab0rRp0+y999556KGHkiwI3UybNi0d\nOnTIBRdckM022ywPP/xwrrrqqrzyyivVasMHH3yQc845J6NGjcoWW2yRCy+8MEny29/+NjvvvHNG\njRqVYcOG5aGHHsqYMWOWW9bNN9+cTp06ZcSIEbnxxhvzl7/8JRUVFYU2XX311Xn44YfToEGDXHvt\ntYXrFh23/e53v0uPHj0KE2Pjxo3L2LFjM2XKlIwbNy533nlnRo0alVNOOSVXX311kuTqq6/O6quv\nnkceeSRXXXVVtcdxAPBDsLy5kGTBlly33nprHn300UydOjWPPfbYYtc/+eSTGTFiRO65556MHj06\nG2ywQe68884V3vfjjz/OsGHD8sADD2Ts2LF5+umnkySffvppjjvuuMVCzUkydOjQvPXWW3nwwQcz\nevTozJ49O2PHjs3IkSPz97//Pffee28efPDBdOzYMWedddZS9+vZs2ceeOCBJMn8+fPz0EMPpWfP\nnhk+fHg22GCDPPDAA7nrrrsyadKkzJw5c7FrZ8+enXvvvTc33nhjRo4cmSuuuCJ/+MMfllvuvffe\nm7feeiujR4/O3XffnY8++qhan8ecOXOy2267ZeTIkTnppJNy8sknp6ysLP/93/+dzz77LA8++GAe\nfPDBVFRU5NJLL11uWY8//nhmz56dBx98MPfdd1+SFOpR1XzawjqMGTMmv/vd76qcX6usrMwtt9yS\nQYMGFT7/G2+8MV988UW1xsAAUFs8U1rxM6V69eqlR48ehTHOV199lXHjxuWAAw5Y7tzOovdb1hzN\n8sq97rrrMn/+/Dz88MO57bbb8vbbb1ervz755JP07ds3Dz74YLp06ZLf//73SZILLrggzZs3z6hR\no3L//ffnnXfeyS233LLcspY3LnzllVdyzjnnZOzYsdlqq60K82NJ0qxZs4wdOzZ9+vTJRRddlK22\n2iojRozIyJEjM2PGjNx6663LHU8OHTo0H374YcaMGZNbbrkln3zySbXaDnWFlYDgB2r8+PHZe++9\nC79O6tGjx1K/fGrZsmXatm2bgw46KHvssUf22GOP7LLLLissu23btmnfvn2h3IEDB2bGjBl55pln\nMnPmzIwbNy5JUl5enrXXXrtw3cJrFvX8889nv/32S4sWLZIk3bt3z4UXXpjJkydn3LhxOf3005Mk\nG220UXbeeedqtb1NmzaFdj/zzDOZNGnSYvvZf/XVV/nyyy+rVdZC22+//WJp5Z122qlwjy233DJf\nffXVdyoPAFg5VtYYqF27dllzzTULD5QmTJiQNdZYI8mCB1HnnXdejj766Nx///3p3r176tWrl2ef\nfbYwyfLjH/+48Gv1Fdl1110Lv94++OCDc/DBB+ebb77JK6+8Upg8adq0abp3757nnnsu+++/f5Vl\n7b333jn99NPz+uuvZ5dddslZZ52VevUW/Fakc+fO+dGPflS4z0UXXVQYey0ct33zzTd56aWX8tVX\nX+Wqq64qvDdx4sTst99+ueSSSzJq1KhMmjSpsEpSsuBzOOOMM1JSUpIWLVosM1gOAD9Uy5sLSZK9\n9torjRs3TrLg4dcXX3yx2PXjx49P586ds+aaayZJ+vfvX637HnrooWnYsGEaNmyYzp0754UXXsjm\nm2+eBg0aZPvtt1/q/HHjxuXAAw/M6quvniS58sorkyzYYvWNN95Ijx49kiz45fq333671PX77rtv\nLr300kybNi1vv/12Ntpoo2y88cbp0KFDfvnLX+aTTz7JrrvumtNOO22pX16vscYauf766/Pss8/m\nww8/zMSJE/PNN98st9xLLrkkBx54YFZbbbVCe1e0ClCy4CHSfvvtlyTp0KFDKisr8/777+e5557L\nKaeckoYNGyZZsJrS8ccfv9yydtxxx1xxxRXp06dPdt111xxxxBHZaKON8umnn1Y5n7bwuoWqml8r\nKSnJ9ddfn2eeeSajR4/Oe++9l8rKynz77bfVGgMDQG3xTKl6z5R69OiRgw8+OP369cvo0aOz5557\nFn58VtXczkKtWrWqco6mqnKfffbZ9O/fP/Xq1UtpaWkOOuigvPPOO9Xqrx122CFJctBBB+Xcc8/N\nzJkz89xzz2XYsGEpKSlJo0aN0qtXr9x+++355S9/WWVZyxsX7rbbboWVMg855JAceOCBhesW/W48\n88wzeeONNwoB7Dlz5iRZ/nhy/Pjx6dKlSxo1apRGjRrlgAMOqFbboa4QAoIfqJKSksIvyJKkfv36\nS51Tr1693HnnnXnjjTcyfvz4XHTRRdl5552X+eutRS1ZVmVlZerXr5+KioqcccYZ6dixY5IFv9qa\nO3du4bwll65eeO2y3ps3b95SbVjekoGLWvQ+FRUVOfDAAwvJ8oqKinz22WeFibKFlrxXeXl5lWUm\nKUyALetaAKD2rKwx0DPPPJMLL7wwRx55ZH7+859n0003Laz+0759+8ybNy+vv/564ZfnyYKxy6J1\nWXKCpirJFqEeAAAgAElEQVSL1rmysjINGjRIRUXFUuONioqKzJs3b7ll7bnnnnn00Uczbty4jB8/\nPtdee22hfovep6KiYrH6LRz7LLzv3XffXXgY+cUXX2S11VbLW2+9leOOOy59+/bNbrvtlp/85Cc5\n77zzFqv7stoEAD90y5sLSRaf/1jWnEP9+vVTUlJSeP3111/n66+/zgYbbLDc+y5abmVlZeFvf6NG\njZY557Lke9OnT09FRUUqKipyzDHHpHfv3kmSsrKyZT7IatKkSfbZZ5+MHj06r776anr27Jkk2Xbb\nbfPkk09m/PjxefHFF9OzZ89ce+21hYdJyYLViQ499NAccsgh2XHHHdO5c+fCykVVlbtkfas79lry\nvMrKyjRs2HCpX9hXVFQsNV+0pP/4j//I448/ngkTJuTFF1/MkUcembPOOitrrbVWlfNpC9u06H2W\nNb/2zTff5KCDDspee+2V9u3bp0ePHnniiSdSWVlZrTEwANQWz5Sq90ypVatW2XLLLfPMM89kxIgR\nOeOMM5JUPbez4YYbFq5d3hxNVeX+q/NWS55XUlJSmLtaVHXmraoaFyZLz1st+nrJz+yqq65K69at\nkywYG5eUlCx3PLkkYyeKje3A4AeqQ4cOeeSRR/L111+noqIiDz744FLnTJw4MV26dEnr1q3zq1/9\nKn379i0kXevXr1/lH+eJEydm4sSJSRbsYb/DDjukWbNm2X333XPXXXelrKwsFRUVOfvss3P55Zcv\nt5677757xo4dW/hV2/3331/Yu7xDhw6FJRE//vjjTJgw4Tv3w2677ZYxY8bks88+S5IMGzYsRxxx\nxFJtbNGiRT7++ON8/vnnqayszBNPPPGd7wUA1L6VNQb605/+lD333DO9e/fONttskyeeeCLz588v\nHO/Zs2fOP//8tGnTJuuvv36SBfuYL/wV0owZM/LEE08s9sCuKhMmTMjHH3+cZMHYZY899khpaWm2\n22673HXXXUmSmTNnZuTIkdl1112XW9Zpp52WsWPHZv/998+AAQNSWlpaWOL4ySefzMyZM1NRUZHh\nw4dnzz33XOr60tLSbL/99rn11luTLJhIOeyww/Lkk0/mpZdeytZbb50jjzwyO+20U5588slCn3To\n0CH33XdfKioq8tVXX+XJJ59cYbsB4IdieXMh1bHrrrvm8ccfL2z5NHjw4Nx2220rvO6hhx4q/G1+\n+OGH06lTp+Wev8suu2T06NGFeZ5zzz03Y8aMye6775777ruvcP+rrrqqsA3Ekg455JCMGDEir776\navbZZ58kyWWXXZbrrrsue+21V84888xsttlm+fDDDxe77s0330yLFi1y3HHHpUOHDoUHNgvHGssq\nt2PHjnnooYdSVlaWefPmFVZkXJEvv/yyUP5TTz2V1VZbrTAvdffdd6e8vDwVFRW56667sttuuy23\nrKFDh6Z///7Zfffd87vf/S677757/vGPfySpej5tSVXNr02aNCmzZs3KySefnE6dOuXPf/5z4Zzq\njIEBoLZ4plR9hxxySG666abMmTOnsFLg8uZ2FlreHE1V5Xbs2DH3339/YVXH0aNHV2ve6p133snf\n/va3JAs+zx133DGNGzcufJ6VlZUpKyvL8OHDVzhvtbxx4YsvvpipU6cmSe6+++5lzlslC74Tt912\nW+G+v/nNb3LnnXcudzzZoUOHjBw5MnPnzs3cuXMzduzYFbYb6hIrAcEPVMeOHfPOO++kR48eadas\nWdq2bVtYYnihtm3bZt99902PHj3SpEmTrL766oVfwO+555655JJLUl5enoMOOmix6370ox/lyiuv\nzJQpU9KiRYvCfujHHXdcLrnkkhx00EGZP39+/vM//zP9+vVbbj1322239O3bN0cccUQqKirSokWL\n3HDDDalXr14GDBiQ/v37Z9999826666btm3bfud+6NChQ4499tgcddRRKSkpSWlpaa655pqUlJSk\nXbt2ufLKK3P88cfn2muvTa9evdKjR4+ss846+dnPfvad7wUA1L6VNQbq1atXfvvb3+aAAw5I/fr1\n0759+zz22GOFFXS6deuWyy+/fLHJqv79++ess87KAQcckObNm2f99ddf7JdfVdliiy1yxhlnZPr0\n6dl0000zcODAJAsmRgYOHJgRI0akrKwsBxxwQLp3777cso477riceeaZueeee1K/fv3stdde2Wmn\nnfLnP/85P/rRj3LsscdmxowZ+clPfpJf//rXyyzjsssuy/nnn58DDjggZWVl6dKlS7p27Zrp06fn\nsccey3777ZeGDRtml112yVdffZVZs2blhBNOyIABA7LvvvumRYsW2WKLLVbYbgD4oVjeXEh1dOzY\nMe+++24OO+ywJMlmm22W888/f4XXzZkzJwcffHBmz56d3r17Z5dddilsQbYsvXr1ypQpU9K9e/dU\nVlZmp512Sp8+fVKvXr1MnTo1hxxySEpKSrLeeutl0KBByyxj6623ToMGDbLPPvsUtuk64ogj0q9f\nv8IWDG3atEmXLl2W6qP77rsvnTt3TuPGjbPtttumRYsWmTRpUjbddNNlltu9e/d88MEH6datW5o0\naZINNtigsJLh8qy99tp57LHHcuWVV6Zx48YZPHhwGjRokN/85je55JJL0q1bt8ybNy/bbrttzj77\n7OWW1a1bt/z5z3/Ofvvtl8aNG2f99dfPL37xi0ycOLHK+bQlVTW/1qRJk/zsZz/Lvvvum2bNmmXD\nDTfMZpttlkmTJlVrDAwAtcUzperr1KlTzjvvvBx77LGF96qa21lUly5dqpyjKS0tXWa5v/rVrzJw\n4MAccMABadq0adZee+1qzVttuummueaaa/LRRx9l7bXXLowDzzrrrFxwwQU54IADUl5eng4dOlQ5\n17RQVePC0aNHp2XLlvnd736XadOmZbPNNivMjy3pzDPPzIUXXli476677ppjjjkm8+bNq3I82atX\nr/zzn/9Mly5dvlMYH+qKkkp71ADfowkTJuT888/P6NGja7sqAAB12l133ZUtt9wy7dq1S1lZWXr3\n7p0TTjihsMx1bRo8eHBmzJiRc845p7arAgDUgD59+uTwww9P586da7sqK80LL7yQzz//PAceeGCS\n5IILLshqq61W2M6jNplPA+CHyt/AumvMmDEpLS1Nx44dU1FRkRNOOCG77bZbYcvX2jRixIg8+uij\nueGGG2q7KlAnWQkIWOX07t07s2fPXuaxu+66K6WlpTVcIwCApS38VX5FRUXKy8vTuXPndOzY8Xsd\ny8yaNSuHH374Mo+tscYaGTp06L9UdwCguLz44ou5+OKLl3ls5513ruHa1I7NN988N998c26++ebM\nnz8/bdu2zbnnnpuLLrqoyu1A+vfvn5/+9Kff6T4nn3xyPvjgg2Ueu+KKK7Lpppt+57oDACuPZ0rL\ntvnmm+ecc87J5ZdfnvLy8uy8887p2bPn9z7W0f/w/bMSEAAAAAAAAAAAFLnqbSQNAAAAAAAAAADU\nWUJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyDWo7QrUpGnTZtZ2Fb53a63VJDNmfFPb1Vhl6d+VR9+u\nXPp35dK//7511mla21X4wavuuMj3vebo65qjr2uOvq45+rpmrKx+NjaqfavinBH80EyZOTl9Hzk8\nt3W+K62ablDb1QH+RcZFtc+4CFaeKTMn1+lxyqo6nlpV28Wq718dF1kJqMg1aFC/tquwStO/K4++\nXbn078qlf/kh8X2vOfq65ujrmqOva46+rhn6GaDuatV0Aw92AIA6acrMyYUgypSZk2u7OlVaVcdT\nq2q7oCpCQAAANai8vDynnXZaevXqld69e+e9997LpEmTcthhh6V3794ZMGBAKioqkiTDhw9P9+7d\nc8ghh+Tpp59OksyZMycnnHBCevfunWOPPTZffPFFkuSvf/1revbsmV69euWaa66ptfYBAADUFg92\nAIC6ZmH4J8lKD6J8HwGjVXU8taq2C5ZFCAgAoAY9++yzmTdvXu6+++4cf/zxufLKK3PxxRfn5JNP\nztChQ1NZWZknn3wy06ZNy5AhQ3L33Xfn5ptvzuWXX56ysrIMGzYsW2yxRYYOHZpu3brluuuuS5IM\nGDAgf/zjHzNs2LC89tprefvtt2u5pQAAAAAAP2yLrkKzMoMoL3/60ndaaagur0gE/HuEgAAAatAm\nm2yS+fPnp6KiIrNmzUqDBg3y1ltvZaeddkqS7LHHHhk3blxef/31tGvXLo0aNUrTpk2z4YYbZuLE\niXn55ZfToUOHwrnjx4/PrFmzUlZWlg033DAlJSXZfffdM27cuNpsJgAAAAAAWfmr0EyZOTn9nv9t\nBnW4rHCvhVuQVXV+Xd+aDPjXNajtCgAA/JA0adIkU6ZMyb777psZM2bk+uuvz0svvZSSkpIkyRpr\nrJGZM2dm1qxZadq0aeG6NdZYI7NmzVrs/UXPLS0tXezcjz76aLn1WGutJmnQoH616rzOOk1XfBLf\nC31dc/R1zdHXNUdf1wz9DAAAQF2y6GpDyYKQT+8xPZMkQ/e/d6kQ0pLnA6sWISAAgBp02223Zffd\nd89pp52WTz75JEcccUTKy8sLx2fPnp1mzZqltLQ0s2fPXuz9pk2bLvb+8s5t1qzZcusxY8Y31arv\nOus0zbRpM79LE/kX6euao69rjr6uOfq6ZqysfhYsAgAA4N+xaKCnVdMNMnT/e5d6v6rzV6YpMycL\nG0ENsx0YAEANatasWWElnzXXXDPz5s3LlltumQkTJiRJnnvuubRv3z7bbrttXn755cydOzczZ87M\ne++9ly222CI77LBDnn322cK5O+64Y0pLS9OwYcP885//TGVlZV544YW0b9++1toIAAAAAEDtadV0\ng1oP39h2DGqHlYAAAGpQ3759c8YZZ6R3794pLy/PKaeckq233jpnn312Lr/88my66abZZ599Ur9+\n/fTp0ye9e/dOZWVlTjnllKy22mo57LDDcvrpp+ewww5Lw4YN88c//jFJct555+W3v/1t5s+fn913\n3z3bbbddLbcUAAAAAIDvYlVaOce2Y1A7SiorKytruxI1ZVVcGt2S7yuX/l159O3KpX9XLv3777Pl\nRe2r7ne4Nr7vlZWVKSkpqdF71gX+v6Xm6Ouao69rjr6uGbYDW3X57wcA6gbjotpnXAS1Z+HKOYIz\nQPKvj4tsBwbUqHue+kf+MOzV2q4GAHXUvPkVOeOmCRn1pw9quyoAAAAA34uKioqcc845OfTQQ9On\nT59MmjRpseNPPfVUevTokUMPPTTDhw9f7jWTJk3KYYcdlt69e2fAgAGpqKgolPPFF19kn332ydy5\ncxcr/7333suOO+641PtA3VKdlXNsrQWsiBAQUKP+9uGM/G3SjMz+try2qwJAHTTzm/JM/eKbvDvl\n69quCgAAAMD34oknnkhZWVnuueeenHbaaRk0aFDhWHl5eS6++OLccsstGTJkSO65555Mnz69ymsu\nvvjinHzyyRk6dGgqKyvz5JNPJkmef/75HHXUUZk2bdpi9541a1YuueSSNGrUqOYaDPzLVhQA6vvI\n4YUg0JKBIAEhIBECAmrY3PL5SZLpX35byzUBoC4qm7fg78TCvxcAAAAAxe7ll19Ohw4dkiTbb799\n3nzzzcKx9957LxtuuGHWXHPNNGrUKDvuuGNeeumlKq956623stNOOyVJ9thjj4wbNy5JUq9evdx6\n661p3rx5oezKysqcffbZOfXUU9O4ceMaaSt1j2DIqmPRlYKWFQha9DXwwyUEBNSoOf/3UPezGd/U\nck0AqIvmls1f7H8BAAAAit2sWbNSWlpaeF2/fv3MmzevcKxp06aFY2ussUZmzZpV5TWVlZUpKSkp\nnDtz5swkyW677Za11lprsftec8016dixY9q2bbvS2kbdJhiy6lm4UtCSW4dVZysx4IdBCAioUWX/\nFwKaZiUgAJahbN6CfeznWAkIAAAAWEWUlpZm9uzZhdcVFRVp0KDBMo/Nnj07TZs2rfKaevXqLXZu\ns2bNqrzvQw89lPvvvz99+vTJtGnTctRRR32fzaIIrErBEEGmpS35ua4Kn3Ndsuh3zvePYiIEBNSY\nysrKzPm/lR2mzRACAmBpC8OiZUJAAAAAwCpihx12yHPPPZck+etf/5otttiicKx169aZNGlSvvzy\ny5SVleUvf/lL2rVrV+U1W265ZSZMmJAkee6559K+ffsq7/v4449nyJAhGTJkSNZZZ53ccsstK6uJ\n1GGrQjCkLq5oVJfqwvdv0e9cXfz+wfI0qO0KAD8c8+ZXpLJywb+FgABYlrn/F/6ZYzswAAAAYBWx\n9957509/+lN69eqVysrKXHTRRRk1alS++eabHHrooenXr1+OPvroVFZWpkePHmnZsuUyr0mS008/\nPWeffXYuv/zybLrpptlnn31quXWw8tW1FY0WhkLqUp2KyZSZk+t8vy35nfNZU0yEgIAas+gD3Wlf\nflOLNQGgriorX7Ad2Nyy+YvtcQ8AAABQrOrVq5eBAwcu9l7r1q0L/+7UqVM6deq0wmuSZJNNNsmd\nd95Z5b2eeuqp7/Q+FIvaDGAsGVqpK6GkYgjTLKlYAlTL+syhWNgODKgxcxfZ2uUzKwEBsAwLtwGr\nqKzMvPkVtVwbAACg2NimAQD4PlW1FVRth0KKdYuquhKgWp5i7VtYSAgIqDFzF1kJ6Iuvvs38Cg93\nAVjcooHRueX+TgAAANXngQ0AFJ+6/ne7roZW6mq9quNfqXNNfk+KuW8hEQICatCcRR7sVlQmX84s\nq8XaAFAXlc37/+DPnLJ5tVgTAACg2HhgAwDFpVgCvHVlbFHX+2llqY3vSV35zOFfIQQE1Jiy/1sJ\nqOT/Xn/+9ZzaqwwAddKiq8Yt+m8AAIDq8MAGAIpHsQZ4lwyjrCicUtXx7xJqWTIIUywBqu9DsX5P\noLYIAQE1ZuFKQOs0b5wk+UIICIAllM2zHRgAAPCv+yE8CAOAVUmxBTu+axinquPfNcSzZBCmqmDM\nsspbFcZHxfY9gdokBATUmLn/FwJa/0drJLESEABLK1sk+DPXdmAAAMB38EP6RTwAqy5/x+q26oZx\nqjp/Re+v6N7Le72ssZDxEfzwCAEBNWbhti7rrd0kSfL513NrszoA1EELA6PJ/68gBwAAUB22igCg\n2AlsFIcVhXGqOn/Jz/X7HrMsayz0746PivG7WIx1hu+TEBBQYxZu67JwJSDbgQGwpLLyRbcDEwIC\nAAC+GwEgAIqZQOv3qy6FQWoq4LWs786/EwAqtlDayqxzMfUDP2xCQECNWbitS/PS1bJG44a2AwNg\nKXMX2w5MCAgAAACAHxYBoO9HXQqwTJk5uSgDXur8/+rS9wlWRAgIqDELH+yu1rB+1mne2EpAACxl\nsZWAhIAAAAAAgH9BXQmwLBoeqe26/CvU+f/LrAvfJ6iOWg8Bvfbaa+nTp0+SZNKkSTnssMPSu3fv\nDBgwIBUVCwIDw4cPT/fu3XPIIYfk6aefTpLMmTMnJ5xwQnr37p1jjz02X3zxRa21AaiehQ9zV2tU\nP+us1Tjfzp2fb+aU13KtAKhLyubZDgwAAAAA+PfVZGCjqhViFoZHKH4CQBSLWg0B3XTTTTnrrLMy\nd+7cJMnFF1+ck08+OUOHDk1lZWWefPLJTJs2LUOGDMndd9+dm2++OZdffnnKysoybNiwbLHFFhk6\ndGi6deuW6667rjabAlTDwoe5qzWsl3WaN06SfP713NqsEgB1zKLbgc0RAgIAAAAA6rjqbBVlKymg\nptRqCGjDDTfM4MGDC6/feuut7LTTTkmSPfbYI+PGjcvrr7+edu3apVGjRmnatGk23HDDTJw4MS+/\n/HI6dOhQOHf8+PG10gag+hY+zF2tUYOss1aTJMnntgQDYBG2AwMAAAAAismKtoqqqa2kiilkVEx1\nhWLToDZvvs8++2Ty5P//D7yysjIlJSVJkjXWWCMzZ87MrFmz0rRp08I5a6yxRmb9L3t3Hxxlfe//\n/7W3iSYb1PNDsdJ0kGNOpTMKBGgdgVZ6KG3tt1UCCYmlMtV2yoinWFBwxpKjrQZbYVqx1vYUtQ0N\nSWytR2rHmSOooHhozCm10tJjOZ4oKB68oewGsve/P5Jr2Sx7n7322uw+HzOdJnvdfa4rca8Pe73y\nfvt8o1431s3k3HPPltPpKPBZWG/iRE/mlZA3rm/hREf+/6ILJ+itD05JkgIRrrFZuK7m4voiX48/\n/rh+85vfSJL8fr/+8pe/qKurS/fcc49sNpsuueQStbe3y263q7e3V93d3XI6nVq5cqWuuuoqDQ0N\n6dZbb9V7772nmpoa3XvvvTrvvPO0f/9+3X333XI4HJo7d65WrVpl8Znmxx8My+mwKRSOEgICAAAA\nAAAAMC5kCvgUIwC04unr0oaNjngPl0RLq2zGCiB/loaAEtntpwsTDQ4Oqq6uTrW1tRocHBz1usfj\nGfW6sW4mH3xwsvCDttjEiR4dO5Y5AIX8cH0LyzsYkCSd+PtJTTxnuBLQwFvHucYm4HfXXFzfsavk\nENXixYu1ePFiSdKdd96ppqYm/ehHP9Lq1av18Y9/XBs2bNDOnTs1ffp0dXZ26te//rX8fr/a2tp0\n5ZVXxlqi3nzzzXrqqaf04IMP6o477lB7e7u2bNmiD3/4w/r617+uP//5z5o2bZrFZ5u7QDAiz9lu\nfeD1x9pIAgAAAAAAAABSS1ZtKD70kxi8sTIQVKzKSEClsrQdWKJp06Zp3759kqTdu3dr1qxZuuyy\ny9Tf3y+/3y+v16tDhw6poaFBM2fO1PPPPx9bt7Gx0cqhA8iCPxCW22WX3WbTxHPPkiS993fagQGo\nTH/605/0t7/9TS0tLWNuierz+RQIBFRfXy+bzaa5c+dq7969Vp5eXqLRqALBsOpq3JJOt5EEAAAA\nAAAAgHI31hZZiQGgFU9fF9tnfPAmcZkVCACVDlqzlZ+SqgS0bt06ffvb39bmzZt18cUXa9GiRXI4\nHFq+fLna2toUjUZ1yy23qKqqSq2trVq3bp1aW1vlcrm0adMmq4cPIAN/MKxq13BLvnPrqmW32fT+\nCb/FowIAa/zkJz/RTTfdJGnsLVF9Pp9qa2tHrfvmm2+mPX4ubVKLVbnJHwwrKum8umq98Y5XkWjl\nVY2qtPO1Ete6eLjWxcO1Lg6uMwAAAACg0JK1yBpLtZ5k1XaMr6nEAwOt2cqT5SGgyZMnq7e3V5I0\nZcoUbdu27Yx1mpub1dzcPOq1s846S/fff39RxgigMPzBsKrcww+cHXabzvVU6b0TVAICUHlOnDih\n119/XZ/4xCckjb0larJ1M7VKzbZNajHb3/lOBSVJNklul0O+k4GKar1Hq8Hi4VoXD9e6eLjWxWHW\ndSZYBAAAAACVLTGYU4hwRrrtCHxAIhBWrkqqHRiA8uYPhFXlOl114h8mVOu4z69QOGLhqACg+Pr6\n+nTFFVfEvh9rS9Ta2lq5XC698cYbikajeuGFFzRr1ixLzm0s/IHh9l9VLruqXY7Y9wAAAAAAAABQ\n7hKr9lgVzqA9VGUhAFR+CAEBKJr4SkCS9A91VYpGpeM+WoIBqCyvv/66Jk8+PbFet26dtmzZopaW\nFgWDQS1atEgTJ06MtUS9/vrrR7VEfe2119Ta2qqenh6tWrVKknTnnXdq7dq1WrJkiaZNm6bLL7/c\nqtPLWyA0HPpxuxyqcjs0FCQEBAAAAAAAAKAyWRUAWvH0dQSBgHHM8nZgACpDKBxROBIdVQnovLpq\nSdJ7fx/S/zfhLKuGBgBFd+ONN476vhAtUadPnx5rsTpeBYLDleGqXA5VuRzyngxYPCIAAAAAAAAA\nKE9HvIfPCBoZFYhKSbJxAkiNSkAAimIo1uIlvhLQcAjo/RNUAgIADFeMkyS3yz5cCSgQVjQatXhU\nAAAAAAAAAMpNfKUbq6ve5Hv8sYw7U8WfUqkGRGUiIHeEgAAURWDkwe5xn1/P7T+ip1/6Xx0+5pMk\n9b92TM/tP6Ln9h+xcIQAAKsZ9wq306Fql0PRqBQMRSweFQAAAAAAAIByEh8ssSpkYhwv3+OPddxG\nxZ9kFXbSLSu2UhoLMF4QAgJQFEYlIJfz9NuO0zH8dYgHvAAASf6EdmDDr4WtHBIAAAAAAACAMhMf\nLClmyCRZ8Cff4xdi3Om2LaXQTSmNBRgPCAEBKArjIa4R/JEk50ggKBQmBAQAiKsENNIOTJL8AUJA\nAAAAAAAAAAorPlhSrABQquBPvsc3c9xWtt+i9RcwNoSAABSF8RB3VAjIYZNECAgAMMwfGr5XVLkc\nsRDQEJWAAAAAAAAAABRYsYMmhQr+FINVLdKsPjZQLggBASgK4yGuM1k7sHDUkjEBAEpLIGBUAopr\nB0YlIAAAykokEtGGDRvU0tKi5cuXa2BgYNTyXbt2qampSS0tLert7U27zcDAgFpbW9XW1qb29nZF\nIpFRx7nxxhu1ffv24p0cAAAAgHEhXdCkkOGTxH0lC/7Er5Pp2MUKxhSzRVopHRsoF4SAABRFINYO\nzBZ7zeWgHRgA4DR/aPh+4HbZVW2EgKgEBABAWXnmmWcUCATU09OjNWvWaOPGjbFlwWBQHR0devjh\nh9XZ2amenh69++67Kbfp6OjQ6tWr1dXVpWg0qp07d8b29YMf/EAnTpwo+vkBAAAAKH3JgiZHvIez\nqkKTbRAn232tePo69R/ty7h+sSvkWBnCIQAEjA0hIABFMTRSycEV3w7MORwICoYIAQEATgdG49uB\nUQkIAIDy0t/fr3nz5kmSpk+frldffTW27NChQ6qvr9eECRPkdrvV2Niovr6+lNscOHBAc+bMkSTN\nnz9fe/fulSQ9/fTTstlssW0AAAAAIFFiAGjF09dJUtoqNPFBnExhnGwq2lzkmayN8+7T+j1rMx67\n1Cvk0L4LKB2EgAAUhT9WCej0247dZpPNRiUgAMAw417hdp4OAQ1RCQgAgLLi8/lUW1sb+97hcCgU\nCv3WtfgAACAASURBVMWWeTye2LKamhr5fL6U20SjUdlstti6Xq9X//3f/63f/va3+uY3v1mkMwIA\nAAAw3sUHbNIFgIz1JGVVlSebwE7jpNkZj53L/sYqnzBPsasUAUiPEBCAojAqOcSHgGw2m5wOu0Lh\nqFXDAgCUkEDwdDuwKtqBAQBQlmprazU4OBj7PhKJyOl0Jl02ODgoj8eTchu73T5q3bq6Oj3xxBN6\n5513dP311+s3v/mNHn30Ue3evbsIZwYAAABAGr8VYdIFbOJDLkZYZyxVeRKvkRXVfZL9nPIN82S6\nHmP5nRivv0+AlQgBASiKWCWgkRZgBpfDTiUgAICk0e3Aql20AwMAoBzNnDkzFsrZv3+/GhoaYsum\nTp2qgYEBHT9+XIFAQC+//LJmzJiRcptp06Zp3759kqTdu3dr1qxZuu222/TYY4+ps7NT1157rVas\nWKH58+cX+SwBAABGi0Qi2rBhg1paWrR8+XINDAyMWr5r1y41NTWppaVFvb29abcZGBhQa2ur2tra\n1N7erkjk9Ofr77//vhYtWiS/3y9J8nq9+sY3vqEvf/nLamlp0R/+8IcinTEqVblWhEkWchlLAMjM\na5TNflONYSzhpmxaqOWqXH+fALMRAgJQFMZDXJdj9NuO02EjBAQAkBTXDsx1uh0YISAAAMrLwoUL\n5Xa7tWzZMnV0dOj222/Xjh071NPTI5fLpfXr1+uGG27QsmXL1NTUpAsuuCDpNpK0bt06bdmyRS0t\nLQoGg1q0aJHFZwcAAJDcM888o0AgoJ6eHq1Zs0YbN26MLQsGg+ro6NDDDz+szs5O9fT06N133025\nTUdHh1avXq2uri5Fo1Ht3LlTkrRnzx599atf1bFjx2L7fuSRR/SJT3xC27ZtU0dHh+66667injgq\nzlgr5JSyQp1TIa9RYjgm29BMujEU+mc31mBRuf4+AWZyWj0AAJUhVgkoMQTktOukP2TFkAAAJSYQ\nGg6FVrkctAMDAKBM2e32Mx4+TZ06Nfb1ggULtGDBgozbSNKUKVO0bdu2lMe6+eabxzhaAACAwujv\n79e8efMkSdOnT9err74aW3bo0CHV19drwoQJkqTGxkb19fVp//79Sbc5cOCA5syZI0maP3++Xnzx\nRS1cuFB2u12PPPKImpqaYvtesWKF3G63JCkcDquqqsr8k0XZMVpgZWs8BDZyPadCy/bY6cZpBH7i\nQzK5hGbMPv/4sY/lWOPh9wkoNVQCAlAUKUNADrtC4aii0agVwwIAlBB/MCybbbhKnFEJaIgQEAAA\nAAAAGOd8Pp9qa2tj3zscDoVCodgyj8cTW1ZTUyOfz5dym2g0KpvNFlvX6/VKkq688kqde+65o45b\nV1en6upqHTt2TLfeequ+9a1vmXaOKE/l2I7JqnPK9XjJxhn/darAT7rQULGU4+8NMJ4QAgJQFENG\nOzDnmSEgSQpHCAEBQKULBMNyuxyy2WyqdtEODAAAAAAAlIfa2loNDg7Gvo9EInI6nUmXDQ4OyuPx\npNzGbrePWreuri7tsf/6179qxYoVuuWWW2IVhIBslWM7pos8k7Vx3n1FPScjFNN/tC/r9ROv/ViC\nNcUO5ZTj7w0wnhACAlAUgZFKDg6HbdTrrpHvQ+FI0ccEACgt/mAk1gbM7SYEBAAAAAAAysPMmTO1\ne/duSdL+/fvV0NAQWzZ16lQNDAzo+PHjCgQCevnllzVjxoyU20ybNk379u2TJO3evVuzZs1Kedy/\n/e1v+uY3v6lNmzbpk5/8pFmnhzJnZZDDjNDKEe9hrd+z1rR9J2MEj1IdN7HajxHYib/2YwkF5RvK\nGcs1IgAEWIcQEICiGAqE5bDbZLeNDgEZlYCCIUJAAFDpAsGw3CMV42KVgGgHBgAAAAAAxrmFCxfK\n7XZr2bJl6ujo0O23364dO3aop6dHLpdL69ev1w033KBly5apqalJF1xwQdJtJGndunXasmWLWlpa\nFAwGtWjRopTH3bRpkwKBgO6++24tX75cK1euLNYpA2NmVvUas6rUZBpv46TZSY+buF268aULBWWS\nTwAo3fnQ6gsoXU6rBwCgMviD4VjgJ55z5GFvKEw7MACodIFgWOd4qiQNt4+02aQhQkAAAAAAAGCc\ns9vtuuuuu0a9NnXq1NjXCxYs0IIFCzJuI0lTpkzRtm3bUh5r165dsa9//OMf5ztkwHJmtpQya5+Z\nxpsq2JO4nVnBHkmjKgwlVhvKNK74fax4+rq8fz7pjgtg7KgEBKAo/MGwXM4kISCHEQKiEhAAVDp/\nMCK3c7gCkM1mU7XbQTswAAAAAAAAoEKNt6BIvuNNtV2hq+3EV/dJ/DqXcY0loGVWhScApxECAlAU\n/kBYToftjNeN1wgBAUBli0SiCoUjqnKdnp66XQ7agQEAAAAAAADISykETfIdgxlhmfjwjvG1pLyO\nM5bAk1kVngAMIwQEoChStQNzOWgHBgBQLOzjdjlir1W7qAQEAAAAAAAAIHdmVpzJdp9jGYNZYZnE\ntmNWhHIIAAHmIgQEwHShcEShcFTONO3AgiEqAQGoHD/5yU/U0tKixYsX67HHHtPAwIBaW1vV1tam\n9vZ2RSLD74m9vb1avHixmpub9eyzz0qShoaGdPPNN6utrU1f+9rX9P7770uS9u/fr6VLl2rZsmV6\n4IEHLDu3fAVG7gPxIaAqt0NDVAICAAAAAAAAkCOzwi25BHvGOoZct4sfUy7BI0I5QHkhBATAdIGR\nB7jJKgEZwSDagQGoFPv27dMf/vAHbd++XZ2dnTp69Kg6Ojq0evVqdXV1KRqNaufOnTp27Jg6OzvV\n3d2trVu3avPmzQoEAtq+fbsaGhrU1dWla665Rg8++KAkqb29XZs2bdL27dv1xz/+UX/+858tPtPc\nGPeKqrjAaJXLoUAgrGiUanEAAAAAAAAAcmNGuCXXYI+xntmtyeLDSWZWQQJQ+pxWDwBA+fMHhwM+\nLoftjGXOkdcIAQGoFC+88IIaGhp00003yefz6bbbblNvb6/mzJkjSZo/f75efPFF2e12zZgxQ263\nW263W/X19Tp48KD6+/t14403xtZ98MEH5fP5FAgEVF9fL0maO3eu9u7dq2nTpqUcx7nnni2n05Fy\nebyJEz1jPOvMToaGgz4T6qpjx/PUVikqqe6cs1XtroxpazGuNYZxrYuHa108XOvi4DoDAAAAQGXL\np0LPiqevM7XtVmI4aeO8+0qmws8R7+G8rlmpjB8YbyrjaQoASw0FQpJSVAJyGJWAqPIAoDJ88MEH\neuutt/TQQw/p8OHDWrlypaLRqGy24VBkTU2NvF6vfD6fPJ7TDxlramrk8/lGvR6/bm1t7ah133zz\nzQzjOJnVeCdO9OjYMW+up5m15/YfkSS9e/yUJOl/3/q7HvuPg5Kk90bGeOStv6uuxm3aGEqF2dca\np3Gti4drXTxc6+Iw6zoTLAIAAACA0lSIMIpZrcmSHUcaHvP6PWu1cd59apw029RjZpJPAKoYoSmg\nnNEODIDpAiOVgJKFgFxGCChEJSAAleGcc87R3Llz5Xa7dfHFF6uqqkpe7+mHiYODg6qrq1Ntba0G\nBwdHve7xeEa9nm7durq64p1UARhh0Ph7hfG1f6RVGAAAAAAAAAAUSyHbahUzzHKRZ7I2zrtP6/es\ntbwlWD4BqGKFpoByRQgIgOlilYCcSSoBOYcrXwRpBwagQjQ2NmrPnj2KRqN65513dOrUKV1xxRXa\nt2+fJGn37t2aNWuWLrvsMvX398vv98vr9erQoUNqaGjQzJkz9fzzz8fWbWxsVG1trVwul9544w1F\no1G98MILmjVrlpWnmTOjLaQzrnWkcd/wBwgBAQAAAAAAANmyOviRq1Idb75hlMTzseL8GifNPmPs\nZowjm33mE+YhAATkjxAQANMZFRxccQ92DafbgRECAlAZrrrqKl166aVasmSJVq5cqQ0bNmjdunXa\nsmWLWlpaFAwGtWjRIk2cOFHLly9XW1ubrr/+et1yyy2qqqpSa2urXnvtNbW2tqqnp0erVq2SJN15\n551au3atlixZomnTpunyyy+3+ExzE4qkrgQ0RCUgAAAAAAAAICuFrF5TDONtvJkkno+V55cYACr0\nOMrtZweUC6fVAwBQ/vxp2oGdDgFFizomALDSbbfddsZr27ZtO+O15uZmNTc3j3rtrLPO0v3333/G\nutOnT1dvb2/hBllkRlvI+HuFER6lEhAAAAAAAACQnfHWSqmUx2uEXHIZX+L5mHl+R7yH8x5XvvvJ\ndp8ArEMlIACmi7UDSxsCohIQAFSyUGT4PuBI1g6MSkAAAAAAAABA1sZbKKNUx5tvyCVxfbMCQIkV\nh3IdV7L95DoGY59UAwJKR8mFgILBoNasWaNly5apra1Nhw4d0sDAgFpbW9XW1qb29nZFRh4S9fb2\navHixWpubtazzz5r8cgBpBIYqQTkciYLAQ0/7DUqQAAAKlN4pCKcK0k7MCoBAQAAAAAAALCC1QGl\nVOGa+IDSWII8uQSd+o/2jRqXcUzaggGlpeRCQM8//7xCoZC6u7t100036Qc/+IE6Ojq0evVqdXV1\nKRqNaufOnTp27Jg6OzvV3d2trVu3avPmzQoEAlYPH0ASpysB2c5YZrPZ5HTYqAQEABXOuA/EVwIy\nAkFDVAICAAAAAAAAUGEyVfspVMuxbANAi5/8QiwIFH9M2oIBpaXkQkBTpkxROBxWJBKRz+eT0+nU\ngQMHNGfOHEnS/PnztXfvXr3yyiuaMWOG3G63PB6P6uvrdfDgQYtHDyAZ/0gloGTtwIzXgyMVIAAA\nlSk0ch+Iv1fE2oFRCQgAAAAATMdf7wMAUFhjvbfmUu3H7ABO46TZevyLv1XjpNmSRrcCK8bxAWTP\nafUAEp199tk6cuSIPve5z+mDDz7QQw89pL6+Ptlsw38VXlNTI6/XK5/PJ4/HE9uupqZGPp8v7b7P\nPfdsOZ0OU8dvhYkTPZlXQt64vmNnH3mIO8FTLU9tdex142u3y6FIJCpPbTXXu4C4lubi+gKFZVQC\nGhUCGqkK5KcSEAAAAACYyniwyF/xAwCQv/hgTKHurYWq9lMI8QEg5g1A6Sq5ENCjjz6quXPnas2a\nNXr77bd1/fXXKxgMxpYPDg6qrq5OtbW1GhwcHPV6fCgomQ8+OGnauK0ycaJHx455rR5G2eL6Fsbx\nvw9JkgKBkLy+4a89tdWxr+02aSgUltc3xPUuEH53zcX1HTtCVEh0OgR0ZjswKgEBAAAAgLlK4cEi\nAADZSKxAUyrHSwzGmHFvzXYcZl8f5g1AaSu5dmB1dXWxMM+ECRMUCoU0bdo07du3T5K0e/duzZo1\nS5dddpn6+/vl9/vl9Xp16NAhNTQ0WDl0ACkYFRziH+zGczrsCoUixRwSAKDEhEfagTns8ZWARkJA\nVAICAAAAUOLKoZUWD/IAAKUuU0ssK4+XLBgTXxUo2b7zHVOqfRTz+hR63pDtmMthzgWYreRCQCtW\nrNCBAwfU1tam66+/Xrfccos2bNigLVu2qKWlRcFgUIsWLdLEiRO1fPnyUetVVVVZPXwASRgVHOJb\nvMRzOu2KRKVwJFrMYQEASkisEpDzdGDUOdJOcohKQAAAAABKWLEfSAIAUKmKXYEm1+MlWy/ZPCHf\nuUP8dsn2MV4r9GR7PfK5bszPUIlKrh1YTU2NfvjDH57x+rZt2854rbm5Wc3NzcUYFoAxOF0JKHkI\nyGj3YjwABgBUntBIJSAnlYAAAAAAjEGxW4RI4/eBGwAA45EV9/l4uc41UlUIymfuEL/dEe/hpPsY\n63izUeh9Zns9cr1uiS3a4l9n3oZyVnKVgACUn6FAWE6HXXZ7qnZgw68TAgKAyhUKR2S32UbdK1wj\n9wdCQAAAAEDlyeevtq2syMODJAAAyl/iXGMsc45Mc4dU+zYCQCuevi7jMcYyN0q1jVnzrVyqLWV7\n7GShISo4ohIQAgJgukAwrGq3I+Vyo9JDKEQICAAqVSgciYVCDXa7TTbb6baSAAAAACpDvg9nqMgD\nAEB64yn4UIpjTazEY2YLq3TbmFU5J93xja+tnm/lej2TVUpivohyRwgIgOmGAmFVuVK/3cRCQCOt\nYAAAlSccicqR0DbSZrPJ6bBriBAQAAAAUFHG8nCGBzoAACQ3niqglPJYjblGqvlK4pjzmddks00u\nlXNylXj8xJ+HlfOtQoR4mC+i3BECAmA6fzCsKrcz5XKXc/itKEg7MACoWMkqAUmSy2GXPxiyYEQA\nAAAArMTDGQAACms8VUAp1FjNDhElCwAlCy+Nx2Bz/PGzDTwVi9XXBih1hIAAmM4fzFQJaPihb4gQ\nEABUrFA4GqsMF8/psMkf5P4AAAAAAAAAjNV4Ck8UIgBU7GpCuYaXSqHSUb5ttUq5WhNQ6VKX5gCA\nAohEogqGIqpyOVKuQzswAKhs0Wg0ZSUgp9OuwVNUAgIAoJT09fWlXT579uwijQQAznTEe3hcPeAE\nMH4wBwLGF6sqH+USAFrx9HUZx5hpbpPL3Cdx3f6jfVq/Z21e12k8VZYCKg0hIACm8gfDkpRdCChE\npQcAqESRqBSNKmkloOF2YGFFolHZbWeGhAAAQPHdf//9kqTjx4/rjTfe0MyZM2W32/WHP/xBDQ0N\n6u7utniEACpVtg/TACAfzIGA8aeU5wPZhGgyzW2yWX6RZ3KsWk/8uke8h7V+z1ptnHdf3tepVK8v\noXBUOtqBATBVLATkThMCchqVgAgBAUAlCo+8/zuStgMbfi1ISzAAAEpGZ2enOjs7NWnSJD355JN6\n5JFHtHXrVu3YsUM1NTVWDw9ABeMv0gGYiTkQgELLNGfJNLdJt9wICPUf7dOKp6+TpFHrGts2Tiqv\nKmbl2qas3M4H5iIEBMBU/sBwCKg6TQjINdL+JUgICAAqkhECTdUOTJKGRkKlAACgdLz11lv6yEc+\nEvv+Qx/6kN566y0LRwQApfsX6QDKB3MgAMWUTVAo1etGyMcI/ySua8a8yeqwipWhcLPOvVyDTTAP\nISAApjIqAbmzaQcWjhZlTACA0mK8/ydrB2YEg/yBUFHHBAAAMvvYxz6mdevW6bnnntOuXbu0Zs0a\nzZo1y+phAQAAmIo5EIBCMCPQ0X+0b9T3RtuvbAIxhRiPWWGVXPdnVQDIrKAO1S6RK0JAAEw1NFIJ\nqCqbEFCISkAAUIlilYDsSSoBjdwj/LQDAwCg5Hz3u9/VP/3TP6m7u1u9vb2aPn262tvbrR4WAACA\nqZgDAZUnMdgx1qBHusBIvvvuP9qna//96lFBIKMVWKZ9xrcOy3c8Rtio0GGV8VIFx+ygDgEg5MJp\n9QAAlDejElC6dmCnKwHxgBdAZbj22mtVW1srSZo8ebK+8Y1vaP369bLZbLrkkkvU3t4uu92u3t5e\ndXd3y+l0auXKlbrqqqs0NDSkW2+9Ve+9955qamp077336rzzztP+/ft19913y+FwaO7cuVq1apXF\nZ5m9dJWAXEYIKEA7MAAASo3b7dbixYv1uc99TtFoVOFwWH19fbriiiusHhoAAIBp8pkDRSIR/eu/\n/qv++te/yu1267vf/e6olmK7du3Sj370IzmdTjU1Nam5uTnlNgMDA0k/R5Kk999/X62trXryySdV\nVVWV8nMkANkzQihGwCPx+3ykCowc8R5W21NL1XX1Y0mXpTvepJoLNbm2XpNqLoytv37PWm2cd19W\nLcU2zrtP6/esHXWekrI610Jck3RjGy9VcMbDGFEZqAQEwFRGJaBqd+rModM5XPmBEBCASuD3+xWN\nRtXZ2anOzk51dHSoo6NDq1evVldXl6LRqHbu3Kljx46ps7NT3d3d2rp1qzZv3qxAIKDt27eroaFB\nXV1duuaaa/Tggw9Kktrb27Vp0yZt375df/zjH/XnP//Z4jPNXqwSkCNJJSDn8HR1KEg7MAAASs2m\nTZv06U9/Wp/97GfV1tamz3zmM9q8ebPVwwIAADBVPnOgZ555RoFAQD09PVqzZo02btwYWxYMBtXR\n0aGHH35YnZ2d6unp0bvvvptym2SfI0nSnj179NWvflXHjh2L7TvV50gAspcYQsk1lJKqgk0ugZFs\nKgdd5Jmsx774xBnjbpw0O6tjNE6afUbQSdKoc013LlTBAUoHISAAphryDz+0TVcJyKjyEBypBAEA\n5ezgwYM6deqUvvrVr+orX/mK9u/frwMHDmjOnDmSpPnz52vv3r165ZVXNGPGDLndbnk8HtXX1+vg\nwYPq7+/XvHnzYuu+9NJL8vl8CgQCqq+vl81m09y5c7V3714rTzMnp0NAVAICAGA8eeqpp/T888/r\n85//vH7xi1/okUce4S/LARRMqbd8AFC58pkDxX+eM336dL366quxZYcOHVJ9fb0mTJggt9utxsZG\n9fX1pdwm2edIkmS32/XII4/onHPOSXpc43MkALlLDKHkEgDKpZXVRZ7JSasApasclLj/+O9zDc8k\nCzoZoaBM55KpUhBKHz+n8kE7MACmGoprBxY8lbzSD+3AAFSS6upq3XDDDVq6dKn+93//V1/72tcU\njUZlsw1XwampqZHX65XP55PH44ltV1NTI5/PN+r1+HWN9mLG62+++WbacZx77tlyOlMHNONNnOjJ\nvFKePLXVcr1/SpJUc7ZbntrqUctra9ySJHe129RxlIpKOMdSwbUuHq518XCti4PrfNr555+v2tpa\nXXLJJTp48KA+85nP6Pvf/77VwwJQBsxsKYHUMrUZATAsnzlQ4mc3DodDoVBITqcz7WdAybZJ9jmS\nJF155ZVJj5v4ORKAwsl078ynQk78usb+Ux1nrFWKshE/L0u371RjTDevY+5ROph/lxdCQABMZbQD\nq3I75D0VTLqO3W6T3WZTKEQICED5mzJlij7ykY/IZrNpypQpOuecc3TgwIHY8sHBQdXV1am2tlaD\ng4OjXvd4PKNeT7duXV1d2nF88MHJrMY7caJHx46Z9wGR1zck30m/JCkUCsvrGxq1PBQavo+8+57P\n1HGUArOvNU7jWhcP17p4uNbFYdZ1Hq/BotraWj3xxBP62Mc+pm3btun888/XiRMnrB4WgDJgdksJ\nnIkHP0D28pkDJX52E4lE5HQ6ky5L9hlQ/DZ2u33Uuuk+A0r2ORKAwjjiPay2p5YmrdwTL9/7qnFv\n3jjvPn3ruX9JeZxcQkO5HtuYF2SaH6SbR2SqYsTcozQw/y4vtAMDYKqhgNEOLH3m0Om0UQkIQEX4\n1a9+Fevh/s4778jn8+nKK6/Uvn37JEm7d+/WrFmzdNlll6m/v19+v19er1eHDh1SQ0ODZs6cqeef\nfz62bmNjo2pra+VyufTGG28oGo3qhRde0KxZsyw7x1yFQsPtINO1AzMqywEAgNJx99136/3339fH\nP/5xXXTRRdqwYYNWr16ddptIJKINGzaopaVFy5cv18DAwKjlu3btUlNTk1paWtTb25t2m4GBAbW2\ntqqtrU3t7e2KRIb/TfnLX/5STU1NWrJkiX73u9+ZcOYAioEHEKmZ0aqBBz9A9vKZA82cOVO7d++W\nJO3fv18NDQ2xZVOnTtXAwICOHz+uQCCgl19+WTNmzEi5zbRp0874HCndcRM/RwIwPhj35kk1F2a1\nvhGq6T/al3ULsnStvRIrDGUz1lTrZVPFCNbjZ1E+qAQEwFT+kUpA1a70LWecDrtC4WgxhgQAllqy\nZIluv/12tba2ymaz6Z577tG5556rb3/729q8ebMuvvhiLVq0SA6HQ8uXL1dbW5ui0ahuueUWVVVV\nqbW1VevWrVNra6tcLpc2bdokSbrzzju1du1ahcNhzZ07V5dffrnFZ5q90MgDO6fDdsYyIxhk3E8A\nAEDpuOCCC7Rs2TIdPHhQt912m4aGhnT22Wen3eaZZ55RIBBQT0+P9u/fr40bN+rHP/6xJCkYDKqj\no0O/+tWvdNZZZ6m1tVULFizQf/3XfyXdpqOjQ6tXr9bHP/5xbdiwQTt37lRjY6O2b9+u3/zmN/L7\n/br66qv1uc99LtYyAwDGOzP/ap4HP0B28pkDLVy4UC+++KKWLVumaDSqe+65Rzt27NDJkyfV0tKi\n9evX64YbblA0GlVTU5MuuOCCpNtI0rp16874HCmVVJ8jARi7izyTU1bnMcI12dxb01XtMV7PVG3I\nWDebyj3x1YIKOacw9pFLFSLmHoA5CAEBMJXRDqzanT4E5HLY5afKA4AK4Ha7k37gsm3btjNea25u\nVnNz86jXzjrrLN1///1nrDt9+vTYX8uPN0YINFklIKdz+IEd9wgAAErPSy+9pA0bNigcDqu7u1tf\n+tKX9P3vf19z585NuU1/f7/mzZsnaXj+8uqrr8aWHTp0SPX19ZowYYIkqbGxUX19fdq/f3/SbQ4c\nOKA5c+ZIkubPn68XX3xRCxcu1BNPPCGn06kjR46oqqqKABCAssJfzQPWy2cOZLfbddddd416berU\nqbGvFyxYoAULFmTcRhpuNZ/scyTDrl27Yl+n+hwJQGGkCgC1PbVU0unwTqpgTLZBnFxDNamOmW2b\nr3wDQoUMFo21pRlQyWgHBsBUsRBQVYZ2YA6bgiHagQFAJQqPtIN0UAkIAIBxZfPmzerq6lJdXZ3O\nP/98dXZ26nvf+17abXw+n2pra2PfOxwOhUKh2DKPxxNbVlNTI5/Pl3KbaDQaC/jU1NTI6/VKkpxO\np7Zt26aWlhZ98YtfLNj5AkCp4IEYYK185kAAKodRISg+AJSqPZdZ4d5Ux8z2ePmOq1Dnk+6aobj4\nGYxPhIAAmMofGP4wtyqLdmDhSFSRKC3BAKDShCPD7/0Oe5JKQEYIiEpAAACUnEgkookTJ8a+/8d/\n/MeM29TW1mpwcHDUPpxOZ9Jlg4OD8ng8Kbexx80dBgcHVVdXF/v+y1/+svbs2aO+vj7953/+Z34n\nCAAAkEQ+cyAAleUiz+RRVXnSBWPyDcykC2ekO2Z82650QZv49XIJghSqtRiVD61HGGv8IgQEEtJz\nJgAAIABJREFUwFRDgbAcdptczvRvN86R5QEe8gJAxQmHjRDQmZWAXCMhoCEqAQEAUHImTZqkZ599\nVjabTSdOnNCPf/xjfehDH0q7zcyZM7V7925J0v79+9XQ0BBbNnXqVA0MDOj48eMKBAJ6+eWXNWPG\njJTbTJs2Tfv27ZMk7d69W7NmzdL//M//aNWqVYpGo3K5XHK73aPCQgAAAGOVzxwIgHkKHVAwI/Aw\nljBLsvGMJZxhbJNN0MZobdb21NKiB0EIAFmPMNb4xacgAEw1FAyr2p2+CpBEuxcAqGThSJp2YE4q\nAQEAUKruuusu7dixQ2+//bYWLlyov/zlL7rrrrvSbrNw4UK53W4tW7ZMHR0duv3227Vjxw719PTI\n5XJp/fr1uuGGG7Rs2TI1NTXpggsuSLqNJK1bt05btmxRS0uLgsGgFi1apIsvvlgf/ehH1dLSomXL\nlunyyy/XnDlzinE5AABAhchnDgTAHIWuVFJqlU+MEE6ubb1SnUfi6/Hbp2pXFt/aDJWHn/v45LR6\nAADK25A/2xDQ8INfHvICQOU53Q7szBCQw26Tw27j/gAAQAn6xS9+oc2bN+e0jd1uP+Mh2dSpU2Nf\nL1iwQAsWLMi4jSRNmTJF27ZtO+P1VatWadWqVTmNCwAAIFv5zIEAmKOQlUqOeA9bVvnEOHYu0q2f\n7jySvW6Eg5ItK+S1yOc8AeSOSkAATDUUCKnanTlv6KTdCwBUrNMhoORT0yqXg0pxAACUoGeffVbR\naNTqYQAAABQVcyCgtBSi1VZ8hRwrAkDGsZNV48m3Co+xTeI5plo3VTioUEqtyhJQzqgEBMBU/izb\ngblGQkCBYMTsIQEASkw4nLoSkCRVuR2ERAEAKEHnnHOOPvvZz+pjH/uYqqqqYq93dHRYOCoAAABz\nMQcCykNi9RsrKgBJpwM4kkaNJ358+cr2HJOFn9JVB8qHldcYqDSEgACYJhSOKBSOqiqbdmDOkUpA\nwZDZwwIAlJhwJCKbTbKnCAFVux3ynQoWeVQAACCTa6+91uohAACQFdqPoJCYAwHlITGUYvZ9IlXQ\nJv7YiePJFJrJdH9LdY7x2xlhn43z7lPjpNlJty3UfZR7MVActAMDYBqjakN27cCGH/z6A1QCAoBK\nE45EU1YBkiS3yyF/kEpAAACUmmuvvVYf/ehHdfz4cXm9Xl122WU8FAMAlBzaj6DQmAMBubPyPTjd\nseNDKfHrFXq8ye5FR7yH1fbUUrU9tXRUGCh+nVRVe1LtM5lUFX7ij7lx3n1av2et+o/2nbFtqdxH\nC92aDChnhIAAmGYoMFzVp8qVRSWgWDswHvICQKUZDgGlnpZWuxwKBCOKRKJFHBUAAMjk4Ycf1je/\n+U393//9nw4fPqyVK1fq17/+tdXDAgBgFNqPoNCYAwG5sTJEku2x+4/2xcI4idsUYtzxLb/iwzdd\nVz+mrqsfO6MqT6pjxi/P9/6WbLvGSbNjQaDEY5fCfbSQv0OlEmoqJVyL8kM7MACmiVUCqso+BDRE\nCAgAKk44nL4SkNFW0h8M66wqpq8AAJSKnp4ePf7446qtrZUk3XTTTWptbVVTU5PFIwMAYDQCQCgk\n5kBAbqwMkWTbUutbz/2LguHgGdsYgZFCjb/tqaWSFAv+JO4z03iNqj1jbWGWrDpQ46TZlod90inU\n2Eoh1FRKCv07jtJAJSAApjndDixzCMjlHH478gcIAQFApQlHonI40oSARirKUS0OAIDSMmHCBDmd\npwO6Z599tmpqaiwcEQAAgPmYAwG5szJckOnYRkWex774xBnhmkIGRpJV/sl1vEe8h5NW68nXEe9h\n9R/t04qnr1P/0b6U7cesrJxjHL+QCLucRiiqPPGn1ABMYwR6qrNqBzb88NfPA14AqDjhSERVrtTT\nUqMS0FAwrAnFGhQAAMjowx/+sFpaWnT11VfL6XTqP/7jP1RbW6sHHnhAkrRq1SqLRwgAxWO05QBQ\n/pgDAYVTKvfPXEM5+Y57rOeaKbCRy7iOeA/HKhPdPucOfeu5f0kaUMo3JFKony0hFfNxbcsPlYAA\nmGYoEJIkVbsz5w2NdmCEgACg8kQi6duBGWFSqsUBAFBapkyZooULFyoQCOjkyZO68sor1djYaPWw\nUEGs+mtkIJHVfyEPoLiYAwGFMV7vn+nGbfa5pDtmrtczvjLRxLPPz7huujEkG1Mhf7Zmh1TG2+8g\nkElJVgL6yU9+ol27dikYDKq1tVVz5szR+vXrZbPZdMkll6i9vV12u129vb3q7u6W0+nUypUrddVV\nV1k9dABxcmkHFgsB8YAXACpKNBpVOByV3Z46m25UAiIoCgBAaVm1apUCgYDcbrcGBgb0+uuva/78\n+Wnv60ChGA8W+KtglAL+Qh2oLMyBgMIo5funUcUmVTWbZOM2e34aX7nHqNiTeMxcj23sY/2etdr8\nqfszbpvtOZbyzzYR/65AOSq5Gcm+ffv0hz/8Qdu3b1dnZ6eOHj2qjo4OrV69Wl1dXYpGo9q5c6eO\nHTumzs5OdXd3a+vWrdq8ebMCgYDVwwcQxwgBVWURAnJRCQgAKlI0KkUlORypKwFVUQkIAICS9KMf\n/Uh33HGH3nrrLV133XX6+c9/rvb2dquHhQoxnh4soDLwuwhUDuZAQOGU4v3TCIX0H+07o5qNsSwZ\nY35qlqODb8cq91zkmaz+o32j5sSZ2m+lqnZj7KNx0uyMY8imHVn8uuMB/65AOSq5ENALL7yghoYG\n3XTTTfrGN76hT33qUzpw4IDmzJkjSZo/f7727t2rV155RTNmzJDb7ZbH41F9fb0OHjxo8egBxMup\nHZhz+OEvD3gBoLKEI1FJStsOzAiTDnGPAACgpOzcuVPf/e539dvf/lZf/OIX9cgjj+jAgQNWDwsV\nhA/qUUpoIwFUDuZAQHmLD8UkhkOyCYyMtQ1Wsm37j/Zp8ZNf0NHBt2MBoMVPfiEWBMrUfivT8lza\nfaULAI3H9m4S/65A+Sm5dmAffPCB3nrrLT300EM6fPiwVq5cqWg0Kptt+MFQTU2NvF6vfD6fPB5P\nbLuamhr5fL60+z733LPldGauSDLeTJzoybwS8sb1zZ/DNfwWM+l8jyZO9MhTWz1qefz31aGIJClq\ns3HNC4TraC6uL1AY4cjw+3+6EFC1i3ZgAACUokgkIrfbrWeffVarV69WJBLRqVOnrB4WABQdbSSA\nysIcCChfRjUd436e7L5uZhusVHOKxkmz9fgXf6tJNRfqiPdw7Hujek+m42Y7rsTjZ6oulM8xAJiv\n5EJA55xzji6++GK53W5dfPHFqqqq0tGjR2PLBwcHVVdXp9raWg0ODo56PT4UlMwHH5w0bdxWmTjR\no2PHvFYPo2xxfcfm/ZH/5oZO+nXsmFde31Bsmae2etT30ehwJQjvoJ9rXgD87pqL6zt2hKhgCIez\nrwRECAgAgNJyxRVX6Atf+IKqq6s1e/ZsffnLX9aCBQusHhYAFB0PvYDKwhyo/OUSfED5yDfUm/j7\nMpbfnXRzikk1F6rtqaWSpK6rH9OkmgvP2DbTvrM9vpTf9eC/G6A0lFw7sMbGRu3Zs0fRaFTvvPOO\nTp06pSuuuEL79u2TJO3evVuzZs3SZZddpv7+fvn9fnm9Xh06dEgNDQ0Wjx5APKNtS7U7cwUum80m\np8NGOzAAqDCxdmCO1NPSKqMSEPcIAABKyrp16/TTn/5UPT09stvt+va3v61bb71VktTT02Px6ACg\nuHjoBVQO5kDlbTy3NMLY5BPqzfb3JZffp3TVfLqufkxdVz8maextx9JZ8fR1kkTIGRinSi4EdNVV\nV+nSSy/VkiVLtHLlSm3YsEHr1q3Tli1b1NLSomAwqEWLFmnixIlavny52tradP311+uWW25RVVWV\n1cMHEGdopGJDlTu7omMup50qDwBQYWIhoHTtwEbCpEOEgAAAKDkf+tCH5HAM36svvfTS2Ovd3d1W\nDQkAAMB0zIHKF9Xdxp9CBmFy/blf5JmsjfPuS7tdIYNlRquy+Io9yY6XjVTrxf83wH8HwPhUciEg\nSbrtttv061//Wo8//rjmzZunKVOmaNu2berp6VFHR0dsYtXc3Bxbb9GiRRaPGkCioUBIUnaVgCTJ\n6bDHgkMAUM7ee+89ffKTn9ShQ4c0MDCg1tZWtbW1qb29XZFIRJLU29urxYsXq7m5Wc8++6wkaWho\nSDfffLPa2tr0ta99Te+//74kaf/+/Vq6dKmWLVumBx54wLLzykd45HzThYDcLtqBAQAw3hgtnwFg\nvKmUyg+Vcp5AsTEHKg8EH8YPqys3HfEe1vo9a9MefyzBskznlXju6a5HtuvlOqZc98EcBDBfSYaA\nAJSHoUBYNpvkdmb3VuNy2jXk5wEvgPIWDAa1YcMGVVdXS5I6Ojq0evVqdXV1KRqNaufOnTp27Jg6\nOzvV3d2trVu3avPmzQoEAtq+fbsaGhrU1dWla665Rg8++KAkqb29XZs2bdL27dv1xz/+UX/+85+t\nPMWchMPZVwIiBAQAwPhhs6W+twNAMeT7UGs8tIAZ6/jGy3kC4xFzIKC4rK7clOz4ye6v+QaA0t2v\nkx071fVI3Fe665YpSBS/LNc5BXMQoDgIAQEwjT8QVrXbkfU/fNxOh/zBsELhiMkjAwDr3HvvvVq2\nbJnOP/98SdKBAwc0Z84cSdL8+fO1d+9evfLKK5oxY4bcbrc8Ho/q6+t18OBB9ff3a968ebF1X3rp\nJfl8PgUCAdXX18tms2nu3Lnau3evZeeXq1g7MEfqaWmVUQmIdmAAAAAAspDvAyarHyRmoxAPz8bD\neQIAkC2r72eJAaB09+lc7t+JrcayCRcd8R4+Y33jtWSBoWRjSzdPSFyW65yCOQhQHE6rBwCgfA0F\nQqp2Z/82U+UafgA8OBTShBq3WcMCAMs8/vjjOu+88zRv3jz99Kc/lTRcJtoIS9bU1Mjr9crn88nj\n8cS2q6mpkc/nG/V6/Lq1tbWj1n3zzTczjuXcc8+W05ldu8aJEz2ZV8qTe+Q+cXa1S57a6qTrXHTh\nBElS1GYzdSyloNzPr5RwrYuHa108XOvi4DoDQOkbywOmUn8oVaiHZ6V+ngCA8hUfVCmH48QfK5sK\nO9nex41WY49+9peSlHFbY/8b592nSTUXxr429pHumIljS7du4rJcr3GpzkGK+fsCmI0QEADT+ANh\nnV3tynp990ilh5NDQUJAAMrSr3/9a9lsNr300kv6y1/+onXr1un999+PLR8cHFRdXZ1qa2s1ODg4\n6nWPxzPq9XTr1tXVZRzLBx+czGrMEyd6dOyYN9tTzJnvZECSFAqF5fUNJV3He+KUJOmEz2/qWKxm\n9rXGaVzr4uFaFw/XujjMus7lGCyKDzQDgBXK+SFOOZ8bMN4xBwLSyzUIk7htttuM5Ti5yhSgySYg\nlEzi+kYYKN368aEfY9t0oaSLPJNTVgqqJMX8fQGKgXZgAEwzNNIOLFtGCGjwVMisIQGApX75y19q\n27Zt6uzs1KWXXqp7771X8+fP1759+yRJu3fv1qxZs3TZZZepv79ffr9fXq9Xhw4dUkNDg2bOnKnn\nn38+tm5jY6Nqa2vlcrn0xhtvKBqN6oUXXtCsWbOsPM2chEdaQDrsqVtHOh12OR02+YO0AwMAoJSc\nOnVK3/ve97R48WJ96Utf0j333KOTJ4eDxr/4xS8sHh0AAIA5mAMB+cs2bJLY+qr/aF9O7TCLGWrJ\nFLRpe2qpjngPF6TSjLGvVBonzR4VRkp1TCP0En9dC3mtxtK21AqVHoJC+SEEBMAU4UhEgVAkpxDQ\n6XZgQbOGBQAlZ926ddqyZYtaWloUDAa1aNEiTZw4UcuXL1dbW5uuv/563XLLLaqqqlJra6tee+01\ntba2qqenR6tWrZIk3XnnnVq7dq2WLFmiadOm6fLLL7f4rLIXjkQlSQ5H6hCQJFW5HISAAAAoMXfd\ndZeGhoZ0zz336N5771UoFFJ7e7vVwwKAcWG8PRwDcBpzIGBssgkAxQd+jLZYG+fdl1NIw6xAR7J7\neKZjHR18O2WIKdWc4Ij3sJY+eU3OcwZjLPEBpMTjGKGX+NBQOrmMIdfAVqkgAIRyQjswAKbwB4Yr\nO1S7s3+biVUCIgQEoAJ0dnbGvt62bdsZy5ubm9Xc3DzqtbPOOkv333//GetOnz5dvb29hR9kEcRC\nQPb02fQqt0P+ACEgAABKyYEDB/Tkk0/Gvt+wYYM+//nPWzgiABgf8m05Uei/0geQH+ZAgLkSq7KU\nUpWWXO/hF3kmq+vqx1KeQ7L9Gff7o4Nv603vgI4Ovh2r7GPsayzjNsYVf33TbScNVyDK5tj5BrYA\nFBaVgACYYigw3NIrt0pARgiIdmAAUClOh4AyVwIaIgQEAEBJiUajOnHiROz7EydOyOHI/t+AAFCp\n8nmYmVgVAYB1mAMB5ku8R5ZKoCTTPTzXKkGJ+4u/30+quVD1dR/RpJoLU+7riPew+o/2pdy3Edwx\njiPpjCpLqc7DGMvRwbdTjj/ZMTfOu0+Nk2afsT8AxUMICIApjAe1uYSA3EY7sFNUAgKAShEJD1eO\ns2cIAVW7HQrQDgwAgJKyYsUKLVmyRBs3blRHR4eWLFmi66+/3uphAcC4kOvDzFKqggBUunzmQJFI\nRBs2bFBLS4uWL1+ugYGBUct37dqlpqYmtbS0xKo9p9pmYGBAra2tamtrU3t7uyKR4c9Went7tXjx\nYjU3N+vZZ5+VJHm9Xt14441qa2vTihUrdOzYsUJfDqBspAuqJLbSSrVOupZfqZbF7y/+fn+RZ7Lu\nX/DjlOM74j2s5h3X6Jp//3zaIFD81/H7TzUm43VJsZZhmz91f2ybZGOJ33b9nrWjlhNkBoqPEBAA\nU/hHHtRW5RQCGl73JJWAAKBixCoBOTJXAgqEIoqMrA8AAKzX1NSkBx54QB/+8If14Q9/WFu2bNGS\nJUusHhYAlC2zAkA8lANyk88c6JlnnlEgEFBPT4/WrFmjjRs3xpYFg0F1dHTo4YcfVmdnp3p6evTu\nu++m3Kajo0OrV69WV1eXotGodu7cqWPHjqmzs1Pd3d3aunWrNm/erEAgoMcff1wNDQ3q6urS5z//\neW3dutXUa4PyV673jHSBmGxDLOkCu4nhm0z7MY79ref+RW1PLVX/0b4zxnCRZ7J6/98TeuJLvzuj\n8k42Uo03MYhkBHuMMSQbS7p9EmQGio8QEABTDPmNdmDOrLc53Q6MSkAAUClOtwNLPy017hF+qgEB\nAFBSDh8+rDfeeENHjx7Ve++9Z/VwAAA5KtZf55frQ2NUrlznQP39/Zo3b54kafr06Xr11Vdjyw4d\nOqT6+npNmDBBbrdbjY2N6uvrS7nNgQMHNGfOHEnS/PnztXfvXr3yyiuaMWOG3G63PB6P6uvrdfDg\nQTU0NGhwcFCS5PP55HRm/3k9kKicK7okC6okVsQZa4glvvpOqso9iet3Xf2Yuq5+TI2TZqcM7KQK\nAGVTkSjVOSWGeIwWX0ZloHTXIz7ElGx/mcYIYOwIAQEwhdEOzHhom41YOzAqAQFAxTgdAspQCWik\nspxxfwEAANbbtGmTfvazn2ny5Mk6//zz9cMf/lA/+clPrB4WShAf7gOlqxh/nW/1Q2Peg1Bo+cyB\nfD6famtrY987HA6FQqHYMo/HE1tWU1Mjn8+XcptoNCqbzRZb1+v1ptzHueeeqxdffDFWBYiqjRiL\ncqjoku6ekKkiTjb7znS/MwI1iS2zUo0t/tjZXvd01Yvy+RnGt/jKdizZXAur5wdAOSMEBMAUQyOV\nGqqrsg8BuRx22W02KgEBQAUJh7MMAY2ESgNUAgIAoGQ899xz+vnPf67ly5frK1/5in7xi19ox44d\nVg8LJYYP94HSZ/bDXCsfGvMeBDPkMweqra2NVeSRpEgkEqvKk7hscHBQHo8n5Tb2uGrKg4ODqqur\nS7mPBx54QDfeeKN+97vfaevWrbr55pvHfP6obOM9AJTrPSGX8832fpeskk4uFYLShYeyqV6U688w\n3XmlupbZXItyCJUBpYoQEABTGJUaqt3Zh4BsNpvOrnbqJJWAAKBihCMRSZLDQSUgAADGmwkTJox6\n2BQMBkf9tTog8eE+gGFWvQfwHgQz5DMHmjlzpnbv3i1J2r9/vxoaGmLLpk6dqoGBAR0/flyBQEAv\nv/yyZsyYkXKbadOmad++fZKk3bt3a9asWbrsssvU398vv98vr9erQ4cOqaGhQXV1dbEKQf/wD/8w\natxApTHznpCpvVaysSR+n6pCUOJx4oNMydp75VK9KJ1M7byOeA+r7amlaYNAmZh1fyb8i0pH808A\npvAbISBXbm8zNWe5NHiKSkAAUCmybQdmhEr9VAICAMByt99+u6Thv0b/0pe+pAULFsjhcGj37t26\n+OKLLR4dShEP31Gu4ttiWLE9ssM1RqGMZQ60cOFCvfjii1q2bJmi0ajuuece7dixQydPnlRLS4vW\nr1+vG264QdFoVE1NTbrggguSbiNJ69at07e//W1t3rxZF198sRYtWiSHw6Hly5erra1N0WhUt9xy\ni6qqqvTNb35Td9xxh7q6uhQKhfSd73zH9OsElDLjnlDIe7ARxBlrwGhSzYVZ7cNYxziHxG0KcV7Z\nnlMoYs3zvHQ/v0L9PIDxjBAQAFMMBYar+eRSCUiSaqqdevf4qVF9jQEA5et0CCh9gUqjHRghIAAA\nrDdnzpxR/2/42Mc+ZsVwAMASY33AxAMqYPwZyxzIbrfrrrvuGvXa1KlTY18vWLBACxYsyLiNJE2Z\nMkXbtm074/Xm5mY1NzePeu2CCy7Qv/3bv2UcHxCv3EOqhb4HF6LCUPyYslnH7HlEtufktLsKfuxM\nMp07VQABQkAATBJrB1aVawjIpXAkKn8wrGo3b1EAUO7C4ewqAcVCQLQDAwDActdee21W6/zmN78p\nwmgAwBpjfcDEAypg/GEOhEpQCSFVM+7BmfaVKVhljCndNonjNvtnlK7SjtFurOvqx4r+e5LNz69c\nf3eBbKX/k2sAyMFz+4/E/vf62yckSX/823ux17JRUz0c/Dk5FDJtnACA0hGORGSzSfZMIaCRynJD\nhIAAABgXotGo1UMAANON9QETD6hSO+I9bPUQgLwwB8J4Vykh1WKenxGsSnVvi3/dWC/VNkYbMOPr\nxO3NljguM65jNudT7r+fwFgRAgJgimAoIklyOXN7m6mpHi4dOEgICAAqQjgSzVgFSFKsOhztwAAA\nGB9o7wwAyFemh6VAKWMOhHJAwKLwUgWr4u958QGsVGGs+PX7j/YV/Z6Zb0gs2/ExBwAKgxAQAFME\nw8MhIKczt3/0nD1SCWjwVLDgYwIAlJ7hEFDmKWmVa3gdQkAAAAAAUN4qpQoFAKD8GaGWVNLd81K9\n9uhnf6mjg2/rmn//vI4Ovn3G9mYGaDK1NUu1TbbBHuYAQGEQAgJgipBRCciRYyWgs6gEBACVJBzO\nrhJQlYt2YAAAAAAwnuXyUJKHfwCAcpBNqCW+rVc2YZmLPJM1qeZC1Xs+okk1F54RADKrks4R72G1\nPbU0476TtTB79LO/zPo4qa4V1YGA7BECAmCKYDgip8OWc/nTGqMS0BCVgACgEoQjUTkcObQDIwQE\nAMC4EI1GrR4CAKCEWNne44j3MA8OUTTMgQDrldp7frbB1lyq4Fzkmaze//fEGevmU0mnkNcr3f1+\nLPMA2oQBuSEEBMAUwVBEzhyrAEmn24GdpBIQAFSEcCSSVSUgN+3AAAAYV77+9a9bPQQAQAkpRnuP\nZA8GjaoF2VQuAAqBORBKXbm/F44lLFIK12as98lc2nUZIdlcWnV1Xf1YxqpGye73Y50H0CYMyA0h\nIACmCIUjcjlzf4upqTbagVEJCAAqQSSSXTuwWCUgQkAAAJSMT37yk7r00kv18Y9/XHPmzIl93dTU\npClTplg9PABAiTE7AJTsIabxwDLTQ0sgF8yBMF6VWzWVZOeRLCySzfnmem2svobJxtt/tC/rczBC\nspKShmtS7SPbKkX5bpvPfgGciRAQAFMEQ/mGgIx2YFQCAoByF41GFQ5HZbdnvl9UuRySaAcGAEAp\nmT17trZs2aJ9+/bp97//vR566CEtWLBA3/nOd3TnnXdaPTwAQIVJVSGAh4YoNOZAsEIhQiflVE0l\nXWgnMQCUTTAml2tj7LP/aN+o1/KVz7aJ4z3iPaz1e9Zq47z7cvr5Hh18Wxd5Jo8aQ+I1MzPwZHWY\nCihXhIAAFFw0GlUoHM2rHVjNWSOVgE5RCQgAyl04ElVUksORuRJQlZt2YAAAlJrXXntN//zP/xz7\n/pOf/KT++te/atq0afL7/Um3iUQi2rBhg1paWrR8+XINDAyMWr5r1y41NTWppaVFvb29abcZGBhQ\na2ur2tra1N7erkgkIkl69NFHtXTpUi1dulQPPPCAGacOACghxsPKTMt50IhCyWcOBIxFId/HyiEA\nJGUf2skl3BMfqMm03sZ592n9nrU64j2cUwWeRLn8bJNVuzNeN86zcdLsrLfd/Kn7tX7P2jPGH3/N\n0o1vrL+P3J8B8xACAlBwoXBUksZUCegk7cAAoOwFQ8MP6rJpB+aw2+V02DVEJSAAAEpGXV2duru7\ndfLkSfl8Pm3fvl0TJkzQoUOHYoGcRM8884wCgYB6enq0Zs0abdy4MbYsGAyqo6NDDz/8sDo7O9XT\n06N333035TYdHR1avXq1urq6FI1GtXPnTr355pt68skn1d3drd7eXr3wwgs6ePBgUa4HAKB44h8Y\nZnrAW06VL1Aa8pkDAWPB+1hy2V6PXK5btsGUxkmz9ehnfylJeVXgiR9bYkWfZGNKVn0ocbypjp8q\npGScQ+Ok2WeM3/g61e9eIQI8/F4D5iEEBKDgjIe6+VQCcjkdcjvt8tEODADKXjCcfQhIkqrdDioB\nAQBQQu677z7t3btX8+bN06c//Wn9/ve/17333qu9e/dqzZo1Sbfp7+/XvHnzJEnTp09WiA4RAAAg\nAElEQVTXq6++Glt26NAh1dfXa8KECXK73WpsbFRfX1/KbQ4cOKA5c+ZIkubPn6+9e/dq0qRJ+tnP\nfiaHwyGbzaZQKKSqqiozLwMAoEji25IkPnjMphIEUCj5zIGAseJ9LDf5hlOyCabEV8zJVIEn22Ma\n+028v8VXu9s47z5967l/ySkI23+0L2VIyQgOGa3EUl2zVK02CxHg4fcaMIfT6gEAKD+hkYe6+VQC\nkqSzq51UAgJQtsLhsO644w69/vrrstlsuvPOO1VVVaX169fLZrPpkksuUXt7u+x2u3p7e9Xd3S2n\n06mVK1fqqquu0tDQkG699Va99957qqmp0b333qvzzjtP+/fv19133y2Hw6G5c+dq1apVVp9qRqEc\nKgFJUpXLIT+VgAAAKBl/+tOftGnTJrlcrlGvL1++POU2Pp9PtbW1se8dDodCoZCcTqd8Pp88Hk9s\nWU1NjXw+X8ptotHo/8/e+8dHUd37/6/N72Sz8QcuJIVGxcpVevnlAp/2q2C+KAVNhQgmQLxUCqKX\nekkxiRC8/LgoNYAkrcErFYHSUiOQhxqwsakCRqJwJe79gCjS9sI1CGZlQSzJ5tcm2c8f4YxnJzOz\nM7OzP/N+Ph48SGbOnPM+Z87MnMz7Ne83TCaTULa5uRnx8fG4/vrr4fF4sGHDBgwfPhw333yzUV0m\nIgilr6EJgpAmnK8b5gRlDkeKHECEEj1rIILo7wTzGSN+ZmjFlwBIXLfWNuTGQur55uuZJ1UX28YE\nQEW2pYJIiRf++PtcjYbncDivfQjCHygSEEEQhsMiAcXriAQEAObkeLjaKBIQQRDRyXvvvQcA2LVr\nF5YsWYJf//rXkqksnE4ndu7ciV27dmHbtm0oLy9HZ2cnXnvtNQwbNgyVlZXIycnBSy+9BABYvXo1\nysrK8Nprr+H48eM4efJkKLupCiEdmMrnRSJFAiIIgiCIsGLfvn245557sGrVKnz88ceqjklNTYXL\n5RJ+7+npQVxcnOQ+l8sFi8Uie0xMTIxX2bS0NABAR0cHiouL4XK5sHr1ar/6SEQmRqQnIIj+Rrhf\nN2IHJTnsiFCiZw1EEMEmnO7nwXjGaImO4w9SdYsj9/iyU2ksxGnBeJHKYMsQVGZXeZXJr8n1Ksun\nDWMCoDL7BpxvPueVFoyeq+G/9iEIfyAREEEQhsPSu8TpjARkToxDW0cXeno8RppFEAQRFtx77714\n9tlnAQBfffUV0tLSJFNZfPLJJxgzZgwSEhJgsViQmZmJU6dOeaXDmDhxIo4cOYKWlhZ0dnYiMzMT\nJpMJd911Fw4fPhyyPqrFrSMSUDtFAiIIgiCIsKGiogJvv/027rjjDrzyyiuYOnUqfvOb3ygec8cd\nd+DQoUMAgGPHjmHYsGHCvltuuQWNjY349ttv0dnZiY8//hhjxoyRPWb48OH46KOPAACHDh3C2LFj\n4fF48Itf/AL/9E//hGeeeQaxsbGB6DoR5lCUEILQTiRcN+FsG9G/0LMGIohgolXcEGgRRKCfMXrS\nRLLjjGxbzbirTTfGhDx8feKoNQ5XU59jAAjpyXZMfRVTh2Zjx9RXAaBPWjApIZOc7VrHSoswKlQY\nPS/DtZ9E/4TSgREEYThdQiQgdU5dMebkeHgAtHZ0ITU53md5giCISCMuLg7Lli3Du+++i4qKCnz4\n4Yd9UlkopcNg2/myfIoMs9mML7/8UtGG665LQVycOqeY1WrxXUgHl69GfUtOjIclNcln+xZzArq6\ne3D99WbV0YMijUCNNdEXGuvgQWMdPGisgwONszepqamw2WxwOBxoamrCsWPHFMtPnjwZH374IWbP\nng2Px4PnnnsOb731FlpbWzFr1iyUlJRgwYIF8Hg8mDlzJgYNGiR5DAAsW7YMK1euRHl5OYYOHYop\nU6Zg//79OHr0KDo7O1FfXw8AKCwsxJgxYwI+FkRoUEqnQBDhSDinnQhXuwgiHNG6BiKIYKJF3OBv\n6iwtNhmB1HNUj5hDb7/Fx4nbVlOfmv3iNF3ids83n0NJfTGWj18h27ZY7CNlGxOuzKt9GOsmbERJ\nfbFkpCMtY8WXZ3WHq9DYyHkZzv0k+h8kAiIIwnBYJKB4nZGAUpJ6b02t7W4SAREEEbWsX78excXF\nyMvLQ0dHh7CdpbJQkw5DqSxLhyHH5cutquy0Wi1wOpu1dE01zostAIDu7m40t7TLl7vaPnuqnPvq\nH8KzIpoI5FgT3tBYBw8a6+BBYx0cAjXOkSos2r59O95++210dHRg2rRp2LJlC9LT0xWPiYmJwTPP\nPOO17ZZbbhF+njRpEiZNmuTzGAC4+eab8cc//tFr2+TJk3HixAmtXSEiFHrZTigRCrGNrzZpzgaW\ncBZYEdGFnjUQQQQbtfdDf6KhBPu+689zVGyr3n4PtgzxiqbDtvE/qxkXu6MBtvRxiu2I6xOn72Ki\nnRHWUYIgyZftPCydWGV2VR/Rkfg4LWOlRxgV6URCREWifxGWn1BfunQJd999N06fPo3GxkbMmTMH\n+fn5WL16NXp6esUFe/bswYwZM5CXl4f33nsvxBYTBMHD0rvE6YzSYE7qFf642rsMs4kgCCJcqK6u\nxssvvwwASE5Ohslkwj//8z/3SWUxcuRI2O12dHR0oLm5GadPn8awYcNwxx134P333xfK2mw2pKam\nIj4+HmfPnoXH48EHH3yAsWPHhqyPahHSgal8XiQm9EYu6nBTSjCCIAiCCAe+/vpr/PSnP8WCBQtg\ntVrx4Ycf4oUXXgi1WUQ/gH2xTC/bI59ApU3QmgYlWG3SnA0coTjnRP+F1kBEtKFXAOTPfVfPcXLP\nUV+2yO3X2++S+mIh/ZfatnjsjgbM2PdT1J6pUdUeq09sL0v5pbYfvtYo/P9y+9W2IyeSimb6Sz+J\nyCDsREButxurVq1CUlJvSojS0lIsWbIElZWV8Hg8OHDgAJxOJ3bu3Ildu3Zh27ZtKC8vR2dnZ4gt\nJwiC0eVnJCDz1egOrna3YTYRBEGECz/5yU9w8uRJPPzww1iwYAGefvpprFq1Cps2bcKsWbPgdrsx\nZcoUWK1WzJ07F/n5+XjkkUfw5JNPIjExEXPmzMHf//53zJkzB7t378a//du/AQDWrFmD4uJiPPTQ\nQxg+fDhGjRoV4p76RhABxahLH5kY3ysCau8kkShBEARBhANnzpzBgQMH8Otf/xr19fV44YUXcPr0\n6VCbRUQ5YscKvWyPXAIp2giF2EZtm772k4hFHySwIoIJrYGIUBBuzwd/IwjpXQPIpYFVssXIZwSL\nwANAtg++2rKlj8PL925HmX2DzzFQ0zcxasVJgy1DUJ5VIdRhxBzTc27DbW4TRDQQdnkU1q9fj9mz\nZ2PLli0AgM8++wzjx48HAEycOBEffvghYmJiMGbMGCQkJCAhIQGZmZk4deoURo4cGUrTCYK4CnPq\n6hYBXU0B1kqRgAiCiEJSUlIkvw4Tp7IAgLy8POTl5XltS05ORkVFRZ+yo0ePxp49e4wzNAiw9JFa\nRUCd7p6A2UQQBEEQhHq++OILvPPOO/jVr36FmTNnYunSpfjlL38ZarOIKIcc/dFDIM9lqNJC+dsm\npQvzDxozIljQGogINuH6fNBrSyDWAP6KcNXCIgHtmPoqdkx9FQ5Xk5eIhp0nX0wdmo0RVnUfcWqN\nwiM1V6TSmPF9AWDIHNN6bsN1bhNEpBNWIqA33ngD119/PSZMmCCIgDweD0ymXseQ2WxGc3MzWlpa\nYLFYhOPMZjNaWlp81n/ddSmIi4sNjPEhxGq1+C5E6IbGVz2W1N4IXjExveKftNQkYZtSeR6r1YL0\nq2Nuioul8fcDGrvAQuNLEP7j7upN66VaBJRAkYAIgiAIIpwYMGAATCYTbr75Zvz1r39FTk4ORWqO\nMIIhlAhEG+QgiEyk5kKgBECR6kwikZt/hEr8RfQ/aA1EBJtofD6Eui96nxn8uWBpvd6Y9ifY0sdJ\nnidf7fCiITX2qLFbLPZhxzHBD5/6i//dyGhJWsqyduk5ThDGEVYioNdffx0mkwlHjhzB559/jmXL\nluGbb74R9rtcLqSlpSE1NRUul8trOy8KkuPy5daA2B1KrFYLnM7mUJsRtdD4aqO5pR0A4Grr/YPH\n7e4StomxpCZJ7nM6m9Hj7nXufu1sofHXCc3dwELj6z8koiIALh1YrDoRUNJVEVCHuztgNhEEQRAE\noZ5bb70Vzz77LObMmYPi4mJcuHABbjeldY4UgiGUiGQxBmEswZwLke4ojVS7Q8355nPIr8lFZXYV\njSERcGgNRIQCvfe2UAkrQino8NW2v+sSdowtfZwgABLvU9MOW7MA6qLwiOsT95M9CwGgMrvKyx41\nAiWtY2HUOWZ9EQuiSBREEPrRl6snQLz66qv44x//iJ07d+L222/H+vXrMXHiRHz00UcAgEOHDmHs\n2LEYOXIk7HY7Ojo60NzcjNOnT2PYsGEhtp4gCAZz6sbF6rvFpCT1pgNztdMfTgRBENGMIAKKUfe8\nYOnAOigdGEEQBEGEBf/xH/+B++67Dz/4wQ+wePFiXLhwAWVlZaE2i1BJMIQSkS7GIIwj2HOB5hxB\nEIGE1kBEpMCEFeebz/WLdtW27e+6hK+bFwDpaYftk4reI25PHDWH9ZPfX5ldJQiAxOPApy3z9xwZ\nfY7FgqjaMzVBnUOhmKsEEUjCSgQkxbJly7Bp0ybMmjULbrcbU6ZMgdVqxdy5c5Gfn49HHnkETz75\nJBITE0NtKkEQV+nq9gAA4uP03WLMyb1BylztlO6FIAgimnF3MxGQciSgumPnUXfsPP636QoA4Pj/\nXBS21R07H3A7CYIgCIKQJjY2FmPHjgUA3HPPPVixYkW//Egrkl8YB0MoQWIMgqHn63KCUAtzfNI9\nhwgGtAYiIoVQCbJDKQRX27Y/AiAlcYp4u692WPSewroCyTrZfl7ow/7nRTP8fvZPahyY/Q5Xk1/n\niG9fL1JjNdgyBOsmbESZfYOiMMpIQilaI4hAEbYioJ07d+KWW27BzTffjD/+8Y/YvXs3SktLERvb\n+wV4Xl4eXn/9dbzxxhuYMmVKiK0lCIKHpWmJ1xkJyMwiAbVRJCCCIIhohkUCivEhAmIwcSkTDxEE\nQRAEQYSaSH9hHKl2E+GNEfNKy7VF87h/IxXhgCAIgviOUN0bQ3lPDlWkS73rFxa9R43d4ueekj1y\n29ZN2IiS+mKfbalB799CSmNlSx+HHVNfVYyyZCQUvZSIRsJWBEQQROTS2t6F5MQ41U5dMSmJcUI9\nBEEQRPQipAOLVfe8YGkmu0gERBAEQRBEmBDJL4wjXcBEhCdGzSu111a4zuNwsydakTr/NPYEQRD+\n0Z/uo3r7Krc+4dcvdkeDYrvzah+G3dEgROVRqpMJhPjj+Lqkov0owUQ2/v4NoxRtSO+x/P5gEol/\nzxGEEiQCIgjCUDweD1rbu2BOitNdR0yMCcmJcXC1UyQggiCIaEYQAcWoW5LGXRULdXWRCIggCIIg\niPAhUl8YR7KAKRqIVgebUfNKyqEVyPbkbNB7nFZhUrTOh0AjPv/hJgoLFzsIgggukXzth9t9NJDo\n7aua8nZHA2bs+6msEIg9v2zp44SoPErpxfgUYHx5OTEs26YkkuWfnWr6Ky4nTk8m1b4v6O8Qgggc\nJAIiCMJQOtzd6PF4kOKHCAgAzElxcFEkIIIgiKiGpfWKVRk5Li6ORQLyBMwmgiAIgiCI/gS9eA8N\n0e5g83desa/i1Y6P1vbUpujQe460CpOifT4EGn6cw0ncSOeVIPonkX7th9N9NNBICUl94ev8sv3p\n5gy8Me1PSDdnyJZl7bKoPGrb46P4SJ0vtg2AlxhIHEFIqn4poQ8fsYgvJzcOWuYQRfIjiMBBIiCC\nIAyFCXdYSi+9mJPiKRIQQRBElPNdJCB1IqD4q+nA3JQOjCAIgiAIImyhF/i+6U8ONq2cbz6Hkvpi\nrJuwUZOIRkv9apyz/p4jLceFYj5E83UaLtcVXecE0T+JhmvfKNsj4VmjNZKcmhRWbH+6OQP5NbnI\n3ZejSuwijt7DIgBJtScW/UjZwR8rjiDEw8pIjQEfsYi3w4hUXuKIRZEmnoskW4n+CYmACIIwlFYm\nAvI3ElByHDrdPYKDmCAIgog+WFqv2Fh1IqCE+FgAQEdnd8BsIgiCIAiC6E8Y/fLa19fERtQfLUSy\nczCQ8M4mNWh1GmlxzgbzHAWyLbmv+qPpegpX6DoniP4JXfvh86wJxfqA31+eVYH42Hgve8QReXix\nD4A+kXeYQEcv7FiWekxsC2+3kuBISYikB7FIKdzEc0pjHi7zmyCUIBEQQRCG0no1ek9KUryPksqw\n41spGhBBEETUojUSUGJ8DGJMJrR1ULpIgiAIgiAIfwnEy2v+Bb7R9atJv0BEB1odQFqdRlrTU0Qy\nctdNqBxt0TKuaulv/SX6HzTHCTmkRB3Bni9q1qLiqDdK+/W0nW7OwPLxK7yENCwij93R4CUK4sUw\nfOQdrf3gt+XX5CK/JleItlNYVyD8LpdKLJiEsm2G3NgpjXk4ipYIQgyJgAiCMBQWCcjsZySg1KvH\ns/RiBEEQRPTB0nrFxqhbkppMJiQnxqKVREAEQRAEQRB+E6iX12rTBOipV64++hq3/8GnjghE3dEy\nn8TXTaDGTA3RNK5q6G/9JXzT09ODVatWYdasWZg7dy4aGxu99h88eBAzZ87ErFmzsGfPHsVjGhsb\nMWfOHOTn52P16tXo6el9v7Jnzx7MmDEDeXl5eO+99wAA3d3dWLt2LWbPno0ZM2YI2/2F5jjhC7EA\nKNjzxddaVI3AXG6/2rRhDlcTHt8/3yvyD4vIU1JfDAB90nSJI+/o7cdgyxCUZ1WgMrtKEBhVZlcJ\nv/NtaEGrGMnXMUaU13us0tj5+juGBEBEuEMiIIIgDMVlUDqw7yIBkaOXIAgiWtEaCQgAkhPj0N7R\nBY/HEyizCIIgCIIg+g2BfnkdKIGR1Hb6Grf/wAtZAiVki5b5xL70Z4Syb9E0rmrob/0lfLN//350\ndnZi9+7dKCoqwrp164R9brcbpaWl2L59O3bu3Indu3fj4sWLsseUlpZiyZIlqKyshMfjwYEDB+B0\nOrFz507s2rUL27ZtQ3l5OTo7O7F37150dXVh165d2Lx5cx/xkV5ojhNaCNV88SXiUBKYy+2XEo5I\nCU8GW4bAlj4Ob0z7E9LNGV77+Eg//M9q+qFWsHK++ZwgNOLLSpXjf9abBktun1YBmD+CMSPTxNK9\njYh0SAREEIShsOgMKYn+iYDMyb3Ht1A6MIIgiKjF3dUDkwmI0SgC6vEAHe6eAFpGEARBEAQRGvrb\n1/RGpyIj+ge8wyZQ592fesPlOlb6uj1U9LfrtL/1l1DGbrdjwoQJAIDRo0fj008/FfadPn0amZmZ\nuOaaa5CQkACbzYaGhgbZYz777DOMHz8eADBx4kQcPnwYn3zyCcaMGYOEhARYLBZkZmbi1KlT+OCD\nDzBo0CA89thjWLFiBSZNmmRYn2iOE+GKFhGI1LHs+SknDlk3YWOfKHtybaabM5BfkytEAxJH/JGy\ng5VRK6jhbeG3+RIX8fWx9GF5b+VoSoPFjhWPixY7lMqztGl6jlV7TKgIlzUjEZ2QCIggCENpbe9C\nYnwsYmP9u72Yr0YCcrWRCIggCCJacXf1aIoCBADJibEAgDZKCUYQBEEQRJTBXrz3l5fB/qaF6C/j\nREij9BV7KAmn9Dj9MUpHOIw7QcjR0tKC1NRU4ffY2Fh0dXUJ+ywWi7DPbDajpaVF9hiPxwOTySSU\nbW5ulq3j8uXLOHv2LF5++WUsXLgQy5cvD3RXCaIPaqPnqNnnq6yWZ7FcBB+xyEd8jDh9l6/nrbvb\njYKDi2B3NPi0jZWRKqs1Pa6vNYBYWF2eVYG4mPg+9YqP4ffl1+QKIid+XLTYIWUX0DsWD+7NRu4+\neWGS3LHhTjitGYnohERABEEYhsfjQWu72+9UYACQZk4AAPzD1el3XQRBEER44u7uQWyMtuVo8tVI\ncyQCIgiCIAiCiGz8ESiocaAQ/YdwEtCFm/BGKn1IOIxTIAineUAQUqSmpsLlcgm/9/T0IC4uTnKf\ny+WCxWKRPSaGe5ficrmQlpYmW8e1116LrKwsmEwmjB8/Hl988UUAe0kQ0oifj0wAwaLj8GgV8agV\nyiiJhcTiJCZmkbJTqn4pwRAvEtp0z2bExcQj3ZyhuE5gba+bsFE2TZhcajBfAiE12NLHoTK7SnWU\nIwAoz6pAZXaVl716UoDJ2fPm9BpUTav2ubaKtOd/uK0ZieiDREAEQRiGu6sHXd0emA0QAQ1ISwIA\nXPpHu991EQRBEOGJu6tbRyQgEgERBEEQBBGdDLYM8XrpHmmIHShq0NpX1gZzjkSbM4AwjlCe+0Bf\nw3quNd6JGckCukizO9LsJQLLHXfcgUOHDgEAjh07hmHDhgn7brnlFjQ2NuLbb79FZ2cnPv74Y4wZ\nM0b2mOHDh+Ojjz4CABw6dAhjx47FyJEjYbfb0dHRgebmZpw+fRrDhg2DzWbD+++/DwA4deoUMjIy\ngtltIgKQulcF4v4lFs2sm7DRK3IMv0+tOIKVVWoL6CtmYemr2LH8PnF0HCk75YQ2TIwqbo8X1yj1\ni7WXbs6QbYe1JSdQkiorF4VJblzE9jhcTbL9Lawr6NO+FkGSkmDofPM52NLHqVrzaxECh8vzmQmm\nCCIQkAiIIAjDcLX3OmSNiAQkiICukAiIIAgiWnF39SA2lkRABEEQBEEQQN+X7uGM1Mt7lgogUC+y\nmYMAAHZMfRW29HGqytOL9ehHLKCL5nNvdzQgd1+O5muNOePkogpEAnIRGxjhJqSM5nlI6GPy5MlI\nSEjA7NmzUVpaiuXLl+Ott97C7t27ER8fj5KSEixYsACzZ8/GzJkzMWjQIMljAGDZsmXYtGkTZs2a\nBbfbjSlTpsBqtWLu3LnIz8/HI488gieffBKJiYnIy8uDx+NBXl4eVq5ciTVr1oR4JIhwQk4goub+\n5e/9TemZpPVe7steXpTC94+JcuQi+yjZqRRhT0+UF/Z8K6wr8BITSZVja2I5IZWSLeL+K0XvOd98\nDosPLMKDe7P7RG1iz125Z6/UNi0pzgL1HA3281mpHV9rm0C0SfQfTB6PxxNqI4KF09kcahMMx2q1\nRGW/wgUaX228+u7fcMB+DqNvvQEjbxmgWNaSmoTmlr4Cn6zRg4Wfn/j1+xiQloRnFvwfw22Ndmju\nBhYaX/+xWi2+CxEBRe0cDuR8X/ybQ4iPi8G0u25WfczFf7Tj7SONuP3G6zDu9oEAvJ8dkQzdW4IH\njXXwoLEOHjTWwSFQ40xro9AT6uuHvQCOBOe8nK3819OBbFurMyXcx7O/E6hzFI3nnontunrcqJi0\nWZUQTimCgPj6jYTxYvcZuftluPUj3OyJFGhdFHpCvS4igovUvcrX/UtpPcgEJXJRYPREglQTCcbo\nNSLfF6BvGq55tQ8LIhxeSCM3HkprfbujQaiH4XA1CdEv080ZXvXz7dgdDT7XBOJ+ifujNC7nm8/B\n4WrS1IZcm2zM1Nal5bwGqqw/qPkbz9faJhBtEpGF3nURRQIiCMIwWjvcAICURP8jAQHA9WlJFAmI\nIAgiinF392hOB5aSGAuAIgERBEEQBBFd6PlaOFTI2eorvYFRbQeyPBFcAvkltpHnPly+pmZf3O95\noFrWeSaX3kNcRpz6I1Ii1shFbADCsx90DyKI/k043Y+U0BOJR+pezKenkrofq7lP6zlGjb1ay/N9\n4aNd8naII+xJCYCkIu7w/eSj/7BUt6xMYV0BimxLhchAtWdqvOpjx/uKBCTVL7l9cuPirwBIKZqn\nryhGaglUWX9Q8zee0tomUG0S/QMSAREEYRitBqYDA3pTgrV1dAv1EgRBENGDx+OBu6sHMTHalqNJ\nCZQOjCAIgiCI6CQUL2r1Oqd8fclKEGrwx0mhlILDSMJNWCIntmNORDlno7gOfl8kOovU9IsgCCKU\nhNPzI1A2SAnC5VJP+no2sTJqU0UFGr4vLOUVAC9hELNZLpWW1POWHZNfkyuIpRyuJgBAujmjjx0j\nrKNQnlWB8qwKlNk3oMi2tE/aMrnonEr9Eo8n65NeEZYSfJuRIOA1GrVz18g5TmshAiAREEEQBuK6\nKtYx+yECqjt2XvjX3tkNAPhLQ6PXdoIgiEjG7XbjqaeeQn5+Ph566CEcOHAAjY2NmDNnDvLz87F6\n9Wr09PQAAPbs2YMZM2YgLy8P7733HgCgvb0dixcvRn5+PhYuXIhvvvkGAHDs2DHk5uZi9uzZePHF\nF0PWP7V093jg8QCxsdoiAcXEmJCUEItWEgERBEEQBEH4Bf+Fsz91iOsL15f44WpXf0fNl/hS25Qi\nDRiJGuejlMMsmIi/sBc7G6WQctxGA9HSD4IgIp9wESYGe30m9QwSi1SVjpWLNmkUWsaB7wsfrYWJ\ndRyuJp/iWznbu3p6s2rwQiNxWSY8KqkvRro5A+smbESZfUOfiET8cWrWRlJCnMK6ArR1tUqWXTdh\nY5/tWueT3Djw42bkHKV1P0GQCIggCAP5LhJQvCH1pSb3iolcbeToJQgieti3bx+uvfZaVFZWYuvW\nrXj22WdRWlqKJUuWoLKyEh6PBwcOHIDT6cTOnTuxa9cubNu2DeXl5ejs7MRrr72GYcOGobKyEjk5\nOXjppZcAAKtXr0ZZWRlee+01HD9+HCdPngxxT5Vxd/UKnbSmAwOA5MQ4tHd0G20SQRAEQRBE2BKo\ndEnrJmzUlEJAbBPvZAiVs0uN7aESKJEDQhqtKSvE5ZUiDahBq/DNlwAoWKm1xE4/3j65L+yJXuha\nJAgiFITDPTmQ6zO191YtNgRyzPSkIxPDnrWV2VV91iFykfqk8Hh6033x9TKYkIdtZ22w9gDIplsr\nqS8W0opJ2SG3jlg+fgWS41L6HMMEQnyUIKm1jz/IRVLSQjA/TKA1BREpkAiIIB5+sAwAACAASURB\nVAjDaG13Iz4uBvFxxtxazFfFRC1tbkPqIwiCCAemTp2KX/7ylwB6U2LFxsbis88+w/jx4wEAEydO\nxOHDh/HJJ59gzJgxSEhIgMViQWZmJk6dOgW73Y4JEyYIZY8cOYKWlhZ0dnYiMzMTJpMJd911Fw4f\nPhyyPqrB3e2PCCgW7u4eQUhEEARBEAQRzQTyRbZeEYXcF8+hEADJjU2oU0mEe2QkI9HSR63jIvd1\nuJpoN1LYHQ14cG+2XxGwxHYEI7UWSx0ilaqDtdvf8FdMFmw7CIIgQkWgBEBa7q1abPC1rtOL1nRk\naqLpKPVLLirPYMsQVE2rloz+w4Q8fNov8Vpb3A8m1mECf1v6OMl+MXvYGojvZ5l9A8qzKoQ1Fx9l\nsDyrQrBV/DeAXGRRPZGC/EkRG6wPE/rT+p6IfPTn7CEIghDR2t7lVyowMebkXhEQSzNGEAQRDZjN\nZgBAS0sLCgoKsGTJEqxfvx4mk0nY39zcjJaWFlgsFq/jWlpavLbzZVNTU73Kfvnll4p2XHddCuLi\nYlXZbLVafBfSyuU2AEBSYhwsqUmaDk0zJ+Kri62IiYuFJTUxMPaFiGjqS7hDYx08aKyDB411cKBx\nJoJNoAUsegRA82ofDosUF3JjI2VjsG016rz5Sp0RarTOB7Xjwtdr5JxLN2dgSGqmkMrDCIKRWotF\nHQhU/ZEAfy1omRPBcAaGw/2QIIj+SajWCVL3ViNskbqvGnmvVZuOzFebvvoqF5WHHaeUHmvdhI0o\nrCvACOsoWZvZNrujQYgoVJ5VgcK6AklxEesHiwJaZFuKMvsGYTuLMGR3NAh2s20l9cVe6zFeaMTX\nKTV2cvZLjaPaclJjEawPE0IV+VQKLddbOP89Ec62RTokAiIIwhA6OrvR2dWDAYlGioBYOjCKBEQQ\nRHTR1NSEJ554Avn5+XjggQfw/PPPC/tcLhfS0tKQmpoKl8vltd1isXhtVyqblpamaMPly33zPEth\ntVrgdDZr6Z4qvv6mt/2eHg+aW9o1HRsX2yuYuviNC7HwBMS+UBCosSb6QmMdPGisgweNdXAI1DiT\nsIjwRTi9GNX78jtQL3j5r5L5beHwgt7fMYoEgYGesdYjFlLbhlgoInVM1bRqQ8czWM6LUMyBcHHM\niK8FrfOuPzgDCYLof4RinSAn2jDKFjlBh68IPlojDSkJSny1yYQySiIosaBIShzDt8cfm27OgLvb\nDYerSbIdvr2S+mIsH79CEAyx4/h682tyBSExAMwbvgBl9g19BEr5NbkAgOXjV3i1y7fPBErlWRWC\nECjdnCEZFRFAH9GQ2H65OaMk/JU6f8F8DofDM1/L9RYOf0/IXXPhYFs0Q+nACIIwhMstHQC+S+Fl\nBMmJcTCZAFc7iYAIgogeLl68iPnz5+Opp57CQw89BAAYPnw4PvroIwDAoUOHMHbsWIwcORJ2ux0d\nHR1obm7G6dOnMWzYMNxxxx14//33hbI2mw2pqamIj4/H2bNn4fF48MEHH2Ds2LEh66MaWCovfenA\nekWibR0UKY4gCIIgCCIU6I0eFIjQ+XJ1R9qLZKl+RIrAIBhRqnx9Hc7+Z2MoNZ58agujiOa0EOHU\nt2B+5a+VQEUYIgiC8EWw1wlKzwWx6MUflCLfqLFJqX3xWkGrHVLpuvh1h93RALujoY/wh6XL2jH1\nVThcTV4pPu2Ohj7pPuNj4/uIa6TsYxF9GCYTUFhXIJn21O5oQE71/Sj5oAhFtqVewpzBlt6Ig5XZ\nVZg6NFtS4AR8J1AqrCsQbJdaWzHBLosSJGWP3PxVSu9l1NpEzfkP52exlms/1H9PqL1vsLKEcZg8\nHo8n1EYEi2j8KpK+9gwsNL7q+fyLb/D8rmMYecsAjL71Bp/lLalJqiI/vPH+GfT0ePDQ/3+LsC1r\n9GC/bO0P0NwNLDS+/tOfv3Zfu3Yt/vznP2Po0KHCtn//93/H2rVr4Xa7MXToUKxduxaxsbHYs2cP\ndu/eDY/Hg8cffxxTpkxBW1sbli1bBqfTifj4eJSVlcFqteLYsWN47rnn0N3djbvuugtPPvmkoh1q\n53Cg5vv/Nl3Bs7//GMNvug5jbxuo6dgvHM04dOwrjLttIG6/6bqoeS7QvSV40FgHDxrr4EFjHRwo\nElD0QtdP4FH66trfaCPhEq3EX+yOBskvpSMRqXMSiPOk9HU474DzFR3IXxvCff7pHYNI6BsjkmxV\ngr6Kp3VROBDp66JouR+EC1qeIf7cw/SeN63pIpnQQEskFb4MHwmI1bNuwkYAQMHBRTh7pRHft9wo\nRB4Up+xi6bZYatL8mly4u91ekQql1jBSdokj7TCxjTg9F6uj9kwNAGDq0GzFPvNtsAhBfDQhh6sJ\n6eYMr/blbBVHTlLzNwEvAJIro8Z2ueP5PlGEmsCj5pxF85j7+0zSuy4iEVCEQy96AwuNr3o+PNGE\nbTWf40c/HIRh37/WZ3m1IqC/fHQWX19uw8M/GSZEi4gWZ28gobkbWGh8/Yde6ISeUIuA/vblt1j3\n6n9jxNDrMWaYVdOxX19uxV8++hL/fPP1uOOfrFHzXKB7S/CgsQ4eNNbBg8Y6OJAIKHrpj9dPsB1k\nUqmuxKkRou2FrxaiaRykhDmAemebXJ1qRGRipxmfBiNQ4xruzmZx+hG9Tk+1bYViLKLp+gHCf04F\nGloXhZ5IXheFOkVWtKFnPPUIT408b/6IRKTWq1IprfhyTOTChD1MIAN4p/tiv0u1wZdliMVGUnXx\nAnLx814quoqU+MWX4Ig/no0Fbxe/T9y2eLzkbJSy35/1iq/5pCQyUqqXCCzROOZG3Nv0rosoHRhB\nEIZwuZmlA4sztF5zcm96sVZKCUYQBBFVCOnAYrUvR1MoHRhBEARBEFFGsEOfGxlKX097/O+BCFEf\nKaHkeTtDHarfSKTSNgDQ3D+p+SLXHl9OKq2GVvTO7XCEPx9q55mefgVyLHzVGa7Xj96xMCKdDkH0\nV4J9P4iE54A/aHlu8MewbWrHRu9582fcfaWhYmWY6EWqjwBgSx8nlGG/O1xNfVJasWN48ZB4H28L\nSzsG9Ip3WKqx/Jpc5O7LEURCfPoxFpGIryd3Xw7ya3LhcDWhPKuijwCIrZ2UUjbxawjWX1bHvNqH\n4XA1CanO+Hr4PjKYyCd3X06f9nhxEKtPCbk55ms+SY25VBkiuETjmIdyjUoiIIIgDIGJgFKS4g2t\nl4mKXG3k6CUIgogmBBHQ1ShvWki+KgJqJREQQRAEQRBRQCicR0a8jFSy+3zzOUWBi9TvRhEpzjg5\nR1O0IHWutQqAtArFWDkAaHW34oTzOAZbhnilr2B1q23bF2LBUySg5jzouUcY7eRQKwLj2w8n/LkX\nRcp9jCDClWDeDwJ17/O1jYcJLQLRNiAdUYb/Xa8QQ64dtXZJicy1rE+l2hdHtwF6RT2++sGXYQIe\nXigjxu5owIx9PxXSc0mxbsJGlNk3wOFqgrvbjcUHFqGwrgDLx69AfGw80s0ZWDdhIwrrCgSRUGFd\nAfLeyvES2JhMQO6ts1FYV4DFBxZJ9jndnKF6PcPER7zwqKS+GA5Xk1e/WR/Z/GTRGYHedGLnWs7i\nhPO4sI+Jidj5O+E87nW8HMEWWNCzOXyIlHMRqjUqiYAIgjAEQQSUGJhIQC6KBEQQBBFVuLv1i4Di\nYmMQHxdDkYAIgiAIgogKQvV1oL/tydnNXvCLI7GIywWqv+EaEURMpNhpBHr6yJxKWoViDlcTHv3L\nPHzlOodH33lEcK4xh5IacYUep2U4iDbUOknVIuf0VXOMv0iJwHyVDzf8ucb70/2BIKIBXymU1CJ1\nv/Z1DxcLLfTiqx29UR39vY8p2cW3yyLZANKiEPH6VOn8KImIlBALoPn0YWJs6ePw8r3bUWbfgPPN\n57zOH+szE+akmzNQNa0aVdOqUZ5VgalDs4VoPrb0cUJ0H1v6OFRmV6Fi0mZ0eXr9aQ5XE1rdbdjw\n8a/w2IhFiI+V/oifjZ0vEVV+TS4K6wq81mhMAMX/z7a/Me1PkuNgSx+HLZN/J/SfHzP2zC+zb8DL\n926XHUc+2qTcPqPXB0bWqzXaIuFNOKy9wx2Tx+PxhNqIYBHJeUzlsFotUdmvcIHGVz1rfteAc84W\n5E++FSaTb4euJTUJzS3tPsudd7pwwH4Oo2+9ASNvGQAAyBo92G97ox2au4GFxtd/KL976FE7hwM1\n3w9/2oStf/ocP/7hINz6/Ws1H1996Aw6u3qQN+kHUfNcoHtL8KCxDh401sGDxjo4BGqcaW0Ueuj6\nMRY+9QFB6IG92NcihGApL842f4HrEgfg8ZG/wN4zb3illgB6HaZKjjl/bA7VnPc1Xnpt03Me1NSp\npi6+HIs6IOfYNdpGIrTQuij0RMO6KNzuyXrufUrbeGrP1GDq0Gz/jObakWtPvD1YY+yrHSZOKc+q\nUHy+2x0NSDdnAIDX+RHXL14n8BFsmPiGP0Zp3SsuJ16LsIg3C9+dh+rpbwvt8udiXu3DKLItxQjr\nqD79FPediYly9t6PVybvQOnRtXB3u7Hqx2swdWi27FiysWGCKvazVH/k+qoGLXNIzfxSul78rVuu\nvBHzXsvahdY58oTyPh9M9K6LKBIQQRCGcLm5HSlJcaoEQFowJ/dGFmppo0hABEEQ0YSQDixW33Mj\nOTEO7Z3d6OnpN3p2giAIgiCIiEFr6ieC8JVCRG1qrlU/XoP1E8qRlmhB1d93CV+q8/WwFBZ6bVNq\nP1QoRWHwx0ESiDQ3WlKtsWP49CJyc4UgCIKh9l4TiAgSUpFx9Nz7tLTHoqn4i6/IdsGK6uirXUA6\nBRoT+EjBniWsPl4AJI5wJLVOqMyu8hIAsYhCdkeDZARMVpdUJEK7owE5e+/Hq5/9AQBQenQtMszf\n87KfjypUZFuKx979OU44j6Orx43CugKvttq6WlFYV4DaMzV4cG82Tl36HN9PvREjrKNQmV2FqmnV\ngkhMLMBh/4tTivERk8SRPfl5LY5i5Astc0jN/JITBkuJtKTKqEFc3oh5r2V9JY6OSXyHkevTaIRE\nQARB+I27qwdXWt0wJ0mHEvQHVqeLREAEQRBRhSACitG3HE2+mn6yrZNSghEEQRAE0b8w6iWl0WHs\no/XlKRF45JwxWp2ndkcDHnv35/jPYxWomLRZSI0hrlOLI0VL26FGTgCk1tElV0bKYagXPaIidky6\nOUOxP5QSgiAIhpp7TSBSyUgJENTao9dOo8WawRYc6FlLilOgDbYMEQQ6cnWJx0mcukvudz7lFNvm\ncDUJ/5fUF2P5+BUoz6qQjHDD6hLX29PTg5L6IjhcTajMrsKb02tkx9yaMhBDUjMxwjoKFZM292kr\nzhSP8qwKjLCOwqCUDGw5sRmrfrymj2CHt008V/mUYuxnAIoCp/yaXDy4Nxs5e+/vk85M6pz5i1oR\nHS/wkhJ5ab1mjL7G+HrVoEfAHkjCxQ6jCMSzQKmtYEIiIIIg/Obblg4AQEpSnOF1x8fFIDE+Fq52\ncvISBEFEE+5uJgLSHwkIANo66PlAEARBEET/waiXlEbUI/d1M0EA2l5y+3KuqHW+2NLH4c3pNaia\nVi0cJ2WX+At6KfivvX21LXZGhhNqx07qGhb3x6jrXK8TjTlhpfoTKAcdQRCRi6/7QSDuG0p1SkUy\n87dOvoxRqBUcGCUmV7uW5Lfb0sfhjWl/8hL6igU4SuJiMVLPFLl1AEtPydJvrZuwEaVH16KwrkB4\nbtodDV4CG3EEGVv6OOx7sBbVOW/3STsm1e+S+mKs+vEaAEBhXUGfdUx8bLxQf3VODZaPX4HSo2sl\nIxXxoibWr9ozNSisK/DqH6uPRUCSgomXWBozOdENv05Smje+9s2rfVh2rSWOVsTKO1xNklGftAqc\neVGRluOMIJzWOKH8my9QbQZrfEMxdiQCIgjCby582wYAMCcbHwmot944uNrc8Hgo5QtBEES0wCIB\nxegVASUxEVC3YTYRBEEQBEGEO0a9pDSiHnEd/nzhTkQXel5yywl2tLR5vvkcbOnj4HA14cG92ZLO\nJvb1vq+6tKR94J2RkRQdS+wwEzs5xcKmQDhJ1I6ROJqCXBm99YcbkWo3ET3IiRHk9kUqelJv6a3T\nHwdwMJ3/wYyipBQpx1d74kh/WvvA6pXbLl4HMDELS0/J2relj0NldhXKsypQUl/sVYYXnojFK7b0\nccK6Ie+tHOTuy+kTcYeJVdZN2Igy+wYAvcKb5eNXePWNtX2++RwcriaUHl0Ld7fbK1IRHymJpdAc\nbBkiRFFsdbcK5flIUOx/sbAn760cr75IiYv4bW9M+xPSzRmy80ZuTvG/r5uwUVKgJnXsYEtvGjUm\naGLbxPNC7VxmkY9y9+WE5AOIQKS9CpQo0Z/6leoK5HgHYnyl2gi2mItEQARB+M1XThcA4NrUhIDU\nb06KR3ePBx1ucvQSBEFEC0I6sFidIqCEWAAUCYggCIIgiPAh0l4C661H7ktbvXVRBKHow4iX3Fqj\nA/COmXRzBm5ItsLZesHrOP7rfV8RFbTazzvAwik6lpJTTexs5PsrFWUhWLZJlRPbZ2T94Uak2k1E\nF+I5yAsZ+uP8lItwIlVObpvWZ4u/Y+zP8cGMosTX4W9EQLl6GeKUVUqRZcQpwfJrclFYV4Ai21LJ\nVKMsKpAtfZyQwpLtyxp8jyAQ4tsHesXJcTHxeGJ0gSDUEc83W/o4FNmWYrBlCByuJjy+fz5qz9QI\nZdLNGYKwh61zqqZVCzaV2TfA4Wryio6TX5MLu6NBiKJYnVMj2C717OfH44TzOM42N6Lu7EGvyDq8\noIsXMJXUFyPdnNEnVRcv1mb7+PER33dYP8WCbjlxT5l9Q5/UduKIXGrn1mBLb8o0PuqS1HFS661w\nuV/y4xloUaLRa5lwioYkh5o+B9v+sBMBud1uPPXUU8jPz8dDDz2EAwcOoLGxEXPmzEF+fj5Wr16N\nnp5ep9GePXswY8YM5OXl4b333gux5QTRfzl/sQUAcG1qYkDqNyf3RntwtZGjlyAIIloQREAx+paj\nlA6MIAiCICKTnp4erFq1CrNmzcLcuXPR2Njotf/gwYOYOXMmZs2ahT179igeI/e+CAC++eYbTJky\nBR0dHUHpV7Q7bXmHFy9yAPx7KRsJL3T9xZ85EcnzychoVb7mCXPMmEy9zjSHqwnOtgt45shqry/x\nxV/vy2F3NPg9n4M9t+Xmij92MAcm30awHTr+Oqki8f4SqXYT0YV4DrJ5yUQC/Wl+KkU4kRJKKW3T\nIgDy536rJFgy4h7OBB6RAC8E5lNS8QIVqXPGM9gyRIj2U2bfICnsYELj2jM1ACCIbF797A944dhG\nQQgkFreU1BfjsRGL8PSHTwlCnfyaXDhcTYLwx+5owMJ358HuaEC6OQMv37sdpUfXAvCO6jPYMgTz\nhi+ALX2ccH5s6eMwb/gCISIOEyi1dbUKacX48rwISWo87I6GXnHNXWXYcmKzZNQgsYCJv2ew+nP3\n5SBn7/2CgJvBxo1P5cXX4XA1SaZgFQuA+HuWeD4oiaClYGVZ1Cdxf/ly4uuOT8XG1+WLQPwNwM95\nPk2aP8j1KxBrGSPrCtT4htvzMexEQPv27cO1116LyspKbN26Fc8++yxKS0uxZMkSVFZWwuPx4MCB\nA3A6ndi5cyd27dqFbdu2oby8HJ2dnaE2nyD6JeedLsTGmJBmDkwkoNSkXnWtq90dkPoJgiCI4OPu\nZiIgfZGAUkgERBAEQRARyf79+9HZ2Yndu3ejqKgI69atE/a53W6UlpZi+/bt2LlzJ3bv3o2LFy/K\nHiP1vggA6uvrMX/+fDidzqD1Kxgv/UIlCOFfaPNf6Uo5teS+plZCb6oGrYRi/Pxx4kk5KfobvDPJ\nl1Ak3ZwBjwcorCsAAKy7q0z4Cl7JGSRGKg2WlnPAf2EeTAGQ0jyTsoM5NOVslKqTpdYIpkNHrVAo\n2ggnBxLRP5G7b8jti3bE6Qil7k1qt6nB33WlOOKKEVHqpAThwUJvm2IxijglFS8u8SVuZ9F+pNbB\nTGg8fegMPL5/Pk44jwsimwHJAzDY/H3MGzG/j1CYRbZ5+Ic/84q+19XjxqL9jwrCHwDItNwotGtN\nGQh393e+MmZL7ZkaFL6/GK9+9gfBttozNXj6w6eE5zfrV3JcCsqzKvqMl5RwhdnNpzq7bcDtAPoK\nhhlKUXIGW4agalo1qqe/japp1X3KpZszvFJ58etAX5EKxX+3SLXvC1/iPiXEgqfK7CqvCE9qIyAG\n6hpj0aH4NGl6EUdqkhIChSNazoNWwq3PYScCmjp1Kn75y18CADweD2JjY/HZZ59h/PjxAICJEyfi\n8OHD+OSTTzBmzBgkJCTAYrEgMzMTp06dCqXpBNEv8Xg8OH/RhfTrU3Q7cn1hTu4VAbW0kQiIIAgi\nWvguEpDOdGBXRUCtHZQqkiAIgiAiCbvdjgkTJgAARo8ejU8//VTYd/r0aWRmZuKaa65BQkICbDYb\nGhoaZI+Rel8EADExMfjd736Ha6+9Nphd8xIsGE0oIw2JnSFyUU6kxBNi/HHeSO3T8jI/FONntDgs\nGsUOvuAdDEr7AWDTPZtRnlWBf333USyrL/RKfcE7g5TmqNi5pFWMFYpUOf44mZWQusYf3z9fl9jP\nH6TsVOOMDuV9kyCI6EAqKgxDSSgltU3rvUjtcb4EoHqj1MkJIUIR7YIXoUvZqDQGvMhHnJKKr0fp\nWSKuU2ptvG7CRuw98wZevnc7rCkDkRyXguXjV6DMvgFbp+zwEuAw+LnFpw/b80B1b4qu6W/D2XoB\nJfXFWPmjNQB6n83O1gte9aybsBEAMHVoNsrv3oT/PFYhRNQpPboWz935PKYOzfbqT2V2lWDD+eZz\nXtF3yrMqUJldBYerSdjGhE7rJmxEujlDiGAkhtUjHtvaMzVe6zkmqhILsJhdLJUXs5FfeygJusXn\nnNnAX8u8CFp8fsVzQU5QJ0bNvULttRPoa8yoiG68wF6uvnBcg8ndA3jCbQ355T++1HVcnMF2+I3Z\nbAYAtLS0oKCgAEuWLMH69ethMpmE/c3NzWhpaYHFYvE6rqWlRbHu665LQVxcbOCMDxFWq8V3IUI3\nNL7KXLjcivbObgwdci0sqUmajlVb3np9r6PY3e2BJTWJzolKaJwCC40vQfhHFxMBxeoTASXExyDG\nZKJIQARBEAQRYbS0tCA1NVX4PTY2Fl1dXYiLi5N91yN3jMfj6fO+CADuvPPOIPWmL+yFYSDCn4cy\nvLgaR5faL3P5F+l6X4IzYQYAxWgmfD18uoJgoibSkZpILYGaW75Qc57kjgP095/Bzl1JfbHsl/nM\nMVhSX4wi21KYTH33s+Nqz9Tg8f3zFeeqr2hBSn1hDrJgnyOj62NzjYe/xvXOCyNgkQjYeZW7JkJ9\n3yQIIvIx6j6i9xnu6zi19YqjE2ltNxzupw5Xk9e9n9lYZFuKMvsGL/v4ZxQrK143smcn66e4XvYM\nzK/JlVxrSq2D+ShB5VkVQqQfKbtOOI97pSzl2+Tte3z/fDxlexrP/tdqnG1uxLq7ylDyQRGsyQPh\ncDVh8YFFaO9uQ3JcMvY8UI2szEl46XiF0H5XjxtbTmxGVuYkoT9dPW6s/NEalB5dK0QDYmuogoOL\n4PH0CqvZtsUHFmHTPZu9xqjIthQL352HTMuN2PNAtbC9sK4A5VkVXuPPzlGRbSkK6wok17d8ulbx\nfFNaB0rBn/PyrArhWDnxl1jQJRXRy5cATrxPPL/4+vn25foT6GvNqPrF15n4/1D87aIGPfMgVJxv\nPodH98/Fx499rPnYsBMBAUBTUxOeeOIJ5Ofn44EHHsDzzz8v7HO5XEhLS0NqaipcLpfXdv5FkRSX\nL7cGzOZQYbVa4HQ2h9qMqIXG1zcnTl8EAAywJKC5pV31cZbUJNXlTZ5eR/HlK+1obmmnc6ICmruB\nhcbXf0hERfgbCchkMiE5MZZEQARBEAQRYYjf5/T09CAuLk5yH3vXI3dMTEyMV9m0tLQg9ECZQL4w\nDIeXkEqwtApySH1JKyfw8eWs4r8UVuvM0uI8CBa+Xo6LxyEUAiAtL+/tjgZBIKJGpKWmfjavlIQ1\nbDtzMm2+dysAeDmTWF1l9g147s7nFcVq4nFnc80XwTxHvINFiyDOH/EdAOH8hsqpIyW08uX41iJY\nCqW4iSCI8MSIe4Le54Oa48TiaiPuY+I1GxMCAcaJkuXSNcmJnaTu/UwcwotpAGnhBb9u5PuglMKN\n1edwNQn7fPWDFyczkRKDtXnCeRyP1OYj03ITfjt5q5eASCxcefne7Sizb0DFpM0Aep/DA5IHoPTo\nWgBAl8eNr10OfC/1O3FRXEy8YMueB6rhcDUJNi4fvwLPHFmNZ46shskEr+hIAODx9NrKBEwOVxPO\nXvkCBQcXCdGImI3V09+WTAfGb7M7GoSoPnKpw/jzyERCJ5zHBZv58ZEbdyWUBGJS+/hzz1Dzd4vU\nNSJnt5T4SU/f/EVrW0rXKOuPGqF2OCFnp9ScCQWDLUPw5qw3dR0bdunALl68iPnz5+Opp57CQw89\nBAAYPnw4PvroIwDAoUOHMHbsWIwcORJ2ux0dHR1obm7G6dOnMWzYsFCaThD9kvPO3hexg29I9VFS\nP0kJsYiJMcHVRo5egiCIaMHdzURA+pejyYlxaO/ojQJAEARBEERkcMcdd+DQoUMAgGPHjnm9y7nl\nllvQ2NiIb7/9Fp2dnfj4448xZswY2WOk3heFA+H+ojMQ+EqZJI4KI/eyVUvodd4hpaZsqF5CK/VF\nrV0sjUGw7WcONrUCIJYOjjnbpEQp/Hj46j+bD3ZHAwrrChTHkjmZimxLYUsfJ+loYv3ZcXKb5vRR\nWuZloBGnZanMrhK+uleyUW9qA3F5h6spZNcTmzNSDjMpfN2bxGXDKfUDQRDhj5b7hd57pq9nJPBd\nCiYjU1LyQgWlZ7dUGh1fSNUrdw/mI7CI7/1MHGJLH+eVzkoq4ot43chHiScYtQAAIABJREFUOZLr\n+2DLECwfvwIFBxcJz5LzzeeE1FR2R4OwnR97Jhoqsi3FY+/+HLn7crzanDo0G7+fWonfTt6Kkvpi\noa0TzuMA4BVBaOrQbOyY+irSzRlC/6cOzUZldhVs6eOw+d6tuD7pBjx753NwuJqw8J15yL11tlAv\ni6DEbCw9uhbZN0/Dpns2CxF8WJ8driZsumczqqZVe43LjdfchF+MKsDj++fjhPM4Wt2tKKwrAAAh\nZRi//mNjzsRbRbalgtiIF1azc876y9ZudWcP4pHafNSeqfE6L2x8pZ7t4nkz2DJEEFMxlK4Pvk72\nc+6+HEForfXvFr48bze/fmOCGXa8uAzfL1/XlZ5rXu26h7dBrjx/jSpFPgpXfN1nQ23796/5vq7j\nwk4E9Nvf/hZXrlzBSy+9hLlz52Lu3LlYsmQJNm3ahFmzZsHtdmPKlCmwWq2YO3cu8vPz8cgjj+DJ\nJ59EYmJiqM0niH7HuasioCFWc8DaMJlMsCTH44qrkxy9BEEQUYK/kYCAXhFQjwdobnUbZRZBEARB\nEAFm8uTJSEhIwOzZs1FaWorly5fjrbfewu7duxEfH4+SkhIsWLAAs2fPxsyZMzFo0CDJYwBg2bJl\nfd4XEeEH//JU7ESSemEfTZGUxH2Xe2nuq478mlzVQgYjYc4bNe1KpYNT4yxReunOHCRyX46zcryT\nqfToWsHJU3umpo/tSlGFpBybvPNRSzSZQCJlT0l9saxzixfhqRWdSTmsgO/EXszBGQr8EQ/6qjcS\nvlj3l1A7soj+hb+iw2DhS0Apt13LvcfovvHRW1gUFbED3qg25CJkiJ87asdEql72zOfhxcBs3SgW\nRbDtJfXFmDd8AQrrCoRnlJRghBcLidvixT2s3WeOrEZnt1tIm5W7LwcP7s1G7ZkaLNr/KFrdrTjh\nPC6cA4erCTl770dOdTZGWEdhy+TfCaIafn0xwjpKWJOwNh/fPx/Lx6/oM94nnMdlx/XUpc/xdVsT\nltUXwdl6Ad2eHlSe2inUy9tVWFeAi61OvHBsIxa+M89rnGrP1CBn7/1YtP9RYVvuvhwU1hVg5Y/W\nICtzEp6783mMsI5CSnwKHhuxCIV1BVh8YBGKbEuFdQgAYd3qcDVh3vAFKD261uscsL6ccB73SoHG\nREIP//Bn+P3USoywjpKcM/y5k1qrMPgIQmyO8FGjpIRbrK3K7CpUTasWBO1y60Z+Tcnbwpcpsi0V\n6uDnPX+98seJt/kS92kRPIvxdb8QC5eUyksJf6TqCWeC9bdpsMbB5OlHHvVoTN1CKWkCC42vb/7j\nd0fRdKkVmwvvxqFPvlJ9nJZ0YABQf/wr/G9TM3Im3Ixpd96sx9R+Bc3dwELj6z+UDiz0qJ3DgZrv\nz+2048xXV/AvU/RHcvzvvzrx6f9+g6dmj8btN11voHWhge4twYPGOnjQWAcPGuvgEKhxprVR6KHr\nxz94R4zSfj6UPnsZLE43IXVsuIbEV1snAOFL4vKsCsW0aVJjyZwTSscFCi1jwsqKz614n1oRCp9S\nAJAXf/CpFliKilOXPsey+kLcmHaT15fuUrbJ2aA2pZn4XIUiVRabN/w84ecem3dqzydfTnwMS/sW\nKqT6oNQvX/en/kSo5qdWaF0UeoxYF2mdb6G8fyql+lGyScs9Ve656Ksetc/NQKxffK3PpNIZabnn\n8s8TJjqJj433eu7aHQ1eqaIACBFe+LZZ1MC2rlZ4PMCzdz6H0qNrsXz8CpQeXSuIeArrCrB8/Aoh\nRRV7Nua9lYOzzY14ZfIO4TgAePa/VsPjgSDkYUIXAJj+5n0YaB4ES0Ka13M2pzobCbHx+MWoAuw4\nuQ1FtqWYOjRb6CdbXzDbgN61Rt3Zg3j4hz/zGlsAyNl7P9bdVYaHf/izPmPyr+8+ipxbZmLzJxVY\nP6Ecy+oLsfUnvxfaqz1TgxHWUUJ96eYMvPm31/GD634gjAEb18dGLML6hl/hzzMPoO7sQWw5sVlI\nH9blcaPJ9RWqp78tjGPurbPx2l93CqnKWCovoFe49PQHS+Fsu4BXJu+ANWWg17lytl7AI7X5KL97\nE3ac3CY5j6T+TuDHJt2c4bUO5D8w4K+t/JrcPung+HU5q6fIthTWlIEA4HPNJP7bhkVcEq9ZmXha\nLJSXq1PqHsRQsoVf66lBvIb2tSY24v4SzL/p9BCsZ5CedvSui8IuEhBBEJFDT48HTZda8b0BZsT4\nEclBDQPSkgAAl66oFw4RBEEQ4Yu7qwfxcf4tRa9P640C2fh1ixEmEQRBEARBEDoQf/Eq9WWj1Nev\n/O9yX4cqbQ9UPwLxpT77opg5reT6w17iS33NqzYij9FoEQDJfSks3qemTXFEA1+Re9i/8qwKFNYV\n4Df/XYaBKYNQMWlzn0gDal66s3PmSwDEvtBWU3+gz19+Ta6QNo3Z5nA1wd3tRmFdgaY0MeIx4wmW\nAEjKTrnr1Nf5jISvz31hhP39JdoRER5ouR8qRZlQM/f9uT6U7FQb+UJrG/y9TGn9oTbCh1EOeoaa\n9GKsT0wswSOV6kv8c+2ZGiGNKNArYo2PjRfSWzJs6eOEVJ9sLcUi6PCpQtn+Z/6/5+BwfYVVh5/G\nlY4rgqCn4OAiLD6wCK3uVoywjhKi17C5t+eBalRPfxvWlIFwd7vx9AdLsfDdeVj5ozWCAIhFk0k3\nZyDdnIEbr7kJz921QUjNxfpRnVODX4wqwNMfPoWswffg8f3zhX6ytUrurbNRZt+Ax0YswvLxK1B3\n9iCWf1AspMBiUY0AwJo8EL/57zJhvjABkLP1As42f4FrEq/B91IH47YBt8OaPEgQstgdDVj4zjwh\n4o4tfRwcriZU/X0XSo+uFYQ0bL0DAI7WJpT+11oUvr8YP8m8DyOsoxAfG4/N927FK5N3wJY+Ds7W\nC2h1t2L9x2vR6m5DYV2BsI1F1HnmyGpcaP0a6+4qwwjrKOFcMbHWCOso/H5qJR7+4c/6pMXi5xcv\n2mERofjUcEyAw+aWUvRM/m8Q1mdb+jhh3fnMkdWYXn0fcvbej9ozNX3WePwc5qP2APCKMiSev2oE\nQLx9Yvi/s6RsYXOKjaHadR6zXa6fvuzSip56grl2C9YaKZhrMRIBEQShG+e3bXB39eB7NwQuFRjj\n+mt6RUDfkAiIIAgiKnB3GyEC6n02nL1AX+4TBEEQBNE/CEcnNv8i05fIQPyyU0oQJFc3Q0p44S9K\nzkejGGwZIpmmQyyQkRKeRILjXuys8cd+5uCSm0diJxH/e7o5A8vHr4DJBMSa4iRTifFOWF91K9nM\nnEZSjitxnUaLzKREMPzc4Z1kLJ2FOO2E1jYCYbfSOZZyIuu5FkJ9/RgxjkbOn3C+jxDRh1IEGV4A\nKycUVTP31a4LlOrwda83Arnnotp7lLh/Rt6jxaIkcXoxOaTWfr4ET0zMUXp0LV6+d7sgIiqpL8by\n8Sv6iCVYmqzaMzVCtJXzzedkn+9Th2ajOudtbL53K9ISeyP0jLCOQlxMPJ4YXYCU+BQ4XE0os2/A\nvOELhGMdriacuvQ5SuqLserHaxBrisO6u8owdWi217nhhR4rf7QGZfYNwr7aMzWYXn0f6s4exI6T\n2/Dcnc+j7vwBPHfn80I/zzefw8J35uGZj1Yia/A9WFZfiAV/+RmW1j+JaxKuw8oPn8YDb07BskOF\nuNJxBUDveuYr13cpq4psS5FuzsDUodkov3sT/vD5dng8gLP1Ai62XcDCd+YJ58MDD545slo4F2yc\nWQQclrZrsGUIsjInwZo0EP/X+TF+Pnwhtnz6n3C4moQoSmX2Dag9U4PH3v05nr3zOVRPfxtbp+xA\neVYFltcvRZPrPAoOLgIArPrxGmRabsJtA273GuPCugJ09bgBQIhWJF4fi6P5AEBXz3eCZl4YdMJ5\nHA/uzUbuvhwAEIRi/N8YYmEZ2863l27OQNW0auzN+TOqp7+NqUOzJdd47GexCJ0XJonxVzwtl8aW\nv7b4a1VJhCdGbi2rBf5e7i9iu4Mt4g7WGilY7ZAIiCAI3ZxzugAAQ6xBEAFZeqM9XLrSEfC2CIIg\niMDj7ur2WwRkSYlHfGwMzlIkIIIgCIIg+gGheBHKt60E/3W03ItqX/Wq/creiJfVPLzzKhgvZOWE\nTvzvctEIwh02D/ydp/yY8F9z8w5EKecx27f0UCHa3O0wKQStlhOZ+Io8Jd4ndlxJOWn5r8WNitYg\ndqADfecO7wDjf+YjPKhtwwjE50qpDSUnsh5CKQAyYhyNEjKFo5CUiAy0zh1fTme5yIC+ysrV52td\nEMo1lBy8IJOJO6TKVGZXweFq8oqa429/pISkYlESL1yQa4tPS8XXKz5fcudwhHWUUH7dhI0os2/o\n88y1pY/Dy/duR+nRtSisK0CRbalgJy+a5o+zpY8TIgOxSC/lWRXYcXKbIDQqsi3F8g+KkbsvB7Vn\najDtzakofH8xpg+dAWvKQDhav8J/HqsQnld2R4MQcc/uaMCL9hdQenQtimxL4XA1we5owDNHVsMD\nD37z32VYN2EjbhtwO+YNX4AtJzbD7mhA3ls5cLiaYElIw6/vfhHzRszH1p/8Htum/AEDkm7A83eX\nCyLma5OuA9Arbn5k+HzEIAanLn2OvLdysPCdeXhwb/Z364CWc+jq6cII6ygsG7cCF1q/xpt/ex22\n9HHYm/NnVE2r9hpnNpYOVxO6etxYfGAR7I4GnHAehznBjM5uN444PsRzdz6PdHMGCusKhLEfYR2F\nQSkZuNR2CenmDJTUF8PZegHOtq9RMm4lKiZthsPVhNKja7Hqx2tQUl8MAMK5qMyuEqI08lFr+N+l\nIvnseaBaiPbI9nX1uDHCOgpvTq8R+gjAqwz7+8TuaPBqj59jLHoQP3fYz+K1SN5bOYLgiEcs8DcC\nZhubc1Jtiu+latdPUgIivZF6fEUN01qXnKAwFITTM0MPJAIiCEI35y/2Ol0HB0EElBAfC0tKPL65\n0g6PxxPw9giCIIjA4u7qQXysf0tRk8mE69IS0XTJhQ53t0GWEQRBEARBhCehehGq1tHk6ytYcZ1q\nv9znj2HoeVktZT8vXAoVzK55tQ+j9kxNxL9sVorepKVvctEgpByl/Ff5ubfOxtetDlxqc0Lu9RET\nfInt9GW7XD94ARDvpBXXKdUnLUg5RaREUVLHiJ1hRbalXk4yMYG43/DiLjXCKKlzw45VGjt/HVBG\nonccpRyVaiM4KdUZbiKI/kZPTw9WrVqFWbNmYe7cuWhsbPTaf/DgQcycOROzZs3Cnj17FI9pbGzE\nnDlzkJ+fj9WrV6OnpwcAsGfPHsyYMQN5eXl47733vOo/ffo0bDYbOjq0fWSrde6oKS8liFVbVgqW\nHkrpfhJqZ7IYNk7itFhiBluG9EkpJOXo19qu3LNM6me5NG2FdQVCSimpNEziZzcT7jAxCC/8EJ9D\nfp04dWi2EOGlzL5BVnArJY5lPzPhDzt+6tBsQTxiTRmIm665GSv/zzPYe+YNpJszUD39bVRNq4bD\n1SQIMVgEnUf/0hvJ51LbRaz88GlMr74Piw8swqofr8G2n/wBKfEpOHXpc0yvvg9LDz2JKx1Xrqbu\n6r1+l49fgdsG3I4H92aj9Oha/M/l/4GjtQmX2i4hOS4FObfMxOWOb3Ch1YG6swfxvP05PHzbI9hx\nchsqJm3GugllSI5LwQnncSytfxI9PT0wmXrFZL8/uR2WhDQ889FK1J6pQbo5Ayecx73W3MvHrxDO\nw5x/mosujxsL35mHR995BFc6ruC3k7eiPKsCLx2vgMPVhMrsKjw2YhHK7BvgcDWho7sdT77/b3jz\nb69jx9RXhfRjvz+5HYsPLELBwUVo7rwCa8pArzUQOxdMlMPPGbl1Hi+mZtGfHK4mOFxNiIuJF86t\nw9XkdbzD1SS0x1LH5e7LESJR8fObT4fGBF9S14LD1SSsLfn6leYiPx+Vfpb6ndkml05YbJ/UNib8\nkvsIgRcQSdngC/7vP3/vsVK26q3PiLVONKybSAREEIRuzl+NBDT4htSgtDcgLQmd7h5c/AelBCMI\nIrI5fvw45s6dC0Dbi5v29nYsXrwY+fn5WLhwIb755hsAwLFjx5Cbm4vZs2fjxRdfDE2nNOLu8j8d\nGNAbKc7jAc45KRoQQRAEQRDRTyicV2odZ0xY4Qv+ZX6RbanwUtuXU1/8ElarAEjO4bVj6qtIN2cE\n7CWvmn4BvWPx2Ls/R+6+nLB+2azGNrEjQa/zlX25z45j54p3HDLHHHPaVP19F75nHoLn7/4Nfjt5\nq6yYSEn8Iv5dbcoWsZNWCX+c6nLXmpQTVPx1NusDc9gp4a/oRK5OJWGUlmOl8MdhEyhnjx4BkJIz\nXa994SiC6G/s378fnZ2d2L17N4qKirBu3Tphn9vtRmlpKbZv346dO3di9+7duHjxouwxpaWlWLJk\nCSorK+HxeHDgwAE4nU7s3LkTu3btwrZt21BeXo7Ozk4AQEtLC9avX4+EhATNdmudO6GYa0zgqEV4\nZHT7asrw5RyuJqybsBFTh2YLabGUEO/3FelDyj72HBA72vlj5SKOyImUmDCjPKtCMp2pOEoTv58X\ngrCoQvxzjok32O9MKFRSX4zaMzVCvx2uJkEoyotj+eff+eZzeObIaswbvkAQoTDxSEl9MVb+aA0e\nHDZTmLvp5gwhfdVjIxYJAiRn6wVsnbIDv777Rfzloffw28lbkWm5CU+MLkCZfQOsKQNRnlWBLSc2\nY2DKIFybeB1S4pMxwjoK1dPfBgA89u7P8fPaf0FTy1d4bMQiVP19F65LvB5ZmZOwfPwKbP6kAtcm\nXIfvpfam6JozbC4q//oHFNmWAgC2nNiMx0Ys6n2We4AbkgciKTYZztYLaHKdR3xMPFb9n2cxwjoK\nP6nKwqPvPILpQ2fgX999FNOr78PCd+fhhPM4as/U4NmPVqHN3Y6k2GT8y23z8E3HJRw5fxjO1gto\nvPIF/vXdR3HCeRwlHxQJachS4y0YmDwIGz7+lSC62ZvzZ/x28lZsumczVv5oDS64vsbiA4twwnnc\n67wAEEQj5VkVWD5+hdc6jxeIMfg1A4sGVFhXIKwReYFzujlDKJP3Vq/oh22rmlYtCGqk5nN+TS4e\n3JuNnL33e0XdYv+X1Bdj0z2bsemezSg4uMhLwMRfQ3KReMTzUS4tovhaZvNeK6wutQIiI9YZ/qBk\nqxFCR61Ew7qJREAEQejmq4suJCXE4vq0xKC0x9ppdDQHpT2CIIhA8Morr2DFihXCl1daXty89tpr\nGDZsGCorK5GTk4OXXnoJALB69WqUlZXhtddew/Hjx3Hy5MlQdlEV7u4exBkhAkpLAgBKCUYQBEEQ\nBBFA1AiApEL3y9XFHDVl9g3CS21fwgwtL2HlxD5yX8sG6iWvGsEJa5f/Ij1cXzZreakuTgugp0/M\nGcDqYl95M8Rfb5fUF+OxEYuwdcoObDmxWTLSDT//tMxZqZ+lEDtpfQnQtDrVxXazMZCax7zIjd/O\nHJ68wEqKQH4BrVYwqKdeqWhOeo8NBfy8FtvCpw7UWzcjnMWG0YrdbseECRMAAKNHj8ann34q7Dt9\n+jQyMzNxzTXXICEhATabDQ0NDbLHfPbZZxg/fjwAYOLEiTh8+DA++eQTjBkzBgkJCbBYLMjMzMSp\nU6fg8XiwcuVKFBYWIjk5WZftekScgUYsDA7V9csLLpXK8OI+u6MBD+7NxuIDi1B7pgalR9f2iWKj\nFl/3PT4FJPufd7Qz2+yOBiGiXe2ZGq82pCLdARBSleW9lYPCugJZG6XsYyLe8qwKlGdVCOVOOI9L\nPp/Z7+nmDCGiz7oJG4VUaSzaDR8Jhk9T63A14cvmRrzwf8uEaHivfvYHlNQXY97wBSg9uhZ5b+UI\n/c3d15t2q7nzCpbVF8LZegFFtqVY+M48LNr/KLIyJwnCpE33bMaOk9sEgZGz9QIqs6sw/4eP4Urn\nP3D/TdMA9K4R0s0Z2DL5d0iNt+CVn+zAwz/8GXJvnY3LHd/gzb+9LvQ3ITYRv528FSecx/G7k6/A\nEp8Ga8pAFNYVoLnzCkrqi+BsvYAb027Gjvv+iKpp1RhhHYXrkwbgYqsT2z/bgjf/9jqc7Rfg7nFj\n+2dbYDIB/3LbPKy7qwwrP3wal9ouwQMPSsb/OzbdsxkjrCMBAFtOvIRn/2s1rMmDYDIBl9ouAVx0\nxSdGF+AvD72HLZN/BwDI2Xs/nK0XUFhXgMUHesVJN17TK4x6fP98Yd5c6bjiNacWH1iEhe/Ow4v2\nF7zWd+x8M6EXDxMJsUhGDJbmjAmNKrOrsOeBamGNyOYnLyTj22ARjzbfuxXfT70R6eYMr3UQH/EG\nADweCPOWF7KJ7WViNgCCUElpzcbq44VCtWdqUFhX0CeKEX9diBGLrtQ8//XcR7WIEH0h177W9ag/\nzwOp9XokQyIggiB00dXdA8c3rRh8gxkmpSTrBjLgml5Hb+PXJAIiCCJyyczMxKZNm4Tftby44V/+\nTJw4EUeOHEFLSws6OzuRmZkJk8mEu+66C4cPHw5J39Ti8XiMiwR0VSB6lp4NBEEQBEEQmvDHAWzE\nl5X8y3Txy1q5r1XVfmnvK82FnE1Go+YlNL+PjUW4oiUqFEsRonRO1bbHUgxIpRrgnSdFtqV4+sOn\nAEBInyAn/JJKKxYIfAnQtNbla7tUGd4hxX8t7yvqRDg41aWcwHlvqY+WpcdxFA6IoySxfjAhnL/3\n4EAKvAh5WlpakJr6XUT92NhYdHV1CfssFouwz2w2o6WlRfYYj8cjvJM3m81obm6WrePFF1/E3Xff\njdtuuy3QXQQQHIGZ1Bz253kjrlsLUtFu/h97Zx4XdbX//+cMM+yLOIIgpmUuaCFeSVvM8uteVFKG\nGV3LzCwqscDcfi7X5bolVlhxM6+Z3WzxukeaW7hlapTGN7M0UwQZGUBlmIFhtt8f4/n0mXFYVNTq\n+3n58AF8lnPO53zO8v6c9+u8X96ukZP7EqK6sWZQDov6ZDNn/yxsDquUd0P7puez1xZRRD7m1zaX\nWu1W0nPTiAqK5t2+S8nMm++WnmekO/mYlJ6b5kaIkCNPf4CkdfdLc668zGKejgqKJnXrSB5el0hu\nwXae3TIcs9Xsij6zaywTu08GXMSIt/LeZMiGJGbsnSY9U0JUN97tu5SBbRLdIsmI54wKipai/ggZ\nrYjASM5ZzjJu5yv0iunDssP/ZmL3yWjUWvSmYkZvS6XaXoW+spgRt4yiRXAMU/ZMIiIwkqYBOpxO\n3OyIqKBo5vZcIBGBnts6gjW/rGLugZkEa0PIOphJ0tpEKfJRRGAkKhXERcRTZCykbXhbekTdw8qj\nnzBn/ywmdJtCqF8oUUHRRARG4oMPfho/DOYSFvbKYsQto2ji15S4iHim3jldiloEYLFbsGGjxHyG\n85bzADhxUllTSYWlgqWHF/OPvZMpMJ5wlT3QFclpwq6x6AJ0RAe1YP49C/nswbWMvW08GpWWdw5l\nMb7bZGZ+M40HVg8gfcdoFuW9wZz9swCIDmpBRGAkye2GovVxSXQ93mEYsbqOUpSr3ILtnDYVsuaX\nVSSvd5HGEm96iFBtGPO//adEjhHklQfXDGDkl09Jx+XQm4rd+rsguwhC2YRdY92u87T5RNvINxzi\n2S3DJfKWOLeoT3atRB1h46pUv0fBkpOSRLQmeR8Qac/tucCtb3k+lyir1W6V/hb3yJ/NW1+vC57R\nty4lIqY31EXA9Ga3Xakddjn26OUSgP5qtpHmehdAgQIFf07oy83YHU5iIoKuWZ5NQy6QgJRIQAoU\nKPgTY8CAARQW/m5MXsrCjfy4/Fr5glBQUBCnTp2qtxzh4YFoND4NKnNEREj9F10CLFY7TicEB/oS\nEux/RWkFBvqi8VFxuszc6OW8HvgrPMOfBUpdXzsodX3toNT1tYFSzwrqgtgp+kdNX9wvFjkvx8Hv\nea9IUzh/LreMnmHzvS0oN7TMte0ivZ4O/uudf2PhUp5BOEfqa2911Y3c8eItf3naA9skSk5K4aTx\nFk1FOEXri4TTUNT3bhvzvcsj/zT0ek8HVkbCOObsn0VEYGSdRCDP57qWbbg2h4/eVEyB8ST5hkNe\n3yu4HMXy6EiXI6HxR4M8QkBjELP+KFGP/q8hODgYk8kk/e1wONBoNF7PmUwmQkJCar1HrVa7XRsa\nGlprGuvXrycqKopVq1ZhMBgYMWIEH310ZVGlasOV2BeXAnmfuNL85bYRNMzW8BwPvRFrvJVZDjH+\nikgl4nxDybaetpj8b/lxQVCKi4j3SqiOCWnJoj7Z0u8xIS3drhXpyucLeR6i/KLu5vZc4D63OMFg\nLpHSEuURUl8Tu08mQBPI4n7vExEYyQ3BrZl653Qy8+ZLEX8yEsZhMBmYuW8qTXybovXRMGf/LOIi\n4tGbisnMm+9WZvFTbyrm+S0jOWMuZs7dC3j7YBYvdnFFhCk1GXDg4F/5i3iv3zLiIuKlZ9H6aEmJ\nHcbcAzNZceRDxvwtg4m7x7K36GtKzQZ0Ac2kssdFxEvzjphvHm8/zCVPGhzDmL9l8OqOl3m5awZR\nQdESwcPphDW/rGLpj4sprHSt447oNIperf6HOftnkdxuKOCypaKCo7HabTy7eTjBviGUVZcCrvvn\nHZhFs4BISqtLeKLDU5y1lAOQdPOjDI8bwWdHV9Ap/Fa2F24hMiCKpn46Qv1CCda6vmnLq8oYt+sV\n5vd8nSl7JuGr9uPVHem8du9CJu15lVcTJrHiyId8cHgpWrWWsbeN55/fzGDp4cW0DL4Bg7kEpxNG\nfDmMYtNpxnQZy7Obh1NYeQqNSiPZgssO/5spt89g5dFPqLJVkRI7jBn7pqBVa5nYbSoD2yRK725U\nXCqZefNAFntAELlEVKrVD30upW21W0ndOpIATSArEleybOBHUt2813+ZRKLxxNSvJ+FwONAF6KT2\nLEg7nrKlnhEYAYkEJ2yOPP0BRm15mpbBraQ+JY9GJWyS2vq3sF17bvCDAAAgAElEQVTlkI8tRcZC\nr9GDaiPOeNqLwv6trQzyvlNXGeV2lshLnBPjhTheVxlry8fb8Wthr/wVbSOFBKRAgYLLQpHB9UER\n0yy4nisbD36+PgQHaDmhN7o5zRUoUKDgz4xLWbiRH6/r2tDQ0HrzPXvW3KDyRUSEYDA0LvnydKmr\nvCH+GoyV1VecXotmQZworkB/5jw+6j9voMurUdcKvEOp62sHpa6vHZS6vja4WvWsEIv+Grjajq8r\nTd/z/roWoT3v84w04ul0Eo4cq92K1kcrLQzXt4jszVnkbUepKHd9i8iei8+1Pfu1gqfD66+2sOwJ\n8R68OR7qcjhcLkEILm6PggAESI42b+nV9S7kedbnEKmtHXum1ZgEmksl5nheP2f/LKps5lpJUuK6\nuhzM3q5vzLbt6ZQXaSdEdeO9fsvcHL7y8nruwJc71C6FPPVHhbfx7XLxZ6+LPyO6du3KV199xf33\n38/Bgwdp3769dO7mm2/m5MmTnDt3jsDAQL799lueeeYZVCqV13s6derEvn37uP3229m5cyd33HEH\nnTt35o033sBisVBTU8Ovv/5K+/bt2bJli5RP7969Wbp06VV7xmvtRPUcly41f2/zdEMIQN7Gwyt5\n5ktNx3Pu8yRFeY7b4pw8aoqcuDB6WypaH60UmaehJAP5TznhaNnAj9Cbil1jdv9lzPxmGlPumC7N\nleK8zWFlxt5pLOqTTVRQNMnrk1jUJ5uEqG5uRNUZe6dx3nqWpzs9y4dH3sdaY2Vi9ylukl/we9QV\nuV1qd9oYd9v/451DWZw4f5zxu9KZ13MhzYOjcDphTs/5RARG8sDqAXz+yJcATOw+mRl7pzGv50Ji\ndR0BeC7uJVYc+RCnCvx8/EluN5RRW57mubiXMNZUkG84xKTd4zhdWYQDB2O6jGV43Aj0pmJUahVv\nfJdJrK4jwqV13nKOGfum0NRPhwYNQb5BxEV0Zs7+WZRXlTNz31SW/riY9/ovQ6PWoFFrSLzpKZYf\nXgqo8EFN2/C2RAe3YMzfMnj7YBbJsY+x7tfV3BTahvXHV/PAzQ9is9vYVriZMN8mvHbvQsZsf4kZ\nd80mIjCStO2ppMankX0oi3zDD5wxF5MQ0Z09+p2UVZUxu8drLM7P5sUuaSzOz2Zi98nM2T+LF7qM\nZumPi8lIGM+c/bOotlXjr/FnTJex5BZtY/bd810SYsC4Ha8w9etJZPddQkJUN8L9w5m4eyx3xtzF\n6/e+xdnqs6w7vpo7Y+6SiFUTdmcQERDJvJ4LpWhDz24ZztpBX0hRqeB30tmiPtmM3pYqRY1a88sq\nZuybgkblikok2r/oDyIykEalZf49r5OZN59lAz9yI8kI5OkPEBUUfVG/EfZFle339XUR4Qtc8mM2\nh5Upd0x3I8V7+x7wtJ/l/Uren1NykpnYfXKDxwtPW1Z8/9Vmr17pN4t8HJKPkZdi/18JkbMx8Fez\njf68XhIFChRcVxSVVgJc00hA4JJ9qayyctZouab5KlCgQMHVgli4Adi5cye33XYbnTt3Ji8vD4vF\ngtFolBZuunbtyo4dO6RrExISCA4ORqvVUlBQgNPpZPfu3dx2223X85HqheFcFQARTS5Pi94TrZqH\nYLU5KC5rGLFJgQIFChQoUKDgaqAxHF91hR+/3PTlTnS5w6gu2Qr5vfKw6J4OeZGmkF5Y+dBat4hA\n9YVUF+H3ve1K9/bcns8upC5EPrXV0fXa2Smvn4Y47vP0B65Bqa4OxHvYdNzl/JA7HlJykknPTfPa\nFry9G3Gdp2RBXdIF4lrxU28qliQpPMtYV5uUX+OZZm3lr00GRqRVn/TC5eJyZAuEg2nNoJx6STFy\np3F9O7kv5/lqu15ebyk5yaTkJLtdKyRf5GXRm4rdJDPk5xb2yvpLEID+ijvU/6+hX79++Pr6MnTo\nUObMmcPEiRPZsGEDn376KVqtlgkTJvDMM88wdOhQBg8eTPPmzb3eAzB+/HgWLVrEY489htVqZcCA\nAURERDBs2DBSUlJ46qmneOWVV/Dz87vmz3mt2mhdc/6lwFMiqyHEysbqiw0dP4W941kOz/s952F5\nOcXcKJcly9MfIG17KuAivqTnppG8PqnOedfzWJ7+gDTXRwVFSzJLD69zyV9FBEZysuIEIzYNI217\nKkXGQknqa8od09H6aCU5q1OVJ6U003PT2HQ8h8y8+bzYJQ2VU0Vy7GP8u/9ybgy9iVhdR9Jz0xje\n6RmJpJGem0ZGwjiigqJZkbiSF7ukYTCX8MHhpS4yRnA04X463j6YJRFrIgIjeXbzcIpMp1jzyyoe\nWD2AcTvT+a3iV974LpPUrSNJXN2PrIOZJN70EDFBLXm5awYrjnxIiDaUNw8uoLDyFON2pnPGpAdU\nNPXTsblgI+CK5NPUr5lUXxq1lpVHPqXc4iLJBGgCebHLy2hVfkzYnUH/Vvex7L7/MOX2GfioNBwp\n+wmr3UZ5VTkf/vQ+Yf5NACdN/XVEBEZSbavmje8ypQhHZy3lfGvYj1btsoHKq8tQo8ZcY+LzXzdw\ntqaMF7eNYm/R15ysOMGnv3xEoG8QSw8vpu8NA9ij30mYbxN0ATre/D6T8qpy3jnkkqKKi4invKqc\n2funY7XbeOdQFqPiUjlrKcNUYyLnt/X0iulDZt58YnUdidV1xOkRzWdxfjaL+71PVFA0bx/MYt6B\nWQzv9AwGcwngkkibe3cm/j4BxOo6YrVbiQiMpFVIa6KCoikyFhIVFC29a0H0Valgyp5JPLwukXnf\nzmLq7TNZOmA5c/bPkkg/ggD08LpEhm/8OyoV9GrV263vCwm5lJxkNh3P4ZH1D5BbsN2rLTEqLpUA\nTaBbfxASdRO7T8bphJnfTCMlJ5k8/QGvGx08+7B8DBLnxTmz1czIzU9d0veCPP26vv8a+s3ijegv\n8pGXX25D1paO/LvU23Fvz+LtmLATL9fObgz7vLFt/MaCQgJSoEDBZeG3Ytfu15iIaxcJCEAXqkiC\nKVCg4K+FS1m4efzxxzl69CiPP/44n376KS+99BIA06dPZ+zYsTz66KN06tSJ+Pj46/xUdaOxSUCt\nm7uiJxScUeYGBQoUKFCgQMH1xZUSgOpzBF0OAchzYVn8bIgDy3OB1lv5PNNIz02TdsvWlkee/gBD\nNiQxYXfGRZE7aitHbc/mmc+1iFJyKZDnW9f7FfIGdS3s/1EXmOF3mannto5we4aYkJYNJmHInSHC\nASh2Y9fVP8RubHmEAUFM88xTvkPZ02HgGU1B7AavT+altvOeDpXGboOCgFRbunU5XupydIu61puK\nJRKOcF7Vlt6l7tiu633K621hryyJ1FNf34HfnfkiH+EU/qtA7hhU8OeDWq1mxowZfPLJJ3z66afc\nfPPNPPjggzz22GOAK0rPqlWrWL16NU888USt9wDcdNNN/Oc//+HTTz9lzpw5+Pi45N6HDBkipTFg\nwICLyrB9+/bLIgZdzTbnjUDZUFzJuCoImvK0LiXvxnA4N2T8FGOZJyFSzFlyqSHPeVgeKUgQVuXH\n03PTcDphUZ9sBrZJdJNM2nQ8h+T1SW4OdrnDXVzzyPoHyDccwmq3ojcVozcVM2f/LHT+EUQFRZMQ\n1Y0l/T/gpiZtmHLHdPINh3hu6wgyEsYxsE0iE7tPlkgaUYEtABi9LZUqm5kZe6cxt+cCYnUdaRV6\nI+Aiicy4azZRQdEYayqYsDsDvamYhb2ypEg1KTnJ6E3FLM7PZny3yfjKSMH+Gn+m3jmd7L5LCNQG\nYjCXMPvu+YzpMpZw/3BOmwrRm4uxO+0k3TyYGXfNRq1So/OLIOe39didNubu/ycqFaTEPklM0A00\n84tkfLf/x/x7XsdHpealLi+zsFcW+YZD6E3FlFeXShGA+re6j6WHF2N32gEY0Po+3jr4OqWWEjQq\nDW8eXMCIL4exOP8dioynGLfzFYrNp6mwnifEN5QX48cAUOOwcKTsJ/TmYgqMJxi38xUM5hKig2IA\nMFqN5OnzsGPHCTTxDye2aUfp3Ox900ntnEap2YCxpgIVKobEDiUqMJoBre9n0u5xFFacotxSirHG\niMFcQr7hEIaqM9icNpw4cDpdzxSsDeG89Sxnq8vJOpjJoDaPMGHXWAzmEnxUasb8LYP03DSe3zIS\nY02F1Aan3jmdiMBI3vguk2e3DKd/q/vINxzi7YNZ2JxWDOYSVCoXkSqrdzZ6U7Fkn5itZo6dPQa4\n5OZeiE8jUBtIdt8lrB30BQ+3Hwy4okI+v2Wk9G0SFRTNnLsXcM5SzgvxaVJZBERbFG1tdo/XGL8r\nnZFfDnfre8nrk5i4e+xFkXlEv8jMm8+iPtl89qBrg8SEXWPd7GP5d4w3W070NdEHAV7umkFdqI0s\nKB8j6hpvvH2z1GaneebrzabzNm55pnMpRMi6NgaItnE5hPSG5l/Xubqe81LRmPOtyukU3fSvj79i\naHQl5PvVhVK/3mGutjImazcxEUH84+nu0vHcg0UNTiMk2P+yJGCKDCa25RXy4F038vA9bS75/v8r\nUNru1YVSv1cORfLi+qOhbfhqtPePtx5ly7enmPzkbRSUXHnaMc2CmPOf7+jf7QaG9mnXCCW8PlDG\nlmsHpa6vHZS6vnZQ6vraQJED++vij9J/rgZZpTHT9ExL/C0WUOf2XCCFvK+PYDC35wIM5hLiIuLr\nDfvuSWLyln9teYr8/ggRNGp7F+L4puM5DGyTWOu9f4TnqK895ekPuMkM1FdueXsQ8gPgWswfvS2V\nRX2y3Y7LSRDyd5+Sk1zrzmR5G5WT2oSMiKd0gRye+V1uvVwqGpKet2eSQ/48l0MglNdTXdJhlwIh\n1dKQcgknm5Co8fauxP2e7U6eBiDJ0vwV8EcZC64mFLvo+sNgMNY6fgo0xrjnbRzzHM8vJZ+GXiuf\ne+TEwYb0LVFGuFhmsCFzZG1jYF33eto53uZOb+OhZ30KaSORlrd0H16XyIy7ZjNqy9NEBUWT3XcJ\ngCTVNGf/LEk2bPimJxje6Rl6terNkA1JOJ2uiCwvxLvkoxb2ypLKIsi94Iqg0qtVb/SmYpLW3Y/d\nbicqOFqS55q4axxzes6X8pqwaywZCeOYs38WFZYKyqoNLO73PnP2z5LSEu9kVFwqugAdcRHxDPxv\nHwK0/jidYHfaOGPSE+oXRrhfUxb1yWbT8Y38K38RNrsNH7UPTf112Ox2ztWU80jbIeSXHSK53VBm\n7JvC6/e+hS5Ax7id6ejNxfRp2Z/thVtcEmU/vQ8qmN/zdV7d8TIqtYowbTillhJGdBrFf44sI7Vz\nGpsLNlJlM1NQcRIHDgDUqKXfAR64cRDfG76jpEpP88Ao+re6j89++RizzcSygR9RVlXG1K8nYbRW\nMKLTKN4//B5OnPjgw+ePbCYqKJrcgu2cOH+CgW3u477VfQEnPiofFtzzJlO/nkSl1UhEQCS9Wvbh\nv8c+weF0oFVrmd/zdWbt+wdl1aX4qHyICmzBM7eOYs7+GahUKsL9dJRZSgn3DSc1fjTh/uGM35VO\njaMGnV8zbE4b52vOMfX2mRIJZ80vq2gb3paIwEie/OJxzlnOolapea//Mubsn4WxpoKMhPH885sZ\nEhEqKsjVFjRqDeAivyzOz8bmsPJCfBqxuo48uGYANqdNql+csGTABwxsk0iRsZCktYkUm4qY13Mh\nbx/MkiTnhKTWpN3jcDoh1C/UrX88sv4B3u27VJKjy9Mf4ME1A1Ch4t8Dlkt2epHRFdHKU5pUkNze\n7bvUzaYX7d/msPLZg2sbZMOK/qo3FUtlN1vN/KvfEjfZPs/+JSTFBFJyki+S+pOPLXVF3fG0Jev6\nFqwrOlBdkN8rH4c9763Lpq+tDA1BQ2z8uuYGUfeNYSfXltfl2kVKJCAFChQ0CLkHi6T/n2w/ht3h\npGmov9vxa4Gmoa6dCieVaA8KFChQ8KeFiAQUGd44kYBuiAxGhRIJSIECBQoUKFDw58fVcOg21BnW\nkPOeC7EiYovYZTp6Wyp6U/FF13lChNrPzJsv/V2X40u+E11+XCz4PrhmAEM2JHnNS5StPlyLyBp1\nkWDy9AfIzJtf6w7XS422cjXQkN2yngQgb9Fq5BEFaouWk56bhs1plaRF5JFr5HUmlzepa2eyt/oT\nkX7ku6Ph953L+YZDDXruhu4ibigamp78mYSjd8iGJLdIXOJ5PNNqSNqi3oTD2Fs5LwVFxsKL6ry+\nNAQByFOqx/Nd1kbwiQlpKUl/XGu5vas1pjTGWHAtxjsFf27UN35eybgnv6e+9nwp+TTkWrk9I+Ye\nz2O1zdXy6+SSWnXlL/9dEIDm9lwgRa0Q45LnvZ7jlXwOFPCMVCfukY+H8qgmRcZCSe5LPi/I51a9\nqZhi02kiAiNZ3O991gzKkaSXSs0G5uyfxcTuk6WIQhkJ41h2+N8AZPXOZlGfbJxOePP7TOk6kU9U\nULQUrWdxfrYkHzb37kzUajU19hpKzHoycsdQZDoFuAg9CVHdmNtzAXER8UzsPhmNWsPifu8TFxHP\nwl5ZUv4i7Qm7Mhi5+SnW/LKKM1XF2Bw2nuo0AqcTAjVBlFWXUlFznpFfDifrYCZPdHgKtVpN0s2P\nUl5dxkM3J2Fz2thZ9BXGmgo+OLyUlsE3EKvryNSvJ+Gv8WdIuxS2FW6mqZ+OL09uJNQ3DKfDSayu\nI6/d+wYtglqi8fHBR6Xhg8P/JunmR3k3/y0mdp/MjLtmM/n26UT4RzKmy1giA5sTrHE5+FWo2Hgy\nB7vTRhPfcClqUKXNiAMHx84eI33H6AvXutz7TpwX6rcFUUHRrPllFRk70njz4AJWHvkULpy3O+38\nY+9kjFZX1J/SKgOfHV2Bw+kgzDeMid2msuDbeQRrQ9D5NyMiIJI5PefTNrwtrUNvYkK3KWh9NDQP\niCIl9klm7pvKvAP/ZEK3KTT106FWqamoOU+QJph5B2ZJknAz9k3hyU2Ps+n4RkqrDQzr+DRrk75g\nYJtERsWlYjCX8Ob3mQT5BhEZ0BwVKjISxqP10WCxV1PjsDB+Vzqj4lKxOqyM35XOkbKfaBlyA0Pa\npbBXv4eIgOa0CIkhLiJeascCugCd1P70pmKsdiszv5mG1W7DUHVGiuRTZHTJjM3u8Rpz9s+SZGyj\ngqJpFhCBLqAZc/bPkuTvAGbsncbD6xKl8SF5fRJz9s/i3b5LiYuId+vfIrqhRv17VCp5OT3HC2Ez\nCek8cJF7nuo0grTtqRdF6Jqwa6wUeRPcbVmbw8robakX2YP1yd2CewTNTcdzLorGI58nvKVRH7FR\nnpf43TNqp/yctznpSghAnvnXdr6uuSE9N+0iKdrLRWN/7ykkIAUKFFwyhJO1VeS1lQIDCPDTEB7i\np8iBKVCgQMGfGIbzVQT4+RDkr2mU9Px9NUQ2DaTgTCX/h4JcKlCgQIECBQoUNAoul+AgyB3CwWMw\nl3Cq8iSjt6W6ObG8LRYLyJ36dTntBBHAkwQidtwWVp6iylZVa/mFRNm1InFcCryRYOqq8+sFUZaG\nRGwSDgnh4JQ7AQVZRe6E9LaIv7BXFgGaQK/5iLaXENWNjIRxpOemoTcV10uc8uZkkDtLRVtckbiS\nid0nS5Iq9S3IeyM6yeujNtR2viFOcW/EvBWJK/nswbWSY1oQYOBiR3BDHOXy9+Pp3LicPuNZ5w1J\nY0XiygZFF6vrWFRQNC2DW9VKZroauNIxpT7C0pUSgK7XeKfgz4O6xk9v5xsKb+3Pc2z2JNc0NJ9L\nJRR5zre1OZHFeOiNOFNb/vJ5UO6kz0gYR1RQNBN2jWV4p2ek+VF+b57+AEnr7ncjEMjLkqc/IEkd\nyu0tT0lRkacgOYixfFGfbFYkrnQjIolnjAqKZu2gL9yI2npTMaPiUimtNjAqLpW4iHiWDfwIvamY\nzLz5kqyrICpMvXO6RCSSS3qm5CTz/JaRUnQfMa88ccuTzOu5kFDfMJoHRRHkG0TL4Bskwss/v57B\n8I1/Z8iGJCbuGkexqYiyqjKGb3qCqKBoKf/R21xlG99tMq1CbuTh9oMZ02UsI24Zxex90zljKsZk\nMzGi0yh0Ac14tN1jaFVaWobcAA5YfewzHE4H205tITKgOTa7nWqrhRqHhdl3z2fT8Y2crizCYrew\n5/QuVKh4scsYzpiLOV9zjmaBERwp+4m3D2Yxs8dsNGoNodow7NhZffQzQn3DAHh283Bm7JuCobqE\nFUeWU2o2UGkzokLlut5pw2w1Y6gu4YMLBCeB85bzqFU+GK0VOC9EDwpQu2ylAa1dUloz9k3BgYPO\nTeOl+9Wo0fk3I1gbQog2lABNIA4cxIZdkAerqeRfP7xFkekUT3UawaA2j1BWVcorX41m1JanSYl1\nyZPpK4ux2CysOvYpYb5NKKsq5e2Db1JuKcPhdJDWJQOro4ZQ3zAiAiNZMyiH1+99i9fvfYvhcSOY\ncvsMPjzyPgZzCXn6A7x9MIv3+i9jxl2zeblrBgvufYN/D1hOrK4jNoeNUrMBp9NJZGBzYnUdye67\nhBbBMSz4dh5mq5nPjq5gVFwqSwYsY8zfMsgt2C71jX/1W8KS/h8QERiJzWkl33CI9Nw0XuySRlbv\nbEJ8Q2gRHCORdQSRWkSwEuNQvuEQZ6vL8df4k9xuKOm5aQzZkITeVEy1vYrTlUWS7Jv4XomLiGfI\nhiSS1t4vEWdEhC7R7kWfzTcckmT45MRAYVtm5s2XbMx8wyFm7ptKhcXodg/8Locqt2UX9soiM2++\nRNCTj61yUqI3yL/ZPMvibcyrC96I6J7fh/XZ8PL7PG2ka2HX1PeMjWljNub3ns8//vGPfzRaan9w\nmM0117sIjY6gIL+/5HP9UaDU7+84cYF0Y7M7+ObHMwQHaIlv1wyVEDO9RPj5aqipsV3WvTVWOyf0\nRu7t0gJ/38ZxIP/VoLTdqwulfq8cQUGXrj+uoHHR0Dbc2O3d6XTy2VfHaN4kkP/p2lKaX64EN0aF\ncvTUOU6eMXJ3XDSB/tr6b/oDQhlbrh2Uur52UOr62kGp62uDq1XPim10/XG9+0+RsZBQv9Drkrex\npoI7ou+ig66j1/OhfqHcorvV63mn00lSW1e4//G7MhibMIFx3SdK6Y7aMoLX7n1dujfUL5Q+rfoB\nrh2qPWJ6Ulx5GqfTyfBNT9CnVb+L6iHUL5TOzeKl3fqhfqFu6XSNuo0WgTFMumOq5HiTpxHqF0r/\n1gPR+TejR8uebml7S68x34O8LHW9Y3Fc/tOzPNezjQjn3aqjKxncfojXcohrOjeL56Xtz5PUdjBJ\nbQfTQdeRPq36SQvaxpoKBrcfwpAOQxncfgjg/oyiHXTQdaR/64HkFmznH3snu7WNImMhL21/nlt0\ntzJlz0TMVjNfntjI2mOr6N96oNt1dS2k1/U+AjSBJLZ5iKigaIw1FV6vF+9EyABEB0YToAkk1C9U\nqo/+rQdirKnweq94Vm/nayubSPeTIysYeNP9Ul7DNz1BUtvBxIS0vKiexnWbyMxvpkl1KNpXXXVz\n9OzPfHlio9RH03PT6NwsHqfTWWsaDWmj8metqxzime6IvouXtj9/0fuX16187CgyFl50LNQvlIE3\n3d9gp0pj9LWG1HFt2HQ8h2EbH+OemF60CI65onI0dtmuFRS76PrDbK6ptx/UNibWd4+39ie/13NO\nSGo7uMF9sq7rvOUtn2897RC5jdC/9UAGtx/iRkZOWptIYpsHLxrXxBg1uP0QyUaKCWkpzVmD2w/h\njui7WJA3j7k9F7jZSADFlaf5+vRunr71Wbfx7OjZnxm1ZQRfntjIwl5ZDLjxPoJ9Qxi+6Qn6tu7P\nYx1S3Iitwr6b+c00btHdSnHlaUZvS2XTiRx6tryX9Nw0aX64I/ouacxPiOom1Uu+4RB//2IIfVv1\nJ6XjMAK1gbySO5r24R2Y+c00SaJLPFN6bhqPtHuUobEugs6oLSNYdXQlPWJ6MuDG+9h+aisTu0/m\n5iZtpbHdWFPBP/ZOZmGvLB66OYmRcc8R16wz7x9ewv03Psi/8/9Fhe08w2Kf5qezP+Ln488hw0FG\nxaVy4vxvvJz7Ijq/ZuT8th6typc3v1/ApNuncuL8b0zfN5k9p3dhw8aj7YbyU9mPnK85z9AOT5B1\nMJPnO49mw29rea7zi5wynuKF+DQebZ/M1oLNlFSfwWw3UWk1knvqK3KLtjG47WOcMRdTWVNJld3M\nzWHtOFT6PXannQCfANYfX8P5mnOcqzrH/5b+wNjbJrC7aCdPdXqGffq9DGr7MNXWan459zMA4X5N\n+cdds/hWvx+z3UywNpgahwWLvRqAxBsfwmQ106FJLKfNRRw9+zPP3ppKXskBNE4tT3R6ks9PrAPg\ne0Mecbou7CzKBcBQZSDENxSLvZqmfjpC/EIwW02cqzmL1VFDmG8YZ8x6HDho5h+Bw+mgym7mUOlB\n9ur34MD194vxL/PB4aWcqSpGpVJjsVVRUVNBjcOKv08AFdbzAFTZzdzS9Fb05mJKqwxsPvEl8RFd\nyMybx/ZTW1l3bA3hfk3JKznA3tNf89nPH1NWZUCND/MO/JMvTnzOhmPr2Kf/hi0nvsTmtOGvCUCj\n1qBRa9hesJUBN95H27B2rPt1NQGaIEJ8Q7g75h4m75nIp798zJcnv+CJDk/Rp1U/SqtKefP7haw5\nuopiUxEH9Aeotlex4fha+rTqx63NOjPh9skA/P2LoSzqk83Ttz5Lj5ieEqHj6NmfmfnNNOb0fI3/\nuaEPE/eMZdxtk9iv30ebsJv5vuQ7fNQ+7D39NRt/y2HyHdO454ZehPqF0iXib+Se+orHYh+nb+v+\nTNg1llt0tzJh11j6tOpHsG8I3aPuYM7+Waw5uopeN/QmPqILU/ZMlGzZFsExkk0MEKAJpEN4R34o\nPcjTtz5LTEhLaUzzNm6J77Rg3xBe2v48d0TfRYvgGMk+FDLOnnaUNztPlKXSWinZ4C2CY9zu8Qa5\nvSuulZdb/o3Rv/VAjp79WRobPMd08U2anpsmXS/KWtu3qtMXf8AAACAASURBVLwcV+M7SswPl2JT\nXU5ZLtcuUiIBKVCg4JJwutSEze7khuYhl00AulK0bu4Kj3is8Px1yV+BAgUKFFw+KsxWaqwOIpo0\njhSYQKvmruh0J89UNmq6ChQoUKBAgQIFVxu17Wr0dt2V5FHb8eT1SW67yT3hGclFfq/nDtFlh/8t\n7SwXkUfEQrrn7nmr3Urq1pE8vC4Rvam4zjDrE3aN9RqyXtSbyLe2naC5Bdt5ZcdLbDqec1H5PdPz\nthv1cuAZAaAuiZDaIO6pK1z/tUBt0ifeEBUU7TUqDvxeJ3LJOM+oDOLeImMha35ZRfqO0Qzv9Ixb\nGmJ3cFRQNCsSV7I2KYeVD62VdkXL87qUOhPXfvTjcklSyzNqESBFTRDtLz03jfKqckZufork9e6y\ndJ6SL/I6rU3uwFuZ5Pct7JWF1kfrdsxbnYs8BrZJdItOIc7VVQ8Tdo1lVFwq6blpjPxyOGar2U1+\nwts9DYkuVFcEEG9lF3JwtcEzekZKTjJ6U/FF9XEpBKDG6muXQ7IpMhaSmTefd/surVXi7Erg+f6V\naEAKGguX0ne8EYC8jS1XIotSWzlqi+BTVxQfb8g3HKLAeILcgu1u0XS8wfPZ9KZiSeLKU0JTjL9T\n7pgulU2MgULuZ2GvLCmaECDJscojUYjyizl59LZURm9Lxea04nSCwVwCIEX1SYjqxqi4VMney9Mf\nQG8qZuY30wjWhDJ+ZzrHzh5j1JanMdZUMGOviwAUFxHv9qzGmgqe3zJSKouIrJeemybJgc3ZP+ui\ncXpuzwUYzCWSrOyc/bPISBhHnuEA8+99nam3zyQhKoES8xk0ag0Gcwnjdr3C2B1jCNIEs/THxTic\nDt7+4U1qHFbe/D6TzLx56PyaMan7NJr66din34tarSYldhgrjnxIs4AIcn5bT6nZwIojH5ISO4zZ\n+6Yz9etJ+Kg0hPs1BWBIuxR8cG1E31H4FZUWE2H+oYzoNIqdRbkuKTCc1NhrcDgdqPFhW+Fm7NjZ\ndnILarWaL05swOF0MHHXOL448blUXw7s6AJ0lFlKASizlBKkCZYkvjadyKHGbuFbw34Ayi1l/Oen\nZagcUIOFfMMPqPjdR+eKFORy+6tUKgI0AQRpgrE5bAxqM5izlnLXOdQMaJ2I40I+NY4ayi1lhPvq\nUKMmzLcJOr9mTL19JjeG3Ui5pRQ1ap7qOIIXu7yMj9oHu9NGpc1IE9+mPHDjINT48P7h9+jQpCM2\np40zVcWM25mOscaI3lzM2epylh9eCsAtTeM4aynntsjb+ezoCgK1gTT10xERFImPSsPUO6fjdIK/\nxh+nE2bcNVuySTLz5hHm20QiB03YlcHLXTNo5hdBhH8kbx18nVd2vET6jtH0b3Ufa5NyWJe0kX/1\nW8J7/ZexuN/7TNo9jld2vES+4RBrfllFgfEEm45vBFwRpYZsSCJ5fRJp21Oldj6wTSKrH/qcXq16\nU22vYsLuDF7skka4f1Om3jkdm9PKjL3T3Pq6r4+W0dtSAZd0noj6mW84xPBNT0gSd3rzaVK3jmTG\n3mlU2cxexxHRp2N1HSVJsdq+zfL0B6RvBzGOyKO3iu8uETnIU1pWbivIo/WAS643I2GclJa371j5\nt5SnnebNDhTjmt5ULEVMA+/2cUJUt4u+ScS4WZct3djfUQ2xZb1dey2iFsmhkIAUKFBwSTh1wbna\nuvm1lwIT6NKuGQCbD5xSZF8UKFCg4E8GwzmXTENjk4AEQfRo4blGTVeBAgUKFChQoOBS4LlQ2hDE\nhLR0W0ytLd265KzqK1NdBBRPqS3Pe4VkhVxOSJRb7pwTznqxwJ0Q1U2SoPAsQ0xIS1Y+tJY1g3KY\nc/eCi0Koey6sespleR4XC9vgLhsiFqEX52cTHdTCzVnlTeqkIaSMhkKevmdeDSF+eTr+aiPWXCuI\n56jr/IrElYDLQSAW+oUMgiDviHflTWZLEM7y9AcYsiGJeQdmofOLQBegk+pL/m7kzg2Rb/L6JDYd\nzyHfcMir87g+B8FHPy4nfcdoKiyu6D9COkW05U3Hc3hk/QOSA0U4NUP9QogOimFRn2w3KQZ5+/SW\nd11Obs9+I34KB0hDnB/C6eKtH3rLT0CQ+lwSMCXM7DHbTWrMW5/2JBp5K4tnO66vnwnSmDwvvanY\nbcwSeabnplFhqSBte6pEbJQ7ohpKTrhc0kFjQE7cakh5L5Xk5k2eUSECKfCG2myGS+nfDU2/Ieca\n2k4bQuCpDXInOOBGSvWUAxvYJpEPBq7giVueZG7PBZLsqBhvPUmzwrk9sftkaZ7zlMoUc9rcnguY\ns38WKTnJEnlZToycsGvsRXPcKeNJNztNTq4WNtbUO6ezZlAOi/pkk5k3300mLE9/gPG70hne6Rny\nDYdIWnc/qVtHUmO34q/1w6lysuLIhyzu9z7v9V+GSgUz9k6TxmOAkV8O54xJz2lToSTLlG84xIy9\n06SIegBVNjPPbh5Oem4aH/24nOT1SaRuHcmITcMoMJ6QCEpCTuztg1l8/POHzNg7jXk9FzK47WOc\nt57DV+WHHTvnLK51wNfueYNw33CcOOjdsh/6ymLKLWW8dfANyi1lJN08mAndprDy6CfYnFbe67+M\ne2J6UVptwFBVwjsHF2HDxq1NOxOoDcBX7UdTPx25hdsosxgAF8mpzGLAVGMi57cNmGyV2J12ACpt\nRhw4sDmt0rPu0e9Eq/IFQKVSExveEQeu633wwWw1k1vwlVs7rLD+Xld+Gn/aN4l1O19mKcWKK4+W\nITe4nQvzC5PK87dmCdjsdky2Ss5bz5F1MBPHBQkxJw4+O7pCKsv5mnM4cVJlM1NuKeN8zTnKLKUs\n+v4Nxu9Kx98nACew9PBiFh1ciBofKU8flQ9fF+8mOqgFd0X1ZHvhFtSoCffV4a/x57H2T6BCha/G\nl0m3TyM6qAVHzv5EhH8kj3YYgho1xhojFTUVWGwWVCo4dvYYJVV6BrUZjKHqDON3ZTB+VzpxunjO\nmPWcrS5H66NhxC2jaBXa2vVurOdJiX1SClwQ6htK9g9Z5BZsx2AukWyDiEAX0cgHH46dPcZrebPp\n3bIfWQczyS3YDsDjHYbxYpc0nE6Y+c00qS8mRHUj33AIf58A5t6dSa9WvSXbV6P6nZwt7LIX4tNQ\nqSB160ie3TycPP0Bcgu289zWEWQkjCMmpCUD2ySydtAXZPddwqI+2RelI5dmFd89Is+H1yW6jRPg\nIhuN3uZ6VvmYLAiBelOxZMcK1Ga7iXFJ2PL5hkPA7+RBMX54koLEeCmXNhN1IuTExHlhv4kyZySM\nk6QIvcmBifTkNnB9tpu377Da0FDbq6FzTF32smd+V8MeU+TA/uRQQr5fXSj1+ztO6I04HE72/qjH\nT+tDQmzEFUUCuhI5sPi2zTipN3L45Fk63NCk0R3JfwUobffqQqnfK4cS2vn643rJgf186hzf/WLg\nzluac1N0aKPJgYUG+bL7h2J+LjhH13YRhAb5NkJpry2UseXaQanrawelrq8dlLq+NlDkwP66aIz3\nKhb5btHdepF8TV33GGsqGL8rw00SwhPGmoo6pZjqgmc4d7E4K0KX9289sE4pMB98eHXHy3z2y8fc\n2/J/pDDyIvy6/NmFZIeQSBKSNsG+IRdJjoX6hbpkDbYM5/Nf17P66Eq6RPwNp9NJSk4y0YHRtA1v\nL10r/ylPA34PUS8Ph5+nPyDJUvWI6cnWk1sY0mGoW5k902yoVFJD4Zm2/PfIgEhJouno2Z+9yv7I\ny3M9QtxfKsQ7/fLERrpGJnBXix5k5s13a9stgmPc5BDk7VJIEyREdWPgjffTtkl7vjd8yzfFe3nt\n3tdJiOomyQPkGw4xqO3DdNB1lN5lj5ierD76X1b8tJzVx/7LXS3upm14e6l+5G3fW1vq06ofPVr2\npEVgDCPinmX0tlQ2HF/L57+uZ8WR5ZRUlrDq2EoyEsYzoM39kmTB3zs9RXKHofS6obcU1UE4JYqM\nhW6SaPKyCHmE2ghAnnIJnhJX4jqAm8Pa0jXqNsDV9oVsV57+AI+sf4B7Ynrx2/njPBf/gvS88rzE\ns0QGRDJ+VwZ/7/QUSW0Hc+L8b/xc/jMvdX3ZrX8ZayokmRtvMjje6li8Y7kkRG0ygPJ3Iq+/PP0B\nktbdT+6pr0hs86Bb3p2bxbO14Euyemfz1C0jACSJCSFTJ+QraoOo90uBt/53JX2yIXUj8qjvGs90\nPaX5hITcHw2KXXT9MfDjAZJUk1y6sLY2J+/fnhKHnv1B3naNNRWSLSIn3Mjl/hpqV8ltEdG2L7Uv\nCnurR0xP0nPT3GwluRwYINkoTqeTwe2H0D68A1P2TKRzs3g3ia/+rQcS7BtCUtvBdI26TZICEmOo\nqAPRP1sEx0gypmO+eoEvT2ySJA2NNRXcHNaW57aOILHNQ7QIjsHpdJLz2wZGxj0njfuD1t7HHdF3\nEqAJBOC/v3zC16f3MLj9EDroOnKL7lY3mcgfSg7y36Of8WNZPnuKdpN575ukdU1naOwT9G7Vl8dj\n/879bR7gnht64XQ6iW3akR2FuWw6kcP6X9dyi+5WPvtlBRO6TeH4+V/Zp9+L1W5lz+mdGGuMlFUb\nuCP6Tl7a9hxOJ5RWlTAq7gWm751MkG8QM+6azQ+lh8i8903iIuLpEdOTCbvG0rd1f7YWbOb5zi+x\nqyiX70u+43D5/zKg9f2ctZQToAkg2DeYQE0Q9910P9+V5PHQTQ+zsygXrUbLK13H8a3+ABZHNQfO\n7GNnYS6PdxhGgfEkodow3jjoIiRY7NUEaAKospv55dzPDIt9mh1FX2G2mTDZKgnUBGJ1WAn1C2No\n+7+TX3qIcksplVajJN0V17QzZ6rOSFF8ekTdw6nKk1idVqw2KzanjeMVxwBQo6Z9WAeKzIX8UHrw\nggxYDX4qf5r6N8VsMxHgE4jZbuJU5Um3NqpW+Uh5mGpMnDYXSefubdmbHUVfoUVLkbmQ3jf0laTH\nALRoJSJQiDaUIE0w1fYqQjShdNbFU2mrpMpehY/Kh0CfIIL8ggAuSH658nTixO50+fX81P44sFNh\nPU+VtYqTlb+hQkVTfx12px2tWsu2gi04cWC2mjh2/ihWu5UySynJ7R7ng5/+jclaiVrtQ7A2mLM1\n5TidsL1gCzanjV/KfybEN+RCPzHyY3k+Yb5NaOLflKdvGcm8b2fxeIcn+ezoxzicDgqMJwnSBtOz\nxb0YqkrQqLR8fnwdq4+tRKPyZUzXdJoFRqDzb0Zu0TZOGk/wRIenWHv8v7zQeQw3h99Mzm8byDmx\nnq9ObSWz15u89LeXaR/egVFbnkar8mXC7gzUKjWHDAf57y+fENu0I89uGc6k7lMZ132iZCvdoruV\nBXnzyOyVxQNtHiL31Fe0bdKOSXte5dWESXTQxUq2mtPp5OlNw7i/zQNsLdgsfe95fv+JsfXo2Z/Z\ncmIzm07mMCruBSbuGUvH8E68kjua3FPbsDqsLOqTTVRQtJttlnN8PU/f+iyJbR6SZJaNNRUYaypI\nXp8kSfWKcU48x5Q9E3mkbTLv5r/Dwl5ZdNB1dLND5d+xYswTfdhTijb4wvv85MgK6VnlMsFdo26T\npL3qmjcaYkvL4fnNWts81hDbS4zX8nS9XVfbd6VnWW7R3VqnNDYocmAKFCi4Bjhz1kyN1cENzYOv\nmxSYwIM9bgRgw9cnrms5FChQoEDBpeFqRQLy99Uw/L5Y7A4nSz4/jM3uaNT0FShQoECBAgUK6kNt\nEWtqg3zXt7jP87wcYtenOHep0Ya8pVkfioyFvPFdJnbsjL9tsrRgnLTWPUqFtx2YCVHdeLfvUqKC\noknJSXaTHBM7QxOiurG43/u83DUDq8NKem4aelMxFZYKRm15utZIOfIIH0XGwouuEzvsxQ5YsQte\n7HoVi+Ge0k2e9XW1kKc/IJFjxI5c8QyXWh75DtPrHdFD7PIdFZfKs1uGM/XrSRfJnQBSdBw55P0H\nXO/qze8z0ai0kvSJwMPrEnly0+PSrmqx49hgLnE5BP1CUKMmIjCyTik1z2PCYbw4PxsAq8O10z7p\n5sHUOKwsPbyYhIhuvH0wizz9AVK3jpTamN5ULEVAEu9ElE1OCJJHRZLLnHmWS9zvGanKc0d0Sk4y\nSWsTpf4inL/J65PI0x8gIaobs3u8xqbjG3lqUwrL8pe67c4WaYzelirtvhbPlG84RPqO0bzYJU26\nVvwfsiHJTepMXpdWu9WtjPL6le9Kl0e7qq0e5NeCS8KmiW9TxLKkZ/93Ol273cX1KxJXsrBXVr0R\nmeT1fqXRdRojwk5tu9rrG3cbkq683AoU1AZvkezqanO1RdPz1h+8XVtXmqL/1hfZzbOsl9MX5VHt\nAElqVJzzhMhDSFhV2cxeJVY9+5u4R8hNbjqec1H6i/OziQ5uwaI+rjlJzClxEfGsfuhzt7lVkH3k\nmLJnEklrEwGkSG4CnlKLA9sksnzgx2QkjEfro5UiJ4oIRgZzCRN2jWXT8RxScpKZsmcSKbHDeCHe\n9azHzh5jzaAcHm4/mH/1W4LNYeNf/ZbwQnwaIb4hhPvpyNPnoTcX82i7x1ib9AV3xtzFDSGtye67\nhIjASD57cC0RgZGk5CRzpOwnhnd6hoSobizslcWb32eirywm8aaHOG0qZM3RldidNkbFvUATv3Cm\n3jmdKXsmMSoulf8cWUZZVRnlVWUUGk9RZjEQrA0h1DcMO3beOfQmcbp4Pv75Q8Z0GUtkQHMA/t5x\nOOG+Opr4hpMQlYDT6cCJkxBtCOYLEk0Wm4Vlh5dcIMWABg09ou5BhYofyg/RI+oeAAJ9gth7Zg8A\nPmiwOC04JfJNCA4cHDn/EwAqp4oRtzxHkCYYi7Mai92CDz6E+oYRog11k/vq07I/kQGR0t9tmrSV\nfteipdB4CgArVpw4ublJO+l866DWUgQhcBGf+rUeQBPfcIy2Cr417KfcUiaV2Ww3ccak53zN7xHX\n+7Tsj1pGK7A4qjHZXMohNqwEaoJI65JBWXUp52vO0Tr4Jum5Q33DACivLsPmsLH08GKKTadRq9Q8\nGfs0YX5NaOqno7LGSNMAHSGaUM7WlOFwuu5v6teMpzs9iy5Ah0atYflPS7HarfwrfxFxunjO15wj\nJXYYT3Uawecn1qE3F3POchat2hcnTkqq9Izb9QqD1t7HWwffAGBQm8HkFm1jdo/X+OLEep758kmc\nTtCqtEzoNoWBbRKJCWlJRGAkzQOjWXn0E56Le4lw/6ZSpKCIwEgiAiJZnJ/tFl1HHhlVYHF+Nq8m\nTGL5T0tJWnu/9B2SbzhEYWUB4P69J/6Wj2dv5b3JoLX3MWPfFJ6PG81LCWNY/dDnxEXEs7BXFlm9\nswnUusYD+fi6sFeWJCMWFRTt9i0k8hdyvZ7fJMaaCuZ9Owuz1Szd6xnZRnwjimPi+T0hxsKVD/0+\nJokxW+TtzVbznDc8I4rKy9yQSKveoh/VF9FO1Jm4z1u0TvG7Z/Qf+Tl5fiKKElCnTXy5UEhAChQo\naDAKLkiBtbqOUmACN0WHcutNTTlScE6RflGgQIGCPxGuFgkIXJHienaOpqCkkg17TjR6+goUKFCg\nQIECBfVBLCg2xCnrzVklICcuiBDscoe7pyxFQyB3+nqT9KmNfPKvfktoFXIjD7cfTJHRJfFQYDwh\nhYT3fHb5Yuic/bOk/ESeefoDPLwukTz9AT76cTmTdo9j/K50nE4YFZdKVFA0gdoAFvd7/yLyiKib\nlJxkhmxI4oHVA3h4XaLbQrqcAJQQ1U1aCFapkBxzYjFc66O9KP2rDVE+4dxKiOomOfPki8uei8m1\nvevaHK/XC8sGfuSSR7k7kwBN4EVSb+B6HiGd4lleQShJ3TqS08YiUmKHERUULUl1xYS0JLvvEloG\n34BGrQFckl2j4lLJzJtPSuwwzl+QBjlS9hMTdo2VJBfkzt26nMNWu5UjZT+hUkGFpYK3Dr4OOAnz\nbcLnv62jwHiCvUVfc6LiNwzmEoqMhYzelkqFpYLUrSMBLiI5iXYnjm86nkP6jtFSX/B2nacTRPQx\nubzCisSVrE3KYc2gHLf+8mKXNCbsGstHPy5n3K5XePPgApLbPU72D1lSOYUDRfSFuIh4N9JWXEQ8\nzQOjiNV1JCUnmQdWD2DIBpezqMB4EoO5hLk9F5C2PdWNWCQn6Hg6SLw5dry9B2/vJ09/gGe+fJJy\nSyk2h418wyGGbEgiad39rvrMdcluCKd9Sk6y5MAWhKi65CAul1QjdyaJsfpqSIrVRqa4HFzOsyr4\nvwV526jtd2/3eLat2tqa+NvznBjX5Pd7GztqG8Pl9pQ3B7EnapszhXSXkJmUz83eyI1RQdGsSFzJ\nmkE5F0msCkev3EYU0l5aHy2j4lIlIqdIX9RDdt8lRAVF8/C6RJ7fMpKqC2QU+XjvWWcJUd1Yl7SR\nmT1mc8ZcLEkc6U3F0lgtxke5DRgRGMnE3a7nFgSl9Nw0BrV5hDn7Z5GRMI45+2cxKi6V06ZCZuyb\nwpz9M7E6rczYN4W9RV+TkpPM3qKvKaosZNPxjUzYnUFK7DDKLaV88vNHjOkyls0FGwF4fstIiWT6\nyPoHyC3YTnpuGucsZ3llx0u8suMlPvpxuSQPplKr+O/RT9H5N0MX2IwqaxVz988kud1QyqrKLtim\nP+DESaW1guc7j2b54aWuv2uMJN3sirw0oPX9fHZ0Bb+eO8aqY5/i6+NLmG8TPvppOWdryjhXc5bP\nf91AVFALdP7N0FyQ8+rcNF6S/PJT+6FChb82gD36nTgv2AgnK39Diy8WRzWOC7JcqFwRdFSo8EHD\nK13HoVb97poP0gbzzg9vUmUz46f2p9JqxI4dk7USo7UCfx9/6dofSg9y/40Pem2zVqx8q9/ndqzY\ndFoi7Zw0naRPy/74qVwRRTrruvDZ0RWcqzl7UVo2rOj8IgjwcZFJ/NR+qPHhq8KtEuFMg5Y+LfsD\n4O8TgC9+1DhqeP/H96R0RN30admfML8mDG77GD5qH5r5RzCkXQo++DCwdSIf/vQ+dqcNq8OK/YJE\nmclWiRo1apUavbmYUksJHx55nxfi0/hXvyX0btkPjVrDoDaDWXn0Y3CqmPftLML9w9GotIT6hqFS\nqfDX+NOnZX9aBLVkfs/XWdL/AwK1gahRM7DNfcztuYBerXoz5Y7poILX7l3IvwcsZ93x1eTpD7Dp\neA6jt6Uys8dsRsWl8m7+WyS3GyoRxgFCfEOZ2H0yadtT3cYIYY+M3paKr4+Wid0ns/LoJwDM7ZnJ\noj7ZEoFQ/t0j76cCYhx5LW82E7pNoWXwDWwu2CiNbaK/irFIbvMUGQslGTHR7/MNh9zsP2FHigiS\ngvA3elsq/j4BvNdvGWuTXLJjQzYkXWTDywnscngek3/7ivOedqJ8vJRD3Ce3kcX4LsqcvD7Jq23t\nmU5tdmZdZHHPNMT3lzfST21Ebs/nlZPvPeujMaCQgBQoUNAgOJ1OCs5U4qtV0zz8Ymb59cADd90I\noDh6FShQoOBPBMO5alSALsy/3msbityDRdL/mMgggvw1fL73BP/dcUw6rkCBAgUKFChQcC1wqbvO\nPaMyiIVjsQCabzjEc1tHkJEwTlrMjQqKZmGvLDeHjye8Obs8FyTljiiofdExIaqbtOibkpPM4vxs\nptw+g4FtEvnox+VSfsLpLhaFxW5YsatUXtYw33COlP3EKzteothUTLifjpe7ZjBpz6vkFmxHo3Yt\nSHs63MTi7MJeWUy5Yzpl1Qae7DhCWkgHF9FHOOTEorDeVCztgpc7yeqqw6sBOQFo0p5X3SIiyess\n33BIiuQinADib2+oL0JDY8EbUUP8lJPMioyFvH0wi+R2Q93am3xx3JMYVmQs5OF1iQxaex+L8t5A\no9ISpA1h/rf/ZM0vqxje6RnSd4xm03GXk+K9/svQqLSkbh3J8I1/Z+LusQxq8wgPtx9Mq5AbWXDv\nmyzOz2Z4p2fIzJvvVneCqOG521e8gypbFeN3pWOqMVFuKSfMrwkaNAxuO4SSqjMEa0O4M+Yulg/8\nmLiIePSmYmxOK3anjWLTacmRmZ6bxsJeWQDS+xu9LVWK5PDBwBVk910ikVREH5ITVuS7yvP0B0he\nn8Sgtfe5EYFiQn6PdiWcv71a9WZuzwW88V0mIdpQIvwjubPFXeCER9s9xmljEc9uHi7Vp3AMiUgP\nefoD5BZs56ylHHAR9EqrS6ixWymrKuO9fsskkp/TCcnthjJh11j0pmJpp7m3NultDBLvwZtjXR69\nC0CtVjMs9mn8fQKY+c00ptwxnbl3ZxIXEc+KxJVk9c5mwq6xbiTFuT0XXBSZw3M3d13tvD7IyQrC\nMXWlqI3w05i7xBUCkIKG4nL7RG1/e84Z9d0P3slCDXGyyh3EnlHLBOHac24VaQ9sk8iKxJWsfGit\nNJZ7krAFqTV5fZI0XomocPJ8nts6QiJ1i7FPzIWxuo60DG51UfpiTM43HOJ0ZRF2pw2NSutWh7XV\nWUJUNwa2SWTO3QuYsDuDB9cMYPS2VKx2q0SqEfUKrnnRYC6hZXArIgIjGb0tlWp7FaPiUpn/7T85\nW11ORKArAk2sriPrkzaxfODHTOw+BV+VLyM6jWLl0U+ospl594d3cOLk018+wuFwRXGxO+yUVOkJ\n83NFgzlS9hMFxhO8uuNlNh3fyLt9l7I4P5uFvbJYOuBDIvwjUePD/G9n8+zm4QxqM5h/91+ORq1B\no9ZQZa2izFKKzWljzoEZzN3/T57u9Cwf//IhL3Qew41hNxHmF4YNl2yVHTsf//wfAKpsVYT76ph8\n+3R8VBrMVjMVNec5ZyknzDcMFSo+O7qCGrsFjUorRf35ofz3ecXqsPJ0p2cJ0gQzpF0KYb5NACis\nPIWVGuxOOyHaEDQqDfYLZCC1Sk2obxjh/uFSdBuA89ZzWB1WHDhc5KELkXMqbUYAqi/IjYl8Pzzy\nPioXPYbooBZu793Xx10yaN2x1VJ6ANsLt2BxWlzthw2BbwAAIABJREFU0nAAX1zX3xbRHZ1/M0K1\nrvfjcDqIj+iCyV6JFi0WhwUHdhw4GHnr8wRqArFh5Rv914T7NaXaXkUNFmwOKyabiWBtCGO6jOX1\ne99iSLsUdhZ9xSnjSd4+9AbdIu/gnOUsq45+ih07n59Yh9VppUuzrhitFfSIuoeJ3afguPBPkJ7C\nfMOIDIgiM28eT21MYenhxQRpg9lR+BVOnFgc1fj7BNCrVW9ejB+DucaE3Wmn3FJGbtF2Ssx63j7o\n6sc+Kg0+ah/2Fn0tkdLLqsqE4hlxEfFkJIwjdetIRm5+ihPnjzNp9zjeOZRFE79wVhz5kIW9slj5\n0FrpuywiMJIC40lyC7aTkpPMW3lv8sj6B1iU9wZaHy0vxKcxsE2iKyKPSss7h7IYvvHvpG4didVu\nlaJvwe8RFeWRFcEVsevdvkt5uP1gNjz85f9n77zjoyi3N/7dlk2yKYSQkJAAAQIhQOggRYqCdBFF\nOggCRlBARESjFBWvogIqXsV27SCKSA0EQiAQCDW00AMhkLakl+1tfn8sM25CQK4K3nt/+/jxs2F3\n5p13zrxz5sx7nvc5xMZMZ2bSdGcbDitxneff0ieKPunlFGe8/PROZ9lUMRYX30XExQliXLV26AbW\nDt0gqSIBKOUqiewo+lFAioFcY1Txu1VnvrvJ59fkx5f0WCrF7TURjYCbSN0hmlB+HbqFAY0Hs3bo\nBtY/Ei/FxbcjjLq2UV1F1vWY1d9fXH93VfX9PcLsrUiyIvnrdipFfxRuEpAbbrhxR8grMmA026gf\n7INc/veWAhMTunnFeurW9uL0lRJ+SXYnet1www03/htQWGaktp8apeLuhKEeSgXdY0IRBNh/Sovd\n4S4L5oYbbrjhhhtu3Dv80cm76pOCS3os5Y0Di3j78Jt81vcrBjQeLG0rltYSUZOSimt5KddtxMla\nMcnkuk1Nk56u/RMnPpf3XsHGzF/5Z9qHPL9nBv9IfUMi2sR1ni8prYir6GcmOVfFJmTGk1uZw5MJ\n47ludCbK/D1qgSBgd9jp3eBBXuzwCp+cXFEl2eZaKkMkR4Fzgv7pmBm8c+RN5qU8z9Ttk6ok/sfG\njyBEEyqVJBN/+7MqGndyXasnGcXvxP6Pa/lEFfUfkZAwJ3kWsTHTWZj6Ctcqspi+cypzkmcR13k+\nNsFaJbFYUz9uN+5uReC51XY1bV9dCWFSwjhppbCr+kl64UmuVl7hjUMLpOvumtgUFWjCfMNZdeY7\nSQEAwEfly1dnP6ehbwQ6WwUdgjrzxqEFZJVnoZApnEkanAmAj/qsxGq3UWouZmjjx3j78Bto9flM\nbDGZ5oHRWO1WPj6xgt5hfaqsGF7SYykzk6bfZM9HNw5mZtJ0VAoloZowpreZiRwZHzzwT97r9QEH\ntPuZ3CKWSksFT+2YBDjJPRO3jaXSXIlCpmRazEy+OfsviagXoglFq88nW+dUzlEpfkuciPe1mCDR\n6vOx2q3MTJpOmvYI6YUnGbZhkEQGc1VNcL0urokS8bqJ5VRyddmUmIspNZfw1qE3UMk92Ji5Do3K\nl3xdHlMSniAh00nyExNDk7dP4OH1A3gpZQ5+Kn8KDQV8nr6SJfcvY3b7F5izZyaXSi9JfTDZjSw5\nslhSt3ItZVGd6Oh6H4rEKDFhVH119Myk6ZLKj7gafsn9y1h1/lvGNp+AIDjL3byUMkcqZxGiCWVS\niym8ffhN4jrPl8rYGG0G0gtPMjZ+hERerI6aVNbu1I/XlJj6vX1v9/vtCD//CYpfbvz/we+Rm//d\nsSg+D+DmpOntjl8TbpdkdYWY1BZV5aoTrm9Vesb1U/TRrgRWEWLMIpY0td0ob+rqF8SkevWks9j2\nR31WSv7TlZT5Qod5xAS1oYFvBF/0+4a1QzdIvkyM425X+mZcyyf44qFv8PXw46M+K/moz0qWpb0r\nxWcicUksBykSqm2CFa0un+aB0bx9/1KJECruB8447INjy3in53LSCo+wvPcKVvb9Ei+VJ0qUvNTp\nVf7V/zt+vPA9MmT4e9Ri9fnvies8n94NHmR5r4+o7RXIhyeWknxtN+BM5odoQlEr1chlchQyBRqV\nDytOLKPYWOxUi7HbqLCWMyTiERr4NcRfFUCBUUtSdiKxrZ4lOTeJMVETWJuxhiERjwAwuUUsnz30\nL2TIOVOSTpmlhM9OfYLRZqDSXEFd7xAeazoSg9UAN8pvCQLI5TJJtUZU1JEjx4GDdRk/c92Yz88Z\nqym3lFUpmwWgtxok1RwZMoZHjqLUUsz8/S/f8noBUp9FdAj6TfWpzFKKw+HA38OfOl5BEqlKRPew\nntLfKjyY1maG9O8Q71AGRwytsr1dZkctU3Oi6BjFpiJMNifhqGNQZ1K1KQyJeKRKCTFwloay2C3O\nc7TpMFmd+6hlnjdKqwnorJV8dPJ93jr0Bj9nrMaBs7SaTbCxX7sXpVxFkHcwgeo6hHiHEuQZzCHt\nAXxVvuzX7iXpaqJ03WZ2mE1tdSB6i57Hm47iul4rHR9BdiNmq8fkFrEEeweTXniST9OdY6uudwi1\n1YGEakL5V//v+KjPShbsf4XZ7V+glkcA7x79B3Gd5xPXeT4fHFuGgCCV0VuY+gomm4mXOy0gzLc+\nCpmSMVET8FH5YhOsUnwnxu+FhgKW3L+MpUffodJSwbtH/8HDjR7lq7Of0zWku0T+F+PXZ9rM4rox\nH7PdLN13AMnXdmETbpCAHFbSC09WiUnePvwmY+NHkF54krh9c9FZK7E5nGS3tw+/WYXcKCl+tZgi\nvTsu6bGUtRlr+KzvV3QI6VTjghS4uYShuA0gKQ2JflR8h6xeelXc/oUOTtXXWyn8uB5fLFUYogmV\nSFCu7x2uBKPq+4nfu/r66oo9rqhOABIX3bj2qXpceCsy6p08y6rvf6t/V18c9GegeO211177Uy38\nF8FgsPzdXfjLodGo/yfP6z8Fbvv+hh+TLqI32ugWE4K3Wvmn21N7KLFYbH+6HY2nksy8CowWO41C\n/QCICPH70+3+t8M9du8u3Pb989Bo1L+/kRt3FXc6hv/K8W612fkl+TIN6vrSPcYZnGdpK/+Stl3h\n463CZLGTW6THQ6kgOMDrv+LZ4PYt9w5uW987uG197+C29b3B3bKzOzb6+/HvXNfcyhz81DfHFuL3\nfmo/EjLjeSnlBfo0eKjGbWuCn9pPmvTr27AfO6/tYHnvFTSpFSm14af2I9Q7lMeaPk5UYDRp2iPM\n2DWtynHq+YQRHdCCnvV7S/2alDCOloGtEATBuX39foyMGs3cPc+x5vxqfs1Yy9bMeNoGt6OeT5i0\nT7BXMJEBzaR2tPp8QjShdAntRqfQztT1CmFMi3EMbjyUQkMBTyVO4r6QrrQP6Uiwl3PF+Krz36FE\nRdy+uZQYS0m7fgSZTI6vyo9jhUcQAINdj6fci/ePvUu5uZwIv8YEeAbQP2Igk2OeollAFG8cWOSc\nqE+Zx5enP+XXjF/Yl7eHaa1ncq74HKXmYk4VneDV+xahUWmIz9xEkFcwS4++w1fpX7Dq/Lesz/iV\nrVe20LpOG+k87/T6uNrydtfVdZuM0gs8tmkIPcN6ExUYTcvAViw+uIiWga2kyfNJCePoEtqN/hED\naegbwefpKzFajax48BNGRo2hf8RANCoNGy/9ymtdF7Ngfxyt67Spct3F83C91vV8wqQ+pWmPEJs4\nucp513QervtXbx9gXcZauof1YMauaQyLHE6X0G4s2B+H0WZgy+VN9K7/IKcKTvD24TfpFfYgL3V+\nhQGNB+On9qN1nTb0jxiIzqrj0Y2Dia7dgnJzOVMTJzKv46t8duoTdNZK+jboj1afz5nSdByCg2zd\nVQAyyy6ht+nYlb2TXuEPUM8njHxdHjuvbcdgMXCy6Dh27GSVZvHDhW9IzNrOY5EjOV54lF3ZibzU\n6VW6h/cgITMejUrDzms7iI2ZztK0d2gZ2AqdVceX6Z8yvfVM2gS1o21QOz5P/4RKayUNfBrxzdl/\nobNWklF2Eb1Vh8Gq55D2ACWmEkrMxRjtBnRWHWnXD/NixzhaBbUGnCShTiGdOVFwnMejRjGx5WSi\nAqMBZ0mw8VtH0qfBQzwS+agzGeMTRlJ2ItuvbCMpO5FKSwXtgjowd8/z5OlzGBs9gSkxTxOiCaXS\nUsGjGwez5fImrA4rves/yIRto9lyeRNlpjJOF58EQYaX0gtPhSdF5kKsggWb3Y7eVimV3DhWkMbo\n5uOo5RHAxydWUG4po7a6DiOajeZg/n725+7DZDdytuQM41o8QWO/SL49+xULu76OwaonNW8fCpmC\nsyVnaF2nDTqr7ia/5Kf2Q4GC5/fMoGdYb3RWHV+kr2R083GMbzFRuj9E2/ip/Wgb3I6dVxMZEz2O\nLZc3senyBqICotmbl0xm+WVe7/Ymo5qPITV3P8+2ncWMpKf56cJq4i9vQi6XMzZ6Am2C2jJv7xy0\nunzSCo5SbChmY+avRAVE80Knl6okkWITJ7O89womtnSujq+0VEj3SaWl4o7uefEZ8Hu+4k58ievx\nXe3Yp8FDf1jF59/1eX8X3HHR3w8xLqq0VDAscniNY676OL6T8VVpqWBdxlqGNxt5E/G4pjZuN+Zd\ntxX/TtMeqdEH1fMJw0/tR7BXMO1DOuKn9qNlYCt61u9dpf2azkHc9uWUuZItcitzyCi9wIxd0xjf\nYiIjo0YzvNlIogKjGRAxiOHNRkr7AuTr8ohNnEz3sB7U8wmTCNuDGw+VfKD4rBUJQJNaTGHlqX8y\nLHI4PcN7SaSD8VtH8lKnVxnX4glm7ZrOZ6c+oVf4AwiCcFNM4Kf2w0vpLfWtnk8YfRo8xLnis/x6\n6WeSs3fz04XV7M5O4tX7FtKkViQzdk1jVLOxJOfuol/DATwWNYIWtVtisOqJS5lHni6HvbnJmKxm\ndlzbxtjoCdIzrJ5PGN4KDenFJzldnM5jTR9nYKMhbM/aRoWlHBkyDuUf5JeLa5jQchLRtVuw8+p2\nThWfJK7TfLqH9yA1N4X9ufvQqHyY0+FFjhccw1PpSbhPA/bk7OLJlk9xRHuIzPJLzGg7m34RAzhe\ncJzHm47is/R/0r/BID45uQK7w8G5sjMMjxzFQW0qYT712Z+3l9ntX+RM0Wkcgp1SUwkBnrXpHd6H\nnzNW4+vhi7dSg9FuxMfDhyJDIQabnnOlZyRFndrqQB5uPIx8Qy46a81zmhqlDzaHFYdgx0fli9lh\nIl+fh9FuxOq4/TvHxbILVf6dZ6i66N1bqaHSWoHepqeJf1OOF6ZJvylRSnGTAzuXSi9itDtLyA2K\nGMqRgkNUWCqkPpodJuzYaeYfRZG5SIoLrhu0TG89izmdXmTT5fXMaT+PYwVpWBxmThefwt+jFkq5\nEovDzICGg270WUCj8kEuk2O2mxAQQAC7YCdAXRvDjX6Ak2SmkCmptFYwu/2LpObto8RSjEblg8Vu\nJrP8MjJklJiLUcs9Sbq6Axs2rlVm4aX0psJczvCmo0gvPoG30gdvpYYhTYZyvPAYjzV9nD4NHiLx\n6g5kMtB4aHAIDtoGtafIWMTPF3/kROFxysylLOmxDG+VN28ffhO9TYevyo8nW07lVNFxdGY9Babr\nXC6/xD/uX0JyThIJV+OZ3nomh7QH6NuwHy+nzOW9Xu/T0DeC2cnPclR7BK0hj9e7/oNRUWPoHt6D\nHVcSmN91EaOixkrltl5OmUufBg/RM+wBjl4/zJDGQ4lNnIyHzIPn98xAZ9bRPrgj6y/9wsZL69l6\nZQvtgzsSFRhNv4YDGN5sJAWG60TXbsXp4nTUCjWf9P2c/hED6RDSiT4NHsLHw5efLqxm0+UNbLi0\nDk+lJ6Obj8PHw5d1GWt5pu3MKv4zzDecPg0eAmDGrmks6bEUnVXHkwkT+OXiGtoGtSM2cbL0LiD6\nVPFYYpwk+hhwxsBfpK+kW70eJGXvYEpMLIIgVImtxL/F44f5huOn9qPSUsGGS+tueu8QbecaF7nG\nj+J3rn690lLB2PgRrMtYS7+GA6qcd6Wlghm7pklEyOpti/a+Vdx1u9jQ9Tg1vZ/dCmL/Ack+IQFB\nv7tfTXCTgP7L4Z7ovbtw29eJy7nlbDt0jXp1vGnVKPAvafOvIgH5eKnIL9ajLTZQP9gHL7XyvyLR\ne7fhHrt3F277/nm4J3T+fvwdJKCCUiNJx3Jp3jCAdk2dwevdIAEBBNXy4lJOOdpiA5Hh/jQNr3VX\njvNXwu1b7h3ctr53cNv63sFt63sDNwnofxd3el1vlfByndzL1+UxYdsoXujwEp5Kzzua7BMhTvqJ\nk7w+Hr5MShiHAgWBXoFklF5gbPzj7M1Jpn1wR+Ykz+K9Xu9LE59iUmrB/jhpkrN68kpwwLtp/2DX\ntSRKDMV4e3jzRre32H51G8nZu/CQeRDh34gyYzmLDrxCi9ot8VJ68/D6/nx56lM2Xd7AD2e+ZfW5\nH0gvPsn6jHUMajyEGUlPo7NUsi93L6XGMl478Cqpeak8ET2ZdZd+osJSzpmSdASciYkzJek094+m\nyFyIt0LjJFfYdPQKe5Bvzn3JmnOrSMndQ4h3KEuPvkNWeSb+HgEc0O7D4XCgkCuY2nIa35z9knJL\nGbXUAUxuFctn6Z+wPmMdZeYytmVtQY4CP7Uvz7aZzZWKy8R1ns/ig4uoMFWw+OAiWtdpIyXORBtW\nJ8ZUT8CDc0K5JmKA6zY6q44H6/elZ/3e5FbmEBUYjQIFrx9YSNvgdkQFRlNhquC9o2+x7uIvbLq8\nnlHNxrE3bzdDmwzj5b1z2Zy5gZ/P/4jWkE8Dn0acLznHoMZDGN9iopSIHLl5GAMiBhHmGy5da3Fy\nPaP0AnOSZ2G0Gdh1bSf9Gg6oMtHv2v9KSwVN/COrJEWrE5U6hHQi2CuYupoQfDx86R7Wg0B1HRKy\ntpB0dSerL3yP2WbiWOERAjwCiQ5sQWpuCi/vncv6S7/QNbQbR64fZte1JIY0GUpq3j5i6rRhc+YG\nDDY9Z0rSqeddj1JLKb4qXyw3kmUGmx6AOp7BDGv6GIIgMCb+cZr4NeVC+TlAoE94P/bkORWF9DYD\nh7UHkCHjpU7zGdh4MN+d/prZe54lIXMrfRv055eMnxjRdDTvHnmLQY2HkHBlGwlZW0jO3cWe3N14\nyr0x202cKTlNsbEQo92IwaInQB3IlFZPc+z6UcospQR61uHhRsO4VpmFxW7lXOkZNl3eQKBnHdZl\n/MTR60d4rdubLNgfR6BnHVoHO0vdPZ88E7vDzr7cFHZl7yTUO5Q3DixCLlOwsOvrzGo/h6a1mvHJ\nyRVoDflMjJ7Cw5HDSMzaweKDi5CjYFvWFjwUHnirvGjk14T1l35BEKDEUkS3kPs5U5KO3qantlcg\narkngkNAJpNhdpjRKDV4KrywOxz4qnx5LfVVvFRemGxGPBQepGr3ISCgt+kw2808HfMs7x97j0Pa\nVLJ1V0nNTWVtxo/EdV7IycITzO+yiAX749ietY33er2Pj4dvlfvqtQPzeev+d+lZv7eTrFjbSVYU\nx+msXdNpG9QOQRBIzU1Bo9LwRfpKHmrYHx+VH0nXdrAvby92wY5SpmJP7m5iW09nZNRojl8/xu7c\nJIx2IwBGq4GU3D0kXt1Onj4XBw7uD+3FudLT2AU7p4vSqacJI9ArkMobCdF1GWvpHzFQ8rvDIocz\nLHI4wG0JO5WWCrqEdqsxAVX9Hqv+++3IPK7bVPdDd0K2SNMeqUJ2rIk0+p8Kd1z098NgsEj+f1jk\n8N8dx6JiQr+GA25LmhOTqtUJQNUJqGIbYnK6OqoTbmfsmkawVzDjt45kT85uPnjgnxKxRuzLqjPf\nSUREiRTt0v+aiHfi/mJi2/VcXX2dmLgGJJ/i2r/qz+GowGh6hvWmQ0gn6f6MTZzMTxdWk3h1B/M6\nxbHy1D+lRPyc5FmsOb+aQY2dhJqzJWfoHzGQgY2G0KfBQzSpFVnFhq6fTyZMYGTUaKl/GaUXiN35\nJPM6vsr0ts8Sn7mJnIpsThWdpHntaJ5u8wx9I/oRE9iamKA2ZJRe4OW9c/n23NcYrDoCveogCJCS\nl8yzbWZTz6eeFHdmlF5gauJEvJUaXuu2mMUHF9EmqC1rM9Ywvvkk0goOE9d5AYe1h0jIimdvbjIA\nRpuB00XpRPhFEJv4JHGdFzCp1RReP7AQAQc2h41d2YkEetYh35DHkEaPcKroBPvynH5eb9Nz9Poh\nPBVeHL1+GIdMwNfDBy+lF8cKjlJqKiElbw92wcapopNUmMvQ23XOMlJ2E6eLTwFgtptxCA7sgp3B\njR7hfOlZfNV+GG1OAosMOQq5ghOFaXgqvPBX+2N32LAJNmTI8FJ4YxOsWB0WBATaB3VEb9Ojt+lv\nkGZu/76hUWqwOpzqJ2q5GrtglwhFIlxJRN4KjUT6AWhTp20VEtGYqPEcLzwGQLGpCJ1Fh9nhLAdm\nc1iRIaOhpiGXKy/RMagzJrsJo92IDBlHtAcJ8qrLjqxtnCw8ToWlHJDxeOQojhUcwSZYERCk4wkI\neCo9USvUtAlsT47uGlbBggwZgiBI6jYiPBWeGO0GThQcp9xahkbpg6+H09ZxnRfSJqgd50vOkZC1\nhQnRT3K8MA1PuRdLe3/A0YIjXDdcR61UM6VVLI82Hc5zyc8wqtk4vjz9GVEBzVl36WdMNhPDmjxO\nat4+tmXFk3b9KCabiTe6vcWZ4tN0Ce3Gc8nPEBvzDIlXE5DL5OzKTsRT4Y1DsGOwGfBV+fF8x7mM\nbj6OSP9mvJ/2HgXG6zTxa0rcffO5Up7Jh8eX81KnV5na+mlScvYyqdUUXt47l7UX11BmKmVPTjJD\nmgwlX5cnqS7G7Z9Lnwb9WH/pF/o26Me+3L30ixhATGBbcvTZvNg5jqa1mjG6+ThScvay89oOWtdp\nQ1RgNKm5KUxMGEtqXgp+aj8+7vs5IZpQYhMnS/7VT+1H26B2DGk8lNHNxzE15mnAqTTTr+EAoOoC\nFFcCjkjsiU2cjMVhRo6CyTFPMbzZSLqH9ahCxKmJYCP+P6DRIIY0Hkr/xoPoFf6A5O+qH0v08a7x\njfiscCWJu/ph12dBTbFN9b/7NRxA97AeVd6Zx8aPYHizkQyLHE77kI41xmViX/4d1EQOd30/u5P2\nxP3EPv3RuMhNAvovh3ui9+7CbV8nViVeRFtioGvLEHy8VX9Jm38VCUgmk+GtVnElvwKzxU5EqJ+b\nBIR77N5tuO375+Ge0Pn78XeQgK7kV3Dw7HU6RAUTVd9JyrlbJCClQo5KKedagQ6L1UGPNvV+f6e/\nGW7fcu/gtvW9g9vW9w5uW98buElA/7v4vesqTki6JnvFcjYDGjnJF8FewSw+uIjxLSbSOaQLS4++\nwxfpK4mu3UJS07kTuCa9XNUz4jM3EeQZzL68vfio/BjSZCjbs7bRPrgDkQHNSMiMZ0bSNDZnbgAB\nRkaNlogqOquO8S0mAs5J/02XN2CxW9CofFAr1TT0bUTC1XhGNxvPG4cW8MPZ70jJS8Zb6c3+vBTq\nacJYm/ETDuwYLSaMDgMGux6dRY9NsFFp1nHo+oEbhAE9h7SptK3TnktlGRy5fhCL3Yr1xuS/l8IT\nm+CcDxBk4LDb6RDciYzyC9gFO1cqLt+whAw5cjZf3kAjv8bkGLI5XpiGl8IbBGcJgkPaVMx2E0pU\nmO0m9uXvZXSz8ZwpSee6UessvWAuZsWDKxnW7DFa12mDwaon2Ksuiw8tRHDAlisbic/cTKh3KOXm\ncsZvHU2Huh0lIoKo6CQmJDNKLxCbOJkfzn3LpssbqqwoFVFpqWDEpmF8dupjDuQdoFNIZ2bsmoYC\nBS+nvECppZS92clkll7mwxPLcDickv8KuYKsiivIBDn9Gw0k/spmTFYzlbZyBjYcwpoLP+Cp9GTn\n1e2MuHF90wtP8sPZbxnS5BHq+YRJE+RafT5PJkyQFKWGNB7KxJaTpcltMWnqSmgbsWkYq85/R8/w\n3tKqXoAuod2YmTSdndd2kJZ/lKVpS/jlws/8cvFn4q9sIv7KJmqpAxgVNY4D+fuYFjODU4UnOFl4\njF8u/sSP539AhhytMZ+U7BRe7BTH+oxf6NuwH60CWzN//0vIZTLnqnGg1FKCChVGh7GKXQM967Cs\n94csPrgIwQGbr2xwGS8wtPGjnC85i8VuZkjEUK6WZ2Gw6zleeIzVZ38gKXsH7ep04HJFBscL0ygx\nF7M/bx/l5jIi/Bpzqug45ZYKlChx4GB01DgiazXjWOFRBAQGNXyYUnMZJeZiDmr3Y7AbGdl0LI39\nm7Du0k+Y7CZkyFjY5Q0CPYNYdf47BAFUCg8ebNCHbVe2sDZjDV5ybwI8A2joG8GWKxvxU/sxOGIo\nK0/+EwEH46Mn8fXZL2niH8nKU//koQYDySy/xEFtKj+eW832a/HYHXaSs5MIUAfip/ZlTNQEvj7z\nBXaHHQd2zHYTF8suoECJHTsxtdtSYi6m3FomJRCtDitmhxmDXU9K7h6QyZjdbi4apQ+nik9IdpUj\nx9+jFqeLT/Fwo2EMajSEXdcSmd1+LpfLLtEltBsH8vdJylUTW06WiDTivSMS1ERCnJhUbhvcjgnb\nRrPx0q/kVuawJyeZL9M/Y/X578kqzeKq7gpbM+PZn78XgIERQ7hYdh6j3UCFpRxPuRchPiG8dfh1\nyszOUixymYKlvT5gcOOHqeVRm8PaA4BTXeGBsL4Mbfwop0tO8UvGT8RnbmJ9xjp6hvfCT+XP+8fe\no3tYD4lk55qE0erzydflScTONO0RBEGQyADVfYGYGBO/T8iMr/IsuN3qcdF3iyUcxWS+qCAiJvpc\niRKu7aVpj0iKWy+lvCAln5b0WFqFrPSfCndc9PfDYLDUSFarSakHflP4EVUbbpfovBV5Niowuor6\nQXVVupr2gd9UK3rW70107RYczD/AxJaTq5B6ROLLW93fo3/jQTeRel2Twa6qQK73cHV1iO5hPaTj\ni30U70+xLfH393q9z9SYp6soSoi+RExiv9f9pnloAAAgAElEQVTrfZ5s9RTdw3rQs35vWga2IkQT\nyoxd05jXKY49Ocl0CunM2otriI15hnePvMXmzA2k5OylZ3gv+jbsR4gmlGGRw9FZdfRt2A+Az099\nIsUI4nGjA1rwWfonTGw5md71H+RgfirPtJnF83tmMLjxUARBoMBwnRlJ09h5bQejo8aRmpfCy50X\nMKr5GMZEj6OhbyN+uriaHy98j0Km5MEGfQFIzt6NgIPZHebSJbQbGpWGpGuJFBgLeLfnch6LGsGA\nRoNQylRsz9qKVbAQqK6Dp8qTB+r3ITUvlROFxxjYaAibMzfwRre3mNNxHlEB0TzVehrtgzvw5qHX\niOu8kCdbTeH+sJ6cLT6DUq6kxFwMMhlyQYaXUsPLnV/liPYwGpUvBqsePw8/yixlDIp4mCtlmUxq\nMZUeYb3pEtKNQ9pUwKlcI0PG+ZKz2LHjIVfjrXQq1HgrvdDb9HgqvPBV+zK11TSSsncAzqjVLtil\nWAacKj76GyRmf49atKvToQpppzrsjt/2twt2/FW1JBK0n4cfHjI1lhskHoAnW07ldFE6dsGGXbAz\nMOJh6TwA2gV14HhhGt5KDTPbPs+JwmNSf0BG95AepJeeorl/NKdKTmJxWJDLFGhU3pgcJk4VnsLk\nMEl9GNl0LNuztmJyGBEQkCHDz8Mfm93GiKZjOFl4jApreZVzdJYBs6KWqSWlIQCb3Sr95qP0RWer\nZHLLWC6VZ3CswKnieH+9nlwqy6BNUDuOF6ZhFSw80uRRRkaNYVDjIWy6tIH4KxuJCWzDxdLz7L62\nk3mdXqF5YDRrzq9CEOBMcTovd17AsMjHOHz9IJWWCvpHDCTt+lFScpPRmSuZd18cEb6NScreQbBX\nCFNaxZJVeYVnWs/k2XYziQqMptJSwezdMyg2FzExegobMtcR4h3KrN3TUclVnC5Ol+6nEE0o35/9\nmkJDAROinyRHl01CVjyJV3cwpVUsP11czVv3v8t99bqSeDWBGe1mI0fBy/te4GrFVT7qsxKdVUfs\nzid5uPEjzGg/m2YBUSw+uIg+DR6ifUhHYgJbM7X100yNeVoiBu3L3cvwZiOluCA2cTLbs7ZJCoei\nP0wvPCm937gq8Lj610pLBcObjWR083GMjBot/Sb6aVfiTk1qOeK7rOh3XJXKXMnN1RdeuPpcMRZy\n9bG3Umr7vdimejuuzyxx39sRWO8ErudU3aY1EZjuBGJ/3CSgO8D/4oSoe6L37sJtX8gr0rN6ZwZ1\n/D1p27QOMpnsL2n3ryIBAfh6q8gt1JNfYqBhiC/NGwT8Je3+N8M9du8u3Pb983BP6Pz9+DtIQKev\nlJCeWUzPNqGEB/kAd48EBFDbT012gY68Ij2tmwQS4PufPe7cvuXewW3rewe3re8d3La+N3CTgP53\nUdN1FROxmy9t4JV982hdp400meoh88BT6SklVgRB4PnkmdKK8PYhHRnQaBCB6jp8ffbL3y2VISaT\nxclO19WDrYPbUM87jMPaQ+y4upUlPZYxqdUUQjShBHrW4fk9Mwj2rMtzyc+AAHKZnAfrP4S3youZ\nu6ax6tz3/Ov0ZwSq67Ao9RUSrmzDYrdgESyYHSYqLJWk5CZjF+z4KH3IrLiMxWFBhQdGh5EKSwWJ\nVxOkpITDZQJfXEF9piT9pnPKM+Qi4MCBQyIAAShkSuw3SEBGmwE7drJ1V6skTcTWjXZnkiHPkIuX\nwguV3AODXV8lieDskwMFSqyClSPagwyPHEXPsAdYdf4bZCgk5ZjxW0fzzdkvOVdyFrPNhEIhp8hU\nxIPhD/H24cVsy9yK1pBHYtYOVp//np/Or+bFjnF4Kj0llYHFBxfxWOQIzhSfZnqbGXQP7yGRGkTV\njTDfcNoGt2PXtZ0UGq/Tt0E/ogKa83n6SmJjniGz/DIV5goOavcjIGCyGzHZjZjtJkCg1FLCjqzt\nlJpLMNtNTIh+knUZP4NcxsToKZwpPk3v+g8SmziZ9RfXEegdyH0hXSg3lyMITjvGJk5GwMEHD3wM\nwMspzmScOM5m7JrGpBZT6B7uTGK6rtgN0YQyNn4Ea86v5vuzXzO0yTDWX/qFjsGd+TljNS0CWpKt\nv4qX0pvHIkdwQLsPs83E+ZLzmO0mzpWcRWerRIESna0SBw66hnanxFRMmaWEziFdSc7Zxb7cFJKu\nJmJyGPGUe1VZJS6W3XBFbKtn6N9oIMMih3O++BwpeXuq7He2OJ0Kq5O4dLHsAnac48xsdxJd7IJd\nKqsRoArA5DDho/LFQ6Fid/ZOKi2V0pgFuFR2kczyyzeui7NNuUyG6ca/5cg5XXLqhsKV0+6DI4ay\n6vx3JOcmYXPY0Nkq8VZ5sydnN8+3f5EwTTifnFrBmnOrOFtyGjkKRjQdw4oTy6i0VCAgsDt7Jy92\njGPp0XfoGtKdT9M/QhDAYreglDnLb3gpvBnZbAwf9V1J89rRvLRvDoIAxeYiqb+u92u27qpL4u83\neEhJORm+Hj7suLbtplIkwo17scJSwSFtKntzkgnyDuZgfiomu4ktmZsot5SzOzuJrZlbGN18HOAk\njyVm7eCdI/8g2CuYl/fOJcwnjGk7p9xQt8pDJfMgJWcPCpkShVxJq8DWkj8Rk4iivxAQyCrLqnL/\nH9KmsuXyJgZHDOVSWcaN5KhAVEALXt03jwPa/ciQoVH6YHVYuFJxmaPXD6OUKfHzqMU7PZeyNzeZ\nn86vYVvWZow2IwfzU6UkmoiM0gsM2ziIH8/9QK/6D5Cvy+OxTUPoHNKFZ9rOrLFUhGvZI3HVfj3v\nMEkJSvQZrhCVvb47+zXrM9YR5hPG7N3PsqDLa1IpwTnJs7A5rPQI7yX5perlJwVBYPuVbfSq/wBP\nt3lGStqJ6kyiStCdoKaSS3cb7rjo74cYF1VP0N5KFctVteHPJDpdE6i/11b1bQEiA5pJShiupczq\n+YTRM6w3/RsPkvYXybBdQruxPWvbTfdxpaWCny6spkd4r5vul0pLhRQTioqMadojzNo1HbvDwcio\n0VWULqICo2+pKOG6jdhu6zptJAXHLqHdaFIrkg2X1kmljj5L/wSz3ez0jzLYfmUb267Es+HSOpoF\nRDF+60j25+4jQF2bbN1Vnmz1VBXSYF1NiOSfxBJmEf6NGHwjBhi5eRjfn/0GjYeGhV1e57P0T3ip\nk7N0548XvifpWiLbr27FT+3H+OaTyKrMZGtmPJszNzC7/QtsvPwrXUK78vLeuWy7Eg8y+OjBlRIR\nNL3wJHH75/JSp/nM6xzHo00fJz5zEyk5e7ELNpQyFZ1COrPq3HecLDxBj/BevHV4MduzthHqXY9d\nOTu5VHaJA/n72J+3j8Xd3+KFTi9R1yuE1LwUnmnzHHvzdrM/dx+llhKmtHqaI9pDeCs1mOxGMssu\n4av241LZRXblJNK/4UBOF6djs1tp5h+FxsOHme2eZ0/ubswOM74qXx4I78OZknQ8ZGrMDhN6i57G\n/k04cUNpJ9grmECvOgyPHEmuLofBjR7hWuVVibRjtBkkZTqoOccmIODBb2QZQRCw4STLOBwOHm7y\nKOdLzyLcUD9894HlJGUlklWZCUD/hgPZk7sbcJKS2gW1d5JnHFb256XgrfTBaDNIMUuuLhsBgXJL\nuTPvJ4CPypdKayUy5Ph6+OIp92J01DhOF58iV5dDmaXUOW5V/tgEG1aHlTpewRQYtXzwwD+pMFVK\nBO0gz2BJBai2Z6D0t7+HP2/d/x5hmnBOF51CqVBgcVg4W3yaMnMp/h61GBAxmA2Z6xCAk4XHCfYK\n4cmWT/Ht2a9Ye+EnmgVE8UqXhQR7hbAx81d61OvFscKjnC89R6R/UxKvbqeOVzDPtX+BjZm/0jao\nPTuyEjA5jJwoOO4s8ZW9G4VcgZdCw08XV1NpqeCxyBF8dvpj5nV8he/PfVPlvW971jaW9fqQCP9G\nfH3mS9K0R/H39OeLft9IRBux7N/Oq9sBGWkFh1na6wNmtJtN97AevHV4Me/1ep+e9Xs7Y++IQWj1\n+TyXPJ15HV8lts10OoR0QhAEOod0YVnau3QJ7cbig4uY1GIKEf6N8FP7ERnQjHo+YWSUXuBUwQme\nSpzEuz2XU1cTIpH4u4f1kBYAuBKaJ2wbxVv3v0v7kI5V/K8IVzKj6EvF9wJRybS6QqFrnFD9Xba6\n2tutCJ6ucZPYhqjKeKvnwK2UgG7lZ13JS6KfrV6a7I/EOTWp/9TUhz8KNwnoDvC/OCHqnui9u3Db\nF37efYnsAh2dWwRTy+evewH7K0lAMpkMTw8FWdpKLFY7vdreudT6/yrcY/fuwm3fPw/3hM7fj7+D\nBHT43HUu51Uw8L6GEiHnbpKAZDIZ/hoPLudVkFuko0fr0L+MzHo34PYt9w5uW987uG197+C29b2B\nmwT0vwvX6ypOXo6NH8E3Z/7F2ow1qOQqogKiGdfiCRr6RjBnz0w6BHfiZNEJuoZ2Q0Bgw6V1DGk8\nVEre6Kw6Zu5+mrkdXsZT6cnuq0m8sm/eTWoRadojDNswiPgrm1l3cS0jo0bftBK9e3gPGvg24OEm\nw7ivXlcmb5/AqnPfk3b9KHGdF9A8MJqka4kUGQsps5RxvDCNjZfWo7NU0jygBfU0Yfx44XusDiuF\npoKbJPlFuKqqVCf7/BEoZcqbyBxiQv/fhU2w3bLf8Ft/BQSOF6Zxtug0Hgo1ZZZSDuanMiJqNCHe\nodwX0pW060fpFf4Ap4tPOVVPio7jwIHdYUPj4SSrlxiLscscnCs+y67snczrFMcbBxbRxC+S785/\nhUKmYHPmBup6hTAjaRpfnv4Uk8XMu0ffItQ7lCa1IqmnCeNYwVF2Zyex/tIvyGVyMisuM7jRUFLz\nUxjYcAj5unxsDptkY6VMhRyZVNYIIKcyG52tkloeAezJ3YXepmNM8/EIDtidm0i/BoNYcvhN1lxY\nxdYrThLG8GYj6RHeC3ASgF7oMI8F++P4/uy39K7/IOE+9Xll/4v0DOtdhbxUzydMWv2rkqnYfGUD\n5cZyjhYcJkeXjRw5uYYcEECtUJN2/Qhmh0kiMwHY7TanPbEjQ46AwJUKJ5nmubZzKTIWcqzwKHqb\nXrqmcZ0XcrLoBCa7CblMjhJVlTEITsLHugtrySi5wBdnVkoryEVYHBYUKBFukMKcnwoEBOlThMnh\nJMqYHWZn+Q8cCNXGqsVhqUKoEb8T0SGok0QqEnGx7IJ07cwOM4HqOrSsHcPp4lMkZG3jVNEJanvW\n4fGmo2jk14TU/BQyyy/jpfBGqVBQbikj2Lsufip/9ubtJq3gCCCTSouIyUST3cjxwjTqeoUQFdic\n7VnbaOofdVuFgZrwG6FGwGx3tt1Q05Bya/kt97EJVgJUAeQZ8zDajZLtFKgoNhdSxzOYuJQX+fXS\nWuKvOAk6/zr9BTm6a+zLSSFPn4PepseBg+OFaQgIGOwGzHZTFR90+/7+BrPdxPHCtCrqCIe0qVWu\nt7fSW7qWcuQY7QY0Kh861O1Ip5D7OJh/gGa1osiqvMK4qIkMjnxYehaIpYDqeoVwsfQCgxoPcZbF\n86zLylP/lNQ+qqvyiPdRmG84kQHNuFp2lW1ZW2hdpw0Tto3my/RPaVG7paTkFhnQjEpLBZ+f/JRi\nU5GUcMzT59Iz7AFmd5grleB7stVTUomMuJS5vNx5Pu1DOkp9BmdCenbys9wX0gUvpTfphSd5Pnkm\nod6hTNg2iuiAFngpvW+blHJNarkmyP6q1fK3gjsu+vtRU7x7qxJ1rr+7frreQ/8uqrdVE1xVF2oq\nmVe9lJlreTwxcbykx1I6hHS6qUQZOElCWzPj2Xltx02xm5hAnthyspQQj02cjMlm5pO+n99UHvBO\nzjdNewQfD1/WnF/N5JinqigJNfGP5LGmjztLCUU+SvvgDoxqPobk7F0s7PI6M9rPpmd4L/pHDJQU\nkcJ86rP40ELm3/c6Ef6NqiThm/hH8kzbmdI5i/d334b9JFLQw00eYWrM09TVhPDDuW+Z1GoKu7J3\nEhvzDM+0m8nenGSea/cC7xx9k6W9PqBX/QdYff57Iv2jSLt+mO71enD0+iEWdn2dXdeSmNr6aSm+\n3n0tiWmtZ7Ax81fGt5iIj4cv6y6uZWHX1zmsPcSHD36MRqVhTPPxdKzbmZ71e0vqSwtT49BZdTzf\n/kUa+Eaw89p2UvP20SaoLb0aPMDDTR4hMqApq85+h8lh4skWT9EtrBubMjdgtBmRy+T4q2tRYi7G\nW6HBT+1H34b92JK5EY2HDzn6bDzkHjQLaM5h7QFGNh1LviGXk4XHXWJaGWqFmiMFh5Ajx0fly4cP\nfEwD34Z8cnIFMpmc44VHiQlsI8UJSpT0Cn+QKxWXUcs9sQs2OgZ1xmgzoVFqAOfztfpzTnyWCQic\nLTnNA+F9uVJxmSsVl7ladpWEa1tQyz3xVKhpGRjjogQk0LRWlESs1ag0LOjyOgfy92GxO+9vH6Uv\nFoeZSS2mkqvLRaVQUWlxkrd9lD5UWirQ23UUGguYGD2FjLKLVN4gW5sdZnxUGix2C1NaPS0p93x9\n9gunaicCI5qO5kjBQdRyT6eiksoLD7maWp612JebwiFtKuOjJ1FsKsbmsDG5ZSxXyq/wTs+lrLu0\nFsEBU2OmcVCbyqBGD/Pjxe8Y2HAIe/N2s/3qVpoHRPP9uW/oU78fX535DD9VLV7q9AqfnFxBqakE\njYeGC6XniY2ZzkspczDY9YxsOpYSUzG96j/Azmvb0RryOaRNRSFT4K305mjBId6+fynjWj5Bv4YD\nCPSsw5w9M0nM2oFCLmdk1BinutXVREotJdRS12JI46H4ePii1eezPWsb/SMG0sivCedKz/Juz+XE\nBLUhzDccQRCk+1tUCKyrCSEqMJpgz7p8dfoLErLiaRvUjhm7pvFI5KP0bdhPKsX7XPIz7MhKYEDE\nIKmU6qMbB3NYexhfD19GRo0hNnEya86vZu2FNey8toPhzUZKpONKSwU+Hr4MbjyUnvV71+hP07RH\nmJM8C6vdSs8bBEg/tR+h3qEkZSey69pOWtdpc1PpRrGN6qpq4vuFSEQeFjlc+qyp9FZNJM7qZNTq\nvvhWZNFbKdeJcFXncVWH+6PPrN8jwP4ZIvUfjYvkf2gvN9xw4/8FSipMHDxzndBAb+oH+/zd3bkt\n6gf7EOCrJiu/kuslhr+7O2644YYbbtSAwjLnZHhQLc97dsyQQG8a1PXhcm4FH/5yiqS0HHIKdTiE\nP5bIcsMNN9xwww03/rchJo0AlvdeweZHt7PwvsU4HAJz9sxk0rbxBHoF0sA3AoB8XR6TEybwxNYx\n5OlyOV98DpvDypzkWQAEeQXz4fFlDP11AM/vmUGZubTK8dK0RwjRhBLqU48noiejUqjQ6vOr/D4p\nYRwJmfE8lTiJhamvkF54EkEAmcyZLFiW9g4zk6YzuWUsDsGBHAXgVFIxO8zs1+5lv3YvduyUW2pO\n7P9Rks/vwfYHCT9/BSptFZRZSrELNsZETWD9xXU8v2cGS48u4boxny1ZG53kgxtkBACzYKbcUkax\nuYj7QrrhEOzcF9KV5b1XUGws5krFZbZkbUQl8yA25hmsDitvHFxIvj4Xq8PKhyeWkVeZy5TtT9Br\nTVde3DubYmMRFeYKbIINu8NOvwYD+eTkh1gcVrZkbaTSVlGF7KK36TC7kBkEBMpMzjJH7YI6OFeJ\ny9UUGgrYcHkdQZ7BJOckYcOGh1yNUvZbGfeZSdOZtWs6S3osJSaoDSOajkarz2P81lF8fGIFb3V/\njxBNqDTucytzpL+1+nw2Zv5Kn/B+bMnaCEC5pQyH4Oyrv7oWJSZneSkRzf2dSU8bv1336kSez9M/\n5quzn0v/tgsOfFS+/Ov05wiOG2pTggMrNRMui8wFUn8AZMhQoPytvRvH/u3TXuXzr8TRwsO/u02h\nqYCknB3gcNrCJtgw2gx8dfZzvjr7OQICRcZCBJlDuj/DvMP56uznWB0iwanq/Sl3mdJflvYOo7Y8\nhtaQz37t3r/kvK7qb08kClAFcFV/lSa+kVW+L7OUYnfY+ceh18jX59KjXm8ANmduoMhYiL8qgDJT\nyU3+5m75H1eUW34bp3ZseMg8MNj0PL9nBs/vmUGuPrvK9UzIjOfh9f0ZGz+ChMx40rRH+Obsvxjb\nfAJzkmeRkBnP5+krWdJjKcnXdjE2fgQjNg0jITOeSQnjJN8t+vNVZ77j54zVlJpKACfZb8n9y1h8\ncBGrznzHEwljWHXmO75J/4oicwFeSm++6PcNo5o5n0eBXoEADNswmOk7p6LV55NbmUOhoYBrFVd5\n48Ai0rRHGBs/gpGbhzFi0zA+PrGCOl5BvHFgEQ+v78/U7RMpNZUQ5B3Mix1ekb7Prcy5pd3CfMP5\nZsAqwnzDpb8ByV/cCapvJ/qYNO0RAOnTjf8OiEnd3xsDYjJ4bPwIabs7HTN3gpqeW67tu47dmvYR\nf+8Q0qnK765/v5wyl4/6rGT14LU3JXbF312Pt7z3CrxV3oRoQmts83bfpWmP8NimIaQXnqzSZphv\nOC90mMfTO50qI0t6LGVm0nSm7phIoaGA5b1XsCztXbT6fOYkz2Jm0nTStEd4+/CbrM1Yw/JeHzGu\n5ROE+YazpMdSQjShUnvphScl+4ltz0meJdmnQ0gnwnzDnaUQ9XkAxMZM552jb1JocPopgHCfBgR5\nBzOg8WCW3L+MladW8FKn+XyevhKL3fkcu27IJ73wpGQnmQzWZqxhSY+l0jFUChUxQW1YPXgtAMM2\nDuJ88Tme3jlZ8hMhmlB8PXwJ8gwG4MMTS7FjR2vIZ3LCBEZuHkaIJpQQTSj1/RpQ1zuElLxk3jiw\niLhOCwn3bUBd71B+GPwTC+9bTJAmiJc6vcqHx5eBABOjpxDsVRe5TMGn6R+x4L43aF47Gk+FF7XU\nAYRq6lHHKxhRrRKcT+hKawXP7IxlyZHF2AUHBpuewRFDpdKaQZ7BPNFiMntvqPTYHTa8FN4cL0qj\n1OIkwFgdN8c97YI6SH+L8d/Rgt+eVQarU+FPEJzleE8XnQJAo3Tm8kI19aRtK62VLEx9hXJLOYMj\nhvJc27l0DukCwOoL31FsKkRnrWRgxGAAjDYj7/X6gOW9PsJqt/Fp+kdUmJ1xSsegzlKbDhx8e/Zf\nWB1WSk2lfP7Q13zc9zPe6bGcmR1mU0sdgNlhoshcQLGpiAVdXmdl3y/xVnnh5+HPqgvf0j64Iwab\nng9PLKXEXESxsZi4zvOpsJbRIaQDC+57g81X1vNih1eIv7K5io2MNgMrT61wqi9aK/j4xArGRE1A\nIVMgk8mwCVaaB0bzZb9vCfepT9d63QBYmPoKX/T7hoX3LaaOOhg/tR/eKg1fPPQN41o+Id2D41o+\nwfJeH+Gl8sRqtzFr13TmJM/i3Z7LaejbiOfavcCc5FmM3DyMmUnTies8nycTxvNSyhziOs8nyDtY\neua5vuMlZMYzMWEsj24cTJr2CJ+nr8TqsCIISPfpnORZ0j0ZE9SGDY9s5eeHNwAwNn4EIZpQ1j8S\nz4Zh8ax/JJ4OIZ1YPXgta4duYO3QDSzvvQKtPp/HNg0hITNe8smuPgqqvm/OSZ7F8t4r+KjPSl5O\nmSv5iLcPvwk43487hHSS4gFXHy9eD9F21X2zGBeJ79o1wXW/6qgeP7juU327O3lO1bTvvxPf/F5b\n1fv0Z9r+o5AJwv+fDEhh4d1baf53ISjI93/yvP5T8P/ZvjqjlU83nuZsVimTB0Vjc9wsw/xn4Ovj\nSaXO9Psb/hvI0lay90Qe98eEMnnwf35967uJ/89j917Abd8/j6Ag37+7C//vcadj+M+M9+QTVVfF\nbtp3Bb3Rxui+kfdUkUdntHLgtJb84t9IoiG1vZk+rNV/FMnV7VvuHdy2vndw2/rewW3re4O7ZWd3\nbPT3w/W6uk5UiskWmQwGRQzl01Mf0cCvIQu6vM4Lyc9RaCpAjhwZMnw8fAnyCuajPisBpJJKy3uv\noNBQQLGxmM/Tf0smpWmPMGzjIL546BsW7H+F64Z83r5/KZ+nO/eP6zyfZWnv8kKHeQxoPJiEzHje\nOLAIlULF8t4rCNGEkl54kqk7JhLsXReAHF02MmS/m1RXocKKMzGjRHmDtCFDiQIbNsK8wsg15t62\njf90eCq8MNudCjX+Hv7oLLoqRBC5TI5DqDrX4YEHXipvFHIFeqsOuUyB0W4gQF2bcnMZcpmcSL+m\nnC8/h1ruidnx27yGWq7GU+mFwaaXlH3kyBkU8TDxWZvw8/BHZ61Ejhy1whOdrZKOQZ3viEgiQqP0\nwWAzIOCglkcAOkslr9y3iLcOvy4Rrhbet5hHmw1Hq89n+s6pmGwm3u25nMUHF3Gt8ioP1R/AlqyN\nBKrr4OPhi0quYmHX16VVyuBMTMQEtWH9xXW8cWhBjX3x96hVhVjx76CmMaqQKRAEAfG/fxceeGC5\nBXHoPwUyZIxoOoaUvGQMVgMVlnLpXH2VflTaKu7o/v13oJFr0DtuLgN2txDsVRez3czwyJF8ffYL\nBIS//Jz+LBQoJBWI38PkFrGsuvAtvkp/xkU/wafpH6FR+hDoFYggwLNtZzFnz0yebPEUe3OTJf/c\nIaST5LM/6rOS88XneH7PDJ5rO5dJMZMZGz+CuM7zmbL9Cd7t+T5z9z6Hj8qXcksZvjdKsfQJ70dK\nbjI2wcayXisI9Apkyo4nEASBcN/6CAJ4q7yJjZlO7wYPotXnE6IJrfFz6vZJWB0WSozFhPiEcl2v\nxc/Dn2JzEQvvW0zXsG5VyBC3g/iM/L1yT+J2Y+NHVCFR5FbmoNXn83LKXCa1mMIr+1/k16FbpKRk\nmG84Jo8y6vvXv6P+uHF38HvxrkgUudW/xe+galK3OjHnTpCmPVLj+HQ9pvh3Tf24Xb/F78bGjwC4\naaz+kbZc93c9Z9exX5MdRGK46B8GNB5cow1WnfmOeXufJ8K/kUQIACQi0OrBa6X7H36zv+s5phee\n5O3Db2K0GVDKVJLvEgkA1clRYnsjNrHcZqMAACAASURBVA3DJlhZ/0g86YUneXrnZGJbPcvWrE38\n/PAGtPp8hm4YwKZhCYCTjPxRn5UUGgpYlvaupLxU09gQ411wxiELU1+RjhMT1IYRm4axdugGkq/t\n4oNjy/BWedOvwUB+OPcNKoUKpVzJF/2+IUQTKsXZAAdyU/ns1CfU9qpNbMx0Pjm5gkERQ9lxbRtx\nnefz9uE3MVgNGKx6yi1lBHnVRaVQYnPYiKoVTVLODoZEPMKOa9sI8qrLlFaxlJvL+fDEUpRyFb3q\nPeAk+wJDIh6hfd2OfHbqE0rMRXjKvai0VeCvqoXBpsdT6YXJZqRn2G/7aJQ+WOxmaqkDsDjM/B97\n9x0eRfU1cPy7LZteCKE3QaQJSFE60gVBqrQoiKDYABWQ3pQioFiwYENRXvipiIQqRRDpgihFBaQI\nASQhhCSkb5v3j2XGTUgn2YTkfJ7HR7K7M3vv3Tszd+eePTfOEqeNzY0Y8fXw05bgUsdefkZ/HqzU\nns8fXs6kneP58sRS7IqdHtV6seH8WnyMviTaEnj7wfeJSYnh7cNv4GXywsvozdWkCOeY0QEV/Sth\nUAycjT9DKXMw05u/SrsqHVh2/HO6Vu+mXUP6rO1OaK2h7Li0jYTURDpU6cS3p1cS4BFAv7sH8uVf\nn2PHhlFvorRnaaKTr6HT6Vjb+4ebn+cPvHfkLcp4l9U+p6ikq8w+MJPYlFiupURRyhxMrxp9qR/S\ngCl7X2Feqze0fr64w3/frQas783D1XrSpFwTulZ3BtCcjD7BKz+/xJRmM2lRsaUzY1b1vqw86cyC\n6m3y5q12i3l66zCikq8ysek0Fvw6h/mtF/HJ8SXYHFaebzgmzfc0te+r+q/rjdVh5aPOnxGVdFV7\nb/WYARi7cwxdqnRj8ZFFlDIH83b793j94Jw0/UyngzW9NlLRrxKbz20kOjmadlU63HJ+Ub+HqvV2\nPUbU4zn9sZr+XKSefyISr2R43KU//mYfmImiwKqeYbecT9W6pm8f12v8ij+/YtKecYT12qSVK33Q\nS07O0+p2Gb3mcMShTM+hrvVWgx5ze73JSdly8zpXm89t1D6/3NY/r/eLJBOQEOIWZy7HMeuLg/x1\nPoZ7q5eieb2yhV2kHKla1pcAHw/2/xnB9sOXSE4tvF8cCiGESEtRFBKSrfh6m9y+JJevl4k5TzVj\n/rMteLJbbR6oU4aI60nM/epX9v8Z4dayCCGEEKLoU2+4qb9wNBlMLO6whKktZxDWexOLOywhxLsM\n11OcE8gOFBSdQpwllrjUWKKSrvL01mHsDN+hBessOryQdlU6pLlxWs6nPFX8qjp/2XnzF5yP1RvK\nyu6rtF92j2sygUWHF3I44hBdq3dnVc8wVnZfpf06u2v17qzt/QPr+2xhfZ8tvHjfeG2yvVW5tlqd\nWpVriwHDzfT8YMV68986bNjQoQMULRgoMjlSy+pSGDzwyPDxATVDb5bVSf13+rJ6GbyxKc5AHLPe\nTKIlEZ1Oh5/JmYI9wBTIw1Ufcf7bIxAPnTPFugULcdZYvIzePFb7CZLtSejQE5N6HQcObIqNk3En\nALQAILPefPNvZxah5xu86FJGHVsubGJ6s9d4sdE47IodPw9/Uh0pBJgCORL1W5r6ZCfRlqAtWRVr\nidEy7pTzKY8BA8PrjqTPPf3ov875a+RkawqRSRFM3zuFxR2W8GnnZfwe9Rvg/EW5TgcJ1nie2vpE\nmowlI7c9Se+w7vzv1HJ6VOuVYVniLTcI8AjMUbnV7FQdK3UBnMtoudKho5Q5GIPekKv2cJVRAFBu\n9qXL4DZ5g1IN81QWAFMGfVhBYdXp/93MqJA22CnBlkCIZxk6VOqsPRZgDMj1+6avszsDgABiU2KJ\ns8RqAUDgDMgrSuzYSbE5j9+sPmMfow/bL27DpPPgWupV3j/6Dh56MzGp13m4Wk9W9QyjXZUOBHqU\nYuWpr3jhvjHa+fly/CVe2z+T8PjzjN7+HMFewQSbS7M13Dkhqma6ADgedQy7YteC6sp4Ou/Dbr+0\nFaPehAMHr+x6iVd+HkuwZ2nKepd3Zo7Tm5j8wDQ+OLKYneE76LuuB2v+Xs3o7c9pgQZqVpGryRHo\n0FPJvzLjmkwEwMvkxfC6I5l/cDa91z58yy/rM8tg4vrr/MMRh9JkeXH997DNj6XJanI5/pKWbUDN\ncvDJ8SV83OlzLfAhdGN/Dkccos83fXLyUQo3yCxrQWYZdjJ7XUaZeXJCzZCz+dzGLF+X0wxFGb2/\nmp0mfcaf7Mqa2b5c/63WWc3UNXbnGG1iPz11bDf5gWlpst+4BgBdjr/EJ8eXUNGvEos7LNHeTz2u\n1HPLpN3jtYwb6mSyax27Vu/OW+0WY9KbtGxHTcrdrwUCqcez6zF7POooJoOJ11rO0/bxSpMpLDm2\nmPNx/2jjCDVbnRqENGbHc8B/mYbUz9K1b8xv8yaLDi/U3nPktidRFGdg0+sH57Dm79VcSghnzd+r\nmbRnHDqdM1h+a/gPGPUmJt4/FU+DF/sv79MymozZ8RxPbx3G7F9mEJl8hf41B/HJ8SVcS4rm3SNv\nci0pivohDXmr3WJmt5qHt8mHMt5lGd90Iks6fYbFbtECdbZc2ESARyAWeyqv/TKd94++gxEjpT1L\ncyH+PIEeQQBsPL+Oub/MQsGBw+Eg2Z5EoEcQSdZE7NiJt97ggbIt2HFpG0EewQR4BBLkGUSQZykC\nzIG81+EjAs1B6PQ6AjwC+bzrcvre7Qze6lGtF+91WIJBZyDBFs/G8+tY8edX7P53J6XMwfSo1ovZ\nbV6ntLkMZsN/Swe9f+QdEmzxmPQe9K7Rj2R7Mn4mfwI9g0i2phAef4Egcym8Td58cGQxA9b35rvT\n33Ay+oQWODah6VSWn/yCFFsKU5vPYPXpbwDwNHiz/eI2QrxDMOqMTLl/Br4mP/zNAYR4ldX6YoA5\nAAcO2lZsz+WESwzdNJjX9s9kevNX+erh/1HaM4TY1Bi++OtTAD7u9Dm1g+tQ1f8upjd/lbE7xxCV\ndJWIxCsoCqw9t5r6IQ3ZfG4jk3aPJ9grGJ1ex8qTyynnU575bd5k7bnvmdHiVcJ6b9SCdPw8/Pm0\n8zJGNXmR+a0XseyvpbzVbjGLOyxh2V9LmfzANO04U49ZtQ3e67gEb5M3UUlX0xyfAFFJV2lS7n4m\nPzCNT/74gCfrPk2CNZ7Juydgc1gJ8S6jZcAy6U3aewC8/PMo+qztrh0Lrpn3yvmU1zKOqRm8Dkcc\n0o5n10w96bmef9Tzh7pv9bhWt1vWdQX1QxpivHk+cD02Xc9PGZ0jXX/cMmXvK8xvveiWwCTXdky/\n38xk9ho1C1Fmz6vnE9dMbbmR/tqWkbxk9TkccYhnfhyuZYzMLpNefmUNMsyaNWvWbe/lDpHROqZ3\nOh8fc7GsV1FRUto3xWIj8noS/1y5wb4/Ilj2w0mSU230aXMXQ7vWxqDXcz4if3/tavYwYrHkb5CO\nTqfD18vEhYh4jp6NZvvhS1y/kULpAE/8fTK+gVhclZS+W1ikfW+frO9e+HLah2+nv7teO1Isdv44\nd50yQV5UK5+39W9vx4XIeKJik1GA0oFeBPmZCb+awKGTVzkVHkNsQio1KwW4PUDJlZxb3Efa2n2k\nrd1H2to9CqqdZWxU+E5HnsPf7ByjqDfempd3/pL0jQffppxPeeItN/D18GPUjmfpVLULuy//jEnn\ngY/Rh0RbAn4mfxJtCfx8cScRSVfYcmETO8N/IrTOEHrf3Y+KfpW09wDwN/tzX0gjagXXwd/sTwXf\nitrjFXwr0rFKZxqXa0q94HuZtHs8Hat0vmUfABV8K+Jv9ifecoP7yjaidlAdTsWc4KuH/0dZr3Ls\n+3cPQ+sNp22ldpyJPY3FbkGnwGN1nuD3qMPAf4EDHSt1IcEST6ItAQcOku3J1PC7mxiLcwkbL4MX\nZoMnNm2ZIjDrPbFnsOxXg1INiUyOTPOYCQ8c2LXn1PfVY6C0ZwgWe6pzmQfvsvS7ewDHrx0l0BxE\ngDmQsY0n8nTDZ/nhn014m7wZUe8ZZracTQ3/mmz4Zy3+pkBeb/0Gzcq14N/Ey7zZ9m2q+N7Fvit7\nGFb3Ka6lXOPLbiup4V+Tv67/weGrh3jxvvHUCLg7TTaeEM8yjGzwPKtOf0OCNf6WDCa1A+pwLfUa\nrcq15UriZTyNXlhuLt9lwMCAWoP5MXwrDhwEeARiU6wMu3cEbx6ezw3LDV5pOoVzcWeZ9MA0tlzY\npO3fiFFbliwrPkZfbA4boKDXGbgUf5GhdYez78puIpKu0KFKJ34M38q7HT6gd82+7Lm8i486f0aT\ncvfjZfQm7Mxq9IpzAmlas1kcjTqCj4cPT9V/htMxpxj545O83vpNht07gk3nNnIt5Rp6DBj1RlId\nqfga/XiuwRguJYQTlxrLqIYv88e1Y1gdlpvBV9Y05a0dUIeo1KtaW5h0Hnzbcw0xyTGcijnB6PvG\nMrPlbJ67bzSP1OhNl6pdOXjlIBa7RetXBoz4mny1dgbw0HmgoDDmvnH8ErEvTb/zMnmjKKTJ1uRj\n9MXb4E2qIwVPvVeapeoCPAKcx0W6jDXXU67jZfTWlujwMnhlusRd+uAbdRk0AwZ8TM7PTIcOo97I\nsDpP8fvVw3gavLA6LHSs1IVZLWez8+JPHI3+nR7VenExPpwEe4JWvlR7apr9e+g8blnirLAz7pj1\nZixKKl4G5xIfziA6HXbFnqZcTUMe4N+ky1qbZVS/gqK22+QHZnDk6u9YFAsJ1oRbXteqXFvO3jiD\nUW8kzhJLx0pdSLInEp96g0BzEPsj9tCjek8SrAn834llTGg6lW/+Xknvu/vhb/bH3+xP17se5pEa\nvXi4eg8m7x5PVPJVFrZ9i8blmhJvucGo7c8SmxrLkajfUFAYUDOUSwnhXEl2TqTX8LubqJQoQMGs\n9yTRnoC30RuDXs/W8B/wMfnQvnJHvvrrC07H/s2ge4bw9u8LiU2NIbTOEBqG3MczPw6nYelG/Bi+\nlSDPUnzU+TPuDWnApn82oNfpORfnvPa90PBF7i//gHZ9ORxxiFE7nqVjlc5prjmnY07xeN0ntAm/\nPmu7s+WfH7ivTCNGbhvO6tOr6FK1KxX9KlEv+F5mH5jJGw++ja+HH6Eb+7Pl/A/a3y/vHI3VbmVU\n45eo6FeJLlW70u+eAdQKrsOjDXsT4Jn7IDiRf5KSLNp4KH0/SM/f7K+NUVQZbZvVPjJTwbcidYLq\nsujwwjT7ymz/6cvh6nL8pQzLcDn+EqN2PKsdv/nJ3+yv7f+NB9/moWrdtKwembXr3UH30LZiO8r5\nlOd0zCn6rutB24rtUBRFO1YG1X6MWsF1tAAf1zGi2g61gutoj7vWMd5yA3+zP1cS/mXbha08UW+4\n1maKorD69CpaVWzDyG3D2XB2HW+1W0yCNYEhPwxkQtMpLDn2Ph2rdCbecoMZe6eg1xkI8izFUw2e\noVZwHR6s1J4m5e53jnPLNGLd2TD+768v6VS1C1vPb+Z/J5ez9cJmulZ7WCuLOu6t6FcJRVHoUb0n\nTzV4Bl8PP774Yynbwn/g2fqjWf9PGAvbvsWYxmNpXK4pHjoPvj+ziuPXjpNqT2HT+fWMrP88Hx//\nkBRbKnNbz6d+cENG1B9JreDaPFStGzsv7sCoNxJgDqRtpQcZvf05tl/cRqo9BbvDwYZ/1jKo9mO0\nrtiGNWdWAzCs7lNcTY5ArzNg1Bkp7RXCjBav8VSDZ3i4eg8erNSODWfX8UTdERyPOkqAZwDeJm+S\nLIkEeQbzRL0RHIjYi16nJzzhPMPrjmRArUH8cH4DOvTEpcbyfMMxPFilPWvPfI/VbiXeeoMqvtX4\n4k/n0qHn4s7S6+4+7Pt3DwnWeF68bzy97+nLJ0c/4lrqVU7H/k2toDocijxAdPI1pjV7FS+jF2Fn\nVzOgZihLOn9KbGoMOy5u46l7n2XPvz/jZfQm0Z6Iv4c/doeDua3nU9GnMhv+CbsZBGti24UtHIjY\nR5wljhRbCuW9K/Bb1K+AjjmtXufYtaO82Ggsp2P+ZkbL1zDpTGy+sJEAcwAjGzxH8/It6X1PXyp4\nV6SyX2WORP1ObGoMZqOZgxG/0LhME/Zc3o2/OYAxjcay/MQydl7czrYLzrGsj8mHr0+u4JtTK9l3\neS8v3DeGtWe/5+6Amrz88yjmtV5I/ZCGbD2/hRktXqVxuaZU8K1IveB7mb53MvcE1WLSrvH8GL6V\nt9otpm3ldlyOv8Ss/dO0zFSur//65EpWnljOhnPrmNHiVfrWfJQEawJNyt1Pl6pdaVyuqXZ8jtw2\nnJH1n+Pln0fRtmI72lZuR52gujzbaBR1S9XjUOQvPNtgFG8eXkCnql3YEf4jU5vNREFh1I5neabh\n89QOqsOwe0dQK7hOmvNUvOVGmmNbPS+oATbqMQPOIJsuVbvecj7J7Hw3cttw7Vo8bPNj2vfULlW7\nauXI7HyW2WPqubpvrf5pno+33KBVxTZpzjO3K7vztOv5JK+yuv5ld63JrExqH8lu24z2n9f7RbIc\n2B1OUr4XrOLevleiE/lu51l+P30tzeNeZgNtGlSgXLB3gb13QSwHpmpUM4Q9x/5l5++Xib7hvIlw\n392l6d6iKjUqlowvkMW97xY2ad/bJ0teFD53LwcWFZvMDwfCqVstiKa1y+Rpf/ntRqKFn36/TFyC\n86a+t9lIpRAf/H3NWKx2Uix2HIpCg+rBtGlQngDfjAfcV6IT2XIwHINBz0MPVKFMYN5+6SrnFveR\ntnYfaWv3kbZ2D1kOrPi678PG2o1gSLusBJBmCQUgzXPqUiveJi+mN3cuq7QzfAfALWnlXeVmaYyc\nLEmhllHNPqSWset3HYlMvoJJb6Ksdzk8DV6E1h7C2nPfM6zuCIK9ggnxLsPmcz+w+MgiKvhUYnzT\nibSr0oE1f69m5cnl3LDE4XAoxFvj+LTLMkK8y/DF8aV8d/prHDgw6Iy82fYdYlKcyxW0qNgSgB7f\nd2Fqs1l8eOQ9PE1mxjWZyIRdL7P0oa+YsmcC45pM5J3fFjG71Tyt3SbuHksF34qs6bVR+1W5a/r5\n9EvRXI6/xID1vVncYUmGn9/O8B1aqn/XZTPU5SWGbX6MWoF1OBi5n0RLIlOazWDSnnHY7c7ABQcO\nnqz7NH4e/nx7eiWb+v7Imr9X06JiS3qt6UZ534r0rtGPagHV+PDoYm05jJPRJ/jk+BImPzBNW8Yi\nxZ7Mp12WMXbnGG3SwHX5hTV/r2bv5d2cij1By/JtOBi5n3tLNaBGYE2qBVRj/sG5+Jv9mN78Vc7E\nnGHlyeXMaPEqiw4vpFf1viz4dQ5hvTalSX+f0ZItar9NvzQA3JpxwJVa70m7xzOuyQSm752CSW9y\nZsBKucrwuiNZ9tdn2pJePar14oXGY+gZ1pWlXb6ifkhD7b0ORxyiV1g3qvhV05YdUG0+t5Gntj6B\nxWHFpDeysM3bxKTE8Nov0+lRrRc/X/4Jf48AopIj+azLl8w+MJPnG47hfNx5dl7enibLwuANj5Jg\njUen6KjgV4mXGo8D0JZmalKuCZN3T+BqcgR+Jn/iUmPxNnkTb41nRrPZAMz+ZQZ6nZ43277LnAOz\nuJ4aTctybdgbsYumIQ9wOOoQZb3LsbDtW+wM/4mvTnyOTbFh0pkYUudJ/u/kMsp4l2Ve64WEeJeh\nSbn7tSUT/E0BlPYO0ZZveXrrMBTFmblFXVZOXd5D9d8Sfmn5GHxJtCfgafAkxX7rPTcvgxfJ9uT/\nXn9zuRBwBr3sjdh1M6gx++xB6utvfQ9vku1JlDaXwWgwYNAZGXHvSN4/8g4eBg8G3vMYOy9vp0nI\n/Sw/8QUKCm+0fYd3fluEzWGjVYU2lPepwKd/LCEpB+XIi+F1R9K/9kD6rO3OhKZTmfPLTBw4tHbr\nUa0Xp2JPcC72LG8++C4LDs3leko0FXwr8lrLeQDa5wj/HTNZnacvx1/ieNTRNMv7qEvsRCVdZcqe\nCXzaZZm2bJjajnoM+Jp8SbEnE2QOxt/sl2ZZlIjEK/QOe5j5bRbxwZHFnL9xDh061vXZTJNy92tl\nU5cZSr8k19idY+hfcxALf51LJd8qrOrpPEeqS2m41ktdwtJ1mQ/X/Wa0TFj6pZFcn89qWTEZFxU+\ndbyblyVPVLezbU72lZv9Zzfmyu2+sjrWM9s/oJUBss6GkX4pHzVwyLX8uV1izXU5MjUrT0bLCbmO\nE1zHX+rxrpZdHX8pijNLSmbLEqnX9LW9f0izVKFre7iOQVyX+jkccYgxO57jRmo8JoMRT4PXLWOG\nFX9+Re3gOlq2ovohDTkedZTX9s/E6rBqy+1O2fsKH3f6HID6IQ21cvRZ2x2r3UZkUgSlPEvhYfBg\nfZ8t2jXZrtjxMfoyo8WrRCdHM3nPeCY0ncqXf32Oh8GEUW9iZP3nmLRnHJ92XsbsA84MNyHeZbRr\n+qM1B/LukTd58b7xVAuoxifHlzgDfSzxXE+9ht1hx6g38lmXL9MsNxziVZZBtR5j9Rln5p31fbaw\n7PjnvHvkTe1a1iusG4HmIJ5tMIo+9/Sj87ftuJYaxdsPvkft4Do8EtaVYHNp3njwLUZuexIvgw+l\nvYOx2K281Hgcr+x6mQCPAK6nRhNsDsHX7MOl+Iv4mvxY3OFDgDRlKuNdlsikCBQUbRylZi8FeP3g\nHK4lRbGo3bvUD2moLVt1MvoEY38ezVs3ywXODDqvH5yD1W7V+lD6sWeP7x8iKjmSEK+yfPbQMm07\ndTku9RoHaH1H1TusOx4GE4oCM1q8ql2DM1oWS338eNRRpu+dwr+Jl6jo63z834TLLGjzFo/VG5rm\nOFGXwnIdU7teP9X+7Pr32J1jgP++r6X/jqlun9GSV1ktZ5jZ98300i/rlV/n6YzOR5kttXinyGjJ\nycKS13GRBAHd4eRGb8Eqru2bkGxl3Z5/+On3y9gdCqX8zQT7e+LrZcLHy0SF0j54ehgKtAwFGQSk\ncigKl64m8Oc/14mKdb5XSKAnIYFeNKtTlgqlfagU4ou5gOtaGIpr3y0qpH1vn9zQKXzuDgI69+8N\n9hy7wgN1y1C7SlCe9lcQrDYHp8JjiL6RSkx8KvGJljS/nXUujAE6HTSpVYbG95SmtL8XpfzNWGwO\nNuw7z/4/I1BH1Hqdjpb3lqNT00rcSLJwISKei1cTUBQI8jNTyt+TYH9PypbyomyQFyaj4WY57DgM\nBq5E3qBSiC9Gg6zaW5DkPO4+0tbuI23tHhIEVHxtPr4jw5utqqwmK9Xn1RvA6R/PbpInPyfI1Mmd\n9Ddgj0cdJcS7jDb54npD2tXmcxupH9Lwlpu36o1q15vcoRv7k2xL4sVG46gdXCfDyR/XyXH4L/jD\ndWI5fRukn6zOSTtldlPcdbJNlf4G9eZzG1l0eCHD6o5g8p7xrOmVdskRdaIho/fJaGI9JxPg6uPp\n2zv9dpvPbeSZH4fzfc8NGQbspG9D1wCegpQ+SA5gZ/gO2lXpQP91vbWJMnWyJLNyZfRZqzaf26hN\npKntv+LPrwj2CuaJzaHaJFL64IuMJlrVYDL4b4JoZ/gOlv21VJsIHVn/OT44spgZLV7VJhBDvMvQ\nZ213As1BeBo9WdLpM8bseI54Szw/9NvOmr9XM6rJi7d8jnP3vaZN0O26vBObYmVJp89uaYP0E6rq\nY2N3jtGWpJixbwpLOn3G0E2DsSt2rqdGU9pcBp0ODHoDEUnOuvkZ/Xmt1Txe+fklKvpVpn5wAw5H\nHaJJyP1sOL+Wct7lWdj2LSbsGsvE+6fy5q8LeL3NQqbsmUC/uwey8Z91/HPjHKU9Q7g7oCZ7I3ah\nQ0cZr3LEpcbSs0YfVp3+Gm+jNz4mH2JTY/Az+XM9NRqj3oiv0R+TwUhsagzPNRjDsPrDiUi8wujt\nz6HTgdVhxagzaUEman/df3kffe7pp31OrpPTXap049vTK5nQdArHo46x/K8v8DCa8TR48nb795i8\newIj7h1JkGcQk3aP47HaT7Dj0jZebDSOOQdmEZ16jY6VurD78k7QQZsK7TgVe4L1fbakOV4ORxzi\nZPQJPjiymJjU6yRY4pnfZpEW1KeWTT0H9l3XQzsmcyq7yXrXie/jUUeJTo5mwq6XWdj2bdpV6ZBm\n0jz99q7nVLWv57Rs6vuOazLhlnO/eoy7Hkt91nZnTa+NBT4RJuOiwlccv1fkx5grfZBK+v1ndpxn\nNubJTXnzKxBqfps3KedTnv7ret8SUJPR69KPCdMHZUP2AU391/VOEyiUvj1cx7Djmkyga/XuWjnG\nNZnAjH1T+DfhMp91+fKWQI70QRSugUlRSVe1oM33D7/L/04tJzz+grYUlHq96V9zEPN+efVmXSoz\nu9U8Xj84h3jLDea1Xshr+2ei06EF/HxwZDHh8edZ0OYtgr2Cef3gHCY/ME0LTBm9/Tne67iEp7YM\nIyLpCjqdDofDTvWAu7VxhnpePx51lBn7pgDwWst5PLX1CfxM/tgUG3GWWOeyY94h+Jr8WNUzjJ3h\nO3j551GYdCaWPvQVE3aNxWzwxKQ3MaPFqwzfMhS7YqOKXzXCem9k2fHPWXxkEW89+B6AFsSkBuz3\nXNOVsj7liE+NJ8WRzPzWizgfd553j7xJOe/yeBo9uXTjIgoKQeZgzEYzJoORB8q2YO3Z1ZT3rcCL\njcbxwZHFXEoIJ7TWUFac/JIQ7zJ82mUZo7c7l4PT6eDhaj2Z2nJGmuAQdbyTPkjWNePcM/VH0bV6\nNwB6r32Y8j4VtGvR5nMbeXrbMC0IPqNAN0gbIOR6XUvfp9U+99r+mbzX0Rl0+/TWYUQlXyWs1yat\njJl9l1G/V6jngcyC8dNLP47N6DHXAKP0x1hOglXSBynlt8zOUZB5gPCdIKcBl3mpV063KZFBQA6H\ng1mzZnHq1Ck8PDyYM2cOVatWzfT1xXHgIjd6C1ZxaN+kFCvhkQmER8ZzITKe8MgErkQn4VAUygR6\n0b99DW4kWdy+/Ik7goBUiqIQxczPsQAAIABJREFUGZPMH+ei+fdaUprn9Dodlcr4UKNCANUr+FOh\ntA/lg73x9DC6pWwFpTj03aJM2vf2yQ2d/FdQ46L8CAKKjkthz7ErxCVa6NS0EhVK++Rpf+5gszuw\n2hwYDXqMBh1Wu4N//r3BqfBYYhMyXv4l0NeD+2qWxu5QOHYmmrjEnC0TowOCAzyx2h1aNiIAs8lA\nzcoB1KkahI+niRSLnZRUGw5FITjAk9IBXgQHeOJh1ONwKCgKWGx24hIsxCVauJFkwWTU42024u1p\nJNDHTNlS3piMmQcWKYpCisWOp4ch2zGB+vWhMJdOu11yHncfaWv3kbZ2DwkCKr6iouJv+9fuufk1\ndkHKST3y4xfv2QVG5UZB3QzObsIso1/suiOIJjeKYpmyUtCZH8A5weI6WZSbbTOaKHGdSEz/S+X0\ngTrpf0Gd0Xtdjr/EI2se0rI+ZZRpIadlT1/GneE7+ODIYnQ6tIww+y/vY+Gvc7UANtdf1q/qGaZl\nRkg/4Zo+gOzJzY8TlXRVW2ZsRrPZ9LmnH8ejjjL7wEzOx/1DGe9ymAxGFAU+6vyZVma1jdIHQ6af\n7Eqf8emJzaHaRGX68qiTeGoGDDVQRd2PaztlFFy4M3wHtYPraBl/Vp3+OsvPQp24tTqshPXeeEt5\nXV+Xl2Myp8GM6uSoOqGc1/3ltEyQ/QS+a7nc8Wt+GRcVvtyOd4v6pG5Oy3e7E+jZBSWnv77k9toA\n2Y+7sqtDTo7nzec28vrBObdc69Rt4Nag6qzK4RoYoW7rmm3MNSDE9XVqfQ9HHOLZbU+luVakD/RW\nH++/rjfgzPyiBoeAM4jxk85fALDo8MI0Y7/R25/jhiUOb5M3LzYaxyfHl9C/5iDmH5qtZTCC/65x\nm89tZMa+KRh1Ju391YAqNXDl9dZv8u7vi7gcf4lSnqXxNHryUuNxWkai1w/O0a5J6mcbkXiFYT88\njoKDmJTrBN3MTORp8OKF+8bQrkoHQjf251pSFN4mH2a3msfT24Yxsek0Vp3+mskPTGPE5qEoOoVy\nPuX5tMsynt46jFRbqpZ1cM3fq1n461yCPUP47KFljNnxHINrDWHhr3OZ0HQqa899rwVLt6vSgZ3h\nO3j390VaoI9OB9Obv8rrB+cQk3IdT6MnXkZvJj8wjTMxZ3jj8DxG3vsCHx17j7De/wXNPLVlGNEp\nUXzS+QstyEvN2HQpIZw1vTZm+GOF9w+/myZb3fGoo1rfVLNVJduStDFQRpns0vfHzI6DjAL21der\nmfue3joMdPBp52VpgtUy6tsZUceVmWXISX++cP07ox97pD/mcnpcFtY5uyh9Z86NnIzhcluv3GxT\nIoOAtm7dyo4dO5g/fz5Hjhzh448/ZsmSJZm+vjjeEC1ON3rVrqh1SJeeqa4bnb63KulerP6d5mXa\nYznch8tzwcG+XLuW4PLajMv439//ba3c+lCafQCYPQx4ehgw6G+dlFMUBYvVQbLFRnKqTZsATLHa\n0aFDr3dOviWn2oiJv5m9IMmC1ebAZlew2h1cjUnSMuCojAYdQX6eVC3nS60qgRm+tzu4MwjIVar1\n5iRpQiqxCRauxSUTfSMVhyPtB+XjaaR8aR/8vEz4eXvg6WFwLg1jtZNqsWuTq15mIz5eJgJ8PAjw\n9SDAx4zRkHZSVJ0k1QGeHga8PY1a5gdFUbDYHKRa7VgsdlKtdlKtDgx6HX7eJvx9PPKUDaKgzw0O\nRcFmc/zXv3XO+jmrerO+N5tB+//NF6mtI5PHRY9DUbBaHej1YDToC/Qzkhs6+a+gxkW57e9Wm8P5\n6xiDnu2/XeL42WiOn4tGUaBWlUAeqFPmjjz+FUXhWlwK0XEpJKbYSEqxYrE5qF7Bn2rl/LQ6ORSF\nCxHxXLqagJ+3B6X8zZTy80Sv15GYYiUpxUZCspUbiRbnf0kWDHo9vl4mgvw9sdvtRF5PznEgUU7p\ndTrKlvKiYmkfzKb/MuAlpdqIik3hWlwyKTevb8H+npQOdGYs8vd2Xt88PQxcjkrknys3uBAZj82u\nUCbIizKBXpQJ8sLXy4S3pwlvsxEPk/P8odfpUBRFq3NCshWdDrxuXj89TM4gJptdwW53YDDo8fQw\nYDY5x0fOcZIRs8mAze7QxkM2uwMfTxPens4gp5RUO3GJFuISU7HZFWf5Azzx83bejEmx2ElKsWFz\nOPAwGjCb9FQoH0hk5A2sN4O+AO299XodNruDpBQbiSlWAHw8Tfh4GbVxk6Io2B2Ky7hOh2u31unA\n4VCw2pxjMrV+JoPuZoCZHr3+vw0UxdkOFpsdvU6Hh0mf4RjNcbM945MsWKwOfDyd45CcBG+l30+q\nxbnknYdJn+l4ND+kP4coijNwzZHDr6HZVUvtaznh+t46nfO4SN9udodzfGPQ3/pcUVdcxydFjQQB\nFV/58bkW9QmwoqqwbwbL5yZUeZkkzm5ytyD6V0YTwa7vl1EGh5zsM3Rjf7pU6Ua1gGoEewWnmdxS\nl1hTJ0LTv39eZZYNSy1TTn7Znh3XCbfsAljyM7gxr3ISbJMf5828Tli5o21kXFT4cjMuKuzreHZy\nk8UhN4EtuS1D+oCCrLKKZRRcmj5oIDcBR7mpi/peaiBpZhk8chIwlT4wQr0uuWZUcuUaiJE+EGLA\n+t58+0hYtu/vGlAzZsdzfPtImBZs4hqo45qVqHdYdyIS/2V+m0V8cnwJSdYkdDr4N/4ya/v8kCZY\n6a12i7Uglaikq2mCU1Vq0JPr8qRqZkn1utc7rDveJu80gUB91jqvu4qiUM7XGcRTzqc8a/5ezRuH\n5/F9zw0AWoBxOZ/y2n5G1n+Ox+oN1bImztg3hRcbjWPsz6Op4FOJzx5apl0L1WUg1cAZ1wxMrm2j\nLgOpZt5x/ZzUoOi32i1OE3ysBiv1DuvOR50/S5OVp3/NQVqQkWu/UNsxdGN/kqxJzG41T1tiTM2y\n5LoMZ/rMOOkzVqX/PLLiGhST1fjJNXMekCZILrtgI9d9qMd9Ztn9MtouswCmnGybWZ0LKrNNTtxp\n373yI4j0drcpkUFAr7/+Og0aNKB7d2dEfJs2bdi9e3emry+IG3VbD11k3Z5/yGsj5uW2ctoJBh25\n+QiVNIE1af91SwBNuuCZtI+l3192ATYu+8koUKeEMxmdk0HqR6vg/DX+7R6dZpPBOfno76kt+eXn\nbSoSExqFFQSUEbtDIeZGCtE3UohLsBCbaCEuwUJKqq3A+qnRoMeg12Gx2rN9Dy+zIceTWyq9XndL\nYFN+cCjOJWts9vzbt87lH7oMJlFdg4pc/kwTVKRz2UnavwtGbs+9RV1Gn6sOMJn0lAn0ZurQJmmC\nBvKD3NDJfwU1LsrNZOcf/0Tz7qpj2B0KhpsBDnaHgo+nkRb3livSGYCKAtdrY1KKjciYJBwORRsn\nACSm2Ei8GVDjcDgDGXQ6HXq9zhlc42HA02zE4VCwWO1YrHYSU2zE3gx+VQNeXBkNuptBPEZSLXbi\nk61YrLe+TuUMUNURn2jFas/8dYXNdDNTkj2X10OjQY8tk3p5ehhuBvc4bnuMoNfpMBqdASwWq+OW\noBijQXcze5NOu1amWOwZBs8Y9DoMBjXoOOvro83hDABKz8Ood7aZ8l+wjKIo2t/w33XZ9Zp86/vp\n0myvgJaxSv07v6ltadTrUUgb7KMoCg5Hxu+tA4xGZ9Yvu0PBZlO09tXpwHQzYKsIDJ1zpKDGf+I/\nHiYD04Y3I8gr/7OGytio8EkQXeG6024GC+Eqo0merH6p7e7y5NSKP79i7M+j+bLrygyX5bjT3Un1\nyOkkXn5kAiqKbSLjosKX0bgoJxlmiqqCnMTNbTnUyffjUUczzPaV2QR9+iwl2S09drvlVN/rdvaR\nPjAjo6wr2dVV/Ts3mcjSB7D2XdeDjzt9fkvmlvSBWa5ZeSBtdrv0mZByGsilZie6lBDOJ52/0IKD\n1KU/1b/VAB014EUNRFGXhp3X6o0Ml1lVM+qM3PYkr7d+kyl7X2FeqzeYtGccYb02cTL6BO2qdLgl\n8036umXWrzJbutW1ndRsfbMPzMSoN/FWu8Va1kT1c3QNokm/pJtrMNDIbU9qAUdjd47BarfyXscl\nGY6rbicQLqNt1cAm4JYsWBllr8pLsG5+ZPjMr0Dg/M5sUxwVlXYokUFAU6dOpUuXLjz44IMAtGvX\njh9//BGj8c5exkcIIYQQIrdkXCSEEEIIIYQQheti3EX6fNOHDx7+gGaVmhV2cXJt3cl19Kzds7CL\nIYQoYtRz25qBa6gcULmwi3NHuxh3ESDL9rwYdzHbds7Ja4qSi3EX6b6yOxtDN6Ypd/p6ZNbXcltf\n19f/cumXNNfkvLZd+u3S7zer7f6N/5dmlZpp+1D//8ulX3hh0wusGbgGIMO2mNF2hnZtzqh9LsZd\npPPyzmwbsk17n18u/UIFvwoZvjaruue077nu17VOah0y2o9rXdO3o/q4Wn71fbLaX17rkNX5zPU9\ns9pnYR+j7jj+77RzTEG5k9vhjg4Cev3112nYsCEPP/wwAG3btmXXrl2FXCohhBBCCPeTcZEQQggh\nhBBCCCGEEEIIIUTJpi/sAtyOxo0ba5NbR44c4Z577inkEgkhhBBCFA4ZFwkhhBBCCCGEEEIIIYQQ\nQpRsd3QmIIfDwaxZs/j7779RFIV58+ZRo0aNwi6WEEIIIYTbybhICCGEEEIIIYQQQgghhBCiZLuj\ng4CEEEIIIYQQQgghhBBCCCGEEEIIIYQQd/hyYEIIIYQQQgghhBBCCCGEEEIIIYQQQggJAhJCCCGE\nEEIIIYQQQgghhBBCCCGEEOKOJ0FAQgghhBBCCCGEEEIIIYQQQgghhBBC3OEkCKiISklJYfTo0YSG\nhvL0009z/fr1W17z7bff0rdvXwYMGMBPP/2U5rlt27Yxbtw47e8jR47Qv39/Bg0axPvvv1/g5S/q\n8tq+mW23bds2OnXqxJAhQxgyZAgHDx50a32KAofDwYwZMxg4cCBDhgzhwoULaZ7fsWMH/fr1Y+DA\ngXz77bdZbnPhwgUGDx5MaGgoM2fOxOFwuL0+RU1+tu9ff/1FmzZttP66adMmt9enKMlL26qOHj3K\nkCFDtL+l74qiyh3n6KzGJSWJu66H169f56GHHiI1NdV9lSti3NHWy5Yto3///vTv379Ej6Hd0dYr\nVqygX79+PProoyV2bOKu84fD4eCpp57if//7n/sqV8S4o63nzJlD3759tTF3fHy8eyspioX03zdU\nGfVRq9XKuHHjGDRoEKGhoZw9e9bdxc2V3NTNYrEwbtw4BgwYwPDhwzl//rybS5s7mdUNIDk5mUGD\nBmmfT3bno6IkN/XKyTZFSW7qZrVaeeWVVwgNDeXRRx9l+/bt7ixqruWmbna7ncmTJzNo0CAGDx7M\n33//7c6i5lpe+mR0dDQPPvjgHXuOhIzr1qdPH23MMXnyZHcVM9dyW6+PP/6YgQMH0rdvX1atWuWu\nYpY42V2LwsLCeOSRRwgNDdU+h8yuzSdOnGDAgAEMHjyYyZMnF7uxcX621Z9//smjjz5KaGgos2fP\nLnb319zRVsWlX7nKzRi5pN+7Lci2kr6V9fE7b968NPeUpG/lvK3c2rcUUSR9/vnnyuLFixVFUZQN\nGzYos2fPTvP81atXlR49eiipqanKjRs3tH8riqLMnj1beeihh5SXXnpJe33Pnj2VCxcuKA6HQ3nq\nqaeUP//8032VKYLy2r6ZbffWW28pmzdvdm8lipgtW7YoEydOVBRFUX7//Xfl2Wef1Z6zWCxKp06d\nlNjYWCU1NVXp27evEhUVlek2zzzzjHLgwAFFURRl+vTpytatW91cm6InP9v322+/VZYuXer+ShRR\neWlbRVGUTz75ROnRo4fSv39/7fXSd0VRVdDn6KzGJSWNO66Hu3btUnr16qU0atRISUlJcWf1ipSC\nbuvw8HClT58+is1mUxwOhzJw4EDlxIkTbq5l0VDQbR0dHa10795dsVgsSnx8vNK2bVvF4XC4uZaF\nz13j6UWLFin9+/dXVq5c6a6qFTnuaOtBgwYp0dHR7qyWKGYy+r6hKJn30W3btiljxoxRFEVR9uzZ\no4waNaowip0jua3b8uXLlWnTpimKoihnz55Vhg8fXhjFzpHM6qYoinLs2DGlT58+SsuWLZUzZ84o\nipL1+agoyW29stumKMlt3b777jtlzpw5iqIoSkxMjPLggw+6s7i5ktu6bdu2TZk0aZKiKIpy4MCB\nItsfFSVvfdJisSjPP/+80qVLlzSPFzW5rVtKSorSq1cvdxcz13JbrwMHDijPPPOMYrfblYSEBO2e\nvMh/WV2LoqOjlfbt2ysxMTGK3W5XhgwZoly8eDHTa/Pzzz+v7Ny5U1EURRk7dqyyfft2RVGKz9g4\nP9uqT58+yuHDhxVFcc4vhYWFFav7awXdVopSfPqVKrdj5JJ877Yg20pRpG9l1l7R0dHKiBEjlI4d\nO2r3lKRv5bytFMW9fUsyARVRhw8fpk2bNgC0bduW/fv3p3n+2LFjNGrUCA8PD/z8/KhSpQonT54E\noHHjxsyaNUt7bUJCAhaLhSpVqqDT6WjdujX79u1zW12Kory2b2bb/fnnn6xevZrQ0FDmz5+PzWZz\nb4WKANe2ue+++/jjjz+0586ePUuVKlUICAjAw8ODJk2acOjQoUy3+fPPP3nggQcAZzuX9P4K+du+\nf/zxBzt37uSxxx5jypQpJCQkuL9CRUhe2hagSpUqvPfee2n2JX1XFFUFfY7OalxS0rjjeqjX6/ni\niy8IDAx0Z9WKnIJu63LlyvHZZ59hMBjQ6XTYbDbMZrOba1k0FHRblypVirCwMEwmE9euXcNsNqPT\n6dxcy8LnjvPH5s2b0el02jYlVUG3tcPh4MKFC8yYMYNBgwbx3XffubmGojjI6PsGZN5H77rrLux2\nOw6Hg4SEBIxGYyGUOmdyW7czZ87Qtm1bAKpXr16kM3hkVjdw/rr9gw8+oHr16tpjWZ2PipLc1iu7\nbYqS3Nata9euvPjiiwAoioLBYHBLOfMit3Xr1KkTs2fPBuDff//F39/fLeXMi7z0yQULFjBo0CDK\nlCnjjiLmWW7rdvLkSZKTkxk+fDhDhw7lyJEj7ipqruS2Xnv27OGee+7hhRde4Nlnn6Vdu3ZuKmnJ\nk9W16NKlS9SqVYvAwED0ej3169fn6NGjmV6b69SpQ2xsLIqikJiYiNFoLFZj4/xsq8jISBo3bgw4\n5/QOHz5crO6vFXRbFad+pcrtGLkk37styLaSvpV5eyUmJjJ69Gh69eql7UP6Vs7byt19S4KAioBV\nq1bRo0ePNP/Fx8fj5+cHgI+Pzy3poBISErTn1deoE/kPP/xwmpvmCQkJ+Pr6pnltcUhdllP52b6u\nj7tu16pVK6ZPn86KFStISkri66+/dlPtio70/cxgMGjBUFm1Z0bbKIqi9eGS1l8zk5/t26BBAyZM\nmMCKFSuoXLkyH3zwgfsqUgTlpW0BHnrooVturEvfFUVVQZ+jszpWShp3XA9btWpFUFCQO6pTpBV0\nW5tMJkqVKoWiKCxYsIC6dety1113ual2RYs7+rXRaOT//u//GDhwID179nRHtYqcgm7nv//+mw0b\nNmgTlyVZQbd1UlISjz/+OG+88QafffYZK1euvKNvgonCkdH3Dci8j3p7e3P58mW6devG9OnTi/QS\nTLmtW506dfjpp59QFIUjR44QGRmJ3W53Z5FzLLO6ATRp0oTy5cuneSyr81FRktt6ZbdNUZLbuvn4\n+ODr60tCQgJjxozhpZdeckcx8yQvn5vRaGTixInMnj2bRx55pKCLmGe5rdv3339PqVKl7ohA6NzW\nzdPTkxEjRrB06VJeffVVxo8fXyzOIzExMfzxxx+8++67Wr0URXFHUUucrK5FVatW5cyZM1y7do3k\n5GT2799PUlJSptfmatWqMXfuXLp160Z0dDTNmjUrVmPj/GyrypUrc/DgQQB++uknkpOTi9X9tYJu\nq+LUr1S5HSOX5Hu3BdlW0rcyb6/KlSvTsGHDHO3jTlWQbeXuvlX0v4mVAP3796d///5pHhs1ahSJ\niYmAM1os/S8vfH19tefV17h2vuxeW5R/yZHf8rN9XR933a5fv37avzt27MiWLVsKrD5FVfo2czgc\n2okyJ+3puo1er0/z2pLUXzOTn+3buXNnrU07d+6s/cqrpMpL22ZG+q4oqgr6HJ3bY6U4k+uh+7ij\nrVNTU5kyZQo+Pj7MnDmzoKtUZLmrXz/++OMMGDCAp59+mgMHDtC8efOCrFaRU9DtHBYWRmRkJE88\n8QSXL1/GZDJRsWJF7ZeWJUlBt7WXlxdDhw7Fy8sLgObNm3Py5Elq165d0FUTJUBmfXTZsmW0bt2a\ncePGceXKFZ544gnWr19/R2Wxy6xunTp14uzZs4SGhtK4cWPq1atXpLOv5EZW5yNRdF25coUXXniB\n0NDQIh0ok1cLFixg/PjxDBgwgI0bN+Lt7V3YRbptq1evRqfTsX//fk6cOMHEiRNZsmQJISEhhV20\n23bXXXdRtWpVdDodd911F4GBgURFRWUY5HUnCQwMpHr16nh4eFC9enXMZjPXr18nODi4sItW7GR1\nLQoICGDy5MmMHj2awMBA6tWrR1BQEO3atcvw2jx37lxWrFhBzZo1WbFiBfPnz2fatGnFZmycn201\nb9485s6dywcffEDTpk3x8PAoVvfXCrqtStJ3Lrl3m3PyfT53ctteudlHcZMfbeXuviWZgIqoxo0b\n8/PPPwOwa9cumjRpkub5Bg0acPjwYVJTU4mPj+fs2bPcc889Ge7L19cXk8lEeHg4iqKwZ88emjZt\nWuB1KMry2r4ZbacoCj179iQiIgKA/fv3U69ePfdWqAho3Lgxu3btAuDIkSNp+mONGjW4cOECsbGx\nWCwWfv31Vxo1apTpNnXr1uWXX34BnO1c0vsr5G/7jhgxgmPHjgElt7+6ykvbZkb6riiqCvocnZtx\nSXEn10P3Kei2VhSF559/nlq1avHaa68Vm8nGvCjotj537hyjRo1CURRMJhMeHh5pbsSUFAXdzhMm\nTGDVqlUsX76cPn36MGzYsBIZAAQF39bnz59n8ODB2O12rFYrv/32W4kfc4v8k1kf9ff31262BgQE\nYLPZimy2nMxkVrfjx4/TokUL/ve//9G1a1cqV65c2EXNN1mdj0TRdO3aNYYPH84rr7zCo48+WtjF\nyVdhYWF8/PHHgHOSQqfTFZsx2YoVK/i///s/li9fTp06dViwYEGxCAAC+O6775g/fz7gXDInISGh\nWNStSZMm7N69G0VRiIyMJDk5ucQviV1QsroW2Ww2/vrrL1auXMm7777LuXPnaNy4cabX5oCAAC0j\nQpkyZbhx40axGhvnZ1v9/PPPvPnmm3z55ZfExsbSqlWrYnV/raDbqjj1q+zIvduck+/zuZPb9sqI\n9K2ct5W7+5b8tKSIGjx4MBMnTmTw4MGYTCYWLVoEwBdffEGVKlXo2LEjQ4YMITQ0FEVRePnll7P8\ndZeaMtNut9O6detbUlCVNHlt34y20+l0zJkzh1GjRuHp6UmNGjUYMGBAIdfQ/Tp37szevXsZNGgQ\niqIwb9481q9fT1JSEgMHDmTSpEmMGDECRVHo168fZcuWzXAbgIkTJzJ9+nTeeustqlevzkMPPVTI\ntSt8+dm+s2bNYvbs2ZhMJkqXLl3iMwHlpW0zI31XFFUFfY42GAy5GpcUZ3I9dJ+Cbusff/yRgwcP\nYrFY2L17NwBjx47NMhi0uHLHOaR27doMHDgQnU5HmzZttDXZSxI5f7iPO/p0r169GDBgACaTiV69\nelGzZs1CrrW402XXR4cNG8aUKVMIDQ3FarXy8ssv3zHZO7Krm8lk4t133+Wjjz7Cz8+PuXPnFnaR\nc8y1bhnJ7NxS1GVXrztZdnX76KOPuHHjBh9++CEffvghAJ9++imenp7uLGaeZFe3Ll26MHnyZB57\n7DFsNhtTpky5I+oFJbtPPvroo0yePJnBgwej0+mYN2/eHZFRLLt6tW/fnkOHDvHoo4+iKAozZswo\n0T/MKEjZjY0B+vTpg9ls5sknn6RUqVIAGV6b58yZw8svv4zRaMRkMjF79mwqVapUbMbG+dlWVatW\nZdiwYXh5edGsWTMefPBBgGJzf80dbVVc+lVm5N5tzsn3+dzJa3tlJCQkRPpWDtuqRo0abu1bOkUW\nUhVCCCGEEEIIIYQQQgghhBBCCCGEEOKOVjzyeQohhBBCCCGEEEIIIYQQQgghhBBCCFGCSRCQEEII\nIYQQQgghhBBCCCGEEEIIIYQQdzgJAhJCCCGEEEIIIYQQQgghhBBCCCGEEOIOJ0FAQgghhBBCCCGE\nEEIIIYQQQgghhBBC3OEkCEgIIYQQQgghhBBCCCGEEEIIIYQQQog7nAQBCSHc6vjx40ydOjVX29Sq\nVStf3vvYsWO88cYb+bIvIYQQQoj88v333zNp0qTCLsZtGzJkCL/88kthF0MIIYQQd4hLly7RoUOH\nDJ/Lr3tBmenVq1eB7l8IIYQQIq9kHk0IcbuMhV0AIUTJUr9+ferXr18o733mzBmio6ML5b2FEEII\nIYQQQgghRNGwdu3awi6CEEIIIUSGZB5NCHG7JAhICJFrv/zyC++99x5Go5ErV67QoEED5s6dy6ZN\nm/jyyy9xOBzUq1ePmTNnYjabad68OfXq1ePatWtMmDCBjz76iOXLl/PPP/8wY8YMYmNj8fb2ZurU\nqTRo0IBLly7xyiuvkJSURMOGDbMtz/fff8+aNWuIjY2lffv2DB06lBkzZhAREYFOp2PcuHHce++9\nLF68mKSkJJYsWULZsmU5ePAg8+fPB5y/XB81ahQAb7zxBg6Hg5o1a1KpUiUiIyO5cOECly9fpn//\n/jz33HMF2r5CCCGEKHpsNhuzZs3i9OnTXLt2jbvuuovq1atTtmxZRowYAcCYMWPo0aMHDRo0YPz4\n8cTFxXHPPfdw6NAhdu3drtABAAAgAElEQVTaleX+L1y4wGOPPaaNZ8aNG4dOp2P16tV88cUX6HQ6\n6tWrx/Tp0/Hx8cl0PwsWLGDv3r0YDAY6duzIqFGjeO+99zh//jzh4eHExsYycOBAnnrqqRyNoVq2\nbElkZCRTpkwhPj6eqKgounfvzvjx47FYLEydOpU//viDihUrEhMTk69tLoQQQoji5aOPPmLdunUY\nDAZatWpFaGgoKSkpvPzyy5w+fRp/f38++OADgoKCtG1iY2OZOnUq586dw8PDg0mTJtGiRYtM36ND\nhw506NCBX3/9FYB58+ZRt25dhgwZQkBAAKdPn+add96hd+/enDp1KtP979q1i8WLF2Oz2ahUqRKz\nZ89OUy4hhBBCiKzIPJrMowlRmGQ5MCFEnhw7dowZM2awefNmUlNTWbp0Kd9++y1ff/01a9euJTg4\nmKVLlwIQExPDyJEjWbt2LUbjf7GHr7zyCkOGDGH9+vVMnjyZF198EYvFwuzZs+nbty9r166lcePG\nOSpPZGQka9asYezYscydO5d+/frx/fffs2TJEmbMmIFer2fMmDF06NAh28HH+fPn+fLLL1mwYAEA\np06dYunSpaxatYpPPvmEGzdu5LHVhBBCCHGn+v333zGZTHzzzTds27aN1NRUypUrx8aNGwFISEjg\nt99+o127dsydO5du3bqxfv16unbtSmRkZLb7v3TpEu+99x5r1qzh8OHDbN++nVOnTmk3fdavX4+X\nlxfvv/9+pvu4fPkyu3btYt26dXz99decP3+e1NRUAP7++2+WLVvG999/zzfffMOff/4JZD+GSkhI\nYMOGDfTo0YNvv/2WdevWsXLlSq5fv87y5csB+OGHH5g2bRrh4eG328xCCCGEKKZ+/vlnduzYoU1A\nXbhwgd27d3P9+nWefPJJNmzYQOnSpdm0aVOa7d59912qVKnCDz/8wMKFC3nnnXeyfa/AwEDCwsIY\nM2YMEydO1B6vVasWW7ZsoU6dOlnu//r16yxatIilS5cSFhZG69atefPNN/OvMYQQQghRIsg8mhCi\nsEgmICFEntx///1Ur14dcK6jPnr0aIKCghgwYAAAVquVunXraq9PH4mcmJhIeHg4Xbp0AeC+++4j\nICCAc+fOcfDgQRYtWgRAz549mTZtWrblqVu3rjYw2rdvH+fOnWPx4sWA85f7Fy9ezHHd7rrrLvz8\n/LS/mzVrhoeHB8HBwQQGBhIfH4+/v3+O9yeEEEKIO9/9999PYGAgK1as4Ny5c5w/f56goCAsFgsX\nLlzg999/p3379nh4eLB3715ef/11ADp37pyjcUOHDh0oVaoUAN26dePgwYNERETQvn177VfnAwcO\nZPLkyZnuo2zZspjNZgYNGkT79u156aWXMJvNAPTo0UPLINShQwcOHDhAUFBQjsZQI0aM4MCBAyxd\nupTTp09jtVpJTk7m4MGDDBw4EIBq1arRqFGjvDStEEIIIUqAAwcO0L17dzw9PQHo168fYWFhlClT\nhgYNGgBw991335JZ8NChQ1oATq1atfjmm2+yfS/13lSHDh2YNGkS169fB9DeJ7v9//TTT1y5coWh\nQ4cC4HA4CAgIyEu1hRBCCFGCyTyazKMJUVgkCEgIkScGg0H7t6Io2O12unXrpg00EhMTsdvt2mvU\nmzyu2yiKcstj6jbqczqdDp1Ol215XPfvcDj48ssvCQwMBJzRzaVLl+bEiRPaa3Q6XZr3t1qtmZZV\nnTzLaDshhBBClAzbt29n8eLFDB06lL59+xITE4OiKPTs2ZNNmzbx+++/8/TTTwPOcVJuxwuuv/JS\nFAWj0YjD4UjzGkVRsNlsWe5j1apVHDx4kF27djFo0CAtW4/r2M3hcGh/52QMNX/+fC5evEiPHj3o\n1KkT+/btQ1EUdDpdmjK61kEIIYQQwlX6cQ04J5tcxw8Z3XNJP744e/Ysd911F3p95gnuXbfJbNyT\n1f7tdjuNGzfmo48+AiA1NZXExMRM308IIYQQIiMyjyaEKCyyHJgQIk8OHz5MZGQkDoeDsLAwpkyZ\nwrZt24iOjkZRFGbNmsWXX36Z6fa+vr5UrlyZrVu3AnDkyBGuXbtGzZo1admyJevWrQNg69atWCyW\nXJWtefPmrFy5EoAzZ87Qs2dPkpOTMRgM2sRZUFAQZ8+eRVEULl68yKlTp/LSDEIIIYQoIfbv30+3\nbt3o168fpUuX5tChQ9jtdh555BE2bdrEhQsXaNq0KQAtW7Zk/fr1gHPpi5ykQFZfl5qaysaNG2nZ\nsiUPPPAAO3bsIDY2FoBvv/2WZs2aZbqPv/76i8cff5z777+fiRMnUqNGDf755x8AfvzxRywWC3Fx\ncfz000+0bt36lu0zG0Pt3buXESNG0K1bN65cuaKNAVu0aMGGDRtwOBxcvnyZ3377LXeNKoQQQogS\no3nz5mzcuJGUlBRsNhurV6+mefPm2W7XtGlTbYmws2fP8vTTT2c7yaUu17pt2zZq1KiRZRafjPbf\noEEDjhw5oo2jPvzwQxYuXJijegohhBBCqGQeTQhRWOSnmkKIPClTpgwTJkwgMjKSVq1a8fjjj+Pt\n7c0TTzyBw+GgTp06jBw5Mst9vPHGG8ya9f/s3XtclGX+//H3AIIKQy2FJ0jXY6VlJmqZodvBJDPB\nA4IYabad1bQ0DxmamqfULP1W1mZ+MxU0FY9r5qHM1TWig8VqmboUeAizdAAVlPn90Y/5RgIiM8M9\nN/N6Ph772JiZ+5rrvhnnfnNfn/u6JmrevHmqUaOG5s2bJ39/fyUlJWnUqFFKTk7WjTfe6Fi6oqLG\njx+vpKQk3X///ZKkmTNnKigoSK1bt9b8+fM1a9YsDRs2TCtXrlRUVJQaN26siIiISh8LAABQ/cXG\nxmrkyJHatGmT/P391aZNG2VlZal+/fr6y1/+ojZt2jgGpMaNG6fRo0dr+fLluu666yo0/XGTJk30\n6KOP6vTp0+rRo4ejSOexxx5TYmKiCgsL1apVK7344otlttGyZUu1adNGPXr0UK1atXT99derc+fO\nysjIUEBAgBISEpSbm6vHHntMzZo10969e0tsX1aGeuyxx/Tcc88pODhYV111lW644QZlZWUpISFB\nBw4c0L333quwsDC1aNGisocXAABUc3fccYf27dunPn366Pz584qMjNQdd9yh9957r9zthg0bpvHj\nx6tnz57y8/PTzJkzL1kE9MUXX+iDDz5QrVq1NH369Mtuv06dOpo6daqGDx+uoqIi1a1bVy+//PJl\n7zMAAPBujKMBMIrFznxcAC7Tnj17NH/+fMfyEgAAAPg/7733nm677TY1a9ZMGRkZeuGFF7Rq1SrD\n+jNv3jxJ0tChQw3rAwAAQFW488479d577yk8PNzorgAAAC/GOBoAIzETEABT2LhxoxYsWFDqc2vW\nrKni3gAAAJStUaNGeuaZZ+Tj46OAgABNnjzZpVkmMTGx1CXG4uPj1b9//0r1GQAAwCzKy0IAAADe\ninE0AMWYCQgAAAAAAAAAAAAAAAAwOR+jOwAAAAAAAAAAAAAAAADAORQBAQAAAAAAAAAAAAAAACZH\nERDgocaMGaN33nmn1OeuvfZanTx50q3vf/z4ca9aSz0rK0s333yz0d1wuU2bNikxMdHobgAA4FZ7\n9uxRjx49jO6GRykvS5pZjx49tGfPHqO7AQCA16guOevOO+/UN998c1nb7N27V0lJSZKkb775RsOG\nDSv39dU1fwEAgEszw1hMZbKKzWbTgw8+6Pg5Ojpap0+fLvP1q1at0mOPPVbpPgJwDT+jOwDAM9Wt\nW1fJyclGdwMAAAAAAACocj/88IOOHz8uSbrxxhv12muvGdwjAACAqnXq1KkShdRr1qwxsDcAKooi\nIMBgKSkpWrx4sXx8fHT11VfrhRdeUOPGjSVJX375peLj43XixAk1b95cs2fPVu3atUtsv2DBAq1e\nvVp+fn5q1KiRpk+fLqvVWub7JSYmqmnTpvr222/166+/Kjo6WsOGDVNWVpYGDBigpk2bKjs7W9On\nT9fgwYP15Zdf6vz583r55Zf18ccfy9fXVzfffLMmTJggf39/vfHGG9q8ebOKiooUFhamCRMmqG7d\nuiXeMz4+XoMGDVJUVJQkadasWbLb7Ro0aJBGjx6tX3/9VZLUpUsXDR8+/KI+f/DBB0pJSVFhYaFO\nnTqlRx55RAkJCWW2+8wzz2jmzJnatm2brFarWrdurYMHD2rx4sXl/i6Kior0/PPPKyMjQ35+fho/\nfrzatGmjwsJCTZ8+Xbt375avr69at26tsWPHKigoqMy28vLyNHbsWGVmZsrHx0etWrXSpEmTlJaW\nppkzZ6pu3br66aefVLNmTU2fPl1NmzbVmDFj9Ntvv+mnn37S3/72Nz399NOaNWuW0tLSdOHCBbVs\n2VLjx49XUFCQtm/frgULFqigoEAnT55UTEyM49i9+uqrWrduna688ko1atSo3H0GAKC6yM/P14gR\nI3To0CGdO3dOU6ZMUbt27WSz2fTiiy9q//79slgsioyM1DPPPCM/Pz9de+212r17t0JCQiTJ8fOB\nAwf00ksvqXbt2srPz9cHH3wgf39/SdLOnTs1Y8YMrVu3TpJ0+vRp3XXXXdqyZYs2bNig5ORk1ahR\nQwEBAZo0aZKaNWtWop8nTpxQUlKSfvnlF+Xk5CgsLExz587Vvn37ymw3MzNTEydOVGFhoRo2bKgj\nR45ozJgxuuWWW8o9Junp6frwww+Vm5urTp06afTo0fLz89Pnn3+umTNn6syZM6pRo4aGDx+uzp07\nl9vW5s2b9cYbb8hiscjX11fPPfec2rdvX+FsuXjxYmVlZWnWrFk6c+aMLBaLhg4dqjvuuEP5+fma\nOHGi/vvf/+rUqVMKDAzUrFmz1KRJE/3www8aN26czpw5oyZNmig/P79Snw8AAFB5ZslZ8+bNU3Z2\ntnJycpSdna2QkBC98sorjutUS5cu1f79+1VQUKCHHnpIffv2LXOfjx49qtdee002m01jx45VTEyM\nJk+erPXr1ysvL09TpkzRF198IV9fX919990aMWJEie2nTZum/fv36/XXX9e+ffs0ffp0FRUVSZIe\ne+wxdevWzTW/HAAAYJiyxmIOHz6sSZMmKT8/Xz///LOuu+46zZ07Vx9++KGWLl3quAH/yJEj6tev\nn7Zt2+bIQzabTV26dNGHH36o0NBQSVK/fv301FNPKTAw8JKZYs+ePXrllVd0zTXX6MCBAyooKFBS\nUpJuvfVWSWVfKyrL2LFjdfbsWUVHR2vVqlVq2bKlI+OVNj75R5s2bdKsWbP01ltvyWq1Vmg8EIBr\nsBwYYKDdu3frH//4h9577z2tXbtWPXr00FNPPSW73S7p9yW53n33XX344Yc6fvy4Nm/eXGL7rVu3\natWqVUpJSdH69esVHh6u999//5Lve+TIES1btkyrV6/Wxo0btX37dknSsWPH9OSTT5YIF9LvF0ky\nMjK0Zs0ax8WOjRs3KjU1Vd9//71WrFihNWvWqEuXLho/fvxF7xcbG6vVq1dLki5cuKC1a9cqNjZW\ny5cvV3h4uFavXq0lS5YoMzNTNputxLZ5eXlasWKF3nrrLaWmpuqVV17Ryy+/XG67K1asUEZGhtav\nX6/k5GT99NNPFfp9nD17Vp06dVJqaqqefvppDR8+XAUFBXrjjTf0888/a82aNVqzZo2Kioo0c+bM\nctv66KOPlJeXpzVr1uiDDz6QJEc//vOf/2jw4MFat26devfurVGjRpXow4YNGzRq1Ci99dZb8vX1\n1apVq7R27VrVqVPHUei0cOFCTZ8+3fH7f+utt3Ty5Elt2bJFmzdvVmpqqpKTk5Wbm1uhfQcAwOyO\nHTumQYMGac2aNYqPj9e8efMkSVOmTNGVV16pdevWaeXKlfruu++0cOHCS7Z34MABzZ49W2vXrnVc\niJGkTp06KS8vz3EX1Pr169WlSxcFBQVp6tSp+sc//qGVK1eqX79+Sk9Pv6jdDRs2qE2bNkpJSdHW\nrVtVs2ZNrVmzpsx2AwMDNXToUD399NNat26dEhMTtW/fvgofk0WLFik1NVX79+/X8uXL9euvv2rY\nsGF6/vnntW7dOs2YMUOjRo26ZF6aOXOmJkyYoFWrVunpp58usSRXRbJlQECAxo4dq5kzZ2r16tV6\n4403NHHiRB05ckQ7duxQcHCwli9frg8//FA33HCDlixZIkkaOXKkYmNjtW7dOj344IM6cuRIhfYd\nAAC4jllyliR9/vnnevXVV7Vp0yYFBwcrJSXF8VxAQIBWr16thQsXavbs2Tpw4ECZfaxfv76GDRum\ndu3aadq0aSWee+2113Tu3DnHtbEvvvhCn332mSTJbrfrxRdfVHZ2tt5++20FBgZq3rx5euihh7Rq\n1SpNnTpV//73vy95jAAAgGcrbyxm+fLliomJUUpKijZv3qysrCx9/PHHioqK0o8//qgffvhBkrRi\nxQr16tWrRB6yWq3q2rWr1q5dK0k6ePCgcnJyFBkZWeFMsXfvXg0ePFipqanq27ev5s+f73iutGtF\n5Zk2bZrj2pWvr6/j8UuNT65bt07z58/X4sWL1aRJkwqNBwJwHYqAAAN9+umn6t69u+OuqN69e+v4\n8ePKysqSJN19992qVauWfH191bx5c508ebLE9rt371ZUVJSuuOIKSb9X5D7xxBOXfN+4uDjVqFFD\nwcHBioqK0s6dOyVJfn5+atOmzUWv37Vrl6Kjo1WzZk35+Pho7ty5iomJ0fbt2/X111+rT58+io6O\n1vvvv6/Dhw9ftP29996rr776Sjk5Odq5c6caNWqkv/71r4qMjNTmzZv1yCOPKCUlRc8+++xFsxgF\nBgbqzTff1CeffKK5c+fqzTffdNwBXla7n3zyiaKjoxUQECB/f3/FxcVd8phIUnBwsLp37y5JioyM\nlN1u16FDh7Rjxw7Fx8erRo0a8vHxUWJioj799NNy24qIiNAPP/ygxMREvfXWWxo4cKCjEvy6665T\nu3btJEl9+vTRvn37HNXPERERjjY+/vhjbdu2TTExMYqOjtaWLVt08OBBWSwWvfnmm8rIyND8+fM1\nffp02e12nTlzRrt371bXrl0VFBQkPz8/9enTp0L7DgCA2V1zzTW66aabJP1+ri3OTTt27NADDzwg\ni8Uif39/xcfHa8eOHZdsr379+goLC7vocYvFor59+zoKkVetWqXY2Fj5+voqKipK8fHxmjRpkqxW\na6l3lw8cOFBt27bVu+++q4kTJ+rAgQPKz88vs93vv/9e0u93SEnSrbfequbNm1fomERHR6t27dry\n9/dXz549tWvXLu3du1cNGzZ0HKvmzZurbdu2joGrstx3330aMmSInn/+eZ0+fVqPPPKI47mKZMvi\nzPbUU08pOjpajz76qCwWi7777jtFRUWpV69eWrx4saZMmaLPPvtM+fn5+vXXX/Xdd98pJiZG0u85\nqaL7DgAAXMcsOUuSOnTo4Ji5uWXLljp16pTjufj4eElS3bp1dfvtt2v37t2XcRT+z65du9S3b1/5\n+vrK399f77//vmOGxkWLFik5OVlDhw51DOjde++9mjRpkp599lllZGTomWeeqdT7AgAAz1HeWMyo\nUaMUEhKit99+WxMnTtTPP/+s/Px8+fv7O26Qv3DhglavXl3q+FVsbKxSU1MlSStXrlTv3r3l4+NT\n4UzRoEEDXX/99ZIuzkOlXSuq7P6XNT75zTffaPTo0YqPj1f9+vUlqULjgQBchyIgwEDFM/78+bHz\n589LUokp+CwWy0Wv9/X1lcVicfx8+vRpRwFRef7Yrt1ul4/P718F/v7+pU779+fHTpw4oZ9//llF\nRUX6+9//7pghZ+XKlVq2bNlF29euXVvdunXT+vXrtXLlSsXGxkqSWrdura1btyouLk7Z2dmKjY3V\nF198UWLbY8eOKSYmRtnZ2YqIiCgxPWBZ7f65v8X7dyl/fp3dbleNGjUcUysWKyoqUmFhYbltXXPN\nNfroo4/06KOPKjc3Vw899JA2bdokSSWqpYvfp/ixPy73VlRUpHHjxjmO74oVK/Tqq68qPz9fvXr1\nUkZGhlq2bKnnnntOfn5+stvtF31O/vxeAABUVzVq1HD89x/Ph6Wdx4uz1h8VFBSU+PnPS7D+UZ8+\nffTPf/5T+/btk81mcwz6zJo1S2+++aYaNmyot99+W0OGDLlo25dfflmvvvqq/vKXvyguLk6dOnVy\n9LW0dn19fUvNgBXx59f5+flddDykkvmzLCNGjNCyZct0ww03aNWqVYqLi3O0VZFseeHCBTVt2tSR\na9asWaOUlBTdfvvtWrp0qZ5//nnVrFlT999/v3r06OHINcVt/nEfAABA1TJLzpKkmjVrltpXqeR1\nH7vdXulc4efnV+J63NGjRx03d7Vv317jxo3T2LFjHdeO4uPjtXbtWnXq1Ek7d+5Uz549ufMdAACT\nK28s5plnntHy5csVFhamQYMGqVWrVo7XxsXFacOGDdq+fbuaN2+u8PDwi9pu166dzp8/r71792r9\n+vWOAqOKZory8lBp14oqo7zxSavVqnfeeUfz5s1zPFaR8UAArkMREGCg22+/XRs3bnTcQbVy5cqL\n1g4tz2233aaPPvrIMc3gvHnztGjRoktut3btWhUVFenUqVP65z//qTvvvLPc13fs2FHr169XQUGB\nioqKNHHiRG3YsEG33367PvjgA8f7v/rqq3ruuedKbaNfv35atWqVvvzyS8capbNmzdLrr7+uu+++\nW88//7yaNWum//73vyW2+/bbbxUSEqInn3xSkZGRjuUlLly4UGa7Xbp00dq1a1VQUKDz58877iC7\nlN9++83R/rZt2xQQEKBGjRopMjJSycnJKiwsVFFRkZYsWaJOnTqV29bSpUs1duxY3X777Ro1apRu\nv/12xzTT+/fv1/79+yVJKSkpatu2rYKDgy9q4/bbb9eSJUscx/2FF17QnDlzlJmZqdzcXA0fPlx3\n3nmnPvvsM8drIiMjtWnTJp0+fVpFRUVas2ZNhfYdAIDqqvh8arfbVVBQoOXLl+u2226TJIWEhDiW\nm/joo48q3GbdunV10003KSkpyXEX+smTJ9WlSxddeeWVGjRokIYPH67vvvvuom137typgQMHKiYm\nRldddZV27drlyDWltdu0aVP5+/s77qrfu3evvv/++xIXWsqyYcMGFRQU6Ny5c1q1apU6d+6sm266\nSYcPH9bevXsl/b4cR1pamjp06FBmO+fPn9edd96p/Px89e/fXxMmTNDBgwcdg3wVyZZt2rRRZmam\n0tLSJEn79u1Tt27d9PPPP2vnzp3q1auXYmNj1bhxY23btk0XLlzQlVdeqVatWmnFihWSpIyMDMfM\nSAAAwHielrMupfj60JEjR7Rr1y517Nix3Nf7+vqWWtTUsWNHrV69WkVFRSooKNCwYcMcGeeGG27Q\nAw88IKvV6lh6Iz4+Xvv27VPv3r01efJknT59usQd+QAAwHzKG4vZuXOnnnrqKXXv3l0Wi0Vff/21\n49pPgwYN1KZNG02dOlX9+/cvs/3Y2FhNnjxZ1157rRo0aCDJNZmitGtF5fHz89OFCxcuukGtvPHJ\nv/71r+rYsaMSExM1evRoFRUVVWg8EIDrcBslYKBOnTpp0KBBGjhwoIqKihQSEqIFCxZUeOaaLl26\n6IcffnAEhWbNmmny5MmX3O7s2bPq27ev8vLylJCQoI4dO5Y7g1B8fLyys7PVu3dv2e12dejQQYmJ\nifLx8dHx48fVr18/WSwW1a9fX9OnTy+1jRtuuEF+fn7q1q2bAgICJP2+HMaYMWPUo0cP+fv769pr\nr1WPHj0uOkYffPCBoqKiVKtWLbVu3VohISHKzMxUkyZNSm23d+/eOnz4sGJiYlS7dm2Fh4erVq1a\nlzwuV111lTZv3qy5c+eqVq1amjdvnvz8/PTEE09oxowZiomJ0fnz59W6dWu98MIL5bYVExOjzz77\nTN27d1etWrXUoEEDPfjgg9q/f7+uvvpqzZ07V9nZ2QoJCdHMmTNLbePJJ5/UjBkz1KtXL124cEHX\nX3+9xowZo9q1a+tvf/ub7r33XgUHB6thw4Zq1qyZMjMz1aVLF3333Xfq06ePgoODdd111znuRgMA\nwBuNHz9eU6ZM0f3336/CwkJFRkbq8ccfdzw3adIkBQcH67bbblNoaGiF242NjdXTTz+tN954Q9Lv\nA11PPPGEBg0apJo1a8rX11dTpky5aLunnnpKM2fO1Ouvvy5fX1+1bdtWP/74Y5nt+vn5ad68eZow\nYYLmzJmjv/71r7r66qtL3NVVlvDwcPXv31/5+fnq2rWrevXqJYvFoldffVWTJ0/W2bNnZbFYNG3a\nNDVu3LjMdvz8/DRu3DiNHDnScef71KlTHUtcVCRbhoSE6LXXXtPMmTN17tw52e12zZw5U2FhYRo8\neLCSkpK0atUq+fr6qlWrVo5inzlz5mjs2LFKTk5Ww4YN1aRJk0vuNwAAqBqelrMu5dy5c+rVq5cK\nCws1fvz4cvOPJN18882aO3eunnrqKT344IOOx4cMGaKXXnpJ0dHRunDhgrp376577rlH27ZtkyRH\nVoqJiVGXLl00cuRITZ06VXPnzpWPj4+GDBlS6l3/AADAPMobixkxYoSeeuopXXHFFapVq5bat29f\n4tpPcRFP8dLvpYmJidGcOXM0Z84cx2OuyBSlXSsqT2hoqFq2bKl77723xEogZY1Pbt682fGaxx9/\nXNu2bdM//vGPCo0HAnAdi7209YgAVFuJiYkaMGCAoqKijO6K2+zcuVO//PKLoqOjJUlTpkxRQECA\nRo0aZXDPpD179mjy5Mlav3690V0BAAAmMWPGDD388MO6+uqrdfToUUVHR2vLli2lziRY1bwhWwIA\nAAAAALhCUVGRXnzxRYWFhenRRx81ujsAqilmAgKqmX//+9+aNm1aqc8Vr6Ne3TVv3lzvvPOO3nnn\nHV24cEHXXXedJjIfLk0AACAASURBVE6cqKlTp2rPnj2lbjN27Fjdeuutl/U+w4cP1+HDh0t97pVX\nXuFOdQAA4BLFa8j7+fnJbrdrypQpOnHihBITE0t9fePGjTV37tzLeo9LZchx48Zddr8BAAA82aFD\nhzRixIhSn6tMngIAAChPbm6u7rjjDrVu3VqjR482ujsOCQkJysvLK/W5JUuWKCgoqIp7BMBZzAQE\nAAAAAAAAAAAAAAAAmJyP0R0AAAAAAAAAAAAAAAAA4ByKgAAAAAAAAAAAAAAAAACT8zO6A1UpJ8dm\ndBcAuEC2LUuDNg3QoqglCrOGG90dAJUQGmo1ugtej1wEAJ6FjOvdyEbGIxsBznPXuSzblsW5EfAi\n5CLjkYvg7bJtWUrYEKul960ggwAwVGVzETMBATCdMGs4gyMAAACoVsi4AACzc8e5rLiwKNuW5bI2\nAQAAAKA6s9jtdrvRnagqVC8DAOAZuKvLeOQiAAA8B9nIeGQjwHMxExDgXchFxiMXAeQPAJ6BmYAA\nAAAAAAAAANUKA3AAAKCqkT8AmBlFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAA\nAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAA\nAAAAmBxFQAAAAAAAAAAAAAAAAIDJ+RndAQAAAAAAAOCPevXqpaCgIElSeHi4Hn/8cY0ZM0YWi0XN\nmzfXhAkT5OPjo+XLlys5OVl+fn564okndMcdd+js2bMaNWqUfvnlFwUGBmrGjBkKCQkxeI8AAAAq\nh1wEAAAuB0VAAAAAAAAA8Bjnzp2T3W7X4sWLHY89/vjjGj58uG655RYlJSVp69atatOmjRYvXqyV\nK1fq3LlzSkhIUKdOnbRs2TK1aNFCQ4cO1YYNG/T6669r/PjxBu4RAABA5ZCLAADA5WI5MAAAAAAA\nAHiM/fv368yZMxo8eLAefPBBffXVV8rIyFCHDh0kSZ07d9auXbu0d+9e3XzzzfL395fValXDhg21\nf/9+paenKzIy0vHa3bt3G7k7AAAAlUYuAgAAl4uZgAAAAAAAAOAxatasqYcfflixsbH673//q0ce\neUR2u10Wi0WSFBgYKJvNptzcXFmtVsd2gYGBys3NLfF48WsBVI1sW5bCrOFGdwMAqg1yEWAMMg0A\nM2MmIAAAAAAAAHiMxo0bq2fPnrJYLGrcuLGuvPJK/fLLL47n8/LyFBwcrKCgIOXl5ZV43Gq1lni8\n+LUA3C/blqVBmwYo25ZldFcAoNogFwFVj0wDwOwoAgIAAAAAAIDH+OCDDzR9+nRJ0vHjx5Wbm6tO\nnTppz549kqQdO3aoXbt2at26tdLT03Xu3DnZbDYdPHhQLVq0UNu2bfXJJ584XhsREWHYvgDeJMwa\nrkVRS7hrHgBciFwEVD0yDQCzs9jtdrvRnagqOTlMcwgAgCcIDbVe+kVwK3IRAACeg2xUUkFBgcaO\nHasjR47IYrFo5MiR+stf/qIXXnhBhYWFatKkiaZMmSJfX18tX75cKSkpstvteuyxx9StWzedOXNG\no0ePVk5OjmrUqKHZs2crNDS03PckGwEA4BnIRSWRiwAA8F6VzUUUAQEwLdZkBcyLCzrGIxcBgOch\n33ovspHxyEYAAHgGcpHxyEUAAHiGyuYilgMDYEqsyQoAAIDqhHwLAAAAAAAAwFkUAQEwJdZkBQAA\nQHVCvgUAVDUKTwEAAEpHTgJgZhQBATAtBkgAAABQnZBvAQBVhRnoAAAASkdOAmB2Frvdbje6E1WF\ndUwBAPAMrO9uPHIRAACeg2xkPLIRvFG2LYsCVAAeh1xkPHIRQE4C4Bkqm4uYCQiAaVGFDQAAgOqE\nfAsAqEoMbAEAAJSOnATAzCgCAmBKTMcIAACA6oR8CwAAAAAAAMBZLAcGwLSYjhEwL6Z2Nh65CAA8\nD/nWe5GNjEc2AgDAM5CLjEcuAgDAM7AcGACvwwAJAAAAqhPyLQAAAAAAAABnUAQEAAAAAAAAAAAA\nAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQE\nAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAA\nAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxF\nQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAA\nAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJ\nua0IqKioSElJSYqLi1NiYqIyMzNLPL9t2zb16dNHcXFxWr58ebnbZGZmqn///kpISNCECRNUVFRU\n4n3+/ve/a9myZe7aFQAAAKeQiwAAAAAAAAAAAOBubisC2rJliwoKCpSSkqJnn31W06dPdzxXWFio\nadOmaeHChVq8eLFSUlJ04sSJMreZNm2ahg8frqVLl8put2vr1q2OtubOnavTp0+7azcAAACcRi4C\nAAAAAAAAAACAu7mtCCg9PV2RkZGSpDZt2ujbb791PHfw4EE1bNhQV1xxhfz9/RUREaG0tLQyt8nI\nyFCHDh0kSZ07d9auXbskSZs2bZLFYnFsAwAA4InIRQAAAAAAAAAAAHA3txUB5ebmKigoyPGzr6+v\nzp8/73jOarU6ngsMDFRubm6Z29jtdlksFsdrbTabvv/+e61fv15PP/20u3YBAADAJchFAAAAAFA5\n2bYso7sAAABMhvwAwJv5uavhoKAg5eXlOX4uKiqSn59fqc/l5eXJarWWuY2Pj0+J1wYHBys1NVXH\njx/XwIEDlZ2drRo1aigsLEydO3d21y4BAABUCrkIAAAAAC5fti1LgzYN0KKoJQqzhhvdHQAAYALk\nBwDezm1FQG3bttX27dvVvXt3ffXVV2rRooXjuaZNmyozM1O//fabateurc8//1wPP/ywLBZLqdu0\nbNlSe/bs0S233KIdO3bo1ltvVffu3R3tzZs3T1dffTUDXQAAwCORiwAAAADg8oVZwxnAAwAAl4X8\nAMDbua0IqGvXrvrXv/6l+Ph42e12TZ06VevWrVN+fr7i4uI0ZswYPfzww7Lb7erTp4/q1q1b6jaS\nNHr0aL3wwguaM2eOmjRpom7durmr2wAAAC5HLgIAAACAymEADwAAXC7yAwBvZrHb7XajO1FVcnJs\nRncBAABICg21Gt0Fr0cuAgDAc5CNjEc2AgDAM5CLjEcuAgDAM1Q2F/m4uB8AAAAAAAAAAAAAAAAA\nqhhFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAPAov/zyi7p06aKDBw8q\nMzNT/fv3V0JCgiZMmKCioiJJ0vLly9W7d2/169dP27dvlySdPXtWQ4cOVUJCgh555BGdPHnSyN0A\nAABwCbIRAACoKIqAAAAAAAAA4DEKCwuVlJSkmjVrSpKmTZum4cOHa+nSpbLb7dq6datycnK0ePFi\nJScn65133tGcOXNUUFCgZcuWqUWLFlq6dKliYmL0+uuvG7w3AJyVbcsyugsAYCiyEVD1yB8AzIwi\nIAAAAAAAAHiMGTNmKD4+XnXq1JEkZWRkqEOHDpKkzp07a9euXdq7d69uvvlm+fv7y2q1qmHDhtq/\nf7/S09MVGRnpeO3u3bsN2w8Azsu2ZWnQpgEMxAHwamQjoGqRPwCYHUVAAAAAAAAA8AirVq1SSEiI\nY7BKkux2uywWiyQpMDBQNptNubm5slqtjtcEBgYqNze3xOPFrwVgXmHWcC2KWqIwa7jRXQEAQ5CN\ngKpH/gBgdn5GdwAAAAAAAACQpJUrV8pisWj37t3at2+fRo8erZMnTzqez8vLU3BwsIKCgpSXl1fi\ncavVWuLx4tcCMDcG4AB4M7IRYAzyBwAzYyYgAAAAAAAAeIQlS5bo/fff1+LFi3X99ddrxowZ6ty5\ns/bs2SNJ2rFjh9q1a6fWrVsrPT1d586dk81m08GDB9WiRQu1bdtWn3zyieO1ERERRu4O4NFY4gIA\nPB/ZCDAGOQmAmVEEBAAAAAAAAI81evRozZs3T3FxcSosLFS3bt0UGhqqxMREJSQkaODAgRoxYoQC\nAgLUv39/HThwQP3791dKSoqGDBlidPcBj5Rty9KgTQMY4AIAEyIbAe5FTgJgdha73W43uhNVJSeH\ntU4BAPAEoaHWS78IbkUuAgDAc5CNjEc2gjfKtmWx1AUAj0MuMh65CCAnAfAMlc1FzAQEAAAAAAAA\nAF6GgS0AAIDSkZMAmBlFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAA\nAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxF\nQADghbJtWUZ3AQAAAH9CRgMAmB3nMgAAUB2QaQCYGUVAAOBlsm1ZGrRpACEWAADAg5DRAABmx7kM\nAABUB2QaAGZnsdvtdqM7UVVycmxGdwEAPEK2LUth1nCjuwEvFhpqNboLXo9cBACeh4zmvchGxiMb\nAa7BuQyAs8hFxiMXAWQaAJ6hsrmImYAA4DJUl8pvwisAAAAAAHA1rjcAAIDqgEwDwMwoAgKACmIK\nSAAAALgLWRMAgNJxbgQAAJeL/ADAm1EEBMCUjAhwYdZwLYpaQgU4AAAAXC7MGq7pkbPImgAA/AFF\nsgAA4HKRHwB4O4qAAJiOkQGOQRkAAAC4Q7YtS2M+HclFSgAA/oAbsgAAwOUiPwDwdha73W43uhNV\nJSfHZnQXAPxJti2rUkGsstsB8AyhoVaju+D1yEUA4HnSj6Upol57o7sBA5CNjEc2AgDAM5CLjEcu\nAgDAM1Q2FzETEADDODOjDwVAAAAAqE6YCQgAAAAAAACAs5gJCIChmNEH8E7c1WU8chEAeB6ysfci\nGxmPbAQAgGcgFxmPXAQAgGdgJiAApsQgBwAAAPA7sjEAAAAAAAAAZ1AEBAAAAAAAAADwSCyVCQAA\nqhr5A4CZ+ZX3ZFpaWrkbt2/f3qWdAYCKYqkEAFWNXAQA+CPyKAAA7pdty9KgTQO0KGoJ510AAFAl\nyB8AzM5it9vtZT2ZmJgoSfrtt9/0448/qm3btvLx8dGXX36pFi1aKDk5uco66gqsYwpUDwQwwPzM\nuL47uQgAUIw8ClczYzaqbshGgOfy5sJbb953eC9ykfHIRUD1OAdXh30AvF1lc1G5y4EtXrxYixcv\nVr169bR27Vq9++67euedd7Ru3ToFBgZW6g0BwFlh1nAGXABUOXIRAKAYeRRAdcJSB57P239H3nq+\nLS469vbfPwAYge9emB05AvBu5RYBFTty5IgaNWrk+LlBgwY6cuSI2zoFAJfirReAABiPXAQAkMij\nAKoHBgc8nzt/R2Zp01tRdAwAxiAfOc/sxy7blqWEDbGm3g9yBODdKlQE1KpVK40ePVoff/yxtm3b\npmeffVbt2rVzd98AAAA8DrkIAAAA1QWDA57PXb8jdwxuMWjqevzbBICqRz5yTnUooKku+AwD3suv\nIi+aMmWK3n//fSUnJ0uSbrvtNiUkJLi1YwAAAJ6IXAQAAIDqhMEBz2eW3xGDpgCA6oJzmXcLs4Zr\n6X0r+BwAMC2L3W63V+SFv/32m86cOSO73a4LFy4oKytLHTt2dHf/XConx2Z0FwAAgKTQUKvRXXAK\nuQgAALiS2bNRdUA2gqtk27LcMmuPOwah3NUuADiDXGQ8chGclX4sTRH12hvdDcApZGV4gsrmogot\nBzZ79mzdddddioqKUkJCgu655x7NmTOnUm8IAABgZuQiAAAAAKVxx3JY2bYsxa6NccuSGu4qLAIA\nmBvf5XBGti1LQ7c+wecIpsYytzC7ChUBbdiwQZ988om6d++u9957T++++65CQkLc3TcAXoKTaNXi\neAPOIRcBANwl/Via0V0AADjBHcthHcs7qqzcH3Us76jL2izm6usDDJYAQPXAdzmccSzvqH7KzXRL\ndgGqCsvcwuwqVARUp04dBQUFqXnz5tq/f79uvfVWnThxwt19A+AFuEBUtTjegPPIRQAAd0g/lqbe\na3tQCASgyvH3oWu5eqAgol57rY7e4PIlNdxxfYDBEgCoHvguhzPqBdbXNUGNVC+wvtFdcQoZGXwP\nwswqVAQUFBSk1NRUtWrVSuvWrdNXX32l06dPu7tvALwAF4jK5q6pvjnegHPIRQAAd4io114L7l7o\n8kFeACgPN4qYgzvODe66PsD1Btfi3yYAI/BdDmeEWcO1omeqqT9HZGTAM/BvsPIqVAT00ksv6eTJ\nk7rlllsUFhampKQkDR8+vNxtioqKlJSUpLi4OCUmJiozM7PE89u2bVOfPn0UFxen5cuXl7tNZmam\n+vfvr4SEBE2YMEFFRUWSpCVLlqhPnz7q27evNm7ceNk7D8AzmDkMuos7QybHG3AOuQgA4A7ZtizN\nTp/JBQ4AVYobRczBXbPEueP37o7zmLeeGxmABOCtqsP3ntH7YPT7mx0ZGTAeWdg5FSoCqlu3ruLj\n47V//34999xzSk5O1n333VfuNlu2bFFBQYFSUlL07LPPavr06Y7nCgsLNW3aNC1cuFCLFy9WSkqK\nTpw4UeY206ZN0/Dhw7V06VLZ7XZt3bpVJ0+e1LJly5ScnKxFixZpxowZstvtThwKAPAchEzAc5GL\nAADuQP4DYBS+dzybO5eLdPUFdXdcqPfmi/9kAwDeqDp87xu9D9Xl/Y3+DHD+BYxFFnZOhYqAdu/e\nrejoaD355JM6ceKE7rrrLu3cubPcbdLT0xUZGSlJatOmjb799lvHcwcPHlTDhg11xRVXyN/fXxER\nEUpLSytzm4yMDHXo0EGS1LlzZ+3atUshISFKTU1VjRo1dOLECQUEBMhisVz+EQAAD8WJDfBM5CIA\ngLuQ/wAAfxZRr72mdnrZ5UuCuWOAMMwarumRs1x6PvP2i//eut8AvJcrvvc9oXjEyHOXJ7z/sxHP\nOf07NHsxGADnkYUrr0JFQHPmzNHSpUsVHBysOnXqaPHixZo5c2a52+Tm5iooKMjxs6+vr86fP+94\nzmq1Op4LDAxUbm5umdvY7XbHQFZgYKBsNpskyc/PT++//77i4uLUs2fPCu4yAABA5ZGLAAAAAFSV\n9GNpGvevUS6fCcgdA4TZtiyN+XSkywfsuPgPAN6lOhSPGH3uMvL904+l6bEtg53KLkYXMgGA2VWo\nCKioqEihoaGOn5s1a3bJbYKCgpSXl1eiDT8/v1Kfy8vLk9VqLXMbHx+fEq8NDg52/PzAAw/o008/\nVVpamv79739XZHcAAAAqjVwEAAAAoKpE1GuvBXcvdPlMQJLrBwhdcec/AADOcFXxiNFFRGbmzuwC\nAKiYChUB1atXT9u3b5fFYtHp06f1xhtvqEGDBuVu07ZtW+3YsUOS9NVXX6lFixaO55o2barMzEz9\n9ttvKigo0Oeff66bb765zG1atmypPXv2SJJ27Nihdu3a6dChQxoyZIjsdrtq1Kghf3//EoNiAAAA\n7kAuAgAAAFBVsm1ZmvbZFLcMRrq6TVfc+V8aBmIBAJfDFQVAnjCbkFll27I0afcEp45fti1LCRti\n+R0AQCX5VeRFkyZN0ksvvaSjR4+qa9euuuWWWzRp0qRyt+natav+9a9/KT4+Xna7XVOnTtW6deuU\nn5+vuLg4jRkzRg8//LDsdrv69OmjunXrlrqNJI0ePVovvPCC5syZoyZNmqhbt27y9fXVddddp7i4\nOFksFkVGRqpDhw7OHxEAAIBykIsAAAAq789LnpbmwoULGj9+vA4fPiyLxaIXX3xRAQEBGjNmjCwW\ni5o3b64JEybIx8dHy5cvV3Jysvz8/PTEE0/ojjvu0NmzZzVq1Cj98ssvCgwM1IwZMxQSElJFe2g+\n6cfSuFPbw50vKnR5m8WDa0vvW+GymXvcced/8UAsS4IAqI7IRZ6JpaiccyzvqDJth3Us76hTx7Dw\nguvzz+XItmXxGQBgWha73W6/1IteeeUVjRgxoir641Y5OTajuwAAACSFhlqN7kKlkYsAAICrmTkb\nXcr27dv1+eef68knn1Tfvn118uRJDRs2TAMGDChzmy1btmjr1q2aNm2a9uzZo0WLFslut+uhhx7S\nLbfcoqSkJEVGRqpNmzYaPHiwVq5cqXPnzikhIUErV67UkiVLlJubq6FDh2rDhg368ssvNX78+HL7\n6a3ZKP1YmmLWdFdq9EYKgTxUti1LsWtjtKJnqksHotxRBOSONovbZRAO8B7kopK8MRfxvW9umw5t\n0IOb+uu9qGWKanJfpdpwV/65nPenCBl8F8ETVDYXVWidiO3bt6sCtUIAAADVHrkIAACg4ubPn6/e\nvXtr48aNat26tbZt26aVK1eWu83dd9+tyZMnS5KOHDmi4OBgZWRkOGY67Ny5s3bt2qW9e/fq5ptv\nlr+/v6xWqxo2bKj9+/crPT1dkZGRjtfu3r3bvTtpYvUC66uhtZHqBdY3uisoRw3fGi5vM8warjl/\ne83lAxvuuGufwRd4I5bAqZ7IRZfGUlyewZnjH9XkPr3SZX6lC4CKOZt/nNkHZoMC30UwuwoVAV15\n5ZWKiorSM888o7Fjxzr+BwAA4G3IRQAAAJenadOm+vjjj3XnnXcqMDBQhYWXLhLw8/PT6NGjNXny\nZN1///2y2+2yWCySpMDAQNlsNuXm5spq/b+74gIDA5Wbm1vi8eLXonRh1nAtv9+YO6xRMWHWcJfP\nrCP9PrAx5tORLh/YcEfBEuBtzDTwaIY+ehpyUfkovjCes99B2bYsLfrPO04X4TiTf1zxPcpn0Lvx\nXVR9eGtW8avIi3r16uXufgAA4DSmZ0RVIBcBANyFLIPq6Oqrr9bkyZP17bff6uWXX9b06dPVoEGD\nCm07Y8YMjRw5Uv369dO5c+ccj+fl5Sk4OFhBQUHKy8sr8bjVai3xePFrUTa+d7xTmDVcz0Y859Lf\nv7tmF/JmZAPvZJaBR5bLuXzkoopx9vPkCd+dntCHynL2OyjMGq7pkbOc3n9ntndVHwCYmzdnlQrN\nBNSrVy9dd911+u2332Sz2dS6dWsGwAAAHsVMd0nB3MhFAAB3IMugupo9e7ZuvPFGvffee6pdu7au\nueYazZ49u9xtUlNTtWDBAklSrVq1ZLFYdMMNN2jPnj2SpB07dqhdu3Zq3bq10tPTde7cOdlsNh08\neFAtWrRQ27Zt9cknnzheGxER4d6dBNzIXeeH9GNpeuSjQUo/luayNrNtWXr8o7+7vK/eem7MtmWp\nx6puXrv/3s4MA1VmKVbyJOQi98u2ZSl2bYyh352e8Leds+/tzL/rbFuWhm59wvD9d3bGw+pw/nVl\nzqsMMx9DT/h3DOd5c1apUBHQwoUL9fTTT+vnn39WVlaWnnjiiUuuUwoAQFXy5pM5qha5CADgDmQZ\nVFdr165VTEyMGjVqJEmKiIjQQw89VO4299xzj/7zn/9owIABevjhhzVu3DglJSVp3rx5iouLU2Fh\nobp166bQ0FAlJiYqISFBAwcO1IgRIxQQEKD+/fvrwIED6t+/v1JSUjRkyJCq2FXALdx1J3u9wPqq\nH9hA9QLru6zNb3K+1o+2/+qbnK9d1qa7BmDMMKDz8Y/blJ33kz7+cZvRXQHKRHa9POQi9zuWd1RZ\nuT/qWN5Rw/pg9N92RhcveMrvwJn8ZPQxdIX0Y2nqvbaHYYVAZj+G7pg1E8bw1t+hxW632y/1om7d\numnlypUKCgqSJJ06dUr9+/fXxo0b3d5BV8rJ8ey1TgEA8BahodZLv8hDkYsAAICrmTkbXUpCQoLu\nvfde9evXT6+++qrWrVunZ599VjExMUZ3rQSyETxVti1L/dbFaPn9qS69gO2udjcd2qCoJve5rD3p\n90GsiHrtXdaemZYFeGnXJD1/W5LR3QCqFLnIeGbPRe44F5mN0cuRLcl4TwNaPehUG87sgyvO9UYf\nQ1e8v6sz1OUy+hg6o7iIalXP9YYeQ29n5s+Qq1Q2F1VoJqArrrhCfn5+jp9r166twMDASr0hAACA\nmZGLAAAAKm7hwoX65JNPdPfdd8tms2n9+vUeN9AFeLJjeUf1oy3TLXfTX/rW0Mvn6kHXbFuWnvl4\nmEvvIjd6hoaKSj+Wpre+/R/Dl/IA4DrkIvfLtmVpdvpM084+4irOnuOcOX7px9I0dudIp85fzs4i\n44pzvdEFQK6YRcfo4hVPz1rliajXngIgg5l9Nimj+V36JdI111yjuLg43XffffLz89NHH32koKAg\nzZ8/X5Kq/fSBMB6VfvAkfB4B70YuAgC4i9F36QGulJqa6vjve+65R/v27VPt2rW1fft2SWLAC6ig\niHrtNbrdeLecHywWlzdpGma4rhNRr70W3L2QbABUA+SiquOqQk9vHgNwdhadeoH1FR7U0KklR12x\nHKqZPwN8jj2DK5fNxeUzS+G+p6rQTECNGzdW165dVVBQoPz8fHXq1EkRERHu7hsgiUo/eBY+jwDI\nRQAAdyieapq7/VFd7Nmzx/G/L7/8Up07d9bp06cdjwGomE2HNmjyniRtOrTB5W3nF55xeZuu7meY\nNVxjO4z3yov/2bYsTftsCteggGrAbLnI6O8dT3j/hA2xhvfDKM4W4IRZwzXvrjecOne7YiZAZ7c1\n+2eAsSzncPw8gzf+DeAqFZoJaMiQISooKJC/v78yMzN1+PBhde7cWT4+FaohApxCpR88CZ9HAOQi\nAIA7MNU0qptp06Y5/vs///mPWrZsKZvNpm+//VYdO3Y0sGf4M+4Qdi1XH88bQ29Sg8Bw3Rh6k8va\nlKRvcr7WcEe+RwAAIABJREFUkbwsfZPztcv6u+nQBg3clKD/jVrqsmXB0o+l6bEtgzlHAjA1s+Ui\nZ2aBcZazs9A4u3114UweybZlacynI536HTizfbHzRYWV3tYVn4PCC5V/f2e5ov+MZTmH4wez8504\nceLES73of/7nf7R69Wq1atVK/fv3108//aQvvvhCd955ZxV00XXy8wuM7gIqKTgg2OguAA58HgHn\nBQYGGN2FSiMXAQDcpUFQmNFdgEHMnI0uZfbs2VqzZo2io6N16tQpvfTSS8rOztYtt9xidNdK8NZs\nVDzAcFfDrvyt6wLuOJ62gtNafWCl+l0b79LfUbO/tNCNV7V2WbFOcZsFhYUa3PoRl7XZIChMdWrW\nVbcm3V3WplkEBwTrnkZRDD7B65CLjBdYdIXa1mtnyHsHBwTrroZdK/3dFxwQrFZX3aBrr7reqT6Y\n+fvX2Tziit9BnVp1nPoM2QpOa/l3yZXOP87ug63gtFJ/WKk+LfoZkpGd7f8f20HlcfzgCSqbiyp0\ny/rWrVs1ZcoUrV+/Xj179tS7776rjIyMSr0hAJgZU/8BIBcBANyFrInqaPv27Xr77bclSXXq1NG7\n776rzZs3G9wrFAuzhuvZiOdMO8jladx1x3AN3xouba+Yq2cX2nRog177arZLlwRLP5amsTtHeu1y\nmfzbBKoXs+Six7YMNvR719llpMZ8OtLpv63M/P3rinznzLbFs/g5+xmyWJzaXMfyjlZ62zBruJbe\nt8LQz4GZP4MAjFehIqCioiL5+/tr+/bt6tKli4qKinTmjOvXjAYAT8YaoAAkchEAwD3Imqiuzp8/\nr7Nnzzp+Liw0blp9XMxVgzSltQvXCLOGa2yH8S4fCMq2ZSkm9T6XnnfcsXRZvcD6Cg9qqHqB9V3W\nJgAYxSy5yMxLMLKEj/vyXUVF1GuvBXcvdPozdPqcrdLbph9LU8ya7k4dA2/+DHkKo6+P8DcNzKxC\nRUAdO3ZUjx49VFhYqPbt2+uBBx4w3ZIXAOAs/oAAIJGLAADuQdZEdRUfH6/evXtrxowZmjFjhvr2\n7av+/fsb3S38fxH12rt8oC/9WJp6r+3hlRfN3VHQmX4sTY9+9JDLj+c3OV/rR9t/9U3O1y5tt3aN\nWi5tL8warhU9Uzk/AqgWzJKLjC4Acvac5+3nDHfku8uRbcvS7PSZTuWhj3/cpuNnjurjH7dVavt6\ngfXV0NrI1EXERhfAGM3oG6W8+W8aVA8Wu91ur8gLjxw5orp168rX11f79u3T9df/vp5mSkqK4uLi\n3NpJV8nJqXzVKAAAcJ3QUKvRXXAKuQgAALiS2bPRpezdu1eff/65/Pz81K5dO7Vs2dLoLl2EbORa\n6cfSDB9ANEq2Lculg4/ZtizFro1xeSFMti1L9668S//ss9Vl7WbbstRjVTet7/2hy/vqrQO63rzv\n8F7kIuMZmYuKZ3BJjd7otVnCEzh7/nFFFlyS8Z4GtHqw0tt7wj5UVrYtSwkbYg1fksxoRueg6vA3\njdHHEM6rbC6q0ExAktSgQQP5+vpKkmOgS5KSk5Mr9cYAgKrh7RXjgDuQiwAA7kBuQ3Wyfft2SVJq\naqoOHTqkkJAQBQcH6/vvv1dqaqrBvYO7mf1iuTNcfZE9zBqueXe94fJ2j+Ud1S9nTuhY3lGXtflN\nztfKzvvJpbMLFQ+CeeM50pv3HeTC6oZcVHH1AuurfmADp2Zw8YR/P872wcjtnZ2BJduWpWc+Hub0\nPjhTACQ5l8k8YRaYwgvOLxdo9llsKF5xjtGzKcFYFS4CKksFJxICAI9ihpOeK/rISR6oWuQiAEBl\nFc/0QG5DdfHNN99Ikvbs2VPq/wBUjKsG0v4sJ/9nnbefV07+zy5r85czv5T4fzjPFQOAMB93Xc8j\nZxrH23KRs5+1Wn61nXpvo6+HO1vE6YoiHGfe31OWqt50aINT2zvzGTB6STVJquFbw6ntPaGQyczS\nj6Wp15r7TH38POXfMozh52wDFovFFf0AgEqpzFR2xSHak09+ruojJ3mgapGLAMB7uHpK5WN5R5WV\n+6OO5R0lu6FaGDZsmCSpR48e6tSpU4nnNm/ebESXAPzBjaE3qU6terox9Caju1KuMGu41y+FAe/j\njut5ZrgeWp15Uy5y9rPm7Pd+dbge7gn74OyYhLPn7k2HNmjgpgT9b9RSRTW577K3d8V3npEFQK44\nhhH12mvB3Qu9eoZOZ9QLrK/woIZOzUrmCcz8XSixnJkk/XTqJ11zxTWXvZ3TRUAAYJTKBjlPCNGX\n4so+evJ+AgAAmJE7BlEi6rXX6ugNXKBDtbFx40YVFBTotddecwx8SdL58+e1YMEC3XPPPQb2DjCP\nMGu4xnYY75blwE6eO+HS4tMBrR7UNzl7nV6+48/ccV3DLAMKzs4CAPNyx9KCnn49tDrzplzkis+a\nJ3xOnTlPuKKAw9lt5/ztNaeXw3Lmb1Nnf4dRTe7TnC7zKlUAVPz+3v6dl23L0uz0mbox9CavPg6V\nFWYN14qeqRw7JznzXeopBcxG/t2QbcvS37ck6vNHP7/sbf8fe28fH1V17f9/8sRDJkPAOGGGGSKg\n0kQbYx2DhdbKjaWNjRUQRcWfaG21114RrdhqVbxFf6JefEDsk1pEekXRa1E0NbcqRa1QjHNrTBF8\nIIUwwxwyRB4mM4E8zHz/iMPNyU1wZq91cuZM1vv18rVU2Hv2OWeffdbe+7PXIqcDEwRBMAuKI2eF\nD7cV2igIgiAIgjAUMWpBUQRAQibR1taGLVu2IBKJ6NJdfPDBB7jpppvMbp7QC0kPk974tHpc+/oP\n2FMRhKIt6Ix1sqYDq2uqxcqPHien7zAaapqUwUKiIAncSF8yj6HmF5m9WTv3FVqaZY6UYmbfg1vf\nWaTcfp9Wj1kvf4/ke1C/sYGwH6s++r1lnwFAuwdcfdBs8YRgPmanRqT043Tow2bPG9x2D9Zdsk6p\nLDkSkN1up1YhCIKgjDgwgiCkE+IXCYIgDB3EDxWEYzN37lzMnTsXmzdvxtSpU/v9OytWrMCCBQsG\nuWVCb9LldKUwME6bC2PzXeypCBz5xchGDhz5xaz1WoWuWKfZTRAEYQghftHgoUWCaD60ixTpzm33\n4L6zl1nWN6K232lzwWUbp+x7JDbNzU7rVtdUqxxJCDA3ggmX+MGqfTgdyIR5Ese7SIFjLE2He2/2\nvEElFRiQZCSg9vZ2PPDAA7jwwgsxc+ZM3HvvvYhGowCA1atXK/2wIAiCIAiCFRG/SBAEQRAEIXkG\n2ugCgA0bNgxiSzID7hOIVt/kGip0x7vY69zeug0xdGN76za2Oj/b/5nOcsEdBQkA4nH2KtnhiAIg\nCEYj/TM1rOIXcURxMQunzQUnQcAC0CPpJOowC472j8zNJ7WBY9NciwSVy9Y11eLKunnK0Qmp0T8y\nKS3eUP19LiGW2ffQTDjGIq52UMjNtmZ63qREQEuWLMHhw4dx77334v7770dXVxfuuusuo9smCIJg\neVQ/LmZ/FAVBGBjxiwRBEASjMGKTUxDSmbgVduHTCCMEAemyMCsMTGOoAf623WgMNbDWW1pUhpys\nXJQWlbHVOdU9DdnIxlT3NLY6fVo9Llx/Pvs3Mi8n/Rfz0yEFgiAcCxGq8ZJOfhHluaZDv8gjbthS\nRdJm3wPq98Nt9+C2KXeQvj/UTXOfVo/ZL9cof//LHRU4YdQElDsqlNsQ7Ywql80EzO7HZv8+B2Zf\nA0dqWaunpONISWbV9LxJiYC2bt2KxYsXo7S0FKWlpVi8eDG2bt1qdNsEQRAsjerHxWzHQBCEYyN+\nkSAIgmAERm1yCkI6k5WVZXYTLIURi6hGLczKfJaP1vZWneUiFG1Bd7wLoWgLa50xxFjr9Dor8btv\nr4TXWclWp9vuwUPTH7XEYr4V2igMXdJhcy+TSCe/iCogofYLqh9BvZVUkbTV3w2fVo9rXr9KeW7K\nsWnutLlQNMKhHNHJbfdg3cxa5TZokSC0yB7laESZsMdjdj82O2IpNRoUYP49TLRBFa57YCaZEpVL\nhaREQPF4HIcOHTr634cOHUJOTo5hjRIEQcgEVD8u6eAYCIIwMOIXCYIgCEbgdVbijxe8yrrJKQhC\n5mGFeWIg7MfF62dZetMjnZheUoWxI12YXlLFWm+5owKegvGkE/J9MSIdWCDsx53v/kIiYAlCmmKF\n75KQOtTnSt10poonqEGVrL5pTL2HTpsLJfYTSCnVqBEMtUgQrYdDpJRgFJw2F0pGqd+DdBDDcdVh\nFpnir5n9nTT7/pn9+4D5z4DK7oO7lcolJQK66qqrcNFFF+G+++7D0qVLcdFFF+HKK69U+kFBEISh\nBOXEhBGkwwdXEKyO+EWCIAiCUVAWWQVBEFTgON3ZFy0SxO62XaZt2mQiI3JHGFNvzkjW+k4ac5LO\nctAYakBzeCdrOjSzT5YLgnBsVDe7hMwgXQ7Imv37FNx2D272/oy0N/Fo1W+Uy9c11WJ+3WWoa6pV\nKg/0HJJZN7NW+ZAM1cel3gMqHGI4ah0c8wQrR9GxchqoBGanwjK7D6UL1OufvXa2UtmkREBz5szB\nY489hvHjx2P8+PFYsWIFLrroIqUfFARBEMwhE0JQCkI6IH6RIAiCYATiqwlDkRNPPNHsJggG4LS5\nML6AdnrcynCP41okCC2qno7iWBzubmetz4jUZY78YuRl58GRX8xWp5VOlluhjYLACWWzy+qIX/S/\nUDfd83LymFpiTXxaPX78xtXK6byo38lyRwUmjJpIjjZI9SU7uzuVy1LvATUyJlc0KmodXTHaPeQ+\nbDDYpIMAyGwhlZWjmqUDHEKsdZesUyqblAgIAPx+P5qbm6FpGlpbeXNQC5mBlV9CQRgKDJZyWsYC\nYSggfpEgCILADfW0piCkK+FwGEuXLsWFF16IuXPn4uGHH0Z7e4/wYNmyZSa3TjDihKvb7sELF7w0\nJMczIxaqnTYXXLZx7KKqxlAD/G27WSPslBaVITsrB6VFZWx1ep2VuLXyTtZ0mVaJBGTU5pms2wjp\nDGWzywpYxS+y8jjhtnvw0PRHyWO8qoAmgZn30OusxC3eXyh/O6n7CG67B+tm1pqeFq4rri5gofoK\nWiQIf1uz5SNjdhCEVFTSQURk9ljI8R6Y6e9S55pmR4PigGPeMb5wvFK5pERADz74IJ588kl4PB4U\nFxdj+fLl+N3vfqf0g0JmkglqPEEYCgyGAMjMsUDGIGEwEL9IEARBMAKfVo9rX/8BebFZENKN22+/\nHbm5uVi6dCmWLFmCaDSKO++80+xmCb2w8qIqFe45pFEL1fE4a3UAAJ/m01kONgc2IRbvxubAJrY6\n65pqcfeWxaSUIn2xUiQgbsxetxGEZFDd7LICVvGLzN54pxAI+3HdGz8itd+n1ePC9eeTIumYeQ85\nvp1UX4ajPMWn0iJBBCPqkRSpvgJHOjNKJKFEHZRvPjUaZTqk06Ksr3C9x1QBjxWE68fC7LGEA2o/\nMmvekZQIaOPGjXj66adxxRVXYP78+Vi9ejVeeeUVo9smWIhMUOMJgkDHzLFAFrKEwUL8IkEQBMEI\nnDYXPAUlQzZ9jpC57Nq1C7fccgu+8pWvoLS0FLfffjs+/vhjs5slGIhV5mZWaadR6cAKhxfqbLpS\n7qjA6GHHkVOK9MYq65hGReqywrULQqYiflFyUL7NjaEG7Dz0T1KkO6+zEn+84FXWKHSDSfWkGjxd\nvQbVk2rMbgoJ6jN8aeafTIuGBNDSmXFEEqJeA0eKX2oaKoof5NPqMfvlGlMPWlHnG4GwHz/deEPa\nz1fSHaoodOZL5yn3I46xZPfB3UrlkhIBFRYWIhKJHP3vzs5OFBQUKP2gkLnI5FHIZMxU+1oNs8YC\nWcgSBgvxiwRBEAQjcNs9WDz1l+LLCBnHxIkT8fe///3of2/fvh0TJkwwr0GC4VhlbmZEO62UDuyk\nMSfpLAdjRozRWQ42Nm/A/o5WbGzewFanlTDiPUr3d1MQMhmr+EUc6bRUoUbfcOQXIy87D478YlI7\nqMIH6j2k+hJUAZDZ+xl1TbW4sm4eKZoRVcRlZjozr7MSj894ytRrsPoahdPmwth8l/K7zPEeW2Ve\ndCzMHguocER0ioMWlpUi5guE/Zi9drZS2WOKgG677TbcdtttiMVimDlzJn75y1/innvuwYUXXojR\no0cr/aAgCILV4FDrWuF0YSZgZWdKSH/ELxIEQRCMxKfV48dvXC3pwISMoaqqCueeey7ef/99XH75\n5aipqcEFF1yAOXPmYMeOHWY3TzAYI+ZmRsypudtp1EJ/blYea30A8LsPfqOzHDSGPtRZDkqLypCN\nbJQWlbHVadQ6jaz7CIIwEFbzixa8eZ2pY1pXrFO5rNPmwgn2iSQRD8d+ACX9C8emdTqkQaJC3Xin\nYmYap0DYjwd9D5h6OJ0jZbmZ6cwAID8vn/T7HFF4zIyGRIXjGTyzdTVji0wipl6Uml7Sbfdg3SXr\nlMrmHusPp0yZorMJTj31VKUfEwRBsCLURbxMUPsKgiB+kSAIgmAsVg85Lwh9+cMf/gCgJ2riX//6\nVxw4cAButxsAkJWVZWbTBAuSWIC2wtzaiPbl5fCLgH58+nV4t+5t/Pj069jqbOts01kONgc2IYYY\nNgc2sX0jjYoCNa/2YlM3agRBSF+s5hftbtsFLRI0bTyLE7QfbrsHL1zwkqnRO6gCEADo7FYXQvm0\nesxcdx5env2a8reT8vscVE+qwcPnPEaKaBQI+0kiHIrvmRCCqZbn6EPUa3DaXDh+pENZUBcI+zH3\nlVl4/vtq7yP1HnBE8mnviiqX5cJMv5I6Fj6zdTVueut6AMDlp87nbFrScAipsnOSSqzVL2au9R1T\nBDR79peHF5o9ezbWrVNTIAmCIFgF6odWFoD6h+KIC8JgI36RIAiCYDTcqV4EwUwSG1sLFy7Enj17\ncOKJJyIQCBz981mzZpnVNKEPRszLfFo960LnUD5c47Z7cPHJl7Jf+2f7P9NZDhKnhDkjBxiRtgyw\nzjqNrJsIQmZgNb9ofMEJps5NqOLXxlCDqWMnVQBCJRRtQWe8E6Foi3IdZmvTAmE/fvXBo5heUqUs\nwqGIc912D2ZOutC0g+EcfYjaBi0SRKi9RVkQqEWCaA6rCwqp94BaXosEj/5DeY/rmmrJ6fmsSkL4\nY5YAKAHl+Xmdlbjvmw+S5raUsoGwHz964wq8f+37KZc9pggoGeIUSa4gCIIwZLHSSU5BSBbxiwRB\nEARVxDcSMpWPP/4Yr732Wlqechd6xp6L188in5jvjU+rx6yXv4eXZv6JXQg0FHlm62os2XInxowY\nw7qAPtU9TWc5cNs9gDY0n5UR6RokupAwVNl9cDfGF443uxmGYBW/iNMvSBWq+LWuqRZX1s3D09Vr\nlDfeqf4Rh3iZIoQqd1TAXeBBuaNCuY7cbJoQiypi7RGQ7DQtIhWH/2VmNCqONjhtLjhGFisLAr3O\nSjwxY5XyfMBt9+CqU35omgjK66zE4zOeIs1nOMYjM+HwRTlT+qpCGY98Wj1u/evNKC0qMyWaDyUd\nmHr8oi9Id2dFEARBSE+G8klOIXMRv0gQBEFQRXwjIVM58cQTEQqFzG6GMABaJHg05QcnsViMtb6h\nTGlRGXKzctkX0OuaXtNZDgryCnSWg9b2Vp3lwqfVs9YHgP09AsxPxyIIg00g7MfstV8eidmqWMUv\nos5JKGNsQnzxzNbVSuUd+cXIQQ4c+cXKbTDKP0oWt92D26bcQXoOOVnqMSCowtaEiIoaGTBGOGxJ\nvYeXnzofC09fZHoEEyqUd1GLBLGvPaT8HgTCfjzoe0C5H9Q11eKnby1AXVOtUnmANpZR2w/wCPKo\nGOHzpvLbF64/n9QG6jiSOHCnWo/T5oLLNs6SkbvJIiBBEARBUEU2uQRBEARBEP4X8Y2ETOTw4cOo\nrq7GpZdeivnz5x/9R0gPqCd8B0LE8bzE4tYQVbV1tuksBzsP7tRZDhLRqjg3RTg2OfqDmhJHsC6c\nafWsBOXEuxWwil9E6X/U8bC0qAzZyCaJX3NycpTLAj3+ESUlWiJ6hup99Gn1uPb1HyjfQy0SxN5o\n0DQRE4eIKhRtQRchpRn1Hvq0evzmw0dJ33Wq8IEiXEj8PsXf8TorsfSby0iRfCgHnaon1eChc1aY\nFkHHbffgvrOXkddp7MNGMbUodajjsdvuwUPTHyVFU/rjBa8q9yGO94DrOZoFRRxNTgcmCIIgCL0x\nK1+9Wb8rCIIgCILAhU+rNyW8sCAYyY9//GOzm5BRcM97tEgQLZG9rKkWvM5KPPmdp4fseMb9jDYH\nNiGGGDYHNqX9PXXZxuksB1eVX41VHz2Bq8qvZqsTAMCcydnrrMS93/gP9hR4kgpsaCJpYjMXq/hF\nlP5H3fQFaAJIr7MS/1q+gPT7brvH1JRoTpsLnoISUhqmdTNryRvvqn2AKqICvoigYhuvHEHFaXOh\ncNgY5TaEoi3ojNFESJT0uBzCBarY36fV4xfv3kJKg0SNxLPqo99jekkVKSoVpeyt7ywifYs5onpR\nrsHrrMTvvr2SNBb8dOMNJH+UOhZTfaFA2I8Fb16nPKZrkSACYb9pqQlNTQcWJ4RjEwRBEDILDmVu\nMr9xrN8dqielhPRA/CJBEARBFZ9Wj1kv8UYlEIR0YMqUKf3+I6SOUfOtOLMagiN0/mDB3UYjntFU\n9zRkIxtT3dPY6gSAwuGFOstBMLJHZzloDDXgYMdBNIYa2Or0OivxxHdWsQp2Ehtl3N9xEYAMTYZy\nmthMTwdmFb+IKj6gjK9eZyWemKE+Rj+zdTWWf7BMOZ0YB1QRp9vuwYpzf0MWgKjitntw1Sk/JLWf\nQ0Q1MnekctnGUANa2jVl/8GRX4zcrFxSWjnKOnFCgELxKbVIEKH2FuWITByCPgpuuwc3e39GEvFQ\nInJxfIt9Wj2u+fNVyv4hdW7BMS+jpqalzouo44gWCcLf1qz8HoSiLegkRCUD6PdgfOF4pXJkEdC1\n115LrUIQBEHIEIxepBjI6Un8LgDDRUiCcCzELxIEQRBISPYcQRCOgVHzLW4RkFU2r6kbA/1hVLj5\n3Gz+YO4HjxzUWQ4K8gp0loPW9lad5cAIoRr1pPVgImsm1iDdx1CjyPR0YFaBKj6glqWM0ZefOh+L\nz7obl5+qnmZtMA66ftnv37DhOtLGP8XHqWuqxU/fWoC6plql8gBYUpFRs8tSfFynzYUTRk0kRWOi\nRMbk8KepgjqAJiajQhXQAEBXjCZg4YDSD6lzC7PnZWaPpQA9Mpojvxh52XnKgkAz70FSIqBzzjkH\nZWVlOOusszBlypSj/z5nzhxMnDjR6DYKgiAIFsJIh+JYTovb7jHdqRGGBuIXCYIgCEbgdVYqhwoX\nBGHowD3X2d66DV3xLmxv3cZar1XmZNSTrX3hOLXdl55NqAnsmzATCifoLAf2YaN0loPSojJkIwel\nRWVsdRqxdmCVCFhGiN8EgRvVE+8CH5QxkiP6BmXTOxD244VPnyONc9TvBPUeaJEgmsO7SEIaio9T\nPakGd561BNWTapTK+7R6XLj+fHJ0vA7iNayuflb5GqjRjDj8AqqfQm1DWvgMRCFYbrZ6akEO8YbT\n5kKJXd2P55hbUPsRJT0jVzovKuR1NsKZGY57sPvgbqVySYmAKisrsWLFCmzZsgXvvfcefvvb36Kq\nqgp33303fvnLX/ZbJhaLYfHixbjkkktwxRVXYNeuXbo/37BhA+bMmYNLLrkEzz///DHL7Nq1C5dd\ndhnmzZuHu+66C7FYDACwatUqXHzxxbj44ovx2GOPKd0AQRAEIXOg5EcVhGQRv0gQBEEQBEHIFC4/\ndT7OnzCTdFq+Pygnx60MNW3BQHX+pOIGS8x1jRAWhaItiCNGCsHfH9z306hDSSLWEQTBDDiiuKhC\njYIDAO1dUXI7qOM5RYTDcUCEsnHv0+rxwPv/v7KIhyONlBYJQovsIfVFSiqvRBtUMSo65GC3Idxx\niNQGihCMGsnIbffg2vLrSFF0qH49NbUfxzOkCogemv4o+R6okg5CNKfNBbfdQ06xqAolTWpSIqBP\nP/0U3/72t4/+9znnnIOPP/4Yp5xyCo4cOdJvmTfeeAMdHR1Yu3Ytbr75Ztx3331H/6yzsxNLly7F\nypUr8Yc//AFr167Fvn37BiyzdOlS3HjjjVizZg3i8TjefPNN7N69G+vXr8dzzz2H559/Hn/961+x\nfft2pZsgCIIgWINjqa/TIbSgMDQQv0gQBEEwAq7TkoIgZDbc853HfMvx6s6X8ZhvOVuddU21uLJu\nHrsQyIi5HmWDrD98Wj1+/MbVrGN5XVMtbnrreksIq/7r4+d1lgNHfjFykEPeyBsMjBAAGZGyjrqZ\nIwhC5jP75Rrlbxl1nNEiQTQfUo+Co0WC2NMWIAuZqGMvNZUVBbfdgzU1Lyg/A6fNBU9BCWnTmxrB\n0GlzoWTUCcr1+LR6Uj/2afWY+dJ5yuWNiA452G1oDDUg0OZHY6hBqTx1jYMayYia1o7Dr6c+g0DY\nj59uvIFUnrJnxtGPqe8AR+RWahvivNmzU4KSJjUpEdCoUaPw3HPPIRqNoq2tDc8++ywKCwuxY8eO\no6fP++Lz+XD22WcDAE4//XT84x//OPpnO3bsQElJCQoLCzFs2DB4vV7U19cPWGbr1q2YMmUKAOBb\n3/oWNm3aBKfTiSeffBI5OTnIyspCV1cXhg8frnQTBEEQhPSh9we578f5y9KBSSowYTAQv0gQBEEw\nAq+zEvd+4z8kHZgw5Ons7MQtt9yCefPm4aKLLsKbb745YCTE559/HhdeeCHmzp2Lv/zlLwCAw4cP\nY8GCBZg3bx6uueYafP7552ZeDitGHHyYPXkOikeOxezJc9jqLHdUYPSw41DuqGCr04hrp26Q9YfX\nWYnffXulJcbyopFFOsvBmc4pOstFdnZSS9gpMVQPEFE3kwRBGHzM8I0oAhDqOOO0ueC0jSOJSLpj\n3crzQuWDAAAgAElEQVRlgZ5rmPVSDWmspKQhMvuACEcqLKrfRo2E6LS5cPxIh3I/CkVb0BHrUI5E\nmC6RgCj7JdS0cFS/mBqJp3pSDZ6uXkNqP3WNxux+QP19jvSMF6+fRRoLqIc2qG3QIkHsjQZJwlLq\nWK6aJjWpGdSyZcuwadMmnH322Tj33HPx3nvv4f7778emTZtw880391umra0NBQUFR/87JycHXV1d\nR//Mbrcf/TObzYa2trYBy8TjcWR9IZu12WwIh8PIy8vDcccdh3g8jvvvvx+nnHIKJk6cmPodECyN\nTFgFIbPoPUEYaLJwLIdDBEDCYCB+kSAIggDwz0V8Wj1+8e4tEglIGPKsX78eo0ePxpo1a/Dkk0/i\n7rvv7jcSYigUwh/+8Ac899xz+P3vf4+HHnoIHR0dePbZZzF58mSsWbMGs2bNwq9//WuzL4kNow4+\nZGfxCiw2Nm/A/o5WbGzewFanUQvoRkRuoZxY7o/W9lad5cKn+XSWg//+Z63OcuC0uZCdlUOOKNCb\ndEgtkAwStWdok+79Uxg8zPCNFk/9paljT35evnLZ7a3b0I1ubG/dplxHY6gBzeGdyhFQ3HYPbpty\nh/I9pKbT4th4p8CRRokaCVGLBNES3au8cV/uqMCEUROVRe3pIrqlPAOfVo/737/HtEg+Pq0eP/rz\nlaatkfi0etz615vJkYD+9fUfKd8Dqi/IEUmIUl6LBLG7TT2yG8ehDS0ShL+tWbkNXmclfnbm7crj\nsZmizqRm+Y2NjXjwwQfh8/mwZcsWPPzwwyguLsYVV1yBb33rW/2WKSgoQCQSOfrfsVgMubm5/f5Z\nJBKB3W4fsEzv0x6RSASjRo0CABw5cgSLFi1CJBLBXXfdlcJlC5mApP4RBHXS9b3pvagtkX2EdEX8\nIkEQBMGIuYiVokcIgpFUV1dj4cKFAIB4PI6cnJx+IyF++OGH+NrXvoZhw4bBbrejpKQE27dv10VT\n/Na3voXNmzebdi1GwD0/2ti8AVo0yCrYmV5SBbdtPKaXVLHVmQ4pFZLBCLHS/sP7dZaLcMchneXg\npDGTdZaDRX+5EYe727HoLzey1WkVjNhAHOrConQfQxLIurfQGzN8I0oKHLfdg2vLryNFnqCMUxzf\nTUd+MfKy8pRTUfq0elz7+g9Im74U8St105sqIuK4frNx2z1YMu1eU7+XHN8Aah0DRb1PBo79nSxC\nXj1qimKnzYUSu3pKOoAuKEwXMZkqTpsL4wto95Ca2tHrrMS6mbXKa211TbW4e8ti5X5EFXVSSEoE\ntH79epx77rlYvHgx3n///aQqPuOMM/D2228DAD744ANMnvy/k78TTzwRu3btwoEDB9DR0YH3338f\nX/va1wYsc8opp2DLli0AgLfffhtnnnkm4vE4fvKTn+ArX/kKlixZgpycnOSvWsgIRCAgCGqk+0JC\n73da3m8hHRG/SBAEQTBiLmJE9AhBsCI2mw0FBQVoa2vDDTfcgBtvvLHfSIjHiqaY+P+JvysMzPSS\nKowd6WIV7LjtHiw68+esY6TZofSTxQix0lT3NGQhG1Pd09jqNIpzT5ihsxxc+dUf6CwHVhLCdHZ3\nstZnFUGdEaT7elhvZN1b6I0ZvhHlcEJdUy1++tYC5Q3TQNiP695Qj5xxvXchFp6+CNd7FyqVB3o2\nbW+dcqfyPXDaXCgaoZ6KijpeeZ2VeHzGU8rtp4qIelK6uUgb/+WOCngKxitH4ukRcExQboNPq8c1\nr19FEsNRI7ic/8fvkr5Z1H7ktLngtntIz5HyHfM6K/HEjFXK/bh6Ug0eOmeFcjowt92DR6t+Q7qG\nckcFSuwTSGmSKb4gtR9So5pRUwuanRoR6HmG42we0jOkCoB2H9ytVC4pEdCjjz6KP/3pTzjjjDPw\nxBNPoLq6Go888sgxy8yYMQPDhg3DpZdeiqVLl+K2227DK6+8grVr1yIvLw+33norfvjDH+LSSy/F\nnDlzMHbs2H7LAMDPf/5zrFixApdccgk6Ozvx3e9+F2+88Qbee+89vPPOO7jiiitwxRVX4O9//7vS\nTRCsQX8fKpkICULqyEKCINAQv0gQBEEA+OciVtngFoTBIBgMYv78+Zg5cya+//3v9xsJMZloir2j\nJgoDMzJvBGt91PQN/WEV4YIR8+1QtAVxxBCKtrDVaRTPfLRaZzlw5BcjNytXORpDfxh1qtqI/pmX\nk8da31BeE7LatVulncLgMNi+0ZLNdymPadSN98ZQA3YdokXO+HPza6QxmRr5QYsEEWpXT0VFHa8C\nYT/pGVJFRAAQjysXZcFt95DS2lGjwFB9143NGxCI7CZF6+T47uVm0fwQqoiJclAqEPZj1Ue/J5Wn\nzj/cdg9uPONm0jPoiquLgKg+r0+rJ0WGA6A8lgM8EbM5hES52bnKZQH6ezB77Wylskm3uqCgAF6v\nF5qmIRgM4oMPPjjm38/OzsaSJUt0/+/EE088+u9VVVWoqqr60jIAMHHiRPznf/6n7v/NmDEDjY2N\nyTZfsDgJxaqVJmpC5hII+7+0Hybzd8wkndsmCFZA/CJBEASBm0DYjwVvXkc6JSUImcC+fftw9dVX\nY/HixZg6dSqA/42EeNZZZ+Htt9/G17/+dZx22ml45JFHcOTIEXR0dGDHjh2YPHkyzjjjDLz11ls4\n7bTT8Pbbb8Pr9Zp8RbxwzzW1SBD+8G5okSBrvVlQD93fH1bavG8MNbC205FfjGHZw1hFMADQEt2r\nsxwMzxmhsxyEoi3oinexi6C6YvwRdrjXLqmnr49V71DFStee7muLwuBhhm+0u22Xsm8QCPvxeONv\netKDKpSvnlSDG06/WVlEBADRzqhyWaAn8sPYfCcp8gOVdZ+8qBzNSIsE0RzeSXqGd//tLpQ7KpTK\na5EgtMgekn/ZGGpAoM2v7FclUpKppgGiRoGhHvK5/NT5OqsK1ceniJEDYT/mvjILz39fbY2Deg85\nyt/s/Rnp/iUORxSNLFIa07RIEP5D/HO1ZKGmsqprqsX8usuwuvpZpetPCMFUxyKg5xru/cZ/kCKj\nBSMB0nhKmSO47R6su2RdyuWAJCMBrVy5EhdddBF+8pOfICcnB48//jhWrVql9IOCoIKVFnuE/4vR\nJ/UG8yRgMiEUrRRe2IrIfRXMRvwiQRAEAQB7OGItEjy62C4IQ5nf/va3OHToEH79618fjXB44403\n/p9IiA6HA1dccQXmzZuHK6+8EjfddBOGDx+Oyy67DJ9++ikuu+wyrF27Ftdff73Zl8SGEXPN7a3b\n0BXvwvbWbWx1ljsqUJBnZ984M2JNiHt+WddUiyvr5rFGQfI6K3HdaTeQw8j3Zf/h/TrLwZHuwzrL\nwcbmv+gsF7nZ/BF2uCP6UVORHKteIb2RtUWhN2b4RuML1COgALT0NXVNtXj0gwdJUXj2RoOkeZUW\nCeLzw62kdFiUVFSP+ZZjyZY78ZhvuVJ5gCbI1iJB7Dq0k3T9jvxiUh+iisE4UrJRosBQ09oBdAGQ\nT6vHrJe+R0ppdvHJlyr7NlokiOZD6msc1Cg2gbAfN2y4jhQF59rXf2Cq37S9dRu6oD5X40iBS03r\nN2HUROV5IYd/7dPq8Yt3bzHtOXKIycYXjlcql1QkoL179+L888/H6NGjAQDvvvsu/H4/Fi5Uz6kp\nCMnQ+8SDCICsidFRnAY7SlQygjQRrRmHRAUT0gHxiwRBEIREOGHKiai+OG0uuGzjSAssgpAJ3HHH\nHbjjjjv+z//vGwkRAObOnYu5c+fq/t/IkSPx6KOPGtY+MzFCZLDz4E6d5WBV40qEOw9hVeNK3D5t\nMVu93FExAmE/5tVejDU1L7DVWz2pBk9XryFFL+jLM1tXY/kHyzChcAJ5M6g3Zzqn4F3tbZzpnMJW\n5zfc38L7offwDfe32Oo0ImKRERF2EhtVnP3JCN/Ap9Vj9ss1ypERhMFB0sQKvTHDN1pxrnoEFADI\nIgQEbG1vRRxxtLa3KpXnSGVFxW334N9Ov0H5Hp405iSdTRWvsxL3nf2g8j1w2lw4bkSR8venJx1a\nCyl6SUIM5nV6lSOo7CO0gToO905rR7kHZJ+S8C4+s3U1lmy5E2NGjFHyQZ02F5wmrnH0FiGpPAOq\nkAygR/QsLSpDXlYeSovKlMpT/VOWKDYza0mpDan+NTWlmNPmwujhY5T7QSKlGuf6YbIkFQmoqakJ\nb775Jh5++GG88847WL58OXbs2GF024Qhjpx4yAyMFsSYIbhJ5reS+TvSt1NHBFZCOiB+kSAIgsCR\nl7w/Rubms9YnCEJmQT0N2x/hjkM6y8GEwgk6y0FCsGOFeTSnAAgAppdUoWj48ZheUvXlfzkFdhz4\nVGfTlXNPmKGzHPi0evzwv+eznwjmfI8S5GbxRixy2lzwFJSI6DjNoUagEAQqVH8jHlf/7eklVXDb\nxit/9wJhP+589xek9lMj+dQ11eKnby1Qjmb02f7PdDZVqJEvGkMN2BvV0BhqUCrvdVbipZl/Is2X\nHfnFyMvKUxZPOG0uHDdSXchE9bsd+cXIRrZy+zmiS1KfQ2lRGfKy1QUoAC06pNvuwbXl1ynvBTlt\nLhw/Uj0ilRYJovVwiBRVzOusxJPfeVr5GXidlVg/u840USPHfhx1L4+awjcQ9uMXf/2Z8ru8sXkD\nWtr3YmPzBqXy1JRqFJISAe3cuROrV6/GjBkz8KMf/QgvvPACWlp48zAL1saICYls9mcORj5Dq+bH\nFpGbOlZ83kJmIX6RIAiCEAj7sfS9e1h9OY4wzYIgCKmywHsjbLkFWOC90eymfCmU1CL94bZ7WKO2\nJOCe5zeGGtB6ZJ/yRtxA5OfZdJYDI0RlRqQt2966DZ3xTtY0eI2hBvjbdrM/p07ixkdf3HYPOcKH\nYDxGrYvLOqRgBdx2D1698L9JEViawztJ4zF1rCx3VMBd4FFOgcMRCejeb/wHadM5DoKSC7QUQkDP\nNdw65U7la2gMNSAY2cP+XU6WULQF3ehGKKq2ZlzuqMDxIxzk9LqU5+B1VuKBsx9WfgYbmzdAiwaV\nxRNUMV1PRKq9yiIejqhiHGtHlGdo1HwnFaii+3BHmFR+Y/MG+Nt2K/fDopFFyEIWikYWKbeBKgDa\nfXC3UrmkREBFRUXIysrCxIkT8fHHH2Ps2LHo6OhQ+kFh8DHauTdSzCATUusxmJNJKwtpROSmjhWf\nt5BZiF8kCIIgAPTTSH0JhP1Y8KZ6vnpBEDIfI8SCjaEGRLraTNsgyTSMiFi0sfkvOsuFyzZOZzlo\n62zTWQ4OHjmosxyUFpUhBzmkk+19qZ5Ug9XVz7JGgtIiQeyNBkkn0PtiRESxoY5R99IIAZBV11GF\nwYfqb+Tl0KKYUca96kk1uPOsJaTxmGOstA8bpVyWCjUSkCO/GHnZ6lF4OMabuqZa3L1lsbIAJJFO\nTjWtHDV1aLmjAs58l7KIpzHUgNDhFpKPTvVLfVo9bv3rzcr9aHpJFYpGqEezdOQXIxe5yv0QoInZ\nAmE/HvQ9QP5uUtaOOOYWlPGU+i77tHrMfOk85T5EFZIBPf2weORY5X7I8U2hEAj7UbNG7beTEgGd\nfPLJuPvuu3HWWWdh1apVePzxx9HZybvgKRjDYDj3ImYQEgz2ZNLqfc+q7TYTK4WAFzIX8YsEQRAE\nAMjN5k3PoUWC2N22i3WjTxCEzMKIzXuf5tNZDqaXVKEwbzR7+qqsLNbqEAj7cfH6Wezzy/2HP2et\nr9xxms5yYUQ6sNLjynSWAyOiCwFAbk4ua30AyKf1++J1VmLdzFrTUkAIX46Ra6HcdVp9HVUYXCj+\nBjWFj0+rx+yXa5Q3jX1aPe6vv4ccfaK9K6pclircduQXY1j2MGXxg9dZicsmX6H8/XDaXCge6VSO\nQOK2e3Cz92ek8aZ6Ug0eOmeF8sZ7ImqHavQOn1aPH/5ZPXWoFgniwJH9ps/vqYeXYrGYctnGUANa\nD6tHs3TaXHCP8tCiShECWrntHtx39jLyd7O9q51YXn0s8mn1mPXy95T7MfVdDkVb0BHrUI6Idfmp\n87Hw9EW4/NT5SuWBL97Fw+rvok+rx/3v074p3CmIkyUpEdC///u/47zzzsNJJ52EBQsWoKWlBQ8+\n+KDRbUs7rLjpPFjOvUweBECtv1HfK+l7giAMNuIXCYIgCEaEVHbaXHAQ8tULgjA0iHaqLwL3hxEC\ni43NG3Cw8wDpxGZ/UBfQ+2KE+JLjtGpfqJtYA/HZ/k90loN3A+/obLridVbivm8+yCquMerQErdf\nMNTTj1pFWGOUuGioPndhcKlrqsVNb12vHMHFaXNhbL6LNP51xbqUywI9PkLgkF/ZR6AKt73OSrw8\n6zXl79RjvuVY+dHjeMy3XKm8FgmiJaqRNs2vff0HpI3vnigs9yvfQ0d+MXIJ0Yy2t25DZ0w9dSg1\nlRRXhMFop7r/7LS5cHy+Q/ldrJ5Ug4fPeYx0DSNz85XLAkA8TosEdMMGWrRmarpYLRJEMLKHNF+h\n3AOfVo9rXr+KIMqkHTjxafV4/B+/IotoqOkNqfeQImx12z2onaf2PU1KBJSTk4MzzzwTAHDuuefi\njjvuwOTJk5V+0KpYOVymOPfCYJKqAMiq75UwuCT6SDrkMBUE8YsEQRAEgH+e1ZOvvsX0k4KCIKQv\nWiQILUpbBO7L9JJ/0VkOjBCtUBfQ+8Npc2F8wQmsIovpJVVwjChmjYJkRLQmAHDbx+ssB0Ujj9dZ\nDozoo9T0FgPR2c2fKpRbWDSU04EZJdQyYo1qqEft2X1wt9lNGPJQxILljgp4CsaToqNRov9tb92G\nbnQrizeAnugVXehSjl4B0COwUPyTqe5pyEEOprqnKZUPRVvQGe9Uvn6nzQV73ijSNWxs3gB/226S\nsDonuS3wfqH6s4GwH0vfu8fU721jqAGBiLr/3BhqQDCyR7k8Vcjltntw8cmXkr6F2dnqfUCLBPHP\nA02kuZcjvxg5WTmkqF4U4TpVUEg9rOZ1enU29fKVuMX7C7pwn/BN4biHnoIS0ng4vlBtvqbe+4cY\nVne8h+LETjAejig+yb5X0oeHLn3FYlYdhwVBEARByCyMOOkvkYAEQTgWTpsLzvxxrOPEqzte0VkO\nPtv/mc6mK267B4un/pJ1jqlFgjjYcYBVqPWPfR/qLBdfPf40neUg2hnRWQ5a21t1lgOnzYXCYaPZ\nv7l5ObypQgHg0BHeNGgAfWNaGByG6vpXIOzH7LWzzW7GkOfWdxaR5js5WeopF7VIEP5Du5W/pdNL\nqnD8cJogt9xRgbH5TpKQiZI+mpqy1GlzwWlT9xmpwoWNzRsQOtzCHhUyFbzOStx3trp4wpFfjFzk\nKt8DgBbBs66pFvPrLlOOqAX09OMJoyYq9+NyRwWOH16sXJ4q5Hpm62os2XInntm6Wqm80+bCuAK3\n8nsQiragG90kMeDmwCZ0x7uxObBJqbxPq8cv3r2FJFyn+LtaJIg9bQHl8ZjaB+uaanH3lsWk9wAA\nsigqICJuuwcvXPCSKX6diIBSwKqOt0RbEYyAq18lKwBK1z6cSpvSsf1WoD+xWDrdy3RqiyAIgiAI\ng4MRJ8m1SBB729RDrguCMDTII2wo9YfLNk5nOdj++TadTVc4UlX0R3esm7W+E0ZN0Fkudhz4VGc5\nKM4fq7PpysbmDWhp38u6OclxWr0v1BP8A0HZmLYyRkWXNmpdaKiuN7ntHqy7ZJ3ZzRjyUA7E96Sv\nUd803t66DV3oUo7ko0WCOHDkc9K8SosE8fnhVuU63HYPbptyB+keUlKW9kSZ3Ut6Bt1x9WhKpUVl\nyEYOSovKlMpz4NPqcdtfF9H8PIJuQIsEEWhTF7NxiKDddg9+8+0nlfthY6gBrUdChEhCH+psqkwv\nqULR8ONJgj5KOrFyRwVK7BNIYsDrvQsx9+R5uN67UKm811mJe7/xH8pitkDYj1kv1Sj7FHVNryGG\nGOqaXlMqT+2D1ZNq8HT1GlJKOafNheL8scpiKJ9Wj5kvnUcaS6jrfOu3r1cqJyKgIYDVoxhZmUye\nrHH0q2QHTSP7MOUZpSJOSmchkxXoKwBKl3uZTm0RBEEQBGFw4T5FH4q2oBPqIdcFQRgadMV5x54J\nhRN0loPS48p0lgOjosGMzXexRoPhSEHSl5boXp3l4sTRJ+ssB22dbTrLwX99/LzOcjC9pAqegvGs\naduop9X7o9xRAZdtHGnzqS+SZp0Xo9aFrLTeZEQbVdNeCHyQDybE1Yv2CEiylQUkVBFRglgsplyW\nKjTmiP7ILUpOhVC0BTFiBBUqTpsLo4ePUb6H21u3oSuu3o+o5aeXVOG44UUkX4WaArTcUYHjRziU\n/ZAF3htROKwQC7w3KpXvESHtUxYhUcV4brsHv52hLmABeiLZPP/ps8qRbKiRgBpDDWgO71S+h1eV\nXw173ihcVX61UvlA2E+OLEf1g7VIEKFoC+m7FovTvgcXrj9f+RnWNdVi1tpZSmVFBDREkInd4GOl\nyZoqVAFQKgOfym992b2nPqNUxEkixuMjne5lOrVFEARBEITBxYhT9GaGKBYEIf3RIsGj/3Cxec8m\nneVg9uQ5GJE9ErMnz2Grc//h/TrLBXdkpaKRRTqbzoQ7DuksB0ZElkrMtznn3W67B/d+8wHWOkuL\nypCLXNaoB1okiNb2fexRArkjC1kFI9ZqjVoXMqreoSxWElKDsmHptLlwQuEEUgqeGGLKApLpJVVw\njKClAwOA7Gz17VOnzQVPQQlJxDOMkGKSmsbo8lPn4+pTrsXlp85XbgOV0qIy5BCiCTWGGrA3qil/\n86aXVGHsSJdyP6IKjhtDDfj8SCv5m93ZrX6AoDHUgNDhFuU2aJEg2jvblf0YR34xcqCelo4qxguE\n/bjmz1eRvnE96ZHjymmSvc5K/PGCV5UjAQFAnKDKbAw1INx5iCTEuuqUHyr7MxxRuJ02F8bbTzBN\nEEh9huWOCkwcPVGprIiAhgBGOOG96xQnv39EHHBsUh34Uu1nyUxCOZ5RKmWN7gt9rzWT3810eq/S\nqS2CIAiCIAwORpyiL3dUwJ43ivW0vyAImYXXWYkfl19PWgTuy9Rx03SWgxW+R3A41o4VvkfY6rze\nuxBXn3Ktcij9gTjc3c5anyO/GLlZucqbFYNJueM0neXAiBRjRuDT6nHN61expoJz2lw4Pt/BGlnK\naXNhXIGbtc66plpcWTdP+US6laFuRA02RgiArCKC2n1wN2t9Qur87tsrlf0Nt92D57//knK/oEb/\n0yJBHOjYTxJQUtPHuO0ezCu9gvRudBDEG1Tqmmrx1EdPKH8rqOKNBFlZ6odkqFFsAMA+zK5c1m33\nYM5Jlyj3gXJHBYpHjiWvD1CiiCaEK6oCFgCIQT2CClXMRo36ubF5A/xtu0npY2dPnoPCYaNJhyM4\n/cBUofaBuqZa/PStBSS/M9oZVS4L9LyLi6f+UvldLC0qQ252HknoT5m/u+0erJmzRqmsiIAyHCOc\n+951GlV/pmCVSaVZpCIASrWfJTsJzZRn1PcemXkSJ5PeYUEQBEEQhMFiVeNKHOo8iFWNK81uiiAM\nSawwj3lm62os/2AZa7qhpxqf0FkO7MNG6SwHPq0e/7ltFatoozHUAH/bbvaoKJQNq/4wIm0XAOw8\nuFNnOWjvatdZDgryCnSWA6fNhRLCieD+aAw1QIsG2ftTnJBSpz+qJ9Xg6eo1qJ5Uw1uxBeDYiOqL\nlSLhGBm1iJNA2I/Za2ez1imkzpLNd5H6NaVfTC+pQtHw45UjqISiLeiM0dIsa5EgtDb16IvUFJFa\nJAgtuoc9ElyyOPKLkQt1UTNHetRQtAVd8S7l59gYasC+wyHSdzncEVYu+5hvOZZ/sAyP+ZYrlW8M\nNaClfS+p/VokiEDYr9yPrvcuxMLTFymL8KkRVDg40n1YuWxpURlysmhRHhtDDTjUcVD5OXJEwqFw\n0piTdDZVWttbEUecJOpsDu8kjYVU8b/T5sKovFGmibECYT/+7U//plRWREAZjhHOfe86uetPZuJk\nhUmVwEPiWbvtHtx39rKU+1kyfz9T+lN/76IZkaistPjBxVC6VkEQBEEQejBiIaYn17pdOdf6QIiv\nIgjJYYV5jBEpsUpGTdBZDiYUTtBZDkLRFnTEO0gbeoMGs2jj1R0v6SwXRkTt+erxp+ksB0aIytx2\nDy77Ci1Cw2CgRYLYG+VNAQhgyEYdNEIAZbVI8FZop9vuwbpL1pndjCHPrkP/JI09FJ+KKw0ShVC0\nBV1QF6BML6lC8cixykImp80Fe26haZvOTpsLhcPHKP++ESkyU8WRX4y87DxlIdPG5g3Y2x5UjgIz\ne/IcOEYUs6bHVSFOUBMHwn683PSi8vuceP6q/YAaFWxj8wZoUfVnCAA5RBlFuaMC7gIPyfeipHSj\nQo3qRU0t+ML2tYgjjhe2r1Uqn4DyHqz75EV8fqQV6z55UbkOykEWt92DX33vV0plRQQ0BDDCue9d\np1ECo/4YigKDoUrfiFO3vrNI8lZ/CYn3JnFdZrXBSosfVDKtDwmCIAiCYB4bmzcg3BkmLVD1RXwV\nQUgeK8xjxowYo7Mc5OfZdJYDIyLMcKQj6At1c2ggYnH1tAf9MWbEcTrLhRHPPhjZo7PpCjVCQ384\n8ouRjWzW/uR1VuJnZ97OmgLQSr6BEW00IgJSun87emPEPTWizvGF49nrFFKjM64eSYd6YIKaWrPc\nUYExw4pIm+5UH0GLBHHwyAFlIdXG5g3Yd6RFeW7IIZ6g/L7T5oKzQD0NE0D3/bzOSpw9brryN7S0\nqAzZyCYJmXJzcpXLckBNp9UYasDOQ/9UFuTVNb2ms6lCFZNNL6nCccOLSGK8cXZ6WlZqVMfOmLoI\nyJFfjLws9bEsFG1BDDHlPkRNLXjf9GU41/Md3Dd9mVJ5oOc5umzqz5EaDcmn1WPWS99TFgIFwn5c\n88o1SmVFBCSkHceaOA01gcFQxsiIU/39hpXpO6Ey+7qsfj9Twex7LQiCIAiCObjtHqypeYHVB60P\n6FYAACAASURBVLj81PlYfNbdyiek+kN8FUFIHiu8J6VFZchCFuup6mhnRGfTFSMEUAAQj/GG7eFI\nf9GXSaNP0lkujHj2RqTu+se+D3WWA+rJ9P7Y3roNMcRYn31dUy2WbLmTNX2V2+7Bzd6fpf2YZyWx\nklUw4p4a9Zx2H9zNWp8w+FAiV3idlfj9d1crizc2Nm/A/o5W0uEKp82F4pFO5U1jp80FW16Bcnlq\n9EdqeWr0Di0SRCjaQoomRY2kc/3r/4o3/X/G9a//q1L5zYFNiCGGzYFNSuU3Nm9AMLJHuR9SU7Id\nrYMgqKOKyajRQZ02Fxy2YuX3qDHUgP1HPidFFeuKdSmXTbRhT8Sv3AYtEkSgbbfyu+S0uXB8vkP5\nHlL7UPWkGjx0zgplEXZdUy02+F8n+8LdcfXnWO6ogKdgPC2SJm+26KQREZAJDLXJC/V6+xM4CEOD\n/iJOcb8/lP6UDu/yQJPtTH9P0uHeJ8j0ey1kLun0HgmCIFgRbh8gEPbj8cZfp5W/KwhDCUqI7sEi\ncQKTMyVWcf5YnU1XjIguRE31MVi4bON0lgsjnv30kn/RWQ6KRh6vsxwse+9+neWgtKgMuVm8qU+o\nGy/94dPqcc3rV6X9mCdCZmPWQLnvqRF1BsJ+1Kzhj9gkpI5P8ymX7Yqri4ACYT+WvneP8jswvaQK\nxw8vVo7+AXwhYmnfq7zxTk0fM9U9DdnIxlT3NFPKU6N3OG0ujMgZSY6gkp2Vo1x26rhpOpsqsyfP\nwXHDi5RFSKVFZchBDskvyMlRv36g5zmMtamL2YpGFunsYJdvDDUgGNlDEvHECXl6G0MNCLSpC3g4\n2rA5sAld8S5lMRr1HjptLowapp6aMBD241cfPEryaSj3D+i5B/623aTnmJutHtXL66zEEzNWKQtb\n3XYPnvj+E0plRQQ0yFBDIVoN6mkAn1Yvpz6Eo6TT+5MuJ5KG4qJIutx7QbA66TKeCoIgCD2s++RF\naNEgKc+4IAjqzHpZPUT3YFE9qQYXn3wZazqbD0Mf6CwH1FO/gh4jIuEAQLnjNJ3lILFhTNk47suH\nLX/XWQ4WTfm5znLgtLkwNp+W+qQvoWgLuuK8QjWnzYXjRhSxttMorLLWZVSKLSPm7Fa5p0J64HV6\nlcppkSACYT8pCkxr+z7lslokiP1HWkm/DwBxQg6f670LsfD0Rbjeu1C5juxsmgAkm7D9W+6owJjh\nxylHvljVuBIHOw9gVeNK5TZsbN6Ave1B5Ug6VHGuFgki2hUh9aPsbPVn4HVW4udn3kFKCapFgtgb\n0ZSvodxRgbEjXcr9gBpJiJqWr9xRAZdtHCmCC1WAQr0HB48c1NlUod7DdZ+8iNYj+5TXqbRIEDsP\nNin3Qer944D6TaMKWyUdmDDoJNtZKQKFQNiPW99ZhPvOXiYTFKFfzNy8TifxTe829L4nmby5ny73\nHsjs+ywIgiAIX4Z8B/lInNJUPa0pCAKNEvsJab8p/phvOZ7/dA0e8y1nq7OtI6yzHDSGPtRZDowQ\nFpU7KmDPG0UL7d6Hy0+dj7knz2NN7WhEJBzAmOhKiQ1j1Y3j/nDbx+ssBz2imixWcQ01akR/lDsq\nMGZYEWsf5ThVL/wvVjuoxt1OI67fbfegdh5fCjxBDWe++sZ/KNqCznin8hi77pMX0dK+V3nTeXNg\nE7rRrRw5g4NA2I8/N7+m/G6Eoi3oiqnfQ2q0w43NG/D5EfWUatWTztNZFagpzQCakMvrrMTSby4j\niXCyCDmA6ppqcfeWxeQ0SFlZ6m2gCuqokYCcNheKRhyvPEfTIkG0tu9Tbr8jvxjDsoeRIjJS78Ht\n0xZj7snzcPu0xUrlnTYXRubkK9/Dk8acpLOpsr11G7rQpZwulyOymyO/GHlZ6kIogC4GC3ccIpVX\nRURAg4zb7sGamhfSZvP6y+jrpATC/pSd+1SvNVFvQmSRzEfWKhMtgUbv9ycdJtlGv8c+rT6l6+t9\nT9Lh/lAYqN2J60oXrH6fhaGNlfwRQRDSE/kO8pJYpDZzsVoQhjLPf/+lIekbGSGw2HVop85yQF1A\n749VjSsR7jxEOqXel2e2rsbzn67BM1tXs9XZdOAzneUisRjNuShd7qhAfq6NVbTy1eNP01k+aIv5\n/RGLxVjr29i8Afs71DdhBeMx6pCgEXsIRgl2jLj+8YV83yRBjX2EjXOzI1+MGTFGZ83i0BH172v1\npBosPH0Ra/THVJheUoXCvNHKG+8cKWypz3F76zZ0o1tZfODT6nHLWzcqRwp12lwoHDZaWXxR7qjA\n8SMcJJ/KaXOhOH+saQcdqBEiG0MN0KJBknC5O9atXNbrrMR1p91AEoIlhCeqAhSfVo+Xm15U7ocr\nfI/gUOdBrPA9olS+3FEBT8F45X5IncNpkSAOdRwgieydNhfcdo/ye7C9dRu64upCJmo6Mrfdg4Vn\nqUWVExGQMCB9Jwa9N9+NisLR9zeT+Q3ZfEh/uCeXCZtO0WA4CYT98Gn1mP1yDS5eP+uY96/3n/W+\nJ4l/tyKJd7o/xybdriuT+6GQ+Ui/FQSBylD/DnLPP7Z/vk1nBUEYXKwwlhmxqRUI79ZZDoyIXPP8\n9ud0lgMjogtxnFofLFqie3WWg6V/uwfRrgiW/u0etjqDkT06y8HT/3hKZzkIRVvQjW7W6ELTS6ow\ndqSLdPq5L478YmQhm3QaWtBjhe8HYKxgScg8uuKdyhuepUVlyM3OU07DRI0qV1pUhmxkK/8+B42h\nBgQi6pu+dU21WP7BMnIUGFU2Nm/Awc4DyiLUz/Z/prMqUH0qqvhgc2ATutClfEhnY/MGhA63KN/D\nxlAD9h0OkQQwWiSIlqh6lEKnzQXHSHUREfVdpqayogrBntm6Gss/WEYS99c1vaazKsRj6sJ1jvS/\nI3JGKpdlQT2Y1VEIQcGwec8mnU2V6kk1WF39rLKos66pFte+eq1SWREBDTJWEqz0nRj0FRgMxm8a\nVUYYPIzs85n4zBP3y2lzYd3MWrxwwcCnUfu7t33/bl8hnxVw2z247+xluPWdRQO2OZ3G0Uzsh4Ig\nCIKQLEP1O2iEj+uyjdNZLtLFZxIEgY4R0XCG5QzTWQ5a2/fpLAfnnjBDZ9OV/9n7vs5y0NF9RGe5\nOHH0yTrLwW1fvwPDsobjtq/fwVanEd/HK7/6A53loNxRgbH5TtYoSAAwaridtb66ptcQR4y0GSUY\nTyDsx+yXa9j9OKMO9QpCb5w2F8YMG6MsHHDkFyMXuaSN/xhiyhv/CTrjncplqdGQAFoqKaoI5/JT\n5+PqU65VTm/KIVyf6p6GbGQrp8ve2PwXnU2V2ZPnwDGiGLMnz1Eqz5LOjCNqIaEKaqpT6jMAaAIY\n6tyJQ1BITY3ntLlQOFw9olRpURlys3JJ13C4u125LBWnzQWXzU2KZqVFgghE/Mr9eOq4aTqrAiWq\nW/WkGqybu06prIiABhmzBCuqznjfdib+20jnXuXeDNXNBytgFZFWukxYe98vr7PymAKgL7u3vf/c\nSgJEoCfU4kDXZpU+JQiCIAhC5mKEP3L7tMU41/Md5Vzv/WE1H1AQzMQK7wnHhlJfSkZN0FkOvuE+\nW2c5sEqEnbmll+osB6VFp+osF0akA1v3yYvoiB/Buk9eZKvz3cDbOsvBqzte0VkOqKftByLcEWat\nj3oqfzAxYlxWTacx2DSGGrDr0E5SBIjBQHzNzMUxolg5Chk1AgoAZGWrC2Cml1ThuOFFpChq1Ogd\nl586H4vPultZRFPuqEBBrl1ZWEoV4dQ11WLlR48rRyLiEK6Hoi2IIaYcYY8jAsrw3OHKZdMhLZ3T\n5sI4O01AQUmnRX0GoWgLutBF6AMVcIwoVn6PQtEWxBEnRXlMiBFVRYkc42l2lroUhJrKiiMqGHWu\nsr11G7pi6tHtOMYzqp80tmCsUjkRAZmAGQKgebUXsznj6e7cp2u7hjKqfb73szTyuaZbnz6W8Cdh\nE+39sntr5fRpx2qrla5DEARBEITMhHtT5pmtq/Gm/8+kUNN9saIPKAhmkU5zwoEwIr3FttatOsuB\nEekNjYiwU1pUhixksd5PI8QlRkRWAoDpJf+isxwYseF1muN0nU1X6ppeQ4w5ws7G5g3QokHSxk9f\nyh0VcOa72CMWcWPEWp1Pq8esl75nCSEQNQXKYGGUr7n7IF+KSkGNgx0HlEWN1HRgAEjRSxpDDfj8\nyOek+Vr1pPOQhSzl6B2BsB/PfvwH5TFsVeNKhLsOYVXjSqXyVBz5xcgljEGO/GLkZdHGMGoUGaqA\nnCp+KC0qQw7UI7BwiCcAoCvWpVyWmk6LKp6g3oPGUANCh1uUn6Ejvxg5yCH148TzV+0HpUVlyCX0\nI45IOhSmuqchBznKEb1WNa7E50daSWMh9R76NJ/OpgpVo+HT6lG1Wk3UKiIg4Uvp2zHNWEhO9uUw\nQ8yR7ouEVqHvfez9LI1+rsn26f7aOFj0Ff6ovIOZvvkj76IgCIIgCINFXVMtrqybp3wysj+oi0OC\nINAwYp2De6OZK71FbyYUTtJZDjhCpvfFiHRgmwObEEccmwOb2OosPa5MZzkIhHfrLBdcm0tGY4RY\nyYjnZESEHeoGYn9okSA+P9zKHrGIG6PWn2PxGGt9gDHrUV5nJZ78ztPwOivZ6+aG+xkFwn7MXjub\ntU4hdeJxdRWO0+aC2+ahRR+Jq0cf6YmYGCdFTqT6CFokiObwLuWxlppCiEU4TkjD5LS54LbT+sAC\n742w5RRggfdGpfJUYXK5owKegvEk0Wwc6t8c/xd+n5/g/zWGGhBo85OETJR+5MgvRm6Wemq/g0cO\n6myqlDsqMGHUROIzpKVkS4whqmOJ0+aCw1ZMepc6YuophamRaJ02F8YML1Juf/Wk85CTlas8Fiba\n4CxwKbeBw8dv74oql/U6K/Fo9aNKZUUElGYYMWlw2z1YU/OCkkM+kPhisAVAyQpABluglG4RZIwm\nletMRbjV333s/SxVnmuqi63JCIB6t9GoZ9+7/r7t630PMl3QkypD7V0UBEEQBMFcqifV4KFzVpDy\neveFGnK+P7ijwgpCJmOEAOjC9eezCoGml1RhZHY+Kb1FX0LRvTrLwVONT+gsB42hD3WWg9mT5+C4\n4UWYPXkOW53UzYr++O7EGp3l4k9Nr+gsBz2ilRxW0crz25/TWQ6MiCzlyC/GsOxh7JFbcrJ5l++d\nNheOG6G+GTOYGLH2lZWlnmKoP4zytQJhPx70PTAkfTi33YN1l6wzuxlDHqpgjvKqbQ5sQgwx5U1z\nDp9hqnsaspClHL3C66zEEzNWKQv5qMIBqnCcmoYJAHKz8pTLAj0Clkh3m7KAhSOFD0ELR+7HC7w3\nYnjWCGURVAKKiIWakg2gjSXU1LVuuwfzy65W9ieokZAA+ljSGGpAMLJH+T3Y2LwBwcge1qiSqf7+\nviPq6cy8zkrcPuUukihaiwTRElFP2Us9OKFFgghG9ij/vk+rx4LXFiiVFRFQGmHkJjZl0mR2+Pgv\nE4CYKVAaSuH1U+mfyf7dxN8DevpZX3rf11QFQBeuP5/1ZHZ/IhzuZ5+4Hz6t3nTxXbqQ7Hho9Ls4\nFBddBEEQBEEYmEDYj8cbfyM+giBkENzvs9dZid99eyVrFIcVvkfQHotihe8Rtjrtwwp1loODRw7o\nLAdv7vpvneVAiwRxqOMQa0SUdwNv6ywHL336gs5ykRCBcItBssArsmjvatdZDs4Ye6bOcuB1VuL/\nK72K9Z132lwosU9gfUaNoQZo0SB7WlMrpNhy2lwYPXwMe5+nnO4eCKPWuaziu44vHG92E4Y83egm\nRcEJhP2mRRwrd5ymsypsb92GOOLKm/+BsB+LN/1C+Z0zQlScCtToHwCw73CI1AbqxjtHKqk9EfUo\nOrMnz0FBrl1ZbL7ukxdxJH4Y6z55Uak8YH7Uxxe2r0UMMbywfa1Seeq7/MzW1Viy5U7llOscQrKn\nGn+POOJ4qvH3SuUd+cXIhXo0Jeo1cNwDCnVNtViy5U7yXm+MEJWLGlWsJyXbOGX/02lzwZHvUCor\nIqA0It0EJb0FGqmUMYJjCYDMjv6R6vMaqK3pPglLpX8m+3f7/j2uZ5lYbOU+MdP3erjf1cT98Dor\n02osGGxUoy0ZKQAye5wRBEEQBCHzKRxeqLMcUKLCCsJQg9vnNyKKA8emVl+0yB6d5aBw+Gid5cBj\nP0FnOdjeug1d8U7W9GpGCGvOGvcNneXi3864QWc54Igc0JedB5t0lgMjNlcf8y3Hyo8ex2O+5Wx1\nuu0e/NvpN7B+xx35xchBDmvEIiMinxnBxuYNaGnfy3oaXosEj/6T7hgZtUjITFQjV4SiLeiMdyp/\nC6a6pyEbOcq/v//wfp1Vgbrx3RhqwM5D/1QWkPSkvslSToFjRATFVFjhewQHjuxnFa6nCkc6sFHD\nCpVTSa375EW0dYWVRTwcvspJY07S2VRx5BcjG9nKPoMRc5dU4BgLqNz29TswMicft339DuU6sglR\nIV/d8YrOpgo1pVtpURlysnhT26ZKKNqCrjjv/CRVRubmK5fVIkHsjahF7RURUJqRTouzqYqSjN4o\n76/edBNOfRkD3SOriAxSuc/J/l2VyDq971N/9ywQ9qN6Ug1r3xisZ2NWuq906Xu934V0eb/TpR2C\nIAiCIKjD7esYIa6hLlIOhPgw/KSL7yzwwu3zGzGPKC0qQxayWBdRnbZxOstBR3eHznJw0Vfm6iwH\nOw/u1FkOjNhsiHZGdJaTPNBSdQwGXucUnU1X/OHdOstBXVMtbnrretZI16FoC7rRzboR4nVW4o8X\nvMoaBckIppdU4bjhRawpFb3OSjw+4yn2aw+E/Tj/j99l9zm6Yp2s9RklLNri38Jan6CGaprickcF\nJoyaqCyeAGjpxKjCB+ALwWSWumCyelINFp91t3L66J4oTHHlaEwXl16is6nS42uq+5we+3idVYEq\ngpleUoUROSOVx/x1n7yIgx0HSJF4KHAcEip3VMBtG6/8LlLTylH94tKiMmQjW7kfUseCjc1/0VkV\nGkMNaO+OKgsCqVEhOURIlLR4oWgLuk0W4FCjKVFx2z14aPqjpqzNiQhIOCapij5SSduVCscSyVhp\nUTtxjwb6/1a6FsCYzZQv+63efaHvv/f9c04BkBVEWoDaM0mn6+sv7VpvzGqjpBkTBEE4NjKeCemM\nUb6OFU58C/ykk+8s8GKEz89dZ13Ta4gjrrwp1x9Hug/rLAeJ1DicKXL+6+PndZaDCYUTdJYDI+7n\nuSfM0FlOKKHx+6PcUQFnvou08duX80/8vs5yYET0PfuwUTqbrhiVGoQ7xZYRNIYasP/I56yp0AJh\nP+7+213sfsHG5g0IRHazRi0CgNzs9Bf++bR6VK3mE2oJ6nidXqVybrsH88uuVvaDNgc2oTuuno6M\nY+Oe2gafVo/76+9RjpBGjYaU8BVVfUaqCInjgEui/6n2w6V/uweHu9ux9G/3KJWnXgNVgHK9dyHm\nnjwP13sXKpVPQBHUUaEKuULRFsQQUxaQVE+qwcLTFymL8aaX/IvOqkBNree2e7Di3N8oj6eNoQYc\n7m5X9n22t25DN7qUhWDU6+dITQgABB0T+eBIIOzHTzfeoOwrep2VeOuqt5TKighIMBTVtD59sapI\nZiD6uxdWu7ZjPVMjwsr2Fx2mt6jKyOgxVul//YmikiHdri+d0/9xkmnXIwjC0EXGMyHdMcLXMSLt\nhVGhquXd5CXdfGeBDyPS2HDXaYRo5TTH6TrLwUljvqKzHHzU2qizHDzz0Wqd5WDS6JN0loNXd6zX\nWS42BzahG+obnP2hRYL4/HArq1DWCNHKu4F3dJaD6knnIYuQuqU/uDY+ejPVPQ3ZWdnKG8v9YZX5\nQLmjAiX2CawiNS0SRPOhXezi8NKiMuSCN32GESfRjYiO6XVWYsN8XvGTMLg8s3U1lmy5E89sVfu+\nUsUTHFFoOEQsXfEu5bI94gf1qG1Un5H6DKjp1ADAp/l0NlWmjpums6lCvQZq+s26plq88OmzpGiA\njaEG+Nt2s4pfU4Equqb6gHVNtVj+wTLle0jtgwCwec8mnU0VqoAEAOIECQw1Ei1VQMMxllCFTFeV\nX41hWcNxVfnVym2gRmLc2ybpwIQBGKwJWN8JH3dan0xZZM2UReO+16Eq+OovNdqX/Zbb7tEJXfpG\nWLL6vVWlP1FUMqQaNcnMaDyZ8O4kcNs9uO/sZRlzPYIAGDc+pPti8lBHxrOhjVXeT+7+6XVW4nff\nXsma+oEjbH1frLIpZzVkvMtMZr38PVbRjhFiwcf+5xGd5aCts01nOWho+R+d5eDE0SfrLAdGCHaa\nDnymsxx8w322znIxe/IcHDe8CLMnz2Gtlxsj0mWOzB2psxyEoi2II86a7qAx9KHOcrC9dRticfXU\nHv1hlfUat92D3854krWdTpsLTts49khITpsLnlHjWevl2EjsDyOe+zg7X4pKYfDh2LSl8D9739dZ\nM6BGEjIqaluyOPKLkZulnj6HKoAB6JGAqFCfATX9ZuLeUe4hVUw8vaQKznyXcko1aiQganlqP759\n2mKcP2Embp+2WKk8F9ypPFNhc2AT4oSoYNT32AhBfKos/ds96IgfUY4qBgAd3erPsK6pFrPWzlIq\nKyKgQWawF1+5Fn2TKd+fUONYaX04sMpittWj/gxEbwGQiuDrWMKxgX4r8ffm1V6Mua/MwsXrZx39\n+yp9PZm/b6XNk94RklSeAfffT4Vkx5l0RDUN263vLLJEvxKEZDBqfLDSGDxUkfFs6GKl99OIselB\n3wOs9XKEre+LVTblBCEtoMQI7wcjxILnjK/SWQ6MEK18fdw3dJaDUHSvznIQ7YzoLAdGCIu2f75N\nZ7nQIkG0dYZZI5h4nZV48jtPs/Z7I1LBGcGrO17RWQ440lAMFlbwNYyat+QZlGIrN4u/XjM3EpMl\nEPajZo1a6haBF7PSt1DLnzH2TJ1VgRq9gypgpYofeqJ3ZNOiiRF8Y6oAhgOqGI36DB35xcghCFCe\navw94ojjqcbfK5UHeAR5cUI/CHcc0tlUSURXpERZjBMuoK6pFq/ufJkUjan33qcqh46ElctSxWQ9\nqQl5I0gONqVFZchBjvJ4WHpcmc6mihYJYm80qDznKndUoKSwRKmsiIAGETMWyTkWfY/V7r4n2vr+\njpETQKtsOlilnRRUBV/9RfBJpr+67R7cNuUO/KTiBmRl9QyifaMQcIp7ercrnZ9j77apPoNk/z7X\nu82VMtBMVNsum3JCpmFUnx7q74oRqUmMOPkpkYB4scr30CrvpxF+hlWuHQA2NlsjnYJV+r2Qubw0\n60+swoVA2I+l793D2rd3HdqpsxwYIVqpD/5NZznI/WKTPZdxs729q11nOXDZxulsutMV62atzwiR\nrBGHC5u/eIeaGd8lI0RlRpx+nl5SBceIYuVT/YOJVeYteTnGiIAOd/ONTQkoJ9EHQny4zEU1Chk1\n/Us6UJBXoLODDTXF5PbWbYhDPeobVcRT7qiAyzaOlH7R7GhIl586H4vPuhuXnzpfqXwo2oJYXP0e\nnn/i93XWDDY2b8De9qDymoJ92CidTZVf/c+jOpsqPWmgupXfA44+eMe0uwBkfWFTh/oMXti+VmdT\nZXvrNsQIYwn1HlIFPAlyc3KVy1KjdnudlXh8xlOktYbcbLX2iwhoEDFroZj6ewO124jQ1hztSjes\n0k4qlOvrvSmTTD11TbW45vWr8LO3b0K0sx0L3rwOPq3+6GkeFXHPl5EQAJktVBnot6ltS6Vsss/6\ny+rrG0EqsRBzrGtMRyjveKaPC4LAxVB9V4zwtYz4lhl1ojZdx32jSQd/IxWs8H4ateHDXZ/HPl5n\nOXhm62rc9Nb1eGbrarY6jcBq/V7ITLhTuRjBCaMm6CwHRohWvvrFhs9XCRs/fZlQOElnOSgaebzO\ncvC+9p7OckA9fToQmwObEIN6qpL+MGINzIhNsJIv3qESxnfp3BNm6CwHRqQD0yJB7D+ynzUClBEY\nNW9Z8OZ17CK1NTUvsPuFjaEG+Nt2ozHUwFanFgki2BZgffZGie1r56lHXRC4yMLFpZcolaSmf6FG\nL+mJXJFjauQK6jVQU/BQceQXIwtZytFDtEgQre37SOPN7MlzMDxruHLaUqqQNhD24+mPViqPb+WO\nChSPdCoLoXqeQTYpHZgjvxjZhDpKi8qQTYgoVTi8UGdTxYh0wGaQQ5BiUJ8BNaokdSyjRjVz2lwo\nHD6aNFf3Oivxr+ULlEU4T//jKZ1NlUDYj7v/dpfyWKJFgtgT3qNUVkRAg4wVFsn7o792e52V+OMF\nr7KelEsVq9xPq7TTDPouECUjHHnQ9wDu++aDOGHURCw68+fIyur5GCTqSWWjJ5XIQWYLur5sYk0R\nonBfVzKLAH0jLN36ziL4tPp+y/WuLx03h+QdFwTZwDUCI3wtI8Z8s74j6YIRJ5SHgoD8WBghKBuq\nKesuP3U+Hj7nMeXTiwMh/V7IRIzYxHxo+qOs/brli1RYLYwpsYKRPTrLwcEjB3SWg50Hm3SWg+2t\nW3WWA2rqiP6gnj4dCCPaClhjfmxEFKinGp/Q2XRle+s2dMU7lU90DxZG+AZaJAh/WzO7AMoIQZVR\nETBiWby5L43y4cYX8oniBVXiyuOE2enAQtEWxIipqKgHNBz5xcglpIKa6p6GnCx1IROHCCmGmLII\nyWlzYfTwMaSN+6V/uwdH4kew9G/3KJXff3i/zqZKY6gBu8L/VBZjapEgDnR8rvyNqGt6DXHEUNf0\nmlL5RB0xQh2haAviiCu/S1Rfc0LhBJ1NFbNTwgH0aETUSDw+zaezqfL89ud0NlWoUc3WffIiPj/S\ninWfvKhUHug5HLf8g2XKh+Ou/OoPdDZVtEgQzeFdymOB11mJ5+ao3X8RAaUp3KccjKrDTAGQYE36\n60u9hTjJCEfuO3sZSovKsOLc3+Dxxt8czUvau55UNnqS3WhMRKwxi4Em1on2U+vmJJXUAXFcGwAA\nIABJREFUbr3/vtdZ2W/qtd5py6yyKSwIQw3ZwDUGI3wtI56REd8RK6QYM0qsZNR1W+H7aaXUXdwR\nUY3ajKWGTe6Llfq9Ffq8kD5wf3cCYT9+uvEG1n5YnD9WZzm47et3IAe5uO3rd7DVaQS2PJvOcrDj\nwGc6y4ERqdCMorSoDLnIZf9OcGOEGMKIqFpGRBcyQvg3vaQK9txR7OnAjPjmcvsGHOkY+uLT6vH9\ndd9l9wupJ+f7IxRtQVeskySMEIYWqlHIqGkHqeKNdCAUbUFXvEv5fQtFW9BNSCVlRDrJVNjYvAEt\n7Xv/H3tvHh9Fle7/f7qzkTRhix06JKKGEUGNqBEUlJkMbtEgBv0FFa8YQRj5DqACg8IAXhEFHWAE\nnMuMXhH1wgxwkUUzZkAwyBVGYjvEqGRcIktiN2nClnS23n5/JKet01R3us6SdJN6v17zepzQdfpU\n1anqqvN8zufhKk0tywkxXHifPyymNJhiuzMLoUQI9XlFNLmZeci7dAxyM/OYtt99dBcVtcJ7L+B1\ntBJRQvXAT/upyNKHnvG9mPvA68zGew54hWTTsp/ExCunYFr2k0zbA/z7wHsvyLYMxRu3r2N+/qyu\nq8LT/3iaaVtdBBSBiJxUFdFWYBv6RKoOK+2Nx3ASNMS6d+z2PDgaarAhbzM2j9lGbaMlcUiEPeF8\nb2Hxw51W/o6g1kctiS21Yx/u37SidbJG+Xm1sUJcnnSRgY5O5NKVhQs6YokW55Zo+l2KFnclWcdU\nhgAof/vdQp8NSRJWZDJWRj+jZdxHy5jXiRxEC3YA4FTjKaHtyRAELPnnYnjgZl5lrUbPhF5UFEFy\nfE8qiuCmfjdTUQQX97iEiiIoOfYxFUVhMaXB0j1NeCk80ddRxanDVBTB3uN7qCgCGSUrxg16kIoi\n2PrtFtS5z3GtqA6kuq4KBTvyI/43t7quCosOsJdjUKO48kO4fW4upwY1eBO3amSZhyCl20XMpWnU\nqK6rwviigog/9zpssJYDszttONXE7oDCuzhCxO8mbx+yzEOQHNdD6PWmBd5yktOyn8ST185mTrzz\nOrCIgPccjh14P3rHpzCXI+N1MBnebwQVWeAVP7y4fxE+OLIdL+5fxNwHHnjPAW9ZPbvThtomvrJ2\nvGVtS47twdmWM1yCOgMMzNvyXke8gkSrvRT/U7GOa06L11X1ixOfU1ErvM+f5Y4yVJ5hc8PVRUAR\niMhJVRFtKR04WCdS9ReBCxct5zaUkw2J4TjHbB6zDa/f/haWW19BuaNMtT1SWqq9vpPxHM73Lh25\nLGITkoHOOQTl39SuX7XyW6ITJlraUboaBbt3RXrCSUdHRyx6ErdrEi0iA0CO/b8MoumYRkMfLaY0\npJn6CU2ckuSRyCSSjH4C0XGOomnM66hTVlaGRx55BABw9OhRPPTQQxg/fjyee+45eL1eAMCmTZtw\n3333Ydy4cfj449ZET1NTE6ZPn47x48dj8uTJOHUqPCGOy+MS2v+SY3twotHGNWEbCPnNEfnbwzsx\nrYYMl5Ur+gyiogiq645TUQSZvX5BRREkx/egoijsThtOOO1Cx5MMQUCaqR8VRWBpa8sisM26lnNU\nFMGyg0upGKm0ljk4EvHPxXanDcfr2csxqCFDrAPwOweoUXJsD2qbTgr9XZLF8bPi7ssXEh39bMRa\nfuZA9X544GZOvPOSZb6Gip3BuvK1qHOdw7rytUzb8zpPEAEXq5Cruq4KG79dz/x7zluCSAS8Ahi7\n04Y69znm3wxSyo21pJsIR6yxA++HuVsqs4imZ0JPKmqF18XU7rThnOsM8zngFX+8Vf4mvPDirfI3\nmbYH+EWJR84eoaJWcjPzUHD5Q8xuTrwidxFOQi3eFi4XQ9770fV9b6CiVuxOG47W/cg8js1JqYgz\nxjFtq4uAGOiIJJTIiUpRbbWXmA+Gnry7cGE5t8FKWamJUYJ9p91pQ25mHmZlz8GUXY/Bai+ltrM7\nbWEJdrQmBtRKVUXKuFY7F4GTb4H7S8RSga5JIhMmWseI8rvD/f5IOQcsRHPfdaKfaBl/ehI3OogG\n+38ZWO2luG/H6E53CgyXaDim0URibJLQ9kTYfavBOlkQiq4+5qPlNzSaeeONNzB//nw0NzcDAJYs\nWYKnnnoKGzZsgM/nw+7du+FwOPDuu+/ib3/7G958802sWLECLS0t+Otf/4qBAwdiw4YNyM/Px3/9\n13+F9Z1xMWKvlYevmoAnr52Nh6+aILRd0Wyq+BsVRSDDsejouSNUFEF8TDwVRfBlzb+oKALeBEww\nHA01cPkivzSQjP3vFtuNiiL43P4ZFUUgo8SYLAwG9lXmHYXFlIZe8X2EiqMfvmoCJl45Rfi9vntc\ndyqKIKf/KPRJSBFaCi49OQMrclYJL6c5duNYYe1dKHTGs1FnMShlMGIN7OUqeZPmItrg/e3iFS8s\nO/gyFbWy9dstsDfYmF1seEsQiWB4+ggYYGAW4VTUHobb6+ISwyljZxFjjGHedlr2k7g14w5mRyhe\nIfvmio3w+DzYXLGRaXteF5q5N81HPOK5yiZnJF9MRa3w3ktes67Epu824DXrSqbtecXOMhw9tZKb\neRcVtcJbotXRUAMXRzlWiykNA/oMYNpWmgjI6/Vi4cKFeOCBB/DII4/g6NGj1L/v2bMH999/Px54\n4AFs2rQp5DbBVM0AcOrUKdx5553+hx/ZXMiClsB9CizDozUxr7atzoWFSKcppcAmGNV1VRj3fr6/\npEGWeQj6JqXB0VDjvy5JMg4ILVgjiQuW8axVuCQSnlJq5HPK/146ctl5tSjDcUYKF5ZSZV1FZBjN\nfdfRTiQ+F0XT+NOfIcQi+rx35ftZtmUo3hvzAXNd5wuBrnjeATkJDxnJHgCIFSwCijbxm2i68j2v\nI+nfvz9Wr17t//9ff/01hg0bBgD45S9/if379+PLL7/Eddddh/j4eCQnJ6N///6oqKiA1WrFyJEj\n/Z89cOBAWN8p+pq22kvxX1+uFHqttHiaqSgC3pWNanx/+lsqiqCi9msqiuDfpyqoKIKURDMVRcCb\nCAxGlnkILu1xmdBSJenJGdiQt1notSRr/0UTH5NARRHIKAfGW9JAjWzLUDyRNT3in4nLHWWoabSj\n3FEmrM3iyiKs/eZ1FFcWCWsTkOMAVu4ow6nmWqH7X11XJbycZnpyBhb+cqGw9i4UOuPZiLWUE+99\nxmJKw0WJZmbB3g9nvqMiC7wLNHiTxrzOFbOHPUNFrYwdeD/iEMfsIMMrvgD4nXR4S0HxljTjLaMk\nQjxRcmwP7A3szqSvWVdid9VOZgEJr0si72/h7qO7qKiVdeVr0YIWZkcvgH8c8G7f2c/Rg/oMpqJW\nRLiKESEfq6Cvs0WN6ckZWHfvOqZtpYmAPvroI7S0tGDjxo2YNWsWli792bbU5XJhyZIlWLt2Ld59\n911s3LgRJ0+eDLqNmqoZAPbt24eJEyfC4XDI2o3z6AhBS2dMJgZOZCpFDgSle4hWtAgAohWe/kfz\nvosqWxdOW+nJGdh0zzYsvWU5si1DYXfaEB8ThyUHF/vdbJTJuFACIJ7EhRbhkkjaSzgE9qO9yTfi\nBBTKPUgE4V7/LMkUImSKRoGALpDsWkTic5E+/romMpLXXf1+FunJDpl0ZTGEjISHDGSIlWSJ36JF\nVNTV73kdxZ133onY2Fj///f5fH6XCZPJhLq6OtTX1yM5Odn/GZPJhPr6eurv5LPhMH33VKHXdEXt\nYbg4Vg+rcbb5DBUjlV/0HkhFEaR1T6eiCGKNsVSMVEQk0tRIT87Amtv+W/j9THR7WeYh6JOQIlSs\nJKMUHElWi3SZkeHUJUNYtP7rd7Dy0DKs//odYW3KwgdfZ3chLGSUl+MtL9RRWO2lGPe/4zq7GxFH\nZzwbscJbPqbcUQZ7g41ZsMb7/QB/KUrepDG3+wZn0nv2x0/BBRdmf/wU0/a8AhqAv1w2r4iG9/mr\n3PElFbUiohzqoJTBiEEMs6vW8PQRMMLILMSSVdI2XHjLkYmAtxwW77VkTkpFDGJgTkpl2p63PGlV\n27N2FeMzd27mXTDAwOziA/AfQ96SbrmZefjjr15jLslWXVeFye9PZtpWmghIqS6+9tpr8dVXX/n/\n7YcffkD//v3Rs2dPxMfHIzs7G6WlpUG3UVM1A4DRaMRbb72FXr16ydoNVWQLgDpjIj1wIpMk1tUE\nAoHiIBGE2m8tx6KzJuF5zlug6CLSEwkyCbcU2LxPf4fiyiJM3z0VC256HhvyNlOTLNmWoaiuqwra\nnlrignWcdeTkP0vCIdRnQ7XX0XXcw9m3YPeH9sq+RTJ68qjrEInPRTLGX7Rei10JWeLJaLmfdfUx\nKnr/dTFE5CPrWUmGAEiGu5Csa14f8x2P0fjz9JXT6USPHj3QvXt3OJ1O6u/JycnU38lnw+FY3ZEO\nfw/Syi96X0FFEYwdeD96xvdiXumtxm+vn0FFEdjqq6kogl4Jvagogi8d/6KiCHL6j0LfxDShJXwA\neYJW0e2VHNuDU821zKvY1ZBRCu5wm0vVYYFuVTJctXgTGWrwlu4JRjQ8u0eLsAbgT+aqkZ6cgbnD\n5gt/NvL5okOs1Zl0xLMR67jmdeLhva5ElFnmFeLxulfwliPj3X70gDFU7IrwCgeyzNdQUSsiyqE6\nGmrggYer9CtPOTFeMRvvdchbikuEAwyvK5g5KRWxiGUW8fCOAV4nH95zUFz5IXzwMYsBAf7flHpX\nPRW1Ul1XhdfL13A9155rZrsGpImA6uvr0b37zzbmMTExcLvd/n8LpkhW20ZN1QwAN998M3r3ZrPA\nEoGMF5HOnEgP/E41l5Ng4iAlocqKhfputf3WUm6pM1ciizpvnbkPnf1i3Z4DDTk2APDemA8AtE7S\nLtw/D3an7Twnq4Id+SHbCxQAhet+Qz4r2i0nXGTfG8hq8c4Q1ij3LVDEFeza0JOPOtFCJD4X6SWh\nogMZ5ymaxZM8dPUxKsPtrysjo9zJ5/bPqCiCaHFNlOEu1NWv+QuNK6+8Ep991nptfPLJJ7jhhhtw\nzTXXwGq1orm5GXV1dfjhhx8wcOBAXH/99di7d6//s9nZnWPbndN/FNJM/YQKN74//W8qiqDcUYZz\nLWcFl8fhW7mtxqRrnqCiCGSsTk7vnkFFUSTGdRPanixkPG/wJjLVMLetCDcLXBnu9rqoKIIR6SOp\nKALepGQwjILTDNHyOy6rzAZv0qyjsNpL8ZuPJgoVcltMacjskymsvQsV2c9Goy+9F9Oyn2TqG6/j\nGG/5m8oz31ORhZz+v6aiVnjFD78fsRATr5yC349gK43HK17gdS8R4WLIK+Ya3m8EFbXCuw+8zy+i\nhJsGGJi3dTTUwOV1MQtIeI8B7zMLb0m5LPMQpHS7iMuNUoQo0QMP87a84m/e+zHvOeC9lwL8bkTd\n47pTsaMpd5Th6NmjTNtKEwEFqo69Xq/frjAcRbJyGzVVc2cj80UkkiZo1foSqgRSsLJi4QiDAtsj\nSapwJ62JGKCz0OpgotyOJBA6S9DAOp5Due0Efq49yIrLYCsvlQI0AFhycDFSk/oi1hAHiylN9biJ\nLn1A+rEhb7PwpE84hPtCHe55DHbeyTXeWagJrUJdG5F0z9TRCUYkPhfpJaEiH710l1i68r7LIlqS\nM9GCjIRkdV0VHv9HYVScI9HuQvo1f2HxzDPPYPXq1XjggQfgcrlw5513wmw245FHHsH48ePx6KOP\n4umnn0ZCQgIeeughfPfdd3jooYewceNGTJs2LazvSDOlCy3jAwDxxgSh7cm4T5iTUmGEkXl1qRoi\nVi4HsvvoLiqKoLq+iooikFEKze60web8SbhTlQxBKwC4POJEMEBrGQAjjFxlAAK5pMelVBRBrDGO\niiKQIdjhTeyqYTGlIa272HuojN9xGaX1ZJXr4y1jo8aB6v3wwosD1WwlPdTItgzFQwMfEfocl56c\ngXX3rhPW3oWK7GejD45sZy7xx3td8Dqw3J15DxVZ4HXy4b3XVtdVoejH95nf48xJqTDAwPx8N3bg\n/UiO68HsFCmiHBivA0lnl2HiFS84GmrghZfLxSfLPARJsSZmEQvvtSzCSYcHcuxYj2HJsT2obTrJ\n5UbJK0bjdcKpaThBRa3wCrneKn+Tih39/QC/qJN3+/TkDNzR/y6uZ1pWMZ80EdD111+PTz75BABw\n6NAhDBz488vvgAEDcPToUZw5cwYtLS34/PPPcd111wXdRk3V3Nl05QnF6rqqoAIgtbJigccp3GQB\n2VbrS0SkJSLC2d/05Ay/oKazXKDCHc+kn+E64oSz/0TwNXfY/JDuBEScYjGlYUPeZrw/9h/YPGab\nX0ClJC4mLuTkQ2BJLzLxFa5zVUedJ9KfwBIJ7Tkm8ThwATjPXakjCSa0YhXa8XxWR0cUkfhcJOM5\npis+F8lE1vNmVz5PXX3fRSf6uvo7kehnpZTEi6gogpJje1DtPC60hEo0IWts6s+THUNGRgY2bdoE\nALjsssvwP//zP9i4cSOWLFmCmJhWW/px48Zhy5YteO+993DnnXcCABITE7Fq1Sr89a9/xTvvvAOz\n2RzW97V4m4X23+60obq+Sqhwo2db2aqeAstXiUgwBMK7YlSNupazVBTBFW1JpSsYk0tqtLfAiQWL\nKQ2WpH7CRWqAnPtkXIw4EQzBYBA7hc2bEFGjyd1IRRH85dCfqCgCGeISAPD43ELbk4GIpLRamwYY\nhLYJAA0uJxVFIOPe/Jp1JdZ+8zpes64U1mZ1XRUefu9hYe1dSHT0s1FniSd44S2/A/ALOKZlP8nl\nprT12y040WjD1m+3MG3PKxwoObYHda5zzO+RvCIqgP+e9Wn1PipqhVcAMyhlMIyIYS6VKaJ852rr\nq3C667Ha+irT9uWOL6moFd5xwHsv4S0DNShlMGI4y50+fNUEPHntbDx81QSm7XmFVNf3vYGKWuG9\nF/KK+cgiAJ7FAB/88D4VWeBx1HrNuhIrDy1jflbKMg/BZb0uY9pWmgjo9ttvR3x8PB588EEsWbIE\nc+fOxfvvv4+NGzciLi4Ozz77LCZNmoQHH3wQ999/P/r27au6DaCuao4EuuJkd7DyXMpJ8MDjovb/\nw00WaD3Gnemko/zvQIFJe33q7BJT4aLsJwBsyNsc1G0nHAcXAvlMbmaeqvOT8pjYnTb/95PPqZWI\n2pC3OeR+tDeOIwFlf7ItQ/GX29Yi2zI0ZP95rgGlg9fMkhmdWjpCTWgVSvikpZxbJJ1jWVzo+xeN\nROJzkYzrWx974umKz5vRRjSNexnjqauOURlltpTPYqIYlDIYRoORa9JKjWga96KR9Tx5/CybNbWO\nOGzOn4QK5ipqD8Ptc6GiVlyivbrNwrya0cpcDXNSKnzwCXUCkuE0khzfk4qRSounmYqiiBPoLqNE\n9L1Mhui4ovYwPD630Gvp1ktup6IIusUmUlEEKYlmKopAhrik3FGGqvrjQssKRsv8TZZ5CFISzFyl\nQjoKGffm4ekjEGuI5S5Xo6TcUYbK05XC2tNhh7V0yqaKv1FRK+SZhPXZRIT7CK/7xPqv3+FyU5Ih\n2tPCoJTBiOEQsIhwhSTfzdqHR69+jIodTUXtYXjhYX5+ESFY5i19y1uasrOdgHjLQDkaauDxubkW\nS1jtpXit7I/MZTN5hUy89xLeZwfec8DrJATwC5GyzEMQizjmZ73h6SMQY4hhflZKT87AH+/8I9O2\n0kRARqMRixYtwt/+9jds3LgRAwYMwD333IMHHngAADBq1Ci/Ivnhhx8Oug0QXNVM2LNnDxISxFos\n65xPKGFAoPAgVPkv2W434brZiEL5UhpMzBNMzKAUyhDnk85AiztToPBHzbknsL32BFBkTBBHoMDx\nojy+M0tmoNHd4P+38UUFKNiRr/ojGmyflOOVtFtY3Hof0uKIJJvAfi63vuL/XuXfSX/IuAv3+go8\ntoHHS8YqQ1ZETf50BceCaJko62p0hecimWNPH89i0Y+nOPR7btcdT+S5VOT+N3uaqCiC4soP4fV5\nmVeAqtHVx72M58nquiqM3ThWWHs67IhcsS4j2SqjfBW5P4i8T5AJTpFJ4SNnf6CiCGQIdmSJlWS4\n68i6n4t+387pPwrppouR03+UsDZfPPCfVBTB6AH5VBRBt9huVBTB96e/pWKkkp6cgVnZc4SOJ3NS\nKmIQI1T0WO4ow8nmGqECKABIbSv7mCqw/OMXJz6noggspjT0TUoTOodoTkpFjCGm/Q/qSIe1FGFS\nnImKWtlcsZGKWuFNmgP8IhbeMqa8IqQfznxHRRZijOzX4S96/4KKLPCOA14xWWc7WvE6uAD8Li68\nrlq8gkBeNyTesqoi3Jg2V2yEx+dhHsfD00fACCPzexXvOOa9lnmFaLzl1IDW8oam2O7M5Q2n7XoC\nLrRg2q4nmLZvFZN5mMVkVnspxv3vOKZtpYmAdC5cLKa0oMIK4PxJhPaEBuQzashKJIqc5FBOAquJ\nZIJ9f6CrEvl8Z0yoa53IJkKdYOKvcNuz2ksp0ZTadoHHd0XOKiTGJgFodQVakbMKLq/rvCRMe30g\nAppA8U8oVyPl/++o8xRYWg+A3wkpsB8ujyton4O1rdzvwHHc0SXPQv091PlkKecWqYgYU11B6KQT\nmcgae1092Swa/XiKpavfc6NpPEVDH2UgY+WdDBckWcg67zLKNG59YKvQNnW0w2PxrYaMFdzp3TOo\nKILfj1iIJ6+djd+PWCiszQPV+6kogknXPEFFEbR4WqgoAuU7vMg2Zbyjy3x+F0l6cgZm3/CM0H6a\n2hLTJsYEtRqfVn9CRRE42lb/OwSWLXN5XVQUgYiEeyBWeyke3/ko88p5NSpqD8PD4cqgxttfvUVF\nUXzpOERFEQzodTkVRWB32uBoPCG0BKKjoQbuKCgv1xVgLQHUPa47FbXCm7gXwfD0ETDAwJx453Wc\nq2s5R8WOxmJKgzmxL7PAT8TvAq8TDq+IiFcAktN/FJJjezCLmEUIqQalDIYB7M7AvGIy3t8dXgEJ\nrwCG9/sBMfcznvdU3muRV8jFey8TsbBm67db4HTXM5dXfO32PyMe8Xjt9j8z90H0XEO46CKgCCRS\nJ6iVJZZCTfYHTiIEExoQ2ivNJPJlj7dcUjAC2wrmjkM+uy53PbItQ0MKXjqacL9T7fwC2tx/yOef\n3TcbK3JWUZNZam5SSnFHtmUoNuRtht1pw73b7oKjoQbxMXGqwqv2+hA4NoP1UyliUzsGgZ+XRXsO\nXGRloFqfQ7Wpds54x2Cgm1Ooz4Vbmi1Un5Sirs64h4r4TpH9j4aknM6FiaxSQ9EisojUZzglXf14\nymgzGo6lLKJlPCkdE0UhIyHbM6EXFUVQ21hLRRGouXdGIjLOu0wu7slmsa4jjou6RX45FxmlgQCg\nMGui0PZEJC0C4bWSV0NGgm3vsd1UjHRkCIBE33uLK4swc+90FFcWCWszI/kSKorgdNMpKorA3OYC\nYxboBnNpz0wqikDGNe9oqEGLt4WrBEcgg1IGI8bAXt5GjdEDxlAxkhHhDKKG1+sV2p7uBBQ5sCa+\n/32qgopa4XXBESHEPlC9Hz74mAXNvE5AOf1/TUWt8LrI2J02nGiwCRX4aYXXEa1g0ANU1AqveGPr\nt1tQ5z7HLDyw2q1UZKGi9jB88DKLXxvdjVTUCq8TEe+iJl4BTCSUFjxQvR8eeJjvRbxuTrxCrkgQ\ndfI+p5Y7yuCCi9n1MTczDwtuXITczDym7S2mNFi6W5i21UVAEUakr6YlYon2Vn6GEmO0J2RQ/n3p\nyGXCJpiVx1ZmoiIcoVOolWGRnkQBggt1tCSBlGIoZVtKxygiAAt2XRgMBnx/+nvEGuOCqtLbc5lR\n2xe1fgKghDVq+xno7sSLmpAmMOGkjOTvan0O9R2i7znhuH8Rgl0vLEnFzkpE6qXKdHTkEw3XRTQl\nm6PleMr8fdIRh4zxFC3nSPSEaEriRVQU06Z4C/NocY7Q0dHKySaH0HIusq4/ZRSBjGeYLPMQ9E1M\nEyqqqnfVU1EE17Ulxq7jKLMQSN6Ae6kogmh7hlG6FIsgyzwEqYkWoeNJhlNXU1uCrIkxUaZGRe3X\nVIxURCQqA8nNzMMff/Uac8JEjYraw/D4xDoBySoXY6uvpqIIZJQYczTUwA23ULEWOU86nQ+rSPaK\nPoOoqBVe4QBxMGJ1MgL4k8a8TkAy7qtaOFC9H26fm1l4IEIcyisekOFMqQXeZw3e60AEvELXAz/t\np6JWeN2YeAUwIhZV8Z7HilOHqaiVwqyJ6Bnfi3nRB6+AOKf/KKR0u4jZEUvGM7tWssxDkJLAvmDI\nai/F0oMvMBue2J022OrY5h91EVCE0dlJ4HAmFLSu/OQpz6PmlsPyXUpRQUcQSugUjjtLNCBiEooc\nD1ISjIhoAFACMCIII99LymE9fMWjeOXzFzEla+p5xzyUACXw72qfCxQ4KceP2gQpuS5ElUZQE9KQ\nHwm1fSV/D+x3e/XTZTljKdtsr301wZzVXsrUp85y0RJ1DAPPISsXwj1GR0c2+nUS2YQjOo+ENmUh\na3xGw7iXkeiU4dpjtZcif/vdQl1LeW3z1ZBRnkMG0XLedS5sfPAJbU/G9VfbeJKKonALLAsEtE5U\nnm05LVQsObzfCCqKQIS9fCAyVrtG0zMM8LNLsShkjKektjJgSQLLgaV1T6eiCO68LI+KImhyN1FR\nBD0TelJRBNV1VVj3zZtCnw1kXPOrrH+koiga3A1U7EqIdGrS4YPVCSgj+WIqaoVXxHP03BEqsmBO\nSoURRpiTUpm2573f5GbeBQMMyM28i2l7XgdFGQ5vWuF1UBmePgJGGJlLuvGKPGWJRDsS3nOQZupH\nRa3wPlcXZk2EKba7cNdTLfAKoUYPuIeKWrE7bXC6nczP0bwC4nJHGWqbTjIvtuF1VQNa7+cGGJjv\n5+WOMtQ2sy8YcjTUwOVzMQumiTsmC7oIKALpTAFQOBOvWhLeRNQRrmWv2ndrEQA4I8xCAAAgAElE\nQVSFI/jozNVT1XVVKNiRj3Hv50d0EiZc4ZZSVMU6cZ+enOEvCWYxpfnHlvK/q+uqMLNkBsYXFcDu\ntMHtdWHyzkK89c0bSI7rgT8dWnWegIeIiYK5TAUrWRdqX8IR0xBnI2VftKAU9ChLlQW6YqkJmJQC\nGnLd/eajie0mp0QJT9TaJOdBy3bhOoDx9FnG/rIQeG5EJMCibZWojk5nEC2lgboyMsoNkeeJSL8/\nyrqPR8vvQ7QkOi2mNJgTU4O6UbJQ9MN2KkYqsgQ7MhbDRPo40ok8RJbOe/PLP1NRBDenj6SiKGKN\nYkUb2ZaheP32t857P+ZBxKr+QGSsLOVNlqgh47lIFjKeiWWMpwaXk4oiIM8EIp8NeEvqqFHb6KBi\npJKenIF7M+8TOpZklBVMiOlGRVHwlt9Qo6bhBBVF8MEP71NRBJsrNgprS4cPm/Mnpu14BSS8if9L\nelxKRRYOVO+HF15mFxneZ4ziyg/hgw/FlR8ybc8rxOJ1IhLhoELGH+s4BAAv2MsVZpmHwNwtldn9\ng3dBgIhnX942eMthiTiHPGz9dguc7nrmkmy8Ah4AmHvTfCTGJGHuTfOZticlMlkFLBW1h+H2uphd\nEHlFlbzXgQgXQ97yjgDfgiHecwgABhiYttNFQDp+wpl4DSyhFAoySVF45SRKiBDKrYdnMjlUWTGl\nmKIzrOvJvtmdNhgMgE/sAkOhaD0PyhJrLMeWjBO70+YXjASKR8gkEhEKbbpnG1665RX0T74U825c\neN4qs3D60l7JumDba5nQ0nosAwU9SpSuWMrPqY3vbMtQLB25DFnmIXhvzAftTpTJSgqGOybU9rW9\n5B9PnyMlCWq1l+K+HaMpIZAIx7LOdpTT0enK6NedOLryvUyWCCZajqkMsZaM336704YTDXahrgRX\nt00uXi2w3Amv/bUaumBHDsfPiktI6rAjUrgho9QUrx28GunJGZg7bL7wEmPLra8Ive9Oz34KplgT\npmc/JaxNGUl2UjqFtYSKGtHyG06QMee25OBioeNJRlkkGe5C3WK7UVEErjbnL5dABzAZjhHrv34H\niz5bgPVfvyOsTd6kuBq8JX+C0TOhFxUjFRmCOpFOajp8PJY1qVO+l9dFJ6f/r6nIwvD0EYgxxDK7\nyPBSmDURiTGJzA4mvKLHwqyJSDQmMX+/CPcOXv70xSoqaqXcUcZVLpj3XVzEOOYtpytCzMWDDAc/\nLYhwIi05tgeNngaUHNvDtD1vKdOc/qPQPTaZuRwXb0k43nvR9Oyn0DO+F9c74LTsJzHu8vGYlv0k\n0/YirgNWEQ/QVhrZxCYg0kVAOhTBygyR/9ayap5MUjx81QS/ECHUBDzLpEa4Ti2BAg+RhJNUUIoz\nNt2zDZvHbIvYyRut50GZpGIt30SOTThircLih1HuKMNy6yt44eaXsO6bN7EiZ5WqqIc44rCUadAi\nIALUx4HWYxlYcizwegvmXKR08gl0TgpnBZrMCcVwBEBqpdjaS/6puTdp6VMkTKBmW4aeJ9IS5VjG\nclx0dLoSumtPdCBDYBAN512mY1Gk77ssZPz2Oxpq4PKy2/mqIcPhg7f+fDC66liSRXVdFcZuHNvZ\n3dCBWOHG9W3in+sFioB4LfXVsNpLw3KQ1UJ6cvulqbVScmwPnG4n8wS6GqTEBmupDTVkiAx0xCMi\nsRaIjLKe1W0Jk2qBzjWnmmqpKAIZbjCDUgYjzhgX8aWhPq3eR0VRnG0+Q0URlNr+ScVIJaf/qKgu\nn3MhIfJdRwu8Ljq8LjZAq6tb99juzO5uvA4sq62votHTiNXWV5m253VT2vrtFjR6G5gdVF4YuQQx\niMULI5cwbQ/w/66+MHIJ4hDP1Qce9w9eFx0RpYUH9RlMRa3wjmPeUsa89wIZrp9a4T2GvG5E68rX\not5dh3Xla5m2jwR4z19xZRE2fbch7IpFgQhxeuUwBil3lKHGyfZ7rIuALlACSwaxtiEqEU0elkIl\n7omrCYtrSmcSblJBKdiI9EnzcF1uxhcVUEkqHhenwO9V/rfSGWjpyGVYbn0FS0cuQ25mHpaOXKbq\ndEMchmZlz+kQ2+xQTlRa21E6H4UjbAu8FtKTW0usrchZ5f/3cL63Mwh23Fye0CvSrPZS6j6i9V4Q\nKddgoACIOIaJSFRGyj1SRydSiZT7gE7Hop/3yIc8x0S6y4yMFXEySlQMShkMAwwRn0CLNmQ4aG59\nYKvQNnXYECnc2FSxgYoikCHsy7YMxV9uWyu01JIMYZEs4gxiS6HJcETp6u92Mp4NiB0/jy1/IDJK\nLf2i90AqiuDi5P5UFMHoAfdQUQTZlqF48453hN6bZJAYm0hFURw5W0lFEfyi9xVUFIEMwWvJsT2d\n5jqhQ8N6HnjFC7zuHyKel9aVr8VZ1xnmxDmvKLhg0ANU1AoR0rEK6ogDEqsT0mrrq/DAzSxiAviP\n4dZvt8CFFmYhE+87P+91IGJ+gNeNiHccPnr1Y1TUSmfPZ/BeRwD/MeR1I8rNvAtGGJkXPcgoyawF\nu9OGI+d+5HLh5r0WRfymeA3sKqDczDzMvWUu07a6CIgB2S/dvO2TyQHigiKyvNaGvM3+i02rWIdM\n/qgl7rX2OVT5qc6YFFGKl7rKpEygUKW9SSleMRk518QxiDhLzSyZoTqxSLbJzcwTtvK7vX3QImJr\nDy1iMTVx3cySGZi+eyoKduSHdPBS+3tHj2G14xYXE6f6w15dV4XiyiKqjBbZf5HlODoDUv7l2X2z\nhbUXCY5HOjoi6Cq/rTo6QPQ4FsmCCLkj/boflDIYsYZYoZNRvFbdalTUHoYPPmbraJ3zkZWMv7in\n7hoSCXxx4vPO7kJIRExEByKjdJcMYZEsVxDR1dpliERllQqVhej7o4xng7fK36SiCGSUrJDRpgyH\nGRlOQNV1VVi4f57Q8y7DEUBWOTCPz0NFEVTVHaWiCMjvpsjfT5GlOXXYMcDI/Js7duD9iDckYOzA\n+5m25y1/KuLeaXP+REWt8IqCiys/pKJWeJ9HeL8/Ob4HFVmQUQZXC50tpBIxP8Dresk7Dnh5q/xN\n+OBjfl7jPYfmpFQYYeQSjR+o3k9FrfC60FTUHoYXXo5yYnzumUfPHaGiVkQ8sw9PHwEDDMzXoohz\n4PG5mc9BcWURXvq/l5i21UVAGhE14RcqIS/CfUdZXklrn9TKD5F+lTvKcN+O0SiuLKL62V7ZHjU3\nFmWCWq0kVGDflN9Fvlvtc52xOipQxBRqtZtyX6IVpeOM0sUnmN13sPMS6ASl9t8E5Vgk/2132uDy\nuFRLZig/F6xPgf8/1HkJFLOptSVr/Gl18iHJw81jWkvPBUskqpX4Ey3mCkfQF9gPssov8J5htZdi\nfFEBlhxcTE0oV9dVwe60UcKgaCXYPZCVaJkk1tEJRTStfI6GPupEB135/i0r0Snj+vT6vELbqzzz\nPRVFsPvoLiqKItqfuXjQhdY64RIfE09FEbz91VtUFIGMMS1LWCTaFcTRUAO3T2xpRxki0WgRyAJy\nnt3TkzNQeOUkoWOUtzxGRyFDtCED3nIfapQ7ynDk3I8od5QJbFP8anbeMh3B6JtkoaIInC4nFUWQ\nFGeios6Fg48jabzkn4vR4mvGkn8uZtp+7k3zEYc4zL1pPtP2IsRpvO4bvCIcXvEGb9K6Z0JPKmqF\nV0QF8JcD6+xSUMsOvkxFrYgoM8or4iGlkllLJvM6sHT2dXigej+88DILeAD+cfj7EQtxg3kYfj9i\nIdP2vPcCGUJvLYi4DhwNNfDBx/zOx3s/5BWj8Swu0UVAGhExORLqhZi1/cC2lNuH66wTyolH6ary\n3pgPkGUe4p+cb+8Fv7iyyF++KVSppGCCDSIQICKBUA5AnTUhqxQxESePYA4ryn2JRsg+BE78W+2l\nmLyrMKQrT2A7ZMypuUKFOn7kc8/um43Vt66hRC6BbagJ1QL/PZzzonRpCdaWrMlTFlEOEWiF4yhk\nd9ooAU6wfdA6mRdO34m4MPDvgWIY4m60ImcVNuRtRm5mHtUGALw35oOIt4kOB7VyiTo6XZloSbZG\nk1hJR0ck0bDaX8b1WVz5IbzwCl0R1+JppmKkYrWXIn/73cKFQNF0/4z03yQddsYNelBYWz/VV1NR\nBKMHjKGiKGSUYJTxbrzk4GKh9wpzUirijHFCS0IBQIwhRmh70fI8DMjpa3FlEWbunY7iyiJhbcpI\nDNa1nKWiCGSUb3J73VQUgaOtBJpDYCk03sShGjJcF2WRkmimoghMbUIdk0DBjgwR+w9nvhPWlg47\nMYhhFrTOvWk+4g0JzCKeJf9cDBdczCKi1KS+VGSBN3HOC694IzfzLhg4SgDx8ljWJBhgwGNZk5jb\n4L1nk/HLOo5Ljn1MRa3wlsIS8ZvFK17gLXXKW9KMV7zLex2LKPPLuw8v7l+Ezx0H8eL+RUzbZ1uy\nqaiVhjbhcAOjgJi3bCqvExEAWO1WKnY0vGK0h6+agHm3zGPaVhcBMcD7ItveCzGLAIhXVBSOEw8R\n/FhMaRhfVOB3XwklyiF14Gdlz4HFlBbWvqj1TVl2ivwt2DHorEkR8r3tHcPAfQkkEia/2+uD23u+\n+47FlIb+yZeEPM+BZeFmZc/BzJIZAOAXCbVX5s3tdVGfy7YMPc+xStkeESwFXiPk38nn2zsvAPwi\nr0DxmrK/WsZfuA4/agK6QPFUuO0Ftr0iZxVmlszwH6dQ15CWyTyrvTSse93Skcuw3PoK5g6bH5ao\n0GJKO+/4iyyhFSnoYgIdHZqumvDQ0Yl0quuqULAjX/hqf9HXkow2eVfEqZF/+f9HxUjFYkpD74Q+\nYb3fhUu0Pft0ZSekCx3WSX41XG3vriSKQJa7lwyi4ZnIYkpDP1OG0PtZtmUotuX/XfgClWg4ngTR\nfc3NzMPbuRv8i4FEIKPM1g2WG6kYqVzX9wYqikCGwwxv6QY1Kmq/pmIk86XjX1QUwck2p6aTAh2b\njpytpKIIdFehyMADD7NrwtZvt6DF14yt325h2p7XrU2EeIL3fa+zRUStzhde5nPIK34QUZaaV2TI\nK6TKMl9DRa3wiojSTP2oyAKvCIfX7Y1XwJGRfDEVtcIrgpIhSNbKpT0vpaJWePfB7rRRUSuN7kYq\nakWEgKcwayLikYDCrIlM23f2O7jVXoo/7P8D07a6CKiT6MhJba3fFUxgQ0qA2Z02vxuHUvig5o5i\nMaXhvTEfwJyU2u6kLin1E6oUVLBVP0qhRCRMHLdXpiyUAKizJ7/b60N6cgY23XN+iSny9/YEH2Rl\nN1nF1+hu8P+AqAm5lM4+dqcNscY4qk3yGfL/lSXmCBZTmv/vyrYAqH4+1LFRW5nOcj2He64Dv5OI\n6+7bMRp2p43aLxaHKYspDRvyNlNioMBrWUm4AiBSmqu9zxNhFVnRqXSNCrxmgom0lA5cF0pCRpTr\nnI6OTscSTckZ0ci45+j3scjH7rShqv4Y82RARyK6j7wr4joKGSUayh1lONFgF1qeI5qElMpnXZ0L\nj6Iftgtrq1dCLyqK4NZLbqdiVyLUOyEPcYo5BlGIFBURuvpzUZZ5iND2xg68H30SUjB24P3C2kyO\n70HFSOXYuSNUFEFTW2KniTHBo8aB6v3wwcdVgiMQGUItGaXQAOBXF4+iogiMBiMVRcCb3FMj0sv0\n6bTP8PQRiDHECBXxaUGEeIJXAMLrvlGYNRHd45KZk9a8AhRe54q3yt+gIgvXmK+lYkfDW8KHd86A\ndwwB/CIaXhcY3lJSvCKms81nqaiVadlP4taMOzAt+0mm7QH+c8ArKKw4dZiKWrk78x4qaiUl8SIq\naiU38y4YOV3NVltfRQuasdr6KtP2N1iGUVErvIsPKmoPMy8s0kVAFwjhChhC/VsoNyHi1jErew4m\n7yz0u7eE2p5M4lpMaXh232xVNxPl9jNLZvhdXgL/rbquCqPfuxOPFo9XFQIRoUSwcmbhHgdZBBM2\nBPYnEia/gznPqH2OEKrck3JyXOmSRFxo4oxxlBtQYLvEqWdW9hxkW4ZiRc4q1c+oCayUk4RKwdrS\nkcv8ghdA3VUn2D6r9ZGFcM51oNMWEfoQcZ3SBSlUG6H+jRzfbMvQ89yQWEVp2Zah55XmCtWGxZQG\nl+fna5+cr8AScmr9V37nrOw5wsuHhAPr97W3Ha8AqLMFhTo6Ol0HGfcc/T4WHWRbhmLrvUVC3Q5k\nnHsZoo3r21bPXy9wFb2M1UUi6qcHkmUegr5JFuEJ2WgQAAGt4/4vt60V7vJx/CzbxKaOWIam3SSs\nrcTYJCrq8CPjPuH2iXNqAugy5iLblPVcFA3PWjL23+60wemuFyoS5l1trgZv4kSN5PieVBRBc1sp\n02aBJU1llGyTIdSS4YQDAKW2f1JRBEltv0dJAn+Xft3/NiqKIBrc7roKrAIQR0MNPD52JyHexL0I\neBPvvCKakmN7UO+qQ8mxPUzbH20Teh4VKPjUwuxhz1KRBV7xBK+IhldI9dvrZ1BRKyIcUHivJVIq\nmbVkMq+r1+f2z6ioFV5Hr9esK7G7aides65k2h7gf57hfb7kFXLx9n/0gHuoqJWK2sPwwsvlKsb7\n/Md7DniPYU7/UejXnU3UqouAugjhuLuEEiQQ8QYAVNdXoeDyBymhQKBQgQgLCETAEer7N+RtxqZ7\ntqn22+60IS4mFv1MGf7JZjXxjFq5JjWHos4SAgUeZ7X+dPbkt9VeGlJIQSa0SBKF7EOgAKu6rgrj\n3s9H/va7KeGWct+zLUP9rkLBWJe7HnanDZN3FbbWgQ8oQ8bihKUUvNidNr+rTjDxU2C5LWUMV3QW\nyuFKDeXxDLYPyu8g11Dgd7fXP3J81frNI3oK7F+ofrRe3+qrL8l2gW2o/f/l1lfCErBp3Zf22mC5\np1TXiS+foiQSBIU6Ojpdh2gp36QTHYk+Gedehmjj0+p9VBTBFX0GUVEEvJNmatidNpxscESFA5QM\niKOp6AT/2I1jhbWnw45IJwMZ5PQfhZSEi5DTX5wzRFfG7rThp7rqiL+fyXoukiFYIu2KRMb+W0xp\nuLh76JL2WuFdra4Gb+Kmoxh1yR1UFIGMkm3/+LGIiiIgC1rVFrby0LtbHyqKwNHsoKIIyh2HqCgC\nkcIvHT5YBTBvf/UWFbXCW/6Gd3sR8IqIDvy0n4pauTl9JBU7GhFllHgdTHj7wOsG9Vb5m1TUiohx\nzNsG77XMO2/ycs4KKmqF9xzyjkER8Jbm62x4BZGDUgYjBjEYlMLuEsh7HfA+44soD9mjG5uASRcB\ndSCyJ93ba39W9pyQL8zBSmkpHVZyM/Ow4lersb3yPb97CpkwUDqtkJdzq70U497Px+M7H/WXE2uv\nn4GuLkR8lBibhCUjX6GERoFiEKu9FNN3Tw0qFAjX5UYroYQegQQ61fjFVRrakAVxVGrvGLm9Lr8Y\nh+xDYMktANh0zza8cfs6LLe+cp4YiwiJyPfkb8ujJp8CxWT9ky+BOSlVyD4C9Hl4b8wHcDTUUOKn\nQJFTcWURxhcVIH9bHsa9n+/fd2UZusBzF0wgFU4fyXlQomZ/HjjGyfeRzwebKCPblTvKcN+O0XjN\nuhLjiwpQsCM/qABJi+AlXKEW2ddAhyeC0jkqcHwpx6lSCBgOogSBrJORMsunqI1xHR2d84kGMUQ0\nod9zIh9ZDjv52+4WXhaJdbVjMGSINprcTVQUQbSUGKuoPQw33FwrsdToyvfl9OQMLPzlws7uhg7E\nXtMnGuxUFEG5owy1zSeFluPr6hiMBqHtySpbJkuoxLoyOhiyhEWiSU/OwG+vnSH0POX0/zUVRSDD\neVAGn1btpaIIZCS94mPiqSiCrLYyNVmdVK5GCxebLqaiCM40n6GiCEQKv3T4YP2NmD3sGSpqhTdh\nWu74koos2Jw/UVErvA4kvA4qvPAeQxHCWF4HEVKOjrUsHa8Ylbf/IuA9j49e/RgVtcLraFhc+SEV\ntSJCfMELbx94HaF43Zx4BYkizoGPectWeK9lXjGZCEGfz8d2FHQREAMsL7LKSfdQ27NOoKtN6ivF\nFAU78jFl12Mh21cT6ai1+/BVE7B05DI8u292SAcRktxfcNPzuKTHpcgyDwnqKqIUfKgl1J/dNxtz\nh833i0nUEu9Weylm7JmK43VH/f1Sc94hQg9RExLtCT3C+Z7xRQV+UUxnlr4IR0iRnpyBTfdso0Qb\ndqfNf/7IhM/4ogLYnTbkZuapnlOXp1VIZLWXouTYHpxosGFK1lTqc0Qg9ey+2Vg1ao3fwcfutKG6\nripoGa9QLkbks1Z7KcZuz0P+9rtRUXsYv/loIgqvnOQXk5GSEcpyeHOHzYfH5wa535LxZLWX+vdZ\nTfyiFEgF65faebCY0s5zuwlsQykkI31VipkCPx8osMsyD8FLN/8BL3++GFOypiIuJk5V0KXcRnk9\nBdsftWOhBulzoFMYuRaU9xjSn4Id+SjYke8fPyyiF5ErCVnakFE+BQj9W6CjE83IWJ0cDcmJrowM\nwUpXR5q7ktjcKdZ//Q6e3jsN679+R2i7je4Goe1V1R2loghuveR2Korgu9PfUlEEOf1HoU9CilAn\nkmi6L8tI8FvtpXjovYeEtafDTl2LuLITMYYYKopARFkAnZ/JtgzFtnv/Lvy9TLRgR0ZZS6BVVFZV\nfzziRWUynguLK4swc+90yrmal9zMPPzxV68hNzNPWJsyVqArF1OJ4uaMX1FRBDLud7WNJ6koAhnP\nbwAwos29Y4RAFw+7005FEXSL6UZFEYh8vtbhg7UM0+L9z1NRK1+d/JKKWvmyzZnqSw6HquH9RlBR\nK7zC0LED74cptjvGDryfaXteISVvKa6CQQ9QkQVeJ5/NFRupqBXeY8jrgCJCPMF7HnnPAa+jIW9J\nN17xhQgxHm8pKd7tecva8Z5D3nNwoHo/vPDgQDWbCAngL4s3KGUwjDAyuxGRMqc85U5dHjbHSV0E\npJFwxTyBkEl3IpZQ25bnpT5YmSkiYtg8ZlvIhLPVXorHdz6KnPRbg5b5In8Dfi4PphRlkH9XOgOt\ny12P3Mw8bLpnG8odZUhPzvC/YCuPpfJ7gokcAsUkyj4pBUdv3LGO2s9gzjuiJhCUwhk1kRM5D8G+\ni0wib8jbrNpGRxPudysFGM/um+13miL7syJnlV+MEnhMyJhckbMK03dPxTOfzMRvsqbh9fI1/vNJ\nXGqUIhGgdTItf/vduHXTSORvvxvljrJ2S6wp942c/5klMxBriMPSW5ZjUMpgvHTzH7DyX8ux/ut3\nkG0Zipdu/gM1jtblroc5KRWOxhosHP68//vIuV+RsypoMiCwPJ6SYKINNfcb4kBEPqPchowztZJ4\nys+T67O6rsp/P0pJTEGaqR9y+o/y70Mox632jrPaPob6NyKkUt5bZ5bMQOGVk84r/0ZYfesarMhZ\nhZklM84rTxdufzrbtYKML95jqCTYb0E0JNR0Oh7RCXZZBN7/dLoG0gQrXRzRDjvZlqF44/Z1QpOn\ng1IGI9YQy2X1G4jdaUNV3XGhSVln2wSIU2B5DhErVgO5vPdAKoqg3FGGU821wpPGooVaMhGd4M+2\nDMWeCWKvTx02TghMjHp8HiqKoDBrIszdUlGYNVFYm10dkeWgADmCHRllLQEgyzwElyRfhizzEGFt\nyhBKynD1zs3Mw9u5G4QKdqrrqrDumzeFvrd0j+tORRF8WfMvKopgz9GdVBQBb+JPjVhjLBVF8L//\n3kRFUcgo6Zocn0xFEchwAtKJHFhLs/GWOb6kx6VU1ErPhF5UZIFXgLGp4m9U1Mq68rVwuuuxrnwt\n0/a8Qkpy7lnHAEnY8yTueUU4vO4dvCIe3t8HXjcqgF/8wCtG5nVg4RUhDUoZDAOHeIP3+ImA9zr4\n96kKKnY0vPNcIpwheYVUjoYaeOGFo6GGafsBvS6nolbsThuOnT3GtK0uAtIIq4iEfC5UqSXel/rA\nNpWOIOnJGSEnNhwNNfD6vFh5aBmKK4vOE/OQfQgsrQW0DkAywaGcDFVuW+4ow6PF4/Hi/kV4tHi8\nXwi0dOQyyrVHiZqjjtpnxhcV+NtadOA5vPDP585zFAkUMYhOLIVaRbN05DLMLJmBgh3BE5hK8VO4\nbjGdjdvrwvTdU1HuKMOs7DlUya/05IyQoihyLrMtQ/Hba2cABmB75Rb/xH96cgZmZc/BlF2P4TXr\nSv84JiKXZ26Yj1PNtUiMTcKiA8/52ybbkmtUDaVQaeHw5/GnQ6uQv+1uvPL5Szhy7kc8vXcapu16\nAvM+/R2s9lIUVxbhvh2jYXfa/Iku5b6Q/35232xqPwl2p63dsRZKtKG8ho7VHUW5o8yfECdjihyv\nmSUzWleztQm0AkuakWvN7rRhfFEBZpbMwKzsOVh04Dn4fK1/DxTNKcudBR7HYCUGlZN+7YlQgono\n6lrO4U+HVqkmgwxtjgNEfEUEZ0RIFGqylUcUw+LyFU6b7fVHa58Dz4meRNcJhgynDRm/VXanDUfO\n/Cg04SqrTIOM/Re94rurE2nPUx2JDIed6rqq8569RSAyYQ60la/yiS1fVddSR0URTM9+CkkxJkzP\nfkpYmzImfHhXkqlhd9pw7NxRaeVuRCLLkaNfcj+h7emw0S1WnJOBjLKB6ckZGD9oQlQ830fDb66M\nRRMyBDvVdeLLWgKt42lbfpHw8STjGTvYAiEeRAqAgNDzJKzwJjDVmDd8IRVFIMP57O2v3qKiCEQI\nAwIhDnIineQAwJzUl4oiuKLPlVSMVNxed2d3QacN1vIvvPcuXiefqy+6hoos8Jbz+u31M6jY0d/P\n676RkphCRa2IKAfGK2TiFaA8fNUE3GAehoevmsC0Pa9TnHIxeGfBK0bmPQa8IqSK2sPwwcs8FyRC\nkMxblo53/kWGA6QWeF3ReMV4AL+Yy5yUihhDDMxJqUzbF2ZNRCximRfyHKjeD7eP7dlIFwExoFVE\nohQLkBI/yn9T/m+59RVqMpFlYpF8X2BJn2DJcTKZkN79Yiy88QX/S3Bg8ryCj38AACAASURBVD3Q\nlYRgMaXhL7ethcWUhmf3zcaKnFUAQDmOZJmHYMGNi5CbeRfezt0Ac1IqxhcV4Ildj2Ps9rzz+hXo\noJO/LQ/j3s8/z6ZXOUlsMaXBYACUpfFIySc1AY7smx4RJADAipxViIuJo/5dy483qwOVLNKTM7Bq\n1Bq4vC5M3lWIRQeeC7kqK5hAh6ySenboAqy57b+RGJvk/7cs8xBclGjGy6WLUXjlpFYHoG13o7iy\nCMPTRyDWGIe65nNw+1wod5SdN74Dy2ipseTgYowf9AiWjlyOcZePRyxiEWOIwabvNuChgY/4P0Nc\ngarrqjDv/+bg0eLxlAORUiyjFKIUVxZh7Pa8oKukA8U5ymMUKJ5abn0FS29ZjuXWV2B32uDyttq/\nkdJoC/fPw7nmc3hm3yycaz6HyTsLkb+99XgphTYrclb5Hbw25G1GlnkI3L7WtoiIiIyz4soiqtyZ\nUlBntZfiNx9NbNeBpz1RVuBngVbBk6OhBuMHPYI4Y+t1Q659u9MGn+9nJ6pn982GxZTmd4ualT2H\nKocW2DdWAWDg5LCo0n3Bznd7n9HSZx2dYMQZ4oQ6bchy7HE01MAFF7PavqNQCqhFISvRLAPR5726\nrgr3bL1TaLvVdVUhRdmRhIw+5vQfhZ7xvYSWcLI7bag884NQ4cafvlgFH3z40xerhLXJO4GpBq+t\ntholx/agweMU6tjkhZeKIqhpOEFFERRXfggvvCiu/FBYm4Cca0lWgv/2d8WWEdFh47iTPVERSGrb\nJGEq42ShGq9ZV2LloWV4zbpSWJsyiBZHUhkOM+T9PdL3XUe82D5wnkQEMlwCP/jhfSqKoKFtDrlB\noKtfYmwiFUWQHN+TiiKQIdYBAEfbc5ZD4PPWl45/UVEE8THxVBRBs6dZWFs6fLAm/slcE+uc0zXm\na6nYGSTH96CiVsgcFutcFm/inPf3Q4YQUys/nPmOilrhdRCZtusJfO44iGm7nmDanrcE0PwRz1GR\nBV4RS72rnopa+eLE51TUyugB91Cxo+F1IgL4yyPyzr/wlkJtdDdSsaMRURbvc/tBKmrlQPV+eHzs\nJclmf/wU3HBj9sdsC/6Gp49gFtrrIiBG1FxpghGYwFWKOQp25GPc+/kYX1QAu9NGufcQBxKtL49q\npbXIxEZgcpz824a8zfjz7f+N7ZXv+R19bPU/we60Ud9PBAdE5EDEAUsOLvY7npDJULe3VZxRsCMf\nd2zOwYuf/Sfyt92N2sZazCyZgbnD5mNbfpG/TFlgv0gyv9xRBnvDTzjXXIfJuwr9/SECgLnD5vu3\n2XTPNmwes82/39mWodh6bxH1t45AWc6IiBSUjgPFlUWqop5gZcNklDHTSqCoItsyFC/c/BKW3rIc\nq29dc945VI4TpUCHlKAiq9Bz0m/Fy58vhqOhBhvyNgNoXamenpyBN+5YB4upH/50aBUOVO+HDz4s\n3D8PFlMa/jDyjzAajHjyullYdOA5vxMOuTbJ8Qol1jjZ4MCizxZg9idPYeWhZfjttU/h98P+EzGG\nWLz7zVuYvLMQje4Gf5kyoFVk1jfJQtllk7FIIunLogPPIaWb2b9iTymYIf0k12WgmEY5Nsj+PHzV\nBL+QMDE2CQuHP4+ZJTP87kBN7kbYnD/BCw/cXjcu6paKRQee8wuB1FbPlTvKEGuIwws3v4QpWVMx\neVch7tl6J8Zuz8PjOx9F4ZWTYDGlwe114fF/FPoT3BZTGt4b84H/vAcTyJC/hRIhBgq2Fh14Dj3i\ne2JDxbvw+VoTYhOKH/K7Qq2+dY1/rJAyi+QYLre+gqUjlwVtnxxPnvsqcX4SscIv8LckmGCT5Xv0\nUjo67TF32EKhCUy704aj545EhYuDDMGODGSVfpAh2BF9PEuO7UFV/XGhYgi704aq+mMRP0ZliZVK\nju3B2ZYzQo/pger98HDW5g6Ed7WeGjKSXcfrjlExUok1xFJRBLxWxh2FDDEhaVd0gt/utOHHMz8K\na0+HneRYcSVSZDgB8ZZm6Cii5V2EvNuJvJ5lCItkulhGi1hL9P5b7aW4d+tdwsu2BZaW52V69lPo\nGd9LqEugjBJjqW0CmFSBQhilm7UoquqOUjGSGZRyFRVFcEWfwVQUgYwSa6daTglrS4cPViefzRUb\nqdjR8LroAK3ODYkxiczODbziAV73i6PnjlBRK8t+/SoSYxKx7NevMm0vwsnu+r43UFErvE5Cw/uN\noKJWeMviEfcaHkdj3nHE+8xwrG38HWMch7zXUSQ4WvGKub4//S0VtcLrjPb96X9TUSsinHx44XWk\n4mX2sGeoqBVHQw2zY7ouAmKA5SVZKcYhEyF2pw1xMXFYcNPz/nI2xL3H7rRhufWVkImfUC+qytJC\n5HNq5ZmUn8+2DPULEgDg4uRLUFF7GGO356G4ssi/Gp2IlWaWzMDMkhn+cjwzS2hrw9ONZ7Dg03lw\nuuvhaKqBBx48cc10vF6+Bo3uBiw5uNjfLyImIqIBIixaOnIZcjPzsPSW5fjDr1bAktQPFlOaX2xR\neOUkLDm42C+mUu47IdsylMlBQ+vnAl1nXB4XXi9f45/8IeIBsjKo8MpJAICCHfmUa0z+trygQqCO\nmEgLFCaRPivPDxHxTN5ZiDn7nsb03VPPE/so3WeUpaqe3TcbOem34um90zBq40isPLQMLZ4WLNw/\nD+WOMtz93m14eu80vGZdiWzLUPz59v+G2+fC0oMvYOo1M/xOT4NSBvuPw/F69Zf38UUFmL576nkT\ncFZ7KcodZTjbcgYXJaSiT0IfxCAG237YgncOr4XBB/RM6I0YQywmDJ7oF5yUO8pwosGGWGMs5T5E\nyvyRfc0yD8GGvM3YPGYbPrjvH9iQtxnljjLct2M0iiuLML6owO+sQ6474mwzvqgABTtaS32N3Z53\n3rlQljMj9nO1jbXw+XxIjEvEwhtfwOSrp+JUUy0mXT0FTZ5GPPaPRygXLbvT5hfnTfrHBDjd9fjd\n3pl4vXwNnrlhPpLje2DC4ImAD1hufRkAsOCm53GysQZTsqYCgN9tTHmulQIZIsQhTjRKEWKgIIdc\nC/5rx+vCmZbTWDj8eay+dQ1y+o+CuVsq/vrvd/3HudxRhrHb81BybI9fkEPunxZTGnWPDrxmWJ01\nyP6RSd1wkj+h/j2YQCmYYJOFSJ901+lcXvhs4XkOezxYTGmIMcSGLD/KAu9LezBcHpfQ9tKTM7Ai\nZ1XErySvrqs67/dFBKKPZ2vdboNQtyoiDo90UZXdacORs5XCxUrEyp3V0l0N3pVtapBSPCJL8nxZ\n8y8qisAHHxVFMChlMGINsULHPbEMZrUOVoN3FZUaNudPVBSBDDEh8PPzq8j7vaOhBi2eFmHt6bCT\nZhJXlq13tz5UjGRkiECi4V1ExhyLDGERIOd4yppjkjGeRD8XORpq4PKJdRu12kv9peVF0q97utD2\nluYsw60Zd2BpzrL2PxwmJxsdVBRBZq9fUFEETpeTiiLgTY4Fgzf5rIaMYxpvjKeiCGIhTlCkwwdr\n4pxXAMLrfCHCtXVd+Vo0ehqxrnwt0/a8wm3exTE3p4+kolbsThuaPc2duoiKd76hs0uiRQKdvQ/9\ne1xKRa3wXkdZ5iFISbiIWtCvBV5HLoDfFew31/6WilrhnWv5851rqagV3rlIEaLOzmbZwZepqBUe\nAZUuAtKI0mWExU0CAJUonztsPpYcXOwvZ0NevGeWzPALYMj3KlFLYqt9hggJlKV0Aj+rTMoToVC2\nZShW37oGr5ev8TuZEOcPktwj4h9lIqXk2B4UVxZhtfVVnGyuQbOnCXddMhoxhhgkx/bApT0vxZSs\nqdh6bxGmZE31H8OZJTOo5NGGvM1YkbMKFbWH8Zp1Jeb+32ws+HQePD43lfRf982bWJGzCr+9tlUc\nUu4o8+8r66RDuCIv5eeUAhhS3om4lRCnFGV5sN9lz8Pr5WtQ7ijDsbojmLyzsLU01RUTkBSXdN55\nUe6PUuAV2EdSyilwm2D9VxsHSoEK+f/Td0+F2+uC3WnzixTWffMmlo5cjn6mDL8TkFK8YLWX+sf6\nkoOLca75HJYcbC3t9b/fbURqYl/EGmNggBEGGHCu+RxmfvwkfD4fxl0+Htsr3/M7Di0a8RJ88OHt\nb97EsbojKDm2B5N3FsLtdeO/ylbBktQPtY21/uQruU6nZE1FXEwcLKY0//5Z7aW4d9tdmPPJTJgT\n++L3Ny1EUpwJ5qRUPHX9LDx53SykJJrRLS4BzZ4mvPDZQqy2voqx2/Pw5Me/hdvnRqO70e8+RIQ/\nFlMaiiuLMGXXYxi7Pc9/rojgj4j6cjPz/ON7+u6pqK6rap188rROPk3JmorVt67BwuHPw+b8ye++\nRYRu5LzYnTbMLJmBKVlT8adDq2AwGlqPx6HVePHgf8LtdWPt16/D4XTA43NjziczYXfa/IKmU021\ncDTVwAsv3B43TjTaMNxyMzZ/9zdMyZqK7ZXv4dlhC1DTcAJ2pw21jbUwJ6Xi1S+W+12/lKUBA4WO\n5L+JGIjcWwDazaq4sghP752Ge7beifFFBSh3lOGp62eB5NOI09E511m0eFyoqD0Mq70UCz6dh5Ru\nZrxevgazsufghX8+h7u23Oq/x92beR/sThvGFxWojn/iYtTedRJ4zZC+K0WVwbZv714SrFRaKMGm\njo5IkmJMzC9Basz++Ck0ehqYrS2D8dXJL6koCpET1EDbNf/hf0T8SvJyRxmOnPsxaKlKVkTbwrbW\n7fZxrXhSQ2SJKaD1vN+xOUfoea+oPQw33ML3nSS2RSa4mz1NVBRBSuJFVBTB6aZTVBRBt5huVBSF\nAQah7clIzNjbJo/sAgU7MhJdvGUIgkGeX0UKaXnsxXXEUnn2B2Ftybj3yJjIl+UGE+nuMgTR713R\n4oJEiAZ3IRklcs1JqYg1xPoXV4lAhounDBek4soi7K7aKfR3zOvzUlEEgYstRWCKM1FRBBnJl1BR\nFDJKwX3206dUFIGj2UFFEbRAF0ZHCn85tKZTvjep7RpNEnitaoV34QNvCRsRDiQ88JZr/uCHHVRk\nQZlvYGFQymAYYWR+H+R1oeEVw4lYyMXriiyjDLoWeMdRybE9qG0+ybwwSISrtKzFrR1FZzu78Zak\nEwHv/fiSNhHcJYxiOB50EVAIAl8ylC+yRLwydnsesxBoXe56f/KNlLMhyf1GRQ1lZekoAhHkBPZN\nWVJoZskM5F02Br/JmoYlBxfjNetKjN2eh/Vfv0OV8xq7Pc9fciCwJFFWyhDMvuEZFFz+INKTM2Ax\npeGerXfi3q13YfLOQswsmYH1X7+DZ/fNxh3978LTe6dhQvFDWPvN6wCAAT0ux9pvXofH50Gd+xye\n3jsNT++dhiX/XIyn907Di/sX+d2ENo/ZhnJHGfK3tbp7FH74H3h67zQs+mwBxmTeh/wB98Neb8Mz\n+2ai8MpJyM3Mw6zsOaioPYxn/28W6lrqMGnnBEwofui8fWzv3Kqdm/YeLsjnyLkjDiVKlyTyXURI\nMyt7Dp7Y9The/nwxGlwNqG2sRZopHbHGWBRc/iDe+uYNFFz+oL+MWqD7jvIFmIh1yL8XVxbh0eLx\nfiehYBMvSmefwPaJSIQ4U9mdNqzIWYXVt67BqlFr/G41joYaFF45CTn9R6HJ3eQX2VhMaZiVPQcl\nx/ZQ18bcYfPRI6EH7uh/F5ZbX0a18zicLU7UNp2EwWCAF16caq7FyeYa2BtseO+7Tf7VtdV1Vcgy\nD0FSXBLOtJyGDz48d+D3qKo/jiZXMx664hHkD7gfT++dhqkfPY7iyiIU7Mhvcx2ahbnD5vudb8YX\nFcDRUAOv1wtHYw08PjdeLn0Rbq8bJxtPYtbeGZjzydM42ViDGEMspmT9P/RO6IO137yOY+eO4nRz\n6+StwWf0C4GKK4sweVchxm7Pw4JP52HJLcuQGJtEHe8Ze1rPfW4m7bxwvP5oq6BpVyHONp/BpH9M\nwMy90zF5ZyEAYOkty5FtGQq704YmTyMaXI14YtfjuGvLrXhi1+M41XgKSw++iLzLxqCbsbVG+snm\nn63hTjedRrOvCQmGBEzJ+n/+czp5ZyFONddi9KX3wggjxg+agJ7xPfHuN2+hruWcX1gzduD9SE3q\niwPV+zFz73S0eFpgc1Zj+u6p55UGVO6v3Wnzux7NLJmBce/nUy5GJKFdXVcFc1IqLElpmJX9DKZk\nTcWUXY9h6cEXcVGSGVa7Feeaz8GclIpt9/4dT10/CzP3TseEvz+EqvpjmHT1FKzIWQVzUirONJ2B\nvaFV9HP7phws+mwBHil6yF+WkBx3MnlIUCtdFgrlvYHsQ7AJznDvJWrbK8V+4SJjgkznwsbpqcdq\nK5utrxqJsYlUFMWRs5VUFMFq66s403Ja6P5v/XYLTjTasPXbLcLarK6r8gtGRZGbmYeFN77gF5qL\noNxRhp+cVUKFRTJKQk38+yP44Mh2TPz7I8LaXFe+Fo6mGubVgR3Juq/eoKIIbPXVVBTBlu82UlEE\nMpITRoORisLaNYptT0ZS7kjdj1QUwfpv3qGiCJ4pmUlFUbz91VtUFEFnTe7rnE+P+B7C2pLhbCYD\nWW440VBmCtDfn0QjYzxlW4ZSC3lEYDGloV/3DKEupmQRXKS7QJmTUmGEUagAirjZiXS1k+WwI5ov\nTpRSURQi3AcCefTqx6kogp5xPakoApOx84QfOjS/uXYq03a87/OD2krWDWIsXSeifCrZd9ZjwAtv\nOS9eeBfkiUh6844DR0PrAmiRrn9a4BXxzL1pPuIQj7k3zWfuA+9isOHpIxCDGAxPZ1usQxYMsi4c\n5C1lxesmVdt4koos8DpS8cJb0o3XmY13DM69aT4SjAlc18EXJz6nolZ4xXC8gkCeuXHdWzEAkqgm\nExZKlwalqwXQ+sLYNymN2k4L5HvIio51uetRcmwPVv5rOarOHcfUjx7HohEv4TcfTcRfbvs5sUCc\nc+YOm4/ffDTRLwaalT0Hz+6b7e/zqcZTWHmotb+941Pw8ueLYYrtjj8dWoWFw5/H4/8oBNC6gjOt\nez+UO8owZddjMMV2h9FghKOp9cdx03cbALROTCbH90BVfRWS45Lh8wF39L8Lc/Y+jTsvvRtbvt+I\ncZePx6bvNsAII4ZbbsGn9k9wg3kY/nXSClNsd8QZ49DkacL/fvc3AMCqQ8uR3j0DFbWHUVF7GL/b\n+xTccON3nzwNU5wJyXE9UOc65++DEUb0ju+DV79YDgB45pOZgAHoHpeMP/xqBRYdeA7jBz2Ch6+a\ngJTEFEzfPRVH637E3KELMS37Sb9AQSnaUTt/5L9JuaZg55e4sRRc/qB/4sBiSsPcYfNhTkqF3WlD\ntmUoVuSswuSdhX7brieypuPSnpdi3qe/w++y5+Gdw2vRu1tvGGDAG1+tQW3DSaSa+mL1rWv836sc\ne2QlkLIPG/I24+3cDcgyD/FvQ8aCclwTZ5S5w+ZTnyUuPuty18PRUINZ2XMwfXfrQ67BAPy/ITNQ\n13IOhR/+B2oa7fDBh9GX3osTjTastr6KA/ZPcbrpFE42OGA0Gv11wPO35SE+Jg4j++Vg1aHlfrGK\n09Oq3OwZ1wstnhY0ehoQi1h44AWMBvzp0CqkJKZgwafzkJVyDc62nAUAJBqTkHtJHjZ9twEnm2uw\n6LMFiDHEwhTbHU9eNwsL98/DT/XV+P709/D4PLDardhQ8Q56deuFKVlTYU5KRc+EXqhtPomTDSfh\ngRsLblyE1w69ilPNtfh1+m3Y91MJbrQMx5LSRUiO64E0Uz94vT7UNjng9nlwpuUULooxw+1rda96\n4/Z1AIApux5DSmKKv2QW0Ko2PnruCBZ8Og/fn/4eb3/TZp93+38jzdQPOf1HYekty/F6+RrMu3Eh\nAOClzxZh4j8eAXytN/gNFe+ixnkCvbr1hsfnhr3BBnO3VNQ21cILj/86H2a5Cb9M/7X/emn0tIoJ\nm33NeOmz5zHvxufgaKiBz9f6o/svxxfw+DxYfWgFvPDCCCMmXjUFvbv1xnLrK7g38z44Gmvw9jdr\nseDGRRg78H6/apqMFeW4IdfWutz1ftcwUiqQuEhZ7aWYsWcqHrriEbz51euIi4mFo6EGc/Y9jdRE\nCwb2vAIVpw/D7ft5v6Z+9Di23lsER0MNjDCiwdUAj8+DFz5biEt6XAq3142E2AQkxSbhdPMp9ElI\ngRExMMWbcPelYzB5ZyEuTr7E71j10s1/8F/XgaXLlO4+SiGOct+UpCdnYFb2nKD3/3DFhMrrlBBY\nai7YfchqL/WXQCMiRNErBXUuXJIFJrpKbf+koigq636gogg6ezIlXOxOG47U/ei/h4rAai/FkoOL\nMDx9hLBESpZ5CHrF9xHqLHW2+SwVRTBu0IP44Mh2jBv0oLA2ZZQwkoXb66aiCE40nqCiCDzwUFEE\nXnipKIKz7rNUFEG2ZSjeuH2d0CRns6+ZiiKQUQqtxdNMRRGYk/oCp9qiQM42n6GiCFgn1HQim/zL\nC7Dy0DLkX67uTspClnkIMrpfLPQ3VwbR4oajnPsT1VcZbUYbMvZbdDlXAH4nbpFEQ6mCA9X74YUX\nB6r3CzuuvRJ64UTzCfRK6CWkPQCINcZSUQQynodNcSY0tjQKdReSxS96/4KKIugR3wOnXaeFimib\nveKeB3X4YHVAGZ4+AgYYmIUDvGNV6R7y8FUTmNrgdYHh5dGrH8Puqp149OrHmLYfnj4CMYZY5nMw\nesAY7K7aidEDxjBtT+YbeeYdeccB7znk/f7HsiZh03cb8FjWJKbt15WvhQstWFe+Fr8fsZCpjZ4J\nPamoFYspDb269WYWTfOKwXj7z+sqJmLBK6+TK68zoCgBCqsQhXfedOu3W9DsbcbWb7dgWvaTTG2Q\nXHUq49wQr7CUdwzwCFq7vBOQ0jlB6QgBAIVXtt6cC3bko2BHvl98Q0olAUCcMQ4z9kxF/rb2HYGC\nOQsRyh1lmLl3OprcTeiTmIJYQxyyzEPwl9vWwpyU6nfcmPrR43476b/cthaOhhqM3Z6HRQee87un\nAEDeZfcAAOINCTDFJ+HezPtxrvksnO56fPDD+6h2Hke9qw4eePyuNOlJGahtPukXABHijfFY+83r\nbUl5H+pc52BrqMaqQ8vhggsfHNmOqvrjfvGBF158av8EAPC54yA8Pg/Ouc6itvkknO56/wS8Dz7Y\n621+hyAPPEjpdhHijfE423KGmgQ2oNUxpsHdgKr6Y1hufRmppr74j0GFON18CrWNtVh96xpsr3wP\nxZVFWPDpPORdNgYurwuLPluA9V+/g9Hv3YnJOwtxb+Z9eHbfbBRXFmH91+/4HXGU57C4sgj37RiN\nF/cvUl3BRsbDmebTWPTZAuRvay27Nvq9O/H4zkcx4e8PYez2PLy4fxEOVO9HVf1xPL13Go7VHcWq\nQ8ux6MBzeOnmP2Dt16+j6txxvFz6IowGI7xeH3p3S6F+WNZ//Q6m755Kleki53nGnqn+Umq5mXl+\nhxaC0vGHiIdW5KzCcusr/nFIXHzW5a7H1m+34NHi8Xj64+lw+1xYOPx5NLga8bu9T8HutMPlbcFj\nV06GuVsqPjzSKkD7n4p1GG65GSca7PAZfJh6zQy8ccc6AMBPdVWoa6nDO9+shQ8+NHvpchFnW874\nxSpuuAH4MG/oQqy+dQ0WfDoPR+t+xP/P3n0HRlGmDxz/7qYnJKElBClSLJRD0AgISi8JBEho0i6I\nYAFFQEApUo4iIAJKURSV4+BABQkJvQiiCIgYDeYEfnpwlIQEQmjJpm37/bHZIRtCye5sNoHn889L\nQmb2ndkp78w88zxbz8QppRY83T05cGE/AFqNG77ufhjNBnSGTGYcnsr1nBv4ewYw/5c5GMwGFics\nIC3nEoEe5Xn7hzd5fktPruZewQ03DOgxY+Z67nWy9ZZo5O+SvsVD48n6v75Eb9JzJTedLg93o031\ndjSv0hIwYzAbyDPmkWvM5cWdf+et78cS5BvMik7/ZPKPbzP2+zfovimMtX+sZtKP4/Fx8yXXmMPM\nI1NJyjjHhcwkDicfwl3jQWLaMVYkLqfvo/35+NgSDl84RFrOJYxmEwYMzD0yk4H1onmv9SKu513j\nlUavUdkrmBGN38gPdtHilh/PuTdpNzF/rVf2lYJvfJs0ZuYcmcGQnYO4mJXK848O5EbeNcvfKQ/G\nzMw+Mp2x379BDb+azDs6i0GPv4CH1oMNf33FqsSVTDgwlgkHxjIu9G3AtsyXtUyftSTXkJ2DOJl+\nglcajWDUvhHsPL2NF3f+ndPXTjHzyFSSdeepG/AoAHqTnmTdeX6/coymVZ5Rjr8AkXV6szT+Qyb/\n+DYaNLi7uQFQ2TuIwfWHclGXyvXc62TlZ1DLNmRjxsQLDYby8bHFVPSpxLQWMxi7fxQ7T29jwoGx\nrP1jtXJjOjSkqc1NamsmMeu+0XdzlFKisfDNzPjUo7z67VDl2GHdP++lnKA1U1mqLoWecRE2mbms\n2dyswZ2Fz09W1uOUtURb4QG5munSxf3J3rTGRUnPTbdp1eKMh83OeKtUjTfNCjuZfgKDSa9qWaiT\n6SfQm9Wd5/5z+7ial253et2ifHduj02rhvUnv7Jp1ZCl19m0alAj5XNRdCadTasGy9jtZvsgcc8f\nf7mr+F6NMzIIVPWpatOqwRlBVb9fOWbTquG7pG9tWrWcv3HWplXDifQ/VJuXcMyVPPVKd5269pdN\nqxY1g7jhZqbh0p69xBmcEazkrAAoyVikLmeU2UpMO0ZyprrZMZ3BGYEgVfxCbFo1XMm/931FxZKK\nZUmQbzDuqFuyLsg3GDeVy+DdyA98u6FiAJy/h79q8xKusfP0DsyY7S4lZX2R2toWlxoP7h0t/xIa\nEmrTFpej6wBAa1a31HRxWINiHQmOdfQezsHkAzZtSbNu//buB2q8dOZoJp9Nf24kPeey3VnPHQ0G\nc3Q/XNbpEx72e5hlnT6xa3rrS4RqvkxYXP935aRNW1yOBhE5mt3W34BXvwAAIABJREFU0YxeLaq1\ntCQdsXMbBscz+TgaCOVoQGLbmu2pGVDTrmkf6CCggqVsesZF8MbeEUpGiKjYCMZ+/4ZycMsxWgIE\nFrVdwqRmU5RSTxt6xDL1mRmk6i4w4tuXbErOFPVZO09vswniKHhjoFFQYxa1Wcr81ou4lnuV15tY\nPmPm4elK39KyLnH+xjlSs1IYtnswY74byaQDb9OxRhgD60Uz6cfxjNwznJ5xEaw6/jkAeeZcJUDH\ngIEU3QUlWMfqSm46b34/klMZRW+EeaZb07mazCZVHsgVfGhgxkyWXkeW0fJwomDkv6fGCwCdIROj\n2Uh6djq5hlz2nt/DqCbjWHX8C8CSEentH8ZyLuMM/z6xigBPS5To1lObSdadJynzPPOOzuLx8vV5\nadcLvPn9SK7mXCEx7ZhSwig5I4mZh6cz4LFoliQsJLJOLyWwYefpbfmlpsazqO0Stvf6ltFNxjPm\nqXFMPTiZtOyLlPeqwPXca3SsEcbihAXMOlIwUteMh8aTq3np7D27h5TMC/h4+GIwGjGZTWi1lsHZ\ngMejlXJrb34/kkx9Bn0f7c/wPS/Z3KBz13owrcUMAJvybvGpR6nmX51FbZewqO0SmxJG1rJlYAkS\n6hkXQZeNHdh/bh+zj0xHg4b03MvcyLUM0jQay3fj5ebFldx0Vp9YiU6vU97Q1mrcWHX8c8yYMZqN\nLEv4kBHfvsSGk19jwkS/xwbhl59uzkt755OFGTPLEj4kxK8qY54ah7+7ZYCQm59S+HreNWXgYzIb\nyTLo0GBZZ9fyrnI1L530nMvKPuuOB2AJRtOb9WTob2DCZPN2+eKEBWSbLAEkJkzojJl44gmAr5sf\nK4+vYP1f65TANrDsM9dyrmHEyMXsFIbvsaTSNZsholYP9EYDi39bSI86vbihv87Twc3w0HjwQoNh\nVPSuzJyjM8nUZzD14GQu6lJ598g/+Ovan6z/ax11/R+B/H3L292HuT/PpJJPJQI8AvkoYTGXcy8x\n+8h0Ludeyl8Wyz6kRUuToKeK3C9NZqMSHGQw61mSsIgMfcYta9+EZb/eeiYOg8nA6uMraV2tLY0q\nNWZJwkJ83H0J9q1Cena6EpS2/9w+UnUpzGu1gKkHJxMV15UhO/5OaFBTJcDv9LVTjNs/mtSsFNy1\nHoxuMp6ng5qxN2n3LW/6/3rpF/ae3WXz/aw8voLkzCS0GjclK1RaziU+TliKwWwgQ2/ZVp+o2Jhs\nYxZmzBxMPoDerEeLG0G+wRhMeuJT48kz5TH++9G3HKer+Ve3lDD7/g0i6/RS9hmDWc+itktuCbBJ\nzkiySUtu3f+6bwqzCdgreLO2YGBR901h9NgUzku7hnAhM5m+j1oGk0N2DlJuGjYKaqwE9xQso2ad\n19yfZ/NW6GSlb9Z9Hm4eD+4lEKioIFXxYCh4XHNUWQoGuJyfxvWyA+lcC5tyYIJNq4Z3D//DplXD\nsl8/tGnV4IwyPs4oKWAdy1lbNVgf3Kv5AH/f2d02rXiwWIP71XItP1vNNRWz1pQVzghWAucEvd7u\nOlyUPH939R48Opr+vijW8b7aASZqH3vKkrIQrFSWyquVJWp/942CGlOtXHXVM3Wp/XJPkG8w7hoP\nVQNBnJFp1dPN06ZVgzOyCzUOfsqmVZNb/ktwajmZfgKj2aDqCyF1yz9q06pBzUxNwn6jm4y3O+uC\nq8vfOGO7LK6tp7bYtMXlaBkjAI3W/iAgRzNXOJp9BBzP4vJstVY2bXGpEYjlCEeDJ8CSycfXw8/u\nTD7WwAtHAjAc4WhpzJF7hnNWd5aRe4bbNf3+c9/ZtPZwNACkz+PP27TF5WgAjKMl2Rx9aVaNsn4n\nr5ywaUuao4FM1fyrs77verumfaCDgOBmiaXkjCQMZj1pWZdITDtGbNQ2RjUZR9zpGAbWiyZVl8KL\nO//OG3tHMPXgZAymmzdIGgU15rPOq5SsHmv/WE2vzd1sLtJSdSkMaTCMl/cMIXJTF/pujrql3MzA\nbX1ZkbgcgIfKVeOjhCUkph1Db9KjyT9fzzw8HVP+A/66/o9wJTedZN15tp6JY+aRqZhMJtb/tY4L\nGRfu6WanmlH6ask22t4g0+ZvprnmnEJ/l0VaziXOZ5xl/V/riKzTi7H7RzH5x7e5mnOFliGtuJKb\njtlsRoOGvUk3H6Q0DX6G9X+tI+qRPoAlcKNRUGPmPPs+C+PnszT+Q/53/TT7kvYQ4BnIp79/TI/Y\ncCbuH8/gnQMYtnswbat1IC3rkqWEW8IC3j7wJll6He+1WsSkZlMJ9qvCL5csGRYKBmWYMZOXn45/\n65k4jBjJ0N9QAjqy9dlczE7h3SMzyNJnKdPlGfOY+/NMkjLPMamZpf6h9QbgzMPT6bs5ihC/qmyK\n3MbSDst5adcQpfTS2P2jbAIHrGWQwFIWLDNXR2pWCtMOTcKECQ+tJwEegVzJTWfc/tFk5mVixIjO\nkGldCCVQCyxBctbtTYMGXw9fMnN1rDy+AmN+uarr+msEepYnz2x5mPdsSOvbbgNXctMZsLk3b37/\nBhmGG/kfaZm/p+bWi/87BaMZuLmvuhXjTe08LN+RNUuRv9utN4Ot/wfQPKQFo/eNVPbHi9kpnLtx\nlpi/1tMypBXbzmzG282HNSf/ic6QicGkR6fP5Ebeda7kptsEwpzK+K+yTDpDJnqznq2ntpCWc4n0\nXMsDa1NRgT6Y+CXt9lk99AXWhfkOxweP/MApE5ZsRNYgKDNmruddQ6fX8fb3b5KRd4PB2wfw5vcj\n6bapMztP7yDPlMvTQc25mJ3CyuMrlHkaMSqZenJNOSxOWHDbvmabsjiru/XN6oL7jtXl3Es23/+p\nGzcHU3uTdhPoWZ4+j/bjZPoJbuRm8PGxxUp/dp7ewcBtfZXAv+SMJCUY05pRLFWXQqouhbSsS0pw\nnfVvrUGk1vTZoSFNGfj4YLzdfJTsRwUzycWnHlXK8bWu1haD2UAln8qMf3oCAR7lee/obCWYau7P\ns5nUbIpyjhi4rS8jvn3JJiNQqi6FLH0W847OoltMmLIsI759ie6bwgCo4luVtKxLd7xZXPiGcsGf\nHbnJLIFFojRzRkYUZ8zzct5lm1YN1gfNaj5wtgYuqvnW88nrJ2xaNfyWFm/TquFydppNqwZnPDQW\n6nNW4KOHm4eq82sSHGrTCseVpaBXUXzWDLRqUOMt9MKs1/JlYWztjKykZWG5nRGwU1bKq5U1zthG\nvd3U29/B0seouK6q99VNo+4jgXL5L/5Z29I6z2Rdsk2rhjPXT9u0agkNaUps5HZVS+HVq1QfN407\n9SrZ/0C5sMD8EnCBKpaC83LzUm1ewn77k/fafS5zNICkNHA0iKXFQy1t2uLq8HAnm7a4QvyqEuxb\nxe7gD0epsQ38fuk3m7akOboMjpayUiNz39yfZpOhv8Hcn2bbNf2Gk1/btMXlaECgo4FY3ep2t2mL\ny9EgJDWcuX7Gpi0uRwNg1MhI5QhXl2YEx/dFRwOZkjOSeHnLy3ZN+8AGAVmDbqwZfWoF1mZw/aGW\nMk47B7Dpz42s+M9HRNbpxco/VmAwG7iUdZGI2j3QaMjP/pOilFoCSzmbYbsGM/HAON4KnawM0q3Z\nGD5KWMKEp6cQ13MHSzssv6VP1owtc3+ezegnxwGWoB9PNw+mPjODEL+qTGsxg2CfKnhpvYt8KGIN\nsCj8oLwwNyxvEtwpEKC0uFswkwkTKboLvHvkH/R9tL8loKdSYw6m/oA5v3RZ4SARa+YD64WkwaRn\nVeJKViQuJzSoaX7wioHKXkFcz7vGxewU9CY9K4+vQIsb3lofFicsYPDOAfzj0BQ8tB60fqgdaTmX\nmHZoEhMOjMVsBjeNO24aN7w0N28kau+y2+Xml0AzYSSqbm+u5lylml8NPN088XbzwWg2svXUFiUA\nIS3rEjnGbCVQLC3rEifTT5CsO8+Gk1+TZ9QzqdkUUnUpSgABwKrwtSSmHWPm4emU8/LDz70c2vyb\nALmmHG7oLdlW0nMucy3PNs3ZnW54W9d5rUJ1PrVoeTq4Geb8ElWHUn+843qwbN83vzcvrRdPBzVT\ntnF7GO/Q7woeRUeiWredDGPhrDm21v+1jqt5NwcjFb0qEeAViAGDsi3qDJnoTXoy8zPwZOgzuJp7\n57TGmvztpXD2Lu4Q+OQoa7CQn3vRN1qu5l7BiJHONbvg6+GHl9YLo9kS7JWiu6DsX4VvoOeUwMNM\nncH24XumPoPFCQt48/uRpGVfxF1rebCmxY1lxz7kas4VXtr9At03hdF9Uxh9N0dRr1J92lbrwKvf\nDuVk+gk2RW4D4FzGGSUTlzVYxxpgt/aP1az9YzUrj6/gSk46HyUswWxGyeg24tuXeGnXEK7mXGFp\n/IesPL4CN40bXWt1Z97P73Jdf5UK3hWVfmfk3WDWT9OVcmGvNBpBiu4CaVmXbMqvzXp2Dg+Vq4aP\nuw+Tmk1h2qHJnLtxluTMJE6mnyDXmMNLu18gKjbithfuhW8oV/OvrgTI3uvN66IyHlmPUdb/K5jB\nrCzcvBdC3Lvc/MBZa1taWQNuC2egc8R1w3WbVg3OCCgT6rOOHW83hrSHM0qTCCGKR81SNo4+vCmK\ndayu9nFC7QDE+NSjt7wc5yhnlS1zRhm0caFvq/4dOevc8KBemzljGwX196UQv6rU9H9Y1Ye4oSFN\n+azzKlWDS56s8rRNqwZnZDN82L+WTauGKznpNq2anPHw3l2jbnah8c0m2LRqkCCg0sGRc1mQbzAe\nWvszjg1qOJjnHx3IoIaD7ZpeDY4GgLh6+lRdChd1qapmQi4ONbLofNljIxo0fNnDvlJUjmoU1Jgg\n72DVM/zdKzWCH15sNMymLS5Xl1FytJRVkG8wbvlVIuzhaEk6cDwTjqOBVI4GQjnK0QDk67nXbVp7\nOBpY3iioMSG+Ve0+FqhxPLQ3U/4DGwRkvcG6LmIDoSFNmfrMDOJOxzCx6VQ8tZ60qNaSTzuuJO50\nDC2rWtLFmTGzJGERyRlJTD04mbH7R9G5ZhcmNZvCwvj5zHp2DrUCazOv1ULiTscoF9LW7CzTWszg\n/fg5pGVdYuz+UTblYqwBSWlZl9Ab9axIXM7SDsvZ0COWJe2XM/fn2fTdHMW0Q5O5nH2JXFNOkcvl\nXijTye0CTowYlRJKZcXDfg8X+fsnKlp2PCNGlh9bSrLuPL+k/YyXtugLBk888XcPoHq5Gkotyqu5\nV1icsIBzN86y/s8vlb8tmKnEGozhhht55lyeDmoGwHX9NcJqdmVf0h6eDmpGhj4DL60345+eQJ9H\n+2E0G22yGN0tqMlaxsqMmcUJC5h5ZCpPBj3FlZx0dIZMAj0DWf/XOtpW68CofSN4adcLpOpSmfrM\nDPaf28cLOwcCUNkrmJXHV3BBl8Rb348lKrYro/bdLHmXqkvhlT0vkm3IJrJOb3SGTKXMUkGmQoE4\nhbcxK2tgmdWvhd6yN2Fib9JuTJgo5+5f7AC0XFPuLZljqnhVUcp93YvCfSzoqt6+gUhRtGhx17qT\nkXuDQM/ySvYid9xxw41KXpXpUL3zPc3rToFLzqZkfipEgwYzZlYeX8GlrIvkmnLx0ty6v+UYbY9T\naj50vVcNK/xN+bcJk5K9yYQRo9nA08HNCPKpQq4hl9TMFDL1GQzePoDFCQvoXrsnE38cR1rWJeb+\nPJtg3yrMenYOi9ouUTJpgaU2rqWs4FX8PQII8ApgaQfLMXzV8S+IqG0pD5equ0BqliVDkgYtJrOJ\nlcdXcDE7BS83b4wmIy/vHsLLu4eQmpnCtZxrvLx7CFGxXVn820ImPG0511izE40LfZtGQY2V7F8A\n2foc3LXuTG0+E7AE8VX0roSH1kMJBCxKwYv6gpnC7uVtU2uGI+sNeeu5zxokZQ2aAstxxxogdCTp\nSLG+SyGEEMJe1useNa9/nq3W2qZViwQACXH/cPSmd1GSM5JsMv2qwRklxgqWTVZThsrZrJ0RWBSf\nepRX9ryoenCJM4J1HuQyY87YRp0RzFvNvzpTn5mh6jytpcXV/N6dUXon25Rt05ZWbvlBNW4qB9c4\n4/gUGtKU2Ch1swsBeGjVDX7r8/gAVecn7OPIuSzEryqBHhXsDmRb+8dq1v+1jrV/2Fdy3DpecGTc\n4OpSUOF1IhjdZDzhdSLsmj4t6xL6/Mon9nA0eKJepfq44eZQ5rFNf27EjJlNf9oXBORo8EVi2jEu\n56TZnfXa0ewhLaq1xA03h0px7Ty9w6YtLjUCMBzRt14/m7a40rIuYcRo934wq9Vc/D0CmNVqrl3T\ng+szo8Wnxtu0xZWl19m0xZWWdQmj2WD3dxAaEmrT2sPRYLZUXQpXc6/YHVQ5qOFghjZ4xSWBrQ9s\nEJBVNf/qxKceZWH8fMaFvk3Px3oTF7WDEL+qhNeJYFzo2xxJPQyAr7sfZkz0fKQvn3T6nM41u1jK\nQP0wlnGhbxNeJ4L13WMZ1HCw8uDUOmC3zi+mx1bC60SwLmKDzYNk688L4+eztMNyJTipmn91QkOa\nsi5iAxt6xLK84+f8M/zfTGs+iyDvYCp7BRPkbTkR+7r5saXXLqXMkq+bHzX8H8bf42YZo3qBlpPu\nsyGtmdp85m2DIqr5VHPK+tagVQKTfLS+RQZCjG4yntFNLOvFTePOsyGtqeRVmQtZN9ONlXP3Z2iD\nV/DUeNKupuWtuvKeFZjcfBrTms9Ci5Yg32AqelkOrIGegcrFWB55ZBhu0LJqK5b/vgR/D39MmPDS\neqEzZJJpuDXji1/+dw+W8lLDG73BscuWNITuGncSLv+KFi2p2SkEepYn25jFW9+PUUoPFUfBrEWe\n+YEV285s5u/1hmDCxD9avMvoJuPZn7yXJe2X817rRWjzH2isOv4Fi9ospW3N9vSoGwVAWM2uBHj5\nM6/VQtZ3jyXEr6qSDWhFp38S4BVAaEgowT5VCPS4mbrVW+uDFi3BPsFo0ODn7keuKfe2WYCMGJWA\nLICutboBlkAdsATGVPSqxLTms6harip+bvcedWl5YGP70KaCRwUu5l4s8u2Q4j7gsQZ0FZeHpuiL\n3IpelTGYDBgxkZF3Q8leFOBVHq1WiwatTXm64vLUeOHnbl8tXDW0r94JM2Z83HzJNmbxbEhrgvxs\nLwis34FHMYK0nOGG4QbPhrS+bUDktjObyTFkcyXXckFnNBlJz7GU3TmUcoCqfg9ZSoS1tWT2mfuz\nJXXmqvC1yrF5ZOhoPmizjAreFcjQ3yBbn0OIX1VCQ5oypMEwFicsIMugw4hR6Ye3m7eyr3viRaY+\ng7ScSyRnJpFryKWybxBXc67grnVnXquFGEwGNvz1FeNC32b4npfoERvOsF2D6bs5isS0Y4zaN4Jh\nuwZzNSed91otokW1lkz8cRxmk5kJTd9hWosZvLF3BD3jIm65gC98Q6ng28XWc2TBvysY6GMNGJrU\nbArrIjYA8PyWKOW8ty5iA5OaTSE0pKnNOW9eqwW8vv11B75Z8SCxlmMsqiyjEMK1nLF/OmOennja\ntGpwRoYPZ3i1yQibVghxZ0+HNFdtXi2qtUSDxqEb90VxRiCM2oFFoH4Gi8S0YyRnJqlafhQg25B1\n9z8qhhC/qlTxrarq8jsrWOdBLzOmdiAEqB/MG596lFe/Hap6UNmNXHWPI84oFWF9ifJuL1MWR/1K\nDW1aNfh5+Nm0pZ0zsguZTc7LVi5cp3q5mnZvL/vP7eNy7iX2n9tn1/T1KtXHHfszR6hRwsfRYG5H\nsyHtPL2NJQkL2Xl6m13TNwpqTPVyNezOXOFo+RoAN61jwZGOBtHUq1QfD42H3dtReJ0IpjafaXcg\nVpBvMJ5aT7u3AQCt1rFH+OF1uuCmcSO8The7ph/SaCjlPPwZ0mioXdM7GkR0OPmQTVvSqvlX56MO\nnzo0vtt6aotNW9IczSQU7FvFpi2Ltp/eYtMWV2hIUz7rZH8WzZ2nt7Hy+Aq7j+cABpN9ySIeqCCg\nwg8uraVKJh4Yz7jQt5n782yltJf1/6wZfqqXq0F5rwpo0XIo5QBv7B1B7KmN+eWe3JU3KAqWUymK\ndSOxBvdYL7YL/mwN/inI+vPY/aOY+/NsWlRrSWXfINZEfMnuvvsZ3WQ82cYsTqafYErL6QR6lsdo\nNhBVt7flgbJXMCG+Vckx56DFjVM3/mLlHyswYsQNNzRoCfQorzy4n9tmARU8K+GlvVnOx9fdT8mG\nA9CtViSVvYLxcfPFTeOmZDuxTKOhW61I/N0tmXaeDWmNh9YDN7RU9avG0AavYMLIucwzjG4ynh29\n9rI6/EumNZ/FOy2nMaTRUB4t/xj/DFvDpl5b+XfE19QKrM3q8C9ZHf4lG3rEEp92lM/D/kV4nS5U\n8alKOc9yTPpxPC2qtWRV+Fq29NzF3ucPsDr8S77qFsML9S0p7zpU74wbbhxKOUBF70rkGCzZSnJN\nN0tYBHpa6nQObfAK1cvVoIJ3RQI8LL+r7B1k+Uy/EDy1nkxuNp3POq+iRkBNvN18+EeL2WjRElKu\nKpOaTcND44Gbxg0tWp5/dOAtwQj+HgF4ab2V4C2wBEsFeQfzkP9D+LsH8HBALRoFPYGn1rKOP01c\nxrjQtwkNaUrbmu15OLAWjYIasyp8LW1rtmfIzkH0rdePIO9gXn9qFGYzrEhcrmxL81otYOKB8Upw\nw9yfZxPgGcjSDsup4lOV6uVqsKLzSmoGPMzwJ0YCoM0PovJz96NbrUibvnppvRna4BX+7/pJS3CW\n1pPXnxrFtOazqOhXmecfHci2XnvY+/wBRoaOZkn75VQt9xAVvSpRzt0fD40H5b0qUMWnqs2bM4Ge\n5fMDkUKoXq56/udZtq2a5WvRrVYkFXwqKNsYgL97ANXKVae8ZwWGNnglv8/lcNe480KDYco8rNt6\nJa/KpOWkKT9bt1/rz1q0ynbv516OoQ1eYVrzWQDozXplX/DQePD8o5YsTIPqDybLoGNa85m80WQs\nYCkPtibiSzZH7eSdZ6bZ9PlOAt1vrRmbZ84l6x5La90ug9a9uF0w1dFLlgwu1jd9fk49TO9H+tlM\n82KDl3HTuCulxazbf2F1/e2vaXsnWrRMaz6LmS3ncCknlUBPy3ZSMPDRA0/MmC3lzcxGXm8yBrPZ\nEoj3/KMD2dJzF5sitynH3/ScNF5pNMImC5D1/wY1HMyghoOZ1nwWO/vstfn9tOazyMzLQIOGN5qM\nJdinCnrTzfR9Hu6W9ejvEYAZM9dyr/JKo9eoXb4Oyzt+Tr1K9bmUdZFJzabQKKgxGo0l0KyKXwjT\nWsxgYfx8pj4zg4cDavN52L8Y1HCwMjCpHlCDD39dyNyfZ/N6k1Gs6PRPm8GKtURgwRuK1vNickaS\nkiJ95+ltyt8VzPpjPZ4sjJ+vTO+u9VDeJE7VpSg3LAue80JDmrKp3ya1vm5RSvhofGxatTSr2sKm\nVYOz+loWWIMzXR2kKUqeNTDb2qphaKNXbVo1OOMGw2fhq2xaNbSt2Z4g72Da1myv2jydwdG0xUWx\njt/UHMdZr5HuVjq5OOR4J4pLg8but0yLcjj5EGbMqt60Tkw7RlLmedUDYQwmvarzc0bQSnidCEY1\nGWf3g5iipOpSSNFdUL1Uhq+Hr6rzc2awjjPmqXbACjy4ZcuckbEoMe0YF3TqBtQ5WmahKF542bRq\nyM6/l5atYrl6H3dfm1Ytzsgs5YzsQmlZlzBg/xv+RQmv06XMVTC4H23oEWv39te2ZntCfKvafa0U\n4leVav417A5CcnUWHyuN2f7tOMjX8mK2IwEk1ioY9n6+u8bd7s+3lLOs5VDgoaPfY2hIU74IW233\nOTQ+9Sjzf3nX7nFNaEhTPu/8L4fO4SaT44Gwjlxj7z+3j0x9ht0BfY5mcWlRrSXuGnfVX6q4V2oE\nY9erWN+mLWmOZiJyNIuOo9Q4nj8R1MSmLa7kjCQWxs932fVIqi6FpBv2fXbRdX3uU9YAH+sA2noB\nbW2tN0bv9H/7z+1jReJyFrVdQohfVVJ1KcqJrKhB0d0G7LcL9rnd31ozLRRcDrAMjj9OWMzi3xbi\nrvEg2DeY1xqPYkXich7yr8byjp8r/dx/bh8TfxzHZ51WKfOaeXg6rzcZxdsH3gSz5SS/r98BUnUp\nvLBjIFdy0jGY9CxqswSwRNGGhjQlPvUoY/ePUh5Ob/pzIy2qtWT4npeUFGmrEleyP3kvX3RerQwa\nJh4Yz2edV9EoqLGyDNYdqedjvanmX5313W8ONENDmtr8DJZMHGAJ2FrV5d8238fEA+NtbpAM3NaX\nbEMWwT5VOJtxhmC/Kni7+bC083LSsi4x7dBkDCYDvR/pR9zpjSzv+DlpWZdoFNSYH5L3YzDrCfat\nwph649nw11eE+FVlS89dJKYdU/q8KXKb8j3Vq1Q/f7BanQreFZh4YBzzWi9kUMPBSv3NDSe/Zl/S\nHma2nMPcn2czpeV0TqafoJJPJYJ8g5Xlsa7fhfHz+bzzv/KjuGvabK9FrZtq/tXZ3Xc/1fyrs6FH\nrM32VTgAzbpdFdzWwXIB2/Ox3jxS4RFLkFHiSmJPbWT3uR2U96yAzpBJFd8QPuu8ihC/qhy4sJ83\nQsfQt14/QkOaEuJXldUnVrL5dAwvNhpm8/kbesSy/9w+xn7/Bi82eJnDqQeZ1GwKk398m5TMCxgx\nMvrJcaw7uYalHZYr68M6vTVQ4bPOqziZfoJVx79gdJPxbD+zGbMZxrWYwIrE5VQvV4M5z81n5uHp\nvBE6Bn/PABYnLKCSV2Vu5F3ng3ZLCfINZvD2AVzNu8q8Vgu4mnOVmUemMrTBK+w6u4O07IuMeGIU\nQxoNVTJ8ffr7x1zOuQRmSLj8K1X8Qpj0zBS61e1OeJ0Iwut0Ufr58bHFfNhumc2Az1PryZSW09l5\negf/OvEFXlpvNBq4mJWqZIjxcy/HdYNtlHSgZ3laPdSGrWfi0KK97RtRWrRoNBo83L0Y3WQ8SxMW\n0bVWd7ad2UzLkFYcTv3xrm9TmTHj6+ZHllGHn1s5dEZLeTAaW+q1AAAgAElEQVSz2dK/AK8Axjw1\nnnUn11ArsBa1Amoz+slxfPjrQmU7OJx8iJV/rGBow1fY8NdXfNBmGWeunyH21EYy8m5wKuO/uGnc\nMJqNBHoGFlmSDiDAM5DwhyPYcWYrGfobPFGxMb9fuf0NKxMmKnhXYO7PszGbYVqLGbx94E1ee2I0\nixMW8HRQM3RGHa80GqEMgIJ8g/k0cRkvNniZL/9cw4uNhinfWWhIUzZFblMC74o6VidnJBF3Ooae\nj/W2+f3I0NG0qNZSOabsPreD4U+MZO7RmXi7+ZCpz8ANN2a2nMPi3xYy+slxrDr+BUvaLyc0pCnJ\nGUn5gYCWfdNd44GPh6W1Bv9Z992C/QqvE0GQbzBj94+i76P9mfTjeOXYYd2OrUGw1mMmoBxzrMcH\n6w1H63QFjxfWdVPweFvw3FT4hmXB/tUIdM3AUdjy06r3tqKfhx/ZedmqvwHZrW4P9ibtplvdHqrN\n861mk5l5ZCpvNZus2jyfDWnNwdQf7inA815V86lGcnayqhka61dswO9XjlG/YgPV5lnFqwoXcy+q\nGlzihRe55Kp6098TT/LIUzUbjLVEppo3qZ0xT4BXm4xk5pGpvNpkpGrzVCPNemHTn53F4J0DmP7s\nLNXm6QypuhQy9DdI1aWU6gwKqboUruVeVbWfgxq8wMwjUxnU4AVV5gdQw68GZ3VnqeGn3vigoldF\nLuZepKJXRdXmCc45Nvu7+ZNhvDUjrShZagahAfR8rDcrEj++5frAEeF1Ilgd/qWqgTBgCeRXU8Hs\nomqxvhEfGhKq2vKHhjQlNlLd0jjOeHBvnW9ZYH2RRM3AFWvggjPWa1lwOPmQqttoo6DGNvcY1Jnn\nEzatGnLJtWnV8LfKT7A3aTd/q6xePz/osIwuMR34oMMy1eZpVRa2dzUyXRTldtULRMlxdPur4O3Y\nGNyRMnNqlGR1tJRUiF9VagbYHwRzMv0EJkycTD9h1znA0XKvIX5VeTigtt39tz6TcmQ7qlepPu5a\n+zP5WMtfFr5nfq8cze7o6OefTD+BEaPd24CVRmP/vaV6lerjprE/K1ejoMYEeATaPeYIDWnK+60/\ntHv5w+tEMK35LLuvHdQIxrZkh9XaHcjkaGY0R/168RebtrgcDeI5c/2MTWuPtjXbsfL4Cruzwzn6\nQoaj6yDEryq1K9S2a9oHKgio8IPL27W3+7/kjCRLuaW2S4p8oHk7ateCtr5RZX1gC5aD0eZeO21O\nSNX8qyvR1gX7MKjhYCWIx8p6IrIeSAr+XyWfyixo8yFBvsG3HOys5XCs8x8ZOhqA2Kib2TPeaTmN\nIRk3gydut8MU/v3dAqSsPxc1TeHfLWq7hLH7R7G84+eA5SF3we+xYECNNdDDyhpAY/1/a5CS9eei\nTuIF11Ph9V2wta6PIN/gWwKXrPO3rt+Cn1N4AHW7dXOnzFS3m77gv62fXfC7DK/ThTf2jmBpB0tm\nIWuwE6AEIxX83E2R20jVpdyy7VTzr67UQCy4XzUKakxi2jGmHZpMz8d637K+C67jgllFrIEZQxoN\nJVWXwsQD45VgvYLrb0ijoUqgl3U+8alHydDfYHLTaaw6/gWrwtcqgU9vhI5RgssK9uP9NosYtmsw\nk5pPY93JNRjyswJZBxQFv+fNPXfaLH9oSFPionYogVK7z+1Q+pqYdoy3fxiLt7s3o58cx7yf36X/\n44NYffyfeLl7MqHpO6xIXE41vxoM+5sl09HcozOp5F0Zo8nI5ObTlEAy6/cDsP3MZl5/ahQHL/zI\n0Us/KQFAz4a05tUmIxj73Wja1+zI+r/W4ePmi96Yx+tNxrD9zGay9Nn4evjwWuNRXM25Ss/HepOY\ndkxZp49UeIRXvx3Kpx1XEl4nQvkurN/NIxUeYebh6QC3fE/D97zEmKfG8fGxJUx9ZgZTD04m25DF\npGZTWfzbQsxmGPPUOOpVqs/Y/aOo6F2JQK9A/hXxJYlpx/jv1f/yxX9WoNNn4unmiZvWjbefnkwl\nn0pKX6zfmXU/DPQKZP4v77Ki0z9pFNRYOZ5at9fQkKZKIFtBdzvu32kwUHBe1v2qgncFViQu55VG\nI5S+WddPwUCjwoF+hY9JRf274Odagwity1twvoUDiJIzkjCY9DYXKIWXuzjHk8LLLkqf5Z0/V21e\n77T4B29+P5J3WvxDtXlC/nHDr4aq2Tas4xVrq4YpLacTEdOJKS2nqzbPz7uspktMBz7vslq1eUY9\n2offjxwj6tE+qs3TGcEl519L46GPK3L+tTTV5jmx+VRmHpnKxOZTVZvn1OYzmXlkKlObz1RtnhG1\nerD1TBwRtdQLfAPHU2kXxRkPfJyhUVBjagXUVvVhV8EA4dLMGf10xrb0SdhKusR04JOwlarNs2nV\nZ9h6Jo6mVZ9RbZ7gnGPz0EavsjhhgWrzE/ZR4yZ7QdX8q7Oj997bXj/YS81jGTgv28Qbe0c4/PCn\noPA6EfwrfJ3qAVCl/ThuVTD7eGnmjMw1zuKMdWrNgquWZfGLmXnEMnZV69qlmn91lnf8XNVld8Y1\nmwce6NGrmtHP0ZIYt+Plpt6LC87kjON9wXucajmZfgID9pW9EOpx5BipxraWY7Q/Y9fI0NFcz73u\n0HHT+tzC2hZXNf/qLO2w3O510LZmeyp5Vbb7uOroWEyNIB5HhfhVpZa//YFIalA7u2NxOFrODCzr\nsKpfNYfWoZvG/hclViWu5Ib+OqsSV/JOy2nFnj4+9SiTfhx/y/Ps4kz/3i+Wyjr2nqccPb+lZV3C\n7EBpvRC/qlQPsD8zWnxqvNLacx3laLZuR4+laozd1Mgm5MiLdY4GNFbzr87uv++2a1qN2ZrS4QGQ\nlub4m3Wl5aK7JPuh1mcVDF5yxTosuByl5XssqDT26XbU7mtR83P0M+40fVH/Z71RY/2/wsF2hbfd\n5IwkesZFKEFOY/ePsvvipnB/kjOSlHkaTHrWd7cEfViDm+a1WkBa1iVe/XYoMT22AtwxI1nBefaM\ni2Dg44NZeXwF5T0rULXcQ0qQ3LqIDew/t4+Pjy0hz6gnNsq2RuWdlu12N7qsb+wZTHols01Ry16w\ntX5WwX9b/7aovhRcXwUDv24nOSOJvpujlAsZV+x71vVSMBjxTn9rb/+s2/G8VgvuecBaeL07S1CQ\nv1PnL+7uw/0f2T0AL0pyRhLdYsLY2muX6ttPWTlHqn3T3xnzTM5IIvybDjalC0vjPHee3sYLOweq\n/rBvWfxiVYO/kjOS6LKxg6oPeZMzkmj91TP80P8n1bf7nae3qf7wdO0fq1U9loBz+llWjiNlQcFx\nsFrr9N1DM1mcsIDRTcbbdXOwKGv/WM2b34/kgzbLVN1GrQ9kpzWfpdrxJD71KBExnTBON6oyP2Gf\nqu8/5JSgHTW5+r7KvYpPPaocJ8pCMIianPEdlZXv3ZmccR9K7XXqjO0+OSOJzhvaKpm+1ZqnM7Yn\nta9banwcpGQGVevFgPjUo/SICWdzr52q9tUZ14EPus3n1zPsqWGu7sYD7bHFj99SfaCkOHo/oDSc\nNx3NYufoOohPPUpkbBfVg/TulVpZ/Jz5jOheOHq/w9HPd/TeiKPX7oWfo9gzfbv1z/Ld8wdd8vnx\nqUeJiu1KbJT9mT/VGIM68j06ui85ev9iwOY+7E3aTYfqnfmyxzfFnl4NauyH3TeFsaWnfc8sHB3j\nq3Hf3N5naRIEJEqU3HwXZcmdAscKn3ydsW0XFYxR8HPsuclgrV/68u4hShm3wv1XOwikpIJKrJ9z\nLxd5rj4W3evgTY2LVlcv6+1IEJDrNfn4KdVviJTW7U3YctY5qywErDhDWVmfQqhJ7W00PvUo3TaF\nsbXnLlVvUjsjSA1g4v7xzGurXuae+NSjRMV1JWdKjmrzFMXXYOnfykS5obJyjniQH4rL2KBscEZg\nkSMPqm43T2eUQnPGiwZqP3B//LOHuaq/SgWPCvzfy2dVmSeUnWuMB53cM3I979neqpfMLA41gh/K\nwr3fO03vSPCG9frCVd/h/VDK01kvp90rNc6tamwHjuxLagRIO7ovOzLmKS3bsaPr4N1DM+1+2cpZ\nL1cVhxrHc0dftI+KjbCpgFQcahxLJAjoHkgQkBBCTWXxpqZ14KI36l2e0tNZXH2Rd6/utZ9lZXmK\nS27ouF7C6RP35bYlhBCibCorD+XiU4/Sa3M31cvdnM49TvPqzVWbnyg+GRsJIRxVFgLAnJUhQ+1+\nOuOhU2nIDiLujdwzcr2difvK3H3v0sbVWWxc/ezifrin7eprVDXWoau3A1d/viNKSxCQIxwd+zia\nRcdRpeE7UCOo05EgIpAgICGEKFHnr5+n59c92dRvEzUCa7i6O8Vy/vp5gDLXbyGEEEIIcX8qa2Pr\nI0lHJGBHCCFEmXX++vlSf749f/08z618jh+H/qhqX8vCsgshhBCidLgfxg2OLoMr18H56+eJWBfB\ntoHbXPo9lNV1KEFAQgghhBBCCCGEEEIIIYQQQgghhBBClHFaV3dACCGEEEIIIYQQQgghhBBCCCGE\nEEII4RgJAhJCCCGEEEIIIYQQQgghhBBCCCGEEKKMkyAgIYQQQgghhBBCCCGEEEIIIYQQQgghyjgJ\nAhJCCCGEEEIIIYQQQgghhBBCCCGEEKKMkyAgIYQQQgghhBBCCCGEEEIIIYQQQgghyjgJAioFjh07\nRnR09C2/37dvH71796Zfv36sX78eAL1ez7hx4+jfvz8DBw7k1KlTJd3de1ac5crLy2PcuHE8//zz\nDB06lDNnzpRwb4vndssGkJ2dTf/+/ZXvxmQyMW3aNPr160d0dDRnz54tya4WW3GW7V6mKU2Ks2x6\nvZ633nqLgQMH0qdPH/bu3VuSXS2W4iyX0Whk0qRJ9O/fnwEDBvDnn3+WZFeLzZ7tMT09nTZt2pTq\n4yMUf9l69uxJdHQ00dHRTJo0qaS6aZfiLtunn35Kv3796NWrFxs2bCipbj6wytp56UFVlvb5B1HB\n49zZs2cZMGAAAwcOZPr06ZhMJhf3ToDtd3T8+HFatWql7FPbt293ce9EUWNt2ZeEK8i4qOyQsVHp\nJeOiskHGRqWXjIuEKF1kzGE/GRM4Ts7X9pPzqeOKWoeyHRZPUc9gXbUdupfIp4jb+uyzz9i8eTM+\nPj42v9fr9cydO5dvvvkGHx8fBgwYQPv27UlISMBgMPDVV19x8OBBPvzwQ5YuXeqi3t9ecZdr586d\n+Pr6sn79ek6fPs2sWbP44osvXNT7O7vdsgEkJiYyffp0Ll68qPzu22+/JS8vj6+//pqEhATmzZvH\n8uXLS7LL96y4y3a3aUqT4i7b5s2bKV++PO+//z7Xrl0jKiqKDh06lGSX70lxl+u7774D4KuvvuLI\nkSN88MEH99X2qNfrmTZtGt7e3iXVTbsUd9lyc3Mxm82sWbOmJLtpl+Iu25EjR/jtt9/48ssvyc7O\nZuXKlSXZ3QdSWTovPajK0j7/ICp8nJs7dy5jxoyhefPmTJs2jb1799KpUycX9/LBVvg7+uOPP3jx\nxRcZOnSoi3smrIoaa9erV0/2JVHiZFxUNsjYqPSScVHZIGOj0k3GRUKUHjLmsJ+MCRwn52vHyPnU\ncUWtw9dff122w2Io6hms2Wx2yXYomYBcrGbNmkUG8Zw6dYqaNWsSGBiIp6cnoaGhHD16lNq1a2M0\nGjGZTGRmZuLuXjrjuIq7XP/9739p3bo1AHXq1CnVGTxut2xgyWj00UcfUadOHeV38fHxtGrVCoAm\nTZrwn//8p0T6aY/iLtvdpilNirts4eHhjB49GgCz2Yybm1uJ9LO4irtcHTt2ZNasWQBcuHCBgICA\nEumnPezZHt977z369+9PcHBwSXTRbsVdtpMnT5Kdnc3QoUMZPHgwCQkJJdXVYivusv3444889thj\nvP766wwfPpy2bduWUE8fXGXpvPSgKkv7/IOo8HHujz/+oFmzZgC0bt2aQ4cOuaprIl/h7+g///kP\n+/fvZ9CgQUyePJnMzEwX9k5A0WNt2ZeEK8i4qGyQsVHpJeOiskHGRqWbjIuEKD1kzGE/GRM4Ts7X\njpHzqeOKWoeyHRZPUc9gXbUdShCQi4WFhRUZyJOZmYm/v7/ys5+fH5mZmfj6+pKcnEyXLl2YOnVq\nqS3BVNzlql+/Pt999x1ms5mEhAQuXryI0WgsyS7fs9stG0BoaChVq1a1+V1mZiblypVTfnZzc8Ng\nMDi1j/Yq7rLdbZrSpLjL5ufnR7ly5cjMzGTUqFGMGTOmJLpZbPZ8Z+7u7kyYMIFZs2bRvXt3Z3fR\nbsVdtpiYGCpWrKjcxC/Nirts3t7eDBs2jC+++IIZM2Ywfvz4++Y4cvXqVf7zn/+wePFiZdnMZnNJ\ndPWBVZbOSw+qsrTPP4gKH+fMZjMajQawjB8yMjJc1TWRr/B39MQTT/D222+zdu1aatSowUcffeTC\n3gkoeqwt+5JwBRkXlQ0yNiq9ZFxUNsjYqHSTcZEQpYeMOewnYwLHyfnaMXI+dVxR61C2w+Ir/AzW\nVduhBAGVUuXKlUOn0yk/63Q6/P39WbVqFc899xy7du0iLi6OiRMnkpub68KeFs/tlqt3796UK1eO\ngQMHsmfPHho2bFhqM68UV+FlNplMZSJoRkBKSgqDBw8mMjKyVAfL2OO9995j165dTJ06laysLFd3\nRxUbN27k0KFDREdHc+LECSZMmEBaWpqru6WK2rVr06NHDzQaDbVr16Z8+fL3zbKVL1+e5557Dk9P\nT+rUqYOXlxdXrlxxdbfua3JeKv3u533+fqTV3ryk0ul0pTrL3oOqU6dO/O1vf1P+ffz4cRf3SMCt\nY23Zl4QryLiobJCxUdkhx/KyQcZGpY+Mi4QoHWTMoR45jjlOztfFJ+dTxxVeh7Id2qfgM9iCcRwl\nuR1KEFApVbduXc6ePcu1a9fIy8vjl19+4cknnyQgIEDJpBMYGIjBYCi1GXOKcrvlSkxMpEWLFnz5\n5ZeEh4dTo0YNV3dVNU899RQ//PADAAkJCTz22GMu7pG4F5cvX2bo0KG89dZb9OnTx9XdUU1sbCyf\nfvopAD4+Pmg0GpuBUFm2du1a/v3vf7NmzRrq16/Pe++9R1BQkKu7pYpvvvmGefPmAXDx4kUyMzPv\nm2ULDQ3lwIEDmM1mLl68SHZ2NuXLl3d1t+5rcl4q/e7nff5+1KBBA44cOQLADz/8wNNPP+3iHonC\nhg0bxu+//w7A4cOHadiwoYt7JIoaa8u+JFxBxkVlg4yNyg45lpcNMjYqXWRcJETpIWMO9chxzHFy\nvi4eOZ86rqh1KNth8RT1DPZvf/ubS7ZDeb2plNmyZQtZWVn069ePiRMnMmzYMMxmM71796ZKlSoM\nGTKEyZMnM3DgQPR6PW+++Sa+vr6u7vZd3W25PDw8WLx4MZ988gn+/v68++67ru7yPSu4bEXp1KkT\nBw8epH///pjNZubMmVPCPbTf3ZatLLvbsn3yySfcuHGDjz/+mI8//hiAzz77DG9v75LsZrHdbbk6\nd+7MpEmTGDRoEAaDgcmTJ5f6ZbJ6kLfHPn36MGnSJAYMGIBGo2HOnDll5g3luy1bu3btOHr0KH36\n9MFsNjNt2rT7JhNcaVWWz0sPirK8zz+IJkyYwNSpU1m0aBF16tQhLCzM1V0ShfzjH/9g1qxZeHh4\nULlyZaU2t3Cdosba77zzDrNnz5Z9SZQoGReVDTI2KjtkXFQ2yNiodJFxkRClh4w51CNjAsfJ+bp4\n5HzquKLW4cSJE5kzZ45sh/eoqGewdevWdcnxUGM2m80l8klCCCGEEEIIIYQQQgghhBBCCCGEEEII\np7g/asAIIYQQQgghhBBCCCGEEEIIIYQQQgjxAJMgICGEEEIIIYQQQgghhBBCCCGEEEIIIco4CQIS\nQgghhBBCCCGEEEIIIYQQQgghhBCijJMgICGEEEIIIYQQQgghhBBCCCGEEEIIIco4CQISQgghhBBC\nCCGEEEIIIYQQQgghhBCijJMgICGE0yUlJdG+ffsi/+/xxx936mdHRkY6df5CCCGEEM5w5MgRoqOj\nXd0NIYQQQgiXk3GREEIIIcSdTZw4kZiYGFd3QwhRSkgQkBDivhYXF+fqLgghhBBCCCGEEEIIIYQQ\nQgghhBBOJ0FAQgjVffLJJ3Tt2pXu3bszb948TCYTOTk5vPnmm3Tr1o2BAwdy9epVm2muXbvG66+/\nTpcuXYiMjOTw4cN3/Iz27dsze/ZsoqKiiIqK4vjx4wBER0czcuRIwsLCOHHihJJp6Hbz/+GHH+jT\npw9RUVGMHDnyln4JIYQQQrjKlStXePnllwkLC2P48OHk5eWxceNGunXrRvfu3Zk4cSI6nQ6wza4Y\nExPDxIkTAcuYacyYMYSFhZGenu6S5RBCCCGEcJSMi4QQQgghbjKbzcydO5ewsDCio6M5d+4cAB98\n8AHPP/88YWFh9O/fn7S0NDZs2MC4ceOUaZctW8aKFStc1XUhRAmQICAhhKq+//579u3bR0xMDJs2\nbeLs2bMcOHCAK1eu8OKLL7J161YqV67M9u3bbaZbvHgxNWvWZMeOHcyfP58PP/zwrp9Vvnx5YmNj\nGTVqFBMmTFB+//jjj7Nr1y7q169/x/lfuXKFhQsX8sUXXxAbG8tzzz3HggUL1FsZQgghhBAOuHDh\nAtOmTWPHjh1cvnyZL7/8kk8++YQ1a9awZcsWfHx8WLZs2V3n07p1a3bt2kWlSpVKoNdCCCGEEOqT\ncZEQQgghxE27du3i+PHjbN26lcWLF3Pu3DmMRiOnT5/mq6++YteuXdSsWZMtW7bQtWtXDh8+jE6n\nw2w2s2XLFiIjI129CEIIJ5IgICGEqn766SciIiLw9vbG3d2d3r17c/jwYYKDg3niiScAeOSRR27J\nuHP06FFl0PH444/z9ddf3/Wznn/+ecDyJtfFixe5cuUKgPI5d5v/sWPHSElJYfDgwURGRrJ27VrO\nnj1r/8ILIYQQQqioXr161KhRA61WS926dcnIyKBdu3ZUqFABgH79+vHTTz/ddT6NGzd2dleFEEII\nIZxKxkVCCCGEEDf9/PPPdO7cGQ8PDypWrEjr1q1xc3NjwoQJbNiwgXnz5pGQkEBWVhZ+fn60adOG\n3bt3Ex8fT40aNahSpYqrF0EI4UTuru6AEOL+YjKZbvmdwWDA3f3m4Uaj0WA2m23+puD/A5w6dYra\ntWuj1d4+VrHgNCaTCTc3NwC8vb3v+LfW+RuNRp566ik++eQTAHJzc5XU0UIIIYQQrlZ4/BQQEMCN\nGzeU35nNZgwGg83PGo3G5ncAXl5ezu+sEEIIIYQTybhICCGEEOImjUZj8zzO3d2da9euMWzYMIYM\nGUJYWBharVZ5Fte7d2+WL19O9erV6dWrl6u6LYQoIZIJSAihqmeeeYZt27aRk5ODwWBg48aNPPPM\nM3ed7umnn1ZKhJ06dYqXX34ZjUZzx2m2bdsGwJ49e6hbty6BgYHFmv8TTzxBQkIC//vf/wD4+OOP\nmT9//j0tpxBCCCGEK+zbt49r164BsH79epo3bw5AhQoV+OuvvzCbzezbt8+VXRRCCCGEKBEyLhJC\nCCHEg6pFixbs3LmTvLw8rl+/zoEDB9BoNDRr1owBAwbwyCOPcPDgQYxGI2B5RpaamsqRI0fo2LGj\ni3svhHA2yQQkhFBVu3btOHHiBL1798ZgMNCqVSvatWvH6tWr7zjdqFGjmDJlCj169MDd3Z358+ff\nNQjo119/5ZtvvsHHx4d58+YVe/7BwcHMmTOHMWPGYDKZqFKlCu+//36xl1kIIYQQoiSUK1eOV199\nlejoaPR6PQ0bNmTGjBkAjBs3juHDh1O5cmVCQ0NvKb0qhBBCCHE/kXGREEIIIR5kHTt2JDExkW7d\nulG5cmXq1q1LTk4OJ0+epHv37nh4ePD444+TlJRkM83169fx9PR0Yc+FECVBYy5ck0cIIcqA9u3b\ns3r1aqpXr+7qrgghhBBCCCGEEEIIIYQQQghR6pjNZvR6PUOGDOGdd96hYcOGru6SEMLJJBOQEKLU\nio6OtqnvbtW/f38X9EYIIYQQQgghhBBCCCGEEEKIsiMtLY2IiAj69u0rAUBCPCAkE5AQQgghhBBC\nCCGEEEIIIYQQQgghhBBlnNbVHRBCCCGEEEIIIYQQQgghhBBCCCGEEEI4RoKAhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEKOMkCEiI+8yRI0fo1q2bq7tRYi5evEj//v2LPd2TTz5JUlKSav3YsGEDa9euVW1+\nQgghhHC++2Xc1L59exITE2/5fUkt3969e5k9e7bTP0cIIYQQJSMpKYknn3zyrn+XmJhI+/btS6BH\nJeOdd97h0KFDxZpm5syZLF26VLU+nD9/njfeeEO1+QkhhBDCNe6n8dTSpUuZOXNmsacbOnQoV65c\nAeDll1/mv//9723/9n65RydEaeHu6g4IIYQjqlSpwldffeXqbhAfH8+jjz7q6m4IIYQQQpS4Dh06\n0KFDB1d3QwghhBDCIe+++66ru8CFCxf43//+5+puCCGEEEI47ODBg8q/P/vsMxf2RIgHj2QCEuI+\nlJWVxZtvvklkZCTh4eH88ssvAGRkZDB+/Hi6detG9+7dmT9/PgaDAYDHH39cicgt+PORI0fo0aMH\n/fv3p0ePHuTl5Sl/8+OPP9K9e3fl5xs3btC0aVOuX7/OunXr6NGjB71792bgwIFFRvguXbqUUaNG\nMXDgQMLCwhg9ejSZmZmAJcPP66+/Tq9evejevTuffPIJYImebtOmDUOHDiUsLIzffvtNiabW6/XM\nmjWLrl270r17d9555x1lfr/88guRkZFERUUxdepUTCbTXdfjxIkTGT58OBEREbz//vvk5eUxZ84c\nevbsSY8ePZg4cSKZmZns2bOHffv2sWrVKtauXXtLVHTBn6Ojoxk5ciRdu3ZlzZo1REdHs3DhQgYN\nGkT79u1566237qlvQgghhFBHWRk33WmcA/D111/Tq3+aQBsAACAASURBVFcv2rZtywcffHDL9Dqd\njkmTJhEWFkbXrl1ZtGgRZrP5juumQYMGvPfee/Tq1Yvw8HB2794NQExMDAMHDqRnz55ER0cTExPD\nq6++CkBaWhqvvfYa4eHhdO3aldWrVyvrc+LEicrYbs6cOcr6FEIIIYR9oqKilMw127Zto1GjRuTk\n5AAwZcoU1q5de9t7GXD7ey8FnTp1ivbt27Nnzx4A1q1bR1hYGL1792bdunXK312+fJnXXnuNfv36\n0b59e6Kjo0lPTyc+Pp42bdoo9zqys7Np0aIF6enpyrQmk4k2bdrYZDZ88803WbduHadOnaJ///70\n6tWLnj17FpmFOSkpiXbt2jFhwgQiIyPp0aOHMqYDWL58OT179iQyMpLXXnuNixcvAkXfo9m5cycA\n3377LVFRUXTv3p0BAwbw+++/A5CZmcno0aMJCwsjOjqa06dP3/V7KmqMuG/fPvr27UtUVBT9+/fn\nt99+w2g0MmXKFM6dO8ewYcNuySBQ8OeixmMjRozg9ddfp1u3bvTs2ZM///zzrn0TQgghHnQynrJI\nSkqiY8eOzJo1iz59+tCpUye2b99uswyDBg2iW7duvPXWWzb3pIoyadIkAF544QVSUlJsslh/8803\nRERE0L17dwYPHkxKSorNtL/88gvt2rXj119/RafTMWrUKCIjI+nZsydTpkyRZ2hC3AMJAhLiPpSa\nmsqQIUOIi4ujf//+Slri2bNnU758ebZs2cLGjRv5v//7P1auXHnX+f31118sXLiQzZs34+npqfz+\n2WefRafTKSfurVu30qZNG8qVK8ecOXP4/PPP2bhxI88//zzx8fFFzvvYsWMsWbKEHTt24O7uzkcf\nfQTAW2+9Re/evYmJieGbb77h0KFDyoAjNTWV1157jV27dhEUFKTMa/ny5Vy6dIm4uDji4uIwmUzM\nnz+fvLw8Ro8ezcSJE4mNjaV58+bKIO5ucnJy2LZtG2+99RYrVqzAzc2NmJgYNm/eTHBwMAsWLKBT\np060b9+eIUOGMGjQoLvOMyAggO3btxMdHQ3AuXPnWLNmDZs3b+ann37i559/vqe+CSGEEMJxZWXc\ndLtxjpWXlxcxMTFs2LCBlStX3nIDZcmSJeTm5rJ9+3ZiY2P59ddf7zrmMBqNBAYGEhMTw4cffsjk\nyZOV4Kf//ve/rFmzhjVr1thMM2PGDGrVqsXOnTv5+uuvWb9+PWfPnmXOnDk0bNiQmJgYYmNjuXr1\nKv/85z/vuj6FEEIIcXsdO3bkwIEDABw4cIDAwEB++eUXTCYT+/fvp3Pnzre9lwF3vvcC8OeffzJ8\n+HDeffddOnXqxIkTJ1i2bBn//ve/2bhxIx4eHsrfbtu2jSZNmvD111+zd+9evL29iYuLIzQ0lPLl\nyyv93LZtGy1atKBSpUrKtFqtlt69e7Np0yYArl+/zqFDh+jevTtffPEF7du3JyYmhhUrVijLV9iF\nCxd47rnniIuLY9y4cYwZMwa9Xk9sbCx//vknGzZsIC4ujjZt2jBlyhRlusL3aMDykGv69OksXbqU\nLVu2MGrUKF577TUyMzNZsmQJ3t7e7Ny5k8WLF99z1p6CY8QLFy7wwQcfsGLFCmJjY5k1axZvvPEG\nubm5zJ49m5o1a/LFF1/cdZ6Fx2NHjx5l6tSpbN26laeeeuqe5iGEEEI86GQ8ddP58+d57rnn+Oab\nbxg/fjzvv/++8n/nzp1TxkZms5nly5ffcb3OnTsX/p+9Ow9vqkz7B/7tCjQNeyA1oUjRDsjUKrE6\noCwyItUKbSkUWiyggMsMOOAuIoyMP0AHUUTGURCXSqXsi9WOCgIqDFPjWCsvdaGyJCYSC0KaFpq2\n+f3Rt32NUGS5H5pDvp/rmuuMaXvznJyT5Ml57nPfAN544w3ExMQ0Pl5aWor58+dj6dKl2LRpEwYN\nGuQX69///jcee+wxvPTSS+jduzc++OADeDwebNiwAatXr24cJxGdHpOAiC5CXbp0QWJiIgCgR48e\njYs127dvx+23346QkBBERkZi9OjR2L59+2/Gi4mJgclkOunxkJAQjBgxonFSsXbtWowcORJhYWFI\nTk7G6NGjMXv2bOj1eowYMeKUsZOTk9GxY0eEhoZixIgR+OSTT1BZWYmioiIsXLgQqampyMzMhMPh\nQGlpKQAgPDwcV1111Umxtm/fjtGjRyMiIgKhoaHIycnBxx9/jG+++Qbh4eHo06cPAOC2226DTqc7\ng2cSsFgsjf9/69at2LJlC9LS0pCamooPP/wQe/fuPaM4v3TNNdf4/feNN96I0NBQREdHo2vXrjh6\n9OhZxyQiIqJzo5V5U1PznAYNfdMNBgM6duzodzcYAOzYsQMjRoxAWFgYIiMj8dZbb+G66677zf25\n/fbbG5+b+Ph4FBUVAaivfhQdHX3S7+/YsQOjRo0CAOj1erzzzjvo2rUrtm7divz8fKSmpmL48OH4\n8ssveXc6ERHReRo8eHDj/OSzzz7D+PHj8emnn6K4uBixsbEwGAxNXsv4rWsv1dXVGDt2LHr27Nl4\nPWXnzp24/vrrG2/IavjMB+rv8u7duzdee+01/PWvf8W3336LyspKAMCYMWOwcuVKAPXVC7Oysk7a\nl4yMDLz33nuorq7GO++8gxtvvBF6vR6DBw/G0qVLMXnyZLz//vuYMWMGQkNPvqTdpk2bxqqLAwYM\nQFhYGL7++mt89NFHKC4uRkZGBlJTU/HWW2/5Je78+hoNUL/49Ic//AFdunQBAPTp0wft27fHV199\nhZ07dyItLQ0hISFo3749Bg8efEbH6pdzxE8//RSHDh3C+PHjkZqaigcffBAhISE4cODAGcVq8Ov5\nWK9evWA0GgHUV3Tk9SUiIqLfxvnU/4mIiMCAAQMA1M8lfv75Z7/nqX379ggJCUFGRkZj9aSztXPn\nTtxwww2NiUHjx49v7KThdDpxzz334KabbkKPHj0A1K/Rfffdd8jJycErr7yCcePGoWvXruf0bxMF\nk/DmHgARyftl5nBISEhjq4dfZ/bW1dWdsg3DL1tXAEBUVFST/1ZGRgbS0tIwcuRIuN3uxsWk+fPn\n45tvvsGOHTuwZMkSrF69+pSZwWFhYX7jCQ0NRV1dHXw+H1asWIFWrVoBAA4fPowWLVrgyJEjiIyM\nRHj4yW9fp9o/r9fr9xw0ONXfn8ov972urg7Tp09vnAR5PB6cOHHipL/59b/n9XqbjAkALVu2bPJv\niYiISC2tzJuamuc0+OXcpqm5T0hISON/OxwOtGzZEu3atWtyvMDJc7WG/25qP3/97xw8eBDt2rVD\nXV0dFi5ciO7duwOob4f2y98jIiKis/e73/0OXq8XmzdvRteuXXHjjTdi2rRpCA8Px8033wyg6WsZ\nv3XtBQAWL16Mhx9+GO+//z5uvvnmk+YYv5wn/P3vf8eXX36JjIwMXHfddaipqWn83aFDh2LBggX4\n97//jcrKSiQlJZ20LyaTCVdccQW2bt2KtWvXYvr06QDqb5z617/+hR07dmDnzp1YvHgxVqxYgdjY\nWL+//+VYGvY7LCwMdXV1mDhxIrKzswHUz91+mRxzqjnNqa7L+Hy+xrlgU8/B6fz6+lKfPn3w/PPP\nNz7mcDjQqVMnvzZmvL5ERESkHudT/6fhxjMAJ12z+eU4fT7fGa+x/VpYWJhf7OPHj8Nutzf+7JVX\nXsGf/vQn3HLLLbjyyivRpUsXfPDBB9i1axf+/e9/44477sCMGTOQnJx8Tv8+UbBgJSCiIHLDDTdg\n+fLl8Pl8qK6uxsqVK9G3b18AQPv27RvbUzT0JT0TnTt3RmJiImbOnNl41/rhw4cxYMAAtG3bFuPH\nj8fUqVPx9ddfn/LvN2/eDLfbjbq6OqxcuRI33ngjoqOjcdVVVzW2iDh27BiysrKwefPm046lX79+\nWLFiBbxeL+rq6rB8+XJcf/31iI+Ph8/nw7Zt2xr/zXO5G6rh+auurkZdXR2eeOIJLFiwAED95KTh\nYlC7du2we/du+Hw+VFZW4pNPPjnrf4uIiIiaV6DNm5qa55ypPn36YN26dairq0N1dTXuu+++xqo+\np7N+/XoAwO7du/H999+f8iLTr/+dNWvWAADcbjfGjRuHffv24YYbbsDrr7/e+Hzee++9eOutt854\n/ERERHRqN910E+bPn4/rr78e3bt3R0VFBTZt2oQhQ4YAaPpaxm9de4mMjITFYsGcOXMwa9YsuFwu\n9O3bF59++imcTicANFY4BIBPPvkE48aNQ1paGjp06IAdO3agtrYWANCqVSsMGzYM06dPx+jRo5vc\nl8zMTCxZsgTHjx9vrMz8wAMP4N1330VKSgpmzZqF6Ojok9qeAvVzqoa7+Lds2YKIiAjEx8c3trSo\nqKgAACxcuBAPP/zwaZ/TP/zhD/j0008bW03s3LkTDocDiYmJ6NevH1avXo26ujocPXr0N69VnS5+\nQ3Xpbdu2YdiwYThx4gTCwsIak31at24Nr9eL7777DsDZzTuJiIjozHE+9du2bNmCo0ePora2Fvn5\n+ejfv/9v/s0v180aXHfdddi5cycOHToEAFixYkVj2zGDwYDevXvjkUcewUMPPYSqqirk5eXhscce\nww033ICHHnoIN9xwA7799tuzGjtRMGISEFEQmTFjBg4fPoyhQ4di6NCh6NatG+65557Gn82ePRvp\n6en4n//5n8ZShGdi5MiR2LNnD9LT0wHUL4zde++9GD9+PIYPH45nn30WTz311Cn/tmPHjpg0aRJu\nueUW6PX6xvHMnz8fxcXFGDp0KEaOHInbbrsNw4YNO+047r33XnTs2BFpaWm45ZZbUFNTg8cffxwR\nERFYvHhxY0nGDz74wK9X6pn605/+BJPJhPT0dNx6663w+Xx49NFHAQD9+/dHbm4uXn75ZQwbNgzt\n27fHzTffjLvuugtXX331Wf9bRERE1LwCbd7U1DznTE2ePBkRERFITU1FWloaBgwY0HhH2+l8/vnn\nSE9Px/Tp0/Hcc8+hTZs2p/39mTNnoqysDEOHDkVWVhbuvvtu/P73v8fjjz+OysrKxuczPj4eEydO\nPOPxExER0akNHjwYZWVljcnKffv2hcFgaGyxcLprGWdy7eW6665DSkoKpk+fjt/97nd46KGHMG7c\nOAwfPtyvOvKf//xnPPPMMxg+fDgmT56M3r17+7W3Gj58OA4fPoy0tLQm92XQoEGw2+1+rVH/9Kc/\nYdOmTRg2bBgyMzNx00034dprrz3pb1u0aIENGzZg2LBh+Oc//4nFixcjLCwMI0eOxMCBA5GZmYmU\nlBR8/fXXmDdv3mmf08suuwyzZs3C5MmTcdttt+HZZ5/FP//5T+j1ekyZMgXh4eG45ZZbcM899yA+\nPv60sU7l8ssvx+zZs3H//fdj2LBhWLhwIV566SVERUXh8ssvR1hYGEaMGIHo6Gg89NBDmDRpEjIy\nMlhFkYiISBHOp35b9+7dcffdd2Po0KFo3bo17rrrrt/8m8GDByM7O9uvHXzD/k+cOBHDhg3Dxx9/\njCeffNLv79LT09GtWzfMmzcPaWlpqK2txa233orhw4ejoqICY8eOPauxEwWjEB/rghJRM1m0aBGO\nHDmCmTNnNvdQiIiIiOhXfve732Hnzp1o3759cw+FiIiINMzn82HJkiWw2+0nLfJIsNlsGDp0KP77\n3/+KxyYiIiIKBKrnU0R0cTm3hn1ERBeBsrIyTJs27ZQ/69atm19vdiIiIqKLzdKlS7Fp06ZT/mzC\nhAkXeDRERER0sfrjH/+I9u3b46WXXmruoSgzdepUfP/996f82XPPPYe4uLgLPCIiIiK6mATifIrz\nH6LAxUpAREREREREREREREREREREREQaF9rcAyAiIiIiIiIiIiIiIiIiIiIiovPDJCAiIiKiAFRc\nXIycnJxT/qyqqgqjR4/G3r17Gx97+eWXMWrUKAwfPhyrVq26UMMkIiIiIiIiIiIiIiKiABHe3AMg\nIiIiIn9LlizBxo0b0apVq5N+VlJSglmzZuHHH39sfGzXrl3473//i7fffhtVVVVYtmzZhRwuERER\nERERERERERERBYCgSgJyudzNPQSii4LdbYNJb27uYdBp2N02jC8cg9eTl/NYUUAyGPTNPYSAFhsb\ni0WLFuHhhx8+6WfV1dVYvHix388++eQTxMfH489//jMqKipO+Xe/xnmRLLvbhpEb07Bq2Hq+7xIR\n0Vnj3Kj5cW5ERES8nhYYOC9qfpwXEVFzszqLMHzjbVg77B1YjEnNPRyiZnOu8yK2AyM6R3a3rbmH\ncEakx9nwZVhFXJJj0pt5wYJIw4YMGYLw8FPnalssFsTExPg9duTIEXz11VdYuHAhnnzySTz44IPw\n+XwXYqj0v5weBw6698PpcYjG5ecjERERERHRhcHraURERIHBYkxiAhDReWASENE50EoijIpxqvgy\nrOr5DHa8YBH4eM6TlLZt2+KGG25AZGQk4uLi0KJFCxw+fLi5hxXQpF9/Rl0MYlt3hVEX89u/fIbs\nbhvSN6TwvYKIiIiIiOgC4fU0IiKiwMAEIKJzxyQgonOglUQYrdy9opVxEkli8htJslgs+Pjjj+Hz\n+fDjjz+iqqoKbdu2be5hBSxVn7krh8q2AitxFWP/sX0ocRWLxQTqy+kSEREREREREREREdHFh0lA\nRAFCVSKMirYkKhIXmABEwYbJb3Q2Nm3ahPz8/CZ/fuONN6Jnz54YMWIE7r33XsycORNhYWEXcITa\nYtKbMa/ffPHXn3S85LgUvJGch+S4FLGYVmcR0jbcykQgIiIiIiIiIiIiIqKLUIjP5/M19yAuFJfL\n3dxDaDZ2t00zC81aGGtDIkygL+BbnUVI35CCdakFomXztHCMiCiwGQz65h5C0Av2eZEWPsdVaGgx\nti61QHTfrc4iluglIjoPnBs1v2CeGxEREQUSzouaH+dFREREgeFc50WsBBSApCusaKnljN1tQ3bB\nyIAfq6oKHtL7bdTFoENLA4y6GNG4KhZMA/2YN9DKOImIqGnBXomrVXiUaDxWFyIiIiIiIiIiIiIi\nCgxMAgowKhJ2gn2hSytUHHunx4Hy4y7xlmDStJKoppVxkho87kR0MTDpzchLWSU6LzTqYhCr7yqe\ndExERERERERERERERGdHaTuw4uJizJ8/H7m5uX6Pb9myBYsXL0Z4eDgyMjKQmZmJuro6/PWvf8XX\nX3+NyMhIPPXUU+jatWvj38yZMwfdunVDVlYWAOCpp57C559/Dp1OBwD4xz/+Ab3+9OWQtFLCMNhb\nLWlh/1W1EVGx71ppz6GF4w5oZ5wkK5hbB6nC0s7NTyvzIhX4mpanlfkGEVGg4tyo+QXz3IiIiCiQ\ncF7U/DgvIiIiCgznOi8KFx5HoyVLlmDjxo1o1aqV3+Nerxdz587F6tWr0apVK2RlZWHQoEH4/PPP\nUV1djfz8fHzxxReYN28eXnrpJRw+fBgPP/ww9u3bhwkTJjTG2b17N5YuXYr27dur2oVmE+yLUVrY\nf1XVlbSw78GOxyg4saIa0cWFr2lZdrcNj378oPhzysQiIiIiIiIiIiIiIqKzo6wdWGxsLBYtWnTS\n43v37kVsbCzatGmDyMhIWCwWFBUVwWq1ol+/fgCAq666Cl999RUAwOPxYMqUKUhNTW2MUVdXh/37\n92PmzJkYPXo0Vq9efUZjYisXkqSFhUOrswjDN94Gq7NINK70a4lttkgLtPCaJ7pY8fMhsKlIqlI1\nhyEiIiIiIiIiIiIiupgpSwIaMmQIwsNPLjRUUVHh17ZLp9OhoqICFRUViI6Obnw8LCwMNTU16NKl\nCxITE/1iVFZW4vbbb8ff//53LF26FHl5eSgtLf3NMQVzkgEXUIKTxZiEtcPeEb2LXkXCjklvxvgr\nJmgiySJY30OIiJqL3W1D5qY00fdfJp/Kk/4MtxiT8PJNy8QrAXFOTERERERERFqTnp6OnJwc5OTk\n4LHHHsP+/fuRlZWF7OxszJo1C3V1dQCAlStXYvjw4cjMzMRHH30EADh+/DimTJmC7OxsTJo0CYcP\nH27OXSEiIqILQFkSUFOio6Ph8Xga/9vj8UCv15/0eF1d3SmTiACgVatWGDt2LFq1aoXo6Gj84Q9/\nOKMkoGBt+6C1O6m5ICfLqIsRjafibv/CsgLcv20KCssKxGKqwEVjIqILz+lx4IB7P5weh1hMtgML\nfHa3DXP/85ToZ67W5sREREREREREJ06cgM/nQ25uLnJzczF37lzMnTsXU6dORV5eHnw+HzZv3gyX\ny4Xc3FysWLECr776KhYsWIDq6mq8/fbbiI+PR15eHtLS0vCPf/yjuXeJiIiIFLvgSUDdu3fH/v37\n8fPPP6O6uhqfffYZrr76avTu3Rvbt28HAHzxxReIj49vMsa+ffuQlZWF2tpaeL1efP755+jVq9dv\n/tvButCjohqMKkyykGV32zByo2z1BED+tZQcl4I3kvOQHJciGlcaF42JiC48izEJSwa/Lj6P4Xt5\n8FFVXYiIiIiIiIhIldLSUlRVVeHOO+/E2LFj8cUXX2D37t249tprAQD9+/fHjh078OWXX+Lqq69G\nZGQk9Ho9YmNjUVpaCqvVin79+jX+7s6dO5tzd4iIiOgCOHWpHQU2bdqEyspKjBo1Co8++igmTJgA\nn8+HjIwMdO7cGYMHD8ann36K0aNHw+fzYc6cOU3G6t69O1JTU5GZmYmIiAikpqbi8ssvv1C7okla\nWeww6c2Y128+F+aEOD0O2CoOwOlxBPxzqiIByO62ie93oD+PREQXG7vbhmetzyDBkMj34CBi0puR\nl7JK9Jg3VBeSPpdUzDeIiIiIiIiIAKBly5aYMGECRo4ciX379mHSpEnw+XwICQkBAOh0OrjdblRU\nVECv1zf+nU6nQ0VFhd/jDb9LRKQFvOZGdO6UJgGZzWasXLkSADB06NDGxwcNGoRBgwb5/W5oaChm\nz57dZKwpU6b4/ffEiRMxceJEwdFe3LTyRml32/Doxw+y2ooQizEJc2+YL54EpoXzqaGqFM8lCmRa\neC0RNTdWYQteWjjmnG8QERERERGRSt26dUPXrl0REhKCbt26oW3btti9e3fjzz0eD1q3bo3o6Gh4\nPB6/x/V6vd/jDb9LRBToeM2N6Pxc8HZgFxsttK2yu23ILhipibFyoU+W1VmE6Z8+BKuzSCymVlq2\nsaoUBTqtvJaIzoaq85nv5SRBRXUhzl2JgtPy3W829xCIiIiIKEisXr0a8+bNAwD8+OOPqKiowPXX\nX49du3YBALZv345rrrkGV155JaxWK06cOAG32429e/ciPj4evXv3xrZt2xp/12KxNNu+EBGdKV5z\nIzo/TAI6D1zAVbPYxzd0ORZjEl6+aZloJSCtfPA2VJUK5tcnBTZVryWe83SmpM8VzotIC1TMXwJ9\nTqRaML/mg3nfVZC8caGBimSd5bvfxLRtk8Vj77LtEo1HRERERBeHESNGwO12IysrC9OmTcOcOXPw\n+OOPY9GiRRg1ahS8Xi+GDBkCg8GAnJwcZGdnY9y4cZg2bRpatGiBrKwsfPvtt8jKykJ+fj4mT57c\n3LtERHRGgv2aG9H5CPH5fL7mHsSF4nLJ9zrVSisXq7NISUuo7IKR4ndUkxwtHSMVr6VgjknBSUsl\nMg0G/W//EinV7bk4rEstED1Xlu9+E2N6jRWLR6QFwfw5bnfbMHJjGlYNWx90z4GqebaK721aYHUW\nIX1DCtalFojtf0OyznMDXhT/bJL+vLM6i5C24VYcn3FcLCadPRXXjIiIiOjs8ZpR8+O8iIiIKDCc\n67yIlYDOkxYudrMiCklTUT1CCy3rVFS5aFg8C/R9J23QSqUuCgz7jn2PElexWLzCsgLcv20KCssK\nxGISBbpgr4Dl9Diw71gZnB5Hcw+lWXhrvaLxrM4ipK6/RbwijopqONLnvFEXg85RMTDqYsRijuk1\nVkkCUENsaSEhIeIxiYiIiIiIiLQqWK+3EUlgElAQULUobNKbNVFhRhUVHz7SMVUco2BO2DHpzZjX\nb77o8+n0OGCrOBC0i2ckL1jfk+nsvZn8NpLjUsTiJcel4I3kPNGYRIFOxdxAJenkktLyPajx1aC0\nfI9oXK0kE0aERYjHlE4EUdG6yu62IW19ivj3gaiIKNF4gJpkHRUsxiRsHbe1uYdBREREREREFBCC\n/cY7ovPFJKAgoZWFCa1QVRFGxQeaFo69imQlFclvKqpqWYxJom0PiIjOlIpkHSYAUbCxu224f+t9\nmrgg0dBuSTIRaEyvsZh53d9EEy0KywowtjBLPBFIOp5Jb8aCgS+IzjUtxiSsT31XdF6oohpOiasY\nB9z7RKvJBfsNJgBwnfm65h4CERERERERUUBg1wOi88MkIDpnqpJWtLCIouKub1UfaCqSiqQXPBri\nSlMxRhXHiAlARERE2lVTJ9sSClAzHzbqYhr/J8XutmFD2VrR8RqiOiE8JByGqE5iMQvLCjCuMFs0\nEUhVy2UV80LpajiqKr/xwh4RERERERERNeB1AqJzxyQgOmeqKq1oobybqov+KhKAVFQsUrHvgX7M\nG3DSQUREdGFoZW4QHirbEsrutuGPK/sp2f+auhrReKoSpMNCw0TjJRgSEau/FAmGRLGYwX5HGiu/\nERERERERERERBSYmAQUgrSx4ANqptCJN1Tgl2zMAasapogpSMFeVIiIiopNpZW6gooXRIuvzOHyi\nHIusz4vFBOpbONkrbKItnAD57wMWYxKWDH5dtCKOSW/G366fo4lKlkRERERERERERETng0lAAUYr\nlXBU0srFdBUJQOkbUpQkAklSUQkomKtKkXaoOJd4ftLpFBcXIycn55Q/q6qqwujRo7F3797Gx9LT\n05GTk4OcnBw89thjF2qYREqY9GY8YHlYfG6QuSkt4N975w2cjzuvuAvzBs4XjZtgSETX1rLVcFSw\nu2141vqM6HGyOosw8f1x4vNsyfZixLkWERERPigi1QAAIABJREFUERERERGRBCYBBRitVJjRGi1c\n/DXqYtA5KgZGXUxzD+W0VJ2jKuJJVyyi4KWqtR4T1agpS5YswYwZM3DixImTflZSUoIxY8bg4MGD\njY+dOHECPp8Pubm5yM3Nxdy5cy/kcInE38usziLc/eGdonNYp8eBA+79cHocYjFVJRZJJwAB9XOj\ndakFAT83UjWHCwkJEY1XWFaAsYVZmkgEUjHXkP5+aXfbkL4hhXMtIiIiIiIiIiKi88QkoACkIgFo\n+MbblCQCaeGCqt1tQ3bBSE2MVXhtAoCaY6Ri8UhFu4/7t96nieNOgU9Vaz0ttD+k5hEbG4tFixad\n8mfV1dVYvHgx4uLiGh8rLS1FVVUV7rzzTowdOxZffPHFhRqqZgV7grQkFXMtizEJL9+0TLQllMWY\nhPWp74rGVJFYBKibY2vhM8futuG+LfeKn0/SLcYSDIm4tHU38cpKWkiusTqLkLr+FtGxlriKse/Y\n96Lt6nhTABERERERERERBSMmAQUBFYsogLburPTWesVjSu+30+No/J8UrSRAaelcInlaOe4qFpC4\nKEVNGTJkCMLDw0/5M4vFgpgY/6pxLVu2xIQJE/Dqq6/iySefxIMPPoiampoLMdQLQkWVmbQNtzIR\nSJD0XMvutmHuf54K+M8IFcklKudvWrgpwOlx4MAx+YpNT3w6XbydrXRlJVXJNfuP7RNNrgHkKysl\nx6XgzeS3kRyXIhZTRRtjujCaaom6ZcsWZGRkYNSoUVi5cuVp/2b//v3IyspCdnY2Zs2ahbq6OuXj\nJiIiIiIiIiIKBEwCCkAqKqI8a31GPK6qKhYqLtJGhEWIxlORtGIxJmFdaoF4spaKBChpJr0ZD1ge\nFq+ysmDgC5o4P4MZE8CIZHTr1g3Dhg1DSEgIunXrhrZt28Llcl3wcbxoXSgeU0UVCwCATzacKlpI\n2lBFeg6jojqmqnl2pbdSNB6gJvlNxevTqItBF31X0Ra5Ja5iHHDLJ8JIV4AC1CTXPHHdbNHkGosx\nCfckTBH/3iJdVUnFdwxSr6mWqF6vF3PnzsWyZcuQm5uL/Px8/PTTT03+zdy5czF16lTk5eXB5/Nh\n8+bNF3Q/iIiIiIiIiIiaC5OAAoyKBXGVZdBVJFio2H/pZBBVCVDSF9IB+QQoQE1Fhrs/vFN8UUr6\nzl9VCStaWYxVgS2xiGSsXr0a8+bNAwD8+OOPqKiogMFgOO3fFJYViI7hRetCzN71hHgikIoWMRZj\nEtanybaFAtR8PkpXBbG7bRi5MU18rCrmGzU+2SQgizEJa4e9I3rcVSQZOD0O/FgpWx2ykXDym6oW\nTquGrRd9TpPjUvBGcp5oIoyK16eK5BqrswhPf/aU6DiX734TC7+Yj+W73xSLaXfbkLZevm3ZhH+N\nVZJMKbnvDV79/FXxmFrUVEvUvXv3IjY2Fm3atEFkZCQsFguKioqa/Jvdu3fj2muvBQD0798fO3bs\nUD94IiIiIiIiIqIAwCSgAKNiQdzutmHK5nuVJBqoqC4knbCkqgy8FpIWVCRAqaqCpGJRTvpcUvX6\nDPZKOFp4LRE1t02bNiE/P7/Jn48YMQJutxtZWVmYNm0a5syZ02Q7sQZjC7NEE4Eua3eZ3zbQqUgA\nytwkm1zjqjyE6rpquCoPicV0ehywVRwQTTAx6c3IS1klnggj3SYVgGh1GaA+yeCuD+4QTwRRUR1S\nRfKbihZOgJq5gfQYAfmqPSqSawDA55PN/hrTayyeG/AixvQaKxZTRbWm0vI98Pq8KC3fIxYTqD9O\n07ZNFj1Oy3e/iYmbJorF07KmWqJWVFRAr9c3/rdOp0NFRUWTf+Pz+RpfozqdDm63W+GoiYiIiIiI\niIgCB5OAApD0RW8Viz2AmuQFFQk7Wqo0In2Xqt1tw/1b79PE86liMVYLyV9aOj9JG4I5oexiYzab\nsXLlSgDA0KFDMWrUKL+f5+bmonv37gCAyMhIPPvss3j77beRl5eH3r17n9G/8d2R78TGqyoZIMGQ\niK76buJtYqRfK06PA/uOfi863zJEdUJEaAQMUZ3EYlqMSbg7YbL45650myUViTB2tw3ZBSPFW1eZ\no2PFk4tUVIdUFVdFco0WWIxJWJ8qm1SlIrnGYkzChrT3xI+95BgBNdWaVDyfANChVQe/rYQeHXoi\nDGFi8S5G0dHR8Hg8jf/t8Xj8koJ+LTQ01O93W7durXR8RERERERERESBgklAAUh6UcpiTMLD1zwu\nfuHXpDdj/BUTAr7SSkPcQGd1FiFtw63iiUBVNZWi8bRCS8k1WhgjaSO5hi3r6GzMvO5vmGz5i2hM\nFckAJr0Z69MKxKuwSbfEclUegtfnFa3aY9TFoKu+m2iCiYpKI4VlBRhXmC3eYk5Fwoq3VrbFmIrW\nVaQdKs5R6YQVQF1SmTTpZE8AGBg7SDxmgiER5ugu4uMNDzt9Bb9g1717d+zfvx8///wzqqur8dln\nn+Hqq69u8vevuOIK7Nq1CwCwfft2XHPNNRdqqEREREREREREzYpJQAFGxQJuYVkB/rZrpvjCTGFZ\nAe7fNkU8brAy6mIQo7tEdKHP6XHA4flBtCqBlpIMuCBHUrRy3qtqqRjsLesuVtIJQCppoUqiIaoT\nIkMjRav2qEgwGRg7COboLqIL4wmGRMTqL1WygC8tIixCPCbnG0TnT0WlLhVtGhu0DGslGs9iTMK2\n8dtEY14sGlqiRkRE4NFHH8WECRMwevRoZGRkoHPnzk3+3SOPPIJFixZh1KhR8Hq9GDJkyAUcNRER\nERERERFR8wnx+Xy+5h7EheJyaaMHvN1tE1/ATVufIn4XPVCfCCR513/DYrN0BRfp51SFhgvfeSmr\nRMdqdRaJ3/0rHTOYjztph4r3ZunzXkuvpeORP6NLmy6iMens5O5aIV65Z/nuN5VUsVBxDkrPYQA1\nn7kqqHg+tfKZq5VxEgUbFd+FrM4ipK2/FevTZNu2qfp+vbP8IwzrMUwsHp09rVwzIiIiutgZDE23\n/KQLg/MiIiKiwHCu8yJWAgpAKlph/XPwUiULHtKLZ1qqYqGigseCgS+IHyfpxUi724b7t94nuv8m\nvRkPWB4WP+7SdxNTcFPx3iydrKOVlop2tw3p+emiMensSbdvWr77TUzbNlm0zRSgrjrE3P88paQF\nqxaomBNqJbFGK+MkkqSF+bCK70JGXQy66LuKVloF6qvJ/VjpEK0mV1hWgLT8NLF4REREREREREQU\nvJgEFATsbhse/fhBTVz8VTFWFYviDXd/Si9ITtl8ryaOk7fWKxrP6izC3R/eCauzSDQuUaAL1oV4\nk96MdaPWNfcwgl7X1rLtm8b0GovnBryopBJQpbdSPGZVjXxMIqLzpYVESgDiLaFV3Wgg3VIRqE/4\nXJdaIJr4mWBIRLe23cTiERERERERERFR8GISUABSUWFGusqKKlqpYlHiKsZ+9/cocRWLxXR6HDhY\nsV/0jlIAShJrQkJk41mMSXjIMl30QrqqykpEgU4ryXRsBdb81qXKtwlVkQCkouKC0+OAo+IH8c9c\nIqLzoaqimnQCf2FZgXg1OVVUfReQrvxm0puxdfxW0ZhERERERERERBScmAQUYFTcqWl1FuGuD+7Q\nzMKwFiQYEmGO7iJaQcGoi4Ex6hLRcvVWZxHSN6SIH3ufTzQcCssKMHvXE6ILCVqqrKSFMZI2WJ1F\nGL7xNr7f0xnRSpKkiooLqlrEaGFBnEgLgnVupLKimqQEQyJi9bLV5Ex6M/JSVmnms0kFJkgTERER\nEREREZEEJgEFAaMupvF/0qQv0KsqV6+CPrK1eEzpCjtGXQzM0bHixz4iLEI0XoIhEZe27ia6kOD0\nOGCrOCBe5UHFOT++cIwmznkKfBZjEtYOe0f87nSi5qai4oJ0i5jCsgKMLcxiIlAQUvEZHsznkd1t\nw8iNaQHfvgqQb90FqKmoJj13N+nNWJ8mX00umBOAiIiIiIiIiIiIpDAJKMCougOyVXiUaDxAXcKO\ndLl6FVQcJ6fHAYdHtjWJSW/GzD5Pio7TpDfjsWtniMec3XeOaEyLMQmvDH5NdOFYxTlv0psxr998\nJYseTCwKTkwAoouRivcz6fddFVUCKfCpSObVWkKZdPU5FYncKtpXqWrdJU3V90sm7BARERERERER\nEQUmJgEFIBUXaBcMfEEzF2qP11Y19xDOiPTzaTEmYX3qu6IL+FZnESa9P150ccbqLMLdH94pHlO6\nZZ3dbcOz1mfEF44rvZWi8exuGx79+EFWGNIAPpdEzSPY38+0kggSrEx6M8ZfMUF0XqgyoUz6daSi\nDaWKRG4V7au00roLYMIOERERERERERFRMGESUBBQlWSg4q7SElcxbBUHUeIqFoupJSpatvngE41n\nMSbh5ZuWiS7MqGhbZtKb8XrycvFqTc5K+WpN0uNUGVcrmFRFdPFQWTFNUomrGPYKm+gcRmsVYbRA\numpNYVkBpm2bLH6MwkPDReMB9Z9lQ9cNEf0ssxiTMOf6v4tXXpRO5FbVvkoLCUBEREREREREREQU\nXJgEdJ60sCBs0pvxgOVhJYtnKlppXNq6m/idz9ILPiqoSDIw6mLQtfWlosk1drcNc//zlPjCzKph\n6wO+TYFRF4OOLTuJJ2sF+sK21qh4LWklCYHoYqSyYpqk5LgUvJGch+S4FLGYquZFWpi/AvJVkKzO\nIqStvzXg54VOjwOOCtmkYwDYemALbBUHsfXAFrGYVmcRHvn4ftHnVGWCNBEREREREREREdHFTmkS\nUHFxMXJyck56fMuWLcjIyMCoUaOwcuVKAEBdXR1mzpyJUaNGIScnB/v37/f7mzlz5uDtt99u/O+V\nK1di+PDhyMzMxEcffaRyN5pkd9uQuSkt4BdSVLRvaqCiutBLNy0VvUhvdRYhbYP8go/0wpSKZC2T\n3owXBr0kvugh3RJLK5weB346fkh8UU6FYK5co2LxUCtJCEQXI1WvaRXvkZIJQED9vq9Lla1eYnfb\nkF0wMuDfzwrLCjCuMFt8vlXrqxWNZ4jqhPCQCBiiOonFNOpiYNRdIp50PDB2EAwtO2Fg7CDRuD6f\nbNVJAJqYaxEREREREREREREFImVJQEuWLMGMGTNw4sQJv8e9Xi/mzp2LZcuWITc3F/n5+fjpp5/w\n4Ycforq6Gvn5+XjggQcwb948AMDhw4cxceJEbNnyf3esulwu5ObmYsWKFXj11VexYMECVFdXq9qV\nJjk9Dhxw7w/4i9QqyvQDahaRVC2019XWicZTsTBldRbhrg/uEE1WsrttuG/LvaLPp9PjwA8VNtHz\nXisJK0ZdDLpEd1XStk1asLcDk6alJASiMxXo1VB+SUVFEFVVEqWpaJEqncyros1UeVU5fPChvKpc\nLKar8hBqfbVwVR4SiwkAIaLR6kWGRYjHdHocOOY9Kv7dJSRE9hmwOouQuv6WgE/gB9Qk82ql/Z+K\nz5Dlu9/URExAzf5vLN0oHpOIiIiIiIiIiIKPsiSg2NhYLFq06KTH9+7di9jYWLRp0waRkZGwWCwo\nKiqC1WpFv379AABXXXUVvvrqKwCAx+PBlClTkJqa2hjjyy+/xNVXX43IyEjo9XrExsaitLRU1a40\nyWJMwvrUd8WTa6RZnUWY/ulDmljsU5W4EBIquziRHJeCBQMWid7xb9TFoHNUjGiCidPjwP6j+0QX\ne1yVh1DjqxFdQFN13FVUqlLRtkwVrYxTmqrkGhVJCEzUouakoi2SqrmGirZQkz4YH/D7X1hWgLGF\nWaL77/Q4YHcfFJ0bqGgz1aNDT4QjHD069BSLaYjqhDCEiVbtAeSTYACgutYrHtOoi4EuPFp0rmnU\nxSBWL9t6FpB/TlUk8NvdNqRvSBGdb6h4zQPyiTAqKq0u3/0mpm2bLDpWFTEBNYlqhWUFSMtPE4tH\nRERERERERETBS1kS0JAhQxAeHn7S4xUVFdDr9Y3/rdPpUFFRgYqKCkRHRzc+HhYWhpqaGnTp0gWJ\niYlnFKM5qEgAkl64thiT8PJNy8THatKbkZeyKuAXsI26GMToTKKLE3a3Da//z6vix0rFXd/St6cb\nojohHOHiC2jSd6VrJREEYEsoaSa9GfP6zQ/49yYgeBO1KEAIfz5YnUUYti5ZE4kwAOCrk21hpKr9\nqPSBKi3fgxrUoLR8j1jMI8eP+G0lGHUxMLfuIp9cIpwYbjEmYenNb4jOs50eB+wVsolaALDumzU4\nfKIc675ZIxbTpDdj0R9lW8+quNEiwZCIWP2lSDAk/vYvn6ESVzH2HftetFpXgiERl7buJjpOVYkw\n0m3gxvQai+cGvIgxvcYGdMwG0olqCYZExLWLE41JRERERERE547rNkSkZcqSgJoSHR0Nj8fT+N8e\njwd6vf6kx+vq6k6ZRHS6GBcDFYkLdrcNz1qf0cQHlooWYwAQFRElGk9VkoH0Xd9GXQw6RXUWv+Pb\n1NosGtPqLEL6hhTRhVOtVFlRdc5rifSCuaq2gsF8jIJ53y9mj1wzQ3SRvbR8D7w+r2hyCYDGdlCS\nbaGMuhh0iOoo395Rdk0chqhOiAyJEE287dCqg99WQnp8Bjq3ikF6fIZYTGWEj5HdbcPc/zwl+j5Z\nWr4HNT7ZRC0A6GPqixCEoI+pr1hMu9uGOwpvV3ITgyST3oz1aQWi88LkuBS8mfy2aGVQk96Mdamy\n41SRCGMxJmFD2nvix0lFss7A2EHiMVUkqpn0Znw07iOxeERERERERHTuVN1kTkR0oVzwJKDu3btj\n//79+Pnnn1FdXY3PPvsMV199NXr37o3t27cDAL744gvEx8c3GePKK6+E1WrFiRMn4Ha7sXfv3tP+\nvpaoSC5RlbCi6kPQK5wIo6Jikd1tw/1b7xPdd6fHgR8rHaJ3fTs9DriqDonfSS5846+SVmgAq/Zo\ngdVZhOEbbwv4BLBgnvQH875f7GbvekK0us6YXmNxvbG/+CJuietLv61MzGI4PD+IVvCwGJOwPk12\nUdhiTMK9ifeJV0SRrjRi0pvx9wELRN93nR4HbMfkq+GoUOmtFI03MHYQjFEx4skLDa1cJVu6rvtm\nDZyVDtHqQoCa1oIq5oWSCUANVIxTRSKMdJKaCna3DWnrZVu2NSgse0885n8d/xWPSURERERERGdP\nKzeZExE15YIlAW3atAn5+fmIiIjAo48+igkTJmD06NHIyMhA586dMXjwYERGRmL06NGYO3cuHnvs\nsSZjGQwG5OTkIDs7G+PGjcO0adPQokWLC7UrStndNtzzwUTxSkAqqmKoSi6KUNESSwMsxiS8Mvg1\n0YU+oy4GxqhLRJNrVCQrAfLVmgD5hB0VyRAq2+ppIWnDYkzC2mHvKLnjXzqeVlqMSeMXnuZTXFyM\nnJycU/6sqqoKo0ePxt69e/0eLy8vx4ABA056/FRCESpaYebRrQ/iU+d2PLr1QbGYADAw9ka/rYQE\nQyJ04dGiiTCA/KL48t1vYuEX80Xb+Jj0Zvzl6gdEX9NWZxEmvj9ONHFDRdsyAPAJt8Fzehz4wW0T\nnxdFR8hXOTVEdUIIQkRf95e1u8xvK8HqLMLQdUPEE4Gk22EBapKV/t+O2aLx7G4bMjelic4LVbUY\nk34+S1zF2O+WbdkG1B+jhV/MFz1WhWUFSM1PFYtHRERERERE54fXw4lIy5QmAZnNZqxcuRIAMHTo\nUIwaNQoAMGjQIKxZswZr167FmDFj6gcSGorZs2djxYoVyM/PR/fu3f1iTZkyBVlZWY3/nZmZ2Rhj\nyJAhKnfjgipxFeOAe5/ohUqVlYCkq+GY9GYsGPhCwFfwUDVO6XYSABARKptUZTEm4e6EyeLl71U8\nnyM3yi54mPRmjL9igiYmf1qq3iKdAKSCqmRKFVSMUQvn/MVmyZIlmDFjBk6cOHHSz0pKSjBmzBgc\nPHjQ73Gv14uZM2eiZcuWZ/Rv1KEOq0rzRcYLAGZ9F7+tlARDIjq26CSasLPI+jw8NRVYZH1eLKaK\nRfExvcbizivuEq2uVFhWgPu3TRGtAuWqPITqumrRCjMDYwdBFx4tWsHEVXkINXVe0XG6Kg/BC9mY\nAPDz8Z9F4wH1iVV1qBNNrEowJKJ1ZBvR12dh2Xuo8dWIVlpR8fq0Ootw69qbRBNXVCSXOD0OfPvz\nN6KJamN6jcU1hmtF35usziLcsvaPos/nO3s3+W2lJMfd4rclIiIiIiIiIiIKJBe8HdjFRnqx1RDV\nCWEhYaJ36KpI1lFFxUK7iiQoVQkBNXWyrdAAoMYnG1NFVQJV7dVsFQdEFzxULJyqStYJ5so1Kmil\nGo6Wkr/o9GJjY7Fo0aJT/qy6uhqLFy9GXFyc3+NPP/00Ro8ejU6dznwOIZmwM9nyF/zRfDMmW/4i\nFhOoT5AuP+ESTZCeYpmKlqGtMMUyVSzmmF5j8dyAF8UTdl77nyWinzuGqE4Ig+xcUyuJWip8d+Q7\nv62Edd+swU8nDom32OrRoSfCEIYeHXqKxXy9ZBmOVR/F6yXLxGJajBa/rYR9R/f5bSW8VvIqfPDh\ntZJXxWKqsPjzF/y2EiZ/cA8+c/0Hkz+4Ryzm/P887beVcFv3oX5bKQ3HXPLYW51WsVhERERERERE\nRBTcmAR0HlQttoZAuE8BAG+tfHKJSW/GY9fOEF0UV7HQrqpikYoEi6qaKtF4To8DP1TYRRNhBsYO\ngjm6i+id+QBQ6a0UjaeivVpyXAreSM5DclyKWExVySVaqlyjFVpo2aaVZCX6bUOGDEF4ePgpf2ax\nWBAT49/mce3atWjfvj369et3xv9G+xYdkB6fcV7j/KUXrQux2fY+XrQuFIsJ1CeYxOovFU0wWffN\nGhyvq1KSZCEpwZCI1hGyVVYAICREdq5Z4irGTycOiSZqjewxCqEIxcgeo8RiNiyyB/pi+9ETR/22\nUlyVh1CLWvGqRVrw1U9f+m0l9Lmkr99WwuN9Z6K7/jI83nemWMxlt+bC1MqEZbfmisW8I2GC31ZC\n19aX+m0lrCxd4beV0qN9T7+tBFYVIiIiIiIiIiIiKUwCOg8qFluNuhh01hlh1MX89i+fBeG1HgD1\nJdvv/vBO0ZLtWqEiwaLEVQxbxUHRBTSjLgaXRJtEzyeT3oxN6f8SPe+dHgfs7oOiyUqq2qtJJgCp\nxEpAgY9Ve0jSmjVrsGPHDuTk5GDPnj145JFH4HK5Tvs3FV636PtuH1NfhIWEoY9JbkEcqH8/++fg\npaLvZyqqFlmdRRi2Lll0XrTumzU46v1ZPFmp1lcrGu+Nr17z20pQ0bpKRYWZy9pd5reVkBx3C0IQ\nIp4UoCIJ6tI2l/ptJahI3Ph9xyv9thJKXF/6bSXc+W4O9rq/w53v5ojFnPzBPbBX2UWr9jS8LiVf\nnwNjb/TbSvhz7/sQglD8ufd9YjEBwOY+6LeVEOgVpYiI6MLhNQIiakp5eTkGDBiAvXv3Yv/+/cjK\nykJ2djZmzZqFuro6AMDKlSsxfPhwZGZm4qOPPgIAHD9+HFOmTEF2djYmTZqEw4cPN+duEBER0QXA\nJKDzJL3A7vQ44Ko6JLooBwDhoRGi8YD6Sisv37RMtNKK3W1DdsFI8ao9Cwa+IF6xSDrBwhDVCZGh\nkaLtOQAgQsGxl1Zavgc1qBFdSADUtFeTpuKcb4jLSkCBTVXlMyYWBafly5fjrbfeQm5uLnr27Imn\nn34aBoPhtH/TtkU78aTjUAVTS7vbhtvfHSV6XquoWlRavgden1f0s0xFgsniz19AHepEWwON+/0d\nfttA1TDHkpxrqWgHVlj2HnzwobDsPbGYANCmRRu/rYSBsYPQLrKDaIXI3p2v8dsGkz92Hey3laCi\nJdaR40f8thISDIno3CpGtPKZUReDS3SyN0QAwLyB85F5eTbmDZwvFlOyohQREWkXv9MTUVO8Xi9m\nzpyJli1bAgDmzp2LqVOnIi8vDz6fD5s3b4bL5UJubi5WrFiBV199FQsWLEB1dTXefvttxMfHIy8v\nD2lpafjHP/7RzHtDREREqjEJKMAYdTHoEt1VvHKLdBIMUP/FdOaO6eJfTKVbl6lIhrC7bZiy+V7R\nmBZjEjakvSeaVAUAlV7ZFmMqklZUtRjz+UTDAdDOHVnB3hZKS8dJOl4wH/eL2aZNm5Cfny8a81DV\nj9h6YItozBpfjWg8AFhkfR7lx3/CIuvz4rElvVayxG8rQUWCiYokA0NUJ4QiVDS5Zt/RfX5bCQ2J\nT5IJUCqoqFgEAO1atvPbSihxFeNIdbloJUsV7dAaqipJVldqaFUn2bKuQ6sOflsJKt5HVJxLTo8D\nh6qcojfDOD0OHKqUjQnUzzN3OD4WnW9KHnMiItIufqcnoqY8/fTTGD16NDp1qv/evXv3blx77bUA\ngP79+2PHjh348ssvcfXVVyMyMhJ6vR6xsbEoLS2F1WptbB/fv39/7Ny5s9n2g4jobGhlnYcoEDEJ\n6DxJvwGZ9GasGrZevDLE/VvvEx9riasY+459L3rRH5BvXaaiao/T48BB937xC8rSd6mWuIph98i2\nGAOAnypP32LmbJn0Zsy54RnxixwRYbJVkFTckWXSm5GXsooXeARp6c45FWPkuXTxMJvNWLlyJQBg\n6NChGDXKf6E5NzcX3bt3P+nvmnr8VCTb2LxW8ip88Im3NKnwVvhtJaiosJN2+Qi/rQQVLWdUUNG6\nKznuFoQiVDRpo3vby/22EtLjM9AusgPS4zPEYr78xUt+WykqEqve2bvJbyth78/f+m0l7LTv8NtK\naKjUJFmxSSsJO6u/Xum3lbCqNB8++LCqVC7h1VV5CF6fF67KQ2IxAWDrgS2wVRwUTaQtryoXi0VE\nRNrG7/RE9Gtr165F+/btGxN5AMDn8yHkfxdSdDod3G43KioqoNfrG39Hp9OhoqLC7/GG3yUiCnRa\nWuchCkRMAjoPqt6AVHzZO3bimHjMBEMiDC07iZZsB+Srt6ioBGTUxaBdy/aiSTt2tw0jN6aJjrPh\nYrLkReV136yB6/ghrPtmjVhMq7MIkz5T+4NDAAAgAElEQVQYD6uzSCymSW/GXQn3ireBU3FHlorX\nvKr3Jy1MuLRy55yWJrEqxnjwaGAnNQQLs76LWKwY3SV+WynREdF+WwlWp9VvG6j0ka39thJ6dOiJ\nsJAw9OjQUzRmKEJFY7oqD6EOdaKL9yoSi5weByq8x0QTw1VUawIAh+cHv62E8qqf/LYS/tZvrt82\nUKl4PksP7/HbSti8/wO/rYQZfWf5bSV86frCbytBRVIVoKYdmmQsIiIiIrq4rFmzBjt27EBOTg72\n7NmDRx55BIcPH278ucfjQevWrREdHQ2Px+P3uF6v93u84XeJiAKdVtZ5iAIVk4DOg4oKM4D8Yquq\najAlrmL8dNwlHle6eotJb8YDlodFj1OJqxg/VjpF993pceBghWx1oTG9xmLmdX/DmF5jxWKmx2eg\nQ8uOone8A0Btba1ovMKyAty/bQoKywpE46qYcEgmPzVQ8f6kpaQVFVQkfKr4DJGmogWg3W1Den66\nWDw6d5KVcMYn3IkIRGJ8wp1iMQFgimUq2kS2xRTLVLGYKtotqaguVJ+0EiaatFJavge1vlrRqj0q\nKgGpWLxXkVikotKIinMJAHq07+m3lfD7jlf6bSVMKhzvt5WgohrOHQkTEIpQ3JEwQSymimOkIqlM\nRRUkFclfKpKqgPrvQ7pwnej3oT6mvmKxiIiIiOjisnz5crz11lvIzc1Fz5498fTTT6N///7YtWsX\nAGD79u245pprcOWVV8JqteLEiRNwu93Yu3cv4uPj0bt3b2zbtq3xdy0W2dbTREREFHiYBHQeVFSY\nUbHYCgAhEO6xhfpKQJ1aGUUrAZn0ZiwY+ILooriKKjMJhkRcojOL7rtRF4O2kfLVhVZ9u0L0fHJ6\nHHBXy97xDgAhobLnaIIhEZ2jZM9PFazOIqRtuFU8EUhFG0CtZF6rSlqRToBS1apRC0x6M9aNWtfc\nwyDItvCZ+++n4EU15v77KbGYDSQX7gEgOS4Fzw14EclxKaJxpRl1MegU1Ul0bqCigkWHVh38thJU\nJMIYojohFGEwRHUK6Jiqqpekx2egTWRb0cQFFdWVliS/jghEYEny62IxVZz3KpLKVCSt7Pxhh982\nUKlILFJVoe71kmXw1HjweskysZiS+01EREREF79HHnkEixYtwqhRo+D1ejFkyBAYDAbk5OQgOzsb\n48aNw7Rp09CiRQtkZWXh22+/RVZWFvLz8zF58uTmHj4R0W8K9pvSic5XeHMPQMtULYhXeitF4yUY\nEhGrv1Q8GcLpceBo9RE4PQ6x56AhsUryeTXqYhCr7yq6gAYArVvIls0scRXjUFV9dSHJc0r6fDLq\nYqCPaC3+fNbV1YnGc3ocKD/+k+j5qYpPugfe//LWesVjBvpzqYpWEqBUMOnNyEtZJb7vXdrItaGi\nc9fnErnKA30u6YuV3+aJxgTq389txw6KzzdeKXkJA2MHicU0RHVCZGikaDJIiasYzkqH6NxARUUU\nFe1HVdhp34E61GKnfQcsxiSRmPVVkOorK0nFnGz5C2zug5hs+YtIvAYlrmIcqz4qPtcMD5X9Slni\nKkYNagL+vN964KPGrVRC4R0JE7Dq27dFqwvd1n0oVn6bh9u6DxWLeWmbS/22Eh7vOxMOzw94vO9M\nsZiqfPXTl35bCZ85/yMWi4iIiM6P1VkkNrcnkpabm9v4/996662Tfp6ZmYnMzEy/x1q1aoUXXnhB\n+diIiCQF85oMkQRWAjpP0tVQnB4HnJU/iMY16c2Y2vsB8TdKizEJ61ILRL8UqWiPY9Kb8cKgl8Rj\nSi+KG6I6ISI0QnTx0OlxwOmRPZ/WfbMG5Sd+wrpv1ojFLC3fg1rItiZxVR6Ct062PQcg37qrPknt\nUvGkKkC+tZ5WqEpaURFPxThV0MIY6dxIVobo0aEnwkPC0aODXBsboP4zogY1op8RgHySrMWYhEeT\nnhCdF6moCKOias++o/v8thJU7LuK6kIqnk+rswhvf5MrPudIjkvBggGLRCtgWYxJWHrzG6LnfXJc\nCt5IzhMdp4r3p3kD5yPz8mzMGzhfLKbFmIR3h38o/ny+mfy26PM5ptdYPDfgRdGWw1ZnEdbvXS16\n3qto/QgAt3Uf5reVcI3xWrFYREREdO6sziIM33ib+FyciIiIzh7XJYjOHZOAzoOKLwVGXQy6RMtW\nrSksK8C0bZNRWFYgFlMVFe1xVLXcUZFUJb2IYtTFoF1L2RZj6fEZ6NCio2griYGxg9ChRUcMjB0k\nFhOQb4OnonWXSW/GzD5PBnWCSTCTTiQlOlvSVXtqfbWi8YD6xftQhIou3js9DtjcB0Rfg4VlBZi9\n6wlNzLekNbSCkmwJpSJhRyssxiTMuf7v4ncf2902vP4/r4rPs5+1PiM+z5Zu1WfUxeDS1nHibXd3\nOXeK77t0AjsAJe1xpRM+XZWHUF1XLb7/Ktpiq2gvNz7hTnSO6iwWj4iIiM6NxZiEtcPeYSUgIiIi\nItI0JgGdB4sxCS/ftEy8Es6iP8pWrQHUXPxUkRABADV18i2MVLRFkr7gb3fbMPc/T4nGLXEV48fK\n+hZjUpweBzw1FaILpyWuYhw+US46TlVt8KTbllmdRZj4/jjN3GGkov+qiteSil6x0vG0dHcZ++5e\nnKSrOBSWvQcffCgse08sJtDQwqkOO+1yVYsKy95DLWpFx6qico2KFkaqRITKVp9LMCTCGBUj+jlu\niOqEiBDZqosqWqFZnUWY/ulD4p8PqipuaqE0s4qk6xJXMfa7vxedvxaWFWBsYZZoMqHdbUP6hhTR\nz3Krswip628RPUd/2V5NiqrvA5Mtf8HM6/4m2rLPpDej6K7AnxMSEREFAyYAEREREZHWMQnoPKi4\n89XutuG+LfeKxlRR+r9BTW2NeMxw4UUkQL4tkt1tw8iNaeIL4yqSlXzwicazGJPwyuDXRL8Qq7hA\nb9KbMe6KO8UXpXw+2ecTAEJC5JP07G4bsgtGir8/SSfXqIipYpFTxThVVnqQjid9LlFgkEwAAuqr\nwISHhItWg9GSPqa+CEUo+pjkqiv16NATIQgRrbihIlkJkE+SdXoccFUeEk06NupiYNKblbTglKTq\n7mOtVMdUweoswqQPxosmrSQYEmFo2Uk8US0MYaKJaiWuYuw7JpuspKJqz7yB83HnFXeJtlcz6c1Y\nn1ag5ByVTABq0KVNF/GYREREREREREQUfJgEdB5U3Pnq9Diw/9g+0QUPu9uGhf99Vkmp+jrUiV78\nNenNWDDwBfE7lB+7doaC4/S9eCuf47VVovGS41Lw3IAXRRPAVFQsMunN+OfgpaLHaPnuNzF71xNY\nvvtNsZiuykOoRa3oOW8xJmF96ruauMtIKxUE7G4bHv34QfFzVHqcKio9MGGHmpPFmIRN6f8Sfz/r\nY+qLMISJJte0adHGbyuhtHwP6lCH0vI9YjF32nfAB59oFaT0+Ay0CosSbetZWr4HtagV3/da1Iru\nOwBI5/IOjB0EY1SMeEtTFS2hVFHxmaOiSp50IneJqxg/HXeJJ9dIf79SUa1KFckEoAZaSFIjIiIi\nIiIiIiKSFFRJQFpYFDXqYtChVUfRO5RV3P0J1N+pGh4SLnqnqt1tw5TNspWQrM4i3PXBHaKLCa7K\nQ/D6vKIX6EtcxbBX2ESPk91twyslL4mf+4c8P4rGs7ttmPT+eNFxdmjVwW8rITkuBW8k54lX1VJR\nkcCkNyMvZVXAJ9cA8oszqlqTSMezGJPwkGW6eMKEdEUxFecSXbxUJDQadTGIib5E9L2yj6kvwkPC\nRROLjhw/4reVUJ8AJTvORdbnUVVbiUXW58ViqnBZu8v8thKcHgdsFQfFk7jbtWwvGq+wrADjCrNF\nW0IB6uYG0smnKloOW4xJ2JD2nuh7lIp5oYqYY3qNFW//mByXgjeT31ZSaZaIiIiIiIiIiIjOT1Al\nAWmhjU2JqxgOzw+iiSCGqE6ICI0QTdYB6hflLomWbalQvzhzQLz1Q+vINgHf+iHBkAhTtFm0pQAA\n/FTpEo33eskylJ/4Ca+XLBOLufXAFtgqDmLrgS1iMVUtTkgfH1Wt5QA1yTXSlYBUUTFG6WNUWFaA\nv+2aKb7IK93+EOBd9NS8nB4Hfqpyic4NLMYkTL92VsBXYTPqYhDXNk50DjPFMhUdWnbEFMtUsZg9\nOvREKEIDvm3ZTvsO1PpqRKsLmfRmjLx8tOj7ZIIhEZ1aGcXnHKpU1VSKx5RuLweoSbqW/n4FQEli\njXT7R0DNOImIiIiIiIiIiOj8BVUSkHRlCJPejAcsD4vGVJGwY9TFoH0L2epCDUJCZONZjEl4ZfBr\nootyWw9swaGqH0UTTAxRnRAZEil+4V+6RcW6b9bAdfwQ1n2zRizm431n4i9XPYjH+84UizkwdhA6\ntugk3kpDRcJO+oYU0WQQp8eBA27ZFoANpJNWVFUC0kKVNhWVDlQk/pn0ZtyVcK940o6KY7TLtks8\nJp0dFcdVRUwVcwMVSXgqKteY9GY88Ycnxeevzw1cJBpTRQsjFc9nenwGYnSXiLZCU9F+1Olx4MiJ\ncvG5gd1tw21rh4jPYxwVP4iPNQSyXzJUJF1bnUUYvvE28dZlKlqhaYV0YrTWHDx6sLmHQERERERE\nRBQwtLB2RBSogioJSHpRVEWbKQCAcCJIiasYP1Y5xNuBOT0O2NyyLRXsbhuetT4j+sY+MHYQjFEx\nogkmFmMSlg55Q3RBssRVDLvnoOhx6mPqi1CEirYRAYBL21wqGs/pceDnE4fFz6W09bIJOyWuYuw/\ntk/8tSS90AWoqVSmIvFRxThVkW6zBQD6yNai8QrLCnD/timii2gqjpHVWYRBb8om/dHZy9wkuyCu\nqrKZ3W3D3P88JZ6Ep49oLZqEZ4jqhMhQ2QRhq7MIE98fJzrXtDqLMOFfY0VjJhgSYWjZSfT5TDAk\nwhzdRTxRMvPybE1UN6vzyVfC2XpgC+we2cqLRl0MOrbqJHqzgVEXA0NUZ/Fqo/vd34tXFJtz/d9F\nvw9YnUVIXX+L+PdLySQ1VTFVtcHTSlKV3W1DSh6rKxEREREREREB2lo7IgpEQZUEJM2oi0HnqBjx\ni96ddUbRmCoWpQCgtHwPanw1KC3fIxZTRZIBALRr2V40nt1tw/RPHhb/8FGRDCLdGmj57jcxbdtk\n0Qv/peV7UAPZc6nEVYwDbtmEnQRDIrq2vlR0QdJiTML6tHfFW9KoaN1ldRZh0vvjRRdTVL3mVUwM\npV9LJr0Zj107Q3Tfk+NS8MR1s0VbdKg4lyzGJLyQ/IJYPDo3B47tF10Qd3ocOFghG7NBpVe23dDr\nJctwzHtUtLWlxZiEtO4jRN/PXZWHUF1XLVphp7R8D7w+r/hnruv4IfEkWWkvWhdi4Rfz8aJ1YXMP\n5bRUzLFVcXocOFTpFH8vkY7pqjwEb51X9LVkdRZh+qcPiSeZhAiXWlUxd1cRMzkuBQsGLBKdw6iq\n1qRKdW11cw+BiIiIiIiIKCCY9GbxDj9EwYRJQOcpKiJKNJ7T44Cr8pD4Xaob0t4TTzIY02ssnhvw\nIsb0GisW0+oswqQP5JMMpNvjbD2wBbYK2TupVSzeW4xJeOSaGaLH/sjxI35bCR1adfDbSlCxkGDS\nmzG77xzxSYf0axOoT4K5f+t98skwwnlqVmcR7v7wTtHXvKoqSHkpq8STqqSrcVidRXj6s6fEn0/p\nNnBWZxHuK7xPLB6dG6PuEvnqHcIVQYD6udEPHpuS5CJJ/2/HbKz8Ng//b8dssZgJhkR0atVZNPm0\nR4eeCEMYenToKRbzuyPf+W0llLiKYauQrZCows4fdvhtJZS4vvTbSln99Uq/rQRX5SF4fbLJNa7K\nQ6jx1YjGTI5LwXMDXhSfZ68d9o7oPM5iTMKSwa+LxuzRoSfCQ8JFX/Njeo1F5uXZot8D7W4bFn/x\nguh8Q0W1pgYqEs6lE8CIiIiIiIiItIwJQETnjklA50FFFQejLgZtW7QXX0CTjtdAMmkDULOAWFhW\ngGnbJouXlpdmdRZhzq4nRRfvC8sKMHvXE6L7nh7//9k7+7Aoy/T9nzMMqAwDvjQ4OEiGxWIuak3U\namsRpWKaSqT4srqmW9++pWlppWW2P60lv5mlaG8WmawWmoulFr2IVBvm0rQhKiytrOKMMzKSwjAg\nDMz8/iDcnnVLoPN2Brg/xzHHdTQ5F8/M83Y/93Xe55WCnkG9kByTQsspojBjdVrwWtHLdOECW6TW\nklcE7PZVJkM8dk7kuhaJKKB1FIW4iCKnQRuBXuR7iCgnoNxZPBGlpH00eRup+ewuG065uO4dgBgH\nD2dDtSIysLlOKiKDIkchKupO+X0bynmmBYgNG4R5pgW0nPrgcGhUGqqTZXJMCrSaEOoYZni/EYrI\nYHJsKlRQY3JsKi0nANz1qymKyGD30V2KyCBOPxR9gw1U8ZvVacGL3zxPF26w3ZqsTgse/fxh+nYG\nqAOo+bYc3oxt322lOgHZXTaUVx+j3kPM9gI8+tlD9LG21WlBwjsj6PvJWe+k5pNIJBKJRCKRSCQS\nSfuRbagkEklHRoqAfgEiHCyaiz12arHH6rRg8vuT6DesnLI9mJUzjSowsbtsOFXDLSBW1lUqIoMZ\ng2dhztX3Ule/imiJJYIiRyHONpyhH6Pslb8AXwQjIqfZXoAJf0kSIgRye/jfXwSiRIpMRLgLxemH\nop82klrkLHIU4lQt/x4iwlXqhsgbqPkkbYftsiLCEQT4QRDQI4J6rrSIK5gii9jegxTRX3HUVqAR\nXAHinA9moqSqGHM+mEnLCfDFStmlO+BqrEF26Q5aThEOiQZtBHoLWBQgwmGo7Ow/FZGB3WWDvdZG\nfR4ochTiuPNf1GueiJZY2aU7YK+1UY9RkyEeE6NT6O5CP44sPPBQ85VUFsMNbvtDAEj76mlUuc8i\n7aunaTnzynNhdVpp+To6hYWFmDnzwntKbm4uUlJSkJqaim3bml3NPB4Pli9fjtTUVMycORPHjx8H\nABw5cgQjR47EzJkzMXPmTHzwwQeX9DtIJBKJRCKRSCSSjouIeoBEIpFcSqQI6BcgwsEiKXoc3kra\nSnVEsbtsKHdyV1UCYlpUiChMJUQloldQHyREJdJy5pTtQcaRjVQBVGyfQdCAa9VvtpsVkYEIUZXd\nZcNx57/ox6irsYaab781Hx54sN/Ka/khqjjRXEA7SV9NPem92/2+dZeodmBsNxwRiHBPEMUBywFf\nb4IEXPcOUdhdNjjOnaJez1quucxr75W9rlREBiJcVkTcxwf2vEoRWTR5m6j5enXvpYgMROz37NId\nqKw/TRWCAECkrr8iMphx9SxFZPBm0RuKyEDEuSRCVGVxnlBEBiJaFW4vyVJEBiIcEkW11hMh+jxW\ndYyWq6OzceNGLFu2DPX19Yr33W430tLSkJGRgczMTGRlZeH06dP49NNP0dDQgKysLCxatAjPPvss\nAODw4cO4++67kZmZiczMTNx+++2++DoSiUQikUgkEomkA9JRug1IJBLJT9GlREAi2kExBUAiafJw\niyhA84paR10FdUVtUvQ4PHnDCqoIqshRiDMNldTt/OeZfwLw/hA5GLQRMOr6U1d9z46bg7CgMMyO\nm0PLmRCViPAefamiKhGtXvLKc2FznUReOa/lkIji4YzBs7D8hpVUVylATGs9gH8tESGuETFAtzot\nuO+TP1CFRUWOQlhdXCcWu8uGs/VnqGIJoy4SaxLWUX9Ps70AiZt51xBJ+2G2MBIhPAWahQAer4cq\nCBBx7U2KHofNSW9TxzAiCs0iiuImg0kRGWwvyYIHHqrIYO/xTxSRQZx+KHp360MVX4oYbwDAcOMI\naFSBGG7knfci3DFr3S5F9FeOVx9TRAb/+L5EERkcPfudIjKocdcoIgMRQq35poXopuqO+aaFtJyA\nuHNU0kxUVBTS09MveP/o0aOIiopCWFgYgoKCYDKZUFBQALPZjJEjRwIAhg0bhkOHDgEADh06hLy8\nPMyYMQOPP/44amq4C0QkEolEIpFIJBJJ50YKgCQSSUemS4mAfp8znS4E6ggttkoqi9GEJrrTiD44\nHBqVBvrgcFpOs70AzxaspDqNxOmHIjKkP7U4kxyTgvAefZEck0LLCQAqbtcLFDkKUdVQRRcZVDdU\nUUUGIo4lEQ5QsX0GIYDs1mR1WrC1JJN+LbG7bDjl4rbWE7FCW1SrKfYAvchRiHLnMeq5JMKNw2SI\nR/bEPVSBqtVpwZIvFlP3kckQj9xZPIFeZ+WnWmEAQF1dHaZOnYqjR48CAJqamrB06VJMnToV06ZN\nQ2lp6UXz9+l+GfUa6WyoVkQWLUIlpmDJ6rRg+3fv0K89TAEQ0DzeCA7QUscbuqBQRWSgDw6HGmrq\nfVwEU2KnKiKDvPJcfF9fSRUd7z+Zr4gsTIZ4PHfTC9R7RE7ZHrxJdsd84NoHFZFBhLafIjIYP3CC\nIjJYP+oVdFN3w/pRr9Byhgf3VUQGIq7LIsRf2aU7UO89R3fVEsETI5bj9oHSqQYAxowZA41Gc8H7\nNTU10Ol05/9bq9WipqYGNTU1CAkJOf9+QEAAGhsbMWTIEDz66KPYsmUL+vfvjw0bNlyS7ZdIJBKJ\nRCKRSCQSiUQi8TVdSgTEbrNldVowfc9kagEpr3yfIjJIiEqEITiCWugDmp1Gugf0oDqNOGor0OBp\noIoMAECjvnAS8ZcSGhRGzWd32XCyxkoVbSRFj8PyG1ZSj3uTIR7TfzWL7oKlVnEvRyIcoABADa5S\ny+6y4UTNcXorNABQkVVlcfqh6NsjokO0mmIjSqh2Wbdw+rWZff0U1Qqtn45XiO2M/FQrDAAoKirC\njBkzcOLEv9vF7NvXPG545513sHDhQrzwwgsX/RuV505Tr5GTY1MVkUWfHn0UkUWtu5aaD+CLwzcV\nZaC2yYVNRRm0nEnRYxWRQU7Zh/DAg5yyD2k5J8emQg019XgS4VYl4vi8O26uIrIw2wvwyOcL6WL7\n8B7cNpSO2gqooKLez54YsRwLhi3GEyOW03LG9hkEjYorDm8ZDzLHhfNNC9EzqBfVDUfEcS9CrCTC\n/UtU3i2HN+ODox/Q8nVGQkJC4HL9WyTmcrmg0+kueN/j8UCj0WDUqFH49a9/DQAYNWoUjhw5csm3\nWSKRSCQSiUQikUgkEonEF3QpEZCIwrW7yU3NlxB1iyL6M+nmF+FsrEa6+UVazqTocVgwbDFVtGJ3\n2WCpPkEXWZxrqqPmE4HZXoBVBU9Tiz3rzWuRceQ1rDevpeU0GeLx+ui3qMKiOP1Q9Ol+Gf2895Kv\nmgZtBC7rzm/bZdBGoFe3PtS8dpcNZxu+9/tWUwC/EG/QRiA82ED/PasbzlJ/z5yyPXTXOxFOQFan\nBeO2ch1TOhs/1QoDABoaGrBhwwZER0eff++2227DypUrAQAnT55EaOjFXV56BvXqEKI+Ea5ZdpcN\n1hru2ECEOPyJEcsx5+p7qcKFFqEOU7AzIGyAIrJQkYW3SdFjEYAAqgBKHxyOALJIFAC6qbtR8wHA\nfms+Gr2N2G/lOQzZXTZUnnPQHSIDEED/TcO6cQX8Bm0EjCHcVr4GbQRCgnT0caEXHmq+lpbIzNbI\nFbWnFJHBdYbrFZHFrZePUkQGbOevzsjAgQNx/PhxnD17Fg0NDfj6669xzTXX4Nprr8Xnn38OAPj2\n228RExMDAJg7dy4OHmxufbl//34MHjzYZ9sukUgkEomkbZyoOnHxfySRSCQSiUQi+Um6lAhods4M\nemHY7eGKgES0rsorz4W91kZtUwAAkbr+isggp2wP1n37PLWA7aitQCO4LYyKHIWw1JygOigYtBHQ\n9+hLn/RvIk/6J8ekQKsJobYmsTotWJ7/ONlVKxeV505Tj3tHbQUaPW7qsWR32VBRx23bBTQfoxV1\ndvoxyhYsiRKYsK/3dpcNjrpT9P3kVXmp+eL0Q9E3mOvIYNRFYlPSFrpQS4QLS2fip1phAIDJZEJE\nxIXnoUajwWOPPYaVK1fijjvuuOjfONtwhtoiZfXfVikiCxGOEyWVxWj0NtJbpbJboVmdFnxuzaNe\nz0QIYWYMnoUXbl6PGYNn0XKKaGdrMsRj950fU0XHjtoKNJFbZZoM8bhvyHy66+KVva5URAYihEUA\n381wvXktVhx4kipiB4DTdQ5qvuzSHag8d5p6bU776mlUNVQh7aunaTmHG0dABRWGG3ntwERw9Ox3\nisjizLkzisggJDDk4v+oi7Jr1y5kZWUhMDAQS5Yswdy5czF16lSkpKSgb9++GDVqFIKCgjB16lSk\npaVh6dKlAIA//vGP+NOf/oSZM2fim2++wf333+/jbyKRSCQSiaQ1WJ0WJGcl+3ozJBKJRCKRSDo0\n/B5JP6KwsBCrV69GZmam4v3c3Fxs2LABGo0GKSkpmDJlCjweD/74xz/iH//4B4KCgvD000/j8ssv\nx/Hjx7FkyRKoVCpcddVVeOqpp6BWq/H000/jm2++gVarBQC89NJLiv7w/w12EdPussHmam7fxMzb\nPaAHLRfQ3HImQtuP3nJmnmkBquqrMM+0gJZTxMpffXA4NOpAas44/VAMCL2CWmi3u2w49YMYhHU8\niRCtZJfugKuxBtmlO2j7vshRiGPV/0KRo5D23WcMnoUz585QC5Jx+qEwBHPbYTlqK+Am76MWvOAK\nTH682p+1n0S0mjLqIrHI9ChdtOL1cH/P5qTcdM1iJe4+EkGzQxtXlCtpZtWqVVi8eDGmTJmCPXv2\nIDg4+Gf//Qdlu2jX8huNI7HX8jFuNI6k5Gvhxy2cWE6BCVGJ6N2tD3Vs9GOBMOv8s7ts+Fd1GfWc\nFiGEAUC93wLN+8io7U8fv7IR4Yiy5fBmrP12NQaEDaD+riJctXp176WILDxeroi9qr5KERks3rcQ\nrsYaLN63EG9PeJeS0+I8oYgMhvcbgW3fbcXwfjzBTkllMbzwoqSymHYtufXyUdh97D2qu44oRBz3\ncfohtFydgcjISGzbtg0AFMLmxJ5aHL0AACAASURBVMREJCYq7wtqtRorVqy4IMfgwYPxzjvviN1Q\niUQikUgkdIy6SGSnZvt6MyQSiUTiB1idFr+uc0gk/owwJ6CNGzdi2bJlqK+vV7zvdruRlpaGjIwM\nZGZmIisrC6dPn8ann36KhoYGZGVlYdGiRXj22WcBAGlpaVi4cCG2bt0Kr9eLvXv3AgAOHz6M119/\nHZmZmcjMzLyoAAgA3QkHAL2ACwA1bic9Z5CAlgJWpwUfl39Id1dSqwUcll7ujjLqIrFixJ+oN5+S\nymI0etzUFe/64HAEqYOoAigRq8hFFNCsTgveOpIhwA2G2/IC4Lc7EYXJEI/XRr1JLRxbnRY8nPcg\ndT+Z7QX4n0/nUNvgAYA6gHttMmgjYNRFUp2V9lvz0UR2ZBDR4sigjUDPbj1p+STAzp078eqrrwIA\nevToAZVK1ar7aXRP3rW85PtiRWSRFD0WaqipzjVFjkKcqf+e6pb2Y7ESCxHndEfBqIvE4useo461\nzPYCTMhOot4fWpxQmI4oRY6DisgiISoRfbpdRhVWiXBEEeECJaJl3a8vG6KIDCbHpioigxmDZ+Fy\n7eVUQdne458oIgMRrm8PXPugIrIQcdwzf0uJRCKRSCSSjk7/MF7nAYlEIpF0TER0fJBIuhLCREBR\nUVFIT0+/4P2jR48iKioKYWFhCAoKgslkQkFBAcxmM0aObF45PmzYMBw6dAhAs9jn+uuvBwDcdNNN\nyM/Ph8fjwfHjx7F8+XJMnToV777bupWXD302D1sObyZ9w+Yi5uVhA6gFXBGtu+wuG+y1J+nCBQA4\nc+57aj4RLbEctRVoJLdpECEyEDGZbDLEY9XINVTRhj44HAEqDVVYNNw4AhpoyAW0Qhx3/ota4BVR\njBXRvgkQJ6xasf8p+qCrkdxW0WSIx18m7KYe9yZDPDaO2kR3zghUB1LzNbfnUNPbc7Bbd+WV5+JU\n7Slqzs5OSyuMn2L06NE4cuQIZsyYgblz5+Lxxx9H9+7dL5o3tvcg2jYu/c0yBCIQS3+zjJYTaL6P\ne+Ch3sfj9EPRM6g39dob1i1MERmIaLljthdg4s6xdKHkkrzF1Hw5ZXvw0GfzqS1iSyqL4fZyBdct\nYwLm2EBEy12geWxUWX+aOjYS4YgiQgQlSljF5s2iNxSRwe3bb8Nx13Hcvv02Ws6BPa9SRAZJ0eOw\nOeltmuNbC90C+IthRDhLdQQHJIlEIpFIJBKJRCKRSC4Vojo+SCRdBWEioDFjxkCjubDbWE1NjcK1\nR6vVoqamBjU1NQgJCTn/fkBAABobG+H1eqFSqc7/W6fTidraWvzud7/Dc889h9dffx1bt25FSUlJ\nq7aLubLQqIvEk7/5f9QLkIgVkAZtBLSaEKqwBhAnWDr5Q4s1LlynFZMhHvf++gGqICA5JgW6QB2S\nY1JoOc32Aiz5YhG10FdSWYwmbyO1gGYyxCMjKZMusGAz3DgCAQigFmPtLhvO1H9PP+bnmRbgRsNN\n1HZ9dpcNJ2qO07dVQxbCAKBf76xOC9L+9jRdAEU2KftBJOGliiVECElnDJ6F1+94nZavs/KfrTBS\nU5XOEJmZmRg4cCAAIDg4GGvXrsWWLVuQlZWF227jFXtbS7r5RbjhRrr5RWrevPJ9isjJmYszDZXU\nMYwIp7ycsg/hhRc5ZR/ScjpqK9DgaaBeJ5bkLUbGkdeoQqBmEauXKmaN7TMIaqgR24cnfhOx30WI\no4FmIXegitsiV8Sziy4oVBH9FSHCvx9adjFbd21M2gQ11NiYtImW84kRyzF+wEQ8MWI5LScAuije\nZIjHs799nv6MIWLfSyQSiUQikUgkEolEIvk3ZnsB7v3kbvpCRomko3Gi6kS7PidMBPRThISEwOVy\nnf9vl8sFnU53wfsejwcajUbRysLlciE0NBQ9evTArFmz0KNHD4SEhOA3v/lNq0RAL9y8nrqy0Gwv\nwB8+/j31AqQPDoeG7LKSXboD39dXIrt0By0nIMa5ZntJFrzwYHvJT7sdtJXm39JL/U23HN6Mtd+u\npjpLZZfugNPtpO+nJm8TNZ+IYo/VacEjnz1MFVhU1lUqIgODNgLBgVqqwMSgjcBl3cPpopVn8lfg\nS/vneCZ/BS2nQRuBEI2Ouq1GXSS2jttOFVNanRZMfn8SXbBT18h1wwEAZwO3/WNS9DisuTmdeq8T\ndYyOHjiamk/SdpbfsJIqFHw2YTXmXH0vnk1YTcsJiBEEiLiXiSApeiwCEEBthSbi/ijCuUaEw0xJ\nZTE88FCFzAC/rafJEI8Hhi2kCxeaWzH2ol7P9cHhUENNHWe3HO/M436+aSF6BfXBfNNCWs55pgWY\nctV06nVUhFBtU1EGPPBgU1EGLWdO2R7sPvYe1anL6rRg0s5x9BaxS/7KXRABiLk+JUQlol9IP1o+\niUQiaS+y3YJEAllslEgkEonEDzBoIxAZEkWvS0jahnw+8C1WpwXJWcnt+uwlFwENHDgQx48fx9mz\nZ9HQ0ICvv/4a11xzDa699lp8/vnnAIBvv/0WMTExAICrr74aBw4cAAB8/vnnuO6663Ds2DFMmzYN\nTU1NcLvd+OabbzB48OCL/u3Xil6mHqyO2gq4PW7qSmoAgIpbSBAxQQ384FyjCaU618Tphygig5bV\n88xV9CJaCiTHpMAQHEH9PUsqi9FIdu0RQXbpDpyqs1EFUCL2Ubr5RTjd1VSXC7vLBkfdKbq7zoCw\nAYrIILt0ByrrT9OFamw7R7vLhnLnMepvanfZcNLJdSnLK8/FqTqum5rVacGGb9dR73V2lw0VtXbq\nd7c6LRi3ldvuQ9J22C4jAOgCIKDZcWLBsMVUxwkRwgURGLQRCAnkii9FUPJ9sSIyiO0zCCqoqGII\nEQKLOP1Q9NNGUh1MRIjNgeb7juNcBfW+s9+aDw881HZoLeNW5vjVqIvE8uFcB9ecsj3Y9t1WqhDG\nUVsBL9nRz2QwKaK/IqKVLwCA7LoINDsaLhi2GDMGz6Lm1agvdFKWSLoacoLZt1idFszOmSH3g6RL\nY7YX4M73x0shkEQikUgkPsaoi8T2CTtlOzAfYnVaMH3PZPl84EOMukhkp2a367OtFgHV1NTAZrPh\n5MmT519tYdeuXcjKykJgYCCWLFmCuXPnYurUqUhJSUHfvn0xatQoBAUFYerUqUhLS8PSpUsBAI89\n9hjS09ORmpoKt9uNMWPGYODAgZg4cSKmTJmCmTNnYuLEibjqqqva9s0JJEWPw4PDFlEdFxy1FWgk\nC4tyyvZg+3dvUyeogeZCgrOxmlpIEIEIu/aEqFsUkYFRF4n/u2kN9YYmwq0pTj8UhuAIarFLRCsN\nEftIRE4AaPJw3ZqAluIpt9A53DgCanI7NEDMRC/blQEAVGpuzoSoRIQF9URCVCItp91lw7+qj1IF\nO47aCri9fMFrQ1MDNZ+k7UzITqJPbLJFCy0wHUEAMcKFOP1QRIb0p94fNxVloMp9lurgcazqmCIy\nGD/wDkVkIKIVmoj9DgCBAdzCvYjxGyBGBCXCEUXE988p24OHP5tPfR5qaVXHbFkXpx+Ky7rrqdcR\nEW3gRDiKxemHIiyoJ/W7mwzx2DnpA7qrltlegFcOplPvoUWOQpRXl9Py+Qu/dB5J0rWQAhTfY9RF\nYlPSFllokXRpTIZ4/GXCbvr4QSKRSCQSSduR41Lf0+hx+3oTujz9w9rnvt+qGetXXnkFr732Gnr2\n7Hn+PZVKhb179/7s5yIjI7Ft2zYAwB13/LsokJiYiMREZdFTrVZjxYoL29ZcccUV+POf/3zB+3/4\nwx/whz/8oTWbfx52y5mcsj1Y9+3zMBlMNCFQUvQ43Gi4iSosEjGZDDQXEgIQQF+hrYGGmlOEwCRO\nPxQR2n7U39RsL8A9H8+mTlTPMy2AxXmC6gJld9lwpv572F022vnUUpToCMUJtgCqpLIYTWhCSWUx\ndYJhvzUf3h8Kncy8GnUALRfw74le5kSjiIKPyRCPnRO5OfPKc1HVcBZ55bm0leTbS7LQ5G3C9pIs\n2rbqg8MRAG6bSgBw1nNboUnaDlvcteXwZjz02TwAoLojmO0FuCN7DHYlf0Q7rkWMDQB+i7/ZcXPw\netErmB03h5ZThDhaxD03KXos0r9dQxeAsfmxUxzrPpYck4JXD75EdYcElO3QWOeSCMFOs+hYTRUd\nx+mHIjQojDqGS45JwYbCtdT9VOQohONcBYochbTjyaCNQK/uvamOYiJaKmaX7kBVw1lkl+6gPruw\nx9gteOCh5mOKyfyF9s4jSbouUoDiH8jfXyKBFABJJBKJROInWJ0WOT71MV4BDsuStnGi6kS7hECt\ncgJ699138emnnyI3N/f8qyNO3LDb7cTph0IXGEqdTJ73yX340v455n1yHy1nkaMQp885+NbqAFRq\nbkc5gzYChpAI6iS1iNWvdpcN35+rpB9TbPMSs70Ab5dmUlepGrQR0PcIp+6j7SVZishgxuBZuDVy\nNLUQbXfZUHnuNHW/J0QlQhcYSnWDAZoLU7279aEWpgzaCERojdR9b9RFYpHpUfpATkTrnI4wCSSi\npaKjtgJNaKSKRfLKc3GyRq4E72wkRCWie0B3+vVsvzUfjd5GqnuLPjgcAaoA6tgg3fwiqhrOUltG\n5pXnwtVUQ3VdTI5JgVYTQr0/iBCCGLQR6NP9Mur1PDkmBfru4XRxTaO3kZrPqIvEkuufoN8bRQg3\nhhtHIIDsEvhjsRKLHwtMWNhdNlTXV5Fbhe5TRE7OXFTUnaJeR0S4IA03joBGpaEeSy3iVBEudV4P\ndxZsuHGEECdLX9JZ5pEklxY5wS+RSCQSiUQikUgA6RQqkQDN50FyVnK7PtsqBUdERATCwnirhX1F\n8nvjqGKITUUZqHZXUVs0iGinUFlXCS+81NXZgJjWZXaXDRW1p6iT6QZtBMKDDdQikskQj/vi5tOd\nRh67bhk956u3ZVBz2l02nHLZqftovmkhdIGhmG9aSMv5TP4K7LV8jGfyL3QYay+O2gq4ycd8dukO\nON3V1KIU0LyfatxOulCtrrGWms9sL8Dcj2ZRr82i+pSyWyqKKMaKaPMjwuGD3eJG0n6YhebF+xbi\nXNM5LN7Hu5YDQMn3xYpIyVlZjCZvE1VkIEKEV+Q4qIgMNhVlwNVYQx2/Nhevuc4teeW5cJyroLed\n7dm958X/URvY8M06eODBhm/W0XKKaF0FNIvfgtRBVPGbQRuB/qFR1HF2s9so1xlURNsyEe0yJ8em\nQg01Jsem0nKKGG/MMy3A8htWUh17DNoIDAiNph9LP44sHLUVaCQLpEsqi+FF51pe11nmkSQSieRS\nIwtdEolEIpFIJM0LBJ4duVouFPAxqs61XqnDYdRFIjs1u12fbZUIaMCAAZg+fTrWrFmD9evXn391\nNMKCepGFICZFZNC8Mp3fdkUEcfqhiAzpT3VCMmgj0LMbdz/ZXTZUkEUrWw5vxtpvV1NXleaU7cHK\nA8upBR+r04Inv3ycOoHgqK1Ao5c76W132XCuqY66jwaEDVBEf2WeaQGmXDWdWkRpwUMuJGSX7kBF\n3SmqYKmkshhur5taiAf4fUpzyvbg9znTqeenCHGNCEQIi5JjUtBX25eWT9I+QgPDqOLL1be8CK1G\ni9W38JxwAGB4vxGKyKCjiPCahQAqqiBARDswR20FvPBQxwYi3IUAoNZdR803JXaqIjIQJeA3GeLx\n+ui36M52GlUgNR8ABJDdRhOiEtG7Wx+qU1lzu0yuo5jJEI89d35C3UdJ0eOwOeltartpAPSxq1EX\niQeGPUid3GtxkGM6yYkiISqx042NOss8kkQikVxK5Ip3iUQikUgkkmasTguWfLFYjot8jEbNn/eT\ntI32tAIDWikC6tu3L0aOHImgoKB2/RF/4VSdjdoSSx8cDjXU1IlfR20FmsgCi4SoROg0/HZDANA9\noAc1nwi7ekdtBdzgrtIVUUiI0w9FP20kVVRV5CjEcee/qMd9nH4oenXrTd1OEQ47sX0GQQUVdeVv\nnH4oDMER1O+eU7YH2797m77aX4RT1zzTAowfMFGIYIlNdb2Tmk8fHA41uXWQCBFCUvRYqBGApOix\ntJwiBK8AEKAKoOaTtJ26xlq6W1iE1kjNBzTfc43a/tR7rohWNqLOFTW5PYyI9k0A6G1sRDi3FDkK\nYXWdoI+LLtddQR0bJEQlIjKEe8wDzZMnaX972u8nTwzaCIQG9qQuCihyFOL7+krqvm9ul9lEHWsB\nYtqPsgVAIhDhgJUckwJDcAS9BaAIYZXdZcPZc2dp+fyBzjKPJJFIJJcSoy4Sm5K2yBXvPoY9RyeR\nSCQSiaTtGHWRWGR6VI6LfIhRF4mt47bLfdBBaZUIyGq1Yt68eRe8OhqB6kBqAbekshgeeKgOFi1t\nOZjtObJLd8DZyG83BAB1jdzV1AlRiYjQ9qMWPcx2syIyEFFIAIDgQK6oSkSRM688F9/XV1KFWvrg\ncKigop+fXnip56eIdnVx+qHo001PLR625L2sWzg175bDm7H72HtUBywR5JXn4lSdjS4mZAs0W453\ndluWCG0/auE0KXocFgxbTC105ZXn4mTNSVo+SftQk502AKDRy3XhApofNnbf+VGXfNjYb82HBx66\ni4UmQEPNlxQ9Dm8lbaVeJ2L7DEIgAqliXhEObEZdJFbe+Cfq8WnURWJXsphjnt3Wszkn93kgrzwX\np+v5reDYiHBFBbpuCxAR1xGjLhIfpuwVci6x97tBG4EBPQdQc/qazjKPJLm0dNVroETyY7ric48/\nIcIJWiKRSCQSSdsx2wtw7yd3w2wv8PWmSCQ+5YDlQLs+16rqT2lpKVwuV7v+gD/Rp/tl1MKoCBeH\nOP0QRWQgasW3iNXUAOBubKTmE9EWKk4/FH26X0af/PVyuzchOSYFvbv1oa5+je0zCAEIoBblcso+\nhBde5JR9SMspgpyyD+GBh7qdRY5CnK6voJ9HRY5CVNY76HnZiHDVEnFtFlE43vDNOkVkYHfZUFHH\nbX+YU7YH6759njoBFttnENStG4JIBHJf3Hyq44TdZYOl+gTdXQjoGBPh+uBwBKq4gvPhxhHQQEMd\nw5kM8dg58QO62wjbacRkiMcbSZup25kQlYheQdx7jqgJCRECGLvLhpNOK/UcLXIU4qTLQh1vJEQl\nom+PCLrjpgjBDhur04LpeybTi+AiiuoicopwLBJxT7I6LZi0cxz1NzDqIjH3mrm0fP5AZ5lHklw6\nZBskiUTiD4gQJkskEolEImk7Bm0EIkOiqHV9SdsQNU8laT1mewFueeuWdn22VRU4tVqNW265Bamp\nqZg1a9b5V0fDXstvB6ZRaejtYVRQUYvXBm0EenXrQ79QiiiKZ5fuwOn6Cqpr0bGqY4rIIK88F5Xn\nTtMLNNUNVdR8dpcNrsYa+uS3SsVt+TE7bg56BvXC7Lg5tJwzBs/CgmGLMWMw71oV1i1MERmIcKpq\nwQuuqkyEAEyEq5aIa/OZc2cUkcGU2KmKyEBEaz2Afyy1OOl1BaqqqrBs2TLMmjULZ86cwdKlS1FV\nxb3Wt5e1366mOnuJao0DgO5AJqLVlMkQj/eTc6iiFZMhHrvu/Igu2BHRboiN1WnB8+b/oz5kFjkK\ncbbhe+o9R8SExJbDm/HQZ/OEOO95VWTFOfj3CADQBekE5Ayl5ityFMJawxVAAcDpWgc1nwjBitVp\nQfJ73JwteZmY7QWYmD2WLtIrchSi3HmMuu+3HN6MRz99lJbPH+gs80iSS4dsgySRSPwF5nySpH2c\nqDrh602QSCQSiY8x6iKxfcJO+XzgY9xNfOd/SesxaCMQFRbVrs+2qhfAI4880q7k/gizLZKjtgKN\n5PYwcfqhCA0Ko65S/bGlPlMQIQIRRTkRTkAinEayS3egou4Uskt3YJ5pASWnQRsBQzC3NVBzWyRu\nkdfussHprobdZaPd0M32AmwofBFJ0WNpxc7kmBSs+/saqrOSiONTJCpy+yB9cDgCEECdYBFxbRZx\nbeooiBB8Mq+d/s6TTz6JG2+8EQcPHoRWq0V4eDgeeeQRvPbaa77eNMy5+l7quCBOPxRRugF0p40W\nQQQA2vYmRCUiMqQ/1WkEgJCVKR1BsCMCoy4Ss6+eS33QT4oehydvWEFvN5R+68vU7RThhHMesl5H\nHxxOb7kMAIEBgdR8Rl0k1iSsox9P7FXi2aU74DhXQX0e+LFghfX9ixyFOF7NzWl1WnDbtpvw6ZTP\naTkdtRVwe/niaIAvfkuISoRRZ6Tm9DWdaR5JcumQE/y+x+q0yP3gY+Q+8C1mewHufH88/jJhd5d9\nFvM1VqcFsz5KxcH/PejrTZFIJBKJj5FjIt9D9oSQtBGjLhKfzPykXZ9tVTVXpVL911dH5MpeV9Jy\ntQiKmMKi7NIdqGo4S3XCEdH6ABDjjCFCXCMipwhajk3mMQoAgWpuEaWlyMMs9mwvyUKTtwnbS7Jo\nOXPKPkSjt5Heuutswxnqqt8ix0FF9GcctRVoJLvMiHAOySvfp4hdCZHOUkz8ffuYWCwWpKamQq1W\nIygoCA899BDsdruvNwsAkHHkNWqbN6MuEjsn7aE/nIlwdjPqIrHI9Bh1W2ULCy45ZXvw8Gfzqceo\n2V6AVQVPU11BrE4LHs57kL7fQ7vxnXAAwOPlurAZtBG4XHcFVQBn1EVi6fXL6Ofn/L3/S99PbNFj\nckwK+vaIoArOk6LH4e6r76GKlZKix2HcgAnUnOnmF1FZfxrp5hdpOeP0Q9GrW2/6forTD8Vl3cLp\nebtrulPz+ZrONI8kkXQVpN2/77E6LZj8/iS5D3yIyRAvBUASiUQikfgJckzke7x8A3DJJaJVIqB1\n69adf61Zswb/8z//g40bN4reNjpst4nkmBT06X4ZdZJ2uHGEIjIochTiTAO33Q4gTrTCRoSLhQgh\njD44HBoBK6nPNdVR8+235sMLL/Zb82k54/RDFJGByWBSRH8lIeoWRWQh4rgXgYjtnBybChVUmByb\nSsuZEJWI8B59qWJKEYKdjuIslRQ9FmoV11XKXwkICIDT6Txf9Dp27BjUZEet9jIg9Ap6AZPdJhNo\nFm68dHAtVbghQmDS1VtYsB/Kk6LHYc3N6VSRAQA0eZuo+QCg0cO3xa0Q4FxSUlmMJjShpLKYllOE\nNbPZXoC5ObOo57zdZUO58xi1Ra6IllhGXSRy7tpL/T23HN6MjCOvUdvLPZO/AruPvYdn8lfQcraM\n25jjt7zyXHxfX0m/NxU5ClFZ76A+X9tdNlidVlo+f6CzzCNJLi1ykt/3SLt/32J32WCpKaeOWSRt\nR4TDq6T1GHWR2HiHHDNIJBJJV0eKo/2DRq98PvAlVqcFyVnJ7fpsq6pQmZmZ519vv/023nvvPWg0\nreok5lew3SbsLhuq66uoD2YtriVM9xJRYgAReeP0QxGs0VKLkseqjikigxbHGqZzDQB4PdzV2UWO\nQlhqTlAnqEWIv0S4SokQWIg45kW51ohwwNp9dJciMkiISoQuUEcV15RUFsMLL7XIaXfZUFl32u8n\n4kScSyIoqSymu1H4K/Pnz8fMmTNx8uRJ3H///Zg+fToWLlzo680CAGRP5Lr2tLTtYhaagebjxe1x\nU89pUQITEdeIjvCgK8IFyeq0YPXXq6g5RbQ0BQAN2XUx3fwiqhrOUh1RAHHumOyFBiWVxXCDe84D\nQJOHKwArchTiWPW/6N+fzYzBs3Br5Giqm9rsuDnQakIwO24OLWfL/mbud5GOsOx2YCZDPFKv5gmg\n/IHOMo8kuXRIV0X/gN2SU9I2TIZ4ZE/cI11ofIgIobekbVidFjzwwQO+3oxLRk1NzUX/TVNTE5Yu\nXYqpU6di2rRpKC0txfHjxzFt2jRMnz4dTz31FDw/1BW2bduGO++8E1OmTMG+fc3zzefOncP8+fMx\nffp03HPPPfj++++FfieJRCJhIGJBl6RtNC9Yssh94EOMukhkp2a367PtWorev39/lJWVtesP+hqm\nIMBRWwG3l9saRwSxfQZBAw1i+wzy9aZclLSvnkZtowtpXz1NyxnWLUwRGeiCQhWRgYjV2SLQB4cj\nSB1EdSyyOE8oIoOk6LGKyEBEIUHEqmegeT+x3c/GD7xDERlsKsqA0+3EpqIMWk4RiDg/Z8fNQRC6\ncQto3xcrIgORbRq7AjfddBMyMjKwatUqpKSk4P3330dCQoKvNwsAqPdaQFyxVUReq9OCtX9/njqx\na7YXYOLOsfRWU5N28ieg2fma26s9ShWV5ZXnwuo6QXXw0AeHQ6PSUO+NIlpXPZuwGnOuvhfPJqym\n5QTEjOFyyvZgVs40qquWCAG/iPu4CHG41WnBze8Mp56jz+SvwF7Lx1TXnrzyXLgaa6jnpwghc0da\nDPNM/gq8dfAtWj5/pCPPI0kuDV3dVdEfMOoisSZhndwHki5NkaMQx6uP+b3QuzNj1EViw+0bfL0Z\nwti3bx+ee+45uFwujB07Frfeeiu2bNly0c8AwDvvvIOFCxfihRdeQFpaGhYuXIitW7fC6/Vi7969\ncDgcyMzMxDvvvIM33ngDa9asQUNDA95++23ExMRg69atmDRpEl566aVL8VUlkg6PFIRKujqO2go0\nehv9XgfR2ekf1r9dn2uVCGjp0qWK15QpUxATE9OuP+hrDp0+SMvVUdrtGLQR6NW9N93KVMRE7fB+\nIxSRktM4AmqoqS3WRLSaErlSlYnJEI/XR79FXZUkoiVWS7syZtsyfXA41FBTi2ciVj0DP7gdkN3P\nRFzzRLSvEnEuFTkOKiKDdPOLaEA91elh6W+WIRBBWPqbZbScIl21ugJfffUV7r//fiQkJOCKK65A\namoqvvnmG19vFgBg23dbMe+T+2j5/nnmn4rIQsS1V4SDh6O2Ag2eBup1t8hRiONO7nZanRaM3XEr\nXQA15yNu+yYRmAzxeGPMZuoYxmwvwD2fzKZ/d7Y4GBAzhhNxjxAh4Bfx3CIi55NfLEW1uwpPfrGU\nllPE7yliXJQckwJdYCi1JIutCAAAIABJREFU1bao5ysR+77ZXUlLy+cPdKZ5JImkq2B1WrDki8Wy\n4OVDzPYC3Pn+eL8fV3dmkqLH4ckbVtBdYyWtx+q04J5d9/h6M4Sxfv163Hnnnfjggw8wZMgQ5Obm\nYseOHT/7mdtuuw0rV64EAJw8eRKhoaE4fPgwrr/+egDNC9Dy8/Nx8OBBXHPNNQgKCoJOp0NUVBRK\nSkpgNpsxcuTI8/92//79Yr+kRNIJsDotmL5nshwX+RCDNgJRugGyTacPkeOijk2rREDXX3/9+dcN\nN9yABx54AM8//7zobRPCjcaRtFwiVqmKEJfklefCca6CulITaBbXqMjiGhETtY7aCnjgoRblRBQ6\nRQgs9MHhCFQHUgunVqcFy/Mf9/vBjwjxV0llMTzwUAU7Iq4jQEvRnOsEJIL9J/MVkYE+OBwBKu53\nj9T1V0R/zbmpKANuNFCdlUQUD9nHuz+zatUqrFjR7L4QHR2N1157Dc8884yPt+rf+LvoFhBz7e0o\niBgbZJfugL3WhuzSn59kbAv7rflo9LqpwtsZg2dhwbDF1BZGVqcFK/Y/RR/DNDVx20yZ7QWY8Jck\nevHH6rTgyS+5YzgRzy4iWs+KcMrbe/wTRWRQ11iniAy+tH6hiAxq3DWKyCCvPBdOdzX9mVUEvbr3\nUkQG2aU74Gp00fL5A51pHklyaZDtwHyPdGPyPSZDPF69LUO2A/MhZnsBVhU8LYVYPqbWXevrTRDK\nwIEDkZeXh8TERGi1Wrjd7ot+RqPR4LHHHsPKlStxxx13wOv1QqVSAQC0Wi2cTidqamqg0+nOf0ar\n1aKmpkbxfsu/lUgkEn/HqItE+q0vy7GpDzHbC/Cc+U9yXORjDlgOtOtzrRIBVVRUIDk5GcnJyZg0\naRJuvvlmpKent+sP+hrmRJ0IRIhLRK2AzCn7EF54kFP2IS2niO8vYoVyh8LLTSfCPUGUe4SqfR0P\nfxJRgh0RNBfNuW0vRFxLYnsPUkQGJZXFaPJyv3tVfZUiMhBRQBIh2JH8Murr6xWr3gcOHIjGxkYf\nbpESfxfdAs1tTVVQUduaihDJ6oPDoQG31dSMwbNwa+RoqhBGxLVHRE6zvQAvH1xHfci0u2w4XvUv\nah9rR20FGsG1xS2pLIYbbrrwTYSzlAhEtDRdP+oV3Bo5GutHvULLuWzEU4rIYPzACYrI4Pe/vlsR\nGdwdNxcBqgDcHTeXllOEqErUc6AIJyCm6M1f6EzzSJJLgxSg+Afy9/ctVqcFj3z2sBTD+RqVrzeg\na2N32XDSedLXmyGMyy67DCtXrsShQ4cwcuRIPPvss+jXr1+rPrtq1Sp89NFHePLJJ1FfX3/+fZfL\nhdDQUISEhMDlcine1+l0ivdb/q1EIvl5ZJtU32N1WjB/7//KcZEPMRni8acbn5MCdR9ithfglrfa\n10XnZyvkq1evxtKlS5GRkaGwcX700Ufx0UcftesPdiacDdWKyEBEEUUUItr4iPj+IlYoiyC2zyAE\nqAKoRU4A8Hg91HwiBDsi9ntJZTGa0EgtoIk4lkRcR0SRV75PERmIWO3fURBRQBIhVhKR0+bqvJM5\n/0l0dDSee+45lJaWorS0FC+88AIGDBjQqs8WFhZi5syZ//X/1dXVYerUqTh69CgAwO1245FHHsH0\n6dNx1113Ye/evayv0Gp2H92liCyaRcdequjYoI1AP20k306WPFn8TP4K7LV8jGfyV9ByihB0ihDJ\nOmor4Pa4qeIaR20F3GTBTkdCxBhORLs+ES1NzfYC/NX2GVVUZtBG4HLdFdTryIzBs7D8hpVU4V9S\n9DhsTnqbat1sMsRjd/LH1EmgB659UBEZiHheBbr2+LU1yHkkyS9BFll8T07ZHl9vQpcmu3QHTtVx\nXTslbcNkiMfGUZtkscuHmAzxSB/beYXDzz//POLi4rB582YEBwejf//+F3VL3LlzJ1599VUAQI8e\nPaBSqfDrX/8aBw40OwN8/vnnuO666zBkyBCYzWbU19fD6XTi6NGjiImJwbXXXovPPvvs/L81mfy7\nTiJpRgoffIvVacHDeQ/K/eBD7C4bjldzF/NJ2obZXoAlf10knYB8iEEbgYiQ9s09/qwIaPTo0bj+\n+usRHByssHL+7W9/e37Q0dFgriwU0cpFRFFYlMuKCEQUkUQUJ4SJVsjuJSKKKMkxKQgNDENyTAot\np4iCpCgHLDZx+iGKyKLIcVARGeiCQhWRgQjRwJYjmxWRgQgBmMV5QhEZHD37nSIyEPHda92dq93F\nz/HMM8+gtrYWixYtwmOPPYba2lo8/fTTF/3cxo0bsWzZMsXKrhaKioowY8YMnDjx72Pn/fffR8+e\nPbF161a8/vrr53vFXwymO8L4gXcoIgtRRdyggEBqvpLKYjR6ueLT2XFzEBygxey4ObScIpwxkqLH\nKiIDEeO3ZsgWiR0IEaJOEe36RLTBA4D6pguvp/6G1WlB+t9fpE8yMgXcLTz5xVJqvpZjqCO0fhTx\nfP3WoTdpuXxNZ5xHkki6CjllezArZ5oUAvmQ4cYRCFAF0FssS1qP1WnB4399VBZ9fYjZXoB5H87z\n9WYI4/3338ekSZNw+eWXAwBMJhPuvvvnXTtHjx6NI0eOYMaMGZg7dy4ef/xxLF++HOnp6UhNTYXb\n7caYMWOg1+sxc+ZMTJ8+Hb///e/x0EMPoVu3bpg2bRq+++47TJs2DVlZWZg3r/P+vp0F2SZVIvnB\nfdvbdRfz+QMGbQR6d+/DX0graRNBmqB2fU7zc/9zyJAhGDJkCG677TYEBASgvLwcMTExOHfuHIKD\ng9v1BzsTP7Ysn2daQMkpoigsyl0ots8gqKGmOteIaGUjoj2JCIGFCEQUUfLKc1HtrkJeeS5tlbKw\ntiwqbk4Rv+fuo++fj8xV3yJEiiLOzxYxCFMUEt3zSnzt+Buie/JWZ//YBYm5kp7NwJ5XKSIDUcXY\nrkJYWBieeqrtrWKioqKQnp6ORx999IL/19DQgA0bNij+X1JSEsaMGQMA8Hq9CAgIaNXfYQtrRJAQ\nlYjLuoUjISqRmrehyU3NlxCVCKO2P3U7s0t3oLbJhezSHbSxZosTF9ORq2WMxXbtaSKP30Rcy38s\nqvLn+wPQLNJa++1qqliruV0f93lAxDh7wzfrzseM2zMpOe0uG066LLC7bDTninTzizjTUIl084t4\nNmE1JeeSvMXIOPIaANBy3r79Nnzt+Btu334bPpj8KSWniMUwItpJAsA80wJU1VfRrssA8PaEd/Hb\nt6+j5fMlch5JIum4iJibkbQNR20FmrzcxXyStpFXngtLzQnqvKekbRi0EZ26zf3u3bvR1NSEKVOm\nYO3atdi1axcWLVr0s58JDg7G2rVrL3j/z3/+8wXvTZkyBVOmTFG816NHD6xbt+6XbbjkkiLbpPoe\noy4SW8dtl/vAh8Tph6KfNhJx+qG+3pQuS5GjEDbXSRQ5CuW54EO83vYtav1ZJ6AWDh06hIkTJ+L+\n++/H6dOnkZiYiL/+9a/t+oOdiV/1jlVEBglRtygiAxETqkDzg6kXXuqDqYgVyiKYHJuqiAxEuCCJ\nICEqEaFBYdQip4h2CgDg8TZR84lwFxo/cIIisugorQVFiFYitP0UkcE/vi9RRAYihFoiHFNEOCt1\nBZKTkwEAsbGxGDRo0PlXy39fjDFjxkCj+e9abZPJhIgI5fVSq9UiJCQENTU1ePDBB7Fw4cKL/o0F\nwxZTJzX1weFQQUUvGthdNpyud1CtX+0uG6w1J6g5jbpI3HVVKvWBaLhxBDTQUFcC3x03VxEZxOmH\nQhcYKuChnOvaM9+0EN0DemC+6eLnR2sR4YIkSvgmwmlle0kWvPBge0kWLed800LoAkOp++nWy0cp\nIoOSymK4PW7q7yniWVAEG5M2QQMNNiZt8vWm/Cz7rfnwwov91nxqXqvTgqzSLdRVuevNa1F6ppSW\nzx/oiPNIcqW175H7wLcYtBHo3e0yudLXh8hFOL6noziLd2byynNxynXK15shjIyMDHz22We47bbb\n4HQ6sXv3bkyaNMnXmyXxQ2TBXSIBemh6+HoTujRx+qG4XHeFFGJ1UFolAlqzZg22bt2K0NBQhIeH\n489//jP+7//+T/S2CSE8uC8tlwghSEdq3dVS5GMW+0S0shHxAC2iiCLCZUUE2aU7UN1QRe1PbtRF\nIv3Wl6kD25yyD+GBBzllH9JyijiWOor4C+g47aucDdWKyOCuX01RRAbDjSOghppa3BdxPLVMADMn\ngplFWH8lOzsbQHPf9uLi4vOvkpISFBeLaXVis9kwa9YsTJw4EXfccfGWXOu/fYHaz1dUsfXNojcA\neH+IHES07lpvXou1367GevOFq/Pai8kQjzuvmgKTIZ6WU8QYJt38IpzuaqSbX6TlFEF26Q6ca6qj\njmFaxhnM8YbdZUOV+0yH6Hk+OTYVKqipz0N2lw3nGuuo3z8hKhG6wFCqsErEPffHblUsRAiL8spz\n0YhG5JXn0nKKELC3jLHYLVWyS3fAXmujXkuu7MVzsPQXOuI8kmy54Ftk2wvfU+QoREWdHUWOQl9v\nSpelxb2O7WInaT0i2idLJEDz/NDOnTuRk5OD0aNHw+PxIDg4GPv27cPOnTt9vXkSieQ/sDotmL5n\nshyb+pjAgEBfb0KXxqiLxMob/yRFiT7G3c6OBq0SAXk8Huj1+vP/feWVnW+Cqj382FaeRcvkH3MS\nMDkmBT3UwUiOSaHlBJqLHV54qUWPB659UBH9lYSoRAQHaKmFhHmmBRg/YCLVVl6EC5SIY9TqtOAP\nH82mDqhmx81Bz6BemB03h5ZTRAu8pOixUENNdRAQRY27RhEZiHACErGdovCSXS5EiAmDA7WKKGkb\nDz300CX5O6dPn8acOXPwyCOP4K677mrVZ5rQRL2Hi7g/AMD4gXcoIoOO0tbzmfwV2PbdVjyTv4KW\nMyEqEX26X0Ydw4gQGeiDwxFIbuspQmSQFD0WAaoA6n3cUVsBt8dNbwMhomWdQRuBgWFXUoWijtoK\nuL3c759dugNOdzVVtCHCfW9ybCoCEEAVVYlAxAr52D6DoFEFUsfZIkR6gJj7XVL0OMyLn0fL5w90\nxHmkZ0eulpObPsSoi8Qi06NyH/gY9jOqpG20LKhgL6yQtB4RTp8SCQAcOHDg/Ovvf/87brrpJlRX\nV59/TyKRSCRKjLpI3Bv3v/L5wIeY7QW495O7qQuJJW3D7rLhRHX7jBlaJQIyGAzYt28fVCoVqqur\n8fLLL6NfP16blUuJLiiUlmtK7FRFZCDCCWhTUQbqPLXYVJRBywkANtdJRWTQ0kqA2VIgts8gBCCA\nOqGcbn4RtU0u6or3LYc3Y/ex97DlMK/ljohiV5x+KCJD+lPt3/LKc2F1naCuJra7bKhqOEtdRe6o\nrYAHHnpRTq0KoOYDxBS4Y3sPUkQGIlx7RGyniGJXcwsVL/V6JwIRv6e/Cy+YXHnllVi/fj2++OIL\nFBQUnH+1lV27diEr66ePlVdeeQXV1dV46aWXMHPmTMycORPnzp27aF5m8VqUm2GcfigMwRHU+46I\ndnzJMSkIC+pJF12zKXIUovLcab9f4W3QRqCv1kAVl8T2GYRAcEUGBm0EIkOiqNsZpx8KnYbfXs2o\ni8TuOz+iTp4YdZEYd8UEv5+QmWdagClXTaeK7WcMnoU5V99LbatoMsRj9c1rqe5fSdHjMOfqe5EU\nPY6a84Wb11NzGrQRMIZEUs+lJ0Ysx/gBE/HEiOW0nC2ooKLm23J4M9YXrKfm9DUdcR5pyReL5Upf\nH2K2F2Dux7PkBLOkS1NVX6WIkkuPKBGxpPUkRCWiVzfeXLa/kJaWdv41c+ZMpKWl4fHHH8eECROQ\nlpbm682TSCT/gVEXia3jtvv9fEdnJqdsDx7+bD5yyvb4elO6LAZtxPmXxDeUVBbD7RHoBLRixQrs\n2rULNpsNo0aNQnFxMVas4K1IvpQw3RFEFLtEWJaLWKUKAMP7jVBEBi0iLaZYy1FbgSY0UYUbcfoh\nisggISoRIRoddXW2CCcgAHA3NVLz7T+Zr4gMns7/f/DCi6fz/x8tp4gWDY7aCjSSV7uL4oOyXYrI\nIN/6hSIyEDFptvvoLkX0V0q+L1ZEf83JvHb6O2fPnsWBAwfw2muvYd26dVi3bh3S09Nb9dnIyEhs\n27YNAHDHHXcgNVXpDJGZmYmBAwcCAJYtW4Yvv/wSmZmZ51/du3fnfpmLMNw4Ahp1IL3tit1lQ2Xd\naaqoMzkmBaFBYVTBTpGjEFUNZ6nimkOnDyoig47SetbussFWc5K6302GeCy9YTlVYAEA9U0XF9y1\nhU1FGXA2VtMF/ADoLcZEtMETMd7KKduDbd9tpU4c5ZTtQcaR16g5zfYCLP5sAbUAvuXwZmQceY26\n0MDqtGB5/uN0sUQQ2eY7p2wPdh97jz5hmBQ9DmtuTqeKoFoWrnQmOuI80qakLXKS34e0TG4yW5ZK\nJB0NUXO4ktYjYtGrpG3klefiTD13LtufeP7557F69WoAQF1dHV566aVWzxNJJBJJVyJOPxT9tJH0\nRXKStlHn5s57StpGQlQi+oW0b0FVq0RAmzdvxpo1a/DVV1/hwIEDWLduHcLDedb8lxJmEVOEDbgI\n29eEqEToAkOp4hJAjNOIyWBSRAaVdZWKyOBY1TFFZLCpKAM1jU5qwUfEque88lycqrNRXXsitP0U\nkcF1husVkYEI54i3Dr2piCxEtMQK69ZTERmMMI5URAYiiuZlZ/+piAxEHE8hgSGKyECEE9Cr326g\n5fJ3WgQ56enpeOmll5CZmYnNm3mF2F/CgmGL6Q4WGaM30wUWAODxeqj58spzUd1QRb2XbSt5RxEZ\nXB46QBEZiBi/ihAW5ZR9SG9Zl1O2BysPLKcKAvLKc2Gv5Y6LRGG2F2Bi9liqwESE6+R800L0DOqF\n+aaFtJxmu1kRGYgQK20vyUITmqgugSIWBTz5xVI43dV48oultJwA3/VAhJMc0CyCevGb5+kiKLW6\nVdMzHYbONI8kuTSImGeRtI2OIhbvzIhYJCeRdDSYLtz+yL59+7Bx40YAQHh4ON588018/PHHPt4q\niT8iHSp9i9VpwfQ9k+V+8DGh3XiGEZK2I6IeLGk7PQJ7tOtzrZpl2rdvH7zeztET+u64ubRcIiZ+\nRZBdugNOdzWyS3dQ8yZE3aKI/oqIiW8RYiUROXPK9mD7d29Ti12xfQZBDTW1lUaLQxfTqevo2e8U\nkYGIwumvLxuiiCxECDdEbKsI96/xAycoIgMRAigRx5OI6/I3p75WRAZGovDJ3ykpKcGECRMwZswY\n3HrrrZg6dSrKy8t9vVkAgJcL11HFAFanBY989jD94Xi/NR9NaKIKpEXcy4IDtYrIQITzoAixkojr\n2RMjluNGw03UNj764HBoVBrog3lF6ISoRESG9KeK7ZOixyIAAUiKHkvLCTS7DzZ4G6jugyLa7gJA\nRDtXuPwUIn7TybGpCFAFYHJs6sX/cSsRcR8XcX4+cO2DUEONB659kJYzu3QHKupOUZ9Z7S4bHLUV\ndAesIkchjjv/RXV+c9RWtNve2V/piPNIU3ZNkpP8PkREq2hJ2xDhAiuRdDRELAKTtI3OLkRsbGxU\ntG93uzvXGFDCweq0YHbODDk2lXRpjLpIrElYJ91afUhsn0FQQUWf95O0HrvLhvKz7asntUoE1LNn\nTyQlJeHhhx/G0qVLz786Ihu+WUfLJcJpQwQiJn4BMe1xRKzSFYGI1VH64HAEkAtTlXWV8MJLdUFy\n1FbAC6/ft68KD+6riAxECP9ETXSKmLwTIawSkbPFZcbf3WY6ipBUhLCBLXrzZx5//HE89NBDOHDg\nAP72t79h7ty5WLJkia83CwDoYoDs0h04VWeji45FjGMctRXwwEP9/iKcuFpWQDJXQg7seZUiMhAx\nfltvXosv7Z9T20wZtBHo3f0yah9roy4Si0yPUSckDNoIRIT0o/fbFjF+FdF216iLxNLrl1F/U5Mh\nHk/c8EeqU5nJEI/VN62l5kyKHofNSW9T20zF6YfCqO1PdcMxaCPQuxv3XBpuHAGNSkNtKSlCRAqI\nuebpg8M7XTuwjjiPdLz6GF00Jmk9x6uPKaLk0mO2/00RJZeeWrdLESWXnpoGpyJKLj1bjrzl600Q\nytSpU3HnnXdi1apVWLVqFe666y5MmzbN15sl8TOMukjZqtbHGHWR2Dpuu9wHPsTqtODunN9JMZwP\nKakshhde2bLZhzhqK9DobWzXZ1slAkpOTsZ9992HkSNH4vrrrz//6ojUNdbRcoloYZQck4KwoJ5I\njkmh5RTF8H4jFNFfEdGmQITAwlFbgSZvo9+La/TB4fDCSxUriSjwzjcthC5QR20lMd+0ED0CelBz\ninLUGj/wDkVkcOvloxTRX6lrrFVEBiJckETsexEOHy2DbOZgm9mqzd/xer245ZZ/7+NRo0ahtpZ3\nbP5SmCLRlsIts4ALiBEuiDhXRLj2iBBci3DfE5Hzg7JdisigyFGIijo71b0jp2wPHvpsHtV10e6y\n4WSNlV6IFjEmjtMPhU4TShWYmO0FmPvRLKpTmYhWcGZ7AR77/GHqdoqioamemi+vPBen6yuodtDN\nIr0+VGGRiGMeaHaWUkNNdZZqEdR1JjriPFITuf2opG2cazyniJJLj/aHhR9a4gIQSdv40vq5Ikou\nPSec5YooufQEqgN9vQlCmT17Np577jno9XpERETgueeew/Tp0329WRI/RIpPfI9cIOBbskt3wF7L\nX3AqaT0zBs/CgmGLMWPwLF9vSpclKXoclv62fQuqWi0C+m+vlv/XkThWVUbLNSBsgCIyKHIUoqrh\nLLU40VLgYxb6AKDIcVARGYgoIonop93SVo7ZXk7Efmpud8Jt0ZBT9qEiMhBR4C1yFMLpdlLPpezS\nHahrqqMOOl799mVFZPHWoTcVkcGxqmOKyODavtcpIoPqH1yVqonuSh/9a48iMhAhQmh5MGE+oHTX\ndFdEBl1pYv+6667DSy+9hNOnT+PMmTPYsmULBg4ciJMnT+LkyZO+3jzqPXz131YpIgsRwlsRbnEi\nECG4FuG2IaLQPkQ/TBFZeMFtTSPCyTGn7EN44KGOtQAxY+JNRRlwNlZjU1EGLaejtgJur5sqjI/T\nD0WfbnqqWEnEduaU7cHvc6ZTxUrZpTvgOFdBHb+KcCnLK89FRd0pqrBIVLs6gzYCYUG96G5dnY2O\nOI/U5G2UKxx9yJHKIkWUXHoq604rouTS0+hpVETJpafl/i7v876jswqw9u1rdgLfuXMnysrK0Lt3\nb4SGhqK0tBQ7d+708dZJJJL/xGwvwKT3bu8QC386K8kxKQjv0bdDmGZ0Vsz2Arx0cK08D3xITtke\npP01rV2fbZUI6Of4uR7vhYWFmDlz5gXv5+bmIiUlBampqdi2bRsAwOPxYPny5UhNTcXMmTNx/Phx\nAMDx48cxbdo0TJ8+HU899RQ8nuaVWdu2bcOdd96JKVOmnB9AtYbxAye15ev9LC2TicxJRRFiCBGT\ntAAwOTZVERkMN46AGmpqYWrpb5ZBBRWW/mYZLef2kixFZCBiPzW3O+G2aBAhfhPhHiFCVCWiyHnX\nr6YoIosemh6KyEBE67Kq+ipFZDD/2ocVkcGQ8GsU0V950PSQIjK40ThSERmwV+T7M3v37sW7776L\nKVOmICUlBW+88Qb+/ve/43e/+91/HSN1ZEQ4ZgFihDAiXHtE9EhOiEpE3x4RSIhKpOU0aCMwIDTa\n7ye1J8emQq1SU8eZIsYGIpwcRYjigRbxuooqYhexraLE4afrK6ji8Dj9UIQGhVGFRSIcN0WMX1ta\nVzG3UxRs4R/QLKw601BJFVYxj/eOwM/NI/mSYI2Wes+VtI2z7rOKKLn0VNRVKKLk0iNFQL6nzHlU\nESWXngZPg683QQhFRc0i1wMHDvzXl0Tyn8gWSL7FoI1AhJbfql3SNkKDuHNjkrZRUlkMt8ctF8v4\nkDj9UESFRbXrs79YBKRSqf7r+xs3bsSyZctQX6+0Hne73UhLS0NGRgYyMzORlZWF06dP49NPP0VD\nQwOysrKwaNEiPPvsswCAtLQ0LFy4EFu3boXX68XevXvhcDiQmZmJd955B2+88QbWrFmDhobWDQ7f\nKc78ZV/4RzyW97Ai+iuinIBaTnrmyV9SWQwPPNSc8z65D154Me+T+2g5dUGhishAxH4SUUSJ7TMI\ngapAapFzvzVfERmIcK3Ze/wTRfTXnAAwsOdVishgz9H3FJHBu/94WxEZtPQOZ/YQF7EickrsVEVk\n8OQXSxSRwTenvlZEBkWOb2m5/J3c3NyffN1zzz0+3TZtQAi1vaEIkSggRiSbEJUIXaCOWujbb82H\nF17qvQwAevfoTc1n1EVi+4SdVFvpGYNnYfkNK+nWsBqVhppPxNhA1DhbFBpVADWfiJauIhYF6IPD\noSE7NmWX7kBVw1mqEESE42Zsn0HQqDTUsXtL6yqm+E3E+SnKVUvE2IiZqyPwU/NIvqa20YV084u+\n3owuS4toT4R4T9I63HArouTSU+etU0TJpUdei3xPZ2uR2sKDDz4IABg/fjzS0tIUrx+3kZdIgGYB\n0OycGVII5GPcTVKUK+nanDl3RhElvqG9XTp+sQjop4iKikJ6evoF7x89ehRRUVEICwtDUFAQTCYT\nCgoKYDabMXJks8vAsGHDcOjQIQDA4cOHz/eNv+mmm5Cfn4+DBw/immuuQVBQEHQ6HaKiolBSUtKq\n7Zo6iLfq/paoUYrIQMRKTVEkRCWiR0AwtYAm4oKybMRTisjg6NnvFJFBc+suNXWCPjkmBfru4VS7\nPJMhHslXTobJEE/LOc+0AOMHTMQ80wJaThGuNbdePkoRGYgQggCAyWBSRAb9Qy9XRAZ3/WqaIjIw\nGa5XRAbjB05QRAb64HCooaYWJG/od6MiMggO1Coigzhye5+OSlYWz02uPbiaaqiuGKKcB0UU7zcV\nZcDpdlJbGIm45xqON4dNAAAgAElEQVR1kbg37n/pfeDZ+axOC94r+wt1cspkiMfro9+ijjeSoscq\nIgMRx31yTAp6BATT7Y5LKovRSG51ow8OR6AqkHp+NjtZeqgCE0dtBRrJjk0imB03B/ru4ZgdN4ea\nV60S9thP44kRyzF+wEQ8MWI5LaeI8TAAPHDtg4rIgNkaV/LLYLb/lUgkEolE0nY88Ph6E4TwwQcf\nYOfOnXjyySexc+fO8693330Xzz33nK83T+JnGHWReHbkavr8jaT1FDkKcdJloc6dStpOYECgrzeh\nS9O8UC+AulBP0nba6xIqbDZwzJgx0GguXL1bU1MDnU53/r+1Wi1qampQU1ODkJCQ8+8HBASgsbER\nXq/3/CoxrVYLp9P5kzlaw5fWz9v7lS5g99Gdishg/8l8RWQgSqmXbn4RdU211JVyFucJRWTwZtEb\nisjA7rIpIgNHbQW88NKLEz2796TmeyZ/BbZ9txXP5K+g5dxyeDN2H3sPWw5vpuWscdcoIgMRK5RF\nuDUBwKvfvqyIDGoanIrIoMWdjenSduDkl4rI4Jn9f1REBvut+f+fvXMPi7pM//97OArDiEqDM86I\nhq1BLtE6UqutyeL6lSJTs9RwQbO2rd9qWdrBPHSt2trBzQzbbTuYaVpqpmZstBVRffMQTl9pMsmS\nBGdiZETBYQY5zfz+YMfts50A388c4Hldl9dd6Nw8n/mcn/v9vG944KG6hsRFxikiA3eLSxEZfH36\nCC1XKBMMrTCY1540bToSY/pTW+MAYor3i0YtxVjj/1CLzQAQHsZ1WSmqKMQ9H8xFUQW3IMnOZ9AY\ncXGfVOrklM1pxdI9D1KFRSKcB0U4AYl4xgbaBefhCKcKznVqPTRRvan22O0iWW6rKRHPWyIWbxg0\nRtyRPpd6LunUesRH9aHuo+zkHCy9Yjmyk3NoOYsqCvHmsV3065MIRDjiMlvjSs6PM8RFJBKJRCKR\nSCQ+GhoasH//frhcLkUbsIMHD+Luu+8O9PAkQYbNacUDHy2QTkABRBubCBVUIdEGu7sianGkpHOE\nITidfHsKdlc1rGe6di84bxFQZwtYcXFxcLn+U0h0uVzQaDTf+7nH40FERATCwsIU/7Z3794/mqMj\nxEfzBBEPXblcERmsHfcMrtRdhbXjnqHlFOUu9EjmKlypuwqPZK6i5RQh3Lg57RZFZDDjknxFZKCN\nTUSYilvwAIAzTTzBBiCucMpGxH4X4SAw0jAKKqjoSlrfNYR5LRllGK2IDDL0v1ZEBiLccHz3DuY9\nJFQQsdp9/IW8omEoE+hWGHddtoDqwGZxlKGm8URIrJDZdGgD3rP+iyo+Lakqht1djZKqYlrONG06\nkjSDqcKqoopC5BfdRC20P1CyAFu/2owHShbQclocZTh25hvq8SSiddWMYfm4tF86tRXajSnToIIK\nN6ZMo+X0wbbW33FkO0411VJbYrWLZNuoYi0R70MzhuVjrPF/qPt+06ENWLZ/Cf3a5DhbQ702me2l\nWFm6DGZ7KS2nKGG8CCyOzxSRwaJRS/Hgbx6k5Qt2gkEI/WNEh0cHeggSiUQikUi6IVOnTsXKlSvx\n5JNPKlqBrVixAtdccw0A/GBnDUnPxKAxYtYlt0jxQwAprz0MDzzUxR+SziFqcaSk44hoBy/pHDq1\nHr2je3fps+ctArrttts69e+HDBmCyspK1NXVobm5GQcOHMCvfvUrDB8+HB9+2O7Sc/DgQQwdOhQA\ncMkll2D//v0AgA8//BAjRozApZdeCrPZjKamJjidThw9evTcv/85Dtj3d2q8P8WfP16iiAyKKgrx\nsf1D6kVNlBPQpkMb8LH9Q+oktQgXi6c/fUoRGYj4Th3uGrSRnQ5KqopxopFbkBRROBUxkV5U8ZYi\nBmvOFy0vwAsv1akKABa8P08RGdS4TygiA587G9OlraLua0VkIKLF2HuV7ygigy9PlSsiAxHOGcw2\nfZKus6tiO3VFkTY2EeFk9w5ATGFYhCNKZlIW+kT3pbZJNWiM2DmpkDrpI8K5JjPpt4rIIE2bjr5R\nCVQBlIhtn/3PPHx2qgyz/8lrOVxeexheeOkTTSv2/FkRGYgQ14hwBhXxrPnwnmV4z/ovqjumCFdY\nITlte9DiaaE+G/gE8Uxh/JtHdysii7mmeYgJj8VcE+85GwCS+yZT8wUzPzePVFZWhry8719Xi4uL\nMWXKFEybNg1bt24F0L6AbOnSpZg2bRry8vJQWVkJAKisrMRNN92E3NxcPPTQQ/B4OtZa5GTzyU5u\njUQikUgkEknHGTly5I/+XXExbw5fEtpI8UPgyUzKgjFuIHWeT9J5vAjeBSQ9gTRtOnpHxdOd/yUd\nZ8eR7XC4HV367E+KgFJSUpCamnruT1paGtLT05GamoqMjAwAOKdS/jl2796NLVu2IDIyEg888ABu\nueUWTJ8+HVOmTEH//v0xbtw4REVFYfr06Vi5ciUWLlwIALj//vtRUFCAadOmoaWlBePHj4dWq0Ve\nXh5yc3Mxc+ZM3H333YiO7thqLab7wIxLZipisNLesy+M7jSSEJOgiAx8K56ZK5+H9PmFIjIQMUkt\nongqon2VCETs92rXt4rIID46XhEZiBC+AUBCzAWKyEDEuTRQk6SIDE6fPaWIDMprDykigxH/FhSN\nIAqLROQUIVZiur1Jug7bZUXUyoA5prvorkUAFG6TDEqqilHXdJoqvPXlZSJCyKyNTURUWBT1Gaak\nqhinm2up25+ZlAVdrD7oJ3BECfjHDhqniAxEiGtEiMpCBb16gCIyGDlglCIGKyJExyn9UhWRRUlV\nMRrb3PSFFrfuvpWWL5Cc7zzSc889h8WLF6OpqUnx85aWFqxcuRLr1q3Dxo0bsWXLFpw8eRLvvvsu\nmpubsWXLFsyfPx+PPPIIAGDlypWYN28eNm/eDK/Xi/fee0/cRkskEolEIpEQCGa3RIl/yU7OwUvZ\nm6ktmCWdw6AxYr7pfunGFHBkK6pAsuPIdtQ311EdwCWdY/LQKeiv7t+lz0b81F+Wl7c7CTz00EMY\nPnw4rrvuOqhUKrz99tv46KOPfja50Wg8tzprwoQJ536elZWFrCzl5HtYWBiWLfv+KsoLL7wQL7/8\n8vd+PnXqVEydOvVnx/DfuFtcP/+POsjHto/ORVZhqqTq/XORdYP/rm2dSZdByQmIWZn/3clf1lgH\nxw9WRAa+ldnM71RE8VSEaEUEIr5PEUWU8lOHFZGBCHcdQEzR42jdV4rIQBMVr4gMxgzMwtEvvsaY\ngbwib0rCMHx2qgwpCcNoOUUI1UTso6a2s4rIgCmmCmU62spUFBGqCKpoIzs5BxuyX6FPUNicVpTY\n3sMs52zqi7eK/BIpQni76dAG3P3BHACgtRyaY7oL9U31VFGVSZeBXZPeoj5nzhiWj9NnT1NbLQFA\nXCT3vBvefwTePLYLw/uPoOUU4YQDAPVN9YrIQBPVWxEZiHjHeCRzFSrPHKO2MV40aikO2D+htsjN\nTr4aT5c9SW096zuHmOfS5KFTUHBwNSYPnULLKYLJQ6fgH5/9jT5OEYthfA513YHznUdKSkpCQUEB\n7rvvPsXPjx49iqSkJMTHt783mEwmlJaW4uDBgxg9ur1d8WWXXYbPP/8cAHDo0CFcfnm7MP6qq67C\nxx9/jHHjeCJIiUQikUgkEjaBbhsvCS6k80Zg8bkxJcQkSDFWgNDGJiJCgOu8RBJq9Iro1aXPdWgJ\n9GeffYaJEyeeewgZP348LBZLl35hoGGuqBXhtCFiIl3EJCUgpkAhojghoiiXmZSF+Kh46kpys92s\niAxEiFZEHE8icooQf9U2nlREBiJW5QPApycOKCKD2Ei1IjLw3by6ehP7IT44XqyIDESIqkQcTyL2\nUXR4L0VkoI3tmnI5FNm3bx+mT58OAKioqMDYsWPx6aefAgA2bOC1VewKYSquEw4AIS/FBo0R67M3\nUQVAOrUe2pj+0Kn1tJzZyVcjDOHU4r2IZxifqIrZCg4AVQAEtI9z21ev0sfpbHZS87U7boZT3SFv\nTJmGMIRRHRIBwKQzKSID3/HOPO4v6nuRIjIoqihEsfUdqpX6WvMafGz/EGvNa2g5TboMPHj5Q/Tz\nie1+ZXGU4XTTKaqb3BzTXVh6xXKqQNGgMWL91S/TV26KEr2Gh3UPEZCPrs4jjR8/HhER31+v1tDQ\noBBQq9VqNDQ0oKGhAXFx/3FVDQ8PR2trK7xe77nfrVar4XRyr/8SiUQikUgkEokobE4rcgtvpM+J\nSDpOmjYdhjijFGMFmDa0BXoIPRoRXXEkncPiKENlfWWXPtuh6k9MTAy2b98Ot9uNhoYGbNq0CX36\n9OnSLww0fXv1DfQQ/I6INlMAYNQMVEQGIpxrRORst0Crp1qgiRCtiLD/bz+euO4RvlzBrugd1Huw\nIjLITMpCn6i+9OJMY2ujIjIQcTzVN9UpIoPUf7v1pBJde0QIFK8dcp0iMhCxj264eKoiSjrHo48+\nes7pMDk5Gc8++ywefvjhAI+qnTsuvZNeaDbbS6n5fLALuHZXNeyub2F3VdNy6tR6DIgbQBUWiXiG\nabczvo/+nYrY942tbmq+kqpinGisprdYY7tKmXQZWHzFn+nnpwi+6+bIQhubiEhVJP1ZMzKMm3Ok\nYRTCyQKwoopCLN+/lCpWsjmtmLQzJyQmj9mTSjanFXe8e6uQba9trKXn7G6w55Hi4uLgcv3H2dnl\nckGj0Xzv5x6PBxEREYq2ny6XC7178xZaSSQSiUQikUgkku5PuOonm+lIBFNU8Ra88KKo4q1AD6XH\nIqJ1u6RznM/8U4dEQI8//jjeeecdXHnllRgzZgz27duHxx57rMu/NJAkEt0HfJOJzElFESt0He4a\neOChtpkCQscJyCf8YgrARGx7SkKqIjLwOV8xHbDa25a1Uo8n302ceTMX4wD1W0VkUFJVjLrm0/SC\npAhe+3KrIgYrItxw3v6mUBEZWByfKSIDEcf9kwceV0QGNnKLm2CmqakJQ4cOPff/Q4YMQWtrawBH\n9B/WHFyFTYd4bkRmeymuf+NaIWIQds69tj1oQxv1BcbuqobDXUMVFs0x3YW7LltAdcYw20vxh3dm\nUb9Ts70UE3deTc1pd1Xj2wYb9fsUQXntYbShlSqCESEEAcS4l8wYlo/VY9ZSW02ZdBl4YfwGqghK\nRMs6nVqPC+OHUIV/adp09I/VUVcaWhxlqHR+Q3Xt0cYm0ltKmu2lmLTrGup1xOIoQ+WZY9RtB/7T\nqpF5DwWgEK10B9jzSEOGDEFlZSXq6urQ3NyMAwcO4Fe/+hWGDx+ODz/8EABw8ODBc89dl1xyCfbv\n3w8A+PDDDzFiBK9to0QikUgkEokIhgwZEughSIIEg8aIJzKfoi/gknQcu6sa37qsQT8v1Z3JTr4a\n4Squ67qkc4hw65Z0jpSEVESqIrv02Q7NMhkMBhQUFODVV1/Fxo0bsXr1avTvH5qtPGrcJ2i5Rugu\nV0QGadp0RIf1ok78tvdN5E7SAmIEESJaCogQ14jY9lWfPKqIDERYtWljExGGMOrxJGK/z0qbjdgI\nNWalzablFIEI0QYA/PKCSxWRgYhr3qXayxSRgbvFpYgMHhy5VBEZVJ45pogMnM1nFJHBRX0vVkRO\nzqE//4+6CcnJyXj88cdx5MgRHDlyBKtXr8bgwYMDPSwAEFK4v9f0oBB3oet2ZlMLwyIEwjq1Hn2i\n+1EFAaJad7W28YVovpYrTDweDzVfZlIWtL0Sqe57mUlZuCCamzM7OQdPjCkQ0l5PhI01u+WwzWnF\nko8fDHrnGoPGiG3X7aROyooQE/pWDNGda7zcdADg9XCTZifn4OZL/kA/l0SJ30pmltDyBQOseaTd\nu3djy5YtiIyMxAMPPIBbbrkF06dPx5QpU9C/f3+MGzcOUVFRmD59OlauXImFCxcCAO6//34UFBRg\n2rRpaGlpwfjx49mbKJFIJBKJRNJpnE4nVq5cieuvvx5Tp07F6tWr0djY7uS+atWqAI9OEizYnFY8\n8NGCoH8v7s443DVo8bTQzRUkncPrFTD5IOkwojoNSTqOTq1HbGRslz7bIRGQxWLB+PHjsXDhQjz4\n4IPIzMxEWRl3NZ2/OFx7iJZr51fbFJHBgvfnoclzFgven0fLqVProYnuTS1KAe1FhJjwWGox4UXL\nC4rIYMWePysiA7PdrIgMFlx+vyIyEOGws618CzzwYFv5FlpOEa0kdhzZDneri9qy7R8H/66IDI7W\nfaWILESIQT4/+ZkiMhDRVlCEA9bW8lcVkcHMX96siAxuTJmmiAyuNIxWRAYWx0FarmDn4Ycfhtvt\nxvz583H//ffD7XZjxYoVgR4WAK44FhDnXlJeexgtnhbqPSIlIRXhqgjqd2BxlOFEYzXVccKgMWJ9\n9iaqyKDduaaN+n2adBmYmDyFKgBrdx5so0622F3VqG+uowos7K5q1Lecpua0Oa141vJ3+mSfzWlF\nbuGN1LxFFYXIL7qJet5bHGWocnLdW8z2UkzcwXWrAkB9zgTEuJTNGJaPqb/IpQpWRJyfOrUeg+IH\nU99ZNx3agHVfPEt37AH4Av7uyPnMIxmNRmzd2u4+OmHCBEyb1v5sm5WVhe3bt+P111/HjBkzALQ7\nKC1btgyvvvoqtmzZcm4F/YUXXoiXX34ZW7ZswcqVKxEeHt6h322IMXR2UyUSiUQikUg6zKJFixAR\nEYGVK1di2bJlcLvdWLJkSaCHJQkyRLVyl3QcUeYKko6z17YHHnhkK6oAImIeWdI5CsxPor65a92T\nOiQCevjhh7F69Wq8/vrr2LlzJ9auXYvly5d36RcGmjnDeeKaKwZcqYgMVv32SUSporHqt0/Scu44\nsh2nmmrpk9Qr961AY5sbK/fxipk3p92iiAxEuJfMSpuNSETRXWYiwO0xumjUUlw7eCIWjeK5l4gQ\nGYhARGs5EcdSY2ujIrIQ4lb12ycRpYqiXp8+PXFAERlc3C9FERlMTZmuiAy0sYlQQUV9kRAh/Cs/\ndVgRGcwbcS8tV7ATHx+Phx56CLt378aOHTuwaNEiaDSaDn22rKwMeXl5P/h3jY2NmD59Oo4ePdrh\nz/w3Oa+PoxfEvQKsIUQIdgAgQtWxYmBHSdOmQxerpzutsG2HUxJSERkWSf0+H96zDFu/2oyH9yyj\n5RTRbggA2sjuQqG2MuxU4ylqPhEuM2nadCTGcFtiOdw1aPY2U/fTWvMaLNu/BGvNa2g5Jw+dgpjw\nGEweOoWWc9OhDdj61WaqECY7OQcXx6dQHXYMGiOS4gZTJ7lnDMvH0iuWUwVQQPs1b83BVdRrntle\nit+88BtavmAgVOeRzhAXUUgkEolEIpH8N5WVlbj33ntx8cUXIyUlBYsWLcKXX34Z6GFJggwRrdwl\nncfLN72WdILJQ6dAHR5HnSORSEKN8zFQ6JAIyO12Iz39P5Owl112GZqamrr8SwPJm0ffoOUaOWCU\nIjKwOMrQ7G2irnwV1bNv4a8XIxKRWPjrxbScIhxhTDqTIjJYuW8FWtBMFUA53DVoRSu1OFFUUYg3\nj+2irs72jY85Tl8bCXY7CTaD4wcrIoNBvQcrIgsRblXrLevQ7G3Gess6Wk6fIwzTGaahpUERGXx9\n+mtFZFBU8Ra88FIFOyKOURFYHDw3qWAlJSUFqamp3/vj+/nP8dxzz2Hx4sU/+LxlsVgwY8YMHD9+\nvMOf+SHYrm5p2nSoI+KEtBtia4tMugzsnPRPqnON3VWNuiauI4zZXorJu3Kokz4mXQYeG72auu0i\nnrV0aj0GxBmpriDtq1daqc+ZIkQwBo0RCy9fTF/xV1JVjBON1SipKqblFNEOze6qxqmzJ6nnkoj7\nuAgKzE+isa0RBWae4Np3z2Xeeye/fi3K6w9j8uvX0nLO/mce3rP+C7P/2TEha0ewOa1Y839/pbtq\niWhlvNe2B63gt2oMJKE6j3R18oRAD0EikUgkEkk35sILL8T//d//nfv/8vLyoGkbLwku2O2SJZ2j\nvPYw2rzcOSRJ59hxZDtcbQ10gwtJxxHRdUPSOc7H6KJDIqD4+Hi8++675/7/3XffRZ8+fbr8SwMJ\ns9DuswBnWoGLmKAWUZwAgCUfLUQLWrDko4W0nCIuKCK2X4RjkQhEbLuInCKOexFiiFC64cVHxysi\nAxEtxib94kZFZFDbeFIRGVidxxWRgYh9JKLQV1H3tSIy0ET1puUKVsrLy3H48OHv/fH9/OdISkpC\nQUHBD/5dc3Mznn76aSQnJ3f4Mz8G0y2swPwkXK0N1OI1IEa4IQKTLgPPjnuRKq7RqfXoE92XKoQx\n20tx/4f3UIVF2thERIVF8V17vNyCeGZSFhKiL6AKVlISUhGp4jorme2luOVf+fQVfykJqYggu2rZ\nXdVoaD1DFew43DVo9XKF8XNMd+GuyxZgjukuWk4R3JgyDWEIozpuimi9+sfL7lBEBstHr0RMeCyW\nj15Jy7ly3wrUN9dRF24AYpwXuyOhOo8UFxkX6CH0WOIj4hVRIpFIJJLuRFZWFsaOHYsDBw5gxowZ\nyMnJwXXXXYcpU6Z8z+VZItGp9UhU96fOB0kkoYYogwtJx+nbq68iSvzP+dS4O9R7aNmyZbjvvvuw\naNEieL1eJCUl4bHHHuvyLw0klWeO0XKJKOCKKDSLclmZmjIdbx7bRW2PI2L7RRGpiqTmEyGEEbHv\nUxJSEYYwagFppGGUIjIQIdgR0RbJJ4ZgiyJEtEMTUUQSISwSQY37hCIyEHG9uzFlGtZ98Sy1eDjj\nknwc+OATzLiE20qjp1BfX4/CwkKcPn0aXu9/VvDMmTPnJz83fvx4WK0/7FxgMv2w28pPfebHYAo6\n55rmYcuRzZhr4rVeBdrbuVgcn1HbuZjtpZi06xrsnMhzA7I5rVj5yQqkadNpDi4WRxlOuO2wOMpo\nOR3uGrR4ue2rTLoM/D5lFlUAZXGUwdpwnLrtFkcZTjXVUnOadBl4Y3IRddvLaw+jxdOC8trD1LwA\nhLhq3TdiEXWcadp0XNBLS3UVszmt2PDFi5iVNpu270VMhDjcNfDAQxdAfTeyUIHri25xlKGxrZF6\nfl47ZAK2frUZ1w7hOrtkJ1+Np8uepDoBjTSMQji4bSoDTajOIzEF0hJJqKGCCl546dd4ScdRh6nh\n8rigDlMHeigSScCIRjSaEPzugZ1l48aNAICWlhb87//+L+rq6mAwGAAAKpW87kqU2F3VcDTWwO6q\nprsESzpGqHSv6M58t9sFsx25pOOEkjGC5Pt0yAnowgsvxLZt2/D++++juLgYr7322vdWn4cK7JY7\nbOaa5kEdoaYW0EQ5AYnAN+HGnHjLTMpCfFQ8ddU3AHjZVRQBiNj3e2174IEHe217aDl97WiYbWlE\niGBEtAAUJYKpdn2riAxEiKBECItEtFgb3n+EIjIQIQATcS6JcBc6WvcVLVew86c//Qn79u2Dx+MJ\n9FC+x+oxa6nCGoujDO5WF7WlKdDe2nLdF89SW1vq1HpoYxKDfkVVmjYdvSPjqWKI7OQc3HnZfOrL\n81rzGqz74lmsNa+h5RRBmjYdSZrBYlrWEclMyoK2F7fFlo/wcK7IoKiiEMv3L6WenxZHGU6edVCv\nJQXmJ3G6uZbqVJaZlAWDeiB1P6Vp0zFIcyH9GGULgLKTc/DEmALqdaT9fcVLfW/JTs7BhuxX6JOF\nJl0Gdk9+my7Siwjv0BqtkCEU55G0vRKD/h7RnRmhu0IRJf4nLjxOESX+x+P1KKLE/0T8e810RMfW\nTksE0CuiV6CHIASDwQCDwYDVq1dj165dsFqt+OSTT/DJJ59g//79gR6eJMgw6TJw/4jF/IVBkg6j\njU2ECiq667Wk44gw4pB0jk9PHFBEif/JTMqCJkrTpc/+5NPskiVLsHz5cuTl5f2gGnnDhg1d+qXd\nBREig5KqYrhaXSipKqYV5mYMy8drX26lFvqA9ptgGMKoN8GSqvfPRdZk7Y4j21HfXI8dR7bTJsDL\naw+j9d/9QFkPYpOHTsGjnzyMyUOnUPIBYlrWzTHdhfqmemoxITPpt1j3xbNU8ZdJZ1JEBiJUr3NN\n87Dxi/V05wy9eoAiMkjpl6qIDELF/UvE9T47+Wo8dfCv1FXkIoRFDS0Nishg7KBxePPYLlq+YKa+\nvh4vv/xyoIfxg7AFBtnJOXgpezO92JqmTYcuVk8tytld1ahu+Ja6osqgMeK2tDuoK7R2HNmO+pY6\n6jNMUUUh1hxcBZPORNtXk4dOwVMHn6A+w4hwSDRojHhm3PPUfWS2l2LyrhzsmFhIeya0u6pxpqWe\nvuLPpMugul8BYsQg2ck5WHLFMmrOuaZ52PH1durzlkFjxJvXv03dRyKOUaD9vGd+nzanFeu/eKFd\nCEUa64xh+ThWf4z+zhoqgg6TLgNbb9ga6GFQCOV5JMfZGqoblaRz2P79TmgL8nfD7szF/VJxwPEJ\nLia+80s6hzpSjcbmRqgjpRNQoBikGYyjzq8xSDM40EPpscz65R+w5uCqQA9DGF9++SXeeust6f4j\n+Ul8C24u6nuRdEAJEHtte+CFF3tte6QYK0DIdmCBZ3j/EXjz2C7q4nhJ51hvWQdns7NLn/1JJ6Bp\n09rbidxxxx2YM2fO9/6EIswWKSIQIdp4oGQBPrZ/iAdKFtByAmIcYUQUsEXcKN6rfEcRGRSYn0ST\n9yx1hbIIpazNacWWI5tgc3au5cxPIcKxSEROEcdSgflJtKCZut+B0GmzJeKcF+Eolp18NVRQUQU7\nT3/6FLzw4ulPn6LlFEFt40lFlHSOoUOH4vPPPz/vPLt378aWLTyHJwCYtDOHei0HxBRb7a5q1DWd\nht1VTctZVPEW2tCGooq3iDkLcfcHc6iOKL72MMx2mSKwOMpQ13Sa6twiotWSzWnFncV3UI97nVqP\n/rF6qquUTq2HXj1AiFMVe+LK5rTi6YNPUb9Ts70Ujx5YAbO9lJbToDFi87Vb6YV9dj6b04oHPlpA\n/T6LKgoxs2c06doAACAASURBVCiXem0yaIxYn72JLqh79vOnqfvd5rQit/BG+r3OJ/5jj/Xut++m\n5QskoTyPFBUWJVf6BpCL+g5VRIn/iQ7vpYgS//PrAVcqosT/jBmYpYgS//Ox7cNAD0EoQ4YMgcPh\nCPQwJEGOiAU3ks4hBSiBR8QCQUnnEFELl3SOz092vUPHT4qAfvnLXwIAHn/8cVx++eXf+xOKMIs9\nItrtzEqbjZjwGMxKm03LKcLFAcC5ghSzMCXCveW7fSNZiGgNJEK4MNIwChGqCOo+2nFkO+zuauw4\nsp2WUwQiXHu+61TFQkQ7LECMuEZEOzARQjURD4cOdw288MLhrqHlFHEdmZU2G5qI3tR7yC8vuFQR\nGWQmZaFfr360fMFIVlYWxo4di3379mHq1KnIzMzE2LFjz/3pCEajEVu3trsCTJgw4VxRzcfGjRsx\nZMiQH/3Mz1HlPEYVbYgqtpp0GXh23ItU8cKstNnQ9kqkniui2q+Gh3HbN4lCBe4qxpSEVESoIpGS\nwFuJbndVo+pMJVVQBgAiFnDGRMTykwrA7qrG8Qb+d+r1cNvuihDXiMCgMWK+6T6quCZNm45Bvflt\n8NgCKJMuA69f9yZdqOZucVPzAWLEfxZHGb6p+4aWL5CE8jzSrklvyVW+AWTsoHGKKPE/N1w8VREl\n/kfEPIGkc1SeOaaIEv+T3Kd7F9zPnj2L7OxsTJ8+Hfn5+ef+SCTfRcSCG4kk1JAClMAj3w8Cz/nU\n5X5SBOQjISEBBw4cQHNzc5d/UbDAdMW4dsgERWSw3rIOjW2NWG9ZR8t5c9otUEGFm9NuoeUEcM4B\niOkEJKJ4Hyp9I0WIlURMUItYmZ8Qk6CIwYoIoZYoRbkIkWJcZJwiMhCx/SKOURHnpwghpcVRBmfr\nGaqww+d+xHRBKqkqxqmzp2j5gpGNGzdiw4YNePXVV7Fo0SKkpaVh6NChyM/Px4svvhjo4QGAkNZd\nLW0t1HxA+8THX82PUSc+DBoj/nVjCbWILeJeZtJl0AuS2thERKoiqU4HIkQGOrUeg3tfSHfYuSAm\nkZrzu63lWBg0RmzO2SakHQ3TuQRo/051sVzXIp1aj0Hxg6k5RTjXiMBsL8Uf351Nd0HaMbEw6Lcd\n4DtV2V3VOOGupovUACA2kivUy07Owc5pO6k5A00oziNJAVBgsTg+U0SJ/xHhTi7pHCLmMySd40rD\naEWU+B/mvGMw8sc//hHPPPMM7rnnnpBxS5T4H7urGtaGKiHvMpKOIV1oAo8UoAQeKcQKPEfrvury\nZzskAvr888/x+9//HpdeeilSU1ORkpKC1NTQ7A/NdMUQgYjCfXntYXjhRXktz70jlAiVF+jB8YMV\nkUH7xLed+rCYkpCKcIRTV+a/eXS3IjIQIS7RxiYiTBVGLZz6crFt5/XqAYrIQIQISpRzBhsR5+eL\nlhcUkYEIsZIIwSfz+hGsGAwGGAwGbN68GXv27MGkSZMwZcoU7N+/Hy+//HKghwcAIWMpLMIZw5eX\nSXZyDjZkv0L/XtkFSZ1aj0FkcY0IkYFBY8S263ZSc9pd1ag966A+F+nUegzUDKK37hIlAJq08xq6\nECgqPJKaz6AxYusE7r735Q12RLnhhMK2i8Cky8COiYVCvk8RQr3rUq6j5gs0oTiPJFdaBxYRbraS\nztHeBjuMugBEIgk1RLhgSzoH2y092Pghp8Rgd0uU+B+TLgMrf7NKitQDSH1TvSJK/I8UqAee2Ei1\nIkr8z/k4hHZIBLRv3z6Ul5ejvLwchw8fPhd7OiKUoCMHjFJEBqJcVkSILKzO44rIQERbKBHbnpmU\nhcSY/shM4vWcLq89jFZvC10AFhEeQc0n4rjXxiZCBRVVXFNU8RY8Xg+1reC28i2KyMKnDj0flag/\nEHF+ikDEqlQRx70I57PJQ6cgApGYPHQKLSfzHAp2Pv74YxQUFGDs2LH43e9+h6eeegofffRRoIcl\njEiyGABoFy7c9s7NdOGCCEQIq9gFSRHiGl9eNiLaDbEFAQaNEQVj/x46IgsBrcsiwvjnfch8nwKQ\nk7xcRH2fPfkY7SihOI8koq2ppOOIWHgh6RztbbA91DbYks4RKk7Z3Rmfkz7bUV8ikUg6g9leioX/\nuyAk5sK6KyIMGySdw6QzKaLE/4gwG5B0jvMxOOmQCKi5uRnPPPMM7r//fjQ0NGDt2rUhZensQxPZ\nG7PSZtPyfXrigCIyEPGyl6ZNR3xUPLVFw7m8kX2oedO0lyoiAxEtd0Rgd1Wjvqku6C0eTboM3D9i\nMXVCXYQQpKjiLXjhpYoNRAgsbkyZBhVUuDFlGi0nAIwdNE4RGWQn52DqL3KpRW4RgrqUhFSooKK6\nzfj2D3M/iRAWiRBSLnh/HlrRggXvz6Pl7Em0tbWhtbVV8f/h4eEBHJE4RDkj6NR6GOOS6E4roYDN\nacWNb0wSIgSScLA5rZj73h30fSSiCG3SZeC5cevpIihRrcskEklo013mkSSSnoQIZ1lJ5wgVt+Tu\njG8hZU911JdIJMFBeztzbY+cCwsWbk67BSqopCg0gMiWbIFHCrFCmw6JgJYtWwa3241Dhw4hPDwc\nVVVVWLRokeix0XG2nEFJVTEt35A+v1BEBiIuaust61DfXI/1lnW0nACw48h21LfUYceR7bScIsQg\nIlrZiNhPOrUemsh46oOdCFFZUUUhlu1fgqKKQlpOES3bRNycRFhAimrXJ0IIs9a8Blu/2oy15jW0\nnCIQ8Z36VkIyV0SKsLv3WSYzrZOvHXKdIko6x4QJE5Cfn4+NGzdi48aNmDlzJq699tpADwsAsOnQ\nBnpOUW4wIeW0QkT2gOditpdi0i5uOyy7qxrHnZXUfWRzWjF5V44QYdHKT1ZIUZlEQkCEUO+FT3kt\nYoOBUJxHkqLGwCIdUAKPnOQPPPI8CDyZSVnoG92P6tQu6RwjDaMQju65eEoi6Sh2VzUc7ho5HxRA\nRNVtJB1HxIJnSeeQAvXAcz413g6JgA4dOoR77rkHERERiImJwaOPPhr0Ns4/BrN3oIiXYxFiiOzk\nqxGuCqf39BYhiBCRc6RhFMIQRnUCErGfSqqKcbKphipU08YmIhKR1JZYIi76KQmpCEc4VbCijU1E\npIq77SIsIEX1NRXxkDp56BREqaKpbaHStOnoE9WX6igm4jsVcdyHygSriPMzO/lqhKk69AgS8tx+\n++2444478O2338Jms+H222/H7bffHuhhAQDu/mAOXQgkoihqc1pxT8mdPbI9h0mXgWfHvUhvZ9MT\nv0ugXXCdpBlEFVzr1Hro4wZQc1ocZTh25htYHGW0nBKJhIcIod6mQxtw6+5bafmCgVCcR5ICoMCS\npk2HQT2Q7mIt6ThyHwQebWwiwhFOncuSdI6SqmKcbjpFnZ+VdJ7u6qAskXQUnVqP2Ig46QQUQES4\n+Es6h4jOMZLOsffbPYoo8T8r9vy5y5/tUAVOpVIpbJtPnz4NlUrV5V8aKEQIYVTgfg+iBAEer4ea\nDxBTwBbVAz4Uis2ZSVm4IDqRutJEp9YjPrpv0LsLiUCn1qNvr37Ubb92yARF7Gms3LcCzd4mrNy3\ngpZzx5HtqGs+TXUUm5U2G9peidT2j6GCCIGiw10DDzxUF6Ty2sNC7kvBypgxY3D//ffjgQceQGZm\nZqCHc47VY9ZixrB8Wj6b04rcwhuFCExaPS30nKGAzWnFX82PUb9TUS3GQgGDxoitE3bSi7wxEbHU\nfGnadFwQnUgvwBk0RjyR+ZQscksk54kIod6MYfl4fsLztHzBQHeZR5L4l9jImEAPocfTO5rnVCvp\nPCLevyWdI1TmPbszOrUe2lhtoIcRVLS0tODee+9Fbm4ubrjhBrz33nuorKzETTfdhNzcXDz00EPw\neNrn2bZu3Yrrr78eU6dOxfvvvw8AOHv2LObOnYvc3Fz84Q9/wKlTpwK5OZIOsOPIdpxurqXOmUs6\nR2bSbxVR4n9E1cslHSelX6oiSvzP4lEPdfmzHVJG5Ofn4+abb8bJkyfx8MMPY8qUKZg5c2aXf2mg\nUHm5E05p2nTERWioE/QiRDBFFW/BCy+KKt6i5RRFewujMKrjhMNdg1Zva9C/QNtd1TjVdJJq8SjC\nXShNmw5NZG/qcV9eexhtaKO61pRUFaOm8QR120W0gfMJE9kCRRGTFiMHjFJESk4BTl0GjREbrnkl\n6IucW8tfVcRgJU2bDkOckXrOy8m04IApAPLhbnHTcwKA1yskbdBj0BixPnsT9XrW01uMse8NIoQ1\nFkcZTjbV0J2AerKrliQ0YLYbFpkzOzkHG7JfQXZyDjXvLcNvoeYLNN1lHkniX3rqM1+wYNAYZVu8\nAJOdnIMlVyyj32MkHUcbm4gIsrO4pHNYHGX41slzYe8OvPHGG+jTpw82b96M559/HsuXL8fKlSsx\nb948bN68GV6vF++99x4cDgc2btyIV199FS+88AKeeOIJNDc345VXXsHQoUOxefNmTJo0CX/7298C\nvUmSn0FExwxJ5xBRC5JIQo2dX72miBL/s9fWdRemDomArrnmGowePRqnT5/Gyy+/jNmzZ2PKFF47\nGH/RCq4QZL1lHZytZ7Deso6WMyUhFWFkEcystNlIiL6A7oqRpk1HQvQFdDGIFx6qGETEzTolIRVh\nKm57nKKKt+CBhyrWEtHGZ71lHZwt3OP+9NnTihis+HpSMwUr28q3KCILEe2rQmU1lM1pxR/+NSvo\ni5zD+49QRAYi7iEAfzJeG5tId9KTBB67qxon3NVCxCWR4ZH0nMF+jfDBLsKYdBnYMbGQ3mIsVGDv\ndxHCmjRtOoxxshWHpGdRVFGImUW5VNGOiJw+ZHH25+ku80gS/yLimU/SOaQAKLCY7aV49MAKmO2l\ngR5KjyZMOtcFlDRtOpL7Jgd6GEFFdnY27rrrLgCA1+tFeHg4Dh06hMsvvxwAcNVVV2HPnj347LPP\n8Ktf/QpRUVHQaDRISkpCeXk5zGYzRo8efe7f7t27N2DbIukY8dHxiijxP+WnDiuixP+8X/WOIkr8\nz4LLH1BEif+xOo93+bMdEgEtWbIE5eXlKCgoQEFBAT755BP85S9/6fIvDRR69QDqZLqIG7Eo29eo\niChqPqDdaaW26STVaSVURAZ7bXvg8badlwLvvxHRXs3hrkEb2qjHkwi3KhEtjEQdS6owbmu5G1Om\nKSILEVaJIoRF28q3wAMPVQRVUlUMa8Nx6rVJhFAtVFp3WRxlsLmOUx0pfA51ksDCnlgWJS4RsSJZ\nZOuyUKCn9pS3Oa2YtDMnJPa7JorfikOu7pcEM2nadAxQc50HRbgZ+hAhLDpe3/WJnWCku8wjSfyH\nvE8FB1J8Elh0aj2SNIN67PN6MKBT66GN6S/3QQAxaIx44n+eCPQwggq1Wo24uDg0NDTgzjvvxLx5\n8+D1es+1WlWr1XA6nWhoaIBGo1F8rqGhQfFz37+VBDcjDaOggoq6GFnSOUR0RZB0jpSEYYoo8T/S\nESvwpGkv7fJnO1TNLisrw5NPPomsrCz87ne/w5o1a/Dxxx93+ZcGilONtdTV6SIKuCJOqJKqYlS7\nvqUWxAEgMykL/WP0yEzKouUUsf0i9pMIRxgR2y5CtNHuNMJ1FxKBNjYR4Qin2vc63DVo9bRQBRY+\n5yd2uz4RYi0RwqpHMldh6i9y8UjmKlrOGcPysXrMWmqro4v6XqSIDEQIi9ptqyOox72oNnhhHXsE\nkQhk0q5r6JP8oiZKRRSDRLUuC3ZsTitmFc2gC2FCoWBkcZShynmMKmo0aIy4Le0O6jEqosXYd3OH\nAiKEWqFwjIYSIvZRTEQMPaeI1kIiHIZsTisy12fS8gUD3WUeSeJfQuU+1V0x20tx/RvXyntmADFo\njNg6Yac8FwKI3VWN2rOOHts+ORgw20sxbTt3sWR3oLq6Gvn5+Zg4cSImTJiAsO8sVHW5XOjduzfi\n4uLgcrkUP9doNIqf+/6tJLhp75jhpXbMkHSOvd/uUUSJ//HNO4TCYr7uinTECjznUz/sUAVOr9ej\nsrLy3P+fPHkS/fv37/IvDRR9ovtRi1OZSVnQ9kqkimBECFYyk7KgVw+gjtNHZHgENZ+IQrsIdGo9\n+kYnUI8nEX1eM5OykBB9AXXfO9w18JKdRmYMy8ddly2gijZEOKKIEFXNSpuNvlEJ9HZ9ItDGJiKS\n3Bfd5rTiy7rD9Ac5Edc7NpOHToEmojcmD+W1RXC4a9Dq5ba+FNWDOiKMe/+QdB69egD1PmZzWnHj\nG5OEvJixHRfsrmpUN9h65MSuQWPE+uxN1MKC2V6KSTv5ojI2Iu5jRRWFuOeDuXQxALvF2HdzB3tO\nEU5dsqjJJVTc1CyOMnzrslKFf0C7w1CSZjDVYcjiKMM3dd/Q8gUD3WUeSSLpSZh0GfjH79b12Lax\nEgnQfh48O+5FeR4EEJ1aj8F9Bgd6GEHFyZMnMXv2bNx777244YYbAACXXHIJ9u/fDwD48MMPMWLE\nCFx66aUwm81oamqC0+nE0aNHMXToUAwfPhwffPDBuX9rMvE6EUjE4FuAHewLsSUSkVzcL0URJf4n\nLjJOESX+53zqch0SAbW2tmLixIm49dZbcfvttyMnJwcnTpxAfn4+8vN5RXvR1DTaqROAdlc1zrTU\nUwtImUlZiI+KpxewW1pbqfmAf7eIaeBPqrIRITApqSrGyaYaqrtSdvLVUEGF7OSraTktjjLUNp2k\n7iMRTiNmeyn+/tlT1MKMNjYRKqio4xTh3AIA8b34qy9SElIRoYqgviiYdBl4YfwG6kSIQWPEfNN9\n9DY/174+nlqY0sYmIjKMWzguqSqGs/UM9ToiQqgmwlUKAKDippN0nghVJDWf3VWNb+qP0oU1IhwX\nAAg5BoO9IO5DxMpiDzz0nOzv06TLwPPjX6Lex0S1G6pr4j5rAGJcoEQ5S7GRRU0+LW0tgR7Cz5Kd\nnIOXsjcjOzmHmtegMWLnpELqtTQ7OQc7p+2k5QsGuss8kkTSk7A5rfir+bGgv693Z0Ll2ao7I8+D\nwGPQGLF+4vpADyOoeOaZZ3DmzBn87W9/Q15eHvLy8jBv3jwUFBRg2rRpaGlpwfjx46HVapGXl4fc\n3FzMnDkTd999N6Kjo3HTTTfhq6++wk033YQtW7Zgzpw5gd4kyc8gqnuARBJKVJ45pogS/yP3QeCp\ndn3b5c92aBn+3LlzFf8/e3bwO1b8EAnRWuoEvUmXgftHLKZOJu84sh31zfXYcWQ75pjuouU82VRD\nzenDC66/uiiByT8sa5GdfDVtX1kcnykig3aHHS/VwQMAVOQqp06tR0LMBVT3CIe7Bs2eZuq2l9ce\nhgcelNcepu33yUOn4Kn/e4Lq3GJ3VcPmtMLuqqYWEnRqPQxxA+kuHys/WdFe8CSN1WwvxW3v3Iwd\nEwtp+6mkqhg213GUVBXTxH86tR6DNBdSv8/21nphVKGWiJZtIsapU+thlPbmAedsWyM1317bHrSh\nDXtte+iFdvbzhk6thzamP/0aOatoBt1lRwRFFYX0ojh5F51zltp2Ha8dgm9Cn3kfA4BWD1ds/91W\nvkwRu0FjxMTk6+mty0TkZLdDszmtWL7vIfq+F3Eu2ZzWoL+GAEBDi5OeMzKcK04FwL/W/RsR++hX\n+l/RcwaS7jKPJJH0JEQ4Rko6h9wHgUfug8Bjc1rxh7f/gM/u4M27hzqLFy/G4sWLv/fzl19++Xs/\nmzp1KqZOnar4WUxMDJ566ilh45NIuiN69QBFlPgfh/uEIkr8j9wHged8rkEdcgK6/PLLf/JPqFDb\n5KA6ohRVFGL5/qXUleki2oGJarElQrAjAp1aj7iI3tRCn1EzUBEZZCfnYPYlt1EnqtO06dDGJNKt\n6u1urquW2W5WRAaZSVnoE9WX6qplcZShvrmO7n7FLm77iAzjF1KczWeo+XRqPeKj+tJbNRrjBlL3\nvUFjxJ8uu5M6CSSiZZ0IRI3T3eqm5pN0HmvDcer1bI7pLiy9YjldcJymTYcuVk+9l9ld1ahx26mu\nRQaNEY+MXkWfLGavQBXlrOTxcp2A7K5qHKuvoO8j9oR+SVUx7O5qqqubCEEnAGw6tAHL9i/BpkMb\ngjqnzWnFncV3UI99u6sax+q+oR5PRRWFyC+6id4KLvu1sfTznrl/ADHHvUFjxOacbfRrKN1F7t+I\naIOXs1mMYClQdJd5JIl/kc4bgUcKHwKP3AcSCdDc1hzoIUgkAcU3B8+ei5dIQomUhGGKKPE/2tj+\niigJLTokAuouhCOcKljRxiYiXMXNmZmUhX7RCdTi9denv1ZEFg53DVq9rXT3llZvK8prD9Nyimjd\nNdIwCuEIx0jDKFrOTYc2YN0Xz1In6S2OMtQ0nqAWedvbDHmp7YZMOpMiMiipKkZd82nqfgf4gh0R\n55EPtsuHiBaAFkcZTjRWU3MaNEbsnvw2faX/3R/MoReS2E5dadp0DO59Ib0tDZsdR7bD3mAP9DB6\nPKvHrKU7JDCd0nzYXdWoPXuSWrx3uGvQ4m2hXnttTivmvscVLohoB5CmTae7Y5bXHkYb2qjPb+W1\nh9EK7jNhqOB7twh2oT0AHKs/pogM2gVgXMGOw12DVnCft0S04NxxZDtONFZjx5HttJybDm3A3R/M\nob5jiBBci0CU6NHmtOK3W66kixVONZ6i5pNIQg3ZBkkikQQD8loUHKhUsoe8pGcjYhG6pHMcsH+i\niBL/ExcZp4gS/yOdgALP+bQDEyYC8ng8WLp0KaZNm4a8vDxUVlYq/n7nzp2YMGECcnNzsW3bNgBA\nc3Mz5s+fj6lTp2L27Nk4duwYAODQoUO44YYbkJubi+XLl8PjaV9pvGLFClx//fXn+qA6nT9tSR4W\nxt9cr5crCLA4ynCqqZZaEK9vqldEFtrYRESGRVILFCJWPmcmZUHbK5E6Sa1T66GPG0B1LxG16puN\niNZA7QXJC6gFSRFFKRHuVyLEhIAYwY42NhFhCKNvP/s6AvBXzokYZ3ZyDu68bD5VhGHQGJGfOpu6\n/dnJOVh6xXLqOCcPnYL+aqkeDzR/NT9KF6xM3pVDnyx1uGvQ4uEKdkRcz+2uahx3VtKda0zaDOo5\nbXGU0d0xRTxrpSSkIkIVQX3eEDGhL+L5rajiLUVkIaKd7eD4wYrIQIRILzs5B0+MKaDeyzKTstAn\nmus6KcIV9vTZ04rIwKAxYspF0+gt2ybt5N5Dvj79Nbzw0hfDrNy3AnXNp7Fy3wpazpKqYticNlo+\niSQUkS14JBJJMCCvRcGBCHdziSSUEPFuKOkcvSJ6KaLE/3zmOKiIEv8jnYACz7VDJnT5s8JEQO++\n+y6am5uxZcsWzJ8/H4888si5vzt16hSeeuopbNy4ES+//DJ2794Nq9WKrVu3IjY2Flu3bsXixYux\nfPlyAMCSJUvw4IMPYvPmzYiLi8Pu3bsBtIuDnn/+eWzcuBEbN26ERqP5yTElaQZTRRsiVj2LKDTP\nSpuNPlF9MSttNi0n0C6EGaA2Ur/TNG06jHED6S0/6pvqqEU5u6sa1Q3fUnOKQMQKZYe7Bl54qYWZ\nkqpi1DadpLr2iCpKsV179tr2oM3bhr22PbScPkS4FrHbQunUehjiuNcREejUevSLvoA6zqKKQjx1\n8K/U1eki2rKY7aV43PwXmO2ltJwAoI5UU/NJOo+14Tj1umtxlKHyzDF6y8Ts5BxsyH6F7loUpuI+\nBuvUesRH96FeJx7eswzrvngWD+9ZRsuZpk3HoN6D6c9aZ1rqqc9FOrUe/WP11O/ToDFivuk++oQ+\n29UtPjpeEVnU/HvVTg1x9Y4IEVSaNh19ovpSj1Gb04pVB7jCx5KqYtQ1cV0nfaI3pvhNBGvNa7Dm\n4CqsNa+h5bQ4ylDl5N5D5pjuwl2XLaC3qfRNwJzPRMx/w1y4IJGEMrLoLpFIggF5LQosBo0Rhbli\nWrpKJBKJJHRobmtSRIn/Odt6VhEl/sdsN3f5s8JEQGazGaNHjwYAXHbZZfj888/P/Z3VasXFF1+M\nPn36ICwsDGlpaSgrK8PXX3+Nq666CgCQnJyMo0ePAgBOnDiB4cOHAwCGDx8Os9kMj8eDyspKLF26\nFNOnT8drr732s2Padt1O6kO8iBXKIoQ1dlc13K0uIYKVZg//4tvqaeXnBDfnXtsetIEr3NDGJiJS\nxRWAiXDtAfjikpSEVESAey5lJmUhodcF1NXZadp09ItOoBalJg+dgn7RCUJa6LCLkiJW0QNAhCr4\nV/e0t9azUwtTadp0GOKM1OMpJSEVkWGR1HPJpMvA69e9CZMug5azXUgZ3CLKngK7cM9uMyUKky4D\nuya9RT2uS6qKUdN4gioIENEDXoRjmE6tx8C4QfTn1xq3nfr8araX4tZ/zaSKGkU8G4ha8fen4XdC\nBRX+NPxOal42O45sR13zaWpLrJKqYthcXOGjCF60vKCIDES4wopymmW/Y9icVvyr6i26Q50Iceqi\nUUvx4G8epOWTSCQSiUQiCWUGxssWSIFGtsQLLCIcXSWdw+Y8rogS/6OJildEif+pbXQoosT/nE9d\nQJgIqKGhAXFx/+nTFx4ejtbWdiHGoEGD8PXXX+PkyZNobGzE3r174Xa7kZqaivfffx9erxcHDx7E\niRMn0NbWhoEDB+KTT9r7Lr7//vtobGyE2+3G73//ezz++ON4/vnnsXnzZpSXl//kmNgqfp1aD3Vk\nHN3BIiqcWxDXqfXQRPamj7OkqhjVrm+pk+klVcWwu6upOV+0vACP10OdTBexqlSn1mNQ7wup+0mE\na482NhER4LZQ0an10MVxV/tbHGWoPXuSKtooqSrGqaZa6vFpd1XD1dpAF+mJKEranFY8a/k7/SUw\nknzNEwW7MAXwRY8mXQYWZiylChsA0O8fJl0G3p/5PjVnd6SsrAx5eXk/+HeNjY2YPn36OcH0z7Vh\n/SHYBUwRbaaAdtesmUW5VNcsgH9ci3BEmWuah/jIPphrmkfLKcIxzKAxomDs36nP2iLc9xzuGjR7\nmoPec7v+pgAAIABJREFUzXDGsHysHrMWM4bl03ICvmdNrjOqCEQITES0QhPBzWm3QAUVbk67hZZz\n0ailmH3JbVg0aikt56y02UiM6U91mhXxjgEALW0t1Hw+2KJ4AHh47MP0nBKJRCKRSCQSSVdgt9KW\ndI73Kt9RRIn/MWgGKqJE0hOJi9IoosT/aKJ6d/mzwkRAcXFxcLlc5/7f4/EgIiICABAfH4+FCxdi\n7ty5uOeeezBs2DD07dsXU6ZMQVxcHHJzc/HOO+9g2LBhCA8Px1/+8hf84x//wMyZM5GQkIC+ffsi\nJiYG+fn5iImJQVxcHH7961//rAiIzXrLOtQ312G9ZR01r7ulkZpvx5HtqG06SV1NC7Q7rfSP0VOd\nVlISUqGCiupisfDXi6GOiMPCXy+m5bQ5rSj85g3qg7BBY8TSkX+mFtBEuTKEh4dT89ld1Tjh4q72\nF1FIENGiQafWQxc7QIhIj12UBPiFFIPGiIWXL6aLNEWs+F56xXJqwUeE6LGoohDL9i+hiiVsTquQ\nF/8rjFdQ83U3nnvuOSxevBhNTd933LNYLJgxYwaOH//PSpSfasP6Y7ALmNnJOXgpe7OQvGwXMpvT\nihvfmEQ9rrWxiYgKi6IXsAdoDNR8IsRKNqcV95TcSf8+I1R8QQCbzKQsGOMGUp+HAdAFQD7Y7nsi\njnsR7dB8L8zn8+L83+z9do8isogKj6Lmszmt2Gv/mP7e8tLVm+nPb+w2jRKJRCKRSCRdQQofJBJg\nffYm2RovgIhyCJZ0nEG9ByuixP80tZ1VRIn/OX32lCJK/E+169suf1bYLNvw4cPx4YcfAgAOHjyI\noUOHnvu71tZWfPHFF9i8eTPWrFmDiooKDB8+HBaLBSNHjsQrr7yC7OxsDBzYrrD84IMPsGrVKrz0\n0kuoq6vDlVdeiWPHjuGmm25CW1sbWlpa8Omnn2LYsGE/OSb2A7xJZ1JEBhZHGWyu49RV9HNMd2Hp\nFcuprjU+NGT1317bHnjhpbbZsjjK4GptoH6ndlc1qpzH6C0qbnvnZmqLChGuDCZdBh75zV+pTiMi\nVvvr1HoYew+kimt8xyXz+ASAyDC+E46ooqSrtYGaz2wvxR/fnU097kUU9832Ujx24GHqOGcMy8fS\nK5bTC73sNnAGjRGPjF5Ff/Hfb91PzdfdSEpKQkFBwQ/+XXNzM55++mkkJyef+9lPtWH1JyKcEWxO\nK9Z/8QL1nLa7qnG8oZJ6HzfpMvDo6Ceo90eDxojNOduo55+INjYAXyRq0mXgsatWU7/P2sZaRWRg\n0Bjx3P+sD3oxq49WL38/3XHpndT9NHnoFCREX0BtlZqdfDXCEIbs5KtpOUcOGKWIDEy6DNyeNpfu\n6HemiddSEGg/Pue+dwf1ONWp9RgUz3eqChXHSYlEIpFIJMGBzWlFbuGNUggk6fFIAVBg8c1XsbsH\nSDrOl6fKFVHif6obbIoo8T869QBFlPifD6re6/JnhYmAxo0bh6ioKEyfPh0rV67EwoULsXv3bmzZ\nsuWcI9DkyZORl5eHvLw89OvXD4MGDcJLL72EadOmYc2aNXjggQcAtLcPmzVrFqZPn464uDiMGTMG\nQ4YMwcSJEzF16lTk5eVh4sSJ+MUvfvGTYxKx4pu9QllEcQKAEAEQwC8kTB46BbpYPXXSX9TKfI/H\nQ82nU+sRE66mTnxrYxMRGRZJ3XazvRQLPriLKoYQ5R7BXu1+Ud+LFJGFiOKEQWPE7slvU1/YRLQA\nNOky8Pp1b1KLXXZXNawNVdSXJJ1aj/iovtTz0+a0YttXr9LvS2EIo57zNqcVt79zK11UlbWBK1Dr\nbowfP/7c89J/YzKZoNcrj8WfasMa6hg0RvoKNJ1aj4Fxg6jntNleigc/vpd6fwTETLyxHQJFYLaX\nYuH/LqB+nykJqYhABNXRT4QLkigHNrur+twfFpsObcCag6uo7eXsrmqcaa6n38f1agP1nBfRtk3E\n9ylikYmIBREGjRH/L/1O6jVPhJBSIpFIJBKJRCKe4/XHf/4fSYQihXCB5UrDVYoo8T/O5npFlPgf\nfZxBESX+R7oxBZ6L+l7c5c/+cHWJQFhYGJYtW6b42ZAhQ87995w5czBnzhzF3/fr1w/r16//Xq6s\nrCxkZX2/WHjrrbfi1ltv7fCYfEVh1iSgCPeSzKQsXBCdSHfvsDmt9MlPu6saNqeV+p0aNEY8dtUT\n1LGadBl4IGMJ3bmmDW3Ufb/jyHacbq7FjiPbaaItky4Duya9Rd32vbY9aEMb9tr2CFmdz4QtrknT\npuOC6ERq8dSgMeK2tDuEFCeY5ybQXuw6Vn+M7lzDXu1u0mXg2XEvUvNaHGWoabTD4iijfqds54z2\na5OHem2yOMpQ5TxG3XaTLgPF+dxWdT2dn2rD+mOY7aX082/ToQ1C2hixr5EGjRHbrttJf974x+/W\n0b9TNj6BCVtYxb7n6tR6GOOSqKINnVqP/mo93WmEjSgHNpMuAzsmFlKP0cykLOhiue2BHe4atHhb\nqPcyu6saJ8/WCHk2YpKZlIV+0QnU71NUaz0PvNR8RRWFuOeDuUiISaAuDGDvcx8i7qESiUQikUgC\njxQRBx6b04pb383DgdsOBHooPRoR8wYSSSgxQncFPjtVhhG6KwI9lB5LdHgvRZT4n6N1XymiJLQQ\n5gQUjLCLwiLaKbSvfK2jrqq0Oa249vXxdPW2iAl6s70Ut7ydT131XVRRiOX7l6KoopCWM02bjgFq\nI1UMIsplprz2MDXfHNNdmH3JbVR3qU2HNuDuD+ZQVz0bNEbc+Ivp1BcVi6MMJ5tqqCupfQUP5vEJ\ntJ9Lk3flUM8ls70Ufy97iu5ywcbmtOKv5seo17w0bTqSNIPp7hlieqlyi3Kitv0Ko3yBYvJTbVh/\njEm7rqGezyKu5SIR0b6Jfe0RgQhnJRET5QaNEQVj/07N+V0hCAsR225zWvHARwuEHEsiRAt9e/Wj\n5kvTpmOQ5kLqfUeE+5cILI4ynG46RX3WFLFwxeGuQauH+x6Ypk1H/1gddb+b7aX0e50v73U7sul5\nX/j0BWo+iUQikUgkXUOKHgKLQWPEjmk7Aj2MHs98033yXAggb39TqIgS//OZ46AiSvzPsfqjiijx\nP5ckpCmixP9c3C+ly5/tUSIgEYUZdvsiAICKm66kqhg213FqCx9RiBAWiZhQBoCIMK6R1tenv1ZE\nBiIKsmZ7KTZ9+RK/PYcqktqeY9OhDVi2fwl129tXUnPbq9U21sILL90JSYSDgojzE+Dby4pwUDBo\njHhm3PPUnOst61DbdBLrLetoOdO06Rjcm1s4FbHtks7ja6n6Y/xQG9afw+vlCsZEtMbxwRZKisCg\nMWLWJbcIERexCYWe8iKEMKKEICKcqkQ4AYlAlABs56RCek62+5cIRLTIFdEaWRubiEjyM7HdVY3T\nZ0/Rr0+tbfzWmCKEVZsObcCtuzvuciyRSCQSiUQcwb6woycwMH5goIfQ4/nju7ODfiFod2ZqSq4i\nSvyPb/GumEW8ko4g24EFni9qLYoo8T+VZ451+bM9SgQUCpPpOrUefaMTqMWJzKQs9I3i2soD/2nf\nJKKNExO7qxonG09SJ5TtrmpUu2zUnJOHTkFCrwsweegUWs4Zw/Kx9Irl9IJsW1sbNZ9OrYdOraMe\n96KK0SpuzVxIGw2gvdi1dOSfqdc8Ee0kbE4rcgtvpE6w2JxW3FNyJz0nuxi9aNRSTP1FLhaNWkrL\nadAYkZ86m+5Iwf4+JR3DaDRi69atAIAJEyZg2rRpir/fuHHjuVarvjasr776KrZs2aJowfpjPP8/\nL9FdQZhiTh9FFYWYWZQb9EIgEc5uNqcV2a+NpZ5/ZnspJu68mjqZJ+JaLkJUJeLeCIA+MRpq110R\n71ehklME7EUmItoD69R6GDRGeru+3lHxdAG7h9wmFWgXXRviuK6wM4bl4/kJz9PySSQSiUQi6Rq+\n9smh8iwukYji9evelO1vA8jOr15TRIn/GRyfrIgS/3OsvkIRJf5n3OCrFVHif87n+O9RIiARk+ns\nfBZHGWoa7VQLeIujDKeba6k5AZ97S4SQgh+T8trDaPW20NtikTvuwO6qRkOzk94KblfF69Tj1OGu\nQRvaqJPpdlc1Trjs9JW/bGENACFXTU2Uhp7TbC/FH/41i1qY1Kn16E8Wa4mipa2Fmk9E+xyzvRQ7\nj75Gb8fEdsAC+N+nJDhYuudBurjk2tfH0wURIgSIIshOzsETYwqoBfwdR7bjRGM1dhzZTsvpcNeg\nhdzGBwAaW93UfCJEVWZ7KX01o9leiuvfuDZkVkjKYkbPRMTkfUxELDVfSVUxHGdrqO612thEhCEs\n6O8fPn6Z+MtAD0EikUgkkh6PiPkfiSQUkQKgwBIVHq2IEv9TXntIESX+54IYrSJK/M/+bz9WRIn/\n0akHdPmzPUoExEbEyoA0bToSorXUVYUii2cqL7l3mQBEuOHo1HrER/ehr37Vxw2g5hTRTiJNm44B\nau7KVxGW+janFde+Pp4ugBJROCV35PkP5NPT7qqGo7GGKtYyaIxYePli+uRKZHgkNZ8IHO4aNHua\nqcdTSkIqwhBGF2eqBFzqj9cf5yeVdIpjZ76hCoSLKt5CG1pRVPEWLSfQfn9MjOULENnOQjanFU8f\nfIp63xlpGIUIVQRGGkbRcop41rS7qnH8TBX1/iBCVGXSZeC2X/6JOplp0mXgH79bR80posUWIFc1\nS3iIOEYzk7JgjBtIFfGLWLwAtC+ysTVYqfdQs70UV62/ipZPIpFIJBJJ15ECoMAj54wkEkmgSYi5\nQBEl/se34JC98FDScbSx/RVR4n9qGx1d/myPEgGxC80GjRHzTfdRc1ocZahtctBde+hqAB/kI0gb\nm4iosCh6u6ENh9dRCx4iVqoCwOnG09R8NqcVt79zK73YExsZQ83Xvko3nLrfS6qKYXMdp68mDgU3\nCqC9KHn/iMX0Qic7pwhXBoPGiCcyn6K3xGK3uhFxvXO4a+CFN+iFajanFZO3TOYmlXQJZkvPRaOW\n4q7LFlBb3AH/but5litALKooRH7RTVQhkN1VjSrnMeo4TboM5KfOpl53RTxr7rXtQRvasNe2h5bT\n5rTiyU//Sr3ubjq0AWsOrqK6pdmcVqz8ZAX9WUtUOyz2u4uk58I+jgwaI3ZPfpuaNzs5BxuyX6G3\nWNPGJiIyLJL6DFdeexjNbc20fBKJRCKRSCShipwzkkiAhmanIkr8zwmXXREl/ufU2VOKKPE/X53+\nUhEl/ueivkO7/NkeJQISYf9/679mUnOKc1nhu5cAgMfjoeYz6TLw6Ogn6MWuyjPHqMUuEStVC8xP\nor6lDgXmJ2k5LY4yVDm52w4A7pZGar72VbpcJyAR+wgAVAIsUUS41hRVFGL5/qXUAreInCZdBr3H\ntM1pxQMfLaAXZFs93JZYJl0Gdk16i7rtIpwzAL4TkEFjxI5pO7hJJZ1m9Zi1VJc8AHQBENDuBNQn\nqh/VCUgbm4hwsvgUANo8bdR8a81rsO6LZ7HWvIaWUxubiHAVd9v79uqriAxEPMNkJmVBF6unPxuw\n7w+iECG8DSWkA1LwI0Kgxn4mAsQ8w6UkpCJSFfxOlhKJRCKRSCSikXNGwYF8fwoscVEaRZT4n14R\nvRRR4n8u7peqiBL/E6YKU0RJaNGj9hq70CyqNZCItisiKK89jDa0obz2MC2n2V6K+z66m1qcEFHo\nM2iM+MtvHqNOVM81zUN8VDzmmubRcqZp06GNSaSKyiyOMnzr4trfp2nToYvVU8dp0Bjx3P+spxcT\nVGRXLVEtP0SIQdK06UiM0VH3E8DvMS2qf3tEGL8ww75/2JxWrP/iBfqLenMbv8A9MH4gPaekc7AF\nQICYSSKLoww1jXbqfUfEM4yInCMNoxCOcGo7MAAA2d0rISZBERlkJ+fgzsvm0wv4IiZvhLX1JCNC\neAvwW+sBoAuVbE4rbnxjEv0aJWLbJaEB+zwy6TLw0eyPqDklEolEIpFIQhU5ZxR4ZCvpwOJwn1BE\nif8xagYposT/HK37ShEl/qdfrwRFlPif8+k60KNEQMwV5EB7QXxQ78F0gYWtgSuwENXCKDMpC4kx\n/amrqctrD6PF00ItoAGgd0Mz20sx++08aoHC7qqGq8VFbSPSXjg9QRfssIUgdlc1Tp89Rd12m9OK\nO4vvoL6s6NR6JGkG068lzO32YXNa8azl79Ttt7uqUd98Wsh42YhoUcFuMVZUUYiZRbnUAqIIAZTd\nVY0T7mr6fpf93QMPezJHRNs8QIyoMSUhFRGIQEoCbyVJZlIWLohOpD4X6dR66OMGUO87DncNWsnu\ne2nadAzufSH12aCoohBrDq6it2z7tsFGv541tnIdEgFxqy5FCIDY9zKzvRQTXh9Pf84+3lAZ9G0F\nJT2bK4xXBHoIAcfj8WDp0qWYNm0a8vLyUFlZqfj7nTt3YsKECcjNzcW2bdsAAM3NzZg/fz6mTp2K\n2bNn49ixYwCAL774AqNHj0ZeXh7y8vLwz3/+09+bI5FIJBKJRBKyiFhgKek48dF9FFHif47VH1VE\nif9xt7gVUeJ/BscnK6LE/5xPW8geJQJiq5cNGiP+/rvnqQ9DIoRF7e3AuMUe4N/CjUaucENEm4by\n2sNo9bZShUV7bXvQ6m3FXtseWk4R40zTpsMYN5Au2Klr5u53nVqPpN6DqEVO+/9n797DoyrPvfF/\nMzlAMjMEEhMmzpBgqAimEcoYLXaDvLS8RCNCzIZAaBCx9rCFouJuwSLtBi1si9oAfa0nykGCCVs5\nmZpuENC28KNxuonhVAsphxkzJITTZBJymJnfHzHZXW2tmNzPzCzm+7muXk8hzO2zstasWbOee923\ntw6nr5wSnafVbEPeTfeLvucd7io8sOM+XbTmsFty8MqEX4kvIKqgIrlBusWYqgRN6fZ/dksOtk6u\nEG/Zxv7uoTdp60Tx98pFBT2aXR4nfnFolXhS50BjmvjnzuV22URJt7cO9d5zojFzM/Pw4t1rRJOq\nrGYblt7107C/QWgxpsEYaxLd7yoqJKpKqAPkK+yoaC93wLUfHZC9zrYY02BJkE2oU5H8BuijshKR\nKrt370ZbWxvKysqwYMECrFixovtnFy5cwKpVq7Bx40a88cYb2LlzJ5xOJ8rLy5GQkIDy8nIsXrwY\ny5YtAwAcOXIEDz30EDZu3IiNGzfi3nvvDdVmERERERF9IZdbL2lGCr5Ln/7uL3EfUAQ7/On9zsPC\na0507ZLjU3r82ohKAloxZqXo4oSKRWGr2YbJmQXiiUUD42VbLQFqniQHgAF9k0TjXbx6UTNKGG29\nCwbh9hwzs2Zhzq3fFm/PEmOIEY1nMaZhkEk2YcdqtqF80jbR495iTENy/A2i81zjKEHJoZVY4ygR\ni2m35ODlb6xV0hJLunKNy+PE8j88E/alYF0ep5KkzwX2H4gfo1azTfQYVVGRAVDTso393UPP2XQW\n+87sEYu378weuJvrRGMCnYkwZ4STOt3eOpy/Wi8aU1mbWINsOUMVbQMd7ip8Z/ecsG/nuq5mLS62\nXsC6mrViMbNTRmBggnyrzMaW86LxgM79NHnbPaL7ScXDBvlDC5BmvBH5QwvEYgJArHBbT6vZhq2T\nK8SrBEpXF3K4qzBl+71KWqxJC/drTNV2HN8R6imEnMPhwJgxYwAAI0eOxOHDh7t/5nQ6ccstt6B/\n//4wGAzIzs5GdXU1Tpw4gbFjxwIAMjMzcfJk55O6hw8fxr59+zBz5kw89dRTaGpqCv4GEREREekU\n24GFVkrCQM1IwRcXHacZKfi67rVJ33Oja3fVd1UzUvA5Pac//x99hohKAlKRsCNdFlFFkoGKyi1A\n54nXarKJnoCtZhu+nf090d/pXPt8TLu5CHPt88ViAkCMIVo0XmVtBX519FXxthd13k/Eq+FsuV82\nYQeQb4lV01CNOu8nok/m5w8tQFKfZNFFKZfHiecdzympXDPvPdl2aADQ7msXjaeC1WwTT/pUscAN\nAO2+DtF4uZl5WJ9bKlrhQxX2dw896Zaew5KHI9YQK9piq4sPPtF4FmMa+scliVcFyTDLVgWxW3Kw\nbfKvRRPxVCQ12i05ePv+d0Tn2dBcDz/8oskliX0SNaMEFS1Nt378FupbzmHrx2+JxewSCATEY0YJ\n9921mm349QO7w76yFCDfflRFdSGLMQ0D+sie71weJ/K354leZ7o8TkzdMUU3Cw3SCdeVtRWYXDZZ\nNKYeNTU1wWQydf85OjoaHR2d18sZGRk4ceIEzp8/j5aWFhw4cADNzc0YPnw49u7di0AggEOHDuHc\nuXPw+Xy47bbb8IMf/ACbNm3CoEGD8Itf/CJUm0VERESkO9L3VumLOXW5VjNS8A3pf7NmpOCra3Jp\nRgo+Q5RBM1Lwxcck9Pi1EbXXVPQxlY43oO8AzShBReWWLua4fqLxKmsr8MT780RvqlbWVmDLnzeL\nxrQY05BmtIr+TlW0BrJbcrDiX54P+/ZNDncV7t+aK5pgkZuZhyV3LhNNhnB76+BtbxJPqlJxbnJ7\n63C26bR4clWU7DqfEi6PE0/s+77oIpKKBe6ahmq4vGfF23fpIQGIwsPltkui5wi7JQf/dtt88c+c\nytp34Qv4UFn7rljMmoZq1Le4Rd9/VrMNv5wg2yYWkK/E5XBX4du7HhJPapSeZ3bKCNxolE02n2uf\njyV3LhNNDLcY0zDILHud3Vlx0iBacbKb8Oe4ilbGeiKdsKKiulBNQzXONcue72oaqnHqyl9EY7q9\ndTjrkb92VZFUpKLyYmNLo1gsPTOZTPB6vd1/9vv9iInprGybmJiIRYsWYd68eXjiiSeQlZWFAQMG\noKCgACaTCUVFRdi1axeysrIQHR2NCRMm4Mtf/jIAYMKECTh69GhItomI6IvSS0IsEV3fpB+opy/m\nlqRbNSMFX0PzOc1Iwdfqa9WMFHxxhjjNSMHnabvS49dGVBKQHjKXZ2bNwot3rxFtCaWqcovVbMPU\nm6fLty4TbqmQnTIC6Wb5xYm4aNmWAhZjGpL6yravcrirsPB3C0QX+lweJ4oqpop+CVDRSsLhrsJz\nHz4ruu0WYxpSElLFE+pUnJtUJf/FCLfSAPRzg0v6d5mSkIpYQ6xo4p8qetlH9MW8OmGdaOLGpiMb\nUHJoJTYd2SAWEwBmZ8/BDX1SMTt7jljM3Mw8vHD3atGkORUJiCpYjGmwmdKVJIdL69dHNtkcgHhl\nSKvZhiWj/0P8szxW+Dqzi4qqPdJJKyquNQGg3S9bzdDlcSL3v74uPk/pClC5mXl46NZHRM93uZl5\n2JC7WTSmxZiGpPhk8YpFU7bJViwC1LQrHJc+HlazVSyeXo0aNQoffPABAODQoUMYOnRo9886Ojpw\n9OhRlJaWoqSkBLW1tRg1ahRqamowevRobN68Gbm5uRg0qLPa5MMPP4yPPvoIAHDgwAFkZWUFf4OI\niL4gFe3NiYh6QrqCMH0xRxtrNCMF36XWS5qRgu+rN35NM1LwNXc0a0YKvuT4G3r82ohKAlJBxZey\n5Phk8ZgqbDqyAUsPPi262Of21uFiq2xLBavZhgdvnSN+0SrdTaGmoRrnWurEq4IE/PJtH6SpaGFk\nMaZ1/0+K21uH+uZz4k8oq6BiUdJqtqE0b4v4Qp/0DS6r2YYXxq0Sn6d0iwqLMQ03Gm1hvxDPm5DX\nryX7nxLdryoSmYHO9/SuafvE39PPO/4zIo9rVUkr0lScy1VwuKvwyH/PFk06VlXJ0WJMQ7p5sC6S\nmaV1tsh1ibdtO9dSJ5q0s8ZRgqUHnxZtDb3pyAasPfqKeIKmdOUaFa18axqqccZzSvz7FQAYDPK3\nUkxxps//R9e5CRMmIC4uDtOnT8fy5cuxaNEi7Ny5E2VlZd0VgfLz81FcXIzi4mIkJSUhIyMD69ev\nR2FhIUpKSrBw4UIAwE9+8hP89Kc/RXFxMf74xz/i3/7t30K5aURE10RVtWgioi/qkV2y33Ppi+nw\nd2hGokhUVff/aUaiSHS5F4mITALqBRVPqaooLa7qadqZWbOw5M5loot9nW22bhRdnFCRrAQAHQHZ\np4lVVAWxGNOQkSi72GM12/Dt7O+J35BQ0Uaipf2qaDyLMQ0Z/eQXz1RwuKvwnd1zwv7LmoobXC6P\nU7xkrdtbB2fTGfEEsITYnvfzDBar2cY+4Ncp6VYuAMQTgLpIH3/7zuyBs+ks9p3ZIxZTRaIkANFr\nQkDd54P0daaqykpKPheFW2w53FVY9LsnxedqNduw+usviR+jKlpiLbpjsfg8/X6/aDwVbZzzhxYg\nqU8y8ocWiMUcljwcsYZYDEseLhZz05ENePz9uaLfr7qSiqSTiwKQfyBCRWtogDf4gc7kqqVLl+LN\nN99EWVkZhgwZgkmTJqGwsBAAMHfuXGzbtg1lZWXIzc0FACQlJWHdunUoKyvDa6+9hoEDBwIAsrKy\n8Oabb2Ljxo148cUXYTIxyYqI9IHfvYkoHCT1la3SSV+M1WTTjBR8faP7akYKvqu+q5qRgs8f8GtG\nCr7e3CtiElCYUdGeAgCutPa8Z9xncXmc2PLnN8Vv/EtX2BmXPh5W4yCMSx8vFtPtrcMnTbJPE6uo\nCmI121A+SbYVXGVtBR5/f654opp0pZF9Z/bgXEud+ALv01+Vr56gohKF3ZKDl7+xVrSKgKqEQmkq\nEovslhxsnVwh+vtUlTAgTUVSFYUH6VYuejIufTwGxqeJXhsAEE8UrKytwKzKGaKfuXZLDv7d/pQu\nPh/afbIJ1w53FaZsv1e8as/kzALR36fFmIaBCbLVDIHO/fS93d8S3U8ujxOTtk4UjelwV+Fbv3lQ\ndD81NNejA7KtZ1Uk17i9dfC2N4meS+yWHOyYUileWUoPTlw8oRnDmdtbB+cVXmsRERERUXiQrtJJ\nX8y5ZrdmpOBram/SjBR8bb42zUjBx6pkoXelref5HRGVBKTiKVUVrXHWHX1ddK41DdX4xOtUctFi\nVjUMAAAgAElEQVQmvTjj9tbB3fyJeDuw5WOeC/uFdkBNVRDpBcnslBEY3O8m0co9KpI2utrqSbbX\nc7irxEuhujxOTNsp22aqK+7zjufCfkFWT62mIvXpF5Yjv36pqMAmXbWmi4pzRHys7JM8KhJMVFTG\nqKytwNKDT4vvK+nPBwC46msRjxkQzjZ/dv9SlP+5FM/uXyoaV8U1YU1DtXgFMBVVtRqa69EWaBNN\n2FFx/Wq35OC5MS+KJ4D175Mkfs1RWfuuaLxx6eORGJcomkh58epFzRjO3N46uDxnxR8IGWgcKBaP\niIiIiKg3UvqmKrlvRKQXpliTZqTg6xvTVzNS8HEfhF5S36QevzaikoBULDRLL4pazTYssP9ANG52\nygjcaLQpuWiLjY4VjWcxpsGSINsOTEXihsWYhhtNsiXgrWYbXhi3SnTfq1iQtJpteOkbr4V9QoCK\nxR6LMQ3p5gzR/e721uH0lVPiyVqqEjek3/Oq2oFJn+9VxdRDZSWA5civV9LHtIqqNYCa95/bW4c6\nr2zSMQB0+GSfihiWPBwGRItWGgGAKOn+VZBP2KlpqIaz6axowoqKFj65mfcgGtHIzbxHLKaKa8Iu\n0vteRdK1iuQ3q9mGyZkF4tfZC3+3QPQ6u6ahGuda6kSP+2f3L0XJoZWiiWpbP34Ll9suY+vHb4nF\nVNFeTUVMADjeeAwd6MDxxmNiMd3eOpzznhOLR0RERETUG+evNrASUAgNMqdrRgq+C60XNCNRJGJb\nvNC7cLXn56CISgLSQyUDh7sK3971kOjNZACIjY4RjQeoa2UTa5BPLJJO3ADk25a5PE58f8/3xBMC\nfD6faDwVrYFUVMOxmm3YOrlC9Pi0mm1YNf4l0ZgqEsq6qEgsUvGeVxFP+nzPajh0Pbql/3DRYzol\nIRUxUTFISUgViwl0Ld4/IH7uvaFvqui593jjMfjgE10Ubmiuhx8+8Yoo/WITRZNkVSTs5GbmYc6t\n3xZvWedt84rGs1ty8M4D/y3eXk1FG0YV79HslBEYGJ8mejypaNe3xlGCkkMrscZRIhYTkC9Jve/M\nXs0ooc77iWaU8MdzH2pGCTOzZuHFu9dgZtYssZgqktRUsRjTYDFZQj0NIiIiIiIAUPZQOV2bxpbz\nmpGCLzU+VTNS8EVHRWtGCr5LrZc0IwVfSy8evI2oJCAVi7fSN+ctxjQMTEgTrzTianKKJwQAUJIN\nrqLSSPmkbaL7X0XbMre3Dqcu/0U0ZkNzPXzCi4dWsw0rxqwU/32qqIYjHU/Volx8jHzLD4e7Cg/s\nuE88oZDkqKr0oIfKQhQeyv9cioX7nhSL19Bcj45Ah+hnDgBsOrIBSw8+jU1HNojFdHvrUN/sFv2c\nOHX5lGaUoKIiytaP38Ll9kuiFTwcbodmlLDpyAasPfqK6H7f+vFbON9aL7rtKqhKPLVbcrAjv1I0\nYcntrcOltgvi11xRwsWqLrde1owSDrj2I4AADrj2i8XMTrlNM0p4KPthGGDAQ9kPi8UcNfB2zShF\nMvEL6Ewm3JC7WTyZcFjycMQYYkWrtLm9dTh7+axYPCIiIiKi3kiIjQ/1FCJaV+WH3lSAoN650nZF\nM1LwXW67rBkp+BJiEzQjBV9vqrpHVBKQNJfHiak7ZKuXAECccBJMQ3M92v3t4otylbUVeLCySLTt\nh8r2B5JUtC0DgCjhFY/czDx8f+QC0RvfLo8TD1V+U/S4V1ENR1UrNBUVZlRU17FbcvD2/e+IVyZQ\n0VZRmp7agamoqqWHfUThwxzXTyxWbmYelty5TMliaxSiRBdbVSQseT69KeARvDmgooqF03NWM0pI\n7JOoGSWo2Pa59vmYdnMR5trni8VUcb0BqGvDKP19wGJMQ0q8bFWtfWf2wN1ch31n9ojFnJ09B8YY\nE2ZnzxGL+aUBX9KMEoYlD0cMYkTPd3ZLDhbf+R+i14Rz7fOx5M5lou8lVW1SpT+TgE8f3Im3iB73\nW46XwQ+/WDwiIiIiot6Q7oJARPRFJfVJ0owUfHGGOM1IwdebVmxMAuoFt7cOzqYz4k++6uUCKztl\nBFLjLaJlIVUtiqu4oSydrGUxpiHNKJsIU1lbgVWHnhdN1Nr68VtwN9eJP0UvXQ2n8/cpn6ilgqqF\nPsnFHkBNFShAvnKNXtqB6SUmwOpCoVJdXY3i4uK/+/s9e/agoKAAhYWFKC8vBwC0tbVhwYIFmDZt\nGubMmYNTp059bvzkPjeILog73FVY/oel4skQxxuPIYCAaJut7JQRuihtraLCTlfil2QCmArZKSOQ\n1CdZdB9V1lag/M+lotdFFmMakvomi19vqKjkV1lbgVmVM0S33+2tQ0Nzvej3oZlZszB/5JOibaH2\nndkDb0eTaGKRikpdnS2hZKvCVtZWYNnBJaL7HYBoAlCXdl+7eEwV1zBubx3Ot8ge9/PsjyExTi6R\nkoiIiIioNzoC8tfmdO1iDDGakYKv2desGSn42vxtmpGCr29MX81IwZfQi7VzJgH1gt2Sg1cm/Ep8\noV26/H1KQiqiEIWUBNnelW5vHS61ypb/t5ptWGD/gfgCtoobym0KYkqXVEtJSEVMVIzovs8fWoDU\n+IHIH1ogFlNVBagOf4doPFVVVvTSsktPlWtUJFaFe4WyLioSgFTsI7a8+OdeffVVLF68GK2trZq/\nb29vx/Lly7F27Vps3LgRZWVlOH/+PMrLy5GQkIDy8nIsXrwYy5Yt+9z/RqpxoOicG5rr0R6Qrzyo\noiIMAPgCsp8R8+yPwRzTD/Psj4nFVFFdaHDiYM0o4feu32pGCfvO7MGF1kbRpA2gdyVU/5GahmrU\neT8RbZHrcFdh0taJ4tcHKQmpiDHEil4XWoxpuEG4EpDDXYVfVP9cdPuHJQ9HrHD7pplZs/Di3WtE\nk5U6WxWeE/1+lZ0yAgP6JIknPUonFQFAU7tHNJ7L48Q9b31dSQvvNJPswwZubx1vbBIRERFR2Pik\nySX+8DuRnvjg04xEkcjb7tWMpC8RlQQkffPP5XHiecdz4nFjDLIVZg649iOAAA649ovGVXHz0+Gu\nwiO7ZosvesQKV+1xe+vgbv5EPAFq0R2LRRfwO9ts2cSfTpdOVlKRXFLTUA1Xk1N0UU5FkprDXYUH\ndtynJBEoUivs6IVeWnep2EcujxN5pfLtOa4n6enpWL169d/9/cmTJ5Geno7ExETExcXBbrejqqoK\nJ06cwNixYwEAmZmZOHny5Of+N6STL09cPKEZw5mKdkNubx2aOjzCi/e3aUYJF69e1IwSvnzDbZox\nXKmoLpSSkAoDDKKJNZW176Ij0IHK2nfFYnaJEq446vbWoaFFNmnlgGs/OgIdot9d7JYc/Ntt88Uf\n3hiXPl40nooWuSoS6lRUlVJxXlZVwRSQf9jAbsnB3gf3isYkIiIiIuopFRVv6dq1+lo1I1Ekam5v\n1owUfH2i+2hGCr6LrT2/hx9RSUDSi62qFsRL87aIxhxtvQsxiMFo611iMbvERMkm1wBAQLgfmtVs\nw9Sbp4sn10i3mnK4q/Ct/35QPBlEOmHH7a1DnVc+AUr6vZSbmYcX7l6N3Ey5RAOHuwrf2T1HdB/Z\nLTl4+/53xBelVLXBi8RkHVX01LqL+z34Jk6ciJiYvy/529TUBLPZ3P1no9GIpqYmDB8+HHv37kUg\nEMChQ4dw7tw5+Hz//EmV2e9+U/R4udx6WTNGmi3HyxBAAFuOl4nF7KpaIlm9RAUV1YVOXT6lGSXs\nO7MHja3nRZMMDrj2ww+/aMKKigpQXaQrIQFAu1+2OubxC8c0o4RNRzag5NBKbDqyQSymy+PEhPJx\n8g+ECH+/mpk1C3Nu/bZoxSIVVFR9G9B3gGaUUtNQDWfTWdGHDQDgcP1h0XhERERERD3lbq4Tv96l\na8eF99Ab2GegZqTg69+nv2ak4KtvqdeMFHy9+RyIqCQgFYutemg5Y7fk4Gd3/1w8yQCQv+lvt+Rg\n+5R3Ree66cgGLD34tOhNfwCI70Ufvs8SJdwLTkWbLbslB9/Nnid+PEm3+3B5nFh39HXRhRlVCTuR\n/FSFXqrhqKKX1l3SrGYbXp30aqinoUsmkwle7/+W3/R6vTCbzSgoKIDJZEJRURF27dqFrKwsREdH\n/9NY51pkqyPkZt6DKEQhN/MesZiqqKiGMy79/2hGCV2JJZIJJioWxcelj4cpxixaFSWxT6JmlKCq\ntZy0FeNW4uu2/4sV41aKxrUY02Du00/0uqOy9l0EEBCtWjQsabhmlKAiqWxdzVqcb63Hupq1YjEB\noM7rEo1XWVuBtUdfEa3ao6K1XG5mHr5mGSuawD8ufTwSY/uLV2xqbGnUjBI2HdmAb+38llg8IiIi\nIrr+VFdXo7i4GABw+vRpzJgxA0VFRfjxj38Mv98PACgvL8cDDzyAadOmYe/ezkqTV69exbx581BU\nVIRHHnkEFy5c+Nz/VkxUjOj1Pn0xzb5mzUjB19jaqBkp+K76rmpGCr44Q5xmpODrTUW4iEoCitRK\nBg53FRb97knxCjOdFWHke8NKJ1jMzJqFJXcuE336VUXFJhXJNS6PE0/s+75oQoCKJ6k3HdmAx9+f\nKxrTarZhxZiVSpLqJKms2CPdXk6FSG4HpoJefp8ujxOP/vrRUE9Dl4YMGYLTp0/j0qVLaGtrw4cf\nfoivfOUrqKmpwejRo7F582bk5uZi0KBBQZ9bQ3M9AgigoVn2yQAVi60qEmFUtJpSYVz6eNhMg0QX\nxdfVrEVTh0c0GUJFNRgVvjTgS5pRQmVtBd5z/rdo0gbQ2Rqp8ep50eQ/FVWgRlvvgiEqWrSK6Y/u\nWoKvWcbiR3ctEYt58tKfNaOEJ/c+Bm+HF0/ufUwspsPt0Ixi/LLVW+fu+i5+7/4Ac3d9VyzmvjN7\ncLn9kvjDBjUNH2lGCZIJakRERER0/Xn11VexePFitLZ2LgYuX74cjz32GEpLSxEIBPDee++hoaEB\nGzduxJtvvonXX38dL7zwAtra2rB582YMHToUpaWlmDJlCv7f//t/n/vf6wh0iN/foWvnh18zUvD5\n4NOMFHxtvjbNSMHX5m/TjBR8/eL69fi1EZUEpIKKagvSyToWYxpspnQl1UakK9eo4PI4sb327bBv\ni6QiuUaFmVmz8OLda0STqmZmzcL8kU+KxlSRAKUnDncVHtk1W/x8okK4J6x0UXEsRWrrLqvZhq2F\nW0M9DV3ZuXMnysrKEBsbi4ULF+Lhhx/G9OnTUVBQgIEDByIjIwPr169HYWEhSkpKsHDhwmuKK7nI\nrmyhWQEVC7j7zuzBhdZG0cXmufb5WHLnMsy1zxeLaTXbsMD+Q+FEZrtmlHDfkEmaUcKJiyc0o4SU\nhFTEGeIi9glJFdWVjjcegz/gw/FGuQSwNY4S/N79AdY4SsRirr13I4YlDsfaezeKxXzwyw9pRgkq\n2ss1NNejA7KLAqNvvEszSnjv9C7NKEVF5bfD5+U+j4iIiKh3IvVeIoW39PR0rF69uvvPR44cwR13\n3AEAGDt2LPbv34+PPvoIX/nKVxAXFwez2Yz09HQcP34cDocDY8aM6f63Bw4cCMk20LUzfLp0a+AS\nbsj0jeqrGSn4rgauakYKvoRPO+IkKOiMQ9cmLCsB+f1+LFmyBIWFhSguLsbp06c1P9+2bRsmTZqE\noqIibNmyBQDQ1taGBQsWYNq0aZgzZw5OnToFoPOC5l//9V9RVFSEZcuW/dPShsGkou2Kw12F/O15\nogv3VrMNW+7fpqQiyop/eV5JZRRJeqmMoSK5RlU1mGHJcu0ZgM7j/uWaNeIJK83t4V8uU0XLtm6y\nD2hHNBXne7207gLU3AAblBj8SjV6Y7PZUF5eDgCYNGkSCgsLAQDjx4/HW2+9hbfffhszZ84EACQl\nJWHdunUoKyvDa6+9hoEDr61f9dxd3xGbr4r2TYCaJIPslNs0o4RhycMRjWjxz0jJCjNAZ5WZJ96f\nJ1plJjczD/NHPinaxkdFUpmKqj12Sw4W5jwtej2sovoV0Jn0Fw3ZCjsqDEsejugo+feStDWOEhy/\nfEw0sSglIRXRUdGiSWVThxUiClGYOqxQLKaKhDoVbRq/njFBM0p55+ROzSjhyzfIfR4RERFRz+np\nXg1FlokTJyImJqb7z4FAoPsBbaPRCI/Hg6amJpjN5u5/YzQa0dTUpPn7rn97LaS/k9K1i0GMZqTg\nawm0aEYKvihEaUYKvssdlzUjBZ/Hd22f2f+IsiSg3bt3o62tDWVlZViwYAFWrFjR/bMLFy5g1apV\n2LhxI9544w3s3LkTTqcT5eXlSEhIQHl5ORYvXoxly5YBAJ5++mk89dRTKC0thclkws6dOz+ztGEw\nqUguUVW1R7plF9CZuPHU7/9dNHFD1RctVdsvTTIBCOic47d3PSQ6V4e7ClO23Ssa02JMQ3LfFNHj\n3u2tg9v7ifi+lz42VVUssltysG3Kr8WT9CKVivO9XhIUeQPs+mYx3igW63LrZc0oRcWiuIrEoobm\nevjgE62MUVlbgQcri0QTdrJTRmBggkW0bVllbQVKDq0UnaeK6kIqkmsqayuw9ODTots+LHk4Yg2x\n4kkwFmMabGbZ7xkqkkEOuPbDF/DhgGu/WEwVLQA7k6miRJOqjjceg0+4CpLFmAarySa630db70KU\n8Lar+H2OSx+PfnGJou0PAaC53asZJbASEBERUXjQy70aIoPhf5f2vF4v+vXrB5PJBK/Xq/l7s9ms\n+fuuf3stJO+Z0BfDdmCh1wd9NCMFX7whXjNS8MUhTjNS8PXmHKQsCeivSwyOHDkShw8f7v6Z0+nE\nLbfcgv79+8NgMCA7OxvV1dU4ceIExo4dCwDIzMzEyZMnAQDnzp3DqFGjAACjRo2Cw+H4zNKGemc1\n27D66y+JftFwuKsweds94kkrdksOfvq1n4kmGaj4oqWiupLDXYUp22UTYQD5BBNlreCEE2/d3jo0\nXm0QTdixGNOQZrpRdNtVJUO0+9pF43VR0QIwkhNBVNwAUhEzUqup0RcXH52ANRN+KRZPVSUgFQkB\n+87s1YwSVCSYpCSkIoCAaAKU21uH8y2yn7kqfp8qqEj+UpGkZrfk4LkxLypJ5JXu5DvaehcMMIgn\ng8RExYjGVLHvO89JAdFz07Dk4TDAIJoA5vbW4VyzW/Q9f7zxGAIIiCYrqfh9bv34LVxpu4ytH78l\nFhNQU2FIsgUcERER9Q7vf5Ae3HrrrTh48CAA4IMPPsDtt9+O2267DQ6HA62trfB4PDh58iSGDh2K\nUaNG4f333+/+t3b7tT1sw0pAFMla0aoZKfi8fq9mpODrQIdmJH1RlgTU1NQEk8nU/efo6Gh0dHQe\nJBkZGThx4gTOnz+PlpYWHDhwAM3NzRg+fDj27t2LQCCAQ4cO4dy5c/D5fBg0aBD+8Ic/AAD27t2L\nlpaWzyxtGEyq2sNIVwVpaK5Hm79N9Ml0QE0lIBWUJcIIt1pScTypaAVnt+Rg22TZCjN2Sw5emfAr\n8cWumKhY0XiqkiFio2XnCXQeT0UVU8XPT9Ix9UTFdquoLKViH/EG2PVpf9GHovtWRTIAoKbCkDmu\nn2aUoKKVza9qXteMEg649qMj0CG60K6ivVpKQioMMIgm16ioWqOicovDXYUffPC4+DW221sHp+es\neJVEQ5TsV0q7JQe3DsgSvS7MThmB5D43iFbAyh9agPjoeOQPLRCL2dBcDz/8ot/bGprr0e5vF/8u\nKE3FuV5VhbquJC3JZK3slBHI7J8pFo+IiIiIrm8//OEPsXr1ahQWFqK9vR0TJ05ESkoKiouLUVRU\nhAcffBCPP/44+vTpgxkzZuDPf/4zZsyYgbKyMsydO/ea/hunLp9SuxH0meIMcZqRgi8xJlEzUvDd\nEHeDZqTgi0WsZiR9UZYE9LelB/1+f3fP0sTERCxatAjz5s3DE088gaysLAwYMAAFBQUwmUwoKirC\nrl27kJWVhejoaPz0pz/Fyy+/jAcffBDJyckYMGDAZ5Y2DCa9VEfIzczDi3evQW5mnmhcuyUHL39j\nregNel0lwgi3WtLL8QRAPFnH5XHiecdz4okLKpJrpPeP1WxDad4WXex3PVGRXKMi6ZNttiiUVJx3\noqOixWPWeT/RjOFKxWLzsKThmlHCH899qBklqEiAOt54DH74RZNr8ocWIM14o2jShooKM8cbj6E9\n0C667V1xOwIdonEbmuvREegQTTDJf/s+fHShGvlv3ycWc9+ZPWhsPY99Z/aIxVzt+DlafC1Y7fi5\nWMyVf1ihGSW8c3KnZgxXKloAqogJoDuJUjKZ0mq24cWJL4rFIyIiIqLrj81mQ3l5OQDgpptuwhtv\nvIGysjIsX74c0dGd92OmTZuGt956C2+//TYmTpwIAIiPj8eqVauwefNmbNiwASkpKdf03xucOFjJ\ndtDn8wf8mpGCr6WjRTNS8F1qu6QZKfjYmjD0EmITevxaZUlAo0aNwgcffAAAOHToEIYOHdr9s46O\nDhw9ehSlpaUoKSlBbW0tRo0ahZqaGowePRqbN29Gbm4uBg0aBAB4//33sXLlSqxfvx6XLl3C1772\ntc8sbRhsekgIcHmceKXmJSWL4tKJG5GcCKOCy+PEfW9PFN/30k+mq9jvVrMNi+5YrItjSfqJfKBz\n+18Yt0r8d6qHhCVVyYQqjlEVMfWwjyg8rHGUiMdsD8iXBr1vyCTNKKHrRpbkDS1Vi83SRg28XTNK\nGG29C9GIDvv2TVazDY98+Xthf45Use3A/z7FKfk0Z3bKCCT3la2ws/iuHwOI+nSUoSJRTUUFrNst\nd2pGCSrOoSqO0eyUEcgw3yR6LKlKgFKR9OlwV6GgTC5BkYiIiIiotyS/PxHpzYA+AzQjBV8UojQj\nBV872jUjBZ+3veft8JQlAU2YMAFxcXGYPn06li9fjkWLFmHnzp0oKyvrrgiUn5+P4uJiFBcXIykp\nCRkZGVi/fj0KCwtRUlKChQsXAuhsHzZ79mxMnz4dJpMJd99992eWNqR/rKWjWTym1WzDijErlSRC\nSdJLtQ2Xx4mpO6aIznPfmT1wec+KPvXscFfhgR33KWlRIcnhrsJ3ds8J+3Z1qn6fLo8TC3/7ZES2\nhVKVTKiHbQfUzDPcz5/UM0sPPi2aCNTZsiog2roKAF4+9JJmDFcqWk19acCXNKOEAX0HaEYJFmMa\nbohPFW29mpKQitioWNF2YJuObMDSg09j05ENYjGzU0agf9wA0cSF3Mw8zB/5pIIqnvKJavvO7EHj\nVdkKO52VigKiFYu6EtQkE9XUtISSTyxScW5yuB2aUYLVbMODt84RvY5RkQAFqHkvHXDtRwfkE2mJ\niIiIiHrq+AXZ6rR07VoCLZqRgu9C6wXNSMHHJKDQG5Y4XDNS8PWJ7nnuS4zgPDQMBgOWLl2q+bsh\nQ4Z0//+5c+f+Xe/RpKQkrFu37u9ijR8/HuPHj/+7v582bRqmTZsmM+Ew0ZUIItm+yu2tQ533E7i9\ndeIVhr6761vYNqVCPG64V9tQwe2twxnPKdH9NDNrFi5evYiZWbNE4gGdFZB++rWfiVZC6kqEefv+\nd8Ti2i05ovFUUTVPvRz3quhhu7sSFKX3k/Q5VNU8KTw4PWfFYqloXQUAayb8El/d9BWsmfBLsZjD\nkocjGtGii/f5Qwvws6rloq2mVFBRwaOmoRrnWupQ01Atdp6wGNMwoG+SaGKRimowWz9+C5faLmLr\nx29hrn2+SMzK2gqsOvQ87Ba7aCJQSkIq4gxxoolVKqg4RrccL+sepa65fvHHVd3j2ns3isRUVQVK\nmookmK4kvQF9B4h9d0lJSIUB0eLHfG5mHjbkbhZP1CMiIiIiCiemWFOop0AUMqyAEnptaNOMFHx/\nunxcM1Lw9YnuA4/P06PXKqsERD3j9tbB2XRGtCqKxZgGS8KNoosoQOeCzxnPKdQ0VIvFVFW1Ry+V\nMQKBgGg8l8eJ7bVvi87V4a7CU7//d9HKNaoSYaSPeVXCPVGJ1FCRqKWXVmgUHswx/TDP/phYvPyh\nBRgQlyyeBOP21iGAgHjFOINB9jJ4Xc1atPibsa5mrVjMlIRUxCBGdAG7saVRM0pQUWlk35k9qG85\nJ1phRkUVpLn2+bhv8GSxBCCg8/cYQED09wl0Xm98c9hs0esOFS3GcjPzsOTOZaIJFjbzIM0o4dFR\n39eMEnIz83Df4Mmi266iopiK97wKxxuPwQ+faFUpVeba52O0dXSop0FERERE1G3qsMJQTyFixSJW\nM1LwxSFOMxJFogACmpGC70rblR6/lklAYcZuycHWyRXiSQFRCqqlZaeMQLp5sGj7A1WLzdIJOyoW\n2i3GNAw0WkQTV1S0bLNbcvDyN9aKH6PS8fTSBk6VSN9+vVDRsiySW6HRF9Pc4RVNrHF769DUcUU8\nWQcAAn7ZLxoNzfVo97ejobleLGZu5j0wwIDczHvEYgLyyUrj0sfDkpCGcel/X2Wzp0Zb70JMVIxo\nqyUVFVHGpY+HObaf6LZvOrIB75zaLtpiTJU1jhKsPfqKaBvA2dlzYI7th9nZc8RiOtxVeO7DZ0UT\nzvOHFiClb6pokmJDcz2iECV6Hnl2/1K8c2o7nt2/9PP/8TVS0bpLRUJdTcNHmlHCuPTxGBCXLPqe\nBzqrdc2qnIHK2gqxmAv3PYkDrgNi8YiIiIiIequr+ikFH6vQhB6TH0IvGtGakYLv9pQ7NCMFnw++\nHr+WSUBhSDoZwu2twycel/iinNVsE28F1hVXkl4qY7i9dWhorhfdTy6PE0/s+77otrs8TjzveC7s\nk0v0klCmKiart+iDqn1PdC188OGAa79YPBWJNV0M0bKXrLmZeXjx7jXirVwMwpfWFmMa+sX2F69s\nZ4o1i8azW3KwduJG+SR24Z7fWz9+C572K9j68VtiMYclD4cBBtHWcioSLFSpaaiGp/2KaGVQizEN\nAxPSxI/7GxJSROPlZuZhfW6p6HnkR3ctwfyRT+JHdy0Rizk7ew6S+iSLJmqp0PWUseTTxmV6YlEA\nACAASURBVDUN1bjUdkH0+ASAfWf2akYJ8+yPYUCf8H/PExEREVHkkGylTaQ3qfGpmpGCryv5oTdJ\nENQ7Hzb8QTNS8NmMPV/vYxJQhAhEqclWVfG0vzS9VMawGNNgMcq3bZNmNduwwP4D8e2XfNq7ix4S\nylRW7InkZJBwT1IDWK2JQm/JnctEWxipaOEDdCaYbJv8a9EEE5fHiVdqXhJ9/zU018MHn2gS1L4z\ne3C+tV60JRYAxEbLlpNWkSCcm5mH749cIHo8jbbehShEiVYsamiuhx9+0f2uogoSoK+2UK2+q6Lx\nrGYbXhi3SvzaSPp8B0A0AajLQKNFNN7MrFmYP/JJzMyaJRaz6z0k+V5S0VIR6ExUMsAg3h4h1cSb\ny0REREQUPhpbGkI9BaKQOd9yXjNS8MUgRjNS8FnjrZqRgu9qR8/vkTIJKAypSIaQfjId6Jxn/vY8\n8flGcjJEQmyCaDyr2YbSvC2i2+9wV+E7u+eI7neHuwpTtt+r5NiXpKK9Giv2yNNLcg33PYWaZCIA\n0HkuX161VMm5XLrCDAC0+2RLKqtok9r11J3k03cqkiFUnM8qaytQcmilaLudA679CCAgWgFLRUWQ\nlIRURCFKPHFBRcLOaOtdMMAgmli178weuJvrRJPfXB4n5r33PfFrA8nWaqqo+j7w0kerwv7a3WJM\ng7WfTfwhC7slBxUP7BL/bJL+XCIiIiIi6g2reVCop0AUMjGGGM1IwWeMMWpGCr6m9ibNSMHX5m/r\n8WuZBBRmVCTW2C052DZF9gl6oPOmqs2ULnpT1eVxoqhiatgv3qug6gllaXZLDt6+/x3R48liTEOa\ngipI0seRy+PEwt8+KR433Pe53ugpuUYPc6Tr16zKGaIJFscbj6Hd347jjcfEYnYJ94VmQE2b1Pyh\nBUgz3oj8oQViMV0eJ771m9nin2V6qA55ufWyZpSQnXKbZpRwvPEYAgiIv5dUVAI63ngMfvhF56qi\nyozbW4e/XD4pepyucZRg6cGnxROB5u76rmg8QP56o6G5Hm3+NtGqPY0tjZpRSnyM7EMWXaRbX7q9\ndXB5XKIxiYiIiIh6ozfVB6h3uh7qV/FwP12bZn+zZiSKRP6AXzOSvvATJMx0toRKU/K0ojSr2YYt\n928Tv6nc4Y/MJyBVJJioSqqSvukNALEG+dYk0tVg9JRcEum4j4iujWT1ElUc7ipM3nqPeCLQVV+L\naDwAqGmoFo1nNdvw6wd2i57T9p3ZA5f3rGiVFYe7ClO2yVf0i0KUaDy7xa4Zw9V7p3dpRikqKgEl\nxycjClGirctUVJmprH0XPvhQWfuuWEwVSVVzd30X5X8uFU8E2nRkg2i8lIRUREfJttkalz4eKX1T\nMS59vFhMq9mGb2d/T/y6sLK2QjyRFgD8ft5UIyIiIqLw4WmTe4CGvhg//JqRgq9/bH/NSMF3peOK\nZqTgYxJQ6CX04uE2JgH1koqKNSqeVlT1BL30YhcAxAgngwBq9pM0vSSYVNZW4MHKIvGb3tL7XUXr\nrq64FJn0cB4h+qKmDisUizUseTiiEY1hycPFYgKdiaftgXbRBNSahmq4mpyi1zGqFoWlP3eGJQ+H\nAQbx/RRAQDRedsoI3Gi0ibZXS0lIRZwhTjRxoSv5RTIJZtqw6ZpRyoC+AzSjhNzMPLxw92rkZuaJ\nxWxorke7X/Y9/6O7lmD+yCfxo7uWiMXMzczDhtzNotu+ZsIvMe3mIqyZ8EuxmJuObMDj788VTQRq\naK6HL9Ahuo/c3jpcbr0kWq2psrYCT7w/T/y8nJ0yAoP73SR6fgLkz6NERERERL1hjksM9RSIQuZK\n+xXNSMHXN6qvZqTg8/q9mpGCrzctCZkE1AuqKo2U5m0RXfBxuKvwwI77xBOBVCSDqNh+FftJFRUJ\nK9K/z9zMPKzPLRVd8FC131W07qLIpKfzCNEXIdnCx2JMQ5pJvrVjSkIqDDCIJm6kJKQiGtHiMWOE\nK2MAwLP7l4rGa2iuhx9+0cV7izEN/fsMEN/3vkCHaDy7JQev/d/1ohUyOyuiyB5L2SkjYDMNEk8w\nmJk1Cy/evUa0zZbL48QrNS+Jfj6mJKQiBvLvJckEoC6S18NdJBOAgM7Ev5ioGNHEv+yUEcgwyyfB\nRBlkq3/lZubhoVsfEd9PVrMN420TRL+7HHDtR4fwOY+IiIiIqDf4MGzodFVGlq6QTNfOB59mpOBr\nD7RrRgq+GMRoRgq+Dn/P7xUxCagXVFVukY5nt+Tg7fvfEW8JpuLJX0BNIoyKijBMBpClYr/robIS\n6QOPJ7oezbn126LJAG5vHc41uUWrOACfVpyAT7wVpcEgfxlsiJKN+ez+pSg5tFI8EUjavjN7UN9y\nTrTF2L4ze+BurhON6fI4sfwPz4hewx1vPAZfwCeaUAcA0VFqvlxLVizq0tLRLBrPYkxDRuJN4kll\nkSw6Klo0ntVsw7YpFaLXRXZLDrZN/rXod9ZNRzZg7dFXxNuhPbt/KdYefUX03CzZVo6IiIiISMLB\nT34f6ilErK4qoawWSpEsNipWM1LwcR+EXnMv7rsyCaiX9LIgrOImusvjxLqjr4d9MoyKijB6qQri\n8jgxdccU0Xmqagem4nepl/cn6QOPJ7re/Oroq6Ln8obmerRDtoUP0FlxIs14o2jFCYsxDakJA0Wv\njyzGNKQZraIxZ2fPQVKfZMzOniMWMyUhFXFR4d8Sa1z6eNzQJxXj0seLxQQAT5tsGedx6eORGj9Q\ndJ5ubx3czZ+IJ9SpaFnn9tahzis7V6vZhi33b+PnrhC7JQfbpsgm1wBqrouk5zgseThiIFsFCQBy\nM+/RjDIx8zA3Z65YPCIiIiKi3vK2s/0LRa5oRGtGCr6WQItmpODrqljMysWh4w/4e/xaJgFFAJfH\niaKKqeJJFnqpjKFinqq2XTqxxu2tg7PpjOjCTHbKCKSbB4suxuolqYqIKJiqq6tRXFz8d3+/Z88e\nFBQUoLCwEOXl5QCA9vZ2LFiwANOnT0dRURFOnjz5ufGlz+WqWhi5vXVoaK4X/Sxze+vQ0CIbEwAS\nYhNE4wHAQKNFNJ7dkoPt+e+KL7ZLc3vrcKXtkug+qmmohrPpLGoaqsViur11uNR6UXSenQll8q31\nAPlS4nZLDl6dsE4XCSaRLNzf712k21dbjGmwmNLE30tdlb8kK4BtOrIBa6rWiMUjIiIiIuqtPtF9\nQj0FopBhOzAioB3tmpGCj0lAFDJ6uUGvYp4qEoCkK+zYLTnYOrlC9Ma/1WzDLye8Jp5UpaJlm14w\n+YmI/tarr76KxYsXo7W1VfP37e3tWL58OdauXYuNGzeirKwM58+fx/vvv4+Ojg68+eabePTRR/Hz\nn//8c/8b0q1cAMAc1080HtC5yNoR6BBdbFWRuGA121Cat0X881E6JiCfEJCdMgIZ5pvEE8CiDLIJ\nK7mZediQu1m0la3FmIaMfoPFkwziY+QTyrJTRuBGo008kft5x3O8lqFec7irkL89TzQRyO2twzmv\nfJvKmVmz8OLda0Rbas7MmoXXJr0mFo+IiIiIqLdiDGraVNPn64M+mpGIiCKT1dTzdQEmAYUh6Scg\nrWYbXhi3SkmCBW/4y2lsaUQAATS2NIZ6Kv+UqvZqT+z7fkQeT6oqdRGRvqWnp2P16tV/9/cnT55E\neno6EhMTERcXB7vdjqqqKtx0003w+Xzw+/1oampCTMzn36iRvi5QlbAyM2sWlty5THSxVVXigh6S\njlWwmm3iSWWqKsxIJgABndtePkm2dZWq9xIA9Osjm6hnNduwwP4DXRynKvD6TY7FmIbkvimiCXUN\nzfVoD8i3qQQg+pnU5eFRD4vHJCIiIiLqqSvC7bTp2rWiVTMSEYVCfFS8ZqTga/f3vAoTk4DCjMNd\nhQd23CeaCKQiaaMrLls4yVHxRKmK40lV1Z7m9mbReEREejZx4sR/mMjT1NQEs9nc/Wej0YimpiYk\nJCTA5XLhnnvuwdNPP/0P24gFg6qE4+21b4teb+ilpameSP8uVSVqqbhuVXEcSVcuAdQkFzncVXhk\n12zxhxik46ng8jiRvz0vYr8LqWhjfP6qbJvG7JQRGNxPvkoZEREREVEkiDPEhXoKRCEThzjNSMFn\njjZrRgq+ropwrAwXOsOTs3r8WiYBhRm7JQf/bn9KvD2FiqQNLqDJG5c+XjSe3ZKDt+9/R/R4UlG1\nx+2tw7nmOiULXuFO5dP+RHT9MZlM8Hq93X/2er0wm81Yt24d/uVf/gW/+c1vsH37dixcuPDvWonp\nlarrmEj8zNETFdeZeklgV9EWqYv0+8hiTEO6OUO0eovDXYXJ2+4R3/5NRzaIxqtpqMbpK6dQ01At\nGld6nipiqmhjbDGmYZBJ9liymm3YOlm+9SURERERUSRo87eFegpEIdOGNs1IwefxeTQjBV+br00z\nUvCduXKqx69lElCYqaytwLKDS0RvqKqqBAToo0WFXqhamJJuo6GC3ZKDrZMrdDFXFfg+IqJrNWTI\nEJw+fRqXLl1CW1sbPvzwQ3zlK19Bv379uisEJSYmoqOjAz6fL8SzlaEi+VRFpbyuuCQnUhPYLcY0\n2EzposkQqqhoh6bCpiMb8Pj7c0WTYXIz87A+t1S0xZyKeaqImZ0yAunmwaIVdqxmG7bcL38shfux\nSUREREQUrjr8HaGeAhFFsFjEakYKPibDhV5jy/kev5b1m8KMipvJelnw0BuXxyn6O9XLfrKabXhh\n3CrxeUZqAhAR0bXYuXMnmpubUVhYiIULF+Lhhx9GIBBAQUEBBg4ciNmzZ+Opp55CUVER2tvb8fjj\njyMhISHU0w5bKirldSUWScclWeF+nQV0znH111/SxVwBVdWFBosmQQ1LHg4DDBiWPFwspgpdbYEl\n2wOriGk127BtCivsEBERERFdz/rF9Qv1FIhCJgpRCCCAKESFeioRy/BpHRMD65mETAABzUjB95WB\nt8N1ytWj1zIJKAxJPlHZhTdoZXVV7dFD0o50spLL48R3d31LFzf+pbediCiYbDYbysvLAQCTJk3q\n/vvx48dj/Hht+0ij0YiSkpKgzi9YVLVNlK6yYrfk4OVvrGUCEPVaVxVPPVxnqqAqCSo2WvbJscra\nCsyqnIENuZtFH+CQTNZRGVOanr5fkTp+vx8/+clP8Kc//QlxcXF45plnkJGR0f3zbdu24fXXX4fZ\nbEZ+fj6mTp2KtrY2LFq0CGfPnoXJZMKSJUswePBgnD59GgsXLkRUVBRuvvlm/PjHP4bBwJvHRERE\nRNfqStuVUE+BKGSY/BB6rWjVjESR6MTFj3v8Wt4BCTOqWkKpaAUWyVRU7VGx710eJ4oqporGrGmo\nxhnPKdQ0VIvFVEHVe4mIiIJPekHY5XFi6o4p4p+5zzue4+cO9ZpeqkOqoqIFoN2Sg22Tfy2apJed\nMgKD+90k/gCHZNuuLtKtCl0eJ6ZsyxPdR1azDSvGrIzY45467d69G21tbSgrK8OCBQuwYsWK7p9d\nuHABq1atwsaNG/HGG29g586dcDqdKC8vR0JCAsrLy7F48WIsW7YMALB8+XI89thjKC0tRSAQwHvv\nvReqzSIiIiLSpRgDawgQUeh0VWFiNSainmESUJjRS3JJF+kbynoifYNa1YJPh79dNF52ygikmweL\nL3hIH5+RvoBGRESfze2tg7PpDNzeOrGYqhawK2srROORPkT69Yv09Ssg33rWarZh62TZypibjmzA\n4+/PFU0EcrirMGXbvaLf21Q8FNBVAYuJlJHN4XBgzJgxAICRI0fi8OHD3T9zOp245ZZb0L9/fxgM\nBmRnZ6O6uhonTpzA2LFjAQCZmZk4efIkAODIkSO44447AABjx47F/v37g7w1RERERPoWZ4gL9RSI\nQiYOcZqRgo/VmEKPiVihZ4oz9/i1TAKKAKoWpRzuKjyw476ITgSSpmLBJyD8+Wg12/DLCa/pIlEt\n0hfQiIjoH7NbcrB1coVoUoCKBeyudkNMBKJIE2OQbd2livS15sysWXjx7jXy7buE79XkZuZhfW6p\naBs0JvATADQ1NcFkMnX/OTo6Gh0dHQCAjIwMnDhxAufPn0dLSwsOHDiA5uZmDB8+HHv37kUgEMCh\nQ4dw7tw5+Hw+BAIBREV1HvxGoxEejyck20RERESkVxdbL4Z6CkQh04Y2zUgUiZgEFHqZ/b/U49cy\nCSjMqGoJpeKpSrslB2/f/474U7UkqyMg+yS1ihYNvOlPRETBpqIqiPRnmap2Q6y0QeHMarahNG9L\nxF4XSicAqWiFBkA0AaiLin3OB1b0xWQywev1dv/Z7/cjJqazDUViYiIWLVqEefPm4YknnkBWVhYG\nDBiAgoICmEwmFBUVYdeuXcjKykJ0dDQMhv+93eX1etGvX7+gbw8RERGRnsXHxId6CkREFEJ++DUj\nBd9H9f/T49cyCSjMqFhAspptWGD/gZKbqkwACm9ub133/yS1++RbNETqQg8REV0/VLQKlW435PI4\nUVQxlYlAFNZ4XShLL9/ZpM9LDncVpmyXbYXWhedQNUaNGoUPPvgAAHDo0CEMHTq0+2cdHR04evQo\nSktLUVJSgtraWowaNQo1NTUYPXo0Nm/ejNzcXAwaNAgAcOutt+LgwYMAgA8++AC333578DeIiIiI\nSMdidVKhlYiI6Hr1pQFDP/8ffQYmAYUhFW27Htk1m09B6oCKak3S7U4AIDZaH18A9HJzXi/zJCKi\n4FORDKEimZfXmbJUXRuoaC3HdnUkQVWCYkC6NzLUtTImYMKECYiLi8P06dOxfPlyLFq0CDt37kRZ\nWVl3RaD8/HwUFxejuLgYSUlJyMjIwPr161FYWIiSkhIsXLgQAPDDH/4Qq1evRmFhIdrb2zFx4sRQ\nbhoRERGR7vgCvlBPgShkYhGrGSn4ohGtGSn4jAajZqTgS4jt+e8+RnAeFKYsxjSkmzNgMaaFeir0\nT3TdTJauBKWi3YmKFg0uj1O80oGK36c0vcyTiIjoszjcVbh/ay525FfqpuKIJIe7SnS7u5IhpK+3\nKmsrMKtyBjbkbhZr5aQiJsmrrK3Qxf7p8MsmKNotOdg+5V0l34dWjFnJa3cFDAYDli5dqvm7IUOG\ndP//uXPnYu7cuZqfJyUlYd26dX8X66abbsIbb7yhZJ5EREREkWBW1sOhngJRyEQhSjNS8PU19IXX\n70VfQ99QTyVitfhbNCPpCysBRQCr2YbySdsi+ialHp7SVNEKDlCz7SrmKP00rV5+n6rmSURE9Fmk\nK/o1NNejI9CBhuZ60bgqrmFUtBvK356ni0pI2SkjMLjfTchOGRHWMVVRcTyp2O/SMbsStfRQsSlG\nQbsBFYmJLo8TT+z7vi6+YxIRERER9dTeM7tCPQWikGlDm2ak4PMH/JqRgi+AgGak4Gtu9/b4tUwC\nCkO8mShLT+XaVSSsqCirL01VIowekpUANa1eiIg+j14WxEmW1WzDC+NWiX72pCSkIgYxSElIFYvp\n8jiRvz1P9Dh1eZyYtnOKaEyLMQ0DE9JEK25azTYsumOxkuuirZMrROOqiKmCimtih7sKU7bfK3re\nU5FUpipRS8X1sIpqo6qoaKv4+h9fF49JRERERNRTl1svhXoKRCET82kjnRg21KEIlmBI0IwUfEP6\n39zj1zIJqJekb36qSDLQUxKMCnoq1x6p+wjQRyIMq/YQ0fVkyjbZBAuHuwpTtskuiJM8FRUsLMY0\nDO5/k2giTE1DNU5d+QtqGqrFYrq9dfjLpVq4vXViMQEgIVb2i7DDXYXv7J6jm/eS9O8TUHNN3NLR\nLB4zEJB9EkpVUpl0opbL4xT/DAH08X2gi3RFtU1HNuBbO78lGpOIiIiIqDdSEgaGegpEITMwfqBm\npOC70WTVjBR8hiiDZqTgO3z+ox6/Vtle8/v9WLJkCQoLC1FcXIzTp09rfr5t2zZMmjQJRUVF2LJl\nCwCgra0NCxYswLRp0zBnzhycOnUKAHDs2DFMmzYNM2bMwKJFi+D3d5b+euaZZ/DAAw+guLgYxcXF\n8Hg8qjbnH9JLCyOVSTB6SFrRS7l2VceTiidq9bIopYKeFicoMoX7uY7CxxnPKdEECwBgm2x9kK5g\noar1rHTf9eONx9CBDhxvPCYWU8W1lt2Sg5e/sVa8jZGKSkgqquGomKfbW4c67yeiCUt2Sw62T3lX\nfD9JJ5UB8tevNQ3VSj5D9HINo+J9PzNrFl6b9JpYPCIiIiKi3rp49UKop0AUMn1j4jUjUSTqF9dP\nM1LwffmG23r8WmVJQLt370ZbWxvKysqwYMECrFixovtnFy5cwKpVq7Bx40a88cYb2LlzJ5xOJ8rL\ny5GQkIDy8nIsXrwYy5YtAwCsWbMGjz76KDZv3oy2tjbs27cPAHDkyBG89tpr2LhxIzZu3Aiz2axq\nc/4hPbUwWvjbJ3VRtSiS6eV4crir8MCO+8QTgXgcEfWeqvMy35/Xp/W5pcjNzBOLZ7fkYNvkX4sv\niAM8BvVA+nojNzNP/Bgdlz4eNtMgjEsfLxZTBZfHiecdz4kf925vHc5cOS2aCGMxpiHNeKNo5RoV\n81R1fpKOp5eWWCren3r7bqliHz086mHxmEREREREPTU8OSvUU4hYbEVF9L/nIJ6LQic5/gbNSMF3\n8tKfe/xaZUlADocDY8aMAQCMHDkShw8f7v6Z0+nELbfcgv79+8NgMCA7OxvV1dU4ceIExo4dCwDI\nzMzEyZMnAQDDhw/HpUuXEAgE4PV6ERMTA7/fj9OnT2PJkiWYPn06/uu//kvVpvxT4X6DFlCbXKKH\n1kh6uZkOqDmepG+k2y05ePv+d0QXPfR0018Pc6TIpeK8rKf3J30xkou3XVQlABVVTBU/BitrK0Tj\nqaJintJtbFTJThkhGs9qtmFn/m/Ez5HSx6eqKp4WYxoGmTNEE3YAID5GtnKNqnmqOD+poIfvLID8\nZ4hevlsSEREREUWK3zr3hXoKEcsca9aMFHzGWKNmpOC7ePWiZqTgM8clakYKvlEDb+/xa5UlATU1\nNcFkMnX/OTo6Gh0dHQCAjIwMnDhxAufPn0dLSwsOHDiA5uZmDB8+HHv37kUgEMChQ4dw7tw5+Hw+\nDB48GM8++yzuueceNDY24s4770RzczO++c1v4mc/+xlee+01lJaW4vjx46o2J6hULLSqupmql5u0\nepmnNFWL99KLMnq56c8qK6QHkZrwSdc36fZVlbUVeLCySDzBRrpKnop56iU5WtVnbrhvN6Cula3V\nbMOW+2Xbtqk4nlTMk/SB+5yIiIiIKHx8+QbZB3Po2iV8+rBNgvBDN3TtbrfcqRkp+NZM+CViEYc1\nE34Z6qlErFuShmlGCr7jF471+LXKkoBMJhO8Xm/3n/1+P2JiOkvXJSYmYtGiRZg3bx6eeOIJZGVl\nYcCAASgoKIDJZEJRURF27dqFrKwsREdH49lnn8WmTZtQWVmJKVOmYMWKFYiPj8esWbMQHx8Pk8mE\nr371q9dFEhArLkQ2FYs9KqqCqKjIoIcqSHqrssLzCEnhohxdb7JTRiCj32DRSjMOdxWmbL9XNBFI\nxTwBfbyn9ZKAqCqpSjrxrYuK36deYhIREREREdG1O3HxT6GeQsRiC57QG5f+fzQjBV9NQzXa0Yaa\nhupQTyVi2cyDNCMF37Ck4T1+rbIkoFGjRuGDDz4AABw6dAhDhw7t/llHRweOHj2K0tJSlJSUoLa2\nFqNGjUJNTQ1Gjx6NzZs3Izc3F4MGdR5UiYmJ3VWFUlNTceXKFZw6dQozZsyAz+dDe3s7/vjHPyIr\nS/99AfWy4NFFL0kGepinnhLAVC1MSdJLBQFV73k9HU9ERJ9Hun2V1WzD1skV8tdbAdlwyuapE3rZ\nbhXz1EvLNiIiIiIiIro+DeqXEeopRKwpN/+rZiSKXFGhngBRSL13elePX6ssCWjChAmIi4vD9OnT\nsXz5cixatAg7d+5EWVlZd0Wg/Px8FBcXo7i4GElJScjIyMD69etRWFiIkpISLFy4EADwzDPP4PHH\nH8c3v/lNlJaW4vHHH8eQIUMwefJkTJs2DcXFxZg8eTJuvvlmVZsTVHpZ8NBLkoFe5mk127BizEpd\nVJnRw8KUnhLqVD1Br5ftJ1nS7YiIQk1VpRXpeHZLDrZN+TXslhzRuDyPhz/p865eWrYREREREV2P\nwv0eMlGw3Js5KdRTiFiXWy9rRgq+3Mw8bMjdjNzMvFBPJWKlJKQiLioWKQmpoZ5KxMofWoDU+IHI\nH1oQ6qlErO+M/F6PXxsVCASEn1mmSHL28lkMSgz/MmB6mOfZy2eRX5aPrYVbReeqYtv18PskikQH\nnQcxfsN47Jm1B3fa2K+YiEg1nneJiIiIiK4fqu7PEulN3LI4/Pah3/J7bgj96L0f4dmvPxvqaRCF\n1EHnQZ6HQujs5bPIK81DRVEFr4tCaMfxHbh/2P1f+HVMAiIiIiIiIiIiIiIiIiIiIiIi0jll7cCI\niIiIiIiIiIiIiIiIiIiIiCg4mARERERERERERERERERERERERKRzTAIiIiIiIiIiIiIiIiIiIiIi\nItI5JgEREREREREREREREREREREREekck4CIiIiIiIiIiIiIiIiIiIiIiHSOSUBERERERERERERE\nRERERERERDoXE+oJBIPf78dPfvIT/OlPf0JcXByeeeYZZGRkhHpa9Dfy8/NhMpkAADabDcuXLw/x\njOivVVdXY+XKldi4cSNOnz6NhQsXIioqCjfffDN+/OMfw2BgTmGo/fU+Onr0KL7zne9g8ODBAIAZ\nM2bg3nvvDe0EI1x7ezueeuopuFwutLW14Xvf+x6+9KUv8b1EQcfrIn3gdVF443VR+ON1UXjjdRGF\nm78+Z1Bw/aPzwde//vVQTyui+Hw+LF68GH/5y18QFRWF//iP/8DQoUNDPa2I1NjYiAceeABr167F\nkCFDQj2diMPvYKH38ssvY8+ePWhvb8eMGTMwderUUE8pIvG6KHR4XRQeeG0UHnhdlQuqzgAAIABJ\nREFUFHq8Ngq93lwbRUQS0O7du9HW1oaysjIcOnQIK1aswEsvvRTqadFfaW1tRSAQ4IVlmHr11Vex\nY8cOxMfHAwCWL1+Oxx57DHfeeSeWLFmC9957DxMmTAjxLCPb3+6jI0eO4KGHHsKcOXNCPDPqsmPH\nDvTv3x8/+9nPcOnSJUyZMgXDhg3je4mCjtdF4Y/XReGN10Xhj9dF4Y/XRRRO/vacQcH1j84HXOwK\nrr179wIA3nzzTRw8eBAvvvgivx+EQHt7O5YsWYK+ffuGeioRid/BQu/gwYP4n//5H2zevBktLS1Y\nu3ZtqKcUkXhdFFq8LgoPvDYKPV4XhR6vjUKvt9dGEfFYncPhwJgxYwAAI0eOxOHDh0M8I/pbx48f\nR0tLC+bMmYNZs2bh0KFDoZ4S/ZX09HSsXr26+89HjhzBHXfcAQAYO3Ys9u/fH6qp0af+dh8dPnwY\n+/btw8yZM/HUU0+hqakphLMjAMjNzcX8+fMBAIFAANHR0XwvUUjwuij88boovPG6KPzxuij88bqI\nwsnfnjMouP7R+YCC6xvf+AaWLVsGAPjkk0/Qr1+/EM8oMv3nf/4npk+fjtTU1FBPJSLxO1jo/e53\nv8PQoUPx6KOP4rvf/S7GjRsX6ilFJF4XhRavi8IDr41Cj9dFocdro9Dr7bVRRCQBNTU1dZerAoDo\n6Gh0/P/s3XlclWX+//H3gSPK5hpZLvgVUnMZU0jRTE0m3BJTURCMbDKd9nEZBRfAHBUro3LcsnFp\nEANScy2dUotGy0EdcnTCemhSkpm7LMXiuX9/9Jszo4lKB7k58Hr+xTn3fV3nc12XHD/A51xXaamJ\nEeFqderU0ZgxY7R8+XK98MIL+uMf/8gaVSH9+vWT1frfjcMMw5DFYpEkeXp6Ki8vz6zQ8P9dvUYd\nO3bUlClTlJKSoubNm2vRokUmRgfp5+8VLy8v5efn6/nnn9f48eP5XoIpyIuqPvKiqo28qOojL6r6\nyItQlVz9noHKda33A1Q+q9WqmJgY/elPf1JoaKjZ4dQ469evV8OGDe0f1kDl42cw850/f16HDh3S\n66+/bl8DwzDMDqvGIS8yF3lR1UFuZB7yoqqB3Mh8juZGNaIIyMvLSwUFBfbHNpuNRKaKadmypQYP\nHiyLxaKWLVuqfv36On36tNlhoQwuLv996ygoKKASugoKCQlRhw4d7F//+9//NjkiSNLJkyf16KOP\n6uGHH1ZoaCjfSzAFeVHVR17kXHgvr/rIi6om8iIA/3H1+wHM8eKLL2r79u2Ki4tTYWGh2eHUKOvW\nrdOePXsUHR2tL774QjExMeT/lYyfwcxXv3593X///XJzc5Ofn59q166tc+fOmR0WUOnIi6oOciNz\nkBdVDeRG5nM0N6oRRUABAQHKyMiQJGVlZal169YmR4SrrV27VvPmzZMknTp1Svn5+fLx8TE5KpSl\nXbt22rt3ryQpIyND9957r8kR4WpjxozRwYMHJUmffvqp2rdvb3JEOHPmjB5//HFNnjxZw4cPl8T3\nEsxBXlT1kRc5F97Lqz7yoqqHvAjAf1zr/QCVa8OGDXrjjTckSe7u7rJYLFcUZuLWS0lJ0erVq5Wc\nnKy2bdvqxRdfJP+vZPwMZr7AwEB98sknMgxDp06d0o8//qj69eubHRZQqciLqgZyI3ORF1UN5Ebm\nczQ3qhEf+w4JCdHu3bs1cuRIGYahuXPnmh0SrjJ8+HBNnTpVkZGRslgsmjt3LrsSVGExMTGKi4tT\nUlKS/Pz81K9fP7NDwlVmzpypP/3pT6pVq5Zuu+02+xm2MM/SpUt16dIlLV68WIsXL5YkTZ8+XbNn\nz+Z7CZWKvKjqIy9yLuRFVR95UdVDXgTgP671fvDmm2+qTp06JkdWc/Tt21dTp07VqFGjVFpaqmnT\npjH/qHH4Gcx8ffr0UWZmpoYPHy7DMBQfHy9XV1ezwwIqFXlR1UBuBJAbVQWO5kYWg4NVAQAAAAAA\nAAAAAAAAAKfG/mUAAAAAAAAAAAAAAACAk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAAAAAAAAAA\nTo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAAAAAAAAAAAAAAODmKgABUCXv37lV0dLTZYQAAAFQJ5EYA\nAAA3r02bNje8Jzg4WCdOnKiEaAAAAMxDXgSAIiAAAAAAAAAAAAAAAADAyVEEBKDKOHfunMaOHat+\n/frpySefVHFxsdatW6dBgwYpNDRUsbGxKigokHRlJfP69esVGxsr6efq5fHjx6tfv346e/asKeMA\nAACoCORGAACgugoNDdXRo0clSZMmTVJCQoIkKSsrS2PHjtWyZcs0dOhQDR48WC+99JIMw5Akbdiw\nQUOHDtXDDz+sadOmqaio6Ip+Dxw4oH79+iknJ0cXLlzQ2LFjFRoaqvHjx9vvzc/P1/PPP6+IiAj1\n6dNHkydPlmEYmjx5stLS0ux9RUdH6/PPP6+M6QAAADUYeRGAikYREIAq47vvvlN8fLzef/99nTlz\nRm+//baWLl2q5ORkbd68We7u7lq4cOEN++nVq5e2b9+uRo0aVULUAAAAtwa5EQAAqK569+6tTz/9\nVJL05Zdf6sCBA5KkjIwMPfDAAzp06JDWrl2rDRs26NSpU9q0aZO++uorpaenKzU1VRs3blSjRo20\nfPlye59ffPGFpk+friVLlqhFixZasGCB2rVrp82bN2vUqFE6c+aMJOmjjz5S27ZtlZaWpu3btysr\nK0uHDx9WWFiYNm3aJEnKzc3VuXPndM8991TyzAAAgJqGvAhARbOaHQAA/Mfdd9+t5s2bS5L8/f2V\nl5enPn36qEGDBpKkiIgITZ069Yb9kIgAAIDqgNwIAABUVw888IBWrlypbt266a677tKxY8d09uxZ\nZWRkqFWrVjp48KCGDRsmSfrpp5/UpEkT5eXlKScnR+Hh4ZKkkpIStWvXzt7nE088of79+8vPz0+S\n9I9//EOvvPKKJKlLly72vGrQoEE6ePCgVq1apWPHjunChQsqLCxUUFCQ4uLidOLECW3cuFEPP/xw\nZU4JAACoociLAFQ0ioAAVBlW63/fkiwWi+rWratLly7ZnzMMQ6WlpVc8tlgsVzwnSbVr1771wQIA\nANxi5EYAAKC66ty5s6ZMmaI9e/aoa9euatSokbZt26aSkhJ5e3tr9OjR+t3vfidJunTpklxdXbV2\n7VoNGDBAM2bMkCQVFBTo8uXL9j7nz5+vKVOmaMSIEbr77rtlsVjsx2VIkqurqyQpOTlZ27dvV3h4\nuO677z59+eWX9jxqyJAh2rp1q7Zt26a//OUvlTgjAACgpiIvAlDROA4MQJW2c+dOXbhwQZKUnp6u\noKAgSVKDBg301VdfyTAM7dy508wQAQAAKg25EQAAqA5cXV11zz33KDk5WV27dlW3bt20dOlS9e7d\nW926ddPGjRtVUFCg0tJSPfPMM9q+fbuCgoL0wQcf6OzZszIMQzNnztRbb71l77N79+6aNGmSZsyY\nIZvNpu7du2vjxo2SpIMHD+qbb76RJO3evVsREREaPHiwLBaLsrOzZbPZJEnDhg1Tamqq7rjjDjVu\n3LjyJwYAANQ45EUAKho7AQGosry8vPT73/9e0dHRKikpUfv27fXCCy9IkiZNmqQnn3xSt912mwID\nA3X+/HmTowUAALi1yI0AAEB10rt3b2VmZsrf318+Pj46e/asHnjgAQUEBCg7O1vh4eG6fPmyevbs\nqaFDh8pisejZZ5/V6NGjZbPZ1LZtW40bN+6KPocMGaJ169YpOTlZzz//vGJjY/XQQw/Jz8/PfuzF\n6NGjNXPmTK1YsUKenp7q3LmzTpw4IUm68847dccdd2jo0KGVPh8AAKDmIi8CUJEsxv/u/QUAAAAA\nAAAAQA1jGIZ++OEHRUdHa8uWLXJzczM7JAAAAFOQFwHOjePAAAAAAAAAAAA12vbt2/Xwww9r4sSJ\n/KELAADUaORFgHNjJyAAAAAAAAAAAAAAAADAybETEAAAAAAAAAAAAAAAAODkKAICAAAAAAAAAAAA\nAAAAnBxFQAAAAABqjBMnTqhz5843vO9f//qXgoODKyGiqmHv3r0aNGiQ2WFUuOXLlys2NtbsMAAA\nAAAAAACgUlAEBAAAAAAAAAAAAAAAADg5q9kBAAAAAMDVhgwZoilTpui+++7T1q1bFRsbq8zMTNWp\nU0czZsxQ27ZtNWLECM2fP1+ZmZm6fPmy2rVrpxkzZsjLy0unTp3SrFmzdPLkSZWUlOihhx7Sk08+\necVrHD16VGPHjtXUqVMVEhKiNWvW6K233pKXl5dat25tv+/MmTOKj4/X2bNndfr0aTVt2lSvvfaa\njh8/rokTJ2rXrl1ycXHRjz/+qODgYG3ZskWNGjWSJNlsNvXp00cLFy7Ub37zG0nShAkT1KVLFwUF\nBWn69OkqLi6WYRgaPny4Ro0a9Yu5WLp0qT788EMVFRXpxx9/VExMjH7729+W2e/QoUOVkJCgzz//\nXN7e3rrrrrskSfPmzbvunBcWFur5559XTk6O6tatq1mzZqlly5bKy8vTCy+8oOzsbFksFvXs2VMT\nJ06U1Vr2j5OnT59WTEyMzp8/L0nq3bu3xo8fr/Xr12vr1q2y2Ww6deqUGjdurHnz5qlx48aKjo5W\nvXr1dOzYMUVGRmrIkCGaM2eOvvzyS5WUlKh79+6aMmWKrFar1q5dq7S0NJWUlOjixYsaO3asoqKi\nVFJSotmzZ2vPnj1q1KiRGjVqJG9v7xv9cwMAAAAAAACAaoGdgAAAAABUOQ8++KA++eQTSdInn3yi\nevXqad++fbLZbProo4/Ut29fLVu2TK6urlq/fr02bdqk22+/XfPnz5ckTZ48WWFhYVq/fr3Wrl2r\nPXv26L333rP3/+WXX+rJJ5/UnDlzFBISoi+++EILFy7U6tWrtW7dOtWqVct+79atW9WpUyelpaVp\nx44dqlOnjjZu3KjAwEDVr1/fHufWrVvVvXt3ewGQJLm4uCgsLEzvvvuuJOnixYvas2ePQkNDtXz5\ncgUHB2v9+vVatmyZfXz/Kzc3V3v27NHq1au1efNmTZgwQQsWLLhuv4sXL9bly5f1/vvva9WqVfr3\nv/99U3N+8uRJPfbYY9q4caMGDRqkKVOmSJJmz56t+vXra/PmzVq3bp2OHDmiFStWXLev9PR0NWvW\nTO+++65SUlKUk5OjvLw8SdKBAwcUHx+v9957T+3bt9ecOXPs7erWrav33ntP0dHRmjt3rtq3b6/1\n69drw4YNOn/+vFauXKmCggK98847WrZsmTZs2KBXX31VL7/8siRpzZo1On78uLZu3aoVK1bo5MmT\nNzV2AAAAAAAAAKgO2AkIAAAAQJUTEhKiiRMnKiYmRvv27dNjjz2m3bt3y9PTU76+vvLx8dFHH32k\nvLw87dmzR5JUUlKiRo0aqbCwUJmZmbp48aJef/11ST/vcpOdna2OHTuquLhYjz76qLp27aru3btL\nkj799FP16NFDPj4+kqSIiAj9/e9/lySNHj1a+/bt08qVK3X8+HF99dVXuueeeyRJo0aNUnp6unr3\n7q20tDR74cz/CgsL0/DhwxUbG6stW7aoT58+8vb2VkhIiGJiYnTw4EF1795dM2bMkIvLlZ/TaNq0\nqV588UVt3rxZOTk5+vzzz1VQUHDdfj/++GNNnTpVLi4u8vLy0tChQ3XkyJEbznmbNm0UEBAgSRo6\ndKhmzpypvLw8ZWRk6O2335bFYpGbm5tGjhypt956S+PGjSuzr549e2rcuHE6efKk7rvvPk2aNMm+\nI0+PHj3UsmVLSVJ4eLgefvhhe7t7773X/vVHH32kf/3rX1q7dq0k6aeffpIkeXp6aunSpfr44491\n/PhxZWdnq7Cw0L6OgwYNkpubm9zc3BQaGnpTYwcAAAAAAACA6oAiIAAAAABVTps2bVRSUqIdO3ao\nRYsW6tOnjyZMmCCr1aq+fftK+vmorWnTpql3796SpIKCAhUVFclms8kwDKWmpsrd3V2SdO7cOdWu\nXdt+PNWiRYs0ZcoU/e1vf1Pfvn1lsVhkGIb99V1dXe1fv/zyyzp48KDCwsIUFBSk0tJS+72hoaFK\nSkrSZ599psLCQnXp0uUXY2natKnatWunjz76SOvXr9e0adMkSX369NH27du1Z88effrpp1q0aJFS\nU1Pl6+trb3v48GE9/fTTeuyxx9SjRw916dJFL7zwwnX7tVqtV4zl6sKislx9n8VikdVq/cXuRDab\nTaWlpdftq2PHjtqxY4c+/fRTffbZZxoxYoQWLVok6cq5tdlsVzz28PC44trrr78uf39/SdKlS5dk\nsVj0/fffKyIiQuHh4QoMDFT//v21a9eua8bxv30DAAAAAAAAQHXHcWAAAAAAqqQHH3xQ8+fPV48e\nPeTv76/8/Hxt3rxZ/fr1kyTdf//9SklJUXFxsWw2m+Li4pSUlCQvLy916tRJK1eulPRz8UhkZKR2\n7NghSXJzc1NgYKDmzp2rhIQEnT59Wvfdd592796t77//XpLsx2xJ0t///neNHj1aQ4YMUaNGjbRn\nzx5dvnxZkuTu7q7Bgwdr2rRpGjlyZJljCQ8P15tvvqmffvpJgYGBkqRJkybpvffe00MPPaSEhAR5\neXn94viqzMxMdejQQb/73e/UtWtX7dixw/7aZfXbu3dvrVu3TjabTT/++KO2bNkii8Vyw/k+cuSI\nvvjiC0lSWlqaAgMD5e7ubp9nwzBUXFys9PR03Xfffdfta/78+Vq8eLEefPBBTZ8+XXfddZeOHz8u\nSfrss8906tQpSVJqaqr69OlzzT7uv/9+rVq1yv66Tz31lFavXq1Dhw6pYcOGevrpp9WzZ097AdDl\ny5fVs2dPbdiwQUVFRSoqKrriCDgAAAAAAAAAqO4oAgIAAABQJYWEhOjYsWP2gpP77rtPPj4+uvPO\nOyVJTz/9tJo2baqhQ4dq4MCBMgxDsbGxkn4uQvn8888VGhqqESNGaNCgQRo8ePAV/QcFBemhhx7S\ntGnT1KZNG02ePFmjR4/WsGHDVFRUZL/vmWee0UsvvaRhw4bp2WefVUBAgL755hv79WHDhuncuXMa\nMmRImWMJDg5Wbm6uhg8fbn/u6aef1ubNmzV48GCFh4frwQcfVNeuXa9oN2jQIJ0/f14DBw7UsGHD\n5OHhoYsXLyo/P7/Mfn//+9+rdu3aCg0N1e9+9zs1atRIderUueF8+/n5aeHChRo8eLB27typefPm\nSZJmzJihc+fOKTQ0VKGhoWrZsqWefPLJ6/Y1evRoZWdna9CgQQoLC1OzZs00aNAgSVLjxo01efJk\nDRgwQLm5ufYdjK42ffp0FRYW2l+3devWeuKJJ9SjRw81btxY/fv315AhQ3Ty5Ek1bNhQOTk5Gjly\npDp06KBBgwbpkUceUbNmzW44bgAAAAAAAACoLizG/+4TDwAAAAC4aYZh6M0331Rubq79mC6zbd26\nVV5eXurdu7dsNpuee+459ejRQ1FRUWaHpvXr12v79u164403zA4FAAAAAAAAAKodq9kBAAAAAICz\n+u1vf6uGDRtqyZIlZodi16pVK8XHxyspKUklJSUKCgrSiBEjNH78eH399dfXbPPqq6/Kz8+vXK8T\nFRWlgoKCa15LSUmRl5dXuWMHAAAAAAAAAPx67AQEAAAAAAAAAAAAAAAAODkXswMAAAAAAAAAyuvz\nzz9XdHT0L57fuXOnwsLCFBERofT0dBMiAwAAqFzkRQAA4D84DgwAAAAAAABO5c0339SmTZvk7u5+\nxfMlJSVKTEzU2rVr5e7ursjISAUHB+u2224zKVIAAIBbi7wIAAD8rxpVBHT6dJ7ZIdxQgwYeOn++\n0OwwnBbz5zjm0HHMoeOYQ8dV9Tn08fE2O4Qar9PiAK3qn6Km3s3MDgUAgBqP3Kj8fH199ec//1lT\npky54vmjR4/K19dX9erVkyQFBgYqMzNTAwYMuG5/hmHIYrHcsngBAABuFfIiAADwv2pUEZAzsFpd\nzQ7BqTF/jmMOHcccOo45dBxziBuhAAgAADizfv366cSJE794Pj8/X97e/y2q8vT0VH5+/g37s1gs\nTvHhserMx8ebNTAZa2A+1sB8rIH5KI4uP/Ki6of3IvOxBuZjDczHGpjv1+ZFLhUcBwAAAJwABUAA\nAKA68vLyUkFBgf1xQUHBFX/8AgAAqCnIiwAAqJkoAgIAAAAAAEC14O/vr5ycHF24cEHFxcXat2+f\nOnfubHZYAAAAlY68CACAmonjwAAAAAAAAODUNm/erMLCQkVERCg2NlZjxoyRYRgKCwtT48aNzQ4P\nAACg0pAXAQBQs1EEBAAAAAAAAKfTrFkzpaenS5JCQ0PtzwcHBys4ONissAAAACodeREAAPgPjgMD\nAAAAAAAAAAAAAAAAnBxFQAAAAAAAAAAAAAAAAICTowgIAAAAAAAAAAAAAAAAcHJWswMAAKAiPT5v\nZ4X2tyKWM7MBAAAAAAAAAAAAVH3sBAQAQBWzfPkb2rBhrdlhlMtnn+3RnDkzzQ4DAAAAAAAAAAAA\nqLEoAgIAAAAAAAAAAAAAAACcnMPHgdlsNs2cOVNHjhyRm5ubZs+erRYtWtiv79y5U4sWLZLValVY\nWJjCw8PLbJOTk6PY2FhZLBa1atVKCQkJcnFxUXp6ulJTU2W1WvXUU0+pT58+unz5shITE3Xo0CEV\nFxfrueeeU58+fRwdTrlU9JEztwLH2ADArVVQkK9582YrPz9PZ86c1m9/21cffLBNq1e/I4vFoqSk\nFxUY2FU+Pj5KSnpJHh4eatCggdzcamv69Jll9puR8ZF27vxQP/30k8aP/6Pateugv/3tfaWnv61a\ntWqpeXNfTZkyXVbrtf8rT0lJ0TvvrJOLi4vatm2n8eMna86cmTIMQz/8cEo//lioGTNmyc3NTTEx\nE1S3bj11795D3br10GuvvSzDMFSvXj1NnZogd3d3vfzyXP3wwymdPXtGPXr00rhxT+v48a+VmDhL\ndeq4y929jry9696iWQYAAAAAAAAAAABwIw7vBPThhx+quLhYaWlpmjRpkubNm2e/VlJSosTERK1Y\nsULJyclKS0vTmTNnymyTmJio8ePHa82aNTIMQzt27NDp06eVnJys1NRULV++XElJSSouLtbGjRtV\nWlqq1NRULVmyRDk5OY4OBQCAcjtx4oQefLCvXn11kV59dZG2bdsqf/9W+vzzf6q4uFgHDuxXjx49\nNX9+oqZNS9CCBUvVpEmzG/Z7551NtGDBUsXGxmn+/ERdvHhBy5e/oQULlmjJkuXy8vLSxo3rymy/\nfv16TZw4RW+8sVItWrRUaWmpJKlp02ZasGCpHn98nBYvfl2SdO7cWb366iKNGjVaL744WxMnxmjh\nwmXq3r2HUlLe0g8/nFL79r9RUtJCLVv2lv11Fy9+XU888Xu9/vpidejQsQJmEwAAAAAAAAAAAMCv\n5fBOQPv371fPnj0lSZ06ddKhQ4fs144ePSpfX1/Vq1dPkhQYGKjMzExlZWVds83hw4fVtWtXSVKv\nXr20e/duubi4qHPnznJzc5Obm5t8fX2VnZ2tv//972rVqpXGjRsnwzAUFxfn6FAAACi3hg0bKj19\njT7+eJc8PDxVWlqq0NAhev/9LTp79qzuv7+XrFarzpw5Iz8/f0nSPfd01o4df7tuv/fcEyBJ8vPz\n19mzZ/Xdd7lq2dJPHh6e9uuZmZ+V2T4xMVGLF7+hkydfV/v2v7E/HxDQRZLUocM9WrAgSdLPBUe1\natWSJOXkfK1XXvm5OPfy5VI1a+arunXr6osvDuvAgX3y9PRUcXGJJOmbb75R27YdJEm/+U0n5eQc\nL9fcAQAAAAAAAAAAAKg4DhcB5efny8vLy/7Y1dVVpaWlslqtys/Pl7e3t/2ap6en8vPzy2xjGIYs\nFov93ry8vDL7OH/+vL755hu98cYbyszM1NSpU5WSknLdWBs08JDV6urokJ2Kj4/3jW+qZmrimCsa\nc+g45tBxVWUObxTHX/6yUN26dVFUVJQ+++wz/eMfezRgwG/15puLdPHiOSUkJMjHx1tNmtypixdP\n6a677tLx41+qTp1aZfbt6Vlbx49/KR+fETpy5IiaNWuqDh1a69tvc+Tp6SoPDw8dOfIvtW3busw+\n3njjdb344lzVrl1bY8aM0bfffqU6dWopN/eYHnywpw4f3q+7726jhg095eb231j8/Pz06quvqEmT\nJtq/f79Onz6tjIwPdPvtjTR58mTl5ORo06Z3ddttXmrTppW+/fYr9erVSydOHL3umAAAAAAAAAAA\nAADcWg4XAXl5eamgoMD+2GazyWq1XvNaQUGBvL29y2zj4uJyxb1169Yts4/69evrgQcekMViUdeu\nXXX8+PEbxnr+fKEjQ3VKp0/nmR1CpfLx8a5xY65ozKHjmEPHOTKHK2KDKzSWG8URENBNr776kjZu\n3Pz/C1wt+u67c7r//ge0b98/5O7eQKdP5+kPf5isyZNj5O7uoVq1rPLxub3MvgsKinTs2HFFRo5S\nSUmxJk6M1eXLtTR69FhFRY2SxeKiZs2aa/To35fZR5s2bRQePlIeHh7y8fFRkyZ++umnEn344S5t\n2/Y32Ww2TZuWoHPnClRSctnezx/+MEUTJkzS5cuXZbFYFBsbpwYN7lBq6gxlZu5XrVq11KxZc33x\nxTGNG/ecZs9O0NKly1S/fn25udW+6XWjWAgAAAAAAAAAAACoWA4XAQUEBGjXrl0aOHCgsrKy1Lp1\na/s1f39/5eTk6MKFC/Lw8NC+ffs0ZswYWSyWa7Zp166d9u7dq6CgIGVkZKhbt27q2LGjXnvtNRUV\nFam4uFhHjx5V69atFRgYqI8//lj9+vVTdna27rzzTkeHAgBAuQUE3Kvk5PRfPP/oo4/r0Ucftz/+\n978P68UXX1WDBg20bNli+/Fb1zJmzO+v+Xzfvv3Vt2//m4prxIgReuCBX97cMQPcAAAgAElEQVQb\nHh6pbt3uu+K5ZctW2b++++62Wrhw2S/avfXW29d8nSVLlt9UPAAAAAAAAAAAAABuLYeLgEJCQrR7\n926NHDlShmFo7ty52rx5swoLCxUREaHY2FiNGTNGhmEoLCxMjRs3vmYbSYqJiVFcXJySkpLk5+en\nfv36ydXVVdHR0YqKipJhGJowYYJq166t8PBwJSQkKDw8XIZh6IUXXnB4MgAAuFUaNmyoiROfkbu7\nh7y8vDR9+kxNmzZZly5dvOI+Ly8vzZuXdFN9fv/995o9O/4Xz3fuHKjY2D9WSNwAAAAAAAAAAAAA\nnIPFMAzD7CAqS0Ufz/P4vJ0V2t+tUNHH4lR1HMPkOObQccyh45hDx1X1OeQ4MPNlHftCTb2bmR0G\nAAAQuVFVUZXz55qgqv8MUxOwBuZjDczHGpiPvKhq4PvAXLwXmY81MB9rYD7WwHy/Ni9yqeA4AAAA\n4AQe2zZKuXknzA4DAAAAAAAAAAAAFYQiIAAAgBpoVf8UdgICAAAAAAAAAACoRigCAgAAqIEoAAIA\nAAAAAAAAAKheKAICAACogTgKDAAAAAAAAAAAoHqhCAgAAKAGemzbKAqBAAAAAAAAAAAAqhGKgAAA\nAGqgVf1TOBIMAAAAAAAAAACgGqEICAAAoAaiAAgAAAAAAAAAAKB6oQgIAAAAAAAAAAAAAAAAcHIU\nAQEAAAAAAAAAAAAAAABOjiIgAAAAAAAAAAAAAAAAwMlRBAQAAAAAAAAAAAAAAAA4OYqAAAAAAAAA\nAAAAAAAAACdHERAAAAAAAAAAAAAAAADg5CgCAgAAAAAAAAAAAAAAAJwcRUAAAAAAAAAAAAAAAACA\nk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAAAAAAAAAATo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAA\nAAAAAAAAAAAAODmKgAAAAAAAAAAAAAAAAAAnRxEQAAAAAAAAAAAAAAAA4OQoAgIAAAAAAAAAAAAA\nAACcHEVAAAAAAAAAAAAAAAAAgJOjCAgAAAAAAAAAAAAAAABwchQBAQAAAAAAAAAAAAAAAE6OIiAA\nAIBbzGazKT4+XhEREYqOjlZOTs4V13fu3KmwsDBFREQoPT39um1ycnIUGRmpqKgoJSQkyGazXfE6\nTzzxhN5+++3KGxwAAEAlu1FutWnTJg0dOlRhYWFas2aNSVECAADceuRFAADgahQBAQAA3GIffvih\niouLlZaWpkmTJmnevHn2ayUlJUpMTNSKFSuUnJystLQ0nTlzpsw2iYmJGj9+vNasWSPDMLRjxw57\nX6+99pouXbpU6eMDAACoTNfLrSTppZde0sqVK/X2229r5cqVunjxokmRAgAA3FrkRQAA4GoUAQEA\nANxi+/fvV8+ePSVJnTp10qFDh+zXjh49Kl9fX9WrV09ubm4KDAxUZmZmmW0OHz6srl27SpJ69eql\nPXv2SJK2bdsmi8VibwMAAFBdXS+3kqQ2bdooLy9PxcXFMgxDFovFjDABAABuOfIiAABwNavZAQAA\nAFR3+fn58vLysj92dXVVaWmprFar8vPz5e3tbb/m6emp/Pz8Mtv87y9sPD09lZeXpy+//FJbtmzR\nggULtGjRosobGAAAgAmul1tJUqtWrRQWFiZ3d3eFhISobt26N9Wvj4/3jW/CLcUamI81MB9rYD7W\nAM6EvKj6Yg3MxxqYjzUwH2vgnBwuArLZbJo5c6aOHDkiNzc3zZ49Wy1atLBf37lzpxYtWiSr1aqw\nsDCFh4eX2SYnJ0exsbGyWCxq1aqVEhIS5OLiovT0dKWmpspqteqpp55Snz59ZBiGevXqpf/7v/+T\n9HOF86RJkxwdDgAAQIXz8vJSQUGB/bHNZrP/MubqawUFBfL29i6zjYuLyxX31q1bVxs2bNCpU6c0\nevRo5ebmqlatWmratKl69epVCaMDAACoXNfLrbKzs/XRRx9px44d8vDw0OTJk/X+++9rwIABN+z3\n9Om8WxYzbszHx5s1MBlrYD7WwHysgfn4Y2P5kBdVT7wXmY81MB9rYD7WwHy/Ni9yuAjof88bzcrK\n0rx587RkyRJJUklJiRITE7V27Vq5u7srMjJSwcHBOnDgwDXbJCYmavz48QoKClJ8fLx27NihTp06\nKTk5WevWrVNRUZGioqLUo0cPnTx5Uu3bt9fSpUsdHQIAAMAtFRAQoF27dmngwIHKyspS69at7df8\n/f2Vk5OjCxcuyMPDQ/v27dOYMWNksViu2aZdu3bau3evgoKClJGRoW7dumngwIH2/v785z/rtttu\nowAIAABUW9fLrby9vVWnTh3Vrl1brq6uatiwoS5dumRitAAAALcOeREAALiaw0VA1ztv9OjRo/L1\n9VW9evUkSYGBgcrMzFRWVtY12xw+fFhdu3aVJPXq1Uu7d++Wi4uLOnfuLDc3N7m5ucnX11fZ2dk6\nceKETp06pejoaNWpU0dTp06Vn5+fo8MBAACocCEhIdq9e7dGjhwpwzA0d+5cbd68WYWFhYqIiFBs\nbKzGjBkjwzAUFhamxo0bX7ONJMXExCguLk5JSUny8/NTv379TB4dAABA5bpRbhUREaGoqCjVqlVL\nvr6+Gjp0qNkhAwAA3BLkRQAA4GoOFwFd77zR/Px8eXv/d4siT09P5efnl9nGMAxZLBb7vXl5eWX2\n4ePjo3HjxmnAgAHat2+fJk+erHXr1l031gYNPGS1ujo6ZKdSE7fOrIljrmjMoeOYQ8cxh45jDqsO\nFxcXzZo164rn/P397V8HBwcrODj4hm0kqWXLllq9enWZr/Xcc885GC0AAEDVdqPcKjIyUpGRkZUd\nFgAAQKUjLwIAAFdzuAjoeueNXn2toKBA3t7eZbZxcXG54t66deuW2cddd90lV9efC3ruvfde/fDD\nD1cUEV3L+fOFjg7X6dS0c/o4m9BxzKHjmEPHMYeOq+pzSIESAAAAAAAAAAAAULFcbnzL9QUEBCgj\nI0OSfnHeqL+/v3JycnThwgUVFxdr37596ty5c5lt2rVrp71790qSMjIydO+996pjx47av3+/ioqK\nlJeXp6NHj6p169ZauHCh3nrrLUlSdna27rzzzusWAAEAAAAAAAAAAAAAAADVlcM7Ad3ovNHY2FiN\nGTNGhmEoLCxMjRs3vmYbSYqJiVFcXJySkpLk5+enfv36ydXVVdHR0YqKipJhGJowYYJq166tcePG\nafLkyfr444/l6uqqxMREhycDAAAAAAAAAAAAAAAAcEYWwzAMs4OoLBV9LMrj83ZWaH+3worYYLND\nqFRV/fgbZ8AcOo45dBxz6LiqPoccB2a+qvzvAwCAmobcqGogPzJXVf8ZpiZgDczHGpiPNTAfeVHV\nwPeBuXgvMh9rYD7WwHysgfl+bV7k8HFgAAAAAAAAAAAAAAAAAMxFERAAAAAAAAAAAAAAAADg5CgC\nAgAAAAAAAAAAAAAAAJwcRUAAAAAAAAAAAAAAAACAk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAA\nAAAAAAAATo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAAAAAAAAAAAAAAODmKgAAAAAAAAAAAAAAAAAAn\nRxEQAAAAAAAAAAAAAAAA4OQoAgIAAAAAAAAAAAAAAACcHEVAAAAAAAAAAAAAAAAAgJOjCAgAAAAA\nAAAAAAAAAABwchQBAQAAAAAAAAAAAAAAAE6OIiAAAIAaKDfvhNkhAAAAAAAAAAAAoAJRBAQAAFAD\nPbZtFIVAAAAAAAAAAAAA1QhFQAAAADXQqv4paurdzOwwAAAAAAAAAAAAUEEoAgIAAAAAAAAAAAAA\nAACcHEVAAAAANRDHgQEAAAAAAAAAAFQvFAEBAADUQPN6zuc4MAAAAAAAAAAAgGqEIiAAAIAaKPaT\nP7ITEAAAAAAAAAAAQDVCERAAAEANxE5AAAAAAAAAAAAA1QtFQAAAADUQOwEBAAAAAAAAAABULxQB\nAQAA1ECr+qewExAAAAAAAAAAAEA1QhEQAABADUQBEAAAAAAAAAAAQPVCERAAAAAAAAAAAAAAAADg\n5KxmBwAAAOAMMjMzr3u9S5culRQJAACobr69+K2a12tudhgAAAAAAABwchQBAQAA3IQFCxZIki5c\nuKBvvvlGAQEBcnFx0T//+U+1bt1aqampJkcIAACcUW7eCT3xYbT2jdtndigAAAAAAABwchQBAQAA\n3ITk5GRJ0tixY7Vw4UK1aNFCkpSbm6v4+HgzQwMAAE6sqXczvRvxrtlhAAAAAAAAoBpwcbQDm82m\n+Ph4RUREKDo6Wjk5OVdc37lzp8LCwhQREaH09PTrtsnJyVFkZKSioqKUkJAgm80mSUpPT9ewYcMU\nHh6uXbt2XdH/0aNHFRgYqKKiIkeHAgAAcEPfffedvQBIkpo0aaLvvvvOxIgAAICz4ygwAAAAAAAA\nVASHdwL68MMPVVxcrLS0NGVlZWnevHlasmSJJKmkpESJiYlau3at3N3dFRkZqeDgYB04cOCabRIT\nEzV+/HgFBQUpPj5eO3bsUKdOnZScnKx169apqKhIUVFR6tGjh9zc3JSfn68XX3xRbm5uDk8EAADA\nzWjfvr1iYmI0YMAA2Ww2bdmyRffee6/ZYQEAAAAAAAAAAKCGc3gnoP3796tnz56SpE6dOunQoUP2\na0ePHpWvr6/q1asnNzc3BQYGKjMzs8w2hw8fVteuXSVJvXr10p49e3Tw4EF17txZbm5u8vb2lq+v\nr7Kzs2UYhuLi4jRx4kS5u7s7OgwAAICbMnv2bLVp00apqalKT09Xp06dlJCQYHZYAAAAAAAAAAAA\nqOEc3gkoPz9fXl5e9seurq4qLS2V1WpVfn6+vL297dc8PT2Vn59fZhvDMGSxWOz35uXlldnHwoUL\n1bt3b9199903HWuDBh6yWl0dGa7T8fHxvvFN1UxNHHNFYw4dxxw6jjl0HHN4a7i5uWnYsGEaMGCA\nDMPQ5cuXlZmZqe7du5sdGgAAAAAAAAAAAGowh4uAvLy8VFBQYH9ss9lktVqvea2goEDe3t5ltnFx\ncbni3rp165bZx6ZNm3THHXdo3bp1On36tB5//HGlpKRcN9bz5wsdHa7TOX06z+wQKpWPj3eNG3NF\nYw4dxxw6jjl0XFWfQ2cuUHrllVe0Zs0alZaWqkGDBjp16pQ6dOigd955x+zQAAAAAAAAAAAAUIM5\nfBxYQECAMjIyJElZWVlq3bq1/Zq/v79ycnJ04cIFFRcXa9++fercuXOZbdq1a6e9e/dKkjIyMnTv\nvfeqY8eO2r9/v4qKipSXl6ejR4+qdevW+uCDD5ScnKzk5GT5+PhoxYoVjg4FAADghrZu3aqPP/5Y\nAwcO1F//+letXLlSDRs2NDusctv/fabZIQAAAAAAAAAAAKACObwTUEhIiHbv3q2RI0fKMAzNnTtX\nmzdvVmFhoSIiIhQbG6sxY8bIMAyFhYWpcePG12wjSTExMYqLi1NSUpL8/PzUr18/ubq6Kjo6WlFR\nUTIMQxMmTFDt2rUdHjgAAMCvcfvtt8vLy0utWrVSdna2+vbtq5dfftnssMpt2KZBWj94iwLv6GJ2\nKAAAAOVis9k0c+ZMHTlyRG5ubpo9e7ZatGhhv37w4EHNmzdPhmHIx8dHL7/8Mr9LAgAA1RJ5EQAA\nuJrDRUAuLi6aNWvWFc/5+/vbvw4ODlZwcPAN20hSy5YttXr16l88Hx4ervDw8DJj2LlzZ3nDBgAA\n+FW8vLy0YcMGtW/fXqtXr9btt9+uS5cumR1Wub3x4AoKgAAAgFP68MMPVVxcrLS0NGVlZWnevHla\nsmSJJMkwDMXFxWnBggVq0aKF3nnnHeXm5srPz8/kqAEAACoeeREAALiaw8eBAQAA1CRz5szRuXPn\nFBQUpKZNmyo+Pl7jx4+/bhubzab4+HhFREQoOjpaOTk5V1zfuXOnwsLCFBERofT09Ou2ycnJUWRk\npKKiopSQkCCbzSZJSklJUVhYmIYPH6733nvvhuN4Zf9Lys078WumAAAAwFT79+9Xz549JUmdOnXS\noUOH7Ne+/vpr1a9fX6tWrdIjjzyiCxcu8IcuAABQbZEXAQCAqzm8ExAAAEBN0rhxY40cOVLZ2dma\nMmWKfvrpJ3l4eFy3zfU+lVVSUqLExEStXbtW7u7uioyMVHBwsA4cOHDNNomJiRo/fryCgoIUHx+v\nHTt2KDAwUG+//bbeffddFRUV6aGHHtKAAQNksVjKjGlV/xQ19W5WoXMDAABQGfLz8+Xl5WV/7Orq\nqtLSUlmtVp0/f17//Oc/FR8fL19fXz355JPq0KGDunfvfsN+fXy8b2XYuAmsgflYA/OxBuZjDeBM\nyIuqL9bAfKyB+VgD87EGzokiIAAAgHL49NNPFR8fr8uXLys1NVUPP/ywXn75Zd1///1ltrnep7KO\nHj0qX19f1atXT5IUGBiozMxMZWVlXbPN4cOH1bVrV0lSr169tHv3boWEhGjDhg2yWq3Kzc1V7dq1\nr1sAJIkCIAAA4LS8vLxUUFBgf2yz2WS1/vwrrvr166tFixb2o+p79uypQ4cO3dQfu06fzrs1AeOm\n+Ph4swYmYw3MxxqYjzUwH39sLB/youqJ9yLzsQbmYw3MxxqY79fmRRwHBgAAUA5JSUlas2aN6tat\nq9tvv13Jycl66aWXrtumrE9l/eeat/d/EzlPT0/l5+eX2cYwDHuBj6enp/Lyfk7CrVarVq9erYiI\nCA0ePLjCxgsAAFDVBAQEKCMjQ5KUlZWl1q1b2681b95cBQUF9qNU9+3bp1atWpkSJwAAwK1GXgQA\nAK7GTkAAAADlYLPZ5OPjY39811133bDN9T6VdfW1goICeXt7l9nGxcXlinvr1q1rf/zII48oPDxc\nY8eO1WeffaZu3br9ukECAABUYSEhIdq9e7dGjhwpwzA0d+5cbd68WYWFhYqIiNCcOXM0adIkGYah\nzp0764EHHjA7ZAAAgFuCvAgAAFyNIiAAAIByuOOOO7Rr1y5ZLBZdunRJKSkpatKkyXXbBAQEaNeu\nXRo4cOAvPpXl7++vnJwcXbhwQR4eHtq3b5/GjBkji8VyzTbt2rXT3r17FRQUpIyMDHXr1k3Hjh1T\nUlKS/vznP6tWrVpyc3O7olgIAACgOnFxcdGsWbOueO4/x1xIUvfu3bV27drKDgsAAKDSkRcBAICr\nUQQEAABQDrNmzdKcOXN08uRJhYSEKCgo6Be/bLnajT6VFRsbqzFjxsgwDIWFhalx48bXbCNJMTEx\niouLU1JSkvz8/NSvXz+5urrq7rvvVkREhCwWi3r27KmuXbtWxnQAAAAAAAAAAACgiqAICAAAoBz+\n+te/KikpqVxtbvSprODgYAUHB9+wjSS1bNlSq1ev/sXzzz77rJ599tlyxQUAAAAAAAAAAIDqg3Mi\nAAAAymHXrl0yDMPsMAAAAAAAAAAAAIArsBMQAABAOdSvX1/9+/dX+/btVbt2bfvziYmJJkYFAAAA\nAAAAAACAmo4iIAAAgHIYOnSo2SFUiNy8E2rq3czsMAAAAAAAAAAAAFBBOA4MAACgHIYOHaq7775b\nFy5cUF5enjp27OiUhUGPbRul3LwTZocBAAAAAAAAAACACkIREAAAQDmsWLFCf/jDH/TDDz/oxIkT\neuqpp7Ru3Tqzwyq3Vf1T2AkIAAAAAAAAAACgGuE4MAAAgHJIS0vT+vXr5eXlJUl65plnFBkZqbCw\nMJMjKx8KgAAAAAAAAAAAAKoXdgICAAAoh3r16slq/W8dtYeHhzw9PU2MCAAAAAAAAAAAAGAnIAAA\ngHJp3ry5IiIi9NBDD8lqteqDDz6Ql5eXFi5cKEl69tlnTY7w5uz/PlOBd3QxOwwAAAAAAAAAAABU\nEIqAAAAAyqFly5Zq2bKliouLVVxcrB49epgd0q8ybNMgrR+8hUIgAAAAAAAAAACAaoIiIAAAgHJ4\n9tlnVVxcLDc3N+Xk5Ojrr79Wr1695OLiXKesUgAEAAAAAAAAAABQvTjXX6sAAABMtmjRIs2YMUPf\nffedRo0apbfeeksJCQlmh1VuFAABAAAAAAAAAABULxQBAQAAlMOOHTs0e/ZsbdmyRYMHD9bKlSt1\n+PBhs8Mqt9y8E2aHAAAAAAAAAAAAgApEERAAAEA52Gw2ubm5adeuXerdu7dsNpt+/PFHs8Mqt8e2\njaIQCAAAAAAAAAAAoBqhCAgAAKAcunfvrkGDBqmkpERdunTRI488ouDgYLPDKrdV/VPU1LuZ2WEA\nAAAAAAAAAACggljNDgAAAMCZxMTEKDo6Wo0bN5aLi4vi4uLUtm1bSVJaWpoiIiJMjvDmUAAEAAAA\nAAAAAABQvbATEAAAQDk1adJErq6ukmQvAJKk1NRUs0ICAAAAAAAAAABADUcREAAAQAUxDMPsEG5a\nbt4Js0MAAFQR/J8AAAAAAAAAVA8UAQEAAFQQi8Vidgg3LWrrCP7oCwBQbt4JPbZtFP8nmOzbi9+a\nHQIAAAAAAACqAYqAAAAAAACooZp6N9Oq/ilq6t3M7FBqrNy8ExqaNtTsMAAAAAAAAFANUAQEAABQ\nA6156B3+4AsAkCT+PzBZU+9mejfiXbPDAAAAAAAAQDVAERAAAEAF8fb2NjuEm8YffAEAqDqa12tu\ndggAAAAAAACoBqyOdmCz2TRz5kwdOXJEbm5umj17tlq0aGG/vnPnTi1atEjW/8fevcdFWef//38O\nDGjCgOWSmEoJSWZbHvDQ4aMVu3y0k61SoraYZVltJ4tMbRNbK7GDbp/KzpkrZWBppll2y0NLaZ9C\nWjLdNXepKFhRNM2ZIRlgrt8ffprvb1rPg7yZuR73263b2+G63pfP63o38Gaul9fb6VR2drZGjhx5\n0D6VlZWaMmWKHA6HunfvrunTpysqKkqLFi1SUVGRnE6nbrnlFl188cWqq6tTXl6e9u7dq5iYGD3y\nyCPq2LFjqKcDAABwSD/99JOeeuop/e///q+ampo0cOBATZw4Ue3atdOCBQtMxwMAAAAAAAAAAIBN\nhfwkoFWrVsnn86m4uFh5eXmaNWtWYFtDQ4MKCgo0b948FRYWqri4WDt37jxon4KCAk2cOFELFy6U\nZVlavXq1amtrVVhYqKKiIr388suaM2eOfD6fFi1apLPOOkuvvfaahg0bphdffDHUUwEAADisGTNm\naN++fZo5c6YeeeQRNTY2avr06aZjHbWymlLTEQAAAAAAAAAAANCMQn4SUFlZmQYNGiRJ6t27tzZt\n2hTYVlFRoZSUFCUmJkqSMjIyVFpaqvLy8gP22bx5swYMGCBJGjx4sNatW6eoqCj16dNHsbGxio2N\nVUpKirZs2aJx48apqalJkvTvf/9bCQkJoZ4KAADAYW3evFnLli0LvM7Pz9ell15qMNGxGbHsci0Z\n9o4ykvubjgIAAAAAAAAAAIBmEHIRkMfjUXx8fOB1dHS0Ghsb5XQ65fF45HK5Atvi4uLk8XgO2sey\nLDkcjsC+brf7oMf4ud/YsWO1detWvfLKK4fNeuKJ7eR0Rod6ymElKcl1+J0ijB3PublxDUPHNQwd\n1zB0XMPjw7Is7d27N1CAvHfvXkVHh9/8ggIgAAAAAAAAAACAyBJyEVB8fLy8Xm/gtd/vl9PpPOA2\nr9crl8t10D5RUVFB+yYkJBz0GD9bsGCBKioqdNNNN2nVqlWHzLp7d92xn2iYqq11m47QopKSXLY7\n5+bGNQwd1zB0XMPQtfZrGM4FSuPGjdNVV12lzMxMWZaltWvXasKECaZjHbXkuE6mIwAAAAAAAAAA\nAKAZRR1+l0Pr27evSkpKJEnl5eVKT08PbEtLS1NlZaX27Nkjn8+nDRs2qE+fPgft07NnT3366aeS\npJKSEvXr10/nnHOOysrKVF9fL7fbrYqKCqWnp+v555/X0qVLJe1/OlA4/gt8AAAQfrKzs/X000+r\na9eu6tq1q5566ildddVVpmMdtXErr1G1u8p0DAAAAAAAAAAAADSTkJ8ElJWVpXXr1mnUqFGyLEsz\nZ87U8uXLVVdXp5ycHE2ZMkXjx4+XZVnKzs5Wx44dD9hHkiZPnqxp06Zpzpw5Sk1N1ZAhQxQdHa3c\n3FyNGTNGlmXprrvuUps2bZSdna3Jkydr8eLFampqChwDAADgeKuqqtJ3332nmJgY7dq1y3ScYzJ/\n6Gvq7OpiOgYAqNpdxfcjwxgDAAAAAAAAIDI4LMuyTIdoKc29LMr1s9Y06/GOh3lTMk1HaFGtffmb\ncMA1DB3XMHRcw9C19msYzsuBzZ49W2VlZbrkkktkWZZWrFihzMxM3XTTTaajHZXW/P+HXXDTHdj/\nPhi38hoKEw1iDFqHcJ4bRRLmR2a19t9h7IAxMI8xMI8xMI95UevA+8AsvheZxxiYxxiYxxiYd6zz\nopCfBAQAAGAnH374oZYsWaKYmBhJUk5OjrKzs8OuCAhmcdMd2K+zqwvvA8MYAwAAAAAAACByRJkO\nAAAAEE4SExPl9XoDrxsaGhQfH28wEcIRN92B/4f3gXmMAQAAAAAAABAZeBIQAADAEZg6daokye/3\n68orr1RmZqaio6NVUlKi1NRUw+mOXllNqTKS+5uOYWvcdAcAAAAAAAAAAM2JIiAAAIAjMGDAgKD2\nZ2eddZaJOCEbsexyLRn2DoVAAAAAAAAAAAAAEYIiIAAAgCMwfPjwI9rnrbfeaoE0oaMACAAAAAAA\nAAAAILJEmQ4AAAAQKSzLMh3hiFEABAD4WbW7ynQEAAAAAAAAAM2AIiAAAIBm4nA4TEcAAOCoVLur\nNG7lNRQCAQAAAAAAABGAIiAAAAAAAGyqs6uL5g99TZ1dXUxHAQAAAAAAABAiioAAAAAAAAAQNvx+\nv/Lz85WTk6Pc3FxVVlYecL9p06bp8ccfb+F0AAAALYd5EQAA+CWKgAAAAJqJZVmmIxyxlV+vMB0B\nANAKsBwYwtGqVavk8/lUXFysvLw8zZo16z/2KSoq0tatWw2kAwAAaKrZAusAACAASURBVDnMiwAA\nwC9RBAQAANBMJkyYYDrCEbt25RgKgQAALAeGsFRWVqZBgwZJknr37q1NmzYFbf/888/1xRdfKCcn\nx0Q8AACAFsO8CAAA/JLTdAAAAIBwcuGFF2rHjh1KSEiQZVlyu91KSEhQly5d9NBDD5mOd8T+MnSh\nhqZeZjoGAKAVoAAI4cbj8Sg+Pj7wOjo6Wo2NjXI6ndqxY4fmzp2rp59+Wu+9995RHTcpydXcUXGU\nGAPzGAPzGAPzGAOEE+ZFkYsxMI8xMI8xMI8xCE8UAQEAAByF/v37a+jQofrtb38rSfrrX/+qlStX\nKjc3V3/6059UVFT0H338fr8eeOABffXVV4qNjdVDDz2kU089NbB9zZo1mjt3rpxOp7KzszVy5MiD\n9qmsrNSUKVPkcDjUvXt3TZ8+XVFRUZo/f75WrNj/ZJ8LL7xQt9122yHPI6ndyc14VQAAAFpOfHy8\nvF5v4LXf75fTuf8jrpUrV2r37t2aMGGCamtrtW/fPqWmpmrEiBGHPW5trfu4ZcbhJSW5GAPDGAPz\nGAPzGAPzuNl4dJgXRSa+F5nHGJjHGJjHGJh3rPMilgMDAAA4Cv/85z8DBUDS/oKbr776Sj179lR9\nff0B+xxqffaGhgYVFBRo3rx5KiwsVHFxsXbu3HnQPgUFBZo4caIWLlwoy7K0evVqff/991q2bJmK\nioq0aNEiffzxx9qyZcshz2PEsstVVlPaDFcEAACgZfXt21clJSWSpPLycqWnpwe2jR07VkuWLFFh\nYaEmTJigyy+//IhudAEAAIQj5kUAAOCXeBIQAADAUUhISFBRUZGGDRsmv9+v5cuXKzExURUVFfL7\n/Qfsc6j12SsqKpSSkqLExERJUkZGhkpLS1VeXn7APps3b9aAAQMkSYMHD9a6det00UUX6aWXXlJ0\ndLQkqbGxUW3atDnkeSwZ9o4ykvuHcCWA8FftrmIZJAAIQ1lZWVq3bp1GjRoly7I0c+ZMLV++XHV1\ndcrJyTEdDwAAoMUwLwIAAL9EERAAAMBRePzxx/Xwww/rsccek9Pp1Pnnn69HHnlE77//vvLy8g7Y\n51Drs3s8Hrlc/++RjnFxcfJ4PAftY1mWHA5HYF+3262YmBiddNJJsixLjz76qHr27Klu3bod8jwo\nAILdVburNG7lNZo/9DUKgWB7FMQh3ERFRWnGjBlBX0tLS/uP/fiX7gAAINIxLwIAAL9EERAAAMBR\n+PLLLzV79mzFxMQEfT03N/egfQ61Pvsvt3m9XrlcroP2iYqKCto3ISFBklRfX6/77rtPcXFxmj59\n+mHPgxu+sLvOri4UAAGiIK61+P7H79U1savpGAAAAAAAAAhzUYffBQAAAD9btmyZfvOb3yg/P18b\nNmw4oj6HWp89LS1NlZWV2rNnj3w+nzZs2KA+ffoctE/Pnj316aefSpJKSkrUr18/WZalP/zhDzrj\njDM0Y8aMwLJghzJu5TWqdlcd1bkDkYaCB4CCuNag2l2l4cXDTccAAAAAAABABOBJQAAAAEfhySef\nlMfj0apVq/Tiiy/q/vvv19ChQzVx4sSD9jnc+uxTpkzR+PHjZVmWsrOz1bFjxwP2kaTJkydr2rRp\nmjNnjlJTUzVkyBCtWrVKn332mXw+nz766CNJ0t13360+ffocNBM3fAEAP+PngVmdXV30Vs5bpmMA\nAAAAAAAgAlAEBAAAcJTi4+OVkZGhmpoabdu2TeXl5Yfc/3Drs2dmZiozM/OwfSSpW7duevXVV4O+\nlpWVpS+//PKozqHGu42bvgAAtBIsBQYAAAAAAIDmQBEQAACtwPWz1piOcEjzpmQefiebmDdvnt59\n913V19dr2LBheuGFF5ScnGw61lH73duXaumV7yojub/pKABsrtpdRVEibO/Tqk81sMtA0zEAAAAA\nAAAQ5qJMBwAAAAgn27dv1+WXX67x48crKSlJ69at0//8z/+YjnXUOsWdouS4TqZjALC5aneVxq28\nRtXuKtNRAGPKakqVuYCCawAAAAAAAISOJwEBAAAcha+//lp///vf9d1336lfv34qLS1V7969Tcc6\naic425mOAADq7Oqi+UNf40lAsLWM5P56fcTrpmMAAAAAAAAgAvAkIAAAgKPw7bffasGCBcrKytIN\nN9ygN954Qzt27DAd66gtvOwNbroDANAKVLurdP/a+03HAAAAAAAAQASgCAgAAOAodOjQQQ6HQ926\nddNXX32ljh07yufzmY511Gq820xHAACWAwP+T4O/wXQEAAAAAAAARACKgAAAAI5C9+7d9eCDD2rg\nwIGaP3++XnjhBTU0hN+Nu+FvX6aymlLTMQDYHMuBAfvFRMWYjgAAAAAAAIAIQBEQAADAUXjggQd0\nySWX6PTTT9ftt9+uHTt2aPbs2aZjHbUu8SlKjutkOgYAUAAE2+vs6qIVY1aYjgEAAAAAAIAI4DQd\nAAAAIJxER0erX79+kqTf/OY3+s1vfmM40bF5Y9hSbrwbVu2uYgwMYwwAtBZdE7uajgAAAAAAAIAI\nwJOAAAAAgBZW7a7SmBVXq9pdZTqKbTEGAFqT73/83nQEAAAAAAAARICQi4D8fr/y8/OVk5Oj3Nxc\nVVZWBm1fs2aNsrOzlZOTo0WLFh2yT2VlpUaPHq0xY8Zo+vTp8vv9kqRFixZpxIgRGjlypNauXStJ\ncrvduvnmm/X73/9eOTk5+tvf/hbqqQAAANgGxQ8AALQO1e4qXbbwMtMxAAAAAAAAEAFCLgJatWqV\nfD6fiouLlZeXp1mzZgW2NTQ0qKCgQPPmzVNhYaGKi4u1c+fOg/YpKCjQxIkTtXDhQlmWpdWrV6u2\ntlaFhYUqKirSyy+/rDlz5sjn8+mVV17Rueeeq1dffVUFBQWaMWNGqKcCAABgGz811pmOYGudXV00\ndcD9LEVlUGdXFy287A3GAECr0OBvMB0BAAAAAAAAEcAZ6gHKyso0aNAgSVLv3r21adOmwLaKigql\npKQoMTFRkpSRkaHS0lKVl5cfsM/mzZs1YMAASdLgwYO1bt06RUVFqU+fPoqNjVVsbKxSUlK0ZcsW\njRs3TrGxsZKkpqYmtWnTJtRTAQAAsI0a7zbVeLdRAGFIWU2pbvxgnJZe+a4ykvubjmNb/P8P7Fft\nruL9YFhMVIzpCAAAAAAAAIgAIRcBeTwexcfHB15HR0ersbFRTqdTHo9HLpcrsC0uLk4ej+egfSzL\nksPhCOzrdrsPeoyEhARJUm1trSZNmqT77rvvsFlPPLGdnM7oUE85rCQluQ6/U4Sx4zk3N65h6LiG\noeMati6MR+Qp+K/HKT4xKDmukzrFnaLkuE6mowCwuWp3lcatvEbzh75GIZAhnV1dtGLMCtMxAAAA\nAAAAEAFCLgKKj4+X1+sNvPb7/XI6nQfc5vV65XK5DtonKioqaN+EhISDHkOSvvrqK91999269957\nA08QOpTdu+237EVtrdt0hBaVlOSy3Tk3N65h6LiGoeMatj7NPR4UFZl337pJ6tHhTAqBDLIs0wnA\n00+A/QUoFAABAAAAAAAAkSHkIqC+fftq7dq1uvTSS1VeXq709PTAtrS0NFVWVmrPnj1q166dNmzY\noPHjx8vhcBywT8+ePfXpp59q4MCBKikp0bnnnqtzzjlHTzzxhOrr6+Xz+VRRUaH09HT961//0p13\n3qknnnhCPXr0CPU0AAAhuH7WGtMRDmnelEzTEYBWZ+YFj1EAZFCNd5u2eatZks0gnn4CoLWodldp\n7Ps52njLRtNRAAAAAAAAEOZCLgLKysrSunXrNGrUKFmWpZkzZ2r58uWqq6tTTk6OpkyZovHjx8uy\nLGVnZ6tjx44H7CNJkydP1rRp0zRnzhylpqZqyJAhio6OVm5ursaMGSPLsnTXXXepTZs2mj17tnw+\nnx5++GFJ+5869Oyzz4Z6OgAAALYw9eN7eBKQYT8vgwszePoJsB8FcQAAAAAAAEDkCLkIKCoqSjNm\nzAj6WlpaWuDPmZmZyszMPGwfSerWrZteffXV//j6yJEjNXLkyKCvUfADAABw7LrEpyg5rpPpGLaV\nkdxfS698lyIswyh4APa/D2YNepz3g0GdXV20YswK0zEAAAAAAAAQAaJMBwAAAEDLyz/vT9zwNYwC\nIGC/sppS0xFsrdpdpSkf3aNqd5XpKLbWNbGr6QgAAAAAAACIABQBAQAA2NCED67jxjsA48pqSjX8\n7cv4fmQQS+O1Dt//+L3pCAAAAAAAAIgAFAEBAADYUDtnHMuBwfZ48ol5yXGdWJ6wFaAAyKxqd5Uu\nW3iZ6RgAAAAAAACIABQBAQAA2NAP9bv01tbFpmPYGgUoZlW7qzT87csYB8M6u7rojWFLKUIxjPeB\neb4mn+kIAAAAAAAAiAAUAQEAANjU6SeebjqCbVW7qzRu5TXceDfoy9ov9O3eb/Rl7Remo9hejXeb\n6Qi2Vu2u0pgVV/P9yLDY6FjTEQAAAAAAABABnKYDwN6un7XGdITDmjcl03QEAACaXf7ABzU0laVH\nTOns6qL5Q1/j6ScGnZ3US13iu+rspF6mo9haWU2pRiy7XEuGvaOM5P6m4wBGdHZ10YtXvGg6BgAA\nAAAAACIATwICAACwoUc3PKyymlLTMWyNAiDzXLEJpiPYXkZyfz3/23kUABnU2dVFcy56ku9JBlW7\nq3Tru7eajgEAAAAAAIAIQBEQAACADSXGnqjkuE6mY9gaS++Y1dnVRQsve4PCB8Oq3VWaXfYo7weD\nqt1VmvLRPYyBQZ1dXZQ/ON90DAAAAAAAAEQAioAAAABsaPtP2/Rl7RemY9hWtbtKY1ZczU132F5n\nVxfNGvQ4xVgGsTyheWU1pRq9ZLTpGAAAAAAAAIgATtMBAMC062etMR3hkOZNyTQdAUAEat/mRJ2d\n1Mt0DFtraGowHcHWqt1VGrfyGoofDPv5KTSMg1kffrdG15w11nQM28pI7q81Y1v37yQAAAAAAAAI\nDxQBAWGutRewSBSxAEBrtKd+t97auli3ZdxpOoptORymE9hbZ1cX5WXcS+GJYYyDea9tXqC7/nqb\nJFEIZNAprlNMRwAAAAAAAEAEYDkwAAAAG+p4QicNT882HcPWfDwJyKiymlLdtOp6ldWUmo5ia4yD\nedecNVZ39r6HAiCDqt1VGl483HQMAAAAAAAARACKgAAAAGxo/iWv8uQNg2q827S9bptqvNtMR7Gt\njOT+ev6385SR3N90FFvLSO6vJcPeYRwMKqsp1bMbn6QQy6DOri6ae+lc0zEAAAAAAAAQASgCAgAA\nsKEpH92janeV6Ri2lZHcXy9kvULhg0HV7irNLnuU90ErkBzXyXQEW6ut2yGf36fauh2mo9hWtbtK\nNy6/0XQMAAAAAAAARACKgAAAAGwoL+NengRkULW7Sg/+73QKUAzq7OqiWYMe531gWLW7SmNWXM17\nwaCzk3rpVFc3nZ3Uy3QUW2vws0QkAAAAAAAAQkcREAAAgA1N+OA6ln4xqMa7TZU/fstyYAZVu6t0\n94d3UHzSCtQ11JmOYGudXV30XNZLFMQZtvun3aYjAAAAAAAAIAJQBAQAAGBDHdt1YgkewyyHZTqC\n7TU08eQN02q827TNW01BnEHV7irdvvoWCuIMemvrYm33bjcdAwAAAAAAABGAIiAAAAAbiomKMR3B\n9qKYihvXaFEE1Bo4HA7TEWytxrtN3/xYQSGWQbdl3KmLT73YdAwAAAAAAABEAO48AAAA2BD33M3K\nSO6vF/97vjKS+5uOYlv7n0DzbwofDMtI7q8Xs3gvmLTy6/fUpCat/Po901Fs6+H1M7S2cq3pGAAA\nAAAAAIgAFAEBAADYkJMnARlV7a7S7LJHWX7HoIzk/lp65bsUnxjGe8G8oamXKMoRraGpl5iOYlsZ\nyRmmI4Qdv9+v/Px85eTkKDc3V5WVlUHb33nnHV199dUaNWqU8vPz5ff7DSUFAAA4vpgXAQCAX6II\nCAAAwIYmnH2LOru6mI5hW51dXTRr0OOMAWyP94J5tXU75LeaVFu3w3QU20pqd7KcDqfpGGFl1apV\n8vl8Ki4uVl5enmbNmhXYtm/fPj3xxBNasGCBioqK5PF4tHYtT1oCAACRiXkRAAD4JYqAAAAAbOju\nv96ulV+vMB3DtqrdVbp99S08/cSgsppSDX/7MpXVlJqOYmu8F8w7O6mXktt10tlJvUxHsa3auh1q\ntBpNxwgrZWVlGjRokCSpd+/e2rRpU2BbbGysioqKdMIJJ0iSGhsb1aZNGyM5AQAAjjfmRQAA4Jf4\np2YAAAA29JehCzU09TLTMWyrxrtN37m/VY13G09AMSQ5rpM6tuuk5LhOpqPYWo13m6o83/FeMKjG\nu00/7NvFGBiU1O5kxbBM51HxeDyKj48PvI6OjlZjY6OcTqeioqL0q1/9SpJUWFiouro6XXDBBUd0\n3KQk13HJiyPHGJjHGJjHGJjHGCCcMC+KXIyBeYyBeYyBeYxBeKIICAAAADDAsizTEWzP6/OajmB7\nGcn99ULWK8pI7m86iq01+ZtMRwCOSnx8vLze//c93O/3y+l0Br1+7LHH9M033+ipp56Sw+E4ouPW\n1rqbPSuOXFKSizEwjDEwjzEwjzEwj5uNR4d5UWTie5F5jIF5jIF5jIF5xzovYjkwAAAAG7p25RiW\nAzMsKoqpuElvbV2snfU79NbWxaaj2Fq1u0qzyx5lOTCDaut2qElNqq3bYTqKbdXW7VCDv8F0jLDS\nt29flZSUSJLKy8uVnp4etD0/P1/19fV65plnAstfAAAARCLmRQAA4Jd4EhAAAMBx5vf79cADD+ir\nr75SbGysHnroIZ166qmB7WvWrNHcuXPldDqVnZ2tkSNHHrRPZWWlpkyZIofDoe7du2v69OmBYpIf\nfvhBo0eP1rJlyw67xvu0gTNYDsygjOT+uvns23n6iUHD07P1/MZnNDw923QUW+vs6qJZgx5nGSqD\n/rX7X0EtWl5Su5MVGx1rOkZYycrK0rp16zRq1ChZlqWZM2dq+fLlqqur069//Wu9+eab6tevn669\n9lpJ0tixY5WVlWU4NQAAQPNjXgQAAH6JIiAAAIDjbNWqVfL5fCouLlZ5eblmzZqlZ599VpLU0NCg\ngoICvfnmmzrhhBM0evRoZWZm6vPPPz9gn4KCAk2cOFEDBw5Ufn6+Vq9eraysLH300UeaPXu2amtr\njyjTrNIHdV7n8ylCMeS1zQv0P+WP67TE03TNWWNNx7Glzq4ueuzCORSfGFbtrtLtq2/RG8OWMhaG\nnNf5/KAWLS8jub/uOe8e0zHCSlRUlGbMmBH0tbS0tMCft2zZ0tKRAAAAjGBeBAAAfok1CAAAAI6z\nsrIyDRo0SJLUu3dvbdq0KbCtoqJCKSkpSkxMVGxsrDIyMlRaWnrQPps3b9aAAQMkSYMHD9b69esl\n7f/Q55VXXlH79u2PKFODv4GlXwzqcEKHoBYtr6ymVDe8f63KakpNR7G1Gu82Vbq/UY13m+kotrXy\n6/eCWrS81zYv0MyPZ5qOAQAAAAAAgAhAERAAAMBx5vF4FB8fH3gdHR2txsbGwDaXyxXYFhcXJ4/H\nc9A+lmXJ4XAE9nW73ZKkCy64QCeeeOIRZ3I6nEpqd3JI54Vjd3ZSL52W0E1nJ/UyHcW2aut2yGf5\nKIYzrLZuB0WJhg1NvUSS4/9aAAAAAAAAAOEs5CIgv9+v/Px85eTkKDc3V5WVlUHb16xZo+zsbOXk\n5GjRokWH7FNZWanRo0drzJgxmj59uvx+vyRp0aJFGjFihEaOHKm1a9cGHf+DDz5QXl5eqKcBAABw\n3MTHx8vr9QZe+/1+OZ3OA27zer1yuVwH7RMVFRW0b0JCwjFl6uzqouS4TsfUF6Hr7OqisWdez/JH\nsL1dP+0KatHy9hdgWRRiGXRRSqZOTTzVdAwAAAAAAABEgJCLgFatWiWfz6fi4mLl5eVp1qxZgW0N\nDQ0qKCjQvHnzVFhYqOLiYu3cufOgfQoKCjRx4kQtXLhQlmVp9erVqq2tVWFhoYqKivTyyy9rzpw5\n8vl8kqSHHnpIs2fPDhQLAQAAtEZ9+/ZVSUmJJKm8vFzp6emBbWlpaaqsrNSePXvk8/m0YcMG9enT\n56B9evbsqU8//VSSVFJSon79+h1Tph/37Q3llBCi1zYv0IxPp+m1zQtMR7E1hxymI9geS+OZRyGW\neZ1dXfTk0CdNxwAAAAAAAEAECLkIqKysTIMGDZIk9e7dW5s2bQpsq6ioUEpKihITExUbG6uMjAyV\nlpYetM/mzZs1YMAASdLgwYO1fv16bdy4UX369FFsbKxcLpdSUlK0ZcsWSftvqD3wwAOhngIAAMBx\nlZWVpdjYWI0aNUoFBQWaOnWqli9fruLiYsXExGjKlCkaP368Ro0apezsbHXs2PGAfSRp8uTJeuqp\np5STk6OGhgYNGTLkmDLt9u3S/C/nNedpAmHl7KRe+lXbJJZkM+xfu/8V1AJ2VFZTqqvfuNp0DAAA\nAAAAAEQAZ6gH8Hg8io+PD7yOjo5WY2OjnE6nPB6PXC5XYFtcXJw8Hs9B+1iWJYfDEdjX7XYf9BiS\ndOmllwb+JfyROPHEdnI6o4/5XMNRUpLr8DvhkLiGoeMahobrFzquYei4hqGJiorSjBkzgr6WlpYW\n+HNmZqYyMzMP20eSunXrpldfffWgf9eaNWuOKFN8jEvjzr7+iPZF8/v2x2+DWrS8L2u/UO2+Hfqy\n9guWZTPo9BNPD2rR8np0OFNOOdWjw5mmo9hWbd0ONfgbTMcAAAAAAABABAi5CCg+Pl5erzfw2u/3\ny+l0HnCb1+uVy+U6aJ+oqKigfRMSEg56jGOxe3fdMfULZ7W1btMRwh7XMHRcw9Bw/ULHNQxdc19D\niorM8zS49eF3a3TNWWNNR7GloamX6KnyORqaeonpKLZVVlMWaIemXmY4jX3xJCDzkuM6qUtCVyXH\ndTIdxbbOTuqlk+NONh0DAAAAAAAAESDk5cD69u2rkpISSVJ5ebnS09MD29LS0lRZWak9e/bI5/Np\nw4YN6tOnz0H79OzZM/Bkn5KSEvXr10/nnHOOysrKVF9fL7fbrYqKiqC/AwAAAAhH0VH2ekJla5OR\nnBHUwozh6dk6qU0HDU/PNh3F1n7ct9d0BFv7svYLbfduNx0DAAAAAAAAESDkJwFlZWVp3bp1GjVq\nlCzL0syZM7V8+XLV1dUpJydHU6ZM0fjx42VZlrKzs9WxY8cD9pGkyZMna9q0aZozZ45SU1M1ZMgQ\nRUdHKzc3V2PGjJFlWbrrrrvUpk2bkE8cAADAztrHnqiLUjIPvyOOG7/fbzqCrfEEmtahxrtNbt9e\n1Xi3sSybIfO/nKfdvl2a/+U8/fH8fNNxAAAAAAAAAIQg5CKgqKgozZgxI+hraWlpgT9nZmYqMzPz\nsH0kqVu3bnr11Vf/4+sjR47UyJEjD/j3Dxw4UAMHDjyW6AAAALa1x7eb5cAM+qR6vZrUpE+q1ysj\nub/pOLZ0YtsTg1qYUVu3Qw1Wg2rrdpiOYlunJZ4W1KLlUYwIAAAAAACA5hLycmAAAAAIP1GKUo8O\nZ5qOYVs/1v8Y1AJ2tWhLUVCLlrd73+6gFi3vvM7nK4qPZwAAAAAAANAM+JQJAADAhixZPHnDoKGp\nlwS1aHk9OpypaEc0xXCG/ebUrKAWLe/0E08PamFGTHSM6QgAAAAAAACIABQBAQAA2NCcC5/S0NTL\nTMewrU+q1we1aHm1dTvUZDVRDGdYjw5nyiEHxViwteS4TuoY19F0DAAAAAAAAEQAioAAAABsqOCz\nB1XtrjIdw7bO63y+ohWt8zqfbzoKYNQn1etlyaIgzqCzk3qpfeyJOjupl+kotlXj3abt3u2mYwAA\nAAAAACACUAQEAABgQzt+2q75X84zHcPW/PKbjmBru37aFdTCjB/rfwxq0fLe2rpYe3y79dbWxaaj\n2JplWaYjAAAAAAAAIAJQBAQAAAC0sDe2FMuSpTe2FJuOYlsdTugQ1MKM0xJPC2rR8j7fviGoRctL\njuukLgldTMcAAAAAAABABKAICAAAwKbcvr2mIwDGnJ3US8ntOrEEkmEUY5mX1r57UAszHA6H6QgA\nAAAAAACIABQBAQAA2FCUonR1jxzTMWzLFZsQ1KLl1Xi3qbZuh2q820xHsbUPv1sb1KLl/VwQSmGo\nOTXebfr+x+9NxwAAAAAAAEAEoAgIAADAhuJjXEqO62Q6hm1tqPksqEXLW/n1e2pSk1Z+/Z7pKLZ2\ndtI5QS1aHmPQSvAgIAAAAAAAADQDioAAAABsaG/Dj3qq7AnTMWzrpt63BLVoeRRitQ5f1m4MatHy\nvv3x26AWLS85rpOS45JNxwAAAAAAAEAEoAgIAADApi5Kudh0BNt6/LNZQS1a3lVnjAxqYYanwRPU\nouVREGdejXebqvdWm44BAAAAAACACEAREAAAgE19+N1a0xFsy9fkC2rR8nbv2x3Uwoy6Bm9Qi5bX\n1tk2qEXL+3l5QgAAAAAAACBUFAEBAADYlCs2wXQE23L79ga1aHk/1v8Y1AKAKYltEk1HAAAAAAAA\nQISgCAgAAMCmuOkIO9u0c2NQCzNKt/1vUAvYEcWIAAAAAAAAaC4UAQEAANjUu18vNx3Btmp/qg1q\n0fJOTTgtqIUZzihnUIuW92P9nqAWLW9DzWemIwAAAAAAACBCUAQEAABgUxd0Hmw6gm1FO6KDWrS8\nxVuLg1qYsef/Ck/2UIBizBe1fwtq0fLqm/aZjgAAAAAAAIAIQREQAACATfHkAXPiYuKCWrS8KEdU\nUAszvH5vUIuW16SmoBYtr010W9MRAAAAAAAAECH4xBsAAMCmdrEUlTE7fTuDWrS8uoa6oBZmRP3f\nr6RR/GpqjF/+oBYt7/PtpaYjAAAAAAAAIELwSSsAAIBNVXuqTEcAjPHJF9TCDApQAOkn6yfTEQAA\nAAAAABAhKAICAACwqX1N+0xHAIyxZAW1AAAAAAAAAACEO4qAn64wZAAAFdBJREFUAAAAbKpBDaYj\nAAAAAAAAAAAAoJlQBAQAAAAAAAAAAAAAAACEOYqAAAAAAAAAAAAAAAAAgDBHERAAAAAAAAAAAAAA\nAAAQ5igCAgAAAAAAAAAAAAAAAMIcRUAAAAAAAAAAAAAAAABAmKMICAAAwKbiouJMRwAAAAAAAAAA\nAEAzoQgIAADApi5Lu9J0BAAAAAAAAAAAADQTioAAAABsqsdJZ5qOYFsnOE4IatHyGANgvx6JZwa1\naHnnnNTLdAQAAAAAAABEiJCLgPx+v/Lz85WTk6Pc3FxVVlYGbV+zZo2ys7OVk5OjRYsWHbJPZWWl\nRo8erTFjxmj69Ony+/2SpEWLFmnEiBEaOXKk1q5dK0nat2+fbr/9do0ZM0Y33nijfvjhh1BPBQAA\nAGgRkwbcF9Si5U3odWtQCzMuP+3KoBYtb2SPMUEtWt6qUR+pb8e+pmOElWP5LAoAACASMS8CAAC/\nFHIR0KpVq+Tz+VRcXKy8vDzNmjUrsK2hoUEFBQWaN2+eCgsLVVxcrJ07dx60T0FBgSZOnKiFCxfK\nsiytXr1atbW1KiwsVFFRkV5++WXNmTNHPp9Pr7/+utLT07Vw4UL97ne/0zPPPBPqqQAAANjGr9qc\nrOHp2aZj2Nbw9GzGwLCM5IygFmY8OKhA8U6XHhxUYDqKbd2WcafyBz6o2zLuNB3F1spuLjMdIawc\ny2dRAAAAkYh5EQAA+KWQi4DKyso0aNAgSVLv3r21adOmwLaKigqlpKQoMTFRsbGxysjIUGlp6UH7\nbN68WQMGDJAkDR48WOvXr9fGjRvVp08fxcbGyuVyKSUlRVu2bAk6xuDBg/XJJ5+EeioAAAC2kRSX\nZDqC7TEGZp2d1Eunurrp7CSW4TEtOa6T6Qi2RwEQws2xfBYFAAAQiZgXAQCAX3KGegCPx6P4+PjA\n6+joaDU2NsrpdMrj8cjlcgW2xcXFyePxHLSPZVlyOByBfd1u9yGP8fPXf973cJKSXIfd52gsn80j\n60PFNQwd1zB0XMPQcQ1DxzVES3t/7HvqmtjVdAzbSko6kzEwLCnpTH00/q+MgWH7YuN1Qps26tAh\nXkmJzfv7GoDIdSyfRR2J5v7cCEePMTCPMTCPMTCPMUA4YV4UuRgD8xgD8xgD8xiD8BRyEVB8fLy8\nXm/gtd/vl9PpPOA2r9crl8t10D5RUVFB+yYkJBzRMX7eFwAAAEeGwgfzGAPzGAPzuiZ21cZbNpqO\nASDMHMtnUQAAAJGIeREAAPilkJcD69u3r0pKSiRJ5eXlSk9PD2xLS0tTZWWl9uzZI5/Ppw0bNqhP\nnz4H7dOzZ099+umnkqSSkhL169dP55xzjsrKylRfXy+3262Kigqlp6erb9+++utf/xrYNyMjI9RT\nAQAAAAAAQCt3LJ9FAQAARCLmRQAA4JcclmVZoRzA7/frgQce0NatW2VZlmbOnKm///3vqqurU05O\njtasWaO5c+fKsixlZ2frmmuuOWCftLQ0ffPNN5o2bZoaGhqUmpqqhx56SNHR0Vq0aJGKi4tlWZZu\nuukmDRkyRD/99JMmT56s2tpaxcTEaPbs2UpKSmqu6wIAAAAAAIBW6Fg+iwIAAIhEzIsAAMAvhVwE\nBAAAAAAAAAAAAAAAAMCskJcDAwAAAAAAAAAAAAAAAGAWRUAAAAAAAAAAAAAAAABAmKMICAAAwIa+\n+OIL5ebmmo5hSw0NDZo0aZLGjBmjq666SqtXrzYdyXaampo0depUjRo1SqNHj9bWrVtNR7KtXbt2\n6cILL1RFRYXpKLY0fPhw5ebmKjc3V1OnTjUdx5aef/555eTkaMSIEXrjjTdMx4l4fr9f+fn5ysnJ\nUW5uriorK4O2r1mzRtnZ2crJydGiRYsMpYxshxuDd955R1dffbVGjRql/Px8+f1+Q0kj1+HG4GfT\npk3T448/3sLp7OFwY7Bx40aNGTNGo0eP1h133KH6+npDSSPX4cZg2bJlGj58uLKzs7Vw4UJDKe3h\nYJ9N8DP5+GNeZB7zIvOYF5nHvMg85kWtR3POiygCQsTx+XymI4Stffv2cf1CtGvXLtMRwprf79f2\n7dv5hSZEP/zwgyzLMh0DrdiLL76o+++/n1+aDFm2bJnat2+vhQsX6qWXXtKDDz5oOpLtrF27VpJU\nVFSkiRMn6s9//rPhRPbU0NCg/Px8tW3b1nQUW6qvr5dlWSosLFRhYaEKCgpMR7KdTz/9VH/729/0\n+uuvq7CwUDU1NaYjRbxVq1bJ5/OpuLhYeXl5mjVrVmBbQ0ODCgoKNG/ePBUWFqq4uFg7d+40mDYy\nHWoM9u3bpyeeeEILFixQUVGRPB5P4Gc2ms+hxuBnRUVFFEkfR4caA8uyNG3aNBUUFOj111/XoEGD\nVF1dbTBtZDrc++DRRx/VK6+8otdff12vvPKKfvzxR0NJI9vBPpvgZ3LLYF5kHvMi85gXmce8yDzm\nRa1Dc8+LKAJC2FqzZo0uvvhiZWVl6d133w18/YYbbjCYKrz861//0h/+8AdNnTpV69ev16WXXqpL\nL72UyeRR+Oabb4L+u+WWWwJ/xpG57777JO2vcB0yZIhuu+02XX755SovLzecLHwsXrxYTz/9tDZv\n3qyhQ4fquuuu09ChQ7V+/XrT0dBKpaSk6KmnnjIdw7aGDh2qO++8U9L+X2ajo6MNJ7Kf3/72t4Hi\nq3//+99KSEgwnMieHnnkEY0aNUonn3yy6Si2tGXLFv3000+6/vrrNXbsWOZeBnz88cdKT0/Xrbfe\nqptvvlkXXXSR6UgRr6ysTIMGDZIk9e7dW5s2bQpsq6ioUEpKihITExUbG6uMjAyVlpaaihqxDjUG\nsbGxKioq0gknnCBJamxsVJs2bYzkjGSHGgNJ+vzzz/XFF18oJyfHRDxbONQYfPPNN2rfvr3mz5+v\n3//+99qzZ49SU1NNRY1Yh3sfnHHGGXK73fL5fLIsSw6Hw0TMiHewzyb4mdwymBeZx7zIPOZF5jEv\nMo95UevQ3PMi5/EICbSE5557TkuXLpXf79edd96p+vp6DR8+nKdfHIXp06frzjvvVHV1te644w69\n//77atOmjW644QZdfPHFpuOFheuuu05t27bVySefLMuy9M033yg/P18Oh0MLFiwwHS8sVFVVSZL+\n/Oc/68UXX9Rpp52m7du3Ky8vT6+++qrhdOFh4cKFKiws1C233KJnn31W3bp10/bt2/WHP/xB559/\nvul4aIWGDBkSeO+h5cXFxUmSPB6P7rjjDk2cONFwIntyOp2aPHmyPvjgAz355JOm49jOkiVLdNJJ\nJ2nQoEF64YUXTMexpbZt22r8+PG6+uqr9e233+rGG2/UypUr5XTyMUFL2b17t/7973/rueeeU1VV\nlW655RatXLmSD9SOI4/Ho/j4+MDr6OhoNTY2yul0yuPxyOVyBbbFxcXJ4/GYiBnRDjUGUVFR+tWv\nfiVJKiwsVF1dnS644AJTUSPWocZgx44dmjt3rp5++mm99957BlNGtkONwe7du/W3v/1N+fn5SklJ\n0c0336xf//rXOu+88wwmjjyHGgNJ6t69u7Kzs3XCCScoKyuLfzRwnBzsswl+JrcM5kXmMS8yj3mR\necyLzGNe1Do097yIT/cMys3NVUNDQ9DXfq6gKyoqMpQqfMTExCgxMVGS9Mwzz+jaa69Vp06d+MD0\nKPj9fg0YMEDS/kfRd+jQQZL44P8oLF68WNOnT9fo0aN1wQUXKDc3V4WFhaZjhaXo6GiddtppkqSO\nHTuyJNhRiImJUbt27RQXF6euXbtK2n8N+X4ItF7btm3TrbfeqjFjxuiKK64wHce2HnnkEd1zzz0a\nOXKkVqxYoXbt2pmOZBuLFy+Ww+HQJ598on/84x+aPHmynn32WSUlJZmOZhvdunXTqaeeKofDoW7d\nuql9+/aqra1Vp06dTEezjfbt2ys1NVWxsbFKTU1VmzZt9MMPPwR+L0Pzi4+Pl9frDbz2+/2B339/\nuc3r9QZ90Ibmcagx+Pn1Y489pm+++UZPPfUUv9McB4cag5UrV2r37t2aMGGCamtrtW/fPqWmpmrE\niBGm4kakQ41B+/btdeqppyotLU2SNGjQIG3atImbXc3sUGOwZcsWffjhh1q9erXatWunSZMm6b33\n3tMll1xiKq7t8DO5ZTAvMo95kXnMi8xjXmQe86LW7Vh/JrMcmEH33HOPvF6vHn30Uc2ePVuzZ8/W\nnDlzNHv2bNPRwkLnzp1VUFCguro6xcfH6+mnn9aMGTP09ddfm44WNrp166Y//vGP8vv9gTUeX3jh\nhUCFOQ6vQ4cOeuKJJ/Thhx/queeeMx0nLHk8Ho0YMULV1dV64403VF9frz/96U865ZRTTEcLG5mZ\nmbrlllvUvXt33XTTTZo/f77Gjx+vc88913Q0AAewc+dOXX/99Zo0aZKuuuoq03FsaenSpXr++ecl\nSSeccIIcDoeiovjVqCW99tprevXVV1VYWKgzzzxTjzzyCAVALezNN98M/A6wfft2eTwexqCFZWRk\n6KOPPpJlWdq+fbt++ukntW/f3nSsiNa3b1+VlJRIksrLy5Wenh7YlpaWpsrKSu3Zs0c+n08bNmxQ\nnz59TEWNWIcaA0nKz89XfX29nnnmmcDyF2hehxqDsWPHasmSJSosLNSECRN0+eWXc6PrODjUGHTt\n2lVer1eVlZWSpA0bNqh79+5GckayQ42By+VS27Zt1aZNG0VHR+ukk07S3r17TUW1JX4mtwzmReYx\nLzKPeZF5zIvMY17Uuh3rz2Qe92FQr169dOWVV+qrr75SVlaW6ThhZ+bMmVq2bFmg+rlTp05asGBB\n4IYODu+hhx7SmjVrgm56dezYUbm5uQZThR+n06k//vGPWrJkCcvRHYMlS5bI5/Npy5Ytatu2rRwO\nh9LT07kxfhQmTJigzz77TB9//LFOOeUU7dq1S7m5ubroootMRwNwAM8995z27t2rZ555Rs8884wk\n6cUXX1Tbtm0NJ7OP//7v/9bUqVN1zTXXqLGxUffddx/XH7Zz1VVXaerUqRo9erQcDodmzpzJE0Fb\n2MUXX6zS0lJdddVVsixL+fn5io6ONh0romVlZWndunUaNWqULMvSzJkztXz5ctXV1SknJ0dTpkzR\n+PHjZVmWsrOz1bFjR9ORI86hxuDXv/613nzzTfXr10/XXnutpP03X/jMrHkd7n2A4+9wY/Dwww8r\nLy9PlmWpT58+/G5/HBxuDHJycjRmzBjFxMQoJSVFw4cPNx3ZFviZ3LKYF5nHvMg85kXmMS8yj3lR\n6xTqz2SHxR1rAAAAAAAAAAAAAAAAIKzxzHsAAAAAAAAAAAAAAAAgzFEEBAAAAAAAAAAAAAAAAIQ5\nioAAhI0zzjjjsPtkZmaqqqqqBdIAAAAAAAAAAAAAANB6UAQEAAAAAAAAAAAAAAAAhDmKgAAcN1dc\ncYUqKiokSXl5eZo+fbokqby8XDfeeKNeeOEFDR8+XMOGDdOjjz4qy7IkSUuXLtXw4cN15ZVX6r77\n7lN9fX3QcT///HMNGTJElZWV2rNnj2688UZdccUVmjhxYmBfj8ejO+64Qzk5Obr44os1adIkWZal\nSZMmqbi4OHCs3NxcffHFFy1xOQAAAAAAAAAAAAAAOG4oAgJw3Fx44YX65JNPJElbt27V559/Lkkq\nKSnRRRddpE2bNunNN9/U0qVLtX37di1btkz//Oc/tWjRIhUVFentt99Whw4d9PLLLweO+Y9//EN/\n/OMf9eyzz+rUU0/Vk08+qZ49e2r58uW65pprtHPnTknShx9+qDPPPFPFxcV6//33VV5ers2bNys7\nO1vLli2TJFVXV+uHH35Qr169WvjKAAAAhIZlUgEAAAAAAAAAv+Q0HQBA5Lrooov0yiuv6Nxzz9Xp\np5+ur7/+Wrt27VJJSYm6d++ujRs3asSIEZKkffv26ZRTTpHb7VZlZaVGjhwpSWpoaFDPnj0Dx7zh\nhhs0dOhQpaamSpI+++wzzZ49W5LUv39/de3aVZJ0+eWXa+PGjZo/f76+/vpr7dmzR3V1dRo4cKCm\nTZumqqoqvf3227ryyitb8pIAAAAAAAAAAAAAAHBcUAQE4Ljp06eP7r33Xq1fv14DBgxQhw4dtHLl\nSjU0NMjlcunaa6/VddddJ0nau3evoqOj9eabb+qSSy7R/fffL0nyer1qamoKHPPxxx/Xvffeq6uv\nvlo9evSQw+EILCMmSdHR0ZKkwsJCvf/++xo5cqTOP/98bd26VZZlyeFw6He/+51WrFihlStX6qWX\nXmrBKwIAAOzqiiuu0BNPPKG0tDTl5eUpPj5ef/rTn1ReXq65c+eqf//+eu+999TU1KT/+q//0qRJ\nk+RwOLR06VL95S9/kd/v11lnnaXp06erTZs2geN+/vnnmjp1ql544QUlJiZq0qRJqqmpUVpaWtAy\nqffdd5+2b9+uHTt2qF+/fnr00Ud17733ql+/fsrJyZG0f5nUe+65h6ckAgAAAAAAAECYYjkwAMdN\ndHS0evXqpcLCQg0YMEDnnnuunnvuOV144YU699xz9fbbb8vr9aqxsVG33nqr3n//fQ0cOFAffPCB\ndu3aJcuy9MADD+gvf/lL4JjnnXee8vLydP/998vv9+u8887T22+/LUnauHGjvvvuO0nSunXrlJOT\no2HDhsnhcGjLli3y+/2SpBEjRqioqEjJycnq2LFjy18YAABgOyyTCgAAAAAAAAA43ngSEIDj6sIL\nL1RpaanS0tKUlJSkXbt26aKLLlLfvn21ZcsWjRw5Uk1NTRo0aJCGDx8uh8Oh2267Tddee638fr/O\nPPNMTZgwIeiYv/vd77R48WIVFhbqjjvu0JQpU3TZZZcpNTU1sBzYtddeqwceeEDz5s1TXFyc+vTp\no6qqKklSp06dlJycrOHDh7f49QAAAPbEMqkAAAAAAAAAgOPNYf3/19EBgAhnWZZ27Nih3NxcvfPO\nO4qNjTUdCQAA2EBTU5OysrI0btw4xcTEqKKiQt26ddOiRYs0cOBAderU6YDLpH7//ff/sUxqQkKC\nzjjjDM2fP1/33nuvXnzxRfXo0UNXXHGFHnvsMfXo0UOSNGTIEL388stau3ZtYJnUHj16KD8/X3fd\ndZcGDhyouXPnyul06p133tFLL73EUxIBAAAAAAAAIIyxHBgAW3n//fd15ZVX6u6776YACAAAtBiW\nSQUAAAAAAAAAHG8sBwbAVoYOHaqhQ4eajgEAAGyIZVIBAAAAAAAAAMcTy4EBAAAAgA2xTCoAAAAA\nAAAARBaWAwMAAAAAG2KZVAAAAAAAAACILDwJCAAAAAAAAAAAAAAAAAhzPAkIAAAAAAAAAAAAAAAA\nCHMUAQEAAAAAAAAAAAAAAABhjiIgAAAAAAAAAAAAAAAAIMxRBAQAAAAAAAAAAAAAAACEOYqAAAAA\nAAAAAAAAAAAAgDBHERAAAAAAAAAAAP9fe3BAAgAAACDo/+t2BCoAAMBcfBY8uc3WLKMAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb Rows: 10204\n" + ] + } + ], + "source": [ + "# create ohlc prices, analyse distribution, think about feature transformation and de-trending\n", + "\n", + "fig, axarr = plt.subplots(4, 4, figsize=(40,20)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "irow, icol = 0,0\n", + "fig.suptitle(\"frequency distributions\")\n", + "\n", + "\n", + "sns.distplot(df.period_return-1, ax=axarr[irow, icol])\n", + "axarr[irow, icol].set_title(\"dist period_return\")\n", + "#axarr[0, 0].set_title('Axis [0,0] Subtitle')\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " icol+=1\n", + " sns.distplot(df.avg_bo_spread, ax=axarr[irow, icol])\n", + " axarr[irow, icol].set_title(\"dist avg_bo_spread\")\n", + " icol+=1\n", + " icol = pltGraph(\"ohlc_price\", \"avg_bo_spread\", irow, icol, df)\n", + " qlow, qhigh = 0.01, 0.99\n", + " df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)) & (df.avg_bo_spread < df.avg_bo_spread.quantile(qhigh) ) & (df.avg_bo_spread > df.avg_bo_spread.quantile(qlow)),:]\n", + " #df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)) & (df.avg_bo_spread < 0.0001 ) & (df.avg_bo_spread > -0.0001),:]\n", + " icol = pltGraph(\"period_return\", \"avg_bo_spread\", irow, icol, df_mask)\n", + " \n", + " \n", + " \n", + " irow, icol = 1, 0 # move down one row\n", + " \n", + " icol = pltGraph(\"ohlc_price\", \"avg_bo_spread\", irow, icol, df)\n", + " icol = pltGraph(\"hour\", \"avg_bo_spread\", irow, icol, df)\n", + " icol = pltGraph(\"hour\", \"nb_ticks\", irow, icol, df)\n", + " icol = pltGraph(\"day\", \"nb_ticks\", irow, icol, df)\n", + " \n", + " irow, icol = 2, 0\n", + " df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)),:]\n", + " icol = pltGraph(\"hour\", \"period_return\", irow, icol, df_mask)\n", + " icol = pltGraph(\"hour\", \"ohlc_price\", irow, icol, df)\n", + " icol = pltGraph(\"weekday\", \"period_return\", irow, icol, df)\n", + " icol = pltGraph(\"weekday\", \"nb_ticks\", irow, icol, df)\n", + " \n", + " irow, icol = 3, 0\n", + " res = df.loc[:,[\"weekday\", \"avg_bo_spread\"]].groupby(\"weekday\").std()\n", + " res.plot(kind=\"bar\", ax=axarr[irow, icol])\n", + " #display(res)\n", + " \n", + " icol = pltGraph(\"weekday\", \"avg_bo_spread\", irow, icol+1, df)\n", + " \n", + "\n", + "#plt.tight_layout() # reduce overlap\n", + " plt.show()\n", + "\n", + "print(\"Nb Rows: \", df.high_bid.count())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- it seems the hours with the least number of ticks have the highest bo spread. This is expected, as during low activity traders might set spreads wide to avoid surprises.\n", + "- period return is between two closing bids, 15 minutes apart. It might be a spurious measure.\n", + "- do i have to stick to 15 minute intervals to complete this?\n", + "- weekday 1 seems to have higher stdev of avg bo spread" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Add PCA as a feature and show graphs" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "df_np = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(df_np)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABs4AAAKTCAYAAAC5Jf2HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8z/X///H7zmMbwjRtH0JG5diYhBwicj6Nmc8QSvpE\nxbLJYYUKjU8slVSUnCZznFSUqIl9lo+klA9Rm405xDazjb1/f/i9398d3u+d7PDe3K7/zF6v1/P1\nfL7e+1wun0fv++v5fNoYDAaDAAAAAAAAAAAAgDucbXkPAAAAAAAAAAAAALAGBGcAAAAAAAAAAACA\nCM4AAAAAAAAAAAAASQRnAAAAAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAgieAMAAAA\nAIolMDBQCxYsuO37GAwGRUREKD093eI1ixcv1kMPPaQ2bdroypUrt93nV199pYSEhNu+DwAAAABU\nNjYGg8FQ3oMAAAAAgIrm77//lr29vVxdXW/rPocOHVJgYKB+/PFHubi45Dl/7tw5Pfroo5o7d64e\neeQReXl53VZ/8fHx6tatm7Zv3y5vb+/buhcAAAAAVDb25T0AAAAAAKiIatSoUSL3KehdxqtXr0qS\n2rdvf9uhWWH6AwAAAIA7GUs1AgAAACgzTZo00caNG9W3b1+1atVKTz75pP7880/T+b///lshISHy\n9fWVr6+vgoODlZKSIkm6cOGCpk6dqocffljNmjVT9+7d9dlnn1nsq6DrMzIyFBoaqrZt2+rhhx/W\n8uXL1aNHDx08eLBQ7bMv1RgeHq7nnntO8+fPl6+vr9q0aaO5c+fq5s2bkm7NGnvmmWfk4+OjNm3a\naPLkybp48aLi4uI0atQoSdJDDz2kyMjIHM9w8OBB9e3bV5LUvXt3hYSESJKOHDkif39/NW/eXI8/\n/rhWrFihrKwsU7tt27apX79+atasmR566CFNnDhRFy5ckCQ99thjkqR+/fopPDxckZGRateuXY5+\nQ0JCNHnyZElSZGSkBg0apKCgID300EN69913JUlbtmxRz5491bJlSw0aNEh79+41tbf0vAAAAABg\n7QjOAAAAAJSpsLAwPfvss4qIiJCtra2eeuopZWZmSpImTZqk33//XcuXL9eqVat0/PhxzZkzR5I0\nbdo0Xbp0SatWrVJUVJS6deumV155xRQI5VbQ9fPmzdP333+vZcuW6YMPPtCXX36pv/76q9Dtc9u7\nd69SU1O1YcMGzZw5U2vXrtXXX38tSXr11VeVmZmpiIgIffrpp4qPj9f8+fNVt25dhYeHS5J2796t\n3r1757hn69attXr1aknSxo0bNWPGDF28eFHjxo1Tly5dtGPHDs2YMUNr167VBx98IEn68ccf9fLL\nL2vcuHH64osvtGzZMv3666967733TPeRpNWrV2vs2LGF+pv98ssvqlatmjZv3qwBAwZo//79eu21\n1/T8889r+/btGj58uCZPnqzDhw/n+7wAAAAAYO1YqhEAAABAmRo1apQpIFqwYIG6dOmi6Oho3XPP\nPTp06JC2bt2qpk2bSpLmzp2r6OhoSVKXLl3UtWtX/eMf/5AkTZw4UR9//LFOnz6t2rVr5+knv+ur\nVKmiyMhILVmyRL6+vpKkhQsX5giuitqfs7OzZs2aJUdHRzVo0EAff/yxjh49qh49eiguLk4NGjSQ\nl5eXnJyctHjxYqWmpsrOzk7Vq1eXJNWsWVPOzs457uno6GhaErJmzZpyc3PT0qVL1aJFCz3zzDOS\npPr162vKlCl67bXX9PTTT8vJyUlz587VwIEDJUmenp567LHHdOLECdN9pFtLTZrbU82SZ5991vTc\n06ZN07hx40yfV7169XTs2DGtXLlSrVu3tvi8AAAAAGDtCM4AAAAAlKk2bdqY/l27dm15enrqxIkT\nunbtmhwdHdWkSRPT+RYtWqhFixaSpICAAO3atUurVq3S6dOn9csvv0iSaTnE3PK7/tSpU8rMzFTz\n5s1N1zdq1EjVqlUrVHtz6tatK0dHR9Pvrq6uppl0zzzzjIKDg9WuXTs9/PDD6t69u/r371/4Dy2b\n//3vfzp48KBat25tOpaVlaXr16/r8uXLevDBB+Xi4qJly5bp5MmTOnnypE6cOCEfH59i9SdJVatW\nzREWnjhxQkeOHNHy5ctNxzIzM9WgQQNJJfu8AAAAAFCWCM4AAAAAlCk7O7scv9+8eVN2dnZycHCw\n2CYrK0vjx49XYmKi+vTpo+HDh+u+++7TE088UazrjX0ZDIYS6S/7Pc3p3bu3Hn74YX3zzTemZQ63\nb9+ujz/+2GIbS27cuKHHH39cL7zwQp5zbm5uio6O1oQJE9S7d2+1adNGo0aN0o4dO/Tbb7+ZvZ+N\njY3ZPrLLHghKt/5mU6dOVdeuXXMct7e/9Z+YJfm8AAAAAFCWCM4AAAAAlKljx46ZZp2dP39eiYmJ\natq0qerUqaOMjAydOHFC3t7ekqQffvhB06dP11tvvaUDBw5o9+7dpqUTf/rpJ0nmw69ffvkl3+vr\n1asnJycn/fzzz7r77rslSWfOnNHVq1cL1b6o3nrrLXXr1k1DhgzRkCFD9P3332vs2LG6cOGC2eAq\nP40aNdL+/ftVv35907Hdu3dr165dWrhwoT755BM98cQTWrBggen8smXLTOPO3Z+Dg4PS0tJkMBhM\n5+Li4lSnTp18xxAfH59jDMuWLZODg4OefvrpfJ/X3DKXAAAAAGAtbMt7AAAAAADuLO+9956+/fZb\n/fbbbwoODtZ9990nX19fNWrUSB07dtTMmTN19OhR/fzzz1qwYIHatWsnDw8P2dnZKSoqSvHx8fr+\n++8VHBwsScrIyMjTh7u7e77XV61aVcOGDdOCBQsUExOjX375RSEhIZJuBUsFtS+qU6dOac6cOTp6\n9KjOnDmjHTt2yNPTUzVr1lTVqlUl3QoUC7MP2MiRI3X69GnNmzdPp06d0nfffafQ0FC5ubnJ1tZW\nderU0U8//aRjx47pjz/+0L///W/t27fPNG5jf7/++quSk5PVrFkzpaena8WKFfrrr7/0/vvvm5al\ntGT8+PFav3691q1bpz///FPr1q3TsmXL5OXlVeDzAgAAAIA1IzgDAAAAUKaGDRum119/Xf7+/qpa\ntaref/990/KNb775pjw9PTV69GiNHz9ezZs316xZs3T33Xdrzpw5ioiI0BNPPKF58+YpICBATZo0\n0bFjx/L0UZjrg4KC1KZNG02YMEFjx45Vz549ZWNjIwcHhyL3V5BXX31V9evX1/jx49W/f3+dPXtW\ny5cvl62trby9vdW1a1eNHTtWERERBd7Lw8NDH3zwgX7++WcNGDBAISEh6t+/v6ZPny5Jmjx5surV\nq6d//vOfGjFihH7//XcFBwfrf//7n9LT03XXXXfJz89PM2fO1NKlS3Xvvfdq+vTp+uSTT9S/f3+d\nPHlSo0ePzncMPXr00KxZs7Rq1Sr17t1bq1at0pw5c9S7d+8CnxcAAAAArJmNoTjrjAAAAABAMTRp\n0kTvvfdenr2xysNXX32l9u3by9XVVZJ06dIltW/fXt98843uueeech4dAAAAAKA8sMcZAAAAgDvS\nO++8o127dum5557TjRs3FB4erlatWhGaAQAAAMAdjHUyAAAAANyRwsLCdPnyZQ0ZMkQjRoyQjY2N\n3n777fIeFgAAAACgHLFUIwAAAAAAAAAAACBmnAEAAAAAAAAAAACSCM4AAAAAAAAAAAAASQRnAAAA\nAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAgieAMAAAAAAAAAAAAkERwBgAAAAAAAAAA\nAEgiOAMAAAAAAAAAAAAkEZwBAAAAAAAAAAAAkgjOAAAAAAAAAAAAAEkEZwAAAAAAAAAAAIAkgjMA\nAAAAAAAAAABAEsEZAAAAAAAAAAAAIIngDAAAAAAAAAAAAJBEcAYAAAAAAAAAAABIIjgDAAAAAAAA\nAAAAJBGcAQAAAAAAAAAAAJIIzgAAAAAAAAAAAABJBGcAAAAAAAAAAACAJIIzAAAAAAAAAAAAQBLB\nGQAAAAAAAAAAACCJ4AwAAAAAAAAAAACQRHAGAAAAAAAAAAAASCI4AwAAAAAAAAAAACQRnAEAAAAA\nAAAAAACSCM4AAAAAAAAAAAAASQRnAAAAAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAg\nieAMAAAAAAAAAAAAkERwBgAAAAAAAAAAAEgiOAMAAAAAAAAAAAAkEZwBAAAAAAAAAAAAkgjOAAAA\nAAAAAAAAAEkEZwAAAAAAAAAAAIAkgjMAAAAAAAAAAABAEsEZAAAAAAAAAAAAIIngDAAAAAAAAAAA\nAJBEcAYAAAAAAAAAAABIIjgDAAAAAAAAAAAAJBGcAQAAAAAAAAAAAJIIzgAAAAAAAAAAAABJBGcA\nAAAAAAAAAACAJIIzANmEhIToww8/NHuuSZMmunTpUqn2f+7cOfn7+5dqHwAAAKUpMjJSEyZMKO9h\nlLg5c+YoPDy8vIcBAACsCHVPyQgPD9ecOXPMnuvWrZuOHj1a6mMYMGCArl69Wur9ABWFfXkPAACM\n7r77bq1fv768hwEAAAAAAADcMbZu3VreQwCsCsEZcAfasGGDVq9eLVtbW9WuXVuzZs1SgwYNJEmH\nDx+Wv7+/Lly4oMaNG2vRokWqWrVqjvbLly/X5s2bZW9vr/r162v+/Plyc3Oz2F9gYKAaNWqkn3/+\nWZcvX9aAAQM0efJkxcXFaeTIkWrUqJHi4+M1f/58jR07VocPH9aNGzf05ptvau/evbKzs1Pr1q0V\nGhoqR0dHvfvuu/ryyy+VlZUlT09PhYaG6u67787Rp7+/v8aMGaNevXpJksLCwmQwGDRmzBgFBwfr\n8uXLkqTOnTvrhRdeyDPmBx54QKNHj9bBgwd17do1TZkyRY8//rjF57ezs9Mrr7yi06dP68qVK3Jx\ncVFYWJgaNmxY/D8UAAAoMVlZWXr99dd15MgRpaamymAwaN68efL29lbnzp31xRdfyN3dXZI0bNgw\n/etf/1Lz5s01ffp0/fnnn6pRo4bc3d3VuHFjTZo0Kd++kpKSNG7cOJ0/f16enp6aO3eu3N3dlZiY\nqFdeeUXx8fEyGAwaOHCgxo8fn++9Tp48qRkzZigjI0MGg0FDhw7VyJEjFR4erhMnTujChQu6ePGi\nmjZtqtdee02urq7q1q2bWrRood9++01TpkxRixYtNGfOHCUkJCgzM1N9+vTRM888I0l67733tHv3\nbqWnpystLU3BwcHq0aOHUlJSNGPGDB0/flx16tSRnZ2dfHx88nymXbt21dtvv63mzZtLkl588UW1\nbdtW7dq1Mzvu7OLi4hQYGChfX18dP35cBoNBs2fPVps2bSzWglevXtXs2bN18eJFJSUlydPTU2+9\n9ZZq1apVpP89AABQmVH3WF/dI0m7d+/W22+/rZs3b8rV1VXTp09XixYtJEmnTp1SYGCgkpKSVLt2\nbS1evFh16tTJ0f6zzz7TypUrZWtrq7vuuksLFixQ3bp1LX6eISEhsrGx0cmTJ3Xp0iV16NBBM2fO\nlIODg5o1a6bHHntMx48fV1hYmIYOHaoDBw6oZs2aFr/327hxo9atW6esrCzVqFFDs2bNUqNGjfL9\nmwIVFUs1AneYAwcO6IMPPtAnn3yibdu2qW/fvvrXv/4lg8Eg6dZyiStXrtQXX3yhc+fO6csvv8zR\nfs+ePYqMjNSGDRu0Y8cOeXl56dNPPy2w37Nnz2rdunXavHmzdu7cqW+++UaSlJiYqGeffTZH0SZJ\na9eu1bFjx7R161bt2LFDqamp2rlzp7Zs2aLff/9dGzdu1NatW9W5c2fNnDkzT39+fn7avHmzJOnm\nzZvatm2b/Pz8FBERIS8vL23evFlr1qzRmTNnlJycnKf9zZs3Vb16dUVGRuqtt97Syy+/rEuXLll8\n/n379qlatWqKiIjQF198oWbNmmnNmjWF/8MAAIBSdeTIEZ0/f14bNmzQzp07NWjQIK1YsUJubm7q\n0aOHtm3bJunWFzZJSUnq1KmT5s2bp/vuu0+ff/65lixZoh9//LFQff3xxx+aPXu2tm/fLm9vb732\n2muSpKCgILVr107bt2/XunXrtG3bNkVFReV7rw8//FDdunVTZGSk3n//ff3nP/9RVlaW6ZmWLl2q\nzz//XPb29lq2bJmpXePGjfX555+rR48eeumllzRkyBBFRkbqs88+U3R0tHbu3Kn4+HhFR0fr008/\n1fbt2/Xiiy9q6dKlkqSlS5fK2dlZu3bt0pIlS/THH3/kGZutra2GDBliqrmuXLmi6Oho9evXL99x\nZ3f27Fl17NhRW7du1dSpU/XCCy8oMzPTYi0YFRWlVq1aacOGDdqzZ4+cnZ15QxoAgFyoe6yv7jl5\n8qRCQ0MVHh6u7du3a/LkyXr22WeVkpIiSfrrr7+0ZMkS7dq1S9WqVdPGjRtztDcGXB988IG2b9+u\nbt266d133y3w73P8+HGtXLlSO3fu1MmTJ7VhwwZJUmZmprp27aovvvjCFARKlr/3O3TokLZs2aI1\na9Zoy5YtGj9+fIGhKlCRMeMMuMPs379fvXv3Vs2aNSVJgwcP1muvvaa4uDhJUvfu3VWlShVJtwqP\n3PuaHThwQL169VL16tUlSdOnTy9Uv8OHD5eDg4McHBzUq1cvfffdd2rcuLHs7e3VqlWrPNdHR0dr\nwIABcnZ2liS99dZbkqTnn39eR48e1ZAhQyTdeuMnLS0tT/snnnhCCxcuVFJSkn755RfVr19f9957\nrzp16qSnn35aCQkJeuSRRzR16lSLs+X++c9/SpKaNm0qb29vxcTEKCYmxuLz/+Mf/9Dq1at15swZ\nHTp0SK1bty7UZwMAAEpf69atVb16da1fv15//fWXDh48KBcXF0m3Xrh59dVXNW7cOG3atEmDBw+W\nra2tvv32W9OXI3Xq1DHNZC/II488ovr160uShg4dqqFDh+ratWv68ccf9dFHH0mS3NzcNHjwYO3b\nt099+vSxeK8ePXooODhYP/30k9q3b6+ZM2fK1vbW+4+9evVS7dq1Tf28/vrrCg4OliS1adNGknTt\n2jXFxMToypUrWrJkienY8ePH1bt3by1YsEDbt2/XmTNnTG+lS7dqvpdfflk2NjaqWbOmevToYXZ8\nQ4YM0dChQxUSEqIdO3aoa9eupi/lLI07u+rVq6tfv36Sbq0EYGdnp99++81iLShJ//nPf7Ry5Uqd\nPn1aJ06cUMuWLQvzZwEA4I5B3WN9dc8PP/yghx9+WP/4xz8kSe3bt1fNmjX1888/S5I6dOhg+q6u\nadOmZr+P69ixo2mG2ZgxY/L9uxgNGjTI9LcfMGCA9uzZY/q+y/i55e7H3PdeCxcu1JkzZ+Tv72+6\n9sqVK/r7779Vo0aNQo0FqEiYcQbcYYwzy3Ifu3HjhiTJ3v7/8nQbG5s819vZ2cnGxsb0+9WrV02h\nW36y39dgMJgKCEdHxxznzF0vSRcuXND58+eVlZWl8ePHa+vWrdq6das2bdqkdevW5WlftWpV9ezZ\nUzt27NCmTZvk5+cnSWrRooX27Nmj4cOHKz4+Xn5+fhbforKzszP9OysrS3Z2dhaff+3atZoxY4ac\nnZ3Vr18/9e3b1+xnDQAAysfevXtNm9c/9thjGjFihOmccWnAn376STt27DC9oGNvb5/j/8/NBT/m\nZK8hDAaD7O3tlZWVlac2yMrKMtVglhjfBH7iiSf066+/ql+/fvrzzz/z9JOVlZVjfMalto39rl+/\n3lQ/bdiwQRMmTNCxY8fk7++vlJQUdejQIc/ySdnHm72v7Dw9PfXAAw9o7969ioyMNNVc+Y3b0mdl\nHK+dnZ3FWvDNN9/UkiVLdNddd2n48OHq0KEDNRcAALlQ91hf3VPS38ddv35dJ0+eNDvO3O2y92fu\nc8uvH+P3XllZWRowYIDpc928ebM2bdpkCtiAyobgDLjDdOzYUTt37jS9ubJp0ybVqFHD9HZQQR55\n5BF99dVXpqnk4eHhWrVqVYHttm3bpqysLF25ckWff/65unXrlu/17du3144dO5SRkaGsrCy98sor\nioqKUseOHfXZZ5+Z+l+yZImmTZtm9h7Dhg1TZGSkDh8+rJ49e0q6tdfZO++8o+7du2vGjBm67777\ndPr0abPtt2zZIkk6duyY/vjjD7Vt29bi83/33XcaNGiQ/Pz81KBBA3399de6efNmgZ8LAAAoG99/\n/726du2qgIAANW/eXLt3787x/9V+fn6aO3eumjRponvuuUfSrRlQn332mSTp8uXL2r17d44vEiw5\nePCgzp49K0lat26dHn30Ubm6uqply5ampZyTk5O1ZcsWPfLII/nea+rUqdq5c6f69Omj0NBQubq6\nKiEhQdKtpXSSk5OVlZWliIgIde3aNU97V1dXtWrVSitXrpR068uPESNGaM+ePYqJiVGzZs305JNP\nytfXV3v27DF9Jp06ddJnn31mqt/27NljcYzDhg3TihUrdP36ddN+IPmNO7tLly5p3759kqSvv/5a\nDg4O8vb2tlgLfvfddxo9erQGDhyoWrVqKTo6mpoLAIBcqHusr+55+OGH9f333+uvv/6SdGtmV0JC\nQqFnzrdr104HDhzQ+fPnJUnr16/Xm2++WWC7zz//XBkZGUpPT9fmzZvNfm7ZWfreq0OHDoqKijL1\nv27dOo0ePbpQYwcqIpZqBO4wHTp00JgxYzR69GhlZWWZNv0s7JtEnTt31v/+9z/T20r33Xef5s6d\nW2C769eva+jQoUpNTVVAQIDat2+f70w1f39/xcfHa/DgwTIYDPL19VVgYKBsbW117tw5DRs2TDY2\nNqpbt67mz59v9h7NmjWTvb29evbsKScnJ0nS6NGjFRISor59+8rR0VFNmjRR3759zbb/8ccfFRER\noaysLP373/9W9erVLT7/8ePHNXv2bEVGRsrOzk4PPvigfv/99wI/FwAAUDb8/f0VFBSkfv36yc7O\nTm3atNGXX35pemN54MCBWrx4sRYvXmxqM336dM2cOVP9+vVTjRo1dM8995iWDsyPt7e3Xn75ZV24\ncEENGzbUnDlzJN16gWfOnDmKjIxURkaG+vXrp8GDB+d7r2effVYzZszQhg0bZGdnp+7du8vX11eH\nDh1S7dq19dRTT+ny5ctq27ataeP73MLCwjR37lz169dPGRkZ6tu3r/r3768LFy7oyy+/VO/eveXg\n4KD27dvrypUrSklJ0aRJkxQaGqonnnhCNWvWlLe3t8UxduvWTa+++qqeeuqpAsedm5OTk7Zu3aqw\nsDA5Oztr2bJlsrOzs1gLenp6auHChXrnnXdkZ2enhx56yOxMNgAA7mTUPdZX99x3330KDQ3Vc889\np5s3b8rZ2Vnvvfeexe1DcmvSpIleeukl00w5d3d3vf766wW2c3Z2VkBAgK5evaqePXuaZhhaYul7\nL1dXVz311FMaO3asbGxs5OrqqrfffrtQ4SpQEdkYWNcCQCkLDAzUyJEjC70+tjVo0qSJDhw4YFpf\nGgAA3HnWrFmjBx54QK1bt1ZGRoYCAgI0adIkde7cubyHpvDwcF2+fFmzZ88u76EUW1xcnPr166fD\nhw+X91AAALjjUfdUPiEhIWrcuLHGjRtX3kMBKhxmnAG4bT/88IPeeOMNs+fatWtXxqMBAAAoGcY3\nbLOyspSZmalevXqpc+fOCggIMG0mn9uaNWvk6upa6D5SUlI0cuRIs+dcXFy0du3aYo0dAACgKKh7\nKp5Tp07pxRdfNHuuQYMGhZoxCMA8ZpwBAAAAAAAAAAAAkgq3qREAAAAAAAAAAABQyRGcAQAAAAAA\noNI4cuSIAgMDzZ5LS0uTv7+/Tp48aTq2fPlyDR8+XIMHD9bGjRvLapgAAMBKVco9zpKSkst7CBVG\nfHKcPN288hwbs2ukVvVak+ccAAAlyd3drbyHABW+dspdI5irIwAAQOmhdirYihUrtG3bNlWpUiXP\nuaNHjyo0NFTnzp0zHTt48KAOHz6sdevWKS0tTR999FGBfRT3e6f45DgFRPlpbZ+N1FAAAJSy26mb\nmHF2BzN++RWfHJfjuKebF6EZAADII3uNYKmOAAAAKE/16tVTeHi42XMZGRlatmyZGjZsaDr23Xff\nydvbW//617/0zDPPqEuXLqU2tsTUhBw/AQCAdSI4u4PlF5ARmgEAAHOMNQIv2gAAAGvUs2dP2dub\nX2DJx8dHdevWzXHs8uXL+vnnn7VkyRK9+uqrCgoKksFgKNExxSfHKTYxRiH7g/R084kK2R+k2MSY\nEu0DAACUHIKzOxxfdgEAgOKijgAAABVdjRo11LFjRzk6Oqphw4ZycnLSpUuXSuz+xuUZp+ydrKk+\n07Tqlw815oFxhGcAAFgxgjMAAAAAAADckXx8fLR//34ZDAadO3dOaWlpqlGjRond39PNS4u7LNXa\nPhvV3L2l5ncK06pfPtRUn2kK2R/EstcAAFgh83PXAQAAAAAAgApu+/btunbtmoYPH272fNeuXRUT\nE6OhQ4fKYDBo9uzZsrOzK7H+45PjFLI/SFN9pmlR7EKt6rXGtNx1c/eWzOAHAMAK2RhKeuFmK5CU\nlFzeQwAAAIXg7u5W3kOAqJ0AAKgoqJ2sQ1Frp12norQodqHmdwqTh8utPdYIzAAAKF23UzexVCMA\nAAAAAABQCuKT43KEZn7bBiogyo8lGgEAsGIEZwAAAAAAAEAp8HTz0vxOYfLxaCtJcrBz0OIuS5lx\nBgCAFSM4AwAAAAAAAEpBfHKcpuydrPjkOHm6eWltn42mEA0AAFgngjMAAAAAAACglCRnXDX9m5lm\nAABYP4IzAAAAAAAAoBQcTTqi+JQ4HU06kucc+5wBAGCdCM4AAAAAAACAEhCfHJcjEGvu3lIf91qr\nXg37mM4bf47ZNTLH7wAAwDoQnAEAAAAAAAC3KT45TgFRfgqI8lN8cpxiE2M0ZtdINXdvaTpvDMs8\n3by0qtcaebp55QnRAABA+bIxGAyGsujo4sWLGjx4sD766CPZ29srJCRENjY2aty4sUJDQ2Vra6uI\niAitX78dkmAMAAAgAElEQVRe9vb2mjhxorp27arr16/rpZde0sWLF+Xi4qIFCxaoZs2a+faVlJRc\nFo8EAABuk7u7W3kPwWpROwEAgNyonaxDfrWTMfxKTE1QyP4gze8UJh+PtjnOm9vnLDYxJsd1AADg\n9txO3VQmM84yMzM1e/ZsOTs7S5LeeOMNvfDCC1q7dq0MBoP27NmjpKQkrV69WuvXr9eHH36oxYsX\nKyMjQ+vWrZO3t7fWrl2rgQMH6p133imLIcMM3nwCAKBsVITaiboAAAAgL2MoFrI/SFN9psnHo22O\nuslcaBafHKeQ/UHUVwAAWIkyCc4WLFggf39/1alTR5J07Ngx+fr6SpIeffRRRUdH66efflLr1q3l\n6OgoNzc31atXT8ePH1dsbKw6depkuvbAgQNlMWTkwrIBAACUHWuvnagLAAAALPN089L8TmFaFLvQ\ntFxjfnVT9mUbAQBA+Sv14CwyMlI1a9Y0fYEjSQaDQTY2NpIkFxcXJScnKyUlRW5u/zd1zsXFRSkp\nKTmOG69F2aOIAwCgbFSE2om6AAAAIH8+Hm21qtcaebjUNdVNsYkxFq+nrgIAwHqUenC2adMmRUdH\nKzAwUL/++quCg4N16dIl0/nU1FRVq1ZNrq6uSk1NzXHczc0tx3HjtSgfFHEAAJS+ilI7URcAAACY\nZ5xddjTpiMbsGqnE1ATFJsZo0NY+2nUqKs91AADAupR6cLZmzRp9+umnWr16te6//34tWLBAjz76\nqA4ePChJ2rdvn9q0aaMWLVooNjZW6enpSk5O1smTJ+Xt7a2HHnpI3377relaHx+f0h4yAABAuaF2\nAgAAqHiMIZhxSetdp6L09FdPaswD4zRpz0RJUg2nu/TGoXmKTYzRmmOfKCDKzxSkxSfH3VaQlrtt\nQfcqTl8EfQCAO0WZ7HGWW3BwsMLDwzV8+HBlZmaqZ8+ecnd3V2BgoAICAjR69Gi9+OKLcnJy0ogR\nI3TixAmNGDFCGzZs0HPPPVceQwYAACg31E4AAADWK/v+r8YlrZu7t5SXaz3VqlJLcSl/6kB8tC5f\nv6Snm0/UxN3j9eK3z+lcaqKe/upJU4gWEOVX7EAr+z5qBe1HW5z9aktij1uCNwBARWFjMBgM5T2I\nkpaUxD5oRsaiDQAAa+Tu7lbwRSh1Ra2dqC8AACgf1E7WwVztZK4+Mh7bdSpKs6NfliTNeeR1XUy7\nqJf2vahazrU1ocWz2noqUvM7hcnDpa7pHsa2ha27cl9nDKkstS1OPWepTWHuZQze2CcXAFBWbqdu\nKpcZZygbJfE2EAAAQHbUFwAAAHmZC4OyH0tIPatuXj301Jdj9NaPi1S7Sm1dTr+oT379SFN9puUJ\nzQKi/BSbGFPoustc//m1LU54ZSk0K8wYjTPxCM0AABUBM84qOd4IBwBYM96atg7MOAMAoGKgdrIO\nRamdjCGYX2N/LfzPa6rhdJdW9vpUHi51dTTpiF76doqqODirin1VLe6yVD4ebbXrVJTeODRPa/ts\nlFS8kMvYd1nUbNSGAABrxIwzWEThAgAAShr1BQAAQMHik+N0NOmIJOku57v0fo+VcnVwM80uu5h2\nUefSEnQj64am+85UyP4g7ToVpQm7x2q670x5unndVt1VVjUbtSEAoLKxL+8BAAAAAAAAAJVJfHKc\nBm3to4SUsxrZdLSmfDtJs9rNyXF+1S8f6t+d31bTWvfLx6Otmru3lKeblyL775CPR9tyHD0AAHc2\nZpwBAAAAAAAAJcxgkO5yrql98Xv15ANPaeOJ9bphyJR0a5bWVJ9p6lKvm6bsnazYxBjTzC0Pl7rF\n7pN9aAEAuH0EZwAAAAAAAKg0jhw5osDAQLPn0tLS5O/vr5MnT5qODRo0SIGBgQoMDNT06dOL3J+l\nsMrRzkFOds66fjNNa377WE83n6gq9lW198+vFZsYowm7x+po0hFl3szUlL2TFZ8cp9jEGI3ZNbJY\nAVh8clyx2wIAgP/DUo0AAAAAAACoFFasWKFt27apSpUqec4dPXpUoaGhOnfunOlYenq6DAaDVq9e\nXaz+jGHVql5rcuz15enmpaXd3pWHS10dTTqi6funqWmt+/V084ma8u0kLe4cruXdP1Jz95ba2H+L\nJCkxNUEh+4M01WeaPN28FJ8cZ3b/MEvHPd288oyjsM9Q2DZFuRYAgIqKGWcAAAAAAACoFOrVq6fw\n8HCz5zIyMrRs2TI1bNjQdOz48eNKS0vT2LFjNWrUKP33v/8tUn+Wwqr45DiF7A/S3j+/1svfTdP5\na4l65qvxunz9sgwyaFHsAs05EKqAKD9Tmyl7J2uqzzQtil1oceZZ9lll5maWFSc0y2+WWvbj5sZU\nmHYAAFQ0BGcAAAAAAACoFHr27Cl7e/MLLPn4+Khu3Zz7hzk7O2vcuHH68MMP9eqrryooKEg3btwo\nUp+WZn8NaDhYIfunKvFaopzsnJWccVUf/vy+6lS5WyseX6WN/bfo6eYTJUl7//xamTcz1dy9pab6\nTJOPR1uzgZwxqJNUIssy5jdLLXdIF7I/SPM7hZmutRS6sWQkAKCiY6lGAAAAAAAA3JEaNGig+vXr\ny8bGRg0aNFCNGjWUlJSUJ2ArqjXHPtH8Q3M18L6h+urMF7qccVG6ISn9ohxsHZR07bySrp3XlG8n\nqbazu5Kun1edKnfraNIRTdg9VpH9d8jHo63pftmXSDQu42hppltRZ51Zuj53qGZuOcrsQZqldtaA\nJSYBAEXBjDMAAAAAAADckT777DPNnz9fknTu3DmlpKTI3d29SPcwzqwy/oxNjFHwvinKMGQo4sRa\n9ajfU062TpIkW9mpqp2LZke/LEma1W6OFnVZoppOtXT5+iW5V61jNjTLPoPL+Lu5cViaAWYcV1Hl\nDsqyi02MUcj+oBJZMrIgtzN7raDPBQCA3AjOAAAAAAAAUClt375dGzZssHh+6NChSk5O1ogRI/Ti\niy/q9ddft7jUoznGUCb7/l8+Hm214NHFcneuI0mKOLFW6Vnp/7+FQVcy/9bpq39o7JejND9mrqbv\nn6bkjKuSza0rsodmUt4ZXJZmdJk7bhzfrlNRGrytb7HCM0vPnXvpxtJyu0s/5ve5EJ4BAMyxMRgM\nhvIeRElLSkou7yEAAIBCcHd3K+8hQNROAABUFNRO1iF37WRcBjD7zzG7Rmp+pzAdiI/Wez+9rXqu\n9fWfpEM52rk719HElpM0yHuIElMTJOUNzUqCcVyxiTElev+yXP6wNPpi+UYAqNxup24iOAMAAOWG\nL3+sA7UTAAAVA7WTdShM7WScyTRwSx+dSf5DktTB41F9n7hPtZ3qyGCTJXsbB13JuKw3OoZp5IOj\nSnXMAADcaW6nbmKpRgAAAAAAAKAEebp5ydPNS1sGRun5VkGSbBRz7gfNbjdXi7suUXL6VVVxcNaE\n5s/p5e9f0q5TUQXek2UFAQAoG4VftBkAAAAAAABAgYzLAHq6eWnGI7N1b/V7VatKLfVq2EexiTFy\nr3q3BjQcoi///Fyvd3hTi2IXyr1qHXm41DW7fKBx+Udze5sBAICSRXAGAAAAAAAAlJDcIVd8cpyW\nHF4kexsHSdLcH0KVmHpWS/+7SHdX9VCXet3UtNb9euar8arqUFVr+2zME455unlVmNCMvcMAABUd\nSzUCAAAAAAAAJSR3yJWYmqCE1LO6fjNNs75/Wc+2nKyGNRppVrs5usu5pqnduWsJmu47U1LeZRlL\nMowqzSUfjaGhNS0rWdZjKUp/hb3Wmj5PALgTEJwBAAAAAAAAJSh7yOXj0VZbBuzU6x0XKiE1Xsv+\nu1RLu72rQd5DtLbPRtM1mwdEqbl7SwVE+Skgys8UlpgLo8wFa4VR2sGWtc2MK+sgryj9FfZaawwj\nAaCyszEYDIbyHkRJS0pKLu8hAACAQnB3dyvvIUDUTgAAVBTUTtahOLWTMfTw2zZQs9u/KveqdRSy\nP0hTfaZpUezCHGGT8drs4VP2GWfZl4I0Ksr+Z3faUopl/bxF6a+w195pfzMAKAm3UzcRnAEAgHLD\nlz/WgdoJAICKgdrJOhS1dtp1KkqLYhdqqs80uVeto8lfT5TBIP2r1WS9f/RdLe6yVD4ebfO0yx2W\n5A7PpP8LzBJTE8zeAwCAO9Xt1E0s1QgAAAAAAACUgtjEGE3YPVYDGg7WhN1jlXTtvDKzMpWZlal3\njixV5s1MScqxLGNsYkye5fly/+7p5mVaFlGSQvYHsZRfCeKzBIA7GzPOAABAueGtaetA7QQAQMVA\n7WQdClM7ZZ8dFpsYYzru4VJXA7f00dwOr6u5e0sdTTqiNw7NkyQt7rJUk/ZMVFzKn9o8IEoeLnUt\nzjjLrz/cnuxLYfKZAkDFxYwzAAAAAAAAwArEJ8cpIMrPFJgdiI/WoK19dCA+Wnv//FrxqXGacyBU\niakJWhS7UIu7LDUt1xjQNFCbB0TJx6NtntAmvxCHgKfkGGfy8ZkCwJ3LvrwHAAAAAAAAAFQmmTcz\nNWXvZD1e7wkt/e8iVXOsrjkHZ8lWtspSlgKaBsrDpa5pqcUxu0ZqQMPBmnNwlv7d+W35eLRlFlk5\n4nMHgDsbSzUCAIByw3JD1oHaCQCAioHayToUVDsZ98c6mnRE478YrYktJys546o++uV92cpW1R3v\nUnXnajIYpC0Do+Tp5mUKydYc+0QjHxyVZ7lAQjQAAIqGpRoBAAAAAACAcmYMvBJTEyRJmYZMffTz\n+1r5ywpVtXdRLefaqu5cTZevX1ZCarwSUxNyhGIjHxwl6f+WC8x+T2MgV5wxAQCAwiM4AwAAAAAA\nAG6TMaCa6jNNk/ZMlCS5Orgp+cZVGWTQtRupSrp+XrWd3HUl42+5OLgq6dp59dvcU7GJMVpz7BPF\nJ8eZ9kaTZArhsu+5lf28pTFk//12Qrf83M49CfMAANaMpRorIabvAwAqCpYbsg7FqZ2oNwAAKHvU\nTtbBXO0UnxyngCg/Zd7MVGZWphJS41XD6S6dTztn8T42slF1xxr6O+Oyajjepb8zLqumUy1du5Gq\nzQOi5OPRVrGJMZqyd7LW9tkoTzcvxSbGaPC2vorsv0M+Hm3zjCH78o7Zj5d03Wapr9JuCwBAYbFU\nI0xK800iAAAAiXoDAAAgN083L63ts1Eb+2/RloFR+uDxj2Vnayd72au2Y22zbVwd3JSSmSxb2Wpp\nt3f0fKsg1XSupTc6hsnDpa4kmX4a+Xi0NYVmuWsx4/KOucOo0ginLPVV2m0BACgLzDirhHgDHABQ\nUfDWtHVgxhkAABUDtZN1KEztFJsYowFbnpCrg5supV9UFbuqcrB10NXMK5JuzTYzyKDqjjX0Svt5\nqlWlluYcCNX1m2myt7WXwSDN7fC6ejXso9jEGNPsMmMNxqwtAADyx4wz5EDBBAAAShv1BgAAwC2W\nZuHf5VRLgfc/qbur1FU1x+q6abgpSarvUl+2NnaSpKsZVzTnQKjGfTlKV9L/1vXMdKWkp+psapzG\nfzlar0XP0VNfjtGuU1GmsCw2MSbPrC1WAgAAoOQQnAEAAAAAAKDSOHLkiAIDA82eS0tLk7+/v06e\nPJnj+MWLF9W5c+c8xwuSewnr+OQ4xSfHadTOETqXlqAl/w1TSuZVnUtLUOqNFEnSmdQzumm4IUky\nyKDLGRd1M+umLly/oAvp53UxPUk96/XWP5uO0ZL/hiku5S+N3RWoxNQETfWZppD9QTmCsuxjKEyA\nlv26/K6/3TCuMoR5leEZSkN+n0tsYkyZ9leRVdbnAioDgjMAAAAAAABUCitWrNDMmTOVnp6e59zR\no0c1cuRI/fXXXzmOZ2Zmavbs2XJ2di5yf9lnfsUmxiggyk+bf9+kpOvnTdek3kjN9x4dPB5V73v7\nyaAsOdk6ySCDdpzeqk9+/Ugudq6SpFpV3CVJbxyap/mdwpSYmpAjsFvVa40kKSDKL98ALT45TgFR\nfgqI8lNsYozZ0C/7dbkDusIytyduYe9l7lx5BAzs62tefp9LbGKMBm/rW6LhWWX9O1TW5wIqC4Iz\nAAAAAAAAVAr16tVTeHi42XMZGRlatmyZGjZsmOP4ggUL5O/vrzp16hSrT+OeY1P2TlZyxlWtPb5a\njnIqdPvvE/dpx+mtkqT0rFuB37DGAXrZN1QZhnTZy15vdl5suj7p2nmF7A/S/E5hkm6FZdkZQzVL\n4cXaPhu1ts9G+Xi0NYV+2QM1S8FVUb7kN7eUZPZZcZbuZSlwK4+AIfcz4Jb8Phcfj7aK7L/DtCdf\nafdXkVXW5wIqC4IzAAAAAAAAVAo9e/aUvb292XM+Pj6qW7dujmORkZGqWbOmOnXqdFv9erp5aXGX\npXK2q6KApoHKUN4Zb/lpWv1+2chGdznW0vOtgvRk83Fa9t8lMmQZ9HK7ULlXraPJX0/UdN+ZWhS7\nUFN9ppnCicybmUpMTTCNwcejreZ3CtOUvZO161SUqQ9jAGUcb+6fxkDNeGxtn42mdua+5C8oyMp+\nbfb2+QUG5s6VZ8BQmD7zm92X3/miKOwSnEW9trgsfS7xyXElGpoV1F9FV1mfC6gMCM4AAAAAAABw\nR9q0aZOio6MVGBioX3/9VcHBwUpKSirWvTxc6srGRmrv+Yhmt5srOxu7Qrc9fuVXGWTQlYzLeven\npfLbNlAX0y/I2aGKPjr2vsZ/MUZ/Xj0jSZrfKUyLYhcqPjlOiakJkqQpeycrNjHGtP+Zh0tdXU2/\nqqe/etI086ywAZQxYDuadCTHLLTcodntzALLbwyWArWCxmzu34W5/nZY+hyMx3Mvh1mSfRS3v5KY\nwVcSsxIBwJoRnAEAAAAAAOCOtGbNGn366adavXq17r//fi1YsEDu7u7Fvp/BcCvEau/5iJxtqxS5\n/cx2ryqk7Syl3kiRJF2/cV3nUhLlYGev4LYz9caheUq6dt60p9mkPRM1u/2reZZelKRqTtX0fo+V\nphlAucOv7LIv1Sj9Xzi3uMvSHLPQjIo6C6wooUpRg5fCLgNZnLEUxNLnYDye+29SUn3kHntR+rvd\nGXyWPj+WHgRQmdgYDAZDeQ+ipCUlJZf3ECqU/AonAABKk7u7W3kPASp+7UQNAQBA2aJ2Kpy4uDhN\nmTJFERER2r59u65du6bhw4ebzgcGBuqVV15Ro0aNcrSzdDy3/Gon4yywpGvnNWrXiCKPvYptVUUO\n3K7jF3/V6Sun5ePhI0lyr1pHU/ZO1uXrl/R3+mVtHhCl4xd/Vch3U+VR9R5tGXhrSUbjfmXGn9mP\njdk1UvM7heVZSs/c9ZIUmxhTosvuFRTcZR9nUQOY7PcuTI1a0DXFqXPLqjYu7md0u33mDu747wAA\n1u526qZSn3F28+ZNTZ8+Xf7+/hoxYoR+//13nTlzRiNGjFBAQIBCQ0OVlZUlSYqIiNDgwYM1bNgw\nffPNN5Kk69eva9KkSQoICNBTTz2lS5culfaQ7yhMowYAwLpUlNqJGgIAAFgrLy8vRURESJL69euX\nIzSTpNWrV5sNxywdL4rE1ARN2TtZklTVzqXI7dOyrilgxzDN/SFUS/4bpinfPK83Ds2TJE33nSk3\nRze90THMFJo903ySbGxu9RsQ5addp6JMS/ZJMtVrnm5emt8pzLSUo1H2ms64/5jxePZrjfcraD+v\n/I5bClqyLy9YnJlsue9dmLYFhWZFrXOzL5VY2sp6Zpe55R8JzQBUdqU+42z37t3as2eP3njjDR08\neFCrVq2SwWDQk08+qXbt2mn27Nnq1KmTWrVqpbFjx2rTpk1KT09XQECANm3apDVr1iglJUWTJk1S\nVFSUDh8+rJkzZ+bbJzPOioa3RAAA5YW3pvOqSLUTNQQAAGWL2sk6WKqd4pPj5LdtoG4YMnX5+mVd\nyfi7yPe2kY2q2FdV2o1rMsigOlXu1nTfWVpyeJHsbRyUdiNNDnb2Skg9q7ucasrJzlmJ185qRY9V\nmnMgVA52Dprue2tJx7V9NkpSgTOFLM0sM14bmxijwdv6ann3j7QodqHZZQPNzWYrzMyo/GbC5ccY\n4pi7/+3Mjso+862oda5xj7nKtFxhcf8+AGANrHrGWffu3TV37lxJ0tmzZ1WtWjUdO3ZMvr6+kqRH\nH31U0dHR+umnn9S6dWs5OjrKzc1N9erV0/HjxxUbG6tOnTqZrj1w4EBpD/mOwFsiAABYJ2uvnagh\nAAAALHOwc9Co+8cqLfNasdobZNC1G6kyyKC+9w5QFfuqCvvPAiWknFVA00A52Nnr3e4faMuAnfp8\nyB5tGRilLQN2qlfDPtrYf4vW9tmo5u4tdSMrU5Lles1Y08Unx2nK3sk5ZkoZ9woztvXxaKvI/jvU\nq2Efi/t5mZvNVpiZUdn35spvnLmPjdk1UpLy3D/37Kii7q2WfeZbUZXEfmbWpqC/DwBUVqUenEmS\nvb29goODNXfuXPXr108Gg0E2NjaSJBcXFyUnJyslJUVubv+XALq4uCglJSXHceO1uD0srQQAgHWz\n1tqJGgIAAMAyTzcvTfedqa2nIvXP+8cUqa2t7Ez/drJxkr3sdSDhe9nYSFXsq2h+p0Vae3y1zqbE\nS7oV0mQPtoz9G4/Z2zrkuL8xDDMuJ5i9pruRlakpeyebrvHbNlABUX45ar6CghNzoVFhA6iCZqPl\nrj2zB3K5+wvZH6T5ncJyzBorbJhVEksgVqbQzKg0non/ngBg7cokOJOkBQsW6IsvvtCsWbOUnp5u\nOp6amqpq1arJ1dVVqampOY67ubnlOG68FrenrNdCBgAARWeNtRM1BAAAgGXxyXFaFLtQU32mafup\nLZIkV/vCLROVpZumf2caMjW48TBdTL+gUfeP1cb+WzTywVEKf+xd1XO7Vx4udU39WQqW1vbZmGO/\nsuwztLKHXJ5uXorotyXH9Q52DlrcZWmemq+gl6jMLd94OwFJfrWnpWPG5yvu7DHq3NLHy3gAKoJS\nD862bNmi5cuXS5KqVKkiGxsbNWvWTAcPHpQk7du3T23atFGLFi0UGxur9PR0JScn6+TJk/L29tZD\nDz2kb7/91nStj49PaQ/5jkAhAACAdbL22okaAgAAwDxjcNPcvaVqV3XX862CNK7ZhEK3H/vA05Kk\nLGWpac37NbvdXD3n83yOmWXhj71r+r2wwZK5GVq5z2c/vrbPRrMzzMp69lbucRblel74sl78bQBU\nBDYGg8FQmh1cu3ZN06dP14ULF3Tjxg099dRTatSokWbNmqXMzEw1bNhQ8+bNk52dnSIiIrRhwwYZ\nDAZNmDBBPXv2VFpamoKDg5WUlCQHBwctWrRI7u7u+fZZ3A3uAQBA2WKD+7yonQAAgCXUTtbBUu1k\n3CfMOOPpaNIRzfr+ZZ1J/qNQ9x37wNP65NePlGUwqK7LParmVM3szLH5ncJMwVZx9uMq7h5eAABU\nJLdTN5V6cFYe+PIHAICKgS9/rAO1EwAAFQO1k3UwVzvFJsZo4NbeMhgM2jrwc0nS4G19NcI7UBtP\nrFdy5lWL93OQoxztHZV+47pqV3VXcNsZev/ou5ruO1O9GvYxLWnn6eal2MQYTdk7WWv7bJQkjdk1\nskh7ixnDN0szfoobqhnblWYoR+AHACiK26mbymyPMwAAAAAAAKAy8vFoqy0DdmrrwM/l49FWPh5t\n9ZLPy1r5ywpTaOZk62y2baYylHojRTd0Q/a29mpa634t7rJUi2IXKjYxRgFRfhq45VaAZtzfTLoV\npM3vFJYnNAuI8jOFbeb2P8semsUnx+W4tjh7TxnbGcdaGntXFXZsFXHfrIo4ZgCo7AjOAAAAAAAA\ngNtkDMykW2HIIO8hqlPFQ9Uda8jF3lUZWRlm27nYu0qShjUO0OsdFypkf5A8XOpqVa818nCpq+m+\nM3XuWoISUxPk6ealxV2WmmZ3hewPshi8WAqbsodmAVF+prCruHtPGdtlD/VKWmHGVtzgrzxVxDEX\nVkk/U2X8jABYL5ZqBAAA5YblhqwDtRMAABUDtZN1KKh22nUqSm8cmqfpvjMV9O0LOp92zuK1fe8d\noGFN/RX07Qu6kvG3PKreo/d6fGDaJ824rGJiakKeY0a5w6TsSxoWtLxh9mUgS0J5L6dY3v0XR0Uc\nc0EKWhK0vO8H4M7AHme58OUPAAAVA1/+WAdqJwAAKgZqJ+uQX+0UmxijQVv7qHYVdznbVVFKZrKu\npF9R2s1rkmzkYueiazdTZdCtr+Psbf4fe+8eH1V17v+/J5PJhRBQQ2hSIrVYrdovxWOEU1tpUyiK\nRiF4jKWhIFW0RCVqQATKpSLKpYA1VLFo1epPqnKUAKaNChqlViXNOVIq8tIjWgxkTAi3MLlOMr8/\n0j3u2dkzs/dcMrfn3Vdfkr33WuvZ13nW+qznWckMG3g2Hd3t3DryNrZ88jybC7e4I8oUtOkYQX99\nM0GIFkItCMajwCgIQniRNc4EQRAEQRAEQRAEQRAEIcLk54xm6+QqHrx8DSUXTKex9UvaulsZbDuD\njOQMHN2nGZQyGCtWBtvOwOVyMf7sCXzZaufJDzd5pGEsqSrG7mjok8pPEQ8U0Uy9ThlISjshOgi1\nyCWimSAI/YkIZwmKOFGCIAiCIIQC8SkEQRAEQRD6ctOr03ng/V/jAqwWKz304HCeBsBisTA49QwA\nuunmtUN/oeziuaQnp3Og+SMA7I4GAHIycpl50c0eqReVtHV2R0Ofdcq8rZllxmeLV/8uXs9LEARB\nCD0inCUg8bzwqCAIgiAI/Yf4FIIgCIIgCH050PwRTpeTbrpx0UO3q5s2ZysXDL4QgJMdJzjW0czJ\nrhMAtHd1UPnpSzS2NnL3W3fw3IfPsGD3PNYXVLCvaa97W5291i2Yzc2fz4Ld89jXtJfNhVvckWrD\nMvP6pG8047PFq38Xr+clCIIghAdZ4yxBkbzAgiAIQjQg63REB8H4TuJTCIIgCEL/Ib5TdOBvjbPy\nmjK+OHWI007jPlZW6hCOdTRzVmoWO2942x1xdqD5I+5+6w7yBp5NZsogbh1ZyqZ9G+nq7uL2i8tY\n9HzZNlIAACAASURBVM49/P4nT7Jyzwr32mgKaj/N27/1iFf/Ll7PSxAEQdBH1jgTTCOOgiAIgiAI\noUB8CkEQBEEQhK9SKJbXlFF83lROO1tITUrzWeaG80qwYQOg1elgkG0wmamZ2B0N3PLaTCZXXsW6\nutXkDTybx694moVjFrNp30aKz5uKzWqjYPg47slfxMjsUbr2eEvZ6C/yKlz+ndJmKNZjC6Sc+K2C\nIAiCUUQ4i3MkBF0QBEEQhHAhfoYgCIIgCMJXYtS+pr20drVysuMkAB097W5hTI/K/3uJLroAaOtu\n42TXCZpamzjQ/BFNrY0sGL2EzJRBPHj5GgCWv7uMls5TrP77Cm4dWcrWj1/i/veXUnPojT7RZkrK\nRsU+ZQ00b6kcvZ1XqFCukZJu0td6bHX2Wp82SNpFQRAEIdyIcBbHiCMhCIIgCEK4ED9DEARBEASh\nl2GZeczNn8/yd5dxxFHPo3sfJt2aDuAWxvTodHX02eZwnmbJOwvJHfh1vnXmt7hi+FUs3D2fsjdK\naXO28fgVT7Pq8nU88kEFa/7+AGUXz2XTvo3AV1Fvyr/tjga3oNfV/ZUdatFMK2Qp+PP1zPqAimCX\nk5HrFu70RLw6ey3Xbb+GOnutVxv0ygVrnyAIgiCoEeEsjjHiSAiCIAiCIASC+BmCIAiCIAi9HG6p\nZ13dGpZedh/bi6pZOGYpbd1tAdd32tnC/zvru/yi+uc8/MFaDju+4OpzJtHU+iXvHv4bm/ZtZOll\n97FpwlPMHHkTzp4u9jXt5YYdRZRUFVNnr6V4exHlNWXMzZ/Pyj0raNfYowhlC3bPY9XYtQDuqDTw\njFjTO19vopo/wWpm9TSPv9XrrgHk54zm5UmvkJ8zGkDX3/TXhq80ld6OFwRBEAQ1IpzFOTKYJQiC\nIAhCuBA/QxAEQRCEREYtMs286GaWv7uMA80f8cf9T5IU5JDbK59vo5tuAIakDmVw6mC66WblnuU0\ntx1l+bvLWLlnBXZHAy4X3P/eMlwuWDhmMTkZudisNtYXVDBxRCELxyymqa0Ru6PBbbciYD098Tm3\nSAW4j1EwE/HlL0ptWGYeq8au9VsuP2e0h43aY0uqij1EPr129NJRBrrmWyIi10OIBPLcCdGExeVy\nuSJtRKhpamqJtAmCIAiCIBggOzsz0iYIiO8kCIIgCLGC+E7G2Lt3L2vXruXZZ5/ts6+trY1f/OIX\nPPDAA5x77rl0d3ezePFiPvvsMywWC/fddx/nn3++z/qbmlrcAs76ggoAJldeRXdPNxaLhcEpZ9Dc\ncdSjjA2bz7SNCgOTM2nvbuO6b93ABWddyIO1yxmSNoSjbU04XU5uOK+Eyk//myeu+CPZA4aSnzOa\nOnstORm57Gvay7q6Nawau5acjFyPaK7i7UVsmVTpsU0rYNXZa1mwe56H6KR3nC98Ha+IVN5ENyPb\nlO12R4OH4BeMbWbPMd7xdZ+E2CQWnnF57oRwEIzfJBFngiAIgiAIgiAIgiAIQlzw+OOPs3jxYjo6\n+q4ftm/fPqZNm8YXX3zh3vbmm28C8Pzzz3PXXXfx0EMPGW6rq7uL8poyAHIzhnFWWhZOl5OTnSe5\n8+J5nscaEM0A2rrbGJCcwZZP/sTJjpNYemDND9ezY8qrLP3P+1n4vcV8Y9A5ZA8YyoLd89xil93R\nwPJ3lzE3fz4Ldnu2PSwzz0M0U7Zpyc8Z3WfQ2uwAtq/jfaX6NrpNYcHueQGts2ZmuxHiMUImVlKy\nx+O1DwexElUZK8+dkDiIcCYIgiAIgiAIgiAIgiDEBcOHD2fDhg26+zo7O3nkkUcYMWKEe9tPfvIT\n7r//fgCOHDnCoEGDDLWjiFGbC7eQnzOayqIqXiuu4aEf/Y5zBn2T/Jx8rFhN29/tcnLaeRqAFz5+\nDpelN1FUU2sjz3z0JPua9lIxbiMAq8audYtdAPWnD5E9YKju4LN2LTFf56XGyHpiZgbkAxkUV+rX\nrr8W6QF2RZCos9dG1I5wEOlr649wiUHRLi4FQrS8L0aIBRuFxEGEM0EQBEEQBEEQBEEQBCEuuPLK\nK0lOTtbdl5+fT25ubp/tycnJ3Hvvvdx///1ce+21htsalpnnHuhV/j3tOzPYMqmS7AFDuePiuwM6\nhx5XNy5ctDnbcAFz3ijlplen8/mpz7jp1Rnc8tpMiiqvZvbrs6iz12J3NJCTkcvWyVXk54z2myrR\nqDhwuKWeG3YUeQhDaqFMSVdZvL3Io85Qig9qcUptezREiSlrtulFv5m5xuGyL54JhxgUK5FZgSCC\nlCCYR4SzBCcefwwEQRAEQQgv4j8IgiAIghBvrF69mldffZUlS5bQ2toaVF12RwNFlVezad+jJkta\nPP463XWabpeTk50nsFqsJFuSyUobwoOXr2HV2HWkWG3MerVXRJuyrZCm1sY+Nar9NrNig93RwKFT\n/2LOrlK3YFZSVUxJVbF7zaT1BRXYrDaP9tTigy+/0YhPqdisl0YyEEItjujZpVwnI9F6WlviWbwJ\nNaEWg2IpMksQhPAjwlkCIz/GgiAIgiCYRfwHQRAEQRDiicrKSn7/+98DkJ6ejsViISkp8OGywy31\n5GTkkpqcRlu3bwEuqc+wnMvjr4G2gdx00a0AdPR0YLOkYLHAPW+Vs2nfRsZ+vYABtnRmf3cOLhfc\n+vovqD5Y5SFaaUUsbcpGXz5dbwrKP3usj7a5cAubC7e4/87JyPX4Wy0+1NlrPQSkQAUiI0KG0cgt\nxb5QEqjQohVqlPsj4k3kkOsuCIKCCGcJjPwYC5FABloFQRBim0j6D/IbIgiCIAiCWXbs2MELL7zg\ndf8VV1zB/v37mTZtGjfffDOLFi0iLS0toLaUSKOtH7/Eqc6Tfo/voafPNhtfRW+d7DzJjoOV5A08\nm4zkDLpcXTS1NtLYZmdk1iie3L+JxtZGfr/vd9z/gwfZNOEpVu5Z4RERphaxFKFKL/2hNz9LSf2o\nlAHP9dJKqor7lFGOL68po6u7C7ujoY9QZtan9CW0BRK5FcqJYNp6hmXmeYiJ/o7V2ivjdIIgCJHH\n4nK5XP4Piy2amloibUJYkB9PIdZRHMFICrbyHglCdJGdnRlpEwRC4zuF+/tq5DdEvvGCIAhCvCO+\nU3Sg5zsdbqnH7mhgzq5SbFYbXx8wjF31r/msx0oy3Th19yWRxIDkDDq627lt1J1s3FvBWelZrPnh\neprbmikYPo4JLxZwZvoZ3DaqjILh49xrnYFn5IziR60au5b8nNHubYqglpORa6ivrvW1FOHMl0hk\ndzSwYPc8d5RXsGuTmfEDzR4fqE1Gxzn8HSu+rCAIQmgJxm8S4SxGCLfgID/OoUGuo38ieY2iQbgT\nBMETGfyJDgL1nZRveii/r4EOcMg3XhAEQUgExHeKDrS+kzryan1BBU2tjdzzVjlftjW4j8lIHsi5\ng87lH8f2+q0/0zaINmcrTpcTq8VK3sDhtDvbyUzJZMP4jSzYPY9VY9dSXlPGwjGLWblnBa1drXzZ\n2sDWyVVucUxro9ZHqrPXUl5TxubCLYB5UUsdPeYNRZjTCm7hnnDVn/WbaU/GjQRBEPqPYPwmSdUY\nI4QzLZKsVRIawnkd4+neRNJBlPSkgiAIoUObTiZUopmvhdR91S/feEEQBEEQIoWSmm99QQUAK/es\nwEUPKZZU9zEO52m/olkyyQyyDeastCxmXHgTFiyclZrFXZfMZVBqJksvu4/8nNE8PfE58nNGs7lw\nCxNHFLK5cAuPTXiClZev9RDN1D6VMtlJva+8pgxnT5d7vxnUqRu9pXqss9dy3fZrsDsaPI5Tj53U\n2Wt9tmGWcI9xqdNbKpi5duKrCoIgxAYScSYAMuMlVITjOsoMekEQ4hmZNR0dBBtxFir8pfsRBEEQ\nhERHfKfowFuqRiXq7IrhV/HwB2sN1ZVpG0Sr00F2+lCuPudanjvwR7IHDAXgv771U176vxdIs6bT\n1dNFitXGi9dW6qYkvGFHEYdO/YvKoj+TnzO6z1iC3tiCnvhjNnoKcJ+3ng9XZ6/tY4/SniKsvTzp\nlT5RcsGMhYRrjEsv5aUgCIIQvUiqRg0inBkjGsSyaLAhFpDrJAhCvCKDP9FBNPlO/n7z+mOtCkEQ\nBEGIVsR3ig68+U7VB6vIHjCU2a/P4l8tn/mtR1njLD1pAIPTBtPcdpSFY5ZS3/IFT+7fxFmpWTic\np3l8wtNkDxjKnF2lbBi/0S1Eqf2eOnstc3aVsmVSZR8RTBG47I4GnwIVYGhNWei7hpqCUT9Ovcaa\nNxEqGn07f76oQrTZLXgnGp+zYInHcxKEQJBUjYJpoiE9YzTYECuEOze30H/I9e5f5HoLQnSiTRNk\nZrDFm+8gfoUgCIIgCJGkzl7LL3feRFNrIx3d7VixYsHis0w3TgDaelo51tZMl6uL333wW57c/zgW\nLLR0nWLV5evcEWgA5TVlPPfhM33SW+fnjGbLpEqP+hXRrKSqmBt2FFFeU9bHV1Knu/aX+lqpS2lb\nK6L588XUoplyrK/IrWgY+Ne7XnrU2WspqSqmeHuRz9TjQvgxc+3jsQ8Rj+ckCJFAIs4SmGiYfRAN\nNiQykgayf5Hr3b/I9Y4NZNZ0dNCfvpN2VrOv1D7eykvEmSAIgpCoiO8UHXjznZT1uiZXXkVXTxcu\nzA25pSalckbqWRxrP8r0C3/B/3fgaVaPXc+9u8vJzRjGYxOeoKm1kVten0luxtfZOrmqT+SXXh8o\nlJFQ6rr0Uj+aSfMY7X5bnb2WBbvn+e1TqlM45mTkAtEh+iUigYwDxMKzaJZ4PCdBCARJ1aghEYQz\n+QAmBv1xn+VZ6l/kevcvcr2jHxn8iQ5C4TsFOlCil+7HbH2CIAiCkCiI7xQd+POdnvvwGdb+fTVH\nHPVu8Sw1KZWOng6/decMyOXWkbex7eDLzM2fD8Cs125kcMoZPHP1n8jPGU31wSpGZo9yR5RpRTK9\n7eEgnv01s+uZxfO1iDXkXgiCoCCpGhMMCblNDPrrPosz0b9E+/WOt+9KtF9vQYgXzP5mqd9NJS2Q\n0fri7TslCIIgCEJ8cbilnqf3/4Gb/9+tWLG6t/sTzS7NHgPAT8+f5hbNRmaPYuWeFZR+t4yj7U2U\n7pxF9cEq1tWtcbel+EzqyUhmfLNgfKt47m8paSuNiGbK8dFMIvnQ0X4vBEGIDUQ4i0GUH28hvvGX\nW1wIPYnkSOohorwgCIFi5jdL+cb4W/9Crz75TgmCIAiCEO0My8xj1di1bDv4MrdffJd7e2pSGgBJ\nmqE4GylkpQ7haEcT2WlDqfpsO5NHXMfKPSvY17QXgPycfGxJNu78j7msq1vjjkRTjw+pfSSjvpn4\nVr6Jl/EYuc+CIAjmkVSNMYqs3RM/SAh5dCDvVC+BPI/x8gzHy3nEGpJuKDoIh++k904dbqmneHsR\nG8ZvNLRehNF6BUEQBCFREN8pOjDiOykixZRthUwe8V9UfLCOgbZMkixJnOo8hYse97GZyYPIGpBF\nW1c7Fgs0tx0lK30IA22ZbBi/kfyc0dTZa93/nbOrFIAtkyoNry/mbb/4VrFBsPdJ7rMgCImIpGpM\nQGIpGqm/ZrTE4swZmfUTPcTSOxVOAhnAjodnOF7OQxCiBe07pfzX7mig/vQhAFaNXRvQNzfRv9OC\nIAiCIMQGSjrqGRfexDmDz2Foeg5Wi5WTnSf4fs7lWLEyKGUwAC3OU4zLm8Dxjma6e7px4cJqSQbg\nQPNHAORk5HK4pZ6cjFwslt427I4Gj/YUtP0aX/0d8a2in1D0V2PlPkufXBCEaEEizoSw0l9RPLEc\nLZRIs34S6VwTiXi5r/FyHrGGzJqODsIZcab9jVYWs4/V321BEARBiCTiO0UHRn2n5z58hrvfugOA\nQSmDOdV50r0v3TqAtu5WAKwWK3kDh9PR3Y7VksyXjgaenPgszW3NlL81h/U/2sCmfRsB2Fy4BegV\nzcprylhfUAHgXovL2/iIErEWSqQP1X+E61pH0z0M5dheNJ2XIAiRQyLOhKilv6J4YjlaKBZtDgSJ\n6IktzNyneHmG4+U8BCHaUP9GH26pdy9mH6u/24IgCIIg9A8nT55k8eLFzJgxg+PHj7Nw4UJOnjzp\nv2AUMe07M3joR7/jzovn4eg87d5+zTmTcfZ0udc7G2DN4MaLbiIzJZN5l96LxWKhua2Zad+ZwR8n\nbqZg+Dg2F25xi2bDMvPIyciltauV2a/PYsq2QqoPVrn3af2swy31LNg9L6T9cenj9y/hEs2i6R6G\namwv2s5LEITYRISzBCMSPxr9NSgmg2/RTTAOUCDPrThIgSNOpiAIwaL9jiiimb/fAvnuCIIgCIKg\nsGTJEkaOHMmJEyfIyMhg6NCh3HPPPZE2yzQXZF3ItoMvkZU+hHTrAADebXiHzJRBZNoGAb2pGh94\n/9d0dnf1FrLAvbvLqT5YRfaAocysnobd0YDd0UBJVbHbZ7Il2XhswhNsmvAU6+rWePhegMffZvvj\nvvwyb36duoz4ddFPNE5CD4Ut0XhegiDEHiKcJRB6g+HiyAj9SaCimVkRJ5TCT7B1xOo7FujaQ4Ig\nJCaHW+o9vnfazmqdvdb9XVZENPWgj1JeRHtBEARBEBTq6+v56U9/SlJSEikpKdx9993Y7fZIm+UT\nxY+ps9cCUH2witKdszjcUk9j25e0dbeSmpRKc8dRjnU00+I8BYAFC5akJO66ZC7r6lbzhyueYfXY\n9azcs4KyN0qZedHNzNlVStkbpXT9W1yzOxqwWW3kZOQyMnsUT098ro8tim9lJm2dP79MvU8rmqnb\nE78uNojXfn+8npcgCP2HCGdRRKAOhdFy2kEscWSEWCCQmUKhimgI9h2JtXdM6eCUVBVTXlMWM3YL\nghBZ6uy1lFQVewhh4DnTubymzKsgr3wrAfeAj3x/BEEQBEGwWq20tLRgsVgA+Pzzz0lKio5hLL0J\nyYpP89yHz1C07Woe+NtyZr12I84eJ2O+dpn7+I6eDve/e1w9QG+qxiFpQ3j3yN+oP/0FNYfe5On9\nf2DhmMW0drXx6N7edcwqxm1ky6RKAI/1zZSINLU/pvSLAfd2fz6W1i/T89289bfV28MV8RPrPmKi\nTswVBEGIRaLD4xACHmBXyimzmfyhdlokdDm+iGcHKpBn1JdoZvRdC/YdiaV3TN1BUnLnx4LdgiBE\nFmW9jPUFFX6/GzkZuR5/ry+o0B1Y0RPhBEEQBEFIPObMmcP06dM5cuQIt912GyUlJdx1112RNgtA\nN7JqWGYeq8au5dG9FXR3d/PoPx6mu6ebk+0necf+NmlJ6Viw6Nbn6D5NY+uXvPjJZixYePajp5h5\n0c00tzVztK2R20aVsWH8Rg9/Sok8G5aZx9z8+br1DsvMw+5oAHoj1Pz1hbXil6/jtGjr9ZbC0Re+\nxD11BoNIEArRK5om5oqvLQiC4BuLy+VyhbOBrq4uFi1axOHDh+ns7KS0tJRvfetbLFiwAIvFwnnn\nnceyZctISkrixRdf5Pnnnyc5OZnS0lJ+/OMf097ezj333ENzczMZGRmsXr2as846y2ebTU0t4Tyl\nsGEmdF5Nnb2WBbvnxcwAvZpAzzlR8Xa9FAcqFp+BSBBLz11/2hpL10WIH7KzMyNtQtQRa76TkW+H\n+pg6ey3lNWV0dXexZVJln7LatTnCYY8gCIIgxCqJ5jsdO3aMf/zjH3R3dzNq1CiGDBkSaZMA+ODg\nRx7R9VqRyO5ooKm1kSXvLKKju53G1kZ66DZcf0byQM5MOxO7o4Eh6dm4XJCWnEabs5Ws9CEsHLOY\npX9bRLLFxtLL7uOW12YyfNA3qBi3kfyc0R52KJFpTa2NjMwepet7edtm1K9SMpcA7slU6jqMjFfo\n1aHeN7N6GqvGrvU4P182htInVGwLdoJpsDaF6pxkDClwzPZ9hL7I9RH6k2D8prBHnG3fvp0zzjiD\nzZs388QTT3D//fezcuVK7rrrLjZv3ozL5WLXrl00NTXx7LPP8vzzz/OHP/yB9evX09nZyZ/+9CfO\nP/98Nm/eTFFREY8++mi4TY4YgX408nNGx+SPXaylsVOI5Owmb9crliKbooFgBmP7k/5+RxLl+Ym1\nb46QeMSa72R0NrEyg3jB7nksHLMYm9Xmtb5gvtOx6FsIgiAIgtCX9957j9tuu42CggK++c1v8tOf\n/pT/+Z//ibRZQN9sPuA5+Sc/ZzQTRxRy/w8eJDkpmevP+6nhulOT0nA4T3Oq4xTdrm5+OOzHNLbZ\nsZ9uoLHtS64YfhUr96xwH589YChnZ34lmtXZa91Cz5xdvWuiVR/8CzdWl7Cvaa9HW3q+kzqzkZls\nLerMJdp6jYxXaOvQ7nt64nMeopkvG735hP581XATbJ87VH32aB5DimY/3khfQ/ojvpHrI8QSYY84\nczgcuFwuBg4cyPHjx7n++uvp7Ozk7bffxmKxsHPnTt555x0uv/xy3nrrLZYvXw7A7bffzi9/+Us2\nbdrErFmzuPjii2lpaWHq1KlUVVX5bDNWI86CJdSzafrjBzTWZhlEelZOrF2veCJS917ueWiJ9Dss\n9CXRZk0bIVZ9J2/vlxJhBr3pGXMyck3NYA7EDnm/BUEQhHglkXynKVOmsHr1as4//3wAPv30U+bP\nn89LL70UYcv6+k56ftDhlnqmbCvk81OfkWpJo8PVbqju8XlXkJ6czj+P/YMxX7uM/236O5+c+BiA\nJJKouu514Ks02EoqRkU0u277Nbw86RX3/n1Ne/nlzpu4J38Rd+Tf2ae9UESc6aEMjIer/2U24sxX\nX9BIP1F8zPATC/11iTgLHrk+Qn8S1RFnGRkZDBw4kNOnT1NWVsZdd92Fy+VyL+6akZFBS0sLp0+f\nJjMz06Pc6dOnPbYrxwp9CaVi76+uUM4KiLUPpXpWTiivg9G6ovl6RWOecbPPsNFc76HGX7tC6Ijm\nmXWCoBCrvpPeb+ThlnrKa8ooPm8q6wsqWLB7nntwRzs7W0FdNlA7BEEQBEGIfTo6OtyiGcC5556L\n0+k0VHbv3r1Mnz5dd19bWxtTp07l008/BXrTZN9zzz2UlJRw/fXXs2vXLtO26vlBdkcD4/Im9J6L\nAdFsfN4VpFvTebN+J698vo1Dp/7Fi59s5j+yL+WcQd8kM3kQPfRwoPkjymvK2Ne0l5pDbzC58ipm\nvTqT6oNV5GTk8vufPEl+zmi3TzQyexQvT3pFVzRTbPe2zYxfpbfGWTj7X/5s9Ba15u18/dkpPmb4\niYX+uhHbotn+aECujxArhF04A2hoaGDGjBlMnjyZa6+9lqSkr5p1OBwMGjSIgQMH4nA4PLZnZmZ6\nbFeOFfqi/LiEsi5fa2klckitXtqBYIiHaxqpc/DVrq/UDGa2qwmXaBap+2+kzVDbFQ3PuThpQiwQ\nS76Tv+9pS+cplr+/hKbWRlaNXcuC3fM8xDElzY72b7PpdQRBEARBiC9GjBjBb37zGz7++GM+/vhj\nHnroIc455xy/5R5//HEWL15MR0dHn3379u1j2rRpfPHFF+5temmyA0E9VvDch88wZVshOw5WkvTv\n//nCgoVd9a/R1t1GDz2Mz7uC5KRkrjlnMi9+spkxX7uMs9KzyBmQywVZF3Kq4xQ3vzqD+W/fTY+r\nhyOOema9diPjXxzL/e8t80jXWFJVTE5GbljTFvpbWiIUbYQCEcaiH7kPgiBEC2EXzo4ePcpNN93E\nPffcw/XXXw/ARRddxPvvvw/A22+/zaWXXsp3v/td6urq6OjooKWlhU8//ZTzzz+fSy65hLfeest9\nbH5+frhNjmlCNQDva8aOv9D1aEMZjAsloZwFEwszavwRyWgsszPGzG4Ppb16ROr+RyI3dzyIxILQ\nH8SS76R+rxWxC2DV2LXuWcY7przKMxP/xMjsUX3WZR2WmecW0+rstR7rV2i/jf31DZFvlCAIgiBE\nBw888ACtra3MnTuXe++9l9bWVlasWOG33PDhw9mwYYPuvs7OTh555BFGjBjh3jZx4kTuvLM3Gsvl\ncmG1WgO2WfFtHvmggl+OvINTnSc5K3UIadZ0n+VceK6i8mb9TgbaMvng6P+QRBIvfrKZdmc7Vkuy\n+5ivZeRw26g7uX3UXQBcMfwqjnU0Y3fY3WmyNxduYX1BBXZHg9uPUv7vaxJqSVWxKZ9IOW8jKeyU\n/+qtrab+r1kiMZFXEARBiF/CLpw99thjnDp1ikcffZTp06czffp07rrrLjZs2MBPf/pTurq6uPLK\nK8nOzmb69OmUlJRw4403cvfdd5OamsrPfvYzPvnkE372s5/xwgsvcMcdd4Tb5JilvwbgfYlm0TYo\nruT3Dpd4Fo11RYpQnEOoo8B8CcBmZsIZJdB3IJj0F4FiNBVFKL8p8SASC0J/EEu+kzrifcHueawa\nu9b9b+V7NSwzj+wBQ93fR60Ylp8z2iMSzVvanVBG13sjGn0ZQRAEQUhUBg8ezLJly9ixYwdbt27l\nV7/6lUeaam9ceeWVJCcn6+7Lz88nNzfXY5temuxg+eL0v6j6bDv3jl6MxQKt3b3ZAFJI8VnOhg2A\nVGsaJztO0OZsIzOlN3vAj/J+zNH2Rg40f8TR9kZau1qp+GAdz330DMkkc8MFUzkrNYvTXS3cOrKU\nYZl52B0NzNlVSnlNmdtPK6kqBtAVuoIRrdT+nx7qjALavqG/rAPe2lT/u7+WHDHSntm6gtkvCIIg\nhAeLy+Vy+T8stgjFAvdCYETjAo919lryc0ZH2gzBC+oFffUWgQ3HMxXOBWfD+Q5EYqFcs+cTivOP\nxu+IED4SaYH7aCYUvpP63VX/9irfrlVj15KfM9p9XJ29lgW753msB+JvEfr++A7KN0gQBEGIZhLB\nd5oyZQpbt27lggsucK/xCrjXfP3oo4/81lFfX095eTkvvvii7v7p06fz61//mnPPPRfoTZN9++23\nu9c584c/30mZvDvr1Zk0ttlJciXR4eogK20IpztP09Hjf80zCxZcuBia/jU6ujvITh9KV08XfUZs\nIQAAIABJREFUj014ggPNH7H276v50tFA3qCzufM/5jLtOzOoPljFkncWUVlUhd3RwOzXZ2FLsrFh\n/Ea3H1ZSVexee3bV2LXkZOT26ZPbHQ2mx1F8+XLe/EF/5dUTsfTq04pvvpYcCbX/GKq+ry/bIjEG\nkKhIH0AQ4pNg/CYRzgQPYv2HIlbsD8bOWDlHI6idQIVoFYSCqSeU96y/7fbnxOulUQtG/JSOQeKR\nCIM/sUAohbM6ey1lb5Ty4rWVfY6xOxpYsHseMy+6maf3/8E9eKKuw983IJ5+BwVBEATBLInkOx04\ncIALLrggoLJmhLOjR48yffp0li5dymWXXWaofl++k+KrVB+sYtZrN2KzpODoPg3AAGuGO/rMHz/I\n+SF/s+9mSFo2JzqP84crngFg+bvLsFjA5YKll91H9oChbhFMLYYVby/iUMvnPHHFH5k4orCPfXX2\nWo+UjurMLIH2yXz5cv4mzerVpUTHKfbp1WfUrmj1H/3ZFs22xwsyDiEI8UswflPYUzUK4SWUIdux\nnp4oVuwPxs5YOUejqNNuKevi9GfbwRKJdcL6y26lLW956vXq0EvFaPb8JZ2jIMQmysBGnb2WObtK\nOXTqX+xr2utekN7uaKCkqpjymjJmXnQzi965h7n5890zjhWMppEVBEEQBCH+ufvuu0NSz44dO3jh\nhRe87tdLk93e7j8iTA91ysHl7y7jzNQsOnrasfz7fzarDSv+11DLSB7I4u8vY/2PNrDoP5eSRBLN\nbc2s3LMCiwUqxm1ky6RKJo4odK8Nq/7vsMw8NozfyPDMcxiZPcqjbsWXys8ZzebCLR6imbJGbaB9\nMn/rkPs7Rnu82j5v9Rm1K1oxch2E8CLjEIIg6CERZzGM2WgQI/tjfSZLrNif6BFnoX72InlN+jvi\nLFSEMuIs0jPkovH6GiFW7Q41iTRrOpoJxHdSfwMAircXsWVSb5RZzaE3mPadGR7pdQ631LvT/iip\nHLXfGXkvBEEQBME3ieQ7zZkzh29/+9uMGjWKtLQ09/bRoyO/FIO/iDPo9Y2WXnYfd785h5MdJ7BZ\nbbR1t7mPs5JMN84+5a2WZLpdTvIGnk1yUjLpyQO4dWQpm/ZtZH1BBYA7vaLSXqCR+tooMG02AL3z\n8tWu+HKCIAhCNBHRiDOXy8UXX3wRbDVCAPiaEWFkYVS9/b6crVggVhy0YOyMlXP0hhKVYPTZM1Jf\nJKPwjNgdbffMaGfG36wrdQfL1/UPt2gWi1GYsWq3EBriwXdSz6aeWT0Nu6MBm7V3MXu7o4FF79xD\n9cEqwPMboCwar17bQi2ayXshCIIgCILCiRMneP/999m0aRMVFRVUVFSwYcOGSJvll2GZeW7fqLmt\nmeaOo6Qmp3mIZoCuaAZgcfWu63as7RhtXe2sL6jggqwL3fvLa8oo3l7E4Zb6Pv6T2o8yIpopZZVs\nI4qvpvXHlH680pdXl1W3bSQji97fyn+VteH8ldU7XyN/G7VL2aZ3LfoT8YsFQRAih+mIs2effZaH\nHnqItravfvCHDRvGzp07Q25coMRixFk4ZuUos7mDbVNy/cYvkZgNpjjc3tItBFpnvDyb4c7T7i/n\nPPSdQWhmlmIk7kOs3v9YtTvUJMKs6Xj1naoPVjFxRKHuN6D6YBXL312GzWpjfUEFORm57nLKmhoL\nds9jbv58jzU3/PkugiAIgpDoJILvpOXEiRNYrVYyM6Pn3P1FnCnRWzkZudQceoPj7cdZ/v5SwPsQ\n3Jm2MznedRyAFEsqna4OAB760e/c0WZK5L6ynqzaB1P39cDYOmVq/00t0nhbuxroc7zR7AF6mQaU\n66T4hb/ceRMvT3qljz+o+I7qc1PKaetT/21k7EGvj6yU7eruwma1hXT8wigyFicIghA8/Rpx9tRT\nT7Ft2zauvvpqXn/9dR544AFGjRrlv6DglXDMsD7cUu+eKeQNoz+88ZbrN1TXuT9m/oSzjUjN7Ffy\nlIfyeYqWZzPYa2nmngR6/7y9z95mECrRJP6+JZGMFImW+2+WWLVbME88+k519lp+ufMmj1nB6md6\nZPYobFYbC8csprymjKLKQm7YUQT0fm+Utc7UdRjxXQRBEARBSBwOHDjApEmTuPLKKxk/fjxTp07l\n0KFDkTbLL+q1vEuqinnw/eWsqr2fH+SM9VlOEc0sWLjiGxNJIonstKFckHUhrV2tNLU2uo9NTuqN\n9NcKVUpfz8g4jlY0U9Yd91ZWqVf7t/pYf30c7bHqtdkmjijk5UmveEy4UmxThDV1m0o5vbXTfGVf\n0v5b73yVcYstkyojIpp5s0sQBEHoP0wLZ1lZWZx99tl8+9vf5uOPP+a6667js88+C4dtCUM4fgxD\nXae3dJDRitkUlYHUH26RwGwboRJQ+oN4dPzUQlOgGO3cGD3WVzt629QLL3vrjARjuyAkKvHoO+Xn\njHYPbHj7rdpcuAWA9QUV2JJsdPV0eewvGD7OY0axfEcEQRAEQVCzaNEi7r77bt5//3327NnDzTff\nzIIFCyJtlmHKa8ooPm8qR9ub6Ozp5B3724bKjTzru7zy+TZ66AGg+uBfaHAc5pbXZ/Lch8+wYPc8\nFo5ZjN3RwMzqaVQfrHJPeNzXtBfoK6jppTBU+3B6Apg2DaO2vLpsnb2Wwy31Hv1hdVl1em91Xer2\n6uy15GTkUlJV3KdfPfOim1lXt8bdjra8glK/0tbCMYvd++rstbqpJtXnq0bpFwfim4ZqrChYv9hM\n2sxERq6FIAh6mBbO0tPTee+99/j2t7/Nm2++SVNTE6dOnQqHbQlFKAaJ9H7kAy1r5PhoXYfEl22h\nGpQL5eCet2topo1goo8iRbQ4cKF0aNU54YOpxxt6zr0vAnketLPsjLSjPT5QovF7IgihIF59p5yM\nXOyOBlaNXdtnYGZm9TS2fvwSN1aX0NTayIbxG0m29M6MVoR6oE8aHhHNBEEQBEFQcLlc/PjHP3b/\nPWHCBFpbWyNokXmmnP9flF08l5SkFDJtg7Bg8XpsiiUVgH8c6xW/rjlnMgAPf7CWn18wk3svXcyj\neyuYmz+flXtWUPZGKTMvuplbXp/JTa9OZ/KI67jl9Zk88LflHuKT3niBtygrBUVkUupRr2em3ne4\npZ7qg1VMenki1269kinbCt1CXklVMdUHq7hhR5E728CcXaW6a55XH6ziuu3XUHPoDZw9XczZVeoW\nyYq3F7Hwr/OYedHNlNeUccOOIo861HYpdawau5bZr8/i5ldncMOOIurstZTXlNHmbNU9fyUDSyj6\npNEyXubLjmixMRqQa2GcQK+RXNvYJVzBHP3JFycDX1/etHC2ePFi3nzzTcaOHcuJEye46qqr+PnP\nfx6wAfFIJFL4BfOhD8RBUKceMFJ/sARim7/1m4IlVKKZr/sWr+k0o8WBC3VbRqOzAqU/xNRIEcpo\n0EQjEc851ohH30kZxCjadjWzX5/lHrBQnse5+fPZ8snzfD0jj5HZvWkpbVabRx16vode+hxBEARB\nEBKTSy+9lEcffZSjR49y/PhxnnvuOc4991yOHDnCkSNHIm2eT9QThWoO76L0u2XYkmyMyDzXa5lO\nVwffPavXb0oiib837qG5/SgAT+7fxAN7fs3nJ3uzFiwcs5jkJBsFw8cxe+QcGhxHePLDTQxOOYOK\nD9ZxvP0Y5TVlVB+s8uhH6qXZ1vpfynpi6wsq2Fy4xd3PhV7/rbymjIVjFrvPb+Hu+ThxMjf/XjZN\neIqVe1YwZ1cpbc5Wlr+7DJer195N+za6bVdzuKWedXVruCd/EU/v/wNLvncfFgvM2VUKwJZJlWyd\nXEVWehabC7fw4rVfpU883FLvFtJyMnJ58Ae/YdE799DU2ojFAhaLhSXfu4/8nNGsL6ggPXlAn/MP\nNXopIyO1pIG38YNYG0MKJ3ItjBHomE2sjU0JX2H03kXzPT7cUs+UF6YEXN7icrm8r0zqhf3793PR\nRRfR0tLCP//5Ty677LKADQgHgSxwHyqUhyWcH129NoIRhRThzGzeZiPnGorrES11hAttCoVEwdd5\n9+c1iefrH6pzq7PXuqNCwnm9jNbt7bhofs/DRTycc6IscB+PvtPhlnr2Ne1l5Z4VLByzmJV7VtDm\nbHVHlm0Yv9G9RoWygLvyLVFm/ap9D/XzDATkmwiCIAhCvJMovhPAuHHjvO6zWCzs2rWrH63xxIzv\n9NyHzzDvrTvpptvvsVaspCSlMjhtMG3ONpKwcu7gc/l70x4AzkzJIiNlAGnWdG6/uIys9CzW1a1h\n8ojruGzY98nJyGVf015GZo9iX9NefrnzJndq7OqDVdzy+kwen/A0E0cUArhFMrX/Bb2ptrWZAZRx\nJ7ujwaNMUWUhd10yl2nfmeE+zu5o8FirTBGRFN8R8PDzFDtWjV3rzmqg9hWrD1ZxY3UJf5y42W27\n0lZJVbGHvUr/VbFDfR7avqT6byP9UTP9YcW3VTLT+Bs7C5cdghAqAn3u5HmNXYIdp4sG2lNOcPbg\nswMqa1o4W7t2Lfv37+fJJ5+ksbGRuXPnMmbMGObMmROQAeEgksIZ9M/Dov1RDYWwFK6PXyiuR7TU\nIZgj3Nc8Gn60g60rGp5LXzZUH6xyd7aUtYwiKdL4+95Fw/Xsb2L9nBNh8CcefSf1c6cMdChpgxaO\nWcz97y2jYlyvcKbMblYL8CVVxSwcs9hj4ENdb6CTegRBEAQh3kkE38kIzz//PFOnTo1Y+0Z9pzp7\nLXN2lVL4zUk8/MHaPvvTrem0dbf12Z5iSaHT1QmA1WKl29XNDeeVsOfLdznScpiz0rM41t4MwILR\nS9h84Fmgd+KSWiiqPljFxBGFbt/qePsxzkw7yx0tphWdvE3K1vbDFJ+tzl7LlG2FbJ1c5VGHXp9N\nLSQpPqK2DcBjIpX6GOVctAQzLmCmfxvI2Jvat/XWfwXPc+6PCeqCIAiJQjB+k2nh7JprrmHbtm1Y\nrVYAnE4nU6ZMYceOHQEbEWoiLZxFArOOQqwPtBqlv84zUa6nGdQz18JxbQJ1FoNxMvVmpwXjsIZL\nBApkFpy39KYzq6cxN3++u4MSDc96NNgghI5EGPyJF99J3fHXi3xXp/8p3TkLlwtSrDYqxm10zyBW\nZv8Wby/CZrX5FMbkXRcEQRCEviSC72SEKVOmsHXr1oi17893UqKrlryziAbHYc5MzeJYWzNddPos\nZyGJcXk/YVf9awBkpw1l0X8uBWDad2a4fS0lsmzJO4tIsdro6umiq9uJzZrM1slVbr9M3SdXIv4V\noczsRCVv0Vp6GUrU23zVYaSdcGK2LW/nFWjbeiJhtF0jQRCEWCYYv8n0GmdOp5P29nb3311dXQE3\nLoQOde5kBW+5RQPJPRqNeUr9oT7PcNpv5nrG6nUMpIwySBoN6315K2f2HTCyoLKZ58DXOQSaI9hX\nOfU2IzYo+9Sz+qLBOY8GGwTBDPHgOykDK0onXS9d9OGWesprypj9+iycPU4AOrt7z3XV2LWU15S5\ny2+ZVMn6ggqfbWrrFwRBEARBUAhg1ZF+Q5kkdMvrM2lztlL63TK+bGvwKZplJGcwPu8K/jjxOdb+\n+LfcdNGtDMs4m0X/uZTf/s86oDfiqrymzCMd42MTnuDFayvZ+JMnsFmTaTh9BLujQbdPnp8z2r1m\nGXy1Dpu3yC8tepNI1UJSnb3WvW3B7nkBj5H46u/5qjOQ9sy0pVzTUPmmap9abYeR/q70iQVBEMKP\naeFs6tSpXHfddaxevZrVq1dz/fXXRzQ8PpHw5yAUby/yGLzSDp4bGSj3VncsCkPKeQJhXaRQ3Y4v\nAhVCIkmgNg/LzPNYyyZcIm2gzqI6YsJoe97eG/XArpE6lc6E+n301lkIVhhUoxWStTb4qi8eiKX3\nTog/4s130voWRZWF7vUwbh1ZSorVRpo1nft/8CDdLqd7YXfoXRNDmSldXlPmFuP06lb+jrXfTkEQ\nBEEQwo/FYom0CV5RJgnde+liGtu+ZPOBZ7BarD7LOJwOdtW/RunOWyh4/vts/fS/+dLRwP3vLeNf\nLZ9x91t3MLN6Gqc6TrH145eYUf0zrnppPOU1ZUBvBNrWyVVUFv3ZbcPc/Pnk54ymzl7rVwzTjiUp\n/pqvc1TW7lL6mOU1Ze5xAL0+qbYvrJ6YpbVBD3+TRP35jGbHtvSODXVGnXjpbwuCIMQjpoWzkpIS\niouLef7553n66aeZMmUKJSUl4bBNUOHvB97uaKD+9CH3zCJtVI2ZgXItRgfwzToh/TEIpszc6Y/c\nz/7Ovb/sCBZ/EVVG61A70ME6p+EgkHPzl2McfDvSerP+fJ1zMMKg3jb1bLZAou78Eezsv3ARrwPv\n8XY+8Uw8+E7KjGSA4u1F3LCjiDp7LXZHA1+2NnDryFL2Ne1lwV/nsuR797FlUiXZA4byZasdp6uL\nnIxc1hdUMGdXKVO2FWJ3NLC5cIvHLGejkb3BIu+OIAiCIAj9wR35d3LTRbeSmpyKxWUhxZLqt4zD\neZqTXSc43nGMHno40XHcva+HHlo6T/HH/U9yRsqZpFrTWDhmMdDrnwEcaP6I67Zfw3MfPsMtr8/k\ngb8tZ8q2Qoq3F/URrhRxTCtgqQUxX+Rk5PrMXqJGiULzlpVGLdj56h97K280G4xRv1I7QVrd5482\nxLcVjNJfz4o8k0K8YFo4W7JkCf/85z9Zt24dGzZsYO/evTz44IPhsE1QofejrSY/ZzRbJ1eRk5Hr\ndjLUUTUQ3MwYM46FEYGtpKq4zyzzUKMdeAsnRqPOYkE00xu0NIs3kcZIuXCmd9RrzxeBRKP5i956\neuJzHjnRgxkU9jcjT6999b/9CUpG61ULpHozEyMtXMWKaG2GSF9TwRzx4jsp75DT1UVnd5d7hvPK\ny9fyyAcVLP3bInIzvs7I7FHYHQ0AWLCw/Pu955qTkcuWSZXuxeP10tLo/ZaGWjSTd0cQBEEQhHCi\n+BvPffgMT+7fRGd3J4NSB9Pp6gAgzZpmqJ4eesiwDcSChaR/D9+d6jrJiY7jnOg8TmuXg5V7VrCv\naS/1pw9Rc+gNFr1zDw/+4DcUDB9HdvpQHtu3gZWXr2XLpEoPoavOXst1269xT4SC3gnZRsePtELS\nsMw81hdU9BHclL6ier1bdRllEpW6r+xrOQNfgp5eKkltJJ1Z1ONrkepT+or+E99WMEp/PSvyTArx\nhMVlMjH0xIkTqa6udv/d09PDNddcw5///OeQGxcoRha4jzWUD87M6mnu2T++nAllUFz9XyNthNoJ\n8FZnIJFvZttVFlntL8dGu/CuEcJxzYMlkjZF4r7Fgi16KPb5+x74Ku/r+2D0/NXH2R0NXm2Jxmc9\n1omXa5oIC9zHk++kTH5R1icrrynD2dMrpKVYbfzs29P51pnf4tbXf8H8S3/F5gPPsmH8RrfI5m/x\n+f749sbLuyMIgiAkJongOxlhxowZPPPMMxFr35/vpPgbz334DI980Os3/XBYAU/u3wSAlWS6cTIk\nZQhHO4+Sbk2no6eDHlePRz1JliR6XD0kkcTglDOxWZOxkMSXbQ3kDTybBy9fw8QRhe61xursteRk\n5LrFsTm7StkyqRKgj4+lHDuzehpz8+e76zHav9TzqdTb1H4dhGb8x1f/1V8fNBAfMNJ+oyJwvjzp\nFQ/RUU2kbRRih/56VuSZFKKJYPwm08LZL37xC37961/zjW98A4DGxkbuvfdennrqqYCNCDXxJpzp\nORv+PkJmB578HR+ogxHM4FewH1qtwxZOG9QihjdnxlsZvXQCifwDY+T8jTz/gYhI4W7HaFmzYrd6\nQWaj9aufvUDPX++4SDy/if7OxDqJMPgTb76Tevbgvqa9ZA8YSk5GLjWH3qD8rTl8bUAO3T3dnOo8\nyeNXPO3eb3c0+PxWeRP05R0XBEEQhK9IBN9J4b333uO3v/0tzz//PAcPHuSWW27hN7/5DZdcckmk\nTQvYd/rJlh9yrP0Y4CIlKYUeVw9dri6SSMKChdTkNFqdjj51nJFyJmeknYHLBXddMpd1dat58PI1\nrKtb4zGm4Kuv582nUqdRzM8ZHdL+XX/4cdE+6TVY9Pr7giAIgjGC8ZtMp2p0Op1MnjyZWbNmMXv2\nbAoLC/nyyy+ZMWMGM2bMCNgQwTvq1EWKE+DPGTAbRu7r+EDDbI3Y4CtFXLChvVrH0WxdRsqpI+e0\nKfiM2KcnmhltMxwEm7IvFO0ZEc38pRc0c799HW9EnPa3aLLZNr3t82afXroKf9dA/ewFev7ejvMV\nYRoOEikNQCKcY7wSj75TSVUx1269klmv3ciNf+ldr61g+DiGpGWTak0jNTmV7AFDASjadnXv+mc+\nvlXqf5v9XRQEQRAEIT5ZvXo1y5cvB2DEiBFs2rSJBx54IMJWmUPdX7Q7GjjRfhwXPbhw0dHTwW2j\n7iTTNgiAQSln0NXTCVjISM4AICt1CDecV0LuwK+z/PsPYrHAIx9UkGZNZ2T2qD5prrXjDN76Z2rf\nKj9ntMe6ZsGOpWjtMUKwbURaNAunrxoO0Ux8a0EQBP+Yjjjbs2ePz/1jxowJyqBQEG8RZxD5GTTh\nSuMY6ig3b+XDEXEWroi6cLbpzx5vEXCBtunrHoSq3kD2B3u8QiDpOY20qd3nrx0jaSmM2hJIlJm/\n40KdniNQW2KZSP8GhJNEmDUdj75Tnb2W0p2zONl+iuOdzSz9z/v51pnf4uZXZ7Dmhw/x6N4KXC7Y\nMH4jpTtnsXVyFdD3G2Dk+5MI77ggCIIgGCURfCeFq6++uk9q68mTJ7Nt27YIWfQVRnynOnstU7YV\nkpORS3ryAG4dWcrdb93hcUxG8kAcztMAZKUN4fZRd/LA+7/uTc2Yeia/+t5SFv51Hpsm9GYqWLln\nBesLKtzpGA+39KbR1qbD1kbyq7PkzNlVis1q81pGjUSMGRt/iGb7tcSavYIgCMHQr6kaY4F4FM7A\nWHh2OFLHhWJQHrzPdArXQHp/OALBCHLhEo2CIdQp+/TWvgL8DpJGgkDTH4T7HNQdnHCnZ9B7Lr29\n/2ZTwULfnPraY8L9LkTT8xYIsW6/NxJp8CeaMes7HW6pp3h7EbdfXMbKPfeTnjyAzp4OGhxH3CLa\nyOxR2B0N7rU1fKWGVeqMx2dcEARBEEJJIvlOd9xxB9/4xjeYPHkyAFVVVXz++ec8/PDDEbbMuO+k\nrCNmdzTQ1NrIjOqfufelW9Np624DcK9htvSy+5j/9t0sHLOUy4Z9n6bWRhb9dT4PXr6GX+68id//\n5ElGZo/y6K9phTN1H1LdD1dQ1quNVPq/SAl0gbRntO8bbX5sqCcbC4IgxCr9mqpRCD1GQqT10rFp\nywcTRu8rPZx2u5l2FCeupKrYUOq5UKA4AP0xe0Y7O8tMuUDtC+c5eavbjEOpFkoVB13Jlw70OSYa\nqLPXUrTtat20i/7ua388Y2bTgKrxZ796v/a59Pau6x3ni2GZeT6f+Tp7relvl9nvkL/jYyFVRbS8\nL4KgvC9OVxcP/+86bEkpdLuctHd1APDgnvu4qXp675pnNWW0Odvc5byluJWUjIIgCIIgaHnggQdo\nbW1l7ty53HvvvbS2trJixYpIm2UKRTQrrynjtp23urdbsLhFM4D05AEc72xmyd8W4nK5ePLDTdzy\n2kxuqp5OY+uXZA8YysuTXmFk9igPf2pYZl6fyLFhmXnuiZfqfrj6+JyM3D62qseWzI7fGO1n+epj\n9gdG+oZqjI7dRFNfzcj5RZO9giAI0YoIZxHG6A+2tx9rdXl/P+j+2tArq1enGdFHccr0UgDcsKNI\nV1ALBu31CKR8sO0arc+o6GC0/Ujj7VlRCz/9JWgGhE7sbbQM5AYTRWp2PTi9d92XTWY7HXo2KMKq\n2fM08iwp9ukdb2bSgV7nURASEWVCzL6mvTh7nLhcYLFAe1cHp7tOMTT9a2SlZWOxWHj4f9dx68hS\njrY1sq9pL4DH+hlqovr3QRAEQRCEiDB48GCWLVvGjh072Lp1K7/61a/IzIydiDtl3KO8poxzB32L\n084WkkjimnMm49J0QJV0jae7WhicdgYdzg5cLsgZmMuC0UvIzxnt7lPPzZ9P6c5ZHhNS1f0VpY9V\nZ6+lvKYM8OwL2R0NXidI19lr+0x+9tVf8iVEeetveuuXhRtffUNfxJp/Kn61IAhCaBDhLMKYFaHA\nc3FZbXlfopkvR0dxHvT26wk83gbAvdmtd3xyko31BRV96g/GafI10O+PYEQSvftoJIomFMJMtIg7\n0PdZ8fY89bet/trLzxlNZdGf+0R1BepwBiPAhhJ/9iszEf2dn6/nS92GtuOl929v5Y2koVX/W/lm\n+UNtn7ZzZmbSgbfI2XggHs9JCB92RwNd3V0seWcRTa2NjD97Au1dHRzvPEZW+hAK8sZTff0u/nDl\nMyRbbGSlZ/UuZv/uMkqqisnJyHXPfNYinXtBEARBEAAuuOACLrzwwj7/V7YbYe/evUyfPl13X1tb\nG1OnTuXTTz81XCYQ7I4GXC64LOcH/OXzVwDooYdXPtdfoy2JJDJtgxh/9hU0tTfS/u+o/Qffv889\nDlRnr2XJO4v4/NRn1Bx6A/iqv1K8vYjqg73rymrHRdTjSXoTF9X9Mu3kZ+04i1ZQU9rT9gm9iWTa\nv832swLtv2j7hrHcD4p0ZhxBEIREQISzKMDMD1qdvZbrtl/TRzwz0oa3WT1qJ8jbLKFAIlf0jlHb\no86prZ7dZCb9mjd8iYTeMCoi+Cqvbqe8psxvfaGaCRTK2UTBOo/ae1l9sMrjfvRnyjwzaRi8CTeB\niGaBCJnhEkB9dQiUmYhGhC1/z7G6w6M+l1CkidDWYfa90TvO36QD7fdKL3I2Hogm4V2IfpTfttsv\nLuOxCU8w+7tzeHL/Jo52NNLtctLc2syLn2zm6X29a284XV2s3LOCjT95gqWX3cfmwi0AlNeUccOO\nInnuBEEQBEHQ5cCBA3z00Ud9/q9s98fjjz/O4sWL6ejo6LNv3759TJs2jS+++MJwmUD8fW0CAAAg\nAElEQVRQor2a25p5cv8muul277N4GYrroYeWrlO8+Mlmzkg5k1NdJ7l4yCU4cXKg+SN3/+3+HzxI\n3sCzeeSDCrcQtb6gAqeri1tem0nx9iL3OuPKZGWlb6aMU+j1f4dl5nmkgNSiHbPRE6L0Isz0xgIC\nzegRbP8lkMwp0UYs2y4IghBLiHAWY+TnjOblSa/oOjlmZpzoDUTbHQ1eo6YAnyKQkYgNpb06e63u\ngL0yu8lM+jVvEU3eImD8CTb+RASzKHnDAxUN/AmRZiJv/OFN5NATUn1tV89UWzV2Levq1ng8O76e\nlVA6gHqz3/qDQMXQQMoZFZi93VOjbQZzLt5EezP3WE/UNhP16qtePbx1+OJNNANJ4yGYp7WrlQV/\nncsvqn/OS//3AgCZtkFkJA/ESRc/yPkhE0dcxb6mvaQnD2B9QQUAt7w+E7ujwT2wk5xk86hXOv6C\nIAiCIGg5efIkmzdv5pFHHuF3v/ud+//+GD58OBs2bNDd19nZySOPPMKIESMMlzGLMrZw68hSHM4W\nBtkGk5GcAUASVlz0eC1rIYnBKWdw40U309PTw6uH/owFCxdk9UbarRq7lokjCnnw8jXYrF/5U/k5\no9k6uYrKoj+zZVKle2wlP2e0u39jdzQA6K5vBr3jP1O2FVK8ve8EJ3U/39sERG99P63QBrgzegCm\nJiiGqv9ipJ5o9U+lDycIgtA/iHAWA2h/rBXHR73PTKQW9P2hVSLZFEdKqXvB7nnMzZ8PYCgyxV97\ndkeDux21uKUWfwKNoNPuNxulEkrnQ4lQUduhjhI0gi8RKdSikLf6tDZ4iwzUu9aAh7OuRi/yUdke\nzDp96mO8pegzUtZoW97wdn7+6jYrmvkTOZU61aKTt3tlFr2OlDadh3qfupzSSTL6ThgRtUMpuvZ3\nRyTSHTLpcAlGGZaZR2VRFbNHzuFYWzOnOk8B0NJ1ilanAxcu9jS+y7UvX8nNr85g4ZjF5OeMpqm1\nkdyMr7sHafJzRvdJ1Wx2nVBBEARBEOKf22+/nffee4+eHu9Ckx5XXnklycnJuvvy8/PJze0rHPkq\nYxalP1EwfBxnpmZxquskDqeDgcmZWP59jLeoMxc9nOw8yaMfPExW+hBu++6dpFhTaGptpKSqmLI3\nSqk+WMW6ujUe/pTSrrIOmvK32h4lDaM3/18R37ZMqvSatUP9X2/nrnct1GW1GT0CmagZCvyJZtEc\n1SV9OEEQhPAjwlmU421wXC1eeMtR7Q/1sXqRbMMyexedXVe3BghMoFFHlihOnNKOkQgkbV3q/xqJ\nktHWqy2jN/gfKtTnNzd/vnvgP1Bx09u+UAl9erm+9Zxcb7PMfNmqRn0NtKka9I5XlzMSDReoKKS1\nRSsMBoKv9zfYurXX3Fu9WtFJXc5X9KXZ81LqNmL35sItrC+oMBzh6e350oqu3r6BRq+xtr7+oD86\nZNHa2RNiB/UzZHc08Ng/NmAhibbOVganDObMlCwsWLBiZeHopeQMzGVYZh4js0dRfbCKWa/diMv1\nVX2K36L+Lmnf32gfrBAEQRAEIfycPHmSiooK5syZwx133OH+fyyg9K0XjPkVNouNrNQhDBkwhDNT\nswA8os5+kPNDbBYb4/Ou4JxB3+Smi25h4X8u5WTHCSo/fYnHJzzNyOxRrC+owOWClXtWeE236Mse\n9X+9oR6rCRXexgmiWfyRqC5BEARBhLMoRx3Krt2miBc5Gbm6UT1m0ZY/3FLvkWYvENFMiSxRD+Kr\n2zEqcHiLdPJHNMwgUq6jErmnFYp8YWYmV6jwJz5pHW5/EVXqqCK9Z8LX+nrqcv6EIsUmpb5A0vbp\npRc0+px4i/bSE2+1dZuNRlTX5ateveumHOsrwsOfTaHoRBhNy6puU7FPbac3gVBBT5zVw8h9Dse3\nItwdsmCeX0GAvs9QTkYuA2wZdLjasVqttDnbmPCNK+mhh266qW/5AqslmY0/eQK7o4GFu3t/++66\nZK7726Od7FNnr2X267NMRSALgiAIghD/nH/++fzzn/+MtBkBc7ilnqf3/4E1P3yIgSmZjMubgMXy\n1f5keiPcDhzfz6CUweyqf43m1mae2v84G/duYNXYdQywDSB7wFBmVk8jJyOXDeM3eqwXH6hdvv4O\ntJ54Q/xQQRCExEaEsxhBTyBQ7/NGMIPAaoHOVzlvf2vD7/UGuo2mZvIW6RQM/TUop8ykV0fugaeA\nZsThDHdEiiJmmbkueoKmelv1wSqu236NxwLDyjMBuPOs+2pTKwIp23yV0YpzShltvVr0ohONXA9v\nz3KdvdZnFJ7ybJhdW89btJo3m31FLephxCZfEWv+bNfez0DLGol6VJ+nLwHJ330Op9Bu9DoE0nYw\nz68ggP4ztPR7y7GQRHt3O2nJ6bz8yYtkWAeShJWn9j9OfcshDjR/xJxdpTS1fcmC0UvYtG+j+91V\nz5A+3FJP6c5Z/KvlM/Y17XW3Ecg3QhAEQRCE+GDcuHGMHz+e9957jxtuuIGCggLGjx/v/r9ZduzY\nwQsvvBAGS32j+FEXZF3I4dP1PLl/E23dbe79TpxYsNDccZSfXziTs1KzGJw2GLBwtL2JrPQst0i2\nauxaAMpryiivKQvYd/e37IJRpA8hCIIgxDsWl0udPCc+aGpqibQJIcfbAJKviK06ey3lNWW6OawV\nJ0dv4VYjA6zayBZlEEwRYLRtKnbaHQ19Is70UjNpB9XiYfBM71ztjgbKa8oA7wviKtdO736ZbdPX\ncXr3zUwb6rbq7LXM2VWKzWpj4ZjFTBxRqGuTkq7LyMC+NtLMV2qKOnstORm5fcpon9tQCqfaa62s\nG6hOgap3rfTOz9tzoH3njFw7fzZ7uy6AT5u8HWu0XaPPpV67oXhGAyGS36JAv9lm6o/UuWVnZ0ak\nXcETI76T8ltxquMURxz1uPB0Ic9MyeKSofnsqn+NnAG53DryNjYfeJYN4zdSXlPG+oIKcjJy+3w7\nDrfUs69pr/u3IhzfaEEQBEGIFxLBdzp8+DAAPT09vP3227z33ns4nU6+973v8eMf/5jhw4dH2ELz\n406/q3uYFe8vAyz00O3efmn2GP7etIfBKWfQ2uXgtlF3UvXZdm6/uIyC4eP69P0UAvGRvPWlA+0L\nhLJcvIz7CIIgCNFFMH6TCGcxiHpGj7eBJWVwq6u7y+vCrt5EKzMiBniKH0AfAeZwSz3F24twurpI\nTx7gN62Atj5/g/PBOF3hds581a92WrUij57gA4Gt2WUmeiyUIlJJVXGfe61nk5F2fT1zRkRhPYHZ\nWwRnKK9Dnb3Wff7qtQjVtnu7377ezVAKQaB//lqhztcaY77uqbf3U9uunm2hGDj3V0+kO2i+RFQj\nx8aDuJAIgz+xgFHfqc5eS+nOWXxx6hDd/x70Scb273+7cOHCQhJJFgtWi5UnrvgjE0cUeny37Y4G\nAJ/iv/r7KQiCIAjCVySS77R69WoOHTrEddddh8vl4uWXXyYvL49FixZF2jRT407qyUc2azJjvnYZ\nuRlf5+EP1pJiSeGKb1zFvuZ/cLjlC5KSktz+k1JWne0jWL8/Gvo/ev3HeOjXCIIgCNGHCGca4lk4\nUxwuwJ3uzptjoY26UcqrnRN/EWBGbVLboTe4e8OOIlwuWHrZfayrW2M6wgj0RcJAnC4jgkAoMCIS\nBRNxF4jgFMg5BDqDDHwLnWbETbORNv4i1BT71O9SKJ8Jf/fV1zMYzP02e5wvQUxPqDPSplbs1Ts/\n7XX3Vl+4o6ki3UEzEglp5trHKok0+BPNmB382VD3W57cvwkLFo/Is8EpZ3Dnf8xl5Z7lDEoZzOLv\n/Zpp35nhLqeOtPY2kSbS76YgCIIgRDOJ5DtNmjSJyspKkpJ6VxlxOp1ce+21/OUvf4mwZebHnZTl\nCw40f0T5W3P448TN7n3K2vJNrY3c/94yXry2EujtTyuTiZR+VCBZYqINiTgTBEEQ+gsRzjTEs3AG\n5qI11GKBNpKreHsR9acPsXVyVcCzus1EqSk2BzoobkZQMDpQHqpZW0ZsNnqtjKQv7I9BxUDbMCK6\n9Fc0nFLOVxQjhDbizKzQF+y5BfKMGWnbSNRYMGXBu7Dq7/qFOjoy0jMufZ1nf4oHkboWiTT4E80Y\nTdWofFNveW0mDY4j4II0azpt3a1kJA+ko6edJ674I/e8Vc6Xbb2RZc9M/BMTRxR6+CbKxB5vPkGk\n301BEARBiFYSyXcqLCxk69atpKSkANDR0cF//dd/8corr0TYMvOTjoq3F2Gz2thcuIWaQ29QMHyc\n7piEeuLw3Pz5/HLnTbw86RVyMnLjRjgTBEEQhP5ChDMN8SacBRppok4Np6wpoh2s0kacBdK2WUHA\nVwSZmXYDQSvg+bPDWx2B2qYnIAbaRjgHFYON+DES1Rdq+7U2+xLwwj0gG+4BYPXgs1oQDEWUlp7t\nSgdN3YZeBF2w+BpA9xfFFsw7Gc2zHfvLlkhG+CTS4E804893Up6RufnzWfq3RdSf+oLMlMHYrMlc\n883JbP+0kpOdx8lIGcifCv+bdw//jTPTzuTh/13H1slVXgeG9NZsjKZ3UBAEQRCijUTynR577DFq\namooLOxNW1hVVUVBQQGzZ8+OsGWBCWcbxm8EoLymjNauVu7/wYMeGXm0fVbwXCdefCRBEARBMEcw\nflNSCO0QwoAyqKQ4TWaOy88Z7R6MAnh64nNuAU05zp9ophyrrlf5t7+okZKq4j7llDoVe3xFnBg5\nZyOo7VXarrPX+rXDW11GbPNl48zqae72vdVjxJ5wR5oF45Qr5YZl5nm9vtoOgTdbjNir2Ky+rtq2\n1TaEu7OhJ/p4O5dAzl85t/yc0R5ikj+x2l87vmy1Oxo82lC+Lco1V1KPBIL6Hup1FtX3Untfzb6T\n2na1Zf29m/2Nt2i9cLRjNHJYSFxWjV3L8neXcbrDgcsCxzuP0dj2JU/u38SxjqNkpAzkRMdxpr5y\nHcvfX8Lx9uNu0Uz9u6ug/ZaphXmtryEIgiAIQuIxe/ZsSktLOXLkCIcPH2b27NlRIZoFgs1q493D\nf2P267MoPm8qRxz1LPrrfFaNXQt49kPUk3xzMnIBEc0EQRAEob+RiLMYwJdApT3OSEo0ZVtJVbHX\n9UW0x2qjPbSzw/XKqaNUlPb8rcvm7Vy8RaCoU1F6q0cvNaORskZtM9q2tnyoo2RCSTREuRiJgNFG\nIkVrpIIvQcvX+ZtJxRFIG8r+4u1FbJlU6d7mLQLLm6ilTS9q5h7o3UP1du176u2bFop3yeh3pb8x\nEsHZHzaEum3lvBJp1nQ048t3Ur8bpTtn8cWpQ7iAHroBsGAhwzaQm7/zSx7+YC3ZaUM53nGMYQPP\n5rEJT3hEvRuJco+GZ14QBEEQohXxnaIDs+NOv6t7mOXvLwFgSOpQjnc0k2RJ4g9XPsOiv84nM2UQ\nC8csJnvAUN2sIpKmURAEQRDMIxFnARBrM5gDiYBQR1iptymOlrOni/KaMp/1aiM89GaHa+tXyiki\nWUlVMXZHg0ed/uzWSxWntlMd8eLPfm3UkfocjKCt36ij6i2CQy8CygzBRNjo1aWHWmT0Vk5vv1mb\n1NdI7zr7GyzVPpvKNrOoIxu0dvz/7H17fFTVufYzSSaYDAGFBicmosXag9gU2xQsVWo+EKFGYLAn\n1BOOGrlpepp4miACh4tcCogkrYk2CkojHjgt+cQkOJrD7URRqaQ5NU1BW7+misEZM0WFZBLIZDLf\nH+O7WHvN2nv2JCEXXA8/fkn2ZV3ftfZa77Pe9+2NdtYrk1H9I4GM0JLlwd+nn26vC02tJ9HgqdfM\nF3xbUPloHJMM0t9G1iLhIOtDAm/VRvlmOTND5gNZvSPJXywL7wqlvyFa4vUXgdDbeffmPKZw8cGP\njSkp02CBBbk3/RxRiIItxoYAAmj1tWBbw9OwWqwoTH8SO6a/CH+gE9mv/SvcXlfY7y6Nb956tT9l\nXkFBQUFBQUGht3CqpQmVjXvxy9uewuqb1+Pyyy6H3XYVRsZ9DafbT+NUaxMyr78Hm45tQO6hHGye\nvDVkf3T2/Nl+rIGCgoKCgsJXD19J4qw/FHY9cTmkpzjiFdt8nXhlNy24+Gfq3LVITkjBnpkVpk8s\nydzc6VkIiRYhPr8PdluSJi+99oikb/TIO1nZIyG/esNtm1krwe6gtxSJRm0d7p6MvJDJoFHeBCOy\nJVLZNAM9matudIbUK5w8RiIXem2pV38in8PVT3TpYdSO/BxAz6XZJ2DbtN9gxpgMDfmVWeVAZpWD\npZtZ5YCj8k42f4jENT8vlM3YpSHLw0EkynnSn8+H2kScS/h+M2qHSMrS1y4bxbHEl0fP5Whfozfz\nVoTI4ENyQgp+8fY67DixDQEE0NJxFl3ogrfTy55p97fjp+MfRmL8KCTGj4Lb68Kn7S4s2p8NIDiu\n9Ehut9cFn9+HvMM5bO6hfBUUFBQUFBQUBjNo/5Q+egrKP/gtVk9aiwXfWozPz32GkXEjUXRbCeZ8\n88coSi+GNdrK3qO9TYOnHp94gz8VFBQUFBQU+gZ9RpzV19fj3nvvBQB89NFH+Jd/+RdkZWVhzZo1\n6OrqAgDs2bMHd999N+bOnYv/+Z//AQCcO3cOubm5yMrKwqJFi/DZZ5/1uCx9rbCTKasjhUyxnOXM\nxNx9Do0lgtvr0ii7eWsNUdkts/AwqoPsd7GMsnalhZ+R8t4oDSMCwQwBFokSXSR/lh1ZoiEfw+Vl\nlF9vKuB7Q3Zlbc0rKo1ik4nkBUGMtyWDHkkUaay57kBP5jZP3orCui0oSi/W1MuoXN2VK9m1cNaJ\nRunyMhquHWUWo6damlBYtyWEzLZYtO+VTC3F1UOvYT72jYhrt9eFu6vuCol7Fq6t+BhINFfZbUnS\nOYHS4+URQLdiF4qIZOz3BsR5RyajZtIYbFCESHgMlLXTqZYm1Llrse3PT2Pu9VlIGnoVyj/4bchz\nUZYoXDv8WsypzEB142tISbga9vgkbL+jDG6vC3MqMzSkGL8eWHZkCUqmlqJ4SqlGYdSXGIzjSEFB\nQUFBQWHgg/YXbq8LnV0+PPJ6PjbXrscVl43A+t+vwdPvFiPLmQm7LQnLJ65kehw6IJiaOB5Ft5Vg\nxpiM/q6KgoKCgoLCVwZ9EuNs+/btqKqqQlxcHPbs2YOHHnoIDzzwAG6++WasXr0akydPxk033YT5\n8+fjpZdewvnz55GVlYWXXnoJu3btQmtrK3Jzc+F0OvHHP/4RK1euNMyvv2OckTJXdk12L9K0Kd6H\n2+tCfk0eU/SfamnCnMoMuFo/QYXjVaTZJ4TEHhLLZ6Y8fJ7AhXhn4Ugr0bpMJGiSE4Kxkcy4TIy0\n3fgy8/mYrW9320fmLo+3KNKLd9bT+vYG9NrsYrxrtn56Y8lMW8r+Noqx0502NxrrPXm2p2WItDwk\nr1nOTHR2+bBnpjbeWXfmrzp3Ley2JPZ8daMThXVbDGP+if0jypHRXCQrY0/at6/HYE/KrTcmBgtU\nnA45BsraiR+bnrZmrHprBVo6zuKz86cRH23DN4Z/A3/6LHj6ef64xUhN/DbWHl2FLzo+x+qb12NS\n8g/YOK5udCI1cbzheqC/LM0G+zhSUFBQUPjqQK2dBgYi0TvRgUK7LQkNnnosOpANW8xQ7MrYA7st\niXnrsNuSNLHoeb2CXoyz/tAdKCgoKCgoDBYM+Bhno0ePRklJCfv7+PHjmDhxIgDghz/8Id5++238\n6U9/wne+8x3ExsYiISEBo0ePxvvvv4+6ujpMnjyZPXv06NG+KLIGkZxA1rNC6S03W2QdAwQtPsSF\nU4zFiu13lLFFlswqRGb5FS5PPjCtkVJJz2JCZkFBp67CtW933K7x5eQt78ykY0Z5bcZaincfp2fd\npWeZxl830z69Ab6Mde5aqcWQmXfN9KtZ0kzm+tFMW55qkcfFM4pfRWWX3TNbDyNZNWMxGWlf82SR\n3vNmZIys1YrSixETZdVc49sykvnLbkti80uduxYPHpyPgrSlhv0m9g/FYOTLKcZb1CujmXlDr7/7\nY/Mpm6MjeVcp+y89DJS1E607lh1ZgtPtp/Fpmwu3j54OAGjzexlpBgAvvLcDP3/9Z/ii43NYYMG2\nhl8j91AOqhudONUStG4FEDKu+e90ljOz22XtCdQ4UlBQUFBQULgYqHPXwlF5Jx6o/le2znkoNRef\nnT+N8vd/hwZPPXIP5eChAwvR4KlnoS4I4Q5JqrjBCgoKCgoKFwd9QpxNnz4dMTEx7O9AIADLl37A\nbDYbWlpa0NraioSECwygzWZDa2ur5jo925eIdCESzrWb2TyN7uXX5EmVxEDQLWJq4nhNuY3ctvGu\nG/n/snKES493sybG5JG5PNMjQPTKKbPmMgKfPynkxXJESjjo3ZPVTXRnqFd/GXhCgMgHs2XprpxR\n7CogSMrunfWKLslkRAzp9XekZePbx0x7821mlCb9ruc6MRKXqjLyrbuKVz0im/peRg6GK69eecTr\n9K6MjNcrazjw84vdloS9s15BauJ4aTmACy4WRfDuZ+kdMxYpZkh+WfuZPVAw0BDp/Kgw8DGQ1k70\n/Sw78Tyy/uk+7PlgN4AL/ly/lxgk9PyBTgyPvRwJ1mEYFWfHP9o9aPW1YNGBbLi9Ljbes5yZmPny\ndDa3GX0P+xKKNFNQUFBQUFC4GNh8ayG+OP85JtlvwaL92ahsfAkJ1mHYcWIbsqvn4WzHGXzc8hFW\nv70C7Z3taPDUhxwOLEovNr2vU1BQUFBQUOg5+izGmSbTqAvZer1eDBs2DEOHDoXX69VcT0hI0Fyn\nZ/sS3VGE6xEGZpTxelY2fNoiIUPvAGDXZQsoWXpkkQYEFVlzKjOQ5cwMUSaHIybotLhoUUL3yHLE\nbN1laROBIHvGjNUcbwklIyL4dIz6PRLCz0huKC+Z0p5PY/PkrRqy1KgsZq1sxOd4CzOeRJGlGU5G\n+f4Sr0c6BmSyrAeeaAQgHSMyeebfF+N/mSlndaMzpBzic7J3ZeCJbODL04kVd2LuPgcAaBTLZssr\nu873jdif4hinOYfSiYRY5MtGFmgyGdbrj90Z5fC0NaOp9SRzX6JHXOttJPWgR6jzY24gbDwjKYM6\ncXppo7/XTjRWjrrfwhVDRgC44On7D55j7PczHV+gxXcW3xqZCgss+Mk35yHJdhVz3ZqckILFqTlo\nav0YNScPa4jqZUeWSMeygoKCgoKCgsJgBO2zx468AQ+m/gw73/sNEqzDMXvMjxEXE4crYkfiqqHJ\n6OoKoAtdmJIyDZ72T7Hgv+9Dg+eCVb+RTiUSXYCCgoKCgoKCefQLcTZu3Di88847AIA33ngD3/ve\n9/Dtb38bdXV1OH/+PFpaWvC3v/0N3/zmN/Hd734Xr7/+Ons2LS3topVLb4HRG6d3IlH+61nZ8M/I\nFP56RA2dVJIRL3x6RenFiIuJZ/60RashnpiQKb8L0paisG4LqhudLC96rs3XJi1XODKDT3vZkSUA\nEPKMGbeCMgsmMa06dy3mVGZoyLNwMiGrhxlQmekEvmgdx6dPVkB6lkB6sqDXDrK6k4WZjNyQpUnu\nQvVkQSSAxHTCWYV112pLNhYoTZk8y96X3dMbNwVpS/Hgwfm6ssefEuSv6Vm72W1JmrrbbUmw265C\n8ZRSds3IFWw4nGppYnJOVlz8uJCR5qKl3rIjS3QtCvl8xLJ116KksG4LNt16Ie6ZKEdUJ54UN9sW\nMkIdgMY1Sn8i0rmlJ2NHYeBjIKyd0uwTsHziSqz+/jqMGDISVsTqPnuoaT86A534df2ToGi6JMsj\n40YixhKDsSNvYN8LIPhdGijjT0FBQUFBQUGhp6B9tqetGb/+05PoDPjwj/PNePLdrWhu/xQWCzD/\nxsX46U25uCJ2JNJH/x88PrkI1w7/OhLjR6EovRhurwturwudXT7DvNReQEFBQUFBoXdhCQQCgfCP\n9RxNTU3Iz8/Hnj178Pe//x2rVq2Cz+fDmDFjsGHDBkRHR2PPnj343e9+h0AggAcffBDTp09He3s7\nHn30UXg8HlitVhQWFiIxMdEwr0iCtBJIQWnkZrGvg8bzCutI3wOCCvbNk7dqgsqKZAKhzl3LnuMJ\nMll9ZeWi5wvSlmLTsQ1o72xD6e3PMSu0xQcewMuznezEuZiWERHApz1jTEZIfYm0IMW67P6yI0tC\nLLNkdciscqB8VkXYNhDRnb6iNu9rhCur0X0igoCgRRdBz6pJVj+9do30uhnQu6SYzR63APNuvK9b\naejlL9ZTJJpkQZz15E9mxSi+f6qlCW6vi5GcsvYKN4fR+8AFgtjtdSG/Jo/1q2wMiPOImCc/9+jN\nHXSPT0fvOrWvOH75tvX5fbBGW1GUXqzbJiLENMU5k2+biwkz80Z3vwODCSrAvT4G2tqpzl2LmXun\nAxagKxBAF/zS54bHXo4W31l0BbqQeNkoFKY/icT4UWxNsPrtFTjV2oQqR7Xh2uOrIP8KCgoKCgqR\nQq2dBgbM6p1o3zIidiTecr+huRdtiYE/0Mn+jomy4tqEryNr7L34r7+8iDZfOzztn2J47OWwxdpQ\nevtzGv2O2+syrVMIt8/v672P0b5Vrf8UFBQUFHoLPVk39Rlx1pfoDnEGQFcpzN8f6B9wUTlOinCZ\nwpmuk/UTH9OKngtXX5404BdvogK+utGJ1MTxuor+LGcm2jvbEGOxwhptDSmznvJcr+zie0Qgmmk/\nM4s5s+/3Nvorff56nbtWYxHQHbIr0kVyuEU+YGwllpyQgl3HdyL/9Vy8MGM3ZozJiKgtjeRC/F2s\nd3f6TBzH/Bhze11M5kUiWkYIGZU7s8qBkqmlyK/Jg8/vQ8nU0pBxQmOcT5vAK7rJvaFIqOoRgrJ2\nkl3n74kbQ5llWzhSki+vrK75NXkAYBjrrTfGYU8PYwyG75FZKOXPwIDR2onkjebRYbHDYEEUvuj4\nPOTZKEThn6+/By998Dv40QV7vB0JsQmIibIi8/p7UP7Bb5kVeoXDGTIH8MR+X7ZgHs8AACAASURB\nVB9YUlBQUFBQGAxQa6eBgXB6J36v8qOXpsLd5gp5Zrj1crT52uBDB6IQheGxVyD3O/+OLX/4BYbG\nDMNl1iE45zuPf5xvxpVxSRgRNwJF6cXIPZSDc/52eNqbUTH7VUNdB+0hZfoUun+x11yyw1F6B0z5\nA5VA38egvZT2WQoKCgoKPVs39YurxoEMI7dYg+HjybtDI8UTxQbSA7kPEBdbZkgz0UUiuZtbPnEl\nS+NUSxMK67YA0MZo4vMhN5ElU0ulCmvRhZ1R2XkXc5GQZnydw5GoPPj8ZC74jN6JBJG6beut9Pnr\n1KZur0vq8pEgutMTISNFxOt6z4tly6xyhLgG5a8T5t14n4Y04+skKyN/XbaYp/tmYqdFCn4ckxtB\ncqHoaWtmMs/LK08S84SWnry4vS40tZ4EABSlF8MabQ1xkXaqJehLn08bQIjrV5l7NYpbJHP9mZwg\nd50paz+CoyIDcyozUN3oDOkXo/amTRn/jt6cEM4tKhBZjDcjGNU1HC72XBBJORQufZC8VTc68ev6\nYlwxZATOdJzB2Y4ziI+2hTzfhS7s+WA3/PADCMDf5UfxlFIsTs3BE3UbsTg1BxUOJyPNaC7NcmZi\n7j4Hcg/lsLlbkWYKCgoKCgoKgxG0tslyZsLtdeE3M/4T1yV8I+S5M74v4EMHgOAa6vOO03jhxA5k\n/dN9OOv7AoEA8B/fX42UoVej7Ef/id0Z5bDbknDO347LouOw+dbCsKRZljMT+TV5mv2XuD+72Gsu\n2f5P7zk+jIBeuJGLhYGyz1JQUFBQGBhQFmcCeHdBorVEf548icSsXrRW4a1EIq1LuOdkLh7dXhcc\nlXdidMI12DOzIqQ9I3EBSddl7ur0LIz4ZyPpv+6UkS8bgbfMMrLQCReLTK9+F9M6xUy+srGhl4YZ\ny7NITrfptT+56eP7gr+uVyeyjuStrXg5AiCVu96eF4zS4y2xssctwIq3HtGQxbyV1PKJKzXuTPX6\ngkAWXHoEIQDmvpS/T+NcdI0oq4eeTMlOGOqhzl2L3EM5+Leb8vD0u8Ua14x8n+tZAYpzQnesIfk2\njISMv1jo75OQvXkyVZ2aHhgwWjvRPPNZ+2d48Ns/xYZ31qALXYbpxVqGYGjsUHg7W7H51kKUnXge\n2eMW4Nf1xZq1gTgvEQbC2ktBQUFBQWEgQq2dBgbMWJzRfrO9sw0fnv27qXSnptyBNz75HyRYh2FI\nzBDYYobC1+XDM9OeC+bb1oxFB7Kx+dZCbGsoZTHqjcoByN3k99YaK1wYCrM6HaNyXwzo7VXV2lNB\nQUHh0oGyOOtF8Iqc6kanrmVJX0K0mBDvySw66DRPmn0CU0iJljH0vlG+4epMLtzoOcqzYvarGsUY\nXza9BZrZxYmsXHRNtK4TF4d6deHv65XRKA3eAoue1bPQCXeiy6h+3YFZ2dVbNIr5hiPNRFmVuePj\n09Jzy2eUNi/HdOqOD5js9rrYdX4M83UiUnn5xJWwWMAsq6i+ouWRKCN8HcKVXQ/i3KI3nqmd5t14\nn4Y0IzkrSi9GUXoxCuu2aCxAxT6iuYCs8ey2JNS5a5FZ5dCMHWprt9cFa7SVpcWXa9mRJSxN0fKL\nb6Nw49qMXObX5KEz4MPYkTfAGm3F8okrsezIEjR46gEE+5uXDdHCjO9Ho9OO4cYK9cPFIs14GTW6\nT2XpT/TFyVSFgYM0+wQsTs3Bp+0uPPnHwrCkGQB0BM7DH/DjodRcbGsoxebJWzF25A042fIRm2/4\n8ciPUbPf7oGAgVw2BQUFBQUFhf4D6UZ2Z5Rj4pWTTL0zdvgNqGk6BF+XD2c7zqDZ+ymyxt4La5QV\ni/Znw1F5J9YdXYPNtxZi7Mgb4PP7kF+TZ7ge4ddW9LeRdxgAmj1lONS5a5lnkEhgxvrsYpNmA32d\nqaCgoKDQv1DEmQSkyCms26JR6AwkJSGvFJbF/Vp2ZAlb7FD5RWVxOJdjYtp6xJ3oHg4AcyN3qiXo\nMi+zysGU2pG2oUzxLXOHRwptmRVLuP4T7+sRe7J8d2eUM4JSLCP/TFF6sSkywah+3ZE/M+/qLRr1\niC0zLinr3LUaV4lGeYR7hgeRlPwzWc5M5B3OQYffhwZPPRwVd8LtdWn6gSe9CtKWsj6bMSYDq76/\nlp3U48e8jHiSkYv0MxJXEjyBx6cbrq940oaXeyo7jX1+syMSoGSxBQA5BxfiZMuHyD2Ugzp3LTsZ\nSeAttbKcmahz12rkQuw/cV6RtQeNCcDYPS49S65c7bYkFKUXIzVxPJujqR5GEMtI7i9lz4Vr/4v1\nDaA+0puX+2NjpzfnE3rSFmqDOvgwduQNSLJdhTaf1/C5uKh4WGABALR2tOCp+l+xmGZ2WxK2Tytj\nlq78eOQPKxHMHDTpSwyEcamgoKCgoKAwuOD2uvBA6oKwz1kRi7+cef9Ld9fAbclT4IcfO45vw+pJ\na5lrxpKppdjWEIxTLYa6oPVVuLUJf2BcfF4WksMIdlsSvhaXiE3HNkjXSpRfuBjSfQ2zug4FBQUF\nha8uFHGmA1Kqi0rq/oC4yBA/5jKlcEHaUg15JiqLRYso/n0xbz5PcfHEK+6NFhkWC9DgqY84Bpis\njrK/+WtG5JgsTzOEnl45jPJ1e124u+oudvKK7w8xXb00w+UdDmbfNVJOiifRRBJWVPQTkZFfk8cs\nwPTei7QcZEUmkpS7M8pRPKUUsV9aR32ps2X3+XTr3LV48OB8VDc62d+LDmQj73AOI53FzQNPcvGQ\nyXy4mIL0HrUHuVnkrbxkzxP5LEuHfifyLPdQDuZUZmDX8Z3sHZ7IJZLQ7XUhLiYez93xAkqmBjdf\nmVXBGEOLU3OYVRmBP9EoyiiVP78mDwVpSzVkmx5JZVYpToQZEJQrspaj2GpkdUdpGm3KzJDo/QEq\nl148x74+vKFHkPfGRlJtSAcfyPJzx/QXsXziali+XD5a+Mn2S4yKS0QAQS/g8dZ4+AOdmHr1NOQe\nyoGjIgObjm1AdaOTHazYPHkrGjz1ePDgfDZ38DCaH/pSjmT5DbRDVQoKCgoKCgoXUF9fj3vvvVd6\nr729Hffccw/+9re/AQC6urqwevVq/OQnP8G9996Ljz76qFfKQCRUdeNriLZEGz7rQwempExDNKJh\ngQXvf/4eYiwxiImKQWL8KADAtoZS2G1JzDsKH2f6VEsT5u5zSGOAyyA7ZArI48iHQ0LsMM1BYSqP\nnt6KR1+u6YwO8dLfA3Vtp/ZOCgoKCn2PS5o4i8TyQ4a++FjqncgJVxY9SzD60JNFBpEAMosqcZFk\ntGAhJb/MUkOWJn+vfFYFiqeUaiz4AH2LN5nlRXcWCXrWEqI1jFHQWZkFjVmk2Sfg2dt3oLBuCwBI\nycxw6Ro9E648kSxAjYjDUy1NmFOZEUK6UtuILin5eFvkrlP2Hp1iC7d4Fesqc1mZnJACuy0JMVFW\npCaOx/ZpZSGbCErXbkti/XKqpYlZQOyZWaHr2hSAVP5Fy6ui9GLpGBFP8JG88WV0e11o72yTutpw\ne11oaj0Z4k6RXMryYybNPgHlsyqw6datWPZmAWa+PJ0RcvTMsiNLUN3oZITTjDEZzFqzZGopLBYw\n12rUbm6vC+WzKkJIKcobAHMZuenYBlMnFKlfZGQ6bfzq3LWYu8/B5Io2idT+PHnP94us3cX7AxFG\nLlllhPrFQm9bvoZLW2Fw4P3T7+GFEzsQbQkuH4kg4/GR94KiqbPLj2hEY+eJHfB2tsJiCX4bNh3b\nAJ/fx+J+bDq2Ac/evoMphczId1/LkV5+So4VFBQUFBQGHrZv346VK1fi/PnzIfcaGhowb948fPzx\nx+zawYMH0dHRgd/97ncoKCjA5s2be6UcafYJ2HjLE3imoQT/MfExDLdejhFDRiIa0ZiacgcAIME6\nDFFfqub+8sV7SBgyDAEEsOBbi3HFkBEovf05pNknYPWktWwvRusPIslorxMTZWVWaIA57x6yNU4k\npBkdXBTfkemH9N7vizWdWf3IQFzbqYOHCgoKCv2DS5I4C0cCic/2Z+wykcQxS6QYpQEEF0hkuUCQ\nLQB4N4vigkVMU3RHKAPvRo+35BIt+IhE4RXzIkmRZp+AgrSlrD6ict0s4WR0OpwWeTILFSI48g7n\n6MZECocZYzJYHxTWbUH2uAW6ZCblyUNvEWlGVswuQHmrIFm71pw8jA/P/p3Fk+IXwPk1eayv+LZ0\ne1148OB8DdHDl8duS8LeWa/AbksK695QtFoyIo3JKmnTsQ2aOonkcGrieE28r03HNmjS4ctK79ht\nSVJ5FTcY4uZAzD+/Jg8+v4+9S5ua/Jo8xFis0pN6afYJeHm2k1l20rsFaUtZO/NuGpMTUjDvxvuw\nfVoZO/1HZaN6FNZtQUHaUthtSZqxarclYc/MCrb5IbePd1fdhQZPve6pPOBC3DOyTKNYc3pkqF4s\nyTp3LdxeF062fIT3T7+HmCirxqIMkMds1Gv3cO5GBsoGJJIx21/fLbPz4GDckCroIzkhJRhb8M0C\nnPefw4xrMgyfj0EMAKDd34bY6FjYhyZhSPQQxFisSIwfhd0Z5Vg9aS3S7BNQlF7M5kFH5Z3YdXyn\nafnuazlScqugoKCgoDA4MHr0aJSUlEjvdXR04Omnn8aYMWPYtbq6OkyePBkAcNNNN+HPf/5zr5Vl\n7MgbEAgEDxu1+bxByzOLBX8+3YCHb1qCNp8XUYjC6pvXY+OtW9B6vgVJtqsAAJ5zzXj/9HvMa4rb\n69Kskfj4zwDYHk62pzWCTN8g+93s+zzEdZ2e55mLjcF8eG8wl11BQUFhMOOSJM6IWDLzYemLD5CR\nFZnMCsyoLGT5JXuHCAbggls23spELy2ezOJJAVm8HSOLB54MAxBiycWnLVqJ8PmR1VJ1o5MtDkWy\nxMhKjG8Xt9cVlpjhlfFiXZZPXImYKKvGMihSUPqbJ29F2YnnQ/qPUN3olCr3ZfJgVm7NyLXb60Jn\nV/Dk/9x92hNrp1qaUHbiefzytqcwY8wFRSmfLt82VFcixmSnzngiygyIfKO+JIiEGllSAdCQoWJb\nibG5KN6XKNviGAOgceNopNgVx4wY7658VkWIDJC1l2gpx1unifnOGJOBvbNeAQBGNPMWazPGZISc\n/uNJwE3HNrAYhNTv1MbJCSmMcAKgsdKTWQnyY7p8VgWzvqN68D/pnYK0pSGWqEQAkiVg2YnnGfHH\nQ+aPnv/J97vM3UgkBxYuBozmLjPP9MV3K1ysOrPvKgx+nGppQmrieAyzDsc/2j048snrhs93ohOx\nllgAQLu/HXeM/hFenu1EydRSLDuyBDUnDzOXucuOLIHb68KmYxuQGDeKWbt2p4wKCgoKCgoKCgAw\nffp0xMTESO+lpaUhKUm7F21tbcXQoUPZ39HR0ejs7OyVsthtSUiyJeOFEzvQhS5ER0UDgQA+bXfB\n5f0EXejC1+ITccVlV+B0+2l0ohOLvpWDSck/wJVxSUgfPYXtZwCw/SHtLemwrkyvwe+/za6VxIOf\nRt55wkHct1xwXek0VRaz+ZjFYCaeBnPZFRQUFAYrLkniTG/RwENU4Mqu6z0fCfQWKXqWEmYsDWTu\n4vi/yTKICCjeykk8OWREBJASXKagFQk13hqIlNM8ecFbM5GCnk+TV7rTe0QKyMgXPSsxEbx1D5XT\nrHl+2YxdjHgws0gxsoIjF3oiWci/W1i3Bc/eviOEUDKjYNcrT7h7ZAH15QE4xERdOLHGE5zzbrwv\n5H3qBz1rOCNijLdy5GVELDeRYUXpxdL0qG9F0lYc//yGQbSCE0kZcaPAp8fPLTLLMnpWNmYoTb5s\n/Ngjl2Vz92ljmZE7Mz4eEJ+2p60ZcyozUN3oZO7PZOD7EwDzjV8+q4K5YKQ2pjYid6Np9gka60kj\nl66Uj+j2UjZnEGlGpKBI/M8Yk6Eh9/n+4duc0jYi+vX6mAi8SDYiPd28mZmHwj3TFxsn0erSbL31\nxoAiNgYnqP9rTh7GmY4vEEAArR0t0vhmhFjLEPgDflw+5ApEIxovvvcbuL0uRvBvayjFI2krMGNM\nBrN8XT5xJbbfUcbmokiIW0XWKigoKCgoKPQEQ4cOhdfrZX93dXXpEm/dQYXDifvHzUcXunDntTMx\nNDYBUZYo7P1gD64YMgI/TP4/yH89F7/630Ksvnk9yj/4LRbtz0ac9TK2N7PbkqRxxPmfMsj2rkYw\nc0gvkrWXuCfjD2SGw0BZ4/V3/goKCgoK/YNLkjgzQygYxdYye91sWWSWEXpWYD1JDwAWp+YwK63d\nGeUoSi9mVk6A3BJGJAX49Og5Pi+epKDnKQitWB7eEi6zyoEGTz1aOs4ivyYPu47vDKmbmB+5putO\n+xMpUzK1VKPQ13NXILOiEcujB6qjLAjvruM7mSWZzKKPsHnyVqQmjo/YfadeeYxio/GkAZEnRKTw\nJ9Zk9TeSX7GNRfAWhbwc8mnypBXJGe8KUkzX7XWxPEVlKw+y+uPJYiIOxVhrIuGjR3TrxQeUEeJ6\n45YsKsllWUAIGWSNtgK4QKDxxPmpliZsOrYBV8YnITVxfIg1G+XBu0MELliD8uWj/0ScUuw0flMj\ns+Dj5V3WDjwpTu3Kywm563R7XRoXjxTfTKwvv/HjY7YRAWfWEpPmL7JsNevGsaebt3BjhC9jf7nj\nkH0DIi2L3ryhNp2DDzReyk48j2UTViEa0bgsJk4a3wwAohGNjsB5+OFHbFQs7h+3ANcO/zqAoBys\nO7oGLR1n8fgfNmDX8Z1YdCAbP3ppKhbuvx8PHViomdP5NYTRN7u/x8tgw2Ass4KCgoKCwsXEd7/7\nXbzxxhsAgHfffRff/OY3eyVdfs+3+/0XMWLISLxw4nmc6fgCXYEudKITX5z/HOUf/BfybirAM9Oe\nw8/SHsbyiSvhaW+Gz9/J9s60Hy6eUtqtNU+kB+Hop2wP3pO1l6hvCFeO/nZRqPYxCgoKCl9dWAIB\nUU07+OHxtIR9hhYePb3eXZCytzuLAFlZ6COeXT0PBWlLkZo4XqPY5n8HwpNBZCHFp09Ke9lpJUdF\nBiwWsMC19D7lXd3oxLqja9AZ8OFUSxN+Ov5hFL9biBdm7Na4AOTrwVua8OXhLVP0rMHoeV6pzrc3\nLX70/u4O+IUU9UNi/Cg4Ku/E5lsLNVZbp1qa0OCpZxY3+TV5rD4EWf9FWh6998R7de5a5NfkhbWu\no/d2Hd+JbQ2lAMAstmRtyOcjEhziM/Szzl3L7vPXAGhkigjbmCirptyyuslc9JGMPXRgIaxRVuay\nMb8mj9WJ2gWQy5o4tiLtJ3EeONXShMwqRwj5RdZoJB8iAUfXxLbk3yWrPf46kVZiH2aPW4AVbz2C\nZ2/fweYSvXkny5kJn9/HymzUJmKfEbKcmZq/3V4XHBV3YvsdZZr89eSL71OjMcw/T/2/7MgSFKQt\n1cxD/POyNHsyJns6z/QVevubZ5TmudgvcPXwq3s1L4XIEW7tROOspO5X2HFiGwAgClHoQpfBWxYA\nAcwftxhH3W+xOXb5xJUAgNTE8ZhTmYHOrguukBJih4XM6TRHiIcCeDe4/YHBNKYJg7HMCgoKCgpa\nJCYm9HcRBgWampqQn5+PPXv2YN++fWhra8NPfvITdv/ee+/FY489huuuuw5dXV147LHH8Ne//hWB\nQAAbN27EddddZ5i+Gb0TcGE/t2h/Ns75zqMLfpzzn8OQ6CH4/PxnsMCCYbHD8dikDdjWUMrWPLQv\nBiBdA/WGHknBHFTbKSgoKAxe9GTd9JUlzsKhtz6MkZAX4dLQI5VkxJiesle8p6cM5/Mg8qCzy4dV\n31+LGWMyNIRCUXox8g7noMPvQ7w1nsU2IqU0/xMAcg4uxMuznWjw1IeQZpQvAA3JIlOYA3JlGfnN\nJhcApBSXKfHDKcO7KwdkxfLs7Tuw+u0VeHm2M0QJSG1HhAWBJyh7mzDTe57Ij5KppSGuMfnniBCk\nuiXGj9IQTUZEGb3L94WMwBSJmDp3LRwVdyKAAJ674wUU1m0JsRoUSTaecL276i6py0+eVFo+cSVS\nE8fD7XUh73BOCLFDeVwMiONbT0EsuizUq4s4/grSlmLTsQ3sOsX+o2dyDi5EXEx8SB/uOr5TY63K\nE6t8P5OLSPGeHtGV5cxk7S1TfFM7OCoyEG+ND2kLcvfGP2uGvJTJWjiiL1ya3cHFIMIHM061NGHh\nwXvxh8V/6O+ifOVhtHbi55iWjrNoav3YdLpDoobA3+XH1+IT8dqPD7F0Ort8KJ4SPICRX5OHxak5\n2NZQiuUTV4YQ2eEODPUnCdQb67y+xkAtl4KCgoKCOSjibGDArN6pzl2L3EM5+PuZv8EPP7s+csjX\ncFPid/E/TYfQBT+iEY2UhNGocDgNv9PqO66goKCgoGAeijgT0BPirDcVMd05ES0jc4hwIMJAtPyS\nEWlifnxZSPFsZE1BeVC+BWlLseqtFYi3xmNxao5GoS4SP7LTUbySWiQGeBDZQtZaMgslM+AtzsxY\nUslgdJpLZtkjPkNtIKsv30e8dZ5IqEWKcDKnt8jm+9yMxQ5f5rn7HAgEIHURKMotT+zQNbFv+T6j\nOpDFYvmsCilxAkBD6hFRJhItfB3EMvIEL8muGcIqnFyZIWh5yzN+fMoIHZGcJBlr87UhNtqK4iml\nrE1F8pJAVmZ2WxIyqxxYPWltCCFJbcPHTSuZWspIUJ4QpTYSSb5wdaX+5dtGtD7jScUGTz3rXwAa\n8p7Gu8ya0UxfDCQrDL3vgNmyDbbNtLI4GxjQWzvx36blE1eioOZheM41m0ozPtqGNn8wXkiMJQY7\npr+IxPhRAIDcQzmwRgcPKdScPIyyE89rvhlmZdjoIE1/YiDNKQoKCgoKlxYUcTYwYNbTUWaVA/92\nUx7yX8/VuLqOxRB04DwAYLj1crT5vdgy+ZdIHz2FPaPWEAoKCgoKCj1DT9ZNl2SMs+6ClBwAek3R\nwZNbvJLfKH+RhNo8eStT7CcnpLBYQckJKew+H7eJfGjz6SYnpGhIN8qD0hTLYLclsXzJ9WO8NR6Z\n19+DFW89goK0pQDA0qI0SMmdX5PH4hbRdYJoycMjzT4BBWlLsehANivfsiNLWNn4chqBiA6eLNCD\nXlp8m4nP8/G4+LhcfHqkwOfry8dRImJjTmUGu747oxy7M8q7RZrxZQZCZU4mX7zCUYwPRfIkpg9c\naN/khBQUTymFNdoa0k5lM3Zp/JfzfUHtenfVXSHvUaw1vg4zxmSgZGrQMmHZkSUs7lhmlYPJWdmM\nXUhNHI+9s16B3ZbE+oXPlxTA/JigMlL9KZ6abGzx4NPSg/iM2AeUbn5Nnsayi5ctamd+fJ9qaWLW\ndG6vC0XpxYi3xuOn4/PYeKF+4mO/AdAEl3Z7XbBYgu7SxLmA2qYovRjlsypQMrWUEVUFaUvZ75Q+\nlZNvM9kcmmafwPIKN8fyZHtmlQObjm3AxluegN2WhGVHlqAovZgRsbuO74Sj8k7M3ecIaSs+Pb5v\n+Bh1/NjpS8jkSlZuPQtiWXoD2Qe/rFyKNBvYoO/Y7oxypCaOx/Ahl8OKWFPvRlmCy8yRQ76GQCCA\nR48UYNbLM+Bpa8bqSWuxO6Mcbq+LrSv4b0YkMjwQZV42bhUUFBQUFBS+WnB7XWhqPQkAiImKwdSU\nO9g9Is2iEIXY6FiMirOjsO5xzKnMQGZVMIa8XlxxBQUFBQUFhYuPrwRxZnZh0ZtKDp6EM5uu3nOk\n/Ja5ZqT7vCK6IG1pCJHGu1ki0ivLmcmU9DyoDJTupmMbAARPmlc27mVxj8iShQggUliTkm35xJUs\nfVL0E6nHkwJ8m51qaUJi/Cgk2a5iyniRCDJDWPBtyruQk+VnpHAjcqe60RnST3y/iJY6PJlG9a1u\ndOLuqruw6/hOds9uS0LK0NHwtDVr5EUsZyQgORBlSbwmkjCUP93LcmZK21kkCNPsE1jcGr5N+Xzp\nWSI56D3RhaJs3ND1/Jo8uL0uRtq4vS5Yo61YPnEllh1ZwtrZ09aMufscjIwS25OspygPINjPPNFL\neRKZBoD1a082Knwf8OOBR2dXsHwU+04kxPnxSe2XZp+A5RNXMktQsd/5tiTCieaDQAAaQp3vA2p3\n4AIJ7fa6NFZo1Da8PISzWqR6ydqnKL1YkyZdK59VgaL0YpSdeB5ur4tZtdE8VXbieWyfVoY9Myt0\nx4CsL8Ty96UC3ixJRteN3gv3/kDAQCf1FPRBYyo5IQUZX58FHzpMvdfaGTyJPSnpFgBAIBBAIBDA\n8iNLsfjAA6g5eZjNZeSekb4ZesoiWdkGqswPxDIpKCgoKCgo9B3S7BOwbdpvMHbkDejs6sShpv3s\nXtSX6rgudOHz859hwbcWo7ntU3R2dWL1pLUAELJvUutpBQUFBQWFvsMl76qxO65yeupeh5S94dxl\ndcedlqxs/DXggns53l0buWTzdflY3CAg6PqMrNn4WGKEmpOH8ev6YhRPKWVEGR8/ipB7KAcft3yE\nCserABDiPo6Pf0aWLrw7PgAstpXFAgQCwOpJa1ksLYqrRsr7zCqHYTyucO0mthlB1h/VjU7TrqN4\nCy5qH77dKC2xHcW21Su3Xp7dVc4RsSfLn+6RHPHEAlkVibHJ+EDGfP2IfOHdL+qNE7ENqWx5h3NA\ns5XFAuyZWRGSFuVF8dqM3EDy4yfLmYmWjrNIiB3GysjHWgPAZJbqoVd2GfEpu0buEsnFYO6hHJRM\nLWXuy4iM5NtUdKVJMibGkJP1M19fvs/5/uWf4essi18muszUawdeFvT6gH9PdDUqky1ZP9Dz4dpe\nBlndZeldDIh5h5Mn/p7ZMnanHS4WZHkod0MDA2bcDVU3OrFg/32IjRqCzi4fzned1302Lioe7V1t\nsMUMRVunFwEEsPrm9dj53g6U3v4cjp56G5tr1+PxyUWYd+N9IfksOpCNq4deo/utNyOvfSHTCgoK\nCgoKfQ21dhoYMOuqMcuZiUn2W7DjxDbNvbjoOLT72zE8djjafG3Y8sNfRuGZtQAAIABJREFUYusf\nHkdcTBzbgwLd3+MoKCgoKCgoqBhnIRAXMJEsLMySXkbvmyHdIiXnjBTR4jUZwUHWK0RcEcQ4VIQs\nZyY+P/cZPm1zI3loCvbN+W8A0Ch4M6scONnyIUYnXMvc6L1/+j2seOsRPHv7DiTGj2Ik2UMHFuKZ\nac9pYiI9dGAh1t+yMSRvQnJCCp6qexKVjXtZ+YGg1VLe4RzERFkjil0m9qkstphIqOgptPXS5+Mz\n8TFhiMyIRMFvRhaN5MiMYp3el5F21Y1OjbUh309GpBFfJhlBQwQo5SsjssTYY2IcPbFeMmJIFn+L\nj+0lI9SIyOItNPmYbLK8+bY2O6ZFMqi60YlF+7NR4Xg1xL2oSFjRtTp3LRwVdyKAACodrwGANEad\nmBffviLJxueTWeVgFn2pieM19Q4nd5QfWWySlSq1kR5JLNab7xtRRqiPZcRvpP0hlmPuPgdioqzd\njjXYHRiR+7Lyi/1qNt1InuurTblS/gwMGCl/aEzN+L9T8Wl70Eo2Ljoe7f42U2l/e8R4/OmzegyP\nHY7LouNR9qP/xEMHFuKjlr/DarHi+ek7Nd9JmqMo1qlsXjNzqETFGFNQUFBQuBSh1k4DA2aJs5kv\nT8ep1iYuvpkFFgABBDAsdjjWTvoFPj/3OZ7/8zbEW+Pw0/F5GDvyhojjvCsoKCgoKCiEQsU4C4NI\nLc16oiw06zIoEtdCfLlOtTRpYpTRff4auVMiN4KkUBatu4CgOzg+pgiVpyi9GFdcNgKrbl6HfXP+\nW3OPUDK1FFcNTcbqSWuZsn/ZkQI8krYCK968EAPp/dPv4dO2C+7oiIBwez/B+t+vQUHa0pD0iRh4\nom4jCtKWsvIT6bFnZkVYhbHo4klUulGbub0uFr9FJAYiseoQ86LyFtZtYS7+eBeGRqBn69y1hnnr\nyREp1cO5tOTlhEd1oxMPHpyP5RNXsjrwLgBF+ZOlCWit7ahP51RmMJeDdlsSc03Iv8/H9ePLRnIi\nU6DyVlLkDpKPt8VDdAFG8mW3JbH0KNYauR6UgcYk9SvJsh54eSJi6VRLEzYd24CkoVfB09bM3ufd\nJYquBIl83H5HGUYnXAsAGreSPERXkHz71rlrWTuI+RBptunYBszdF4wlRy5L+T6mNpAhzT4BG295\nApuObUBmlYP1u0hw8fLq9rqQWXUhTll+TR6WT1wJICiXPKmZWeVg7mf52HdmYlXqldntdSEm6oIL\n0FMtTabcxZmBmbHIl7c3FP7d/SaJ8qDw1QXJQoOnHqfPeb68ajFNmtlihqLhsz9h7PAbcKbjDJrb\n3fC0NaPC4cTDNy1BckIK1h1do4npSDEW9Vy/mpHrSNZZCgoKCgoKCgoXE9GIxl3Xzkb0l/8ujx2B\naETD29GKR17/d2x45zF84m3CndfOwtI3fo6ZFTMwpzLDcK9lBmotr6CgoKCg0H18JYgzs+gtJUsk\nFmRmFjJ8uWRl1Cs3ERU8QXR31V1o8NQD0MY1EpWl759+D0Xpxahs3BtS7jp3LSPeAgFg9dsrkOXM\nhKetGQEEcOb8GTS1fozFqTlwe11Y8dYjWPq9/2AWQOTi7dEJK1E8pVRDLM2pzGBkj92WpIl74va6\nkHsoh+UdjjS7u+ouXYU3tRm1idvrMtWmRiAyhN5JTgjGoSKlPoAQxTTf5qKLODFWnVG+MohkoAgj\n67fCui3MRSYRMkQqZTkzkVl1gUgRY7pRmjJSzm5LwpXxSZrTczFR1pCy8YQvAJaPXlvwJA6RdZQf\nP3Z2Z5TD09aMj1s+Qt7hnJC0RMKFbxu+3jxhRmSQ2+vCgwfna2SOL6+M4CPZ251RjnU/2IhF+7MZ\nWbp58lYml3wMw82TtyL3UA7m7nMgNXE8c+9IpBPF0+Pboyi9WDPfkFw+dGAh5lRmsDzFtpoxJgO7\nM8qxZ2YFlk9ciQcPztfE+5u7zxHSJvw4qHPXouzE84z4IjKd5hH+oALJKwA0tZ6E2+uC2+uCz+/D\nijeXYubL03Ff9b9g5svTGZlWPquClZMfZ3x76fWFXvw+ai86UED91FPyzAwRJc7DRhDnm3DPmkFP\n50CFSxMkC6mJ43HtsDG4xf5DAOadFXg7WzEsdhjeP/Me5o9bjFU3r8OMMRmoOXkYz/ypBA9/pwCA\nNoaHnlWvWC4zZVdQUFBQUFBQ6A+QDgYAoqKi8N0rv4crhozE8CHDcZl1CP7j5scwfMjlGBJzGbrg\nx7DY4WjpOIuuQBe6uvwsFnV3D7OJB7Bl93sLZtJSJJ6CgoKCwmCDIs4E9IWShbcmMrsI0iPZjJRM\npAQuSFsKIEgiEBlCLsh4KyJKZ/aYu5H/ei48bc0at2FEmOUeymFWQrHRVsRYgtYZifGjkGRLxv6T\nr+GXtz2FeTfehzT7BDx7+w5UNu6F2+tirvl2Hd+J9e+shqetGdnjFmDZkSVo8NTD1foJlk9cyRaI\nZMlGlicAGAlghDT7BOyd9YqhmzUitvSe644s6JFQROTwinFS3MsU1GSFRO9Fsljmle7hXFjpKSPp\ntD9vacC7syyfVaGxROOtAkQCUIQ1yso2EMkJKShKL5aWj7f2efDgfGSPW6BpC5G84kkvuy0JjooM\nZFY5NOm6vS4U1m3B9jvKUDylNKR8sn4gUL2JrOBJLCBU5niSkdLh06exQSRiYvwoBBCAp60Zp1qa\nGKlV3ehk1lR8nD/fl2PQbkuCxRJ0p5lmn4DscQuw+MADGjKM3E/ybbfp2AbERlux6datLM6aOBfw\nP2eMycCzt+9AYd0WVh+KRUiEFy9TPImZmjietR0QJCHJUoxkhto0zT4BL892wm5LwrIjS5A19l54\n2pvx42/8BLFRsdh46xbmOpTvJ5JF/kAAf787Fpjh5ohIECkRNRBIq97MX22UBy/4dcbqSWtR5zmG\n+Gib6fcTrAmwWoZg/rjFOPJJDR6v3YBdx3di2ZEC+AN+jB15A8pnBcl52Td0TmWGZh5VUFBQUFBQ\nUBjoIN1JzsGFiLbEYNmEVfjFO4/hH+eb8dn503B5P8ETtZvw2fnT8Ha2AgDOdpzBjhPb0IUuRFmi\n8O/fLdAcBI0UvJcQce/fm94l9NK6WPkpKCgoKCj0FRRx1g/glbNm4yGR4pcn24wWKHP3BQmDzZO3\nMjdpmVUObDq2gVmhkUKeP4FU565FZeNeFN1WwmIS1blrmUu05RNXomRqKfbMDAar3TOzAiVTS7H6\n7RXIPZSDZ6Y9h90Z5Zh3432sPInxoxg5BgA+vw9jR96AottKkBg/CiveegTZ4xYgNXE8rk64hsU0\nIdKI2mx3RjlKppaGjY1E4J8zWqDJ4mf1FsTFqp7ViuhOj0CkSqSL5UhdWImLWp40IRny+X3sGgAm\nvzzJQPIpWl3xsFiA3EM5Gld8IqHBtxsRTGUnnmd1A6Cx9hIty9xeF9xtn8DX5WNtS3kRkZxfk8fK\nSeWm52TWdFQusV3JOgqAJj4ZkYIWCzTEHt8uNDbJwvKqocnYdGwD3F4X4q3x2DbtN5gxJoMRdI7K\nO+H2ulAytRQxlguWeoEAmKuzbQ2l+FpcIisL35eiRdmq769F2YnnUd3oZFZVoizsOr6TzTOpieM1\nZHtnwMfi4ImyDoDFthPbT3RjKs5jVPbscQuCMQ5vLcT+k6/huTteQGrieGw6toH1o0iY0mEBsZ94\nC0zqG9kYkV2TkWbdmTNkacvmb15W9PLhD2AMdKiN8uCFSDrPGJOBB1N/hnNd7abT8HV14h/nm7Hz\nvR34l3+6F3bbVRg78gY89O1cRFui8f7p9+D2uhjhz8PtdeGT1lPoDPh0UteW1WydFC5AtYeCgoKC\ngkLvgg4QLp+4EjEWKywW4IrLroAffgCALcYGCyxo79K6vbbAgihE4YFxixAIBPDkHwsx4/9OZWma\nyVe0LhO9FvEHonrroJ4sfXH9r7xZKCgoKCgMRijiDMbxmi4WRGsOPfAWPwBCThzJrHwaPPU42fIR\nc4lIljIlU0tZzCYiQ8hCg9y7kdI5ffQUZi2Tc3AhALB4R7mHctDgqWdu5jxtzXC1BkkK3gUfWcg4\nKu7E0iM/Z4puAMg7nINtDaUAoCFFymdVsHqRwp2vm8ySxMj9gPiM3n2RuOltOaB2JcshXnEvIy1E\nN2xmF5hmXLwRKE3eDaKM+EqzT0BRejHKZ1UwWZNZ7hAhK4s3xT9bPKUU1ugLpI+RS0l6l9zm8eWm\n+GUiKUUkVMXsV/HMtOc07r98fh9WvbUCiw5k47P2z5Bfk8fkXkMIdfmw7ugaZk1H40QEWUeJFl0E\nuy0JMVFW3ZOCRenFrC2SE1Lw8mwni7VGLghPtTQhzT4BJVNLcfXQa1i6/HslU4NtarclYfnElUiI\nHSbpca3FIwBmpTVjTAb2znoFdluSxu3izJenI//1XGbtRwQ6yUdcTLyGgOLnJQBSF6X0HBGvfNvw\nlq2Oigwsf/PCfAQESXjqx/W/X6NJm7cC5K3iZBaYRKIanYo0gtGcEsncIaYjWqCGswzVi+E30KA2\nyoMX9C3i3a+W/qkYgYB5V43n/EGS7YohI7Dj+DZYLMCi/dl4tuEpPPTtXKx46xF42ppxZXxSyLtp\n9gmodLyGl2c7DS2ozZKzkZC4PR1XA31cAorUVlBQUFBQuBjgPbisnrQWcTHxSB89Bb+87SmMGDIS\nbZ1tCAhur2+x/xBRiMKVNjte+mAPutCFb434Nj5td6GsYUfYA3O8txPZXl22t+jNtbmYvmz9r/YC\nCgoKCgqDDV954kwkXnpTgdAb6fCKYHJjxC9KKB9aSJ1qCbos2z6tTGMJBICRDMAFiw5PWzOWHVmC\n2WPuRmHdFhSkLWUWJEXpxVg9aS0CAaBkailSE8ezWEWJ8aOwd9Yr8LQ1M9d3FY4Lii2KMQYAmycX\nwgILgKCVz+pJa1E8pRRF6cXIr8lDauJ4tqhye12YU5mhie3Et4VefDc93996izYZ3F5Xt+QgnPKd\nXziTopu3+qN4YjxpoZdWOESqoK5udOLBg/MZqckTX/yJNSJAePBtTs8QCcOTWiIJQKQQAE28Or12\nI5lt8NRrLMCIcBHdRJJ1BBBqAVYytRTPTHsO26eVYUTcCEYGE0FG8kLkHsV1yz2Uw9wmiuXkx5nM\n9Slv5cRbdoptQc8DYGQ5P7aJPKO+4MlGIjfdXhfW/34NMq+/x1DJLFpp8fXg+zchdhiKbivB2JE3\nAACs0VYsTs3RlIF/T7TOE8lOGaivqO/ya/JQlF6MCocT26b9BonxoxjRTO5aS6aWsth4IhnIu6Cl\n/hT7RWwPvl34v/mfPPTGWaRKeb6NeEKaL7uR+1CS/cEAtVEevOAtbe22JCybsAoWi8X0+0NjEjAq\n7koEAsE1x8PfKUBC7DBsunUrZoz5EZ69fQcS40chNtoqJbSN3KSK81k4OePHnBF6uh7sL0LqYq8Z\nFBQUFBQUFMyB1vOFdVvYQcP00VNwpc2OB8YtConz/ftP34J9aBLmXp+FM74vkHHtLPzt7P/Dwzct\nQc2pQyhIW4q8wzmGMdzpsCu/vyTwcbTF/VM4mH1OXFdEsr4YTId4BlNZFRQUFBR6hq88cSa6L+st\nBYKe0qQ7H1lSBPNWFGK5KXYYABZTiM+L4ovx1gnkKi173AJs+cMvUJC2lFl0uL0u5B7Kwaq3VsDd\n9gk8bc3IrHJg3dE16Az4kHsoB562Ziz87/uRPW4BZozJ0CzAyL0eAMy78T7mYq29sw3rjq5h75P7\nP3qPTp0TYUFu/GQu5HiIFkP0DK+IloG3/qK8APPxhWTKdiNXhbx7Q+pTIpvEdM3EZJKVJ5JnibSj\n/iOCj3e51+CpD2kPIkyI2KJ3eRKGl0kgVGbFssjGi9vrwt1Vd+Gpuic1cc6or/lFOfVzUXoxlk9c\nGUIwkTwRWbs7oxypiePh8wctJUWXgTzhVT6rAtum/Qabjm3Q7RM9KyZ+XJBs8PLq9ro0aSYnpCB7\n3AI8eHC+Ji4g3ZcRKZR3zsGFaPzib1j/zmpUNzo1z/BtyhPVYt67M8rR4KnHsiNLUJRejLEjb8Cc\nygw0eOpRlF6MshPPa9qf8hfrRWnS+NUrC99O5MIxzT4Bbq8LK95cCkflnZq6uL2uEMJRPDxA5DTf\n3lROghiXTWbpZRSHUm9+MOt+l0+X3I5S/cTTmnrvES6Ggl5tCBVEnGppQmaVA4V/eBxdgS5T70Qj\nBm2dXnjaPTjr+wKbJxdi3o33YXFqDn71v4VwVNyJFW8uRX5NHoqnlEqtj41IKKPvihHCjZlwpHU4\n9Ach1V2yTpFmCgoKCgoKFwe0HuDjSWdefw+Out9CjCUGQNA9413XzoY/4MePv/ET/McPVuPhm5bg\nb2f/H3x+H7JT57O9+UdnPsSi/dnSvRXtB4HQA67k4UYM1SGzYpPpryI9GBgpZHkM1L1Ifx2OUlBQ\nUFDoH3zliLNwCtDuKklkacqULt39yMriofG/E2Hh9rqQX5OnMdHnrb94QoQsdtJHT8GV8UkstlhR\nejFzBbf+lo2omP0qI9RKppZi3Q82whptxen20/AFfHjyj4UhljR17lqsO7qGWekU1m2B2+uCz9+J\n1ZPWojPgYyTcy399CXP3OeCoyMCi/dmgg+y8Ij3n4EJWJ1GZzS9IqQw89OKHUbuQNQ+5o+IRrq9k\np6p4gnLX8Z0hBBhvJUQxoHgykxSARi4MZYiUbCMCRUbaURl4AofPg1yHNnjqNcQGv0Dnrb3omp41\nFoAQ4pP65dnbd6D8g9/ikbQVePrdYjgq72Qx0vi0Se7ya/KYm0Uxv6L04pA2tUZb4fa6GOnT4KmH\no+JORmDQu0S2yU7wie0qgidmePKUytvma2Pv1blrUXbieWy85Qmk2SewduTdo4rEDhCUnXU/2Iiv\nD78Oq25ex/qVn3dI5imN/Jo8+Pw+1Jw8zJ6lWEPZ4xaw/K+MT8L636/RWPnx8kAuHHnLvSxnJtxe\nF9p8bYz448tCBFdRejGrN3Ah9tyi/dlobvsUD6XmYtOxDcg7nIPFqTmM4OY3hMkJKcxSUox7x1tl\n8fMH9StPlvFyIYtDaTSueMsX2T3+XdmBDbIa1HNvKb5ndK2nuBgbQrW5vDTQ6muB199q+nk/OtGF\nLgTQBcd1/4yxI29AdaMTS9/4OfyBTmyeXBi0bP1y3UHQGy88xG+q7J74O59eOPDjvjsKnb4mpJT1\nmIKCgoKCwsAE7cF+8fY6rH9nNVJHjsc5fztiLbGIQjSuu/x6DLdejlc/rEJ1oxP7T76Gxak5KJla\niuSEFDR46rHu6BokxA5Dc9unmnjh4t6fDkCSR5ksZyY2HdvADsuKh6/5g9Wy9Y7Z9UVP9g9iHgOF\nnAp3aCvSdxUUFBQUBh8sgUgCVQwSeDwt0uv0AY7kw38xFJKRmqybtXwCLljekFUGXdt1fCfm3Xif\nNF1S3pMCmxTfPJmQeygHALB60lpmJZVmn4Bdx3ey+ENAcGG2fOJKFpuJ4qzVuWtx9NTbWP/Oaqy6\neR3KP/gtlk9cieVHluITbxOusqXguell8LQ1A4CGzKlz12JOZQa2TfsNUhPHIzkhGBeMf4bqQ4vS\nvbNeYfeWHVkiDYZLafNuoGjxCYApsc3Ki0iSNnjqcX91FlbdvA5zvvnjkDSo3cnqzmIBYqKsEZFl\nsnLw9ZOVjfKmdhJJEEBrjVOQtlTTn4v2Z8PT3ozt08qw6dgGtHScxWXRcSw+Hb3HKyb5dPkFMfVJ\nljMTnV0+FE8pRZp9AnMhSXG35u5zMJehAFgsPXqXyksykF+TxyynCuu2aAhjspKjZ+g9arvMKgdO\ntnyIxycXoezE8yHv0u80BngQSSxb+MuIdEdFBu4fNx//9ZcXEQhcGF8FaUs16dS5a2G3JaHBU8/k\nnmS3zl0LT1sz1h1dw1wpbmsoDakbPzfwfV5z8jB+/vrPsPrm9ahs3IvZY+7G83/ehmFDhjHrL75N\nZcprcb6hfiFXmJSOKI/0bu6hHHzc+hEe/d5KNjcsOpCNR7+3EpWNe1GQthTrjq7BOX87tt9RBuDC\nPMVbiFG70SZQ7AdeVqisYh+RvIqyysuA3viUjTVxXIV7t7snNXsbvVmOcN/TxMSEXslHoWfQWzsR\n6Lv2b4ceRIvvrOl0Y2BFJ3xf/h6DhNjhaPWdRXJCCkpvf47NHZlVDlijrVg+caVm/tMbV3oyJY5n\nvfnXzBpPTCvcvK7Qu3OHgoKCgoIcau00MGBm7UTrhQZPPTYd24DM6+/BCyd24GTLhyFxzobHXo4o\nSxRsVhua2z7FqPgrsfHWLVh0IBvDrMNxtuMMNk8uxNiRN7A9Wu6hHLYPJ/0Nv5ckGK2pwukOZPXS\nO7jUm/uH3l5PRJJmT9Z6l9o6Ua3tFBQUBjt6sm76ShFnQOQfy0gUpJHA7IJET+Ej/s0reuk9Uh4X\npC1lJISobCZiYfaYu7H7/RdhjbYyt4W8gnlOZQYe/k4Byk48z4gU3jUbEW+5h3JgjbaGKJ3n7nPg\nZMtHeCg1FzWnDiF73ALMu/E+VobUxPEsn09aT6HS8VqIBRn/N5E+pHDj24me55/hCRUglMAhxT9P\noPAw6itqB9nCaNfxnYx84e8RwUIWZ2bzEhFOjowWbUTGiLIkEisiuUUED5FptAng21RGSPLpyhb5\nDx1YiHhrPCMsSc7450umlmpkWI/QoXI9eHA+O13HlyP3UA4sFmDPzAtkH7U9Py6of8SNhqzP+XEn\nqztPLAFB2ch/PRcxlhgsn7gaO9/bgbiYeGZ5Qe3Ft31MlJXdp7xyDi7EJ62nMCr+ShSkPYqn3y2G\nxQKs+v5aRlrJxglfvpkvT0dC7DDcMfpHKH63EFfG27Hlh0Uh7+ttkPj5htKvbnRi3dE1IX0mvpvl\nzMTi1Bxs/cPjOH3OwwjyzCoHymdVsHZ4qu5JRrxXNu7VnRdJ9mQkMsk8bSrF/hPJWH4+DRevLdz3\nQnyXzw8IJesuNRi1j1L+DAyEWztlOTPR5mtDU8tJxEYNQXtXW8R5XBE7Ep93nMbDNy3BjDE/Qn5N\nHpZPXInUxPGYu8+Bn47Pw7aGUka2y+ZVMySzSNDrjb3uvC97RiGIS01RpKCgoDBQodZOAwPhiDMg\ndI9RlF6MB6r/Fe42uVccALjr2tkYFX8ldv9lJx5M/Rl++5ddSIhNwL/dlIexI29ge+VNxzbA5/ex\nONj8fkW2/ukJETTYDw91p9w9Wet1592BuLYcrP2toKCgwEMRZwLMLGAAc6SDkaK4ux8PM++LSmDx\nXVGJJLOQ4JWyvBKe3s87nMPIrGcaSpAYNwrb7yiD3ZaEOZUZeHm2k5Vh1sszcNXQFNw/bj6zCOGJ\nBcqf3M3xZJBo6ULWRM/evoNZkFGZM6scQfeNs52s3HdX3cXID6pXdaMTqYnjWV1EAgjQkjd8vUWC\nLLPKgY9bP8LVQ69B+awKlr6e5YqsL8UyyJRu1AYAMLviR3h8chEjD7tjaRLJiXk9paFYdhkRxcui\nSKDoySNfLt5aZ/PkrQCAhw4shLvtE2yfVsYsrDYd24DFqTmYd+N9GvKD0pi7z8GII5Gw1SP6yPqR\nr3tmlQNA0HqNZJdIKRmhqkew6BGP1D48IeLz+5hFIVl2LjuyhFl3xVvjmEWd3ZbELC945XGDp565\nU+VPD5Ky+el3i+Hr8iE22spIszZfG6xRVkZm8+SlKCPkAqTV14KE2AQUTylF3uEc0BeCxoaRjPE/\nHRUZcLd9gorZr7L6ysgu3sokMX4UK191o5PVl/r6s/bPMCJuBFO0R2JpQjLh8/tC2jaSk5d6z0di\njUbPk9zzhxUGy4akNzd2SvkzMBCOOAOAmpOHkf96LoZEX4Zz/vaI85iacgcONe1HytCrsfHWLVjx\n5lL8o92DTbduxdPvBudGOtRA8sVb8gIwRWQb1cPMWO1LxcqlBtUWCgoKChcfau00MGBW7wRo11I/\nfz0XQHg13F3XzobzwypYEIWVNz+G3e+/yA5Irv/9Gqz6/lq2JyJPQOEO8gFa/QwAqS6Ff0dcFw3W\nb3139X99gYFAUKnDYgoKCpcqFHEmwOzJH6MPk+y+mRPIZhHupLPMgoPAW7sAWiW9nvWEjFwgF2+F\ndVuQPW4Bnn63mFl4zK74ESodr8FuS8LLf30JG99Zi0TbKJxu+weuuGwkU17zljwAmEs9iwXo8PuY\nBRERZvT8ruM78fS7xUxhTqQYAGadQ23gaWtmymVSolP9ZcQGXx6+PcS/iVhJTRyvsTgjizYi9vj3\n9PoLgIaEkskOWd09+r2VWPfOKlw77Osovf25kDpFSp6FU/rzEC2leCs8Ut77/D5GkvCyaOSqTyZ3\n/PsFaUuRGD+KpW+xAD8dn8dIsvyaPGRefw+eqNuIjbc8gbITz4e0iUhK8e4WqS78uCCLJVEG+H4X\nNw0yklq0fOPdl/q6fKhwOKVEokhwARdiEAJgZciscjDCjB+zi1NzmLUiEcjkgtTT1sysPqkNKG0i\n5vi4h7zFGU9y8gQl7w6TTx8A8g7nMOs8M/Ipji8+X9lY5MtObkcclXdidMI1zH0nby3GW47yMiGT\nE/EnWbjy8hkp4aXnHi6SDSfvqpUsL/XIup7gYmx0entjp5Q/AwNm3FwDQPrvfoAzHV9ElPbUlDtQ\n56nFmfNfYKg1ASPjRiLGYoWvywfHdT9mlujk+jnc4QwgvOtUvvyRjq1Ixs1AUHQoKCgoKHy1oNZO\nAwORHNimfeWi/dno7PIDCMAPv+F7w2OH40zHGQBAsu1qWCxAIAAs+d6jePSNfFwz/FrsmVmBl//6\nEta9swopQ6/Gvjn/Ld2nkE6I38t+dObvsERZcM2wazWHlgC5zqmv0B9EjRn94MUu01eduLuUoMhG\nBYWBhZ6sm6J6sRyDArxSNdxHwShAqRmlixFkixn+XtmMXUizTwgpAwB2vcFTrwkGS+WjspLS2+f3\nIb8mL0ShvOzIEiTGj0LZjF1IHz0F1mgrgKBSHgHg/dPvwVGRgXVEan+pAAAgAElEQVTvrMKIuJF4\nfHIhrkpIRkJsArM4o/yIeCDF+6rvr0W8NR6LU3Ow7MgSPFX3JO6vzkJ1oxN17lr8uj5oHZN5/T14\n8OB87Dq+E5lVDhbMFgAjHxLjRwEIEgFlM3bBbkvC5slbkZyQwtpCbMssZyaynJnYdXwnaw8ebq8L\n7Z1tWHQgm1nhUDun2Sdg76xXmMI/HJITtMF1gVDZAYIn6LdPK8PP0h7Gzhn/hXU/2Kipk+wdM3nz\nqHPX6gbSPdXShPyaPNZ2VNfdGeXYnVHOfufJJqqX6E6S0pORCvy15IQU5ioUAEt/1ffXouzE8zjV\n0gS7LSlIHnzwW2y85Qk8/W4xU5KKfUvpEmFalF6skeeCtKXsGYtFW1Y+dt26o2s0Yye/Jo8FWeax\nefJWjZzTRgMAOgM+uL2foMFTz8aabOzy/6mNi9KLUVi3BW6vC9Zoa4iFZlF6MbY1lLL6pNkn4Nnb\nd8BuS8JDBxbi/uosPFX3JJYdWYLlE1dq+hIIujxt8NSzduL7guaC6kYn7q66C9WNQevOmCgr/u2m\nPHjamvHgwfmobnRi2ZEl8LQ1IxAItjk/r9BPmVwkJ6Rgd0Y5ZozJYDLE9wPf9skJKbDbktDZ5WN9\nYLcloWL2q9gzswJ2W1LQreWXZJndlsTa0O11IcuZqZF7/hpPjtG9xQceYPMV/x3g+55+F+d9QD62\nedkU24LmEPF7I443UbFvFBCbL58RwqXTXZj5fipcOuD7u8FTj7iYuIjTONS0H2fOf4GMa2fhvP8c\nHv5OAUqmlqK9sw3PNJRg9pi7sezNAri9rhACnOZU/hpdDwfZGDAjt5HIthoPCgoKCgoKCkagtUJq\n4nhsv6MMCUMSwpJmABhpBgTJsg5/Bz71uvCr/y1E0tBkFE8pRYOnHk/UbcT8cYtxWbTxGo10Dmn2\nCSiZWoprL/86nrvjhRDSjN/3ivsUszC7X5G9x+8V+wpG67me7qnMtkVfrSVl5VDr2d7DxdqDKygo\n9A++UsQZfYTr3LWmLL546H1I9AiKcBOlqKTVU+yQAkl8psFTj0UHstHe2aYpHymdeBKnfFaFxiqH\nni9IW4rcQznsb7JU2XRsA0bZrsS2hlL8+3cLsPrm9RgWOxyJ8aPw8mwnymdVIDVxPMtvTmUGU9QT\n+VZYtwXLJ65kMdEqG/ei6LaSC1ZHXT6c6zyH3e+/yMiSky0fYv3v12jIAlrYUflJKS6SHGL77c4o\nR+b19+Dnr/8MNScPhyi782vyUHr7c6iY/aqUFCIiLZwliviOzPKNiAK318VIGABYdCAbcyozGCFh\nJA9mPrriAlcPsphq/PNi+fNr8uD2ukLcGGZWOdiilsona68ZYzJYfD26t+nYBg3JVTI1GNNm7Mgb\n0NR6UlPn7Op5qG50sjapc9ci73AOI9eIINk8eSs2HdvA3ouJsmrK4fP7GGFisYCRbskJKVg+cSWT\nXco7u3qehtAkebDbkrDsyBKU3v4ctt9RhnVH12BOZYZmbNFPsd9E8ttuS2IEEN/nRCStO7qGte+m\nYxvg9rrwzLTnkDw0BbvffxHpyVOx6dgGOCoyWDvYbUm4Mj4Jq95agdxDOShIWwogSHSR+0aSxUfS\nVjACb3FqDpa/uQTrjq5hrlE3T96KdUfXoDPgY4T1siNLsOv4TtxddVcIeSYjTyk+Hck6EbXifFQ8\npRTWaCsb4wRHRQbyX89FS8dZdq/BU4/8mjzkHc6Bz+8DAEbO5dfkob2zTXNYgPqQ2kbmSlZ28EAk\n1sKNUxG8cl82JkmuxDTMbNyMSHIz6fQUemULB7WBGFyg/nJ7Xdh1fCcWHcjGef95WBEbcVoBBPDK\nh5Xwdfmw6dh6VDe+hub2T3HFkBH4xhXfwOiEa1ieIrmuN976cwyI+SgoKCgoKCgoGCG7eh5Ot5/G\nF+c/N/1OrGUIAODDMx+iuf1TwGLB+ls2osIRPPxYWLcFG295Akfdb+mmQYca6XcguB/dM7OCHXQU\nnyc9DA+z6/hI9isDCXrrue6sJ8WDmGbb4mK3ldEeVq1neweKhFRQuLTwlXLVSAr3QAAs5g9grADU\nu8crciJx20X3zLqB5J+l8tC1grSlmjg/FDuMSAqxDqILwjmVGfik9RRzyUhxysiVWc3Jw1j+5hJc\nGZ8Ef6ATl0XHMZdi2dXzkD1uAbY1lMLn92H1pLXMtRu5ZeTdHFJZyEWAp60ZC/ffjyRbMiocTjR4\n6gEgJIYTKdeJIOED4erFdKM8cg/l4KOWv+MqW0qIOz2qK9WlOwsho77n3TaSqzwibYCg67s2Xzvi\nYuI0btr4eshkIFwZjeQu3H09uaQYVGJ78674KE6YeFpNlueplmD8K3LjmV+Tp4kxxrvq5N1xUnvO\n3efAh2f+jqo51Xj/9HtY8dYj2DvrFXaveEppSCw2fuwTZO4oRVdgYrl5sod/tsFTr4mlJrYnoHXT\nSLLHx1eTuSzl3TDmHc7RtNED1f+KT9vceGDcIuz6ywuwx1+F9bdsZOMw73DQlWQgABbnbHFqDrY1\nlGrirNF4AoDM6+/BpOQfaIilzCoHzvnbmdsPfhzycQdl/c23LXDBfz5Zf5H7SbHdKQ7d6klBv/00\nJ1EctnP+dhaP0e11sQMAJVNLWT6iHPHzg2zuF8k+PTe5ojtPM2My3Hzf3XhKPRnvkaA79ZS9o1dX\n5W5oYEBcO/FrjYX77wcAOK77Z+z54P+zd+5xUVfpH39zl+GihuAghGbmnWhFTEWT1VCUTMzFbe0i\nKaGUUoGpuKB5WTBvu2LGRmZ2s9JfCRqJoSzlrTR2ZdnKsjUjlZGJakVAGWB+f0zn+J2vM1zUSuv7\n6dUL53s533M/z3k+53mezZeVvgsumDDJ386OLnRq14kVd6wh89AyYm+5l7zjb9t1DWyvT2mbUg0a\nNGjQ8FuDJjtdG7icGGcAc/7xOHtOvtfs8zonD+oa62jv2p4f6r9nWt8EIoJ+DyD3e2KPbEv3o4a9\n/Y3Yl9mKg92a90Ua9q5djqx2vct39vZFrdm7/RzuEq/3+tWgQYOGtkKLcaaCLQFGTWYI2FNo2lu0\nlDGFlKROW2FvsbKnxFcvtLYUuILIUMYdU5IPgtBaXbKC5cNXMbMwnkZzAzsm7gKQcZVS980hc9gq\ncsqypRu4JQcXUddQxzv3WJ4tLi9iwf4nreKAifqM6zud+ftSuNGz6yWkkFBaG2oqmFkYz98jNwAW\n13KBnkEy1pMyLfEdkW8hGNqqP2X7gMUyL/PQMqt6Ude/vX+3tg1tvVNiOEzi7nicHVxkHLeHC+Pw\ndffD3dldurRUKvhFmW0pnq9UuGnt+y2d3LdHLoh6VhMS9ohfZdw9EbsKLsbjaq6/FxzPZ+GBBSwZ\nmsHD78UxLyyNiT0nARbCxcGBS4goNZEJF0kc8X3lt9RjXMQCTAmdS0LhQwR6Bl1CvDVnkap0EwlY\nbW5EucXGRxCJIqaYmjgU10RcuK3H3iAhOJG//XM1Z2oryIl8UZbbUFNB4u54su/cYFUGMZaUdS2s\nWPW6LpJoE0T6w4VxLB+2mvv6PWjVHq0R7pXtq47/tu2Lt5gV+tgldVZmLGXBvrlU1p5hw+iX5OYw\nJm8cM4Nnk3VkNS9FbZbljN0eQ4PZJMeb0n+/qG+RtjqGor3529Yce7kbmZaIsraO79YQCFdr49WW\ndNRt3dqNtab8uTZgT3YK8Aqk4Hg+6fsX8PiAFJ54f9Zlpe+AI2aaAHjstjmE6kOpqquit08fZhbG\nY6g9zfORm1odW7S5QyDXGsH2S39fgwYNGjT8uqDJTq1DaWkpq1at4pVXXrG6XlRUxPr163F2dmbS\npElMnjyZ+vp6UlNT+eabb/D09GThwoV069at2fTbGuNs+fBV/OmdP/BDfestzl6Oep13/ruDHV9t\nk7HAxX5OGYu7td9X729it8dw8lw52ybk290X2Xtfea+lvcJvjUC73Lxfz2XWoEGDhmsVWoyzVkBp\nbh7gdTHmkK04ZmoXXQKnqk9Kpbb4PX/vnMsyp7a3GAZ4XXSzqDw1JPJ2qvqkVOwLyxfl95UkliiD\nsOwoMRyW7tf0Hv64OrlIP9gBXhZ3dX/752o6uHVk/ZEs6hpqqaqrYnXJCqb0foBvz1eyqWwjU/Jj\nySnLlqRZmbFUujBLCZ1LTlk2el0X1o3KlveEMlyQZsnFSbj+6BpP7+HPtgn5rBuVfUk8pk2fviDd\nxsX1nS4FNXuko4h7JZ6J6h5N6qA0ZuyeZlVftpRqyjpW16u9tmrunYqa0ywcspg1EVmWeh+2Gi9X\nb9IHL2br3ZbYTcXlRUzMiyZ2ewyGmgrpZvFqujVQ51FdZjWm5McSuz1G/q+MOaN0n6WMQba6ZIVN\nl4OiD8JFl1oBXoEypproy2AhgybkjmXyjphLiAYxHk5Vn5TWUWBx/fXSpxutLJS2jM+1anPl2AeL\nK7/E3fFMyY+Vcb6Ky4vkt2bvSZTuDAuO5zMhdywPvxcnNybCXanIn625QqQlrgn3hGCx8hKuJ0Xd\nKv3Nr4nIsnIzmVycREroXEL1YTKuYXJxEqmD0hgSMBSAiKCRLA3PICfyRSt3oMbaSipqTmOsrZTu\nMYN9Q6xcuYoyBPuGcKNnV/4euYF1o7IlcRjsG8LyYatZsP9J6eZWOT8JcspWvxNzpnBVqoz/JoJY\nixhr4p0p+bEsObgIU2MDZrOZhQcWUHA8/8dYa2ZC9aEEeXWzyvvWu3Nlu4i+JeK5CbeuIm3helSQ\nlLbGgK253V47twbKd2yl01bSzJYrV1vufq/GacXWpqNsa8Bu/CltI3h9QbRXsG8Irk4uZHy05LLT\nMtOEAxeDTz5WNIvk92eTuDuepeEZ3OjZFV+dX4uxRe2tafbuNff8z4Ff+vsaNGjQoEHDbxHPP/88\naWlpXLhwweq6yWQiMzOTjRs38sorr/Dmm2/y7bffsmXLFnQ6HVu2bCEtLY2lS5detbwIHc/Rqs/4\nX/0PbXq3uPwfHDpzkIT+j5JTlk1c3+lWhyGVrvNPVZ+8ZG8lvm/L9aJyH9XcYXDxvq0QF63ZK1yO\nLHS9y0+Xu+fR9koaNGjQcG3hN2Nx1lqoLZbsWZDYsxS4WidE7JE7gLSucHfWWVlWGGsrbbpOE+VS\nWogorW/E9djtMZRXn6CLZwBLhmaQvn8BZ2oryBy2ilUfP0194wW+PW8k/fYl0sJn8o4Yyqu/lqfE\np+THMjpoLKH6UHx1ftI1JMDUgimsGbFOWrJV1VWRU2ZxrSaU9EorLmGVJAim5PdnSysTe/Ul6kh9\n6smehYz4DiC/1ZIVkb1vq90XCHeVohzz986R7i1TB6Wx5OAiTp4rJ3PYKnzcfVh4YIFVmypd4bXW\ntWdr+5Oy3Gp3WMJqROkeMHVQmoxPp35e+Y7aqrO5sXGq2uKysaGpgczhK/DV+TFh21g2jHnJpttD\ntUWYIEgFKSSs+nInvCtJOVsbAPG+sEh77ZOXWbD/STLCV9Lbpw+Ju+Ole0OABrOJJUMzms2TPWsf\npXUVIK1ClZsd8VfZJ0Xdnao+yfhtY3BycGZq32msLMkgI3wlPu4+LDm4SFozqsea0n1mfaOJpeEZ\nLDm4SFrjKfu6ukwin0p3jsr5Rf2cqdFk05Wnsi+UGUutylhiOExM7jgaaWJHTIFVXgqO5+Or8yOp\nKJFHQpJY+6/Vsn4ndJ9EXPA0K4tXtXtL0fdEXSvdugqLM3suX+2178+JyxnPymu/5ClFW4c9WjOH\naqemrw20JDu99snL5JRl4+HkwcfGQ5f1DQ8nT3QuOqrOf0sTTbR36cAb49+ysiS31ZdbI2s1NwZ+\n6dO7v/T3NWjQoEHDrwua7NQydu3aRa9evZg7dy5btmyR148ePcrKlSt54YUXAMjIyOB3v/sdH330\nEeHh4URGRgIQERFBcXFxs99oi8XZxLxo3J113Ozdg4IT+TTQ0KbyODk4o9f54+AAz4/eJL0JZR5a\nJvd2E/OiOXH2KxbevpSJPSddVbd/bZHt7b3fFm8BLb2jQYMGDRo0tBaaq0YV2iLA2FKuKImOtsad\n+al9EqsJJUDG+Dl5rpy5A/9M3vG3W3SdJoiDJQcXWbmcE7GEBPEjMLVgCum3LyGn7Fk6trtButkT\n7wjl9di3RmGorcDZwZmNY17BV+dn5WIv2DeEmNxoHByg4txpnh9tIdyULvqU5UwdlEb6/gW4OLow\npfcDl7h1E8/acgfYGsFMqXBXt7fShV9L6cFFN3RKgk6pnBeWdt+f/46O7W4gITiR3j59AEvMs6//\nd0KSRmoSTp1nZXmvxH2cqC8BW77Sy4yl0j3hulHZzbpnELBHyqnr/O5tUZjNZhwdHZkfls7rn79i\nM06aeE9Jrgh3g4IECfYNYfKOGPm+IEmaI89E/p4pWcvTh5fh79kFZwcXGSsLsCIB1cSuMsabvXg8\n6ndEX1C7ThX1rYzBJazwGpoacHZ0JvHWJN4r30ldQy0NTQ2khM6T7joAln64iPLqr8md8K7Mu5Io\nEhaigsRSt7/Id+z2GExNJlwcXXj0tiRJcNtyeSqg7qclhsPM3pMoLUnV/vfLjKX46vwArFx+ztg9\njefu3CjJUIDpBQ/i7dae7y5U0cUjEG83bxKCE2XZMw8t4/vz3/H9he9krDd7rkOVJHdzrhp/7o2a\nPdK/uedtEdhtiT1wNXElZIWm/Lk20JzsJGKk/qnnA7z46fOYuXzRMVx/BwcMe3HAAX+PADaM2XSJ\n2yDlmgwtj4ufQ/76NeOnmB80ZZcGDRo0/HTQZKfW4eTJkyQnJ1sRZx9//DGvvvoqf/vb3wBYu3Yt\nXbp0oampidLSUv7yl79QWlrKn/70J/7zn//g5ORkN/3m3FwrIVzOT+g+ia3HXsfV0Y0LTedbXQ53\nJx2N5gZGB43lnRN5vBz1ujzUWl1/Fi9Xb6lbOHjqACtLMnjuzo1Wupjm8teae/but3a9b44c+yVl\nOE1e0aBBg4ZfPzRXjW3EqepL3fKJ6wFeF93IqS1AWsLVco2lzqs6f4K0AqRLo6135zKl14OsLMkg\nJXSuXbJCmPKbGk0sPLCAb859zbYv3pIEyeqSFfK5hMKHSN+/AIDOOj1DAobi5tSO0UFjmb93jkxL\nuIYrM5ayc9IeFt6+lA6uN5B5aBnG2kpJwAmFu85Fx2O/S0Hv0QVfnR9lxlIm5kUTkxst0ywzlrIm\nIstilVVdzvnGOrYee0O2nRq23AHaq0cB4S4PsGpv8bxwO9ac20Sl5ZbS/YFwxyBOgIGFxEgITuS7\nuipGB41l3t5kjLWVzN87h/TBiwny7iZdbarzoyyPsp9dSZ8T7yvLIggWZfsK94Rq0ky0hTo/oo8K\n0sJWfYk66+p9EytH/A1f9848/fEy0gcvtlmWEsNhYrfHyG8qyablw1ex9MNFGGoqrEiz2O0xTMyL\npuB4vpULC9EWyjxtPfYGvjo/su/cIOPyJRcnkVSUKN1PKvNgqKmg1lRLQuFDlBlL7dav+KucWwBZ\nv8LiTNSriL8mvqn38Gd+WLrFMsO1A++V7yR1UBpmM1TWnOHZ0izi+k5nxu5p+Or82DI+V5JmwhWj\n3sNfuvQw1FTIujPUVEjXm6Jvi3yuG5WNq5MLpiYTOWXZrInIku4vxXhWEq9KCyPlODl5rhxjbeUl\nxODEvGjpclMQWIaaCjIPLZMuYBOCE5mxexoAXbwC8XT1orNOz4Yxm9gcvZWIoJEsH76K1SUriL3l\nXr6rq2LewDRcHF0k6abs48r8ifHVkh9/ZVnUfehyYW8eiSu4jzJjaatJM5E/ZduJulSPa1vluZL8\nNpcfJbRN6PUP0aah+jAywldSYjxM8A23AuCCS3OvXgIXXAHYb/iA2Fv+RNrti3Fxcmb2nkQKjufL\nvipcqgpZprl1TjkPXc0T1b9WNDf/XM1y/xRpatCgQYMGDVcDnp6e1NTUyN81NTV4eXkxadIkPD09\nmTJlCoWFhfTr169Z0swW7K1/eg9/5g1MY9uXW2nv2kGG/mgNRgWOprNHZ+7vHcc7J/JwdHDky++/\nZP7eOQzRh9POyZ1gnxCeeH8WibvjmdhzEs/duZElBxeRVJRotVcoMRy2Cr2gzLd6f6F8T/y1d+hc\n/U5z9WJrv3Alh4CvBL+UvKLJRxo0aNBw/cDpqaeeeuqXzsTVRm1tvd17YnEPDxjO/X2nSoVvdf1Z\n4gruY1RQpFy0vd28KTEcZlbRTEYFReLt5m0zPeV1W89cLoTyP+qmcTJ/fu5+LP1wkcxnP5/+zN87\nhw6uHXn642Wkhi1kSr8HLklHvHvfu7EcOL2PdaOyiQ+egY+bL0s/Wsjbx/6PrV+8QebwlQzQD6SL\nZwB9buhL8ck9FH69i2/rjHR09aHoZCEHKvYxI/hRVhzOYHKve7m5fQ8qa88wtWAKQ7sM4wb3G3jt\n85e5r9dU0g/M561jWwj2uZUeHXvi7ebNrZ1CSD+QioMD7PpqJwcq9jMv7M98WHGQXSd20s6pHYl7\n4gn1C2OQ/nYKvn6Xx383h/hbE/B09ZLt5O3mLcsW02MSAV6Bsl6U7WIhAacxumuUVT3O2D2NjGEr\nGKAfCMCx7z+ni2eAbMfRXaOY1HMyvXz60M+nP71+tA5Torr+LG9+vpnhgSPo5dNH9iVvN2/MZjNv\nHdvKmG5jSSicxhtHN3OwYh9n689Sfu5rakw1TA+ewf19p9LZQ8/kXvdaCYzN9aWr2edKDIepOHea\nXj59GBUUyQD9QPr59CdxdzxvfbGVqJvG4enqZTUOSgyHeajgAXK/fItbO4XIsos2mVU0k8H+Qy8Z\nO8p69XT14o7AEfT3vZXgTrdypPJfzBrw+CXlOVV9kvvfvZfTNSe5q/sEmU/xzXOmc/z9yHo+OFXM\nvb3vw9vNG283bwI8Axh/cwxLDi7iuX+vZ0Tg72X7VtefZVLPyQR4BVJdf5aeHXtxyPARU/tNo8xY\nSvr+VBKCE/mX8Z+M6TaW+/tO5av/Hee1oy9TV1/HK59t4m+/f4Z7e9/HHTdGcGunEDxdvezOEaLP\nAnLc6j38Gew/VI7n6vqzJBROI/aWe4npeY98vo9PX3adeJcXxrzM1H7TGKAfSHT38Yy/eQJjb7qL\nMd3HcUdABKH6MNnvEgqnMTcslc4eeibmRZP337fJHLaSmzv0oINrR/r73kpC4TRMjSb83P148v0n\nuM3vdyQUTsNf588dN0Zwm+/vuOvmuxnTbSyh+jB6dOyJX7vOZP/7Gfr59CehcBpvHdsqx5UYf6Kd\nxRyy5OAidhzPZYDfQHr59MFf58/ekx+wduR69B7+xPSYhKerFwmF02hoMjEi8Pc8UTybDysOkjoo\nnXt6xeLh7EFc/+l8cLKYMd3Gynng/r5TGew/lIxDi6k2VRPXfzqzBjxOz469WF2ygn4+/a3GtHp+\ntwf1s8La5o6ACJmesn1bMwbV64x4R2xCxZwU3f3uS75hL3+A1bo1KijSqh8q50cxR7YFyr7blvpq\nKzw83C7rPQ1XF2rZSdn+1fVneepgGhEBo9j+1TaAH23OWm951kSj/PfR7z/j/ZNFeDh70mhu4PWj\nr5L35Tam9HmA8IDhjOk2lvT9qYzuGiXndDVE/sQ4b+04bO45W32+tWP8Woe98Xyl49cWfoo0NWjQ\noEHDRWiyU+tw9uxZdu3aRWxsrLzWvn17nn32WcaPH4+joyNZWVnEx8fz3//+F19fX+bMmYO3tzfH\njx8nKiqq2fTVspOt9U/onz4yHOCH+u/xcPakprFGnZRd1JjOYaip4JvqcmobajBj5sDpfQzwHcib\nxzbTaG7gn8aPmdY3gbmDFtDLpw/uzjr+74s3MJthcq97qa4/y+QdMbx7PJ8mcxN3BI6Q+w0hHwz2\nH8r9facCltAgYp8/q2gm/Xz629SJVdef5a1jWwkPGC51A0J2s1UvgF1ZROSltfJca/YoLaWh1B/9\nXLgaedegQYMGDW3DlchNvymLM3Gyw9RoIrk4SV4TVkfqky7C6kh9gl95/2qeUFGnY6ip4OS5cgw1\nFdKCSViLCHJIWNzc1+9B1oxYd4krQyEQLB++iqju0eROeJct43MJ1YcR4BXIxJ6T8HPX4+rkSid3\nP2nxBOCr88PUaHERd0M7H7JLs0gNW0gnNz96dOzByXPlFJcXkVD4EL46Pxl/zFfnh6ujK6H6ULp6\n3cRfRzwj3Q8KnD53isd+l8LWu3NZE5FFb58+NJotfr593H1Iv30Jmz59gYigkSTdlsLWY28we4/F\n+kdtiaV2Z6i0EBNtqDzVtXz4KoJ9Q3j77ndkvgqO53PP9rt47ZOX5XNKS5r5e+fYbWez2WKdJE5w\niVNXwvJK7+HP5uitrBuVzbYJ+WyfWMCOibvIi9lJqD6MMmOp7INXy6qltZBuI3LHWrnmBEsbnW+s\nk/1PWc/JxUk4OEBCcKIsu9LaT1gY2RpT4veU/FhmFsYzMS+a1L1zWThksd186lx0PB+5ycqiT3wT\nwFfXWT5bcDyfguP50lpp4ZDFODg4WOVBWLyJNhOWgcXlRTz8Xhzf1X3H+iNZJAQnMn/vHMqMpWQe\nWsaUXg+y8dMcJnS/B72Hv7SiSi5OktZoSigt8gBpuTazMN7KUjHAKxBDTQXV9WdZ8lG6bAthhSQC\nNotyC4i6V1pOlRlLaWgykb5/AWXGUupM58mJfFG6SU1+f7a06Fw4ZDHz96VQXn0CY20lZy+cJaHw\nIQqO55NUlMjsPYnE74qjxHCYU9UnySnLlm27OXqrtKATlpmGmgom74iReQz2DeF8Yx2nqk+SVJTI\na5+8LGOtifcE1kRkkT54MatLVkgXjc+WZvHaJy+T/P5sjLWV0oWust70Hv64O+t4evgaK6u6lNC5\nJBcn2TwlqR5ntsa2st+G6sN4++537LopbWkNUFum2rKCi+oeTUb4Sit3ls3BniWOMj9qa9C2oi0n\nQDUF+a8P6v6zfPgq4oKn4e3SHgAzTZeV7kDfQUzqMRkzZnDrqGoAACAASURBVHzcbiBj2Arau3bA\nWHuGMmOplM/gohWugHJsiDw1tz6r37V32lmZpr0xer2jufH8U4xfbU7QoEGDBg3XEnbs2MGbb76J\ni4sL8+fPZ/r06dx7771MmjSJzp0707VrV1566SX++Mc/snbtWubPn39Z31Gvf0InkBI6DyecON/Q\neheNAJV1Z2ikkZ4degNwV7cJdNL5UlhewORbptDFM5CFty/loGG/3PsEeAWyZXyuDMkBljjX60Zl\nSzf6Qh5SylMCLk4u0suR8NJhS4YQHlX0Hv7yHXvrv1KebE631hp9yJV6GlDKdz+3vPJTeKnSoEGD\nBg0/Ha6LGGdNTU089dRTfP7557i6urJs2TK6du1q93l7vqbVcZiUihF7i7cy3pC9Z66WayBbvp2V\ncbaU31PHeBJ/leSGiBGyfPgqq3hOSpQYDpO4Ox6zGRwcIPvODdKNXez2GL459zUzg2fTrX035u1N\nZn5YOks/WshLUZupqqsiImgk47eNYcfEXQBWsZuUJJyhpoKYvHHkTngXY20lCw8swN1Zx5qILJKL\nk6g11VJRc4r5Yek8/fEygry6kj7YQqTM2D2NjPCVrP3XatyddXbjZokYY8LdoHANKYQvvYc/U/Jj\nqWuoxd1ZR+qgNHx1fkzMiybQM4gpvR9gZUnGJQpypRLaXtuJ+2rlmlCWpw5KkzGXlG1pqKngnu13\n8WToAoYEDOWe7XfZVNC3hCvphyWGwxyt+oycsmxMjSYpYBccz2fJwUUANt00ith6DWaT7DdKl322\nSDNlLLASw2GSihKprq/GUFtBoOeNODk4kxtjIY2UZKitv8oYYxPzojGb4fEBKTzx/iz8Pbowd+AC\nNn36goydJeLwiVhzgoRZPnyVzOOE3LHc0M4HN6d2ODiAu7OOhOBEcsqyqTXVsjQ8g9S9c5kzcB45\nZdlWscjUY8xWPYjvT8yLJnPYKjZ9+gLLh6+SfTN1UBoLDyxg24R8ArwssdeUfbLEcJgJuWPp4hmA\n2QyN5gbaObnLNhNE6Mzg2fy9bB3tXTtQWXdGBoguM5YSv2sqG8a8xJKDi2QsN2NtpfSTL8ZFcnES\nsbfcy5KP0unmfRNLhmZc0odFmWK3x9BgNmE2Q8W5U3Rt340t4y0uL0W5AB5+L44b3H3YOOYVjLWV\n0qVi5qFlmBpNuDi5yDa1WP4tYGl4hpxrhBLd1vgU7SDiugGyTeBiDELAapzZ66/2oB5rrRl7za0l\nSsL/nu138dydG2UMussZ08r8/BKbwcuBFqfjp8HVkJ0ERPy8uL7TSXk/iabLJM0E/Nw7o3fX8+/v\nSvF2aU9tQw2d3H15MepVOW6F+2hB1tuL4decDAeXjjdoW2xQe66JrnRsXS/jU4MGDRo0XHvQZKdr\nA83JTgJiH/D9+e84U3sGMLcpVqwDjjg6OIDZ8qave2faObej0dyAl6u3Vex5uHjAtDl9hi156Er3\nEK3dE9n7JjQfr/lqQ11H6nxqMtq1C619NGjQ0Fb86mOc7d69m/r6et58801SUlJYvnx5m9NQn5xW\nTrTNEWJKpWtLVglXArVFj4Dew9/qhLQgNGbsniZjIylPAcGPVkS50czekyiV8uqyib/JxUmYGhtY\nGp5BQ1MD8bviJNmz9e5cZgbPJuvIapZ+uAg/XWeGBAxlzYh1+Or8mL83heLyIip/PCU+MS9axpTK\nPLSMKfmxlBlLmZIfi7G2kiCvrhyt+oyEwodYMjRD1u3m6K38PXIDfrrO9OjYg9wJ75I+eDGZh5bJ\nmEcRQSMl0aYW+JT1JyzwVpeskFYyycVJ8gT7mogs3J11xN5yr7RIEvG7ZoU+ZqVMF3UZV3DfJafe\nlXWp7E/CckhYQm2O3mpFDBhqKmS+puTHovfwJyN8JU9/bIkHd7mkWVtOxNt6Lqcsm9RBabg4uciy\nRnWPZt2obBwckKfXlEK3sbZSvq+0EFBaWInvqckNsJAfW8bnsnPSHv464hkyhq3gTG2FtMBTx5ZT\nl9PUaCLz0DIMNRU4O7jg6uRCb58++Ht0oaruW3r79GFT1GvSAklYl83ek2h1gk7v4c/sPYkcrfoM\ngBV3rOHvkRtYMjSDNRFZF+vG0YWlHy5izsB5zN+XQq2pluLyIhmLTH3Czt5pslB9GNsm5BMRNFLG\nkzPUVFDXUIuvzk+SZiWGw6wsyeDJ0AXWY9gMD/aZhovjpfGF9B7++Ht04b3ynSwftpqXxm5m4e1L\n2XrsDWJyLdageRN3AvBN9dckFSUCkHloGUlFlnoJ9g0huTiJhOBEJvacxMtRr5N95wZplWfrpOG6\nUdm4O+t4fEAKeRN3ylhzYBlzUd2jCfYNoZO7H1V133K06jNm7J7G6KCxrC5ZQUJworQ+zTy0jIl5\n0cz9IJnT504S/95UVn38NDG50dydG8XsPYmyT4k2LTOWMnlHDLP3JDJ5Rwzxu+IkOSrGpKhr5ThT\nWgTaUq7bsiBUn4RsrTWWvbVEzPnCqi2qe3SL8ZzsQb3h/bVYymi4PFwN2Qms418+ffgvV0yageX0\n9JxB85l8yxQeHzAHRwdH3Jzaoffwl0R75qFlxPWdLmNCijzYmoNsjVWlBbjy2bae9LV3UOdKxlZr\nrN80aNCgQYMGDdc/ArwCSR2UhrG2EjNNbSLNwEKWTe0zHQcHB5poourCtzw+IIUdE3fJPa3yW+Iw\nnjJ+rNBN2LLcV+oxlPfUz7emnK15RqnzUstT9izbrjaEbGurfNfCHupqf/vXJGteC+2jQYOG3xau\nC+KspKSE4cOHA3Dbbbfxn//857LSsaX8sAX1ZNycYvVqQWlJY+vbcNHNmyCThEWVMl9T8mNJ3B3P\n6eqTnG+sk1ZAQoGsNktPHZRG1XkjVXVVVNacobLOQEJwolQ2v3tiOwDfXaiioamBpCKL9c3Rqs+k\n0OeAxe+au7OOnMgXieoezeborayJyGLph4s4e+EsmYeWkT54MTll2XTW+RPsGyKtrQw1FRhrKzlT\nYyD+vakYaytZXbKCNRFZbI7eSlT3aAw1FWyO3ioFQ6EUUwt/YCEPlO4GRF4CvAIlwZF3/G2eu3Mj\nofow9B7+UjGntEApMRwmuTiJuL7TrVy+KdtMvWgLIUwphArCYd2obOJ3xRGTO47i8iJMjRb3kd+f\n/x5/jy5kHlp2CcnZGjTn8kANdZ4vkqcmgn1DpBWWuC/ILbXSv8RwmIcL41g4ZDHbJuRbWSEJUkHU\n4eQdMcRujwG4JH3xzqZPX5Ckka/Oz4oEFWkB8neAVyBb784ldVAaofow1o3KJmukxSru3Xt2s2H0\nS7IuRXuE6sNYE5FFg9kk74l+Xl59gr/9czVdPAPw1fkRvyuOhMKHrMjBhUMW4+xoIef0ui48PiCF\nBfufJCV0rvyOmnBRzxmi/oSFWeahZSwfvgpjbSUV505LIkvU/XN3bmTrsTekK0S9hz9+Hp3ZeuwN\nFg5ZjLuzO+tGZVtteLZNyCd1UBo5ZdkkFycxJGAoqYPSOH3uJIm74wFYXbKC50dvkm5b10RkIWyP\nDTUV1Jpqmb83hck7Ygj2DZH1YK9/hurDSB2Uxry9yRhrKzHUVEhLNKXLkA1jNuHvEUBE0EgywleS\n85/1TOh+Dwv2P0mZsVTmpc50nu8vfMcjIY/x9PA16FzceXxACo44snDIYorLi5iSH/ujxeJZ0vcv\noNZUx7pR2aQPXkzVeSMJwYnSSiUmbxwLDyxgQvd7JGGudi8q+q1y/NsiudriGk4JobBXutpV9wul\nK1JlP1I/ZwutWbeUz/6c0DY2vwyupuy0Keo1fHV+fFtrvGr5+/L7L9l/ei9PH17G/LB0/h65AUNN\nBTN2W2JNmhpNVu5hxaEYeySZeqwKd7K2xsCVKGTsja3W9HN7sp09xY2Gy4NWdxo0aNCg4VpCsG8I\nvjo/wKHFZy+FmaKThSwYtAi9zp+Vw//Kpk9fkB5PxN5cuZ947s6N8iAzcIk+Sfxtbk/zUxEUyn2r\nPfePVxO2Dik1t09q6wGrq42rXe+/NqLpl24fDRo0/PZwXRBn586dw9PTU/52cnKioaHhitJs7rSv\nLYWGPQX41YCazFIvBMoYUwJKN4giDUGELRmaQWdPPe2c3OU9IRQpFbfCnWJO5ItEBI1k/qB0ungE\nklOWLUmj9MGL8XHzJdDzRlbcsYYt43OlFU4XzwB83H3IjXmXqO7RpA5Kk2SegNkM7s7u8t7m6K0s\nDc8gwCtQWljoPfzJPLQMH/dOtHftQLBviCRORD4FwWav/tR1qffwt6pHQYwp7wnXfQFegdIapeB4\nvqxrvYc/pkYT649kSZJLCVttpbR8U0IQDsa6M7R368D6I1kAbCrbyJKP0nmwz7RmfYI3V257J6Zs\n9U91noVyUbj6U9ebeEZ9Sv9o1WdgtsTBU1rciRNuZcZSWYf1jSYZ00p5ikypQJzQ/R7m753D0arP\niMkbJy3zlPGswGLZJhSkZcZSZuyeRsHxfOJ23k/i7nhOVVtcIS45uEhaIon2OFV9kqNVn1FRc9qq\nL+k9/Onq3Y2l4RksGZqBsbaSqvNGMoetkv06ofAh0vcvICE40eLD/UcCTVgItXR6Tl33SqWu3sPf\nishSItg3RBK/wjLNy9WbhOBEgn1DcHZ0sUlmiThhyphgDg4OmM3INlbOIcbaShwcYPYeS1yzv0du\nIDfGEg9R1LOwAmkOZrOZBfvmEpM3jjJjqfR1L+pb7+GPzkUHwH39HiQjfCWzQh+TmztRZ/+r/57I\nG6PI/ncWTx/+C/WNJiKCRpIb866lH7w/m4TgRLJGZtPOyZ1aUw3fnq+UdSbcYIr0lg9bjbODC1uP\nvcFzd26UZLmYC0W/LTEcthrD9iwGr8SNonIuEvlTzu3KZ1tLhNm7b480+zk3T7+2zdr1hKspO4n1\nYcHti+jo6gNcPDTTGjjggAuu8vfkW6aw+egrck3cfPQVkouT0Hv4y3l13ahsqwMzSst6AWW/UssI\nyrXpakItE4prLRFgtsZ0cyScNm4uD1rdadCgQYOGaxGeLl50dte3+T1HB0ce7DONzUdfASAiaKTc\nZwMyPqzyIK3Qu4gDROK6Mg653sNfWvIr10xxmFC9v20LWqOXEN9obRqXA3G4Sn3AqqVvt1Z+bCmP\nl1OGK6n3ltL7teDXVBYNGjRc+3B66qmnnvqlM9ESDh06xA033MAtt9wCwMaNG5k+fbrd52tr61tM\n09vNm1FBkYCFHBsVFIm3m7fVffGMemK2dx0si6MyndZAnZ7yfaHQvSMgAk9XL2YVzWTliL/Sy6eP\n1Ten5Mfir/MnofAhDhkO4ebkxrpR2fTy6UN1/VliekySi++sopk44UTinnjeOb6d4m/+wRtHN/Pe\n1++SdvtTjO4WhYeLB7tO7MRf14WCr/N5qO/DvP75qwz2H0qoPoxbO4XQo/0tPPH+LP7YawoV505z\n37ux9L2hH+7OOibmRVNUvpu0wYvo3+lWsv/9DH7ufpgx88DOP3JHQARdPAPo4hmAt5s3t3YKIf/4\nds7UGujVsQ/hgcNl2ebtTSEldB5juo+TZa6uP8uknpOt2q+6/iwBXoGyXUV9ivL38ukj69nbzVsq\nV/r59Gfph4uI6zudJ96fxR0BEfTy6YO3mzdRN41jcq97mdzrXpvtXV1/VqYl2k1cU+YzwCuQinOn\nef+bYnTOOtaNymZc97vY8J/nuLfn/fyp730kFE5jdNeoVvUfkXdRHnV/VN5XpmdL4Sf6unhnsP9Q\nungGyDIpy+bt5k2J4TAJux8ic9gqqzYB6OIZQJ+OfVldsoKYHpMA2P7fXP58+yIG6AfKNJT52/Fl\nLn/eP5eE4Ed45bNNtHNuR4/2t7Cq5GmWD1+Fp6sXAV6Bsi5Fuz9RPJunh6+mqq6Kt77cwrkL5xjS\nZSjzP5iDgwNEdb2LxR+mcXP7W/Bx9yF2ewxvf7mFmcGz+WOfKZQYDsv+d5vv75j/wRxePfoShw2H\nSLv9Ke7r9yAAPTr2pM8NffnHN3vY9uX/Mdh/CLvLCyn6ZjdT+02T5VH3N6XVkLL+xG/l//18+nNz\nhx6yP/fz6Y/ZbGZKfizhAcMJ1YfRz6c/ofow/HX+PFb8CHd1n8DUftNs9rmb2/dgdckK7u87lZge\nkxigH0hndz3R3cfT2cOyYZu8I4ZtX76Fv86fhwvjWDViLSNu/D3vnyxmXPe7CNWHcez7z1n64SKm\n9Uugl09vHip4gADPAHp07HlJf5xdNBOdiyd/Gbac6cEJ3HFjBLd2spBzyjksPGA4vXz6yH50R0AE\nN3fowRtHN+Pi4EJMz3s4c+4MW469jtlspsZUQ4d2HYi4cSQAtaYa/nmmhLj+0y0WeO5+vHtiB8uH\nraa/760W67zKj5kblooZMxPzovnPt2U8e2cOU/tNY4B+oJxzxTzaxTOAOwIipIJe2V7KMop6busc\nL6D8rnL9Gew/lFlFM63Gq611pqXvtiZfza1fPwVa8z0PD7efJS+/NVxN2elU9Ukm5kWz88Q76Jx1\nXGi8gDMuNNLY6vw0KZ6trD3D0C7DeKh/PP82lrJwyGLuueUP9PLpI9efWUUz5XokUF1/1mqOjCu4\nj5gekwgPGM78vXPkGLocWaw179hbW+3185bWavGuGj/3OP0lcDlt1Br8FupOgwYNGjTZ6dpAa/RO\nYFmbAjwD2Pbl/2Fqat07AmbMfP79Uc43nudMnYHwLsPkfsbVwZW1/1qDqdHEtOCHrdZVoRuBi/qi\nXSd2MrprFAAT86LZfPQV+t7Qj3l7U+jn05+Kc6flvk3sk8W7t3YKsZLJbOkKxHWlrKT8rdyz2ntf\nmUY/n/5W37QHezKFt5s3o7tGSX3M1YQ9mVDcEzKrrfstQV1vVyov/RTylgYNGjRcT7gSuem6sDgb\nMGAAH3zwAQBHjhyhZ8+eLbzROjR32lf5DGAV00Z5XYnWuNJqLi+2EKoPIyN8pbS+smXNJCBc3eXG\n5LP17lxpZSNM9MV3NkW9xn39HuSlqM08P3oTrk4uLA3PICfyRdYfySJ+11SSihJJHZRG3vG3Sb99\nCcWn9shYI6998jLJxUnklGVL6w2ApqYmFh5YQHF5ERXnTpMQnEj6/gWk7ptDRMAo4t+bCsDbd79z\nSZ2E6sNICZ1HZ52e9UeyrOoqJXSulfWIqGcBpTs/8YxwPyCeVZ9EV1p6CAuc+/o9eEmMMaW1lRoi\nbRFnSVgvKi0Zp+THSrd18/fO4e+RG2TbCJeS75XvlPmzZ1Wnhi3LMZEne5aLzVlZKq0RheWdPXd1\nwv2DIJbUEBaDot7WRGTJGGNKiHZ7tjQLHzdfS/y8iCwe7DNNukAULg1FHSsh3EtGBI3ksdvmsOOe\nXT+6wIBHQpLI+c96Evo/yoL9T2KoqWDdqGw6tfPjubJneKZkLRNyx8o+ovfwZ92obJYPW42Lows5\nZdkUHM+3KtPjA1KkhYXO5WK8PVvtb6/Obc0Rp6pPSks6QI6zMmMpDU0mkouTKDiez8zCeAqOW1xZ\nms1m6T5ReYruVLXFPWLmoWXyBKHI4/x9KUzf9SBj3xpFmbEUs9niOtNX5wdmqKqrssTi+/GbSlel\nKz7+Cw+/F8eJs8d5+L24S9oSLNalS8MzpMtR0eeFBYnew1/GIRNuUcV1gHOmapZ8lM5fDixh8+cv\n06mdL+O6jaeJJgZ1HsLsPYmMz41i+q4HeXxACklFicRuj2H9kSxyIl/kvn4PSks+EStN7+FPTuSL\n0sqtOWssW/Oqcs6xd1pR/WxLEGNcuf6ordiUFimtQXNWLrbwcyuUNQX2L4OrKTsZaipwd9bx9PA1\nNJmbaDQ3UM+Fy0rLzbEd3543suXYZpZ8uJAGs4nUvXPlXCegtARXYvnwVczeY3FrK8aN2pq5rRZH\nyvW8OTQnM9rr57bW6tbk59c8bn5qq7Bfc91p0KBBg4brC6eqT/LaJy8zb28KNQ3nWvWOh7Mnrj9a\n6jvgyLhu43F31hHoeaP0GvLaJy8zf18KqYPSpPcY5TfVVu5qF9buzjqWD1tNVPdolg9fZWX5r9wX\nGWoqMDWarEJXKOUmW67t1bKP2ptTc++Ld1pyj28rL7ag1OVcTbmjJa8BwBVZev0aLcU0aNCg4XrE\ndUGcRUZG4urqyr333ktmZiapqalter+lxVYtZKifUbrxai695ha31ioJ1PcLjuezYP+TVibztr4r\nXLIdrfpMXhNpCTeD6rSDfUOkK73MQ8sI9g3h0duS6Nq+G+mDF0shamLPScT1nc6mT18gru90Fux/\nktRBaWyO3kqwbwix22PQe/iz4o6/4uzgwtp/rcZX54ePuw+N5gYyh60i/6vtmLEo+421lTJgrRBy\nSgyHmbc3GWdHZ+oa6mR+lXGglMLX8uGrMNRUMCU/luTiJAD5TIDXRdeLcFH5JggO8Ve48lMSHfZI\nSXtQu41S9wFTo0nGrRIknWgbNRGkjv/VEmwJaS0p923FVFH2TRFHRhAvaoW+aCulWz3l9wVxo4RI\nU5RN5DO5OAlDTQX1jSbOmn5gZmE88bviWH54KRnhK63cfhprK2loMmGoqZBEqIuTC4aaCu56ewzP\nlT2DsbaS5OIkGswWt37P3bmRuOBpkpwJ1YexYcwmciJf5PXPX5Hpxm6PYWJeNDML48kpy2bhkMUk\nBCdKN5AlhsPEbo8hpyyb50dvku4TRfys5OIkGppMl7S/kpwV+Ra/1QSO2Mhs++ItUvfNIa7vdFaX\nrCBrZDZrIrJI37+A8uoTTCt4gKNVn7Fh9EusLlkBWMfwE0gdlMaSg4ukwjlUH8bzkZtIHbSQM7UG\nUvfOpcFsUrTPatYfySJ1UBq5MZYYaXoPfxqaTPi4+7BtQj7Pj95EoNeNPD960yX9SrSHrf4mlNpg\nIdfON9Yxe0+irB8xDl6MepXHbpvDn4cuJCfyRTq068DR7z/jrm4T+PyHz5jS+wFoMtPZQ09vnz44\nO7pYroEkTNUbJkNNhVXsPntzuD3iSelCt7l4Ser53d74E25nlfkUfUW5oVOTrc3BHhmruSrTcKWy\nk4AgwYW71qoL37bJTaMabk5uMkaqE85M6D6Jb89XMkQfzsOFcRQcz5drf1zf6XIuFv3aWFvJN9Vf\nU2YstUmGX46Lm7YoaNpCfinli9bitzB+NWWQBg0aNGj4LeBU9UnGbxvDE+/P4kyNAcdWqt9qGs5R\nTz0OODAy8E42fppDQ1MDz4/eJA9Fzv3gCZqammTohObIK3FN+e81EVnycLLS9b9SHyJkQOE+W7lv\nac61va3fyjy19L7Ihy139iJfyn1aa2JQX+7Bquau2dPNKfVSVwJNTtKgQYOGXx7XBXHm6OjIkiVL\neOONN3jzzTe5+eabW/2uvQWyNcpG8Vt58qalBbc5y7WWlATqtEsMh1ldsoKM8JU24xgpoffwJ67v\ndJLfn834bWPk6R0RZ0go7pVk1ZT8WIrLi9C56EgdlEaZsZQF+5/kkZAkaSGUVJTIqC3DmfdBMimh\nc4kIGklG+Ep50qnMWMrJc+WWWFKfvsCjtyXh7OCCk4MzKcWPceqcpSwLhyymi0cgSz9cROahZZIY\nSQmdK4kvP11nUkLnUXXeSHF5kZWyWghwwkIouTiJ5OIk1kRksTl6K4AVMbO6ZIW0aBLEm7KuRPwn\n8VxbhRLRVoaaCubvnWMzPlmAVyDrRmXj7OhCmbEUgNjtMVZ9R+/hz5qILHnC60r8WSvrC2yTY+I5\nW6fAxG8R202QY0rSTBBMgihSp6/sD0oI8kxY2yjzmRuTT17MTpaGZ+Ds6IzZbKa3Tx/5bWE9VN9o\nknUUqg+T71edNzJ34J+J6h7Nmogs3J11lBlLWXJwEbHbYzha9Zns88nFSQT7hrBlfC55MTsJ9g2h\nwWzC1NiAgwMkBCeSeWgZ649kkRG+ksxDy5i9JxFTk0kqjUU9in6YOiiNLeNzrepTkIOTd8TIPhLX\nd7rdE28BXoGWPH+UTge3jtJ3vej3uTH5JN2WgoOjA/P2JuOr87OqT0EKKQmsE2ePM33Xg1LhnHlo\nGRN7TiLpthQ2jNmEi6MLMwvjKTEcZv2RLE5Uf8WSg4soLi9ixu5plBlLqW80kVD4kMynu7OOqrqq\nSw4SiHoQsdXgIiGmLKdlPDgDFlIrcXc8pkYTZcZSZu9J5NnStZQYDhPVPZqskdmcM1XzXvlOQn3D\neOnTjeDowLR+CYTqw4i95V6ePryM8411JBcn8donLzMxL5rx28Ywe08isbfcS3JxkiT2ldaUsdtj\nrPLfUkw68bu5eaIlaxcxnwsrXVvEtXIjKuqwOSLcVj7tXbsW8GsmAq5FXInspIRQACz9cBFPH/4L\ngCS+LgdnTf+T//72QiXP/nstbo7tePXoJrxd2kuyO3VQmoyFmHloGYCMz+jv2cXqAIet8as+xdxS\n/2tOedOS7Gfr+uWOw2t1/F5t/FLlu9bmoWstPxo0aNCg4erCy9WbhbcvJci7Kx7Oni2/oIAZM3tO\nvgeAv85f7g31Hv50a38TK+74q5WXIeX+xp4llFh3lHKP0CPY0mcoY8+rCSvxTGth78BTc7DlMUct\nK7UmBnVb5avLPZwoyEZtfdegQYOGXweuC+LsSmBrgVQqJ5tTNip/C4FE/UxbFkT1O/YUteLe/L1z\nSAmdS05ZdosuwuIK7iMiaCRJt6Xg5WrxYbx8+CpWl6xgTUSWJC4EUaT38KfWVEvqvjmSLMg8tEy6\n4BP5+OH8D3x3oYommvjy+y+J3R7D3A+eYGJeNDG50Sz9cBFzB/6ZYN8QaZW2blQ2S8Mz+N+FH0i6\nLYWcsmwyDy1jaXgGW8bnkhCcyPojWZQYDrPk4CLqGmo5WvUZ39YZ8XH3IXPYKptWdsLyz1BTIQkz\nIcQBNk8wKSEILkNNBTN2T5PviLZV16mtf6vbSknkKNtCCHeCpJuxexrF5UWcPFduRR4FeAVakaJt\nUfbZy5f6RJcyv80JqErF/da7cy8RnkP1YeREvsjfO2jx3wAAIABJREFUIzewZXwugJXgLBSaOZEv\nsrpkhZWAe6r6JPG74ojJGyct0gw1Fdyz/S5Jsi05uIil4RkEeAVirK2UfT5UH8aaiCxcfySExPNi\nXOZEvkje8bet6jt9/wLOmaox1p1h/t4U6fZRWU+izZwdXHBxcqahqYGcsmxSB6VJq7U1EVksHLIY\ngIUHFvBwYRxxfS/GCDI1mlhycJFsU6VFwpqILJwdXWTgZWWftiV0B/uGsPD2pbwY9apsQ9Hny4yl\nFJ/aw4rhf5V+3mfvSSQmb5zFarLvdJKLk5hZGM+aiCzAEkja09WL9P0LZJ0VlxeRdWQ1xtpKHglJ\nwlB72lLXvR/AEQem9H5AumCN6h5Nbkw+2ybko/fwl+TYpk9fkO5jRTuK/AtrRfE9QdiLPm2srcTd\nWSfrtKLmNI/eZiHqp/R+gAZzA8baSllP352vor6pnhc/fZ5z9dWYm5p4+uNlPFOylqc/Xoavzo/n\nR2+S+coctgpnR2eq66tZ8fFfSAhOxOFHwxhBngnrPWH1pjwVeDlQkuii7dXpifl8+fBVBPuGWBFi\n4nmwHk8tWbkpYe+047W0YfstWNH8mmGRGepwcHDA8cf/XB0u3094e9f2uDm64ezgjLdLe86a/oeX\nizdnTf+juLyIxN3xJBQ+RMHxfHLKsqXlfIBXIIaaCrZNyJeHJ2y5+VGOOfG7NcSXGDctEenqd+2l\nfbnzyuUc5vkp8WsZt9faPHSt5UeDBg0aNFxdCHm+Y7uOZN+5ATendrg5tmtTGg44cLNXD8q+K7XS\nj2SNzCanLFuuIcLTjTgg/donL1+Sli39l1IGUsLW9dYeBr9aUOrHbLmEVD/bmvTa+u22lv+3cgBK\ngwYNGn4rcDCbzZd/bPgahdFYbfee2KQqrQNas6ip37N3rbXpCOsHe3GohIBgS5ixd4JIEBEZ4SvZ\n9OkL0kWc2txemY64r1YaFZcXsf5IFg1mE3Wm88y49RFWlmTwp54P8NrnL7F82GqeLc2iur6a7y98\nh6ezF9X1Z9kw5iWCfUMoLi9i/r4Uno/cJN2oCaub+ftSMJvNbBj9EksOLsLUZELnoiP2lnvZeuwN\nqfjXe/hf0lZlxlKpeFa6C7DVpmrBSm09pSa71BYjov5stRNY3K4JIlKZllCgzyyMR+eiY3P0VlnP\nJYbDslziPXFN+W1BbgJWZVW2o63rlwORVl1DLe7Oumbd0U3Jj8XUaGLhkMWyXdV5V7pUEL+Ly4tI\n3TeHuQP/TI+OPaQbxoLj+WQeWkZ1/VmMdZXMG5jG5qOv4OBgcesn/LULa7GE4ESS35/NS1Gbieoe\nfYlgHrs9hgaziVPVJ2kwN2DGTHuXDqwblW31vEhT9H1DTYW0YDTWVvJwYRzPR25i6YeLMJuhwWwi\n+84NGGsrpeWDeHbJwUW4OLlId4DqOcJWn1PeE3mK3R5DefUJ/D0CyI3Jl+8VHM8nqns0JYbDGGsr\nSd07lw1jNgGWPtb4I9k0LyyNFR//hbkD/0ze8bfp1aEPW45txgknune4mUdCkujt0wdjbSW+Oj+S\ni5P4ru473F3acfrcKRJvTSL/q+0Al/jJLzEcZvaeRNaNysZYW8nqkhVWmxjRl09VX3TVuW5Utuzf\nofowOV5SQueSeWiZ1bgQdRD1f6NYOWINCYUPkRP5IlV1Vczbm0zirUm8V75TWrOJdHx1fjIOXuqg\nNHx1fszeYyHLHglJIiJopLwnxqogAH11flZWxM3NxS2NMVE2ZZ00F7NMPd8q55uW3MVe6Zr1S27i\n7H3f19frF8iNBjWak51KDIeJyRtHp3Z+fHe+irrGWm726sF/q79s83e8XLypNp0FwBFHVo+wrPkR\nQSPZ9sVbbD32hlxnbM3b92y/S8ZKFRbrQm5Qz7HAJTKVGsr1FC5ay7a0vqrlqZ9qbLWU9uXIom35\nztVK/1rBLz0PqnGt5UeDBg3XBzTZ6dpAc7KTwDMla1nyUTp3dZvAOyfyrOSgluDupMPUZMLBDB3d\nb2DXH/5hJXso9QFiv7wmIov73/0jVee/5eWo1+V+qS37ncvVNfxUMoM9ck+DBg0aNGhoDa5EbvrN\nEWdgrbBuy8KufO9KlCXqdNRpNKe8AKyIFfVzr33yMhFBI61cuCmV2s2RhYJAiN8Vx+mak3TxCGTO\nwHn09ulDqD6M1z55mQX7nyQjfCW9ffoAEL8rjj/c8kfWHlmFs6MLK4f/lVUfPy3d52099gZgUUCV\nGUvJPLRMKq0FMSTymlycJMkbYSUn8ioEQbDEbxKKd3U7KImn5OIkTI0mm8FybRGP6meUda1WZgsl\n4vJhqyVJCUhiqbq+mh/qv+P5yE3SraWAKI8gEhfsf9IqCK/y24JkEPWhzN/VIs7gIoGl/o4ar33y\nMmv/tZqT1Sdx+LEsSrJNSUaJ9hCE7pOhC3j981f4+uwJ8mJ2yudEvxgdNJac/6znuTs3yjoL8Aq0\nIij1Hv5MzItm24R8SXYBUuEZkxvN0vAMquqq6O3Th4LjO8k7/hYVNafJnfCu3DSIen/uzo1WfVG0\n4ffnv2Ne2J/JKcsmITiRnLJsqz4p8gwW944RQSNtlr8lqEmTxN3xODu4yD4r2nlNRBZJRYmc+N9X\nmMwmunnfJOtAuJLMjcmXhPXM4Nk8V/YMns7eeLp58NjvUpi/NwUc4PnITSw5uIhHb0ti7b9WM6H7\nJJ4tXUtnDz3uzu5kjcwGrAnRiXnRmM3g6uSC2YwkTtVlVZKQyjEvSEXRhkoltSCLCo7nS8Isff8C\nXBxdWDcqm5mF8fw90kJaCgJR7+FPmbFU9osH3/0T7d06SAITkCSmyE/qoDQrJXxrDlC0ph2Vc476\nEIK6je3N98q+Z2tes9VfWpOv5vJxLUFT/lwbaEl2ssR8LGHtkVU44HBF7hodccTdWYenixfuLu1w\nd9YxOmgsfy9bJw/cGGsrCfYNuWQ8KA+gpITOJdg3RK4z6oD2ygNCymvNKYeaO82sfOdKx1Nb5peW\nCPArJV9aKo9G7mjQoEHDtQVNdro20Bq9U1zBfUQEjOK98p0c/+G/XGg63+r0/dw786deD/DmF6/x\n/YXv5H62ub1CmbGUBwv+xGO3zSGq+1gpH9nSHdlKQ1y7XF3D1ZYZruU9jAYNGjRouD6gEWcqtObk\nj0BLZJKt567mwm1LYdPSiV+l0l4pzJQYDjMhdyxdPAN+dD/nYmVpIRTXtiyohEWJgwPUN5p4fEAK\nAPP3pdDB9QYK/rAHuOgmb8buaTwZuoClHy1kzYh1+Lj7ALD0w0V8ffYE88PSmdhzkiTFhLK8uv4s\nOybuArCyBFFaKSkV7+K30uWSkgxUt41S6aVUmAvl2+WQpXCp8qzEcJiY3HHkxlgLr8Iq6OHCOJYP\nW01E0EhpgSMs6wQBo7TAEQp9ZTmU90UdtYZgbSuU5IwtgVqprBQEWOahJdzQrhObxr4KIIknochU\n51cQSiWGwyTujif7zg0Ass+lD15sZUWkJKiE9ZewUhOKUGWfEGlPyB2Lr3tnqs4byRy2ivv6PWil\nOFUSO8Jl6Dfnvkav6yKtvF775GWefP9xnJycmDcwjbzjb5MSOpeFBxbIfIvTfEerPpPEp9KS0J6V\nor16Ff1BSRiKehPEkSCLRD6Ucf+OVn3Gff0epMRwmKk7p+Dj3omE4ERJcIv6AWT/7NTOj8o6A5jh\nhnadaOfcjscHpODj7kNC4UMEegax9e5cDDUVxOSNk8rspCILUSfISFuWm2Lcx+SNw9+jC9sm5ANI\ni1GB2O0xnDxXLt17KpXgSUWJZI3MJnF3PGYzGGpPM29gGitLMsgIX0nqvjnSKu2J92cxrW8Cs0Mf\nt5oDxL9jt8fg4uRiRfCq+/qVnGRsaX1Q3rdnLQsW4lf0Q3sK89bksaV8XGvQlD/XBuzJTqLfxeRG\nc/rcSUxm0xV9Z6DvIP5pLKGJRtq7dKBDu47E3DyJtUdWodf582LUqyTujufE2a/o6nUTuTGW+UM5\nv+g9/C+xCLdl1Susx5QHH1ozrlpDWLVWbrT1u60k+M9BgF+r80NzuB7zrEGDBg1XA5rsdG2gNXon\nsf88eOoASz5Kx8vFm9qGGhrNjXbfccWNei7ggAPOjs501unJGLYCX51fq/aZwmMJXOr1pLW4ltbY\naykvGjRo0KDh+sOVyE2/+hhnLUGpoFSeMlZCeT/A66fxWWyoqWg2H+K7gIxbtiYiyyofeg9/ungG\nkH3nBhmjKqp7tIzBpfyrVuYkFydhajLxSEiSjCWVU5aNt0t7KusMbPviLSbviCF9/wIyDy0jI3wl\nE3tOYs2Idaw/kkWwbwjBviE8EpKEv0cAr3/+Cne9PYakokSSi5Mw1FSQEJzIt3VGSb6ZGk1kHlpG\nSuhcArwuxuZS1snkHTEkFydJSxVlOU5Vn5R1poxxIuIqgcU6LaHwIWK3x1BiOHxZ7WerTfQe/uTG\nvGsVY03UI8CNnl2l5Z+LkwsLhyyW7iiTi5MoMRyWhKYgzZTlEPcFqWYrz7YIrrZC/Y74toCyXkP1\nYbx99ztM7DmJAK9AvFy9MNZWMntPolROKuPoKfOnFNadHVxI3B3P7D2JnG+so77RhK/Oj01Rr+Gr\n8+Oe7XdRcDyfKfmxLDm4CH+PLpJsEfmdvSdR9onZexIlERLk1Y05A+dZxckL8LLEkRN1fLTqMwB8\n3H3Yencuy4etRueio8xo8Ru//kgWODgwb2AaW4+9wfLhq6iqq+LE2a+I3xXH7D2JNDSZMNZWynhg\noh/YG2NqKNt5/t45PFOylqkFUyguL5JzUsHxfBJ3x1NRc4rZexLlu9sm5FuRZom743ni/Vn85cAS\n4nfFYayrZIg+nJyybOJ3xcn+FqoPQ+/hT+ahZTwfuYkNYzaRGraQLp6BrByxBgcHmPvBE6TunUvm\nsFXS6i1UH0buhHcJ9g0hVB/GlvG5bJuQb0WaCYg5av7eOZYxMuFdtk2wEEFlxlKmFkwhJteyiQvw\nssTSy4l8kWDfEEmaCaK5vtFSx2YzLA3PQK/rwtZjb/Bk6AJ6+/Qh0DMIX50fvX364NvOj9c+fwlD\nTYWsWwHxndRBaVYEsJiHANnfmosl2RxEW9ubX+z1BeXzhpoKztRWWMVKs+UauLX5aUs+NGhQQ4wD\n0e8MNRW4OLrwSMhjV5z2x8ZDNGFRFv3P9AP1TRfI/e9bBHreyItRrxKqDyP7zg0Eet7I0vAM4GLs\nQENNBTG5lliZIm6hmDPV8UoDvCxxRVIHpTF/75xLZAClDKGGvfFnzxpNPW+on1eu8bbSbw7KZ2y9\ndzlzVkvfuR7QkuyuQYMGDRo0XAsQVvH/u/A/nHHmiQFPMrXP9GbfqecCTg5OtHftQGedHicHZ+Bi\n6IuW9ACCNAMuizSDa0suuJbyokGDBg0afltweuqpp576pTNxtVFbW9/iM6eqT+Lt5g2At5s3o4Ii\n7S7I6vvivSuFEHAccWJ96Vpiekwipscku9/wdvPG282bfj790Xv4M6toJqOCIuWz1fVneeuLrYTp\nBzFAPxBvN2+bFnXKtEUewgOG897XO9l/eh8XGuvZcTyXFXes4f6+U9n99XuUfvsvzGZwcIBHQ5LI\nKcvmlU9folfHPuR/tZ3B/kOYuXs6uV++xV9/v44Rgb9nyxebWTXib9xzyx+YvSeRj898ROqgdLL/\n/QwxPSYxude9hAcMZ+mHixgVFEl1/Vmq688yq2gmc8NSublDD7Z9+Za0hIoruI9+Pv3p5dNHniQP\nDxjOnV1HE6oPo59PfzxdvZhVNJOU0Lks/XARM0Ie4a7udzOu+10kFycxumtUmwQvW31DKGvu7zvV\nqi6r68/yxtHNHKjYz9qR6zlnOsf8vXOY3j+B27sMoWfHXszfl4KbUztu9x/MjJBH8HT1ku06KiiS\nXj595N9+Pv1l3SiVd7b6hshTP5/+dPEMaFXZxDsxPSYxqedkPF29uLl9D9L3pzK6axTV9WdJKJzG\nyhF/pdePlktdPAPwdvNm3E3j8XP3Y+2/1tBkbmLtyPV4unpZ5V+NguP5LP1wEamD0viw4iBpgxex\n/9Q+6hvrKT5ZJPMQ3f1u7rgxgtFdo7gjcATxwTOsCO6b2/fg1c9eYlRQJGbM5JQ9y/5T+7gjcARh\n+kE88f4sHv3dY4y88U5u7tCD6vqzxBXcx2D/oYT43sZjxY+QEPwIqfvnMEg/mOx/P8P0/gk89o9H\nOHB6H1N6P8D+0x8Q1386+059wAC/ULL//Qwzgh/l0d/NZlz3uxh7013M/2AOTeYmZg14HG83bwqO\n59PZQy/bs7l6n1U0U1pN9vPpz/rStSQEP8Irn23C1cGVx/8xi9c/fwVPFy/+9vtnmDXgcbZ98RZP\nvD+LoV2G0aNjT05VnyShcBqPhiRxu34Ia4+sor1be0YHjWXrl68zrtt4PqzYz4xbH+Wv/1zJ6K5R\nGGoqeOe/2xlx4++Z/8Ec8r/ajrebN0kDktHr/Cn8ehc1pnMc++ELhgeOkH3JbDYTV3Cf7Ivebt5U\nnDst7yv7UoBXoHxO9BeAHh17EuxzK3/s/SfZP6rrzzJrz0xeP/oKm4++Qo/2PXn7yy109bqJghPv\n8GHFQc7UVDD91hnE3zoDn3adeOrAn9lTvpup/8/euYdFVa79/zMww2E4eEAQxNDcamqRFmppWrwq\nipKKuTHTUvJAUUkF5mkLbsENakKvmFFqhrZz94tXBY1EUV6K1FLZyeZN3du2qYkgI55wBmQG5vfH\n9KzWDMPBwy6r9b2uLmNmzVrPetZzuNd939/v3WcGyYeWUnB2L0mPpXC08hu6tfkDiV8lkBqcbjUG\nT17+J8/teprH/YPxdfPjD216sPqbNEZ2CZW+WzE0lZf6zbntF7Pmnr2ns2ejNUgc38ndn8c7B1u9\n3MrP1dI+1VI7mlo77ga4uTn/0k1QwE+2k5jPYrwNDwjB3cmD7O+2kjQkBaPJyD8uHr1lqcYubl24\narwq/T2m61jOXDtNytCVPH5PMGBZc7af3Mres/ls/VcW/u7+JH21hBFdRnLg/JesGZ4h7ff3ez1A\nVP4MHuzQl6j8GYzsEmplF80vipNsguEBIdLnYs0S65YtbPd3+XHFFYcbrX9ye8ye3Xi/1wMsKJor\nHdfSPtHU97Y2nO21b+Zcv2bc7JqoQIECBb8lKLbT3YHW+J06ufvj49KRFUeW4e7kQf7Z3RzV/b1Z\nO0qFijFdx1JaVcLzfWbz7aVSDlV8zcwHolj45Vwe7xxs1w6prrvWpK9A+FrE979V++DngOi7X7oP\nf+nrK1CgQMGvBbdjN/0uGWfNZQ43lbnaVFbPzWS6yo8VgZ+x20eR9HWCVeZQS+y3BUVzARqxeir0\n5ZjMRmbviaS44jDFFYeZkhtB3qlc6Zy2bYjYES6xhV7qG4PGQUPK0JWkDFklsXxc1C5U6i8w/J4Q\n1CoN75SkExUYTbm+jJRDiZgx893l7zA1mPB164S31odA775sH2+RCPB188NkNlJXbyQ4YJiULS3Y\nLIKlIrK+BWsJfpJXEtnmgj0DYGowMmdftPSZYHsJFpe4jm2W1c1mJ9tjbciz3OWfrxmewcKBi9EZ\nKqWMsAVfxhGeHYa31oft43NJeiyZ2fmRlOpKrJ6L7XXkfSPaLR8bcmaYaNOCormtvj/bzPWIHeEk\nfbUEY721DJdga4k2FFccpkJfzqL9b7Bw4GKyxmVLgU1bSSnxu7xTubywdwaRfWYS2i1MYkMmDFqK\nq9pVqksVmTfVqvadGOtytqe31gc/904kHlwisZrWDM9gQdFcvLU+kmxiwoFF0tiOC5onnSvAowsT\nek7kvREbpXESHDCMDq4+xD+6lKyTH+Oj7Uigd1/SgtMlVmTWyY+Zsy+amIJoTlQdR+NoqcHl72GR\n1RRsKvFcmltLBDNNPOflQ1cxyH/wj07eWOrNJtaHZPJuyAZCu4VRoS/nzeJkYvrFSRmEFfpyquuu\nseDLOLq36072+M9IHJzMjlPb8NS04cNjH9CgMvP+/62juu6aVA/NZLYwPRMGLcXPzZ/EwclU6MtZ\nV5rBysffYseEPNKHZViNJTG+5GPgqR1PWo1B+Vhqaj0N9O5LbGFMo7UocXAyHVws7DFfbSc2H9+I\nn5s/yUNW0qVNV+m4tUfTMavMXNCXk3xoKeevlxEVGE2gd19e7hfD/KJYzlw93ajPBVtSSMauPZrO\n5dpLVt+Fdgv7j7A4bM/TnJO3pYzQ1jqIW2K/KFDQHOyxmkp1JSwcuJjCswV89M9NNNyGyvcZ/Rlc\nHF2kv7ee/H+U6X8g4cAiiisOS+t9wqClqFQWmeOUQ8ukZINPxmZbsXzlNSrtYflQiz0jtzUq9OVW\ntkhzsGWl2a5/rWV4toaNLL9ea+ZrS8w1e8y33xKUoJkCBQoUKLjbUVZ9juCAYawL+QAHHKk3m3B2\nbN6Bp0HD7jOf0c65PVtObKZCX0FEj8kEBwyjs3uAdF6wViayt+cLv5Pw+8gZ983ZBfbeJ+5m3Gz7\nbvV+7Cke/SfQ0nlv5RkqUKBAgYKbx+8ycNaUo6E1ko3y425ms7Q9t5AQ2jlhN2lPrGHq/dOabJvt\n+eVyaPI2LSiay6sPxXGPRxfAUofpcu0lyfEPNJIiE3XQZu+JZH5RLHrTdeZ9Ecv8L2IJzw4jtjCG\nVx+Kw9OpLR8cW0/YveNQO2jo5dWbnPBd7JiQx8qhb7Hi8DIqDReY3mcGMQU/SfeBxeGmVmmoN5uo\n0JfbdS7J71sEEsQ9CueUr5sfVTUXJenHT8ZmS5KUwnFWqiuRHPNy5/2CorlWwZnWGhHy4+QBEdEu\nW+N0zr5oZu2Zzqw904nsM5PggGH4ajtRbzYRUxCNr5sf3lofAn58RuJZNmfE2pMJtXXcCZkqcb7W\nGFqi7+V4qW+MJNEnxqhoQ96pXMKzw5iQE4bOUCkFnmyfnzi/MNCF7GTyY2+Seex9Pvp2s9Sfolaf\nqDclb/+cfdGM7/aUJL0p2izGueZHSVEhQSgPjpXqSii/fp6oQIvEobxWXPqwDKlOoDhnhb6cqlod\n3lof0oLT8XDylCTzjPVGAr37siUsizXDM6irN7Lwy7lEBUZLgY7QbmGkPbGGd0M22B0btrANLs7Z\nF82cfdGoHdR4u3ZE7aCmqqZKmuNBvgN4b8RGCsv2Wf3GxdGV5UNSSS1eic5QSWi3MFKGrCI1eDUd\n3X15+cFX0Tiq0dVUojNUUltfQ+LgZLaEZRHo3ReNg4bEg0uYvSeS6rprrCvN4ETV8UYO3rJqiwyp\neOHydfNj27hPrWoG2Rtj9vrAWG+UnmmFvhyVyvL5xR/b+NrDcZjN8NrDliBh/KNLpTmfNS6blUPf\nYtEjS/B3v4cFA+JZ/U0qT24bxepvUunk7s+GUZusgr0CwtG+JSyLl/vFcMFQIck12guu22v7zb58\n2BsH/8kXmKbWkFuRqFXw+4Z87odnhzE9bwrP5z3L/KJYXgycQyc3f1Sobvn8ZrMZT00bvF18eKXf\n6/i73cO03jOILYyREhBSDi3DbIZ3QzawJSxLmqdiDxT7opjXQb4DrOq+in1ILicsTzIREtmtgXz+\niGC7bZ3V1qC10owtBcNae05bacq7OYB+t7ZLgQIFChQouFUIW2RKbgRVNVVcM16hjaYtTo5OzdpR\nddRhNBtxwBFdrQ6T2Ujy10sp1ZWwZniG9F4mf6e3t+cLmeotYVmS38Teu7u9dtv6OW5V0v7nwM3a\nOLdjE8mTYP9T71etad/NPkMFChQoUHBrUJnNt5E2fJeiNUVam0JTDhCx8ciNEVsJxJbOZ+9Y2/Pa\nfgdI38v/XziO5I4bwdARtYJKdSXMzo+UajWlBaczZ1+0FBiBn4JB4TljaOvUHpUKKg0X6OTuz/qR\nmYClnpSxwcj0PjPIOvkxUYHRZB57Xwpu+br5UaEvJ+/ULvac3YWx3kjCoKWkFq8kss9MFu1/gzeC\nFrH8cBJ+bv5kh+c222ei7lNm6EeU6kpILV5JZuhHFJ4t4PXPX+HVfnMpLNsn1bgSfQGWYKG4vlzb\nW9TAas0zs9f3QptcsFbAEmyxPad4DjpDpdTuUl0JiQeXAEjMKNEvchaMMGRtC/g21V5xnHwMAZKD\nUO5AtL23yLypUva++GxCThjl+vNWtavEtQWjz9RgZEzXcdJzlo8lW+SdyiXl0DIp+Obv0ZmPvt3M\n65+/Qmf3e3BxdGXN8Azp+CDfAdJ1Fg5czMw90zA2GOnicS/vhmyQxpnoW/H8K/TlEttw4cDFJB5c\ngslsxFhvwtPZU5L6FIEwgAk5YXi5eLNhVCaxhTFsCcuiVFdiVUQ5tjCGGpMBtUpD1rhs6beFZwvw\ncvWSnq9gnCV9tYRPxmZL9yrGghgjzT0Hcc/eWh/LuNv1LFfqLrF8SKoUVLf3PAQjM+9ULlH5zzPl\nvml89M9NtHVqz6Xaizg4OLB8SCpgqek2Le8Z/N3u4dOndkv9caLqOAuK4ujg6sOoLqP54Nh64h9J\n5JWgVxuNazH27a1VTd2jnJlZoS8npiBa6ifx7KICo1n9TSrGehOVhgrqzQ2oHRzZMHIT8fsXUW82\n4eLoSsKgpczOj6ShvoGO7ha9/7LqH0AFHbV+bBiVCVjWLI2jpsk5APDRt5sJDhhm937s3VNza7U9\nNDXP5HO9ub5r6pwtvRyJdeDXFCRTCtzfHWjKdiquOMyJquOs/iaVWlMtYJFX/PifH2Go19/0dRxV\njtSbLTXORNH7tk7tuGa8yvz+i1l55C+sC/mAqpoqVn+TyvbxudJvxXo7Oz8SP7dOUg1Fe2guwCRn\nqYv5eLM2Wmu+v9O43evdzHrzc5xHfr6fsx9/btzp/lKgQIECxXa6O9Aav5Owo9aVZnC59hI6QyX1\nP9Z6lcMRR+lzN7UbxnojG0ZtAuC7y9+RcjiRLh73kjUuW3qHsn3Xke83cp/K7doM9t5h7jbc7F57\nt+/Nd6J9d/s9KlCgQMHPhduxm36XjDN7kEuLzLxCAAAgAElEQVSOgX2Hiz0pspaCZrYsM9vvW2K/\nwU+ZzraMI8FskR8b2WcmKYeWMSHHEgBYH5LJlhMfYqw3ojNUonHUSCwLwSIRcncLBv4JtYOaBhqY\n2P1picmjUoHGQcMg/8GYGoysK80gLmgec/ZFE54zhie3jbI41Y6uIqLHZLLGZRPaLYzIPjNZV5rB\neyM2MqHnRPzc/HH6kSVkr48FW2JB0VwpKCfkmfw9OjP1/mkkPJLEnwYnsHzoKimLPO9ULk/teBKd\noZItYVkkDFrKC3tnkHcq1+o+RZaU3ABs7rmJvgdrqbfIvKmU6kp4aseTUsa6nBUW5DtAkgAEC9tp\nzfAMSdJQSAOKjHWRBSYcd62VW5Rn38vHyJawLNKC05scm/KMe7nU1PbxuY2CZiJTTWTyv9Q3hnX/\nt1ZicjWFsupzpBavZOHAxVK7yqotMhWbQ//G+pGZEmMspsAyjj76drMUrPLW+rBy6Fu89cTbUtAs\nYkc44TljiN+/iMg+loLKU3IjpKCTkOwDUKs0bBiVSVpwOrGFMZTqSgjPGUP03lkArAv5QNIDN9Yb\nKTxbQGrxSit2Y1RgNGqVRY6xVFfCpJ3hPLltFLGfz6GqpkpicRZXHGbWnumcuXbaKjhXoS9nQk6Y\nVTag7XMQ2WppwekkHlxCbGEMJ6qOc/lGFS6OrqwrzbA7TwSDUgSyAr37olW78cGx9Wgd3fF09mDl\n42+xfEgq//33VBZ+OZeqmio0DhrUDmpKdSVMyAlj9p5I1pVmsHxoKioVfPTPTUT0eIblh5PIO5XL\nlNwISfJVOJntjavmxpqcffhi/izMZqR+mrMvmqjAaOYXxTKt9wzUDmq8XDvg6OBAO2cvvrv8HeX6\nMqtzrg/JpEube1k/MpOkx5Jp7+qFyWyi4ccXzdjCGFQq7M4BedbkutIMK8mSlu7J3lrdmizA5uQX\n7bFWxb/2nntLWYNNSc/9XIw3Bb89iP0zOGAYGSM2AFBhKGfjsXW3FDQDqDfXo0LFpB5TUKvUtHfu\ngLPameVDUhnkP5iUIatI+moJcz9/lfPXyyg8WyBlawsG8/z+i3FVa+22V/wrZ5nZzluxp4nEjqbm\nV2vmvVxS2bYN9j6/XdxOcOlOBc3uZAZzc7bwbwFKxrcCBQoU/H5RVm1RCZlfFEtEj8msfDyNzh4B\nzOgThaujtR1Tj8U+csSRjBEb2DBqE95aH0K7hTGh50S6eNwrJZ3asuzFteT7jT0Fkda2GaxtBrm/\n4m7Fzbbtbr4XuDPtu9vvUYECBQp+DVACZ/xUr0LUAmtKXks4gVtrdDTnCLClz7fmt3K2iVQ/S1bv\nLHrvLOZ98TojA0ZTVn2O2Xsipd8mDFpKyqFlRPSYzAt7Z0h1qoRsGsCi/W+QPGQlr/aby7ula8g7\nlUuFvpz0YRmsGZ4h1RYRMm9Z47JZPiSVqlodl2sv4+fWiS0nPqRCX25p45dxGIwGAr374u/Rmezw\nXD4Zm20lHyD60zZYFeQ7gMKzBdSYDFJwoLjiMDmntknsMSEzGdotjPdGbJTqosn/lssT2LI8mnJk\n2Pa9cKzLa6qIa8g/s3ceEaQS9yDk6YTcnbh38Vzl55L3S3NBPnEtAcE8bG6cCjlMcZzcwJa337Zu\nmgiEBgcMQ+OosZK6Kqs+ZxWIE7XqxPlF8CTQu69k7Pu6+fHJWMs4yjz2vhSsit47i/lFsaw6skIK\ndmWNy2bqfdNRqWDeF68TUxDNwoGLWThwMQkHFvH6569I8hVZ47KlexFSi+tDMlGrNMQWxkjSiwAm\ns5EFRXGM7/YUc/ZFU1xxmEk7wyXpUp2hktn5kdTVG0kZupKYfnGkFq/g+bxnmZBjqeG3YeQmcsJ3\nSYFVEWzcPj63WVae+FyMj4UDF/NOSTptnNpyte4KET0mNxqzgFTX58ltoyQ22HVjNQ444OToxEt9\nY1j9TSprj6ZT13CDdSEf0MurNzvC88gOzyXQuy8pQ1bh4uhKVGA0Xq5ekuzj3yuP0GBukNro6+ZH\nWnB6s8HY5iDmX8KgpWg1WhIGLWVB0VxKdSX8cP0Ml2sv/zi23kGlgg9C/8rKoW8BsOLIMrxdO7J+\nZCZTej3HC3tnAJb1DCDpqyVU1lwAoFJv+TctOJ1PxmZbrRu2c8nfozNpwelWkiWtvRdbx3xzQSl7\nwTe5o14whMXfYuyIIIH8fK3ZT+zBdq1VHLgKbgUV+nKCfAfwdE/74+xm4YADB8qL8HLtwOT7pqKr\nqWT5ob8wPns0a4+mM7RTMA008GwvS3B/4cDFUrLA8qGryDm1TVqTxNi2Z7vJ9yh5opE8icY2SckW\n8jXY3nwq1ZU0klu2FxS/3bnX3DwX39/J75r6/GaDXC1d2/Z53A7uxrXttxwUVKBAgQIFzcPfw1Kz\n1Ww2s/xwEgkHFqFSwfbvtlJTb2h0vBkzbZ3bUVVTRcKBRYTnjJHer9cMz7BbV1x+Ldv9pjW+Dzla\n8pEoUKBAgQIFvzc4/vnPf/7zL92IOw2Doa7Vx5ZVn+M+r9487h/M4/cEMzwghPu8ejM8IKSRoXG/\n1wNE5c9g68ksRnYJpbrumsRasYfiisPc59Xb7neezp7c7/UAC4rmcr/XA5Z6Hzbn8nT2tLr2KwUv\n4ogjiV8lsGDgYlZ/k8abT7zFfV69Kb9+nk//vYNrdVc5W32GNs5teeu/1hDo3Zfs77Yy1P9x/vfs\nPk5cPs6Koam4adyIKbBIMO45s4vR9z7JsHtG4K31YcXhv3D9RjVfVxzk/dL3+OJcIQVn9zKySyj+\nHp05efmfROXPoGe7+3ik0yB0eh3vf/seDjiiUqko/KGAh32COFr5DUsHL6Ojmy+ezp7Sf+LehgeE\nABan1aN+g3m2z3T8PTrj6exJ3qlcovfNovpGNYM6DcZVreWVgheJC5pH/P6F9Gx3H0/1+CNJXy1h\neEAID/v2t3pm3dv1lPpXfC5/XuL6TTmhxTEHyor4suwLJvacJD0P4aibXxTH8IAQPJ09qa67xpTc\nCEZ2CbV6jmXV54jKn8Ffj29ici/Lffq6+fHhsU0E3zNMGk9+Wj+e2/U0j/sH4+7kwZTcCLaezOIx\n/6FSv5RVn2t07si8qVIbyqrPUV13jaj8GdK4aA6d3P2lZyCuZ9t+cUyFvhx3Jw+2nszipX5z8Pfo\njJPKieRDSWw9mcWDHfoyY/dzvPePd3ii839hNptxd/IgvPtE6Zn6af04UL6fnu3uo3u7nhwoK+L1\nwjn0bHcfq79JY+YDUawrzWD1sLV0b9ODY5f+D2NDHbqaSrq36cnpq9+z/EgS03vPQldbyUt9Y1h1\nZAW7z+zivZCN9PcZSJc2XYktjOEx/6GYzWaez3sOk9nI5F5Tedi3P/18HmL6/TOk8fBKwYv86ZEE\nvio/wN8riynXl/FMr2cZfe+TtHPyoqisEH+3e7hguMDSwctI+moJe07votpYTT31ODk408/7IVKL\nVzKiy0ju8+qNj6uPNC7v8+otPRvb+S3/rLruGtnfbeWpHn8k/8wepveZyf7zRfxQ/QP9fB6ik7u/\ntGaIc64p/m/yf8ijV7vedNB680yvZ7nX8w/sPZPHV+UHqKq5yJRe09j7w24C3O9lXtHrBLh3pZ1L\nO57bNZmvKw5iMBnY8e/t7PhuOy4aFxY9moBGpeF/z+1jQvc/8lSPP+Lu5EFU/gx2n97Fgx360snd\nv9lxZQ/Vddd4vXAOacHp0jrb0c2XnO+28/fKYqb3mUlRWSEaByce6zSEVUdWUGE4z4IB8bz80BwA\nYv73RV4IfIV3//E2Hx3fzIGy/YTdO45vKo/grvHgvZCNGIx6aX2YXxSHj6sPUz+LYPf3eUy6b7I0\nHsuqz/FKwYvS362FfM4BbD2ZxcSek6iuu0Z13TWr+dhcX0TmTSW8+0T+0KY7iQeXkP3dVib2nER4\n94nc59WbkV1CmdhzEoDVuZo6r3xs2PtOrHXNrXu/JNzcmi+QruDngT3bydPZkwc79GXOvmj6+TzE\n6r+nccN0A6O59XaWPZgxc63uGjXGGoorDxP9YAwnLh/H2dGF2KA3WH10FS89+Cr7ftiNzqDj83OF\n7D27m+3fbWVU19GM6DISgP89s49FX87j4xNb2PV9LgsHLuZh3/5Su2MLY9h6MgsnlRNRe59noO+j\nvND3JWkOyG2R1igIhHefaLWv+bj6kHJoGcZ6I5PusyQ62LMj78Tcs3cOsY/Y2gP22t7cd/d7PWC1\nttuzL1qzFtmiuWs3dU/Nnau567Z0rV8Sd1t7FChQ8OuHYjvdHWjJ71RWfY6HffsTfM8wnun1LE92\nG0f3Nj3IObWNB9v35cKPCYBgkWo0Y8ZZ7cxnp3ai1WhZ/V9rcdO4Se9i4n0BsOuLau5doTX77d36\nrqBAgQIFChTcDm7Hbvpd1zgTL9mtyQSVB0wEmvutYLHJC8jbOwZoVGfD9roComaZucHMhlGbrOpH\nTcmNICowmnlfvI6/R2cyRmyQrltccZg5+6Kt6knFFsZw7cY15vafz9qj6QCoVHDtRjWXb1SxYmga\nvbx682L+LN4NscgziXpaU3IjuFx7iaqai2g1blytu8KTXceTe3oHndw6kzJ0JSmHlrFw4GLJodRS\nLSx5vShx39v/tZXlh5MI8OhqVWMqPDuMC4Zy5vX/E4P8B0ttswf5c2vNsy6rttT6clVrWThwMS/s\nncF7IzZKEoARO8KlfpTXrhJ9LL9PcW1Rj2V+/8XknNpGXNA8ovKfZ13IB9J5BeNMXjNNaJeLLHt7\n7be9P1Ev62alFGyZa/IsNvlYFiyeUl0JL+ydwRtBixjkP1gaG6IOlm2dNcGSHN/tKd4sTib5sTeZ\n98XrdHTzxcXRFWODEZXKIrEopDbfCFrE3/75Ic/c9xwrj/yFlCGreKPodXaG5wGWMXy59hIXDBWk\nPbGGdaUZGIwG6s0mHFVqkh5LZtGX83BxdJXGj7wGVOHZAnr9GGiI3PUsrhoXzGZ4N2QDMQXRnL12\nBq3anSt1l4jpF0dk4AwySzfy7j/WMH/AYtYeXY27kwcqFSQOTibl0DLSgtMlqVHRJ/Lr2gbj5XX6\nxLEV+nKi987ifHUZKx5Ps6onKMYDWOq0TblvGsEB/2XVX1dqr6CrrcTbxYfU4NVU1VTxTkk6Y7qO\nI/1oKh1cvLlSexkvbQecHV2oMRmob6innUt7Xu4XQ2rxCgDWj/yp/pto163o5Iv7Err4YpyVVZ9j\n9NbhVBjK6ex+DxO7P03GP9Lp4tmVMV3HkfGPdLxdO2JqMJE5+q/M2h2JSgWOKjWmBhMzH4jizeJk\noh54mdzvdzCll2WceLl44+nsycKBiwn07ivNWds1wh5bs7X3Yyt50praYvZ+NyU3AlODkfRhGVYS\nqQL2xk1zjLOWCkTfrS/BSp2OuwPN1TibkBPGvP5/YuO367h64wrVxluvJSvQxqkNDqjROKpR4cCl\n2ouggh3heegMlXhrfXjm0z9ype4yjipHPhj1V7y1PkTvtUi+nr9+DpPZRNoTa+jl1Zs5+6JRqbBi\ntgNSrdTIPjPJPPZ+o3nSVA2Q5vZF8bftOt4aNDcXb2ae2s77Wzmv2Lebuv+bsZ+aa+ftrj03Y8Pd\nreucAgUKFNxJKLbT3YHm/E62e5fweSwfuoppnz2DrrZSOtbV0ZXa+lrMmHHAAR9tR9QOapKHrCS1\neKVUw17syy3VNFegQIECBQoU/ASlxtktQsjJtcbYEMdU6Mul/2/uBV7UxGouaPbUjicBi7RYU0Ez\nIe0XmTdVkpvLmbDLSmpOIDhgGO+P2sz28blSgEPg3PWz6AyVxBbGEFsYQ0SPyVysrWTt0XQSBi0l\na1w2QzsFc6XuEm5qD3p59cbXzQ+txqK9HVsYIzmR0oLTcVG70EHrzfU6i7H4h7Y96OTWmQ2jMgn0\n7kuNySAdKyT97KGs+pxkDApDsLjiMOHZFi3vnPBdUjBK/Jcdnsu8/n8i8et4SS7PtkadOLfo05ak\ncuRBi3L9eUkCctu4Twn07ivJMf1w/QyzdkcyISdMkoAqrjgsBT/FueQyTaHdwngxcA4rj/yFyD4z\nCe0WRsoQi4yhqDcHNJJe8HXzw9RgJLYwhgp9ud32296fPb3z5mDPMWgr0eDr5ieN5VJdCRE7wkk5\ntIw3ghax/HASMQXRUv/La7aJ+mZl1T/WyPEfTs6pbbw3YiOXay9jNBuZcX8UCYOWkvRYMhoHDVN6\nPUdotzCSH3uTrJMfYzbDIP/BdNT64eXqRVePe9EZKiX5wF0T97EpdAvBAcNIC07HyVEjOVQXfTmP\nSv0FEgYtlcaOCG6M3jqc1z9/hchdzzJj93NcqClnWu8ZZIdb6uJ9Mjab7PDP2PLkJ3TU+vLuP9Yw\neutw0o+m8uKDc2jn0o7rpmqm95lhNbZFDTshwynGjVhnhFSYWHvktffgJ8kwV7WWDaM2MfX+adJx\nc/ZFYzAaiC2MQWeopKPWj6LzhSQeXMIzPZ9jxZFl1JhqWPRIAmoHDQ4qR2btmQ7AmWunCfINIv6R\nRNq6tMXHzRd3jQfT+8ygquYil25U8bh/MPO+eJ1z138gLmg+vm5+GOuN0viw1clv7fgSa5g8yC+c\ntc6OLjjiiLHexJ6zu3i2VyQv9Y3hvdK3iX7QUu/uQk05B8sOoHFUozNU8trDcagd1Gw58SFvBC0i\n59RWautrWHnkL7wQ+AqfPrWbtOB0SbpVLtsph1hXb1bay1b+RL62NLe+2Na7FPNELispXoTFy7AI\nmNo7h22bmtvLxHnvRhkzBXcPmhofQb4DmNf/T6w4soyy62V3JGgGcLXuGpfrqrhYo+PyjSqe6/08\nPq6+6AyVJH21hMhdz3Kl7jIeGk8cccRb68OJquOU68/z2sNxvD9qMwEeXQkOGEaQ7wDWDM9A7WCp\nnSkkTyv05aQcWkZc0Dym3j/NbnBIJDvYfm4rmWq7T8r33ZsNdtnra9vvmpNQlO8jcjugOXlF23OK\n64l9qyX74lYdc3fCoddcG+T3pDgPFShQoECBHCUlJTz33HONPi8oKGDixIk8/fTTfPLJJwAYjUbi\n4uKYPHkyU6ZM4d///vdtXVu+dxVXHOaFvTOIC5pHkO8A9kQUkvBIEg44oMKB5CFv0lHrSzvn9jiq\nHIkKfIkL+gqSvlpCXNA86b1G7P+2ZSgUKFCgQIECBf8ZKIyzZlg8tsg7lSsxkGwZUrcCwTBqLotW\ntEV+rKg7Jf7NDP2IUl2JFOCRfy5nDQkGTOHZAtYeTeflfjH08urNgqK5BPsPZ/XRVTzZdTyfns6h\nq+e9bB+fKzGIInaEkzBoqZQl9WL+LJIeSybhwCIGdhxEzqmt+Go78W7IBnSGSovD3gw5E3YBSO2V\ns2vkbRPfz9kXTY2phvP6c2wK3YK31seKiSHvo4++3UxwwDCp9oq8zwCpL5oKXsqPlzNGxD1D40xz\n8RxsmVWCFQYWVprGUUNacDpBvgN+DASOwdOpDW5ObmSM2CCxr1YcWUaARxerDHnbsXirTJ+WYHvf\n8sw1ce/yYwrPFjDvi9fp5N6ZpMeSCfTuy6Sd4cQ/upSkr5ZgNiMFOW1ZamO3j6Ls+jmJGTB++2jq\nzHV4u/hwzXiVds7tMdXXU3VDR/wjiWSd/FhiDIGFZajVaBkZMJp3S9fg59ZJYgUGeve1YjNV6MuJ\nKYiW6nxtH5/biF0wa3ck9WYT8wf8ibVH0wm7dxyFZfuIC5rHC3tnWAW9xTMAOFh2gM3HN1J+/Twv\nPjiH0G6jAaTnLMaGfF7Ozo8kwKML8Y8uJSr/eTpq/cgOz23EMhTXAgtDIrRbmBWLT/6vmC86QyUJ\nBxZRobcwMLec+JCEQUuJ37+I1x6OY35RLCuGppFavAK1gxpXtVZirOkMlSz6ch4VhgrcHN1o69KO\nerOJGmMNeyd9IY2J230pyzuVa8WODc8O492QDcQWxkj16dQqDWH3jmP10VV0dPVDpQKzGS7WVNLG\nuS37JhVJ/eKt9WHOvmhMZiO1plqqai6ycGACYKmJtj4kU+o7MY6bGvtxQfMI7RZ2S/d1s8yG1rLF\n5E5g22zSps5hjzEj1nxxDTnz7m5jZShZ03cH+r3zsF17qPBsAZnH3ifYfzjvlKzGydEJvUl/R67Z\nzrk9bho3ZtwfxYojy6hvqKeDqzeOKjV19Te4UnuZ90M3S8e/sHcGUQ+8zJ6zu6z2XTlTG5DWiIwR\nG5izLxr4aX+yt882F5CxF1ADGtVNvdWEFdvvmmN5ya8vGM7ytaMle7IlFuvdtja0hNtlwylQoEDB\nrxWK7dQy1q9fz44dO3B1dZWCY2AJkI0ZM4b/+Z//wdXVlWeeeYb33nuPo0ePsnPnTlavXs3+/fv5\n+OOPWbNmTbPXaK3fCaxtc/F3ePYYlg9NxcvVi9l7IqX/99b6EJ49hvUjLUnJ4j2wNX4jBQoUKFCg\nQIE1bsdu+l0HzqCxgSHYQ/LggThO7mhtyTBpzhFjj1nW0rnkckCAFCwSjiJ5kKI5B2veqVxm7ZmO\n2WzGR+vLp0/tlhzxwf7DiQycQeHZAoIDhgE/BZ/m7IuWgkEnqo6zoCiO+QMWs+nYRioM59E6ujPn\nodfIOvkxABE9JvO3f34oBYSE8xwaO3tEvwNSwGPe56+z8JEEVh75iyRpaE/qwFYeTe5EEVKHrXH8\n2wbbBINMOOZaYqrJrz8lN0IKmonvJ+SEYWowUWm4QE74Lg6WHSDn1DYi+8yU+rop51VTTrY7JX8k\nzi3Gkm2gUTyb8dmjMTYYiX8kkS0nPrSSz3xy2yi0GldJcq6s+pwU/BHXkf9dXHGYE1XHWf1NKsM6\nh/DXE5l0cvdnWu8ZZJ38GIPRgFajZUtYlhQIe+a+51hxeBkdXH3YMCqTE1XHWbT/DZIfe5N1pRlW\nc/ajbzezrjRDksETASeA6L2zKL9+nvkDFltdSzyzvFO5Vu0Wv4sttDCgzGa4duMaemM1qCAnfBcn\nqo6zrjQDY70RjaOGqMBopt4/TbpXMYZsg0i2wZuy6nNM2hnO2eozrA/JJOmrJdL/y4P14rlNyY1g\n4cDF0nOI378IgBv1tcwf8Cf++++pODlqMBhrcFW7SjKjs3ZHonFUc/56GW2c2nK17grtXbx4uudU\nVh9dxebQv1nJiNobN62dU1NyI6gxGcgYYQmqz86PZPmQVFKLV7B+ZKb0bE5UHef1z1/h1X5z+eTk\nFioNldSbTbR39pICZ5N2hmM2Q8KgpQDM3DONBrMZlRnau3rh5OiEi6MrCYOWNlozbCFf6292HrXG\nAd3S723XPnsB/uYc7LZtkScJ2EoFF1ccJqYgGrWDxu76+0tDcf7cHTh66nijfWhCThinr31PwiNJ\n/O2fH3Kp5hJVNy7e9rWcVM7UmW/giCM+bh3ZOOpDTlQdZ8Xhv3Cppoq2Lu24cuOyJBstl5deV5rB\nlRuXaevcThrPcUHzSDm0jBqTAbVKg950HScHZ7LDc61sAWheZlvcN7R+T77Z4I29YPnNrLO2+7at\nDduSzdISM/ZuWhtaA8VRqECBgt8jFNupZezevZv77ruPefPmWQXOTpw4wZtvvsn7778PQHJyMg89\n9BA9e/bkrbfeIj09nfz8fPLy8njrrbeavcbN+J3sIe9UriQtX1tfg4ujK2BJ9pEnA4Hl/cc2qRh+\nsgfuRMLjrxmKPaBAgQIFCpqCItV4G7B1jFgYTwZJxks4NQXVXji4W+PItJUPbEqipzUbvGCRVejL\nmbQznNjCGCuH63sjNtp1lsivVVxxmJRDy/DRdmThwAQu1lZSqivB182P5UNXkfv9Dp7cNop1pRbn\nupAH9HXzY83wnwITC7+ci7vGgxWHl/Haw3G8GDiHy3VVpBxKJKLHZBYOtAQk4h+1OLdFkGvhwMVs\nCctqJPkmpPzm7Iumrt5IL6/e+Ht2ZtOxjXg6tSHl0DIrqULB/IsLmgfQqK+FdJE8yNgSRFvkcodp\nwemNpPSERJKt5Jr8POIe807lStJ7GSM2EBc0Hx9tRw6WHSDp6wSC/YeTeez9RpJx8vEj/t/2HpqT\nXrtZOTZ5/y0omttIymlB0Vx83fzICd9F2hNr6N6uOz9Un6FUV0KFvpwKfTlVtTpe6hvDgqK5kkRW\nyqFlVvNHzuwRz+b0te/ZfOIDfLQdyRixgUH+g0kLTufdkA0SMyq2MIa6eiNbTnyIn3snUoautEhL\nHXufN4IWsa40g4UDF1OhL2dKbgQffbuZRfvfYOHAxaQPyyC2MIax20cxblso0XtnoXHQSEGzqMBo\nssNzrQKdKYeWkXcqV2LphGePYfaeSKICo1GrNEzvM4Oaej3P9o6ki2dXTlQdJ/bzOUQFWmrcLRy4\nmEX735DOIQ+IhHYLk+7L36MzcUHzmJ0fKfVThb6cT8ZmS6ypT8Zmkz3+MwK9+0pBYvHbUl0JpgYj\n8fsXEb9/EbPzLSy6GpOBCkM58754ndcejuOlvjF4OntKwabovbMo0//A+G4T2TByE6nBq1kwIJ5L\ntVXknNrKW0+8LQWd7KE5qTHbY8ASfDY1mJi9J5LEg0vo4OJDavEKzl3/gdl7IqnQl/Ni/izWHk3n\n1X5z+ez0Di7qdfhq/ZjRJ4rLNy5ReLYAsLDQjA1GEg8uwVvrQxePe3ml72uggsqaC8y4Pwpjg5Go\n/OftypvK26wzVHKrsJUNa63Emu2xxRWHCc8ZQ0xBtN3f2q4vzbVFPs7kUsFifU0flmF3/VWgQMB2\nTPh7WOqldna/h+7tumM2g4vaFQ+N/cLzrYGTygmAOvMNwHK+Sv0FZu+JZO3RdItt8XgaWo2Wds5e\neLl6saBoLiMDRnNeb5kbET0mc6mmiqjAaHzd/CQJo4UDF6NWaXi5XwxVNRdRqSzXlEsYi/liD2LP\njdgRbrW/yqWXRb/Y7vs3M6fkxzdlL4rjbCGcQuI72/VNbrPYW4eaa6Ntu34tUNYyBQoUKFBgD6NG\njUKtVjf6/Pr163h4/ORAc3Nz4/r16+BSeGwAACAASURBVGi1WsrKyhg9ejTx8fF2JR7vJMR7p3jP\nTx6ykoRBS9E4WmSndYZKXsyfhclspLqumtl7IqV3BuELsPUH2PMZ3Ik9/VbPcbvXbu3vW/N+qkCB\nAgUKFNwKfveMMzmEwwSQmBlCEq0luT9bCDaDcMjLr3EzzCE5000wQKbkRhDRYzJZJz/GWG9kzXBL\ncED8v62ko3ASReZNJbLPTNaVZpAWnE7krmfxcPJA46hh4cDFzP38Na7euML8AYvp3q47UfnPkzJk\nFf/991Q0Dhop8+lE1XFSi1dgrDfhonah1lTLxVod7Z3bc814FW9XH+rN9bip3TE2GLlgKCdlyCoy\nj73fiCEm7hEsMmxJXy3hk7GW68zeE8kFfQUrH3/L6re2LB0hUybPOBfyfPYkzJrrZzmrz57zaEpu\nBKYGI2YzkuxZU8//qR1P8t6IjVIW2dnq0zQ0NHBv224M7RRMse6wdD05GwuwYtTZY841lVXW2vu1\nbas9lqX8e9En4v5rTDUA6GoqWT4kVaqJJ++3phh/ZdXnCM8O41z1WeqpxwEHUp+wBJMWfBmHt6sP\nLo6uEsNRZ6iUxv72f20l6+THbAnLolRXYsUwADCZjahVGolxBJYXiFm7I9HVXGDF0DQA1h5NR2+6\nzqXaKpYPSSXz2PtSPanZeyLR1VSSPf4zfN38KDxbwPyiWNq7eKFSqXBycGb4PSH87V8fkvzYm0y9\nf5qULSju05ZhKe9fucyXYNOlD8tAZ6iUpGBTDi2T6uzJx7cYE6W6El7YO0Ni20UFWjIRvVy9WFg0\njzL9D7R1bkdb57aU688zv/9iiQ26cOBiiiuKefcfa/DW+lCpv4C3tqOU5fjpU7ulfmtq7Wot40zM\nwXHZoZgbzGwM/bDRs4wKjGbeF6/jo/XF09lTkm9MHGyRAx27fRQeTp5WUpxibdUZKkk5tAyD0cBr\nD8cx9f5p0tizTSSQz3FAmp+3KtVoC7kcbksyKgLi5VbOFG4NE6W1kLP+bPeiuwlK1vTdAWE72c71\niB3hGBuMkjyzvk5PVe1FGmi47WsKxqu3iw+bx/zN0o4fZWQv6Cvo2uZenrnvOXJObWN8t6fY+O06\nKg0XaOfshcZRbbVXCPlksbY2xcBvStpUrAmJB5dYyZraMjpvZv2z/dce7LFfbeWcxDnl8sotrS+3\nyh77tTLPFChQoOD3BMV2ah3OnTtHbGxsI8ZZamoq69evByyMs4cffphvvvkGJycn4uLiKC8vZ/r0\n6ezcuRNnZ+cmz38rfif5O5J4p4kpsCQQCxUUgPCcMZjNZqIfjGHP2V0sHLjYLuNMwPbdW/gLgNti\not2qXXC79sStMPr/U3aLwmZToECBgl83FMbZHUTWuGwpECWYWLYsnNbA180PU4OR2MKYRgwCOVrK\njhGsFMGg8PfozMKBi3mzOJmIHpOljCQ5OweQCs8KQ8Pfw1JEPvPY+0T0mMyJquNcqbvEy/0sxlr8\n/kXoaiqZ2ms6yw8nkXBgEW2c2vHff0+lXF+G3nSdUl0JE3LCWHVkBZWGC6hUUG82cenGRfzc/EgN\nXs3yIamYGkxcqqliSq/neDdkA9vH5xIcMMwq8CVnbglGVcqhZZjNNplSZujl1dvKYJIz/wSWD11F\navFKogKjJRaUQGuMLdE/sYUxhGeHSdlb4ndy9kz6sAypr5t6br5ufrw3YiPeWh/8PTqzZngGCwbE\n09nzHsZ0Hcff/vUhkX1mApaaaFH5z0sZ52XV56RacnLmXKmuxKq99gJSItB7s4adwWiQxpcc8gx2\ncf/xjy4lLmg+rmpX5ve3sKtOVB2XjhHtA6iuu9Yo861UV4JWo+WVfq/jgCMqVKw6soIFX8Yxv/9i\nPJw8eblfDFGB0byYP4vZ+RZWUqmuhMSv46muu0aprkRiGCQOTmbN8AyyxmWTMWIDKhV4a32kLDwA\nT2dPFgyIZ/U3qcz74nVq62twU7szv/9i1pVmEBc0j9jCGGIKonFxdGV9SKbU71Pvn8aKoWlU1V6k\nQl9O2fVz/PV4Jm8ELSLz2PuUVZ+TGFpiTId2C5NYi75ufhjrjVbPTQSBFhTNJf7RpcQWxpByaJk0\nZmpMBmbnR/LRt5utgmYi6COODQ4YRkSPycwvimX+F7EkHFjE3P7z6ejqR43RQOLgZOb3X0zOqW2k\nBacTFRhNyqFlZP97Kx1cfYgLmk8nD3+uG69RVXuRC4ZyCs8WMCU3wmp8265TrRlf4oXN180PH1df\nfN39rIKLOae2sXDgYpYf+gsqlYqZD0SxJSwLb60PAAkHLLKT60dmkhacLv0uyHcAacHpvJg/i5RD\ny0gLTic73LLGyFkbk3aGN5qfYj0H2Dbu0zsWNBNzT6wZIuBt77gpuRGU6kqI2BHOhJzG15cHzSJ2\nWN9DS/uQ7bFibRVydvZYLQoUyGFvricMWsoFQzlVNVWW/b22igZuPudKhcrqb0eVIxqVE200luDZ\nB6XvE1MQzaw906k13sDTuQ0v9Y0h+dBSab/U1VTi7dqRBQP/RKXhAgmDlkrrrBjrYt8UTilbNqjY\nJ+X3LFia3lofNI4aaf0HrBid8v5pKou7rNoiuSuuLf/XHuTXgp+CeLbHy9lyTdmNwt67WRacveso\nDiIFChQoUPBbxB/+8AfOnDnDlStXqKur48iRIzz00EN4enpKTLQ2bdpgMpmor6+/o9cWdkTeqVwW\nFM2VbJj0YRlWpQOCfAeQPf4zVgxNY93/rZXqegt7Xu6nEO+8tmoa8vfO29nTb9UuuF174lYY/f8J\nKGw2BQoUKPh9Q2Gc/Qh5RottPQy4tY24tU7mljJYhANVznASjCQ5C0WgQl/OhJwwto/PbcS6eLt4\nNYlfx6N20NBW0462Lm0lJlnkrmd584k0Eg4skmpNLRy4mO8uf8fyQ0nkTNglnedE1XHeKUnnIe/+\n7D9fxKguo/mirBCT2UhZ9Tme6/08H53YhJ97JzJGbGjUn4BV5rS87SLjSqWySLOJGiX2CuLmncpl\ndn6kxA4SjjIhlfjC3hmSZFlLKKs+J7GYInpMZkLPidL5hGPLHivN9hkK53iNyUC5/jzrQzJJPLiE\nH66foa1Te67cuMSLD85hz9ldEktQsKqaYvTkncolKv95to/PlbLgm5Nxai3E2DpbfZoAj64SY7Ep\nebtJO8M5ffV7ANq7dODNJ9KoqqmS6nvJs/Sf3DaKMv0PdPG4l+zwnxiA4TljpGDO+G5P8f7/rWNu\n//msPZou9cWs3dMxq8x01PpSa7zBh2F/w9fNjwk5Ybz6UByZx94nss9MUostQVw/N3+yw3MBCP2f\n4eT9cR/wE2tK1HgyGGvQOKpJHJwMQOLBJZjMRraPz5Vq+8lrmgFEBUbTy6s3Uz6dxOW6KklOUNRO\nE/cFWI1RUTtQ1AjMGpdtt1/lrCMx/sS8E3Xwpt4/zYrRNCEnjIwRG4jc9SxX6i7RwcXHEng68aFV\nLcJeXr0lFoW31ocJOWGkDFnF6m9SAVCrNDzuH8zGY+sY3nkkhef20cHVhzefSLMaj6K99mrgNTWu\n4Kf5ElMQLbE05fXeqmqqiP18DhE9niHn1FZprlTVVKE3VrNgYDzr/y8DN7W7lNAg2CThOWNYPiRV\nYpmJsenv0RmzGcqvl5EzYVcjFpjt+n6nXrLkc8+2xpj8mIgd4dIzEs9dMMLkLJjiisNMyAljXcgH\nVszD5phstuuj/DdiPN6NDnEla/ruQFOMMzFfUw4t44K+gks3qm7p/I6oMdOAs6MzNfU1uGs8MBj1\nODo44uzgwnVTNTP6RPHZ6Z1UGi7QQAPDO49k37k9eGg8qTZeI+GRJLq364631ofx2aMtDqXSjB+T\nP84T4NmF+EeXSuuoSDiQ1xwVa65Yn22Z+fLj7WU6y5mc8jqaTdkl4potzV9bVlxTa+3NJDDcLlpj\nn95t64kCBQoU/B6g2E6tg5xxtnPnTgwGA08//TQFBQWsXbsWs9nMxIkTmTp1Knq9nkWLFqHT6TAa\njUybNo2xY8c2e/5b8TsJ+3z50FXoDJV267aDNTNNXsdYKA3J642LpNJbUUpS0DIUe0eBAgUKft1Q\nGGd3APJMXpH9Az8xjW7nvM2hNZuwxFj6kdEgGC2CeSVnlYlM687uAVL75ZnWOae2kfBIEr5aX9SO\njpjMRuk6V+ousbBoHgajgRVHLMGjxINL2PjtOlBZ5JN83fyILYxh7dF0dAYdn5zcwnn9OTYeW4fO\nUEni4GT8PTpTcC4fD00baoy10vlFLS/BbJIzo8TnOkMlIpT76kNxJD2WTIW+nKd2PNmoZlFZtUUX\n3M+tEzpDpZVhKVhbovZbS89AOLSTvlpiue+v45mQE0beqVzp2qLNgrEib4dthv6WsCy2j88le/xn\nhHYLI2ucpVbVgoF/wlvrQ+73O4gKjJYYgymHljElN8KqJpgcgd596ewegK+bX7NZT4KpcjMZUVnj\nsskJ3yUFJmy10uVjK/7RpfhofWnn0p5LtReZtXs6q79JJS04nYRBS61YSvVmE/5u9/BuyAbpfnzd\n/PBz60TWyY+J7DOTzcc3cqGmghWH/0LCoKUsKJpLVU0VPm4dae/cgRn3R1F1Q8fsPZGApVbc2qPp\njO/2FGuPplOhL6eNU1ucfuzHzNKNXKgpZ/u/tkoBEtGeunqjFDRLPLiERV/O47qxGrVKw/Z/bSX2\n8zmWfwtjiN47i7TgdCJ6TCb28zlM++wZqo1X8XLuQGi30cQ/upSYAos8oghwvJg/y9IGWZAiss/M\nRuNPPB/BPBqfPZrZeyIpPFvA7PxIquuukXBgESsOLyPYfzgLvoyTmGcieFWuP8/BsgNcqCnnxcA5\npAxdSdbJj61qES7a/wY6Q6UVs6qzewBerl64qrUkDk5GpYIvygrxce3IicvHqaeeCzXlxO9f1Gic\niHnYEmtJjE/RF0G+A/hkbLY0PsKzw3i7eDUzd08jtXgF8Y8kcujCQSmj87qxmit1l3B38uAvX/+Z\ncv15rt64gs5QKTH3fN38aOfcnnWlGRRXHKZCX078o0vx97DUZHo3ZANd2nS1CnCLtUPuyLZldN0O\nbOesvYC9v0dnssZlsyUsC183P4J8B1ChL8dYb7TU7ZOtb0G+A1gX8gGpxSutXrCb2i/sZWXKWcdB\nvgNuiY2q4PcHe3tbaLcwS22xWwyaAdRjooEG6hos83hSj2cwY+a5Xs/j62apaRjR62nUDmo6ufsz\nqccU/n3tJA44oDdel84Tlf88J6qO4+3aUapxmR2eS3b4Z7zU18Lera67RuLBJRL7Xqy5ETvCmbMv\nmpiCaMm5JOaFmEP21g0BYbMJ9r/ZbKkbKa8rlnJoGetDMqX5H5k3tdH8lttl8j4XaMpuka+v/+nM\nZ3GtptZ8JQNbgQIFChTc7ejcubMk0zh27FiefvppAIYNG8bWrVvZtm0bU6da9lU3NzdWr17Nli1b\nyMrKajFodqsQ9jkg1W0XtoVgk8n3WNs6xmnB6WgcNVa+lZRDy5oNmt3KXq3s7z/hZhOTm/tc6VcF\nChQo+HVBCZz9CHkASxgdpbqSJovIt+Z8cjkfe7CVEGoOwukCNJIRtN3IhXNW7jQVn2eGfsSEnhNx\nVKmpqr0oBamCfAewPiQTlQqu3LjM/P6L2Xx8I8YGI2oHNQsGxJNavJIKfTlbwrJ4uV8Mfu6dmNRj\nCn9o04NJPaZwzXgVsAQ3ak21XKm7xIUaSzBMyA4IOUSRLSXuY/nQVUTvtcjyvdwvhhv1tcwvimXW\nnukAvDdio11DcEtYFomDk3lh7ww++nazlWM/M/QjKwk9eb/bPieRgW42Q/d23XFycOLVh+II7RZm\n5QC3dX7J+9X2M9Gvciz4Mo56cz3GBiPvlKRL/SJk/ZqSBRXPtCUJJuEctA1+2YPcASckIZqSc5A7\nBOvqb+Dp1IaVj7/FhlGbcFVrAUvwTwQ2SnUlXDBUMLf//EZ1YTJGbCAtOJ1VR1agr9NjbmjggqEC\nsEiMLiiKo9Z4gyt1lxjkP5iYfnF4OHkCluDtmWvfs/xwElN6PYcDDmg1bqQPy6BCX867/1hDW6d2\nbDnxITEF0RjrjVIATTAYwVILreJ6OVW1F3m5Xww5p7YR/0giOae2EdFjMuX685yoOk7WyY+JfyQR\ntaMazHDNeJUX82cRv38RZ66elhhY60I+QKvR/vSci+YyvttTLPxyLoVnC1CpLIEaMedFsMRb60N7\nFy8q9OWkFq9gfUgmOyfsJnFwMu1c2vPZ6R14u/qwrjRDkhYT0h0Tek7EV+tHzqmtLCyaR3XdNcnZ\n6uvmR/Jjb5JyaBm+bn4UVxxmzr5oEgYtJfHgEtKC0wntFkb6sAxe7hfDptFb+GMPy4vkq/3mSgxB\nOYJ8B7QqEC0fn+IclvuzSKmW68tY9vUSzJg5f72MqzeuYjZDZ8978Nb6WJzmbpYgbWePAF7tN5e2\nLm0ldmDh2QJKdSVU1Vwkosdk5uyLJjxnjBTs0xkqCfIdwEt9YxrNSTEGFw5cDMC562ftSireDgSr\nUg7bQDQgOaTn7IuWxodtn4d2C5P2I7lcXFOwtybIHfW3Ijus4PcLeUJRccVhtpz4EIc7YDZ2de8K\nwJGKr+mo9WXP2V1cN1az74d8Zu+JpNJwgRumG2T/+3+oNdXi5+aPj7Yjbz3xNoP8B9NR60dq8Qpc\n1a4Sq0xg4ZdziQq0SO6azEZSDi2T9vy04HSyxlmC+GoHjbQ22s4LW5tBLssot+tSi1eSMGgprmqt\nJBFZoS/H1GCUajnaWw/lASl7NmBLyTH2ZK9vFq35jTxZyF7w7HYlmBTcGn6pNVzZOxQoUKDgzkEk\ntQlVELDYWuOzRzN2+yig6XIT4p1dvB/I3//kkAdqmkuEsYffanLMz5V01JRtdzP+PwUKFChQcHdA\nCZxhvZFN2hlObGEMH327mel5Uyg8W3BLzgl7zg3ba7a2HpVtcKc199NUUE0g6bFkunjcS9JjydJv\nvLU+uDi6smHkJrq3605Z9TnC/zARtUrD5uMbfwxqWAIBC7+cS0SPyZRWlbBmeAZvh7xL2hNrCPTu\ni85QyaXaKjq4evPWE29TVVMlOabkBp0IsoDF0FOrNPhqO+Hl6sWVG5eJfjAGPzd/AIl1IfqyuOKw\nVL8q0Lsv28Z9ytT7p0mOfREQsnXs2NYOEd8H+Q6Q6tuFdgtjw8hNUv0q29om9p6DvUCTfNyIjPP1\nIZm0dW5H0mPJmM1YZbbbBjqbu0Zzx7RWy7ypgJ/t794uXk1k3lRLXaYek7lYqyPs3nGs/iaVQO++\nEjtzS1iWFNwL7RZG2hNr6OXVW+qPKbkRkp571on/x3n9OS7W6lj1xGqe7zObQO++BHr3pZ1Le9q6\ntGV9SCYnqo7zXunbUqAj8eASOrr54u3akQk9J7JgYDzZ4Rb5Sl83P/zcO9HB1Zs1wzNIH5YhBZC3\nhGWRMWKDdI7EwclsDP2QLh730surN8uHruKVoFeJC5rHpmMbmd9/Me+UpGOsN9K9XXeqai7ycr/X\n6OTWmdcejuPdkA108vCXnl+gd1+pz4WzMevkx3i5ePNOSTp19Ubm7IsmtjBGCoAJtqGzowuYodJw\nAW+tD6W6EpK+WsKl2ipe6hvDzgm7Jf17ERAVY9IidWagXF9Gud5Sn2zSznAidoSz+ptUDEYDpboS\nZu+J5IfrZ6iqqeJs9Wl0hkrKqs8xNXeSxKh7++hbdHT1I7TbaLvjRQROWxOUtf2dWOum3j+NBQPi\ncXRwJLRLGA00sProKmpNtYzvNhGdoRJdTSUzH4hi7dF0nBw1RAbO4JOx2bzcLwZjvYnXP3+F1/73\nFYxmI5uObSRh0FLm91/Maw/HUWuqZdbu6SwonEvs53P46NvNUhvEPBQyaoAkfXon4evmR4BHF4kd\navsCJdbnzNCPpFoE8Y8uteucFn1XXHFYCvzdKuQsX+VlTUFzkI+PCn05U3IjmLXbktTSwdX7ts//\n7+rvAPjHpRKq66op15dz0aDjyo3LGOtNLBgQj9kM7V28cNd4MPOBKC7XXgIsErqvPRwn1TcL9O4r\n2VqCbR8cMIw1wzPYPj6XtOB0iekaWxgjBfHFvmVrh8n3RcFEj9gRLtkb8iCYYP2LBBiRENSSALrc\n7hAMZdvgurwN9n7fko3ZHFrrDBN7TXO1fn+JoNndvH79Ug65/zR+qw5UBQoUKPg5YS8pJ/HgEsJz\nxpB3ylJiw0fbEZ2h0m5CnRxyu0W8/8sTdOTrtjwRprXr+G8xOebn2Mua6jdb2++31K8KFChQ8FuH\nUuPsR4gNNGJHOAmDluKt9SF67yy2j8+VjrFX66K1522KHdTac8lr1QjIpQnl55ySG9Eka2hKbgQG\nowGtRsvIgNFSnS3BxjGZjSQOTrYwaqq/R+Og4aUHX+Xd0jVkj/8MsDiuquuuYTaDq9qVrHHZUm0m\nY72R2voa6urr8HRqw8v9Yoj9fA7xjyTyStCrUjvE8aKd8jpi/h6WeioJBywMEvEM5E6kKbkRUk0t\neb2iiB3hkt53U33bVO0Q4fQSTjB7z0fUlmtJCkHObpF/Jq7j6+bHpJ3hfDI22+4xt4s7dS5RE29G\nnyj+ejyTTh7+TOs9g43frqPs+jnSnljD2qPpnLt+1ioIUVZtqTl1tvqMVOdF1HaK6DGZpK8TGOw7\nlP0VX/Bk1/F8ejqHzu73kDxkJVH5zzOv/58Y5D+YCTlhtHFqR+bov0qBo4gek9l0bCOvPRzH65+/\nwubQv+Gt9bGqYWNP512we2rra3BVu5I+zFJPLemrJagdNCwcuJj4/Ys4W30aH1dfPJw8pJpcY7eP\nwlhvosFcz7W6q6wfmUn8/kVSXTV7a4NtEMS21o28jk6prgRvrQ86QyVR+c+TMmQVp6+eZs/ZXRIT\nMS5oHokHlzTSs5+x+zlMZhMAnd3vwVGl5rWH41h1ZAUaRzXXb+i5ZrxC9IMxBPkGMWvPdHy0HZnY\n/WlWH13Fk13Hc7B8P1U3LvJqv7nkfr9DqvsG1owlUWuwubElXkrkWv1izolncPrqKVQqFW5O7ly5\ncRlXR1dq6mvwdvGh3lyPVqPF1GBi5eOWGnq9vHpL9b6qaqp4pySd6rpqogJfYtOxjZyp/h5HlRqz\nuQFQ4ahyoMHcwD2eAWSM2NBo7ZyQE0bi4GRJwvJOI+9UrsR2lfeDvG9EnTZvVx92TtgtjVl740is\nSzdbo8x2DRL1m+62WmdKnY67AzpddaP5K9bcpK8T8HfvzOWay+jrr7dwppuDAw64ql3Rm/QAtHFq\ny9W6K3g5d2Dxo39mXWkGV25cxsnBGSdHDfGPLmV2fiTrQzIb1TKzrUcq6p2mHFpmFeCyZULb/r/4\nW9QfbKquqTjGtg22885e7RL4Seq3o9avEdNX/lt79p78uJu1MVuyEexdu7m1/07aL83Btl23e647\n2eY72baWrvNLrN3N1d1ToEDBzw/Fdro70Fq/k609IH8fiN47C1e1VvJntLamdGuuY2tX3C22/y8F\npQ8UKFCg4PcJpcbZHYB8A008uISYgmgyRmyQsnhuJetGGC6tuaY4vinYZqcI9s5TO54k71Ruqxhx\n/h6dpSzrkQGjST+aSkSPyRI7Z83wDNQqDSmHlpH0WDK+Wj/aOrXjs9M7WD4k1UrOL3nISi7WVpIw\naCmluhKi8p8nKjCal/vFcMFQwZXay7zcL4bggGGSBJ5oX4W+nBf2zmDhwMWSQ0ZeR6y44jDeWh/O\nXy9r1FfyrKqscf+fvTsPqKLqGzj+vcBlBxcEQcwFTVNDLdz3XQwXzFCzMFNzqaRSUzGX3JfUJ6FC\nbbNMWyjFBXd9TdNUIjVb7LHIBWTLlU3Wef/gmelyvZdNBLTf5x8F7sycMzP3nDNzzu+ciAIRbAlp\n8VxOucjZ5DOFngdzL54mHwoiIye9wBSShqITolgZvVyLvDMeNab+azi6y3h79TgJafFYWegLbF9W\nI6DKal9xKflr4r3ScioBjwwDHaRlpdGwWkOcrJ1Z1TWUbnV6MKf9PJZ0WlHgWng61earAfnruvm4\nt8bTqba2/tbLPq+wqmso17KuUkVfld9v/Mactgt4v896fL38mNbqDZb9sJDk9CTW9f4YO72tds6C\n28xiadQC4lIvA1DPuT5XM67iv/UJraPq0KWDjNv3PIO8niywLuCMI1P/N0WXFenZGUzYN5Y5x2aS\nlZtNwMPDtfv++aYvUN2uOqE9wwrcK4kZ8dzIuk5Vm+pczbhKfFqcFn1oah2cSQcmMnH/WC3STKV2\nghnue8nJhdq/LrauLItaxOrTK7iReR1A6zTT6fI7y9TpOPPPgRdDHx4BwJCGw8hVcljxwzL+vp1E\nm5rtuZqZjIOVE2E/hTD/+7lMbB5EUnoiOy9s45WWUzl79SduZd2kqnU1fL36cTs3g9hbl++Ith0R\nGVAgH4VRHwQNowzVzv/QnmG81fVt6jrX57kmYwDIyM3AQpdfHV3LvMqV1DgS0uOZuP8FXvv2Zb6P\nO0Ztxzq42rvxTLORhPQIIzcvl6VRC1jQcTGvtJzKQ04PUdWmGlYWlgS3mcPHvp9hZ2VfYHpV9Rpl\n5+bwwt5RJZqypLh2x0Qyfv/oAmsymopm8XFvzQTvSThZO3Po0kFtbQLjcsNw+pWSdpoZlwMy0lEU\nxTCSSTW40RA+8d3E6GbjyqzTTIcOAAssUVC0TjMLnQXWFtYAXM+8xupT+e0UBytHdDp4sUUQvl5+\nvN97Pd6uLbiVmb+W2aimY7TyyXiKQXWaWDUK1HDtS+MOLuO2lDoVEvwzTbYa/b47Jn9wQUZOOvO/\nn6t11BlHcavn03hNRTWiy3iqX8O0GXZcmVpjsrBOM3PtAOPOQlOMo96CDk40G21cXtFIhtG6ZdFp\nVtZpLq/R+RUV5SdT/QohROkZ1hGG/3d38GDLoEjGeU/UPns3gxSMj2P8t387OQdCCCFKSjrODHg6\n1dam6zPs1DD8e0n3V9RUjKY6DoLFNgAAIABJREFUXArbnyFv1xa87jOTBcfnalMJJaTFa2ttmNtX\nQvoVvvzvRiyx5JNfP2LSgYkEHcx/qRQ+MIJNfuF4u7bAxtKW61nXuZWZwupTKwu8zPF2bYG7fS1c\n7d1YcnIhNezyp6R7+8eV1HKozYw2s1l3Niw/Auz8FwXOg7uDB5sH7tCiPdSf1ZHhT27rD8BW/11s\nGXTnCGw1DcZTE6hT9c3/fm6Jp5NT96NO7WSq00uNEvL18ivwckS9dup0aqY6UQK2+TN4q5/Wqefu\n4KGNKjO3XWmV1b7U+3fvpV0AzGg9m+TbScz8bhrjvCfSrU4P/CP8GLv3OaYfmXzHS0G1cwD+eemi\ndjQ94tKEPnX6kZGbTtb/pkOcfCiI3TGRbDq3AVc7NxYcnwuAnZU9wW1mMePIVLxdWzCj9WwsdBa8\ndyaEVx6bwntnQsjLzSM5PYnBW/2Y8d0U7Cwd+OiXdYxqOqZAXiA/slJvaUVOXn6UVlZeJkujFnD9\n9jVmfjeNj35dR8DDw7W0ezrVZorPdHToCHzkeZxtnHj7x5VA/npaxtN3qudApwMrnZ7QnmHaPaWm\nY2X08jvuz+T0JDb5hfNB3/VY6qyoYeOGoihMOjBROxcvtgjSphlb1S2EJScXMqf9PH5M+oFqNtXZ\nGvMNSemJ6C2tmN5qFtv+t3bbpv5fUcepHi+1DGLvpV242dckpEcYo7xHk6vk4GxThbSsVM5d/Y3M\nnEx0FjrePR1SYLHq4kwBqn4XziafYfKhINKz01lycqHWUajOw7/+1w+Z034eX/z+zwv6SS0ms7Lb\navToeerh4VhgQVpOKq1c29DeswOhPcO0F3fJ6Ukk304iJy+HqxlXWXv2HdrUbE9K5i1mtJ7Np7/l\nrxdgLr16Sys8HGsVuV5bScWl5K97tLjjW2ajM9Tf7Y6JZPXpFbR370jwd1NJz043mR51wIOpB+Ci\nqOXAxl8+LTCIQx4aRVHU+0X9Dvl6+dHes4PW4XW3FPInO+heuyd6Cz1z2i6gf71BWGLJAC9/rLDC\nQmdBamYay6IW4ld/IADTj0zWIsjOJp/h79tJ3M7N4O0fV5KT98/0z4brAk7xmZY/vfQ2f20NMsMy\nW+2MWtp5BQlp8QXWoIA7p64MOjiRUU3H8MK+UZxNPoOVTo+ukNPi6ZS/9pnhmoqG7QZfLz/tPBu3\nBdXvqroOiuHLNDWN6qAc4/rXVDtgd0yk1j4yPpZxnWS4rZWF3mTbqLDOrLLsZClsUFJpmOogLgsP\natlaXp2CQgjxIDMeWKPW44cuHeS1b1+m79fdC9TRZXEcIYQQQtwd6Tgzor7sV9fFKG3DxTDKxfCl\nhPFoY8MXAcV9KFVfYiekxbP8h0XcykwhtGcYwW1mMflQEJMPBZldeNTHvTXv915PNdvqfOS7gQj/\nSK2j8NClgwU6pBZ0XAx5Crl5ucSnXrkjksteb691AG0fvIeQHmHY6+15rulows9/QXCbWVpHnPpC\nWM2zqZ83/vIp87+fy+s+M7U1q4w7oEzlyTCaI6zXB9oxixpRbeq8AgVGo6vbG06tZ2o7U/OGG774\nCu0ZxrreHxdYCwtg6HZ/LVqqLBu5ZbUvdwcPsnOzC0QapWSlMOPIFA5dOoi93p4P+nzCVv9d2vpm\n5tIzqukYZhyZyu6YSAZu8SXk9EqqWFdlQcfFLDm5kPTsdC2qanGn5SgK2vRahuvYhJ//gg/6fMLs\ndvNY/+uHPN04kHpV6+Nq74adlT3TW80iNesWsamXmfbtawze6sfumEgm7BvL2L3PcTvnNvM7LMbZ\nxplXHptCVZtqTGwehJO1E4s7LcfDoRaf/PqRFk0QlxLLM81GsqprKN8nHGV2u3lE+Eey1X8Xvl5+\nLO28QvvOGUaZfjUggvCBEXwfd6zA+lXGkUOeTrUJbjOLF/aNIiEtnuT0JJLSE1B0eVy/fY057efx\n1YAI5rSfx7qzYdpUYOq1AUjNTuF65jV61O7NVv9dhPX6gIbVGlLVphoNqzXEx701c9rnn6/gNrNw\nsnbG3cGDs8lnSExL4Prtayg6hWVRi0i+nURw6zmE9gwr0MFXnI4bw47BVd1CiPDP74hW96O+QF7v\nuxFv1xZYWVgB+VOzffH7Rlzt3ajh4ErEn1/D/17Q/5B8kv6b+wBo94CrvRtWWOFmXxMXOxecravw\n1flNZJNNbMplLtz6iwn7xmrXz1QkiRpRXJbU/L97OqTIzntv1xbUdnyIA5f3sa73xyanaVP/LelI\nfzVCEPJflE/+dhKjmo4pdECFECrj9oj63Tl39Tetw6ss2FjY8vuN35jRejYAOy5sJVfJ5dNfP+Kl\nlq/mr31qaUk12+qsORvKyCajC3Tcebu2IGLQTt7vsx57vT0hPcIKpFn9v69X/jSvapS6osCkAxO1\n6DH/rU8wYEtfgg4WXIdyis80ziaf0QZHqINdLqVcxMXOhTpOdfF2bUH4wAhCeoSZXKdQ5ePeWpvO\n2LCjzjjCvbBOKMPyWC0XpvhMY/KhIG3wVGFRtLtjIhm79zkyctLvOFZRg7cMI++KE2Ff1hFd96rj\nRtbtKj55ESuEEHdHbU+pz4zq+4VHXJrgauvGzcwbBLeZpbU91PrJVLS5EEIIIcqH5ZtvvvlmRSei\nrKWnZ931PhRF4Zvz4XT07MzLByfQs05vnG2ci7Wt+tJySKOhtPPoQGOXJtrvvjkfTp+6vjjbOONs\n40zPOr21h9GS7N/TqTa1HD3R66w5eHkvPev0ZmX0ct7q+h+eazaaxi5NCuzbUMNqjehT15eaDu7a\nftIy03jj6DS8XZrTsFojAG5m3uSLcxupaluVOe3ms/rUKi3tKVm3cLGtQcfanbW81HL0xFpnzfzj\ns8nNy+W7uCMMfyT/hZN6DgH8Gw4pkOdmLo/y180YJhwYw62smxy9coSm1Zvx2qFJNK/RglqOntpn\nTeUpLiUWZxtn4lJiefngBPwbDtE+r768aebyqLYf9fOmpGTd4pvz4QxpNFT7jHpc9ToeizvCa4cm\naecCoJajp5Y/9XhqnlOybjFu32j2XtjNtj8jtH2nZN0ioPFw+nsNqrTrRqRk3WJo4+E0qtaYEc0C\nycrO5mLKX1jp9JxJPs3qHu/SoGpDGrs00c6FqfMbnRDFuP3Ps7jTcrxdWxAZs4MnGwZwLfMqTz78\nFI+7+fCKz2S61O7K84++wOPurWjp9hjPNRvNXzdjeO3QJBpVa4yCwp4Lu7C3dOCTXz9izKPjWHBi\nDm91eZsuD3XDw96DEc0CaebyKIMbPkUnzy5EJ/7At7GHUMjDUmfFjcxrjPEeT996/Vh8cgHt3Tvy\n0S9rsbawoVfd3hyO/ZYrqbFsj4kgI+s2i07Mw7f+E9ha2RL++5dEJZ6go2dn7ZopisKXv29i38W9\nDGk0VLu/nW2c2f5HBDOPvs7wRs/ywc9rtfvCv+GQAufIzsqevRd2069+f6Z++wo3M2+QnZfNss6r\naFurPQAvH5hAnpLHE179efngBBpUacj+S/s4euUwWblZPFFvIBt//wQv54YsOjGPjec+4VbWTSJj\ntlPTzp2wn95haecVdHmoG33q+gIwft8YdOjIVrKoYefK8i6rGNzwKUY0C6SWoyfNXB6lsUsTLZ2F\nfXdUtRw9cbNzo8tD3bRyQf3eqtONtXFvx+PurajnXI/tf2zFxsqGq7eTqWHjxoVbfzGxxST+uhWD\nlYUVGTn5kViDGj6Jo7UTIyIDeK7ZaFzt3Pj9+jkOxx0iKzcbKwsrMnNvE592BQcrJz7ou167Lw2/\nmw2qNGTjr59Sz9lLu05lKT71Cvsv7WVVt5AC586Ys40zdZ3qsencp4zxHq+VL4bllnrezJXl5hiW\nY4+7t6KWvSfPNBtZYL9lne+74eBgU9FJEBRsOznbOOeX2/tG88W5TXx+bgMHL+0nPScNGwtbcpUc\nrLAij7xSH8/F1oX49Cscjf+OHxN/IDPvNgB55HHx1l9k52ZzPfMa89ov4kzyaR5z82FAg0E82ThA\nK8MauzShlqMnfer68tfNGOys7EnJulWg3o9LieW1Q5MY0mgonk61aen2GLsvRBLQeDiNXZrQtHoz\nTiac4O3u7/Jcs9GkZqcyKKIfEec3s+OvbUz1mcGK6GX4NxxCY5cmdK3dnQZVG9K5dlccrZ20dpTb\n/yKlDdsbqriUWBq7NGF3TCTP7AzQyvs9F3YVaG+o595wO7W9oNYtahuwZ53ePO7eij51fRnaeDgd\nPTsz+VAQfer6audA/a6r58DOyo6wXh/gaO2ktd3UY5oqZ6ITogrUWcUtm4z3V5y6o6jPlXWZZS7P\nRSluXoQQ4l6StlPlUNz3Tuq7oDWn32P9rx8woIE/ver2wd3Bg3H7RqPT6fhPt1Bc7d0I3DWMxZ2W\n87h7K20t1CbVm9KwWiOtXi5OW/5+ra/u13QLIYSovO6m3SQRZ2aoUV3qdD+lkZAWr0UKmJvqrDQP\n7OoIpOiEKLbGbGZJpxVaRI5hlFZh+zacjiguJZbw819QyyF/CkaVj3trPuz7KU7WzrjYuWjbxaXE\n4h/hx+RvJ2lROWra1v/6IdNavcGNrOvEp8Zx6NJBbTQV/DP9k/p5dbSVq70bn/p+zvbBe9jqvwtv\n1xZapJPx9EOGDCPrDKfeMfydYTRYUaOgDad+NP69OuXiC3tHaSO2jT+jpsFwHSF1qjV7vX2BaTTV\nc1FZO80Mp917Yd8o3oleTeRf28jOzcFOb6t9zniqJ3ORjobTc+p0sPH3TxjnPZEJ+8Yybt/znE0+\nw4wjU7X9zDgyNf/Ye0eRnJbMC/tGMXbPKPrU6cfq0ytISk+kW50eLO74Fr5efv97yfu8No3X1Yyr\nrP/1Q0J7hhE+MIKwXh9gZ2WPq11NIH9qxJSsW3z06zpy83LJys1kwfG5vPr4FJZ3+Q/VbFwIOb2S\nP2/+oaXj74wkAh4eXiACyNMpfz03df1Aw3vHxc6F/3R9h1Heo7WIRVOj5j2dajO73TzOXf0NK50e\nV3s3PujzCY+4NNGiHfSWem3dtaWdV7Dk5EJ0Oni6cSAJ6fEciz9CUMsphJ//In8toOavYG1hzYzW\ns7VINcN7LSEtniupsdzMvEHgI89jqbNiwfG5uNq7mYyYjU6IKtYUqOoaX+roSMPPq9ONqZETrvZu\neDo9hJ2VHQBbY74hIyeD8PNf0LDKw+gt9Ogt9ExrNVNb5w7y17FbFrWQl1oGMbvdPK5nXsXW0g53\new9srWwL3J/q+TUsH3KVXBacmMPgrX5lPp3YjCNTCW4zq1jfa1d7twLbmotALmk9YTi9o1oulzSy\nWfy7qffyqm4h2vqnDtYOVLGuiqXOEoAcckq1b1uL/O97devq//vZlpvZN7G3dNAi2nJyc7mRdR3y\n4Prt61xJjWP+idlM+/Y1dsdEam2Yjb98CuSv/Thy99M8sbkXwB1R4IbTM7o7eBSYjludKlH9zro7\neOBmXxNPp4dY2mklzzQbWeB74+7gwdDt/kzYN7bAlEoro5drkdXG0edDt/uzOyaSldHLeb/3er4a\nEKGtGWsc2Wf4f1PTRqrHNCwfPJ1q37HOqHEZok5H7e7gYbIsNzUoSW2/Gf6tuGWTYb4KW2/N8P/F\niQAryzK7JGVhcdqQpSGRA0II8eDzdKpNwMPD+Tsziey8bL6PO8akA/nrmgW3mYWVTp+/FIaDh/Zs\nq3J38GDJyYUFlo4wNUuFIcM2RFkpj/qqOPWs1JtCCCHKk05RlLKbd6eSSE5OKdP9qRV4SV44qi81\nTE1hUxbpgfwOiyk+01hyciEAq7qFEHRwIl8NMD9lnrr9iMgAgtvMYmX0cu1lckJavMmXvWojbYrP\ntAKfP5t8pkCjTv2su4MH/hF+vPr4FNb/+mGBF/aG50U9p2oHo/H5VfdlLi/qPkxNoWh83g1/vptr\nEp0QRXJ6ktbBWJL7wfjz9+LeKGtxKbEkpMXTf3MfdOioYe+Kk7UTs9vNw9XeDR/31oWea3N2x0Qy\n59hMwnp9wORDQYzznqhFxKjbqtd/8FY/0rPTebpxIO+eeZuZbeay6sflZOVmsqzzKmYefZ3NA3cA\n+dNvhfYMY9SuZ7mReY33+6zX7tG4lFgGb/VDUSBXySE5I4mlnVby9o8r8W8whDU/hVLNtjrXM6/h\nbl+LVx+fwrzvZ3Mj6zqjm47js3PrmdF6NltjNt9xz6nfKfhnTaDdMZE8t3sEs9vOJ/z8FwX+Ziw6\nIYqBW3zJUXIIajmFtWffYV3vj1kZvZwpPtPw9fK747xGJ0Qx+VAQq7qFcO7qb7z940rs9faM856o\n/b9PnX74evVj8qGgO9bQWdp5Bc/uHMaN29fR6SzQAW727thZ2ZGjZLNlUKRWJqj5y87NLnRKTnXf\nhmk2Pi/q5wCtHJr53TQSUuN5q+vbrD61kkerN2fHha0A/KfrO3Sr04MRkQGs6hZCcnoS0w5P5urt\nv6nrVJ/QnmG8sHcUVhZWzO+wGID53+evCWecVjU9KVm36FOnH5N8Xi2T76DxfWuqPDO3ze6YSO1c\nmSpTS8M4DZW9rHF1daroJAjubDsZ39fJ6UmM2TOSbCUHCyzII7fIfdrobMhUMgv8TocFikGkWv96\ng9h1YQc6Cwuq6KtwK+smwW3msOncBkY8Esimcxu4lHKBic2DqFelHuvOhgEQ8PBwFpyYw6quoTzi\n0oTndz/L9dvXiPDfqZVbqoBt/ugt9QXKwYS0+AJtDPV7M6rpGNadzZ/+esHxuXw1IELbj+EgGkAb\nzKB+f9XphQ3bPGeTzzBmz0jqValPSI8wk+0adZ86Hdq0j8aDttSoXcPy3Pg6maonTLWPArb5F1qW\nG37WuAPM3LTVxtupaS4sHcZt66LKqpK0x0tT7pnbxvC4hvm6W6V5vhBCCJC2U2VR2Hsn4zp06HZ/\nbty+QY6Sg7N1FWJTL/Nyi1fZe2kXKVm3mOIznffOhHAp5SIRg3ZqA11WdQu5Y3CM4THM1SPFfSYp\njvKsrwqrv6XeNK+yP+8JIURFupt2k0ScFcLwwb+klXNxRuOWdrSMYfSEOlLacO0Nw0XvzcnOzdai\n1NQ0mltHR42S8fXyK/DSwPgFr2GUEEC3Oj20FyzGL1EMz6mpKBx1X0WdBzW6y9TfzP1c2gZFXEos\nkw8FseTkwjvmHi9sG8PoMsPfmRplXllZWuSvM+Ood+LFFkEsOD73jrVZVMYv7VSGI+nnfz8XK50e\ndwcPVnULYf2vHxZY5029/glp8fSo3ZukjEQ++HkNOUoOi06+SWp2CnZW9gBsHrgDdwcPZhyZSmjP\nMJLTk7iRdQ1Xe7cCEZSQPyXigo6LsdRZMb3VLLrV6cGCjovZe2kXE5pP4mPfz1jaaSV6Cz3vnQmh\nhp0rr7Scyp6Lu6hqU43BjYZokZ3GjCNKvV1b4OlYm/DzX7CqW4jZTjNAe5HqZufOKO/RbBkUibdr\nC229MFPnWV2LccaRqTzi0gR7vT3BbWax7mwYegs9AQ8PJ+T0SibsG1sg+gjyIwa+jzvG1dt/U9Wm\nGjXsavBh30/Z8eQeXmoZRHzaFS0CUD32Jr/wIl+0qt9Jb9cW2nbBbWYVGWmbnZuDhUV+dRSfdoXH\na7bCWV+FmnYedKvTA0+n2ozzzl9/KPjINBLTE3ix+SuE9sx/CW1raUd2bg4Ljs9lycmFzGk/D52O\nO6iRWIoCH//6/h3rNpaG8chINSKwOC9/oxOimP/9XKITogjY5s+4fc+bjNQrCXOjUYUoLbU89nZt\nwYd9P8XV1hWFPOws7AvdzgILspSCUxjVdaiLQh42Fv9MlXAs/jtq2LlR3aY6zzYZxfIu/9E6zbbG\nbGZO+3ls9d/FKO/RrP/1Q8Z5T2STXziDGw2hlkNt3v5xJZMPBfGx72dap5n6PVLr3vCB/0QFq51m\n/luf0KJO1TyOajqGmUdfp0+dfgBcunWRs8lntDXEdsfkr0UY2jOsQKdZwDZ/Zh+dWSAafeMvnzJ4\nqx/zv59LTQd3ZrebZzbaC/IjsbNys+9YB1ONOjaMAlTLc+Pyx7j+fXJb/ztGm6sRzMVhXG6bWs/V\nmDpAwTAaz9TascZt6+K88CmsPV6a6DXj7c1tY3jcsixXTeWnsrcHhRBCFM1UnaIooNPpuJ55jYZV\nHiZXyWH16RVUt3YhMS2B6Ucm82KLICIG7dS2ycnL1v5v+D5BVVi9aG6mk9Ioz1krivOsKc84Bd2L\niHghhBD5ZI0zM9TKR50/uqznWVb3b2otjOIyXJtCXUuoa+3uuDt4FJrelKxbRPzxjbbeh7oP4/WM\njLdR19kwt0aOuo8ph14hIf0KDas0YvHJBXjYezD9yJQ7tjH3f/Xn4qw9UZ7zXzvbONOnri+NqjVm\nZfRylnZeUegaRuo19m84pMDaJCMiA/ji3CZ86z9BStatAj9Xpvm81fQ/2/Q52nm058ekaGa1m8vq\nU6u4nZNJaM+wQvOvvrTr4tkNRVG0+wYg4o9v6FevP34NB2hrw8w+Glxg/b9mLo8ycf9Yvos7jE6n\nQ0FhSMNhPNkwgCNx35KZe5vdF3fSyq0N9arUx7/hEBytnXjt0CTGeb/I/E6LC9w/KVm3GNJoKAoK\n6356j6Nxh9n513aOxB4mJfsW+y/v4dvL/8fPV8+yuse7PP/oCwxtPJwbmdcJP/8FaTlp2FrY0bLm\nY4yIDNDSanidDY/nbONMf69BDGk0tMAacKY42zjzuFsrDscdoqNnZ+3l6nPNRt+xX0Pq+mGNXZrQ\np65vgfVumrg0ZUfMNp5vNhb/Rk9q994358NpVK0x07+bjLN1FfQW1tzIusbABv4oKKyIXsaSTvlT\nhBivwVic+zMl6xZDt/uz5Y9v8LD3YPz+0bRxb6etnWiYZw97D+Z/P5ekjARmtJ7N2BbjsdbZsPyH\nRdhZOnAz6zoPV21Edl4WL+wbxfIuq3it1VTc7NzZ8me4tq5cl9pd2R6TPx1n33r9cNA7aH8zTnMt\nR08GNBhEh1qd8HZtcdffOVNr+RS19oCzjTNudm446B1Yd/Y9hj/yDKO9X6C/10DtRXxp1iJTjz3F\nZxoNqjbU1qkq6Tqd5U3W6agcDNtOhvegp9M/a1k1rNaIBlUacCopmg1PfEENGzessCIu9bI2zaKD\nlSPZeVnYWzr8LzpNp/3tZvZN9FiTpWRhqbMk4OGn+SHpJBb/e5F0IuEYp5KiiU+7wrEr3zG11QxW\n/LCMJ7z609ilCW52brxy6EX6ew0iNTuVgQ392XNhF7PazaXLQ/l1zfnrv/Pktv74eQ3k2abPaXlS\n12uL+OMb+tbrR886vTkSe5ihjYdreaxXpT7VbWrwVvRiohJO4GxdhR51enIs/igBDw8n+OhUmlRr\nyuyjwez4cxu+9Z8A4Ov/fkGukodOB3v+2oWtpS2Tv51EamYKb7SbS1TiCY7EHqZL7a4F1jWLTohC\nnfihc+2uHLy832TbbMaRqbTz6MCzTZ/T1kMctfsZ2nl0oFfdPgXq4uiEKGo5elLL0ZMunt20MsVw\nLdi3uv5H20b9mzFTvzdcs9Lc59S20pBGQ7XfqWsGq2vOGd5bcSmxhbYtjZlLq3GbvaTrlxW1zb0o\nP01F7N+LdSjNXeP7zYOSDyHKgrSdKgdz751MrWXf0u0x9lzYhY2lDeeu/UoeedhZ2hOT8gcOekdc\n7Fz4+epZnPVVmPR/42nr3p5vLx9i/6X8Z5p2Hh1MPnsX9YxZVipL+VtZ0lGZlHbdViGE+LeQNc7K\nmKmRsGWtuCN3S0pde6OwfarRI4bUkcymtjMcwVLUeXF38MBeb8/STitZdzaMjJx0lpxcWKroh8pa\n8S85uZApPtPumKrPmKlzpUa8qKO9jX+uTAzTr0Y2+nr55afXQm8y6sqQuq6Zj3vrO0Zrq+uUvbxv\nAtEJUXeM1If8e0lvocdR78wbbd5kWedVRPz5NevOvkcVm6ooKDjpnVkWtUibDhAgIyedZT8s1CIv\njaP+3B08qGHvygd9P2HLoEjCB0awrPNK9Do9izst19a6Ua/burNhuNnVpIp1VUJOr2T92Y/MnidT\n57C497FhBJma9oS0+AIdMqaoLx4N/1Xl5OWw4MQcLUpCjYrzdm3B0k4rSctKxU5vywTvSSw5uZDJ\nh4JY2nmFFk1a1Kh+cxQlf+pYXy8/Fnd8S4uaM97PyujlhPYM4/3e6wk//0WBdRv1VlZUt3Uh+Lup\nJKcn4WLrqm0bfv4L7RieTrVJTk8iNvUy567+xuRDQQQdnKj9zdw5A8psZJ7xd7youiM6IYrx+0eT\nnJ7EQ451te3UMqW09Y9aryw5uZCAbf4SfSZKzfgeNCyHlpxcSFivD0hOT2L16RWcSDyGk/U/LzHs\nLO2xwAJrK2sU8sgjj+o2LoxuOg6AbLLQYUENWzc8HGphgQUp2SmMbjqO/3R9h0/6bcLT8SGWdl6J\ni51L/jSN+8f+EzmlwO6YXfhvfYLk9CRylGxt7Y8RkQG4O3iwttdH+Li3JiEtnhGRAZxNPqOt1xbc\nZpa2tqreUl8gSn/U7mdoWK0hno61eb/Petb0/oCV0csJbjOLrTGbWdvro3/qwf9t6+lUm5AeYUT4\nRxLW6wP0lnoecWnCqq6h1KvihYudC1a6/Dre3cFDi8CNTohiUEQ/BmzpS8A2fy0C2zhqTI1iNVzn\nUf2uTz4UxKQDE7VyzDjKzLAj3rANp9bf5kYoG//e8F9THT3G2xuWsYBWtxm3Iw3rZsNyqqTlsvE+\nDdNQ0v2UF1PnrqyfPUxFJd6vKns+iorCFJWHXA9RXozLcncHD6wt9XzSbxMf+W7A0+EhFndajott\nDZytq/B+n/UEt5nFsh8Wkpubi6u9G+EDI7T3NmX93kg8WORZTwgh7g3pODNi/ILhXirL8HlVQlp8\nsadrNJ7ex3jKHEMlWQx+k1843er00BaiVzsiHhQ5ef+8pIOip/cxNZWb4dR1xj9XJqbS5O7gYXIa\nPFMMr7vhvbX30i761xuguLSDAAAgAElEQVTEV+c38dyuEcSnxpGTl3PHsZ9uHMj1rKssOvEmF25e\noLqtC8kZSVhggQ4dVjo9iekJjPOeqHVShfX6gIhBOwu8MIR/7uGzyWeIT7tS4Diu9m7Uda6fP72i\niY5Oe709tpZ2WOgsCTsTQnCbWYVOPVhaapng496a4DaztOmtCrvHDKf9M/z3bPIZqtlWZ1XX0Ds6\nwkZEBuBi50ItJ09GNhnNup/f1aZUNF4byJC676Ie2vSW+R2rcSmx2jqHxudILXN83Fvj7dpCm4pE\nnQ42Pu0K47xfZF3vjwFIzkhk7N7nSEiLZ1W3EMIHRmj3l7drC+o5189/Wd0tBKsiOnbVjqspPtPu\nyfeuqH2qncq+Xn6E9gwz+SBc2nSpHbDqNTA3na0QRSnsHnR38MDXy485bRdggQXVbKsxp+0C6jrV\nZ1X31Xg4eJKencbopuOwxAp7vT3fJxzVOs8s0HE7N4OQ0ysBsNJZcTjuEN3q9CA5PQmA986EMP/7\nuVS3dUFRYMK+sSw4PpcJzSex5qdQXO3c8ju/LPTa+h/p2ekkpMWzMnq5th5YStYtXtg7imd3DmPS\ngYkFBr8Yd+io68Za6qy0vBpOVa2WpYbbbvzlU21qacPfd6vTg9CeYdoAAcOpbuNSYnF38KCWoyeW\nOitylGwS0uKZfCiI6IQo4lJiC3SCuTt4kJOXrf1dvQaruoUUqI8NB6wYXkfjtqZhOW7c4WS8jVrH\n7I6JvKMzraiOHsMpuQurB+CfF4Kl7SBROyML27YyvXA0d+7Kqk5SzwVwTwcClpfKNj1XcacGrewd\nfv82cj1ERTqbfEZ7RvH18uODvutZdzYMK52e5IxEzl39DW/XFrzfez2eTg9pzzLqM25lKgOFEEKI\nfwudos4R8wApbJHW4iiPTrN7eSxTi7CX5NjqQ4X6MqO4i8gbbj8iMoBNfuEkpMVr6zcVV3me/9KI\nS8lfH8Vwsd2i0lzYNans+YWi74mS5CEuJX9x5Nnt5jHt8GQ+9v2M5PQklpxceEcHYnRCFAM298XR\nxokbmdepYl2Vm1k3ALDUWeLhUIvRzcbxss8r2r7VRZTV821qhLx/hB9ren/AjCNTmeIzTZt609Q1\nik6IYtKBieh08ES9gXzzx5e832f9Pe2MUF/4ZudmEz4wQvu9uXNsHHFmGGlknE41PwC3czNwsnZm\nnPdEnmk2UnuRYGrRZfUeMHeeTKXH+P+FfT5gmz96S7320nmQ15OEn/+CnLxsrCz0BLeZhau9G+4O\nHvhH+BHhH3nHvaLmuThlTnHLyeK6m+/xvSgD7odyRSUL3FcOxW07GUf0qB07xtGv6gAe/4gneL/P\nelzt3fBxb8070av56Jd1JKQn8FLzV4j8axtz2s/D27UFCWnxDN7qRw07V6b4TOcRlyYEHZzIiy2C\nePd0CNl52eQqOSgKfNB3PQCTDkwkfGCEtu2WQZF3dJyvP/sRq0+vYE7bBbT37KDV3yrDDqIpPtOY\nc2ymltdtg3drAwqMI5p2x0Qyfv9oLRJNZXhO1LJG3U6NkF7VLYTk9CRc7d2YfCiIVd1CtLrGykJ/\nRxtKPaeTDkwktGeYts3kQ0Fa3Wnqe2/qd2r6DOt1U+W+4efV46nn1nBbU8c03J9xG8JcHWOu3ihu\nPVJYHWWcppK42/K0LMrjkraziltfl1X6KsLdRBfe7XGN76XCzuH9en4fVA/K9ZC2U+VQ3LaTOhhm\ncce3tGcutY0wcf9Ybufc5vrt/DW6F3dazpKTC7VnIukwE0IIIe7O3bSbJOLMhPLsNLsXo96K+zLY\nXD4NRzQlpMUTm3qpWBFsxs4mn8F/6xNFTh1p6H4YCWhq9HRhD8txKcWbBrMyMx7lZji1ZHGjkAwp\nCsw+OhNHfX7hpU59ZXwefdxb85HvBhysHAHoWzd/PRk7S3tylVwycjIIP/9FgWNn52YTdHCi2Rcq\nnk61ifCP1K6h2mlmKkJJvXahPcN4unEga86GkpiWwMT9Y+/ZNVOPGdxmltZpZmoxaMPPG9+HhpFr\n5vIT2jMMOys7gtvMYv2vH2rRBGB6dLp6DxQ1RadhOoz/X9jnwwdGaB2e63038rLPK2zyC+erARHa\n9JI+7q05m3yGiyl/seW/3xTYh497a6b4TGPyoaAij6d+vqyoHbalvScqIupNiLthHEVtXAap9aSP\ne2si/Hfi7dpCi5baGrOZ0c3GkZOXjY+7D+EDI/D18tO2WdJpBZY6K22aVkXJnzI3tGcYrz4+haT0\nRPSW+RFhQQcnamnycW/NlkGR2hSNannm6VSbNzrMYU7bBQxuNEQrY9R8qNQyztu1BVY6PYO8hpCj\n5HDu6m/ad3x3TCQjIgMYERlAdEIUvl5+bB64A2/XFtp+1E6mEZEBWjSauh3AJr9wrZNs3L7ntd/5\nuLcmfGCEVuZ5OtXWOreiE6K0cxubeolzV38DCk79aKo9Ye53aoSc4RTKpjqyVIblvuHUisb3gvG5\nNLwfDH82F+Vm6v/FbScZRjEX9vfCysaiorpLoyzaeSXdR0nq63vRDi2PNq36nbyburc0xwTzU7Gb\nI/Vx5SLXQ1QEH/fWrO31EevOhhV4dnZ38MBKp2d5l1Us7bySpPRE5hybWeCZSO5ZIYQQouJIxFkF\nux9GvZU0MsPwwdJw1HVJtq/s56Q4I5eNR1iD+TWjKnt+jRmOvFdH6BuOti/K7phIZh+dyYKOi4sc\nUaeOsp+wbywR/pGERr/Np79+RB55WOos+bDvp3eM9DccgV+cvID50fbq8dVRgi52Liaj48qSGj1l\nHNFoahS+Gt1ZkpHo6r4MI0PVaILCvut3M2K/OOkq7BoYfpf6ft2dm1k3tCk51c+MiAzQovTK8zul\nRsyV93EfFDJqunIoSduppPWWYXkD/0RrGdcbhpEyQIFILUCrb9SOqoBt/sxpP6/AfnbHRN4RRWwY\n1WpYXpoqUwEGb/XDSqcnJSuF6nbVWdUthKCDE7H637SQQIGoNeNoqqWdV5CcnsT4/aNZ3PEt1p0N\nu6NsUuuWotpXxvWBYf4Mp3EqLD/motDMXUdT5bFx5FxhEWem9mfYZlDTXliZbyri7F62lwqrg4yv\nQWn2XZ4RZ+rni1tfl+V5vZftBFPHgrvrCClu3sszX6JyqOzPZ9J2qhxK2nYybgsZt0/OJp+558+Z\nQgghxL/N3bSbpONMlKl/04NlcacOMp6m6EE7L6XpqBq63Z9Lty7yfp/12sMBFD7dk8o/wo+4tFh0\nCizv8h+eaTbSZJpKGlFU1PU03Gd5PEybenFoamqgknacmTpGcfdzr6dFKs5UR2pag9vMMvnS/V6m\nz5y7vQ7/dvLyp3K4122nkrygLs6UZ6Y6w9SpkIynTjRXbhjvT+3UMZ6W0DA6ylQnlbn/G3c2lTb/\n5jrEDKPYCqs/i9s5Zu6Y5uqf0nQ4GHZCQdHTPBY3vWWhuPfe/aKi0ny/nKuS3lP3S77E3bsfnttu\nW9/goSoPVXQy/vWK03YybAOYq+PVv6s/V9b7TgghhLgfSceZqFQu37wsDXkTHtTzcvnmZfw2+RE5\nIrLY+bt88zJXUq7QtnbbIs+L4d/VYy3svpCajjVpW7utyc8P/nIwW4ZteeDOt6lzVVb3VXGuQ2U5\nr5Xxu1QZ0yTEg+7yzcsABb57J2JPmKwbTsSe4KWdL2llmKkyTf0eV9T3uaTlrKn8G/+9uPVrcY5V\n2nNivG1p0yXlrChrck8JcyrzvaHWFT+M+6GikyKKoD67AiV6VhZCCCFE5SAdZ0IIIYQQQgghhBBC\nCCGEEEIAFhWdACGEEEIIIYQQQgghhBBCCCEqA+k4E0IIIYQQQgghhBBCCCGEEALpOBNCCCGEEEII\nIYQQQgghhBACkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBACkI4zIYQQQggh\nhBBCCCGEEEIIIQDpOCt3Z86cITAw8I7fHzx4kCFDhjBs2DC++uorALKzs5kyZQrDhw9nxIgR/Pnn\nn+Wd3BIpSd6ysrKYMmUKQ4cOZfTo0Vy4cKGcU1ty5vIHkJGRwfDhw7VrlJeXx5w5cxg2bBiBgYFc\nvHixPJNaYiXJW3G2qWxKkr/s7Gxef/11RowYwVNPPcWBAwfKM6mlUpL85ebmEhwczPDhw3n66af5\n73//W55JLbHS3JtXr16la9eulb7MhJLnb/DgwQQGBhIYGEhwcHB5JbNUSpq3tWvXMmzYMJ588knC\nw8PLK5lCFKmoOt1UO8fcNhcvXuTpp59mxIgRzJ07l7y8PG0/165do2/fvmRmZpZf5u5z5XFt1q9f\nT0BAAAEBAbzzzjvlm8H7VHlcl40bNzJkyBCeeuopdu7cWb4ZvI+VV3mWl5fH2LFj+fzzz8svc0KI\nSkPaTpWXtJ0qJ2k7VV7SdvqXU0S5WbdundK/f38lICCgwO+zsrKUXr16KTdu3FAyMzOVJ598UklO\nTlb27dunBAUFKYqiKN99953y8ssvV0Syi6WkeduwYYMya9YsRVEU5c8//1RGjx5dEckuNnP5UxRF\n+emnn5TBgwcrHTp0UP744w9FURRlz549yvTp0xVFUZRTp04pEyZMKNf0lkRJ81bUNpVNSfP39ddf\nKwsXLlQURVGuX7+udO3atTyTW2Ilzd++ffuUGTNmKIqiKMePH3/g7s2srCzlxRdfVPr06VPg95VR\nSfN3+/ZtZdCgQeWdzFIpad6OHz+ujB8/XsnNzVVSU1OVkJCQ8k6yEGYVVqeba+eY22b8+PHK8ePH\nFUVRlNmzZyt79+5VFEVRDh8+rAwaNEh57LHHlNu3b5dn9u5r9/raXLp0SRk8eLCSk5Oj5OXlKcOG\nDVN+++23cs7l/edeX5erV68qfn5+SlZWlpKSkqJ06dJFycvLK+dc3p/KozxTFEVZuXKlEhAQoGza\ntKm8siaEqESk7VR5SdupcpK2U+Ulbad/N4k4K0d16tQhNDT0jt//+eef1KlThypVqmBtbY2Pjw9R\nUVHUr1+f3Nxc8vLySE1NxcrKqgJSXTwlzdsff/xBly5dAPDy8qr0kSHm8gf50XPvvvsuXl5e2u+i\no6Pp3LkzAC1btuTnn38ul3SWRknzVtQ2lU1J8+fr68srr7wCgKIoWFpalks6S6uk+evVqxcLFiwA\n4MqVKzg7O5dLOkujNPfmsmXLGD58OG5ubuWRxLtS0vydO3eOjIwMRo8ezciRIzl9+nR5JbXESpq3\n7777jkaNGvHSSy8xYcIEunXrVk4pFaJohdXp5to55rb55ZdfaNOmDQBdunTh2LFjAFhYWPDxxx9T\ntWrV8szafe9eXxt3d3c++OADLC0t0el05OTkYGNjU865vP/c6+tSvXp1IiIi0Ov1/P3339jY2KDT\n6co5l/en8ijPdu/ejU6n07YRQvz7SNup8pK2U+UkbafKS9pO/27ScVaO+vbta7LzKzU1FScnJ+1n\nBwcHUlNTsbe3Jy4ujn79+jF79uxKPS1eSfPWpEkT/u///g9FUTh9+jSJiYnk5uaWZ5JLxFz+AHx8\nfPDw8Cjwu9TUVBwdHbWfLS0tycnJuadpLK2S5q2obSqbkubPwcEBR0dHUlNTCQoK4tVXXy2PZJZa\naa6flZUV06dPZ8GCBQwYMOBeJ7HUSpq3zZs3U7169fumsVHS/Nna2jJmzBg+/PBD5s2bx9SpUx+Y\ncuX69ev8/PPPrF69WsuboijlkVQhilRYnW6unWNuG0VRtIdUBwcHUlJSAOjYsSPVqlUrj+w8UO71\ntdHr9VSvXh1FUVi2bBlNmzalfv365ZS7+1d5fGesrKz47LPPGDZsGAMHDiyPbD0Q7vW1+e9//8uO\nHTu0QWhCiH8naTtVXtJ2qpyk7VR5Sdvp3006zioBR0dH0tLStJ/T0tJwcnJi/fr1dOrUiT179rB1\n61ZmzJhx383dbC5vQ4YMwdHRkREjRrBv3z6aNWtW6SN7SsI433l5efdNR5OA+Ph4Ro4cyaBBgyp1\nx9LdWLZsGXv27GH27Nmkp6dXdHLKxDfffMOxY8cIDAzkt99+Y/r06SQnJ1d0sspM/fr1GThwIDqd\njvr161O1atUHJn9Vq1alU6dOWFtb4+XlhY2NDdeuXavoZAkBFF6nm2vnmNvGwsKiwGcrc9Tv/aA8\nrk1mZiZTp04lLS2NuXPn3ussPRDK6zvz7LPPcuTIEaKiojh+/Pi9zNID415fm4iICBITE3nuuefY\nsmUL69ev5/Dhw+WQMyFEZSJtp8pL2k6Vk7SdKi9pO/27ScdZJdCgQQMuXrzIjRs3yMrK4ocffuCx\nxx7D2dlZ67muUqUKOTk5lToqyxRzeTt79izt27fn888/x9fXl4ceeqiik1qmHn/8ca2gO336NI0a\nNargFIni+vvvvxk9ejSvv/46Tz31VEUnp8xFRESwdu1aAOzs7NDpdAUq7/vZxo0b+eyzz9iwYQNN\nmjRh2bJluLq6VnSyyszXX3/N0qVLAUhMTCQ1NfWByZ+Pjw9HjhxBURQSExPJyMiQaVdEpVFYnW6u\nnWNum6ZNm3LixAkADh8+TKtWrco5Nw+We31tFEXhxRdfpHHjxsyfP/+BGuR1L93r6xITE8PLL7+M\noijo9Xqsra0fmLbMvXavr820adMIDw9nw4YNDB48mFGjRmnT8wsh/j2k7VR5SdupcpK2U+Ulbad/\nNwmBqUDbt28nPT2dYcOGMWPGDMaMGYOiKAwZMoSaNWsyatQoZs6cyYgRI8jOzua1117D3t6+opNd\nLEXlTa/Xs3r1atasWYOTkxOLFi2q6CSXiGH+TOnduzdHjx5l+PDhKIrC4sWLyzmFpVdU3u53ReVv\nzZo13Lp1i/fee4/33nsPgPfffx9bW9vyTGapFZW/Pn36EBwczDPPPENOTg4zZ858YPJ2vysqf089\n9RTBwcE8/fTT6HQ6Fi9efN9EshaVt+7duxMVFcVTTz2FoijMmTNHHrJEpWGqTi+qnWOuHTB9+nRm\nz57NqlWr8PLyom/fvhWcu/vbvb42+/fv5+TJk2RlZXHkyBEAJk+ezGOPPVaR2a707vV1sbS05JFH\nHmHYsGHaehDqehGicFKeCSHKg5Q1lZe0nSonaTtVXlKe/bvpFFlERAghhBBCCCGEEEIIIYQQQgiZ\nqlEIIYQQQgghhBBCCCGEEEIIkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBAC\nkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBACkI4zIcQ9FBsbS48ePUz+rXHj\nxvf02IMGDbqn+xdCCCGEKA+bN29mxowZFZ2MuxYYGMiJEycqOhlCCCGEeMBJ20kIURak40wI8UDa\nunVrRSdBCCGEEEIIIYQQQgghxH3GqqITIIR4cKxZs4Zt27ZhaWlJx44dGTFiBLdv3+a1117j/Pnz\nODs78+6771KtWjVtmxs3bvDGG28QExODtbU1M2bMoH379maP0aNHD3r06MEPP/wAwOLFi2natCmB\ngYFUqVKF8+fP8/bbb+Pv78/vv/9udv+HDx8mJCSEnJwcateuzYIFCwqkSwghhBCiuHJycnjzzTc5\nf/48f//9N/Xr18fLy4uaNWsyZswYAIKCgujfvz/Nmzdn6tSp3Lx5k0aNGhEVFcXhw4cL3f/Fixd5\n5plnuHHjBt27d2fKlCnodDq++eYbPv74Y3Q6Hc2aNWP27Nk4ODiY3c+yZcs4evQolpaW9OzZk5df\nfpnQ0FAuXLjApUuXuHHjBsOGDWPs2LFs3ryZLVu2aMccOXIkc+bMISEhAZ1Ox5QpU+jQoQOJiYnM\nnDmTlJQUkpOT8fPzY+rUqWRlZfHGG2/w888/4+npyfXr18v0nAshhBDi/iVtJ2k7CVHZScSZEKJM\nfPvttxw8eFBrKFy8eJEjR45w7do1nn/+eXbs2EGNGjXYuXNnge1Wr15NnTp12LVrF8uXL+ftt98u\n8lhVq1YlIiKCoKAgpk+frv2+cePG7NmzhyZNmhS6/2vXrrFy5Uo+/PBDIiIi6NSpEytWrCi7kyGE\nEEKIf5VTp06h1+v58ssv2bdvH5mZmbi7uxMZGQlAamoqP/74I926dWPRokX069eP7du34+vrS2Ji\nYpH7j42NJTQ0lC1bthAdHc2BAwf4/fffWbNmDRs2bGD79u3Y2dnxzjvvmN1HXFwchw8fZtu2bXzx\nxRdcuHCBzMxMAP773/+yfv16Nm/ezJdffskvv/wCQGJiIlu2bGHy5MksWrSIIUOGsHnzZsLCwpgz\nZw6pqans2LGD/v3789VXX7Ft2zY2bdrEtWvX2LBhAwC7du1i1qxZXLp06W5PsxBCCCEeENJ2kraT\nEJWdRJwJIcrE8ePH8fPzw9bWFoAhQ4YQERGBm5sbzZs3B6Bhw4Z3jJiJiorSOq0aN27Ml19+WeSx\nhg4dCuRHn82YMYNr164BaMcpav//93//R3x8PCNHjgQgLy+PKlWqlCbbQgghhBC0bt2aqlWrsnHj\nRmJiYrhw4QLVqlUjKyuLixcvcurUKbp37461tTVHjx5lyZIlAPTu3RtnZ+ci99+jRw+qV68OQL9+\n/Th58iQJCQl0795di5gfNmwYwcHBZvdRs2ZNbGxsGD58ON27d+fVV1/FxsYGgP79+2ujrXv06MHx\n48epVq0aTZs2xcoq/5Hx2LFjxMTEEBISAuSPFL98+TJjxozh+PHjfPjhh5w/f57s7GwyMjI4efIk\nw4YNA6BevXo89thjpTm1QgghhHgASdtJ2k5CVHbScSaEKBN5eXl3/C4nJ0drMADodDoURSnwGcO/\nA/z555/Ur18fCwvzAbGG2+Tl5WFpaQmgddoVtf/c3Fwef/xx1qxZA0BmZiZpaWlmjyeEEEIIUZgD\nBw4QEhLCyJEjefLJJ7l+/TqKojBw4EB27tzJqVOneOGFFwCwtLS8oz1UFMP2jKIoWFlZ3dH2UhSF\nnJycQvcRHh7OyZMnOXz4MMOHD9dGNqttKTDftsrLy+OTTz6hatWqQP6I6ho1arB06VIuX75M//79\n6dWrF8eOHUNRFHQ6XYE0GrfJhBBCCPHvJW0naTsJUdnJVI1CiDLRrl07IiMjuX37Njk5OXzzzTe0\na9euyO1atWqlTd/4559/8sILL6DT6QrdRg3d37dvHw0aNCg0WszU/ps3b87p06f566+/AHjvvfdY\nvnx5sfIphBBCCGHs+++/p1+/fgwZMoQaNWoQFRVFbm4uAwYMYOfOnVy8eJFWrVoB0KFDB7Zv3w7k\nT3V969atIvevfi4zM5PIyEg6dOhAmzZtOHjwIDdu3ADgq6++om3btmb38euvv/Lss8/SunVrpk+f\nToMGDbS20P79+8nKyuLmzZv83//9H506dbpj+3bt2rFp0yYA/vjjDwYOHEhGRgZHjx5lzJgx9OvX\nj/j4eBITE8nLy6N9+/bs2LGDvLw84uLi+PHHH0t2UoUQQgjxwJK2k7SdhKjspOtaCFEmunfvzm+/\n/caQIUPIycmhc+fOdO/enU8//bTQ7YKCgpg1axYDBw7EysqK5cuXF9lx9uOPP/L1119jZ2fH0qVL\nS7x/Nzc3Fi9ezKuvvkpeXh41a9bkrbfeKnGehRBCCCEAAgICmDp1Krt378ba2pqWLVsSGxuLh4cH\n1apVo2XLllr7ZubMmUyfPp2vvvqKRx55pFjTDXl5eTFu3Dhu3bpF//79tZcz48ePJzAwkOzsbJo1\na8a8efPM7qNp06a0bNmS/v37Y2dnR5MmTejSpQu//PILNjY2jBgxgtTUVMaPH0/Dhg356aefCmw/\na9Ys5syZw4ABAwBYvnw5jo6OjB8/nmnTpuHs7IyLiwuPPvoosbGxjBgxgvPnz9OvXz88PT1p1KhR\naU+vEEIIIR4w0naStpMQlZ1OKWmsqxBCVKAePXrw6aefUrt27YpOihBCCCFEiX366ad06NCBhg0b\n8ssvvzB79mw2b95cYekJDQ0FYNKkSRWWBiGEEEIIc6TtJISoCBJxJoSodAIDA02G3g8fPrwCUiOE\nEEIIUXbq1q3L5MmTsbCwwMbGhgULFrBz507Wrl1r8vNbt24t0f4La0c9/fTTpUqzEEIIIURFkbaT\nEKIiSMSZEEIIIYQQQgghhBBCCCGEEIBFRSdACCGEEEIIIYQQQgghhBBCiMpAOs6EEEIIIYQQQggh\nhBBCCCGEQDrOhBBCCCGEEEIIIYQQQgghhACk40wIIYQQQgghhBBCCCGEEEIIQDrOhBBCCCGEEEII\nIYQQQgghhACk40yI+9bmzZsZP358RSejzM2fP5/Q0NCKToZJb7zxBseOHSvRNmWdn8uXLzNp0qQy\n258QQghxv5oxYwYffvhhRSfjrl27do3GjRuXevv4+Hj69+/PwIEDOXXqlNnP3S9tiBdeeIE//vij\nRNuMHz+ezZs339Vxw8PD2bhx413tQwghhHiQFdb2aty4MdeuXSvxPr/++msmTJhQ4HeTJk2id+/e\nDBo0iEGDBrF48eJSpRfgwIEDLFy4sETb/Pbbb/Tq1YvBgwcTGxtr9nM//fQTc+bMKXXahBCVm1VF\nJ0AIIe4XixYtqugkcOXKFf7666+KToYQQgghKokTJ05Qo0YN1q9fX+jn7pc2xPvvv18hx42Ojubh\nhx+ukGMLIYQQ/zY3btxg1apVbNu2jbZt2xb426lTp/jmm2+oWbPmXR+nZ8+e9OzZs0TbHDhwgLZt\n2xb5DuiPP/4gMTHxbpInhKjEpONMiDKWl5fH4sWLOXPmDGlpaSiKwsKFC2nUqBFdu3Zlz549uLq6\nAjB06FBeeuklvL29CQ4O5tKlS1StWhVXV1cefvjhIkcFJycnM2bMGJKSkvD09GTBggW4urqSkJDA\nm2++SVxcHIqi4O/vz9ixYwvd159//skbb7xBVlYWiqLw1FNP8cwzzxAaGsr58+f5+++/uXr1Ko88\n8giLFi3C0dGRHsojUuYAACAASURBVD160Lx5c37//XcmT55M8+bNmT9/PvHx8WRnZ+Pn56eNHFqz\nZg379+8nMzOTjIwMpk+fTu/evUlNTeWNN97g3LlzuLm5YWlpiY+Pzx3ntHv37rzzzjt4e3sD8Npr\nr9G6dWvatm1rMt2GYmNjCQwMpE2bNpw7dw5FUZgzZw6tWrUCICwsjL1795KXl4enpydz586lZs2a\nBAYGUqVKFWJiYnj66afZu3cvzzzzDL6+vuzfv5933nmH3NxcHB0dCQ4Opnnz5sXKj7ETJ06waNEi\n7O3tSU9P5+uvv+a7774jLCyM7OxsbG1tmT59Os2bN2fWrFkkJiYyZswY5s2bx4ABA7TR5bGxsdrP\nmzdv5uuvvyYjIwNHR0cGDx7Mvn37sLCw4OLFi+j1epYtW0ajRo0KTZsQQghxN+51uyg6Opo9e/aQ\nmppKx44dmT59OlZWVvzwww8sX76cjIwM9Ho9r776Kl26dLlj+5CQEPbt24der6datWosWbIENzc3\nmjZtynPPPceJEydIT09n8uTJ9OnT5476dcOGDYSHh/P555+Tl5dH1apVmT17Ng0aNOCvv/5i/vz5\npKenk5SUxCOPPMLbb7+NjY0Ne/fu5T//+Q92dnY8+uijJs/dl19+ycGDB1m7di2Q31YbNWoUhw4d\nwtLSEoDjx4/z9ttvk5KSQmBgIC+//DILFixgx44dQH4bY8GCBWzdurXUbYjC8mjoxIkTLF++nJo1\na3L58mVsbW1ZunQpDRo0ICsrixUrVhAVFUVubi5NmzZl1qxZJtuTS5YsYfXq1Xh7e/Pll1+yYcMG\nLCwsqFGjBrNnz6Z+/fokJiYyY8YMkpKSqFWrFlevXjV5DmfMmMGNGze4fPky3bp145VXXjGZju+/\n/56DBw9y9OhRbG1tuXbtGtevX9dGkYeGhmo/m2oftmzZkh9//JH4+Hh8fHxYtmwZFhYyuYsQQoj7\nk7n6F/I7tYYPH87ff//Nww8/zMqVK7G3ty+w/dq1a9myZQtWVlbUrVuXpUuX4uTkVOAzu3btws3N\njWnTpvHtt99qv798+TJpaWnMnTuXuLg4Hn30UaZPn07VqlULbL9582b27t3L7du3iYuLw8PDg2ee\neYbPPvuMCxcu8PzzzzN69Gg2b97Mnj17WLt2LYGBgUXW2du2bePzzz8nNzeX27dv07FjR2179bh7\n9uzhzTffJCQkhJSUFIKDg/H39zfZBtuxYwehoaGcPn2apKQkGjduzIoVK8y+hzI0fPhwRo0aha+v\nLwArVqxAURRef/31Ap8z1241dy0sLS158803uXDhAjdv3sTBwYEVK1bg5eVVshtFiAectOaFKGNn\nzpwhKen/2bvzuCjr/f//zwEEFdCiUEzTvh41W829RdzSNM09UvBjUWafLLVyySWXUnPpQ1Z61JN2\nynNMU0tTlNJKcylNkcrMjmXW0SBINBcWZZv5/cFvpmEYYIAZZuFxv926Jddcy/u65lpe83693+/r\njNavX6+PPvpIgwYN0sqVKxUaGqqePXsqPj5eUmHlR3p6uiIjIzV37lw1a9ZMH3/8sd544w19/fXX\nDm3r119/1cyZM7V161a1aNHC0hpm4sSJ6tixo7Zu3ar33ntP8fHxSkhIKHVd//znP9W9e3dt2rRJ\nK1as0OHDh2U0Gi37tHjxYn388ccKCAjQ0qVLLcs1b95cH3/8sXr27KlJkyZpyJAhlgqX/fv366OP\nPlJKSor279+vd999V1u3btVzzz2nxYsXSyqssKpZs6a2b9+uN954w25LaD8/Pw0ZMkQffvihJOni\nxYvav3+/+vXrV2q5rf3+++/q1KmTtmzZogkTJujZZ59VXl6eNm/erJ9++knvv/++tmzZoi5dumj6\n9OmW5erUqaOPPvpII0aMsEw7efKkZs2apSVLlmjr1q0aN26cnnrqKWVmZjq0P/acOHFCr776quLj\n4/X777/rtdde04oVK7R582bNmTNHY8eOVU5OjubOnavGjRs7NDTVzz//rNWrV2v16tWSpMTERM2Y\nMUPbtm1TmzZtfGJ4KwCAZ3N1XJSWlqZVq1Zp8+bNOn78uDZs2KDz589r3LhxeuGFF7R161YtXLhQ\nkyZN0m+//VZk2dTUVP3rX//Sxo0btWnTJt1zzz367rvvJEkFBQWqW7euNm3apNdff13Tpk2zDD9k\n/Xw9dOiQNm/erDVr1mjz5s16/PHHLQm+DRs2aODAgVq/fr0++eQTJScna/fu3Tp79qymTZumJUuW\naNOmTWrYsKHdfevbt6+SkpKUnp4uqbCiZvDgwZakmSTdeeedGjdunNq1a2d53tvj7+9f4RiitH20\n9cMPP+ixxx7T1q1bNXjwYEvFzooVK+Tv769NmzYpPj5e9erVU1xcnGU563jS7MCBA3rrrbf073//\nW/Hx8XrggQf09NNPy2Qyafbs2WrVqpUSEhI0ffr0UuOtK1euKCEhQZMmTSqxHD179lT37t0VGxtb\nrAGWPbbx4enTp7V69WrFx8frq6++0qFDh8pcBwAAnqi0568k/fHHH3rnnXe0Y8cO/fHHH/rkk0+K\nLL9z505t2rRJ69ev17Zt29SoUSO9++67xbYTHR2tMWPGqGbNmkWm//nnn7r77rs1e/Zsbd68WbVr\n19a0adPslvXw4cOaP3++duzYoXPnzikhIUH/+te/tHLlSr3++ut264bKemb3799fw4YNU58+ffTq\nq6+WeJwaNGhgicHmz59f4nxmKSkp+vDDDxUXF1dmPZRZVFSUpR6soKBA8fHxioqKKjZfSXFrSd/F\n3r17VadOHW3YsEE7duzQrbfeynDVgB30OAOcrHXr1qpbt67WrVun3377TQcPHlRwcLCkwofeSy+9\npJEjR2rjxo0aPHiw/Pz8tGfPHsvDsF69epbWJGW5++671aRJE0nSgw8+qAcffFDZ2dn6+uuv9fbb\nb0uSQkNDNXjwYO3du1d9+/YtcV09e/bU5MmT9d133+muu+7S9OnTLa1uevfurWuvvdaynXnz5mny\n5MmSZOm1lZ2drcTERF28eFFvvPGGZdrx48fVp08fLVy4UFu3btWpU6csrc6lwqBs2rRpMhgMCgsL\nK1JhYm3IkCF68MEHNWXKFG3btk3dunWzVLqVVG5rdevWVb9+/SRJXbp0kb+/v3788Ud9/vnnOnr0\nqIYMGSKpsGX85cuXLcuZ98/aV199pTvvvFPXX3+9JOmuu+5SWFiYvv/+e4f3x1aDBg0sFWdffvml\nzpw5o9jYWMvnBoNBp0+fdmhdZjfeeKNCQkIsf99yyy2KiIiQVNgi6dNPPy3X+gAAKC9Xx0UDBgyw\ntHLu37+/9uzZo4YNG6px48Zq1aqVpMKkTJs2bXTo0CHLs1uS6tevr5YtW2rQoEHq3LmzOnfurLvu\nusvy+f/8z/9Iklq2bKkWLVooMTFRUtHn6+7du3Xq1CkNGzbMstzFixd14cIFTZo0SV9++aVWrlyp\n//73vzpz5oyys7OVlJSkFi1aqFmzZpKkoUOHatGiRcX2LSQkRL169VJ8fLxiY2MVHx+vtWvXlvMb\nqBhH99G29XfLli0tsdOQIUM0e/ZsnT9/Xrt371ZGRoblXbF5eXm65pprLMvZi7f27dunPn36KCws\nTJI0ePBgvfzyy0pOTtb+/fstsWiTJk2KDfFkzbrnf1nlcJRtebt16yY/Pz+FhISoSZMmunjxYrnX\nCQCAJyjt+StJPXr0UK1atSQVxli27zU7cOCAevfurbp160qSpk6dWq7tt2rVqkhj7TFjxqhTp07K\nzc1VYGBgkXlvu+02NWjQQJLUqFEjderUSX5+frr++ustox3Zctcz+4477lBAQGE1fFn1UGb333+/\nXnnlFaWnp+uHH35QkyZNdMMNN9hdv724NTExscTv4vrrr9fq1at16tQpHTp0SK1bt3bm7gI+gcQZ\n4GS7d+/Wyy+/rEcffVT33nuvmjZtamlN3a5dO+Xn5+u7777Ttm3btG7dOklSQECApfWOJIeHdrFu\ncWwymRQQECCj0VhkXVLhQzg/P7/UdXXr1k07duzQ/v37deDAAS1dutRSPuvtGI3GIuUzV1aZt7tu\n3TpLEPXnn38qKChIx44d01NPPaXY2Fjdc889at++vV566aUiZbe3T9YaNmyom2++Wbt379amTZss\nLY5KKnfjxo1LPFbm8vr7+8toNOrxxx9XTEyMJCk3N7dI4GQ75IBtea2nmY+xI/tjy3o7RqNRd911\nl15//XXLtNTUVNWrV0+HDx+2TDMYDEW2lZeXV+I6JRVpyWW7LAAAruDquMj2OWuOhWxZP6et1/vu\nu+/q6NGjOnDggObNm6eOHTtaWvzaxj/mv22f2QMGDLD0rDIajTpz5ozq1q2r5557TgUFBbr//vvV\ntWtXpaamymQyFXsGmytR7ImKirIMi9isWbMiiT97yooNHJ3P0X20Zft9mEwmS7w1bdo0denSRZKU\nlZWlnJwcu9uzXtbetPz8/HIdQ9t9Ka0cZsRYAIDqqqz6Dutnrr1nnr+/vwwGg+XvS5cu6dKlS2rU\nqJFD2z98+LAuXrxoeS+ZOXayV7dim0grLR4wK+8z21WxVWn1UNbL9OrVS9u2bdM333xjt7eZmb24\ntaTvYu/evdqwYYOGDx+ufv366aqrrrIkRgH8haEaASf78ssv1a1bN8XExOi2227TZ599poKCAsvn\nUVFRmjNnjm688UZdd911kgp7QH3wwQeSpPPnz+uzzz4r8nArycGDB/X7779Lkt577z117txZISEh\natWqlaWbdUZGhjZv3qy777671HVNmDBBH330kfr27atZs2YpJCREqampkgq72mdkZMhoNGrDhg3q\n1q1bseVDQkJ0xx136J133pFU+ECOjo7Wzp07lZiYqFtvvVWPPvqoOnTooJ07d1qOSWRkpD744AMZ\njUZdvHhRO3fuLLGMDz30kFauXKkrV65YWg+XVm5rf/75p/bu3StJ2rVrl2rUqKEWLVqoU6dO+uCD\nD5SZmSlJeuONN/T888+XeqzuvPNOffnll5Yhnw4cOKDU1FS1atWqXPtT1vpPnjwpSdqzZ4/69++v\nnJwc+fv7WwKwOnXqKC8vTz///LMk0YMMAOBxXB0XJSQkKDc3Vzk5Odq0aZM6d+6sVq1a6ddff7UM\nu3jixAklJiaqQ4cORZY9fvy4HnjgAf3tb3/T//7v/yo2NlY//vij5fPNmzdLko4dO6Zff/1V7du3\nL7b9e+65RwkJCTpz5oykwnjskUcekSR98cUXevrpp9WnTx8ZDAYdOXJEBQUFateunX7++WcdP35c\nUuEQjCW54447JElLly4ttbLELCwsTL///rvOnTsnk8mkzz77zPJZRWOI0vbR1vHjxy37tX79erVp\n00Z16tRRp06dtGbNGuXm5spoNGrGjBl2e9lZ69Spkz766CNLS/aNGzfqqquuUpMmTRQZGan169dL\nKhyO++DBg2UeG/M6SyqHv7+/pVLw6quv1rFjx2QymZSdna0vvvjCofUDAODtSnv+OuLuu+/Wp59+\naqljWbJkiVatWuXw9rOysjR37lxduHBBUuFrRXr16uVwo2RnCwsL04kTJ5STk6P8/Hx9/vnnls+s\nY4fSYjBb5amHeuihh7Rp0yZ988036tWrV4nrtBe3lvRdfPHFFxo0aJCioqL0//7f/9OuXbuKxOcA\nCtHjDHCyYcOGaeLEierXr5/8/f3Vrl07yws//fz8NHDgQC1atKhIZcHUqVM1ffp0S0uP6667rtg4\nz/a0aNFC06ZN09mzZ9W0aVPNnj1bUuELQ2fPnq1NmzYpNzdX/fr10+DBg0td11NPPaUXXnhB69ev\nl7+/v3r06KEOHTro0KFDuvbaazVq1CidP39e7du315NPPml3HXFxcZozZ4769eun3NxcPfDAA+rf\nv7/Onj2rTz75RH369FGNGjV011136eLFi8rMzNTYsWM1a9Ys3X///QoLC1OLFi1KLGP37t310ksv\nadSoUWWW21ZQUJC2bNmiuLg41axZU0uXLpW/v7+ioqL0xx9/6KGHHpLBYFCDBg20YMGCUo9Vs2bN\nNGvWLI0ZM0YFBQWqWbOm/vGPfyg0NLRc+1OS5s2ba/bs2Ro/frylJ+Hy5ctVu3ZtNW/eXP7+/nrw\nwQf1/vvva9KkSRo1apTCwsIcHuITAICq4uq4qFGjRoqOjlZ2drZ69uypQYMGyWAw6I033tCcOXN0\n5coVGQwGzZ8/3/JSe7OWLVvq/vvv15AhQ1S7dm3VrFmzyPslvv76a23YsEFGo1Gvvfaa3R5WkZGR\nGjVqlB577DEZDAaFhITo73//uwwGg5577jk9/fTTqlu3rmrVqqX27dvr9OnTCgsLU1xcnCZOnKga\nNWrYTchZi4qK0rJly9SjR48yj3ezZs00bNgwDRkyROHh4eratavls4rGEKXto61rr71Wr7/+ulJS\nUhQWFqZXXnlFUmG8tnDhQg0aNEgFBQW66aabNGXKlFL35Z577lFsbKweeeQRGY1GhYWF6c0335Sf\nn59mzZqlqVOn6v7771dERIRatmxZ5rEpqxydO3fWnDlzJEkxMTHat2+f7rvvPtWvX1+tW7emFxkA\noFoo7fnriC5duujnn39WdHS0pMLYxPx8dXT5ESNGKDo6WkajUTfeeGO5lnc286hJ999/v8LDw9Wx\nY0dLQ6vWrVvr9ddf19NPP62lS5eWGIPZKk891K233qqAgAD16tVLQUFBJa7TXtxa0ndx/PhxzZw5\nU5s2bZK/v79uueUW/fTTTxU/SICPMpj4BQC43Zo1a3TzzTerdevWys3NVUxMjMaOHWsZRsadlixZ\novPnz2vmzJnuLkqFJScnq1+/fvrmm2/cXRQAAFAGT4iLbrzxRh04cMDyfg+U7eDBg5ozZ462bdvm\n7qIAAABUG8StgGvQ4wzwAOZWH0ajUXl5eerdu7e6dOmimJgYZWVl2V1mzZo1lpe2OyIzM1PDhw+3\n+1lwcHCVvWy+unr22Wf166+/2v3stddeU9OmTau4RAAAeKaS4iIAAAAAAKoCPc4AAAAAAAAAAAAA\nSY4NUAsAAAAAAAAAAAD4OBJnAAAAAAAAAAAAgHz0HWfp6RnuLoIkKSUjWbHbh2tV7zVqGNrI3cUB\nAMDjhIeHursIkOfETmbEUAAA2Efs5Bk8LXbyJiXFecR/AABnq0zc5JPvOPOkACYlI5kHPgAAJaDy\nxzN4UuxkRgwFAEBxxE6ewRNjJ29SUpxH/AcAcKbKxE0M1ehiPPABAADKjxgKAADAN5UU5xH/AQA8\nBYkzAAAAAAAAAAAAQCTOAAAAAAAAAAAAAEkkzgAAAAAAAAAAAABJJM4AAAAAAAAAAAAASSTOAAAA\nAAAAAAAAAEkkzgAAAAAAAAAAAABJJM4AAAAAAAAAAAAASSTOAAAAAAAAAAAAAEkkzgAAAAAAAAAA\nAABJJM4AAAAAAAAAAAAASSTOAAAAAAAA4OXOnTunLl266OTJkzp16pSio6MVExOjWbNmyWg0SpI2\nbNigwYMH66GHHtLnn38uSbpy5YrGjh2rmJgYjRo1Sn/++ac7dwMAAHgAEmcAAAAAAADwWnl5eZo5\nc6Zq1qwpSZo/f76effZZrV27ViaTSTt37lR6erpWr16tdevW6Z///KcWLVqk3Nxcvffee2rRooXW\nrl2rgQMHatmyZW7eG9+UkpHs7iIAAOAwEmcAAAAAAADwWgsXLtSwYcNUr149SdKxY8fUoUMHSVLn\nzp21f/9+fffdd2rdurUCAwMVGhqqxo0b6/jx40pKSlJkZKRl3gMHDrhtP3xVSkayYrcPJ3kGAPAa\nJM4AAAAAAADglTZt2qSwsDBL8kuSTCaTDAaDJCk4OFgZGRnKzMxUaGioZZ7g4GBlZmYWmW6eF87V\nMLSRVvVeo4ahjdxdFAAAHBLg7gIAAAAAAAAAFbFx40YZDAYdOHBA//nPfzR58uQi7ynLyspSnTp1\nFBISoqysrCLTQ0NDi0w3zwvnI2kGAPAm9DgDAAAAAACAV1qzZo3effddrV69WjfddJMWLlyozp07\n6+DBg5KkvXv3ql27drr99tuVlJSknJwcZWRk6OTJk2rRooXatGmjPXv2WOZt27atO3cHAAB4AHqc\nAQAAAAAAwGdMnjxZM2bM0KJFi9S0aVP16tVL/v7+GjFihGJiYmQymfTcc88pKChI0dHRmjx5sqKj\no1WjRg29+uqr7i4+AABwM4PJZDK5uxDOlp7OeNQAAHiD8PDQsmeCyxE7AQDgHYidPEN1jp1SMpIZ\ndhEA4BUqEzcxVCMAAAAAAACAUqVkJCt2+3ClZCS7uygAALgUiTMAAAAAAAAApWoY2kireq+hxxkA\nwOeROAMAAAAAAABQJpJmAIDqgMQZAAAAAAAAAAAAIBJnAAAAAAAAAAAAgCQSZwAAAAAAAAAAAIAk\nEmcAAAAAAAAAAACAJBJnAAAAAAAAAAAAgCQXJ86OHDmiESNGFJu+a9cuDRkyREOHDtWGDRtKXebU\nqVOKjo5WTEyMZs2aJaPR6MoiAwAAuA2xEwAAAAAAgHu5LHG2cuVKTZ8+XTk5OUWm5+Xlaf78+Xr7\n7be1evVqrV+/XmfPni1xmfnz5+vZZ5/V2rVrZTKZtHPnTlcVGQAAwG2InQAAAAAAANzPZYmzxo0b\na8mSJcWmnzx5Uo0bN1bdunUVGBiotm3bKjExscRljh07pg4dOkiSOnfurP3797uqyAAAAG5D7AQA\nAAAAAOB+Lkuc9erVSwEBAcWmZ2ZmKjQ01PJ3cHCwMjMzS1zGZDLJYDBY5s3IyHBVkQEAANyG2AkA\nAAAAAMD9XPqOM3tCQkKUlZVl+TsrK6tIZZAtPz+/IvPWqVPHpeUDAADwJMROAAAAAAAAVafKE2d/\n+9vfdOrUKV24cEG5ubk6fPiwWrduXeL8N998sw4ePChJ2rt3r9q1a1dVRQUAAHA7YicAAAAAAICq\nU3w8IBfZunWrsrOzNXToUE2ZMkUjR46UyWTSkCFDVL9+/RKXmzx5smbMmKFFixapadOm6tWrV1UV\nGQAAwG2InQAAAAAAAKqewWQymdxdCGdLT+ddHgAAeIPw8JKHHETVIXYCAMA7EDt5BmInAAA8X2Xi\npiofqhEAAAAAAAAAAADwRCTOAAAAAAAAAAAAAJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAkkTgD\nAAAAAAAAAAAAJJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAkkTgDAAAAAAAAAAAAJJE4AwAAAAAA\nAAAAACSROAMAAAAAAAAAAAAkkTgDAAAAAAAAAAAAJJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAk\nkTgDAAAAAAAAUIaUjGR3FwEAgCpB4gwAAAAAAABAiVIykhW7fTjJMwBAtUDiDAAAAAAAAECJGoY2\n0qrea9QwtJG7iwIAgMuROAMAAAAAAABQKpJmAIDqgsQZAAAAAAAAAAAAIBJnAAAAAAAAAAAAgCQS\nZwAAAAAAAAAAAIAkEmdul5KR7O4iAAAAeAxiIwAAAAAA4E4kztwoJSNZsduHU0EEAAAgYiMAAAAA\nAOB+BpPJZHJ3IZwtPT3D3UVwWEpGshqGNnJ3MQAAcIvw8FB3FwHyrNiJ2AgAgJIRO3kGT4qdPB2x\nHQDAXSoTNwU4sRyoAIIHAACAvxAbAQCA8igoKND06dP166+/ymAw6KWXXlJQUJCmTJkig8Gg5s2b\na9asWfLz89OGDRu0bt06BQQEaPTo0erWrZuuXLmiSZMm6dy5cwoODtbChQsVFhbm7t3yCebRBFb1\nXkOMBwDwKgzVCAAAAAAAAK/0+eefS5LWrVunZ599Vq+99prmz5+vZ599VmvXrpXJZNLOnTuVnp6u\n1atXa926dfrnP/+pRYsWKTc3V++9955atGihtWvXauDAgVq2bJmb98h3NAxtRNIMAOCV6HEGAAAA\nAAAAr9SjRw917dpVkvT777+rTp062r9/vzp06CBJ6ty5s7788kv5+fmpdevWCgwMVGBgoBo3bqzj\nx48rKSlJjz/+uGVeEmfORdIMAOCN6HEGAAAAAAAArxUQEKDJkydrzpw56tevn0wmkwwGgyQpODhY\nGRkZyszMVGjoX+86CQ4OVmZmZpHp5nnhmJSMZHcXAQAAlyBxBgAAAAAAAK+2cOFC7dixQzNmzFBO\nTo5lelZWlurUqaOQkBBlZWUVmR4aGlpkunlelM38/jKSZwAAX0TirAJsgwKCBAAAgIohrgIAAJWx\nefNmvfnmm5KkWrVqyWAw6NZbb9XBgwclSXv37lW7du10++23KykpSTk5OcrIyNDJkyfVokULtWnT\nRnv27LHM27ZtW7ftizfh/WUAAF9G4qycbFvU0MIGAACgYoirAABAZd1333364YcfNHz4cI0cOVLT\npk3TzJkztWTJEg0dOlR5eXnq1auXwsPDNWLECMXExOiRRx7Rc889p6CgIEVHR+vEiROKjo7W+vXr\nNWbMGHfvktcgaQYA8FUGk8lkcnchnC093bXjUadkJBcJDmz/BgAAjgkPDy17Jricq2On0hBXAQDg\nOGInz+DO2AkAADimMnETPc4qwLYyh8odAACAiiGuAgAAAAAAnoTEGQAAAAAAAAAAACASZwAAAAAA\nAAAAAIAkEmcAAAAAAAAAAACAJBJnAAAAAAAAAAAAgCQSZwAAAAAAAACcJCUj2d1FAACgUkicAQAA\nAAAAAKi0lIxkxW4fTvIMAODVSJwBAAAAAAAAqLSGoY20qvcaNQxt5O6iAABQYSTOAAAAAAAAADgF\nSTMAgLcjcQYAAAAAAAAAAACIxBkAAAAAAAAAB/DuMgBAdeDSxNmRI0c0YsSIYtN37dqlIUOGaOjQ\nodqwYYMkyWg0aubMmRo6dKhGjBihU6dOSZJ++OEHRUZGasSIERoxYoQ++ugjVxYZAADAbYidAAAA\n4KlSMpIV0BvgcgAAIABJREFUu304yTMAgM8LcNWKV65cqfj4eNWqVavI9Ly8PM2fP18ffPCBatWq\npejoaHXv3l1ff/21cnNztX79en377bdasGCBli9frmPHjunRRx/VY4895qqiAgAAuB2xEwAAADxZ\nw9BGWtV7De8wAwD4PJf1OGvcuLGWLFlSbPrJkyfVuHFj1a1bV4GBgWrbtq0SExOVlJSkyMhISdId\nd9yh77//XpL0/fffa/fu3Ro+fLimTZumzMxMVxUZAADAbYidAAAA4OlImgEAqgOXJc569eqlgIDi\nHdoyMzMVGhpq+Ts4OFiZmZnKzMxUSEiIZbq/v7/y8/N1++236/nnn9eaNWt0/fXXa+nSpa4qMgAA\ngNsQOwEAAAAAALifS99xZk9ISIiysrIsf2dlZSk0NLTYdKPRqICAAPXs2VO33nqrJKlnz5764Ycf\nqrrIjN0MAADcxhtjJ3uIpwAAAAAAgDeo8sTZ3/72N506dUoXLlxQbm6uDh8+rNatW6tNmzbau3ev\nJOnbb79VixYtJEkjR47Ud999J0k6cOCAbrnlliotLy8+BQAA7uRtsZM9xFMAAAAAAMBbFB8PyEW2\nbt2q7OxsDR06VFOmTNHIkSNlMpk0ZMgQ1a9fXz179tSXX36pYcOGyWQyad68eZKkF198UXPmzFGN\nGjV07bXXas6cOVVVZEm8+BQAALiHt8ZO9hBPAQAAVF8pGcnEgQAAr2IwmUwmdxfC2dLTM9xdBAAA\n4IDw8NCyZ4LLETsBAOAdiJ08A7GT48wjD9CICgBQ1SoTN1X5UI0AAAAAAAAAfB8jDwAAvBGJMwAA\nAAAAAADFOOMdtSTNwLuOAXgbEmdOwgMAAADAccROAAAAns08zGJF4raqjPWIKz1bZc4jX8MxALwH\niTMnsH0AOPMmyA0VAAD4mtJiJ2IfAAAAz1DRYRarMlFCUsbzMVxnIc5VwLuQOKsA2xuc9QPAmTdB\nbqgAAMAXOBo7EfsAAAB4lookO6oyUUJSpnKqKu7m++FcBbyNwWQymdxdCGdLT89w2brNFTql3ehS\nMpKddhN05roAAPA04eGh7i4C5FmxE7EPAAAlI3byDK6MneAYYsbKcyROBwBvVpm4yeHEWWZmpjIy\nMmQ9+3XXXVfhDbuSqwMYHs4AADiHL1f+EDv9hdgJAADn8OXYyZuQOHMvb074eFpc7GnlgXPx/boX\nx9/9XJ44+8c//qEVK1boqquu+mtBg0E7d+6s8IZdiQAGAADv4KuVP8ROAADAFXw1dvI2xE7u540V\n0p6e8PPGY4qSefr55us4/p7B5YmzHj16aMOGDQoLC6vwhqqSJwYwPHwAACjOVyt/iJ0cQ3wEAED5\n+Grs5G08sd7JGYjNXK+yx9hV3xGV/L6Ja9q9OP7uV5m4yc+RmRo0aKC6detWeCPVHS+6BwCgeiF2\nKhvxEQAAgOcgNqsalU2aueo7ahjaiKSZD+L7dC+Ov3dzqMfZjBkz9NNPP6ljx44KDAy0TB8zZoxL\nC1dRzmj5U1pGuDzZYvO8ZJgBACjOV1tNV7fYyV6cU1bsY/7BT3wEAIDjfDV28jb0OIO78B15B76n\n8uOYwRVc3uOsfv36ioyMLFLx48uS0hJLbMFRntYd1vNy4QMAUH1Up9jJXtxUVrxk/hwAAACeoyrr\nrujZVjZ7x4j6Rc9H783y8/Vj5qv75esc6nE2depUzZ8/vyrK4xSVafljvlAXRMapbUT7Eucpb48z\nAABQnK+2mq4usVNpcZMjPc6IkQAAKB9fjZ28ja/2OKsqvE+rbBwj78ZvnfIr6Zh5+7HkWnYvl/c4\n++mnn5SVlVXhjXgT85i+1pU/tlnh8pzk9oYtAgAAvq26xE724ibJsR835WmEBAAAAO/gSOxWHd+n\nVd6Ytjoeo9J4228CvrfyKylp5u090biWvZdDiTM/Pz9169ZNQ4cO1cMPP2z5z1dZn8jlHZqxrM+9\n/WIHAABlq06xk71GQmUN0+goYicAAADvUZ7YrTpVIlc0pq1Ox6g0/CbwPY5+l76SdPL28ldXDg3V\neOjQIbvTO3To4PQCOUNFu8wnpSXaHZ7Rdrq9l9lbd7u0/cyat3cvBQDAmXx1uKHqGjuZ4xzzdNu4\np6RhKkqLj4idAAD4i6/GTt6GoRpLRuxmH8elcrzp+NmrN8ZfGLoQVcnlQzUaDAa7//kC880sKS1R\ng+MfUFJaYrHPp+ybaJkvJSNZMQlRikmIKpIdN2fAJZXaCoIbAgAAvs+XYqeSYhrb2Mn8AygpLVFT\n9k1UUlpisZjIXovBslqQEjsBAAB4j9IaQ1VnxLSV4y3Hr6R6Y+vPq7vy9iLjmMFdHOpxNmLECMu/\n8/Pz9eOPP6pdu3ZasWKFSwtXUY62/LHNcG//JUG9m/Yt8rm51XREcAOlZaVaWk9L9CoDAKCyfLXV\ntK/ETmW1BrTucZaSkay0rFRFBDewfH40/UiR2KokxE4AADjGV2Mnb+PrPc6cHZu5s4cJcSZcoawR\nM6SSh7Sv7HXgDee0s8pI7zRUVmXiJocSZ7Z+++03zZ8/X8uWLavwhl2pPAGM+UK2vRDNfy+IjNP4\n3eOUnZetP7JT9eGABLtDEnkqTy8fAKB6qy6VP94cOzkSS5hbVmbnZat2jdpa1HWxxu4creTM08Vi\np7IQuwAAULLqEjt5Ol9OnDmzoto6rnNHjEele9mIvcuvMudVZY+3N5zTjpbR0WPBOYrKqPLEmST1\n7t1b27dvr/CGXamiAYx1Es32/5KK9TiTVO73dFQlb7iZAgCqt+pU+eOLsZOZubfZ+N3jtKjrYkuv\nM3PsZDuvvdaX9hoyAQCAoqpT7OTJfDlxJjnecKqsSnFPiOs8pY7OE1l/R5L3DIfoCdx5XnnDOe0t\n9wf4PpcnzqZOnVrk75MnTyoiIkKLFy+u8IZdqTIBjPm9HOaHhqRiSbGYhChJ0tq+79v93JMufG+4\nmQIAqi9frfypDrGTbbJrQtvndVt4K0n2GxaZl7H9zF6vf2IXAADs89XYqTLy8vI0bdo0paSkKDc3\nV6NHj1azZs00ZcoUGQwGNW/eXLNmzZKfn582bNigdevWKSAgQKNHj1a3bt105coVTZo0SefOnVNw\ncLAWLlyosLCwUrfp64mzsji7R4mruHv73sDcOcCT6jJRdUgAwte5PHH24Ycf/rWAwaCrr75ad999\nt2rUqFHhDbtSZXqcWVf8mBNkUztM123hrYpU8Ei84wwAgMry1cofX4+dbCtL1hz7t6Z8MUEre66y\nJM/KEycROwEA4BhfjZ0qY+PGjTp+/LheeOEFXbhwQQMHDlTLli316KOPqmPHjpo5c6YiIyN1xx13\n6LHHHtPGjRuVk5OjmJgYbdy4UWvWrFFmZqbGjh2rhIQEffPNN5o+fXqp26zuiTPJ8+O3qmrY7unH\nwVG+sh/VAe8P815cZ1WvMnGTnyMznTlzRoMGDdKgQYM0cOBAdenSRUuWLKnwRj2RORk2oe3zejXp\nFUnSoq6LNbXDdI36NFYDN/ctMkRjaSe5bQ80AABQvVSH2Mm6h9iKo8sVXqueZnw5TTEJUUrLSlVS\nWqLDcVB5fjwQWwEAAGu9e/fWM888I0kymUzy9/fXsWPH1KFDB0lS586dtX//fn333Xdq3bq1AgMD\nFRoaqsaNG+v48eNKSkpSZGSkZd4DBw64bV/crTxxlqPxm7tit4ahjaokaRa7fXi59rGqjkd5t+Oq\n41TV37/t9tz526G823Zk/oqccyUpzzXCb7DKc+Z3h6pRauIsLi5OU6dO1dtvv62pU6da/nv++ee1\nY8eOqiqjU9m7gZqHX4yKH6jZB2ZpQWScJGnsztEKr11P19asJ4NBlkqgkk5ye+vmggAAoPrwxdjJ\nzBzPmOMbs4ahjTS1w3TN6/SKateorajmwzR252j1/7C3HtjUq0gcVNnYiNgKAADYCg4OVkhIiDIz\nMzVu3Dg9++yzMplMMhgMls8zMjKUmZmp0NDQIstlZmYWmW6etzoqb5zlzEp+V8V2ru7ZUd7kXFXF\nsp4SM1d1OWy3587jUJHryZH5nZ0QdjRp5gnnk7ks3qoqkvlwrlITZ/fdd586dOig2rVrq0OHDpb/\nOnXqpDfffLOqyug0Jd1A07JStbbv+1py73LV8K+hiOAGOpp+RKcv/Vfp2WcU4BcgqTCRNn73OC2I\njLO0sLZdd1JaomUaFwQAANWLr8VOZtYxlDm+SctKlSStOfZvPfHpo5rx5TQ9cdto/V/SPMW0HCGT\nTEq//IdlPqkwNjLHURVBbAUAAOxJTU3Vww8/rAEDBqhfv37y8/uruisrK0t16tRRSEiIsrKyikwP\nDQ0tMt08b3VU3t4nzqrkt7cuT60ct1eu8sSlVRXLekrMXNXlsN2eve1X1blV3n0vz/xlzePsfXTX\n+VRSBxXrundv4+5rEuVTauLs9ttv16BBgxQfH69evXrppptu0oABA9SjRw/dcMMNVVRE5zFf6NZ/\nT2j7vKbsmyhJighuoEVdF0uSZnw5TUZD4evfDAZpeY+39H7/zVrUdbHaRrRXSkayouIHWi5Wc0XQ\nlH0TPfYBDwAAXMvXYicz6x9LKRnJOpp+RIO29LW82+z5di+ohl8NXVPrGm3qv013NbxbDUOu11v3\n/Uvp2Wck/dXL3zpWqkjMxI8NAABg7ezZs3rsscc0adIkPfjgg5Kkm2++WQcPHpQk7d27V+3atdPt\nt9+upKQk5eTkKCMjQydPnlSLFi3Upk0b7dmzxzJv27Zt3bYv7uaOSn7bdXlS7xZrpZXLFUNcVpan\nxMxVXQ7r88h2+1V9bpV335353jJXJM+qkr39oO4dVc2hd5x9//33GjBggJ566imdPXtW3bt31xdf\nfOHqsrmM+cJLyUjW/ENztSAyTmlZqYpJiNK4XaN1NP2IsvOyZDBJ5y6fU2rW75ZKH/PFmZaVqlMZ\nv+rJTx+3JM/aRrR3ysOeix8AAO/ma7GTJEvSLCYhSrMPzNJVQVdLksJqXqO7Gt6tfFOeRn0aq+2/\nfKyxO0erhl8Nnbt8To9sj9GaY/+29PI3x0qlDX9dFmIlAABg9o9//EOXLl3SsmXLNGLECI0YMULP\nPvuslixZoqFDhyovL0+9evVSeHi4RowYoZiYGD3yyCN67rnnFBQUpOjoaJ04cULR0dFav369xowZ\n4+5d8grOrEi3Xpen9JayVVK5PDXRV52V9J2Udm75ym8SV10/rtzXknpy2tsP27p3R9cHVITBZDKZ\nypopKipKy5Yt06hRo7R582b9/PPPGj9+vOLj46uijOWWnl76eNTmYYbMlT9TO0zXq0mvaELb5zXj\ny2nKNeYoNet3XRtUTy/cOVOvJi1UTf9aWnLvckUEN7BU9gz48H7VC66v0MA6Wtv3fUnFWzLYTiuL\n+ebuiUECAADOFh4eWvZMXsjXYidrSWmJSs8+o5E7HpZRRhWYCvRal7+ra+PuWnX0bb3xbZwahVyv\nCW0nq+U1N2n0Z4/rwwEJSstK1ZR9Ey3vkjX/u21E+3KVlVgJAFCd+Wrs5G3KEzvB95nrGeE+tt9B\neb6Tivy+cOZvEk8/f8qzr+XdF2evm9+KsFWZuMmhHmdGo1Hh4eGWv5s1a1bhDXoC6wtnUdfFmn9o\nrmJvHqnw2vUU6F9DV/JyVMOvhnJNOZq8d7yu5OUo35Sn8bvHWZZrG9FeWwZ9rK2DdliGd7RuzZCU\nlqiYhKgi23Uk4+2pLWsAAIDjfC12MjMPtRheu56eavWMDCaD/OSvuMMLdTT9iD44sV71atXXhLaT\nNWXfBI3bNVqz756nhqGN1DaivRZExhV5Z6x10sw8GoC9bVojVgIAAPBentAbxBuGsfOE42TN08pj\nraRh/RxVkd8XzvpN4owei67+bhzd14rsi72hWiuz7vK+qxEojUOJs4iICH3++ecyGAy6dOmSli9f\nruuuu87VZXMp8/BAx8/9R39e/lNTvpigsTtHq88N/XUh90+1uqa1LuVeVFBAkDLyL+qZ1hMU1XxY\nkQuvbUR7S+tpSZYW1CkZyRq/e5zyCvIs85bn5kFFEAAA3s0XYyfpr/fDjv7scS078oZCg+ro6qCr\nlX75D03aM14pWb/pz8vnJEnhtetpxp0v6dWkV4q8wDnPmKdFXRcrIriBZZp5FICHtg4s9mL4koZZ\nAQAAgOvYxmTOWqe7hzX0hDKUxdPK6GnlseWMJFZFlnXGb5LKlr2qvhtH32dYkX2x98qjyjSedDRp\n5snnNDyDQ0M1njt3Ti+//LL2798vk8mkjh07avr06apXr15VlLHcHBmqMXb7cMXePFJTvpggo9Go\nqR1m6uqaVyvu8EI1qN1Ah9MPSZL85a8xdzynD06sV0rWb5rZcY7GtH3G8p6zKfsmakLb53VbeCvF\nJEQpryDPMqRjWlZqsZbUVPQAAPAXXx1uyNdiJ7OktESN2zVaGbkZOpP9h4wyyk9+mt7xJUnS7IMz\nFBpQR3Vr1lVaZqr+r8vruqbWNZp/aK4WdV2s0Z89rtTM37Ug8lWt+uGfRX78JKUlavzucVrb9/0K\nD7MCAICv89XYqSQmk0nJycm6/vrr3V2UInx9qEbr4c4kOXXos6S0xHIP1e1s3hBfeloZPa089lS0\njN6wb6Wp6vK7cnvmRFbs9uEVGta/vNtyxn54+/ljy9f2pzJxk0OJs9dee03PPfdchTdS1RwJYMwn\nwfZfEjRz/zTlFeQrNet3GVVQZD4/+ale7fp64ranlJzxmz45/bFW3rdK43ePU74xTzPufEnzD83V\n2r7vKy0rVeN2jVaAXw3Le9PMQYYvnXCovnzt5gnA/Xy18sdXY6eYhChl52WrwJSvc9nndNmYLUmK\nqN1ABcYC5RnzdCH3vK4KvFqXci/KT34KD66nQL8g/aPnWxq7c7SevmOcVhxdrqkdpqt3075Fni0V\nHV4FQMUQ2wHex1djJ7PVq1frtdde0+XLly3TGjZsqM8++8yNpSrO1xNnkorFaCU9L1zxLimeTygv\n828V20Z4jizHO7EcV9LxcvSadfRddElpiZqyb6LHfy++dv742v5IVfCOs88//1wO5Nc8mr0unikZ\nybotvJVm3z1P2XnZkorvo1FGpWWnavbBGXr7hxVKzvxN23/5WFM7TJf1ITH3LlvcfbnlvWnmoRvN\nXT+T0hLpAgqvRTdmAHCcL8RO9izqulhz7pknk0mKbvk/lukXcy4q/coZZeZmSpIu5J6XUUblK19n\nsv5QgSlf23/5WDX8a+iaWtcoOy9b8w/NtQydbf1siUmIUkxClLb/kiCp7KGBeC4BFUNsB8ATvfPO\nO9qyZYv69OmjTz/9VC+//LJatWrl7mL5hPLe760rTUtLmpXnWeLIcGue/nzy1HJ5G085jt74/uSK\nHDtnHW97x8vRa9ac3DTPZ17Oelh/s7YR7Z36vbjqfPPG86c0vrY/leVQj7OHH35Yf/zxh2655RYF\nBQVZps+fP9+lhaso25Y/9rKl5os1ryBPF3MuKP3KmTLX62fwV7B/sLILshVRu4Fq+AdIkmbfPU/z\nD81VVPNh2vLLJsXePFIrjhYm0NpGtLcM6zhoS181Cmms9/tv9poTsDq38qnO+14SjgkAZ/PVVtPe\nHjvZsu5tllNwRWnZqQ6v209+Cg2so4u5F/TMHRP1yemPlZF7SfM6vWLpcWY9vPX2XxJ07vI5Tfty\nkubd83/FhnS05q6WiBV5HvIMhSfivAS8j6/GTmZRUVF6//33tWLFCjVr1kzdu3fX4MGDtWnTJncX\nrQhv63Hmyl4ErniWeMJwjvZU9ji667lb3u26upyuOh+rQ1xTkWNXFb2IHDn29noFVsXvOV/sRQXH\nVSZu8n/xxRdfdGTGdu3aqUmTJmrYsKHlv5tuuqnCG3al7OzcIn/XCaqjexv3LDYM0D0NI9U+ooO2\nnPxQucbcYuuxZZJJQf6BulJwRTX9ayqqebR2/fapOl3XWZ+d/kQJ/43XsBb/owWJczS0xXC99f2b\nlu1eF9JQnRt1VZ+mD+jGazzzuKVkJKtOUJ0if8duH657G/dUnaA6xT53Z9mqYnvW++7sdbvrOFaW\nt5YbgOcKDg4qeyYv5c2xk606QXV0+7WttOXkJmXkZijXmOPwugP9AhXkX1MBhhp6496luqbmtYr/\n5UMlph1S36b9LI2L6tWqrzxjrv7no4f045/HNbXDDK364Z9aEBlnN3ZKyUjWmF1PakFknEICQ5WR\ne6lKnlMViRFcGVc4yhx/eHMcAufjXAC8jy/HTpK0bds2NWjQQFdddZV27dql2267TWvXrtXDDz/s\n7qIVUVbs5Gls68WcvW5nMsd47oybSuLocbQXb7krHjRv95ZrbtV1IQ0dnt+V5XTV+ehp54sr2Kvj\nLmu/yzrezvh9YF6+tHXVCaqj+5r0LlKO60IauuzeZL1dV28DnqsycZNDPc5KM2jQIH344YeVWYXT\nldbyx5zdvpyfrbyCfBlVoNSs38u9jeCAYOUU5CjflK9rg+rJYJCCAoI0r9MrGrnjYfn5+WlBp1fV\ntXH3Yr3crDPrntIaoqwxam0/r8pyu6tlgCv2kVYOAFCUr7eatsfbYiep8Pm1+/QuTdzzjAps3gdb\nHg81j9E36YfV54b+2vLLRi3v8ZYighvogU29dO5Kuj4ckGCZNyK4gaTShwYyi0mIkqRS32lQ0nO9\nqnqPuTPmM8cfCyLjvOJdAQCAkvl67PTTTz9p48aNmjx5sp555hkdOHBAY8aMUWxsrLuLVoQrepx5\nSv2QVPH3FVVmXZVdpjzrdMb6S4stS6r3cdd3XN5ePZ50LrqKM89xZ2+zPOurbB2jM+spvanOszqc\n4yjk8neclcbb3t/RMLSRpnaYLklKzUpRVm5WudfhL39l5Wcp35Sv0IA6Op/7p9KvnNF9je9X76Z9\n9Urn17Sy5yqtOLpcUfEDSxxHNSUjWQ9tLfzc3WP7ljSGqflv68+rerxpd42v6ortMVbsX9x9zgOA\nu3hb7JSSkayo+IGa8sUEtQ5vW+H11FCgNpxYq5MXftbSI6/rv5d+1eM7YiVJb/Vapfmd4hQR3EAR\nwQ00dudoDdrSt9QyxW4fLqnw2bq27/tlJs3sxS4VjWkq8hx357PfHH84+10BlUEcAACwp0WLFhow\nYID8/Pw0b948LVmyxOOSZq7gSe/1si1LSWWy967astblyLYl58dN1uVwxrEubR2l1fu4KwYrbwzo\nCbGiK5XnnVzOui5dcY07o47RmfWU5V1XWfcYe/M6g7O/V1/gK/vhbJVOnBkMBmeUw+WsL8Y5X81S\nh/p3ySijLuVdLPe6rFtaZxdkqVZALUnS2z+s0JhPn9TkfeP18/mftajrYtXwr6G0rML3gJgrdszS\nslJ1+tIpHU0/4lBQUtZnlVXWjc06ibYgMq5KH6T2WunYU97jU97gzRl8PQBxhCf9KACAquYtsZO1\nJfcul4wGHU4/VOF15KlwSCOTTDKYCkPQ37NStPv0Lj356eOavG+8Hto6UGlZqbqcf1m/ZxZ+Zv2s\nSEpLVFJaYpEfZea/S3u+2v6Is66UWdV7TYX3ycxZcYmr1iEVjePcsX3bdRIHoLI4fwDfFBcXp7i4\nOEnS5cuXtWzZMi1ZssTNpXI9T2pk60jD6ZSMZE3ZN7HMuqHy7Jcr4wPrclRFssETvkdbnlgmd3H0\nHChtvoo0vHPFNe6shJezONIDVfor8e6KBLwjZSypR2h5+MpvGl/ZD1eodOLMG1ifAGlZqTp16b/a\ncGKtU9ZdYCpQZt5fXfQ3nFirXGOuZh+coePn/qMnbhutKfsmKiUjWdt/KRx+yFyWiOAGahBynW4L\nb2W5YLf/klBiEs28H0lpiRUqqyOVOo5m+c375Mj6nc3eBZ2SkezQzbas9ZQ2X0WPO4rzpB8FnoCH\nEwBPlZJROMz09l8+Vo7pilPWaZLJkkSrG1hXCw69LINBqle7vp5qNU4RwQ1Uwz9AVwddo8n7xmvg\n5r6W5/yAzfdr4JY+lpgqKS1Rg+MfsPxt735qnSQrqZWxvbjCUbYtmO1Nt1ceR9ZbVqzi6sScq35E\nEQd4F0+MU7zlB76nlw/wRLt379bKlSslSfXq1dM777yjTz75xM2lqhqe9Fy0N/qQ7efm3uyOrsuR\n+VwZH1iv11XJBnfd9335eePsfStvr8bShuN0pD7R+t/OHPLRlVy1fuv6VXPi3ZHekK64N9hLmpU3\ntvSV3zS+sh+uUC0SZ9YnQNuI9oq8rqvLthVoCJLf/39Y5x58UZP3jdeApoO1+/QuPbI9RrtP79KC\nyDjL/LUCauto+hFL0ux/P3tME9o+b7dlj7mnl72klTV7CZ7SKm/K213dXuvspLRExSREVUlyybbH\nm7lSb/zucWW2drLet/K0MDEfd5JnzsMNuZC3VPwAqL7yjXm6oe4NCjAEyCDn9pa7kHtBf1xOVfdG\nPZVvzNeUfRO0+/QuXcm/oikdXlCtgNoqMOVb5m8ceoMWdHpV8w/NtbzX7M0eb+vVpFeKND6yboAU\nkxBVpIFNWlZqkee/vbjCXiLM/Jkt8/KSisVt9t4dW9I9317STVKRFt+285v3raLKegZV9EeUI2Ui\nDvAOnhqneMMPfE89doCny8/P15UrfzXWycvLc2NpIKlIjGRvurM4M7HgDq6+75fWkMqTnzeujFXd\ntT5H4hBH61vLk3yTHBsitTKc8RujJLbDx5sT745c966+N1Q0tvTme5Y1X9kPZ6s27zgzVzisOfZv\n7Ux2XWulXFOOjDJKki5cOa+6gVfp5YMv6sUD03V1UJgWJr6scbtGKyq+cCiiJ24brSc+fVQv75+t\n+Yfm6s0ebyu8dj3L+mJvHinprxuldSbetleauVJocPwDSkpLLDFJVNJ024ok23XbTrN+AIzfPU6X\n87M1dudohyqDSvq8tPms57FNHi7qulhr+75famsnezf/kgJA2+XaRrTXgsg4jd89zqkPbEc+d2Xw\n444M4XbrAAAgAElEQVTAylODOXfxhoofAM7lLbGTVDisdEZuhpZ+u1hX1bhKJjm77IXre/uHFTqb\nna5aNWpr9oFZSstO1cz903Qx94JSMpM1/6u5GrtztGJajtDwWx5WVPNheuK20Rq/e5zCa9fThLbP\n69WkVzSh7fNKy0q1NOZJy0pVXkGe0rJSNWXfRA1oOlhT9k0sUgLbuMK6gZB1rGP7g9c8zdxiUlKR\n+7m58sde3GX+3Ho95vfemuczJ/PsNaayXqd5SHBH2T6HHWnhWZ5nd2lldbaq2IYreUO5PTlO8cQy\nWfPkYwd4smHDhmnw4MFauHChFi5cqAcffFDDhg1zd7GqvfJU/DvyfCutUbej5fE0JTWaKouj81Tk\nnWruVtlElTOHSjSrqmPlyPCgZR0fe3F1SUOkVvU1UVY9b0msGy96Gk8sE9yr0omzJ554whnlcLk1\nx/6tqPiBejVpYZVts0AF6hhxlwpUoIu5F/RnzjmlZacq8rquMhikJz99XHGHF6qmfy298W2czl0+\nK0kaHP+A/p70hvp92Evj94zV/RvvtVQAmd/jYU4CmXt6bf8lQTEJUYoIbqB59/yfJFmmmyt1rJez\nrWgwJ9zMlS/WFUTmFtzbf0mwbE8q+rBZ2/d9Le/xVpF3upl7Z5mXMa/TdvvmabYtxW0fDua/bZOA\n5t5m9pT28LH+d2kBoPXQmiWtq7wPjLIqlcyfu7IliTtaJbljm96AhzNQvXh67GT9bBr1SazSslN1\n+tJ/dTb3rEu3W6ACXcg5rwu55yXJ0rvNJJM2nFirkxdPaPbBGRrz6ZOafXCGJu55Rmez0/X4jljN\n+WqWBjQdrDlfzdLYnaN1KeeSRn/2uEZ9EitJighuoNibR+r/kuapa8N7Jf0Vp9j+kDUn3Gx7kkmy\n/Ejd/kuCBm7uq4Gb+2rsztGW0QLM6zDHZdYxkLWYhCg9tHWg5Tl/NP2ITmecUlpWqiWuMCfz7MU+\n5vJM7TC9yHz2WCf+rOOKlIxkRcUPLHEZ63+X99ltPk6ufO5XRazkDI5WhFRmXa5GnFJxHDug/GJi\nYhQVFaV169Zp1apVGjRokGJiYtxdrGrFkeSMvboa27/L8wwsT/LHVfGFM9bn6EgD5ZnHvF5ve6ea\nVHxkh5KUtv+VGSrR3jLOUJ7vzd6/raeV9b1aH7+Shkit7DVhey2u7fu+U3rTObK98i7jqTF/abyx\nzChkMJXS7Llly5ZFXmAfEBAgPz8/5ebmKiQkRImJpQ9bd+TIEcXFxWn16tVFpu/atUtLly5VQECA\nhgwZooceekhGo1EvvviifvzxRwUGBmru3Llq0qSJTp06pSlTpshgMKh58+aaNWuW/PxKz/elp//1\nzrGktESlZ5/RI9tjdE1QuK4UXFZmfkYpS7uen8FffZo8oEN/fKU/L59TvgqHIDLIoI8Gf6btv3ys\nZUfe0HUhjfTIzY/pvR9XK/rGEfrXD28rJfM3bR20Q+nZZzTti+f12C1P6O1jKxTgF6AAQw09fcc4\nTfligiJqX6cr+Vf0Z85Z1Q4I1pX8y1p53yqF166nUZ/EauV9q5SefUbzD83VpZxLGnnrE2p2dTNL\nGecfmqupHaZLkmYfmKWn7xinyXvH6+qa18jPr7CcUmEr5/G7x2lqh+nq3bSvpdX1gKaD9crhl7Wi\n5zuaf2iu8o152tBvsyRp0Ja+Wt7jrcJKrO3DtSAyTqM+iVVoYB0t6rpYEcENLJVSt4W3KtLS2bYV\nt/nf1p+ZmW/e5pbdDUMbKSkt0bJde63CbZW2XfPf5kTi2r7vS1KRdSelJdrtBWe9Xuty2q7b/Lmr\ngiBnrbs863Hl/gAoztOvuSuBF3R93evdXQyn8dbY6dtf/lPsmSRJ/T7speTM3yp4NCrPIINMMqll\n3Zt0/OJ/5Cc/hQVdqxuvbqmDfxyQ0VQgf4O/6gZerXM56WoceoMG/m2IPvpvvLLzList63fFdXlD\n/734X+1O2am24e319g8rFBZ0jbLyM7Wy5yr1btpXkizvSRu542EZDAaNvn2cPjn9sdb2fV+7T+9S\n18bdFZMQpajmw7Tg0ByZDCZdU/Na1QyoKZNJ2jywcPmj6Uf0+CePqF7t+prX6RVLHDX8locl/ZWw\ne/LTx/WPnm9JKhxRwDx9yr6JluN/NP2IXk16xe6oAeYYzBw7xSREaVHXxZa4IyUj2TJPXkHhMFc1\n/GtY5klKS9SgLX314YCEIrGKbVxSUpxlntdeXJRXkKf3+28uFsfYm78y9yfrWCktK9Wh96w4a9uO\nbiMmIarEyofyxk/24sXS5vfkez/gDo5eF55+/YSHh7q7CC41efJk5eTkqH///jIajdqyZYsiIiL0\nwgsvuLtoRVjXO/kK8zO/pOeNuX7DXqxgbzSf0p5bzooBnDVveZ+zjnJ02558z6kMR45rRY99RY6b\nM491VcWSjh6b0spT1mclbcPRdboyprVexvwaHVfdV1zBVfcWV/DE4+cMlYmbSk2cmc2aNUtt2rRR\n//79ZTAYtGPHDu3bt09z584tcZmVK1cqPj5etWrV0oYNGyzT8/Ly1KdPH33wwQeqVauWoqOj9eab\nb+rrr7/Wrl27tGDBAn377bd68803tXz5cj355JN69NFH1bFjR82cOVORkZHq2bNnqeU1BzDmXlRv\n9nhb5y6f04sHputi7gVHj02VCA4IVlZ+luXvexvdp73JnytPeZrZcY6urnm15h2crYu5FxTkX1MZ\neZfUsu5N+vniCUvCLcAQoPq1G2hiu8lacXS5Ludn65nWEzT3qxd1LqewdXjdwLoKqVFHuQU5Sr9y\nRhG1G+hCznn1bzpYG06slSRdHXiNLuT+WVgpVfMaXbhyXmG1rtX5nHMaffs4LT3yuowmo4wy6rUu\nf9fCxJcVGhiqy/mXlX75jFb2LEzMpWef0ROfPqqQgDpa3fe9Yvs84MP71bjODZp510tF5l/R8x3d\nFt5KsduHK/bmkZryxQQ1Dm2ixd2Xa9yu0VrcfXmRIG1C2+eLJNasW4pbVxrtPr1LK44u16Kuiy1d\nmtOzz1iWNc9vm+SyvjGXVBFjDgqtK2vMZTG/s25T/21FPpNULKFXmZtTaUm/qrjhedNDwMzdDwN7\n26/KMjm74hKey9Ovz5SMZD3+2QgdfuKwu4vidN4WO92xrE2xRh9JaYmK3vagpQeYpwk0BCnXlKPH\nbn5C639aq6z8TN0T0Vn70/bp0ZtHKTMvUxtOrFUt/9q6XJCth5rHaE/y5/rjcqoCFKCra4bpqppX\naUO/zVp19G298W2crql5rc5dOau6gVfpYu4F1atVX1M7zNBze8bomTsm6oMT63X2yhmFBtRVUECQ\nagXUsjRa+v/YO/e4qOr8/78GGBDGQQ2hQYhatqtGuJF0MYqfl2RFBeuLW/jVzFrTTXEXzNuilvpV\nQ+G7YS1lZmZf/W7yLdGipTSXsqs0368sae2NVoMYxUs6gHKd3x+zn+NnPvM5Z86ZCwzj5/l49Ehm\nzvnczuec85736/N+f5bcUYj//ssbuNBuxdlLp3HVgKGIDDPi7MWzONN+Gjsy7DbRkwdm4+mU5Vh3\neDXiBsYjNFgvLS4iwtz8lIWSHbFu9EZEhUdJi58GBIdj5d3PYs0Xq9DZ04k9WXbBbvKeCTCGRkoL\neUg02eaxZTAZYmFpbZL+Twt1xLZi3wsE3mIj+jvaTqLFOlYsYp9HZkuN7HFqFjPREJuf2Fyu3rNk\noZenTghXuBLO3ClPrdOf1Av47yr0vkYs/LqyUGsT+bvtBAS+cJaRkYGqqirp756eHkyaNAnvvfde\nH7bKmUATzngLj2nUvmvlBDX6mN68tzwRHvz12e+v7ZKjL8TD/jZGgO98e2rFS1f3szdx59lAvlcK\nUPDX93d/mI/+PH6e4ondpCpV45///GdkZWVJK6gnTJiAuro6xXMSEhKwefNmp8//8Y9/ICEhAYMG\nDUJoaChSUlJQU1MDs9mMtLQ0AMDIkSPx9ddfAwCOHj2K1NRUAMB9992Hzz77THXnTIZYvDxuG9Yf\nXouo8CgYQ/3LwAwLCvuXaKZDpH4QwoMj8GHDB9Dp7Jel2PwcfvPRfDRfOgWjPhLtXZcQFx6Hb89/\n4yCaPZX8a3TburD+8BqUpJdi5i2zse7L1ZJoBgDnO87jZFsTzlyyfzYn6Vd4Mmk+/udvbyIYwZg9\nfA5W3v0sghCEwWFDAAA2nQ0hQSEYFDoYLxz5T8AGhAdHAAA+/+EzWNqa8MhNM/DO1Pex5I5CrPxs\nObL3TkR0RAyeTJoPa9d5zN3/BPIOzsPc/U9g6t5MNLedwjBjHHJvnoHH35+JX34wC+sPr8WW8a9J\nbd2Qtglb6srwyvjt2D25At+e+QYnLhyX9k+LM8ajIGUx5ux/DDn7sh1SPBJjbufRHQDsK7XzP1qA\nC+0XpDRNc/c/gV/un4XJeybYUy3tnYidR3cge+9EabU5cDkkWm5fM/JQIQ4i+phGawOKzUV4edw2\nB2cSCQtn906Rc1a5gpTJniP3uS8goeK9gTf605tjo7b+3mwTW5dcewSBAbk//dXwiTPGY88v9vR1\nM3xCf7OdaDFj6aFF9nfrH/8dwUHBmvrdm3TY2gEAb/7FLpoBwNdn/wwbbNh2bIu0MOhS9yUAwPv/\nfA9nLjXDFBGLjff/DoMHDEZHdyc2m3+H0iPFACDZSZe67OecvXgG/zz/T4ToQvDikd+hs6cD0296\nFAPDDNg6YTtyb56Bc5fOITo8Bs99tRYX2q04134Gy1JXAgDShqXjfMePCAKx7YrwdMpyvPr1FnTZ\nOjH2mvGw2S7vU3bu0lms/nIFdh7dgWJzEdaN3ojf/W8xHq3Kxcz3HkFjSwPOt/+INV+sQlvnRXT1\ndMHS2gRLa5N9IVLSPOl+77J1OoxXfnUeqk8clOyeB/dNAsB/D9Q110o2zvaMnVL7SArKae/YRTmy\n6rPRejlNi8kQKwlF9LuGthcarQ0OkXAEufchSXkpt1F5immUgyNP6T3baJXfG4LF0/dznFE+1Y07\nZWp9lltam7xiXwSiXaDl2va17SjwDmptIn+3na4EYmNjcfz4cenv06dP4+qrr+7DFl0Z0HOfjXIH\nHN+15HjA8R3B3j9yjnitz1NPnr9a7mnegh9/e/bzfs9rObcv0Dr2nuKra+fL8VNqszciM+UWwSnV\nQZ/nbt/lznPn2UDaQe9NLddeX9IbNnxfIOwfPqqEs/DwcLz11ltoa2tDS0sLdu7cicGDByueM2HC\nBISEhDh93tLSAqPxsoBlMBjQ0tKClpYWDBw4UPo8ODgYXV1dsNlsktPJYDDAalW3qoestIyOiEFn\ndyfWH16LdfcWwRA80PXJPiYYdidUe4/d4aMDcKHzPNq72xGqC5UcQcQJBABZP30QEaEG/HDxB+j+\nddmCEYynkn+Nin+8BUtbE05dPIkX/7cUa75cieZLp3BHdOq/yrePnz4oFDroEBU2FK9+vcUeQYZu\ndKMbBxv247ma/wB0wPn2H3Gu4xx0Nh0W3bEE3bZu9KAHM4fPRmdPB6IGDMVjSY8jfuA1uDvuHtQ1\n12JDzRp09XRhw73F+PbMN9jy9YvYcG8x1oxeh92TK/DS+K3Yk1WJ6IgYhOj02HZ0C3psPQjWhaAk\nvRRnLp7Bo1W5yK6wi2ud3Z1Iik6GpbUJyz99GhvSilE+pULa+yMpOhl7siqRe/MMFJuLJOdHimkU\n1o3eiOWfPg2zpQYZiZl4PWMXtk7YjrrmWiw5lA+dDlhyRyFOX2wGACQYr8XNUbcg1jAM6w+vdXgI\n8vY1o7/fnrHT4RhWHCPpnwBnQ5T3UNJqBCk92OTCrNWU6w5knxFfYLbUqDZ+PBkzrWW5A6/+3nxB\n8X7MsEaUP/5AELiPvxs+gZSmkaa/2U70D5GClMV4+qN8nLzYhO6eboQiVG23e42hoUOlf7d22+0l\no96Ilg57X4MQhGCEICpsKCL+tejnfOeP6Lb14Bc3Tsf0ETOx4q5n0d59Ca8dewVDwq7CoNDL16e9\n5xKCdMEwhg7Ci0d+B6N+EHrQg1MXT2LbsS1ouPA9yr99E6u/XIHVX67A7BFzsOHeYmy8vwSxhjg0\nWL/HyYtN2HbMbu8QW2zW8MdR/rc/IDwkHAtHLsLOb19HS6cV+dV5qGuuhTHUCFNELKLCo7A9YyfS\nE8agIrsSJfdvxo6J/42YcBMGDxiMiddNQbetC6faTmLBh/PQ3HYKJsMw/L62FI3WBtQ11yI8JAIr\n734WSw8tgqW1CZ3dnfh9bSmGhF2F9IQxkvOLfQ+YLTWYs/8xe/T/oUWoPnFQWpT05IHZmJM0DyFB\negB2O4m36TmZT7w9yIidtCuz3CGdI8B/H5J5WZJeqhi5RTvy5N6z9L95e0OwsIuDvPVDmR4bX0AE\nuxTTKI/tC612ga/sB2+Xq9WR6mqVtqB/oPZe8HfbKdDp6upCVlYWnnjiCcydOxeZmZk4efIkZs6c\niZkzZ/Z18wIa3m9C+hmnZl8lpfvHnd+9SouF1eLOPa1mgbC3FvZqOZYVM9TsoUb+f6X8zvf24m56\ngZivRF+le8MT0YpdrK+1H2RhpZpzWLtWS13uLm5hy+4N0SyQ7yNh/zijSjjbuHEj9u/fj9GjR+P+\n++/HF198gaKiIrcqHDhwIFpbL6cmbG1thdFodPq8p6dH2heEPjYyMtJlHazwUT6lArsyy3Hm4hm0\ndbcqnNk72GDj/t2DbnTYOhy+m3RdFkJ0Idh+bCt+bD+HMfHjAdgw7YZczB/5G3xw4o9YM3od/vP+\nFxATfjW+PfcNhhniMXv4HJibaxCpH4ShA6IRrAtGZ3cHdEFBGBASjgh9OJ5K/jUi9YMQP/AaLPxZ\nAU61nYIOOmy8/3fY9sAOvJqxA1HhUTjXfhY5NzyCBSm/xjBjHAYEh8NkiMUrD2xHfnUeVn++ClHh\nQ2Gz2aPkln5SgHWjN+LmqFswZ/9jqD5xEEsPLUJz2yksPbQIK+9+FsG6EAQHBWPN6HUwGWLx+9pS\nDA69Cr++vcC+J9q/VkmTVU3TR8yEpbUJU/dmIrsiE7mVOfj2zDdY8+VKzBr+OEyGWOm6Tx8x02El\nVFJ0MvKr87Dys+WADVh9zzrMT1mIPVmVyEjMxO7JFUgxjcKerEonhwy7Uph1AhHIMazTiIX9jPe3\nFiOILoM1iFjkHFjegETnya388AQSRUhWvbsK3da6QaunZbmDmrnhS5TmoVhl0r8IVIMtEOhvthNw\n+f5Pik5GZJgRg0OHwNpxAdC5PteXhEDv9NnpjstR9caQSAwKHQRrpxU/v84eRdWDHjx0wzQMCAmX\nhLVJ12XBhh48f2QTXjA/j9Wfr7Iv4Ll/M3Zm7sbmMWUYEhqFYF0IrgqLgs4G6IND0I1uBOl0uMZ4\nLRaOXAS9To/IsEH44MQfJUHs27PfYOknBSioXoiuni7s/PZ1xIRfjZV3rsGCkfnoQQ+e/igfSz8p\nwLLUQpRPqcCspNmIjojBQL0Ry1ILUWwuwoq77DYSsZ9I1NeWujI0t51CZJgRj9w0A88f2YQzl07j\nubQSbB5bhmJzEX59ewFCgvSoa67FkwdmS/vPEpGofEoFfpWchx/bz0lpGwlkYRJgt53jBybg5qhb\nUJCyGFvqyvDyuG2SfTV9xEzsyiyXoplo2HcHqZu2jQpSFjssImLft7x3FEkH6anTmxfpD7h+53vb\nfvKl3UTXQf/fk3K0LDjy1QpvX5SrZWxYMdfXbRMIrmQWLFiALVu2YM6cOZg9ezZefPFFPPPMM5g/\nfz7mz5/f1827IqCFB6VnnDu/HbW+l9QsOObhreeyXD3eeP67G/0stwjW1Tl9vQiEfX96WoYrvBV1\nTy+O94boK4fSYit3+8GKTFrvWbKAzVWmBuK3o8UzrXVpPc6dsfF0Plxp/jJh36rc4wyw769RX1+P\n7u5u3HjjjdwV0SwNDQ3Iz8932qcjMzMTu3fvRkREBB5++GGUlZXhyJEj+NOf/iTt0/HCCy9g69at\nTvt03HXXXZg4caJivWSfDuDyDWW21GDKngx02bqchKveJEw3AD3oRkhQCC52X5Q+10GHIAQjQh+B\nnBsexvvH/4jHb52DXd++gXOXzuJs+xkMCh2MoeHRyL15BrYd3YKGlu8RPSBG2p+DQJwh43en40Ln\nj4g1xGHN6HUAgOiIGJgMsdLG9R09HYgfeA1mj5iD1V+uwJDQKDw/5gWsP2zfg2VXZjn2/PUtbDSv\nw9tT3pX2IyMbyZNVzas/t++zoQ/SY+XdzyIjMRON1gZkV2QiQh8hOYQKUhZL39U11yIpOhkAMOnt\nCfihtQFxA+Ox7t4irP58lbQKmcZsqXHYp2Pq3kyUjduK/Oo8qb1KKzS0bhxPzpX7sQzw9/7wxkNU\nzoEkd6yrXOJs210JUO70gV3J4q1x0HLdvFWvt8vyNf2prQLvwN73/ZVA3qejP9lOZJ8O8iwxW2rw\nyw9moaHle88GwQ2CEIQe9Eh7kxHGxj+AjxoPostmT1cdHhSBDlsHdDoddD3Ar0YuxG/vWYmdR3dg\nw+H/wPmOc8i9aSb+69vtWDpqBe6OuwdT9mRgUOgQDAwzoLO7C80XT+K5tBJsqStDZ3cnOnvsC3d+\nfXsBFn/8G7w6YQf+fu7veO6rtXhl/HZkJGbiBfPz2HB4DWIMV8NmA0YPS8OyuwqR8T9jceqiBSX3\nb8bNUbcAgGSf5NzwMO6Ouwdz9z+BiuxKaYwXfDhPspuIjZNbmYM5SfOw/dir2JC2CSZDLHL2ZaPL\n1gmbDajIrkRdcy2iI2KkdyNJsUkEpqr6Soeod+DyM4PsEUueH2RhUvzABJRPsduTJA01GZOXxm+F\nyRDr9ENVbh9Y+vlEIH2m90ehj3fl9JHbc0ULSvXI7ZdAn+eqnVrb5qt3d1/aBIHYJ7YdvrL9BQK1\nXAr9MWAj9vsTgbbHmRw8f4g/PPNcvdPV7mXqST1afDbulK/2WE/tk974Xcnac+7Up9ROuYVR3vJJ\nuVuON9rgro3J+gjdvcZq61eypdWUpeZ8d9tGjlUaA395tvkLgeJvAjzzOakSzurq6rBw4UIMHjwY\nPT09OH36NF588UUkJycrnkc7f9555x20tbXhF7/4BQ4ePIgXX3wRNpsNDz30EKZPn46enh4888wz\n+Otf/wqbzYZ169bhpz/9Kb777jusWLECnZ2dSExMxNq1axEcrLzfxpH6b5wualV9JR7/YCa6e3rQ\ng24VQ+MZRn0kum3daOtqRRCCYNRHoqWzBbEDY/HQ9b/AByf+iKSoZMQahuH5I5twVVgU5o/8NZ77\nai1iDcMQotNj89gy5B2cB5sNyL15Bl79egsi9OFYcdezWH94LXJueBg7vtmGEJ3eIdUNcWTkV+dh\nWWohkqKTUX3iILYfe9XB6WC21KC57RSSopMRZ4zHC+bn8d9/eQMhQXqUpJcCgINDhvdv1gnDChy0\nIUEbL8QhA0DauLz6xEFsqStDSXopd7N4ukzWgaJWENIK72UDgCtS8b7zVr1qz/GGQeSNh6O3HrCB\n9KD2Jb01TsKQ8D8C4ZoEqnDW32yn5mar07OEiGfWDitaOqzo7gX7iWZI2FX4sf1H5I3Mx976t7An\nyy4YLTu0GJ09Hfix/Ryiw6/GojuW4MUjpdg8tszBVvn2zDdY/unTeDplOabe+JDUJ8AuaM1Jmodi\n83MwhkaiJL3UKQIra8/PsXXC65KoRRYM5VbmoK2zDWtGr8Pqz1dBH6x3sGWmj7icRoos/iCiFrFv\niB3U1tkGfZDd5iM2EgAH+4L0Z8GH86DTAbsnX15YxNogrn4Yyy1wIaIdAAcby9LahAUfzgMAqZ9q\nxALaLpv2TjZCgi6fy/tRrOR4osvy5QblnpTtTbvHG84VYTv5lkB49wr6L43WBjxxYAa+mvNVXzfl\niqc/CmeePr88dTyrWYjiSdtYnxix3XwtBsktJOoN/MkG0VKHNxdrV9VXothc5Fe2jyvb1lf3Aa8e\nub89Kc8bYh6N3OI6b6MkPrt6tgFXXirDQLF5fS6cPfzww1i2bJnk7Dly5AjWrl2L//mf/3G7Yl/C\nGjC0uHPm4hkUfbUOltYmn0WeDQodjCEDhuD8pQs413EGIboQRA2IxtLU3+J3/1uMk21NWHzHb/H6\nsW1YM3odHqv6d0RHxOC1jP+SyiCreukIq+y9E7Hh3mJJXCKrkkvSS7mrdumXyKNVuVhx52pMvfEh\nxVWSPMeJq5uEXuXMW9XDPlxJ2WQVNSs+qXmB8B7YvnIU8MoH+BvHqlkNrVbgUirH1yte3FnJ5M02\n+qKcQKc3jC7hiBP4gkAVzvqr7cQ+S6rqK7H8k8Xo6umCtcPqsP+qLwjWhSAiOAKhwaEI0gWh+dIp\nrLxzjSR8NVrt0ewvjd8KwNFeooUn8ryqa651iKIHLi/mIRFVtOBG3r+W1ib88oNZMIZGOolFBLWC\nFXsMad+GtE0A4CCmKf1QJCIcu3iJZ39pWXXr6ke11sVJrE3Es1XZ43P2ZTsJc2xZrH3oDVtF7Xme\n2E5a6vfWe/ZKsJ2uhD4KBHKIiDP/oL8JZ2oX0arx/7iKNldyTMv5jTxBzl7ojQgTb0a3aW1Xbwkw\n/gjt533ywGy8PG6bU7aFvoIstAOcs2J54z7oi+vN2ve+iF7TEnHmC5+o3O8Mcj07uzsdglY89ft6\n8zyBMp74nFTtcdbW1uawQnrkyJFob293u9LeJs5oz0EaHRGD7cdexeI7lkOn8/6GHUEIwsKRi/CH\nSW9h4c8KcLG7FSvvXIOZt8zG+Y5zAIA1o9dh/b2bsOObbThu/Q5mixmxA4fh7KUz0orepYcWAbDf\nMOTfJkMsTBHDpNQ/xFFENv5m+0v+32htQEZiJkru34y99W8DcM5xS2/6SuojY6bmhiV7V/A2IKfL\nJ+WSslnHD/2AcFUvr/1a2qwFuk1ywhhdt6uHp5pc3Lw9ytjv3d1QXs34KBm6Sm3XWk9vlkNQ25Vv\nnqMAACAASURBVP7+hq9frr66vwSCQKW/2k7sO3zNF6twstWCkKAQ3GW6x+v1DQodhMjQQQCA6AEx\niNQPQkuXFQNCwrH8zpWINQzDrm/fkI63tDbhZFsTmttOOex5lWIaJeXep59XGYmZKEkvlUQz8h5L\nMY3CrsxylE+pcLBHcitzkLMvG3kH52FAcDhK0kudbA5La5ODbcDaCTw7iPybPi7FNEpqB4lKc/WO\noo+hy2Hr5YlmvHc473OejcMTDuXaytpESqIZQR+sl8aabQvdN579p6afalByInpr/1RX53vrPRvo\n72pPrrNAEAgI0UzgDq7eM8QOknu20j4j3jFs+ewxcnaLkm2hxffAsxdoHw4pi/6/N94lpD/eQm27\neH403jHeflf607t3e8ZOZCRm4uVx26RtYPwB4qvlZdFSst/lYO+RvrCBWPveXZuVtfVp5DJSsLh6\nVimhdK7c7wzye0YfrOd+z6tD7T3sznn9nf7WP1XC2aBBg3DgwAHp7wMHDmDw4ME+a5SvWHpoEWYN\nfxzTR8xEYeqzXiuXbAwfpAvCW39/E7/8YBa21JVh/b2bMGTAELx27BXk3jQTSz8pwBMfPIoXj5Ri\n4c8KcHV4LF6q24x19xZhb/YfJecN/QCiN2CM0EcAkN/HC5B/oE4fMZMr7Cg9/NQ+BJUEL7kHKr36\nB9C+yaar8n2J3INMrSClZoWX0jFxRt9vKC9Xb38XTq6UF5Gv6M/XXiDobQLBdoozxmP35Aq8OmEH\nAKC68SBC4HqfNrUM0g/Gwp8twoWO8whCEMJCwmAIjUBMuAmL7lgiLXbSB+thaW0CYP9BtWX8ayg2\nFznZPKyo5GpREM8mImLa7skVkl1Gl0nev3KLV1gnEO2wya3MkX6osc9TNZtu897DWhYc8cpX824n\n40i339X7lB4HV/YKvRBMjZCn1G5f2Cq9af+ose8FgWGTCgQCQV/g7nNTre/G1QIXpYUwZkuNwzne\nXLhLbBhSh9lS4/V3CSmfxt2FPK58RmqPo203b8BeI2+ipUx2Ydr6w2tVib69Cfs7g2fbqhXNWBHH\nHcHN27hz36j5DUEfq2WuebOvvDEmix3VCIdqf1/xfvMEun3bH32yqlI1fvfdd1i8eDFOnDgBm82G\nhIQEFBUVITExsTfaqBm5kPmq+kr8cv8svDJ+OxZ/nA9LW5NH9cSFx6HpYhOCEISnRv4a1o4L+PD7\n/WhqbZQ2mr/QfgGXui7iwLSPYWm1r5COjojB0kOLUJCyGKs/XyWFetKQlxxwObUQvUcGvc8GuXnJ\nBOzNzap5dbLfu3pYeKt9rtriLXw1plrb7+trG6iIcRMI/ItATdUYKLYTYH9uPlCejuZLp3DbVcn4\n89lat+rQIQg29Eh/DwodhM1jXsLTH+Wjx9aN5XeuxItHSnGp+yIGBIdj5d3PothchFnDH5f2aZWz\nb+gfk+Rv8k51lQKR119eOeQzVyl55N7nbBvl6vQF7tqI9HkErTYm7zhXq6PFe/oyvWXfCgSC/kOg\n2k79jf6WqlENnr6fWRtKjc3QaL28H2xBymKHdHtq/UlyNhbve2+lVmT7x6ad9tb725Vd6upcwL1F\n8bzvPN3PTa581reptiwWpbIB5SAEV3V5eg093UtX63neth+VynPnN4U7vyGUni9yv7364neXK+jn\n0pVo2/dFv32+xxmhra0NPT09GDhwoNsV9gZyBkyjtQHT3slG6ZgyTK+chrPtZ2DUG2Ht1G7wBCEI\nkWGD8GP7OQwKHYzQoFA0XzqF2cPn4MPv9+Ol8VvR3HYKs6tmoBvdeD1jF5Kik50eFK5eTATa+UPv\n4cG+XPpiAio9jHy5ibu/PQC9UfeV+uAUCARXLoHu/OnvthNw+QdnUlQydv9tl8d1TbshF43WBjS0\nfg+dDrC2W3G2/QziBsZj3b1FWP35KnTZOrEnqxJ1zbUoNhcp/kiXE3eIHaXVwaBGYOrNhUHewl3H\ni7f70hf2YX8nUPslEAjcI9Btp/5CIApnBDmHtTvCiiuHOfm+IGUxis1Fmm22DWmbkF+dBwBOvjFP\nHP1q6ualnFTjuPe0Hl/4/9QIilrrU2t7kt8aatJ7s+cArgUxrQIie663BdDewtuBCoD8/asmwop3\nvpa61QRtkP97KpB70l5X5fbmgjjxG8KOz4SzFStWYM2aNZgxYwZ3T7AdO3a4XbEvceX8qWuuxaNV\nudBBh9uj78BXzYdVl23UR+KmwTc7nKMP0iNqwFB093RjUNhgXOg4j8jQQVh597NYdmgxAGDrhO1S\nlJjaVTdqlXV/vgl80T5/XHnrj20SCASC/kCgOX8C0XYC7O+5zebfYduxLQjThaHd5t5+bUEIRuGd\nz2DNlysxdEA0AOB8x494IOHn+MeFv0v7feVX56EkvdRh9bGaxUa8H9Ce/MgPZPr7YiNemcIWEwgE\nVwKBZjv1VwJVOGMdzuRvkq5a6T0r56x25fg2W2pgMsQCcO2o5vnDXEWc+YLesqOUREwtUVq+jiaT\nK1NttgN3hA6l6877XK4MdxeReVNc8baf15tRTa5sbLlFhoDjNj3u2OhaItXoeUxna9OKN6IUeWX2\nth/fn34b9fXva58JZ19//TVuvfVWfPbZZwgJcd7TIjU11e2KfYkaA2bn0R1Y9+VqnL7UjAFB4ehB\nN9p7XDuBFo5chDf/uhPNF09hfvJvkJH4czS3ncKKT5fjpfFb8XnjZ1j95QpED4iBIdSAEJ1eSjXE\nvjCUVlv4enL39aT1FH9svz+2SSAQCPydQHP+BLLt1GhtwNjdaZhxy2MoPVLikHZRjoEhRky78REc\nv/BPfNjwAaIHxKA4/Xn8/dzf8fqxbbC0/YDpNz2K1469gpL7N2P6iJlSXUrOmt74ASvofwhbTCAQ\nXAkEmu3UXwlE4YwVUHh/exKpLudg1xI5pDX1tBbbwN+jglgRQa1wpsbH6G7ftV5vJcyWGknoULLp\n2XKJ8EoLigB/PqmNgqPbItc3d8UVnhhKX1dP/cGsgMSKTu5ca63zlN16iODtOSZ3rKf3PZl/gDYB\nlndtAc+vqbv4w28jX0b/qsXnqRqnTp2KPXv2uF1Jb6PW+ZOzLxu5N8/Alrrf42TbSZcOoCAE4WqD\nCU2tP2DhyEWYlTRb2rdszv7HpM3qsxIfxK5v3wAArLz7WWQkZnIfut58wWjBn1RngUAgEFzZBKrz\nJ1Btp+oTB7H449+g09aJEOjRhU7Fc4aERmHQgEisvmcd8v+0EL+9ayWWflKAWMMwrL5nHaIjYmAy\nxCK7IhMV2ZUuU28QhB0jEAgEgiuVQLWd+hv9RTjzRLxw53x3/FzuRgi5ikbRmkaut+1Ld3xzriJX\neGPpzsIytSKpt9IYAnASBQE4pW9k6zRbapC9dyISjNdi9+QKp7JpMYM3X3j9NFtq8OC+SXh7yrsu\nxTNSjjv9VJNljFeGKzGQ7TNdp1z9WlA7NwizqqY77FkN+GaRo7uCoKdBLTyhUm6++aofWultQU1u\n3vbWM9cTuylIzUFRUVH46quv0NHR4XZF/og+WI/rh1yP0xdPwzmZEqD716eTrstCnOEazBr+BJ5L\nK4Y+SI+99W8huyITUyoysOLT5Vh/7yZkJGZie8ZOzE9ZiPIpFdg8tgzF5iJptTT94ACUbxpfTpo4\nY7xwNgkEAoFA4EMCzXYiKwd/X1uKqw0mGPVGdKMLPzVeL3vOoNBBsHaeR6O1Afl/Wghr13kAgCli\nGFraW7H+8FoAdrtETjQj3xNmVU0HAGHHCAQCgUAgELiAOCZZX5TS8azvSo3gpKY+pe/ijPGKQgH9\nf/o44tsCgJx92Wi0Njgcb2ltUu30BnrfvnTHN8f2n4bY67mVOTBbaqTxIP1Ti9p5Q4+/u/DGP84Y\nj12Z5VLadnY+0sJEimkUKrLek0Qzuq+zqqbDbKmR+kK3l/6MJcU0Ci+P2+ZSNFOat2r6SaN0Xdky\n6PGgP2P7Spe1IW2T1F45kUjNc0LL3CD/FaQsxvJPn0ZBin0rI3JdeGWrfVa52y5eO+XuQbXzmxyX\nYholjTNbttZ54u44+LoOd9ulNL7+/pteVcTZXXfdhR9//NF+gk4Hm80GnU6Hb775xucNdAe1K3/I\njTr57QkYHHYVpvw0G9uObQFg34NDH6RHe88lGEMiERwcjB/bz+E/738BN0fdYq+n7RQef38mrjaY\nMCA4HOVTKmSVf7Vqrj+EUQoEAoFA0FsE6qrpQLSdiKG8569vYfWXKzDpuiy8f+I9hAaFobWrRTou\nCEEYGh6NsxfPYGhENOYk/QrP1azFklGF2Fv/NrISH8SaL1dixZ2rsbf+bZf559WuwBQIBAKB4Eog\nUG2n/kagRpxpiSaRi5wBPNt3ij5HzZ5FZksNpu7NlLJAFaQsxopPl+NkWxP2ZFU6RSyx7eBF6fhT\ndIiWuohgmF+dB+Byqjy56CZP6iLH+TKCSSlKUU3kFkFLijh63vHmm9rINS39VItSlCGvzURMBeRT\nSqo5xtN+0JGsvP3seG1w59kFeDcQRcv89mYEprefKWyZrlKRypXRX7O++DxVY39DjQFDbtSClMV4\nrGoGABuCdEHotnWjBz2IChuKkCA9Tl5swtXhsfix4yyyEh/CC+NfkiZLQcpirPliFVbc9SzWH17r\n8ICpqq9ERmKmpnb350koEAgEAoE7COePf6DW+dNotae6/ueF7zAodBDOtJ/GaNN9+NTyMQB7lNmQ\nAVdh4c8KsO7L1QgLCcMrD2xH3sF50krQOGO8ZCdV1Vc62VCkHjbFhbCNBAKBQCAQtpO/0F+EMy2o\nWaxEHNw8QYZ8z9uHTEmIcFVfnDGe62ynIftcEdGoq6cTK+561sEvpyQQyKVbczVenqRa1ILWulgR\ngbWtXS1c09Jed1Pk+UJEor8DtKUlpMtzNd9YsYq3l5iaujyZD2oEa7nvtJzvCa7ua7l2Ks13V+Kh\nt+9HT4R0f1j0yY6lJ7+v/aE/7uDzVI0dHR146aWXsGTJErS0tOCFF17o16mHGq0NWPDhPGxI24Qz\nF88gKEiHqwZE4VfJCxGkC8bg0CEICdLjUvdFAEDmTyZjyR2FeOe7Paiqt6cS2pC2CcXmIpSOKUNS\ndLKDIl5VX4lHq3JRVV/JrVvus/4SpigQCAQCgUCZQLOdgMv2yuaxZVieuhLnO+wRdZ9aPkZ4cDiG\nhEZh85iXUDZuK4rNz6H50ik0tfwAANg9ucIhTUVGYiYarQ1Yf3gtOrsv75NG0sqwKVXUrnwWCAQC\ngUAgEGiHtr+0pGMj59KwohlJ15ZfnSfrE1NK4wjY0+cp2YQmQyxmVU2HyRCLXZnl2D25wmkxe5zR\nngKQF1VDp1tTuyeaVh+eJynStNrEtN3N2tZE6HHVDq3zQC2+TkdHygf4aRHVzEFX84CML52iz9La\n5HAPuWofnVrRnf6R8+j+KrVV7nz6OLYeT66RmvuaPpZup9x855Xp6npraZ9SW9WMhZpx7m3YsXRX\ne/BUNOvrcXAXVRFnhYWFuOqqq3Dw4EGUl5dj1apVsNls2LhxY2+0UTOuVv6QMO7Fd/wWRV/9B4z6\nSPzYfg5DI6JxqvUkoANgA4J0QZh6fQ721r+FoQNi8Pitc7C3/m0HlRZw3mSRhIWz+3UorbwRgplA\nIBAIrkQCddV0oNlOZIVuV08nOro7odMB5y6dk8QzAIgeEPOv1Izz8OKRUpy9dAZn289gR8Z/S0IZ\nb9UrAGklMdmI22SI1fyjR9hSAoFAILgSCFTbqb9xpUac8Y6jI9B4kQ0b0jYhvzoPF7vasCeLv6+t\nNyOQfBkVoTUSRq6Nfd02te3wVXu94YRXsv+VIp20Xj9XbaUjGUvSSyURV+m3iS8izrSUw97DPF+1\np6kTefUA6qJU1Zap9JkaSKSqmig3d35vqpk7/eH3q6e/t/v697rPUzVOnToVe/bsQXZ2NioqKmCz\n2TB58mS8++67blfsS9QYMFX1lSg2F2HW8MeRnjAG2+u2ofK7fbjQcR5nLp5GVPhQhAaH4pUHtuOx\nqn/H2YtncO2g61A6pswpnJl+4FlamxRzL3vzBhcIBAKBoL8TqM6fQLSdGq0NqGuuxerPV6HL1okQ\nnR5Xh5vwqeVjGEMisXr0Opy7dA5FX/0Htox/DdERMWhuOyWJZuxCI57h7E6qa9I2YUsJBAKB4Eog\nUG2n/kagC2dqj6WFM3ZRFLtAKr86T9UeSp60kU2xJ+eslyvLXfGLlw5Nrl5PUWqj1r2LfC3k+dI+\n95bopPQZoC79Hy3AeNI2b6F1/vGEOIKSqKS2n+T+B/j7qMnNW28IT0qCqBZx0JviPvl3f1r86Q2x\n29356Ck+T9Wo0+kc0gudO3cOOp3O7Ur9gYzETGxI24Ttx15F9YmDKD1SjNybZyA0OBQ66KAPCkWw\nLgQAMGTAVXjuvhLsnlwh3ch0SCz9EDEZYqVQXfo4Qn+4GQQCgUAgEHhGINpOAFBsLsLmsWXYk1WJ\nlXc/i/89XYPZw+fAEGrAkkP5WPflsxgUOgTRETFYemgRoiNiAACW1ibpRwFJEcP7cVpsLnIrjYOw\nrwQCgUAgEAjcx1VaMV5qNOIPYx3hdBo6AkmhqDVag9dGktqb1y6ykJ0W9XIrc2TLoj93lTpPSYyg\n05+x9XozRZlSejnSf7X1+TKVXG+kqXN3Lnk7/R8Zd3fb5m2U5r0cvGxp7Oc80czVNSbzf+mhRShJ\nL5UVzZYeWgSzpcbpXFf3I5uykkXpno4zxsu2iYc3RDO2Lf4omsmNt6ft1JpNxpfPDi2oijirqKhA\neXk5jh8/jp///Oc4cOAAnnrqKfzbv/1bb7RRM1pW/pALkV2RiZfGb8WCD+ehy9aJmbfMxq5v30D5\nlAopiowXbk5/zirkatTj/qYwCwQCgUDgTQJ11XSg2k7s6i/yAyd770TMTVqAsj+XYnDYELz/b3+S\n7KeClMV48sBsvDxum1P0mYjCFwgEAoFAG4FqO/U3roSIM/I3G8XFO5ZXDu34pKPS1LaFZy+aLTXI\nOzgPIUF6lKSXOmV8kouccRVxRvv5eGW5k06O4O0Ub0rt0mpLu2N7qz3HX6LZ1PpmPfld4o3IKG8i\nN+/duXZK46cUKQZcnvuW1iakmEY5PBvijPGoqq/E+sNrsSy1EOsPr3V6RvD6wbZNLiKOd0+zbaQz\notDtVapT6TNX3yu119u4e2/7g0bh7v0id54ndlPwM88884yrgxITE3H27Fl89NFHqK2tRV5eHh5+\n+GG/XTnd1tbh+qB/ERkWiciwSGQmTsbAUCPui78fd5ruwpJP8hEWHIYxCeOQYhqFmPAY3G66Q7oI\nYxPG46aoWzA2YbyDITE2YTwiwyKlssn3SvW7OkYgEAgEgkDFYAjr6yb4hEC1nYiNA9gN05uibkFT\nyw+41vgTLLpzCS52XMKfGg7gnmH34r5r0jE2YTxuN92BW4YMR7G5CCOibnWwn5TKFwgEAoFA4Eyg\n2k79DS1+J5ZGa4Nf2jykTY3WBlg7LmBW1XSMiLpVEqduirpFajt9bGRYpEOfyP9JGXfF3oP3//lH\nPHTjNNX9lvOV2Ww27P7LH/D8mBeRYholtW9swnhYOy5ITmm6LXJ1knaT84ifj/RrVtV0ycen1XdH\nzlFzHjsf2Lp5ZcuNk9Z5pfV4V21TW7aae4BcG3ZsyLwi19xVOdaOC8i+/iGXvlkt7Xd1LN0/MmYj\nom6FzWZTPFbN52rbozRuWq4dO8dIWdaOC5h/cK5TeaS/2dc/hOzrHwIAzNk/G7cNTcb8g3MxIupW\nzD84F8EIxq+rn0JY8AAkR4+E+dRXTs8Its28+5Icx15j0m5yT9PQvn0ATu1l68ytzMFtQ5Ol6+fq\nPpD7Xote4Ala7lOayLBI6fd6X+LOvFfqsyd2k6qIsyVLlqC9vR1TpkxBT08P9u7dC5PJhN/+9rdu\nV+xLtK78abTa9yaj863WNddixafLEaGPwLLUQmmldLG5yEmtdqViCwQCgUAg4BOoq6YD0XbirTyc\nNfxxLDmUj86eTpTcvxnbj72KWcMfx/QRM51WfJH9Zft6BZtAIBAIBP2ZQLWdvEFtbS02bdqEN954\nA8ePH8fSpUuh0+lwww03YNWqVQgKCsLu3bvxhz/8ASEhIZg3bx7+3//7f7h06RKefvppnDlzBgaD\nAc899xyuuuoqxbrcjTjzxop+NmrDm9D+LQBOUSK074u2B7cfe5UbkaamrVoje9joNTq6hc0M5ape\ndo8jre3y9Brw+uNOuZ5GTGnBG31WEwHG239KLkLIF5E97kac8eqU2+NLrn3ejPxhx82TZwd7XUh5\nvOPoPubsy0b5lArpePK7sCBlMQA4ZCdRKkvubzURca6i05Si2nL2ZQMA9MF6VfuhsfX1xW9fXmSe\nmnP8IeLMXXwRcaZKOMvIyEBVVZX0d09PDyZNmoT33nvP7Yp9idZUjbmVOejs7sTmsWXSZo7k85L0\nUqSYRkkbPbJpG+ly+uOkEggEAoGgLwlU50+g2U5KPwCXpRYCgJSGUcmxIhYZCQQCgUDgGYFqO3nK\nK6+8gn379iE8PBy7d+/G3Llz8dhjj+HOO+/EypUrkZaWhpEjR2L27Nl466230N7ejtzcXLz11lvY\nuXMnWlpasGDBAlRWVuL//u//UFhYqFifJ6kaPfEf0TYVzzflDeSc/ACk1Grk86r6Sientxbnq5Jw\nIHcuzxlO/1uLaMKmgvNUxNOK1jLkBDKeMKLlGvjSn6lW1GM/I35YJUEDkN+zTGv6SlfiF+94gish\nxlV7XYlPnqK1b67KArT1g57jJGMb/TuRpHJ0F17d5Nn09pR3YTLEOrSBvna8a8YT0tjj1bTBH4Qo\nrW3ojQUDvY0ndlOQmoNiY2Nx/Phx6e/Tp0/j6quvdrtSfyLOGI9lqYXQB+sdHshxxnhJNCPMqpoO\nkyFWWnnDliMQCAQCgUAABJ7tFGeMdzK2TYZYAEB0RAwyEjNhttQ42FEb0jZhwYfzJMN6e8ZOIZoJ\nBAKBQCDwCQkJCdi8ebP099GjR5GamgoAuO+++/DZZ5/hz3/+M372s58hNDQURqMRCQkJ+Pbbb2E2\nm5GWliYd+/nnn/u0rXIOdbXnEptqQ9omrzrWCSmmUdiVWc6Nglp/eC06uzthaW0CYF849faUdx0i\nRUgbleqgjyX9IN8TRy/v+EZrA5YeWoRGa4PscbQ96spZHGeMdxIU1F4PMgZq+qlUvxrRTKm/AKTx\nJt/TfZdrj6syvYGrayR3XKO1QRJveeeR43mw111LpA0ZE1dzh4hBJPqKPVbuPN7nWo6Va4sr2Lax\nIp8W6HuGboPcPKLnOC2amQyx0nnkdyULWx49P3j9o79ff3gtXh63zen3JzmGXD/2PlCas0rzQe4c\nVkPw1b0mh5rnIHu8Er5+ZvgbqoSzrq4uZGVl4YknnsDcuXORmZmJkydPYubMmZg5c6av2+hTGq0N\nKDYXoSS91MkgoF/G5MYGgPzqPIebSyAQCAQCgYAmEG0n1ogmi4yWHlqEqvpKPLhvEqrqKx2OaWg5\nITkVxCIjgUAgEAgEvmLChAkICQmR/rbZbNLesgaDAVarFS0tLTAaL688NxgMaGlpcficHNtbuOOE\nJGII8Vm5Uyf7N/Fx0XXwbL9lqYXYPLbMoW65hVGsEEI7pum6lx5aBLOlhiv68CDf0cfR57Nt5vXf\nlYjnCtLukvRSh8/l2qF0ndQ6qgFngYb+jicYyc0vuTLlxEp3kbuWvOuk1blPxEK5a8kiJ7qw5dHz\nUO54AA7islx0Ev3ZrKrpMFtquG1y9Zkc7ooYdN/Ivc+2zVW9bHly14+MJe1bNxliZec0fR7vGaJ0\nj7GfJ0UnS+0j9yqpl71+5N5nhX/e85FFaZ6zGkJfiE7e/B2u9V7t76hK1Xj48GHF78kqHn9Ba6pG\nwDk0U+5z+hxAPp+uQCAQCAQC1wRquqFAtp1oaJuorrnWaS9YOpWOQCAQCAQCzwlU28kbNDQ0ID8/\nH7t378Z9992Hjz/+GABw4MABfPbZZxg9ejQOHTqEZ555BgDw1FNPYe7cuXj55ZcxZ84c3HbbbbBa\nrXjkkUfw7rvvKtblSapGFnfTXmk5j/Z18dLKqUkXaLbU4MF9k6TUZ1rTeTVaG5y2P6F9b3QblVK+\nsdmh5D6Xa5Pcvma8sXFVFnDZL0j6xqYmJ1E23tjXTut37PfkGpAtadhx5M0NpTFRMwfZY9Tse8z6\nZOWO4V1LXptIP9SkOGXHS8uYKH3HzgPefefOeLPtVTqPd81zK3MwJ2keln/6NN6e8q7DvoZy4yOX\nXhWA02dsikRX14k9n/XFu3pGyB3PpjOlj+e1kz7ek5SsPH2BEEhagrvvsd7A56kaU1NTFf/rr9Ar\nLOi/iXotB1GgrzSVVSAQCAQCgToC1XaiIXaTpbUJs6qmIzoiRvox6moFskAgEAgEAoEvGT58OL78\n8ksAwMcff4w77rgDt912G8xmM9rb22G1WvGPf/wDN954I26//XZ89NFH0rEpKSk+b583nKdaRDO5\naC7ymRqncIpplORY19I+uq/51XkOqRlp3xvtwKajX+jzO7s7kV+dx40ao9O9sVFtdB0l6aXc/rJj\n4yo6iPYLEtGsIGWxkzBBPlcjMMmhFEHlqlwyro3WBkx7JxvZeyeiqr7SKWKR5+N0FUnkKnqGjbQy\nW2rw5IHZ0ngoRWe5gsxbOoOYXJtIP1JMo1Sl72TPY0VeJdFIrny1dcsd4yqqUq7v5HOSIYSe13FG\nexTplroyvDxum0P6RLnrKtd/OvUhgWQe4WUgYa8/r162b+y5cmNBUIpiVeonezwbWcpDabzoei2t\nTdyx6ks8bUdfRdL1BqqEs0CFvRHkHqRKYZm8B6VAIBAIBAJBoEPbTUQwMxliVe2nIBAIBAKBQOBL\nlixZgs2bN+MXv/gFOjs7MWHCBERHR2PGjBnIzc3Fo48+it/85jcICwvDI488gr/97W94t/yAUwAA\nIABJREFU5JFH8Oabb2L+/Pk+bZucA9xX8HxfgLOgpgYSqUTOc5XejedQJQKXnEjAimP0+eVTKrAr\ns1xauEXaTju26XNYfx4RspTGCrgcXWe21HDbwULEsWJzkZPjf0PaJhSbixTHSqvjWcvxtOiwe3IF\nKrLeQ0ZiJnfsefNAbm6oCSYg/SciHRFfMxIzXYpcPGGFhQiWaoQrV/3hQUckKe27R3/HE4x5IieZ\nt2quAZm3cqlE5cQhUt72jJ3SfoSssEv2LYyOiHFInyg3Hrw2EhGTjZ7Lr87DstRCblpZ+jmi1H66\nD6yfPmdfNneceeWx15HMTSJs7cos5/Y3Z182Fnw4T1HoosVJti3scSTFKy/itbdR82xTQyAHFqlK\n1djf8EbIPBve6Sos0xuh1wKBQCAQXGmIdEP+gTu2E+tkYW0nuRQevDQZAoFAIBAI1CFsJ//AkzTX\nJGWcP0Tma02vRbcfgJS6US69W1V9JZKik50i3JQwW2ocUkESh65cSkTiswPAdX4Tfx4gnxKS1y4i\ndBFfHzmfNyZs2bw+aUkRqAYtKdG1lu3peWrLofvAHkPGjOyJJZfWUM29JPfbRO05ABxSXLJzgp1T\ntB8Z4G/zo7ZNvPnqbt+U5jl9D/PGVms9AJCzLxvlUyqkcWLbTO93RoulbPly7c6vznNIr0hStird\na2wf6XqnvZON3ZPt7SXtyzs4D6Vjyrjpael2VdVX4skDs/H2FHuaX7k2yPWvt7eCupJ+l/s8VeOV\nBpk85OFBlGell5uS8i8QCAQCgUAQSPCi8dkVlEorHgF4vLJNIBAIBAKBwF9RSttFIvb9Aa0+LLr9\nJHpILr1bVX0lHq3KRV1zrar6SPQDGxFGIkKIDcnuI0Z8diXppVIkGvk/AAfxghdBxP6bYDLEOvj6\n5JzwRLRT6p+WFIFqo8h4UTy845Ta5epcb9nrSlFUvKgX8l1BymIsPbRISvXHovZeouePljbTe1zl\nV+c5iHmA/JzilRNnjHeKOlQjmhH/tCeRf3RZbIRWfnWe1De6zA1pm6TIT/ozuWtJX7tZVdMV73tS\nFhGjaPGKvRfl2m0yxDqIZgQ6Awo5lq2bHjeCpbUJJ6zHYWltkr4zGWIREqTn9oFtF4noY58bLHJC\nmqusLd6GrrOvI9/8oW45RMSZDFojyLy1CkMgEAgEgisJsWraP9BqO6mJxldThrCdBAKBQCDQhrCd\n/AMl26kvogd8gVKECy/LAOAcdVVVX4mMxExVdSmVQx9HYJ29097JRkiQHiXppdwIOF5EEx1NAzhH\nBilFpZFzSJQLK+C4imhzNQ5qxp43FmrLUoMnwpsalCLOeFFctLDgSQSZ1ihLItyx84o3hwD+/KUj\nktgoKyW8meFM7p6ytDYhvzoPgGPUZs6+bKy8+1mH1Jpy+5uRc4lAmF+dh87uTul8tk42SpQVjejf\nmuy8Z8+Vi5xScz/RkXVstCtwefwLUhZz+6E0Z3mw84e+tn397ujL+n1Ztyd2kxDOFBAOHYFAIBAI\nfItw/vgH3kjVKBAIBAKBwPcI28k/cGU7ydlJPEd7X9pTatO/8dKbAc4CAb24inyvtl45QY79jOyZ\nRX9HHPU8AUuufjkRgNcnAE7jwaaO5LWVzrSgRgyTGxvSR9bJzhMf2HPYPa20ikbecmbz+ulp+kTA\nvT3L5NrDm5O5lTlo62xDhD7CYdEgm7KRnZt0+0i7Zw1/HOkJY7hzzFXkmbeeE3LPHVq0In2Zd+AJ\nWFqbsCer0mFvQldlkr/rmmvx5IHZeHncNkRHxDjNReDyPnVkj0A6Nafc/cyKlEppS12NXVV9pUO9\nPBFu59EdWPbJImwZ/xqSopOdxkGtmMt7LrCpRvv6N3Zf1u+rukWqRh8hnEECgUAgEAgEfISdJBAI\nBAKBQMBHTvh4cN8kmC01kkOeTX3dm8illgOc08vRKelopy9JIceWQVIl8sqWq5ceM17qMjp9Gi1M\nNFrtaf2WpRaqToFJl89+zqaLIykf6ePp83lpGNk0aK4iXtREj/HSv+3KLHdKRcmeQz5Tut5ax0kr\n7Jh6UjY5R2mOybWBFXiVxoYcvyy1EBH6CMxJmid9V1Vf6ZCykfSFzAUADve3pbUJG9I2YUtdmdM9\nr3RdlPqmpd/0v0m72LSRZK7SfdmTVSmJZuQ+YMsm40QLiuTYjMRMvDxuG1Z/vgpT92ZKzz66TbRo\nVpCyWIp8I3uVsf2kr+OsqunStWD7SfdLaWxIvSQlKH39SFu31JUhakA01nyxCtkVmdy5A7hOvcl7\nLrDPLF/+xuaNkdJzuK/x1rvx+/Pfu32uiDgTCAQCgUDQZ4hV0/6BsJ0EAoFAIOgfCNvJP3DXduov\nEWf093RUBC/NGImyYY9RSlumNpUZHcFGR1kRpzot7mmJONMyLr6OwFBbvlJEHj2XeNFy7DG+Ru6a\nA9pTLBLINSZCYW5lDpalFkppBNVEFbHRenQEGW98ydyeNfxxLPtkEeIHJmDl3c86RFGxUYDs2Fta\nm5C9dyJeGb8d0RExUuQWL6KTHS9ehKWWcaTvUfq5U9dcK0VZqYnUIuIf++wiEY8l6aUO/aLTGpJz\nvz3zDdITxmDaO9mw2QB9sB67Msulcslx5BqzzxAC3W+5/mmZY6Ts6hMHsf3Yqw7CGbuHGmkf+5zp\n6ygxNchFu3krDag328dG9XrStkZrA544MANfzfnKrfOFcBYA9IcbVCAQCAQCHsL54x8Eku0k7CKB\nQCAQBDLCdvIP3E3V6G20ilKe1MFzZLLp1nipD+X2DVMSC+QEDvpvwFEQIg758ikVqtLJ8froyRjJ\nlS1XvlJUjJr28MQE+t/0NeOJL1r6q+V4Vw5vUhaJeOIJEOx4kuve2d2J8ikVAOz7b+mD9U4iKguJ\n9Hx53DYkRSfLls8TvujP6P2vyL/pdIJyInOjtQFT92YiRKeX2svbg4831uwcYcUPJXGXCI1zkuZJ\nghBdBony4o0bK1LSY20yxCJnX7Z0HSytTVjw4TzpewAO6SpzK3NwsasNTa0/4JXx27H+8FosSy1E\nUnSyw3MDkE9dmFuZg66eTuyeXIG65lpJLCX1y+0vqEYsbrQ2IGdfNhpaTjikYpQ7TyktpD8itwhA\n6Tksd35vttWbdV8K/RHXDLrGrXNFqkYGb4UB9hZKIb0CgUAgEAgEvsTf7A9hFwkEAoFAIOhrXNkj\n3rJTePV40xZiy40zxkupAlnRhqRPZJ2cbDo+0j46/SNbB5sSkTjveX/TadJKx5RBH6zn9oE43+n0\na/QxvNR1WsZJKe2m3HXKrczBtHeyNaXuY6FTxFlam7jpD+kUgrRwonaOaD1eLgUjLWKYLTXIqvg5\nsvdOlMadnhtsOsE4YzxK0kslUTTOGI/NY8uwK7OcmyqTJsU0ShLN6PItrU1SvaQuup/0HGy0NiDF\nNEr6N4muAuCw9xcRKNmy9mRVonxKhWz6QdIO0hb2/lIaW7n5lV+dh4tdbXjxSKlDik9SRlJ0sux1\nWvDhPHR2dwKwC1P6YD2WpRZi6aFFqGuuRUPLCWn8TIZYh+9NhlipPnK/lo3bilfGb0dGYiZK0ktR\nbC5y2NuMHMtLXQjYI9pCgvTSnmk7j+5AbmUOcvZlI786z2k8aZGdd3/Rz4U4YzzKp1RgT1YlkqKT\npXN4NFqd05/S//c32LlBX2t6Pqg939fw3h/eqNtd0QwQEWcOeBIG2Jerm8XKaoFAIBD0V8Sqaf/A\nHdtJyW4SdpFAIBAIBL5B2E7+QXOzVdHmUIom8Ub6KaV6vGEL0VEp6w+vBXB5zyE6eongaaQVG1nG\nawsbhQbASVRjIyro6BwaNt0biZhhU8S56gf5jI5G0tJnGnciLehoqAf3TcLbU951SlnHS8dHO9LV\n1OXpnCIp9egUfmZLDZrbTklRYHQ9jdYGSVjZkLZJ2mOLF0nnKvqHNw9IBBWd9pGOYpQ7n6TqoyPf\n5OYFGWO5KE3enC5JL3VIVUiXx5atJtUjiQZjozCVUpvSbSHjTq4bPd/Id+T68PoMAHXNtdIzhL2/\nyLxgI+hIG+nrTr4naTdJvZbWJql+GnI+m2KSTi/Jpnmkr4+rZxqbqtbVM703fqP64n3g7XZrKc9b\n70tP7CYRcUYhtyrCFX29ulk4hwQCgUAgEPQ2SqtJhV0kEAgEAoEgkHFl78jZI678TlrtJ1457q7S\nZ8WdDWmbUGwuQkl6qRTZQ5zMRESY9k62YnlyY0RH0bhqEx3pRtq2K7PcQVwgUSX0eFhamxxSwJFz\n6WtAIkhI9BIvIksuood8Rspw1Wc2+oW0hbSPJ66pJcU0ShLN6PI3pG3iRuSQOnmRfzzUCGtyEIFh\n1vDH8eSB2aiqrwRgj1Ra88UqpzEh/yfzjYwtG4lIvpOL3qLbTs5lo9XoqKg4YzwsrU1cQXND2iYA\n9hSEy1ILpchG3r3GRvIoRWKymAyxXPGY9IlcK/Y5IvccINFg9JgQ0ayts02aG+x4LUstlMSorMQH\nUWwucri/SPQdfX3I93TfcvZlY87+xzAnaZ6TyE3KIWNLz0MiBJN7mL5XMhIzHSLT8qvznKLKyPl1\nzbVYemiRNOfoZwc9v+ioR7oudvzNlhqH5wb9PFQSy3vj97FcHUrtUoO3RTP22arUJnd1Gm8S/Mwz\nzzzTZ7X7iLa2DrfPjQyLdOucsQnjhaNGIBAIBAKNGAxhfd0EAdy3nXh2k7CLBAKBQCDwHcJ28g+C\nuwZosncarQ2S3UTbT/TnxKk4NmG8at8UfT79mTvlsOcMGxiHsQnjcVPULYgMi0SjtQHzD87FiKhb\nMTDUiNnvz8A/z3+HyT/Nhs1mc6pLziZkPyfO6tuGJuOmqFukPpE2jYi6FUsPLcLYhPGwdlyAteMC\n4ozxUn3Wjgt462/leOjGadJnxHH+00E3YHR8mlM76GtB95H+zNLahGED4xAZFokRUbfipqhbpPOt\nHReQff1DUjtI+Up9fuDaDDx04zSX4yF3fXjXObcyBw9cmwFrxwVp7Ojr2NTyA97/5x8dxoY4qbOv\nfwg3Rd3CrZtXn1Lb5OYbmTMb0jZhQuJE3DJkOIrNRRibMB4AsOfvb6EkvVQaW7Zem83mMM50uUpt\nJ+NC5hEbzTf/4FxkX/+QwzWvqq/Ev783De9/90dk/GQirB0XEBkWKQl/2dc/hOzrH8LVBhNGx6Vx\nx5s3LnfF3gObzSbNXXK8pbUJ8w/OlfrwwLUZ3H6S4+OM8dL/1UbtkHkH2IWpYARjk/k5bLz/P/HE\nbU9idFwaBoYaHfpgttRI43Cx8yLWfLkSc5J+hXHXPeB0jcgzgu5LZFik9F/GTybiTtNdeP7/SjA6\nLk16fgwbGOd0Lch1JuXeF5eOFNMo6RrS40JftweuzZCuB4Gcf9816QhGMH7z0XzcF5cOm83mMMbD\nBsYhJjwGa75YhZjwGPymeoHDvKHvmWnvZOPlP/8ew68agdtNd0jPDbo97HUjfSX3OO9YObTcg6Rc\nNc8Rre8Gb0K3kR4jeu7wzpFD7Rh5YjeJiDMvIZxDAoFAIBAIBHaEXSQQCAQCgSDQ0Zpuil1Vz36u\ndXW9UoSB1qg29hxeujI6wsTS2oTSMWW4btBP0Nx2SjaaQinyju4DiYKpqq+U/iZtIvunWVqbpH2N\n6EgFEkVC9lwiKdrWjd6I5Z8+jar6SlVRF/RnltYmPLhvEsyWGim6hN2LS66fShF/rsaDBz1GvLZb\nWpucIpGAy5FeJemlDuNNIt/IeHmaPUIpCwV9DYHL0UJ0pBebWpL0k0TDsdBRcmoi4XjRfHQEIzmu\n2FyELeNfk1Iw0vOSPj63MkeK1FLqu6W1SYr4m/T2BOTss0dnkutD7+9F2uXqXuZFRLqCjHVBymIs\n+8ReJxlzEi1G9y/FNAp7siqxeWwZ9ta/jRV3rsbe+reliCte3aQvdP8JSdHJuNjVJu19Rt9LZDx4\nUV5y84IHWyY5v9HagBePlOLlcdtgMsQ67XHYaG3A+sNrMWv441h/eK20rxvv2bx7cgVeGb/dKfpO\njoKUxVJEJClHzXUjx7sToebqOeIPEVz0XGb3X9SC2jHyNMpPCGe9hC/DMQUCgUAgEAgCBWEzCQQC\ngUAgCCTknJW8dG1anIdKTlAl0UxOxKPFFVqcoqHTm5kMsSgdUybtN8QKEa5ghZWunk7JiZ1fnSc5\nwmdVTZf2llqWWgidzrkvROh6wfw8pu7NRM6+bKQnjMG60RslRzftLKfTLOZW5kiCAKmTTn3IpgWU\nExnpfrGp4zxJ1UZEDyIO0KLRrsxySVikIeIOLZKQskrSS7EstVA2zSFvXrlqtyvxjR5vufPocTZb\napB3cB53XrGCE69tRCzk3WOkDFZMmzX8cWn/NZIikAh+5P9k/Oh0iqzgRaKTsvdOBAAsSy1E88WT\n6LJ1SseTvpK5yRszubF1V/xIik5G/MAEREfEOJQDOAtPKaZRkqAx9caHpONYEZEI3BvSNmH94bXI\nrczBzqM7HO6puuZaNLX+gLrmWqf0iGS/MdJ/+v/k3+TaKM1XXkpS8lxoaDkh9RlwFJoBoKunE1vq\nylCSXuqwFxw79+KM8Q7Crxzk/l9/eK1DGkrAOW2n3GIK3rGeQM8tf1rgSt9D7pyr5lrMqpqO789/\n73YbhXDWC3jyghQIBAKBQCC4UhA2k0AgEAgEgkBEybnnie2jJB7IHc86G1nRqK65Fg0tJ1DXXOtw\nLqmDjhAg/6ajQ2h7Ti5KhOfI3T25AstSC7GlrgzWjgvIr85zEjAAICRIL/2bbsfL47Zhb/3bWH/v\nJpRPqbCfe+xVpz2UWDGlq8cuaLB7ZtGCExsVwUZwqRGWXO2DJAeJhpLbT4kIi6ygtiy1EMXmIodI\ntUZrA/Kr8ySnvpoIOFf2uSvxjR5vdp83FtI/ADhhPc49hog0JBqQ3TMptzIHCz6cJ+1rReqlo4fI\nnCBU1Vci/6MF2Hl0B3L2ZWPq3kwpIo+N2CNRWuRvVogl0Ukb7i1GimkUkqKTMWxgHFbfs85hXHlz\nirfvGW+MtQgNdL83jy3Dgg/nOXxGxpSe+3R9RMixtDZJkWOA/bmRvXcizJYapJhGSXNu2SeL0NZ5\nOcIsOiIGsYZhWH94LRqtDVK/iVhO6iPPIDoqbFbVdOw8ugPLP33aQSxloZ8PdHnNbaewJ6tSEsBJ\nhCM9N3dPrkBJeqm0pxuZQ3kH57kUe3mQekhd7L3AtpF+Rsod6yl0uTyxrr+i5lpsz9iJawZd43Yd\nQjjrBdxdDdCfJ69AIBAIBAKBO/R1+giBQCAQCAQCX8JGunhq+/DEAyXkInhIFEixuQjr71WOhqEd\nsLSoQJzsG9I2OaQ7BODkICaOcHKepbUJ6w+vxbLUQgwIDpeiosjxJeml0vfAZYc+ISMxExvSNmFL\nXRnqmmulfrHOa8AuDpI6bTZ7JA2J3OJdCy2RGsRxzoqaPNGMiAQ8gZEVekjqOV6UFivC1DXXothc\n5HBdSXpG2qmvtj9ykTJKohrbTgBS3UpjGWeMh8kQi1fGb3doIz2/Ors7kV+dB8D5t0NJeikudV/E\nL/fPchDP6HLyq/McxLSMxEy8nrEL00fMRPmUCmwZ/5qU2o+OZKLFLTpiinxGR0Au//Rp6bqG6PSS\ncCQ3RoBzNBTdb7Uiq9y5jdYGNLedQkPLCUkUJN8TkSvOGO8U1Uj6Nnf/E2hq+QGW1iY0WhtgMsQi\nwXitQzReRmIm9mRVoiK7UjonvzoPZeO2Svct3W9WBCdlkfZtSNuE7cdexbrRG6VoQDL2dB/Ze448\nX548MNvpON69nF+dJ0XZkmdNSJDe6XrQ40vuW7m5z5v/7DGsYCl3rDegn7Vq7l+a/qxPeDqeQjjr\nJdwRzcSKa4FAIBAIBFcK9I9hgUAgEAgEAn/GXV8Nz9fjqWjGRhO4sz8VSUFGBJj0hDEOZbLiCR0Z\nQkP2IiOiBkl3aLbUOIloTx6Y7bSXGUEfrEdSdLJDBI7JEIuLXW1Yf3gtAEhRQ7QTuLntlJTysSBl\nsVOaRlL3L/fPwqzhjyPFNAqbx5ZJTnc50UxJHOIJQfQ4udqfqa651mFs2DqJuMnbX4r+jtS58+gO\nPHlgNgpSFkvX1WSIdRCbeJEnSshFoKkVfsk51ScOqjqWpLrjicwpplEon1LhdM3IeQBgDI3EhnuL\nUWwuAgCna8QKeI3WBiRFJ0uiF33estRCpzbnVubgifdnSRFTdGQdiYCkU32WT6mQylGK3Ft6aJFD\nJCAZYzZCjj2P7j8bXVeQsljaH3D94bWSKMgKY2QesW0g/4/QR+CVB7ZLgiJgjxJlx4b02dLaBEvr\nD5JgNmf/Yw4pYMm9Q8QpOsJvwYfzkFuZIwl624+9Kp1HP0vYuUiTFJ0sXQMyNrx7KM4Y7yDqkT6w\n0Wn0+JotNcjZZ0/HKZfWlr1GvGPc3d/LVV1ysPer0v2rVVzzN7zVXp3NZrN5pSQ/ornZ2tdN8Apa\nVrQIBAKBQNAfiY429nUTBPAf20nYPgKBQCAQKCNsJ/9g5O9vd9vhKWfvaLWDiEOTFw3kjQg2OoqG\n3dMrtzIHXT2dkuOcnEP2GrrY1YbwkAjJMZ5iGoWq+kqHqJGq+kokRSc71G1pbZIc90Rwy6/Ok8rJ\nr87DnKR5SE8Yg9zKHHR224WLzWPLkHdwHo5f+Ce2PvA6kqKTHUSKnH3Z0AfrsSuzHAAwdW8mQnR6\nbB5bJpVPi10kbRvpL+D+gngi4LFCJKmL9JONAKOPY6Nl2DLImAHAg/smYd3ojZg+YqZTeaQfvLmj\nZd64M8d2Ht2B/I8W4PWMXchIzFQsgwhYRPQg/5ZrB+lbbmWOw5xj62D7TcrOr85DZ3cnOns6EaGP\nQEl6qXRdpu7NlNL9EarqKzFn/2PYMv41aa6xbafnEBF7Xh63DWu+WMUVnMhxdNpT+p4CnAVAXn8A\nR+E2e+9EJBivxYq7nkV0RIyD8MWKh3S72flHQ8ZZae40Wu17vZG+svcV3f6ClMWSIL4stRDrD6+V\nrgGvfHacePcJ3Ub6b3p8SL+mvZMNmw0on1LB/Z73N+868yB1d3Z3Ouyhxh7jjd/Acu8EufqU3kXs\nvNL6burL3/Rs+z2xm0TEmR8jHEcCgUAgEAiuJITtIxAIBAKBoD/giygBLenYAPkUeu62i1curw6S\nyowWzeiosZL0UuzJqkRJeqmUrrGqvtIh9aPZUoP1h9ciZ182pr2TjUlvT0DOvmwpXSIRPYgIR4tm\nSz8pgKW1CctSC7F5bBn0wXqYDLEoHVOGYQPjuGKcPlgv7VUVZ4xH2bit0AfrwUKEhql7M6UoEU8y\nItDRfLRgRaJlSBpAnijES/XGiypMMY1CQcpiKd3k21PedRLNeOWxohlv/vHmo7uRHNNHzMSKO1dL\nopmrSDwSAUX2HGMj8tgoIgCSaEbS39FiEi86M2dfNvKr81CSXorNY8scRDPAHuUYPzDBaQ+t6IgY\n7MmqRHREjFPqOzoSibSZRKBFR8TghPU46ppruWNNp+1j7ym5yEa5vfdIvRVZ76F0TBnWH16LvIPz\nHNJ10uXVNdcie+9EWFqbHCKzyLUikWFknF3NHcAekUaQE5i2Z+xEUnQydmWWY07SPCfRjO0Xe7+w\ngj6vHSS6jSfaWVqbEBJkF9EBOOyxxovgo+cUia5Tgjwvec8buh10u929x5QiyNj6eNF3bDn0367w\npwg1NeOgFiGcCQQCgUAgEAgEAoFAIBAIBCrxRJziORXVOvrY83mOYHcclkrn8iJJyN5j7HlkTygi\nXhAhhxWPlh5ahGWphSifUoEVdz2L05dOoct2Oe0dETlK0ksRHhKB5rZTAIBzl84h1jAMnzd+Ju1f\nRKJIAPteUsTBX1VfKbWnJL0UJkOsg5BBUrHRUSkpplF4Zfx2hIdEwNLaJHtdXI0x7ZRnozvIvkYk\nNZ1W6DYRAW794bXo6ul0iMziCTNyc0dOhOU59FkxQS1mSw02mtdJaSVJJBVPPCPfk7SMdMQXPbYA\nnPamo1MNkpSi7L5dpO1EUE0xjXKYE3Q72CghEj3W3HbKKa0hYI9a2nBvMVbe/awkhJG5lWIahQ33\nFkuiMT2GrKgH2MUsIu7R10AO3vVJMY2SxDeynx+pj5xD5lB0eIzTGNICHhFT2AgvWmShr1Fdc63T\n+NMCC9l3jxy79JMCXOxq4/aLHM+Om5JQxiuHngcFKYthMsRK193S2iTVTwuMrsbYFfRzhu4PaSub\nntMT4Ukugoz+nk7Lq/TOcSVu0+VrTd/KtsvbeGthi89SNfb09OCZZ57BX/7yF4SGhmLt2rW49tpr\npe8rKirw6quvwmg0YurUqcjJyUFHRweWLVuG77//HgMHDsTKlStx3XXX4dixY3jyySdx3XXXAQAe\neeQRTJw4UbZuf0k3JBAIBAKBQBmRbshOX9pNgLCdBAKBQCDoLwjbyT/wxHbyNI2V0vm877R+5ird\nFyu8NFod0+qR79jPWUGApC8EIKU8I9Bp1kgqwqzEB7Hmy5UYOiAaFzrOY0NaMdITxkjHn7t0FsZQ\nI3ZPrpAi1IhgBgDZFZmwtP2Aiqz3HMQR0s6lhxZJfSYRcnKimdz40ONK0kwC9n2b6PJZMc0d6PR/\nSdHJDn0AnFNsknPk0t/xkJsncqkTlc4h15KuP2dfNgB7qk02PaZSGlKl8aPTX5IUjHQKPlL2hrRN\nDmkJ6e9d1UnPV7bNBSmLMWf/Y4gfmCD1i019SlIT8qLIiDCzLLUQc/Y/hqsjYvHS+K3SfcSm0OOl\n3ATgcO+RY6pPHER6whjpWHqe1zXXSm1ioVOo8uYYAIe0jGSM2PFnz2HTJ1bV26P4lh5aJO3Rx0vX\nSt/X5Frynj/suJN0piZDLCytTZi6NxNRA6KxdYJ977Zp72Tj+IV/YumoFdhoXoe3p7wLAFL9pGxe\nOld27vDSr5LP6dSb9Jiw5XkDuTmipnzy7FW7qENLm129Z7yJX6ZqPHDgADo6OvAHYAraAAAgAElE\nQVTmm2+ioKAAGzZskL47e/YsSktL8cYbb+C//uu/8M4776ChoQG7d+9GREQEdu/ejcLCQqxZswYA\ncPToUTz22GN444038MYbb7h0/ggEAoFAIBD0J4TdJBAIBAKBQHBl4KmTUOl8OZGHjdCQi3pTihgg\nURJs6kI6HSPdBvpzErmQW5mD7IpMrP58leTEJvstAXCIJCLRWiQyYn7KQryesQs7Jv43YgcOw81R\nt0jn5tzwME62WfDITTMc2vbtmW+k9uh0wNABMVL0GukTiUqbNfxxaQyKzUVOkUT0OCkJanSkD4lY\nYaM72P+7Q4ppFF4etw3F5iJJJGGjhNj20RFQdAQQHQHD9pUHnVJQaQzYz1jRjqTHm3fgCacIHrb9\nbNQYr32kj8ThT6Ia6WPpqD9yDokgYtPXke/oOUzmP5l7tFhDUnNuGf8ayqdUSKn82OuSkZjJFc1o\nkqKTsSerEhXZl6Pt2LnHu85xxniHe48cU33iIPI/WoDqEwcB2EWzJw/MRkHKYgDA+sNrsSy1UCqb\n3KtT92YivzpPul/pqDPSlrrmWpywHpfu2VlV06VIrs1jy6ToTfocEhVG/k3uO5MhFgUpi/Hkgdmo\nqq+UxDfAPudL0kux4MN50vjPGv64dM2By1FSbF0FKYuRd3CedK7JEIv1927C6UunsODDeQCA0jFl\n2PrA6yj/2x+wbvRGAJDqpyNZ6blD+kvPHSJqs9FaZH7SqTd5zxNvCkls+ew9qhT1pSYqja7Hk3b5\nKz4TzsxmM9LS0gAAI0eOxNdffy1919DQgJtuugmDBw9GUFAQkpKSUFtbi7///e+47777AACJiYn4\nxz/+AQD4+uuvUV1djenTp2P58uVoaWnxVbMFAoFAIBAIeh1hNwkEAoFAIBAIvI2cU5bnsCSOX15q\nLlowIw50gskQi3WjN2L94bWS+ADYna7rRm9EUnSylBqsJL0U+iA9dLrLUR9dPZ1Sekdy3LLUQuRX\n/3/2zj4uyjLf/x8eRmUAy2hoEB86/rZepsvSL5Ky9MRLxcgpGe2Hp6UtKZGcitldMAQXcEUWjIRd\nx2wKUclWto1XCtgUiXIoNUtjV3aOD7t12JXUmZiwPeIM6gzM74/Z7+V139zDgw+b7bner1cvh5n7\nvu7r8Z676zOf79fIRAvaWE+apIM2NAohwWqc6DoOl9uX/6y+fQcK7itC7RdvI6VBj8y9BqTc8QSy\nPspkgp4q0JdjaOnuNBbikDbv8+Lzkbd/uWTDXZ7XSt6vQ+3rayGS+SNpko6JQCQW8Rvh8tCMctED\n8Akki3bphxx6bqAN76HMN7mQtmG2GcEBl3PQ0eckVJA4QeLNYC5ImkPZcTkoOrhKUg5BggCd40/g\nBABPn5sJvfQ5zQ2ro61fH5MARAIw1Z0EFXpP7moDwOY6iSryHFpK40Pt49ctL6qS+6v62GYU3FeE\njUdMLMfgG3O2IGmSTtJOqltFggkjglTweoG8+Hw4XJ1Y2PAoC7/Iu6zKW8uwdkY5qy8v5mXuNUhy\n1A3keqJ7S9IkHXbMfw8xmlhUJJgk4TK1oVEsxKbdacPKAy8x8YzK4HPc0bVKDxXD6/W5G6l/EybM\nwqbEatTOr2Ouuq6eLnj63Nh4xARjs4HlvyNhmkR1AJJ7Ij93KKed3HFGIqp8XId7bxhuiEN/63Gg\nPGfXM4yiUr2uJdey7tdNODt//jzCwsLY30FBQfB4PACAiRMn4ssvv8Q333yDnp4eHDx4EC6XC3fd\ndRf+8z//E16vF0eOHMHXX3+N3t5e/OhHP0JOTg62b9+O8ePHY+PGjder2sPmnzGRBAKBQCAQ/Gvz\nr/zcJJ6VBAKBQCAQCC7zz3428idw8JATIjsuB1ktRr/5lyhUGm2ckyPntTYTKhJ8//EiQe7+bDy2\n82FWDuWsMs3yOY1y9y2HaZYZefH5LO8XbcTnxecjI8aAjKZnsP3oNonbKC8+H7n7s2Fzngbg27he\ncOfjzOHi8boxPfoBjA0dhxhNLKLDx+Gdx+pQ9XA1Joz2hUPny9OoIzEubAITRJTEFr6vhtPXQznv\nauDFHHkoSF4E4h05vNBTo6vFO4/VDeqA4uEFCX+fKb0ndwJRyDtVkIo5AXlxgY7j85kRdG355j+1\nf82nq/BV90kA8Cv08XOA7ze+LNMsM1RBKmhDo9jndqcNFQkmlB4q7pefKjp8HNKmLGHrwOpoA+AT\n2RbU66Cv00nWFwmF249uw+LGVCaeyeGdcfy5ufuWM+GIHw/KKwhczlk2PfoBfNV9kvW1Rh0paWdA\nwOXraUOjfG0PVKHo4ComtMVoYgFcdoTSeFUf29xPtAV8Od8qE7dK3IaUf5DmJLlRM/caWN9oQ6OY\nG1Q+l/i8dDvmv4cnpz4tEa3kueLoHN4FSP1ZeqiYiWZpU5Ygb/9yFNy/Ghtmm0HJrahvqWy5QEhj\nzaMUppEXUa8Uf45h+mywc4HLa0QpRx9/jYGEtRuVgfrnSrhuwllYWBicTif7u6+vD8HBwQCAm266\nCXl5ecjMzERWVhamTp2KMWPG4PHHH0dYWBhSU1PR1NSEqVOnIigoCImJifjhD38IAEhMTMSxY8eu\nV7WHxbUeDIFAIBAIBP87+Vd9bhLPSgKBQCAQCASX4TckbxR4MSNpks7nCgtSKR5LYcbIHUQb0sGB\nPmGBFzbitNOwLCYTjp5OJnwAQEtHM3OHVCdtx4mu4yg9VCxxjZBbaP0fy3FriAaVVjPWzlzHykma\npMOmxGrU6z+ANjSKhV/jwzw6XJ0SIYA21U2zzBLHEW0gb5htHvKGMi9cDGWzeiA339VC1yehgq8j\ntaex3YKFDY8yVx8dz4tGA4lh/q47nOd8qgPNNwpnZ3faWD6vVvthiXOO6k95rehvujaFzVMaq3ce\nq8OmudX93D0EL+DRGPHhGnnnJJ+LavvRbVjY8CgTn7ShUczBSHVasS8LPR4XWjqakdH0DPLi85E0\nSYedyRa8nlglWV8URvDJqU+j4qENTMxSqi8543gXY3ZcDqqPbe7nBKXPeSFSGxqFqLCxzMnFi23a\n0CgE/8OVyYdb3DDbjNr5PmGV3GkkkJOIpxSKlBc9Sw8Vs3FbtEuP9N2L8feL3yKrxcjGuyLBhBfu\nNkIVpGKhHeXtpbrx9eZzKPLt5ucnzSES+wgKmUhusoQJszAubAJiNLFM0CVBmi+bf83fc4YaAvFq\n8Of4HGg98vOTv2eRCOjvGrwY/33hWoeAvG7C2T333IOPP/4YAHDkyBHceeed7DOPx4Njx46hpqYG\n69evR3t7O+655x5YrVZMnz4dv/vd75CUlITx48cDAJYsWYI//elPAICDBw9i6tSp16vaw+L7Eo9T\nIBAIBALBjc2/6nOTeFYSCAQCgUAguAxtYvvLEXWlXGmoLT4XDz2vkVAgF1L4zVQ+VxZ/PDlxSBip\n/K+NWHFvPtucbWy3IOujTCRPWojo8HFo6WjGzz96EV093zBxDPDlW/J43QgOUKFkRhkTLqiuFHqN\nF+pS7ngCufuWQxsahcrErb66nz+Flo7mfg4dEkVSGvSwOtrYBjLv1KK/eeRii9wBpDQGKQ16ZLUY\nkR2Xc83GXe62AqSuKnkdyS2kDY1iYoo8fCL9OxQxTO5oG8rx5a1lrA7A5XCCcdppiNHE4ja1731/\nQhhfPwCSsHn85j8dY3faWKhCf/1H8zTVkoJlTenw9LlZ2fwc5wWoSquZOa9qdLUsn5jdacPameug\nUUdi4ujbUfRACSqtZtymjmIuLXJJ8eur1X6Y5fP6zR/KJWENlfpcqV/XzlwHbWhUP2GEjqG22J02\nhASrYXW0ScRj6gt53i2ro42J2XanjfUVAEmeLvn1qDwSrFxuF3vvncfqUDX3Tdw8cgwqEkxMnHG4\nOpG7P5utY74cHhoH/nqLdukla4KO4+d4j8fFBPZW+2GkNOhhbDZI+ggAE9ABsPsOAMV1wefS48VD\nf04tvo+v9J6t1CdK7aXyeIGaD8/K55b0x1COuVquh8B4LfcerptwlpiYiBEjRuCJJ55AaWkp8vLy\nsGvXLvz+979nv6BesGABnnrqKTz11FO45ZZbMHHiRLz55pv4j//4D6xfvx65ubkAgF/+8pcoKSnB\nU089hT/84Q94/vnnr1e1h43YCBIIBAKBQHC1/Cs/N4lnJYFAIBAIBILLKOVRuhqUxI6hCiAD5eKR\nlyMXEPjcStHh49DYboG+fh6MzQYmqL0xZwtqv3ibbWYnTdKh4qENqG/fgcZ2C6qPbcZP716O0SNu\nYuHXaHPZPKcKG2abUd5aBsDniNkx/z1JbjTC43Wj7PNfIW3KEgA+4Q0AosPGYf0fyyVh4cjZZnW0\noaP7b1i6Ow1WR5vEDSh3rFBf8H0THe4LGTlQiEO70wZVkAp58fmI0cQOmqNrKMjdVtlxOZJQgyQs\nUR1J4NCoI/uFNJSP8VB+9KbkaBtorvHlxmhi2bGt9sOSHFxqlRqA1AVDY8GH8pSH5JMLnLzwyQt7\nSuIgCTt58flQBaow7/b5THyVO/NOd59iop9GHclEBVpD2tAoZLUYkdVihGmWGUmTdKjR1aJOb2Fi\nCl9Hqos2NIoJcWqVWhLWUN7nSmEpSczmQwfyjjn+/dx9y5ERY8DSprR+oTvl42d32vDcnmeRHZcD\nu9OGBfU6pH+Yhu5L52BsNiBz72XRiYQYJcGoIsHExpbQqCNRo6tl4RitjjYUHVwFTUgkar94W5JD\nTF6v092nYGy+HNLR7rSh49xJJuyRuM73MwCEBKtROH01KhJMcLg64fG6canXzdxt1UnbsfMv7zJh\nncRXGmclUYrWHy/Q0pzyt9Z5QZs/x999XN72geDnFe8apHs83SdqdLXsBw7fJUP9nvouCfB6KWLn\nvw4OR/d3XQWBQCAQCARDQKMJ/66rIIB4dhIIBAKB4PuCeHa6MZA/Oym5QQbjSs4ZTlnXqnza1Ey1\npDAHBm0m58Xno/RQMfLi81HeWobsuByWU4zOTWnQw+N1Y2fy5dxN5NSgkIwerxvmOVVMAKANVdrw\np9xqFCLO0+eG1+vLnxQdPg7bj25DREgEc98Y9qTD6wV+dk82Kq1mpNzxBGq/eBvdl87hmx4HKhO3\nIkYTy0I6lreWMYcN72KiPmxst/RzN9EmPYkm8k11wLfxT20MCACCA1WKoeeorUMdL+q/tClLUH1s\nM7LjclgYPbnjJ63xSayduY71H59rij9uOHOFF80GOp+/vvy69D6JJzSXaI7ZnTbo6+dh7YxyvNZm\nQsH9qyWfy4U/eX43vg4pDXoAl+cLX2+69sr9OTh1/iv8+qFX8eTUpyXnU30pzx/gy2ulNJY0p2g8\naLwWNjyKkgdfYWXTtV1uF9QqtcTdpDQu9LrVfljRYUdrhY6h+vHYnTZoQ6OwoF7H1iO/vt29bkkf\n0fG0xjYeMQEAXrjbiEqrecA68/XiQ7Ua9qTD5jyDuuT32d+qQBW8Xp/bi19LSq6zVvthJtrVzq8D\n4HOO0rl2p61f//B94nK7YHedwc0jbkFAADBm1C2o0dVi51/eRdFnBfjp3cvxiwcK2bUX7dLjncfq\nFO+vdC35nJavNTk09nwIUH785OMq78+hCNvU70p9MZyyrre4dr2/B4Gre266bo4zgUAgEAgEAoFA\nIBAIBAKB4F+ZK/nV/LX+pf21Fs14B4pSqDTKPRSjiUWPx4XSQ8VMvJFv9L9wty+3EL95Lg8T5/UC\n6R+mMReG3Plk2JOOcxfPQRsahRpdLd55rI5t8FP4x66eLkmZNudpbDxiQkaMAWWf/woZMQaEjxiN\n0hnrmPNJGxqFpEk6dh6Jf3yOLQqlR0416pc47TSUPPgKAKkzhnd9kctKFaSCaZbZrzvN3wa23O3G\n99/ametQfWwz0qYsYfnBCLmDjCDHFO8SGmiu+JufcqeZv/PJnSgPvce7wuRYHW2s/6JCx2L9H8tx\n8tzf2OfyXFL8XKF2NbZbWEhPAAgIANycQ5F3DVYkmFDeWoZNc6uxLel3EtGMrse7LMlV5s+xY9iT\njsWNqXi1dT17TxsahZIHX8HKAy+hsd0iubZapZaUJXdv8e4pcjnJ3Wu8Q6vVfpiNs9XRhpQGPRbU\n66Cv0yGrxQirow0hwVIHGNWF8otRPzpcnazM6mObUTh9NQqnr0b1sc1IueMJVl++fnzf0twz7EmH\nvn4eljX5RLK1M8rhcHUiq8WI4AAVno81onZ+nWI+Orkzi/IRkmgG+AQ3yrlGOefoeJorFCLz9cQq\nbEqsRnBgMM5e6EJefD4AoObEW4gMuQ317e9K5j3lfeOh/slqMbI20zhoQ6NY/jh/OQ3tTlu/sJj0\nmh8Tf3njBkLuMOT7Tn5/HYx/hiPtWopm18O9JhxnAoFAIBAIvjPEr6ZvDMSzk0AgEAgE3w/Es9ON\nwfVwnF1Lh9hwHUxyZ4vcfQKgn9OFP5Z3C/ECBjnE8uLzmQOnsd2CpEk6NLZb8NyeZ1Hy4CuICIlA\nRtMzKJ2xDk9OfVpyrcZ2C9I/XAwEAFVz35Q4eYjtR7eh+thmidsDAByuTsRoYpHSoEft/DrYnTaW\nQ4t3t5FARk4h+VhQfUiUoOP19fMwIXwiCu5fLamXvD+By8ICuUCoLH9jxbu1cvctVzyGyqD20XWo\nvqe7T8HqaEPpoeJ+Dhh/wqj8+gPNo4GcjkpuKX+veQei3PFnd9qQudcgcSP5u67daYNhTzrOdJ8G\nAoAJ4bejdn4drI42FH6yUuJ6lJ8r74vGdgs06kgsbHgUb8zZwsJ/Ul4uf+2xO204ePoTvNJawtyI\n5C5SGgul+wA/jvKx598DwOY0OYxovWnUkchqMaLH44LXC6gCVcwpRteXu9V4x6Wx2YDgQBU7ttV+\nGMua0qFWqZFyxxNY81khKh7agI1HTGzukcNSvhboHqFRR8Lh6kTRwVX4qvsk1s4sBwCsPPCSJGSs\n3BEoz7nIf0b3KeoLAMwJyrvBeLE3Oy4HK/fnICggGHV6n5CZaklBRowBufuzsSmxmvUDAEWBl78X\n8K49ACz3ndK65Z2q/hxpSvPC33tDOV7uGh6O6+xGYrDvSOE4EwgEAoFAIBAIBAKBQCAQCG4glDYs\nleDfl2+WX6tfyw/VmcBfm3d18O4T/hjevcBfi/Jn8fDuMnevGzGaWJzuPoXtR7cxN055axkyfvgC\nNh4xQaOOROkMn4OKcqW92roep7tPoby1DFUPv4mquW+i9FAxc8O12g8zR8eTU59mm/+U+8zh6sRz\ne56F3Wljohk5tXL3LWftonxh+vp5SN+9mOXV4qENeHK1kIOlLvl9mGb58rApuUuob+k1uX9ebV2P\nhQ2PSnJ2yeFdWfwxcvcN4HPcAGBOpawWI1rth7Folx7puxczt568/IHmyGDzyN9Gvb9cXDRm9Dk/\n72hcYjSxEidadLgvl9mG2WbWVnqfvybvADLPqWLzhQSVNZ+ugu38GbR0NEvqq+TSA3yi2eLGVDhc\nndgx/z2Wr4zPw0fnUxuoDsZmAxbc+biiMBKjiYWnz82cSnxb5I48+lvuDKK+AsDaTHnutKFROHfx\nHDKanoHD1ekLQZhsweuJvnyBlVYzejwuNhd451GqJQWlh4qRPGkhtKFRzCHJz5uvXTbkxedjwZ2P\n4za1FpMj7mL3iejwcciOy8Fze57t54gjd2pWixGlh4pROH01NOpI/OYP5ai0mvHGnC395hDNL7lL\nU+4WpOuTUEU54/i+58uj0Kmdzq+x5sES1t81ulo8OfVpbEqsRtIkHdbOXIfMvQY2Vvy9j8RLek0O\nSconSPNWKc8ZnxPPH0rfBwN9R/Cfyb9jeAcsORuVXL3D4Vq7uoZ6zcG+I6+HACiEM4FAIBAIBAKB\nQCAQCAQCgeAa4G8T099mKHEtf/l/peVQfSisGV8Obdbzwg1wecOaNmVpU5mcOYDPyZJqSUGl1YyC\n+4pQ374DaVOWwNxmwsnuv+Ipy4/xWpuJiSdjRt6CNZ8VoqWjmYU7jNHEsus9tvNhJNc9guS6R9gm\nPbltLvW6sawpHWs+XcU20Clf1vaj2wCACQ3A5XCKmxKrMSH8dsmGtnwTmkJU0rlx2mnQhkZJwjvy\n4pGc2vl1qEzcivr2Haxug4lX/L9yUYEPyWZ1tAEATnQdB+ATDgvuX42xYdEICQ5h5w9n03swN5pS\nWdVJ26ENjeon9qVaUpC518D6ihdXeVFSCbl4KK8Hhb6jnFGlh4qZQwwATLPMWDEtHysPvMTGhZw/\nrfbD/QTMGE0sJoTfjhhNrESA4cPvUZ3dvW7WV3nx+QgOVElyS5HAQ7zzWJ3E9UN14e8ZvMja0tEs\nEbZ50YbEvPLWMvb56JG+cKTlrWUALq9PwCecUJhGpbk9d8IjWPNZIR7d8TCMzQa0dDSzuRynnYad\nyRbEaGJhdbTh7xe/xYmu45L1kDRJJxGt+HsEXaMiwSeUBwUEY0SQCnnx+ejq6cLChkdZGEt5iEJ/\n0H2KxobCaZLATtA6Od19CqWHipE6+SlMvOl2dk8hKJfh6e5T7D5AY0fjQznW6H5I1wV8ee8IpR8b\n0GtyIfpbi3JRSy50Kf2AgdooX5fy+wQ/165UNLseIREH42qEvqtBhGoUCAQCgUDwnSHCDd0YiGcn\ngUAgEAi+H4hnpxuDgZ6d5IKS0gYovR4sFN9wUAr5NhzXGdA/lBcfEs3ldmFEkApeL5gDiOrOh9aj\nNmlDo1iYPVWQShLirrHdtwGvr9Nh9vhEbD22CdFh47BrwYfs85X7cxA+YjTy4vNR3lomCU2nr5+H\nFffmo+bEW8xVRKEhD57+BDUn3oK7z43XE6tYmLmlu9PQ6fwaXngRGBgoCccmD31HbZGHiSNIPKEN\n8O5L51Ayo0wSjpLKpg14PizalW5a+xtXcpllxBiQt385cu79Bco+/xXGhU1gIQ6pjwD4zbU2nHrJ\nQ3cONp+pjiR0KIVz5JHPQX/1kocupDrwYToDAny5qvLi8xGjiZU4xgBAXz8Pdcnv9wu9J7+2vA18\nXflwkwUHVqJOb5Gsnx6PCyHB6n6h8vg1xIfuBMBCO7rcLhZSkM6hOapURz7MJR8Ck8I50nX4sWrp\naMbKAy/hpbiVGDNqDH7zh3LYXWewdkY5C4NK893ldmHxlGcl4ShJCKVQqXRsXnw+ntvzLDtu0S49\n3H1uBAf4QkduPGLCqfMdeC7mRVj+2gBVkMrv/KR5onSfo9CJ8vCN8j5O/zANXRccqEzcysKyAsCj\nOx6WvN/YbukXfhYA9HU62F1nUJf8viQUJIB+IVOV7ve8w0/ezoFcnPy9Y6AQi/JrKpU/0Hoa6PyB\n6vnPZLjXF6EaBQKBQCAQCAQCgUAgEAgEgu8Q2iQn95M8VJf8NR+KT17OcK/LuwCUXE/DCXEldyVU\nJJigVqnxfKwRqiAVcxRR3Xl3DbkvUhr0yGoxonD6ahbyjUSxpbvTYHW0QRWowr4zLYgM0aJkhs8h\nQ6LTprnVqEgwoeDAStaPFI6uLvl9vBj3UxaiEPCFhDzRdRxrPitE6uSnMCJIxUIW5u5bjpIZZahf\n8AEaFjSiLvl9Fo6Nd0dZHW3MheSPVvth6OvmQV8/D3anDRkxBpw+fwqFn6xkbqHy1jKJs0rulhiu\noCkfK7mLhYSxyRF34TZ1FBbc+Th2Jlvwwt1G1u9Kjjn5tYbqJFFy08jns1KIOl404/+l13anDamW\nFBZyUh72Ucm9I78ezb/n9jzrm2NBKphm+fJ6xWhiJW2keRsVOhYOVye7XqolBVZHG1vPdG3qZ6on\njS31R3ZcDgDgZPdf0dLRLFk/IcFq5spU6i+qC90LosPHIWmSDnnx+VCr1P3OkbsPqU9ozgM+EStt\nyhIkTdKxcskVxV/b7rQx0ewHY36AlQdewuIpzyIqdCwSJsxicxkA8uLzYXedwfToB5gYRg7QpbvT\n4HK7kNViZA7IGE0sC1tpd9rg7nPD6wUKp69G9bHN2DDbjJx7f4HdHR/A43UjLz5f0VVF7VO6zzW2\nWyQuPMrNSE5Caqc2NAqjR45m4tj2o9vYWHddcKB0xjpo1JEs/yJfF7o/jAhSYVNiNRPkATDXoyrI\n5zbkx4UXYWme0pyQi1pK60/p3qEUApI/nsqTu9oGu//I3dL+7gfXUjS72u+6Ky1nqAjhTCAQCAQC\ngUAgEAgEAoFAILhGOFydADBgHhuCNvzkG5b+xBt/G5lKm6vy8IH8hrNSGfKwZ3xIwooEE6qPbUZG\njIFt/tJ5fN2yWoww7EkHAGTEGFB6qJgJDY3tFhQdXAUvvOjq6ULt/DqYZpkRohqFooOroK/TYWlT\nGhMgHK5OdHT/jfUnbQbz11q0S882rSdH3IUJ4bdjwZ2PwzTLjLz4fJZrqLy1DNrQKMRppzHhIXOv\ngQkgJHjxIRR5kYnGI047DZvmVjPHyZNTn8abSTUwz6lix1YnbWfCHI2BvJ8GY6ANYj5sHG3ak8tH\nrVLD7rThRNdxZH2UCX2dTrJ574/hhELzd+xQhEESOuTwIT5rdLVs3OK009h88LepTwLFol0+sVYb\nGiXJTaYNjWLhLOUO0KwWI7xeX3jH7Lgclids6e40lhONQo0CYGuEz1VG6628tQwadSTGhY3Ha20m\npDTomROK2uQPahOFR+RFWLng5m8M7E4b3L2+etmdNrjcLuTtXy7J2+fpc8PqaJOUE6edhpIHX0Ht\nF2+j9FAxMn74Amq/eBvBASq0dDSjvLUMaVOWIDp8HGI0sRgfNhHa0CjmNPumx4HcaQUIHzEarydW\noSLBhNJDxazetN6MzQZ4vcCIIBU06khUJ22Hw9WJV1pLkBFjQHCACqWHivvlyPM37/h+l4tJje0W\nLKjXMSccLx7HaGKx/eg2/PyjF/H3i98iRhOLysStmBxxFxbU61B0cBVKHnyFOdLo3rV0dxou9bqh\nUUeyUJ+8OEdzTe4Ok68/ufBMc2igfIf8PFHKN3ktkIt78h908HW4FgxHrNYQKY0AACAASURBVOeR\nr+ErLWcoiFCNAoFAIBAIvjNEuKEbA/HsJBAIBALB9wPx7HRjMNCzEwkAtOnvD14EkoevUwrzSOcM\nFKZL6RrysFtKZciFncZ2Cws7yJ9ndbSxsGv+2kbh7PLi81FwYCVUgSpsmG2GYU86vF7gZ/dk49sL\n3+Llz4tZeLxUSwoyYgyICIlA0cFVKJy+Gs/teRZvzNmCL7/9Ej8Y8wO2iZ3SoGehHwGw0Hm0QU5i\nZUqDHqfOd2BnsoW9x7eR6plyxxOo/eLtfm4oeZsWNjzKHDZK/ecvTKFc3AGUw7T5Gz9CXh6Vkxef\nz/J5UT+QqygjxoDJEXdJBFy6trzca4E8fKMS249uw8oDL0nmEN9/8vey43LYXKCcVEph8KhtfEhQ\n/jN+7gKQXAe4HFp17cx1WNaUjl6vh4UKLfzEN4/feaxOchwAydzi14rdacPS3WkYFRQiCT9IfUSh\nACkUKYWXpLbK199g0P0kLz4fGnWkJFwj31Z9nQ5fu2xsXfD3BHkdunq6WOjPV1pLWL3oXlB0cBU2\nzDbD4eqUhD2kEK3k/KJrpzTomUuUHHrUB/z5VAY/jnw75fctul9RH/R4XAgOUMHjdaPogRLWl3w/\n9XhccF5yQq0KxeuJVWzdklOOwjTy88rYbEDB/av7hb3kxXW6H/Hv8WE1+Tnn7348lLEe7v3/SqC+\n4ttzJfW9VnWUX1septVfOVfz3CSEM4FAIBAIBN8ZYvPnxkA8OwkEAoFA8P1APDvdGAz27KTkMPIn\nyMg3+fk8OP5C6l3thqV8E1e+GUk5nwD0y2UGQHFDW16+1dGGpbvTsGluNWI0sXh0x8Po7LEDXuC2\nUC2CA4NhnlMFbWgUWjqakbd/OW4eOQZbk34LbWgUrI42FH6yEl+d60AverEt6Xcs95BGHck2TEkw\ny9xrwFfnTzInGO/Yk2+uUpvTpixB7r5s3DzyFjT+v70DtokXhZQ2wfmy5QKdvA/lm+sD9aNcXJXn\nSSKhiDbxAZ9IFKOJZSKap8+N4EAVMmIMqLT6whaSuFaRYBpU7JK32V//kLioVB7vrMyOy2G5xgYT\nB0kYkeej87dmqF+ovxbt0sPrBWrn17G54q+ecgGO0NfPw9oZ5UiYMEuSw4/yaSnl5Wq1H0byzkdQ\n9fCbTMhqbLcgo+kZPBfzIsx/MiFSfVu/PH680OUPXqDj+0Ffp8OIIBWCA1WK4g29Bi7n5+PbCYCt\nHT6fWZ3egpaOZpbrzOHqxNKmNPT19WFs2DioVWpJXjNPnxvuPjd2Jlv6hQ6kcaH8bZ4+N955rL/A\nBoAJ5Hzd5fns0qYskQixJEhWJJgkIqA8tx0J+SP+EcqTXK1rPl2FHk8PAGDT3GqJAEn3PV4M49vE\n51ej8SGxUF7vgX64cL0Y7nXk7ftn19dfneRi72DfR0I4kyE2fwQCgUAg+H4gNn9uDMSzk0AgEAgE\n3w/Es9ONgb9nJ6UNRX+/0Je/r7QZPtRrXC18ma32w0iuewRVc99kYgVtpi9rSmfujIEcda32wzA2\nG9jmOXDZHfXlt1+i9ou3mYhDos507YPYemwTCu4rQn37Dub8sTlPI3daARbc+ThzDZU8+ApzUpGw\nlBFjwMYjJtTOrwNwWaAhRwvltyLxDwDLz9Tp+hr1+g+GJCDx/SUXtuTjIncfDmWMlcK6+fubHC4k\nhLncLvR6PXC4OrF2Zjmqj21GdlwONOrIfm4mEjfJWTPYnBuKy0TJccYLZrTJzbu2slqM/cQGpT4d\nSKDkhQzgsnBmd9rwTONPEBQQjPcWfsiEMwCK9eTL452FVkeborAlF1TkfaGvn4dNidVsHWXuNeC8\nuxvfXjiLm0bejHUP/UYiICq5Q+Vt5vuSFxF5kUbuguLdkrwQktKgR/elbnx7sQujVTfjvOccW69y\nwYhcoZVWM9y9brxwt5GtQRJoqVz6Wy7K8oKcp88N0ywzE8l5hx0v6PECuXwt0XvZcTlsTsvFFBLS\n+PnEX8Ph6kTBgZU4c/4UAgICcNOIm3H2QhcCEIB/u3kScxkuqNehdMY6TI64S+Jy5dspd/i12g9j\nQb1O4u6TzzWlv68HV+oU4+ec/LuKP+a7ENKU6qbE1Tw3iRxnAoFAIBAIBAKBQCAQCAQCwVUw1Lw8\nSu/TRu5QRLNrkctFqY6ENjQK9foPkDRJx3L3AMCJruMs3xifu4sv83T3KSbmeL2Q5P2q0dVCo45k\n+YzI+WSa5fv349MtiBipwZvHtrCN7zq9BS/PrMD06AeQaklB6aFivBS3Ern7s2HYkw6row0VCSbk\nxeej+thmFE5fzdpDotnZnrNs4zw7LgfGZgOS6x6BYU867E4bsuNWICo0WrFvlPqZxoDyRtXoav2K\nZlktRonASMfIN53516mWFDYX6Fi5iEKfk8NMGxqFigQTVIEqBAcGY8yoW/BamwnJkxai9FAxjM0G\naNSRLO8XQY6fwfA3h+UoiVFpjU8CAJszcgGkIsEEVZBKkovKX59SWfw6IHGS1h9w2Z1n2JMOu8uG\nzh47WjqakVz3CPR18yQ58+Tlne725ZCiOgNgawHwCTmUo43awreX74u65PcRo4ll89njdaPs3yuw\ndmY5/n7xWxQcWClpN+CbN6mWFGw/ug2plhSkNOiRakmRtI/WJT8mlOeP5gS1JU47rZ+7zu60ITp8\nHAqnr2aiWbfnf5Bz7y/gcHViYcOjaGy3sPa1dDSjx+NCpdWXNxAAKq1mVm+HqxOePjcrVxsahbz4\nfDYuVB/qq7z4fAQHqphotrgxFduPbmP3P3KvURup33nRjJ9X/JymvqbxTJqkQ158fr88cSTMrfl0\nFS54LmBs2DjkTiuAWhWKoMAgrLxvlcQJd9OIMcjdn41lTek4d/Ec6xtqJ409/zpOOw07ky0sZyKh\n9AMKfi5eLUplDHUNKyH/rpLX92q+k4Z7nlxMvpp2DQXhOBMIBAKBQPCdIX41fWMgnp0EAoFAIPh+\nIJ6dbgzkz06804HfoB7MWaQUxmwo4fuuNm+NPLQdbYjKc6vJxZqzPWdZSEN5/Sm8GgAUTl/NnDSt\n9sMs3xHv+OGdUhUJJizdnQaX24Vu9zmUzfw1c0tlND2DW0M02DS3GgBYaMff/KEcdtcZaNVj0ev1\noGRGGRPIKhJMyNxrwAt3G5G7PxubEquhUUcic6+BiWtFB1fB43Xj9LlTuC1Mi/ARo1GRYOrncFHa\nlOVDxsldSrwQyjupBhoLeW4vGhP59fgQgfKcWQCYoFNwYCUu9l7A2QtdyJ1WgJoTbymGE1S61rVG\nyRkmd6ZRKEZ/fc27yeQONN5hRJ/zji2row0adSQAsDlBIQf58Hl0rjyUIQCWg4vqmtH0DCoTt2LN\np6tgmmWWiDnyseTLSN+9GBNH346C+1dj5f4cBAcGIyRYzcalsd2CooOrcKG3B46eTmxKrPab103e\nx3w/pDToERAAeL3Ahtnmfq4vY7OBub0W7dKj4H7fmqD1kxFjwGttJhbeM2//ctymjsLriVUSZ1VW\ni5F9fmuIhq0hchGmTn5Kkj8QuByikXejbT+6jQlxfM4+/hh52+m+Is936O51S1x3je0WLG1KQ1To\nWBY6kkRtl9uFC54LOHvxG+RNK0R9+w5kx+UA8N0fyL1K/Un9ROPP55K7mjCGdI7SfWWo5fH3an8O\n5yspcyiu6KG6pQcr/1ofTwjHmUAgEAgEAoFAIBAIBAKBQPAdEB0+TlE0410scmcR/yt9ctn42xSX\nX+tq68rnyCI3S6olhTmkePGHNv4rEkwYPTJcUg5fP1WQCoXTVyMg4PIGPIV3/Or8SbR0NGNhw6Nw\nuDqZWKYNjYKnz40TXcdhP2/D2YtdcPe5sfbQr5iTpHTGOnzT44DD1YnMvQYs2qVHpdWMn92Tjbrk\n9/Gze7Jx+vwpVseKBBNOdB3HqfMdAIDxYRMBAMua0nHy3F9R+MlKaNSRqJ1fh6IHShAQGICSGWWo\n0dVCGxrVz+Hir7/5kI8Ulm/RLj3rjxpdrST8IN9XNB9o3vAuFXJR8GXn7lv+j3xsy1nZVE5Wi5E5\nr5Y2paHwk5UICABGBY9CpPo21H7xNjbMNvfLZaV0rWsN397GdgtzIPHtPd19CuWtZciOy+lXl+1H\nt2FBvS+vXaolBVZHGzuHd5uQw4g+o7Vld9qY8JTVYsQLdxvx5NSnJY4t4LKTjULrZe41APD1c158\nPp7b8ywT1GI0sRgXNgFdPV04ec7nwCT3IY1lq/0wq2ONrhYVCSbEaGJRr/8ApllmlB4qRlBAMIoe\nKEFFggl2p803frvTcKG3B9lxK6BVj+0nmvmD+oHuP6ogFQru961Fmh/0n8PViY5zJ5H+YRoAsPpo\n1JHM6ZcwYRYTzRImzMLOZAvq9L5wg9RWAHC5fS60nHt/gU1zq1Gjq0WcdhpS7ngCHq8bL39eDJfb\nBaujDWmNT2LnX97F0qY0dF86J5kfkyPuYv1U3lrGHGL8PLE7bf3WkSrIV8esFiMy9xqQF58Pd58b\nWS1G1qdFB1dh7YxyhASr2bnkFFMFqhAYGAD0Ab/781vIjstBeWsZAODU+Q4m9FN/xmhikTRJh8rE\nrSg6uIr17UAhGIcCja/8njNUNxd/r7Y7bRIxmP+c5uVQHWL+nGb+RLPhOs+G6xa73u4yJYTj7Dvm\nan8pJBAIBALB9xnxq+kbgxvp2Uk8GwkEAoFA4B/x7HR96Ovrwy9/+Uv8+c9/xogRI1BcXIyJEyf6\nPV7+7KTkFAAub5zKczYN5vSRb0Ze7WbhQE4Vqof8tdJmPeUF4nP48E4oJZeau9eNwumrkTRJx1xZ\nKQ165kBb1pQOAOi+dA5nL3bh0duT0fRVI+qS35dchxxAJIytPPAS3pizBTGaWLR0NCNhwiykWlLQ\n43HB7rQh595foL59B9KmLEGl1YwejwuePg8AICQ4BO885nOTLKjXwTynCie6jqP62Ga/eXwIEsm0\n6rFQq9QsfxrlggIuOz7oPXID8S47ACxPklKOLBofytXG55ujjXBy1pFAx7ul+PqQO4jcOEPN5XY1\nkKvH3euGx+uG7fwZbJpbzXJR8X3M52rjx1xfNw+3hkSidGYZCj9ZycpQcqfJBQy70wZ9/TzcOioS\nqqBg9Lgv4O8Xz7I6yOtKY9BqPwyHq1OSe4z6knJxUd6sby+cxajgUbCdP4M6/fuSfF/kNgQuO5bI\nnUYi2aigEF/fOM9gWUwm6v77XQQEAMEBKrj73Hg9sUpxzvhrN/8eYXW0IUYTy/KKBQeqkHLHEyj7\n/Fcsn5lhT3o/5xsALG1Kw/iwiawd+jod7K4zWHFvPmpOvIWAAOD5WJ+rk45r6WhG1keZKLivCD8Y\n8wNo1JFM+M3bvxzhqtEIHREKd68Ho0eOZo41CmnI30uByy7ABfU6jAubgBfuNrI8a4XTVzPRlVxs\nWS1G5lo7d/EcOl12NCxolDgSeecjueYSJswCAJajrLHdwuYqjanL7cKaB0tYf/JORH6t8vnWhnPv\n9jeWQ3Vj8Tnf+DVCjuCAALD73pV8nyiJZrzL8kb9/3jhOPuecrVxQAUCgUAgEAj+lRDPRgKBQCAQ\nCL4L9uzZg0uXLuH3v/89srOzsXbt2iGfq+QUIMgVw+ds4nMV+SuP/2X/tRDN/D1fRYePk+RY4jdZ\neWcJ1Zd3gTS2W5DVYkTalCUwNhv6tZnavWG2WSJUWB1tUAWpYHW0IXOvAQEBgKfPA7VKjUV3pOK/\nz30JrXosqzttclsdbcxpVX1sMzJ++AJKDxUjpUGP19pMrH7mOVWoTNyKF+N+irUz17G8TDuTLdg0\ntxqjgkJwqdeX18vutCE4QIWlu9Pw849eRNqUJazN/vpcGxqF8WET8XpiFTJiDMhoegYpDXomvJDz\niBx25ACR5yMj0WxBvU4SwlI+PtVJ2/vlmwMA9z/aQPnBTnf7cp5ltRhhdbQxd5rdaYOx2cByU5FL\nZigM55lc7qjM3bccFQkm1M6vg3lOFbShPgcVL5bRvNSGRsHd63MK8eJfVNhYlM4sQ3lrGYoeKMH4\n8ImI0cQOuiaiw315trTqsVAFBcPrBQICAI06EqWHivs5/7JajJK8ckub0rBol16yVvV1OixuTMWr\nretRdHAV8uLzMWbULaxegHSd8HnbAgKAb3v+zvre4eqEo6cTL9xthHlOFcaMvAXrj6zDz+7JhnlO\nFQqnr8aIIBXLxQZAMe8brW3qM560xifR0tGMjKZnYHW0IS8+H+88VocaXS0W3Pk4diZb2HwJDlCx\n+dHYbsHixlR8+e2XGB82EYXTV7P7hCpQhZtH3IKXPy+Gx+uGaZYZCRNmQasei8Lpq2F32rDxiAmB\nCMSWo5UoPVQMbWgU1s5chyenPo3KxK24Va3BT/9vNr7p6WS5DiNGaVh7+Nxt1FbKFVY4fTVWHngJ\nKXc8AVWQChp1JFsf5HbLiDEgRhOLigQTggODgQBff9idNqQ1PonGdgsy9xrYWGfEGFB9bDN2/uVd\nLNqlx7KmdLTaD6P0UDEbf21oFDJiDLCdP4303Ythd9qQF5+PooOrJD84yI7LkbgTB3KsyteMv/eG\n48aK007D2pnrmMjO38s2zDYjOFA1rDKVriH/m3fM3oii2dUiHGffMf+qE0sgEAgEgqEgfjV9Y3Aj\nPTuJZyOBQCAQCPwjnp2uD6WlpfjRj34Enc4n8MycORP79u3ze7xSjrPh5GiRh3WUl3Gtn4f85aBp\ntR/GwoZHsWP+e1KnT/085iCRn0ebwgvqdYgYpUFAAPC1047ND2+TuC/4cI/kEluxLwsBAQFYcW8+\nar94Gy63C4unPItK62tw9DjQ6/Xg1w+9CgCotJrhcrtgd57Bimn5WPNZISoe2oBKqxkZMQbmOOvq\n6UKl1czcJi63C2qVmglTlAeJ/gak+dXIMUZuIn+hyOT9Se6OtClLkDBhlsRtp6/T4WuXDaUzfIIB\n39+8A43cd+TI8zduSu9TnjNyw/R4XCh6oAQFB1ZCrVIjI8aAiJAIrPl0FU7+z99Qv+ADAPDrblO6\nhtwxM1B9Bjr2dPcplkuLNvVJbOZzWPF55WjsyO0kd0LKx0hfp0Od3qLo+LQ62pDR9AxKZ6xjY8U7\nm+SuPxon3rUHADv/8i5qTryFr86flOQfo7nDOzAB3zyr0dUyF1bFQxswOeIu5O5bjuRJCyU5tbp6\nujA54i7mVrvQ24PwEaOZe8pfKFd/bldyU527eA596MXZC12oS34fAPrlMaS8Y4BPoNv5l3dR+8Xb\nyIvP7zde1C8AWN+Qmyk40CfArdyfg6CAYLyeWCVxivIOSMOedJjnVAEAE9CDA/vn4ZPPM6or1Y0P\nS2h1tOHpxh9jXNh47FrwIayONhQcWInXE6vYWqXciGtnlGPFviwAwE8mp2HrsU0YrboJPb0uVM19\nk/U51ZfO33jEhMLpq1FwYCVsztOomvumZO2SW2/Np6vg9cJvjkP6gQJ/j5U7k6+UoTqMBxP1BqsD\nL4L/M1ysQ0Gp3sJx9j1GbAwJBAKBQCAQXEY8GwkEAoFAIPhnc/78eYSFhbG/g4KC4PF4hnz+QHlt\n+L/luYj4Y+Q5z5TKulL85aCJ007DjvnvsQ1tcnxsSqzGhtnmfu6rVvthZO41QBsahcrErah62Ofg\nulWtYU4e3gVjdbTB0+fGsqZ05O1fjp9MTsOmxGrUt+9ARowBnj4PSg8V4RuXA7eMvAWqfzgiVh54\nCRkxBryeWIUJoydiwZ2P482kGhZOLWHCLJQ8+AoAIHd/NvLi8xGnnYaKBBPUKjXL55W7bzkKp69G\nRYIJVkcbFtT7NrhpE7/70jmUHiqG3WmThFejdgzk1qOQaNXHNkvG0O60Qa1SozJxaz/RjMLtkRBh\nd9rwwt1GiUuFGMwpSJvrcdppyIvPh+38GSz/6GdQ/SMU34p9WVi6Ow3PxxoxYfTtrM5DRe52lNdH\naV7z60D+TO/1+nLfkVgmXwfUFhJCSEzhyyJnHe8OA3yCSUf332B1tPWrV3T4OMRoYlGZuBWVVjOs\njjaJwEWiCE+cdpov1GPdPFgdbUhp0MPqaEN9+w5smG3GpkRfuEi704aUBj2WNqWhsd3CHD+5+5bD\n4epkrsAnpz7N5i+5NOvbdyAhejbSdy9G+u7F+M0fypkzcMNsM0YFhbDcaANB15T3d5x2Gmp0tSid\nWYazF7qwdkY5tKFRiu7Y8tYyiQuy9ou34e51I0YTy8aLD8dKTjXKqVU7v4652TTqSIwKCoEqUMXu\nK+cunkPmXgPLU5fVYoSnz4OsFiO0oVHYMNvMzvdHY7sFaY1PQqOORPelc8x5CPhCwqY06BGjiUXh\nfWsQEhwCu9OG0kPFGBGkYq63SqsZAQHApsRqRIRE4JZREYhU34Z9Z1oQMVKDnl4XIkJuhUYdyRx4\nJEyTa27DbDOKDq5Cr9cDTchtzJlG+cOKDq7C0qY0uNw9kvrL17HdaZPkUZM7k68G+fcRf226Nw8U\n5WUoUWD4+zyfi+675HpErxGOM4FAIBAIBN8Z4lfTNwbi2UkgEAgEgu8H4tnp+lBaWorY2FjMmzcP\nAPDv//7v+Pjjj/0e7+/ZSe68GU6eG3/5YwbK5TRc/LmnyAFFm+pK+ZTIIUFuG3Jk0MayPD9V5l4D\nvuo+ibUzyxEREoEvv/0SRZ8V4NcPvYrJEXfB2GzApV43er0+gbJkRhk06kjEaafh1db1qG/fwTbG\nKe8QbYi2dDQjd182tKFjcanvIrY8/JbEGQRczmXk26R3w+sFPF43zHOqmOOn7PNfoXTGOpbbjIf6\nnsqS9yG5LJRcHEpjmdKgh8frxs5ki6RuACS5kuRjI7++v7H81SdFWH9kHQrvW4PaL95mDjQSBOV9\no1SGv7Ll7w91XstdZ/Lr+7sW9Q3fL+SOfGPOFokDi85vbLcgRhPbr158/rSlu9Pg6OnE+LCJ2DDb\nDAASJxVfN3Jerrg3Hy9/XgyteizWPFjC5ijlQtOoI7GsKZ25HAFIXICUR4xYtEuP4EAV5k54BJX/\ntRElD76CiJAIaNSRTCwsuH81c1UpuSDlfaw0V+UuUd5BJ5+jlM+LRJDsuBxo1JEStxh/TyBIdKT+\nszrasObTVSi4fzUT/CjX3KbEagBg7aKcZPwYOFydivnraOypr55u/DG2Jf2OzQ3KOUf1PHfxHN5b\n+GE/J+H2o9uYY3XFviz09fXh6SnPYlz4eCy483G0dDRj4xET3H1u2JynERUajRFBKlzqdaNOb2Ht\noXEyzfLNIcOedNidNhb+kncqDrRe5E6t6+E0ptx2lNuMr9O1cpzdSBFjhONMIBAIBAKBQCAQCAQC\ngUAguEbcc889TCg7cuQI7rzzzisqR+68UXLiDAYvliiJZkP5Rb2/z5Xqwbvg6F8l5wPlyeFD1JGg\nRfmFiDjtNGyYbUZU2FiUt76MpU1p+MGYHyAqdCx+84dynOg6juBAFV5PrELJjDKMCgpB0cFV0IZG\nodV+GK+0lrB8Yzv/8i4WNjyK7Ue3Ia3xSVgdbVjxcRZuGnkzFk95Fmd7urCsKR2LdumZM4icEFQ3\n0ywzaufXYWeyzxWUNmUJyj7/FXLu/QWenPo0Ex0oRxXl7iHHEu+yUnJZpFpSJDnh+JxldExAgM91\nxfcR9bOSaEYojTdtiJPLpdV+GC2n96LwvjV4Me6nvnB7yRaJW4nccLyjzl/Z8vflAt5Q5jXfV/y5\n/Hv+rkWiWXlrGTuW3JGUz4oXJFrth5E0Safoksvca4C7140TXccBAGtnlDPRjJxEFDIzpUHP+kYb\nGsXckSvuzYcqUIXCT1Yiue4RbD+6DUt3p+Hpxh/jRNdx1OktTEROtaRAGxqFvPh8BAeo2HvkdjTN\nMiPljidQ+V8bkfHDF5AwYRbLBbZhtpk581LueII5Efk5KIfazM8Veb9S+/T185hrjz5vtR/Gc3ue\nRWO7BcZmA9KmLEHpoWJktRhhd9rg6XNDGxqFGl0t8uLz2RyitU9C+4J6HdJ3L0b73/8baz5dxdx4\nADA+bCI06kgUHVwFT58bGnUkE+CyWoxInrQQhj3pWNqUhrQpS/q1URsahTfmbGHuzhGBI6BRRwIA\ny0dGwn1efD66LjiYs41otR9G7v5spNzxBNb/sRyakNsQPnI0thyrRNFnBai2bkGl1YzUyU9hzYMl\niAqNxpoHS2CaZYZapWbjmNVixIbZZphmmRGnnQZtaBRCgn0O0zjtNOacpHvHQOuFF/sHcoEN10HF\nr1dfrjeVZNzos4EYSKiVH3OjiGbAta+LEM4EAoFAIBAIBAKBQCAQCAT/a0lMTMSIESPwxBNPoLS0\nFHl5edes7KGEXeQFAD4MnXwTcDiCxVA3W/2FAlRypmW1GFFwYCXsThsqEkxMPOI39nmhwzynCuEj\nRjOxbUTgSJw+fwq5+7JZKLTy1jIUTl8NVZAvTCO/Sb796Das+awQP77zKVQf24y1M9dBo45EH/rQ\n1fMNth3fgk1zq1Gnt8A0yxeGrfRQMbLjcpDVYmR1yd23HC0dzawdlVYzbh45BrVfvM3qz4tlp7tP\nIXffchaCje9PXmSkPuq+dA5ZLUYmRCxseBSN7RY2FgDYBvxg/Sz/nPJlyXH3upG514BFu/TIajEi\nOy4HtV+8zYQWXiSTi6N0XbnLjq45lBCNA22s0zXJxcifQ+9RPZXCDAJAjCYW2XE5kvPJ6cVv/suP\nITcfoQpS4YW7jVixLwunzn+F8taXYdiTjmVN6XD3uiXihcfrZoLPol16FqqQQjSa51RhbFg0Nh4x\nISggGFGhY1n4R3Ii9XhcLExgQACYiHb6vC8/V+ZeA9YeXoOMH76AN6yvYudf3mXXj9NOQ+38OlQk\nmFDfvgNvzNnCxGRecJT3t3zclAT8DbPNiAodixNdxyVjrw2NQsmDr0CjjsTJc3/D+j+WIy8+HzW6\nWmhDoxD8j/CpdqcNS5vSYGw2sPVFAiMJtS/PrEBwUDAK7l8NADjZdVlOZwAAIABJREFU/VcAwIbZ\nZmhDo9Dj6cHzsUYWpjSrxYizPWfx8ufF8Hp9omal1cxEYX7+0Vho1JGo138AbWgUuyd5+tysP5Im\n6VCZuLVfiEuHqxNRoWOx7fgWnDl/GsvvXYGIUbfilpERCAoIxtt/3o6zPWex5rNCvPRRFruXAGCi\nHAndDlenZA7X6Gr7Xc+fy5P/nBc6lUJoyo8bCLm4z68Z+mGDfD36K2Oga/B1/t+ACNUoEAgEAoHg\nO0OEG7oxEM9OAoFAIBB8PxDPTjcGwwnVqBSqy1/IRMDnXrraPDcDhdoDpGJeqiUFAJgQNpAwt/3o\nNuTuz8b4sIl44W4jyzkG+Nwu2XE5eG7Ps9gx/z0mcgBgIQ2tjjYUHVyFF+42YnLEXcjdtxxpU5Yg\nYcIsFt6M2k/iyImu40w0ozBo6R+m4WuXDRGjNKh+5LcsHBtdTxsahUW79PB6gcLpq9HV04WsjzJx\nm1qLrUm/BYB+4SX5kJVUdwrBRznR5OHWTnefYqHo1s4oR8KEWSxsIIWck/f3UMeVnw9A/7CZBPUT\nuYoohJxSCMKhhgNVqgudP9D85OeTPJQiD/UPbeQrhbAD+o9Rq/0w9HXzgH/kqaLQjDRmNB4LGx5l\nc5Cuv/3oNkSERAAACj9ZieAAFTbMNvcLL7phthmZew0AwD6nUIfUHrvTxsI0OlydWNqUBq16LDx9\nHqiCgvuFZ2zpaMbPP3oR25J+h66eLqz4OAsv/3sFyltfhqOnE5sSqyUhGfnQinw4T3mISgDM1cW3\nRYlW+2Gkf5iGM85TeDOpBjGaWKRaUnDu4jl0XXBgZ7IFje0fwPLXBgBA7fw61k4K4+hwdTKBKNWS\ngowYgyTMKc3FOO00NLZb8HTjj1F43xrUt+9A8qSFWPNZIcaGjkPpzDIkTdKxEIt58fmsL8lJxs8L\nauuiXXp0dJ9kOeaqk7bD7rSxewTvvCPBmfqRX6NWRxtr04mu47A6/oSaP2/DczEvovpYFSLVkTDN\nMuNE13FUWs3ovnQOuxZ8yMYyd182VkzLR82Jt1g/8fUlR+pA93taL4PdG/h79kDH8OE6yQ3Ijz1/\nnxto7Q723UP1GWoI4u8CeRuv5rlJCGcCgUAgEAi+M8Tmz42BeHYSCAQCgeD7gXh2ujEY6NmJ3/xW\n2jwdTKy4VvlilEQSXiTjN1L5HGLyc+TOo+y4HCZEVTy0AZVWc7+8RyQ26OvmISpsLMxzqvoJAABY\nrqGo0Gj0ej0omVGGvH05qHq4Gmkf/AT/c+lbVCZuZZvpVEZGjAE5H/0cCASiw8YhJFiNjBgDKq2+\nEHw1ulpYHW1YuT8Hjp5O1CW/j8b2D7CxbT1uH/1vqJ3vy/cj72fKh0XC3YJ6n3uFQikq9Ud10nZY\nHW2sTbTxTHmjhjqe/som/H3GjykAZO41sPbJP6e2+Rtjf/Xh3xtsc30wRxqtC17skguCqZYUuHvd\nCAgAy81Ex5CAwwsnJA7y4xGjiZWIqZQjq9JqRo/HBfOcKskaAHzCDOXn4vN38fm9eOH2NnUUSmeW\noejgKhROX401n66C1+sTnXihEfDNWcrt53L3QK0KQcH9q1kuMZpDefH5yGh6BpWJW5m4SO1LadCz\nsSVxKHOvAR6vG8EBKnZdpfFIa3wSyZMWYsyoMXhy6tMAIBGuAGBxYyoK7itC7RdvIyPGgNx92UAA\nsOLefKw9vAYTR9+Odx6rY0Jk7r5srJ1ZjskRdyH9wzR8c8G31gCfYPXYzocRFBCM2eMTcdB+AA6n\nA6NUIxE+YjQT6rPjchCjiYW+ToeO7r9h4ujbmfAon6e8kMcLh6fOd7B1SgJ96aFiNoeej/U5DseG\nReOn/zcbG4+YsGG2Gc80/gR2lw0BCIDu9vlo/JsFHnhQeN8aTI9+AAsbHkXGD1/A+iPr8OuHXsX6\nP5bjTPdp9KEPt6mj8M2FTibiyQX31xOr2Pz2d78f7N4gX+uDfW/QHA4OVLE1Sg5YuZCsdP5wfrRx\nrb6nrjVK/S2EMxli80cgEAgEgu8HYvPnxkA8OwkEAoFA8P1APDvdGAz27CR3Lw0mSA0kQlzJ5qR8\nw1XukJILF0obskouOV5gI3Ei1ZKi6Mg63X0K+jodVIEqiZDDO0jsThuS6x7BTyanYeuxTbh1lAaO\nC514dkoGth7bBOPd2djd8QHbAJ85NgGZcT9jwhQAaNSRONF1HCsPvIQ35myRiGw9Hhe8XuD1xCos\n3Z2GU+e/YnnAeBcG32Z+85iOGapjhNpHm9VvzNnCBJ6BxpEX7JTmhZJTkB8Tai8vjhG8sERjpeRM\n8ifcDXezf6By5aKZ/DhaM+QSkgti/lxpLrcLrydWAQBzLQI+kfa5Pc/ijTlb0NXThUqrGRkxBmw8\nYpLMSbrusqZ0fO2ysVx4/Dyluiyo1+HUua/ggQfBAcGIDhuP1xOr2OdyEZovg+r6s3t84o0qSIWK\nBBOeafwJvr1wlonM5Hwjlxu119hsYMKVfA74E0Wp71o6mpH1UaZEmCIhnHdfkSOLBLWuni5sPGKC\nx+tG0QMlbH0Z9qTjq3NfYfzo8ehxX8DZC98gUq1F6cwyZDQ9g53JFpzoOo6X9v0cnj43fnr3ctT9\n97twXnLiLd3vmMhEPy7gXXxK/ZdqSYGnz41LvW7U6S397mlUHi+uT464C5l7DVAFqZARY8Bv/lAO\nm/M0ACB3WgHWHl4D/f/5f/j49H/i24tnceuoSCz5YQZejPsp63NtaBRaOpqRMGEW9HU6LJ7yLDb/\nVyWqHq4GAEldW+2H8eyHT8HmPINtSb/rJ7gPdY35Wz/+xHi5I1S+xvnzhiK+DccVeyVu2uuNcJwN\ngtj8EQgEAoHg+4HY/LkxEM9OAoFAIBB8PxDPTjcGQ3l2GorDbKAQjkPdWB3o+oB/0cFfKDGl17Qh\nTQIFL37IwxIC/fO6yf/mN7qfafwJxoy6BSl3PIHp0Q9g8QepuGnkTei+1I0PHt/LNtSz/vOn+OZi\nJ3ODZLUY0X3pHEYFhcDd58aaB0uYkAf4RBM+79CCeh2+OteBSTf/HxTcv1oSUpLvM3mYM39ODHn4\nPnk/Dia6yct397r7OYZ4V40qSCVxs2nUkchqMcLd60bh9NUsjB/fXlWgCsGBKraRLh/3gdo43E10\nf22TO2ZIqFGCwiVSe0iQ5VFycq34OAtjw6MREqxm486H+qy0muHudeNCbw9GBYUA8IXwlIfTPN19\nCi0dzcyRJXdpAj5HX+rkp/DmsS1YPOVZ1H7xNvLi81HeWobsuByUt5YhbcoSSehAvu2Fn6wEAJjn\nVDGnGTm9Ftz5uGS98WEZF+3SS0SjgcR4+RjwQvaaB0uYiEIienZcDjKansFNI8Zg9MhwXOp1QxXo\nC2VJOcSejzXitTYTTp77G8aGRaPHfQHfXuzCTyan4bcnqhGpvg2b5lZDGxqFR3c8jKqHq5G7bzni\nNNMwLnw8xowag5cP/wp2l42J11Q/QBr6kZx08jFq6WhG3v7lTNiUt48EUIerk61vAJJQrie6jiMi\nJAJFB1fB6TmPsxe6sOLefEyPfgDA5Tx6vNjs7nVD92/zYf6TCZqQ25izTn6fSGnQ46vuk1j2o0z8\n4oFCv2vhSsQmf2K8vFz5DwLkP+IYKGzjcL5z+HsGcGOHbrya56bAa1gPgUAgEAgEAoFAIBAIBAKB\n4H89tIEYHT7O74Yi/xltWvKCxdVsREaHj2NlkIhAxGmnDSjWkZuHPs/dtxwZMQZ87fKJWLSx3Wo/\nzMKUURnyNlAZrfbDSLWkYEG9Dsl1j6Cx3YKlu9Nw9kIX5k54BPXtO3Ci6zi+vXAWz8caEaYKh91p\nw7KmdJQeKsbzd2cCAMaMGoOsFiMyYgzodH2N1MlP4WuXDV09XQB84fT4cJBUh53JFmxN+i3eeawO\nSZN0KHnwFUWBbFlTOqs/D9+HrfbDWFCvQ0qDHq32w6zP+LZT2YONX3T4ONToavuJZlSe3WlDQIBP\nCKQQeYsbU2HYk468+HwEBAAFB1ayz6PDx8HutMHmPIPnY40sJB5tmPNiDrUbADx97n5149tzJdD8\nI9bOXIfy1jK/ZTpcnfjq/Em89FEW/n7xW59IZUmB3WlDqiUFqZYUdm6NrhY1ulokTJiFiTfdDvOc\nKuTF52NpUxqsjjYYmw1IrnsEr7WZkBefj8LpqxE+YjQ2zDbjhbuNbN5SPQH4wnseeEky/2t0tahI\nMCFzrwGGPek4d+l/UPvF21jzYAkTzUoPFTPRLHnSQqw88BKy43JYHwJgIQk9fR6c7j6FE13HAQAx\nmli8mVQjEZIcrk5WH8LrBUYEqdgx/Drl26A0BoBv/r6eWIXy1jK2FrWhUahO2o6kSTqUzliH/7n0\nLZ6PNUKtUqNw+mrEaaehRleLgvtXo/rYZhTcvxovz6xA0QMlCB8RjtxpBdj+5zehCfGJZnHaabA6\n2tB1wQEASIiejS3HKrHxyHpkfZSJjJjncevISNSceEvSxwDQfekccvdnI23KEgDAV+dPoujgKsm9\npfrYZlQmbpUIP7QGAaA6aTu0oVFImqTDjvnvQRsahdx9y2F32phjL3dfNrp6uqAKUmHLw29h7Yxy\nvHy4GCe6jiOrxYjGdguS6x7Bol162J02ZMQYcKG3B6Yj5bhpxM2oergamxKr++UQiw4fh9r5ddg0\ntxotp/f2m+PR4ePYfBtszJTQhkZhx/z3kDRJJ/lekH+H5O5bLrk2XTd333JsP7oNWS1GnO4+1e/7\nRl7WcLja76obGSGcCQQCgUAgEAgEAoFAIBAIBNeBwVwF8g1Qpc+uBqujDQsbHpVssstdGrzQlR2X\nI9l8pXo9OfVplM7wCR8OVydOne8A4Nus5kUiJXdbqiUFmXsNqEgwoeiBEkSqbwMAfO204+aRY2D+\nkwkJ0bOx8YjP1RMREgHAJ6R87bIhLz4fL8b9FL9+6FVMjrgL7l43IkIiMDYsGgvufBylM9Zhxb4s\n6Ot0LMycXAiyO20oPVQMu9OGxnaLRCAhSBwkkYz6icQn6hNtaBQqE7eidn4dE6Mcrs4r2jyma8id\nH+Tq04ZGwesFSg8Vo9V+GNXHNqPioQ0wz6lC0iQdCu5fjTPnT6Ho4Cq2IQ4AmxKrUX1sM7ShUWzj\nnHch0rEkTAUHqiT1ulab4bzoRXWRt5/+LW8tw7KYTJy9+A26XN/ghbsvh50koYzqb3faWL+985hv\nHGI0sdCERCJGE4uC+1ejau6bMM0yo/RQMXOwUVjP7LgcFtaR+qK8tayfoEq4+9xwuV3o7PkaKXc8\nwdyMFLowRhOL7Lgc1LfvQMmDr7AcayRcp3+4GFZHG7xewOv14qWPfwZ9nQ6LdukRo4lFq/0wUhr0\neGznw1jalIa5Ex7Bc3uelYgyFKaRF0N44UMu1lC7yK0EQJIzbedf3mXH0fpOmDALFQkmicBJwmDh\nJyuRuy8bOR9nweN1Y8yoMdCqx6J0ZhlzV5a3lqEycSsA4P2/NaDwvjX4re73mDj6dowZNQajVCNx\nobcHxmaDpL7hI0Zj7YxyVFp9ISrrkt9n6wu4LADx+c3sThu+On8Sy5rSkWpJgdXRxuY2ucwoR13m\nXgMK7l+NqLCxqLSamZtxcsRd6EMf1n3+Mjx9bmjUkRgbFo3nY40w7ElH7v5sZMetwNjQcbh51M0A\nIOkb6lu6l5CwJf+xwunuU8hqMUrE36FC92kaN/ma5P9WWrNx2mnIjstB3v7l6PG42DlKztOhrncS\nlfnvr39FhHAmEAgEAoFAIBAIBAKBQCAQXGOUftU/GFfr8uGvTRvZb8zZwjZd+TrJN09Pd5/Cmk+l\nLg++vOpjm1moPQqXNlgYwtx9y5EXnw9VkAoOVyeKDq6Co8fnqLn9pn9DXnwB+vr68Lp1A1InP4Xb\nb/o3AEBAgK+M0hm+zfJXW9ej0mpG5l6fA6To4CoEB6hgd9owOeIuAECv18MEknceq5PUg0I7Zu41\noPRQMd6Ys6Wfc+W1NhNztDS2W5irh3fokRBIjjYALNweOYSGOn4DzQ8SJEk0qdHVModQwoRZyGox\notV+GBp1JAIC/j975x4WVbX//xeX4Q5ecHAQvGSmohEmimJaHG9RlGIdrDSVvFBUYIEpeACPYqIk\nnMRTlLcwT9aJX4kaSd6ivJXESaLU0jimICOIpjCgDDC/P+as1Z4RvHQ5x/ru1/P4CDN79l577bXX\n7Ge9+bzfNqQEL0RvqCRiSzgTNoehdfGSbVa2X3nNxeK+ztW71Xys1mwjbwRx/TNDstgYloveUEns\n7mjC88KkoKMci0tHLGf7yW34uPmy7O5Mcg6vlcKvUiizFo2UVVVV9WcoPLmbWTsiSf1sATpXbxKD\nkqTVYuLeOSy56yVpF9nUYpT7XjpiOTmH11qIIpPyI4jdHQ2Ah0M7pveLIvfYO4BZzBNVWQCLDiwg\nPnAurxzKkgKJj7sv1fVVGE3G/1Q62TN/yALsbO14bmA8JpO53dE7Z0oryaXDM9h+cpsco631vfKa\ntjaWhCgqBEsxB8TujjaPk9seZdHnyYzNDWHi1nAKyvJJ3DuHBzfdK8eZwNhsFpTsbTTMG5xETcNZ\nDI0GXvj0eXnPKa+h1sWL2N3RnPjx3wT7DCNQN5hFw5aQsCeeMwY9l4yXEcFRygrCkG4j5TGV+W7K\nsaQcM4G6weSN/5C88Hwp9glhVvR/oG4wmSFZGFuM+GsD2DTevG11fRURW8I5WnOELq6+uGicyRpp\nFu2aWppY8WUGJhMsHZ5BX08/5gyax7sP5knxV7QtUDdYVreJ+aK0uoTwvPtlDqN1leRvUdElrn9b\niDl70/j8VsWun/Nd9X8BVThTUVFRUVFRUVFRUVFRUVFRUVH5lfi5doti4fnnChbKRXNRlbN0xHL8\ntQFyUfdqbdIbKjlZ+4PF/pQ5T0tHLJeL5DpXb4uKrWJ9UatWjzmhb6F18ZIL2ynBC1k9Jgd/bQDv\nPpiHp7MnPdr1ZOnwDDaXvc9jfaaw6MACfrz0IzO2T2Xep3EkFM4xL/J3u4+Vo7Jxd/AgJXghK0dl\nk7BnDjpXb9aMXc/qsTlSzAAsRJnMkCxp1bcxLPeKyhUw2+FpXbwo1hfx5M7pRPabYSHQKG0rlQvg\noT3DyLxnJf7agBtagG6r6sN6AVyIXOKaglnwidllFnS8XDpT01BDwp45rByVzaoxb1gIpWIfyv0p\nRS2liKZsg/V4utFFdXF+4nrE7Iqm3tiAvv40pdUlsqpOtE3n6k1mSBabxufT19NPVhhZZ9FZixei\nXdX1VdhgQ19PP/LGf8i7D+ZRWl1C1I4nZF/5unWzEGhMJnO7hMgiBCNh7ZcZkkXWyGzywvNJCV7I\nxm/fpN74U9WOGF+l1SWU152UlqFCqIOf7Bj7evqhN1QS7DOM1WNy6Ovph8ZOw9GaI1TWncbY3MTK\nUdmcv3Refk7cfxM2hzEpP0LeW9bCpvVYEhVBQtRLO7iY0uoSTl78gZhd0QT7DCNlSCrtndrT+B9h\nLG34cs42VMuxELElnNLqEjR2P1Uj9urQi86uOgCaTEam94+S90KxvojonTOJ2RXNY32mYGv3k+zg\nrw0gL/xDEoNSqG26QErwQgAp7ok2i35rzUZQ5HQpz1OIy+J160w8wZn6SkqrS9AbKonZFc2M7VM5\ncaGMeXvieG5gPFkjswnUDZaZisbmJi43X2LFlxmMez+UuE9iyCldx6T8CAu7Q2UbRHXb/L1zaaGF\n5H3zpfiqPEcl13tPXY/l67W+a672hw7X+nxr1Yz/F4Q2VThTUVFRUVFRUVFRUVFRUVFRUVH5FWjN\n/tD6/at91lqoud7FSetKMqVFGWBRpdNWlYqwSBNVLkqhRm+olIvSysqmgrJ8mfklhDpxnIracvSG\nSiZsDuNAxX6zXdges+XbhM1hUtR4ZkAsk/tPJbLfDNK/eJHaxlouNP5IR8dOeLl2Znf5Dmyx5cMT\nW6iuryIzJIu0g4tlZYzeUEnK/vnE7IqWVV/WC8GiMkgsHovKlbe+eVMKTitHmSvaRJ7Q5P5TpZCi\nzKqav++FKzLPVpVmy8XxGxVLrVFWtynHhbDR1BsqSR66UIouVfVnSNgTL3O10g4uljaAygwo6+MK\nUcvabk4p4CorE38OymowjZ1GZkQJSztl1Z+w9CytLmF83n3Szs86iy5iS7gUu5RibUZxusza0rl6\nozdUSutAYfuXOy5P7gdg5ahsC2FIWEtG75zJDxdPUF1fRVxhLGAWSFeNeYPXxqzBx93Xoiox7eBi\n0oYvZ1VpttyXELom5UegdfFC5+rNpvH56Fy9STu4WGb1rSrNZt7gJC40nqegbBuLPk8m4rZHZYVd\nZkgWzvYuJAYlXVF11Vpft/Wa1sWLp+6IYeWobOIKY5nQ+2HzOLLVEFcYS19PP9k+YYOYsn++tDW0\nsTFX1QE42jvi5dyZ9YfXSfvTmF3RnK6roM5YS+6xd1g9Jgedq7fsp6M1R8g99g46ly5oXbyuEPcK\nyvJJ2DMHuPIeUs6Nrc2pShtSwELY1rl6kzbcLPo/tWMmk/pOwQYb5g9ZgJdLZ5Z/sUyKYYG6weSF\nf8icQfM4f/kcU/2mszb0TWIHxPNa6Uqi/KPbFPdEdZu7gwfpI/6Gg51GVnO2VmnW1vx+IxWryp+t\nheQb5WqiWWvt/KPmmimxMZlEceQfh+rq2v91E1RUVFRUVFSuA63W/X/dBBXUZycVFRUVFZXfC+qz\n083BtZ6d2sqKEQuQ1/rLfqVgcSO5M9bbFuuLiCuMlYu2bS06K/POhECi3F65H/ipQqu6voq0g4tJ\nDEoiZf98skevsbCWiyyYzNIRy4nc9jhnGirROnlRfamKDo4dMRjrWDN2PSn750tRIKM4nfjAuTI3\nqrq+Cn9tAKXVJSTvm89zA+NJ3DuHVWPeIO3gYtmeCZvDqLhYTgfnjlxsvMCqMW9IK76rnWtkvxly\nf/7aAApP7iZx7xxpQ6lEWDZW1JZTWl0i91+sL7LIIxN9d71YL3hPyo+QC/MPbXmA10evI7RnmDy+\nuBZgzmQT9plgruqZlB9BYlASaQcXE+UfzaslWZhMkDsu76rtEvsX7RDXLmHPHAvxUFT9XO+4FGNh\n4tZwaYXX2j0gRNbY3eYsqtTPFsjtrbebuDXc4pysF/T1hkrZR4lBSRbXSuSa1Rvr0dhqWDkq26JK\nSZzj0Zoj9PX0k9sL8ShiSzgaOw1R/tHM3/cCS+56ib6efsQVxsrrJoSnuMJYEoOSpNjUZDKyaXy+\nbCOYq91sbCBrpFlwC9QN5sX9i/jLsBSL8ao3VFr0+7X633quKdYXMWt7JOV1p5g9YA4fnthC1shs\nOXYB+bO45iIvUMwfwnow7uPZuDm60tTSxBmDno5OnbjQeJ604cs5f+k8bx5Zx+w74wnpNpKILeHm\nHDL/GFZ9/QpL7noJgJzDa2XbhBhaXneStOHLmdx/apvn1Nr8JQRrcY2s50DxxwPPDIhl7p7n8XLW\nmYWxS+dZ980qztTrWTv2TQB5r8Xsiqa2sZaahmo8nbVo7Ow5U6fHx8MXZ3sXeSxo+48jJuVHXNOa\nsTVL1Gt9R1hvB7T6841+f7TVJuvXrreNNwu/5LnJ7q9//etff72m3BzU1zf+r5ugoqKioqKich24\nujr+r5uggvrspKKioqKi8ntBfXa6ObjWs5OHo0ebr3s5ezFQN+iqnxULk6O6jbnm4qnyWNbHNZlM\nPNx7otyH2Hdrn/Fw9GBUtzGAeeG1v+ft9PlPdpjJZOKdoxvx6+jHkZrDzNg+lQOn9/Hn3o/wwfdb\n2HVqB8bmJgrLd3NHpwDcHNzxcfdlVLcx9PH0o2e7nnxQtoVFw9Lo26EfByr3kjA4mT6efXmg5zju\n7XEfqZ8tkKJZwp45BGgH8OTO6dza7jZWfJlJQ1MDD946ni+rvuTPfR5hWv/p+Lj7Utt4kfeP5WJn\na4+7gweJQclkf/V3+nveThc3H4u+UvbpqG5j6NHuFj74fguP9H2MJwqmsOl4LmnDl3O79g5qGy/K\n/qptvEjUjunc0SmAqB3T+fjkLkJvuZ/axos8u/spKSYdO/8tz+5+ilHdxrQ5BpQU64uI2jGdsd1D\n8XD0oLbxIu8c3cjOk9u5t8d9jOw6mozidPp73k7CnjmyP8d2D+UunxEsL15GfOBc/LUBzNsTz1Dv\nYXx0YhtPD4iR7ycEJbG/ch8P954o22Q9BgCLvhJjoY+nn+wvD0cP2Q4vZy/m7Ym/5nmKPr+1XS/+\ncWQ9j/adbLFPsY3otwDtAD45Vcgn5YWkBC/EVeN6RX96OHoQ2uN+JvZ5VP5e23hRHuf5whg+OrGN\nzJAsurv3YMWXmdzRKYCvqg4xZdsjBOmG8tBtf+ajE9u41NxA4and3OUzgqgd0+ndoQ/DutzFqYsn\nifskhrHdQxmoG4SDjQPLi5cx1HsYO09uVwiW81hVms1HJ7YR5R/NkoOpfHRiG55OnVhevIwZt0eR\n/dXfyQzJYrAuiI1HNzBEFyzbONArkP2V+3jqjmdZXryM0d3HUll3mjmfzqazs475e+fiYOPA/L1z\n+ejENu7oFCDvydrGi3KMtnZNxTUU/dzFzYfu7j3w9xzAP7/bSGNLI1F3RDPU25xB1sXNh1HdxuDm\n4M5Q72H08fSjV4fejO0eio+7L38vXkHC3nh2ndxJzeWzPHTrRBKGJLH9hwI8HN156o5nWff1avL/\nvYULly6w69R2Hrx1PPf3fICdP+yg3HCKWbdHs6r0VfK+f48Z/Z/Ez7MftY0XAZjY51F6tbuNnMNr\n2xxXbb12R6cA7u1xH3GFsTzceyL7K/bgbO9CbeNFpn80hUvNDWjsNDjZOfNV1SEMzXUcOH2Aj07m\ng8mGZlMT/Tr68/wnz+Js68Lf/vUSJloY3e1eiquLuNx8CRvsyB6zmj91HcVDt/2ZhD1zGOo9zGJ8\nimsg/o3tHoreUEkXN59W77nWzkl53dr6jPV2yp9rGy8S3uu5vOf8AAAgAElEQVRhiz8QUM6F1vts\n7XcxTypfV44167Gl/Kxyu5uFX/LcpFo1qqioqKioqKioqKioqKioqKio/MpYV8IUlOXz5M7pV1jn\nKbe7Vg6Z8jNXs3FsLSvrWp8R1nCt2S02mYzM3D6NFz59Dk/nTiQPXUigbjArR2Vjb6NBY2dPlH80\nMbuimbg13KJCwV8bgJezjldLssj/9xY6OXux9utVhOfdT+zun6wkUz9bQFxhrMxle330OnIOryXi\ntkc5e6mK5H3zeWZArLQrFMdIHrqQDk4dWTkqm8n9p8r2K/tZ2afK8xd2arnj8tg0Pl9WyYTnhUlL\nPKUtY2ZIFho7DXpDpYXdobCSE9U710JUjhmbjRZtzB2XR2ZIFnGFsfhrA+T+rcdDoG4wS0csJ6M4\nHTBbSApbOJH5FB8415y/psjbam0MtDYelFlZyiwncUzrLL7WEP0T2jOMvPEfXlGhI6qF4gpjiQ+c\nKzPwhCWgGAttZf4JK0QxZjOK00kMSpKViIl753Dx8kWid85k0YEFLLnrJdIOLgbM1Uf2tvayb+qN\n9czYPpXpBVNIO5hKF1df/LUBFJTlM3/fC0T2myFtQleVZhMfOJfJ/aeSGZJFZkgWOYfXkhmSRWJQ\nktxeVAOKSr5OTuZKSrFdRnE6Uf7RvHIoi8h+M4jdHc3RmiN4aNqRUbyMakM1iXvNmXqJQUkW2Voi\nN0tpV3k160azSPsEAJWGCk7XVVBaXSL3qezTuMJYi3unoCyf1M9TeNL/WVw0LnR09OQfR3M4WnOE\n85fO8VifKeQee4eVo7LZHL6NdaEb8Hb1QefqzdGaI3Ju2Hh0AxpbDfMGJbHsC7Od6APv38uk/AhK\nq0vIObz2usaVEnHfARibjRSe3M20gkmE54VReHI3JhM42Tlzf49xrDu8iin9nmDt2DfxcPSgo6Mn\nl5obWDYik2cDZ5M8ZBG5x94hMySLpwNieevb9XR09MTZ3oXzjTUUnvyYJ3dOB7C4L0U7lPmOAKXV\nJTy05QFpVXm9lrtK0etqn2ktt9B6zl86YvkVtqbi59aO0dp3T1vbWbdbOSb/KKjCmYqKioqKioqK\nioqKioqKioqKyq+I9WJjRW05GcXpvD563RWZTWI7ZdZUaxZ01lxLXLN+33pR1Fo8Uf4u7P/EQnr2\n6DUkDE4GE9hiR9rBxVTUlqNz9Zbi2YovM2hoasBkQgpbAo2dPU8HxPLMgFjSRqTjonFm9dgcskZm\nS1s9e1uNtECLLJiM1sWL+MC5vP3tBp7yj8HGBilaxBXGMik/goKyfDKK08kMyZL9KgQeZV6cOP9i\nfRETt4bLxfrGZiOl1SVSbAKzpZ7ecFr2ocguStgzB52rt/zZ2jYvJ/Qt2farXbuK2nJp7bdyVLbF\ntfZx97WwDlQKWIBFvpVYuNcbKpm5fRrheWFS5BMibUFZvuwrsaivFBDFgve1BFjxvs7VW1bYXQ/K\n8Wd9HGXGldbFi6UjlhPaM4x3H8xj5ahsKYAp2yIW50urS2hqMVpkU0X2m0FGcbq0Ndw0Pp819+Zg\nb6OhyWSkr6cfxmYjMz+KZN6eOCoulssMs9S7ltDRsRMttFDVcIY5g+bJjLQld73Eii8zmFrwGEdr\njtDUYmTRgQUWmVyiT0J7hsl8PCHmFZTlM/OjaZypN1+nmR9FknZw8X/au4wfLv6bjOJllP34PS98\n+hzVl6o4XXeaC43nmTvoL7xakkXinrk0tRiv6DchdrcmCivRuXqbBeJj7zC223200MLx88evuFYb\nw3KlcCvuFYDuHj0I1AVSZTjDswOeo6WlBU9nTzo4dWTj0Q2cv3TOYty6aFwoPLmb5z95lh8unuDl\nf2VgbDGSNTKbYJ9heLt24bmB8dRcqibKP5q0g4st7E6vF+V9p7HTENJtJOtDN5J61xLm73uBZwaY\n55xAXSCdnb3ZXb4DMAvmyUMX4u3qg6ezJ8X6IjYe3UC9sR6A5V8sQ+vshbO9C5eaG5jeL4oD+n28\nPnqdtOJUjmsxBpR/cCDme5Hndy1BUHmvtTZXK79LrtYXShGtur6K8rqTFkI//JQF11q7Wvv9WoKm\n9Zj8o6AKZyoqKioqKioqKioqKioqKioqKr8irf3lvqi+aWu7QN1g3h/3gaxgakuAUVYWXO390uqS\nKwQx65yaYn0RxfoiKUgUlOUTvvl+Zm2PpPDkbrkYCvDmkXXY2tqSNiJdVupMyo+wEM9cNM48MyCW\nmF3R5uyx/1Ssna6rYM4ns4n7JIbEPXNpbDbirw2QC+WiWkoIMvGBc5m1PZK5n8bx/Y/HebVkBcbm\nJplZtTEsl8SgJFI/W9CqkKOsBlH2S1xhLCaTOfsqed98ThvKmbU9UopKPu6+zL4znrzwDwnUDaa0\nusRif+I6WS9QKyvsrjf7p7q+SlbGWVerWItGov2iqs1aUMMETS1NxOyKplhfRNrBxXLRXimGiEV+\n0W69oVIKMm1VninPdVJ+BLG7o2+oqkT0u7K6Trn/0uoSJmwOk5UxAHGFseSUrpNCsthWnEtGcTrJ\nQxda5G+JSq+EPXMoKMtH5+pNoG6wubrMRgNASvBCPBw9SBicTI/2twDIdjnZO2Fva0/KkFRCuo0k\nYc8c4gPn0tfTj9l3xuPj2pWQbiN5OiCWhqYGUj9bQGS/GcQVxlpUbilz/nJC38JfG4DWpTMv3f0y\na8aux8PRgyj/aF7+Vwb6uko6u+qID5yHva09zwQ8h9bJiy5uXeji5kuwzzAam42cvVTFY32mXHnd\nFf1oXVGkvKY+7r5sGp9PYlASO04VYIMNvTr0umKcif0am41U11fxw8UTJO+bz+w746lpqMHG1gaA\nJpooPPkx5y+fY6DXIM7U68kpXcf4vPuYtT2SKP9o+nr64enUCRMmhuiC0dhqpFBpMkFfTz9Z5Smu\nwfVWZinHlmizOJfQnmGE9gzj9dHrWPFlBnGfxDBz+zSevONpTtdVkLJ/PvXGBpZ/sYxmUxMzCqYy\na3skTSYjGlsNBWXbqDCcIj5wHmkj0qEF/LV3AKB18SJiSzjj8+6T41K0XTkvKKstW7terWH9nWFd\nmSnE76tVjCo/mxP6FloXL4vMRmXbhJh2PX1s/UcIbbX/j4aacaaioqKioqLyP0PN6bg5UJ+dVFRU\nVFRUfh+oz043B9f77KTMH4osmEx4r4evmXMjsmjaypFRvge0mkcjstRm7Ygkv2wr732XS+gt91+x\nTX/P24krjOWjE9tIDEriodv+zN1dQ7jH908M0A5k/r4XCOs5DjcHd6J2TKepxcjfQv6OvzZAZkLt\nrfiUh3tPpI+nH6G33E/fjn6s+DKT+iYDekMlD946nkDdYDo76zh09ktc7N2Y2PsxTtb9wMO9JwJw\nl88I3BzcAXOWzqT8CLZ+n8dpQwX1xgYAvFw702Jq4cDp/QzwuhM3B3ee2jmDUxdP8pjf4xYZXQKR\nfSX6R+QO+XX0Q+vixe5TO3np7r8x7tZw7u4aApgrtaJ3zWRs91AKyrbx/CfP4u95B7069G4188c6\nk+hq11nZ994u3mQUpxMfOJe7u4bIa+Ht4s28PfG0d+jA/L1zGds9VOZZ6Q2VPN5vmsy5KtYXYTKZ\n6OPpxz1d/0Rwl2Hsr9zHvT3u44Pvt/DswOdkG7u4+XBHpwCLbLjwXg/j5uDOu9++w92+97SZz6bM\nNrqjUwA7fthukZnWFsrMpzs6BTDdf5aFGCByoebtiWdOYAJzgxLlZ9eUvs6uU9uZP3gBg72DLPq7\ni5sPXs5eZBSnE97rYWobL/J8YQyzbo9mZsCT2GHH7MKn2X6igIbGBhZ+loSDrSNby/LYf3ovfxmy\ngNdLX+UvQxaQdnAx9U0GDuo/Z+WobEZ3G8s93f4EwK3tepH62QJeK3mFnT98RHun9uhcvJn3aRx1\nxjoc7Zz4uqaUzJAs2a/iukRsDeeNr1cz1DuYIzWH2fz9+3xT8zWzA+O4y2cESw6mUmes5VLzJVb8\n6VW6t+vBAO1Acg6v5eylalKGphJ5+wwAHrh1HAO0A0n9PIW7fUJkZpb1vS/Got5QybO7n6K/5+3y\nmtY2XsTH3ZdeHXrT2VnH7lM7OVR1SF73/p63YzKZqG28yJRtj9JCCxP7PMauH3ZyufkSH3y/mZ0n\nP2LZiEzu7DyQfx7dyFdnD/F430hyj7+Nh0M7yutOYW9nz4LgxbxaksWHZfkA2NvaU1x1EAc7B/ZU\nfMIzAbHsO72HHSc+Yrr/LADyjr/HtP7TZT7X9aDM8IraMZ27fEZYjOFeHXrjYufKoeov+Wvwi9zX\nM4yh3sH8qesodp/agd5wmtl3xrO38hPaObTntTFr6NnuVtKKFmGDDYM7D6GPZ1/e+fYtDp/7mkl9\nphDe+yF83HzYWraZR/tOxs3Bnbzj78n7QTnn/xwhqa3vh7HdQ+U8a50R2Np3AMCx89/y0JYHeKTP\npCty1o6d/5bwzfdzj++frsiCvFru2vVcj+vNePxv8Uuem2xMJpPpV2zLTUF1de3/ugkqKioqKioq\n14FW6/6/boIK6rOTioqKiorK7wX12enm4HqfnZSLp9ezkNpWZdi1ss7ael9URMQVxrZpoVVRW05p\ndYnMfhJVG6KKx18bAJitF8V+ACK2hKOx01hYJIqFU2XOl6goi9gSzr8vltHBoSM1l6tJHrKICb0f\nZsLmMOxtNNjY/GTVKNo8ttt9bDjyBucu1zC9XxQbjrxBZ1cd7g4e5iypvWY7ya0TPrKwTGytf8T/\nfy9eQfoXL+Lr1o1nBsQS0m0kkQWTLSo9Csry0bp4Eb75fjo4dmTbw7tazfxprbLsatdDvFesL5LV\nTBnF6bIyTvRplH80iXvn0NnFm9fGrCGuMJaGpnoqDadlVpjeUMmEzWH4unUjd1weekMlT+2YSepd\nS6hpqOGVQ2YbSJ2rt4Wop7RqEz9Pyo+wuO7X4nrHcmvHa60tekMlCXvmML7nQ+Qee0fmfl1qbmD1\n2BxZrZY7Ls+i8k2MvYraclndmH7333jlUBbPDIjl/KXzLC1KpaOTJ1H+T7O0KBUvl85ynxvDcmW/\nvTZmDTpXbyblR2BsNmJsMeKicSEzJIujNUfo+x+xMq4wltrGi9jZ2JN61xK0Ll5XWK+G54VxsvYE\nWmcvNLYOnL1UhYemHe2d2vPug3lyDMQVxpIYlCTHWicnLzR29jS1NAFgMkF1wxm8XX3IC8+ntLqE\n0J5hFmO6tLoEf22AxXwRsSWclOCFclvr6y3ugwm9zSLVW9+8yarSbMBciTlreyQ61y68NmYNs7ZH\nUmU4Q0JQMhuPbiB3XB6l1SXM/TQOe1t77G3tGd/zYbaf3EbEbY+y7IvFrB6TQ/K++Tw3MJ4VX2Zg\nbG7ictNl/jI0hbmfPk8nFy1n66tlFVxb9+71IM5v4tZw3n0wT54fmOe/cZtCwQa8nHW00IyDrVlE\n+fHyeS40/sjE2yaxv3IPq8fmSJvVEJ9RvPPtW1Q16Mm8ZyXnL53nta/+TlXDGd4MfRt/bYC0AxXH\nac1+V1TC/txzE/u6nnvtat8Bygpm5T04cWs4yUMXyqq4653XrmeevZn4Jc9NqnCmoqKioqKi8j9D\nXfy5OVCfnVRUVFRUVH4fqM9ONwfX8+zU1iJkWwuQQgwwNhvR2GmkkNHWQmZbx2xLHLuamCMWeXWu\n3lJEE9Z+TS1GTCbIHWe5KK20gFOiFOsSg5JIO7iYjWG5Mu9o9oA5vHpoBT3a30Ly0IVE7XiCuYP+\nwoTeD1NaXSKFpMKTu3nlUBYnLpbhau+Gu6M7+rpKXrrnZfp6+hGzK5ofLv6bLm6+5IXny76KD5x7\nhR2mOMfxPR8i9fMUYgfE06NdDxL3zmHT+HwpLinPC8yCjvI9630KrvfaCLFH5JtZL6or+7RYX2Qh\neinbI8aE+F1vqCR650x+uHiCTk5azl6qprOLDjeNuxxLykVt62v3Wy12X22x3VrQKTy5m7hPYtA6\ne3Gh8UdWj8kBzLZ7xfoiKW6JPhNCiVLsnLl9GlrnzlQ3nKGjkyfnLtXQ0tJCJxct9rb2xAfO49WS\nLLJG/iQoFuuLGJ93H5vDtxGoG0xBWT7Hzx8n99g7ZIZkUV1fxZM7p/P+uA+uyLYS2XzCPlR5nWZt\nj2TJ8HRSP1vAY32myP1ZCyzieoTnhWFjA9mj13CgYj9Li1Jp79gBja0DGjt7skevIWZXNCnBC+U9\nUlpdwrSCSXT36CEFqGJ9EeGb76erW3cpNAJyPEUWTDbbS34SQ+Y9K+nr6cdDWx7g9dHrLERyIXhP\n2Gy+l2bfGU9It5EUntzNvD1xmEwmEoNSWFqUig02PHVHDIUVu4jsN4O+nn6Eb74frbMXl4yX0djb\nU9NwloTBybx5ZB0mEzSbmlg9Nue6s/LaGlvivCK2hEtRT4yZ6voqZm2PZHLfaWz74QMqDafROnnh\naO+IyQR3agfy0YkPwQbW3vsmoT3DKCjLZ9aOSFaPyaGmoYYVX2ZQXluOCRMdHTuSEbLCQuxWjmHl\n+BbiuMg9u9453PocrQXPG+2fq92DIgdR2AO3to2yHeI7wrpN4n0x995s4tkveW5SrRpVVFRUVFRU\n/meodkM3B+qzk4qKioqKyu8D9dnp5uB6np2sLfyELZ2wsjp2/luidkxnbPdQCxvBiX0e5eHeE/Fx\n972qRVaxvugKi622bLKuZRs4qtsY+nj6cez8tzz+4UQc7ZyYeceTPNx7IiN876HgRD4jfO+RFoHi\nc8r9VtSWU9t4kScKprDt3/nUNxnY+cMO7GxtGeF7D/f2vB9nWxce6zeZB3uF88TtsxioG4SXc2cW\nfpZEr3a9yf7q7ywdsZw6Yx1RO5/gsT5TOKDfSwvN2JhsaWy5zLHz3zHdfxZezl58d/47Fg5bTGdX\nHT7uvng5e/HkzunSzk7Z1v6et/PSF0uwxY6TtT9QpP8cF40Lvdrdxl2+I2T7J+VH8I8j63nvu1xp\nLdiafVlt40UitoSTd/w9eQ2vRm3jRd47lstAr0D2VnzKtP7T8XD0kDaM4mdxrbu4+VhY8AmLQnEu\nfTz96OLmQ23jRZ7d/RRP3fEMQbpgYgOfZ+cP20m/O5M/93mEe3vch5uDu9xHa3aS4vhKRH/8Ess1\na2tQZT+K9vT3vB03B3d6tLuFD8q2sOzuDGb4R+GqcWXyhxH069ifeqOBt7/dwL6KvdKmc5PCHg+g\nV4fe3OP7J6ICohnqHcwXZ4p4tPfjBOmGcvjc15w2VBDa434O6j9ny/d5hHQdSWXdaQD+eXQjj/ad\nzFdVh5jx0VQ+Lt/JX4IW0MlFS+pnC1gyPJ1b2/diUn4EecffY/fJnUzrb7YGHOgVSNSOJ/Dr2I/n\nC2PkNd51cgeP9p3M5uN5HK75mhUjX5Gin4ejB8X6Ivp4+skMwF7tb+OrsyUM9AokYW88k/tOo6jq\nc1KGLqL4zBcM1gXxj6PrOVT1JYlBSQzUDcLZ3oU+HfxIGJJkMW7u8f0T9/d8ADcHdzm+nt39FEO9\nh/F4v2nc5TuCLi4+rCrNZlr/6YT1HMet7XsBZhHo8X7TpJ3nlu/zmNRnCvP3vUBnZx0LDyTxeN9I\nzjToefrOGO7UBjK6+72kF79IfOA8cg6vxdetK6O73cuByn3oGypx07ihsXHk4/KdZIasZGS3URzU\nfy7vAWtau9+s348smIyXsxdTtj1CkG4on5QXorHR8Pwnz+Js60Lsx0/xZdWXTOo7lTcOr8LV3p3n\nB77A4XPfYKKF6oYzXGyspc5YS0dnT4qrvuCOTgHUGw1sPv4+43tNYEiXYN45upHaxgtgMuFk58LB\nM5+REZJFnbGOZ3c/RXivh6+wl6yoLaePpx/9PW9H5+p9Q/aT1vdPa5a819s/wqqzv+ftcq5Qfq5X\nh97c7RNiIV62ZRXZ3/N2EvbMkecL5krVsd1DAbOt6ZM7p+PXoR/z9sTfVHaNv+S5yfZXbIeKioqK\nioqKioqKioqKioqKiooKln+NL/4KPz7QbC8o7OeUFSw+7r7yn/I1a4r1RTy05QFZ3SW2+zlVDYBs\nQ6BuMJvG5/PamDXyPZ2rN8YWI3GFsfJ44n9RYSPOUW+oRGOn4ZkBsdjb2nO2oYrH+kwhYc8cCsry\nWVqUyoOb7qW6vgq9oZKK2nI8nT3xdu3Cy//KkBaPgbrBvD56HYG6QHxcuzKl7xPUN9fRyVlLSvBC\n9IZKc/7aLeNIO7iYiC3hFOuL8NcGWFRPKBHn0c6xPStHZbNyVDZT/aYT90kMb33zJpEFkwHIDMmS\n1pHKc1OeuzhvjZ2GxKCk6+pzH3dfMkOyyChOl3aUogpNtF+ME3EMZVWboKK2nIQ9c+Q2Ykwl7Iln\naVEquUf/yfnL50jeN5/onTOJ3R3NpPwIiyqzpSOWX2HtpzyWaJfyc8r3WmvXtRD7tD5O9M6ZTMqP\nQG+oxMnOmUUHFqBz9Ubn6k0Hx47M3zuXRQcWsHpMDinBC0nYMwdA2iwqCdQNxsfdl9CeYUT5R7Pi\n0HJWHFrOJeNlOjt709fTzzx+6k8z86NIwvPuByAv3Gx/mXbQLMKmDEnF09mTuMJYWUWjN1SSGZKF\ns70LiUFJ0rpU6+KFztUbrYsXmSFZJAYlMffTOCrqyjlQsR8HOw3GFiPV9VUUlOUTWTCZgrJ8Htry\nAAVl+UzcGs64TaHM2xNHlH80x88fx8Xele0nt+Ht2oW+nn5o7DT4awPIG/8hK0dlk3ZwMQVl+UzK\nj2BVaba8l5TE7IomYks4k/IjAIgPnCsr5AA8nT1paKoHkBaVgIWVn4+7LxvDcunVoRd22NHBqQPN\ntLD+8Foq607zRMHjJOyNx9PZk/fHfWC2Pf1PNdvyL5YRHzgPH9euPNJ7Mk4aR9KGm+9vcQ+0Vckp\n7oO2EHNdaM8w3h/3Af7aAJpMRjYe3UBnFx3BPsPYND6flOCFfHhiC+0dOqKxs6eDUwc0thpWj81h\nzdj1rLk3B1+PrvKaxhXGsujAAjq76kj9bMF/xkY+L939MjrXLlw0/khjsxFAVpNZz9ei/QVl+cQV\nxsp+/bmI/VvbnF6rf0R12NIRy+XcLT6n/KwQc69FoG5wq5VvekMlkQWT5dwb2jPsZ38P3YyoVo0q\nKioqKioq/zNUu6GbA/XZSUVFRUVF5feB+ux0c3Cjz05KW7EJm8NYNeYNmZNztfyxqyHyx673c23Z\nZ4k2bRqfLxdRJ+VHcK7hHB2dO0prwcSgJDKK04kPnCutzIRlmXKhvVhfRMyuaJkxlXvsHRKDkgCY\nsX0qLS0mbG1ssMEGL9fOVDdUMbnPNN76dj3zBiWx7IvFLB2ewSuHsjh58QQdnT0511AjM5aE9WDa\nZ4vZ+u9NLLnrJV45lGWRSWUtnImF4Un5ESQGJeGvDWDi1nAuXq7l3KWzbJlQAFy5iKy0AVSee1e3\n7qwcZc6EulEbNuvcOevsOL2hkvDN9+Pt2gVne5dWx0ZBWT5pBxdb5H4VlOXz3MfPcv7yOWIHxBOo\nC5SWm9X1VXKstJYvJsak0uKyNStOMTaA6x6zyoylBzfdK/PoxHvKY4uxIzLbxufdR0tLC74eXVk0\nbAkZxekyN0p8Nm34ckK6jbyincIaFEBjq8HTqRMdnDrK/tC6eBG9cyaLhi2RFoWl1SUk75tv7pf6\n07jbt0PrqiUxKImoHU+wabzZEjRmVzRNJrOF6WtjzBaKNjbmTLKGpgaqG87gpnGns6tOCmnnLtVg\ngw2rx+bIcxX9Io57ufkS+nqzGGiPPetCN1xhfSeETiHaal28pCAmxtCk/AiaWozSklK8Vm+sl6J4\neN79mDCxOXybxXhUjhEhZD9R8Dhn6vUkD1nEum9WoTfowWRC52bet8gcFNfnQMV+3jyyDnsbDecv\nnaPm8lkAOjl6Udt0gdVjclqdu35uTlZFbTkPvH8vaSPSWXRggcxejCuMpd5YT0NTPQ52Dpwx6PFx\n92X2nfHkHF5LfOBc2X/iXhR2nMJOVfSNctyIPm2rjWK+EOLVryEiXc3itzW73Njd0TIzUnku1laL\ncGX+XVsI+0nrOf9GbWv/26gZZ1aoiz8qKioqKiq/D9TFn5sD9dlJRUVFRUXl94H67HRz8HOfnUSW\nkYvGRS5yW2c1Xe9+bkTAaCtvTbwn8oHAvPD51jdvygykyf2nXrFAOmFzGNmj17S6gFysL+KB98di\ngw22trZonTvjbO9Mk8nI7DvjWfFlBouGLQFA6+LFrO2RVNWbhYaOTp5cam7Ayc6ZlOCFzN87l4d7\nPcKrX61gS3iBPMaBiv0s+jyZ2QPmEOk/Hb2h8or8J72h0kII3BiWKzPUlo5YzsyPIqluOEPC4GQm\n9H5Y5o9ZC2EFZfmkfrZAihARW8JbPc71XreILeE0mcxVK0KIse5DIYpav668lpH9ZvBqSZYcOyKb\naXzPh/lX1RdSWAGI2vEEvm7dWDkq20IcVOaL5RxeK0Wpa51Da+1qDVEZ+frodQBMK5jE+tCNFgKd\nEJCU/ZM7Lo9N371Hrw690Lp4UV1fZSGaiW3ve28U5y+fs8jzEtc7MSiJYn0xed+/x7R+03n72w0k\nD10oBceVo7KJ3PY45y/XoHXujMbOXlYaPh1gFn3Tv3iRtOHLZabeylHmMTBxazj1xgZcNM68+6D5\nvtEbKqmurzJXQN72KBuPbiAleCFaFy8p8PX19JOin/LeEXaNBWXbePWrFUzp+wQh3f7Ualaf2F5k\nEYp5RGCdYafMXYvdHS3zCkurSwCkcCRy2sRxxP7rjfVUGipwtnOhi7sPiUFJ1DTU0Fdh2wpmATk+\ncC4p++fLfnyszxTSv3iRSX2m4u7gwdvfbsDBzoElw9MtRHdxzOvNc7QWi8R8tT50oxS2hIh/tOYI\nz3/yLClDUln3zSriA+cxb08c0XfEsurrV3ghcD7BPsPkOYjjF5TlSxHVwU5D1shs4gpjuXj5Is72\n5vmpNfFPiEutZS3+XK6WlynmttayMsX9rhTSlONFmYVIsHcAACAASURBVFsmfm+r/5Viamt/mCCO\nqczVu1n4Jc9NqlWjioqKioqKioqKioqKioqKiorKb4yPuy+vjVljsdBpb6v5WfvZGJZ73VU/V7Nx\n9HH3lRU+wpJwcv+prA/dyOT+U+U2yv9NJnMVhviMsuLgaM0RmmnGzcGdNWPXM2fQPFKCF1JpOI2n\nsycmk3mxPnHPXKrrq1gyPJ32jh2obbzIMwNiWT02R+6rsu40fz/0N4wtRt4oXUv0zpnE7Ipm3Ter\nsLOxp0e7HlJAFHZ2QsyytrLUGypl1ZjO1RsbG+jo5EnusXcsLP+U/VSsL2Lm9mn8cOGE3MfKUdny\nOGBebL+W1ZmwRxPHMTY3yf0Ji0vltmkHF1v0t3hdvLZ0xHJWlWYjSiEqasvJKE7nKf8YNpe9x6Xm\nBhKDkkg7uNj8b/hynhkQK9uqtH8DZPWN9bm0dl7W1nRXQ1huZhSn468NYH3oRikIKrexZmXxyyz6\nPJnnPn5WilHiugkKT+7G0c6J1WNyLBbr9YZK6o31zNoRycajb9LQVM/6w+tkXwkx8WjNEX5sPEdH\nJ0+MLY3Y22hICV7I0wGxJOyN5+1vNzB30F9YVZotRdmEPXPY9N17JA9diIvGmeShC+Vx4wpjpWi2\n7ptVNJmMLDqwgOr6KjaNzyek20gCdYMpKMsnPO9+wvPCmLA5jLe+edNsi/nBRFYcWs6Uvk9wQL+P\nRQcWWIxfYfOoFLWM/7ENFG1QWsIqK1wjtoRTXV9F1shs2XdpBxeTsn8+kdsep6GpnrSDi6X956T8\nCNIOLibKP5q88HwSBidzqbmBsd3uI/WzBSTsjedozRHiCmNltZsYS5WG06QELyRrZDaby97nSf9n\neevb9aw8lElVwxkuGS+TdnCxhV2oOAfx2tXuJ2urworaclaVZuPj5itFwMKTu6moLSeuMBZPZ098\n3brSwakD1fVVnLhwgsaWRt47/k9G+Y4l9fMUnih4nJhd0dJGt1hfRPK++Zw2lNPU0kTy0IUE6gYT\n5R/N2YYqDE11zNoe2arFqRDNlP35S7kRG17x3ZA7Lk+K5DpXb+xtf7KVFf+EjaPyGNdqQ2v3q7Ch\n1djd+HfZzc5vVnHW0tLCX//6V7799lscHBxYvHgx3bt3l+/n5eWxdu1a3N3dmTBhAhERETQ2NpKY\nmMipU6dwc3MjJSWFHj168MMPP5CQkICNjQ233XYbCxYswNa2bc1P/atpFRUVFRWV3wfqX02b+V8+\nN4H67KSioqKiovJ7QX12ujn4uVaNbVUI/JK/0G/L3uxGKoPEYnR84FxZCdLWZ8U5CEvE1tr/4v5F\nZH+VRcLgZFI/T5GVINX1VUTteIJJfaay7vAq7LFH5+aNvq6SDk4d6eSildZiEbc9SurnKXRy0tLY\ncpkLjRewx56X7nmZFV9mcL7hPF6uXrKCRqAUvcQi71vfvElIt5HSgi3KP5p5e+Lo4uZD9ug1sirD\nutpMVECJyqHWLBRF9dDVbOdENYaNDSQPXSirclqze2xrjFhXg1gfV9g3Rtz2KLnH3iEzJEvazsXs\niqa87uQVdoxXG0PXqlJsa3y0hlI8uFpVS7G+iOidM3G2d+FWj17sOFmAzrULzaYmnO2dLaqlphY8\nhsZWw5bwAosqNDE2C8q2seKQ2WrQx7UrM26PYtkXi9E6e2Fva09TSxNLhqdz/PxxFn2eTMqQVHKP\nvUO9sZ7nBsYDZkFxfM+HyD32DhvDcskpXceKQ8vp7OyNs8ZJXkMxfo7WHGHenjiMLUaShyxi7der\nqG44w7IRmbKiL64wltrGi7LyyWQy8XTAbNlWrZMXGSErLCwHAVm5JyrYlHavAjEehEgbuzuaf/9Y\nhpuDO5eaG1g15g3m753L2YZq5g76C+u+WUVFXTmZ96ykr6efhWVoaXUJs3ZEMm9QEhuPbuBi4wUu\nNP7I6jE5AKQdXCxFSCFIZxSnE9lvhrTOFNabKcELeffoO3xwYjOjfMey/E8vt1lJqZyD2hpfbc11\nAPe9N4oz9XpiB8Tz/479k2ZTEzY2NphMJkwm6OjckYjbHmXt16uoMJyio6Mn7g4eNJuasLc1Vx0C\nXGpuwNjchLPGSWagCTExpNtISqtLWq0KFX0/86NI7G3tZXXxr1mFVVCWb1Ed2Na+xZy2dMRyWbVp\nPb8p55obqfprjRudF/5b3JQVZzt37qSxsZF//vOfxMfHs3TpUvneuXPnyMrKYsOGDfzjH/9g69at\nlJeX8+677+Li4sK7775LUlISqampAKSlpfHcc8+xceNGTCYTu3bt+q2araKioqKioqLyX0d9blJR\nUVFRUVFR+WNiXSGhfL2gLL+NT93Yvov1RVdUYUzKj2BSfsR1VTyI6oPQnmFSNGutzYKNYblSrGjN\nqizSfzrdPXowoffDJA9ZRGjPMHSu3rL66YB+H7MHzGFd6AaWDE9H5+ZNO8f2UoxLDErizSPr8HHz\nJSNkBV3cfJk9YA5bH/qIkG4jqbts4ILxR0Z0CSEl+KeqH9FmUWUB5kXm5z95lgmbzQvNTS1GXv5X\nBl4unaVoJrZXildiQToleCGhPcMI1A0mb/yHbBqfb7HQHFcYe0U/K6+HqABZOSpbVhc627vICjDl\ncUV/KvcvXrNe8E7YM8diHAhbPZEpJyoCA3WDzdaH4/PbtI6zrihs7ZjKY93I2BJEFkwGaHOfFbXl\nzNoeibG5iSj/aE4ZTjK57zReG7MGdwcPng6IlRUtoT3DeDP0bdaOfdOiAkaISEdrjpD3/Xt4OnYC\n4N7u97G57H2e8o/B3cGD8T0fpqKunJqGGt7+dgMpQ1J5NnA2iUFJ6OtPs6zoRRL3zmF8z4dI/+JF\nKRBtP7mN2QPmUPDnXWSPXkOTyUhcYSzF+iLiCmN55VAWy0ZkknnPSib0fhh7W3taMPHKoSxpcZcZ\nkoWzvTN9Pf1YM3Y9Pu6+RPpPJ2VIKhNvm0St8SJaFy9WjsomMShJjpH3x30g7yNft274awMorS4h\nPO9+xuWFMj7vPvSGSor1RURsCSeuMJbkoQvp4NSRC40/MnfQX/DXBuDu4EHa8OVsLnuf+MB5dHPv\nQV9PP4tqPh93c/VWB8eOLCtajKGpDo2tgxTNABqa6kn9bAFpBxczvudDpB1cTGS/GSz/YplFJdap\nuh8oPPkx3188ziBtELvKt0ubSOsxuHTEcmnJeTWulqvlpnHHQ9OOV0tWUGk4jb6+kjMGPWfq9bSY\nmskMySLYZxhpI9LxdevKW2Hv8tqYNTjZOcuqQyFoAywatoTMkCzSDi7m/KVzvPyvDDZ99x6pny2g\ntLqk1Xkydnc0VQY9NjaQGZL1q4tm0womye8OZV8o/xdzRGS/GbIaMj5w7hX3uBBKxVz1c0Uzgfg+\n+qPwmwlnxcXFjBgxAoABAwbw9ddfy/fKy8vp06cP7du3x9bWFn9/f0pKSjh+/Dh33303AD179uT7\n778H4JtvviEoKAiAu+++m/379/9WzVZRUVFRUVFR+a+jPjepqKioqKioqPwxUS5GCksrvaGSB96/\nl2kFkwjPC5MLnT9n32JBvjXx5XorHYQA1JqNn7UVmbBGbA2RaaU3VJI8dCGbvnuPl4qXUKwvkqJG\nX08/jM1GNpe9x/y9c5n7aZzMNNO5elNRW07qZws4XVfBkuFmi78o/2i2n9wmF/ft7eyws7Fjw5E3\nmLUjUi4iizYrhR1/bQA9PG6RIlny0IVobDXY29qjc/WmWF8kt1ee46T8CN765k2e3DldLgRbZ7q1\n1s9iwVppRefj7itFk4zidBKDkmQFUmvWhyJjSbkofzVRS7QjL9ws6vlrA6g31hOzK1pe0+vNYbNu\nR2uvbQzLvSFBwPoeUFJQlk/ElnBWFr9Med0pztRXsuLLDEJ8RrHu8CqO1hwhyj+anMNrLY7prw0g\nozhdXnvR7xG3PUrCnnhOG8p5ZsBsHugxnre+Xc/4ng+x6utX5FjKvGclAD9cPMHGoxvkWFk6PIMO\nTh1JG76cXh164evWTbbV2Gwk/99bAPNYcLZ3kWJvZkgWNjaQUbyMVaVm4eW5gfH0cL/FQogBaGw2\nErMrGjCLqIUnd7O0KJX3v88lbbhZNHpqx0wLS0Pl2BMVlmkHF7N6bA5bwgtYNiITQO43MyQLf22A\nuYrzP0KemH9Cuo2Udp+pdy2RIqzoXzEfuGncWToiAzsbO/SG0xTri5lWMInpBVMwNjeRNdIs7i37\nYjFn66tJO5hKheEUl5obZOabk50z6w6vorz2JF+dPYQd9gBX2BhW1JYTqBssM7euJty3Ztco7t9n\nBsTS0FyPu4MHNv/Z/k++ownrMY7zl85xoGI/4/JCmftpnNyfztWblaOyWTkqm7SDi6mur6KyrpIz\nDZVyuyj/aKrrqyivPUnq5ykc//EYiw4skNdHzBE+7r5kjcymR/tbWDRsyc+6765GaM8wC8tT6z+e\nEPMGwNIRy8k5vJYo/2ii/KPJKE5vtU8jtoRLsfOXiGbi+yhhz5w/jHj2mwlndXV1uLm5yd/t7Oxo\najJ7+Hbv3p3jx49z9uxZGhoaOHDgAPX19fj5+fHxxx9jMpk4dOgQZ86cobm5GZPJhI2Nebi7urpS\nW6vaCamoqKioqKj8cVCfm1RUVFRUVFRU/rgoRZW4wliid87E3taezHtWkhduXvi/2kJxWwixoLUF\nT2uR4kb2LRY9lQKUMqOrLQJ1g3l/3AccqNjPzO3TWPR5Mi8EzgfMGVDCdm7lqGyaWprQ11Vypl7P\n3T4hLDqwQC5+v/tgHmvGrkfr4sXEreHM2xNHbeNF9IZKSqtLqGk4i86lC+l3/42lwzNIO7hYflYp\nZgk2jc+XotyiAwtICV6IvY2G0uoS2S4hfimFoZzDa3l99Dr52Un5EURsCbdY9Lfu56tlAYFZ3BMZ\nadbbiH0W64t4cud0iwoRa5HB+nW9oVK2RW+oxEGRN/Rr5CxZcz3ZbkrasmactT2Sf18s443Dq5ne\nL4r5QQuwt9EQ2vM+Ojt74+nsScLeeCL7zbDoLx93X+ID51oIm0tHmCuplo7IoLOLjhc//ysfnNiM\nsdlIsM8wXh+9jpBuI2U2WOLeOWidO/PMAHN13qT8CF4tySLKP5rlXywz24r2nULUjicorS5h5ahs\nbGzMGWGAtMME89h/OiCWKsMZEoOSKK0uIWFvPCnBCzlac4TwzfdTUJbPUztm0mxqoqGpgUUHFpAY\nlMSq0mxc7d1pajFy/tJ5YndHc7qunIjbHpXirrWIKu5FIaAk7p3DUztmYmODtI8Ec3VoSLeRUlSJ\n2RXNxK3hHKjYT22jubpt6Yjl0sZU9OXGsFxSghcS0m0k9cZ6mmnm/x37J8lDFtHR2RN7W3uq66sA\n0Dp78ePl85xrqCFlSCrxgfN4asdMZnw0lYameh7oMZ5aYy3RAbF09ehK3MezGZ93HxO3/nQvCfFH\niHhXq3wSAo01ekMlq0qz8XLpTEcnT54d8DwAu8q388GJzTTRRNahTIwtRs42VHPGoGdK/mNM2BxG\nXGGsPB8AW1sb2jt2oKbhLLO2R7Ks6EWaaebh2x7hiX6zMGHimQGx0qZTmakoxkLawcW/yb2ndfGS\n87JyvlFW7AmxPLLfDBL2xpOwJ/6KijMlNjatvnxdKM9RtONG54ebFfvfasdubm4YDAb5e0tLC/b2\n5sO1a9eOxMREYmJiaN++Pf3796dDhw6EhITw/fffM2nSJAYOHEj//v2xs7OzyOUwGAx4eHj8Vs1W\nUVFRUVFRUfmvoz43qaioqKioqKj88REVHzG7omnCKLOA4OoLxVfbn6iyag1ldtXVsmuU9oBiEfj9\ncR+QGJQkF+YjtoSjsdNI27q2qhOO1hxh0efJTO8Xxa5TO+jg1IG4wliMzUaq66t4cud0Xh+9DncH\nD6YPieLouSO8dXQ93m5dWBmSLdsrrAdfG7OGozVHeOVQFtE7Z2IygckGZtweJSt7hIChzOlSVqGI\nfKLEoCTK607Kti46sADgiowy66o70XeZIeY2xOyKRmOnabOiry2RSORUKXPklO+LrDMhQFpndwkx\nULRH/CwEpPfHfYDO1Zu4wliyRmbLjDPr7LZfyq9h6QbmRfbVY3MAOH7+OOsPr6PSUIGXS2eq66vo\n6NwRAG/XLrxyKMvifgFz9Y04Z9EnogLT09mT+Xvn0tjciMbWATBXaInKsFcOZbFqzBvUNNSQuHcO\nvm7dSAleSPK++WQUL+NsQxXzBicR7DMMz6+1cvxcvFxL3CcxdHH1pdnUhLuDO+8+aK4Ae/lfGYgy\np0UHFmAymTh+/jhLi1Jpbmnm+Pnj6A2naefYHheNC2AWvjJDspi1PZLzjTWs/XoVcwbN44VPnmNp\nUSrrD6/DRWPO2FLm2yXsmSNf83H3lZln4vpY3/MiX63JZKSh8RKLPk8GYNb2SJzsnAFzrpcY24lB\nSUTteIK5g/5CnbEWW2yZM2geAFUNZ9A6eTFj+1RsTDasuXc9NQ01rPgygw5OHUjYG08nJy983H2Z\n6jedXh168cGJzQTqAunRrgdxn8TQyUlL8tCFMldNtPN6xlVFbbnMwovyj2Zy/6nyXlRmtCXvm4/W\nyYvqS2ZBzNOpExpbDRpbDYmDUyivPWXOWrTzZqrfdDKK0+Vc4uWsQ2NnT+yAODYe3cAzgbHM+XQ2\nm46bj+Pl3Jm+nn5yHCvv12J9EXM/ff43yfqqqC0ndnc0JpOlWC7aYZ2DuKo0m3mDzONYaccpUFYw\n/txcM+V81Fo7fs/8ZhVnAwcO5NNPPwXg0KFD9O7dW77X1NTE4cOH2bhxIytWrKCsrIyBAwdSWlpK\ncHAwb7/9NqGhoXTt2hWAfv368fnnnwPw6aefMmjQoN+q2SoqKioqKioq/3XU5yYVFRUVFRUVlf8b\nBOoGy4onJb80V6a1nBtlzta1FjKVi6/vj/sAgCd3Tpd5RMYWoxSgJm4NbzXjqqK2nFWl2ehcvDmg\n38dzA+OZv+8FovyjWTkqG39tgMxqSgxKYmlRKu8e24iHQzsLWzMfd19z3pThNNX1VeQcXktK8EKc\n7V2Y1m86mEysP7xOVoopRTPrbDGRT9TUYq4yEllfuePyWDkqm9xxeRbVW9bZScq+E/Z8K0dlX7cN\npkD0q782wMLGEX4SQpSvt1WxZm17mBP6lhSQrD8jRDPr4/0a/Br7EwLpogML2Hh0AzY20MHREzAL\nTxG3PUpGcTqLhi2R+WbWBOoGy34orS6RNnEp+82VjolByXg4enC05oj8TNbIbLm/VaXZpA1fTu64\nPPy1ATSbmnC2d2be4CRyj71DzK5o7G3t5dh31jiRec9K5gyah76+kguXL8jqLxsbWDYiE39tALnj\n8kgYnEzusXfo6OSJDTa8/e0G5g1O4sfL55l9Z7wce0JA9HHtiovGnH92S/uerBm7nrzwfBKDkqTN\nnqgyjQ+cS0ZxOsX6IgrK8skoTre4Ltb3vMgOXDRsCTn3/YNOjl54u3Zh9dgccsflkRK8EHcHD1aO\nyiYzJAutixedXbzJPfYOCYOTscWWjOJlrPgyA1+3rmSErMDLWYeXa2eOnz8uRexXDmXh7dqFNffm\nsGjYEpZ9sZhifTFgFkc9nT2xs7HD1cEVrYvXFePpesaV3lBJpeE0Y7vdR9wnMRSU5Vt8Xm+oZNGB\nBejrT/Ngz3BsscXLuTPPBMzGzsae9BF/Y1Xpq2w48gYAhkYD6V+8yPieDxGoG4zeUImLxpm6ywbe\n/nYDTSYjJy6cwGQykX7335h9ZzwXLv9IzK5oiyozMabNY8GGRcOW/Cbikb2tRmYkWs/B1tXNZ+ur\nWfaF2X7y51Q1Xw0xz4rqv4gt4RaVcH8EbEwmk+m32HFLSwt//etf+e677zCZTCxZsoTDhw9TX1/P\nI488wt///nd27tyJo6MjTzzxBKGh/7+9Ow+Iqlz/AP4dFpFNcWFLpaSupkZqaLllSi5wQRGRQAwy\n3FPJwARN8Lov99pNLbe0SNNKEnEBMdRM3JJIzcxKJTVNEEFDFmGGOb8/uOf8ZoaZgUEZBvx+/rky\nM+ec9z3bfTvPeZ7XGwUFBYiKikJpaSns7e2xePFiODs7448//kBcXBzkcjnc3d2xaNEimJub69x2\nXh5LEhERETUEjo729d0Ek1Cf4yaAYyciIqKGgmMn0/AwYycxe0ihlGPHMPWgjSEPG7U9MFXNWlLN\nvqqttOwUKdNmYvqbUslD1W3qaldO8S14uvSU1lEiLwEAJI9Ikdp25PphzMp4B842LrBv0kzKFhH7\nMuXgeKwbtEkKjImf3Sy8gSfs2yJ5REqVjCptfc7KycTJmyew4ofF2OWfAk+XnlKQTcxQUs1Q05yz\nTDPIpZmhVtP9rG0bqu1QncdKc52qf2flZFYJkqm2KysnE1FHIgFAmoPLVKmexznFtzDhm7EQhMog\n1O2SXGwa8hk8HLtK55MuadkpUjajo40ThiUNBQC42LkiostE/DtrCd71nIPd2UlI8N4mlSYsVZTA\nQmYpzUPmn+yDKc9HIvXqHsT1mg9HGycpKyqn+BamH5oiZej8M2kQ8kvuwNHGGTN7xGBWxjtwsnZB\nM6tm0jUjzlm2Mms5Ph6SgF/zLyImIwpu9k8hcXgyjlw/jFbWreDh2BXn887Bw7FrlcxJzfMU+P9r\nZHL6eNwqvolNQz6Dt7uv2n5VPX/SslMw4ZuxgAyI6VEZtHayccbegAMAKsuyiqVUVc8d0fBkbzg0\naYHmVg5Y8+o65JXcxpxjs1CmKMOdB3mIe2kBAjoESr8X2x6w2xel8gfILb0FSzNLONu4wFxmgfWD\nN0llDlWPa02vJXG5tOyUKv0W+3Ly5gks/X4B5JDDDOYwNzODXCnH291mYvXZlQj6x2jsuLQdABDR\neSK++H0rNgz6BEtPL8IQNx+sPrsScS8twMbza5FTUhkc9XvKH1cKL0uZt2L2qOaxmpw+Xurjo6Ya\naNe3/m0XtiAmI0rtOGvuW133veqIfY32nCVlcoplb8Xz1FSCZw8zbqqzwFl94sMfIiKihoEPf0wD\nx05EREQNA8dOpuFhx06qD7/Fv/WVUtS2fGhKEOQVcqlkIAC1B+wP2z7xQfBre0dgx7DkagMX2ton\ntiun+BYmp49HTslfSPZPVSutdz7vHBxtnKSgkfjQWwxqWFvYqJWRjDoSKT209nDsqjXopNmHEcm+\nyCn+C442TtgbcED6jRjUUw1iaa5D9bjoC3yJpcqqC1hqbkP1MzGgutprnRSs0RYEFEtpqpaGG7H7\nn3C1fQK7/FOkfaUZ4DNVN+/f+N/cdfmIzYiGi+0TmPFCNNaeWy3tC0D3g33Vh/je7r5SwKZEXoK7\npQV4yqE93uoaiYRfNqtdH1k5mcgruY34E3NgbVFZDvHNtNcr54sWgDb27aTgrBgMUL0egMrSpLEZ\n0XC0cUJucQ6cbV2wpF9l9lfc8Tn/a9+fMDMzw/KX36/MwHxuKsZ6RODI9cN457tpAAAXG1fkl97B\niv7/xZgu4VK/xPMpp/iW2nWjFki+fwObh26RAkjazltx/+SX5mPj+XXIK86DQ1MHKWAoBj3E/3Wx\ndcWR64elffZm2uvIL72DzUO3VB6nY9GoqKhAaxtHTPR4C4mXvqxyfG7ev4Fdv+/EF79tRX5pPuJ6\nzcfac6sR12u+dJy0XV/VBXBUryFt16zqPaSwrBCj/hGMry99hZk9YqQAZljKaLzXKx7/OjEXhfK/\n8Zl3ZQDN0cYJk9PHAwBmvBCNAW5eCE0JQm+Xvki89CXuywvR1q4dlvRbIc0nphn4O593DlHfvg2H\npg5qGa2PkrbgueY+Ck0JQmFZITYNTdB7L9B2T6oJ8f4pr5CrlXs09P/P6trDjJvqrFQjERERERER\nERERqVOdl0b8W99cZdqW3+6biMThydJDZnEdjyJoplqGUZxLRwwcaJYz1Cen+BbGpo2Bi60rkkek\nINk/Va20HlA575QYGFG13TcRu/xT1AJUsRkzpSyYCeljkVN8Cwne2+Bi64rQlCCp3aolGwHAxtIG\nHw9JkIJm4m9USziK+1XfcRH3u+qDfdXfjE0bg6ycTL0l0TS3ofrZ+wNWw8LMEnklt3XuU835lMTP\nlvVbCWuLynmzxH3VEGTlZCJgty/C00bj3e9mwP/pQCzsuwQbz6/Daq918HTpWWWfa1ItWSlaN2gT\nLM2awMnWBXG95mNMl3C160MsZbfg5DxYyCzR26UvAMDMzAxKQYlW1o6QyYAj1w+rlcQThMr5s/yT\nfTDl4HgMcPNC8ohU7A04gBX9/wtzmQXmHJuFCeljMeOFaCzsuwQyMxlie8ZhgJsXJj43FRvOf4jz\neecwwM0LEZ0nwkJmgeAOYyAX5IjJiEJWTqbaOZxTfAsj9/hJ57t4Dk8/NAVvd4/GE3ZtsfT0IrUA\niGrQQvw7KycLH51djYkeU1CkKMTUbpGYfmiKWrAMqJzz73zeOUR9Nx1jO4+Di63r/7IAZbh89zLm\nHH8XMT3mopW1I+6WFaBF0xZaj6tf0lAs/D4e3R17oKAsH1f/vgq5Uo6lpxchKydTKvOnGgCrjnh/\nCk0JQlp2itp1L/Z1u28iPF16/u96ssDu7J24XZoDAGhqbo2TN08gvywP73w3DSWKYsS9tAAejl2x\n9PQiTD80BRWCAn8V30Ar68qyobNfnIttv32GUnkJnKydEe0Zg5VZKxDtOUtredSIA2G4U3YbRfK6\neTlVzDjTt8/E+4m1ReX8deK9SddvDQ1wZeVkSnPCicFBXWVCGzJmnBEREVG94VvTpoFjJyIiooaB\nYyfTUBdjp7p8S9+Qslma2WKv7R0BCzNLKYNDNcutuqwQMUtGXzlKzWwHcb4mbftBXOf0Q1Nw/f5V\n7B6xX21+M9X1qG5L89+qGWKqy+jqR02Pi2qGUG2Podh/MYuuphmImtmG+ko9mgrV7KC07P3Y/usW\n5D24jdZWTrCzspWy5/RRzbwRzwExu2pC+lg4Xrjk+wAAHqVJREFUWjvBvkkzrSUrxay8pacWYcel\n7WjexAHmMnMUlhcivNObSL26F/fK7mLj4E/h7e6rlvEYf2IOLGSWUtBA7EuJvAQVggIRXSZid3YS\noj1nYfyBN+Bk6wx5hQL3ygvg0KQlrC2bwkJmiQcVpcgtzsHmoVuQlZMFTxdPtcwxXeU5xSzDdnZP\nIr73fKnEoy4fZq3Cgu/jYA5z7Bv5jfS5ank9zW2mZadIZTIDdvtiVo/3pD6JJSyHuPngm+v71dYh\nlpAsq3iAnJJbaGvXDsXyYpTIi6VsQjGTTSw5KJZbBarPfBLvA+Jcb7r6Lh6TiR5T8O53M9C2WeWc\n4IIAFDzIx315IVpbOSH9tSNqyyWc/wQfnfsAbe3bSRmvR64fxsqs5TCXWcDG0gYTPaYg4ZfNVe4L\nYlbiy08MQNCzwQa9yFCTa1Qzu7K634rXV17JbbXs2ppuT18b9N1vTAlLNWrgwx8iIqKGgQ9/TAPH\nTkRERA0Dx06m4VGNnYwR3KhNQE4z0ASol0UT/9ZHs6Sg5vxr+tqqq9yk6kNjANLDe0Pn8arNfHLG\neCis+qBbsyxfdW3TLOunGWTRVfqxPon9nf3iXGl+sqycLOzO3qkWlNJF9RxT3V8ApBKgIs3+iwGO\nuF7zEXEgHApBAQszCyiVFQAAAQLMYIY3Oo/DdM8ZUqBmbOdx2Hh+nXSMVNsnln6ckD4W7eyexNRu\nkXi2VSfkldxGTEY08kvvILZnHHq36SMF4BacnIdSRSkqBAVyS3LgZO2CBJ/PdZ7/mtsDUO11JS7r\ns/NVxPR8D2O6hKuda7quHdV7h2rWKVAZnPR3H4llmQvhattGbe7C1/aOwNW//8DsF+PxyYWNiOgy\nEct/WITJHtPh7e6jdS4sQ6+xtOwUONo4ScEzXUEk8Xf+yT7YNOQzAJUlNB8oHiCvNBcJ3tuk9Sx7\n+T/4Nf8i3vluGsxhgU+9t0plZENTglCqKMG6QZuQV3JbyjjTtt207BRMTH8TLrauNQr+au7rmtxb\na3rMz+edw4KT86TPVAO9tX1RQ/MeU9MSm/WFpRqJiIiIiIiIiIgaCM1ygoDhc8xUt35xnYY+HNUs\nV6hagkuc26k6LrauUtBMLB0olmWrrq26HuSLpd0WnJyHhafmYcrB8SgsK0TUkcgal3rT7F9d/P5h\nKJRyKSCjLZtFtZ+q55D4MDxozwgE7PaVgipiSUJ5hbzKtuqbWFbP290XScP3wcOxK765vh8WMkvE\n955f7X5XLVupur+OXD+MN9JCkZa9XyoDqtn/nOJbuH7/Go5c/xYKQQ4XGxdMff5tPGHXBk42zgj6\nx2hABnzyy0b47HwVUUciEe05CxvPr4O8Qo68kttVjk1sxkx4OHbFx4MTMLVbJGIzojFi9z+RX5qP\nOyV5aNm0FRIvfQkXW1ep34nDk7FpaAIAwM7SHvkP8jD90BS9x1q1/54uPWt0fbexb4tPvT9Hwi+b\n1dbhYuuqs/yqailFzTkEoz1nYfuvWyEIAhb2XaJ2j4jrNR8AsOXiJxAE4IvftmKyx3Rs/PkjqQyp\n5voMDZqFp41GXsltRHvOwsT0N7WWIczKycTE9DeRV3IbbvZPwdHGCUtPLwIAKIUKCBBw+e5lKSA6\n/dAUfHR2NZytXdGuWTspoAZUlmu0kFkCABaemodoz1lYmbVC637zdvfFxsGfSr+vCUPu0zU55mIA\nc8HJeVAIcqx5dZ1aILq25RTFIJl4jjZ2DJwREREREREREREZkaHzmhlC8yH7owr8iOXhXts7Qu9D\nU3H7qg/HdQXENOcEq66tLrausDS3RFyv+RAEwMbSGu8PWG2SmQ61IdYF05aNqG0+J82Sk4nDk7HL\nP0Xa12JwqrrsrfoitkkMfm33TcSaV9dhZdYKnXMyqVI9p8TgYcIvmxHZLRrrz6/B7eJc5JXchkxW\ndbll/VZi26+fwdnaFcEdxmD9T2tQIVQgr+Q2Ei99gQqhAs0sm8PKvCneH7Aa3u6+2O6biPje8zHp\nYATSslPUti0eiznHKgNsHw9JQLJ/Kga4eeGp5u3xqffnanMSisvlldxGTkkO7ssLoRAUmNqtMtin\neV3oCnTU9LiqBlzEfQ2gynklEoOBqteoeB4uPb1ICm6qZvbdvH8DHo5dsScgrXKeOXMLlMhL8c31\n/dgw6BNpH+rLOtX2b1Uejl3xVLP28HDsCg/Hrmhr5ybda1S52LqirZ0bPBy7InF4MoDKuRMX9l0C\nh6YOaGHVEl/8tlUKiD6oKEV87/lIG3UI6wZtkvYXAClr69f8i7h+/xocbZz0Bp48HLtq/Vyf2r7c\noIuFWWUAWpz7UHOZ2twPxLnTLM0tpZcoxHPJFO8vD4uBMyIiIiIiIiIionqgmUXyKKg+ZH+U6/Z0\n6Ylk/1TsGKY/CKPtIb+uTDMx26OmD13Fh7SONk6wsbTBW10jtT4018XUsyTEB9LashG3+yZqfUCt\nGWDRFqBsCA+1xWChp0tPRHvOQmzGTIOPl5gl9V6fePi7ByK/7A7e/S4K2iYqGuDmBVe7JxDScQzW\nnlsFGws7THhuCpRQQkDlAiWKYshk6hlSHo5dsWHQJ1UyjtrYt8X5vHO4UfQnJnpMgbe7r5Q9uGNY\nsvQbTY42Tmhj2xaOTZ3Q1q4dnm3VCQBqdA0ZSrwniPta9bzS9lsx4K0ZcNvumwgPx66wkFlKGZ+q\nwd28kttwsXWFQqmAtUVlcLu6YJJqwF9bhp1qu8QSiGKwWFdAUfzufN45jNzjh/N557AyawXe6hqJ\nYkURSuSl8HDsitkvzkVe6W0sODkPOcW3pD6J67U0rwxCbTy/Dh8PTpACvfpYmtc84+xRU83mfH/A\n6lpdS7p4uvSsss6GcH+pDc5xRkRERPWG83SYBo6diIiIGgaOnUzDoxw71eX8WQ8zj42xiPMBqWZJ\nVUfs19jO4xB7LBpu9k9WG8xTXc6U94ehcz5pm9NM83tT7zOg3k4A0lx3YuDJkP0hzoM3Mf1N2FjY\nYpvvDgDq2WniA/8Ryb74q+gG5EJlKcdWVq2RX5YPQICDVQvM67UQA9y8APx/0Clgty92+adIn2lK\ny06Bt7uvWp/O553DpIMRUmlJbe1dcHIeQp8Nw5aLn8DawqZOsnjE4BYAtfnNajtPlWbgRJxXa9LB\nCCzp+2/EHovGx4MT4OHYVZpTTd/8XJpzKj6K/qvuYzF418a+LdKyU7D09CKpz2nZKdL34vx34hxm\nYruqmxdOc7uP6vg97Lrqav5MU76niDjHGRERERERERERUQNTlw8eazuPjTHpK7WmT4L3NozpEl6j\nDDhRQ9gfhgaJQlOC9M7x1hD6DKi3U/y3i60rxqaNQVp2So0zM8VlPRy7YpLHNDjbugCAWnaMGEgB\ngPWDN2Hz0C140r493u42Ey2atsTb3aJhBjPcK7uLVWdWqmUAns87h6uFf+B83jmd+1QMtqiWb1yZ\ntQIbBn1SJeAi/sbRxglypRzLMhfi5v0bmP3i3Do5ZmImkrYsJH3z4Ok7vzSz4sQ56wa4eaGd3ZNV\nMs2qOx9V5+17FFTPCfG4A1ArG3nz/g2szFoBoHL+uxJ5aZW508QyhTWdU/FRBs2qK49rrLbU9TpN\nDTPOiIiIqN7wrWnTwLETERFRw8Cxk2ng2OnRMuQheUPJoKotQ/unWSqwscnKyUTUkcgaZ/kAkLLC\nrhb+gf++8iHGdAnXOmccAGlfi+X5SuQlmPFCNKK+m47IbtEY6xFRJZi57cIWjOkSblA/9J3j4jFf\n9vJ/pM9q2teHodomfRlnWTmZerPEarqNtOwUrMxaoXc9dV36r7rjAFRmlckr5IjvPb9K5qD4vTHn\n9BLnlkz2TzXKedHYPMy4iYEzE9ZQUh6JiIhqiw9/TMPDjp04ZiEiIjIOjp1MQ2N57tRQNfaxp6H9\na8zBxNqWEMzKycSUg+OlubD0rV/8XgzSTfSYgpiMKOwesb9KoKKu9rUpnNPa2qAa1HuYoE1N1mMq\n57G24J1mkNHY7cvKyWTQrJYYOGuE/vz7TwR8FYBdwbvQrnm7+m4OERERkVYcsxARERER1a8///6z\n0Y7Fa9u32iz3/Y3vMTV1KuL7x2P4s8MfaXsaqkfV35qs53Hbt2TaGDgjIiIiIiIiIiIiIiIiAmBW\n3w0gIiIiIiIiIiIiIiIiMgUMnBERERERERERERERERGBgTMiIiIiIiIiIiIiIiIiAAycERERERER\nEREREREREQFg4IyIiIiIiIiIiIiIiIgIAANnRERERERERERERERERAAYOHvsKJVKxMfHIzg4GGFh\nYbh27Zra94cPH0ZgYCCCg4OxY8cOvctcu3YNo0ePRmhoKObNmwelUimtp6CgAEOHDkVZWZnxOtfA\nGePYJCQkICgoCEFBQfjwww+N28EGzBjHZtu2bQgMDMSoUaOQmppq3A42UMa6nymVSowfPx5ffPGF\n8TpHRCaDYyfTxbGTaeK4yXRx7ETU+J07dw5hYWFVPtd2fcvlckRHRyMkJAShoaG4cuWKsZtrMEP6\nV15ejujoaLz22muIiIjA1atXjdxaw+jqGwCUlpYiJCREOkbV3c9NkSH9q8kypsaQ/snlcrz77rsI\nDQ3FqFGjcOjQIWM21WCG9K2iogKzZ89GSEgIRo8ejd9//92YTa2V2pyb+fn5eOWVV0z+vmlo3wIC\nAhAWFoawsDDMnj3bWM2sNUP7t2HDBgQHB2PkyJFITEysfgMCPVYOHDggxMTECIIgCGfOnBEmT54s\nfVdeXi4MGjRIuHfvnlBWViaMHDlSyMvL07nMpEmThFOnTgmCIAhxcXHCN998IwiCIBw9elTw9/cX\nunfvLjx48MCY3WvQ6vrYXL9+XQgICBAUCoWgVCqF4OBg4eLFi0buZcNU18cmPz9f8PX1FcrLy4X7\n9+8L/fv3F5RKpZF72fAY434mCIKwcuVKISgoSNi+fbuxukZEJoRjJ9PFsZNp4rjJdHHsRNS4bdy4\nUfDz8xOCgoLUPtd1faenpwuRkZGCIAjCsWPHhGnTptVHs2vM0P5t3bpVmDt3riAIgnDlyhUhIiKi\nPppdI7r6JgiC8NNPPwkBAQFCnz59hMuXLwuCoP9+booM7V91y5gaQ/v39ddfC4sWLRIEQRDu3r0r\nvPLKK8ZsrkEM7Vt6eroQGxsrCIIgnDp1qlGem+Xl5cJbb70lDBkyRO1zU2No3x48eCD4+/sbu5m1\nZmj/Tp06JUyaNEmoqKgQioqKhNWrV1e7DWacPWaysrLw8ssvAwC6deuGn3/+WfruypUrcHNzQ/Pm\nzdGkSRN4enoiMzNT5zIXLlzAiy++CADo378/Tpw4AQAwMzPDp59+CgcHB2N2rcGr62Pj4uKCTZs2\nwdzcHDKZDAqFAlZWVkbuZcNU18emZcuWSE5OhqWlJe7cuQMrKyvIZDIj97LhMcb9LC0tDTKZTFqG\niB4/HDuZLo6dTBPHTaaLYyeixs3NzQ1r1qyp8rmu67t9+/aoqKiAUqlEUVERLCws6qHVNWdo/y5f\nvoz+/fsDANzd3U06M0RX34DKzLmPPvoI7u7u0mf67uemyND+VbeMqTG0f97e3nj77bcBAIIgwNzc\n3CjtrA1D+zZo0CAsXLgQAPDXX3+hWbNmRmlnbdXm3Fy+fDlCQkLg5ORkjCbWmqF9+/XXX1FaWoqI\niAiEh4fj7NmzxmpqrRjav2PHjqFDhw6YOnUqJk+ejAEDBlS7DQbOHjNFRUWws7OT/jY3N4dCoZC+\ns7e3l76ztbVFUVGRzmUEQZD+I9XW1hb3798HAPTt2xctWrQwRncalbo+NpaWlmjZsiUEQcDy5cvR\nuXNntG/f3ki9a9iMcd1YWFjg888/R3BwMIYPH26MbjV4dX1cfv/9d+zbt08a0BLR44ljJ9PFsZNp\n4rjJdHHsRNS4DR06VGvwS9f1bWNjg5s3b8LHxwdxcXEmXxLP0P516tQJ3377LQRBwNmzZ5Gbm4uK\nigpjNrnGdPUNADw9PeHq6qr2mb77uSkytH/VLWNqDO2fra0t7OzsUFRUhMjISMyYMcMYzayV2hw7\nCwsLxMTEYOHChRg2bFhdN/GhGNq/pKQktGzZskG8IGRo35o2bYpx48Zh8+bNmD9/PmbOnNmo7it3\n797Fzz//jFWrVkn9EwRB7zYYOHvM2NnZobi4WPpbqVRKJ5nmd8XFxbC3t9e5jJmZmdpvTf0tAlNn\njGNTVlaGmTNnori4GPPmzavrLjUaxrpuXn/9dWRkZCAzMxOnTp2qyy41CnV9XJKTk5Gbm4s33ngD\nu3btQkJCAo4ePWqEnhGRKeHYyXRx7GSaOG4yXRw7ET2edF3fCQkJ6NevHw4cOIDdu3cjNja2Qc61\nqqt/gYGBsLOzQ2hoKNLT09GlSxeTzuwxhL77OTUMt27dQnh4OPz9/U0+uFQby5cvx4EDBxAXF4eS\nkpL6bs4js3PnTpw4cQJhYWG4ePEiYmJikJeXV9/NeiTat2+P4cOHQyaToX379nBwcGg0fQMABwcH\n9OvXD02aNIG7uzusrKxQUFCgdxkGzh4zL7zwgvQfL2fPnkWHDh2k755++mlcu3YN9+7dQ3l5OX74\n4Qd0795d5zKdO3fG999/DwA4evQoevToYeTeNC51fWwEQcBbb72Fjh07YsGCBY1mwGgMdX1ssrOz\nMW3aNAiCAEtLSzRp0kTtYQRpV9fHZdasWUhMTMTWrVsREBCAsWPHSqU+iOjxwbGT6eLYyTRx3GS6\nOHYiejzpur6bNWsmZWo1b94cCoXCZDOy9NHVv/Pnz6N379744osv4O3tjXbt2tV3Ux8ZffdzMn13\n7txBREQE3n33XYwaNaq+m/NIJScnY8OGDQAAa2tryGSyRjVO27ZtGz7//HNs3boVnTp1wvLly+Ho\n6FjfzXokvv76ayxbtgwAkJubi6KiokbTN6AyCy0jIwOCICA3NxelpaXVTpXA1xEeM4MHD8bx48cR\nEhICQRCwZMkS7N27FyUlJQgODkZsbCzGjRsHQRAQGBgIZ2dnrcsAQExMDOLi4vD+++/D3d0dQ4cO\nrefeNWx1fWwOHjyI06dPo7y8HBkZGQCAqKgodO/evT673SDU9bExNzfHs88+i+DgYGlOCHHOCNKN\n9zMiMgbea0wXx06mieMm08X7GdHjpbrre+zYsZgzZw5CQ0Mhl8vxzjvvwMbGpr6bXWPV9c/S0hKr\nVq3C+vXrYW9vj8WLF9d3k2tMtW/a6Lo3NxTV9a+hq65/69evR2FhIdauXYu1a9cCAD7++GM0bdrU\nmM2sler6NmTIEMyePRtjxoyBQqHAnDlzGkS/RI353Kyub6NGjcLs2bMxevRoyGQyLFmypEFlslbX\nv4EDByIzMxOjRo2CIAiIj4+v9sVImVBdMUciIiIiIiIiIiIiIiKix0DjyZUkIiIiIiIiIiIiIiIi\neggMnBERERERERERERERERGBgTMiIiIiIiIiIiIiIiIiAAycEREREREREREREREREQFg4IyIiIiI\niIiIiIiIiIgIAANnRGRkSUlJiI2Nre9mPLSwsDB8//339d0MIiIiauQ4diIiIiLS7saNG/Dy8tL6\nXceOHet02/7+/nW6fiKqXwycERERERERERERERHV0O7du+u7CURUhyzquwFEZHoUCgX+9a9/4dKl\nS7hz5w7at28Pd3d3ODs7Y9y4cQCAyMhI+Pn54fnnn8fMmTPx999/o0OHDsjMzMTRo0f1rv/atWsY\nM2YM7t27h4EDByI6OhoymQw7d+7Ep59+CplMhi5duiAuLg62trY617N8+XIcP34c5ubmePXVVzFt\n2jSsWbMGV69exfXr13Hv3j0EBwdj/PjxSEpKwq5du6RthoeHIz4+Hjk5OZDJZIiOjkafPn2Qm5uL\nOXPm4P79+8jLy4Ovry9mzpyJ8vJyvPfee/j555/Rpk0b3L1795HucyIiImq4OHbi2ImIiIjq3vr1\n67Fnzx6Ym5ujb9++CA0NxYMHD/DOO+/g0qVLaNasGT766CO0aNFCWubevXt47733kJ2djSZNmiA2\nNha9e/fWuQ0vLy94eXnhhx9+AAAsWbIEnTt3RlhYGJo3b45Lly7hgw8+wIgRI/Dbb7/pXP/Ro0ex\nevVqKBQKtG3bFgsXLlRrFxGZNmacEVEVZ86cgaWlJb766iukp6ejrKwMLi4uSElJAQAUFRXhxx9/\nxIABA7B48WL4+Phg79698Pb2Rm5ubrXrv3HjBtasWYNdu3YhKysLhw4dwm+//Yb169dj69at2Lt3\nL6ytrfHhhx/qXMfNmzdx9OhR7NmzB19++SWuXr2KsrIyAMDvv/+OhIQEJCUl4auvvsKFCxcAALm5\nudi1axeioqKwePFiBAYGIikpCevWrUN8fDyKioqwb98++Pn5YceOHdizZw+2b9+OgoICbN26FQCw\nf/9+zJ07F9evX3/Y3UxERESNBMdOHDsRERFR3fruu+9w+PBh6eWea9euISMjAwUFBXjzzTexb98+\ntG7dGqmpqWrLrVq1Cm5ubti/fz9WrFiBDz74oNptOTg4IDk5GZGRkYiJiZE+79ixIw4cOIBOnTrp\nXX9BQQFWrlyJzZs3Izk5Gf369cN//vOfR7cziKjOMeOMiKro2bMnHBwcsG3bNmRnZ+Pq1ato0aIF\nysvLce3aNZw5cwYDBw5EkyZNcPz4cSxduhQAMHjwYDRr1qza9Xt5eaFly5YAAB8fH5w+fRo5OTkY\nOHCg9PZNcHAwZs+erXMdzs7OsLKyQkhICAYOHIgZM2bAysoKAODn5ye9be3l5YVTp06hRYsW6Ny5\nMywsKm97J06cQHZ2NlavXg2g8k3xP//8E+PGjcOpU6ewefNmXLp0CXK5HKWlpTh9+jSCg4MBAE89\n9RS6d+9em11LREREjRDHThw7ERERUd06deoUfH190bRpUwBAYGAgkpOT4eTkhOeffx4A8Mwzz1TJ\ncs/MzJSCVh07dsRXX31V7bZee+01AJXjotjYWBQUFACAtJ3q1v/tt9/i1q1bCA8PBwAolUo0b968\nNt0monrCwBkRVXHo0CGsXr0a4eHhGDlyJO7evQtBEDB8+HCkpqbizJkzmDBhAgDA3NwcgiAYtH7x\nAQwACIIACwsLKJVKtd8IggCFQqF3HYmJiTh9+jSOHj2KkJAQ6c1mc3Nz6XdKpVL6WxxciZ9/9tln\ncHBwAFD5RnXr1q2xbNky/Pnnn/Dz88OgQYNw4sQJCIIAmUym1kbVPhAREdHjjWMnjp2IiIiobmmO\nfYDKF3lUxxgymazKOEtzDHLlyhW0b98eZma6C7GpLqNrbKRv/RUVFXjhhRewfv16AEBZWRmKi4t1\nbo+ITA9LNRJRFSdPnoSPjw8CAwPRunVrZGZmoqKiAsOGDUNqaiquXbuGHj16AAD69OmDvXv3AqhM\nmy8sLKx2/eLvysrKkJKSgj59+uDFF1/E4cOHce/ePQDAjh078NJLL+lcxy+//ILXX38dPXv2RExM\nDJ5++mn88ccfAICDBw+ivLwcf//9N7799lv069evyvK9evXC9u3bAQCXL1/G8OHDUVpaiuPHj2Pc\nuHHw8fHBrVu3kJubC6VSid69e2Pfvn1QKpW4efMmfvzxR8N2KhERETVaHDtx7ERERER1q1evXkhJ\nScGDBw+gUCiwc+dO9OrVq9rlevToIZVvvHLlCiZMmACZTKZ3GbHcdnp6Op5++mm92WLa1v/888/j\n7Nmz0lhr7dq1WLFiRY36SUSmga/9EVEVQUFBmDlzJtLS0tCkSRN069YNN27cgKurK1q0aIFu3bpJ\ng4w5c+YgJiYGO3bswLPPPlujckPu7u6YOHEiCgsL4efnJz2cmTRpEsLCwiCXy9GlSxfMnz9f5zo6\nd+6Mbt26wc/PD9bW1ujUqRP69++PCxcuwMrKCqGhoSgqKsKkSZPwzDPP4KefflJbfu7cuYiPj8ew\nYcMAACtWrICdnR0mTZqEWbNmoVmzZmjVqhWee+453LhxA6Ghobh06RJ8fHzQpk0bdOjQoba7l4iI\niBoZjp04diIiIqK6NXDgQFy8eBGBgYFQKBR4+eWXMXDgQGzZskXvcpGRkZg7dy6GDx8OCwsLrFix\notrA2Y8//oivv/4a1tbWWLZsmcHrd3JywpIlSzBjxgwolUo4Ozvj3//+t8F9JqL6IxMMrRNCRKRi\ny5Yt6NOnD5555hlcuHABcXFxSEpKqrf2rFmzBgAwffr0emsDERERkS4cOxERERGZLi8vL2zZsgVt\n27at76YQUT1ixhkRPZQnn3wSUVFRMDMzg5WVFRYuXIjU1FRs2LBB6+93795t0PrDwsK0ljAKCQnB\n6NGja9VmIiIiovrCsRMRERFR/dI3XiIiAphxRkRERERERERERERERAQAMKvvBhARERERERERERER\nERGZAgbOiIiIiIiIiIiIiIiIiMDAGREREREREREREREREREABs6IiIiIiIiIiIiIiIiIADBwRkRE\nRERERERERERERAQA+D9nDXmK/svmdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, axarr = plt.subplots(2, 3, figsize=(30,10)) #1 row, 2 cols, x, y\n", + "irow, icol = 0,0\n", + "fig.suptitle(\"pca against features\")\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " \n", + " icol = pltGraph(\"ohlc_price\", \"pca\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"pca\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"ohlc_price\", irow, icol, df)\n", + " irow+=1\n", + " icol=0\n", + " icol = pltGraph(\"avg_bo_spread\", \"period_return\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"period_return\", irow, icol, df, yval=df['period_return'].shift(periods=1).fillna(method=\"bfill\"), title=\"avg bo spread v future period return\")\n", + " icol = pltGraph(\"ohlc_price\", \"pca\", irow, icol, df, xval=df['ohlc_price'].shift(periods=1).fillna(method=\"bfill\"), title=\"ohlc 15 min future v pca\")\n", + " \n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAN8CAYAAABGOcflAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0FFX/x/H37maTkEI6JBB6iXRCC4ggoohIEbBQQnlQ\n8BFUpEgVEBBBihUeC0VEwJ+CgoCIIk2kg3QILfRQAiSQ3vf3x8pKSDEQyQb9vM7hHHb2zr3fuTNz\nZ+7eOxODxWKxICIiIiIiInKPGe0dgIiIiIiIiPw7qAMqIiIiIiIiBUIdUBERERERESkQ6oCKiIiI\niIhIgVAHVERERERERAqEOqAiIiIiIiJSIBzsHYCIiIiIiMj9Lp2F9g7hL5kItXcIGgEVERERERGR\ngqEOqIiIiIiIiBQITcEVERERERHJp4yMdHuH8JdMhWD4sRCEICIiIiIiIv8G6oCKiIiIiIhIgVAH\nVERERERERAqEngEVERERERHJJ4slzd4h3Bc0AioiIiIiIiIFQh1QERERERERKRCagisiIiIiIpJP\nFkvh/zMshYFGQEVERERERKRAqAMqIiIiIiIiBUJTcEVERERERPIpQ2/BzRONgIqIiIiIiEiBUAdU\nRERERERECoSm4IqIiIiIiOSTRVNw80QjoCIiIiIiIlIg1AEVERERERGRAqEpuCIiIiIiIvmkKbh5\noxFQERERERERKRDqgIqIiIiIiEiBUAdURERERERECoQ6oCIi/1DNmzcnKCjI9q9KlSrUq1eP3r17\nc+TIEXuH948VFBTEsmXL8pTWYrHw/fffc+3aNQC2b99OUFAQly5dupch5ioiIoJnnnmG6tWr89pr\nr2WbZsKECQQHB1O3bl2uXr2a7zITExNZuHBhvvMREbEnS0Zaof9XGKgDKiLyD9anTx82bdrEpk2b\n2LBhA/PmzSMuLo5evXoRFxdn7/D+9Xbv3s2wYcNITEwEIDg4mE2bNlGsWDG7xbRw4UIuXrzIsmXL\nGDNmTJbvT5w4wfz58xk2bBjLli3D19c332V+8cUXzJkzJ9/5iIhI4acOqIjIP5iLiwt+fn74+flR\nvHhxqlWrxrBhw4iKimLbtm32Du9fz2KxZPrs6OiIn58fRqP9Ls8xMTGUK1eOChUq4OPjk+X7Gzdu\nANC4cWMCAwP/ljJvrwcREfnnUgdURORfxmQyAdbODlg7FCNGjCAkJIQGDRrQp08fTp48aUufnJzM\npEmTeOSRR6hevToNGzZkxIgRtlG7JUuW0LJlS8aOHUvdunUZOnQoCQkJjBgxggcffJAaNWrw3HPP\nsXXrVlueiYmJTJs2jebNm1OjRg2effbZTN8PHz6ckSNHMmHCBEJCQggODmbw4MG5jtpevXqVwYMH\n06BBA+rXr0///v2JjIy0ff/tt9/Spk0batasSYsWLViwYIHtu+y2IbtlALt27aJz587UrFmTRx99\nlHfffZfk5ORsY8qt7s6fP09oaCgAjz76KNOnT88yBfde1NOFCxcYOHAgDRs2JDg4mH79+nHu3DkA\nunfvzuLFi9m5cydBQUFs374907pLliyha9euADz22GMMHz4cgGPHjvHCCy9Qq1YtmjZtypgxY4iJ\nibGtd/78efr3709ISAjVqlWjefPmzJ4925bnhx9+SEREhK3M6dOn06JFi0xl37rs/PnzBAUF8emn\nn9KoUSNatWpFSkoKFy9epH///tSpU4cHH3yQgQMHcvnyZVsee/fupXPnztSuXZuQkBCGDBnC9evX\nc6wrEZE7Ykkr/P8KAXVARUT+Rc6dO8e7776Ln58fderUISMjgxdffJHIyEhmz57NV199RYkSJeja\ntSvR0dEATJ48mfXr1zN16lR++uknxowZw8qVK/nmm29s+Z4+fZq4uDi+//57/vvf//LRRx9x4sQJ\n5syZw48//kiVKlV45ZVXSEhIAGDgwIGsWrWKcePG8f3331OrVi169+7Nvn37bHkuX76c9PR0vv76\naz744APWrVvHl19+me12paWl8fzzz3P+/HlmzpzJggULuHr1Kv379wdg7ty5vPXWW/Ts2ZPly5fz\nwgsvMGXKFD7//PMctyG7ZWFhYbzwwgu0aNGCFStWMGHCBNavX8/YsWOzjSu3ugsICODjjz8GYPHi\nxTz//PNZ1v+76ykuLo4uXbpw48YN5syZw/z584mNjaVbt27ExsYyffp02rRpY5sKHBwcnGn9J598\nMlPMb7zxBpcvX6Z79+5UrlyZpUuX2vb9K6+8Yluvb9++pKSk8OWXX/Ljjz/y1FNPMXXqVMLCwnjy\nySfp06cP/v7+2ZaZm5UrV7JgwQKmTZtGWloa3bt3x8nJia+//po5c+aQmppKz549SUlJIT09nb59\n+9KoUSN++OEHZs6cyYEDB5g8eXKeyxMRkfxzsHcAIiJy73z88cfMmjULgNTUVNLS0qhatSozZszA\nzc2NLVu2cODAAXbs2IGbmxsA48aNY9u2bSxatIj//ve/1KpVi9atW1O3bl0AAgMD+eqrrzh27Fim\nsvr160epUqUAOHPmDK6urgQGBuLu7s6wYcNo2bIlJpOJEydOsH79eubMmcNDDz0EwKhRo9i/fz9z\n5szho48+AsDT05NRo0ZhMpkoV64cDz74IHv37s12O7du3crRo0dZs2aNLYYJEyawZMkSkpKSmD17\nNj179uTZZ58FoGzZspw7d47Zs2fTq1evbLfhZifv1mWvv/46Dz/8MC+88AIAZcqUYdy4cXTt2pWB\nAwdmeXYzt7ozmUx4eHgA4O3tjaura6Z170U9LVu2jJiYGN577z08PT0B+PDDD2nevDnLly8nNDQU\nZ2dnzGYzfn5+WdZ3dnbOFLO7uzuzZ88mMDCQYcOG2dK9//77NG3alD179lClShU6dOhA69atKV68\nOAAvv/wyn376KUePHqVKlSq4uLhgMpmyLTM3oaGhVKhQAbB2iBMTE3nnnXdso/zvvfceISEhrF69\nmoceeojo6Gh8fX0pWbIkgYGB/O9//yM1NfWOyhQRkfxRB1RE5B8sNDTUNmXSZDLh6elp62gCHD58\nmPT0dJo0aZJpveTkZMLDwwF46qmn2LRpE1OmTOH06dOcOHGCs2fPZnr+z2AwZPr8wgsv0K9fPxo1\nakRwcDBNmjShXbt2ODk52Tqut4901a1blw0bNtg+ly5d2taRAHB3d880nfJWx44dw9vb29ZRBChf\nvjyvv/46165d4+rVq1nKq1+/PrNnz7a9gfb2bchuWVhYGGfOnMmU183nF8PDw7N0QPNSdzm5F/V0\n/PhxypUrZ+t8grUjWaFChSw/KORVWFgYYWFh2Y5choeHExwcTLdu3fjxxx/Zv38/Z86cISwsjIyM\nDDIyMu6qzJtu3d+HDx8mKiqKevXqZUqTmJhIeHg4bdq0oVevXowfP57p06fTuHFjHnnkEVq2bJmv\nGEREbrIUkimuhZ06oCIi/2AeHh6UKVMmx+/NZjOenp4sWrQoy3cuLi4AvPHGG6xdu5YOHTrw+OOP\nM3DgQMaPH58prdFotD1TClCvXj1+/fVX2xt4Fy5cyCeffMKiRYtwdnbONpaMjAwcHP68LN2a3005\nvazm1vVu5+TklO3y9PT0TOvevg3ZLTObzbRv354+ffpkyS+70bu81F1O7kU95Zan2WzOU1y3M5vN\nNG7cmFGjRmX5ztvbm/j4eEJDQ0lPT6dly5aEhIRQq1YtHnnkkTsqJy0t643drfvWbDZTsWJFZsyY\nkSWdu7s7AMOGDSM0NNR2bI4YMYJFixblOGVZRET+fnoGVETkX6xSpUq2l7CUKVOGMmXKEBgYyAcf\nfMDOnTuJjo7m22+/Zfz48QwbNoz27dtTrlw5zp07l+ubS2fMmMHu3btp0aIF48aNY/Xq1ZjNZjZs\n2EDFihUB658gudXu3btt392pChUqEBUVRUREhG1ZeHg4DRs25Pr16/j7+2cp7/fff8fPz882pTQv\nKlasSHh4uK2uypQpQ1RUFJMnTyY+Pj5T2rzUncFgyLUs+Pvr6dSpU5levBMVFcWpU6dsU1nv1M06\nKVGihK1OjEYjEydO5OLFi2zatImwsDDmz5/PK6+8QsuWLUlISCAjIyPHejCbzVnq88yZM7nGUalS\nJc6fP4+np6ctDh8fHyZNmsSxY8c4e/Ysb775Jn5+foSGhvLJJ58wefJktm/fbhsFFxGRe08dUBGR\nf7FGjRpRu3ZtBgwYwK5duzh16hSjRo1i3bp1VK5cGTc3N9zc3Fi7di1nz57l8OHDDB48mIsXL5KS\nkpJjvhEREYwbN47t27cTERHB8uXLiY2NpVatWpQuXZrWrVszduxYNm3aRHh4OJMmTeLQoUP06NHj\nrrbjwQcfpGrVqgwbNoyDBw9y5MgRRo8eTYUKFQgMDKRv3758+eWXLF68mDNnzrBo0SIWLFjAf/7z\nn1w7gbfr06cP+/fvZ9KkSYSHh7Njxw6GDRtGbGxslhHQvNTdzec+w8LCiI2NzbT+vaindu3a4e3t\nzaBBgzh06BCHDh1i0KBBFC1alNatW99Vnt26dSMmJobhw4dz9OhRDhw4wKBBgzh9+jRly5YlICAA\ngBUrVhAREcHWrVsZMGAAQKZ6uHHjBidPniQ5OZnatWtz7do1vvjiC86fP89XX33Fxo0bc42jbdu2\neHl5MWDAAA4cOMCxY8cYPHgw+/bto1KlSnh5ebFq1SrGjh1LeHg44eHhrFq1itKlS+Pl5XVX2y4i\nkklGauH/VwioAyoi8i9mMBj43//+R8WKFenXrx8dOnTg9OnTzJkzh4oVK2I2m/nggw84dOgQbdq0\noV+/fnh4ePD8889z8ODBHPMdNWoUDRs2ZPDgwbRs2ZIvvviCSZMm0aBBAwDeeustmjRpwpAhQ+jY\nsSP79u1jzpw5d/QG1FsZjUY++eQTvLy86N69Oz179iQgIMD2op7OnTszcOBAPvvsM1q3bs3cuXMZ\nPnw4vXv3vqNygoKC+Oyzz9i9ezft27dnwIAB1K9fP9tpn3mpu4oVK9KyZUsGDhxoi/VWf3c9OTk5\nMWfOHBwdHenWrRs9e/bE3d2dhQsXUrRo0bvK08/Pj7lz53L16lWee+45evfuTUBAAHPnzsXR0ZGa\nNWsydOhQZs2axZNPPsn48eNp164dISEhHDhwAICWLVtSsmRJ2rVrx4YNG2jYsCGvvvoqs2bNonXr\n1mzdutX2RuOcODs7M3fuXJydnenZsyddunQhLS2NefPm4ePjg7u7O7NmzeLcuXM899xzPPPMM6Sk\npDBz5ky7/t1VEZF/G4NFf/1ZREREREQkX2Jjx9g7hL/k7p639xDcS3oJkYiIiIiISD7pLbh5ozkn\nIiIiIiIiUiDUARUREREREZECoQ6oiIiIiIiIFAg9AyoiIiIiIpJfGXoGNC80AioiIiIiIiIFQh1Q\nERERERERKRCagisiIiIiIpJfmoKbJxoBFRERERERkQKhDqiIiIiIiIgUCE3BFRERERERyS+LpuDm\nhUZARUREREREpECoAyoiIiIiIiIFQlNwRURERERE8smgt+DmiUZARUREREREpECoAyoiIiIiIiIF\nQlNwRURERERE8ktTcPNEI6AiIiIiIiJSINQBFRERERERkQKhKbgiIiIiIiL5pSm4eaIRUBERERER\nESkQ6oCKiIiIiIhIgVAHVERERERERAqEngEVERERERHJJ4NFz4DmhUZARUREREREpECoAyoiIiIi\nIiIFQlNwRURERERE8isj3d4R3Bc0AioiIiIiIiIFQh1QERERERERKRCagisiIiIiIpJPhgy9BTcv\nNAIqIiIiIiIiBUIdUBERERERESkQmoIrIiIiIiKSX3oLbp5oBFREREREREQKhDqgIiIiIiIiUiA0\nBVdERERERCS/9BbcPNEIqIiIiIiIiBQIdUBFRERERESkQGgKrty1K1di7R0Cfn7udo+jMMRQWOIo\nDDEUljgKQwyFJY7CEgPYv91SXWSOQzEUnjgKQwyFJY7CEENhiaMwxHAzDvnnUAdUREREREQknwz6\nMyx5oim4IiIiIiIiUiDUARUREREREZECoSm4IiIiIiIi+aUpuHmiEVAREREREZF/uYyMDMaMGUOn\nTp3o3r07Z86cyfT98uXL6dChA08//TRfffXVXZejEVAREREREZF/uTVr1pCSksI333zD3r17eeed\nd/jkk09s30+ZMoUffvgBFxcXWrduTevWrfHw8LjjctQBFRERERERyaf7/S24v//+O02aNAGgdu3a\nHDx4MNP3QUFBxMbG4uDggMViwWAw3FU56oCKiIiIiIj8y8XFxeHm5mb7bDKZSEtLw8HB2mWsVKkS\nTz/9NEWKFKFFixYULVr0rsrRM6AiIiIiIiL/cm5ubsTHx9s+Z2Rk2DqfR44cYcOGDaxdu5Z169YR\nFRXFqlWr7qocdUBFRERERETyKyO98P/LRZ06ddi4cSMAe/fupXLlyrbv3N3dcXZ2xsnJCZPJhLe3\nNzExMXdVTZqCKyIiIiIi8i/XokULNm/eTOfOnbFYLEycOJEVK1aQkJBAp06d6NSpE127dsVsNlO6\ndGk6dOhwV+WoAyoiIiIiIvIvZzQaGT9+fKZlFSpUsP2/S5cudOnSJd/lqAMqIiIiIiKST/f7W3AL\nip4BFRERERERkQKhEdB/mMGDB9O2bVuaNWtGeHg4kydPxtfXlzNnzpCRkcGAAQMICQnhp59+YuHC\nhaSlpWEwGJgxYwbHjx9n2rRpmM1mnnvuOdq3b2/vzRERERERkX8QdUD/YZ599ln+7//+j2bNmvHt\nt98SHBxMXFwcEydOJDo6mm7durFy5UpOnz7NzJkzKVKkCGPGjGHTpk0UL16c5ORkFi9ebO/NEBER\nERG5v2gKbp6oA/oPExISwoQJE4iKimLz5s0EBweze/du9u/fD0BaWhpRUVH4+PgwbNgwXF1dOXny\nJLVr1wagXLly9gxfRERERET+wdQB/YcxGAy0a9eOCRMm0LhxYwICAggICOCll14iKSmJTz75BLPZ\nzEcffcSGDRsA6NWrFxaLBbC+/UpEREREROReUAf0H6hjx440a9aMZcuWUapUKUaNGkW3bt2Ii4uj\na9euuLm5UadOHTp16oSDgwNFixYlMjKSwMBAe4cuIiIiIiL/YOqA/gOlp6dTt25d29/tmTJlSpY0\nH374YbbrhoSE3NPYRERERET+ifRnWPJG8y3/YVavXk3v3r3p37+/vUMRERERERHJRCOg/zCPP/44\njz/+uL3DEBERERERyUIdUBERERERkfzSFNw80RRcERERERERKRDqgIqIiIiIiEiB0BRcERERERGR\nfDJkZNg7hPuCRkBFRERERESkQKgDKiIiIiIiIgVCU3BFRERERETyS2/BzRONgIqIiIiIiEiBUAdU\nRERERERECoSm4IqIiIiIiOSXpuDmicFisVjsHYSIiIiIiMj9LGVbbXuH8JccG+61dwgaAZW7d+VK\nrL1DwM/PnXQW2jUGE6H81KCzXWMAeGLH1/wS8pxdY2ixfZHdY7gZx9qGz9o1hke3LSbp4CN2jQHA\nufp6Eg8/ZtcYilRdw7I63ewaw1O7FwDw6QP/tWscLx35zO7HhXP19QCFIg57txctti/ih7qhdo0B\noM3vCwvF/vi8ah+7xgDw/OFZhaIu7H0NAet1pDCcI/ZuN8Hadso/h54BFRERERERkQKhEVARERER\nEZF8Mlgy7B3CfUEjoCIiIiIiIlIg1AEVERERERGRAqEpuCIiIiIiIvmlP8OSJxoBFRERERERkQKh\nDqiIiIiIiIgUCE3BFRERERERya8MvQU3LzQCKiIiIiIiIgVCHVAREREREREpEJqCK/9qFouFN0Ys\np2IlP55/4cG/LV+/xsFU7tcZo6OZ2BNnOTDhM9LjE+84nXMxHxp+/habQ4eReiMWAO+6VQl6rTtG\nk5GUG3EceX8escfPAuDbOJiKfbtidDQTd+IMh97+NNtyc0xnNBA0oCc+IbUwmEycWbiC80t/AaBo\nlQoEDeyJqYgzGI2cnr+MSz/9liXvh76fQVpc4j2JwaWUP1VH9cXs4U56QhIHx80g4cwFAMp0bUOJ\nto9gSbe+ga5IyeIkRlwGIPCZJyjZ8XGwWEiMuEzYpE9JjY7J+w4FigT6EzS0D46eRTGaHbiwYi1n\nv/oBAJ8H61ChX1eMZuu2hL39Sa55bfw9iY8WxJCSZqFyGTNj+3ni5vLn74ErNiQwf0Wc7XNsgoXI\na+msnlkcB5OBCTOvc/R0KkWcjDzVvAhdn3S7o22xxbErkekLbpCSaqFSGTNjX/HOHMf6eOYvj7V9\njkvIIPJaOj/PLoGDCd7+LJqjp1Ip4mzgqeaudGntnueyiz9UmyqvPofJbObG8bPsHT+btGyOk9zS\nlX32Mcq0b4bJ2cz1sNPsHTeLjNQ027qln2pKwCP12D7gvTzFVPrh6oQM6oDJ0YFrRyPY8MaXpMYn\n5Zj+kUk9iTp+gX2fW49PJw8XmrwZim+VQFITUji6dAsHF6zPc50UmuPCTnG4VShF0ODncXBzgYwM\nDr8zk9gjp+4odrOnO9XffAXnAD9rHpNmcuPAMQAq9+9OsUcbkRZjjT3+j7bjdsUeqs0Dr3TCaHYg\n5sQ59o+fle2xmZd0dacOIPlKNAenzAPAp15VqrzWBaODifTkVA5Nncf1Qydz3abCclwENq1BvYEd\nMTk6EHXsPJtGzcv1/Gjydi+iT0RwcO5q27Ium94jIfK67fOBz3/m5A/b8xxDQdZFdu16ekJi3tIY\njVR+rSfef1zHzn61nIilv+BaNpBq41+zrW8wGnGrWJr9w6fiUqoExVs0tn1n9iwK3Lvrumu5ktS4\nJRaMRtwrlmbfsGm4lA7A/5ZYuv/6DmZXZz6vNyBLufZuNwsdTcHNE42Ayr9WePgVnu85n59WHfpb\n8zV7ulN99EvsGf4+vz07iISISIJe7nLH6Uo82YSQmWNxLuZtW+bgWoTgyYM4On0hm0OHcXjyHGpP\nHIDBbP0tqdqofuwf8S5bnhtAQkQklfp1zbbcnNIFdmiBSyl/tnYdzPZeIyjd+UmKVq0AQM13BhM+\nazHbug9lz8CJBL3WA5dS/rZ8PWoGAeBUzOeexVB9XH/Of7earZ0HET5rEbXeGQyAd/0alGjXnB29\nR7Gt21AAqozqB4B7UHlKh7ZlV59RbA8dTMK5i1R4sXOe9uWtqo5+mcg1m9nRYwg7e79ByfYt8Kpb\nHbNnUaqO6seBEdPY1uk1Ei9cpuLLoTnmE3UjnTEzrvPuEG+WTy9OyeIOfLggc2e4bTMXFr1bjEXv\nFmPhZD98PY0M7+2Bj6eJqV/cwMXZyNIPirFgki+bdyfz666cL/a5xfHm9CimDfVh2f8CCPR34MP5\n1zOlafuIK4ve92fR+/4snFocX08Tw/t4WeP4/DouzkaWfOTP/HeKs2l3Eht3Zr0pyo6jpzvBY/uw\n8/UPWdtxCAkRkVR9tdMdpQtoXo/ynVuwpe8k1j0zHJOTmQqhrQAwF3Wl5she1BjaAwyGPMXk7OXG\nIxN7srr/Z3zd6k1izl2l4eAO2ab1LO9P2y8GUv6JepmWPzjiOVITkvim9ViWdn6H0k2qUbpZjTyV\nX5iOC3vEYXRypM5HozizYDnbewzj5OffUWNc/zuO/4EhvYnee4StnQdx4M3p1Jw4CKOTI2Btow6M\n+oBt3YeyrftQDoz6IMv6jp7u1HrzRX4f8gEbnh5CwvlIHsjh2PyrdBV6tME7OMj22eBgos6kV9g/\nYTYbu4zk+JzvqT2+b67bU1iOC2cvN5q8/R/WDfiE71qPJvbcVeoN6phtWo/y/jzx+WDKPVE30/Ki\nZYuTEpPAso7jbf/upPNZ0HXxV+16bm1/yQ6PUaSUP9tDB7Hz+eGU6tSaolUrEn/6PDt6DLH9u7Zj\nH5d+3sSVDTs4M/972/Ld/d4kI8ka2726rsefirCdC9u6DyVq+z4u/ryJyA07OP3lMttygNTEFH4Z\nOCtLufZuN+X+pQ7ov9jRo0fZuXMnAM2bNyc5OdnOERWs/1u4iw4da/NEq2p/a76+ITW5cTichHOX\nADj33S8EPPHQHaVz8vWi2MP12TXwnUzruJQOIC0ukaidBwHrL/hp8Yl41agMwI2wP/M7v2Q1/k80\nyVKuT0itHNMVe7gBESs2YEnPIC02nku/bCHgiaYYHc2cnL2YqJ0HAEiOjCLlRixOxXwAcPT2oMqQ\nFwDISEq5JzE4+XnhWrYEl37ZAsC1rXsxOTvhHlSO5GvXOTJ5VubRY38/AGKPnmTrM/1Jj0/A6GjG\nyc/bNppscHCg0ms9qT9vMg3mT6XK6JcxuRTJEi/AheVrufTzJgDS4xNIOH8JZ39fvENqEhMWTuIf\n2xKxZDX+LbNu801b9yVTvaKZMiWsPxo819KFH39LxGKxZJt+7vdxeHuYePZxVwAOh6fS5uEimEwG\nzGYDTeo6s2Zr3jp+meLYm0S1So6UKWEG4Nkn3Fi1MSHHOL5YGoO3h5FnWlpHDMLCU2jdzCVTHL9s\nTchT2cUa1SD60Cniz1lHqE8tXktgq6wzEHJLV6r1Q5yYv4rUmHiwWNj39lzOrbTun5ItQki+ep1D\n7/9fnuujVOOqRB44w40zkQAc/vpXKrYNyTZt9dBmHFmyhZM/7cq03K9qaY4v344lw0JGajpnfj1I\nhZZ18lR+oTku7BSHT0gtEiIuc3XLHgCubNzF/jfeB6wdt8oDehIy7x0aLphCtdH9MLlmPU8NJiN+\nD9UhYtkaAOKOnyHh3EV8G9XGYHbAvXJZyoS2peGCKdR8ZzDOxX2y5OHXqAbXD5+0HXNnvl1DyVaN\n7zidT72q+D1YkzPfrbUts6Sls6bVq8QcPQOAS8lipNyIIzeF5bgo0bgaVw+eJuaP8+PI1xuo0Cb7\n86NKl0c4vnQzp376PdPy4sEVsKRn0GruYNovfZPafdtgMObtByIo+Lr4q3Y9t7bf7+EQLv6w3nYd\nu7xmc5ZroWetByj2SEOOTJ6ZpeyK/Xtwbete4N5d1zPFUvsBijVvSNjkrJ1MgHMbD3Lut6w/1tu7\n3ZT7lzqR54WLAAAgAElEQVSg/2KrV6/mxIkT9g7DbkaNaUW79jX/9nydi/uQFHnN9jkp8hpmN5cs\nN0y5pUu+Gs3eYe8Rfyoi0zrxZy9icnHCJ8Qad9Eq5XErH4iTrycAyZf/zC85l3JzSudc3IfkyMzf\nORXzJiMllQsr/pwSU7L9o5iKOHPj4DEwGqg+vj/Hps8HwJKWlm3e+Y3BubgvyVei4ZabjaQrUTgX\n8yb+5Dmi94QB2EaDI9dttaWzpKfj27Q+jZd/imftqlxYad2Wsj3aY0nPYGfPYezoPoSUK1E5jl5e\nXLmBjOQUALwb1sajRhDXtu3FuZgvSZevZorXwc0l2zwALl1Np7ivyfa5uI+JuAQL8YlZb6KiY9L5\ncnkcQ3oVtS2rUcmRH35NJDXNQkJiBmu2JXIl+s6n/Fy+mo6/zx3EsSyWIS94/RlHZSdWbkiwxbF2\nayJX8xhHkeI+JF6+9diPwuzugsNtx0lu6dzKBODkXZSGM4bS7JuJPPBSR1JjrR3g09+t4+jMpaT/\nsb/ywjXAi7hLUbbPcZeicXIvgtnVOUvaTW99zfHlWUduLu8/RaV2IRgdjDi4OFH+8WBc/DzyVH5h\nOS7sFYdL6QBSrl2n6hsvEfLFJOpMH4XBZI2jXM/2WNLT2d5zONu6DSX5anT2o0Ae7mAwkHr9z2nj\nyZFROBXzwcnXi+jfD3Li46/Y1m0oNw4eo9bUoVnycC7uQ9Itx0FSZBRmt6zHZm7pnHw9qfZ6d/aM\n+hjSM2+7JS0dR++iPLZqOlVe60L4lz/kWi+F5bhw8/ci/lK07XP85Wgc3V2yPT+2vf1/hK/YlmW5\nwWQiYuthfn7xQ37sMYWSjatRJbR5nmMo6LrIrl2/9QfKnNp+k0sRnIv5kHT59utY5h88KvbvwcnP\n/i/LtF7XcoH4Na1P+MxvrOveo+v6rSq/2p0Tn36dZWqva7lAAHZ+tDy7KrJ7u1kYGTLSC/2/wkDP\ngN5nlixZwvr160lKSuLKlSv06NGDtWvXcvz4cYYOHUpCQgLz5s3D0dGRsmXLMn78eFasWMGvv/5K\nUlISZ8+epU+fPjRu3JilS5diNpupVs06Ajh27FjOnz8PwIwZM/DwuH8bAHsyGHP4Xee2G5G8psv0\nVXwiu1+fRuW+nQnqH0r0njCu7TqU6bm321luz8+QfbmW9AzI7tfo255nKNvjKUp3epLdAyaSkZxK\npVdCub4njKgdB+5tDDlMpbTcEp/Z051ak6zTcsM/yTz6dXXjTn7buJMSTz1K8Aej2PLMq/g0rovZ\n3QXvBtYOvdHsQEr0jRy3A8D/yYep1L8HB0a+S8q169nHm4scfqwnu8Phu18SeKS+M4HF/2yqB/+n\nKO/Ni6HT61fw8zLSqJYTe4/kvaN1U0YOcZiyi2N1PM0aFKHkLXEM6uXJ+19cp/OgS/h6m2hY25l9\nR/I4iyKHOstynOSSzuBgwi+kOjsGvU96cgp1xr9ElVee5eC0BXmL4TY5nY+WO3ieZ+vkb2k09Bme\nWTKKhCs3OL8ljOLBFfK0bmE5LuwVh9HBhO+DwezqN46YQyfwa1qP4PdH8NtT/fBtXBcHdxd8/jhP\nDWYHUqKynqe57cOki1fYc8uMkjMLVlD++aez5pFTO3N7+53T1G4D1Jn0KofenU/y1evZJkmJimFN\nq1cp+kBZGn4yks0nx2SfF4XnuMi2QO7s/Dj27Z/vDEhJTePgvF+o2q05h+evzWWtW8oqBHWRaXtz\nap8yMrId2b31GPKoURmzh7ttVs2tSnVqzflvfyI9PucZJX/ndd2jRmXMntnHUrrzkwCkxGU/Vdne\n7abcv9QBvQ/Fx8fz+eefs3LlSr744gsWLVrE9u3b+eKLLwgPD2fp0qW4ubkxceJEvvnmG1xcXIiL\ni2POnDmcPn2al156iY4dO9KhQwd8fX2pWdN6UX/66aepV68ew4cPZ/PmzTz55JN23tL7R8UXn6VY\nU+vzLg6uRYg9cc72nZOfNyk34khPynxznnjpKh7VKv5lukwMBtITk9jRd7yt3MCnqtuexXT8YyT0\nZn6pN+LIuC2/pMtX8aheMdt0SZeu4uiTOY+kSOuvmwazA9XHvIxruZLs6D2KpItXAAh8+nEMJhNl\ne7S3br+bKw3nT2Fb96F/awxJlzMvB3C+JT63iqWpPXUokb/uxKtOVep/PgmA+FPnOb/kZ27sOwLA\nhRXreWDoizi4u2IwGTn2/lzbVCdTEWeMjmbcHyhPlZF/Ppu1o8cQa33370GxRxqy59W3iDt+GoDk\ny1fxqFYpy7aYPbJ/uYW/r4kDx1NtnyOvpVPUzYCLc9YL+c+bExn2QuYfguITMhjYvSge7tb0ny+N\npXTAnTflAb4mDh77c79Y4zBSJJs4Vm9OYOgLmes+PiGDAT088HC3jkjMXRJDqVzieOClp/F/2Dqt\nysG1CDG3nCPOxbxyOEeu4VW9Qrbpkq5Ec2n9LttLX87/uJmgPu3zuvkA1Hu1LWWb1wLA0c2Za8f+\nnHHgWtyTpOvxpCXm/QbV0c2ZbdO+I/mG9caxdu+WtimLf6WwHBcFHUfD+VMAMHu4EX86gphD1lk5\nVzbuourIl3ApWRyDycjR97645Tx1wujoSNEHylP1jZdseW3/z3AAHNxdSYuNB8CpmBfJkddwq1ga\n90pluLjq1henWW/MK7/0NMVzaL+dc2y/r+F5Sxt2M51buZK4lPCj6sBu1vJ9PDCYjBidzBx+fyG+\n9atxab11CmLMkdPEHjuDe8VSOdaPPY+L4FfaUbp5bQAcXZ2JOv7n+eFS3JPkG3d2flRo25Coo+eI\n/uM8MxisI8J5VdB14eT754yP7K5lObX9GUnJJF2+mmX9W0chiz/WmEurfs3aqzYa8X+iCYkXI/Fr\n2gC4t9d1AP8WD3Lxx43ZxGKg2CNZp9MWpnZT7l+agnsfqlKlCgDu7u5UqFABg8GAh4cHiYmJVKxY\nETc3641v/fr1OX78OAAPPPAAAAEBAaSkZN8wVK9eHQBfX1+Sku78JQX/ZidmLmZLt+Fs6Tacbc+P\nxrN6RVunsHTHx4jcuCvLOte2789TukwsFuq+P5yiVcoDEBt+loSzF9n07CAAPKpXsuUX2LEFkb/t\nzKbcfTmmu7JxFyXbNsdgMuLg5kLxFg9y5dcdANSaOAiTaxF29B5t63wCrH+kJ+uadmPdw93+CNHC\n/pHv/e0xJEdGkRhxmeItrM8A+oTUwpKRQdyJsxQJLE7dj9/k5OffcewD69smb77MIWLJz1R/a4B1\neh7g3/Ih4k6eJS0mjqhtewl8phUGBwcwGHhgxH+p0K8rsUdOZnpRBEDlQb3wql2Fnb2G2zqft25L\nkT+2pWSHx7mSzTbf1Ki2E/uPpXDmgnXUevHqBJrVzzpdKSYug7OX0qkV5Jhp+eLVCfzva+uLN65d\nT2fJmgRaNcn+udXcNKrt/Ecc1hu6b3+Oo1mDHOK4mEatB5wyx/FzHB//3y1x/BJPqyY5Tz0+8ul3\nbOjyBhu6vMHGnmPxqlER11LFASj79KNc+nV3lnUitx7IMd2FNTso0SIEo5P1GVb/ZnWJPpz720Rv\nt2v6Cr7tMIFvO0xgSafJFK9VHo8yxQCo2rkpp9ftu6P8qnZ+mPr92wFQxMedKs8+xPEfduRp3cJz\nXBRsHDdfdLL9PyMoElAM9wfKAeBZu4r1rdUXIrm2bR+lnn0Cg4MJDAaqjnyJiv26EnPkZKaXqFjS\nM7i6ZQ+BHR4DrD9KuZYLJPr3Q1gyLAQN6mV9Oy7WH87iTlifxTz26Xf81nUkv3Udyeb/vJnpmCvz\nzKNc/vX3LHFf2XYg23TXD5xgbev+tvzOfreWi6u3sf+t2VjSM6g55kW8almf2XcrXxLXsiW4fjC8\n0OyPW+2Zsdz2sqAVXSZRrGZ5iv5xfjzQ6WHOrNubp3xu8qpUkjqvPoXBaMDkZKZK1+acXPUX17xb\nFHRd/FW7nlvbf2XjTgLaPnLLdawxVzb+ub5ncFWidh3MUqZbhdIkX4lme5dBtmvPvbyuA3gFVyVq\nV9YZTG4VSpMWE59leWFqN+X+pRHQ+1BOU38MBgPh4eEkJCTg4uLCjh07KFeuXI7rGAwGMm6ZJpHj\nlCK5IynRMRx461NqvzMQo4MDCRGXOTD2f4D1mc3qb7zIlm7Dc02Xm32jp1N9ZB8MZgeSr15n95B3\nbd8dfusTak4ahMHBgcSIyxwcN8Na7h8jBdu6DyU1OibHdOeXrKZIYHEaLpiK0ezA+aVriN4ThkfN\nIPya1iP+zAUazHrLVt7xGQu5tj3zxSb5yrV7EgPAgVEfUGXEfynfqyMZKansH/k+WCyU7d4ek5MT\npZ9rRennrG9CrTdnIrteGMn1fUc4/cUS6nw8Fkt6BslXo9g/dCoAp+Z+R6VXu9PgyykYjEbijp/m\n+IdfZqlzp2I+BD7zBEmXrhL80Wjb8nPfrOTiyg0cfutjakwcjNHsQOL5yxwaP4MSbR7Jdv/5eJgY\n/7Inr0+LIjUNAv1NvP2qF4dOpDDuk+ssetd6IT97KQ0/LyNmh8zn5Qsd3Xjjw+t0HBCJxQIvPedO\n9YqO2RWVK29PE+Ne9WbI1GukploI9Hdgwmve1jj+F8Wi9603MmcvpuLnZcoax9NFeeODKJ7ufxEL\n8FKnolSv5JRNSVmlRMewZ+xM6k/tj9HsQPz5SHaP/hQAzyrlqD2mNxu6vJFrulOL1+Do4UazhRMw\nGI1cP3KafW9/dcf1cFNSVCwbRs6jxYcvYjI7EHPuCuuGzQXAr3oZHn6rO992mJBrHntmrqL55Od5\nbvkYMBjYNeMHrhw8k6fyC8txYa84UqJusHfoVKoM6Y2piBMZqWnsGz6NjJRUTn7+LZX796DhfOt5\nGnv8NMc+ynqeAhyZMpuqI1+i0VdNsFjg4NgZpMUnknbyHEfenUvwu8PAaCQ5MooDoz+kyfLMfzIp\nJTqGfeM+o+6U1zCYHUg4H8neMdY0HlXKUXN0H37rOjLXdDlJT0xm1+D3qDa4GwYHBzJSU9kz6n+Z\nRqMKy/64XVJULL+Nmkvz91+y/tmZc1fYOGKONcZqZXjorZ4s6zg+1zz2fLyCRqO60H7ZWIwOJk7/\n/Humabl/paDrIrt2/ebsmB09hvxxHcuaBqwvJCpS0p8G86dhNDsQsfQXru85bMvbpZQ/SReyjvK5\nlPIn6VLm5ffqun5rmYm3/Kj85/IAEi9GZnrb/e3s3W4WSvozLHlisOT0+jAplJYsWcLJkyd5/fXX\n2bhxIz/++CPvvPMOYWFhTJs2jfbt2zNv3jyMRiOlS5fm7bffZuXKlbZ1kpOTadWqFevWrWPDhg1M\nmTKFMWPGMHLkSFatWoWTkxPTpk2jfPnydOyY/SvWb7pyJTbX7wuCn5876Sy0awwmQvmpwZ3/WY+/\n2xM7vuaXkOfsGkOL7YvsHsPNONY2fNauMTy6bTFJB7PvhBYk5+rrSTz8mF1jKFJ1DcvqdLNrDE/t\ntj4b+ukD/7VrHC8d+czux4VzdetLuApDHPZuL1psX8QPdXP+s0kFpc3vCwvF/vi8ah+7xgDw/OFZ\nhaIu7H0NAet1pDCcI/ZuN8Hadt4P0taWt3cIf8nh0TubLXRPYrB3AHJnbu0UNm3alKZNra/SrlKl\nCnPmWH+NbNu2bY7rODk5sW7dOgCaNWtGs2bNAGzLAF5//fV7EruIiIiIiPy7qQMqIiIiIiKSX5qC\nmyd6CZGIiIiIiIgUCHVARUREREREpEBoCq6IiIiIiEh+aQpunmgEVERERERERAqEOqAiIiIiIiJS\nIDQFV0REREREJL8y0u0dwX1BI6AiIiIiIiJSINQBFRERERERkQKhKbgiIiIiIiL5ZNBbcPNEI6Ai\nIiIiIiJSIAwWi8Vi7yBERERERETuZ+krA+wdwl8ytb5o7xA0BVfu3pUrsfYOAT8/d35q0NmuMTyx\n42vSWWjXGABMhPJLyHN2jaHF9kVsbNzBrjEANN28lLUNn7VrDI9uW8wPdUPtGgNAm98X2j2ONr8v\ntPtx0XTzUgCWBPewaxwd93xZKPYHUCjiWFW/i11jaLXz/1jX6Bm7xgDQfOu3hWJ/fFPrP3aNAaDT\nvi8KRV0UluNidYNOdo3h8R3f2L3dBGvbeV/QFNw80RRcERERERERKRDqgIqIiIiIiEiBUAdURERE\nRERECoSeARUREREREckvPQOaJxoBFRERERERkQKhDqiIiIiIiIgUCE3BFRERERERyS9Nwc0TjYCK\niIiIiIhIgVAHVERERERERAqEpuCKiIiIiIjkV4bF3hHcFzQCKiIiIiIiIgVCI6Dyj+LXOJjK/Tpj\ndDQTe+IsByZ8Rnp84h2ncy7mQ8PP32Jz6DBSb8QC4F23KkGvdcdoMpJyI44j788j9vjZfMdssVh4\nY8RyKlby4/kXHryLHEpgpDYANScO5NDbn2a7zb6Ng6nYtytGRzNxJ878mc5oIGhAT3xCamEwmTiz\ncAXnl/4CgEspf6qO6ovZw530hCQOjptBwpkLAJTp2oYSbR/Bkp5OSnQMYe/MylSea8Wy1PxoPMlX\nrmF0NBN/4gzHJs0gPSFzbN6N6lL2pW5Z0phcXag84mVcygSCwcDlVes5v3ApAA7ublQc1BuXsqUw\nOjlydt63RP78q7U2nm4FQMjCd0mMuEzYpE9JjY7JUh8V+/egePNGpMbEAZBw9gIHR71/F/UP3g1q\nUvGV7uzoMSTT8mbfTSU9OZW4UxEcnPwFXjUr8cArnTCaHYg5cY7942eRls2+KvZQ7b9MV3fqAJKv\nRHNwyjzrOk2CqT3uJRIvXbOl2dJ7/F3lfbcx3FSq3cP4P1KPnQPfzb6+ctjneUlzt8dFdvwfqkW1\nV5/F6GjmxvFz7B43m7T4pDynC5n6Cq6litvSuZbw4+ruIxz8aBH1J/a1LTcYjXhUKsW2wR9lG8e9\n3Cc+9apS5bUuGB1MpCencmjqvCz52iOG64dOZhuHX+NgKr/cGaOjA7HHz3Jwwsxs48gpndHJTLWh\nz+NRtTwYjdw4eIJDUz4nIzmVYk3qUOPNviRdvppt2QA+D9ahQt9QDGYH4sPPEvb2x1mOzb9K41TM\nh3qzJ7Kj++u264fPQ3WpOvoVki79WfbuvqNJT8h6vN1JXec13d0eFwFNalGz/zMYHR24cew8O8bO\nyfYcySmdY1FX6o7qgWdQadITkzm1bBPH/28NAEXLl6DemP/gUMQZsLD/w8Vc2nKw0NRFvo4Fo5FK\n/Xvi3bA2BpORs1+t4MLS1QB41qlGpf49MZhMpN6I5fgHc4k7cQaAUl3aEtCmOZb0dFKvW69bvo2D\nqdSvi+1+5dCEnK/x2aYzGgga0APfhtZr/OmFKzi/xLoPvOpWI+i17hhMRlL/uK+JO26NxSu4CpVe\nCQWg6ZyR7Bozi4SIK0DhaTvl/qUR0H+R5ORkmjdvbu8w7hmzpzvVR7/EnuHv89uzg0iIiCTo5S53\nnK7Ek00ImTkW52LetmUOrkUInjyIo9MXsjl0GIcnz6H2xAEYzPn7DSc8/ArP95zPT6sO3WUOThhp\nRAa/AZAQEUmlfl2zpDJ7ulNtVD/2j3iXLc8NyJQusEMLXEr5s7XrYLb3GkHpzk9StGoFAKqP68/5\n71aztfMgwmctotY7gwHwrl+DEu2as6P3KLZ1G0rkhh1UG/3HRcNkpGSnttT4YCwORd04/MYUdnV5\nhaQLlyjXt/ttcRWl8huvZpumbJ8uJF+5xu/dX2NP7yGU6PAE7tWCAAga9SrJkdfY3Wsw+18bS4UB\nvXH088EtqDyBXdoDsD10MAnnLlLhxc7Z1pxnjSAOjn6fHT2GsKPHkLvqfBqdHCn/385Uf3sQBtOf\nzalXnWoAbOs7id+6jiRy8z5qj32JWm++yO9DPmDD00NIOB/JA692ypKno6f7X6ar0KMN3sFBmZZ5\n16rMyfkr+a3rSNu/229u85J3fmIwF3WlxojnqTa0BxgM2dZZbvs8L2nu5rjIjqOXO3XG9WHbkOn8\n0mEY8ecjqd4/m7rIJd32ITNY13k06zqPZs/4z0mNS2DvpC+JPXnBtnxd59FEbjvIuVVbubBu113V\n9d3uE4ODiTqTXmH/hNls7DKS43O+p/b4vrdnXShiuJl/jTH/Zc+w9/ntmcEkRkRS+ZWsbXhu6Sr0\n6oDBZGRT1+Fs6jIUo5MjFf7zFACeNStzasEPbA4dYft3K7NnUaq88TIHRkxle+fXSIy4TIV+oXeU\nxr/Vw9T59C2cbjvuPGoEcfarFezsOcT2L7fOZ2HYJ05e7jQY/wKbB89g1VMjiIuIpNZrz95RutpD\nupCWkMxPHUaypttb+DeuQUDTWgDUHdmDU9//xupOY9jx5hwaTemXqR21d13k51go2b4FRUoFsCN0\nILueH06pTq1xr1oRk6sLNSYN4cSM+ezoPpijU2dSbcIgDGYHvOrXoETb5vzeZyQ7e7zOlQ3bAag+\nui/7hr/H5mcHkhhxmcovZ3+NzyldqQ4tcCkVwJYur7PtPyMp88c13sG1CLUnD+LY9AVsDR3K4cmz\nqfXHfY1TMW9qTRlM2JQ5AESs2UXwiJ7Wei4kbWehlZFR+P8VAuqAyj+Gb0hNbhwOJ+HcJQDOffcL\nAU88dEfpnHy9KPZwfXYNfCfTOi6lA0iLSyRqp/XX2fgzF0iLT8SrRuV8xfx/C3fRoWNtnmhV7a7W\nNxAAXAOsv7KfX7Ia/yeaZEnnE1KLG2F/bvOt6Yo93ICIFRuwpGeQFhvPpV+2EPBEU5z8vHAtW4JL\nv2wB4NrWvZicnXAPKkfytescmTzL9itsTFg4zv5+ALhXroBrhTJc/P4nyMgg6fxFAC4s/YlijzfN\nFJdXg9rEhh3PNk34B3M4OeMLABx9vDCYHUiPj8fB3Q3P+rU48/k3AKRcucbeF4eRFhNL3NGT7OzU\nDwCjoxknP2/bCESmejM74Fa5LKVD29Fg/lRqTBqMU3Ff63cODlR6rSf1502mwfypVBn9MiaXItnW\nv3dILUzOToS9/XGm5e4PlAcgKTIKgEvrduLXuCY3wk4Rf+4yAGe+XUPJVo2z5OnXqAbXD5/MMZ1P\nvar4PViTM9+tzVyXNSvhU78aDy2YQKPZo/EOfuCO885vDAEtGpJ09TphH3yVXXVZ48xln+clzd0c\nF9kp3rA61w+dJP6sdRtPLV5HqVaN7iqdwcFE3bdeZP/UhSRejsr0nU9wZUo+Vp89b8/NNo57uU8s\naemsafUqMUetIxouJYuRciOuUMYA4NuwJjcOn7S1U2e/+4UST2SNI7d00XvCOPH5UrBYIMNCzNHT\ntrbJq2ZlfOpX48Ev3yZk5pt43XaOeDeoRUzYCRLPW/ONWPIz/i2b5DmNo68Xvk0bsG/QxCwxe9QI\nwqtuderNnUydT97Cs3aVbOvgpsKwT/wbVSfq4Cni/jj2TyxaT+kns54juaXzrlqW0z9swZJhISMt\nnYu/7afUY/UBMJgMOBZ1BcDs4kxGSmqhqov8HAt+Dzfg4sr1tutq5C+b8W/ZFJdSAaTFJxC96wAA\nCWcukB6fiEf1IFKuXefo1Fm2UdaYI+EAWe5X/LO5r/EJqZVjumLN6nPhh9uu8a2a/HFfk2C7r0n4\n477Gs0ZlijdvyNUte4k9egqAU9+tZ9+0hUDhaTvl/qYO6D9cfHw8ffv2JTQ0lLFjxwKwY8cOevTo\nQffu3enYsSOnTp3im2++YfLkyQCkp6fTtm1bkpOT7Rj5nXMu7kNS5J/TD5Mir2F2c8HkWiTP6ZKv\nRrN32HvEn4rItE782YuYXJzwCakJQNEq5XErH4iTr2e+Yh41phXt2tfMRw4uWEiwfUrOZZuTL1/L\nNp1zcR+SIzN/51TMG+fiviRfibbeyP0h6UoUzsW8iT95jug9YYC1M1fp5VAur9sGQGzYcY5NnIHB\nbMZyy8P4yVeu4eDmmqkz51TMN3PZt6dJzyBozADqzf+QG3sOkXD2AkUCA0i5Gk1g53bU+mQiwXOm\n4la5PBnJKQBY0tMBaLz8UzxrV+XCyvVZas3J15vo3w8S/vFX7Og+hBsHj1NrylAAyvZojyU9g509\nh7Gj+xBSrkRR8eXQLHkAXN24k+MfzrNN470p5vAJAIr4Wzu1pdo1xejgQMr1PztDSZFRmN1ccMju\n+LwUlW06J19Pqr3enT2jPob0zL9iptyI48ziX9jUbRRHZnxDvWkDMo3i/1Xef0cMZ79by/FZS0hP\nzv5GEvKwz/OS5i6Oi9sV8fch4ZYbnsTIKMzuLji4Ot9xurIdHibpynUurP89Szk1Bnbh0Ixvs52e\nBvd+n1jS0nH0Lspjq6ZT5bUuhH/5Q6GMwZb/5Vvb5lziyCHd1e0HSDhrvQl39velbJdWXFprbZtS\nbsRydvFqtvR4g2P/+5o6UwZlyfevjs3c0qRcjebgiKkknD6fZdtSb8Rx/ruf2NVrGOGfLKTGO0Nx\n8vPOki7TNtp5nxTx98587F+OwjHbcyTndNcOnKRsmwcxOJhwKOJE4GN1cfbzAOD3ifOp8nxr2q5+\nj4dnDmXX219iSc86OmOvusjPseBU3JfkW6Z6J0Vew6mYDwlnL2Aq4ox3A+sosHuVCriWL4WTryfx\nJ89xfc9hwHpdrdg31LaurYw83tfcfo2//XxxLubzx32N8y33NRVs9zWupQNIT0ymxoTXAGgw+WUy\nUtOAwtN2yv1NHdB/uK+//prKlSuzcOFCOne2TkU8fvw4U6dOZf78+Tz++OP89NNPtG7dmrVr15Ke\nns5vv/1GSEgITk5Odo7+zhiMORzOt11s8pou01fxiez+f/buOzqKqn3g+Hdbeu9AaEmAEAKhhioI\nSFO6FCmhiVSV3rv0Ik2KgrwKiA0Ey/v+pFpABAJKCB1CIJDeezZld39/LGyy7G4SDCSRcz/ncDS7\nz8x9dubunblz78zO3ID3qL60ObCWam+0J+nSdV2DXHGMT3M0OIhLjH9mjUoNUiPrUKtNTqHUFJm+\noZxzpF8AACAASURBVHCwpdnWhaiylYTt0B/1kpRieaNlPxVz+4PN/PnGSOR2NtQcPQiJXIZlNQ8K\nsnK4MnE+Nxd/iNf7o7Gp56W3jjPd3+b+nm9psnmhwWdRxsRzZfpqsh9q72d9eOBHLD3dsajihnPb\nZri2b07gvvUE7luPa4dArGt7Gs3TlNQQbee8+YdTabd/ORqNhoKcXKMnV0+/Zmq7IYGmq9/j+of7\nyU1MNXj7r1mbif1VO00pJeQOKaF3cWnpX6p1P68cSqUU+/xF1gvdRynjtiga5zOsO7d2/2AQ4xTg\ng5mDDY9+Pmd0Hc8jj9Lsk7zkdE72eI+zo5cSsGR8pcjBuoaHkfWUtj0rOc7Otzatdi8h4ttjJPxx\nGYDLszcR99vj78iV26RevaO/AhPHBv26WYoYI67NW0/i78EApIXeIu3qbV0nxJhKXS/UpfyOqNWE\nfPg1aDR0+2YZbTe9R9y566jzVUjNFLRZN4kLiz/lp67T+XX0apovHImlu2GnvDJsi6KfSaeYumA0\nF7UaVXYOV+espebI/rTYtwGPHh1I+eua3rmEwsGOxlsWUZBTTMfL4LzGxGc3cYzXqNWosnIImbmB\n2qP60vrAOqq+0Z7kS9pcJHIZbh2ac+8T7YyShODrtPrwfW1ZlaTtrLQqenrtv2QKrngI0UvuwYMH\ndOjQAYCAgADkcjnu7u6sXLkSKysr4uLiaNq0KTY2NrRo0YI//viDw4cPM2nSpArOvPTafKGdLiu3\ntiQj7JHudXNXJ/LSMlEp9Udyc2ITsW/gU2KcHokEVY6S4ImFD3Vp982HZD+eelOeJDRCQrXHfymA\nVJ6MM2qnnGaifuqzKOMSsffX/8xP4pSxiZg5O+i9p4xPRhmn/zqAxeP3AGx8atB4/Wzif7/Ina37\nDB49npuYrHcAMndxJj89Qy+33NhEbP3qGo1xDGxMVngEeYkpqHOUJJw8g0uH1sT93y8Auv+69+iI\nzNycBmvmkRZyg+gjR3Xri/7pV3xnj0Nua01BkVFKG58a2PjUIvboab0tqykoQCKTcmfTZySdCwFA\nZmmB1EyBra8X9ecX3if19AOHipJZaa/wxp25jHv7ZtQc+BoyMwUKOxu9bWm8fibhUGRfPYmzqV0N\nq6qu+E0brt1WzvZIZFKk5gpubPqSWgNfI+yzH4t8HAmaAu1o8CtfaqcEPv0deZ45hC7/1OT2KKq4\nfV6amNLWC2VULOmht7CtX4fM2+G6dXX6ejkACmtL0sIKR6os3Bwfbwv9EdPs2CQcG3qbjLOvVxOp\nTEriX7cMPqtn15Y8/O9ZvVkEAHUnvIl7+2bAi90nNzYdwKVFA92FifRbD8i4E4Fzcz+gfOqFqRxs\nfaoDUGf8ANxMbAtTbbMyTj+Pp+OqdGmN35wx3Fj/GTHHtLcQyG2sqDGgC+GfFz3ZferCVGwCdn51\n9Nb7dN0sTczT5DZWVHuzOxF7DxcpWoK6QP8CZmWoF/6T+lG1QxMAFDYWpN0t/I5YujmSm5aJKsfw\nO+Lc0MtonLmHDVc2fUteehYAvqNfJ/NhHPY+1ZBZmBFz+goASVfvkX4vWreeyrAtzJwddet61rqg\njEvEzEV/eWV8kvZcIlvJ5clLdO+1/GqzbhqvtXdNmu78AE1BAbmJKY/z1T8+5xv7Thg5r3kSp4xN\n0putZe7qpB25lUgoyFFyqch5TZtvNpIdGUduQgqpoXd0U3otXBxwqFeTzt+sQG5lUWFtp/DyECOg\nLzlvb29CQrQn0jdu3KCgoIBFixaxatUq1qxZg5ubG5rHX/BBgwZx8OBBkpKS8PU1vH+ssvpz+Fz+\nHD6X82MW4eDvg1V17ZX1Gv1fI/604Y3rSRdCSxWnR6Oh2aa52NXXHhzdO7dEU1DwXJ6C+6w0hKLm\n58f/jgEugC0Anv27EH/mosEySReuYO9fR/eZi8YlnL5EtV6dkMikyG2scO/ShoTfg8mNTyYnKg73\nLton8zq3DECjVpMZ9hBLT3ea7VhC+H++487mvUZ/9yot5AbIpFh4VgGgSr9uJJ0J1otJCQ7BrkFd\nozGundpSc7T2gQUShRzXTm1J/fsqyph4Mm7dw/31jgBEf/d/qJRKrs9bS/T3R6m/rHBanUe3dmSG\nP9TrfAJo1BrqTh+NRRU3AKq92ZXMexHkJiSTfD4EzwE9kMjlIJHgO2883pOGknErXPfAouI6n6Cd\n4gsQvv//ODN0PsmXbvLop9M4NvTRPfmv5oDOxP1uOO0o4fxVo3GpV8M49cb7ugcMPfzuFDHHzxO6\n/FMKsnOoNagLHp2091bZ1auJQwMv4s9pT+6eLHN21JIXlkNpFbfPSxNT2nqhcLTHrmE9Mh7fR/XE\nk4db/DZiGU4NvbGuof2MXgM6EfPb3wb5xp+7WmycSzNfEi7eMPpZXZr5khBs+N6dj78rl32iUalp\ntHgcjgHazryNVzWsa1XVrbMic0i9pt0vdz85pHsg0LnRi3Eo0k7VeNN425x4PtRknEenQOrPHMnF\n91brOp8ABdk51BzYFfeOgQDY1a2FfQNvvfUmB2vbSUtP7Xqr9utK4umLzxzztIJsJZ5vdsP11Zba\nbVC3Nnb1fUg+H6IXVxnqxbUdRzg+eDHHBy/mZNBynBt5Y/O47nsP7Ej0b5cNcog9d81knPfAjvhP\n7geAuZMdXv078PDn82Q+ikdhY4VzgLbTZO3pip1XFVJuRVSabVGWupB4+iJVexY9rrYl8XQwaDQE\nbJyPra+27rl2ao2mQEVmWASWnh403b6UsK17+eP1t7k4YqYuD71jt4nzGlNx8acvUa1XR10uHl3a\nEP/bRdBoaKp3XtMKTUEBmXcjiP8tGIdGdbGsqr1/Oj08irSwSE4NXlihbafw8hAjoC+5IUOGMHv2\nbIYMGYKXlxcKhYIuXbowbNgwLC0tcXFxIT4+HtCOkEZERDBsmPH73Sq7vJR0ri7/mMZrpiGVy8mO\niuPq0u2A9p5N/wXj+HP43GLjinNl0Uf4z38HiUJObmIqf88y/hMT5SsXNeeRon3wgY13Da4t2waA\nna8XfgsmcD5oNvkp6dxYvpNGq6cjkcvJiYrTxUUePo6lpzutvliPVCEn8shJ3f2dVxdupv688XiN\n7o86L5/Q+ZtAo6FWUF9k5ubUGNSDGoO0P3vy9AMkCtIzUOfm4bdiFlKFgpyoWG4v34KNrzd1507m\n71HTyU9N4/aqjwxiAO5t+4w6sybQbP8W0GhIPHOBqG+19+bcmL8Gn+njqNK3GxKJlIeffUvmLe19\nlw/3HqLOrAkE7ltPbmIyobPXA+hGMINHzCIr/BF3Nv6HgA1zkMikKOOTubZIW+79z76jzntBBO5b\nh0QqJfPuA+5u2fdMe+XJ1N62e5chkUhIDrnDtXWfE/tLMM3WTUGikJMdGU/I4p0A2NevTaNF73Bm\n6HzyUtK5suwTo3EmqTVcnL4R/9kjqTv+TTQqNX/P20Z+qn7Hu7h1lzmHUjK1z190vXhabkoGfy3d\nTcv17yGVy8mKjOfSok8AcPCrTdPFY/jlrUXFxgHY1HAnK9r4z3rY1PAgOzqh2O3xIveJKieXSzM2\n0mDGcCRyOer8fC4v3E7rjxdUeA5PZlI8ncfVDz6myZqpSBVysiPjCF2qfcCXXX0vGi58h7PD5hUb\nV3fyW0gkEhoufEe33pQrd7ix7jP+mvkhfjNHUmf8ADQqFSHzt9Ly40W6uPyUdG6u2I7/qplIFdp2\n8sYHH2Hr643vvAlcHDnLZEyx1GpCZ6+j7vQx1B47GI1KxbVFG40+IK0i98nT9SI3OYPgxXtou2Ey\nUoWczMh4LizQ/tyWo18tWiwZw/HBi4uNu7nnf7RcOY7u360AiYTrH39P8nXtg23OTt9K09lDkZor\n0BSouLR8L1mRht+XitoWZakLUUeOYenpTot9HyJVyIn6/oTu/s7rS7bgO28CErmcvKQUQudon79R\nc3hfpBZmeA7sgefAHrocry/fScCaJ8fuWL3zGr8F4zk/fA55Kekm4yK/O45VNXdaH1iHRP7UMX7R\nVvzmj0P6+LwmZNYGADLuRnBz7R4C1mk7wbXf7ETwbO05Q2VpO4V/N4lGI8a3BS21Ws2QIUPYs2cP\nNjY2JcYnJJg+eJYXV1dbjgYa/5mN8tI9+GtUHKjQHABkDONEy0EVmkOXC99yum2/Cs0BoP3ZI5xq\nZfhzAeWp8/mD/LdZxV/M6fnXgQrPo+dfByq8XrQ/q/2t0MNNRlRoHv0v76sU+wOoFHn83MLwZ1bK\nU4+LX/FL6wEVmgNAp3OHKsX++CZgVIXmADD4yueVYltUlnpxPNDwJ07KU9fgbyq83QRt2/lvoPrK\ntqJTKJFsSMWfv4spuAIAjx49ol+/frz++uul6nwKgiAIgiAIgiA8KzEFVwCgevXq/PCD4ZPIBEEQ\nBEEQBEEQnhfRARUEQRAEQRAEQSgrTeX4mZPKTkzBFQRBEARBEARBEMqF6IAKgiAIgiAIgiAI5UJM\nwRUEQRAEQRAEQSgrI7+LLhgSI6CCIAiCIAiCIAhCuRAdUEEQBEEQBEEQBKFciCm4giAIgiAIgiAI\nZSWm4JaKGAEVBEEQBEEQBEEQyoXogAqCIAiCIAiCIAjlQkzBFQRBEARBEARBKCsxBbdUJBqNRmwp\nQRAEQRAEQRCEMlB9blHRKZRINkpZ0SmIEVDhn0tIyKjoFHB1teVEy0EVmkOXC99WeA5P8lBxoEJz\nkDGM9d6TKzQHgFn3tnOq1cAKzaHz+YMVnsOTPH5pPaBCc+h07hDh/dtWaA5eh88CMNtzSoXmsS5y\nS4XXi87nDwJUijwqQw5Xu3Wp0BwAGh47USm2xeY6kyo0B4Cpd3dUim1xPHBwheYA0DX4m0rRfld0\nuwnatlN4eYgOqCAIgiAIgiAIQhlp1BWdwb+DeAiRIAiCIAiCIAiCUC5EB1QQBEEQBEEQBEEoF6ID\nKgiCIAiCIAiCIJQLcQ+oIAiCIAiCIAhCWYmfYSkVMQIqCIIgCIIgCIIglAvRARUEQRAEQRAEQRDK\nhZiCKwiCIAiCIAiCUFbiZ1hKRYyACoIgCIIgCIIgCOVCdEAFQRAEQRAEQRCEciGm4Ar/ei5tm+Az\ncShSMwWZYRFcX/kxqqyc0sdJJdSbOhLnlgFIZDIiDvxE5JETANjV96betJHILC1AKuXB/h+IPXpG\nb30AHU99zuneE59buVbVPfBbOBGFvS2qbCXXlm0jOyIagJpDe1K1V0c0KhV5KencXLObnKi4IiU6\nIKUTag4/03bUaDQsmPcjPnVcGfN2m2datrS8Xm1A+1l9kJnJSbgVxdF5B8jLVBrE+fVpQYt3XgMN\n5CvzOPXBQeKuPtSL6bPjHTLj0ji17NtSl19/0WSy7j3k4Zc//ePP4BTYCJ93gwgeMQsAjx7tqTGk\nl+59uY0V5m5OADi3aYr3pKFIFdp9f3PlTlTZ+nXEZIxUSt0pI3F6XD8efvkjUY/rxxNVenbE9dVA\nQmeu1b3WcPUMbHxqocox3K7ObZriPXEYEoWcrHsPublyh/F8jMVIpdR5fyROrRojkUl5+OVPRB85\nDoBD0wbUeX8kEpmM/LQM7m7+jMywiGfetpbNWuM0bAIShRl5EWEkbF+NJidbL8amfVfs+w4FDWhy\nlSTu2UzevVvPXJYxvp386DGvF3IzGTE3ozk48ytyM3MN4tqMeoVWQW1BA0kRiRya/TVZSZkALL6y\nkvTYVF3s7x//wuUjf+ktH/jFhudeJ1zaNcNv0bso4xJ16/lrwiJU2UpqDO1JlZ6d0KhU5KemV1ge\nxurmi8jhCYsqbgR+vpbLU5aTcSucmkF9ce/SVve+wsHOYN8+zTYwEPfRbyNVKFDev0/kpg9RZ2cb\njfWcMQtlxH0SDx0CQGplhef0GZhXrw4SKSknT5D47Tcmyyrv/eE1/i3cXm0JQPqNsBK3Ra1X/Wk7\nQ9t+J96O4uT8L4y23769A2k29jVAQ35OPr8t/5b4aw+RmSvotHQw7g1rIpFKiL3ygF+WfoMqN/9f\nsS1c2jahzqQhSM0UZIQ95PoK0+caxcWZuznT8j8rODdsNvlpGXrLVu31Ku6vBnJ5xjqjOZSpDS9S\nfvNPVxEcNNOg/Co9O+HaIZDQWWuMlm9MebWb/xpiCm6piBFQ4V+vwcJJhM77kD8HTSU7Kp46k4Ya\nxCgcbE3GefbrglV1D84NncGF0fOo8dbr2Pl5A9BozQzu7T7I+aDZXJ62inpTRmBV3UO3vvDPtZ08\ndX7Bcy3Xf9n7RH53nHNvTefe7m8JWDMDAKcWDanauxPBYxdyfvhs4n8LpsGiibryJPgipRPPem3p\n3r0Exozcz9Gfrz/Tcs/C0smG7uuC+H7ybvZ0+YDUR4m0n9XHIM6xthsd5vbj0Ojt7O21mnPbj9J3\nxzt6MYHjXsOzuXepy7aqVY0m25bg3rn1P85fam6G1/i38F85HYmssOmM/fk0wSNmETxiFhdHzyUv\nKZU7G/YA4LdwElfnbeD84CnkRMfhM3mY3joVDnYmY6r1ew3L6h5cGDadi2PmUn3wG9j5+QAgt7Oh\n3ux3qDdjDBIkeuu096/LXxMX63IqWlb9BZO5Om89F96aQk5UHN6TDPMxFVOtbxcsq1cheNg0Lj3O\nx9bPB5m1FQ1XzyJs236Cg2Zwe/0uGqyYjkTxbHVQaueA27sLiFu/gMj3hlAQF41T0ES9GEXVGjiN\nnEzs8hlEzRhFyqG9eMxe+UzlmGLtZM2gjUPZP+4/rO+wiqSHSfSY19sgrlpDT9qP78iOvpvZ+Noa\nEu8n0G3W6wC4ermRk5bN5m7rdf+KnkRZO1kDvJA6Yd+wHhFf/qjb78EjZqHKVuLYoiFVe3Xm0tgF\nBAfNIv63C7qyyjMP0K+bl99f/sJyAJCaKWiw7D29ehix/3tdTn9PWoJaadh5Kkpmb4/njJk8XP4B\nd8aOIS82Bo8xbxvEmVevQe2167Bv317vdfeRo8hPTOTu+HGEvfcuzm/0xKp+faPllPf+cH01EKfA\nAC4EzeL8kGlILcyL3RaWTjZ0XRPE/97dxb5uy0h/lEjbmX0N4hxru/HKnH4ceXsbB3qvJnjHz/Tc\nPg6AwEndkchkfNFrFV/0XIncQkGLCd0MyqmM20LhYIv/oolcmbuRswOnkRMVR93Jxo/5xcVVeb09\ngbuWYvH4IuUTcjtr6s8dS/2Zo3mqSdf73GVpwwE8enSg6cfLMXd1fqp8G+rNHkfd6WNAYiIBI8qj\n3RReTqID+pI5fPgwGzZsqOg0ylXazXtkP4oFIPLwcTy6v2IQ49wywGScW4dAon76DY1KTUFGFrEn\n/qRK9/ZIzRSEf3qQ5ItXAciNTyYvLQNzN2ecWwaQERaB18h+AOSnZzy3cs1dHbGuVZXYE38CkHQu\nBJmFObb1apOblMqttbt1V1PTb97DwsO1SIkOqDnzzNvwqwOX6Ne/Md17NHjmZUurVrv6xIZGkPog\nAYCQA2fw69PCIE6VV8CxeQfIStCO1MRdjcDaxQ6pQgZA9VZ1qNXej5Cv/ih12Z5vdifmv78Sd+qc\n3usSuZw6U0bSYu9aAvevp/6iycisLI2uw6llADILc26u3GGynJoj+pCXkkbU9ycB7f7Jebzvow4f\nx6Obfh1xatnIZIxrh5bE/PdXXf2IO3lWV3fcO7cmLymFux/t11ufRRU3ZFaW+M4ZR+AXG6i/cFJh\nWYEBpN8MIyfySVnHDPMpJsa1QyAx/yvMJ/7EWTy6tceqehUKsrJJuaT9nmRHRKPKysHev57J7WSM\nVeNAcsNuUhATqd12R49g+0pXvRhNfh4JO9agSkkCIPfeTWQOziAv+2Seuh18eXTlIYn3tfXz/L6z\nNOnXzCAu6mok615ZgTJDidxcjr2HPdkp2hGxms1ro1apGf/tu0w7MYfXpnZDIpXolQG8kDph37Ae\nTs39afH5Wpp9/AEOjbUdnbykVG6t260bAcm4Ga4rqzzzeLpuNlw944XlAFBv5lhi/vcb+WnpGOPz\n/giSzoUYfe8J26bNyL59h7zoKACS/vsTDp06G8Q59+5NyvHjpJ0+rfd6zM4dxOz6BACFsxMShQJV\nVpbRcl7UtjC1PxJ+C+avcQvRFBQgs7LEzNG+2G1Ro1194q5GkBqh/X6Efnka397G2+8TCw6QbaT9\njroYRvCOn0GjQaPWEH8jEruqTgblVMZt4dwygLQbhcfyR9+dwKN7u2eKM3dxxK1DC/6eZji66PFa\na3ITU7m99QuD93Sfu4xtuJmLIy7tA7kyfZXBut06tyE3MYWwj/aZLN+Y8mg3hZeT6IAK/3q5cUmF\n/x+fhMLGCpm1fifCwt3ZZJyFuzO58frvmbs5oc7LJ/qnX3WvV+vbGZmlBWnX7mDh4YJ1rWrcedwB\n0BSonlu5Fu4u5CakgKbwx4yVCclYuDmRFf6IlMs3AZAo5NSZPIy4X87r4jScB4xPDyvOwsU96N23\n0TMv9yxsqziQEZOi+zsjNhVzW0vMbCz04tKjkgn/rXAktuP8Nwk7dRV1vgprN3s6LxrI/6Z9jkZV\n+nkudz7cQ+zR0wav1xrRF41KzcWRcwgOmkVeQrLB1fYnEk9f5O6WveSnZxp9X2FvS40hvbiz6XPd\na0WneuXGJyG3sdLr4Fq4uZiMsXBzRhn3dP3QXrWOOnKC+3sOoc7N08vBzMmO5ItXubXmE4JHzNab\n6mhQ3xKSkNtY6+dTTIy5uwu5RXJVPs4n+2E0MksLnAIDALCt7421V3XMXRyMbidTZM5uFCTG6/4u\nSEpAam2DxNKq8LWEWHL+KryI4DzqfbIu/QEFBc9UljH2VR1Jiy6cApYWk4qlnSXmNoajIeoCNQ26\nNWTBxWXUbuXNpW+1o4pSuZS7Z27z6fCd7HxzK3U7+NJ2dHu9Mop6nnUiPz2DyEPHuDhqDmE7v6TR\n2lmYu2rbjNTLNwBtm/H0iEl55fF03ZTIZC8sh6q9OyGRy4j+4ZTBZwWwru2Ja/sW3NtlejosgMLV\nlfzEBN3f+QkJyKytkVpZ6cVFb99G6qmTxleiVuM5ew51PtlNVmgouZGRRsspqjz2B4BGpcJzQHfa\n/rAThYNtsdvC1sOx1O33g9+u6f5uP38A4b+Eos5X8fCPm6Q+0H7Hbas60WRkR+4e/dugnMq4LSzc\nnVHGl+5cw1RcbmIKV+Z8SNb9KIP1Rx4+Sfinh1Ar8wzeK7rusrTheYkpXJu3nuwHhnUw+shxHvzn\nIKpc0+UbUx7t5r+O5l/wrxIQHdCX0JUrVxgzZgx9+/blm2++4ezZswwcOJDhw4fz7rvvkp6ezoUL\nF5g2bZpumbZttffFzJ07lwkTJvDWW2+RlpZWUR+hzAw6JxLjVV2jUoOxK21q/eVrjeiD9zuDCJm5\nFnVuPi6tG5ObmEpy8NXnX66J6S+aIjkpHGxptnUhqmwlYTu+NBpf2UikxWwLIxSWZvT+6G0carpy\nbN4BpHIpvbaM4ZcVh3Sjo2Xl3LYZru2bE7hvPYH71uPaIRDr2p7/aF1V+75GwplLKGPii40ruh+N\n1oHHMcauAJfU6U6/HsbVuevJS0oFtZrw3dr7YyVyOZja/nr5mI6RGKuXajWq7ByuzllLzZH9abFv\nAx49OpDy1zXU+c/WKTRVP57+LgJIzC1wm7kcRRVPEreX/l6lYss38b1Tq4wfra8fu8qyRgs4sfEo\nb38xAYlEQvCX5/hx8WFUeSqU6Tmc3v0b/j0KL+yYKuN51ImrczeQ8HswAGlXbpF69TZOgYVlKxzs\naLJlkdF7g8sjj6fr5pMRc8lTo9dlzcG2Xm2q9evKrbW7TH7O6oPfIPLQUVRZJVyse8Y2y5TIdWu5\nOfBNZLa2uA0bXvpyyqFeRB46yukuo3QxppgakVKb2BZySzNe3zoWh5qunJx/QO89twbVGfjVdK58\n8Tv3f72m956pcip6W5gckXvq85c27h8pYxv+IpRHuym8nMRDiF5CcrmcPXv2EBUVxTvvvENubi5f\nffUV7u7u7N27l507d/Lqq6+aXL5Vq1aMGjWq3PJ9VlZWZpibF1ZdsyIjLeauTuSnZaJW6t8Ar4xL\nxN7fx2icMjYRM2f9dSjjkwHtiIH/4slY165G3Klz+C+eDICNd3UKcnJptV/7oADLah5oVKrnUq4y\nTv91AIsiOdn41KDx+tnE/36RO1v3gbqSXM4you3UN/DprD2QmNlYkHA7WveerbsDOalZ5OcYXnG1\nreJI/90TSLoXyzfDtlCQm0/VJrWxr+5Mx/lvAmDtaodEKkFuLufYfMNOeOC+9QAknrlE+G7jIx0S\nmZQ7mz7TTcWTWVogNVNg6+tF/fmF9x8WvZfSFPfX2nBn42d6r5m7FF7NN1Y3c+MSsW9Qx2iMMi7R\nYPmiV7aNcQjwRW5nQ+KZS9rP9/jkQKNWo4xNwM7vqbLSM/TyKS5GGZeI2VP5KOOTQCJBla3k8uQl\nuvdafrVZNwWstAoSYjGv46f7W+7sgiojHU2ufodJ5uKOx/y15EdGELP4XTR5z3bFvqiuM3vg18Vf\n+3lsLIi9FaN7z87Dnmwj9dO5lgu2rnY8uKidynrx6/P0Xz0IS3tLfDv7EX0jmtib2noukYAqX6Vb\nNjU6RW9dz6tOyG2sqPZmNyL2HtG9J0GCRqUt28anBo3WzyHht2DufrSfzn/qfx/KI4+n62ZugrY9\ne3Ji/Lxy8OjRAbm1Jc13a+8NNndxosGyKYRt268tWyrFrWNLgkfNoST58fFY+frq/la4uFBgpE6a\nYtOsOcr79ylITkKtVJL626/YtzOctpkfr3/Rqjz2h41PTZBKyLzzAIDoH09Re/Sbenm0mtIT784N\nATCzsSTxduHInY27A8rULApMtN+9P5lI8r1YDg3frPeQobpvNKPT0rf49YNvuP3TJYNlMyrgO2Jq\nW3iPG4hr++YAyK0tyQx7aFCm6uljfmwi9g0Mj/lPx/0TZW3Dn5fybjeFl5MYAX0J+fn5IZFIhNid\n1QAAIABJREFUcHV1JSYmBhsbG9zd3QFo0aIFd+/eNVhGU2S6Z+3atcst138iOzuPlJRsUh7fP2Dv\nXwer6h4AePbvQvyZiwbLJF24YjIu4fQlqvXqhEQmRW5jhXuXNroroAGrpiOztiR47CJub/yc80Gz\nOR80m9/fGI86L4/Q+RsBUOXkEP2z4RTPf1JubnwyOVFxuHfRPonWuWUAGrWazLCHWHq602zHEsL/\n8x13Nu+t1J1PgLOb/8feXqvZ22s1Bwasp2qTWjjU0k43CxjajrCToQbLWNhb8dZXU7l77Ar/nfIZ\nBY9PXqIv3+eTdgt16wv58gy3/ve30c4noHvIhKnOJ0Dy+RA8B/TQjsJIJPjOG4/3pKFk3ArXe1BF\nSeS21lh5epAWelvvdXv/Olg+3vfV+nUl4am6+aR+GItJOH2RKr06FqkfbUk4bVi3i5JZWVB3+hjk\ndtoHedQY/vhhEGo1ycGPy/LUllW1X1cSn1pfcTGJpy9StWcnvXwSTweDRkPAxvnY+mofCuXaqTWa\nAtUzPwU3+0ow5nUbIK+iHYG27dqP7Iv69zNLbWypunwbWed/J37jkjJ1PgGOb/hZ99CLbb03UaNp\nLVxqa+tnq6C2XD92zWAZWzc7hu4YiZWj9oFCTfo1J/Z2DNmp2bjXq0LXGT20F0YsFLQZ9QpXfrqs\nW/bO79qn9T7vOlGQrcTzze64dtQ+xdOmbi3s/HxIOheCpacHTbcv5f6eQ9zdsldvRLk883i6blp5\nafezZTW355rD3c2fc27QFN13NzcxmetLtug6vjbeNchPz0IZk0BJMv76C0vf+phVrQaA0xs9ST93\nroSlCtm3b4/bcO2Ip0ShwKF9BzJDDO87zfhL+8CV8twfNj418Vs4Gam5GQBVenQwyOv8lv9yoPdq\nDvRezdcD1uHRuDYONbXfj0ZDXuHeKcP229zeigEHphF2PISfp/1Hr/Pp070Jry4axOHRHxntfAJE\n/HGj0myLe7sOcn74HM4Pn0PwmIWGx/LThp8h6UJoqeL+ibK24c9Lebeb/zYataTS/6sMxAjoS6jo\nlAhHR0cyMzOJj4/Hzc2N4OBgatWqhbm5OQkJ2gNwVFSU3nRbU1MqKqsby3fSaPV0JHI5OVFxXFu2\nDQA7Xy/8FkzgfNBs8lPSTcZFHj6Opac7rb5Yj1QhJ/LISVIu38S+UT1c2zcnKyKawN3LdeXd3XaA\npAtXdOsDkJqZcWfLvudSLsDVhZupP288XqP7o87LJ3T+JtBoqBXUF5m5OTUG9aDGoB4AqPPyCX57\nQfls7DLITsrk5zlf0GfbWGQKOakPE/i/mdpt5t6wBt1XDWNvr9U0HvYKdlWdqNM1gDpdA3TLfxO0\nFWWq4QM8yuL+Z99R570gAvetQyKVknn3AXe3PNtDGAAsPT3ITUzVjTg9cWP5DhqumoFUIScnMo7r\nH2zTja4Gj5j1uH4YxoD2wRqW1TwI3L8BqUJO1JETunv5TEk6F0Lkwf+j+a7lIJGSda/win1+Sjo3\nV2zHf9VMbVlRcdz44CNsfb3xnTeBiyNnmYwBiDpyDEtPd1rs+1Cbz/eF+VxfsgXfeROQyOXkJaUQ\nOmet0fyKo05LJWHbKtxnrUAiV5AfG0XC1uWYefviOmkuUTNGYdetH3IXd6xbdsC6ZeEJc8yS91Fn\nlm1adlZSJgdnfMnwT0YjU8hIjkji66naB4J4NqrOgPVvsbnbeh4Eh/PL1uNMOPgeapWK9Lh09r79\nKQAnNx6l74oBTD85F5lCRuh/Qwj+8pxeGcALqROhs9dSb8bbeI0dhEal5trCTeSnZWh/qsLcnOqD\nXqf6oNf1PnN55mGqbpbn9wO0P3GljC1+mvwTqrRUoj7cQI1Fi5DIFeTFRBO5fh2WdepSbdp0wiZN\nKHb5mF2fUO39KdT5ZBdoIP3PsyR9f8QgTpWWWu77I/boaSw9PQj8fC1qlYqs8EfFfpac5ExOzN3P\nGx+9g8xM234fm7UXADf/GnRZNYwDvVfTaGh7bKs64dM1AJ8i7fd3I7bSdkYfkECXVYX3IUf/Fc6v\ny77RK6cybou8lHSuL99JwJonx/JYri7dDoBdfS/8Fozn/PA5xcaVVVnb8BehPNpN4eUk0RQd+hL+\n9Q4fPkx4eDgzZ84kNzeXHj16sGLFCrZs2YJEIsHe3p7Vq1djZ2fHe++9R2JiIt7e3ly+fJljx44x\nd+5cXn/9ddq3L/kG8ISEjBJjXjRXV1tOtBxUoTl0ufBthefwJA8VB0oOfIFkDGO99+QKzQFg1r3t\nnGo1sEJz6Hz+YIXn8CSPX1oPqNAcOp07RHj/tiUHvkBeh88CMNtzSoXmsS5yS4XXi87nDwJUijwq\nQw5Xu3Wp0BwAGh47USm2xeY6k0oOfMGm3t1RKbbF8cDBFZoDQNfgbypF+13R7SZo285/g/ztFiUH\nVTDF5NLdRvAiiRHQl0z//v11/29ubs4vv/wCQJs2bQxid+7cafDamjXP54EegiAIgiAIgiAITxMd\nUEEQBEEQBEEQhLJ6MQ8cfumIhxAJgiAIgiAIgiAI5UJ0QAVBEARBEARBEIRyIabgCoIgCIIgCIIg\nlFUl+ZmTyk6MgAqCIAiCIAiCIAjlQnRABUEQBEEQBEEQhHIhpuAKgiAIgiAIgiCUkUZMwS0VMQIq\nCIIgCIIgCIIglAvRARUEQRAEQRAEQRDKhZiCKwiCIAiCIAiCUFZiCm6piBFQQRAEQRAEQRAEoVxI\nNBqNpqKTEARBEARBEARB+DfL+9C6olMokdmMrIpOQUzBFf65hISMik4BV1dbTrQcVKE5dLnwLafb\n9qvQHADanz3Ceu/JFZrDrHvbUXGgQnMAkDGMU60GVmgOnc8f5OwrfSo0B4C2Z37gj3Z9KzSHdn98\nz6HGIys0hwEhewF49FaLCs2j+tcXK7xetD3zA0ClyOO3Nm9WaA6v/vkdxwMHV2gOAF2Dv6kU++N2\nrw4VmgNAvZ9+rxTboqKPIaA9jlSGc5yKbjdB23b+K2jEFNzSEFNwBUEQBEEQBEEQhHIhOqCCIAiC\nIAiCIAhCuRAdUEEQBEEQBEEQBKFciHtABUEQBEEQBEEQykgjfoalVMQIqCAIgiAIgiAIglAuRAdU\nEARBEARBEARBKBdiCq4gCIIgCIIgCEJZqcXYXmmIrSQIgiAIgiAIgiCUC9EBFQRBEARBEARBEMqF\nmIIrCIIgCIIgCIJQVuIpuKUiRkAFQRAEQRAEQRCEciFGQIV/PZe2TfCZOBSpmYLMsAiur/wYVVZO\n6eOkEupNHYlzywAkMhkRB34i8sgJAKyqe+C3cCIKe1tU2UquLdtGdkQ0ADWH9qRqr44ANNy8lLvr\nP0YZFYtT62bUmjAcqZmCrLAI7qzehipbPx9TMTJrK+rOm4xVTU+QSIj7+VciDxwBQG5rg8/0sVjV\nqo7U3IyHew8Rf+z3Um8nr1cb0H5WH2RmchJuRXF03gHyMpUGcX59WtDinddAA/nKPE59cJC4qw/1\nYvrseIfMuDROLfu21OWXhkajYcG8H/Gp48qYt9s813WXlnObpnhPGopUoa0nN1fuNNh/ZeXYuhk1\nx49AqlCQde8BYWs+MiijuJjAn/aRm5Cki43+6nsSTpRcFxxbN6PW+CAkZgqy7z3grpG6WZoY35Vz\nyEtMJnzTbr3Xzau40XjPh1yftpTM2/eKzcXjlQD83xuIzExO2t1HXFq6h4Isw/poMk4qocncEbg2\nqwdA7B+hhG76Wm/ZWn1eoWqnZvw5ZXOJ28aiSVvs35qMRGFG/sO7JH+yAk1Oll6MVbse2PYaDhrQ\n5ClJ+XwD+eE39WKcp69DlZJA6mfrSywTyl4XnvBdMVe7TzbvwrJWdeounq57TyKVYu1di5sLVpN8\n+nylzAHAqU1TvCYMR6qQk3kvgturdhi2nSZipGZm1Jk5Ftv6PkgkUtJv3OHuhk9R5+Xh0NQf78lB\nSORy1Ll53N20h4ybYSb3iUvbJtSZNASpmYKMsIdcX2H6mFJcnLmbMy3/s4Jzw2aTn5YBgGu7pvgv\nmUxOXKIu7uK4JQbrriz7pCjr5q1wHTEOiUJB7oNwYreuRZ2TbTTWY+pcciPuk3LkGwCqzl2Goko1\n3fsK9yrkXLtC1Ir5JZZbUduiNMcCkzFSKXWnjMTp8XnFwy9/JOrxeYVtfW/qThuFzMICiVRKxBff\nE3v0TGEuCjkBH84j+nH8izzHeaJqr464dQgkZOZa3Wve4wfj0UV7HHYcM4eU/ZsgP09vuYpqN4V/\nPzEC+hKIjIxk0KBBxcYMGjSIyMjIcsqofDVYOInQeR/y56CpZEfFU2fSUIMYhYOtyTjPfl2wqu7B\nuaEzuDB6HjXeeh07P28A/Je9T+R3xzn31nTu7f6WgDUzAHBq0ZCqvTsRPHYhAIm/n6fe/HdRONhR\nd8F73FiwjktD3kUZHUvtiUFP5WI6ptY7Q8hNSOKvoClcHjuLqv26Y9tAe4Jdb+F75MYn8ffoGYRO\nWYr31LGYuTqXahtZOtnQfV0Q30/ezZ4uH5D6KJH2s/oYxDnWdqPD3H4cGr2dvb1Wc277UfrueEcv\nJnDca3g29y5Vuc/i3r0Exozcz9Gfrz/3dZeWwsEOv4WTuDpvA+cHTyEnOg6fycOeaxlyBzt85r3P\nrYVr+HvYJJTRsdScMKLUMZbVq1GQkcmVMdN0/0rT+ZQ72FFn/nvcXLiWv4dORhkdR62JhuWWFFNt\naD/sG/kZrF9ipqDeomlI5SVf1zRztKX5srGcn/kRx/rOJSsygYZTDNuw4uJq9myLbS0Pjg9cwInB\ni3BpXo9qXVoAoLCzpsmCkTSeG4REUvJ0KKmtA04TFpO0aQ6x0wdQEB+Fw5B39bdNlZo4DHufhNXv\nEzd3GOmH9+AyfZ1ejG2vIMx9G5dYnm6dZawLT1Qb2g+7gMJ9kvPgkV79SL0YQsKJ3412MipDDqD9\n7vkueJfr89cTPOR9lNFxeE0aXuqYmqPeRCKTcWnEDC6OmI7U3JwaI/ojkcvxWz6d22s/5tLIGUR8\nfoj6i983tUtQONjiv2giV+Zu5OzAaeRExVF3svFjSnFxVV5vT+CupVi4OektZ9+oHg8O/MT54XN0\n/1TZ+hdeKss+KUpmZ4/HlLlErV7E/YlB5MVG4zJqvEGcmWdNPFdswrZdR73Xo9csIWLKWCKmjCVu\n2wbUWZnEfbypxHIrcluUdCwo7nhRrd9rWFb34MKw6VwcM5fqg9/Azs8HgEarZxK++1uCR8wiZNpK\n6rw/EsvqHgDY+delxaercGjkqyvnRZ7jyO2sqT/nHXxnjIYiTWXVnq/i2q4ZF0bNA0CVmoj94Il6\nZVZUu1nZaTSSSv+vMhAdUOFfL+3mPbIfxQIQefg4Ht1fMYhxbhlgMs6tQyBRP/2GRqWmICOL2BN/\nUqV7e8xdHbGuVZXYE38CkHQuBJmFObb1apOblMqttbt1VyEzb93D3MMVx8DGZNy8izIyBoDoI0dx\n69peL5fiYu5t3kP4ts8BMHN2RKKQo8rKQm5rg0OLACL+o72anJeQRMi4ORSkZ5RqG9VqV5/Y0AhS\nHyQAEHLgDH59WhjEqfIKODbvAFkJ6QDEXY3A2sUOqUIGQPVWdajV3o+Qr/4oVbnP4qsDl+jXvzHd\nezR47usuLaeWjUi/eY+cx/Uk6vBxPLoZ1qeycGzRhMxbYbr9H/v9UVy7dCh1jG1DXzQqNf5bVtD4\n8y1UHzUYpCU35Y4tGpN5s3CdMUeO4tql/TPF2Dfxx7FlE2J+OGawfu/p44n7+RfdSE9x3Fv7k3I9\nnMyHcQDcO/gLNXq0fqY4iVSK3NIcmZkCqUKOVC5HnZsPQPWugSgT0wjd+LXBOo2xaNSKvHs3KIh9\nBEDmie+watddL0ZTkEfyrhWoU7Ujz3nhN5E5OINM2+E292uGRUBrMk8eLlWZUPa6AGDfpCEOgU2J\n/f6o0TLsGvnh/Gob7m3YWWlzAHAMDCDjZhg5T9rFw8dw7/pKqWNSQ24Q8fkh0GhArSbzTjgWHi5o\nCgo41/sdMu/cB8Cimjv5xbSbzi0DSLtReKx49N0JPLq3e6Y4cxdH3Dq04O9pawyWc2hUF6fm/rTa\nu5oWu5bi2KS+4baoJPukKKsmLVDevUV+TBQAqT//gF2H1ww/3xt9ST/1Mxl//Gp8RXI5HlPnEb97\nGwWJCSWWW5HboqRjQXHHC9cOLYn576+684q4k2fx6P4KUjMF4XsOknLxKgC5Ccnkp2Vg8fhicvVB\nPbj3ydek37irK+dFneMAeHRuQ25iCne27tdbn62vF/G/X6QgUzvCnR38K1YtO+nFVFS7KbwcRAe0\ngvXv35+kpCTy8/Np2rQp169rR3/69evH3r17GTx4MG+99Rb79u0DICYmhrFjxxIUFMTYsWOJiYnR\nrUulUjFr1ix27doFwKZNm+jfvz+TJk0iJSUFgNjYWCZMmMDo0aPp2bMnJ0+e5P79+wwYMEC3nqlT\npxIaGlpem6DMcuMKpyLmxiehsLFCZm2pF2Ph7mwyzsLdmdx4/ffM3ZywcHchNyFFe0LzmDIhGQs3\nJ7LCH5FyuXAKSe2JQST88ifmbi7660pIQm5jjcyqMJ8SY1Rq6i2eSvP9W0i7fJ3sh9FYelYhLzEF\nz7d6E7BzFU32rMemrhfqXP3pMKbYVnEgIyZF93dGbCrmtpaY2VjoxaVHJRP+W+EIZMf5bxJ26irq\nfBXWbvZ0XjSQ/037HI1KXapyn8XCxT3o3bfRc1/vs7Bwc0FZZGpcbnwSchsrvf1XVmZuLuQVLSMh\n0aCOFBcjkUlJvXSF6zOXcvXd+TgENqHKm2+UWK65uwu58cWXW1yMmbMjXlPGcvuDTaDW3//uPV9D\nKpcR95P+tC5TrNydyI5N1v2dE5eMwtYKubVFqeMe/HiGvPQs3ji+mZ4nt5D5KI6Y0yEAhB/6lZuf\nfI+qlN8PmbM7qqQ43d+qpHikVjZILK0LX0uIQXn5rO5vh6Bp5Px1GlQFSB1dcBg5g6Rti0CtKlWZ\nUPa6YObsRO0pY7mzfCMatfHvZK3Jo3m4+wuT08grQw6Atr3VK8Ow7SwuJiX4CjmPtMdDcw9XPAf1\nJOGXcwBoVCoUjva0/mEX3pNH8OjAD8Xk4YwyvnTHFFNxuYkpXJnzIVn3owzWn5+WyaNDxzg/ch53\nt39FwLoZmD81SlpZ9klRClc3ChLjdX8XJCYgs7ZBammlFxf/yRbSfz1ucj0OXd6gIDmRzPNnTMYU\nVZHboqRjQXHHCws3Z5RxT59XOKPOyyfmp190r1ft8xoySwvSrms7nNcXbyHpz7/18nhR5zgAkUdO\nEL7nkEFbmX79Lq6vNENhbwuAdfvXkTm46MVUVLspvBzEPaAVrFOnTpw5cwYPDw88PT35888/MTc3\np0aNGhw9epQvv/wSgNGjR9OuXTu2bt1KUFAQHTp04Ny5c2zYsIFp06ZRUFDAzJkzad68OcOGDePq\n1atcvHiRQ4cOkZ2dTdeuXQEIDw9n9OjRtGzZkr///puPPvqIzz77DAsLC8LCwnBxcSEyMpJGjSq2\nI1BWBh0kifFrLRqVGqRGpiOo1WBi6l7Rg5jCQds4q3JyePDJATyHGk5rfXoZo+U9FXP7g83cXf8x\nfitnU3P0IFKCQ7Cs5kFBVg5XJs7HopoHATtWkhMZTebtcKPrK0piYoTMVEdSYWlGj3VB2FZx5NDo\n7UjlUnptGcMvKw7pRkdfSqXYN2UlKUUZxcUU7eSp8guI/uYHqgzoSczBn0oquMRyTcUgkVBv2UzC\nt+4hPylF7y3rul549O3O1ckl38tVWIyJz/dUfSwuzm98X3JTMvip03vILMxos2kKdYK6c3e/8VGO\nYpkox9hJkcTcAqeJS5A5u5Ow+n2QyXB+fyWp+zbqrvKXVlnqAhIJdZfO5P7WTw32yRO2/r7I7W1J\nOHG6UufwZF0l5VGaGJt6Xvivnk3Udz+T9OdfutfzU9I412ccNnVrE7B1KVn3H+k6rHppmPqspayb\nT8c97cqcD3X/n3rlNmmhd3AO1D/eVpp9op9UiTmVhmOfgcRu2/AMxVaubVHaY7mxnJ5u32oG9aX6\n4NcJmbqy1BeTTa3rH53jFCPm5zOYuznTbPtiAAqiItAU5OsHVVC7WempxdheaYgOaAXr2rUrH3/8\nMVWqVGHatGns378fjUZDt27dWLt2LaNGjQIgLS2NiIgI7ty5wyeffMKnn36KRqNB/vh+q9u3b2Nj\nY0N2tna6xIMHD/D390cqlWJjY0PdunUBcHV1ZefOnRw6dAiJREJBQQEAAwcO5PDhw1StWpXevXuX\n/4Z4BlZWZpibF1ZdMxcH3f+buzqRn5aJWpmrt4wyLhF7fx+jccrYRMyc9dehjE9GGaf/OoDF4/cA\nbHxq0Hj9bACuz1sLajW5sYnY+tUtXJeLM/npGXr5FBfjGNiYrPAI8hJTUOcoSTh5BpcOrYn7P+0V\n0yf/VUbFkh56C9v6dUx2QNtOfQOfztoTGzMbCxJuR+ves3V3ICc1i/wcw4OebRVH+u+eQNK9WL4Z\ntoWC3HyqNqmNfXVnOs5/EwBrVzskUglycznH5n9ptPx/o9y4ROwb1NH9bao+la2MBGzql1BHiolx\n7fYqWWH3yb4XoX1TIkFTUPLV49y4BGz9inw2E+Uai7GqVR2LKu7Ufm8MAGZODkikUqRmZqhylMit\nLWn0sfbhFWYujtRdMp0H2z8n+exF3br8Jvaj6qtNAJBbW5J+t/CedEs3R/LSMlEp9etjdkwyTv7e\nRuOqdW5OyJr9aApUFGTmEPHTH3i+1uIfdUBViXGY+/jr/pY5uaLKTEOTq39vnszZHZfZGymIekDC\nBxPR5OdiVqchcrdqOARN08Y4OINUikRhRsqulcWWW5a68GSf1Hr3yT5xRCKTIjU3I2ztNgBcOrUj\n4eiverM4KmMO2jISsSvy3TNzNZZH8TFur7Wlzsx3uPvhp8Sf0N4mILO2wrGZP4mngwHIvHOfrLAH\nWHvX1HVAvccNxLV9c0BbNzPDCh+69qQNUD19TIlNxL6B4THl6bii5DZWVB/Qlfuff1/4ogQ0j4/D\nhZ+zcuyTogoS4rCoWzhdWO7sgioj3eA7Uhxzrzogk5FzLaTUy1TktjB3cSz8fyPHguKOF8q4RIPl\nn4xCShRy/BZNxrq2J5feWYAyRn8qstc7g7H19cLnPe2zIV7UOU5x5HbWxB77gwd7v6fLhW/Jjwqn\nIFb/OSIV1W4KLwfRTa9gdevW5dGjR4SGhtKhQweys7M5deoUXl5e+Pj4sG/fPvbv30///v2pV68e\nXl5ezJw5k/3797Ns2TK6d9fOt2/QoAG7du3ixx9/5NatW/j4+BAaGoparSY7O5uwMO0T/7Zs2UKf\nPn1Yv349LVu2RPO40e3evTtnz57lxIkTlb4Dmp2dR0pKNikp2s62vX8drB7fwO/ZvwvxZy4aLJN0\n4YrJuITTl6jWqxMSmRS5jRXuXdqQ8HswufHJ5ETF4f74KXDOLQPQqNVkhj3E0tOdZjuWEP6f77QF\nPL6amBIcgl2Dulh4VgGgSr9uJJ0J1suluBjXTm2pOXowoD1IuXZqS+rfV1HGxJNx6x7ur2sf7KBw\ntMeuYT0ybpl+0ujZzf9jb6/V7O21mgMD1lO1SS0carkCEDC0HWEnDadZW9hb8dZXU7l77Ar/nfIZ\nBY/vqYu+fJ9P2i3UrS/kyzPc+t/fL1XnEwrryZMHQlTr15UEI/WpLFKDQ7BtUE+3/z36dif5j+BS\nx1jVrkGNt4fC4w5glf6vk/hLydPZDNfZjeQzJZWrjcm4fpuLb44lZPQ0QkZPI/aHYyT88gdha7dz\nf+se/hoyWfdeXmIKd5Zt1Ot8AtzYeYSTgxdzcvBifg36AKdG3tjUcAfAa0Anon+7bJBz3LmrJuNS\nb0bg2bUlABK5jKodmpAUWvyTd01Rhp7HzMcfuUd1AGxeexPlJf0REam1HW5LPiEn+FeSti5Ak689\nAcy7e5WYyT2JmzuMuLnDyDz5HdnnTpTqJKosdSHj+m0uDXhb9xCV2B+OknjqD92JNYBd4wak/lX8\n7RSVIQeA5MftouXjMqr27UriU9+94mJcO7bCZ9rbhE5drut8AqBWU2/+ZOwaah/mZlW7OlY1q5Fx\n/Y4u5N6ug7oHAgWPWWh4rDh9ySDfpAuhpYorqiA7h+oDuuHWMRAA27q1sPfzIfHcFb24yrJPisq6\nfBHLen66J9k69OhN5oWzJSylz8o/gOzQv0sOLKIit0VJx4LijhcJpy9SpVfHIucVbUk4rX2v4aoZ\nyK2tuPTOQoPOJ0D47m/IuBVO2Ef7dXm8iHOc4tjV9yZg7UwkMu3zH2z7jCL7rP7FvYpqN4WXgxgB\nrQQCAwOJjIxEKpXSokULwsLC8PX1pXXr1gwZMoS8vDwaNWqEu7s7c+bMYenSpeTm5qJUKlmwYIFu\nPRYWFixZsoQ5c+Zw8OBB2rdvz4ABA3Bzc8PZWXuDe/fu3Vm3bh27du3Cw8NDd2+oubk5LVq0IDk5\nGQcHB6N5VlY3lu+k0erpSORycqLiuLZMe3Cx8/XCb8EEzgfNJj8l3WRc5OHjWHq60+qL9UgVciKP\nnNTd33l14WbqzxuP1+j+qPPyCZ2/CTQaagX1RWZuTo1BPQBo+vlG1Hn5hIybw+1VH+G3YhZShYKc\nqFhuL9+Cja83dedO5u9R08lPTTMaA3Bv22fUmTWBZvu3gEZD4pkLRH37X+3nnL8Gn+njqNK3GxKJ\nlIeffUvmLdM/JVBUdlImP8/5gj7bxiJTyEl9mMD/zdTeV+zesAbdVw1jb6/VNB72CnZVnajTNYA6\nXQN0y38TtBVlapap1b80tPVkBw1XzUCqkJMTGcf1D7aVvOCzlJGaRtjqrfgun4NELkcZHcvdFZux\nqeeD95zJXBkzzWQMwKPPvsZr2nia7N2KRCYj8bezpbr3Mj81jburPqL+itnadUbFcmefGe16AAAg\nAElEQVTFFmzqeeMz911CRk8zGfO85aZkcGnJp7Ra/y5ShZysyHiCF2rvXXf0q0WzJWM4OXhxsXFX\nNhyg8dwguh5ZjUatIf7CdW5//r9/lI86PYXkjz/AedoaJHIFBXGRJG9fisKrPk7jFhI3dxjWXd5E\n5uKBZYuOWLYofMJnwopJqDPT/lG5Za0LJbH0rEpubHyxMZUhB9B+926t3E6DlTORKLR17+YHH2Hr\n6029uRO5NGqmyRiA2hO0T8OtN7fwSZ1pV29x98NPuTZ3LT5TxyCVyVDn53Nj6WZyE4yPAOWlpHN9\n+U4C1jw5VsRydel2AOzqe+G3YDznh88pNs4ktYaQWevxnTkan3GDUKtUXFmwxeDBXZVlnxSlSksl\ndssaqs77AIlcQX5sFDEbV2HuUw+P92YRMWVsietQVPUkPy72mcqtyG1h7Fhg6+tF/fkTCR4xq9jj\nRdTh41hW8yBw/wakCjlRR06QevkG9o3q4fpKc7L+n737jquq/h84/rqLvWQj4kRQBNyomVamlTa1\nzEFiWZkj9565cptWNi3L1Eot+6ZNR8OJ4kJw40AB2Qiyx72/P65cuDJEkWG/9/Px8PGQe9/nfN7n\ncz6fc/ic8zmHyBjafb7AUFbERxtIPhRaRh5V9ztOWZIPnSSxtQ8dN+r/LEr+9Uhu/mp8wbmmjpu1\nnU5bO94yW9spdLq7mIMh/tPmzp3LE088QadOJd9GWZqEhIq9gbUqOTlZs7ND+X+Cpqr1OLSZPZ17\n12gOAF33/8SyJiNrNIdJFz+igI01mgOAikB2d+xbozk8HryF/V1Kfya4OnXe+zP7Hn6hRnN4eN//\n+KHV4BrN4aUT6wC41r/k25+rk8f3ITXeLjrv1b+Epzbk8c9DL9ZoDo8e+JEdAf1qNAeAJw5vqhX7\n49yzj9w5sIp5b/+3VtRFTZ9DQH8eqQ2/49T0cRP0x84HQdZcxzsH1TDzdxLvHFTFZAquAGDIkCGk\npaVVePAphBBCCCGEEHdLpuAKANauXVvTKQghhBBCCCH+42QAKoQQQgghhBCVJc+AVohMwRVCCCGE\nEEIIUS1kACqEEEIIIYQQolrIFFwhhBBCCCGEqCSdTqbgVoTcARVCCCGEEEIIUS1kACqEEEIIIYQQ\nolrIFFwhhBBCCCGEqCyt3NurCKklIYQQQgghhBDVQgagQgghhBBCCCGqhUzBFUIIIYQQQohK0mnl\nLbgVodDpdLqaTkIIIYQQQgghHmQZ091qOoU7slx4vaZTkDug4t4lJNys6RRwcrJmd8e+NZrD48Fb\najyH2pJHbcihMI8CNtZoDioC2dnh5RrNAaDHoc01vk8eD97CjoB+NZrDE4c3AfBru4E1msfTR76t\nFfsDqPH2WVva5qFHn6nRHAA6/PNLrdgfNd0/QN9HakNd/Nu5T43mAPDI/q383n5AjebQM+S7WtMu\nRNXTarXMmTOHc+fOYWJiwoIFC2jQoEGJuFmzZmFra8vEiRPvqRx5BlQIIYQQQgghKkmnU9T6f+XZ\ntWsXubm5bNq0iQkTJrB48eISMd9//z3nz5+vVD3JAFQIIYQQQggh/p87evQoXbp0AaBVq1aEh4cb\nfX/s2DFCQ0Pp169ys5pkACqEEEIIIYQQ/8+lp6djZWVl+FmlUpGfnw9AfHw8H330EbNnz650OfIM\nqBBCCCGEEEL8P2dlZUVGRobhZ61Wi1qtHy7+8ccfpKSkMHToUBISEsjOzqZx48b06XP3z0vLAFQI\nIYQQQgghKkv7YE8ubdOmDX///Te9evXixIkTeHl5Gb4LCgoiKCgIgK1bt3Lp0qV7GnyCDECFEEII\nIYQQ4v+9Hj16sH//fvr3749Op2PhwoVs376dzMzMSj/3WZwMQIUQQgghhBDi/zmlUsm8efOMPmvS\npEmJuHu981lIBqBCCCGEEEIIUUk6bfl/5kToPdgTlYUQQgghhBBCPDBkACqEEEIIIYQQolrIFFzx\nn1Lvpadw7/ME6HRkRcdxZtGn5KWk3dU6zOu54j35TUzsbFBq1MRs383Vb38BwOGhNjQZMRClRkN6\nRCRppy4A0GHjinLL8xwdhEu3TuSlpQOQeTWG8Jkr72kb7QP88Xx7EIeDJhVtd9+nAAj4ZhkZV6I4\nt/xL8m+V1XzWSDIuXuXqt9vvqbzSynTt2ZX6A541fK+2ssDU2f6e11/o9vo98+4nFGRmVXq9d0un\n0zFj2jY8mzox5PWH7nLpuihpBYD/wnGcevdTCjJKboNj59Z4Dh+I0kS/rYY4pQLvsYNx6NAShUpF\n5MbtRP20EwALD1d8Zg5HY2tNQWY24XNXkxkZQ8Og53Ht0dmwblNnBzQ2lmReiwVAZWGOeV1nWq2a\nwb5nhgLl1LVSideYwdjfKv/qt9uIvlW+uYcrPjNGoLG1Jj8zm9PzPiQzMgYAv0UTsPJsSEFWNgAp\nR8O58P46VJYWADz80weYOtYBhYLUsAscn7i0zHppOmIAShMNNyOucmpB8XoJwrGjPq8rG7cTtXUX\nAJaN3PGZNhSVhRnodFz46DuSgkMBqNe7O/X79TSsX2NrTV7qTQCcO7fC++3+KE3U3LxwjZPzPye/\nlJzKilNbmuM/eyhWDeuCQkHUr3u5tE7fzzQ2lrSY9CpWjd0xsbMGHRTk5Bj2x+3turr2h8NDbQxl\ndtuzgX97vlnl7bM4j349qff84xwcOBGAgA3LUWo0ZFy6iqmLI/G7Dhgdq+6lXgqZuTkT8PUSjo+Z\nz82zl2gw6AVcivUTjZ1Nie2269gOjzcHo9BoyLx0hctL3y+xr8qKaTp3GqbuboY4U1cXboaGc37G\nfOw6BdBk2jhy4hMM358eNQX7Lp1wffkFADquX2o4lu59dji5yalG5Vo18cB7whDUVhag1XJ68efc\nPHu5xDaUR2Nnje87b2Pm5qRfx6LPSQ07b/i+2y8fkJuqP3dkRF4n+te9VdJHrBq502rBSMPyCpUS\nG8/6HJ1U8rzo+lQXGr7yrL4PZedwbsVXpJ29dN+222v0IJwf72Q4Z2bc1mYB7Du1pdGwQJQmGjIi\nIjm36KMS7aKsGKWJCZ4T3sS6uScKpYK0UxeIWLEGbW4udm18afz2qyhUSvLTbhLx/ldkRFwpd1uc\nOrfGa2RhXV8lfEHp+6SsOKWphhaTh2Dr0xiUSlLDIzi1dC3anDzs2/rQbOwrKFQq8lJvcua9b0rN\noaqOnXfTLmornU6m4FaE3AEV/xnW3o2pH/gsR96cyaHACWReu06Tof3vej0+s0YSv2s/h4MmEfLG\nDNxf6EGdtr5o7GzwmTmCsGnLCe43hoLsbBq93hfgjuXZ+XkTPmslh4MmcTho0j0NPpWmJjR+qz++\n745HoSrqunXatKDBIP0vMIeDJpF04DjNp76FRUN3Wq9+B5fHO911WXcqM/b3PYZtCXltKrlJNzi/\n/Mt7LgcoUb9ZMXF4jgys1DrvxcWLCQwZvJ4/fj91D0uboqQTWvYCkBkdT9MRA0tEaeysaTFzBCen\nreDAy2ON4ur17oGFhysHB07g0GvTqN+/FzY++hcA+M4dTdSPOzjYfzwX12ym5eIJAFz55meCB00m\neNBkQqeuQGNtwemFn3Hg5bEAtFo5ndYfzERlYX6r/LLr2r13d8w9XDkUOJ6QIVPx6Pc0Nj6eALSY\nM4aorTsIHjCOy19swm/RRMM22fp6cXT4bEO7uPD+ulufNwVAbW7GwYGT2P3wK6SeuoDXyNLrxXfW\ncEKnvsf+vuPIio4zxHn07oGFhxsHBkwk+NXpNChWL80nv0709r8JfmUKp+Z/iv/CsShUSszrOuE5\nvB8hb71jKMPrrRcBMLGzxv+dtzg6eRX/vjiRzOg4mr1dsv+WF+c1vC/Zccns6TeF/UGzaPBid+z8\n9Nvbcs4wsuOTODxyESpTE9RW5hwavhCgRLuurv2hsbPBZ9YIQ4xCqayW9mnIyd+bRoOeN5QBGLbZ\nvK4LVo3r35d6AVCaaGgxdxQKTdF19sj1/zPUx7ER76DNzjYqT21rQ+MpYzk/exEng4aRExOLx9BX\nKxxz4Z1FhL8xmvA3RnN52YcUpGdwZdUnAFj7Nuf6pq2G78PfGI02K4vEHX8R/sZoAA69Oo2cpBuc\nXb62xOBTaWpCmw9mErlhG4eCpnBp7Y/4zR1dYt/dSbNJb5By4iwH+48n7J0P8V84HqWpieH749M/\nZF/gdPYFTufU0q+rrI+kX442lLMvcDqJwWFE/7Gf2L9DjNZtUd8Nr1GvcGzMQoIHTebyV1vxXzKx\nRA6V2W5bf2/CZq4yHEPDZq4yWlZjZ4P3jLc5PWMZIQNGkRUTR6PhgyocU3/wiyhUKo4OHs+RoPGo\nTE2oH9QHlaUFPu9O5tJH6zg6eDznl32Oz/wJRm22tLr2m/0Wx6esZO9LE8iKjsfr7QF3Fdfktd4o\nVEr2DZzKvgGTUZqa0OTV51FbmtNm6TjOfbCR/QOncGrxWlotGlPqumu6XYgHnwxAHwChoaEMGqQ/\nkJ0+fZouXbowaNAgBg0axG+//XbP601ISGDOnDn3Kcuad/PcJQ6+NJqCjEyUJhpMnewNdzoUajVN\nxwym/bolBKxfRvNZIw2/jN8uZttuYv/cB0BBRiaZUbGYuTpi38GftDMXybp1V+nyF1tApwMoUV5x\nCo0aK6+G1A98joD1y/BbNAFTF8e7zsu+Q0tUZqacefdjo8+tmzUmOSTM8HP8P4dwfLgtHn17cv2X\nv4nbfdA4n/tQZnENgp4nNyWV6P/tKjOmIm6v3+itO3B9skul1nkvvtt4hN59WvFUzxZ3vawCNyAJ\n0LeDqK07cH2q5DY4dGhJ6pmLhjuUxeOcHwkgevs/6Aq05N/MIHbnAdye6oqpUx0sG9YlducBAJIO\nnkBlZoq1dyOjdfvMeIvsuCRitv9t+MzGx5OwaSsMP5dX106PdOD6L38byo/btR/Xp7pg6mSPZcO6\nxO3cX1S+ub58MzdnVBbmNJsylIANy2k+cwRqGysAbP289XWjUuG/cCz1XuzBtR934vrUw6XXy+mi\neike5/xoe2J+ua1eena5tW4lGmt9eWpLc7Q5ufoVKpUo1Gqj9q3NzQPAsaM/qacvGcqK/GEXdXsW\n3R0rVF7c6eXfcOb9jQCYOtqhNFGTn56JxsYSxwA/zn++FceO/twIj2B/0EzDnaXb23V17Q/7Dv5k\nXr1eVBf5BdXWPk3sbWk+6XXOf7jBUAZA1rVYXJ/qSnZsgtFFrnutl0LeE9/g+q//kJda+gwYz9FB\nJB08YfSZbfs2pJ+9QE60/g5Y3LbfcOj+6F3HKNRqmkwbR+TqNeQmJAJg1aIZNm1a4vvZKpp/sARr\n/5LHl4aFx9KfSh5LHTq0JDM6jsQDxwFI2HOEkzNW3ipPhdfYwXRYt5iOG5bSYtYIVJYlj+kKlRKn\nh9sQ/bN+/ekXIsm8dh3HTq0Mg57GrzxNl28X0WbpWNyefKjK+khxdVp54/p4AOGL1pZYtzYvn9ML\nPyU36QYAqWcuYupgh0Ktum/bbe3VkAaBz9Jxw1L8F0/AzMXBOL+AVtw8E0FWlL7vxPz0By5PdKlw\nTGroaa6uu/X7glZL+vnLmLo6Ye7hRkFGJjeO6s/fWVejyc/IwsbXu8Q2lFXXV3/cSd2n7rxPisel\nHD9DxNqfbuWjI+3cFcxcnbCo70ZeehZJIfqLrxmRMaXe1azKY6dRnZbTLsSDTwagtdyaNWuYOXMm\nObembp06dYrXXnuN9evXs379enr16nXP63ZycvpPDUABdAUFOHZtT+dtn2LXyoeYX/W/hDcMegFd\ngZaQwVM4PGgSuQnJZd5du/7rP4ZfYO07tsLWz5uk4BOYOTuSHZdoiMuJT9JPhYIS5RVn6mhPytFw\nLn78LYcHTSI1/AItl06+67wS94Rw4f11hmm8hdJOR2Df1tfwc91nHkNpouHy2h+I/WNPifXcjzIL\naWytqT/gWc6v/LrU7+9GWfVb1uC4qsyc3ZPnXvC/x6Ut0FF0Es2JT0JjZVHilyIzFwdy4pJKjTNz\ncSAn3vg7U2d7zFwcyUlIMVz0AMhOSMas2NRny0b1sPHxJPlIuFF5So2avJsZReWXU9dmzg5kx91e\nvgOmzg4lys+JT8bU2QETexuSQ8I4u/gzDgdNpiArG58ZwwF9nwSI3X2Q4+OX0GBAL6ybNSyzXrLj\ny66X4nllxydj5qz/RfHM0rU0evV5um7/mLarZ3JmyZfoCrRkRcVxZcN2Ht5SNOMg4qufATB3sSfr\ntvVprCxQ35bTneJ0BVpazRtB101LSDp6hvTIGCw8XMlJvEHjV3rhPfJlbH2aYNOskeG4cnu7rq79\nYebsSPrFq0Ubp9NVT/tUKvCdN5rzH64nJyHZUAaAZZP6ePTrxal5q1Fq1ChNNJWqF4C6z3VDoVYR\n8/NuSmPZqB5OXdtz8fNNRp+bODsaBowAuQmJqK0sjfZVRWKcevUgNymZlH1FF//y024S99OvhL81\nlmtr1tF0/gxMnIwHOg0GPsO5974uNWeL+m7kJt3AZ8YwOny9iDYfzkShUgHQaPAL6AoKODR4KsGv\nTCYnMaX0O9u21qBQkHej6EJpYZsxdawDwNmPNrF34DRuhEXg+epzVdZHims+NpDzH28udbCTfT2B\nxP3HDT97jxlMwt4j6PIL7tt2pxwNJ+Ljbwl+ZTKp4edpuWyy0fKmzg7kxBdrhwlJJfZ5eTEph0PJ\nuqYfmJq6OOHe7xkS/jpA1tUYVOZm1AnQX4yxbuaJZSMPTBzqlNiGQqUdB0vbJ+XFJR4KI/OqflBo\n5upIwwE9id0dTObV66gtzHDs4AeArU9jrBvXK5FDVR47iyuvXdRqWmXt/1cLyDOgtVz9+vX58MMP\nmTxZf0AMDw/n8uXL7N69mwYNGjB9+nSsrKxKXfbDDz8kMjKSlJQUbty4QWBgIDt27ODy5cssWbIE\nR0dHxo8fz+bNm3n22WcJCAjg3LlzKBQKPv74Y6ytratzU++bxD0h7N0TQt3nH6f1qpkceGkUDp3b\norG2wD5AP7BQatTkpqSWux7XXo/QdHQQYdNX6K++Ksue17/3qdeNyjP6Jex6PKHjFxl+vrpxG42G\nvIiZm/M95XW7GyfOcOnLLfjMGE77rxYT88tf5KXeRJuXX2r8/SizUN0XupOw9wjZ1+PvaXkjZdSv\nTqut/LqrTRnbUHDbNihKPwHoCrSl14NWC4o710/9/r1IDb+ALr+g3Ljy6lpRyne6gtI/L/wu7VQE\nYVOXGT67tGYzXX5bg0Kt5spXP9LkLf20q5yEFKK27sblkfb6wNvqpawyKKNedFotShMN/u+OJXze\nJyTuO4atb1Nar5hM6umLWDVyx+WxAPY8O4JH/1wDQMt3hnFk/HJQlrMPiqtA3InZH6Na9CVtl46j\n6Rt9SDwUhkU9Z/LTs7i69S+sm3jgM/4VMm790leYe1EZ1bM/ynpurqrbZ9MRA7lx/AzJh8Oo08bH\nqIwW74zi1Oz30Wbn3IovOnbeS71YezfCvfcTHB02u9RlATz6PU3UD39QkGF8x0VRgT5WkRjXvi9w\necVqo+8vzF5o+H962GnST53Fpm1rEv8outuZsOcI2dcTKI1SrcLxodYcGTGXtFMROHVtR+uV09j7\n/AgcO7dFbW2Bw61jukKjLjGFF/RTrsvKvbDcjEj9QOnS+l/wGvYS6lIuAN6PPnLh8x8BqOPfFBM7\na6L/OFDqOgxFmJniO3sEpi4OHB+jr8v7td3Hxy02fBa5YTuNh7xY4eXvJsbKuzEtFk4h5sffST5w\nFIDwqYtpNHQgjUcMJjX0NDeOhqHLL/3crS+ooueYO8fZNGtEm2Xjidz8Jwn79IP8oxOW4zWiH96j\nA0k+fpakkFM4d2ljvJIqPHbebbsQDy4ZgNZyTz75JFFRUYaf/f396du3L76+vnzyySd89NFHTJky\npczlzczM+PLLL/n888/5999/+fTTT/nxxx/59ddfGTx4sCEuIyODp59+mlmzZjFhwgT27NnD008/\nXaXbdr8EfKP/RSvjchRRW/8kNfQsADHb/6bZ5KGorS1RqJScX/mVYcqVytwMpYkG62aNaT59uGFd\nhS/Z8RwdhPNjHTk+aj7pF64AkBOXiFuvRwzlZccmkJ+eabgLWry8/GJ3DK0862Pl2fC2u5EKdPn5\nd51XaVQWZtw4flq/VpWKen2eRGlqYpRDcfejzEIu3R/i/Htf3TGuInLiErFt0dTws35Kc7rhF9Pa\nSoE/Ctxv/aQBblD4K3RZ25Adl4itb9HzasXjsmMTMXGwM/ouOz6Z7DjjzwHMbn0HgFKB82MduLT2\nR+zbGk/vy0tNL5qWSvl1nR2XaLgbUvhdTnxSibyKf2fXshlqGysS9x7R14lCgUKhoP3aRYZn/UwL\nl1WAQq0hLzWdgtvrJTYR2xYl66UgO4fs2CRMHY3rJSc+CasmHqjMTEjcdwyA1PALpF+6hp2vJ3Xa\n+JCw5yi5xV4M5vxwKx7euBCNpQVpxe4GmjnZk1tGTna+TUqNc+zoz82Iq+Qk3qAgK4eYPw/g2i2A\nqF/0fT3qlz24dG2DnW8TUk6cx65Fk6L9Uaycqtwfjd/sh9OjASiUKuo+85jxHVBFyVzg/rdPt55d\nyU1JxfnRAFTmZpg62VOvd3cA1NYWtJg3BoVahU6ro95LT6EyNeHSmk33VC+uPR9BbWlOuzXv6j93\ntKfF3DFErF6vb59KJc6PdeDwqyXPmznxCVg1L5r+aOLoQH7aTeN9dYcYC8/GKFQqbp4oeixCZWWJ\ny/O9iNm4BQD31wKxbtkCiyYNMXVzIfor/VTEmF9KzqAxlJuYQsaVaNJORQD6warP9GFYuLugUCk5\n997XxY7ppihNTLBp1hifGcMM6zj06tRbdW5J/q0ZEabOdfT9yFP//K3XWy/h3FU/4FBq1PoXaBXb\nn/erjxRy69GJ6F/3Gl20Bf0LmQAS9h4h+ufdtFoxhYwr0RwdMRdtjn4a/f3abuumDbj++95ipRsP\n3rJjE7D2KdYOHR3Iu61d3CnG6fHONJ04lIj3viB+562yFAoKsrIJHVV0saTdxg/Iiiq6UAXQ9K2X\ncO7aVr8NlubcjLhWVE5Z+yQuCbvb+nDxOLcenfCZMoTTy77i+p8HjPI5PGy+Ybkum5cDxu2iKo+d\nhcpqF+K/o3bchxUV1qNHD3x9fQ3/P336dLnxPj76q83W1tZ4euoPRra2toYpvaXFurm5lfp9bVX4\nUonorX/iO3+sfroN4Prkw6Rfukp+WjrJwSeo91JPFGo1KBQ0m/YWTUYM5ObZS4blCwdcXuNfo06r\n5oS8NtUw+ARIOhSKxtqSsBkrOBw0ifyMLKNnloqXV5xOq8Nr/GuYuTkD4P7iE6RfjCQnIfmu8iqL\nqaM9bT6eY6iLlGOnjZ7/u939KBP0J3OLeq6knjx3x9iKSDoUiq1vU8w9XAFw7/0ECXtr/4sHdJxE\ny++3/v0JOAL6NlivTw/iS9mGwm21uLWtxeMS9hzB/dluKFRK1FYWuPR4iIR/D5MTn0xWdBwuPfRv\n5XXo0BKdVkt6hP4XAasm9clPyyD2z31G6wZK1GN5dZ2wJwS3Zx8rVn5nEvaEkJNwq/zu+vLtC8u/\neBWVhRle44cYnvus/8pzxO06wOGgSYb2YevbFOvmjXB/rhugI37PkVLq5WTJerkVF7/nCO7F8nLt\n8RDx/4SQeS0WtZUFtn5eAJi7u2DZ0J20c1dIO3cZx4dbozI3LSoj5DT7Aqez/7XZ1ClWVv0XHyfu\n36MlckoIDiszrm6PDjQdqr9botSocevRkaQjp8iKSSD1zGXqPdNFv7y/F/atvUk9c6na98elNZtI\nPHCMuJ37CHljuuGlUABKtbpa2ueep98i+BX9C15OL/yUrOhYDr02DYDjo+dzOGgSiXuPkBUdy7Xv\nf+HSmk33XC8XVn3NwZfHGI5jOYnJnHrnfcPFEasm9clLyyj1TmNqyHGsfLwxda8LgMtzvUjZH3xX\nMTatfEk7Hmq0TEFmFi4vPEOdrvq6Sdl7EF1uHuFDxxL91UZUVpYA3Dh5nrIkHjiOuZsz1s30z9Ta\ntWquf9t7TDxJwaF49H0KhVoFCgU+04fhOWIgaWcvGV6sEzxoMroCLYkHjhsG/1ae9bFsVI+Uo6cM\nd56vbf+XfYHTufbTX9w4cwkbrwZV0kcK2bdpRuLhki98K8w58vtfaffpXOL/PkzYzPcNg0/gvm23\n9/jX9G/HBeq9+ATpEZFGuaQcDsWmhRfm9fRvOK7b+wmSbus35cU4PtoJz3FvcHLcvKLBJ4BOh9/y\nGVg10w/SHB/rhC4/v8RbcC989gP7A6exP3AaB1+bjZ1RXXcv9ViaGHyyzDjXbgE0nziYkFGLigaf\nt/Jpt2oKNs0b6+Me74D21mya85/9YHgxUFUeOwuV1S4eBDqtotb/qw3kDugD5vXXX2fWrFn4+/tz\n8OBBWrQo/0UpZU0XqmxsbXQj9CxXvt5Km4/noCvQkpOYzMnJ+ruVl7/6kaajBhHwzVIUSiXpF65w\n4f2Srxc3dXag3ktPkR2bSOsPZhk+v7bpV67/+g+n53+M38IJKDVqsqLiuLhmM16jgwj4ZplReYV3\nEw8HTSLj0jXOv7eWlsunoFApyY5PJnzW+3eVV3kyr8YQ+c3/8J74Oh03vU9q6FnOrSj7jbT3o0zQ\n/7manMQbhmf8KisvJa1E/Z6at/rOC9YqOWgJRon+5RNWTeoTPle/DYVX5YMHTb61rZ/gv2g8CrWa\nrOg4Q1zU1h2Y13Oh44ZlKDVqon7aRcrxMwCEzVxF82lv0fi1Pmhz8zg5faXhCrGFhxtZ1+NLrBvg\nwgffYOfvjcpM/9bH8uo6eusOzN1dCVi/HKVGTfRPOw132MNnraT5tGE0fO1FtLl5hM94D3Q6kg6e\nIGrLb7T7fD4olGRcvMqZRZ8CcG75l7h0fwhtbh4Ba+aTfzMDtYUZYUv1bdSmeXW8N7oAACAASURB\nVGN8ZrxF8CtTyE1J49T8T2i5uLBeYgmb85G+Xn7cgYW7C502LkWhNq6XE5NX0GzCqyhNNOjyCzi9\neA1Z0XFkRcdh7uZEx2+KptiFztXnlZuSRui8z2i7ZAxKjZqMqDhC39G/sdS2eSP8Zr7JvsDp5cad\nXrkRv+mv03XTEnQ6HXH/HOXyd38AcGTie/hOeY36fbrr7z4rFLSaO9ywP4ofI6prf+TfzOD0/I9p\ntXK6vjKUCs7f6vtV3T5vV/jnqopvc+qZi5g6OxDwzbJK1Ut5LDxcyY4t/ZGB/BupXFzyPk3nTkOp\nUZMdc52LC9/D0tuTRpP0b64tK6aQmXtdcm5fv1bL+ZnzaTB6GPVeC0RXUEDE3CXk33pBktmtwezt\nx9Li+yQ3OZUTk5fRfNIbqMxN0eblEzp1OdrcPC6t/QGv0UF0XK8/pt+8cIXzH5R+TD+79At8pg+j\n07dd0OkgfM5q8jOyyL+kv6vWfuVEFEolWfHJHJv8PtaeHlXWRwAs67uSVca0YwCPPk9g5uKI86MB\nOD9adIfs6Mh59227z674itYrpoBSSU58MmGz3qfLtk8My+bdSOXcwtX4LJiEQqMmOzqWs/M/wKpZ\nE7ynjuDoqxPKjAFoNEz/jgXvqUVvoE49eZaI99ZwZs5KvKYM1z8Kk5jCqWlLyqwL0B+3wuZ9SuvF\nY1Fq1GRGxXFyjv4lgTbNG+M38032B04rN85rZH8UCgV+M980rDcl9Dynl35F6KzV+M14E4VGTU5i\nCscmreDR/71fIoeqPHbCnduFePApdDq5v13bRUVFGZ7VPHXqFPPnz0ej0eDo6Mj8+fPLfQbU0dGR\nAQMG8N1335GYmMioUaPYtWsXe/bsYejQoYb1duvWjd9//x1TU1OWL19O48aN6dOnT7l5JSSUfONr\ndXNysmZ3x741msPjwVtqPIfakkdtyKEwjwI21mgOKgLZ2eHlGs0BoMehzTW+Tx4P3sKOgH41msMT\nh/V31X5tV/IlJdXp6SPf1or9AdR4+6wtbfPQo8/UaA4AHf75pVbsj5ruH6DvI7WhLv7tXP7vQNXh\nkf1b+b19yT+zUp16hnxXa9rFgyB1bKM7B9Uw21V39/eDq4LcAX0A1KtXj82bNwPQokULvv/++wot\nN2rUKMP/BwwoOoB1796d7t31U1EK1/vXX38Zvp848e7/xpYQQgghhBD/n+l0D/ZswuoiA9D/gLff\nfpvUVOM3v1lZWfHJJ5+UsYQQQgghhBBCVD8ZgP4HrF79oD0nJ4QQQgghhPj/SN6CK4QQQgghhBCi\nWsgdUCGEEEIIIYSoLK3c26sIqSUhhBBCCCGEENVCBqBCCCGEEEIIIaqFTMEVQgghhBBCiErSaeXP\nsFSE3AEVQgghhBBCCFEtZAAqhBBCCCGEEKJayBRcIYQQQgghhKgknU6m4FaE3AEVQgghhBBCCFEt\nFDqdTlfTSQghhBBCCCHEgyx5hFdNp3BH9h+fr+kUZAquuHcJCTdrOgWcnKzJDn+sRnMw8/2bX9oG\n1mgOAM8c3cjujn1rNIfHg7ewv8vzNZoDQOe9P7Ozw8s1mkOPQ5spYGON5gCgIrDG81ARyB8B/Ws0\nh6cOfw/A1tZBNZpHn+Pf1Ir9AdSKPGpDP63ptgn69lkb9se2WnAue+7oxlpRFzV9PgX9ObU29JGa\nPm6C/tj5IJC34FaMTMEVQgghhBBCCFEtZAAqhBBCCCGEEKJayBRcIYQQQgghhKgknU7u7VWE1JIQ\nQgghhBBCiGohA1AhhBBCCCGEENVCBqBCCCGEEEIIIaqFPAMqhBBCCCGEEJUlf4alQuQOqBBCCCGE\nEEKIaiEDUCGEEEIIIYQQ1UKm4AohhBBCCCFEJel0MgW3IuQOqBBCCCGEEEKIaiF3QMV/1p6j2Xyw\nIY3cfB1eDTTMGWGHlUXRNZft/2Syfnu64eebmTrikwrY8bkLapWCBZ/f4NyVPMxNlTzfzZyBvawq\nXLbzw61o9nY/lBo1aRHXODlvDfkZWfcU13bZWHISUghfuk6/TJfWtJo7jKzYJEPMgTfmARCwYTlK\njYb0iEjOvPsJBZnG63J4qA1NRgwsGaNU4jVmMPYdWqJQqbj67Taif9pptKzbM4/h9GgAJycuMXzm\nt2gCVp4NKcjKvmOd1OnUlgZvBaHUaMi4eIWIxR+WyK+8mIDt35CTULTNMd/9j4Sd/5a6PID/wnGc\nevdTCkqpd8fOrfEcPhClib4eDHFKBd5jB+Nwqx4iN24n6lY9WHi44jNzOBpbawoyswmfu5rMyBga\nBj2Pa4/OhnVr7GxQW5rdVqIdSrqhZesd66mQTqdjxrRteDZ1YsjrD1V4ufutqvJw6twarxH9UZpo\nuBlxlbAFn5W6r+4UZ+bsQMe189kfOIW81JsAaGwsaT7xNawauaM0NeHSV/8rNQfXh1vSYlRflCYa\nUi9c49jcL8jPKNmWy4rrsOxtLD1cDHGWdZ1IPHaWg2NX4diuOX7j+qNQq9Bm5xK6dAMppy5Vttr+\nc+2izL5Y0bhy+mwhMzcnOq5bwrHRC0g7q98H7r27U79fLwBaL5tI+ILPDO2nqtqmZSN3Ws4fZfhe\noVRi7Vmf45NX3HP9FaqqduH8cCt8ip2jTpRzLrtTXPtlY8lOSCHs1rnMoZ0PLcYNRKlSkZuaTvjy\n9aRduFrpnO9XXZR5vqxITDnnVOvmTfAa9yoqMzMUSiWRG/5H7B97aTDoBVxuO5dA1fYRm+ZN8B43\nGJW5GSiVXFn/M7F/7AWM+0jHlWM5NvcLcm/of2d6EI+donaRO6C1xNatW1m+fLnRZ+PGjSM3N7fM\nZTp37lzmd7fr1q0bOTk5Rp/t2bOHTZs2lYh9+eWXiYqKqvC6a6Pk1AJmr77Bikn2bPvQBXcXNe9v\nSDOKefZRCzavcGbzCmc2LnHC0U7J1DdscbBTsezrVCzMlPy0ypkNixzZfyyHf4/ceZAFYGJnTct3\nhnJ00ir+eXESmVHxNBvV757imgQ9g31rb6PP7Ft6cWn9r+wdON3wT2WiASBs2nKC+40hKyYOz5GB\nRstp7GzwmTmi1Bj33t0x93DlUOB4QoZMxaPf09j4eAKgtrHCe/KbeE8YggLjqSW2vl4cHT6bw0GT\nOBw0qcw6UdvZ4DltNGdnLuZY4AiyY2JpMCyowjHmHu7k30wndMg4w7/bB5/FlwfIjI6n6YiBJXLR\n2FnTYuYITk5bwYGXxxrF1evdAwsPVw4OnMCh16ZRv38vbHyaAOA7dzRRP+7gYP/xXFyzmZaLJwBw\n5ZufCR40meBBkzkyfA4F2dmcnLHqVmkKFDRDSTfu5nrfxYsJDBm8nj9+P1XhZapCVeWhsbPGd9Yw\njk9dyd6+48mMjsd75IC7jqvbqwsdPp+DmbO90XJ+s4eTHZ/MgUHTCHn7XZpPGFxi3SZ1rGkz902C\nJ33Izt5TyIiKx3d0Kf20nLhDk1bzV/9Z/NV/FsfnrSUvPZMTi75BoVYRsGQkx+at5a9+Mzn7xTba\nLXirstX2n2wXZfXF4u61zwIoTTT4zR2FQlPU/8zcnPAc1p8jQ2cDkHU9Ac+hLxnKqqq2mXE5mgOv\nTDX8Szx0kpg/9xP3T0il6rCq2oWJnTWt3xlKyKRV/PXiJDKi4mlexrnsTnGet53L1FbmtF82ltOr\nvuOf/tM4uWgt7RaPQqmp3H2R+1kXZZ0vC93rOdV/0UQurdnM4aBJnBj3Lk1HD8bcw5XI9f8znEuP\njXgHbbb+d46q7CP+iydwcc0WggdN5vi4hXiPCcLCw7VEH8mMSaD5sD7Ag3nsrE46raLW/6sNZABa\ni61cuRITE5MqW3/Xrl3p16/kQeO/4GBoDr6eGhrU1Z/MXn7Sgt/2ZqHT6UqN/+p/6djbquj7hCUA\npy/m8cwj5qhUCjQaBV3amrHrYMkrjqVx6uTHjdOXyLgWB0DkD7tw71nyYsGd4hza+eD0kD+RP+42\nWq6Of1Mc2rfg4Q0L6PTFLOxbN8Opkx8AWddiAYjeugPXJ7sYLWffwZ+0MxdLjXF6pAPXf/kbXYGW\n/JsZxO3aj+tT+u9cHu9EblIKFz5cb7Q+MzdnVBbmNJsylIANy2k+c0SZdVKnfWvSz0aQHXUdgNj/\n/YFTj0cqHGPt1wxdgRbf9xfQ6uv38Xi1HyiV5S4ftXWHYRuKc+jQktQzF8m8VQ/F45wfCSB6+z+G\neojdeQC3p7pi6lQHy4Z1id15AICkgydQmZli7d3IaN1eoweRdPAESQdPFNY6YIeWvWXWTWm+23iE\n3n1a8VTPFne13P1WVXk4dvAn9XTRPrj2407cnnr4ruJMHevg/Eh7joxbbLSMxsYShwB/Itb8AEBO\nfDIHh8wqsW6Xjr7cOHWJjKv6/nd5y1949Ox0T3EKtYq284dyctlGsuKS0eUX8PuTY0g9FwmAZT0n\nclPTS6z7bv0X20VZfbG4e+mzhZpNep2YX/8l70bRBUiFSolCrUZlaQ6AyswEbW4eULVts7g6rZrh\n2q0DpxZ/UcGaKltVtYvbz1FXfthFvQqcy26PKzyXXSl2LrP0cCU/PZPEEP1AMf3KdfIysqjj37RS\nOd/PuijrfFnoXs6pShMNl77cQkpIGAA5Ccnkpd7EzMnBaN2eo4MM55Gq6iNKEw2XvthCcmEu8cnk\npt7E1NmhlD5iaugjD+KxU9Q+MgW3FgkNDWXIkCEkJyczYMAAPvvsM37//XdiY2OZOnUqarUad3d3\noqOjWb9+Pbm5uUyYMIGYmBjs7Oz44IMP0Gg0Za5/9uzZREdH4+DgwJIlS/jtt9+4dOkSEydOZOXK\nlezduxdXV1dSUlKqcaurRmxiAS6OKsPPLg4q0jN1ZGTpsLIwvvqTklbAN9vS+X6Zk+Ezv6Ym/PJv\nFq2amZCXp2NXcBZqVcWuGpm5OJAdm2z4OTs+GY2VBWpLc6MpSeXFqcxNaTFxEIfeXkKDPt2M1p+b\nmk70b/uI/fsIdVp50X7FeCK3/m0UkxOfhNrKApWFuWHKkJmzI9lxiaXGmDk7kB2XZPSdlWcDAMO0\nIbenHzUqw8TehuSQMM4tW0NuShpe414ts05MnB3JLV52QiJqK0uj/MqLUaiU3DgSypWPv0JpaorP\n0lnkZ2Ryfcv2ssuIT0JjZYHK0tx4WpyLAzm3bWthnJmLAznxt9dDfcxcHMlJSIFiFzCyE5Ixc7bn\n5rnLAFg2qofTI+3Z36doih0koSMJsCyzbkozc3ZPAIKDL9/VcvdbVeVh5uJAdrF6zi5nX5UVl5OY\nwokp75VYt0U9V3KSUmgY+DROnVqhNFFzecMvJeLMXR3IjCvqf1nxyWisLVBbmhlNJatIXMPej5Cd\ncIOYv48a4nT5BZja29Dtu3mY2FlzeMpHd1tNJfwX20VZfbGyfRbA/bluKNQqon/eTaNXextisqLi\niNywjc6b9TMV7Nv4EPz6LENZVdU2i/Me/QrnP9lU6lTKu1VV7cLcxYGsCpzLyotTmZviN3EQB99e\nQsNi57KMq7GoLMxw6uhHQnAYdj6NsW5SDzNHu0rlfD/roqzzZWXOqdrcPK5v/8vwed3nu6MyNyP1\n1AXDZ5aN6uHUtT0HXhyFR79eVdZHtLl5xGwv+t3B/YXH9bmEn0ebk2fURxzbNuPfwfpHfR7EY6eo\nfeQOaC2iVqv58ssvWb16NevWrTN8vnTpUoYNG8b69etp06aN4fPMzEzGjRvHd999R3p6OmfOnCl3\n/QMGDGDDhg24u7uzefNmw+dhYWGEhITwww8/sHTpUjIyMu7/xlWzMm503n7TDIAfd2byWHsz6rkU\nXY+Z8KoNCgX0m5jAuKXJdGppSkVnBikUpQ9UdQXaCsWhgDaLRnFqxXpyEm+U+PropFXE/n0EgJQT\n50k5eQHLBq6ll6ktVqayjLy0WhSlfHd7vrdLOxVB2NRl5CbdAK2WS2v0bUqhLllRpa3/9vzKi4nb\nvpPL769Bl5dPQXoGMZt+xqFrx4qVcft2KEo/7OkKtKXXkVYLZe3TYvnX79+La1v+LPX5KGFMUVpH\nBLi9j1QwzmgZtQoLdxcK0rM49OY7hM74gGbjgkrGVbKfFo/zDHyKs2t+LhGTk5zG70+O5d/B82g7\n902s6pfeT4Wx+9Fnrb0bUa9PD84sXlPia/sO/jg/1oE9zw0HIP7fI/jNHn6rqKprm4Xs/LwwsbPm\n+p/77xhbk+7HuazdolGEl3Iuy8/IImT8ezR97Tke+W4h9Z5+mMSQ02jz8u9L7lXlfp5TGwx6gcZv\nvkzoxMVoc4oet/Lo9zRRP/xBQUZm2Xncj/NaMQ2DnqfJmy9zYuIStDl5JfrI9X+O0Xbum/qi5NhZ\nLp1OWev/1QZyB7QW8fHxQaFQ4OTkRHZ20VWkixcv0rp1awDatm3L9u36uz62trbUq1cPAEdHR7Ky\nyv7FV6PR0KpVKwDatGnD/v378fPTT9u8cuUKvr6+KJVKrKys8PLyqpLtq06ujirCLuQZfo5PKsDG\nSoGFWcmO9+f+LKa8bmv0WUamlnGDbLC11sev/ekm9d3K7i5ew17EpWtbANSW5tyMuGb4zszJntzU\ndAqyjZ/BzYpNws7Xs0ScVSN3LOo64TPuFQBMHWxRqJQoTTWcXvktDft2J+KrbUUrUijITTZ+vtXU\nyZ681HS0xcrMiUvEtkXTUmOy4xIxdaxj9F3xK6alsWvZDLWNFYl7j9xKQ3+y0WlL/gKWE5eAVfOi\ndmXq6EBe2s3b8is7xunJR8mIuEzmxUjDNuvyC6j/+kDqdG4PgNrSgozC78uoA9Bf1bYtVu9G9RCb\niImDndF32fHJZMcZfw76/ZUdf+vqrlKB82MdODR4arl19v+Z59C+OJfRR0zL7COJ2LbwvGNccTmJ\n+hkcUb/qnxHOjIrjRug5XB/XX7Do9v18ADSW5qRGFD3rbuZc59a6jZ+7z4xNoo5fkzLjbL0boFQp\nSTx61hCjtjLHub2P4ar+jbORpJ6/ik3TeuXW0f8HCvxR4G742cTRuL/drz7r1qsrKktzAr5YYPjc\nd95oLny4HvsOLUnYe4S8FP1xU2mixqlzax7asLhK22Yh1x6diP5tT9lXSmuQ97AXcS3WT9MqcS6z\nvnUua1HKuSx0wZfkZ2Zz4K13Dcs99sNSwzTe2uD2c+L9OqcqNGp8Zo3EslE9jrw5g+zrCUWFKpW4\nPtWFrOvxOHUNAKqujxTm4jt7JJaN3Dn8xkxDLk5d2hn3EY0a1y4t6fb9fDl2ivuidgyDBVD21SIv\nLy+OHz8O6Kfp3im+NHl5eYY7pEeOHKFp06KDpqenJydPnkSr1ZKZmUlERMS9pF+rdGplysnzuUTG\n6K+mbtmRyaPtb38zKaSla7kaW0BLb+NnbbfsyOSj7/UH3qQbBWzdlUnPLuZllnf+0x8NLwTa/+o7\n1PHzNLzhrcFLjxP379ESyyQEh5UadyMsgt1Pjzas7+qPu7m+I5iT878gPzOLhi/3wLWbftBl490A\nuxaNufz9HwCYe+ivErr3foKEvcYvtkg6FIqtb9NSYxL2hOD27GMoVErUVha49OhMwp7yX4yhsjDD\na/wQ1Db6twPXf+U5/RelDEBvHD6BdQtvzOq5AeD6wlMk7ztc4RiLRvWp//pAUCpRmpjg1qcXiX/t\n5eqX3xpeSnTyrclGy9fr04P4vSW3obAeLG7VQ/G4hD1HcH+2W7F6eIiEfw+TE59MVnQcLj30b1R0\n6NASnVZLeoT+jY1WTeqTn5Zh/IuEMBLx+RbDy1eCh8zCztfTsA/q9+lO/J4jJZZJOnSyQnHFZcUk\nkHrmEu5P658DNLG3xc6v6MJG4Ysv/gmai71fEyzr6/tf45e6cf2fYyXWF38wrNw4x7bNSAg5bbSM\nrkBLmzlvYN9Sf5y1buyOdUM3UsIull9J/w/oOImW39HyO0CZfbG4e+mz51eu40DfsYYXhOUkJBM+\n+wMS9h7l5rnLOHVug8rcFICs64kkHTlV5W2zkH2b5iSFhN9NtVWbc5/+yL8Dp/PvwOnsffUd7Iud\noxq+9DixpZzL4oPDSo1LCYtg59OjDeuL/HE3MTuCCZ3/Beh0dPhgErbN9c/Ru3UPQJdfcF/egnu/\nlHW+LHSv51S/hRNQW1pw5M2ZJc4ZVk3qk5OQwqEB4w0v9quqPgLQcuF4VJbmHH5jllEut/eRzNhE\nEkLOyLFT3DdyB/QBMHHiRKZPn87atWuxtrZGXcoUxzvRaDSsX7+eyMhI6taty4QJEwx3Ups3b07X\nrl156aWXcHZ2xsHB4Q5rq/0cbFXMG2nHxOXJ5OVDPVcV746qw6mIXOZ+coPNK5wBuBqbj1MdJRq1\n8WD+9T5WzHj/Bn3GxqPTwbCXrfH1rNgLoXJT0gid+xltl45BoVGTGRXPidmfAGDbvBH+s95k78Dp\n5caVSasjZPx7+E4ejNdbL6Ir0HJs2moyruhfvOO3cAJKjZqsqDhOzVuNdbPGNJ8+nMNBk8hLSeP0\n/I9LxID+5Qnm7q4ErF+OUqMm+qed3Dh+urxMSDp4gqgtv9Hu8/mgUJJxsexfHPJupBKx6AOazZ+C\nQq0mOyaWCwtWYeXtSZMpIwkdMq7MGIBrX31P43Fv0XrdByhUKhL/2U/c9p1llgH6E3n4XP322TRr\njM+MYQQPmnyrHj7Bf9F4FGo1WdFxhriorTswr+dCxw3LUGrURP20i5Tj+gs3YTNX0XzaWzR+rQ/a\n3DxOTl9puINh4eFG1vX48vedMMhNSSNs/qe0WjwOpVpNZnQcYXP0z/nYNG+M74yhHHhlarlx5Tk+\neQU+k4fg0ac7CoWSi1/+SItpbxrF5KTc5OicNXRYNgqlWk1GVDxHZn0GgJ1PI9rMHsJf/WeVGwdg\nVd+FjJhEo3UXZOUQPH4VLScF6v+UQG4+IdM/ISv+wX++/n4rqy/ejz5blpjtf2Pu5kSHdfo/KWXf\n1oewefpjb1W3TdD/SaesB+BiVW5KGsfnfka7pWNQavRt/3ixc1mrWW/y761zWVlx5Tk24yNazXwD\nhUZNTuINDk8o/7nZ6lba+bKy51Rbf2+curQjIzKGdp8vMJQV8dEGkg+FYuHhSnZs/G15VE0fsfX3\nxqmrPpeANfMN5V1YvbFEH3Fq25yjsz8H5Nh5J7XlLbO1nUJX1mtBRa2xbds2WrZsSYMGDdiyZQvH\njh1j0aJFNZ0WCQk3azoFnJysyQ5/rEZzMPP9m1/aBt45sIo9c3Qjuzv2rdEcHg/ewv4uz9doDgCd\n9/7Mzg4v12gOPQ5tpoCNNZoDgIrAGs9DRSB/BPSv0RyeOvw9AFtbl3wetDr1Of5NrdgfQK3Iozb0\n05pum6Bvn7Vhf2yrBeey545urBV1UdPnU9CfU2tDH6np4yboj50PgtjBLWs6hTtyXRd656AqJndA\nHwBubm6MGzcOc3NzlEolCxcuLDXu5MmTLFu2rMTnPXv2ZODAkn83SgghhBBCCCGqkwxAHwDt27dn\n69atd4zz9/dn/fr1d4wTQgghhBBCiJogA1AhhBBCCCGEqCSdTp4BrQh5C64QQgghhBBCiGohA1Ah\nhBBCCCGEENVCpuAKIYQQQgghRCXJFNyKkTugQgghhBBCCCGqhQxAhRBCCCGEEEJUC5mCK4QQQggh\nhBCVpNPKFNyKkDugQgghhBBCCCGqhQxAhRBCCCGEEEJUC5mCK4QQQgghhBCVpNPJvb2KUOh0Ol1N\nJyGEEEIIIYQQD7Koge1qOoU7qvftkZpOQe6AinuXkHCzplPAycmarNPdazQHc59d/NI2sEZzAHjm\n6Eb+6vRSjebQ7eAP7Hv4hRrNAeDhff9jd8e+NZrD48FbKGBjjeYAoCKwxvNQEciOgH41msMThzcB\nsKnlqzWaR7/Qr2vF/gBqRR47O7xcozn0OLS5xtsm6NtnbdgfP7QaXKM5ALx0Yl2tqIuaPoeA/jxS\nG/pITR83QX/sFP8dMgAVQgghhBBCiEqSt+BWjExUFkIIIYQQQghRLWQAKoQQQgghhBCiWsgUXCGE\nEEIIIYSoJJ1OpuBWhNwBFUIIIYQQQghRLWQAKoQQQgghhBCiWsgAVAghhBBCCCFEtZBnQIUQQggh\nhBCikuQZ0IqRO6BCCCGEEEIIIaqFDECFEEIIIYQQQlQLmYIr/rP2HMniww2p5ObpaNpAw5y37bGy\nKLrmsv3vDNZvu2n4OT1TS3xSAX9+URe1Ct79LIVzl/MwN1PwfDdLBjxtXeGynR9uRbO3+6HUqEmL\nuMbJeWvIz8i6p7i2y8aSk5BC+NJ1Rp97PPcIro+1I2TcihLrdXioDU2GB6LQqMm4eJUz735MQWZW\nxWKUSpqOHox9x1YoVEqufrudmJ92AGDXpgVNRw9GoVKRl3qTC6u+Ij0issx6qNOpLQ3fGoTCREPm\nxStcWLS6RB4ViWn27hRyE5O5tHKN0eembs60+nIFp8bNQWNvZ1gPgMrCvPRtHjEQpUZDekQkZ979\nxLDNXmMGY9+hJQqViqvfbiP6p50AmHu44jNjBBpba/Izszk970MyI2MA8Fs0ASvPhhRkZQOQcjSc\nC++vQ2VpAYCSnoaytRwD4sqsq9vpdDpmTNuGZ1Mnhrz+UIWXu9+qKg/Hzq1pOmIAShMNNyOucmrB\npxSU0kfuFGfq7ECHtQs4GDiZvFR9f67TtgVeowNRqtUUZOdydsVXpebg1qUl/qNfQmmiJvV8FIfn\nfEl+RnaF40xsLGk7Mwg77/oUZOVw+ed9XPhuFzaN69Jx0TDD8gqVArumHuwb/2Flq+0/1y4cO7fG\nc/hAlCb6Pnnq3bLbQalxSgXeYwfjcKvvRm7cTtStvlvIzM2JjuuWcGz0AtLOXgLAvXd36vfrBUCr\nZRM5teAzQ/upyrbp9HAbfN8ZSVZcoiEuZOg791x/haqqXbh2aYnvqL6oTNSkXrjGkTL6SJlxSgWt\npwbh1NYbgNh9Jzm58nsAnNo1w29cf5RqFQU5uZxYupGU8EuVzvl+1UWZZMBvtAAAIABJREFU54uK\nxJRzTnF8uC0+s94mu1gbODpsFgWZRfXq8XIv6j7/uD6+CvuI48Nt8Z090iiXkLdmU5CZjf/iCVh7\nNgDgiU3ziA85w4nl3wEP5rGzuui0MgW3IuQOqPhPSk4t4J0Pk1k+2YGfP3Kjnqua99ffMIp59jFL\nNq90ZfNKVzYuc8HRTsXUN+vgYKdi2dobWJgp2fqBK+sXu7DvWDZ7Qkoe8EtjYmdNy3eGcnTSKv55\ncRKZUfE0G9XvnuKaBD2DfWtvo880Npb4TRtCi8lBoCh5oNPY2dB8xkjCpi3jUP8xZEXH0WREYIVj\n3F/ogbmHG4cDx3FkyFQ8+j2NtY8nKksL/BZNImL1eg4PmsC5ZZ/TYsF4FJrSr2Op7WxoOn0UZ2Yu\n4djAkWTHxNFweNBdx7gP7I2tv0+J9StMNHjPGodSrUZlZWm0HgDPkSW32WfmCMKmLSe43xiyYuIM\nMe69u2Pu4cqhwPGE3NpmGx9PAFrMGUPU1h0EDxjH5S824bdoomGdtr5eHB0+m8NBkzgcNIkL76+7\n9XlTALT8bvh3N4PPixcTGDJ4PX/8fqrCy1SFqspDY2eN76zhhE59j/19x5EVHYfXyIF3HefWqysB\nn8/BzNne8JlCraLlu2M4/e7nHAyczKWvtuI39+0S6zatY03AvNfZP2E1vz8/jfToeFqO6XtXca0m\nDSA/M4c/ek9n1yvzce3sh1vXlqRdimFHv9mGf3EHTxH520Gidx+tVL39F9tFi5kjODltBQdeHktm\ndDxNR5TeDsqKq9e7BxYerhwcOIFDr02jfv9e2Pg0MSyrNNHgN3eU0XHKzM0Jz2H9OTJ0NgBZ1xNo\nMrSvoayqapsAtv7eXNm4neBXphj+FR943IuqahcmdaxpN/cNgid+yJ8vTCUjKgG/MS/fVVyDZzpj\n3dCVHX1nsLPfLBzbeePeoz0KtYoOS0dybN5advWbxdk12whYMLTSOd/PuijrfFHoXs8ptn7eRH67\nzXDeOBw0yagN2Pp702DQ84afq7KP2Pl76dvjoMmGf4W52Pk25cgw/cWRHf1mGwafD+KxU9Q+MgCt\npbZu3cry5cvv2/qmTp3Knj17jD5LSEhgzpw5JWKXL1/O1q1b71vZNeHgiWxaNDWhQV393bC+T1nx\n+55MdDpdqfFf/5SGva2Sl560AuDMxVyeftQClUqBRqOgS1szdh7MrFDZTp38uHH6EhnX9AOOyB92\n4d6z813HObTzwekhfyJ/3G20nFuPjmQn3uDMqm9LLd8+oCVpZyLIiooFIHrrn7g+2aXCMU6PBHD9\n17/RFWjJv/l/7N13dBTV28Dx79b03klooQRCILRQRKpUkZ9SBKQKiIAU6YQuoYMFxa6ggIggBBsi\nVXoJKJAQAkKAQAJJNoX0urvvHwtLlt0kGzFF3/s5h6O7+8y9z8zcubMz9+4ki8QDJ/Hs0QHr6l4U\nZmWTej4CgOyYe6izcnAIMLxAfsQpqCmZUTfIjb0PwP3dv+HWrUOZYhyaBeDUuhn3f9xnVH6d6eNI\n2HuYgrQM7Bv5GZQDGK9z6yakR0WTc/fROu8vss6tuf/L43VOOHgSz57tsXBzxqZWNRIOnAQg+fRF\nZFYW2PnVxtLLHZm1FQ3mvE6rb96m4YI3kNvr2o9DY902kdINKb2QUM/kNirOtq3n6duvKT17NSrT\ncv+08srDpXUgaVeiyX64L+7uOoBnz2fLFGfh6oR7xyD+nLbKYBltoZqjvSeQ8ddtAKyruetHn4ry\nbBtAyuVbZN7RHX83dvxOjefblinO2b8Wt385hVajRVOo5v7xcKp3DTJY3rVZfXy6tuT8sk1GZZfV\nf7FdpEU93r+xofvx7NneKMaldWCxce4dWxH38xH9sRt/4BRePR/3IQ1mjeHenqMUPEjXvyeRSZHI\n5chsrACQWVqgyS94XFc5tU3QfeF3bhlAm00rCfr8LZyaNSzjFjNWXu3Co20AqZE39W0/+vvD1Ohl\nfIyUFCeRSpFbWSBTKpAq5EjlcjR5BWgL1ezpPpUH1+4AYOPjTn5a5lPn/E9ui+LOF4/8nXMK6M4P\nzi0DCPp6NS0+DcGx6eM2oHR2wG/ma1z/cIv+vfI8Rhwb++HcshGtN62i5WdL9LlYerkhs7ai4Zyx\nALQKGYPS3gb4d/adQtUjLkD/H3NzczN5AfpfkJCkxtNFpn/t4SIjM1tLVo7xBWhquprNP2Ywa4yT\n/r3G9S3YcySbgkIt2TkaDp3OISlVY1bdlh4u5Man6F/nJqagsLVG/vDLjjlxFq6ONJo5nAsLPga1\nYb13dh3i+hehqPMKiq0/LzFZ/zpPlYzc1gaZtZVZMRYeruQVmY6Tm5iMhbsL2XfuIbOyxLlVIAB2\nDetg41sdC1dHk3lYeLiSl/i4nDxVklEeJcUoXZzwffM1roW8BxrDbeDxQlekchkJP+umESmcHQ3K\nAZDbWhuus7urwTSjvMRkfYyluwu5CckGn1m4u2Dh7kKeKhWK3LjIS0zBwt0FpbM9KeciuLrqM8JG\nzEadk4v//AkAaNVqADQcRMMRJDQAfExuJ1MWLOrF/15qYnZ8eSmvPCw9XMhNNNzeCltr/QWBOXF5\nSalcmvMOWbfijMrXqtUonR3o8Msn1J8yjFtbfjKKsfJ0Jjvh8fGXk5CC0s4auY2l2XHJETep9cIz\nSOQy5FYW+HRtgaWbg8HyTWcMIuLDXSanp5XVf7Fd5CWY1w6KizPqyxKTsXg46uj9vy5I5DLifjS8\niZcTm0DMNz/Rbsc6AJyaN+TW17v1dZVn2yxIy+Tuzn2cGTmX6x9tI3DNDH2+f1d5tQtrD2ey4w3b\nvsLEMVJS3O2fjpOfnkXv/et44eD7ZN5N4P6xi4DuZpGFsz2996+j8bRBXPv616fO+Z/cFsWdLx75\nO+cUgIL0DGJ37uPcq3O48cm3NFk9Cws3Z5BKabTkTW58uIU81ePtWZ7HSH5aBnd37uPsyGBufPwt\ngWtmYuHujNLZgZRzEVxZ9TkAhdl5BC0ZA/w7+86KpNVKqvy/qkBcgFZxGzdupH///gwaNIi1a9ei\nVqvp1q0bhYWFJCYm0rBhQ1JTU8nPz6dv374llvXtt98ycuRIhg0bRkxMDLGxsQwcqJsms2/fPl56\n6SVGjx7NpUuXKmLVypXG9EAnMhMtftf+LDq1ssLb4/EUremjHJFIYPD0eKatTqJNU0uKmWlqRGJi\nWiyA9okLyeLikEDzlZOJfGcLeUkPTMeURGr6sNYWvYgrIcZkXhoN6uwcIuaspubIfgRtfhvPXh1J\n/eMymoJC03lIzMijmBgkEvyWzOTmBxsoSE41+Mimvi+eL/XkxtpPDOJLrUtafIzExGdaten3H32W\nHnmDiOC15Cc/AI2Gm1/swKVdcyRyObe/2vUoEshBy3UkVDe9rv8PFbddn7zZYm6cKfkpaRx7YQJn\nxywkYOEE4xzMaTOlxF185zvQaumxfQnt3ptMwulINAVqfYxLYF0sHO2I+fVMqfkKjz3ZVxbbl6g1\npo9rjQY7v9r49OtG1KovjD52bt0E986tOfY/XbtQHT1PwKI3HlZVvm3z0px3SDxyDoAHl66RFv4X\nLq0q/6aCKSX1f+bG+Y97ibzUDH7uMpk9PaahdLCl3vCe+pi8lHT2dJ/K7yOW0nLJa9jW8PjnVqAc\nPO05BSAi+G1UR8MASLt0lQcR13Bu1YS6bwzhwcUrpISFl57HP3CMAIQHv4PqqHF7TI+8waU5b+vO\nb8DlT3ZTrX0TpHKZ6DuFf4R4CFEVFhMTw9mzZ/nuu++Qy+VMnjyZY8eO0bJlSy5evEhMTAz16tXj\n9OnT2NjY0K6d8TTPopo3b87rr7/O0aNHWbt2LcHBwQAUFBSwatUqQkNDcXR05PXXn/53GJXNy1XG\n5b/y9K8Tk9XY20qxsjTupPefzGb2GMNRvKxsDVNHOOBgpxtF/So0nepexR8u9cf3x6NDCwDkNlZk\n3Lir/8zSzZn8tEzUuXkGy+TEJ+MYUNcozra2N9bV3PCfNgwACxcHJDIpUgsF4Uu/LHXdc+NV2Ps/\nnvJp4eZMQXoGmiL1lxSTm5CE0tXJ4LPcxGSQSFBn53Jh4uMHZrTetk4/jfdJeQkq7IrW4epilEdx\nMda1qmPp5UHtyaMBUDo7IpFKkSqVqHNykdtY0eTT1brPXJ1w6diG/ATDEdCCtMwn6krCodET6/ww\nJjchCYsn1jkvMZnc+CSULoZt49FnjoENkNvbknT8PPDwZKvRotVo8Hm5J4YkgHkj6P9VdV5/GbcO\nLQHdMZJ5447+s0f74sljJDc+CYdGdUuNK0puY4VzUID+S37GtVtkXI/BuYVuSl737SEAKGwtSbse\nq1/Oyt2JvLRM1Dn5BuVlxyfj0tjXZJyFpy2X3ttBfnoWAA1GPa+fbgZQo0crbv980mAE/f87CU2Q\n4K1/rSwyg6LoMVlUbkISDgHG7UCTm2d0jOr6qxS8nu+AzMaKVl8u078fEDKF6+u34Nw6ENXx8xSk\n6qblSpQKXNs1o803q8u3bdpaU31Ad259/UPRDYK2sJibeJXAf0JfqnVqBuiOpfQnjhHdueyJY+R+\nCs4BdUzGeT/XkourtqAtVFOYmUPMzyfw6RrErd1HcQ/y597vut/2PbgaQ9pfd3CoV3Vu1D15Tvgn\nzilyW2u8+/cgZtNu/WcSJGjVajx7diA/NQ3vfj1Q2Nkgkeu+f5TXMSK3tcanfw9uF8kFCWgK1Tg2\nbYDCzgbVcd3+aTjmBSQyGV2/XYzCRvSdwtMTI6BVWFRUFIGBgSgUCiQSCS1btuT69et0796do0eP\ncuLECaZNm8apU6c4dOgQ3bt3L7G8li11X/6aNWvGrVu39O+npKTg4OCAk5MTEomEZs2alet6VYS2\nTS0J/yufmHu6aao792XSqZWlUVx6poY79wsJbGBh8P73+zL5eJvuy0nyAzWhB7Lo1d662Pr++nQX\nx4fM4/iQeZx8dTFOjetiU113J7fmgOdIOGr8A3rVmQiTcQ8ibnCo9xR9eXd2HeL+/jNmXXwCpIRd\nwiGgHlY+ngBU69udpGPnzI5JOnaOai90QSKTIre1xqNbO5KOhYFWS+C787BroPui4dalLdpCdbFP\nwX0QdhG7Rn5Y+ngB4PlSD1KOh5kVkxF5jXP9X+PiqGlcHDWN+B/3oTp8ghurP+LWBxv445WJ+s/y\nk1K5vux9LLzc9eUAqI4brnPy2YfrXF23zt59u+tjVMfO4dWns8E6q46dI0+VQk5cAh5ddU9SdG4d\niFajITP6DjJrS+pPH63/3WeNYf8j8fczoNHgGFj0d11KJNRBS/FPC/7/IPrz7/UPXQkbvQCHgHpY\nP9wXPv26kXjsvNEyyWfDzYorSqvR0GjBeByb6H6Ha+Prg02txxc8jx5ucXD4Ulya1NGPuNR5uTP3\njlwwKi/+9OVi4+q83JmAibqZJxbO9vj268idvY/v2Lu1aEBC2BXzNtD/E1rCizyYC+P9+8RxC4+P\nXVNxqmPn8e5TtL96BtXRMP56bxOnXp6qf7BKniqFy4s+QHX8DzKu3cKtXXNkVrp+P/d+EinnI8u9\nbRZm51B9QA/cO7cCwK5+LRz865J0uurMOrryyW4ODlrEwUGL+H14CM5F2r7vgC4mj5GE0xHFxj2I\nisGne2tA94Cwah2bkRwejVatoeWSMbg01V3A2dfxxq6WFykR0RWxmmYp7nzxyN85pxRm5+LTvydu\nnXXbxLZ+Lez965J8+iInXnidsOGzONF7LBemLiPrVqw+j/I4Rh63R10uj9qj7lkHlvjNGI384e8+\ntRoNd/aeYf9A0XeWRquVVvl/VYEYAa3CGjZsSHh4OIWFhchkMs6dO8dLL71Eu3bt+Oyzz7C0tKRj\nx4588MEHKBQKmjQpeRpPeHg4zZs35/z589Sr9/iunYuLC+np6aSkpODs7ExERASenp7lvXrlytlR\nxpLJzsxam0xBgRYfTznL3nQm8kY+Sz5KYcd7uvW7c78ANycZCrnhVJEx/e2Zvy6F/lPuowXGD7In\noJ6FiZqM5aemc2nJZ7RY8yYShZzs2EQuLtJNF3VoWJsmC8dyfMi8EuOeRkFqOlHLPiJgxUykCjk5\ncQlcCVmPXYM6NJg7nnMjZxUbAxC3ex9WPh4EbX4HqUJO3A8HeHBBdyKIXPw+DeaORyKXk5+cSvic\n1cXn8SCN6yvW03DZbCRyOblx8fy17H1s/epQN3gSF0dNKzamrAozMg3KAbj+wWbsGvjScN4Ewkbo\n1vnK0o9pvGKGbp1jE4gM+VC3zqH7sfL2pNWWt3XrvPvxOl9e+B4N546n1qj+aPILuDz/XdBqST59\nkdjvf6Xl50tBItX9KZuVnwJw7e0NeHR9Bim9ASla/gJMjxT/f5Sfmk7k0k8IXDUdiVxOTlw8EW99\nBIB9Q1/854/jzLA5JcYVR52Tx8VZb+M3fSQSuQxtfgERCz+g5ceLDOLyUjIIW7SBdm9PRKqQkxmb\nyNn5uumaTv61CFo8mv2DFpUYF7VhD62Xv07PXctAIiHy0x9IiXx8c8+upgdZcYYj84KhK0s/ocnK\nR/s3gctLdMekfQNf/OeP58zw2Q+PXdNxsaH7sfLxoM03a5Eq5MTuPkjqhagS67z38+9YebnRepOu\n/3Ju4c/lkI+B8m2baLRcnLWWBjNHUff1gWjUai7Nf9/kQ7KqgrzUDM4v/pI2aychVcjJik0kbIHu\nN4FO/rVosXg0BwctKjHu0ttbaRo8nO67V6LVaEk8G8m1r/egLVRzatr7BM4aglQuQ5NfyNm5n5KT\nmFpSShXK1PninzinhM9ejd+MMfi+NhCtWsPlBe+V2AbK8xi5NGsNfjNHU2fsy2jVGsIXrKMgLYPk\n0xe5u2MvQZ8vBcDWx51zS3R/zkr0ncI/QaIt7rGgQqUKDQ3l5s2buLi48Ouvv6LRaGjRogVz585F\nIpEwdepUqlWrxuzZs5k+fTrOzs4sWLCg2PKCg4PJy8sjOTkZiUTCihUr0Gq1TJ8+nR07dnDkyBHe\nf/99HBwckMvlPP/88/Tr16/EHFWqyj9purnZkXOla6XmYOV/kF9aDC09sJy98MdWDrcdUKk5dDm9\nkxPPvlSpOQA8e+IHDrUxfix8RXruzPeo2VqpOQDIGFrpecgYyv5Wxn+KqCJ1D9sOwPbAVys1j0GX\nvq4S+wOoEnkcaG38Zz0qUrezOyq9bYKufVaF/bGz6chKzQFgwMVNVWJbVPY5BHTnkapwjFR2vwm6\nvvPf4Ga/kn8OVxX4hp6s7BTECGhVVfTib9SoUUafr1u3Tv//7777bqnlrVpl/Dh4gB07dgDQqVMn\nOnXqVMYsBUEQBEEQBEEA0FSRp8xWdeIC9D8kPz+fMWPGGL1fu3ZtQkJCKiEjQRAEQRAEQRCEx8QF\n6H+IUqlky5YtpQcKgiAIgiAIgiBUgqrxKCRBEARBEARBEAThP0+MgAqCIAiCIAiCIDwlrUb8BtQc\nYgRUEARBEARBEARBqBDiAlQQBEEQBEEQBEGoEGIKriAIgiAIgiAIwlPSij/DYhYxAioIgiAIgiAI\ngiBUCHEBKgiCIAiCIAiCIFQIMQVXEARBEARBEAThKYkpuOYRI6CCIAiCIAiCIAhChZBotVptZSch\nCIIgCIIgCILwb3atT8fKTqFUfj8frewUxBRc4e9TqTIqOwXc3Oz4sfmwSs3hxT+/4Vi7vpWaA0CH\nk7u52a9dpebgG3qSnU1HVmoOAAMubmJ/q0GVmkP3sO381mpwpeYA0DPsuyqxLdRsrdQcZAwFYG2d\niZWax6zoj6rE/gCqRB5HnulfqTl0OrWLwr3elZoDgLxXXJXYH6L/1uketp1DbV6u1BwAnjvzPQda\nD6zUHLqd3VHp/Sbo+s5/AzEF1zxiCq4gCIIgCIIgCIJQIcQFqCAIgiAIgiAIglAhxBRcQRAEQRAE\nQRCEp6TRirE9c4itJAiCIAiCIAiCIFQIcQEqCIIgCIIgCIIgVAgxBVcQBEEQBEEQBOEpaTXiKbjm\nECOggiAIgiAIgiAIQoUQF6CCIAiCIAiCIAhChRAXoIIgCIIgCIIgCEKFEL8BFQRBEARBEARBeEpa\nrfgNqDnECKggCIIgCIIgCIJQIcQIqPCf4vFsUxpOHohMoSDt+h0uhnxJYVZOmeJqvdyVmi91Qmap\n4EHUbS4u+QJNQaF+2RovdsCrc0vOTn3XZA7ObVtQa/wwpEoFWTdi+Gvlh6izc8yKkdlYU3/uRKxr\n+oBEQsLe34nduhsAuZ0tdae/hnWt6kgtlNzZtJPEfUfLvI2sWrTFeeh4JAol+TE3UH20Em1OtkGM\nbYfuOLw0BLSgzcslacM68qOvlrkuAM/2gQRMfhmZUk7a9bucf2sDhVm55sdJJTQLHoFbCz8A4k+E\nE/7edwbL1nqxPdW6tODUm+v077m2a0a9N15BqlSQceMOkcs+RW2iLRQbJ5XgN3UErm0Ckchk3N76\nM7GhBwGwqe2N/9zXkVlbglbL9Y+2kXzmEgA+fbtSY1AvAJqtncnlZZ9RkJYBgFu7ZtR/Y7C+rohl\nn5nMqbQ4S3cX2mxcysmhc/RlK+xtaDhzFLa1vZFaKLn51Q/c23vc/PUtY5yFuwutNy7j9NDZ+hyc\nWjSi/pShSOVy1Ln5XH3nK9KvRBuVXVZarZb5c3+ibj03Ro955qnLK45vp0Z0mPUiMqUc1dU4fpu7\nlfxM47bq/2IQQWO7ghYKcvM5FPI9CRF3AJgYtorMhDR9bNgXB4n66VyJ9ZbnPnnEqpobbTat4o8p\ny6tEDulRN43Kdn6mOb7jhyFVyMmMjuHaio+N+85SYizcXWj+xUrOj5ihr9+xeQB1Jo9EIpNRkJbB\njfc3knUjxuR2eNLRSBnrflGSXyihfjUNS1/JxdbSMOave1JW7LIgIxdkUlg8MI9G1TVM/cqSO6rH\noyFxKVJa1lHz0VjjNmVKVWgX5dl/u7VsQONpg5HKZajz8rm4Ziupl43bRWVtC5dnmlPnjSFIFQoy\nb8QQtfwTo/ZYbIxUSv03R+LcWnf+uPPtT8TtPgCAU/NG1J08HIlchiYvn7/e/Yr0KzcA8B03GI+u\nz6DOySMt4pp+nepOGIJUqasjcnnx624yTirBb+pIXB7mErP1Z2If5dKiEfUnD0PycB9cK9Jn1xk3\nCM9uuv6265JB/L58F+r8QqN6K6vfFP7dxAhoOVu/fj3btm2r7DTK5NixYwQHB1d2GmWmdLSj2Vtj\nOTfzfQ71m0V2XCL+kweVKc6rS0t8B3fj1ISVHB4QjMxCQZ2huosJhb0NTeaNovHsESAxPcVC4WhP\n/fmTuTJ/DedfmUTuvXhqTxhudkytsa+Qp0rmj+FvcuG1WVTr2xO7RroTt9+CyeQlJvPnqBmEv/kW\ndaa+htLNpUzbSGrviPuk+SSsnU/s5FcoTLiH8/AJhvlVq4HzyInEL51B3IxXSd25Cc/Zpr+clEbp\nZEfLJa9xZuZ69r0UTFasisZvDixTXM0X2mFXy5P9L8/nwKCFuLb0w7tbkC5XexuazR9J0+DhSJ7Y\nJwELJ3Ap+F1OvjyNnLgE6k8cYlSvwtGu2LjqfbthXd2LU6/M5Myr86g5+Hns/esA0HD2GOJ+/p0z\nw+YQufRTmqyYikQmxaqaG3UnDOLcuMUA5NxXUff1AUXqGs+F4Pc4/vJ0suMS8Zv4SjE5FR9X7fn2\ntP78LSzdnQ2Wa7xoArmJKZwaPpdzk5bTcMZILJ6IKWl9yxLn9XwHWj2Rg0QuI3D5m1xZ/jmnh87m\n5lehNF4yyajssoqOVjF65BZ+2xv51GWVxMrZlp5rhvPDxC/Y0C2EB3eT6DDrRaM4p9rudAzuy85R\nH7Gpz0pOf/QbL308Vv9Zbno2m/qs1P8r7UtUee6TR6RKBQFLJiNRmL7nXDVysKfB/ElEzltL2CtT\nyL2XgO8bw8oU49GzI80+WYZFkX5RZmNNoxWziP5wM+dHTOf625/TaOmMYvMoKiUTFmyzYN3oXPbM\nz8bHRcO7P1sYxOTkw9hPLRn9XD67ZuUwvns+c7borlDXjcoldHYOobNzWDI4DzsrLQsG5JVar25d\nK3+flGf/LZHLaL1mIn+GbOTgoIVc/eInWi17vUptC/8FbxAx923ODHqTnHsJ1J049In67IuN8e7b\nFavqnpwdOp1zo4OpPqg39v51kcjlBCybRtTKTwkbPotbX+3Cf/FkXX69O+HargXnRgUTNmIWeUmp\nADRa8Abhc9/h1MCpZMclUu8N0+teXJxP325YV/fk9JAZnB01lxoPz2USuYwmy6ZyZcVnnBk2m1sb\nQwl4S5dLtRc64fZsC86+OheALFUa7Wf0Maq3svrNqkyrlVT5f1WBuAAV/jPc2zYmNfIWWXcTALj1\n/SF8ehmPlpQUV733s9zYspeC9CzQarm0/Cvu7jkBgHe31uQlPSDyveJvKDi1akpG1HVyY+8DcG/3\nb7h372B2TPS6Ddz88GsAlC5OSBRy1FlZyO1scQwKJGbjdgDyVclcfH0OhemGd3BLY920FXk3oii8\nHwtA+m+7sWvf3SBGW5CP6uNVqFOTAciLjkLm6ALysk+Y8GgbQGrkTTLv6LZ19PeHqdGrbZniJFIp\ncisLZEoFUoUcqVyOJq8AgOrdW5GblEb4u98ZlZl2JZrsu/EA3N11AM+ezxrFuLQOLDbOvVMQ9345\nglatoTAji/gDp/Dq1V6Xk0yKws4WALmNFZq8fF2BUikSuRyZtRUAMkslmnxdrq6tmxjV5WUip5Li\nLFydcO8YxPlpqwyWUdjb4NKqCTe+2AlAXmIKp0cvpCAt0+z1NTfuUQ5/PpGDtlDN0d4TyPjrNgDW\n1dyNRhj+jm1bz9O3X1N69mr01GWVpNazDYkPj+HBbRUAF7cex//FIKM4dX4h++ZuJUuVDkBCRAw2\nrvZIFTK8m/uiVWsZtPVNXt0zj7aTeiGRlnyyL8998kiD2aO598sn/TquAAAgAElEQVQRCh6kV9kc\nnFoFkhF1g5xH/WLoPjy6tzc7RunqhGuHVoTPMLxZZl3dC3VWNg/+iAAgOyaOwuwcHAL8TOZR1Kmr\ncgJqaKjppgVgcLsC9vwhR6stGiOjuouWDv5qADoHqHnnVcPRn/xCmLfVkuC+eXg5aTFHVdgn5dl/\nawvV7Ok+lQfXdCNgNj7u5D/RX1X2tkiPiibnYVlxofvx7GHYHp1bNyk2xq1ja+7/8rv+/JFw8CSe\nPdujLSzkRJ9xZD7sJ628PfT9pF2DOqiOhVGYqZuRpDpyFoC0qMfrFBu6H8+ehnno172YOPeOrYj7\n+YlzWc8OaAvVHHthvL7PNszFl8Sj5/S5/LXvEvV7NjOqt7L6TeHfT0zBLSIzM5P58+eTkZFBYmIi\nvXr14pdffuHXX39FIpEQEhJC27Zt8fDwYMmSJdjY2ODi4oKFhQWrVpnu1AAOHjzI3r17yc3NZcGC\nBTRp0oSffvqJTZs2oVQqqVWrFiEhISgUCpPLb926lR9++AGpVErjxo1ZsGABwcHBaLVa7t+/T3Z2\nNqtXr8bCwoIJEybg6OhIhw4d6NChA8uWLQPA0dGRFStWYG1tzaJFi4iPjycxMZEuXbowbdo0oqOj\nmTdvHlZWVlhZWeHg4FAu27g8WXm4kJOQrH+dm5iCws4auY2VwTTckuJsa3phEXmTNh/OxtLNkZQL\n14hcp7u4ub3rMADV+xh3/o9YuLuSl/i47DxVMnJbG2TWVvqpO6XGqDX4LZqKW6e2JB07S/ade9j5\n1SE/KRWfwf/DqU1zpEoFsd/+SM7de2XaRjIXdwqTEvWvC5NVSG1skVhZ66fhFqriKVTF62NcXp1C\n1vkTUGg89aY01h7OZMen6F/nJDza1pYG07hKirv903F8ugXRe/86JDIpCacvc//YRQBu7vwdgJr/\nM/4yklt0Gycmo7C1RmZjZTiV1cOl2DhLDxdyn2gnrnVrAhC1ZiMtP15IzVeeR+nsQPj899GqNeTE\nJnD7m5959vv3AHBu7s+ZMQtN1pVrZk5F4/KSUrk4x3jqt7WPJ3nJqdQa2hu3tk2RKuXc+uYXsu/c\nN4graX3N3S55SalcmvOOUQ4AWrUapbMDbTavQulox6X560zGlcWCRboZCGfO3Hrqskpi5+VIxv1U\n/euM+AdY2FmhtLU0mE6WHpdCetzjttp5Xn9uHIpAU6BGKpdy++RVjq7ajdxCQf8NE8jPzOWPr38v\ntt7y3ifeL3ZBKpcT9+NhfEf1rcI5uJKXkPS4bBN9Z0kx+UmpRM5ba1Ru9p17yKwscWoVSGrYJewa\n1sGmdnWUrk4m8yjq/gMJno6PLxg9HLVk5krIykM/Dfe2SoqrvZaF2yy4dk+KnZWWGX3yDcoJPSPH\n3UFD1ybqUut8vD0qf5+Ud/+tLVRj4WxP1+9CUDracnbOx1VqW+QWbWuJychtrQ3bo7trsTGW7obn\nj7zEZGwfnj8e9ZNBX69B6WhHxALd+SI98jrVX+lN7Pe/UZCeiefzHXXLJpi37sXFWXq4GH7nSEzG\ntm4Ng1xab1qN0tGO8Id9dnrkdWoM7s3d738DoFHfVti42Rttu8rqN4V/PzECWkRMTAy9e/dm48aN\nbNiwgR9//BE/Pz/Onz9Pfn4+Z8+epXPnzixevJhVq1axefNmatSoUWq53t7ebN68meXLl7N48WJS\nU1NZv349mzZtYtu2bdjZ2bF9+/Zilw8NDWXhwoVs374dX19fCh9eCFSvXp3NmzczefJk1q7VnXhV\nKhUbNmxg7NixLFy4kMWLF7NlyxY6dOjAl19+yf3792natCkbNmxg586dfPed7uJqzZo1TJkyha+/\n/ppmzYzvcv0rFHPHTKvWmB0nkctwax3A+TnrOTp0IQp7WxpOevnpc9BoyhRzLWQdp3qPRG5vS81R\nA5HIZVh5e1KYlcOlCfOIWvQOvlNGYevna35u6O5Gm6TRGL0lsbDEfeZSFF4+JH1U/A2Wkuszb5+U\nFOc/7iXyUjP4uctk9vSYhtLBlnrDe/6tfDCzXtQak/tJq9EgVSposnwql0M+4VifNzg37i38547F\nwt0Fl9ZN8OjcimN93gAg8eh5Gi+a8LCuYra9UU7mxRksI5dh7e2BOjOHs2MXc2n+BzSYNgL7BrXN\nX9+/EWdKfkoax16YwNkxCwlYOAHrGl6lLlMVFLfdjfqPhxRWSv63fgyONd3YN3crAOHbT3E45HvU\n+YXkZeRwfsNh6nUPLKXe8tsndn618enXlSsrv6jyORT3swaDvtOcmCdTy84hYs4qao7oR8tN7+DR\nsxMP/ogw+F1/cbTFDFYW3QyFajh+RcbLbQvYMSOHoe0LGP+5JUV/Krf5qJJx3QpKra+oqrBPKqL/\nzktJZ0/3qfw+Yiktl7yGbQ0Ps/Oo0Pb5kLnnclO5FN1u+SlpnPzfOM6PnY//gjewqu5F/G/HSDx0\nmmYfLabl58vIvh1XfB5PrpOkhP7LVJ4aw1yO9xlP2GsLaLRwAtbVvbi/9zgJh8/Q4qNFAKREJ6Ap\nML6BUln9ZlWm0Uqq/L+qQIyAFuHq6sqmTZvYv38/tra2FBYWMnDgQHbv3o1KpaJLly7I5XISExOp\nV68eAC1atODXX38tsdygIN10hHr16qFSqbh79y5169bF1tZW//mJEyeKXX7lypVs3LiRNWvW0LRp\nU7QPz4pt2rQBoFmzZqxYsQIAHx8flEolANHR0SxZsgSAgoICatWqhaOjIxEREZw5cwZbW1vy83V3\nam/fvk2TJk0AaN68OTdvmn4QQFXUaZtuypXcxor0G3f171u6O5Gflok61/A3NznxyTgF1DEZl6tK\nJf738/oR09hfT+I39iWzc8mLT8LOv77+tYWrCwXpGWiK5FBSjFOrpmTdjCE/KRVNTi6qg8dx7diW\nhF91o6+P/psbF096+FXsGtYj85r5+6pQFY9FPX/9a7mLK+qMdLR5hlPGZK4eeM5bTUFsDPcXTUKb\nn/9kUcXyn9CXap10NzHkNlakX4/Vf2al39aG5WXfT8G5yD4pGuf9XEsurtqCtlBNYWYOMT+fwKdr\nENe3/GZQhm1NT7puD9G/tnBxfPz/bs4UmGgLufFJODSqazIuNz4ZC1fDMvISk7GtUx2ZpZKkE38C\nkHb5Opk37+IYUBen5v6ojv1BfqpumpFUKcetXTOe+WYVchsrMoq0Tws352Lap3FOpuKKevRbodg9\nuodSZccm8ODSNX05bb5ZDej2R+aNO0+1XYojt7HCOSiAxCO63+5kXLtFxvUYbOtUL3aZytZuam/q\nPqfr95S2lqiuPZ5RYOfhSM6DLApyjNu+nZcT/b4YT3J0PNuHvk/hwynh/i+1QhUV+7gciQRNofGX\ntjqvv4xbh5ZA+e6Tas93QG5jRasNS/XLNA6ZrP+8ItpFcTn89cE3BnF5CUnYN6qnf610M9F3mhFj\nRCJBnZPLxUmL9W8Fffu+fhpvSbyctITHPP6ylpgmwd5ai3WRn4G6O2ip7aGhSS3dF+4ujdUs+k7C\n3SQJdTy1RMVKUWsgqG7po59VoV1UVP99a/dR3IP8uff7HwA8uBpD2l93cKhXvcpsC4sio+SPynqy\nPToUaY9FY3ITkoyWz0tMRmZjjXPLAFRHwwBdP5l5IwbbujUoSMsgYf8JZBYWuLZvSa2RutFYpavx\nuezJNp+bkIRDgPG6a3LzyI1PQvnE+TA3MQW5jRVOLQNQHX2iz65bg/y0dOL3neD2ph/odnYHyTfi\nSY3RTbOtrH5T+G8RI6BFbNy4kaZNm/L222/Ts2dPtFotbdu2JSoqil27dvHyy7qRME9PT27c0D2x\n7NKlS6WWGx4eDsC1a9eoVq0aPj4+REdHk52tm/IYFhZG7dq1i11+x44dLFmyhG+++YaoqCguXLgA\nQGSk7qEcf/75p/6CWFrkblTt2rVZvXo1W7ZsYdasWXTq1InQ0FDs7Ox45513GD16NLm5uWi1WurU\nqaMv9/Lly2XabpXtyCvzOfLKfI6NfAunxnWxqa67g1qr/3PEH/3TKD7xdESxcfcOhlGtW2ukFrrp\n0J6dWpB6xfwLvNSwi9g3qo+lj27Ux6tvD5KPh5kd49alHTVH6R6IJFHIcevSjgd/RpB7P5GMq9F4\nPN8ZAIWTA/aN/ci4WrYnjGZfCsOifiPkXj4A2HXvS/Y5wyelSm3tqLb0Q7LOHCXx3cVluvgEuPLJ\nbg4OWsTBQYv4fXgIzk3q6O9q+w7owr0jF4yWSTgdUWzcg6gYfLq3BnQjfdU6NiM53Hi9M2Pi9fUC\nOATUw7q6JwA+/bqReOy80TLJZ8OLjUs8dh7vPp2RyKTIba3x7PYMiUfOkX03HrmtNQ6NdTcRrLw9\nsKnlTfq126Rfu4Xrs82QWem+oebcTyL5fCSnhgVzZvRCHAPq6uuq0a9rsTmZE1dUzj0VaVE38e6t\n+y2x0tkBx8b1SXv4NMMzw+ZwZtgcwkYveOrtUhytRkOjBeNxbKL7bZ2Nrw82tbxJi7xR4nKV6eS6\nPfqHXmwdsJZqzWrhWMsNgMAhz3LjYLjRMpYO1gzeNpXr+y7xy5tf6b9EAbjW96LdtBeQSCXILRQ0\nG96Bq3v+MCoj+vPvK2SfXHtvEycHTNPXladKIWLRev3nlZmD6rjhdkl52C9aPewXq73UnaTj58oc\nY0Srpck787FroLtAcuvcFm2h2qyn4D7jpyb8tpSYh0+y3X5SQZcAw5HTZxuqiUuREnlXd+49Hy1F\nItHi46K7UXzuhozW9dTFDd4aqArtoqL6b61aQ8slY3BpqvvuYl/HG7taXqRERFeZbeEQUA+rh2V5\n9+2O6om2lnz2UrExqmPn8Cpy/vDo1g7VsXOg0dBw/gQcHvWTtX2wrulN+uXr2DfwpfHqWdzauJNz\no+aQdStWn4fBOplo849yMRWnOnYe7z5diuTyDKqjYQ/7bMNcdH32dewb1iFw9UwkMhkArSd01z8Y\nqLL6TeG/RYyAFtG5c2eWLVvGr7/+ip2dHTKZjIKCAnr06MGpU6f0020XL17MvHnzsLa2RqFQ4OFh\nPGWkqNjYWEaMGEF+fj4hISE4OzszefJkRowYgVQqpUaNGsycObPY5f38/BgyZAg2NjZ4eHgQGBhI\naGgox44d49ChQ2g0GlauXGm03FtvvcWcOXMoLCxEIpGwfPly6tSpw4wZM7h48SJKpZKaNWuSmJhI\ncHAwc+bMYcOGDTg7O2NhYWEik6otPzWdC299TtDaKUgVcrJiE/lz4acAODasTdNFr3Hklfklxt36\n/iBKB1s6bV2GRCrlwdXbXFr+rdk5FDxI49qK9fgvm4VUoSAnLp5rS9/HtkEd6gdP5M9XpxcbAxD9\n4VfUmzWeFlveB62WpONnidvxCwBX5q2i7vTX8XqpBxKJlDtf7SDzatm+3GvSHqD6cAUes5YhkSso\niI9D9cFSlHUa4PZGMHEzXsW+R1/krh7YtO6ITeuO+mXvL56CJtP0wyqKk5eawfnFX9Jm7ST9tg5b\n8DkATv61aLF4NAcHLSox7tLbW2kaPJzuu1ei1WhJPBvJta/3lFp35NJPCFw1HYlcTk5cPBFvfQSA\nfUNf/OeP48ywOeSnphcbF7trP9beHrTdugaJXE7s7oOkXogC4OLsd2gw41WkSgXaQjVXVn1BTlwC\nOXEJWHm50Wazbsqycwt/IkI+AXTtM2LppzRdNQ2pXE52XIJBTgHzX+fUsOAS40pyYfY7+M8eTfV+\nXZFIpERv2GX0py5KWl9zt0tx1Dl5XJz1Nn7TRyKRy9DmFxCx8APyElNKXK6qyE7OZO+cb3jxw9eQ\nKeQ8uKPi15mbAfBoXIOeK4ayqc9Kmg5tj301Z+p1DzSYJrZ9+Aec+uBXur41iFd/nY9MIeParxcI\n336qxHrLc5+YqyrkUJCaztXlH9Fo+UwkCjm5cfFEhazHrkEd/IIncP7VmcXGlObK4nXUDx6PVK4g\nPzmVy8GrzcrJxU7LsiF5TP3KksJCCdVdNawYmsvlO1IWfWdB6Owc3Oy1rB+Tw9LvLcjJB6Uc1o3O\n5eE9TGKSJFRzLn3q+pOqwj4pz/5bW6jm1LT3CZw1BKlchia/kLNzPyUnMdUoj8raFleWfkzjFTOQ\nKuTkxCYQGfIhdg18aThvAmEjZlGQmm4yBnQPJLLy9qTVlreRKuTE7T7AgwtXAAifs5b6U19FIpej\nKSggctH75KlSyFOl4Ni8Ea23vg0SKapjYbgBV5Z+QpOVj9YpgctLdHXYN/DFf/54zgyf/TAX03Gx\nofux8vGgzTdrkSoMz2WXZq/Fb9pI3cOh8guIWPg+eYkp5CWmkNTMnzZbdT/vSrmZwPmNh422UWX1\nm1VZVXnKbFUn0WqL+5WDUJytW7fSq1cvnJ2dee+991AoFEya9PR/bqAsgoODef755+nQoUPpweVE\npXr6J1w+LTc3O35sPqz0wHL04p/fcKyd6Yc4VKQOJ3dzs1+7Ss3BN/QkO5uOrNQcAAZc3MT+VsZ/\ngqcidQ/bzm+tBldqDgA9w76rEttCzdZKzUGG7s8jrK0zsVLzmBX9UZXYH0CVyOPIM/0rNYdOp3ZR\nuNe7UnMAkPeKqxL7Q/TfOt3DtnOoTRme/1BOnjvzPQdaG//pm4rU7eyOSu83Qdd3/htc7NajslMo\nVdMD+yo7BTEC+ne4uLgwevRorK2tsbOzY9WqVUyaNIm0tDSDOFtbWz755BOzyrx37x5z5swxej8o\nKIgpU6b8I3kLgiAIgiAIgiBUJnEB+jf07NmTnj0Nn8L54YcfPlWZ1apVY8uWLWbHl/RnXwRBEARB\nEARBqFhiCq55xEOIBEEQBEEQBEEQhAohLkAFQRAEQRAEQRCECiEuQAVBEARBEARBEIQKIX4DKgiC\nIAiCIAiC8JQ04jegZhEjoIIgCIIgCIIgCEKFEBeggiAIgiAIgiAIQoUQU3AFQRAEQRAEQRCekvgz\nLOYRI6CCIAiCIAiCIAhChRAXoIIgCIIgCIIgCEKFkGi1Wm1lJyEIgiAIgiAIgvBvdq5z78pOoVRB\nv++p7BTECKggCIIgCIIgCIJQMcRDiIS/TaXKqOwUcHOz49MG4yo1h/FXPyO02YhKzQGg34XNzPZ5\ns1JzWBP7PncHB1VqDgDVvzvHnpZDKjWH3ue/rTLtYnvgq5Waw6BLX7O2zsRKzWFW9EcAqNlaqXnI\nGMqOwJGVmsPAS5sA2Nm0cvMYcHETB1oPrNQcup3dwdeNXqvUHABejfyySuyPgpONKjUHAEW7yCqx\nLfYGvVKpOQD0OreNo+36VWoOHU+GVnq/Cbq+U/jvEBeggiAIgiAIgiAIT0kjnoJrFjEFVxAEQRAE\nQRAEQagQ4gJUEARBEARBEARBqBBiCq4gCIIgCIIgCMJT0oopuGYRI6CCIAiCIAiCIAhChRAXoIIg\nCIIgCIIgCEKFEBeggiAIgiAIgiAIQoUQvwEVBEEQBEEQBEF4SuI3oOYRI6CCIAiCIAiCIAhChRAX\noIIgCIIgCIIgCEKFEFNwhf+0Gh0DaD29LzKlnORrcRyZv5mCrNxi4zuvHEnK9Xtc2ngAAAsHa9ov\nHoprQx8KsvO5tvsUl7/5vdR6PZ8NpNHkl5EqFaRdv8ufS76k0ES9xcW1XjsJm+oe+jibam4k/XmV\nyx/sIGjFBP37EqkUh3rVOTPjg1JzatDFn15z+yBXyrgfdY/vZ24jLzPPKO6ZV9vTZng70EJyTBI7\nZ39HVnImAIsuLSc9/oE+9uinh7mw+49S6wawbNYOh8ETkSiUFNy5Tspny9DmZBnEWD/bC7s+w0AL\n2vxcUr9+m4KbUQYxLtPXoE5V8eCrtWbVC+Deril+kwYjVcrJuH6X8KWfU5iVY3ac3MaKJotex7ZW\nNZBIiN1znJubfgZAYW9Do1mvYuvrjcxCyY2NPxD36wmTeZRXuzg9dR2uLRvSeNpgJHIZmtx8Lq35\nhtTIm0Zle7UPpMmUAUiVctL+iiXsrQ0mcyguTmlvQ4sFI3D0q4E6J49bP57g+raD2PtWo83K8frl\nJTIJjvWqc2L6+lL3j2+nRnSY9SIypRzV1Th+m7uV/EzjnPxfDCJobFfQQkFuPodCvich4g4AE8NW\nkZmQpo8N++IgUT+dK7XustBqtcyf+xN167kxeswz/1i5Xu0DaTzl5Yfb+i7nStgnpuIkUgnN5o7A\nrYUfAPEnwrn07ncAKO1taBY8DPs63sgsFER9+bPJHDzbBxIw+WVkSjlp1+9yvpgcio2TSmgWbJhD\n+Hu6HLw6NCVo6Viy45P15RwZtQIA13bNqDthCFKlgswbMUQu/xS1iWOz2DipBL+pI3FpHYhEJiNm\n68/E7tb1304tGlF/8jAkchnqvHyuvfMV6VeiAWiyagZ2dWsC8L9di7gfdo1zq7cb1evToTHNp/ZH\nppST+lcsJxd+XeI55Nnlo0i9Hkfk1/uNPuu87g2yVQ84u/zbYpc3a1ubG1fGfVKao5c0rNuloaAA\n6leXEDJKiq3V4+mGP57UsHm/Rv86MwcSUuHg2zJsrWDZNxoib2nRaKGxr4QFw6RYKs2brljVtoVb\nu2bUn/joXHGHy8tMn1OKi5PbWNF44ThsalVDIpEQt+cYNzebPjaL49y2BbXHD0WqVJB1I4ZrKz9C\nnZ1jVozMxhq/uROxrukNEgkJe49wd+vuMtVfFuXVd1ZFGjEF1yxiBFT4z7J0sqXzipHsn/IZ3/Va\nTPrdJNrM6Gsy1tHXkz5fT8O3Z0uD95+ZO5CC7Fy2936L3YNXUaN9I2p0alxivUonO5ovGcuZWes5\n0HcOWbGJBEwZVKa4s7M+5PDghRwevJALIRspyMzm4srNZNy8p3//8OCFJJ65zN29p7l3+HyJOdk4\n2zDw3SFseX0jazuuIPlOMr3m/s8ozruxDx3Gdebjl9bxbtdVJN1S0WPW8wC4+bqTk5bNuh5r9f/M\nvfiU2jniPH4Rye/NIX76AAoT43B8ZZJBjNyrJo5Dp6BaOYWE4KGkh27Adfoagxi7PsOxaNDUrDof\nUTra0WTxOP6YvY6j/WeSHZdAg0mDyxRXf8LL5CakcGzQHE6OWEjN/l1xbFwPgMC3xpObmMyJofM4\n+8YKGs0ciaW7s3H55dguJHIZrVZP5M+QjRwetICrX/5Ey2XjjMq2cLKjVcgYTs74kL0vziUzLpHA\nN18uU1zTWa9QmJ3Hb33ncXDYUjzbNcarQyDpN++xf9Ai/b+E05HE/HqauEMltxErZ1t6rhnODxO/\nYEO3EB7cTaLDrBeN4pxqu9MxuC87R33Epj4rOf3Rb7z08Vj9Z7np2Wzqs1L/75+++IyOVjF65BZ+\n2xv5j5Zr4WRHUMhrnJqxnt9eDCYrTkWTNweWKa7mC+2wq+XJ/gHz2T9wIW4t/PDpFgRA0NKx5CSm\ncmDQIo6+voZmc4YZla10sqPlktc4M3M9+14KJitWRWMTOZQUp8/h5fkcGLQQ15Z+eD/MwSWwHn9t\n3svBQYv0/wqzdRcPjRa8Qfjcdzg1cCrZcYnUe2OIUb0KR7ti43z6dsO6uienh8zg7Ki51Bj8PPb+\ndZDIZTRZNpUrKz7jzLDZ3NoYSsBbk/VlOgbU4/z4xQD81D/E5MWnhZMt7ZaN4vepH7P7hQVkxKpo\nMb2/yf3o4OtFj40zqNWjpcnPA0b3xKNFPZOfmVIZ+6QkKelaFm7UsG6ijF9WyvFxg/d2agxiXmwn\nZdcSObuWyPluoQxXB5g3VIqrg4TPf9GgVsOuJTJCQ2Tk5cOXezTF1Fa1t4XS0Y7Gi8ZxYc57HB8w\ng5y4ROpPeqVMcfXGDyQ3MYUTg2dzauQCqvfvpj+nmEPhaI/f/Elcmb+Wc69MJudeArUnDDc7ptbY\nV8hTJXN++FT+fG021fr2wL5RfbPrL4vy6juFfzdxAVrFDR8+nOjoaLNi7927x+HDhwFYvnw59+7d\nMxm3fv16tm3b9o/lWFVVb+dPYkQMaTGJAFz57ih1+7Q2GRswtBNXQ09x8zfDCzk3/xpc/+ksWo0W\nTYGamKOXqdOjeYn1erQJ4EHkTbLuJABw6/vDVO/V9m/FSeQyWix9nfC1W8lJSDH4zKVZfby7BnFh\n+Vcl5gNQv2MD7l66Q9ItFQBnNp+kWd8WRnFxEbGsab+M3Ixc5BZyHDwdyE7NBqBmy9po1BrG7ZjE\ntANz6Dq1BxKpeXf6LJu0IT/6CoXxdwHIPLAL62d7GsRoC/NJ+XwZmge6u9D5N6OQObqATDdRw8K/\nBZaBbck8GGpWnY+4tmlC2pWbZN+NByBm50Gq9WpXprgrb28m6v2tujxcHZEq5RRmZqOwt8G1VWP+\n+lyXU25iCidfXUh+WqZR+eXZLrSFavb2eJO0azEA2Pi4mczBs20AKZdvkfmw7Bs7fqfG88Y5lBTn\n7F+L27+c0h0ThWruHw+netcgw23ZrD4+XVtyftkmo7KfVOvZhsSHx/Dgtq5tXtx6HP8Xg4zi1PmF\n7Ju7lSxVOgAJETHYuNojVcjwbu6LVq1l0NY3eXXPPNpO6mV22zTXtq3n6duvKT17NfpHy/VoG0DK\n5ZtFtvVhk/ukpDiJTIrcygKpUoFMIUeqkKPOL0Bpb4NHm0ZEfvoDADmJqRwctsRk2amRj8uO/v4w\nNUy1zRLiJFJdDjKlAqlCjlQuR5NXAIBLYF3cgvx57tsldNo4D9fmfvoy06Ki9cdcbOh+PHu2N6rX\npXVgsXHuHVsR9/MRtGoNhRlZxB84hVfPDmgL1Rx7YTwZf90GwMrbg4K0DAAsvdyQWVvRcI7uBka7\nZaNQOtgY1ev9TCOSLt8m447uHHLtuyP49jZ9DmnwSmeu7z7J7X3GNwM9W/nh/Wwjru04YnJZUypz\nn5hyKlJLo9oSanrojqtBnaXsOaNFq9WajN+4V4uznYSBnXRfM1vUlzCujxSpVIJMKqFhTQn3zBxw\nrGrb4slzxZ1dB6jWs/RzStG4qHc2cfX9bwDDc4q5nFo1JXcV11kAACAASURBVCPqBjmx9wG4t/s3\nPLq3Nzsmet0Goj/8GgClixMShYLCLPPrL4vy6juFfzcxBfc/5MyZM9y8eZMuXbowf/78yk6n0tl4\nOZEZ//iiLTM+FQs7KxQ2lkZTqE4s1U3F8WnbwOD9hPBb1Ptfa+L/vIFUqcC3ezM0heoS67XydCG7\nyMViTmIKCjtr5DaWBlOGzImr1bcjuaoH3PvdeBSp8bRXiPxwp8lpSE9yqOZE2r3HU2fT7j/Ayt4K\nC1sLo2m4mkINjXo0ZsDawRTmF7L/nb0ASOVSrh+/xp5lP6KwVDJ60+vkZuRyYsPRUuuXuXigTk7Q\nv1YnJyK1tkViZaOfhqtW3Uetuq+PcRw+jZw/joG6EKmTK44jZ6BaORnbrv1Kra8oKw9nchIef9PJ\nTUxBYWuN3MbKYMpUaXFatYamIW/g+Vwr4o+cJzPmHg4NfclLeoDvsOdxeyYQqULBzW/2kHUn3jiP\ncm4X2kI1Fs72dNkWgtLRjrA5H5nIwdmw7IQUlCZzKD4uOeImtV54hqSL15Ep5Ph0bWF0TDSdMYiI\nD3eZ1TbtvBzJuJ+qf50R/wALOyuUtpYG03DT41JIj3ucU+d5/blxKAJNgRqpXMrtk1c5umo3cgsF\n/TdMID8zlz++Ln26vLkWLOoFwJkzt/6xMgGsPZ0Nbi4Vt09Kirv943F8ugXR58A6JDIpCacvc//o\nRZwDfMlNekD94T3xatcEqVLOtc17jXPwcCY73rBsU22zpLjbP+ly6L2/SA7HLgKQn5ZJzC+nuPf7\nH7g0rccz66ZycOACAPKKHHN5ickobK2R2VgZTMO19HApNs7Sw4W8RMPPbOvWAECrVqN0dqD1ptUo\nHe0In78OAKWzAynnIoha8yUdO7SkMDuXZ5e+yuEphseMjZfh+mYlpKK0szZ5Dnk0rbZam4YG71u5\nOdAq+BUOvP4efgM7Gm374lTGPilJfAp4FpnY4eGkm2KblQu2VoaxqRlaNu3TsGOxTP9eu4DH4x33\nkrRs2a9h8UjzxkCq2raw9HAh14xzSmlxWrWGJiET8ezSioSH5xRzWbi7kJeYpH+dp0pGbmuDzNpK\nPw231Bi1hgaL3sStU1uSjp0l+4759ZdFefWdVZV4Cq55xAhoFRIaGsqbb77JuHHj6NWrF6GhulGV\nDz74gBEjRvDaa6+RkpJiclm1Ws3nn3/OL7/8wqFDh/QjpykpKYwdO5bBgwczaNAgbt++rV8mJiaG\nAQMGcPXqVf744w8GDhzIkCFDGDNmDJmZxqMn/zYSqenmrdWYN+0H4PTqnaCFAaEL6Ll+PLGnolAX\nlHwBKpGY7ny0ak2Z4+oO7cnVL340inEOrIvS0Za7e0+Xtgol1qVRm757HbkvgiVN5nPg3d8Y8814\nJBIJYd+e5qdFoajz1eSm53DsiyME9GpiVv0UNxqlMd6WEgtLXKauRO7pQ8pny0Amw2XKch5sflc/\nOlomxbWDJ/aHOXEXF33Mga7jUNrbUu+1fkjlMqx93CnMzOH0mCVcmLce/+nDsG9Q23i9KqBd5KWk\ns7fHVI6ODPk/9u47vqb7f+D4667svSVBSBARktijRWOUVoc9Y/arKFq1VxAUpUW1RatD8atRtEop\nahYRsRKxg5CQvfe49/fH5cp1b9IYGdrP8/HwaHPP+5zP+37O53Pm55xLk3n/w6yGU9mWrSxjDkol\nFz7bDCoVr2+ZR5vl44g7FYGyWJ+w9fHA0MqcqD+C9S7jSSX20yfXz0MKYwPeXjUCq5r2/DldfVc6\nbMtJDgVtoyi/kLyMHEK/O0Sdzj5lKr+yvYh14jXqXfJSMtj12jh2d56AgaUZdQd3QSKXYebqQGFW\nDoeGLiB46tf4TtId4lrS3WKdtllKnNf76hx+9x/HntfVOdQJUI9yODVxleZiSdKFGyRdvIFDK2+9\ny9JXLpJS2oi+nIrVXX5yGsffGkXIe7NoMHs0JtWrkR5xk4tTl5GfpL4od+GrXbi2bYhUIdNeThnX\nTUkkchntlr1PyJLN5CSm/fMMxeethHVSGqX+XYXezea2oype85Pgaq+bW8QdFYMXF9G/g5T2vmU7\nBK1qdVFiu9Bpt/8cFxb4FX91GonCwhSP9/QP79abQhmOb8oSczVoJSfeHIrcwoyaw3QfxxCE8iLu\ngFYxmZmZfPfdd9y5c4dRo0Zhb29P586defPNN9m0aRNr165l+vTpOvPJZDJGjhzJrVu36NChAz/+\n+CMAX3/9Nf7+/vTv359z584RFhYGwO3bt9m+fTvLli3Dzc2NJUuW0LVrV4YMGcKhQ4dIT0/HzMys\nIr/6C9F03Fu4+asPPA3MjEi6HqOZZupoRW5qFoU5+WVenoGZEcHLtpOXph6a4vve66Q/HNJbXP3R\nPajWzg8AhakxaTejNdOMHKzJT8ukKFe73OzYJKwbupcYZ1mvJlKZlMSzV3XKc+3cgru7T0AJw58A\nOk/qilcn9UGeoZkRsVcf3120cLIkOzWLgifqwtbNDnN7C+6cUb+85szmYHos6oOxpTGeHby4f/k+\nsVfUV0klEv7xZPyRosQ4DD0eH3DKbOwpykxDlad9F0Fm64jdlM8pjLlDQtBoVAV5GNRpiNzBBauA\nCeoYK1uQSpEoDEj5ZmGJZb6ySf2SE4WpCemRdzWfG9nbPKxn7Tu/ubGJWHm7642za9mIjJt3yUtM\npSgnj/t/nsTJvznRu48BaP6bHR1HyoXrWDVQL6ei2oXczBiHZl6ag6jUq1GkXb+LRR1XADpvCVLn\nYGZE2o3HORg7WJOXlklRjm4Otg1r640zdDLj4vKt5Ker71x7DntDM+QNoMbrzbnze+lts81Hb+LR\nQX3xwsDMiIRrj6+8mztakaOnbQKYV7Omx7ejSIqMZcvAlRQ+HELn9W5zEq5EP16ORPKPIxUqU4Mx\n3XF+1C7MjMu0TrJik7Ep1i6Kx7l2aMq5xRtQFhahzMzhzq6/ce3UjJi/1MNBb/92HIDMe/Eknr9O\n9c7NAej4sF3ITY1JfyIHvW3zQTI23u5641w6NOXC4g2oCosozMwh6ve/ce3YjDu/HsO9jz9Xv9sN\ngNfo7tg38cSyTnUADOysNMsztLehIC0T5ZN9My4RS28PvXG5sYkY2GovIzc+GbmpMdZNvUk4qn4W\nOOPabTJuRGHmUQMDW0sU5qYkHH84gkAiQaVSqUc5jH2HGq+p9yEKU2NSitWLiYMVeWll34fYNaiJ\nuYsdzaeon0M0trNEIpUiM1Bwco7u8HSv0d1xbq9uFxW5TtRVUPpdm2q2EF7snWbxKWBhCiaGuvPt\nC1EyfaBM5/M/TitZsFHJzIFS3mxZ+slnVauLOu/3wqFtE00+GTfvaaYZlrRPiUvC6ol2q71PuUde\nYgpFOXk82K/ep5RVbmwC5l6Pnxk1tLOlID1Dq++UFmPd3JesW1HkJ6agzMkl/uDf2LdrWebyBeF5\niTugVYynp3oIaLVq1cjPV29cmzZVv9SgcePG3L79dEMYbt++jZ+fn2b+t99Wv3jm2LFj5ObmIpOp\ndxKjRo0iPj6eIUOGsG/fPuTyl/PaROiq3/ml+wJ+6b6AHX2X4OhTG8uaDgB49WvLnUMXn2p5Xv3a\n0Wy8us6Mbc2p3/sVbuwO0Ym7snqH5uUwRwbPw6ahO6Y11G8rrd3LnwdHzunME38qvNQ4uyaeJJy5\nrDcvuyaeJITon/bI/mV7NS8L+vLt5dRo7IZdLXsAWga0IeLPSzrzmDtYMODrIZhYq5+H8uvelNhr\nD8hOzcaxXjU6T1Q/Wyc3UtB66Ktc/P18qTk8khsWjIGHN3In9UGnWcee5IYe04qRmlrgMGctOSGH\nSfpiJqoC9Y40/0Y4Dz7oRty0gcRNG0jmwe1knzpQ6sknwN8DZ/D3wBmcGBaItXcdTKqr7wbW6NmB\nuKO6Q5oTgsNLjHPu1II6I9VXp6UKOdU6tSQpNIKc+wmkXbmNazf1czUGNhZYN6pD2hX1kVpFtQtV\nkZLGc9/Dxkd9sGFe2wVzt2qkhKufH3/0YqCDAfOxbeSO2cNlu/d+jftHdNdh7KlLJca5934N7w/U\nL/MytLGgdo923N37+G6nfRNP4v6hbZ5YsUfzsqBNvZbi7OeGlZu6bfoMeIWbB8N05jGyNKHfzx9x\n48+L7P7wB83JJ4Bd3Wq0mdBN3TYNFfgFtOXqnrK9IKsyRHy9kwN9AznQN5C/AoKeqGt/vesk7lR4\niXEpV6Ko3ln9bKJELsO5vR9JYZFkxSSSfPkObm+/AqjXl63v4wPSRy9cORwQhE2xZdfuVXIOJcWl\nXonCtXgO7dQ5FGTl4N63Iy4d1Pux+4fOUpRfwF8D1C8AsizW51x7dCL+uO7Lo5JOXywxLuFYKC5v\n+aufgzUzwbFTaxKOhqBSKmkwazSWjdTP85nWcsXUzYW0iBvIjI2oN3E4cgv1ds57+Ovc2X8WlVLF\nhS9/Y1fPIHb1DGLPgE+wb+SOeQ31PqRe3/bcPXShlDWrLeHiLbZ1nKJZ3rUtR7m974zek0+Ay6t3\nVso6sapXA2vv2jrLLq51AwkXb6mIilNfWNpyRIm/r+6JWlqWinvx4Ouu/fn+UCWL/0/JNx/L/vHk\nsyrWxY21v3Bi4HRODJzOqWGBWGntKzoSf0z32d/E4LAS45w6tsTjf+rHSaQKOU4dW5J0puwv6UkJ\nuYhFg7oYu1YDwLl7Z5Ke6Dulxdj7t6bmMPXL7SQKOfb+rUk5F17m8oWSKVWSKv+vKng5zzL+xfRd\neQsPD8fR0ZHQ0FDq1Cn5LWlSqRTlE0OD3N3dCQ8Px9PTkzNnznDkyBGMjIwYMmQINWrUYOrUqWzY\nsIFdu3bRvXt3pk6dytq1a9m6dStjx44toaSXQ25yBkdmrKfTypHIFHLS7yVwaKr6hT323jVpNz+A\nX7ovKHUZ57/Zi/+S4fTZFQgSCaFf7ibhUlSp8+SlZHB27re0WDoOqVxOVnQ8obPXAmDlVYvGgcM5\n1G92qXEAZjUcybqfqLcMsxpOZN9PKHNdZCVlsm3i/zFo7TBkChnJUUls/kj9AgTXRtXptbQfK15f\nyp2QWxz6Yj+jto1DWVREelw660esA+Dg5/t4d0EvPj44DZlCRtjuC4T8X9mGACvTU0heE4TthMVI\n5AoK46JJ/mouitr1sRk5i7hpAzHt1BOZnRPGzV7DuNlrmnkTFoxBmfl0w9eKy09J52LQWpos+RCp\nQk5WdBwX56wGwLJ+LRrO+h9/D5xRatzl5ZtoOGMEbbcsQaVSEXfkLLd/3gdA6KTP8Z46jBo9OiKR\nSrixbgdpl3V//qQ820VRTh7BH6/AZ/JA9c+w5BdyZsZqcuJTtHNIziAk8DvaLPsAqUJOZnQ8p2d+\nC4C1lxvN5gxnf9/AUuOufLeHFgtH0mX7ApBIiFjzK8kRjy+Mmdd0JCtGf7vVJzspk71TN/LOl+8h\nU8hJvZvAH5N+AsCxYQ26fDKQ9W8twnfgq1g421Cns4/W8NotAV9w8os/6Di3L0P/mIlMIePaH+cJ\n23KyzDlUJnVdr6P1srGaug6Z+Q2gXidN5wzngGad6I+7sHQTftMC6PLrIlRKFfGnI7j6wx4ATk5Y\nSeMZg3Hv7Y9EIuHy2l9pOnuYdg4pGYTOWUfLpWMftv14QmY9zqHJnOEc7BtYatzFZZvwnRZA552P\nc7j24x5Qqjj50Qp8pwbgNbo7qqIiTk/5ivxU9WMel+evptGij5HI5eTExHFp3pcAWHjWxmvmKIID\nplCQkl5iXPSO/Ri7OtJy41KkCjnROw+Scl79000Xpyyl3oQh6hfO5BcQPnslefHJ5MUnc2/rXpp9\nMx8A8+r2nJzzk866yU3O4O9ZP/DaitFI5XIy7sVzfMb3ANg2qEmboCHs6hn0glqCtspYJ+3W6Y6u\nesTWQsKC4VImfFVEQRFUt5ew6D0pl26rmPNjEdvnqQ8n78aDnRUo5NrHMit+UaJSwZwfH49M8POQ\nMCtA905pVa+L/JR0woPW4Lf4I6QKOdnRcYTN/RoAi/q1aTjrf5wYOL3UuKsrNtJg+ghe2fwpqFTE\nHQ3lzuZ9/1gXjxSkpnHtky/xWjAZiUJObkwsV+d/gZmnO/WmjeHs0IklxgBEfvkjdSePoumGFahU\nKpKOhxCzdU+ZyxeE5yVRlfQKM6HC7dixg1u3bjFp0iTy8vLo2rUrLi4uuLi4EBMTg6mpKUuWLMHS\n0lLv/JcvX2bChAmMHz+ezZs3M3fuXKytrZkxYwZZWerhcp988gm//vordnZ29O/fn8DAQJydnWnV\nqhULFy7E2NgYqVRKUFAQ1atXLzXfhISMF14HT8ve3pw1nro/N1GRRl1dyw6/wZWaA0CP8z8xxfXD\nSs3h0+iV3Oun+wbTilZ98xn2NNV91q0ivRn6f1WmXWzxGVqpOfS9+CNL3T+o1BwmR6pfMFPEpkrN\nQ8ZAtvoMqdQc+lxU34H7xbdy8+h1YT0HWuj+nEZF6nR6Kz82eK9ScwAYGrGuSqyPghOV/6ZSRZuI\nKlEXe5vp/rRKRet65meOtnm6F++9aO1O7Kj07Saot50vg2Nt9P/cX1XS9kT5/eZrWYk7oFVIjx6P\nNzKGhoaan1QpKy8vL/78808A3nzzTc3na9as0YobN+7xb6EFBT2+ert169anKk8QBEEQBEEQBDUV\nVWOIa1UnTkBfMvn5+YwYMULn81q1ammdTAqCIAiCIAiCIFQ14gT0JWNgYMCGDRsqOw1BEARBEARB\nEISnJk5ABUEQBEEQBEEQnpOqirxltqoTP8MiCIIgCIIgCIIgVAhxAioIgiAIgiAIgiBUCHECKgiC\nIAiCIAiCIFQI8QyoIAiCIAiCIAjCc1KKZ0DLRNwBFQRBEARBEARBECqEOAEVBEEQBEEQBEH4j1Mq\nlQQGBtK3b18CAgKIiorSmn7o0CF69uxJ37592bp16zOXI4bgCoIgCIIgCIIgPKeX/WdYDh48SH5+\nPlu2bOHChQssXryY1atXA1BQUMCiRYv45ZdfMDY2pn///vj7+2NnZ/fU5Yg7oIIgCIIgCIIgCP9x\nZ8+e5dVXXwXA19eXS5cuaaZFRkZSo0YNLC0tMTAwoEmTJpw5c+aZypGoVCrVC8lYEARBEARBEATh\nP+qvlr0rO4V/1CF4W4nTZs6cSefOnWnXrh0A7du35+DBg8jlckJDQ9m4cSMrVqwAYOXKlTg7O9O7\n99N/ZzEEV3hmCQkZlZ0C9vbm5F56rVJzMPI+zO4mAys1B4BuZzdV+oavQ/A2Trz6TqXmANDm+G9V\noi6K2FSpOQDIGFjpecgYyP7mfSs1h84hWwDY6jOkUvPoc3F9lVgfQJXI40CLPpWaQ6fTWyu9bYK6\nfVaF9bHTL6BScwDofn5DlaiLI617VmoOAO1Pbmdf836VmkOXkM2Vvt0E9bbzZfCyvwXXzMyMrKws\nzd9KpRK5XK53WlZWFubm5s9UjhiCKwiCIAiCIAiC8B/XuHFjjh07BsCFCxeoW7euZpq7uztRUVGk\npqaSn59PaGgofn5+z1SOuAMqCIIgCIIgCILwH9epUydOnDhBv379UKlUfPLJJ/z+++9kZ2fTt29f\npk2bxogRI1CpVPTs2RNHR8dnKkecgAqCIAiCIAiCIDynl/0tuFKplKCgIK3P3N3dNf/v7++Pv7//\n85fz3EsQBEEQBEEQBEEQhDIQJ6CCIAiCIAiCIAhChRBDcAVBEARBEARBEJ6Tkpd7CG5FEXdABUEQ\nBEEQBEEQhAohTkAFQRAEQRAEQRCECiFOQAVBEARBEARBEIQKIZ4BFQRBEARBEARBeE4v+8+wVBRx\nB1QQBEEQBEEQBEGoEOIOqPCvdexsLl9sTCe/UEXdmgrmjrHCzOTxNZffj2Sz4fdMzd8Z2Srik4rY\n/40jcpmEBd+kcu1OAcaGUt7xN2bAG2ZlLtvhFV88x/ZFqpCTfvMeYUHfUpiV80xxTZZ+RF5CCpc+\nXQ+AbVMv6n/YH6lcRlFeARFL15MacQuA5huXIVUoyLwZxZWFqynK1l6WbevGuI8ZoBsjlVL3wyHY\ntPBBIpNx9/92EbPzAAB2rzTBa/ZYcuMSNcs5O2o2Rdm51BjQjWrd/FEVFVGQmq7z/axbNaHm+4OR\nKhRkRd7h5uJVOjmVJcZzwTTyE5O5teIbjN2qUzfwY800iVSKqbsb937aik2b5kgVCgBkJsYv5Psb\nV3fCa+YYFJbmFGbncjloFdlR9wFouGgiZh5uFOXkApBy9hI3Vq4vVqIVUvxRskOnbv6JSqVi5vRd\neNSxZ/iI1k89/4tSXnnYtfGjzpj+SA0UZNy8S8SCNRTp6SP/FGfoYEuL7xdwauAUCtIytOY1dran\n5frFnB2/UG8O1V71oeH43kgN5KRdv8eZud9RmJVb5jiJVILf9MHYN6kHQOzfYVz8fDMABham+E0b\nhIW7CzJDBVfW/U7U7pPPXF+P/NvahV0bPzxGD0BqoO6TEQtLbgd646QS6n00BNuHfTdq0+9EP+y7\njxhVs6fl+iWcG7+A9KvqbaX7+31x6qTOu/6UEVxb8RPK/AJNWeXVNuUWptSfNBzTWi7IDA249cNO\nHuw9/sz190h5tQvHV3xoMK4PUgMF6TfucW7et3r7SGlxtXp3wK17e2SGClKu3OH8vHUoCwoxr+2M\n36zhyEyMQKUi4outxJ8Kf+6cy6MubFo3pvaoQUgVcjIjo7j2ydc6+5eSYqQGBtSZ9B7m9T2QSKSk\nX77OjWXrUObnY17fHY8PhyMzMgSZlHsbfyXuz2Ol5mLfxo+6Y/pp2l34grV622dJcVJDBV6Th2Pp\n5Q5SCWmXbnJ56fco8wqwqF+b+h8PQWZsiEQq5dZPu/Tm8DJuO4WqRdwB/Y9YtWoVP//8s87nY8eO\n1fns559/ZtWqVRWRVrlJTisi8MtUPptsw65Vjrg4ylm5UfsE6a32Jmz9zIGtnzmwaYk9dlZSpr1n\nia2VjKU/pmFiJGXnCgc2LrLjxLk8jobqblz1MbAyx2fOSM5OXsGRnpPJjo7Hc1zfZ4pzH9wNG796\nmr8lchmNF40lbME6jvWfwY3vfsU3aDQGVuYAhE9fRnDfD8m5H4fHBwO1lqWwssBr1hi9MS7dO2Jc\n3YnTAz/mzPBpVO/7JhZeHgBYNqxH1P/tImTwZM2/ouxcrJs1xPmtDoS+N5OQgMnEHzmtVZ7cygKP\n6eO5Omsx5waOIfd+LDVHDX7qGJcB3bHw8dL8nXPnHheHT9D8Sz1zgcQjJ3F8q7NmOcAL+/4N5n5I\n9I79BPefwO11W2i4aJJmmZbedTk7OlBTL49OPiUy9aZVij/Pcp0vMjKB4UM2sG9vxFPP+yKVVx4K\nK3O8Z4/m4rTPOdF7AjkxcdT9YMBTx1V7oy3Nv5mLkYONzrxSAwXe88YhUeivf0Nrc5oFvcfJiavY\n9840smISaPRhn6eKq9mtDeZuTuzvNZP9fWZj36Qerp2aAdBs/v/IiU/hQN9Ajo78FL+pgzB2sH6m\n+nrk39guGswaQ9j0zzjZ5yOyY+KpM0Z/OygpzrV7J0yqO3FqwEROD5tOjX5vYOHlrplXaqCg4RPt\nwLlbe+xfacLpodMByEtMwWNUX01Z5dk2vQPHkBufRHDANELHLsBz4lAM9bTfp1Fe7cLA2pwm80Zy\nevIXHOw+hazoeBqM17MvKyXO2b8p7v068feoxRzsNR2ZkQEeg7oA4DN9KFG/HeNwv1mcm7uO5kvG\naradz6o86kJhZYHnzLFEzFhKSP/x5N6Po/aYQWWOqTm0JxKZjNDBEzkz+GOkhobUGNwDgAYLJ3Nn\n3RZCh04i/OMFuI8firFrtVJyMcd79ijOT1vO8d4fkx0TT70P+j9VnPuw7kjkMk4MnMqJAVOQGRpQ\ne8i7APgt+Zib32zj5KBphH60GM+PAnSW/TJuOyuSUiWp8v+qAnEC+h/35ZdfVnYK5eLUxTy8PRTU\ndFYfdPR53YQ/juegUqn0xv/wayY2ljJ6dzYF4HJkAd3aGSOTSVAoJLzaxIiDp3SvMOpj36ohqZdv\nkXUvDoCoXw7i0rXNU8fZNvXCvnUjorb/pflMVVjEwa7jSL8WBYCJiwP5aZnYt2oIQM69WABiduzH\n6fVXtcqzadGI9CuRemPs27Xgwe7DqIqUFGZkEXfwBE5d1NMsG9bDpqk3zX5cQpM1QVj51gcgPymV\nq59+q7kKnHHlllZ51s38yLx6k9zoBwDE/roP+07tnirG0q8hVs0bE/vrPr11bdHIC9v2rUkJPqu1\nHOCFfH9DextM3ZyJO3ACgKRTF5AZG2JerxZG1RyQmRjjOXUkzTcuo/6sMcgt1HfJzevVBkDJs93Z\n+HlTKN17+NKla4Nnmv9FKa88bFv4kHY5kuyH6+Le9gM4dXnlqeIM7axxaNeMcxMW6y3Dc8pw7u8+\novfOPIBjK2+SL90i8666/93ceogab7R6qjiJTIrc2BCpgQKZQo5UIacovwADC1McWzYgYs2vAOTE\np3Bw0Dzy07PKXEf6/BvbRdqVx+s3esd+zXanONsWPiXGObRrTszvRzR9N/bASap1aauZ13PyCO7v\nOarVDsw9axN/9AyFmdkAxB0JwdG/xeOyyqltyi1MsW3eiMhvfwEgLz6Z08NnUZCWyfMor3bh0LIh\nKRG3yHrY9m9v+4vqXXXvKJYWV73bK9zYuJeC9CxQqbiw8Afu7lZvTyVSKQoL9T5XbmpE0cM70M+j\nPOrCurkPGVdukvNw/3J/x584dn61zDGpFy4T9eMvoFKBUknm9VsYOdkhNVBw5/ttpISGAZCXkExB\najqGDrYl5mLXopFOu6ump32WFpd8/iqR3+98mI+K9Ot3MK6mzufmuu0knbmkzic+mYLUDJ1lv4zb\nTqHqEUNwK1FBQQHTp08nOjqaoqIihg0bxs8//0ytWrW4ffs2KpWK5cuXY29vz2effUZoaChKpZKh\nQ4fStWtXAgIC8PT05MaNG2RmZrJy5UpcXFxKLO/gv66AwQAAIABJREFUwYPs3buX3NxcZs2aRaNG\njWjTpg0nTpwgNDSUTz75BAsLC2QyGb6+vhVYEy9ebGIRjnYyzd+OtjIys1Vk5agwM9G++pOSXsRP\nuzLZvNRe81nDOgbsPpqDr6cBBQUqDgbnIJeV7aqRkaMtubHJmr9z45NRmJkgNzXWGl5bWpzM2JAG\nkwI4PXYJNXv4ay1fVViEgY0FbTctRGFlzrnpqzBzc9aKyYtPQm5mojUM1cjBTmsYbfEYIwdbcuOS\ntKaZedQEoCA9g9i9x0g4GoKljyc+n07h9KBJZN26p4mXKOS4j9G+42jgYEd+8fISEpGbmWrlVFqM\nzNiYWh++R8TEuTi9/breunb7YBh3v92Igb32coAX8v0NHWzJS0hR76g105IxdLBFIpeRfCaca0u/\nJT8lnboThuI1czRhU5eSfvnmw+hsvXn/k1mBXQEIDr79TPO/KOWVh5GjLbnx2vWtMDNBZmqsNZSs\ntLi8xBQuTv1M7/Jd3vFHKpcT89shag/rrjfGxMmGnLjH/S8nLhkDcxPkpkZaQ8lKi7vz23FcOzXj\nrQMrkMikxJ26xIOjF7Dxrk1uYip1A7pQrU0jpAZyrv20l8youKevrGL+je0iL65s7aCkOCNHW/Li\nn+y7NQBwedsfiVxGzG9/UWvo43aQHnGDGv3e5N429YUt5zfaYmhnrSmrvNqmiasTeUkp1BzYDbtW\nvkgN5ERt3E323Qc6sU+jvNqFuu0//o458ckoSuwj+uPMajpheMmC1l9OxsjeiqTz17m0Qj3U8uLi\n9byydjoeA7tgaGPBmWlfoSpSPlfO5VEXRo525Gntp5J09mWlxaSEXNR8buhkj2ufblxfsgZlfgGx\nux9fYK72TidkxkakX7peSi7a7S63jO2zeFzS6bDHcU521OzXlYhF61DmFxCz67Bmmuu7HdTDo5/w\nMm47hapH3AGtRFu2bMHGxobNmzfzww8/sGLFClJSUmjcuDEbNmyga9eurF27lqNHjxIdHc3PP//M\nTz/9xJo1a0hPV1/NbdSoET/++CNt2rRhz549pZbn4uLCTz/9xMKFC5kzZ47WtHnz5vHZZ5/x448/\n4urqWm7fuaKUcKMTqZ4Wv/1ANq81M8LV8fH1mIlDLZBIoO+kBCZ8mkwrH0NKGMmnQyLRf6L65I61\npDgk0HjROCI+20BeYqrekPzkdA52HceJYXPxmfM+htYW+stUFitTWkJeSiUSPdMe5Rs+bRkJR0MA\nSLt4ldTwa9g0b6SJU1hZ4LdytuY5SM3XKKW8f4pBIqHu3Enc/mIdBUkpekPMvT2RW5qTcOBYmcp6\nlu9f4nKLlKRH3CR82lLyk1JBqeTWt1uxbdMYiVxc1/snJa73J/tIGeOKM69XC9ceHbm86NvScyip\nnyrL1k9VSiVeo94lLyWDXa+NY3fnCRhYmlF3cBckchlmrg4UZuVwaOgCgqd+je+kAVjXdys1J0FN\n5yREov9QRVWk1N+vlcqH7aATVxbrtoMHe48TdyiYJl8FApB15z7KgsKHRZVf25TK5Zi4OFKUmc2Z\n/wUSNnMl9SYMxtyzVonzVKoS92WqMsdJ5TIcWnoTMnUVhwcGorA0xWtsL6QGCpov/oBzc75hX5cP\nOTZiAb6zhmHs+HzDkctFWbYVZYgxq1cbv6/nE7N9L0knz2rF1QjojtuIvoRPWYQyP7/kVPQdxICe\n9vnPcRaetWjxzVzubttPwt/ntMJqDX4bj5G9ODfxU90cxLazVCqVpMr/qwrEkVIlioyMpHVr9TAV\nMzMz3N3dOXHiBC1btgSgcePGHDp0CEdHRyIiIggIUI/FLywsJCYmBgAvL/WzcU5OTiQmJuop5bFm\nzdTj6+vUqUNCQoLWtMTERGrVqqUp9+7duy/oW1YOJzsZ4TceD+eJTyrCwkyCiZHuRvnPEzlMHWGp\n9VlWtpIJARZYmqvjv9+ZQY1qJXeXuqN64ti2CQByU2Mybj6+O2hkb0N+WiZFuXla8+TEJmHl7aET\nZ1bLBRNne7wmqJ8fMbS1RCKTIjVUcHn5JuyaNSD2cCgA6VfvkHE9Cp54bsbQ3oaCtEyUxcrMi0vE\nskEdvTG5cYmaOwCPpj26Q+jS83Wi1u/UTJMgQVVUBICZRw0aLZ1KwpEQbqzaQIeTW4qVl4BZ/bqP\nl2lnS0F6xhM56Y8xcauOUTVH3MYOB8DAxvphHRhwc4l62Lid/ysk7DsMKpXOcoAX8v1zYxMxsLXS\nqdu8+CSsfDyRW5iReFy9LiQSCShVOjthQc19ZG/s2zYF1H0k8+bjbcyjdfFkH8mNTcSygcc/xhXn\n/EZb5KbGNP9uvmaehkHjNNM7bQkCQGFmTNqNaM3nxg7W5KVlUpSjffCXFZuMTUN3vXGuHZpybvEG\nlIVFKDNzuLPrb1w7NSPmL3WbuP2begh25r14Es9fx8a7dhlq6t9NQiMkPB6pY2D3uH/p224B5MYl\nYumt2w6UuXk6fdTQ3obc+GSqvdEWmakxzdct0HzuHTSeG6s2kHLxKrF//s2d9b/S6fRWrHzqIZFJ\nablxSbm2zbxE9d2gmD1HAciJjiPl4jWt5VS2+qN74NSuMQAKU2PSi+/LHKxL3JcV7yPF43ITUrl/\n+Kzmzti9PSfwHNkdCw9XZMaGxB6/AEBKeCTpkTFYF1tOVZEXl4hFsX2Hgb2+fVnpMQ4d21Bn0v+4\n8dk64g/8rYmTKOR4zhqHqZsr50dOJzdW+9gMwGNkbxxKOL4wLPH4Qrd9Fo9z6tQKrykjuLLsBx78\neUIrn0aBozGt7crpEYHkPFDn02BMd5zb+QFi2ym8GOIOaCVyd3cnNFTd2TIzM7l+/Tqurq5cuqQe\nf3/u3Dk8PDyoXbs2LVq0YMOGDaxfv56uXbtSvXr1py4vLEw97OLatWs4O2sP2XR0dCQyMhKA8PDn\nfwtdZWvla0jY9Xyi7quvam/bn037ZrpDSdIzldyNLcKnnoHW59v2Z/PVZvVd5qTUInYczKbrq8Yl\nlnd9zXaOD5jB8QEzODF0DtYNPTCt7ghAzV4diDt6VmeehOBwvXGp4Tf5683xmuXd3f4XD/YHEzZ/\nHaoiJY0CR2Ltoz7ZMqvtgqmbM/d+Ux/QGFd3AsCle2cSjp/RKi/p9EUsvevojUk4doZqb72mfi7D\nzATHTm1IOHaGwuxcXHt2wf419fNRZnXdsPDyIOnUBYxdnWj81Vxuf/eL+uU7T5x4pYZcwLxBPYwe\nvlDB6d0uJP8dUqaYjIhrhPYaoXnRUOxv+0j862/NySeAhW8DUs+G6V0O8EK+f15CMjkxcTh2VF8o\nsmnhg0qpJDPyLjITI+p+PFzz3GeNQW8TfzhYpx4EtchvthE8aCrBg6YSMnwWlt51MHm4Llx7dCL+\nWKjOPEmnw8oUV9y15es50WuCpqy8hGTCAx+/VO1A30AO9A3kr4AgbBu5Y1ZD3f/ce/tz/8h5neXF\nnQovMS7lShTVO6v7hkQuw7m9H0lhkWTFJJJ8+Q5ubz98JtDGAlvfOiRfrtyhs1WBijCU7EXJXgDd\n9ftEv4XHfVdfXMKxUFze8i/Wd1uTcDSE68vXc7L3RwQHTCE4YAp5CclcCvyChONnsajvjs+SSUhk\n6sc0DKzMubl2a7m3zZz7CaRfuYXzm+rn3A1sLLFqWJf0y7dKna8iXVm9g8P9ZnG43yyODJ6n3kc9\nbPu1enXgwZFzOvPEnbpUYlzMwRBcOjZHaqh+O7nza000z4vKzYyx8VGftJm6OmBey5m0q1EV8TWf\nSnLIBSwa1NW8HMj53c4kPtFOS4uxf60lHhNGEPbRfK2TT4AGCyYhNzXm3Psz9J58ApqXAp0cNI3g\n4bOx8vbQtLsaPTqW2D5LinP0b0H9iUMJHf+J1skngN+ij5CZGmudfAJEfL1TbDuFF0rcAa1Effr0\nYfbs2fTv35+8vDzGjh3Ljh072LlzJz/++CPGxsZ8+umnWFlZERISwoABA8jOzqZjx46YmZX9J0Ee\niY6OZvDgweTn5xMUFKQ1LSgoiClTpmBmZoapqSmWlpYlLOXlYGspI+gDKyYtS6agEFydZCwcZ03E\nzXzmrU5l62cOANyNLcTeWopCrj0kYUQPM2auTKXHR/GoVDCqjzneHgb6itKRn5LOxXlrafLph0gU\ncrKj47kQuBoAy/q1aDT7fxwfMKPUuJIU5eQROvFzGkwchEQuR1lQwPlZX5FxQ33FvuEnE5Eq5ORE\nxxER9CXmnrWpP2M0IYMnU5CSzuX5X+vEgPqFPMYuTjTfsAypQk7MzgOknr8MQNiUJdSbOILa7/VB\nVaTk0qzlFKRlqH/OxNCQ6n3eoHqfN3RyLUhN4+aiL/CcPxWJXE7u/VhuLFiBWT0P3Kd+wMXhE0qM\nKQtjV2fyYuP1lgVw44ufXsj3vzR7OfWnj8JtWE+U+QVcmvk5qFQknbpA9LY/aPrNfJBIyYq8y5VF\na8qU+39dfko6EfNX47P4YyRyOTkxsYTP/QoAi/q18Zr5PsGDppYa97zykjMICVxH62Vj1T+bEB1P\nyMxvALD2cqPpnOEc6BtYatyFpZvwmxZAl18XoVKqiD8dwdUf1I9CnJywksYzBuPe2x+JRMLltb+S\nEiEOop50ef5qGi16tH7juDRP3SctPGvjNXMUwQFTHvZd/XHRO/Zj7OpIy41LkSrkRO88SMr5K6WW\nmXw6jEQ/L1puWgpAVtR9on5Wr7fybpsXpiyj/pQRVO/RESRSbn23nfQrkc9cf+UpPyWdc3O/pcXS\n8UjlMrKi4wmdvRYAK69a+AWO4HC/WaXG3dp6EAMLM177v/lIpFJSr94h/PPvKczK5fTHK2k0eRBS\nAwWqwiIuLPiBrOj4yvzKehWkpHN14Vc0WDgJiUJObkwsV4JWYe7pTr1powkdOqnEGIBao9SjmepN\nG61ZZlr4VeL2H8fu1WZkR8XQeM3jn4qKXL2RlNMX9OaSn5JO+Pw1+C6egFQuJzsmTqt9es8cyclB\n00qNqzumHxKJBO+ZIzXLTbl4jQd/nsChbVOyou7TYt28EutDbDtLJy5Bl41EVdJrQYVKERAQwNy5\nc3F3r3rDUJ6UkKD7drSKZm9vTu6l1yo1ByPvw+xuMvCfA8tZt7Ob+Ktl70rNoUPwNk68+k6l5gDQ\n5vhvVaIuithUqTkAyBhY6XnIGMj+5ro/31CROoeoh4dv9RlSqXn0ubi+SqwPoErkcaCF7s83VKRO\np7dWetsEdfusCutjp5/uz25UtO7nN1SJujjSumel5gDQ/uR29jXvV6k5dAnZXOnbTVBvO18Gu6rA\n8eA/efts5R+biDug/zJjx44lLS1N6zMzMzNWry79zpogCIIgCIIgCEJ5EyegVcyGDRuea/5/6+96\nCoIgCIIgCEJVVlXeMlvViZcQCYIgCIIgCIIgCBVCnIAKgiAIgiAIgiAIFUIMwRUEQRAEQRAEQXhO\nSjEEt0zEHVBBEARBEARBEAShQogTUEEQBEEQBEEQBKFCiBNQQRAEQRAEQRAEoUKIZ0AFQRAEQRAE\nQRCekwrxDGhZiDuggiAIgiAIgiAIQoUQJ6CCIAiCIAiCIAhChZCoVCpVZSchCIIgCIIgCILwMvvF\nd0hlp/CPel1YX9kpiDuggiAIgiAIgiAIQsUQLyESnllCQkZlp4C9vTm5l16r1ByMvA+zu8nASs0B\noNvZTfzVsnel5tAheBsnXn2nUnMAaHP8Nw606FOpOXQ6vZUiNlVqDgAyBlZ6HjIGsr9530rNoXPI\nFqDyr073urC+SqwPoErkURX66b7m/So1B4AuIZurxPrY6RdQqTkAdD+/oUrURWVvs0C93TrUqlel\n5uB/6pdK325C1bhrJ7w44gRUEARBEARBEAThOSnFg41lIobgCoIgCIIgCIIgCBVCnIAKgiAIgiAI\ngiAIFUIMwRUEQRAEQRAEQXhOKiSVncJLQdwBFQRBEARBEARBECqEOAEVBEEQBEEQBEEQKoQYgisI\ngiAIgiAIgvCclCoxBLcsxB1QQRAEQRAEQRAEoUKIE1BBEARBEARBEAShQogTUEEQBEEQBEEQBKFC\niGdAhX+tY2dz+WJjOvmFKurWVDB3jBVmJo+vufx+JJsNv2dq/s7IVhGfVMT+bxyRyyQs+CaVa3cK\nMDaU8o6/MQPeMCtz2Q6v+OI5ti9ShZz0m/cIC/qWwqycZ4prsvQj8hJSuPTpegBsm3pR/8P+SOUy\nivIKiFi6ntSIWwA037gMqUJB5s0orixcTVG29rJsWzfGfcwA3RiplLofDsGmhQ8SmYy7/7eLmJ0H\nALB7pQles8eSG5eoWc7ZUbMpys6l4aKJmHm4UZSTq7cerFs1oeb7g5EqFGRF3uHm4lU6OZUlxnPB\nNPITk7m14huM3apTN/BjzTSJVIqpuxtXZi5CVVBAzfcHA9DokwlELFxDkZ56t2vjh8foAUgN1PWg\niZNKqPfREGwf1kPUpt+JflgPJtWd8Jo1GoWlOUXZuVya9yXZUfe1llu9b1dc3+nAqQGTnihRipRO\nqLiLiit66+pJKpWKmdN34VHHnuEjWpdpnvJQXnnYtfGjzpj+SA0UZNy8S8SCktdVaXGGDra0+H4B\npwZOoSAtQ2teY2d7Wq5fzNnxC/Xm4PSqD97jeiMzkJN24x6hc7+jMEu3LZcYJ5XgN20w9k3qARD7\ndxhhyzcDUK2tL83m/4/s2CTNco4M++TpK+oJ/7Z2UWJfLGtcKX3W7pUmeAd+oLXtOvN+IEXZubi/\n3xenTuq8vaYM5+qKDSjzCwCwb+NH3TH9NG0ufMFavTn9U5yRgy0tv5/PiYFTNW1TYWFK/UnDMKvl\ngtTQgFs//Mr9vcefuf4eKa924fiKDw3G9UFqoCD9xj3OzftWbx8pLa5W7w64dW+PzFBBypU7nJ+3\nDmVBIU5t/WgSNFKrjxwfvuC5c36Zt1nOb7XHsX1zzk/8VG8Otq0b4z56IBKFnKzIu1xZ+LX+/Xwp\nMYYOtjRd9wkhAZN0yq/WzR/7ds0Jm7y41Lp4GbedFUWlquwMXg7iDqjwr5ScVkTgl6l8NtmGXasc\ncXGUs3JjulbMW+1N2PqZA1s/c2DTEnvsrKRMe88SWysZS39Mw8RIys4VDmxcZMeJc3kcDdV/kvUk\nAytzfOaM5OzkFRzpOZns6Hg8x/V9pjj3wd2w8aun+Vsil9F40VjCFqzjWP8Z3PjuV3yDRmNgZQ5A\n+PRlBPf9kJz7cXh8MFBrWQorC7xmjdEb49K9I8bVnTg98GPODJ9G9b5vYuHlAYBlw3pE/d8uQgZP\n1vwrylbXhaV3Xc6ODtR8XpzcygKP6eO5Omsx5waOIfd+LDVHDX7qGJcB3bHw8dL8nXPnHheHT9D8\nSz1zgYQDR0kPu6xZFkB2TDx1xgzQqXeFlTkNZo0hbPpnnOzzkVaca/dOmFR34tSAiZweNp0a/d7A\nwssdAO9544nevp9T/T4m8tut+CyeqLVcy0b1qBXwjk55ABKaAGW/gBEZmcDwIRvYtzeizPOUh/LK\nQ2Fljvfs0Vyc9jknek8gJyaOuh/oX1elxVV7oy3Nv5mLkYONzrxSAwXe88YhUei/zmpgbU7Tee8R\nPGkVf747jazoBBp+2Oep4mp2a4O5mxP7e8/kQN/Z2DWth0unZgDY+tTh+k97Odg3UPOvMLts25CS\n/BvbRUl9sbhn7bNWjepyZ9PvBAdM0fwrys7FuVt77F9pwumh0wHIS0ylzqi+mrK8Z4/i/LTlHO/9\nMdkx8dT7oL/enEqLc37jVVroaZsNA0eTG5/MyYDpnBm7kPoTh2Cop/0+jfJqFwbW5jSZN5LTk7/g\nYPcpZEXH02C8nn1ZKXHO/k1x79eJv0ct5mCv6ciMDPAY1AUAG5863PjpDw73m6X5V1X7SHlvs+QW\nptSf9h71Jw2jpJ+RVFhZUH/mB4RPX8rpfh+SExOH+xjd/XxpMU5d29F4zXwM7W2fKN+MelNGUvfj\n4SAp/SU6L+O2U6h6xAloFbFjxw6WLVtWbss/ffo0EyZM0Pl84cKF3L+vfRcnMjKSgICAcsulIpy6\nmIe3h4KazuqDzz6vm/DH8RxUJVya+uHXTGwsZfTubArA5cgCurUzRiaToFBIeLWJEQdP6V7p1Me+\nVUNSL98i614cAFG/HMSla5unjrNt6oV960ZEbf9L85mqsIiDXceRfi0KABMXB/LTMrFv1RCAnHux\nAMTs2I/T669qlWfTohHpVyL1xti3a8GD3YdRFSkpzMgi7uAJnLqop1k2rIdNU2+a/biEJmuCsPKt\nD4BRNQdkJsZ4Th1J843LqD9rjFZ51s38yLx6k9zoBwDE/roP+07tnirG0q8hVs0bE/vrPr11bdHI\nC9v2rYlctlpnWdE79mu+Q3G2LXxIuxJJ9sN6KB7n0K45Mb8f0dRD7IGTVOvSFkN7a0zdnIk9cBKA\npFMXkBkZYl6vFgAGNpbUnzyC66s26pQnoRagQEWM3u+gz8+bQunew5cuXRuUeZ7yUF552LbwIe3y\n43Vwb/sBnLq88lRxhnbWOLRrxrkJ+q/Ue04Zzv3dRyhITdc73bGVNykRt8i8q+5/kdsOUaNrq6eK\nk0ilyI0NkRkokCrkSOVylHnqu2i2Ph7YN/Oiw//No/33M7BrXE9n2U/r39guSuqLxT1LnwWwalgP\nm6YNaLF+MU3XztNsu8w9axN/9AyFmdkAxB0Jwcm/BQB2LRrptLlqetpmaXGP2mboE21TYWGKbfNG\n3Pz2FwDy4pM5NXw2BWmZPI/yahcOLRuSEnGLrIdt//a2v6jeVfeOYmlx1bu9wo2NeylIzwKVigsL\nf+Du7hOA+kTDvrkX7TcF8ep3s7Ctwn2kvLdZTh1bkZeYyrUvdPchj9g09yH9yk1yoh/tw//U3c+X\nEmNgZ41d2+Zc/Fj3bqJDh9bkJaZwc9VP/1gXL+O2U6h6xBDc/7iZM2dWdgrlIjaxCEc7meZvR1sZ\nmdkqsnJUmJloX91LSS/ip12ZbF5qr/msYR0Ddh/NwdfTgIICFQeDc5DLyvZqbSNHW3JjkzV/58Yn\nozAzQW5qrDW8trQ4mbEhDSYFcHrsEmr28NdavqqwCAMbC9puWojCypxz01dh5uasFZMXn4TczASZ\nibFm6I2Rg53WULTiMUYOtuTGJWlNM/OoCUBBegaxe4+RcDQESx9PfD6dwulBkzCwsSD5TDjXln5L\nfko6dScM1crBwMGO/OLlJSQiNzPVyqm0GJmxMbU+fI+IiXNxevt1vXXt9sEw7n67kaLsHN1lxSeh\nMDNBZmqsPSzO0Za8J77rozgjR1vy4p+shxoYOdqRl5CiNbYmNyEZIwcbMm7cwTtoPNdXbUBVWPRE\nhlZIqIeSA0hopvc76DMrsCsAwcG3yzxPeSivPIwcbcmN178OnlxXJcXlJaZwcepnepfv8o4/Urmc\nmN8OUXtYd70xJo42ZBfrfzlxySjMTZCbGmkNJSst7s6u47h2asab+1cgkUmJO3WJB8cuAJCflknU\n7pPcP3wWW986tF7xEQf7zHrKmtL2b2wXJfXF5+2zAPlpGTzYe4yEo2ew8qmHz9IpBA+aTHrEDWr0\ne5N729QXtpzfaIuhnZWmrOJtLreMbTP3ibZ5YernOt/VxNWJvKQU3Aa+iX0rX6QGcm5v3E323QfP\nXH9Qfu3CxMmGnGL1nhNfQh8pJc6sphOGlyxo/eVkjOytSDp/nUsr1EMt81MzuLvnBA8On8XWty4t\nl3/EX32f75jkZd1mRe84CIDzm+30Tn+0bK22npCks08tLSY/MYVL05fqXfb9nfsBcHqjfYnlP/Iy\nbjsrkrKkW9iCFnECWklyc3OZPn069+/fp6CggNdff3yA/f3337Nnzx7kcjlNmzZl8uTJnD17liVL\nliCXyzE2NmblypUYGhoyZ84coqKiUCqVfPTRR7Ro0aLEMqOiohgxYgQpKSn079+f3r17ExAQwNy5\nczE3N2fSpEmoVCrs7e1LXMbLoqQx+FI99/y3H8jmtWZGuDo+7g4Th1rw+fp0+k5KwN5aSisfQy5c\nzS9T2ZIShq+oipRlikMCjReNI+KzDeQlpuoNyU9O52DXcVh4utFy9Qyidx3VX6ayWJnSEvJSKpHo\nmfYo3/Bpj+/Mp128Smr4NWyaN+LBniOET3u8M7v17Vaq9+6KRC5HVViod5lP5lRSDBIJdedO4vYX\n6yhIStEbYu7tidzSnIQDx0pd1pP1jkT/wA9VkVJ/HSmVJQ5JUimV1BkzgNTzV0gOCce6sZfWdCmt\nUHICePLE9L+txPX+ZB8pY1xx5vVq4dqjI2dGzn2mHHT6aSlxXu+/S15KBr/7j0NmZEDr5R9SJ6AL\nNzbs49TEVZrYpAs3SLp4A4dW3qXmJKi9kD4LhE17fLCfevEaaWHXsW3eiPu7j2DoYEuTrwIByLoT\ng7Kg8GFRJQwM02kXZYvTmkcuw8TFkaLMHE7/bw4mro40/2au5m5ZlVPivkxV5jipXIZDS2+CJyyn\nKK+AJvPfx2tsL8KXbeL0pC80sUkXrpN08SYOLatmHynPbVaZldDmtPfzZYh5TmLbKbwI4gS0kmze\nvBkXFxeWL1/OnTt3OHLkCBkZGVy7do29e/eyefNm5HI548aN4/Dhw4SEhNC1a1eGDBnCoUOHSE9P\n58iRI1hbW/PJJ5+QkpLCoEGD2LNnT4llFhQUsHr1apRKJe+88w4dOnTQTFuzZg3dunWjT58+/PHH\nH/z8888VUQ3lxslORviNAs3f8UlFWJhJMDHS3Tj/eSKHqSMstT7LylYyIcACS3N1/Pc7M6hRreTu\nUndUTxzbNgFAbmpMxs17mmlG9jbkp2VSlJunNU9ObBJW3h46cWa1XDBxtsdrwiAADG0tkcikSA0V\nXF6+CbtmDYg9HApA+tU7ZFyPApn29zK0t6EgLRNlsTLz4hKxbFBHb0xuXCKGdtZa0x7dIXXp+TpR\n63dqpkmQoCoqwsrHE7mFGYnH1bk8OqF+tKNcMrTqAAAgAElEQVTLi0vArH7dx8u0s6UgPeOJnPTH\nmLhVx6iaI25jhwNgYGP9sA4MuLnkSwDs/F8hPz4Rn+8+f1jvJmRFRpVaBwC5cYlYFqt3rXqITcTA\n1kprWm58Mrlx2p8/Wl+58clU69qW/JQ0HNo3R2ZshKG9DS03PHqBhAFSHg2rNgWqoR6OG8Z/jfvI\n3ti3bQqo+0jmzbuaaY/WwZN9JDc2EcsGuuvqybjinN9oi9zUmObfzdfM0zBonGZ6xy1BmhzSb0Rr\nPjd2sH7YT7UvNGU/SMbG211vnEuHplxYrL7zXZiZQ9Tvf+PasRl3fj2Gex9/rn63WzOfRCJBVSAu\nREhohAQXzd8Gdtr97UX1WbmZCa49X+dOsW0XElAWFiG3MCX2z7+5s/5XOp3eirWPJxKZlNYbF+ts\nvw1L3H7rtk19ccXlJaovpkXvUV8wzI6OI/XiNa3lVLb6o3vg1K4xAApTY9KL78s0bV93X2bT0F1v\nXG5CKvcPn9XcGbu35wSeI7ujMDOhVp8OXP/+d818Egl6RpFUnoraZpVVbmwCFl5P7MOf2KeWJeZZ\neI3ujnN7P0BsO4UXQzwDWklu3bqFr68vAG5ublhYWGg+9/HxQaFQIJFIaNq0KTdu3GDUqFHEx8cz\nZMgQ9u3bh1wu5/r16xw7doyAgADGjx9PYWEhycnJJZbp6+uLgYEBRkZGuLu7Ex39eANy584dGjVq\nBEDjxo3L8ZtXjFa+hoRdzyfqvvqq9rb92bRvZqQTl56p5G5sET71DLQ+37Y/m682q58dS0otYsfB\nbLq+alxiedfXbOf4gBkcHzCDE0PnYN3QA9PqjgDU7NWBuKNndeZJCA7XG5cafpO/3hyvWd7d7X/x\nYH8wYfPXoSpS0ihwJNY+6pM2s9oumLo5c+839QGNcXUnAFy6dybh+Bmt8pJOX8TSu47emIRjZ6j2\n1mtIZFLkZiY4dmpDwrEzFGbn4tqzC/avqe+sm9V1w8LLQ/0MpIkRdT8ejtxC/XKdGoPeVhf08AQ0\nNeQC5g3qYeRaDQCnd7uQ/HeIVk4lxWREXCO01wjNi4Zif9tH4l9/a04+ASx8GxD17SZNTNj7U7SW\n5dqjE/FP1EHxejB5WA/F4xKOheLyln+xemhNwtEQ8uKTyYmJw/HhWzNtW/igUirJvHmXY2++T/Ag\n9QtOLn+yhpyYWIIDpqirgt9Qshcle1ERjYqr/8mTT4DIb7YRPGgqwYOmEjJ8lu46OBaqM0/S6bAy\nxRV3bfl6TvSaoCkrLyGZ8MDHV9QfvdTicEAQNo3cMauh7n+1e/lz/8h5neXFnQovMS71ShSundV9\nQyKX4dzOj6SwSAqycnDv2xGXDuqDV6t6NbD2rk3syf/mui9ORZimTwAl9sXinqXPFmbnUL3X6zg8\n3HaZ13XD8uG2y6K+Oz5LJiGRqR/TUFiZcWPtNk4Omkbw8NlYeXtoyqrRo2OJbbMsccXl3E8g7cot\nXN5UP6NqYGOJVcO6pF2OfLpKLEdXVu/QvBDoyOB56n3Uw7Zfq1cHHhw5pzNP3KlLJcbFHAzBpWNz\npIYKAJxfa0JKxC0KsnOo3bcjzg/7iGW9mlh7uxNXhfpIRW2zyio55OE+3FW9bOfunUk8duapY57F\n5dU7xbazjFQqSZX/VxWIO6CVxN3dnfDwcDp27Mi9e/f4/PPPeffdd6lduzY//PADhYWFyGQyzpw5\nw7vvvsuuXbvo3r07U6dOZe3atWzdupXatWvj5OTEqFGjyM3NZfXq1VhZWZVY5uXLlyksLCQ/P5/I\nyEhq1Kihlc/58+fx9PQkPDy8IqqgXNlaygj6wIpJy5IpKARXJxkLx1kTcTOfeatT2fqZAwB3Ywux\nt5aikGt3yBE9zJi5MpUeH8WjUsGoPuZ4exjoK0pHfko6F+etpcmnHyJRyMmOjudC4GoALOvXotHs\n/3F8wIxS40pSlJNH6MTPaTBxEBK5HGVBAednfUXGDfWV2YafTESqkJMTHUdE0JeYe9am/ozRhAye\nTEFKOpfnf60TA+oXEhm7ONF8wzKkCjkxOw+Qev4yAGFTllBv4ghqv9cHVZGSS7OWU5CWQdKpC0Rv\n+4Om3/w/e/cd31T1PnD8kzTdg+4W2rLKaillb2WDgjjYIhtEqwLK3nvJElBUpoCACEj9Ck5wIMpo\nAdmrUHYpHbR0zyS/PwKhIU1bhDbF3/N+vfpHb5577pNzb05ycs49mQ0KJWmRNwxyzbmXxOX5H1Nj\n9ngUKhWZt+9wac4yHKpXwX/8e5wcPNJkTFHY+pYj605svscDcPAvz5mZuufnVKMygZNDONxv3P16\n+Jzg+aNQqFRkRMXo426F7sHW14smmxehtFRx69tfSTyu+9mU01OWETDxbSoP6oomO4dTk5bKeuv/\nUnZiMmdnf07tDx+cgzucnvEpAE4BlQmc/DaH+44vMO5JZSWmcHT6WposGobSUkXarVjCp6wGwCWw\nIvWnD+bXXtMKjDu5eAt1JvSjw7fz0Wq0xIad5eKGH0Cj5eAHy6gzvh+B73RBq1YTNu5Tsu892WIz\n/0WmXotP4zV7cuxCqo8ZjP/QHmjVGk5NWUZOUgoJYaeIrxtIky26WwjSrkdzbatu9lB2YjKnZ6+k\nzocjUapUpEfFGFybQZPf4mDfCQXGFeT4uCUEjhuMX9d2KBRKItftJPn8lader09DdmIy/8xYQ+NF\nI1CqLEi7FcvRqasAcA6sRN1pQ/jj9SkFxl3Z/itWTg60/mo2CqWSexeucfqjL0Cj5fDIZdQe34+A\nkG5o1GrCx68ota+R0tBm5SQmc37OpwTNG6N7D4+K4dysT3Cs4U+NiSEcGTDWZMzTJG2neBoUWlPL\ngopilZWVxaRJk4iJiUGtVtOuXTsSExMZM2YM69ev58cff0Sj0VC/fn0mTpzIqVOnmDt3Lra2tiiV\nSmbNmoWXlxdTpkzh9u3bpKam8sYbb9Czp/FS2KBbBffBfaPJyckMGjSIzp076+8BdXFxYezYsWRn\nZ+Pr68utW7fYtGlTgc8hLi6lwMdLgoeHI5lnWps1B5ugP/i+fp/CA4tZ52Nb+K1JD7Pm0PbwDg48\nn/9PkZSk5n99x97G+b8WSkr7sO2o2WLWHAAs6GP2PCzow55Gxj/fUJI6hG8D4Js6A8yaR/cTG0vF\n+QBKRR6l4XX6c6PXzZoDwIvhX5eK8/FtXfOvgN/l+KZSURfmbrNA12793rS7WXNoc+gbs7eboGs7\nnwWbgoaYO4VC9TuzztwpyAiouVhbW7NkSf6roQ0aNIhBgwYZbKtduzbbt283il24MP8fK35U48aN\n+eqrr4y25+1krltn/gtSCCGEEEKIZ5GmlExxLe2kA/ofs2LFCsLCwoy2z5s3Dz8/PzNkJIQQQggh\nhBA60gH9jxk2bBjDhg0zdxpCCCGEEEIIYUQ6oEIIIYQQQgjxhGRhnaKRn2ERQgghhBBCCFEipAMq\nhBBCCCGEEKJESAdUCCGEEEIIIUSJkHtAhRBCCCGEEOIJyc+wFI2MgAohhBBCCCGEKBHSARVCCCGE\nEEIIUSJkCq4QQgghhBBCPCGNuRN4RsgIqBBCCCGEEEKIEqHQarXym6lCCCGEEEII8QTWBg41dwqF\nevPcGnOnIFNwxb8XF5di7hTw8HBkb+OeZs2hfdh2fmrY26w5AHQ8spXfmvQwaw5tD+9gX7NuZs0B\noNXBnaWiLsx9bYLu+jR3Hu3Dtpv9umh1cCdAqaiL0pADlI66ULPFrDlY0IewVp3NmgNA433fl4rz\nYe52E0pH29k+bDt/Nu9q1hwAWh4INfvni45Htpr9fMDDdqu008oquEUiU3CFEEIIIYQQQpQI6YAK\nIYQQQgghhCgRMgVXCCGEEEIIIZ6QRqbgFomMgAohhBBCCCGEKBHSARVCCCGEEEIIUSJkCq4QQggh\nhBBCPCH5bcuikRFQIYQQQgghhBAlQjqgQgghhBBCCCFKhEzBFUIIIYQQQognJKvgFo2MgAohhBBC\nCCGEKBHSARVCCCGEEEIIUSJkCq74T3Hw96P66MGoHOxAo+Hch6tJuXD1scqwdHYkaPowbMp66MqY\nv5qk0xEAVBvRD8+2TclNTgUg7frtfMvwaF6Xau+9jtJKRcqlG5yZs5rctIwixymtLak5bjBlAiuD\nUknSmcucXfgFmqwcPJ+vR63p75AZE68v5/DQmQA02rwYpaUlqZevc37u56jTDY/p1qwe/u++YRyj\nVFLt/QG4Nq6NwsKCG1/tIurbvQb72pT1pNGGBRx/fzYpF65Qod9reLVvnqfenIyen2uzelQO6YvS\nUkVq5HUuzvvMKCdTMUorK6qOeRPHgCooFEqSz0VwafFaNNnZONcLwv+9fihUKjRZ2Vxauo6U85cN\nyi0NdeHevC5V3nkDpZXuGGfnrkSdz3VgMk6poPoHA3C7n8v1Lbu5ZZSLB002LuCfEXNIvnAFAJ8u\n7SjfqxPaXDUAXu2bU2nAa2bLAyBowXguzvuMnKSUJ7ouHrD2dKPemvkc7T+anKQUAN11MXwACgsL\ncpJSuLz8C9IuXy/ac3wKdeFSvybVhvdFobJAnZXNxSXrST4XCUDwh6NxrFIBgOahn6CytyUnKbVE\nz4f/273wbt9MH+PRsiH+Q3sWS124P1efoGnvGbRTR96ehjo90yAPBQ3RcgzQGB23MFqtlskTd1Gl\nqgeDhzQrfIcicG7SAL+hA1BYWpJ+5RpXFy43ujZNxVSdORFrn7L6OGtvL1JOniFi8myDbUGrl3Fh\n7FTSLhq2WeZqL6qPGYTPq20BeG73Ko6+NYXM6DiD/f5Ne2nr503g5HexLONIbnom52Z9Qvr998zy\nb3SmbOc2aNVqcu4lc+HD1WRExTx8js83IHjO+6gzMkn851yJXZsACkvdR2P3Vk2J33cIANem9akU\n0gellSVpl69zcf6nxm2WiRgLezuqT3wPuwo+oFAQ89M+bm751mBf75fa4N6iMWfGzzd6jo960s8X\nKntbak19G/uK5VAoFET9sJ8rX+422Nf35VZ4tW7AsVGLC6/rp3BOitp2iv+OIo+AhoaGsnjx4sID\n78vKymLHjh2FxqnVakaMGMH+/fv121asWEH37t15/fXXOXXqVIH77927l5iYGOLi4pgxY4bJuDZt\n2pCVlVXk/J82U/U3cuRIsrOzDbbt37+fCRMmPNHx7t27x+7duwsP/A9RWltR7+MpXN+8i7D+47ny\nxU5qzRzx2OXUGPsmiScucOj1UZye/gnB80ahtLYCoExwdU5PWcbhfuM43G8cp6csM9rfytmRWtPe\n5vj4pfzVfTQZUbFUG9b7seL8B3VBYaHk7zcm8HfvcSitrfAf+CoAzsHVuLr5ew70maj/s7CyBOD0\nxMUc7vU+GbdjqPJeH4PjWTo7ETjl3XxjfLq0w9bPm7A+ozgyeAJ+vV7CKbDKw7q1sqTmzOH6N2aA\n65v+R3j/sYT3H8s/705Hk5lpdLwak4dxdtIiwnuPIPN2DJXf7VvkmAoDu6GwsOBo/9Ec6T8KpbU1\n5ft3RaFSETh7FBcXrOTogNFc3/ANAdNGGJRZWuqi5pR3OTVxCQd7fkB6VCxV333D6DqwdHY0Gefb\npT12ft4cemM0YYMmUv71TjgF+hvkUuuRXGzKelAl5HWOvjWNw33H3s8jxKx5AGRGx1HxzV5PfF0A\neL3Ykrqfz8Haw02/zcLejprzxhK54kuO9h/FpcWrqTl7tEFOxXlOFCoLgud8wLl5qzjcdxxXvwgl\naMZwfZnOQVU5GjIdAJWtDUfenFKi56Nc51Z4PFefsIET9dtqzRpRbNeFc3A1rm3ZrW8rD/cbhzo9\nM588MlBQ2+i4hYmMjGPwgE38/NPZx97XFFUZJyqP/4CIafM51T+ErNt38HtrYJFjLk2fz5k3R3Dm\nzRFcXfQJ6tQ0ri37XL+vwsoS/8nG1+QD5mgvHKtXwq/bC/rXaVZ8IrUXT3jkmP+uvaw5431uhe7h\ncO+RXF27jVrzxwDg0rAW5V5uy9E3JxPebyyx+8IImPKuwTGD57yPOiuHa5t2ldi1CVAmqCqN1s01\nev7VJw/j3ORFHOk9nIzbMVR6p1+RYyoO7U1W3F2O9vuAf94cR7kuL+BUsxoAKkcHqo59myoj3wRF\n4fcOPo3PF1VDepIZm8Dfr4/j4IAp+HVrj3Otqrrn4WRPzQlDCBg7AHiYT0F1/aTn5HHazmeB5hn4\nKw2KbQpuXFxcoR3QGzdu0KdPH06fPq3fdvbsWcLDw9mxYwcfffQRM2fOLLCML7/8ktTUVDw8PArs\ngJZWS5cuxcrK6qmXe/HiRX7//fenXm5p5ta4NulRMcQfPA5A3P6jnJq8FACFyoJqHwyg8cYPabJ5\nITWnvouFva1RGQoLJR7P1SPqu18BSL10nfSb0bg3rYPCUoVjtYpU6PMyTTYvJPjD0dh4uRmV4d4k\nmKRzV0i/eQeAGzv3Uu7F5o8Vl3j8PJe/+Ba0WtBoSb54DRtvDwBcgqvh1rAmzb6cS+PV03GpWwP3\nJsEAZNwvKyp0D94vPG9wPNfGwSSfj8w3xqNlY6K//wOtWkNuShoxvx7A+8WH+1cf8ybRP+wjJyk5\n37qvMqI/dw+dMNjm0qg2Kecvk3ErGoDbob/g1eH5IsfcO3GO6xu+uV8HGlIjrmDj7Y42N5dDrwwl\nNUI3sm3j40VOcopBmaWlLpLOR+rP763QPQblPODWuLbJOM+WjYjavU+fy529Byn7Ygv9vjXGDuH2\nD3+Sc+9hLgoLJQqVSnd93/9Ak3X3nnnzAJQ2Vmiyc574urByd8G9RSNOjTb8kGjnVxZ1Wjr3june\nT9KvR5GbnkGZoOoGccV1TrS5avZ3DiEl4hoAtj5e+pFZm7IeWNjZEjB+KACanFyy7z9WUufDsUZl\nYv88Qm5qusFxiuu6cK5VHdcGNWm88UMarJqJc52AfPPQchMF5Y2OW5itW47SpWsdXuxY87H3NaVM\nw3qkXrhEVpRulC5m14+4tWv12DEKlQr/iSO5vmIN2XEPR9kqvv8OcT//Rq6JtsMc7YVLvUC0Gi3Z\n93TXY/rNaOz8ypLXv2kvrT1csa9Yjpi9BwC4e+gEFrbWOFavRPbde1xYuEY/gphy/or+/e2BnOQ0\n4v86Wix1YeraBCjfqxORq742OI5LozqG7dG3P+fTZpmOiVy2jsgVGwCwcnNBYWlJbpru+vdo24zs\n+EQiV2w0en75eRqfL84v2ciF5ZsBsHZ3Rmml0r8evds1JSv+HheXbzEor6C6Lmrc02g7xX/HY3dA\nlyxZwqBBg+jSpQsTJ+q+wTx27Bg9e/bkjTfeYMiQIaSmprJy5UouX77MihUrTJaVnp7O3Llzady4\nsX7bsWPHeO6551AoFJQrVw61Wk1CQkK+++/bt4/z588zfvx4rl69Ss+ePQH4448/6NatG127dmXq\n1KloNA/7+1u3bmXYsGFGo44PqNVqJk+ezJAhQ3j55ZdZunQpOTk5tG/fnvR03Qt03bp1bNiwgevX\nr9O7d2/69evHhAkT6NevX75lPnDixAkGDBhAt27d2LdvH/BwZDYyMpJevXoxcOBAtm7dWmA5oaGh\n9OnTh969e3Po0CF++uknevXqRe/evfWjrCtXruTw4cNs27aNCRMm6EeY846utm7dmiFDhjBv3jwm\nTJjAtGnT9M/77Nmn961ySbErX5bsu/cInBxC4w3zqffJFBQWFgBUGvAaWrWasAETONx3HFnxifl/\ne1fGERQKcu497NBkxSZg7emGtbsLicfOcPmzrzjcdxxJZyKovWicURk2Xm5kxtzV/58Zm4Clgx2q\nRzq8BcXFh50m/YauAbfxdqdi747c+e0wANlJKdzYsYeD/ScT8enX1Fs4Cgd/X4Oys2LvonKww8Lu\n4TFtPN0NphzljbHxNMwlK/Yu1p66znW5V9qgUFlw+7vf8q13+0q+eLRoSOTqbY88P3ey8h4v7i4q\nB3vDnAqISQw/ScZN3Zu5tbcHvj07E/e7bjqUVq3G0qUMTb9bjf97/bm55TuDMktLXWQ9Uo6lg53R\nFx82Xm4m42y83MiKfTQXVwB87ucS9UguGbdiuL55F823L6PFj6sAuHf8nFnzAHCuU5PrG3c+8XWR\nHZ/I2UmLSL92y+B46TduY2Fro/8CwjHAH/tKfli5uxjEFec50arVWLmW4fndK6k2vC/XNu0CwMq1\nDAlHTnPuw9UA5KSmUfP+iE9JnY/ks5fweL6+ro27T5lnJOxp55GdlMLNb34hbMAELn/2FbUXjsHa\n09UoDwWVAOMvAwszZVpHXnkt+LH3K4iVp7tBhzE7Lt7o2ixKjEen9mTfTSDx70MPt73UAYVKRdwP\nv5g8vjnaC6WlipSLV/WvU6calVFaWT5xe2nt6UZWXKLuC0T9Y7r30rQrN/VtksJShf+7fYi937bb\n++u+jIg/dLzY6sLUtQlweupy4g8cNziOtacbWbEFt1mFxqg11Jj2Pg03LSPp+BnSb+i+wIj+3x6u\nr9+OxsRn0kc9jc8XAFq1huBZ7/Hc1wtJOHae1PtTo2+G/srltTtRZ2UblVca2k7x3/FYHdCcnByc\nnJxYv349O3fu5MSJE8TExPDrr7/SsWNHNm/eTO/evUlOTiYkJIQqVaowbNgwk+XVqFEDf39/g22p\nqak4ODjo/7e3tyclJeXRXQFo1aoVAQEBLFiwAEtL3RTE3NxcZs+ezerVqwkNDaV8+fLcuaP7IL9p\n0yaOHj3K8uXLTY46RkdHU6dOHdatW8c333zD119/jaWlJR06dGDPnj0AfP/997z66qssXLiQkJAQ\nNm3aRL169QqtP1tbWzZs2MDq1auZNWuWQcd44cKFjBgxgg0bNlC3bt1Cy3JycmLr1q0EBATwySef\nsGHDBrZu3UpMTAwHDhwgJCSEJk2a0KtXL5NlREdHs3jxYiZNmgRAuXLlWLduHf369WPbtm0m9yut\nlCoL3JvV5db/fiVs4ERu7viZuksnorBU4d68Ph4tGtBk00KabFqIR8uG2FfyNSpDocz/JaHVaMiM\njuP4yA9Jv6HrFF3fvBs7Xy/jYBPTaLRqzWPHOdWoRJM107m+/Rfi/ta9KR4ft5SYfbpvhhNPXuTe\n6QjsypfNv6w81xhKE8fTaFDk85hWrcGxeiV8unTgwgLTjb9fr5e49c3PqNMMR1ZMPr+8ORUhxqF6\nZep+NpuonT9x9+Ax/facxCQOvfoW/7w1keqT3sP2wbf2RTluSdfFI2UZUJi45tSa/PPU6HLx7dqe\n8x+uMXrYtXEwnq0bs/+Vd9jf6W0AXOoHmTUPgPi/jlBjyvCndl08Sp2ewenxH1Khf1cabFyC14ut\nuHfsNJqcXJP76Mt9CnXxQHZCEn+9HEL4m1OoOfUd7PzKknz2MifHLyb77j0AUs5H4t68LgqVxVPN\noaDzEf3TX8T8fpj6n057WJZGaxT3tOri1IQlxP15BIB7Jy+SdCoCt0bB+eSRTGmZFKYownVXlBjv\nHq8Rtenhe6hdVX88X+nItY8+feycivu6sCtfDlsfT/3rNO4vXRv7pO1lftv1ed5n6exE3eVTUWdk\nEvn5Vt00+un3p14++rwp/mvTlII+FzxOzIVZyznw0kBUTg5UGNTD5PEK9BQ/X5ya9im/tX8LSyd7\nqrzZrZDjFlDXRY17Cm3ns0CrVZT6v9LgsRYhUigUJCQkMGrUKOzs7EhPTycnJ4eQkBBWrlzJgAED\n8PLyIjg42OQIY2EcHBxIS0vT/5+Wloajo2MBexhKTEzEyckJNzfdiMXQoQ+H7Q8dOoSFhQUWFham\ndsfZ2ZnTp09z+PBhHBwc9M+jR48ezJgxg8qVK1OpUiVcXFyIjIzUdxbr169f6D2X9evXR6FQ4Obm\nhqOjI/fuPXxBXbt2jeBgXQNYr149rly5UmBZlSpVAnTTmBMSEnjrrbcAXX3duHGDypUr57ufNs+3\nkS4uLri4PBwdCAjQTUPx9vbmn3/+KfD4pUmTTQsBsCzjQNq1KJLP6hZ2iNt/lMBJIdj5eKGwUHLx\now36qZEWttYoraxwqlGZwMkh+rLCBupGh1WO9uSm6K5Da08XsmLv4lClPI5VKxD90195jq57IVd9\nuzueLerr9rW3JeXyTX2EtYcr2UmpqDMN70HOjLmLc1AVk3Fl2zclcPxgzi1aT/QvB3VlO9hRvnt7\nrmz4Lk9JCrITDKd0WXu4kpOUiibPMbNi4ilTs2q+MZkx8VjnGSmy9nAlK/Yu3h1borK3pcEa3XRH\na3dXas58n8srNummRymVeLZuTPjA8UbnJSsmHqc8x7PycCMnOcUop4JiPNs1p+qYoVxaspbYvX8D\nunv9XOoHEb8/HIDUiKukXb6GvX8FMm5GG4yclXRdeL/4PBnRsXi0aKR7Pu7OBeYBkBkTT5lHrgN9\nLnfisXIzLCMzNoGynVpgYW9Lo7Vz9NuDZo3g0iebcG1cm9y0DOp/PMVgP3PkEffXUXISddfm7Z0/\n0XDzUuJ+O/DE10W+FArUGZmcGPbwXqGGXy3HpVFtKg7s/rCsYjonKntbXBoE6T/Yply8Ssql6zhU\nKU/FgV1wrRugXyjEytUZNFq0Gg02nm4lcj4ST17A2s3ZYEQqb5v0VOvCwQ7fbi9wbWOehVYUoMlV\no3Ky584vf3Nt4/9oH7YdLUkoyP9L5pKWFRuHQ8DDKdtW7m7kPnptFhJjV6UyCgsLUk48vLXI/YU2\nWNjZEfjpIgAs3VzxnzyGtMtXsC3vm6eskm8vrD1dyUlK0b9O4/4Mo/wbnZ+4vXw0l7yPAThUKU/w\novHE7Qvn0iebqDykB96dWujL8urQHNQaXBsFY+P19F4jBV2bpmTeicMxMM/zdzdujwqKcWlUh7Qr\n18mOT0STkUnsr3/j0bKJyeM96ml/vnBvEkzK5ZtkxSeizsgies9BvNs0MjqufYWyNN+iWxTJ59U2\npEbeMCivJNpOK7cyWDra678YEf8djw1PdPwAACAASURBVDUCGhYWRnR0NB999BGjRo0iMzMTrVbL\nrl276NKlC5s2baJq1aps374dpVJpMMJXVPXq1ePvv/9Go9Fw+/ZtNBoNrq6uJuMVCoVBp8rNzY3k\n5GR9527OnDn6hYw+++wz/cihKaGhoTg6OrJkyRIGDx6sf44VK1ZEq9Wydu1aevTQfXNVrVo1jh/X\njUqdPHmy0Of24F7XuLg40tPTDTp//v7++rLOnDlTaFnK+9+2+fr6UrZsWb744gs2bdpE3759qVOn\njkH9W1lZERenW9Hu3LlzRmU8YOqb3dLuwSICYQMnYlvWE8caus65c50A0GrJuB3L3cMn8evxom7E\nQaEgcFIIVd59g+QLVwwWItCqNcQfPI5vl3aA7k3SvpIvicfOotVoqT5qkG51XMC3WwdS76+weWnV\nN/oFgQ4NmoZzUFXs/LwBKN+tHbH7jxrlHX/4lMk47zaNCBgzgCPD5+s7nwC56RlU6NEBr9a6Nwun\nahUpU9Ofa1//DOhWHQTw6dKBuL+OGBzvbthJygRVzTcmbv8Ryr7cGoWFEpWDHV7tmxO3/wiXlm3g\nUM/39QvsZMUncHb6cv29OQ7+5clJTjNaMREgIfwETjWrYeurG5ks91oH4h/JqaAYj9ZNqDJyCKc+\nmK3vfAKg0VB90ns41dJ9CLSr5IddBR9SzkboyzRXXWTFJRLWexTh/XWL/5TJc359u7Yn9pE88uaS\nX1zc/qP4vNwmTy7NiPsznIilGznY4wP9dZsVl8CZaR8T99cxUi5eRWVrzZG3pnK43/0p4lqNWfLw\naF4PC1trANxbNyH57KUnvi5M0moJXjIZxxq6WTUerZuizVVzaeEqjg4cow8rrnOi1WioOeUdygTr\nrkv7Sr7YV/Qh6ewlYn49CEolR9/TrWngUjeA+MMnQKMtsfPhFOCPc+0aBosQKSyUxVIXuekZ+HV/\nAc/WuttrHKtVpExgFe4eOoFTgD+1F4zR3x6hpCZarhV8bktI0pHjOARWx9qnHABer3Qi8cDhx4px\nqhNE8nHDzwM3VqzhVL+39QsU5dxNIHLuYiJnLdRvA/O0F/EHjmPr44VDFd3U18pv9SI7PjHfYz5O\ne5kVl0BGVAxe7XSrE7s2ro1WoyE18ga2vt7U+3QGV9d9w6XlG0Gj4cqabRzs8h5/PK+7NUaTnU3C\nP2e58fUPqDOzSuTaNCUx/KRhe9SlA3cfyaegGI82zagwSDcbTWGpwqNNMxL/OU1RPfXPF+2aUGVo\nV0A3Bdu7XRPuHjG+7SrtejQH+ujai/Ahk83SdlrY2uh+2cDJvsj1JZ4NjzUCWqtWLc6ePUufPn1Q\nKBT4+fkRGxtLcHAwU6ZMwdbWFqVSyaxZs3BzcyMnJ4dFixYxduzYIh8jKCiIBg0a0KtXLzQaDdOm\nTSswvm7duowbN47Zs3XLnCuVSqZPn87bb7+NUqkkMDCQWrVq6eOnTJlCjx49aNq0KRUrVjQqr2nT\npowePZoTJ05gZWVFhQoViI2NxcvLi+7du/Pxxx/TpInum6sxY8YwadIkvvjiCxwdHVGpCq7OzMxM\n+vfvT3p6OrNmzTLo8E2YMIHx48ezbt06XF1dsba2LlJ9ubq6MnDgQPr164darcbHx4eOHTuSnJxM\nREQEGzZsoEePHkyaNIndu3fn+5z/K7ITkjgxbhEBY9/EwtYaTU4uJycsRpOdw5UvvqHaiP402bQQ\nhVJJyqVrRHz8Zb7lXFi4lsBJITT96nm0WjgzYwW5aRnkXrnJhSXrqbtkPCiVZMUmcHrqcp7f9blh\nHonJnJ61kroffoDSUkX6rRhOzfgMAKeAytSaMpQDfSYWGFftvddRKBTUmvJwBD/xZATnFq7n2Jgl\nBI4ZQNW3u6NVqzkx6WP90va15o1Gaaki41YMZ2etwLFGZQImvUN4/7HkJCZzbvZnRjGgW1TC1seb\nRpsWo7RUEfXtXoP7Bk2x8/Mm805svo/lJCZzYe6n1Jw7BoWlisyoO5yf9QmONfypPuEdjg4cYzIG\noFKIbtXT6hPe0ZeZdPoCl5as5cyEBVT5YDBKCws0OTmcm7GMrLgE/XFLS12cm/05wfNHoVCpyIiK\n4cxM3TEejLwf7jfufi75x90K3YOtrxdNNi9Caani1re/knj8fIF53N79B7ZlPWi8cQGa7BwAzs5d\nZdY8AJzrBnFhzidPfF0U5Nz0ZVSbEIJSZUn23UTOTFhgHFOM5+TkuEVUHzkApUqFJjuH01OXkxWb\nQFZsAje3/0TD1br3qeSIa9j5eNH0649K7HwkhJ0ivm4gTbYs0m87PWVZ8dXF2IVUHzMY/6E90Ko1\nnJqyjJykFKM8tCSj5UKh57Yk5N5LInLBcqrOnIjSUkXm7Wgi532EffUqVBqr6yiainnAxqccWSba\nxMKYo724ue1HytSsQqP1upEu+8p+HH9v5lNpL89MXUrAxBAqDuqGJjuHM5M/Aq2WCv1eRWltjV/P\nTvj11P1MkyYnh6NDJhnURdDM4TjXrkHyucslcm2aknMviYvzVhA4Z6y+Pbow+2McavhTfcK7HBs4\n2mQMQOSKDVQbG0KDTcvQarXc/SucqO0/PMaV8dDT+HxxYdlmak4cwnNfLwStlpg/j+q/xDZZBwXU\ndUm2nc+C0nFDQemn0OYdPhSPZdeuXdSuXZsKFSqwY8cO/vnnH+bPL/w3nP4r4uLMP23Kw8ORvY17\nmjWH9mHb+amh8TLoJa3jka381uRf3lfylLQ9vIN9zQq5l6QEtDq4s1TUhbmvTdBdn+bOo33YdrNf\nF60O7gQoFXVRGnKA0lEXarYUHliMLOhDWKvOZs0BoPG+70vF+TB3uwmlo+1sH7adP5t3NWsOAC0P\nhJr980XHI1vNfj7gYbtV2i2v9k7hQWb2fsTnhQcVs8caAf03Tp06xaJFi4y2d+zYkTfeMF6FND+/\n/fYbGzZsMNrev39/2rdv/6/yWrFiBWFhYUbb582bh5+fX5HKKFu2LCNHjtSP/M6bN48ZM2YQGRlp\nFLtmzRpsbGweK8enWZYQQgghhBBCmFuxd0CDg4PZtGnTE5XRtm1b2rZt+5Qy0hk2bFiBK/QWRcOG\nDQkNDTXY9jR/i/RZ/F1TIYQQQggh/j8qLavMlnaP/TugQgghhBBCCCHEvyEdUCGEEEIIIYQQJaLY\np+AKIYQQQgghxH+dRpZ2LRIZARVCCCGEEEIIUSKkAyqEEEIIIYQQokRIB1QIIYQQQgghRImQe0CF\nEEIIIYQQ4gnJLaBFIyOgQgghhBBCCCFKhHRAhRBCCCGEEEKUCIVWq5XRYiGEEEIIIYR4Aov83zN3\nCoUaG/mpuVOQe0DFvxcXl2LuFPDwcOT7+n3MmkPnY1v4vWl3s+YA0ObQN5x+ob1Zc6j1y172NOpl\n1hwAOoRvI6xVZ7Pm0Hjf9/zc6HWz5gDwYvjXZj8nHcK3kfuTj1lzUHWMAmBDzTfNmsfAs2tLxfkA\nzH59vhj+dal4narZYtYcACzoUyrOh7nfT0H3nloa6mJfs25mzQGg1cGdpaIuzN1ugq7tFP8dMgVX\nCCGEEEIIIUSJkBFQIYQQQgghhHhCGnMn8IyQEVAhhBBCCCGEECVCOqBCCCGEEEIIIUqETMEVQggh\nhBBCiCek1SrMncIzQUZAhRBCCCGEEEKUCOmACiGEEEIIIYQoETIFVwghhBBCCCGekKyCWzQyAiqE\nEEIIIYQQokRIB1QIIYQQQgghRImQKbhCCCGEEEII8YS0WnNn8GyQDqj4T/F8rg41hvVCaaki+fJN\nTs1aQ25axr+Kq7/oA7LiEjmzcCMAbg0CCXi/N0qVBeqsHM4u2si9s1eMynZrVg//d/qgsFSRFnmD\n83M/Q52e8Vgx1p5uNFg7j/B+Y8hJStHt81x9AqcOI/NOvD7un3emok7PLLReHBs1wmvQEJSWlmRe\nvcqtpUvQpKfnG+s7eiyZ168S/803ACjt7PAdNRprPz9QKEn8dS/x27cVeswH3JvXpeq7vVFaWZJy\n+QZn56xEnc85KSzO2tONxl/M4VCfcfo68XiuHkHT3yMj5mGdHHlrukG5zk0a4Dd0AApLS9KvXOPq\nwuVG58NUTNWZE7H2KfswB28vUk6eIWLybJybNsJ/4kiyYuP0j58bPh5NhvFze8CjeV2qvfu6/jme\nnrMq37ooLM7G040mX8zmQJ/x5CSlYF/Jh9qzh+sfVyiVOFYpz/FxSx67nosa92/Px6P+PGvBsu+t\nyM5VUK2chtm9M3GwMYyJuK1k3k5rUjLBQgnTe2ZR00/DB+ttuBH3cMn7qAQlDfzVfDq08NdEfnxb\n1KLeB92wsFKRGHGLA1M3kJNmuqzn5g4i8VIUZzfsMXqs9bJ3SY+7R9jcrwo9bnGeE5WTPQFjBmNf\nyQcLayuurP823xyK69oEsHSyJ2DMIBwq+aC0tuLK+v9x+6e/jMourtdq3m1Bq5dxYexU0i5ezrce\n/g2tVsvkibuoUtWDwUOaPbVyS/qc5Kc431MtnewJGjcAh0o+WNhYcWndd0T9+HeprYsHXJvVo3JI\nX5SWKlIjr3NxnvF7vKkYpZUVVce8iWNAFRQKJcnnIri0eC2a7OwCj/k060JpbUng2MGUCfQHpYKk\nM5c5t+gLNFk5+n19Xm6FV6uG/DN6UaH5mKvdFM82mYIr/jOsnB2pPf0tjo1dxr5uY0m/FUuN4b3+\nVZx//8641q2u/1+hsqDe/GGcmrOW/b0ncWnd/6gz6x2jsi2dnQiY/B6nJy4i7PX3yYiKwf/dPo8V\n492xJfVWzsbaw81gvzK1qnPjq90cGTBW/1eUzqdFmTL4jh7DjdmziHhzMNl3ovEePMQoztqvPJUW\nLKRMixYG270GDCQnPp5Lb7/F5eHDcHupM3YBAYUeV/dcHQma+g4nJ3zEgR4jyYiKodp7bzx2XNlO\nLWi0egY2nq6GdRJcnWtbdnO473j9X946UZVxovL4D4iYNp9T/UPIun0Hv7cGGpRRUMyl6fM58+YI\nzrw5gquLPkGdmsa1ZZ8D4BgUQPS2UP3jZ94cUWDnU/ccQzg+YSl/9RhFelQs1d/r/dhx5To9T+NH\n6iLtahQH+07Q/8WHneL2LweI2XekVJ2PRyWkwpSt1iwbnMkPk9PxddPw0W5rg5iMbBi60obBbbPZ\nOTaDkA7ZjN+k66EuG5RJ6LgMQsdlMPP1LBxttUzpnmXyeAWxdnGg+ZxB/PHBZ3zbeQopt+KoP6pb\nvrFlKpflhS9GU/GFBvk+HjT4RbzqVy3ScYv7nARNe5fM2Lsc7jeBo8PmUGP0QBNlF8+1CVBr2jtk\nxiZwsN9EjgybS8DoAVg/ElOcr1UAhZUl/pNHo7B8ut+7R0bGMXjAJn7+6exTLdcc5+RRxfmeClB7\nxttkxCTwV5/JHH5nPjXH9jfKs7TUxcNjOFFj8jDOTlpEeO8RZN6OofK7fYscU2FgNxQWFhztP5oj\n/UehtLamfP+uJo9XHHXhP6gLCpUFB/qM58Ab47CwtqLygNd0+znZEzhhCAFjBoKi8N+zNFe7KZ59\nhXZAQ0NDWbx4cZELzMrKYseOHYXGqdVqRowYwf79+/XbVqxYQffu3Xn99dc5depUgfvv3buXmJgY\n4uLimDFjhsm4Nm3akJX17z6QPA2PW3+lQWRkJP369TN3Go/No2kt7p27QtrNGACuf/MrPh2bP3ac\nW4NAPJoFc33nb/pt2lw1v3YcTvLF6wDY+XiSnZRqVLZro9okn79Mxq07AESF/oL3C88XOcbK3QX3\nFo04OWqeUdllalXHpX4QDdYvoN7ns3GuU7ROoGO9+qRfjCD7dhQAd7/fjXObtkZxbq+8QuKePSTl\neU0CRH/+GdGrVwFg6eaKwtISdVpakY7t1rg2SeciSb+pe643d+7F+8XnHivO2t0Fz5YN+Wfkh0b7\nOQdXw7VBEE02zqfh6hm41DWskzIN65F64RJZUbcBiNn1I27tWj12jEKlwn/iSK6vWEN2nG50z6Fm\nDZzq1SZo1TICPl6AY3DNAuvCvXGw0XMsm09dFBT3oC6O5lMXD7jUqYF3m8ac/XCt0WPmPh+POnhB\nRVB5DRU8dHOWXm+eww/HVAZTmA5esMDPTUuLQDUArYPULBlo2KnNzoVJW2yY0CWLsi7/bv6TT7Oa\nxJ+5RsqNWAAufr2Pyi81zje2Ru/WXPr2ANd+OWr0mHej6vg8V5OL2/cV6bjFeU5UTva4NQomco1u\nNkNWbAJhg6cYlV2c16bl/Rwu58nh0OCp5DzSfhbnaxWg4vvvEPfzb+QmJRs9ryexdctRunStw4sd\nC379Py5znJNHFed7qqWTPR6NaxGxJhSAzNgEDgyYRnay8ftqaaiLB1wa1Sbl/GUybkUDcDv0F7w6\nPF/kmHsnznF9wze6eZoaDakRV7Dxdjd5vOKoi4TjF4j84tv7OWhJjriGbVldDt7tmpIVf4+LH28p\nUj7majfFs++pT8GNi4tjx44d9OjRw2TMjRs3GDduHDExMXTv3h2As2fPEh4ezo4dO4iOjmb48OHs\n3LnTZBlffvklM2bMwN/fv8AOqPj/w8bLjcw7Cfr/M2MTsHSwQ2VvazAVqKA4C1trao7pR9iwBVTo\n2sagfG2uGitXJ1psmYulsyP/TPwk3xyyYu/q/8+Ku4vKwR4LO1v9FJ2CYrLjEzkzMf8pLzlJqdz5\n+U/i/wynTHANgheOJ7zfaLLiEvKNf8DSw4Oc+IfTRHPi4rCwt0dpZ2cwDff2pysAcKhT17gQjQbf\nceMp83wLkg8cIOvWrQKP+YCNlxuZeZ9r7F0sHeywsLc1nBZVQFxWfCInxxtPJQVdnUT/tJ/YfUdw\nrl2dOovHcqjPOP3jVp7uBh9Cs+Pijc5HUWI8OrUn+24CiX8f0sflJqcQv+cPEv8+hEOtQKrNmcKZ\nN4eTHffweRRUF5lFrIvMR+rixPiP8i3/geoj+hLx+bZ8p2SZ+3w8KvqeAm/nhx1GL2ctqZkK0rLQ\nT8O9FqfE3UnL1K3WXLytxNFWy+iXDaerhR5W4VlGQ7tgdYF1UxD7sq6k52kX0mISsXK0w9Lexmg6\n2YPpYeWaGHawbT3K0GhCb/a+tZTqPVsW6bjFeU7sfL3JuptIhT6dcW9aB6WViuubvy80h6d5bT7I\noWKfl/C4n8PVzd+TfiPaIK44X6seL3VAoVIR98Mv+PTraZTjk5gyrSMAhw9ffarlmuOc5JtDMb2n\n2vt5kRl/j8p9OuHZrDZKKxVXNv1A2o07pbIuHh7Dnaw8txjk/x5vOiYx/KR+u7W3B749OxOxYKXJ\n4xVHXdwNezjAY+PtToXXO3J2vu4Ly5uhvwLg81LR2i9ztZulmYbCR47FY3RAlyxZwpkzZ7h37x41\natRg/vz5HDt2jAULFqBSqbC1tWX58uWsXLmSy5cvs2LFCoYNG5ZvWenp6cydO5c1a9botx07dozn\nnnsOhUJBuXLlUKvVJCQk4OpqPB1j3759nD9/nvHjx7No0SLGjx/P9u3b+eOPP1ixYgVarZaaNWsy\nc+ZM/T5bt27lwIEDfPTRR1hZWRmVqVarmTZtGnfu3CE2NpY2bdowbNgwOnXqxHfffYednR3r1q3D\nwsKC1q1bM2HCBFQqFT4+PkRFRbFp0yaTdXfixAkGDBhAamoqw4cPp1WrVhw4cIBly5ZhbW2Ns7Mz\n8+bNw8nJKd/99+zZw5o1a1CpVHh6erJ06VI+/fRTrly5wt27d0lOTmbKlCk0aNCA1q1bU7lyZfz9\n/Rk0aBBTp04lKysLa2trZs+eTdmyZfM9l7GxsYwZMwatVouHh4fJ51KaKUxMF9GqNUWKQwH15g/n\n7JJNZMXfyzckOyGZXzsOx6lGRZp8PokDV6YZBijzn1Sg1WgeLyYfeTumSacukHT6Iq6NahP9wx8F\n7mfyeOrH+7WqWwsXcPvj5ZSfOh3PPn2J3fRlofsolCbq+tFzUsS4R+X90H3v5EWSTkXg1ij4Ybmm\nrok8dV2UGO8er3F1yQqDxy9NezhKnXr6HKlnL+BUvy7xP/+ab3kKE+fBuC6KFpcf51rVsHJ2JPqX\nAyZyMO/5eJSpxRryHj5XDX+ds2D9exkEV9Tw+2kLQlbb8Ov0dKzuv4N9+acVM3o+4UyXIlwHBe6u\nsqDl4rcJX/A1GfFJRT9sMZ4TpUqFnY8X6tR0jgydhq2vF41WzzSKK85rU6GyuJ9DBmFDp2Pn60Wj\n1TP0IzP6uGJ6rdpV9cfzlY6cHzHBZI6lkTnOiVFcMb6nKlQq7H09yU3L4OCQmdj5etFs3dR8O6Cl\noS4e7lCEdqIIMQ7VKxM0fxxRO3/i7sFjpo/36OGfYl041ahE3YWjubFjD3F//1PkHAwPZJ52Uzz7\nitQBzcnJwd3dnfXr16PRaHjppZeIiYnh119/pWPHjgwYMIDff/+d5ORkQkJCiIiIMNn5BKhRo4bR\nttTUVJydnfX/29vbk5KSkm8HtFWrVgQEBDBjxgwsLS0ByM3NZfbs2ezYsQM3NzfWrFnDnTu6hmzT\npk2cP3+e5cuXY2FhkW9O0dHR1KlThx49epCVlUWLFi0YOXIkHTp0YM+ePbz22mt8//33fPHFF0yZ\nMoWQkBBatmzJ9u3biYqKKrD+bG1tWb16NQkJCfTo0YPnn3+eqVOnsnXrVry8vNi4cSOff/4548eP\nz3f/77//niFDhvDiiy/yv//9j9RU3RQVGxsbvvzySy5dusTo0aPZtWsX0dHRhIaG4uLiwgcffEC/\nfv1o2bIlhw4dYvHixcycORMnJyejc7lq1So6d+5Mz549+fHHH9m6dWuBz6k0ef4rXUdAZW9LyuWb\n+u02Hq5kJ6WizjT8YJpx5y7OQVWM4hwq+WBXzoPAkbp7NazdyqCwUKK0tuTc0i24N6zJnT90U0eS\nL1wjJeI6jlX8DMrOvBOHU+DDexisPVzJSU5BkyeHosQ8SuVgh0+3F7m+MfThRoUCTW5uofWTExuL\nXZ7XnKW7O7kpyWizirZQi0P9BmRevUpuwl00mZnc2/cHZZ4znvLzgP9bPfBoobvHQ2VvS+rlG/rH\nrD1cycnnnGTeiadMzSqFxuWlcrDDr3sHrm7Is2CEArR56iQrNg6HgIf3HVm5u5H7SF0XFmNXpTIK\nCwtSTpzWx1g42OP1aidub8lzu4ECtGrD81HlrR54tqivr4u816e1yevTuC7yi8uPd/umRP2436hn\n12TzAn0O5jwfjyrrouXU9YcfYGKTFDjZabHLcxuoZxktlbw0BFfUfaBpU0vNtK8V3IxX4O+t5fwt\nJWoNNKzy+KOfdYa9SvnWtQGwtLcl8dLDkX07T2eyktLIzSja4iDuNSvg6ONOo3G6ETZb9zIolEos\nrCw5OH2jQWxJvUay4nUjE1E//AlAxq0YEk9exLttEwCabf5Qn0NxXZtZ8YkA3LqfQ/qtGO6dvGhQ\nDhTfa9X9hTZY2NkR+KnuCzxLN1f8J4/hxsovuHcw3GTe5lBS7YWpc+LdtgnVQrrhZSKHp/meemnd\nd7ocdu/X55BwIgLnIP9SUxf5xsfE41Tz4fu3lYeb0ft3YTGe7ZpTdcxQLi1ZS+ze/Bddyqs46sK7\nfVMCxw3h/OL1Jr+wNMVc7ab4bylSB1ShUJCQkMCoUaOws7MjPT2dnJwcQkJCWLlyJQMGDMDLy4vg\n4GCyH2Mlr7wcHBxIy3NfWVpaGo6OjkXePzExEScnJ9zcdAu3DB06VP/YoUOHsLCwMNn5BHB2dub0\n6dMcPnwYBwcH/fPo0aMHM2bMoHLlylSqVAkXFxciIyOpW1c3TbF+/frs3r27wNzq16+PQqHAzc0N\nR0dHkpKScHBwwMvLC4CGDRvy0Uemp9VNnDiRVatWsXnzZipXrky7du0AaNJE10BWrVqV+HjddA8X\nFxdcXFwAiIiIYNWqVaxduxatVotKpcLa2jrfc3nt2jV69tQ1APXq1XumOqB/vTEJACsXJ1pu+xB7\nPy/SbsZQoXtbYv40/mYx7vBpAkf2MYq7d/oyv700Qh9X7a2uWDk7cmbhRixsrQme9hZZCckknozA\nobIP9hXLce9MpEHZCeEnqTpiALa+3mTcukO5Lh2I33/ksWMelZueiW+3F0i/HkXcvjAcqlXCKaAK\n52evKHA/gJRjx/B+622syvmQfTsK15c6k3zoUKH7PVCmRQucmjfn9sfLUVha4tyiJSn/mP7GNnL1\nDiJX6zpmVi5ONP1qEXZ+3qTfvINv1/bE7je+/+Nu2Cmqvd+v0Li8ctMz8Ov+AmnXbxP7RziO1SpS\nJrAKZ2Y+XHgk6chxKrwzBGufcmRF3cbrlU4kHjhsUE5hMU51gkg+ftJgH3V6Bl6vdSbjZhSJ+w9i\nV6UyDjWqceXDZQZxl1fv4HKeumj+1UL9cyzftZ3Juqjxft9C4/LjWi+Ac4vWG20/3He8Pgdzno9H\nNauuZtH/rLgep6CCh5ZtByxpE2TYYX0uQM3C76w5e1NJTT8NRyOVKBRafN10newjly1oXFVdlPUy\njJxY8R0nVug+CNu4OvLqtzNxLO9Jyo1YqvdqxY3fTxS5rLiTV9jR7uF04zrvvoK1i0O+qzmW1Gsk\n43YcyeevUO6lltzc/jNWrmVwrlVN//jBvhP0ORTXtZlxO46k81fweakFN7b/os/hype7DOKK67V6\nY8Uabqx4ONuqztfriJy7+Kmugvu0lFR7YeqcAESs3EnEyp36HIrrPRXg3vmr+HZ+nmvb9mDl6oRr\ncFUiN35fauoiPwnhJ/AfPgBb37Jk3Iqm3GsdiP/r0fd40zEerZtQZeQQTn0wm5QLkfkdwsjTrguv\nNo0JGD2QoyPmkXzeeCX/wpir3XxWaORnWIqkSB3QsLAwKlSowLJly0hISGDv3r1otVp27dpFly5d\nGD9+PKtWrWL79u107doVTRGH3vOqV68eixYtYsiQIdy5cweNRpPv6OcDCoUCbZ5v+d3c3EhOTube\nvXs4OzszZ84cXnnlFQA+++wzNPLOOAAAIABJREFUJk+ezNatW+nd23i1MNAtFuTo6MisWbO4fv06\n27dvR6vVUrFiRbRaLWvXrtXvW61aNY4fP07Lli05efJkvuXldfq07tvYuLg40tPTcXFxITU1ldjY\nWDw9PQkPD6dixYom99+2bRvDhw/Hzc2NadOmsXfvXkB33+yrr75KRESEvjOrzDPtonLlygwePJh6\n9eoRGRnJkSNH2L9/P9HR0Ubn0t/fn+PHj1OjRg19vs+a7MRkTs5cRf2F76OwVJF+K5YT03QffssE\nVCJ46lD+emNSgXGmqDOyODr6I2qO7otCpUKTk8PxKZ+SGWt4/2VOYjLn53xK0LwxKC1VZETFcG7W\nJzjW8KfGxBCODBhrMqZAGg2nxi2k2qjBVHqzF1q1mjNTP9IvI19g7kn3iFqymPJTp6JQWZIdfZtb\nixZiW7UaPiNHcfndkAL3j169Cp8R71N11WrQQvLBA9z9X/4/5fCo7MRkzs7+nNofjkKhUpERdYfT\nMz4FwCmgMoGT3+Zw3/EFxpmuEy0nxi6ixphBVHmrJxq1mpOTlxvUSe69JCIXLKfqzIkoLVVk3o4m\nct5H2FevQqWxuhUzTcU8YONTjqw7sY8cW0PElNlUGBGC76A+aNVqLs9cUOACJ9mJyZyevZI6H45E\nqVKRHhVjUBdBk9/iYN8JBcYVxs7Pm4zoOJOPm/t8PMrNUcucN7L4YL0NubkK/Nw1zOuTyZkbSqZ9\nbU3ouAw8nLR8MiSD2TusycgGKxUsG5yJtW7yC9fjFZRzffz3nEdlJqTw95T1tF72DkqVipSbsfw1\n6QtdnjUr0HzWAHZ1m/XEx3lUsZ4T4MS4xQSMG4Jf13agUHJl3U4CJw41iCnua/P4uCUEjhuMX9d2\nKBRKItftNPrgW2yv1WeUOc5JzXyui+J6TwU4OmYptcYPpEK3tqBUELHmW5LOGXeISkNdPJCTmMyF\nuZ9Sc+4YFJYqMqPucP7+e3z1Ce9wdOAYkzEAlUJ0o8HVJzxcRT/p9AUuLTFeNC4/T6Muqr37OgqF\ngqDJb+nLTTx5kfP5fHlZGHO1m+LZp9BqC/7J1NDQUE6cOMHZs2exsbFBoVCQmZnJxIkTUalUzJ07\nF1tbW5RKJbNmzcLT05OePXvy3HPPMXbs2AIPPmHCBDp16kSL+z/78Mknn7B//340Gg0TJ06kQYP8\nl2oGWLp0KX/99RezZ89m5syZbN++nT///JPPPvsMpVJJYGAgU6ZMoW3btvz0009kZGTQo0cP1qxZ\nk29n78E0VkdHR6ysrIiOjmbjxo14eXmxe/duPv74Y/bs2YNCoeDGjRtMmjQJCwsLHB0dSUtLY/36\n/F+4oaGh/PDDD+Tk5JCens7o0aNp2rQpBw8eZPny5SgUCsqUKcP8+fNNdrh///13PvvsM+zt7bGz\ns2PevHls3ryZ8PBwlEolGRkZTJs2jaCgIJo3b86BA7rpFDdv3mTGjBlkZWWRmZnJ5MmT8fX1JSQk\nxOhcVqpUibFjx5KdnY2vry+3bt0q8L5WgLi4wjs/xc3Dw5Hv6/cpPLAYdT62hd+bdjdrDgBtDn3D\n6RfamzWHWr/sZU8j42X6S1qH8G2Eteps1hwa7/uenxu9btYcAF4M/9rs56RD+DZyf/Ixaw6qjrpb\nJTbUfNOseQw8u7ZUnA/A7Nfni+Ffl4rXqZqirfhZnCzoUyrOh7nfT0H3nloa6mJfs/x/TqQktTq4\ns1TUhbnbTdC1nc+CmRWHFx5kZtOvFTLoUQIKHQHt2rUrXbua/o2i7du3G2377rvvinTwDz80XA57\n+PDhDB9etBM3cuRIRo4caZBDy5YtadnScAWt33//HQBra2v9yGF+qlatyq5du/J97OWXX+bll1/W\n/3/ixAnmzp1LhQoV2LFjB//8Y/rmbVP116xZM5o1K9oPVrdp04Y2bdoYbe/UqZPRiO6DzieAn58f\n69atM9rP1OrC+cUKIYQQQgghClfwsJ544Kn/DMsDp06dYtEi45+T6NixI2+8Yfwj2/n57bff2LBh\ng9H2/v370779vxvpWbFiBWFhYUbb582bh5+fXz57GCtbtiwjR47Uj/zOmzePGTNmEBlpPJ9/zZo1\n2NjYFFpmdnY2Q4YMMdpeqVIlZs2S6QtCCCGEEEKIZ1+xdUCDg4MLncJZmLZt29K2bdunlJHOsGHD\nClyhtygaNmxIaGiowbYn/S1SKyurx6qvoo4UCyGEEEIIIURpUWwdUCGEEEIIIYT4/0LDv1iS/f8h\nE79UK4QQQgghhBBCPF3SARVCCCGEEEIIUSJkCq4QQgghhBBCPCFZBbdoZARUCCGEEEIIIUSJkA6o\nEEIIIYQQQogSIR1QIYQQQgghhBAlQu4BFUIIIYQQQognpDF3As8IGQEVQgghhBBCCFEiFFqtrNck\nhBBCCCGEEE9icvkR5k6hUHNvfGzuFGQKrvj34uJSzJ0CHh6OZJ5pbdYcbIL+4Pv6fcyaA0DnY1v4\nrUkPs+bQ9vAODjz/qllzAGj+13fsbdzTrDm0D9uOmi1mzQHAgj5mz8OCPuxp1MusOXQI3wbAN3UG\nmDWP7ic2lorzAZSKPErD6/TnRq+bNQeAF8O/LhXn49u6/cyaA0CX45tKRV2Y+/0UdO+ppeE1Yu52\nE3Rt57NAI8N6RSJTcIUQQgghhBBClAjpgAohhBBCCCGEKBEyBVcIIYQQQgghnpDMwC0aGQEVQggh\nhBBCCFEipAMqhBBCCCGEEKJEyBRcIYQQQgghhHhCGq3C3Ck8E2QEVAghhBBCCCFEiZAOqBBCCCGE\nEEKIEiFTcIUQQgghhBDiCWllGdwikRFQIYQQQgghhBAlQjqgQgghhBBCCCFKhEzBFf9Z+49l8vHm\nZLJztVSrYMmMd51xsHv4ncvufels2p2q/z8lXUvsXTV7VnuhslAwZ/U9Ll7LwdZayattbHmjk0OR\nj+35XB1qDOuF0lJF8uWbnJq1hty0jH8VV3/RB2TFJXJm4UYA3BoEEvB+b5QqC9RZ/8fefcfXdP8P\nHH/dmR3ZicSWCJFF7D3bGB3UJqiqPWsTW2u2tHRZpUonWqV8idokNhErhCBk7z3u/f1xuVz3JqLK\njf4+z8fD4+He876f877nfD6fcz/nfM5JARFLN5IaEQVAgx+WIVUoyLwRzZWPv6YoW7cs+yZ1qT6i\nj36MVEqNsQOwa+iHRCbjzpYdxGzfB4BDswC8Zo4iNy5RW86ZYTMpys6l2tBeOLVqCED65Rt638+2\ncQCVh/ZHqlCQdfM2Nxat1MupNDE1F0wlPzGZqBWrMatSkRqzPtIuk0ilWFSvwpUZC5GZmeHa820A\nGm1agtzSHBMnO468NZz85DSdMi2rV8RzwiDkluagUnF50Woyrt7S+w4lUdhY4T17FKblHTVlLFxN\nWvh17XIp7wJ5AKjJQM3RUpetVquZMW0H7h6ODPqgyXPl9W96WXk4NK2Dx4jeSJUKMm7cIWLBNxQZ\naCPPijNxsqfh+gWc6DuZgrQMnc+auTrSaOMizoz52GAOLs398B7dHZlSTlrkXU7PWUdhVm7p46QS\n6kztj2OAJwCxRy9ycflPAJRv4U/9+R+SHZukLefg+588/4Z6yn+tXjg0rYP78D5IlZo+KeLj4uuB\nwTipBM9xA7B/2HdFb/6Tew/7rkdMyzvSaONizo5ZQPpVTV/p1qUdlXp2BKDO0olcWvCttv44Nq1D\njRG9tHUufMG3BnN6Vpypkz2N1s/nWN8p2rIV1hbUmvg+llXdkJooifrud+7vPvKPt98jL6teODfz\no/boHkiVCtIj73J27hqDbaSkuKrd21KlSytkJgpSrtzm3Ny1qAoKUVhb4DelP1bVXJGZKLm2bgd3\ndx174ZxfxrYo9thZmpgSjq+PmJZ3osGGxZwbO5+Mh3X0EWO1kcp9OuP6VmsAmn8zmbMLNpB1Lx54\nPftOoWwRV0D/H1m9ejUXL140dhqvRHJaEbNWpfLpJDt2rHTGzVnO5z+k68S81cqcXz514pdPndi8\n2BEHGylTB5fD3kbG0g1pmJtK2b7CiR8WOnDsbB6HTut3roYobazwmz2EM5NWcPC9SWTfi6fm6J7/\nKK56/87Y1fHUvpbIZdRdOIqLC9ZyuPd0Itf9jv+84ShtrAAIn7aM0J5jybkfh/vIvjplKWys8Qoe\nYTDGrUs7zCq6ENb3I04NmkrFnp2w9nIHoJyPJ9FbdnCy/yTtv6LsXBxbNcCugR9hQZMI7T0eqamJ\nzvrkNta4TxvD1eBFnO07gtz7sVQe1v+5Y9z6dMHaz0v7Ouf2XS4MGq/9l3rqPAn7DpF8OJSE/x3g\nwqDxAIQNnEZeUipXl63XG3xKTZTU/SKY6B92ENZ/ClHrt+Izd0wxe7R4NScNJuX8VU70+ojw2Svx\n/eQjpCZK7XIVR1GxGxW7n2vwefNmAoMGbGLP7ojnzunf9LLyUNhY4T1zOBemfsax7uPJiYmjxsg+\nzx1XvmMLGqyeg6mTnd5npUoF3nNHI1EYPs+qtLWi3tzBhE5cyf/enUrWvQR8xvZ4rrjKnZtiVcWF\nvd1nsK/nTBzqeeLWvj4A9n4eXP9+NyE9Z2n/FWaXrg8pzn+xXtQOHsHFaZ9yvMc4smPi8RhhuB4U\nF1ehS3vMK7pwos8Ewt6fRqVeHbH2qq79rFSpwOepemBa3hH3Yb04PWQWADkPEnAf0k27Lu+Zwzg3\ndTlHun9Edkw8niN7G8yppDjXjs1paKBu+swaTm58MseDpnFq1MfUmjAAEwP193m8rHqhtLUiYO4Q\nwiZ9QUiXyWTdi6f2GAPHshLiXNvUo3qv9hwdtoiQbtOQmSpx7xcIQMC8IeTEJXOg90yODluE7+Qg\nTJ1sXyjnl7EtSjp2liampOMraOpo7RL6KmO0Ebv6Pri+3YaTg4MBiPn7NPXmDgZez77zVVK9Bv/K\nAjEA/X9kyJAh+Pr6GjuNV+LEhTy83RVUdtV0qD3eNOevIzmoi7k7/LvfM7ErJ6P7GxYAXL5ZQOeW\nZshkEhQKCc0DTAk5oX/G0RDHxj6kXo4i624cANG/heDWoelzx9nX88KxiS/RW/dr31MXFhHSYTTp\n16IBMHdzIj8tE8fGPgDk3I0FIGbbXlzebK6zPruGvqRfuWkwxrFlQx7sPIC6SEVhRhZxIcdwCdQs\nK+fjiV09b+pvWEzAN/Ow8a8FQMLBk5wZEoy6sBCZuRlK23I667OtX4fMqzfIvfcAgNjf9+DYvuVz\nxZSr44NNg7rE/r7H4La29vXCvlUTbi77Wm9Zlf7vkJ+SRsz2EL1l9g39yI6JI/H4Oc13OXyaizOW\nA5pBfo1xA2i4cRGNflhC7ZkjkFmY6ZUhkUlxbFaXmD805WdGRpN99wEOjf21B3IptZDSESnNAXOD\n38GQHzefpktXfwI71C71Z16Gl5WHfUM/0i7fJPthXby7dR8ugc2eK87EwRanlvU5O36RwXXUnDyI\n+zsPUpCabnC5c2NvUiKiyLyjaX83f/2bSh0aP1ecRCpFbmaCTKlAqpAjlctR5RVocvdzx7G+F223\nzKXV+uk41PXUK/t5/RfrRdqVx/v33ra92n7nSfYN/YqNc2rZgJg/D2r7rth9xykf2EL72ZqTPuD+\nrkM69UAikyKRy7XtWmaqRJWv2W8ODX316lx5A3WzpLhHdfP0U3VTYW2BfQNfbqz5DYC8+GRODJpJ\nQVomL+Jl1QunRj6kRESR9bDu3/p1PxU76F9RLCmuYudmRP6wm4L0LFCrOf/xd9zZeQyFtQVODb25\nuno7ALnxKRwKmqOJewEvY1uUdOwsTUxJx1cAz4mDebDrIAVphvsqY7SRvKRUri5eo73SmnL5Nubl\n7YHXs+8Uyh4xBdcIMjMzmTFjBhkZGcTHx9OhQwd27tzJX3/9hUQiYd68eTRu3BhnZ2fmzp2LhYUF\n9vb2mJiYsGiR4R9bK1euJCoqiqSkJNLT0wkODqZevXq0bt2aatWqUb16ddLT0+nYsSMNGjRg2rRp\n3L9/n4KCAmbOnIm3tzezZ88mOjoalUrFuHHjaNiw4SveMv+e2MQinB1k2tfO9jIys9Vk5aixNNf9\nI8Ep6UV8vyOTn5Y6at/z8VCy81AO/jWVFBSoCQnNQS4r3R8XNnW2Jzc2Wfs6Nz4ZhaU5cgsznem1\nJcXJzEyoPTGIsFGLqdy1jU756sIilHbWtNj8MQobK85OW4llFVedmLz4JOSW5sjMzbTThEydHHSm\n0T4ZY+pkT25cks4yS/fKABSkZxC7+zAJh05Szq8mfksmE9ZvInkJyaiLiqjQLZBqQ3uRl5Csk4PS\nyYH8J9eXkIjc0kInp5JiZGZmVB07mIgJc3B5+02D27rKyPe5s+YHvalQoJk+FNp/isHPmVcqT35S\nKl4zhmHlUZmCjCwiV20GoOqAd1EXFRE2YCoA7sN74zGiD1eXrtMpQ1HOCiQSClIfT/vMi0/GxMke\nEwfNWXwV54EMJNRCSktU7DaYz9OCZ3UAIDT0+aYE/9teVh6mzvbkxuvWN4WlOTILM90pjCXE5SWm\ncGHKpwbLd3unDVK5nJg//qba+10Mxpg725H9RPvLiUtGYWWO3MJUZypZSXG3dxyhQvv6dNq7AolM\nStyJSzw4fB6A/LRMonce5/6BM9j7e9BkxThCegQ/55bS9V+sF3lxpasHxcWZOtuTF/9031UJALe3\n2yCRy4j5Yz9VBz6uBzn34oj+YQdNf1kBgF1dL0I/mKld15N1LreUdTP3qbp5fspnet/VvIILeUkp\nVOnbCcfG/kiVcm79sJPsOw+ef8M94WXVC3MXO3Ke2O458cW0kRLiLCu7YHLJmiarJmHqaEPSuetc\nWvET1tXdyE1Mxb1fB5yb+iJVyon8fjeZd2JfKOeXsS1KOna+6PHV9WEdvf/HfqoM7Gpw/cZoI1lR\nd3nyVIDPmO7E7DsFvJ59p1D2iAGoEURHR9OpUyfeeOMN4uLiCAoKwsvLi9OnT+Pn50dYWBjTp0+n\ne/fuLFmyBA8PD5YvX05cXFyJ5ZqamvL9998TGRnJhAkT2LFjBw8ePGDbtm3Y2toydarmB/VPP/2E\nm5sby5cv5/bt2xw8eJArV65ga2vLJ598QkpKCv369WPXrl2vYnO8FMU9Bltq4Jr/1n3ZtK5vSgXn\nx81hwkBrPtuYTs+JCTjaSmnsZ8L5q/mlWrdEYnigqi5SlSoOCdRdOJqITzeRl5hqMCQ/OZ2QDqOx\nrlmFRl9P596OQ4bXqXpindJi8lKpkBhY9ijf8KnLtO+lXbhKavg17Br48mDXQQDu/baHe7/todrQ\nXlhWq/j4a5SwvmfFIJFQY85Ebn2xloKkFIMhVt41kZezImHfYYPLEw6fJvdBgsFlUrkMhyZ1OD1i\nLukRN3BsUY86y6dx5J0RODQNQG5ljn0DzWwBiUKuN4VXk7vhCSRqleqJ9WoGp2quIMEHsABe7Az/\nf0Gx+/3pNlLKuCdZeValQtd2nBoy5x/loNdOS4jzGvoueSkZ/NlmNDJTJU2Wj8UjKJDITXs4MWGl\nNjbpfCRJFyJxauxdYk6CxtP7AEkxba1IZbhfU6ke1oP2nBo6W2+xXUNfnFo35PDbw2m1Zy3xh07j\nM2s4ZycsLbZd69fN0sXpfEYuw9zNmaLMHMI+nI15BWcarJ6jvWpV5hR7LFOXOk4ql+HUyJvQ8csp\nyisgYP5QvEZ1I2bfSSwqOFGQlcPh9+djUdGJFutmkvWCA9CXohTHsn9yfLXyrIpblzc4M2zWc6f0\nstvII4qHt/cUZucRvvLXh6sSfWdJxJ9hKR0xADUCBwcHNm7cyN69e7G0tKSwsJAePXqwfft2EhIS\naNOmDXK5nPj4eDw8PAAICAjgr7/+KrHcRo0aAeDh4UFiouZMnK2tLba2uvdUREVF0aKFZvpFlSpV\nGDhwIHPmzOHMmTPae0QLCwtJTk7Gzu7F7k0xFhcHGeGRBdrX8UlFWFtKMDfV76T/dyyHKR/oTh/N\nylYxPsiaclaa+PXbM6hUvvjmUmPYezi3CABAbmFGxo272mWmjnbkp2VSlJun85mc2CRsvN314iyr\numHu6ojX+H4AmNiXQyKTIjVRcHn5Zhzq1yb2wGkA0q/eJuN6NMh0v5eJox0FaZmonlhnXlwi5Wp7\nGIzJjUvUXrV7tOzRGVy3994keuN27TIJEtRFRZozuFIJmddvA3B/x36qvv/eE+tLwLJWjcdlOthT\nkJ7xVE6GY8yrVMS0vDNVRg0CQGln+3AbKLmxeBUADm2akbDnAJUG9ca2qebekZRjp7izbosmn50H\nKE5eYgpZt2NIj9A8OCnh8Gm8pg/D3M0ZiUzKtc82kHRCczZWZmaCVKnEumY1vGYM05YRNlBzQkdu\nZUFhhmZQaeJkq3N2WV9Zufvi1as+pDuOLeoBmjaSeeOOdtmjuvh0G8mNTaRcbfdnxj3JtWML5BZm\nNFg3X/sZn3mjtcvb/TxPm0N65D3t+2ZOtg/bqe6JpuwHydh5VzcY59a2HucXbUJdWERhZg7Rfx6l\nQrv63P79MNV7tOHqup3az0kkEtQFRc/eUP9xEnyR4KZ9rXSw0f7fUL8FkBuXSDlv/Xqgys0jNzYR\npb1uGbnxyZTv2AKZhRkN1i7Qvu89bwyRKzdh19CPhCOnKUjRTDmUKuU4Nq1Dkx8W6fXfJsX23/p1\n01Dck/ISNSfT7u3SnDDMvhdH6oVrOuUYW63hXXFpWRcAhYUZ6U8ey7R1X/9YZudT3WBcbkIq9w+c\n0V4Zu7vrGDWHdOHmlr0A3NmhOYGYdTeepPPXsX2irZUVJR07SxNT3PHVpUNL5BZm1FujeUiaiYMd\nteeOJeP6LSwqG7eNJBw5g6V7JfyXTgYg9fod2m7WDFRF3yn8G8Q9oEawfv16/P39WbZsGYGBgajV\naho3bsyVK1fYunUr3bt3B8DFxYUbNzQ/kC9cuPDMciMiNDfdX79+HWdnZwCkBs7SVq9enfDwcADu\n3r3LhAkTqFatGp06dWLTpk2sWbOGwMBAbGxs9D77umjsb8LF6/lE3y8E4Ne92bSqb6oXl56p4k5s\nEX6eSp33f92bzZc/aX6cJKUWsS0kmw7N9e8DfOT6N1s50mc6R/pM59jA2dj6uGNRUbMPKndrS9yh\nM3qfSQgNNxiXGn6D/Z3GaMu7s3U/D/aGcnH+WtRFKnxnDcHWTzNos6zmhkUVV+7+oflBY1bRBQC3\nLm+QcOSUzvqSwi5QztvDYEzC4VOUf6s1EpkUuaU5zu2bknD4FIXZuVR4LxDH1prp2JY1qmDt5U7S\nifNYulfGK3ik9qE75Tvo3t+ZevI8VrU9Ma1QHgCXdwNJPnqyVDEZEdc43e0D7YOGYv/YQ+L+o9rB\nJ4C1f21Sz1zkzrot2rg767Ygs9Tcx5t68TrFSTx+DrPyTljVrAqgua9VrSbnfjxJoReo2D0QiVwG\nEgle04fhPqIP6VejCA2arP2nLlKRePwcFbq002wb90pYVK1AypkI1KpHp0A1uUjwAFKB0t1H/F90\nc/WvhPabQmi/KZwcFEw5bw/MH9bFCl3bE3/4tN5nksIuliruSdeWb+RYt/HadeUlJBM+6/EZ9UcP\ntTgQNA873+pYVtK0v2rd2nD/4Dm98uJOhBcbl3olmgpvaNqGRC7DtWUdki7epCArh+o92+HWVjPg\ntvGshK13NWKP//94CFxJ1FzUPpgL0N+/T/Vb8LjvMhSXcPg0bm+1eaLvakLCoZNcX76R493Hadtr\nXkIyl2Z9QcKRM2Rcu4Vj07rIzDQPTst5kEjS6QiO95tK6KCZ2Hi7a9dVqWu7YutmaeKelHM/gbQr\nUbh10pwAVtqVw8anBmmXbz73dnxZrny9jQO9gjnQK5iD/edqjlEP637Vbm15cPCs3mfiTlwqNi4m\n5CRu7RogNVEA4No6gJSIKLLvJ5By+RaV3tLcp2hiZ42dnzspEVF65RtbScfO0sQUd3yNXLGBEz3G\nah/ul5eYTMTsz4mYuUL7HhinjZhVcCbgq9lErd8KwOWvtom+U/hXiSugRtC6dWsWLFjAX3/9hZWV\nFTKZjIKCAt58802OHz9OpUqaqyezZ89m+vTpmJubo1AotIPK4ly5coUBAwaQk5PD/Pnzi43r1asX\n06dPp1+/fhQVFTF9+nQ8PT0JDg6mX79+ZGZm0qdPH4OD19eFfTkZ80baMHFZMgWFUMFFxsejbYm4\nkc/cr1P55VMnAO7EFuJoK0Uh150q8kFXS2Z8nkrXcfGo1TCshxXe7kpDq9KTn5LOhbnfErBkLBKF\nnOx78ZyfpXlITrlaVfGd+SFH+kwvMa44RTl5nJ7wGbUn9EMil6MqKOBc8JdkRGquJvl8MgGpQk7O\nvTgi5q3CqmY1ak0fzsn+kyhISefy/K/0YkDzwAQzNxcabFqGVCEnZvs+Us9dBuDi5MV4TviAaoN7\noC5ScSl4OQVpGcTuOYxZBRcabFiMqqiIrKi7OrkWpKZxY+EX1Jw/BYlcTu79WCIXrMDS053qU0Zy\nYdD4YmNKw6yCK3mx8Qbe1wxm1UW6Z0wfXcEMDZpMfnIa5ycvpdakwcjMTFAVFHJh6jJU+QVErf+N\nGmP602jTEiRSKRmRt7n+xfcGc7i6ZC1e04fReEtz1Gq4NGcVhVk5FD7cFlJaARIgG9VzPAX3vy4/\nJZ2I+V/jt+gjJHI5OTGxhM/5EgDrWtXwmjGU0H5TSox7UXkpGZyevZZGS0chVcjJuhfPyeDVANh6\nVSFg9iBCes4qMe7Css34Tw3ije0LUavUxIdFcG3DLlCpOT5uBf5TgvAa3kVzT/HkL8lPfbGHzfwX\nXZ7/Nb4LH+3fOC7N1fRJT7ZXTd9lOO7etr2YVXCm0Q9LkSrk3NseQsq5KyWu8/6fBzAr70jDjYsB\nsAvwInyepu/NT0knfP43+C8aj1QuJzsmTqdues8YwvF+U0uMK8m5yZ/iNXkQFbu2QyKRcnPdVtKv\nlL1BF2i2xdk5a2i4dAxB1S84AAAgAElEQVRSuYyse/GcnvktADZeVakz6wMO9AouMS7qlxCU1pa0\n3jIfiVRK6tXbhH+2HoCwCZ/jN3UAVbu1QSKRcHX176ReNu79zYYUd+z8N46vpWGMNlIl6F1kJiZU\n6qG5p7bdz/NQ5Rfyd9A80Xc+w//feU7PR6Iu7rGggtFt3ryZDh06YGdnx/Lly1EoFIwaNcpg7MqV\nK3FwcKB3b/3Hxb8sCQkZzw56yRwdrci91NqoOZh6H2BnQN9nB75knc9sZn+j7kbNoW3orxxr/o5R\ncwBoeuQP9jXUfyz8q9Q+7BeK2GzUHABk9DV6HjL6sreB/p9veJXeOPkzAL/5DzBqHt3ObywT+wMo\nE3mUhXa6p0Evo+YAEHjypzKxP7bXCTJqDgBdzm0qE9vC2MdT0BxTy0IbMXa/CZq+83UwznWssVN4\nphX3Pzd2CuIKaFlmb2/PoEGDMDc3x8rKikWLFjFq1CjS0nQfiGJpaYmXl1cxpQiCIAiCIAiCIJQN\nYgBahgUGBhIYGKjz3qpVq4qJFgRBEARBEATBWFRiXmmpvL43+QmCIAiCIAiCIAivFTEAFQRBEARB\nEARBEF4JMQAVBEEQBEEQBEF4QerX4N/zys3NZfTo0fTp04cPP/yQ5ORkg3EqlYrBgwfz448/PrNM\nMQAVBEEQBEEQBEEQ9Pz444/UqFGDLVu28O677/LVV18ZjFuxYgXp6emlKlMMQAVBEARBEARBEAQ9\nZ86coXnz5gC0aNGCEydO6MXs2bMHiUSijXsW8RRcQRAEQRAEQRCEF/S6PwX3119/ZeNG3b+5am9v\nj5WVFQAWFhZkZGToLL9+/To7d+7kiy++4MsvvyzVesQAVBAEQRAEQRAE4f+57t270717d533Ro0a\nRVZWFgBZWVlYW1vrLP/999+Ji4tjwIABxMTEoFAocHNzo0WLFsWuRwxABUEQBEEQBEEQBD1169bl\n0KFD+Pr6cvjwYQICAnSWT548Wfv/lStX4uDgUOLgE8Q9oIIgCIIgCIIgCIIBvXv3JjIykt69e/Pz\nzz8zatQoAL777jv279//j8qUqNXq13y2siAIgiAIgiAIgnGNcB5r7BSe6au4z42dgpiCK/xzCQkZ\nzw56yRwdrVjv9aFRcxh0eQ0/+w00ag4APS9sYIXHCKPmMC7yK6691dKoOQB4/nmIXfX6GDWHTqe3\nsCOgr1FzAHj7zGZ+8x9g1By6nd9YJnIAKDhW26h5KJpGsL1OkFFz6HJuE0CZyGN/o+7PDnyJ2ob+\nys4y0E47n9lcJvZHEZuNmgOAjL5lYlsYu88CTb91qnUno+ZQ/8Auo/eboOk7hf8OMQVXEARBEARB\nEARBeCXEFVBBEARBEARBEIQXpDJ2Aq8JcQVUEARBEARBEARBeCXEAFQQBEEQBEEQBEF4JcQUXEEQ\nBEEQBEEQhBekEn9bpFTEFVBBEARBEARBEAThlRADUEEQBEEQBEEQBOGVEFNwBUEQBEEQBEEQXpCY\ngVs64gqoIAiCIAiCIAiC8EqIAaggCIIgCIIgCILwSogpuIIgCIIgCIIgCC9IPAW3dMQAVPhPq9DC\nh3rjuyJTykm+fo+jwRspyMotNr75x++TciOGS9/t1b7X++hnZMenal+Hr/8fUTvDSlxv+eZ++I7p\nhlQpJ+36PU7OWUehgfUWF6e0tiAguD82npUoysnj1h9HifwxBADraq7UmzUQuZkpoObi578Se/zS\nM7dFlVbeNJ3wDjKlnMRrMYRM/4H8TP2car7dgIDB7QA1BTkFHJz/C/GX7iAzUdBmTk+cfSojkUqI\nvXCbv+f8TFFewTPXDWBRrxGO/YcgUSjIux1F7BeLUeVkG4x1GTeVvOhbpGz/GQDXqXNRlHfTLlc4\nlyfn0gViFkwv1bqdmvrjOaoXUqWcjMi7XJy/msKsnFLHyS3M8J01BMsqriCRcG/XEaI2/ollVTf8\nF4zUfl4ik2LtXokzk5YbzqOZP16jeiJVyEm/cZfz89YYzqMUcfWXjiM3IYXwJRsBsK/nRe3xfZDK\nZOSnZXJp2SbSI+/ole3S3A/v0d2RKeWkRd7ldDF1s9g4qYQ6U/vjGOAJQOzRi1xc/hMAjvVq4jO+\nF1K5jKK8fM4v2UzKpSiD2+JV5/Eshy6oWLFVRUEB1KgoYd77UizNJNrlfxxT8f1elfZ1Zg7EpUDI\nMhmWZrDgBxURt9So1OBTTUJwPymmSomhVelxbuZH7dE9kCoVpEfe5ezcNQa3RUlxVbu3pUqXVshM\nFKRcuc25uWtRFRRiVc2VOsGDkJmbglpNxBe/vPIcXFrUIWDeELJjk5BbmGHmaENOXDIAMnMzirJ1\n67Z9k7pUH9EHqUJB5o1ornz8tSZGKqXG2AHYNfRDIpNxZ8sOYrbvA8CsogteM0agKGdFYXYul+et\nJDv6PgCV+nSmfOc2qIuKKEhN5+qi1eTExGnXJ5HLaLJ2Fg/2hxG16S+cmvlT84n2d7GEdvqsuICl\n48hLSOHSw3aqsLbAe/IALKu6ITNVErnuD2L+OvrK94nC2gK/Kf2xquaKzETJtXU7DObwvNRqNTOm\n7cDdw5FBHzT5V8qEsrEtXrTParR0FJaVnLRxFq6OJJy5xvFxK3CsVxPfCb2RPOy/LyzdTNr1u3pl\nl2tUnwqDByBRKMiJus2tpStQPdV+io2RSqk8ZhhWfj4ApIWd5u4363Q+69ChPbbNGhM5Y94z9oiG\nMftN4fUmpuAK/1mmtpY0/3ggf4/7mq2dZpJxN5F6H3U1GFuumguB6ydQNTBA533rKs7kp2fzR9d5\n2n/PGnya2FrRYN4HHJuwit3vTCMzJh6/sd2fK85/Um8Ks/PY02U6If3m49LUh/It/AAImN6fW78f\nYW/PWZycvY7GS0YgkZXclM3sLHljURC7Rq3m+zfnkn43kaYT39WLs63qRPMpXdj+wSo2v72Qk1/t\npvOXQwBoMCIQiUzGD299wg+dP0ZuqqD+sDdLXO8jMutyuIydSszCmdwaHkR+7H0cBg7Vi1NWqEyF\nBcuxatZa5/37i2YTPXYw0WMHE7dqGaqsTOK+MTzI0yvTxgrf2UM5M3kFh96bSHZMHDVH9XquuBrD\nu5Mbl8zhnlM41n8mld9rh42PB5m3Yjjad7r2X2JoODF7jhF74JTB8uvMHsKpSSv4+71JZN2Lp9bo\nnv8ozr1/Z+zqeGpfyy3NqL90HJdX/MjBXtO4uHA99RaNRqrQPceotLWi3tzBhE5cyf/enUrWvQR8\nxvbQz6GEuMqdm2JVxYW93Wewr+dMHOp54ta+PhK5jIZLRnJ23npCes7k6podNFgwxPA+KSN5PJKc\nrmbmehUrRsrYuVBOBUdY/ptKJ+adplK2zpWzda6cn2bKcCgH0/tKcSgnYfVOFUVFsHWujG3zZOTl\nw9pdqmLWpv8dA+YOIWzSF4R0mUzWvXhqjzFQL0qIc21Tj+q92nN02CJCuk1DZqrEvV8gAH7TBhL9\nx2EO9Arm7Jy1NFg86pXnYOfnQeT3f3Fs+GIU5qbs7zGdfe9MAsB9ZF+ddShsrPEKHkH4tGWE9hxL\nzv04bYxbl3aYVXQhrO9HnBo0lYo9O2Ht5Q5A7TljubdtL6G9x3Nr7c/4LJwIgG19H1zfasvpwTM4\nGTSJ+INh1AoeobPO2hODMK+gGRgobazwmz2EM5NWcPC9SWTfi6dmMe30WXHVn2qnAH5zhpITl8yR\nvjMIHb6Q2pP6Y+pk98r3ScC8IeTEJXOg90yODluE7+QgvbKf182bCQwasIk9uyNeuKwnlYVt8W/0\nWaGTVhHScxYhPWdxZt535Gdkc27h98gtzWj82RjCl/9MSI9gzn28kUZLRur13/Jy1lSdPI4bsz/h\n0oCh5D2IpeKQ90sdY9++DaYVK3Dpg5FEDB6FlZ83ti2bASCzsqTy+JFUGj0MJKUbABqz3xRef2IA\nKvxnuTatTeKl26RHxwNw9aeDVO/c0GBsrd6tidx+jFt7zui871ynOuoiFR2+m8C722fjP7wzEmnJ\nnbNLY2+SL90i847mDPuNXw5QqWPj54qz86rC7Z3HUavUqAqLeHDkIhXb1QdAIpOgtLYAQGFuiir/\n2VcgKzWrRVx4NKnRCQBc3HKYmm/X14sryi9k34zNZCekAxAXHo2FgzVShYyYUzc4+dVuUKtRq9TE\nX76Htav+DydDzOvUJzfyKgUPYgBI3f0H1i3b6cXZdHqX9P27yTh6wHBBcjku46YRv2YVhYkJpVq3\nQyNf0i5HkX03FoDo30Jw7dD0ueIuL/ueK59rrqKZONggVcopzNS9emvr74lL2wZcWrjeYB6OjX1I\nvRxF1l3N/r79WwgVDOTxrDj7el44NvHl9tb92vcsKrpQmJlN4inND7/M2w8oyMrB1tdDp2znxt6k\nRERp69zNX/+mUgf9ullSnEQqRW5mgkypQKqQI5XLUeUVoC4sYtcb40i9prnqalHBify0TIPboqzk\n8cjxCDW1q0qo7Kxp2z1bS9kVqkatNjyXav1uNXZWEnq00hxCA2pIGPqWFKlUgkwqoVZlCfeTSlyl\nllMjH1Iiosh6+B1v/bqfih30rxyVFFexczMif9hNQXoWqNWc//g77uw8pt1Oiof9hdzClCID/cXL\nzsHezwPHBl60+n4OEpkUUwcbbZkubzbXWYddQ1/Sr9wk52E7jNm2Vxvj2LIhD3YeQF2kojAji7iQ\nY7gENsfE0Q6LKq7E7dOsL+nEeWRmJlh5ViU/KZWrS9Zor7JmXInC1MVRZ50KS3Pij57XrOOp9hf9\nWwhupWinT8c9aqfRT7RThbUFjg19uL5mGwC58ckcGzCL/HT9+vky94nC2gKnht5cXb39YR4pHAqa\no1f28/px82m6dPUnsEPtFy7rSWVhW/wbfdYjErmM+vM+5MLSLeTEJWNVyZmCzGziT14GIONh/23v\n567zOev6dcm6FklejObKfvwfu7Br26rUMRKZFKmZKVKFAolCgUQhR5WfD4Bdq+YUJCXrXREtiTH7\nTeH1J6bgCv9Zli62ZMWmaF9nxaWgtDJHYWGqNw039OMfAXBtVEvnfYlMRsyJy5xa+htyUwXtvx5D\nfmYOlzftpzhmLnZkP5xeBpATl4zSyhy5hanOdJ2S4pLCo6jSuQmJ5yORKeRUaBeAqrAIgDOfbKL1\nminU6PcGJnbWnJjyNeqiks8aWrnYkvHg8bbIiE3FxMoMpaWpzjTc9Jhk0mMe59Riejei/r6IqqCI\nO0evPC7P1Y46A1qzf+aWEtf7iMLRicLEeO3rwsQEZBaWSM3Mdabhxn/7OQDmfnUNlmPTvhOFyYlk\nhh4p1XoBzJztyIl7fFTLjU9GYWmO3MJMZ7rcs+LURSr8543ApW0DYg+eJvPh9L5Hao3ry/WvfjE4\nVU9Tvj05sY+3bfF5FB8nMzPBZ2IQJ0YtpkrXNtqYrDuxyMxNcWzkQ0JoODZe1bCqXkHnhz6AubMd\n2bG6dU5hoG6WFHd7xxEqtK9Pp70rkMikxJ24xIPDmh/v6sIiTOysaffTPJQ2loRN+crgtjBGHk2W\njzWYC0BsMrg8cS7F2VYzVSwrFyzNdGNTMtRs/J+KX2bLtO819X58Lvd+oppNe1XMHlC687vmLrr1\nLie+mG1RQpxlZRdMLlnTZNUkTB1tSDp3nUsrNNORLyzaSLNvp+HeNxATO2tOTf2Shp/qbouXnUN+\nagZ3dh3Dqkp5bH3cafTpWPb3nAGA3NJcZxquqZMDuXGJ2nXkxSdpY0yd7Ml9Yv158UlYulfGxMme\nvIQUeOKHb158MiZO9iQeOa19T6KQU31EX+L/PgGARfVKAFxcsA7vqQM163e2J7cU7bSkOJmZCbUn\nBhE2ajGVn2inFhWdyU1MpVrfjjg18UOqlBO1aRdZd2J52svcJ9bV3chNTMW9Xwecm/oiVcqJ/H63\nXg7PK3hWBwBCQ2+9cFlPKgvb4t/os7RTgbu0JCchlfsHNCe8M6JjkZuZ4tzYm7gTl7CtXRXram56\n/bfS0ZH8+McnXvMTEpFbWiA1N9NOwy0pJnFPCHYtm+H36/dIZFLSTp8j7cRJABL+1Hxn+zf1TwwX\nx5j9ZllWzPhbeIoYgL7Gtm3bxtatW1GpVAQGBrJ//35ycnKwtbVl1apV7Ny5k0OHDpGbm8udO3f4\n8MMP6dq1KxcvXmTu3LlYWFhgb2+PiYkJixYtYtOmTezcuROJRELHjh3p37+/sb/ii5Ea7sjUqtJP\n8bj+2+OBTn5BIZc27sOrX5sSB6CSYqavPL3ekuLOf/oT/h/15M2f55KTkErciQjs/T2QKhU0WTKC\nsFlreXD4AvY+1Wn2xViSL5V8wC/uqq2qmIGr3EzJG4v7Y1Xelt8HrdJZ5lS7Ip2/GsqFHw5x68Cz\n7z19mIDBt59nXwDYvtOd2FXLnuszxdaDp797KeLOz/oK2cJ1BCwZj8fgrkSu3qrJy9cDpY0VMXuO\nF5tGsfu7qHT1AgnUWziaS59uIi8xVWdRYVYOpz76jJojuuM1tjdJZ6+SeOoyqoJC3SKKqQd6OZQQ\n5zX0XfJSMvizzWhkpkqaLB+LR1AgkZv2AJCXnM6uN8ZhU7MyLVZP4e+bc/W/ihHyKElxD40wVCV+\nPaSmdR0JFRz1c4u4rWbsqiJ6t5XSyr+UP6SKrRfqUsdJ5TKcGnkTOn45RXkFBMwfiteobkR88QsN\nFo3k7OzVxB45j61PdRp//tErzSF82WbCJn4BgNWgt8hLSiXpwg2cGnk//vyT/UBx+1ylMlgf1EWG\n33+07BGFjTU+n0ygMCubm1//iMzCnNqzRwNQlJv3xFd88XZad+FoIgy0U4lcjkUFJwqzcjj+wVzM\nKzjTZN1MgwPQl7lPYvadxKKCEwVZORx+fz4WFZ1osW6m4e9TFpSBbfFv9FmPePR7k7Pzv9O+LszK\n5fj4z/Ee9R4+43qSePYaCaeulLr/5on2U1KM64A+FKSmcb5rX6QmStznz8S5exfift1u+DPPYNR+\nU3jtiQHoa87a2povv/ySr776ig0bNiCVSvnggw8IDw8HIDMzk3Xr1nH79m2GDRtG165dmT17NkuW\nLMHDw4Ply5cTFxfHjRs3+Ouvv9iyRXNF6/3336dZs2ZUq1bNmF/vudUZ9TaV2vgDoLQwJTkyRrvM\n3NmGvLQsCnPyS11e9bcakXztLinXNeVIJJqrK0/zHtEF15Z1AFBYmpIWeU+7zMzJlry0TIqeWm92\nbBL2PtUMxpm4WHJh+S/kp2cBUPP9jmTeiaOcu+bBFQ8OXwAgKfwm6Tfv65TzSKOxnaneVvOwAaWl\nGYnXHm8LS2cbclMNbwur8ra8/e1wkm/G8lu/FToPGarRKYA2c3pxYN7PXPvztN5ni1OYEIdpjcdX\nl+X2DhRlpKPOK/6BUE8zqeYBMhk5l86XKr7Z5k8AUFiYk37z8cN4TB3tyE/L1PnRCZAbm4iNd3WD\ncQ6NfMm4cYe8xFSKcvK4/7/juLRpoI0t374xMbuO6J369Bz2Hi4tNPcVyy3MSL9x12D5T8qJTcLG\n210vzqqqG+aujtQe30+zPezLaaZUmSi4sGAdhdm5HB/6sfZzrX9bop0e2O7neY9zeKpuanJ4qm4+\nSMbuiW3xZJxb23qcX7QJdWERhZk5RP95lArt6nNr+yGc6ntpz+qnXo0m7fodynlUBMBreBdcW9Ux\nWh6O9XRnNzypvD2EP/GspPgUsLYAcxP9H0t7TqqY1lem9/5fYSoW/KBiRl8pnRqV/COq1vCuuLTU\nXOVXPF0vtN9Rv17Y+VQ3GJf78GrKoyssd3cdo+aQLli7V0BmZkLsEU2bSQm/SfrNGBzrWQPQ+qcF\nLz0HhaU5VXu05fr6P7Wff7IfLUjLRPXEevLiEilX+/HUcRNHO21MblwiJg62Osvy4pPIjU1Eaa97\ntejRMgBL90r4Lp1CwsGTRK7cBCoV9i3rI7cyB6Dd/75EaWsFKjWFOXkkn736+Ds+Zzu1fNhOvQy0\n08h1fwBw78/DAGTfiyP5/HVtv/Oq6sXNLZqH7N3Zockj6248Seev49a+AWVFWdgW/3afBWDjWQmJ\nTErC6cd1DImEwuxcDg1epH3rjW0Lybz7+EFZAPlxCVjUenxPsdLRnsL0DJ32U1KMbfPG3PniW9SF\nhRQVFpL4v/3YtWz6jwegr7rfFP5bxN5+zVWtWhWpVIpCoeCjjz5i+vTpxMbGUlioOXNWs2ZNAMqX\nL0/+w7n+8fHxeHhoDvABAZofx9evX+f+/fsMHDiQgQMHkpqaSnR0tBG+0Ys5t2qH9mFBf/ZeiJNv\nNawrax4uUbNnS6L/Lt3g5RFbDzfqjn4HiVSCzERBrT5tiNqtP/C69NV29vacxd6eswgJmo+9b3Us\nKzkDUL17a+4fPKf3mdgTl4qNq969Nd4juwBgYmdNta4tubM7lMy78SgszbX3hlhUcMS6WnlSrurv\nq9DPd7L57YVsfnshP3Vbgot/VWwqa+598u3dnJv7L+p9xqScOd02j+fG3vPsHr9eZ/DpHliHVjN7\nsO39lc81+ATIOncKM08v7ZNsbTq8TWbYsecqw9zbj+yLZ0sd/+jBQMfen4WttwfmFV0AqPReW+IO\nndGLTwgNLzbOtX1DPIa8B4BUIad8+0YknX78oA27ujVJPKn/4I1r32zlUJ/pHOoznSMDZ2Pn445F\nRc3+rtKtLbEG8ogPDTcYlxJ+g32dxmjLi966n/t7Q7kwfy2o1TT8YhLlalUFoHy7BqgLi7RPwX30\n4IsDQfOwe6LOVevWxmDdjDsRXmxc6pVoKryhuZdaIpfh2rIOSRdvoi5SUW/uB9j7a/oW6+puWFUp\nT3L4TQAuf73dqHmUpEltCRei1ETHaU4g/HxQRRt//R9RaVlq7saDf3Xd9/eeVrFoi4rVH8lK9SPq\nytfbONArmAO9gjnYfy62Pu5YPPyOVbu15cFB/Xoed+JSsXExISdxa9cAqYkCANfWAdp74eSWZtj5\nabaFRQUnrKq6ast8FTkUZOdQrWc7XNvWI+7EJez9PbHz9SDuuKb/STii+8CupLALlPP2wOxhO3Tr\n8oY2JuHwKcq/1RqJTIrc0hzn9k1JOHyKvIRkcmLicG6nud/PrqEfapWKzJt3MKvgQt0v53Br3W9E\nfr5Re7Uofv8JjnfRPME65M2RxPx1jKtf/szBrhM13/Fh+6vcrYT+wkBcavgN9ncaw5E+0znSZzp3\ntu7nwd5QLs5fS879BFKv3KJCZ809rUo7a+x8PUi9fOuV1ovs+wmkXL5Fpbc0eZjYWWP31P2GxlYW\ntsW/3WcBONSrScLJK7ofUqtptmoCtl5VAHBrXx9VYZHeU3DTTp/FspYnJm6aNuz0VkdSjoWWOiY7\n8iZ2rTQPHZLIZNg2aUjm5av8U6+633xdqF6Df2WBuAL6mpNKpVy9epWQkBB+/fVXcnJy6Nq1q/Ym\ncEPThFxcXLhx4wbu7u5cuKC5klatWjXc3d1Zu3YtEomEDRs24OnpqffZ10lucgZHgr+jzfJhmsfk\n303g8DTNDfb2tSvTbP4A/uha8qPGz331J42De/PuH3OQymXc/t8ZnWm5huQlZ3By1jqaLtM8xS7z\nXjxhM9YAYOtVhfqzB7G356wS466s20XDj4cQuHUBSCREfPM7yRGaHynHPvqCupP7IDVRoC4s4vT8\njWTdK/mBPDnJmeybuolOKz9EppSTeieB/03S/FkAJ+9KtP+kL5vfXohvnxZYudrh/oYf7m/4aT+/\ntf8XNJ3wDkig/SePn1p5/0wUB+b+XOK6AYrSUon9fBGu0+YhkSsoiI3hwWefYOLuicvoSUSPHfzM\nMhSuFSiIMzBV7RnyU9K5MO9bAhaPRaqQk3UvjguzvwagXK2q+AR/yNG+00uMu7x8Mz7TP6DFz4tR\nq9XEHTzDrR/3aNdhUcmFnAcl74P8lHTOzf2WekselR/PuVmP8/Cf+SGH+kwvMa4kZ2d8iX/wYCQK\nOXmJqZyc8JleTF5KBqdnr6XR0lHask8GrwY0dTNg9iBCes4qMe7Css34Tw3ije0LNQ+jCovg2oZd\nqAuLOD7+c/wm9UEql6HKLyRs2jfkxKeUiTxarpla7Lazt5awYJCU8V8WUVAEFR0lLBws5dItNbM3\nFLF1ruZQeSceHGxAIdftV1f8pkKthtkbHs+OqOMuIThI/4z/0/JT0jk7Zw0Nl45BKpeRdS+e0zO/\nBcDGqyp1Zn3AgV7BJcZF/RKC0tqS1lvmI5FKSb16m/DP1lOYlUvYR5/jO6kfUqWmvzi/4DsaLR/3\nynJApSZ0/Ar8pgRRa9h75GdmgRparAsGIPKL77GqWY1a04dzsv8kClLSuTz/K3w+mYBUISfnXhwR\n8zS3AcRs24uZmwsNNi1DqpATs30fqec0D265NHM5taYNo8r776HKL+DSjM9AraZy0DtITUyo2KMj\nFXt0BEBVUMDpDwz/Caf8lHQuzP2WgCVjkSjkZN+L5/wT7dR35occedhOi4sryemJy/GZMpDK77UF\nqYTra7aTdln/TxW91H0ChE34HL+pA6jarQ0SiYSrq3+nTvCgZ+ZvDGVhW/wbfRaAZSVnsu4n8rSw\naV9Td9YgpAo5uQmpnBj/uV5MYWoat5aswH3uNCRyBXn3HxC18FPMa7hTddJYIj4cXWwMwJ0v11B5\nzDC8N34DKhXpZy8Q++Nv/3i/GLPfFF5/EnVxj6sSyrxt27YRFRXFyJEjGTp0qPYKp1KppFu3bhQW\nFhIVFcXEiRPJy8ujQ4cO/P3331y8eJEFCxZgbm6OQqHA2dmZBQsWsHbtWkJCQsjPz8fX15eZM2ci\nkxXfESQkZLyqr1osR0cr1nt9aNQcBl1ew89+A42aA0DPCxtY4THi2YEv0bjIr7j2Vkuj5gDg+ech\ndtXrY9QcOp3ewo6Avs8OfMnePrOZ3/wHGDWHbuc3lokcAAqO/btP6HxeiqYRbK/z4n/y4kV0ObcJ\noEzksb+R/p+oerqRdZcAACAASURBVJXahv7KzjLQTjuf2Vwm9kcRz/6buS+bjL5lYlsYu88CTb91\nqnUno+ZQ/8Auo/eboOk7XwcDHYp/4F1ZsSFR/wTHqyaugL7GunZ9/Dctv//++xJjTUxM+PvvvwEI\nDw/nm2++wc7OjuXLl6NQaKakDB48mMGDn30lShAEQRAEQRAEXcU9nEnQJQag/w/Z29szaNAgzM3N\nsbKyYtGiRc/+kCAIgiAIgiAIwgsSA9D/hwIDAwkMDDR2GoIgCIIgCIIg/D8jBqCCIAiCIAiCIAgv\nSMzALZ3/znOPBUEQBEEQBEEQhDJNDEAFQRAEQRAEQRCEV0JMwRUEQRAEQRAEQXhB4im4pSOugAqC\nIAiCIAiCIAivhBiACoIgCIIgCIIgCK+EmIIrCIIgCIIgCILwgtRiCm6piCuggiAIgiAIgiAIwish\nBqCCIAiCIAiCIAjCKyFRq8XFYkEQBEEQBEEQhBfRx3assVN4pi0pnxs7BXEPqPDPJSRkGDsFHB2t\nyL3U2qg5mHofYGdAX6PmAND5zGb2N+pu1Bzahv7KsebvGDUHgKZH/mBfwx5GzaF92C8UsdmoOQDI\n6Gv0PGT0ZW+DnkbN4Y2TPwPwm/8Ao+bR7fzGMrE/gDKRR1lop3sa9DJqDgCBJ38qE/tje50go+YA\n0OXcpjKxLYx9PAXNMbUstBFj95ug6TtfBypjJ/CaEFNwBUEQBEEQBEEQhFdCDEAFQRAEQRAEQRCE\nV0JMwRUEQRAEQRAEQXhBKvFonVIRV0AFQRAEQRAEQRCEV0IMQAVBEARBEARBEIRXQkzBFQRBEARB\nEARBeEFiAm7piCuggiAIgiAIgiAIwishBqCCIAiCIAiCIAjCKyGm4AqCIAiCIAiCILwglZiDWyri\nCqggCIIgCIIgCILwSogBqCAIgiAIgiAIgvBKiCm4wn/W4TO5fPFDOvmFampUVjBnhA2W5o/Pufx5\nMJtNf2ZqX2dkq4lPKmLvamfkMgkLVqdy7XYBZiZS3mljRp+OlqVet1Mzf2qO6olUISf9xl0uzltD\nYVbOP4oLWDqOvIQULi3ZCIB9PS9qje2NVC6jKK+AiKUbSY2IAqDBD8uQKhRk3ojmysdfU5StW5Z9\nk7pUH9FHP0YqpcbYAdg19EMik3Fnyw5itu8DwKFZAF4zR5Ebl6gt58ywmRRl51JtaC+cWjUEIP3y\nDb3vZ9s4gMpD+yNVKMi6eZsbi1bq5VSamJoLppKfmEzUitWYValIjVkfaZdJpFIsqlfhyoyFJB8O\nNbg/XAKbU6XfW6CGotw8rn36HelXowzGFkdhY4X37FGYlncElYrLC1eTFn4dgBpjgnBq25jCdE19\nyoq+/1xlG6JWq5kxbQfuHo4M+qDJC5dX1vJwaFoHjxG9kSoVZNy4Q8SCbygy0EaeFWfiZE/D9Qs4\n0XcyBWkZOp81c3Wk0cZFnBnzscEcXJr74T26OzKlnLTIu5yes47CrNzSx0kl1JnaH8cATwBij17k\n4vKfACjfwp/68z8kOzZJW87B9z95/g31lP9avXBoWgf34X2QKjV9UsTHxdcDg3FSCZ7jBmD/sO+K\n3vwn957ou7xnjdTpu04NnUVRtmYfSxSan0DObRoS93eYNsaxaR1qjOilrXPhC741mNOz4kyd7Gm0\nfj7H+k7R1k2FtQW1Jr6PZVU3pCZKor77nfu7j/zj7ffIy6oXzs38qD26B1KlgvTIu5ydu8ZgGykp\nrmr3tlTp0gqZiYKUK7c5N3ctqoJCFNYW+E3pj1U1V2QmSq6t28HdXcdeOOd/a1sUe7wsTUwJx9RH\nTMs70WDDYs6NnU/Gw+ORjX8t3Ef1Q2qipDAzG3i5beRxLo402riYs2MWkH41iir938GlfVPt8k57\nVyA3N+WPZsOA17PvfFXU4jm4pSKugBpRUFAQN2/e1HkvLCyM8ePH/+vr2rZtG/v37//Xyy2rktOK\nmLUqlU8n2bFjpTNuznI+/yFdJ+atVub88qkTv3zqxObFjjjYSJk6uBz2NjKWbkjD3FTK9hVO/LDQ\ngWNn8zh0Wr9zNURpY4Xf7CGcmbSCg+9NIvtePDVH9/xHcdX7d8aujqf2tUQuo+7CUVxcsJbDvacT\nue53/OcNR2ljBUD4tGWE9hxLzv043Ef21SlLYWONV/AIgzFuXdphVtGFsL4fcWrQVCr27IS1lzsA\n5Xw8id6yg5P9J2n/FWXn4tiqAXYN/AgLmkRo7/FITU101ie3scZ92hiuBi/ibN8R5N6PpfKw/s8d\n49anC9Z+XtrXObfvcmHQeO2/1FPnSdh3qNjBp3ml8tQY3Y+zYz8hNGgyt77bhu/iiQZjS1Jz0mBS\nzl/lRK+PCJ+9Et9PPkJqotRsI19PwoNXEBo0mdCgyYQHr3ju8p9082YCgwZsYs/uiBcq50W9rDwU\nNlZ4zxzOhamfcaz7eHJi4qgxss9zx5Xv2IIGq+dg6mSn91mpUoH33NHaQcbTlLZW1Js7mNCJK/nf\nu1PJupeAz9gezxVXuXNTrKq4sLf7DPb1nIlDPU/c2tcHwN7Pg+vf7yak5yztv8Ls0vUhxfkv1ova\nwSO4OO1TjvcYR3ZMPB4jDNeD4uIqdGmPeUUXTvSZQNj706jUqyPWXtUBsPGtwe3Nf2rbZWjQZO3g\ns5y3Bw3W6Z+Y0NS5YZybupwj3T8iOyYez5G9nzvOtWNzGhqomz6zhpMbn8zxoGmcGvUxtSYMwMRA\n/X0eL6teKG2tCJg7hLBJXxDSZTJZ9+KpPcbAsayEONc29ajeqz1Hhy0ipNs0ZKZK3PsFAhAwbwg5\ncckc6D2To8MW4Ts5CFMn2xfK+d/cFsUdLx/5p8dU0PRPtZ/qn0wc7fBdPIlrS9dyMmgSCQc0J0Ve\nZht5lIvPU7nc/v4PbZsBKMzJI2zKV8Dr2XcKZY8YgP4/0bVrV9q2bWvsNF6ZExfy8HZXUNlV06H2\neNOcv47koFYbPjP13e+Z2JWT0f0NCwAu3yygc0szZDIJCoWE5gGmhJzQP+NoiGNjH1IvR5F1Nw6A\n6N9CcOvQ9Lnj7Ot54djEl+itj08cqAuLCOkwmvRr0QCYuzmRn5aJY2MfAHLuxgIQs20vLm8211mf\nXUNf0q/cNBjj2LIhD3YeQF2kojAji7iQY7gEapaV8/HErp439TcsJuCbedj41wIg4eBJzgwJRl1Y\niMzcDKVtOZ312davQ+bV/2PvvsObKtsHjn+zuhfdQCl0QEtbCsgGBZmKmw1CZYnsvZUNKlNRwAWK\nCDiYivqTqQxZbZFRymoLBbr33kl+fwRCQ5JSLB34Pp/38rpekvs8z32edXJyTk4jKYiJByDh5/04\nde/0WDG2zZtg1/oZEn7eb7CtbQL9cHi+PVGrPzf4PoCquIQrH3xBUWoGAJlXozB1sEMilyGRy2g0\nZShttiyn7baV+M8fh8zSXK8MiUyK07PPEPvLYQByIm6Tdzcex3bNkCjkWDdqQP3Br9J220oCl0/H\nzMXBaD7l8cP2UHr1bsaLPf0rVE5FVVYeDm2aknklirx7Y/Hu7kO4vvjsY8WZOtbCuVMr/pm63GAd\nvrNGEPfbUYozsgy+79IugPTwm+Tc0cy/qJ1/4t6z3WPFSaRS5OamyEwUSBVypHI5qsJiTe5NvXFq\n5UfX7xfz/Dfv4viMj17Zj+u/OC4yrz7o35g9B7XrTmkObZoajXPu1JrYX49q166EQ6eo/WJHAOya\n+GDf0p82W5bT8svF2rULwH3AS0R9+aNeXY5tAvXGXG0DY7OsuPtjM/ShsamwscShdSCRG3cBUJiU\nxukR8ynOzKEiKmtcOLdtQnr4TXLvjf1bO49Qr6f+FcWy4uq98iwR2/6gOCsX1GouvL+ZO7+dRGFj\niXObAK59tReAgqR0jgUt0sRVwJNsC2PHy/v+7TEVwGfG28T/fpTizAfrk3OXtqScPk/29Vua8n7W\nXKWszDkC4DtzJHG/HzO6VgIknLxEwslLwNO5dgo1j7gFt4oUFxczd+5cYmJiUCqVDB8+HIANGzaQ\nkpJCfn4+H330kc42O3fu5IcffkClUtGlSxcmTZpksOw9e/Zw+PBhcnNzSU9PZ/z48bzwwgu88sor\nNGjQAIVCgaenJ46OjgwcOJClS5dy6dIliouLmThxIt26dWPNmjWEhoaiUqkYNmwYPXv2rPQ2qUwJ\nKUpcHGXaf7s4yMjJU5Obr8bKQqITm56l5Lt9Ofy4ykn7WpOGJvx2LJ9mviYUF6s5fCYfuUx3O2PM\nXBwoSEjT/rsgKQ2FlQVyS3Od22vLipOZm+I/I4izE1ZQv3cXnfLVJUpM7G3ouP19FHbW/DN3HVYN\n6ujEFCalIreyQGZhrr1lyMzZUedWtNIxZs4OFCSm6rxn5V0fgOKsbBL+OE7ysWBsm/rSdOUszg6Z\nQWFyGmqlEre+L+I5eiCFyWk6OZg4O1JUur7kFORWljo5lRUjMzfHY/LbhE9fhOtrLxhs6wbjh3Nn\n4za926JKK4hPpiA+Wftvn8lDST4RirpEiefIPqiVSs4OnQOA99hBNBz3JtdWfa1ThsLWGiQSijMe\n3OJZmJSGqbMDpo61SD93mcjPvifvTjz1h7xK01WzjOZTHvMWaObfmTO3KlRORVVWHmYuDhQk6Y43\nhZUFMktz3VsYy4grTEnn4uw1Bsuv+3oXpHI5sb/8iefwXgZjLFzsySs1//IT01BYWyC3NNO5lays\nuOh9J3Dr3oqXD65FIpOSePoy8ccvAFCUmcPt304R99c5HJo1pP3aKRzuP+8xW0rXf3FcFCaWbxwY\nizNzcaAw6eG1yx2Aosxs4v84TvKxEOya+tB01SzODJlJYVIaYfM/MZjPw2OuoJxjs+ChsXlhtu7x\nHMDCzZXC1HQaDH4Zp3bNkJrIubXtN/LuxD9Ok+mprHFh4WpPfql2z08yMkfKiLOq74rpZRvar5+J\nmZMdqedvcHntj9h41aUgJQPvIT1x6RCI1EROxHd/kHMnoUI5P8m2MHa8rOgxtc5rXZDIZcT9coQG\nw3prYyzc66DKLyRg6RQs3Otoy67MOVL3Xi6xvxzBY5j+Wmnp4QZA+Gd7HuT5FK6dQs0jTkCryE8/\n/YS9vT2rV68mJyeH3r17Y2JiQt++fXn99ddZt24d+/fvJzAwEIDU1FQ2btzIvn37MDU1Zc2aNeTm\n5mJpaWmw/Pz8fDZv3kxaWhr9+vWja9eu5OXlMW7cOPz8/Fi3bh0Ahw8fJj09nV27dpGZmcnmzZtR\nKBTExMTwww8/UFhYSP/+/enQoQM2NjZV1j5PmpELnUgNXPPffSiPzq3McHN5MB2mD7Phoy1ZDJiR\njFMtKe2amnLhWlG56pZIDJ+oqpWqcsUhgWc+nEj4mq0UpmQYDClKy+Jwz4nY+Dag7efvErPvmOE6\nVaXqlBrJS6VCYuC9+/mGzVmtfS3z4jUywq5j3zqQ+N+PAhCzaz8xu/bjOXogVp71HuxGGfU9KgaJ\nhEaLZnDr000Up6YbDLEO8EVua03yoeOGy3iI1MyUgAXjMHVx4Pxkze9JHDu0QG5tgUNrzbyTKOQU\npWXqp2No4Nzbl4L4ZM6XutJxe9uveI7oU66c/lcZ7feH50g540qz9vHArXc3Qt5Z9K9y0JunZcT5\njX6DwvRsfu0yEZmZCe0/nkzDoBeJ2Lqf09PXaWNTL0SQejEC53YBZeYkaDzcB0iMzD+lyvC6dm+N\nuTTnwRcUGRevk3npBg6tA4n77ajRuo3Ndf2xWb44nW3kMizquqDMyefsqIVYuLnQ+qtF2qtWNY7R\nY5m63HFSuQzntgGcmfoxysJiWiwdjd+EvsQeCsbSzZni3HyOD1+KZT1nOn49n9wKnoBWtooeU619\nPKjbqwfnxizQe18il+H4bEvOjZlP/t0E3Pr3xKljK8N1PIE5olkruxMyeqHBbQHcB74EQEnOg5Nd\nsXaWTfwZlvIRJ6BVJCoqivbtNbekWFlZ4eXlxcmTJwkI0EwqR0dHUlIefJN29+5dGjZsiJmZGQAz\nZpT9m7VWrVohlUpxdHTExsaGtDTNt04eHh46cbdu3aJZs2YA2NraMmXKFDZu3Eh4eDhBQUEAlJSU\nEBsb+1SfgLo6ygiLKNb+OylViY2VBAsz/UX6wMl8Zo/UvX00N0/F1CAbbK018d/szca9tvHp0mhM\nH1w6tgBAbmlOduRd7XtmTvYUZeagLCjU2SY/IRW7AG+9OCuPuljUccJv6hAATB1skcikSE0VXPl4\nO46t/En4KxSArGvRZN+4DTLd/TJ1sqc4MwdVqToLE1Ow9W9oMKYgMQVTx1o6793/Nrdunxe4vWWv\n9j0JEtRKpebbXKmEnBvRAMTtO4LH8D6l6kvGqnGjB2U6OlCclf1QToZjLBrUw6y2Cw0mjADAxL7W\nvTYwIXLFegAcuzxL8v6/jH7b0HbrSgCST4QS+8sRmq2ZTW50LOfGLdbe6iORSbn+0bekntZ88yoz\nN0VqYoKNryd+743RlnV2mOYKqdzakpJszS1ips61tN8kWzesT7zOg0TKd7X8f4nXO/1w6tgS0MyR\nnMg72vfuj8WH50hBQgq2/t6PjCutzksdkVua0/rrpdptmiyZqH2/209LtDlkRcRoXzd3rnVvnup+\n0ZQXn4Z9gJfBuLpdW3Jh+VbUJUpKcvK5/evfuHVrRfTPx/Hq34VrX/+m3U4ikaAuVj66of7jJAQi\noa723yaOdtr/b2jdAs2VKNsA/XGgKiikICEFEwfdMgqS0pBbWeDW5wWiS61dSEBVot8Hrt3b4TVC\nc/Xn4fXb1Oj6rT82DcWVVpii+TIt5nfNF4Z5MYlkXLyuU051azy2N66dngFAYWlOVuljmXbs6x/L\n7Jt4GYwrSM4g7q9z2itjd38/ie87vYj6/iAAd/ZpvkDMvZtE6oUb1Co116rbw8fEJ3FMde3ZCbml\nOS03vn+vDnv8F08mcv1WCpPTyQy7Tu0XO+H4XEvtiWPp3wg/yTlS+6WOyCzNab1pmfb1gCWTiFi3\nleQT50Aqwbmz5iGDfmN7Uef55oBYO4UnQ/wGtIp4eXkRGqo5acjJyeHGjRu4ubkZjXd3d+fmzZsU\nFWkm9KRJk0hMTDQaHx6u+cF9SkoKOTk5ODhofoMmfehbWk9PT8LCwgDIzs5m5MiReHp60qZNG7Zu\n3cqWLVvo2bMn9erV42nWrpkpl24UcTuuBICdB/N4vpWZXlxWjoo7CUqa+pjovL7zYB4bftT8HiI1\nQ8mew3n0fE7/t4H33fhiNyfefJcTb77LyWELqdXEG8t6LgDU79uVxGPn9LZJPhNmMC4jLJIjL0/S\nlndn9xHiD57h0tJNqJUqAhe8Q62mmpM2K8+6WDaow91fNB9ozOu5AlC3Vw+ST4To1Jd69iK2AQ0N\nxiQfD6H2q52RyKTIrSxw6d6B5OMhlOQV4NbnRZzuHYSsGjXAxs+b1NMXsPKuj9+88doH8dTuqfv7\nzozgC1j7+2DmVhsA1zdeJO3v4HLFZIdfJ7TvSO2DhhJ+2U/Kkb+1J58ANs38yTh3yWif3H+Awu0f\nf6flF4tJ+iuYsHmfaE8+AVLPXKRevxeRyGUgkeD37hi8x71J1rWbOg8uUStVpJw6j1uvbpp28HbH\n0sON9HPhqFVqfKYN1zwdF3Dr04OcyNtG8/pfFfXVTs4Mmc2ZIbMJHjEP24CGWNwbi269u5N0PFRv\nm9Szl8oVV9r1j7dwsu9UbV2FyWmELXjwjfr9h1r8FbQE+0AvrNw188+zbxfijp7XKy/xdJjRuIyr\nt3HroZkbErmMOp2ak3opiuLcfLwGdKNuV80Jt52PO7UCPEk4ZXy8/q9QcwkVf6DiDwD9/n1o3YIH\na5ehuOTjodR9tUuptas9yceCKcnLp17fF7QfoK0bNcD23tr1sIRDpzk1ZA6nhszhzIj52AV4a+ty\n793N6NgsT1xp+XHJZF69Sd2XNb+/M7G3xa5JIzKvRJW5XVW6+vke/ho4j78GzuPoW4s1x6h7Y9+j\nb1fij/6jt03i6ctG42IPB1O3W2ukpgoA6nRuQXr4TfLikkm/cgv3VzW/UzS1t8G+qTfp4Y/3dPLK\nZOx4ed+/OaZGrP2W0/0nax/oV5iSRvjCT0g5EUrysWDsAn2I++0vgt+ayZ1t+wCw8fOqlDly4+Mt\nnOo3RXucK0xO4/KCTzUnn4CVlzsl936Te+XzvWLtFJ4ocQW0ivTv35/58+czaNAgCgsLmTBhAnv2\n7DEab29vz6hRoxgyZAgSiYTOnTvj4uJiND4lJYWhQ4eSnZ3NwoULkclkBuO6du3K6dOnGTRoEEql\nkvHjx9OxY0eCg4N58803ycvLo1u3blhZlf9PjtREDrYyloy3Y8bqNIpLwM1VxvsTaxEeWcTizzPY\nscYZgDsJJTjVkqKQ616xGtnbivc+yaD3lCTUahjT35oAbxNDVekpSs/i4uIvabFyMhKFnLyYJC4s\n0Dwkx7axB4HzR3HizXfLjDNGmV9I6PSP8J8+BIlcjqq4mPPzNpAdobma1OSD6UgVcvJjEglfsh5r\nX08avzuW4LdmUpyexZWln+nFgObhCeZ1XWm9dTVShZzYvYfIOH8FgEuzVuAzfSSeb/dHrVRxed7H\nFGdmk7D/OOZurrT+dgUqpZLcm3d1ci3OyCTyw0/xXTobiVxOQVwCEcvWYuXjjdfs8VwcMdVoTHmY\nu9WhMCHpkXH1evfAzMUR5+db4/x8a+3r58Yv4eY3u2g06S3abl2JRColOyKaG59+Z7Ccays34ffu\nGNp9/xxqNVxetJ6S3HxKbt7l2prNNF8zG6RS7e/LnttXdl/+LytKzyJ86ec0XT4NiVxOfmwCYYs2\nAGDT2BO/90ZzZsjsMuMqqjA9m9CFm2i7agJShZzcmCSC530FQC2/BrRYOILDAxaUGXdx9XaazQmi\nx94PUavUJJ0N5/q3v4NKzakpa2k2Owi/sb00vzOetYGijIo9bOa/6MrSzwn88H7/JnJ5sWZNun8X\nwpmgWffWLsNxMXsOYu7mQtttq5Aq5MTsPUz6+asAXJy5Ep8ZI/Aa1Q+1UsWleWv1/lTPw4rSswhb\n+gXNlk9FKpeTF5uoMzYD3nuHU0PmlBlXlvOz1uA3awT1endDIpES9fVusq7WnJOu0orSs/hn0Uba\nrJqEVC4jNyaJ0PlfAmDn50HzBSP5a+C8MuNu7jiMiY0Vnb9fikQqJeNaNGEffQPA2emf0HTOUDz6\ndkEikXDtq5/JuFK9v28uzdDx8kkcU43JiYjm2sqNBK6YiUQu095tU5lzpCwW9WqTH5+kPam9T6yd\nZTN+E75QmkRt7LGgwlNjz5493Lx585G36T5pycllH8irgpOTNQWXO1drDmYBf/Fbi8GPDqxkr5zb\nzpG2/ao1h65ndnLyuderNQeADid+4VAb/cfCV6XuZ3egZHu15gAgY3C15yFjMAdb6//5hqrUI/gn\nAHY1G1qtefS9sKVG9AdQI/KoCfN0f+uB1ZoDwIvBP9aI/tjbPKhacwDodX5rjWiL6j6eguaYWhPm\nSHWvm6BZO58Gr9lMfHRQNduXte7RQZVMXAF9iixatEjv74YCT/0TawVBEARBEARB+N8gTkCfIosW\nLaruFARBEARBEARBMEDcWFo+4iFEgiAIgiAIgiAIQpUQJ6CCIAiCIAiCIAhClRC34AqCIAiCIAiC\nIFSQeApu+YgroIIgCIIgCIIgCEKVECeggiAIgiAIgiAIQpUQt+AKgiAIgiAIgiBUkHgKbvmIK6CC\nIAiCIAiCIAhClRAnoIIgCIIgCIIgCEKVECeggiAIgiAIgiAIQpWQqMXNyoIgCIIgCIIgCBXyotX4\n6k7hkfbnbKjuFMRDiIR/Lzk5u7pTwMnJmiNt+1VrDl3P7OTPdn2rNQeALqd3cbD1gGrNoUfwT9Xe\nH6Dpk2MdeldrDp1O7qkxbVHdedSUHAD+aDWoWvPoGfIDR9v3qdYcnj+1G6BGrBc1YZ5Wd3+Apk9q\nwhzZ1WxoteYA0PfClhrRFkq2V2sOADIGI5EoqjUHtbq42tdN0Kydwn+HuAVXEARBEARBEARBqBLi\nCqggCIIgCIIgCEIFqcQvG8tFXAEVBEEQBEEQBEEQqoQ4ARUEQRAEQRAEQRCqhLgFVxAEQRAEQRAE\noYLUiFtwy0NcARUEQRAEQRAEQRCqhDgBFQRBEARBEARBEKqEuAVXEARBEARBEAShglTVncBTQlwB\nFQRBEARBEARBEKqEOAEVBEEQBEEQBEEQqoS4BVcQBEEQBEEQBKGCVOIpuOUiTkCFp17rbauRKhTk\nRN7m6vufo8zL13nfof0zeI17Uz9GKqXR5KHYt2mKRCbjzvf7iN17CMsGbvgvmazdXiKVYuXtzqU5\nq7CoVweX7h207ynsbB7UMXYwEoWc3Kg7XH3/M8N5GIqRSmk4aSj2bZshkUm58/2vxO09CIDdM/40\nnDQUiUxGcWY2EWs3kxN5G4B6g16l9itdUCuVFGdk6bWLY4fmNBw3CKmJguzIO4Qv+wJlbv5jx5k6\nO9Dmm2WcHjyL4sxsnW3rvPo8Ls+35vz0lY9u7wr0CYB1Yy8aTR2GzMwMiVTK7W0/k7D/xIN+Ushp\numYucffi77Nv1wKPMYORmijIjbzN9Q836OVjLEZqYoL39FFYN/ZGIpWQFR5B5JqNqIqKsHsmAM8J\nw5DIpJRkZRP5yWZyI6PLt5+V1Bb1g94wOD6f9BwBcHy2BX7zJ1CQmKIt59yY+SjzCrT/rtf/Jeq8\n3rVS26LWM/54TwxCIpehKizixkebyboSCYDn6IG4dGuPMr+Q8nDq0JxG4wciNZGTHXGHy8u+osTA\nnDEWJ7c0p8n80Vg2qINEIiH29+Pc/O7XMuu0b/8MnmOGIFXIyYm6zfUP9NcOYzFSExMaznhbMz4l\nUrKu3CBi9SZURUVYN/bCe/IIZGamIJNyd9vPJB44bjSP6lovdPazAnNVZmmBz9zxWNSvCxIJiX8c\n5e72vTrbXPM78wAAIABJREFUur7cBceObbg8+0Oj7aCXUyX1z6NU1ny5z6y2M62/XcH5yUvJvnbT\naB6uzzUlYGI/ZCZyMiPuErroa0pyC8od13bVBKzcnbVxlnWcSD53nVNT1uLU0pfA6YOQyGQUZeZw\ncdV2Mm/cBSpnzSpr3+2aNcZ7whCkpiaU5OQ9sn/KQ61W897cfXg3dGLEyPZPpMx/a/Pmr7l8+TJr\n1nz8xMuujnVTePqJW3CFp5ZEIgEgbO5qzgyYTH5cIt7jB+vEKOxs8Js3zmBM3V7dMK/nytnB0wgZ\nMYd6A17Gxs+b3OgYgt+aqf0vNfgiCQf+JvloMLe3/qx9/Z9xC1EVaA7Ejd8bT9jcVZwdOJn82ES8\nxunnYSym7hvdMa9Xm+DBUwm9l4e1nzcySwuafDiTyPVbCQ6azvVVX+G/bBoShZxarZpQ59UunBv1\nLiFvzSD56NmH6rMmYP5YLs75iJP9ppIfm0ij8W/qteGj4mq/1JHWXy3CzNleZzu5jSWN57xN4xnD\nQaJbprH2rkifAAR+OIObG3cQ/NZMLkx9n4aThmJezxUAm4BGtNr0AXaBvnp1+bw3gSvvrSJk0ETy\n4xLxGBtU7hj3oX2QyGScGzqN0LemITM1wf2t3sgsLfB7fxY3N2zh3NBp3Fj1FX5LpyNR6H6nV9Vt\noTc+733QrYwcbJv4cPv7fTpzpfTJp22gD/WDXq/UtpDI5QQsm8rVD78gOGgmtzbvxm/hRABqv/w8\njh1aEDJ8DsFvzeRRTOysabJgNOdnf8yJvtPJj02i0YRBjxXXcEx/CpLS+HvgLE4NnUe9Pt2xa9LQ\naJ0KOxt835tA+LurCB40iYK4RDzHDSl3TP1hmvEZ+tZ0Qt6ahtTUFPe3egPg//5Mojf9ROiwGYRN\nW4bXpGGYu9U2kkf1rRel97Mic7XBqEEUJqcSGjSFf96eRZ1eL2Dj30hTv7UVDWeOxnvq2yAxkoCR\nnCqrfx5Vb2WtHQBSEwX+iyfqrVcPM6llTcvFb3NmxjoOvDGH3Jhkmkzu/1hxZ2au5/CABRwesIBz\nSzZTlJ3H+Q+/Q25lTruPJhH28U8c7j+P8+9voe3K8Zg52QGVs2YZ23dTJ3sCV8zk+qpNBAfNJPkv\n3ePpvxEVlcyIoVvZ/0d4hcuqCF9fX44cOUj//n0rpfzqWDeF/wZxAvo/qH///sTExLBnzx6OHDkC\nwLRp0+jTpw83btwgKCiIgQMHkpmZWc2Zls3ERAZA/t0EAGL3HMT1hed0YuzbBJJ1NcpgjFOnNsT/\n9hdqpYqS7FwSD5/E9UXd7e2a+uLcuS3XVnylV7/3pLdIPX0BgKyrkeTH3K/jgH4erZsajXHq1Jr4\n3x/kkXToJK4vdMSiXm1KcvNIDw0DIO92HMrcfGwDfChKzeD6qo3ab4WzrkXp1OfQpimZV6LIu7ff\nd3cfwvXFZ/X2oaw4U8daOHdqxT9Tl+tt59qtHYUpGVz/dJvee8baW9sW/6JPpCYKbn69k/QQTVsU\nJqdRnJmNmZMDAPX69yTqyx/JuhKhU1et1s3IvhpJfkw8AHF79+PS47lyx2RevMKdLTtBrQaVipwb\ntzB1dcK8Xm2UuXlknNPkk38nlpLcfGwCfKq9Le7znvSWdrxVxhyxbeKDfcsAWn27ghZfLMGuWWNt\nmSb2tvjMeJuI9VsrtS3UJSX8/epocm5EA2Be10V71c3a14vk48Hlvprh2DaQzCs3tXPhzu5D1Hmx\nw2PFXV2zhWufaOaEqaMdUhN5mfXXat1Ud+ztOWBgfBqPybhwhdvf7io1Pm9i5uqI1ERB9Dc7SQ+9\nBNwbIxlZmDrrjpH7qnO9eLCfFZurUWu/Jmr9twCYONRColBQkqtpe6eu7SlKSSdq/Raj9RvOqXL6\n51HKmgvliXnUsc1nxtvE/36U4kz9O2dKc2kXQHr4TXLuJAIQtfNP3Hu2+1dxErmMVktGcXHV9+Qn\npmHt7kJxTh5JwVcAyI6Opzg3H6/+mjsmqnLfnbu0JeX0ebKv39KU97PuFdN/44ftofTq3YwXe/pX\nuKyKGD9+LJs3b2HHjl2VUn51rJs1nUqtrvH/1QTiBPR/WO/evenaVbPYnzp1it27d2NlZUVubi4/\n/vgjtra21Zxh2aRS3eFbmJSK3MoCmYW59jUzZ0edWwRLx5g5O1CQmKrz3sMf0LwnvcXNL3/Qu/3H\n0sMNp46tiPrqJ+222nKSU5FbWerm4eJgNMbUxZHCUjkW3Msj704cMnMz7Fs3BTS3XVp61sPU0Y7c\nm3fJOK85cEsUcrzH6n5DbObiQEGS7r4prCyQWZqXO64wJZ2Ls9eQeyuWh8XsOczNTbtQFejfSmas\nvbV1/os+URUVE//rn9rX67zeDZm5GZnhmhPO8AWfkHrqH71cTJ0dKEwqVZeBvikrJj34Ivl3NR8s\nTV2cqDvgFZL/PEX+vb6pdb9vfL2x9KiHiUOtam8LeDA+M8Nu6OTzJOdIcVY2MbsOEDJsNpGff0/g\nipmYOtmDVIr/4slErt9KYXJapbYFgFqpxMTelg77vqThhCBub/sFgKzwCByfa4nC1rpcV73MXHTr\nKEhKQ2FlgdzQnCkjTq1UEbhkPM/+uJK0c1fJuR1XRp26c9/w2mE8Rmd8ujrh1v8Vkv88jaqomITf\njmi3qf16d2TmZmRd1h0POvtUTevFfRWdqwAoVfgumEyrrWvJPH+ZvDuato//+SC3N+8o162vuvtb\nOf3zyHrLmAvliSlrvtR5rQsSuYy4Xx6MD2MsXOzJS3gwh/MT01BYWyC3NHvsOI9enchPziDur3MA\nZN9OQG5uhku7AABq+Xtg41kXSzdnnbKrYt8t3Ougyi8kYOkUWm9ZScCyqY9sm0eZt6Anr70RWOFy\nKmrixMls27a90sqvjnVT+G8QvwF9ShQXFzN37lxiYmJQKpUMHz6cunXr8sEHH6BSqXBxcWH16tWY\nmZkZ3P7jjz/mxIkTuLq6kp6eDsC6detwdHTk+vXr5OTkMHbsWEpKSoiOjmbBggUsWbKkKnfxsRn7\nTKlWlforTFLDQWqVComB99TKB9vaNmmEwtaahAN/68XVG/AyMbv2o8w1/i2dbh6Gv+tRq1TaW4l1\nqFQo8/IJm70Cz9Fv4jUhiIwLV0g/dxlVcYk2TGFnQ8AH0/W+LTS0bwAoVf8qrqKeVJ8A1A96g3oD\nXuLClPdRFZb9gVJSRrs/ToyVjyf+H8wmbvcfpJ3SfIC6PGc5Hu+8iee4oWRevELGuTDUJSUGyzJW\nbmW1xf3xqTKSz5PIIWzOau1rmRevkRF2HfvWgVh6uJFx4QppwZewe8bPYNlPMg+AorRMTr42Gmsf\nD5qvW0DIyHdJ2H8cU2d7mm9YiKo8vwE1sqA83Oblibu0YAPhH26i+YqpeL/dh8ivjFx9MFZW6XYp\nR4yVjycBH84idvcfpN4bn/e5B/Wibr+XuTRtqdETsJqwXjypuXptySfcWPUl/u/PpP7wftz++qcK\nJFX5/WNQGXOhPDHG5ou1jwd1e/Xg3JgFj84B4/398JwoT1zDIS/wz9LN2n+X5BZwauonBEzoQ5Mp\nA0j55zrJIVc1V4sNlVWJ+y6Ry3B8tiXnxswn/24Cbv174tSxlcE6hIdUx7op/CeIE9CnxE8//YS9\nvT2rV68mJyeH3r17Y2JiwieffIKXlxc7d+4kKioKf3/92z3CwsIICQlh165d5OXl0aNHD533Fy1a\nxKFDh/j888+JiYlh2rRpNf7kE0D50AJn6mRPcWYOqoIHHzYLE1Ow9W9oMKYgMQVTx1o675W+SunS\nrQMJfxzTPyBKpTh3bkPwsNnal0pf+TJ1sqc4K1snj4KEZGz8GhqMKUhMweShPAqSUkEiQZlXwPnx\nC7Xvtflhrfa2Skuv+gSumk3ysWAi131Hl5M7aLttBQByS3NyIu/o7beyQPeDeEFCCrb+3o+MexwP\nt+mT6hOJQo7f/PFYergROuo9CuKTH5lLQUIy1qXb3dHBYN+UFePUtQMNZ7xD5EebSDp076FHEgnK\n/AIuTnzwYabl9k+1fVOtbVFqfNo11f1N7JPKQW5lQd0+L3B7y4OHvEiQoFYqcX2xI0XpmTh1aoPM\n3ExzVbSS2kJmaYF9ywCSjwUDkH39FjmRt7Hydqc4M5vEg39z+7ufAeh6ZicPazi6L84dWwCaOZMd\neVenjiJDcyYxFbsAb4Nxjm0DyY68S2FKOsr8QuIPnsK1S2u9ekvvs02pfTZx0h+fj4px7taBhjNG\nEbFmE0mHHnxZJlHI8Z03EcsGbpx/Zy4FCfrzpSasFw/KrthcrdW6Gbk3b1OUko4qv4Ckw3/j1Klt\nhXKqzP55VL3G5kJ5YozNF9eenZBbmtNy4/ua1x3ttXcrpJwIBcBvbC/qPN8c0IyLrIgYbTnmzrXu\njXXdLzLy4tOwD/AyGmfn445EJiU59NqDjSQSSvIKOPb2g1u2e+z5kNu/n9Qpuyr2vTA5ncyw69pb\neuP2/YnPtBGADFDyNFm8eCGvvfYqAPv2/crChYufeB3VvW4K/w3iFtynRFRUFK1aab6Rs7KywsvL\ni4iICLy8NIt+v379DJ58AkRHRxMQEIBUKsXKyopGjRpVWd6VqahIc2C4/yCaur16kHwiRCcm9exF\nbAMaGoxJPh5C7Vc7I5FJkVtZ4NK9A8nHH2xv19yPtNDLevVaeblTnJWr86HfNqAh5m6aOur06kHK\ncd080oIvGo1JOR5CnVe66OSRcjwY1GqafvQu1r6aPnbq0g51iZKcyNuYu7nyzIZFRH+zi8hPvoV7\n3w6fGTKbM0NmEzxiHrYBDbG4t99uvbuTdDxUb19Sz14qV9zjMNbeD+r8d33S5IPpyC0tCB01r1wn\nnwDpwRex8W+kffhKnV49SH0on7JiHJ9vh/fUt7k0dcmDk08AtZomq9/D6l7fOHZuh7qkRO8puNXR\nFqXHZ+rZi8CTnyMleQW49XkRp85tNHU2aoCNnzeppy/w9yvvEBykeSjR1Q8/Jz82ofLaQqWi8Xtj\nsQ3U/PbW0sMNi/p1ybocgY2vJ01WzEQikyGRGT7URXy5i5OD53Jy8FxOD1+AXam54N6nm8G5kHLm\nktE4125t8R6leciMVCHHtVtbUkOMP4QkLfiC7th7owcpJx5eO4zHOHVui/fUkVyaslTv5MZ/2Qzk\nlub8M/pdgyefUDPWi/sqOledurSn/vABgObk26lLe9L/CatQTpXZP2Upay6UJ8bYfIlY+y2n+0/W\nPjSsMCWN8IWfaE8+Aa58vlf70KC/gpZgH+iFlbsLAJ59uxB39Lxevomnw8qMc2zpS3LwVd2N1Gqe\nXT+dWn4NNPl3b4WqREn0nmPAk1+zytr35GPB2AX6YFZbc/uv8/Nt7tX0dJ18AixcuJjmzVvSvHnL\nSjn5hOpfN2s69VPwv5pAXAF9Snh5eREaGkr37t3Jycnhxo0buLm5ER0dTYMGDfjqq6/w8PCge/fu\nett6e3uzfft2VCoVBQUFREZGVsMePHnqe1cmm3wwHalCTn5MIuFL1mPt60njd8cS/NZMitOzuLL0\nM70Y0Dy4wLyuK623rkaqkBO795D2d5UAFvVcKYhL0qvXop4rBQm6r19dtoGAD2Zo6ohN5MqSdVj7\neuE7dwwhQzV5GIoBiN17AHM3F1p9t0aTx88P8ghf+Am+c8cgkcspSk3n0mzNFYv6Q95AamaCW7+e\nuPXrqZdjUXoW4Us/p+nyaUjkcvJjEwhbtAEAm8ae+L03mjNDZpcZ928Zau+K9oltoA9Oz7Uk93Yc\nLb9apq0rcsM20u6dZBlSnJHJ9Q/W47dsJhKFnILYBK4t/RQrXy985ozj3LDpRmMAPMZoflvrM2ec\ntszMS9eI/GgjVxd9TKPZY5Eq5BSlpBM+d0WNaIvS47M4XfOgjcqYI5dmrcBn+kg83+6PWqni8ryP\n9f7sRmW3BcCl2atoNGUYErkcVXEx4Qs+oTA5jcLkNOye8afN9tUgefR3rUXpWYQt+YLmy6cgVcjJ\ni0nk0qLPAM2caTJvFCcHzy0z7trabfjPHcmzP64EtZrEY6FE/7jfaJ3F6Vlce38D/u/P0I69q/fW\nDp85YwkdNsNoDIDHGM3TVn3mjNWWmRl2jcSDJ3B8rhV5t2N55ov3te9Ffb6N9LMXDO57da0X2rao\n4FyNWv8tjWaOoeXWtajValJPBBO74/eK5VRJ/ROxZtMj662s+fI4CtOzCV24ibarJiBVyMmNSSJ4\nnuaBfLX8GtBi4QgOD1hQZhyAlbsLuXEpeuWfnfs5zywYgVQhpyA5g9NTP6EwXbOGVOW+50REc23l\nRgJXzEQil1GSnfvYbfW/qjrWTeG/QaJW15DHIQllKioqYv78+dy5c4fCwkKCgoLw8vJi+fLlSKVS\nnJycWLFiBSYmJga3/+yzzzh8+DDOzs7Ex8ezYcMG9u7di6OjI4MGDaJDhw6cPHlSewvujh07HplT\ncrLxD5tVxcnJmiNt+1VrDl3P7OTPdpXziPPH0eX0Lg62HlCtOfQI/qna+wM0fXKsw6P/3EFl6nRy\nT41pi+rOo6bkAPBHK/0/EVCVeob8wNH2fao1h+dP7QaoEetFTZin1d0foOmTmjBHdjUbWq05APS9\nsKVGtIWSynt4T3nJGIxEoqjWHNTq4mpfN0Gzdj4NOlq8U90pPNLxPP2/7FDVxBXQp4SJiQkrVuhf\nYfn+++/Ltf24ceMYN26czmsTJ07U/v+TJzW/u3BzcyvXyacgCIIgCIIgCA+oasgtrjWdOAH9D/np\np5/47bff9F6fNm0azZs3r4aMBEEQBEEQBEEQHhAnoP8hAwYMYMCA6r2lShAEQRAEQRAEwRhxAioI\ngiAIgiAIglBB4hbc8hF/hkUQBEEQBEEQBEGoEuIEVBAEQRAEQRAEQagS4hZcQRAEQRAEQRCEClKL\nW3DLRVwBFQRBEARBEARBEKqEOAEVBEEQBEEQBEEQqoS4BVcQBEEQBEEQBKGCxFNwy0dcARUEQRAE\nQRAEQRCqhDgBFQRBEARBEARBEKqERK1Wi2vFgiAIgiAIgiAIFdDGYkR1p/BIZ/O+qe4UxG9AhX8v\nOTm7ulPAycmaQ236V2sO3c/u4GDrAdWaA0CP4J/4s13fas2hy+ld1d4foOmTP1oNqtYceob8UGPa\norrzqCk5ABzr0Lta8+h0cg/7Ww+s1hxeDP4RoEasFzVhnlZ3f4CmT2rCHAnp/HK15gDQ6q/fa0Rb\nSCSKas0BQK0uRsn2as1BxuBqXzdBs3Y+DVQSVXWn8FQQt+AKgiAIgiAIgiAIVUKcgAqCIAiCIAiC\nIAhVQtyCKwiCIAiCIAiCUEHiz7CUj7gCKgiCIAiCIAiCIFQJcQIqCIIgCIIgCIIgVAlxC64gCIIg\nCIIgCEIFqRFPwS0PcQVUEARBEARBEARBqBLiBFQQBEEQBEEQBEGoEuIWXEEQBEEQBEEQhAoST8Et\nH3EFVBAEQRAEQRAEQagS4gqo8NRz7NAc77FvIjVRkBN5m/D3v0CZm1/+OKkEnylDcWjTFIlMxu3t\nvxKz9xCWHnVpsmTygwKkUqy93bk4ezUW7rVx7d5B+1bH3z5HYW1BXkwiUhMF2ZF3CF9mPI+G4wbp\nx0kl+Ex5C8e2mjyit/9KzJ7DANRq4Y/P5CAkMinFmTlc+3gLORG3Ne81b0zDCYMBeOazJVxZth7L\nBm54jR2MRCEnN+oOV9//DGWebi4O7Z8pM8bU2YGWmz4gOGgGxZnZOtvWfqULTp1ac2nm8irrj9Lq\nvNoZ506tuTBjhfY1r9EDcO3eHmV+oaa7TBSoiooBcOrQnEbjByI1kZMdcYfLy76ixEBOxuKkpgr8\nZ43A1s8TpFIyL0cSvvIbVIXF2Lfww3fKECQyGcWZ2Vz96DuyI+5UelvYNPbCZ+pQZOZmIJUSvfUX\nEvafAKBur264D3gJdYkSAJfuHfAY+kal5OH4bAsCFoynIDFFW07I6AUo8woIXD4da+/6AHTYsw65\npTnFmTlPPIdaLfxpNHEIErkMZWER19dsJutKlM64uE9iokB9b1yUZt+uBR5jBiM1UZAbeZvrH27Q\nmzPGYmSWFvjMHY9F/bogkZD4x1Hubt+rV4cxTh2a02jcQO2aELbsS4NtYyxOaqrAb+YIbP28QCoh\n83IkV1ZpxqdNY08aTxuKzNwUiVTKze/26ZX7qLWgPDH/dr0wuI8VmKtyS3OazB+NZYM6SCQSYn8/\nzs3vftXZ1u3V53Hp3JJz01Ybz6GS+uO+uq8+j8vzrfhn+irta1WxdprVdqLtlhX8M2kZWdduAlD/\nzVeo82pnABqtfp/bH62jMC4B27atcHt7KBKFgvyb0dxatRbVQ+PCaIxUSv1JY7Bu2gSAzLOh3P3i\na9396NmdWs+2I+K9JeXfx0psiwZvva5zXI+Jicba2hpbWwe9eh/H5s1fc/nyZdas+bhC5fwbarWa\n9+buw7uhEyNGtn/0Bo+pOtdN4ekmroAKTz3/eeO4NHcNp/pPIS82iYbj3tSLUdhZG41z69Udi3qu\nnH5zOmeHz8V94EvY+HmReyuWM0GztP+lnb1I/IG/SToaTPR3v2hfB1AWFaEqUXJxzkec7DeV/NhE\nGo03nEfA/LEG4+r16o5FvdqcGjSDM8Pepf69POSW5jRbMY0b67ZxevAsrqzYRNMPpiBRyDF1tqfp\nyulcXak5sCcdPYPv3LE0fm88YXNXcXbgZPJjE/EaN/ihPGzKjHHt2YlnvliKqZPugVduY4XPrHdo\nNG0ESCRV2h+a+i1pPHsUvtOHQ6nq67zyPE7PtuDssLnaPmk4tj8AJnbWNFkwmvOzP+ZE3+nkxybR\naMIgvZzKivMa3guJTMrfb87h70GzkJqa4DXsdeSW5jyzcirXP93OyTdnE778G5p9OBmpQl7pbRG4\nfDpRG3dyJmgW56d+gM/kt7Co54pZbSe8xwwk9J0FnBky814eYyotD7vARkRv/1VnrijzCjTvBTQk\ndMxCTd+ZmxHy9rwnnoNELiNw2RSufPAlZ4bM4tY3ewhYNFFvXNznMcpQvTb4vDeBK++tImTQRPLj\nEvEYG1TumAajBlGYnEpo0BT+eXsWdXq9gI1/I716DNGsCWM4P+djTvSbRl5sEj7j9cdnWXFew3sh\nkcs4OXg2J9+chczUBM+hbwDQfMU0Ir/ayakhcwidshzfKfr7VZ3rRWlPYq42HNOfgqQ0/h44i1ND\n51GvT3fsmjTU7IeNJf5zRtJ45lB0FpBytnN548rqD4WNJX5zRtJ4xjC9NqnM9QI0X8o1WTwRieLB\ntQf7Vk2o81oXgt+eB0D6iVN4zJqK3NYGj1lTiFz4AZeHjqYwPoF67wzXyaWsGIfuXTCr58blkeMJ\nf3sC1k0DqNXpWQBk1lbUnzoe94ljquU4YqwtHj6u5+bmMmCAfr3l5evry5EjB+nfv++/LqMioqKS\nGTF0K/v/CK+U8qtz3azJVBJVjf+vJhAnoFVkwoQJ5Y7t378/MTExFarv0KFDJCYmVqiMp0Xm1Sjy\n7iYAELPnIK4vPqcX49CmqdE4506tif31KGqlipLsXBIOnaL2ix11trdr5otzl7ZcXbHRYA75dxPI\nuHhdW/7d3YdwffFZw3lciTIY5/x8K+J+eyiPns9h4V6bkpw80kIuA5B3O46S3HzsmjTCpUtbUk5d\nIPv6LQDifj5E6unzZF2NJD9GU0fsngO4vqDbJvatmxqNMXGshWPH1lyc9oFe/s5d21OYkk7kuu8M\ntgNUbn+43qv/xqdbdcqz9vUk6VgIJTl52tdcu7QBwLFtIJlXbmrrurP7EHVe7MDDyopLP3+VyG/2\ngloNKjVZ16Mxc3XCwr02xTn5pIZoDvC52r5pWKltITVRcHPTTtJCwgAoTEqjKDMbU2cHJDIpErkc\nmaW59sNdYWpGpfWJXRMf7Fv602bLclp+uRi7Zo0BzdUFmYU5jWePAkBVXELRvStjTzIHdYmS46+M\nIftGNADmdV20V+AMjQunzu306q3VuhnZVyPJj4kHIG7vflx6PFfumKi1XxO1/lsATBxqIVEoKMnN\nozwc2wTqrQm1DawdZcWlnb9GVOnxeSMa89qOSE0URG7aTeq9taMwKY3iDN2rk2WtBeWJqeh6obOP\nT2CuXl2zhWufbAPA1NEOqYlc2/+u3dpRmJLB9U+2G8+hEvtDJ4dP9XOo7GOZ78yRxP1+jOKMLO1r\nhakZXFuxUXt1Me96BCYuzti0eobc6xEUxsYBkPTL79h3fV4nl7JiJDIpUnMzpAoFEoUCiUKOqqgI\nAPvnn6M4NU3vimh1t8XD/vjjAPv3HzD6/qOMHz+WzZu3sGPHrn9dRkX8sD2UXr2b8WJP/0opvzrX\nTeHpJ05Aq8j69eurtL7vvvuOnJycKq2zuhQmpj74/0mpKKwsNB++SzFzcTAaZ+biQGGS7numzvY6\n2zeaGETkFz/q3QJk6eEGQGZYBAVJ5cvDWJyZiwMFpXIsSErDzNmB3DvxyCzMcGgTCGhuvbTydMPU\n0Q5L99oo8wtpskxzq7D/0mmY1LLR3Z/kVORWlsgsHuSit8+lYopS0rk8dxV50fpfgsTtPUj0NztR\nFhbpvactqxL7I2bvIW5+vUuv/qzwCJyea4HC1lp70mXmaKet6+F2VVhZIDfUN0biUs6GkXdH8yHH\nzNWRBoN6knDkDHl34pFbmOHYRnObma2fJ9aebpg61qrUtlAVFRP361/a1+u+0RWZuRmZl2+QH5PI\n7W376LBjLR3/70sAMs5fqbQ+KcrM5u6uA5wdOofIz76n6coZmDrbY2JvS1pIGFeWfwVAcU4u/vPG\nVUoOaqUSE3tbnvv1CxpNHEL0Vs1tpjrj4h4Th1o8zNTZgcKkB7cQG5ozj4xRqvBdMJlWW9eSef4y\neXfi9Oox5OE1oaCca0fpuNSzl8i7o/mAZ+bqSP2BPUk4chZVUTGx+x6ME7c3uiKzMNMrtzrXC719\nrOBph/EqAAAgAElEQVRcBVArVQQuGc+zP64k7dxVcm5r+uLunsNEbtpdZj6V2R/3c4jatBtVgX4O\nlbl21n2tCxK5jNhfjuiUl3vzLunnr2r/7TZqGOnH/sbEyYmipGTt60XJKcitLJGWGhdlxaTsP4wy\nO4emO7+j2e6tFMTGk3k6GIDkX/8g7rsfUFXTccRYW9x3/7i+YMEio/mVx8SJk9m2zfiXHZVt3oKe\nvPZGYKWVX53rpvD0Eyegj2nPnj2MGzeOoUOH8tprr3HgwAGCg4MZNGgQQ4YMYe7cuRQXF7Nnzx4G\nDx7MoEGDOH36NB06aL6dvXLlijZ25MiRxMVpJtvHH39M7969GTduHOnp6WXm8MorrzBhwgSmTp1K\ndnY2kyZNIigoiKCgIK5fv87Ro0e5evUqs2fP5tatW/Tv31+77f2rq+vWrWPEiBEMHDiQqKgoBgwY\nwOTJk+nduzcLFy6svAasImrlQ7cYSAwPdbVSBVIDtwCpHmxv26QRCjtrEg78rRfmPvAlTXhJieFE\nHspDYqiu+3EG3lOrVChz87kwYzUew96g3faV1Hm5I2mhl1EVlyCRy3Du1JKoL38CID00DNeHrt6W\nLktLaqQ9VJVza8aT7A9D4v84QeKfZ2ixYQGtNi7VbFJ8r0+M3OKln9Oj42x8PWi7cSG3dxwg+e/z\nlOTmc276ajyHv0GH7cup81JHUkPCH9Rdrnor1hYN3nodr1H9uTBjheY3qW0Cce7chuOvjeX4S6MB\nqNUioNLyuDRnDcnHQgDIuHidzEs3cGgdSFZ4JBdnr6YoNQOA7KtROHZojkQue+I5ABSlZXLi1TEE\nvz0P//ljsahXW2dcaDcxMFcl5ZgP5Ym5tuQTTr48DLmNFfWH9zMYX9669deOR8fZ+HrQ5qtF3Nl5\nkOS//9EJ83jrNbzf6cs/01fqbl+etaCq1osnOFcvLdjAke7voLCxxPvtPuVPoYr6o7yexByx9vHA\nrXd3ri43fAcPaG5nBVDmFxCzaYvxY5XOnDAeU2fomxRnZHKh92Au9h+K3Noal369jNZfHlXVFveP\n61lZxq+OCtW7btZkqqfgfzWBeAjRv5Cfn8/mzZtJS0ujX79+SKVSduzYgYODA2vXrmXv3r3I5XJs\nbGz4/PPPdbadN28e77//Po0bN+bw4cMsX76cUaNGERISwq5du8jLy6NHjx5l1p+Xl8e4cePw8/Nj\n1apVtG3bljfffJPo6Gjmzp3LDz/8QOPGjVm0aBEKhcJoOZ6ensybN4+YmBiio6P5+uuvMTc3p1u3\nbiQnJ+Pk5PRE2utJs7AwwdT0wdA1uXelC8DUyZ7izBxUBYU62xQkpmAb4G0wriAhBRMH3TIKktK0\n/3bt3p74/zuuuZ2qFK/R/bUPbqj7ehdyIu/ola98OI+EFGz99fNQFhRSkJCK6UP7UpiUChIJJfkF\nhI598KCG9j99RF5MIoXJ6WRcuqG9BSnu1yM0mjYCUyd73TqysnXapCAhGRu/hmXGlJfHqAE4PttS\n++/K7g9D5DaWJBz4m+gtPwPQ/ewOJDIZHbZ/iNzSnOzIuzrlFRnqm8RU7B7KqXRc7e7t8Js9giur\nNhN/4JQmSCJBmV9A8BjNSW/D0X1xaN0Zi3quld4WEoWcgAXjsfSoS/Db8yiI11yJcHquJSW5+bT4\ndJ7OdpWRh9zKArc+LxC9pdSDIySgKlHiN38c9s0bax8gY2JvByo1apUKM2eHJ5eDpTm1WgZoT4Kz\nr98iO+I2Vt7uFGVmacdF97M7ALS3gunUm5CMden54OhgcM4Yi6nVuhm5N29TlJKOKr+ApMN/49Sp\nrV4993m/0w/nji0Ayj0+8w2sHaXjXLu3w2/WSK6u3kz8gZPaOIlCTuCCsVh6unF25ALy45N1yi3P\nWvAk14uHNRzd97Hboqy56tg2kOzIuxSmpKPMLyT+4Clcu7QuM4eq7I/SLN1r037bgwczVdZ6Uful\njsgszWm9aZn29YAlk4hYt5XkE+ew8nan2SrN7x4jFywDlYqixGQsG/s8yM3JgZKH+rysmFrPtePO\np1+iLilBWVJCyoEj2HfqQOJOww+ZqTN8CLXat6n2tkAqwblzG/6NxYsX8tprrwKwb9+vLFy4+F+V\n87So6nVT+G8RV0D/hVatWiGVSnF0dMTc3JyEhASmTJlCUFAQJ0+eJDY2FgAPDw+9bZOSkmjcuLG2\nnIiICKKjowkICEAqlWJlZUWjRo/+Efb9sm/cuMHu3bsJCgpi/vz5ZGZmlrmdutRJVOn83N3dsbKy\nQiaT4eTkRGFhxT9YVJa8vCLS0/NIT9f8VsA2oKH2A79b7+4knQjR2yb17EWjccnHQ6n7ahckMily\nKwtcurcn+Viwdttazf1ICw3TKzPxz7MUxGk+zAWPmKdf/vFQA3lcMhqXdDyUuq921ubh2r09SUdD\nQK3mmY/nYNPYEwCXrm1Rl5SQE3GbpKPB2AU2wryO5ssC5+fbkBsdg42fN+Zumjrq9OpBynHdNkkL\n1rRHWTHldWvjT4QMnUnIUM0Dbyq7PwyxaexF0xUzkMhkSGSaZS3iyx2cHDyX08MXYFeqLvc+3Qz2\nTcqZS0bjXLu0pvGMoYRM/PDBySeAWk3LtbO1fZMdeZfcOwmc6De90tui6QfTkFmaE/z2fO3JJ2hO\nwOTmpoS8M1/7MA3UqkrJoyQvn3p9X9B+YLNu1ABbP29ST18g8fApkEoJHa/5EFareWNSzlwAlfqJ\n5qBWqfCfNxbbQM0HYUsPNywb1CUzPEJnXNyXdPCEXr3pwRex8W+EuVttQDMfUh/Kr6wYpy7tqT98\nAKA54XPq0p70f/TXjPvuPxTo1JA5nBkxH7sA7wfjrrfh8Zl69pLROJcubWg8fRihkz7QO9lp/uEU\nZJbmBk8+oXxrwZNcLx4W8eUuTg6e++Tmare2eI/qDYBUIce1W1vtb7SNqcr+KC33Try2Xqi89eLG\nx1s41W+K9gE7hclpXF7wKcknzmHu5kKLzxZy85vdmgruXZnKDP0Hq8Y+mNatA4Dzqy+RfvKMTi5l\nxeRFRGH/vOY3sRKZjFrt25Bz5ZrRtojbvI3wURMJHzWx2toCwMrLnZKsXKN5lmXhwsU0b96S5s1b\n/udPPqHq103hv0VcAf0XwsM1B7OUlBQKCwtxd3fns88+w9ramiNHjmBhYUF8fDxSA7ceODs7c+3a\nNXx9fQkJCaFBgwZ4e3uzfft2VCoVBQUFREZGPjKH+2V7enry2muv8eqrr5KamsrOnTsBkEgkqNVq\nTE1NSU1NRalUkpubq/Nwo9L5ScrxhMKa6srSzwn8cBoSuZz82EQuL9b83tbG1xO/98ZwJmgWxelZ\nRuNi9hzE3M2FtttWIVXIidl7WOc3MRb1XA1+cLOoV5v8+CQs6rlSlJ5F+NLPabr8fvkJhC3aoMmj\nsSd+743mzJDZZcbF7D6IRV0X2m1fiUSum0fY/E/xe/cdpAo5hSkZXJip+fMB2RG3ubria5qunAFA\nnTe6EzZnFeZ1nAn4YAZShWZfryxZh7WvF75zxxAydCbF6VlcXbZBL+Zp6A9D0s5eIqW5H223r9Le\n8nPr+/8DoCg9i7AlX9B8+RSkCjl5MYlcWvSZtm+azBvFycFzy4xrNH4gEomEJvNGaetMv3iDKys3\nc3H+epq8NwqJQk5hSjr/zFxT6W1hG+iDU8eW5N6Oo/W9W44BItZvJ+7XvzCv7USbLSu0f4Ym/P0v\nK61PLs5cic+MEXiN6odaqeLSvLUUZ2aTevoCd3f8QauvNPll3YjWjO8fP3ryOcxahc/UoUjlclRF\nxYTN/4TCpDQKk9K04+K+mJ90/yQHQHFGJtc/WI/fsplIFHIKYhO4tvRTrHy98JkzjnPDphuNAYha\n/y2NZo6h5da1qNVqUk8EE7vj9zLH7H1F6VmELf2CZsunIpXLyYtN1Fk7At57h1ND5pQZ12icZnwG\nvPdOqfF5nfgDJ3G+N07abDL8gdjYWlBV64VeW1Rwrl5buw3/uSN59seVoFaTeCyU6B/3P14OldQf\nV1dtLrPu6lg7GwS9gczUFPf+PQHw37gOVXExV8dN49bKtXgvnotE/v/s3XdUFFf7wPHv0pEuRVTA\nAjZUVBTLa9RYozH22ILGnhg7lmAFReyxxBZjErsRNZYYexdbYhfsioKK0kF63f39sS8rSBF/iTOb\n1/s5h3Nk9zL3cWZ2Z+7ce5+rT8aLlzyet5hSVV2oNGkst4eNJjvhVaFlAJ6u+okKY4ZTa+MaUCpJ\nvHaTiG0lT8Yjx76A/Nd1oXhyfm8K/34KleqNcYVCsXbv3s327dsxMjIiKSmJcePGoaOjw6pVq1Cp\nVJiYmLBw4ULOnDnD48ePmThR3TBo2rQp58+f586dO8yZMweVSoWuri5z587F0dGR1atXc/z4cezs\n7Hj58iWrVq3CwcGh0BhatWrFoUOHMDQ0JD4+nmnTppGUlERycjKjRo2idevWLF26lLNnz7Ju3TqW\nLFlCcHAwjo6OREVF8d1337Fnzx5sbGzo27cvz58/Z/z48ezYoR6i1qtXL5YsWVJk/bmio5OKfV8K\ntrZmHGvU6+0F36O2f+3gaMPessYA0O7Sdk42kSfde65WF3+T/XiA+pgc8ii4dIKUOlzepjX7Qu44\ntCUGgDNNu8saR4vzuzncsI+sMbS/FACgFd8X2vA5lft4gPqYaMNn5HLLjrLGAOBx6oBW7AuFougp\nTFJRqbLIQb5ERgC6eMr+vQnq785/A1dT+a/7b3MneYfcIYge0P8PDw8PTcMy10cf5U/T3r17/g/r\n+fPqYTiurq5s3Vrwy2TEiBGMGDGiRPWfPHlS828rKytWr15doIyXlxdeXl4A+PkVXOR59OjRmn87\nODhoGp9Avn8LgiAIgiAIgiD8U0QDVEsFBQWxaNGiAq936NCBL774/y+MLAiCIAiCIAiCIBfRAH1H\nb/Zsvi9ubm5s3rxZkroEQRAEQRAEQfh7VFqyzIm2E1lwBUEQBEEQBEEQBEmIBqggCIIgCIIgCIIg\nCTEEVxAEQRAEQRAE4W9SKsQQ3JIQPaCCIAiCIAiCIAiCJEQDVBAEQRAEQRAEQZCEGIIrCIIgCIIg\nCILwNylFFtwSET2ggiAIgiAIgiAIgiREA1QQBEEQBEEQBEGQhBiCKwiCIAiCIAiC8DepyJE7hH8F\nhUqlUskdhCAIgiAIgiAIwr+Zi1knuUN4q0dJf8gdgugBFf7/oqOT5A4BW1sz1lT/WtYYht/7kd31\nvpQ1BoDu1zfxrcNYWWNY+Px7nvXxkDUGAMeAyxxo8IWsMXS88qvWnBfb6wyUNYbeNzewyHmkrDFM\nClkFQA5bZY1DF0921Bkgawy9bm4E4Le68sbx+Y2NHGvUS9YY2v61gw01h8oaA8DA2z9rxfHIOl9T\n1hgA9Jve1op9ccijr6wxAHS4vI0zTbvLGkOL87tl/94E9Xen8L9DzAEVBEEQBEEQBEEQJCF6QAVB\nEARBEARBEP4msQxLyYgeUEEQBEEQBEEQBEESogEqCIIgCIIgCIIgSEIMwRUEQRAEQRAEQfibxBDc\nkhE9oIIgCIIgCIIgCIIkRANUEARBEARBEARBkIQYgisIgiAIgiAIgvA3qciRO4R/BdEDKgiCIAiC\nIAiCIEhCNEAFQRAEQRAEQRAESYghuIIgCIIgCIIgCH+TyIJbMqIBKvxPc2pRi0bju6FroEfs/XBO\nT9tEVkp6keVbzhtA3MMX3Fx3DABDi1I08/XEpoYDWamZ3N9zgVtbTr21XvuP6lBzdE90DPR59fAZ\n12b9THYh9RZVrtGiUZg4ltGUMylnS8y1e9xavgOPud9oXlfo6GBRxZE/Jyx/a0zVW7nSYUon9Ax0\neXn3BTsnbiMjOaNAuf8MbEbj/k1BBbFhMfz2bQApsckA+NycQ2JEgqbsmTUnub7n6lvrBjCq1xSL\nPiNR6BuQ9fQhcT/6o0pLyVem1EcdMOvUD1SgykwnfsN3ZD2+m6+M9fiF5MRHk7B+UYnqBbBrWpdq\no/qgY6BH0sNnBM1eS3ZKWonL6ZkY4+bzFaYVy4FCwfMDZ3m88Q9MK5Wnrv9Izd8rdHUwd3Hi6qSl\nhcbxvs6Li+OWYdOgBrW9+qDQ00WZnsnNhVuIv/24wLbLNquD25jP0THQ49WD51ya+UuhMRRVzsDc\nhPrTv8SymhM5aRk8+f0cD7cdx7xyORrPG55nXyiwrOLIufErij84QOWPa9J8Uhd0DfSIvhfO4Slb\nyUwuGJNrFw88hrUBFWSlZ3LCbyeRwU8BGHlpPsmRrzRlL/10nLv7Lr+17nehUqmYNmUfLlVsGTzk\nP//Ydss2q0PtMT3/u6+fcbmYY1JYOYWOgnpTvsS2fjUAIs4FcXNJAAAG5ibUm9wPc+fy6Brqc/fn\nPwqNwb5ZHWqN7omugR6vHj7jShExFFlOR0G9yfljCFqqjqFs87p4zB5GakSsZjunB80FwKZpPVy+\n+QIdA32SH4Vxe84acgr5bBZZTkdBtXEDsG5UB4WuLmFb/+D5HvX3t1X9mlQd3Q+Fni45GZncX7ye\nxDshALjNn4CZSwUAOu/y4eWl+1xesL1AvQ7Na+M+rge6BnrEP3jO+Rkbir2GfDRnEPEPw7m94WiB\n91ouG0FqdAJ/zfm1yL8v0b4uabl3PCZvc+amkmW7lGRlQVVHBX6DdDA1Vmje//28kk1HX998J6dB\nZDwc/04XU2Pw36Lk9hMVShXUrqxgej8djAwUhVWl9fvCtmk9qo7MvVY85ZZ/4deUosrpmRhTe8bX\nmFQsh0KhIPxAII83Ff7ZLErpJvWpNNwTHQN9Uh6FcX/eKnJS00pURtekFNWmjKRUhfKgUBB56DTP\ntu55p/rfxfv67hT+vcQQXOF/lpGVKS3nDuDomB8J6OBL4rMYGk/oVmhZy8r2dNrgReX2DfK9/p8p\nvchKTWd7x5ns6TMfp2Y1cfq4drH1GliZ4T5rGH9OWsGxbt6kPI+i1pje71Tur0krOdlnBif7zOC6\n3zqyklO5MW8TSY9faF4/2WcGUX/e4tmhi7w4eaXYmExKm9BryRds/modi1rMJfZpLB2mdC5Qrnxt\nB5p/3ZLVXZexpM18Yp5E88mkTwGwrWxH2qtUln2ySPNT0sanjpklpYf7ELvUm4jxn5MdFY5l31H5\nyuiVrYCl5xii540hcrInibt/wWb8wnxlzDr1x7B63RLVmcvA0gw336+5+u0yzvSYSGp4JNVH9Xmn\nclW/6Ul6ZByBvb05/+UMKvRog2XtKiQ/Ceec51TNT8yfwYQfPk/EqYINn/d5Xij0dGm4YCTX/NZx\nsvd07v28jwb+XxfYtqGVGQ39hnB+wkoOdZlCcngUdcb2fKdydSf1JTs1g8PdpnK832zsm9ambPM6\nJD5+wdHePpqfyIu3CTt4kfATxZ8jxqVNab+wP3tH/sQvbf1IeBZD80ldCpSzqmRHi8nd+G3QKjZ2\nmsfFVYfpunqY5r30xFQ2dpqn+fmnG58hIdEMHrCZw4du/6PbNbQyw8NvKBcmrOBwl8mkhEfjNrbX\nO5Wr8FlTzCrac/TzaRztNQPb+tVwaOsBgMfsYaRFxXOstw9nvlpIPe9+BbZtYGVGg1lD+XPiCo50\nnUzK82hqFxJDceU0MfScxrHeM7BpUI3y/43Buk4VHmw6xPHePpqf7FR146Hm9BEETVnMhV7jSA2P\nosqILwrUq29pVmQ5h25tKeVoz8UvJvDXoCk49fkUc1dnFHq6uPmP487cH/mz37c8WbebWjNHa7Zp\nWasKV4b7ArCvh1+hjU9DK1Oa+g/i1LjV7PlsOknPo6k/vkehx9Giclk+WTeBip80KPT9WoPbU6Z+\nlULfK4wcx6Q4cYkqZqxTsmykLvvn6eFgC0t/y9/T06WpDrtm6bFrlh4BM3SxsYCpnjrYWChYu19J\nTg7smqXLbj9dMjLh5wMl6ynStn1hYGlGbZ+vue69lLOfTyAtPIqqo/q+U7kqw3uRHhXHuT7fcmHA\ndBx7tMWydsnPD31Lc6pNG8WdaYu43Hc0aS8iqfRN/xKXqTisLxnRsVzpP45rQ7+lXLdPMK9ZtcT1\nv4v39d0p/LuJBqjwP8uxqStRwWG8CosC4E7AGVw6NSq0bC3Pj7m3+wKPD+dvyNm6OvFw31+olCqU\nWTmEnbmF8yfuxdZbpnEtEm4/JuVpJABPdp7EsUOT/1c5hZ4u9Wd/RdCiraRFxuV7z7peVcq38eD6\nnPXFxgNQtUV1nt18SsyTaAD+3HSeet3qFygXHvychc38SU9KR89QDwt7C1LjUwGo0KASyhwlX+8Y\nhdcxb9qM+wSFTsmeXhu5NSYz5A7ZEc8ASD62i1Iftc9XRpWdSdxaf5QJ6qfQmY/vomtpDbrqgRqG\nrvUxqtOE5OO7S1RnLpvGbry685jUZxEAhP12nHIdmr5TuTvfbeLu91vVcdhYomOgR3Zyar6/t6pb\nDfvWDbk1b12hcbzP80KVncOhT8by6n4YACYOtmS+Si6wbfsmtYi79YTk/2770Y5TOH1aMIbiypV2\nrUjo/gvqz0R2Di/PBuHYxiP/vqxXFYc2Dbjiv7HQfZFXxY9qEBEURkKo+ty8sfUsrl08CpTLyczm\nyJStpEQnAhAZHIaJjTk6+rqUd6+MKkdF761jGXhgKk1GdSjxuVlS27ZeoVv3urTvUPMf3W6ZJrWI\nu/U4z74+WegxKa6cQlcHPWNDdAz00dXXQ0dfj5zMLAzMTSjTuCa31+wFIC0qnuP9ZhW67fjbr7cd\nsvMkToWdm8WUU+ioY9A10EdHXw8dPT2UGVkAWNdxwdbDlda/zuLjdVOxca+m2earuyGaz9zz3Uex\nb9+sQL3WjeoUWc6uRUPC/ziNKkdJdlIKEccuULZ9c1TZOQR+NpykB6EAGJcvQ9arJACMytqiW8qY\nGt7qBxhN/QdhYGFSoN7y/6lJzK1Qkp6qryH3A05TuWPh15DqfVvycM95Qo8UfBho37Aa5T+qyf0d\npwv928LIeUwKc+G2ipqVFFQoo/5c9W6pw4E/VahUqkLLrzukorSZgl4fq28z61dV8HUnHXR0FOjq\nKKhRQcGLEnY4atu+ePNa8XTXMcq1f/s1JW+5u4s3cu/7LUDR15TiWDWsS9LdR6Q9fwnAiz2HKdOu\nWYnLhCz7hZCVGwAwsLZCoa9PdkrJ638X7+u7U1upUGr9jzYQQ3D/x+3evZvjx4+TkpJCfHw8I0eO\nxMDAgJUrV6JSqahZsyazZs3i6NGjbN26lezsbBQKBStXrqR06dJyh/+3mJS1IjnidaMtOSIeQzNj\n9E2MCgyhOjdbPRTHoUn1fK9HBj2hSudGRFx7hI6BPpXb1UOZXXyKbWN7a1LzNBbTouLQNyuFnolR\nviFDJSlXsVsL0qMTeHGqYC9Sba++3F75W6HDkN5kUc6KVy9eD5199TIBY3NjDE0NCwzDVWYrqflJ\nbT5f1IfszGyOLj4EgI6eDg/P3ueA/+/oGxkweONXpCelc+6XM2+tX9e6DDmxkZrfc2Kj0CllisLY\nRDMMNyf6JTnRLzVlLPt7kXY1EHKy0bGywXLABKLnjca0Tfe31peXcZnSpEW+vtNJj4pD37QUeibG\n+YZMva2cKkdJXb8R2LduSMTpKySHvchXT41xnjxYvaPQYVjw/s8LVXYOhqXNabXNDwNLMy55ryok\nhtL5tx0Zh0GhMRRdLjb4MRU/+w8xNx6iq6+HQ5v6BT4TdSf0JnjlrhKdm2ZlLUl6Ga/5PSkiAUMz\nYwxMjfINw00MjyMx/HVMLaf24NGJYJRZOejo6RB6/h5n5u9Bz1CfHr98Q2ZyOlc3vH24fElN9+kA\nwJ9/PvnHtglQyr50vodLRR2T4sqF/n4Wh7YedDq2DIWuDpEXb/HyzA1K16pMekwCVfu3p2xTN3QM\n9Li/6VDBGMqUJjUi/7YLOzeLKxe6Tx1Dx6N5Ygi8AUDmq2TC9l/gxamrWNetwn+WjeN4r+kAZOT5\nzGVExaJvWgpdE+N8w3CNylgXWc6ojDUZUfnfM3VxAkCVk4NBaQsabVyAgaUZQdOWAWBQ2oK4y8Hc\nXfgzLZo3IDs1nY9mD+TkmPyfGZOy+f+/KZHxGJiVKvQakjustlzjGvleN7a1oOHkvhz7ainVerUo\nsO+LIscxKU5EHNjnuSUoY6UeYpuSDqbG+cvGJ6nYeETJDl9dzWtNa73u73gRo2LzUSW+A0rWB6Jt\n+8KojDXpJbimvK2cKkeJm99I7Fs1JLKQa0pxDO2syYiK0fyeER2LnqkJuqWMNcNw31omR0l1n7HY\nftyEmMC/SH1a8vrfxfv67hT+3UQP6AcgLS2N9evXs27dOvz9/fH19WXt2rXs3r0bJycnIiIiCA0N\nZe3atWzbtg0XFxfOnTsnd9h/m0Kn8NNbpSz505+LC34DFXy+ezrtVwzn+YW75GQV3wBVKArveVHl\nKN+5nItne+799HuBMqXruGBgacqzQxff9l8oti5lTuFPr28fCWaW2zSOLTnMkC3DUSgUXPr1Ivt8\ndpOTmUN6YhqBP52mVge3EtVPUb1RyoL7UmFohPW4eejZOxD3oz/o6mI9Zg4Jm5ZoekffSVHnwRvH\noyTlbvis5librzEwN6XK0NcNYSu3KhhYmhF++EKRYUhxXmTEJXLok3GcGeBH/VnDMHWyL9m2lSWM\nQankxuIAUKn4ZPssmi4dTeTF2yjzfCas67hgaGlG2ME/C93Gm4r8nL55fP5L39iAziuGYFnBliNT\n1L3SQdsvcNJvJzmZ2WQkpXHll5NUaVenRPXL7Z84Jq7Du5IRn8S+lqPZ384LAwtTqn7ZHoWeLqYO\ndmSnpHFyoD9/eq+m7sSCQ1yL6i0ucG4WU871a3UMf7QazYFP1DFU6a8e5XBxwgrNw5LYGw+JvfkQ\nuya1Ct1WYfWiKOYcKSymPPsuM+4VZzsN59LQ6dSc8Q2lHMuSePsRN72/IzNW/VDuxqp9ODSvjZ0B\nLjwAACAASURBVI6+bv7tlPDYFEWhp0uL777m0oIA0mJevf0P8v6tDMekOMrCLxWFfm3uPKOiZT0F\nDrYFY7sdquLL+Tn0ba3Dx3VLdguqbfuiyPOiwHn79nJBPqs40fYr9M1NcBla+PDuQkMowf1NScrc\n8/ue8x0HomduSoVBBadjCML7InpAPwAeHh7o6OhgY2ODiYkJmZmZWFtbAzBsmHoIkrW1Nd7e3piY\nmPD48WPq1n23eXbaosHoTlRspb7xNDA1IvZBuOY9kzKWpCekkJ2WWeLtGZga8ed3u8h4pR6aUnfo\nJyT+d0hvXjW+6U7ZFvUA0Dcx5tWj55r3jOysyHyVTE56/npTI2Kxqu1cZDmLahXQ0dUh5uq9AvU5\ntGvE0/3noYjhTwDtJnbAta36Js/Q1IiIe697F83tLUhNSCHrjX1hXdEGM1tzQi+rk9dcDviT7vN6\nYWxhTPXWrry484KIu+qnpAoFb22M58qJicTQ5fUNp25pW3KSX6HKyN+LoGtdBptvl5AdHkq03zeo\nsjIwqFIbPbvyWPb3UpextAYdHRT6BsSvnVNknR9tVSc50TcpRWLIU83rRral/7uf8/f8pkfEYFnL\nudByNo3dSHr0lIyYBHLSMnhx5AL2rRpqypZt24TwA2cLHA+pzgs9U2PsPFw1N1EJ98J49eAp5lUc\nAGi33U8dg6kRrx6+jsHYzoqMV8nkpBWMwbp25ULLGdqbcnPpDjIT1T3X1Qd9qhnyBuD0SUNC/yj+\n3Gw6riMurdUPLwxMjYi+//rJu1kZS9IKOTcBzMpa0f2n4cSGRLDd83uy/zuEzrVrQ6LvPn+9HYXi\nrSMV5FRzRDfK5Z4XpsYlOiYpEXGUznNe5C3n0LoB1+ZvRpmdgzI5jdB953Bo60H4CfVw0Ce/nwUg\n+VkUMdcf4NhOfe62+e95oWdiTOIbMRR6br6Mo3Qt50LLlW/dgBvzN6PKziE7OY2wP87h0MaD0L2B\nOPdqxb1f9gPg+k03bOtXx6KKIwAGNpaa7RnalibrVTLKNz+bkTFY1HIptFx6RAwG1vm3kR4Vh56J\nMVYNahF9Rj0XOOn+E5IehmHq4oSBtQX6ZiZEn/3vCAKFApVKpR7lMKoLTi3V1xB9E2Pi8+yXUnaW\nZLwq+TXEpmYFzMrb0PBb9TxEYxsLFDo66Broc8G34PB012+6Ue5j9Xkh5TFR74Lih6yXtYbgPDnN\nouLB3ARKGRb8u8OXlEzx1C3w+sG/lPhvUTLNU4eOjYtvfGrbvqjy9efYNa+viSfp0TPNe4ZFXVMi\nY7F847zNf015RkZMPDlpGbw8mv+a8jbpEdGYub6eM2poY01WYlK+z05xZawa1iXlcRiZMfEo09KJ\nOn4O2xaNS1y/IPxdogf0A3D7tnrid0xMDFlZ6hu2hAT1k19/f38uXbrE8uXLWbp0Kf7+/hgaGhY5\nr0PbXVnxB7918+e3bv7s7r2AMnUqY1HBDgDXPs0JPXnznbbn2qcFHmPUyXqMrc2o0fMjHu6/VKDc\n3R92a5LDnP5yFqVrO2PipM5WWvnzVrw8fa3A30RdDC62nE396kRfvlNoXDb1qxN9qfD3ch397pAm\nWdDKzktxcq+ITSVbABr3b8rtI7cK/I2ZnTlfrB5AKSv1fKh63RoQcf8lqQmplKlWlnYT1HPr9Iz0\n+c/AZtz843qxMeRKD/oTA5da6NmrbzpN2/Qg/UpgvjI6JubY+f5I2qVTxC6fhipLfSHNfBjMy5Gf\nETnZk8jJniQf30XqxWPFNj4BTWKg84N8sKpVhVKO6t5Apx6tiTxTcEhz9J/BRZYr17YRVb5SP53W\n0dejbNvGxF55nVChtHt1Yi4VTLAg1XmhylHiPnMopeuobzbMKpfHrGJZ4oPVGT9zEwMd7z8bazdn\nTP+7beeeLXlxuuAxjLh4q8hyzj1bUmukOpmXYWlzKndvwdNDr3s7betXJ/It5+b5ZQc0yYK2fr6I\ncvUqYllRfW7W+eIjHh0PKvA3Rhal6LNtHA+P3GT/2PWaxieATdWyNPX6TH1uGupTr39z7h0oWYIs\nOdxevYdjvX041tuHE/393tjXrQo9JpEXg4ssF383DMd26rmJCj1dyn1cj9igEFLCY4i7E0rFzh8B\n6uNlXff1DWluwpVT/f0onWfblT8vOoaiyiXcDcMhbwwt1DFkpaTh3LsN5Vurk/O8OHmVnMwsTnyh\nTgBkkecz59C9LVFnCyaPiv3rZpHlogOvUL5TK/U8WNNSlGn7H6LPXEKlVFJz+jdYuKnn85lUcsCk\nYnle3X6IrrER1SYMRs9c/T1Xa/AnhB69ikqp4sbK39nXw499Pfw48MVcbN2cMXNSX0Oq9f6Ypydv\nFHNk84u++Zidbb7VbO/+9jM8OXy50MYnwJ0f9shyTCyrOWFVq3KBbef1n5oKbj5WERapvjfYflpJ\nq7oFG2qvUlQ8i4K6zvlfP3pFyfxflawdr/vWxqc27ouHP/7Gec8pnPecwsVBPljmu1a0ISqw4Nzf\nmD+Diixn36YxLsPUo2h09PWwb9OY2MslT9ITf+km5jWrYuxQFoBy3doR+8Znp7gytq3+Q4VB6uR2\nCn09bFv9h/hrwSWuXyiakhyt/9EGogf0AxATE8OAAQNISkrC19cXlUrF119/jY6ODq6urnh4eODu\n7k7v3r3R09PD3NycqKiCvXz/NulxSZyeupG233+Frr4eic+iOemtTthjW6sCLWb357du/sVu4/ra\nQ7RaMJhe+3xAoeDKyv1E3wor9m8y4pO4OvMnGi0ajY6eHinPo7gy40cALF0r4e4zmJN9ZhRbDsDU\nqQwpL2IKrcPUyZ7UF9El3hcpscnsnPAr/X4chK6+LnFhsQSMUydAcHBz5PNFfVj2ySJCLz3m5PKj\nDN85GmVODomRiWwc8jMAx5ccpqv/54w/PhldfV2C9t/g0q8lGwKsTIwnbo0f1l7zUejpkx35nLhV\nM9GvXIPSX00ncrInJm17oGtjj7FHS4w9Wmr+Ntp/BMrkdxu+lldmfCI3/X6k/oKx6OjrkfI8kpu+\nPwBgUaMStacP45zn1GLL3Vm6ldpTh9B8+wJUKhWRp6/yZNthTR0mTvakvSz+eLzP8yInLYM/xy+j\nziRP9TIsmdlcnvoDaVHx+WOIS+KSzy80/W4kOvp6JD+P4q9pPwFg5VoRD9/BHO3tU2y5u78coNGc\nr2i/yx8UCm6v2Uvc7ddze8wqlCElvPDztjCpsckc8t5Cl5VD0dXXI+FpNAcnbgKgTG0n2s/1ZGOn\nedT1bIZ5udJUaVcn3/Da7f2Xc2H5QdrM7M3Ag9PQ1dfl/sHrBG0veji0NlHv65/5z3ejNPv60rS1\ngPqYNPAdzDHNMSm83I1FW6k3uT/t985DpVQR9ddt7q0/AMAFr+9xn/olzj1boVAouPPjXhrMGJQ/\nhvgkrvj+TONFo/577kdxafrrGOr7DuZ4b59iy938bit1J/en3Z7XMdzfcACUKi6MW0Zd7/64ftMN\nVU4Of327iswEdZKsO7N/wG3eeBR6eqSFR3Jr1koAzKtXxnXacP7s/y1Z8YlFlnu++yjGDmVovGUR\nOvp6PN9znPjr6qWbbn67iGpeA9QJZzKzCJ7xPRlRcWRExfFsxyE81s4GwMzRlgu+mwocm/S4JM5N\nX0/LZd+go6dH0rMozk5VJxmzrlmBpn4D2NfD7x86E/KT45i0+HlKkfFYmyvwH6yD16ocsnLA0VbB\nvKE63HqiwndDDrtmqW8nn0aBjSXo6+VvnC77TYlKBb4bXt/81nNRML1/wZ5Sbd8XmfGJBPutod78\ncejo65H6PJKgmasBMK9RmdrTh3Hec0qx5e4t20LNKUP4KGAhqFREnrlCaMDhIut8U1bCK+7PXYmr\n/yQU+nqkh0dwb/ZyTKs7U23yCK4OnFBkGYCQlRuoOmk4DTYvQ6VSEXv2EuE7DpS4fkH4uxSqf2tX\nl1Aiu3fv5vHjx0ycOPEf33Z0dNI/vs13ZWtrxprqBZebkNLwez+yu96XssYA0P36Jr51GCtrDAuf\nf8+zPgUzmErNMeAyBxoUnOsmpY5XftWa82J7nYGyxtD75gYWOY98e8H3aFKIOsFMDltljUMXT3bU\nGSBrDL1uqnvgfqsrbxyf39jIsUYFl9OQUtu/drCh5lBZYwAYePtnrTgeWeflz1Sq3/S2VuyLQx4F\nl1aRWofL2zjT9N0S7/3TWpzfLfv3Jqi/O/8NypmVPNmYXF4kvT155PsmekAFQRAEQRAEQRD+Jm1Z\n5kTbiQbo/7ju3eV9ciYIgiAIgiAIwr9Teno6kyZNIjY2FhMTExYsWFBgqcZ169axf/9+FAoFw4cP\np23btsVuUyQhEgRBEARBEARBEArYtm0bVatW5ddff6Vr166sXr063/uJiYls2rSJgIAA1q1bx9y5\nc9+6TdEAFQRBEARBEARB+JuUqhyt/3lXV69epVmzZgA0b96cixfzJ6A0NjamXLlypKWlkZaW9tZl\nnUAMwRUEQRAEQRAEQfjg7dy5k40b8y8VZW1tjZmZGQAmJiYkJRVMQlq2bFk6duxITk4OX3/99uSg\nogEqCIIgCIIgCILwgevZsyc9e/bM99qoUaNISUkBICUlBXNz83zvBwYGEhUVxYkTJwAYMmQI7u7u\nuLm5FVmPGIIrCIIgCIIgCILwN6lQav3Pu3J3d+fMGfXSLYGBgdSvXz/f+xYWFhgZGWFgYIChoSFm\nZmYkJiYWu03RAyoIgiAIgiAIgiAU0LdvX7y9venbty/6+vosXrwYgPXr1+Pk5ETr1q25cOECvXr1\nQkdHB3d3d5o2bVrsNkUDVBAEQRAEQRAEQSjA2NiY5cuXF3h90KBBmn+PGTOGMWPGlHibogEqCIIg\nCIIgCILwN6l49yyzHyIxB1QQBEEQBEEQBEGQhGiACoIgCIIgCIIgCJJQqFQqldxBCIIgCIIgCIIg\n/JtZm9R/eyGZxaZclTsE0QMqCIIgCIIgCIIgSEM0QAVBEARBEARBEARJiAaoIAiCIAiCIAiCIAmx\nDIsgCIIgCIIgCMLfpEIpdwj/CqIHVBAEQRAEQRAEQZCEaIAKgiAIgiAIgiAIkhBDcAVBEARBEARB\nEP4mlSpH7hD+FUQPqCAIgiAIgiAIgiAJ0QAVJLVv3z65Q9AamZmZcocAQFJSktwhEBwcLHcIgiAI\n/1oJCQlyh0BoaChnzpwhIiIClUolSwzJycncu3eP1NRUSevVhuuoIPybiCG4gqR27NhB586d5Q6D\npKQkzp8/T3p6uua1rl27ShpDjx49aNy4MT179qRq1aqS1p3XV199xbZt22SrH2DdunWEh4fTuXNn\nOnfujLm5uazxyOHFixdFvleuXDnJ4ti7d2+R70n1GZkyZUqR782bN0+SGPJKTU0lMTERPT09tm/f\nTteuXSlfvrwkda9cubLI90aNGiVJDAD9+/dHoVAU+t6mTZskiwPg7t27bN++nYyMDM1rUp4X2rQv\nLl26hJ+fHzk5ObRv355y5crRs2dPSWMA2LJlC8eOHePVq1d07dqVp0+f4uPjI2kMhw8fZs2aNZp9\noVAoGDFihCR1515HfX19mTVrliR1vk1sbGy+z4iU15FcCQkJnDt3juzsbFQqFVFRUXz99deSxyEl\npciCWyKiASpIKjMzk65du1KpUiV0dNQd8IsXL5Y8jpEjR1K+fHlsbGwAiryZeJ9+//13zp49y8qV\nK4mPj6dz5858+umnmJiYSBqHhYUFGzduzHdMPvroI0ljWLp0Ka9evWL//v2MHTuW0qVL06tXLxo1\naiRpHMnJyQQGBubrnZaq0eXl5QWoL9gpKSlUqVKFR48eYWNjw549eySJASAkJASAGzduYGxsTL16\n9QgODiY7O1uyffHpp58CsG3bNurVq4e7uzvBwcGy9ZSPGTOGPn36cPToUVxcXPDx8eGXX36RpO7c\n76jjx4/j4OCg2RcvX76UpP5cuTfVq1atonXr1tSvX5+goCBOnTolaRwAkydPpl+/ftjb20teN2jX\nvvj+++/ZsmULo0ePZvjw4fTt21eWBuiBAwfYunUrAwYMYODAgfTo0UPyGDZs2MCOHTsYMmQII0aM\noEePHpI1QPX09OjRowdhYWHcv38fAJVKhUKhICAgQJIY8po5cyaBgYHY2dnJGseoUaOoXLkyDx48\nwNDQEGNjY8ljELSTaIAKkpo4caLcIQDqC4McPSl56ejo0Lx5cwB+++03Nm/ezK5du/jss8/o16+f\nZHFYWVlx79497t27p3lN6gYoQExMDC9evCA+Ph5nZ2eOHDnCzp07+e677ySLYcSIEdjZ2VG2bFlA\n2gcT27dvB9QPRxYsWICpqSmpqamMHz9eshgAJkyYAMCQIUNYu3at5vXBgwdLFkOzZs0AWL9+PcOG\nDQOgfv36DBo0SLIY8kpPT6d169Zs2rSJhQsXcuHCBcnq7tOnDwBHjx5l5syZAHTu3FnyfVG5cmVA\n/TnNfUDQtm1bNm/eLGkcoG6Uy9HIyqVN+0JHRwdLS0sUCgWGhoaSP8DMldvIyf3ONDAwkDwGXV1d\nDAwMNHFI2djx9fWlVKlSzJw5E19fX8nqLUpQUBDHjx/XPFSWi0qlws/PjylTpjBnzhy++OILWeMR\ntIdogAqSqlq1aoHhGA0bNpSs/tyeLUdHR65fv07NmjU170l9wVy4cCEnTpygYcOGDBs2DDc3N5RK\nJd27d5e0ASp3QxygZ8+eGBkZ0bNnT8aOHas5FkOGDJE0DpVKJWmDtzARERGYmpoCUKpUKaKjo2WJ\nIy4ujsTERMzNzYmPj5dljllqaioXL16kdu3aXL9+Pd9wMillZWWxceNGatasyaNHj0hLS5M8hoSE\nBJ4+fYqTkxOPHz+Wdc7Zzp07cXNz4/r16+jr60tef/ny5Vm7di01atTQNHjkeGgG8u8LJycnFi9e\nTEJCAmvXrpVlmCVAx44d8fT05MWLFwwbNow2bdpIHkP9+vUZP348kZGR+Pj4ULt2bcnqnjJlCjt3\n7kRfX1+y4fnFqVChAhkZGbL3OOrq6pKRkUFaWhoKhYKcnP/9DLEqlRiCWxIKlVwzxYUPUr9+/QoM\nx1izZo1k9bdq1QqFQlEgQYJCoeDEiROSxQHq+bAdO3Ys8MT6+fPnODg4SBZH3hu3hIQEHB0dOXTo\nkGT1gzp5RcWKFSWtszD+/v506tSJGjVqaF6T+sHE0qVLuXr1KrVq1SIoKIhmzZrxzTffSBoDwJEj\nR1iwYAEWFhYkJSUxY8YMWrRoIWkMISEhLFq0iCdPnlClShW8vb1xdHSUNAaAa9eucfz4cYYPH86+\nfftwc3PDzc1N0hiuXLnCrFmziI2Nxd7enpkzZ0oeA0B0dDRr1qwhNDQUFxcXhg8fjpWVlaQxFDZH\nWI4HadqwL7Kzs9m5cycPHjzA2dmZXr16ydL7COrP64MHD6hcuTLVqlWTJYbAwEDNvmjZsqVk9Y4f\nP56LFy+SnJyMhYVFvvfOnTsnWRy5+vTpQ2hoKBUqVACQbQjukSNHCAsLw8rKihUrVlC/fn2WLl0q\neRxSMjd2lTuEt0pMuyN3CKIBKkjL09OTrVu35huOIceXYlBQUL6bt7/++kvy+YahoaEcOXKErKws\nAKKiovDz85M0hjeFh4ezcuVKyW/mTpw4wa+//kpWVhYqlYqEhAT++OMPSWMA9dDG5ORkze9yPJgA\nuHXrluamtnr16pLXnys7O5u4uDisra3R1dWVLY5cUVFR2NnZSV7vgwcPNInClEolP//8M1999ZXk\nccgpIiICe3t7njx5ArwecglQqVIlSWOZP38+kydPlrTOokRFReUb0VOvXj1J67958yY3b97kyy+/\nZMKECQwZMgRXV+lvgN98KKCvr4+9vT2enp4FGmTvy8mTJ7l16xZjxoxhyJAhDBo0SPKe8VmzZmnF\nENyQkBCMjIzyvSZXz2zud8fly5fx8PCQJQYpiQZoyYghuIKk5B6OceXKFUJCQli/fr1mDpVSqWTr\n1q3s379f0lgmTpxI27ZtuXbtGnZ2dpKnjS9M+fLlefz4seT1Llu2DD8/PwICAmjUqJGkc+zyknOZ\noJ07d9KzZ08WL16subF/8OABBw8elHQeqJ+fHz4+PvTu3bvAHFipHxYtW7aMgIAAsrKySE9Pp2LF\nihw4cEDSGACmTZvGkiVLUCgUeHt74+LiIlndY8aMYfny5YXeSEvZs7J+/XqmTJmCj4+P5rzIbYRK\nnfn10aNHmuHhcpo6dSo3btwgLS2N9PR0HB0d2bFjh6Qx+Pn5aXqUxo0bx+TJk9m6daukMQBkZGTg\n6OhIgwYNuHnzJsHBwZQuXRpvb2/JRjmtWLFCcy4uW7aMYcOGSdYAPXXqFC1btqRatWqa+fy5evfu\nLUkMeU2fPl327PYAPj4+VKhQgSFDhnDkyBGOHj3KtGnT5A7rvVLxvz/M+J8gGqCCpDw9PdmwYQNN\nmzalRYsW1K9fX9L6zc3NiY6OJjMzUzO3TqFQMGnSJEnjAPX8vq+//prQ0FDmzZsn2+T88ePHa24o\no6KisLa2ljwGOzs76tWrR0BAAN27d5c06ytoR6MrN6NnboKTwoaKSyE3a+SSJUskr/tNp06dIjAw\nkLlz5zJo0CDZljdYvHgx48ePJz09nalTp9KkSRPJ6l6+fDkgzzC+vHJ7uDZv3kxcXBzh4eFUqFBB\nlkZgSEgIjRo1onTp0prPqxz75969exw4cAAfHx+8vLwYO3as5DHo6+vj5OQEqHMbyJV0Ji4uTvOd\n0axZMwYPHsy4cePw9PSULAY9PT3MzMwAMDMzk3Rf5M6Rj4mJkazO4pQqVYq5c+fmy24vR0P4zp07\nmpFd06dPl/R8ELSbaIAKkvrkk08A9Zd1hw4dNMlWpFK1alWqVq1Kz549KVOmjKR1v0mhUBAdHU1K\nSgqpqamy9YDmZtkEMDQ0pFatWpLHoK+vz+XLl8nOzubs2bPEx8dLWr82NLpyM79++umn7Nixg9DQ\nUKpUqSJ5ts/cZT+USiULFy7UxCHHQxpbW1sMDAxISUmhQoUKmuHqUsnbk+Hu7k5gYCBPnz7l6dOn\nkt/MBQcH4+vrS0xMDOXKlcPPz0+W9YN37drFTz/9hLOzM48fP2b06NGaTLBSkWO5k8JYWVmhUChI\nTU2ldOnSssRQrlw5lixZQt26dQkKCpJliDqol7AKCQnB2dmZkJAQUlJSiI+Pl/S65ubmxoQJEzT7\nQsqhyI0aNeLFixd0795dsjqLkzsUPDY2VuZIID4+HisrKxITEz+IJERCyYg5oIKkLl++zKxZs2Rf\nNHvv3r38+OOPZGZmaoaRST3X7/Llyzx69Ag7Ozt8fHzo3Lkz3t7eksYA6huHVatWERISQsWKFRkx\nYgSWlpaSxhAZGcnjx4+xtbXl+++/p3379nTs2FHSGEA9N/jAgQP5sq3mLn0hFS8vL8qXL0/dunW5\nevUqcXFxLFiwQNIYAPr378/QoUNxd3fn8uXLbN68mfXr10saw/Tp0zU3kxYWFgQGBvL7779LVv/K\nlSuLfG/UqFGSxQHqB0X+/v64uLhw//59Zs2axa+//ippDACff/45W7duxdDQkNTUVAYMGMDOnTsl\njUFbkhAtWbIECwsLYmJiiIiI4Pnz55Lvi4yMDLZt28aTJ09wcXGhd+/esiQhCgoKYubMmURFRVG2\nbFl8fHwICgrCxsZG8+BZCsePH+fx48e4uLjQqlUryerNfSCVu45z1apVefjwIba2tuzevVuyOHK9\nePGiwGtyZEg+ffo0M2fORE9P3d/l6+uredj6v8rMWJ4EXO8iKe2+3CGIHlBBWsuWLdOKRbN/+ukn\n1qxZo1nvUUq5mXhBPYdKX18fQ0NDTp8+LUsDdOrUqXh4eNC5c2cuXbrE5MmTJZuzk/cimZutr7Cb\nS6l4e3szbNgwWeeWxcTEaOZ0tWnTRtIlefLS1dXVZL1t1aoVGzdulDwGPz8/IiIiaN++PXv27GHx\n4sWS1p/byAwLCyM4OJjPPvuM7777Lt+oAakYGhpq5p5Wq1ZNliU/ACwtLTU3k0ZGRrJ8VnJ7XFUq\nFXfu3CEqKkryGEA9fSElJQVDQ0MCAwMlzUocHBxM7dq1uXz5Mi4uLppz49KlS7IsSePm5lagoSXV\nMii58y9zRyxYWFgQHR3N9u3bJRupoC3rOOfy8vJCoVCgVCp5/vw5FSpUkGVOaGZmJkqlEn19fbKy\nsiRdW1suYhmWkhENUEFSCoVCKxbNdnR01DR4pHb48GFUKhWzZs2iT58+uLm5cefOHdkSBsTHx9O/\nf38AatSowZEjRySr28vLC3j91LhKlSo8evQIGxsbyeeBgroRLNcQqtw1ah0cHDRZmu/duyf58jS5\nc+mMjY356aef8PDw0PRkSC01NZXt27cTFRVFy5YtZWt0eXt7a7KutmjRgmnTpknWIM+9sdXT02Pm\nzJma4yH19IXcueJxcXF0796dOnXqcOfOnQKZNqWQtwelefPmDB48WPIYQD1yY9GiRcTFxdG+fXvC\nw8Ml+5zkro9bWFIuORqge/fuZe3atflGj0g1qih3/qVcaybnpS3rOOedPpCYmMiMGTNkiWP16tXs\n2bMHa2trYmJiGD58uGxr9graRTRABUlVqFCBxYsXEx8fL+ui2UZGRgwdOjTfQuZSPanMHR717Nkz\nzRNzV1dXWbLPgnoIV3R0NLa2tkRHR6NUSvf0TtueGn/yySd4eXnh7OyseU2qoZbt27fXJB7666+/\nMDAwIDMzE0NDQ0nqz5V7Q2tpacnjx48156Ucw/qmTp1K8+bNuXz5MjY2NkybNo0tW7ZIHgdA3bp1\nAfDw8JD0M5J7A5s7p+vJkyeYmZnlW6tWCoX1+n722Weaf4eHh0u2zEPehEPR0dGyJX6ZMWMGgwYN\nYvXq1TRo0IDJkydLlgU3dxkgCwsLrViS5qeffuKHH36QZVRRt27dAPVnQ+pREm/66KOPN5a1mAAA\nIABJREFU6Nevn2Yd5zZt2sgaD6gTMj179kyWui0tLTWJDW1sbCR/cCZoL9EAFSQVExODk5MTDRo0\noFSpUsyePVuWOHKHFsrJzMyMZcuW4ebmxvXr17G1tZUljnHjxtG3b19MTU1JTk6W5Zhoy1PjrVu3\n0q5dO1mGFZ48ebLY9wMCAiQZ+vm2uXS+vr6SZaNNSEjg888/Z9++fbi7u0va8MvL3Nyc7du3a+aj\nSjly420PQEaOHMmqVaveexwNGzYs9v0pU6ZIthxL3l4/AwMDWeZ/AqSnp9OkSRN++OEHKleuLPnD\nItCeJWnkHFWUKysri3v37lGpUiXNg2WpH5x5eXlp1nHu2rWrZh3nmzdvUqdOHcniyM3orlKpiIuL\nkzRzd14mJiYMGTIEDw8Pbt++TXp6uibZn1wPmt83FWIIbkmIBqggqW+//ZZdu3Zx7do1SpUqxYsX\nLyQfYgjQqVMntm/fzqNHj6hYsSJ9+/aVPIbvvvuOgIAATp8+jbOzM6NHj5Y8BoDnz59jYGBAWFgY\nVlZWTJ8+XfKETNry1NjS0lLTs6BtDh48KMvcwzc9efJE0vpCQkIA9UMKXV1dSevONX/+fH744QeO\nHTuGi4sLc+fOlSWOwiQmJsodAoCkSwa5u7vnyx2wadMmatasKVn9uQwNDTl79ixKpZIbN27IMkog\nd0kaKysrzXIbcixJI+eoolxPnjzRZDQHZEkuCFCrVq0C2eQXL14s6Xq5CxYs0ExZMDQ0lOXcBPJd\ny+VeeUDQLiILriCLuLg45syZw5EjR/Dw8GDMmDGaIWZSmDp1Kubm5jRo0IBLly6RkJDAwoULJatf\nm3Tv3p0VK1bk64GV42KV+9TYxcUFZ2dnWeb7TZo0CWNjY1xdXTU3UXKsnVaY/v37s3nzZrnD4Msv\nv5TsRurBgwfMmDGDkJAQKleujK+vr6QNjYiICOzt7QttdFeqVEmyOIoj5fGQO479+/dz8uRJ/vrr\nLxo3bgyolwt68OBBoXMh37eIiAgWLFjAgwcPcHZ2ZtKkSTg6OkoehzYobM5+7tBYKeXk5BAXF4e1\ntbVsa6IWRqrv7+joaJKTk/H29mbhwoWoVCqUSiXe3t789ttv771+AUyMnN9eSGYp6SFyhyB6QAVp\nnTlzhj179hASEkKXLl2YOnUq2dnZDBs2jH379kkWR1hYGFu3bgXUT+i0oWdJLlZWVpLN3SrKTz/9\nxLBhw6hVqxb379+nV69esiUhAu1ZTDyvDyF74JvOnj2bL5mG1NavX8+UKVPw8fHRDGcD9bHQhkbf\nh6ZZs2bY2tqSkJCgeTCko6MjW6Nvw4YNmozVcrl27RqzZs0iNjYWOzs75syZI/n8YFCPKgoODiY7\nOxuVSiVLZuJjx44xb948LCwsSE5OZubMmTRt2lTyOAoj1ff3zZs32bhxI0+ePNEkHtLR0RGJfySk\nUom1TktCNEAFSe3bt4++ffvSqFGjfK9LPfw0IyODtLQ0jI2NSUtL+yAXR86dh5GZmcmQIUPy9fpJ\nPXTq4cOHbNu2jdTUVPbu3Sv52pu5ippvJ9U8OyG/M2fOMHDgQNmG3uYuCTRo0KB8awoePHhQlni0\nmRSDqSwsLGjUqBGNGjXi4sWLPH36lDp16ki+bnEubZh/6e/vz+LFi3FxceHBgwf4+PgQEBAgeRyj\nRo0iKyuLqKgocnJysLOzy5ekSgqrVq1i586d+TKuaksDVCpt2rShTZs2nDlzRityXQhCUUQDVJBU\nURnq2rZtK2kcAwYMoGvXrri4uPDo0SPGjBkjaf3aIHcIoTYMJZw/fz4TJ04kLi6OXbt2yTZfpSja\nMM9OW2ZLSBlHfHw8zZo1w8HBAYVCgUKhkPTm+tSpU1y7do0DBw5w48YNQD3k88SJE5q1KOVmYWEh\nS70JCQn5Gn65Q2KlsGTJEiIiIggJCcHAwIC1a9dqHqhJSRvmX5qZmWnWAK1ataosy+KA+rO6fft2\npk2bpskOLDVtzrgq9fd32bJl+eKLL0hMTKRz585UqVKFli1bShqDIBRHNECFD1KpUqWoVKkSKSkp\nlCtXjr1799KxY0e5w5KUHPNz3pSbqQ/UGQzv37/Pl19+CSDLU/yiSDn8NScnhzt37pCenq55zcPD\ng0mTJkkWA6jnBn/00Ue0a9cuX0KNdevWSRbDmjVrJKurMNWrVychIQFDQ0PNgxqFQiHLd8XLly/Z\nv39/vnUWR40axYoVKySN49KlS/j5+ZGTk0P79u0pV64cPXv2ZOTIkZLFcPXqVbZu3Ur//v3p1q2b\nbGsonzp1SpZ687K2tmbatGk0btyY27dvo1QqNcPWpZy/ntvwTUtLw8jISJYpA9qQcTUzM5OQkBBq\n1KjB8ePHadGiBfr6+nTq1EmS+nPNmTOHefPmMX36dD7//HOGDh0qGqASUalEFtySEA1Q4YO0cOFC\nZs+eLXvq+g+dHL0W2m7MmDEkJiZqkkIpFAo8PDw0a8ZKJSAggIsXL7Jz5078/f2pU6cOU6ZMkTQ5\nVGZmJgsXLiQ0NJQqVarg7e0tWd2g7kXo1q0bXbp0KTShiZRL0owdO5YmTZrIss5iXt9//z1btmxh\n9OjRDB8+nL59++bLSCuFnJwcMjIyUCgU5OTkyJZsRhvmX1auXBlQ5zUwNTWlYcOGsixj1bp1a1au\nXEn16tXp1asXpUqVkjyGojKu5n1o875NnDiRFi1aUKNGDZ48ecKhQ4dYvHgxvXr1kiyGXBUqVECh\nUFC6dGlJl44ShJIQDVDhg1SlSpW3rmsnvH+5yY8iIyNZtGgRcXFxtG/fnmrVqsmeGEku8fHx/Prr\nr3KHQVpaGmlpaSiVSjIzM2VJzOTt7c3IkSNxd3fn6tWrTJ48WZZMwEU1cKRcksbExAQvLy/J6iuK\njo4OlpaWKBQKDA0NZbmxHThwIN27dycuLo6ePXvKMtwTtGP+ZXHz1qV05MgRTWK/Fi1ayLK8WlGj\ner788kvJEg1GRkbSo0cPAIYNG0b//v0lqfdNFhYWBAQEkJaWxoEDB8TDdkHriAao8EFq3bo1vXv3\n1jw9BmRbzFxAM2do9erVNGjQgMmTJ7Njxw65w9KQcp5duXLlePnypew9XU2aNKFq1ap4eXkxe/Zs\nWWIwNjbWJNL4+OOPWb9+vSxxaIMqVapw4MCBfOssyjF/28nJicWLF5OQkMDatWspV66c5DFYWlry\n66+/EhYWhoODA6VLl5Y8BtCe+ZeFSUpKkrQ+hULByJEjqVSpkuaBjdTJ7Ioi5fxLhULBkydPqFSp\nEmFhYSiV8gzHnDt3LmvWrMHKyopbt24xZ84cWeL4EKkQQ3BLQjRAhQ/S5s2bGTp0KGZmZnKHIgDp\n6ek0adKEH374gcqVK2NoaChp/YcOHaJDhw6kpqayYsUK7t27R82aNfnmm28wMTGRZJ5dbpr8zMxM\nDh8+jIWFhaahIcfC8qdPn+bcuXPs27ePjRs3UrNmTSZMmCBpDGXLlmX16tWa+W0GBgaaffGhLStw\n9+5d7t69q/ldrqVgZs2axc6dO6lfvz6lSpWS5eHEihUr2Lp1q+TD0t+kLfMvtUFur582knI+6tSp\nUxkzZgyPHj3C0dFRtmkmvr6+RSZ9FARtIBqgwgfJxsZGa7JYCmBoaMjZs2dRKpXcuHFD8iy427Zt\no0OHDsyZMwdHR0emT5/OxYsX8fHxkewiLkcjszg2NjY4OTkRGhpKeHg44eHhksegUCh49uwZz549\n08R04MAB4MNrgG7evJmkpCTCw8NxdHSUbU5XZmYmLVu2pE2bNuzYsYPo6GjJh8trS2+btsy/1Aba\nkNROGzx//lzzGXnw4AEhISH5krhJJTMzk3v37lGpUiVNA1zbsssLHzbRABU+SEZGRrKvfSm8Nnv2\nbBYsWEB8fDzr1q2TbR3QsLAwzVAlZ2dnjh49KnkMuVmAc+nr62Nvb88333yDg4ODZHG0b98eDw8P\n2rVrx6hRo2S5eZk3bx45OTmoVCpu3LiBm5ubVt1ESTm078iRI/zwww+a7LMKhYIRI0ZIVn+uMWPG\n0LdvX44cOYKLiws+Pj788ssvksZQVG9bZmampOfHqFGjSE5OBuD48eO0bNlStmVxhKJJ+TnduHEj\nu3fvxsTEhOTkZAYMGECXLl0kqz9XaGgoI0aMQKFQoFKpUCgUnDhxQvI4PkQiC27JiAao8EES6ci1\ni729PWPGjCEsLIzq1avny2AohdDQUDZs2ICenh537tzB1dWV4OBgsrKyJI0D1ImZ3N3dqV+/Pjdu\n3ODUqVPUrVuXadOmsXHjRsniOHz4MIGBgTx8+JCsrKx8GSalMmfOHJydnXnx4gW3b9/G1taW+fPn\nSx5HfHw8P/74oyYb71dffYWZmZmkS9KsX7+eHTt2MGTIEEaMGEGPHj1kaYCmp6fTqlUrNm7cyMKF\nC7lw4YLkMRTV2zZ06FBJhyV7eXnx8ccfc/36dZRKJceOHWPVqlWS1V+cD7UhnJaWhrGxMVFRUdjZ\n2QFo5ulKQaFQaEYnmJqaSj6dJNcff/xR6OsBAQGSJWQShOKIBqjwQRLDhbTLli1bOHbsGK9evaJb\nt26EhYXh4+MjWf0//vgjt27domLFity/fx9HR0dmz54tS0/sixcvNAmxKleuzB9//EHPnj35/fff\nJY1j6dKlhIWF4e7uzt69e7ly5QqTJ0+WNIbg4GCmTZtG//792bx5MwMGDJC0/lze3t58/PHHdO3a\nlStXruDt7c3q1aslXZJGV1cXAwMDFAoFCoUCY2NjyerOKysrSzMn+NGjR6SlpckSR2Gk7OkCiIqK\nokuXLvz2229s3ryZgQMHSlo/wJQpU/L9njtiwt/fX/JY5LZy5UoyMzMZP348/v7+1KpVi6+++gpf\nX1/JYnB0dGT+/Pk0aNCAK1eu4OTkJFndJXHw4EHRABW0gjyLZwmCIORx4MAB1q9fj5mZGQMGDODm\nzZuS1l+jRg169uzJzJkz6datG2ZmZuzYsQNXV1dJ4wD1Df7Zs2dJTk4mMDCQ7Oxsnj17JvmN/uXL\nl1m+fDkDBw5kxYoVXL16VdL6AZRKJbdu3cLBwYHMzExSUlIkjwHU6wh+8cUXVK9enX79+kmeYRSg\nfv36jB8/nsjISHx8fKhdu7bkMYC6MR4VFcWIESP4888/mTZtmixxFEbKZDOg/qwePXoUFxcX4uLi\nZDk/MzIysLOz49NPP6V8+fJERkaSmZkp+Zq52uDkyZOaqTTLly/n5MmTkscwb948HB0duXDhguZB\npjaR+iGNIBRF9IAKgiC73DkqciVL6N+/f5HDbaVe12/+/PksXLiQuXPnUrVqVebOncuNGzcK9HS8\nb9nZ2SiVSnR0dFAqlZLf3AN06dKFWbNmMXfuXBYtWiR5ZtHcdT6trKw4ePAgHh4eBAUFSToXN9f4\n8eMJDAzE1dUVZ2dn2aYRuLu7k5iYyPbt26lYsaLsmWjlNHToUA4ePKhZn1aOIdFxcXGaTKvNmjVj\n8ODBjBs3Dk9PT8ljkZtCodDMA87KypKlsaWnp6fV+16O7/EPjViGpWREA1QQBNl9+umn9OvXj/Dw\ncIYNGyb5fMOJEycyffp0Vq1aha6urqR158rOzkZPTw97e/sCqfs7deokeTwdO3akb9++1KlTh6Cg\nIFmyRnt6empu5vL2tK1cuZJRo0a99/rzDgMPCAiQ/GFEXrGxsQQGBvLkyRNiY2Nxd3eXZZ7f4sWL\nZR+aXRSpGxzt2rWjXbt2AIwdO1bzuq+vL7NmzZIkhuTkZEJCQnB2diYkJISUlBTi4+NJTU2VpH5t\n0qdPHzp16kTVqlV5/PgxQ4cOlTskQRCKIBqggiDIbu/evTg5OeHp6Ymz8/+1d6/BVVb328evDYQU\nSCRCCAYIhyScLeVYoCKUgKXDlMopEIogiO0goQhBQA4TBIlROrGlBSq0iIGxhENDsSUWG3CgGaJW\nFDZIwSFFA0ZMlETIOdns5wWT2IAg/p96r3Wb72fGGXb2i3XJ7Bny29e614pS165dHV3/e9/7nh58\n8EGdPXtWDzzwgKNr11iyZIlSUlJqTzit4fF4lJmZ6ViOlJSU2vVbt26t119/Xd27d9fly5cdy/BV\n3nrrLUfW2b59uyRp79692rx5syoqKiSZaRHmz5+v0aNHa+LEiTp27JgWL16sTZs2OZ7jX//6V+0g\n/vDDD2vSpEmOZ7gVJw+buZ2a5twJiYmJWrRokfLz8xUeHq7ExERlZGRo9uzZjmWwRWxsrEaMGKEL\nFy4oIiJCLVq0MB3JOmzBhS0YQAEYl56erpycHB06dEjbtm1TaGio1q9f72gG09+W19w3Onv2bKWm\nptY+8+n0Lww1dxtKUqdOnaw8Mdrpv5M//vGPeuGFFxQeHu7oujeaMmWKJKlbt276+9//biTDf2/N\nrtk675TbbUNPTk529LAZW+Tn52vPnj2196FKMvZ8sCkJCQm3/Bw6dY+zLfLy8m75Xps2bbRo0SIH\n09RPfr/PdARXYAAFYNy///1vHT16VG+88YakukNQfZOWlqbNmzerVatWRtZ3wwnRTjeQERER6tCh\ng6Nr3igyMlL79u3ToEGD9N577ykkJKS2aevUqZNjOUaPHm1sa3bNWjt27FCfPn3Ut29fnTx5UidP\nnnQsg22ys7O1bt06xcTEaOLEiYqIiDAdyXGc6vqFBQsWSJKKiopUUlKizp0769y5cwoNDdXevXvr\n9TPbsIvHTx8PwLB+/fopIiJCCxYs0LBhw0zHMWrWrFnasmWL6RhWmz59uqP3Pc6fP1/FxcXq3r17\n7fBbc9qmU6ZNm6aioiJduHBB7dq109133y3p+jDu5N+FJL3//vv6z3/+o8jISHXp0sXRtSXpkUce\nqXMH68yZM7V161bHc9yK05/PyspKHTx4UOnp6aqqqtJLL73k2No2uXjxog4cOFDnxHAnnhW3UXx8\nvJ577jkFBQWptLRUCQkJeuGFF0zHqhcCGpn58vjrqKouMB2BBhSAeW+++aaOHTumrKwsvfjii2rZ\nsuVNB/F829X8/1ZWVmrWrFnq0aOHsWHHdk5/b2rDlyJTpkzRunXr9IMf/EDvv/++JkyYoLFjxzq2\n/n8/G1zj9OnTkpz/fJaWlio7O1vf/e539e6779Y+m2sLpz+fXq9XWVlZ+uyzzzRq1ChH17bJwoUL\ndf/99ys0NNR0FOMuXbqkoKAgSVLTpk1VUGB+4Kg/OAX3TjCAAjDuypUr+uSTT5SXl6eysjK1adPG\ndCTH1WyjdHI7pe18Pp/S0tJ07tw5dezYUVOmTFHjxo21du1aR3PYsC05NTVV6enpatasmYqLi/Xw\nww87OoDWbIsvKChQYGCg7rrrLj3//PN65JFHHMtQIykpSb/61a90/vx5de7cWc8995zjGaTrJ9Bu\n2LBBOTk56tixo+bMmaOQkJA67ew3bfTo0erWrZtiY2OVlJR0y+uk6oPvfOc79bbxvNGQIUP00EMP\n6d5779WJEyccP1ke+CpswQVg3Pjx4zVy5Eg98MAD6ty5s+k4sMSyZcsUHBysAQMG6K233lJRUZHj\nw6ct4uLi6lwD87Of/Ux/+tOfHM8xYcIE/frXv1b79u114cIFPfnkk3r55ZcdWbvmqqLKysqb3nP6\n7mBJmjdvnvr371/7+czOznZ8m+PGjRu1b98+VVdXy+/3KyAgQAcOHHA0g2k1z0KvX79eP/zhD9Wz\nZ8/atr4+f6F36tQpffjhh4qKilK3bt1Mx6k3Ahq1NB3hK1VVf2Y6Ag0oAPPS09NNR4CFPvzww9rh\nZuTIkfX6sJGIiAg9++yz6t+/v95++221b9/eSI6AgIDatSMiIuqcvvpN+7KrimpO4j148KBjOWoU\nFhZq+vTpkqTu3bsbGfxeffVVbd++Xb///e/14x//WKmpqY5nMO2/7+vdvHlz7XPSLVq0cPz5aFtc\nunRJmzdv1rlz59SpUyctXbpU7dq1Mx2rXvD72YJ7JxhAAQBWqqioUFlZmZo0aaLy8nL5fPX3ePvk\n5GTt3LlTR48eVVRUlBYuXGgkR5s2bfT888+rd+/e8nq9CgsLc2ztmis1Dh06JL/fr8LCQqN3PVZU\nVKigoECtWrXSp59+qmvXnP/FMywsTGFhYSopKdHAgQMdv77KBjX39WZkZNR5Tnr8+PGGk5mzYsUK\nTZkypbadX758eb38cgL2YgAFAFhp+vTpevDBB2uvEpg3b57pSMY0atRIU6dONR1DycnJ2rFjhw4f\nPqyoqCjNmTPH8QyHDx/W008/reDgYJWWlmr16tUaOHCg4zkef/xxxcXFKSgoSCUlJXr66acdzxAc\nHKzMzEx5PB6lpaWpqKjI8Qy2MP2ctE0qKio0YsQISdd3j9TXk5FhLwZQAICVfvrTn2ro0KG6ePGi\n2rVrp5CQENOR6r3AwEDNmDHDaIb169dr165datGihQoKChQfH69du3Y5nuO+++7TP/7xDxUVFRlr\nYtesWaPc3FwlJCRo69atWrFihZEcNvB4PGrWrJkkKSgoSIGBgYYTmePz+XT27Fl17dpVZ8+eNR2n\nXvFzCu4dYQAFAFjp5MmTWrlypQoKCtS2bVutWrVKXbt2NR0LhjVr1qx24GvVqpWaNGliJIcNTWxQ\nUJB69OghSXryyScdXds2tjwnbYMVK1Zo2bJlys/PV+vWrY2088DtcAouAMBKcXFxWrNmjaKjo3X2\n7FmtWrXKyMmvsEPNXbnvvvuumjZtqn79+snr9aqiokJ/+MMfHM8TGxurTZs2GW9icV11dbV27typ\nnJwcRUVFadKkSQoICDAdC/VMw4bNTUf4Sj7f56Yj0IACAOwUGBio6OhoSVLXrl35ZbKe+7K7cmue\nc5OkyspKR69jsaWJxXW2PCdt0rx58/Tb3/5WQ4YMuem9rKwsA4mAL0cDCgCwys6dOyVJr732miIi\nIjRgwAB5vV5dvHhRGzZsMJwOtpo+fboj127Y1sQCN8rOztbgwYNNx6iXGjYMNh3hK/l8V01HoAEF\nANiloKBAktSnTx9J1y+aDw4OVvfu3U3GguWc+j7dtiYWuNH69esZQGE1BlAAgFXmzp172/fj4+Np\nQnETj8fjyDrjxo277fuPPvqoI00scCsej0fx8fHq1KmTGjRoIElKSEgwnAr4AgMoAMBVrly5YjoC\ncEs82QTTJkyYYDpC/eXnGpY70cB0AAAAvg6nmi64iy2DH59PmDZmzBhVV1crNzdXbdq00bBhw0xH\nAupgAAUAAK5Xc2IyUN+tXLlSeXl5Onr0qEpKSrRkyRLTkYA62IILAABcY9q0aXVaxoCAAN1zzz16\n7LHHDKb6gi1NLOqv3NxcJSUl6e2331ZMTIw2b95sOlK94RdbcO8EDSgAwFWaN7f/om98c9q1a6cx\nY8boqaee0tixY9W0aVP17t1by5cvNx1NEk0szPP5fLp8+bI8Ho+Ki4trDyICbEEDCgCw0tKlS+u8\nrmm61qxZYygRbJCXl6fk5GRJUmRkpP76178qNjZW+/btczSH7U0s6q8FCxZo8uTJ+vjjjxUXF6dl\ny5aZjgTUwVciAAArVVRUKCwsTKNHj1bbtm31ySefqLKykueZ6rmqqir985//VHFxsY4cOaLq6mpd\nuHBBZWVljuawvYlF/VVYWCifz6cOHTqovLxc166xLdQ511zwn3kMoAAAK12+fFkLFizQ/fffr7lz\n56qqqkrz58/X1atXTUeDQc8++6x27typ2NhY/fnPf9Yzzzyj48eP39SYf9Py8vIUGxuryMhIjR8/\nXsXFxYqNjZXP53M0B3CjjRs3avfu3dq/f7/S0tL0m9/8xnQkoA624AIArFRcXKycnBxFRUUpJydH\nJSUlKiwsVGlpqeloMOj1119XUlJSnWeBIyIiHM9R08T26dNH77zzjrEmFrhRSEiIWrZsKUkKDQ1V\nUFCQ4URAXR4/x7UBACzk9Xr11FNPKT8/X+Hh4UpMTJTX61VoaKhGjRplOh4MefHFF/W3v/1NnTp1\n0qRJkzRw4EAjOXJzc7V27Vrl5OSoS5cueuKJJ3T8+HGFh4erf//+RjIBkhQfH6/y8nINGDBA7733\nngoKCvT9739fkpSQkGA43bdbA09j0xG+0jV/pekIDKAAADtlZmYqJiaGExzxpbxer7Zs2aIzZ87o\nwIEDjq+fmpqqsWPHciozrLN3795bvjdu3DgHk9Q/DKB3hi24AAArZWdna926dYqJidHEiRONbLOE\nfcrLy3XgwAH95S9/kd/v1y9/+UsjOXw+n2bOnGm8iQVuxJAJ29GAAgCsVVlZqYMHDyo9PV1VVVV6\n6aWXTEeCYT/60Y80atQoTZw4UR06dDAdx3gTC8AeNKB3hgYUAGAtr9errKwsffbZZzz3CUlSRkaG\nGjX64teX/Px8hYWFOZ7DliYWgD38ote7EzSgAAArjR49Wt26dVNsbKwGDx6sqqoqBQQEmI4Fw9at\nW6cdO3aoqqpK5eXl6tixo/bv3+94DtuaWADmeTz2/xvl91eZjkADCgCw009+8hPt27dPJ06ckN/v\nV0BAAFscoUOHDunIkSN65plnNHPmTK1atcpIDluaWAD2sGG4cwOOFgQAWOnVV1/V9u3bNXToUCUn\nJysqKsp0JFigVatWaty4sUpKStShQwdVVZn5hW/Dhg0aNGiQ+vXrp549e2rmzJlGcgCA2zCAAgCs\nFBYWprCwMJWUlGjgwIG6evWq6UiwwD333KM9e/aoSZMmSklJ0ZUrV4zkqGlix4wZo4yMDLVu3dpI\nDgBwGwZQAICVgoODlZmZKY/Ho7S0NBUVFZmOBAusXr1agwcP1uLFixUWFqaUlBRJ0kcffeRoDlua\nWABwGw4hAgBYqbi4WLm5uWrZsqW2bt2q4cOHc9cibmn69Onatm2bY+utWLFCvXv3ltfrVfPmzXXk\nyBHt27fPsfUBwK0YQAEAgOtNmzZN27dvd2y9a9eu6eOPP1bz5s21d+9eDR48WNFs40+iAAAH70lE\nQVTR0froo4/Utm1bx3IAgNuwBRcAALiex+NxdL0GDRqobdu2CgoK0rRp0xQdHS1JWrp0qaM5AMBt\nGEABAAD+R9hYBgC3xwAKAABcz5bBz+kmFgDchgEUAAC4xo2nzebm5kqSBg0aZCIOAOBrYgAFAACu\nsXDhwtq2My0tTT//+c8lSfHx8SZj1bKliQUAWzUyHQAAAOBO1dwBevXqVd11113atWuXkRxVVVUK\nCAiofZ2bm6v27dvTxALAV6ABBQAA1qusrFRlZaUmTJigbt26qbq6WmvWrFGTJk2M5LG9iQUAW3EP\nKAAAsF5MTIw8Hk+dLa41B/4cPHjQ8Tw7duzQO++8U9vELl++XM2bN3c8BwC4DQMoAABwDb/fr0uX\nLik8PFxer1e9evVydP3KysraP2/fvl3Z2dnauHGjJKlx48aOZgEAN2IABQAArpGYmKgOHTpo1qxZ\nWrNmjTwej5YvX+7Y+rY1sQDgNgygAADANSZOnKg9e/bUvp46dapefvllx3OYbmIBwK04hAgAALhK\nYWGhJOnKlSvy+XxGMqxcuVIZGRmSpFdeeUVJSUlGcgCA23ANCwAAcI34+HhNmDBBzZs319WrV5WY\nmGgkx+nTp7V69WpJ0ooVKzR16lQjOQDAbRhAAQCAawwfPlxDhw5VYWGhWrZsWfv8pQmFhYW6++67\njTaxAOA2DKAAAMB6q1evVmJioiZPnnzT0JmWluZ4HluaWABwGw4hAgAA1vv0008VGhqqDz74QAEB\nAbU///zzz9WjRw8jmXw+nxVNLAC4CYcQAQAA6/n9fp0/f16LFy9WVVWVKisrVV5e7njzWPPc5+TJ\nkzV16lTNnTtXU6ZMUVxcnKM5AMCtaEABAID1MjMzlZqaqjNnzqh79+7y+/1q0KCB+vTpo/nz5zuW\nw8YmFgDchAEUAAC4xuHDhzVs2LCbfp6ZmamRI0d+4+sXFBSouLhYS5Ys0dq1a+X3+3Xt2jUtWbKk\nzv2kAIAvxyFEAADANb5s+JSkbdu2OTKAnjhxQqmpqTp//rwSExNrm9ghQ4Z842sDwLcBAygAAHA9\npzZ0jRw5UiNHjjTexAKAW3EIEQAAcD2nT6G9XRMLALg1BlAAAID/EY7WAIDbYwAFAACuZ8vgx32g\nAHB7PAMKAABco7CwUMXFxQoODlZISEjtz2fOnGkwFQDgTjGAAgAA63m9Xq1evVrXrl1T06ZNVVJS\nIr/fr8TERPXt21cxMTGmI0qyp4kFAFsxgAIAAOslJyfrd7/7ncLDw2t/lpeXp8cff1y7d+92PA9N\nLAD83zCAAgAA61VXV9cZPiUpPDzc8Wcu3dLEAoCtGEABAID1hg0bphkzZui+++5TcHCwSkpKlJWV\npaFDhzqaw7YmFgDchgEUAABYb+7cuTp9+rSOHTumwsJCBQUF6YknnlDPnj0dzWFLEwsAbsUACgAA\nXKFHjx7q0aOH0Qy2NLEA4FYeP8e1AQAAy2VlZd3yvSFDhjiYRLVNbHFxsYKCgtS3b1/Hm1gAcCsa\nUAAAYL1du3bp1KlTGjhw4E3vOT2A2tDEAoBb0YACAADr+Xw+PfTQQ0pKSlJkZKSxHDY1sQDgRjSg\nAADAeg0bNtTatWtVWlpqNIdNTSwAuBENKAAAcL20tDTFxcV94+vY0sQCgFs1MB0AAADg/1dGRoYj\n69Q0sVVVVY6sBwDfNgygAADA9Zzc0BUREaGuXbt+6XtpaWmO5QAAN2IABQAArufxeExHkORcEwsA\nbsUACgAA8D/C0RoAcHsMoAAAwPVsGfxsaWIBwFYMoAAAwDU2btxY53VKSookadGiRSbiAAC+Ju4B\nBQAA1tu9e7f27NmjnJwcHTlyRNL1K1Gqq6u1cOFC9erVy3DC62xpYgHAVtwDCgAArFdZWan8/Hxt\n2rRJs2fPliQ1aNBALVu2VOPGjR3Ps3HjRs2ZM6f2dUpKihYuXCiv12vNMAwANmIABQAArlFaWqor\nV66oUaNG2rlzp8aOHau2bds6tv5/N7HR0dGSvmhi9+7d61gOAHArBlAAAOAajz76qOLi4vTaa68p\nOjpab775prZs2eLY+rY1sQDgNhxCBAAAXKO8vFwjRozQpUuX9Itf/EI+n8/R9Rs3bqx27dpp6dKl\natiwoQIDA5Wenq6CggJHcwCAWzGAAgAA16iqqlJqaqp69uypc+fOqayszEiOefPm6dSpU1q7dq0C\nAgKUmJhoJAcAuA0DKAAAcI3FixcrPz9fjz32mN544w0tX77cSA7TTSwAuBXXsAAAANfo16+fIiIi\nVFxcrOHDhys/P99IDluaWABwGw4hAgAArrFs2TIdP35cZWVlKisrU/v27bVr1y7Hcxw7dkwHDx7U\n7Nmz9corr6hXr15cvwIAd4AtuAAAwDXOnDmj/fv3a8iQIcrIyFBgYKCRHP369dOMGTNqm1i24ALA\nnWELLgAAcI2QkBB5PB6VlpaqRYsWxnLY0sQCgNvQgAIAANe49957tWXLFoWFhSkhIUHl5eVGctjS\nxAKA29CAAgAA66WkpMjj8cjv96ugoEAej0cffPCBsecubWliAcBtGEABAID1IiMjb/pZly5dDCS5\nzpYmFgDchgEUAABYb9y4caYjSLKviQUAt2EABQAAuEO2NbEA4DbcAwoAAAAAcASn4AIAAAAAHMEA\nCgAAAABwBAMoAAAAAMARDKAAAAAAAEcwgAIAAAAAHPH/AF3rYPUR87AOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAEuCAYAAAAncUVSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU9f/B/B3IEyZCoggooKoOFCoq61aV3+uunGvuuq2\nruJEcY+itmq1+m2tVetqq3UPHMVatyK4FQUVqyBDZI/k90eaCDIC1pwb9P16njwtyUnOx5t7b+65\n53POkSmVSiWIiIiIiIgKYSB1AEREREREpP/YcCAiIiIiIq3YcCAiIiIiIq3YcCAiIiIiIq3YcCAi\nIiIiIq3YcCAiIiIiIq3kUgdARERERPS+yMaWYr/HEH10EEnxseFARERERCSIQpFd7PcY6kmOEBsO\nRERERESCKJVZUofwxthwICIiIiISRKksfo+DvmDDgYiIiIhIEAV7HIiIiIiISJuSnKqkJ0MtiIiI\niIhIn7HHgYiIiIhIkJLc48CGAxERERGRIEoFGw5ERERERKQNexyIiIiIiEgbpioREREREZF2ikyp\nI3hjbDgQEREREQnCHgciIiIiItKOg6OJiIiIiEgrNhyIiIiIiEgrpioREREREZE2MvY4EBERERGR\nVmw4EBERERGRVmw4EBERERGRNjKOcSAiIiIiIq0U2VJH8MbYcCAiIiIiEoSDo4mIiIiISLsS3ONg\nIHUARERERESk/9jjQEREREQkig5SlRQKBWbPno3bt2/D2NgY8+bNg6urq+b1PXv2YMOGDTAwMEDX\nrl3Ru3fvN6qHDQciIiIiIkFkOkhVCgoKQkZGBrZv346QkBAsWrQIa9as0by+ZMkS7Nu3D+bm5mjX\nrh3atWsHa2vrYtfDhgMRERERkSg6aDhcunQJjRs3BgDUqVMH165dy/V61apV8fLlS8jlciiVSshk\nsjeqhw0HIiIiIiJBdNHjkJSUBAsLC83fhoaGyMrKglyuutSvUqUKunbtCjMzM7Rq1QpWVlZvVA8H\nRxMRERERiaLILv5DCwsLCyQnJ7+qQqHQNBpu3bqFkydP4tixYzh+/Dji4uJw8ODBNwqdDQciIiIi\nIkFkiuxiP7Tx9vZGcHAwACAkJAQeHh6a1ywtLWFqagoTExMYGhqidOnSSExMfKPYmapERERERCSK\nDlKVWrVqhdOnT6Nnz55QKpVYsGAB9u7di5SUFPTo0QM9evRA7969YWRkhAoVKqBz585vVI9MqVQq\n33LsRERERESUj/SQj4r9HpM6p3UQSfGxx4GIiIiISJQSvHI0Gw5ERERERILIFAqpQ3hjbDgQERER\nEYnCHgciIiIiItKKDQciIiIiItJGpmSqEhERERERacMeByIiIiIi0oqDo4mIiIiISKsS3HAwkDoA\nIiIiIiLSf+xxICIiIiISRMYxDkREREREpFUJTlViw4GIiIiISBQ2HIiIiIiISCs2HIiIiIiISCuO\ncSAiIiIiIm1k7HEgIiIiIiKt2HAgIiIiIiKt2HAgIiIiIiKt2HAgIiIiIiKtFEqpI3hjbDgQERER\nEYnCHgciIiIiItKKDQciIiIiItKKqUpERERERKSVkj0ORERERESkDXsciIiIiIhIKzYciIiIiIhI\nqxLccDCQOgAiIiIiItJ/7HEgIiIiIhKkBI+NZsOBiIiIiEiYEpyqxIYDEREREZEo7HEgIiIiIiKt\n2HAgIiIiIiKtSm6mEhsORERERESiKBUyqUN4Y2w4EBERERGJwlQlIiIiIiLSij0ORERERESkDVOV\niIiIiIhIOzYciIiIiIhIKyUbDkREREREpAVTlYiIiIiISDuFgdQRvDE2HIiIiIiIRGGPAxERERER\naaPkGAciIiIiItKqBKcqldzIiYiIiIhIGPY4EBEREREJwlmViIiIiIhIOzYciIiIiIhIG10MjlYo\nFJg9ezZu374NY2NjzJs3D66urnnKzZw5E9bW1pg0adIb1cMxDkREREREoigMiv/QIigoCBkZGdi+\nfTsmTpyIRYsW5Smzbds23Llz5z+FzoYDEREREZEgSoWs2A9tLl26hMaNGwMA6tSpg2vXruV6/fLl\ny7h69Sp69Ojxn2Jnw4GIiIiISBClUlbshzZJSUmwsLDQ/G1oaIisrCwAQHR0NFavXg1/f///HDvH\nOBARERERiaKDdRwsLCyQnJz8qgqFAnK56jL/0KFDiI+Px7BhwxATE4O0tDRUrlwZXbp0KXY9bDgQ\nEREREQmii+lYvb29ceLECbRt2xYhISHw8PDQvNa/f3/0798fAPD777/j/v37b9RoANhwICIiIiIS\nRhezKrVq1QqnT59Gz549oVQqsWDBAuzduxcpKSn/eVxDTjKlUql8a59GREREREQFSpxQsdjvsVoW\n8dbjeBPscSAiIiIiEoQrRxMRERERkVa6SFUShQ0HIiIiIiJRdDCrkihsOBARERERCcJUJSIiIiIi\n0oqpSkREREREpFVJ7nEouUlWREREREQkDHsciIiIiIgEUSpL7n17NhyIiIiIiEQpwalKbDgQERER\nEQnCwdFERERERKRVSR4czYYDEREREZEgHONARERERERasceBiIiIiIi04hgHIiIiIiLSig0HIiIi\nIiLSiqlKRERERESkFQdHExERERGRVuxxICIiIiIirTjGgYiIiIiItGLDgYiIiIiItGKqEhERERER\nacUeByIiIiIi0qokz6pUciMnIiIiIiJh2ONARERERCSIgqlKRERERESkDQdHExERERGRVhwcTURE\nREREWrHhQEREREREWrHhQEREREREWilK8HSsbDgQEREREQnCwdFERERERKQVU5WIiIiIiEgrNhwK\nERPzUtdVFMre3hJp15pJGgMAmNY8gX0+fSSNof2lLTjW0FfSGACgxdmdON24o6QxfHTqDxxt0F3S\nGACg1bkdyMYWSWMwRB+9iAEAjtTvIWkcn57fjl/rDJA0hm4hGwFAL74TfYgBgOTHaqtzO3Cofk9J\nY2h9fpvk3weg+k521e0naQydr2zSm22hD+es4426SRoDADQ/86venDtLAi4AR0REREREWrHHgYiI\niIiItGLDgYiIiIiItGKqEhERERERacUeByIiIiIi0ooNByIiIiIi0qokpyqV3DWviYiIiIhIGPY4\nEBEREREJwlQlIiIiIiLSig0HIiIiIiLSqiSPcWDDgYiIiIhIEPY4lFDBl9Lw7eZEZGQp4eFqhNkj\nbWBh/mq8+N6TKdi0N0nz98sUJaJjs3FkXVnIDWWYty4BtyMyYWZigI7NzdC7rUWR63b4uA6qje4B\nAyM5Eu89Quic9chKTn2jcj5Lv0R6TDyuLdkIACjzgSeqj+sFA7khstMzcX3pRiRcv6967UNvuI3s\nDQMjIyTdi8TN+WuQnZL78wosY2AAj3EDULqBF2SGhnj4yx5E7ToKALD72AeeM0cj7dlzzedcGj4T\n2SlpqLVwIizcKyI7NS3Pv8+2kQ9cv+gPAyMjJIdH4N6ilXniKUqZavOmION5HO6vWAezii7w8J+g\neU1mYIBSbhVxc/pCKDMz4fpFfwBA7QXjcX3+WmTns93tPqoL9xG9YWCs2gaacgYyVP1yAMr8uw0i\nt+zF43+3gbmLIzxnjICRtSWyU9JwLWAVUiKf5Ppclx5tUL5jC5zpPem1Gg1ggFZQ4iGUuJknnoIo\nlUpMn7oH7lXsMWjwh0V+39ukqxjsPqqLKiN7wcDYCC/vPcT1eQV/V4WVM3EogwY/zsOZPl8h88XL\nXO81c7JHw42LcGnsfCTevJ9vHI6NvVBzjC8MjeV4cfcRLs7+AVnJefflAssZyFB3Sn/Y+1QFADz9\nKxShy7cBAMo1qYN6c4ci5WnsG2+n/Lxr+0WBx2NRyxVy3Np97IOa/qNynbsufOGP7JQ0uH3RA46t\nVLF7fjUIt1ZsgiIjEwBg/1FdeIzsqdnvwuZ9n29M2sqZOpRBwx/n4nQfP83+aWRVCtUnfQ6LSs4w\nMDHG/Q27/9P2U9PVflH2Yy/UGNMdBsZGSLz7CJcD1ud7jBRWrpJvC1Ts/AkMTYwQfzMCVwL+B0Vm\nFhyb1IXPnGEl5hgRcd5y+uwTlP2kPq5MXJLnc8t86A23EX0gM5IjOfwhbs7/Lv/f+ELKmDiUwQf/\nW4Dz/Sblqbtc++awb1ofoZMXFbodRJ83T36+oNB49E1J7nF4b2dVinuRDf9VCQicXBp7VpaFc1k5\nvtmcmKvMZ5+YY0egA3YEOmDLYnvY2RhgyhBrlLExxNKfXsDc1AC7Vjhg80I7nL6cjj8v5j0o8mNs\nYwmvWcNwafIKnOw6GSmPo1FtTI83KufWvz1K162q+VsmN4T3wtEInfc/BPeahrs/7EadOSM0r3vO\nGImwqV/jbI9xSH3yDO6j+uT6PCMbqwLLOHduCTMXR5zrMwEXBk2BS492sPJ0BwBY16qKyF/24Hz/\nyZpHdopqe1jX9MClEf6a59XkNlZwnzoWt2YswuU+I5H25Clch/fPFU9Ryjj37gwrL0/N36kRj3B1\n0HjNI+FCCGKO/onE0BuazwKAlKhoVBnZO892N7KxRI0ZIxE6NRB/d/8yV7nynVvB3MURZ3pPxLnP\np6JCz7aw8nQDANQMGIvHvx3BmZ4TEL5+B7wWTcz1uda1q6JSv4556gMAGXwAFL3hCQDh4TEYNGAT\nDh28Xqz3vU26isHIxhI1Z47A1SnLcNp3PFKjnsFjVP7fVWHlyrVtgvrrZsPUoXSe9xoYG6FmwBjI\njAq+f2Jsa4kPAobg7KSVONxpCpIfx6DWuO7FKufa/iNYVnTEEd/pONpjJuw+qArnVvUAAGW8quDO\nzwcR1MNf8/iv3sX9oqDjMac3PW5tansgYstenO33leaRnZIGp/afwP5jH5wbOBUAkP48AVWG99DU\nVXPmcFyZshynfCcgJSoaVUf1yjemwso5tW2MBvnsn7X8RyAtOg5/95uKC6Pno/rEAf95G+pqvzC2\ntYRPwDCcm/wtgjp/heTH0agxNp/fs0LKOTX/AG49W+Gv4YsQ1G0qDE2N4d63NQCgtFcV3P35AE70\nnKF5/Fcl9bwltyqF6lOGoPqkz4F8rjuNbKxQffoohE1dinM9xyE16hncRub9jS+sjGObpvBeOxcm\n9mVeq9sCVb8aBo8JgwBZ4Re9Upw3s1KKdv2lL5SQFfuhL97bhsOZq+mo6W4EVyfVRUP3/zPHgVOp\nUCqV+ZbfsDsJpa0N4ftpKQDAjfBMtG9qBkNDGYyMZGjsY4qgM3nvKuTHvlEtJNy4j+RHzwAAkb8G\nwbnNR8UuV+YDT9h/WBuRvx3TPKfMykZQmzFIvB0JADB3dkDGi1e9Jok3w5H66CkAIOr3I3D8v8a5\n6izdoHaBZeybNsA/+05Ama1A1stkPAs6DcfWqtesa1VF6Q9qot5Pi+Gzdg5s6lQHAJiWc4ChuRmq\n+Q1D/c1fo/qMkZq6bOvVRdKte0h7/A8A4OnuQ7Bv1TRXPNrKWNetBZv63ni6+1C+29qqtifKfPIh\nwr9ek+ezHv9+RBN/TmUaeOHFzXCk/LsNcpZzaFofUXtParbB06N/o1zrJjCxt0Wpik54evRvAEDs\nmRAYmprAsmolAIBxaWtUnzwYd1ZuzlOfDJUAGEGJqHz/DQXZuuUiOnepg9ZtahTrfW+TrmIo08AL\nL268+g4e/XYUjq0/LlY5EztbODSth8vj878zVu2rQXiy7yQyExLzfR0Ayjaqifjr95H0UHUMhu88\njgptGhWrnMzAAHIzExgaG8HASA4DuRyKdNVd6zJe7rCv54kWvwTgkx+nwc67ap7PLq53cb8o6HjM\n6U2OWwCwqVUVpT+ogQYbF+GD7wM05y7LapUR/ecFZCWlAACenTwPx+YNAAB2DWrn2e/K5bN/FlZO\nvX9efG3/NLIqhTL1a+Pe+l8BAOnRcTgzaOabbjoNXe0XDg1rIf76fST/u+8/2HkMLm3y3sEvrJxL\n+49xd/NBZCYmA0olQuZvwMN9pwGoLhLt63viky1z0PiHGSijx8eIrs9bji0bIf15Am5/m/d3BABK\n1/dC4s17SH2s/v0+nPc3vpAyxna2sGtSH1cn5L1779DiQ6Q/j8e9lT9r3Q4l8bwpmlIpK/ZDG4VC\nAX9/f/To0QP9+vVDZGRkrtePHz+Orl27okePHtixY8cbx/7epio9fZ6NsnaGmr/LljFEUooSyalK\nWJjn/oLiE7Px854kbFtqr3muVhVj7PszFXWqGSMzU4mgs6mQGxatRWhatgzSnsZp/k6LjoORhTnk\npcxypSEVVs7QzAQ1JvXDudGL4dqlea7PV2Zlw7i0FZpsmQ8jG0tcnrry1Wfk6I5Pj46F3MIchuZm\nmm5KUwe7AsuYOpRB2rPYXK9ZuLsCADITX+LpwWDE/Hke1l7V4LXkK5zrOwnGpa0QdyEMt5euR0Z8\nIjzGD9S839jBDhk564p5DrlFqVzxFFbG0MwMlcYNwfWJs+HY4f/y3dYVR32Oh+s3IzslNe9nRcfC\nyMIchqXMcqcOlC2D9Nf+nepypmXLID369W1QAaZl7ZAeEw/kaHimxcTB1KE0Xt6NQM05Y3Fn5SYo\ns7LzxChDVShwFDLUy/ffUJAZ/m0AAGfPPijW+94mXcVgWrYM0qLz/w5e/64KKpf+PB5X/QLz/Xzn\njs1hIJcj6o/jqPx55wLjMC9bGik5jsHUZ3EwsjSHvJRprm73wspF7DmF8q3qod2RFZAZGuDZmWv4\nJzgEAJDxIgmR+/7GkxOXUKZOFXy44stibKX8vYv7RUHH4389bgEg48VL/HMwGDF/XoCNV1V4Lf0K\nZ/tORuL1u6jQsx0e7VTdlHBq2wQmdjaaunLud2lF3D/TXts/Q/yW5fm3mpd3RHpsPCr2aQf7RnVg\nYCzHg8373njbqelqvzB3LI3UHNs9NbqAY6SQchaujjC5ZoUPV02Gqb0NYq/cwbUVqrSUjISXeLj/\nNP45cQll6nig4XL9PUZ0fd56/HsQAMCpXdN8X8+zn8fE5vlNLaxMxvN4XJu6NN/PfrLrCADAse0n\nhW0CANKcN4O6//eeKJF0kaoUFBSEjIwMbN++HSEhIVi0aBHWrFkDAMjMzMTChQvx66+/wszMDL16\n9ULz5s1hZ2dX7HoKbTj069cPsgK6pH7+WXurU58V0LEAg3z6YH47moJm9UxRvuyrzTVxoBWWbUxE\nj0kxsLc1QCMvE4TcyihS3QVtU2W2okjlIAO8F47B9cBNSH+ekG+RjLhEBLUZA6tqFdFwzTScvl9w\nCoRSkaNegwJiUyggy+c1dcxhU77WPPfi6i0khN1G6fq18c/+kwib8upEdH/9Drj4toFMLs/3816P\np6AykMngMXsSHnz7P2TGxudbxLJmNcitLRFzNLjQz3p9u0OWf0ecMluR//ZRKArsulUqFKgysjcS\nrtxE3Pkw2Hq/SqmSlzJTvR1/A8jboHifFfi9v36MFLFcTpZVK6F8l5a4MGz2G8eR51gtpJznF52Q\nHv8Se5uPgaGpMT5cPg5V+rXG3U2HcGbiq0Z9bMhdxF69C6emdbXGRW/puAUQOuXVRVrC1dt4EXoH\nZerXxpN9J2HiUAY+q1XnzuSIKCgys/6tqoDO+jz7RdHK5XqP3BDmzmWRnZSKc0Nnwbx8WdRfN7vA\n8pIr8PdMWeRyBnJDODSsibPjlyM7PRM+c7+A5+huCPt6C85N+lZTNjbkDmKv3kM5PT1GdHneKpIC\n9rfcv/FFKPMfSXHedGhU863FL4IuBkdfunQJjRureo/q1KmDa9euaV4LDw9HhQoVYG1tDQDw8fHB\nhQsX0KZNm2LXU2jDISAgAACwevVqtGjRAj4+PggNDcWJEyeKXZG+cbQzRNjdTM3f0bHZsLKQwdw0\n70F1+HQq/AZb53ouOUWB8f2sYG2pKv/jrpeoUK7wDpzGv6i6/+SlzPDy3iPN86b2pZHxIgnZaem5\nyqc+jYVNTfc85SwqOcPcyR6e4/sCAEzKWENmaAADEyPcWL4FdvVq4OmJiwCAxFsReHknEpbuLqqy\ndraazzOxL43MF0lQ5Kg3/dlzWNeokm+ZtGfP87xf3SPh3PX/ELlxl+Y1GWRQZmfDxqsa5FYWeH5K\nFY+6MaRUKJD+LAYW1T1efZ5dGWQmvnwtnvzLmFd0gWm5sqg4ehAAwLi07b/bwBj3Fq8CANg1/xgZ\n0c/h9cOyf7e7OZLDX3Xd5ffvB1S9MtY5tnuubfD0OYzL2OR6LS06DmnPcj+v/r7SouNQrk0TZMS/\ngMMn9WFoZgoT+9JouGkJHvyk2l4GUKeflQJQDqq0pVC8jxpuXgxAdYwk3XuoeV79Hbx+jKQ9fQ7r\nGnm/q9fL5eTUtgnkpcxQ/4e5mvfUmjMGd/7t/vcc0RlOn9TVxJF497HmvWYOtv8eq7lvEqT8E4fS\nNd3yLefc4gOELFL1NmUlpSJy718o37IeInYHw617c9z64dXd5AJvFrxnZKgNGZw1fxvb5T7m3tZx\nK7cwR/mu/4eIHOcuyABFVjbkVqXw9PBfiNi4G63O7YCtVzXIDA3w4eZFec7hJgWew/Pun/mVyyn9\nuepGyOP9fwIAUh4/Q8LV23Bs0bDQbSZS9RFd4NjUGwBgVMoMiTl/zzT7ft7fs9K13PItlxaTgCcn\nLmnuRj/afxrVhnWGkYU5KnVvgTs/7tW8T98OEbdhvrBv8gEA3Z63iiLtaQysPF/7/X7tN7UoZd5U\ny+1zAEhz3lRmlqybb7rocUhKSoKFxauxkoaGhsjKyoJcLkdSUhIsLS01r5UqVQpJSUn5fYxWhY5x\nqFy5MipXroznz5+jbdu2KFu2LFq1aoXHjx8X9rYSoVEdE4TeyUDkE9UdpJ1HUvBJPdM85RKTFHj4\nNBteVY1zPb/zSApWb1PlRscmZOP3oBS0aWxWaJ2nek/Dqd7TcHrgLNjWckcpl7IAANduLfDsz0t5\nysecDcu3XELYPRxrN1bzeQ9/O4Z/jpxF6Nz/QZmtQG3/YbD1Ul1sW1R2RqmKTki4Fg4AsK5ZBWYu\njgAA586fIubUhVx1xp67WmCZmOALKPdZM8gMDSC3MEfZVh8hJvgCslLSUL5ra9g3U+X/WnhUhJWn\nuyrP39wUHhMGQW6l2pkr9O2gqkihQML5EFjWqArT8uUAAI6dWiPur/O54imozMvrt3Gx22DNAOin\nfxzC82N/aRoNAGBVpwYi12/RlAn94qtcn1W+SytEv/bvz7kNzP/dBjnLxQRfhPNnzXNsgw8R8+d5\npEfHITXqGcr+OwNLmQZeUCoUSLr3EMHtvsDZvqpBlzcWrEVq1FOc7fcVnh07o9oUOAgFDkKJx1Di\n1nvbaACAs339cLavH84PmpH3Owi+mKd87LnQIpXL6fbyjTjdbbymrvSYOIT5r0TMKdUxeGPNLs2A\nuxP95qB0bTdYVFAdg5W7NceTk1fyfOazM2EFlku4GYnyn6qODZncEE5N6yI2NByZyalw69ESzi1U\nFx02VSvAtmblYm+zd5ESoVDgoObvgo7HnN7kuM1KSYVLt/+Dw7/nLkuPirD+99xlVd0NXosnQWao\nSmk1srHA3e934u++U3B20EzY1HTX1FWhS8sC98+ilMsp9UkMXty8D+d2qjEYxqWtYVPLo9D3iHZz\nze+agcon+weofqf+3fcrdWuBf05ezvOeZ2euFVguKug8nFvWh4GJEQDAqZkP4q/fR2ZKKir3aAmn\nf48R66qusM1xoakPwtftFHLeKoq48//+fpdXfa5T50/xPPhCscu8KSnPm0//Llm/m7oY42BhYYHk\n5GTN3wqFAnK5PN/XkpOTczUkiqPIYxx27tyJ2rVr48qVKzAyMnqjyvRJGWtDzBllg0lfxyEzCyjv\naIj5Y2xx/V4GAtYkYEegAwDg4dMs2NsawEie+0sb3MUC079JQJcvo6FUAsO7W6Kmu3F+VeWREZ+I\nqwHfw2fJOMiM5Eh5HI0Qf1UemnX1Sqg9cyhO9Z5WaLmCZKem4+LEZagxsS9kcjkUmZm4MmM10qJV\neYQ35n6HWgsmwsBIjtTHz3B9zipYVquM6tNG4Hz/yciMT8y3DKAaKG3m7Ij6m76GgZEcUbuOIuHK\nDQBA6FeLUXXiYFQe0h3KbAWuzViOzBcvEXsmBI93HsAH6+YCMgMkh7+6G5OZ8AL3Fn6LanP9IJPL\nkfbkKe7OWwGLqu5w8xuFq4PGF1imKMzKOyH9aXS+9QGAhVsFXAtQ/dusqlWG5/ThONvvq3+3wRrU\nXjgBMrkcqVHPNOUe/34EZuXLouHmpTAwkuPxriDEX1FNnxo2YwWqT/0ClT/vAkVGJkKnLS84J44K\nlRGfiOtz18Brkfo7eIqw2asBAFbVK8Nz+hc429ev0HJvQ3r8S1yc9T80XDoaBkZyJD+OxvkZ6wAA\ntp4V4TNrEIJ6+Bda7urXW1BnSj98umshlAolos9dx+2f9gMKJf7+cgXq+PWD54jOUGZn49xXq9H0\nf1PfWvzvioKOx7dx3F6dvARVJw2C21BfKLMVCJ2xApkvXiLuXCie1/VEwy2qVMvkyH8QsXU/ANX+\nGTZ3LeosGg8DuRwpUc9y7Z81pw/D332nFFquMFe+CoTnV4Pg0qUlZDIDhP/wG2pMHfrWt+vbkBGf\niMuz16PB0rEwkBsi+XE0Ls78HgBg41kJdf0H40TPGYWWu78jCMZWFmj2y1zIDAyQcCsCYct+BBRK\nnB2/Al5+/VB9eFcosrNx3m8VGq+fJuU/uUBSn7cy4xNxc95q1FwwSfX7HfUMN+ashGU1N1SbOhwX\nBkwusMzbJMV5MyPhze6eS0Whg1mSvL29ceLECbRt2xYhISHw8Hh1w8HNzQ2RkZFISEiAubk5Ll68\niMGDB79RPTJlQdMI5RATE4O1a9ciIiIC7u7uGD58OGxtbbW97d/3vtReSIfs7S2Rdq2ZpDEAgGnN\nE9jn00d7QR1qf2kLjjX0lTQGAGhxdidON85/WlJRPjr1B442yDs9nGitzu1ANrZIGoMh+uhFDABw\npH7eaRxF+vT8dvxa579PfflfdAtRrceiD9+JPsQAQPJjtdW5HThUv6ekMbQ+v03y7wNQfSe76vaT\nNIbOVzaXtLEEAAAgAElEQVTpzbbQh3PW8UbdJI0BAJqf+VVvzp0lwcF6eadv1qbNha2Fvq5QKDB7\n9mzcuXMHSqUSCxYswI0bN5CSkoIePXrg+PHjWL16NZRKJbp27Yo+fd7smrTQHoenT5/C0dERSUlJ\n6Nu3L5RKJWQyGRISEorccCAiIiIiIhVdjHEwMDDAnDlzcj3n5vYqta958+Zo3rz5628rtkIbDhs2\nbMDUqVPh7+//alDrv42Hkj6rEhERERGRaLqYVUmUQhsOU6eqcm03bdqEuLg4REVFwdXVFVZWVkKC\nIyIiIiJ6l7y9yW/FK9Lg6N9++w3r16+Hm5sb7t+/jzFjxqBt27a6jo2IiIiI6J3yzvY4qG3duhV/\n/PEHTExMkJKSggEDBrDhQERERET0HilSw8HGxkYzF6ypqSlTlYiIiIiI3oAuBkeLUmjDYcKECZDJ\nZIiLi0OXLl3g5eWFGzduwNQ070JpRERERERUOKUO1nEQpdCGQ8+eeeetbt++veb/o6Ki4Ozs/Paj\nIiIiIiJ6B72zPQ7169cv9M1Tp07ltKxEREREREWk0Lr0sv4q0hiHghRh0WkiIiIiIvrXO5uqpI16\nUTgiIiIiItLunU1VIiIiIiKit6ckJ+zIlP8h36hfv37YtGnT24yHiIiIiOidtbnWoGK/p2/YjzqI\npPgMilM4ISEh198NGzZ8q8EQEREREb3LlEpZsR/6okipSufPn8ecOXOQnZ2N1q1bw8nJCb6+vhg1\napSu4yMiIiIiemeU5DEORepx+Oabb7B582bY2dlh+PDh2Lp1q67jIiIiIiJ65yjf4KEvitTjYGBg\nABsbG8hkMpiYmKBUqVK6jouIiIiI6J1TknscitRwqFChAgIDA5GQkIB169bByclJ13EREREREb1z\nFFIH8B8UKVUpICAATk5O8PHxgbm5OebOnavruIiIiIiI3jkleXB0kRoOGRkZaNasGUaOHIkXL14g\nJiZG13EREREREb1zFEpZsR/6okgNh7Fjx+L69etYunQpjIyM4O/vr+u4iIiIiIjeOSV5cHSRGg5p\naWlo3rw5nj59imHDhiE7O1unQe3Zs0enn1+SZGRkSB0CAODly5eS1h8WFiZp/UREJd3razG9j5KS\nknDr1i2kpKQIr1vq31Git6FIg6MzMzOxceNG1KhRA/fu3UNqaqpOg9qxYwc6dOig0zqK4uXLlzh9\n+jTS0tI0z3Xq1EloDF27dkXDhg3h6+sLDw8PoXXnNGzYMEmn4f3xxx8RFRWFDh06oEOHDrCyspIs\nFik9efKkwNdETVqwe/fuAl8TeXxMnTq1wNcWLlwoLA4ASElJQWJiIuRyObZv345OnTrB2dlZWP2r\nVq0q8LXRo0cLiaFfv36QyfLvTv/555+FxJDTzZs3sX37dqSnp2ueE7Vf6Nu2KGgtJtEiIiIQGRmJ\nqlWromzZsgVuI105dOgQ1q5dq9kOMpkMI0eOFFa/+nd01qxZCAgIEFZvYWJjY3MdI6Inv0lISMBf\nf/2FrKwsKJVKREdH44svvhAagxT0KfWouIrUcPDz80NQUBBGjhyJP/74A9OnT9dpUBkZGejUqRMq\nVaoEAwNVp0hgYKBO68zPqFGj4OzsDDs7OwAQfpIDgD/++AOnTp3CqlWrEB8fjw4dOqBt27bCp8S1\ntrbGxo0bc30nH3/8sbD6ly9fjhcvXmDfvn0YN24cSpcuje7du6NBgwbCYlBLSkpCcHBwrt4gURfM\n48ePB6A62SYnJ6NKlSq4d+8e7OzssGvXLiExhIeHAwBCQkJgZmaGunXrIiwsDFlZWUIbDm3btgUA\nbN26FXXr1oW3tzfCwsIk6Z0aO3YsevbsiSNHjsDd3R3+/v744YcfhNWvPkcFBQWhfPnymm3xzz//\nCItBfSG0evVqtGjRAj4+PggNDcWJEyeExZDTlClT0LdvXzg6OgqvW9+2hXotpjFjxmD48OHo1auX\n8IbD5s2bcfToUbx48QKdOnXCw4cPhac9//TTT9ixYwcGDx6MkSNHomvXrkIbDnK5HF27dkVkZCRu\n374NAFAqlZDJZNi2bZuwONRmz56N4OBgODg4SBbH6NGjUblyZdy5cwcmJiYwMzMTWr9USvKsSkVq\nOHh7eyMxMRHbt29HxYoVUbt2bZ0GNWnSJJ1+flEplUrhdy5fZ2BggCZNmgAAfv31V2zatAm//fYb\n2rdvj759+wqLw9bWFrdu3cKtW7c0z4lsOADA8+fP8eTJE8THx8PNzQ2HDx/Gzp078fXXXwuNY+TI\nkXBwcEC5cuUAiG1Qbt++HYCqUbt48WJYWFggJSUFEyZMEBbDxIkTAQCDBw/GunXrNM8PGjRIWAwA\n0LhxYwDAhg0bMHToUACAj48PPv/8c6FxAKp0zhYtWuDnn3/GkiVL8Pfffwutv2fPngCAI0eOYPbs\n2QCADh06CN0WlStXBqA6TtWNulatWmHTpk3CYsjJzs5OkrvqgP5tC31Yi2n//v3YsmULBgwYgIED\nB6Jr167CYzA0NISxsTFkMhlkMpnwi9RZs2bB3Nwcs2fPxqxZs4TWnZ/Q0FAEBQVpbgZKQalUYs6c\nOZg6dSrmz5+P3r17SxaLSPo0S1JxFanhEBgYiMjISHh7e2P37t24ePEipkyZorOgPDw88nRd1a9f\nX2f1vU59J9nFxQVXrlxBjRo1NK8ZGxsLiwMAlixZgmPHjqF+/foYOnQoateuDYVCgS5dughtOEjd\ngPL19YWpqSl8fX0xbtw4zfcwePBg4bEolUrhjZXXPX36FBYWFgAAc3NzSWY6i4uLQ2JiIqysrBAf\nHy9Z/nRKSgrOnDmDWrVq4cqVK7m63UURnc5ZkISEBDx8+BAVKlTA/fv3Jcup3rlzJ2rXro0rV67A\nyMhIkhicnZ2xbt06VK9eXdO4F32zA9CPbaEPazGp72irvwvRv6WA6sbChAkT8OzZM/j7+6NWrVpC\n6586dSp27twJIyMjoamMBXF1dUV6erqkd/kNDQ2Rnp6O1NRUyGQynY+h1RclucdBplQqtQ7W7tmz\np6b7SqlUonv37ti5c6fOgurbt2+erqu1a9fqrL7XNW/eHDKZDK9vGplMhmPHjgmLA1CN92jXrl2e\nO0SPHz9G+fLlhcWR8wc3ISEBLi4uOHjwoLD6IyIiULFiRWH1FWbevHn47LPPUL16dc1zon8Ely9f\njkuXLqFmzZoIDQ1F48aNMWLECKExHD58GIsXL4a1tTVevnyJmTNnomnTpkJjAFSpU0uXLsWDBw9Q\npUoV+Pn5wcXFRWgMly9fRlBQEIYPH449e/agdu3aOu+Zzc/FixcREBCA2NhYODo6Yvbs2cLjiImJ\nwdq1axEREQF3d3cMHz4ctra2QmMA8h8DI/oGiL5si6ysLOzcuRN37tyBm5sbunfvLvyctWnTJhw8\neBBPnjxBlSpV0LBhQ0lu/AQHB2u2Q7NmzYTWPWHCBJw5cwZJSUmwtrbO9dpff/0lNBZAdW0XEREB\nV1dXAJAkVenw4cOIjIyEra0tVq5cCR8fHyxfvlxoDFJYUaX4KXJf3v1OB5EUX5EaDt26dcOOHTtg\nYGAAhUKBnj17YseOHToLqk+fPtiyZUuurisp8v9CQ0Nz/eieO3dOeE59REQEDh8+jMzMTABAdHQ0\n5syZIzSG10VFRWHVqlVCf4SPHTuGX375BZmZmVAqlUhISMDevXuF1Z9Thw4dkJSUpPlbigYlAFy7\ndk1zQVKtWjXh9QOqC5K4uDiUKVMGhoaGksTwuujoaDg4OAit886dO5rJCxQKBf73v/9h2LBhQmOQ\n2tOnT+Ho6IgHDx4AeHWHGQAqVaokPJ5FixbptGe8qKKjo3P1ntetW1d4DFevXsXVq1fRv39/TJw4\nEYMHD4anp6fwOMLDw3Hnzh1UrlwZVatWFV7/8ePHce3aNYwdOxaDBw/G559/LkkvVEBAgF6kKoWH\nh8PU1DTXc1L0hKjPHRcuXEC9evWE1y+FZe7FbzhMuKcfDYcipSq1bdsWvXr1gpeXF0JDQzU5m7oi\nddfVxYsXER4ejg0bNmhyhBUKBbZs2YJ9+/YJjWXSpElo1aoVLl++DAcHB0mmkHuds7Mz7t+/L7TO\nFStWYM6cOdi2bRsaNGggPIc8JymnC965cyd8fX0RGBiouSi7c+cODhw4IGycw5w5c+Dv748ePXrk\nGd8hRQN/xYoV2LZtGzIzM5GWloaKFSti//79QmOYPn06li1bBplMBj8/P7i7uwutf+zYsfj222/z\nvQgSdSdzw4YNmDp1Kvz9/TX7hbrxIMVMQvfu3dOk0kll2rRpCAkJQWpqKtLS0uDi4qLTm24FmTNn\njuYu7pdffokpU6Zgy5YtQmPI2QMUHBwMIyMjODo6ok+fPnnuvuvKypUrNfviihUrMHToUKENhxMn\nTqBZs2aoWrWqZryaWo8ePYTFoTZjxgxJZ0sEAH9/f7i6umLw4ME4fPgwjhw5ovMJePSBPq3LUFxF\najgMGjQIH3/8Me7fv49u3brpfFrQPn364KeffsJHH32Epk2bwsfHR6f1vc7KygoxMTHIyMjQ5I7L\nZDJMnjxZaByAKn/9iy++QEREBBYuXCjZwKEJEyZoLgaio6NRpkwZofU7ODigbt262LZtG7p06SJs\nBqGc9OGCWT1DjHrwZX4pdbqmnoVk2bJlQustyIkTJxAcHIwFCxbg888/l2Saw8DAQEyYMAFpaWmY\nNm0aGjVqJLT+b7/9FoA06Q5q6gvDTZs2IS4uDlFRUXB1dZXswj08PBwNGjRA6dKlNcer6O1z69Yt\n7N+/H/7+/hg/fjzGjRsntH41IyMjVKhQAYBq7J4Ug2HT09Ph4uKCDz74AFevXkVYWBhKly4NPz8/\nYanIcrkclpaWAABLS0vh20E9Duz58+dC6y2Iubk5FixYkGu2RNENmBs3bmiyKGbMmIE+ffoIrV8q\n7+x0rDnvaqrduHEDAHR6d/P//u//AKgOsjZt2mgGgYri4eEBDw8P+Pr6omzZskLrfp1MJkNMTAyS\nk5ORkpIiWY+DetYWADAxMUHNmjWF1m9kZIQLFy4gKysLp06dQnx8vND6Af24YFbPJNS2bVvs2LED\nERERqFKlitDZY9RTfyoUCixZskQTgxQNawCwt7eHsbExkpOT4erqqknrEyHnXUNvb28EBwfj4cOH\nePjwoSR3EMPCwjBr1iw8f/4cTk5OmDNnjvD1X3777TesX78ebm5uuH//PsaMGaPzXur8SDX1aU62\ntraQyWRISUlB6dKlJYvDyckJy5YtQ506dRAaGio8lQ9QTaagPnc2btwYgwYNwpdffin0QrF27dqY\nOHGiZjuITtdq0KABnjx5gi5dugittyDqtLnY2FhJ44iPj4etrS0SExM5OLoEKLThoL6rGRMTAxMT\nE1hZWWHZsmU6n3bxwoULCAgIkHyxmjNnzuD7779HRkaGpstddC776NGjERQUhI4dO6JVq1aSLYzn\n6emJ1atXIzw8HBUrVoSrqytsbGyE1R8QEID79+9jxIgR+Oabb4QPBAZeXTDHxsZi//79uWbvUU+B\nKcqUKVPg7OyMRo0a4dKlS5g2bRoWL14sNIZp06ZhyJAh8Pb2xoULFzBt2jRs2LBBaAyAqhfm119/\nhZmZGQIDA5GYmCis7pyzWVlaWqJdu3aSzHClNn/+fCxZsgTu7u64ffs2Zs+ejV9++UVoDFu3bsUf\nf/wBExMTpKSkYMCAAZI0HPRhcHSNGjXwww8/wMHBAePHj8+1mKhICxcuxNatW/Hnn3/C3d1d6NoF\naklJSQgPD4ebmxvCw8ORnJyM+Ph4oTfDZs6ciaCgINy/fx9t2rRB8+bNhdUN5F2Hx8PDA3fv3oW9\nvT1+//13obEA0IsGzOjRo9G5c2fI5arLUX0Y+yHCOzsda+fOnQGoVi9evnw5KlSogA8++ABTpkzR\n6fzgK1askHyxGgBYv3491q5dq5mvXyT1zE6AKk/YyMgIJiYmOHnyJPz8/ITHM23aNNSrVw8dOnTA\n+fPnMWXKFCHdyzlXSlbP/FDYisEi+Pn5YejQoZLmTj9//lyTs9yyZUuhU/OqGRoaamZRat68OTZu\n3Cg8BkCVQvb06VO0bt0au3btErpYpHpV5sjISISFhaF9+/b4+uuvc/XQiWRiYqIZX1G1alVJpv+0\nsbHRXASYmppKdpyoGytKpRI3btxAdHS08BgmTJiA5ORkmJiYIDg4WPgMV2FhYahVqxYuXLgAd3d3\nzb5x/vx54YOC/f39MXnyZERHR6NcuXLw9/fHgQMHMHz4cJ3XrR5boO4htLa2RkxMDLZv3y60Z1Af\n1uHJafz48ZDJZFAoFHj8+DFcXV2Fj3nIyMiAQqGAkZERMjMzJVloVwrvbI+Dmuj8SJlMJvliNYDq\n36q+WBXt0KFDUCqVCAgIQM+ePVG7dm3cuHFDsoFM8fHx6NevHwCgevXqOHz4sJB69WGl5Ne5urpK\ndqdGvcZI+fLlNbN+3bp1S+hUteo8cTMzM6xfvx716tVDaGiopkdGtJSUFGzfvh3R0dFo1qyZJBfL\nfn5+mhl8mjZtiunTpwttSKkvSORyOWbPnq35TkSmearHQcXFxaFLly7w8vLCjRs38szaIoo6rQ8A\nmjRpInyBQgB49uwZli5diri4OLRu3RpRUVFCjxP1+ib5TRYguuFQu3btPHfVRa2joB5bIGVvYE76\nsA4PkDvVMjExETNnzhQew3fffYddu3ahTJkyeP78OYYPHy7JTFeiCR6a+FYVqeEgOj/S1dUVgYGB\niI+Pl2yxGkB1t2zIkCG5FhASdWdAPcf2o0ePNHepPD09hc9mpJaeno6YmBjY29sjJiYGCoWY9rK+\n3aEBVGNwxo8fDzc3N81z6jvPuta6dWvNgOhz587B2NgYGRkZMDExEVI/AM1FiI2NDe7fv6/ZJ6VY\n0AlQ9YY1adIEFy5cgJ2dHaZPn47NmzcLj6NOnToAgHr16gk7PtTUFx7qnOUHDx7A0tIy11ojupZf\nL0v79u01/x8VFSV0qsecA6FjYmIkGZA6c+ZMfP755/juu+80vfUiZ1VSTwlsbW0t+dS0u3fvxrp1\n63KleIpK/VVnTzx48EBoj2RBPv74Y/Tt21ezDk/Lli2lDgmWlpZ49OiR8HptbGw0k63Y2dkJH9Mq\nFQVKbs9KkRoOOfMj3dzcdJ4f+fz5c01alLm5OebOnavT+goixWJWr7O0tMSKFSs0K4/a29tLEseX\nX36JXr16wcLCAklJScK/E325QwMAW7ZswaeffipJCsbx48cLfX3btm06T5PRlic+a9YsoTMbJSQk\noFu3btizZw+8vb2FX7QDqpnYtm/frrm5IrqXVFvDddSoUVi9erVOY6hfv36hr0+dOlXotKw577Ib\nGxsLH98AAGlpaWjUqBHWrFmDypUrC23g56QPU9OuX78ea9askST1Vy0zMxO3bt1CpUqVJF3Bevz4\n8Zp1eDp16qRZh+fq1avw8vISFod6hkClUom4uDjhs8EBQKlSpTB48GDUq1cP169fR1pammYQvZQ3\nCHVN8a73OJiYmGDgwIE6DuWVr776Cr/99hsuX74Mc3NzPHnyRJJVgz/77DNs374d9+7dQ8WKFdGr\nVy/hMXz99dfYtm0bTp48CTc3N4wZM0Z4DIBqpWpjY2PNCo8zZswQOlBcn+7Q2NjY6O3iXgcOHJAs\nv15NvQCYSOHh4QBUDUwpFqJbtGgR1qxZg6NHj8Ld3R0LFiwQHkNhRA4YL4joaYO9vb1zjY37+eef\nUaNGDaExmJiY4NSpU1AoFAgJCZGsV049Na2tra0m1Vj01LRSpv6qPXjwINeNT6kW7wSAmjVr5pmd\nMDAwUGjjevHixZrUThMTE0n2z5y/5VLPYinSO5+qJJqbmxu++uorxMXFYf78+Wjfvj3q1auHsWPH\nCl1109/fH1ZWVvjoo49w/vx5zJgxA0uWLBFWP6C6uy5Fbu7rtm3bhvXr10vW4/H6HZqcaUKi2dra\nwt/fH56enpq7VlJMvZkf0Rdn+mDGjBmYNm0awsPDMXbsWKGzcqhXPH3x4kWuNVZevHgh6fSbr9OH\nAYeiYti3bx+OHz+Oc+fO4ezZswBUUwffuXMH/fv3FxKD2ty5c7F48WLEx8fjxx9/FD77mpo+TE0r\nZeqv2t69e5Gdna1Z7V6K9SwKI+r8HRMTg6SkJPj5+WHJkiVQKpVIS0uDn58ffv31VyExqKnTyN43\n73yqkmh//vkndu3ahfDwcHTs2BHTpk1DVlYWhg4dKnTV3sjISM3qmi1btpT8Tq6UbG1tJVmKXm39\n+vUYOnQoatasidu3b6N79+6SDo4G9GcRn5z04QJRtFOnTuVZhVWU11dLVv/wS7VaMqkGRdvb2yMh\nIUHToDcwMICLi4vwWH766SfN7GdSunz5MgICAhAbGwsHBwfMnz9f6PgXQD9Sf48ePYqFCxfC2toa\nSUlJmD17Nj766COpw9IQdf6+evUqNm7ciAcPHmgGRBsYGLwXg5Lpv9PLhsOePXvQq1cvNGjQINfz\notN00tPTkZqaCjMzM6Smpr43C5PkpM41zMjIwODBg3PdZRd5t+ju3bvYunUrUlJSsHv3bsnu3AEF\n55OLyCOnvP78808MHDhQkhQl9dTAn3/+ea454Q8cOCA8Fn0n6m6qtbU1GjRogAYNGuDMmTN4+PAh\nvLy8hK47o6YPYwsAYN68eQgMDIS7uzvu3LkDf39/Yavdq3322WcICwtDVlYWlEqlJNPjrl69Gjt3\n7sw1g48+NRxEadmyJVq2bIk///xTLxp076OSnByglw2HgmY9aNWqldA4BgwYgE6dOsHd3R337t3D\n2LFjhdavDypVqpTrv1JZtGgRJk2ahLi4OPz222+S5QoX5n3MI9eHGOLj49G4cWOUL18eMpkMMplM\n2EXRiRMncPnyZezfvx8hISEAVGkxx44dk2TRs4JYW1sLrzMhISHXxXrDhg2F1r9s2TI8ffoU4eHh\nMDY2xrp164Sv+q4PYwsA1SQb6jUcPDw8JJkid/To0cjMzER0dDSys7Ph4OCQa9YtEfR9Bh/R585y\n5cqhd+/eSExMRIcOHVClShU0a9ZMaAzvq3d+HYf3lbm5OSpVqoTk5GQ4OTlh9+7daNeundRhCSV1\n/qF61gdANSPG7du3NXnKou+YaSMyTSg7Oxs3btzItRJtvXr1MHnyZGExdOnSBR9//DE+/fTTXIP8\nfvzxR2ExABCyEGFBqlWrhoSEBJiYmGga1zKZTLLzxD///IN9+/blmvJy9OjRWLlypbAYzp8/jzlz\n5iA7OxutW7eGk5MTfH19MWrUKGExAMClS5ewZcsW9OvXD507d5ZkDRx9GFsAAGXKlMH06dPRsGFD\nXL9+HQqFQpPeJ2p8Vnx8PLZv347p06drpqkVTV9m8MnIyEB4eDiqV6+OoKAgNG3aFEZGRvjss8+E\nxQCoVppfuHAhZsyYgW7dumHIkCFsOAjyzs+q9L5asmQJ5s6dK3k38/tM9B3CkmLs2LFITEzUDFaX\nyWSoV6+e0JVpt23bhjNnzmDnzp2YN28evLy8MHXqVOELsGVkZGDJkiWIiIhAlSpVhK6sXq5cOXTu\n3BkdO3bMd6Cl6Klpx40bh0aNGkk65eU333yDzZs3Y8yYMRg+fDh69eqVa3YjUbKzs5Geng6ZTIbs\n7GxJBsLqw9gCAKhcuTIA1bg9CwsL1K9fX/iU1upejtTUVJiamkoyHqugGXxyNrRFmDRpEpo2bYrq\n1avjwYMHOHjwIAIDA9G9e3ehcQCqMXsymQylS5eWbLHd91EJbjew4VCYKlWqaJ2bnHRLPSD79RVY\nq1atKulgbanFx8fjl19+kTSG1NRUpKamQqFQICMjQ7LB4n5+fhg1ahS8vb1x6dIlTJkyBZs2bRIa\nQ0EXpaKnpi1VqpRmtXWpGBgYwMbGBjKZDCYmJpJdjAwcOBBdunRBXFwcfH19JbnDrQ9jC4DCx2WJ\n0qJFC6xatQrVqlVD9+7dYW5uLqxutYJ60Pv37y908pNnz56ha9euAIChQ4eiX79+wurOydraGtu2\nbUNqair279/Pm6QCKZQldyITNhwK0aJFC/To0UNztwbQvvgV6YbUK7AWhcg8cicnJ/zzzz+S3llu\n1KgRPDw8MH78eMkWaQQAMzMzzQC/Tz75BBs2bJAsFqlVqVIF+/fvzzXlpejxSRUqVEBgYCASEhKw\nbt06ODk5Ca1fzcbGBr/88gsiIyNRvnx5SabH1YexBYV5+fKlsLoOHz6smaWwadOmkqzNVBDRYwtk\nMhkePHiASpUqITIyUpJFKwFgwYIFWLt2LWxtbXHt2jXMnz9fkjjeR3owHPGNseFQiE2bNmHIkCGw\ntLSUOpT3nj6swHrw4EG0adMGKSkpWLlyJW7duoUaNWpgxIgRKFWqlJA8cvV0eRkZGTh06BCsra01\nF4iiB12ePHkSf/31F/bs2YONGzeiRo0amDhxotAYAFW60HfffafJ3zY2NtZsi/dtesGbN2/i5s2b\nmr+lmBY2ICAAO3fuhI+PD8zNzSVrVK5cuRJbtmwRmr73On0YW6AvZDIZRo0ahUqVKml66PRlZWDR\naVPTpk3D2LFjce/ePbi4uEiWkjtr1qwCJ6Mh3eLg6HeUnZ2dXs2M8j7ThxVYt27dijZt2mD+/Plw\ncXHBjBkzcObMGfj7+ws7+UoxI0tB7OzsUKFCBURERCAqKgpRUVGSxCGTyfDo0SM8evRIE9f+/fsB\nvH8Nh02bNuHly5eIioqCi4uLJGlCGRkZaNasGVq2bIkdO3YgJiZGkrRCfbhQ1YexBfpCnZpDwOPH\njzXHyZ07dxAeHp5nFWkRMjIycOvWLVSqVEnTeNLHGQvfRexxeEeZmppKunYBvaIvK7ACqosAdZeu\nm5sbjhw5IjyG11fANTIygqOjI0aMGIHy5csLiaF169aoV68ePv30U4wePVqyH5yFCxciOzsbSqUS\nITcEn54AAB81SURBVCEhqF27tt78+IlOgTh8+DDWrFmjmdFIJpNh5MiRQmMYO3YsevXqhcOHD8Pd\n3R3+/v744YcfhMYAFHyhmpGRIWz/GD16NJKSkgAAQUFBaNasmSRT4+oDqWfoK4zo43Tjxo34/fff\nUapUKSQlJWHAgAHo2LGj0BgAICIiAiNHjtQsXimTyXDs2DHhcbyPRPU4pKWlYfLkyYiNjUWpUqWw\nePHifNM2FQoFhg0bhhYtWqBXr16FfiYbDoXgtGT6w9HREWPHjkVkZCSqVauWa0YMUSIiIvDTTz9B\nLpfjxo0b8PT0RFhYGDIzM4XH4uzsDG9vb/j4+CAkJAQnTpxAnTp1MH36dGzcuFFIDIcOHUJwcDDu\n3r2LzMzMXDOWiDR//ny4ubnhyZMnuH79Ouzt7bFo0SKhMcTHx+P777/XzOw0bNgwWFpaCp+adsOG\nDdixYwcGDx6MkSNHomvXrsIbDmlpaWjevDk2btyIJUuW4O+//xZav1pBF6pDhgwRlr41fvx4fPLJ\nJ7hy5QoUCgWOHj2qV4tEvo+NGPWirtHR0XBwcAAAzTgUUWQymaY30MLCQpLUWwDYu3dvvs9v27ZN\n6GDx95Go6Vi3bt0KDw8PjBkzBvv378d3332HGTNm5Cm3YsWKIq9FxYZDIfT5Dsn7ZvPmzTh69Che\nvHiBzp07IzIyEv7+/kJj+P7773Ht2jVUrFgRt2/fhouLC+bOnStJ78eTJ080A/UrV66MvXv3wtfX\nF3/88YewGJYvX47IyEh4e3tj9+7duHjxIqZMmSKsfrWwsDBMnz4d/fr1w6ZNmzBgwADhMfj5+eGT\nTz5Bp06dcPHiRfj5+eG7774TPjWtoaEhjI2NNQvhmZmZCa0fUK23oh7zcu/ePaSmpgqPoTAi7y5H\nR0ejY8eO+PXXX7Fp0yYMHDhQWN05qVc4V1P3UM6bN0+SeKSyatUqZGRkYMKECZg3bx5q1qyJYcOG\nYdasWULjcHFxwaJFi/DBBx/g4sWLqFChgtD6tTlw4AAbDjom6ix06dIlDBkyBADQpEkTfPfdd3nK\nHDp0CDKZDI0bNy7SZ4qf2JroDezfvx8bNmyApaUlBgwYgKtXrwqPoXr16vD19cXs2bPRuXNnWFpa\nYseOHfD09BQeS2ZmJk6dOoWkpCQEBwcjKysLjx49EnqRduHCBXz77bcYOHAgVq5ciUuXLgmrOyeF\nQoFr166hfPnyyMjIQHJysvAY0tPT0bt3b1SrVg19+/YVOltNTj4+PpgwYQKePXsGf39/1KpVS3gM\nfn5+iI6OxsiRI3H27FlMnz5deAyFETkQNjMzE0eOHIG7uzvi4uIk2TcB1f7p4OCAtm3bwtnZGc+e\nPUNGRobQNU/0wfHjxzXpxt9++y2OHz8uSRwLFy6Ei4sL/v77b80NKH0iOnXrfaRQFv+hzc6dO9G+\nfftcj5cvX2om+ClVqlSe36Y7d+5g3759GDduXJFjZ48DlQjq/EspB3D169evwLQk0XOzL1q0CEuW\nLMGCBQvg4eGBBQsWICQkJM+dRV3KysqCQqGAgYEBFAqFJAs6AUDHjh0REBCABQsWYOnSpUJnq1Gv\n02Bra4sDBw6gXr16CA0NFTbO5HUTJkxAcHAwPD094ebmJkm6pbe3NxITE7F9+3ZUrFhR0lmNpDZk\nyBAcOHBAs7aI6LQxtbi4OM3MPY0bN8agQYPw5Zdfok+fPpLEIxWZTKYZ45KZmSnZBbJcLtfrbS/V\nufx9ootdz9fXN89im6NHj9bcsEhOTs6zVsfu3bvx7NkzDBgwAFFRUTAyMoKzszOaNGlSYD1sOFCJ\n0LZtW/Tt2xdRUVEYOnSoJPn0kyZNwowZM7B69WoYGhoKrx9QXazL5XI4OjrmmcLvs88+ExpLu3bt\n0KtXL3h5eSE0NFSyGcj69Omj+RHOeXd71apVBS589bbkTJfbtm2bJIt75RQbG4vg4GA8ePAAsbGx\n8Pb2Fp7HHhgYqBcpbAURebH46aef/n979x4VdZmHAfwZdUBuioIYykUE7y2roJEr4oqYrrtuXsCg\n1DStTMy8pOZlx0siaYd2NXXTTQ09Jagr2SatLdqB5Ui1UTq6ru4RLWzRIIWFGe7D7B+emWK9NR7n\nfd+ZeT6dOUfm52/epw7BfOf7XvDYY48BQKtP9ESfKG4wGFBSUoLw8HCUlJTAaDSisrIStbW1wjKo\nIDk5GePHj0fv3r1x6dIl6xQOItFELY6OiopCfn4+IiMjUVBQgOjo6FbXly5dav3zm2++CX9//7sW\nDQALB3IQ77//PkJCQvDUU08hPDwcffr0EZ7h5z//OR5//HFcuHABo0ePFj4+cHMaSEZGhnXHHAuN\nRoO8vDwhGTIyMqxjd+3aFZ988gn69euHGzduCBn/p/r888/tPoblhOqcnBzs3LkTDQ0NAOR9Yrdg\nwQKMGzcOiYmJKC4uxtKlS7Fjxw6hGf7xj39YC6inn34aU6ZMETr+vYheCHs7ok8U1+l0WLJkCcrL\nyxEYGAidTofc3FzMmTNHaA7ZkpKSMGrUKFy5cgXBwcFSDgV0BJyqZH+iFkenpKRg2bJlSElJgVar\ntW4dv2fPHoSEhGDUqFE2vyYLB3IIhw8fRklJCU6cOIG9e/fC398fW7duFZ5D9idUlv/p58yZg8zM\nTOuaBpE/6H98knpYWJiyu4+J/G/y9ttv46233pJ6kreFZSu9vn374q9//avw8X88hc0yxVCku03X\nS09PF74QVgXl5eU4dOiQ9TwLAFLWv8iyaNGiO34fuuIBaGVlZXe81q1bNyxZskRgGtck6reTh4cH\ntmzZcsvzM2fOvOW5F1988Se9JgsHcgj/+te/cPLkSXz66acAWr95dUVZWVnYuXMnunTpInxsR9lt\nTOQb1uDgYISGhgob70569uyJI0eOWE8q9vX1tX66HRYWJiTDuHHjpE5hs4y3f/9+DBo0CFFRUThz\n5gzOnDkjNIdKioqKsHnzZsTHxyMxMRHBwcGyIwnFHYJaW7hwIQCgqqoKRqMRvXr1wsWLF+Hv74+c\nnByXXpdE98bCgRzC1KlTERwcjIULF2LEiBGy40jXqVMnKafx0u21b98es2fPRr9+/aQeFnnp0iV8\n+eWXWL16NYKCgtCpUyfodDpoNBphZxc888wziI2NxaVLl5CYmIjevXsLGdfCsqXgnj178OyzzwK4\nudvU7T5hcxW/+93v0NjYiOPHj2PdunVoamrCO++8IzuWMI888giAmyc2Hzt2rNXuc5ZrriQ7OxsA\nkJqaio0bN8Lb2xu1tbU84FYgUVOV7IGFAzmEzz77DMXFxSgsLMTu3bvh5+d3y+JgV2D5d25sbOSp\n5vcgcqqSKsVsSkoKNm/ejF/84hf497//jcmTJ2PChAlCxv7x2heLc+fOAZDzvVlbW4uioiL87Gc/\nw1dffWVdf6ICGXPI9Xo9CgsLcf36dYwZM0b4+CpYvHgxhg8fDn9/f9lRlHDt2jV4e3sDADw9PVFR\nUSE5ketw5GUkLBzIIVRXV+O7775DWVkZ6urq0K1bN9mRpLBMNxE17cQRmEwmZGVl4eLFi+jRowdS\nUlLg5uaGTZs2CcugyvStzMxMHD58GF5eXjAYDHj66aeFFQ6W6YMVFRVwd3dHhw4d8MYbb+CZZ54R\nMv7/S0tLw+uvv47Lly+jV69e2Lhxo/AMBoMB27ZtQ0lJCXr06IG5c+fC19dX+Ini48aNQ9++fZGU\nlIS0tDQpp92roH379nbfac2RxMbGYurUqXj44Ydx+vRpKbsVuipRuyrZg8bM5fPkACZNmoSEhASM\nHj0avXr1kh2HFLJixQr4+PhgyJAh+Pzzz1FVVSW0aFBJcnJyqy1hn3zySbz33ntCM0yePBm///3v\nERISgitXruCVV17Bu+++K2x8y5bFjY2Nt1wTff7L/PnzMXjwYOv3ZlFREd566y2hGQBg+/btOHLk\nCJqbm2E2m6HVanHs2DHhOWSxrPPZunUrfvnLX2LAgAHW7pirfwhz9uxZfPPNNwgPD0ffvn1lx3EZ\n0/1++oFrFnuvb7ZDEtux40AO4fDhw7IjkKK++eYb6xvThIQEl14IGRwcjNdeew2DBw/GF198gZCQ\nEOEZtFqtddzg4OBWO/mIcLstiy27Ox0/flxolsrKSkyfPh3AzZPnZb1Z/+ijj7Bv3z788Y9/xNix\nY5GZmSklhyw/Pm9l586duHLlCoKCgtC5c2dha39UdO3aNezcuRMXL15EWFgYli9fLu3wSlfjyJ/Y\ns3AgIofW0NCAuro6eHh4oL6+HiaTSXYkadLT05GdnY2TJ08iPDwcixcvFp6hW7dueOONNzBw4EDo\n9XoEBAQIHd+yveaJEydgNptRWVkpbb/+hoYGVFRUoEuXLvj+++/R0iJngkJAQAACAgJgNBoRExMj\nZStrmSznreTm5rZaAzRp0iTJyeRatWoVUlJSrB2xlStXulxRKQsXRxMRSTJ9+nQ8/vjj1i0F58+f\nLzuSNO3atbOeoi1Leno69u/fj/z8fISHh2Pu3LlScuTn5+PVV1+Fj48PamtrsW7dOsTExAjN8NJL\nLyE5ORne3t4wGo149dVXhY5v4ePjg7y8PGg0GmRlZaGqqkpKDtlkrgFSUUNDg/UAsISEBJfaaUs2\nR14kwMKBiBzab3/7W8TFxeHbb79FUFAQfH19ZUdyae7u7pgxY4bsGNi6dSsOHDiAzp07o6KiAqmp\nqThw4IDQDMOGDcPf/vY3VFVVST2leP369SgtLcWiRYuwZ88erFq1SloWmTQaDby8vAAA3t7ecHd3\nl5xILpPJhAsXLqBPnz64cOGC7DguxZEXR7NwICKHdubMGaxevRoVFRXo3r071q5diz59+siORZJ5\neXlZ36x36dIFHh4ewjOo0PUAbr5J7t+/PwDglVdeET6+KlRYA6SSVatWYcWKFSgvL0fXrl2ldcRc\nUYsDtxy4qxIRObTk5GSsX78eERERuHDhAtauXSt8JyFSh+Wsk6+++gqenp6Ijo6GXq9HQ0MD/vSn\nPwnNkpSUhB07dkjtetAPmpubkZ2djZKSEoSHh2PKlCnQarWyY5ELSvK1fUrtwaotdkhiO3YciMih\nubu7IyIiAgDQp08fvhFwcbc768Qyjxu4eXiiqG1ZVeh60A9UWAOkgvnz52PLli2IjY295VphYaGE\nRK6Hi6OJiATLzs4GcPPNwJo1azBkyBDo9XrrSajkmu51GN/s2bPtvgWnpethMpnw/PPPW7seos+R\nILqdLVtufnL9+uuvY+jQoZLTuCazA2/IysKBiBxSRUUFAGDQoEEAbh7y5OPjg379+smMRYoTMTtX\npa4H0Z1s3bqVhYMk7DgQEQk2b968u15PTU3Ftm3bBKUhR2E5FM6eVOh6EN2LRqNBamoqwsLCrAc1\nLlq0SHIq18BdlYiIFFNdXS07AtFtcU8SUsHkyZNlR3BZjvwzoI3sAERE9iDik2VyPCr8wub3Jqlg\n/PjxaG5uRmlpKbp164YRI0bIjuQyWu7joQoWDkRE5DIsO3ARubrVq1ejrKwMJ0+ehNFoxLJly2RH\nIgfAqUpEROR0pk2b1uqTfa1Wi4ceeggvvPCCxFQ3qdD1ICotLUVaWhq++OILxMfHY+fOnbIjuQxH\n/hnAjgMROaWOHTvKjkASBQUFYfz48VizZg0mTJgAT09PDBw4ECtXrpQdjV0PUoLJZMKNGzeg0Whg\nMBisC6TJ/hx5qhI7DkTk0JYvX97qa8sny+vXr5eUiFRQVlaG9PR0AEDPnj3xl7/8BUlJSThy5Iiw\nDCp3PYgWLlyIJ554AlevXkVycjJWrFghO5LLaGHHgYhIjoaGBgQEBGDcuHHo3r07vvvuOzQ2NnK+\nrotramrC3//+dxgMBhQUFKC5uRlXrlxBXV2dsAwqdz2IKisrYTKZEBoaivr6erS0qPS5tnMz38c/\nqmDhQEQO7caNG1i4cCGGDx+OefPmoampCQsWLEBNTY3saCTRa6+9huzsbCQlJeHPf/4zNmzYgFOn\nTt3SobKnsrIyJCUloWfPnpg0aRIMBgOSkpJgMpmEZSC6k+3bt+PgwYM4evQosrKy8Ic//EF2JJfB\nqUpERJIYDAaUlJQgPDwcJSUlMBqNqKysRG1trexoJNEnn3yCtLS0VmtdgoODhWawdD0GDRqEL7/8\nUkrXg+hOfH194efnBwDw9/eHt7e35ESuo0WhDoKtNGZHXtpNRC5Pr9djzZo1KC8vR2BgIHQ6HfR6\nPfz9/TFmzBjZ8UiS3bt348MPP0RYWBimTJmCmJgY4RlKS0uxadMmlJSUoHfv3nj55Zdx6tQpBAYG\nYvDgwcLzEP1Yamoq6uvrMWTIEPzzn/9ERUUFHnnkEQA8QdreRng+b/M9+bU77JDEdiwciMih5eXl\nIT4+njuC0G3p9Xrs2rUL58+fx7Fjx4SOnZmZiQkTJnCHL1JSTk7OHa9NnDhRYBLXE+f5nM33FNSq\nsV0upyoRkUMrKirC5s2bER8fj8TEROHTUUhN9fX1OHbsGN5//32YzWa8+OKLwjOYTCbMnDlTateD\n6E5YHMjDqUpERBI1Njbi+PHjOHz4MJqamvDOO+/IjkSSPfbYYxgzZgwSExMRGhoqNYvMrgcRqecX\nnrNtvudk7dt2SGI7dhyIyOHp9XoUFhbi+vXrXNdAAIDc3Fy0a/fDr7jy8nIEBAQIzaBC14OI1KPS\n9qq2YseBiBzauHHj0LdvXyQlJWHo0KFoamqCVquVHYsk27x5M/bv34+mpibU19ejR48eOHr0qNAM\nKnU9iEgdMZ7P2HzPZ7W77ZDEduw4EJFD+81vfoMjR47g9OnTMJvN0Gq1nA5COHHiBAoKCrBhwwbM\nnDkTa9euFZ5Bha4HEamnRaPSyQy24TYkROTQPvroI+zbtw9xcXFIT09HeHi47EikgC5dusDNzQ1G\noxGhoaFoamoSnmHbtm149NFHER0djQEDBmDmzJnCMxCRelpgtvmhChYOROTQAgICEBAQAKPRiJiY\nGJ4YTQCAhx56CIcOHYKHhwcyMjJQXV0tPIOl6zF+/Hjk5uaia9euwjMQkXpsLxvU6VBwqhIROTQf\nHx/k5eVBo9EgKysLVVVVsiORAtatW4erV69i7NixyMnJQUZGBgDgP//5D7p37y4kgwpdDyJSj0od\nBFtxcTQROTSDwYDS0lL4+flhz549GDlyJPfLpzuaPn069u7dK2SsVatWYeDAgdDr9ejYsSMKCgpw\n5MgRIWMTkboivZ+0+R694T07JLEdCwciInIZ06ZNw759+4SM1dLSgqtXr6Jjx47IycnB0KFDERER\nIbTrQUTqceTCgWsciIjIZWg0GmFjtWnTBt27d4e3tzemTZuGiIgIAMDy5cuFZSAi9bTcxz+q4BoH\nIiIigdjoJ3JtKhUCtmLhQERELkOFN+0iux5EpB6VdkmyFacqERGR0/n/HYxKS0sBAI8++qiMOERE\nVi2aFpsfqmDhQERETmfx4sXW7kJWVhaeffZZAEBqaqrMWADU6HoQkTxc40BERKSQoUOHYunSpaip\nqUGHDh1w4MAB4Rmampqg1WqtX5eWliIkJIRdDyIXZ4ZJdoT7xo4DERE5jcbGRjQ2NmLy5Mno27cv\nmpubsX79enh4eAjPonLXg4jkYceBiIhIAWPHjoVGo2k1HehXv/oVAOD48eNCs6jQ9SAi9ahUCNiK\nB8AREZHTMZvNuHbtGgIDA6HX6xEZGSls7MbGRuuf9+3bh6KiImzfvh0A4ObmJiwHEakp1Ocxm+/5\npuZjOySxHQsHIiJyOjqdDqGhoZg1axbWr18PjUaDlStXChk7Pj7+lq6HZQtW0V0PIlJPsE+Czfdc\nqcmzQxLbsXAgIiKnk5iYiEOHDlm/fuqpp/Duu+8KzSCz60FE6gryibf5nm9rTth8T319PZYsWYLr\n16/Dy8sLGzduROfOnVv9nd27d+PDDz+ERqPBnDlzMHr06Lu+JhdHExGRU6qsrAQAVFdXw2QSv4vJ\n6tWrkZubCwD44IMPkJaWJjwDEamnBSabH/dj//796N27N9577z1MmDDBOmXSorq6Gnv37kVWVhZ2\n796NDRs23PM1WTgQEZHTSU1NxeTJkzFx4kRMmjQJc+fOFZ7h3LlzmDVrFgBg1apVOHfunPAMRKQe\nM1psftyP4uJiDB8+HAAQFxeHoqKiVtc9PDzQrVs31NXVoa6u7iedas9dlYiIyOmMHDkScXFxqKys\nhJ+f30/6hWgPlZWV6NSpk7SuBxGpp8X84H8WHDx4EJmZma2e8/Pzg4+PDwDAy8sLNTU1t9wXGBiI\nX//61zCZTHj++efvOQ4LByIichrr1q2DTqfDE088cUuxkJWVJTSLpevRsWNH1NTUQKfTCR2fiNR0\nvx2Eu0lKSkJSUlKr5+bNmwej0QgAMBqN6NChQ6vrBQUFKC8vt27aMGvWLERFRd11PRYLByIichqW\nKUkbN25sdWrzf//7X+FZVOl6EJFaRJ0cHRUVhfz8fERGRqKgoADR0dGtrnfs2BHt27eHm5sbNBoN\nfHx8UF1dfdfXZOFAREROw2w24/Lly1i2bBk2bdoEs9mMlpYW6HS6Vrss2ZNKXQ8icl0pKSlYtmwZ\nUlJSoNVqkZGRAQDYs2cPQkJCMGrUKJw8eRJTpkxBmzZtEBUVhWHDht31NbkdKxEROY28vDxkZmbi\n/Pnz6NevH8xmM9q0aYNBgwZhwYIFQjJ8//338Pf3x9dff31L16N///5CMhCRuvy8ou/9l/7PdWOx\nHZLYjoUDERE5nfz8fIwYMeKW5/Py8pCQYPvhS7aoqKiAwWC4peuxbNkyYV0PIlJXZ69BNt9zw/iV\nHZLYjlOViIjI6dyuaACAvXv32r1wOH36NDIzM3H58mXodDpr1yM2Ntau4xKRYzDbYVclUVg4EBGR\nyxDRZE9ISEBCQoLUrgcRqavFDrsqicID4IiIyGWI3Nnobl0PInJdZnOLzQ9VsONAREQkEJcWErk2\nUdux2gMLByIichkqvGnneQ5Erk2lDoKtWDgQEZHTqayshMFggI+PD3x9fa3Pz5w5U2IqIiL7nBwt\nCgsHIiJyGnq9HuvWrUNLSws8PT1hNBphNpuh0+kQFRWF+Ph42RGV6HoQkTzcVYmIiEgB6enpePPN\nNxEYGGh9rqysDC+99BIOHjwoNAu7HkR0O5yqREREpIDm5uZWRQMABAYGCl1X4AhdDyKSh1OViIiI\nFDBixAjMmDEDw4YNg4+PD4xGIwoLCxEXFycsg0pdDyJSDzsORERECpg3bx7OnTuH4uJiVFZWwtvb\nGy+//DIGDBggLIMKXQ8iUhc7DkRERIro378/+vfvL218FboeRKQuR14crTFzewciInIShYWFd7wW\nGxsrLIel62EwGODt7Y2oqCihXQ8iUpe2nZ/N9zQ1X7dDEtux40BERE7jwIEDOHv2LGJiYm65JrJw\nkN31ICJ1OfIaB3YciIjIaZhMJkydOhVpaWno2bOnlAyqdD2ISE3t2nay+Z5mU6UdktiOHQciInIa\nbdu2xaZNm1BbWystgypdDyJSkyMvjmbHgYiIXEZWVhaSk5PtOoYKXQ8iUlfbtj4232My1dghie3a\nyA5AREQkSm5urt3HsHQ9mpqa7D4WETkgc4vtD0WwcCAiIpchqskeHByMPn363PZaVlaWkAxEpCYz\nWmx+qIKFAxERuQwVDmET0fUgIpW13MdDDVwcTUREJBCXFhK5OAf+GcDCgYiIXIYKb9pV6HoQkTwt\n5kbZEe4bpyoREZHT2b59e6uvMzIyAABLliyREYeIyCmw40BERE7j4MGDOHToEEpKSlBQUADg5vao\nzc3NWLx4MSIjIyUnVKPrQUR0P3iOAxEROY3GxkaUl5djx44dmDNnDgCgTZs28PPzg5ubm9As27dv\nx9y5c61fZ2RkYPHixdDr9UoUMEREtmLhQERETqe2thbV1dVo164dsrOzMWHCBHTv3l3I2D/uekRE\nRAD4oeuRk5MjJAMRkT2wcCAiIqcze/ZsJCcn4+OPP0ZERAQ+++wz7Nq1S8jYKnU9iIgeJC6OJiIi\np1NfX49Ro0bh2rVreO6552AymYSN7ebmhqCgICxfvhxt27aFu7s7Dh8+jIqKCmEZiIjsgYUDERE5\nnaamJmRmZmLAgAG4ePEi6urqhGeYP38+zp49i02bNkGr1UKn0wnPQET0ILFwICIip7N06VKUl5fj\nhRdewKeffoqVK1cKzyCz60FEZA/cjpWIiJxOdHQ0goODYTAYMHLkSJSXlwvPoELXg4joQeLiaCIi\ncjorVqzAqVOnUFdXh7q6OoSEhODAgQNCMxQXF+P48eOYM2cOPvjgA0RGRnIbViJyaJyqRERETuf8\n+fM4evQoYmNjkZubC3d3d+EZoqOjMWPGDGvXg1OViMjRcaoSERE5HV9fX2g0GtTW1qJz585SMqjQ\n9SAiepDYcSAiIqfz8MMPY9euXQgICMCiRYtQX18vPIMKXQ8iogeJHQciInIaGRkZ0Gg0MJvNqKio\ngEajwddffy1lbYEKXQ8iogeJhQMRETmNnj173vJc7969JSRRo+tBRPQgsXAgIiKnMXHiRNkRlOp6\nEBE9SCwciIiIHiCVuh5ERA8Sz3EgIiIiIqJ74q5KRERERER0TywciIiIiIjonlg4EBERERHRPbFw\nICIiIiKie2LhQERERERE9/Q/QpkTAwOFubsAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close_bid'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Start running datascience methods" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "def check_shape(*argv):\n", + " for el in argv:\n", + " print(el.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "\"\"\"\n", + "this creates training examples and actuals for the model\n", + "if nb_lookback_rows is above 1, X will have examples each of which is a 20 row dataframe\n", + "so the regression model needs to be able to use all those rows to train on\n", + "\"\"\"\n", + "\n", + "def create_training_set(df, nb_lookback_rows=1):\n", + " \n", + " dataX, dataY = [], [] # for training\n", + " \n", + " # it creates for each row a 20 row lookback dataset\n", + " # this expands the dataset by 20 faculty\n", + " for iRow in range(len(df)-nb_lookback_rows-1): \n", + " \n", + " df_lookback_rows = df[iRow:(iRow+nb_lookback_rows)] # from example 1 to 21\n", + " dataX.append(df_lookback_rows)\n", + " next_row = df[iRow + nb_lookback_rows] #get example 1+20, so the next point that is to be forecasted\n", + " dataY.append(next_row) \n", + " \n", + " return np.array(dataX), np.array(dataY) # convert to numpy arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Use Random Forest for feature importance:\n", + "Check which feature is most important, based on predicting the next closing price using just one example as training\n", + "Do this for each example, and check which features are the best on average\n", + "Looking back more than 1 example for each example requires a decision how to use the features. Do recent examples features get more weight?\n", + "\n", + "- scale all features to range 0-1 for faster convergence\n", + "- use random forest to find best decision tree to explain closing price" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "idx_close_bid = df.columns.tolist().index('close_bid') # predict this, should it be return?\n", + "df_np = df.values.astype('float32') # so regressor can use it\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "df_scaled = scaler.fit_transform(df_np) # scale features to between 0 and 1 for faster convergence\n", + "\n", + "# Set look_back to 100 which is 100 ticks\n", + "# look back is 1 period, to check which features predict best a 1 period return\n", + "look_back_rows = 1 # to work with more than one, use alternative reshape\n", + "X, y = create_training_set(df_scaled, nb_lookback_rows=look_back_rows) # look back only 1 row\n", + "y = y[:,idx_close_bid]\n", + "#TODO:X = np.reshape(X, (X.shape[0], X.shape[2]* look_back_rows)) # to get back rows and columns\n", + "X = np.reshape(X, (X.shape[0], X.shape[2])) # to get back rows and columns\n", + "# extend extra rows into columns, as all the prices during lookback periodd should be used as features." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10202, 20)\n" + ] + } + ], + "source": [ + "check_shape(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
close_bidavg_priceohlc_pricehigh_bidlow_bidopen_bidlast_10_tick_avg_bo_spreadlast_10_tick_avg_bid_returnrangeavg_bo_spreadnb_tickspcaoc_diffperiod_returndayhourweekday15_minmonth
00.9355660.026430.0197240.014650.0025170.0005040.0000920.0000880.0000630.0000580.0000540.0000520.000040.0000390.0000380.0000380.000020.0000180.000008
\n", + "
" + ], + "text/plain": [ + " close_bid avg_price ohlc_price high_bid low_bid open_bid \\\n", + "0 0.935566 0.02643 0.019724 0.01465 0.002517 0.000504 \n", + "\n", + " last_10_tick_avg_bo_spread last_10_tick_avg_bid_return range \\\n", + "0 0.000092 0.000088 0.000063 \n", + "\n", + " avg_bo_spread nb_ticks pca oc_diff period_return day \\\n", + "0 0.000058 0.000054 0.000052 0.00004 0.000039 0.000038 \n", + "\n", + " hour weekday 15_min month \n", + "0 0.000038 0.00002 0.000018 0.000008 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1] # get indices for importances\n", + "#print(indices)\n", + "\n", + "column_list = df.columns.tolist()\n", + "#print(column_list)\n", + "print(\"Feature ranking:\")\n", + "feature_dict = OrderedDict()\n", + "for f in range(X.shape[1]-1):\n", + " #print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + " feature_dict[column_list[indices[f]]] = importances[indices[f]]\n", + "display(pd.DataFrame([feature_dict]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Try linear regression\n", + "- sklearn requires numpy arrays as input\n", + "- check how close we can get with linear regression\n", + "- resources: http://bigdata-madesimple.com/how-to-run-linear-regression-in-python-scikit-learn/\n", + "- problem: my features are note independent of each other, eg ohlc price, open bid, close bid etc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAJLCAYAAACv2/w2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtYlGX+x/HPcFJOaSoGC6FB2pE0WWrVTNYy8ZRHRHE1\n0rLM0kozO3j45TGzg6FZuVusrlaaaCBFlmlrZi6xyVJpmpY1E4N4SIeDDsj8/nBnVuQgKgMDvF//\n5Dz3/Tzzzfu69pr9dN/fx2Cz2WwCAAAAAAAALpFbXRcAAAAAAACAhoGgCQAAAAAAADWCoAkAAAAA\nAAA1gqAJAAAAAAAANYKgCQAAAAAAADWCoAkAAAAAAAA1gqAJaKCmTZumv/3tbxWOXXPNNTp69KhT\nvz83N1fDhw936ndcqtr4ezhbcnKyHnjggQrHnnnmGX355ZflrmdnZ6tHjx7OLg0AAAAAaoRHXRcA\noGG64oor9O6779Z1GfXG3Llz67oEAAAAALhkBE1APffee+9p5cqVcnNzU6tWrTR9+nRdddVVkqRv\nvvlGw4cP1+HDh9WuXTu9+OKL8vHxKXP/G2+8ofXr18vDw0Nt2rTRggUL5O/vX+n3jRo1SuHh4fr2\n22917NgxDRgwQBMnTpTRaNTIkSMVHh4uk8mkBQsWaMyYMfrmm29UUlKiF154QVu3bpW7u7tuvvlm\nzZw5U15eXlq2bJk2bdqk0tJSBQcHa+bMmbriiivKfOfw4cOVkJCgmJgYSdKiRYtks9mUkJCgJ598\nUseOHZMkde/eXY8++mi5mrOysjRnzhwVFRXJ09NTU6dOVefOncvMWbp0qdLS0uTu7q6rrrpK06dP\nV0BAgDZt2qRly5bJYDDI3d1dU6dOVVRUlCwWi+bOnau9e/equLhYnTt31tSpU+XhUfX/rObl5Wns\n2LE6dOiQgoODNXv2bAUEBGjUqFEaOXKkYmJitHr1av3973+Xn5+f2rdvX+XzAAAAAMCVcHQOqMd2\n7Nihv/71r1qxYoVSUlLUr18/TZgwQTabTdKZ42tvv/22Pv74Y+Xm5mrTpk1l7t+8ebOSk5P13nvv\naePGjQoJCdE//vGP837vb7/9pnfeeUfr16/Xhx9+qC1btkiSzGazHnroIX388ccKCAhwzF+9erW+\n++47ffDBB9q4caMKCgr04YcfasOGDdq7d6/Wrl2rDz74QN27d9ezzz5b7vtiY2O1fv16SdLp06eV\nkpKi2NhYrVmzRiEhIVq/fr1WrVqlgwcPymKxlLm3uLhYEyZM0IQJE7Rx40bNnj1b8+bNU2lpqWPO\nunXrtG3bNr3//vtKTU1Vu3btNG3aNEnSwoULNXPmTCUnJ2vSpEnauXOnJGnevHm64YYblJycrA0b\nNujYsWN6++23z/t399NPP2nGjBlKTU1V+/bty+1k2r17t5YsWaJ//OMfWrdunTw9Pc/7TAAAAABw\nFexoAuqxbdu2qU+fPmrRooUkafDgwZo7d66MRqMk6c4775S3t7ckqV27duX6Ee3YsUMxMTFq1qyZ\nJOmpp56q1vfGxcXJ09NTnp6eiomJ0RdffKF27drJw8NDHTt2LDf/yy+/1IABA9S0aVNJ0iuvvCJJ\nmjRpkrKzszVkyBBJUmlpqYqKisrd37t3by1cuFB5eXn6/vvv1aZNG7Vt21bdunXTuHHjlJOToy5d\numjy5MnldmPt3btXbm5uio6OliTdeOONSk1NLTPnn//8pwYPHuzY7TV69Gi9/vrrslqt6tu3rx5+\n+GF1795dXbt21f333y9J2rp1q7Kzs/X+++9Lkk6ePFmtv7suXbqoTZs2kqShQ4dq6NChZcZ37Nih\nrl27OoK6uLg4ffHFF9V6NgAAAADUNYImoB6z71w691pJSYkklTnGZTAYys13d3eXwWBwfD5x4oRO\nnDihkJCQKr/37OfabDa5uZ3ZHOnl5VXh0bFzrx0+fFilpaUqLS3Vfffdp/j4eEmS1WrV8ePHy93v\n4+OjXr16aePGjfrmm28UGxsrSbrpppu0efNm7dixQ1999ZViY2O1dOlSderUqdJ/R+lM+BQWFlbm\n3+FspaWljr/Dxx57TEOHDtUXX3yh5ORkvfnmm0pOTlZpaakWL16s8PBwx9/dud9TEXd39zLfe+7f\nzbnrdPZ8AAAAAHB1HJ0D6rHbbrtNH374oWOn0rp169S8eXPHjpnz6dKliz755BPl5+dLkhITE5WU\nlHTe+1JSUlRaWqrjx4/ro48+Ou9b0Tp37qyNGzfKarWqtLRUs2bNUlpamm677Ta9//77ju9fvHix\npk6dWuEzhg0bpuTkZH3zzTfq1auXpDO9ml577TXdeeedeuaZZ3T11Vfr559/LnNfWFiYDAaDtm/f\nLkn67rvvdM8995Q5OnfbbbcpOTlZhYWFkqSVK1cqKipKbm5u6tGjhwoLCzVixAjNnDlT+/fvV0lJ\niW677TYlJSXJZrPJarVq/Pjx1Tp2uHPnTv3222+SpHfeeUe33357mfEuXbpo+/btMpvNkuQ4MggA\nAAAA9QE7moB6rGvXrkpISHAEJy1atNAbb7zh2GF0Pt27d9ePP/6oESNGSJKuvvpqzZ49+7z3nTx5\nUkOHDlVBQYHi4+PVuXNnx3G9igwfPlwmk0mDBw+WzWbTLbfcolGjRsnNzU25ubkaNmyYDAaDgoKC\ntGDBggqfceONN8rDw0O9evVSkyZNJEn33HOPpk2bpn79+snLy0vXXHON+vXrV+Y+Ly8vJSYmat68\neVq4cKE8PT2VmJgoLy8vx5yhQ4cqJydHsbGxKi0tVZs2bbRo0SJ5eHjo6aef1pQpU+Th4SGDwaB5\n8+bJy8tLzzzzjObOnav+/furuLhYXbp00X333Xfev7v27dvr6aef1uHDhxUWFqbnnnuuzPg111yj\nJ554Qvfcc498fX110003nfeZAAAAAOAqDLaKzt4AQCXOfjsaAAAAAABnY0cTgDK++uorzZ8/v8Kx\nW2+9tZarqX/i4+NVUFBQ4diqVavk5+dXyxUBAAAAQO1hRxMAAAAAAABqhFObgWdlZWnUqFEVjhUV\nFWn48OHav3+/49obb7yhuLg4DR48WGvXrnVmaQAAAI1OZb/NPvvsMw0ZMkRxcXFas2ZNHVQGAAAa\nCqcdnVu+fLlSUlLk7e1dbiw7O1szZ85Ubm6u49rOnTv1zTff6J133lFRUZHeeustZ5UGAADQ6FT2\n26y4uFjz58/X+++/L29vb40YMUI9evRQq1at6qhSAABQnzktaAoNDVViYmKFryq3Wq1aunRpmbEv\nvvhC7du314QJE5Sfn1/pK87PlZdnqbGaAQCAa8g0Z2jatilKilmlli39dGWzK+u6pHqvst9m+/fv\nV2hoqJo1ayZJioyMVEZGhnr37l3l82w2mwwGg9PqBQAA9ZPTgqZevXpV+rrzyMjIcteOHTum3377\nTa+//rqMRqPGjx+v9PR0fsAAANCImCxnfjtM2zZFC7otkiQNem+Qvh73dV2W1SBU9tssPz9f/v7+\njs++vr7Kz88/7/MMBgP/wc/FBAT4syYuhjVxTayL62FNXFNAgP/5J1XAqT2aLkTz5s112223ycvL\nS2FhYWrSpImOHj1a12UBAAAnsAdKZ39OP5Cm+LRYSVJSzCpFBkYp2D9E6+PW10WJjYafn1+Zt2UW\nFBSUCZ4AAAAuhMsETZGRkdq2bZtsNptyc3NVVFSk5s2b13VZAACghpksRiWkj3SETZnmDA36oK/u\n/yRBhcWFkqRg/xDHfI7NOVd4eLgOHjyo33//XVarVV9//bVuvvnmui4LAADUU047Oneu1NRUFRYW\nKi4ursLxP//5z8rIyNDQoUNls9k0Y8YMubu711Z5AACglgT7hygpZpWkM6HT41snysPgqeU9kxQR\n0KFMyATnOfu32bRp0zR27FjZbDYNGTJEV1xxRV2XBwAA6imDzWaz1XURl4JznAAA1A/2HUzB/iFl\nmn3bVRYwXWx/ADgfv8NcCz1OXA9r4ppYF9fDmrimi/0NVms7mgAAQONishgd4ZHJYtSw1IHycPPU\nS9GvOpp9s3sJAACgYXGZHk0AAKDhOLcPk7kgxxEyRQZGOZp9AwAAoGEhaAIAADXm7ONxSTGrFOwf\nIpPFqGnbpjhCJvs4AAAAGh6CJgAAUCPO3sV09rE5e+jEDiYAAICGj6AJAABcNPsOJqns2+TOPjZn\nHwMAAEDDR9AEAAAuSvqBNEeglGnOkHQmUDr72BwAAAAaF4ImAABwwdIPpGncJ/dqcuRUmQtyNDil\nnyNsktjBBAAA0Fh51HUBAADA9Z3d5NtkMWr69qd1hU+QIgI6KNg/RMl3b6QHEwAAAAiaAABA1TLN\nGXp860RJ0uq+a2UuyFFuYY7e7Pm2Y+cSIRMAAAAkgiYAAHCWs98WZ/88bdsUvRT9qgJ9gxw9mNYP\nSCNcAgAAQDn0aAIAAJLOhEoVvS0uKWaVIgOjygRQhEwAAACoCEETAACNmMliLBMsTY6cWq6RN429\nAQAAUF0cnQMAoJHKNGdo4mfjVVhcpLE3jtPfvn1TR07mlTkWd+5ROgAAAKAq7GgCAKARSj+Qpvs3\nJeiX47/IVPCrnts5XYeKzJp/26IyIdO5R+kAAACAqrCjCQCARsIeGCVmvqIV37+lEpU4xlp7X6FF\n3V9RTFhfxzV7fyZ2NAEAAKC6CJoAAGgE7MfkzPlmWUpOyCCDJnWcon/sSdKzt85SdGiPCgMlQiYA\nAABcCIImAADqsap6KNl3MGXnZWn+v+boSNERWUpOSJICvFsrIWKMEiLGECYBAACgxhA0AQBQT9l7\nKCXFrJL0v91HJotR6/eu09p97+rYyaM6UnRYo667V6t/WKEZt87W5U0vr3QHEwAAAHApCJoAAKin\n7D2UJGlY6kCt6b9BknTn2tt15ORhDWsXr+R9a1SiEq3c/bYW3v6yRt4wui5LBgAAQANH0AQAQD0W\n7B+iTHOGDp74WeaCHO0wfakjJw+rmVdzZR/J0lsxKyVJAT6tHW+TAwAAAJzFqUFTVlaWFi1apJUr\nV5YbKyoq0r333qu5c+cqPDxckjRo0CD5+flJkkJCQjR//nxnlgcAgEs7X/8le8i0w/SlWvtcoT1H\nduv5r+doUscpSogY45jLETkAAADUFqcFTcuXL1dKSoq8vb3LjWVnZ2vmzJnKzc11XDt16pRsNluF\noRQAAI3N2f2Xzg2KTBaj+q/vpSFXx+m1rMUqthXLTW5a9PXzCvBurU2/fOQImip7BgAAAOAMbs56\ncGhoqBITEyscs1qtWrp0qcLCwhzX9uzZo6KiIo0ZM0ajR4/Wrl27nFUaAAAuz95/6eyAKP1AmlZ9\nt0KJma/ImP+rFu9apIc6TFKgT5D+4BcsH09vLb8rSav7rlWwf0iFzwAAAACcyWk7mnr16iWj0Vjh\nWGRkZLlrTZs21dixYxUbG6uff/5Z999/v9LT0+XhQRspAEDjZD8aJ0k7TF/quZ3Ty4xf7tVSCRFj\nqjwmR8gEAACA2uQyKc5VV12lNm3ayGAw6KqrrlLz5s2Vl5enoKCgui4NAIBaZ7IYlZT9lpbselmn\ndbrMWHOvyzXx5se1dt+7kgiTAAAA4DpcJmh6//33tXfvXs2aNUu5ubnKz89XQEBAXZcFAECtMlmM\nMhfkqH9yjEpUXGasa+Dt2n9inxbe/pJiwvpqUPshhEwAAABwKbUWNKWmpqqwsFBxcXEVjg8dOlRP\nPfWURowYIYPBoHnz5nFsDgDQaNgDptEfjtBx6+/lQqZh7eK1pOfryjRnaNq2KYoI6EDIBAAAAJdj\nsNlstrou4lLk5VnqugQAAC6ayXKmn2Gf5DtVaC3U8eLfy4z3aztA3x79j7w9fBxNvk0WY6MKmQIC\n/Ou6BFSC32GuJSDAnzVxMayJa2JdXA9r4pou9jcYW4YAAKgD9oCpX3Ivjb1xnHIKfpPbf18G2zXw\ndm03/1Mzbp2thyMnOebaw6XGFDIBAACgfiFoAgCglpksRsWnxSqiZQeZCn7V5oOfSJJ8Pf005oZx\nSogYI3NBjiIDoyQRLAEAAKD+cKvrAgAAaExMFqOy87J04tQJrd33jgwy6NBJs4a1i1eI/5WKCeut\n+LRYBfry1lUAAADUP+xoAgCgFkzbOkWHCnP1Td6/deRknt7s+bYkKcCntQJ9gxy9lwAAAID6jKAJ\nAAAnyTRnaM+R3drx25das2+14/rL3ZcoJqxvufn2I3L2pt8AAABAfUPQBABADTNZjNr6y2ea8vkk\nndZphfhdqWHt4iVJ90aMdfReqgwhEwAAAOorgiYAAGpQ+oE0Pf3FVB0qzFWpSiVJY24Yp0HthxAg\nAQAAoMEjaAIA4BKkH0jTkaIjig7toa2/fKZpX0yWrdSm529/Sde2vE57juxWdGgPJaSPVFLMKsIm\nAAAANGgETQAAXASTxaj1e9fpuZ3TJUktm7ZSfrFFC257Ude2vM5xPM7+T0ImAAAANAYETQAAVIPJ\nYlSwf4gyzRnKKzyk6duflrngNzX3ulxuBjdd3qSFXo5OrLDJt0TfJQAAADQOBE0AAJzDHiqd/Tk2\nZaA6tf6jNux/X6WlpQrwba0no57VgozZCvINVuIdy87b5BsAAABo6AiaAAA4i8lidPRTskvKfksH\njv+oH4/vlbe7j1r4NNORosO6+vKrFerflpAJAAAA+C+CJgAA9L9dTMH+IVrQbZG2/vKZlu56VSes\nx3WoKFduBnfJJhWdLtS49g8pJqy3IgOjFBHQgWNxAAAAwH8RNAEAGj2Txaj4tFiNixiva1tep/s3\nJciY/6su92opSWrVpLWaejaRu8FDA8OHaKtpsxIixkii9xLqh9LSUs2aNUs//PCDvLy8NGfOHLVp\n08YxnpKSorfffltubm4aMmSI4uPj67BaAABQnxE0AQAaLZPF6PhzboFZj33+sCSD/D39JUm/W4/K\nJpsmdZxSJlhKsIwhYEK98umnn8pqteq9997Trl27tGDBAi1btswxvnDhQm3cuFE+Pj7q27ev+vbt\nq2bNmtVhxQAAoL5yq+sCAACoC+kH0hSfFquea6I1/6s5OnrqyH9HbLIUn9DlTVrope6JCvQJUtpP\nKZL+t3uJkAn1TWZmprp16yZJ6tixo7799tsy49dcc40sFousVqtsNpsMBkNdlAkAABoAdjQBABqd\n9ANpuu/jexR1xZ+0++h3WrNvdZlxd7mrWZNmig7toWtbXqfHt06so0qBmpGfny8/Pz/HZ3d3d5WU\nlMjD48xPwXbt2mnIkCHy9vZWz549ddlll1XruQEB/k6pFxePNXE9rIlrYl1cD2vScBA0AQAaBZPF\nqOy8LB0pOqJ5O5+T1WbVdvM/HeNucpNN0kvdX9W1La9ToG+Qozn46r5r2cWEes3Pz08FBQWOz6Wl\npY6Qac+ePdq6das2b94sHx8fPfHEE/roo4/Uu3fv8z43L8/itJpx4QIC/FkTF8OauCbWxfWwJq7p\nYsM/giYAQINmD5ju33SvTpWerHCOp7x0dYt2ein6VUUGRtVyhYDzderUSVu2bFGfPn20a9cutW/f\n3jHm7++vpk2bqkmTJnJ3d1eLFi104sSJOqwWAADUZwRNAIAGxWQxKtg/RJnmDOUVHtKY9NEqUXGF\nc/8YcIvMRTlafleSYwdTRc9LSB+ppJhV7GpCvdWzZ09t375dw4cPl81m07x585SamqrCwkLFxcUp\nLi5O8fHx8vT0VGhoqAYNGlTXJQMAgHrKYLPZbM56eFZWlhYtWqSVK1eWGysqKtK9996ruXPnKjw8\n3HH9yJEjGjx4sN56660y1yvD9joAgF2mOUMPfnKfrm7WTpuNmyqd17JJKw0IH6wF0YscwVRVqjMH\nzkPPBtfF7zDXwtET18OauCbWxfWwJq7J5Y7OLV++XCkpKfL29i43lp2drZkzZyo3N7fM9eLiYs2Y\nMUNNmzZ1VlkAgAYq/UCaJm+dpLyTh3TQ8lOFcwxy099jVinAp7WmbZtS7QCJkAkAAACoHjdnPTg0\nNFSJiYkVjlmtVi1dulRhYWFlrj///PMaPny4Wrdu7ayyAAANTPqBNI1IGarR6SOUd/JQhXMMctOM\nW2fr36O+VUxYX0UGRnEUDgAAAHACpwVNvXr1crzN5FyRkZEKCgoqcy05OVktWrRQt27dnFUSAKCe\nyzRnOP68JHOxI2Cq6pjcpI5TdG2L6zSo/ZAywRIhEwAAAFDzXKYZ+Lp162QwGLRjxw7t3r1bTz75\npJYtW6aAgIC6Lg0A4ETVPb6Wac7QgA29NS1quvYc3a01+1ZXOtcgg2yyacz14/RMlxlKiBhDsAQA\nAADUAqftaLpQq1at0j/+8Q+tXLlS1113nZ5//nlCJgBo4OxvdDNZjFXOkaQ9R3bLWmrVczunVxoy\nGWRQoE+Q/h6zWm0vu0qPRD4qid1LAAAAQG2ptR1NZ79CFwAA6UwAVFWvJJPFqEEf9NWAsCFavGtR\nlc8yyKBQ/7Z6vedfFRkYpYiADgRMAAAAQC0z2Gw2W10XcSl4BSIANBz2Y3Qmi1HZeVk6UnREj33+\n8Hnvm3HrbHUO7qJA3yDCpQboYl+tC+fjd5hr4fXgroc1cU2si+thTVzTxf4Gc5keTQCAxs1kMSo2\nZaDirx2lZVmJlb5Bzu7l7kskSde2vE6RgVG1USIAAACA8yBoAgC4hPV712n/8X16buf0KufdEXKX\ntuf8k4AJAAAAcEEETQCAOmE/Jpd+IE1bf9mit75/s9K5bnJXwvVjFXttnCIDo5RpziBkAgAAAFwQ\nQRMAoFaZLEaZC3L0yObxir921Hl3MM24dbYGtR9SpvcSIRMAAADgmgiaAAC1JtOcofs3JehI0WEV\nnS6qNGQa1i5eQb5/0OvZieoc3IUG3wAAAEA9QdAEAKhxZ789Ltg/RJnmDAX6BikudbBOFB+v9L5w\n/6tlcHPTN3lfK/uIp5b3TGL3EgAAAFCPEDQBAGqMyWKUJCWkj9SCbos0bdsUTY6cqnvT/6IbWtxY\nYcjU1M1bTTy8NKvzXEWH9igzxk4mAAAAoH5xq+sCAAANQ6Y5QwnpI2UuyNGCboskSdHBd2jNnnd1\nWqf1n6NZ59xhUBv/q7R+4EZtjduh6NAeSkgfKelMwETIBAAAANQ/7GgCAFwyk8Xo2L30+NaJyi0w\n69ipo7LJVm5uE0MT3RbcXVNueVITPxuvQN8gR6iUFLOKgAkAAACox9jRBAC4IPbjcWcL9g/R5Mip\nigjooD/4BOvoqSPlQqY7Qu7Sy92XKOzyqzXllicV6BskDzfPcs8BAAAAUH+xowkAUG0mi1EJ6SOV\nFLNK5oIcRQZGadV3K3Ts5DHN/9dzMtjcZNWpcvcZZNCPx/cpOrSHrm15naZtm6KkmFVa3Xct4RIA\nAADQgBA0AQCqLdg/REkxq5Sdl6UxH4/WrVd01nbzPyucO6njFElSTFhvPfjJfXq9518dvZc4IgcA\nAAA0TARNAIDzMlmMCvYPUaY5Q29n/02p+zeoxFZcLmTy8/DX7K7z1dK7pSICOighfaQSIsZow8C0\nMsESIRMAAADQMBE0AQAc7IHSudeGpQ7UzQF/1Jp9qyu91yCDXrvzTQX4tFZkYJQkmnsDAAAAjQ3N\nwAEAkv7Xfyn9QJokKdOcofQDaZr/1Rzt+31vpSFT18DbNeb6cfJ089SRoiManNJPmeYMSexcAgAA\nABobdjQBACT9781xD3w6RiPaj9Jb379Z5fym7t56IGKCnukyQ5IUe22cIgOjdG3L6xw7mgAAAAA0\nLgRNAACHiIAO6tQq6rwhk7e7j5IHpJYJlOx/JmQCAAAAGi+CJgBoZCrrwzR0w93ab9kvyVbl/WOu\nH6dHIh/lWBwAAACAcgiaAKARsfdhsjfpNlmMSsp+S4t3Lar0Hm+Dt1r4tNL8bgslSTFhfWurXAAA\nAAD1DEETADQy9pDp4U8e1Np978hWxQ4mP09/FZdaNb/bQgImAAAAAOfl1LfOZWVladSoURWOFRUV\nafjw4dq/f78k6fTp03rqqac0fPhwjRgxQnv37nVmaQDQaJgsRsc/B33QV+v3rtP1fw3Tmn2rKw2Z\n3OSuFTHvaNvwndow4ENCJgAAAADV4rSgafny5Xr22Wd16tSpcmPZ2dkaOXKkfv31V8e1LVu2SJLe\nffddPfroo3r55ZedVRoANBrpB9KUkD5SJotRU7Y8qp9P/KTndk7XYevhcnOvbXadJnWcoibuTfRi\n98WKCeurYP8QmnsDAAAAqDanHZ0LDQ1VYmKipk6dWm7MarVq6dKlZcbuvPNORUdHS5J+++03XXbZ\nZc4qDQAahUxzhu7bdI8Ghg/VzSuvr3Luy92XKDq0h4L9QxQT1ptwCQAAAMBFcVrQ1KtXLxmNxgrH\nIiMjKy7Gw0NPPvmkPvnkE7366qvOKg0AGjSTxaitv3ymN3YtlbXUqjX7Vlc4b8ats7Xn6G499adn\nJcnRJJyQCQAAAMDFcrlm4M8//7ymTJmiYcOGKS0tTT4+PnVdEgC4DJPFqGD/kAqvS9L6vev0/L/m\n6pTtZJXPmXHrbD0cOanMNXuTcAAAAAC4WC4TNG3YsEG5ubl64IEH5O3tLYPBIDc3p/YqB4B6xWQx\nOnYd2QOhTHOGJOm+jxN09OQRFZ0urPR+D4OnJnSYpA3712lQ+yHlxgmZAAAAAFyqWguaUlNTVVhY\nqLi4uArH77rrLj311FMaOXKkSkpK9PTTT6tp06a1VR4AuLxg/xBHyGSyGGUuyFG/9XfJw+ChU6Xl\nX7xg5+3mo+SBqZKkyMAoJUSMIVQCAAAA4BQGm81W8but64m8PEtdlwAAtSr9QJqmfP6oQv3a6Ou8\nf1U4x0MeKlGJhrWL11N/epZgCfVaQIB/XZeASvA7zLUEBPizJi6GNXFNrIvrYU1c08X+BuNsGgDU\nE5nmDI35cJRGp4/QoaLcSkOmgKatlTr4Y7Vr3p6QCQAAAECtcpkeTQCAitnfIvfY5w9XOc/Xw1et\nvFvr9Z5/VWRglNb030DIBAAAAKBWETQBgIuo6I1ySzIXa/7O2SqWtcJ7vAxe+st1CYoIuEnRoT0k\n/a+pNyGvEcaxAAAgAElEQVQTAAAAgNpG0AQALsD+RrmE68cqOrSH5n81R/859I32HN9d6T392g7Q\nhE4TFRkYVYuVAgAAAEDlCJoAwAUE+4doQNhgPf75I7Kp8nc0GGRQbLsR6hfeXxEBHZSQPtLxJjoA\nAAAAqGsETQBQR+xH5UwWo8wFOVqatbjKkKllk1Z6+c+Jignr67hGyAQAAADAlRA0AUAtM1mMkqT4\ntFiNixiv2V/N1IlTx1WiknJzL/Nspv/rMlfXtrxOgb5B5UIlQiYAAAAAroSgCQBqkcliVHxarJ66\n5VkdLsyr8E1ybnJXkHegxt70oAa1H0KYBOCSlZaWatasWfrhhx/k5eWlOXPmqE2bNo7x//znP1qw\nYIFsNpsCAgL0wgsvqEmTJnVYMQAAqK8ImgCghlT01rizr6UfSNOPx35UboFZj3z2oI5bj5d7xh0h\nd2nRn18hXAJQoz799FNZrVa999572rVrlxYsWKBly5ZJkmw2m6ZPn65XX31Vbdq00dq1a2UymRQW\nFlbHVQMAgPqIoAkAaoD9rXFn90w6+9r0bU9p488fVHjvTS06KLfokLqH/FlLer5em2UDaCQyMzPV\nrVs3SVLHjh317bffOsZ++uknNW/eXElJSdq3b5+6d+9e7ZApIMDfKfXi4rEmroc1cU2si+thTRoO\ngiYAqAHB/iGOkMm+i8lckHPekGlSxylKiBjjeAYAOEN+fr78/Pwcn93d3VVSUiIPDw8dO3ZM33zz\njWbMmKHQ0FA9+OCDuvHGG9W5c+fzPjcvz+LMsnGBAgL8WRMXw5q4JtbF9bAmruliwz+3Gq4DABot\ne8gUnxarJZmL1X99L92fnlBhyDSp4xS93H2JNv3ykeLTYuugWgCNiZ+fnwoKChyfS0tL5eFx5r83\nNm/eXG3atFF4eLg8PT3VrVu3MjueAAAALgQ7mgCghqQfSNPWX7bowO/79dzO6ZKkr/P+5Ri/ttl1\nuvry9prQaaIiA6MkSdGhPSSxmwmAc3Xq1ElbtmxRnz59tGvXLrVv394xduWVV6qgoEAHDx5UmzZt\n9PXXX2vo0KF1WC0AAKjPCJoA4BKZLEYlZr6it75/s9xYE0MTPdjhETVr0kwPR04qN15V83AAqCk9\ne/bU9u3bNXz4cNlsNs2bN0+pqakqLCxUXFyc5s6dq8mTJ8tms+nmm29WdHR0XZcMAADqKYPNZrNV\nNtijRw8ZDIZKb968ebNTiroQnOMEUJvODoIyzRlKP/CRlu5arBIVl5vr73GZ1ty93rF7qTrPPreh\nOACag7oyfoe5FnqcuB7WxDWxLq6HNXFNF/sbrModTStXrpTNZtPSpUt15ZVXavDgwXJ3d1dqaqqM\nRuNFfSEA1Df2cMnef+mu0N7a8ssn+s/RrArne8hTBoPU0qelAn2Dqv09ZzcUBwAAAID6qMqgKTg4\nWJL0ww8/aP78+Y7rY8aM0eDBg51bGQC4APsuo4Trx+rYyWP68eg+7T76XaXz+7UdoNnd5stckKNA\n36ALDo0ImQAAAADUZ9Xu0fTVV1/pT3/6kyTp888/l7u7u9OKAgBXcqVvqB77/OEq53i7+Whet4Ua\necNoSQRGAAAAABqnagVNc+bM0ZNPPqm8vDzZbDYFBwdr4cKFzq4NAGrFuQ24M80ZCvQNUmLmK/rH\n90myylrpvcPaxeveiLEXtXsJAAAAABqaagVN119/vVJTU3Xs2DEZDAY1b97c2XUBQK04twF3pjlD\nAzf00anSU1Xe1zXwdj3bZWa1G30DAAAAQGNQZdA0ffp0zZ49W6NGjarw7XMrVqyo8uFZWVlatGiR\nVq5cWW6sqKhI9957r+bOnavw8HAVFxfr6aeflslkktVq1fjx43XHHXdc4L8OAFyYYP8QLei2SJK0\n6rsVWvLvVyoNmTzkoQkdH1WzJs30wYHkC2r0DQAAAACNQZVBU1xcnCTpkUceueAHL1++XCkpKfL2\n9i43lp2drZkzZyo3N9dxLSUlRc2bN9cLL7yg33//XQMHDiRoAlDjMs0ZigyMksliVHbembfGPf3F\nVB0qOCSrrfJdTCF+V6qpu7diwnpr2rYpWtBtEUflAAAAAOAcVQZNN954oyTplltu0Z49e5SRkSEP\nDw/deuutCgsLq/LBoaGhSkxM1NSpU8uNWa1WLV26tMxYTEyMevXqJUmy2Ww0GwdQ4zLNGRqc0k9v\n3PmWnv5iqoz5v1brvhm3ztag9kMkndkBZT9mBwAAAAAoq1o9mlasWKFVq1bpz3/+s2w2m5KSkvTg\ngw9q0KBBld7Tq1cvGY3GCsciIyPLXfP19ZUk5efna+LEiXr00UerUxoAnJe92Xegb5DmdX1BPx77\nUTn5v1U6/4omV8jT00vL70rSniO7HW+SsyNkAgAAAICKVStoWrt2rdatWyc/Pz9J0kMPPaS//OUv\nVQZNFyMnJ0cTJkxQfHy8+vfvX6PPBtBwnfvWuLOvb/3lM72ZvUwvRb+q+z5OkKng/LuYkvqudrxF\njmbfAAAAAFB9btWZ5O3tLU9PzzKfvby8arSQw4cPa8yYMXriiSc0dOjQGn02gIbL/tY4k6XsDspM\nc4YGfdBXj33+sA4X5mnRv56vNGTydvfRpI5T1Payq7Qi5h1FBkaxawkAAAAALkKVO5qWLFkiSWre\nvLlGjBihPn36yMPDQ+np6Wrbtu0FfVFqaqoKCwsdDcbP9frrr+vEiRN67bXX9Nprr0k601C8adOm\nF/Q9ABqXinommSxGPb51osIva6efT/ykvJOHtNm4qcL7h7WLV/aRLCVEjFFMWG92MAEAAADAJTDY\nbDZbZYP2oKkyDz/8cI0XdKHy8ix1XQIAF5JpztAO05d6buf0Csc95KESndaMW5/TOz+s1Ks9linQ\nN0iSlJA+kkbfgAsKCPCv6xJQCX6HuZaAAH/WxMWwJq6JdXE9rIlrutjfYFXuaKpOkPTAAw/ojTfe\nuKgvB4CLdXZfJpPFKHNBjt7O/pvW7Ftd6T1uBje91WulAnxaKzIwSp2Du2jatimOcImQCQAAAAAu\nTbWagVclNze3JuoAgGozWYyKT4vV6r5rlZ2XpUc2j9fx4t+rvGfM9eP0T9NWRQR0cIRJkYFRZcIl\nQiYAAAAAuDSXHDQZDIaaqANAI1LZW+Kqy1yQo+LTxZq+7Slt/PmDSud5yFOpg9MlnQmVKvpewiUA\nAAAAqDmXHDQBwIWwvyXuQo+p2UOi9ANpjh1MPx7fW+n8l7svUXRojzLfQagEAAAAAM5F0ASgVl1M\nLyT7UTlPeeg/R7MqnXdTiw6acss0Rw8mAAAAAEDtuuSgqYqX1gFAhaobMtnfIHd508u1++h3lc67\nqUUHPR/90gWHS5d6hA8AAAAAUNYFBU3Hjx9Xs2bNylwbOHBgjRYEoHEzWYySpPV71+m5ndOrnBvu\nf7Vmdp1dpsH3hXzPxRzhAwAAAABUzq06k3bv3q2YmBgNGDBAubm56tmzp7777szugoSEBGfWB6AR\nyTRnKD4tVl1W/7HSkMnL4KU7Qu7Sy92XaMeofysioIMS0kc6AqrqupgjfAAAAACAqlUraJozZ46W\nLl2q5s2b64orrtCsWbM0c+ZMZ9cGoIGzh0Mmi1Fzv3xOQz8YoL1H96jodGGF84e1i9fOv+zSO3e/\nr5E3jJZ0aYERIRMAAAAA1KxqBU1FRUUKDw93fO7atausVqvTigLQsJksRmWaM5SQPlLpB9J088rr\ntXjXIhWcztdpnS4z11Ne8pCHAn2ClH2k4kbgBEYAAAAA4Bqq1aOpefPm2rNnjwwGgyQpJSWlXK8m\nAKgOk8Wo2JSBKijJV2nJaY1OH1Hp3Je7L1F0aA+ZC3IU6BskiVAJAAAAAFxZtYKmWbNm6cknn9S+\nffsUGRmptm3b6oUXXnB2bQAaGPtRuV9OHJTVdqrCOeH+V+vhTo+qpXdLxYT1lUS4BAAAAAD1RbWC\nptDQUL3zzjsqLCxUaWmpJMnPz8+phQGo/0wWo4L9Q5R+IE2S9MTnjyv/1IlKQiaDJnWcrISIMYpP\ni5Wki3qbHAAAAACg7lQraNqyZYu+/vprPfTQQ4qNjdXRo0c1ceJEjRw50tn1AainMs0ZmrZtiiID\novTW929WMdOgZl6XKbHH644dTC9Fv6pA3yBCJgAAAACoZ6rVDHzJkiUaPHiwPvzwQ91000367LPP\ntG7dOmfXBqCesR+NyzRn6PGtE9WqSUClIZNBBg1rF6+PBn+qAO8rNP9fc2SyGGWyGDVt25TaLBsA\nAAAAUEOqtaNJksLDw/XSSy/p7rvvlq+vr4qLi51ZF4B6wH40LtOcoUDfIMWnxWpcxHg9nzFXuYVm\n7T76Xbl7DDKotXegXuj+kmMH09q7N0j6Xy+mpJhV7GYCAAAAgHqoWkFTq1atNHv2bGVnZ+uFF17Q\nggUL9Ic//MHZtQFwYSaLUQnpI5Vw/Vg99cUUTf3jMzrw+4967POHy829I+Qu7Tm2W2NvHKfOwV3K\nHYs7N1QiZAIAAACA+qlaQdOLL76oTz/9VPfcc498fHx05ZVX6uGHy/+fSQD1j31X0sXMmRw5VZO3\nTpKnwUvP7Zxe4b1uclO/8Lu1KPQVAiQAAAAAaOCq1aPJ19dXBQUFWrRokR566CGVlJTIx8fH2bUB\ncDL7riR7b6XqzMk0Zyj9QJqi3+2i0ekjlHfykCwlJ8rdZ5BBwb5X6tlb/09Pb39C5oIcp/17AAAA\nAABcQ7V2NC1cuFAHDx7UkCFDZLPZlJycLKPRqGeeecbZ9QFwomD/kGr1Q0qKWSVJSj+QpjEfj1KJ\nraTCeV6GJmrWpJnGd3hEq/esVOIdyxQZGKXOwV0UGRhV4/UDAAAAAFxLtYKm7du3a8OGDXJzO7MB\nKjo6Wv379z/vfVlZWVq0aJFWrlxZbqyoqEj33nuv5s6dq/Dw8GrdA6DmVRQymSxGmQtyFOgb5OjD\ntOjr5/VbgVE22Sp8zqSOU5QQMcbxzEHthzieTcgEAAAAAI1DtYKm06dPq6SkRF5eXo7P7u7uVd6z\nfPlypaSkyNvbu9xYdna2Zs6cqdzc3GrfA6B2mCxGDfqgr3Lyf9Pyu5KUcP1YTfl8kk7rdIXzh7WL\n178Pfa2EiDFVNvgGAAAAADR81erR1L9/f40ePVorV67UypUrdc8996hv375V3hMaGqrExMQKx6xW\nq5YuXaqwsLBq3wPAuTLNGZIkc0GOPAye8vP016NbHtbjn0+sNGQK9r1ST/3pWa29ewPBEgAAAACg\nejuaHnzwQV133XX66quvZLPZ9OCDDyo6OrrKe3r16iWjseIGw5GRkRd8DwDnyTRnaHBKP83r+oJm\nfzVTl3tdriOnDpeb5yEPDW43TNt/26Ypf3xS0aE9CJgAAAAAAA5VBk0ZGRmOP/v4+KhHjx5lxqKi\n6LsCNASRgVHqf9UgTf58kkp1WkdPHVErr1Y6bP1f2OTt7qPkAamKDIySyWIkYAIAAAAAlFNl0PTq\nq686/nzkyBG1bNlSRUVFOnTokNq2basVK1Y4vUAAzmEPizLNGVr0r+e12bipzPjvJcclSTNunS1J\nZZp7EzIBAAAAACpSZdBkf/PbihUrlJycrJUrV8poNOr+++9Xnz59LuiLUlNTVVhYqLi4uIuvFkCN\nyDRn6JHN49Wp9R+1Zt/qcuNuctOEmyZp2X9eVefgLrw1DgAAAABQLQabzVbxu8rP0q9fP61du9bx\nNriioiINGzZMqampTi/wfPLyLHVdAlBvmCxGmQtyNPGz8dr/+48qVWm5Of3aDtCEThMVGRilTHMG\nIROAOhcQ4F/XJaAS/A5zLQEB/qyJi2FNXBPr4npYE9d0sb/BqtUMvLi4WJ6eno7PZ/8ZgGuzH5Ez\nWYwa9EFfeXv46KEOE/Vi5vPKyf9N0SF3qF/43Y75I28Y7fgzIRMANAylpaWaNWuWfvjhB3l5eWnO\nnDlq06ZNuXnTp09Xs2bNNGXKlDqoEgAANATVCpruvPNO3XPPPerdu7ckadOmTbrjjjucWhiAS2ey\nGDUsdaDW9N+g7Lws/WYxadot0/Vm9jItvytJkhToG6SE9JFKillF7yUAaKA+/fRTWa1Wvffee9q1\na5cWLFigZcuWlZnz7rvvau/evbzsBQAAXJJqBU1PPPGE0tPTlZGRIQ8PD40ePVp33nmns2sDcAlM\nFqOy87L0i+WgsvOy9NyOmbIZbFqx+y15GDwV6BvkCJYImQCgYcvMzFS3bt0kSR07dtS3335bZvzf\n//63srKyFBcXpwMHDlT7uRxrdD2siethTVwT6+J6WJOGo1pBkyTFxMQoJibGmbUA9Zr9iFpdf/+S\nzMU6fuq4NuxfJy93Ty3vmaSYsL6KCOggc0GOJJUJmSTeIgcADV1+fr78/Pwcn93d3VVSUiIPDw8d\nOnRIS5cu1ZIlS/TRRx9d0HPpp+Fa6HHielgT18S6uB7WxDU5tUcTgKqZLMY6O35mb/D9+NaJCr/s\nam38+QNJkrvBXYE+f1BEQIcyIZi9TgBA4+Hn56eCggLH59LSUnl4nPkZmJ6ermPHjmncuHHKy8vT\nyZMnFRYWpsGDB9dVuQAAoB4jaAJqQLB/iFNDpop2S5ksRklSbMpAldiKVWAt0O6j30mS3OSmVk1b\ny8fTW+aCHE3bNsVRH8fkAKDx6dSpk7Zs2aI+ffpo165dat++vWNs9OjRGj36zIsgkpOTdeDAAUIm\nAABw0QiagBrizJDp3N1SmeYMPb51osZFjFdRSZEkyd3NXZ5unnoqaoY6B3dRoG+Qo66z7yVkAoDG\np2fPntq+fbuGDx8um82mefPmKTU1VYWFhYqLi6vr8gAAQANisNlstrou4lJwjhMNmX0nk333UrB/\niCNk+vn4TzptK5Gt1KZWvgHy9fDTjM7/p5iwvnVcNQDULJqDui5+h7kWepy4HtbENbEuroc1cU0X\n+xvMrYbrAFBD7DuZ0g+kSZLi02KVac7QI5vH6w8+wSo6Xai7QnvrbzEr1LzJ5Uq8YxkhEwAAAACg\nTnF0DnAhZ/diCvYPUcL1YzV202gNCo/V0aKj2nNkt37NPyhJGtYuXkt6vi5JigjowJE4AAAAAECd\nI2gCXIR9B9PkyKmSpACf1nruqxkqLi3Wmn2rJUkvZj6v5T2TFODTWpGBUY57CZkAAAAAAK6AoAmo\nY2fvYooMiNK96X/RaZ2Wn6e/8ov/d055zPXj9Ejko5JUrjk4AAAAAACugB5NQB3KNGcoNmWgVn23\nQre9E6W3vn9Tp3Vakhwh0x0hd8nLzUux18Yp2D+k3FvkAAAAAABwFexoAuqAyWLU1l8+07Pbp6mg\nJF+Pff6wJMkgg2yyydfDT6dKTmpCx0f1TJcZyjRncFQOAAAAAODyCJqAWmQPmJ7ZPlWFJYXlxm2y\nqV/bAdp/4kc9dcuzjrfInR0yAQAAAADgqgiagFqSfiBN932cIKvtVKVzWjZtpdnd5kti1xIAAAAA\noP4haAKcxGQxylyQo7zCQ3pj1zJtN/+z0rkzbp2tzsFdFOgbVCZgOrtROAAAAAAAro6gCXACk8Wo\nO9Z009FTR6qcZw+YKjoaZ7IYebscAAAAAKBeIWgCLsK5O41MFqOkM8fdTBajpmx5tNKQycvgpRJb\niV7s/qpG3jC60u/g7XIAAAAAgPrGzZkPz8rK0qhRoyocKyoq0vDhw7V//35JUmlpqWbMmKG4uDiN\nGjVKBw8edGZpwEWz7zSyh0smi1GxKQM16IO+mvvlc4pa2UGbjZvK3edl8FKgT5D+2uvvCmt2taJD\ne5z3uwiZAAAAAAD1idOCpuXLl+vZZ5/VqVPlGx9nZ2dr5MiR+vXXXx3XPv30U1mtVr333nuaPHmy\nFixY4KzSgEsS7B+iBd0WSfrfW+ROni7Szyd+0uJdi1Si4nL32AOmy5u2UERAB629ewMhEgAAAACg\nwXHa0bnQ0FAlJiZq6tSp5casVquWLl1aZiwzM1PdunWTJHXs2FHffvuts0oDLonJYtTjWyeqqKRQ\nJ06d0NFTR+Qhz3Lzugberme7zNSeI7sVHdpDwf4higjoQMAEAAAAAGiwnBY09erVS0ajscKxyMjI\nctfy8/Pl5+fn+Ozu7q6SkhJ5eNBGCq4ntt1wLf73izpe/LskqUTF8jJ4qdRWKn+vZprR+f8c4dLZ\njb4JmQAAAAAADZnLpDh+fn4qKChwfC4tLSVkgksxWYwyF+RoaMoAFZTklxsP8gvW7K7zFBHQQZJ4\nYxwAAAAAoNFxmSSnU6dO2rJli/r06aNdu3apffv2dV0SIOlMwJSdl6XHt0zSsVNHdFqnJUnh/lfr\noOVnPX3rTHUO7qJA36AyoRIhEwAAAACgsam1oCk1NVWFhYWKi4urcLxnz57avn27hg8fLpvNpnnz\n5tVWaYCDyWJUsH+IMs0ZkqQdpi/1t2/fVE6BSaUqdczz8fDR+wNTZC7IKRcw2REyAQAAAAAaG4PN\nZrPVdRGXIi/PUtclwEXZQ6MLmR+fFqvYdsM1Z+cslf5355Kb3Bwh07XNrlNR6Um93vOvigyMksli\n5IgcADhZQIB/XZeASvA7zLUEBPizJi6GNXFNrIvrYU1c08X+BnOr4ToAl2APgEyWihvS29l3LqUf\nSJO5IEe/HD+oOTtnOkImSWri3lQvd1+il7svkcHdzREySWd2LREyAQAAAABwhsv0aAJqUmUB0Nm7\nnDLNGRqwobcGhg/Vmn2r5SFPlahYkuRp8FSxrVju8lCIf4iiQ3tIkt7MXqZA36By3wUAAAAAANjR\nhAasopApIX2k0g+kyWQxKq/wkIpLS7Rm32pJcoRMkvRQh0m63KulNg7+WGv6b1Cwf4iC/UO0uu9a\ngiUAAAAAACrBjiY0WPZjc8H+IY4/J1w/Vvd9fI/8vS5TYUmhbGc1+Jakfm0H6Ju8fyshYowSIsaU\nC5UImQAAAAAAqBxBExoce6g0LHWgPNw8NS5ivF7LelU2m5RXdEhWm1VHTh0+6w6D3A1uerjDY3qm\ny4wLbiIOAAAAAADO4OgcGhT7m+PMBTnycPNU58CumrrtMR0r+l3NvZrruPV3x1xvd295GjwV7Bui\nRbcv1lbTZkImAAAAAAAuATua0GB1Duyqt75/U5J0+NQhHc47JEnyMjTR+A6P6PXsRC28/WVFh/ZQ\n8H8bfhMyAQAAAABw8Qia0CDYj8uZC3I0LmK8Bn/QX0WnCx3jXgYveXv66IT1uAJ8WmvTLx9pec8k\nxYT1dcwhZAIAAAAA4NIQNKFeswdMsSkDlVd0SCesx2WTrcwcD3mq2FasaTdP1js/rNSrPZYp0DeI\nYAkAAAAAgBpG0IR6K9OcoYmfjVeftnfrlxM/y2qzlpvj7e6j1j5X6NFOkzXyhtEa1H4IARMAAAAA\nAE5CM3DUK/YdTJnmDMVvHKZ9v+/V4l2LyoRMzTyaySCD+rUdoGC/EHm5eyo6tIckjscBAAAAAOBM\n7GhCvWGyGDVwQ19FtLxJm35Ol1WnHGPucpcM0mnbabX2u0KzOsxV0vd/U+IdHJMDAAAAAKC2EDTB\npWWaMyRJO0xfas/R3Tpo+UkHLT+VmXNHyF36IudzLbjtRV3b8jpHsMRb5AAAAAAAqF0ETah1Joux\n0gAo05yhyMAoZZozlFd4SGM/Hq1iW3G5eR7y0Gmd1sSOk/VMlxmO+85GyAQAAAAAQO0iaEKtMlmM\nSkgfqaSYVeWCoPQDaXrg0zHqf9Ugrf9xrdwNHpWETJ5KHZyuvMJDejFzoWLMvcuFTAAAAAAAoPYR\nNKFWBfuHVBgymSxGzf/XHHVqFaU1+1ZLUrmQyU1u+nPInfol/2cF+gYpMjBKAT6tNW3blAqfCQAA\nAAAAahdBE5yiquNxZ1/PNGc4+i/tP7ZPu23fVXiPv+dlusyrmabc8qQe3zrRcT0yMIqQCQAAAAAA\nF+FW1wWg4bEfjzNZjFXOW5K5WL2T79BzO6drzb7Vstqs5eZ4yFNt/K/S0jve0GVNLlOgb5BW911b\nJlgiZAIAAAAAwDWwowk1rqLjcfYdTiaLUev3rtOeo7sdR+Qq0sStiZ6MelaD2g9xPDMioAOhEgAA\nAAAALoygCU5hD5WC/UOUac7Q41sn6qlbntXY9NEqVvkG33ZuclNSzKoKQyVCJgAAAAAAXJtTj85l\nZWVp1KhR5a5/9tlnGjJkiOLi4rRmzRpJktVq1eTJkzVs2DCNGTNGP//8szNLg5OZLEbFpgz8//bu\nP07Lus4X/2uYARyYETLROum4QuKxrEWws3mMMpK0pU1xskEUMt312z52j/2gEi0nd03EH53VyB9l\nmkdOCkhmgCtuiKbLVgskJKcfFhodSI0SkplRhmHu7x8eJkkBgYt7bmaez8ejx6Prvu4f78u3M9d7\nXn6u687CJ+/L3y/62zy5YXU+unDiDkOmflX9c95bLsjySaty6tBxQiUAAADYD+2zFU233HJL5s2b\nl9ra2u0e37JlS6688srMnTs3tbW1OeusszJmzJgsXLgwAwYMyJw5c/Lkk0/m8ssvz6233rqvyqNA\nL78sbltA9Pj6lfn1H5/MBd/7WF7c+uIOX1tdVZ3P/7fLMn54o3AJAAAA9nP7bEVTQ0NDZsyY8YrH\nV69enYaGhgwaNCj9+vXLqFGjsnTp0vzqV7/Ku9/97iTJ0KFDs3r16n1VGgXaduPvhU/el4n3nZnl\nzyzNt/7PHfnbB85NRzp2GDIN7v+6NP/V5Vkw/t/yj6M+IWQCgH2os7Mzzc3NaWpqyqRJk7JmzZrt\n9i9YsCBnnnlmJkyYkObm5nR2dnZTpQDA/m6frWg65ZRTsnbtK791rKWlJfX19V3bAwcOTEtLS445\n5pg89NBDOfnkk7Ny5co8++yz2bp1a6qrq/dVieyhl69cSpIpoz6XK//zS3nuhedy+nf+OptLm3f4\n2iMGHpF7z7g/iXsuAUC5LFq0KO3t7Zk9e3ZWrFiR6dOn56abbkqSvPjii7nuuusyf/781NbW5tOf\n/p3ukEwAACAASURBVHQeeuihvO997+vmqgGA/VHZbwZeV1eX1tbWru3W1tbU19fn5JNPzurVqzNx\n4sSMHDkyb33rW4VMFWjbCqbbT/1WkuRvvnNKOjo7UtramWc3P7vD173vsPdn1R8ez71n3C9gAoAy\nW758eUaPHp0kGTFiRFatWtW1r1+/fpk1a1bX7Q46OjrSv3//bqkTANj/lT1oGjZsWNasWZONGzdm\nwIABWbZsWc4///w8/vjjOeGEE3LJJZfk8ccfz29/+9tyl8Zr8Kb6wzJl1OfyTOvTufvns7O25f/u\n8jXnveWC3PXEzHzt5NtecS8nAGDfa2lpSV1dXdd2dXV1Ojo6UlNTkz59+uTggw9OksycOTNtbW05\n8cQTX9P7DhlSv+snUVZ6Unn0pDLpS+XRk56jbEHT/Pnz09bWlqampkydOjXnn39+SqVSGhsbc+ih\nh6Zv3765/vrrc/PNN6e+vj5XXHFFuUpjF9Zt+tMlkI+vX5nzHpiUjlLHTl9z3lsuyH1Pzc/U//b5\nnNQwJmf+16aMesM7tlsRJWwCgPL48xXlnZ2dqamp2W77mmuuyVNPPZUZM2akqqrqNb3v+vWbCq+V\nPTdkSL2eVBg9qUz6Unn0pDLtafhXVSqVSgXXUlb+ZSzWn3+D3LpNazPxvjOz4cXnUtOnJs+0PJ2O\n7Dhk6tunb259/x05dei4roDqz4MlK5oA2B3+C+fee+CBB/LQQw9l+vTpWbFiRb761a/mG9/4Rtf+\nL3zhC+nXr1++8IUvpE+f1/5dMeawyuIPtcqjJ5VJXyqPnlQmQRN7bdtqo+mjr82nH74wd467Ow//\nZnEeX/+T3PbTr+/wdbVVtXmh9ELeNPDwXDn66q6QSbAEQBEETXuvs7Mzl112WZ544omUSqVMmzYt\nP/3pT9PW1pZjjz02jY2NOf7447tWMk2ePDljx47d5fuawyqLP9Qqj55UJn2pPHpSmQRNFGLbKqSP\nzD897Vs2Z03rmp0+v77mwBx24OG54G1/n5MaxnStgnJ5HABFETRVLnNYZfGHWuXRk8qkL5VHTyrT\nns5gZb8ZOJVj+TNLM+oN70iy/aqjzzz0yfxy4xM7fW1VqvI/3zMjJzWMSZLtAqU31R8mZAIAAIBe\nSNDUC63btDbPtD6dM+Z9MF87+ba8bchf5sx5p2fkIcdn7i9npTOdr/q6YfVvzj+O/GReX/v6DBlw\nSFdI9WqETAAAAND7CJp6mZdf1vbZUZfkn3/wxQzuNzi/+uMT+dUfd7yKaXD/12Xu6fMESAAAAMAO\nCZp6oemjr83Dv1mcL/3oiztcvbRNVapy4Ygp+bff3F+m6gAAAID9laCpF1m3aW3OnHd6fvPHNWnP\n5h0+rzrVObDf4Gza8sdc8+7rcvZbJ+fct51nNRMAAACwU4KmHm7bt8g90/p0Fj55/04vj+tX1T9v\nrPsvuXnsN5IkFy7++1e92TcAAADAqxE09WDLn1mav33g3Pxx88a0dOz4qyKrU5PP/9UXM354Y5I/\nhUpz/uZeARMAAADwmgmaepjlzyzNGwa+Md954tu5YcX1+cPm3+/0+c1/dfkrAqZt9mXItG7TWiEW\nAAAA9DCCph5k4ZP35fyFk9Ovpn9aO1p2+tx/ec9X8/ra1+fUoeO2+ya6coQ/5f48AAAAoDwETT3A\nwifvyx9e+EO+vPyqbMmWbOnY8qrPq051BvQdmBve97WcOnRc1+Nvqj+srKFPuT8PAAAAKA9B035q\n26VnX11+ff75R5fu8HkDagbm5pO/kSEDDkmSvGHgG1814Cl36CNkAgAAgJ5H0LQfWrdpbc6cd3pG\nHnJ85vzyzh0+b3C/12VQ/8G58j+/lDvH3S3cAQAAAPYpQdN+YuGT92XIgEPyhoFvzOPrV+ZXf3wi\nv/rjE6/63Oa/ujxvft2bu56fWEEEAAAA7HuCpgq27fK4b/2fO/Kp7/9jkqS2ujYvbn3xFc+tSlUa\n6v8inxw5Jbf/9NZMH31tpj76GfdCAgAAAMpG0FShtn0z2/TR1+bz/35R1+MvbH3hFc/94F+clstH\nX5nkpZVLJzWMccNtAAAAoOwETRVm2yqmJJky6nP5x+/9f2nb2vqK59VWD8hnj784rzvgdTn7rZO3\n27ft9UImAAAAoJwETRVk+TNL8/eL/janDW3Mbau+npaOTSmltN1zqqtq8tFjzssPnlmSE9703zP1\n0c90rWB6LV4eZAEAAAAUSdDUzbYFP+s2rc3HFp6TZ9qezvUrru3af2j/Q/Ps5mfz9oP+Mn/c8nwu\nP3FaTh06rut1u3N53LbL8VxSBwAAAOwLffblm69cuTKTJk16xeOLFy9OY2NjmpqaMmfOnCTJli1b\nMmXKlEyYMCETJ07M6tWr92Vp3WLdprXb/f9twc+6TWvz+PqV2bD5udSk73avmfrOS3PHqXdl0YRH\nc+/p9+XUoeOS7Nnlce7bBAAAAOxL+yxouuWWW/KFL3whmzdv3u7xLVu25Morr8xtt92WmTNnZvbs\n2fn973+f73//++no6MisWbPyD//wD7nuuuv2VWnd4uWh0rpNa3PmvNPzTOvTmTLqc/nOE9/Ol5df\nnbOP/mi2piNJMrj/69L8V5fnpIYx+fLyqwu75E3IBAAAAOwr++zSuYaGhsyYMSOf+9zntnt89erV\naWhoyKBBg5Iko0aNytKlSzN8+PBs3bo1nZ2daWlpSU1Nz7qqb9tqomdan876tt9lzfNP5WMLz8nv\nX1ifjlJHPjHiM3l43YP5n++ZkdfXvj5X/ueXMn54o1VIAAAAwH5jn6U5p5xyStauXfuKx1taWlJf\nX9+1PXDgwLS0tGTAgAFZt25dPvCBD2TDhg25+eab91VpZfPyVUjrNq3Nw79ZnIse/XRqa2qTJDV9\nanJw7ZBUVVXl3Ledl3Pfdl7X89825C99exwAAACwX9mn92h6NXV1dWltbe3abm1tTX19fW6//fa8\n613vygMPPJDvfve7mTp16isuu6tEL7/v0p8/fu7Cs7P8maVZt2ltxs45KZ/+/v9Ie2d7/tj+x4x/\n85m55f2353UHHJTbTpmZN9Uftl2gJFwCAAAA9jdlD5qGDRuWNWvWZOPGjWlvb8+yZcty3HHH5cAD\nD+xa6TRo0KB0dHRk69at5S5vt7z8vkvbtl/u3Lecn08/fGEuffTi/H7z71JKKdVV1fnIURPzi40/\nyxsGvjF3jrs7o97wju4oHwAAAKBQZbsR0vz589PW1pampqZMnTo1559/fkqlUhobG3PooYfm3HPP\nzSWXXJKJEydmy5Yt+dSnPpUBAwaUq7w98vL7J63btDYT7zszd467O0ky/rvj8nTrb1NXU5+fPfd/\n8pGjJuaNA/9L7ntqXj72tvPzhoFvtGoJAAAA6FGqSqVSqbuL2Bvr12/q7hKSvLSa6W++c0puef/t\nSZL/8eDfp/mEf8qQAYfk7/7t3Mwf/0DeVH9Ylj+zNFMf/YwbfAPAazRkSP2un0S3qJQ5jJcMGVKv\nJxVGTyqTvlQePalMezqD9ayvdusmy59Zmm8+fmvWtvzfTLrvrAw+YHCqqv50Q+9tIVOSjHrDO4RM\nAAAAQI8kaNoL275J7jPf/0S25qX7ST2/ZWM+/87mnNQwZoffGidkAgAAAHoiQdMeWrdpbT4y//T8\n5vk1Obj2kGzt3Jr/+d7rkyRfXn51TmoY080VAgAAAJSXoOlVrNu09lVXHS1/ZmmSly5/e1P9YfnK\nmJuSJG8Y+MYkf1qptO2SOQAAAIDepE93F1Bp1m1am3MXnt0VKi1/ZmnWbVqbhU/el9O+84Gc/t2/\n7nps6qOf6fr2uJcHS0ImAAAAoDeyounPvKn+sEwffW2mPvqZnDb0jEz/z8tzyMBDU11Vk/9S/6b8\n83+fllFveEeSuKk3AAAAwMtY0fQyC5+87/+tXro/o4a8I1f+5z9na2lrOjo70rdP39x08jdy6tBx\nXc8XMgEAAAD8iRVNeSlgWv7M8nxlxZfTr0//bO58MUlSXVWdIQMOSV3f+sx4301dK5kAAAAAeKVe\nHTSt27Q233ni2/nnH12aJDmgT21e7HwhB/YblE8e95mc8Kb//oobfQMAAADw6npN0LTtm+TWbVqb\nJHl8/cr83b+dmy2dW7qe82LnCznvLRfkzP/aZPUSAAAAwG7q8UHTtmDp3IVnZ8qoz6X5Py5JR2dH\n1rWsTSmlruf1qeqT//GXn86//eb+/OCZJblz3N1WMQEAAADshh59M/B1m9bm3IVnJ0mmj742//yD\nL2bdprXZsrUjBx8wJEnyiRGfyR2n3pWhB745577tvNw57m4hEwAAAMAe6NFBU5JMGfW5PL5+Zda3\n/S7NJ/xTDh34htT3q88lf9Wcfn365dShH8ipQ8fl7g/dmzfVH9b1PwAAAAB2T4+8dG7b5XLjvzsu\n61rWdt2H6bC6w1NdVdP1DXL/9fXHdN2LSbgEAAAAsHd63IqmhU/el4n3nZnH169MqZRcPfpf8i/v\n+Wr+4sAjM+1dV2dA3wFd3yTnht8AAAAAxakqlUqlXT+tcq148mddq5GWP7M0p3/3rzOk9pBUV9Xk\nt61rc0T9kbn7Q/cmSde3zlm9BAD7jyFD6ru7BHZg/fpN3V0CLzNkSL2eVBg9qUz6Unn0pDLt6Qy2\n369oOnfh2V2Xyo16wzty72n/mvnjH8jNY7+RI+qPzIz33bTdfZeETABAb9PZ2Znm5uY0NTVl0qRJ\nWbNmzXb7Fy9enMbGxjQ1NWXOnDndVCUA0BPs9/douv3Ub223/fJ7Lm27wTcAQG+2aNGitLe3Z/bs\n2VmxYkWmT5+em266KUmyZcuWXHnllZk7d25qa2tz1llnZcyYMTn44IO7uWoAYH+03wdNr399XcbP\nHp/vNH0nhw86fLt9Q4Yc001VAQBUjuXLl2f06NFJkhEjRmTVqlVd+1avXp2GhoYMGjQoSTJq1Kgs\nXbo0H/jAB3b5vi5rrDx6Unn0pDLpS+XRk55jvw+aDh90eJZdsKy7ywAAqFgtLS2pq6vr2q6urk5H\nR0dqamrS0tKS+vo/DfcDBw5MS0tLd5QJAPQA+/09mgAA2Lm6urq0trZ2bXd2dqampuZV97W2tm4X\nPAEA7A5BEwBADzdy5Mg88sgjSZIVK1Zk+PDhXfuGDRuWNWvWZOPGjWlvb8+yZcty3HHHdVepAMB+\nrqpUKpW6uwgAAPadzs7OXHbZZXniiSdSKpUybdq0/PSnP01bW1uampqyePHi3HDDDSmVSmlsbMzZ\nZ5/d3SUDAPspQRMAAAAAhXDpHAAAAACFEDQBAAAAUAhB0z60cuXKTJo06RWPL168OI2NjWlqasqc\nOXOSJFu2bMmUKVMyYcKETJw4MatXry53uXtsd46zvb09U6ZMyUc+8pGcd955+fWvf13mavfMjo4x\nSV544YVMmDChq2ednZ1pbm5OU1NTJk2alDVr1pSz1D22O8f4Wl5TiXbnGLds2ZLPfvazmThxYj78\n4Q/nwQcfLGepe2V3jnPr1q25+OKLM2HChJx11ll54oknylnqHtuTf1//8Ic/5D3vec9+8/t1d49x\n/PjxmTRpUiZNmpSLL764XGXuld09xq997WtpamrKGWeckbvvvrtcZfZquzqnvdq5nn1rVz1ZsGBB\nzjzzzEyYMCHNzc3p7Ozspkp7l9c6/1166aW59tpry1xd77SrnvzkJz/JxIkTc9ZZZ+XCCy/M5s2b\nu6nS3mVXfZk3b17Gjx+fxsbG3Hnnnd1UZe+0O3/X70pN0cXxkltuuSXz5s1LbW3tdo9v2bIlV155\nZebOnZva2tqcddZZGTNmTFasWJGOjo7MmjUrS5YsyXXXXZcZM2Z0U/Wv3e4e58KFCzNgwIDMmTMn\nTz75ZC6//PLceuut3VT9a7OjY0ySxx9/PF/84hfz7LPPdj22aNGitLe3Z/bs2VmxYkWmT5+em266\nqZwl77bdPcZdvaYS7e4xzps3L4MHD84111yTjRs35vTTT8/73ve+cpa8R3b3OB966KEkyaxZs/Kj\nH/0o//Iv/9Ij/33dsmVLmpubc8ABB5SrzL2yu8e4efPmlEqlzJw5s5xl7pXdPcYf/ehHeeyxx3LX\nXXflhRdeyG233VbOcnutnZ3TdnSuP/jgg7u56p5tZz158cUXc91112X+/Pmpra3Npz/96Tz00EP7\nxflrf/da5r9Zs2bliSeeyDve8Y5uqrJ32VlPSqVSLr300nzlK1/JEUcckbvvvjvr1q3L0KFDu7nq\nnm9XPytXX311FixYkAEDBmTcuHEZN25cBg0a1I0V9w67+3f9rs71VjTtIw0NDa8aFK1evToNDQ0Z\nNGhQ+vXrl1GjRmXp0qU58sgjs3Xr1nR2dqalpSU1NftHBri7x/mrX/0q7373u5MkQ4cO3S9WFuzo\nGJOXVmjdcMMN252Uli9fntGjRydJRowYkVWrVpWlzr2xu8e4q9dUot09xlNPPTWf+MQnkrw0jFRX\nV5elzr21u8d58skn5/LLL0+S/Pa3v82BBx5Yljr3xp78+3rVVVdlwoQJOeSQQ8pR4l7b3WP8+c9/\nnhdeeCHnnXdeJk+enBUrVpSr1D22u8f47//+7xk+fHj+4R/+IR//+Mdz0kknlanS3m1n57QdnevZ\nt3bWk379+mXWrFldfyh0dHSkf//+3VJnb7Or+e/HP/5xVq5cmaampu4or1faWU+eeuqpDB48OLff\nfnvOOeecbNy4UchUJrv6WTn66KOzadOmtLe3p1QqpaqqqjvK7HV29+/6XRE07SOnnHLKq4ZFLS0t\nqa+v79oeOHBgWlpaMmDAgKxbty4f+MAHcumll+43lyPt7nEec8wxeeihh1IqlbJixYo8++yz2bp1\nazlL3m07OsYkGTVqVN74xjdu91hLS0vq6uq6tqurq9PR0bFPa9xbu3uMu3pNJdrdYxw4cGDq6urS\n0tKSCy+8MJ/85CfLUeZe25Ne1tTU5KKLLsrll1+ev/mbv9nXJe613T3Ge+65JwcddFDXULM/2N1j\nPOCAA3L++efn1ltvzT/90z/lM5/5TI/7vbNhw4asWrUq119/fdcx+uLcfW9n57QdnevZt3bWkz59\n+nT9V+aZM2emra0tJ554YrfU2dvsrC+/+93vcsMNN6S5ubm7yuuVdtaTDRs25LHHHss555yTb37z\nm/nhD3+YH/zgB91Vaq+yq7+VjjrqqDQ2NmbcuHE56aST9ov/CNoT7O7f9bsiaCqzurq6tLa2dm23\ntramvr4+t99+e971rnflgQceyHe/+91MnTp1v75OeEfH2djYmLq6ukycODHf+9738ta3vnW/WSny\nWv35sXd2du5XgQx/8vTTT2fy5Mk57bTT9osAZm9cddVVeeCBB3LppZemra2tu8sp1Le//e38x3/8\nRyZNmpSf/exnueiii7J+/fruLqtQRx55ZD70oQ+lqqoqRx55ZAYPHtzjjnHw4MF517velX79+mXo\n0KHp379/nnvuue4uq8fb2TltR+d69q1dzRmdnZ256qqrsmTJksyYMcNqgDLZWV8WLlyYDRs25IIL\nLsjXv/71LFiwIPfcc093ldpr7KwngwcPzhFHHJFhw4alb9++GT169H5xFUJPsLO+/PznP8/DDz+c\nBx98MIsXL85zzz2X+++/v7tKJXt+rhc0ldmwYcOyZs2abNy4Me3t7Vm2bFmOO+64HHjggV0NGzRo\nUDo6Oip+pc/O7Og4H3/88Zxwwgm56667cuqpp+bwww/v7lILN3LkyDzyyCNJkhUrVmT48OHdXBF7\n4ve//33OO++8fPazn82HP/zh7i5nn7n33nvzta99LUlSW1ubqqqq9OnTs04N3/rWt/K///f/zsyZ\nM3PMMcfkqquuypAhQ7q7rELNnTs306dPT5I8++yzaWlp6XHHOGrUqDz66KMplUp59tln88ILL2Tw\n4MHdXVaPt7Nz2o7O9exbu5ozmpubs3nz5tx44437zX0Ue4Kd9WXy5Mm55557MnPmzFxwwQX54Ac/\nmDPOOKO7Su01dtaTww8/PK2trV03ol62bFmOOuqobqmzt9lZX+rr63PAAQekf//+qa6uzkEHHZTn\nn3++u0ole36ut8yiTObPn5+2trY0NTVl6tSpOf/881MqldLY2JhDDz005557bi655JJMnDgxW7Zs\nyac+9akMGDCgu8vebbs6zr59++b666/PzTffnPr6+lxxxRXdXfJue/kxvpqxY8dmyZIlmTBhQkql\nUqZNm1bmCvfero6xJ9jVMd588815/vnnc+ONN+bGG29M8tJN8vaXm0lvs6vjfP/735+LL744Z599\ndjo6OnLJJZf0uGPsCXZ1jB/+8Idz8cUX56yzzkpVVVWmTZu2362k3NUxvve9783SpUvz4Q9/OKVS\nKc3NzT1uRWwlerVz2q7O9exbO+vJsccem7lz5+b444/PRz/60SQvhRxjx47t5qp7vl39rFB+u+rJ\nFVdckSlTpqRUKuW4445z778y2VVfmpqaMnHixPTt2zcNDQ0ZP358d5fcK+3tub6q5AYHAAAAABSg\nZ10fAQAAAEC3ETQBAAAAUAhBEwAAAACFEDQBAAAAUAhBEwAAAACFEDQB+9zatWszZsyYV9139NFH\n79PPPu200/bp+wMAAPAngiagR/vud7/b3SUAAAD0GjXdXQDQ89x8882ZN29eqqurc+KJJ2bixIl5\n8cUX86lPfSq//OUvc+CBB+aGG27I6173uq7XbNy4MZ///Ofz5JNPpl+/fpk6dWpOOOGEHX7GmDFj\nMmbMmCxbtixJMm3atLzlLW/JpEmTMmjQoPzyl7/Mddddl9NPPz2/+MUvdvj+jzzySL7yla+ko6Mj\nhx12WC6//PLt6gIAAOC1s6IJKNT3v//9LF68OPfcc0++853vZM2aNXn00Ufz3HPP5WMf+1gWLFiQ\ngw8+OP/6r/+63euuv/76NDQ05P7778/VV1+d6667bpefNXjw4Nx777258MILc9FFF3U9fvTRR+eB\nBx7IMcccs9P3f+655/LlL385t956a+699968613vyrXXXlvcPwwAAIBeRtAEFOqHP/xhxo0blwMO\nOCA1NTVpbGzMD37wgxxyyCF5+9vfniR585vfnA0bNmz3uqVLl3bdT+noo4/O7Nmzd/lZH/nIR5K8\ntLrp2WefzXPPPZckXZ+zq/dfuXJlnn766UyePDmnnXZavvWtb2XNmjV7fvAAAAC9nEvngEJ1dna+\n4rGOjo7U1Pzp101VVVVKpdJ2z3n5/iRZvXp1jjzyyPTps+M8/OWv6ezsTHV1dZLkgAMO2Olzt73/\n1q1bM3LkyNx8881Jks2bN6e1tXWHnwcAAMDOWdEEFOqd73xn7rvvvrz44ovp6OjIt7/97bzzne/c\n5euOP/74rsvpVq9enb/7u79LVVXVTl9z3333JUm+973vZdiwYRk0aNBuvf/b3/72rFixIk899VSS\n5MYbb8zVV1/9mo4TAACAV7KiCSjUe9/73vzsZz9LY2NjOjo6Mnr06Lz3ve/NHXfcsdPXXXjhhfnC\nF76QD33oQ6mpqcnVV1+9y6Dpxz/+cebOnZva2tpMnz59t9//kEMOybRp0/LJT34ynZ2dOfTQQ3PN\nNdfs9jEDAADwkqrSn1+/ArAfGDNmTO64444cdthh3V0KAAAA/48VTUDFmjRpUp5//vlXPD5hwoRu\nqAYAAIBdsaIJAAAAgEK4GTgAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAA\nAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0\nAQAAAFAIQRMAAAAAheiWoGnlypWZNGnSKx5fvHhxGhsb09TUlDlz5nRDZQAAPZcZDADY12rK/YG3\n3HJL5s2bl9ra2u0e37JlS6688srMnTs3tbW1OeusszJmzJgcfPDB5S4RAKDHMYMBAOVQ9hVNDQ0N\nmTFjxiseX716dRoaGjJo0KD069cvo0aNytKlS8tdHgBAj2QGAwDKoexB0ymnnJKamlcupGppaUl9\nfX3X9sCBA9PS0rLL9yuVSoXWBwDQE5nBAIByKPulcztSV1eX1tbWru3W1tbthp4dqaqqyvr1m/Zl\naeymIUPq9aQC6Uvl0ZPKpC+VZ8iQXc8D7DkzWM/h91fl0ZPKpC+VR08q057OYBXzrXPDhg3LmjVr\nsnHjxrS3t2fZsmU57rjjurssAIAezQwGABSp21c0zZ8/P21tbWlqasrUqVNz/vnnp1QqpbGxMYce\nemh3lwcA0COZwQCAfaGq1AMusLfErrJY9liZ9KXy6Ell0pfK49K5yuVnpbL4/VV59KQy6Uvl0ZPK\ntN9fOgcAAADA/k3QBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQ\nBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAA\nFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0A\nAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAh\nBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAA\nAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhyho0dXZ2prm5OU1NTZk0aVLWrFmz3f55\n8+Zl/PjxaWxszJ133lnO0gAAeiwzGABQLjXl/LBFixalvb09s2fPzooVKzJ9+vTcdNNNXfuvvvrq\nLFiwIAMGDMi4ceMybty4DBo0qJwlAgD0OGYwAKBcyho0LV++PKNHj06SjBgxIqtWrdpu/9FHyvcu\nawAAEt1JREFUH51NmzalpqYmpVIpVVVVr+l9hwypL7xW9o6eVCZ9qTx6Upn0hZ7GDNZ76Enl0ZPK\npC+VR096jrIGTS0tLamrq+varq6uTkdHR2pqXirjqKOOSmNjY2prazN27NgceOCBr+l916/ftE/q\nZc8MGVKvJxVIXyqPnlQmfak8Bs+9ZwbrHfz+qjx6Upn0pfLoSWXa0xmsrPdoqqurS2tra9d2Z2dn\n14Dz85//PA8//HAefPDBLF68OM8991zuv//+cpYHANAjmcEAgHIpa9A0cuTIPPLII0mSFStWZPjw\n4V376uvrc8ABB6R///6prq7OQQcdlOeff76c5QEA9EhmMACgXMp66dzYsWOzZMmSTJgwIaVSKdOm\nTcv8+fPT1taWpqamNDU1ZeLEienbt28aGhoyfvz4cpYHANAjmcEAgHKpKpVKpe4uYm+5lrOyuL62\nMulL5dGTyqQvlcc9miqXn5XK4vdX5dGTyqQvlUdPKtN+cY8mAAAAAHouQRMAAAAAhRA0AQAAAFAI\nQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAA\nAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0\nAQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAA\nhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMA\nAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFCI\nmnJ+WGdnZy677LL84he/SL9+/fKlL30pRxxxRNf+n/zkJ5k+fXpKpVKGDBmSa665Jv379y9niQAA\nPY4ZDAAol7KuaFq0aFHa29sze/bsTJkyJdOnT+/aVyqVcumll+bKK6/MXXfdldGjR2fdunXlLA8A\noEcygwEA5VLWFU3Lly/P6NGjkyQjRozIqlWruvY99dRTGTx4cG6//fb88pe/zHve854MHTq0nOUB\nAPRIZjAAoFzKGjS1tLSkrq6ua7u6ujodHR2pqanJhg0b8thjj6W5uTkNDQ35+Mc/nmOPPTYnnHDC\nLt93yJD6fVk2e0BPKpO+VB49qUz6Qk9jBus99KTy6Ell0pfKoyc9R1mDprq6urS2tnZtd3Z2pqbm\npRIGDx6cI444IsOGDUuSjB49OqtWrXpNQ8769Zv2TcHskSFD6vWkAulL5dGTyqQvlcfguffMYL2D\n31+VR08qk75UHj2pTHs6g5X1Hk0jR47MI488kiRZsWJFhg8f3rXv8MMPT2tra9asWZMkWbZsWY46\n6qhylgcA0COZwQCAcinriqaxY8dmyZIlmTBhQkqlUqZNm5b58+enra0tTU1NueKKKzJlypSUSqUc\nd9xxOemkk8pZHgBAj2QGAwDKpapUKpW6u4i9ZYldZbHssTLpS+XRk8qkL5XHpXOVy89KZfH7q/Lo\nSWXSl8qjJ5Vpv7h0DgAAAICeS9AEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEE\nTQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAA\nQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAE\nAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAU\nQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAA\nAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUoqxBU2dnZ5qbm9PU1JRJkyZlzZo1r/q8\nSy+9NNdee205SwMA6LHMYABAuZQ1aFq0aFHa29sze/bsTJkyJdOnT3/Fc2bNmpUnnniinGUBAPRo\nZjAAoFzKGjQtX748o0ePTpKMGDEiq1at2m7/j3/846xcuTJNTU3lLAsAoEczgwEA5VJTzg9raWlJ\nXV1d13Z1dXU6OjpSU1OT3/3ud7nhhhvy1a9+Nffff/9uve+QIfVFl8pe0pPKpC+VR08qk77Q05jB\neg89qTx6Upn0pfLoSc9R1qCprq4ura2tXdudnZ2pqXmphIULF2bDhg254IILsn79+rz44osZOnRo\nzjjjjF2+7/r1m/ZZzey+IUPq9aQC6Uvl0ZPKpC+Vx+C598xgvYPfX5VHTyqTvlQePalMezqDlTVo\nGjlyZB566KH89V//dVasWJHhw4d37Zs8eXImT56cJLnnnnvy5JNPvqYBBwCAnTODAQDlUtagaezY\nsVmyZEkmTJiQUqmUadOmZf78+Wlra3NPAACAfcQMBgCUS1WpVCp1dxF7yxK7ymLZY2XSl8qjJ5VJ\nXyqPS+cql5+VyuL3V+XRk8qkL5VHTyrTns5gZf3WOQAAAAB6LkETAAAAAIUQNAEAAABQCEETAAAA\nAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEET\nAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQ\nCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEA\nAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQ\nNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAA\nAIWoKeeHdXZ25rLLLssvfvGL9OvXL1/60pdyxBFHdO1fsGBB/tf/+l+prq7O8OHDc9lll6VPH1kY\nAMDeMIMBAOVS1gli0aJFaW9vz+zZszNlypRMnz69a9+LL76Y6667LnfccUdmzZqVlpaWPPTQQ+Us\nDwCgRzKDAQDlUtYVTcuXL8/o0aOTJCNGjMiqVau69vXr1y+zZs1KbW1tkqSjoyP9+/d/Te87ZEh9\n8cWyV/SkMulL5dGTyqQv9DRmsN5DTyqPnlQmfak8etJzlDVoamlpSV1dXdd2dXV1Ojo6UlNTkz59\n+uTggw9OksycOTNtbW058cQTX9P7rl+/aZ/Uy54ZMqReTyqQvlQePalM+lJ5DJ57zwzWO/j9VXn0\npDLpS+XRk8q0pzNYWYOmurq6tLa2dm13dnampqZmu+1rrrkmTz31VGbMmJGqqqpylgcA0COZwQCA\ncinrPZpGjhyZRx55JEmyYsWKDB8+fLv9zc3N2bx5c2688cau5dsAAOwdMxgAUC5lXdE0duzYLFmy\nJBMmTEipVMq0adMyf/78tLW15dhjj83cuXNz/PHH56Mf/WiSZPLkyRk7dmw5SwQA6HHMYABAuVSV\nSqVSdxext1zLWVlcX1uZ9KXy6Ell0pfK4x5NlcvPSmXx+6vy6Ell0pfKoyeVaU9nsLJeOgcAAABA\nzyVoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYA\nAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQ\ngiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAA\nAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFo\nAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAA\nCiFoAgAAAKAQgiYAAAAAClHWoKmzszPNzc1pamrKpEmTsmbNmu32L168OI2NjWlqasqcOXPKWRoA\nQI9lBgMAyqWsQdOiRYvS3t6e2bNnZ8qUKZk+fXrXvi1btuTKK6/MbbfdlpkzZ2b27Nn5/e9/X87y\nAAB6JDMYAFAuZQ2ali9fntGjRydJRowYkVWrVnXtW716dRoaGjJo0KD069cvo0aNytKlS8tZHgBA\nj2QGAwDKpaacH9bS0pK6urqu7erq6nR0dKSmpiYtLS2pr6/v2jdw4MC0tLS8pvcdMqR+10+irPSk\nMulL5dGTyqQv9DRmsN5DTyqPnlQmfak8etJzlHVFU11dXVpbW7u2Ozs7U1NT86r7Wltbtxt6AADY\nM2YwAKBcyho0jRw5Mo888kiSZMWKFRk+fHjXvmHDhmXNmjXZuHFj2tvbs2zZshx33HHlLA8AoEcy\ngwEA5VJVKpVK5fqwzs7OXHbZZXniiSdSKpUybdq0/PSnP01bW1uampqyePHi3HDDDSmVSmlsbMzZ\nZ59drtIAAHosMxgAUC5lDZoAAAAA6LnKeukcAAAAAD2XoAkAAACAQgiaAAAAACjEfhE0dXZ2prm5\nOU1NTZk0aVLWrFmz3f7FixensbExTU1NmTNnTjdV2fvsqi8LFizImWeemQkTJqS5uTmdnZ3dVGnv\nsauebHPppZfm2muvLXN1vdeu+vKTn/wkEydOzFlnnZULL7wwmzdv7qZKe49d9WTevHkZP358Ghsb\nc+edd3ZTlb3TypUrM2nSpFc87lzfPcxglcf8VZnMYJXH/FWZzGCVq9AZrLQfeOCBB0oXXXRRqVQq\nlR577LHSxz/+8a597e3tpZNPPrm0cePG0ubNm0tnnHFGaf369d1Vaq+ys7688MILpfe9732ltra2\nUqlUKn3qU58qLVq0qFvq7E121pNt7rrrrtJHPvKR0jXXXFPu8nqtnfWls7Oz9KEPfaj061//ulQq\nlUpz5swprV69ulvq7E129bNy4oknljZs2FDavHlz1zmGfe/rX/966YMf/GDpzDPP3O5x5/ruYwar\nPOavymQGqzzmr8pkBqtMRc9g+8WKpuXLl2f06NFJkhEjRmTVqlVd+1avXp2GhoYMGjQo/fr1y6hR\no7J06dLuKrVX2Vlf+vXrl1mzZqW2tjZJ0tHRkf79+3dLnb3JznqSJD/+8Y+zcuXKNDU1dUd5vdbO\n+vLUU09l8ODBuf3223POOedk48aNGTp0aHeV2mvs6mfl6KOPzqZNm9Le3p5SqZSqqqruKLPXaWho\nyIwZM17xuHN99zGDVR7zV2Uyg1Ue81dlMoNVpqJnsP0iaGppaUldXV3XdnV1dTo6Orr21dfXd+0b\nOHBgWlpayl5jb7SzvvTp0ycHH3xwkmTmzJlpa2vLiSee2C119iY768nvfve73HDDDWlubu6u8nqt\nnfVlw4YNeeyxx3LOOefkm9/8Zn74wx/mBz/4QXeV2mvsrCdJctRRR6WxsTHjxo3LSSedlAMPPLA7\nyux1TjnllNTU1Lzicef67mMGqzzmr8pkBqs85q/KZAarTEXPYPtF0FRXV5fW1tau7c7Ozq5/CH++\nr7W1dbt/EOw7O+vLtu2rrroqS5YsyYwZM6TRZbCznixcuDAbNmzIBRdckK9//etZsGBB7rnnnu4q\ntVfZWV8GDx6cI444IsOGDUvfvn0zevToV/yXHYq3s578/Oc/z8MPP5wHH3wwixcvznPPPZf777+/\nu0olzvXdyQxWecxflckMVnnMX5XJDLZ/2dNz/X4RNI0cOTKPPPJIkmTFihUZPnx4175hw4ZlzZo1\n2bhxY9rb27Ns2bIcd9xx3VVqr7KzviRJc3NzNm/enBtvvLFrCTf71s56Mnny5Nxzzz2ZOXNmLrjg\ngnzwgx/MGWec0V2l9io768vhhx+e1tbWrhshLlu2LEcddVS31Nmb7Kwn9fX1OeCAA9K/f/9UV1fn\noIMOyvPPP99dpRLn+u5kBqs85q/KZAarPOavymQG27/s6bn+lWujKtDYsWOzZMmSTJgwIaVSKdOm\nTcv8+fPT1taWpqamTJ06Neeff35KpVIaGxtz6KGHdnfJvcLO+nLsscdm7ty5Of744/PRj340yUsn\n2bFjx3Zz1T3brn5W6B676ssVV1yRKVOmpFQq5bjjjstJJ53U3SX3eLvqSVNTUyZOnJi+ffumoaEh\n48eP7+6SeyXn+u5nBqs85q/KZAarPOavymQG2z/s7bm+qlQqlcpQJwAAAAA93H5x6RwAAAAAlU/Q\nBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFOL/B/kpfyDRnEyXAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot all against close_bid\n", + "fig, axarr = plt.subplots(2, 2, figsize=(20,10)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "irow, icol = 0,0\n", + "icol = pltGraph(\"ohlc_price\", \"close_bid\", irow, icol, df)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- we may have to address feature correlation" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10202, 20)\n", + "(10202,)\n", + "(10099, 20)\n", + "(103, 20)\n", + "(10099,)\n", + "(103,)\n" + ] + } + ], + "source": [ + "from sklearn import linear_model\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import mean_absolute_error, mean_squared_error, accuracy_score\n", + "\n", + "# df only\n", + "X = df.drop(\"close_bid\", axis=1)\n", + "y = df.close_bid.shift().values\n", + "cols = X.columns\n", + "\n", + "\n", + "#convert to numpy first\n", + "df_np = df.copy().values.astype('float32')\n", + "X, y = create_training_set(df_np, 1)\n", + "X = np.reshape(X, (X.shape[0], X.shape[2]))\n", + "idx_close_bid = df.columns.tolist().index('close_bid') # find index of columns in dataframe\n", + "y = y[:,idx_close_bid] # select column to predict\n", + "cols = df.columns # i have all here, because close_bid is included as features\n", + "\n", + "\n", + "# create train and test\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, shuffle=False)\n", + "check_shape(X, y, X_train, X_test, y_train, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAFlCAYAAADs50HhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9clGW+//E3DAgqkKDotzXthEWbGvk73VLXjHDbXFNp\nQdjppJ4e57G2/ujsQfwJGJVutp6SUFe2PXu2tLTWXDEfrqumtmGmpoi4alGhmEuaqPwemJnvH66T\nxoCgDODF6/mXc18z93zg6u491zUX1+3ldDqdAgAAxvJu7gIAAIBnEfYAABiOsAcAwHCEPQAAhiPs\nAQAwHGEPAIDhCHugmfXt21cFBQXKycnRtGnT6nzuoUOHlJSU1OD3eO6555SWlna9JTbYyZMnNXXq\n1Bs6h9Vq1ebNmz32/BtVUFCgvn37um176623tHLlSrdtl/sbaEo+zV0AgEvuvfdeLV26tM7nfP75\n5yosLGyiiq7f119/rS+//LK5y2g2EyZMaO4SgKsQ9kA97dmzRy+99JK6dOmikydPyt/fX4sWLVKP\nHj00a9YsnT9/XidPntSPf/xjTZ8+XS+//LL27t0ru92unj17at68eQoICNC+ffuUmpoqLy8v3Xvv\nvXI4HK7zp6amauPGjSotLdXzzz+vTz/9VBaLRQ8//LAmTJigpUuXqri4WLNnz9bChQu1fft2LV++\nXFVVVfL391diYqL69u2rkpISzZ07V0ePHlXnzp1lsVjUv3//q34eh8OhESNG6LXXXtO9994rSXr2\n2Wc1cOBAxcXFXfXcFStWaOvWraqsrFR5ebkSExMVGRmp6upqLV68WDt27JDFYlHfvn2VnJysefPm\nqbCwUJMnT9aCBQs0evRoHThwQNKlEfHlx2VlZUpJSdFXX32lCxcuqH379nr55ZcVFhZWaz+cOXNG\nycnJ+uKLL+Tt7a3Y2Fg9+eSTVz1n69ateu2112S32xUQEKDZs2crIiJCeXl5mjt3rmw2m5xOp6Kj\noxUfHy9JWr58ubZs2SKHw6GuXbsqOTlZXbp0qfO/CYfDoblz5yo3N1c+Pj6aN2+e+vTpo7S0NBUV\nFSkpKanW/gaaEtP4QAMcOXJEkyZNUmZmpsaNG6eEhARXW0VFhd5//30lJCRo5cqVslgsWrdunTZs\n2KDOnTvr5Zdfls1m0/Tp0zVr1iytX79e999/vyoqKmq8z9KlS1VZWalNmzZp/fr1+vTTT3XixAlN\nmzZNAwYM0MKFC/XVV1/pf/7nf7Ry5UqtX79eqampmjp1qsrKyrR06VL5+/tr8+bNevXVV92Osr29\nvTV+/Hi99957kqQLFy4oKytLo0ePvup5p06dUlZWlt58801lZmbq2Wefdc1ArF69Wrm5ufrLX/7i\n+pCyadMmPf/88+revbtef/31On+fu3btUlBQkNauXau//vWv6t27t1atWlXnaxYsWKB/+7d/0+bN\nm7VmzRqtXbtW+fn5rva8vDwlJycrLS1NmZmZmjZtmqZMmaKSkhK9/vrreuihh7Ru3TqtXLlS+/bt\nk8Ph0Pr163X8+HG98847+stf/qLhw4dr3rx5ddYhXerzBx54QOvXr9f06dM1Y8YM2Ww2V3t9+xvw\nNEb2QAP88Ic/1IABAyRJ48eP13PPPaeioiJJumrkvGPHDhUXFysrK0uSVFVVpY4dO+r48ePy8fHR\nkCFDJEmPPfaY2+/gs7KyNHv2bFksFlksFr355puSpHXr1rme89FHH+mbb77RU0895Trm5eWlEydO\naPfu3ZozZ468vLwUEhKiyMhItz/P+PHjFR0drVmzZmnjxo0aMWKEAgMDr3pO165d9Zvf/EaZmZnK\nz89Xdna2SktLXXWOGTNG/v7+kqRXXnlF0qVZivoYNWqUunXrpjfeeEP5+fn65JNPav0e/MrfzeUP\nWYGBgdq4ceNV7R9//LEGDx6sbt26SZKGDBmikJAQHT58WJGRkUpMTNShQ4c0ZMgQzZs3T97e3vrg\ngw+Uk5Oj8ePHS7o0Yi8vL79m/UFBQXr00UclSUOHDpXT6dQXX3zhaq9vfwOeRtgDDWCxWK567HQ6\nXcfatWvnOu5wODRnzhwNHz5cklRaWqrKykqdPn1a378dhY9PzcvQx8dHXl5ersenT592BeqV7zFk\nyBBXwF5+XufOnV211Vb3ZV27dlXPnj21Y8cOrVu3TnPmzKnxnNzcXE2ZMkVPPfWUHnjgAQ0cOFAL\nFixwW/vZs2drTFN7eXldVUtVVZXr36tXr9batWsVHx+v0aNHq0OHDtdcvPb9383JkycVHBzseuzu\ndh9Op1PV1dUaMWKE/vrXvyorK0u7d+9Wenq63n77bTkcDv3Hf/yH6+sLm82mCxcu1FmHdGl25Pvv\n4+vrW+vPfrl+oKkxjQ80wNGjR3X06FFJ0po1a9SvXz8FBQXVeN6DDz6oVatWyWazyeFwaP78+Vqy\nZInCw8PldDq1c+dOSdK2bdvchsqQIUP03nvvyeFwyGazadq0adq7d68sFouqq6slSYMHD9ZHH32k\nvLw8SdLOnTv1s5/9TJWVlRo6dKjeffddORwOXbhwQdu2bav1Z/r5z3+ujIwMVVRU1PheX5L27t2r\n3r17a+LEiRo0aJC2bdsmu93uqnPjxo2unzMlJUXvv/++LBaLK9SDgoJUVVWlzz//XJL0t7/9zXXu\nv//97xo7dqyeeOIJ3XHHHdq+fbvr3LUZMmSI/vznP0uSiouL9e///u/66quvXO2Xfy8nT56UJO3e\nvVunT5/Wfffdp1//+tfatGmTfvrTnyo5OVkBAQE6ffq0HnzwQb377rsqKSmRJL366quaOXNmnXVI\n0vnz5/XBBx9IkrZv3y4/Pz/dfvvtrvb69jfgaXzEBBqgU6dOeuWVV3Tq1CmFhITopZdecvu8KVOm\n6De/+Y3Gjh0ru92ue+65R7NmzZKvr6/S09OVkpKiJUuW6J577lHHjh1rvP5Xv/qVXnjhBY0ZM0Z2\nu12PPvqoHnnkEZ04cUKvvPKKnnnmGaWnp+u5557Tf/3Xf8npdMrHx0fLly9Xu3btNHXqVCUnJ+sn\nP/mJQkJCFB4eXuvP9NBDD2nBggV6+umn3bY/9thj2rJlix599FH5+vpqyJAhunDhgkpKShQbG6tT\np05p3LhxcjqdGjRokKxWq0pLS2WxWBQdHa133nlHCQkJevrppxUSEqJRo0a5zj1p0iQlJSVp3bp1\nslgs6tWrl44fP15nHyQlJSklJUWjR4+W0+nUf/7nf6p3796u9jvvvFPJycn61a9+JbvdLn9/f61Y\nsUKBgYGaMmWK5s6dqzVr1rgWPg4aNEgDBw5UYWGhfv7zn8vLy0u33nqrFi1aVGcdktSxY0dt2bJF\nr7zyitq2bau0tLSrRu717W/A07y4xS1QP1eulgeAmwkjewCoxYsvvljrYsPZs2dr8ODBTVwRcH0Y\n2QMAYDgW6AEAYDjCHgAAwxH2AAAYzsgFemfOFDd3CTeV4OB2Kioqa+4yWj36oWWgH1oG+qHhQkMD\na21jZA/5+LjfXQ1Ni35oGeiHloF+aFyEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2\nAAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACG\nI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhvNo2GdnZ8tqtbptKy8v\nV2xsrPLy8iRJVVVVSkhIUFxcnKKjo7Vt2zZJ0pEjRzR06FBZrVZZrVZt2rTJkyUDAGAcH0+dOCMj\nQxs2bFDbtm1rtOXk5Cg5OVmFhYWuYxs2bFCHDh20ePFinT9/Xo8//rhGjhyp3NxcTZw4UZMmTfJU\nqQAAGM1jI/vu3bsrLS3NbZvNZlN6errCwsJcx0aNGqXp06dLkpxOpywWiyTp8OHD2rFjh+Lj4zVn\nzhyVlJR4qmQAAIzksZF9VFSUCgoK3Lb179+/xrH27dtLkkpKSjRt2jTNmDFDkhQREaEnnnhCvXv3\n1vLly5Wenq7ExMQ63zs4uJ18fCw3+BO0LqGhgc1dAkQ/tBT0Q8tAPzQej4X99Th9+rSeeeYZxcXF\nafTo0ZKkyMhIBQUFuf6dmpp6zfMUFZV5tE7ThIYG6syZ4uYuo9WjH1oG+qFloB8arq4PRy1mNf7Z\ns2c1adIkJSQkKDo62nV88uTJOnTokCRp9+7d6tWrV3OVCADATanJRvaZmZkqKytTTEyM2/YVK1bo\n4sWLWrZsmZYtWybp0iK/lJQUpaamytfXV506darXyB4AAHzHy+l0Opu7iMbG1E/DMF3WMtAPLQP9\n0DLQDw13U0zjAwAAzyDsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj\n7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAA\nDEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2\nAAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcB4N++zs\nbFmtVrdt5eXlio2NVV5eniSpqqpKCQkJiouLU3R0tLZt2yZJys/P14QJExQXF6fk5GQ5HA5PlgwA\ngHE8FvYZGRmaN2+eKisra7Tl5OQoPj5eJ0+edB3bsGGDOnTooNWrV+v3v/+9UlNTJUkLFy7UjBkz\ntHr1ajmdTteHAAAAUD8eC/vu3bsrLS3NbZvNZlN6errCwsJcx0aNGqXp06dLkpxOpywWiyQpNzdX\ngwYNkiQNGzZMWVlZnioZAAAj+XjqxFFRUSooKHDb1r9//xrH2rdvL0kqKSnRtGnTNGPGDEmXgt/L\ny8v1nOLi4mu+d3BwO/n4WK639FYpNDSwuUuA6IeWgn5oGeiHxuOxsL8ep0+f1jPPPKO4uDiNHj1a\nkuTt/d3kQ2lpqYKCgq55nqKiMo/VaKLQ0ECdOXPtD1HwLPqhZaAfWgb6oeHq+nDUYlbjnz17VpMm\nTVJCQoKio6Ndx3v27Kk9e/ZIknbt2qUBAwY0V4kAANyUmizsMzMztWbNmlrbV6xYoYsXL2rZsmWy\nWq2yWq2qqKhQYmKi0tLSFBMTo6qqKkVFRTVVyQAAGMHL6XQ6m7uIxsbUT8MwXdYy0A8tA/3QMtAP\nDXdTTOMDAADPIOwBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAw\nHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gD\nAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiO\nsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAw/k0dwEA0Fwqq+w6c75ccjoVGtxO\nfr6W5i4J8AiPjuyzs7NltVrdtpWXlys2NlZ5eXl1vubIkSMaOnSorFarrFarNm3a5MmSAbQCZZVV\nWrHhsKa/uktJr3+ipD/s1bNpH+rNvx2T3e5o7vKARuexkX1GRoY2bNigtm3b1mjLyclRcnKyCgsL\nr/ma3NxcTZw4UZMmTfJUqQBagcoqu/75bak27zmhvce+keN7mV5hc2j7/lPy9bFoRJ8f6JYAP0b6\nMIbHRvbdu3dXWlqa2zabzab09HSFhYVd8zWHDx/Wjh07FB8frzlz5qikpMRTJQMwkN3h0Jt/O6Zn\n0z7Ugj/u055/1Az6K/11zwnN+t3HmvO7LK3eelz2up4M3CQ8FvZRUVHy8XE/cdC/f3/deuut9XpN\nRESEZs6cqVWrVqlbt25KT0/3SL0AzPT2ts+0ff8pVdgaFtpFJVXauq9Ab237zEOVAU2nxS/Qi4yM\nVFBQkOvfqamp13xNcHA7+fgw/dYQoaGBzV0CRD80tgsllfrw0OkbOsfuw//UL6P7yL9Ni//fpXG4\nHhpPi/+vd/LkyZo/f74iIiK0e/du9erV65qvKSoqa4LKzBEaGqgzZ4qbu4xWj35oHJVVdp27WKGt\n+wv06bFvZKu6sWn48kq7/vHZN7qtM8HTlLgeGq6uD0dNFvaZmZkqKytTTExMg16XkpKi1NRU+fr6\nqlOnTvUa2QMwW2WVXRdKKq9aRFdWWa23/nZcR08U6duLlY37hl5ejXs+oIl5OZ1OZ3MX0dj4NNgw\nfIJuGeiHa7M7HFqz/XMdOH5G5y5WKiTIT/fd1Ulekj7KOd3g7+Xrw8/XW69MG8rK/CbG9dBwLWJk\nDwB1cTda/7412z/X1n0FrsffXqzU9v2nPFpX/7s7E/S46RH2AJqVu9F63/BQxTx0pyze3q4PAW39\nfPTpsW9u+P1uae+rfuGhsjsc2pX9zzqf69/GorjI8Bt+T6C5EfYAmpW70frWfQVyOJ3y9vJyfQgI\nbOeji2XVN/ReP+r9/2SNult+vhbZHQ59ebpEJ7+pfe+OByNuVTs//jeJmx//FQNoNpVVdh04fsZt\n29+zv5at+rslRTca9P5tvBUXGe6akrd4eyvpqQFa/bfjOvDZWZ0vscnbS3I4pZBAP/W7+9LsAmAC\nwh5As7lQUqlztaycvzLoG4OtyqGSMttVI3WLt7esUT/Uzx/67quCtu39ZbdV8T09jMItbgE0m1sC\n/BQS5Nck7xUc6K9bAty/l5+vRZ2D2ymwXRvd2qk9QQ/jEPYAmo2fr0V9w0Ob5L36hncixNFq1TmN\nb7Va5VXHZhJ/+tOfGr0gAK1HZZVdI/p21YXSSu39h/vv7m9UxyB/9Q3vxPfvaNXqDPupU6c2VR0A\nDOPu7+YvHwto56v1H36pT499o3PFNo/VkBDbR2Fdb2FEj1avzrAfNGiQ699HjhxRWVmZnE6n7Ha7\nCgoKrmoHAKnuXe4OfnZW5y5Wyq+NRRU2u0frCAn0I+iBf6nXavzExEQdOHBAFy5cUFhYmI4ePap+\n/fopOjra0/UBuMnUZ5c7Twe9JPW7O5SgB/6lXgv09u7dq/fff19RUVFKTU3V2rVrZbN5buoNwM2p\nrr+bbyoWb+mh/l35jh64Qr1G9p07d5avr6969OihY8eO6ac//alKS0s9XRuAm0xdfzfvCV1C/FVd\nLZ27WKGg9m30w9uDZY0KVzs/3yarAbgZ1Cvsu3Tpot/97ncaMmSIFi9eLEkqK+Oe8UBr5m4B3uW/\nm2/0W8zWYtr4+xQS5H/NG+gArV29wv6FF17Qzp07FRERoUceeUQbN25USkqKh0sD0BLVdeOay383\nf+V39p7SMchPIUH+rg1xANSuXmF/8eJF9e3bV19//bVGjhypkSNHerouAC1UbTeukaS4h8Nd35Uf\nOH5WRcUVCg701313dfzXavxvVVRcoVva+6mopH6j/26dA9zerKZvOAvwgPqqV9j/4he/kJeXl5xO\np6qrq3X27Fndc889+vOf/+zp+gC0IHUtwDtw/KzGD+8hP1+L4h4O1/jhPWpMr0f/+Ls96J/74946\np/v921j0YMStiv5xmN7d8cVVHx7YJAdomHqF/fbt2696fOjQIa1atcojBQFouepagFdUXKELJZWu\nKXV30+tXHqttut/P11v97+6suMi7XAvtavvwAKB+ruuudxEREZozZ05j1wKgiblbZFeXuhbg1XWj\nGXdqTvf76YfdgzUhMtztPeT5bh64fvUK+9dee+2qx59//rk6duzokYIAeF5di+ws3t9tv/H9DwN1\nLcBr6I1mLN7ejNiBJnJdI/uBAwfqsccea+xaADSRay2yq+vDgLsFeDfyHTojdsDz6hX2Xbt21dix\nY686tmrVKsXHx3ukKACeU59Fdn/emVfnhwFG5MDNpc6w/+Mf/6iSkhK9/fbbOnXqu72t7Xa7MjMz\nCXvgJlTXIrtvL1bon+dKa/0w8OmxMxp23w8U2qEtI3LgJlLn3vi333672+Nt2rTRokWLPFIQAM+6\nvMiuNpv3nKz1w8C54kolv/6J5mV8rNVbj8vucHiqTACNqM6R/YgRIzRixAj95Cc/UWVlpXr27Kni\n4mIdPnxYAwYMaKoaATSCKxfbRdzZSR98esrt8z47eb7OLW+dqjmtD6Blq9d39u+9956OHDmiP/zh\nDyovL9eyZcu0b98+TZ061dP1AbhB7hbbhXfrUOvzi4or1feuTvXa3/7KjXQAtFz1usXtjh07lJGR\nIenSHfD+93//V1u2bPFoYQAax+WV999erHSNynfnFsq/jfuA9vKSDnx2Vv5tLLU+57LLG+kAaNnq\nFfbV1dWqqKhwPa6qqvJYQQCuX2WVXd8Ulamyyu563ND7yzucl6bqK2x2VdjsGtyzszrW8h1/QzfS\nAdA86jWNHxsbq3Hjxumhhx6S0+nUhx9+yEp8oAWp7e/iR/TtWutiu0qbXQ/0/n86euK8zl2skJfX\npaD/vs8KLiqiR0d9cODrGm0N3UgHQPOoV9hPmDBBVVVVstlsCgoKUnR0tM6cadhoAYDn1LZJjt3u\nqHWxXUiQv34Rdbck6YtTF/Ty2wfdnruouEIPD+gmi8Wbm9EAN6l6hf3UqVNVXl6uEydOaMCAAdq7\nd6/69Onj6doAfI+7vezrmqo/lHeu1pX3V47Kw7reUuee9yFB/mykA9zE6hX2X375pbZs2aIXXnhB\n48eP18yZMzV9+nRP1wbgX+ravvZad6J7uP9tsnh71Tkqr++e92ykA9yc6hX2HTt2lJeXl+644w4d\nO3ZMjz/+uGw2m6drA/Avde1lP354j0YZlTf2nvcAWo56hf1dd92l1NRUTZgwQf/93/+tb775hhX5\nQBOorLLrTFHZNfeyb4xROXehA8xVr7BPSUnRgQMHdOedd2rq1KnavXu3fvvb33q6NqBVqqyy69zF\nCm3dd1KH8r6tc3ObcxcrdOZ8eaOOypmqB8zj5XQ63fyxzc3tzJni5i7hphIaGsjvrAUICWmv19Ye\n0IHjZ+q1e91lfr5eeiDiB5ow8i5V252Mym8Q10PLQD80XGhoYK1t13U/ewCN7w+ZuW6n4q+lssqp\n7ftPydvLS3EPhzMqB1BDvXbQA+BZxWU2fZRdc9Oahvj02BnXznkAcCVG9kAzuvwndfuOfqPzJTf2\nFy5FxZW6UFLJyB5ADYQ90Iy+/yd1NyI40I996gG45dFp/OzsbFmtVrdt5eXlio2NVV5eXp2vyc/P\n14QJExQXF6fk5GQ5HA5Plgw0meu5SU1d7ruLfeoBuOexsM/IyNC8efNUWVlzVXFOTo7i4+N18uTJ\na75m4cKFmjFjhlavXi2n06lt27Z5qmSgSdW18931eLj/bY12LgBm8VjYd+/eXWlpaW7bbDab0tPT\nFRYWds3X5ObmatCgQZKkYcOGKSsryzMFA03slgA/hdRy69iG6hh0aac8AHDHY9/ZR0VFqaDA/XeR\n/fv3r/drnE6nvLy8JEnt27dXcfG1/+4yOLidfHyYzmyIuv4+E57zwH1dteHDLxrhPD/QbT/o0AgV\nQeJ6aCnoh8bT4hfoeXt/N/lQWlqqoKCga76mqKjMkyUZh80rms/oId1VVm5z7Xwnub+nfG3821j0\nYMStGj2kO33YSLgeWgb6oeFu6k11evbsqT179uj+++/Xrl27NHjw4OYuCWg0V+5Hb2njq7c2H9EH\nB9z/vb1/m3/d0tZmV3Cgn354e7DiIu9SOz/fpiwZwE2oycI+MzNTZWVliomJadDrEhMTNX/+fC1Z\nskRhYWGKioryUIVA8/HztSi0U3vFRYbLYvG+ao/7iB4henhAN9d38myHC6Ch2BsfTJe1EFf2Q2WV\nnVBvJlwPLQP90HA39TQ+0Bpx5zkAjYm98QEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6w\nBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAw\nHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gD\nAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiO\nsAcAwHAeDfvs7GxZrVa3beXl5YqNjVVeXp4kyeFwKCkpSTExMbJarcrPz5ckHTlyREOHDpXVapXV\natWmTZs8WTIAAMbx8dSJMzIytGHDBrVt27ZGW05OjpKTk1VYWOg6tnXrVtlsNq1Zs0YHDx7UokWL\ntHz5cuXm5mrixImaNGmSp0oFAMBoHhvZd+/eXWlpaW7bbDab0tPTFRYW5jq2f/9+DR06VJLUp08f\nHT58WJJ0+PBh7dixQ/Hx8ZozZ45KSko8VTIAAEby2Mg+KipKBQUFbtv69+9f41hJSYkCAgJcjy0W\ni6qrqxUREaEnnnhCvXv31vLly5Wenq7ExMQ63zs4uJ18fCw39gO0MqGhgc1dAkQ/tBT0Q8tAPzQe\nj4V9QwUEBKi0tNT12OFwyMfHR5GRkQoKCpIkRUZGKjU19ZrnKioq81idJgoNDdSZM8XNXUarRz+0\nDPRDy0A/NFxdH45azGr8fv36adeuXZKkgwcPKjw8XJI0efJkHTp0SJK0e/du9erVq9lqBADgZtRk\nI/vMzEyVlZUpJibGbXtkZKQ++ugjxcbGyul06sUXX5QkpaSkKDU1Vb6+vurUqVO9RvYAAOA7Xk6n\n09ncRTQ2pn4ahumyloF+aBnoh5aBfmi4m2IaHwAAeAZhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAA\nGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPs\nAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAM\nR9gDAGAsuyFhAAAJjUlEQVQ4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfY\nAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhvNo2GdnZ8tqtbptKy8vV2xsrPLy8iRJDodDSUlJiomJ\nkdVqVX5+viQpPz9fEyZMUFxcnJKTk+VwODxZMgAAxvFY2GdkZGjevHmqrKys0ZaTk6P4+HidPHnS\ndWzr1q2y2Wxas2aNfv3rX2vRokWSpIULF2rGjBlavXq1nE6ntm3b5qmSAQAwksfCvnv37kpLS3Pb\nZrPZlJ6errCwMNex/fv3a+jQoZKkPn366PDhw5Kk3NxcDRo0SJI0bNgwZWVleapkAACM5OOpE0dF\nRamgoMBtW//+/WscKykpUUBAgOuxxWJRdXW1nE6nvLy8JEnt27dXcXHxNd87OLidfHws11l56xQa\nGtjcJUD0Q0tBP7QM9EPj8VjYN1RAQIBKS0tdjx0Oh3x8fOTt/d3kQ2lpqYKCgq55rqKiMo/UaKrQ\n0ECdOXPtD1HwLPqhZaAfWgb6oeHq+nDUYlbj9+vXT7t27ZIkHTx4UOHh4ZKknj17as+ePZKkXbt2\nacCAAc1WIwAAN6MmC/vMzEytWbOm1vbIyEi1adNGsbGxWrhwoWbPni1JSkxMVFpammJiYlRVVaWo\nqKimKhkAACN4OZ1OZ3MX0diY+mkYpstaBvqhZaAfWgb6oeFuiml8AADgGYQ9AACGI+wBADAcYQ8A\ngOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjC\nHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDA\ncF5Op9PZ3EUAAADPYWQPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhL2hsrOzZbVa3baV\nl5crNjZWeXl5kiSHw6GkpCTFxMTIarUqPz9fknTkyBENHTpUVqtVVqtVmzZtarL6TdGQfqjtNfn5\n+ZowYYLi4uKUnJwsh8Ph0ZpN1Bj9wPVw4xrSD1VVVUpISFBcXJyio6O1bds2SVwP18unuQtA48vI\nyNCGDRvUtm3bGm05OTlKTk5WYWGh69jWrVtls9m0Zs0aHTx4UIsWLdLy5cuVm5uriRMnatKkSU1Z\nvjEa2g+1vWbhwoWaMWOG7r//fiUlJWnbtm2KjIz0eP2maKx+4Hq4MQ3thw0bNqhDhw5avHixzp8/\nr8cff1wjR47kerhOjOwN1L17d6Wlpblts9lsSk9PV1hYmOvY/v37NXToUElSnz59dPjwYUnS4cOH\ntWPHDsXHx2vOnDkqKSnxfPEGaWg/1Paa3NxcDRo0SJI0bNgwZWVleaZgQzVWP3A93JiG9sOoUaM0\nffp0SZLT6ZTFYpHE9XC9CHsDRUVFycfH/aRN//79deutt151rKSkRAEBAa7HFotF1dXVioiI0MyZ\nM7Vq1Sp169ZN6enpHq3bNA3th9pe43Q65eXlJUlq3769iouLG79YgzVWP3A93JiG9kP79u0VEBCg\nkpISTZs2TTNmzJDE9XC9CHsoICBApaWlrscOh0M+Pj6KjIxU7969JUmRkZE6cuRIc5XYqnl7f3eZ\nlpaWKigoqBmrab24Hpre6dOn9eSTT2rMmDEaPXq0JK6H60XYQ/369dOuXbskSQcPHlR4eLgkafLk\nyTp06JAkaffu3erVq1ez1dia9ezZU3v27JEk7dq1SwMGDGjmilonroemdfbsWU2aNEkJCQmKjo52\nHed6uD4s0GsFMjMzVVZWppiYGLftkZGR+uijjxQbGyun06kXX3xRkpSSkqLU1FT5+vqqU6dOSk1N\nbcqyjXOtfqhNYmKi5s+fryVLligsLExRUVEeqrB1uN5+4HpoXNfqhxUrVujixYtatmyZli1bJunS\nIj+uh+vDXe8AADAc0/gAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAN2zWrFlat26dCgsL9fTT\nT9f53NpuhFKbPXv2NPg1AK5G2ANoNF26dFFGRkadz/nkk0+aqBoAl7GpDtBK7dmzR2lpafLx8dHp\n06cVERGhX/7yl5oyZYqCg4Pl5+en119/XS+99JI++eQT2e12jRs3Tk899ZScTqcWLVqkHTt2qHPn\nzrLb7Ro0aJAKCgr05JNPavv27Tp16pRmz56tc+fOyd/fX88//7zeffddSdITTzyhd955R7t27dLS\npUtVXV2t2267TampqQoODtbf//53LVy4UH5+frrjjjua+TcF3PwIe6AVO3TokNavX6877rhD06dP\n186dO/Xll1/q97//vW677Ta99dZbkqT33ntPNptNkydPVu/evXX27FkdOXJEGzduVHFxsX72s5/V\nOPeCBQsUFRWl+Ph47dy5U8uXL9err76qN954Q++8847OnTun3/72t/rTn/6kW265RW+//bZefvll\nJScna9asWfq///s/9ejRQ3Pnzm3qXwtgHMIeaMUGDhzouq3omDFjtHbtWnXs2FG33XabpEt7wP/j\nH//Qxx9/LEkqKyvTsWPHlJeXp0ceeUS+vr4KCQnRsGHDapx77969WrJkiSRp+PDhGj58+FXt2dnZ\nrhudSJduwHTLLbfo2LFj6ty5s3r06CFJGjt2rF599VXP/AKAVoKwB1qxy/cIl767Z7i/v7/rmN1u\nV0JCgh555BFJ0rlz59SuXTstXrxYDofD9Tx3ty698pjT6VReXp7uvPPOq87dr18/rVixQpJUWVmp\n0tJSff3111ed+8oaAVwfFugBrdj+/ftVWFgoh8Oh9evX1xihDx48WGvXrlVVVZVKS0sVFxen7Oxs\nDRkyRJs3b5bNZtOFCxf04Ycf1jj3gAED9P7770uSsrKyNH/+fEmXwru6ulr33XefDh48qC+//FKS\ntGzZMr300ku6++679e233+ro0aOS5DoHgOvHyB5oxTp37qyZM2eqsLBQDzzwgH70ox9p5cqVrvbY\n2Fjl5+dr7Nixqq6u1rhx43T//fdLknJycvTYY4+pU6dOrin3KyUlJWnevHlavXq12rZtq+eff16S\nNHLkSI0ZM0br1q3Tiy++qBkzZsjhcKhLly5avHixfH19tWTJEiUkJMjHx0c9e/Zsml8GYDDuege0\nUnv27NFrr72mN954o7lLAeBhTOMDAGA4RvYAABiOkT0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4\nwh4AAMP9fzJ0kNjjsjViAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
oc_difflow_bidlast_10_tick_avg_bo_spreadavg_pricelast_10_tick_avg_bid_returnnb_ticksweekdayyearday15_minhourmonthavg_bo_spreadpcahigh_bidrangeperiod_returnohlc_priceopen_bidclose_bid
linear regression coefficients-0.203845-0.01149-0.002238-0.002219-0.001859-0.001265-0.0000020.09.480864e-070.0000020.0000070.0000170.0006030.0012650.0070990.0186370.1838530.2001270.3005940.504454
lasso regression coefficients-0.0000000.00000-0.0000000.000000-0.000000-0.0000030.0000000.0-0.000000e+00-0.000000-0.0000000.000000-0.000000-0.0000000.000000-0.0000000.0000000.0000000.0000000.000000
\n", + "
" + ], + "text/plain": [ + " oc_diff low_bid last_10_tick_avg_bo_spread \\\n", + "linear regression coefficients -0.203845 -0.01149 -0.002238 \n", + "lasso regression coefficients -0.000000 0.00000 -0.000000 \n", + "\n", + " avg_price last_10_tick_avg_bid_return \\\n", + "linear regression coefficients -0.002219 -0.001859 \n", + "lasso regression coefficients 0.000000 -0.000000 \n", + "\n", + " nb_ticks weekday year day \\\n", + "linear regression coefficients -0.001265 -0.000002 0.0 9.480864e-07 \n", + "lasso regression coefficients -0.000003 0.000000 0.0 -0.000000e+00 \n", + "\n", + " 15_min hour month avg_bo_spread \\\n", + "linear regression coefficients 0.000002 0.000007 0.000017 0.000603 \n", + "lasso regression coefficients -0.000000 -0.000000 0.000000 -0.000000 \n", + "\n", + " pca high_bid range period_return \\\n", + "linear regression coefficients 0.001265 0.007099 0.018637 0.183853 \n", + "lasso regression coefficients -0.000000 0.000000 -0.000000 0.000000 \n", + "\n", + " ohlc_price open_bid close_bid \n", + "linear regression coefficients 0.200127 0.300594 0.504454 \n", + "lasso regression coefficients 0.000000 0.000000 0.000000 " + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "reg_lasso = linear_model.Lasso(alpha = 0.1) # Lasso takes care of regularisation\n", + "reg_linear = linear_model.LinearRegression()\n", + "\n", + "reg_linear.fit(X_train, y_train)\n", + "reg_lasso.fit(X_train, y_train)\n", + "\n", + "\n", + "df_coeff = pd.DataFrame(columns=cols\n", + " , data=[list(reg_linear.coef_), list(reg_lasso.coef_)]\n", + " , index=[\"linear regression coefficients\", \"lasso regression coefficients\"])\n", + "\n", + "\n", + "\n", + "\n", + "# predict all examples and compare to actuals\n", + "plt.scatter(reg_linear.predict(X_test), y_test)\n", + "plt.xlabel(\"predicted\")\n", + "plt.ylabel(\"actual\")\n", + "plt.title(\"predicted v actual close_bid\")\n", + "plt.show()\n", + "\n", + "\n", + "df_coeff.sort_values(by='linear regression coefficients', axis=1)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- what mae is acceptible as a result? If i invest based on my prediction, and it goes the other way i lose money. \n", + "- Therefore, check the directional error, not MAE. Compare close with next close. If my prediction - actual next close has the same sign and value of that measure, count as accurate." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check regression errors" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "def check_error_metrics(df, y_train, y_test, X_train_pred, X_test_pred, y_prev):\n", + "\n", + " #compute direction of next step\n", + "# if len(X_test.shape) >2:\n", + "# y_prev = X_test[:,0,idx_close_bid]\n", + "# else:\n", + "# y_prev = X_test[:,idx_close_bid]\n", + " err_list = []\n", + " \n", + " pred_directions = X_test_pred - y_prev\n", + " act_directions = y_test - y_prev\n", + " pred_returns = X_test_pred / y_prev-1\n", + " act_returns = y_test / y_prev -1\n", + "\n", + " \n", + "\n", + " sign_error = np.sign(pred_directions) != np.sign(act_directions)\n", + " actual_minus_pred = act_directions - pred_directions\n", + " abs_actual_minus_prod = abs(act_directions) - abs(pred_directions)\n", + " return_vals = act_returns - pred_returns\n", + "\n", + " # how often do you make a negative 1 percent return when a positive return was predicted\n", + "\n", + " err_list= [\n", + " [\"mse train all feature: \", mean_squared_error(y_train, X_train_pred)]\n", + " ,[\"mse test all feature: \", mean_squared_error(y_test, X_test_pred)]\n", + " ,[\"mae train all feature: \", mean_absolute_error(y_train, X_train_pred)]\n", + " ,[\"mae test all feature: \", mean_absolute_error(y_test, X_test_pred)]\n", + " ,[\"mean avg bo spread: \", df.avg_bo_spread.mean()]\n", + " \n", + "\n", + " ,[\"how often sign of price change is same: \", (sign_error==False).sum() / len(sign_error)]\n", + "\n", + " # if correct sign, how often larger than actual value, smaller than actual value\n", + " # generally good profit\n", + " ,[\"if same sign, how often is actual better than 0.1 percent in both directions: \"\n", + " , (abs(act_directions[~sign_error]) > 0.001).sum() / len(act_directions[~sign_error])]\n", + "\n", + " # positive surprise\n", + " ,[\"if same sign, how often is actual better than predicted in both directions: \"\n", + " , (abs_actual_minus_prod[~sign_error] > 0).sum() / len(abs_actual_minus_prod[~sign_error])]\n", + "\n", + " # positive suprise of least 10 bp\n", + " ,[\"if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions: \", \n", + " (abs_actual_minus_prod[~sign_error] > 0.001).sum() / len(abs_actual_minus_prod[~sign_error])]\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " ,[\"if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions\",\n", + " (abs(return_vals[sign_error]) > 0.001).sum() / len(return_vals[sign_error])]\n", + " \n", + " ,[\"if not same sign, how often is actual worse than -0.1 percent return in both directions\",\n", + " (abs(act_returns[sign_error]) > 0.001).sum() / len(act_returns[sign_error])]\n", + " ] \n", + " # show histogram of returns if sign error\n", + " plt.hist(act_returns[sign_error], bins=20)\n", + " plt.title(\"returns if pred and act sign mismatches\")\n", + " plt.show()\n", + " \n", + " df_err = pd.DataFrame(err_list)\n", + " \n", + " for el in err_list:\n", + " print(el)\n", + " \n", + " \n", + " return df_err\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFXCAYAAADj40TtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHkFJREFUeJzt3XtYlHX+//HXMCDGQTwsVlvppV4iqWuiaXl5aFM3NTEi\nIzyhrGmWZJfaKq6r4CnTNjfTWt1aW/eizbNZuVtpYpqJZh5a1yx3TfGQl7KGCoKc5vP7w5/zlRUQ\nB/igw/Pxl8Pc9z2f+83Ik3vEwWGMMQIAANb4VPcCAACoaYgvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8YU1x48f15gxY6w/7qZNmzRr1ixJ0sGDB9WzZ09FR0frxIkTVf7Yo0aN0tq1a6vk2EuWLNGk\nSZMq5Viff/65Xn/99RvaJyoqShcuXKiUxy+v3/3ud9q+fXuVPkZ5nqcnTpxQREREla4D3s23uheA\nmuPHH3/UkSNHrD9ujx491KNHD0mXQ/zAAw/opZdesr6Om9n+/ft1/vz5G9rngw8+qKLVlM7G5626\nnqeoWYgvKmTnzp166aWXFBAQoJycHK1evVrbtm3TokWLVFBQoNq1aysxMVFt2rTRlClTdPr0aT39\n9NOaPn26+vXrp71790q6fCVx5fbatWu1evVq5ebmKigoSNHR0dq4caN8fHyUnp4uPz8/zZ07V2Fh\nYdqwYYMWLVokh8Mhp9OpiRMnqkOHDsXWuHbtWn366afq27evli1bpqKiIl26dEnz5s0rtl3Lli01\nbNgw7dy5Uzk5ORo/frweeeSRa9aTkpKiVatWadmyZXK5XKpbt66mTp2qZs2a6fTp05o0aZLOnDmj\nn//85zp79myJczty5IhmzJihnJwcnTlzRuHh4Zo/f778/f31i1/8Qs8884y+/PJLnTlzRkOHDlV8\nfLwKCgo0a9Ysbd++XQ0aNFCDBg0UHBx8zbFzcnI0bdo0HT16VOfPn1dgYKBeffVVNW3aVBkZGUpO\nTtYPP/wgHx8fDRgwQPfdd5+WL1+uoqIiBQcHa9y4ccWOt2DBAm3cuFF+fn6qV6+eXn75ZTVs2FAt\nWrRQWlqaQkJC9Morryg1NVXBwcFq06aNDh8+rJSUFMXFxalt27bas2ePTp06pfbt22vu3Lny8Sn+\noltcXJxatWqlHTt26OzZsxo6dKjOnj2rr776Srm5uZo/f75atGihuLg4DR48WD179tTMmTO1Z88e\n+fn56e6779bLL7+szMxMDRs2TA8++KD27dunwsJCTZw4UStWrNAPP/yg1q1b6w9/+IN8fHy0ePFi\nffbZZ8rLy1Nubq4SExPVvXv3Ys/TJUuWaPPmzZo/f75cLpcCAgI0ffp0BQUFqaioSElJSdq/f78u\nXLigiRMnqlevXpKkRYsWacOGDXK5XLrrrruUnJys22+/vVzPV9QQBqiAHTt2mPDwcHPixAljjDFH\njhwxkZGR5qeffjLGGHPo0CHTuXNnc/HiRbNjxw7Tt29fY4wxx48fN23btnUf5+rba9asMR06dDBZ\nWVnu2+3btzenTp0yxhgzY8YMM3HiRGOMMT169DB79+41xhjzxRdfmIULF16zxjVr1phnnnnGGGPM\nggULzPTp00s8l7CwMLNo0SJjjDEHDx407du3N2fPnr1mPTt37jSDBg0yOTk57sft06ePMcaY0aNH\nm9dee80YY8zRo0dN27ZtzZo1a655rDlz5ph169YZY4zJz883kZGR5pNPPnGvIyUlxRhjzP79+03r\n1q3NpUuXzNKlS83QoUNNXl6euXjxoomOjjaJiYnXHPvjjz82M2fOdN+eOnWqmTFjhjHGmISEBDN3\n7lxjjDEXLlwwffv2NUePHi11Lj/++KNp166dycvLM8YYs2TJErNx40b3Os+ePWuWLVtmBg8ebC5d\numTy8vLM8OHDzZAhQ4wxxgwZMsS88MILpqioyGRlZZkuXbqYtLS0ax5nyJAh5vnnnzfGGLNv3z4T\nFhZmNm3aZIwx5qWXXjJTpkxxb/fxxx+bXbt2md69exuXy2WMMeaVV14xu3fvNsePHzdhYWHms88+\nM8YYk5SUZB5++GGTlZVlLl26ZDp37mx2795tTpw4YeLi4kxubq4xxpj169ebyMhIY4wp9jzNyMgw\n7du3N99++60xxphPP/3UPP300+7HufI527Bhg+nRo4cxxpj333/fjB071hQUFBhjjFm+fLkZMWKE\nMaZ8z1fUDFz5osLuvPNO3XXXXZLkvlqLj4933+9wOHTs2LEbOmaLFi0UFBTkvt2qVSvdcccdki5f\noW7cuFGS1LdvXz3//PN66KGH1LlzZ40cObJC5zJkyBBJUnh4uMLCwrRr165r1vP5558rPT1dAwYM\ncO93/vx5nTt3Ttu3b1diYqIkqXHjxnrggQdKfJwJEyboyy+/1Ntvv62jR4/qzJkzysnJcd9/5WXy\nVq1aKT8/Xzk5OUpLS1NkZKRq1aqlWrVqqV+/fvr++++vOXbv3r11zz33KCUlRenp6frqq6/c/z65\nfft2TZgwQZIUHBys9evXlzmP22+/XeHh4YqOjla3bt3UrVs3derUqdg2W7ZsUVRUlPz9/SVJsbGx\nSklJcd//8MMPy8fHR0FBQWrcuHGpL2//6le/kiTdc889kqSuXbtKkho1aqSvvvqq2LZhYWFyOp2K\niYlRly5d1KtXL7Vp00YnTpyQn5+funfv7t43IiLC/blr2LChzp8/r3bt2mnu3Ln66KOPlJ6erm++\n+UYXL168Zk179uxR8+bNde+990qSHnnkET3yyCPux7lypRseHu5+lWPz5s3av3+/+vfvL0lyuVzK\nzc2VVPnPV9y6iC8qLCAgwP1nl8ulTp06af78+e6PnTp1Sg0bNtTXX3/t/pjD4ZC56m3FCwoKSj2m\nJNWuXbvEfceNG6cnn3xS27Zt09q1a/XWW29p7dq117ysWV5Op7PYuVy5/b/nGBUV5Y6Yy+XSmTNn\nFBIScs15+fqW/Fds/PjxKioqUp8+ffTLX/5Sp06dKrbflZA5HA5JKnZfSWu92nvvvaeVK1dq8ODB\n6tevn+rWrev+4TJfX1/3MaXLP1xUr169Uufh4+Ojd999V/v371daWppmz56tBx54QFOmTCn1HP93\n9qV97v5XrVq1it328/MrdV116tTRBx98oD179mjHjh0aO3ashg4dqp49e8rPz6/YOZZ0nAMHDmj0\n6NGKj49X586d1aFDB02fPv2a7ZxOZ7FjGWP0/fffKygoqNhxr97G5XJpxIgRGjRokCQpPz/f/Q1H\nZT9fceviM45K9eCDD+rLL7/U4cOHJV2+KnrssceUl5cnp9PpjmydOnVUUFCg//znP5LkvpK9EYWF\nherevbtycnI0cOBAJScn6/DhwyosLPR4/evWrZN0+YvzkSNHSvz3uM6dO+vvf/+7zpw5I0latmyZ\nhg0bJuny1dqKFSskXf7BnZ07d5b4ONu2bVNCQoIeffRRORwOffPNNyoqKipzbV27dtW6deuUl5en\nvLw8/eMf/yj12NHR0YqJiVGTJk2UmprqPnanTp20Zs0aSVJWVpaGDRumo0ePyul0lji37777TpGR\nkWrWrJlGjRql+Pj4a662H3roIX344YfKz89XYWGh3n///TLPozJs3rxZ8fHxioiI0JgxY/T444/r\nu+++K/f+u3btUuvWrfXrX/9aHTt21KZNm9wzuvp5et999+nw4cP697//LenyD+xd+aarNF26dNHq\n1auVnZ0tSXr99dc1ceLEKnm+4tbFlS8qVfPmzTVjxgyNHz9exhj5+vpq0aJFCggIUPPmzeV0OvXk\nk09q1apVmjBhgkaOHKn69eurd+/eN/xYvr6+mjx5sn7zm9+4r+hmz559zRXUjdizZ49Wrlwpl8ul\n1157TSEhIdds07VrV40cOVLDhw+Xw+FQUFCQ3njjDTkcDiUnJ+u3v/2t+vTpozvuuEPh4eElPs64\nceOUkJCgkJAQ3XbbberQocN1X5ofMGCAjh07psjISNWtW1eNGzcucbvhw4crKSlJa9euldPpVKtW\nrXTo0CFJUlJSkqZNm6Z+/frJGKNRo0apdevWKigo0JgxY+Tn56epU6e6jxUeHq4+ffqof//+CggI\nUO3atYtd9UrSE088oSNHjujxxx9XQECA7r77bt12221lnktFdevWTVu3blVkZKQCAgIUEhKimTNn\nlnv/yMhIbdiwQY8++qj8/PzUqVMnnT9/XtnZ2dc8T1999VUlJiaqqKhIQUFBeu2118o8dkxMjE6f\nPq2nnnpKDodDd955p+bMmVMlz1fcuhymtNeAgBrmyk/v1q9fv7qXckvZtm2bzp49q6ioKEnSrFmz\n5O/vf90rRKAm42VnABXSvHlzrVu3To899pj69u2rzMxMPfvss9W9LOCmxpUvAACWceULAIBlxBcA\nAMuILwAAlln5r0YZGVk2HsaKevUClJmZc/0NUSpmWHHMsGKYX8Uxw+sLDb32vdev4Mr3Bvn6lvyu\nQig/ZlhxzLBimF/FMcOKIb4AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwj\nvgAAWFau+H7zzTeKi4uTJKWnp2vgwIEaNGiQkpOT5XK5qnSBAAB4m+vG9+2339aUKVOUl5cnSXr5\n5Zc1duxYvffeezLGaNOmTVW+SAAAvMl149uoUSMtXLjQffvAgQPq2LGjJKlbt27avn171a0OAAAv\ndN3fatSrVy+dOHHCfdsYI4fDIUkKDAxUVtb1f2NRvXoBXvUm3GX9pgqUj7fMsN+LH1Tq8T6aF1Xu\nbb1lhtWF+VUcM/TcDf9KQR+f/7tYvnjxourUqXPdfbzp106FhgZ71a9IrA7MsHTlnQszrBjmV3HM\n8Poq9VcKtmzZUjt37pQkbd26Vffff7/nKwMAoAa64fgmJiZq4cKFio2NVUFBgXr16lUV6wIAwGuV\n62Xnu+++WytXrpQkNWnSRO+++26VLgoAAG/Gm2wAAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAA\nLCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBg\nGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhG\nfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGCZryc7FRQU\naNKkSTp58qR8fHw0c+ZMNWvWrLLXBgCAV/LoynfLli0qLCzU8uXLlZCQoPnz51f2ugAA8FoexbdJ\nkyYqKiqSy+VSdna2fH09uoAGAKBG8qiaAQEBOnnypPr06aPMzEwtXry4zO3r1QuQr6/TowXejEJD\ng6t7Cbc8ZliyG5kLM6wY5ldxzNBzHsV36dKl6tKli1588UWdOnVKw4YN00cffSR/f/8St8/MzKnQ\nIm8moaHBysjIqu5l3NKYYenKOxdmWDHMr+KY4fWV9c2JR/GtU6eO/Pz8JEkhISEqLCxUUVGRZ6sD\nAKCG8Si+8fHxmjx5sgYNGqSCggKNGzdOAQEBlb02AAC8kkfxDQwM1Ouvv17ZawEAoEbgTTYAALCM\n+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXE\nFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+\nAABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEF\nAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8A\nAJYRXwAALCO+AABYRnwBALDM19Md//SnPyk1NVUFBQUaOHCgYmJiKnNdAAB4LY/iu3PnTu3du1fL\nli1Tbm6u3nnnncpeFwAAXsuj+G7btk1hYWFKSEhQdna2Jk6cWNnrAgDAa3kU38zMTP34449avHix\nTpw4oeeee06ffPKJHA5HidvXqxcgX19nhRZ6MwkNDa7uJdzymGHJbmQuzLBimF/FMUPPeRTfunXr\nqmnTpqpVq5aaNm0qf39//fTTT2rQoEGJ22dm5lRokTeT0NBgZWRkVfcybmnMsHTlnQszrBjmV3HM\n8PrK+ubEo592bt++vb744gsZY3T69Gnl5uaqbt26Hi8QAICaxKMr34cffli7du3Sk08+KWOMkpKS\n5HR6z8vKAABUJY//qxE/ZAUAgGd4kw0AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhG\nfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy3yrewHwHsPnpFbq8d6Z1L1Sj3crqOwZSjVzjsDNjitf\nAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcA\nAMuILwAAlhFfAAAsq1B8z549q4ceekiHDx+urPUAAOD1PI5vQUGBkpKSVLt27cpcDwAAXs/j+M6d\nO1cDBgxQw4YNK3M9AAB4PV9Pdlq7dq3q16+vrl276q233rru9vXqBcjX1+nJQ92UQkODq3sJlaLf\nix9U9xLKNHxOaqUf86N5UZV+zJudtzxfKxtzqThm6DmP4rtmzRo5HA6lpaXp4MGDSkxM1KJFixQa\nGlri9pmZORVa5M0kNDRYGRlZ1b0MeKgmfu5q4jlfD3+PK44ZXl9Z35x4FN+//e1v7j/HxcVp2rRp\npYYXAAAUx381AgDAMo+ufK+WkpJSGesAAKDG4MoXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIA\nYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAA\ny4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLf6l4Aym/4nNTqXsItjxkCuBlw5QsAgGXE\nFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+\nAABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEF\nAMAy4gsAgGW+nuxUUFCgyZMn6+TJk8rPz9dzzz2nHj16VPbaAADwSh7F98MPP1TdunX1+9//XufO\nndPjjz9OfAEAKCeP4tu7d2/16tVLkmSMkdPprNRFAQDgzTyKb2BgoCQpOztbL7zwgsaOHVvm9vXq\nBcjXt3ID3e/FDyr1eB/Niyr3tqGhwdfdprLXB3iqPM/Xmsib5lIVX2/K8zXRm2Zom0fxlaRTp04p\nISFBgwYNUr9+/crcNjMzx9OHsSYjI6tc24WGBpd7W+BmwPP1Wvw9vr7rzYcZXl9Z35x4FN///ve/\nGj58uJKSktSpUyePFwYAQE3k0X81Wrx4sS5cuKA//vGPiouLU1xcnC5dulTZawMAwCt5dOU7ZcoU\nTZkypbLXAgBAjcCbbAAAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBg\nGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABY5lvdC7hZDJ+TWt1LAKrEzf7cfmdS9+pewnXd7DOsiaric2LzuciVLwAA\nlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCw\njPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBl\nxBcAAMuILwAAlvl6spPL5dK0adP0/fffq1atWpo1a5YaN25c2WsDAMAreXTl+9lnnyk/P18rVqzQ\niy++qDlz5lT2ugAA8FoexXf37t3q2rWrJKlt27b617/+VamLAgDAm3n0snN2draCgoLct51OpwoL\nC+XrW/LhQkODPVtdGT6aF1XpxwRQc9zI1yW+3pSsKr62l9et/jnx6Mo3KChIFy9edN92uVylhhcA\nABTnUXzbtWunrVu3SpL27dunsLCwSl0UAADezGGMMTe605Wfdj506JCMMZo9e7aaNWtWFesDAMDr\neBRfAADgOd5kAwAAy4gvAACW1ej4Xrp0SWPGjNGgQYM0cuRI/fTTT9dss3LlSj3xxBN66qmntHnz\n5jL327dvn2JiYjRgwAC98cYbxY6Tm5urqKgo9w+qeQtbM5w7d65iY2PVv39/rVy50s7JVTGXy6Wk\npCTFxsYqLi5O6enpxe5PTU1V//79FRsb6z7n0vZJT0/XwIEDNWjQICUnJ8vlckkqefbewsb8li5d\nqpiYGMXExFzzd9ob2JjhlX1GjBihZcuW2Tu5m52pwd555x2zYMECY4wx69evNzNnzix2/5kzZ0xk\nZKTJy8szFy5ccP+5tP0ee+wxk56eblwulxkxYoQ5cOCA+1iTJk0yUVFRZsuWLZbOzg4bM0xLSzOj\nR482xhiTl5dnevbsac6dO2fxLKvGp59+ahITE40xxuzdu9c8++yz7vvy8/Pd55mXl2eeeOIJk5GR\nUeo+o0aNMjt27DDGGDN16lSzYcOGUmfvLap6fseOHTPR0dGmsLDQuFwuExsbaw4ePGj5LKtWVc/w\ninnz5pmYmBjz3nvv2Tq1m16NvvK9+p26unXrprS0tGL3//Of/1RERIRq1aql4OBgNWrUSN99912J\n+2VnZys/P1+NGjWSw+FQly5dtH37dknSkiVLFBERofDwcLsnaIGNGUZERGj27NnuYxYVFXnF/ysv\n653iDh8+rEaNGikkJES1atVS+/bttWvXrlL3OXDggDp27Cjp8jy3b99e6uy9RVXP74477tCf//xn\nOZ1OORwOFRYWyt/f3/JZVq2qnqEkffLJJ3I4HO59cNmt/xWsnFatWqW//vWvxT7WoEEDBQdffoeW\nwMBAZWVlFbs/Ozvbff+VbbKzs4t9/Mp+//uuX4GBgTp+/LjS0tKUnp6uGTNmaM+ePVV1elZU1wz9\n/f3l7++vgoICTZo0SbGxsQoMDKyq07SmrHeKK2tuJe1jjJHD4XBve2WeJR3DW1T1/Pz8/FS/fn0Z\nY/TKK6+oZcuWatKkib0TtKCqZ3jo0CGtX79eCxYs0JtvvmnvxG4BNSa+V/7d5mrPP/+8+526Ll68\nqDp16hS7/3/fyevixYsKDg4u9vEr+5W0bZ06dbR69WqdPHlScXFx+uGHH3TgwAGFhobq3nvvrapT\nrTLVNUNJOn/+vF544QV17NhRo0aNqpLzs62sd4orz9yu3sfHx6fYtqXN8+ovpre6qp6fJOXl5Wny\n5MkKDAxUcnJyVZ+SdVU9w3Xr1un06dMaNmyYTp48KT8/P911113q1q2bhbO7udXol53btWunLVu2\nSJK2bt2q9u3bF7u/TZs22r17t/Ly8pSVlaXDhw8rLCysxP2CgoLk5+enY8eOyRijbdu26f7779e8\nefO0fPlypaSkqGvXrpowYcItGd7S2JjhpUuXFB8fr/79+yshIcH6OVaVst4prlmzZkpPT9e5c+eU\nn5+vr7/+WhEREaXu07JlS+3cuVPS5Xnef//9pc7eW1T1/IwxGj16tFq0aKEZM2bI6XRaPsOqV9Uz\nnDhxolatWqWUlBRFR0crPj6e8P5/NfpNNnJzc5WYmKiMjAz5+flp3rx5Cg0N1V/+8hc1atRIPXr0\n0MqVK7VixQoZYzRq1Cj16tWr1P327dun2bNnq6ioSF26dNG4ceOKPd6kSZP06KOPetWTz8YMly5d\nqjfeeKPYNy2zZ8/WPffcU41nXnElvVPct99+q5ycHMXGxio1NVVvvvmmjDHq37+/Bg8eXOq7yx05\nckRTp05VQUGBmjZtqlmzZsnpdJY4e29R1fNLTU3V+PHj1bZtW/djjh8/XhEREdV41pXLxnPwioUL\nF+pnP/uZBg4cWI1nfPOo0fEFAKA61OiXnQEAqA7EFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8QUAwLL/B36M6wikk3reAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['mse train all feature: ', 4.4521161e-07]\n", + "['mse test all feature: ', 6.5240918e-08]\n", + "['mae train all feature: ', 0.00042638468]\n", + "['mae test all feature: ', 0.00020227849]\n", + "['mean avg bo spread: ', 3.9868658581951545e-05]\n", + "['how often sign of price change is same: ', 0.55339805825242716]\n", + "['if same sign, how often is actual better than 0.1 percent in both directions: ', 0.0]\n", + "['if same sign, how often is actual better than predicted in both directions: ', 0.98245614035087714]\n", + "['if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions: ', 0.0]\n", + "['if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions', 0.0]\n", + "['if not same sign, how often is actual worse than -0.1 percent return in both directions', 0.0]\n" + ] + } + ], + "source": [ + "df_err = check_error_metrics(df, y_train, y_test, reg_linear.predict(X_train), reg_linear.predict(X_test), X_test[:,idx_close_bid])" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# log results\n", + "log=True\n", + "\n", + "if log:\n", + " \n", + " simname= \"linear regression\"\n", + " sim_desc = \"1 row lookback\"\n", + " \n", + " dict_err= OrderedDict(zip(df_err[0], df_err[1]))\n", + " \n", + " list_stats=OrderedDict()\n", + " \n", + " list_stats[\"simname\"] = simname\n", + " list_stats[\"sim_desc\"] = sim_desc\n", + " list_stats[\"MSE\"] = dict_err[\"mse test all feature: \"]\n", + " list_stats[\"MAE\"] = dict_err[\"mae test all feature: \"]\n", + " \n", + " differences_described = pd.Series(reg_linear.predict(X_test) - y_test).describe()\n", + "\n", + " list_stats.update(OrderedDict(differences_described))\n", + " list_stats.update(dict_err)\n", + " \n", + " results = pd.DataFrame([list_stats])\n", + " #results.to_excel(\"log_results.xlsx\")\n", + " if os.path.isfile(\"log_results.xlsx\"):\n", + " log_results = pd.read_excel(\"log_results.xlsx\")\n", + " log_results.loc[len(log_results),:] = list_stats.values()\n", + " log_results.to_excel(\"log_results.xlsx\")\n", + " #log_results" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
012345
simname500_epochs500_epoch_lookback_40linear regressionlinear regression500_epochs_40_lookback_pca_unshuffledlinear regression
sim_desc\\nkaggle params but with 500 epochs to account...500 iterations, lookback 401 row lookback1 row lookbackadded directional errors checking and pca as f...1 row lookback
MSE1.59188e-071.97246e-076.79626e-076.55241e-084.82937e-076.52409e-08
MAE0.0002857810.0003408460.0005363070.0002029050.0005944820.000202278
count102102103103102103
mean-9.29131e-07-3.83515e-05-5.08408e-05-2.90581e-050.000506372-2.31451e-05
std0.0004009530.000444650.0008268490.0002555660.0004782960.000255616
min-0.00135148-0.00127888-0.00317997-0.000772953-0.00072515-0.000772119
25%-0.000158489-0.000304043-0.000402606-0.0002006290.000192821-0.000199616
50%6.07371e-05-5.84126e-06-3.07747e-05-2.43187e-050.000540495-1.14441e-05
75%0.0002399680.000177890.000316920.0001162290.0008309780.000123918
max0.0007556680.001287820.003273720.00053370.001593350.000535846
mse train all feature:004.3917e-074.45245e-075.16241e-074.45212e-07
mse test all feature:006.79626e-076.55241e-084.82937e-076.52409e-08
mae train all feature:000.0004235650.0004267730.0005053850.000426385
mae test all feature:000.0005363070.0002029050.0005944820.000202278
mean avg bo spread:003.98687e-053.98687e-053.98687e-053.98687e-05
how often sign of price change is same:000.4466020.5339810.8823530.553398
if same sign, how often is actual better than 0.1 percent in both directions:000.15217400.6555560
if same sign, how often is actual better than predicted in both directions:000.97826110.3666670.982456
if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions:000.15217400.06666670
if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions000.10526300.3333330
if not same sign, how often is actual worse than -0.1 percent return in both directions000.105263000
\n", + "
" + ], + "text/plain": [ + " 0 \\\n", + "simname 500_epochs \n", + "sim_desc \\nkaggle params but with 500 epochs to account... \n", + "MSE 1.59188e-07 \n", + "MAE 0.000285781 \n", + "count 102 \n", + "mean -9.29131e-07 \n", + "std 0.000400953 \n", + "min -0.00135148 \n", + "25% -0.000158489 \n", + "50% 6.07371e-05 \n", + "75% 0.000239968 \n", + "max 0.000755668 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 1 \\\n", + "simname 500_epoch_lookback_40 \n", + "sim_desc 500 iterations, lookback 40 \n", + "MSE 1.97246e-07 \n", + "MAE 0.000340846 \n", + "count 102 \n", + "mean -3.83515e-05 \n", + "std 0.00044465 \n", + "min -0.00127888 \n", + "25% -0.000304043 \n", + "50% -5.84126e-06 \n", + "75% 0.00017789 \n", + "max 0.00128782 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 2 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.79626e-07 \n", + "MAE 0.000536307 \n", + "count 103 \n", + "mean -5.08408e-05 \n", + "std 0.000826849 \n", + "min -0.00317997 \n", + "25% -0.000402606 \n", + "50% -3.07747e-05 \n", + "75% 0.00031692 \n", + "max 0.00327372 \n", + "mse train all feature: 4.3917e-07 \n", + "mse test all feature: 6.79626e-07 \n", + "mae train all feature: 0.000423565 \n", + "mae test all feature: 0.000536307 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.446602 \n", + "if same sign, how often is actual better than 0... 0.152174 \n", + "if same sign, how often is actual better than p... 0.978261 \n", + "if same sign, how often is actual better than p... 0.152174 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "\n", + " 3 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.55241e-08 \n", + "MAE 0.000202905 \n", + "count 103 \n", + "mean -2.90581e-05 \n", + "std 0.000255566 \n", + "min -0.000772953 \n", + "25% -0.000200629 \n", + "50% -2.43187e-05 \n", + "75% 0.000116229 \n", + "max 0.0005337 \n", + "mse train all feature: 4.45245e-07 \n", + "mse test all feature: 6.55241e-08 \n", + "mae train all feature: 0.000426773 \n", + "mae test all feature: 0.000202905 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.533981 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 1 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 4 \\\n", + "simname 500_epochs_40_lookback_pca_unshuffled \n", + "sim_desc added directional errors checking and pca as f... \n", + "MSE 4.82937e-07 \n", + "MAE 0.000594482 \n", + "count 102 \n", + "mean 0.000506372 \n", + "std 0.000478296 \n", + "min -0.00072515 \n", + "25% 0.000192821 \n", + "50% 0.000540495 \n", + "75% 0.000830978 \n", + "max 0.00159335 \n", + "mse train all feature: 5.16241e-07 \n", + "mse test all feature: 4.82937e-07 \n", + "mae train all feature: 0.000505385 \n", + "mae test all feature: 0.000594482 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.882353 \n", + "if same sign, how often is actual better than 0... 0.655556 \n", + "if same sign, how often is actual better than p... 0.366667 \n", + "if same sign, how often is actual better than p... 0.0666667 \n", + "if not same sign, how often is actual worse tha... 0.333333 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 5 \n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.52409e-08 \n", + "MAE 0.000202278 \n", + "count 103 \n", + "mean -2.31451e-05 \n", + "std 0.000255616 \n", + "min -0.000772119 \n", + "25% -0.000199616 \n", + "50% -1.14441e-05 \n", + "75% 0.000123918 \n", + "max 0.000535846 \n", + "mse train all feature: 4.45212e-07 \n", + "mse test all feature: 6.52409e-08 \n", + "mae train all feature: 0.000426385 \n", + "mae test all feature: 0.000202278 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.553398 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0.982456 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.read_excel(\"log_results.xlsx\").T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot residuals" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr4AAAI+CAYAAADq7novAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X9slded5/HPee61MRgbOw2E1ECAFLolIUsg051xN9WW\nKOoozUgzYlIIVbRqo5l2dtSZaKsqUdQfkZIm2a40qoSizE5G/WOroqRpZ0dpaJVRQrJocdoNpMSA\ndwIDGGxDwYB//8C+vmf/ODzX917f3/fa9z6P3y8JCfv63vv8Ouc5z/me8z3GWmsFAAAAAAAAAAAA\nBJxX7Q0AAAAAAAAAAAAAKoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHA\nFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCIVrKm+LxuJ555hl9/PHHqq+v13PPPac77rgj8frBgwf1\n0ksvKRqNateuXfryl7+s6elpPf300+rr69PU1JT+6q/+Sg888IDOnz+vp556SsYYbdq0Sd///vfl\nebnjcf39I6VsNoAF0tq6TAMD49XeDAAoCnUXgKCi/gIQRNRdAIKK+guoDStXNmV9raQZX2+//bam\npqb02muv6Vvf+pZefPHFxGvT09N64YUX9OMf/1g/+clP9Nprr+nq1at644031NLSov379+sf//Ef\n9eyzz0qSXnjhBT3xxBPav3+/rLV65513StkkADUkGo1UexMAoGjUXQCCivoLQBBRdwEIKuovoPaV\nFPg6evSo7r//fknStm3bdOLEicRrZ86c0bp167RixQrV19drx44d+uCDD/THf/zH+tu//VtJkrVW\nkYirIE6ePKnPfvazkqTPf/7z6ujoKGuHAAAAAAAAAAAAsDiVlOpwdHRUy5cvT/wciUQUi8UUjUY1\nOjqqpqbZKWaNjY0aHR1VY2Nj4r1/8zd/oyeeeEKSC4IZYxJ/OzKSP41ha+syIutAjcs11RQAahV1\nF4Cgov4CEETUXQCCivoLqG0lBb6WL1+usbGxxM/xeFzRaDTja2NjY4lA2KVLl/TXf/3X2rt3r/7k\nT/5EklLW8xobG1Nzc3Pe7yeHKlDbVq5sYi0+AIFD3QUgqKi/AAQRdReAoKL+AmpDxdf42r59uw4d\nOiRJOnbsmDZv3px47c4779T58+c1ODioqakpHTlyRPfee6+uXr2qr33ta/r2t7+tP//zP0/8/ZYt\nW/Tb3/5WknTo0CHdd999pWwSAAAAAAAAAAAAFjljrbXFvikej+uZZ57RqVOnZK3V888/r66uLo2P\nj2v37t06ePCgXnrpJVlrtWvXLn3lK1/Rc889p1//+tfauHFj4nNeeeUVXbp0Sd/97nc1PT2tjRs3\n6rnnnkus/5UNEXWgtjHyBUAQUXcBCCrqLwBBRN0FIKiov4DakGvGV0mBr2qjYgFqGw0AAEFE3QUg\nqKi/AAQRdReAoKL+AmpDxVMdAgAAAAAAAAAAALWGwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHA\nFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAA\nAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAA\nQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcA\nAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAA\nAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKB\nwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAA\nAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAA\nAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAX\nAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAA\nAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABC\ngcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAA\nAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAA\nAABCgcAXAAAAAAAAAAAAQqGkwFc8Htf3vvc97d69W4899pjOnz+f8vrBgwe1a9cu7d69Wz/72c9S\nXvvoo4/02GOPJX7u6urS/fffr8cee0yPPfaYfvWrX5WySQAAAAAAAAAAAFjkoqW86e2339bU1JRe\ne+01HTt2TC+++KJefvllSdL09LReeOEF/fznP9fSpUv16KOPaufOnbr11lv1yiuv6I033tDSpUsT\nn3Xy5El99atf1de+9rXK7BEAAAAAAAAAAAAWpZJmfB09elT333+/JGnbtm06ceJE4rUzZ85o3bp1\nWrFiherr67Vjxw598MEHkqR169Zp3759KZ914sQJvffee/rKV76ip59+WqOjo6XuCwAAAAAAAAAA\nABaxkmZ8jY6Oavny5YmfI5GIYrGYotGoRkdH1dTUlHitsbExEcz64he/qN7e3pTPuueee/TII4/o\n7rvv1ssvv6yXXnpJTz75ZM7vb21dpmg0UsqmA1ggK1c25f8jAKgx1F0Agor6C0AQUXcBCCrqL6C2\nlRT4Wr58ucbGxhI/x+NxRaPRjK+NjY2lBMLSPfjgg2pubk78/9lnn837/QMD46VsNoAFsnJlk/r7\nR6q9GQBQFOouAEFF/QUgiKi7AAQV9RdQG3IFoEtKdbh9+3YdOnRIknTs2DFt3rw58dqdd96p8+fP\na3BwUFNTUzpy5IjuvfferJ/1+OOPq7OzU5L0/vvv66677iplkwAAAAAAAAAAALDIlTTj68EHH9Th\nw4e1Z88eWWv1/PPP65e//KXGx8e1e/duPfXUU3r88cdlrdWuXbt02223Zf2sZ555Rs8++6zq6up0\n6623FjTjCwAAAAAAAAAAAEhnrLW22htRLKaSArWNKd8Agoi6C0BQUX8BCCLqLgBBRf0F1IaKpzoE\nAAAAAAAAAAAAag2BLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAA\nAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACE\nAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAA\nAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAA\nAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKB\nLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEQrTaGwAAAMKlr8+ooyOiwUGjlhar9vYZtbXZam8WAAAA\nAAAAFgECXwAAoGL6+oz274/KWiNJGhgw6u422rs3RvALAAAAAAAA845UhwAAoGI6OiKJoJfPWjcD\nDAAAAAAAAJhvBL4AAEDFDA6aon4PAAAAAAAAVBKBLwAAUDEtLZnTGWb7PQAAAAAAAFBJBL4AAEDF\ntLfPyJjUIJcxVu3tM1XaIgAAAAAAACwm0WpvAAAACI+2Nqu9e2Pq6IhocNCopcUFvdramPEFAAAA\nAACA+UfgCwAAVFRbm9Ujj8SqvRkAAAAAAABYhEh1CAAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAF\nAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAA\nAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQ\nIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAA\nAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAA\nAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDw\nBQAAAAAAAAAAgFAoKfAVj8f1ve99T7t379Zjjz2m8+fPp7x+8OBB7dq1S7t379bPfvazlNc++ugj\nPfbYY4mfz58/r0cffVR79+7V97//fcXj8VI2CQAAAAAAAAAAAItcSYGvt99+W1NTU3rttdf0rW99\nSy+++GLitenpab3wwgv68Y9/rJ/85Cd67bXXdPXqVUnSK6+8ou985zu6ceNG4u9feOEFPfHEE9q/\nf7+stXrnnXfK3CUAAAAAAAAAAAAsRiUFvo4ePar7779fkrRt2zadOHEi8dqZM2e0bt06rVixQvX1\n9dqxY4c++OADSdK6deu0b9++lM86efKkPvvZz0qSPv/5z6ujo6OkHQEAAAAAAAAAAMDiFi3lTaOj\no1q+fHni50gkolgspmg0qtHRUTU1NSVea2xs1OjoqCTpi1/8onp7e1M+y1orY0zib0dGRvJ+f2vr\nMkWjkVI2HcACWbmyKf8fAUCNoe4CEFTUXwCCiLoLQFBRfwG1raTA1/LlyzU2Npb4OR6PKxqNZnxt\nbGwsJRCWzvO8lL9tbm7O+/0DA+OlbDaABbJyZZP6+/MHsQGgllB3AQgq6i8AQUTdBSCoqL+A2pAr\nAF1SqsPt27fr0KFDkqRjx45p8+bNidfuvPNOnT9/XoODg5qamtKRI0d07733Zv2sLVu26Le//a0k\n6dChQ7rvvvtK2SQAAAAAAAAAAAAsciXN+HrwwQd1+PBh7dmzR9ZaPf/88/rlL3+p8fFx7d69W089\n9ZQef/xxWWu1a9cu3XbbbVk/68knn9R3v/td/d3f/Z02btyoL37xiyXvDAAAAAAAAAAAABYvY621\n1d6IYjGVFKhtTPkGEETUXQCCivoLQBBRdwEIKuovoDZUPNUhAAAAAAAAAAAAUGsIfAEAAAAAAAAA\nACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8\nAQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAA\nAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAg\nFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEA\nAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUotXeAABAePX1\nGXV0RDQ4aNTSYtXePqO2NlvtzQIAAAAAAAAQUgS+AADzoq/PaP/+qKw1kqSBAaPubqO9e2MEvwAA\nAAAAAADMC1IdAgDmRUdHJBH08lnrZoABAAAAAAAAwHwg8AUAmBeDg6ao3wMAAAAAAABAuQh8AQDm\nRUtL5nSG2X4PAAAAAAAAAOUi8AUAmBft7TMyJjXIZYxVe/tMlbYIAAAAAAAAQNhFq70BAIBwamuz\n2rs3po6OiAYHjVpaXNCrrY0ZXwAAAAAAAADmB4EvAMC8aWuzeuSRWLU3AwAAAAAAAMAiQapDAAAA\nAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAA\nAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEv\nAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAA\nAAAAAIRCtNobAAAAAAAAytfXZ9TREdHgoFFLi1V7+4za2my1NwsAAABYUAS+AAAAAAAIuL4+o/37\no7LWSJIGBoy6u4327o0R/AIAAMCiQqpDAAAAAAACrqMjkgh6+ax1M8AAAACAxYTAFwAAAAAAATc4\naIr6PQAAABBWBL4AAAAAAAi4lpbM6Qyz/R4AAAAIKwJfAAAAAAAEXHv7jIxJDXIZY9XePlOlLQIA\nAACqI1rtDQAAAAAAAOVpa7Pauzemjo6IBgeNWlpc0KutjRlfAAAAWFwIfAEAAAAAEAJtbVaPPBKr\n9mYAAAAAVUWqQwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAA\nAIRCtJQ3xeNxPfPMM/r4449VX1+v5557TnfccUfi9YMHD+qll15SNBrVrl279OUvfznre7q6uvT1\nr39d69evlyQ9+uijeuihhyqycwAAAAi2vj6jjo6IBgeNWlqs2ttn1NZmq71ZAAAAAACgRpUU+Hr7\n7bc1NTWl1157TceOHdOLL76ol19+WZI0PT2tF154QT//+c+1dOlSPfroo9q5c6c+/PDDjO85efKk\nvvrVr+prX/taRXcMAAAAwdbXZ7R/f1TWGknSwIBRd7fR3r0xgl9ACQgkAwAAAFgMSkp1ePToUd1/\n//2SpG3btunEiROJ186cOaN169ZpxYoVqq+v144dO/TBBx9kfc+JEyf03nvv6Stf+YqefvppjY6O\nlrtPAAAACIGOjkgi6OWz1nXcAyiOH0g+d87TwIDRuXOe9u+Pqq/P5H8zAAAAAARISTO+RkdHtXz5\n8sTPkUhEsVhM0WhUo6OjampqSrzW2Nio0dHRrO+555579Mgjj+juu+/Wyy+/rJdeeklPPvlkzu9v\nbV2maJQOD6CWrVzZlP+PAKDGUHfVllhMamzM/PuVKxd+e4Balq/+eustadmyub8/cULatm2eNgoA\n8qDtBSCoqL+A2lZS4Gv58uUaGxtL/ByPxxWNRjO+NjY2pqampqzvefDBB9Xc3CxJevDBB/Xss8/m\n/f6BgfFSNhvAAlm5skn9/SPV3gwAKAp1V+2JRqMaG5uboGDVqrj6+2NV2CKgNhVSf124UKexsbmz\nuy5csOrvn56vTQOArGh7AQgq6i+gNuQKQJeU6nD79u06dOiQJOnYsWPavHlz4rU777xT58+f1+Dg\noKampnTkyBHde++9Wd/z+OOPq7OzU5L0/vvv66677iplkwAAABAy7e0zMiZ1/SFj3LpEAIrT0pJ5\nLa9svwcAAACAoCppxteDDz6ow4cPa8+ePbLW6vnnn9cvf/lLjY+Pa/fu3Xrqqaf0+OOPy1qrXbt2\n6bbbbsv4Hkl65pln9Oyzz6qurk633nprQTO+AAAAEH5tbVZ798bU0RHR4KBRS4sLerW10VEPFKu9\nfUbd3SZl3TwCyQAAAADCyFhrA9dzwFRSoLYx5RtAEFF3AQiqQuuvvj5DIBlAzaDtBSCoqL+A2pAr\n1WFJM74AAAAAAMHS1mb1yCOsjwcAAAAg3Ah8AQAAAACARYvZkAAAAOFC4AsAAFQcHUgAACAI+vqM\n9u+PJta/Gxgw6u422rs3RtsFAAAgoLxqbwAAAAgXvwPp3DlPAwNG58552r8/qr4+U+1NAwAASNHR\nEUkEvXzWugE8AAAACCYCXwAAoKLoQAIAAEExOJh5YE623wMAAKD2keoQAIAKILXfLDqQAABAULS0\nWA0MzG2jtLQsznYcAABAGBD4AgCgTKwNkYoOJAAAEBTt7TPq7jYps9WNcYOYFhsGcgEAgLAg1SEA\nAGUitV+q9vYZGZPaSbJYO5AAAEBta2uz2rs3pg0b4mpttdqwIb4oBy+xRisAAAgTZnwBAFAmUvul\n8juQGDEMAACCoK3N6pFHYtXejKrKNZBrsR8bAAAQPAS+AAAoE6n95qIDCQAAIDgYyAUAAMKEVIcA\nAJSJ1H4AAAAIsmwDthbzQC4AABBcBL4AACgTa0MAAAAgyBjIBQAAwoRUhwAAVACp/QAAABBUrNEK\nAADChMAXAAAAAADAIsdALgAAEBYEvgAgoPr6DCMygYCgvAILj3IHAAAAAIsTgS8ACKC+PqP9+6Oy\n1kiSBgaMursN60rlQAcoqoXyCiw8yh0AAAAALF4EvgAggDo6IonOPJ+1LrBDepK56ABFNVFegfmX\nPrhhYECUOwAAAABYpAh8AUAADQ6aon6/2BF4QDVRXoH5lWlww4cfGm3aJDU1pQ5uoNwBQH5kSgAA\nAEFH4AsAAsiNZp/bedfSUpkH0rA97BJ4QDXNd3kFFrtMgxsaGqSeHqMtW1LLGeUOwGJWSBufTAkA\nACAMCHwBQAC1t8+ou9ukdPQZ4x5eyxXGh91cgYewBflQe+azvALIPIhhzRqrf/u31N9T7gAsZoW2\n8cmUgLDgOQ8AFjev2hsAACheW5vV3r0xbdgQV2ur1YYN8YoFpnI97AZVe/uMjEk9NsZYbdw4o/37\nozp3ztPAgNG5c57274+qr4+ZYKic+SyvADLP4mpulr7wBcodAPgKbeOTKQFh4Ad6ec4DgMWLGV8A\nEFBtbXZeRl2G8WHXDzykj/hjRCsWynyVVwDZZ1U+/HB1RnYzwhy1imuz+qp5Dgpt45OiGWHAcx4A\ngMAXgEDiwX3+hPVhN1PgIYxBvoVGWQRQbdkGN1Qr6BWEdMHU3YtPUK7NMKv2OSi0jU+KZoQBz3kA\nAAJfAAKn2g+NYbeYHnaDHuSrdsclZRFAsmrWSbUyq7JWR5gnnxtrrXp6jJqaqLsXk1q9NheTap+D\nQtv4tTSYAChEpvZH0J/zAADlI/AFIHCq/dA4n6odyJAKf9ithW0tV5CDfLUQdApzWayWMJQrLE61\nUCfVglocYZ5+brq6IhoYkLZujau52f0NdXf41eK1GQSVvC9X+xwUE9CqlcEEQD7Z2h87d8YC+5wH\nAKgMAl8AAqfaD43zpZY6DfM97CZv68iI0eHDRr/4RVRf+EKsamuqlCLII1prIegU1rJYLbVUBwDF\nqoU6qRbU4gjz9HMzOen+39trtGXL7HZRd4dbLV6bta7S9+VCz8F8DoIhoLVwGMy0MLK1P86ejQT2\nOQ8AUBkEvgAETlgf3IPUaehv68iI0fHjnuzNQ//++xEND892CAThgS+5AyAI2+urhaBTWMtitQSp\nDgDS1UKdVAtqcSZx+jloaLCamDA3A2Cz9fV81t3+/bW72+jKFU+rVsW1fn1t32fLUYvtiVq8Nmtd\npe/LhZyDWhsEU4vXchDU2nkMs1ztDwK9ALC4EfgCEDhhfXAPUqehv009PSYR9JLcKHK/Q6C9fSZQ\nD3xBe0CthaBTWMtitQSpDgDS1UKdVI5Kde7W4kzi9HOzdq3V4KBRQ8PsNs1n3e3fX4eHvcRgmVOn\njIaG4jV9ny1VrbYnqnltzkfwZCECMpW+LxdyDmppEEyuFHJnz9ZOHVeLauk8hl3Q2x8AgPlD4AtA\n4NRip1IlBKnR7m+rny7J53eiDQ6awD3wBW1704NOw8MubZUxRq+/Hl2QMhHWslgtQaoDsDgU07Ec\n5EB4pQMVtTbCPP3cNDVZbd06ozVr4vK8+a+7/ftr6mAZo95eo+Zm1ex9tlDp5eT6ddVse6Ia1+Z8\nBALL/cxC67ZK3JczfVeuc1BLg2AytY2Hhz3t21evNWusenvds8CBAxF985tT2rGD9oqvnPPILLvi\nBLn9AQCYXwS+AARSrXUqVUKQGu3+tvrpkhyrNWvcQ1lLi63Ig/tCPvjVUkdDIZKDTt3dRr29ntau\ndZ1r584t3OjyMJbFaglSHRBGpdY3Ye2gKrZjOciB8KANfChWtc+Nfx9NHyzjp1qs1ftsITKVkw8/\n9PSpT8XV3Jz6t0Hez3LMR/kq5zOLqdvKvS+XEqCrpUEwma7Znh6jgQHd3Eb3+sSE0b599frBD6YC\nUecvhFLPY63OGC1UNdpE1b7HAQBqV+SZZ555ptobUazx8alqbwKwqPT1Gb31VlQdHRGdPeuppcXO\neZhP1ti4JFTltNj9L1Vzs7R+vdXoqNHQkNTf76mx0WpkxMzbd5bK39bJSTfLqKnJatMmt43GWD30\n0Iz6+03GB+bbb7e666543u/wH/wGBjxNTrrPOnHC0/r1hR2LYs/b2bNeWdtbDc3N0l13xXXxoqe6\nOqMlS5JfNRodNTW77aWaz/JY7boruQ4wxl17Dz2U/8F9oeqoMCu1vim3nqplb73l9itV7nrFr5N2\n7IjrrrvmdvzXqo6OyJygjCQZI+3YEYw6NF/9lX5uRkbmt95IrpdOnfI0MyONj6fOFG9qslq5srbv\ns/lkKicDA0bDw9LKlal/G+T9LMd8lK9yPrOYuq3U+3Ip3+VrabE6ccKTH1Ry++W+d6HqVL/8vv9+\nRBcvuval38bs6fE0NCTV16cef2Pc80Cx13i1217zpdTzWMo1Uyuq2SYKavsDwRbW+gsImsbGJVlf\nY8YXgJyCNOqskBFmxY5CW+j9b2tz29TZGVV/v9TTE9HJk1adnUbf+EZtHfO2Nqu//MuYvvSlmYzH\ntNxRsgs1mtcX5Nk2QZutVqr5LI+uk0e6cKGuqiNFi51BF6Q6ulZkug+UWt+EeaZQpvpjZMTo3XfD\nN6K6lmZYpJuvtZHms95I//yGBun4cU8bNrjZXS7doZslHpT7bDaZysnatVanT6f+Lqj7WYnrbz7K\nVzmfWWxzE7v6AAAgAElEQVSbqZyZ7aW0z6o9eyW5/H7iE9LFi54GBqy2bnXBhIaGuJYvT13jV3Lp\nztP3K6wzogtR6nkMcps+zG0iAEAwEfgCkFNQGrCFdOKU0tGTvP/+GkqTk56uXPH0xBPFpfMo9OHv\nzTcj6uyMKDl9yMCA0ZtvWn3967GiP2++ZesQKPfBvZwHv1Ku22p3NJRjoTttq3XtzVd95NcNy5ZJ\nY2OmJoNH2Y55UOroWpHtPpBNvvqm3A6qWqnHM0mvV0ZGjI4f99TSEtfAQG2Wk1LV6sCHcgJUua6t\nbPXGgQMRtbaq7Osx/fPdmmLS5KT0uc/FdOWKp1Wr4lq/vrau+VJkuv82NVnt3BmvyLGspkoFSOej\nfLlBYkY9PW62/uiotHy5VUuL2+5c27eQbaZSvssvu93dJlFWpEhV2lqu7MZvpjc0+vf/fkYPPDCj\nffvqU/bLGBfwTd6v5OtneFg6fNjTL34R0c6dM/rSlyq3L7V8Hy0laFrLAzHyCULQrpavFwBA5RH4\nAhZQEBtaQWjASoV1iJfSQezv5/CwG63sB6N6etzDXDGLaBfaeZAc9Jpl9P77Ed1yi9umeNyqt9dT\nU5Pyfl4xKn2NljNKdiFH8/pybW8tl99snUobN87o9dejFdnm5I6YkyfdemJNTXbOtZftOGX6vaSi\njul81Ue1HjzKVX/UQh2dr2zUUtnJdq77+41Wrpy7Tfnqm3LqqVqfrZder/T0GFk7u5ajVFvlpBy1\nOvCh1Lop37WVbTbfhx9GtH27zfieYmT6/KYmq3XrrP7iL6aL+qxal+3+W8mO/Wqp1L1x/sqX0cSE\n0cWLnqJRqa7OqqdH2r+/+Bn+IyPS9evSK69UdtZ3sUE/v+wOD3s6ftyTtdKpU0ZDQ/EFuz+kl9+m\nJqstW6xaW2fbyN/85pT27avX5KSnhgartWutmpvjKfvlXz/pz1AdHUZDQ5WbrV/L99FS1OpAjELU\netAujNfLfKildjsAlIs1voAFEtR1QEpZ9yg51/FCrT1TSK7/UtYD8Pf/zBk308vnr0tRaL71YvK1\nHzgQ1chI6nbeuCH197v1IiYnjX73O08XLkTU0qKkdZ3Ky/8+39dosddCOWscVHq9roUqv5mOUSHr\nsGRag2L79hkdPFiZbU7e/64uTwMDnq5cMUnXn7v2WlpsxuPU0GD1xhvRxPuOHvX0T/8U1TvvRDQ9\n7R7uC9m++VqHza8b6uujmp6e7ViolfV9ctUfDQ2ZO5kXai2ZfGWj1u592e4Dy5dbGSMVW98UW08l\nl/EDB6KamandtfnS65Xr143uuGPuectXTirdDpivdkUtrg9STLslue2Vr82RqS49c8YFD1LXpSrt\neiynrg7amoXlrgFViGodk0quzVXp8vXWW1GNjxsNDkrRqFFjoxSJSFNTyts+Tz9nDQ1Ww8OStcWv\n8VhK+yzX9eGX3TNnPE1M+MfeaHo6935V8hoppPx+8pPSH/xBXE1NVqtWWd1xR3zOfvnXT/ozlDFG\nt99uE/uSaY0cf39+9auI/vmf6/TRR54uXpy7X5VeD6sW6p+FqFPmSy2sT5dLputlZMTT//k/EZ0/\n7wXinjPfaq3dXutY4wuoDazxBdSAWp9RkE05o84WclRVISPMShmF5u9/6gObS+chFT6rophZGdu2\nzejiRS8ld/7wsEl8p+SCX9a6Efhbtsz+vpxZHpmu0aEhox/9qF6rVsXLSk1UyrXQ1ma1c2dMr75a\nr6tXpVtvlfbsmS7oeys9WnIhym+mY9TZ6UmyamrKf9zSZ6u9/nq06G0uJJ2e3wmWfv0NDpqsx+nV\nV+u1cqVNGfXb3+9/XjyxbkS+7ZuvUbC1PkI1V/3x0EOxqo4Mzlc2au3el+1c+/VasSNci5nJkF7G\ne3qMJieNtm51nYe+Uuvx+Rihm1yvvP56VOfOpXcw5k/ZlbzP58+7dHp33RXXihVW1kqel392aDkp\ni4Os1LopX5sjU106OSl96lNzP7eU67HUujqo57ec2e35VPOY1PK90b8u0wNz/s/FzPD3Z8Yns9bo\nzTdnMy2UUxcVc33k3q/MszWzbcvOnTGdPVv8bOxCy2++/fKvn/R98QON773nvnvdOunuu82cY1vI\nrLd8dV0x98Vaqn8yHdsgzMKp1dnTvvTrxU/h3NBgtXJlaSmcg3BeilFr7XYAKBeBL2CB1EI6qlKU\n04BdyIZTIQ9ppXTE+Pt/5Yqnnh6TSOfhd1IW+vCfqfNgeFjq7/fmpFX50pdm1NPjqafHjbRqaHCL\nv2/aNDtysaHBamJi7sNkOZ0R6dfi8LB09GhEQ0NGsVhE0ai0YoWnHTtmin4oKOVa6OszOngwqpUr\nbWIE+sGDUa1enf97K/3gtRDlN9Mx6ulxga/k4GahZajYbS40nZ5/7UmpHTMtLZk7ZCTp6lU3Urm3\n18gfBRqLuU4cyej0aaOlS93nnT9vsp6r+Xqg9uuGZLWUViZf5+OKFVbHjnkyRrrnnhk9/HB5x6SY\nh/h819ngoElaH9HVZ2vWZL9Wiv3+YuW6D5TaeV3o+9LLuF+W0gcw5KvHk4+PtS54NDxsdOSICyob\n445zR4enf/fv4nMCS6Uq5R6avk6mH/g+csToxg23/Vu3xlM6ag8ezN6B++67EY2PS2vWzI48ruUO\nmXKv5VIDSPnqjEx16YoVcQ0NFRfYzKbUujpIHW4L1dlZzWMy3ynXyjmG/jWe3CaRXL3qv16oTPej\n4WHpww+j2r7dtb3TO8Tn67yUsl/ZBq7t21efuLdkSkudK8hTibaWf/0k74sxUmur1fHjnlpb3fdO\nTUmdndE5x9al1/U/zai316i5WSnH2Fqrrq5Ion3hP6O1tOTfx0KOY63UP7UUlMtnPgcClCv93uhf\nY375koo750E6L4UKap8VAGRDqkNggcxXiq6FUGx6En/KdyVTpBSyjfnSQvh/09Nj9K//6mloyGjd\nurg2b849dd/f/2vXXOe9n5aqmNQN6akfhoelEyc8tbVJ8bhS0gi0tVl9+tNxLV0qffKTVvfcE9ea\nNXFJrgP5zBmXdqC/36i52eqTn7RFb08m6dfoiRMuneL4uEtLEosZjY2512+/fTbdSq60IMmpSvr7\nXUqv5LReua6FctNR5Lpui01lshDlN1N56enxFIu570lWSBkqdJv9Y/E//2edLl5MP0dz0+ktWSJd\nueICWC7lp01ce/39JsuDkUtD5PbHD5pJnidFo9KlS0bRqLvGIhHp8mWTNaXGfKQj8+uGWKxeU1Ox\nBU8rk+96zJY6Zvv2Gb3xRlSTk55aWqSWFpfmyZ9BV+q2FJPiJN91duSIp8OHI5qcdOd+ctLoyhWj\nT30qrvvuy5yuaT5TrFQzhVB6GffLkp/2Scpfjycfn/5+T4cPR3X6tKcLF4zOnYvo+nWXrm50VOrq\nimh42Ki1VSUdx/Trcu1aF6TKd+yS3/eb30TkeW5fk9NdXbvmJdKk+im8JKP/+3+jWrYsdTsuXfL0\n059Gdf68246pKU/XrrlyMXs/zlwnVjNtVSWu5WKu1+R0O4Wkm0qvS2+/vbIpqkqpqxey3ViOhUwF\nNV/HpNg0fUNDbrBWY6NLwVyJlKXlHMOWFhcguXx5dqBYXZ30mc9YNTRkvm6z7XPm1J+uXZK69uNs\nCr35Oi9+2W1oMDfbWpJktWlT9v3KtC1+fZvafpzd/nwpAivR1vKvn4kJJdYl3rTJ6vJl6cYNT5s2\nuTq8vj6qqamZOcfWbwMntu5mHegfYzdAzj0TJLcvWlqs/uzPXOCumDSI2c7p0JB08aJX1fSHlU7p\nuFil3xvdNWYT16Kv0HIcxvMS5D6raiDVIVAbSHWIRauWpp4HeaHaUhWSIqWS56jQEWZDQ65T3f3f\ny7sItv/Z5Yx+TH9/f7+nrVttSnqr5BFm6fvS12f0939vdPx4RH5j3T10uaBDKekH06Vfo7//vZuR\nU1+f+nfu964jNddIN0mJ16x16SMuX5bq660GB93slM98ZkZ9fSbjdheTjkLSvKYyKab8lnpNZyov\nbgTi3PcWMpK5kG1OPhbXr3saHJROnZJWrXKjZf2ZOQ89FFNnp0mZhSi5B6Dkay/bd+7ZM31zFodV\nf/9sR0ZTk9XwsFEk4nf6uzSi1Rhh29ZmtW2b1N8/vWDfKUlHjxr98If1N8uV0erVcXV2Gn3jG7PX\nY7b6Zz5GJxf7mfmuM2Nc4Dw5dasx5uZ6WuV/fymqNRo5vYw3N7sg5Y0bRq2ttqD6Ivn4zI6GdzMl\nPc/9fmjI/U4yifpamnscS00pmOvYpb9vbMyN0t+6NZ7SoZh8PfgpvKTZ2aG+kRGj3/42olhMamy0\nmp52gfHbbvPU2zs7GzZTnVjtkdjZruVc6dMyKfV6bW626ux0acK2bZvRl76U/3vS65mNG4tP/1mO\nWk6tl2whZ4ZU4pikl/WNG2cyzqzMlqbP1fNuBr61RufOlV+WOjoiGh72Eilf/dk6xR1D1xaJROI3\nB2ZZNTXNaO/ezAH5bPVBttSfmzZlb5vO17WaXA6bmwtLM55pW2bbapm3v9BZHfnuE+mvSXPb41//\nekwPPzxbl1y75mnt2tQUv8nfnW/WWzxu9frr0cQM4A0b4hocTJ5VHldbW/aZ5dl+n3wcR0bcjLPB\nQaOxMekP/9Btb6XvI4U+MzALpzLS73Nr18a1ZMncQGah5bi726iry5sz4zDI52Ux9lkBCDcCXwit\nQjs8Fio4Vus5r+dDvoZTNTqlyumsKLezNPn9r7xSl/GBOVtDua3NNaZ7etzDeHLjev36ynTipl+j\nTU1WS5e6FFqTk1IsJt24IU1MGP3Lv3has8bq1Kl6NTQoYwDP/7/kghmXLxtdvOhpfNzN9HEz3Tz9\nl/9Sr//4H2cf6iV3no4d8zQ2ZhL7mS0dxZtvulkN/nd1dXn6h3+o0yc+EdfatdKePVPasWP2PW++\nGdHJk56S0641N+e+Bgotv+Vc05nKy9q1cfnpAH2FPnwUss3J5cFaqytX3CjIy5fjN4OVVmvX+sfE\nJP4tXeq2LX2/cn9nTEeO1CsW0820me49ExNWt93mHjKT04gG+aGxUEePGv3X/9qgixe9xKyYkRHX\n0bJmjdXXvz57PWaqf8rpCMl27yv2M/NdZ8a4oEd656bJEvkKcueOf0y7u03GzspMZXzFCqu9e12w\ntaMjol/9Klpw51dyIGlmxtWrUnIa0bmS1z3JVVeVeq9Mf9/atW6gQ2/vbCemMdLq1bOBsOQ6/dZb\nUz+vp8coFlMiON7cbDU56YJ7K1a4/cxWJ1Y7bVUp6dMKka/dmnxu77jDH+RTWPlJrmeq0UYLSoeb\nf27T07hmq9fKUe4xyXQeDxyIaO3azG23TGWjmLJU6HNVd7dJrN8kubbl4KBRc3O8oM/xt2ly0mjV\nKn/bjLq6IpKKrw/S72MtLa6Nmiw5Rbm1ViMjs2uwSsVfq9n2sdjnjUzXiLvXzv1bv0O/0MGJhQxu\n81/Lty7tI4/E1NdndOpUvU6fdtkE1qyxamxM/W5/f9z9wx/g4drrIyNWIyNeYhbWlSvuHrFhw4w2\nbYrLGKOPPorolVeMTp3y5jyjpO9jpuOYvLbYlSuuvXr8uJdYj7NS95Fi6tigDAoIglz3Oam4tcxP\nnvQS58Wvw7ZujWvDhnhNDcAuxmLsswIQbgS+EFqFPKRV6qG+r891vnd2RnKOrK3lnNfzIV/DqRqd\nUvPRqVpKw7bQB5jkzz52zLsZGEhNM1Buh3C27Y/Hrf7pn6KanpYGB6XpaZeGrq7O6Pr1iOrq4hoc\ndEGZrVvdNp06ZXT5sqe6urjWrLFas8YFVE6fdiMnBwZcwGv5cqm+Xhod9fSv/+qpoWFG1sZTHppb\nW616e40GB72k2QLuwTdZZ2ck0bl36ZLR//7fblbc6Kg0MSE9++wSffe7N7Rjh8v3/+670cQI0oEB\no48/djOccq0tJc2OevaPVUdHJGcgyVdMYDVTefE/d7Yz3aZ8d67rL1+dM/facT/PzPgdyq6TuqMj\noqYmacuW1Gsv035l+86zZyPascNq06ZYSkfh+vXShg2lzWpLF6SHzL4+t/5Gf7+neNwoHpdiMauG\nBjdD5he/iOqWW5RzMfpiOnWS3xeP20TaISn13ldK50qu68x9Xuo6dbk+L6idO357IrnD7NQpo6Gh\neM51UzZunNGbb0b07rtRNTS4QNHAgC2o8yt5NHxrq9XoqKuPo1H3nljMavXqzMc9X11V6r0y/fWm\nJpce8do1Nyr/5EklOmOPHDEaGjIyxlNXl9XatXHt2TOVMhNlctLtj3+tLlni6uvJSaNPfMJqw4Z4\n1hkIv/udp098Ym75yLQPmdZNK3dttEzXsgsApv7d0JDRj35Ur82b4ynfl202RbZ2qz9TrlIzzcq5\nn5VaF+e6D77+ejSl3Jw9W726vqXFtRn8Nesk1+l58qSyzmIvVKZjV04nZKaZVYOD7rXkenlkxOjd\ndzN/R7Yg7oEDbt09f33J++4rfCbZlSuzQS+fCzR4Kc9nIyNGhw+7e+KOHTE1N7uyeeyYp6tXpeSB\nQZI0Oekl2kjJxyx9HU+fn70g+f44MODKZVeXSawn6Kco37rVL9eunXn1qhscduut0p490zlnQ2UL\nUOc7VvlkKjcPPJB6LqTUDv1CAqq56gD//8lyrUvb3j57r7PWHbeJCU9dXdKnPy2tX6/Ed+ea9TYw\n4L7n6FHXBpqZkRoapAsX3PUwPGy0bJnV+Lgrp6dPe9q6dfY+kCuo4X/vj35UL8lqbMwoHndp5o1R\nynqclRiMU0wdG5RBAeVa6HZ8OUGejo6I1qxxbTa/HrJW6umR/vRPZwK99tdi67MCEG4EvhBahXTa\nVCLw4lLQRdXZOZuC7uJFl2/+G9+YDkTjZj7lajhVY2S/3xGVPkr3j/4odc2jQhrAfX1u1OzBg5HE\nqMVCG7bFpqGTpPFxd235Iw6T9ymTQvYj14P3fffN6J//Oaq6OrduQjzu/jU1uRk6LnAlNTZKnZ1G\nly659IOeZ9TU5NYDu3BBNz/X040bsw/JsZjbDmtdJ8Ply56keMpDc3Oz6yg9ccLTb37jZqBt2DB3\nnYHkjpMTJ2bLoR+8sdbo1VfrtWPHDXV0uHM1MCBdu+Y6NjzPKBazam2Na//+aNZzV0gnRa5rupDz\nka28ZEsztHNnrOBOpkySO2aNMbrtNquhIamuzqq11c3MGRpyHUzXr3spMw1z7W+2YyC59G6u42C2\nE0JSQQ/zpaZmy3Uskj9z3Trp7rvL67TMx/++d9+N6Nw512njcx0sVg0Nnm7csDp3zlNnp0nMkLLW\nzXz0R1MvWWJvjkLO3amT3on4/vuehoeNNmxwaxwmj2DOVTeV0iFRbGdNUDt3/PbEbPpBSXJBzOZm\nZeyI9dONHTkSSax/d+qU1X/4DzO6/fbMgeXk4zM7Gt5q+/a4/t//c53Xq1ZZLVniyu7mzbPnJ/k4\n5rv/lhqATH+fu9dKy5a5tV527pzS2bMukN/c7OoDN0vG1QmrV0s7d8b06qv1unpVmppyKVX92aiS\nC36tXj2jp5+eytmRXOg9M718uMClC9iVUo/4ZaOQ9GnDw24mwdKlbi0h//uy1e0rVtis7dZt29zP\nuWaabdpkEwGQAwci+uY3Z2dEJ89YPHvWU1eXkeRp9erZeiLb5ycfh3yB3FJSp/nnZ3hYevttT6dP\n12n5cumWW9z57Oxc2DZ3e/uMDhyYbW9IfqrezOW2UKWmGM31eQcORNTVFUnMtJ6YkC5edOsL+m3g\n+np7s/1kdeqUW5Mz+frIVK6PHPE0POwl1sDq7XXrLW3eXNhMslWr4jp1ygWQZlmtWhVP1Kez5VGa\nmjL6X/+rTitXurI5NmZ07pyn5ctdINyfTb52rRts0N2dehy7ukxilpufxm5y0qi1Na4LF+rU1OSX\nx0hipvLatS7Ycdddcd24kZqifHjYrYXT2jo7KOjgwahWr848Gyq9Hqn04L/M7cfZujQ9MFdIh3+x\nz2mzs5BTy2F3t1FnZ1Tvvx/RtWsu88PYmBvUsGSJ0cWLSqSgl1LrgfXrrfbuna3r//t/r9Px426m\nVzTqMlGMjrrr6Pp1dy+55Rb33DEw4J4bJieN1q3LnU44+TsvXHA/G2M0NmYViXianJSWLJnd70oM\nxinm+C6GWTjVSk9capDHzVB1KauT+xTuuiuus2erO+McADCLwBdqSjmjfNLfG4/Pjr5JltxQLTXw\nkj7i/sKF1Ac3N9rHC13jptBAyltvSRcu1OU9h5Uc2V/otdPePqPOztS1siYnjXp7XWeMlDl1x5o1\n8ZTR3/7fnTwZ0cSE0cSENDDgHsaT0+blSmNSaBo6P0g3OGh05YqbReB3VBnj1jP49reXJD3YTmn1\n6vwP3cnfkcxvmA8MuE7J8XEX5FqxwioWc6PV6+vdZzQ2SpOTVj09Ec3M6ObMFTcLYXra6ve/d4Gl\nZctm03B5nkvFNTPj74ObUTYyYlIemoeHpXPnPDU2ullHdXVuptPtt8fV0OA6S12qwhl1dbkFqfv6\npKkpPxhmbm6vS9koubLd2mr1u995GhoymplxndQTE36KLU9vvhlJSTFXyLHyy3lLi9WFC7Mjq+3N\nHvBly6wOH65PjBwu9mEu23e/+mp92sLrxc0eSO6YtdaNAp+ZcR1Ha9a4WQ8nT7oT565x13kUjUp1\nda6zp9DR7ZnK+/CwW+B81aq4+vuNVq2Kq7nZLVyenvJtPlKzpX/m1JTU2RktuYO2kPckr6k2PW0S\nAWVXLiTJyPOsVq+OJzrhenrcse7qcuXS1TOufN59d/5OnfROxOFhVzZ6elyAzZ+x6Y/2d+fABdsK\nmWmS6/wX21kT1M4dv90wOGjU3++ObzRqE0Gd48eNDhyo1+SkCyC3tlr9j//hBhacP29UV+dm1MZi\nbk2rBx6YKajza+3aGVnrRrnfuGE1OWm1bNns7Itss2Ly3X8zBW1GRqTr112q3mznJfl9flDHGLeO\nxrlzXlKarEiifpT8juiIvvMd18m9dq30mc9YjYy4z0hfw+Wb33QLiSfPAhoYSA2g+yOxk0fpZwqi\nJtcdyeum9fa69+WrR2bX6XN15erVs4GYXOnThoel3/zG07VrnjzPamLCU2urmymdqW631g1CSO4g\n9iVfK9lmmlnrjuXEhPvumZmInnxyif7bf7uRaDMMDRl98IGn/n6XarihQRoZiWh4OK777nMBxFyD\nbVy7yEu0i/y0T01Ns8HfYlKnuQCpTbmeLl3yNDTkaWzMzXJ03xPRgQNx/eVfLkybu63NdW6ePJma\nwjXb2i6F3i+uX5+9hpODM1eueHriiamC6sHkAObJk57OnnX1USzmAq+trbNpqycmrIaG3N9Eo1aR\niNHkpKfr161u3LDat69eP/jB1Jz6oLfXpYPzUxY7bk3BpUvnzvDNdEzWr7caGkrtMF6zxqXv9v8+\neSDB0JCfxtV9/9q1Vl1d7m88zyTuo5GI0XvvuTZpf7+rV5ubXQDEBdo8nTvnKRqVmpvjsla6dCly\ns/Pa7Yd7jjPasiWuLVvctra0xFPKVW+ve/abnJzdp1yzodLrkWxrA3V3m5R6Ldf9L1974+BBN2DK\nnw3qB+YKzQqQa7CgCy6l7mO2dWnPnvV08aJb28uvx6117fiZGTfgyp+VKkm//nVUY2OeGhvtnMC2\nP1NwctJdx5I0M2M1NuaeVZYsUdKsWvfs9LnPxfUXf5F9/dbkttnwsHTyZFQTE+4ZJxIxGh93gzfc\nOnKVW+O32OfgsM/CqUYmmHL45y99QF9yHZYuCGm7ASBsCHyhZpQzyifTe0dGpOQ849LchmopgZf0\n7+rpMeru9nTLLbPBAMkFU8LUuCnk/Ph/4z8c5DuHlVi3IPnhvpCgQltbtrWyNOdhdXhYOn3aU3e3\np6amuP7wD2dHf/ujrpPXWEnuKOvuNvqHf4hmnA22c2cspTPyoYcyH5/BQfcAdvRoRENDruPCzfiQ\n7rvPqrnZqrdXevrpBk1NuVlZS5dKJ04s0c6dsYIeHvxrNLmDpaHB6ve/tzp6NKKJiYiiURc48jty\nY0nPHq2trtPp8mWbSEkVjfrpqfyOXBc0aWqyN9cJcx0U1rqAlnswlV59NaJ43D20Xr3qHngloxs3\nXKfuypVSU5PRmTMRLVvmZoO1tkpHj0blrz01Pm40Pe0eqOvrpatXXWrG0VGrH/4wqu5uTydOeImA\nlx90MMY9kNfXW737rtHDD89NSfPeexFdu5a8LljqMZSkjRtn9NOfRm9eG9KlS26mW0uLledJly5Z\n/cEfuKBFIUGZfCm7rl5VokPDv2aLmT2wd69b1+LNNyO6ccN1UN9yi9XkpKfjx60aGqw2b3bpKi9d\nsrp0ybs5SldqbLQ6d87NeP3TP43lTTuVXt6T0wYNDRn197vytmSJEiPGkwPPnZ2RlDXf3DXr6fnn\nPf2n/zSTM41RNtkesg8ccGlrs81akDJ30OY6zpL0ox/Vq6fHBT6sddeQn5LT81w6Uc+T1qxxMyx6\nelI71vz6xq9nJBf8am3N3amT3okYidhER6ifku/GDZPUsWdkjE2pQ19/PVpyh0SxnTUL0blTiXQ6\nyfegd9+N6OpVT1evunpv6VIpGjW6csXNhj1+3AXxJSXK9OSkEsFPN1PWJurMnh6je+4prPPLv/cm\npwwdHjZavVrasSPzcfQHgfT0eIlOSD+96euvRxPp1Q4ciOjYsYjGx911aq2X8z6bHJh7772IWltd\nIN2vu/xrxr+/zQ7qMGpqcte4Cw4pMVNr61b3+899Lj4nEDs0ZBIdspcuSdu3W91++2zZ8Gdttbba\nxCy79POeXEf4ZWxqys0mmZx09V9Xl8naufzDH9br9OnZR6qREVenrV3rAjFzz5VL8Xj8uAt6jYwY\nNTYa9fS4YMPAgNXSpTalbvfv0X190vi425+Bgdl7dnv77HdkqmvPnXP3xqkpt2/RqP+ap3376vVH\nfybePdMAACAASURBVDQja92xvH7d3ByI4uqnZcvctezPfMnWRvPr0+R20WwAwSZSBGerc0+fjiTq\nR7+et9bdA+64wyYCDW52h7t3S/4sWenYsYik/PXG0aMmbRZM6jqghVq/3sra+Jzf55pRKOW+X3z4\noadPfcqtU5S8/lVnp9F//s9LdOutbt2mBx6Y0shI5kDa3/99nU6d8vTxx56mpoymptwMUH+2yuXL\nrn20alVcra0uIB2JuADEkiX+mlZG165JExOefvCDen3hCzMpbddly9zMUn8mlh+UmpqyunxZklID\nOi0t8TnBHP86dW0pt6MjIy6A/dFHrq2RXDZjMaNIJJ4om4OD7vocHTWqrzeqq7Oqq9PNwKi9GaRw\n9zK/PbZkiVU87srBkiXS9LSn69fdTLFTp9w17wYu6GYZng1mpj8zZlqjUMrd5vCDWt3dRm+9FVFd\nnWt3+msDbdjg6it/UIB/rWzdGtM779QXNMDNP0/vvZfaZpKKDyLkGix4333TBa9Le/26UX+/G3B2\n48ZsMNMfMDc0JB08GFF9fUQrVtib2R+Mrl1zAzoGB41++tO4NmxwaeQuXlTK2r7+IJPGRptI9Zt8\nnuJxmzOYmFwv9faam+0xF2xtaHDXx9hYXOPjVv39JmXmnO/oUZe+OjmIm2+mayVnuAcp1bcvfZtL\nacdXehuKOW65zp8bQFqZwb1hFcRrFkAwEfhCzShnlE+m9zY1ucZFa6vNekMtpcGZ/l0NDVae5zo5\nkjspGhqyj4r1pd/wq71mQa4GSCHnp9hzWOjI/kzb9fvf6+YDhqdr14wiEZs04yr39xpj5qxVJLmG\n9eCgEh1cbsFk98+t26LEjC5/1LW/xor/4H/1akQTE+7Bb+lSM2c2mOQejPxO62wBxI6OiI4dc2vF\nDA25zo8bN9wD4pIl0vCwe7A8dKhOQ0MuB30s5h76r12LaGxMevjheN6F1/0ZSkeOeIngmmQ1Oupm\nabl1h1wngDHu4S+auHO4B7t/+zejT386nuhA/f/svWuQXld5Jvqstfd36Xu3Wmqp5W5JLSwDxhZg\nATKmuNmQSQR1hhkOGZIfM3OKSoVKcA41OVOTk4RAhlsqVKZyipA4YaiZOScwJIbAGMvEgG8CyZaR\nZLkl69KtW9/v3V9/99ve6/x49rv3/m7drYstCb63ymW7++tv39Ze613v8z7Pk8kAADeasRg9iyIR\nbh67u/m5XM54hRY+q2KRoBUA5HJk/BSLLJjk88rvKs7lyDSybWB2VmNpySASoRn68jIByYUFAmoC\n0OXzPIfvfz+K/fsdLC6y6CHyjXJdLKaxQPJbvxVDuczP3HVXGdPTFubmLBSLlApaWXH9sRZ+zy9d\nsnDPPexgPn9eI5vluczMcKPvOAR3BgYM9u1z0dNTfzO3UckustSCkMJguBDTiBkWfkfoJeUilTIh\nAJSfk+N1dxtMTUlHNTw5NbJe1xrT4feXgLGB1iyC3Hsv/198Uubn+X4mkwR2CwW+h4ODDpRSfnGo\nr48SmOUyu8vFD05kjKrHeKMIF99lnLW2Kpw4QcC6EWtB7l84VlcVPvOZmD/+t21zsWePQWcnu5iT\nSRaOczl4cwbH3ubNBvPzfJ9d18XrXmfw9rezUJXPswgpz1PmG/G7E0BFa4OREd2wgCsFOynUdXYC\nCwvGf5fn5jS6utwK/7zqOfRW6l69Xj+m65XTCcvcGsNC6eIiDc4ti2B9Ps9mGMtiMbunx/jFvuVl\nFu9Z9GNHebHI97yjA17zADYsL1lv7RXmZ19fpT9K5d8LsMr3rLPTxeoqpVSPHFFYWdEYGSFg19bm\nwhiFU6fqr7P1zjORUHULP+KjI8XUhQWeA+dqrpNhwKSjw2DHDlMB7j76qO2DR2GPpR//GLjzTgJk\n0qDw5jc7vjTdV74SrWlG6eoKCrXxOBkwc3NkXl64AKyuEpCPRskK/e53LTz4IL1cjxyxMDtrVV2h\nwuqq8YGY6nsjUo4tLcpfg7JZ3k82iShEowZ33umgsxMVcm+bNrmYm9MYHqbEWi7HNTqXs/CBD1CK\n68gRC6kUpegSCSCb1XBdjjthzHR2GrS3y1jTGB4Gdu7kPVleZnFaIp+H52FifBC/XhFZ5oKw9xz/\nnv/d3V2/Cz6V4pwLBPPj3JwwT9m4smkTUNloFLDIA09K/v9a78zx4wqf/3zMf1+Wl4E//mM2C3EN\navSu1AJmDz1U9CRo195DrMXYjsdR0XRkTLCOy3yRSgFTU3wPs1nmuk891YL3vtdBf39lg8t//a9R\nHD1KwKNY5BzDhiOD3l4X0Sjnmr4++v8RkOR9yGR4zFgseC6RCLC8rHH5cmUR/9FHbRw8SOB8cpI5\nqNZcU86e5fOLx4GWFoUzZww2bSIQX91EEt4DJBIGIyMWTp3iXLq4GJxDLMb8KRYjUNXSwuaXTEbD\ntg0iEePlfS5aW8lqtiy+X45DZlu5rLx8kWMnlSKo6zguYjHOdZGI8d+RYlGkhF3fSzC8Z4zHmZ8O\nDtbPOarnPgGvBUi3LIW5OWDrVr7vxrAZaP/+Wqni730v7u8xl5fpXUuwu3bel3xsaSnImcK549Uw\nEtdqFrx0yaq7h5udRdV7UsLjj8eQzzMfNgYe2wsecApPglyhpwcYHeVzAnjMsTGOpZGRKPr62BTB\nJgzmj5EI90X8TlPFQuTnJic1VlfhP5e1ZMpXVriGc/ywYa9UArq7FfbsMdiyxdQw58SzdWVFFBKU\nv+9bj+l6IxjuN0si8Hqi3jmH5UjDsV5D8lr3r9q/Tyn4agYiN90IPF7vmUgdQxqE6HXI+sLtKtv9\nWsXtOGab0Yxm3L7RBL6accvE9RTVGn1GKYWPfaxxF3w94KVeN/BaeucDA2RChDc4SrEDfy1JoOoF\nf2xM4ZvftH39+Nc6AVgvAdnI87mWZ7heZ3+98xoeZrFdisIEbIC+vkomRKPN3cgIpegEnJTiXKlE\n7ydhWGSzlASS7n2yXYD773f9AsvgoMHcHDf5ABCLEdjp6HArCkfCBgPgnXeQ+FYXDx95JIKJCcqB\ncJPMoo7rBoWQ730vio98pIzlZYJhpRK/p1AQvXuNf/5nmkenUixK2LbB2BhgjI0rV5ig79zpYHgY\nnscWIyiYUDJUa+UV/diF/t73lpHLBcWhHTuAiQkLySRBI9fldWoNbN3KYtnKika5zMJhT4/rF9wz\nGZ572OfIGBa64nGCiYODQcGYzwUeCML/dxyFzZs1+voMdu3iJnd5Wb4L0JqFjHye71V3N/29ALKw\nKLXCjTSBCY6njg7+e3jYQlcXu6NZnFXYulVjctLUdL+L3vvAgMHPfw6/s7Vclu50eL4ULEps3752\n57xEI8muj3+8VLFpk8JCuBCTTAIvv6ywaVNjjy75d0eH8Twt+F3pNItDxlC2slxmJ2x7u/GLY7Oz\nCv39qu6YfuABxx/PQfe3i09+sgTA9je6YV82PisWjuWaLl+m1JkURo8csRGN8lilUiCFxvsT3Mf1\nNpnh4juPT2nBwUHHL7Lm87yH8/Mara3A5s0KmzahgoGXTALPPWfh0qXgPZqYUJifd/Gud7kYG7Ow\nc6epKAjz/Flk7+2ltGE+z/s5MkIfoHBhLZVS/hhViuczNcWC/Pbt7Fb//Odj+MxnCjXgl2zA5fjx\nOLBlC8EBpQiaC5gRjvXk0+TnjeLV6Oa8EX5MBw9aeOUVq0piamPePHJ88eVaWhLGAX8vEq6lEuee\nbNagVKL8nYypdBqgpCUAcFwDnNvKZYPeXoK5s7OUpgqzmqp9mYDatS4sMSgeOqOjGsmk69+fI0cs\ndHSIhKYwS3ic7m6DQ4ciKBaBaJTr4ZUrFnbsIFgyOakwMECw+exZym+GvefqAUphVvHgoIstWxwP\nNAjky4BwY0Ul0EHgvZIFu7SkUCyyoJnPk+nvusynLlzQeOEFztu//dulNaWJjaG0pzF810ZGxIeS\nDRmFAufwH/3I9n0mjxwhawuA32jB5hSufcZQHuvv/s7GE09YSKfpm9TTY9DTo7CywqYMehMpf8wU\nCmSu9PYanD6t/UaKoECsPKkwztO9vXwmExMW/t2/A7Zvj2L7duDcOY25OcoBUr5L+WsQIP6WnAOW\nlsisyGSYAxFIYlgWvMaVoLkrzLRLJBT+9m9t7N3r4MoVystx3uIaDsBruqnfBT8zo3DokOUzcLq6\nODfOzXEN2LLFoK2NUqGy5rS3GxQKAUBjWcwz9u511s1lv/3taMXaWihwLv3BDyLo6TF135U77jB1\nAbPR0Rg++clCXeYVEMx/3/0u2aDt7aYCkOU6G7C6pCGiUOC9k7WHICzzETZi8TxPn7bQ31/23nk2\noFy+rPwcLp9HVY6jsHWr6/nqwVtLLVy4IAAZ/zabZRNVJMLnQaCGOenzz1t45zsddHYaRKMuJict\nH2DjP8yBikVe1NISwa/FRbJnzp7V2LXLxZ49ASDAOQx48kkbxmgsLHAsplKyBnPdsm2DYpHHyWYV\n4nG+F1QXMJ70tvLnENflOyUNXADfIQFAolHe69ZW5tilEjwmJO8vrx0YGaH06hNP2BXNO+98p4vJ\nSa4dEuGco7roPTLCf584oTEzw33Fli08bleX8WW5q9dhNvnQB1fCGIVDh2y85z2VTXxcJ7jHkPU+\n3EQAbJyRKGOf85z8jfHZaImEqss+DssrplIKf/EXcWSzxp+LJFyX871lwR8/pRLzdT43frZcZv4j\nAJTrcixHo/TmpSIF0N/vQikyhEdGKLsJGAwNVXoBy/2rlimXeSmTIRAnexbvycJ1XT+3rtf4mc9r\n/511HDK/R0cVdu5szHSV77hehvvtJhEI1D/ngQFTk8eLxPJXvhKpaUwA1pbgrpawDPv3rawYHDxo\nVSh4AMFculaDanWsripfgnh1VeNb37pxoObtEleb79+OY7YZzWjG7RtN4KsZt0xcj9/TjSjIHTjA\nRfaRR+yKIu3wsMInPxkkO9XH6uwE3v52F0tLxit2ALt2OUilFFZXWQTdiKkxCxvK83K5NkmK64n1\nEpCN3OMb4dkVlo6an9dYWODPJTGlJ4aF2VnKLXV1wZPfY1Lb3c2NTjIJLCzoCuARAB55JILxcRbS\npZDU20vwiybJ3Fwlk9wAy8YZkIIcmV/velcZSlGaqbPTYHWVXYE7dtAAO5fjsxRQKhKBN9bgFVeC\nSCaBZ58NinmXLvHclpYE2AGkeKgUpbEyGRY2ZcMobCLppNRa4+xZ5RewRFLw3DmF5WXLT9AnJxXG\nxsiyohwIPBlCbty6u8ULgtJ2v/mbpRr/K5FuesMbgExGI5kM3oN3vIOb5NFRglG5nMLQEDuMz51T\nVeAgQ47f2cku3vC4YnFM+UVGgNdIaVPpYidTqFhksUM2ya4LzxPHRT5Pf4dYzGBxkUUbssj4fWGp\nFGNYpMxm2YVKhicwNIQaVhOLsdwEZbMByytccAxLA9FMvvb9TiRUjfzk7t0s+ohkl2wqtm0L+/2w\neCKAzPQ0cPQoZcrSaRakwt2/8m7KPU6l6O+ytESATmuOkd7ewDutXBaAVcCvSoZZ+BoOHrRw6pRV\nUdgTL5aeHoOxMbJLWNRiga1UYoe3+F0BLIx4d8/zpwqAo85OFqkSCcpwibb+ep2f3d18jlJ8lxCm\nYDzOeyJ+TbkcC1WzswodHZSi2r/fRX8/u8KvXNEVBfxSiQBWPg+0t7OYwvscgAGrqxpbtrCbnLJq\nHKfnz2vMziq8+90lr9BCgCeV4ljXmvMjO+Fr2X3bthUr5tFy2cX58xYSCZ7Hrl2B5KZSLrq6DMR3\nKBzhuftqu1erCw6HD+sKpsy1bv6v14+JhTnLByDDHfEb8VY5csRCMqn955XJcJ6XIjMBL865rst3\nvVAAEgnXe08CoDcSMejqYvMMr4lriuuy8Pbnfx71AA7LB/ktC/j939f4i7/I++BX+P0dGeE8z/fI\nYNs2Ap2FgsILL1jo7dV+8UhCAKZCgZJ4q6vanzOl8Kc1C/Dt7TyWSGL29BgcOWJXeM+JDKlSBtks\nPBnCwFPnzjsNTpywfFmvRILFX77LwPy8FNC5lnd1sSmpmgU7Oqr9eyLPwXGM57UV+Dd+4QtxvPvd\nbo008eioRksL54D773d8X7vWVgJF+bxGNsv3rVDgPZieZsGV8pCcH7q6CADIuVHel6yOS5ciXn6h\nsLxskEoZDA8TdCQ4QCCbgCnPmUCbwhvewAYapYz/DBMJAm5kllIaM5FQHmgBzM9bOHYMPrtbxp88\nQ2GYyXNPJOj5VCrRb4heO8FdYt7Dtbivz8Xjj1s4dkzj7Fmyysplnv/lyxa2bzeYnw/kxvr7WZR+\n4AEH+/Y5/pwkXf1zc8Bzz9nIZglicY0OxgHnYoM9ewhsLS1xLR4aooy5NKns2OHirrtcfPjDzrq5\n7OJi5XwgfodTU7wfliWglMLdd3MN6+kB/vt/t7GyotHZGTR95HIKf/d3MfzarzkVeaZI2b3yikZ3\nt8GlSwFzv7vbYHaWfml8NoFMIAFYoKuLkoHT09qXiuY8atDaarw8hM9G8oQrV7S3fsp7EDxvywqY\n2vm8wXveU8axYzbyeY5fx+E4iESUn28WCsab+7jmrq4C8/Mcx4cPc75cXWWzF9nyymevypon810q\nZVAs8v13HGB52cIrr2gcO+b49/f4cfFGJYM5DL7Kd5fL/PuWFo5r5tbGUzzgHFAocA62LIIo8rtw\nSJ4r4zseZx6RSgFKUVoZEEaS8d47HcrJgPe/v4wPf9gB0LhZMlz0dl2DQqHSTzSVolzk5s3Afffx\nmAsLtTmxgH7VIe91OCRfBIKGKTYPKd9f8qGH6jMSKe+uvPnT4NgxjXiccutK8VwjETYG9PUxfzxx\nIoaVFT6PN73J8Y4BX4762DE26DgOrznY08DfM5fLBu3tbAxwHO3dK4SaSaR5TPmy0PT4Yp795je7\nfkNXdzc920ZHKf07OGgwOqrx858bv9FHgLuzZ5lYVksOtrcDy8tsKIjFOP5tm4B1mIlU3fhpjMHC\nQsBALpd53123vl9n9Xc0iqkpqgYMDzOXfstbOJ+GGUk3QyLweqPeuXV2oiKPNyaQNRd2d7gxQWwH\nwhGe76slLKvZ5Pm8xuSkW+FJKO942KturbzyRoGat7Ps37WwtzbyTtzO96QZzWjGrRVN4KsZt0xc\nDyX8av5WEsh63i3GsCARls1ZWVF4/HHjb6hl097TA69jNzBalyLUo4/auHyZ3xHIaOkKc+rqBT9g\nF1T+/FqS1mtJFNZLQDZyj+Uz4bhazy7pJD51SqNY1BgbY0H82DGDrVtdZLOUiEqnlSf/Aq+rnBuj\neJyFsmPHaLo9OspO629+00Z3t8HcnEY0CmzaxG51FpWA/n54koksDBijUSzyvNiVz6JDuay8jQ18\neYPlZcqjDA4abN8OnDihMD0dFMC0VshkmGAvLBjcdRcT+Y4O43fm9/QA4+Mahw5ZXhEr6HYMhwBb\nxrBIdeedLpaWtL+JDxeswoWDQE+fnd2bN7uYmyOrTdgH1cHuShZ5cjmyx154wcLqKtDdHUhFPPCA\ng+3by/j7v2/xZBdZTFhZ0UinHbS1UZbmjjsAKaAND9solXTF+VYemwXMu+9m4Wx0VKGlhWyx2VkL\n6TTvKwuVxjsGi7aFAjvtg2tigYTFLYVf/VUXi4v0oVha4nG0ZvFH7mOpFIBpwc8C74tk0kVrK8cr\n/QjIdujtBU6e1H7XsXSn1nuOpRIlM48fVzWSGiL/VwkYKbzrXSXP/yZgVEnH7dSUgjGW5yvH73rx\nRXp3bd5s/Pmqr8/4Xi27dzt+ke7MGc5309PKN/BuayP7rlCgDJbjGE8CRnzXXGzbRpZYdXR3Gzzz\njFXzjI2hF8snPlHEN79po1gUSVF5X1gsk4JruQwPoGGx7ckn2VVbKBivAMaiaT7PjkvZZNaTkq31\nUwk8NUTqUGuCWgMDLs6f5/POZvksCX4pKEWmyZNPKtx7r4OLFzl+tK5kL5ZKNHR/y1scrKxorKwY\nDA25HmMjYFoJm4dFr8Bf4mc/i+DAgRLOnLEwP28wPR2A2aUS/76lhQUrggQKi4sKCwtR9PQAly+z\nWDc2Zns+PWSSUA6UoItS3Og//7z2GSkDA/xdeO7eqDStRLiYFpajE6bMtbKZ6/kxBf/dmO0bPi/K\nWAY/E5+zlhaNsLfK8DDB5PBcFzBxg87u6ndcwAUZ121t9Cz5lV9x/Hs3P0+23vy8yHEZRKNcw3p7\nCVpfvmwhleKcJmwiyuJp/Of/HMVf/zXzid27HXznOxZGRixvrHJdKxQUZmcpp7m4qDzPEnphdXeT\nxaMUPchSKRZio1EXxaL2QaRyOZC4TafJ0CHbRgq4lJEqlRSmpjTuu8/B/HwwdyWTXNu0Jms4FuP3\nLC4qjI9TUrelxfj+U/IeJpMsno+OKuzb5+Ib34gimw2aYAYGDI4dY1Faaz5PNqoor/kD3vmx6Pqz\nn2ns2eNgYUF7jAKDbFYkfQ3On+f1bNnC+7+0RDBAnq80MWQyChcuKGzbZhCPa/T0OFhZsbzf86Id\nh0w5gJKJ2Sw8Bo3y5MKUX5SPRHjupRKPH42yOLy0pHD0qIUPfKCEAwcMDh60kUjAAyqYH7iuwoUL\n0ijFfyxL+6Cr/FueBX/P/ybYBj+X3bIFaG0VZoXxwBLjM75iMc4n09Ms5i4vB36afP+A8XGe//Iy\n57HlZYV9+xwkEsD3vx/xmTGRiMFjj1lYXOQ1s+lBpC7Z4d/TY9DZ6VYwUXfudHHgQNnPxS9fJjDZ\n1gZfprUe+3F0VOHHP7bxzDMWJiYIanKNMUinA5lJYVQtLHBtEQnG++5jY4CwoGMx4zMM43E2lAwO\nGgwPa28O0n6ulE6HwRcBuTRGRw127XLw7LOcG8tl+M0yvb3cjywvB1J93lPz1w16lwI//znnkWwW\nvj8gYCrGrcg2k7Hv4N57AWO47pCtz/FUKLCBT2uOhVjMIBplMV/ehY4O1y8cFwrKY8fwZSsUOKYo\nVc3msXIZPjAmzTO5HCWFR0e5zr30EjzpV2m+UjV5g/jCcuxyrlSKUoXptPGAPoVYjOCf5AScB4Jm\nE3k/AR67VCKge++94iHnVkihHz9OOcUjR0QOlnPY889Tvvg3f7NxYTucm/3lX0Z9j6tolCxF5uME\nfk6cICj18Y8XcfhwZQOmZfF5SxOObVPOb88e12eqylhfXOS8eeYMWblDQy5efNFCJCLsZtTI9CUS\nCtPTwOHDFhIJ7QNLo6OqAoRcWOB3RCLA/LwLYyz/2ZRK/HutmY/v2eNiepr7Xs5FzLPDz9V1CZBb\nlsKuXfzM9HTQMOg4zE/kHML5lYC6pRLX6HQaXmMH2Y47dwZejwJIpVIE5GQPt2cPG46qJQfHxhRi\nsQD8FN/Ori42M8hzeec7g3ESNAlVzj+2TYbhwoKu8S+s/Lv6QRUQu6I2cemSxve+Z+Ntb+PfHj7M\nOXnbNu4vw+Dcrewn1ahZNpzHSyNSWBkiAK6Yt4qvpORuSpH13ci/M/zfoqoQBrn4fOvbIdSLq/15\nvRoNsDZzbSPfcTMBoWthb63XLN2UQmxGM5pxI8P63Oc+97mbfRJXG9ls8WafQjNehejsZLKTTgsQ\nYXDgwMYW8o3+rSyiJ05YSKW072vR3c3N+qFDFrSuXoRZSJybU552NxPyF1+0YFnsDBscZBfwrl3G\nk8ChhJIU/PJ5FlqyWW5ydu1i4bFSU5zJVkeHqfDi6e+nnFr4Gp580saRI5TV6u6upOjLNY6Nabzy\nisapUxYOHbIwOOhi+/bG9/DSJV03SZPjN7rHAPzzWVhQuO8+B/F4FMVi+aqeoXzPyorGxYsKyaSF\nuTl297GTm7JGAIvzsgmmvJ/yN/WbNxucPctryeU0xsZoHj8zw4SJnewshhUKLFq4LguDlNELiiLS\ngc3CAzf90SjHSiKhsGOHgx/+MIKlJRb9SiWFc+c0CgWRL+L4KZcNikUm1tu2sViRyXDcEXzT6O9n\n0URkY6oTyOqwbW4a77wzKNyEgTLZuIZDurwdBx5woP2u9UaRzyvvfsFn/zz/PN8h22ah4Xvfs/A/\n/kcUyaTlFcL4TNJpYHSUm+U9e4BEgkWz48ctj+lVWzCWsCwWVLNZFh83bWIBhoUu7TO5XFd5ne3G\nk3gU0KA+aJhOB2B0KiXyMcovGlZ/vhEw57oKS0sak5McW3Nzwbso/ihybfVYbeFjPP20jRdf1Hjl\nFctjI/Lz4+MBWMBnwUJYS4vyOvUVTp+m11wqxfc+n9dob+cYPnuWxvZaw/eT0ppA4cCAwb/+15RJ\nlHktFgNefFF7hWQCjbbNTl7Loo/bW9/q+KBMS4vBv/yXLPoQ6K0ExQ8ccPCzn1ne+1QZXV3iwyAM\nS75bW7bw2Stl0NdHkIYd2SxYaA288oqFlhYFxyHbI5mkz1dvr8G///dldHYG8+DKivbv1cGDNmKx\nQB4LgA94DQ4aDzCw4Dj06Bsa4rPMZHgMpZTHAuVc3tICf+zInMTxWHmtbW1S/FB+cXJoiMdrb+e1\nJxIsEheLlFNNpwWsBcbHFc6fJwAiY99xAqaTdLeT/aC8YjolXbUmUCEgM4vxwX1ubaXMF+UeNZaX\nle839fGPl/D611e+ANKNu2+f668LjULWwYsXRXpJxoZCfz/XkvDaBqy/vgGVa1XYt4xrJz8TXjer\nv/PKFeUDTuExu7SkcM89rj8+RBZncVGjowP++xaNGpw+bWF+XiOdrpw7+I4J6xY+q7S1lfJsu3YB\nQ0MuHEd5xWTO/5y7lT+n5nLwWCIsLBeLlXOl1mz+2LSJxb3HHrMxPa19OVLH4bMF4DMhcjntj81U\nymB62sLCgsbiIv2DpOHCtgnOCPPScWR88T2kxySLi21tnKfSafFpBC5e1J4MLfOdbFZ7Umi8xmSS\nQFtLi8bMDK89k6G32fw8JYu3bTN4y1tc9PWxeDoxoXH6tIUrVyyMjGi0tjKfmZmht5oUQcMg8f2z\n0gAAIABJREFUZPiZAAEjWtZ4AZ/ZKKGRTBIkXljQWFjQPrAjPjQSlGPlOzoxwXeToInyWSiWFcyd\nwtZhMZ/rYi5HUEUk27RGKF9gjkH5LkrE7d1bwj/9UwRTU/SNdF3eX/HIFLagzEdAJeBVHZZlQsV3\nzrHCSqfPE9+R9nbeg1iMDROuS8lngm+6Zv2WeyDzkMjnjY4yD9u8mUz2F16wkcmIXLXyn41l8WHF\nYmRxvf71Lubn2e2/sgIMDLh4//tdnxEwOUn5Ra2BM2c0nnjC8iQcCcKcPq3wwgs2JiZYNC4UmIMk\nEsrLMZTX/EJWpIA+AJlfuRznhdlZgjRLS3zvVldl3mHR1bIInF++zLHK/J5z9eoq72FbG9fNfB6+\nDKFtA4uL2gPI+CxbW/kspqe1p0BQXUwMvIdcl0X5TIZrZns7rzuT4XE4NuD7mApjmYV8voejozqU\nLyl/PNk2/PePa5f2pDi5Ls7M8L5ks1yHq5ntXV0cY5QjDcCsoAlLis4Be0vWs7VCVA/KZfhAuTTj\nRCL0ghOlAscxofOqn4fJcxEGcFsbGaOjoxovv8x/K8U5L5fjvcvlmHNv3cpzqbfWHD9O79xnnrHw\n3/6bjZ//nPNdNit5gKgRAHfcAX8vOTFBsPzCBTZQjo1ZKBTgN8XIe5ZMAm99axmxGNl+Fy8qvPyy\nhVJJe9KlGhcvMj8FFN7+dsdTDaAM7NNPWzh82MbLL/M8f/pTNvEVChyvMs9IriH/CNgt3sbyeZnf\nJf+fn9eezLqMW1VnThJvOO7F4nE2Bcmx5W+1FtCrsplPKT6vSIRSnPSlVZieJiO7t5cylDMzCsvL\nzEEIqHHe6e012L6d+7x0WuH++zm3vOUtLpaWFPr7mUv09bERhfsa7ctMj47yvi8tad8mwbYD1qRS\nlGIcHmb+lUjw2UndIR5nnly9hw/nKy+/rD1Z5iCHWl7m/q1c5jwhY5cSofzuWCzIw9fK025mdHdT\nzrd673DffQ4OH+Y9eOEFC1rDUy4If471l5MnOe7Sab47y8satq18udxo1Ph7MKmzAPBrLfE43+Ww\nRzvXGlOxVwBq6zES69VPwnH8uMKXvxzFqVMWZmY4p4yOaoyPV+bJ3lU2zJOr9zeyF7xZz1ry/epQ\nCti3r/5Gv9HzlzErNaGqb6x7T17LqLdP2bYt2qxPN6MZt0C0tcUa/q7J+GrGLRXr+T1Vx7XqCYcX\n5zDlvVAIikXVxwGC7rtcjklSd7fxOwPryQKOjmq/u9i26W0T9r4JM6gGBgwSCVPhzVPNltpI98uR\nI1Zdw/evfjWKhx8uNjRr3Qijq56We73zefhhIB5fZ/eK2ucnbDH6+wSfkw2TeHC5rvK7kKX7z3UN\nWlpcTE5qXLqk/OJUeBNCBhMLDj093EQVCiyaAywKjI+rhhtl8fHI58mK+dM/jSGbJRBHdhiLJyxe\nGt8nK/g5mV8iEbK0xPE2OEhvotXV2iLbWqE1PQOWlytZJkDt//M+Bv8tG4FGwFP4b2SzSWklJqHF\nIvD00wpAGc8/b3sdw5V/y+KXhakpg3/+Z3YPJxLa3zjTYLje9RrPs4xF00QCOH+eXZvidxbu/KMU\nUCA1VmyQe0rH/oULyvM1WhtcXC/K5aDwOjQETE4SUEqn+bv2duNJEQGNwMVymcbxwk64dEnj6FHK\nNb7udcbzRoE/7yhV3x9O/hvgho6G9dpjkwTG8/G4Qnu7g5kZhf/wH2JIpykVQt+uQB6rrS04R+mY\nzufZ2S6bmKEh158PRG5RpPX6+gyOHLGwc6fjy4sAgcTjpk3AM89Y6O3l9+3Z43oSO4Es0fw8N63s\n/uMgef55y5PD4f0VT7lkEnj44WJDKVmAwOvkJM3Wpet2YMDg9GkWKQkMcfzs3m3Q1eViYIDvrFLB\n3CN+epkMZacAskSmpmqBXBmPc3MaXV3sWqYPGAv309MsWon3RT4fdMVnMmQUZLMsrnIcVX6/MTyn\nVIrn7rq8L9PTypPbNT5ownsF7zkaXLyoMDSk/OcTjRp0dbFwEo9rXzKx2q9mo+utrIPVm2GRYZJC\nQVje9pVXtG9sHl7f5JmKZBQ7t8myEDkcYXyE161G5und3Xy3xANk2zYyPCYnpRnAYGZGeZ3GLKp3\ndpKd19XlYHmZY8+yApBLTNNjMd7zWEz577VIqU5MECiamdGeJJeqYOGUSgrLy4HniVKVY0qevxQB\nf/ADG88/b+HyZQsLCyLHyrUsk2FxVd4nrTmv0iOR/l+FgkG5rEPgEN8lPiPjeQMZ73OU9JOmhUKB\nuZMAF7z3fD/m5/kMWdDmOZAlyXcnm2W+1dLCeS2XY+G/q4vMRcmrzpxhofHKFfEQ4tz97LM22trK\n0JqSW4DxgGMgvG7LnC9MAWnkyOWCdU2aAoCgeYRyXAGTqjrIjoEnx6WwsMDvoESr8uXW+H7KvRGp\nNj7TSKTSC8ayTAXjuFwmG8IY4GtfiyMalTxI+QyKRuvKWuu6MMYLBYOdO10kk2RQz81x3BGgML5H\nHdcPF52dxsuX4AEZjb+fY4nXNjPDezQ3Z5BMctwT+FGhz/N8APqKDg6SjXzpUsByyOcVJic5z95x\nh/Fz3dFRAk6WRWB+ZcXgqacIMJTLgDFBwTuV4n3v7uZx8nkWSLVmoTiT4dqnFFkaV65oTwVA+cVl\nCfEkikQMxsfJ+KY8Fo9BNlEgBZnLGa+BiPNCKqXxwgvaX0+EKeU4QcG10T3m+ySNFsZnuc/MhNlS\nPF8B4B2Ha69t0/uO4EKtDKA8E7LMg2ctkn/STCPNV8IIFYah45ARRCCPfxOehyQoZ2eQTuu6DK9G\nIe+0XJ+8p8L8TCbJUoxG2RiQycBXIqjzbSiVKNGdzZI5OzxMFuHKivLkJwMwUVhlmQwZr6dOaV9x\n4vhx7rNkjpme5nMnO57ArVIia0oFiZYWrjuFApskz5yR+x1cE6CQyVj+PByNAps3u+jqAiYmbPT0\nGJw8aWFpie8VJduDec22gV27yNYEyHAqFLjOrKyw8Dw7S9llmRPX2xewkW/tqLcHWev7rlwBYjG+\nq1ornxFHsI3PCggAOLk2gH6Gtk1QXWvly9OeOqXR3+9AKfoNC6syHmfjVaGgfO+6Q4e4zoh3VJjd\nPjTkoqMDOH7cxuio8sHWVErhu9+N4NQpg+5uC3feyXy3q0vBGNeTCOU15fPGk6ylokA+jwobBaB+\nvnLihPbnleDeclzMzmqfHROPcz2VveXeve5rxgK6VvZRI5/1sDJDJsPmqdVV+J6abW2Ufp+YUJ53\nKvyGVYBz99vexvVRVEGMUb70p1LKr7V0drp4+OFyRW3koYcqzwEI8sp617pR1aGpKc4RAuZQVYh5\n5eXL2rcgCEc9QO1W9Ma6FquL9VQkNsqkey3Zb43qXr298ID3ZjSjGbdqNIGvZty2cT16wuLdIkWH\nRAIYGAD27GHBUDZg0tlIho5o+7PTsafH1BT0wrKAw8P0fJGiT6EQdPMoZfCxj5mqxNrgX/2rUkNg\nCthYspNIqIpCc3ButWatw8PUsteax3vwwfKax6+ORufz3HPAv/gX9f/m+HF60ExMsFP13nvZsS4F\nycFBPh+RiGIhy/gbwKCoYvzNt0h4TUzY6OjgMxUDbOm+liKBdMvmctxAZjIszp08qSDGylL8ly7y\n4Nq40UmnDaJR5bGFAsDBdQO5GTHFZtEIfnGA3dNMyiVJnJggo3BpKfDiWC9EkmdqyvI30xstHAD1\nvQHWj+BZuy43GgcP2n5xoF64LvyOUNdtXKirdxyyIgKQq1HHrnShbiS0VldVZFkvpLv9zBmD0VHL\nZ9EUCgrRqPK66U2D8+P9IFswvKGnDNbly+xGffvb6cclUjjhSKUUnnnG8lkFIqGSSrEYSEaKsJCU\n531nYfNm+EDr3ByLALEYC/ci00i5TR6nrY1AQdjjoqvL9ZoCOBcMD9P4vr0dGB+nz0yhwA0/CwAs\nCPX0GM9Tip25Q0OuL+sGBMXhfJ73MpWSIrzxfMeCeTwW47u/Y4frS80CtRujVIpdtiI7l8vxnevs\nZGHMGAJGmzYBW7aQybRpE/CHf1jE7/9+FJEIZauE/cnzVH6Bk/4bHKvhsWUMizcs9CuvIEdJ3Rdf\n5P1vb+d8Mj/PtUHYjADHQiolAEstEE8vKdcHT2Ix+qe4LouPgPb8guCBvSzUTkywgH3ihIWZGcpO\nAeyQtW0ylEZHFf7oj6Ies4tydh0d2LBflxQD4nE+a/Fmk3E0NORWrOOU2iTQLR50xtBjZ3U1XFQg\nWNXdbdDTozA46HjgU+26VW+N6umh7x2bV4L3Iho1PoC+sKCxshJI4ebz9PygRKTrg+1SgKM/kUJL\ni4uhIYP5+cBzSmtUFOKkeByARfDlYaU4LMzBAFSrvLelkvEL8+PjLA4JiMaOdpGWMt5YdWHbXEOl\nGUTYQgLOEfQI1sp43EW5zPeuVAJ27GAelEoFbBIp1hsDYPtROPv/CugaB1Z3oHjqUyiPvcNvMJAm\nBYDv9/IyJa4iEa7JjiNMeGAh+iLmd/81kjsnUG7bAZX6FGKL+z0gg3PUiRMamzbRQ3JuLpgX6gW9\n1sh24X0Iy8LVrp3hwvraEczdIh0oz6q68BsU7IN7IWNTnoecl7CTe3vhs3PYdBP+vqtr3Aj8vaSA\nrHDliuWvDQBZ1rZN0MC2meO2t3OdO3UqKCjbtmnYYFIdwubRmuAXYCreHWGBSB5DWU2D48fppdfa\nyiYFSnjBz3evXOH7JM1l5TKbT4SZFJZhBIQRy/mvrU3k/CgzJ+xz/pwAJEGfQIa3XoTlTCnXKQAJ\nC66WpfyifbHIcS4SvgBCoLA8Ux5zfh5+o0S94HNU/n1LpRqzmmTNEvnBQoGfr74/9WJxUePOO8l2\noXx0MI7lHQn8NwPWYqlkfElyMrTq3j2f8Xd9EeTfmQwBykjE+E1o6+WdVFgwGB8HrlyxfKlIYT47\njvLnVIBzPZvoyDD5X/9Led7DNmyb33X5svZZt+m0sM+CfYU0fRUK8NjZwZ6tVGIOEI/DazwI7qtl\nsUElmdTo6KBX7pkzZKcmk8G9CIfjUA51aoogjxSiXZfrFFntlb5nNyMch2MzaBaovBZKmwdronib\nRiLKb0oC4LP6s1myDc+cIfheKhns3+9iZQWYmyNQmE5rPx+JRNiEtn+/49cSwiDC178eQT7PMSYN\nV7JeTk8TYM/lgLvuIkgmkojlMhUreG5stLz7bkpUVhfrH3+c3nfSZDswwHG8uFjZjGZZBPFWVzmv\niS9hfz+b3np6rq6J+HrieuXoqhtqH32Udgci/53L8T0rFGTNY5NEZydzxHvu4Zry059qn73c1xfI\nPa6usrnv5Ek2+LzrXTzWlSsWlpcV9u51sW0bsG9f5f0KeydvRI5wIzLgZEVpD6gLml5GRxU2b+Zn\nAnuMWjlNievxi3u14lrtStZqeN8ImPZayCGGgbWREY1YrJJZt17dqxnNaMatEU3gqxm3ZYhe+sRE\nkBx2dm5cT7i722B4WPmduem0wtNPA7/7u3mcOxfByAglzFZWuImJRAhKLCwQ8ALYWeY4wJEjLC63\nt1MvXLpRBwZcdHS4vnQEOzgp2QIY/O3f2n6h7sCByo72RknTRpKd7u5aQA7g5os6/ExCUikWDYTt\ndi160o3OZ3m57o9x/LjCH/9xDKurgV/A/LzB/fc7KBaZsExOAvfcQ6kxek0ERWCtTaiTVTaEQeeu\n1gHgFS46SWFFCnxA0H1bLEq3e7A5li7NRsFuaTmPoGghoRTZINVFcAGIpqY0Hnss8EBJp4F8Xl9V\nh6R3JO98rvbvblxsBHCq7tDdaIS7lm9UXP09XjvC1yYeBAQ/jceu0V5hrTYiEeOxLoLvkn9bFosi\nq6sERimnSm+Qy5c1tm1zsX07Cyzd3XxBZmZYQOnqMlhaUl7HcnA8YT2I55wUc7Sm+XwspmBZLrq7\nuVmMRIQlxnllcLCM0VEL8TglNldXNR55JACkn37a8nzseDzLMujpAZaWWOiUYuTCgsIPf6iwfTtl\nbS5csNHaSmAomVR+xzuLFwapFN+V5WXXL95aFufteDwArNbanExMEORaXWXxeGWF9ycWc0OSJgo7\ndwZdxDK/bdrETvquLoPVVeOxcAKz+c5Osk0IbJuKsU5gk/8WYIGsSX5eKRZnolHjF8Ori0/CeK03\n9rQ2nhxg4LcibKBCIfBLCxfmLYvdsy0t9H2bmYHv6WbbLLYLM88YhVdekftBkPLSpaBIt5Zfl3Rz\nfvObFs6csfzvzucVTp0CPvIRpwKYyueVXxBYWeGxBgYMrlyxajphOzqUV9yprKg2YhGHY2VFeazb\nwKNT/L4SCbI3slnl/4z+Q/DkSxWeeML2ATF5DsZwHNg2gepUyuDoUQvZLJl3gPIAI/53NUgCAKUt\nRwEPODKrO6COfQqY3N9gfueYWF013jlyfAnLRD4TzCmWBz4ExwzLToXZtzJHtrTwHtu28tYo/jzw\nlwquH9uPAr/+MaB70j/D3O4fA8u7gC0jQCQHlFqAyXcAz/4pML0fIlccZq9oDWR7jmL17o8DXd53\nbQVwx3PA9x+FPbcfpRLX2IUFhfe8p4zjx7XPal17fucDkzmxet2+1gjP21ezFtd+PgDBpDieTMKb\nE2ubmYBGjOn6EZYcC9ak6u8MJFbpeynMRvpIsThN8Np1GzV01A/xRwsXxsJ5FkEfg9ZWFxMTllfQ\nZWG3pYXr3cSExtmz/HsyZyvXuFQqYBXWAzO1DuY/ARWM0R4TAx7rLLhPtq3WBPh4zvw32aPh38k7\nEjTvUNqSneHh97/6XMtl5fmkhRt/ao8t/14vVwreC3r+bSQcB15DjaxN1ZJTwedqwfnGYGFl3PhC\nbdBsFXjpNX5HgrxEfHXlmRGMD0DqSIRre7FIlmCpJP64wE9+YvvNeQTbRA6Q74+A//K+SjMc5UWD\n8Rqw+OCzu9hkwOPIWFSKe6WWFvhSnWuF43AOp3wnAQI2BNYysm9mrDV/uy58/zZKTgf+bmRj8joK\nBd5HyalGRiykUnxuhw8r3HWXg7k5zkUiNUpGtsHqKqUlu7s1jh/X+OhHHb9w/9JLGsPDYZl1ycEU\nFhf5nra0aOzbV8LQEJuKslkeI5kMvOHEG3BkhLmV5CBHjihcvhzkQ8IG2r3beGME/jXyuQsIq3xf\nwje+kQPltfT1ul72kfiuDw/TJ3NpSZryKAFLedmgUUFrMiW1VujvD+S2h4bI5gKC6yeIpHH33cbP\nIVMp1mDk/1dXNb71rdocth4g8+ij9prX+sADjp9/Hjxo1TRkiToBPeYkH6G8/b59Ra8u05jlLCG1\nrKARkWPogQduDtsLuHoP4I3ERsC0V5v9Vg2sTUxo5HKmwnsUaFz3akYzmnHrRBP4asZtF7IIcfGp\npIp3dq5NgTbGIJWiBFh3dyBNRb8ZhR//OIqPf7yIiYkobNtFVxcTi5UV7QMny8uBsXVXl/jwsBt8\n1y6DRx6xMThoPJNdg2TSoK0tOKd8nonW88/DB5zChtiSxBw8aOHhh4sVLIaNGIFKIbNYpOwLN/Pw\nZFDY8Tc4aHxj6suXtWe2zq7agwct9PRgzS6nsTGeH0NVGPUCLBTXe26f+UwMFy5YFX4WxSLws59Z\n2LOHf9/ezmP39DiYn7d9fW7ZEMZixi8OS3FG/JTCBb1whDe9ti3dcoE0XnV34ca6HoOiRG3RQrr3\naztNCcppzM6SkbF+sa4Zt1PI2CmXlc8kql+wlOffWEorHqevWSJhcOkSgRrKHSpMTnJT1dFh8IY3\nsOguHhCJBHypLSmIsLBt/C7xVEpVFLpZRGdRsKuLG0thSnZ1Gezd6yKft7BnD0GkCxc0RA6OEl8B\n4C4F8rY2dvgTJOJcKu+b+GV0dblwXc5bADe18m5ms5X+EoWC9nxzeB2RSNDFnky6eOSRCDo6+D3x\nOKWD7rmH60I+z7njnntcvPKK5XvBRaPK80tg8Wt8HNizR2HPHrLSvvUtG5s2EdBIpymBxAIVn590\n3K+u8pm3tgrDt7aoGS4+cowEjId6XkLhv20UlH/VSCYDOaswKzYe5/0RkJXHIHMik2FRIZsNCprl\nMgu4mYzBwAAABM/VGN7TcOdxIqHwyisWvvQljfe9z6nZ6N5xB73SfuVXyhVdrAMDBseOsdixtCTg\nk/EkAIUlwPGzbVv9CbneWl9P1lCkEyXyeYXubtdnPwMsUtHXitKSYb9E6eoGhDGh0dICD4CBP/47\nOw0+8hEWvRIJhTvuKOEHP7B9pne1B1zFOvPmbwAHfg+I5fwfmZ3PAf/4KDC9v+71Ayy+imRYLBa6\nH9sJornd40BiB3DpfcDuZ+F6bCwc/RT0LL83LB0VsILIjJSinVIEjdvbawE7AATsQqAXAKBjnv9I\nRArAXT8C+l8C/udjwHQA6sm/XRfAez8bgF4S3ZMoPfBZlL71zwB4fum0xsGDEWQyLBJvRH4rHDez\nYWS9KJWMB2DWBxskrv0a1r5X4YYOKfyHgQwC5Y3As8bnWT1uqtc/11VYXrb8745G+b5cuKCxvEzW\nYU+Pwcsv0/smk1GepF5Y5rgxk0mAO2meEMCBxzUeY4eM/Xx+Y8Di+s+g9v7k82QlNco1bybzJhyi\nhgCsfZ23yvlWR5hptV5Uzh+1zSauq9DaanwpR9eFv75mMsrzQpUGN+P7XlUywIM1Qxr4SqX6N1YU\nKyrPIfAoyuXgN6dsNMSLjcDkrQN4bTTYzAOQNSqAV+0cKY0qpRLljIVRPDurMD1toaPD+PtAznXB\n/TCG0rU/+xkbNP/+76mqsbKi/ecZBr4A7unKZc7ZJ07YeOihAuJxC62tzH8nJ4PG2f5+g0OHpLGW\neSxVTjRaWlQVaMX6xoEDZLULOAQQ9Jqe5h7etrkHYN7h1lgk1AMjbpQ83NWyj8LS1uK5mkgov15x\n8WLQTJfNBk1ZAJvcWlqYm2cywNmzzPG2bRPlmEDGMJVSeOEFhfZ2KnJInUKaj8P530aBkrWuNZx/\nSmOxMaxNSWNxZ2ftminKNmfOWGhpgcf0DGoyYZazhKgK8Rj8GZlxqgYku9bYyPio95l69/BGSmFW\n/608k2oQUJjt13ptEtXAGvcqfKfDY6he3asZzWjGrRVN4KsZt2SstSjJIiSLD8AE94UXNNrbmRQn\nEsCuXbVa0eFko1BgwhmN8nuXligR9YUvxLF5MwEN265lTZRK3AD19rq+5IsknTMzYm7Nz7KDXaFU\ncn2GQGen8ru+ZHMvIJ7IPAA0ov/qV6P44hcDj5W1ul/CSdd99xkcPUpN+Z4eFysr7Exsb6fXTCJB\nf425ORaDBUCcmGAxescO+MXJ4WEa9y4v855HIganT1ugGTg9bubmtO//IDr4yaRdkWALWCkdlSJB\n6DjSWc9rpHwFGXb07mDXFiUjKG/4+te7uHhR+ebu4QjLxlQHNyvG77av1xV8oyKfVw3Pg7G+iXcz\nbu9Ya2yF2Yn1wnHoR6I1MDYmm93AHFz+n54WFiYm+C7Oz7NQzc8EoBeAmkJHNdsgl2Mn6coKx2Y0\nyo1mKqXwk58oX4ZPZNqEhdDTw/kik1Ge5Bu/D2DxR2vjyyQBYYCaUkj9/exoJagUdFmHPyv3JCjG\nUuIsGqW8y+wsGS35PDA2pj0vFTYq3HOPgTGcBy9dsr1OfgJFuRxZeYUCZWgcBzh71sLlywZDQwot\nLWRjLSwo//wAzvkdHewAv3yZ8165rOp0vjeOasbHtc1Fyi9KF4vGYxpybYtEpEuWX9zWJh2vxpMe\n1XDdgAkIBECcyK0MDHANAbhG5HLK/56AFcb7Pjxs4eBBC296k+uvv5cuWXjiCY5fMrODOf2ZZ2zE\n48H3jo/DA0cDmbV8Hti6tf6VV3c11+v8HBgwHqs5+Fk87vp+YMHPDBYXORbi8UDKSgpcvE/GXzOE\nBSbhukBfn4uHHnI8uWBe3+Ki8t6BoDgv0nh+bD8KHPg/K0AvXuAkAaXvNQa+wk0bHE8G2P5iJftq\nJ4B7vg1Yoclm53Nw//FRYPodCOdFUiywLHiFOem0VyhvPYrld3wNxYgHph39VADKbTnd8BxromMB\n+M3/Dbj4K5XfIfdi97P1/273M/y9B5gVCgpTU1L0vP2KuGu/77f69dRnoF1tNJ4r+d0yj2tNBlRf\nn4tIxODJJy3MzmpPpi4An6s98WrD+FKS4rUm72YgRce1jMyh677EhrExttzNHgfr3c9bN27keUvj\nUCTiorWVgBYBd/jee+LlBtRnbofPK5ApBho/4/We/au3f7l1Q/xK2Si6Xrgu976838pn4LguGasi\nf1rvWRWLCsPDtj8/iDQuGy6rGZcGmYzxvEOBb387ioEBg7k5StVSapcKJwRE4fvKKmXQ0aE84JUq\nCeHnms8jJCfNYsTXvx7B+DgbcLZvF+sGsp7f+c7gjxvJwD34YLmiNsIGXAJGSlU2va4FEExNUV2h\nWn2HkuoaX/96xN9zr64S6Lp8WSGX0z4LT7zVCwWDLVuY01NRp5Ztu7REJYrFReN5mQafX1118eCD\nZXR3M3c9csRCKsVmtUKBTVQi2W3bBj09lFifnSUQNjSkNuxbKyFgS1ubwchIFPE4PHBN1As0fvpT\n5akXsIlQKYOtW0V9gtff10cPPgFi77nHQbFIn3hjDE6coKS9UsCmTQ4mJiycPMnGD/qiGezZ46Kj\n48YwnTYiH7hRicEbLYVZHd3dBuPj1SAg/YLrgYD1zids+yEMZ2HqVatGiK9wuIanlMF737vupTSj\nGc24ydEEvppxy8V6i2QiwW6aXI4MJkAYBgoTE0ygZmYU9u93cPCgVdPt3dHB4i6BJiYmksjGYi4i\nEe0VaVnsrN6cUrqKBeC2NnqhAPyuc+c0YjEWA9/6Vgdzc8qXv2CXPLWp83n4kok8f8qP0G8EFT8P\nJzGNul9mZ4EvfjGGuTmN1lYmTQ895GBkROHcOR572zbeu7k5ha1baT4PBFJgxSI7WGxoaVnUAAAg\nAElEQVTb9YGwmRkmrLmc9hO+K1eYeJZKLLC3tBivG5z3KR4HHnsMACL4q7+K4EMfKnl+V4GXCCCg\nV1BInJ9ncmrb1DJncqn8Z0OQiBsWdt2vb64OBKbbYTbYa9Xp+Mu3KW3GRmMj0o/0q7B82RwJy4LP\ndqJUnngRVgJeEhsZh1LYKRSUz1jMZvlPJEKZI2FayeclVlaM5wMDT2qPBaBUiqxH8ewTqb/Av4p/\nk05zA2lMcF1h8KvBGaOjg8XOlRXlyRuKBGHATsjlgB07HJw7Z3kADT/Dbn7jyXkF0nNAMA9xPifT\nIB6nl4RIc7kuQbV8XhoReLJhgO+1DpGN49zKc6a0F2V8RNpXmAwik1MtNyZFuXKZckp79xI0W1kx\naGkJPru6Ch/IyuWAp56iP8qlS+xsnp2NYNcurnfz8wpnzgBDQy727DGYnKRM5eAg/ZlWV8m843xv\nfJ+fTZuMPzbX8w6o143b2QkfiFvLuLynx8XIiMbiokImo3wvqXAELDDl+U34dw22zaLX979vI5VS\neO45FuaD99zAf9+3B5KGKLYAW4eBWIOB0zVR/+d1olhkEagu+8qqQtg9UE19//8NgcwsJsVifC8F\nsFOK8oOlD/860BkC0+79n0CuE5i6H+ioOt560b4AvPmbQJjVtv0o8L//BmA30JazS8D7/hT41hOh\nH95sYKAZr3bImiFr3ZUrNjIZXVEUpeTg2l6nwmIslxViMeUzk8N5pBS0Ke/46l1TM26f0Bp+kb2z\n0/hAhjRB5nJXD7IJWHK1LNVmSFw9u1fyO/Fidl3l7ysbRXivGG5UDCRMyfinNDfVFt78ZheLi8Ab\n38jGWplnxJ/XcTSWlkxIKpnSh7EY97b33utWydfVgjHGGL/QXyyKnDIZQiLd9+CDZc9Pu9YS4tvf\njiIWMz4L3xgq4UxMAHff7VYo0XR0NAYI+N3Mg5mDMydMJhX273cxNqZw/LiNuTkCxWwEhmcnoEL+\nxzxOMmn85tcK/9BQiDRpocA6QEsL/6GXF0HCP/qjKNraqFyQz2tkMnzOIg2dyTBfVSrIf0dGDB55\nJIJPfpIPuh7gJ83HyaTGyAgbnQGgv9/F4iK9JbdvdzE9rT25eI6VXM7GyIjBQw+V8OCDDo4cUejq\nUlhaoucsZdcNAEq7/+hHNjZtYg6cSrExmowig+Vl28/R2SRsUC4bz0NXobeXA/16ZAY3Ih8Y/kyY\nbTU/r/HpTxdrmtXX+q7riQcecHxZSYlikTWsL30pWqNEUX0+YduPwUHUMPWqVSM6Ovg7qeMReHTw\n3HPA+Hjkhkg8NqMZzXh1wvrc5z73uZt9Elcb2ewGHZWbcVvGk0/aWFmp7uRiUfdNb3Lx1FMaP/xh\nxNO/hweCsVuqtVUkDQjwWBaTwi1bKhegS5eo4y3dXpVSLuyYZydSbUedbII2bWLBltIJCtPTGrkc\ni6rCZLIs4ydonZ30NxGplT17SLmfmNBYWuImPCwhBXCB7esD9u0LdlVSyNu3z8Wb3uRidFTh85+P\nYWpKI5tlV+z581y4bZuJ5pYtgeGv41BeJRqlXEA8zvtIg2OFlhbKvAQ/IxCYyzFJy+XoaUbDZz6X\nTCa4xkSCCR916SmJNjOj0dXFpF7k2MRHy3V5P9vbecx8XmN+nslxLqdRKgXgo0gsJRIbl+moltK5\nWkP4taO5aW3Gqxmq7niV+UqkkhIJzoFi/HwtYYzILpHZFUgM8l2rBuqErSQyUSJNRyDb+MXK/v6g\n61Y8TwRcIXOGm1zxKRC/vUomXP1rknlafF3Ee0EYNWIKPz7O75YNszDW5H5Jx69lsXgRi5Hlls9z\n/chmg27cQkF+LkWRWjbxzQ7KucI3PL/jDnYhLy0JYMPnJMyH6ucCcH2IRtnY0dVF5lQk4iIapZyK\nUpR9EpBkclIjmeRasLKisbSkoZTyJGA0UinO47kcmXMiq3n5ssbYGH9PyUUWpdlQQu/Mvj6D3/md\nEtJpjo/+fkr/VG8sL13SdcGvoSFuRBcWlP+u3HefAxZCgDNnKJu2usrfry2NxfFazZZUiuzIqSmN\n06d5/Vy3qsaHeGHtOgx0jwO9F4F4uvHhXAVM3A+kBtY4p+A8XBfA/v+H371e5HuAk/9H1d8rn+kW\nZkSX3/9/AzsOVx3OANE80HsBiOau7RWIJwE7DyTv4H3pWee8Y0ngyP91DQf6ZYlbZx56NSKT0R77\n/+qvk00ALtrbmc/WY1uH5Uh9BuUv+D1txtohDXuSTzgO5eHDMszXEjd2L/KLEK/d/SDb83pZq/zb\n1lbu7eNxg95e5l1btnA/f+oUi+yxGBUURKqSDWainBCW7uc+enDQYNcuF319Lj76UcdvUJ2aUnjy\nSRtPP21hfDzwD5P5sLeXTWinT2v80z9FMD2tPfa6wvw8gaaJCYWXXyZTa2GBOdP0tPb3/93dwLFj\nGs8+a+PllzXOn2eNYnmZ+drKCpvOTpywMDam0ddn0NbG/CuTIcsmn9cYH6fqzOysheVl5kPSeCbK\nL4FKAnM++u8C2Wz9vU+958gaC/OWqSlKb589G1xPPg+/1hONAt3dLrJZ5pvyM4D1kTNnNH7wAwuP\nPWajUGCzWyKhcPq0RjxuMDzM+/7887wnbKJTXkM2Zcfn55WvjJHNKr9mVC6zhvJv/20JMzOs18zN\n8blkMqKYwyYwY7gGZTIEU0slAoeSR4syBpvZeByqE/E8ZmYIni0tMV8Oe1FtJI4csep6/ykV1KPk\nM6mUwrFjGtPTvCfz86zzvP71PO5Gvut6orMTGB0lg1Ap+HUveL66ExMaTzwR3ItTpyrP5+JF1u6U\ngufty78tleDXziYnWUeTiMcNfuu3Snjf+xx0dxs89piNVMrG1JSLY8esiuNd7b1vRjOacX3R1hZr\n+LtrYny5rovPfe5zOH/+PKLRKL7whS9g586d/u+ffvppfO1rX4Nt2/joRz+KX//1X2/4N2NjY/iD\nP/gDKKWwZ88efPazn4XW69PXm/GLG+tpKB8/bvkML6DSJyWXo6wWpYoU0mluWs+c0X731OCg8RIi\nFjfDnXqy4WWhs9YQmZIr7MyyLPqRSMcfP2u8LiTl+WpRxmtoyHgJmPK6oUhrl++3LNcHyGL++8oO\nrbB/V70OpG9/O+p3+q+sBDJhx49biMeB1lYXHR383nic/7S0MLEulQxOnKCMIe8pu9NmZphQp9NM\nvETGTBJ2ud8Bc4PJwtgYO8YF0OLzoQfD5KTC3r0G6bSLuTkmb+3tLrZscaGU9gqq1FSnfE1lcVG+\nL5BYa0Yzri024ttxO4QxnKduzPsQvNdS2N/oPWLXKYE4yzIe6MLNHqXepNvW+McRiRelCISUy6bi\nuWhNoCnstVQdAnCRlVI9l/Pf9LQQyRTlS7nJccJdvKUSZXIp/UdgiB4h8Hy7bj2Qq14Ia4rG9caT\n0jGIRCgjyI5b3gD6glUCmQG4wzVieprNFu3tGv39BgMDDiYnybCzbeX5bCqPPcdzKBQIfjoOP2NZ\nInGo0N/PtVEpjUuXlFcQCZ5ZOh0wDXM54P3vd9aVOwEaSwHv3u1UsMjHxzW+8x22+U5MaKysaGjN\n46413rxvrPtT1wXOnbMQjRqk07VMcT/qsbHWik1XCAit4/UlYYyih9dGYnWwwS8CBqPfKd+5DiB1\nPa9E18TG78svwLxdGU1gZaMhxdJrDaXo4cVmq7XZNsLoqGaaNuOXK4QxLflCNqtr9ibN+OUNehC6\niMVYD5iaAi5etPB7v5dDLmdXyd2zUWh1tTbPEMlVqtEYjI4CDz7ohiQOK9VwRJJ5cpJ5q2276Otj\njnrqFMEUx6GkXzIptgEKR49a6O7m70WqrasrUFCZmzNYWtKeXLjy5MiBuTkW+9vaDKJR/p2AB5OT\nBAosCx5rn6BPJgMsLNC3Spr1qq8ZCN6t6Wm5L1dXA6SMJI974YKFyUl4fms8r64uMqkAhc5OF297\nm4tTpzRGR7m/iMe5Z5meJkiVy2nE4wqHDmm85z1lbN8OTE9r/Kf/FMPmzQqLiwTEwo0T9PiTBmru\ny6SUGVYGaGsDjh2jh6V49CUSst8IlCck9xYAh9epqvYtwRgSv/NUivvBiQk2fD//vIVkcuOyghLr\n+cmHPzMyQgAvkCdWGB628PjjBr/92+UNfdf1xq5dxmtSMV69r1KKHYB/L6hSEZyPjON43Ph+vMHP\nTV3ViHoMstVVVMgtXuu9b0YzmvHqxTUBXz/5yU9QLBbxD//wDzh58iT+7M/+DH/zN38DACiVSvjy\nl7+M73znO2hpacFv/MZv4MEHH8SJEyfq/s2Xv/xlfPrTn8b+/fvxJ3/yJ3jqqafwwQ9+8IZeZDNu\njxBg56WXyDASDw6h4g8OGhhjQSmNLVsMkkku8JGI+IIE3ZrpNMGpSIQSemHZxJERhVyOJrf1gpR4\noLoYIQms47CTK5kUI2Pjd+dQO9yFZXERBHj8vj7KZNx5p4vOTnga11xE02mar1Knm91WIkvQ1RX4\ndz3yCD2yBMAbHlb4yEfKePllhcVFGueK9Iv4FUjyNT/PxFdAtXjcxUMPFfGVr8QwN2ehXGbhkRJn\nxk9Sk0mRmVJeQq7876/2piEAGeh1h/HrbJYdOYDB3r2kj+fzwPvfX0YyqZBMAiMj7M4RWYjG0SxC\nNOP64helaEGfgxv3PlzPfeHGjfNbKkVgQxhYjY5jTKVknDHwjN4FhGt8bfx9cP22vTEAMFzErJWy\nC66F/698OcnbqfNfWFzFIjfWuRwBSNtWvn+V+JV1dbnIZNgEwsIEN7AiBdzSopDPs4vxrrsA2QgO\nDtIjcnYWvo8VfTCM55VGWV87lGW2tXFty2Y1enpcLCwIoFivKBKMjQsXarX6GzWC1JMCrpZkOXZM\nY26O0p2lkvIbYK5n/EsHbiKxTlG0awNMrOrYgNdXRRz9FCUEw0CSY1XKHSYG+LmGUTXWNwqmXUus\nDm78vsy85dU7j5sSt8ec8osQwZxEdkEms96c3gQ4ftmDMmgcBLEYGwCvh+XVjF+skD336CgbabgX\nVvjLv2zFhz9cwK5dDs6c0bAsMlPEM7xe850xZI4tLWls3gyMjgJAsGaH8xhjjCetx30+QPlExzHo\n6VFewxFBrXyee2yAed/yMvM7aQabn5d6CdlG2az2WWgSlIdk4+uFCwZ79wY+6+JlPjkZMLmkXuK6\nym9iavTOBMe5vrXQdRUcJ5D8EwnDpSX4HpC2DU9m23h+WwQbR0e15zvONSEe5/mcPq3R0WFw9Chl\nvNvagu+3beOp3/DYYX9xNuKxCdu2mfd2dlL2/Qc/sGHbrMsI2w2o9HsmCGaqgNO1wxjj1aQklze+\nFPvVygqu5Sdf/Zm5OSo1eGfhMZwIfgHlDX3X9Ub4GAJkra7S2kRC7gXva9DQwnHMmuPkpPHrXCJN\nChBYa3T/pFl/bKxyjF/rvW9GM5rx6oUy5urTty9/+cvYu3cvPvShDwEA3v3ud+OnP/0pAODcuXP4\nyle+gm984xsAgC996Ut461vfipMnT9b9m3e/+904dOgQlFL4yU9+gsOHD+Ozn/3smsdfWEhd7Sk3\noyr27bvnZp9CRRQKgccLUJlwycJPqjj/OzxqKT1R+3lhZ0WjJkSrF2mu6ztf8QGo9/aIhF/ARKj0\nw4lEjJ/shNkGEi0txj9GLMakKZWCJ2VWKd0n/lXVSWp12HZwXkpRQrFYxA0p+NULuWZJ7rUOzsEY\nJhQtLfxZJsPnks/XGtk2oxnNaEYzri+kKUR8ASrZXUFXe6N1RAoIkQjXU4DSKyIPXL1+BN4V4UJA\nsAaJvK106q61/sjftLcbfxNbLocbVIIQUE+6p8Prp1wXpXMr78FrWsRsXQQidU5+vSjHgMy2jX/e\nKgCxFKDKgLGBUhyI5IP/L3QATmM5iJqIpIHWpas/741EvguwC5Q8XCuMBjJ9V3fezWhGM5rRjGa8\nxmFZ3M+LHHilpUJtBL5NwX7ZtoPmoWJRfLJNjVRruO4hLH6pPwSS5LUsq+rjN/pd9eeiUfheuvSD\nRd16xq0Ucn8ln5X7Uu95hPPWaDRQlwgDluF7G75n4fsodagwazT8N/XkdsPfczW5abjOJKoblFlk\nzSkMAm0kpCmtOp+u/szSUuDHJmNOzqG312z4u6435BgEnGr3MuF70dJS6RMv4zhcl5PPAmzaa3S+\nUsOiUlH9413tvW9GM8Jx/Pjpm30Kt1Vs2dL4hbumaSedTqNdDHkAWJaFcrkM27aRTqfREXrD29ra\nkE6nG/6NMZTjkc+mUuuDWj09rbDtpuvw9QRlpG6NcByRGKr8eRjckQVcQJ5wsiAFvUqZrEA2QMZX\noVD5vdcaG0kOKZVVmQTIzyMRdiJl63jZWxZg26rG6yvsWSNBdgSLfRtJnqJRMrHicXYTZTKVoNyN\nKv5VJz9A4IsWJPXK19VubQWSyVs/aW5GM5rRjNsxwsWOeoWPcEGkXsgGnpvbgPUb7uytZgCHCwyy\n2ZV1IQy0bTRKJeWvH2KOHj5/ekLCl9o1hmtsRwdzCJGsFP+q6pzhNYtCB2DlAX2V3a7mKtN1JwYU\nEIBfkfzVg13hiF4DWLfRiK+u/xnXBrKbm6BXM647ZC/RjGY0oxmvVtA3Vvn5jnjDrhfh3KZUUn6j\nEBCwtOrNX5Ificy41A3CeVogZ14bV5sLGUMAw7KYe9VrgrrVQnI+yROz2cbsO8kRw6CXfIfcU2nI\nrgeyyPcICCVNxgIU3sh7Vc0MqwRQaV1xtS4y0Wjgf7bWZ9ra6tezYrGg1riR77rekGO0trLZLZDY\nZ4TvRfX5OA4BLMcJGsQti4pSrJk1Pq4cT/ZI9Y7XdPBpxvXEWkBOM64urgn4am9vRybUbuu6LmwP\nCq/+XSaTQUdHR8O/Cft5ZTIZdG7ABXBlpc4M24yrip///NTNPgU/Hn3Uxne/a/v0YonVVYVt21zc\nd1+QUczMKBw+rLFpE6UGEwnS7wcHXR9AcRzqOH/sY2Vs2kQvLQA4eFBjdtbytZg3EtI9ZQw7r6JR\nFtJyOYNkUldQ2xkGW7bQU6urS7Swmax2dhLk3bTJxSc+QZnByms2uPdeFzt30jQzHL/zOzG89JJG\noRC8L7LQDg66SCapT10sBr+XImNbm8HWrS4+/elSBd36d383hpdesny/rXAipjVp4JKohZM+vrIu\nXFdXAI0EKA1+9VeLaG2N4/TpEubnFVpbDbZupZ7zwABp8D09vMapKYXHH7fwne/YOH1aw3FuRHZw\n+0iSNeOXJW7XMXnrnrdIpzTqnr32oK777RdyzmrNZgZjjMeEViiX15aHlIJNNOrirrvoX3ngAHd2\nx49rHD1KiRNpSAGU193o4t57Hdx1l4uJCY3ubsr6ikzvBz9YxKOPxpBKaZw719gPKxYDWlsNensN\n7rrLwYc+5CCRUDh5UqOnx3iymgqnTmnMzXHt7++nPMy997ro6DAYGnKxe7eDz38+BmMoCbywQKnd\n9naD5eXAm+BVj+1HKVnYfxTovQRYG6y+Jwbo8ZUNSR3Kd3WNU4bw6KcqPcC2H6U3WLfk3QUg0QP8\n47c35BVWcYwtp4GtE8DN6jfLtQP/34+B1AbP+5c6btf567UJpag4IB3azWjG2tE4B2oCqDc6fnHm\nLs4zLj7+cQc7dri4774yHn44jnRaI5kMPE1ZFKctQ2cn99BbtlASLx4PfIZ6euiTdOGCgjHaK9Jz\nXAoTv7fXYHDQ8f3EczmD6WkNrRV27XKxuqpw7pxGNttoPFOJJZttLPEaiRhs3uzijW/k8f7wD4u4\n4w6DRx+18eMfW/jRj2w4jgop39BXvVx2sbyskcspzztMjvnavEOWxXyyr8/F7t2sK125ovDyyxZS\nKTYCZ7PBeUUi9DMbGnI9SUkDywpyxXKZefG/+TdlAAaPPx5BLkc7B4mhIRdve1sZXV3AyZMWLlxQ\n6OkBtm+ndOLMjPYkx6vPNmAlFYt8zmspDGlNicPubsBxOJba2w3273e9fNi8qj5TtOKIVFhxDA66\n+OQnSzfN22pqSuHgQQtPP02ve6k91bsXV/PZtY733HPteOyx4jV/RzOa0SiaSndXFzec8XXffffh\nmWeewYEDB3Dy5EncReMHAMDrXvc6jI2NIZFIoLW1FceOHcMnPvEJKKXq/s3dd9+No0ePYv/+/Th0\n6BDuv//+azmlZtzGkUgEWtHhEEm8ZDLw+VpcVOjvd9HTA3R3sxvDtplMSaIIGLS0GHz4wyzQBdrC\n1ybrJybXxiiUStQCTqWCzo4wjb211WDPHoM3vclgYoJ63oUCtZxXV2k2urQEfPWrUQAGmQzQ3l4J\nCtUz/HzLWxwcP86qU0DnZtKzvKyxdavx7o/xfWkAJsOtrZRbEK8w8T9hN5qLUsnyu5cCQ+/qLv/g\nWuNxJlbijyCgmG0b7N7toFDQ2LuXiddTT2k/ATdGYWWF4N7QkMHx4wp//udRXL6skU7fyHaYZjGj\nGbda3F5jMmDjXPt5v9psGts2DQGTX8bQOpiPgbXkB+k9QLBq/fvnuuyMbGkBPvCBEnbt4poKGESj\n9OsKzoFeEbt2ufgv/4UFkXpeXEeOWBgaMjh8GFirqGjbBrGYQTzuIpcLmlgyGfpJ3Huvi8lJBfG0\nFCkSY4CJCYW77ybgdumShXvu4WcLBYWFBe3lDexIvRrm2TWHD0RNrv9ZAHAUsHQnMPOONUCt0Hft\n/hEws4/MrNUdQMtS7bGuxivsas/31YyJBzYO1jWjGetEo8JvM5pRG7VjJfD8rP/7ZjTDGIOODoNT\npzQ6Ohx88YsxLC+zWbS93XgMMAWlXGzbZvCe95Rx5Qr34lIPuHDBQqHAJmAZZ9GowsoK9/aFgqpQ\nw8nleOzBQWBiApiZ0YhEFPbvd9Dfb3DmjMb0NPz9eDiE3SSSb/VyokiENY73v9/B9u0EdiTHu3wZ\nOH+e3q2rq9pnncVibJiKxxV27wYKBRfnzyu4rvbu06v5FIIQVYPZWYVsVmFmRiMaFe8yAFCIxVhX\nMcagpcXFr/0ar/PIEYWZGeav4i0fjxs89FAZ//E/skn5wQed/5+9dw2O4zzPRJ+ve64YDGYGIO4A\nAZAEeBPvFCmRSiRRiuQV5RPJyrFlKbHlSiQ7dnzis7V2ks16400q2a3EldqU95xKzo9UspWoXCWn\nknIkZZVay5dd0ZZD0pIoSjJJgRcAJIjrYAaXuXV/58fTb3fPYAYESEqinHmrVDbJmZ7ur7/Le3me\n58Uf/3HI6R1P0PbQkI0jRyy8/HIA/f0ai4vA7KyB8+cVbrvNwuXLqsz/9MdMDQ1kC4VC7CNPsDZ7\nuVXKlQcCQHMzC3UHD9qIxbTj6/IdSf/b98q6uzU+97li1Z671axWf97V2mq+392t8cwzJRw9aq34\n2bExhWefDeD0aRNLS+x9J3mqpqbV9+fq7tb4zd8E7r67cEPPVre61e29tesqfP3CL/wCXnnlFTz+\n+OPQWuOP/uiP8I//+I9YXFzEJz7xCfz2b/82fvVXfxVaazz22GNob2+v+h0A+K3f+i189atfxZ/+\n6Z9iw4YNePDBB2/qA9bt1jdx8mZny5F1HR0WUikbp06Z7t9nMgqBgEJPj42mJo233mIxJR7ndajt\nq9HcDLz4YgDJpMaRIyUMD5vYsEFhetpwaem1kl2e8+Hp+7IfCZOFmQxcp01M+ojl8xpjY7zPgQEb\nAJlhgHIKVrbbCDYS0Whs5P360SHVGn4ePWrhO9+xMDxMdBIR+0xisgAF93DNZGyEw8opUilEozb+\n3b+jzuOzzwZch3fdOjreiYSNTIbOWjhMhlg2KxR95eogm6ZGQwOb5cbjGpcuefKELS0a7e1s3trb\ny78bGVG+xrrabRY7Oqrw6KMWvvGNEEZGTORybH77viQf61a3utW0QEC7vZekJ0F1k6bLtT/zXga0\n0oB6LY2fr9fInLWdItGtm+QKBJSbAJFeXf53IOAM2WcF7FDrPXlyH9zbd+yw8MQTlovu1Vpjbk7j\nrbc8kEQ4zGTPPfd4CMfu7uVNoS9cUHjzTRPz88oBTZRL8ti2RjBItGpvL6/jw1eht1cjnTZcQAzv\nV5pq0+TvhW3W1MSE0OioQjxOMMbSEuf8agqAN2wH/9vqikg2gGwH8PIfAK//qo/Z9RWP2VXtWvFJ\nIP4/vD8Xa+jKJEauzRZby/2+Hxa6Ru+vutVtlXarS3HV7YO15Wzp6oyvaFTDMJQroS+SaHW7lUzD\ne383/4yXYlE1xlIkotHdDeRyGidOUFmFCgXMBTQ2slChNXDggI0779R48sk8Xn7Zi9EJ/FVlfk0k\nohGPK0QiQKGgHeYYY/d43MbQEOPzbds0cjkD6TTw5psmrlzR0JpMsoYGr2e4SPHJs0grBhaAxLfT\njqSdxl13ldDV5eUqyPYJ4I03TESjlGZUir/T1GRjcZGFpqtXlXOf5X77e9FfvNY1czmRnDSQzdL3\ny+Xo/3nqBvz+unXA+LiJdFo7YC6y4VIphUjERm+vxs6d3g91dABDQxrRKNl8kQjn3PHjpvs+Jc+l\nNVlvfX0aly97sofivxeLnjSiqDPYNhWDpGfc0hLzP5GIxubNlqsuNDtL1YNt28gSXE3RBrjxYlQ1\nP7/W7/jzULOzChcuqDUxq9by/Wvd17FjfD/My4lqFBmVd9xhI51e276x2nGoW93q9sHYdRW+DMPA\n7//+75f93caNG93/f+TIERw5cuSa3wGAgYEB/M3f/M313Ebdfkbs0CELFy546G0pCn3xiwWcOGFi\ndtZD4UQiZDj96Ec8lMSRSCaBbdtsR/ZIobmZsgCzswpvvKHQ26uxbZuNmZkSzpwxoRQPOcpklR9s\n7EWiEQholEoK4bBGc7NGoaAwN8e5LAk6aXpKBKlGNEpHM5fjfe7bV0I6TUe3qUkjkaAzChDNs2OH\njZER3ueuXVZNZ6O7W+MrXyngt34rDKVMx2Hj/UciRBKRVq+hlI2lJQNTU3TeHovFgHYAACAASURB\nVH+8gH37JFnpPWs8Tsd8fh7YuFFjfl6jsVEjmdRIpWwMDxs4fVrYYHSG29s1tm618eabJlpbNYJB\nSsYEgywwMhHO38jlFEIhyhwuLpIxEIlobN9u48QJE+fPm5icJALf34T3w25r7V1Tt7qt1ljMBopF\nFtotq3pS5nrlQ5qaKAfCZr1eccmyytdmMKictc89srYMB69RiVC8XhNN/UiEMiPZrEI0imVs4Ztp\nWmuEwx7wQZ53hW/ggyiQWRZBDrbtSbHIf/7eXrLPWpbXX7XSKJViO/I7Gk8+WXQZ1M89F8CLL5pu\nf4dNmyxMTCiUSjy3777bQipV+/nHxhSOHzcwNqYwP+/NLemDYJpkkvX1aTz4oIX+fu1jbdPicSIy\np6eBhgbbOf+0wwjzkkaSnDl2zMSlSwZOnTIckAfPI9MkGjmffx/eV+LS6j5nAEiMA/f+J/753v9U\nXoDq+z6w2HLt6wRr6DkXIsuZXH3fp5Siv/i12vt9P2yu94O+g7rdAiZFcu5d3Gffl6J13f7VmN9X\nqSUZrDXPDDlTBYhTt1vFNAxDY/16C6apMDZmur5QNf9s7bGndthM9D1lzgDMG0QiBIN2dtqYnQXG\nxw3Mz1O2rljk70txIxYDWlrIZr9wQblA3QsX2CagVILrs0QiQCJBnyebJauIiXrG/5s322hs9J5N\na42JCcMBRbGIls+z4NPSYjuAUwEO2SgUGI8Hg/SPCBJmPuDTny6iqYkMeX9h5LnnAhgZod8VDgOt\nrRzIxUUCXwGq+uTzLPawt7i+qRKHoRDfYaHAMZUWFPJOpT+T+LwC5gKAixcVUimNYpG5HPZlYjGM\n4CiF+Xm+15ERw8ll8N8eecQL9I8dMxGPMw/ltzfeMN0C15tvGpieJquooQFobrYRiRiIRuXTysnD\nkBnmN1HVYdGTykEAsGGDjfZ25rsAD/AFVFcPqmY3Woxai0mhyW9ar55ZdaPfrzQpbGmtMTnpxQ+Z\njIFTp4De3noRq251+1my6yp81a1utWy1qJHKz4mz19dX/r2TJxW2baNzd+qUgVhMYX5euYfShg1E\nFgEivwTcdpvtIqT4PRMjI3RIdu4EACbqFhfpjKXTPDj9ElHS9NIwyMgKBplsy2ToQDY1MTmYyQAM\nvm0Eg8pJprHwFYspnD9vYGDARjptYMcOG2fPegc2kVurR+bs28dE4OnTcGQNpc+NdllkIyPAoUMa\nzzyTX/b9asiVZJJOur+PGsAk4oMPFvAf/2PElZIMhfj8V68qtLbaDhXc+05/PwBonD/vJR6JKmOB\nzBldABovv2y6jqZlec1j/RYIeP17lFouzXCrGmUi6oFw3W6+RaNEXobDZKtI4Fi5dtYeULK4UywS\nidrczH2sUJAg0usB6KFcyRadmfHk4irvgyhEBnJLS7zmwoJexphdrcXjGqYpvQw0pqYUlpYUJieB\n+XntSoMEAkxIiLyJN0ba1xvMW5/+IFyagrsj46AzAX0NFpzYB7fueY7JOGgHMarKxkAKTLX62xgG\n0N5uobeX59IXv0jghD84pmytwsQEEzEbN3JfT6U0Ojv1igH3s8+aGB42neKqdw+2TQS9UsIC59+T\nAW2654pYPK6xcydlXOS+GhsFPMPvHT1KP+LQIQsvvGA6z6+d3+W8ZLD7Ptjc+rV9PjkK3P2H1eUK\n7VW67qUQEPAVwNI9AIzaEoivwmOCNY2s7X6vZZYCcgmgFAXyjWSehVfB5Mo3kJFWt59pE8R9JWtG\nig9MlmqnL45CczMwM7PaPbludbu2mSaLC/k855VhEOSTq7JN+eMRFg/qPv+tYoYBtLUplEoGAgGq\nE4TDlINbWCCwS96XVxTx/m5l04jFbChlIJlk/C09sQIBMrGkN1QyqfHjHwdgWfSjFxfpSzO2pa+2\ne7eFeJwbmNaUZSYYmPJ409PKAceyuLVzJ5lb7E3K/XHnTgsPP0yAT6WfxOtqTE4q53k1Nm3SmJsD\nBgcBrW1cuGBAawNzc14rBWGGdXfb2LfPxpe/XD0/Ib1bK21xkT5mNMp/CwS4rgRsxXVGv+96YntR\nppAidTBIsJ7WyumZptz8QSCg3eIk+6FRpQdgX6xgkC00mLOgtGSpRIaX1uwjOzlpYGGBrLWlJY7N\nP/xDAB0d/JHvfc/E9DSLUqLgw7EHLl8GfvCDAEolFv5sm0o9yaSN1lYbpRLn365dGv39Fq5cMfHi\ni/wtUXDQmoo68TjQ2cnfDwYJRvYrJkk+rJZ6UDW72cWklawWg2q1zKob/X6lJZNe0dC/9lkAfX9U\nRepWt7q9f1YvfNXtptlqUSNrQZfYNnWpz59n8rGpiQwiScaeOkXmlzgZJ08qtLRIEEJZI8ALXOJx\njcOHgWTSwssvm/jRjwIIBOi0+gPuYlE5vVDozObzlDGMRpk0a2lhwS2bNZy+IgqhED/T0EAUlzTQ\nvvNOC6OjdFgiESZklYIr4QSsHpnT36+hNbOYmQxw/LiBiQnDuS7/GxlRGBtTy8ay/ICn9fayF5nf\nslmN2Vngr/86jEBAYWCASU06xSx83X8/Haq33vIYekrxHUoBsrdX4+pVhcuXmYymTCWvHYnI+HjO\nqd/8iWjT1K72+PXZexuQihwmCwLa7ZNWD4LrtlYjW7D63AmHNVIpgKhSr+i+WlsuL6KdPkoMBAcG\nGPQFgyxU796tcfGiwvS0wvi4glLU7U8khPnEPTOVspHJGO5+KUlIKZCZJgPeVIprfmFBIZ2uvvZX\nQt4GgyyobNxouXIu2SyTAm1tCjMz3HvDYZ4Vw8Ms1DMQhoPE1ejqAqanFbJZ7RZepDm0FIoqjX0O\nmaioNeYfNGPVNIkiZXLFhmEA8bjI4SindwMTH7EY2b3z8wZCIe2+y0BAY88eC3fdZaO/vxy4cuyY\niUzGwMiIQjqtMDnJBM7oKNDQwL29vd3GW28pKKXw3HOBqnr6zz/P5ueNjcDcnPYVv3iOxGIaLS08\nPyT4Fla4PziXwL67m82jBUiza5eNDRsoCyxyx4cOWdi+3cbp03yPExM2olHK7gpCuJbdtPf66m+Q\nWbUW+cDoTPW/zyVZxLrWtc7fAyy2ssg018t7eOAr1T/beno5E8wyAdOXPMlHgenNQCQNNF9Y/XMA\nwNVdwP930vtz16vAJ38RiE/U/k4hBLz4Z/X+Xv8KLBjkGZHNkk1jWdyPkknuaTybyPDSGpiaUg4r\nuZrJ39d9sLqtzkxTuwlyYRYmEuLnKMcH0C7op7rV/f5bwQh8YksCy2LPo4UFhUxGlFrod9BfJZjM\nMLBiz9hQSCMWo3+eSil0dVmYnWXfcUC5DDBhAs7NASMjpjN3PIYXCzX0Vfv6tNuXVCydVnjhBROn\nT7MNQD6vXWWa6WnmNhIJjV//9eKyGL/ST1JKoa2NijC5HH00Ks8o7N9vI5cD3n5bIRajX59IaFy8\naMAw6DMPDLAY9PjjBM9UApY3bLBw5oyBK1cUikXmZ8Jh3ktDAwtf0p5CcjQsTmm3lYJp8reqFZfF\nKhVhRMFAlHdMU7tFLa35nrQmi6tQIBPNNLVbSAoGvWv39rKf17ZtvPjJkybCYY39+5lXeust9oIl\nmBmQs2VpSWFkxMDzz5sYHTVw5oyJuTnlMMM01q2zoRTVh06eJJOIsqjcS0xT4eJF5quammzccYeN\nXbsEyKVw990l/K//ZWJhgePT1UXVoYYGjU2bLGzaRAZZby9zS6KYtH37ct/9WraaYtKNSiGKVctD\nyd+/H9+vNFkzSrGIKMXf3l4bQ0O1VTHqVre6fTjN/NrXvva1D/om1mqLizUkXOr2gdpLLwWW0bNJ\n3eZhvNrPjY0pvPQS5ZReecXEzIyBTMZAsUiauTTwLBSYsO3v9w682Vk6WkK3HxkxUCrRGUmn6ajM\nztJBu3jRwNSU6TaHFcYC5bQ0AgEPDUYqOpFElgV0dlIikHrWcHSX6QBrTXmo1lZqQP/O7xSxebON\n+XkWgLJZYHBQuygvpTQeesgqY0/VsmRS4803PVmBmRlKCrS1EW0/OKjR1LR8zCu/K0antgiRNAuH\ntZvEfu01A7kcUU6NjXDQRkTdplLA//7fAVy9yp5jpRLfzX33Wdixw0apFAJQxMwMKftKGU4gqTAx\nYUApjZkZA7mcX6pG2Bh07gMBBhJKaTeZfT1mmisnrK9tK39XKX/xS5B/xk2TcajbB2Pvt78rPfSC\nQQnI/Ul+2y2or1tHJOLEBPcbowphxTSZNHS+DUAkXOW5uL4EZd/YCDQ3c42nUmTSzM4qbN1KRujs\nrHIYXixaM0lARtfgoI3ZWQOWpcrmvDSAD4VstLRQmo4MGz4bUZflrB8/ul+eLRQSMAGLMv/23xZw\n+TKfXaRV1q+38eu/XkQiwYA0HCayV9hfwmiLxTypRIITPF3/xkb+bqlkVJUq9ebDrRkIhcO2e14F\nAkw8bN1qY8sWMpzZp9Hr5xAOUy4yEuH4HTpk48tfzmPLFoBFKCYF5Fx68UUTx4+brqwkG4UbiEaJ\nXI1ENEZHDWzaRCZVOq3w5psG+vu9a7z0UgA//rGBQsFw93evtxcD+A0bbOzdy7n77rsGzp1TDivZ\ngpxTnZ08M6WxemUy5uWX6WOQBW3g7//edBDPwKZNGgMD/B5lgrTzvivfq3YLhaZZPreFNcix5tkv\nhV757rLrZXuAS4eA+AgLUcYq0LjZTiCaXv73w/dBfefrMMM56MUUMNcOxKbKi1TpHuCF/xf4ly8C\nrz0FvPMx3sPAy0DHqeXXLEaAVIW8oaGBmX7g6k7g4l3AC/8P8L0/AHKNwIb/CQTWgEYZvo/34D5b\nD3Dx54BADsilgInNwEIrYBaAfAy4eBj4h78Gzn109b9xi5ph2A44iD5WKARfwXWtbJFrffbW3J9W\nssZG2+mJwvUYjZJ53NLCs2ZhwWMUGwaTyFyP5c8q4KNYjMnpQqH65+pWt0qLRCj1nEgwQZ1K0UdY\nWPCAGV7CXLk9eYDV+QaUQ1z5M34zDHvVn/3ZsRt/XgK5lFtwohQ/CxfFonJjdoB7STBIn1opVGUu\n0eibh0Ia69ZxTzl8mGCpyUnltj0gQxCueoLsafk8/VwpqEajbF/Q1KRdfyaTAd59l2Cc73zHxNWr\nBiYnFS5fpj8aCsEB4jJm37x5eaK/qYn5EOmdWiqxjxTvhfM5ECBorKeH/83MKMfPgbvv8vc0Dh+2\n8fGPF3D1qokXXzTxzW8GkMsxtr10SeFb3woikaCvNzNjuAoMhQKwfj3bPExNGSgUvLGJRPj7UoQS\nwJPEPNXiLiluERCrHDaO/53zrGhu1mhrI3Cvo8OGbYufK0AqAYixOKYUlYA+/WkvB1IqscgkPuvI\niIGZGeYfyouUCvG4xvi4wqVLbAmRzXIOSQuHaJTv48wZA4bBIhyZZ56CRiTCObm4yPjrIx+hvHco\nJGAPYP16vqstW2y3lcIdd9h45JGiK/PY36/x1FMlfOQjBHmtJp8kNjxsVC1+RSIaw8PGsndfzbdf\nrVXLQ11vDux6vl9psmbefttEPq/Q3q6xdy+Lh+Ew12ZlLq2WxWLhen66bnW7BSwWC9f8tzrjq243\nzVZLQV7pc342GNlEjCzYx0VQeCzA5HIGIpHyA6mnR+PcufLCztwcnRZBFC0tscfIlStEw2utyhKC\ngYAkSDXm5+kIRiJ0IuNxjWeeyeG110L4l39R6OjQTuILuHiRCQnbJlJQKQ8p5W94eSPImUp0e0uL\nwtCQ7RbRVhrjyu/6f3vfPt7bc88FMDcHZ8zJAAGIXmtt9a7z6quGGySUSgq5nMaWLXCp8bt3A5OT\nRbz2WhidnWSMiQUCCuPjBjo6OL7i8AqSVxw5CR5CIY7n4qKugbRkMU5rzpVyxokgdrzi2lqDKylm\n1TJhivCzXkEhFNJOYW9NP1e3W8CECWVZZAPVRoJqBx2pnTlcfX4ZBoM2KfL40YtsBM3G1KUSJepM\nk/tdqcT7aGykc06Wl3Z7+0kRQnpflUqcd2SG8c/ptHZl5ERepKFBPus1VZY1zqbUcJGDfX0M4M6c\ngYO0Y2JIKRajduzg5H/nHYIKBCEngWkkYqBY1OjpKQHQOHMm4Aa8ZCHBQUAy0CDoAL49jYnhzk4b\nsRgwPGy60rjV97ESnnsugKWloIPUpB7+wgIlSuJxhQMHLLzzjoGrVylJGw7bSCaB6WkW5tjboNr7\nvvbeIfuOXz735pjso9Ij0vuXYFC7Ek35PAuCLS0aQ0MaIyMKfX2UwTUMsids20A+r7FhA2UN//AP\neU6txMSemDDKnieXI1K4uRl44AEyvSIR5TbXBpbLpaTTPDOzWW+dKMX52NlpI5Xi/JmfZ78urYFU\nSrv9L/ys8LExhb/4iwC++92AW6SbndV44QXTlZphz0/DSTBwbGZnOWfXraPsJs9stUxiDfCaiweD\nXqKmoUE7TdwpBSq9ziQxz7UGlxVZNgcuHwSe/R9kOx38b2RZRdJAKQgkRoHwkvfZdA/w/d9d3uNr\nrgeh134D9pUDML/932G3/Rj6l/5PIOiTN85Hge/+nsuUKutVU415lu6hDGE1y6wH/up73p+7XuU9\n+e+1GAYu7wF0iD3EOl8rZ3Kle6rLFV4+APz9f/dJGV9/4vODZlwuN+3IWmk0NhKpXSxqWBbPE9nb\n/XKsqzEWzby9/2bf8/udbFeKLIlkksCIxUXKeMdiZKzOzvKZKYtVXVKXBX/+ZTTKOICJbl5PxrjS\nF5M5IwUMYRAA7+dcuj52mjArbHu5PGTd1m65nCefJlL3pRIZKcJcl/khc6N83S4vwgICpuT53NDA\nsy+fL2cvV1ogQLnphQXGqCsxkeoGVwJV3pUUxgV8ZZr0iQoF2d+4H2sNp3c3C1u1+k4Fg2S1R6ME\nUT74YAE7dwKjo6YLkvUXRSRP0d2t8frrplPsEIAMwWWpFCdRJKLdVg6iKjA9TcCuFHpKJfrag4Nk\nJg0Pm27MXmmVuYZnnw0gEjHKYgVRm0kmWcib8RHL43H63kNDNr70pUJZPmZ2lj3MyS6CI3lNgNX0\ntHJ8Io1wWOP0aRNtbSzsWRaZaz09GsGgjURCY3ycBTqtlQOuo38o743MSulrzPXAnrDaaZ+g3PfV\n2Kjxb/6NhdFRATbTb9y/38apUwZSKbgtM86eZTzT0ADs3u3JYct4VioSRSLaBQf6QXqiIDE1xfxR\nOAy0tWmMjrKgWihwnOJxAroWF1mYI4tP5i3/V3oETkwYZe8wnVaOhKFnnZ3lrTFqzYNqViv3VE1R\nIZul/5xOL3/3bPth4L/+1xCGhuw15bFWykOtxm70+7Wu6Z/rYmuRi6xb3er24bA646tuN81qoUYq\nERMrfY6MLB7+wtYyTTpoDQ1wdY07OymZ19PDZGk2q/Duu5T9S6Wor80A2Mbly+UHeqHApN38vAHT\npFSfbWuHJcHEc0sLETetrXQ4OzuZmDt6tITPfMbGAw9YiMXINmhvp5MWiTCwbmmxsWePjS98gb1R\nKk2Syvv22WtG5lR+f3GRvcquNea1fjubJbvu2DETw8OGI1PI60WjZMVJoBCPs6H43r0WpqcNl4EV\nCtGhCwTo+O3bZ7vIlxdeCCCbLb+/YJB91dra4F67UJAgRTnIOSZVw2HtFq/m56sHfw0N1OkOBCQB\nwiCESSWPOUJbewAZi2kn2VL+3UBAO2wy0Q2Xohf/VxrtClOQwXL133+/2UVk1AD/+hClqzcpQEnw\nCXgBGeCxqoJBCWA4l/2JNH6HjZRTKRbrhSEibCth56xfT+m+hQXlJoHZ80i5iEYyRllgmJvjvxmG\nrBNhb2n09jKABYgobG/X+NjHii7asKmJa1V6XRHhqRCP2xgc5J46MECnXxCt6TRcCZFCgcHxXXex\ngBAMAhcumE7ByGO/hEK8v8FBMnQzGYW5OcMdJ5Hfi8U0urpsbNyo0drKvgJdXQwYk0lPkrGvjwnf\nCxcMPPSQhXvuqY5uPHbMxJUrniSf1gaCQen/pbFli0ZXF9dAqQRs2mTjgQdKeOSRIr73vZDTA6Lc\nRE5lZVS3jDnnDxOSN77GhFUsTDwyYeH0IeEcLBSYpAsEFADDSSpot3BPaUHAsgxX7rClhSzhQgFl\nZ6/vl1328OuvG7h0yTsfZmakUTkLk7OzRLlOTRnIZlkAi0SYENi3j2fR8LCBYlE596HcnhfJpMaB\nA5bjFyiMjRkOul6789F/L5KcOHnSRDZLEMbEBPf9t982cemScmV5JVkRDAJbt1IuxrKI8u7stHHu\nHOdjZfJYkmVa83O2zWRKUxOTZiwuMrFumvQb4nEgGLTdIrfX9L7Csj1kP534LPDqb5KVNXw/EMwB\nSymyq/7562Q7XTrksaIu3YXgd7+OyPRB57zT0Ef+PezeV8qvHygBhSaXYUX2J+eBmu/xrplPwhj9\nOYS//3XYyQvQbVWYYBfvKmdq3f87QH/F75kWcPFu4JvfBk79cjmTS57l8kGX7dTTo7Fhg41wmD5a\nMKgQDConIVx+6fIxrAUs4Dyj9J1y3p//u+9PQYdofxvNzV7hOxzmfp7N8jMDA14/WIIlyvvwXcsM\nQ5KJQPVnWv1zmibvWUBflIFa/b2sPK6UBieApDaS3zC4llIpYN06nlu2TcACzzp/z0ZvfnjsYJ6L\nDQ1AWxvPjYceYjIwEGBi0s/yEAuHtbOPcv9qbASkTw+gXQDWey9rxz2byfuVryeMwUhEznH6pgIa\nW/MvV/25W12u7726v3KfTKTNKHHIOKC1lcVrgv6W3wN9BG//kZ6SyaTXU6ipSbvn5vICLuWcQyGq\nXFgWfMyYcr/Svesa6+rDaWu/cdMkyKelxXbaCChX2cCyRLqS12WcST8hGJT+0nwP8bj0/lKuOoJc\nPxRijNnZyeL8/v02PvWpEopF+h3pNP2MpSUW6LXW2LzZRnMzpfIsSzn9wuEyvNrbWcjavt3GxYvM\nRQwOapw5Y7rAiGJRubGFbVPpRnw/8alWMmGzLC0Bo6MG4nFPbUZYMv39Fn7wA7Ns7JXS+MIXCnjj\nDXNZPkbGkfLZHG9h1XG90B+icoJCY6NGLqddUNC+fTa2bNG4/XYbbW3eOguFKEEu789TJqBf1d9v\nu2C93l6Njg76r8Ui/YlNm7gvUgnDY0GlUjZuu8122Ve/9mslfOpTJRw9amHfvuWxQyVrrrfXdiXa\nyf7k9VtaNLZutRzgL/+OfczoyzQ1adx2G99RQwNw8aJCMinFbM69eBwOMAaODCcZeMePG/jJT0yc\nOWPAtpULchBbCwtJTHxmUULws7a6u3XZM3d2kjUnYOLKdx+JsFC7uMhze60MsJuZA7ue79e6ZuUY\niKrEaq3O+Kpb3W4NW4nxVS981e2m2WopyCt97tQp03UiZmc96YFgUGHrViZPEwmNPXtsfOQjJVy5\nYiCbNXDqFBFNpZJ2pQ8/9rES7r2XjVuzWTpC8bh2ixGRiHb6U3lMr0BA4957LezYQUcnFKKj1t+v\n0dZm47HHvGeR52CBjPJJO3ZY+NrXinjssRK6ut7DwV7FWF7LGajmCL31loFIhI5WPA40N9vIZol6\n2r6dznA6Tdkow1CIxz35BKUU9u5lIlocgLExhXPnzLLfDQQoZxWN0rmdnSXrAqDzTAeaCL7ubgaC\nc3Nw2X9+Mwz+/tCQhVxOIZWSgFO5vcEAtQypWWlsnO5JbxkGiw3r1tEBLBS8XkGS1I9EmKBnIoKF\njcZG20HoKQfd5y+M1U5QyPyrlXCqHch6hb21JD4Mwysw2vb7p2PNRNfq7lVQkmsNhgMB2/eur++5\nmEjTTqNg7hkSNMv7NwzOzWKR846Ickl6sFAvshrNzSzamKbtNHv2ZE4jEYXeXn5eCl/SU0IC5WhU\nY/167kkCBkgkWDCW/kSNjZQXaW6Go2nPtZFM2vjP/zmPJ5+0kMkwSJO5HokQHTs/z72PwSRRm0tL\nwF/9VQjnz3NPaG5mkHnXXTY6O4EtWxh4ZrMKP/0p91jT5PWU4t6pFO+1p0dj40YbxaLHrunsFDS+\nBM58nmBQoatL42tfKyAeB65epXQhZVzlDVWXcxUbHuae9s47DMDFolHg4EEWMSipZ+NLXyrivvss\nTE0ZmJgwMTYWwPw8550kvTheNgIBVYb6XD73vIS79Di4VjITkHlWPckqSZr2dhtPPlnCnXcWcPq0\niXyeSQHpgQMYbrGT12EipqfHRi6nsG4dUc2c35yz+/bZThKEZ201qR9Jsly+TOZUschkxdQUEAwa\njvQl2drptHITRVKMGhy03CRNMqlx9qyBlhayqBYXFaJRjTvvtNHVBWc9EYHc2Vn5zr17Eblkf0Ce\nz/O92zZcWZqREcOVuxR5Hzmrf+VXirh40cDYGMEjhQJQuV9EIhrbtmk8+WQJzc02JiYMF4UcizGx\nv3u37cpqsjeEBdvm3Jb9gNtr7b3MMIDAUjeC5z6G8NufhnX6Y9CZHn53vgd4+2Mw3ngKxk8fRbjQ\nDaUo0ZRIAIV9f4Ziw6XlF82nYLzxlG+/gpcUnO9Gw8WPIfrOU4heeBRJoxuhXDfy3S9BhzPefWV7\noP7n12HM93h79h1/BiSr/F4uRUlFwCvs+SQWGxo0urstbNhgI5Nh0TSZJPtOaxYoWDD03oOci4C3\ntmRf9xc+AgFPMlNkm+TfWlrY46WtjXN3ZfbE9TDCvQRdLMZiaDxOaW1h4goyPZnUTqKW/lWxqBAM\nkp3kST5X3o/8jgB61DUYI6sD17CXI+e4sIWFuVz7fNbueifiHVX3w0CA/lBzsxSGZZz812bhiX1n\nPHk5QHwl7lOA7DmVPf48+Syy63iePvZYEU88YWF8HHj99YDb31CeS87TSEQ784YMhdZWD7gkMYH4\nfbXG4mYVYGRtrlRwpOSqzGGuhaYmvi8pXlYDaNW+nsdwkiS/rKNg0CvevLeS3WTLSO/klcwve3yz\nGVBcv/yvsdErfq5bx2KHsHqvXlVYWjKqrlUBv61bZ7t9fsNhG42NymEG+B/GVQAAIABJREFU0xfJ\nZg33PfnXpGkSaLl+vY2ODvpiLNryPJc9Tfxisow4B2VvFBCV1iz6cI18OKpgfAe8V1mnQGUP5cpv\n2WhutvGZzxTR0ECfp1SCy8ABpHiknPEvB0UIUEt8BL9/J+eOaTIOjMU8nySZpB+STGqcP+8VvwhE\nolRefz9Bt4GAwvw83LMglWJMefhwCW1tVGK4ckWho4PnxpkzHuC3VNKuGk0qZWP3bm6enZ2MPfyg\n1WSyetGhqYmFujvvtBCNwpVvk6R+VxcwOGjhyhUDWmv09moXtHvsWPV8jFJe/oTqOxz3mRk4RS+4\ncXCxCESjbJcQDBLk9vjjRezdS1/QNJmL4DXI5CKITyGR4F4cjdpOgZ8xd2Mjz6x4nEWjeJxnyego\nlX0WFtiH/cABG48+auHee233fR07Zq5qzKSwsm+fjR07qE5z5Qqv39Ji4/77S/jMZywsLQFnz3o5\nGBmLvj4PXBePA9u3W2hsVE5Bif482XU8IxMJ5l3eecfE2bOGczayj1cy6c3n65X1u1aLkcpi0k9+\nUvvds+cm370oAV0rJvswmIxBRwdB+KdOrTxPKq1e+Kpb3W4Nqxe+6va+2GoREyt9zs8GC4e9PjaS\ntGprs/H5zxdxxx1MlEUiGn/3dwFMTCgXZbVuHeA/hC9fJtq/s5OH9Pi4gVKJiO8tW5hMDgbpUP3e\n7+XQ08PfHhy0MDhoI5Wq/iw3AyHyfo15NavmCInzKM5MPE42xFe/6hXzhodZZJR3IxaP23jqqRKa\nmjwHgA4EkfcXL1IrWyng4x/PIxplwp+JfgbziQTQ3S0IPr6j9nYmJQqFauw29nTZv59yEW1tdIDn\n5hhMA16xqTKIl+CHSWqNu++23ISS9FJqb6fOvqDaAC8BFYkAH/1oCffdZ2FoiGyCxUVgbs5wpQ6E\n/UM2mNzHcvlDssT4XzTqyT0KSrB2IsoLFFdrwp4R9LQkQ0WayTCYGFpLckGSUKapnb5N3r2JBYMa\nzc3a1TqvZaEQCxTxuHalwuS+rlU0M00Wa7u7OQdWKjowibo8eSWBdnOzja1bWajKZg1Xo59BmY2B\nASK0m5qY9CyVBB2sXFZqKsXnbWrS2LxZ49OfLmDjRpGBY5Klq4vjzQSuxuQkgygp3jExpZ0G0UTn\nSW8sYUEqpV1G0s//fAmFgsLMDJ9l584SFhcNnDxJBGE47EmhWhaDxHicAb1SBqanuQ9cumSUsWna\n21nAGhigzMaZM1z/775ruLr+ra0ekrZU8pLS7K3ARsJkdBGpPjfHPktSqMtmFWZmFDo6bNx3n4U7\n7uD+HY97gZ9/ztVCvSaTGmfO8Fr5PO8zFNI4eNBCZyfPkqefLrqsVz8AYGoqgEzGdgrZDLyTSRY4\nTFM7Dcarz6tgULsyt9JMm+/Q+7ysP5HaaWvT2LBBO0lIjaYm292volHOnfXrGbwnEhoLCyYKBeUg\ni0XGS8M0DTeBJ0wz02TwPzmpXGaXYXAeSdEL4FyNRKpL5Aq6VIpWra0slBoGC2stLfLugMVFA52d\nHvONjC0b+/fzPcl5VSwqtLUxSTc0xAIqAKdnG9HVorFf7V4kIeMPyGdnmWhJJvmcsRgcWRnlyAR5\n1+vs1LjjDgJa8nngzTdNJzHu7afhMPerTZv4znt7mdDyChxkqe3bp13fYv9+/vnjHy8inVauXGk4\nTMCOv7gmxTApmqxbp519wnL3uEhEu/uRSAI1NXHfisU0jh4tYir+PcwE31z23oyRu2Ce/RgaGji+\nIscUiXAP4brwpJwDi90YCB5Ecl0OyXASvfowkj/+Y4QmKJcojdlr9girZIbBOxdCIY1t20oYGtJY\nXDQRj/M5CgWFc+cMzM8TKS2JR69/mifjyYQ057mgx7nXegdCNKrddSNjxV6CGuk093BKKy+/fcDr\ngUdZMgE6eMViT87KYxLIeZlIwDnDRf7ZcBgbnnwsmW28PsACcigEl+XrFfacd2hwDvK++b788pnV\nk8G1i6vyPphM1O65wzFWjpRg9cJXMKjR0GDjjjssBAJM6sn+JuxGYbunUgRqSG+dhgaFhgZeRxjB\nkQh9LBbe+XfJpPfeW1ttt58IQVjcd6SAJT0CpZdlWxulXTs7gWPHDJw4YWJmxnQT3yJD3djIdVYq\nEczR3Q1s2MBCw4EDFuJxJvUaGujzSdGs2lxhoag6m221JkXRWjJr3ueUM3Y8f0TesaPDxuCgjXXr\nCEKRIsu1fjMS0b7zg38vvpbIhy0vVi6/jhQfV/ZTq31Xu3tsJKIcFkTtoq2MdypFxlStZ6z2LsJh\n7bLd/UVxj1mi3fVNmUOe/Z2dCgcO2Egk4IArjbJrcL9gst40bWzZYuMXf5GMFgDo6qIfVihQIaNQ\n8M5mggX9/SE9ZkksRnaIbbMXsoyL14vaK6rzHhRSKdstlMg+H49znYdClIcTMM4HY6spFHt+rxS/\nwmHGRFJMAeRM4Ry94w4bBw5onDxpYHqaAB9hAxUK2gHBqLIeUVKIB3iddeu0U/ySflPakbjjvt7f\nr7Ftm+34wswfbN9uo7ubfv1bb5nI5Qw3Xt69m/Hr3BzjAwGIdndr9PVp7NplIRzmGZHLKVy+rHDp\nEgsc+TwwM8OeUFIsCoXIkO7q4pzZu9fCt79dnb1TK0G/Ekumqwt44AELjzxi4YEHLBe0e618jPiV\ni4v0tTIZ7uFkrClH9YRnQ3s7/Y5t2zgP7riD8/0HPwggFDLQ3s5Cc2MjczG2zXM8keA7a2lhz3Se\n45RX7OkRMLPGT39qOuBY5eRvbDz6aLk0di3G07WKGtmswptvmtiwAbjtNo2NG7k37thhu3LiolrT\n1GQjEAB27tRlxaonnrDw2GMl/NIvWXjwQQtLSwobNxJgSCAJXN8BjgJBTw/9xnxeoadH31COyV/E\n9FutOGqldy9FSr9PvdK1Pkx2I/OkXviqW91uDasXvur2vtlqKci1PudnMIXDHgJ8+3Ymmv2H/tiY\nwre/HcDEhOkkN5Sr+euXA6hkRc3OErUzOEhHq7XVRjDI/9/VxeTsPfcQpb5//8rP8l5Qrtdq13sP\n1Rwh0akeGPCa7lY6WpIAFaRWJsOi4zPPFLB3Lz8nDgCTWzb+6Z+CLkosFgPOnDFx9ChRetPTTMRu\n3267aD2AAe727RY+//kiolGirbJZj/EiTAgpWv3yLxfR2QkMDGhs3VpCPM6ky/w8ky5LS+UBvCTl\nQyGiOvfssTE7C3R0MDErPYckQciCg3aDXUkeRyLsCxQOs3eZaVK2IB6n086gRyOZtF3WEFAuCScB\n38CAhUTC6+FERK/XoP1m9J0Q6ScmDCXZpp3gkPcqjI3VGJGy/I4wKiWJLL8VCGjcdx+ZlFNTyklc\neGMh7yIYZKI/meQ8keSmJMYk8F/JpD+f9AVcbbANSCKB73loSGPrVkpPLC56BeJYjKzSVIo9oTo6\n+J5DIUr5iayTYVDurb1d49AhFsEmJgw89piFT32qhAcesHD5soF83is8jY7yt6S4yt5XHoNoYQHY\ntInz4/Jlw0WYskjJtTE5aSCfBw4cIHLt1CkT586ZiET4bGfOGBgY4ESammKxZOdOkWcDpqcNVz5p\nfp6Jm0yGkoGtrWQniPb75KSBmRm+940bbczPM7ErRYhgkMEr+y8AXV1k4wlLdmmJ6zMSIeqRCVHt\n9NtS6O9ncL0aCV2/SYHl7FkTSil0dtrYvdt2Cyz+7/oBANmswoULpsOgYvJ2wwburffea6OtzcbJ\nk2ZNdDqlBrlHMoGj3ESiP5HT1cXguavLdtDEnO9HjpTwiU9Y6Ojgvba3a6xfb2P7dgZdZ84YSCSA\nCxcYlAYCnkScMO0aGjzkfk+PjaNHLbcJNqUyPbkbwEOQ9vauzB72gyzOnTPQ2Ai32bZSLMS1tjIR\nqxTcOS3MMv+78Z9XUkD1/+ZHP1rEhQu170WCcn9Anslw7EViRpKlhQJldeRcrHymw4dtjI9TynNh\nAc77g1OoAPbutZHLwUXdtrbCLXSlUsCv/EoJhw9T/vjwYT5TVxewZ4/tyGhqtw8Piztw9zO+P6Cl\nRaGvz8bjj5fwJ39SxMMPW5ieZl+FaJTnYyTCPbalxcaBAza+9rU8nnzSRne8E98d/Q5y2mNqIdOD\n8Pf/BK3hTtx1l+X6Q+EwpZmbmlh4yOW4127axPNva3cXvvaJo/i/730S93X9H7jwRi+Ghw3k83wX\ntg1grhvY9BIQ8X5PZXsQ/+HXYc12l+3VIt31yU8WsGWLxvHjAUxNsSBoWXAYgsqV6Zyb4xwVlpQU\nseJx6V0nZwrnOxPO3BtDIY2+Ppljksgk86G3l4xd9okS4EH5Gpb1QV9Qu/uvsLU5htqd72RMSxHb\nRkMDz9CWFp47nI/8TxDspqnR22u7wBB5zqkpzmF/Mj4YJJrdNCnLLWdUeWGs2i7kJYcliexnT4TD\ncBk2sRhBOOGwgaUlr99qZQFGGBSbNtn49rfzeOABAhh6eynrmEzaKBa5/gcHLXR1sajW0sJk+/y8\ncpN7whqNx5kIjUbJWO3rs33rnWdvTw/9heZmmQfsYxiLabegrBRcUNzWrZQCe/ddA+PjpiMtRV+E\ncmW8n3CYwCj2AYQjHehJbTc1EegwMKAduVRvbACuo6YmjYYG5QB0tAt2iERsp4jChLUAQQiy8YBU\nwtKhP6Pd919LEUDevcyRhgZKQ27aZCMYBPJ5ysiKxLcfKMS55wFopOhpWUzy+6WcZU5xnLxzTIBR\n/nuiQoPXG0lUEa4FThK2WlMTCwudnRwXyvMu/474ZVLkWVysXfgiaMwDcYVCLKzFYh47nr4QnHjE\ndpnSsRiL7M3NGm1tHKPWVmBkhPK7AqDxA1nEx2luJoBF+qTu2mWjtRU4d45xixSU5fm0JhPGL1Pd\n3Mx9YGGBv3X5Mv8sygz+orQAakQu1bZZwKHUHBlHwh7bvp3+hsS+tQqMN9sEzMU1sPJvevMMkD7J\npsl3EA6jTGZO4iatudd2dQGzswZKJQOZDNlFkYjHKNeakt+NjdoFU5Bdyvfd3q7dYk0opHDbbVz7\n4tdv3mzj/HlPVaarizGwyMRduWKgt5d9sQiO4TMtLrIw1NtL/7i3lyDOuTnDVXh4910D6bSBiQnu\nM0NDBHFaFmPRtjYbLS3MRUgOxC9B6BvBm864WSkfs2WL9vmVGtksC5FS1F1Y8KT+5SyTQonkZl55\nJeADJbPYPD1NNYI9eywEgxozMyyEbd3KHE0yCVeues8eFrdmZ5UTy3ixVDyOsvG4FuNpJVvpu3fc\nYWPzZp5jXV0ae/fa+KVfKrrg1WuBps+do2rC4CCL3B7Alt+lHLQH1LveHNNqW5GIrfTuAwE+a+W9\nXI8E461mNzJP6oWvutXt1rB64atuHxqrZDD192s89VQJH/nI8l4uckDRmZcDXTkBuHcIV9NsZtCr\n3Kay+Tyd2MXFtWkVf5itliMkjI5ahTQmzcqRWtu3a8zNKXfc/A7AX/xF2JFE8GQRmag08KUvFbF7\nt42rVxXiceU6V0pp/PzPW3jsMcuVO/znfw5gfl65xYBQiMmSri4mJ++/33YTqocP23j4YaLXjh9X\nZZJYYkrBCWw1tmyxEQ4r9PUxUdnbq52gXjnN6D35LKLyGHAOD5NFEwqxr1w2SyexoQEu0i8e55zb\nuRNOQKNcybfKJFYmY6C1lbIXzc1M1nV2Ut+8WISjYe9PNpQXjshqWxlZKY2229vh9hAAPERtLMZ7\nYe+7alfwEiAi+dXfz4QqwCBI2FHBIIO39nYyfMbHuebIBjLKnp+Ics6/ZFKju5vJfxZWPTbVSoUv\nScCEQnw+PzK48lkkGUn0PpMFsZhIVjKRVCoxwSbrJJlkIWRpSSGXY2DM5CcT7zLuDQ3alRrs6fHk\nV/0OtBQApqe5X4XDHJ+FBeUm4qT/SCjEObpli410mui/s2dZ+Jqf9xIikQivz2Ktdu6TTnyhwHtJ\nJIgy3rOHqMr1622MjhrI5bhGpqe5L0QiNq5cMWBZhiNPyCLYzIxy5BqZTJqd5f0wKGWSYXxcAeAz\nitRjJMI18/nPF929OJNR2LTJdhlEsRivE40yGJ6fVzh0yLouOddq41vtuwIAyGaV02DcQDZLWUPp\niZBIEGX7xhsBjI0ZTjK1fC6xvw8TFZs325ib4/NKfxmRW+Wa4DrZudPCM88UHUQnE7LpNJMhMm/8\n905gB/D220SfiwUC2gUExGLcnzs7bfzRH+Vx//2ejGA2y8Tu3ByTQH4wSTX2MJ/Zk4bp7SXCmhJt\n3NtaW4lELZWI1t22zWNAiazOtQqUly4pnDnDedffb2PvXkrg1WIyS1AeDlPuaWxMOZK5bGLe1QUn\nMU8WR39/bSAHwGJvWxsTLFJAk/OlpcXGwoLC+fMGZmc9SSxgdc9WLLJwNTHB4g4LwdrtbxcM8nka\nG4GhIdvtO3HxIgtE8Tjf5e23s+D1wAMWvvKVoovK3tTehUM9BzCbzWNphn3AOl//Y+xouR133sni\n6qc/XcTSksLMDBODmQwlG/ftI/q4r4/36h+bl14KYGZGYXRU+lMxadgR60J78U7YKo8wkmhbOoyD\n6f+C4NWDTsHGdooMNvbutfDJT5bw5JMW/vqvQxgfN52eggpTU3AKtspl75RKUrzkn9nrhkny1lYN\nkSFeWhLQinJYPDxzRcK0o4OJL8vi2RsMGohGgVSKyU0CbDzmNhkRXJ8NDWRqtLRo3Habhbk5rq94\nXLtyxfE4MDDAHiUEfAC7dpElyn5U/Jw/2RuJaPT08P21t3vgFjkPBcQgBTgyEbh/+eVa/SaFJAGY\nmKaCH0wSDvN9BIMagYCNWIyIdOkrBnjMY7I2DXev8pv4W7fdZuORR7h3yn6SShFk8dRTRWzZorF+\nPf2xX/u1ksNsYz9KYaPE42Sw7tnDpPbAgMbTT+fR1ka1AUlcip85NGQhm+U+0NLCPpDZrOHOCdPk\nfN2xQztqD5Q4zWaVAyjQTm8Yvu+BARayGxuZeE4kOB9GRgxcvcpzRhQNenpYfCMqn7/T2EgfUAAd\n3d3sLcZkvXL7vFiWMOsEvKIcVqAHhhApXSl6+cedhSvbJ0novS+RwdIaGBsznOIinMQ+fVHZC2Mx\nsl4ojUrAk1L87OCg7YB6PDlw8SUjEe7BDQ1M4EvhSPwpKdY0NcEB33g9byuLV1Ivk0IIGWfKGVvl\nskkXF3mtREK7DEGRoI/F6Bf4WVMecEw+y/sVMJDWnLeRCJPqQ0MWNm60sWuXjZ4eJqz377fcQmJz\ns8QoZPh8+tNFAExOT0wodw4Jc5SsHM7hjg7bLZY+9JCFoSHKqh0/bqJUMtx36y9Gk/HFOdLertHR\nweI89w6+83we7p5VqWAg4yygpaYm+ojt7UzE33efhd/4jRJGRxXeecfEwoLhnjsy91T5JSusdizh\nL5JW+x7ZpNoBouplUqV+80vYeu+SMVhjo0Y8LgBLKeDy30UpYMcOAhCnpwn8iUTIzlpcNJBKcd1Z\nFs/rzk4b27bZTs9d5Z5H0ajHwN2/30JPD0FHTz9dwFtvEQzl35v8vnytWLqvz14moawU9yR/iwYZ\ng3Saz7J7t4Vduyxs3qzdvdSfA1kre+d67Vr5mK4u+tiHD9M/KRbZSyyZJChqft5AsSiMOQ9sVcnc\nF5MCi2VRSn3nThttbWTxis9F8JHIVVNh5uRJssilgOb5+t543MiYXeu7lWAuGZfVgKbFlw6HUZbL\n8ssI3oyC0lrbYlzr3fvlHa91rQ+T3cg8qRe+6la3W8NWKnwFav5L3er2AVl3Nwsv1zJxNHt72U9B\ngoBcTkEpG4cOeRnyymuOjSkcO2bie98zkUoxOSJOmdb8t9Xcw4fZDh2ycOFCZd8EXTZutWx42HQk\nC7zPVo6bjPG//AsR3U1N5bT4qSn+b3e3xhNPlHDsmIl0WmHXLr47f3Kyu1vj3ntLuHIlCEAYV0ws\nRCK6atAh3zt82MLrr5P5URmQh0IaDz5YwiOPFPGXfxnCyAiLDj09dNQzGfYWCwSAuTkmoC5fJvq8\nqYkJLiYUFdraCti508J3vxvAwoLHGAOILjx1ykBLi41AwMbCgolczgs6iRTm/796lckVgAFvNqtx\n4IDGbbeV8M//bGJ62nQLPCLTItJcgkwWdli1BBaT8RyIjg6NiQkNaere3MzCiiTeBC1cLHpBNhOU\ngmJm8ujcOWD9eqJkx8fhJgCbmlgku3rVgGGwN9TFiwqFAiNmDynMsdiyxXJkqjS++MUCTpwwMTdn\nYG6OQercnHYCVT6j3yi5w+CqpcVGezuf4Z13lIsQrCw0SvKGfUJEWorvtFgEzp4l/bClhUGJZWmM\njRlO8ZLBxPQ0EaZLSwz2u7qA229nYLC0tDyx4J+rlXN/aIjSnZcvs9+eaUpixXad7u5uSrSNjlqO\npj0Dd0mGCZtgfNxAZ6f3wOLMNzWxX8DTTxfx3HMBvPBCeWNrkY6anS2/8UCAiU7KUXnX7e0lInrb\nNq7Jbds0LlzQTg+x8gWndfle/NxzAZw/b2B8nAVUMfleOq2WjVEyqZftD36TfUc+e+RICcPDtb+b\nTBIJPTIixUOyXksl7bBigEceKeGb3+T+0NtrO32ovEQMZYXIdjhyhL3Url41kM8zATU3B1duKxzW\nmJ7WOHSohM99zsKxY+ayhJB/TMWUIgshnTbQ2EgkrFhjI5nLhqHdIuTjj7NPg4zJs88G3N9pbeXf\nV9tn/fu3/zuzswoXLig88USp6tnR2+tnbHj3vJrzJJNR6OuTd27g2Wf5O7XOYJkTzz9v4uTJAHp6\nmDA6f97A+fMGGhuZbFBK4+jRa0vDyPN0dSkcOWK5vSL27bOQyRhYt46M46UlhdlZJoQTiWs/m388\n+/s13njDxKlTHoo2n2fivrWVTJUf/pD+yKFDFgxD3n/5vVeedWNjCsefvxO57/4cdka4984mef89\nPRYefliev4gzZygXHAxSTrS9Xfv+vdwuXGAh2LIMt/dSqcT526tux+75v8S//78Y5D/7bACldf41\nbGPHDttJinM9RiLcQ5iQJIJfKeUyjGdny8+sQIDnCaVGbXfMJBlr2wQ2hMNMGts21/HQkCTYKH+1\naZPG6CgT7KEQpe2EgSd7uIBibJvFqWIRuP12MpQ/+9kCjh838cYbJs6cUQ6DhICMUkkYgkxQaq1x\n7FgAlqXQ0CAJX55Lg4Ma+/fb+OxnS+7aymQ4X5UiM42FKpHFsvHVr+bx8Y9H3WS5sGl4LpNFMDrK\n/d+2yeahZBw/K0nnlhbKgL/zjuFIdSmnB6V2ZBqVw6DSbqHezxQLh8kgkeTbSnuDfy7Jurr9du5n\nuRyT0l/8orc3eVbC0aPWsn2e88vba956y0Brqze/3npLuQA4Oe8iERYiyBLkfp7JsAh4330laM21\nFg7TD5mcJJAjEGAvl1gMAFj03baNa2RyUmFyEmVo8HyeRSFhXEcilLqWAq5t83eV4rkrxU3T9MYZ\ngFP00mXS1kyQe58VZpbfnyC7hUAW3jPfczCo0NZWwsQEC76trRZyOeDKFfqyiQRceTIBkkUiHvts\n3TrtsEwsnD5toK/PxmuvGVhcNBwZOP6+1vQ5e3ttzM1xHkjRz/O3+FyGoR1JRGGFcN2bpsbFiwai\nUY3mZgJG5ueVu/aV4jyOx8msKZVYpLAs7TBFpUjItTs+bqBYNCCFYCkwHz5so7OTvlTluTI2pvDC\nCyZee82EUsDOnd6+uW8fP7u4CJw9y/fc2KhdGdtolJLohw5ZOHqU8/XYMRMXLiicOSM9/LQ7f2UN\ni+QoYGNgwJOebGoCJie1w5jXTvHcduaJ9/LFl5U4IBLh3iHrKpOh//riiwo//KHpsI21W5yVsW9s\nJOPUXwRTiv1A5+c9SfRKCwRE6lS7c4e958jYF2ZfMqmwtKSd3kvLJTGlMLm46Emm8vrKKXiymJ7J\neKoAMo6ArFUWCnbssDEyQqZcVxewYYOF8+cJsKOEMvewI0dK+Id/CDggLl57fl6ht9fCXXdZSCbL\nfcWTJ220ti6PMeUsrhVLP/ywNx/8e9qxYyZeeKF8XCMRFjj6+6+d/xCftdrff1DW3a3x2c+W8PDD\n3h6+dauFkRGCWsX8PmEyqXHxonLjGIJDNO65x6qIEVZ+1tWMx42M2Xs53v654+WyOA4Ax2vDBgvP\nPRdYVfxTy9YaR8l3qs3F67nWh8VuxbVVt7rV7eZZvfBVtw+tyQHld3hzOToPlQF4pcmBnk6rqodc\nrULKrWCVid3rdThW47zU+q1a4yN/PzICNzEibJhczuvBBcBF58q9VHOw/L8v/QyEwUKjg7iSU5JK\nsTAhBRYPJUkmxyOPFPHyyyxWLS2VJzdHR5no7+315tfJkwaCQa/5McCA7R//MYgnn7SwaRN79Fy4\nQPYCJezYOHhwkAm5xUXg3XdZVIlG4UgxehI2gkZMJJhMlKIsgybloAhZuGtpoWRMLqdw9qzhSglV\nFr2kkbtSykVJl0oad9/NZMP58wpzc4YbiPb22kinPUkVsrT4fhcXy2VXcjkmvpqbi+jrA0ZGTKfZ\nschT8n5ERtIfvLIApZFKUTNfEg8dHcDRoxZGRgyMjBjI5VjEamzUjkyW1+RcKWl0TImZ7dsZWGUy\nBubnyWgqFuH0j9EwDEEnK1fCCiA7KpvlmPp7OS0uEiFKBhTvPRhUGB9nwLq05PUq2brVQjzO5OjS\nklpW/Kmcq9WKDZ2dDMi5NxGZLSaB8aFDFp59NoDnnzcdRgatsVESud49AOVFKLmHQ4cs/O3fBjA5\nqZxknXZ6QjCpJglDSW5lMuyRePKkcuYIn3v7dgbssk8cPWrjlVeCy1hRu3eXFwok6PPfJ1m5uuw+\nVwuGWG1Ctto9lCNPmaSW4snLLwcwMmI40pksjHd12RgZYS+G7dvZZyWRYLLj+edNJBIac3NANqsR\niTARl0ppNzk7MmJifNzC975nYnraC/rJFF0+pv4kcDKpkc9rpxjKy54kAAAgAElEQVTPdzM0RAaZ\nf5xOnFD45jdDeP11Mkx37LDd378WwKNaQc7/nWpnh3xvLWfTtX6nlnV3s0i9d6+3NhobuU/Pzirs\n2mWt+mysBb44dszE+fMAUO5j5PMKR44Uaz5rtXNT5tmOHcDCguncL1lFV6/yutEocP68gTfeIPNy\nZqZ8XgDl+4fM99OnDefs4hm8YweBPM3NcO9peNh0kqL+8fDGufKeh4dZoBM2IcBkZCxmY+9eGwMD\ntnvtJ55gkp3AkeX3m07TLxsZoXSc9Jlhfyg4UmOUS1JK+nNpBwFuuyCIl182HbALxyuXsx1ZUf7u\nffdZGBjg2cukP8/eVMoDR4VCXFv5PJnUb75pIpNhwvbgQfY3yWSApSUD6bSN4WETDz9s4bOfLeG5\n5wL41rcCZWjnUolym+k0i2Gzs3AYyvz3vj4b+/ZZLoIa4JzPZIj4X1gg0IIAE+6/S0vcg4aHTaRS\nlMosFFDGGmloAB5+2MKJEwbOnjXQ0KAxOSnFLyauUyn2gTtyxMKJEyZOnybzJBwmw725maAXstqk\nrxn3fLFQiMwH6Ykn9y9rlgl2A+PjCt//vomPfrTkFg3862r9+mvvCbX2ef/ajMXK51dPj8bsrC7b\nv70ivHLXbEeH5RbcxsYU/umfTOfcI1uKjCiOuwCHeE0yV+i70jeUdx8OUy60t5eJfRbQWAxhPzKO\nqdbSQ0o77GLO8UJBuzJ2folJFiHI9kmluBaWlhTSabjrBmBhQZj2AJlmr75qoq+P4IbWVu2c+1Q9\n8NY+xy+XI9hpZka5TPlEglJuDz1UwjPPePtCoQCMjpK1t7TE4lQ4zLmxb5/GiRMKU1NUPZBxZZ8e\n7dwb75vFLz5bPs8YjpKlLHBcvsw5Rek+G6bJgmIqBezYUcKPfmRgcpKypwALb4WCjLNy3iGlbgsF\nvrNIhGdCV5ddFazQ3a3xzDMlANXPm0OHLLzxBuXUrl6F0zeOvk9vL5zxNfHnf84xjscJXMrlGHvI\nmhIlBPr89FcTCY3bb9cYGaG/Eonw3VkWv6M1i0dzc14xUf6TArcA2tJp5a7dU6cok9vayv3j6lWO\nIYFrfCeWxbGLRm23F55pihwo50M6LcoQ3nhI3JFOA6GQjVRKuUX0pSVgbs50ZSxDIe3IlJbw7rsB\nVzpeiqKJBKV2z5wxHHYbxysUEoUCYO9eC1orvPMO40jbVg6b0nYLBADc9zE1xc/NzpLhKUyahgZv\nL4nHlRvjpVJUOLjzTu7zlXatZPi1YunKPe3QIQt/93eV6Tfua6vJPdwIaHUtdj3+dC2QcbVx2bCB\n8Ydcn3ucxqOPFtf0rDfrM7XsvRzvyrnT22u5zHYqjFh4+eW1vYOVfutmAbpv5rVuxG5WPkzs/Vpb\ndatb3T4Yq0sd1u1Da5UaxK2tTEY+/XRx1QdfLYmCcFjj/HnDlXhKJm8N6cMbabxZzVbqD7bSb12r\n7853vhPG+DgdhYYGsnwAIkFjMToSX/hCwZVrWs2z5vMMGpeW4MhsaVeGbCWK/fCwgZ/8xHCTS9JE\nNhikRM0775h47bUAlpaYwJqf53+Tkwz2BgdFdoBJ69OniTr1s9eE2bNrF5H7XV0MwGIxYONG9onq\n69OuhFNHB1GuhqFcqRii6dkjZPt2G4uL/P35eaCtjd+jbKKF+++3MDTESHTrVjZSnphQmJ6mpI/0\n+/E3iWafBOX2+OjvJ6KYjZNZjOP3+H7iceDgQcrBPPwwE7ccf4X5ecAvHclCFuUJAwFgYsJEoUCJ\nIylosP+Xcvs/yX2JHE1jI5PL09MK586Z+MEPTGzfbuGee2wsLZFZduWK9/7CYeXKtlBai8+1ezdR\nzw89ZKFQYN+DVEo7SRQ4PW60Mx84psJus22iku+91y6T4IlEmPhaXKT8YUODF4Dz2ZhE5ZxQTsIJ\nmJigdGYtmb1q61HkJUQ335NWKf++fPbtt01cvaqc/j9eL7C+PsruTEyQWeHp63vXyGYVvvMd05U+\no3QlZUpKJSAWY4+yvXtttLRQYs+2ldsDbmKCheHNm+0yedT+fmn4zN/mWrXxxBOlsmeXZ1haokSK\nSAuyiLh26Yzr0Wf3xtHA4iKQSplobS1hYoLJwosXDSQSykXIA0w0tbZqHDzIMR4ctJHJGIjFiGB9\n5x0DU1OGIw/FcZA5JAXzfB544w0TxSKLw9548j1Vk5z1j9eVK9676e9ngtM/XidOKPzBH4QxPc17\nWVgwcPEiJdykp8lK8h1rlXeR+1trv8mbKUFTTQZntVbt3v3Xl2t3djJhSenD5WdjNlv93NyxgyyV\nQoGSbQCL9EzKkfUzOMiCzKlTnBf5vCe7lkwuf8cy3yulfAsF3utqpX46OvSye377bcOZt8rprwII\nG6Svzy67D09WVFWVFZ2cJNNsbo7PlMsBgHLZAUoxKWtZRHvHYlwn8TiZvx0d7EfIvY3fn5pSWLcO\nGBrimmhr03jySfYFef75AC5fVrh82XAl7AYGbLfvxpEjJXzyk0XE4xzb1layKdetgyt/TZksXfZu\ne3s1XnrJxMyM6RtBnr+AQnu7MMiEYURQSrHIAkw0auP0aQPf/S6LUJYFV5JLpMO0ppRsSwsTxuPj\nlOIMBpXbbywQ0Lj99hK2bxdZO0q8xeMaiYSJ1tYi9uwRmU8CaX78YxPDw6bLUiVrnf5AYyPQ3Gwj\nHGYhrK2N/kM0yjP94EG7zM+SuZTJACdOmLh0ief90pLC+DifdfNmveY9YWxM4aWXAsv8bv81Fhc9\nn0LWpfQE7enh+nz0UQv793OttbVRsvWpp0rYvJlxQTZLhs/Vq6bD7uaYJBIstgwOahQKLALt2cO5\nns3ydz05bo43pbkoIZfJEGDA3nTaYWyT6dvZCbcwIIwwAaeYpieLKfNA5N+iUeCeeyxEo7bLtE8k\nbHR1MekfCnnjR1a61zOH46PQ1sZ9RnqrSX/jiQkWZuJx7fQkY6Fg2zbvrJaxn5w00N0NbNignV5I\n0k8Vzp5IdnRXl3aKMhrRqHJ7vEmcJqy1aJTPt7DAMQsEgJYW+j6BAL/3cz9nYWaG31VKOeucBXfK\nV8JRV+AabmqCyxZrbeW8JtCJigSf//zy2LDWnPNbUxPnwg9/aLjS2/m8doAALIRNTHB/W1xUTl8w\nw71H6V0sCgOplMbWrVxXd95pufNY+lWSuWXj8mWFdeu8Pq4i2amUdueLMMiKRfpM6TT9ZNtWSKU4\nD7JZj7nV3s55JHLN0ah2emJRKjGR8PqcNTbSd8vlGJ8YBpmsHR3cC4tFvrP167XbS2xsTMEwKIEv\n/ZpFiUAKxCKBODjIPmQHD/K+5+cNGAaLat3dLA7u2MEelbEY+/ExhmHBNR7nOGSzyikkK5w6JbKF\n9KlmZ4HBQfpIe/awgC/7V2XPzoaG6j7HamTi1rLPNTWxP7Aw7fwSiquRtasmS11NwvlG7Ub6Hfnv\ntda4vPJKAIBye1/LOIRCcK+/mmddy2cqZbWHhq6dO3mvx9s/RpW95V955cbfwc+q3ex8GHBj77ou\ndVi3ut0aVpc6rNvPpN0MunU1dEc2S/3tuTn++UYQNjfbrhcdf7N/61qoGL8MV2enxt13Wzh1ikWD\noSFdJsO1lt/v7AS2brWQSmHV7/zQIQvf+pbp9D7ykIuhEJMlb79tukGlZcFp+s5Ak+jfcmtuBsbH\nGXBJ8aNQ0GhuZrLLL9uwfbsnKXf+vOe8NjXBZRRIIYfIeGBggGMliMjbbiPTQBgg/ucVRsfUFNDV\nxcTehQsmgkE4SHK4SQr2imIw2dWlXVZZQwPQ02Pj7NkA2tr4ObHZWYXDhy08/TQReKkU58Dly6ZP\nl5/BdzTKfhMf+YiFTEbYMF6hqrmZSYDWVo3xcSaWWLQS9pnC8eOGg+Rlge0b3wjhi18suFJoU1Ps\nbUU5PyJryagho+ngQRtNTZ5UZjVJG5Gh+du/DboJF8Dr4yLBvvSrIlOHPQMoA8j7k6KXbfP5lCKC\ndHaWCYeBAfZDWUlmr5pVMsBW2t+6uzX+w38o4M//POiw4shos20WW199lVKB27eXlsm3AFxjg4Ma\nuVy5TN3sLPC7v5t3kYbZrMKPfmQ6RWcm58Nhvv+REeBzn7OWPcPnPlebEVP52UqJlOtF7l2LiVrL\nurs1vvSlAp59NoBiMYhXX2WSQwq6p04xcV4pqZtI2DhyhIxR9iBS+OEP2axckMbpNJNxkQjKiuXz\n80AkYmBw0H9dyr5s374cme6fC83NGl/+cn7FufXNb4bc/dMvgXnqlIHOTk9qppa9X5Ift4oETbW1\nVuv6ExOGm1gWk7MRYA+1cvkeuGd05doeGyOrp7dXQ2uNH/3IQCbDIs+ePZaLVs/nFZ54ojxxK/Pa\nz5gEvALtaqV+qp21ySST9NEoARkLC2TbDA5WZ9Sv5I+Jv6AUk/KmSblg+Q2lFNrbKRPa319+tgMe\nezybZTFLa409eyyk0wpnzwJHjtiuzNg3vhHC1asEAwBM2BYKGj/9qcKTT5bKpC9Fxsx/No+OMvns\nZ8j6faz9+20AltPHkEXDoSGN0VF+tqkJDrOb5/bwsMK2bWRavvJKAErRr8hk6A+xxxYTwpQKo3Sj\nsKIPHACAEqamCN6JRjW2bi3h53+eZ1EqBfzyL3tyrrFYEG+/zeK21mRyf+tbJubmlOPnCJNZY2GB\nwKHeXu5/AFzJt8VFnukbNtjL/A6ZS6OjTPaLSf/WkRFjzT7pWuUT/fM1kdDL1gawnGkh9sILJvJ5\nA8GgRjConEIAk9H79nHstm+3y35bfrepyZMgVYrjd+wYi2LePgtHYlKhocF2ew4BLMpIAaSz00I+\nr3DpkpzdngSzUvRJenpspzcRpVeV8tYZpVO9M4nSm9plTIsZhsI991hl81xYrFRisDExwaJS5bsW\n8+8f/gK6rJOmJmD/fn7/wgUbf//3JubnAbJGPRWCcFg7ignKvV+ywTSuXPH6fLEPM1xWDvu/2tiw\nwcLx45zrb70lzHMyrkdH2YsrkxEZdDhsMRv33LP8mU6coI/pl1mrFesdP05J6P5+YHISKBapQjAz\nwxiHvU0NdHYS1CB7sgDhIhEb58+bSCSAO+6wXHCPXx4xkdCYmDDc90AWGOUpCwWNYtFwJDG108+X\neyelMikhnslwfEsl9ngDPFZkNEoA1MSEgXXr6OOyQMRxGhiwoZRygXwDA5YjHUw/LxTiXtrSwvgh\nEuFcFtZ1JsO9u1gk+1EYX2KHD7MflN+U0s6cIZChULBcBm9vr8aOHZ48IMdHIxq1cemS4bC9NEZH\neQ40N7MPoVLKty6W+1Rr9RveC2m3hx+23L5l/rFYLbPk/WDcXK8/LXat+CWd/v/Zu/sgu8rzMODP\n2V1pBasVK4RkYJGC/KHEJggjUYLFhwN47Ia4GWJXNqih4+mMa1JDE9ch7qRxII3d2O3g8Yxbx67H\nZTx0hAJ1MkkNHcYNLh4sxk5kY/ER2zGgINbGyGIX7QqtpN09/ePVuR/7eff73qPfb4YZdO/d3XPP\nx3ve8z7v+zzpWas2pfdkv7+R79ro/pgqrfZsnsuW0nyPQZkt1nhYs6xmAxaewBctbb43qMk6tP39\nEzsVzVL3ayk7QdP9rZkeBM4+Oz0oFdKD++ik+fUL4zvJBw5M/vezLIudO09O+t5kenvz+P3fPxH/\n+T+vjJdeSqlI0qzqFDBJRcuzSgqOrq70ML95c5pRm2rtVH/ftm0j8Xd/1xYvv9x+apVMfqp4fJr9\nXMzAPXYsi6efTt9rssGaN71pLN7znhPxN3+TAlfnnBNx/fXp30eO5HUpo84/f2Lu976+rDLgvn59\nmsV8+HCauT062hbnnjt26gE9q8xCL1JMpZRtKcXIJZekgffxg6cRaYCj9mEwpXxpiyxLQa3CihXV\nYuRr1qQBmtdei8rvO3myqGeQBvVGRsZOpU1M+214OA2aHTlSP6A8PNwWe/asrLy2ZUseR47kpwbb\n8jjzzLHYtCmPzZvTQ/tUgza150KxD/M8j7/8yxUxOppVasadPJnSKH73u+2R5yk4t3JlOg4vvpgG\n2EZGiloE+amaHWlWf56nVUtdXXnd9VAMrs5Fow98RZDpwIEUPMyyLM48MwV6i9mNv/ZrI5M+eNYO\nLtUGbLdvz+Pcc0fiwQfb47vfbY8TJ/JTgdGUGmvDhjT4cdFFY5Pu79m2zQvxsDGfQEjRpn3xixFn\nnFEdeClSEPX3Z5Om1B3/8FUMYPb3pwHvCy6IeOSRrDIgmuSVdmZ8qt4iHc/4lLOzTTlT1FCMiFOp\nUCMiqqslZhpkWaqUH8uZgqY2EP70022V9rbYv9ddNzLp79+wIZ/wwB2RrqeBgajU8Spe+9GPIn78\n46yyzUUauOJ8f/75tspKoxQQSZMpnn++7VTawpRqdarB6GJgM93H0t986KH2uPDCNOP91399dNp9\n9dBDEx8FLrggjx//OKsMnhafn02ao9rXa9MhbtqU2vDOziy6u9PAdAo0TGy7H3iget4Xdfgi0uze\nYsBs7dr0Nx54oCOGh6uTliLSAPuKFSlwUHyu1vj9kmrExoTgwYEDWTzwQEccOJDqJl1zTbUubETE\nOeekny+OY5Fqr7s7/c6f/jRtdxGkKFJInjiR0g4W9dFWrYpKHbGItBrgHe/I48ILU6BvbCylbyz6\nZ+PbgocfXlVZ0Tk4mFZfPfNM26mVXNV2oKMjrRzZvn207phOl/Jt/D4bHq5daZjug8U+nG2ftNFB\nrIUYhH7iifbKCs4jR4rVTimI9Qu/kE/6O6f6uxFpdc/AQHtNO1uksxuLl15KwZJi4sTwcMR1143G\nT39a1CZL/adUV6m6Cn50NK1Wv/DCPHp6Un9psmDyxRdH5d5x1llpolTteRkRlZ8bf/2vWTMWt97a\n2IS+2p+v9hXzulRztX3U555ri+9/Pz9VByud12nlU35q0kx+qq5XHj/8YUesXFms4E/1tF7/+uqK\njyIIGVENgr/5zfmp2lFFXb90zf7sZ/mpVWLFdqXA2GQTST73uZWV1RS1Kc4ne9bbv79aC7WoRTU2\nlp0K7qW/ldK0pv+vrT29dm0a3N+y5WRs3JhPOJYRkwdp+/sj/uIv2io16FavTivF29vTBLaUBSOt\nvFqxoprh4ayzUn+6vz9NFiz6eMePp2eEVAs3HZPiXFm1Kq1czbI8jh6NShrriLH49rfbK3WIi3T1\nRftYPOcV7V7x/FME1FKt3bF44xsnP8dqU3f/1V+tjKGh+vvNZJPYHnigI1avrv6+4j6QAtPpeEzX\np5pLv2GhB8NboU7SfPrTjfRZl7qe0lJOHF4oak5NTVAQmC2pDjntjV+K/93vzj310mKbKjVjI+kR\nFvpvTZfC4IILOuM73xmJ6VJDFPr6stizpyO++MUVlULEx46lwZpVq+pTCtb+/dk4//yIHTvSzNkt\nW1KQ4g1vyKO/P/29115LqX/yvLoq49JL03fasCGlziqWvb///SNx/HhKU9HZmdJWXXrpaLz0Ulsc\nP57qFbzySnaq8Hh62L/22rFJl89v25bHO985GjfeOBrvfOdovPGNEf/4j22xdm3UpYxK+6/+/KtN\nQzE4mJ1aUZdqYJ19dh4dHXm8850jsXlzmjW5Zk0eBw60R56n33/yZKrFcOONJyu1zYpUK4Xu7rH4\nwAdSyptikPjYsYiXXkoDW0VR7a6uNJB38cVjle1Os3nTwN/rXpcetLMsi82b83jzm0dj5crqe2vW\n5KcG9aIyaJf+floRsH59+ndnZwoQrliRBoVuvnk0Pvzhkbj55pG48sqpU4xMls5m69Y8XnklKqme\nVq1KA5Fbt6Yg4ehompl/xRWp3tgFF4zF6tVphv/PfpbqIYyOpgfYFLxLM11/4RfSoNB8Uy40qjZg\n/MILxaBvqpfw8stphn9KmRbxs59lddtUXOPjU75s3ly9xp97LtWKGBkp6oCl410M5hSfnWo/L2WK\n2EZS0kxnzZqIl17qjK6uk7F+fRrgKVIQpVRLYxNS6o5PIdffXwyep9UtnZ1Rqfd11lnVtDYnT0Zs\n3BiVv1Gk0SvS8dSaS8qZb32r41SdujQIVhSgX7t2LK69dnTG9B1LlU5nPn9nPj9bmyblmWfao7+/\nrS7VZBG4uOGG0Qm/f3Bw6lS/P/pRexw+nI5V9RpM95l162JCu1Ccs88+2xbDw6mO3OhoSnnb3l5N\nWzjZfa/42c7OtN1HjkS88EJqR9O9J6WNPXgwi8suS6kWJ9tXk93rOzsjfumXRuP88/MFOf616RDP\nOy+lyEop4/K45prRuPLK0di/v31C21F7fRXpwyKisk3F/2/fngasf/rTLH72s7a6mjTps2OxYcPE\nPtz4c2hkJE3sqQ0eDA5m8eMfp3t7W1tK3fzyy23R0xOV9LH/7J+djAMHqscxIs0uX7s2Hcef/zyr\nTP5YsSKLX/qlsfjZz1J7unJlqsc2OppWSbS355XUtBH1aU+ff74tXntt/LlXbQv+9m8748iR0Uqf\n4NixLH7+85RuNdULqn6vs8/O4w/+oPHU4OP32d//fXu8/HLaJ2efXd3e7u48tm4dm1U/bTYpT9es\nSd+jSLl96FA2q3vNQw91xJEj1XtZd3f6nZs35/Hxj5+Ysh8xVXrXX/zFtMrn+PG0GnfDhmpAdsuW\n1K8YGMji6qtH4/bbR2Lr1jz2708phrMsi3POSasgV6xIq/NHR1Mg9HWvK1YPRrznPSNxxRXV7SqO\nwUsvpUHlM86oTrIpVs2n/Ve9bufTns8mDXNESot8+HDq461YkVYAFamji0lS118/GuvWZdHbO1ap\n17p2barpdNZZ1dSVxXaOvw/296dnhaKNLPqH6VxIgcyrrhqdNKD+8MMd8eSTHeMmpKQ+3GTtxIMP\ndsTgYBEcr9a9bW8vUp2meoSvf30KZKcUnGml1kUXpZTIv/mbo3HttY2nAj733DwefTSlXS1WoZ53\nXkotmAJgWaWvnWXp3HnTm9LvL+79RRu5alUeH/zgyRgaSjXmalPjRqQ26YYbUu3OInV2RJzK3JD6\nJSdOpD59RLovbdw4FjfddDIiUnrn9vaU4nRwMAXChofTPnrrW0fjAx9I7eNUfbMUnOuMl18+OeP5\nOVVb8eqrKfV2RLVPtXp1Cqa+8kpWua/M91oozLe/O5fU0EtpPv3pRvqs8+2vz9Z80movl6XeR61k\nKcfDGiHVITQHqQ5pGQtdqHIumnmGzVIW3pzP39q4MRqazVYMPj79dPup4EvET39aTcHx4osRV1xR\n/3A91+9aO2OvSD2Y53klZ//Y2Fh0dBT546t/c/xKq4iItWuzeOc76ztWL7+cBmIOHy5S+6Xv8Mgj\n7ZX0So3MKmv0/Kvt8FVnwqcH4GKW/oUXRrz+9Sdjz56V8fTTxez60Vi1Kj1Er12bx549K2PDhrTi\npzorOb1/++0norc3nzB77+1vzyPPR+PIkbY4eTKlMNy2bSQ+9KGTlfR4xSqELCtm5OZ1aXpWr67u\nvzQzvZpGMH2Pak2AWkVqjOlWD9aabubhrbdWz9Ef/aitsgLnvPMiilm8F14YlRWGRft0/vlj8fLL\nbadSGLXFoUPpbxUrRiKWZibh+O928GBbPP98WnF55Eg1iDkykp1aiVS/TY1c48V5VjuDOaII7lRn\nUs9lVdJCW4hZtONXq9bOll67duJqgPHXa3HeF4PcESkNaW06sp6eNAhWW7Q6Yur2bS4zG2+66UT8\nyZ90Vn5/Z2dKafXxjx+fMc1sYTZpN+djPrOp5/qztbN/q4MhKS1SMYO8WN08fqVtf3/Ed7+bAhnF\nNV8cuwMHsviHf0iBrtprsJihPv4aLM7ZT35yZQwPp1o0R46M1c2cn+q8GH++p1XLed3gTkpHWk09\nN9m+mqodePe7F7b/NX57L7mk2n5M1XbUXl+1q5JrUxEW98aenrRK80c/yusGdtvb08qU6VJZ1Z7n\nX/hCRzzzTFvlPnjsWDUAUbtC9vDhiK1bq6l1zz23ehzzPLUBhw9np2rdVO9vxQD29deP1qSaa6tL\n4TVVn2emtqBov2r7BKtXx6kJEWkVRlH/7YYb5t42F+lhv/CFFfHkk+2VvzXVCpvxxrcneV5//y9M\ndszG32teeKEtHnywvVJfcqa2aevW0UpKy6o8tm6de9+ydqXc+NTWRfDh7LOrKxO7u6NuNeWWLVkc\nPjwaL7yQUnoWKTS7u/Np+xK1qbsi0t8866yxaGub2E4vRIaMRu8HF16Yx6uvpuvk0KG0Mj7L0mSh\nY8dSyscLLsijrS2lBH7jG0cqKxSPHGmLjo6xCefnwEBWl048z/MYHq5v7xpdxdZoloPCW986eirN\naprAMjycVl319IydWtFWrUdY7Jfx6a6LNPGNXnO9vXlcdtlYnHFGtU9erLR66aXqhJrh4SxGR6tt\nXLGKfHg4JvRZenryuhXChVWrqu1YbRvd1VXNPLF6dTUzQFdXdfXv9u0jMTCQVsUPDmaVGsyjo0UN\nsTzOPXf6Z8K+viyeeqqxFPbj+1zFeZNleTzzTBYbN6a/n4L/WfzyL49VVu3X9knncy00Q393sc2n\nP91In3WpV70189jOVFphZeByWcrxMKAcBL5oGs3SkWzmm+lSdoLm+7caebAoBh+LB9fh4YhDh9pi\ncLA6W6/Iz97IgEajUsq+tCrr+PFUWL6rK73X05Nm6UZMfdwn60CvXZvHa6+lh+Faq1ZFfO1r7XH2\n2Y091DV6/s1UcyEipf44cCClQ1y3Lotjx9LD7pvelAZcnnwyBXvWr08Pi6mW2MR9PVmKiNWrs+js\nHItzzkl/83Wvm/hwu3HjyKl6FZOn6Sl+Z3d3Hr/yK6Pxk59kkWVtlQf8NWvG4sYbRxoOEExmpvQW\nxTn6pS+tmPShaPyD2mTndCM/O1+TDTSN/26rVuXR3p7O69qZzB0d1dRZs33wLM6z8Sn5ilR/050j\ny5FGZL4DGm9/e8T+/fWp7KaqIRMx8XpdsyYNrE6W0mh82hrpZwkAACAASURBVMtzz22sfZ3LA/v2\n7Xl8/OPHKzUAzzknGqqtOJlmuTcvpNrroHYANLWl1UBKrdr98KY3pfbyxz/O4tprRypBogsvzE/V\nOMxOrfLJ46yz6n/XZDUsrr12NJ5/Pn2mdnB3/HU2Xu35/qUvrYiDB9snfGam1HPj24GxsRQYeeih\njmknrcylbzDZ9VmbzrAwWT3RavC9mmKt9l5QfPZXfiXi299ur9QQuvzy0TjrrNn04bKa/+LUSpXq\nd1uzJqXXWru2/rsUx/H73091Abu60gz3tFJ2LIaHU52dYvB6skH6mfbrTG1B0X4VK6FGRlIQbsOG\ntIo5y+JUTblqXbS5KtLsPvjgWDzxRHtkWWr7Lrts+nqNk7Ung4Pp/doV31Pd52vvNcXKtjyPePrp\n9F1napve/e4U+CrqYhZ1ot797oXp48806DvZ+93dacLVpZdGw32JvXvTqrHinlz0m84+uzpZZ7HM\ndJ+t1kSL+OEP04qFFStSRoL29lS76vHH06SwImBSrW2bsjDs3t1RdxzHxvJ48slqysFUhzPVYJ1s\nUsp0iiB57WSeiHQvmOyc+/VfH42DB9tOnTPp2o3IK3XNJktbuBD3zQsvzCPPJ65e+PVfH41nnmmP\ns85KffeUOrbaLta2LbVtSp6nCWjj01sXk9wiJp8kmH5nVOrbbd48Nmm7dPBgdmqSTURRH7e7e2J/\nu1axn848M+Lo0YkBqvFq7wnV8yZltogonmNSQPSXf7l+JdWrr2bx2c+ujC1bxub1/Nws/d3FNtf+\ndKN91oVOITmdZh7bmc5S7qOFsFQT2AUFgdkS+KJpNEtHstlvpkvZCVqsv1V0jB56KB3zYrbvkSMR\nEVmMjFQHHt/ylon1reart7eo35NHZ+dYHD2aZjCmguR5bNo0/UPRZB3ojRvHTj1Y1s8i7unJ4xvf\n6KgUgJ7poa7R86+Rmgsvv1ytmVV8Jq0ASNuY59VAWVpJNfkKt/GDLgcPplQoZ51VLWwdMfXD7b59\nWezZszIeeqi9MgA//jv+i39RLfI9/ns3GiCYTKOrZeYzG3CxZxJONoCyf38x4FUNFG7cmMdLL2Xx\nyitp1WER/DrrrOp5MdsHz9rzrFhtN1mtn7LkW290tWphPveLRtvXuT6wb9+ex/btx2f8/TNplnvz\nQqq9ZmsHQIv2cLL9W7sfaouyFys5IqrH6i1vqV6r49vlydqFon5i7WD8m940Frfe2ngqup6efNJV\nDKtWTb3aqVCcizMN1vb1ZfG1r7XHN77REatWpX3X3z9zsGE6s6knunHjaOR5TLmipfhssSp3w4bZ\nTZrZu7d9wmqcZ55pq1sJWJjqOD74YBqcX7kypatLNRHjVCrTkUlr/BRm0x4Xas/VjRsjrrtuJB5+\nuD1GRqr1K1NfZCzWrYu49trRBevTjl/t1Mhg/2TtSXd3FmedNdbQBKGpVrsXQeuZ2qYUsFu8Pv5M\n/YE8z+OZZ9rrglXd3dVrtNG+xIED9cGiY8eyU3U7lz9tV+21ePJk+6l0u/mp1Y/Jz39erX978GD1\nexTt5fjjWEyiqg9UZXHppSPxwQ/O7j40WY20VavG6gJA479PUUt1fI239CwzcZLAQtw3p7red+0a\njYjRuoDWZO3i+OuxCBpu3DgWv/ALCzcRr1r3r/75p7jvTdcPnO1+qj23vvGN9ujpGatbJVs8M/b0\njNVdS0UdsjPOyGL9+nxeE3jK0t9dLM0YZGr2sZ0yWOpJcq0WFASWl8AXTaOZOpKtcjNthtSQs1Xb\nMcrz1DE6cSot8uhoOtYdHdVUdxGLcw7UpgSstXZtyoU/nak60F/7Wh6PP14d0LjggjxefLFa26Mw\n/qFusuM40/lXuw1ZlsfTT09MkbRhQ3XlSm16k+rDaf2AbMTk+7oYyClSihSpvDZuHJvxZ/fty+pS\nrr3ySsSf/ElnfPzjxyf9jlM96I5/vdFzf6q0KF1dKeXQVKvQIhp/UFvsh7zxAwPFLNehoTy6uqoD\nXhdfPBb/5J+Mxc9/HnHsWMTzz2dx7rmp7kNtOrbZaPRhsRXTiExltu3/Yt8vlvuBvZnuzQtlfEA3\nrWaMaVcXzzZ9z1Tt8tTXYB7VlUW1/9/4d9q/Pzt1HWan/l40lHquMN0g5I4do6dSE7dVUhMX7U53\nd8w5EDpT2zGb62su12LtveR732uLdeuirsbXxo15/MM/1P/MdOknL7poLJ5+Ot1n164di8suS4GN\n1LeYXzvRSFvw3HPt8ba35fHkk3lNkCDVgfoP/2Hygf2F0sgg9lTXUVtb1tBKpUZWu8/UNi1mmz1d\nf6CvL/U/+vvT69V792jlfGqkL9HXl8Xjj7fHT36SapWtWZNqXOV5mvDUDIp9/OCD7bF/f7VNSvI4\n55y8cj7/p/+UVlIV/eaivaw9jlmW1a06L4KGWTb7+1DtdbRpU2P31PHnzEyDvAtx35zpep/pHP7a\n19rj7/6uPV56Kf3NIoVmo6sCG+17FJ97+eU0IWv8cZyuHziX/VQciyLF4mQ/O/6+UqQ3rW0n5jqB\np0z93cWw3H3W6barFcZ2WlUZJ8kB5SHwRdPQkZydVk0/VdsxKoIxK1emh5GTJ9OsvI0bxyr1DSIW\n5xyY7/k2WQf63e8ePVUzrPp7h4er9UFqFQ918zmOtdswVSq855+vpmAr0puceWZK7djZObEY83Sr\nEYrZxXmevlequTD9w+2ePSsn7Qjv2bNyzqtRZrPPaldSDAxk8fLLaUb0ZZfl8fzzbXU/N5+VO4v5\nkDfZirs8T7VbitWSxUq+iy4anTTFzXy2qZGHxWac4Vkmy/nAXsZ7c29vHtddN1KXCvL226dPBTmX\n9D2NXoNppVFWSSWVTD1gMNXvvfXWkfja1/LYvz/VXXrrW0crNSYb2Z7pBiHHpyaOiEq785a3TD3Q\nO5PlbDvG30teey3iJz9pOxXMq66Gvu66sVi7trF0xVOlJ1uo62WmtmBgoD417cBAFkNDEWecEbOu\nMzRbjQxiz7c9aWS1+3K2TdP1B1J9r2xCqrkLLqimjpupL1Gcs2NjKZVlquEZsWFDylqwYcPyr/iq\n9ba3jcZLL6XaXSn9aErF97a3peu7tzePX/3V0bq6aIXa45jOm7yhlZeNmO89daZB3oW6b851O/v6\nsvg//6cjXnihusxucDCPV1/NG14VONX9YqrXf/d3T4xbYTZzW75Y2RbG31dSvczqhMrCXO5b+rsz\nE2Q6/ZRxkhxQHgJfNA0dydlp1Zk1tR2g2mBMlqUUPS++2NZQnYf5WozzbbIBj56eiIGBqR/oF+o4\nTvaQMVn9oYsuGotdu9LnGn1A7e1NAzO19Z1STYGskgJqqp/9+c8n396DB1P9gLkEZWa/z9Jgcn9/\nNSXMZD83nwe1xXzIG/9wXww89/RUVxWOLzi+2Ns0XrPO8GT+Wu3e3Eiwqa8vi0ceSfUP169Prz3y\nSEece+7UEw7msh8avQZnM2AwU+D/Qx+qpp6bzc9FTD+QWGzL+HSKte3RXCxn2zH+XlJMximCeRHp\nGNcGD2ey3NdLbV3G9H1SvbFVq7IJkz0W629P9nphvvtnfqsql8ZU131xDdXWS4pIq91m+tlCcc72\n9ORx7FjEkSOpftvISLXm1FJppK2t1lTLp6yp1sg5sdzX1XgztdnLvb1797bH0aPjnz2yePXVvKFV\ngVPdL667rr7u7vj7yGzb8mI/1W1llsfrXz864zPCdPt4YprclAq4djVvxPT3ranOb/3d5tOKGXDK\npoyT5IDyaL/rrrvuWu6NmK3XXjux3JvAIlizJs2UHRpKQZDzzsvjhht0XKayd2/7uHzqSZZFbN++\nvDM+u7o6p7xOn3uure6BsbMzYv36iMsvH4t/+S9H4hd/cWxJzoHFOt+K4NL27WNx0UVjce65eTz1\nVCruXciy9LfWrFnc4zjdd5zt9//e91Ltk/POy+P88/M455yIEyfSdl5++dikP9vXl8Vf/mVH/OQn\n7TE8HLFiRRbt7RHHj0cMDUWsW5cGTQcGsnjqqba48MKJK9AmM5t99vDDHfHaa22xfn3E0FBbdHZG\ndHRkcfJkVAa8m+GamU5PT/051N+fVVYSrlmTvkeqHzMWV1yxfN9j/LnfyLFsNtO1XaerVro3F4N1\n/f1t07YtDz+cPhORUoc++2xbHDzYHn//922xbt1YfOtbHbF3b3s891xb9PSkn13M/TD+vlg477yU\nOq9W7bZXZTE0lE347Gx/bnxbE1G9Xx06lPZnZ2fEyy9XU5d1d6dVJsU9bS6Wq+0Yfy/p7Ez7YHQ0\nYvPmfE7HeDmvl66uzlix4njlGD77bKoDmWXpftHZGdHIuTJX050/xTFdiP1TnC9XXpnS+5482fxt\nU8TsrvOpFOfsqlURr7ySRVdXRHd3qrm6eXP9ddjXl8XDD09syxZCo23tmjURv/iLeZxxRsT55+ex\ndetY/OZv1h+jRs6JZrsPzXQsl3t79+5tjwMH2uLVVyPGX4+XXz4aV145/fk21f3iO9/piDPPHP/p\napsy27a82E8jIyvjxImROO+8PLZtG41HHmns3JpuH4/flh/9qD7l5vi2qdZM53cZ+rtl0WhbxOJq\n5P5fVp4doTl0dXVO+Z4VXzQVS+Mb16oza2aaBbnUq1TG5+yf6yqk6f7GdDMDF/s4Trc/Z7Ovi+08\nciTqUvRcccXk9ciKB5FNm8biwIG2Sjqe170uzVD+lV+p/36zWeU2m31WOzBRu1IhDXYuXirNhTT+\nHNqxYyQOHsyiu7s5Zj4vlulmcJrdubRa5d7c6GrQol0o6uUVq0D/4R9STcKLL04zw8fPZl+s/TCb\n1QFzTScz2xpl46+tYhvXrKlN1Za2fTYrouZisa73ye4la9ZEXHLJzHU2p7Oc10vtMfz7v2+PtWtT\nLaTalQ6LlXpoNjWBFmr/tErbFLEwq4BqV/TV1rzauLF+xfdip0Ofzcr7Ro7RQn1mqTRyLJc7RXFP\nTx7DwymFfJFmcuPGxlYFTtVG/PznabJVUS+3eBbIsrmfU729ebz1rRGHDqW6Yw880LGg51bxudms\n0mrVrCqnI8eqOVgJCTQzgS9oUcudRmOumrVjtBiDBOMH6264YfIaVK1wHFOtrCyefLI9itlcw8NZ\nvPhiyvc//nsVDyLnnx9xzTUj8dRTbXHsWBZnnJHHZZeN1gVtCo0OxjWyz4p9/8QTbXH0aBoU2rgx\npevK86gUuG7GfT2ZyYK0zXYNLaTprseIaMn6hiy+RoNCY2N5PPNMWzz/fFucOJGCHatWpZWoXV1Z\nHDwYlVR3SzGAMpv74lwnS8ylRtl023jJJWNL0u4s5r35wIEsnnkmq0uVNziYR39/xJe+tGLaVJnN\n3P7WHsOZaict5t+m3kL0fyfr/0Tk8cY31vdjFmswuDj3H3oo1RGsvXYi6tvaZr9O5qNZn2UKRX3b\ngYH26OwstimPLVvGGurzTnW/OOeciRNGjh3L4umn2yZ9FpiLxaoVNJu2Sb2i1uFYNQ/3f6BZCXxB\ni2r2h67pNGPHaKEHCRodrGuV49jbmwJHBw9GDA/HqToNeXR3x6T7qPaB4/zzI84/P6VVWbs2zUJ9\n/vm5r3KbaZ/V7vu1a1MNrIGBtrj44rFTM6RTipILL2zOfd2IRq6hVhx0Krb5//2/9krAslipUFyP\nxf/XMruTiMaCO319Wbz4YlsMDLTFsWNtMTIScehQHuvXj0VXV/rM+FSqSzGA0uh9ca6TJRZiksVy\n3LsX+968cWPEwYNFmq48BgerKcwmu28v9kqahdQqE2tOJ/O9hor+z4MPtsd3v9seq1bl8cY35vHq\nq22xe3f1PFyMweDacz/Ps+jvz6K/P608K4JfRVu7lNdJo3UdF7o/1IzPMoXe3jxuvfVkPPjgWDzx\nRHtkWcTWraPx7nc39r2najtuuulkfO5zK+tq5UakeoIL1QdrhowmzbANNMaxAmAmAl/Qwpr5oavV\nLPQgwUKngWkGWZbFW94ysS7AZPtougeRxR6Ard33a9ZEJS3X4cMR1147Grfe2vwBoKk0OnjTSoOz\nhdptPnw4i2PHUq7+iy8eqwS/prseze6kkbZl795Ur/Dii8fi6NEsXn01pYDq6Ul1aPr7s8qK0EIz\nDaDMdbJEq0yyGG+x783d3Xm85S1RSf+VauJU1d63+/qy+OxnV8bBg+kcKVa7NGvgvVWPOdPr7c1j\n7dqIbdumThm9GIPBtddOdQV9Fi++mMVb3pLXtbVLlX6skb5OK/aHFkJvbx7/+l+PRMTs9/d0bcdF\nF43F009HJc1h0Q4uVB+sGQL2zbANNMaxAmAmAl8AsfAzxsqYemE2+2i6B5HFHowbv4/XrElpy9au\nbY0A42T6+rJ48MH2eOSR9li1KqUXmm7wphVz3tduc1GPLc/Taowi7VxxrpndyWQaaVuK9qG7O9Uo\nLFI2ZVkWF1wwFgMDaTVroRkHUOY6WaJVJlnUaoZ788BAVhk8P3iwLY4dS+m9ale7NOu9vRWPOTOb\n6TxejMHg2r9ZW2MsyyI2b65PfbpUfeBG+jqt2B9qBlO1HRdemEee51HUyS0sZG3i5Q7YN8M20BjH\nCoCZCHxxWmjFlF8srYUaJCjOte99ry1ee21i/YOFejBcjnN6NvtopgeRxRyMK1vai2LA9emn2+PY\nsSyOHYuaAdfJB29aMfBau20psJdHRFZJO1d7rpndyVRmaltq24fawduurjwuuWQsfvM3T8Zzz82+\nbdXPWBwLPYA/0/1hqveKwfMiKH9qSyqrXVr1/kJrmuk8XozB4PF/M62WzGPz5rEJbe5s+mHzaTtr\n+w1HjkS8+GLqM/zjP2aV39NM/aEy3CeWYoVNMwTsm2EbaIxjBcB0BL4ovdM1xQWzsxCDBLXn2rp1\nET/5SVvdjPCFejBcrnN6tvtouR5Eypb2ohhwra87VB1wnW2qyWZVu821KSrPPHPibHKzO5mr8e1D\nd3dK3VTbfm7fPrt2Sz9j8Sz0AP5M94ep3nvoofTIVE3xlt4fHs4iy8Za9v5Ca2qkn7PQfbDZ9K0a\n/ex8286i33DkSMSTT7ZFRPo9R49G7N7dEbt2LU7ax7koy33CChsAoJW033XXXXct90bM1muvnVju\nTaCFPPxwR/T3t417NYuhoVTMvEz6+rJ4+OGO2Lu3PZ57ri16eupXGy2Vrq7OlrxO16yJuOiisdi+\nfexUofvZ/XztudbZGdHTE3HiRBajoxGXXjoWN9ww9YPhbI7dQp/Ts/nb891HS2HNmpSKZWgopeA5\n77x82n3f7PbubY/h4VRIvjb4VXy3887LJxz3np48nnqqOgiUPp/2QzMes4iJ29zZGbFhQx4f/vDJ\nuOKK+nNtsc7DVm27aNxitA+nUz9jOSzk9T7d8Z/uveeea4uBgazm3p7SY27cmMcHP3iyKe4v2q/T\nx3L0c2bzNxv97HzbzqLf8OyzbTE8nH5PlkW86U15rFwZMTSUVn41Q3+oTPeJhe6DLVTb1SzPwcDp\nQ98LmkNXV+eU71nxRek1U4qLxdRqMwlbMd3HTNs8/pwq0sDMVFtqtsduIc/pVjtvGlWmtBfFbOXx\nKw1WrcrnnGqyGbXiNtOaFrp9OF36GWUx3fGf6r3aFSzFvT3L8pa/V9K6lqOfM5u/2chn59t2Fv2G\nT35yZQwPp37Rxo15dHdXa401S9/CfWJxlfV5BgCYH4EvSq9ZUlwstlYq3tyKDyeNbPNcz7XZHrtG\n/k6jgcVWOm/KZDaB32LAtbs7KvWIhocj3va20Xj3u5sv1eR8NOM2t2KQnqV1uvQzTmfNMngOS2Gp\n7nsL0Xb29uZx7bWj8fzzE3+mtubZcvct3CcWl+cZAGAyAl+UXtnq/UyllWYStuLDyUzb3NeXRX9/\nxHe/m8WqVREXXJA3XNdrtsdupnN6NoHFVjpvymK2gd/xA65btxpwXSqtGKRn6Z0u/YzTXTMMnsNi\nW8r73kK1na3QBrfCNrYyzzMAwGTU+KL0ylbvZypF/YnxJqv/s9hmynVc1CwaL8sitm9vzjz3023z\nuefmsXt3RwwPt8Xq1VkcOZLFyy9n8Uu/NBrvfe/M59psj91M5/Rs6gg003lzuphLnYdWqK1WBuPb\nrjLV5GDxnC79DJqbOhMshKW87y1U29kKbXArbONyWYi2y/PM0lNTDfS9oFmo8cVp73SYpdtKMwlb\nMd3HdNtcuxqsqP0REXH22dHQA+1cjt105/RsZj220nlTFmaltg7Hanm0YnrJ06GfAcupFduFxbYY\n+2Sp73sL1Xa2QhvcCtvYqjzPLC0ZEQBoFQJfUBKtVH+iFR9Optvmhx6avCmdbXHuhTp2swksttJ5\nUxatGPg9XTlWS28pBlMMoLPQnFOLyyDrRIu1T9z3aEWeZ5ZWK5YtAOD0JPAFJdIqMwlb8eFkum1e\nqOLcC3XsZhtYbJXzZrks9IBmKwZ+F1MzDxg7VktvsQdTDKCz0JxTi88g60SLtU/c92hVnmeWjowI\nALQKgS9gWbTiw8lU29xsgwStGFhsVosxoOn4VDX7gPFSHqtmDgAupcUeTDGAzkJzTi0+g6wTLdY+\n0UcBZmJlKACtQuALYJ6acZCgFQOLzWixBjQdn6QVBoyX4lg1ewBwKS32YIoBdBaac2rxGWSdaDH3\niT4KMJ1mm/QJAFMR+AJYAAYJysmA5uKyf5NWCAAulcUeTDGAzkJzTi0+g6wT2SfAcmnGSZ8AMBmB\nL5gn6amYinOj9RnQXFz2byIAWLXYgykGi1lozqnFZ5B1IvsEWE7znfTpORmApSDwBfMgPRVTcW6U\ngwHNxWX/JgKA9RZzBa3BYhaac2ppLEa70OoDr7INAK3IczIAS0XgC+ZBeiqm4twoBwOai8v+TQQA\nl5bBYhaac6r1GHgFWB6ekwFYKgJfMA/SUzEV50Z5GNBcXPavACDAUjPwCrA8PCcDsFQEvmAepKdi\nKs4NYDYEAAGWjoFXgOXhORmApdK23BsArWzHjtHIsvoOmvRURDg3AACa1VQDrAZeARaX52QAlooV\nXzAP0lMxFefGRK1eRB4AKAe1FQGWh+dkAJZKlud5y91dDh0aXO5NAKaxfn2365Q644vIR6QBJkXk\naSbaLqBVab9mz4QcWH7aLqBVab+gOaxf3z3le1Z8AbDoFJEHAJqJ2ooAAFBeanwBsOgUkQcAAAAA\nloIVXwAsup6ePPr7Jwa5FJEHOL1ILwe0Mm0YAEBrEPgCYNEpIg/A+HqP/f1ZHDiQqfcItARtGABA\n65DqEIBF19ubx65dI7F581isXZvH5s1jBgkATjPT1XsEaHbaMACA1mHFFwBLQhF5gNObeo+L5+DB\niP/9vzukX4NFpA0DAGgdAl8AAMCiU+9xcfT1ZfFXfxUxNJSSeUi/BotDGwYA0DqkOgQAABbdjh2j\nkWX1A8TqPc5fSr9W/5r0a7DwtGEAAK3Dii8AAGDRFfUe9+5tl5JvAUm/BktDGwYA0DrmFPgaHh6O\nO+64Iw4fPhxdXV3x6U9/Os4+++y6z9x///2xZ8+e6OjoiN/+7d+Oa6+9dsqf+/rXvx6f/vSn47zz\nzouIiNtvvz0uv/zy+X87AGgCfX2ZQRKAUO9xMfT05PHyy5O/DiwsbRgAQGuYU6rD++67L7Zs2RK7\nd++OG2+8MT7/+c/XvX/o0KG49957Y8+ePfHlL385PvOZz8SJEyem/Lmnnnoq7rjjjrj33nvj3nvv\nFfQCoDT6+rLYvbsjnn++Lfr7s3j++bbYvbsj+vrMxAdg/lL6tfrXpF8DAABOZ3MKfO3bty+uvvrq\niIi45ppr4vHHH697f//+/XHppZfGypUro7u7OzZt2hQ/+MEPpvy5p59+Or761a/Grl274lOf+lSM\njJhBBUA5pNor9SOSaq8AsFB6e/P4V/8qYvPmsVi7No/Nm8di164RK4sBAIDT1oypDh944IH4yle+\nUvfaunXroru7OyIiurq6YnBwsO79oaGhyvvFZ4aGhuper/25K6+8Mt7xjnfEBRdcEHfeeWfs2bMn\nfuu3fmvKbVq79szo6DBgCM1s/frumT8Ep4GRkYiurslfX79+6beH6Wm7gFb1b/7NGcu9CQCzpu8F\ntCrtFzS3GQNfO3fujJ07d9a9dtttt8XRo0cjIuLo0aOxZs2auvdXr15deb/4THd3d93rtT/33ve+\nt/L/119/fTz88MPTblN//2szbTawjNav745DhwZn/iCcBjo6OuLo0YkLrDdsGItDh6xwbibaLqBV\nab+AVqTtAlqV9guaw3QB6DmlOty2bVs8+uijERHxzW9+M7Zv3173/tatW2Pfvn1x/PjxGBwcjGef\nfTa2bNky6c/leR6/8Ru/ES+99FJERDz++ONx0UUXzWWzAKDppNor9emm1F4BAAAAgMWR5Xk+6+Tv\nx44di4997GNx6NChWLFiRdx9992xfv36uOeee2LTpk1x/fXXx/333x9//ud/Hnmex4c+9KF417ve\nNeXPPfbYY/HZz342Vq1aFW94wxviD//wD2PFihVT/n0RdWhuZr5Avb6+VNNrYCCLnp4U9FJ7pflo\nu4BWpf0CWpG2C2hV2i9oDtOt+JpT4Gu5aViguekAAK1I2wW0Ku0X0Iq0XUCr0n5Bc1jwVIcAAAAA\nAADQbAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAA\nAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBS6FjuDQA4HfX1ZbF3b3sMDGTR05PHjh2j0dubL/dmAacpbRIAAABQ\nFgJfAEusry+L3bs7Is+ziIjo78/iwIEsdu0aMdAMa14z6wAAFcRJREFULDltEgAAAFAmUh0CLLG9\ne9srA8yFPE+rLQCWmjYJAAAAKBOBL4AlNjCQzep1gMWkTQIAAADKROALYIn19EyeOmyq1wEWkzYJ\nAAAAKBOBL4AltmPHaGRZ/YByluWxY8foMm0RcDrTJgEAAABl0rHcGwBwuuntzWPXrpHYu7c9Bgay\n6OlJA8y9vVZXAEtPmwQAAACUicAXwDLo7c1j586R5d4MgIjQJgEAAADlIdUhAAAAAAAApSDwBQAA\nAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAApdCx3BsAAADNpq8vi71722NgIIuenjx2\n7BiN3t58uTcLAAAAmIHAFwAA1Ojry2L37o7I8ywiIvr7szhwIItdu0YEvwAAAKDJSXUIAAA19u5t\nrwS9CnmeVoABAAAAzU3gCwAAagwMZLN6HQAAAGgeAl8AAFCjp2fydIZTvQ4AAAA0D4EvAACosWPH\naGRZfZAry/LYsWN0mbYIAAAAaFTHcm8AAAA0k97ePHbtGom9e9tjYCCLnp4U9OrtteILAAAAmp3A\nFwAAjNPbm8fOnSPLvRkAAADALEl1CAAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAA\npSDwBQAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAApSDwBQAAAAAAQCkIfAEAAAAA\nAFAKAl8AAAAAAACUgsAXAAAAAAAApSDwBQAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAA\nAAAApTCnwNfw8HDcfvvtsWvXrvjgBz8Yr7zyyoTP3H///fGe97wn3ve+98U3vvGNuve+/vWvx0c/\n+tHKv5944onYuXNn3HTTTfFf/+t/ncsmAQAAAAAAcJqbU+Drvvvuiy1btsTu3bvjxhtvjM9//vN1\n7x86dCjuvffe2LNnT3z5y1+Oz3zmM3HixImIiPjEJz4Rd999d4yNjVU+f+edd8bdd98d9913X3z/\n+9+PZ555Zh5fCQAAAAAAgNPRnAJf+/bti6uvvjoiIq655pp4/PHH697fv39/XHrppbFy5cro7u6O\nTZs2xQ9+8IOIiNi2bVvcddddlc8ODQ3FiRMnYtOmTZFlWVx11VWxd+/eOX4dAAAAAAAATlcdM33g\ngQceiK985St1r61bty66u7sjIqKrqysGBwfr3h8aGqq8X3xmaGgoIiJuuOGG+Pa3v1332dWrV9d9\n9uDBg9Nu09q1Z0ZHR/tMmw4so/Xru2f+EECT0XYBrUr7BbQibRfQqrRf0NxmDHzt3Lkzdu7cWffa\nbbfdFkePHo2IiKNHj8aaNWvq3l+9enXl/eIztYGwmT47/veN19//2kybDSyj9eu749ChwZk/CNBE\ntF1Aq9J+Aa1I2wW0Ku0XNIfpAtBzSnW4bdu2ePTRRyMi4pvf/GZs37697v2tW7fGvn374vjx4zE4\nOBjPPvtsbNmyZdLftXr16lixYkW88MILked5PPbYY3HZZZfNZbMAAAAAAAA4jc244msyN998c3zs\nYx+Lm2++OVasWBF33313RETcc889sWnTprj++uvjlltuiV27dkWe5/GRj3wkOjs7p/x9f/zHfxy/\n93u/F6Ojo3HVVVfFJZdcMrdvAwAAAAAAwGkry/M8X+6NmC1LSaG5WfINtCJtF9CqtF9AK9J2Aa1K\n+wXNYcFTHQIAAAAAAECzEfgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS\nEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAA\nKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAA\nAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAA\nAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsA\nAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEqhY7k3AABaWV9fFnv3tsfAQBY9PXns\n2DEavb35cm8WAAAAAJyWBL4AYI76+rLYvbsj8jyLiIj+/iwOHMhi164RwS8AAAAAWAZSHQLAHO3d\n214JehXyPK0AAwAAAACWnsAXAMzRwEA2q9cBAAAAgMUl8AUAc9TTM3k6w6leBwAAAAAWl8AXAMzR\njh2jkWX1Qa4sy2PHjtFl2iIAAAAAOL11LPcGAECr6u3NY9eukdi7tz0GBrLo6UlBr95eK74AAAAA\nYDkIfAHAPPT25rFz58hybwYAAAAAEFIdAgAAAAAAUBICXwAAAAAAAJSCwBcAAAAAAAClIPAFAAAA\nAABAKQh8AQAAAAAAUApzCnwNDw/H7bffHrt27YoPfvCD8corr0z4zP333x/vec974n3ve1984xvf\nqHvv61//enz0ox+t+/c73vGOuOWWW+KWW26J73znO3PZLAAAAAAAAE5jHXP5ofvuuy+2bNkSt99+\nezz44IPx+c9/Pv7wD/+w8v6hQ4fi3nvvja9+9atx/Pjx2LVrV1x55ZWxcuXK+MQnPhGPPfZYvPnN\nb658/qmnnoo77rgj3vWud83/GwEAAAAAAHBamtOKr3379sXVV18dERHXXHNNPP7443Xv79+/Py69\n9NJYuXJldHd3x6ZNm+IHP/hBRERs27Yt7rrrrrrPP/300/HVr341du3aFZ/61KdiZGRkLpsFAAAA\nAADAaWzGFV8PPPBAfOUrX6l7bd26ddHd3R0REV1dXTE4OFj3/tDQUOX94jNDQ0MREXHDDTfEt7/9\n7brPX3nllfGOd7wjLrjggrjzzjtjz5498Vu/9VtTbtPatWdGR0f7TJsOLKP167tn/hBAk9F2Aa1K\n+wW0Im0X0Kq0X9DcZgx87dy5M3bu3Fn32m233RZHjx6NiIijR4/GmjVr6t5fvXp15f3iM7WBsPHe\n+973Vn7H9ddfHw8//PC029Tf/9pMmw0so/Xru+PQocGZPwjQRLRdQKvSfgGtSNsFtCrtFzSH6QLQ\nc0p1uG3btnj00UcjIuKb3/xmbN++ve79rVu3xr59++L48eMxODgYzz77bGzZsmXS35XnefzGb/xG\nvPTSSxER8fjjj8dFF100l80CAAAAAADgNDbjiq/J3HzzzfGxj30sbr755lixYkXcfffdERFxzz33\nxKZNm+L666+PW265JXbt2hV5nsdHPvKR6OzsnPR3ZVkWn/jEJ+K2226LVatWxRve8IZ43/veN/dv\nBAAAAAAAwGkpy/M8X+6NmC1LSaG5WfINtCJtF9CqtF9AK9J2Aa1K+wXNYcFTHQIAAAAAAECzEfgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS\nEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAA\nKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAA\nAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAA\nAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsA\nAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+\nAAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB\n4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACg\nFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS6JjLDw0PD8cdd9wRhw8fjq6urvj0pz8dZ599\ndt1n7r///tizZ090dHTEb//2b8e1114bg4ODcccdd8TQ0FCcPHky/v2///dx6aWXxhNPPBGf/OQn\no729Pa666qq47bbbFuTLAQAAAAAAcPqY04qv++67L7Zs2RK7d++OG2+8MT7/+c/XvX/o0KG49957\nY8+ePfHlL385PvOZz8SJEyfinnvuiSuuuCL+5//8n/Gnf/qn8R//43+MiIg777wz7r777rjvvvvi\n+9//fjzzzDPz/2YAAAAAAACcVuYU+Nq3b19cffXVERFxzTXXxOOPP173/v79++PSSy+NlStXRnd3\nd2zatCl+8IMfxAc+8IG46aabIiJidHQ0Ojs7Y2hoKE6cOBGbNm2KLMviqquuir17987zawEAAAAA\nAHC6mTHV4QMPPBBf+cpX6l5bt25ddHd3R0REV1dXDA4O1r0/NDRUeb/4zNDQUKxZsyYi0oqwO+64\nI/7gD/4ghoaGYvXq1XWfPXjw4LTbtHbtmdHR0T7TpgPLaP367pk/BNBktF1Aq9J+Aa1I2wW0Ku0X\nNLcZA187d+6MnTt31r122223xdGjRyMi4ujRo5WAVmH16tWV94vPFIGwH/7wh/Hv/t2/i9///d+P\nyy+/PIaGhiZ8dvzvG6+//7WZNhtYRuvXd8ehQ4MzfxCgiWi7gFal/QJakbYLaFXaL2gO0wWg55Tq\ncNu2bfHoo49GRMQ3v/nN2L59e937W7dujX379sXx48djcHAwnn322diyZUv8+Mc/jt/5nd+Ju+++\nO97+9rdHRAqSrVixIl544YXI8zwee+yxuOyyy+ayWQAAAAAAAJzGZlzxNZmbb745Pvaxj8XNN98c\nK1asiLvvvjsiIu65557YtGlTXH/99XHLLbfErl27Is/z+MhHPhKdnZ1x9913x4kTJ+KTn/xkRKSg\n15/92Z/FH//xH8fv/d7vxejoaFx11VVxySWXLNw3BAAAAAAA4LSQ5XmeL/dGzJalpNDcLPkGWpG2\nC2hV2i+gFWm7gFal/YLmsOCpDgEAAAAAAKDZCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg\n8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg8AUAAAAAAEApCHwBAAAAAABQ\nCgJfAAAAAAAAlILAFwAAAAAAAKUg8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAA\nAKUg8AUAAAAAAEApZHme58u9EQAAAAAAADBfVnwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg\n8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFzBr3//+9+OWW26Z8PojjzwS733ve+P9739/\n3H///RERcfLkyfjoRz8aN910U+zatSueffbZpd5cgIqp2q+IiGPHjsVNN91UaafGxsbij/7oj+L9\n739/3HLLLfGP//iPS7mpABWzabtOnjwZd9xxR+zatSv++T//5/E3f/M3S7mpABWzabsKhw8fjre/\n/e2eG4FlNdv264tf/GK8//3vj/e85z3xwAMPLNVmAtPoWO4NAFrLl770pfjrv/7rOOOMM+peP3ny\nZPzpn/5p/K//9b/ijDPOiJtvvjmuu+66eOKJJ2JkZCT27NkT3/rWt+Kzn/1sfO5zn1umrQdOZ1O1\nXxERTz75ZNx5553xs5/9rPLa//2//zdOnDgRf/7nfx5PPPFEfOpTn4o/+7M/W8pNBph12/XXf/3X\n0dPTE//lv/yXGBgYiBtvvDGuv/76pdxkgFm3XRHpmfKP/uiPYtWqVUu1mQATzLb9+va3vx3f+973\n4r777otjx47F//gf/2MpNxeYghVfwKxs2rRp0sDVs88+G5s2bYqzzjorVq5cGdu3b4+//du/jc2b\nN8fo6GiMjY3F0NBQdHSItwPLY6r2KyLixIkT8d/+23+L17/+9ZXX9u3bF1dffXVERLz1rW+Np556\nakm2E6DWbNuuf/pP/2n8zu/8TkRE5Hke7e3tS7KdALVm23ZFRHz605+Om266KTZs2LAUmwgwqdm2\nX4899lhs2bIlPvzhD8ett94av/qrv7pEWwpMxwg0MCvvete74sUXX5zw+tDQUHR3d1f+3dXVFUND\nQ3HmmWdGX19f/Nqv/Vr09/fHF77whaXcXICKqdqviIjt27dPeG1oaChWr15d+Xd7e3uMjIwI4ANL\narZtV1dXV0SkNuzf/tt/G7/7u7+7qNsHMJnZtl1/8Rd/EWeffXZcffXV8d//+39f7M0DmNJs26/+\n/v74yU9+El/4whf+f3v378r7Asdx/GVB8muRnVJGrBaDUQaKFInJaBAZjMo/IKPCaJCFlVgYbGal\nJJIU8vNzh1unzr23+z11zj3fc7/n8di+23N6L6/v5/PJ5eVlZmZmsre3l6qqqv86FfgXnvgCfoj6\n+vo8Pj5++f34+JiGhoasr6+nt7c3+/v72dnZycLCQl5eXspYCvBt/nrXPj8/jV7A/8LV1VUmJiYy\nODiYgYGBcucAlLS9vZ3j4+OMj4/n/Pw88/Pzubm5KXcWQEnNzc3p7e1NdXV12traUlNTk7u7u3Jn\nwW/P8AX8EO3t7bm4uMj9/X1eX19zenqarq6uNDY2fnkSrKmpKe/v7/n4+ChzLUBp3d3dOTg4SJKc\nnZ2lo6OjzEUApd3e3mZqaipzc3MZHh4udw7AN9na2srm5mY2NjbS2dmZlZWVtLS0lDsLoKSenp4c\nHh6mKIpcX1/n+fk5zc3N5c6C356/LQPfZXd3N09PTxkZGcnCwkKmp6dTFEWGhobS2tqaycnJLC4u\nZmxsLG9vb5mdnU1dXV25swG+ul//pL+/P0dHRxkdHU1RFFleXv7JhQB/V+p2ra2t5eHhIaurq1ld\nXU3y50faa2trf2YmwFdK3S6AX1Wp+9XX15eTk5MMDw+nKIosLS35xir8AqqKoijKHQEAAAAAAADf\ny6sOAQAAAAAAqAiGLwAAAAAAACqC4QsAAAAAAICKYPgCAAAAAACgIhi+AAAAAAAAqAiGLwAAAAAA\nACqC4QsAAAAAAICKYPgCAAAAAACgIvwBFIC5bdolSUwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,10))\n", + "plt.scatter(reg_linear.predict(X_train), reg_linear.predict(X_train) - y_train, c='b', s=40, alpha=0.5)\n", + "plt.scatter(reg_linear.predict(X_test), reg_linear.predict(X_test) - y_test, c='g', s=40)\n", + "plt.hlines(y=0, xmin=1.07, xmax = 1.17)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "pred: 1.110524, actual: 1.110180\n" + ] + } + ], + "source": [ + "print(\"pred: %f, actual: %f\" % (reg_linear.predict(X_test[0,:].reshape(1,-1)), y_test[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Try ridge regression, to be more robust to correlation in features" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "hideCode": true, + "hideOutput": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\scipy\\linalg\\basic.py:40: RuntimeWarning: scipy.linalg.solve\n", + "Ill-conditioned matrix detected. Result is not guaranteed to be accurate.\n", + "Reciprocal condition number/precision: 6.576732214380598e-11 / 5.960464477539063e-08\n", + " RuntimeWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFlCAYAAABhvHtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtAVWW+//EPbBBUoECx6VhOYVmpkfd0GnXMiKajmYqB\n0HZST7/OqfHSmUN4x8LUqcZTEeroNGdOpqU1ZmKectTUJszMCwqOOZKRmGNeULm5N7DX7w+HncrD\nRWXLBt6vf8a912V/v6xZ8eFZa6/Hx7IsSwAAAJfwre8CAACAdyIkAAAAI0ICAAAwIiQAAAAjQgIA\nADAiJAAAACNCAlDPunbtqry8PO3du1fjx4+vdt09e/ZoxowZl/0ZL7zwglJTU6+0xMt2+PBhjRs3\n7qr2Ybfb9fHHH3ts/auVl5enrl27Gpe98847WrRokXFZxfEGGgK/+i4AwHl33323Xn/99WrXOXjw\noI4dO3aNKrpy33//vQ4dOlTfZdSbkSNH1ncJQJ0gJAC1tG3bNr300ku64YYbdPjwYQUGBmru3Llq\n3769Jk2apNOnT+vw4cP6xS9+oQkTJuiVV17R9u3bVV5ero4dO2ratGkKCgrSV199pZSUFPn4+Oju\nu++Wy+Vy7z8lJUVr1qxRUVGRZs2apZ07d8pms+mBBx7QyJEj9frrr6ugoECTJ0/WnDlztHHjRi1Y\nsEClpaUKDAxUUlKSunbtqsLCQk2dOlX79+9XmzZtZLPZ1L1794v6cblcGjBggN544w3dfffdkqRn\nn31WPXv2VHx8/EXrLly4UOvXr5fD4VBJSYmSkpIUFRWlsrIyvfzyy9q0aZNsNpu6du2q5ORkTZs2\nTceOHdPYsWP1/PPPa/Dgwdq1a5ek83+BV7wuLi7WzJkz9e233+rMmTNq2bKlXnnlFUVERFR5HI4f\nP67k5GR988038vX1VVxcnEaNGnXROuvXr9cbb7yh8vJyBQUFafLkyYqMjFROTo6mTp0qp9Mpy7IU\nExOjhIQESdKCBQu0bt06uVwutW3bVsnJybrhhhuq/f+Ey+XS1KlTlZ2dLT8/P02bNk1dunRRamqq\n8vPzNWPGjCqPN9AQcLkBuAz79u3TmDFjlJ6ermHDhikxMdG97Ny5c/roo4+UmJioRYsWyWazaeXK\nlVq9erXatGmjV155RU6nUxMmTNCkSZO0atUq3XvvvTp37lylz3n99dflcDi0du1arVq1Sjt37tR3\n332n8ePHq0ePHpozZ46+/fZb/fd//7cWLVqkVatWKSUlRePGjVNxcbFef/11BQYG6uOPP9Zrr71m\n/Kve19dXw4cP1wcffCBJOnPmjDIyMjR48OCL1jty5IgyMjL09ttvKz09Xc8++6x7xGPZsmXKzs7W\nhx9+6A43a9eu1axZs9SuXTu9+eab1f48t2zZopCQEK1YsUKffPKJOnfurKVLl1a7zfPPP69bbrlF\nH3/8sZYvX64VK1YoNzfXvTwnJ0fJyclKTU1Venq6xo8fr6efflqFhYV68803df/992vlypVatGiR\nvvrqK7lcLq1atUoHDhzQe++9pw8//FD9+/fXtGnTqq1DOn/M77vvPq1atUoTJkzQxIkT5XQ63ctr\ne7wBb8VIAnAZ7rzzTvXo0UOSNHz4cL3wwgvKz8+XpIv+Ut+0aZMKCgqUkZEhSSotLVWrVq104MAB\n+fn5qU+fPpKkQYMGGe8xyMjI0OTJk2Wz2WSz2fT2229LklauXOle5/PPP9cPP/ygJ554wv2ej4+P\nvvvuO23dulVTpkyRj4+PwsLCFBUVZexn+PDhiomJ0aRJk7RmzRoNGDBAwcHBF63Ttm1b/fa3v1V6\nerpyc3OVmZmpoqIid51DhgxRYGCgJOnVV1+VdH5UpDYeeugh3XzzzVqyZIlyc3P15ZdfVnmd/8Kf\nTUU4Cw4O1po1ay5a/sUXX6h37966+eabJUl9+vRRWFiYsrKyFBUVpaSkJO3Zs0d9+vTRtGnT5Ovr\nq08//VR79+7V8OHDJZ0fISgpKamx/pCQED388MOSpL59+8qyLH3zzTfu5bU93oC3IiQAl8Fms130\n2rIs93stWrRwv+9yuTRlyhT1799fklRUVCSHw6GjR4/q0ulS/Pwqn4Z+fn7y8fFxvz569Kj7F/GF\nn9GnTx/3L+aK9dq0aeOuraq6K7Rt21YdO3bUpk2btHLlSk2ZMqXSOtnZ2Xr66af1xBNP6L777lPP\nnj31/PPPG2s/ceJEpeF0Hx+fi2opLS11/3vZsmVasWKFEhISNHjwYF1//fU13tR36c/m8OHDCg0N\ndb82TUdjWZbKyso0YMAAffLJJ8rIyNDWrVuVlpamd999Vy6XS//2b//mvszidDp15syZauuQzo/G\nXPo5/v7+VfZeUT/QUHC5AbgM+/fv1/79+yVJy5cvV7du3RQSElJpvZ///OdaunSpnE6nXC6Xpk+f\nrnnz5qlDhw6yLEubN2+WJG3YsMH4y6hPnz764IMP5HK55HQ6NX78eG3fvl02m01lZWWSpN69e+vz\nzz9XTk6OJGnz5s165JFH5HA41LdvX73//vtyuVw6c+aMNmzYUGVPjz32mBYvXqxz585Vum9BkrZv\n367OnTtr9OjR6tWrlzZs2KDy8nJ3nWvWrHH3OXPmTH300Uey2WzuMBASEqLS0lIdPHhQkvSXv/zF\nve+//vWvGjp0qEaMGKFbb71VGzdudO+7Kn369NGf//xnSVJBQYF+9atf6dtvv3Uvr/i5HD58WJK0\ndetWHT16VPfcc49+85vfaO3atfrXf/1XJScnKygoSEePHtXPf/5zvf/++yosLJQkvfbaa3ruueeq\nrUOSTp8+rU8//VSStHHjRgUEBOinP/2pe3ltjzfgrYi0wGVo3bq1Xn31VR05ckRhYWF66aWXjOs9\n/fTT+u1vf6uhQ4eqvLxcd911lyZNmiR/f3+lpaVp5syZmjdvnu666y61atWq0va//vWv9eKLL2rI\nkCEqLy/Xww8/rAcffFDfffedXn31VT3zzDNKS0vTCy+8oP/8z/+UZVny8/PTggUL1KJFC40bN07J\nycn65S9/qbCwMHXo0KHKnu6//349//zzevLJJ43LBw0apHXr1unhhx+Wv7+/+vTpozNnzqiwsFBx\ncXE6cuSIhg0bJsuy1KtXL9ntdhUVFclmsykmJkbvvfeeEhMT9eSTTyosLEwPPfSQe99jxozRjBkz\ntHLlStlsNnXq1EkHDhyo9hjMmDFDM2fO1ODBg2VZlp566il17tzZvfy2225TcnKyfv3rX6u8vFyB\ngYFauHChgoOD9fTTT2vq1Klavny5+4bQXr16qWfPnjp27Jgee+wx+fj46MYbb9TcuXOrrUOSWrVq\npXXr1unVV19V8+bNlZqaetFIQW2PN+CtfJgqGqidC799AABNASMJAFCF2bNnV3kT5uTJk9W7d+9r\nXBFwbTGSAAAAjLhxEQAAGBESAACAESEBAAAYNcobF48fL6jvEq5YaGgL5ecX13cZV40+vAt9eI/G\n0INEH94mNLSF/PzMD027GowkeBlPHOT6QB/ehT68R2PoQaIPb+OpPggJAADAiJAAAACMCAkAAMCI\nkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAA\nAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAA\njAgJAADAyKMhITMzU3a73bispKREcXFxysnJkSSVlpYqMTFR8fHxiomJ0YYNGyRJ+/btU9++fWW3\n22W327V27VpPlgwAAP7Jz1M7Xrx4sVavXq3mzZtXWrZ3714lJyfr2LFj7vdWr16t66+/Xi+//LJO\nnz6tRx99VAMHDlR2drZGjx6tMWPGeKpUAABg4LGRhHbt2ik1NdW4zOl0Ki0tTREREe73HnroIU2Y\nMEGSZFmWbDabJCkrK0ubNm1SQkKCpkyZosLCQk+VDAAALuCxkYTo6Gjl5eUZl3Xv3r3Sey1btpQk\nFRYWavz48Zo4caIkKTIyUiNGjFDnzp21YMECpaWlKSkpqdrPDg1tIT8/21V2UH/Cw4Pru4Q6QR/e\nhT68R2PoQaKPpsBjIeFKHD16VM8884zi4+M1ePBgSVJUVJRCQkLc/05JSalxP/n5xR6t05PCw4N1\n/HhBfZdx1ejDu9CH92gMPUj04W08FXS85tsNJ06c0JgxY5SYmKiYmBj3+2PHjtWePXskSVu3blWn\nTp3qq0QAAJqUazaSkJ6eruLiYsXGxhqXL1y4UGfPntX8+fM1f/58Sedvfpw5c6ZSUlLk7++v1q1b\n12okAQAAXD0fy7Ks+i6irjXkoaPGNPRFH96DPrxHY+hBog9v0+gvNwAAAO9CSAAAAEaEBAAAYERI\nAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAA\nAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABG\nhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQE\nAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARh4NCZmZmbLb7cZlJSUliouLU05OjiSptLRU\niYmJio+PV0xMjDZs2CBJys3N1ciRIxUfH6/k5GS5XC5PlgwAAP7JYyFh8eLFmjZtmhwOR6Vle/fu\nVUJCgg4fPux+b/Xq1br++uu1bNky/eEPf1BKSookac6cOZo4caKWLVsmy7Lc4QEAAHiWx0JCu3bt\nlJqaalzmdDqVlpamiIgI93sPPfSQJkyYIEmyLEs2m02SlJ2drV69ekmS+vXrp4yMDE+VDAAALuDn\nqR1HR0crLy/PuKx79+6V3mvZsqUkqbCwUOPHj9fEiRMlnQ8MPj4+7nUKCgpq/OzQ0Bby87Ndaen1\nLjw8uL5LqBP04V3ow3s0hh4k+mgKPBYSrsTRo0f1zDPPKD4+XoMHD5Yk+fr+ONhRVFSkkJCQGveT\nn1/ssRo9LTw8WMeP1xyEvB19eBf68B6NoQeJPryNp4KO13y74cSJExozZowSExMVExPjfr9jx47a\ntm2bJGnLli3q0aNHfZUIAECTcs1CQnp6upYvX17l8oULF+rs2bOaP3++7Ha77Ha7zp07p6SkJKWm\npio2NlalpaWKjo6+ViUDANCk+ViWZdV3EXWtIQ8dNaahL/rwHvThPRpDDxJ9eJtGf7kBAAB4F0IC\nAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAA\nMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAi\nJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQA\nAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAaFIcpeX6Ib9YjtJy42sAP/Lz5M4zMzP1\nyiuvaMmSJZWWlZSUaPTo0XrxxRfVvn37KrfZt2+fnnrqKd1yyy2SpJEjR+rhhx/2ZNkAGqFyl0vL\nNx7UrgPHdeqsQ6HBzRTg76cSh1Oni8oUFtxM3e5oo9j7b5PNl7+fAMmDIWHx4sVavXq1mjdvXmnZ\n3r17lZycrGPHjtW4TXZ2tkaPHq0xY8Z4qlQATcDyjQe1/qs89+tTBU5Jzoter/8qTy7L0uNRd9RD\nhYD38VhcbteunVJTU43LnE6n0tLSFBERUeM2WVlZ2rRpkxISEjRlyhQVFhZ6qmQAjdTJs+e0cUde\nzStK2rTriIodZR6uCGgYPBYSoqOj5ednHqjo3r27brzxxlptExkZqeeee05Lly7VzTffrLS0NI/U\nC6DxKXe5tGz9ASUtzJDLqt02Lpf09idfe7YwoIHw6D0JdSEqKkohISHuf6ekpNS4TWhoC/n52Txd\nmseEhwfXdwl1gj68S1Pp45yzTPlnHQoNCdCStX+76BJDbR04fFrB1zVXYDPP/CeyqRyLhqKx9OEJ\nXh8Sxo4dq+nTpysyMlJbt25Vp06datwmP7/4GlTmGeHhwTp+vKC+y7hq9OFdmkIf50cN/q7dB07o\ndOH5GxOLHVf2jYVTBQ7lfHtSbUJbXE25Rk3hWDQkjakPT7hmISE9PV3FxcWKjY29rO1mzpyplJQU\n+fv7q3Xr1rUaSQDQOJ1zlumH/GJdFxSgAH+bHKXlOlPoUFCLZpr79g7lHS9yr3v+xsQrc31QM10X\nFFAXJQMNmo9lWbW8UtdwNORU2JhSLX14j4beR8XXF/fknNTx/BKFBjdT80B/FZWU6nShUz4+Ul3+\nl6zfPT/RE7/sWHc7vEBDPxYV6MO7NPiRBACoSsWIQMUIwaWWrf+7Pt15xP36VIFTumCkoK7/1Inu\n9dO63SHQQBESANSbSx9wFBYSoK4dwt0PNCp3ufTWJ/v1WeY/rvgzAvx8FdTCX/kFDvnbfOUoc1W7\nflhwM4WFBF7x5wGNCSEBQL259AFHJ8863K8f7XurZv3pK/0jv+SqPuNnkTfqsQG3ue9dWPXZN/rr\nnqM65zTf1NjtjjbG0QygKSIkAKgXjtJy7Tpw3Ljss8zvtXFHXq2fbVAVX19peP/2CvC3ub+pEP9A\nBz3a91a9/ZcD2vX1cTlKz48sBDaz6b67f6LY+2+7ug8FGhFCAoB6cabQoVNnHcZlFb+4r5blkgqL\nnWoRcPF/6loE+Ov/DeokR3S5jucXSz4+Cr++OSMIwCUICQDqxXVBAQoLCdDJKoJCXQgLCaz2q4wB\n/jbd1IYH6QBVYaozAPUiwN+myPatPPoZXTu0ZnQAuArVjiTY7Xb5+PhUufytt96q84IANG4Xft2x\nX5e2+nTX93X+GRdO+wzgylUbEsaNG3et6gDQQNX0jIMKlz42uZm/r1xXe2diFSaOuIfLCEAdqDYk\n9OrVy/3vffv2qbi4WJZlqby8XHl5eRctB9C01PSMg0vXfeFPX+nwDz9O9V5XNyde6vqWzRTugTkX\ngKaoVjcuJiUladeuXTpz5owiIiK0f/9+devWTTExMZ6uD4CXqu4ZB/EPdLho3WV/OXBRQPCkrneE\ncx8CUEdqdePi9u3b9dFHHyk6OlopKSlasWKFnM4rnzwFQMNW3TMOdh04IUdp+cXr/v3ENanrpvCW\nin/g9mvyWUBTUKuQ0KZNG/n7+6t9+/b6+uuvdfvtt6uoqKjmDQE0StU94yC/4JzOFDouWvd0oWf/\nqPDxOT8pU/LonpUudQC4crW63HDDDTfo97//vfr06aOXX35ZklRcXOzRwgB4B9ONidU94yA0+OJn\nE1wXFKBWHn4ewi+6tpX9wTs8tn+gqapVSHjxxRe1efNmRUZG6sEHH9SaNWs0c+ZMD5cGoD5Vd2Ni\ngL9NXTuEX3RPQoVLn00Q4G/Tne1C9XnWlU/SVCE0uJnujghT9qHTyi84p9DgQHXt0JqvOgIeUquQ\ncPbsWXXt2lXff/+9Bg4cqIEDB3q6LgD1rKYbEyt+Me86cKLGX9gjozpox4EfdM55dd9o6NvlJj16\n3y21/tolgKtTq5Dw+OOPy8fHR5ZlqaysTCdOnNBdd92lP//5z56uD0A9qOnGxIpJk+If6KDh/dvX\n+Au7RYCffh75L8aRhwB/X+PXIW2+Prqupb9OFzrdAWTM4E46daroogmbAHhOrULCxo0bL3q9Z88e\nLV261CMFAah/tbkxseKXdG1/YVc18mBZljbsOFJp/QHd2lYKIDYbNyUC19IVTfAUGRmpKVOm1HUt\nAOrJpcP3l3NjYm3ZfH2NIw/lLpd8fHyMly1svr6MGAD1qFYh4Y033rjo9cGDB9WqlWcnZgHgeZfe\nnHh9UIC6dGit+Adur/WNiZfr0pGHqsIDgPp3RSMJPXv21KBBg+q6FgDX2KU3J+YXOvTpziM6mHdG\nU0d1k1S7GxPrAvcZAN6nViGhbdu2Gjp06EXvLV26VAkJCR4pCoBnXHhZQVKVNyce/qFQyzcclD36\nTv7CB5qwakPCn/70JxUWFurdd9/VkSM/3lhUXl6u9PR0QgLQQJSXu7Rs/YGLnnlwR7vQKm9OlKRd\nfz+hR/s6VeIoIyAATVS1IeGnP/2psrOzK73frFkzzZ0712NFAahbf0zPrvTMg4ysfyjAz1eOMvOz\nC04XOjXzj9t1urD6GR4BNF7VhoQBAwZowIAB+uUvfymHw6GOHTuqoKBAWVlZ6tGjx7WqEcBluvSy\nwhdZR80r+lS/n/x/zsFQ3QyPABqvWt2T8MEHH2jfvn364x//qJKSEs2fP19fffWVxo0b5+n6AFwG\n06OU72gXquOnS4zrO0tdujGshY6eqt1cLBc+SAlA41erccNNmzZp8eLFks7PCPk///M/WrdunUcL\nA3D5Kr6tcPKsQ5Z+vKwQ2Mz890BYSKCm/qqHBnT9F10f1Ew+kq5r6V/l/i+d4RFA41arkYSysjKd\nO3dOLVu2lCSVlpZ6tCgANbv0AUjVPUpZsozvdu3QWi0C/GSPvlOP3X9+f/+37Ttt3v29cf0rfZAS\ngIapViEhLi5Ow4YN0/333y/LsvTZZ5/xzQagnlQ1O+OArm2r/LbCOUe57uv8E+3/rurZEyuetJj1\nzckqPzuyfRiXGoAmpFYhYeTIkSotLZXT6VRISIhiYmJ0/HhVf7EA8KSqZmcsL3dV+Sjl8NDmejz6\nDkmq9pkH1c3ZIEkP9Li5DjoA0FDUKiSMGzdOJSUl+u6779SjRw9t375dXbp08XRtQJN3OZcU9uSc\nUuRtrfXpzsqTJfXufKM7FFT3VMPq5mxoFRKosJDAK+wEQENUq5Bw6NAhrVu3Ti+++KKGDx+u5557\nThMmTPB0bUCTdSWXFPILzumB7jfJ5lt5sqSKKZZrEuBv89icDQAanlqFhFatWsnHx0e33nqrvv76\naz366KNyOp2erg1osq7kkkJo8Pm/9E2TJV3OFMtVTensqTkbAHivWoWE22+/XSkpKRo5cqT+67/+\nSz/88APfcAA85EovKVz4l/7VTJbErIwAKtQqJMycOVO7du3SbbfdpnHjxmnr1q363e9+5+nagCbp\nH6eKjCMFknSq4Jz63fMvcjrLtf+7fOUXODz2lz6zMgKoVUiw2WzuxzAPHDhQAwcO9GhRQFNUcR/C\nZ5mVRwkqWJY0+63tKi2XwoKbqXennyg+6na1CKj6AUgAcKWYqQXwEhX3IThKzQ8+qlBafv5/TxU4\nlZH1D6367NA1qA5AU0RIALxA9U9LrN6uA8flqEgOAFCHCAmAF6jpIUbVOXnWwXwKADyCkAB4geuC\nAhTQ7Mq+QeAjqXlArW4vAoDL4tGQkJmZKbvdblxWUlKiuLg45eTkVLtNbm6uRo4cqfj4eCUnJ8vl\ncnmyZKAeVX8vQnVblTjK6rYUAJAHQ8LixYs1bdo0ORyVh0H37t2rhIQEHT58uMZt5syZo4kTJ2rZ\nsmWyLEsbNmzwVMlAvTlT6NA555UF4JAWfszMCMAjPBYS2rVrp9TUVOMyp9OptLQ0RURE1LhNdna2\nevXqJUnq16+fMjIyPFMwUI+uCwpQq5Ar+0Xf8RZmZgTgGR67kBkdHa28vMrPf5ek7t2713oby7Lk\n4+MjSWrZsqUKCgpq/OzQ0Bby82u4/9EMDw+u7xLqBH1cnvvuaavVn31zWdv4+kgT47urZfNmNa7L\n8fAejaEHiT6aAq+/28nX98fBjqKiIoWEhNS4TX5+sSdL8qjw8GAdP15zEPJ29HH5Bvdpp+ISp3Yd\nOKFTBedk1eIWhV90a6viQoeKa/h2A8fDezSGHiT68DaeCjpeHxI6duyobdu26d5779WWLVvUu3fv\n+i4J8IhL50z4v2252rz7qHHdsOAAdbsjnEmXAHjUNQsJ6enpKi4uVmxs7GVtl5SUpOnTp2vevHmK\niIhQdHS0hyoEvEPFnAmPP3iH/P1s2vn18X/O0RCge25vrQe636SwkEDuQwDgcT6WVZtBzYalIQ8d\nNaahL/qoG47S8quejdEb+qgLjaGPxtCDRB/epslebgCaOmZjBFBfeOIiAAAwIiQAAAAjQgIAADAi\nJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQA\nAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAA\nI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNC\nAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADDyaEjIzMyU3W43LispKVFcXJxycnIkSS6XSzNmzFBs\nbKzsdrtyc3MlSfv27VPfvn1lt9tlt9u1du1aT5YMAAD+yc9TO168eLFWr16t5s2bV1q2d+9eJScn\n69ixY+731q9fL6fTqeXLl2v37t2aO3euFixYoOzsbI0ePVpjxozxVKkAAMDAYyMJ7dq1U2pqqnGZ\n0+lUWlqaIiIi3O/t2LFDffv2lSR16dJFWVlZkqSsrCxt2rRJCQkJmjJligoLCz1VMgAAuIDHRhKi\no6OVl5dnXNa9e/dK7xUWFiooKMj92mazqaysTJGRkRoxYoQ6d+6sBQsWKC0tTUlJSdV+dmhoC/n5\n2a6ugXoUHh5c3yXUCfrwLvThPRpDDxJ9NAUeCwmXKygoSEVFRe7XLpdLfn5+ioqKUkhIiCQpKipK\nKSkpNe4rP7/YY3V6Wnh4sI4fL6jvMq4afXgX+vAejaEHiT68jaeCjtd8u6Fbt27asmWLJGn37t3q\n0KGDJGns2LHas2ePJGnr1q3q1KlTvdUIAEBTcs1GEtLT01VcXKzY2Fjj8qioKH3++eeKi4uTZVma\nPXu2JGlbf3Y9AAAM20lEQVTmzJlKSUmRv7+/WrduXauRBAAAcPV8LMuy6ruIutaQh44a09AXfXgP\n+vAejaEHiT68TaO/3AAAALwLIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgR\nEgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIA\nAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACA\nESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEh\nAQAAGHk0JGRmZsputxuXlZSUKC4uTjk5OZIkl8ulGTNmKDY2Vna7Xbm5uZKk3NxcjRw5UvHx8UpO\nTpbL5fJkyQAA4J88FhIWL16sadOmyeFwVFq2d+9eJSQk6PDhw+731q9fL6fTqeXLl+s3v/mN5s6d\nK0maM2eOJk6cqGXLlsmyLG3YsMFTJQMAgAt4LCS0a9dOqampxmVOp1NpaWmKiIhwv7djxw717dtX\nktSlSxdlZWVJkrKzs9WrVy9JUr9+/ZSRkeGpkgEAwAX8PLXj6Oho5eXlGZd179690nuFhYUKCgpy\nv7bZbCorK5NlWfLx8ZEktWzZUgUFBTV+dmhoC/n52a6w8voXHh5c3yXUCfrwLvThPRpDDxJ9NAUe\nCwmXKygoSEVFRe7XLpdLfn5+8vX9cbCjqKhIISEhNe4rP7/YIzVeC+HhwTp+vOYg5O3ow7vQh/do\nDD1I9OFtPBV0vObbDd26ddOWLVskSbt371aHDh0kSR07dtS2bdskSVu2bFGPHj3qrUYAAJqSaxYS\n0tPTtXz58iqXR0VFqVmzZoqLi9OcOXM0efJkSVJSUpJSU1MVGxur0tJSRUdHX6uSAQBo0nwsy7Lq\nu4i61pCHjhrT0Bd9eA/68B6NoQeJPrxNo7/cAAAAvAshAQAAGBESAACAESEBAAAYERIAAIARIQEA\nABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAY\nERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgJGPZVlWfRcB\nAAC8DyMJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJHpSZmSm73W5cVlJSori4OOXk\n5EiSXC6XZsyYodjYWNntduXm5kqS9u3bp759+8put8tut2vt2rWSpBUrVmjYsGF67LHH9Omnn3p1\nD88++6y7/vvvv1/PPvusJGnWrFkaNmyYe1lBQYFX9FHVNrm5uRo5cqTi4+OVnJwsl8sl6dodC1NN\nF6ptH3/7298UHx8vu92usWPH6sSJE5Ia3vGo73PDVNOFattHQzs/SktLlZiYqPj4eMXExGjDhg2S\nGt75UVUfDe38qKqPOjs/LHjEokWLrEGDBlkjRoyotGzPnj3W0KFDrZ/97GfWwYMHLcuyrE8++cRK\nSkqyLMuydu3aZf37v/+7ZVmWtWLFCuvNN9+8aPsffvjBGjRokOVwOKyzZ8+6/+2tPVQ4ffq09cgj\nj1jHjh2zLMuy4uLirJMnT9Z53Ze63D6q2uapp56yvvjiC8uyLGv69OnWunXrrtmxqMs+EhISrH37\n9lmWZVnvvPOONXv2bMuyGt7xqM9zoy77qNBQzo/333/fmjVrlmVZlpWfn2/179/fsqyGd35U1UdD\nOz+q6qOuzg9GEjykXbt2Sk1NNS5zOp1KS0tTRESE+70dO3aob9++kqQuXbooKytLkpSVlaVNmzYp\nISFBU6ZMUWFhofbs2aOuXbuqWbNmCg4OVrt27bR//36v7aFCamqqHn/8cbVp00Yul0u5ubmaMWOG\n4uLi9P7779d5/VfaR1XbZGdnq1evXpKkfv36KSMj45odi7rsY968ebrrrrskSeXl5QoICGiQx6M+\nz4267KNCQzk/HnroIU2YMEGSZFmWbDabpIZ3flTVR0M7P6rqo67OD7866guXiI6OVl5ennFZ9+7d\nK71XWFiooKAg92ubzaaysjJFRkZqxIgR6ty5sxYsWKC0tDTdeeedCg4Odq/bsmVLFRYWem0Pfn5+\nOnnypLZu3arJkydLkoqLi/X4449r9OjRKi8v16hRo9S5c2fdeeed9d5HVdtYliUfHx9J53/mBQUF\nKiwsvCbHoqqaKlxOH23atJEk7dy5U2+//baWLl3aII9HfZ4bVdVU4XL6kNSgzo+WLVtKOn++jx8/\nXhMnTpTU8M6PqvpoaOdHVX3U1fnBSIKXCAoKUlFRkfu1y+WSn5+foqKi1LlzZ0lSVFSU9u3bV2nd\noqKiiw58famqB0n6+OOPNWjQIHfKbd68uUaNGqXmzZsrKChIvXv39thfGHXF1/fH06WoqEghISFe\neyxqsnbtWiUnJ2vRokUKCwtrkMejIZ0bNWlo58fRo0c1atQoDRkyRIMHD5bUMM8PUx9Swzs/TH3U\n1flBSPAS3bp105YtWyRJu3fvVocOHSRJY8eO1Z49eyRJW7duVadOnRQZGakdO3bI4XCooKBAOTk5\n7vXrU1U9SOdr79evn/v1t99+q5EjR6q8vFylpaXauXOnOnXqdM1rvhwdO3bUtm3bJElbtmxRjx49\nvPZYVOfDDz/U22+/rSVLlujmm2+W1DCPR0M6N2rSkM6PEydOaMyYMUpMTFRMTIz7/YZ2flTVR0M7\nP6rqo67ODy43XCPp6ekqLi5WbGyscXlUVJQ+//xzxcXFybIszZ49W5I0c+ZMpaSkyN/fX61bt1ZK\nSoqCgoJkt9sVHx8vy7L07LPPKiAgwGt7kKRDhw65TzhJat++vYYMGaLHHntM/v7+GjJkiG6//XaP\n9yDV3EdVkpKSNH36dM2bN08RERGKjo6WzWarl2MhXVkf5eXlevHFF3XjjTdq3LhxkqSePXtq/Pjx\nDe54eNO5IV15H1LDOj8WLlyos2fPav78+Zo/f74kafHixQ3u/DD18fvf/77BnR9VHY+6Oj+YBRIA\nABhxuQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAXLVJkyZp5cqVOnbsmJ588slq161q4pqq\nbNu27bK3AVA3CAkA6swNN9ygxYsXV7vOl19+eY2qAXC1eJgS0ERt27ZNqamp8vPz09GjRxUZGan/\n+I//0NNPP63Q0FAFBATozTff1EsvvaQvv/xS5eXlGjZsmJ544glZlqW5c+dq06ZNatOmjcrLy9Wr\nVy/l5eVp1KhR2rhxo44cOaLJkyfr1KlTCgwM1KxZs9wT44wYMULvvfeetmzZotdff11lZWW66aab\nlJKSotDQUP31r3/VnDlzFBAQoFtvvbWef1JA00VIAJqwPXv2aNWqVbr11ls1YcIEbd68WYcOHdIf\n/vAH3XTTTXrnnXckSR988IGcTqfGjh2rzp0768SJE9q3b5/WrFmjgoICPfLII5X2/fzzzys6OloJ\nCQnavHmzFixYoNdee01LlizRe++9p1OnTul3v/ud3nrrLV133XV699139corryg5OVmTJk3S//7v\n/6p9+/aaOnXqtf6xAPgnQgLQhPXs2dM97eyQIUO0YsUKtWrVSjfddJOk8898/9vf/qYvvvhC0vnZ\nCb/++mvl5OTowQcflL+/v8LCwi6ad6DC9u3bNW/ePElS//791b9//4uWZ2Zmuiemkc5PCHbdddfp\n66+/Vps2bdS+fXtJ0tChQ/Xaa6955gcAoFqEBKAJq5h1UPpxLvrAwED3e+Xl5UpMTNSDDz4oSTp1\n6pRatGihl19+WS6Xy71exWyfF7rwPcuylJOTo9tuu+2ifXfr1k0LFy6UJDkcDhUVFen777+/aN8X\n1gjg2uLGRaAJ27Fjh44dOyaXy6VVq1ZVGhHo3bu3VqxYodLSUhUVFSk+Pl6ZmZnq06ePPv74Yzmd\nTp05c0afffZZpX336NFDH330kSQpIyND06dPl3T+l35ZWZnuuece7d69W4cOHZIkzZ8/Xy+99JLu\nuOMOnTx50j0Vb8U+AFx7jCQATVibNm303HPP6dixY7rvvvv0s5/9TIsWLXIvj4uLU25uroYOHaqy\nsjINGzZM9957ryRp7969GjRokFq3bu2+NHChGTNmaNq0aVq2bJmaN2+uWbNmSZIGDhyoIUOGaOXK\nlZo9e7YmTpwol8ulG264QS+//LL8/f01b948JSYmys/PTx07drw2PwwAlTALJNBEbdu2TW+88YaW\nLFlS36UA8FJcbgAAAEaMJAAAACNGEgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABj9f4fo\ndQYEqmhTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mse train all feature: 9.51813e-07\n", + "mse test all feature: 1.49011e-06\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr4AAAI+CAYAAADq7novAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X1wXOWB5/vfc7otydZby7YAI8sgM3iy2GbBZjI1nkt2\nhlxXpsykdqY8xOAUW5Ww87azM5Oq1Eyo1CTxvRCgdqtmp4rLJTvMsn+k8C4vWzUbxsxlA4Z4g0jA\ndoyRTbCxLVkSxpZttdR6s9R9nvvH49PqllpSq9VSdx99P1UpYnX36dPn5TnnPL/nxVhrrQAAAAAA\nAAAAAIAK55V6BQAAAAAAAAAAAIBiIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAA\nABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhEK01CtQiL6+RKlXAUCGpqZV6u8fKfVqAMC8UX4B\nqFSUXwAqGWUYgEpF+QWUj+bm+hlfo8cXgAWLRiOlXgUAKAjlF4BKRfkFoJJRhgGoVJRfQGUg+AIA\nAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAA\nAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8\nAQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAA\nAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAU\nooV8yPd97du3Tx9//LGqqqr0+OOP65Zbbkm/fvDgQT3zzDOKRqPavXu3vvKVr2hiYkLf/va31dvb\nq/Hxcf3pn/6pvvjFL6qrq0uPPvqojDG6/fbb9b3vfU+eRx4HAAAAAAAAAACA+SkoYXrjjTc0Pj6u\nF198Ud/85jf11FNPpV+bmJjQk08+qeeff14//OEP9eKLL+ry5cv60Y9+pFgspv379+sf/uEf9Nhj\nj0mSnnzySX3jG9/Q/v37Za3Vm2++WZxfBgAAAAAAAAAAgGWloODryJEjuvfeeyVJd911lzo6OtKv\nnTlzRhs2bFBjY6Oqqqq0fft2vf/++/qd3/kd/eVf/qUkyVqrSCQiSTpx4oQ+//nPS5K+8IUvqL29\nfUE/CAAAAAAAAAAAAMtTQUMdDg0Nqa6uLv3vSCSiZDKpaDSqoaEh1dfXp1+rra3V0NCQamtr05/9\ni7/4C33jG9+Q5EIwY0z6vYlEYs7vb2papWg0UsiqA1gkzc31c78JAMoQ5ReASkX5BaCSUYYBqFSU\nX0D5Kyj4qqur0/DwcPrfvu8rGo3mfG14eDgdhF24cEF/9md/pr179+rLX/6yJGXN5zU8PKyGhoY5\nv7+/f6SQ1QawSJqb69XXN3doDQDlhvILQKWi/AJQySjDAFQqyi+gfMwWQhc01OG2bdt06NAhSdKx\nY8e0adOm9Gu33Xaburq6FI/HNT4+rsOHD+vuu+/W5cuX9fWvf11/9Vd/pT/4gz9Iv/+OO+7Qz3/+\nc0nSoUOHdM899xSySgAAAAAAAAAAAFjmjLXWzvdDvu9r3759OnXqlKy1euKJJ3Ty5EmNjIxoz549\nOnjwoJ555hlZa7V792599atf1eOPP65//ud/1saNG9PLee6553ThwgV95zvf0cTEhDZu3KjHH388\nPf/XTEjVgfJCaxcAlYryC0ClovwCUMkowwBUKsovoHzM1uOroOCr1ChcgPLCRR9ApaL8AlCpKL8A\nVDLKMACVivILKB9FH+oQAAAAAAAAAAAAKDcEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAA\nAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAA\nIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsA\nAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAA\nAAAQCgRfAAAAAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDw\nBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAA\nAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQ\nIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAA\nAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAA\nQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAAAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcA\nAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAA\nAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHg\nCwAAAAAAAAAAAKFQUPDl+76++93vas+ePXr44YfV1dWV9frBgwe1e/du7dmzRy+99FLWax988IEe\nfvjh9L9Pnjype++9Vw8//LAefvhhvfbaa4WsEgAAAAAAAAAAAJa5aCEfeuONNzQ+Pq4XX3xRx44d\n01NPPaVnn31WkjQxMaEnn3xSr7zyilauXKmHHnpI9913n9auXavnnntOP/rRj7Ry5cr0sk6cOKGv\nfe1r+vrXv16cXwQAAAAAAAAAAIBlqaAeX0eOHNG9994rSbrrrrvU0dGRfu3MmTPasGGDGhsbVVVV\npe3bt+v999+XJG3YsEFPP/101rI6Ojr09ttv66tf/aq+/e1va2hoqNDfAgAAAAAAAAAAgGWsoB5f\nQ0NDqqurS/87EokomUwqGo1qaGhI9fX16ddqa2vTYdaXvvQl9fT0ZC3rzjvv1AMPPKAtW7bo2Wef\n1TPPPKNvfetbs35/U9MqRaORQlYdwCJpbq6f+00AUIYovwBUKsovAJWMMgxApaL8AspfQcFXXV2d\nhoeH0//2fV/RaDTna8PDw1lB2FQ7d+5UQ0ND+v8/9thjc35/f/9IIasNYJE0N9erry9R6tUAgHmj\n/AJQqSi/AFQyyjAAlYryCygfs4XQBQ11uG3bNh06dEiSdOzYMW3atCn92m233aauri7F43GNj4/r\n8OHDuvvuu2dc1iOPPKLjx49Lkt59911t3ry5kFUCAAAAAAAAAADAMldQj6+dO3fqnXfe0YMPPihr\nrZ544gm9+uqrGhkZ0Z49e/Too4/qkUcekbVWu3fv1o033jjjsvbt26fHHntMK1as0Nq1a/Pq8QUA\nAAAAAAAAAABMZay1ttQrMV90JwXKC928AVQqyi8AlYryC0AlowwDUKkov4DyUfShDgEAAAAAAAAA\nAIByQ/AFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUoqVeAQAAgJn09hq1t0cU\njxvFYlY7dqTU0mJLvVoAAAAAAAAoUwRfAACgLPX2Gu3fH5W1RpLU32/U2Wm0d2+S8AsAAAAAAAA5\nMdQhAAAoS+3tkXToFbDW9QADAAAAAAAAciH4AgAAZSkeN/P6OwAAAAAAAEDwBQAAylIslns4w5n+\nDgAAAAAAABB8AQCAsrRjR0rGZIdcxljt2JEq0RoBAAAAAACg3EVLvQIAAAC5tLRY7d2bVHt7RPG4\nUSzmQq+WFnp8AQAAAAAAIDeCLwAAULZaWqweeCBZ6tUAAAAAAABAhWCoQwAAAAAAAAAAAIQCwRcA\nAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAA\nAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHg\nCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAA\nAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAACh\nQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAA\nAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAA\ngFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8A\nAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAA\nAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhEJB\nwZfv+/rud7+rPXv26OGHH1ZXV1fW6wcPHtTu3bu1Z88evfTSS1mvffDBB3r44YfT/+7q6tJDDz2k\nvXv36nvf+5583y9klQAAAAAAAAAAALDMFRR8vfHGGxofH9eLL76ob37zm3rqqafSr01MTOjJJ5/U\n888/rx/+8Id68cUXdfnyZUnSc889p7/5m7/RtWvX0u9/8skn9Y1vfEP79++XtVZvvvnmAn8SAAAA\nAAAAAAAAlqOCgq8jR47o3nvvlSTddddd6ujoSL925swZbdiwQY2NjaqqqtL27dv1/vvvS5I2bNig\np59+OmtZJ06c0Oc//3lJ0he+8AW1t7cX9EMAAAAAAAAAAACwvEUL+dDQ0JDq6urS/45EIkomk4pG\noxoaGlJ9fX36tdraWg0NDUmSvvSlL6mnpydrWdZaGWPS700kEnN+f1PTKkWjkUJWHcAiaW6un/tN\nAFCGKL8AVCrKLwCVjDIMQKWi/ALKX0HBV11dnYaHh9P/9n1f0Wg052vDw8NZQdhUnudlvbehoWHO\n7+/vHylktQEskubmevX1zR1aA0C5ofwCUKkovwBUMsowAJWK8gsoH7OF0AUNdbht2zYdOnRIknTs\n2DFt2rQp/dptt92mrq4uxeNxjY+P6/Dhw7r77rtnXNYdd9yhn//855KkQ4cO6Z577ilklQAAAAAA\nAAAAALDMFdTja+fOnXrnnXf04IMPylqrJ554Qq+++qpGRka0Z88ePfroo3rkkUdkrdXu3bt14403\nzrisb33rW/rOd76jv/3bv9XGjRv1pS99qeAfAwAAAAAAAAAAgOXLWGttqVdivuhOCpQXunkDqFSU\nXwAqFeUXgEpGGQagUlF+AeWj6EMdAgAAAAAAAAAAAOWG4AsAAAAAAAAAAAChQPAFAAAAAAAAAACA\nUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAAAAAAAAAACAWCLwAA\nAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAA\nAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEArRUq8AAGB56e01am+PKB43isWsduxIqaXFlnq1\nAAAAAAAAAIQAwRcAYMn09hrt3x+VtUaS1N9v1NlptHdvkvALAAAAAAAAwIIx1CEAYMm0t0fSoVfA\nWtcDDAAAAAAAAAAWiuALALBk4nEzr78DAAAAAAAAwHwQfAEAlkwslns4w5n+DgAAAAAAAADzQfAF\nAFgyO3akZEx2yGWM1Y4dqRKtEQAAAAAAAIAwiZZ6BQAAy0dLi9XevUm1t0cUjxvFYi70ammhxxcA\nAAAAAACAhSP4AgAsqZYWqwceSJZ6NQAAAAAAAACEEEMdAgAAAAAAAAAAIBQIvgAAAAAAAAAAABAK\nBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAA\nAAAAAACAUCD4AgAAAAAAAAAAQChES70CAABUkt5eo/b2iOJxo1jMaseOlFpabKlXCwAAAAAAAIAI\nvgAAyFtvr9H+/VFZayRJ/f1GnZ1Ge/cmCb8AAAAAAACAMsBQhwAA5Km9PZIOvQLWuh5gAAAAAAAA\nAEqP4AsAgDzF42ZefwcAAAAAAACwtBjqEADKCPNHlbdYzKq/f3rIFYuxjwAAAAAAAIByQPAFAGWC\n+aPK344dKXV2mqzhDo1xASUAAEC5onEVAAAAlhOGOgSAMsH8UeWvpcVq796k2tp8NTVZtbX5BJMA\nAKCsBY2rzp3z1N9vdO6cp/37o+rtZahmAAAAhBM9vgCgTDB/VGVoabF64IFkqVcDAAAgL7M1ruKe\nBgAAAGFEjy8AKBMzzRPF/FEAAAAoFI2rAAAAsNwQfAFAmdixIyVjskMu5o8CAADAQtC4CgAAAMsN\nwRcAlAnmjwIAAECx0bgKAAAAyw1zfAFAGWH+KAAAABRT0LiqvT2ieNwoFnOhF42rAAAAEFYEXwAA\nAAAAhBiNqwAAALCcMNQhAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAA\nAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAK0VKvAAAAgCT19hq1t0cUjxvFYlY7dqTU\n0mJLvVoAAAAAAACoIARfAACg5Hp7jfbvj8paI0nq7zfq7DTauzdJ+AUAAAAAAIC8MdQhAAAoufb2\nSDr0CljreoABAAAAAAAA+Sqox5fv+9q3b58+/vhjVVVV6fHHH9ctt9ySfv3gwYN65plnFI1GtXv3\nbn3lK1+Z8TMnT57UH//xH+vWW2+VJD300EPatWtXUX4cAACoDPG4mdffAQAAlhJDMgMAAFSOgoKv\nN954Q+Pj43rxxRd17NgxPfXUU3r22WclSRMTE3ryySf1yiuvaOXKlXrooYd033336ejRozk/c+LE\nCX3ta1/T17/+9aL+MAAAUDliMav+/ukhVyxGhRIAACgthmQGAACoLAUNdXjkyBHde++9kqS77rpL\nHR0d6dfOnDmjDRs2qLGxUVVVVdq+fbvef//9GT/T0dGht99+W1/96lf17W9/W0NDQwv9TQAAoMLs\n2JGSMdkVR8a41tQAAAClxJDMAAAAlaWg4GtoaEh1dXXpf0ciESWTyfRr9fX16ddqa2s1NDQ042fu\nvPNO/fVf/7VeeOEFtba26plnnin0twAAgArV0mK1d29SbW2+mpqs2tp8WlEDAICywJDMAAAAlaWg\noQ7r6uo0PDyc/rfv+4pGozlfGx4eVn19/Yyf2blzpxoaGiRJO3fu1GOPPTbn9zc1rVI0SssqoJw0\nN9fP/SYAmEVzs3TXXaX4XsovAJWJ8gtYGhs2SOPjuf/e3Fyz9CsUEpRhACoV5RdQ/goKvrZt26a3\n3npLu3bt0rFjx7Rp06b0a7fddpu6uroUj8e1atUqHT58WI888oiMMTk/88gjj+g73/mO7rzzTr37\n7rvavHnznN/f3z9SyGoDWCTNzfXq60uUejUAYN4ovwBUKsovYOls2WJ0/Hg0a7hDY6y2bEmqr4/e\n6YWgDANQqSi/gPIxWwhdUPC1c+dOvfPOO3rwwQdlrdUTTzyhV199VSMjI9qzZ48effRRPfLII7LW\navfu3brxxhtzfkaS9u3bp8cee0wrVqzQ2rVr8+rxBQAAAAAAsBSCIZnb2yOKx41iMTcPKUMyAwAA\nlCdjra24OzVSdaC80NoFQKWi/AJQqSi/AFQyyjAAlYryCygfs/X48pZwPQAAAAAAAAAAAIBFQ/AF\nAAAAAAAAAACAUChoji8AADBdb69h7gcAAAAAAACghAi+AADzQriTW2+v0f79UVlrJEn9/UadnUZ7\n9ybZPgAAAAAAAMASYahDAEDegnDn3DlP/f1G58552r8/qt5eU+pVK7n29kg69ApY60JCAAAAAAAA\nAEuD4AsAkDfCnZnF47nDv5n+DgAAAAAAAKD4GOoQAJC3UoY75T7EYixm1d8/fTvEYuWzjgCAypTr\nGtjcXOq1AgAAAIDyRPAFACGy2OFQqcKdSpg/a8eOlDo7TVaPOGPcPgAAoFAzXQPXrJFqakq8cshS\n7o10AAAAgOWCoQ4BICSWYv6tHTtSMia7Amcpwp1KGGKxpcVq796k2tp8NTVZtbX5ZRXMAQAq00zX\nwJ/8pEQrhJyYBxUAAAAoH/T4AoCQmC0ceuCBZFG+Iwh3lro1c7GHWFysFtktLbZo2xoAAGnma93V\nq0u8IpjVUtyHAQAAAMgPwRcAhMRSzb9VinCnmEMsVsKwiaXEME2Vh30GhNtM18DVq0uwMphRKedB\nBQAAAJCN4AsAQmIx598qRsX6QpZRzPmzaJE9M0LBysM+A8Jvpmvgv/pXJVwpTFOqeVCB+aLBDAAA\nWA4IvgBgCSzFA2Yh4VA+61WMivWFLqOYQyzSIntmhIKVh30GhN9M18DWVqmvr9Rrh0AxG+kAi4UG\nMwAAYLkg+AJQMSq1dWIxHzBn2wbzDYemrldXl9GBAxFt3uzr1lsnP1uMivViLKNYQyzSIntmhIKV\nh30GLA/MIVn+SjUPKjAfNJgBAADLBcEXgIpQya0Ti/WAmc82mE/FWOZ6DQ5KH37oSTI6ccLIWj+9\n7IVWrPf2Gr31VkRXr3qqqbFqbbWqr7fzWkYx0SJ7ZoSClYd9BgDlg4AS5Y4GMwAAYLnwSr0CAJCP\n2cKjclesB8xib4PM7+/pMZLcv8fGTNayZ6pAz6diPQjrRkak0VEX1n34oadEwuS9jGILWmS3tflq\narJqa/MrIkBdCjt2pGRM9nYgFCxv7DNUgt5eo5dfjuq551bo5Zej6u2lghUAFqqQsnUh9/UAAACV\nhB5fACpCJbdOLFaPjGJvg8z1CsIuSaqpmVyveNxo165kwT2kgrBu/Xqr/n4rychaqbvbaPNmv2SV\n85ktsit1CM3FwDBNlYd9hnIztUzduDGlgwcrs8c2AMylVPeRhY6GwcgHWI543gOA5YngC0BFqOTh\nvIr1gFnsbZC5XjU1VqOjRsZIra2Ty4vF7IIq1oNQrqFB2rrVV0+P0diYUW2t1X33JadVjp49u7QP\nJJU8hOZiWc7DNFXqQ/Fy3mcoL7nK1AMHIlq/3qqhYfJ9xZxPplLPWwCVr5T3kYUOpU6DGSw3PO8B\nwPJF8AWgIlRy68T5PmDOVIlX7G2QuV7GGJ04IbW2Kj3/VuayC61YzwzrGhqkO+6wkqwaG/2sHgDn\nz3t64YWotmzx1dCwdA8kTPCNQDEeiqmAx3KXq0wdG/PU0+NfL/8nFaPHdq7z9vhxo9ZWK2PK8zws\nl3KiXNYDqGSlvI9cyEgQNJjBcsLzHgAsXwRfACpCsVonlqqiJ98HzLkq34vdQnOxh/ybKawzRll/\n6+527+npMenK0aV4IKnkITSRW6HH8UIfimlNCkwvOwcHpcuXpdFRT5Kf1fOr0N7Kmef4qVOeqqsn\nlzk4KH34YUTd3dIdd/hldx6WSzlRLusBVLpS3kdW8mgYwFLieQ8Ali+CL4QarVnDZaGtEyuhomeu\nyvfFbKG5GMtuaXFDGv73/16ly5eltWulBx+c0NGj2ZefYI4x91+3LwYHpbffXtzzd7ZKg4WUH5Q9\npbGQc3yhD8W0JgWyy1QXQnlascJoZETq7/fU32+1dauvxsbCeitPPce7uz2NjrplNjRIPT1GktHY\n2ORnyuk8LJdyolzWA6h0pQyfKnk0DGApERIDwPJF8IXQqoSQA0urEip6itUibWrwku/8WcUObHp7\njQ4ejKq52aq52f3t4MGoGhqspMnfFMwxVlMzGXp9+KGnpiZ37i7W+TtTpcHGjamCyw/KntJZyDm+\n0IdiWpMC2WVqEEJVV1v9+q+73ldjY0bXrhnt3TtRUHk49RwPrh1Bb+GgEUVwLQmUy3lYLuVEuawH\nUOlKGT4xVxeQH0JiAFi+CL4QWpUQcmBplXtFT2+vG7apu9tTTY1Va6tNz7c1nx5IU4OXri6jF16I\nautWt7ypQUyw3M5OoxMnvPRQVPkENnOtU+Z5mEgYdXe7is/Vq32tWeOrvt691tpqFY9L69e7z/b0\nGBlj1Nrqp5c12/lbaGA3U6XBQsoPyp78zeeYzud9CznHF/pQTGtSILtM/eijiJqaJq9l69a5c6Gp\nyc7rPM/8+y9+4WnNmsm5KN21w6R7C9fUuPCrtTV7+Ut1Hs5VVpVLOVEu6wFUulKHT8zVBcyt1Ocp\nAKB0CL4QWuUecmDp5aroGRyU+vo8PffcipJPMr9/f1TV1Vajo64Fezxurg/f5GvjxpR+8IOours9\njY25nlHHjxv9yZ9MD6WmBi89Pa4y3815kj1/1o4dkz2bTp70rveumhw2aq6waf/+qAYGXGv7sTGj\nV16JaPv2lJqa3ENFZ+dk6HX4sKeBAaNk0ujCBWnbNqv16315nlFbm6/f+73JXmmrVrnQK6jcDOQ6\nfxfawypXpcFCyo9yLHvKaejFqUFra6tyBrKZ7893/y6kMnehD8XFbk260H1WTvscy0tmmXrunDft\n9Vzn40zn+X33JXXw4OTfR0akTz/1tHWruz7U17vr1diYC9R+4zd89fRY1ddPLnupWnXnU1Ytdqvz\nfM/7UrV+p1wKF/anQ/gElD/OUwBYniL79u3bV+qVmK+RkfFSrwIqwNmzXs6K5nXrrDZv9nN8AoWq\nra2uiPMyFrPq6PAUDLE3OCh1dHhqaZF83wUTHR2ebr3V9XhaSq+/HlV/v6fqareeExPu77W10h/+\n4YTefjuHOdyuAAAgAElEQVSin/40qrExT8mkC5kuXjSyVrrnnuzjub09kh7uSXJzoCSTrgdVba3V\nmTNG3d2eLl0yGhyUxsa8jPdJktHEhNJDExojbd8+/Zz5b/8tqnfeiejIEbfu4+NGvb0RffKJp9Wr\nXXh38qSnmhqjU6eMzp+PKJk08n1XwTYx4WnTJl9/9EdJbd7s6+abpc2bfW3f7mtkxGhkJL/zN9h2\n2YyGhkxe53pvr9Hrr0fV3h7R2bOeYjGrvj5TcPmRq+xJJNz+6ury0t+xVMdYUBnb3+9C01Ie55nr\n4oJWdxzGYlJ1tZRrv81n/049xyV3rO3alZrxt2aWX65XYhAuu94k+W6jhgbp1luthoaMjHHHyq5d\nhVUCLnSfLdU+z3XuLPUxVWzl8psWYz2W+rfN53yc6Tx/772oVq2a/Et1tXTxotH4uFFzszu3amqs\n/vAPJ/Rbv5XSPff4+tVf9YtyHs5XPmVVMcsJKbv8ms95X+z1yEc5XYuwcOxPFEOlPEMCwFSUX0D5\nqK2tnvE1gi+EViEVoCjMUl30F1ppN7Wi59IlF3pl9ypaWGBS6LGVGVZVV7vQqa5OGhiQhoaM/uf/\njCqZ9BSJZH7KaHTU6P77s1toTw1e+vulsTGjaNTq009NOjyLRKTTp43q6oyqq5Wef0VSuiJMyh32\n9PYa/ef/XKXz5z1NTLjlXbnigrixMenyZSmRkIaGpFOnPPX2ekqljDxPkqxWr5aiUWlkZPr6S9LY\nmNWBA1F1d0fU3+9CiJqa3Ofv1KAvvXVmCOym/o6g4ubSJaMjRzy99lpEK1daJRJSdfX8y4+pZU8i\nYfThh0Y332xl7dJXDi0kGCz0GJ/pc5nrEgSykjQ+rnQl9tT9Np/9W0hlblB+ZR4LfX2eDh+O6LXX\norpyxS0nn9/d0DAZ3m7e7Be8f/PZZ7Ptm4WGwfkIY6XnQn5TMa8Hi7FtS7G/5nM+znSenz9v0o0w\nJKUbh6RSUlubzbnMYp2H85VvWVXM9cu8/5rveb/U22kpyiUsHfbn8lasax4VxwAqFeUXUD5mC74Y\n6hChle+wVQzTURkWOpxdIHOYg+eeW5FzWLR8hqQr1voEpg7R5sIST7GYr/5+o6Eh97cbb5SqqiaX\nb3N81dQhjNavt4rHgzdOBlutrVbd3VJ3t9Edd9j0XCnWupDJvS/30Eft7RHV1Eip1OQ6T0wYjYxY\nrVpllEh4SiTc32+4wS1rdNSqsdFqzRqppkbp9Ziqt9fo4MGo1q+36unxNTbmhmn88z/PvW0XMrxd\nMCzk4KD04YeTYdXJk26oxcZGNxTjQuYN6+sz2rIlu1JxvnN+LaScKnToxUKP8dk+l/mdNTWuV6Ck\nrMriqfttvvu30KFMgmMhOPeCc+vddyMaHCz83C7EXPtsrn1T7OE2cx1/YZzLrtDfVOzrwWJs24Uu\ncyHzKOaz/JnO87Vrp7+3oUH6l/8yVZTjrJj3gKWeN2sphtnNtb0kLdocjNyjl69yHNZ5OSrFOVLs\nax4AAMBiIfhCqM1V4ZLPjXuxHyh4iC/MYlQEFiMwKdb6TA2ruruNrLVav96ty003WfX3W3V3G61a\n5XpLNTZa3XXX9FBqavDS1mb1+78/of/yX6p09aqbH6y11c2Nsn699Mkn7juDuVJOnZJGR6VDhzyt\nXWt14EAk3SsrWOaxY56amqyiUZvuteP7VpJRdbXV+LhUVeX+nkxa/eqv+jp92tOKFZOhl2R15525\nQzVrjRoagjnJ3DY4ezai7dunb9uFzFUSVND09Bhl9g4dGzOqr5dWr5YeeGBizuVMVayAVVp4BUMs\nZnX+vKfubpOeH6611aqx0dfLL0dnLIva2yMaHJz+ueAYn6ksm+3cyDzn1q93x7RkZg1aZ9u/mevg\n+1bGSMYUVrYG+8Ode5N/Hxszix7oTN2W1rrtMlVQNs1V/sRiVl1dk3Pv1dS4sqStrfBhF6cefzOp\n5ErPQityi309WIwK5YUscyEheL73OzOd5w8+OJE1x1fw92LMRTX1d50/7+nAgYg2b/Z1663zL0NK\nNW9WINc9TSLhGl8UYx7TXMfB8eOeJKv6+sy/GbW2Wg0MGF265OmGG9z2DO4Rcq13vt9H5Xr5KHXQ\ni/mdI8V8/gxjwxcAABBOBF9Y1ua6cS/2QzcP8YVbjIrAYgQmxVqfqWFVba2rqA56Ca1bZ/XRR24u\nMldx5AKh7dtzr2tm8BI87BqjrNBLci3nf/u3k1q9WursdMMVDgxIAwOeGhrcMfraa54++shTXZ1U\nX++WPzxs1NMjbdniq6PDKJl0gZfvS9Fo9rFcV2e1aZPV4KDVyIjVypXBevj63d+dvv7z2bbBb5Ok\nvj6TrmDL94E+qLiZOjxVEMQUoxJ/oZVDC61g2LgxpRdemCx3RkeNPvtMGhrytG6de8/Usqi31+jA\ngYg++igiz3PHYU2NGx6tocHPu1dXpnjcaNeuZPqcM8YNYfnZZ1JTk1Us5uv++6fvt5l670pKr4Pr\nsReRMUZbt/rq77fzLluX4ljIJde2TCTcdwbnm5RdNs11juTa5/G4C8Dna6bjr69vco6lTJVc6Vno\nuVrs68FiVCgvdUOP+d7vzNZL/6ab5u69X4jM35XZ0/PECWlgwKZDsIaG/EL1fEcayGUhldLBZzs7\njU6eNOl7h2CY3S1bXM/xhVaK5zoOurtd8OUaqShdFp86JV275hoRnDplNDDga3hY+vTToOx39ziN\njTPfc+Vz3NGYrHRKHfQi/7K52M+fQVmT2bCmoaGyG74AAIBwIvjCsjZXZdV8HijyefCmhdyk+VZW\nFKMiMNd3FlpJtRgVk5lh1csvR3Xu3OTcCfG40bp1VqmU1dq1Nv2gObUX1NTfuHFjKt1avqnJqqfH\n6OJF73pFnpG1vm6/3Q3ndu6cq8AYHTVKpYz6+qyam61qalxF1vr19vrwiCY9hF9Nja/77kuqp8fo\n3DkXZIyOugo2a61uvNFtk/p6q3vu8TU2Jt1wg69Ll1yw1t4embbN8922wYP8wMBkz5a+Pk/33Tee\n94N8UHGTOexeMAxkru8sxEIrhxZaqX72bERbtvhZvX9GR6X+fk/r1k3OwxGURTt2pLR/f1S9vRFN\nTLiecJnHwqVLXt69ujLFYjZdMXzgQERHj7q51O691w0DOTAw8+/J1Xv35ZcnK3F6eozGxz0NDEj/\n+39HdOutflbvtExTz5Evf9n1Qsx1LEiTvS7nOhYKrYDNtS3r640aG32tXq2cy5vrHDl7NqKtW91Q\nppm99WbqNTmbmY6zG25wx04lVXrOtY8KPVeLfT1YjArlYjX0GBxUuizp6jJFvd+ZqZd+S8vk8Jrx\nuMl53ciU6zp49uz0/Z75uzJ7esbj5vr+NDp82GhsTHmH6oUMtbqQSunubukHP1ih7m5PFy8affqp\n0XvvSS0tvlpabF7D7B45YvT001UaG/PSZUWu759aFiQSRqdOeRoctDp3TrrppuB6YvTZZ653+sCA\nlEx66u83qq2VGhrcdWRszFNPj6/f//2JGX/jQod8xeLKJ+hd7GByuQef+d4fFvP5s7fX6MQJLz2/\nm7vndyNGFNKrHJjLcj/PAQALQ/CFZW2uyqp8Hijm8+DNePhOIZUVC60InO0756oYz3WDXcyKyVzf\nN3X5Y2NGK1dKbW2u5XY87qm31+iTT1Lp9ZE07TceOBBRa6sbxtBcn1Crq8uoqsrollt8DQ15On06\nokjEtc7u75fGx4O5w4wuX3ZzdKVSRiMjRidPTq732Jj0i194unbN6vbbpZ07r+nll6tVUyPV1koX\nLwYPw8G289XcbHXkiJsfrLrahWVT932+27a9PaKBAZM1N9foqKvA+/738wu/goqbf/qniN56ywV3\nQY+4zO9cyEPXfHoB5PqehVSq9/YavfVWRFevugrN2293v+3oUW9azyZJ6Upla12vwytXJLdtjQYH\nXeB6ww1+3r26ApnbsqXFqqlJ2rYte/1nq4TJtV0y1yEeN7p40f07mbTXzxHXO23qcqaeI88/L/3r\nf20yQjmrgwfdMRq0Yp7r3J663K4uk/eQaTNtS88zMw6zOdc5Eo8b1ddP9sKY67tmM9PxF/yuSqmM\nyOe6U2iPnflcD/IpSxbSc2i277rvvmTOAGguwTEwdS7E4WF3zVns+52Zhthbv97X4ODkcHoNDVaD\ng9KRI9F0WX7+vPT889F0Y4+aGqvjx43+5E+SWcd2Znl49aqbszKVMrp2TVq3zgVfP/tZRGvWuHLw\nwAGrP/qj4jRYmm+ldOZ+PXlS+uUvIxofD4YgdT3C43GjwUGjpia3XTJNvYd9+umqrErseNxo61ZN\n+/7M7ZVIGLW3e7pwwZPvW01MuP0Sibh7hokJpctkyfXIHhoyqq72s3qqnz0b0U035S5H5rr20Zis\n9GYLehc7mCT4zL/RRTHL4/Z291wRj2fOM+waoP3pn06e24QVKAbOcwDAQhF8YVmY6eZ7rsqqfB4o\ncj14DwwY/d3fVWnTJj/vh/jl9IBQaEvwfCoCZ5rz5xe/8HTlyuQQO01NVv39np54wtNv/VYqvayZ\nbrBzVRgG69PZGVS82Tlbok812/c1NlodO+bJGDcUXE2N1blznsbGpEuXXAXXwICnV14x+h//I6qm\nJqs1a2xW6+6xMaPubqm11VVYul5aRtGo1YULnhIJN0zhxIQbpvDatez9MjZmdOmS+y11da431OCg\nlExOto4/etTo3Dmr11+vke8b+b5UVSWtW5dSQ4OrQGxsTOnCBU8/+9kKDQy477940Q3V2NCQve/z\n3dednUaHDkV0+bJ3ff2s1qxxLcnzrfgKjhfPM/rt307mHM6qGA9d+fQCmO1YKCRkDZY3MuLmbHND\nHBo1Nlp99pkLPxMJkx72UnJlUVAREotZjY0F+9t9Z3AM1ta6XlLWul6E/f1Gw8MuKIrFInNWsM93\nOMtc26Wx0c0Xk0gY9fR4SiQkz5MaG93nrHW90zL90z9FdOKElzU8T23tZAVvS4urzL7//vkFOpll\nWmY4cOKE61U52/GSeV0YHJROn/b02Wduv/i+1e/+7vyDkWL2QJrpOrlx49zbqJyua/ledwrpsTOf\n61O+Zcl81yMYnvTYMTes7S23pJRIeOnhMhdSWRQcAz09k6FX0DN2pmt3Psdgob3lg2EJT51yPc/G\nxoyuXvWUShmNj1vdeKNRXZ0ry6y1unjRUzxuFYsZnT8vnTzprhv/9t+Op4/toKfn2JjV0NDk75yY\nkC5ccNe7mhqrVatcWXrwYCTn0Kyzyfy91lpZ6wLuX/zC05o1yiqLpfzKw+PH3b51vVSD9xsND7sy\nsqMjonXrpu+bYFmPP16lw4c9+b5rHBG9/mQ4PByZ1nAgsyw4dcodD8ZYeZ5RMumuE9XVVomEtGKF\naxwTuN7uRsPD2b+ps9OoszP3OZFPwJ9LMRuTZQ4jmTlfWZjv0YtlsYNJgs/8G10U854gaFizdauf\nNQfs5s1+1vzYlRxWlNO9y3LHeQ4AWCiCL4TeXDffs1VW5fNAETxgJxImPQTcpUtGN9zghgabOtF3\n5vwLwfI2bkyV5AGhVDf2hVZWzFURmLmvM+f8aWvzdfhwRMmk1Nxs5Xmejh93rZJjMencOS+9vXPd\nYA8Oenr66ap074npFTNRNTe7CsBcPZgy12/q9p4pOA2+79Zb3TISCTdPhrXS4KCr4Lp2za3b0JBV\nXZ1rfV9b63qFbdpkZa3V5cvS6Kinc+fcMq5enazkSyZdZZXkgpFck85LQUt4tzwXjE0Pxy5cmKwM\nraqSGhtdZePnPpfSzTf7evfdiN57L6LRUSkalVaudA/Lp09bbd8+vQdRPvv68OGgtbn77LVrrqKt\noWHmHklTl5F53klGxkz2ivjBD6I6cSKiK1dcJd6WLb5uvtm9s1gPXZmV1efPu6GgNm2anIPNWqOz\nZyMF9f4Ijq316636++31oSBdLwDX+8Hqww89bd3qq77eXj8+pOPHPQ0Pu6Ex43E3d9u1a+64vHbN\naM0aX9Zavf++J2O86wGTOy5WrPDV3q45eztNrYQJhk9btcro5ZejWaHj3/1dlbq7s+eRsNZVHCcS\nLmRKpdy5kUy6Y+DaNVdhfeyY0de+Vq21a6UvfnFcb70VTQ9jGAzPs2qVVFU1+/HX2+vWK58gr6dn\n8hwJepHMdrwE15mBAaMjRyK6eNHNmbNypfTaa1H19LjeKfMJRjKvXcG1aWxMamx087PNp5zPdZ3M\nHEJVyn3NKreKr8WuJM8nqFqsCpzeXqMf/GCF3n8/ooEBKZUy+slPPN1wg/Sbvxmc30bd3dMbe8y0\nvFzDAn//+1UaG5s+V2SubTjX/dNCessHwxJ+9plryHHhgivXrHUNXgYHXY/iVMqVAytWSJGIdPmy\nkedJ1dXSyZOe/vEfo6qvt+rsdOdcTY0bhi+RmAxt6urccH3B/w/U1EzvETXXPgp+74ULRj//ubsn\naWtz2+PcOS+rV1prq1Vbmz9tObmOIcmd3152zn99ni+bUQa4IN4Y6T/+xxU6fNjTqVNuSNvxcVcG\neZ5UVWU1NCQdPuxllReZQ9WeORPRtWvuel5T43p4+b6R51ndcMPkfUvQA23VKte4prZ2ct8mEm7I\ntKoqk3VMZZ4TSxXw5xLss8FBLz3/WzBf2VKWZZVaCV9omZvP753am32u8iis8m10MVt5XOjQ81N7\nlQfPK9LShBWLdV6U273LcsdoOQCAhSL4QujNdfM9W2VVPg8UsZjV+fOTD8UXLrjKg6DC+Oabrc6e\n9dTdLd1xh6/WVldpk1kpXIrWTPO5sZ/vw8Vc71+syorM7RhUPlsrdXREFI26XkqDg/Z6y2MXjjU2\n+jpyxOj8+YheeSWqmhqrm25yQ8IF4WRQaSy59XOV9J6+//0q1da6Fs5zzaEx0/aWNKVSyurCBTfE\n0uioq/QyxlUsSVJTk68LFzwND0uJhKvlci3epVTKvaejw+ijjzwlk66yzy1L1+drcoaHXUWfta5i\ncKbQa5IL2uZ6n7VuqMQrV4yiUaOXX3YVbcmkp0jEyBj3fcmkVX29q7iUcs/fldl74c47U1k9X9rb\nI5JcJVsQfLl1DAIjO2tQESwj87wLetscOFCjxkZXGRqJGCUS0sqV0qFDnr7whWQ6/FroQ1dQWf3h\nhxFZK50/747Jo0eldeustm1L6eab3fcU0gslWL+GBmnrVl8/+5mnaNSoqkr6tV/z0721rlyRWlt9\nJRKuB2EwF1w87qWH1uzsNNqwwWaFco2NVlevepqYcJXAjY1W4+NGP/5xRKtWGfX0+PqN3/Bz9pjc\nuHGyEubCBaOf/jSi4WF3HFy54hoL/N7vJXXwYFTd3V66x1owj0RDg+spsX69a3Hc3++Odcn9fWDA\n9SyoqzO6etXq6lXpnXdq1Nw8tYwx6uqSbr995l63+ZSVMw2ZFpy3kuvZMPWYlIJj2VXEX77seqxU\nVel6QCl1d+ffgzEwdS61mhqrX/kVq4EBT/v35+7BOluZPvX4y5xfLTC13Cu3VrqLXUmej8WowDny\n2fv67v/3Dzq1sltjd9VKsrLRUdn4Bo0c/zM1n7pHmzYpfY8yNiYdPx7JGU739hq98EJEBw5EJRmt\nvP1nGvzc/6snPzuvO29Zr83/x7/TrT2/Pm0dcm3Due6fguPjgnlPR6ueVb9/Xt7gBr3z/X+nWJN0\n8ob/W30rjsnKalX/3Yod+790w8SvZfVKlVz5NTzsrpm+r/R/JyZcmTAx4f7nAiX3qZER1xDgzTej\nam11jS8k6cIF6ehRT/G4205ufkqpv999bnLIQBfCz9QjK9dvDn5vIuFCr6CcOH/e08qVVpcvG12+\n7HpDp1KeTp2y+s3fHJ+2vOC+IXDzzVJ//+RQxpKr0A565a5b51+f60+y1jUKeeedFaquturu9jQy\nYhSNum0SbDtj3HoMDHg6cCAybUjHgQHXSCORcPdVo6Oux3Uk4q4Pu3Yldfq0+73Dwy4wdPc2bq6v\nkyfddcbNKzrZI9kNseiC2mDbzja/22LMhZcp2GeZ878FQ7oFc5QWMlT2fCzmvfpiK6TMzef35urN\nnnns5HP/Fyb53B/OVB5L04dIL8bQ84sdVixmODXXvUu5nWdhVw73bgCAykbwhdBbyM33XDe3vb2u\nwvXQIaPxcSkadfPMpFKuotwFXlaNjW74HEnXW8i5lnHBg0opWjPlWymZz9B/GzZIW7aYvCuJF6uy\nInN7ZVY+j4y4CisXDk32xhgddfNOXL7serh4nmuZ3NtrdeqU1aZNvm6/3V4fxsNVjLn5Q9zcUsa4\nluSe5+auClpqT60Qm63XSmen0aefetcDI6OLFz0lEq4H1+nTbrilG2+0Gh21GhiQ7rorJclodNR9\nxloplZJ837Vid0MMeRofdxVYnmdVXe2WLUnRqJXnucoqyVWy5y+/4zFYp1Qq+Iyr2A96lxnjWoZH\no+53njzphqAMevp89pn0H/5DlTo7I/I8t616ekxWz5d43H3GHXP2+m91rcmvXVO696U08wNx5j4K\nhqe7dMkolfLU1+drbMxTXZ3bXq5lu1FHh6ebb3bHQjGC2u5utx8TCV0fntOVHxcvWh08aNTWllJL\nS3YvqHxlPiw2NEhr17rt09Rk0z1A3LFkdfp05HqlsE0HZT09Luy8//7pQy1KrnJ0zRq3PqOj7hjr\n6Zkc6nJw0A1H1tamnD0m77svqSNHInrppaguX3Zzw1y5YjQ05D57+bKntjabHoLs+reqp8fojjts\nugL8jjusWlv9dMW+ZNXV5SpzM+e2SSZdeb16dea8FG7dg163g4NeOoQ+cCCiP//zcZ09O3dZmVmm\nBesbDAUnTYbl1k5ug+PHXfhcX++W7fvumF250p0rV65IfX3SwICnzZsne37Mdl2a+pq10u23u/Ph\nk0+89DCvTz9dpfXrXcCZ+Vu3b5/7+OrtNXr77YiuXMkuz6Tsc6rcWukudiV5ppn20dQKnAsXjDo6\nIpJ8nTrl6cEHZ98HU5db/7mf6dFf/Bt9eq1Xisn9L3CzNNHyEx1/8yXp1D3pY97ayRDspz81+l//\ny9N/+k/ueldVZdXREdXYmNG1te/p6u0PKbWqR5LU0yMdqfmp/k9vv9b5k+HX1G04133Tkc/e19Pv\n/b3eO9cr/1qtEvVHNbGiz73Y/I4+XfWm5I1LK+Lpz4w0/ViXP39Mn736I8XOf14TE1Jzc+p6w6OI\nkklXbvo3/1z+9v9Hajyv1MAGmaP/Xqb719PXh2TSXSt932h42MoY12NacsP8fvqpUSJhtXKlKz/c\nsHxWa9darVjhKxabLDs++SSia9eye1Bm3v8kEkZvvGH0zDMrrjcgkPr7I7p61S135Up3zU6l3Dlo\njE2H9a7skv7rf3VDZgdlhAuNTHreTkn6F/9C6uuzqq6213u0uUZXa9ZYjY+7MuDataBckmpqgt5y\nnpJJFwYGvduC7Mzz3HldXS0dOxaRNHlPGNw73nSTaxThruuu8U1trdVNN/m6//6UpNSUHvieVq92\njY3GxqQPP3S98c+d8zQ4OFled3dPlu9Tt2mwDaaO2pDdSGZ6L7lCBWXV1Pkwg17wU8uyYlbGB+fR\n229HNDxssno0zXavnusalk+5vhgKKXPzeTaZ2ps9aOTW3e22UyKRff8XjLoxdRjrsMtVFk8NyPJp\nxDJVPo1Cfd/q5MnsYaUbGooXVixmw5qZ7lE6O43+/u+jWXPA0hts8S3lvRsAIJwi+/bt21fqlZiv\nkZHxUq8CKsjZs17Om9h162y6MrG31+j116N67bWI/vEfV+iDDzx1dHg6eDCqkRE3dOGRI55eey2i\nq1eNbrrJPVjt3x/V2Jiny5c9DQy4ShNrXQV50EPG81wAcOONNqu3gTFKtzLOXMdEwujMGU/d3a7H\nzubNflZvomJpb49Me5iful6S9Prr0fSk54FEwtOPfxzRihXu4XpoKKqjR13L8fb2yLT3S25S82B7\nNzS44G9oyFUOr1tntWvXwh9Eg+04OOiGo7lyxT10rVjhWhzX1EgrVrggwxirlSvd0H1DQ264PGNc\ni2fXM8r9d2jIhUVtba4SqKPDS1e0RaOuwujiRe96xVIwJ5bRr/yKr3vu8dO9etrbo+rrc62dr151\ngUF1tfTppyY9zODVqyY9/KDvu7+NjroQwPddi+qPPvKUSHhZ+y6orAqCuFRK6eAr+B1uLhH3ejTq\nemWlUvZ6Jd7SV0QHLfJra31t22ZVXW2ut+b29NJLUX38cURDQ+74Gh11QbLvu//GYlYHDkT18ccu\n4Fu92g3bl0y6CrvaWmndOlepGEgkPP30pxF98IGXPsfPn3f7vbpaOnPGaGxssgJueNik5yurqXHb\nK1je5z7nvm/XLjeHWVB+tLdHdPasp1jMlQ9T/zb1PG5vj+j0aTfcVU+PUTLpXd9nLlRKJl15sG2b\n1ciIC91uvXX6cmYSi1l1dEzOVdPf746lSETq7HRlXDJpVFtrdfWqC2BjsSDA8jQ25noifPGLSb35\nZlTt7Z5On3bzxPX1ufnCxseNVq50w2ZevWquzxnnljEy4obW/OUvPV265LZpIuG247VrRh98ENWx\nY55++cuIfN+7Pnyhq8C21gXWzf8/e28aY9d5pgc+33fOXWpfWCyuRZG0SFsUtbREWRtitaTGuGEp\nge1AgeLMBMH0RG0D1sAZdJKZdtBOx+3+0W0kBmw4XloDTKetUZrtXmxRadsyJVJDSpRIiSqSRbGK\nrCrWvt+t7n7v+ebHc95zzr11a+NO9X0Bgaqqe8/6re/zPs+z0WB6Wjy8lMdKcxyD3/7tklfpHYkA\n7e2UJJuf11hYMGhsZHJZPGsWFymH1tnJBHMkQu+8z37WQjJZRl+fhbfe0pie1kgmyZDs69MIh4Fa\nfSQ4VqZSCpcvK/T3a5dBSQkgSVReusRkdbBNXrrE9rZxI3/+6CMLyaTyGCqOI9Jt7LcPPeR4804s\nxtELAqcAACAASURBVDEgHvfbRa2/vfGGhZERjWJRuTKQ/jXOz5PVNzND75q33rJw991lj9FYKyS5\nOj7O9yHjXXs7x7PgvLqWufdGxvWad6pDnlGtd9TT4/fJyUmFI0csly1DFs3Roxb27Kn9Dmod90eD\nf4DL5vjyFxNNoqxyKJ/9IpQiGz2RUMhkKFt66ZIw1DUGBzUuXbLcogQg+dD/hcKWYxWHS5dSKCGP\njqkvoLmZ82LwGa50762tBL3+1Wv/EqcX3kYmPIJs4yU4VqbymsNpIJTDkghnUGg9A+fU/4amJoI4\nSnGMcRxF0Ou5fwLseAdoHwE2n4Fz58+A0c/ASm932c/w5kKl4AFUsRjHhsVF9hPb5jpOwLJo1GDb\nNoOtW4G5Oe3O02T0Dwz49yfrpVSKUrwjIxbyeRZEXbpkeZ6apRL7DmV/WVzDuUehsZHnS6cVxse1\nWwyjMDXF9UNHBzA9DW/caGmx0dZWxGc+U8aOHVKU4cBxeK/z85xjikUyl8Jh3l8+z3WB4yiEw8Zb\n99g25V8BjhetrQaf/7yfYJS1Y3MzXCllGa8Iaj30kINCgUDDPfc4WFzkHGBZCnfdZdDZaZDJAMPD\nFj76SKFQ0FhcZJuMxfhctm1z8IUvlJY8U1kb83Mcf/msLbS3cw7I59c/Vy4XMoaxfWgsLPDfchno\n7gbuuMOpGMtqrZer179riWA/GhzkvXOc9ecQpYDNm423zjh0yEYioXDhgkY264/3vb0aDz10ffYR\nq8WVjLlr2ZvIZzjvG5fRSdb5nj0OjPHfgciez83R77B6TLqdotZac7l7WG0slljrXrA6Wlu5P33w\nQWfJPnV8XOHwYRsjI5RRlXVCR4eDL3yhvOSam5oiGBgorvnerua61xLS74NjzsQE9/hTU5a3B/PX\nPuvv47djrKf9Xcu4UWu3etTjSqKpKVLPTdejHrdINDVFlv1bnfFVj4997N5dxqFDVkXVWVvbUp+J\nag3/aNQgn6fUV2+vxvQ0AYSLFy2cP1/Cpz7leNVH7e0G4+MAwIp+Ss4JMMLjxONMokrVJr/jm2b3\n9TGhMTTksxaKRYOvfz28olfOlcZq0gFyba+9xqq6YLVpUPqPGwMgkbA94+9acSUeTtWeMitJcwn7\n7vhxsqaiUbhm6woNDY4LXBgcOOBAKYUzZ5QnTekELpngESV7lAI6OoB9+8pQiklokeYrlfh+kkkm\nEBMJgy1b5BjKA6MOHbJw5oyFYlG8hwgapNPAE084aGoCtm8nu2ZuzkIk4qCtDR7bBuD1LS4aLC5q\n2LaBZRGMC0oXAkziaW1QKAiryk/0KcX/tyzxRxJG1s0LxwFmZjR++UuCMaEQn9HcHBPDco2ZDFw5\nPVZWDg/bKBbJgovF2F8iEYJimzbRr0m8q+hxwp9zOYNk0kappGBZGvv3lzE7q3HPPX5Ft22ToZlI\nGBeAZGW3XFsoxKTiM88sL4PX28sEYksLvN/Vqghtb/fZTKUSk6yWxbZFBimZUytVea8U1VW527c7\n6OvTmJ/XyGQoCbi4SKnIqSmObzMzFhoaeE0ENoBf/rIBlqU8n5zxcaCx0WDDBgeWRZaBJI/p4aZQ\nLNKnJZ/nO8znNQYHDbZsMZicNG5/YCKhWGSSyrLgJmspX1YsKvz61xZaWwkMEBwkWBqL0Qfv+ecL\nXt8E2L/a2hw4DhMRMzPw/GaE1WAMZbqMMejpKeOLXwzhu9+tlB8rlRRmZ8n8GBqiHFg8rpBOEyjk\nGMT3QHCbkowyz2zd6ngV5mR5WRgY8L1IAI71ZEvws01NBtGoQjwuxRMAQNnDnh5fEnG5Kudaf0un\nyWjp7vZ/x3tT6Ooi41VAvWTSwne/G8a3vlVYdp6RKuueHrIdBDgfG2PSJ1iBeytW6V6JZOh6I1iJ\nHpSxnZnR+NrXCl6fPHrU9mRyRYLPGIVXXgnjwQfzKx5Xjj3e2Lf6BW08C8DB8LBGayv7iG0TaCuV\nOD8IawfgmqW5Gcg3jNQ83Lzu84p4ghKJx49beOMNC5kMKliAwXHrpbM/wnRufE3PsWb0vIvsp/5v\nhC79r2hqImCkNecCPP4NoGW28vMtszCf+Qasg3+PpibHY3bLWCPFSbkc51n6lwHhsAOluL4JhQhy\n7Nlj8M47ZAF3dFQyt1991UJnJ7z10tQUcPGiRqEAV06Y/UAp9metOafFYnCLO5Q713EcNYaAmG1z\nfJmeNi4gBrS1Kdx1VwmzsxpzcxwbPv/5osfqGR8v4eWXbZw7pxGLEcRPJuk7a1lwwXaDTZscJJME\n3AQoKZU414VC8MC9bBYVrDZhcsRiHGObm1lgUCgAbW18Hh9+qCqkNHfudCqYX7mcctli2i3UAQBe\nXzptILLSALwEtM/opbTd4cMWnnnm+kqFyxjW0WHQ2wuIX5llkbEWBATlWmvFelmuwXuSNYIwmoQ5\n7TimYu0xOqowMkKfuGCBRS538+RlgZWlKmtFrb1JKsU568c/Drl/N+jr8/d13J842LVrqb+ryJ7n\nAlj61baPmyF1t1424Vr7xfWQkTt+3EJLC5UDZP6LRsmAr3Wto6Prl1u8nvJ3jz1WRm+vrhhzCHLJ\nvkzCVyD4uPtN3WzfsxuxdqtHPepRj3p8fKMOfNXjYxO1NiJTU5TYise1J8kyPGzwuc8Vve+IBJ1I\nbTEBxURwezvwzjsas7PaW+wlEsCRIzYmJspeoqGjwyAe114SUCm4EnJMKm/YQGZNLCY69GVPWkuO\n29PDc4kUWXu7wdAQAYBz5+iTVGuReaUbsNWMjuXaKq+b+vki/SfJiFCIiYvRUYXZWV2R9JJYz2bk\n1CkmtWVT295u8NJLNtrafL+r3l5f9i54vZEIJfDSafoWRaP+d4wBTpzQiESA3/iNEkZGLFy+LICQ\n8QAw26ZkT2Mj7/voURsPPFB25dYIipVKQLmsPTZGscikVnu78RLeAPD22xZmZpggiseZcFQKmJsj\n+MbkuXaTGY63kWts5HMulQzKZT9JaVkEeATYAphEM8Z4ybJCwWcOBeWtAOO2TeBmMb0qQ7ngh3El\nI32/MQLIyr035fpvKRSLFvbupTxSZycAEHjJZoE77yzj3nuN6/nkb0hHR5WbvNMIh/kc83mFY8cU\n9uwpY24O2LDBIJ0Gdu82GBxU6O5WGB42XmV+NGrQ2Gjw6KNlJBL+c6uVXBgdZb/dt89HVIPJ0SCY\n29OjEY9bsG2yDx3HIBTiv+Uy7/viRUqp5nJkFa3Wx0+dYvJ8dJTMq7vvLqOlxeDoURvFIhlF+bxC\nucy2FYv5UpQLC3zm4bBxPWEsjyEh7ARpe93dBq2tBm+/baFcBopFXnuxSOBf3qewCuJxfqZc1i5T\nrLJ9ChBL4JaePWRwMlnsOLyfSITJh1iM9ylyhG+8YaG93cH27WRLHDnChFcyyePaNnDgQBmFgp+I\naWkxOHIEOHKEY6iAe9I+p6cVpqcJ3KXT/I5lKeTzTOiMj/O99vbScw4QLzKFT32qhGeeYRKav+ff\nRkeZyF1cZNJ+asr3hNyyxXGlSwkGRiIGzc0GZ84ofPCBjeZmgmPBQgRg+cRqUxMlUoNh2778YnAM\nsG2DXG5lPzE5T0uLqUhqNTYCTz1VWlKs0NZmcPq09nz6Dhwo3/CE4Y2OIHs7mDgbHeU89aUvlfDc\ncyW89poFy1r63ubm+O9q3k6jowqluxNLvl8doea4WxRBcEdAjvxSbM0NjpcquaPmXxfUACbVu9hi\nPu0lsWX+XVigH1/Qiy/4TMZSo6te74qhgPJnv4r4+TcRf++rCI89hGjUBW+3fFD7O5tPo1g0Hjs4\nmyXAxXlQWN4c/5Qy7njHubqlRUFrB4uLBLKKRfZTAR8AuL6MNvbsoWfWzAy9+sgo8yV+5QYKBVlv\nKFfm1menBCVYKbNIFnM0SllUpThfZrM2nnmmjI0bgaYm4PBhG5s3lyq8xMT7U5jDhQIZtOk01w97\n9xpMTxtcvMhrlfZRLCo4joNIxKCtjR5i3/kOJRcdx+CjjzTicTJ/KR1NIIjSiAoDA8otIFA4eVLh\n5EngwgWNUIgATj5PNjDllv0IhXgsrXm9cs7+fo2REVXxbACu1aV/1IprkYiW4pHvfCeMnh7H8ytr\nbyfwOTho4cEHrz2IELz2oJyfFGYoZTzGokQ0alwfW1SoS0Sj1yYpf6V7jfUmzKv3JhxHFfbv5/p4\nZETjvff4t0gk6O9V9gC24DuQZxb02wSuvH3cLABgvQDvWvvF9ShQCa4TgmNl0IcwGEeOLF/QU+ve\nxscVFhboxyiAWkuLuWaFNdu2Gc8/Vtb/XCux+Kmx0b8nkT39uPtN3WqerTcj6t5u9ahHPepx+0Yd\n+KrHxyJqsy40+vspX5bP00MHoCF1X5+FH/yAiYSBAUo9LSxwY71tm+MyNbjQnZri5l5YM6ykpPyB\nSNTMz5Pd4TiUcFGKyVGRSevocBCNOp4HVGurg1deCWNgQFcwCJqauEHet8+gr8+vxJeNW/Uic70b\nsOCizXFoAD087Ccln32Wi7ig5rtsusXge98+g2iUyWXxJ5Jg5WVlVSpQCaittmgcH1f4kz8JY3TU\n8iSHcrnKDb0kll991eB3f7fkLcgnJoCPPmKyh8ldgwcfNO7Gmc/PtjUWFoBDh8Kgv45xgRXlgZXR\nKKXlWluBkREm8F9/3UZ3N5NihYKBbTNZpTXf+4YNBu3tjnffwugbHOTGKZ8XNg+TXmTEUO4nEnEQ\ni2nE4/T0aWkx6OwERkcJhgDKS55JdTSZSAxKABrs2uVgdlYjEjE1JEB4XZkqValbIcpl9hXLIjAi\n0nJBDzMCLxqJhMG777K/RaOUvGCQMdnSwjYYjytvQxqPK4yPE+yhz5uf5JuZ0VDK4PHH6Tc1MQEA\nfO6WRTCS8ntMDpLBAy/h+8YbFhYWfO8mpcgibGjgNQXBWz85Kr+38PzzBfT0ODh82MK770ryD96Y\nEwoRaN+92yAcZtJSkue1+vipUwrf/GYE+TxZqgAl9ZTyfWXCYSa9CX75CUX513GWJiX5OyahwmEy\nA4aGFBxHQ2sfAM7nhS3gJ3aVgivfR+BSKUkimAqAtjqxWShoWBaLDTimcjwgM43AWy6nMTjIMXF4\nWOHcOe15WR04UMbgoEapxLF1717jtheOCf39Cn/3dzYuXWK/yGT43Aly8hrm5xU2bGDyGWDCtqOD\ngF9LC1kNP/852a7iUSNzRG+v5fqJ+V4k+TxlGwGCWgAribu7+b1o1ODuuw3icXp8EWRlYq+5md5v\nSimcPw9s3uwgGuXPPT0Gd95ZRjWYTRkeg4YGeG1x926yFZLJSkmutrbVk6TBxG4wqdXe7uDwYX/e\nuHxZ4Sc/sXHPPQY7d/IzY2MaY2Oqwq/oZnpjXK8khjyj0VG1ZH4MzuHRKDAzwzZnWT7zq6ur9tze\n16eW+KmZbBvQtPL1lMolb/xKJDhfiQzucmGMQUPvV7F4518D4Wzl8XQG74f/K57Jf9pjcFSzU4KV\n8PJMAGB7Sw8wueZHWTtCeZh7fwLsOIL8Xx5EfuJhYOsJIBqv/fnwIoxhEUk8Ds/vS8Zy775K7Ktc\nG/F3xSJ9wNJpYGGBTNxUSmHPHh/UGxsjUPjrX1O2cmGhEsivFT5be/Xku+Nw3Mnn4XmZVSfxJyY0\nXnghgkKBbWXbNge5HNd3slYoFlkQdNddZTz+OFns585Z2LEDXmGYSBAvLBDMVsrBkSMWCgXg3Xe5\n3mtsBO66y8H0tOWxaLT2n9nUFCVzUyngo494/lKJbLbqxGkwpLAnnVZ4/XULd97J9V4kYjA0ZKGz\nM8hk8r1UryfzA2ASfO9eBxs3Lj3H9QIRqu8pGjWYmuIzamtz8OyzZbz2mr+FT6XI2ltc5M+trbJX\n4XOqVnK43uBVMGR8CLJfo1GDQ4cMXnhhacK8mqk+O0vQS/rb6CiLX6JRx9uDUc3D8dhlvb3aY2DP\nzXFNIkxrCcfhXmd4WHlqFWtR1rhZAMB6Ad619ou1+HWtN9bbJxcWlv4umQTefHPpNQXb4p13Ui1j\nYAB46ilfieFahNYyf/F4fX1s901NosDAz3EN9vH3m7rVPFtvdNxsxls96lGPetTj6qIOfNXjYxHL\nsS6mpqj5n0z6IFIiQakYYYHMzHAjxspcVvDv2mWwebNxGQqV1bilEtyKYSaiKBnEBKWwVQiGMNFg\n2waTk/RUeeIJZnlPnaJEx8gIjz0/zwrkZFI2zJXARTDJEVxkHj9uVRhZi+RHrQ1YcNEmmvdK+Swu\nPqOl55DzT03xeT32mIMXXyzj8GEbFy8GP8cNtjCJhodVBaAGrE3K4tAhC0NDlpd4L5WYfLZtX7pQ\n5OjIsighHifodfSo7bKkmGjp69PYtauIeJwJgVCIOu1McvP4zc1lbN1aRi7ns/oiEdfjJCnMLuWa\nZdNnK51m8pueAkxIbdjgV/7JJuj4ccv1gyMIoN2mVCrBS6JMTLACmklPJrBzOYNUSkNr5Sbs/E2W\nADbBsG0CJt3dwKZNZfT3W0gmqysob93NiUgwisxdkIkg9xoOC+gJ13NDpAIpjSQSpdmshlKsyo9E\nCCBfukR/p3IZXgJYfE5Ep//cOQtbtgAnTjB56TgES+JxJuptm5XFv/iFjXvuKWNx0WB42EYmQ7mq\n2VmyvDZt4jVOTXFMiUbZ1k+eZPLl7FmFUEgAcI1XXqG03AsvlPAHfxDCoUMhpNO+V5sAlfPzrLzv\n6TErJlleeSUMY1QFyyeX49gUCvl+LNL+1xPyLujnojE+LtXn8NhbjkMmmdbGfafKY4jx70w4i8eM\nyDtWt+ng+QQkk74A8PrTaeD++8mE/eEPbRw6ZKNQUC74xO888kgZ993HA/X2Wujro+zszIzyQOiJ\nCbIBo1EgkzGu7Bavl4ld5RU9iF/Y1JTG8eMKsZj4Z/F4i4vwZFanpjTm56X4gf8ODxO4DoeNB9om\nk0A2yzlnz54y3nrLdkFFMtBiMd+/ZHGR40UkQk+wpiaDTZsM9uwxLqBmPGAJIOvV/52Aswaf/WwJ\n3/52BMmk5Y6nBOJ6elauXK6V2E2lmJiOxXw54bEx5RZLwAM/yISsrAC/WZJTteQpgyzi1Y5d628A\n8OqrFt55x8LQENtFayvftcyPAFwgXuSUpbCB0prd3Q6efrrgMtF9aUwB9KWo5GLmXfTe+UMUmy6v\neq/FUBzpNMcjy1Ku3O3K31HKoEcdwEh+L9LhD5f8PaXI3GpvrwRKgxKYMh9O6hPoi3wf/+1vRpHO\nFle93jVH+xjw8PeAEwD+2XNAaJljhzLAfS+h0Ps70Fp5UtTVIc9E5vygNGqhAKTTBH2KRbKPhfEf\njyuMjrKIqVSSApraUQvgX2vwmsiImp2l7+zWrQajo8Dp07Yr28j5k2tLA8tSCIc53mrNAp3HHy/j\nhRdKGB9XOHjQwtgY71V8ABkKs7PAzAzXqkoxkV0ucx4ZH1funCqyzpxnW1oImto23DW2gG6r37fj\nCMjH6+nrczAzY3nS05mMQXs7vDGmtRVe37vekqo3GkSQe0okyBqVwp577nG8tbpcU5BZumULWXwL\nC8CuXQ727KG0++7dZfzwhzbeeMP2GDKxmFlzoVx/v/ZkWSVqjd21xsXVpCqDUqnB78lxf/zjUE0G\nl1LCqudBta7cj3Afxfl2YYGFLnv3smAjleIae2xMVUjcj487FRKdtd7dagDA9S6oqPX7WlENAHIu\ncWr2i2stI7fePslCP/9nkUTt6OD6ObhfrLXfBxQGBiwA16/PS/FSezv7j0j+P/qoXzT6cY7rXWBw\nq0ed8VaPetSjHrd31IGvenwsotZGJAgc5XJMWtDDQcAFAmOtrcb1dSA44jiU1jpwwGBggMnGREK5\nCVt4Mi2UbSEbKZHgxlQi6Ksklb2TkwrHj2vXhNlUmKiLHFdbG68T8CunlaqsVAwuMoeHl24m43GF\n1lanQoJL/r5hAzd9onkf9AwILuBkgSubD0C5CQcu/hIJJpc7OhwAypWpMzh5UmNsjD4ie/fSt0Y2\n6WtdNJ4+bXkgV/BzmQxZXKUSK4InJphI/bf/NoLu7jLOnqXUWDQKr+pVa+DsWY2uLsoBTU4SXBQj\ndgBIpy1MTzvYtYtAiVJsT6ywFs8JPgNhvViWQUMDje6jUUpTSiVge7sDYwjyHTlieZ8HDEol7VU1\ni/8TZTOAhgY+r/5+heFhVlgTgKlMGNUCCAhkEOhrbnawsKCWBRNu1aC8W+3kmG0ThJqdZX8Rhlgy\nSSaXZfFdT03RG6qxkd+JRh2USgqZDKX1gErwpqWF/27eDNdzBJ6UJ9lJ/G9hQRgC7LunTlno7VXY\nuJHnuXxZAaD/2vw8jx+NwpPYm51VrmcWvZtyOcpr5fP0kJI+cM89Bv39BvE4wfJ0WphXHIMef7zs\nydstl3wRmbQgY4vMKwehEKufg2zBK31X5TLvRcZFgv4+8E1mpD8OynsVGUFKaxFgFPlJAC5zThiu\nlawJ//953nhcobeXY5htE9xMpdgGtm0j2DM2pvCVr1D29ic/IfA+OcmEYjZLAHtuDq58ovE8HEol\nzhuRiHLN2Y0H0AI09V5YQIVkVyQCr4hCKTJ3RkYsWBaZPY2N8EC1dJps0EjEoLubLMfBQYXz58NI\nJpnEYxKdY2soxHfb0MB7LRSMyyCGyz7zmTWU3iVzpb2dRRlklVUm8zZuzLuSsj7A0tpaOzEmUZ3Y\ndRwmEGMx7Uk5xmLG8zisnIfl/2++5NRy8pTCIl7u2E89RWbo4cMWolFJhpFhvrhI6TNh6I6MwPOJ\nfPhhP2kcixm8+GLE86Lk3CCgsHEBSQXbJnAWlBm++24DbHsXv5j5F8h2j63tQSle58hILRZw7Wff\n3W3wzDNlHIrsw3ksBb5aTE9FgUeQBSgSmE1NBmr7Cbye+xKmx67C12ulaBsl+NW+wrPQAJ74FsyH\nv+OOIau1N8q1WpYUM3HsUYrrgjvuoFdYRwel/xYWtOsV6nve1Q4e82q8NeUc4TBw+rTG22/zGik5\nWHkPAM8lDPhNm8hUVYrA67e/HcLQkHYLrpaeS6QW5Xhy3fk8PDax/M2XUHbQ0WEwMqKRzfprprWG\nUvAKfcplMqlbWnjsYtGgs5NzzMCASEvze9easVId60nkXwmIIPLEc3OcN55/vuBJLDY0qAoAXNbN\nAmwcPWq5Xo0szLr/frLxxLezubmMV16JIpvlvNLdbQJjCrz1R7UixEcfcVxnkR7HtK1bfTnvlpZK\n0Hu5MbO1leva6Wmf3cqCJYVvfSuM++8vY3R0eSZwLfZbNqtQzXqUvRH9pZQ3Nnd0kOk+P0/lhy1b\n4LFSs1l/bZLP0+ezuxs4eVLh3DmDn/7UwlNPlSuYRCsBAFejwrFau11rGwx6R/f3K+9zAgauFtcC\nuFsOAAaAgwftJcd+4gmgt9d49zY2plwmOxfsZAtq/PEfs3qwo4PXI/tToFJK+Fr0/ern3drKQk6R\nsr/33n9YUne3omfrjYxbnfFWl2GsRz3qUY+Vow581eO2jOoJPpgsFTmNyUkme1MpAheSnCyXfXkU\ngJXz3d0GySQBCqUMduxwcN99DtraFNragF/9SpLgvleS42jEYqaCESYJXmE4hEJBDxtuHstlbk6T\nSW4ko1EmRLnZd7Bhg/HYUtGog61b4VaWaUSjDp5+2l9kzszoJQkLY4ChIY0f/MCuSOxNTdHf4sAB\npyIZGY8r9PVxc3v+PJP8ySTZbNksvO8XCvC8cc6dYxV/VxfBhbGxEJJJjeFhmpVblsH0tEY8bnDP\nPfA2YX19PjNNKnal+l3e5+XLypXl8u+JSVTK3OTz8DyWHIdVz1NT2vXLIcDV3EwwUyqTSyXjMraY\n1BbmiYAZ2awvo2gMP5tOqwBLhe9Ka+NVfZdKlEQUwKSnp4zPf76Ev/1bPveBAY1cjufo7DQeI0SS\nR5cvK9xxBzeiInlZKvnyflr7AM9aolgkI00YT45z+y14l6sIL5cV0mmCRaEQn386LeylYNLOuHKS\nDhoa6F1FoFG58n7csGrNdyl9NJFgInFyUnxLfJBcKR/oYUhSVHsghshPas0xYtcuJpTm5wmml8vK\n/YyMIexb0SgwNKTw2mtEg3bvLiMatbCwYGFxkW3csozrA2QwMaE8ltBy0kWUWBSQmMfQ2nh96lqC\noewTvEZKJvoMsEjEZ5WxLfvPKhz2/UmY6BTpGCaj+P/VZ6vN0JifF/lKBctSCIUM0mmNCxfIbvjE\nJ3jDr7wSBkD2VCwG18cMyOW0C3CxXUWjjgs6EdizbSAe9xPLch+UM1NobNSulxnBScuS+zfemDE2\nRvZmJmNcxjDbYD7PsWVoiDKWbW1wgVrlyXvKf5SKgjdnhMMEvNrayCx74w2CW9Gog8ceM3j66QLO\nnLE9iamREYX33rOxc6eD4WG4fokKjz5ahlKUPVvrZjmY2D140EYiEZS447taXCRYHUxO8jNmyTyw\na9eVjVWHDlk4d86qYDsHE7krRXBu9MNnEVcXatBjUOPVVyMIhZQLtiv09/M9zM4SOG1t5d/Gx9kf\n6M9o8M47CkAZ09PA6GgI2SyZnyzyMK4nj8KFC5YLuBg0NbFtd3cbr0Bl506DNzq+j2x8jaAXgEbT\nheZmBx0d2pU6hAdM1g6De+5hQ3+g+GUstBzFdM4HrtqwHc9u/DK+9ETJkxYLJsQI0Dn40pdK+D/e\n/yam49cJ9AKA1hFg67urf65pdl2H9aUI/aDEIP+94w6Dz32uhB/8wMbkpBUAvSojCPr7MrbrupQl\nx7Nt48qy6tW/AN/Pkz6sGqdPG7z+ehjvv295TMCrDVn3lkosglhcNK5s5PqPI+t5KXIqlfyx5f33\n+RzDYWDnToPjx5kQ//KXi1dUdb9csrDW75cD166GdXr8uIUzZxT+/u9tdz6kosHZsxH80R/lXYnF\npceSZOviIguCBKCdm1OYn7ddgJPyuydP+mMKQDb4xo0OIhGyFmUNHgRsjh3T+OgjG01NbG+x5UpJ\nfAAAIABJREFUmHIZeXyvApy1tzsekNHfrz3fTP99KiQS9CuW9UguRzbhjh0s0iJzGhWegMGiuOrx\npaeHso/ZrHg8VTKZPD/BMX89IV6/gMLCgsHUlPakITdv5ryRTApQzMIjWWsdP85CmaeeKmFw0N/L\nBGVng0UA1fPG2JjGf/gPYXR1cX2Ry1FWsa3NrAj4Vcda2ITB98h5ljLXUjgBrMxQuZpiklr9QJ5J\nPK7w8ssWTp60oJRfaCPHvv/+SvC6sZGgF9l5LPDM5eDtSQsFzruplPZUQHp6nGvKwLka9ubHEYS4\nHpKYt1Pcyoy3ugxjPepRj3qsHnXgqx63bKy0Ia2e4FMpmdgrF8ilkkYmYxCJOK7UHDcrNEN3sHkz\nmV+RiJhBs1r5vvscPPdcCT/6kY3BQY2mJkqN+Qlc5RqhVyYNqtkNTK4aN3Fu3AU6XD8xbrKKRSYD\nm5rIFGpoUNi5k9mCixfJLimX6Sd2zz2VJubd3Y5b0Vcp8UEpP78SLpdjIiKVUigWNTZsIFOrUOAm\nmOwMSi8uLHBD29MDvPUWvRra24Xdxu8MDdGPanGR19/YSD8Hy2JyU3x52toU3nnHwsAAN+SWRYaC\nsAK4cTYV77O52WBykhV9fIcKDQ1kIjQ303NNku1KKdf0XMEY47H1uroMurvJsotGec7ZWd//QN6V\nyPZIwmZhAZiaIlgiskGFAllGsmlmwklkMTUyGR8I+/f/PoLLl7mhtm1eZy4HTEw4sCyROvSro6en\nmeTO59WSRNuVJMfEC0Qkgz4uYYxseAVEIkBdKFQn/iRxod33xqSZZUnbJBguUl8dHWwjc3PA6KiF\nSEQYOcrzwaklTeU4kgSCK9nn/61QIMvQssh40Np4oHmQ0eY4TOrl8xoXLrAN9/RoPP98Ab/3e1EX\nDBIghaDv1JQG4FR45lWPhZGIg0JBoaGBzCe2A+Mym6rHitqhlIFt+2yH1SISYfsn0KM8ZmatIKir\nPJ87+rmhQsZwfaFcpoFIkynPvyceBw4dsl2PMxYJLC4SdBFZTWPYPrJZAgybNgGAg4kJC8K0q30f\n/H0mA69fA0wMhkJsb8kkE3xkixhXbgweOBYEAx1Hed59UmBRLW8qIHwux/EqEiGAbllMRto2Zc3O\nnjU4diyK/fsdJBLKA9YjEY7ZH3zAtu5X7zv48peLV7RBliRjUOIOYAGCUkxuSTHK9DQwN6fR2Qlv\nHojHDb7whZUbWq21gDD4slnxVvOZUWupwF0u2S+/Dx5DmM+zs0yyZbPwCigAeP0sm2VhBecZ5a0F\nikUmdo8f19iwgX2Q/R8e8yGVUu6c5HsJJpME0i5fZhJ3aAh49lkHg+W1g14wwNZLv4/duw0AB4uL\nHJtkzqvV51paHJRKGm1tJfyLZx/A/2z9OV46+yOMpcawvWU7fmf/C3hw829A2AOSEAsyzO+/38GZ\nhfdwbPzo2q91vWEAdA5fv+NXn87wvSeTHL//+I/DuHBBV7SFWhcpICPHGym6uLL52XGMN86tJ4pF\nFgkUiwahkMF779koFPQVjrnLXRtZM3Nz4pV2pUfyix9E3lp+L36plI01mJ836O/XaGlx8O/+ne99\nu5bk7EqszqBfYTCJWJ1QP3VKuaxZH8hfC8NH/Ch7eoCjRy3MzGgUCsb1MlVIJCy89BLZUH19leC+\nMQazsxoffBBGf79GY6NBoUDp32JR1kBSBOLPrVK8YVncgwwNaezdS2/YIGCTTAL9/ZQbT6d9EBIQ\nFiBZd2fO8HPiXRyLqQr5dInhYQu7djno79dIJITFTHlhkR1tbAQGBiq9KJXbcarHl3Ra/DGD6xm/\nP0iCutrnNp1W0NpgYkJUJfisxse55xJ1hmTSlzQGeD2JBN+zyM2Kb+wjj5QqmD+15o1CgZLHnZ0G\nMzMWNm40aGgQL97lAb9asRqbMCh/PzDANU9bW6Xv8krz45XIuY2P0+v08GH/u0op/NVfWdi61WDL\nFhak/vrXLLCkn6mApzzn/fdX3tuPfmTj+HEbuZzG/DzHkliMa572dvpqj4zw51CI/yaTyitwvFax\nFvZm9Xize3d52fHjdgchrrUk5vWMaw0+3sqMt7oMYz3qUY96rB514Kset2SsVL1Sa4JvaVFoa3Nw\n8aIFY5is7Ogw0JoMolJJYd++MqJRbszTabKKHnywjJMn4W3ctm+nHr4klc+fV5iY4GK61ia+OtnB\nTStcUAxQynFZSMqtFApKesGTgdmwgYv3hgZf2oGbJhtKKa/ic2hIo7nZr2jfudMgkXBcjwblyu5R\nBiYW4wItGuVmzLII/ExMMCEeCvE6Ojt57ERC5Pd8U/qdOwkG7ttn8P77FgoFhelpbh5TKd5PJmOw\nZw/vo6nJeJvrXE55EjvGaIRCTHxu3GhceSeep6en0otqzx6DeNxBuaywY4dxWQL0LojHFeJxC+Uy\nNzqUr1SetKT4B8XjvB96rPD+6NckZvW+D1uhQP+IhQWypchcCb5bSejzd+EwXNk6gqpS6X3uXMgD\nx0olAiChEP/L5/kuLIsbdgG54nENrc1VVYBXR1Di7toEwYlS6WoSWdfgKtw24idrl692LxbZRgW8\ndBy+N/Y3kaIzuHgRLlsHAHxvMbYNVQFi14pKJpiE+AWSmSi+E9XPTtqYePskEgq9vTb6+5Une+Y4\nxmMmWRYB/F27HG8Dd/CgvWQs3LJFoamphHfesdHWxr6xcaNBIgE0NBhXfnH5NkJZPYPGRgL1BFmW\nZwVoTbaSMLxE4jDIgBD2kjwD26asKMEa9qcrTcDy/VXej5yH44HGpUuUjDOG4KGAlgxfwmtmRqOh\noYxkksC+1qoCoFouKt8twVYfMPOTuHzfBNr4TIzXnmsxTOT+gmxDX0JSef5v8l1hIM7P850dP26h\ntRUem1SYEwKe2TavKR63cOiQgxdeWP9LkCRjUOJO5ISff74QkAUkiCOMg4YGXzJrcNDCgw+uvQK9\nt1ejv59FGMKkDTKj7r13+U4ryZBMhsUQbW3iwcU5+/77yxX3BfjMAfog8X2wuMF4Y4W833zeBykB\neKA7WXBM8ALwQHbxYvTXDMIE5HlmZwGtNTo7DWxb46//OoTE0zuArcdWfzkOsPXS/4lt0/8KE+Dc\nuGMHx4CFBfqfZjIs/pE2HIkY/MY/fgeTu76P/0eN4MPzBLq+/1s/XvV0yaSwmDm3/eTwj1EIFVa/\nziuN9Ux1ia1r+lhwnKoVjkPQ4NQpyy0GguvTVjssS7lrIP5cLnPck/UEsD7Pr2shUzs5SW+uawl6\nAfLc1HUvupFCmEKBILRlKbz8cthTQ6iWb10u6bxcsvCVV8JLWFZBeUEBrgYHNT78kAVm4ispBV2H\nDlno6MASmbcgGycW4zwzPi5Auj9nJpMGx44pzM/TL1DA/akpSjweOGAwOqqRTFJiNpXyiyb8dYs/\nzovCgYxN+TyL0X7+cwvGlDEwQGlEKSTJZv0CL8uCV7hTLHLd1NRkkMlobNvmFzHMzCwFWZJJYGRE\neeNtcL2ez7PAzXG4LwEsdHWRRUU5To1kEpifJ3A0Pa2xaZNf5JhIGLS1UcFidJTS7r/7uz5DLMhC\nVorXPD0N91mKKgSZ1KOj7JMbN3Id09npv/tolPLw8Tjfl7yjxka4bMNCTRlEmTcSCbiewfw5meQe\naGqKksmy35KoVsFYT9I+KH/vOAb5vDDaK4HB5aIaNCJjTeH8eaoSSDsOSmKOjdFHLJHQrgQqGcyp\nlIWhITK6qQDC5+2ra/C579hRec7xcb7PWIw/i4e2qKPMz/NZSnuUvazjYNX5v1ZcDUBSa31y6JBV\nwQYU1t+3vhXGk0+WV/UKvd3BsVshrgcD6lZmvN0s38F61KMe9bidog581eOWjJWqV5ab4LVW2LvX\nwewsq8qSSb/SPhymMXRPj8GZMwqNjdx4GMOKx+3by9C6spr83/ybCC5d0p53zVqyLOI1FA4btLQ4\nrgyb8hJZIoEoCS5JfnR3E/wIVkoODGjXW4znlQRdcKMgGzwusEUSQnkMNfHCUkp5CdZ8HgiFWCWq\nNT0TOjqMx4gAfFP6nh76nAHc/NEjhNeayfisCfoKKc+3DIDrh0MPm85OXntHByv1RFbsvvucKkNq\nbu7vusvBxYtkuXV1AfffX8DPfhbG4KDypJrI1DIBoEp5XkMCboXDQCymkUiQbUHAjc+qVFLu++D7\nCfqxVUYlcFEoCPCiXPBv+WD7Y4JbQDFK2QiAQ5DhWiWK1srQWV8oFApiIL42xtD1j9WvQZ6pVNsL\nSFBdIVwL1KBM5LWRgFoNLDSGUqzsUwYnTtiBcUJ5gG4mA/zWb/kV5+PjCm++aWF+vlI6FKDE4yOP\nOG6yRmFhQWFujtJqKyV2WU3reOCuyEEyUVX7mYfDwCc/6SASMejttdxxd+mz0xquFyBZne3t7JOX\nL1+d501Q5nbp3+jNZVn0t7pwwfKSbkuDwNCFC5brhwGv4nw9gK+wdmqFjBtyvzJ+rhTBc68Gwgm7\naH4eLpuYxQH0Y+P9ZLNM0BIENt73Tp+mxJ/EWjfKwSrYlhYWSShlvATD4CDwwAP83vvva4TDBhs3\nsp1daQX66KjG1BTnvdlZf1xKJlGRZK6OYDJk+3aDqSkHiYRGdzc85tszz5SX3FcsRunk+XnOKSwE\n4PONRMR30FR43gXbGOVX+f+plPgV+UCljK08TvD3lcwXYU1HPnwR2PRTwFoZVGqZ/SzuGPwmVAML\nSPIb3sH4xv+KQsMIQtketF/4KhovPozJSccFaIDGPe/gnZ5/jkJoDCgBF/uB4xP/H176n/4cD25+\naMnzlDZSS+YsqUZWvL4bGpOfXvUjoZAvD1s7gkl3/p/IuS4XwlhiIUElezNYXHO951WtfYnU/n7t\nrUlv5yiXfdCxXFb4T/8pjGiUjG/A97wVVkl15buMO8JIleKxXI5jFOAn/uNxhV/9SuMnPyFbNh5X\nSCYV5uY0Ght94B1QOHqUKg179hjPZ2p4WKGtzfcwEjaSMb4vZDAch8fO5bg+F7DasgzCYY2BAYP5\nec5ZBK6N540mUtmy9pE5Q2Rz5WcWYCj87GdhZLMsBlSK5wmC91IQxIIh5So/8Fizs8YrZmtthTsG\n+8yxs2epmHHpkuVJPgdjbIzy1eK5BRi3QI3Faj/9aQi2rTyZ6sFBfz6zLKCry2DLFjLgTp+28MYb\nBBy7ukT2kGM7GfN8j1u2GHetQwUR6RebN/M5b97sQPpjPk8QcGxMI59X2LDBBPYRfHfBtkXfNcpv\nknHly9UuLPhtNcgElf2W/+59FYxUSuHYMYWf/tTGk0+W8OyzKyesg/L3ra3A5KRBPs/2196uKiQh\nq+PUKYX/8T8sTE9TZWPXLgczMwR2OzooV9nbqwEYT56xr08jHmd/kzFRwL18Hkil6H2bzXKsZDEV\npSXZV7m+GB0Ffv5zXzIzEiGAPDamMDtLpRLHYbGktE0p3OEczHN2dKDi/lZbx1wtQFJrfZLLaYyN\ncX0T9MnO5YChIR+IB1CXp7uCqPYvv//+Sg8+oPZ7SSQUvvOdMPbuda7Ku+5WZFBdS9/BetSjHvX4\nuEYd+KrHLRm1EmHJJPDmm1zoZDKoSPQCfhVbPK5co2cew7JYbSjHFI+u7dv5+ZYWoLMTeO45ogan\nTil87WsR9Pfb60p8U46MkhVPPlkEoHDihI35eR9QkSRt0F+qqclg82YHGzf6SaNUSmF4WC9hT23a\nxA223Gt1BdLQEIGmfJ7sLm4gtbcZlo2WVMh3dXGzcuAAgQ1ZOBkDz/ers9NBW5uDHTsMTp9WKJe1\n+yyVx0gZHWVFoTEEtEQ+saGB/gTJpHI9l1j93NVFaZbjxy309BgveUS/LerrNzQodHU5KJUM/uIv\nIojFlMvWUMswbYKh3YSCVNwzQeA4Co2NTkXSgc9jbUmnSqbI2j4vFbiAD7wJOCpA3a0fa/MSuRVD\nwMf1xY0D9yRJXigI0EW5H2GASOUuAPT1WTh4EJ6USjpNebWgdCgZPkzUFAqswBU/tFxu9WcRi2m0\ntjqYn2cfFxCuVmgNNDYa7NlDds/Xvx7xNqPV4TgEoFpamFDhRk27APaVP+/Vxmhj6DfV16dX7btB\nSS05tvFOcO3bxGqg19LPr/4ZkeDlvywMEJZSJGK8QgOtTYWcUybjm85LFTcZwCtvlFergg3O5cEK\n/GCybz0V6DI3zs9zvmxrY6Ka/n8GTz65/GY+mAxpbeW8NzZGqd7qSuygvFY8biGbVWhpIXAVZIAX\nCkBzs4OmJrK5ikWDdJrJaGF7SYEL5W7pCyk+ghLSz2rNa5bFPi1Jfh17GKG7nkRx5y+WfW5Ibofz\n6/+I0YxGZ6cDe+cJ9O3558hFXJnEVmCu8S3Y6W+g/Ok3YVpH4KR2wOqcQ6GhUkpxYnEcL539UQXw\nVZ1MEeAgWLzTanZgHGtgpl3vSG0ETnx1xY+wOMVxZSC1ByL4wYQ3vf/4rhoafC+r1SKXYzJ5KaMc\nuBHzDcFXrjlmZpQHwN3uESwoGxiw0NZGmWuJ5Vgl/C6lxIeHybxvbaUccjrNfm4M/z4/LwoKnO/E\nazaXExCbIPzCgr+2bm/nnDw1RXZzPG5hYYHAJ9uRQXu7QnOzWVKMIm1D1ovRKM8zNQUkkxqRCEHq\ncJhjUblslvj2SRuzLF+SOTi+8F45rpRKBDMA2ZeI3KoURvjAnPjUFQrGZa/6DKZolEzenh6CdbOz\nGvfcwy+++66/BwkyHQsFHwwTKWIy9I27htceWCcy8yzw8AtBcjmuWyzL4MIF7a4nLBw4UEZ7Oz10\n29sJ0GWzLCBYXITno7p9u0FPTxn79hnXD5PMqWyWn4lEtOvrSuliX7UCnqJGUMKyv19715lKESRc\nWPDfjWXxAWza5CCfVxU+mEr5/qdBb6tkUuHll0N4+20LL75YwIMPVoI3Mv+OjJA9J2tJ2UNSUnr5\nwrVTpxS++c0I8nntrilZYLJtG/tFRwfXUMPDBLIefZTjvIC2AmpJ5HLKldaHW4ijvHVePq8xOekg\nHDZoajIYGgL+y38BLIv7DLLHyMoTGXjLUt78J+8+HGYxleMYtz8YPPCAvxYxZnkPNYDrgTfesJbk\nE4whsNLZiVULf2rlKsT7GTBVPnN+fzp+3PL+PxgfZ3m6YB+ZmaHP3c6d62fYVfuXT0xoz+ex1roT\n8GVHGxqooPNxA39WkmGsyyDWox71qAejDnzV45aM6uoVWbQIa2tiQlckeoM6yz/8oY3g4t62uVFh\nYoMbsmoZgjff9JN2hw5ZGB2tnbxdKcJh4BOf8KuB4nFW1+VyXOBWJ8zk+CIf+OKLeU8XnLIb3GAz\neD+JBDdLwYo2qUAaH1f49a8jHkjGKlC1ZENdLTsmVXTi0ZLPM8FGHwkywsbGuDH+5CcdvP8+UCho\niFePHLdQULAsB5kME0IAN4r0BAAmJvh7yzLuPQMbN9JoenTUryocG2MCeudOtoH+fu1Wu/usLj8k\nebp84kg2zOI9FGSHXQtGz1pCa9kcGs9fRSlJWNy+oNLtEjfqPV9JOA48zzHHgdfnw2F4XlmlEtwE\nP305Dh2y0NMjJu9kH5TLGrEYExT0nuMmKBQSmSL2lXBYeX5pwRCJtVCISSRJ3Cx9dsbtS0w0dHU5\n6O528MorYY/9EpQ4lGOLx10uR6mwXbsM4nGyZIKMmPXEarJkgbtbN2srKBd1O4WA7cYYjwksLDfK\n7hoUi3Ar9DkWz8/Dq+zu6WH1dTyuK0CMlTbKK1XBBufyoA+YJIFW80gwxngeN8awiKJQYIFFPq+R\nzwvjwKCjw8Gzzy5/rOpkSGsrsG8f1wTV1y9Jmg8/tLB5s4NUiok3ynjKp3i8bFbDGFax79xJD56J\nCQfJJMf6hgbebz5PkNqylrJ8JZlbdfdQSvwElSe5a9sKoWP/EcXthwG7RuWEo4AP/xdk9n8P2fYR\nzOV2wInMoRCpBLScljEUnv7fgTAHhDKAxVLtbcFYamwJwysS8ddRAmoGZc4eKHwFF0N/hyIyNY95\nQyKxGfjvfwNMPLzsR8R3T2uCm/RdrQQnffat8diUDQ0cp9eiCkBZZVUDULsRYbzrXFi4OobtrRYy\nrgFMvheLlPAU+VLAZ5UEY3xceRJtLExTLnuJcsJHjmgsLGikUjw42VJSRGJQLmuPheQ4BEjyeYOm\nJuX6+cKVIvST9LEYjxEOEyC6fBnYssUvggsCQpZFxhPAPcrwsPZkVHM5oL8frpw7PxMOG3fcV978\n5TgOolEW0lDVQHngUbGoUCgYV84Qrvy3cT2TeP3NzQaLi74sp6wRhPXa0ECG5OKiwsICwbmmJuCx\nx0r43OfKiMdtnDunPRBgOWUDWfsA/pohn/elpxlLv0vJS0reyri4sKDQ3Mzvvv667fqPythv0N1d\nxtmzNlIp3k9jI9/LvffKMSkP+MlPOjh82EahQDn3zZs5j0WjPtAnBZTGkKGVSNDTmJKGxvXypbT5\nxATXYrZt0N7Oc+/da7C4yEK88+cVurqAp58u4mc/C2Nhgd5W5bLxCg1LJa7NvvvdML71rcISz2sy\nFy3X59fxikx6egw+8QkH+/bxIdeax//sz8KYmdEusC9zs3ILTBwcO8Y9sUhlZzIa+/c7mJggM7Fc\nNh4gpQNbGq35LrlvMx6reX6ev9u/3+DYMRuxGNDZabl+0gbT0xbiccdtE1xvptPB/RPB46YmvsMt\nW7gGSKU0hoZ47r4+C7EYlVQAuJYAGoODGl1dDlpaFBYWKBUazCckk8D779t44AF+rxokqTUP+scX\nkJi/kyJLpfgeJFZiua/mUXY7ytZJO00klMeAGxjQSCaddTPsJF8gweIGXdGuq3NIAkAGQeaV1rS3\n2zNeqQBtNRnEetSjHvX4hxJ14Kset2RUV6+MjbFarKfHqfASicUU7ruvslL7scfKeP11mtDbtkFb\nGyvdH320jJ07KdcgEQTUYjEe7+RJyzOYX5/3AqUFDx+2MTnpyztJNDTAM4oGZCNNffJ4HDh5kgDZ\n7CylIHbsoE+MMdxoSUX7iy8Wai7Ajh+3XK19VtjRm6f2tRaLUgEI7NzpoLER2LHDQU9PGR98YLkb\nPB8g7Osj8NXaapBO++9FGFCSXI9G/cROocCNnlwDN1QO2toMZmbg3hf1+20bWFxkZa5SBs3NvI/m\nZt8rKZut3CD7sXa2Fr1ZrizJfqUhlbm+JE/wr/WFZz38fmRZZLHk88oFKViRbdv0AeTGnpvt06eV\nl9ASo/bpaTJhCF5TPjEcNl6f0Vrk7YJVgZWyW8b4cm382f9/pZi4sG3j9nuDT33KIJnUePddC1NT\nlTJL1QnWxkbj+RrGYsBzz+Xxn/9zFMWigythFQZ9S+rhhzyPTAaerKwxTAzt3+8gm4Xnd8mxmCBQ\nLKa8BKEwJaq9R1aLWkbvQSlEzt1ATw9libu7jeedUy1BdOiQhddeo/RSaytlk3I5hY4Ox2UKshgk\nlwO2bHGWnRslVpKDqb6Hl1+2kUxqnDtnIZWi3wgTxUvbKQspDJqbHWzaRMZDKmXw7rtkoKTTlEoM\nJgWV8v1Al4+l4LMUr9gTnwaGngT2/HLp17QBHv4OTDgLAyAHAKVw7VOEq1Bwu/YF6VIDvvRXLyCp\nRtBqdqAx/lWEZx7ykoWUdDNeog8AtuIh/P59f4o/Oft7yJYD51kZI1p7pNuBUgPQNln77/HtwF8e\nXBH0Aghm0R+Jay8yWZYm6sVbTykm/EUSTlgaq41DN4vdLcBeJCLMk4/HukPmJelTnN8ULl4EOjo4\nZ4bDBtHoUnm348cttLRQgm5mxmfyRaMsxFpc1Ein2SbImDIuS58KEsLKYVGHL2lZKBhXUly5yXnl\nShWTGSigaSjEcXlujoB9sVi97+D5Zmfp8yegKeB7lU5NKY/x0tjI6xAGojBMHUe5awgHWhuvCMZx\nxHfOLwoplUT+kD8vLprAHKtcr8LK8YhAnL8nSKcNXnopgoMHHU/emyDb8u/xaufvIKu/XJZ+qTwF\nCa2phDE7q3D5so1w2FffWFykz/Fbb1HCkjKXBiMjlvduy2WO321tDgoFheZmoKPD8TyhEwnu34aG\nNBYXlbufUa6HmM9QMoZrOq05L87NaUxOarS3E8QcGQG+8Y0oIhHuFxMJhURCeQVFwhTL5fwkf5DN\nMTrKfdvMjIZlSdvgHH/gQO15XObZw4ct5PN8x7bNPXNjo0E6Dc8+IJNhOwyHjbvXJfuLcsraYwkK\nMCUFHtKGRNa9WIR3fZOTlMe2LJG9VF7faWhQHrPOcQjEsk9xHdvSojzwsqPDwb59ZQTXkaL+cvgw\n77e1Fa7kpUZbG9nJPgvd97YeG/PPKxH0+AsynaNR4L33eE7xUVMK2LWLSikbNrD/9fSYChlgWXOs\nZT0SjGshW3czQB1pp0EGnL/GXDv7KB5XFWsMiVxOVbTr6hxSLqeWgI9yvOq4UdKA1/o9LFeAttZ1\nbz3qUY96fNyjDnzV45aM6uqVxkYf9ALgeYlUV2qPj7P6TCrtQiGgtdXB3r0GO3dys3HokOUZX2ez\ncKuwDd5/X7vVQGaJJMdaolRSmJ+nL9X8PPCLXyi0tzvo6ODmq1SirOLiIo8bDnMTZFmURXr7bQv7\n9nHTNTurXClGLsI7OhSiUQePPlqukLgIBhlmwgDhhnel65fN/J49Du67j4mBQ4csXLxIPfVNm2Tj\najwW2cSEhjF6ybPhxo6fcxzjSTtGIvT+KZcV2tqYnAQULIuMsXRauRr83EAsLvJ9lEqyOaIsCcG2\ntb+L5aKWx8D1Dsvy/cTqUY9aIWCRJDa6ux0XKCUIEYkAly8Dc3MEvFIpjjexGDfkra3G9exTroya\nX1nL4/hJLvH5kP4U9PwABExiUkjGQUmcWhYrbltbjXtOVlqOjvqsMoK8S5NZjsNEDhliBNV/9asw\ntm+n8flKibGVgomSa5VJ/ziF8phfwsC9+24H//SflrF7dxmDg5T5aW8XFpafjEin6RMxW6zEAAAg\nAElEQVRZnWBYbaO8XMLgqadKGBzkXL5rl4PPf55SnS0tTNIODS2tqH75ZRvnzjFZ0tbGIpVSibJh\nXV0Ge/dSxqitjXK8X/96YQlwJusHxzEuSKbQ16fQ08M1BCvkycQ+fDiCXI73PzPD5NvkJJNWnN9U\nRQLTe8pK2FoKtu1AKYOFBeDeex389m8X8corYVy4oCuSywJmrTfha4zPMMlkFPDmHwI73wRCNTrP\nEkDrCjsYgBDC6J37EIuhWQDAOI4huu8t3Jn77xgbO4B9+1ggc889HLc6OkzAa+1fInN5P/524gcY\nTY2hsbADheaLWOw4sfYLKFtAZgMQ2wnkOoFwBkj0+PKF/+w5oD3AZiuGgaGngDe/sSroxVAV/0+2\ne2UE/bgEwBCvGfEu5Bi49ttae5grliaUYgW2u4/HOBmJGFhW0CeLa30WjLCvz84qJBIGmzYZfOUr\nSwFxSXi2txvv3ebzwKVLGpmMrpCpFv9X+tb6xSCShCdIymMo5SfeTcWi1Qe1KOUH1/PL/5vWJgBu\nUQ6spYUFcMsF26HyAJfgKcvlILvb8q7ZmEp5Tvl9uUwgyLZ5LYWCz/wWyURhphaLymV/kUVeLIrM\nI/8/m9WeN6iA9dcrZA1DyVsgmFgHBGz0/U0JQPuFeePj2pWqNa6fo/+efT807TL6DO6918EDDzhe\nYcef/mkYIyPct0hxHfdCvmS1FDk2NBg8+qioXPD5TE4Cvb3aK2AyxmBx0QeOWNxUya6V9htM3Ody\nfN+NjZwrBcRsauJcvGULG4fM4zLPnjxpefuuUknYqfCk7Ak2+CAuZblF7lNVeCNbFhnNoZBGqcRx\nq1TiHiif53MNhXyALZMJSPhqeg8Kg7ZQ4N87O8mkZHAM4/M0yOXIYs/lgCNHbOzdS8+3VEphZkZ5\nz6ShgUUN3d1+nxsY4DuYnFSu7DPXyrkcsGfP0rVOPK6WyMZRbpnMsQbXS5MgFy0Ufv/3CxVrIqCS\n5b6cPN1ycbWydTfL70naafWaUn5eK/uovd1USGZLRKOmYn1anUPq6eH3guCjHK86boQ04I18DyvJ\nINajHvWoxz+kqANf9bhlI1i9cvCgXcHUkgguWsbHFb797RDee48LHUnuUnbC8Xxxtm83GBujvMTI\nCBffCwsai4sAwIpNrZngBdaXyLBtVq2JBwCr0RU2bTLI57kY96vhuDnhZoifSyaNZ6Q9NqbwyCOO\nW3FPmcaVZJxY1cMKxEiEi/2VwDulDD796TLa2rh5+/a3Qzhxgh4v5TIQi1lIJh0cOMCquIkJJt79\n7/Nf//hS2edLMikFdHfzXLt2OXj/fRosU8JNNs4iw+L7HBUK3JwMDcnmee3vYPW4kYkfbj7z+Vtb\nbq8eNyOqk5AGra0O7rrLQWcnsHu3g8FBjVOntCs9SDm6YpFAMj0w+P1kUlWwCSyLfS4cZsJCKm4l\nkSMJkaBnnYxLgMgi+m1Wvh+NwvPnAigzRD9FyubNzwOAQmcnDeoFaJNrcxxgelohmdS4cIEeSJSk\n8pNS6w1+p3afvhZsMHkutyurTN5zaytZu0ND2gOj3nyTEoKLi37lvjAfQiEWlkisZaO8XMJgcLAy\nYXDwoL1iYkGOIxXbPhvDQUcH2d8tLY7HRtu1y1nWsJ6sbgtKscJ7+3bjev7w3/Z2g/feszAzo73C\nCPHqWU5eq9bP/J5GZ6fB9u2UOezttZDNwvP2KRT85OGVJYKrwI/xh4Hhp4A9f7+2r5fClQBYvhGI\nrC5DqJ1GLOrZit/lImOYuuP7UCNfwens95EOjaIptB3/+sC/RnvxEcTjypWNVmhpeRh7+h5B86TG\nTPhdJJ/8/NKTZDuAsgKaF5b8SZ17Hvrv/puXLJUxzYu/PAg8/D2gbdQHxNYEeNWOlfu68tgXfsIW\nrgfNFZ9ylbiywh+5Lkm6YwWPn9spmpqEVWJc1hXZKAJ6yXpy40ZKoB07FsLlyw609ivrpQpe5FdZ\n2MWiEmGp1GLoGWM8sItR+UyXerf583xQyjCd5t+jUXpdindtMMheWvl9BaXTV1My8Nmj/nXJ/Gbb\nLFgzhkyzbDaYKPWZOz7wwOeTy3Ft4rPCfXnx1YrvrlX4Molre1YS/vvlfqlY5DgtIJ73V+U/X66B\nymhvZ7L+z/4sjIkJf55i+6t8l1x3cZ4tFjVef537Hplf5+dZbJLPk5HU1KTQ3U3ZeLYT31dMWCuy\nBguyOaJRMpLJ2GJbTSS4rxJgIZUyiMWAH/84hPff15iYUDh3jhKHxSLHVwEGjeG5ZmZ4HSLZKV5s\n5fJSIF2kuY0xLshlPLl7mb/8+VytoMChPHnuZJLglzAh02kWS7a0OO79is+twpEjwBNPlDExwfeR\nSiHwPjkH9/Q4mJzUSCaVJxc6M0MP6WIRePDBElpa/L0uVRaU67NJYDEaZREK/byADRsMHnig7BbT\nUFJxeFjhscfKK3qgrvS3WnG1snU3y+9J2mk1aCXSg2tlHz32WBm9vcpt8z7DrqdnKas3mEOqBpr4\nvdpr2hshDXgj38NqPrz1qEc96vEPJerAVz1ui6hVsZJKMaH04x+H0N5Og9wTJ2yUy74EmGwctm93\nMDhouewIeGDSxASlJoKSNiLhtXmzg7k5X7NbNP4p47f0GkMh4+no2zaThgTeDAYGmPASMI0G0QSo\nCgWDLVu4URDta4Ayf2NjCnffvTYDWHlGSnGhUyxywyEVfIAvrxiJGNxxh4PHH/eZXidO2MjlmNQp\nFLixmZ/nIr6jw8HiolXhD1a9oZUNbzhsXO8v423uROZh926/WnZmht8rlci4y+WEZSDVvLgOoNeN\nDaXIRrmR0or1uF2ictOjFJmNrFClD0RzMzf8c3PwWJCS3KHskPGqjPN5v7/YNqt8i0XjendU+ogJ\nGFLtxeA4xvXEqEzcaM0q+0iEldNzc0ySURqM3hpkFhmXmUM5sGiUY7AkPCTpVigoz09MfB8A8aYK\nPpPV+3+wKh/gMSXxFg6jJntj2TfiFSU4CId5z6mUXjWhdiuHMawy37qVjKdf/pLSfX/xFzYaG5Xn\n8RKL0d9IpCyNMdi3r4SOjrVvlONxFUj8KK/6uTphsFpiQY4jFduAJNMUGhoMOjr879RKXgSTCiKt\nE5Ru3LfPYHZWY98+g1OnNMbGLM/XcmXWzvLtQCn224sXFWZmLPT08DlIYlzkxeSarxkA8cY3gI1n\nqxhPjUCoBqA19JtAdiPQ6gJEg78JPPWHQNvY0s8GwwnVVCItdZzF+bbnUWri9xMA/qj/LTy98P/i\n3s6HKjxW2B6A/P7voxSdXXIsPfkQ9JE/ROmLz1VeT2I7rFNfhbbEn5PtmYwKN7E+8TDwN1cOdFWH\nz4zx1yvBcUgk4eSzlEC8ZqevGauztfy/C9AlzDTAZ2msV8lgjVe3yrVd23PlcsB99znYvZtr5tFR\nhXxewxjlzSFKkTGSz9NTpr+f/XBqSuF73wvhH/2jIpSCJ7969KjlqTEEVQuCIXOn+L2tLWo/F7K0\nuBeQebn6mOtnhK7n0z4YJ2wvmZ8FnPePGbxffk+Arepz347rdekTSpGJVL2/k3HAGGD//jLef98C\nwELGU6fo6ZVOVz6PWsF1CZVBuroIKEUiqFDoKJUoF6mUwtatDj71KQenTmkPaNq9m1LBra0KBw/a\nFVLCPT0G/f0mIHPPQbtYNBgepqz98LCFt96iD9j0tD//yzsm+Me9aTRqXO86X3KX6ykfyFrmiaJQ\ngMvCXNog5DxBKfxaQfCZ+2nLIps4GmXRSiQCXLpkYdMmQEDohgZ6h/3qV5araMICMc7tvB/LonJJ\nJsN1cTJJj9xQCGhpUYjHNd57z8ZddznYsoWg18mTGtPTChs3kn05OEi5y82bHWhNxYO2NsAYgmli\nI5DJAC+/bONLXyotC2as5I9aK65Wtu5m+T1JfmL7dvqpCeje02PWxT7ats3gy18u4dVXDd5+28Lc\nnEJXF4uNglFLRnCt4M+NkAa80e9hve2sHvWoRz0+jlEHvupxW0R1xYoxBpOTCm+/bXkL2v5+X6KG\nyTv+P2UmFIaH6VUVTMhRe155nwWY5O3oMHjiCQfd3Q5efdWCZVH2aHExWKm9tFonm2XyF6CsYTLJ\njc3iom9Q39Rk3AQY76O93QSMuP1jtrczQbdz59oWLPKMZmYInkWjZYyMUPqRoBsTuU1NBlu3Gnzx\ni/5i/PRpy9uA2DYr2vJ5g0yG1bV33eVgYoImwGIKXavyXUAxMrrIWhFDZaUMHn3UQTzOzVgqRSPo\nRILnSKWMJ0dCqbQbUy16PWMtVbj1qAcg/nMaZ85QDlCYKUNDPjAflMssFOCCVBxLZHwxhtXZBLyF\nvWq8pEslsMRq13BYeYA/mQsOCgWRN2S1cWcnsLBAJuquXRxPUin2Y61puq41x6F8ngAYzdxRAb4D\nqBhr5N5EglHYVb4HCbBcgkXGIYJ6lPTTmj4UlkVJvMlJtWbgij4UQFcXK0hnZjgOkj17e41HQVAz\nm4U7Pyp0dIhEkUYqxQQSq90VUilK8/b0ONizx8GuXcBzz/m0h5U8CcbHFT74QOPUKQtaU5YpGlWu\nzEx5iSF8sShMC99Pctcuv/r32DFKHAaBy2gU3nmVWj55US3/xH+BoSHlyRzH48DIiMaHH2qPHX01\nAIbIf2Uy9JgZH/cZAD6zUrmyXNcwuTHxMPCXB6Ee+R7QPoJQZgdC47+JzEN/CNMaAJDi24EjfwiM\n+QBRY6NBObUfxQe+B90xgohqQLrtNNA0433GSm+HM3s3sPMXS06dMXEP9JIoN4/h2NQPsHHy0xge\n1l7x0YYNHKfyDSM1b0OFcgjNPAznpwdhDnwPRsC5974Ke+5hhCK+BFc4zDEpmxUZuGv3PIWNHwQi\nagESUhDlfqvmcYShEAqpmuyh9cfyABNZO5SSNoYybsEEvoyt117u8MYOikqxX507ZyGToVrBxITt\n+WwBPogRixEgaGwERkYsBO/78OEQHn645CZeFZTSaG4m4F4L9AJ8KeJruaZLpZbO7Tc6qgG2tRSL\nrA7K3dxikeV8RmtFsL8HZaCDxwqHga4ug0JBeSyV/n5KTCYSa5dQJ+hDqWiAEtYio8lzs2AokaAn\n1cyMwmc+4yAWI2h7/Lh2fYo0EgnjsbdPnrTQ12e5DCvAcSgfLXKTqZTCwYNhV5ZyNc81X9aX++21\n3Vt1lEqVkprVIczM5Y4vCgVa0/MaAKamuGZoa3PQ2KiQydATulAgCygS4XzDdY2BeGkWi/w+C6I4\nD1OlQEFrgmvlMo8/O6sxMkKGeDqtkE4bbNyICt+vXI7FQrkcixvn5oBEQkNrhW3bDMJhruGXY/HI\nemh4mJKm3d3rK3C9Utm6m+X3FMzh0Odbo6HBQTar0doK/OQnFoaHyZDv6gKef76wrK3Dtm1Uv0km\n/eeQSGi8/DKlAgEsKyO4llzKjZAGrPtu1aMe9ajHjY868FWPWypWSqwFK1Z++EMbg4P+RjabVZ5P\nCf1MKsMYg3PnLHehyiqv8+c10mlhKPkMiEiEm5x0GhgeZhXp/Lz2kriFgr9RlWrJcNg3WFaKwFk2\nK+wL5UpQ+ObUHR0Gts1F+X33OdiwwcHAgOVdb9CEdT0VQNu2GXzta76m+L33KvT2Gnz0kXb9zgj4\n7d3r4Jln/EWcbA6CCWnbZjXsb/5mGfG4wp49ZMBdvKgDsid+wlqSe8Ui77etzbhyEMZb0E9NAd/9\nru+xtn9/GefPcxOWSvG4mYxyte3XfNv1qMfHInwJGY2jRynTVCyyrwljS/qojCciP6S1bPAl4U7W\njlIcw2SskvNQDpHMzHLZ98ZobKTUTjrtoLWVRQMtLQSVGhoopROJ8DgdHZTOoUSPJB2YRNi502B2\nllJby/kZ+ewa37tI7nMtiTORdDSGY7BU9DoOQa/WVh5rYYHj9nLXIaGUQVMTE8YzMxpNTQ7uvbeM\njz6yvCrq5ZKit1r4SXtVkaSfnw+2A/peyLMvFjk37d1Lj4rg3LOSJwHARMP8vMhEaczNSdLJIBy2\nMDqq0dLCY5VKwNGjtiffxPnb4AtfIDrw2GNl/PSnNsJhg02bmAQslYAdOwwOHODcJesEMZwPJouq\n5Z9iMUpR8VzwpIQbGsSDRq0Z9CIwYirmwMBfvQRoqVQbDBGg+pqGy3gKhVhEUiopWCP7gYe/B9U+\ngvLCDjjvfBV64mEEL1lroC37aWR+9edwHAeABtreBT5N2UCd7IE+9VU+ly+eW8LEKuXbgcbLSy4n\nHx3BiTe5nimVKG1qWfQ/i2R3IFXjFqzFHq6Xph4GXn3YG9u0Bkoug6lc9qWyikWu1UQ2+VqGSDWv\nFCu1FfFFFLAzFDLetV95rH6PZN7ClcM13u9CIbJYSyXlFjk4boEAAGhobbxrvR7XdS2DcyDHreFh\nhf5+bmNLJd5DsEChVKJHrHhABfcGuZzCmTM2CgUHjY3Apk0Gc3M+O7RWXOt2JswXAcTrce2CBXhr\n+aTx1kLGoKZcKddRIhkI7N9PttfQkPbWMEGpR3pKqsDP/rFEatpnPCnXj9W4LHMWKAIGnZ0GGzZw\nHdPUZNDXZ6NYVLh8GZifN+jrAzo7HbzxhgVj4AFw2axeItUrP68VgKdk4dU1ypVAL1l3CiN6uXAc\n7sVPn7awYQOZVeGwQTLJOTubVfC99vjOm5sNNmwALl/WrqyiKJkYNDcbV71AobubxTelEtlZi4tc\n74pSx8AAP5PLsRhUoqkJnoyi49A/zLaNC4IB8bjBjh3AxYsWjDHo61MVOQ2A66VkUuPMGfpd9/cr\nJBLOqj5PVytbdzP8nqrzOsE1Y3MzPV2PHg3h/2fv3YPjuM4r8XNvzxOYGbxBvAlQAimJJkWJelCS\nZUn0WrZetbK1TvlR3lIqsVdZx1WubMXlsuNYFa/WrlSyldT+kvjxx2Z3HZVdcspbrpUS2ZZsSRZt\nRaQtizQlkeJLAAESAPEaYGYwM93398fpr7tnMAMMQJCixPmqWCTn0dN9+/a93+ucA1AWYnra4Gtf\ni+IrX1lCVxcqXutKVIHy70rvrVb4knMFqBNZa0FypdxVJavrbtWtbnWr28U3Zczae3kcx8Gjjz6K\nN954A5FIBP/1v/5XbN682Xv/2Wefxd/93d8hFArhoYcewu/93u9V/c6pU6fwxS9+EUopDA8P46tf\n/Sr0KhHA5GSlsLlu73SrxsFcyQn87GejGB0tnSdjY9TzaGwEfEfaYHjYxu7dNg4csPDaaxrz89rr\n7Bfu+njcD5LYEeZgyxYHZ85ojI+TP7ypSagTlUcnJkFNOGzQ0EBasmIRSKUcJBLK4xmnLgV1CJQi\ndWB3t0FLi4PHHmPr3d/8TQQjIzogjstrHhpy1gxRL3fCtmyxcfx4dafsW98K4Yc/DHloseDY/ff/\nnse+fRZefdXCiy9qHD+uXJozjnMsBpdixnhJwf5+BzffbKOnxz9/ub9zc0w6Sqd/S4uNl16KIJcj\nXUgmoy6gSHzd6nbpG7WvWHiamwNsW3uJlSAdoF90NgiFfN0NX8fLT8DI5yUxz/WPJokb0XaKxYwr\nRK7Q1mbQ0cFEjFJMzIgmIddGIltDISk+8ZgdHQa5nPE6aKVQEOzwlQQx4HjoL0lsVusEFo0J6rkw\nMSTrsdYsmnd2Oti5Ezh6VGNujutwJsPx0JrIXFKVMVEUCmkY4yAcZhI9lWLBMR43HnpVKe43Z8+e\nj0bThbNSPTMWKilQ71P1iklSUJoVfIpHjufVVzvYvdvB0BCpcPfts/Czn5Eeqa+PiTixpiYHb75J\nLSei64CzZ4mstix2Yy8sMFnV3m68ho75eaK+2tvh7Xk7d9olzS1BRHdfH+fyyAg8vc+uLoPhYQdN\nTaV+wunTCt/8ZggjIxozMwpvvqlgWdrtxDaYnOSePz7O8ZmdXZ2mSiw4bpeaaU2KVNGYiccNwmFq\namQyy1EJSnHsWVQycBzt6VGKf0OKScB0vwTs+f98msR/+2Pqau38p+XnceiTGNj/v9HWxqSWbTto\nbFSIxRw0bH0JR3Z9HAvaL6JFcn1IPvUEFt64CYJeld8lZR99QXmN13q+haTK4+eOjDc+633ORQcs\nEiGVazarPGQHf6v0eeX/ay+slK6PbGCQYwndNlFQor1q3IYFBa0dxOPcK7JZeNp26//9tZvQfa4f\ngWbcJLVP4Qv4iB3ZI6RJQ2t4VK62zaS1oIQBInmyWdL8vZOQvXWrZsYt6K5cWInFHGzebLCwYDx2\njHJErujJJRLGay5YWiI1dT6/HD1lWcalxa9clI9G6VOxucSgsZH7USbDAnkqZfDRjxagtcJbb5HK\n88gRhdOniSjSmo1KuRwppYOF9o0uzl48C65h5cY1gowEgs7m55WCu5aR1rChgXrSk5Okh0ynfd84\nlWJDZmMj9z1pgC0WSyUBAN7vhgYgGnUQjXKNbGiAqyWokEgYLC4aWJb22BWoecfz6unh705MkB1h\nxw4bW7dSxzeVMpib0zh8WJegflpaqFu6nphfrFoBJvg6C7NYETVf63FX+wwAzxdjA5ZPSwnQn/zV\nrzSmp1lsisUk3gB6e+mDVsoJPfVUqCJiSnTzKr0nTbjVrqFajuJzn6uOPgt+zxj6wIcOWVhcNLj2\nWgf//t/nkU5XZ0m4HHW33o3X3dGRrOem61a3S8Q6OpJV31sX4uunP/0p8vk8vv/97+OVV17BN77x\nDfzDP/wDAKBQKODrX/86fvCDHyAej+PjH/849u7di1//+tcVv/P1r38dn//853HzzTfjz//8z/HM\nM8/gAx/4wPqutG7vaFuL2GelwLStjUnKgQEmWwGFri4Hv//7efzjP0YxN6eQyYiINBMNDQ1M3M3M\nKA/lVCwysJmbU67Ys0IopLCwQASF6HRZFmkMpFuwtdXB+99PR+/cOQAgP3ooxM9PTAANDey2jccd\ntLTQoZINP4jUEltPB1A1p2L37uqO9P332xgdVThypHTsvvAFnt+tt9r4wQ94zGiUWmXSUSzJKUmg\nNjc72LPHwcyMxpkzyhP4lfsb1FgDgOeeC3mJ9Xxe4Y034InG161ul6NRd0G7VC3sjLUsn4rPcQRF\nwCA8n1ee7owkVgXBFew4luJ+kFLQ74o2HqqVWl8aCwsM5CcngaYmosC6u+EFsKRpUq4mlgbAotn0\nNAPAVMrgrrtsPP+88mgRy5PVkqwXXZrFRX6uWsJZKa7zbW3UZrnmGhPQlWLgvH27DRblWZijvhXQ\n2WkQjTrI5Yg0opi5QSikEQ7bmJvTyOeNVziwbeWioRxYloNcTnt7wKVW+AqOa2MjqXkmJvxEmHRX\ny+eC+omSKAbYmXz8uMENN7BhQvak6WlSAp49yyLW3Jx2qYoMOjsFvaBw7hw8BB7ARpGlJYN8XmNp\nyeDcOd6j9vbllGFBhFk5lQ21NhSmpoiI5GtEb+/ebVfwEzg343GFpiaFYpGd3s3N1P7h/s75tnJn\num9CGVrr5y++Ua/E1+3h8yz3WZ71ICVcLgcPLSp0X6X3hX6OGieqrMT3+hWAgedK9cVm++D86o+B\nkPESbI2NvBdKadzYfSM+f8f/xo/OfgvHz43CWhjA1swjGGu7Hm/1OThzRiGfJ0JdCtFEH5SO+YUo\nPJYek8/5egs8nG8Oenp4L6amFObnjZdUl98Kh4n0KBSMW8CpbW2pfk7KexaD6A5Bd3Lf0AiFWBSa\nn/f3ilrtfGj5BAUajwsrglq2DtR4pIpzIPia6OrRr1eYm+M9zWbhoovZsFUo6GXNAXV7Zxsbflae\nqJEIfYJPfaqA2VngxRdDOHDAWqa3xv2Rz2Umo9z4rrpJIbnafCoUuE6HQg4GBx2Mj2vMzfE9aV66\n4QY2ax48yPfeekuVsY3ItV2qe9FGGq+xfE2T14W5xRiD9nZq/42Pc09ra/PRrO3tRPQdOwaEw/Rv\nlTIeTXjQjGEjJv0Wv0krm+WfTIa+uNZw/U4WQPN5+ozptMHcnE+TefCghZERg5tvBk6eBDZvNh4N\ns1guxz3i5z9fX1GgGip/794inn02VDJnqjUVr+W45c1GlT5jjMGrr5KdZ2kJbnMtG+Q6OgxmZoxH\n9wrIPs9jHj2qMDhYOSe0GlVg+Xvz88DoqPYKb5WuYd8+C3NzqkRrPZtV+B//I4LHHssvKyDK/ZHc\nxvi4wnPPCRORwssvAy+9FMcdd9jo7jbLfvNy1N2qZS7VrW51q9uFsnUVvg4cOIDbb78dALBr1y4c\nOnTIe+/YsWMYGBhAU1MTAGD37t14+eWX8corr1T8zu9+9zvcdNNNAID3ve99ePHFF+uFr8vU1iL2\nuWuXjbExXRKcxGLA3r1FDA1hmVMSizFBppQgHfxu9J4egyuuIN2JUnRoMxlqoPgc4EwwF4vGQzRo\nzeSGbfNYN99seyitnTvZKf/Nb4Y8p6+zk7o3nZ0O7rmniPvvL3Voz5fCAKjdQa30G488Uv23e3vZ\nGctrJ4c8dcCCFJFMciWTwGuv+XRoIvBbzQqFUkqS2uhJ6la3d7cJsisU0rAsdvFHIhLEs1t4acmn\n/aqGQipP4MjzJUgmGgv/TU0MxrNZ///5PBMLU1OkM8zl4CIJNNJpJlnjcdLGhsMKp08rNDUZj2Lm\nxAmN/n4bk5Ma4bDCzIz2EvPSkU+UFvUHR0ep21Ctc9lxSEt1++1F9PQwEE4mjVtMpzU3K9x7bxFP\nPmnw7LMWWlqA3buJVDp8WGF4WFBLHLBjxziWHR0Gb72lPFSAaJ1kMsqlP2MB8lIvzBeLCtGo4+q1\n8Z5TD271JH6hQFQbYHDggN+MYozByIh2u+KZsGeymAi6TZsMmpqY4Jc1nQVcv+DmOEwOLSwoTE/z\n8/E4aYdEC0yst9dg794ivve9iKufwfkvyDuAxx8dpY7U9LQqocFJJuHpS8Zi2tX/YLL91Cl29bPY\nsDLCg4VW/h2Ps+B36ZiPlpEkq6wBHH/lFm+Nl9gPogO0ZvJfayn2+igaIEjhVfmIZbYAACAASURB\nVEWrxdUXw82kRsRcP/DSHyM0cRPynQ6mprhWhEJEwXd1cd1Kv74Hf//RG0oOdfp0Ho8/buGf/imM\nmRmZM7VTUG6MqZJ/n19xWyGTsTA25uDKKx10dztIp5fPHZmHkkBd0y+soSgnqKhikSj9YtFHBq7V\nRLvMPYs1fVc01ARxW/u9XR8yjA1uTEJns3C1fKQZoFT38u1CcZ4veq5uy82YlfWlJH6LRKil+vzz\nFkIh7e1b0gwSvC/Z7NpQptUQlMZwLo6NKSwtWchmDbJZMpG0thp0dxv85V9GMD5OtPriYikK7dJt\nvHh7TPayVApIJhXGxogompykL9jRwZt28iQbeCIRoSmknxOPG6TTQKX1RQptgvIrFskEQHkD+r3J\npNDjKndtM54euDRtaE0WgZ/8xML27TY2b2YDUDYbvK8GBw9qtLQwdl9rUaBa8/D3vhfxUFTB12uh\n/qt0XCkiPfZYBHfdZXt5lvl5ohNnZ5VHef7WW9RUi8Xo0xMpyWdvbo73h1Tkvj64yCVEIvTXg6j/\nVIr5nXvvLa5IFVj+3uioQn9/6XWVj4FQYJfPg1xOe5TalfIrYocOlepIZjJsvjt0yEJ3d3HN4/5u\ntLU0uNetbnWr20bbuqgOv/zlL+Puu+/GHXfcAQC488478dOf/hShUAj79+/Hd7/7XfzN3/wNAOBv\n//Zv0dPTg1deeaXid+6880784he/AAD88pe/xD//8z/jr/7qr1b8/TqcdG22e/d73u5TqMnoDC1/\nPRQS+kLfhF9bglahaRIqk6Cl03Q8RXMrOOOlY6uhwXi/IXR7wWA4mBwo73YVxBN52WmNjT56LJv1\ndcEiEVNCq7jRttoYFov8TLnJ+YoxKVKqexYUcBbR4SC9jLwu4yOUFOGwcSnWlCcOHjRSi/i/e6kh\nKepWt7fTqnXXCz3darpVtR5Xnt1yKsLgbwgdojz/YkF6KQBuMatUMF4C/yBVY1AXQyjNjMEy6qDy\n8xZtH0GplFtwzyhfyyqtj7mcKkl2Ba+7/LVLkeKuViulV6tupMArLZQuLQGV9EHkHgpqKEgZtNp4\nBb9rWdyHgzpgwb0qn1+uTxL8HcviHpxMwkN0+J9TXmJFvlfuC6x0jqLjGTzGO8VqTapX+9z5JOVl\n7OQ+C32i1iyql/sci4vw6KLeTYUAKf5d3CJe3cSC2pb1IlPdgubTLftr+9s1P2RultMS1602k5gz\nSKktzR5AKdJ5PVYe5wapw8t95kr3rdzflXOSY4kfzbyEf5KVciBiQf82n2eBrRxpWCiQIYK5DD9n\nEg6z+aja8cSnW1jwacq1Nh4drDH+mAdfD/rSwWuv1ecC/Psmx/fHgg0QluX/Hv2z0txKLX6//I74\nnOW5n+BnolGz7DiCzhZq+fK4JRg3xGL+uFTyf94Oq5TnWcs5ref7ootXbsH78E40Um/XHYu6XRg7\ncODQ6h+qm2cbTnWYSCSwGMhIOI6DkLvalb+3uLiIZDJZ9TtBPa/FxUWkguIRVaylpQGhkLWeU78s\nTet3RndYQwPcrqvlr5c7cpEI0NzMDlnZdGMx5XaRlpokaikkXFqsEYezocEXl25o4HGDWgxBxzS4\nactr4TCpNXge8M4jEvEpn2gX/l5US5QLhUal9wsF/zxJ5+G/J/+nDoj/GzKu4tjJWIhGCCDHVF5B\nq1BQJR2/0qWXyUhnXD0xUbe6BS1YVPL1bfj3WgLJ8uPJ94PBuFiQMrHcJNgtLwhJsM8CROl3WNSg\nllKwaBb8TUkESJdstYQPmwwAuDSOldaz4J5RvgZLcl1Mfk/OR4p87zbaKxkrKU6tZDJHgvtdtaRx\nMLkk+54kSVbTwgo2l3BO+ftw+V4VTGDJPSqfv4UCEYmhkI+CFM27YJEseJxaLKiH906ztSCCLkRx\nN/j7kiByHDbSkM6QPpPcb5lP76YGGCYlL2+/Zq3P3EZaMFEtFKB1q5tYeYPLxbTgnlr+d93WZqUa\nXf69DD7v5zO2wYJasBlMfi/oz1TzleS85JzEZ5L1SeLi8lxBJX+0PFYHROvMf99v9imnvoVXOJJz\nKD+eUEEHr1lieLlGYRFwHLUsLql0/Wuxcv9Tfj8c9s8DEN1fFRi71f1+MWoD89/luZ/gZ0Ihv/hn\n28xz2Lbv91Yr5sg9L//tTEYhmUTFnNXFsGp5ntXOSZgwCgX+kTGv9fvim1d6/Z0ec71Tcq11e+fZ\nSoWcuq3N1lX4uv766/Gzn/0M9957L1555RVs3brVe++KK67AqVOnMDs7i4aGBuzfvx9/8Ad/AKVU\nxe9cc801eOmll3DzzTfj+eefx549e1b9/ZmZzKqfqZtvL7988O0+hZrtQoheCv3f/LzGwYMauRxc\nykHqfVQSLj1wgLzOuZxGLGbQ309R2k98ghnDS1WY84knQjhxYrn3IGK53/lOuKog7Kc/XVjxGE1N\nDkZHtSdSy3GhUG9DQwyLi0sA4An2xuMGV17puGOukE4rNDX5WjvNzY439nLfv/3tEMbHLQ/RR40G\nP9ne1kaNlbk5dnxRQ0SEiVd2OsqRLOJUr80ZZ7dZ+fFq/U7d3t22MqJGJkvtc0HmvKBVGexRbDse\nJzVHsUgqs0KhtuNGozxmLifICgeRiPKKPY2NBsPDDo4c0Vhaooj3wgK844fDBomEwvw8dWk6O6nx\nBFBTatMmLNMllPVH1tWzZ7Un+p3PAzfdZOPKK/2H6cknQ5iagqfxFNTD+chHiuju5mdbWgzuvXdt\n9LDldLA//rGFc+dCsG0boRCRwXNzHNNwmM8uO2nh6XZIsLsSMu1SsGiUnbjJJDW1jHEwO6swN6eR\nzVZG1WhN2sJduxz09Tl4803qHRw/TuodapH4SQ6lgETCoKfHwX332VCKFIUHDlj45S8tPPecRqGg\nYVnKa1QJGotxBq2twHvfW8Tf/z33kfK9Kp1WePlljelphdZWgyNHtEeJ09/veN2ifX0OvvSlPL75\nzTD277dc2kbOVxrphSIRosAqBeFioRCPJ/tWPk8ayCDtVLm9XY0b/u/yx8NhVZJgY/LG8eiGlpuB\n1sZNTOjzRj/4STzjJQQaGw26u51AtzvnpdxDYxR+/OMQlpYUZmZ8NDiJKd7Ze+iFnRMK/v5yYS2o\nD7mWa7Isg9ZW4+45ykueXUijvg41IRMJ/nt2VnvUtXW7nM24esVwdT79hh9BZ1oWk+fVaPg35Cwq\nPEPvhvVu7XZ+a5hoaRUKvK+Ow6aKhgbua8JYcr401UE2AFkHw2HGoX6zkAmskark862tvMZIhLIJ\n4bDB0BBzDLkcllESAr7/XG7lsXo6TX2qaJR+3vw86YK7uhyMjSm0tsKTasjngVTKoL3d4NprbRgD\n/Pa3FjIZeFSLJ09q5PNAR4fjXd/4uMLiooFlae+6Fhc5rkILnc+XssMEm5akWFRt7+BneZxk0ng0\n3RLraE1932KRY6W18go4yaSDBx5YLiMBLPf7eS+X65z9678q/PVfx7z50tlpsGkTcxXHj1vYt8/C\nc89ZWFxUHh17KOTgjjtsnD2rcPQo8xzSwz85qdDf78B/nqlNnErxvgpN5MXOJwXnjq+RzHP9/Ofz\nFc8hOIaS5wleD1B9rlY6htha9OYuVevoSNbZyOp2waw+t9ZmKxUKrUcfffTRtR5wy5YteOGFF/Ct\nb30LL7zwAh599FG8+OKLeOWVV7Bz50709vbiz/7sz/CDH/wADz30EG655ZaK32ltbcX27dvxjW98\nA9///vfR1NSEz3zmMyUosEqWyVzi2aa6rdtSKWD7dge7dzvYvt3fTGux06cVnn46hH37LBw/rtHc\nTD7oVAoYHDSeo5dIUDj4fe9z8PDDRWzbtnyz7ekB+vsdjIxoZLN0qB94oIBt28x5neOFtuZmg0OH\nfGFWgE7FvffaSKWA48d1xSCuu9tg+3Zmuvbts5aJ7gLshvr4x4uIxxlMAExATkxoKGVBa3q6sRgw\nMcGE+fy8Qi6nMTMDNDVRo6WxER7f949/HMIvfmEhnQbe/34b4TAwNiYOlR8wCIxeKZ5HPA60tzuu\no2SwuFjK511qDErKne31JKKSSdIpsMMMQE0aFSsFWmsvhtTt7bbqSYmVExZqhfcq/46gKhMJHy2R\nShmEQsrtYFRecXilYwc7DwGgvZ1BN/WfFNraDCyLnaKxGGk9pqb4nYYGQXeyUKCU8hJDADA46CAe\n57Nx5ZVcQzo6Alftrj/ptMKPfhRCoQAcO8Y1KhQy6OkxyGQ0mpt9pFg6zXPbtMmUUIlcfbWNnTv9\nB66722DPHqem9Vj2h4MHLUSjBtGoQUMD8NprCq2tFhobHSwtsROTOh9cN5aWlHcfpLuVHa5vf3JK\nKd63ahR1TOSxQ7a3l2M5Py/abMvPXSkgHmdyYc8ejuVVV9mYm1M4dUp59MLBdS8Uok7Xe97j4Kab\nHNx7r41EApia0ujoYJPJ9LRy6Qcr/ya1MQy6ugwefJD7SPleFY0C7e3c49raDKanubf39vI+iiWT\nBh//eBFHjzIJlMko7746Du+nUNTUgnyLRklLUyjwOwsLK+01tdiFmDfBY/L+CEWzzFd5jowxXvfy\nsqMY7X33vM/ISHe06LvxPBcWqCE4McF7E41yTH/7WwtvvMHX5+b8pJLss3VbyS7e+KwHZQxIE5Nx\n1wB/fq5m54PA0ZrNbdddZyMS4fM7Obly4bpul4cppVxNIUD2M2HvSKV8arNMRrnFjIs5Zy7H+Xl+\n10zWFdnjgnuHT19XKJwvhS6bM8qReUSsswgQChmXJppat2RA8eeasJ3kcsqlR+PrExMKvb22W5iq\nHL+XW3msHo2SCefQIYWzZ/leJEJt3nRauRpybDRaWmKh49gxheefD+GllyxMTCgsLWm8/jobX9Jp\nNn1lswo7d9IpWFzk/+Nxnqf4dVKsKha5xsvYBFFYq+nuyZgqxTU6m+Xxia5SniZlLqcQDrN54swZ\nhakp5V3PxASLOJKrEUun6cMeOUK/cnDQwUMPlRaZTp9WeOaZEGIxg7Ex7lOFAnDllQZTUwrXX2/j\n8cfDyGa1d1+p/apQKCjceaeNK6900NPDRo+hIYNPf3oJZ85YKBTom4q+cDqtsH+/xlNPSQFKIZNR\nOHRIY3DQXPC8kswdKZZms2wGyWSAc+dUxXN4+ukQZmZ4M0dGtOs/c4wk5lMK2L27ugMp+biFBeZk\nurs5v9/JRS8AaGyM1nPTdavbJWKNjdGq760L8aW1xl/8xV+UvHbFFVd4/967dy/27t276ncAYGho\nCN/97nfXcxp1q5tn5V0k5aKwvb1mTcKZp08rPPtsCB0dxtvQn302hK6uS7srpbeXnTPVOohuvdVe\nURAWYGKxEiqsuZnjyGNwbIxRiEYNXnkF2LZNIZkkumDHDht9fQ5+9SsLLS2mpOiUz9MxBSQQMBgb\nI5LswQcLGBnRmJsDZmfpYEnXFZOX7OpqbuZ579gB/PCHFixLr5hEqZasqbU7X1ANsRgRD0qRMz0a\nZQKcyIHKXfSWVV1AXrro6nah7MIXJ0pRXhvzW1oTdTU3x27GWMyn3wuHGWgK/QZQioz0rRSdKOY4\nDBxDIXZNxuMs5p4751/HyIjGpk3G00cEKAIfLEA3NfGZaGkBrrnGcX/H4FOfKuD48eXrzxNPcH2e\nnVUuQownG4sBuRwF5q+5hq9t3crgcWZGo7OTSKX5+dKAqnzdWsmWdxkqD5n0L/9iYXyczyLAovri\nYilNCgt+pccUWr63U4MjFuO5lWuUAJwLQq+WyRgcPapcJK0q6UIOmmUZN3nCdVwpgxtusDE6qtHW\nxoA4FPLXM62J4tiyxcFjj7FLNDjW8/PA6dMajsNEhdADicmYWhaLV0Edi0p7VSrl4JFHuAd/+9sh\nPPVUuOQalAJ27bLdc+MzMTMjunK+/kStlkgYWBafgZtvtvGTn1iIx4mArPys17LeXIj1qLZjStGh\n8hjwGBtJA1dOFw0w0TI/72umHT7s0y0xseVfS13f5t1lRH76BdlaaFeB9aMoo1Ggq8tg61Yb//Zv\nwFtvhTyNG9GvCYf95HSdAvFyMq7V4gNFIkzaNzQQ3SINbpmM8opk9flxaVokwmKOrBPFYiltmjS5\nnP/9q9yULb5jJKLQ0OB4bAz5POns5uY412yb/ns67ccNkQiRXvSDNR55JF8zAkhi9fl5YHSUhZ9s\nlv67FGoLBRaOolH6+7GYwYkTbOjNZBQWFqRoRz9xdpbNbvPzxlufjQEOHbLQ1kb0E4tiGuk0PDYK\n0fVlUU+YWEqLYLVauT5rJuP7BLatXNkEH00nEgsLC8DCgoXRUYVUyuBP/5Sbi8/gQ4aAvj6DkRGN\n//f/6CfS37Xx7W9HcfasRi5n0NzM5l2APmR3t8KBAxYKBYNcjmPJpi/+LaizHTsMbr3Vv4fptIXN\nm20sLoaQy2mMjhq0tPAeLCywCWl+XuHVV0kT2NLCZuJqqKuNMpk7IyOl9ycWY15n3z5rWc4s2IgW\ni5E5AYBbfDXecVezYD7uQrA81a1udatbNXubpRXrVreNsX37rGWdRNU277fjeBfTViryrVYYA1Yv\njpWPTSoF7NoFzMwAAwOm5JitrcCJExqHDyuvmCaUUZGIgmXRwzWGzvrx4xYeeaSAXE5hZEScK3hd\nbS0tDq65xuDwYQYgySQRZAsLxkv+S0AhfNwStAKlRYogZcVKFokYhMNMcot+TLFoXMQLu/ukICFB\ngn/clbvnjTHu99ZfAGPMJZ10bz8K5dKyjR0L3tfSY1bj8z+f30gmDWxbeTQf3d0OYjGD2VlBSgD5\nvPF+P9iFCvhzMai/pTXFrYXqRGhDOjsdpNMaTU08wMICX9+500Fjo/EC6nPnSNOilB88KsXXW1pK\nn/vdu5evPxI0laNJl5YUYjFSsTQ2KuzcaeOTn/TXGlmntmyxKxbUarFK6/ncnMJf/mUEtg1MTwOS\nBJPxisX4eqWieSjkrzdvpxUKytVWNF4XcXnxSz6nFJsOJBER1HoDmDxqbSUieutWp4SGJZkkSnB8\nnEVBFl15z1tbHdxzj98QEhzr0VEWWkT/kVREpQURSR7EYgY7d/qZqdX2qvvuszEyspx69777eIyZ\nGYPjxzWKRb8ovJb7JQXeYtFgcdHg9dcVsllBD5eut5bFa8hk/DEN6lS9XfSHl4pxjTQeiovFd0BQ\n3YC/j13uY/VOs7XcL6INuTdRF0V5RbDq31nfeYlm4JkzGj/4QcT1CZVbyPZ9ROqUGK97vW7vbhP9\nGc4/A2OAWMyBbRN9urSkMTDAdejUKaKF3+naM+92y+fF3/WRXvJ8834bbBRiL6i5K//30dUsmFgW\nfXjxdeJxhXye/rcUSITFANA4eZIsKq2tfK/WHMOtt9p49VWFgwctwKXkPnKEbBBiuRyZGhoaDNJp\nhfFxjXxeuddAqsCgvpgUymIxMrosLvrNb4KsHxiw8fLLRIfJWIgP1tBgSjStSulsz+8eyF4T1I4N\nNqRZFp/X+XmNJ54IY8cOG2+9ZeEf/5FSF+EwJRhGRhh3S7Pd4cMazz0X8dBm6TQbXDdvZvOTIKN+\n/WsLoZBCLKZKil0Ai4VKMU4JNtmdOkVkl1JE32WzRJ01NdFnn5hgs8/CAikk02nuW48/Hrqg9H+S\n5+H84PWyMEpmh0rMQMGm6P5+xqNcP417L2pvRgRWb1jfCAsW1og49Iud9SJb3ep2+Vm98FW3d4VV\n42BfLzf7Ssd7p3eorIZ+Wy3hWGlsmprIAy46YWLiXPX1MREpyWWiKUqh9Lkc0SC9vQaf/3zec4gI\nxafT0tdH5/3kSYXmZoXDh0lZlkoppNN+8kISu5bFjiqhZQuHmbClw0pnvrmZjn42KwlN/73WVha9\nslmfklA6C0khYVwqFL4fifC3pfCwtOR+q0JySCmf2g0oFSJeSzJJKXarSmIxSG91OZifhL7wVm1M\npViyEYUQBtbKTQwDV15pQylgeNhgYcG4CBry8AsNSPB3pRCSSABEanEuEhlE+rpQiJSJu3c7OHnS\n8jSzAGB8nIUsdjkaF4VlcPIk6S+COgxjYwZnzmjs26fR3g5s2WKjt9c/l+BaeeSIRjRqyjoFiUDq\n6NDo6THYvJn0qMD6ugKrfa7SmnX0qMKJE7z2zZt5Lfk8Kfe6u4EzZ4BgYl6KN/JsnQ8F10aYUkRk\nNTby/orWm/suAOMibRQsi923Qjsj6yMAj2qnsdFg0yZgz54iHnmksGy9VwrYvNng7Fl+LxQy6O42\niMcN7r/fD3aDY53LKY+edmnJeB3ASvnFsHCY+pl79hS945Tfx3vvXR4I9/YaPPJIoeq8OHnScq97\nfeNbLBpXL4Rje/y49go2gtSVRBuT7ETJLSzw9cZG4xUii0Up6Fy+iXXHUSgUlq/VpbRR/lzz9VIu\n7nnWbXUT7azGRq7fti3P9cro+miUCWHLIrrApw3d+OdCUAGSnCNSuhT1QfpP5TY2mTqi5zKwcJh7\nXTbr09OJlqggcs6epW8/Oxukkq7bpWr0vVVJM49x/5HLUe9yI4ouiYTxaBODr8fjxmtCSibpF508\nqdHVRT8ynyfdoFLGm0vRKH10NpoxVs1kFL785Qi2b3cwOFibn3vunEYsxvOYnfUbSsSMYZyQzWqE\nQnzfX+d8lGsk4iPn2Mhj0NTkYG5Ou82qBrGYg+Fhg9FRjVRKucgn5RUYi0U+P11dDmZmFGZmLK8Z\ndCNsuV/AnEKQclJ0eAGF//bfolBKew1YlsWGwnPnFFIpB83NLPI8/7yFdFqjWBSNMvpq4+MGw8Ms\n7IyMsLC3Y4eD554j80FDg1CeG/T28sZ+73sRNyfBcxodVYhG+d143Lg0jYy/3npLYWZGe9q3WrMQ\ntbRkoFQIv/ylhVtusVecC+s1yfOcOKFx4oQFrcnekcsx39Lfv3wzDDZFk9nHwcgIVp2v1SzYJBfU\nGVsN8VZrPBhE+hnDZsdolOddrcj2Ts/v1a1udVvZ6oWvur0rbCV6vo08nuOYC96hcinYSsWxtYx1\nsIjW1EQIf0sLnUHLUh76BKBzKccoL77191N8d35e4Xe/U9i0yUEup3HmDAtjmYwIUTNZ6ThMssTj\nQrcAj5axs5OfmZtj5rexkRpKjY2kU8vnDSIRJkKWlpg47epyMD2tXBFsg4YGjUTCoKODyWdSBtCp\nloSuZcFNRCuvMAIwwBFqCHY/M3GktfIS6iLwy2R2ddSJJK+DOipCOUHu9bXddwaOvjCz1n4H5aWZ\niPR55TcqqSxBqARsodByijSip4KIyPMfH6VYBKBeFp+HpiY66UoxICgUGGTMz7N7cHycKJ7FReMG\n9/69a2oy2LTJIJUSWg0GYAMDDNREkDiddlyaFQZnQrlSjszatYtaTzLOY2PA88+HsGkT9bCmp4Gv\nfS2Kr3xlCbt3m2XdfLEYcPCgxuCg4xXB02kWzZViByGwHFlba1fgSp+rtGadOaNdfQ+eQzxOFOfY\nmPF0rISOLfgMOg7pS1e/z+tFXwaLV5VNAnuA82RuTrn330cgxmLU1JGuY6FmCYcpAA9IMM75fuWV\nNu6918Z995UGejJ2LFiyODY3x/cyGYWWFgawEiAGxzoWMy46jEmjVMrg3Dkgk+Gca2mhqPuePbYn\nSL6WLtCV9qlsFmhrM5iZYVNDaedxLSbrPdFcuZzB4qIuoRT112uKl0uhKxplsS8a5e/LHnC5NCNU\nMq6htT0P5RoqdbuUjAlb6epXintGLMaibyikKvoeUlyPxeBS6HItCjb81GJreY78Z1V5SJ+SK/EQ\nsfxM3d69Jv5VczP3BhZGhYrN1/EUf75Q8HUG63ZpW7Dw4b7iUczLOrXevURrB+GwgdYWQiGi4ufm\nxJ8gSisapQ9s26R9vuUWG88+ayGX027TpR9rFgqy7lEbSuJCxyFlYS6n8LvfMQ5bzc+dnwd+9zv6\n6oODjqv5W/1aqjUBFQqMaRh3MLa87jobJ05o2LZ2kVzAoUMaJ04Q6ZTNKq+ZgI1XcDVkqW1m2z6N\n4/loKgbvW7DYBcDTtw36C45jPBr3s2e1W9yW+FiaWJWrC25w8KDG4qLymgMLBdH4ZVFyYYF71siI\nQn8/m2/vuMP2dLEsy0E8zhjr1Vc1Jie1S2HJ+CqfV27zmYHWxr1HzC1QU82PLalfBuTzGm++yfE7\nc0ajs9PgySctfO5zeezevbHFr2uvtXH6dGlhWJBRlT4fzMsMDTl45JH1F4akSU50xuQ3R0Y4x/fu\nLZawfGzZYuPAAQvPPmshFgP6+kxJfACgBN31zDN8BgFqe+Zy1CIbHSXSb72xZt3qVrd3rlmPPvro\no2/3SazV6gKCdSu35maDQ4coECq2kijseo8nSeFSI0x9+/ZLqiJwwazS2ESjIXzgA0sVxzqVYrL+\nttsc3H23jRtvdHD2LLuugh3ew8MOPvzhoncM+d7u3fxzww0OxsZIV5BI0DmamBAKARaBUimDG25w\n0NrKopEkIi2LQUdrq8HWrQ62bjU4flyhoYEJ3bY2IJFw0NxskM9r9PcbNDUByaR0xBm0tRm0t/s6\nKeRuJ01AV5eDSMQvloi+Dh11osSk0/Sqqwy6u+ksZzLBhIxQZzEwikR8KjD/fb/A19lpPIHfIDJF\nEBxBIeFg4a2aUb+J6AtqRxkP0UAEEc8t2C146djaz0XGQ3TmZAyFtlK68iIRn6fepzfxx1Xun+jU\nrB5gE4UohVHRv0kkWABQiijG3l4H73mP4wqt08nv6mJXXns759fsrEJjo081YVks1sj86ekxHgc9\n54VxdZR8QeJQiEiu7m7qGSYSpN9IJoGODp/C4qGHbOzY4XiixAcOWIhG+ewF78P4uMbdd9slQsiA\nL7xtjMLVVztulyoTUcPDRMsE743oeZUfR36nfM1d6XO33movW7OOHlVIJpWrS6Bh2w4si7SS2SzX\nDqGwY4LXv79aK0+rppqFw/z9tSZcLIvrmz/fKs9tok6Vp/FFNBeLNZYleWydfAAAIABJREFUxXZ/\nTks3cqHgF2YiERZKP/KRPL761SLuustZtobncgZPPhnCzAwD9UhEdByINkwkGMwfPUpR7v5+f3+I\nRqkdt7io0NbmIz7uvNPGX/91Hn/8x0U8+KCNG27wf7fW+336tMLTT4ewb5+F48c1mptLEcQvvhhC\nOq28xMtqlGrBcZXkejhssG2bg5YWYGyMiQ45hnwuHnegFGDb2kWysZEhl+O84Vq8fv0gmXeXY+GM\nKCHuY5fbta/NLu5e3NHhuLTP9BOSSTYVDQ1JkpjPjsxbUn/5vtP8vIJS2n0mV7+3Svl72FrMsoy7\n/imXtnS1b6y3WaFul7o1NzvYto3Fgbk57frR8Gjf6AdyTmcy6ryS9XVbj61/vJevDSujT2s1yyLi\nJ5Wir00kt+hx8W+hBmxoMNi718bu3Q4+85kitmxx8OqrGnNzGoUC/S3L8n317m6hy1ZuQYSMA9ks\nr4eNYNX93Pl5NpKl06QuzGTImELNrbWNpTRENTUZDA3Z+Pznl3DqVAiZjPZois+c0SgWNQoFhWyW\nBRtB2gF+rGuMcrXDfE3XjaKZpJVSdQdRflozzm9oYGMri3KqZI8R9K/WwKZNzBPMzQk7gXL9duPG\ngIzru7pY+MvlNCYmFPr6yITR0+NgZERjZsbC3JzC5KRQaysUChoLC9RSKxRYpMxmtXuPNaanlUc9\nXm5kKlBerJHL0ad/9VWNG29c7qOfj/3mNxaKRYXRUeUiX4GrrjLo7CzVVBYL5mW2bz+/czl+XGN2\nVuHYMe2xgACMEWIxhZ/8xHJzHAojIxpPPBHCW29przFzYoIFsWiUaLH9+y0XQUdayqNHLZflh/SX\npFZm446wnKwn1qxkjY3Rem66bnW7RKyxMVr1vXrhq27vCkulgMFB4yVlu7tZ9Fpvl0a14735prUM\nCQGUbp7vdqs0Nh/7WBitrUs1f3/bNuNSMBAyf/vtxZq6avbt4/hHo9TfWVxUXtHggx+0cd11Bjfd\n5OC224r4+c9DyGaJwBL+7d5eJll37HAwNGR7jnJzMykcjhxhwpbFAZ7f7CyLBK2tvtMci1HTrFgk\n4sEYBg233VbExARRaABRGEJF2NTExP/mzQ6++MU8cjkWCbQWbSHldkUDgPG6FZk49ZEGSpHmjh12\nygtaRMuMSC1SdEkn82oFGSl6DQzYaGoCikUmcSkSzWAgkSBPfXOzOOw13e7zMiatqiejJLEv1GO1\nmiTkolGDeNxBQ4MEz8odC9GAYLFSOgb93+OYUePIuONuPHHn8mBGimzhMBEkcpzGRqCtjcdpbze4\n4w7H7TLm2Dc2kmJjZIQBVWur483/jg4T0LTjOYZCytMvSac5d8+cYeDQ2Gi865Rz6ulx8MADBZw8\nqTE/r3DsGIvJoRA7AVtaStfSYNDzr/9qYXpaY3SUweD8vHKDRYMHH7S9ZzVoUsD73OcKuPtuG8bw\nO9EyH6W723iBRqXjyPkH19yVPnfnnfayNaujw8H4uHbnAwtfSgF3313Ee97jeF2ttk1KE44d0XK2\n7WvFVJqb4bBxaVDk/pSiA6sVoeV16j3wGY5Gud6wcML1JBTia6LTEA77uhI+So3i3PK55mbSTCrF\nJPTQkMEVVxjs2eNg507+XW6nTyv86EchxGJ85kMh5QqIkz6ouZnnNDGh0NQEnD2rMDXFYHZyUqOt\nzWDXLgfDw6TrbGoyeO97bXziE9X35lrut3RmSpA7O6tw6BALbxKIt7U52LfPQjrNwDWI1KpmUiAU\ndEAqxfUvkSB1UaGgSpIsUnDkGqxcFK7yxOJtWzp811u48ZsP5Df5/MrzfqkhcFe31RowWPj396TG\nRu5vxtQpx6pbtUHd+EKOZTHpx2fDeAWC7m42C8Vivv8kBaeWFuMiHIjOLhaVW5z3aahXsmjUR+PU\nqmUqyG0pRgO1PCv1Yse70bQ2uO46B7t2OTh1ioWIxkYfCS2NLCyyU3e0bhfb1jfmEiMBpfv7RjSK\nhEJs9GlrY8GKGl4OkklpclRes6NtK/T2shjQ3Gzw6qsWIhEioBIJMgp0dDhob6f/Jk1stk1fXSnt\nNsiwqNTTYzyd0Up+7rFjLOAuLioXgcYmzkzGL6bU0vCoFCn42tsN/vAPC/jc54q4/nqDU6c0WlrY\nYPnKKyzkBMdWa+U9J8GmHjYYMIZZWlKe37rRFqTr5nX6fsPioiC3WECSBiSJ29raDDZvthEOaw95\nfO4cP08fSyGVMrjySoP2doWdOx0kk2wIDDYNSrxULFLDvHJjhfLiMykE+g1tK40LEXjijyaT/t8b\n2WR94IDGyy+HEA5LMxyLvMPD9gXPaUkT9ciIFRg749Fp5nLKK1BJcWxqKsgU5N+L11/XbjxCGxnR\nSKf5LDU2slAtDDrd3Q46Ovi59cSalaxe+Kpb3S4dW6nwVac6rNu7xlbTrtqI4200peI71crHpqMD\nmJxc2/f/038qAljb/QqOv1IKnZ0AYNDS4ic8CZ+38MEPOjhyxODsWULou7ocvP/9Nj7zmSCs3adu\no/nHWVggzJ3IBSbo83mDW24p4IUXwojFSOlAxAudtWuvBQYGinj88QjGxzknRMy9WDQIh41bODDo\n6ioimTR46qkwHEd5lGp01JSn3bS0xICcv++jvqTIFY+zCJJOk4KjWCR6Zts2B0eOKMzNWbBtH7Hk\na+uIPhQLNokEkXKARjTqIJNhMSOdJkVDYyOTTvm83zGnlPCh+yModH/S8U3EkcHk5GqOfukxSJNm\n3ESZ9q49aNIRFwr5emorG4OjcJhzaXjYxhe+kMf+/Rb+4R8iXtFL6BMBFi3a2sjNnssx+CUtoIOB\nAXj3OJvl/AAk6FYeLV4kQtHnRIIBFrs6mQjk50lLCDBJeOQInfxjxzT6+nwqqZERjkEyyWA5mwXG\nx5WHaBwf98dBAuqGBlL4JZPA1VeT2zyXI22HX2wuulzopDXp7+fzVUlbKTj28nwALLKePAn09/P9\nWtbKIGe8WLlAcq1r7mqfK1+zTp9WSKc1Rka0VywG+Aw1NREZOjxs8MILFrJZ3sv2dgawp05x3mnN\n54Tn7QfXiYSDxkYmN6amNNJpjo9lKbeQKoip5QVS0SHs73cAaIhWhVB1zM7yWPL8i66BZZF6dX4e\nLhWjgyuvdBCNcr7aNp/VgQGDrVtLEXbVNC337bMwP6897n12VwJnzqiy8acuwAsvhNHdzQJbXx/f\nFwrDWtf6SvcxnVaYnFT4znfC7vvLu5rLaUt27zb4yleW8NnPxhCPOwiH4dKFVrpW4xWjxcJhoLOT\nyC3phA0m02TtJeqL+8Diop/YILWu3xG+djMBCiWeWCjEtaC11WBpiYXcbHb9OmYX26RQaFmmYoIB\n4Lh1djqe9gl1UeqIr/VaOS3v+R9P4fXXLY+2sKvLuDS63DN27HBw5Ag/m8nw2RWUw6ZNxksQsuCw\n+u8JBZ1o6hFpu/r1OI5oC/pUZ1xL60WNy8VkPw2HuTZPT5M2vaND4cwZDds2LoqF8yMaZdJ8pcLq\nRj9PdVufhcMsUkoDYCUN5dqt/H4brxHRtkmNFg4DmzaRteRnP7Ogta+nZQz//eyzFu64I19Cl7Z9\nu8HBg/DYGwBSvfb1OTh9WuHgwZBXQKMPyRhU6Niq+bmCwAeUx0qwuAjEYo7bKKm8GM22HQ9tW26y\nhj/8cMGNyUt/J5k0LkUj530sBlerCpieNsuOKxpb8tsXY9+WeFia0bRmwVJYOKTAbVkGiYSDoSEH\nv//7eTzzTAQjIwotLQbhsIPTpy0UCoyVbr/dxvg4KfMOH9Zuw6Ef3w0NkYL+5EmrTDdtuYnkQbBp\naqUmDMsyHlJJ/g8wBlyvbn01q7Qv5nIGv/mNhe98Z206V2vVxxLqxIkJ7Wmo9fVx/kuM7Z9T5evm\n62bZ806pAIXpab7f1MRn1LL82GS9sWbd6la3d67VEV91q9sabKMpFd8tdjG6XU6fJtR/3z7tcvD7\nHTzDw8ZDjXR3iyg1u+aGhx1s3ep4tG/SuVMJuUYUCLnrBGVDp4ndV5al0NSkcN11tkcpKH9mZjTO\nnpUghLpjUpSJRBhgbN1KRJpQBNx2m4MPfMBGc7PBG29oLC2RviwUQoAPnEFXMinCw8ajGEsmSUkQ\nj/P82ttZ3PvoR2189asFaM3kOpEBvt5OJCIBEf/d2soCTTar0NFhsGMHaTcaG5l0ZXAkXPDS1cfE\nkiDgBI2QSPBco1HjddFS+F5QF6XoF7FgsKS18Sj+GHwqL7gtd3AbGnjtS0tCDSH85MuLCqT/Y0Fg\n82YHf/In5Ey/4QYHP/85+fgty0d75PMKs7PBMWCXplIGXV087uQkr4sJfxa5Nm1yYNs8Rmurg6uv\ntnHbbTbuuMPGwICD2VmgoYGd8Zs3E3F2zTUc8zfe0AiFlIco1JpBc1sbKR06O0mTeeCARjxOitDZ\nWYXxcQagMl4AO91ZnOV4NDYC11zjoKfHwac/XfCCkhdfDCEcVu4zIM/SyhQPP/xhCCMj5Wsh0N/v\n4MMftmtaK2tB6ta65q51bSby1EE8DrS2hjExYWNoiGOcyxHh1N/PhEFzM581y9KudiDPL5Egl393\nN9FWDQ2kivnIR4oYGDDYvJlzaWmJz3BHhwNjSKG5e7eNM2dKqU6kiDI05KC9HTh3TrvUK3wO5uaY\nSJb7S1Qpv9fRYTA46CAU4nP6vvc5Lh0L59iXvlRAOExts4kJ7ep28RkLdj0G7amnLOzfb3nFFaEc\nAeChOgAGlCdOaEQiTDgIDYmgwE6c0FUpCcut/D6S/1+hp4eF99lZhX37NBIJtQwpWN6Z2dNDKpdI\nRCGVIu1iuW5LMPku6FHLYhc01wzjrl3U+JLmAVmn+DxyLWWHM5sWjGHwXY3OZiUTXbFw2LhrANFk\noRCL58PDDnbudHD0aOWGgEvVREC9oQErUjJlMrx+reHSKgkl6Vr0QmQeXJjxWVti9UJb5ZMhClHQ\nyhvwK4r+CROJXCcpGE8k8tQU0aCpFHDNNcCOHRS9LxaByUmiE6Twz2IwEawraSlJ4VOSqIKwXJ06\n1HhU1ZKg5p54+VGGXs5mDOfB1VezOY1oBqI5LAsuQgYeUnppSVVlEPAT1pfUw/8usbXukcaNiZTn\n7xvD+0j/zKcXrrT2hcNCZ6cQDhtvfRH0XzzOQoc0GYmfMD6u8eabFhYWuJ4I4ksan06e1Ojs9H2T\nfJ5r5MgIz29w0MEnPlFEKmXwk5+EcO4c/QWJ1To7jctQwlilmp/72msa2SxPSmLRaFSho4NFtfl5\nhXicMS8ZQtSyAqFlCUVjEQ8/XN2fHh1VsG36voyjjafjGA4rV6fRH2RpVPB/a+OfF7kf0mgUDtPf\nXFqSOJlFK8Y+PnvHzp1saJub03jggQKWljhm7e3w0EO33cZ4a2yMFHnU+/PHcO/eIv7jfyxibEzj\nrbdYXBFqx0rmI5VXR+FFIsaL0VmsI0ItFOL6NThY2Vdfr/3mN5bXoCWFVxaTiPirxKZQyWphYahk\nwiJy7hzvgzw3MzNkB/H/7zffBX1A5kAMBgackkbCWIxNpu3tsk4Ara029u4toqurNNYU2vSTJxUO\nH9aIxfznt9b8Xh3xVbe6XTpWpzqsW902yDaaUvFi2GpaKBtxjAu96YtTlcsx4Tk/T3HaWIy0O4Je\nECdlclJV7IwqT/CW81UPDhJVk8/T2ZdEdGdnkE7D4MYbHU9rbGyMBbJi0Uc2tbQwYcvuUZ5HJALs\n2mWX6JjJOeze7aBYJJy/UPC1YWybx1SKjpzjwHPKhof5+uKicTV3iEzL54EPfaiInh4Was6dY6Af\niTAwymSUizQyMEZ7rzPRyELJ4KDxHM1cjuPa2Oh31m3aJCgxCZ44tm1txkvUM0hy0NdnkMlYsCwe\nI5vlmDBQYweWUBlJMEN9M1L5kZvbBGgtfNSb0FLE4/A0o3bvpkaW8NNrzeNFIkBjo4PmZmDnToMv\nfzmPRALevH71VfLlS4GO/Ow8dl8fA+CmJqJ+rruuCGNIu6A19bAWF5VbOGMB6b3vZdCZSBAx9id/\nUsBddzm46y52jfb1EVV0/fUO+vsdGONznVsWg+DGRl9nS/5uaGAgG48zUBAtrjfeYJDKLlhBiMBb\np4xhgfOmm5xla9Z6KB6+//2Qy43PZyIaddDbS/Tlgw/aNa+Vq3HGr+U4a12b5benp6NwnGJJIUWC\n/E9+soizZ0lLKuMaiwHvfa/j0Sfdc4+N3l4HnZ0sUg4OArfcYiMaVR7qYNMm0qUSPSkIUuXpELAb\nlfdoaIjPzews5ztRR1xTiFhSXgLYsvjvzk4H99zj4KabHHzykwUkEigZB4AdyadOaS9pLRz55WuS\n2P/9v2FXi9G3XI7PbkOD/9r0NOfrpk2+5h1AXYOTJy3E46g5GC6/j2fPsugV/PzMDPcAeSbEKhXw\nRkepPxYKKczOUjhcEhTSVSvUkaKvl0hwnYtGFTZtIpWkFP+I9GPirKUFGBhgksSy4GmKGaO8ZoeF\nBY7FyiboYBYGuO+wyCPnQd0HHkvoN2dmuJ4zmX9po1mUYld1SwsLhfk89TQrmXSrM9GkvaSaJCJr\nHc9wWHuJpvUXOziuQq8jRSSlgpqOb/fYV1q7jUuRuhaKSBkktSxBpxTXdrF8ngUCFpY0MhmiAyYm\nNI4e1a6GIjwfiXo4ykMrCx2o1sYrglU8I0MNnKBfoZRy50F143NqPO0WmQPGmECyvG5ioRAT7u+k\nQnotZlkKfX1cc86coX89Pc09pqeHCdNolIjdQkHW9krjwGc8SD1bt4202sdV1t5wWGFggI1johcY\nDlM3NpUyyOWImpeilK/RSh+a8YpBby/XykiEvlRLi/FodkXHUCi5T5zQXvOR0NFL014iYTy/jCwc\nCgcP0t8ipT7w9NMW/s//CeF//s+IFzuGQvSp6D+xSae/35Q0p4mJf7R/v4Vz55SnBQ1XI7qry+B9\n76MvPjurPLYIrQ0aGvwGEml4uu02G1/8YvXfWVhgM9/ICNfuhQXGOozJDGybWo3VGlJkna/1vgb3\nUt4vee6Wf1ZeM4bFOEEFFwraW/Obm/l6PG6wbRtw880OolGi+H/72xAaGw1OnKDmFpvgDLq6HAwN\nsZHt9OnSZjqyu1BzvLmZ352fpz9aee2k/1heGPSvN+hPcEy3byf7CinFiYy6+moHTU0b32R9/Lh2\nG179puFiUSOZNAH/enWdq/XqYwVRYpOTGomEwdCQwYc+VHSp6P2Ya2KCrCWbNsFjyLn9dhsPPWRj\n61aDffssHDtGFo9MhpSGN95oY/Nmg+uvt/GHf1jEPfeUxprBgh1cXeLRURagh4Zqz+/VC191q9ul\nY3Wqw7rVbQNtoykVL6TJpi7dRjMzpO+rRU9rI49xvrZvn+X9fjLJYhdAba6WFiyD1tdCoVbJensN\nHnmkgH37LExNsRsvlUKAU5qdYXL8kREdSKD4EPrRUYUbbyTV4JkzCoUC6cVSKTpnlSgA7r/fxlNP\nWThzxnLFcRnMNTYCg4M2FhdZBJLk1NycONsG09MMlJqbeQ7PPhtCVxfvz969RXzvexHkcgaFgoNb\nb2Vy6sgR5fGiA9QgM8bgzBn+v7+fTnBTk/GuMRajAz47q3DTTQ6mpuhgSmGuo8NBNqs92su+PoM3\n39QuWoGFymjUweysj64ibRfcDkJ27UWjTKRPTUkCS3lBkdBfScHNGBYKm5sN/t2/yyMcthCLMbCR\nDjBJTsZiDA47O+mIy7xmwpr0ISxUKA/tJ0FxLMaA+JprDFpaFP7oj/J47DEGr6dP87OLiwyIczmN\nrVtt9PcbjIxwfIL3vRLt3uOPq5Lik2X5yf7g683Ny+kuUik+C7OzLDCye095xcJYjEHAvffaFdeu\ntVI8nD6tcO6chmVptLT4r0ciBu3t/v83aq2s9Tjr/b3p6cqvz86qinQc/f1+sX1wUNabEDo62Nl5\n4oS/RgKWG7zz8yJKfuYMKVaE8kvQjQA8uo977ilifh548skwolGF9nZ+Np+X50B5NKTDw0yUiO3e\nXToOTzwRQjJJKrLRUeVSiRj09TlV1/HOTq5hEnzm8z5NmU/7wsTI1q0G5QieM2cUhoZKj1lOSVjJ\ngvfxO98JL5ubXFdKX6u2vt9/v43RUYUjRzSiUY1wmAlO0fmjDhAT9FIAm53leijJh/l5BvCxmPG6\nm0MhzvV4HPjTPyVd6hNPhDA2xjVaKenklgQ/6YIqIVGNUV7SIxo1LnWqchsf4FJywf1tFhBmZri+\nxeNMWC8ukkJpLXahqIgsy3jaHrIGUStNo6HBuLoNBoWCWUb3KYlJoaRkUo3HClIXrXTekmwTKtD1\n56qN21xhPMo9STLKv7necu6/ncUUSZ4JdXEoBLchw3iJSf8zlY+htV8kCzaihMN8FmIxNjosLjIp\nGA7zPhUK/Mzp0742aD4PPPusxvbtfCZjMWBoyEY8zqYN0u8ajIxoF2Fb+ZzkmWxu5rpD/ZbVxyMS\nMS4FrCpJNLJJqVQ7L2gyvy60CfLs4s4ZU3KPl71rVn7/Ypi/Jp1fMVkprustLWxk8H0o+r3NzaQq\nGxoy+KM/svHUUyE884zC8ePct6TJS7TlWDjh+BCtWpniu24XxqTY5RewgfZ2Inhef10jl6MPVSzy\nXg0NkWXh6aephSX7gGXRdxsedtDSYjx/OpdjMWx8nNqlLS0Gv/61RjZrPM3f06e1R20tFpwjmzbx\nb5lrgvICGN/85CcWZme15wdks4ypqM+qkMk42LyZvttK8XVvr8F997F5zm/sYbGvuZl018ePM/4l\nPTf3sHTaQSzGGOf2222kUo7ro9I/LI+jxQ/76EeB224r4q/+KgqlNFIp+pwTEywQnDgBrxBYbuUU\n0SuZUDnncsaLv3x9W5/SO4gADsY4sRjPYXaW48umJoNEgs2oEs+IDy6ovrExFrR37HA8v158+lgM\nXkzc1cV5Iz6d5AuefNLBE0+EcPQo50fwekMhNoTYtuNSZpcW8WRdaWigr5FMAnv3Ot55jo7yfl17\nrXNBKAfLcyVsFGH8H7TVKBarvb/S98pzS1Jok/Pt6ip61zE05ODBB20cP87/79xZel0Sg/vNOwaJ\nhAlQrVe2YG4JELQ6m3/fKXm+utWtbrVbHfFVt7q9i229XThrPcaF7naphkiJx4FPfaq4DC1SDf0h\n17MS+k1QINu22ThwwHI7/mhKGXz2s3ls20bH6KWXhBOciWeh5+vspMZWT4/Bjh022toM+voAoDrq\nIZ1WeOopC1NTlucck5KQicLGRrhBAbsHz51TLooCMIY0Qtdc47iFB96f5maDH/0o5CKy6FjOzChs\n3WpjZEQjHKYGVFubT7HQ3U1UEFFlNq66yvGKP1df7WDnToOHHy7ihhuYQO/oID1ESwuv/dOfJn0E\n6Q7hUvbx/ACiXoiOA7ZsYUItn1fo6iqlnZmfZzAlHYqka1Re53lfH3V7IhEisW680UYyyfPo7uZv\nTE/zferxsMtcEhS5HDvVASLtHIdJ5ELBuBSQvD/GsMCYy/G7AwO8H3v2UN/pyBGNqSkFY9gxtrTk\nJ2snJjSyWWDzZoNstjraRebra6+xkJhMGlx5pYN0mkUH6b5bCdG4uMjCREeHcWlAOQ+Epm/rVlIQ\nVuoWXCtN4NNPh7C0pHDqlAp8h12gX/jCEnp6ln/nUraxsSjOnrUxP0/B6pER7VJtsLPTp+NACR2H\njNG+fVbVNZJJFX9co1G/0NjUpNDaymQF6RBJVzg0xGM/9JCNdFqjo4P0dkRAKmSz2qMVJbKIHZIr\nCTDLGhqN8hoSCR7r9GmiyCqthWNj2issLy3xeWpqYhFV6P327i1i504mVKg54VsuR3TlapSEK9nx\n43rZXI9GgauustHTY1ZF95HS0uC11yyXCshBLke6FCbVjat3yMC5owOeplSxyI7puTl2ebP72dfh\nANhY8B/+g4PuboPDh0mrqDXRbkKb5DjK7VCXQoxfDJOOcRa/mCgRZG6xqDwaH9I4yRrKjmAWgJg4\ny+d5H1dKMPm/VfraRppSTDgIjS5pewFAubqRPhVtsehT3gX1vwCOmdBIiXEc1bKkc/k1WhY8jY/z\n0QcjUoBJsebmYJc5O8wFRSDd3NWoGy+8KW+suY+zYUcpuEUpzm0/aay86ys5Stn/BdkIsEjPPZjP\nX18fnxVSgZHauVDwk3osOpKyl80gwFVXOdiyhUm1664j2rmrCzh8mF3nlUxon6JR46FnBSm7kolu\njiQpl3fZL0cRyDXL54hS5PhuZIFKjls7befG2EpUfZblI/guDTTcWsYmmPDkmk6UMNf5piYVQCKz\nqLFzp8GnPlX04objxzVOnNCYnFQu8t+n7w6HSQmXSpE1gP6d8QrxZB9Yb8Hw7UaLXipWbQz4rEgz\ng9yXeJzrz+goiw2JhHGLUPR3BwaA++8v4uBBy9PADIcZx9x5p41du0yAMQG49VYHX/hCAbffbnu+\nzblzyqN0PntWY2lJeyiv4NqhNYtOPT0Otm0je0dHh9Dl8xomJohoId2g/2XGHXDplckYUAnpVW7N\nzQZHj2rXX+H8C4fJBMLGJvrzPlKWvk9PD5+NPXtsLyauhaLuN78Joa0NSKUcTEwonDrFYqMgsMXX\nAUzJngj4LAArFcCUgks5qRAOs8koFvOfvRtusNHS4mB6WnvHFJ+hrY0xD30vfp5Noywo9fezyC2S\nCMeOcXySSRYJJQ7M56X4QmrKX//awsKC9hpfJyeVG8cqb90QxpZsljF8ZyebVcWn6+w02LKFx4xE\nSAscjxvYtvFkDFpaWLTL5Rgfb93quPeM82hoiGtVLUivtVIOludKikU2+wU1gIHqdOhilfz01b63\nWm6pnA2kp6c6O8jTT4eQyWgPucY4bfVc13rYTipZHfFVt7pdOlanOqxb3S5T24hNvZZjXOhNfz1O\nVbnTlE6vzSHs6WHhZ3xcwxiiPD77WWpCyfGFNjCYDAfoqH70o0yDJddyAAAgAElEQVREHz+ukcms\nXnx8+ukQjh4NefpBUrhIJplUbWryg+y5OSbTFxelk5tUClNT7Cykjo8qceoB35Hets3gqqsYwAiF\nIeA7/tId9/7327jrLge33UZ6vttu8x3OlZxWoiaU95vnzrHwRD0xJm47OxnYJJPsyNWahT0KNMNF\nkvEYfvKUf19/PSnmIhEGrtdcw8IOi080oR+cnQXice19v63N4OqrSVHR3MzXJECNRknjuHkzu/oW\nFph8ZhKWRa2+Pr+A1Nxs8L/+V9ij7BJ0AIsKpEGTgmi1+14+X4XrPJnk8QsFvh6kXahUqBKuc6F+\nDIcNGhocXHWVg717bXziE9U739ZKE7hvn4VQiGNJrQMWRO64o4hPfvIitMtvsPX1RfHTnzJJkstp\n915zHLdt8wPcamO00hpZCaEXjQI7d7Ig3t3NYmp/P2l3du0qvdfBY8tzRT07X1Pu5pttPPzwyoFx\ncA0VCp5sVrmFn8prYTC5kk77WlNXX81Cfnc3x+H977dx5AiLA6Qg4br13vfaXrEmaKsF0UGrVpR9\n6CEbe/ZUp8gMWioFnDpFzYKBASYilOKcnZ1lA0A+D1ffDQAMMhnldnArFz3qa30kEryGVMrgPe/h\n+vz44yGMjSl3TLk3NDT4tK1tbbxfxaKBMcYVY/epikgdpLyiDVGnxpsvgvBjcovX3d1N9F9np8HM\nDOAn6P2xEuou0jEZD9FSWhAIPufnk4Tl2MZi1FVgswHpkURfxBgmjxYW+HwJPa9lKZc+knt1tSKS\ndO0Hz7WUdtDXPPHRWcZLRMnnOTbGTWL6+4z/vmhtKLf4w6RqLscka2cn54UkYst1Ti6mJRLK1SCk\nhgz3Dc5Fx2FDgqC+qmlsAqWoFaEIbmnhOG3a5GBoyEEqxUYZGftslvNrbq5c/47Hsm3jFdWlGUdo\ntoTe6NVXrapFW6ERIyLWYHqaY75S0YgNMT4tpvg3ggCUeSjn6idmjXevAa4bvI5gUeP8CxVC+3ix\nCkxBv6QcYQn4z1QkcnHPa6NMNJmoWUnWAGolGVd3MahJySa1WKw0BpK97tgx+oLyLIfDnK9CY6aU\ndn+Lx+Ua5mvMrt3qRS9a5XGQ5jbZs6TYUSwCLS0OMhnqXC4s8LXubq6HxaLC669rDA4CbW3UKL7i\nCiLEFhcZB3m/HGjyEr/+4EGNpiaFiQk2xY2NaQR1hmWNA1iU7+pysGePg44Og499rABA4exZ5Wkz\niW8ZLJzJfIlG+btXXeXgy1/O14TqKaUiJNp7eNh4KFrbVti2zSnxPcNhIoceeqiAmRmNgwctPPlk\nCLZdrpe6PE5hs6jC88+HkM1qLC2RUnBpSSGVcjzUrtA2Cl2xXKtQSmvtePda7mVw/5YmoUSCDY2b\nN9PHuvVW26OZVEoFkFJAfz/Xe7kfV1zBpoqmJjZo7NnDYmYyyfdlfIaHWZAUCnOlSDV97JjCr35l\nwbZ532dmWBA3hs1FW7ca7N+v8OabGr/+NZtoz57luiM+olBcO45PhQ9wvbjuOsfVz6LvSekBzt++\nPgcDA2srOgVtLc3OImFx8CBZUvbutbFnj13C8sBxWZ1ica3Nk8DGFZ3O51jryS1Vsnrhq251u3Ss\nXviqW90uU9uITb2WY1zoTX89TlW5rQf91tMD3H23jQcftHH33fYyJEst51WrQ7Zvn4XxcZ5POu3z\nvitFFM8jj+SxuMj3zp5l8lA6ToW+JZcj7RA1YYCjRxUSifKghr993322q2fmBya5HOkcjh5lUPT8\n8xb6+52KCJ6VrmvvXtsbF0G4OI7BLbfYuPpqG0NDBvPzTJT19ZEybGKCAVxvLzsSZ2YY/ITDfoKO\nCQ4Ht99uXApKdpoPDTl4/XULluVfazRKWsrJSbgFAmDzZgc7djA4nJtTXuFL9MwAFpD6+gxef526\nQG1tPtXG4CALE3fdxfuWSgHPPWdhbo7fjURIv9LczITJzTevDe1SXlwZHCS67kMfsldFNH74wzZu\nvZVInIEBgzvusPHJTxbQ0cGkzORkZVRP8LdX0toKmqwJySSDzKuucnDFFQ62bdtY4eVabCM0DLu7\no/jtbwuYmtJu0ca4SQSUrA/VxmilNfLWW+2qhZsdOxzvHm7e7FS818Fjy5ym5h7H+oMfLOLhh1en\nnQ2uVaIlJ0lAztHla2Fwnr35JotkpYVczuc777QxOGiQzzPheP31LMTt2HH+6/ZG6WqWj2Nzs6/n\n2NjI51YSJ/G48RCf09NMXti20CESfRsOG+zeTardyUmFmRmKvxP1xkKZaH11dTFZLo0FkYgc0y/K\nhEIsQFJfxm9yiET87matuV42NhJ1Go0CO3Y42L2bNKtLSwpdXYJg497R0MCmiUKBSAdB/7AAIMmp\nYKKj1kSsr3tCekYWR7q6mKwKh1mkmJ9XHm0hECw6MMl0xRWOi3ZkYSUcBtJpXbWwEQ77yWYK1juw\nLOUlJcVsW7mC9wbGOC6tEZNlgtSKxfyxEa08FiSlKcOnSjSGCVWAc3Jujsl0CsOzYBqk1avVyhF4\nazUWYhV27Cjgfe8r4rHHCh5ienraP/elpcp6akHzC4I+2qu1lev6Aw/Y+NrX8tiyhXvt0aNsKkkk\nWBQgzabyCksA524q5WBgQIqK9E86O33k8v79FiYmtKdFVjoWLOZRp0W5iVFT0sxT6RqkUCYoEBYu\npPBpPASlXKs/F1jQTyaZhEwm+cyyCGLcJO35FYaU4lpwMegU+Xv0aYhu0BVRSUoRsaL16qjRC3F+\nUkwUROzazHh6sURlGQ/5ePPNDgCi7VtaTBkzA5ufxG/o7ze44QYHx45ppNM8j1TKeLpPxaJBLgdk\ns9pjJWhoMN7cUqpW/cG6Vbbq40bkMxsQwmGuEQMD3Gsch01yCwvGRU0zbmpuZjxULJIJgygQ+nSi\n31PNn5BYkX4C58LEhCpBJ/sFHYPWVhZnbr+ddOLiB+/a5eDsWSK4f/c7NlxKYUQKaFrD0/L98peX\nsG1b7Q+f+KO33ebgxhsdL5YT1E5bmylpRurvN3jggQKefdZvAH3jDY2xMTYBBmOV8jjl+HGNf/kX\nC9msj7jK55XLPMDnt1BQnm4q41CijUWjMRQSWke/EUa00QChdfabU4SJ5Npr2eSTTLIxcXaWY5pM\nAv39DtrbHezcaSMcBq6/nmwsvM8O/vN/prZyU5ODf/u3EN56i8jzwUGOz8yMT4MaCpH2MJfTmJ3V\nmJ7WLtuB8fZ4IugMjh3jZ5JJNqMdPqy9wunEhHJRydzv8nmOARFejCHTae2h8eJxNmHt2mXDcZRL\nBS33YW3+cq35hmrIsB07nJK4pFZ/ez1++kYVnc7nWBuRWwLqha+61e1Ssnrhq251u0xtIzb1Wo5x\noTf9jUh+nk93UbXkevC85uaAyUmNxkaKGstnanXIjh+nA/r669rrQAPo+O/axW7ce++1kcsBr73G\nbu5oVLk6G34QxWQTu/8yGdKZ+SK1tGjUYGpKkt8Kw8MOQiHSrp04oT3USy6n8OqrGjfeuLwQstJ1\n7dnjVCzg7NjhYP9+dj5alsJbb7FTrrPTuIK1DApuusnBffcVcPSohcZG5SayiCL5L/8lh54eJh7f\nfFOhr88gGlUYG+PxGOgxuT8xweD1hhscvOc9pPmQ4G7zZgdTU8oNYFgYchyO88yMxtwcg9FEggnd\n664jEiceL50vExPsCkwk4Iph814MDJgS/atq973cai1AVfpc8DWhuawV4bgW26hg4XxtrbQe1ayx\nMYpf/IJUmZIg8ekMV18fVhqP3l5Tde2q5V6XHzsaBXp7HXzpSwV87GNFj4pxNau1iFV+rXKOExMK\nIyNMUs/MSHe9P5+rzceNKFqtpShbzSqN49wcsGMHkxqRCJ/fZJL0q3fdZWNyUntUkEJ7lUoZdHUx\nUTE4aDzkitBIisbG1BT3g3gcaGhggb5YBPbsseE4wNSU32ksdKxcu5kgaWjgeZNWkYnbzk7jdi6T\nyiWIfDt7lmugIB4SCeMWdNjA0d/PIp3jEAXhONq7JrG1UPWFQgZX/f/s3XtsXPd1J/Dv786QM3wM\nOXxKfMmkrLcs2bIc16Yfie0kNuyka8dQYajNblCsk3Qdd4ttsy2QLBIgbdFg4dZAiqBA0A2yAWzX\n2izSJnbXm43zQEzXgK3EkiU7sqwXSckiJZEcckjOcO797R9nfvfeGc6QM9SQnBl+P4BhmxzO3LmP\n3733d+45Z5eNAwdkrN+0SePOO4EdOySzbXhYMpLN5GM2raUUUUuLZBX19mrcfbeDN96QBw5ylb6T\ngJdMbofDsg1qa+V3ZnLPP6FoMr+6u5101rWcLxsb5R/piSnrs65Op8tbAvX18kS2BMOkjFogIJle\nN9wg+18iYaWfUpeSeiZzTOvFve6WslT5JyAzky2XcFijo0Ohvt7B5z+/gJ07pSTua68FMDYmk3yS\nlbv8MpnJXKXkfbdu1WhtlYzqpiYHr75q4e//PoSLF+VJ/2BQJvi6umzMz+t0fxPlTuxKmUWN9nZT\ntkqhqUnjqacW3Mzll18OprMqkS4rbQLQGps3a+zZ47gZSa2tkhG+OIPeYzJETCnDbdtsKIV0INrL\nnDRBvtpaWUbJltO4804pZbdrl4P5eZlUr6uTh3GSSeS8hiyEf90qtVbZgRoNDTJBnEzmPqYMqTSg\n0qVBTZ84lV7W1Vs+2S9luVbyOcGgZHtZlowjmzbJpLcZnxsb5Rjav1+7lRmmpyUIODurFk363nuv\njVQKuPFG4No1K11uVacfDPMy/xoa5Lrw6lXTO08jlbKWOFarraRhqb9P7vcyZd/NNmhokOz45mY5\n1m+8UeP8eQsLC5Yb+IrH5fidnlYYGbEwM6Myrln8FTmiUcmq99/bSXaWd51gMu1nZrzStiaAZc5d\nu3fbeOyxzGsb//XP2JhcD/jPUQDQ2OjglltsfO1rCbeayEpkXyOZrB2p8iFlGJ98cgHHjmWW5Z6Y\nkH6iXpk/kX2fEo1qPP98EKmUV92ipka2RzIJ7Nql3Qd1IhHTF1sCPY2NGvv322htlbFW+n3K+VaC\n1hq3327j2jXzUIxOZ2dp7NunsW+f415jRSLycGQoJA8gbdokD4XW1so13NSUvLe/asLoqHJL/nd0\nyNjw29/KQzEmUGWyyFIp2d+SSZUOWJn+k/KaQEDGgVhM1q3phRUOK4yMmLL4Vvp1wKZNck0hpYAl\nYLtpk/y/1gp33+1g/355cLC1tfAS3vkUOt+w1IPAd9zhrOh6u9jr9FLeR670vUp1j8LAF1H5YOCL\nqAilyCAoF6U4qRfyHmtx0r/eyc+VPhG03OS6vzSGTFZmvqavr7ALsmhU49QphWvXLPfJQvPUalub\ndjMrDh6Up9veeCMA27bSE19yIV1fLwG3gwelSa/JQDBPkE1PK7zzjsJ77wUwPGwhHJYJVaXkBkYa\nzUvt9suXgcuXFS5dsnD+vIUDB5xFy7vU98oOwgwNBfA//2dNenLWrDe5wbBtuOXaTMbLtm1SanJs\nzEJ9vUyA/df/msCDD8r2unhRykT4M7wuX5Y+Q++8E8Dly/IU+g03OG5ZQ39vprvusvHeexZiMTP5\nLBkK9fUKjY1Afb3csOze7aC31/vb7P1l82Yvc8TLFnJw+PACzp0rfXDIjE8vvxzAD39Yg7ffNk9s\nZo5Tpejvl0+pbhauV6m+Y0NDCMePL6z46cPl1kexY5f/HDQ+rnDrrTbkxvv61rVZDnkyd3EmaL7v\nOjqq8OqrAZw/7wXEx8ZkrHnssaVLLJYiaFUKubZRV5dkf2SWaNS4914bd91l49VXg+mgjUxWTU3J\nxNfCgpTh6elZ3HMvkZDeaPPzUsImGJSAgGVJkMf0DJqaMmWPVLoEkAQvAOXrZyJBgE2bJCNt3z4H\nyaReVPoUAH7960A6+8g8LS0PINx5p40HHrDR1KQxNiaTTJcuWW4Wlgkcmc9L/1fe9Wh6brS1AUpZ\n6bJ3wMyMld4nJJDU3g53IivXhLvJumprk880wbwTJ6x0oDEzK0YpCaiZsrgmCJhIIN1/0Ur3gpEJ\nUplclAmwhQXlTlYGArL8PT0SUOnsBG66SZ4qv+UWKTM0MyPrPB6Xyf/5eemZ1dKiceCABPmuXJH+\nVfX1pneW1yMpf1Ajc7JY5V/NAEw2t05nBZoJYO9vLUsm9uvqFJJJyWxpbnbwwx/W4Le/DeDKFTmf\nFxKIkwlJk4GgsWOHBHu2b5fA38WLCv/v/wURj1uYmpJtGggod99saZGMCJOxaEpd1dSodJBMshPv\nuEMCtYAck1evSnZaOCxZ4aY81Z49Dh580GwPK13qUEpImRKOudavybpTyvR3kQDb+LiVDkx4fxcI\n6PS+KvvD/ffb2LnTwebNDhoaFG68UR6EkeC1HMsTE/nLcC7F23Yr+/timUnocBhuGWdTbisXk4Hq\nLz9mMuNWLzst//LkOzbMz5XysmFNtmZTk3YfGDDXvyMjCn19DmIxy50Ql/5/2R/gTfqa7OXLl+UB\nArlGtNxjPJUC4nEL4+OW2+MumfTeJ3fwK/cXyjfmLjc25F4vqxtcM+NrIOCV312q5KhSsq5NdpwE\nEXM/fLjUcss+KUGPbds0Uil5gCES0enSxBbicbgBlbY2GYOuXJEH2mZm5GGda9cU2tu9a5Z893ah\nkM4IcJsewJ2dDmprNeJx6UVlSh3fdJODpqbc153m+mdw0EmXolewbTlHbdrk4N//+wX82Z+lisr0\nWk4xZbnNPaJS3n1irvuUpibgrbcCuHJFrodqa+V8HY1KYOvOOyUDb3ZWxulEQsb9lha519q5U7bH\ngQMS5AmFNFIpOUa3bJHxVUr2y31hd7dOlyeVhyb911gmmNfVJT1x33vPBPMke18pZPT09t93mn+i\nUenhlkjI2NHaKvtSJCIPjcZi8jBrKqXS/aYl07O+3it/Gwho3HijV466s1My71Mp+d67djmwbXkw\nqqkJuOceub4bG1PYv99OXyt567jYEt65FBoA8u8H09PyAOjwsDyIessta3OdXqr7yNFRhaGhgFs6\nOTvwWchyXO89CgNfROWDgS+iApUqg6CclOKkvtx7VMJJf6VPBBUyub7c01OFXNyZi8D337fSr3Nw\n880O2tvl9/5JaWnyauPsWYWGBoW2Nim30dAgQS/zfUIh7wkykyGVSgGplOWbvJYb0/FxC9euyTJf\nuiQNvs3TfdeuybFg+h35l3e57+U/ps6cCWB62ps0l3KFErQzJcP8AZylSk3muoELBjV+8xsr/WSe\nTj+ZrzAw4EBryQ4zy3nsWCCjGe7MjExytrTIpFskAoyNWeknIfPvL01N0geqrk5u1vbvd/DYY3Ij\nW+rgkFmXFy4E8OabAVy9qnDhgky0vP9+5jhVyvrpuZRDQKOUjYlrahLX9fRhqdZHrnPQuXMWHn7Y\nxsc+5pVBHB1VeP75IL773Rq89FIQo6NS5q6Qzy12LDSNo03POaVkQnDvXq/sZyXI3kabN8t6qK31\nJlLCYekN8a//WpPu+4X0U7zyYIHWMonf0qLxB38gGTaZZSTlid/paZVuBi/ZRUpJIMxkfExPywRJ\nKCTBn+5upMu9yaSYZMp4Zdd6eyVokKsc5uiowksvBXHunIVgUMZlE6w3T7f390s2bzIpk4TxuEx2\n1dbKBFMyKVlmra2OO3FbVycTQuGwKTMrPRrDYY1AQENry10+k9U1NSVPx0tvFDkOTe8z/2SuZcnE\nZUuLlBIKBKQ3ZTwupQ5lUlu5wZj6esftcxmNygRTPC6Zi7aNdLlEydprbJTzSjgs2XLhsDx9XVsr\nY3Q0KtvvwQftdNkzb7kiEeD2221s2+bg8mUrHQCQSdVwWP7e9FO8eFHWoUx2ef2j8k8Gy89ranS6\nt5sJcObK6tLpJ9Tl+/lLfdXWmrJ/pu+eglIO4nELp09buHrVwuXLkpVlgnGZAbPM/5eJadm27e0O\nvvnNecTjFubmkO7L6eDChQAuX5YJYFPG02Q9yGSjTDqHQtotgWWCKKGQwtycxpUrEiTzP6jR1aVx\n+bJCf78EIPfscbBtm4Pdux13bPeXIp6elvN0IqHcDHcJZMh+aoKbwaBkjAWDcl0Rj1vuMptMwIYG\n6Q/T1aXx0EMpd9Kxq8s7nsNhU75Ulu2DD6yM0p1+JoicL+vHHPurXUpQss41WlvtdLaEZHqmUjq9\nb2Yvv06X99QIhRzccIP8VII6K89QKyZ4Y8rH1dTIsWvbOmMframRCWo5FnW6J6DZ9rL/dndLKetk\nUqOvz8HIiIW+Pjmm/RPip0/nv27YvFm7k6hzcyo9nlnu95+ZkQxgEwyUCXDvIQIvCO71T1Q5VoQJ\nXIdCmeOFycKVkrCFrj2dLv26uoEvydBxUF+v3e8sGYK5Xy+9ASX7ymTkmH6I8h391x8qY1zyfu49\nABAO63T5O9m/t23TGBuz0tnDcMeUQAC4dEkyvVpbdbrHoZSdu+UWGw89tPR9m4xh8t+A6QFsso/k\nu3d0AL29cn7zVwfYvFnnrQ6yb5+MLQcOOHjkkRS+/OUFPPTQ6lw7F1qW22SpNzQg4/4o131KIODg\nF78IuuN+KCQlje++OwWTXRYMShlArZX7cFA8rrBrl42BAcd9XUeHrKt4XKGlBb4MO8mkNIHNvXsd\nPPSQnfeaNRTK7GOd/g0uXJAyurnuO03PvtFRYPduE8CT84yMF1K1JZGQn5kHlEz2dTAo10+mNLY/\nk9BUBTFlNScn5fzc1SUZ1OY6c2BAArClfniwkCo0/v3A3+83lZLtJ+fjtZnzut77Jv/9Unbgcy0f\nxKyEOTCijYKBL6ICrWaWRDUr5KS/3pl0K326qJDJ9eVeU2z5uqtXlVuWRd5n8aR0dzfwkY847iTc\nwICDujqZ6PM+33uCzGRIffhhZilFU+KisVGeZr54UZ6QNDf68qQzcOWKhZMnpTyM/2Zuue/lP6a8\nCSy5CQ2H5aJbnrxGUYHmXBl8w8My6dzert2ygyZT5sABKfVhljN7m8nNrffko3kqMJWSG5ql9pd8\n66HUwSGzLr0eTfL9zLr81a8kK+fMGZm0zLVPrqR+erkqZWPiQCBRMVlso6MK//APQfzqV0HEYhJk\nOX06gOHhzOB0PsWOheZYMRMWUg5SxoZSBFHXS/Z6CIVM70GFM2e88UH6RMkEZ1OTxgMPSE8zQLnH\ntVdG0kI4DLeUj2EmRRsbzWS8lPSTkpc63UdGyr5GIlKizDSEb27W+Mu/TOKOOxZvW3Pjbxqxz815\nEzzhsHfekOCllL3t65PsoPl55b5/KCSBli1bZBKxq0uCPFLuTs4NJhuotRVuFs+mTdLfS5rby/lD\nSgbJU/6mpKN/Er2+XrKYZT1JgGlqykpn/kiQoalJSt/W1Wls2WLj3nsdt1Td6KgEm5JJKVtUVyfl\nIUMhbzLKsjR+53dS6X5sErxpa/NKRe7d6+Dxx/P337tyxUr3MJQspNFRC/G4hStXZBsBOl3O0vTx\nkO/mBZmWyoRQ6aCVhm17GWPyO7P8wM6dOl0GWIJJpkTW/LxMxpnATzIpD3rMzloYGZHAmMnKMuc/\nU47RK7MlE7gmEKaUrJddu+QhEVMWqqEBOHrUwsyMhdlZmaSXIJ+ZqFTo6nIQDEqgsbZWgkw1NV6G\niGXJRGFNjcLsrIWzZy28/76F5mYHx47lflJ7x47cwadQSPY92zYPu8iEfygkD/E0Nsq+Y9uSBWeu\nA7yJPeVOpFuWxtatDrZvlwlZc+3hL08bCknm+fbtUqKqtVUyxTMDQV5mi+lVlnu7yzopVQaVUjLp\nGgzKQGOCo+GwTGZ3dmrcfLOMJXV1ErCZnV2ccWZZXnZec7ODnh558KexUY6/REJlBAIK4d/+S2cF\neUF1yXCVTD3HkWU2AVRZpzqdZWPDlBVtawMGBuQhhs2btVs5IJnMldUs51FTui5bKKTdyXIpa6jw\n1luyDzqOlKuVMrHe35jAmzm2olH576Yms2+acU+560QCPDI+W5aVldkq1QccJzPDMz+Nri4HmzbJ\nmJ4vKJvPcqVUs19bUyPnDRN4T6UWv072c9n/TMBrdlbOA5KF6PjeU6f7W1pu2V3/+jXZZbW1kiHV\n2irX4089lUQoJOe6QEACGF1djvtgzsSEBPIbGrwSxg0Ncnw+8ois8Hz3bfX1wGc+4wUlUik5F5pz\n78WLUgkjFlNulsz0tEJTk4PjxwNLVgdZ74fFcgWQwmGNJ59cyHiwKtvoqMJPfxpEc7OUE0yl5Jzz\nx3+cwMc/7r3n8LC5TgJuv10e+uzqkuzhBx6wF5WbbmmRjLmpKYVgUGP3bo2BAe8ac2BAL7rG8l+z\n5gtinzploblZ/jv7vrOjQ7L4gkHvoUazPCMjcu8dDsvDhKYHmfRGhftgh+yTcg71Vz/o69MYGrLc\nDKrhYXk4ZffuzH7PSsFd36XeH5arQmN+/8478qCMdy9pev5WzpxXuczZMfBFVD6WCnwF8/6GaAPK\ndTO01M+pMGZyztxwT0wonDuncPhwak0nlnt65On3YkSjMumX6+fFvMafjh+NagwO5p5o7unROHw4\nlfe1S73PUr8z+3A4rDNKT5mbhv5+jX37kviLv6hDIiEX5g0N8reJhMLUlMbVqwpnz1pFbTv/sdPX\nJ2UftJbPHR6WCYDeXu99tJbvsNx2Ghy0ce5c5iSO1FR3Ft0Izc+rjG0BLN5mZr2Ew97rIhHJ4Cp2\nn1ktZl1mf7/JSbmxMf1eJiYUpqdNCTHvdUrJPlEtcu0D1/MdVzI+lFoh56ChISlV6p+80FqCt4Uc\nO0Bx37WQ8a1S+dfDkSNBTE3Jz71xUmFyUqf7X2i0tEhgCsjcJv73OXtWgjjHj3vbKBqVLITeXgex\nmPSDqKmxUFtrygvJ2FVXJ+PhyIhM1oTDGnfeuXRQUmsp0bhvn5MO/ktGzP33L7jng9/8xkJLizcB\nd+edNt5/38HEhML27Rr9/TZiMYVIRLnLrpRye1jEYk56QlTb5DwAACAASURBVFJ+PzMjmVUtLZJp\nPDGh05NXZsm8MnkzM0BbmylHZvp/aGzdauONN4JwHMkOS6UUEgmN226z0dwszenHxix0dsoE2kMP\nLeArX6lzgw6OI+sxGtXYudNGezvw/vsyKXXvvSn8/u/bGBoK4OxZ/8SIfB8T4Dh8OIXnngvg5z8P\nYmFBAl0ffuht2+lpOedFIhqxmJRyGh6WnmmpVA1SKekDJBPO8t7ZZRqzyRPkktFWVyelu8zks2WZ\n0nQSMNq3z4HWMuE3MiKT5DU1EuxRSmFhQYKyExMqnbmHjOCGmXivqTGT89rNkJHyYLJOTGnfvj4b\nWmdOJIXDwKVLMsk9PZ1ei9pkp8j+KiXbpFxyMCjfKRiUye9Ll6Qn2uSkfHZTk8KHHwZw6pRy+9qY\n/jL+axb/dZAsF3DsWAChkAPbNoFbKYFp1qMps2XbMsk9OamQSnl9xmZm5PtaljcJ7e4ZvmuPpcbH\nS5cCePNN+YxAQJZ9ZkbOPUpJ2U9T8s4EYh1HuyUEA4Gl949CBQLyvYJBhdlZDceRSdrmZqChQQKY\nUupP48MP5TPr64G5OWQELBxH9l+lgKtXrfTvtDvhK6XjtFuCWynZ7tJD0MuEkFJ2Ztkk+NHQIJ+d\niz/oalkmiId0NqkEtiQQ5P39woKUKG1u1rjrLiejPJv/mnSp8+jDD6dyXjf4A9CAXP/198vyT09r\nJBKLe3jZtkyASzaTg85OOcY+/FChsVGyh+JxCwsLsi7N/rCwIMGcuTkpY2qCPSYbsbHRQSKhMDeX\nP5gq299Gf78cn01NwPz80oFGs97NNjNlQf1Bp1x/Lz3gvOAqYMqTmvKu3noMBoGtW6Wn7vCwfM/m\nZqTLEsrEuvRIk3PW9LTGG28EcO2aHKPxONzAfigkY1dPj43BQQfNzbKdAeDMGaC/38GJExa0lnPb\nnj0aSjkIh60cE+KZWYhLXdf4j3///ev0tDxUIOOIBNSlZJ6DubkAuru9QEs4rNOBkMKuydbCcveX\n+ZjrDCkR7Q1e09MB9PSk3Pd8990AWlrke5vrJECOu6U+e3TUzpgjABZfy+cak/NtQ/9xmn3fCUhZ\nw23bFldd2btXrjUmJxV27JDtm0gojI1p9PQgXf5QHoBobpaHAmZm5KHLoaEAtm6VsuTmHyltvdhq\nXzub7eWXfX47fDiFv/5raW0QDst53ATfymnOq5B5jWzltPxEVD4Y+CLyqeYJvvW03EVYOStkcn25\n1xQb+Ms36bLc+yw1WWP27d5emaQ0E7LhsExabd0qPW127rRx4kQAiYS5OZfXmie6geK2nf+Y8k/O\nmqCa/2LbyHfRmn0BfP/9KZw54/1/NAoMDwdw/Hhm+ZVweHEwJHub9fZqTE5qd6IXgLtejhwJFnWT\nuFrMuswOXs7MyKRnZtBOnt5ubUVZLPtqWOlNfCFGRxV+/OMAjh0LQGspkfPII6u//go5B5lG39nM\nU8alVuoAY7kx48rLL8t5qq9PZ0yWLCxIr5BUSo6x6WkJNGVfF4yOSt+no0clq2BgwDRll3Xo33/2\n7UvhmWfCiMUku+amm2w0NkrwIBJR2LNH/lspjU99yl60rGZ/P3cuc6JW/k62z6uveueKeFwmwfft\nc9zg18GDGgMDdsYEnxdoSKVLs8nnPPqojZ/+NICXX65Bba3C9u0OZmYU3ngjgM5OnR57JEDY0pI5\nibJzp0ZLi5MRzOvtlYnkzk5gbMwLlDQ3S/Bmxw7J0PU7ciSIvj6Ns2fNxKN8t1hMsp6+8pWE28xe\ntmcQjqMxPZ3/AYAPPwReey2IYFDOcRcvKnzjGyEMDkr5puFh2QekdKI8ob5nj8b//b/ypHFNjQTH\n0u+MYFCyVubnc/ezkc+XfwcC2s0Asiw5xqWMknxWMilPnYfDEoTo67PT/a0kAGVKsEmwTB5OaWmR\n9zfBjYUFOX/X1koPpFDIQSgk+3N9vQQvpLycg3vusXH1aiBjwhKQMsTHjsn7mL5qjuOgtdXBAw/Y\n2L/fW58//nHALXXZ1CSBrokJyW6sqZGg1Pi4rKO5uQAA7xrCf12Rb7LrrbdsfOMbIXR3K1y+LJOL\n8bjsd6GQBF8nJmR9NjXJMkspLJ0Oksh3m5pCOtMrUyHXHnV1wLZtMsEp/V9kXba2SjnO3/xGSiSn\nUnL9JMEd7WaU19TINl5ZyUMJlNTUSFAgHNZobnYwNyfjlgSVpc9gW5ucEyIRCRjEYnLsTUzodFa/\nV35RyoXK+pqakjEvldJoa5N92RwfWnsBNqUcJJMBJJNe/zwTNDOlLwHJvsxXKjEUkvc0urtl366t\nlWxRr6SevHd7u1QkaGzUOH5cvtu+fYvP+8sFNXJdN7z88uIpke3bnXQJOyl5m0opX5DHK2/a1qbx\n6KMLGBgAfv7zAPr6JDh+6pTC0aOABEK9PnqdnQ5mZyWoF4vB/Y6OI0HGzk7JmI3FZLuYEotaS0Ax\nEpH9KRKRLL5IRI7LaFTGQwlCeuvDZJ+Za3nTY0mysCS7prFRznmzs8DUlATqFhbkfNTY6AW96+rk\n+Kmrk22dSMjnmTK0H/+47QYk6+q8h7UkMCeZ+lorbNkiQf3ubuDTnwbefjuFDz8031P2RaWk36AJ\nSJhxxn8f1NcHnDql3F58t9ziYM8eG6+9ZgIQ8rmxmIxlR44EMThoF3xd499ffvazADZvdtK9sax0\n8FsyERMJhTfesNwg/tycSvd3Kv/MmeXkGhenpxV+9rPMYwhA1oMmwlwr5btHXem1fL5teMstDiYn\nZTmy7zsHBhw0NzuYmlq8nP393vJFo0H3u8Rikg0Wi8l57bbbZJsePy7tBubnFc6e1XjppYDbo9L8\n3fHjkvnlvzZb7WvnQgJCPT0aH/uYveT2Wm/LzXlwzo6IisFSh0Q+K+0DtdEtl+a92v2GVlMhZcGW\ne02p0vGv533Mvi0lgUyvHo1777Xx+OPS82piwnJvcOWG2HuqurXVwa5dXrmGQrdd9jElTYAd/Kf/\ntIBAABkBHCNXqbpCeh9t3qxx6pSUPJLSUwrBoIObb7YxMrK45r5/m/X3y8SFKUnW1aVx660SDCyX\nnn9mXYbDKl36CTBP0HplKrzX19cDn/1sal1Lq6y21WhMfL2lBK9HIeegM2csnD27OPhlMhRLXeKj\nVE2o14K/pO6bb1o4etTC0aNy7M/Pa7z2Wma53elpb1wZH1eYmLAwNqawaZM8kT41JZN8SsmkIpBZ\n2sbfZ+u554KYn7fQ2KgQi8l4cc89Np5+OoX77svsyfXTnwbR3q7dfk+pFPAf/sMCPvYxJ+96zjUG\nnjwp40Eoq7LD+LgpcyOkXNzSPQv9x9Jtt8m/zXHV3S2T6R0dEpSKRiWrwTwg0dEhJcp27/b6ixk3\n3CCTx/4ymeGwdntPmH5fDQ1ws2JuvTVzPx4dVfj+92tw4YLC9LTX3yoQkPe54QbpsxiN6ox1JGXa\nZFvW1S1ep3/3dyFcvbr4nOo40u9xeDjgy47xxti33pLJ2/l5CXyYrBVAJle1lnPs4vJwUv6rvl7K\nyJm+NyYIobUE/2ZmvBJf8/NSWuvgQTu9jiQTRDKbVDpjRKeDW0Bnp5QPi0Sk31EkIhPzN97oIBCQ\nQNTCggQD6+tl39iyRQJ6U1MqvZ97hodlsq+tTUozNjbKPvDYYza+/OWUO+42NQG33SYBtIYG72l4\nyaQ2vXpknczNScZgdvDJ9MnJ12v32LEAgMxSh62tsi1vv136OkmgT3rkhcMSBKyp0ejtddxspY4O\n6Q80MSH77/CwcssdZ59Hso+78XH5u1jM6/kXjUoW0sGDNqamVDrgJPtjd7fGzTfLpL7jeCVMk8ni\nHlKQAJpXAi8clnVl29LHpb4+M5M/kZAs0o4O4MMPJfi5ZYt2M+L8mUay7qU8oOnRBqh0eUvJwAqH\nNfr75TMbG1U6U0CCZnNzXoabOYYli1W7x2t2oM+yNCIRKa3Y1ibB8E2bnHSmmZQxNv2ETKlP6dMm\nQZTaWinB+NBDKRw7FsgY102mjSk5NjEhgbzGRo2jRwMYH1cYHMzsm5mrdLLpkzs9LfuhWW8eGX/u\nuy+FL34x5ZYVj0TkbxsbpaddKiUB5vZ2CcDefLON8XEJ4vn7B4VCErxsaHCQSgGDgw62btWIx5Hu\nMynfzSxDa6scw9LHzUJNjSmxq3xjpGxbQKUz62RDSBlCCWx1dkpJ28ZGCWh1dkqPYRnTZGAz5VJN\nec1kEumyqA5uuEEyGnftcrBjhzfBv327g0hEMoVM31wTbDOlCqNRjfb2ILS2ccstGrt2yXlk9275\n79tvd/Dkk944k30flEjIuamuTrKX5+clM6uhwXF/PzEh49ru3RqzszKe7NvnYN++/OdbP3NuNNv2\nyhW5lzKlZqenJet2YQFuiT0jHJZexeVgpX3Ms48N0xsqu0z9rbfaOHduZXMoK7mWz3dt6i+VC2Te\nd2b3ccy3nP5rcVPm23GAvXtlXZl+roBcv3R0yPXC7Kx3jWV6qNn28iXzS6nQMvDlPue13JxH9vJP\nT0uf3dpaZPQSXW0sdUhUPtjji6hAlTTBV4zV7q+13Em/VL141kshF+RLvaZUgb/reR//vh0OA/v3\nO/iP/9GbkPX38WlvlyejFxZkIm77dnmq1v+dCt12Sx1TxVx0FxL0M5+VTMrkX3+/ne7zoAqqud/d\nnfn/r71WHvXDDf/3a2qSCZLdux2Ew5k9CIx822i9++2Vm+zx65VXgnjzzcCiptnJpDxVvJrbvpBz\nUDSq8f77XsYDIGPA9u1ORjCm1Mu13v0pluOf1BkbU3jttQBOnw4gHJaJ3//1v2ogE4LeRM35897k\nhTzFLes0mTRZoMAtt0jvIROcaGyU4+q++7z9wD8+ySSJ19vijjsy9xfz2uyeaYDCHXc4eddzrjHQ\n35fCUEqnM2pVxusK7VmYj//888EHCrOzASQSMvnf1oZ09tbiZXn8cTvnBOP0tIzLXhBfRCIan/vc\n4qDi6KiFZFL6bAFe0CYUkie8w2G4wUs/KVVkuX3F+vq88e7554M5H76oqdH4z/95Ae++K72tIhEJ\nevmXyZRBsm1vUj8YhNtgvaVFls0EwKT/kmQm+wNOMzOyz5mgViym0N7uoK/PQU2NfHZjowQYens1\nxsakj5bJhqmpUaitddDQIJlALS3yunvucdDWBnz0ow527ZLSY++/b6WDFNr9e0CCFTfeKAHE7H5O\nw8MyoTwwAOzYIRkY3d35e/xJNqGDRx6xEY/L+VKeyvbeU8pKyjL5dXXpdKAi93nXBENMr7obb3Qw\nMKCxbZuDnTsdvP22BCdaW73Seabn3ic+4aC/30n3spKeeBMTCu++K/uxlCyT/byvT64HgMXHndf/\nRaV73CGdTSX//PEfJ9HXJ33Puro0PvrRFD7/eRuWJROjJuAgWV/LB79MlpDj6HQgQrlBsGRSAjq7\ndjk4d076Dpmsyvl5hQMHJDtlYkKOg+3bJWCdTEpmjbyn7L8miJhIKLeMoenlpDXQ3g7ce6+Nq1e9\nrLXJSWtRAK+xUbJzFhZUunegRjyuMrK+pIQh8MADNu64Qx4w2L1b9tvGRuDqVQkom7J7Wpt+WrJ9\nm5pkn00kFI4ds9zeU2Zc7+hw8N57VjpLSzIfR0floQT/+O+f8M93Pfr44zYCAckGlf56ss9KwFPj\nvvts/MVfLLhjqf9+R/oYaVy7BjQ1Odi2TY7Fjg7ZZsPDASwswA2MNTZKAFX6yWmcP69w5oxyg8az\nsxJksW2N9nbJFp6dVelMUFm+hobMPoO1tSbbTLlZZVL+VILwti3BmmhU49ZbHWzbZuPJJxcQj0um\n1/nzlrvPSY8y00/LQiik0dWFdMUBySLxn1/8AQjTm9ZkK5rg6sIC0NsbQG3tQsa69+8r/nEm+z7I\nBCBMf16z3vv6NPbv17h2TQKlu3f7y+/JeLLU+TYXs20nJqTX1diYckusJpMqfa4A/CV/d+92cNdd\nTllcd6/04cnsY0O2JbIetpMx/uGH7TWdQ8l1bbrcdfRKH2h96KEULl6U7+n1hfbWgylzafZDQPbF\nAwccfPazqTW7di703rrc57wK6Z9uln9qCjh9WqrahEJr+6AqA19E5YM9voiKUA59XkqpHPprVXup\nrOWUKh1/Je9TaG8x/3ubMliADaUcnDgRwOnTlluiqrm5uG1XivIWhZRuyP6uExOZJa6A4so0lmP9\n8FzrMvsYB/IfX+UwHpS7tS4lmG25c1BPj8YXv5jCj3+s17wUYznzl9QdGZHJCel9ZiZPpa+gKTmj\ntUya3nCDNxmyb5+U5FNKShUq5Z239uyRPk8jIwr/9m8BtLZ6PYmKGStWOq7k+n12Xwozhkpvq9wZ\ngSu9vvGfIyYnTeAV6fJpcmzs35/CwIDOOZ5nf665Lti3D25vsnDYwdNPJzP2Y7NdpfyklPObmvIy\nOG6/3XYbtk9OKrcs0fy8TPhOTiq0tCh0dOhF4117O3Dt2uLv2t4ux9mf/Eky59j64IMp/PSnQSST\nltsjKRCQhzlSKcloCocl2NjYKBOuExPK7aljyiJK1o4E7bw+nDJ5I+dgWQ/T08D773v7aDwOABYG\nBhxobWF8XAIWwaBMCpmSvbfcIhlIZvkbG4Fr16T31uQkIBNjEmzwl9X0n0fzlYXKd93hPw+fOmWh\nu1uOG9MfJRiUXmImM8S/XvOVnAPgO68vPg5Miapr15D+e+WWN7NtuZ55+GG51pA+flL+6vXXJXNv\nbEz2LynNqPCtb9Xir/4qmfPYjkRk/U1MyDgRiyk0N8Mda159NYjDh1P4/Ocz9/ff/30bly6lcPRo\n0M3AmpvL+VVdtbUabW1STm183AQftFsu07alzNrYmGSixGJSBnlqSsoxJhIKSjm4804HIyOSnbFv\nn4Nf/EKCGpYlmUSWpd1gkmQvygd4PcokcGtKfwKSfZRM6vT+pdPZaNJzLBSS43TzZmDbNgcvvmj5\netnJJLHJstq2zUY4DLccmNnHw2GN3/42gLo6CR6bTEVAju/eXqTLz8o+7B33Fl5/PYA9exy3ZOzJ\nk8rtK+sf//3Xgktdj27daiMWCyKVksBSQ4N8j49+dAF/9meZ107Z9ztdXRoPPGCjt9eBZWWWhTt5\n0sbEhIVLl7zeapKdq9DRoRCPSzB2dtYr76q1lCmcmJB9qKFBgqiplKwH83BHMOgvtQmkUpKVFQhI\nECyVkmv6tjYHU1MScBsYcNxla27WOHvWwvbt8pBCU5Ns04EBG+++G0Bzs7xOKa+f1ZYti0vUev2f\nlFsGVynljvn19cAf/iHwox/pRecsYPE4kz0GmGs1f6lvs1yHDi2kA1WFn4eXYrZtby9w6hRgAguS\n5WXGf3m4wdwv9ffrsrnuXum1R/ax0dDglTP2n2/Pn5dMynKYQynkOnq55cz1ms2bZT2cP68QjyOj\nn1lfn/S181uPuY5i7q3Lec6rkDkPs/xHjgQzyrsCldNSg4jWBgNfRFWuHPprrWYvnkpQqsBfse9T\n6M1Wdm8ac0MzPa0BWOjrA4aHgfl5CyMjDh57bKFk267Qi+7lLoClPF0Nhoct94nnyUlg377MJsux\nmPRgKGQ/rJT64cUcX+UwHpS7aFQv6qMGIJ2tUR7bvqdH4wtfSMHfI2ej80/e+AOX+f4bWNxnp6lJ\nJkYHBhz3ZtpMxpl+DYBM4J09a7njaTFjxUrHleUm/f1W42ET/3tKlhIA6HQvJVmXc3MWDh1KFPR+\n/nFry5bsZvde8OTXv5Z+RaZXRyikcPashbo6B/fcI0/9mu/24x8HcPy4lMMDpOTj/DwQjXpPs/vH\nuyeeSOIb3wgtWk9PPJF0l/H++1N44YVaXLkiAbEnnlhwe/6YyWGTDdjWJhkGDQ2AbUtvqUhEyhBK\nwE6CCbatcccdKSQSVkYmGQCcPGml91N/z0aN++930NICtwfbyIgEO1Ip4O23Nc6e1ejrk1JjkYj0\nh3vkES+Qde6cgmVJ0CaVgvtvKTmoM64L/PuTXEfIdvcmOSWoNzqqFl1L+K85wmHpg7Jrl+M+DW+C\nm5s3I+c5KxrVuHDB8gVDpW/c+LhCZ6eDkycV+vrgntenpyV4+Z3v1Lh9OS9etHDpUgDBoGyT9nbp\nC+QXiWi0t2vE4w5qaqx0P1MxP2+5+4g57qanvcn6mRkJWNbVZY4h4bBGLGbh2WdrsWOHA8fRbq88\nmZTTqKlx0NxspXtiSfBMsuu9EoFKSRDKZHNfvSrlMR1HZTzMEwxKhv78vOX290okgFBIghrhsMaJ\nExb27nXcUo8tLQrd3TbOnAmks2UU6up0uhebbNfZWdlPpQyrLPfsrJSSnpuT8qFS6k36xqVSEpQL\nBiXDamxMelyFw7JvS+85nS5dKH9rMuVOnpQg+qVLCpOTAbdU4W23Odixw8HwsIVLlxSuXDFZirL/\nXb4sJUxlnXtjMwBcuSKZTKanoRn3s8f/7An/fNejZ84EcNttGqdO2fjwQytdxtHB7t160XVWMddj\nTz+dxLe+VYvJSaQz+eU8Y8rlxeOSeSclVZEuiWiy5ySYvGOHZFm98YYXBAwGZawxmVXJpGR3WZaD\nmRkJ1Nu29G+bn5fAbV8f3P565hju75fylko5GePDkSNL93LKt069v/H6UQ4MOOjrK/yclf06k93o\n78/rX5ZSXsf7t+3p0wpXrsiDDdGoxq5d8v3CYSnV61/+crnuvp514d+Ocl1kLTru4nEZZ/MF9Ap9\nELOcmfUwOGgveiimqcnB009n9p7eutUu+DuXcv2Uc0CrUMVcx5bjg6pEVF5Y6pCoyq1Ff61C0rwr\noVTWailVOYFi36eQsha5etNcuCCTF1evSjPf5mYJhvlLcq11qb/lSjf8wz8E8a//WoPLl2WCamEB\nuHZNvocpp2Ru0gIBlVGXPl8phLWsf27KoLz8cgA//GEN3n7bKqpGeaHHlxkPYjEpESNlpWSC6667\nyrPs6FqXal2PUoJ0/fwlpiYmvEnOSER6HknfHe02nweA/n4HiQSQ7xj3jwFeSSV/iR8ZTwcH7YLH\nipWOK4X+nX/yZHzcQmOjTIxebwkb//nHPO3c2urv5+WVdcol13Hc06MXjVvZfUguXlS4cMFCNCrb\nsrtbJsY3bZLyfP7z4NGjFk6fdptJIRaTSeK2Np1RVs9c/3R3A9u327h0yYLW8r5PPZVMZ1vJsvzL\nvwRRXy9lKRsagHPnpD/Mbbc5iERkgqmzE7j9dhuNjQq7dkngdHZWXl9bKz1xpqbknN3e7qC1VdZj\nXR1QX5/Zoy0chtsn5NIlhddfD+CddyQz6YEHUvjUp2zcdpuU9puZUWhursFNNyXx2c8m0dUl28O/\nTsx+fPy4heZmhWvXpDRcMCjrYPt2ydLIt2+Y7X7hgsLRowEEgwoDAzJxm33+zL7mMCU2HUfKPd16\nq43PfS6FnTu1e87avFnKGx4/LvtFJCJZX3Nzcv6OxSycOGGhr0/6BZnynp2dMuEciwFay74ix7xM\nlNXVSSlCr8SZHA+SrSMmJqTvkClRaZisroMHpY/I0JAEVM0yOY6UHJYsG2//7+4GfvtbKY8ZCCCj\n3OqJEwFcumShtlYy0U25QaUkA0cpjbo6yZYypQAbGiQLLRaTQJQpKQfI72+4wUF7u1cC+coV6evU\n1iavGRuTQNX0NNDUJNlDn/lMCg895OBTn7Jx//02kklgYADo7XVQU6MxPy/HQWOjZLtJRg+QSFjp\nDCTp/zo3J7+T7yBl8Ey/qtpahWjUwcGD0vPn0iXZbj09ErxyHCknK72zLIyNSenXRELWWzIpAeba\nWpUuYyjvPTvr7VddXdI7Z88ex8308khJPek/6J0Pssf/Qkt2Dw0F4DhyLbljhxwz3d3SNzBfuU//\nuDY9nfsaprsb+MhHHDdrtqVFsrKCQS8gmkqpdOaevLfjSInKcFgCWnv22AgGFXbulPOA40ig1+sj\n5+1f7e3SSzEWs9y+X4GABCz27LFx//1OQfcNuc5F09MS4Dc9NbOv0/x/411/Slm4gYEatLYmCrq/\nyb4P6u2VALQ/IJzvHJ7r98Uy29aU+O3rk/si6eknx6i5XzLLXy59rku1Lsz7fPCB5R535rqothY5\nSyeutL9Yucp3P75zp3dNE41q/Mu/FPadq239lEIxcx7r2VKDpQ6Jygd7fBFtYGtxMcCT/vJKFfgz\nN3Lj4yo9sanyBgIKudnK7k0TCmlcvqwQDCq3SbQ0oPYmONf6Zg1Y+gJ4dFThb/6mFrOzFhxHau7H\n4/Ik+8yM9LUA5EbbPGHvr0ufr779WtU/Nzc8589bePPNAK5elYbsgMKpU6qkNz5nzli4cEEaU8/P\nS/kh2c4yAVNuN1hrcTOYPX41NQE7d+p0BotMlt1zT4rlIMtcdjPysTGZmJWMGhkz/cf+Uv2ncvWC\nkHKvMrnjzyJVCvjYx+yCx4qVjiuF/J3/eDF9o5RCycYt/6RffT3cTCfTA2vXrvx9BQs9jnMFTy5f\nlr5EZtI6HNZ48skFfOxjdsb59OjRQHpCWPr/TE5Kn6CrV+VcNj0tk/g33OC4y9ndDXzykzYefdTG\nJz9pu72dci2LyOwPc9ddDj75SRt33eXg/HnJ/jJN7RcWZP3MzQGDgw46OzUuXrSQSsnYu7AgvYP8\n59dwWOOJJxZw7pzC//k/Qdi29KiZm1P45S8D2L5dltFsi/vvD6G/f35Rj8pc/eFMICqZlEBCQwOW\nDHr5t7tk2Ul/Lf/588IFycAbGgrg9dcDCAQyA3nJpHKDftk91rL3i+FhCy++GITjqHTmkmSlNDZK\nYKWjw/TQk151dXXA7OzivndTUwq7dztZyyrZGRJAUO5rz5+Xnl+2rXDtmjz8I8Fix+0j8v77Cleu\nKHdf371bAqlXrsj+FInIRPc77wTS2UYac3NAKmUhkQCGhy1cviyl65JJCXDNz8t3NJlVNTUSrKip\nkeCMCVyEw5IxNT8vx1t7u06X0JSgz/btcjx2dMjYY0W/zwAAIABJREFUUFsrwaPZWQn+AHDHi3x9\nUf29X594YsHtfaaUBAXn5pR7fZhKyWstC0gkNLSWzEcZDzRaW6UHlFKSmReNyvKfPStBx1BIAtJT\nU9InLpEwJTClP2B7uylR6D1QMDwsDyw1NkoQua/PQXu7xt69Npqb4fbbMd91507Hve/p6pJ9INf4\nX+iE//XcRy039pmeeHfeKQGca9ckGLV9u2RkXrsmZRDNfjI/L8HPpibJZjxzRnrUJRIKmzcDmzZp\n3Hyz7QYvW1s1AgHZJvv2yfVyMmml+7pJP8jWVqCtTcbBQu4bss9FoZBkOmqdu5+u/29yBdBPnAii\nu3sh54MQufjvp/wPAay0n9NK5Aoi5TsvlUuf61I/hPlv/xZAKqXc87+5Lsp1j7jS/mLlbLn7+mK+\nczmvn/XsT1fo3MlaPqiajXNgROWDPb6INrCN3l+r2hRTK76QshbZN2OmN47cXDuYm/P65Hi9ETSO\nHAkuKsew2mUs8pVuGBrySlt55Dvs3GljYEAmQerrVfqp8cxlWqoUwlqUizBlUMy6B+Bb56UthzI4\naOOllzLXl/SEwZqVXSlmP1mvEjEsJVh5sktM9fWl3DJj0ajGY48tZJSgWar/VPb7Li7V5DHjaTFj\nxUrHleX+bq2OF3NdIRMKZrIr/3VFMcuVPR43NUk5rNOnLbz7rnLLDebvVanR1yfvU1encf68ZMHM\nzUnvrMlJB48+Wtj1T7Hlc7J7ZZoeQ+fPy7o6edIb4wHZN2+6ycb8vMKWLTpjv3zhhQC6ugB/yUOt\nFV54oRYHDxZWTjLX8kYiXpmxlpbFpdoKeQ8jFgOOHg26pb1mZ4GLFyUjLhLRmJ6WhyyiUSl1mH29\n4t8vzGtjMclGkyCnBDu0Nhmc+a9d/FSeX/X3e6XHJicVBgY07r57Ad/9bi3OnpXSiK2tEmwbHlZu\nKUfLUu629LvzTtmPpqbMsltIpaTP1dmzsuyTk/Igkck6laCxTBzG43KdEgrJ+waDUoLyIx9xcOyY\n9LWybcnWueMOB1NT8lBPT492+zoCcEtRmhK9SnnZYkBm/6NCyvu99Za8fn4e7nc2QQ3JOpMAWGOj\nRk0NMDcnDxd0d8s+NTcH1NV5n9PVpfHRj9rpIKOGZel04MxCMinbW9Yj0Nws23lyUrlj+tiYlL5s\nadG4/XZvgn1gQLan+b3pNQXIOp2elsDm/v32kuP/cq7nPqrQsS9XCbXt2zViMQncp1ISsI5GZX1a\nFtI/tzA2Jtt6clJh3z4Hra3AF77g9dry3zeYPn/BoMKmTRJMAzQ6O71sLv99gynx2dAg1/1mvWWX\nvpPeect/x9ZWrxSg99rru/4sRT+nlXxmoSUty+k+vFTroqdH4777bJw9m/s8nG0jlqJbi96vq61c\n+tMtZ6O31CCi5THwRVTleDGw+taybnkxE4iF3Gwt1Si6t1cmESWIZCanTHmazIvg++9P4dVX1+fi\neHJSYfNmne5J5n2XVAq44w57UV36bOvdt8msy+ynbM3/l/LGxzxRe+KE1z/FNGdeixusYm+iJidV\nRvNss1+u980glaflJnUOHlz5hE++8XTrVjvngwDFKNU5pJjJk+v5zGKvK4pZruxzUiwmAcf2dmD3\nbnn/V18NYvPmxWOG2UbDwxbm5qTHVzAoGTCOA1y+LH1/zpwJFLQvFNsTJd8+sn+/g6kpa9EY7/VA\nknKDfleu5F6mfD9fSq4+VeGwxuBg4cdDrnUxMqLc0nsA3GsG86DM8LD0turtzQzemesV//aX1wKB\ngHazd7SWzKX6ep0RvDHLAyDn9tm/30YslvvaJ9cYcf68jddfR8Y5JhLxlnOp/nqDgzaefbYWdXUS\n1AkEJKsoEJCs09paCXo1N3vZOs3NGnV1GuGwg2jUe7+6OmDrVgeAxvh4EKmUQiCg0+8lAcUtWxw8\n/LAcey+/HEQ0Kn3ozpwJQCmFEyeQ7suqcPmyhakpQCkLJ0/KuX5gYPnsgakpCZ7JtpWM8IkJyToK\nBJAOmDhoaZG+c2+8YaGhwTunX7q0uHRyV5fGnj2yn//3/16D//2/g1BKenFJlr4EY8x29j9Q8Cd/\nklzUT8e/Pf2/NwFUrTUOHHDSfbMkG2ql4//13EcVO6G9+AGOBSgl2+TnPw+gpkY+f24OuHpVrmdT\n6a9lHpjasmVxcNO85/nzCqGQ6UHlXev398t38Y9h/nXZ25vZ19L/3athgn8lCg0iVet9eDEBvUrp\nmVxKa9H7dbWVS3+6QlRDXzMiWj0MfBFtALwYWD1r/TRUMTeNhdxsLdUoOhKRScKRESlrNTDg4No1\nYGoqM3hknkL3904wP1+Li+NoVGPHDo2pKfnHtmWyaMsW6WOR77sC5ZH9aG54zNPaRvYEUKn092to\nvXjyay1usIq9iXIcjePHvQy1uTmVzujgeEZrK9d4unWrfd0B/1KeQwqdPCnFZxZzXVHMpE72OD0y\notJl07wxK9+YYbbRX/+1BJkCAem9YjJKgkF5aKPQSdZizxn5zrmAZOX4x3jJtM0/xre3A9euLf6M\n9vaCFn3R9zh2zEpPYsvP5uYys5oKeY/sdTE/D7eUMCBZbvv2OW6/ooYGmTDPLjVk1r9/vzBBwaYm\npB9iEQ0NkmnlD575t0Gu7WPO+4VONOfL6DLLKetPAqreAyOO+547dkhZRS9QIN/D9M9sbgZqazU2\nbZLMqPp6KT+aa5lGRxW+8pVaAFK+L5VSGB+X8ofDw3Jtlu/YPXTIy7xXSkolRyISEJmYUJicREHZ\njmNjFpqagPl5nV4GpD9PQykph71pk2yTkRGF3/kd2eZm3YTD8t0lY9Fj9nPz/uPjGqGQQiolDy0l\nk/Ke2cfYctey/t//7GcBRKNOxn5XimvRld5HrWRCO99n9fdr9+Gto0cDbpA46JvNmZ9XOd87V0aZ\n4V/fK1mX1TDBv9qq8T68UrPe1kox37lc1081BaqJaGNjjy8ium4bub7xWtflLrZW/HL1sZdrFB0K\nSemdp55awB13OPj1r3PX/79wQfozZFuLfmDRqMapU1ICq6ZGln3zZgf/5b8ksXNn5qTcWvTsKpap\nTW76EgHKbRQdDpe+Rvl61kIvtsn30aMWTp8OZL1WYccOp2T71UYev6hwuTKkjh0LXPf4X8pzSKHH\n9lqft4oZc7LH6atXpc9hdonafGNGU5NkCQ0PW0gkFBzH+8zaWo2GBim1Vcj3XMk5I9c517zP3Bww\nMmIhEvF6xeVbD21tDn75y+yytBpPPZXM6ENWyPiVq0+V9L4rfJvnWhddXXrRgwyhEHDggIPPfjaF\n2VmV8TCHYa5X/PuFCZwEgxo33eSky5RKObunnkoiFFq8DZbaPsX0VV3uump6WuHNNwPpUoYSaGhu\nBm67Td7X/L2/h1pNjWSqSW8z2da7djkYGNC4/XYHhw6lci7TK68Ecfx4EFoD8Tgg21/6hjU2Av39\nDubn8x+75ntfuWKhvl6CXmabb9smgaZ8ffhMH5f33pN+ZA0NUn5Qa+kX1t7uoK9PIxiUHmf33OOg\ntlb6jXV0yHft6JCHpsbGMgNf/v387bctXLpkobZWSmcHAoBlOdi2zcYnPuHkPMYKuZbdu9fBxYty\nfIWy2jysR29aoLTXW9nHy8KCwuyslOc0wa9IxMHnPpd73wIKG9OKXZeFfEezf507p3DypJXuGSe/\nC4WC+MQnEmXXY5aWV+g4u9L7r/XsL3W9ivnO5Xp/Wi796coZ7yGJygd7fBGto7Usg0drb62fhlqN\np8Kyn0Rcap/N97RmvqfQ1+IpTv9Th1u2LH2cleNTl/7lb27WGBuz0NnpuGWUSj1erGfZlWKf9lVK\nelb4y3P19WmofE1ciFZBvgypbKYs57vvSrC2kOOqlOeQpTKO/OUYcy37Sj/zepYr37rJ7h9TbIla\n08uwqUmn+xTJ92puRrrEX+Hny1L2RPnCF1L41KfsgtbDwYMa/+2/JfDCC7W4cgXp3mZJHDy4snF6\nuaymQr9D9rWC6S9lmOuR0VGFiQng6FEph2iyRvJllyilceKE5b6uu1tDKcfNQsxXpq4U22e566qh\noQAiEWDPnsyJPpP54v9700NNKb2oBHT2++YyOSnnuVBIobNTIxaTUna1tRr33ZeCZRV27E5Oqow+\nc/leBywe34zmZsli01pKNW7a5GT0hzt0KJU+PjP/LhLRuP9+KYOYaz/v79eIxZx03y6FcFgCavv3\n29e9Lcsto6iU11vZxwtgYfduKf1sro+efjq57HsXeswUui6X+47Z+5cpxbl3r1znfvrTWFTKlKpP\nsWN1pfSXWspa9H5dTeWaiUZEVCwGvohWUTVctNHS1vomey2CFktdfOe7CH7iiYWiJ3hKqRxvGIpR\n6PKXKpC+Xuur2JsoOb60O9nm/znRWslXonN8XLklXmMx4Phxeeq9pSV/P5RspT6H5A5OZF6HnDyp\n0NeHRVlUq3lcrXTMWcnES0+PTAB/61u1CIctxONSMi8adXJODK/lA0rFrIeDBzUOHkyU5HNX41pl\n6dKOss9t3y6T3KdPK9x3nwT+/OvWvz7W60Gx5a6rlgtOL/X3mzcXd70WjcrDHSaDzIwvLS3aDZrm\n2o6OozOC246T2fPU//7Zssc306utrg7Yvt1Jf15muUnzPvmOz0ceyf89zd/09VkYHpbyfMPDuqAy\njMspx4naUl5vlep4KeRvi1mXS33H7P1LgsMSAD10KIWODmB8vKDFpg2kkvpLVauVzjnwoW8iKjdK\na11xo9D4+PR6LwJRQfI9qTww4FTVRVtHR2TDHpe5npRVSld1cDPfBS0vdFdXtexrxewna/GdN/L4\nRYX5zndqck42y1P3Mhlz8qTCxIQFpaTPkQkqLXe+X+19PNd1iMlM8weUy3ksWem5pZC/K+X6X49z\nYKHj11qeP6rt2nctv4/ZTrGY5ct0loDtwYM653aUnmjKLVEtPwMAjUhk+e2da3yLxSRI3t/vZGTi\n5Xqflez3b72l8K1v1bqZSr29Gs3NpdkfeS26tGLGglKsy+98pwYXLliLMve3bHHw5JMLq3oNxn2h\ncuW77mpp0XjyyYV1WCIqRLXcqxaK95BE5aOjI5L3d8z4IlpFbApa/dazbNx6yfdkZ6VnXZW7ann6\nsdjSHxvt+KLyky9bxpQjHRoK4N13A2hpkQk9fybVcuf71d7Hc32+6cvR368r4rha6bmlkL8r1bha\n7hn+azmWVtu171pmES1XujnXdpyYWLxuIxEZt1palj/Gc41vTU3AzTdL6cHlggcrOT7PnAksKsNY\nqusZXosurZgxrxTrUmuN48ctmEet5+YUJicV+vpWNwuv3MdkWlq5lS2lwlTLvSoRVRcGvohWES/a\nNgbeZNNaqLbJxELx+KL1ttTEt3//LLYXlbGa+/hSQTseV6UbVythsmetxtJqu/Zd6wcwlttO2b//\nzndqcr5OKYVDh5bPjFgusLca+001Xc9UWlbRuXMKJ09aGdlXkYhetXWvtQS//KU3tdZYrZpDZnv8\n/OcBxOMq42GUchuTKb9yLFtKy6umsZ2IqgcDX0SriBdt5a/Sblhp46q2yUQio9zH4UImvsv1fF+u\ny1UuSjWucrLHU4373Ho+gLHc+Hi9+/BS41uh5UKLHb+r5Xqm0rKKRkcVTpyw3HVvsq/27XMwMOCs\nymdalrz/yIjKKG1pWaUfG/3b4+pVlfH9TPBrI47JlYgVHypTtYztRFRdGPgiWkW8aCtvlXbDSquv\nnCfgq3EykahSxuFCsjDK8XxfrstVLko1rnKyx7OR9zlzDXHunMLYmIXOTsctibqS71/I+FiKfTjX\n+FbIZ690/K6W65lKyPT0GxoKoLdXY2LCy8DSGhgeBr74xdVZ92ZszC5tuRpjo397hMMac3Mq/f28\nnpYbcUyuVKz4UHmqZWwnouoS+PrXv/719V6IYs3OJtd7EYgKZnppHDzoYO9ex20OXU0aGkIVeVy+\n8koQExPZpakUZmYU9u69vicfR0cVXnkliKGhAM6csRCN6qrc9tXETOBMTEgJmMlJhXfesdDfXx7b\nrqlJypPNzCgoBXR1aTz88MaYTFwN5hh9/fUavPeew2N0nVTTOFyu5/tyXa5yUKpxNRrVeOcdC/5y\nXkrJe63m+i7X66+NuM+Za4jz5y28+WYAV69aGB6WfeLUKbWia4lCxsfVujYo5LNXOn5Xy/XM0FAA\n8/OLA95KAQcPrk4G1fUwgaFoVGNhQZYzEtHYu9fBQw+tXuBrqbGxlGOYf3uEQsDYmAKgoJRCV5de\nkzGZaCOrlrG9UOV6DUa0ETU0hPL+jhlfRHRdZGIRuHChpuKe6l2t0kSVksFAmSrhyV0+/Vga/mO0\noQGIxy0eo+uE4zCtt1KMqxs5y4mEuYYYGZHJdgC+bJOVXUsUOj6udh+uWAxuqbrz55W7b5vXTE8r\nDA97peyUWllvw9XMul+N9660TE+zvE1NyMjA6u9fveVdy7HRvz2amuCWWKyvBwYGHI7JRGuA96pE\nVG4Y+CKiFTMTi/X1QDyuKm5icbVuWCshgEKLsUfLxsFjtHxwHKZqwcmeylSqgIi5VsjOADL/v5Jr\nifUMrJjPjsWA48e9jJ14HHjuuSAOH04hGtW4cMHC8eMWdHqR5uakj9ToqCpqPa7mwwqr9d6VVtZr\nvZZ3rcbG7O9nMk8r5b6UiIiISi+7NgERUcGWmlisBIOD9qKnUktxA8gASmXKN5FUrk/u0srxGC0f\nHIeJaL2YgMjZsxYmJhTOnrXw3HNBjI6uLEgFSG8hP/P/K7mWWK3xsZjP9mewKQX09Wn3Wn9w0Mbw\nMNygl9Do7dVF3wus5j3Far23yWYaGHDQ0qIxMFDeQZZKW95iVfv3IyIiouIx44uIVqzSJxZXq/xG\npZU+IVFpT+7SyvEYLR8ch4lovZQyM9RcQ/T2AhMTGtJbSAJFK72WWM8Smuaz/+qvajE/LwG8vj6N\nSEQ+e3JSMrr27nVw4gTcMoe9vdLLrNh7gdW8p1jN9660TM9KW95iVfv3IyIiouIw8EVEK1YNE4ur\ncYPEAEplYo+WjYPHaHnhOExE66GUARFzDfHSSwGMjChcuQK0t2v09dl45JGVX0us50R+T4/GfffZ\nOHt28bKba/3+fg2tvX5R2b8v1GreU1TD/QoRERERFY+BLyJaMTOx6MeJRQZQKhmfFN0Y/MdoKgV0\ndrLpebXhOExEy1mNgMjUlMKePV4gaGqqMqog5LPcQwRL/b6Y/mmr+bACH4QoX8PDwI9+FOR5moiI\niFaF0lpX3JXF+Pj0ei8CEaWNjiq8804jLlyY5w0LEVWcjo4IryuIqCJx/Lo+psdXdkBkpX2BjhyR\nfmHZBgacin6oZrkAVq7fA1h23Wb/3datNs6cWZ2HFYoJwtHaGB1V+Od/bsTMTML92fUcf0REa4nX\nYETlo6Mjkvd3DHwR0XXjSZ+IKhXHLyKqVBy/rl8pAyLf+U5NzgyylhaNJ59cuN5FrSjLBQFLHXRc\nDwymXZ8jR4IYG6tDPJ7I+HmlB4qJaGPgNRhR+Vgq8MVSh0RERERERFQViglIlLLEMXtJeZbrnzY0\nFMgIegGA1rLdKiHokR24m5hQOHdOVVTgbr2VssceERERUS4MfBEREREREVHFW8+AxHr1kirHzKPl\ngoCVHvSo9MBdOYhGNcbGcv+cKlc5jkdERLRxMfBFREREREREJbNek5/rGZDo6ZFSfWv5vcs182i5\nIGClZ8dVeuCuHAwO2vjnf8782VoEimn1lOt4REREGxcDX0RERERERFQS6zn5ud4BiVKWTixEuWYe\nLRcEXK/suFKp9MBdOejp0fjDPwR+9COH2UFVolzHIyIi2rgY+CIiIiIiIqKSWM/Jz40WkFjvQN9S\nlgoCrkd2XClVeuCuXPT1gQGRKlLO4xEREW1MDHwRERERERFRSazn5OdGC0hUcqBvrbPjSqnSA3dE\nq6GSxyMiIqpODHwRERERERFRSazn5OdGC0hstEBfOankwB3RauB4RERE5YaBLyIiIiIiIiqJ9Z78\n3EgBiY0W6COi8sXxiIiIyg0DX0RERERERFQSnPxcWxsp0EdE5Y3jERERlZMVBb7m5+fx5S9/GVev\nXkVDQwO++c1vorW1NeM1L774Il544QUEg0H80R/9Ee677768f/eTn/wE3/zmN9HV1QUAePrpp3H7\n7bdf/7cjIiIiIiKiNcXJTyIiIiIiWk8rCnw9//zz2LFjB55++mm89NJL+Pa3v42vfvWr7u/Hx8fx\n/e9/Hz/4wQ+QSCRw+PBh3HXXXXn/7p133sGXv/xlPPjggyX7YkRERERERNVidFRlZFF9+tNAOLze\nS0VERERERFR+rJX80VtvvYV77rkHAHDvvffi9ddfz/j9sWPHcODAAdTW1iISiWDLli1477338v7d\niRMn8IMf/ACHDx/G3/zN3yCV4tOBREREREREgAS9nnsuiLNnLUxMKJw9a+F//A/5OREREREREWVa\nNuPryJEj+N73vpfxs7a2NkQiEQBAQ0MDpqenM34/MzPj/t68ZmZmJuPn/r+766678PGPfxy9vb34\n2te+hhdeeAF/8Ad/cH3fjIiIiIiIqAoMDQWgdWaQS2v5OUsKEhERERERZVo28HXo0CEcOnQo42df\n+tKXEI/HAQDxeBxNTU0Zv29sbHR/b14TiUQyfu7/u8cff9z97wceeACvvPLKksvU0lKPYDCw3KIT\n0Rrq6Igs/yIiojLE8YuIyl0qBTQ05Pp5HTo61n55iIhKgddgRFSpOH4Rlb8V9fi69dZb8Ytf/AL7\n9+/HL3/5Sxw8eDDj9/v378ezzz6LRCKBZDKJDz74ADt27Mj5d1pr/O7v/i5eeOEFbN68Ga+//jr2\n7t275OdPTMyuZLGJaJV0dEQwPj69/AuJiMoMxy+i4mT3mRoctNHTo9d7sapeMBhEPJ5Zpb6hIYRg\ncA7j48z4IqLKw2swIqpUHL+IysdSQWiltS76TnVubg5//ud/jvHxcdTU1OCZZ55BR0cHvvvd72LL\nli144IEH8OKLL+Kf/umfoLXGF77wBTz44IN5/+5Xv/oVnn32WYTDYdx444346le/ipqamryfz8GF\nqLzwpE9ElYrjF1HhTJ8pf8k9pTQOH5bACwNiqyfXum9sDOHf/bsZrmciqki8BiOiSsXxi6h8lDzw\ntd44uBCVF570iahScfwiKtyRI0GcPWst+nlzs4NYTOUMiDEoUzrZ2Xaf/nQdwmGOX0RUmXgNRkSV\niuMXUflYKvC1olKHRERERES0sUxOqpw/P3YsgBtuyAxwaS1BmkOHWIavVHp6dMb67OgAxsfXcYGI\niIiIiIjK1OJHNomIiIiIiLJEo7mzt/LVj8gXKCMiIiIiIiJaTcz4IiKqUNklj9hPhYiIVtPgoI1z\n5xaXNLzlFgeTk4ufp8sXKCMiIiIiIiJaTQx8ERFVoOwm9xMTCufOKfZTISKiVdPTI327sh+6AIDn\nnlscEDO/IyIiIiIiIlpLDHwREVWgoaFAxgQjwH4qRES0+rL7TBm5AmJ8EIOIiIiIiIjWAwNfREQV\nKF/fFPZTISKi9ZAvIEZERERERES01hj4IiKqQNGoxsTE4iAX+6kQ0Vphn0EiIiIiIiIiKkcMfBER\nVaDBQRvnzrGfChGtD/YZJCIiIiIiIqJyZa33AhARUfF6ejQOH05hYMBBS4vGwIDDCWciWjNL9Rkk\nIiIiIiIiIlpPzPgiIqpQ7KdCROuFfQaJiIiIiIiIqFwx44uIiIiIipKvnyD7DBIRERERERHRemPg\ni4iIiIiKMjhoQ6nMIBf7DBIRERERERFROWCpQyIiIiIqiukzODQUwOSkQjQqQS/2GSQiIiIiIiKi\n9cbAFxEREREVjX0GiYiIiIiIiKgcsdQhERERERERERERERERVQUGvoiIiIiIiIiIiIiIiKgqMPBF\nREREREREREREREREVYGBLyIiIiIiIiIiIiIiIqoKDHwRERERERERERERERFRVWDgi4iIiIiIiIiI\niIiIiKoCA19ERERERERERERERERUFRj4IiIiIiIiIiIiIiIioqrAwBcRERERERERERERERFVBQa+\niIiIiIiIiIiIiIiIqCow8EVERERERERERERERERVgYEvIiIiIiIiIiIiIiIiqgoMfBERERERERER\nEREREVFVYOCLiIiIiIiIiIiIiIiIqkJwvReAiIiIiKgcjY4qDA0FMDmpEI1qDA7a6OnR671YRERE\nRERERLQEBr6IiIiIiLKMjio891wQWisAwMSEwrlzCocPpxj8IiIiIiIiIipjLHVIRERERJRlaCjg\nBr0MrSUDjIiIiIiIiIjKFwNfRERERERZJidVUT8nIiIiIiIiovLAwBcRERERUZZoNHc5w3w/JyIi\nIiIiIqLywMAXEREREVGWwUEbSmUGuZTSGBy012mJiIiIiIiIiKgQwfVeACIiIiKictPTo3H4cApD\nQwFMTipEoxL06ulhxhcRERERERFROWPgi4iIiIgoh54ejUOHUuu9GERERERERERUBJY6JCIiIiIi\nIiIiIiIioqrAwBcRERERERERERERERFVBQa+iIiIiIiIiIiIiIiIqCow8EVERERERERERERERERV\ngYEvIiIiIiIiIiIiIiIiqgoMfBEREREREREREREREVFVYOCLiIiIiIiIiIiIiIiIqgIDX0RERERE\nRERERERERFQVGPgiIiIiIiIiIiIiIiKiqsDAFxEREREREREREREREVUFBr6IiIiIiIiIiIiIiIio\nKjDwRURERERERERERERERFWBgS8iIiIiIiIiIiIiIiKqCgx8ERERERERERERERERUVVg4IuIiIiI\niIiIiIiIiIiqAgNfREREREREREREREREVBUY+CIiIiIiIiIiIiIiIqKqsKLA1/z8PJ5++mkcPnwY\nTz75JK5du7boNS+++CI+85nP4Pd+7/fws58W7shmAAATOUlEQVT9LON3P/nJT/Cnf/qn7v//5je/\nwaFDh/DEE0/g7//+71eySERERERERERERERERLTBrSjw9fzzz2PHjh147rnn8Oijj+Lb3/52xu/H\nx8fx/e9/Hy+88AL+8R//EX/7t3+LZDIJAPjLv/xLPPPMM3Acx3391772NTzzzDN4/vnn8fbbb+Pk\nyZPX8ZWIiIiIiIiIiIiIiIhoI1pR4Outt97CPffcAwC499578frrr2f8/tixYzhw4ABqa2sRiUSw\nZcsWvPfeewCAW2+9FV//+tfd187MzCCZTGLLli1QSuHuu+/G0NDQCr8OERERERERERERERERbVTB\n5V5w5MgRfO9738v4WVtbGyKRCACgoaEB09PTGb+fmZlxf29eMzMzAwB4+OGH8cYbb2S8trGxMeO1\nw8PDK/gqREREREREREREREREtJEtG/g6dOgQDh06lPGzL33pS4jH4wCAeDyOpqamjN83Nja6vzev\n8QfClntt9vtla2mpRzAYWG7RiWgNdXTkPsaJiModxy8iqlQcv4ioknEMI6JKxfGLqPwtG/jK5dZb\nb8UvfvEL7N+/H7/85S9x8ODBjN/v378fzz77LBKJBJLJJD744APs2LEj53s1Nv7/9u42ts66/uP4\np2zdxtqOAqmaIE2EpJGYDLclxkCH4jCoCULYytrGGqIxkVjECXULMZsYEBZTs8Q4pkYmGbK6ORMx\nJhLvwhxbEBcHomLiQkCmIRW6uFPGunXn/2ChseymtPzXmx+v17NzXddOv+fBvkn77tWrPrW1tXnh\nhRdy8cUXZ9euXenu7j7j1x8YeHUiYwNnSVNTQ/r7D419IcA0Y38BM5X9BcxkdhgwU9lfMH2cKUJP\nKHx1dHRk9erV6ejoSG1tbXp7e5MkmzdvTnNzc5YtW5aurq50dnamWq1m1apVmTt37mnf76677sod\nd9yR4eHhtLa25vLLL5/IWAAAAAAAALyN1VSr1epUDzFeqjpML37bBZip7C9gprK/gJnMDgNmKvsL\npo8z3fF1ziTOAQAAAAAAAGeN8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghf\nAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwB\nAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUA\nAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAA\nAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAA\nAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAA\nAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAA\nAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAA\nAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQhNlTPQAATJUDB2qye/esHDxY\nk8bGaq64YjgXXVSd6rEAAAAAgAma0B1fr732Wm699dZ0dnbmc5/7XF555ZWTrtm2bVtuvPHG3HTT\nTfnd73436tyvfvWr3H777aNeX3PNNenq6kpXV1f+8Ic/TGQsAHjTDhyoycMPz85zz52TgYGaPPfc\nOXn44dk5cKBmqkcDAAAAACZoQnd8bd26NS0tLbn11lvzi1/8Ihs3bsxXv/rVkfP9/f3ZsmVLduzY\nkSNHjqSzszNXXnll5syZk7vvvju7du3KZZddNnL9M888k56enlx77bVv/RMBwJuwe/esVKujI1e1\neuIOsLa2Y1M0FQAAAADwVkzojq+9e/dm6dKlSZKrrroqe/bsGXX+6aefzqJFizJnzpw0NDSkubk5\nzz77bJJk8eLF+drXvjbq+r/85S/ZsWNHOjs7c9999+XYMT9wBODsOnjw1Hd2ne44AAAAADD9jXnH\n1/bt2/Pggw+OOnbhhRemoaEhSVJXV5dDhw6NOl+pVEbOv35NpVJJknziE5/IE088Mer6K6+8Mtdc\nc03e/e53Z926denr68unPvWpiX0iAHgTGhurGRg4OXI1NnrGFwAAAADMVGOGr7a2trS1tY061t3d\nncHBwSTJ4OBgFixYMOp8fX39yPnXr/nfEPZGy5cvH3mPZcuW5dFHHz3jTOefPz+zZ88aa3RgEjU1\nnf7/OExH112XPPBAUv2fzlVTc+J4U9PUzcXks7+Amcr+AmYyOwyYqewvmP4m9IyvxYsX57HHHsvC\nhQuzc+fOLFmyZNT5hQsXZsOGDTly5EiGhoayf//+tLS0nPK9qtVqPvnJT6avry/vete7smfPnrzv\nfe8749cfGHh1ImMDZ0lTU0P6+w+NfSFMI/PmJddff+KZXgcP1qSxsZorrhjOvHnV9PdP9XRMFvsL\nmKnsL2Ams8OAmcr+gunjTBF6QuGro6Mjq1evTkdHR2pra9Pb25sk2bx5c5qbm7Ns2bJ0dXWls7Mz\n1Wo1q1atyty5c0/5XjU1Nbn77rvT3d2defPm5dJLL81NN900kbEAYFwuuqiatjbPlQQAAACAUtRU\nq9UZ9zATVR2mF7/tAsxU9hcwU9lfwExmhwEzlf0F08eZ7vg6ZxLnAAAAAAAAgLNG+AIAAAAAAKAI\nwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCII\nXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8\nAQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAF\nAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcA\nAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAA\nAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAA\nAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAA\nAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAA\nAABFEL4AAAAAAAAogvAFAAAAAABAEWZP5B+99tpr6enpycsvv5y6urqsX78+F1xwwahrtm3blr6+\nvsyePTu33HJLrr766hw6dCg9PT2pVCo5evRo1qxZk0WLFmXfvn255557MmvWrLS2tqa7u/v/5cMB\nAAAAAADw9jGhO762bt2alpaWPPzww7nhhhuycePGUef7+/uzZcuW9PX15Qc/+EG+9a1vZWhoKJs3\nb84HP/jBPPTQQ7n33nvz9a9/PUmybt269Pb2ZuvWrXnqqafy17/+9a1/MgAAAAAAAN5WJhS+9u7d\nm6VLlyZJrrrqquzZs2fU+aeffjqLFi3KnDlz0tDQkObm5jz77LO5+eab097eniQZHh7O3LlzU6lU\nMjQ0lObm5tTU1KS1tTW7d+9+ix8LAAAAAACAt5sx/9Th9u3b8+CDD446duGFF6ahoSFJUldXl0OH\nDo06X6lURs6/fk2lUsmCBQuSnLgjrKenJ3feeWcqlUrq6+tHXfvPf/5z4p8IAAAAAACAt6Uxw1db\nW1va2tpGHevu7s7g4GCSZHBwcCRova6+vn7k/OvXvB7C/v73v+fLX/5yvvKVr+QDH/hAKpXKSde+\n8f3e6Pzz52f27FljjQ5MoqamhrEvApiG7C9gprK/gJnMDgNmKvsLpr8xw9epLF68OI899lgWLlyY\nnTt3ZsmSJaPOL1y4MBs2bMiRI0cyNDSU/fv3p6WlJf/4xz9y2223ZcOGDXnve9+b5EQkq62tzQsv\nvJCLL744u3btSnd39xm//sDAqxMZGzhLmpoa0t9/aOwLAaYZ+wuYqewvYCazw4CZyv6C6eNMEXpC\n4aujoyOrV69OR0dHamtr09vbmyTZvHlzmpubs2zZsnR1daWzszPVajWrVq3K3Llz09vbm6Ghodxz\nzz1JTkSv+++/P3fddVfuuOOODA8Pp7W1NZdffvlExgIAAAAAAOBtrKZarVaneojxUtVhevHbLsBM\nZX8BM5X9BcxkdhgwU9lfMH2c6Y6vcyZxDgAAAAAAADhrhC8AAAAAAACKIHwBAAAAAABQBOELAAAA\nAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAA\nAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAA\nACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAA\noAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACA\nIghfAAAAAAAAFKGmWq1Wp3oIAAAAAAAAeKvc8QUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOEL\nAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFzCmp556Kl1dXScd/+1vf5vly5dn5cqV2bZtW5Lk\n6NGjuf3229Pe3p7Ozs7s379/sscFGHG6/ZUkhw8fTnt7+8ieOn78eNauXZuVK1emq6srzz///GSO\nCnCS8eywo0ePpqenJ52dnVmxYkV+85vfTOaoAKOMZ3+97uWXX86HPvQh30MCU2q8++u73/1uVq5c\nmRtvvDHbt2+frDGBMcye6gGA6e373/9+HnnkkZx77rmjjh89ejT33ntvfvKTn+Tcc89NR0dHPvKR\nj2Tfvn05duxY+vr68vjjj2fDhg359re/PUXTA29np9tfSfLnP/8569aty0svvTRy7Ne//nWGhoby\n4x//OPv27ct9992X+++/fzJHBhgx3h32yCOPpLGxMd/85jdz8ODB3HDDDVm2bNlkjgyQZPz7Kznx\n/eXatWszb968yRoT4CTj3V9PPPFE/vSnP2Xr1q05fPhwHnjggckcFzgDd3wBZ9Tc3HzKcLV///40\nNzfnvPPOy5w5c7JkyZI8+eSTec973pPh4eEcP348lUols2fr68DUON3+SpKhoaF85zvfySWXXDJy\nbO/evVm6dGmS5P3vf3+eeeaZSZkT4FTGu8M+9rGP5bbbbkuSVKvVzJo1a1LmBHij8e6vJFm/fn3a\n29vzjne8YzJGBDil8e6vXbt2paWlJV/4whfy+c9/Ph/+8IcnaVJgLH4iDZzRtddemxdffPGk45VK\nJQ0NDSOv6+rqUqlUMn/+/Bw4cCAf//jHMzAwkE2bNk3muAAjTre/kmTJkiUnHatUKqmvrx95PWvW\nrBw7dkzAB6bEeHdYXV1dkhO77Itf/GK+9KUvndX5AE5nvPvrpz/9aS644IIsXbo03/ve9872eACn\nNd79NTAwkH/961/ZtGlTXnzxxdxyyy355S9/mZqamrM9KjAGd3wBE1JfX5/BwcGR14ODg2loaMgP\nf/jDtLa25tFHH83PfvazrFmzJkeOHJnCSQHenDfutePHj4tewIzy73//O5/+9Kdz/fXX57rrrpvq\ncQDelB07dmT37t3p6urK3/72t6xevTr9/f1TPRbAmBobG9Pa2po5c+bkkksuydy5c/PKK69M9VhA\nhC9ggi699NI8//zzOXjwYIaGhvLHP/4xixYtyoIFC0buBDvvvPNy7NixDA8PT/G0AGNbvHhxdu7c\nmSTZt29fWlpapngigDfvP//5Tz7zmc+kp6cnK1asmOpxAN60H/3oR3nooYeyZcuWXHbZZVm/fn2a\nmpqmeiyAMS1ZsiS///3vU61W89JLL+Xw4cNpbGyc6rGA+FOHwDj9/Oc/z6uvvpqVK1dmzZo1+exn\nP5tqtZrly5fnne98Z26++ebceeed6ezszNGjR7Nq1arMnz9/qscGGLW/TuWjH/1oHn/88bS3t6da\nreYb3/jGJE8IcHpj7bBNmzblv//9bzZu3JiNGzcmOfGA9nnz5k3mmAAnGWt/AUxXY+2vq6++Ok8+\n+WRWrFiRarWatWvXes4qTBM11Wq1OtVDAAAAAAAAwFvlTx0CAAAAAABQBOELAAAAAACAIghfAAAA\nAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACK8H9dl4+0\nTpgCWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reg = linear_model.Ridge (alpha = .5)\n", + "reg.fit(X_train, y_train) \n", + "reg.coef_\n", + "\n", + "\n", + "df_coeff = pd.DataFrame(columns=cols\n", + " , data=[list(reg.coef_)]\n", + " , index=[\"ridge regression coefficients\"])\n", + "\n", + "\n", + "\n", + "# predict all examples and compare to actuals\n", + "plt.scatter(reg.predict(X_test), y_test)\n", + "plt.xlabel(\"predicted\")\n", + "plt.ylabel(\"actual\")\n", + "plt.title(\"predicted v actual close_bid\")\n", + "plt.show()\n", + "\n", + "\n", + "df_coeff.sort_values(by='ridge regression coefficients', axis=1)\n", + "\n", + "print(\"mse train all feature: \", np.mean((reg.predict(X_train) - y_train) ** 2))\n", + "print(\"mse test all feature: \", np.mean((reg.predict(X_test) - y_test) ** 2))\n", + "\n", + "plt.figure(figsize=(30,10))\n", + "plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train, c='b', s=40, alpha=0.5)\n", + "plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test, c='g', s=40)\n", + "plt.hlines(y=0, xmin=1.07, xmax = 1.17)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run LSTM Model to predict close bid in next 15 min\n", + "- scale features to range 0-1 to speed up convergence\n", + "- set a larger lookback windows, so LSTM has something to work with and can take a decision which part of history to prioritise\n", + "- todo: make it do error on the sign- for that need to get the sign between next and X[bid]\n", + "- 1% test size, 10% of 99% validation size\n", + "- try to also predict direction. y_pred - X_test close versus y_act - X_test close" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict sign only" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "hideCode": false, + "hideOutput": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if runLSTMBinary:\n", + " # Scale and create datasets\n", + " idx_close_bid = df.columns.tolist().index('close_bid')\n", + " df_np = df.values.astype('float32')\n", + "\n", + " # Scale the examples\n", + " df_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " df_scaled = df_scaler.fit_transform(df_np)\n", + "\n", + " # Scale the actuals columns, but not the real values\n", + " y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " t_y = df['close_bid'].values.astype('float32')\n", + " t_y = np.reshape(t_y, (-1, 1))\n", + " y_scaler = y_scaler.fit(t_y) # create a fitted y scaler\n", + "\n", + " # Set look_back to 20 which is 5 hours (15min*20)\n", + " X, y_orig = create_training_set(df_scaled, nb_lookback_rows=40)\n", + " #y_return_sign = np.sign(y[:,idx_close_bid] - X[:,0,idx_close_bid]) # these are the actuals\n", + " y_return_sign = y_orig[:,idx_close_bid] - X[:,0,idx_close_bid] # these are the actuals\n", + " y = np.sign(y_return_sign) # an array of -1, 1 and 0\n", + "\n", + " y = pd.get_dummies(y).values.astype('float32')\n", + "\n", + "\n", + "\n", + " # need to create a binarised vector, one positive class, one negative class\n", + " #y_pred_return_sign = # comes from model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict exact price value" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " # Scale and create datasets\n", + " idx_close_bid = df.columns.tolist().index('close_bid')\n", + " #idx_high = df.columns.tolist().index('high_bid')\n", + " #idx_low = df.columns.tolist().index('low_bid')\n", + " df_np = df.values.astype('float32')\n", + "\n", + " # Scale the examples\n", + " df_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " df_scaled = df_scaler.fit_transform(df_np)\n", + "\n", + " # Scale the actuals columns, but not the real values\n", + " y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " t_y = df['close_bid'].values.astype('float32')\n", + " t_y = np.reshape(t_y, (-1, 1))\n", + " y_scaler = y_scaler.fit(t_y) # create a fitted y scaler\n", + "\n", + " # Set look_back to 20 which is 5 hours (15min*20)\n", + " X, y = create_training_set(df_scaled, nb_lookback_rows=40)\n", + " y = y[:,idx_close_bid]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10163, 40, 20)\n", + "(10163,)\n", + "(10061, 40, 20)\n", + "(102, 40, 20)\n", + "(10061,)\n", + "(102,)\n" + ] + } + ], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 99% training and val (10% of those 99%) / 1% test set\n", + "import sklearn\n", + "sklearn.__version__\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.01, shuffle=False) \n", + "check_shape(X, y, X_train, X_test, y_train, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.backend import categorical_crossentropy\n", + "# ensure there is a 1st derivative! else get none error\n", + "# it will check in which direction this error goesn down and walk there\n", + "# maybe it has issue because sign is not continuous...\n", + "# just use categorical crossentropy, it does exactly what i need much better\n", + "def ret_direction_error(y_true, y_pred):\n", + " \n", + " # this guy puts everything into numpy before working on it https://stackoverflow.com/questions/46411573/keras-custom-loss-function-not-working\n", + " \n", + " out = categorical_crossentropy(y_true, y_pred)\n", + " \n", + " return out\n", + " \n", + " # y_true is y_train, y_pred is what the model gives me\n", + " # so should set y_true to the return sign? and stop training on absolute value, but make sure sign is right" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_6 (LSTM) (None, 40, 40) 9760 \n", + "_________________________________________________________________\n", + "lstm_7 (LSTM) (None, 40, 20) 4880 \n", + "_________________________________________________________________\n", + "lstm_8 (LSTM) (None, 40, 10) 1240 \n", + "_________________________________________________________________\n", + "lstm_9 (LSTM) (None, 40, 10) 840 \n", + "_________________________________________________________________\n", + "dropout_2 (Dropout) (None, 40, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 5) 320 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 5) 30 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 1) 6 \n", + "=================================================================\n", + "Total params: 17,076\n", + "Trainable params: 17,076\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "import keras.backend as K\n", + "import tensorflow as tf\n", + "\n", + "# create a small LSTM network\n", + "# shoudl first input number match nb of lookback rows?\n", + "model = Sequential()\n", + "model.add(LSTM(40, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)) # does not take into account nb examples\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True)) # a second layer of 10 really helps get the loos to 7 by 10th epoch\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(5, return_sequences=False))\n", + "model.add(Dense(5, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "# for price prediction\n", + "if not runLSTMBinary:\n", + " model.add(Dense(1, kernel_initializer='uniform', activation='relu')) # this compresses everything to one output in the final layer\n", + " #model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mae', 'mse', 'accuracy'])\n", + " model.compile(loss='mse', optimizer='adam', metrics=['mae', 'mse', 'accuracy'])\n", + " \n", + " \n", + "# for direction prediction\n", + "if runLSTMBinary:\n", + " # need a softmax output for category predictions\n", + " model.add(Dense(3, activation=\"softmax\")) \n", + "\n", + " # loss: optimises this - https://keras.io/losses/\n", + " # loss will show up in the history under 'loss'\n", + " model.compile(loss=ret_direction_error, optimizer='adam', metrics=['mae', 'mse', ret_direction_error, 'accuracy'])\n", + " \n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"500_epochs_40_lookback_pca_unshuffled_binary\"\n", + "sim_desc = \"added directional errors checking and pca as feature with unshuffled data\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.06875, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.06875 to 0.01363, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.01363 to 0.01334, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.01334 to 0.01233, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "Epoch 00006: val_mean_squared_error improved from 0.01233 to 0.01223, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00007: val_mean_squared_error improved from 0.01223 to 0.00177, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error improved from 0.00177 to 0.00150, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00009: val_mean_squared_error improved from 0.00150 to 0.00090, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00010: val_mean_squared_error improved from 0.00090 to 0.00043, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00043 to 0.00028, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "Epoch 00018: val_mean_squared_error improved from 0.00028 to 0.00018, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00019: val_mean_squared_error improved from 0.00018 to 0.00017, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error improved from 0.00017 to 0.00012, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error improved from 0.00012 to 0.00011, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error improved from 0.00011 to 0.00008, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error improved from 0.00008 to 0.00008, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00043: val_mean_squared_error improved from 0.00008 to 0.00007, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error improved from 0.00007 to 0.00007, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error improved from 0.00007 to 0.00006, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00062: val_mean_squared_error improved from 0.00005 to 0.00004, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error did not improve\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error did not improve\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error did not improve\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error did not improve\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error did not improve\n", + "Epoch 00100: val_mean_squared_error did not improve\n", + "Epoch 00101: val_mean_squared_error did not improve\n", + "Epoch 00102: val_mean_squared_error did not improve\n", + "Epoch 00103: val_mean_squared_error did not improve\n", + "Epoch 00104: val_mean_squared_error did not improve\n", + "Epoch 00105: val_mean_squared_error did not improve\n", + "Epoch 00106: val_mean_squared_error improved from 0.00004 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00107: val_mean_squared_error did not improve\n", + "Epoch 00108: val_mean_squared_error did not improve\n", + "Epoch 00109: val_mean_squared_error did not improve\n", + "Epoch 00110: val_mean_squared_error did not improve\n", + "Epoch 00111: val_mean_squared_error did not improve\n", + "Epoch 00112: val_mean_squared_error did not improve\n", + "Epoch 00113: val_mean_squared_error did not improve\n", + "Epoch 00114: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00115: val_mean_squared_error did not improve\n", + "Epoch 00116: val_mean_squared_error did not improve\n", + "Epoch 00117: val_mean_squared_error did not improve\n", + "Epoch 00118: val_mean_squared_error did not improve\n", + "Epoch 00119: val_mean_squared_error did not improve\n", + "Epoch 00120: val_mean_squared_error did not improve\n", + "Epoch 00121: val_mean_squared_error did not improve\n", + "Epoch 00122: val_mean_squared_error did not improve\n", + "Epoch 00123: val_mean_squared_error did not improve\n", + "Epoch 00124: val_mean_squared_error did not improve\n", + "Epoch 00125: val_mean_squared_error did not improve\n", + "Epoch 00126: val_mean_squared_error did not improve\n", + "Epoch 00127: val_mean_squared_error did not improve\n", + "Epoch 00128: val_mean_squared_error did not improve\n", + "Epoch 00129: val_mean_squared_error did not improve\n", + "Epoch 00130: val_mean_squared_error did not improve\n", + "Epoch 00131: val_mean_squared_error did not improve\n", + "Epoch 00132: val_mean_squared_error did not improve\n", + "Epoch 00133: val_mean_squared_error did not improve\n", + "Epoch 00134: val_mean_squared_error did not improve\n", + "Epoch 00135: val_mean_squared_error did not improve\n", + "Epoch 00136: val_mean_squared_error did not improve\n", + "Epoch 00137: val_mean_squared_error did not improve\n", + "Epoch 00138: val_mean_squared_error did not improve\n", + "Epoch 00139: val_mean_squared_error did not improve\n", + "Epoch 00140: val_mean_squared_error did not improve\n", + "Epoch 00141: val_mean_squared_error did not improve\n", + "Epoch 00142: val_mean_squared_error did not improve\n", + "Epoch 00143: val_mean_squared_error did not improve\n", + "Epoch 00144: val_mean_squared_error did not improve\n", + "Epoch 00145: val_mean_squared_error did not improve\n", + "Epoch 00146: val_mean_squared_error did not improve\n", + "Epoch 00147: val_mean_squared_error did not improve\n", + "Epoch 00148: val_mean_squared_error did not improve\n", + "Epoch 00149: val_mean_squared_error did not improve\n", + "Epoch 00150: val_mean_squared_error did not improve\n", + "Epoch 00151: val_mean_squared_error did not improve\n", + "Epoch 00152: val_mean_squared_error did not improve\n", + "Epoch 00153: val_mean_squared_error did not improve\n", + "Epoch 00154: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00155: val_mean_squared_error did not improve\n", + "Epoch 00156: val_mean_squared_error did not improve\n", + "Epoch 00157: val_mean_squared_error did not improve\n", + "Epoch 00158: val_mean_squared_error did not improve\n", + "Epoch 00159: val_mean_squared_error did not improve\n", + "Epoch 00160: val_mean_squared_error did not improve\n", + "Epoch 00161: val_mean_squared_error did not improve\n", + "Epoch 00162: val_mean_squared_error did not improve\n", + "Epoch 00163: val_mean_squared_error did not improve\n", + "Epoch 00164: val_mean_squared_error did not improve\n", + "Epoch 00165: val_mean_squared_error did not improve\n", + "Epoch 00166: val_mean_squared_error did not improve\n", + "Epoch 00167: val_mean_squared_error did not improve\n", + "Epoch 00168: val_mean_squared_error did not improve\n", + "Epoch 00169: val_mean_squared_error did not improve\n", + "Epoch 00170: val_mean_squared_error did not improve\n", + "Epoch 00171: val_mean_squared_error did not improve\n", + "Epoch 00172: val_mean_squared_error did not improve\n", + "Epoch 00173: val_mean_squared_error did not improve\n", + "Epoch 00174: val_mean_squared_error did not improve\n", + "Epoch 00175: val_mean_squared_error did not improve\n", + "Epoch 00176: val_mean_squared_error did not improve\n", + "Epoch 00177: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00178: val_mean_squared_error did not improve\n", + "Epoch 00179: val_mean_squared_error did not improve\n", + "Epoch 00180: val_mean_squared_error did not improve\n", + "Epoch 00181: val_mean_squared_error did not improve\n", + "Epoch 00182: val_mean_squared_error did not improve\n", + "Epoch 00183: val_mean_squared_error did not improve\n", + "Epoch 00184: val_mean_squared_error did not improve\n", + "Epoch 00185: val_mean_squared_error did not improve\n", + "Epoch 00186: val_mean_squared_error did not improve\n", + "Epoch 00187: val_mean_squared_error did not improve\n", + "Epoch 00188: val_mean_squared_error did not improve\n", + "Epoch 00189: val_mean_squared_error did not improve\n", + "Epoch 00190: val_mean_squared_error did not improve\n", + "Epoch 00191: val_mean_squared_error did not improve\n", + "Epoch 00192: val_mean_squared_error did not improve\n", + "Epoch 00193: val_mean_squared_error did not improve\n", + "Epoch 00194: val_mean_squared_error did not improve\n", + "Epoch 00195: val_mean_squared_error did not improve\n", + "Epoch 00196: val_mean_squared_error did not improve\n", + "Epoch 00197: val_mean_squared_error did not improve\n", + "Epoch 00198: val_mean_squared_error did not improve\n", + "Epoch 00199: val_mean_squared_error did not improve\n", + "Epoch 00200: val_mean_squared_error did not improve\n", + "Epoch 00201: val_mean_squared_error did not improve\n", + "Epoch 00202: val_mean_squared_error did not improve\n", + "Epoch 00203: val_mean_squared_error did not improve\n", + "Epoch 00204: val_mean_squared_error did not improve\n", + "Epoch 00205: val_mean_squared_error did not improve\n", + "Epoch 00206: val_mean_squared_error did not improve\n", + "Epoch 00207: val_mean_squared_error did not improve\n", + "Epoch 00208: val_mean_squared_error did not improve\n", + "Epoch 00209: val_mean_squared_error did not improve\n", + "Epoch 00210: val_mean_squared_error did not improve\n", + "Epoch 00211: val_mean_squared_error did not improve\n", + "Epoch 00212: val_mean_squared_error did not improve\n", + "Epoch 00213: val_mean_squared_error did not improve\n", + "Epoch 00214: val_mean_squared_error did not improve\n", + "Epoch 00215: val_mean_squared_error did not improve\n", + "Epoch 00216: val_mean_squared_error did not improve\n", + "Epoch 00217: val_mean_squared_error did not improve\n", + "Epoch 00218: val_mean_squared_error did not improve\n", + "Epoch 00219: val_mean_squared_error did not improve\n", + "Epoch 00220: val_mean_squared_error did not improve\n", + "Epoch 00221: val_mean_squared_error did not improve\n", + "Epoch 00222: val_mean_squared_error did not improve\n", + "Epoch 00223: val_mean_squared_error did not improve\n", + "Epoch 00224: val_mean_squared_error did not improve\n", + "Epoch 00225: val_mean_squared_error did not improve\n", + "Epoch 00226: val_mean_squared_error did not improve\n", + "Epoch 00227: val_mean_squared_error did not improve\n", + "Epoch 00228: val_mean_squared_error did not improve\n", + "Epoch 00229: val_mean_squared_error did not improve\n", + "Epoch 00230: val_mean_squared_error did not improve\n", + "Epoch 00231: val_mean_squared_error did not improve\n", + "Epoch 00232: val_mean_squared_error did not improve\n", + "Epoch 00233: val_mean_squared_error did not improve\n", + "Epoch 00234: val_mean_squared_error did not improve\n", + "Epoch 00235: val_mean_squared_error did not improve\n", + "Epoch 00236: val_mean_squared_error did not improve\n", + "Epoch 00237: val_mean_squared_error did not improve\n", + "Epoch 00238: val_mean_squared_error did not improve\n", + "Epoch 00239: val_mean_squared_error did not improve\n", + "Epoch 00240: val_mean_squared_error did not improve\n", + "Epoch 00241: val_mean_squared_error did not improve\n", + "Epoch 00242: val_mean_squared_error did not improve\n", + "Epoch 00243: val_mean_squared_error did not improve\n", + "Epoch 00244: val_mean_squared_error did not improve\n", + "Epoch 00245: val_mean_squared_error did not improve\n", + "Epoch 00246: val_mean_squared_error did not improve\n", + "Epoch 00247: val_mean_squared_error did not improve\n", + "Epoch 00248: val_mean_squared_error did not improve\n", + "Epoch 00249: val_mean_squared_error did not improve\n", + "Epoch 00250: val_mean_squared_error did not improve\n", + "Epoch 00251: val_mean_squared_error did not improve\n", + "Epoch 00252: val_mean_squared_error did not improve\n", + "Epoch 00253: val_mean_squared_error did not improve\n", + "Epoch 00254: val_mean_squared_error did not improve\n", + "Epoch 00255: val_mean_squared_error did not improve\n", + "Epoch 00256: val_mean_squared_error did not improve\n", + "Epoch 00257: val_mean_squared_error did not improve\n", + "Epoch 00258: val_mean_squared_error did not improve\n", + "Epoch 00259: val_mean_squared_error did not improve\n", + "Epoch 00260: val_mean_squared_error did not improve\n", + "Epoch 00261: val_mean_squared_error did not improve\n", + "Epoch 00262: val_mean_squared_error did not improve\n", + "Epoch 00263: val_mean_squared_error did not improve\n", + "Epoch 00264: val_mean_squared_error did not improve\n", + "Epoch 00265: val_mean_squared_error did not improve\n", + "Epoch 00266: val_mean_squared_error did not improve\n", + "Epoch 00267: val_mean_squared_error did not improve\n", + "Epoch 00268: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00269: val_mean_squared_error did not improve\n", + "Epoch 00270: val_mean_squared_error did not improve\n", + "Epoch 00271: val_mean_squared_error did not improve\n", + "Epoch 00272: val_mean_squared_error did not improve\n", + "Epoch 00273: val_mean_squared_error did not improve\n", + "Epoch 00274: val_mean_squared_error did not improve\n", + "Epoch 00275: val_mean_squared_error did not improve\n", + "Epoch 00276: val_mean_squared_error did not improve\n", + "Epoch 00277: val_mean_squared_error did not improve\n", + "Epoch 00278: val_mean_squared_error did not improve\n", + "Epoch 00279: val_mean_squared_error did not improve\n", + "Epoch 00280: val_mean_squared_error did not improve\n", + "Epoch 00281: val_mean_squared_error did not improve\n", + "Epoch 00282: val_mean_squared_error did not improve\n", + "Epoch 00283: val_mean_squared_error did not improve\n", + "Epoch 00284: val_mean_squared_error did not improve\n", + "Epoch 00285: val_mean_squared_error did not improve\n", + "Epoch 00286: val_mean_squared_error did not improve\n", + "Epoch 00287: val_mean_squared_error did not improve\n", + "Epoch 00288: val_mean_squared_error did not improve\n", + "Epoch 00289: val_mean_squared_error did not improve\n", + "Epoch 00290: val_mean_squared_error did not improve\n", + "Epoch 00291: val_mean_squared_error did not improve\n", + "Epoch 00292: val_mean_squared_error did not improve\n", + "Epoch 00293: val_mean_squared_error did not improve\n", + "Epoch 00294: val_mean_squared_error did not improve\n", + "Epoch 00295: val_mean_squared_error did not improve\n", + "Epoch 00296: val_mean_squared_error did not improve\n", + "Epoch 00297: val_mean_squared_error did not improve\n", + "Epoch 00298: val_mean_squared_error did not improve\n", + "Epoch 00299: val_mean_squared_error did not improve\n", + "Epoch 00300: val_mean_squared_error did not improve\n", + "Epoch 00301: val_mean_squared_error did not improve\n", + "Epoch 00302: val_mean_squared_error did not improve\n", + "Epoch 00303: val_mean_squared_error did not improve\n", + "Epoch 00304: val_mean_squared_error did not improve\n", + "Epoch 00305: val_mean_squared_error did not improve\n", + "Epoch 00306: val_mean_squared_error did not improve\n", + "Epoch 00307: val_mean_squared_error did not improve\n", + "Epoch 00308: val_mean_squared_error did not improve\n", + "Epoch 00309: val_mean_squared_error did not improve\n", + "Epoch 00310: val_mean_squared_error did not improve\n", + "Epoch 00311: val_mean_squared_error did not improve\n", + "Epoch 00312: val_mean_squared_error did not improve\n", + "Epoch 00313: val_mean_squared_error did not improve\n", + "Epoch 00314: val_mean_squared_error did not improve\n", + "Epoch 00315: val_mean_squared_error did not improve\n", + "Epoch 00316: val_mean_squared_error did not improve\n", + "Epoch 00317: val_mean_squared_error did not improve\n", + "Epoch 00318: val_mean_squared_error did not improve\n", + "Epoch 00319: val_mean_squared_error did not improve\n", + "Epoch 00320: val_mean_squared_error did not improve\n", + "Epoch 00321: val_mean_squared_error did not improve\n", + "Epoch 00322: val_mean_squared_error did not improve\n", + "Epoch 00323: val_mean_squared_error did not improve\n", + "Epoch 00324: val_mean_squared_error did not improve\n", + "Epoch 00325: val_mean_squared_error did not improve\n", + "Epoch 00326: val_mean_squared_error did not improve\n", + "Epoch 00327: val_mean_squared_error did not improve\n", + "Epoch 00328: val_mean_squared_error did not improve\n", + "Epoch 00329: val_mean_squared_error did not improve\n", + "Epoch 00330: val_mean_squared_error did not improve\n", + "Epoch 00331: val_mean_squared_error did not improve\n", + "Epoch 00332: val_mean_squared_error did not improve\n", + "Epoch 00333: val_mean_squared_error did not improve\n", + "Epoch 00334: val_mean_squared_error did not improve\n", + "Epoch 00335: val_mean_squared_error did not improve\n", + "Epoch 00336: val_mean_squared_error did not improve\n", + "Epoch 00337: val_mean_squared_error did not improve\n", + "Epoch 00338: val_mean_squared_error did not improve\n", + "Epoch 00339: val_mean_squared_error did not improve\n", + "Epoch 00340: val_mean_squared_error did not improve\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 21\u001b[0m \"\"\"\n\u001b[1;32m 22\u001b[0m \u001b[0mcallbacks_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mcheckpoint\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mget_ipython\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmagic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'time err = model.fit(X_train, y_train, epochs=epoch, batch_size=100, verbose=0, callbacks=callbacks_list, validation_split=0.1)'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py\u001b[0m in \u001b[0;36mmagic\u001b[0;34m(self, arg_s)\u001b[0m\n\u001b[1;32m 2156\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0marg_s\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpartition\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m' '\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2157\u001b[0m \u001b[0mmagic_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlstrip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mprefilter\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mESC_MAGIC\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2158\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmagic_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2159\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2160\u001b[0m \u001b[1;31m#-------------------------------------------------------------------------\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py\u001b[0m in \u001b[0;36mrun_line_magic\u001b[0;34m(self, magic_name, line)\u001b[0m\n\u001b[1;32m 2077\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'local_ns'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msys\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getframe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstack_depth\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mf_locals\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2078\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbuiltin_trap\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2079\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2080\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2081\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\magic.py\u001b[0m in \u001b[0;36m\u001b[0;34m(f, *a, **k)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[1;31m# but it's overkill for just that one bit of state.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mmagic_deco\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 188\u001b[0;31m \u001b[0mcall\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mlambda\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 189\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\magics\\execution.py\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 1178\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1179\u001b[0m \u001b[0mst\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1180\u001b[0;31m \u001b[0mexec\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlocal_ns\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1181\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1182\u001b[0m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\models.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 862\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 863\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 864\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 865\u001b[0m def evaluate(self, x, y, batch_size=32, verbose=1,\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 1428\u001b[0m \u001b[0mval_f\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mval_f\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mval_ins\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mval_ins\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1429\u001b[0m \u001b[0mcallback_metrics\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcallback_metrics\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1430\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 1431\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1432\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m32\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_fit_loop\u001b[0;34m(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)\u001b[0m\n\u001b[1;32m 1077\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'size'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_ids\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1078\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1079\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1080\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1081\u001b[0m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2266\u001b[0m updated = session.run(self.outputs + [self.updates_op],\n\u001b[1;32m 2267\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2268\u001b[0;31m **self.session_kwargs)\n\u001b[0m\u001b[1;32m 2269\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mupdated\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2270\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 895\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1124\u001b[0;31m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1319\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1320\u001b[0m return self._do_call(_run_fn, self._session, feeds, fetches, targets,\n\u001b[0;32m-> 1321\u001b[0;31m options, run_metadata)\n\u001b[0m\u001b[1;32m 1322\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1323\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1325\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1326\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1327\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1328\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1329\u001b[0m \u001b[0mmessage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1304\u001b[0m return tf_session.TF_Run(session, options,\n\u001b[1;32m 1305\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1306\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1307\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1308\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msession\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training. Cant handel custom functions for errors\n", + "from keras.callbacks import ModelCheckpoint\n", + "epoch = 500\n", + "\n", + "# write custom errors as string, they seem to refer to the key in err.history dict\n", + "if not runLSTMBinary:\n", + " #checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_absolute_error', verbose=1, save_best_only=True, mode='min')\n", + " checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "if runLSTMBinary:\n", + " checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_ret_direction_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "\"\"\"\n", + "it seems batch size controls convergence speed a lot! Batch size tells how many examples are propagated through the network.\n", + "Weights are adjusted based on results with these examples. This is useful if the full dataset takes too much memory\n", + "It also speeds up training, as you will converge quicker (dont have to wait for a full iteration of each example to adjust weights).\n", + "\n", + "With more features to train on, convergence seems slower. To get to the same level, i take more epochs.\n", + "\"\"\"\n", + "callbacks_list = [checkpoint]\n", + "%time err = model.fit(X_train, y_train, epochs=epoch, batch_size=100, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check testing errors\n", + "- it converges to a low number very fast - how can i get more detail\n", + "- but if i split using cross val split with random state, it takes ages to converge. Maybe i should only allow training on the past, as the model will always be used to predict the future. So training on random parts of the timeseries to predict other random parts might destroy historical trends that influence the future, and can be learned by the model.\n", + "- train it on directional error for more useful results. Need y_train - X_train[:,idx_close_bid] as feature and evaluate against y_true - X_train[:,idx_close_bid]\n", + "- it seems the model always predicts negative, so column zero\n", + "- its easier to optimise over mse than mae, because values bigger and would decline more, so better gradients.\n", + "\n", + "Issues:\n", + "- cannot checkpoint custom error functions\n", + "- cannot write custom error functions\n", + "- cannot debug custom error functions" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 4945.484375\n", + "dtype: float32\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
acclossmean_absolute_errormean_squared_errorval_accval_lossval_mean_absolute_errorval_mean_squared_error
00.0002210.1087670.1087670.0189830.00.1212100.1212100.019710
10.0002210.0756780.0756780.0094180.00.0640850.0640850.005192
20.0002210.0464990.0464990.0038530.00.0754620.0754620.006855
30.0002210.0398160.0398160.0027670.00.0238180.0238180.000790
40.0002210.0394820.0394820.0027680.00.0303280.0303280.001532
50.0002210.0339490.0339490.0022120.00.0319650.0319650.001608
60.0002210.0329270.0329270.0020760.00.0202860.0202860.000780
70.0002210.0322030.0322030.0019550.00.0211500.0211500.000868
80.0002210.0304790.0304790.0017980.00.0198700.0198700.000778
90.0002210.0305250.0305250.0017650.00.0190430.0190430.000673
100.0002210.0315370.0315370.0018420.00.0405430.0405430.002230
110.0002210.0297220.0297220.0016960.00.0202450.0202450.000786
120.0002210.0284030.0284030.0015800.00.0353590.0353590.001807
130.0002210.0276800.0276800.0015060.00.0384400.0384400.002015
140.0002210.0272890.0272890.0014640.00.0305350.0305350.001432
150.0002210.0269030.0269030.0013940.00.0203030.0203030.000738
160.0002210.0259390.0259390.0012880.00.0205240.0205240.000752
170.0002210.0266590.0266590.0012940.00.0230200.0230200.000686
180.0002210.0267420.0267420.0013020.00.0226340.0226340.000842
190.0002210.0236880.0236880.0010610.00.0190730.0190730.000619
\n", + "
" + ], + "text/plain": [ + " acc loss mean_absolute_error mean_squared_error val_acc \\\n", + "0 0.000221 0.108767 0.108767 0.018983 0.0 \n", + "1 0.000221 0.075678 0.075678 0.009418 0.0 \n", + "2 0.000221 0.046499 0.046499 0.003853 0.0 \n", + "3 0.000221 0.039816 0.039816 0.002767 0.0 \n", + "4 0.000221 0.039482 0.039482 0.002768 0.0 \n", + "5 0.000221 0.033949 0.033949 0.002212 0.0 \n", + "6 0.000221 0.032927 0.032927 0.002076 0.0 \n", + "7 0.000221 0.032203 0.032203 0.001955 0.0 \n", + "8 0.000221 0.030479 0.030479 0.001798 0.0 \n", + "9 0.000221 0.030525 0.030525 0.001765 0.0 \n", + "10 0.000221 0.031537 0.031537 0.001842 0.0 \n", + "11 0.000221 0.029722 0.029722 0.001696 0.0 \n", + "12 0.000221 0.028403 0.028403 0.001580 0.0 \n", + "13 0.000221 0.027680 0.027680 0.001506 0.0 \n", + "14 0.000221 0.027289 0.027289 0.001464 0.0 \n", + "15 0.000221 0.026903 0.026903 0.001394 0.0 \n", + "16 0.000221 0.025939 0.025939 0.001288 0.0 \n", + "17 0.000221 0.026659 0.026659 0.001294 0.0 \n", + "18 0.000221 0.026742 0.026742 0.001302 0.0 \n", + "19 0.000221 0.023688 0.023688 0.001061 0.0 \n", + "\n", + " val_loss val_mean_absolute_error val_mean_squared_error \n", + "0 0.121210 0.121210 0.019710 \n", + "1 0.064085 0.064085 0.005192 \n", + "2 0.075462 0.075462 0.006855 \n", + "3 0.023818 0.023818 0.000790 \n", + "4 0.030328 0.030328 0.001532 \n", + "5 0.031965 0.031965 0.001608 \n", + "6 0.020286 0.020286 0.000780 \n", + "7 0.021150 0.021150 0.000868 \n", + "8 0.019870 0.019870 0.000778 \n", + "9 0.019043 0.019043 0.000673 \n", + "10 0.040543 0.040543 0.002230 \n", + "11 0.020245 0.020245 0.000786 \n", + "12 0.035359 0.035359 0.001807 \n", + "13 0.038440 0.038440 0.002015 \n", + "14 0.030535 0.030535 0.001432 \n", + "15 0.020303 0.020303 0.000738 \n", + "16 0.020524 0.020524 0.000752 \n", + "17 0.023020 0.023020 0.000686 \n", + "18 0.022634 0.022634 0.000842 \n", + "19 0.019073 0.019073 0.000619 " + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "#pd.DataFrame(model.predict(X_train))\n", + "print(pd.DataFrame(y_train).sum()) # classes are quite balanced\n", + "pd.DataFrame(err.history)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest validation MAE: 0.0190429590761\n", + "smallest validation MSE: 0.000619442572553\n" + ] + } + ], + "source": [ + "print(\"smallest validation MAE: \", min(err.history['val_mean_absolute_error']))\n", + "print(\"smallest validation MSE: \", min(err.history['val_mean_squared_error']))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "for error_metric in list(err.history.keys()):\n", + " if 'val' not in error_metric:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(err.history[error_metric])\n", + " plt.plot(err.history['val_' + error_metric])\n", + " plt.title(error_metric, fontsize=30)\n", + " plt.ylabel(error_metric)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Rerun LSTM with decaying learning rate:\n", + "\n", + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model\n", + "\n", + "We need this to get inside the average bid offer spread for EUR/USD, so 1.10115 - 1.10110. But lets not forget the data is scaled. Maybe it looks better when we unscale it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler) # do sth to learning rate\n", + "\n", + "callbacks_list = [checkpoint, lr_decay] # checkin with these once in a while\n", + "err_decay_lr = model.fit(X_train, y_train, epochs=int(epoch/3), batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check testing errors after decaying learning rate\n", + " - here error chart resolution is better, as we start from the trained model" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest validation MAE: 0.0190429590761\n", + "smallest validation MSE: 0.000619442572553\n", + "decay lr: smallest validation MAE: 0.0123163131533\n", + "decay lr: smallest validation MSE: 0.000265824883329\n" + ] + } + ], + "source": [ + "print(\"smallest validation MAE: \", min(err.history['val_mean_absolute_error']))\n", + "print(\"smallest validation MSE: \", min(err.history['val_mean_squared_error']))\n", + "print(\"decay lr: smallest validation MAE: \", min(err_decay_lr.history['val_mean_absolute_error']))\n", + "print(\"decay lr: smallest validation MSE: \", min(err_decay_lr.history['val_mean_squared_error']))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "for error_metric in list(err_decay_lr.history.keys()):\n", + " if 'val' not in error_metric:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(err_decay_lr.history[error_metric]) # this is for train\n", + " plt.plot(err_decay_lr.history['val_' + error_metric]) # this is for test\n", + " plt.title(error_metric, fontsize=30)\n", + " plt.ylabel(error_metric)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is small enough, the model is not usable in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Check scaled predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#simname = \"500_epochs_40_lookback\"\n", + "model.load_weights(simname+\".weights.best.hdf5\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " # Benchmark\n", + " model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + " X_test_pred = model.predict(X_test) # predict on testset\n", + "\n", + " predictions = pd.DataFrame()\n", + " predictions['predicted'] = pd.Series(np.reshape(X_test_pred, (X_test_pred.shape[0])))\n", + " predictions['actual'] = y_test\n", + " predictions = predictions.astype(float)\n", + "\n", + "\n", + " fig, axarr = plt.subplots(1, 2, figsize=(15,5)) #1 row, 2 cols, x, y\n", + " i_row, icol = 0,0\n", + " fig.suptitle(\"predictions on test set\", fontsize=20)\n", + " predictions.plot(ax=axarr[icol])\n", + " axarr[icol].set_title(\"Predicted close vs actual over time\")\n", + "\n", + " icol +=1\n", + " predictions['diff'] = predictions['actual'] - predictions['predicted']\n", + " sns.distplot(predictions['diff'], ax=axarr[icol]);\n", + " axarr[icol].set_title('Distribution of differences: actual minus predicted')\n", + " plt.show()\n", + "\n", + " print(\"MSE scaled : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + " print(\"MAE scaled: \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + " #predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Check unscaled predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#unscale predictions and actuals\n", + "X_test_pred = model.predict(X_test)\n", + "X_test_pred_unscaled = y_scaler.inverse_transform(X_test_pred)\n", + "X_test_pred_unscaled = np.reshape(X_test_pred_unscaled, (X_test_pred_unscaled.shape[0]))\n", + "\n", + "actual = y_scaler.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))\n", + "actual = np.reshape(actual, (actual.shape[0]))\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(X_test_pred_unscaled)\n", + "predictions['close_bid'] = pd.Series(actual)\n", + "\n", + "\n", + "# get low and high bid from untransformed dataframe\n", + "p = df[-X_test_pred_unscaled.shape[0]:].copy()\n", + "predictions.index = p.index # get the date index from the dataframe\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low_bid', 'high_bid']], right_index=True, left_index=True)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " fig, axarr = plt.subplots(1, 4, figsize=(5,10)) #1 row, 2 cols, x, y\n", + " irow, icol = 0,0\n", + "\n", + " predictions.plot(x=predictions.index, y='close_bid', c='red', figsize=(40,10), ax=axarr[icol])\n", + " predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=axarr[icol])\n", + " index = [str(item) for item in predictions.index]\n", + " #plt.fill_between(x=predictions.index, y1='low_bid', y2='high_bid', data=predictions, alpha=0.4)\n", + " axarr[icol].set_title('Prediction vs Actual (low and high as blue region)')\n", + "\n", + " icol += 1\n", + " predictions['diff'] = predictions['predicted'] - predictions['close_bid']\n", + " sns.distplot(predictions['diff'], ax=axarr[icol]);\n", + " axarr[icol].set_title('Distribution of differences between actual and prediction ')\n", + " #plt.savefig(simname+\"__histogram__actual_minus_pred.jpg\")\n", + "\n", + " icol += 1\n", + " sns.kdeplot(predictions[\"diff\"], predictions[\"predicted\"], kind=\"kde\", space=0, ax=axarr[icol])\n", + " #sns.jointplot(predictions[\"diff\"], predictions[\"predicted\"], kind=\"kde\", space=0, ax=axarr[icol]) # must be by itself\n", + " axarr[icol].set_title('Distribution of error and price')\n", + " #plt.savefig(simname+\"__contour__error_v_price.jpg\")\n", + "\n", + "\n", + " icol +=1\n", + " predictions['correct'] = (predictions['predicted'] <= predictions['high_bid']) & (predictions['predicted'] >= predictions['low_bid'])\n", + " predictions.correct.value_counts().plot(kind=\"bar\", ax=axarr[icol])\n", + " axarr[icol].set_title(\"True (in high low range), False prediction counts\")\n", + "\n", + " plt.show()\n", + "\n", + " print(\"MSE unscaled : \", mean_squared_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + " print(\"MAE unscaled: \", mean_absolute_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + " #predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## check binary predictions and confusion matrix\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if runLSTMBinary:\n", + " from sklearn.metrics import confusion_matrix\n", + "\n", + " #check_shape(y_test, model.predict(X_test))\n", + "\n", + " y_pred_class = np.argmax(model.predict(X_test), axis=1) # find position of largest argument\n", + "\n", + " y_test_class = np.argmax(y_test, axis=1)\n", + "\n", + " test_acc = 100 * np.sum(y_pred_class==y_test_class) / len(y_test)\n", + "\n", + " print(\"acc \", test_acc )\n", + "\n", + " confusion_matrix(y_pred_class, y_test_class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " df_unscaled = df_scaler.inverse_transform(df_scaled)\n", + "\n", + " X_test_unscaled = df_scaler.inverse_transform(np.reshape(X_test[:,0,:], (X_test.shape[0], X_test.shape[2])))\n", + " y_prev = X_test_unscaled[:,idx_close_bid]\n", + "\n", + " y_train_unscaled = y_scaler.inverse_transform(np.reshape(y_train, (y_train.shape[0], 1)))\n", + " y_train_unscaled = np.reshape(y_train_unscaled, (y_train_unscaled.shape[0]))\n", + "\n", + " y_test_unscaled = y_scaler.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))\n", + " y_test_unscaled = np.reshape(y_test_unscaled, (y_test_unscaled.shape[0]))\n", + "\n", + "\n", + " X_train_pred = model.predict(X_train)\n", + " X_train_pred_unscaled = y_scaler.inverse_transform(X_train_pred)\n", + " X_train_pred_unscaled = np.reshape(X_train_pred_unscaled, (X_train_pred_unscaled.shape[0]))\n", + "\n", + " #check_shape(df,y_train_unscaled, y_test_unscaled, X_train_pred_unscaled, X_test_pred_unscaled, y_prev)\n", + "\n", + " df_err = check_error_metrics(df\n", + " , y_train_unscaled, y_test_unscaled\n", + " , X_train_pred_unscaled, X_test_pred_unscaled\n", + " , y_prev)\n", + " #idx_close_bid\n", + " #X_test[:,0,idx_close_bid].shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "Sim results:\n", + "- runing at 500 epochs converges a bit better. seems extra features need more time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check logs and compare to previous simulations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log = True\n", + "initval=False\n", + "#sim_desc = \"500 iterations, lookback 40\"\n", + "#simname = \"500_epoch_lookback_40\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "from collections import OrderedDict\n", + "list_stats=OrderedDict()\n", + "\n", + "if log:\n", + " #simname= \"linear regression\"\n", + " #sim_desc = \"1 row lookback\"\n", + " \n", + " dict_err= OrderedDict(zip(df_err[0], df_err[1]))\n", + " \n", + " list_stats=OrderedDict()\n", + " \n", + " list_stats[\"simname\"] = simname\n", + " list_stats[\"sim_desc\"] = sim_desc\n", + " list_stats[\"MSE\"] = dict_err[\"mse test all feature: \"]\n", + " list_stats[\"MAE\"] = dict_err[\"mae test all feature: \"]\n", + " \n", + " differences_described = predictions[\"diff\"].describe()\n", + "\n", + " list_stats.update(OrderedDict(differences_described))\n", + " list_stats.update(dict_err)\n", + " \n", + " results = pd.DataFrame([list_stats])\n", + " #results.to_excel(\"log_results.xlsx\")\n", + " if os.path.isfile(\"log_results.xlsx\"):\n", + " log_results = pd.read_excel(\"log_results.xlsx\")\n", + " log_results.loc[len(log_results),:] = list_stats.values()\n", + " log_results.to_excel(\"log_results.xlsx\")\n", + " #log_results\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.read_excel(\"log_results.xlsx\").T" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "hide_code_all_hidden": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "toc_cell": false, + "toc_position": { + "height": "947px", + "left": "0px", + "right": "1568px", + "top": "67px", + "width": "264px" + }, + "toc_section_display": "block", + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/500_epoch_lookback_40.weights.best.hdf5 b/capstone_project/500_epoch_lookback_40.weights.best.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..35e63521ac7914d8f3d830db7a8a72afbda6e55b GIT binary patch literal 141008 zcmeFZ30zOz_CNkW-cx0Fw9zL99A@y&E|6T3h{ASeD42-KVN+cvkaCDoLn z-du6as6m4SV$PQKTWE7Nfk3aB|F?`^H~&c%upcyFM5Deg%}N_L)8ozKtT`zN2=emw zcbn_&J8gQ%Y;k7L%n;uI-v!>mf0Nh9+cI98hgD1UzoRP6~ zG4AIb>^|FVj(6~E-=IKoekbt*8a=7;ujyHG;=7i6fk37)(UkS0Tv5=!xjnfb?RmI+ z`gsR>{nK`SIBs)0ji&frE~OvsG}*&5DA31uTH_=CnOq4fzsuF=qAmV9^Fw28fna(Q z5zGANe*L-CZwx)>CficzsP@x1%CEx`)0lKTE$wb6;iS48vk6b18|{ZLUn z!qo--?(@ZSN1%IvcjIg#5VRLNb89h`kZAI1*&n$AK?`k>^EW|%lk|5{n|Le)zX|!9 zl#TxTKc5F0Rci5Dd;KN>Tl}_J+~3HMfzD1pG|_6xYSOBCeiCPy7#bUjB^9(xvrQWX zfgnU|-=JV0|Dd@|^_rJ+!H@YvoV8Hf)8Bpe>>rlXw$aia?L8~hJ21r8-Cx^4OS@@4 z66a6+na^qTm|=h5Sg74-{Kh7lP1{%+67239=&`x>MhRla1ZgE?&cdfQ#=@E zPj{c$STr#()ZgDg%goq7%fxuHn8_<-{*MA}vEc3@rY4PT1$&2t1_!#${vn{J_w3)B zY$*wG4{2=8$K8K+g!=zYR%l>wkpJIi_y)}M_YM%- z!97I0Oo%zfl4*wq`i3+%WYU;$_YCo!(^9G(;vP7?Nk-4m;9zk*w?CFo7t7!_+jm+( zkgr!GU#NJ@d-%HljSk{Jz@LW8LhWhdj{i-TpIdKK{hz2h!8XBxR=KK?nY;m7oj`hp2emT~E z!?Dc&-5smnuNCXJ4bHC>OT5kav!&r3Kd$n>Z6kj>G5nQxHSP9{ z4Nd-AtD(hTHT(D5%$A*F%R>48(>~Koyj=fr8~JOS`NvbquWjbPz-b!~?0@C5O^5lv z@T`{e)8CKlU~m7>#!COqW6>!0K(C;HvA>^Y#1oh}j3(YhFVqh34V)uBoY-jf6>q4` z#m@+EpVySpoc>=tn=~H>{`9Euf8mJn=Tq{ZO@?;=w9l;mNuTxmySeCBpZ#}^g@4s& zlNU9GXMV)A8gKt9e)A(9EiP}NEpeZgFq~#{U}&NC?-BLCafd$!dj@#9|2X~s4TFDU z+(GOb#>OV*X8o)z%&jf0tjx_VOsy@&L%_p3#NDmm4-PBqAD5*?KXa>oW+sgTGiUqy{|K%0^X_YG_2X>sA2ho$BBCAO zEsj~to)zjI?Cs^|9UL4K+&DS|yv4x_&qjucVkiDF1qFy_qQ-F1Z1=`^P4k-rx8}%4 z^U=St(Ux}#;<`T~9L=_FB)b&Triep%p`1%6rJmj!-V;Fksd z4JR7uIE1{<+_ zjhB?fwHBygr)Jh4q+Rn0*x2T&iz*X-N4owk*Z;kH39&Yf&u$q{E&aR8sOg#K`Zdvi zHm|3eHu1Hz)0F!4|3Ae7KhNt{&5FNi9zQL1Xz|^a^xu1RQ%Q?YH+iK%pw&|0C)zZx zH=@FuuK4D0+fwi6ar{&DU&&?*G}%!~&@%DX4FAWbX|eY_!+*@zG9O$U_K*4gUnzZD z!NXqDC?-e{*f=$Wvv-3If_&9A<{8!vkLt?f2#Y7Y&7)jc8?K0s?`M+ELU*Eq=aAL? z4ReyY&teSv!`bU2F!gjTU-LwZjVo5AYl}Ro=a7k@cX>5?D(it0Gt}^dr)-0py=5^! zavYm{rycf}Kh7t(j>4z6d}-1wYq}fYixKCiQU3w+%f<{n$h?(1;C`*Xs2CtkW>Qit z)WsZIf44`k{_Wsd&L&8mzJqoCJeNG?sL_Rvgii8>8(wgcTAz*_Dtd7(UT})a5s`Vc?jgf;%Q{|NJ_C&rv5`} z7?*GcD&wu`#*w~Me7q-(HQfMQ+jg{laRh&7_i|EN>dPOTo)0E3F0vZ;eh@fg5Z*0Y zg2ChUXz=cxp`)=4WQR&I-TIw) zep^>skqc#XQuZi*_vl?RcjvE9S$Mkz4`c6 z!+||seHH2)m*85JP^PQ<7~ZVwj{$1q;9YHZOn4lFeFhJvBfhOrGH?PNa`k06u7a~D zSq{Dra)cJ@M=3CE6FYJ)Af*9Q+ck!VkdNIOf1PuuFHv8(qGzL{(GhaO)`ynt2Fi zmWPw-s44haL6%lzNs!ulO}aFB5*&*y0!7mtmKoL&O)mxs)toK?3)IDio(6O!vxr^Y zT*}65NaBn}DPutEnQW_hItqsZWeso7Og9>1id`busq~~JN@=+Mp*6c+Ys|W44M(Lx zsd(w}0)Fz;XZ(tZ!9oZ98dff|gM7a1w^=4wz!|1z(ChUPr0C(vJzu*;82Y3qjkZxB zbBjt?5SPXWJIKP!i|ygMjto^z+)`R?HsL@{**36nbYL4l8DW4Zjg4QP$;?dMu=2bU z%G9l84>tECDCh8lof+m2+0F{uC1P$HCEllUJzP81pLH+NrHg|naB82Yo|EVzasD&FKKuNPH!2<*7H)h|I;Koy3!WCRC)N^c?1f4<8hMiS(b6`G)SG@4MS@d zQc>OllFBwigB2H9UBD9Lueh+Zh$u?kxC*Xa>W=$IGXDLvX?Xu$d(x0LranS*N-(Q{ zF*jvdQp6Qb`B5ShezBu#VUAet97UF^H1KM?9%P(607nfx>3oPPWr_8lm2(y3Z47CE zZ98Uv;wn4~+XEpdx3jCqzQHMfImjO`f#)qXS;^Uza97!oy7loRtyF7Tx7Gp&RQJV~ zS~{rhTMWz|SQi&V(7vOHOP)!Pfr>YV?p@A5nRtd}bjjo{wjM_6Zbqza8x?%tEfrOE zNYbQiXFQcO7JG2BU=LyJmiUG*A zyTqA{oI^ctMPlTjkyQ9iAA6m;46XNQ;>7ClOl9COtbCOW?&+4)$~OnkX?}t=vPSS~ zr!QT-AV;c)g;Z1G&EEEu5c)01!@%-U=w+6H%VeB!r(z_o@3RcXDxGA*>NRkD+gvoL z8jD4}B3MX@0;12$yX){$#A+zGw*qI~&Bixg zGB_%89qNxf3}e1ZVB#(ld}~q2zTVr6*RKYk(RT^7zW9}Uz0;9+uT`9VJ2`r?avHvm z*#>)Eo`avf0-mxi;wC@e!0(%zh}qvXF>X{G9?}!w=F7A2qcN)~rva z?OR7vd7op@eI<0K@cDn*3 zXF1_Xv*%EC~MT!>0JA26d3`pfNx`PF)~GER@GRSW4x&-MsAj9Hmb2g9Hjy#__5F*Offmdc=q zz?+PBCgS~T?{SHW{`2O6HdF{ z4O3T7gpoTZgKv)u@a!YUCdgF7!}gbut<>iaj;MuJ1~puGZvi=ulBb9shB!rJi`=0a zu-_^6!RKq}{MG%SdngpcyL7?rtvidlE*eVJDl5qhyOH7g5V|ofj(gg-C+ysOi3?wm zK$#s3*w_2UtZ?sRND&Ri=f3UHENdYZXl^2>)e5LPIhSlrO|kaU6Bc`|hM9M;LWOx- zX!WjpZ2ZkAo0zQGxOZPJ`*dX=2qm8~e+w7tFe;dW_DRr2UwL|R+7!z}Z$ZYObgYT0 z5Zb4tgNud*wJopW)t-!D7nh1C+~FL2*;B^)oxT9VkV>eVbPSW-@(%QM?16J44X9sj zEcjFpWx{n!xycSGu+@A!4j*AkN+Xo4?$jyZag(R8WrPKOXcLDW0VGloK{KP`ST-H4iwPTxMV#p~2CjyFf^_9JnO*Bg-R zGlXpA4#SiAt>}8s0NnV^4NrZW#IpL;bDO=~ar?q#$fe1NV&W#s(FwW8Ze9u(OjN!65CP=v?QF zQ}Ue9f|tM}EA(icX%aJZDM0O-0a&HuiWPkxv3;g%VafO!ZpgMo++rAoj8_e zJ7r)8_c3UDITiKyYLL6nG8||)jqR8dgNdn0U~y(T3P#!qO!U|%lX&gdSs-eM+$4lQ%c2fx~TAq8##Lx z%t^LKUiBUSVOj~Q=-q)b%0t&@B^dfP30vzf##U07xn)D7x$umUSWbvplg8f*$Bv2UQp1>ZNIFZrFzGz#kM*63R;GSxw3;+@F=J)ybKSZ z(xgoGtjd7By?&6zsmpTLRU`?t-PsB89w+Mk9$w*X2AT>oc#9o6*!$H0x^%xIIUY$v zj~**oj|3mS!y|3jG)WKNX4%s5nJN^cZ@~}zs!rZ@tJ&zfa+XC^toPhl^2k`vV)E7L z+3q|V=3H9(AyyraEBIq#;eNo@HlVcX48-pkM(v#)*p1ijcuCO`XlevK?54y_GTWiH za~xe6aGO=VzrZ>~eSqhak$Sz5r`o51C~<8uwCZ;kqC-1UzRU$UX_<)6g)VSRxd(nR zSEG%Z4(z~Ao_R&C#3gbW*lTePRwzY+Yp)qt)XEMtmn!0%*}WmLzbv~`xCtfO>EW@J zr&-&Ma?Cml#{j`NX4Vl4BPi;>s1&OFqe;q`o zYslT*g!VibggWwfxMdYX;MsAGIc(~|bj`Af|Fo2K>RW{Q8D}VG#}snixS4+eCYV`R zz&wl8aNRW}{G9H}q|V0Un`xOSrQeYbhNZHYJ_QhAe6p<9TsyKIyBS8jS;10PwWB-s z>*-LLAr`4r@|I!Vc+RCeMn4}wPfxd|Z8{~)r=uMlo;?WjCls+W7iDOAQYSncbCOwn z)j|mmSJ2U(#Ve+C67PLZ!JwyxsCQBslg-z1dS{kkP$8;r7FA@pI&M zjNI=^t-XU#*~0}VbPd4)XJfbwp)=m=)Pp@)lgt`4Zo|7tGwF!R63!`ZDy!eMjVl_H z49AN;u-9LG(S6cMcICq`{2I0mJUZD@uQ^$GafA(8oOj{#)>p8&ZA;mXltqxNERVs? z%kWyh6uE!<#PtXtkDYlr(nlLyTPbJ#Wos&K%o@z5ypV+&+htfV-X0$+I?y=5N8Z#0 z%PebDP}6l7DNI@d%d*3WU#H1R6O!;@d@s5`(u=u1Zi`=3wAo_QTdZ`_dh&D(z#Atc z;LA`6w!1?ro*kw^^Gvll&5lv*RMj3ftk+)F<$ML|OZR4((^sO?2Rj@n*v&LemeAa1 znzX-SFiI9@qowXvta`H@!_F>ZH*V_FQ7J>}9G}Q8Zi&H>yuHXe_66+gWq|(2*5a#^ zS^UzBO8&524_Kg6gWV&OShsFd(V+W0`uOo;*{b>7P}=4>8@gzS=*+#lOk;=)Wp(R9 z(z4ef%B~uFcb6~1<=w5~ zLb{HnDNAc0**d(u=!_vMuLz?-HBzu#`4Al~$imTk!q~oDdmv->Scp?U58Y!WaOPY~ zTzvE})MaD~+j-P;*&lbpzGwL?{;LEhG?haSgCO!g2h!Ion3cc@e*u5bX@nj@wsM)c80dIM5PQgAlIq0HkOakTZ z5SFl?*=1-`LChpPFeD0vFB8G0lL$Qqse*e^GHH&Qjy@d_A1(XD-rtQtEm;?~dzl`c zdzZp`_V0;)NBg3w_ZQ}vw2{7TInQp2_cxPMRano(ljyUQ1jR2&qMOFPcsC>oH_Qtn z$@ls2GVdX5T^&K^`<{m+<-_b{loLMhB%TxPb#QveT@;@x0MmdojdkAnvI113j0` z5WmnR1zX z*tG{PUbhV-7vARd&JL!kD_3CoZXYHa@SVN%`^<7yJFr`I(s)GY6MrB+nliuf@D7Jl zT1XXkzkdhZ&khxW?Evg6-eWtgOCa^YPq?)rgwCW(v*Agv`Pd1COmV6dUF{|hmFng& zdTu$YKOByZUEaa^R(@RY9W9VJa-3Eye+#?AobaO{&E27VsL z7AVGJpI{$0Y=JwrY3)PXd{#mHgJi}=7K2l;HGA*L!`o4_VCel+e6;)lx54ZqE@je` zyf>MJOz(=Rf`KU77{t=%Z={3+n=oOl8`>>S#_MmV!Rz^ZK<=d%dnRaui{2&Eo+UbP zN_!YStSN_V`-MzyUIw1_I}6@iJ7#el@xZ7FC`2c09Un_+)1yf8>IU9h?+M?jgEg#r z=*^~B)-K5Lm&N1eIkprNY(~54_Tj|mGSFxDSXy4X z7Sbhanab;8w7s*CnO`j~wH-Z@Vwag>wSp{OTdghXaP11L5p;lkHtnhB88bF)-Eo|M z--WCfPsYMK&Uhobj zZtO^}I>=y}Yzn(5tKFA=Mx1K8?adwYg}e zBLm%NAr7j)!lobD$KTu<1539(X8Q7XS!G5Qe467%@nbzPbCntmygvhbS~=p}35l@y zXgN*nU`5+n$K${7{dzOvLGW+(e*I^>LDL(t792zi&Y*?<5AX$zKmR4Z`nSCL{E_;5 ze8IdQ`Tweae~BY&#opUnOe|72$L_ehCm-HckW5`R>w#Ug*q{TI&9%?P=F zxB2$&Fg7Aya6<6Hh}zTDjWfo(+n?X?zDU7|qUt(-q}%Zd4^jlfT9Q&^Ie4o-Wrgdg?F zk>bNFJonks7n0jv=0}|hq{LfE{I%Ij@RmgfXUbs@4M)}PIkFpEm*CJo} z_YzvnK5;*RQg?pkIUm^Y(E@cVZ?a)=_ON#H9@r4P9h6Qcqo3?tn0P-6at91Vsp@0k zmzoQTyHjBGr-|r%Z7iu>pwY`{;wGX&@q>z!bY=5B{?wM?th3VXGT#p-EL3j*^;a&i z(G*&-`iP|@dpLpXc+r_Cx~9x!vo-bF+!ghA7f=$^@ZV48vo&?g==I3ETC_V~l-@fM=Np}emC*{^yf1~AaAzkQs4I@U*|jQPH)JiFGUyP*7__3ENp{dStqS%Q zYeH{_dQf`a4?pZ&OiHW5QOfZ#W;5&(^Ug|PA5%w>O?VU?iSwnyuU0a%TE z4MKBInz#LGSueM7P+4U~uT!?eh_f>(D1RV#>Y*jva7$-JL(Iu}ct7gXZXC{@Glf5x z#6fuXmF&Z*?GX7f7;Z1=3dh)KSgqp2tx(eA+hpve=Lgp?^MN+_RVExed9PugOYaId z3FGKdgd}@pwUJ$wPh|B*vP_|i6l8=9q4u?3;G27U2&w0&{~=vg9WM<|Uvpu1Q8GKu z@8K&?t!8YeIf2F?mKH3>c8m+>PpsDASGUSzqvqd*;ZHl#iOA>hK0})so;If1hr^)P zh6s3HGfpV$GY%r14Jbv^2jt{+$iwv{i|jUp%xzCfPB%Oy#jG-ZHmktB%()8|hoje&99d*>#dy5dYo{f zG*54S&Lsz!m03cO2C6jOx)pPnbE+&`{^Z$L4p4=XDB%C>kq&}g9{ zJ2=IVjF)u9H|fuL!j!G;k>{5T7L{^z!F6Dugo6DoHw8GJqO}Z-z@N-m>08 z0UC}>;y<>xx6=2R$ht{xgs8yDblqhz?wpj4+hq}NZU{i!KZAt@M{t)K4zQqrcpmb* zlAM|@s>b!EzVVT`%gmaEeXnDFRL8z=ilw!A-rV6wqiNW+3?|$>5Z1f4Lc?kk)+brO z-E8j+Cr+Q_lg`G%<~wcqTW9uhK|Ud*=|7Uzxp(8<4k%}lTo&Bxb(uT$Km||cq;PVd z769*Mj2Utrxux+AnD??2qHfuu+6Ba@Ru$Gz$ zI(yZCY^51#^$P=+4zVoL;RCC5s9{Oc66Qn>Wu*-p%DzRcgs_jRILYFDP%Z5S ze!0#J zsx0LV!nw06aM50K^4w~~l)rgV*kKb|K0t#`ZYyM4?R06t>owey8F#7rN&s_s-G}!` zjONeU8nPNq-E2k`NToBtTwU>d+4 z>oLBI@EzFc9)veFdU*1i0ZuoKW8F^4lf1J8=v;bP);}kXmETN(-P06digh_FQp@3& z?4H28ewhFZM3>9D7PLaOiX^mqDj>Dt?U7HMK*rGqbn{p+%h+c?i(jOo%|IpCw=oye zXXSJ6)|Nth?+KK)em1K~xDU2hqS%o1P@4F)f>+PTrmJ^i%QV!TNn*1MwGr^F??z8Z z+!O=HLx!^WiK{#C6QpLz$-4p=-02bLU9`WtS{xn|8Q%EzFu ze-fG9(xuS41~^scNV9jS!r*Q4q?Y)Iy?vPvpS=2DxM>G=$F(!{O%ShjV|A#fi#j=` zt>v80?t+0iyU4ZoAtvD_hesSQ@~+$&8->dz+~L}t5cuXQdop@7<6cKF;~g2?7f}Y7 z9Sq{`tUd^xoS*V8c8o=@S{@NRr6(4CFo2r+$Mty1O!;q&&`-RxQ2^Mbe3^ zNsHK;T_=GnILO?ds^YCta_IZi2_Hoc0JD&2c6JxG$2zBsDN8;wy^`Xh-i0`arkOYIN!HWu{X(nSXd%mvz}V7SCMx!pWXz z{IDrwF?IZ5NLt(lvE50Se}6Ddydq0)&OhWFT$IUdR}iOPIE;Hg@h%9h^sz_WCva2| zkEwx0xczH3I~WoUI#ctpVBvRWvEwiwBqyM4eyYs3M-O(lOi0(O!^%E7OXGgc@p$5s zC(NDhK;7 zE!zZHZ07Z|tZnfHSp3`o9`x_bz0P9bao`kZ?zI!-zZ+6*!%9j_ zgwvd2^6+IaT(vcmS>2W549`Q|h+5W*sl)5Jt8v+- zNW30Y$lUwPhgml|(b~IxC`LJ+UJoheGEekpLu=&`wHgU z*B1GCM_7OJ5E{D<`Su6L@J>qVIAnSachubprtaR!_u4B*H^ey7SMMD#=*cJ8ot1)o(5^pVz3?71t%mq)4a>d)NOb!^cLn~xb-clRNBN1?h(bQ4wk@` z4$2tyEs1;L%8|`^__r-X8La0z`ZWdCIA7h8Fu=7gq%Ss~q)rD3URh0cAx~*< zVVz?fGwv~volMjN)42(-Pc)dRl^kZW%4xz;)o(!lfGYo?-B4U3{e>Gk{|pS-GY7x< zb>R2;=&_NLBhkfV4ZuM^46sjOOCxRZ;c8>B;tg4Pr^7J1-~hLICF0ZMH=s6f0G0RX zUFPZ|K|VL1!EzOSx^+DhYB$Y*m!k&o4W|t-KJ+vc-d)A~E)6C&X?a=AK?mHJBF20s zP2kTg)}ZogKVIsQKR5U5X!<_ls2ICA298y(WL6oo*zots+|AKnz~gOO?7rzf*QTpG z6?o+^soQxh?3zd%Cx6ehBnyQNCo3rR!ZucUqzC%%nPSuHYX=rFJ*#ZTQh6Gvc$3L{ zJ{PW$SHg31wy?bON{~Ik39Y;E?9)?e{F=L;wOyIVe>rJ~L#A}0n355Y|7sK+TQ~=6 zrVcXV9TilTD7*x{J2nDwwV8rSRK$b2;% z_%ap_-r$+f{IyJ3!vO0;Z<=XY`&v+X@BJQb z`J>Kszkz}ctm z;|#RquKD>A$YS= z7GEoFfxhWIn0wd}zMYI7mMm(I2|c&t@#yn#e#i(cn=usU^vGo%L5HF6&_Ou_z8T_4N?&NGM-uI#d71xguW(OaGu=GJt3=$;KYNXA=+hLSh(wnB<>qU0YZ$k9L zc647(i5l*@FvmM>=!@EMR#&0TZuR`ghE)RNE$nE+(s}%1_qY};2Xd;C3&UX^cTuBZ2izj@fpKKOe=@4ZQ6cP$e` z=5-NcXJ3KJgj?K#$-Uu8q7iA%GDpd<8Ek0}UFa@V13I%Uxy!8w!{l{cAVYB;3lWx5 z#qwyd*?Nx+b#&xDOFLs;!&P=?`~^6FMz*xS@gg$ZeT=n!rb@35L{oCg12)b!iUx08 zR<=L9FRNdrMUvWP6!O3XTyL(TBL!MeaHGC#v6VfIoH2Bg#*;)4B;Gq` zQnx1qY2CDRZs=}V*gT(y8C8P;4~wz8Z$e>m?@5#;*v<^<6VSV80HH!>TJpd|e0Et! zismkSuNlB)>-o`*L4~k1dH~HGbc4NmV}!<2gj~{+9&rDlE}xOK5~w_#ZC~g^=l0Hp z3+qqA#;~odi@=t)jPc+ePt#(z#^poewF_)Cjy9005_JBzhAGxY6k=#pi<|coY zrsMZsLd6&@NEp??W{peaS6|x5jvi=(U%H7gC%M2DjNZmSyRn&zJDiAJst3?>kusU& ztcSvU8~F6N9ZQjFg}3TP(OW?gByO{((_e|-9y^)_e@dg56Tpz@p z;m2U3>11lJxrB9x&#P59AlbL~#7H2q9tLOGq@L~_Gyu4g!BR=c-#JJEb z>GM>a-kZ(pFqh;%T9(~9YfqgY?`4Y*+2e*HO_BNAT4p7a2X+ma;Bx8!JJYi>yY+o1 z%`VCl5)yk}r4)PMKE{qv-# z$TSP)xsEt6S6`jFO%tDcLXhUKTgK)MABqm?ANg^zz|^*1WIdAec-iD3D10W5nzuYy z+(#iwpYovcH}ClBzN~cKVN-M)-3nb+O=pK+uH*+)OypkbUI9x}J9xW081^VAQTmfT zTrd4wpclWN?Yowa_cx4W8}t0AK_`iQD7+=cek_8z_|_z}2qOEB7rC!b=Hbgti8x+X z6U~o}JD}Png_${I;~kBG-1voAu=DhIF;4g^JSflRe64%nI9)GzDcPBnpfi3n(?QRB zd2H37OlDW>05OIAXhCgfiY)9+F9#mso|pB8is@I_4ed>^Q|BPq73s2r!f$1Dd~4jE z8bDVHBVcyULe~D43`=gG3`R{Pnn7_kX|KhciXlsy5%+TgNm!Tm738PQIWW>Jik|wlLH*HAc=Smj^9+sw+50P) zPnsi{3ngLO&3HELzAeh_HReM1&Vo_mJ^9vnp5K#_2)Dg*pz^CSWTxi;EZ7T&Ix17% z2PI0e*~!B7qL@jVGB^IbF3YPc;o~@a82vB;zh7tzeiJvbLA(un)!_)^qaLvipYK7< z*m$&wmqm}d3^KEp#rmF)*w**w*w#!pF_zO1j>@iw$vS>?Z*GCGW3@cSYTpxvNgpXY z(B2iXj!QM7sQh5OFnJMV z9+zVJ`YM=v_9~RNc`cmja0MbiRlk>T?4OpVLtb+ zmlvM=^u0`=t%B!zE`)CWDRBJ3H~6$*Ar^m8gLlC*@Y~VrT>3jbu3G2^@5hc8`UPk5 ziaHIPAj$z$^~Le9o4fd<3OW3+)=#*v<_4#%k`kdng|^ zI!QE)d5BgO#fWk(qD7Z>ED-I?oFnSjJ65FP94@-OB1)tiwOB-6vqk>Si$w|t!$hxM zM2c?Sj~4~01&FSmixqvDF;DcSO{A#zo-om_4`W!GmI>?)i|2Uxlf3r=FJ8s>3J;ow zY|WBHYmaZ2`L+|b@?~$zxDyR!+?$mbxdQz#ZsX!dJhZ*bRn*<((+wW;x#y;XgO>qc zc2yQ0*dRLR%!iH-J;CU;9h5)J;C5du1`vPi#iDXyaacRt@UAnr^1K#wT)7Lz#2x30t%9QU?{tD`vR*y#;- zUG+ZqH4{Dpoa!B)Q`EK2JRRU=x#*3x27 zG)cl*>Wa_xW`l)vHViLV0AuzY2bP(@DVnvybKN6B#Sw96&|%@^s%)4xLK$CA*1;>= z#N#il7bJ~64hCJ%K}ptlKGd(Cle$|7K~bU5N#mvP)RK9u_?-t>mC(3MV)HJwkZ%tUtD8FDZOWjy6^H69X*pI@|l|f1x8o65rUOm zn5r%t4^hn0rhzw``Dk763gpuS{F;bK z!cA$b*oLj$aoc)b(fQm2G)T}EHF&OLnPU#&sS`7}!%p&aYi1dZj1QpYi`Fp**Cc#! zI~(^7$wv3gX!LkqMt9TiP=8ASb@*sWGh7AbTgz5cisD^-Ym|%+g4&2|j@`!NTO;Ax z{bYP&AY^^LL=-obD8+p*ZcEHXxw;s*ebGqt;Vh49Kc-;yls4tURZ(n%y*^uPTg+C3 zU&MZo%h`UNU2tR5j54V?@wisGAOHTKJUe=OnJ_WrCUpF!DY~kyk7d(dquw*|8nfpS zuF*eC@0X|HrM`|JUGL8ZZyAY+Jv!4m^+mMMXflRtOP2@sYzNgl1IarnqU@>PP3phm z1L^q+?N#yju3i~5wu7E%RmL;iU+qA39S4?Q z5aTiv8@@6_lX$Lbdu)ON>6+@@qFoHva}xf}E8(p6U|?wm>`{-$VW zyNBXZHk2n;#Zv!v*U|jLR8g|)7o2Iv(@e`{*uB$rocO*0)fe{??er?-FP_Y$8TlHx z)ujtQRozH#C+ATAw0W$moqKtok~L(q>;!h$5k!0amtc-_5Y~ToEH9WOj=^iJ!0e+M zcp*TNUM{)H3WH5BNbps7flsHC2h2swa~(xWtA@}Z-$OQD7O5r-9Xv570cIp zDwS^)?i6O)ZbQR3q3FSl6mT4+Rz9mf9~9gMkj`X(dUk9E&dV!+A;TGl1$6|&84uVy zO{MZc!#3sF2g|9K@&g)FoJSJLQK+SoBedBkME5H)khM#V&3~>+V=t!%(HtRmQ&qSM^bsxN;FRG02>zl2*+y4xH_?rZcoXgIpTf%ro!$hvm}eSh54k}#~JT$&*rMn=is9w33zy82@eZ-8?6YsO#RAULTeh&q~_AFR0s%VthB!#KW-ObXTCRWnz8T63d|eRv#8= zSWPcKu)p`t@z%B<`da-n+*>(SMY2{tL?f z{ChRoVgI;t3r=+2=zq-D;+OFY|1sbHE2aNJJm89E8~%slwbf@f>HqJI*KWbP{`|Xw z|2ueB^S{Kqn*Sx<)%?GRcl~pGr`+Bq>+2Oa(Z9l3PH+C*#E2%gfBJv#+a!L*T@`w| zRK%UmDq&@d+tG9*GaCFk0Zn#qW?IWT)8@~1;_reFFr!o5=|%QFHuQ-tjx3sttGn++ z@9tyhz~Bb(sc8!rN~drulKfcbd|NiIenqKHS_F65mqXR_{lT}6z;weVC`=p#b38b- zzk3_L_mx36M>S5rdM@gBzRsq(ti+%RYuNP!cl48T!rBM7!OSdzj_wqH^Aw^%I-8Xs zSJ;P!&b6k7b`Q8Y>uOnt{cB*YDpKCeQK&KJHM@UIourpU;>A7bu+M)4riJ*ktvcd! zyJtV*l<>fs}z6NHc27|S>+O@bm2X7f9HmAR#wzGS%=C*YSi`9E56nJI`}{Ay=PPv zUAN~82q=gok*uJCs34*u3e=pS0tOIKk~v{O%pyiqKu{2nsDelml^`N2CU(tRRBq-be(>l8xpoa_ zHT7=n>NG{DHsb)4RT?I*JNl9iIyrYq+tY~m$H zy5ZP9v81znKUeROqj8x> z(M0ay(g2gZdkF1%ErE8uba_Ci7B8P&PL~d^<@xeb++fQ&a?6lonR?LxHvz83p|HmaGMbEcQr%U89G@l#EV)n(DLnqkbfkKw3?>da~n$LH^^p4F~$k%o4BRA zlcRoXAKX16mP=R-Wyy0L{z z5MHnO3RicH!LAzqGVLSVM8}zKwBK2Zo%?5rYsW3(@1`43@B0X_-W0*cPTt~ipXu~+ zz&^Ne=oD~JAKY+P8Qo;%uqyVWQ0aY!Y7?fDZH^mQnNOfUyGA&c?G|{G^%^0f*DlT~ z@n)Ouajdwl3U-$qXIW4XckkVXo!%UzCD)R9>yIR1ZZCEEF@ZbXxeF`%=R;MJG7mhm6^4J+ z;G(CVJll6WtoB|_lP}2QAy0X3s0rgcmrO;=8P0g#M_;N_dO#oijJd`vh~E}J2cIjZ zn08DD@q!Co&!5kV`_EH{uuytGCQ?{%%LCJ1jbJ4uHI}>3m4A4&;c>Gyc<{zt`fmE?i662F1D~F(PR^midihovd%7iMJ;% z%i98;ef%7szB^0CW+%xs%!@BnSaFt;8^3(FLEIy%vF?K#WT#jQ!jL>R`f!vEEVAX6 zgGH2A;?4^{wZi7m+2oS$A`bf13|S`%Y5Ilzti2+YyTNgA($~To9?G$v+Z_|KK2g`N z0R6{!NjbEYvfdjt@OaL2EZvhMb~tZEbGCQmvbFkrsSna(dB4`q|BZLQ=lLkfR>lDRdLwTha|=mtI3nk|!@cwTja{yg4df9+ip; z;dH0I*lD`4!=D&sc6}d8ejAok{;Vd*zMl;4X?jpAaR3WWtj4bk`eNWYb+(=VnKbA6 z!l3qN;8x>)%KUghV#n2s176#L%7%}$@^l<;yL1YcTV}%+6AMw-2e$F+0Fj^cctx6D{dx3Id7h~< zjPIVUAT;!&CAXfi`FA;VyJp0Bp8jmOWI9J1OWK9*10@anM4mJ{jO#+eB@KioZ~bP8 z#}t#nd&)bQowtNGy}L_8p5GD2^%=tDQyvTNM}^V0*rRZ0*h~6$a~s$O*TUQOnPL(4 z61$CBh55TQWIZ%(`KFFF+M0XO!sPByc1pUZ>~ZIC^CDVQc#2AYYGZ7f0qjxpl zc-Py5qUAI>9(?Nz{BE7iX46ezJR0zYufHMYXad&Cw+fFn9Qlcx3jdyb5_A_1fEjaa zacp;881;4_1}r}UahtBv+#`cY-N zIQ9wX!2^a9>7L#Mi}Dk>>B=XXHYJ~qO}iv6o9@6CPki`Yc>-YBEinJy9){i9CL9Mf zTt7CI)xu}vo!Nf;Zp2S&(e}ZbYDLl-@*Kj0XYWxcO=*Zd=qbeY=>2OhB(`nY2oW=A^H0inlvLvoc!{nz(Z06 z(daX+J~kMS4)7$~z!8`{KLfuf+=kj=>E!L-8&#CTgms#(-0i7~~>bAj^a8 zFmXU2Zt3TXnlImjt-}zibxz=GU*}Ni(pzL8ODC5%R(NvCVy9t`IT_-<3kqm=+Kja>YvHmHUGZUUq4<8^BC_*(jb6JA@$%rg7=Bla_mp~ImuW}w z_~~X)Shfk@DQoas-B8#Q(+eGw`%_ItCjIWWOqSH8UMM>KgdF=^0%MD|n4t3#suQ0J zdgGg5*#c+MU6|o`sq7`}YFaDyp7xGz^vIxXrM@)%-=GLh3vuDi>8$_Z2v}}3hn>x_ zWZ)t_6MG-03r|jAczPxbGv5JgUKpeB_92xmh!7OdjKw9R`T{*aD`f5NhKe_~KxvOC zUgAY@O_|X6g=HaXb)B90#FXuf-@VuN9{H_W|o;r*PVM9~``U9+tGG zi%ak@-P;!o%)dK!gcYd4d%)puchSbx$vy@7I9X5;x6OJVZpzWDO(WMSl^OTf)z zacj#|>{;iC{Z!(x>2@^wjPhU)$I0k^N1n~9$M6qvCyaU8j&D8g#&fc4&@ST}Ev!u< ztDV!Oc(f~<9Wmvv1A5Tape~$YP>7Ba8`boo3+@W`$Dt>Txb}({%kpT@xr z(?0B3mw>IK04-jJ^5&VHM7ggW*hr^6cU8!ssht->&Sh8O`TK)n?eu1`GDCst@+4+} zqB2G_EWqCD7P4Wdh5YldI+%D&<1$Hip7?M+|8YD7WdX(Tp;Thq)El$!xk1?0?hT21 z7Kv6ReX!*8UT|L+3u9`cgvRU1{27(-P^tpV+2qQfj+NlzxVE@FIR{b~^hBe1TQH=;<@-3nVJF3q~4Ijr%1u&`l>0Z#a+ zAgnYwEakO+3pt|)f@{_Zh<$9s%e_jgBp+}9SmTbomt*M+nYCxY9t zp3v@zpD@7*k}`@6i6x zBG9ktgfX-FP@2TlI`Cc>FKf49#iiXz{_Rt^nzSAE*dBmm&L2T;bR|WZ<-nI$3%E*V z2|r{;wDW8RZEg1nY!f4>dEQRw(PkmOuS*iF%y*K9b{hFV2A(!L0QNjS5AUqE;RA~z zGFd!_v?8OC)$_^M$W#pf=8Mwvy^xTSiLe+++W)Vueoi(w?~hOwo!nAEvxaa)@>Yc%nrR?swP| zl6Q~UOao8(aO|`zF!4fnIMy+So0X+p`n4VW=0qnxJkt+e&nBp1X+Gz+mDgKX3;nD_SF$5Vr@kl!;$Y*)G$+V%Y^=1x`PmzD2npn*QGxnhFJKi8ph ztv(L)|09eTd=g?^HeuU?5zuO+$@gxog_lRhii%Y-$KH#BaaeQ`>Q(qcQ2HL|A+anx z?3VD7FDZiJ2`{>|^E9c2-4x9eGsG3ABiUuZ2+n=Jj<<|(rmC+taA{o;hwcdA^&?`a zi;h6mulhot;I{mJ%6isn6Cmj&_1Qc`g|lQgV9)N2{9;0PuIaX%Kkd8-EA2PJykCRC zcb@<|6P(y@&>FF2`+a)c|E(}9*P1GR;YbI8!(AGLNBQ-_ zsTT(P%g2k(RGty+tj#eya|1mKU5)cM+!ThFHc5d%Lf=+D5qiBjE>4Tdr8>Wvs9E2QKQsY#xh+Ta%X$gR zOO!eF@g?do=_i>~nu>m3rV8U1oTc2-_B_LK6Z^XC#F<^1No~dp+OIp93a*4vlh{E7#+phuj3T3}W%en46I7)Di4+B);~GRQTaz#y+jd5ZJhYt>b!O=8eHH^7uRY zR?rFhI^4i}a}99RrXS*u&JnQdO9uDW4`)l2Q59XG3txO>inF&4<;3dQ6>|CSrPxsk z4@p^5VexY+-@mt!t@|IM3qiklRlohTd+d5%HpWO?-jc=@o}=NBf+uIR?N@OxBoW;_ zqOpU-Z|-u(SeUv|235Cngf1KF;myec$FBtmcuCn^sRE!>{$^9@v5Iws_(W^&lR6cp-iHoJHzmRmFWj z_QJPw9{f!ICfvPh$EC$@;m?(1*z401kA`Mb{&rpJ+UX@UrKn(**K2UuzguYAbk*^o z`&nEFQmyNHPrN$f6nOeq4xT)%2PLK469+4%l6HrVsNsH;grRqY0Qoe^__PsRsy+C@ z@+z>Y9?1)YKByVHikt4-IeA$3EzQ1tL|pZ0Hm6kG5mrxWf?-2p12$Wt^}In+o?MSVZ|;hHC(7dl z)rsP(eFx}G=W>4Wt1DENS;ETZ$9z8J!PI*W1q$MiwEi9Yw zl$-#!mWOaRVLE^7GZu7TO`)mN^;qj{G9A5Yz-PMeBiriEToZ1~g`;9*;@3!c|V1LXTF=rHIF=4O<$Gb zpGCor<{o%AUI(X7TukG|z2xavK-MmRijM};-GL4qqc{y6)Lz5XkqWqa+i>B2$}N&* z7|`61KsYbo7CY>ojRVeP2=7Ps$75^!x%1EveEnt+-*1?~aa-DwZnybp-&c+Xqb~QJ zu7t9zLlBs;kBVjmU}>H{`zs_%egj%Oe0MlGz1@VhdS&35*UEt^ZU@mYdx^Abt~@JpvYHxcBbRneKGlp6<3^dqS~WNQQ>kK{JPPTtHKtF zv-`S2-*5BbLB>&B_frn1Z$3-zx4w#&Dc)2!uqQUvZRDEnZWy;CgPiVZ@ioACYNSSpkUP#Oh1I(#=Y$!CL-sx`YTOlGg! zVc6d#l{b8J<~PY}_{qUWvA>Htu3eyysx6^1v&idkWxf{PZ@Mgw`8I_W?$5`T=yup` zr8_sojG`k-=9p;u2J+aB?91C?;b<+MIXf0thGqz=&wZ%AWj$&xc`4P~Ey6B8tdSBv4vzLXzNx6>Hxlt8IUDHARdu_?;{206`vF&o| z(qU46rSioc^Xd49bsS_O&9iTq%El=i6X&RD;N}2xwhX!pt+!+_d8t$bDjUGxa-R#b z6}iH>&Iy9k%y9g4lb)GzIuG5yRofvXMmxuR!D$F%$q3e$ALBCOo_f207f?jW!_&QwZsu4yOBMh)bwqGGX!sTFVUGJQ1LK|QVEoeUVz0a?yt{20OnN#{aET!(;XM4c0{$hXF~JAckn>@2Pj`UE4)j$6CdGZTKl%i(II4= z#B)p$PW{P7@vaA64L8Okb9GUDX*U=)T#HUV*1)B=qey+71xAHugWQa@csU>$*7+Tx zAEWx=SNUV~_(c_MuUK)eNbge`T9sL{{P5Yp1(q-s3 zG!ELmE~SQZ)_l|YJ*AkeL~*@5Pgbe~-^7mMId>ymn5`*v&e%q0AAhGa(lh@F#Upew zVlAoUE)buMOM`d*t~9{Z8Qx_~q7oxRw7Sxn#~s&(ovTm6Bd@2TPN+V=ydJ>VWIXCTXh$lE5nwwV*x0yISU7AK*+oxagGIN+UI7P$;zj*v zNU;(1J>y7&&RU{p4=bMPlqo3Xt$_PsB{XQr4!W?aoD7?lxV+*Pot(UG@HLNE@;Nww z73B{Arf%gQ_ib6P9K{Py%&6tU2O7)HWTsa{3nnE{zl+9Ly+^9^Z?*!0-Q3a#7_;IFr z8ojfy<6nib;C- z8-+DLEO=$(M{)GlBAR?Tn;N{5u;rN!{ZO{xJ6m7E)Z??^h@|st2uz0oKUPzW?5S9@ zwwjEmq>x*O!8pvQJADXI!XeQSLQA=V@L;bc)u~BiZ@8|^-E<_Q<_PZb=q+qZ2&b*L zvt`59JfV;+!8A2R(%#I~V4ZDt>^(nHC@M_lAjP)Swu=QntK7~LRRa0uj|J={=R~D) zeXv-eNHhvIq#OO4%8&L`<R?x@C2YB)8EI$5B5bft=iVm4!eDKm`7<|~0%dGB}KVAOC zVat<^v|wIGP_>fuQmO%X^*Td4g9K<^_Og7Lejwi2)m3~{yafhayg`dfBjJR0BUm)Q zhbj#xNE24k{2dWez95KNOs7#&t_ALT_fTw*nC0UybmrCd{rSqlm*V4jfoxTO1$Ib` z`tz3O>6o%LAMIBzKHqqjI{gXaGomg3IM^4yjn(3isJ67J=o+`1odjLKJeIT?()iMU zA@5L{!{v9fVDzX$PIJr?U1ko1gMsaMaStc_c#cEYrwR;)kb4y=2V6cx`#0^UM_oqJvg>iO7VRJ~*Br_HS8OMt z{WVy!SA%baw`HyQF8qD0nRq}^A0OK`2+P;K6F)pwVp-^G>iA?n^;u`Ypw$czq6@y- zJ87&{Kgc+Ry!T3(*hyk^7N2?zPuzk**HufB^Xk%z=mb1BWfR*Jl##id5BBM8KnDAo zK~}$w+-^_e=UR3o1$jW*Viml7H%o|EndaE~@fck(I0tb?xuUUnpOcjq^Fe)oiHn&; zoiDZF0b{-i6}1Lj`@0W6D2Ra*Z(I>`6s`1!Y(Ez=T`0DNmdOLJ9NAw;-a(R)s=Jf^g($dBm+a;dBgHZ6v zZlTSp+PvJ^h@)0cW8>M;pw+JJFewXHEEyv;bvORP>C8P9@%k>p{1q;s`c@Zz9g0GUnU7u1WYNS=YOwpoL_B*{i<_42 z2CpX(R5Gs;KQG=W2FKnKdVgIYp4Z!g@i(rB5B=xCxzQtWYv=94SkGK6{OU%J<|M$) zm*up(n=VD^_7Q!?5k*@qz_7($Y&SrUHk?(a`*ZAt8ppxHoi9aPrS^r)yf1LEbe=uP z-ze@#t`&|RctJnf4in>pX7aQRXT%gKhPq64lpiw!8%u&_h&=Fv4o>NT3rpG*c7rBrU-A17K>^b;brzl+=67EpPR8cm8G#t%bh zV%GT6xLBnF&nQX&9j|@xPPzwQd!9)TocdB-L@3zluI9aGRjFs2^R%|EoD8-VF});pZnZ=|tDh#W^}v5s51B%HJ4p7=mK|3xM} zkGJKEV|6)x);n^HN)$(E951iP9>6gH0gma1-wT#Y8{yEgNFHMtEv$Z1PTHL!sQTC& zs*9_o8!uD1j}cK*Pi?H}=ZCXiu3^2>Ta@-TpU>(vI$jRRhOM3J>9|#zq*G21H@CY- ziSG+d<%*yogj}?YMo#Lc%Woq}ibo@)fkGGPVP@ zT#UeQmsi5EhTX7z^HJIU{^w{>xH-y&hjD#f5cZ2Z24kE8pe54^#;x~ZJtJ4lx?ztQ z!EV4I6Zy)f0II*Qjf%Cscx5MR#|fhfDE-t4hsE34v)RY5@Je9^49*CLi_0?D*GA;- zE%zL!YP$2}^;@V-X9L#nWG^V`OkmGJMyyXisAjbj?@@h1rHcKyzf6yJ^iyY9oi?ik zbmh~ldqJnAs$l*lNlYDlU(im!N_ol=I8s-QPkbK?oqf8&H+g%OH(HMU8%_zfC5C*X zppqJH&;*4C$141XfCVdBRNmlNy=!+m95^ijhO2faK1o`sI+_uCT_RNYCp`v^Ev>~_d%*c) zrhNBK3dGb_fs?EQi`vGJsq%%^R`;Y!d;Br&-A^*sab@Gl22>M$Sn!cofXH1Yd{(R> zd}ss})BlL?lDpyd=8l5uv$^8gAS>aJ?*cqBKMg;1oa*={=^$OdxXr%D4h5W`+a1p* zS)uA<3v7sN0*`gdsCeWdG+&$ogFYUDU()?8P)op1*6+o-5Q)>ZUed%iCW6AIITTWQ zScvGp1@a`_Sy7fEKD%^U{O+%UZHMGjukpQ6Pp5?DIV=&BCb{E{eTq`db`*`xS|Zdu z@a4zvdsDjgbewoYg=e=)Y~z9F;7Ecswo^C^nl6*^m6;8zOF5@umi<_!pn>~C*FZ|~ z9QKlp!Z)8c)9jxzYVp_x&DnDN>G&cT>oE&of)a0i6Hjo!5MySz!`E{z(AiyyrkD;V zo4Ucmgwj!5ZK%($%I;I{lErW%Nr%E~`|we}WDs7pr&~8vsQQeXFuzvP+RaRY{5e(- zR&-fFuL_Y&M?k7^78a}4V)=|0Fm9ikEakGjxaztcwRXrC^wJBkY|sTEsEefEo>L8# zXM51;&L_o&&{K5I-410R0!aDRF!8y>?zb2v&t8fv%2%$ng~yAOctXxC+EA5Fj%OrZ z`*BH2y?(kl5i3P+lTPqfk3fB17yK3R2x5PZ;SpB*MR%W>yzavlu`cH)1-E%Y8!!1| zom5kiwj+=ux9+7ONBwwCg}nId^AE>46W5XV0V{gDvMZmMR4DGaQwaLyZn)Gk0=ll> z?r7vT1r|x3R|B5L(kdG>R38+|Bljb$_iMv(`+IcF`xUqa$NXPy=? z27L236V32}m2PR2_~)AJ(Aw(5&?y~2WJBURX~%80YJF6Fu&3Rr#Fh0}ld@|_5Y z?{RhpzxMN{W6s@qrbZ=K>-FP9hgO2IV+hyY`bgKi$k^|2IrX!2=CIs!ZhVwVaR=>a zj8%zHrZo@hKc|!Fg#syuaaYV+_7F}ud9ue1H{n{>=M+`_gkImqAiqWD0W4EJu$!NIWs|Y+norjLq;|lu(__0fhv5ZQims|GJ z%aIr9Sf8D={qAn8oz+FQ@0h(fQLPP5u2_QG@~*+I9Ub{%bgnS|mp8=1I4Ery3g=en zpz*FtqS@3C>ObfMeQ|#xs&>0W>z71em88Mx*y|CMTbSd4hE#rXcPx9E#l!J7d&I;y zTUgJf6Yr?$#3z#n^W79BzCS&KyRBUyT-;N_N;f7`x;TyLiyx?rRhG0jdfd~!FHiE@ z4~IK!1+`^+dH?r6GCAWSafX!3>02sbwG@Bf+D+&9*^^^wa*R7_cA7_Di-T$Cp$TGr zZWLy^+=H=7DY*W2G!I{3B1Y}$B<4M_qTcPJ9i1Oef;X??VOq8yyjzq_Su=sV`KOcq zeT3Bw+8AuI3XV!~cIU(>7+IJLbsAe7=QPhH)%3lv=-fcAXbi)GpS>jBiW)Ac&=cks zZl{qivgp!}FxqfuHofoIRf?s5qSqsAgbAJlX_0*odh|SuzPFh2?|lgppQ!<~6Z>&} z;udPXoCGcUy}{`FFIaHojf0!NE-jd2hCwf6s7OY1LwyGJlygH3i&p5}X)d-mnt}HE zsnqqkG*-!XfU7U;@sQjWd_VpI1YKE(rcy1R&HiS{lXRDDCs?B1s;Q2BGb1tEZ!VS{ zvqx)xLtZX#!#&ikXu@|7$oeHGd1b|euFg}b_DF#=)J-Jh<3kt~@joKSNZ?&}#k?mn_c)NZ^*&p(*qnrCj5SWv~Q9~X#yGlpZ@ zMoW~RT}Ea_h7h%$>BP27DQ>WvR=KQUjV(4D>^qm|#(oh#Dx867pRh7w%nL;Uq$P+0B8`Cr^b7sY)35t0x4y%PleM=?Bj`Es~cIYC_X*oWo&otGWF zw1yQH6hKCMDTXmzn&TD43n!M`68edgIm|Ggt3PK$+WXGjbUszw{&NDe>n(WiWX>k( z1E~M=;hg>U1wArK;9(kvN#V){y0=$_yg!xT$f^CXwNH%9+#!l5CiqYn&k1zkwh;_{ z;?6!7%V5mwM7CS8N6ekPj_Ws_g%ia_qC%lP&e+-mvOj+l?tM&w4UMimOY#v?dOv_~ zrbMFQ!SSNAhJ`S8bYJcbG0zcVmH)j?Z<)3Qpm>32bC5k(!QKFcwJJs*_1tl29qK% z4u2!tIw*~N-xy-uG;7ezTt`7FgD`ceJY7DxkqfWt(76&D$AHS0V%>^OYKz&j8+)ta(vT?lq+l(CpX-FT4i$sJ z8#DS)8jce^T;R+7D}tG;DQt6y6NJfl8ljRjL{-yU(EeSkaLnm2b#@;F2SaZOXEYA8^&DSx9B~@PN2Zd4Zj^XY zD1_f{n`zf4P4Qr1E94Jr&o*h>>F~TRd@0~5w2nVZm!qpmZ&o$E{^ke)3nL&P${EwY zCh)n|KhX2q8Vrhi50#Hz!PuC1%4m(FS0?QtKQIJ)tZIWPDK{XzYZe_Uh{jO$!x;SD z0_}b+gKpY4UJp;Gsey8*NZMf@Mjkry zLhmE@g#H%`pe*kKwH}mo(`vJ!d{qdoc-}xMOAm=_zDIM%FS=Mgs2vLL-EqTf8*$B? zBKoO&Sn$|16*4z}fQ~l>3?AztD8wd%$EDM-K{|fR&b?sjEh9d6{TQ6tvx}+=KMS)8 zjrjGmepvizk&w8!D<%eSf&ht^w_sYTQcYku|_ys&yWC}Clm*Q}Zi?A(iG3hp`pq0WsVY5dfMO1kS6CR{ctJzR2 zeK`)*U2AC7#5qFM zgj5RGko*O`EU|g#EOfCAfi=6kV$zhCc$Xop_o^~BkLwD?A1a}_ogAi3H-r=FhaK`9O)wDb_~)F>QXRIk0H?O0{AnE= zqO<}GZ!V*n2g9)A15v2{G!5G(b-_KB$sBU4g_^Hy5k{*y!JS?fpzeBwx`wFnx?xW! zva`ey92m_m!)vIaJ6F{Bv$Iwco8Hd-g#c zZ;o?^x`C3%T8cToS(JylO>5!o%(>v3G0ZXcR4S5s5E{Bh;b?tF7;qc0*dz!2`aXu~ zFYIu+?Oiyd;|z-Rs+7O;Fc~S^v&kSAB*BxbR{7BLYm)t6;vT$mq=H(PX|d7qC>ZqW zI+g1t(v7A}F@AL%sMejL#%-4LM^gjWxmciA(>d7J5+|;4+zXboqG7-4a~h(uh7PDafdi za&qn2^Ij!rYTA+eZw;F1-w!RmwdcOa3We@!nItzQ0>U&#LbZ=P9Egm^ZE?P|Y?s9N zb?nU}F3a(>#Vc{2TZCBKuaKU^exZwclbOC>gI_1p;c|U1yr_2xQX6w|q~Q;tyJbI` z;5QCo;vn*Bje*)*M&ikR9i&=i3)X51z+?8o@Gf=`m)CWJtd8p(uE{-sB8hF2S&;$% znf^29A9|C&^=SX8pya=H_`j+L{-5gYdj8|6b^fvZd;NdhAH?S5Utblb_Rk&qAN@fB z|9SKO^4I^__44}oUrqR1m-)ZELI3pw|3~$}zxo;s{zvOZ{9_#byRrXo`!4*ePCM`) z?iGLQwEtB<_;)-0Yx(bc;9qsxr>g(`_J3Xb`@Z<&@V{>P_v?R;2c=d2{{8=3*FIV9 zW%FGpc;oX7j=E|FI+d63SHmpM+Ovb({K;e8X69DiS8!;>9bsqY2<~vN0_2l?_?7<+ zvThTM$3`9#?eEUuHSy*=c-tjjwcZqKR|fOiD>>{tcQU8upNA>mpF3t2Y~=2*rJC>p zCvLB?o7P1SMY*a}E{t*DHw_8wb}0&0hn9hDxIGWFt{{u2z`Cx^&?TXn?)3NyTYpR5 ztEV&3SaCLA8kLHT6Q$?QXAyAJu^K-pR5;w)yB51FEaFDLZO~7_7{7|AWf!Enl*JM8 zxYKk# %xT#T~am=)}XJ=tgMl$X?eFA$4?QvIX5RPf}z=fxydDO)*!skt6&^J5_ zQdX-{=8$oaGQ&#~En% zLYG$#3**Ng1JLepKB-O#;mHFBvv0BFb^Wp@X_T+VW84J>Lr^YO)KU$VqeTWc*FnoQ&|-o`Z4`x%$Y%fz{MyXiv9Sayn8 zB{pTv!&&`b(G=%ZG-a*|sOI>hpx8*$mj!b1tSvY%{v_rf@S`D9a@k~SCHqWy1aBg4 z^Q#4F96VT&i^|`D*_N(2*F@5`4Z4g9bGy=$bLVJsyY0C7ZL6T^^Nxxi?}WsQ!FJt53Hp1th z$Jp5RJYTNz$6J{>9H%v%Q@X2wOk#De34eua-_?stM}*+_(cXBna~Rfc)}YXpMWE+X zf;%+~SwE~+_#CIfCp#vf`sHZBr@S2}*et@BQ_7V7*dKF3oP@z&k|4F=g!pAgig?rH zH*EJGOy-wW=y;(H{v4vkXI(4BvdBs}IuUrg@(t1ARVZWa2gi4kp1>;hC|kN7;I@q_ zczdZ9tEx}u731eqar|Ux-#VJp4Lx!Au>NpWrxz@`pwCrziz)o;e7qsZS9EXuD%FQb z+-~)KqR|?aiq=i0{Qc>8u3NmB&mOHLzq)S1{)QCsYP(Bp`?Z9+9Dc-)qN~VV|FYww zL3S`EIG!udN{pjEeWCb`X8H9<7gRqm3lG=FVqCyb-fd}&!E;N5inZ%Oug^I)-Z+xm z8{CE9$JS`$<%rI+Yan@bFVvHcb;#&Ptl6zMB+u;6k#qI&!KW|qsbL8F%B|p7+aw&e z>?F?A&*P)_jA38wLmDDGB6*aSvRk{E+^hc;(bde4Z!|9lGyM$grX3_cvm4FBpL+AH zPnThoVj-rxUgO0N*RjmX6qg0tQ0eOttTyj8eXU)=6>g_^ez*ajyf~Xvw`}KD3&7I7 z_r$A)Q#e)QJM`L+!&k#{`0k>eocP^}I{2lrUvM7kE}4VBe<{O|{#$u&iLI!%U70&{ z9LtrG53PpED88^Em#?G^Wqm~riinVXAmzPbkAAF5%Zjv1W%Iz%*0 zU&%-8PqBvSZBj@nVC9fukW`z))6zDwXMR7n_ep`)qP953{yEL=>p~;XcH-F*Z+Py; zahUyLA1<8}kBwf_Wm;0)`NGsQpuI1UH(!sz-T{a3_?4t*!?$x3G4bdp$8`xw+?3ISp6H!{GTMdJN^Joo zE&sp{mXIVi(yU2a;m-H5G&EPzv=2GScfXJ0)-T<0pqd2+@4bueIik4p6L67PJZ=m< zh!Z1e zSl&J91#MtM$swo)tT#l$bd3(UP=5!l?b@r)?#9*r-Em$!X|CShfLpEe zNGC5*xa@I;HZG3AH>={9=A?2~;d$5@x(#a!4$UD%~uV zM;?pd?q{kYz&w{XwC1tKn6cRQrG*$HF@oC^*+bpDtBy@Kb74=73M*&NFlRg@asG2{z4)Hj4ybxN6BEZpz^I-{9Gm6=KMIb> zey=E|!1Y65=Hd;sw39t={Sp%@MR@d*-i2-_Gx^rhd05@)trTp1#-Gow;PnS=;8a!b3SYGz@V;IJjq}6ss>DFh zyLp;D8e=PRJE;iQO#6$9KZ~f~si)H${gr%Qf1u=x62q(gTX6c<6V&eTeGd8>zyp1) zaZp777pZmQrr;lv? z&~|GY+{_<^mfe<;`Ho2RA5y}{lBTg%Xd(_fWmC~RJ)1x8h=QQEhPYO$51Xggi)_C= zVCTRa$W9<4Ha&9Jij~UJP)91!vpA`QUV73B5ByZ{TN)KfcJBD z;@QkaJmS7Px_D{x@xVlTC6{8bbJ|Uv?GN)Kw}Yf@QOYxh{D8ixpJ}aT4r@KDT6)YOjP6q&kU^GWPz<9Vt>;@G`@HQrzYf4ryDU` zBDEn@D4;p{#<*r8*FO%t2x!R=gOdEf*5xHlEIUDV;1 zI2@mRi{Ih9#EG_eqUC+&1nw4?llv)jq>KYC#Sf^%7+{;&EduE z_KAbiMuYRBe4Jo^8W&1qf4E&T*LXgWxb`Y&wm=@Y-;hI9jT82^)0PFrnWCtUn=$TMEx}#iSloXObs#dpioRUcF3}iDPg{ry0Ee z^btJK+8twyyx4oeLmIbe1)mLXzQOlwQiqb&%7M)0bO0d*0l@<)02oKdED$)-w21`U7H5>yr{BqVd>Q_8MXdRk_WisX@xP%`zHvlP2N!FWtF3dN_=_ zql#5Y^ynlw6^ZX)#W0-_(b?1`WnquyFzBuJ%t}d z8C-C4i)hwpEA$@mof7&b((js+Fu}ovTXYXowUfYKvp33YZC-H6dw;BQn~$Zt{KYfB zc2UM@pNa`;`%rm)Hf0p9sWpM7>w*f_eFtumWodEPX^s2~Lv zk9#aQ#8{A=_C{!N(&hPEcZ<504#MZ6Mw%8}&B-z0d~}%?U0+v)bFHdjiBuc$ZA>RL z>J-TSaU(H*p$R2VTZxzJ@8YPieAI{^&kv^z<@~vZSh#5_wO=5yYyL#a9(F92HLb}d z;l_Jv_hAPr#Utcj9*)7CBSHRJu=unxSD4i6iFjg5BowJd(4MQCQ2F;surO*6Lw4JN zCP}*O_*PP!_);h?iUhT26{l0dHDXO(y*NC1CAAB+W%XMJDe28-F>`V&7%DHP4-s>z z;)IT@w9h&im$wOL_VL3Jh8J;PmjQh4$apSOvB%>htttFZF52~NBXJbuSnt6?K9PSP zXIW*y>OS3Zys0953-u+r&g!)MLxi|b^$-L)uWBk_ z?zQpQdx{f;FIGgo4U+EXc_H=*b>I)33n??Tl17zpW~aGRxJE%H4r$j3H+9&EZ<}WG z!*QDUsBsLq1oz;wF%6E#2PWhF4F#Y#(}HjHNWsyki(&D^=Xj^f7(CSLn)o$WO%~{K zL71O%4%ZLWV43ANylT{qJ(Jp^zU3a?R$nJpou0t*-wsLfSS>vIZZ_`vF+~`jHx9-d zJ;f-eGNF674WRn^6u55o0ZO@+q+mK(BnD&Ans%b;m$RTuRVq3O3VMV4(-MK<1 z0t>5(Ni~Cb-rP-mc~&jjJeo#}yT%Jem8unn9%Ve^-C@34mMCbwQot|2KC#1*c|2HR zZ8&?mqkD8ATzi!Rix%jyyRjw5PLO7gjjr2UyLrkNkWm;ceqi$4v#unp;$79 zeH_ftQ+utrQ{lg{_bzZXJ?sDY)=g1KQb`gesi@YPS$iv8gd`y;ib@ee2q8swNs?O< zl5~?UB(>Mf?5&$EsobL^Bq1arw3loUkpv=)vjDmM_6#OY!o!;=~~n zEQP`KMP0|Oir;p}L<_IRTVA}cU%XIpjHSz1V@v0+n=CgzSyvR*oog1B%&}Zn2P{0a z`&yo8N|_LP{LF-!t$PZ_p7be#HaZsEQ19ZaCEtr;=RL6S_}-K+-jrc^cT$n%s?+%v z_Dx9^8&6EMJojma<-(&!ihW!^6kokL(6aAsXm!%l(*gun7G}BZDhxJ{D=r@>Yq`*4 zK=J!N*%tlcY>L)RO0<;nzFT~OWEH8snq8cqr(&6W#G`nfp{G^5`YelQXI>OuPIM}= z892a7xmCOPJ~PnrrozOcm)+lsW4U{c#WUlV7PnoTiq$W)75k>8SjxJOvAm&7EMx`J z#qyc=i>BMGvgF%}EpH{)S#CFVE_V4a;5=xlwQy^BWI57*g4Of`D+^1z;tK426fA>e z_gTc1X<0?QZYmn}T*vaG?v>)t1r3(ZMjKeVjFz@|r6HQ2X5wunS(a_7o7ip{oMBnm zHc7Rp+Dv3=HSn{gbRimg$_-6zXgJT-TDCxsd|{KwLa{{IN_&$`@tY?( z7EjLP7pzv*ElhdNFZ40qZ~5XviADLV4aEtsS6Y^ikFlJ+;GV@AMP9*j6OqOB>AA&> z4!3yN1C8Re5KhsYrt^hk6oBPj*0(t0{f43&)0-@EVvLFhj~QaQVk3>UT02ase|Zu zC)mW6IjBuTm#GNVr)?&0$H@=QknJa8@%)F%BBB0zY(nDB4%g`9bhaq!u* z#CL=jERfv`eVliJvZ4&wZlJ}KSwfh(%Mkkpaqy~}C%LDVJBlJ-^$}jlH6li9^SP*C z1zxZ;m4qzXFZ|+bDpb70h$`M$3!iz{5#{{3%>DG8!pIFzz}DpRqCL~ca=$d6$BGsb zLUK=yo6~M^Bav~QSvk~(+OZ9XOa6S|)1L0*p7oS}OTW0j=xO&K{qhfaZ2xkd{HkBHe;^e7ke^<_zxwmN z^R;`r|JT(U2lTf8Tjj6$_KrW~w)cL&%JJX2-@j{p4<9A|6xSy={dG?C&U5Q0f4$wm zTkY@d%g_Gn|DHW*|6xylwsZfd_^i?>^pN?MtuJ ztN)OrUjFp>fxQ29|F!mIPY>;{ddmMD|CRTP|H}Kbwdvjw_KvKl{JnnB|F4SP_2^#x z(rf>IrT@79D!Z`kqy0xAcqp`=0jy(Jz1J2lg*| z`(O2o_79waKjfzu_TSroRr(>fz4P~1Iqt>rpYmr8{OZ4YefYWlSL#pm{PnLj|K9ZP z?aR;pYp-1PmVexysQ<7hy%ws6@4vSv|J?Q0|IYVR>dyC+SYTTuUWlx z`7+LsZbtlO5r6yX;Yp8V_3~%fZy$aLTTdeTZ!Ld+{iSu@xX(Rpt$!?h_1H1lznCxG z)X~#E@<$iq$Q~pWKWMvsKT!Sv=o{4Y!R`lb-KVFcAOFU&9^OM&{HU+c?V)?5qI=wd zJrzHO_@kHq6#py^^x84;4|!4lQF6}wcz}N=V7=?SoKHO+X#bE~d5)~aZ!`S2eCfZm z&a3!aeV-nDBYxoPEtdx@S?3+Fe9h|h3u!Zxx!&uRdoS`^vT!`py~z9D6!#~J_Y*b# z&nZ(AlRvwQsfp=N6!jDJ=lz+QfS>B%PgFOUKVdO7=?3#>R5zGEqq@QTH)Z-07So@w znEr&t^d~H)KVdQb35)4ZSWJJyV)_#n)1ROB`9lEz$wiMpBh|f2(sTL$W@!G(<@=+~WawXS z*K19!HUE0MKXGHzUvKwUApJ{J{obF^|1Vs<@pA7uNsd3z{!0IGxwHQEdzq#I6V;O-+4VGPkSiC+zc`0mWOp#rR2_jy z?I4^zJr~^YzX~OPcjQl1lz<;AWsp=5MS9A}@JFExt+z-c*6#Yyzps#cI&^ z{z2Gm{0#G`pTlzf~YL+OH71MiEbCJ0j09VFr0J1^Ntmvg2@Zb3ysD;eNeou}ufreAj!dr`Amqs8c-IEB< zZA^mSi-O3RQzL}dFDGJ88%-j+Czuj3v%wBh3N+njz=bFBfbR28pw<2a>;0$@XqAs+ z&Uoht*L|Ib9a}1pwTc|K(MtmcI-DbK?%4{J{EiV}j*6(($cQZF4Uld<3=)W125ZA;qBTye3+Be^TVjFC%0fO#xgV3r3Y zQfhFW>`~H`x)dexFXGp6Lvek=7?g0U9L7vC2Ni>rKqlo2?fOc9?3>0Yv&0ZCz1I)C zn54w)4bcY|4V%z>ryAD1;VqPRW9gRBkB~fPB&n(U1U!7a@D?f=SV!Mw>o0iITid!* zbL*^OTI3=S89fio+MNnyD&N7Kc5=8P$cxdAJp-IkFy?>XPdjX%$@q8Pr>~YzBaZI% z#IoZX^qh7ZYwsNa)#(UuC(05;E;|6uaxTKg%vS)-G=#oMeQ=I=4%a#RAQ|*@BH1yg ze>cAs8CC7Gh%aG9;z!X-s~AdzC7;FOsE|~_(k1sbdT*M5@#PW z9I+dAo!H{p?d>Axuk-@roP4uRzT+-(8l65n@jy3%J$N|s( zFuLslJI**Cv>2abYnziH=a~e(^W$AmUAqk4*cS`4nJA=rxdptx-+{hQk6@sGT7TkzQdZ7T-ven85(IjhQ!TH!uo6`j;YH4XrVG_a2E^auLwqR&%XlmO=G~4 z)=y|=;?VB8#o)Ci}@7FxhMpsnM1f-fbL8+zaOr z{o7m^le!41>^MNX8uw>3RehoUS`n~5?2coNOCh)83v&}p5G}f~m*lXQ@erGH+%6{} zesDaLOj~FuyrQ5_2J4pzndd-wy~%^PoqG@MZmbXTC$xfKJ0`eLsf-l zjx^V&n8P%G@6LnIKhLOb+JY6WqJY>jhQ9YPl&p5?&!$ypV(mVgNkUEuE?F^(Oign^ zrBAPbFNem$_Ctw4QPUOL_ZMj--Ukk>dG*b*Q5kbF7pE_%xxC5-=G~z z%VE&r`FIE?gQ=~}r|eS4fdIdw^sGEJ#zAE@NMFt+x)$%q1d$((Z5T@qjB5qCH)Y|A zTm6A`+Ddq1a}wOQ>3j0%R+-mY7%_X0jhNLM>`B z9ef~$sS|}E@z)J($8%+%zg~%0D;>()#pB~(mvKbKwjcJg$iQA}^pIcBeR_VvZg@D| z7CmcrfaWa;Fj}YqJxhxbw!coh2HFbJg80nyHM<1W2aV9j+7vqA^EtpNwKAEJF&mrA zm_~LVSH$V>tFV*r3Hq4BDKR{+$m+Z-$=-aBI9z^$M2Bx<622RKTqJ_Hb7pNrlBg<1w50>#qr$pjCa=_r2i}%T{92@ zZLTX@seOobnYNwWEKnAz=cwa`TieJXJGpLsJQX~eG#UsMj=1j^*WMoxrU$2-;ILSETqFzi(yH-7nl>L4X@nrg->p6hlTNO_;CL@ zwD0l+s`mRyu;slmH9|#|CihfXm9R*VSiOwineWE(5*{GFaF{74B$YKuFQp{<=&(+lDs#24V)|C>>k`19f`x%$tj?k}t*fxC{NuDX$EuMrO@ZH+^P^`j}L zeu$LB^n($D#4O+2m=X<=f`%Stv}pH4)+(z8h@EoSV%bYnV}3;5%gkM9vNA=@=j)-j zn`}*Y;5&?rcd$rLmvN6~_-_N?z>UqMIxXyEYT1v}E^ zE412^LHE6vK`TG1U{?g{!^*qv)U1qU$UH@aV?Jr&1A%?<#TGSi`C2I3;Po=^*(N1q zU&I3kKAfgrwS^+Hl6ACXT@}!n(}9X&Y34pRnHH<$0RKi4_G)1oJY25~1~rQ@$T&_a zYzUsbCJU3{yTF?*G>9H*CYWp(03(_)c<<&&8!YZZx9b8?_%Kz5K6g}DAGR4U&YO?3 zFMVQKyZzMIL;c8+w=0N4lnfc@GF!|Ja6DGMSB!H9>EZ0= zL>zKq3u=u`%3C)j0QB2wh16#cg-a{GP@1QN0^hIGsB*pgboSv$LH`?J%p9kOg2EXi zkW_6ht#;}(aLj%{P3myP(WUl8bF(tO9#@N}33k#E-Z8A$(2G9Vb)2p7>kFFZ?E#$a z#>oG$9kTSF3;2;j9PDtB8MP(~#Vw0QneiBCYaS7B4jU&<1W3NA5t;6#}HSP6+s#npARH0h@nzJ8^OzEQ~&;g&noFkuOpjpr(Wd679nP z_f{ONHkb>f=Y0X>d;3n zU`AVCjQq08kj$ATkTav0+#T=?U2~8px5S5t=agG$S;r0Rza{{6o{^??)ia^^tp`}w zr4Cmn&4Hy#TcDlX94u)e1i^!LvMZ;2g>2d^x;0dv)eJktzIo^lP4X5{ll_v>qLh04 zGAI`Xyr=NjW<{Vb)S&|39;95q1fYVESAoBLBVE1tB`Y2pO22xs4Ys++;E>N#8U6M) zO1!Nv?Z}R!2h>!+Xh{Jbxbp*cdYwYT{XQV1b{9VZ`#@YB0*|wb=y1bYK!#6&_6B~S zY4#XoecKpK_;i!ma&eb1szsY@+^_^!Zfs(feDp)>-@L#cN{Fb%&n7d5dkX6!+{xDq zGKBXe0+ww*P3Di01&^us!T>Wj=Imo>JgToExh%ynzK`}oUq3YzATVSqx@|)OIm~8P zC(r@q>clta8as|%g`*@#k|}Sa(4}Xtm@~7PpIPg{&>+@;=l6|60 zPmXjKjN7)F5|~_PL+rBXRh?(3{f8S_qgn_0W7src6E_#F8a)Ss##*ZJY#Pm(YkYRs z<-u_A>SkJ#aIi_}bKD9avUY0{P|@O8dW*IhU6UC_d(9HkCT{wGztn>6FrSK=l#1wK zsijc6^bXm7@gj2T5}-K_Bbk1FIrNn0XR-Y4R&2Ij8wj2GWP_RrU!9bOybJaL6UBvi zxTXrd=F({4Ya<7U?o_hX$CqlRT{4i#H$7hK9sq$?YpXI z(RfNAk;rG}rj-af4NQ^fc{cq#F9&eyHs@B0UGSXI_N2>60S9{5VC(y_^wEwawpwB? z?coy7?wKM5W-IRi`px=?Gr|_htepWw#d%nC;XI?eY6q%(m4?EGV!(N;Ni|RbtX#kC zBz(Av&{0Jj2jqs3ZOaA$`7aYeyY(n=M-&ft?r{S53nXEK!$Ue;JpqHNau^x^Lde@- zh+};(q8lC!%yqvMka=8z3^{8qL{W7_%UM~J>lI99@(f6;V;penf0D=wt-#SOd{IW# zYFHWPkDL!^5RQc=GJV_(PmOn{s7nP*tg8s|+A*@d*$7Tu$|pP9ZX(_Fa)bzCi6EsG z)h(;UbL)4bMQR>&-GO45`D{M8W2^)3%v%aoSBJrknsc$I?HD@5q(Cr6LK33gyXksf zErq-mvNK~@u;+CY)qKpD)(y`_)wcc61V>h=o1~A5OO0{N34KN( zPy!enzJd8h!MN6{A2b=b3WQ{S!Gb|$ptX^JJH;yG$@p-peVvtX-q!-qRAP#5uH1%` zRV1LhNdnk<$dR4z?*Q)%*F(xCk7-`s7%Kb7d-e@3rydFNDhk=L=9TbdiFU_%b&SL+f6qX@SFL}@%XEPK)x|@l+2~+ zTc-i%a=Xdh@VQuNsXe*CDB_H_H8_GBLu(Z!vkBa}bi(C0c7vxRxVs7z#)_G$&k-oH@B})nOaOoJgFKGJ5_W^*c49tBML2oO2wdvAjaaW82<*<= z02`-KfOq~Fd{X2H+Ez1iGY+%G0$sqk(e{$Yw zg0S(>LvpK9S;RZLg@nH~AXXNKfbraPvgN!L81aZN(#rRPty5PZ=hs6C|B@=|D1QYn zzurt8FfC+cwF^*L6Gml4&p?P*0ZC83iTvB;NOoN;Nt}Nl&5OQ;TNC#p)$I#t&k@D2 zW~4h{6m_7n0k8pg&$}V5h5P!$_Smz{^Dy z-)m+_|2ro5%Is8ZyrmLZ-0;5Ldk8V7l~2SMh{MJRgc6?$L&1L)Lz2*2d9N#m#ez<>H4+BZ~-32(XymNw2HiE7fqYh!ldh0-?UuGSrJVl#xNvL=J#fF&?y zZx)pF=npf^wjqexiL6GqHlJq# z`Oi_)uzWh<;3Zl+ej$;#DWsRqKzN9B7ysZX7e@?Md1({yFP(vVzUcJqELOe`1%+eT4j{=o0>u zw@6ZJJD%Ja0Q@3q1f2daOkHCU>aVQ^9hIGF_cim-Ix}U^Vp9mWlzv7$hh5C;qA=P~ zLIm z+wLHLsWGT3We9hqvZ8Qf?Ls1ciSUVWlH9=ADM+whm3;r0OO%V!$k+a-g*oGr$t{*k z0{K<2Z$M9OrI@VE5m&slD0G(Krjv5aS z0{q$_a!&IxLIcaOZpCUM_T7z2CPd*ep`YN;|B z`A3DB5u5SS?)W3N{1Zd%Q2@@}@ke&+3bL*{{;2JaKfY;Kk|e^-`fgs$&}UPuvgE`mvMt zFSQ@^dw%p}cJ%JY_wI}JmVbOdthK6VPsjSF4aMK@hxP7I{&RMKe$S78*nT1R{|x!~ zhw;PlUy&dG9I5={z5ZUF|6cRkdU?ZSj<{^PIc;m^O;_bB~w z$@)L@KO+)%1Iwf7?EABPrm6c2Jvp!M3Mv-pvac3jgYA~Zf`Et9uYqU9soU*7iJLaBc_iYSTsSeiPW-N*}1|bPx*!7a8$TBevoFJGya% zDj2qGEW;oDj@CODPIz7V!uBJZanv+#a(LuZus&4+@+`)Ih=;o&PcRAU#&+xF7~6pTFUFuJxsCKei$ch^oGNI(YXWyN-f+)@u~2TX0yg;= zM}Og8qH+r+!*;8DQ^C4jKzE!TD?9fy7{t8~_C>8nr>ZyMi|{Hs@L&(pT~SV(pABYt z_F>ewlebyv&1rQ1tqoMa07bNJ(sU4W{xG;_sSfgo?1hEe@oe}2Te#*~F)M$}7P>rL z16z0Q#OEiDCB+Frc&pa{Jheg(v_2V2Bey4%d-YH#^L9E2u^vG`6ud!6dpASTvOAEn zln|n&{W0%N4!TD~j1=7mZISFt#9!=*QSKY;F=&8r*)BJ7?_2j;Vyp^uiAnE1H|!H@ zvu3wYVlV>}R?kLlSFYkpD}5&Q<4(X2x^Y&?b3IJ?qKa27IR~8HzF;#pPr`ihOAsV; z4808AgC{DTK{1V9_~H1wNY~zj?R-NCu0#d191{*$ka39KIM)ng`$kZBqZq|dJKGg z`4Sl|4M*B@#{%mYk@RgU8n--(hPMJriTpGbx*}B<)EO9~__qUy65LNm>TPG>kP%$R za%b2j@?&&&+(B?bJ<=Z5&aU?i#Z?9C@Y}?8q`hGrkn;A02QEG$C(J%_RdP+3j8`XM z*sh^M>($<%=Fke}?%vVd1?Ov-pjThHoZ&*I&3G~sX;y$2Z7ADtC!*|dhImbsYJ zG`hjV8|E{vU)6}KMjyh?`bzuWI!pAQw19>!QDE`tSmY6Vk||hl9!SoRWF-&|N z=-OQk>)2Hwh{EjCH$t4;)tTohH3zqi_Q5Le7UF&0I#BO{CrZ}$rO1erWX3%Omg6wb z)FCO1?PqlqC+7)SZJS+iY*_^3)3p+|EdBsrys|{c?7q=$)$3RvGd>ujup6!Vn2j<` zB0yvMMLKP)E>>~90o#&361JZgNd5#-!~3I1G4nDmeH?+%fhRi4`h+v%i8Q!;nvV@tp0(Q#pXPgGh zlK!m&2qQEEUAb?_$4yo+U{rswDE|iH^siy+O%8xo2|Y$BOUzUoTS5P`gBiKG{b2Z> zd#rTgSGLX+e?aDiM5PFv!QGkt7f{AoLONtO)j;~<77c6rnKj<47oZ%@$|mmyI0 zc{|cm4n+>nGrQokqgGS65{} z@VLp7g#3Veh?f`1>V)xu`&~QeMN3l4=rcme(jnOEu!!ZEHz5B2Z@lzY2heq=>AM&kKtY2NHaxcH8_=q+EaBlU{`;K{M2z9*!+p<+Y!e77N^4X40Gej7S=KnHByW(IENav zUo)*1v)DGZ65a%zN|0P!0V1nrFb$Vnp#MQBvQ~O1+P_pv=p*R`?I5CM0P?O?L zG>ZV&mQ7~lBkwWX5tCu;`ms#bJuc)wa5POT!)zJ+uEXLTQF=z9l7 zsSZNgN!!?x`6+0ry)~P4WIk>S-^=D+@I{UeL-B@#S=eVL7tZ@|oK=5o!Y185$=G-L zvYmSUP{MdOkaj!?WuMp#jE)_^Bg;1up41B5ffb14bOBv8YA{+lVIqCDMjfPm-NnwI zRt+L2hM<00?x^ltCMwSSgy)WZ%ZP-Z5l3w;GMexWT)8DlTniq9T-lSP(g6rn4rOCr z@@Z0hW&lv}k70*AR|L`9`Zy>q}#!T$(!YnoSzK0 zLBM&9dpU;09DeqXf&9q(LtVg)YD7b&xtgLDdVn9frxiS zn{3(BokJ2P!K_ns1lGFJ+}m1;IBoO+M6!m$J&m78`!P>c;@6$W$jKuy1`Lj9A4%;P^}xqCS+Rz3xJcoKIiFB!l{^ewzL8uzCC0sp?f)@gSRG$_B7^TyF15Nai21jGd_UG*S&y7 zDYxll(OV|^L@-L^T|g(|2f=2+9TJ%Ho{e{wCQQ(7QYU>Gbtk}Kl~diDZv_YFo#hIQ zerF{Ze$N~7C+>rZb+NGAWgDI%X#-?!w+J*n?!oeUF>T$RYbxV4gqzJRy1hAvHLr_2;28M~BxfxW_WoDTOBl`$Vs)Vz4?elrEwNa}+@Wlprb)df(P z@DY5S8VtnKW>LDn95jcwh%p*JO(=eO1tY}``0Vp;-TuuM%{{k_G?XqSM~+Akv&S~V z=%d<1Z>0_PIUWw1%+!eat8J{;QY;*{>>dn0poOEf3h>c;{TT+ELU;Uy4fxgt1><)j z&P@qcQKFjmviO24&-F!;Ro+-DS(<20T7h=F)WIfa?+JL)_o;mf^3WxFI2#|}3ar#V zfafVUf&HclXgNm*RHjLQO$8g6L<0+2Hsu7Xm3@lFkG8|uk6-DphV$`wSKbk_60X?ZdIhGs${AP74q7=blBkXzBW!H1AS1M8MVYdWB&I@z=uQBz z^xHn-1j1PR>O~@=a1*Y0K;g)vB{=uK7%~c_uw^<;Q+^ptsoxbed9pKl=w1MP6*5SP zf-_QSksxzrem%-!pN5>Lcd(Ks&^LSU`VV84P@8mqRaq9@vQv z6OIfc+{cRWxy`#tjln5kl+y<6trS6B_yriWRt`qzC_?wNXw>=01M6S%U`Eyt77ZNy z4Sy3j<9*`*x3W4=0Gd{kL&dX%!7VR{`4??b_JNmV>$oXo%i0k5=$VYrT4Efv+&x|t ze(Ncm-DQd0ziuV%VJu8m@5_v2TiAw=H4OPO8cQ7;jatG4;6qt4ah`Y(iIoNuBs@c+ zckAJr({e;*QZsT``Q(+eWscRUpVeD+7Ed5cZnu zd^#{i4b)y34Eii`LDm}%v(n5sT<2IpvrpAo)e<$f%cdXHpEnWk7A$AQ-5IMFR25;# z*Emo(a5i{0JsGv!Imph$A>ioCMTj4Dkk(Aj0Sk=3f-Wm>T-=e!OwUSzWwO^%4SgLa zDQ^JUow>SNTcKQ4?`zeOGc|L9iGz;1nUw;GObfL3R31(Gn|xmbnnI(VA!w> zQYU3$dq@YW8PE?n-5rYCEEMR(vTVw4>{UT&P!?-%@{oSzdymb9>2!%`9W8UHjeh*F zhMqq-jGepw04gvx1j`;oq0_TT{F38dlI}n;2<;OumV*cdB|&SLt2fKw#)FfEQycn2^N*(( zb&vU6dPf_h*H@RPV)KmgHC(_LJn6!oDhk|FQi_1DmdfjN@FW$3(qQ2+A10ojLiQZd zA!e0JLEEV&qJLBqzTxZxk-S!v3T`s#V;X?&<}pm$=Q74xG!8y@lV=o5|~gacx$tvx90?H=v!TR{=`$ z3NX2;iFwZ!3LKrT&>B^h?8fJjh-dJGvJN(fJjv(KedKlYUOE~`ZK|X>X;j|U<7KR? zb`nZl8xK@v^H_Bi4iZPX0OR?pi~={DQT0EB#k}hcv{djq=>S#DL`XdQ&8tl zEwJl)Gb=XQfa?8>LA_4~NK4CO9pr)-&GKh7=kk@j3UzPxOGzgz=I>{-#!SPp8eZhV zN`O}xB;({|-L_))ezyIyJMDk18Ew5>0q(a)fTkQNr0tz2P*2$dbHzJxb(5I6y^E&B z6J0>do5ysFzc(X0IEBvD2q$#DfzaN5H?G68NmafKOdq2H_a4&&)=xvA zv&}#%BV_Q6z4^?Q!_uO(-3v(Mi?jIU3{&oR|9j|=cM*w*8zvlDyPGIBz7z8HR+IY2 z!wIT?56$PkAaVYeSiOV(BJnPYq52-gPJs)E$&$s4_32g^>zRl~v1yE@!Vqjybc%Jd zTMW{44w2D;d(nnU4sl3KA$#1V@t|D~aOuHdH1~58z4aD>aNbF_kDD=6J-QHnygM8c z>2|cPBTeA1Lz!M#ZA`+J4WtA7rNC;l7u|VcXV}~%Gq&HEp>XfPzD&iWDlnH92W_%= zY>PUd9(!;EJM3a3H7{%|>#%jh|n+m8yXFC>C3{Jkt$oK67KlpGN-Z5#jK&rW_ZvoMG_A8m^L_4s+b85so*QhitZO zW%wT$(|#9d-hmlTsO!XDP`m3WY-n8yeVgL2U{WC4G$@?3JA?wChDD(8#Ywc+cRRyb zITd6r&WGpjPGbt4w}C^)V_*=70&k=Svk`ChV(HOYY|PUSNP#lN^OFtmOEVStJkt(D z8}V6#%W{mea{`rchmZIQ)9AV5?|_+JdT7I`N>p7@fGZAopx6mPSnp&aZDes?mYy)Ibeb>P##R_nFO|}wGa0FIvOZ1i3L~E)6tZ4 zDPlK#7vcEUn9NF0A%$Bz=~IzALBqC@bm7|)ko<-Nh4#^)VZ#7gallf%ddO-fXmGG_ z%f;I`^}sb$*zC&S%@@(TDhlciC@0oO5=g#Gs8BwVL(bMK62bcZu+4rkY4_;M;%}Y8 zRSs|9r>62+ytaAz% zygw8V_+xKSQoFkIJrwVP!4s2kR#GY>yZI36a#g~f@(o~e!DQ^U*@E>u?n$yBF>&`sNYNjvReN=&|Dov_-`BpVSQ{w!)4CF$eN+p zdi*5Bv8zK}ZelprJBoe;lNg>q2QdaO(8LEaFl*H*^7U8>3hDO=k2MP=;_mm?>@?Qn zc3mSRuIWeJGQA9wsjKwc@ipN6j4&wObP@`3y|BRiART|@2>NI_i`F!#p-o!*fPgh( zLF2~~?E2&x6}vtg`L+!uHE$}>1)V0wo83h})ZYZAvC7DLguXz^H43e;)}b<=Mxpcf z<}#bi0XVTK8WWqI| zHuW7?Z8I3xTg*b&T9zSo=|NOLS_HnVx|>loPeA2l23fjtF3R~Z5%(MT01d6~2PR<` z(uj&!KQ{%&R2)xo7hb}r97@UNC&on7#`i$9TP?WK{25}%{x3cKO4JX?0;i}}zlt1l?qA_dIuEob}Rj$?h;P57zt zT*ME#X^L#^apN}`qJhhBz)2p~tJ=vrtDhC>hD!JBTCDuJ-0HPWP&=`_W*%p=nDrFnVowdhUsq7tS2B@d4rN0Zz=0*d@^J%6U;bFil$C1pRF&_Chq+>aw z`+}qEHIcPz460nVk&4xv&2%nWMinc+cwwTs&UJ0R%ifZSJ3VH_6a(1V8dB^N#= zGp)O~!2EdvX6rLcM&@HU&d{WI<9!zhWnLD+`N|5QQDXpJe-?9{j@Xh#Rynkib9JuN zwMS%To4xR>&JDEql@xP9u8^o_mYRM62F!K$M#?1#2$f8wpnsAfGRQ9l$JCy{jyN%s z=$6Tb@O6ciJBJX>f~9Q0x>sQB{ZLk2?>)Q1{{nk!+9S%R<{H$#p=Vk)JO@O{Ycp$K z41najx^Q@!Dcd4;Mn1K>>DKU5?DI9w;GXLeO6-3VNQlG9{`ODo$mpBc)?q4}e0C-} zexHZ#>6%hE&DS#(7cqVH`3C5}M3>>u)S-5IZWoSuxdv%+^H6883Czyx4Zp&iw{QD-NmM&Gnq7!1ae$Yg067@=OrO<$} z;+@W$uOgfKHj4rR=m#B*gIX&#>BEsK_?;S`P#AZY7?Q^lsnYwgC2Cj(FBU0 z-glfcw#UwoXx3W)Fsef{@Z=Q#+(Z@Y>9fUO(kAdXW(=$V~l6-QN66VBH<( zC`D94zDH>;<@N+$C?0{RDRF3`uOXXFH&aU=%VKNc6UtTN1t^Pujgx5wh|D#~Bs(G218Z#vwN0$cXWB|dBKri_;IzmtlSd*G3iEAk$1I!ifTR$+oWb}`yV+f2h( zOu_n2_u%KD{!~|00Ok!}YoeRaXU=c?#tIK^q_sDtv7g=>;K!#gi-^99>{;hrEh^e|<~zXoSbCA0&7KS-Wn#FX%dz+=%|;fF8@YC%y7+gv<@ zb!>Xg25mKAuUHJBFDA}|Q$3T(iyS#BYwmlTxpX1B?~^;?WbHDEGMr6Wh6gjwoA-nH zciiBfRa~ZJc08-8kRYsV{X)l`4P-BfP2q&AXQ;~Uu}D=Vj~UVps%y}9na-tdD?>^YMv9B_ogt?<4E>uwoyqkPumiLdvdwDSGD z%HuIYcMSnOdXW@xw1*5>CdYFZhZ6I=J=D3&ec07EjfI2SVucD(DslmiP$HoJfs7z zz~_Sb>=gF+@lkBtx8sz!>@1b5xH~uU?Q6OZPZ2f@RzUNYXlimx$I;;1x)y_d|n6UyHy|WSM#xJCejc3x$Zbzt6%m0VEHxJ9{Yx~BFG^eD} zBq^Gty7pdc?+ZyK6d|dQ5K@^^Ns`b&MQKtgLlO}sU3;&!_Ekbi%9u={Nanc=nZoZn ze)rdVJokOS@BKW-{rkPg`@H?L_S)+_+IyY*TO;pB zFGOM8(d0pEJXp{6@)6}{B>5dhbXDhAc)yjQ-C|vdmGc~2S!*si@K^)$KUCZ`=Z-R^*1eHCcxss)&DQY|S{PvSgs?a3t%V`SXd9qYX9!3tM4&_UNT z*p2J@At}+K+cjq6K-FWSuC3bOa4_Zr&TqzyH)7;6f<<>+B;?3FO%xh$kNL{Gyt3UX zI_;$j@$c@TgGXJ1pU>?j#b?i>#WN-d)gQOOA(`93y8^2hgK}Uw6qMvi{ zqHRxvptxC#+;#pKS|Xur-1XU1k9gMj#9>tTWjprVCC4h?Qj#o)RwaF_Eku^$H7uDU z#rKDpV5dh}p!rijen;mUGGl%)n&BPKl7~~6r52vt#ytaYk9Qh9q4Nb@%wOkbM{VUC z$17s}EW*7@-h`+z{@6La9SNla*jl5$eCMDSl<3+8+UjK-m>d_v_y1MP#a~RL@~2N` zUY?TqGA_P``-g_mA+~N{@9RdseeE#L;q*Q%w`__iEW#RBb|mB0yiz)SWjOozbv!bf za-CmXGXtAv+W<$)cK+&emUq6`%^5XrVRD0Q=wv4;3Aa3ed}NZ zI1}AtE-9I9P9IoM z%6tq3;LsNW-ew{a>)IE+II@gw@YP^^z8labeN0jO_HKKXs{vF~RyOVCYRRpW`T0!o z4k}Jk%13&nV%580sECYWh6EbZfm)4pPhBzZFu<74(ct;I#ST@q4;;{{felbD@*>?o zJqE~~1689+x~W!|AwZfQBUu@K8K+M8$UW;mhPMAo!jT_3xJPqKnD0H2Kv=v^W@k8t z7Nl4s>B;4M{EoB7YXXMiL-KtYqnk3{Xv0GkWSK-QNiX4J-i4y`?vAux?=GA|zvG`j zwu8&AsS}44Ik-W52S1?hValcsBu*+3v^}z!+BcoZuK!ZrwEtvK7pE=wDV~Dwzbf(v zyUe*^a^smJV+oU`nGU=qTXCY?NT&YAMp4DmT>O688m?j89_IDog{ZkZo<6l^8&Z3c zh8wKxNoA!q-Si`kS#&)WzR1y~o9k|(+5sP^_evY-%qKB4wJ(w@ySW+9w;RSUk=fKt zHF|Mo{xy`n<1NGI{Gwh3e4y{==5Wr#me5g?Io?xs6!%G62iuLCBlCur(v~-pp!ZLK zDpq?(e^+=&hhtrC5;KJO6uDt$7>Xd z23;A#BO!x6}iKSqN3 z)!>d_oup7>8)nV!g7!HM(t8%uSZPXMJR;AI_in}bX6SL@jjA~_t;v@E7=2O{q4%8G zpzgvZZLpoi`hwk2;quvT*1u;lBuhyWvFQ55MnmsH8N3C zW{n0+ptro1#r6d6_9kwbnY_}GzRcGh$4I&k#w|1Z3d1iy z#x1Kx!J*L$r23@+tY)9h*s#8Vugaba3@UC24a!l>C-2$3eoHh}{6vW@(~e|ohn)eU zvr6Pf%u^=5*j;j3+lkD&xq<7I`m$5bnqmhJ0o;6-jcU1WOeee|Uq>CMBqr0@$)+Oa zQCJ`+7iPr!ckrB-hXS8CB#djW({f0-^^#t)AemcHxt~rxzXIsFsG$7iIebD~3Rksr z72jWyMBm&sng3|2CR=-rT#%mrK9#=P@n*>GM(i2YV6MSd$~u z6-V=S@m+Mtl0a~9y57~a!P2`AAK;QlL% z*0}5oJKfsp><*cI?)`jvidz?VV?uuzMLpx19d@JmLy(`|Ck?MUmk*!uK`=CAHL7cx z3G&Z&;;vd%sI5MdA3Sz4K5KUpN?K^7WZFTgRM|-MxFu+yjPb4M3sIHHK;T%~&BrS( zrM7gpgNC{$(bCH;e8tpL$k}-zRXk=4NYk@~!jUQvwr31Fk>3Y*hEu%BA&xg(`x*3X ze#4b5t>y1oTB3=!ny3{6I^f29XI|}fC8*ubFbcCjf%q}n!e(W}R~BqWZ(i7fI=k&$ zQe4AA|eKPgP*m@;(&SM`yd10RMn2R5$9^$V7YyN_iF#)Hb? z%EbzxZGSxOf8#mJ+}lj7xGH*yvNjbmM@#71wOOd8b@4khGp0nRhsZ6RFPfP-i&<%| zNxyRm5nhU|VVCQ3l(lF8tm-mieCK^-ayH!J{VL`P!J@HbW$+G4wL+IaTjt6aes|}K zo``7i%kvJi4My|dk0;Sw=T5p=`8f!@z|+!U+i^|cO)CD!?ke@gUi`Z2G%C{^%iHe0 zEK)VS49r<@xD{3@f6UzI~;Xs@(Jq#8 z8CgEeset*wv8NcO-yBJ|L0d51uN)LSm3NrBZ4Ie=q0WD*T8}%@%}7-z!(UwN$__H> z14rZyfReS^IN5g(%I(fXa(tP?Czy_J*QPQS*CfcJ!Hno+M50m;fa6B@qPNW->5J2R z$+jFVl=4V{srkN#s7GR~bL1F#c4ZN%*Nuhh-^NPsoiJr>1|Gp-{qOUkb4Npqxzz&G zxR`OuD&>Kq0oCFCg5eTpv0E?O!c+Z?Nz#x;CO&+hgGZwiDZbLf0V!mIWnm9xvu=a4 zUu<#3RCBU^%ncIrQ4b`}v1Gk>=rAGQ=Wq`;YyrLj$=sB)Ui>3Vb-re_26fQJ0_Lyi z5zXIX4aQE)g~0|spm>giyqD#A2j5%6yYp65%r!@T--=|qAkChdMh1gzwc2Eb#cl3E zauPPYo5DSpoaIGm8Q*9BHc|ZgMmXJT2CeDa7uvqw4V`Zka*woig|jMt{G=04c+u-F z5O{ww4K{40Hz-}E^m$EaK5INl-#bC}eJ3!N@+Z(&&s76A_=Y}oMxAdcFNAfL9n_02 z33x@xSf(yO6&zgG%q;ZW4D3()qD}Tc*&-twq3^P7AYa>-uHLj7&{LvV$IKg8_2)Rs zrt_Ypsb4XE(n$#jS?l+_L7Xnrcl)`2)O?qz^PiF z120O}FrmA|)Nb|fq|xFLHucw_8-9;OD{dr+zIf@=3pLZ|Zu<~!+x33<+x{VRf|)kj zymTTyD3?oDikC5+Sr&A<$6b2n`w4t%pW$?bnhgs0s3l2L`9O!yItG_Mt)f#TOX2Kv zMM>S>NZKh*M;7z=Oro%CH(qJ4O~)R%iaLs1ak29+?#iUgOp9{}2=a*mjtWOnY`z@2 zdwdCs8QUz0H=98*UH722haoyORz&J%YEp3_F=$z~Kk`yZqf62f@%5x@{7{n!82x1z zo-GQ5Muu_3c=-if?Q#ih$-X9(mQ7$Sd~LDms&TwSV>-Oi$4oFp3 zyED2AE;DcB#)DUf!*Gw2Gc((=SYkUk05`UKafyR#m;!MyN-cT}W`+(##)2h2zubld z9?zzVJ?a>PlvwEEd4~%7aT$d**i()rTJ#eQN4jl$Fz2@W0#Yh_!#VfUM=`syan{ZS z=ipp=bdBO`uKwFs`uEyGe$8nt+USnZv%0a&=5aCfuA&ea|D?h`_@WDK z`=*>8v-r9s{9YWs(R-3FDf@udFxl8Ez?!>Y;m9tL9{^^kSb^ee!?7WZ;xp88cs-Cr z8M;Pe=Y$j{!}T3+bjO2O&)Ui#92kJYzv-gm_bccX?|rb+BH7vXZ8ltVWdZ3(9F7); z>j#)-3Ye2O@S32%^A{%>H8PAT-l*HXCK~>ED1itOtms* zGcr!nIa>=+-`#r|G4|tX9v+m%sM>RUr7>$WE*0yg%*2iBTd7aF8bEw0kqp&orZr|7 zv#-_}Gnp0~zt^J~nB@)UMY~)0!f-3(<&sKSRJB0A@gaPK{3T$)+c9$M8-cN^rl6}r zc!fnvtfK<7w3sQX+aiFv#nK73e8 zUZr!u&a;TA_@)EOn(W}a#2>&!^%$RjY#PH4gTSQQkaVBk#dJyM!Xc(=?DR89jI&7; zu8UkH&RL!zl-gH9&xKE@f&&L}%=C6vuQ-vEZY`l(T`eSApQs7?9*M%27uMKm_Ymg! z)sIAf);>|`mMKixkx$gp9Sen?%X-k$SONda(}m%QMohOs7bCZ%mygMsBh2helgVxM zwE4yh{5H)2e4$?eUu-W1a(m^dOZ$crtNp9#J<+PDXO(-yB%2Hu@}6!vJu-onMroOFcaQyE(B++6WNs;f|zk?+Nf=JU+6EK z;+Ruc_$bSCbo1MOYT4VtOpwAyUcv4+P(KyHwEY|cpDwo%nkSf`sLmUxP3;(PTdM(> zM@sO$>o+d&`vv;q{$iqTbQ3M>d4osY2;i1|c1K?~T41lIeYqL)s+q1hKVE0qCHTF4 zCDYra2r7o=2_YYoaq+<Wjwo?RwY*1GV8^L|G3J&d-n z8w9sCO@nyuRlc*mkU7&<1x_rSLE5}dF;|zEFlEQI*bL?O%(gS9u`9?G_eQ4(aub!A zK*b-Tcl*bXfHx{)E!#>mwNMVoUGAjZ-rEWC?+*%*#oO?_1rf}ttpWN&>2FA}N2Js!>6&edCa z-vnhuGt)&riFYAM?9T_p9|UEq05i1r4e-kzDD+>L$6uB6MlUyefV#Q+_?e@YfTLcB zo9(;=crQ*SOQPnYs`e(lJE@AZmnfm4kw?+Wx>PPEcQey9nWbkGr@~j?X{PZ@4s}Q; zUbwhT1+P<5#7Sp;q4J!qVEBnZ5YTglJLH)Rhld^`lb>gT82w#LSiu!~ug87Bxt#&? zj;Ql7C#Ep93;KYE54!R2s|T3Niv`$EUzv@KSj)U=p>XrHb>iyBJB0Z~OJKWS57+3N zf{i9VW%DzV$%$-FTJgub8hG!F>1JQ3gxHwNbcy#_}5uUt$w@{c1N*Hm&XTcboM%7%a%d7 z{}f|vGBW_)-gXE??LP#n3{^Nsugx&(*J0uwQ4Z2)moUp@HjD5SQa=;0?gxE$@qKRXE zV!!pu{L#KaXhVn^R_wkislOmF&Rqj28`B0jJ0OAyJi3?G9i1oaNtVU6-wMP>BbURZ z8-3vG2fZ?Uk%3hQ(0UI>fNuy+I`A7-YzmX+=`(lf5c~uAWJNKRnY;DIsBx>SUnny_cf*Z8b zI8AEm6?-A;e2H*pz(!p3cqP-LGf4P4M2YgxPiOj?+0i54Zx#H$7{admy4d|k2t;fM zuOvaARf+iAG&=4@1?pol zpB#{3=TJk2vvnrT^c}kdaJDQQ#nWzF-p33Sube~0$gq}4MiEoEe;bHyFNX!zQ>%_F z>SJ%yAHy@>7o`VgHojC^w$naRoSIG1a z;}GhDy$r+7;S%GfN08!xbdnxgPMtrWhL}^|QLv8{t(Clyr0xzz4~A|u6(mz|L`C7ivJHCy|5 z7whEe2h-|3NU*UsYieY|UCiG|ns4=T@>e#q&y!rSwC`C^F-wehan59nyq-`o&jJig zjbW8e1u%z59z)@YJiS_}RQbXzW!47C%k_roCe&Ohz88 zzH*%OuFC<<+Ok;X3$^s&2LoWymD^zD_;I}Gh6l4uZZLS)tWJE-A7g5>lAuF_CM)4W z8SFO^Q?={GBgf?nO$Xv3Wx9&WQgOtcn_jc)Po@y_TPtX3g`B7;T1QxcZh2O>IFmPQRO0P16UIC_zTFOu6x??}&UmPS%**TWf z(K6gwXH8ftE#<(kV&4746lC>HSv3wF23~JAAwzJZ3_JT9e4nSzddt>ttVJw7LbAmv zzjK9wgNmW=w6%QI^_TcFr7E`7KTKA+q|tjM`qYMWJ0apiiLh&QI$p7N0b?q!F92T^ z%Kzn7#^IJ6{qw?Bq3>%e*qHSdRh7rU-bjBY%E^fB$xKBXuf+={IrE9yd_DTwlLln< z#)7spK0}`jDx?ceZ{lvpWa6qsTS{^>8#TFgVb_tRh;jYG9R2-WKY{r)G}iv zp1F24y3Qoi%3Y5qd7;(Qh~S^^%p_`P@V-&8)Onj%OxMS0?6TOYKopB{`17oz{CNhYQMFB%3X^QO{RS z1`eAQs;F)qa@07L-g+tpHMh?r$J%LJUNDpm?v)2uPiF$IxdNFMU7?2G-idxVh0#`D z?2+4n0>yu~C!1?!5``8SO*Ns}#`fSsAS4 zUIb+IC&I^DL-EzxTgXa26D3App<7R9;2YXaOtPLV#&!5ma>(u)RTeAa-rSbuT!;Rq z6sWDFfeu0MkG4Yt_bOs-K9`&y`<4U^zDLT|Z-D-na-{cMGT5H@16aE6D*YzOkSX5! zOW-yhWK^vy`HI~4TyeQ2YgM(64Zo8GRpb1K*vEh^R^83%cf^qII|uQ$Qn+Bfqj}do7q2Ubu%cQD4W9P{H62UC^0g3B{Vme1Y3Z z{)?45T=7kjF1Rl9-xYRHNvW%$_v{$5%Rh+j=?!GO-W{e(CR_kf@ltwmx*5Mqr4?=* zJb-KLn}Fjyf|=&DHL#@i6BDX34$OEv6O|ul#D}iW6cSp;f%f+P^q?*qX!Nv*71~UR z)n%D}eL{s(M%Rg5J0tA+Xv)WpSO_C$5Rw&l(xG=>JFGETB&tZX5}G&oKpjpE%yyYg zb?ZI{!3WEjCn;m;oh`P)xK~O&0D+PE4lk5c7zgKqLOz1sOLVHs3KU^{f4lP5WJ z9s$@kn#n1@436fj3sC{<_-Bh;P*>qcI$Q>%?K)&4(4rrRmK`1ddxAF;zxw`YXw+le zwLp!Z8tsiD8|I_KW=*262}z9S>5p`<#x@w+Ihv9CYT)1$A0-@#kjU@{ZlIb*8WtqS zf{K$b=_gZ+>1PFwGNdM7z+Kxei$!=v*Dn|YC%PR3Qtv#TQJBF*oa+Y^N;JrU zxA&Ph>oZ`e|8r*6*gnj5xnVe>|6=idqa|R9j&Z52YhtT;9$N1Q7(<6eS~kwq%D%% z4%Nk3DK>1yxtDa*;iKUC$rL2F>LQ=9x*i?s8%Bw>2vTNB7(4BK;6txGGe${`rd}=v z#X-G5|CAb)TaJh{#hX{Td>UV!89`n+`tWB#9{c0&1b9YkDm2}=6pzg9MAv7WL~?Bx z9Vq?t_*_9VGqw65`r=VWoRj*Y1*&ei?#vK;vh@W0sXCX$F9<{C6I~fc-KXSTk31RH zPeo`5EhlpZ8zVh7bhIJIj7}#*)U(O4=HkICWjUVvjD=;?Fi@Yl zfo-*2%(yk#ipfBkwfYiO$Oz zMES{LVdctbZt00OT3*Wz1$Hgw<#zRjHxkvsiNU(`?3ol;hSGRVo#k{^lM)@&IuV&S z>BHDpW4Pn}hA@*61w6AAp>aSaRVw!2mA`yLk)fwK#h9yTTKycfbR13MC3XDf=bLb{ zTt4qRWF1imP!pz!y+A{58h!7!F)-dR89&If2V4;rImn&jyml{wUVG<4)1lw!jvKjr z>@EoHI^?-qos*FGUP0B-l$T)jpuMOfYcuM1^fNzeQ!TCEQ;12*V7mExf4G*U1Fl0t zdrgzcR?Bsc-W$&q>f3|(QS0o-yP1;}hr?*+ePhwHhl@z`Nb-2Jt~m=8;YGo4EqYe-ls5 zm9C>zPky60IU+e&S%=NesM9{zGSR&VLn4;Dgzo+5WCmPMrPnHs1;)O^k=8FGe&VXx zsA$Rvs$keU6dL5q=xlccHy0N}aZ?zDx54xF(g_8%$Tdk};pfq* zWDZ@ARi)#y0dYO4jjSr$;Qe#*>d(jA160FO-)OE?(2FbQ_y=alxIn;HfFGk=hS281-q;E*qw(Z zxoXmuEoF>JU!H&GpTiwGXwUv=C}G>`Ho`2&Wh8vuAhwJcaz15gBpey=yFPDamt+o+ z*`n3q+Nn#hzy*=>8iR$zuXftvfazOBf%?{>Qqe;5U1U~Op4xaApK;&*-w%@xensxYi6MVed z3*t9V#R};gP_)Trq-}+&Cj-=J^lyD&Z$o5{WMSfHv0nFc6l$Y&^whp zZv4f!V;yE-VkL3T9)^{dC<}ZTO-!pN!Y#L!NsVih+3^Wmami802VQy(UdKHU7|A9^ zbMk6l)ov~|-%g#Kq7l!2Sg8%&CK!?8U+^E>s_OCKo@h2e;^aa<-t(3Y@9P0Q71d~+d2euTPcqu5KM}bfy-5$x z`$B(+-N~m7vEyGnx(58_#A6q|273OOiMV58FdwmrLETg3!23P>srh@;;D}#+X`AO` zP}r~v7-M?~M&-W6-mV{Ehx{b;weBl3_tjt~IPMJH+E>gM*bTzYCsLVb`{vZ?wiAcfxDs-_n63);$j+uMPlvcrVm>z6QwTx9J>NR_5ha_DY#>!F9IoA(v zt9}IIWFf$;$Yc?=&!f^f&bU^bvZ;PIpj$O#)07R`Xv|EQt4v?=&bd#|>Me zi3haD^RL^m4rvoXyI=!D-t9xp4=Z?|Dw!`${z;YG06qTcg}uy!9UA6t z2a19iwrC9GyR2)8Tc2EdSmIq=zbl*^mE|4;tjc4X46@)m`MoegJ_?&1(!$YCrs0m{ zNmTfV#n^w)C1%g{L@ZvjfoN~PiNYpSV0gp~pOUhv^waY`LHByuXz_3AC_-_fq&-ZX-S*tRgj|&4u}Qe8HJj ziENUuKNDAYgi`3^1;;3AlRZJBklZh2cADN&s4jWW9C~Xl`q{J|<}KatukNVN@_nph-CGjxL6f!`GeN~o zo$Yl`5|4JdC*4crt52$a;*(RI*{GkLGW;YBGR%0Apj_j@sB0gDPECiH>G1`k;&XO< z+_BH(gz+q{0-^?9&^3pznsj?iWQgH&G%6T9PP0XxnbU8#F zF4AK2Gn97;OoWPM!L)nT= z{zAZ{T&c3tck#3v7Ne%W&f;}PE)pUFr{UrTXGSMsA)C>YMcl8p;6;jeiM5F_6?0#g zS6FY&22?zwE?1|+{HSRp=lV#LelDEVqBcW0UYiZD{pJwzE)R~mdhWRO79-lzuSBlfGw7Ee%h_7HuVmHMVI*LQjc}}=HEZ0R zEMBknSbDcpx%!Ak9q+o+o%KBR89X*0Kx(H>74ltunH#rCVAvW76QAHEa-KqoqJQ)g z%7^ZuyifVUCpP+|oMzFFBPMKI{c@N$teYu&Fj18ABME-+edBPU`2rPO)4_3CKmO6yYauXT~0+u+PGQBHeKYw3;@J#s!!NyBAwy zxyE!>?!iaNxCl$}iC@-O`9~nIty@pUw@(DyF5X}>-9$p$h_M8$jS}`A4`bgyEf6nV z)g{#^A6Y%@%16H8+7ecAunklmGnuT8*=lh9 z$XFphFqPVS*;Lvh41+6}sp!Yc6Ov~k`TXaM^Mag>F1smEk6Bwdi*@}ODmeDtDGjpy zC|25TJ}NvTgZ?%&P`Gw(0CsMLOg6WO?K6KH@n3Zaw|}@w4t;GC=@)46V`?nf8KML# z{o)Mh^K&2>)(4`~Lp9h-o5J8{=kH9Vb&4o$V=CM=^|!;(MH1@hs&{;DlT4Ru8jk(0 zPhjhsTWSB_8e-FYODxyNA9O@bqM{=dfOYdhHt}W`Sy2i|lxT!-&DK;VYum)3<2$9L z{Zy;fuUzA^22Wvk?s^GI%Ky*FSZmP`lW^AwN`_AVH7p$NF!~WbBle_HdM%D90`gK6K2AdtYve7IEwo&-EKaj zdS5{!FTXH^&HFwEy2Oqr$<85y*~1)0k3RvYl2*p;g}zA6>|E72RcpaSKc5@%{uU~A zu7#OXEJ2E?5gD+`5_k8nCtB#NLp89+yA;+)zI~8z=gf`3)S+3-vuJHNdRhzly5k~$ z^VB_IbnygJ>}$f!9$6En&*4Ka+~yR8x$k^1*B6vfo9 z-9kgFxk8z4D)yhCBy5R0EC~|!;0G@1B3<=SoOgC9ecMli9adWb#swz}@wHLBt+k=l z)kFcdJo1D`?7j z;sT+-WFp?hPL5t>k9c9FfDY6e@xm&Iet*NFson_PBQA^ zrR7y(8SPOfVvV}APRRiZxckI{SI&SWE1g2_k2C-_TUED`6lFs@91_@Ksl>Cg)m(lSF8{&l$_ z`^<6&{p4{XUc1Oz7-d@lhxhY_8n?q3xYtOu(f2SlZ01h#sI-RK)g^-Rj{3y0%Ls9- z8S6iKDYQ8Mf=QjQuj=TKESSHJ6-~VNnzE``fJVN5NfaL{V?zUP_Kn?bdbx8y@#j@e zc$t4bSoL}oRqF=8KL7pf&gy0gQ{g%mEXrFc z_^eOB#i;`Xhf=C)+5Fu&-?6F6Z<#v(q-;=*XvZSt6UEOA!?*za;yr54Rd2OOsbVSpU6F>2W2G3Ar z^ms7%!Cr(^ltuEV`UB{vMfJxz)LPX|bXaf?aOt}n`KhPiG;3$Di)zB^4*^p6Rzr7w z`z@NdvXhRDDkg#cHK2Y6#?wan!i#IPg`mo%M4@v#>)t<|Ral$IlPiJv^o1sV&6CZb zB|8j)Hg8#s_72e9{S8%4cctR$T=>v48$f=&5?5>#gZHE{%u~&Sy!^|B!g6g{P0DCR zL4VPVs`de;xK`7edXv3`Q?s800#4|%f!7D|MH^Fu;@1}_y^f*MIji1-X*2GiFJnzb zK1Sm>ddoFoX~bamsLBA)^?WHii(V-x>J&(am46a9_a8AzVY(bwnzBT2j<>?CUtAcl zeF+=9GKUO(UWr>h?vVOp>!>$+TX@4-nf+_|EY9M9DZah?3+xSeMjxN5Dy;fB0^3@i zCXG*SAD_le$HiI09l{K3C-Wp_Suwstl^Bi5LmH^ma#xTOnn&dVI$M_EemFSdrccebFG#?jpE z+5t#u@(rP~X(W5SP|Q4Avzi@wafL9hZ=tk$#0T-m;UhT#SV^Bs?!gQer&so8j*WB!$F=$jBYyc~Z_!&~ zI^;`LfH)c_-kK^YKi$e%b2{M4!@JD;;ltpTiDIFytDK)+)lWJhY9tKrRzVvldvXgs zX>>GtkB~I#8-Jj)j$2N%J9JkQ2EjVe;zSdrk^9`xZDn!idqHJ zZRU!;K6y&VEZkJ(+~_f~<71L2rA3Lf7^r~N)`yvhA#eC+Mu(Z~(fvS=KS$rQt8`Et zF`sL>IG6eAJdixI?g1qw8RX|EABK%Tz~~Ax2a~J3R8O2hshZ1z(sL6)*E|m#_0bC# zysLycYp>7|GF>TnF<0gOw3t%7?n(X`&-?H3*j4`lulgVR|2}@T+@`^7B9A z_lN$+;s5Q|f9jU*x{2%`QY5#pWGL8NlM~eTBG5;(_|7Yt!{E@3apFb<}U(12jU&GBu{xzNWui=iP z|C-MIui>upe@*vyO#Hv7^Uw13H_4Lk^SAl_*|)U*n$th_|9$y$-txC6#P|7+?D}W< z3;mD7|J$$sGkz%i^#*_V@sIs~pC5H8e@WQi3EF=@e*FD@^oI|B+JArkvdEYJ_s{t+ z4*#wB=lTDi-H-mfoO|EtoZc`qT+{U$LX(eli=3uVe!>v(Dyu4>o&iYRz4kwQC6X-$6reO`<`ojj~92f*|-`^=2xGw-)LQ$gJ zuoS8SUgO@)wxch8P{R*BWxj^}-|44YY??Y1Vp}_PIMEdivD_= zJ6Fwt*6=sX?8YH*nzpu}mFLbEw^~U~=?+>9f6#e&1y!+zwuXou@n}N5fqq7@3#RT`f_;5i7 z3BzV*Q$pdGSZRIVX7M>zanuSG16s~!j9}E;A4{SKF$UipS<|q^WO46)ti7U~gr5zy z|C(0Msl_RdXuwJjUtDHw~|@)V>v~`gZy&&nOHe~KkYcG1e|2vRarT#r2E`A7QIw^E3=tH ziTPJOSq->cWcbt+o9l0+kAiKmaIH2<-B-w4+{hHYw3|hbj`M|b>Ypj4t+{xV(r-`} zu@JTE>M$$Hy2!zaIrz<5V_yG~JREgpE&nvVgg)7;f-mQ5A$sB?dT_r?`bO$)huZhC z+zmqm_@XP3i&>w8RC_s?5jGsend&nZ1=F#5T^AYgHAduoXfZZPSuMKyvz9Y^JR97Y zo5xh=iDB;NiR6||7BcYeCskjzT;?;fqLr#docgpU{7dt4A$;5!X51!*VY}U!E31K! zse;S#gUIwZ%3i%zX!#M@>ZhqM}7Z?a~_*3q#%veDlMQP7sjy=>T z$5t0ZQ>|w5p{$*DxTeXEUw4<*zgflu2GM68h4A}ztx=?f7ck+yB~QN{p{fd-RC@5 zcc~3phi>Q5#Q+prkOG1phJb>-osvG$X?(NMeZJ1r9vK~Jgo?9ju-vC0difIvf}c%e zn>_=t(X%kxIN1uXR~rJl--V!cw_V`ys&4S6Y$-qD`vLy){d7s-DJ-(KUW7}7=ZHF{ zB=c4ykSO77i^RM$A6?as;6AC2;714RNa7d9RvC}97Fo~o5aoRt!MmM2N4JHUQQFs> zP-bDXWa!vrKB#abAHUyIf{?H1)2?Ck?Kkyk?n^UdI&80``2SgkRLhq=CFw`CBS8>=?K1);n&$pTr@l&uprBehfc*R4zVM zT)@s%jV5K&v{BvJVzgtgtvKM(P{Gb)Hx95fBMt%Mr3%u6(zXK!;e?&WY+L6}khma& zxoc91uPW}tmt`?rU1%sWe7zHFaM_BTvt;?d=Q{A@8VEH*HL?1_`NRRJVBJx}nP7PX z_-MmNq}kbqU-vhFtJ;fU+KFrIrH`US>MdPTY7NT$;9 zBGJ2-ft_0{u%7fJuJjlobiEnOJgFT^F3ws)-W@pzTeZ(XpM&Y3QL&i1d~7f*BawhU zH3&J{UPlYGN?=@q2u3*8BWqc`8_88WrpxmSE_KO5cdl*+SCt%49kZTGjMV@(3gz(E z&1zQhr@!D?;EX>Fu!3jPL&bXgPYd~VhGg(;Ssmnnchc1Ge$|T-BFRGY9wus12^jj+ zkTkmZ@)plY z-Gb9UQ~@e)E9`re!ek<4)MJOB;rJNGKo22`D$a2}KT>KxeKCBDZJW7Uoee7=NB+atH1~19X;4 zpG|zmB*>ey-l2x%{G#FFS-X#kFRIRAZ;ZH0BHb*({|oW4dH^Em%`Z(N7#y$OK^r`C8*NBCN|r5SiDV^hw%R10J8J$RitTfl35`?moG6j z#XA1|*c93KkMp>Is&ASS8+eFKK7I)|q{;G_T(00aNgHu(>?aKu)xpNilNjCem+&^M zz?c_Jfn{@RQGv~Mw#Rm&(B{D4x@VRot7NVCxqq?H$9e)eYdV+YzC9$pI^%=X^xIy* zow><0<-Ns;!U0@T84v&Hl?8tt=w`3`yJPpCW8VL0%l^7*T>r1>q<_)1#{Fx$#=q!Z zZ1~r7|KkPzn_m1^^`$?0(m%HUzP=FtU(^@=PwS6=uP^=oH~+f7>^FZjufGY%e>Z*U zzbYSpR>2?s{OSMu@==%dxBu~<@#nvneEgaBpZ4FMfAe4R@rR@TJ>}!iKHU1({-(U` z&&>bl8{Uh*ZtJK0Yr3z0(OIScYdYn>hQ-_eHQoRGZT|b*{m<6fpZb|zf4%ZQ_WwV~ z*r|6Q|t7p?&s|8y?U?xto1B` z|5E*w|7UmRyVVxckr5kneN}9Jq)yiSfA;(T|M>s)2w2{n2mCjSp!vT<>8GST_#TfJ z1b%o0vkuhbtgXW2j8`=}?&wEm*h8XT+=|-|b%A2dh0w^N0LUCq0Myk<(yI6Zw_4|s%5?-hmo7pG9%%xqNp{TX?0+l5xnC%}2T5(?M@>2J3i@Me}CzO;A`Dx9;5BzBbH zs$~^ua-jwJ^=uNkyitOb=NZD8D<8u2_?bX*-)+dwkb&*J;lSa68-6x(4GOh?54)$l z#m>${bRJR0MlRdQ3EM>U$>$OcE6O2xvkJ%{sib$_N7DrY+EnqZCGv=5aqYb^NkR9A#ZBDPV@REp0ZEL##)Z9|M%3U3mQ)vU`KzY0BVplu z;U;CiZb1!wlz9q^t32bD-}sDfxyqR4ti#B$=^j4)d=mFu_AgDm7D^;foI@uznXtun zqu6KpJnT?IkmWmfs#d=VuNz)~6;H*J4~d^~ubKcI4gHDVt)GG(n-roAeFgAoy#V%% zzW_^~H{-CkGmv%HCm>!?3r&BG5`=^rvFFo?5 zUY3-X$iUiKPnb7V6=Yev!^+rp@bOYE&?<_@A-7UdVCqez0vvCk=3;lCJN-2Alj;XiiKDpA!Ku4FcQdP*^_x+u>HC@ck)vKp`*DvR(Aq2q|}7J)|MoAJ32UAA$T7xpSECP!aiMm&)^8g=&#F?ydz z8ce%sQg{|UdvQBWmkdVCVI}-_mJ0mp|B75ZUIN@Rcu+R8fk;?elT`l>e96qhWW?hm z$-a_8&fn?cL}x{kn7=yQk;GE&fFflb*;xLo5o^BmTz&RW-UsaSN|fI|LjupJ(=)w! zD-zY{eZ*_)$F(G``>>3830b|n0_|S3fK4tjCpBZ|Fv(hiIwHeq3cif@DKEq#D1p>F zh?A7H##H=)Az5i|j5OA1V*02EsvKxVL%K%jd9M>``LY5PRY*aL^Jih<;VJZ2*#y+~ zCLZORCm~Bu6=G)`hYzlwg3 zoyA)Qccaapuc5Q@m++H!1N8O)#>wsRWV=v4LXR)enRgq>Rl5*kS$2Vj9}c8{A)%2Y zHmHI9h61YcfywP%H==u&h&QjprDop@!JI9H;+ zoVCsgBOcdQqhDEo&9M?AQybS~E6=$oE_D{w*qe--Yi#i5jb7xI{yV&FjR;lroj|fY zl+eQ55v0Gx6dsW&Lq`pVpi9DM-Gm6P!bhu^T>O@^=o z(!{jtJz7x~OWcDfxn!YAeytb)rg0w7TKW{=u0I9qjZEOtK2sQ1U4sp!<52aaP*~;Y zgTu03)1l5OSfs9#xT-=Fylp@Iq&tDiB-|$xcgwS^UM8K@45_nb8|<8W0PR>N2jJQ) za`2ZRumllMsZ5w|%zQxxFOU1q8JZ@Bre|=Qm>9W_+PEuP3-Q(El$~fD!CjFtWQ}C@ z^36N#`4U4BH2uLlbOb%(O!iO3Zn_Gl&u2IwwcVXqlGEbqx`SCM?{y?#TLN;^)MG8b zFCxgH2@B+jpyE3RDL1hhtENQa+_7pR7V-@*SjDHS_e>*)yAohHtVElGMB%7f5fXY6 zf{a7%kgE$CQ2K}lcy>@2Ej*)5E4pjobh9+vyI25y43H;M^73R`-3Mei{tVqZWKrM(CIWJCG<;bmMonll zS#6Smz7|X|(M-(2I(H;UspELhpAIK%>S4-OZ;$4@#TmBd^dbK3^A7xio6+=oX9qfX z<_VX5(ikfTD4UiRI3eeeUc9qIo7+$m#uhB!L>?)npzlJ4?Diwe$l|gVoaZZ!uFpM6 zei!8Ycv$^=;0a~FKs(hL-1s*TsYXL!DE zD~)!GoZ!uCa5vVzJq- zF7cb}&+3g#dYc*u7tX=q1Ec7{)@krW17-g19YC+tGJ$t;KeK9m2XE6pb>t(o3RHgV zV|qgoyzQ6>j87H84A~sea4eiRzdf62{vgiVxAHKvX#YXp^!`r(suRXY--#*N>kDp# zJ;oAMk)X!v1=Lcpfkmt|o@09iDZDm<2BJ673+F;~ZGI;T-YfxL>Ux2aq0782r&1Wn zCVOV~X?;fcg9=(BqYib}=|PtlbI?d|6iMCG52HUSVM#k5csyYZNqVsevrcNbryrBY zfx|d>{d@d8WC~o6FN|7W>}2A@-yjQ}8O&^R52nTu;mw(CXus1QwEpS^Zn!H9Hz;Ug zk)w8OP~cRo@cR;NTkpVTd_PC{Z=|>Zs|Z#$y^5S~+Jd4)Pp~tVS-`TIB>o|7VOZ58 zi0-#XQP%4_kuf*HUeA-*2}}KFNU!3Bm*=xt`fHW97F|fzG&K# zaO}4$4vo!t24=4|?!5Fwo_%PPUX`?H(^zp68K4SliBDD>EbVr6LwP<`y4w)*mZLw#m<~o)ZrFOxu zlaC_3FeR|({yBmth=Ln|(NNDsoF+6jlW_$A^mnDUNr^=+-jXXxelZ`o6W^9%veS&6 zpdG^%KBwuH*jn8)HpX71Q<7OVPv~eYnG0hbwRnXHx<; zllz$|$nClzD>~De^hdqH`?Vy{X`^FQwx|_fn-+^#>(r7-Oa9=8iWam8S(7cFQlR#M zdkE-BLho6{=%HZ*`n0^76eKsI^}3V5$0lLqc2tK>6n+Bpex~7j4ua^gmjcnbAx~D` z?M4RTRpsc8LUa(}AwxZc`X`q_u2-sT_RV~e9`I8zDuUpYtA z#6^Mcg=qM~RGcmtY$kV}pGHrPYMZDrxp;PiBzbK$uIGPw8D9L@jJ<3UGu~%|VcXvx z=HFfH$e;2zhN|KZD7d1I+cZ9Y4|yu4TPG|zDXCMiO#fs7J z{0Q`6S2bDK(TIBWO@ZTX7Owc_OC~?(;8CvxR5$q{3^LEbBF>gLPk00#d>4tgN$th& zO#QK2X*lq|E(9A}!Wq}Ed%*WUd~o@K2-vv!E&8+SDFmMt(4_lc&~Xn7Dt##&-E3{d zR^#_)(x4dqc~pmVY;DJ^krd6Zc}Q%W!U%eo345n+L~V7#;B>+boKdR*Q1&z+S|d*0 z8(hY?%LkXTZu~2js>EUR0w(baT=?4u_^AI1_J*i1CoyR|HD)R~*H5n8lZOjwWAqSO zs1CT7y$pJ$xYA@UN4k$su>~qTgmXM$(DoH7&v!?T+wDi!mb4Pk`$6s;H&k61wVTW1Yp%;X0LJ zBK46tY*EX~>obJ#X?Dfhj?-AygKcYrSV~ymp1Nuj;{LzD`gi#g1nvc!tN6 z7#oY{_3*mmYK^0O9~ckJx(IF?RWnbTN|<1~Zcwczhb6o>f-1*w_*tNi2{U_#eCG?J zjK*8gD!B_KS|=gHz0RntWf$}Mj}+Lh_1JjQ^jbLe`A1_{cO70~XcerR=>az$(T45N zlKmz64$gWL2*2STa?U>%4n}Gb;h#-psjUr8nVe0Jp6Aj1ni9A$uN-LSi_@{$BTRA< z!}Tb=VA4OPg8eFLWLo?lyl>-Wm|S#$iHKZ_E43!V(zNa1PsI+VZhsis!LI?E@2m!7 zNfcZlBm<*;bkV}M>TtE4JfoQz4yMM&@zCH`=JPKt#%t+%I4)+w^iEd?!Q~Us{lO`8 zWbiR8O-jZ41IOUq7ji^py&Q=t>_R)t;z@EkpM<5U6YFcA!Tg)MVDIgW@luQzU~Gdq zd?{oJ=kuRpqr?Oxzb6vf6db_QJzHt-30>Tp(?f(+2}&zHOa=FdPywk&nzAbtU3VGRjmmU_FDDlASHDvG4~m^jqGKy1aaY%VcBl^T5aCwde@W@HeBs zQ)iG;mtae`*@1SPOuz ztABVrz3)8RKX#z7cLTZ`_kfYG{s2}rEM)>Fo1v7CJh+DW1i~*#qTZa_kSw_lhc%}# z_V+6o^;{R@%79A1$RT6tHw%nAmy5xux0gU#sRQ^rA&#6SuJCB=>4MD&Of10&lG)Gc@Ixm=$|jS@|Elt_%Ut`FJH>Frylk zS}MWocmMFFNN1qf^J`UfWJst99pv$oTvL!4meu~@s63}0Qp1P3xNLqenT`qa`E{87suZCYf*%pGN{OxU%cd)ZD1GPI0d1pS|84#Xa@pvCp0y zqXX%F6uP{{O5QQJTBe4WA0NTzKbz59`I+QdWHQt-sX}|iC7{ObYbZ7| z9I3kBCo{5MqEqTZ@bDc0^kbt5&94^!p9MIplJ-k^iu+mFH->u_ngK!D;~`*tVc79F5=0*h1qZO>~XbPDrsL; zj%wfCrRmPyBxT+ilArv5YCMdl($eGgmZNTHj)gAXy{#OW#s-mjPn!YbCkhQG-6N$j zz9e%CB-;e_O?sy^lgM{IMCV#PmsT7_GQH|g$x`ouEPDi=*d1A$RIPPo<{M+mQ75ZNG#PO@YI>hQERUU zHBrBgi_;e1%_`yK%FPKx&t)PVyP-^8tyM;Ip8h}qf9Al_ht25Q4-xb@ZaYbtn}lf1 z10XoP3jVq!MFSKcz{E8M_{o)Z$oQifDK4$UW@cgNx}p{t91{B(~S3VfJ}X2k^KQ$4jb_@UVVRBV%otJfUzO+u6$iT%qz z@+gO_JvE)!aamlc`Z|&sJjgaJKgq5CE5OElS;oKJI>MQq>Y$%CAIIn4mvc|M%TSW{ zph=of6cXLE4@+P9z`nm|&Nj#%Ao(}E(F3Z+UNY{*hK{SSBQZoI&x}?pM&M0fw6OgB z6{Jg}7Ry!jkh-lO@Z7d8IDD)Em9J8PLDzFot7koo5-=gVQg)zF11E+(;0rt=9^>xu z_@iUy3%GEi4gAPSW5(_XY8sC}cw#q^_=-Z5v#=9IyGejgdS0OZ%VpmE@%W?fl|Az^ zL!UX)t%AH|)uF`(J!tfD4w@PoMLga5VQaqF!F8M$qbIiA4~OSFl#M6m??`9zILV!ZCSntMP0kV`FDq5LnX~|u^2nH zJ7_9)`E!ZtZggNz{5VH6-%4?>r$?}2r>n^E<}K)m*a`NCvjx0co5a7XBMdM03Zf?+ zQFNd8cQW6?1Ydft3?HtqA{oXpsB2gp#cq&?(;J8IR!swRI=&LF7#T#CTYZtKQ#iio z9fz)1KLZKt3SiC|F;L^T3_eQV0y1kJpq&c@;Qx#KQPKa-y#1HrkN(H;_|H84zj?HO zfBrAeYwZT1h_{2#W(f3_(h|NV>q<9w9Rf7t9l?EidyO8EacZt@TN zUjYBZ`Tqs*KiK~Q_#f$ZqyNB1|ACMG10VedKKc)Q^dI=x zf8b;Pfsg$MKK38@*ni+-|ACMF2R`;+`2IbKbN~H-{1^TFAN`xrzmWdB?&qKL_n-Fv z!hG)fuRNdsi{7sP$6*EMJ_O&B3gOFn!L(_)5VG=!!BaZkpxo^VWZ;!0SzM}#EjOo= zz6eKkP&%v(JA{ya*(bpxH*@)?&;na*Ac zK7nhk`pBJ^g7{$31h!qtn66<3=@Z^$cGizq^rL1Z_4p8lhWck?mC|9b&HXV+Ph0|4 zJYE8ebXDkeiBi(@x(ciLdYC9G4->^t2Z+--3I1^5V=~``aE(O*{7F;d*r|f|`FW1J z_~+{N*b%Wj+#LY6|onaa0Sjiado>CP%VyGHZxI zPCfo>cor!)71F=S6UdP{=kRpNS45&^23c9}O8<7OCUM&OXvKIuALr=~U%wN@OV6^X z-ux;tk7z=I&Mf1z_9NK3Zzp)d>F*)nG8@OI@has}6^vscG#G<1QAKK<>()9ff z8P5nO;>Se!U7OF7BU$R)$FR>_-04VGK=>9v>fjFknahf7ZTE3JEmM!*ShN%#vs`ML ztJDftjGjZ2ADM6ple1Xxv6cuG7o&at$JtKlH6(nX5pNYvK|ynKsZyH+dHMMQ?v;B* zKJPIlQfLE}>{>-m$?Kq|)+sp2{~#PaJ&IgcuR`l(s>ojT&&VV(5jc8hK)^dk?}*5v zkA3%WZ{7>!?UzkXt9g--qswu$PzM=!l1<7A<4KabHMElmh7&J)F{SbjaGBr+COBLk z%3n|rA}>*$w2?u<0mY#w2JZzjQ91AE#eBS>qV{P2tUu_l>rm&lIV&E!xw;*aV^ zkpXW-PCHnI|M+GFE4lkS-@7uCZ}&%oO%MygR#WEj4{bGtPH7>g7pm=`dO{phPv6J2 zJSk%nrvD%@yfn0XL6QzBb}oDKrtmB9gDMuPt^y| zG(~kx(!|k}+fjH;f*rn6E{CPoo@adb{bFn$!AQL{4y5PHUT>uYSEmDu`oxo z5jY*#jvg6(B6}W6qj@v52shaWrml1&rP7m0+1z^UuC78+OF0=n1W5yJ1Aos)Lg(GW z%-Ewie7@qFaeGDu7?n~dYu-u`_1h)z#IQbpjm~QnW?GDv9BgH4?32*gZ;sCH2xmp~ zXVIq_d${@RE^aS6Mh-^C!k(>f*raV!K=3Oi6KmZdW?O?l?A6v{eU9W%p@^MW4sfvU z=~P-jaT^{8QpED%3*f<^{p92(5zOYDLC34_;#1$m@i#pi628qAr_|X27n$d- zkqL%Ahclp}T0i~~DuA5hDw%5zcJSyNA^LOjMi{)p26un{0FQoZ!G$lLVX2A=bmi1q za;i&)1n=#`dXvI{)WLT^an(GAjmiYdNm-0S++*+;#NcrkgLZz8fYlop;o~ls>C`#j zkV||v*=0BhNtZ9AH0&X%uQ^S86W`Hmdk)elNlCgP=LQtsvIgC+8fNkidJ&7rP-d>r zEcoGLHAy#*A#)0Mqn@0v{8N{5u>71<9PmAptK7B&FXO4O??X3nP*9OAy>7!7J*vd- zIc-muPxD6)LQivv@25b+>`oKQfTtkk(@rGJyk!?Co3MA^^U3*7>(Ps8!mPp`6%siu z0e_p<2VIqHX&F3&-`#V?W>-^)(!;x0Hc^6Zw~!&StFFVOxMQ(FrIf_FrjqkA z$}nfO6l8WxWzyVLp--U&vug4*XtkJ3(pFMD+8#Yxsob8j7t4m?0(4^N~! zKd(a#*C*L?v()+PA_m!BdnuDoUn==Ct=s7Kd8MfE zkpq9(gLELUGR3s0Yb`jFnTS@jhjD)`uCa#3{p3>bb+pf>n3a5RlZ@@4WVv||>X{|Q z)>PV&FaA1Yn!++#A>~grc3h`%b(7jWg$&Ups~1OV3&O^BZNfI3K}5l8CsOV)S9(Ec8??m^@7>gUW9LNi>Wjt}f!_ zj_FpKCofL5*bQXJu?k!{C4+n<^ckDm0_4cX15CqxFSzVX5b55SOs0_qs7P`PU+jDy zG9Z0u@Wl+yiAh3z6IauZBiXFq_Vv`LDvlH1caNJkE1C@5FM)mn%ADt%T`N*CvmS0H?C8GJ_~y4&NZG)ST9}sM=+i;C;n`hi>5@yzB116K@D|3hAg#!*Tc!TswUZvN7VpElOkXO5GZCXWs#$t{#nshV+@e3aOyddnWa`5eW4f z3-Id~*P)I_E3VvcNM1iQ#@4T25v60BN&OuSQo1t~bYDpXxr8vr&D%kIax8D|qNz~L z=np=)dJWp1qz;{&e6Yr<5&CJPF8=*Rk*>KTgDO=w(55t9YJOIcYKyzDg4)lhmc<+z zx$6m>d5A+b;1bg{TtZappYimrm%wo;e!4E^3rUTYLkFH(m?Si6;qqk>xaQSQ?q}sK z^u8vPt`m#l-XeDveU9eqdmQB}oiV0Gk0VfRZ6jxzI|>HQ0@Ev_f*?g_KC)1y+=P|B z?4#@zUVRmfQWR{BMDFHuqc z147%Mq9KVgAapzl4Ou0i)bw9u;nR<(QaOmZ^>7Njn)sZo50`?b`x7u!xd9WXJkGiN z7Ef4PfF_dDgx>Vx5iF*(zg-sakE6v^S*%` ztpS8{PEg+1Ib`}`lsJisq1!VO$cEN-0+}pw#88io8x5xmFTEmfM7{zAvO=e11N^lSfPpaaI|4hQl6GUihmI&A8TTEZP zQQ-eRXTuLWpG0=9T#9xN?dN#tHhl4}#$;)^G~9fl4IP*{VY~)&2ium~gk?$$(3jBL z^w6C}BrReH6A=R>-7|~+6?}k2@A%=V_ghJ6$yL16PlsMtC1m434s4DpLd;?nD7D!Y z*(a2vOTHh-2I&?gG)EAi@%_mlS7$PBI3N7|{tNCd6dBLobiq3m#@B5&lhENJic9*< z@SQ1>v6+_|coiNAwywLtiz>rF)*+Io0yZ*BegV`_vmGYPY=TE4-=U?~6lwcvbChD^ zh%c^HK{tLqBRa8Fr19vi(*wg#pVPgP6e+35k>F3O|P>Ehskz$R=g6vXHjwJ^yi zBC&P5F2157h5t(H@K=E@ymPW0UMvv9>h-_Idb71y5AjM?-Q*;FJ`l-mGLYdOTl^$l zKhB|mvfpego&Z|()l3xT)Ph%+qoF@jPnXwGIxn&m-~A(qCQeyLFJA0KV%s^it)m47 zX1Ed6(o|$sn26r?9>ne8^7!LT36f{?6`cwSgtrSk!i3AG5tAlT>nTL7dD% z+Ts_v{#%8$n^H>UCpglW8)|4jKL$Bi`+&CU%fw{;CdT{hEZC~>i+qwvBg&OB_OW0$OH&wNUxG7@2)LJRr|6ydg-cZpt5B$-Krh$7~}+0z%pxU2fie9Z|^FeZcN zdG|GNbsWLF9L}KSet-n}*ddF3&&evL2RW7RX3ib3fyE)q(3r!0#?t996kj?4 z+G0smIQAPZcbo!;?n7vhI~N)T--a`{moX711>oo_7iQy7Jm9P^F$#PM;Q3`DG$>Jl zC(rePR|5l3tHcC5C)9v1Lc7s?Lsj_RSsyDbdxdIM-omv5<>-sCH>!LRj53}CgEh;e zkWHTvGb*EwTtadf8+m0gm{tQfy^+Oh6@<{y<+f~g>UJ#jd>gWVA4u0rD`9iGjJ~|< zP5U<$qd#uKp5#2T3hI1pV!by^^wjOO&N zLto$Sz^z%y@RC?5)U8l~YxXTipP!BMKqaT)ZNCV(=`MiH5(;RmdkvgmIRFi3R)dx4 z^I>RB7&JZ`1HbKxLg8~(L5&qEkk{A(6|UT&Mr115r%{cyE2d!O6_ET9Cb-r9+OHtEAD<9Rus^W%Zv zv<#@9yqvm)O40P?nnWu;$0Sxli&ht;k=&J5{7<(esO#@TH5*KOkW;*Q9`N zX0?=^G3gl=uied8o|Xt2IJ`1KX7C6T;6n+0A zL<_d*V#gf7>^Soi%vX;=x2i-yt7Z$VFZBR2j#B8Yj3^S)ehS_M8Xz!o6CSJi1`8Zd zF=)zUaILL?`6ib-9tlM=Nzwq=XQ-fp@%J(mbOyTRH(}WY8_ev{h7JQt*ta49v>(#P z-XmYo0)K=a%|44KrCH%;+iH-SizwJi7sG}2Ld^MF&Uk&RFJl>C2NvPiDBQpm58c#3 ze_V>#>8dy2@qA@uY%R#X*)YD&IweG=zcr<}paS=eh_UJ?jo6-=Re0iIZ@5V)iHc7; z4ZDoab1P&&fS2Mk(2rh7&n0Wn$UK0e?(3j?{ZZI% z=#~!(=w3@0wvcPEh8tzpDSG=j|WcZW_6tx)Uz31(KsI*8pO z8H7tfaPl*pXH$xLR!ZTCH)V*K>Qc6&Js$rI=pYvJ7<^AlgBALXX+eXlU+drJc!GEzt0k>|+O?j{s5L4xsJpaW7>J&E@38z8GQAC;%* z!=_G*b6FGoR@V$oYih>E_d~FVt|L~OU(Gmde8!j_lIOjc>(7*MAB^AYX#(dLqWI=A ze<-@Q8*G|!3DtksrrIyopztHAr1Ob8bZ@#qL_{!&&{HL<$JS7#b^RpT@(|e;r2{*~ zj=+h(otQ3@Dx5iYChz5w>tMgO9VxjdN^UE^gJZgG{LuFwP@mLSlr^Nt?Igv><=Q-Y zy6qwRYEKYt(7wW1NS)v`PNkBYtE1tuW=8;TS9vH|W8 zL#_Sufze<$6dxEDjkb{>-glMJG?RAb;>}B-?6W&LQQQbtoqmThmW=Nyu5rdi+d}Xe z?0|Y_x8Pxe1iWs=UaY!zn7Q0~5d_LP^W4tt1H)f)c)cg~0=YeE*!=b%Skzbo{~o%C zc8c(*#Kc`lMckHPUl|m3r;%jK2a~>Q>crJ*9rdvIL)M&*CdQ@K@cS7HgzD0m*$ubw z_n8}+0tZRBf9_7w9KMbW8}_5Evi|%R0ekT+qJ=FRj5%}JgLpu{gKAIfVPzJaq;&>m z+?9xIZj$^vlGDJUnaUOkQ+7z)S9HxI!VMP_I~v>9yN)dLsy z4#28KvxsS=H)>k@mC*~?3A2*=h;{RHsB~xs)@yqO1BR~PuPJpn&GISg{k)vmG%J$o z=Brp@@lr6m;0<`_;ml~mJ%v-G z?xYG@AZA2Y**+vOMd!$Di8s_&<~S7(YbQ@%9fJ{L7RX&Xk7)^9MeG9~Fw!m#u;1-A z*>pdKmk?1w4W-s2+f*X_P`{%@SYyMvXG)_9_J9> zi9pxMlhCBJ4p{y(7fNr4Aon~1@$kkQI8`E*@J9OBN-0VLEkfwB3%R({tAL#lS4*$2 zi>7{4F0(D3er&cqW_KDc#C9{~NTgdX{Mfdge!f!)uiX0tt=3+ogK6uj(k^w{w@|_K zN>~NG@o*(IOS!=>TXckGzZU0D_Bqd&%vIv5BKDZPzbj|5<+~uaa(6OGoco$zo!5*F zeu$fGAldlF(+JZ0bpk(V-cs&DX(XMb7LNH#5f|wqLO*~5#BkmW?9{!4l`_jD!&~{p zK6)SRTG30c=!&rFHz!bPG66q6+Jw_SFsLe_0&lp{kN$jgq<`m}z!P6M!fjuE!@1ga z%!wn*fmQw|h@S+4B~NY=I68)6zv@Dngtz#2{&zH8B8hE#dxw$iy9{NH*dUkQ1!%E; zA&gy93w(L%WW$YNoZMOjL;G@(%Lg7~ZMXx3RUCtALAIbdu$~H-hhgc?K?t@<5{WIx z#)JDA+?!22(35xtIe)OnpY$i7`lt6$-`PNL!tN5iEJ(@M?V;GVU4zc7GlbWZ#F6&r z6Sz@S1{LMnvX|YalIv6B@N6L?_DZ7!tGd^K@94rJLDTX0*gn@}r~VA?{hBA(=ZH8q zOP<80Z<)n?dU&6{w1Uj!!n@3&z%2Gug$p+g7owpAf85QUV{aBlfgnvpT36l!%%%}G zGUzK>w`nUm7IY0S9okLWm@Kw+JfG>;mj_(Wrq8%@c?1-BIRUoLux4&72m)Ih4bY_E zBCt7eH7a|jfz7s_1lw~;p=J3?z^>R!dKn=wbHh0(ms<|kSEIa4qs*T|DJ=2DmhG?jwsDwW-)2; zvhc6)0u>WDD4%r2 zdXvt8KgcIzDmgx!K)&sfVGYOg#e;$*a9D*EH(M)-U8L57t+HIO(n@Layz3-!Xf(!O zk2Uey`eT^6IxOj}=^=@#Cqb`TE&ThHBX04lK<^4ev@~G^2s-DI-@0PxWeSVNwx7aF ztqbsj_U%M0bScywIYeKN@9%xSd=F0h)eOxhTxPW5YCu)~4%Eqs!G&R!#3H~EhfA5l zjM1mK&$J62%ZXw0hGqcfkvw|8Xd9aQJ{=Y8tAi5?m&3JoKk-}g38!2XL#pHs0v+p_ zRLcwCi*z?!IG*!ve5;Xud7X!A-`2z7b;4vkXAms@V8*S^mLcl#r4c{LL2a1$*HTgh&-%OS}(FJggk3HGpn zD0^8@o$uuwh_>%Kj(62(m~6SUiQC56l1csrc;Sj+8uiDT%iMpPK9ya_s9se9Tl~{m zot;a$RemSXukT*i^FRh$bGZ)K%)(^%Yd&1^c$oDN6~<>~nUN#tJKoXcOO~f)u(8Fm zNc6>R?u+R}a#qI#hRm}gEa2j+KkzzDExfk& zF8k8!IwSYzBJ?eohlc8opo>l6uy=kn(A)e5d(Xz?&+ja#_U$)H?~`KQUOWJrS8ap4 z>+C^5z8Y)wArLD~7DnfG8xo@J4+O0aaJcO>BdlA1tP+;s6)7L#KC4h@`Aq3YO&!7c@b77E%0@|k;il>-rqQ8;h?6YWHaVtWj@FlxzMiV&yotpm^s zDKijSq>LXeQDG)a3$dMjlX+--ZNJV+5fwH50t+OvfO8_plyt}AVYhBncs&*At$K$y z#)mS+qHn;)aUNo3yci5J4W%``bMb5_hm6$!VgMzm=cyR>*~E0PXxbAvDRC)3Yx61g z?~8NHAFv@caYSnI6Jzlr6JEy9J{lD>g$+InK*{@3m{`4w>i5iGoPZ17 zKm3rn5mQF*dQ?K?hEW*q--h(YCg9Sl5IQy-3HGu+Y`TmP7JgO&6*@P<@`PyS+OG;A z6SM(2i;MxLGK{na@bNv{3D9V86?XcOf~>Nquvf%6FnQS*7(FD97D|O9C-VRpC^a7@ z_|>3=ia9tj>m3xA%tMxaI*b=h25*HM;mE}mz-(D6Rnppkb39$)aB3R9(`E$Jx>wY^o2O*RT0T~eur+_e2_DBA}H_Ia-9Fj*yQk_C07__M9dtrv6u1x^q7w8bq%s-hR18DKOaR3*I9NXJ0I-EgSd$g;Nrp`uuNf*J#V03oC)0epcM$mVV4ncnrt9bkL9ATbNg~%0ae`I}*?61;T&KXpYc9 zT-iSv8f=ZhHu?w>kIi_F zfCuvPl|yeH<$&L}Ysn`2e4^g+6A#XtPNTt3F!%LL#2x;K?fe#@Z@q==k?W^P(B4(} zRvD(&w$|(kMPt6S{}?Q_R=~|&-6m&}ayUHHgSQ>C#tDLb#6_Zvi<&FMF1(h)G_C!~ ztorts{k!EHConhwK6ESN3gw^dvWwxP51o&=Mdx)fbKim+z2t8W2qh|PSg zGeI3?+z6yfGgkp{O%~l%WKq-NlgQ#wIEIKt<@umYFb-Q(@WAoYi0z8Tc}~3-%w&<>{6WF(=ph!1aP+K(kwzYE}fG>`hO>&*Wab^+peRy~u~1uQQ$b zQaT3aNtHsIRyQ^666b|v;nD&A7dU4=y4tQ)ETcQLhxc^8?qd~w##k=lkPobWWB=id4rwA>!%bh zzAa8wKH345=6q;AD27jNO@MzT1K9%}g}5_Z3wwM^BDX9jvU1wN+$!0vkbN{8o$c^5 zdHE`ao3_;$3w$2u-^O?6M)iU?LFWWYk8a=vr`_NguZU+2N@s9|n>C=B{U}^t5XrvU z_L))tb(rk-q@YIiGka+Fc>N|hho*_l!$TLRpRgWhc|aI{JvzPRAjzs3Psg`+?SwOq z+7O3AS1|hJDr&?udfC8W zs{j-lEJ|9goN_f#l3Az;o$1U#4Zqu63$n9Uj=Cv7Fg>e~z@tUblQsPk1WH zw@bry>Bq_4UG`j>_k8+xg&CtZwT;O(HD#sMyI8k6Pq^3T9b{z<*sJRI!Mj^gL}O43 zJ{$Lc=l9)4?wh}$h@LV$c=!SSk?zU{7{$W|R*EY(5hqV=b>Vuc3*h_irMxjz!>Ea6 z!)rhLnb@N|{7FR)FMO)coDL{LJ>K)6*Q_;kUb{WBtbRPNs^SsMJ@F8hKdS+IYjwa* zQEhCgQ-G$9Bt!E`5wM{pj5px=hB?tb7ry#>fmx-nn2^CWSY2{HsOh?o-V4bye}9Rv zyF@&hJ-4f1!-h~a)N>2o2q=TrryCfv9hb@7L_xe)O#z3O6e0h~Wz1HqFJSS^e)M?p zD3J9%Ozz!(gJUcw!+U|4KCillz5j@Ee$UpyIGM@gwF200y}7uiHEz#Kvql%>?-o-g=*hpDm0EmchL^!UE~$w zJ--Fr+B6NEt4zlo-+BS+3s(9-sgGWzm8*B`?j5H{p{;F*0J_||NYEMwLlED2#^2y2KUQsgir5OpNb>63zz8p9QUr6$Wrv!~SXYC`Zr(2hO_EDC)GhH3EFIB*(DFr4} zjzGrQgH+@cX*x+pmsF4Wj>g_TL!w4&fc`yvIAGF%Mtzrs-Z}b=+`wgQDiwiV8_%P6 zcBIfmubxfYB@Wj)+M<~62L)r7sk0XG^@xl51q-)MrHK>ED(1)0^D~9i(eI8_^SmIY zR+nYFW@bX5`W5Zl7{r`e`;d~oszGYRHUd_mf!P>Tj!a)}#v4zk;TW?)+$s!ay8Jf5 zXZNGo>EGU9YOf@8nIz(`7`)C;dNo8@L>+^{*Q7vOT?^SZ`XMqD{03fzjd(?uB$hdT zj`5-#s3`eKQ00Irax`^B@5ao4D+@TVz4sheb<`rOmHpuKEzi)h_z(Q-&(0w3GY`fa z834PaVftR@65MRj25)>&B(JB92hphuS>tV6sP9XbqOeC+Sn%d5+?B8kP4wZw*g_9_ zSBwW)X)S>>lho)Gx6PpQa}->*pcw_+l!bh1F{4&-6Th4`4WFy6r6s}@nH$9>TxO^p zys>{Ps*<`QP@A`q-N7@)KvDtG%5gMU@6Eo9tEHdr#njo()s&a&HD;3k4%Ygs2C5xB z3pc(hX8NQUkU!R*H013Eo4u7-D&`0JR{aUnSJSaWFecVtikNfNr(x)p$Lys}F>>wK zd+1X$pITHLO}Vzb1Yy&{(6{ZXFy`lVv~;{5o;|JreEwDk^L9l5@!$1$m$V14&Xz~R zjhZO>m>){+i-wsN>)_Ji^CaDZjZVfwqkt(k|Kn)-8ef(ewn| zb5;X*wzC|mN`zJzLuD2Ke(*(im-8|7GrzzCIS@Pj8s=Ir9ofnqZ<=d%=+ z(HBA!?{#SRICGNw;wF;$Bu;D1xkJXwzejsd1rV#bs$}AfBzobKS*YsZ25cwi%E&p) zVkBxr+ElyqaJyImIX1$bbU(GnvZ*_%=>dII+Q_q5sTC8RbReWWnqZbjG+zAU98gm7 zLthrmgJXAUlf`dWp*#Z%T)Scrm-cIsH`n(O&BG+{TM!D=u%Mg_ zP6Dk}PAJIlI`|woivH%~hh5Ho0eR`_WT3$qTWxyAB(G8e^9=jocjpu6$=y11a7{f7 zUo8iHV^j(Z?uDr4^C0oWwfJ?N8T~!%F|bfjMLp|^ zak-8%YVAMFDC!0i@k6Hg!-Uz4*(g2clKx8WnrM$bPKUzJygvvWuY|B=Yb&wUjFC8J zyA6}$6V7%Sjb>b%BB+ys+tjPb4raMh5?dwy9E}Lh!DQ=ure@YrAp30x5neZeWCO=8 z%d^7w<3q_4Eit^mh*Fzg*Mspc;vk36M3JIi zz%BbNQWBejP1IikEsJb8yVDr*X0x0mZ`z0I@<#p!%numt>c|vs`Yq(UzfbO-U(9`HU?oN#Y(a~P$>m(zne9)Ur5;sJWD@;)x?v>aoq@2(}NE_p8EUfTdNuH}=wSXq2Up%46+ zCq+gr??(Os=}g?J0!lKs5MErp9@Wqjksosx_NNzu{XXtQA-o^ITy+;-IunL=d+Jfg zPr8ERxA(xj6gL1AD(U>-Ec}MNhn`FIMekM*FiFjswKDbr2}!+3?(ue9cUr{ z`e3dD*MH9w1x_=-#VfA}wAzi>pVO~k=fO^7GI}A?zhFFjc4GrQzRaHTStODv;`>XVaQS;!o;Xr0GR9mbW=YcGqMwJI2W% zU$fV2VdOBTZH}c^CNbFRkx)<$(AO#(r+vd@iBlSSJ`Xe z1~sS>R@$a4z|U1Ra_RTFU1gkswGOb&>o{#Uu z=)wHsd0_RSbpFvnDd4*>AHG~Z4t)A;M`SXdpw_XfV8K2m9JfylC7n;9-ze>*zD~u^ zAzzf=M0hB!yc#H7TnEet5238LLrDC^PPj663j#H__-=>f!90BjNLnQUf1fiw@uU|1 zB6ALiSIohdQ!Z0ivPBxSk9pLd;2ikkdLZ(4D1i@)>>*v&O(pMEBiic(xW|;>cjp~R zWd0ane|il(_eu|69lsH-)UKchF22WpH6|!W7(zOYOz0~UB-k@SF7Ww+X=tWgCihWF zl8wmy7!}FC#p~iM=X#KR1 zQl2OcTX<*Cm_h;c*?5EuCmqA5Uv_}=vdgjb@JjUKgbGu9*AKAGeAIv10U3&2M*i#1 zLP2c=yff(;x*&E6U+n`ZUvVXR{8NeYzJCkseQJa@=N|)4d=lx);W;>P#AsMyn2J04 zctED8lu7+kMpo8T8}9*pm2?>7uiS`#SKj=uCXQq!}a8_Y%)BQ$#0d7XnQ80l(y)ATVF zpSq%qgMKe!!q?D@(x)}tJvnpqT(=B$#`Ow@`_tI*!#|Kj$|e}Q#E~)bjbwqiGLsQ{ zjr!ahN$IwIU~c-Rvc2A&DE;U;9P#ioGvcu!*m%pI5DlS-OUi;(GvV+dI-0~rDU+be zG-7tUm+4~bGJ#-LHIJtnz zITk@yybeRx&T?#KQUKMn_#rgg^bL*9>4gnvq>;824+N}#Mdpb`5q6lMWBoVL>H{D7 zpK6Ukdr2HTlW+!ruTz*P(Q{0pIU2qR%OX>kXHoqN-mAVrZrEFHii;9}CSj`s7qg)9l4VI#)q#ZzK>_JBVz%aJXp93Y_W!Q>w z1;kVCIXA!mGfIB~aG!&-P%g}c*%!&fzW0|w+sQ8&UEy_h^tTPnw~|h3)17Tp=uwU> z;7M=~>O=6IkXhugm@_+b`EAO0aWO&8CxGO_I5zZf6jmQ+PBXjR$@3w7I;Yo+y)4{> z5+?893}1#2i`HaVzxxIf+#TX)=XioO)!ImH-EQDF%7K1g7mbUS{shB~5#+m+AGS&m zvKtq4Qt_FxXym@1=;dBX>~f!vmULVM4bR%iF7a?;m@o%bT{OfQ-<+xYqf5bA*bc4U zRs$8hjEPCNA}wmGQFrh;Qhc`r94lyJcYZg479Rqzs=o|*Ch3O4>O%1J`D5UGM}KB@ zV?DWN8i+Ieyy%;jJHT?^#}JoH!-3TR)`whRfTuGFnrx0gUXo&~?|U$rGn%*;q4M~I zmkS;#?jpRca+-}k8iBuLBXm-&i&5MAggw98o4NFQ1OPTqDO6$0&XAMf3ipQL!I$faP7A|`n4sw|3tZL1QH z@7BA>Xlf=*86ZG-(3v=Goj|l|B+zbyQ8*%O43&LhHJIDr2lLi%2c0TBX0F&*Jn`rt zeBC;m_~!xO$V9Wc1#Un}TnukMkcb;{24P~w5YlKk0+wF?L}%O$CMV7HaNkIE`nKj< z>fIU9yCv`qI=eI<9JC5z9&lpBHS7Y~UA&I*CF)G%w4K~cMjf4bSBey5hXsx!<5H~7R3=d@o>gsCXS|LyP`WsR+PC)yV{DqkPE+he_*n^7o-oXekWmDiZ34-s z(-|N=crttSogG#-iy?)($C1_D7s;B%gUsz0BavdP1~=i+EK+gV7-rrZk4jQf`A;@K zq2yCSV4CF%Dte1LZEG+YJ8+F4ca1q=KZ(*X+}jyN6GV~Ahv8!77<5|y67o^H0Jrax z2AvLzN!BbOd1c)L`TF`;V8>FIRW^YKkq+?0i}k>1ju|um=SS>VriK<;&m)}1X7FP~ zBrDL}2s%n-@CAoNyj83Wih0Ok*YSSf*-kM=d{O|}HL4ShmawAN_v(XO%WZJ`^Am_{ z*dh8h4P}lEmEjYy(zrEgH=~n>nFqgia|(t+G*Z4CjhHhecr=vC3UlRfrhOocxig>1 z*&D;EoYr6hs3s~$CY$1}ePm*IK#znHY-aU!MeBV_xc<)BDzBKt;P zRJSlXldOEGPo8RCCdKaunBhAkQG1dG=R4Ms;7?0n%boM+{N7By&op_EV0IhEtRDlC zRj1Hq`up({eP-6%C+sMf zFUn*19MxE0!}j)$;Ec7m;S=UI#NTNO`xIdC;6*uk6rKx~4Mwr$O2_fE5&CpSq#JqM zuT6hTv0%HVc%c<|J6E_Nh$sk0!BppyXtS0g-{hq$6*G1Q?E1QqD%Mn@+vQyFNzEHn zbhroUyo9h=w+_4NgP2G-Z4Vs1wiq1{is5;xmmm?(q_R&Zl4Vo#n`(%4+97I5aRpe-8;9IOwo|ct7Bl7BWAOAV+UWP|BIfDu z`}Ays0xtL37G(6Z0eMZPgf&@w_ETv&dN?iyly}E7w~k$AKbYGw!s8#Q=f8ZZhIt0; z^x>CmToj9a`D)}oZN@rS#!^9bv7~wt1OlxCEF0&AZ>BX9J1Glt@k0;E9Hq(j$MDgF ziWywd7;obJ;usKHH649Oqxqx9@+q~b0#F~zr|xuX)Bf2bFtg}5@D|0e+y)SCJ=Vj- zgRT4vD=_4?1|o6C5+vpv4(ErAr+gY`lkKb>`TQyoS}xGS8?xl7Q{9H(xkV-r&zuMz zuSCqOF%R&{5IJ=Ipa=QtCjjlnvFxqiw&0oeFe;Hx!1jABplYc&PWPMv#;)zBOFo7W zX9ZGc&8nkP++H!==2DM~{!5 zM4vN82tP%|vs;F;(3D??LF{oCCMNMD>sX}CT>o;B^4Jte?Z5Y%NioW0<4^XYl#509 zV&({T)597n<3=!v-;po!AqV#TPXP|KP9)n`Ns>^bRPwFwH*?;%5AGe-;%=_tNY~0x z7*L*$)XpXI4~9^{KTO2c(qIqXsoB#>n#b_dkWBFX{4w%1d_9g`EM%)(3PoI>U!iW| z08*bNh0SdZQPRL+Fk@W{x$G?BHD2q8l=Zan>AgHkaz-ln_TnB?G`a;gM=oQuGc3ua z7c)eBl4ps=%avfvsy6mYu^iNx>yK;S$`DbBFFNZNg5PcK1MxHc7z4S-#HGjs-&!=D z9-Q-zs&o#4A&0c^rk8KQ!@z9D@id>vA1Xr?izQh94da=~zZrV#X4;p^0M7afbzzPzt0W=8mCGH)RrPjcyZlsE-^LUe z)ZZc2eQjVynCOi3P8>d4%csAUFChoNkE11tCA%|hKPsu*$-V74N+zD)0V96ChpzXM z`Kw2ofK`%TV5o2$aImi;{Sj-ipG*$8qIL>LHn*XbMH`qMQ~po4z6jzAN#0I*xwPYP~mkQ+g^Si4M-KAb8BvJ3aX z^>(B2wn?{uQo0p$!CafT2G=8p9YQ)?{Rb_fTgi46e*p;#m!Xio+XN~b4zuQCDv&*W z5kBf>Qgox}^6DRqYf>eaQ=8TqXmy<6SlsOnQtecKb1>^?0CT(1b{fB6`;2 zYMBuW2GQ*s0l5FgXp(t;3du|lV^Vo1L}%<_tXRP~(jUDMf_^g;xN`+xsiB<`YpsFz zGgW}xc0?=O4a5U|?bM;xW8_q$Bv#tMva+?2)Jgd!xIf@KO5RtE^jlO>(7TD?%-7eX z{X+eVdW|enk`KX(S+9W1wnNM%vu9-HLvy@p$8O>ieTLHQ5r^)>&FJ;)2(U^$ zhUt7biaZb0LQ+;z>{ZQFy6RN}=j7Oqm_bg)?aFpB+EnH+!-k=|)(MuUe zR45-tqV5LJ-;=hpCwzmb54-;rqUg!Hu6XL z%;sygTQZBj^fISqdO?-aOq3=eWRi`{sM?uLc-8<-#pXmYOT4_1uZUOsPID7lR?Wl5 zqHLMlW+KkA&*NETr7bw@`AC@1?1<*v4&k5Pm?hd7ErGKGE>ID2qiIJM7V~zU21Dt_ zq;9?mURl`0>@=063hcK*^X-x7^1xN}&^-w*ta(gHC3+Iy{eZ+ezJP0$RI6QQ~_Un9*&+% z1I+Io!6XOmCA)pDqVyG}^z^qX0J=^^4PPBq5W z$cHOWIS1vQ-9njqp9SwX9c7KfU!W)s!&BU1X8+Zr?Cx`-9NtBhl=p=gs=U9O3Hp`H z`cId{EsIMr67(_&7bJmG!9G%!Isu%XAYf1aw#2_W&Jahw25FDGNW4?KnQbMqXpgoM zH_FV0^!=Ix!$Q)L*Se?trHfU7>B3^zb5;|~`r<&RvtGD-k}6zC1rzS%AsjZ$u}?1S zrxqDkLXG-Xw5RO}S~6b|4F$S@uHieRy(Ns?PB290zwmKbhdbpWOatD#kHRnKGJv+| z{V}-ElvL<%LMyE^$=Qe`uwJv36^kwdax*+}VTc$>J1>ns_H4s@7CZ-vpVu(?eGiHH z0ex&FwvAqJ%M)}?$%hs}FOdzp3QihdVut34krSm;aB5E%^WJd{^i33qKE1TtD+(rZCEHA!Fkp%$Ky;bNWG;! z>)|^Wtk5kZwpwXG`(hN^{X85STBy)M)0yO~xhk!5!Gf*sS%da?`*10um~yK55h@XW z;6wZs6?59gCP@vvsD|Mlw}5AXp9im{)zLGq_0wCA2x&1 z&Na~O>hsG#0W zZJ45lwy!OxD!(4VZEmahJi%BH+SCr8%-RFIX0}th9X|Z{05jZHFca3#ISzl{Tt`-R zxl`-sHi*8h4#VGPGpR}8K4ds{1$xlF28CU0$FDa_&{Ath(&bC7fkwy^P=C6EE=_D= zW)z%*$8@VfZNN!9YR(}XbKwV^(bmh`lRK6FYg`;!KWQsgI4`Qtx7i9`M%SYcx3^Qb z-aDe7tHx6FVs$)Zn+m#ZBjDo+66nqvW%NbT31_v`Qb%+c5_dHNE*&X^)ycDw{kTj7yMexQgqnR(=4LP{)hVPD<}qSsbU zU8CNzPru#+YtJvh{vAU&t~Lw8Rg3Y3ZI$5dtR>9rMQvo^16geFXcRHNeQ9Tk0v?@ebYI{rBV?uFpGj; z>#r~qq;9i~5-XVtSqG`Eb3AHF3oFvy9l@0y_QY9n)&!Y5vcpzYl%;hZF%#bk`aj39 zzoNr%LYo}D;^7o>TXhs&8E-7A^K?Uz(2GNX0i^qR72q!&i3-_LUa-MLN-jVLre1cY zOfz#xPT)vv6D$dC-Ri(?Q57iS?n$QR)m8qKv*yqsem2T>|&&?xnIv0OB?M z3l_}ChAZa!Bc5^q-!kSCrS0?$C_GdKb3WguZ@XN?0h7-`_SPuUyswZt^kEX~^u-LU z#gEZ?zg5^YX9;xsSdDTl5b%9?kA8QAAvybZqw1q+MCKEq?B-qr!&j7$*62ja(N2*G zj9Z2W2O;ubGL`W+@DO~4S%YJH+B@^L1I9E9jttnp1A875R26KvFfV~)qI5&xYo3$6W zZ;1i@a-rnoO)re9IQF!Nx5Q)SC0MEP78#8hg zR;}NUI}DzKokQ!Hl~(oS^Enml-(yQ_Q1>Xmo15UoS>*0oPq?ez7`>()W)MoAb& z7msJzpb^~Il6BbQhb1wpvS-_bpD3fYG7>X*3b<57u_>{~uxXtpJ$ud^a($&H&DRyO zeKO0C@#1Zq+)vqKt@LqPyuu_F~eJopU#+U*KD zr{AGpIQxk5H>wcjK7+PBtqy!ezjd_z7>ZwW7%aUR#9VgB!KR|U-eHCDjE$rXllOE1 z*S9iLlt-F~c5iDF+%nBzo!*LLo<}s)g(7Yk+i*5?zYKF|L?pHS^D^pcdn@x`aRU2k zI3MY(JBbZYJF|498MvXli+ruN0llX%tGwM5FRI^8BBP{8{f`LZZqmWDTDHLCIWk<> zS4_li#)HN2p}e>KH+fr6Or%Ur)M0b$LMrNG610>LMUO_6@|QRsN6Vk>pmy5(la{EP z{I?Ge19dY;xT#ZA=XxXnB&0`EHKxyzdet*HQ&trk?_Le|FJkzsLOm$Ap=$t7HluPz zgrLfcuTb}m{Zw^GEPB)%z&CVOr%&veL1oaRVB%#fR8>nuy?|_Z0XR~PE$d0;@J)8Yr0Ao~L$%y<_kSa)?N zGz`AL=55+XAL`_xmI@9I?W`mPD$~i}k94dvSCV>cT*vp4olH{wc(h?x2;6#O2C`Zm zKuUK`p}2$5=!S_HSTwJI%>Q)}P8IE89Agpw_9GO3T;xe?PGkXxtFP(NYDW0)d~*L; ze3^>U;{P`r+W#4Rng3wj6BGNBU+>TMzs|4cD)SF~4vqe|q;Y@e6J7UjyZ_Vg|Lz}u zMC>2v{Lf$d-|O!0e)ZSq&Y%AD=k;IrBSr0hAeH(Tfd1}ByZ+Mu zzq;{vJpP~8nc^P<`*WTB+5Xq@$^QeNLw|9ozvHv+e<>vYUwHhfj{E2Q|9$&k$Ajqo z0mNSx;(s+B|5@N4AM`^83**q0S-oJmIRjp@GsTxie}NTOrqWhp?%-F4XQK%c$4O6B z65jAez#bClLz|=GSnGr;K2wMA?`_3MIe8ZHnDm)+t_>$GvPo!>j1B(zYA*P=W;S$t z9E6T}3ZbT|C$nk9BoRMY4lI=uTZUxFMBh>Py+Do<-Sj%0Et3$cm)8T_Eml$JW8PeyH3VqbXerRxp!=<^vP*ykNjnf?_` zTv}-@wy76s#O<3YTyg6=d)+UJRvci>{%S|TC-2HNXKv$3uj_{)3?nzh_ch^9cqp<}}qn!iSii*|9Y z(TRk$4xz@M8HpRjzaq5*&6KLVET?Pn2GyMULAM{9N7c%B;SG;d%qNZt;@h8ljQqdt zBH5?(VV{Nt8|JnMm$`|?)b<#K@BB(`MA-61D?EYQk346mU!>`uBJPvn$0OOF#i|_V z8Y<{~!&+>(bwOw{XC<7zZXcVfwg>G&jMrsXYOlw6;MK&k zzN^|OqdYx4nF8FgTJKl*jiTKQflCzZipg-0PQ0LWwYy2HW?Wp@_2U%t4 z3Y+`NS*be_=R%~n-K3o~hMX?Q*@~ogtUpFp2qgCKiWCpJZw$9H(wswSZ$UD_9?m zr9fW+*y!kD;QuU;`{b^MQ^Kb)GpEadU4qki+V#0S(}ro(Asrc5iOfVjjqiX zY_o=icTF$DSI3^P_WROM^Y&`|YljK9ZqsC@%l0O=);`7PZ+=1TvY_D&*-G}c=TFLJ zgDl=tD}h(f90e>MDRXZ}HX$7>&bUzLsqa?%ai;%0b7##bd_UVdRN3rLetH=}#W#~# zA?t=eZEIsK%AcabvW?BzV@qEt5Y^>%Dzj#9^tt7gv4RdmI}5Fz z%R<4x5Ll*mgtgzi53ST+jnkbg*+oM)=^M{N@thBHnZUPU)Q*~B5N2%0%FjAaeNmFd z3#Uop@7`jd*;bWXVD|hRF4we<&piJ(>{M!FA5WS}-(4YxGG}VA%Zju(<@jj9j4C^eTVWT4 zo7^VA(zgLDk=l=d>q;CLRl(kwSxMJMM&S6A+03SO{?x6@rNF@0iS2zb0^Gj}@wzd- zIQ%CI`u+X6FZn81EZm8Cv#XdY)j5U978>9@mfTZQ(i7CxAB8WQ!i{Px}YA$TAR)0#9BTGa(|^+Fw=&FpPwCo z$_kI!K#df%*!B)qOfurGBP&Mb!8JU4Y9jNwIhi_`sSN#%Z?SH}^Qqcd()f%M!t(1| zsA;|nxC4bR(e8IYSOR6*B{^c=j#^#w=e~c=3 z+GPN3G5SRKVGqq~YUaRAhc!6A??>qkx|Q%=%u=@OF~e=ts}<}@39>LRdnO!KUIW(h z3fcP?_MyRfNq9I_mh;qCWYSZDv9RBtIlOB&b=U10=!}kGWu-3i>2ss;d)F=$m!3rJ z2~y!o7IvW#Q>B=3Ausq-q($d#QL5(Kp11Ps;B)lI<1o2DLks>oF@@D%u?{z8b+Zj; zUm)8_D_Chv;}g!l}s?X5flY``rWZMLn4H zoVORL%=E<9+V8R7D{j&IMH;(FY73Z&h58h|AOzfgH%a6J3`hnDU;pNVRWu!d_|gDw ztELJLlX7Gx{pg{VUr58>&YJLkB3U?Qt0HTFz<tP!D&b3 z=-h#+yqA6Z(d4Zhw_CG>9#}L5={AWpn$Ea!bLW2$IK0cSPnYzPO*rMw9k&02DL89=0|hjNpsZ86pgdp+t7a66 zK0OMjo7TLd*7R@2pAL!fRJV{&*0_u{s9T^SXcgoAR14p3ILOZK3`C(zdI?j$8d6*1@tYiH}IKiILoef;pY2x3Px3?TP#2LL)bgPAIMC8$UfVcgbp4k!CvbO zxj994Oy0Y5*huRH^QbzDnlxG*zKglT)|UqG7d||U9QIs6PhpMr)9E%6fPca;C&ek zMP;nPY)FJTe^vm0Y4>e(#x{f)oHm1Pl}_whFL!*;=?S~!=|d!((n}Juta)t(H(+a4 z1G_ZUfi_V33XlF!W5;xj;dZr!3W@@)EO65q;VohXzpdHF-dw%~DGhnzB<-7Q%!La2 zYk3Iv?U>4d?XxJg0|nr1h$H*z@ptO>X@qsXH{;>tf7dx_9BL&-&z^V$8n3v@(njHU-Vnu&{Hl$UU&zoej|cFEJ#5i1kLETG z6wwil(@+l%W|!5uaxptT3RFj@T3nAA5{C4}K_IMW{l=squf8(;bdMody_{jvr(MTU zzKP6({CFzpiimUKLNWWQ@(90q*9EZW@LaIAXEr~7gEIa5&UTP5IvY#eG@5Vg_6VkH z2b+ujE4=KKa4@0wHvGM+mS48to5UQFgATTxsJiY3$XqCc@paaGbDI=Akd%%?MfKjc zKW~6vFRjVFTxpu0{f3^>cb6Sd>}OhT`G_=8cjM0&^Z{cmicL#v61B~JXdrE(C>Qq# z?9R64XI*;97aw($P>NO5*SorS`1N=k8r4W$QQ60>|JsONU5Ct)uVGaB_$|16(2DnF zMi#%Vvjv?Fe?#hcwotny9q-Z66 zm>R%7NOa_KmURjCyC+$wX!Z-6o>o&1&mXWkW-;iEYccK}t;cPbgv`K-aGX{k$=tj%&_64<;tl3h4G1Z@a8O-?CZG`}7*8>%jiVxvxHO$%myXp!t2Y?qXtQ8;w`T&qH@HLz_kVU^uAVBOgkw+Q#S#7Hovx4gBhsaC zs`M{HZ95E;Rg2lFxks^>8O8O9&Y^LrEd3cx;(cw@Kt0|JH|Nb2di_m=cE1j0)q7pJ zOCIk9XE&uFo@7+KQ>fPyCE(?z zYi!l8L~5V07%sDFL3g-jsx?-O3$J^K8Unx42Mgy@_3J%wJXdJ`q&JHHA+G}EO9e}HEO=ceG+fl9dv4Bx9VULDQ zr@Z%7Ql)S&JU*aBSxpu&mh~dOuS52@A>kfeR920-+d-`H-Fo7rmTJm}OFNl!cQ0L#PI;BNUUdJZvVdm!%WzZ1Exu{)2`c&hE!x6fOr+<# z7nPpOMep~Yqm&W~*b3X7NUk!3ZvAdZY4@05%?bnaJzHM$9<6XhuT@xLeftxb*)7JV zsf%G%{f+FZ%#~;bY9XmL;pVGGcLVcpTiM(WF?!RUaA>&o78AVuG8-Y%fDXUcBs?dy z7Fx@V2kmba*!5xBs3Jo~#M8Wx^;~z5Hh-&!t9I1U7yK=$QEj21Xx<3c!b^)1(+!02 zd8W|C+m9Mp;zp8gghR=^ShVPYCKY(88CiFwnkBtc<{#R*8#Y#Mfby0iz2n(tgk?9O zGx}v@XIlvTxZo^V@qV-UiccCaOKd!0U9*wmR8hUlnJ3uGteJV}97GP!XlA5_3%RY= ztw88uFTBq%4jxMo!d$y3JYP*2Z@9b(%{^~`>l0~e7|DY}CyhxBTfnb3nSk3zO5<#e z(-b%*#~G+g;`Rf4#&gdtRb7SQm-p-lII6pCw1Z^7zS7N)ESNI5?8==iv z7)fHM`4aS1u$lc}P;%zy>GGCLb9#)LDO)jE{tqzT}V_eJL1re*xH$v;qYlo&n&cTl^& z=yL}@KSh$uf77QIX7W8`CgI;XQ_UydUCk4_Q-%zuClI9sEm&5#j16p>)o~>Ht`izMQ>&Q=jkZ(+}DHZQGD`BGpQI`UW7>*`2KY+-kA{yauPF{5l!9jPCzf&^jZq# z@z;~m_tNH3p0eP+`8Z}ucM1u<>H!X|n9QVQWik8K?_k4!bP4DWJGeHD2>yXPf%Lt3 zUU2qmo=B&|n6aas=tqequt+}=-yO*3H>ivS{o)Up1I8P8w38!n`RPu14`uO2=}g7C zJU0+HG8*puF_|}G=R~;dm5u3sg)8RWmu$h&mEs_H!hZheMi%cHe-+;R9fZdQtOPCZ zn~{u{ms$5@e@ZXY99P_&3xDt^pzd@R#q`<`7e(?z#y>x>M-yu`=ATPB}rT(iWkdLZnb;(>CzfTawj}j7P7vA0hjF z2J98@Vf^4{1YWz$n7QVmPZcTagA*Gy>ACAH`BeN%IQwWC7~f<=9Y5xS&t*xW+f~01 zwZ)&$%j-nSPORDHCBeLgkVZ(CMnLP`Jn+I$8=vyMgl5(m&;}L~sPIM?>1e%T{`Q44 zxHo+U`DSR0YWSfdj#hEJb4@4n$;O$a(p%|{tVS+b-4C>zL}I3>-B)fIAkP zMrw~rP+I?HRJ#5xKm1`n6}ra{y^RSoe~AOZ=P8FN#cT=w3wA7h*5DTKD3XH`wZ6RN z?^hyUn=xjLeW&>np9COrFB0B5Vnx+_8bNPdZ2_~>)}eD}X21*eX5?O!wYj6{d8)2$ zPo!$wkWx$(7(em^Irznr?oeJs$M)!P{`%dFOZ*+`jc^Y>y)+1XaP0!c)2EV`3TLsz zg&;U7*BDjxjOTw&>*GJMGNJF;mYaWVUCOH-_T<}o>X`FuMY&c5vw13xwtTH8YUT&7 zxbRcFcbnS0E;WCdIFDzU6;92XRAlaHv>i1@`0*T8=kcq?ZRMLaDDk^TG@90VNmJrV zH{cYDCm`NTz`tIiiLT!+gF4YtsPX1ZTJ6>V8g0+#tDN=+VN-H>@mqTMzdGGvkg*~B zwn>3^@V7BPWPUo&wKRY?^@=}=m^%+@T&FRsn~f)im4d#$K<;Uv7GBGr$&@-@1M%kz zaK>N?Kj*gsST|P|&uAM(do53gt2HWE|J(>X=`P?5MLMY-CZlNw^SOMPSuD|NvEaIe zvdm|rDR{BvadvI)YVOmoUcn{b(-xXJ;ufksJMor}PuP3>)5u<-9-}xDZe_q^hRrI) zeHEve=EZY?;qqM~4*3dp|I>N2%I)LKymy;Dkf6-`I#*9e zzFH*w+@>S+aKFQ(j@?JBRqA8a&~16~?bRPnWvn z(P;)Q*h*p-?pL&7B)*?v`aX#2x4xO873*9eZ(%&XS}KQxi??A<{FYtRF3Y(#+Te>j zm67eyR!(hkJ9|@k6us$_Gd(ZmrjRBVg%9M-=uYkF^nz_`U{QYpW8dnBffsSL? zr;!kq%B93R1Ux%6LJ0%#c9k+!8kB$lBwvJ;Bl6%O`J^5(zLIt+M zU^G!23)*KOAa^+O48PFl|@qQDXTZA zCHE?7ke$a|{3cIK-fl*|8zXT^X(HZy!W;&Kj1hfX#E`w?kCW+@H;`T4W|Z(`J*`p@ zPiM5o;Ts+z5SD(m&knB=|CvvVe57e{fsmPIfJdR%eC zZkl|{YY~`ps={{Ob9^x4Iq9(+4ZGh?r$-3HP%O9MN{|_)7W)CE^WkxB#mIa>@JpC+M5TeK;^Q z7Dg+-htI~{02fRn!PeGEkaIncqKn2Oy^GhN`>a@!*6D^Vk6PhRs}6v3b9aHhE*)fg zwg4zCu)FbWZm+x~98H7YfIWFkK7s>1gzL+jsbAbpW@QeNI;tXpn205997dc7o&! zHwBkz1^UUsBSd9%A+%1>B1t<4N>Qx|C9-Mn`$_6ei6**F1wFa6>iXvGv=|;TJ3E9E;0H7*N*pP zz2^+~9_B2=l9=w&BTSB^nnjG<3*kpImK|ucq1T@2L_w#V*s?9Q=GpYxn0p8cG;5u z-0t2Vc0~W5+x=}I|IPmJcfa~;yz|d^-v8V6U-vWb|Dd1!SI0a5y3YPR4*&Z6^Z%It zpDXqsj`81Zo&87sHXT?Z{CMvJr?2ELVEU^qCLJ!cC^$Zk F`yYgQIF$eZ literal 0 HcmV?d00001 diff --git a/capstone_project/500_epochs_40_lookback.weights.best.hdf5 b/capstone_project/500_epochs_40_lookback.weights.best.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..448f77f28029279aba12eb3f15ccdd3f5324beb4 GIT binary patch literal 141008 zcmeEu2UJwcvi6`LNKg@!ASj|D3P_H#s|K@RKon67AOa#tkYo;kk|Zghf?`(0hzUey zS0jiK1Bh7^bIt)1%0CF4b5FSUymw!?cm2=3)=YJ%?p;;g)$yB27&2gxlDww8py82| z6G#i%{RlRH)i*sAdM$n=HOHItCpQJ8nrM6z&23~CND1U5AAvxih6V#gu zx{Mk)P$1!KuD_W!6%z>boA`f8_!;=WWPu?A`;KhTcU+UwCQbBYQ$K5p3Ic<@eF8jY z`S|%x3lEbd2G0oh3-p`o6Z$u44ZO|$wW(V*7ykoQZtAbU@7IcgArfC{sHcrURno_& z`-FOidCc?)4f6{QlB8=$UeMr44WGt$$w@-ZVSzxVA<~%iBVSQq-&CL6kNT!~dQJBU z^8U+uemHJZJq@P#RW79;^)%YUD>!JXpKrq}|4OcSKBF|fxq(W8HSDgO)4}M{z?9?Sm5`5J)}wT4bAuf%{jq_y*{>%zII-l3YHe-*V+2Q$GhLjEFU zga7{5$AJcwn*DZ2uSNlz{kBQmU&!G8PQ!j^qSKhvs8!SWBuO&sW75Y;LYs%##)X1F z5H7KAaOl*4;8~63nx=EXkMTp2G*8znz%wlDhvjtbbaY4ighcoRh5LC1=o;$iHjYP< z^a;P`8#dZy_-{Do={6X@p^8S+He`l}din){_Wg3?5;AzJbAh z-VJ;ak}f~R&+~6|kW5QKlKIe2@(zjV8|FdDn|^O|SIn-zieI*V5i!8sdy+QTAP<6adXmHqX75pJsLnC-d zr1td*|8on5`uIi!NbJ;T!N!jDH|qRp_78dfH0MV%`i0N&_|x2`Mw7IG#IO>D!<$U_ z8w37X?vEG#Sw_<+DXGWgM=So?4!_B1FvagX$6q<5sY!!5|HLDk-RGxc{dBCKj`dGC zmg&E{W10S(v3^~C)RvNW z1bWVHOlXS#H||ZEwgZ23B=<_s(s8oI^{_Yno~Ec~A54n^x0-&^+B=PtyO!4}N>d)7RVc$F~1(7y=p&93(zr zVrtU(SXf)wT3c9}noF8~ich$whv^Rn8`~d`wUw!*jj4rML&x}$YxW~olGjk$)Xc`( z!pg+Fp{%!$m*K8wD~GQQufEm zM&k)s<9DIr-^PB1e_G(D1%6uKrv-jm;HL$CTHvPzep=wC1%6uK-^T)@M>q|TlHBe$ z<8N%5HjK?UfZyXInsIzroA5x*e1Z>+I_Z4;_tEWtQ<7hCSO0Z9SmR#20Xg=^M@oWD zX|Q>7J2c}w3XK|hk2DqeE8Nu(3H+qtX>Rw%*w63(D;D@Y?y9-BsW;*An(fexXKMEI zW_(t2{(qJ>jyJLbo2G)VZ#4#*>sPO7jN9C4r1p(Ou=h!0pqcM#Q~cAj#&n$~zGVx4 z%U5xtG5-2gBW>36lhbecbVfGD?MF4zX8+P3^IN{FdmG~;o6=1hqk_k$f6LddyfJQa zwvjgb+1@5R)-QTA#XlJ|RrDVu&G@yezbmgOh;PELDgD5&H6meu1+X>X*EA&WXvVKK z5IM#B;0-}3*WN4sA_e;bezv}(lUH5o#x3E(Z& zqA@|WiFsrb{e8TpWCU#BRMzS8LtlYFN1!GrP+Qc*FC)>uA-_e7#tIv-d<{=asjC)0 z0*z*93JL`6n?}NhGM`Q=kN*|v`U}hdXh2FLZNs~p`(1PU?lo?FZG~wg{i|_(SrZVl zxt{+~p?_BXZ)btukLxx~625NgKg|L+dvA06kAB^l)9ls_eY4@w`SJb7uf}n`0Ttf( z#5eWZ=5oL9$A7HhXG((w8tvFp&^+=!9`TRu(roY9ef}|D^LTJ|_&?_R|0OpxnPZO! zRq*fEI?>3!leljV8mvxElg{)NlKc8^WVp92n-%DfE?QIBrzO@@FmxN#j=V;ps@vdJ z?q<+S4QGPK!^O+{b;Uck0H2sEp#ByS+i$rZhN?@F>ADoO`PIiWh?8ZEI3@?90x9`UhJkdb^2W4P5 za}+r%grWlmVo!NhR(8;gS*^{YxzkTm2jw9s=q08r+;ldm&pwF%vV^;)ZIAK;%AwZ@ zMeIAdBUUPQz%4Q#sK#^@rlpK#hqBwD%yT`AZ&|>td(K1m4ihnL!&)}9audDRiiP-H zYuJvBk7O$*}`-0NPdhOo-dh9J&k)~PEIJh+%U?@zbMMZ=j*Uo;8k%^J?9UQY*& zvB^|_J&g+tc}dSUY{69>BUx1^OU&6n5p@h(;%DDYa7`X*^x)a_tmkA%`Y;_|oS6?P z>s46Njx${LM^|y1>z~C(IP!$5LYY_iCFtH*|OFB)!8efcz*cgNK~y-z#!X?RM*~^ zW;^#}9uJ2@yKN;H5*fqFTbnRV+ZV8=W0c*+FWOk;mX3?_-_nd{U8%K~B{SVRh%I;S zkDPjE*yuc#mZxgK*Fax!MW3zYuzLblSzP8^Mk;d$Ut9v4Ho64oKhpp`8*cmbu{h=N zQ-0dzK6s@~LXmC^P>acOwl6^j5c$ zEDfIuXG~Xzr#_cJdC-2cet(}!t!e{@4)$QQrUMM`=Ep4bXYl7V#^ISN8|W}Ai+%W* z!||{Jvx`SC{qIV6v%3S^yD5U5P4<6rn^9RP}hQ;l%9t}RS2qkpP(3}){xrj9K9*n3Ts|kG4J3@Br|;rNX>WW6V?uc zxj7qY+kgaGvB-#>N=b)Z(^oSugZ`|#voxNR-2u+sM=;qcD=M2%!ry(CPR2zuxJbjV zWb`?N`fKc=yFG01^+b18UGkP*u@TJB&4?9s7-DCcCkETCDp2!nHG30!0wT~52h3{4 z)+}0sS6X*O;mFOPkx@t=7j1(*>&qZ^LONI#^<`yq#*sO82e0X$px1(Y?)|b*$~?qF zz}YCw|FD2cWL4PVf;q6Hw=RBGiW1g89*LW)IBGU!hIO;XKu#Kh~J5RO|j_a~>| ziB)&z&_asIwyFXD4RhFjqeQ$FuFF=K>!J7hRPy%!zz=*s9PgyBhRqq)sPuUy9KHLR ze_p4KK03Q;Q;-bo4Btvi9?r#GiAHSpq+MjPBZG@|G-7pXJ#a^lx6p6X3_N^#8_QPk z!SCC$*w%>;>ArDie&6C0+_z#K>@GaSB^;hgBQS(^dk$dZ2P8@Q$VaZNiZPy4EW)UH z6FA2XPW^3CvQiFwTHLK+k9vudS5GHIY3=*3yJ@q=dydGwBN$;xL3qg~J4c>HQM zGQ~FNo~?nM%Y*6VBv-tlRz(+VZTSueT-7V1bbuKJBr-tR13P{JTvu)z^vEcvpB40q;InTKR@c4;S+_o)dxHr`j z*KFAi55uNn{2M#wl>C6&)aH_HWDH%Xj%Q{QMpJck8th56fHz59xW{dl@oMJRsAB(9 zNO@`kG2O!1j>0#T5bcg@?v>M`5AxXJ`vz*ceG^-8HJ%$Pnoq6f+p=fZML!sxk9ODGU2}B zDLOIp1|7^X!1g1RVC1@G=uxW060Qh=(JFStW;2}K9l};<*x;~}W%T^ZTgX4Mjb9nz z4nD<*ZKig_Q@Y(*K+I^Ym%RZC_GvNK{L$DWq6aH7zD2`gY}h_sEy!D4%+Dwpz~=2; zM|+ayfb(SH&kkD2_F0wFp6Q*LsO%QK8`}+o7IvWlAJah8BMmfWbzsBHHiF&S$>il3 z1f5LOaCXfAtPUE%Qk+guvg)Rmq%h=N+`a%JO&@$?~m)0qS@<^{ghp3fX@{U z((3~|$ivnY_bYV7$#PCO()=;1=?d7%#F^Zb$|C$$tBF@RX|gSPj>Es`0_IM&oI-R?O^_7C*Os3D}Y= z$XZ0BrS43+zg`-9b-7L!&Rdwr!kv)6UlEVI$>-N?_ky~&9r@zH&*0Lv^Q^Pl61-eG z935|1u<=7b(yCiaK-HlJ;sh&j=kvk*x3MSb(4k0}KL0B0m#o9`>KwUkBd4LUV-#wsI8cjEjbmM|c?JtM(LxRdh`9BSs%6tY9vLAn@t)_~e;C$L^^6Y$14M>cI% z2XtwBfLr5{4TTdWvv}7iC_Zos=j1EG)Jr+!{M?-h;sPijyCuf;Gh`+Gt4YC4omI}U zVw0oRvEJGXVbxiEHV9w^UT)~5xfoXz z`(e5C>!J?)QP^1hia+6-0s4YMy4lHs1V)!Rx8+a4efJ4SeeBNKze#0N$}hloMNP~v zPobCN%fZ-95A^S+!>|@l;K?%qzOYNdJ}r0BGwBL)TlEgO&u7IIiRP%D9ZZy^4i^Uw zfcrKPly7c@&)YeIiLDmq^qjzqca~z-(+8Z&D=pmgW+j$5Tq7Mxza1;oL8*b0(IxdQ zTsAm|u|3-1_lv7Ay+bUV2wIB4Doap${WDwH8a>EsBbm!mB2oWq52#eJXJ2X~N#V!^ zSaxXz8rO_rr(1hqWCsm=(tSVmIQWuMA8XOT%3zvitbtbDWN>&^7Wvm%;iGrX_$J;S zWrC1DaoHIkM1-&%hWQlQ_b5asMc{`U8(?SrNPNw1gL!Q`+_5YHAFxDp-Y^dP&-_5K zOp5Ia4`9I?kI*usWoXs69Xs^Kf}K!Z!xn6F;%?;agfDk}PoAs3pPdL@!@T$zfT%IENjV5 zb&$u5>)|BjVn)Rq4DsgYRjgg%9CYbyf@h>o&;-|PI;PzowcBWei}rhR@L<%*G?-0E zQfG@tOvF(R!*SV=8qzfLS6ZtcVYv{4Ak0RhHdKLgr*TUXpk_4ZM|}e5AWs6K9%s;$>|>5 z-#(UIy?6y=H7mqXw|8^PEZeeuYYu~%lPSB_MGTtuo0;GAXgDw{nX0Tp#R+#KdExRQ zY{q*f_QI_#X4Mp_F5Fmu z6og-7!QUYYb&k!#wB-&UAJ`gCP3X!#7M_7~1B*aLt_6GU8b-x82eE^j7T zoj!SnMwBTthtx^5VApn23fdp~#=W}N z7u%d|$4*XH!qD1$(0cTZ6U#<%cPEcy0mrt}^b?n9x_n=@;m|bPJ-!;EqO>rjyB6b| z=HX?d`_$Sj16_-kqH2dkrn4@QMz@qgjl0sU?u!mv?U_q=@3p|}Fc((7c$b}ve^(~c zwLe~W&tlg)*}&OJ+l5tSBe3q+0Cr=40uzke%A(U5P7OYZnPC5ZZ<6K~Yrxfcv%@@apZ-P-vqgi=9GWQ^3_HM5 zys-mzT`?R)t)?)g`(tofg#$C%RmIQhe2xT{+`w~eprah4|5@kQy54y;(%o4Foe2_v>nW8+oS*}B+mpgPA067T7Q zTg+G*^4^cN8qyy&9o+@co9C1FT@r_Fnry4V-R7S>uLV`5O=NGb%!>1lK~~^F=zDS? zJFqUyPFTvrtP@+He*RnP*={da5px6w1SVi-tt|1%Wq0|}dC7Ql+b}fpc@0|9>2T=g zL%cOQ8xx{#vpc!Qq7@y}*t2d=G1YJkc#5xc*`Ydz->&aT(g&uYqIN9#OO|Pmz7Imh zyDB*N`8~dMw_Yd+O2XY~nRF^^D!U|D!a`4|vfxkJ;^}V!G3e)n z?4G@u#jUw5EU#M5dYZ(do9AY>d&n5vb>}&BeaUE_OE9jAP~;Px<(bQ8W%LQ%hbuO! zz>>jHSgU=PV_F1n*DdDtv})Io=)Z@{u2h2m@bLYl5Hg>8DYoR#jDtU>#0Lj9N! zRGj2WS2qap#M5oCP+FHwOX`6ImrJPA$y#pbU`@1r)diJKS95J1XfS#I4|H+ZK+?-h zV#1zJ#L8N+IR5=H@i}`lcoK7KUj3~@pj(t2a9~br92$A}desg>c^` zlf(^k)4=_LNY+DGi;mMS&y9cae9F+6vY7?OA(`_6W;t$*^v|(GqWGo*Q zGlaPeT#xDNvuU?%Pb?`dg{KzM{3vlGw0xKi%lf9WXH|!x%dB>gl&{7NbUfIY+N<2a zIvZBy{sG<67c=+FmC*924Ycj`4$k#kg|{>V@ZP&HxM6XaC2Z-3S~bC>IIvST zSc*eE-of^xo8isVftY2`6;mP}!_HpTIDCCMYDenfv{Q#DH)1;}9ZAI*g*`BFbw127 zI>}`%QNh`5%7I_`2ok=ivD%D}prw`o0bfq?G4q2l$JAUbd*2tYRCQz*-BXxU9~aiq z!4uD<&c~bMT#+jCXr2E?e5tYm+eU<8b;v<9>9`fXW+rm!E>BUTposOYvqiq{Iw|Mt zu&J}9S=`{Wr2eEoE0Z}PPQ9Ombse73&Xuuv`BG=}k}ZZ3GbM)Go!HAu9Z+<*6SFFM z#5)JKgr&MyajAhcE8V;RjbuLyGb{zzsV0}n>JP(Z>u=(jv|Ngf-ngE+X7$4^(l2P>=sq}CU*C33 zo<2WrVj^?9_ks*&OoD{@FZp{JIW#u3hTogC1y<}`NmiF0^R_Px*^(Q**@eV6wA#ZQ zOT*`5jaC{~&U?X6=y{AkJK`XnOPBcTjcz#Ou>#3#45o$c4|9Dgj^dfUi$Jq0gInvI z@%81?+&80mG#T#=Ub^r2nUNX1Rmc_m7v8ToAtQdk41T#z`q$sD{~mA9cq7(~gJ{MX zG}HeAzM$dnza)=+^VR2%*dO(u{UiNf_4RjgWKH;&BTa(+72e=elN!zUkpC)ue!ll# zV}ak}4caw{F}bN9HB0paB_#RZu4bng(wy;6(q??j?{QoI5&V;;+&rJxqf4A}Z&+$)JXExexuS+BSeSfoQGHXRs zezTSTyYVf5Z@kQ1(D=q9O)vhve9f&tqj^?r;%n?PrvGjJ&{XX&MECdz3cIck17;tf zwWE)5BaF@2_k*u#+Cv-c=p-e%n=1yJQR=*j;%J&25yKVtjp9tX7&dcRJycvO=Q?U_ zfg|ve7at0z<9r^c_A-wgEmYY+-!(M(4l8PT)E|jkqLQ(3I!ye`f52DN&g z+tGK;NHTo0gVnfofCaaNEOw_3D&9_{%<7F`VR%w#GTxuXFHGXLEZ#_0T5e#yU)rK? zl_wLO4y2SPAGnYe9kFNrCF*@c4>v{%SetF0Bp0Dadi{jL7ShVJTRH&c=k#RhWwGp{ zLkO9*k3qLR_V|6iD?i0QQs|*}j{?n=&}&dXc2(a5%Qvlpc`rn`O6E1>^wMSWQ#)hE z2pud~Fvo6n+eh4`P{|#%ux}|{ z4!#RtvkrpiGzV~(J7hh|Uz1&n-_GCOI1B=%ws6~W3;M=NvymmoAiT#TxLqU5 zY7{_3%jm(h-*>>pCSBO_S&O*rb?3#I^O7;*KzppH-VQxwU%@AZ zNSHJ;pPzln6i*x0lIIX<;0>43($&NG>TcyUquq7hJKP&+yE;o&T!;fwzQdU**Lme- zQPf^09gf%a;CmWuqS%ys;NL+F_k5JW0|j>c%wF;=o3$t7S2t;tb|NKTtb*7A12jL< zi>>K=3tW8N(Ar=nUA!YXpA@G-kZLA*uE>EIdM&8O!j=#)ZwgGGtHpeINA{|H5ay(; zf)*t%oQhlm%?bislwK)0llVYeDsx#*Ml5%SaIIn&K>Mwgz+t8M*?E5^nYjP02I^3F*U!fp=peDka_FdSg6>HF7_E4-P8TjeGkf~^by7NN#cAPng z{KBxnC>aiPDIov1>2yvn11$HvgNXM-=$_px7&D3;1z*LUQK3ooqrpMsG zPWF_WzKaISNTJcQ4otW2Qm84}!s+>bqM5BX@sAwtL-&M5H0P$|+_1o#v}Ef++3F%p zQHw>*iO+a%DI+|5D_wYEfi#}!t_A*rEVSRH!D_6dL1ug+bk4x z4j<2m&lO(dyU&&vn!J+5lkNx(qqgydKFh(J?+E4rQQ-1Mo6Vp0jGT10!^9oasZH^6 zTIU%LQy#p6>0Cd!;;e>UtcH`QA{u=+mT}gz_fzpod&wP5HfSCn&BlFqK)0v$)Y(Ce zw@7vb2iIpL=&47aw)wGRH~nb1?Pk(G>c7*UP`?F zZs-$#U2;CVmp>ULVr=ngSmS?-x{3yXw?j7ft#1?xWXpuP0XM0%{vNzKtjzSYkHOgq z2rE0=VQm``dmf=e#XaSi(+fN5U_6v}P}m}VHRui8FB<}r1|(zYEk_D?u#QSTC-DXR zV!kX`j+1>Q4Wou2Q$PF#64a8w*Fzh_mkxvZXEo^hrzhYyS(&w{JHdZGn8~_}&Op(k z7qF!&l)pGT1I`RB6c***r;)uwSVipzK5_Oja+oDx;?&_}(MF98e!GY+xJ6RVv`wsS zMhzuP-=POnHc;G(L^idTK3l8R0kaRjqT^Ail#`lBmg;BubWInQG&&knMJeE4lgKK? zX>6!zcQDf33|PQ1^Z8P!n)d;6rr+h~-L4eZZqvrN=Z}Q@v`pC2*D-W>#vYE{%7KyH z0F#_{kipyDu%cBF)LW{O>V?k$MX_iwxB_;nC9{!xPjgXw+d$J;t{BF`3h-}@1r9uo$4pPqrNsS2nb&=oHBSHhQ{qUqadUGcsxxm?e6o!CA6 z2-hdev(dseFhiIiZ2h4StS?*P-pdN?_QgCp@ZdR&+xSr=5-;f4C=q7TpZh6e;^lZI6rH88En$qHJx1?|;m%c6a0#|) zxFG0_I8Uz)9Vd&T~3Qm}s!{nKY}8bYs=aR`wWtQu3TL9lko8vq`>9Te?JHOWy+Ox^pZo z8@`1Lo+)C(2YWC%^Uj!5xQ@@B%(3hHqoBk7H?%p+iTWSdKudQgvBi=z=i)j8vd`CM zOU#rwnaCo_)b+(~mG%_ZZw~gXkz=2`9OQa`&V%b4RnTnfRj64ynr07G5oXO+!o?4} zp@)_sAJXy_v0GAXv0xG?Bw8}}Z&K*ezZK3hn}q(iyEE~LI?nNgA&$L$ihA&xtgYgF zwk*m9KJ0JDXV2DRiA&nCZ&hn~vvZws>&@O2>1oSaByP1GE++-o9xmbMJ-tBjmHi=k zl_#9f8^ZPdw2+FdtXb%5SAJJvh_LkeDe5fOjU10p29@9|aLS<_E_7YYk5s!1tKW7< zFZrpkr=%6WJYoTZChWmyF#+&RsRi-12z$OS!v`C?^LMjfP@BhTI3~cH1sg{}NZ*fK zMnES#@gR%pqg$cTq8uoSS7&efFGPOP5n=Zax-8!P10`N= zRCz`ndiriBnW5@X`*{g|pJqcTk5+);qe4pUxr|$UwZAxbq#D~O7|L~>;XuCcBXHU7 zr$R-Ud>Y(WNG{h8ar4{SvOU_%;BkIu&@WYH@)vKw`DHo4Cv;{jw^rbiF{i2jj=nVJ z${pGl=gSOp4|21*m5P<_u7U9`W^i|RlyKFA7>L+vj$36`@^QXa*w1<}#ZAx^zH+Ri z?3>lJ#{X?mmF&Et=Pe?@E2SrT>keR-4^HOx?i&nC!$-1d?LN`rf)rZW_NaK}w%2sP zkwfb~dhF);I4b?xli%^O4WE2q3SB#2LOZv=F8Y3JF~4rHAv-#A7fB?5`6WyFjh@9& zoutIXC!OiFRWMtewgz5J?1tQ1Gjy9fi)uc-pxAlc?7U@SVN9P_bbp^M4mS@K8lAEN z%N14PrLB+9;0ZPSJC|aZ*2NNMd@ZLSM_>Fl`z3Y${EFgdjz`zF>#2U02@@$s;pX}~ zkR7=fHbvBJ5SnbMriwHfe3^a)v?~fALDQIIwn%V2n*zT2>^peFna-vBTXx zaw$T-JwB~lk4yWOz`~aycp-ZqEZ4Cnndm6^a%eU6$N`x9vF+>K)TUvm|*<@9JoIVBBCpkR&lT-<lxJT&&+tE_H=~TKx7T4c4A*Gp8m%nh%XFc!W=mgy+zvbqi_OvTxSbv~;l zKK|W{1-hm%|8u!aQ*}9IF26(Ok-bQv<2ATw63lkhc4toaWU>E&F6>Rlcj~%qHv3SP zN#(lkw7Bhex=^pmG@p+lzABkzj66fL6?gL?oi?(!p4Ad;f+`+Yno7Mj?$hyAI(Tl^ zD_VFy3563+!1}rsu-Iuc+aIcp4vD?+R`OMDf9y?o+~*r_@ZqWWRDKTIb-5EddWXQQ zhq~;WyMUaYMWf@RyM(t@xLMD#@oV>$^g!kizvlJ?ip%eYReF7RH@COsl5w3o)#)?b zcAY_5UlPP;yPXkc$*+~%Gfjf4?N{=4))q`*cxy~phiX@vU)Ln6jzHs#>T<5shh!X+D;m8 z@LH_4{XQ8QWU?h~beZBnL)^Yu9vlK!@XuxDkeAYVxSG4T}!Urz3_Hu*x|Ip4ARve!~`X%5gLKfjtlv^P>21o-1kf$2c08 z=m-8z`zUfn4DZc-g8h>$vAf10m@{u3_%3neW-6@|FEEtnrj@Ve6ml<$SGde!vNtPu z?ZD2Yy+a=Ja~{BS3Bq}!ZF_b{T7jw*jj=xUBKNudR!Az%gozJ6(AI-moYBfQRB+>o z@Zob0@-2A{%K~?ii+4AMd#qUMrj>9aO^%`#N6`E=y-7{WlR2Cl#@zZ!=8kQJv~cPq zsMYTXn4b(?Ee2x7t!T!#S_9^jg!mlE+N@`%K5hx(nAeS zt_!vkXbfTpzV85j)z;JQu2Hn?<1m&tVi{$}aWHRAFSgaVp8u48o$9r7 zNKIRgDHQGiE2Z!3m9qlYwR=ex2?e}&8)Hr@_a0wT@5K6~cc4VCI9*nD20D${Egg*-7~BW{Do%A~8u!Fs`kL$ABns7D&gTNMX=CcGDkXc z@L*dCu2ot=Ezihc^~Y-NMXfcA_*@1d3!Lai#%AuS^G?!R^9EiYc}fQ(_2}%v1e)Jk z0A`~)@Ya1+Gv7P|38tq7+g?{m`sHQ3rf4S}JCX?sE%&fMsVmUlbui1h@>1w%J%Hw1 z*QWWl@A!|7b+G95C@36Z%RDN_eG;_i z^r363Xf|N)A>omAWvoYpGTT4&J?yfr;FmECvhhgZLi91a zv<+Meltz~>T1>4p5xU=$V^7UL!iWdHuu35j-Z>7XZ9OBf_te#Npx;{3+vAKQ72_a$ zXD@i8%J}i6(x75=nzXNP1%7*^SV?kD`TZ2)&Bxv7LY*9qz2gYxW0j!Sttn8vRh{cl zuY*g@?hxDF{0w{Msgus6eRi4`-ayn=X~?$S53*C`AYNA%2YlSkDGVMBFCVmLul+A^ zCb3^Y>HJENFV2C5eb=)w)0eUXZR_DoQYaTu=h&4;9}dw zFk#YLs+Q7)_-`XvZ?8|Jprg%1_G)OXA&+x|qv42MCU@}UKyk;d5}fyeD#|qI#qDd~ ziryXBiElpE@=L;p@okGYaxap1iaX0JA(ebn^!NP2@2VHDdxZ-4fsbPcUQFPvrwiE5 zRVOIh;2>|D`~>VRN5f3L_k8KbLK<;%1}LazQSgv=l<~@$YPyWYoCk&|=pTWhDEU1K ztfSR)7=$P+6`Hg-$|pS^#ZQ0nl4g&)MT*_Mn4nd6QjuTF@MT+8b~YbOdM9z~&*);J z1gGE1ZIy7$yV-PDRTI*+53wqnRh*1^E0(%#J>6?HljdJd;3i+N6sw$H$vTR9aZ^jv zXxpbeE-mpJXKor#8ZsUf8%o@a1sO#XcAe!9$a#T*PBdH{JCob)8Y$Ksv=LT{Tk`kh z+Ck-^Yuu6#cEUx&&WS(vQ{&bgi4^V94-?scTr7HD87Nxn7$O?36D4xMFwyDErJ{r} zk)p!f#iGSqCyTa!h!MHJj}wg<9V+UR7A30GixdS{#)}NM#ffIg#)%&4MT@LESi}7n z91PSpgJthl(Sif}s8hWZOnD&#AvfO9Wxt!;pg#A(tg9@w+OZ9$uieKb`8U{5F-kfY@>ZxO+xJzh3H~8oq@)@?1n4;wHg#^%&ly<1!do_mWrh>dRgKk_6=~Itnj- zRD-b{-}1q0t?A2=Ab4>oR#g9VvFLlJ1kv2Q1W`Zh1d&zycoFLrD0=>RiHOF`7kM2C z5golBCF-pnE2?r{AX+$MiKtWTERl{Yju)8IE$wx9!*os{9#yI$pY!Ao+L zU(2=fbR!#sU3`jJ5gc_M1zx=riayqVijOGNVveY+ z-F(sg_(+jS?**dtFG(cl(3*SFu7ZykValEieFkGv94U9|7*cz3oMZKy_zSJ~@iy)) zP`bVZl%DrTmw=v3M_j-gO7zLBmd5-ZW#De@1iqfC=s4mC>ziUmasd~($45U4yI=8# z822e?<+U8S(}%FeB7qGLQe=x!Ui9KnH_^K*QC!+CIgzze4i5Xe99_oE#vM}c*{gA0 zZ19s#qL51lZ1p}b<~7!cwQXw%Ch=i-xW0#Iqkg$2y+#A1>abP%Nq&GC8u9yCAW4e7o5 zK}E|&I4vxW4O}4ws(J>Z5t84EYM&~^?zcZ+hM5mK7pRJECN4nF^cu+xYchsrzTq_v zwkn=-7xCq7OC~iHij5>^sgoT1aJG6Kb3KH``!Xt-=*%(Z(5Vx9zCMFRN3EiTpKh`x z!zx+z*2faev?ZFBKW0lTB)@jV=bC3|== zo+W4Z!PT5I%)F~9dNMkNot@vgxO(bmaB3+{l^4=km}e4Bd+3D6y|tKQxI*!+#i!Vg zR&{L8Rt5HLQHSEbF^kxvunZPgQbYOqmM9z*j61vdftuqnKF7vi^s+sJ4fePA>2_cF zxZ7rI^JWjMc-l&|`Kb=x8ef3kdxfm;BMat}RLPtp5^-pZCkv5&i{(egP+MnR9JO~S z2Bvv2{;4Kgc}>8+O4iY9$CyCSWfivatc<8EHd17!UkL7Mn#K2a1fu)`f$&D#Z!A{D zg!+LpmW`T#s)Hxu>v4K4fDUn|s|<=m&ebq$MKLS--igadJU~vn>e#*Beffc7qtJfu z6pXw-3x{SMp$PF)$~njE0(F#&N9)DlpnekU-Jaucb?Zm$wnbCqP`?S)PkvylZ{|yW z6T1egm!{#14$hb-cupTUf9l-QUc5A=5VtIPfxTN_g#-KALWefRxIs{g-P#J#{`z>4 z!<4nmy3JU2q@>pF`1)x$&?Q4;HX&5>?qarxQg?_}#pq%%_Tvv-ZH;#;roiD=i8w#E z22}&4MI(ajMBl5GS^L#hwDpP=>vPKzBAoRZwe(?|o&>VJ(@sFAZyq@EVl);+hoGR? ziCxZJhS?h1u|#bC&?~OwzxtkCW9EZ<)$Kgw-g}8QRIa|fIM8V!0 z1EmMw$?s@XVOc%j^x%5ub{5xdvMp1*CzubPpldZ`kgb*Ug)Xx?UTIZn zmQtX9!^XP(HD&7+_VP9+39GHvZM$BWWw$!N_ijC_5r!8JTKH|S($~CZ6&&Sn5!Bhx zD*MSctNnR_R=Dhl&1Rf-GyUiB+UheJ_4)V4Yd7OvfB*l3 z|2=qD)4z*%HT}DIS5xEv9NzWM@ttx98?CQj&`AFt&T?AQ|0_l|vi;?E*9j@&5^)KC zTz@g&?u82ONE(NRE{gC#>K*M}-kt?{%w-Q<@9~eWjb!bTj}rFj#fJ2+(DcSzvFQU%Hb%h)mJGMW>2GJknHMcE7rLYTj$SBg?M#DTE8&B&ikLM& zhZY*UL0kWApnh=_vz>IFN(ZcmvG>Q~^+}^yM0{89J2rtSuv<{wtqbn&(oym|U~6<< zah|P7^ugn^GH8LUD_&Z90}NJ4q0g!^s(Lnry|}xG1f!Q@mVYu|_x=f`_UO&*-u7U# zZm3ZD=z*-u{s;UMmF4XC(6N}c@fj2)l)~LL@$6Eo9jwaoDy-aahR^JJ0F*>3>|@S) zX8%;cTuUYUDYtn{C2kwM^%DX1DhL0A(b&e}7L6(Wf9$2# z`D$vazM7i3HS_TYy}NhQbg#X;*IK{l7Ya$;C5u%)m=06&-|#^Lt!ZYrG07)Caf)4c zh_8$A2c^VmY}Du({Q6Kc_#yX)FZt?92PckW*PqK`b~caSE?Sejeg$}bzrse>&Y?@$ zv25j233ThSq}3%hP%XWkSsqwHMn!^_vss&#?bt%{siENdSq-XA^sv;K=dt@~8ik$+ zqez+6Y}C3&Ur8yhk;J|U~aOUnYSn0TsPN$^caC5KR@Z{W*DiaDh*M_A8KQ+XsK*D-)a0+UNp%WV@deOR%LCg*oin{Zwr8EoIK- z=lP75?P%Jzj5Ll-fpil=%N2AQD$XiVPHZU^zTL_9)e+}A&gs(nUkPY;Z$Eep?1ODj zEkN?aIQV!Vo$k+RK<%CDVNLdSdP%1~^{v+{E#zS26ekbGqtCLfZ;%Kd{V*C89MZKl4o4sFulQ$c z9FDx;0b0Mt!jB&=5b3fXE)AOmi+XS3hJIx*_IN+~ungJm+N*5(Wm~r9=q%Afu}W4p z_#=KgI~N~;1WXt*mMUw)v9rJ*Cymq+SuYad1qCl0P~C?LqYId3Q7jBh9|lI}Lt(PQ zKsrUPr0COu&+>GskNa}otl1F!_nzeEf4hy}-}lX`5d+YPvPl)_84btf%{gB zrZsapxSBeFTk$C!_;>020?E;&vtT4Y)KG#2Z0u$JZWJb(VnZFsRaASaPacBA$=d?2`-TvZ^f(E8(dW5ny&r@k-Y@=q@g20yl*8M*q{+|32=Z2J z5XF8n2Z@+qc>i`deIHcF&pc*Kqi$Dmqa?>rO<@^2j#38a(F@>RLI=(`I~zLEzcJrN zO>`eL0I!%-V@vvM{_WX;?1q;n>)vw?HI9t}vB)e`_S#PqTQl)2>q9%$KH^G!29|Hs zXz@fx>b&$Fd*^LoU(JYb8DUOU>Bx>JtHXEY$zV8r9GI_P3ic7JNb157E^=o)X{QIk z?o};JbHRFO=Zl%8;y5NZc@6t$z5!I)3Snx*Pf=lI2dk+nhs{ebv38$6R326Z)%OO1 z(aBowyZHiesWhaLr6$mS^)FF&=OB`|EX8mGUuu}P4rL!`lZTiiQ=62`oO89vsUe>m zmpzjzR&mtl_XYN5iQvLFDFzodCy^zT^TXdr;op!eM$+3p!hq>{_gkAO1V8|O;?J?SJn zHIw@lbcyY1>}4x`^J!e-P1GNp&MpbQ5^{#U?4ra>%9&}6U!@M?vNlCF<3<1-lsbjI z3H6TiedVG3v?WZ6(k6RdZHk&QgI3H^qye|IXiuX7-0~a1?97efSJp^yd9#~NH0@;) z#(&tsL1rv@;0yFBSj|>mQpGX1ZsD~L-caKHg@0`&1J~9B#Gji9>oCZKCZj(Xis~Dnx!3e5Do{UX{cVGO=t%Q5GqbxI)3A6KFBp5aYToa+CX?!~yea zQ18x3%D6k0zRX+$`o27OIlCGaF6^gEzSo$}h^^$8FrP;Kj3;;Vo0yWik%AtT;%!+D4vX`&dSSCa-ur z5;FY0^Nv1c=(*4ur)9rn0iokysF^lV|0#c}Gvd z(ac@+DmaN2hQ*R%wiw{i0c1UR6-!(r$u248bI*Hy7{ei~p|}Y$!tmDPq>KmYIP_-`Z#&hEygqLRXZdK5pD~19c)mhk z=fl)*!8Md<{mfQ9wV-cOqXn!sgo5vEM*la8LXoeKPNXSuKWoQZjB`UFTEtpO)gh|SkjhRJpkG$nTnUs>ra_yna;0-a+|8q}cDsS)=VIKk$^co6TL zN%y85V@)D=IDEGWJ+%4*3FEaPZQH1{%@n=7tm*ljR60Lm6P&#+M`GRz?0Q!Sw5`o! z+MQ#`pfHfWN9hR9xrvx!woItC-@&E@&it2;`BW(npuSmwR_^_Y8y>~b+Ov|hpiQxM zVY)QB+it?)RX6cW=QWfq6Z-S(J^13Q5k#4cL)St{%KY$vml-F4lO?k#G~x&wQJ;uc zqRPR?J&2OH>7<=KhdQrm!>qClw%y|)`y;;(i=XJR0g8hl{6`xW+!nlNqFmYT>}k*; zP2|XX*x{+U;)cn5zOQEmolp?``}A;rW)n zbPRM|mt{A<7qIvvhxpdGgLpzb73hdL+?ufuSG)Cxs_gZghnyLVC^lgOv@i0u4jh?9 z&836lJ7|{fQEa^+cur0j4_-eviENk#ls|rl`SF3YGoP^{p`YJy)R2ulI{;puD`(dX zKC+MzM)1vQDNGT#^%F#r%zIfXx5#`GTtD{&f7-`D%4ZW8@<Y4GMv4tK+CQbTw<7WP!Kj7co`ADMVsH2wbO zjt_-?h7MZMrOErTvh^BY6e84AIv-;$n*e23gDF8l4v#B+!1|~NvO^2%jl0Z-k4S`r z0^c}g=L{G(WJICl#o`)D;ZBpK;3Y5#`o?b}Bgwt|tqHO;?3Mz2mw%57&uj&?^cohi zGZBZzc+xiE;Z}ATjX) zhWpq+gVsk}HDNL=9;OV(v-833)kZiMBms9f1yhqvUl70MiSdzYP?sDC1zAdPWyoQ? zTARi@{ElPw;R(#=jx`RtJd;9K_rqfL2?rkUhr@bB7{1jS_SOZ%bIh~1 zJ--RW+Y6cVieH>#rv%OS_{7h1RD&x+Jwc^JlR_3R1<%4%99sgEKRyj7W>>+lw^P|P zTMv-&8%R4&%3*Ec2^3q|?vQI>D)^@O)B2H<;7eZzxNox%Jp?_%lbYkqX_qWK7#7N( zdOU(wmD#|bt8(tK9n|Z4dG7jmF0SJdRev7LAt@^vd-@}aKeHz+E$!c_qkW_ zceC2Z@0~sqPWc|>m#_4qLy>pciAllK@h*<9m?#Sm2MTiDk9&&|>FJFsvFavJA*-p&J>_9ZavEKjn2hr*OsJ&v8#fWZ_`W zY4%KIB{mNk4(3tLEU~XLw@Gh2JzDXOFU)sk`%He|{PrQZbbbacKI}@zH*TY+3-jnj zjSBbS+cPF_TEf=6T1aQCs%Y-D&CF-W272{zG0jxiMS6$xP$sL@@rhGkO7OCvPMIfM zUaT~TKi1@*ZQKc8F$y-@sq=f(QsMY&v3k{tV{G;^#HgMN%xO_SvfR6oT%3O5l)SGr zwq-lL(VYiBYm(TNLj^FTISrO-v4T~*@l~yeolKcWkF9pn+uJQ76B|uf z(K4G#;)}4%)RAXztmsJLNl>j-fX#+}R0`X{O1p?W>O5h=1Qphj5ki}W%d?X!(`ZCh zFTcr59U@laZ1M8KPzHO=;H2RrFLh z6pgP~bMF>Br`s!c(dNC?IBj1csvJLtUCZprcK>p;xwDftYevwhTY)t6vJP%vkxUN; zp2x}Nt=MjKlXaic<-#xOv1dTOY#N;0@`tZnYf0ZuL0m z93w>)CKK7(cj8ces~y{Q{mExX4XXQ(5Ij6FC2|)O@rb8-8aQ-3dyd?dI7K_U40zz@6Sl&!hTr+F)hTjXz4{Vb2B=SpAhptM{Ii7eAfp8-C+9UiKi}y;qPE{6bU{ zg+48R1(eKFgDA&!xLlzDAHG?OITvQ(&GDOQ&69_$L%f6@46s4-FB%|sC4`L~b)40G z$)U+M2bt3ESdyq(C^G*MM@jc4lT81mc;0g!m@F7T7g__sdy6GB%lpGkC3z0cz^09`V`*A>rXMGoVQ!xt46(3gF_HCwVXp+DIM6j zVlZ5ux=!$$34yiK6d-o&JO0R{JThw&_^D@;P|7rg+B^qDSYq~kwJagK!~*(w8FIUi3oqYkl+x5S)&T77m>`!yI{>wTgA&jGqCDNRGP zQmD2tpZvvCXsgQw9Qe(hjkoX5qI4$Wn>iQQs$ww=e0GQW8q$vGuyv9m{qBarIY5G^mLSllk}Q;evhRznn|xpIctKxkXE_8W%XZ*5ujd%DGX*_0457E}Jj?q&25Nq3lZw_ZI>Zd%>g;j! zdX5rja(f({%@_c)ZjGd~zpUXy_G$jZ-WbkR(viYt)3}1feynoKLG%vEfeh&ow*I^f zGvy05D0=1AE{fS)hha`$Y-f@Mq*$v`f144czvU1NF!N#)QZ9)MUuAHC zt`3y(NR@62-m}FidLSEf1iw7L#I`7!!@=v{u)c9Tt!@pVZDyO<7L5>~m9M#m@xv)( ztTkKt?jWz z!-n3ZCX)J$#dM;%9*rH#SZ!<}CGe_XGxL}*J~pNzR~tA#KAsIc`wSD8D3aj`D|#K^ zOKX?M;>(O4ex`ytS7NBj=NpFNpUpRL`)qS)+Al?+zXrj_d)@f;mm%dU)UrKxe(=UL zgpsWVbX|*pA755-+7VZs`mK_8DscJ2mdvPRZ{O=cfmHwEHnwjcMq3PX;kQqE3SF6i|!L(!$bbXkhYy!RhD!@qPh3_q`D0= z_WRE6JqDC<3V`Lo3mi{2)UdP|4Y+WyHi!>#SxNS$)$_^_0-{8_Ik5(_xT zWPT0->6zN>g6&xNxZ)GCvAQfi(T=uF(S~)6#c0u|2fu4+)6&roaldaA6{xG%8Ht)H zzAKw@QnO%to+jxF{GdIn<4JZ}1zDYXij~Hi;5XTu))qM8+eT?Ji5X1WT()D0t0cM= zOduvF`J+q_Axa z#jKyqN_X$2Z+-4N6$OgJzNQSiF)o3|4dO_w{T1H0I~k)6jDWWMp_JCVo6g%W#_{HQ z(EFkfwx_pXN?9ozqv^-(tsDjGwBECp-BwKP!ZNnS-k(Jz=;G$YlicY>p;j?noW1`O z2+p>)Fe-2{ag&I7>y|+L=bKz;NH~|$$AWYHC<$|N*MdV@EUZuvqw6b^I1hd`W*XEv z?ceRgT+Z(la8)0OmeNDHvIX3EcYUrysE>>oV9ze~3ju4vgZGQb7{=6|$HV6}`O=mI zl&H3#4L)61A|b-Mj7EWPlgZcY_opj&zp`QX`ao5MF)UiF2(#B$vw$KAiW*zVTBR|dNK6NF$Bp>b?|7L$tuU@W6Sul^eXH(zdGz1EBdvZKD0l>4eu^u z>E$Z^)tDim^t^-bFV>%OHwIvx^$?mpWd?3j9!kTu{BTM!lw+w89jwq^!1oHSv6vUJ z)a@0)rCf1miucZ7lKW#Us))xwQ68du-^J<1{SP9y2k|uS$Zh60dJq_h7UPtS(X75J z2rJ@TnEL*SP^QM5uEuQ_tOpOU2`(qOBPvbohkO&-WEWsqTM{>|Uow0N%I9=_YH-Py zcwCj->@=aj6tMU${7M!Ik6Io0E3&sx@y-u+^@tpd{xKaVS~Rf*m(wBcL;z`u74QS+ zL_*%C!Jt*T7-Q}mk@Hj)N;hcWeZu#U z#!;KiS5|H|A2*k@GP4ac*^8=Q~kuDxc6i>I|^Ckty3c8w5WlB)+o%L z7RL3tX$TW;7_nI!lgU=Im9@^;$KEOT#V@hRoZSmzs@kW~D8G@bTB=2&*zF+adyAFU zJrJEZcLcv-E2qpiu&>sUXj|7SL$s6a#Kt}Ijxy>diSuLYuDJ3Miu%NstWdF_p@Cej-uoHqfUzN zE{K9&n!%<3;7)5~LcP;aR`6#bGk(&;e!uW!bny?Lx$~H4(86ApJSBr={?LH=OB?XP zAI4I*8emh=IShGtpQjBcnEkMkaM;sIBsUm&r;tI=oivmedo9$31YYr;xw^2#zdxM1 zH<$*=G8$a62Q7l~(AoMNt0;^FpXee^to^J={H6@_gn#9FMYBjpsP7EV)Ph+pYMirI z9v$$rgu4s+pw-AXf;M{>xLaF6&7@?$QEUM%w|vFCr_^%+nMYaruy=fNV+0J6Ek>JZ zXL;>E?M^pDJD6VKIDG#rjisy+bY#mHv&CxTv2#Ne`!aSU1+_{$XB`R0#`aabvDOGI zPVht1-b^}eD?!bc#OD-EorlcmuwHTc{j~kY{2Pa+e!jNYLIAz@!cKc%qI$mz#mOrn=;=%Gxvm+u=BdZhp z-5tkUF3)AT%R5obQ3sw$y7P8=_c)8wMNTPwwP4YQ9Cji&m|9F_seMoy`Wxor>uft* z`Lq?Qbo_SW*Aw1Ne0vku*$Y3YF^Q@O{pvu(3~U;mBtty7wc3 zI>+v!7dAim*O42@*4%-1Pnt`50zR)Ak|gLjr|@Ajo0zzoT5*!5`~; zEct95(|Y|L^Sdm->G5g7qx=)D+8oG+T1dlwaUG~^j^@l;dK|wge&+Ujyyw3S3bY<;N(>n;mE7T0I8p(TkN7!9W6l?q(?<039Q#sxNw--pXPbD%~^ zgPJeI(d{lnu$iC$(T(ew&5q5uIa~=Ig$$(5#oGjZ=1e#qp@(00$AkBZ?QDMfBkoSY z6K+3VV!wVhvw`2qDPUm?84hgX8k?V>N$*xZcE$!MEHGmM<(c^E*L)~`mcg8!FCha# zy9Bk3j*nJHb6$$eu=z({W_I!|o4zFyPMxs;Us7gMBURw_C{wzW76CPn?ckgGI&f{; z0&#C$z}bHoe19+p7Il6=8NdCs>W3lRnGwUEi^ya-N+Yq~j}#iaPKCOAR*|~YD|`}r zpC5gHh-gB%ISif6W6M()3Xlnh>DiLd*jEiG_%PIe(56Y2hBW8d5?ZIAP0@NzY(sT5 zhI(nS{0dnNfB6ZMM~G9?=Ki!$>o(q&DdwG(F5-diCu~Hs41aTRF`d?}!b2~M@S?{# zc30~c);?3kJ2kVp{!N2WMWc{@o2k%6O-+$lx-^wnhtj<}%JoetQ3>LAL->cH8Z9bCq|QN$_P(}G76aB9DCq&I0R_v)#>XqCz< z^xIm7u(ArTO}>v!kAo?ueH|r^Ttt#W2FIkcS8;RQdOWl2A-j4#l06Na24W{p;Ck~Y zR1kZMir*!u$JC3jOmhO$)gdTm(udSqB`C$O0O$EQgVN!TY@_H7S6aRnE9QS<&&J;a zIq@8rcx(>z|9t>sMt#Od>AEoQ<5V{Hu@gJ{VgtD5aUa0uUA z*o48^X=w9sGHv!RWJ_MiLVL>)&|=de_CQ~LaM5$r!ZlS248^6|#zK zVd}F^!VgVxHc}8!o|3%7uJ_etgALkPxWO?vz4(mNfJ9fp+jTssXzyWxPyS%6^I~w- zUCeGMHK0y*E^duMcB50shL~Xks%w|>eY>YZ!rB9DWLhYj(jx&eOp4Rmcn?SV-(ly% z&a-V7G;y&o)p?a{#MFkHg57Qn5M{n&rG9eU{dXOl*XLlEplQSs8e`yD@D+^8^`)iF z+XSs@6$~({fV;7l=rCj`h;N&V54_Xa;fD?Ur?4%o?1DZ#S-6y~$ZF(VBI^#UiWorS7#mZyQ)bA|(RR@1h?;OrP zmWt)E#q8ozE9UivEra~QF-+~)TlPj<6Xw?H!Vbk<=)Pz!dpNV5 zk2_P2Bl~RxrPB-fyp6jVWQq96b|#Q_pqSrTx)1A=ZX!2TUcgtDG3hS@Ib)AUm^VC< zUDQvbymdYpVR=+Exek0HXn_w@3Sv+4x&o;BW|S2EE;*Jl(W7y7hJXM!M{X~#GjsV$_VLVpOk}MO$D>udQ7M_y<^{wC(y(49c-#vuke}2u`TY> zwBMwSQ|&ZnZ?lFNWHMkAvxokta_^ph8KBuDv63rDha_b&M3vWo>}^rKm)mqUnQ5FFmV z47x31VNOOQPQ6pfwoJH$UscUu0Rtc^i1*}UONC%*94-MxH!bizh{@razN?k6zJ4XfB~=0 zaDUv6aay->x!A?`S;GF2>_CVooK{SNPghp~zk3a{tO?`~JX*k_Cx2j3hZ~{vp&n>& zyWteDx01~lG7|PFOR{OD+otsAUc7cVmI|Zoc9TgUu^FL2;fUoBm@c*}FQxxH4x}FMWnvyF?Rw z^h-tkvjbUecr$zXav9j}L6lWahSIAt(EsB^_~UO*=IzP2w5u=o;ff9PnJr`r#;7ul zW!kuR(nZ{u@(Yuimr`hNF#D}s%v#*HZX8-gtaeSQiyzLcY3 z9&W55;spl1^kO?kNwS5lb;5i^9oFTiQjvxRys*5C!JVmG*H{Mc9;{&pV^PRo>LZNf zhmdx%49zSVPA2&s=to*4cH9=Nf0)t2Gej?53ekm^7;^Dra$M`Wh>LM$?f=BEt8T2k0n>VQW!j80FrY!OEwlV zrpAoIx}1l6>)y9a)+CGF9PSMjdYu^eAcE(Q>eEwBlHIiv!@Yw`nA`zB?ECu`YOfIk z$;1?HsP7guk-p9Br&Kt;+M)?!0Z;MmMPF#-o}snHB>1^Bh2@1+a$_GSLE5++F49_( z`08A)BS#%Jb!VYOu_DgszlVL)jR)3kQ3U$bM~BZktKPXZ1(djV(Y-y+m+Uh}WLJ20Z!1ZE2vEu}vk;nA)AY&bk(W}Q6m zW8gu{?`Ob^yj%v!89fexahHfWP86e{3ACuTv+qn|YXa46+m*~)BIm2rzZV__JG(VjljVZ2@$`=VFPj&G@8=+w*QOA*M7N$>^C+H8Z(L26 z_5nA=`8Zq}RKblmy3Gbn`iu`WZZm~XFK}4b4yRc*!F! z9fA&OVTTM9xvRk5g{t6~Dvmu_y{xe+gq7uoFuO(<_QmlB=O@|8;xwM)?9Utv`7n^A zococLtUajFV_N(4LJsoPg5)|fG&aNDkp-)o|a$=K1apdB&oL8qDi}#8^-K$eTziS(;+y0e%^W`nWvY+gx zdKF99vyzQpS<4qcw1?dhR-_WR8Dq*S;bQF`9KHEDzoX|lSGsj59T6RXy%U#0jYhnX zC8H0zA@}$t>C52roFtL-JR>$t;V8F5^C)k+*PYWJRs{PMHSl=bT<)+(Fs>iB70fi< zg*?uC?1@lIZ17Lx?U#2msReF7t%6@SpI}-yW2cUYm}Y<_8@l-(f7j2C zMLsw{?_JWsvb3F>W1)sUa1=U%-PrMP71Fq$&K_Jh!e^r*$>vfPh%9umc7X+y#K^JE zi@UiG-P`c7(I)ol%QQzfyY?ws00E@HoHqj$qxBm7PPo zU)AprWP=jdtA_KV$|w{jw3W&A0P+Br{Mv zWG$cYosr4)sN_9E>2>isq4fC0f|Byj*JTdWl00h+%EyL~tv3&9?a@qSnMT zT#^`q?i#_o|2!KyyTOM&Y&gIgR;DwT7w4FF+81I3Bl&pAV=Qd%Ev8T zk}z(*6u3V;#_q`X0b4eVTj!(z2LtVx{zgGhe4>zDbg#nQ!dN1Il8_U5zL(k5W-<5h zYLrX5!9TFR!M27cvM*0#&_jO`+nBr1N#WiB(DAbneBOv1{yqb@-!~?waWb^$-e@u{ z`NoB&|6<#BBDjb54P1r%jCy*hHi{3+ z_G0orce$nCB*E@kFMH_{!@@LT+0T*yDjW8MJ5eJ=%LHz3)6a33GWt(l_5(lIYwHC1 zYrJR;O5^HOU8)!JCA&xa*~#C_Q9NY|diODgWc4JrPJB5O&whs6uWjUnIX;Rxg-T|46U+Tc`c+`oX`?}t2=U>yI*JptEO zH85aK0o@L&!NDH{{=(}XtlYB=K80ygf9phe)>c7tJb&Of2}_#H&amK^UQquHDr@j*_Jv#8hxReY9;LH@S?pmTKW=P!q;qT`CeZ7nmU+o zN@Bb3kHK+U>nJ$;8v4JjXK!Uh_%kH|oTt9$RUY<(t=`Q{N~m-6TeAngysTl1!*U?J z-%_?V`W`&dy$`yLrm#YPj?-W_4t|?I!*f|fq0>Mc-lmyQ=t6Dg@3V+pxZDiaNVj3yjU>!Cw2_4z3*nje z4pGL$1p4hBM-QXyz%uqTTX`pz4BNb@ZKfi1@2~+2hjQ4Exf5D%$5NWU5~NgoX7hBk z1pGuBeorZ)qU|@Sa&10+Y4>A3M~&e49$9#Dpor3z?x1AHV{}RXp<|CgF=!5`f@z#D z_!~#Vvfk+wIK%~_9Y#UioW9il*dMZ9O(&U4=b^j(FfBcrj}_%ad!oQJc3OM$56550Uim^q=~!q=ud1W?0Mu1OYJ>4Z#1u0SJUA3T0ViKr!90g zIEtDxY$#h|IF&?*NW=RoJ#f>e8%2Zbt?xXgom?@N&r0RYC*`v{g70M5l^-Ro7V=xa zPr-zu8x+avDJZT24nBWGFFt*z#Yf#}Vc)(C7axJ2d?)JWg~B(}Dkz;10e#o@0Qbik zN;jTjQS+rin={8O8x4}b_8zwfCQt)^lC2LVcDrsm$#0N>+~`%XNfd{QnKodqupAd` zFa+1wEYb~KMD|@<==8`qD9WD-`*wxHicu<5t6T(!S1QnLofV+&UC5lqMhSV`vEVJ} zrd4J?fgce|F}-R#OkG!w5&asWPt7Up5c>)NZPVDZWNGNOn+Ijf8KsG@+n`q(jDhd?~jUlKJ(f1yh8LMpp{f>NW)&?&o*ph-T! zRE-1J+y2Eg*qy5luKJ3n<%;NKkQO9VXYtd|>A(Z`T>SG*$gnhvhbYMcc1TteOIbHP zJEM)82JD1I@`G9P*Uj{{(*j+6Io=!h(FISBdb}uu)0eiB&aX4HRAL0}HqOPzmZvB* zWjT#5dx)Q_hLf}UL~@W9a)+s-QaR5o@2c1$2DepxT3hZ*u@;-}N9hn|S#0Aq&IHrwQ5=C6H8ZBR&`*ZoPs4BcyhI8D2kTJ783|k?oVRt9DjvFamkr_$ z(^k3D{Dr&6@TFI|sJKl5s-7g$=k^tRqlcYffY!x-&Pk&ZyuMM+_BrJ|b!CyfU28~q{hO%Mg7>;^I0$2erU zHo9kpgIabp)K67}w-3_cZvSl9;y!>DRHWfrU2*#OdJ$~UGl$*E_qf5+&yt(?a^0enF^Pn{BAnP|2hI^JAR>}z;mceQ6=#h z6);>>PWwKrf@igPFhcMgkXLBs$IouYoI%&I((fRtn;w9g``WPZstGJ^ECBiQ2*2)o z2%NYiNRT@WBLyCnhmbovsG%NZcQt{5`~ZH?v0S(~Zvw2=U4;BxRdV_{&bhtET&O2W zaN8?H+!!lG=kc@O;_UA#&hzH^fnJk8|4OfmO;MM0wyE1hiz*GsZlfjH`@a%+IN#{^ z#j|w(+aSn+DX`?$XF-@$OVJBz=!pGNT2gw8MZMGI?;jt=Z=IG3FR!^cE6HqPd$YEK zV^lPFo~+@9-#N)-?wNBNr~H9khd!ZqgemNj9?uSS6jFgHkCSxP!-#Y%NW8zs$zJ;m z3ykl=b&&~9I|Mw=C3zDZDjP27Yac?L;AQ+D0_P`_xt()%AD^{Beoi`3p>B^73tgI(?$*Fy^X?W?P<$GQ_^7j zn>42NupSy0`@`HNm${3S3t3|4;Y!pP#!pM(@An*m88;Wvp!ILq`7>*2Zm|Q*dUuVV zbhMZpPUq2ai!@Bhyw3(cOXMG&Sqc-^7LeQBgEZiKH8(r`HtSwd02&sIRk;yCPJ%@q|>Jhui4GWG&sB>0agv+aDU}1 zR_?VPjtrFMHJ5s_RV#WSF4vrYczPKbPY7|A^mL(}p~`gmcNgt_>(BZ5>ettQm!+c6 z9-21Xmk#(m7BKXk^m0KSiNk3;q;Q|o`H`qNOq^uCYQV!vYgGc8s=^)AF1Os)T5CHVDuTRJb4TLPb3FOrYEeLXb>z|Q>y zh9M(CSFsqryeOf(5H}iso}A_m{6zTyr@7?Ysx+<4T=)(jC8g8-sq2LkUlnP~7F*Pl zZdeT)ulO>Y2OkRi|%GA5p^~lYex7FZ1Z$gR?J%IxU>G zpOuA=hZ!9eLLO1>BFi5ICfPCWs74|KtkYf^A5uL#D!E@bm_UcxaU-n;a0K2%@2 z$rQp@fYnnokhZ@AmoFTrn6+MPx+n6T3rF)We6wgwWF_U^D4|({qKTLL&D*z}z)Q2{ zVgA;qEGTv~m_Hm#o@XpXD^o_oml_4ASpeO@%kIL`uFw!JZ^R5 z%3p_ek^bko-T!Xf>OZ!}zxqV|-41^*|MS;Bb=hCnz2~1VU+h0#|LT8v|9|z$UpSuF ze;4=uUwuCR_5c3=)dK&H+iGu8(;g|U+wSh|Jmi={$(xa|2o3^=D(H- zVq?UlgqPxCiUP*2CAMnb!ubnU1TUGhc;52=XAjkZ&SHO^ql=iWyqN8ue+2dZ?F0AM zQU3Y2%0I9Cf3N?0zG6pi{k2QOKlc0|;ovT9f9?2pyZz(O{%i4nNele@{qy&?ZQ?(A z$G@B5uY6yd|LOU@I)et1al|SZos!B)p8Uba=atgN0gsvAI!$<`o5S=g4|6A_w$iCH zVzeq|7&yK=%3B$vLg$7O{IvA~7z7rJ~?2C557r2v2<$msUV>@1jSr8xm1#b!*z6(hcz+>%OE>-Tm z$lbgVmA`%Flp_}ZDRs6}Y$1;H~d5BZp)I1Wq*3G)K`q26H-Tb$~CVcLp*&vayo$nvxK*=v(JJe3rS zL19m^sJaKh!$r4Vh3#5GMlQ`-oePN&dfQ-5f0nWWzs*&X!o*%X!_F* z-n?BxALpg9me`TFx1<`ZUn)^(`+fE;$dr=G4B%YVN3_&ZqnYX>VYyR3DCU2#D>s~I z-xzU-{M5=j!DJfzy%$eJ`{1t8%H)4OfVs9U1K&{}*)~NvK?A6QTFbuF6;?G->$k~V z@2GniXRhw-H&LFp4IKn^vt;W}wDhHyAA>mUBn42F_95{Lr@>}9!OEc3opG|{yX_s1#e_EP4%%GG? zFEv}G)nl3gx0>nic~d$`q_OPn6=b$=kEH4Tpu(wv*##v=aB7*=XF1bdyd7qbcRnoB zsdXy*yf(CSu|t;W+YOV=lA@f;hAoped()FrcEG^5>`seMS<165WwwVjO;;{lR;m-| zS{7tBxD5Lwm-fbMl+|Q}m)WZLmT4m=vq5?~y4o9!89VK(z{qUkgJm1fzRrDgj- zl9|elhBA-HOI*>J=_PA~_f$U#ZZ9kJA6vHj-m@IN%OMh`oU&}8WLp##>SbA-f*t8yQtelZ?bHeOy)&X=E7dn&GMRM&^D_~jptNq z^7Lw%?QhQ-LW4@(tdYlOQ)7)I?I>}J`hvsO-D;EDk+#*MIJZ1 zTY1Fn>5mk%g9ikqsu3;4ibKAZ-hC;2=EXuOGk@t6)0dcUvSLnXXXy`R#{>LoUnm2ah`i?w!_jghl4lfBKD-SLSp6ASezs}>n# zTCO|A^wn&x8B(2VYO3_Obgf^gneobrr48w&W{QIuvlm}Knhr5_H>+z|Kn)xPlnL64 zk~LdE{*+##em)l(oNXr_Kkm|{i!PD{6>ad;$1(IK*hi9OpRi?S^H8;3FMPmFBhir# z&}d{gv16`d=h5X*{9O^9KWP@fcitf8xl|>bc*Bos?(KlJUF+zHgw0fA$vP@ly$n4G zIzxLk63B!vB2ZE5JQ~sxhk&&=eNH;iK;_%CKpl|VIh)Y@`Zvs_yPKFC&~1U8n+^~TVkSt*Egm_z%}+vLk~3mB!_Ky2TBBHqnU$(Bu-=%J(*ebweg zMjLzJZI2vLVcIaX@BKkCzgnKzeJzP9T%Jh0PH3T~ZAMJ`(0AaR;T>A)`-E1k7{=VZ zXT^W^z?Ppln(~{Chf+3gD>sr8FEGqkEIM~=7&F~+66z^F!>=$uLccIv!L-Q+f>8~c z0y#x_ZZ>x?f6Ap#bZYD~8g#6Mk$ycvP`_r9K(9kx;4Gs+Z~G_=Ta z`|W7C8-13B!B4y6f95&BMt}A>z(#-eIlxB$AD;s}u+Jv?>0pS8^m*p}bvOO-ihjH5 z_w--yzkmDbzXyx;+i1VFfArtI|6}*x{QGZDMgENy{dx5M>zj4IZ|bWL`r5zbmqa%9 zjq5*7AN8;Q|5-Tjd%uMH^Tb??%t%@K2k-wc>fCcZ%q9;dp_V<-^58ReeGY`Uz}d{jr-UB@;AO<|DcEe{r;l*6Q|&({Pe^A zy*=N*UWLp3-#-0*K>zr^)c(HS-u|cD_8;%}a{QN$_s`nj$49Y0`St0o|1~H2*SY!A z|9ad%TkjwB%dht9|C~Pg_EVqys^|W1v0we#`y}JQPXYN$`sL2MzJdL6_s=F*|Lo`c zd;QWc^~yixsGmQ5b|Cs6w_odD_090@bzl2GW51%`*{|q7#HRbtu>Z{Z+CT0u+W*$k zACK*Kp> z`HJ7c9&#SeRe1Fu!17e!;^0f`$7F7Va-t zxW8cG{(^=33l{D#Sh&An;r@b!`wJHCFIbF!!D9Ri7UN&A82^IB_!lh3zhU|9^XK-z z-{<}Mc9edp{pA1@Q0O^w~2Ke~QN${P?c{Y5(jtSL)~3e?GoHzG^?> zzaBUH=byVN|JURG^I86Je*L38)5ocPf4ToTN%lV>|DOKq<<7kO=OIV_M{fMlzVZH# z-T(Uj56*#(uliKK*p?ErcBua0GjMt%K}CMd1rN6$Ckw3X=*l5S$+|&v;els4oPpy` zVz(_%*rC&|gBK%5kYv?7Z1r>(6l>nYyV9zK!FJZ%X7T)rpLE;D7E#&;`iF}`h!Bk5O&@d56lrhZ_>iNGSP2UHCPis<$ z>sCnk_2I^f>;Aa)q8w;cUkqdPCz0l8j3uw`M%5N#)cng$USr8nv`g|8 z5IG;u3wHQm*u|g2bFxsxA&OjBq%jUeJDwpWlM2DP#a93l_!8`Y5*P;`>F#<$5@%Rs`-YHzBLB zC~A+;hK>do$@ZagaQ2EXpv^81HqU+pwN1|BQ{sv+W}gW0e4Ni|h`kMD>T{^V(@SKU z_aJ8CQCm6&Lw>xGJm1023hLU*!%abYRKY?D9@Gip8%$CM*71vpxv4tx)mli09UqM% zKkub6S<0w&G@nh?7{*`FGY7uQOk=mX$&-Ls8(y&3R@UCI27Hp*18j%g!Uh-0fs_1K zAXef+N}kk%05v^`Es}vv{U#WBGMrt`$RbsrM{vJ%HfZuK0XDKTsQdat>XEPjrCqfG zrmbVTA2%rk1*E_RJc#~ThpWBT!Ey5 zBH)fz;bt{eLElPe?ydj{v?^P)2)s0)kBg=vzE&l7N#$tNdg}?ZTfCe41zR$@Tupjs zwK#w7;$6a8=nz_SU^^O>YzeCBo5}m(0uXYsjx=_-6K<_7t@VvZ)~*+cw~P#_u)IsM zlb^#wt51XQsd0o=xPmi3-T)}cYvmy8+L6$EM<;n=7fC)gkAte(BhlBU zWoV|a1y;E@4}x+p>MQSsx7rI}^6r<=MlP5Bm@UUx`As2L7RK_OrdrYk)76+nO;&1HC;l&wBoxr5epmvkf(u-^r)TRV;!SbK<6eVxW1SSLwBnx~_5`_&3L|`!;dTL}tZdn5hKm*!9h7;w4 z5jaEl3*-hW({<^NG_hA4eK)TIw?Ez>pT%av$yS)0@mNOJE{`X%5`pl>iZ8fCD+gy3 zFJP4v_CbUD$2bq-hm*AtM(}|c4~J$B!=lMCP{AUK){Bbp+miPnORG?5cGZ|7C3m=O z{b+jsdo__)nohsAzJl*F$J5Nfb@+~1Fep*3fZvpYfJJKyIe$!mR$a~^8u{6H;AlPc zqih93E{HP&_O&wh=9Mt%?FWAD{(K@?U&wsTCh(kdKI3^J4EkKk6DTp2M0H*U_H|gz z^=1d43{6$W{v(A|&z7P@mF1)xj^XQVUQ82*=+a1+(a83-F8s78kDLyB2R6MrL!!^F zCHpUA3a_CV`Y^H!7ccd~&E1QQR=4E9dP`lfKA{IU-8_a?e^;g=yUN)oonPVFnWL#z z(lY8{G7y>cJ^-<|Zj)_h(_zw5q1<&Wqb>P|$wZqFIH>od@Jac(xKhQLeWi2|+D}-* z2{af%rrL5~#YBw9Cl1BC=fy(P{1}??S&SdXhM}FFd*FgCrd0mfayYC-jh;VPL!KAT zqAo+;!D1&(TBGQPz2btwxeFJe$Z%V*d zTXk+67I}Y{ld*0R7GHA!SJzar&;-1=10OSlLb+eV(n;YhWcm9@0UAzE}OxTPTjlYTKr=F(M zGRERDFE^seH`jvQAK#)UGc`cR3J3la8;Z+yIN26 zc!E20IR6yZaPH$4`FvRBzMniUF~cp6E8vuE^N?yuJNO^urnci_g-?WJ@lCMMp&0DbaV^5|yz?M1(+M>b(wkYGiLGaby*k3ZGI+OZWx6P*_5XM49i$rucv$yXMuPL{(nt@lA=(`c#?EXqGW zG7L={6AizOno1w%u7sPtRcMVv0|}Tnlg?Yv4h1#iX?W0foIWfFJl%HzCXr3xpv?=? zU3w0ICufLwViuN+pMQT!V2yA)}(ws{;=V0H$|i!4PQ%T^MDO=|ofVU9G1(V++OR8ViV zG2C?G3@Jq-uw?Q{vi#8=axFcRG}cT(E#}{_ym2J1GTqG%iOYdWI`hB=_y)%%WuSss zMJlikV;5-lLYL~%ROz(~eYt)h3KhQ#*4Er1)0AgGkDg*u8NG!5xPOSK?+Ag;*FWQP z%Gr2!`T|y^@gTg@ypLltVI=Wc4xmOQ#r$vb__}*6^j43hF?C}6vEt#VZd4#N?>413 zh5O%)GwSritvlq)I4f!#@DB1`Yf%>|AN;~D6f``$1PkV_1%6jM$VT2d^!`;oX|p?n z?*lz_&3-kbxmA)e9Nx~9Bm}_E>%Z}3oU=*HX93e=PN2aQmZ?gQf^yziP$+VqTueNL zw+H%jqsydF{0to?z#<=>@%KO)-YbabWEKAQw&hew!;t=P9EZjhtH4NmO0U`+L_ETILkt}flZu=%EQQ+vSVmX=QvuSD2iQzKEqkb zk>vR2H)L&hE)%lK)2jpreK8}`RL^4bc1iY!aRd}C zQi0W@F5?K@Fwk;JovcghW}gdvnF`x?WZ1f06g%jmz@FEDl}jNrmdU~Ru;WBqCV`w$ zIYLrj?1Pf$?~`OlK3+6l8yp?`8Fn7wL4B9QTeSf8#@ET?jhWL!yc3P zQBxSnm{O3Tbsss%uOjMe^Qp&)(>?7+P^pz;{2B^L|l9yEXk0oU=a_YCq~bBVN#Sb+=9*g&@>hj8kmr+5Rc z0d%E4W^#P-)AA~g{n21-Eu)5Uffe4Kt_`fVZ^uOkGuT?YINtd3Xz&tRgEvnGU`hL3 z9Jx|QjATc#GYw@yuoj_o87IPGIL15hn1_G*F+klV5H60GBUG<(wTdjoFv{7T5a(qRjB!xGwSw zjF32iW7zkkweBk3tTdK@ig&<5b~6sk4Z_l#4o;Cr4F33i3Ep^Ggfz7&L0^$A?C6xC zI6xtWogd~8mdYg>HOWlFG;%%E)srA9y`uR0mln=zr&09#WoLRZd;rqAUJu}&TSTmQ z1~hBtlXr_Uw#`KLh0l#l=skURD5f=zigwhHgWVQ1n!JH&BAPTeY&|A7gTaM? z7hq(A7YLPWBkzZvLnjq;NtQ!49`#rc<&}Fe7ukV~*@-r$@(Y19<}=^qK^~F4h?yw| zDO6}KU^d%F!k*Oy0vK?C*ndpJ6JD<4rfro*IX&YUx1D*=qRa)&TjNfO9*yCvpLeD% z=@aRcv@ytiy&ja@P(X&fc?;O#h2(X)FR|a9Lps;YKn>?VV7zDz4nDZoP{uAF&bAx{ z!oP`;u2X4fm)$6O_4NhT>F9Up*NE7QRoR@BP6;5gw8ub1-j(Ou@|BbE<_#=8sPCyv`2;-$IOmb(%L8zViaCeuRxmt^IMO{W|u}>+eRNmpFiw#CITA zDX;LY+!0W4E(c3{ZewTd*Z{isb70pnj3au6qwx*1;qs#+sI+MsR&yB%rAl=`(3tzs zp2smv=#iqMC&uEyVM|$;TZypkunUzgxsI#C(#c$yA77beP(ieZ45CSIGRzf+m72r+BD>8P;IW%PN z84|NF8=J^XL?49mw=!)Yvq{j#Y)j)qqlnM^AGLYJsthya5rwG{1TsqecM-sfE3Ms z2dXv}5_5<3M0Z~fDOfQBN#A>ihXn}bPl6h1&d!HdZI!`(b#Y>X(@^!?QIwl`-;@AXo4B@CsM(4J>oEKBTzXz2XVispc6|Q$qBt(NYZ^V4ImWnzb}P!TUIk# z>{~Qi_Z^er&<4>?DFLdMrdNCgOp0tR^cnw!nWdZrLwwT&3)Y)Zxfzc+X_ zNZ0cT=i|;j#Kd(JeAymOHmZ!JRoPQX(r_Qx(QtrNs=dXhRv56GZEnIs-SzO(LTxhW zz*WHO^%MGAmROKK5w=}3rWKKu^vU87q#%0<%pdiUI8CvGdq;^=uZx#S)wZ{UxBek? z7S*L!AAZA*sS!Xqh>LuW4@9OvJ`z>ziYmRVXuMJ(9yIqJTsy&!DR}w~aS9(W1wldd z+kOz%su(F4zYWG@KgGO&B5Wh{Kl~#Y@Nnw^yie$V zC~q5xdxZW+U~Ulbvy%apLjS|z<2v@jK{?JGr&5r1Z80nyJq};>_XS5wb8v^y|7a5W z9}+_ULs95|X!st1p{qNAk=;8y<8unI68ayPIa`VIhVd}syD(NM^gl$j;&}6(hk+m+ zclfFDDQq&jj|+$A!x)eKB(>BG>n>ga{Q~A8k^FWrC3rj|;-$^oF7!W~g#JgS(Er#c z^gmkP#G%bSkir?v+ui6ywLx6DfB<~3;mDQ zE)E&@Lk>2qiUVWM7~)+nU7V}-!o6>D6h5kO5=;>KAD4vw$55@I;9T?snA7td$h)tG z=Y{^qX+bPBuQ4E0=zpk;YzKeGe9+jRnY4eXe9#~H@oT+Le_pJ={p<5#?`rx|JLbP6 z6#tkH`}@}W{E;93YxzRv{|@>1U*m`UKO#T=!PAp}fcHmv{#&hYbDzHJ_5a5D?vwKW z$@eG)ukPc|Kh}Gc{va^_kN;38@&OK+Xn+pyx=NmVAIEDH3t`(zGvcAR5z1tZL=Sfc zK^H$u@?gUQkm72=Q5~FJ`2NxuQa$bn6UJsQ1oHY3}=-Ghf;9*1$CgQ08~p0|n$a}axRm}V(SJno493CFuuig86!C6F&F;-^PMkg@fz`E{MOq;M$a8Zk=H z%QF<5yS_)D+Dchb$(8)N1UWhhCekX+W5C?M2Kj$nh{R7BqH_<`Xv8piazV5hhCyl4 zuA2nMUb2I0t)4;s<+gNo4uC0L2RJ^!49qp#OQK6IX-<@gto2;t|k0a1etRUgWx853U_@AKbkoLLx{5%gu>06d64l zcDj8B?>?vF%&QR`qregz*t3>Jfm1=NRtUK}LX}oJ+=XB1AyC^pjcj{92!>inkq}2Q z^4KPtFknYVz!(EIb)YI3Li{hZnn6f!F&w4cyKUAXE3wf|1;VC zq6>lHAAoCU5GtErhVP3_rM{<)3A@0Zl&x@sU0d|P9FMcue%c0LH^vUX`*9S%9sC|A zdxyZtby7qsGKh_=oX%c8DG5{Z6`<4mP+Y6^35o|flZ~GSV6FV~;JCsoA`r$fq_sE0 zt)j<)Yz9ki9aV(#{*grg+7*%#vYUio(SqNv8-Y-5RRFdeH427L4evE75#E5k`0>mR zkpD3r3|?=+8Gxink2}Lo&(<;ktc)J$a3ePwWuNtu+dSGNdL1Q z&DuB&%KOfst>U^=aQ-nF9TE?p%~gQa=hDcR!xcd7ayWsS6&MxoBk5J$aOFecwI3q^ z66M3eI>}J*Jx`Cg&N0ISmjdKwvzM4{DFyxs$#CGPbkco2g=p$IYhQy}%BThQB1C7u;!g}nTj2qY2z}uYywBorTnr$_Mxi*bKhTXb+Ymp_uYn2Ei zVW|dn!4R}H_y|yH9wgXudI1SOlEfR|#4-yf=^%3(9?qO8flSy;+csjUZ8*u0pw~My!Ok8*Y$)MAFP{iM8B5c>B#b zsyfC74$G4TJ@a-F^<@M3J4I^fKF=urUgI*Lv+W==Zb3YJQn`e$`yP=%J%4`QJ6BR0 zXUCnNJqX9I$^^5Q$_iTdCc*@fp?ud>I!gXg9%hkc|=ZCNJ2m9GrU}@rEHaCI61sW$di^FP?SB1zEeL9 zMcfo8KOHiSToH?a9rprZ_AYbno4R7>b!)qo|AwSbl30}*&^3!a`kg(cNyfJ+Nc zgM!aZMjOKJ;be_oEMYtntm8D|qVcgnLRvgjjRmpcn3zU(Ce6$7$&{#jUd z_YxMnIS)EN34v>04}x03f zsF{?N-lb`uUJ~`WYxt8L&XCD#wlgoX0bJRn#DC^(MJ^V7IK(F6t@JtW+}4b38cji)^k7;xC<@LS5e;s=i6h@$ z4}lMg1@Mq>8i_PNYdG~v7$|Bzh|T@i0Be`$(B8X~Q}6K=KQ253zZA!SVHX8P2TBf; zWl7t~>JtJG`8Hcv2QW=oAM%yscghV*hWNnuU$jw*h%)WivJI!l4u==d3?NzA)8VGaDp7%-+sTReF*_KW`Jfp~)qt`*5;}~jYa2U$vtq1XIF5@LS`(SJn3mYn@ zlG)p~;1bpwzKJ`ApNEOSmj)OXbWVV|t8e0ZVRY+7)d`Na+9=NRq00Dn^g3`tX96fP zio*M=HQCEbBRQEi-*NE}G30T2J*qi>fectKPwEt|!A;j9uy5XGn7FwM6rZ{PcNH5E zy~i=I`;0s%*yU)!t)tyC z@2mp$W%=Lcl-PW@1nVA-p(U|b zv1UOOm_J?*$p_1#M*nNXKo%n9tSQv!v@^EqEP(3MESP;yyAk1CVa)iIM0-Lzf33qf zD(8JtSktr@uIj$e$lW;$H$}t?;!fWn6Jr@*&*aR8Ubu0BAK=P!$(ZFlaOH|R`EbaJe7HZK7z~g@CTCBR8QQV9qVq?= zjt|+;TbT2edo+M#*9IUv?ps33qOnNk8aR1}EIGAg9l4nI18mKh4yJ58jLok^gYvBd zNb2j`BxObnu5(EPWj&MeJ#}N8$@OA4rnZ3eg%#Lm{4KUX`0}^*)Ie6^^%>s$tVf_J zESMY`@Q~=52gB-n1t8dW5NUR<0kWs<$@nT^re{1L%}!dd_E`@0+9bx_(TrfDX8Zub zH@QTl{5HO}^(3^b#kh9FTh_zw5KJ@nLR-}IQA0*Ex~QIqzeV-Z?%jn%siqTgO61{A z)7R*_!Ex|er-I*hVH~;YDF%)ktzcB|8lX*E7?e_Xif%E8gXZ~eMjAC?RK0>B>WMs@ zK0pI*I)5D4CR*U@?ZLn;wh5aZ*C5<%h({g_gcr^3@E(fJ!d^X^#Amw#Y;bC1s|3NE z9>v#i#m)~nazh};i(#&V6E8@YCP(Ssx8*ueep zLZ}uv_h224X)gvIc4fHk?HF=>@-d*GB?X(-gb@Gpj(F^gO3p&NY$#fs1{F@!3C}?f z-a31o6t||b4%IwRHEb!Gtigw)FN-oCu3_@Y(18DGOC71Y`vLKuUk5sGhcUhuAAvt} zo-aEyjJS1Ku_fb{Fn&B4y7|Fka}uLw+t*x^9OX+&^Q#9#Lqs;C`Xa zgcMf(?0HU8W(BLa$Q<8U7QwsbFa?g7ZAyCXjm0Myw{SvMC_?y13I2Gkhux*q;e^K9 zc=|DUoS?K4IG@l)Go2Dqf`KjNUps+I_;ql$_d(KpBOiuOj6(d&w_y6ZVsfV7A#9X= z27+xP4b7hPl2DmKqAn5$6a7En_5(>!>5LIr#V#Z9Hx8njToq=X`!#yVI*P=9n1)8N zg+wgWP*|6#j>J!Rp=6E@ZJViT`q%p5TD-Ob9$IxQ&j}(cC0y!Nay@@-1(Q05&MmK%FiwO9!Hg=Uu>B zFHc~peh@JS@ABO+qE83R;DwqXrXX#aV+(rs__cMUb6ryL}`&xu1BCj z{b~5MXWt{ZJdmNQuE^vE1fh`w3hL03mf}MVlT!vaWJZ%=6t0M}N2Xo<= zgwwb#8Q}O$qe-282Me@v*@5HDIcvpa$upCKFn66B7JPrj(LWXs?gY=~R4t6c8BHN% z?VFq6!`^q;dbT%q_0D9)zMX>$^J|56lNq5eju5wnU&&VQ7pz=GESqyT6~z=gp?C7t z=*Y=PdbAes9T)8;UMEGEfI<$~Z@-rbb{2tki*E3xrg;-y#Tb}7Z4V=M)0JlQ=rFx0 z-^kj%jp&oRAIa=GM7W!l@aAZI!#3Rpke~Sw8-I}Fs2D9|tMGJ=rK>8(((E=qpRNg? zgu4?-sZ%_;jjQpt^_PKD{aiQ%yuqbnv!MH>Lu8(IE8Zefgq!A%MSejs=$3;X6?2Ti zQ$E*0HSZ`=wdxei7;1&qdR~Q_zh#oS4p~sHSO=_5m0;y<%ZZm?EZH6629cd8xp&DP z8lW1^GP|+FeP=Wpr7@h5K75+`304xt;%O+dF_}bN9*^d!y@97QS0Jm+!)Zyy5|ldh z09Yn8Bqj>D)M4RZ`bb*^MZh%54KYU#nzw?OncvBd5r_HwMi0J+q@ut{t%vhAUY)y2 zR}Pgee8E3)Go2LWD+&w(2GHj_>$t<0t%J)~n8G{nj|gD?4DZcf-O8W4WBwzjB zO|V?zCVIPgF^a#r5FM49MMrcr;*6*gm_QYYw@Eq--?tjBPIw0IgnQGBi5PYpj|CyK z=HU8@8WMPZAIbKc4~HaUI(nNqGPtJ&BusNjWyEJVuVgkVT~keZh9qHgJ3idrF^5cP zaDyKkx}cbO2CN@8pDYg$huZ^1aI~~8>sF~sChb3swZufAK=TIPty9a%3b|SsdjB<+ z9_oTLr#B+TeIAXrm_;UBR7I&XXON6RHE?srUKp{FLFQaSZjF*e4Gj_)r5(XlMIj_g zq!tIPE`~ey1=E-NCP2RxmpR-0i-~)fF5j|p6kmUSCBJQC2TAWPV$hgJ@ZLLLe(EcR zZ2NJ5|M^84Y4Q!`iY=BPMsFuTxAC(CO3NS&NtNX9>ddD}F2eYTRUbxD^wakbx_#Bpr zY6RTJ>#5?rR_HBZ$BH%!V<5^Ls(ttjB`0mr8}&WFr%8lnl;pxC6=%qebbTtXE=t38 zU4w}qACu)hB6w3`BqwXyQy7$21CNv)AfCgHS|4cmDmM%MQak>X7-5O|Gba7T{J{3HQ_W5oyC(LX+!UB7j!#oAu>5)PG?r- zpxl-~TE8$BUw+;JQ{-7@_|*N(0ZYhr-Eoi{m~1I{!kJCQf(CF0nn%IWyQgx)pXsAE zy>5ZT_z-e*)(T|@&FUC$V-(q}UDrZPv(XOI%j%hamGpUzPUqPYP+NI&lZ zu^d*fwaX74{pf%yTmqq_=vH#zhp-lN zTLN$+eukr#A0z20KBQZ8G`u#Z8b2@BgkI;xz=)+5q)vVz>M(eO#>z+1#ubjF;({V_ z4G1H)t>kqakR%Ofxw-e-auoAOXCcoq>mYj-oMv?}<)f3!K=!m)1q7p~bxk zK&C^MR()H{chObgZ!mttU-e1^=ClpqM($XE_URS!rwQ%jUAhnXy;)}ob0Uw6XBWc` zk$b?W!bhOjqKmvD*77yJj->kG_4Ki^BwQ&!h8eO+9UXl)2E`2;K`#bY;ep(}@YJJj zynBud4AS<7?zi?rE~8C%C?&wd1xtW|_9%QMIg=#u1BmXcVKDVw3a$4WicWos0cMRQ z#3AVs35cFYOWGum&7!Gb)~9$vMYWnw;j9HOiH*J&;wz1(p;aTX`l51JYPO7V zT&TlrlzGbhFtQ{j?-AmXk?QjUGAw!8^x6o8J7aMnL%W`-&ru}!V=9$utcZRB-BSpT265zgK-g4FcxMQ7UNsHD_PY^oXpzpt8(j1A(E zq>momFW!b%c1fX4dAmtU({0$~X^svH2B3?B(#S>e9$>DP27+7phVe&sk?Ob_>^0UN zI!8|?!yk&l&8_b_tB!b*wDRV9l)l#M42alUAGQUIwfn1Y&9ieb5ACTf~1 zOJ(flpt8|}Vc7Cx*!E)$>6FzZXK#!^A7!r77{xDe>YYqbm#;~)5|8s2rTOq{_sR)8 zH#ktKTf@25A2PA@th@Zf<*{T}leFONP~m+S@2_*qV`8A(=QeQpUb5hhX^!x|xIKKw zPu29Y?PjXmn*l_(H>1Ieb|W<%4QE^X?uAaf*M!TY7-NXjujd|}}U-$@NdsqV{Y zce|$WEy)#Nx2Y9y2~Hty?m3ux>cR=L3aP_@C5U@-8Tg_7o;-iFAE)R-kF?KF>)U9A=X=RG1R8?}Jk>l)qywXeJ~6(zXcW;A;%stY&29|6)onvlv} zn#|5gkHL<-k@)FyVBl7&j5<6E zzgTu;-FZJiN(ws&0XX^QY3vEJJ}>;0IE4*^e`~JDKP%xlF@3xD)ihtT&SZ?qMQC{z`BlgtIDEctY2x%R915^xHGGns}jw!!GTI7{rYZfIIq7q;=ypJ0c z#i-WhBv24HoSO7(1b3uscrBA+SioBf@nIRGop2)gA^nsi*SwFohR$*?gYjL*iSj%`Bz8K$+0#6!&A3ybKGYlFBh#_2)DE~p+6z>C z;$o-8P3)e*f4cQ_TF|h93|%BGIKE{N zdQ%=qpK_K7ER?P3y+jQ#<^f9-TS}HFYA24c6|T!*zLyC0Tp<9VGcL04V$T4b!8~YDv<&ONI|whA zPiLKKLwMC`OF2r*zTg4P4(yxu6krjT#+x8(4}Uxt+A44ow%&JxGayw2$FXrxV?sCQ zj=erSpn3zF{8$SuwKAcWnFbNps)fzgdPeQr?Xji*V9+FtL1cX#gV)s!g0+t#IJvcL zaK2L@%{6btrq`5VvyL1oIV?x_l}$%gRa2PZcLt$qs}ay?nlTgD5k}NEsiHDdA4d1P zC7OB45EttXg4G{3pqLk7{CxRgg0vZlX#VLLwB)id7bVOej!Qa9j!O+kdh2%6Yx?^5 z>5&GyVW1e=tsD-YD}Er>HWy&$`^&7#v4O)NSOtbsW&{+px~HqYOA+f(7rF0p*i=++gyUsH~O;Hmp1> z2*}`^o&SWdH!hF=Eh|)5%UvV%b)@(oS60!O^3_y(;{>!eFOU3qR?eHBag3h6Rg6KN z2{>>y5LADE0iR_hV|j~sA~Ev_GLSpZb04J&liiI#O2H6tHoyp7eG!6zh5(01yuq8l z6oc7E62ZXrEDk6B@Q14kyV=nf>uvO84|oT%3z|m3IZI1fN!JA&ziG#eZml)O4c-#K zCRz>5%hJNiW({opf}7M?ei42eaElYO+y%DSd;lr6YoXGlQE1UEXV&df2tLhGAo&lE z8a6JDg)vLQ*u)ccJnwy3hVE;oV%OovINq-ysTdSm_-X2DoVOvI&P*Rb+&5$b|3f3F z&xR;4&gTHbHJ3thr&ZAB0oSntbZ2}wy(dW?%fXk&ZpzUvpA$hIA^S;f`);hbW*cn}orzZ-3^@qDhmc81Lh@mnmiKcm9*e+%`mof&mN+? z{wPp4{DiIBvczcB?+%^p^>o z#9Tj;`mhqkzH$bED~0!dXS!l$S|Je}gZR^#qvW=K4o9wMC)v0CI5De}hAG=6XzjMo z9J}uvkR0=nU7l|QHw8xlE2l!d`W2*7zZ%;u7LfJ zISEc!lF12fcxkxaZ6{tNth<%*5+GTNH{eFk2-4l^3Ku%Z!od73{C8_K`D#Z(XmFK_ zQBvwwKCm8-tSuTzcETNgoRKMAr@tA@*q%vFpOE3_bJ7|A?GoIta*A}ysDo(Q@ndK= z*^L&BY=`pp+VoM_G?Y-Y8CZ?HA@q~O$%`Gc$uWfk@T_7dQC&G6c)3_Wx37*=>HHA* zJ+m6TyR{de+GD|vDmSEK2Y!K@vUI^te*Ghy5iDNo3qk^wNUrJx z+Ri=%#`l`YrYDNP{6j(E7FTK9>AnP}rWG5llNw2s$X?$1tm_0dB%xEI9YNBQNF4f# z3zCc8k-@BZD-d;gx}exKp~`-;BBH+({&G!4T51U4s~W)S`)2 z9RgpsYR352YEZxC45K^p2vOU4j0s3T%`BHXD3}A?!K`3Iu2JPW2p%&IpMM#L?~h7E zN}mm&QOIg+Q=1B}Tgid`vg!QqDg!$Dl{ZN|J_f+Ui}`mu1L2)`Jwojs^1kPzNsT2h zTJu4ZcvYv+4_XN>Nr|DBpS8pE24=}(zJ8$1=z3d3^q*NgCbtX zRoIYYSYd=Suo*6i14^}$_&U9zd$}uhdZ`SqRZU~8O$)i`JMo;sQ58A`YQrs$-ZH*B zzu5#@IC6&`zl46uN3bD(3GCn_as3Yqh^uXp{KX!8(^DIDOx3{cQ4cHf*9`{ibfbv; zoTJ>S8z%7i%w(=~U>h_`eN8*hoW$V+_5t6{Ucqaii(1Z320ou1;E?WkVlulQ76pz$ z@ncVt0SCNMV%Z>k)8ip-esT&ZIHnO{f)df&y%kD@n^y>wcA%V~Z#49wH`&UICEn-} z)JQptnqL{sroO(!uDX044Zl_jk!>C8fy}9b%V{+6(*R-D?hB};^*RpCI}RV@4Q03c zs)Hjbu%ipQk|ug|zZj5jh`VO6ziR(cY7T_`K-Fnv6E)i^>v=eGp=+UI<^?2!AEBKDvNJYWNNtuZm zJN{}s+M?JE;Yb&d`PG~S8tugFYX$5YQN?bIlS6W@lenO{i7?3SBvx9L$Zs)}7iUCI zM0zdT$lJT)Y3mj-HJ$N^_&&c3zkjr+1HJsoJSoZfmIVK7)VCb6Mp;DYoD9tacHsf8 zapdqr1Ekxxju=#o!+TSVVA|`ejQbfWM5Pi*#2Zu*Iy@C#qw(C*XVc+`-2vR3gR5|a zl`{TOaR8{)S3z4*4Awgl4TmL$bB*2_BEv<6jLOY8-}qsmV9Zah>*XGpKk2AoSn+VuaK?SH;7>PsmbKv**|7tebrZb4n+-;67Gz!^Ki^Gub zfiK{o`WsXwkYGxL6VOxrA?z`38%niI!|Ly);O2xQXnde6uUzqhUtp1kwg>6bXVWW5 z#N{a>?-}p$veTcTO=1W=X!sMmXr7^Y6BLj^WGr+)-A_(jKLj<0S8$SZ5G#0=Hcc5uoz`O9cD5e|AG;!&T>xlVzXoiQJ4XC`n!vW_VPrr? z0(~^Y3T~I)EQxE|0$$496!kxJ!phg~z`lSwMyV}^RPWXX;vxEU;6X1|Yp5(-@a!%Y z$>-tQSA(ffx;pv%o}oo;_u}_N1P0typjA0}s3f}+$=K%cu|G7#nR%-G)hromw#Z66b7my+ zsrp4{bZ-+!%La(xF-4IX1Mrl6vcT(vKgHqj%5CsnX*Y;D+4*v?zZhuZeEMn+Z0kD=&>S z#`JQ_;-z{0I4Sl~xi&=M`Lt%jI()0!Q{ppP!E6LCIhkd1uwSD*oc*~0=8ryv53GrW z3lwVw(Szo3>BXm+8QUM?_z)dDwrvhLE7?;{o4*`7DoFfITSsxOAHo=4$A|dYs#y5I zT$<=CRVGn8HV}nfnb2+Pd#LbNW%|t76sr5?62}*tfsyP)qH66&TOxMjfo7Y{IpJY9+Gj$xpA#~X6wp#xi%rvN{c=3)MgHl}@(s4!RJdseid$#L7^ z(4X?O-bkNX>6F56;v|~Wy%tQ4ssrc=#V>!CN$kB*Fm10gv6spd)lQD09fdY*t<^E8 zaOwg%TWE=#7MG##c@eyDNhfc(rkpO>aE@3oI^u8hjFHsrOO*C56F3(`4 z-H@sVtVdd<`|0+f7eT@6PI$9Jk+=L6E;(P9LZdug$RI3*SO2_2(nqh zpmQAVUbBxFJ8MEFm6DtVBEi!YQ8;~QD)}_#I&mJD_!yoE-QLHEfK78wW{~H9L~Q zr_Iu6uR0hhw6te0Cn{sS044&l$3FX1^fk+T%#b0S;dG zVyMUP<-nE~!PsXNwCXwm!i>f6r1~S=c=!(Y=|wCJeLfl~+&B-k78VoT!&>-ungBg} zIEU0norh^=6<8rB7LLNZQF-YI61O7|)ke?6C2POi7$2DkQnOE!op%E9g!yyfiNtZZ z>WLP*dSMB_BFBno#S{Yl`BU)K-)oR{jELE;H6BHtJw>*iWl-;;8K||nlPKw)K)A^c zCoJm4w`cZ(+^r4d_?8VssYDa{ntc%&!&3CB&5OTtrH)j^J%ECyDc54j6vktYjrmw`} zz$jMf+BQ;S2&h50H&hV)Vyu6DLA7PyX~}$Bvhzzea{sP@M;!h@g!f;7zFjF~#2z^kCDd9C*yxfG<|J@Dd zD#qfl)h}_zSwp&UoHFTiGopEWU7_r)Yh;h6I^AYn05bz4X+wrRz~T-dCAS0n>^TKz zIVr&)jag*LjX-?!`3^d8j6Qp$HXB}gd4f#2WQ=t4Vv+DyEPv;A1Mkqp(}>rL$UQ+H zpR>>f*~MV0xW!RCp`e4f(BcEXv?9Zg{U{_N0hyTu zqv&mC=o=Fi_E#i?kHAjWP-hc;d`g8Lm0yqgr6Z}IKL#>pwJ_7;DQ#fmVSj5a>~5b- z+G^XlB}1!e4KKX1Mh?x_v7@&H zCmAsmM~6MGkZ*m;Z0gxao|~#sN?{FP_~nuH$;xg_m`mT@X^BI zs}s<4&v0y1a{#KIkz)fDjl`L?h2lmW)z#b>e$d~sjG~eHjd~-WW)rLF6 zlNm{pGlLam%5`Jt=(3sSk8}c3t}mIRiV=8K<{sD&WT8RyPp0qq01`3i2AO3wna$sM z1YXLEB?;@2ky5cI>K;V+q1O-b3dax9nKo<5BWXP`bumIyK2N3fp}WO*GG(YksTU|| zdP(e>mH3_#FX2g>a^W1kLaJ}ogbsMxuwsXE=y=^3)DT}oGvnW($+MK@ZVwb`=w+=hzXMVC5tyt)r3!sRnTae6?oBc234oH;P~2SA}5_fW{Vq3hDgqB zkIpFoAu6u8U&7Dyvt$uJSHn5sC9vV4 zE15HLAF7ecH^wASX4IJZQEfY5{w&ujW;W-ENHreVfE@{ZvQVWd)FKtb)yp zqUhnCpJ-~~S$3kWEGpl-ALdq#5iYqlj>x}CM%NE)6v}o^L}8ytV$~Pc&^1<6 zK6Agkh@0wC&Io=u;|C|BNsp-|@JpRVx=f>(spDfs8d?k&@cJRh%Z(KETs(-E?(G)L z8?Hh6J_wPUk@`zAaGWP!Fyl2zbbZS_xH+CUg}BqDR!;0y@8_&;&;oi_ zY5=NxH5m1l3_$OlqTs75kBCo>9lAaJCpbK|7-`HoMvT;F5&4!ZxRV|vKJ*GxccUKo zFBnX_RN6t0xg_@D+(A5KyF53;qK(W*Y=^#)RZOr+K54za9pJh?GP5%d_*~dWntZo| zDjSstRre02`ya-`58q^HY3>-R-E#znh3urh;1$Svb{L$zcp7i( zN`P|DEg`IqBZfxNc+S~iI*T99>iL(zd#Txy_+nS+wE74#vWS8&JZ|tA?O77;q8g$e z^^Fhm=!W0dmeWm}hl{1=oS}Eij{uk%Lk=cu^3Co@sHR#WoUv{sKS}x)%H17>WOUr9 z-=K|Xwtod3bxDiu+ENQriX+&th){Zb4xY^V2!Jpix0+hEGuoAmfCC#Yzm zh#W5o$u6tC%-&-q^u)q5sAilJR5bLW1NtptiRvN7G1ivkJ>H6PI!1xpJ4O)yeV54a z%C+FW>27#?eKZ~^8Vo)@?ByP6mYG`@shR3&H=&h zatCeRViJ<;B=zBFQ@NKmdB zNMAQ^g^@=M=-8bCx-qx{PQ6${UGMG$n(p_3H7>!53MXOx>ACRvsBRqS(8&G%noW;B zn#*ntyb5XCCE~a>0s7p(hU`zz;RP>c#CM-s(iW>;GT%wU2z!~r*-u|msbx`OyLp7J zNq)mLEESPCoGCv?Ct5gv)oWq0sTVKZ(1jM5n6mw05#T+~qoO!zUd!K+U6CvYue?9a zrkyLJ_g)HVQ*r_-T3JdrW76$xGe?J(1!U$=8noUkr7-074SNit$3zYT~ zz?LWRv_=2CVAF9sG~@hK(!RO|zQ1w`k7|#A8x@j}dYdtEnzkE_lG=wO7Rd^B{sa=9 z&ATMy^D}OKL;`FcEWq1ZjM32aaK53%f;^GG56;a`2CbKNBJDT#fYR{UNWAkjnO#2~ zfo;o?W70=*j6IJYl||t#XNHsKQ6ItJ?O#Z1o)4KeHVO7jxWNR-SE4Q3*Ya!3?vWom z6_C&U5PC`b9i8#8ge}-TT)0N{0~(_*hcr4JgxE4k8Sv~cA!WGFcQS;}UIBw1` z#zSv^{&6-g~ox@eww-=W2!s+`-S3TBlmz>FME(ZODhDh7lh;|91IW41!kX3w!r)aoQ zm-SkFYuj4ZVCEb|??k~(BQj9u$`hnw!Blkfa3l?%7LIJf*5Y}-`jU0)3@X1S!*4ol zAhr#^gBFx5q=qK;sMli!vM=2ZHo2aHGH+App}{ryhI1XY_%;N+8y*hl==>zqcrRR1 zWy4ulRO1O_jo>wDKt>L1A@AK~pv8#GTwG-tymH%_N}&Xsi{V3%yQ~Z|P00Z*DGVbK zhZWI;tVBGiXE(f&8I2TjWr@Q1XjHxT5SAQ%2{bnh1@5s`WJK6h9F@Nwmg`K%39ogL z{Plgj;=<|V*Zm6MxTy;GFcGNF<`BpcA4IdW@`zx!6~a9p692<3@@ms%BnU~yok72F z!Pt91m1!k|?`$T)+4G<{XD#@(^#lrb+r=L=`9iYJyoHx#9jL(a1--fB2_-1)f2IS?km_!=d;69GsGZd&>73X05&Ci7;pRC zg|F}FC3QLvXzFM!*7vzDUvk=ksKhq&>1WTO$=m0nGs#D3=CdZGt)M`T1e(y*t8CeW z=L?DGgB4Y~842xk^uR4Y4K^=KmY;WQCAoV%6H)dwvr+ys9AGej_}iz$4VJ@k<>)S; zKUe`>S5C!^1%r{FtO1rauN3Ul%U~3g7Ls9mqqv>H1L4TuUEJ@fhvCu3x_tewYgjPG z8O)`%;K?UBRFMB1l*O2!hHr+%OQQs~S~SCwt&2#_xVcE}%n;nDn}~1cdjc7itz_+_ zFZi}vHEx)u6e^aq1TMb4LfO z(QutK9N&!^Ol^d|w_TBV#851HlM8jp2jszw6eq7p5sUY|KqcFb((dxtbmY{T^vBQj z)XhrbyWHMMo!6?73Ii|R)o?s&RecW6O*W!exJ4)=Wj`(&hl%=}>qtRjx8>g}BDWir zq2JdYX5!I2G$SE~BDMkNYU-he{3ncV(Hi`^>8@z`xXqy2o{C)TDmhKltGH)Sl3-J{ zC*Ibvi|MVl6BH?(sK~jn0(kObk=fX799U>5I6A%+f7~z}wvP}nAueg0m18#WTVH~M z#vTRsNC%$Ty;%@$T8za*i}9hGpPBWe6S1R)0Z_kG$kZLZBZ~X%49s5SGqHtP+&;C< zpyR3^kt(dl`YQ&2E(u1l$y68W4fBL8z1wiZK0T^GO9m_%Hx~n^R#N*-2`pK?hUAoU zq(LzSEPXVZyB&HJ3+F~KN?ylcUbzyR)iGRhzPg+IFrE!Ax+s%tIjh0@Vjc3>CK6u# zbqP!|t%rwFjLGn@g}7jUFOxHO0?sLlXVgw?7xgSKCAscTnCF{50mCub+|5%1nUrct z9P39Re3&~5FUX!p?vGpwd{YiV7`Bkua~?=`YL(zflQI+0qykk=o)P#gQ9v&l7o2|C zLj)3!S(`3Cj6XWh=A?p@nJ$OL*f)JYNZufMhIK;Hk}l1BoA3;rxOfGor0oH8Y$poZ zuM5s*N&(-AfmorXR^XTrh+52yxscgSTzUINfn9VpK5x^88?)vUV>k+y>>dPv-7w%^ zjJiu+8VJEynXB+NOd&4!*RVx9oY^}%PqFpySIn_l>cT^nO-$C-w-UQ%hp_ct2I>1e zk*Scxk{>+y1wC|g7tcPtO?Ogr7J`SS(a$*cNv6dgQ{#LoG&!frNvF~FAp zvSdAs8NCSlf0rk+4e{u1Tni3-G=vWL*@tSTU*ou&rlh7&5d?hK1SXMU)U`-JcLy3s z@Em1K`@CR5L4g`w^;7=n~%EM93cC_QdJkXsbC(0A3i$E?FcR0JIsO3Yb?Oe4~WRz71^*MXBf@) zx1*iXmta^#JT`%97q_ zj6>(f#nSlG7$nKm!g@*kmBY47IQ{e>MD_-fLrdzpuAx_G*NJ8nJXsD_O;4bqrGs$f zHCcK;dpa!J^qb7?5`ep6Rnj0id%E6G4!kYwXuRwi@NV*U(fTuD&a8eX+EouhD zr^o?BbXJo$wSH`=-Dvnxb2A0I`Xq|VJG*><*>2sstE^>gX z-I@-x0!{*cL?kw9Jpg}S(uW?2auTlR5%@sa9IDVUi9K&r4?PziAsc=uBG<5e$nsno zf4lz*|Mv81`u#*YIh8$H{ITW}3^`jujehMGM@f7xQ;ZnU{G5>I8T$OC3qitro)?5O ze<|^@Q(6!(uwXB0c_9Cv9BTggg#Nrej5RQA1GH&Bo29v$Qlw06$In3XU9+iT#S5^G z8-N7q8oX+=2P|EC9U5p_k|jHbW1{qgjxs!r%4e8D(>|6~^(=+4ZIeh|@>DYYT_G}@ zyamK(A0f1DHjNMtgr+wPq4&3Rd}x=Ygu{0n_B4uySzA6bZP6ucmGU`1*bP-F9KT0hyJo_z5Nmgq{McW2{qlCp#!v+FhP zlpv0`=~)8Z9iK^>|1s!Nd6q`U^wIF~kI9#FRTAt}39JmhjDDkP_P)zXe$RtL^hulq z!#?jWJCAt?jiU1;B-96m3*KeYlgrP6(5n-O0zN{lTa3grZzQw6FShXFG1Exd9S2@j zV#^IuY^4gK@9_14HK@f%7S)J1gAtocsqpy)QcsLg@uJme#W6MV^Ug@R>3bzAZgPQ_ zLPOE>MkmseG8s6_`=IyRAc}jCPoBt~q5&&ifSHdXIkj{PZkegd^?Qy3lhzhu+mI5H zXfq4A_)22OAF41d$&G^dk^49W^*RvOc%G5kn`ZN%;|SOI&5X29@gQG=o7!QMIHy4r+R-MTtL&3=hHn?oE8uWVD2h6|T zCOW-CB)q7N#Cge8*n;PAX>v`tD(DpH%=`q45M=us1pN29`BdIQi=+(NO@8f|E@2u| zq+2Gmq5;>|(YFeIVEv-Kc)UO-z7Ju-k{xXwL%9p)VBRo~Y8KFdOycuQ+n8)=Y=z?`*q1J00E62KB%G{`AUZ}7YFGL|q2YdP5#Gy; zQV1c}VpNdYpiJ<)qC{d}n1Dr*Rv>licx=|DMpAOO+g!5Q#=I&k1_l~&T*JB~F1%hS z;4d38PwnGHIV0lm%xW`caC!=`Netrpqf5ZDz-xqP^$FqzB`}}dKY@`?c7r8yhA>2u zyX0v=1f!)bi4F6X79B61gj>H`;nI&;oY{~GoarzslD!s<&kVW3j7dF?Ck*PrLGLZ# zm1<>@aqb!Opt=$;8Xt*P{y4JT#)5ry^%W@iVS%3;xPz3o190SYZE_}H3>3!zlv2M7 z)_hQw#IcToYD^2WX81N#Go_VVYBK=M)33%=%`eD@%m~^NJf0C=d=KJpc;GqbBr#6+ z0 zrx?hc62kmYJ<_&Ja)XkQ+>zzHK~$S0POTEE zCTY+DFOHt)@>u8lQo^>LU?eXqf_p+H3DtJ$&|wbu(VzwUg)8(k(HLD@T#(TRZzL>Z zD>e6skL`Xhmd%rJ0Ou+2mU|GdqPvxbKd7hsLuA?hv6J{!(x33F)fN1SkB5-uE(W=i zXxb@Xg=V~vCLKEs=xn>O?8A;c;xSE=&KHEh@<21tIbEL3KJ}0qzZa0!zRl={B#yGg z*&aoHT!U*0e=_@j9>MLoJk<6Tq0~`hNW$>lDF1{iPP&uB33pEfN$qcl-^V$4ZRZ|1 zuUA>H{>?&kyz?D3y0R0moht{Atx_Upjyq8QvrpLfM?R+<_M99a9foEtu0Z|wC2{w; zA|%yv(<Ng(YTuPBb7l>-3R|J-i1YIrn)iH)gW9npHT{ z@cAe^)b2Aq_h1;+n|K zCmAk39)Jzs?Si4+A?V%C=UB~QKC1Gt#C^JvoZ9zcAS^JK$lr3r-iy>=aP=iowM1t{ zo4aY?<}27SxEMSdJ(q}7ozaM_aB^vw406AfO@4hbMUO?R(DA5RVmm7n`Syfx9ov3l z_wV;*#_4gr__$hQ%SA+|W9z*`wntY0Ahh&|phClSD619^p^um`7G+~5-FbXCi z?-k!*!P*~ehR1Cpwc{nq(oq)<_fJRSvQ(UuR{--0P1#PH>Eir5tzsj&MXa)34b>Xu zMHi0AK*d%*l%H3R!WIhoglk#YwK0{q6`eqW026eyY#%ihA3&h40Cy)pCV`J{q7LnN zGEa3P1&WJcL43SuHm*Z9vtQEgi}GZ=(*d-|Y&D*IR+1~pIfJyT4n*yY2-}D%pz^sw z)EHt#eqKvMnq7zSuYk)U?W0aWWy~G2Q=Er)f0b~2n2R|r?`f!i%OQSC$|5pg_DygY zU%}sc(^1)qEu_Id78P!-Bf{xHNZ&6O%{#12J7S)omd7dhq|0z3C94QOPU|8y)kUN? zVGm3yI}a?w+mPL=ef)24S*n`-8+Ja6gfa(*@a37G(Q@&4VPEP^B*Z3Y^_3uD<2ROm z&(UX{OtXb!G{><@&tKy*y;f*`X&>9sd{W$!I_gZ&)q`xoYCFE^x-I{)^$t{8-$n-= z9m{Skj^WRlyuo$8Z~5sX`;b!3E@a4Drf*hB@{9N@5WmgVRQB;SwsFT^B5xT(BT{pq z)ZKlc@3tPR_IMQEvc`wVoxg;(9FJpURkxuIPkT~1(H#m8sFL`uEEqWAIxABP9G=XL$3mmRDC-CT%RSaI!;h#+F@Y)vJ|Cw zC_=}lsz^pni<)naMj<;+BacZF=#hZW5(ZZs&3D+)prdi*;wE|2e(aiH zu#_CzwLgt7xBel)AkRm}1=9TVU531Tz!&y)|6Jip$5{5`A|(kQ=qh1c+z|fMhY4)b zu~OmcPB+%-i->Hg3rF)_oMw+?l!}Fq*)u)Mir9TyeR-D|%lK2$(!A1+dvv-N!?Jl< zd|sv&ZLA(3p1DGvb@MrlzB~5O^WZJo*J(zs&KO7adls<~-KvyHSx5CINU$MAx}dYx ziVYkgCVE@@khNU}@i%veIeP;|tE`%sz4l_D6md|%$6KMpPsYH}3p9~e?@a3G z>`DwhYoXpoeY|evGm%lqQxK{X0b2)7MFVeCLguM4(q7p`g|GVgVVmNF!jlQY2StHo z-En2Ke2_hAlsPPk%f82!-^hgSgMGwi{u_wP{CpUpc%>pERvDq7M5ON?1=jm%NMdpu zply{0LX(5(r;D*bR(A`Q>Ub}Zi&f?{)`npzg+iO3!C$ePZa=k{x6z{wf=)L(~@$1eLoVqoZEB;wSuC7fZL17%J{4Rq$eAJjj*Q&^U ze*_dvMu}X#KH#qtmyl-5fz(M~pLQ8G6UWYdC}87v_Lu)uaryB)@fJ1|yM68>Myb2$ zZR5=}yy6hQ;+!VUobDoAVlWh%tSBPQKTa`=cZ{SW(GvRT=tn_v*=4e3o;*#7?IlN7 zjX^X2pS(X>AMl3ft3@)yVwp;%Yvn-3YeiO$kZ5>^?A`5SAlL(N+`l2{l`S~2$- z?YPggT;%|&wZEKSDzYItLNB7O5XHSq$OX$or=gIH-QdP@78!=!Bk>(G(KpY1v>R|R zBu|oqD8-V=k;>*?|JEgQZFh19lGJG1%aeqZ$OKJ-tfo&ZSJfi@_Hn}Y7m4Dl#~Q_J2CjnE)lYH%{Oj~ZK{Q>f)5Uju z7){L^4+veQ*F(dU>m)JX5L7rh(FcBqX>0xlELE#X?YCIa9AkT0+rJEXf4W5cdNN?u z#|zv#)8|agqyYGPt1A;0F$_)imf%WFG*P07Bb{5QMY;fvH{f&(UM>azrc4>X7U9) z1R@{35GbxYEO0T+fjYM#Y??U~>q_?LRTGu_`QW@{L zbKxU7A7-RCi_8XHha*&skn5uWI$-`3B9|zSWK1)$!!#-I`a6Xo(dQ(&N4B8a6LV3e zxg#pw+e_zWPZ7@(lnQSZcMA2&Z{a89vBb>%C3-U^7G1g|CtSu@A(!$}@d}xJL`Am? zhMrx6xmtf8*VHS&&&McWj=z{8oz?AIn9+MKWvUr8E4oXS?fh&P2? z(uf|I<1-t%J=6pf6|TVPy|-ZOq=6EwfgY{=Ap@4na$Mhn!ve2K3q@Zh3vp1*dcnze zgSZR1EAV9V3tURqae1ixwuFSkal!8J@eeo_D-z>)1)g9SZhA`iro8X&8mpQl0 z9PTmOjbrCL61?xX$Mby~v01(p_Hd38xpkZ+TlI^;4ec+Y?9L2kP-7HGA2E(AA3Y0I zC5*(;QHE&CiclJIGKOr<-U{niCS%{5l{Riei^0vGn_*M7FS6e7irdgBKx3zC^5wq| z@nvt5g(|mt*a)y+^g|<)oIHG$G`?}CWvvbDmzY+Pi-wCmK7T( z7)g$XZQ$jWvB<5$0Ju-^N0AHnQmF-z&^lx#S-exk2rGGR`#nHNy*@YhdpUVvb(xfB zoF)C&-ob`TCqd&2NsR8DiJ*I_AueZ*Vgd+Wu8>c4gwwP1oWOom?Uq4 zK32|bAk9}<>d`-dTEbyy*clEs2Q%as*vD+HujHb-RY>{HWugqMM-4mHkWd)~iXxqm zckCRv(d85gAC&-1jm~lchn3{n+ze8U=g?gTqd%ry4&(sf(BooezgZIAdM1~bR=>AS~RAn%gSJO6Q?`q@-^~}MNv!MOBGCv3x4>u*POEwcJ z8ely}PlnkwD+)xmtp@$CmEgJly~Ja;A(o13Inm05@nUnV1mH)C?R9 z9$xb2d}mj4@7BB&Z5*S_xW9J-BM&x-q%>FItaIzY*_`2c*p|iM@zZqt#N|D<&)rmU zWn>_8wXqxY%-RiP3o1bM<8olq=fc@#`oYbKKk2gr@o4p26&5x|!7S6CM8R}8n!Nf7 zT%vjftfU`Aw*E9iEwh%<2@j?dmC|l_vThpI@T_A# z`X|FSNnR5V8ic~4MxxUBwn%sOXPP{2r1*M9uJEiyolxi7MyNIOBWWC-hV0xe(X%IA z>~ZNPc&9a4?7b+7c$n3}Etel~^~nzC`HeCZeasi!tu;sLA4j9L83Cxvau0nQIg4y* zZG^`2qqvbS7L2B8FdQ~s3go&bz$6u2bT{)64A)8`NncgrKn*M8>;98Tt3Sht*B*h| zR|PQV%Nkhz@*qlV?1J%&Uz3B6gyKnsqlHyF702hBN;6BwpN8!@`;eGZVmIipZ2g$s zC}Mc5cw+ZxGU5IRR7MmB6i>$bIuylU@(Nr4H-=k5zwWblQErGtpiuWTrn z*(_Sqo*?MoqX(0gR5MF{mBOIS7vb&?_u! zQ1LOt9<+uNd*y+}hw(`M)^B*h))b*6U#jS?L>BKeLmoqpa*Nhuf%E4SXnW@>ytqgb zFZnnMb>DMAg~As!#&Nm$^UV{&itVc72VZ+iT1x}b@jM+CSKmbL`6@#FJzJ5$qFOAS zm`YBS>!bXY(cJz6F{sh(A`;Hu4wCMgq7M(Zp`OxUH0weF{YO6Uzvp8g{1<=oAO7n9 zeE+ZW_e<^ii{D%RKT<^hBY%J3f2{uBe*Gs;y4PPV1?&8+m;Y}K|LL9e@P97%CkuhS z-anU%`_oX^KbQL>_U~H$qh9?zPy8Q!`cwYvdSnp#w>ilFyQ%m`J^J$m{!Z-w*v%ik z(*EnQrX>IK=WFs;bxY|#mlOU~-G2O^%enql-E-of%l#jlkpIOE{iDA9O|ztB{x;q} z>z3MI?f&Qce_j9VWB%4cgv@^&(m(27;D4hqpt?&G8YVH5-8UN$>|L?9xe>%4{M3UE*S-@>9?-xlCmN70j z12>}wax*NOfSb-y&a(6vh>?GRLvkMDcnL?@$9RZi)pjzByd&cmDzP4?F2mN_d+?mxcA}jJktgoJYSuYOD!i2Qb$CSgWq;w`?=s-N zRTm2kd!Xc8c?x_xR~qQPkcZ|e5}p7hwQs6{)#nY6>trRQE6L}WG^!XDAX#+DCzYS)k-;s090Pp=p9uO} zjzE!`4V*c@lJib>!fv%4u%*P8!GX5eYdZzuO;eb3+A7eLapNAlRB;VqzXXapBMAPO z%M>j5f*V!bpit=+s5yOJWRNGr?3CchqGn@o_pS=eaqjI_6)fJ+YynQwsurt`NaYCg1!IcCn-WQam zRpK==SkcHz{c-Ny56Qs=XN zPEOK!w@;I8+iZzL<_;QnUI^tZrt>}POt}7*O!i1p3@CT>k>vB8 z$4z?>M_%~777cq6K%!?S!P3$Vp8BR_Knd~re+87(^u#+P-% zmdV4JFC)ZIN%dy6AfSnMR|-n?0KU``weK7EYYSacVJ>L$Uxv18#et`e7Dl!i0o zk3+jiYw+&PUeVjTJHYr-17MSB!`!nOgj$^pVA7pIB>hY}|2ldG>*%;ycyf^q2pwgL za8!K~D+Vr3yuIc`X8JL6q|~89 z<6Qs+Vbw+dnOVfnZ zktp4I3|XR(&Z$`ii}ZUexUoemasTB96&K(4z|rR8NK(yNSnO#)TN_Jp%uERz#*=S& z*=H%yyW%g{tF0Hjb?AYqD2hCN&;ZrlI;h&KKH}vf6xz=?MlId*v6FcL$v%6VF1!#+ zolMl&cfoC>QExrpXw-~XEK0&d4`yNSLIc=iBqQOZ77Oa7D7<}QFZtE-9LiNV(7qM1 zl2n;pWZy-7GV5#+bAOLBeB&2SBVU{*XwE|HJoN&(0E}5LJuABCP66>Blm*T8{XyfM zaH=Iwv7;S?Mw%PYRfny(q}iCd%KwDT2XfKF%Kaq!-dC!*(+$mP{tR!OE#`}7ED&$; z3;|BT@jy?v4IXr^A#Tw(N$Ip#@a804cyywSBn`VVX1WNHQc8n0EtLXnw+F6icIB6P z=b-YjbJ6z08uV$U8hMz?p@+4*fNz32v1|JV6KrR}C*Ep;{G9pl#>yLLX~}2Ua59mZ z+q{chbj{+!e}|$~8(Ls{w-pQ+?f~;+jL8>0JKWSkm>c26b zuS=Ka4UKQp$H%?Um6y|mhwhCLx4c{}_V~06_4&#p!#AUOLC-<*+ea3u2c}R@@orLg zM;~gB41~L9&*n$_DpMQzHkcFk4IjVrf%To}MC*MeJTTu2;Y$@2c*#mkH9Wncl-!Yu zeS&eU{H}0lv3@y2cb$W7@srrL!?LKZTY?+S&4cAfX7N88=OZ8X7EGMAo{lNF%&kfH zWV;R>s}K%rhtsW!&>LnX&DccrmFAcWCleLK_8D;IfKnyHH{3FQlK z)}aND01B1h!tAx&1v`AzSeZ?uY1N)^B;}mST)bG89}8s9R+GzpK_l^tFmfCV#yZ6 zM`XCfKXG4UF00)iL0VJJ)932;Xd&mt7Z1qcLuxF=y|FM}Q4gg8zR3Qufx4K5 zA8c?1@1Lu|N=b0du~(l^?dDd3o<2sZkAnD|szvo7E<||qfSq{4TW|5= ztEW&#yfr+(?j*mZ*aH5sD>MGu(0OhByKVQMZQg$`Oa8iQ*#6Ju#DB@%5C7+K4S&gX z?fB<%|GfkMrWgOS_R=3a=|7kMy1fwmKWQ)g-?ktB-d_4&H~yNx&Tsx$UVl@Ne>Z#S ze^x*Kyaj*e=g>BpaO|0)0V@wfb?AAe@_-%~&Sti$*JTHh4n z|BU>9yx?{H^|N-uKbPzKOU@+mpUWxyRW022&*lEdz4`a~^}l-0H2>e(IbM3sznH{p@&p0ZXpYgidMgJ@L|G)m9&p_F%X6uEA4%$qpceXBj z_})TgNW8V)4r1lzq-S+y-^4N_qDF)kLUC3z1DvA{(RQw-k*)5 z*-lSykd05^DSuqV8|B)3@bV-m51Pn7szhOLa}9Fe`;{%W93v*aUqtCP#&kK<6e5pl zqOrOPf9+5~UUEaoYlyt?KmkPr^;>ZZEwze*n`?+hR?_EcWbZ6ZLg8<$d?L!TiZrpn0k1fY7)`RnM)RCOtI4G%oW-5FgFlweK|9rc*mayD zzK#y0g-c?vDBJ=(w)w-LYfIRaYpZenl{4sYGW(yJ+|C!gf~-q;>FxBk~i5&VQp5V z*)@#B@DLg-KNK)^HD)bJlBAxTB6$W!B_A5b^T%cHC7JzIcv1F9$>ho}xXDhzQ!TN#2fBdOh+w72a?(sjDsLCeubr%1$MUJ(REUWr+iSX| zs|q95JjHeI&w|WwBh)|A7k(*~(oB5=K0Y-LDz6*>FY7sIqPGPj|H_c=nY)m!=)+Yi z$MI3^-nigk4D`MoNA*kRb0dXy^!34R_Ry#=t-ZGaWq(Ss?T-b@=B1FJkcc%AD`EJP z6j&PV#a4*vxYBt)##X9gNz_#M8)=Hpzm%E&mhrGz)0scLq$QrWn!@KKnu3?r18NIc ziz=r&FSj!cg&rmPqC@W`^l+M#&KxU+@dr*q*T^hd_+Tdu8?>BaZ>^*rCo&2DX0XED z)6w-!nWXfBvt-l$Cdp0rH5}a(rB2PiXsFT#$w!?c{4uje`m%8>j}WJtoc)+X^Y`wj z>b(IbTlaSr<7Wm)v4W~%|Qx&3rcUV`E3XO8>*#*6WIBD54 z6qNO_TBitf+{WQA=clZDx0MimA()pxu@wUn=kZlZi(q+%1}_@28#X$syd zx*GKt9X1ajV~ZSd)nF|ik-U=C=S z+7g8OtCCTt!wBbC)RThM5$v_;0Gky`&1bd8J$^yt9imKsc3y&4GKy$$ z^dP-&j;E9d?o^~ZnkMFE()R62@OXFv3K4~pQ2W`E+4WtdidM^cWR{Y&>B&cO*s)2{ zBcu@>GQUfg#pm%k!{(Yq&(0;84PQuUfWOJK#OM69$23WGYPGm;xP>^VZ3s>IyhChl z|40FMf=MmvCPB6yJm@}{R?j>IrX!Z%+2b3)MCTlNC75z?w;AmDnFG+d_B~s$4_`Yd zl3V{~c&@gQZ@4s?x4#tespDA)PN}0$JJR{F;`yX~?hUhnAR6mXjFWE;McuO#@mG)i zv~yP(#(ma;Py25{ebRB3zGn~09_>NuAzvW2@h3P7`yej*7PC(egLlt&^WV?simJ_~ z{IDbr6pO6*@ddG{v`CvCpZ&#_Tyzrag2O0fqcv&H7a;wh6vK7j(u?AF5kU6-DIiNC{c6Ed$ITSrIL1QWxgVC2QgV2Q9EEH-+L&VY+hE;<2}ys zd%`YKeE%8tv`oZ$+12b_Z96@g;7+ z*%@nbb!%@tVg8784`p(L8;i(U{yht-4567irP!Qeh&KBj@N;Sr6`ebVm3BJN;a>|C z>rb&s7TLJGNrmRUYljapGPv-?0Z5gpWyX0C&?-sezPsm(-6vae%c%*lEon5@J+uSs z4f<31*Di2hZ-&?>Hi9l6wWH7z1cO(aqkfl?$SVP9J*Va+xy-#QZ9|D3_v ziNTU>gK{K)9R^EB*!AX+EGun)CQD;izY_(o%c!ROT^jW6C|~X5Wpdi(GIb61=5POI znz-B>Ble;;@sxRhWUp^8esSSWa-*^0_60V4)!cj@bENWa1sx}m>nyyzT6wf=pY3@s)CJ}&Trjv;H!6SLTytm%p7aMnj=-= z@~d9#)jMCKOG#&iXdN}ddUd<8cUi5mhR#r?HfFjIo>phnr%luNt&56L5CcKyw6|ao zcEoti2rwRX{Gsvf;-N;FK{Ce0kLBQ^v;yKDe`J=mvc}9bf|c(#6c(JgBcvycHP%^F z1FJNLu;8%=g+7a%j1RxwZd|w5lqD{-U}0xf*rRGCHo)APwfp58?Oiuh_@&`ZGw$>w zVS5^_d8h};&c*aFI)_;q_M;(bvBKn~1zf(`3S9drhy$`mu-6s->_vS)@zAjt=%1!Z zPOE04lfxBgcP|n=-ws2K?y)ST)qt&d9>iWfsxg}Eb46&iUt)YRaWp zrBE&(j`_bZa z3F090A~Y+|7H5ZfK+x7~iI!kQ>l-^Hs!bO7dvyVJ*Z(Vd-8h~6*Q1MgX$ODL%xDaDTu zhT)}G4tUM0m^@aLV@Q+^s6MWR1MDJ)3^AEVvAcMd56v2s$wJb$B5@H{x zb?%*f#2^(b-lr-7uFbRI;U)<1Za%-6k!A8xVk_z=eic{52S`k1)%l>7om6QsPCR8ZhM(xj zrytvEsX%rX^!=7XuMK{{_GJ#3Ja#kN)AuipJ28WA|LqG);t#>DUn}va*?ipg4kD7DIXG$oYEHB0DwZl-y))AkrEhgWf za$IMq3t_Fb@Ju|-ZdYaFmAR@UAN&)lJIC)q=lJEx++`<+MS|tcH2yZyM|ACJ#rM@G zz)lAnzKbVd$glwv=^+bCjb@4&`jI48VMl#8aB#J^K&4|JY4geJq`cCOiYC6N`=hqw z?zB;G()1ki8^IF2XE~CEErX?lCidYcbh}F5ZR<*TXIjPaa#wJ1V7v6zkz>4zt+$Cu zk1KTb{Cu9DoMke3qOF)v@l~uZ43HEWsdM?BNp#90ZFE9fQep{3uwA2~AzfU< ziqEweU2PEA)i1$9QBJfVlfFZ!k4R;zme+-%_Bi8fmN~}7jlo8r#-9+zN*@ZpLwX29 z9u*kpXw4G>M#)p!u*+B2t#^19q2{y~R2@4j!U>=)&AZPAN zY3zKV~YW!Zvgpr-6k-Sbf?_lO{9Cu=k zvEh3OlP&Mgj=Q%B9eUwHiGDA3MLWu<{GGj!K1_$Y?rK8M=MFUBl?bEyEv0pyk<4OG z5Aqs4LTI)N<*9pB!E)J69`7)a?T_2Y_BLMQ3ZEFHZfZu^%IDx&e*koa2%)@CAIJ1| zV>KTh3R&u-*nlY~jCwmJ3Fq$$#?j$1!k4Qi#yjLDvUQ1Pm|^*I_3h~J^ zg+%eXY;Jy-_L@(YGCJ2gu-u1BK9#c!v$05CJQmrt)&L z`QpUgBY2%^0yNAT%^%wBz!16q)U{Fu)|_$?Hw}oOtb4ZPcpu@ezBzWk@qz9}UZeNt z$IuAfR@${R8dunigqdH?;IOnq7U)tlSz%rx<_9V7Pr{8pXyXh+qHr1TK}8WCb)3F%RaE~;6Z3uyaJ`qym0etprT)$`PY)h zm)bgT58F+c_FNMulMDRgHAUKpqg zhE2O+U|KBGy_bjbDGli4HV`8;D!_h<1CH>>XN%ihLGoh-5BqH>t{d#abGuIm-COVJ zXYvkIP6K+wZ^NQOGjUQy9Ce-6j_L7@FtAh;Gop`?mfryi9JiU~eA!N$*l}u|H~^-4 z;1I#<;heWm&b`g14TCONcTp2m*oWwPMdNj|u7jfro`Nvb&C zooAGUo3w6F5I6d*mn3d@Eq43lB0Aq0P8MBL#QY#d{(f2vU3k|_KWYGeY&WA*p?AUZ zs4srJJQlo$)=&D~qF?V5E zYY;ik8O?l}+h|H#oa*-S7v zsv^GVKZiOT&f*J&Vu(Kb296qUr@T>NGG-+1bK~ZDwQMU*O6X}8)URpm| zlD@D^+;6Ba-oMk8)@v*kzkRErZ3kwM%7`O$M@bQuPFA5Dojh1R)D-KxYC)i1Hr>%3 z$e%161v(GHpnI(;j-M5Qv%kE-`0!fj^J+S8JUomisOg~Ms63eRW)M2QRHWVS<*~-w zOlZo>g<%yxSX<}$BkgnvYwSFKELA7aI{#eoYu9F{1Js51*=Eo@dmQ9x6f*aUpTg-I zm)ZQtfx@ZuDj_nW6+2BL6g93EO?Nd2X&FA4{6Pi!KK}s48~j-3%dN<~O&O1NopO25)&Hsw|@gFs8(JG&no~sruUluS|96>TNGdx!= z^7LBbGuKr5e}wTh>{trI$fAE?AgU{k0d=~%U zv-k&}#XtBg{=sMQKk)shhztIcApb?5|LgiT?7t)ZkMHN-`u#Wl->BzT|CQ_czvy)R zzYZ(8M;LwmIE4p(R3kAYhSk07MM>jz@WfO(yn3+|-1O&CmxB46>U+mo0Rze8Z29p!`SH?up%&sg8KxJ&l4rOvNVB|9`wgoehqAH*#?|(yN_hJ zo~>lq(Q=8LM;c8^+$-rB>Wg~6i$u8t%`mN?^G@^7QaXM`%cQKw8k8@NBh59VOkR)n z;RZ9)#1|6^#hLF`QSL@F93PXwcb{mZW*t|0R}xOe8~Q_^x5i{2oeW}3rY*x^qO6Hm+=PT$X0c}#KaMLUi?6|UL!Flsyp=x{>7@Qw8YgnCXj?i=~hpD)FVYh_{|H4Xl} zOLt6Ow2^OoC(9q5TSr?K<&bi6JM(oSstMT!Q=Lum*MsToyX8LG?%kVvEKr6A%T(ZN zy8&u=JcdZ;a{SrJE6#Z_m236Y<-ZDKarKPlP!@`KuA(>Xt%6QhBGYW zd3X3D=CKWz#^RFI?vTlj3$`g=gxV3c#yfW#gJ$-0_*8d`skmsdU7J*3iKC7XbZ%cK z*VK(pSY4*4LweEc*V-&e(+9hL9SAxrn*go_vF=74wDF=D{yMM?%(0lgHb`Q(f=sa~ z!Vb-(!>~Koz=+5&T>P+H`0;xl#2=a?=7edBT?)2~#j~x+U-Ot4=TV0qb@-p#x@L-U@40Md0$AYNT$}pN(mCXNp4xf&MyIuwHf#hRi$4 z{8B6^$g?}`5|lxFWy_j1H0Xw91Ksssi4SY1u?OjA5GzVyS07KvJHH$L#NNT%-!H-8 zw*^95%4uf5C`~B3-2-3k>4DucelUgYx}YDuf}Pe)5%gVt33Govr4f6}_yG3_bne+; z7@d$pOKMKT(V;W2px%rHN^(27sRG>iXAe5>+Q(k+_k$s&;dH`Dk0zy$#W{)dN#lGT z%pUH`rjiEU+v+Cvs=Oht^0Jk@IMtU}y_^JwC80M|@|)$WVU@nTG~xLlOsv={tuA*# zA=Q|0|7EG>6y=iZ>&Mn|+T1Kdij@N5f<2_|MbW?)wU#+!zAMNwU;`Z8-Qwt%26@r-V$KrKEkg zf)1X{WF4;&lzQet+J~di-{u>t+1+L{=qu&7`_l^*Jq(lE4I!PvLco$b8hrc^{@!TF zW=Pg!^11@(z9tL)XgNT|5;?j&L<2Xb_F!i=o3kFnGK9&Ub5huI06JaugV2hv%;mg3 zq<>Ul8&l$0xk?QU9h}Bh{dduKpQr5JxiPeMR~z_QY{R}q514=LN$zOchO}}Dx~~mo zLO=-oxb_e;*Yu<4z~g8Vr$Xy|g7IA6lkBDADm=$th(oGAiB0DAl1ny6=!EqQNp5H% z7Fec-wuy>*b#Pyu#N$FkInCFE0dg;a7jGynU?+0WyJVDxDh zXcnHs`dMY@PgB__d%x>#poE=yJbI!*>mUJmx z+|h*A->YGcUw>whSITCOs20Y2+5=nre1$w&Qy4U`p7l8s%qDy+7v7u)<{)>QoGzqu z4u?|IP&(k=fJN#WbYXxy zyEN({wpDhA**Yg+pF^k+mNS@Q$HkJ7Y#6iqR?em*UILj|f6#e41RL-5guJg0JNvAX z>8ZhX*uShVD6i^=5AHSMm541k;mr=?!QonPE<_QgkS z2fMiBpz)8UPIFbkaS4bJhcJ z+_MTQj=X{RJ@K7OS3G@wpo_1LWL#ynB znYp3tU0A0_^v7R5clAxNx63iypxIlpFyc5heRwH`2D*ZZeyt=r+znS(`bpO=+lfKn z8{xsJK~lByZ0dLFtY|v0niOLj`C_{a_G!BoKO60ccEP=HjrUVjnw4VQXsrgGW2dtL z*cYNY*P&G=>bS_}D%z$Ov+N0XnDL=5aLGW#s)!ZvEuj}gPF1I%o`$q=NGuyr!iA`g zFKAU&O0RkZpt*GqW)u>S$9O5=y*c0;XAdR6E}~J{5omnyLRi-$g3T|B6EfDufUVdD zKAk;AxxenR^Ir;u?fDypnbr4%(I?AkSwT4e7GY1Or>?NGtzMMfm=7T(&S-bPU2yVG zEhfhbc!;?#H!`qgw1FX?<@R_Tu=kK8`tj*vA{kLU83dU628-Yt|qa8TmCovQfZ z-!sI5dtLGE+&ri{ltlykc~NofY3y{bq0!O}Y+uPiJT$luXt>70j7<(gR!3oa{g;#H*mmABNLgjQc(+iedEHRaM>Ku`T{#EAn$L~qfS{g{! z%tPYmGy*f9U6l?kD5782r6$Sl*YJ8=FS??OCWhO`b7S9;lEvrxin3RfMCGVdcvPVv zYOF6Mkd7vY%Li!6+733QTNMuT4To0`O>si9E(8bep=paW`SK&GQ2%QL9O|cs`fL60 z)u?Jr`+gH_?oHsCS-O1AcqO!4W)8j9bi=p99Pz$q0?6#|%F^fMg8MRec)P7qSSou9 z-gdbGqZ;a&!g&|gOY0OUCip}PmuKwk2t2T*QBfjF*&E3Vm`--7`_FtOX{Rz|w_?*=$gA_F!nj|mE6#=z}$pN&^WB??`o^3-osG38#=r7Ahb3WE-*|Q;! z<%vz@!^Okid&QKKKD2$9E|-G@Ztq3(n6gIOWIvsPo11|`9)@LU#OErqysVXRgw z47DOvX^E|r9r<#A4N)8p&r~kKfS+$*WOP0A3m;5VYjjDtEC;r)eONHI^$`7=kI~5_z~ZWMvFG8x^nH&z zdHc&^hV@viTBOY9mB{ghC0{9GS6ALTq6>HUIT`|+-lNHuK2kl^j}n>wE2LYSck*b( z2x)2!@sk_ANS;;}Vu;Q{lhp&A`SZVTOxoHd^zmQ<_3HV-q}%BC-1^#G$g3>+m@wo3iw*_FQgVcN)i zXnMDUtr*`QmRs83*1yT{*wu?Il#>NI>@8HUm13EzJ<7){V8^Q}*mb#GFeYdTQ&LZ5 zZ(Seb81J1l?Q1^neBQ>EdPHJS=NU;pXg6d%mVw$(7v5s!gjR-~eO_*^5Mc3?Z8wUg zH&SC_>3I-cV~!^N9k}&?2HYByfhQIlit}Q_#BHV9#4o;fRGz9Qew?(9JjP5Djn0ll zr7@GGPyXhT?%808jpJRE_p%|CwV@L4!vpw{(;DK5&Sv5iHNyjugM9aEfm`hF&zD}R7&uE$9NkFLk-TG}Shnhf}bU1=s} zKRN~Ns1#Z?FwdkWEs@7)1W1ZM?-H{W-*K;!K6v)6APNJmxLUzEx;Raqr?yOk8*BY& z(&T55cJ&~3F&qw_-kSVnzX%?4#tdE#a0T!WMOGVtk0uyXl&>L z!4(Lo_oL+s)_kFQSDJY`pIyvq#e|i=;qQPx_(?MczM&@#AMb@lH&j^habLF5DO=cS zcptQv`Qn@TMtfKMOP!J$%<75<801y@YC*7}~}_KB}(=j@e`_vs7`s?@^JVG1Ps zyqUExVd9}{V`*bcCTgZ6u{&S#KqJwKdX+`fg;VNua_m-m_}(2?_mF{|p8GH>uD7J+ zww=Ujc(&wEa3x6>q)BecuEkYlH6rgb6bFnvEd73Xc#jlDIsv%h;iUCCSwjgH-E{lh}AD3RjjlF7_| z^kcd+N#McvVpyjBdsY|u5!wyX;7yZ0MeW}UPLIDz*w>alfpD!R4@ zLYti#Y8!{KKDSMw^CC9B?(zXqr%x%b^xD_iS7pQReY=e*vDfHfofNy;ofn@LcIB@- z_gQDpet~WqMGW$9CHY=m_?Ro-s5$Wk4bOf~RWbH3=e;i3b##^fIoBpR^}|V;F)5w* zez;c3-1PX+ymu0Vxi_(>e3{An#Q}Wa>_!vm_x^NLFOsxV>rA$mp5_a>T#@W(7sZ36 zo}#3i3A(F9imggZ_z+z={%x=gulL^$zP@49bW#^nQJ!9{OM%;WX7Q=+m-&(>Yr)$j z6=ttEjeT2hqMdXjHSOPm{vapL*F4G(PR+rYnriqVu$*?7?cl?;!|3zPc&2yHoIZVa zN0*S5C@$-Z@}c=;sF8sxL*6ql)(0Nmkgy?Nd{Dd^gVt{i(0AwxC|#Zlsj_NphinoH z%Z}nRa_z-Y#j|;g&Sdb{Q04b5w__a5}!M6qYrZwNZ)8ZBu1%Xhx1-a z@kyhpOSh7lQ6Z)9nKZGnfz5LC#!gmB;xsB+as8dY-G@>d(Dr zX3(Rs&vd}?JBu%HpnQcxaLYRiafAY->om~CgOm7_!($<0{uo%>*}pVgeI9mcZNRSb zJut<67hm_>kIy&(Xz@H4T6?V^uS8pJJ#i!jZSrBVfsJVS<2NLoM{Io62r7$xDP#E> zw6lq0nJ*5olUgT)1riZ!1E%1p`0wzjUI4w;QW$WlTJT=GnJvpP;~P8_#i!5o_`n}J zaM$4wJsLX#J@#pkv1|_b^ynuV%eWGm?L&uMuASpq0xmh;)a<#Cnsdifz}dCbG1;At z_1w>fo%Y0psjDQzwZ}=MuP#eGGP>}1<);#%Dw)c^Op!SDvchwRu1fd!K0|d5)+Xx` z;&IdS9;Erj+Js#i$4}lJE^%C8D*6@P;}1VVQiy3uDk-771mtaaU>IJpfy zmW9Klu(8;0qzcH-FQ7{KLEOB!g_U;e1@-jhW4uxabbxX9(mkIv1PS*(z1y8ykTJ7IFsqU z*ob;FD)4)QfLWLa7uS@sQG=$j(vOc>%dB(Usv})o5b4G*uQ?2Dla}#rzxUy?KH(HA zcZXdVw^K|kKSuk9*pq8vHPb8uyuIu%-9Pt=?&QbN!}VSGhXz7#e?6FDa{=WI<0QY1 zpO&l~z@(2Z58z2{I?_!>Etqg}pk!p>J@6m(U0SWto7>hTnA~@*z*Ey+(bOp?ObYs* z;^&llNe-`4lzbcSNh1wc<4gZz{L+qPyl}-6T9x>jJnlQg*9B!XqkjjqcRP$Wiy2e; ztj|M}qxr4({b9maJ2-NGJ9-54!(Qs0{c{btfIA@o`4VV?N1^XKDvu8 zem;DWZZ=%b@5MXb_|W0wQmS5|PRFyt`BJ5P%9*8%)uX}@o^1p_?HyG3=MvTYP$83` zJY1w~Mm?@2z>cXlxINrO^qA5|QsHeS9+b62mn(O;eq^U#=Wai~ed{rFnKxL{YQKd~ zHF->hj+e1)yc}6YXY;L*ySeGFxm@wo2L8G&hfg}8jCG;$s%SoJ=E}&Y^@wjP^9Io>jNV8P; zvSi^Q{Mu`Pld+1GJ=}?Pmi-X!4PkM9VXUeQ;LjjWm^>>KrcM4W#N>76$3=m#$h6+;O3?3&um!={M~9v{IOp zszbHiQ*r)oOPFIf9c4#s5sz=&Nb{o>g2(HFyzjbMwB^7HK7&S!UnFsKp#N2r+svgu zEDQP22V?nP!*=Q0rg2=q_%BQz{FI9mwn}aEt)A+%+S!wyKBZfI}awt<)FFjaCU9Z z0aSG8kJ5qVLXz-R$Z5BQN%>Xm#DzrY5z?L2f0zyDvkr=bvLqOJFjw#~KaN{fuA|%m z8EQMC$F*A+gbg*p$oYFQ_IeT1FP%&-{_`j*BZqYi3ucR23SgBx$H@;4VR+Hm)4i2+3gjq3tVedgltVtijrfQx9quO*fc7T(xU*N3$ z^B2}DGK1Mq$YHw-6^$DsdxLzV5wG1D%(iVED#TRw!0Ox<@a;AeCI^?|#6vxx3Vy(M zG{NjS*V&Aa$+%_r3Gnt$U_TAgS&GF3u$3Q!3#(Ef&sU2rE0ZEiM?UG?XLvQ^1^Yek z5LIumrjZs(wA%kEuUo4@@$Qz`Q}3f#JhVG+e-cRFKV(bPTm$Kh*bLPMPiXklA~Emo zddc>MhSJJQZz%dg5S3_Ekb!bAr3FnO_@Y3zXX>d~eh$>_+|Lz)((yV!4zfZxz8mR; zGMh)S)cQ-Xd(B099wrOMr!4W-=-;eu`wip!PoCk74Fjmxr4Uem8I4M^a#;L*Bb0PG z4t-1C;_Bz?*nrQ4U=?Wxp(8f2&v(y)zDZ3dU(z64yC=(rJlxB!w{!)KRo$S4J{x8bWbl9*)NTTdgytO@vX zd8ePcXU$KFNkpHAm|r1=Kse7(6y4;FGopX87khoVu|H`!wEQx8Bai{HAi~ zdA~P{9#h0D=9+@a{5fFN>H@(LlLVVeH+VH)O|&YC1-T7Ngv9TcvB+m8j zn|eIO7cZv6<)LE5 z@b{>1`wkYm^rCZ)D)e4`DeT&`7f*hSG#EeA;?n=y5rbk`6|b%-5M1 zelr0F`|7}m9$%nkSOU0(oyN4!imYUHEem|vS+n_;%&faEzWq55E*S<3^)sFb2kbML zzV2gI7Iu>*{5d8}Oip34ZZ@JOorI7Z+XVYh#%L2D!LuJ+@Zpeyl(SKnmF}Me4SsE~ z=d~wWzv3KrZ##zbvkaJ)gACJsqYT#v)IjIkP_gvFeb&;g45Z&w#c!YFDEHJYR^h#j z>%M8k?3J5&=%W{WPC_I-H2DfC2QNwP{20YGKTajL4V$GS*S@3nmLmA1=0Vf*!^EVi zI?}Uh!=%RyfC}F2;~r-k_%QWlV&;PWTsn9^L*n`bZ!Cq2Q`Vm?2>Tv>={%vUPIFRzCM*y7qaxHBk=8*rQ}(&Oj4#+FLiuY%oC61 zQIFK=sIqn=JxpuHSv#kZ%j32DPVd9;;JKmL@_s#?(2YUcfWP>s#Sb$zh6`t5B;;?q zN(&qfhWN%FECxjX_RB3_3kIj@5coU_;L+T-V)$cd59=rZw(Bm3=ml z8~sag@0dcvSIUxOv;%Gk3xVTSQ}9aH!&q&(8!9HA$E{|&*ihpkSoku4hS!v`YXwhm zYiJ$R*?bf3;|`XVB!{-S9CTin19r?1#>_$_*-lU5k>jAg=ChFHHjsusQKNnJX(;`1 zmqH5qcX|iZ=t1)|(vph@yZft1*riMw&Ep{8tQiElOhfg+L8Rzjfx27G;MhP9^4vc~ z4BDtk#R1(gXhI3Eem9plXL$2rFBK#U9}VL*-z_O~g{JiHAQ%4I$BR3yJ1&hLG=axl zSHu4EYq-xZZ;9HI1gW%ryvf;7Jw&g~2l&EI8se%`zxfZ9Wqh2K5jQ;FRVySZKO2oSAEYmX3Lh?R^JX6H8gv=1Z(_g%M1a83JE-XtE}YMJ(j@ zbJnun4gO}IWPTpWf_chGmNaS^zkKT(vlzWn_#AT){ipPYs!km?tDp|MOq>mOU6nBG z?noHEz!{W&b%1;4-p)wL7q-NIWHTCr!Sl2wIVSIfGuqiq_D&=0wd~KA6<-8zr-d+n zU>>)9mX3SmCvlB$v&mLWqoCQSc?IK2(UV8$QsDo67v`z(+JTVUFnDw>P!MhGR@v1Re@Z$MAb=$gZU)&hPS@IZWA! z%}+1Fjh>#&*6$*`o#sY2=d`f13cE3J@gKHDwhz-x9gY45_h5N#ANWu;44Py-Vfu?F zP`)~iS+yp^-}pPtUq_7FDUP6V>1dOVd;O*2-4f$CvcHE7Eo)T}gYRJPkvBj+Nk1yIe z_QG%T?Aa)<%`7h=0r0yvZXMPR<;iaB%f13ED^lazU0YyMp)jo6*+1%Y^Q1qKBsHqKf+onqko-MzXs4G0Q>YDv{>6Hc%b?%3&)~y(k zW=u?C_hRh?>D)Tsl{a|P#yhU@g_QS)NL!69^zx>B>lXRr29p9#8K+S;&^~eE4v3PE^J5FnX|CY zuZ4I{t;U!B+Jfnw7X0yQ6I{7Jp4lY6km?hMFu9r00z@99N}E#g{*DT9gWdzG^0LG&gQh%v(B}5*f&KBX5R3E{`ell zCWP2Z|KIaQ}}U_EXy{aE?!fld-+w|vftX+TydXx>X}1OtRYU^ z+5`N9Zb*48XTh=f2^p&}2HbX+!;JHn$@!Ay1jRV^B3%9odEI zqA5@{yF;oAKTlW76yn1`U3#H+2`&C9T@MS3@zjMQY`wWTdty{bUp=@k6n)g9TZ=qk zwf+XSdYPKoHh!$o&DuzerPnEWFV$|p`${h>9c6Lmvk@~-K+4KAq~BYCYq6($m-fIp z()ae`@&U-&e~>3DSCWdn9&qYnJ}MvCN@h5}hiHW)QXe&yKRtdLOqt&Ro6cvEwdZRg zH^L9jShoUMXbg$=c6bWQ`7nzSpnZD{axdTVa|RAV9or@FB2dC-jJ(6Eu22A}!j4Rm zlLPbyiO(xd9Kt~M-@0}W!jeyT_`_7 zk$G137xbkZ1m`8Qas2m4u~|kk-SOZ6y{={>IrG$ye!4Ro9?eo^<;qEd$4WIxmYav< z{3cblrbLyUdvTh1Y&ps*4t}Q+!*KerLd2G@*TH9UIQV$O3U1u~Obm~< zKvF{`-(%}ASS)dd;!EAhkHPWq!g3-wnK<$eB^P<6@17)o@d5H~Z6>jOl*ZL2`IBM0 zgV^DD1~9s8EO+aR89v_?1-6sl!&OCDYWVvEdD|Qcxl??Bj7ulnp)vT{e>0wsK2M@^ zr;(#i72tPr0!A#7t{d`1LUDhSIuRC+M*EM`&|goA_suEiG#MMEsA;Wmx!9xTK#16~1h*a6AjkD$VbqN$ z7#lfN>g%=>!*51FT>5r?rmh7sG+hJ^TDQscoZ+yKm2k5l4jfmj3QCzi@cxk-pR+a! zYtKfYUg>b0^g57w9h2s_>o$~8x{h{C3#?yi(eZ^3aB4*%(Q`ddUe@HnlAg!$2(!mu z^Q*{r*#gwP@ROyUszsxj?r>_64*N+8XiK{)%YC+6D3toU*e>C?C#Gi^lczM(JOFu)GmJTBR$mdHUa8p0$gkaJ0*A(zGQMLpnCjJX&i#xqG{_30z0^=)?Km1{ zw4LOt*1?+48K{4sl3w?-uuR1R&kt_pH%z|H7xWnggU+SESNAWlP9~VxQG3MN(`;c# z1Zpg}LypaRPd)lfqT6FSXw~O_!trHIs8b`0#>;)heJ3#bFlHd_G&hns57|n;q+}DT zFIF^fKm(he@kV@P@B+ygQ6>Gn%9uUyjF9R;kFsiUG2Q#Xk6uF~)@US$(F5cJ*NkeM zQS}IV$Y-JHgUk3KypA}19*V&;1eR{vA8g(P;L&$HC|H{D-D74@m39|euB(D}p|RL{ zWi*WK%z*Dw&z*@)mGE*^DF1nYCZu#uM%fRU{NZgcA%<@vbuYeghsVV5ndvXd-5VTv zH!Fvwr3no_MNqXOrnBKLH4YC@E&qmad9c|h4w%$l; zH~9oDW$kSB#3o$QG5|B{EX1Qnt)TA|7SKGk=i)I2V`#V4M&R+Xm{z`V6{ams7B|kc zl+3#HiTb!E(}m|pvTB(w8q~R;c5@WdC)d8yK9N~4#idBPOP-4vM=!#<1)+GO#2*Le z#t^zp7X1#$GVetS@MZH1WC|(}y!ZxJsINnJ6$&)q%vp$#Vx@ZT-;?*_&caK@9bo8m z5Vu&S@@CV#h)=RRTz!3zuUC=B$I%C%YP~97++xl@uNp+4W;me<-;c z4&oKFvdJ8;JMd6d89%MQNcineP%G7~+Z)qZ&QGOowCsk@$SzY8GF9 zlB{o?goPG^Av1Fa-@MkH;@)0#=7+hcRp|>O!aK;i^$)CqL~?PdKYW$`zH3`P^QSg^!uVc~@WVYtQZq4^pYXYhM7n>3 zB@_E&eurn?9iT$*Uc&FYdU#~Z3GmU(6ss*= ziE~%>r*pRLl{`;7hSz%bA=QR^X~dRJHe~fs$?#4G$>6G8)Z^tzs%ZCyS(S6t{+Ssw z|9F7b@MbLPWGW~P?MJl!<7Sxn4Yqmg|}6Z{UOTOFljv0 zyh!B6#fQ@13OCyIbPiho9)i>2rt>Gi8IUE15Aq(peaV$i9A_-`vFc%Plzcy{!95Qe zObP}r<0Th-L>Fbxi(C`N^H!2bt~qWXpPPDCWZdS=ztdHsj<@~zo6BNEN|(ZkNW6{Y zuJI(t^HxIj6LbDre@kLMIGiYI$8sN%E|JG;!-@FyMlLICIp^~tmH)OzmJE(FC%)>h zxqJR0WXR9w2+!ilfHRBvROKWb;U5dpfe~nNcOqSS_X6}N9ZQxDKgg7}BtWD2Xb@$a z3Ntg!vAd=T-=oO}gcJ=b6f`mS6=6anF~X(t!T93rEwpNLrHA^J1NS%?H13a z&u%@5!-l6MLUtIq*WQGqQ|6GwhE5p#eG@;dOa}&yT!n!by!k!py6E~%1Yh(oaCT|a z`SdY+So`p=bIwXP;!O6!Xe9qEAMji|b9cL-i9 zgVBzTs4M3|#;azd#+_~W<~@?7UVX_P%~7BseGhIksRsp@Wu*PVWIQaU~es81v$b2xT)By7+qsaIF_So9uj0v9esaQWsV=}7na)IL=fUppN@ME{i z@8n{Bq^2Bbpo=ibutw^)NBPS+{m`@XEbMRGidS-sm^K{^DFePhFC{~KxlX#TF)0om z#OjpCB=S}=pDa<*g;Cb)G4p{`s+HIaOwD`Z4l+oPnNMl6ArJQ*yRpS#-Kf5lz&CgO zVAiKj$}2rR0ryP0BIds@rt>6rbm+-L5>ZVSJ(T>LBo9(&ljcVV?|w_`r98SP_6%;N zPmek=(-su&Ip1Yvio=+8+DfYHwx1TLoJ0lrWY&`6hC^5Hg371bIG(G+kF5bv_N5FT znyhD^KRzQvkMG7u_BPO(635RecciVKD{$tc0Id4B7$07AfxP(^cty(|%4&QtD{Lo! zBxe)|H7C#^br?TRv>DgioPe^C?c9*>_Wa<(13)I|H~%^w;p$?kzXEQ8DSBqYErlcS z?wmS5%4t5jHtfTY=gV-+@&tNpL_6u7I0U~o9>$4{QcY8;2F>2`P3phlN@VU3lAON} zax5tBGIjMJubFg(gD1JeN@!nSu`p@lbji&nrz8@W5p0HyI_oiCTiAAa5c6Md z#U@tYrM}VIS$K#J21w=#iTCyB0b>*Fy7Cs1Enk?Mvbd(L-wh$(K&%oHN zQE+mBKELN@Hr48zNAH=qqwcmkTsnRmoK9Shjxm04XJiI`q{aNpWAi~M`-+z%GWlKg zhtOq62K>-6uU}A{&o!2-jFIu zHM~x@x+IdKH;HuYkikOowhfYBQOy#`a(AYo?#*U8YYMjC&#`G@2NtF-$7)m4nC`x5 zSiU7t2%S8i8v8B6+{8ijgZ4O@;k^z91l`0L&n_~Ln~9Jk+l5ea3if?i#$TTMlq&J> z=~nw7B<4o+c6UoS?7NQ?1O)LV&WVK3?fmE2-C&2*ANgePPTuZb0qHl>n$)lSEej z3W4CE55b_PJ*g5e0>hw7WNDWJ8Q4|KPtq?Uo)&=LmK#9b=rjEF^|#>Qo!#KvUzyx7 zJ}kuy=hD#M2XXC79h%>}Cp-3JIhHT|4&lxnRPV7owbZwyh59cU*Y7B5J?=?*E6cO{ zi=2gWvre{PmLLxA=1+G#bb~^j1hipc+#xp2UQ_f(mnK4Zsts1m|SguOJ02AJHLK`N3Zrm zhwWN?b1xArb`_z?fD8O~gT+uhyb%)td0B;1*ze z#$v{%2^+5((9xVf_TH=~IX=7}D#aY4{?4V6Cv&ptuh&kbdgDWS>cwE8p--4(v+-BS zzRu+={oD@rDb7|He>0Aa%=BZD^IEL+%_(+S(FHR%#t0LeC(*_Fb8zf@o>m2}pbu9Z zfre*o*pU8$B`c*uk!C0Aw%&y|Z#MG=b{#Y+@fRIGDFbVRb?7^_o#fz`ATaM%LNrcw zL-Uxo+@tsmUv>=kZ_yhk~c{ufF)BUOJ=bMrX&t0y`g!GOPPZT zYW~2ihKd(Ntbu{+cH{BBmz?2@GY=ff)QScF~7;4~L6zzs*X^F;lk z#fPWeh_d!M-gdhTVXpBcF6=OOGu(&&nfr_nqN3YoJ?Eh34PXyFrUjItDk4{lhnqt zSifeH-m{%3_EHx#oweb{nF7(;@V6kpY$s;Vd%@PON@5xD+krh906)G|V@lX5v}?Nx zM=H#qseLa@`TB#8d9w>Q#;+j}!D*M3TvG8ICHI zho7qTq%!gcYrfTs2JIL_3f~Q&FO@C=`Jl!ww}di~wOLmV#4(y^c*>^z3!;`$s-&yeNUGp1pa)m0mb!>|9iR+!Nc2CA7wVCJgC2 z3De9&5u+}V-L;ocCD0#bC&!Tt17~6*^=8d@vL5$IIUSPNXmYJB7Rx?lu^T6Y@t5fs z@Kjc3Nsb5U4EmLx8)Yr5Iy0UsH0{CWWj^8!FpIt*3AAdLp+q+{hK2;6AYonon9_?V z;fv2Fv2Zw8GQV^b3t6qqG>1m8(9J=Nn{}V&4%kOqYe%q--MVP2(MzbQ*P!P|=-|gS zl~~m4CSG~pNya3MKqK2x%=gMH2t1dImiOks*TAv-=ygtXuyiD?^j5-oMUU~R#&M}9 zf)dV2p8@U9qOiBV4qqIwi-e!I#ZLFrT%LzLZZMN#8%CiV3pvR(I9w+4N-g=xM>@!| zx*oj4{9%=Y&f+`=RYc(lm_SG_qd?~&{bKD5+<7CCG zKbs3W;}dagUKXq|c_^;&dnVo6ZbDPLNXc9iN4hZc4&ST86f@m)+2TH9C9C`UNyh7C zQ5W&QNj$mj0NeFF!oUV(1A)6x1~Pil0`3Bv2M z(J=G?)97yiXH0$2cjtVNcUIwVjZ30K4T7kG`dTcJY(`s!Nr28N5NUk?g0ETA!mHK% zq2Y^R+T&X|d73|eIPVLb9(oy0=@CA2&=>CQdQ~vgZQ=(N>p<2WcmC4N1OUS=!UlW` zO%H7Og47xK!d?Mwm+Z#<<_lQAG0t$H_ZqZvDa3r0FtRt}INIz{rGuk<$t^!sa_z`) zP`1{@c5nHFi1H^rHBPjMeo>YhN2T@N$wGuo2d13e{qN}Gh;^i54Sm>2LG;bi{tt5Y(kllr?%Xh)LTWu(tv4QJ57~Wn%b* zIWV?9jDI6>r?)=#qjm{F_*KD(7F`VDJ@!lW8`<^zrkW7)y{M8?c8!wyA`F0?0js&w zacjvIjST)_r@u(9AX^lnb&A(6G~vwip7E(W{kcHzG=5X`6l9gTykpx_QK-f*@*!>w zY2K^{b9ej0Xsf>DVck)Zp1T5K_YL4}*8CtFg;H{||32<*WFq%2tS?DhN6F-N54h&J zh>Tlyhr~-U+Cf(~5%a`uq+!)MI{idFoSe9a+D&^xzs}!_Wy2FmiyyG9BV%BK^)AR5 zkijIMN8|8PdA_o-2p(DWpy5Me*q*j>VQF7KJe4I~Lln!?b1Od66=$5lOlu3&H+o1p z9KB$+l%HC^&=*Fko+366oS?k&`J3?gM0pAnCd zjMvvc%D*kwCF>)6$tV{)V(4;!Ynu0*pB?fQ2Zbn*jHMem1G{gKfAK8ux7ixDo#)_c zKqT?HDuLx@US!X&UF80BB{*-G4l_<2B8T2cNNvM;Vj8<2J)4|!oo#w^Hz+4j^JBG-jR0KF+{nKydq;jPk@B=O$MWLEv3RiY7WByO#>dU+!6!{nfgGPY ze#q^iFtkPBA4CYS{`DfEDykF`ZLV{LF0;{GHU`xn@5TIWO*Fh}IXT<*6@Hq8qrbgC z_HXwRxV@&ZC_VuSf=siJ`wt2NCu5h1Blp2R6vxS90(3 zDan?}O;jsn6B~QdTv+E7%gjEkV(+GO(y<P^-m zBbWBYGHT23+_DcO-{;b!-<5d3mUuj|br0D&OojWToy~1uoei^Wy}4g$(?Nf!u4rMn zCXU%=#rzlVCqGq!d4s!=Xz<_$zB(TVbC!>%NAD!T;Ox6-Q$C))R7oVAk) z{WL#j0T2b-F1T`A3&xKQ$JNhNVQaR8zR6Eu?Wxi=Yt~6HOc=`ET_!AP%0aA|{zh;{ zU;1Q35u(>dv3J>SxFF?&e~;=EcO9^&d5_}xRd!?Xg2pZySfMI8eOB9&$~hA)<~A;xeT;78&(K{)*V)X>ag+7hVM{B+L^r4$39e#Ndk&Etwv5n)| zFL(y?6}!>>CMQ9BBv90b3G|?+8jJ0rg#nL(XuixExM`q)@vhVO>tocU+`;|4Sj_>V zbjq=AT?C&$ZUt7YrLfxVF&DgSBOjGK7>w`h6FUzT;E0##)x1FHl^0UHxT6f3?@r$CD#zP2bP7*Siqf z)K85{!%^{ z?iWP;^3te6FA;Xu%2JQyK#08-iJj+10jV6Im1@HPkw0MN0 z&|Ws2c9tZAqf9s(xm}x`vHne!@3ja)&HL!Ue(`7@*hlh1auh4e?^Az`XA&-U3!O40 znpm#iN7rUjp|5MEL~hyu%UgLFEO7pGrc^vs*nWHitvwyUE~gkWt**CB@3}ViQ@SBo z+l0}l>$34_s~=rBEP(Eja(9)Szv7gzAMA}zA)Nj28?E6L2v4PT4w_Y1&ZL2?(L4tO z#;v1&_mlfy<(H||UGD#OL;L@SU**d(*hT`-!^! z``iD^&;OnufAt$w`Qr)x?Einf{@3GCrt?R>bpQ9A{I8D3pLH+i{$YlA+{t=!3@t6M3I{SNG{dL~?GoSuE{_A<9rT>pe zCH^Hqf6pVYzuf=deew5r{6CK~tv?>@&vEwW^}imUoIm2@`KQ5s1GG#Q*Ae{I3dr@PPT4QSlsK@0G*ij-E8?bPcIj8;%7jyXfoh znowEu6MvpCf(4Yj4 z&c|jfh*x9RG~M8QdhVeXD_^uyCc~9N3&vS4TmT1 zdkTu!j?2b32{x8*>A;;$82uuhwo18)y(7}#xUV9$sMQdR!$sJjc7S#^_Q$}D92r+{ z%A|}p_A>q+&hM2?<%DWDa!C`ew1snV+Dcs8r~%~q6j?4L;tbBIF@Z|!eQ@FH5Sk$6 z4SZgi1m(SZ!;IwxqVXHVpdCFEW)C!^%?3v><+%YG1qZSUzXyUt?hJ{c!e_CGWIU=~ z*nssL9NEavVRZA5dEyzRlUek_x8l{4@}b4y8RTBGCB}|x@KmibT_k^*Hyizf%s!xw zm7FIYcHT+Pt&Hav9A3ZxNmTcf+8=I8rJYGH5guK7Z&xfKLZ)olV;|#K7;2A-8AL5m2^+=O+I-iGMw5QtR#0a>5e>7lasRGkwC@rbEF2;I zmNC1@DLrPK&E*Wzt7AU5(JLSK)fE741 z@O#i;dVfuC`YK@z);R^T@OixWcY}+hp`VAO|EW^E{I(CRHLPGaw(!jV@Lus3ze=Wm zL{}mx{e~Xhr=k4RXfo}{DeSeyf;wlKkbM`lKxjUW2TMb6%6=c3UZjM6Z71NDS1tD` zAc%YZx}0cPujisQMHC8t5=_wNrEoa^v$++plE8b+JvU*byE7w2r z?a0?3s+{_k0Dj!nF4EW#zz=VH&#M;N@#9_hL3)B7@2$`xYH;lZRbNN(PEW`2k|-Ob zGsi&jnjSE*-$Ay^p@}xnnILv2hj7V|eRy1UCLLS3l;+EMvi1qdY;*ff);kno&64}z zwjQxk5f)p23J|$)c*ZjDUR10gk zi{!Eo*{z{gF?Oj0AEFI{$LRF#OVg-{ZUlkv1{muFgnJszZYm5)P_u^2uq!%p*|=A5 zX)F|{JNcF!tWRK}pereMU;6tZSpIs+d zT8R@IpdgF9R5N?_TMyj+Z5F7ytzk0Lve7wjFZ(dflURAqAylu^K`yZ5&ND+2xX!g&KI&J%b$Caf?g(Ie;4&)R)W%G2@iKKEhN_W8xbf4U_?9Yy8^Lni>-9b1$nZdLJTj7I3?GI^ovm?VX$IT&aHT+PJSBH3JB6oy zK%XqWjSngs>FkBwXobmMaoOWJEam1?@i!@ds_alQ9F$KWGrdQl{U!zak?N2teSKIs zq7T5P5PUQ)p03gifPJ@j!laXXxv*!Gx%uh$$^7iuoLl^Kyr_Qz_Ku$k%}v*F6P50t z-uni_j5CSJ!#u7w{xo>Ww~(caPGI^kRhsfz9rLXfrT;rcvF5LDVnfr}5)G+7c0lSP zn)xW3)vAfudL1+I*t3elYQt+{JDpo#xX}@J*q)KU-!7vs4vL;fE$PT!Tk4JXn*k`EYO6~Q8E z?og-D0I~d0S$64{vLw&{6g(~|hWBwd`Bx<|82Ukt&hu^L&kxVq~-X@#U4)|~nV$F^nAT|X_b>$?$FK6HRXJx_48 zmAj#1(?ytb&WmonVnjDR^2S0=Mi2+*3XushlB-6%#M<-?JrdwRy%Z8y%Dp@6y>+Zu z{)V35uXIyvJ)~`@!6Pw6II7Q6`sQOc4|($B zy#H8H$iPLS-W3NSKbki^Zzvl3A(r%= z=E5IV+{>qbyd-@WQZ*y$$;#XPbBxIyyON36Qcgp9D0}d@{4O`aV>&j!e>E9^W!cU(k+rV{pP@_Ihw$|Xr8Zm z)*=h(|8c(xN&y$(^ z&*M_wz*+d*a-aOJy2e+aEXG{F%rQQBKC_2Q4mHW3sJcJS zS6)Jvg+ebD-;J={)=!H;p3#Osq2#-3D%maI+Ok7gb8-`B-oYBt0m`&e3VF9sCYCwen| zoA}$hd*b0A6)Xd9jUd*q9O>3^`a&YUWeZzVg`ILHLh6+_Vq2+aa)o~$21-2~C-**& zFKqkJ8c7@%+(t=z#uU2C^cGCa`-&&?S3}W(IN&}9aQwLMBF&>k#36ekmppAdCXM_6 z;}b{22T>hXc#Z%TrH0CnHQ>f>fxFo^9~=r#63-twSgbsd+79~&Y8i}eXWHTkUfPoQ zw}Fzmi>0-_*XT$!>p5(=n=M;=LRBoE_k%Soye?h<$3VM>8~z*>M}8dlN7XO-^u@3) zzCJaVJXE}c(LZ$XMy4e_-pJv>*j89#qr^uTL~%(T@?bM?FK45rOw~tDmwH0B!fCmE zbWElhzW1Dnev;jAV^=Kq##|FE%?^OZA~%}(Dx97e;DHvcx7nh13F3*r(`blJ0)tC6j8*oP-?Iu&J5_tV5N&L6y@euX8 zk$AO?g>feq^Ilu;iCkF=`CRadw+z&U3)7{Zds~Kqx}_%$&f(~X^)rO?s+Ta-R+YvW z$Dnn2BYfI93lwX_LWbgWme*(`%ukO5YP|&NqWwur|0!f@buskh<;af((i#zcUyx&I zZG>)E3ErJS{C17!ME&Y%(FBY0qPL%Q$gw&#PHv?ZG4Y%X_ogl9vkrFgyR`1}y_!cHmewHfl%ETgl^@v`@iA(8HAXx(sU20}5UM^( zqo!f`(%SMXnc;(#OtZI^@MK^)>3UraD$>%Sw`cT&fvaOcv0pc0acnrBu%sXIotvcf z%~z23PVrC`Fq$-^x^i2?n?Pw$4h{rfADY32Rpz^?af3tL(2O#SHywI@?`QLU2=TND{|t5Go)FV;ew5$ zL85t#*X8WEki~`~i%DO(2=#8<$ZPANcby6EwSS~kzxxA*i{}Ak5xD=Wo?qAVzDP4d zj?C{2B`2EYG4D$~s73VxVVEJkvU(uPi%}7~=YFJaBido_n>pY$ipB4mFUsHUUtvR{=ZAZ-V>*L%7uM zFn476Zqda^OS1J+o5-eWffRom1M*{r!a36hEI)P@oP=VyIii%fo3G>sJ+OlYZ&|Q^ zc@rNEs=)Y&?s#_80Op*2QjpddkQ~o>Bd!QP2_fGn;`X4??BkjnG_;?E_*TbN<~`(u z_>x&0^vW>8()vRrdh2u?w&WE~SD41fEIUgwJBDJ_95bA3pie8yil8ptoM;c8!F~B~ zL{#6mkXO}d7D?@5v8F(cm^Di^7iW_3r)ddTABuwSQ;f+1nG>SxQqPiEEd)j{JBJ3( zjS#AGfH_vvLE{dwck#L6hbGl@;QI!g6TJir)&1$R2x+a=!~MkB+6HXjWa-qeTLxu{ z*3vq1lSo5S3bgG+yfRpgl=O=xnYo`xN~p9R$fQfiD?NZV%UAr2=|i~>X3IsZipTKJ zWFL!;&2_@Nw%y3?=bE4w{s1p0JOhhh5BSzkhxiq(6}@`lPonp)0Pf9q90)(5tMCq7 z=&8uIeSFTgPp=kFlIp#>`B~5_Q)Xkj_6>R+qj4S%5udi+MGv2zBX&^Cl;YUe$xUNv z-Q?~Mp)l7Bm!5ggAMwc{NiR+lmuCcR8(yK)8-HG-*H6;prwkYIbfjptgA(y<|0VJ+ zrDSBWE39d|#`kooBx6g;`Kf%i^m|*L@MAxSg3L^z;G{c$;nxM;?$;IcuzE^%Z!ty{ zQ$xY$ZXN3gxFI%i2u6b;yRp0NExPn!34OcXfmN6Kv5_i)Lf{h}cscC>bcnRc&{$XK zbdW=js!IOr=BvD3>qNXAa)8J)6UbPY2^pQme7)*=uBAbV(`sGEpZfJq^!3an{5ks^ zul=G2Ye{2DhrFA>wY|B9T`dOHcYV7o?a`tO- zwfIENX(pwO(vH5tQcn0@dN(p0tLyc}TvZYVR@jT{vZCOID3A`q4m?iwgUR;S2tO)U^e*c-i5+#5)Hz+iA*+I6+V(Pd9_PRoj}2tru^r+^*Q|vh zy~{x9T_qft%u^MyJe{}wvfz8kfZcVL6~Ff#FRg#-0fk8>WK>cX6xbicAsI3JYx84d z>z&pbPs-F<1u)#ej$H%Yj3JGR9c6_-Wbp41yPr< zk$BKG6+aL22cMg#`GtFTp>ah9ELYx2J+vyQW7ZigRWD?@YafYQ;esT~!@}}M%~=+C zC6p~#79g~AR};Poo#GiPnSx?tl%&68HRh&iQjdml(5Nz+K6#ZzWh7A~d(sNn?Bzqd zO6%~|zH4+teFEM+v7IWsYbS4%NAgvlBy-S9;}*H5524iOA)Fh!AJTFY(Uwkd0r?TwWtx=~@HFPc! zb=+plr{oDmnkVV9iF2_aVL!I!Y(&M%>2%LxAJjb4pBC6!vde?#!spY&_(l4*RNnOf zo4nBhzX=KCsreQbX`dqOkKam<*HT(3{Z@8*y$4O*$I@3#0a!S;2aA_q&JJdF;I(mz z_{A)mDQ48OUy+ZgQsV*YwknFHbLnDvlWyX`!`0#oS+i*2)DXNl(uzUTAxu3+scz^S zR**9o+r!m(;~V#>`N$zc%T!&uaECb=oD;xarH>H*e7KM<{^m!YjgG`EtC!*V&&{-8 zr6;z}+)M4dh66@G9`EN%X$xIJ9&x zYUWPGk`gUeVeE=m67=cw=TdD(+Y4~8d;}4jSJB18qv*|H@#wT8km@TfV!c=VW<`Fd zg^!oNi0f9H(^(I0V&;xe+@JdZ9k1=9DO0|)=Z~{-*)Bt#biJTMO3j7pv_3j4Y}2A?$?!7`mGSZ`~>W>`+e(*7}Y$$K~UdFVK*|6n(9>~6|@S`IRg zNha*;nm#yUl^e6Dm?Lfp>n|uf#j(S?S}>z@E1K|gm~Q(X^o;pJ4Fe2VO{gX<`CJ4) zUV5^!hT&|Y?mOzEvzKZI-k?PjJ;jQ_KZObBE5)(86X>9hFr+;gD~Zp>qVsF8d}}<5 z>AXkujb_55=Q6ZCLtfZRlcl<^?$o})kG)#ZN4S$bKsaeKODuQc1|~fZLjNWMs(dR1 ze-2S(S0~vCMn4p3#J~`~e$i&ObY-k??T|c6^1MfKd@|Xq9fjfzHD+we)?4g$!G3g@ zHxT6m64<75JcdUHv6X_AaJu>dy&sYY=OPpYI1nOO%N=9)RRicJqucC59VaO^F%@U^ zlMx4$tfsu=ILf{2V$B5~@b5UxUvauW@s~f3{~vIdf&ai=M*jus_&e_MUyIZIiT@t_ z104#K`wMLLmuLUCi{pQ^J1GCp+g%OL(Fb z!)kp?n9uENxT#6w}A1PjMm4otOYoK-l@*Z9h^+fLHfN4AoO+b2ugF`*x?~x4NGs>!qvYnwjv_ hyU7I0c`Jw|eLP*_6l8Cu>lI*C5WCwdZfmsge*tpSim?Cy literal 0 HcmV?d00001 diff --git a/capstone_project/500_epochs_40_lookback_better_errors.weights.best.hdf5 b/capstone_project/500_epochs_40_lookback_better_errors.weights.best.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..7ef713886892b7e1b0ba4c9d07b2d292e66f0a73 GIT binary patch literal 140152 zcmeFa2Ut~0vNpWQASjp+B?^e3NRrH|+6Giq6crUg5s|C}2`YktqzEb!B&%Q+Q8Az* ztS(F_m~%kP2{B=g=)Vz|nRDixng5$_?w$L5*Y!N?UfosQtGl|Zy1V*aizEm8q3zrC zXeVgCWMu`C0;Qj~Z9hL+uSgy7pGj@;Hu|*I8?n}KX=}K(gIq>!G*J zxdj6MmOxbJKi2C{(tlz2dGpWodX`}ee_MaH=KdA@FOfi-Uhisc@0ixmrdPK@fUr3(L&$)s*O+bH++8?w;x*Q1Ab>G+RB;Mti+-#rghvZ2qIhcP(d`pRRn>a z^F+2I*fYqd*_sFhokf+A6NO@8Em|$}GgTmH3j@O=f;>#E1cH_u>$V#kfxtT~WLC)R z2oH;&Bs0;7_x1@6_wi^Z{k$<1CH*_>Ky#DY+V5b{Qo%O8ZLRKKf?A{+mf$!Iv4!3AEKmaZLdJj@bI6K)3(*p zcJ>LK?Gqdk;2EfGsHNRvk3{K{f6wRWJbu(~IHI+ih2LC6t7x045n-MI!Jg9to6{r0 zX8VYerh7(s`FjKe&k{*E+~0FnGih@0?7%=nEprn?EmIqJ5tDbsyq^SZQN=wY`kOVE z73LE$J1p2E{AUHde8T@)WE&;IGoraPU(dks<|p}ucr;t*xt?L(&CG4d;mvHmvjhJo zX?Ac}NZ{Wl1O&|r^a&El!81ZMO^7%}HPfCQ91zi5kXduY(<>riP8(G_!ZX;vrH)>+ z!@@-QJbp{}7uCTdJisp~B*43wZ?L8%rC`y77$ACvNcPPWq3B7!7y3lc zumI0sFCS+w5lgUNb4h>cp=j-JQEGGhO^uo>*gT<#BHF&5!5*G-e)4(;ghzx0OrPD_ zrsf9uhJ*z*7ZdK|<1OND?uP{nMDZ}6wub!U8aahU_=os~1pjWhL~HwrI{q(p`F-il zP5&oNb@K@e3IA;ae^#uy6Ffw<_VbDOV+n@&_{|O!$*DzxEd%Rsn)8R`pY{1e%Fk{L zh?wW`ht$?i6ZL^eu%ZS>w2JUI0{kQD&jC;{b*lLz>VL(IW#6*U z{_QOPmu2K%mf?S}a%`I@|C`pC=A!BPx68<1%go>I zN`5Uf{{u?fyaoO;eQwK|5Pwg2i- z{~LAqt+QvKx988@|KBhKHv1h!s$pVk(sG$wncG;ITbTA24S?xB5uP5VKN+lTeqL6V zrWV$w=4Q>q<0sYZCsjmi&TVRDZDnq0(!V*cw~v?Syq2;>F`rrC0f9d~E2cjEOss!y z?E^!?n;jzBK|UgvMR@3J&oCcv51+8Gkg#Uk5ac8BU3fJ!Ocv?zPYVof++7#2SlE5zs{O2X$Jle@#Omw>63Lz3$w{8^MZ~(u@N3`KEs#`aPZG8IgTH4~!insXB zx9q>S27kp}{omukTK3>df7k#q5jv$==577ZhVv-v*TR0NHP=7GT{)PwFt+u3Yqnp( z{}Ktb;jSjNwzqAxskGwp+QiU?XKK@Phc?2$7`E6O84=pC<(gIB61J6}(;6>pXh|0V zsD56%ZncDMeAip!pYF7zYqbP|F|GctHony3EreawEum~H->z0%R2$#**7&EsEevh) zC>z}pZ{xe$8W)UhNpI7`dgtHr<&?CRGrlDhLA!olTWeavw(`!m#v4zyGW`Dx+VE?? zueX9=X)AuM{ZIT_3ljFP0JdiQS`X1P+VE>_xUIIZwZDy9e9pFQ)fVMwqx|(~ppB=E z((Hr$+Z-)TX_Mq{8zv@@{%OZrewuNy`ac=O#9JiOxs`oPYxw)PgvbImb9U6y{MlZC zKugd~R?uxxE5B4LK2==2rNCw^U-Km)cHO*%kQajrhaXAx4$A?|CZ~& z?*7kkj=PLoo_XH1CH!Z0J+*%eU)#9+udDH|lK&@4;P-aD&3-nvj-R$Vx9M(M{O`58 zh0>+Y&yO0+k9g}%lMI~MuH3P(HL(fi zmXD;m`_gRwV*%UWbcK~|y#eOZk?5X3o2IWCi^{Rp?D3v8OeyIp=aA$9(pIV%F|R!? zRd#{_i#n4+MSt`i8;vI>8<0NhLy<*NuxDj=T-(_TLyP86-N)zPz-0iQ(xd@jT)D{V zEufV37|!Y^vU=SSU|W5Q-K|sQVh$d*JA`Sx?E9DS-AEmmY>+2e?@su*s|#&io(=-R z5UY0!^k~vD4I1JiL%WuTK%9m=>VBWX*52txY8wqHMz)OUEs~?VLlj}j!nN$G)O6~c zt4xx4Ry5L89>XM}P)lkjOzj|v8=l^Vo}CQPVR;-XZq>t-$%;_6XCe01v!Qa=kvMx! zD(Bhr2Q*I0fup#J3r^L*3nQg4AZr>eejiWdD$P`1Vv^Gy_A+${ z6}7v|WaJma{FpwtMI#@^1wZ2C0%FKd!JPZ3CWWcl({SMyJM>=XfLl6`#m9$ZnbSof zIy>!Vrt5dpTlpsFZY_?>Pwb=(%e`3p-GGLB~Mw7e-|8I)L7nI zJ)508Rf0p#?S}k{Q~a#U?PyiE@62x48NAic3DxR~P`B4U&O<$xMfO+#)rY(oY#Wca zojXF)(MCAi|OG<6kQHAEAK)!5U@*LS(M z21YdTdj|PsSz(-g6*IAPpndYQIAxojpwV#3c14^J#FITK>trBh8!J%vG;_8>E*AUG zABBh92XQH`?s)ZmCM)dGkBqn)xbaN^8%L%?;nj<9B*+HM!;R2dX&YQN8jok*^kwQ> z591oITpR~+$wNpid?OUBIt}tz zf>ZiOu@`SjVe9}`-m^mx@(zY1yCewB=P2`Y?N_sV!I6|69nPdFnR9e6WY%jgCPKV0zSA^Vmd zgyP*S*yj5AOhW%Gd!A^;vl#+x9~ezbI;vuMcj6N+E0gxkY<5FYojQK(hO0`Kg2w&D z%+<9AMLQrbQU`qYBOhiQH)oIfXTwn4Q$VkkxHXQ>^kB6Fm18O_JCuNt#rsfe{z@!5 zeFG*$>*HhZXgay9FGQ7%Cb6BPuyeqEyGW1DG=6Rj?C>(ceRg}e0|hepWll1yo_H5B zvk&tc{?Tw<(4Eb>RSc>-d(-ag3)!vR3dFf>$9~==)2&IJFTNm(OUT1T2UA(;-5tQKTtr`Y*70k0+K{f7KGp7!5L)h+#P0fHIA--{W)N;bcIjWZ z!h4C>Go&Lf#s(a zm4}xH)M1%ySAKVRdvY2506&*Upu)EO_Vwv?$n~>u;k!7N^Z7nhe*6yKOjRk{vsd}C#l_`ahNrN+O^?CB&=kWSEN5pP2(WTy zJe<0iM`!lh(xBP9d7G6QShpe{^sX6G#XckI{YDk{*G%R7mJP-+*o(6`Ba2g;9O(8~ zdwSU53Jdq%(FCOe z@ZG-)#^y+(_4X9D)^JU!ye7O4X{*k|TU(0Q6^|fH7-oqR){j65ja=-! zw;Wsw7C?}}By1XYto&u3H1t&t$J39yk?AQ@7`ILwZtlAP(qDU$wL}JcaN2~um)*tc zujaGSLv%1@q7VnsDyBSU3>|nP#Dq-~sZYn}?B&}VaLQYj4Sgd^3)5A}JKYUs7aw4? zGquRNW-5Jf5>P?cc)LRRT@|J&BdEgy7rH+6GJVxCz_I?Ws61c==5L6{%Qe%n!6Bid z>+~qx@4Wyey8qxa&u$>^+9SOER53_PcIHafFDBC-jog??UC||U84k#`!uN_2xc0Ut zj$Gde<%<+>#>hPG>9Ku$m#2&2n%!-7enJW!^(tXP_h)eP^eZqZk)V~c%$PP26Gj@6 zS3(KL?_SGXyG*7J7dhrUsFqdg=R(B0BYepxae9AY8h(!Mh+)TOV9cqbU=cWk{IkqR z{Y)kN}E~-(GTzv&TCd8a0HfXD+eaG)xh3E{Z5ij1v6(;Eg!rmk0b4%qHY?i^ z$_~EnPC4X?gAbmEcD{@qy>WqU4DSq27Z{=J7csVQejj|_MG@6TK8IY_9eAL$o=?_7 zdh+}#mu~tULS*uA?c0k?MMDfXb}|H;Nmj7rW-nf8MQ=>sAw}S=g)Vv0I4wL3V@;w- z_v&IsM~BkojIG$yUx_>>j>Ma4F*sOxHLSY(73W@>L^d4drEPWh%5>|Z1f6$iM{dVHg6=bEJoC($y3D)_C69}k_dQ=e zu)9B8pQBG z>fze>>XIh*%I?LE?tKQ^-|L{_tqi8DWR6ZVj=|gG`|$N^0XFG<1);(${Jhf`*7Y_c ziT>g+#`XjEA@>CHx%QQnYpkTH4_1(1UlZuf=>*SYwJ=C+EW0Z|7)z83IJ0|m*d>ii zA&q>5`TIPS~)r z7tX!whr!Yl(fz~`{^>Gpipa31g@scwt|^lREPlWu-p?zyN*qjm zFWJq999^oYw(D?yI=d2Q$I9xL;?Ob6NNvMC=2ZO-rm8>UgU$`d_~SD8TumI)&10c) z=W#GG*QO8aVtIk0KC2mb4W__;@UUis`+hcFSi90i~_d>$>(|6eZ2gY== zyc1cbbY}@Vj+C)wFLTlu$wvCG#C?-okmc4f%T2B{<@ixH`B6GtHk-qL-LwiHp6`Se zKDYUcKSrZu+jKz;#4e^MzU&Z%Rd*DuwK&-tm40T`WaA&l4v&?t> zP_Df@I`%5SX`v(OaCSoZTK!a}Jb|YYpJb+-tc&i!NflRyYhbyUH5_HtylYA~x{YOQ zO-`0wT52BoFX|8CemD4=UF2cg>BroJrOP;*^cyfRxe!;s@TZrhfgm-l7+v2ULFc;3 zXtJ*m?dBRX3+W)rjl2snERarom_wsBd12G20~qXfkNF!tf#R!qFenA-=1N~I>8%Ia zQZGQ&RF8J%&f^nL%j07@&N7w-;-ucADiWVMw+ad%U!sb8EL8o~bMH51(aK z^kT-O`>j7o`K{$jopSKl(EaS$)G26qZbpTH_Y4e{TF(^Lw4-NH!%#A-h*vvlitEMf zXoO-4#M(CSa`GH@(=`HJ1qrf!WQ$25zvkq4EYBe!d<8^E#5%*GAdM?oDjU?$jf<=d!L^?< z&{5*JXe~VzkME0T2Mh;*p=mjOF1-$?YmYMhb;D?=^+#3{QvfNs8th4@x4hkLIkGS) z!Bw9I)2K;3>CL)5FsbP%jb3DkmS3-enQIz;x+8iaMj>z1gZzQ+$ zV^*j&xHS!hxnn!f;><4KbS;)NM;GCS`bF4dohh#FFOLhSC~JsUlS}aC`{LPqaxo$(&AP7qO~Z1>Bgng8v~U2DbEweU&{8 z;n_3Umg7e3)X-G+bjc}bGWBC7a!Dw2v;u5168MFI@A#@7rlfD302cSvV5V3Bg2HBY zbDlJgani%?@`|)mZyFvg+(!9cpW$1HB&~Y5n^Gq|U^C1%ai_BmKvQ8Fx-aWPVWRQ5 z@Z2C2`&bCY)*US7ML_$wFAF+5ErfDQkHP8dp_GvH5al7PDg+ED!RYTA@kg)hH!W9@Qsm{H9Dc6!nn+^MyO zdfoX5hfW+P<7LNK_PQ))v?zxw?p=&?CANa3*e3AMD}boM((G7t7DPq9-3 z;JZ!a*~6z($?@_f{;7Nia(~(tJ@40ml}sGQ-S`4?F%8o9`Q!WXulP-Rvv9J)Azc2* zgC7yH0;a0Y#G?m?i0nymh2@S!u(*1d1&1K&_?hEY{vZ{-S%OLamTZvhJGiwu8N#nU z#qnmAxWL>92Wi#f)3FOhw(%TIaF61jNIqaAWouws!3s#K*vBjaB-z_}%hCTqE|<9K zD>O9fP&z82@BSh9(Y-r~4U#AE7f*Q4O^0Dv%}zGjZaHqU2AQAWY2N#NoKbNgdfGK&qxl)9)G<}FEqyYJm- z{j40e#rq&~k*itb+jelWPZlO6FT_Iy4rthS2P>XG5%WH0;U1R>c*jt*ehE1b#j{;W zO7aoE(Q+mB^K)Pwb%Lm&0Woy73Uktm#_DJL`FZPvEF;wqBbAi#sYDuAG+-Kw`jUg| zPb*QU9inH_8klBro9EYAVh5`bYNv9Sg)GoR@wM9Mc0YktWRIoD+M!_4q=%-d=h*G> zN>Fu07U%cNrx70$*xA}AEL86>cVyHsjFjoY`gR(KUAr4&jM_EOTWm^w$4nqOX#rLC z>w?(V0yj**!1Ve`QPc@dc4|rhJlLv6_w0vL@0|+Nv@sa{x|>i^_%b#(Wisd~@1UAf zpO{{t1;$>^BUiCcEUCtp-)d$+b0oDfN@p$0N=oH@^oEf`&Wi$j~4peUyNqx&i-9Tvly%GSXr%LIIM zcQVZ3T9YQx!{n(@_33z2d4tCA9hgVI9@e|&L`=!0<%Iae5yim07@{1*& zPo}=}T&R9l3HGV(j42=M?MABWVUv$KMr>kOzFm&o8p6=8wgE@*yYQT8DHoCBi)&te z!O_L8WHo*!z1K_TuJxC|EoBAhb6y3d#4YHboey_uJ*a3qAO3y(Uq2ttX+5zQbpPA4 zkpKMo@bAydTTXP^&hgvi&=&q*v_Gh&-2>W=?tVu9zWtGZE1v)M`#-}$MYiHH4z*?HujDy&=CI_#c(P@6XGXT5F@#I*!^Z*Mf1e7PKjaLmS~=4BPNKzsD2( zd+wn=Rg`EBZd&_1^!y#A-z=Rf{VS)zb&u@9+q1FfgzJ6`JZ_+j^w(_-%8JmBbKC~A5m*9%O2eq5C zjGfW=z$Ey+&|`l&e5E^36ki98Hnu*Y?lYwKx29+2%iISZ!{?C z{B>4;a{?1vYJvq#9yoK13yzrAmEsN$2hCtj5TB%uI>JbF)k!Mw@ zJQR=LjN=t^K(VVTzE=)mc5$&-rLBxlLQ3GWWEe?}S<0Dmu~@q(685U@MK-(_-g7<3 z?j-fXZ@YHFr=}4kdu%9nlkZHwAtGxnVDh*;Pu0kAh*MUn-bYS1c zS<;E9PuvZz9p==1fX^Oxp=^d}i6#n^Wynh~5}$~bzy>J+_2#X~WW56OlRe4lWsL@L^F+?@C}U1v zI#cQ1cc5IT0gI#8v#9emY)x=Gw);jFOtVa7cyR^uknaPb`-YO?ct19CFGog)jR(5eBtH)O%N&d23b+7$Uxw#S+mTZLhBht9zxizX3tc0-H za@a>gi+U-pV}&xd)X?u$#r4C_c!LTV;JdX$uar{$W(QY#r8)&NJf&zO&A@S> z3r-f)F;7cb$`3ZhNF!Tn>M@PGD4j%uLb~Bw`)Y``f5W8r&*6r=;@G_LdX$wunsyxS z2a{*CXYyyi^1)sDQugIny!UP76YN*;UXeRloustg)+Zadi|3u_T9z7C+FfAd-iFcc zz%Ojrt*zYI!4vS%@oqHj$5oj2#*mvkFCP-pr$DBR9rf-Lz@ATNN6xP#*t;8b?6{j5 zdESW=ZMWjsS?$5p?X(|t^&ZM_q9QxgSBq^3J;guK%!E;2U5H)K!`CZ=>^4QeVpT&c z`519U3gESr6F5d>{js;L`MK(;ongS}X zWZ4uePj>chA-Bo73k0lDC)0UabU!nfxlPa|moZC0|HoU-q+LF{e^rCzYbLW>CuUP+ z^@@t<@9JC+l`Wj!?)LO%Ss2{45JUZkC0KMK0yMkI;Zr_=nJqk2wpOEn%_yA<&Mz$} zYv4gvQY7RC_ZmZeJB>zT_ei`FrpX%zZRMTT><4+X*)aagKsI2w3Di;|JM-l%`&zRa z3Km+SeWWrK6up9~nSnUOULJOADdR8Skj1Rt+qp(BN8|(d!+3aW=e)6&g}aMW?QmVT z;*2Cke9Hx&ab_$a--W*RTLj;Gc(bxu$fjP%BL}S%7B8+q#pC;9znC*@t+yduSf+!O z^OitY`3!hF5OYeXj$& zk;xreqC%%!G}tXGEm$U5&0aWsgA!?RpNEceTg2-f7TpWG(C%zKAS6 zLeM~BIDWowTCr;4V7f3z6LN+RrJmn1nRmx!P%k-~EgY{(GZO1yqP{d|5UYbKF_Wn& ztdz;RNz++nk>7epdc|}LH*g8|!q*`k`FSIAdBbmS*n{znux;QiCg%TzpD;s~(cEZu z(f%+?`6|MV3_5OiR$&jbD%7Rx#`9Ru*=1mJXgA&VwP4bfOW2&VPb+SQFQ8NnEmG9j z4N0?-;DDL19tz-E=ZYM#u~oMfb%XH zN_%C?Jcs5`?Z-@hO;tLx4ID@kBklQnR;D!efDU_24&YyNfjJq?rM~+kxGi<@^gJM! z^_zBuZ4c>Al4~bJ$f?0pFZqbwsr$%=ZkdT&yX#<#jtwaDm)StAC9ESK&c-j-qP(p3 zFjh}=eq+XTuP;d505C}I8x!Kv+%7aOw8C7{~#KAuXG55nA zP~zMs_Q>}nd(btBTl;7$)AW4HYr{&IQTdFWIerDa_e^K}Ts?SoIgEu{e*?BV6gE6? zXIkr>>Bn>xQl6(mJyV@&Sn3YC?fr;VwR>#$(SAR>QfE!BrM=kZYgY7Pr!rY2jG&Jc z%U^zfp1n_cT2VfGAa5q!z}fZHr0<*K?KIjifN;|!kP!JcKaLV39CnyJ?^nr&jp|7b zyDFKRTMYT^Oai4$SC+4`4MX*Kc;8z<`-Yp4O{WJe>Yji?{cP!-?nXZ8;|JDLIs@MI zPGFmOyhKlJAds6p=OKf_S267eYS%T)?Ay9euafS0>UtaE09^<%pQV%l4M3a{+cG+|G>|Q&z z$sq;QgwZJTsI#4`y)vn+{=`x*%%&MbWogolG&XFZ2D#5DCiAYB*i=^mMntO8l!e!z zy{$Wq>-mz+Upt(#_0rkl+PInkNtV!KlBLKadL%v(toa3)Xn zsjpK{zOI`dCpfFa!ls+Eb4QlY9O)s;Z|^4qz<9Gow#Cy zQuyi{j%f#FX#STZ>-~d@U`SFAba-FG9*k7xqNIx0^MRA;gxqF+Z98)^xv5Qyd|t5G z8O1PnfDVlkQ{bmb__CX$KQLZ&hSlxn20HdVPpzGSJEPaPXF;Y&y<-8>b^Iwi%h zb59M)=xHL`a3_R3(xkX=$%DcBjRtRg0O^3|8cwzQEZTl2jvc(63%5p0<=Xc?#8>P) z3aTW+j}54o4bz>!oTKceo7VyE>!Fq4kV=t!cL=*O-}&S7*0pNKo;NiInIz0jerI z$lBsA_b@yf>K?0teTEfWS!|D$v)AD?3(?uXRUyk-8Og?OHN_s^dqN40$2*+^nc!dz z3{djKmjx2g(S0V{`*m6b`M5?f?ZEs&`AS#8cl<}6W!Q_ zuHDGZK801!7=nE05ioeugEmZC4QpdUVBG{mx*G7s?$i2Hoa`ABI^e_6_NoNlaF#7e z7>hG|2PMq9dYZ4@?f~CcZD92~U&GUr-$ttTuC^`JQp=_aw=Zd@1 z9q_UJ7YV6Um1!Sw?gd-kafyULocJkdPR`|vZ#$h41Ij@6nA$_F;7T#2aF#>5Q zvEK=s3iH5aeI&cM+ZW|)mVn%*z90zf0@Bg1+4p2uX1oMIDlVCA)6NE;unw%xl2Wd* zpDyTy1hVQTggzx_K=$<(h}bv+Q@vk9pT(Eq)^K+$o0);G%a))?%zl{bF&o{ZbNK#i z;&FqrFH8JvfRBXTNCtN5}#ifX=)#y#`{*&1mI*w*8mznEW7i|CH8Sl|Fn(b|$ z2P<{ga&Imd!!G|y=In72cx_8K*lrM}y?)Gh-&26zV%}goyB%7IFNLKm#jwayNNcj? zDeZIz8o%TV|9tcaepNRcQDcTfub%Ocw%>^+wQI*~ZyU|VcQnCVIbY}$v4)vVdC6(j zT!G=;MHtFG*%*~AV54Sqf{0Ed@!jFxurx**Rcu8R9hDakfX)9Wd za0N4`-l%>9NkaGC5bj2#mUix;lswyO=JhdFyd>c%))B*N5nTq=Ww zqn^S%eLL(Y*a5jK)Nqr;Yv%jV7#=+fv~9Xq&h#&d&MAe;ti1CR7Vy{2m25Ag*t07di9}>S2?FZ*@JDE)u?Lr zpsJW9a1B0bYtY)Snv@2iC{AnY&T?YIthtws)hu&4Lbhx; zo4(MJx*55$XA5VL-Pl`f%m@x=9h^+Lk5$=43we6~;{YvmQfKxxpV>4+R|tAFhkKIM z15agUv+DeP<)!kxrY)f?taxqd+<^|D(V;;sHX#31@g3s z=`p+6C3MewAnl5o#-?tl<_9^R0@<*A@Ls)+-Tc&->CWFsQfAjcWqU8SboXoS^N5=) z@6}ZDc`HSAl47h(W-ja;X+mqi=+P%fd4B#u#7T~eVZ!1`)EKmfooQT7JJdAU4Q&aQ zvVRY~khuxPs+U>BEo(m6CYp*pL-E6vtK6b8c_z2}9(Q=KJt}2g0@*q7=rnm9U($3G z<3>p1+#&f;x>=FVN)N+Khpy-|as`aj6r;x40?2<{4aM?%*cZ2@U@8PSFd`rK$_P<& zzg30&nSs3US11pDjfc2||sJPq})+cp@viAD$LA1XbDD8%&qjX8e zNQ`_xtz?bQX40{F6S1s)M>>%DncpxchGq50VSTK3QT~nxEM!6fs~;Ij5hu&}fCGov zC#|Jy#{g&AJ58GM=8dFDAE&d^yC>0-H{;OF^A-18SOHf>YvjnuhgrL$*IAXDG)rod zXDa=#z~NQ5cu9(7$+5<`qTYhIgnsDdu7?NRyHa7C7`r-2nk!9n!OYCr~^;khr!z3xgG z?p;v+^gC8J)P?LnB+{0}JnN;Q#P-!5;S3*^Qtk43c79_l28zF7-3Hl!%~vbhXl)EP zZcV4vcCTQ|l~-()Q(p{~J;8z%`?K@a@o;6~CpN5u9dGw;2;IG@%x0^~Vs(E7e9_*N zU1;12X5NJ)JSu}rJ3fS$3j^tF$AheM&=X7#fs>a}rklP|CuQh2~F& zEZyD^HNGn~MOiP+E9iNMC0;V1$Fna( zt_VlF`|K8W>uCt7UL8f7cZzV!#;N@7;x+VO;2av-{&aa^7@eFn zpRP&OGIQyp?1EBXnm0+F20ZMEWm`X1oWHmOj$BLUt_^+0R1qxXZ`V6a)jN)L za9;|cM@%U~Dwgi#^`k7eJd}|c!Y6*KXTI-aFhjkBPj#$?NV)Iau0uI2anyAfF{2xd zT$fz&O5B^tH(1c{vU(=pxtpEuAp`x!jV8+_r`Uzs zNo=_BHa5Y+lD)a5LK~#?D$-ZjgLADXMYX%nE!(O~8Tp$i;FS{9B~RcDALy{t1~T{r zev}V=u!UQ-$B)JKu!B3+=U66y2&-|Eb=>F9?v5G4)Ln++kqL?LQF9a2jcZQ_3OmvI ztUPv&y|OWt^n`4aS$K2jeNdI#M6ZvHV0W#DK>x=|?9|jTtn9K4W+&&;+f8ZI$1j18 zs5hY{pFK!6w2?hLSVoh+o6(MyLMoZ-O)slA!R;N|tYPI-ex${6&`+C6^)cJI~;|F7J$w&7QHCu1mrAxF`Sp<<*KteM{zO z7RrB78p5fTrGZ20a(H+v11!w_I6I>ou;|cLZe!$4ki1^S^|kGdw!O3YtO>cWI^iX( zak67u)E9HIM}BbPF2#2HFU1Sjm?a8#$j=wfS-DbZG&V-~c1gTYe#$aoO>MMr!lEU@ z?FDhd&@JJ@UbQho{elqTNV7O$O_w;~m#bmId3K4y^)X9?*ZRf?&j^x*QR0%25$efZ zvC7~VKQd%-*4yor<2SI>qB(3#rJ~)((h&a5fk)gn`zWq{^Hwg$O2|Dk&w%k>-N4m( zDfjT&jf%$eUHGpQ$9r78}lH-036#o7QE{&_Kk zj{CxCtUn7|KIg-aU~?3ff9A|3b0PUlA2jp!fc3BKA>qvgm@&!_lftK?i?sy4x$6R> zHjD@QehqjnHKYLoHUqkR(hUNH_n4%iB7 zQp!0Lz2_I|z8djv zN8*I;8v})o2YrRLwGqPbx)@=$S+a0Jd6Mw@-bi7$6<)&H`!Pa{3bk9d{7Xgf<&B)5 znF3^em*h4NUjfsuJ?EYs_G4OY_>%QU!K|nRz3x4?`{Z81E20_-x0j#X|5`IOa8YF2g=SIJkq1+m>v*;&nmr>V)lYFg?1N=+S zcHLYo|27z%cCCdcq>W#)22;RJgFtWd%aMO|7?2$%?%6{BzG`7D=yJtyMO0$)Cp@#|{JaLXBm6AFB zr4FXuQxuxjSK(s+;jnnC44r`EG}P!kSydL{kMtNyIU*@^UMq&D%9Vv5XL;h2!JZH` z{62f-q+gj7T+D8j6*5`-RC4}&tsLri)1a?=VaW5ZcxA~kn(ne4^s2g5o_jxljd-Y3 zX-o&nQC~pk95XRx3s+fi`Z7qk&Y%abPIUh2X9)Fcs5oJx`VG1rRe>58U-3f}83wo>$CEy=-^a^%6_-U zfP3s%^72k+-P6X?{CgLfrshsM(f%l93Hwy87rn2d6l{q*kTKI40`kuXnmsy~t@1hq zp9d?`vuj)Md61+~=on9njN~i*E*DiEpOy%b&P5`;_!3MPoq=vttfMn>=do+?1Nso& zo92ix-EPz7({R;L*5N@6b#~IB$10-vTtiVPw9^uXbOnl2swdUHx?HraIN9rYi(aQG z$Ds)aE5=I6)98tl@Y?C~xT^ddjJc(P`Ds?@vFI~H&r}?e;SbIRwYX4vHu4H;!hSxd zaPiumbXAa#UEJQ$2L1J@`!)sB!o`H1)wvj8-cIUoDmYp0|1Mp20h?km8RV#kWj1LEnt%T(kwH`A6*uPv_37=}_Wpav%JFU9=2l7DWYg{`~;z^WYxc(Ekcort*}3dM%C3 z(IED{2Cw$qiaKkH=;$n496s|LorKktq0)gC4tc{)Oim-8{YRO-#h}XfAH;FUqAUE% zyRoD`Je#d8GRMxSNnuXLXxn!?t(5Cbwj2E_hdjxq8$ngD%3>(?F5e1=M(x4go+-i& zU2}zdy+w1(to1@S%L{NdX&>9wJDwjrbRb)plY|8$=3-2*(|9I79h;T~p>3fVj+0n` zX;YKQXGy|ls1s8sE;g2k45r%K;> z=$8%(SK99u{;pKK`qREaY9*x&1)cZT+>x{tK<*wtxipJ6Y8NbG65aN!k1aNL6R2Cz z9+`bQe&fs!hIZaJ<-1xLHwdi_8?GLh|2XZy#7mm{bCU;JU#d4fpfb0_a-&v%%i|#_ zmft2u>>GK!U#X)?4-4%CqtYgBqxqRN;`?=XyeggStiOMG*~LJwUH`N3 z+HH8(-+veH--CCx`BS{B&7b03ZT=7Ou78a0tlrZi{rb|D@Xv6T`mNvji)mr|r@xt^ zZ>6}*xea{XakyjPA+4Pz4=6ZsnX)hueoQ~vhF#aLDx#fB-Y!TJyPv1eT; zj7*PW>&rEuVR|T*Wj)5L6LvAlsPz~!$B{CJK4Dk3zrgaxcUZ<-6%46940SK0Fws2( zGo_?ZD7eV3YVOA`>$UKl`U}2SwGHoTp9F{1%(%NVbFs304%~~VWHXnpfM-Kbpv74? zZ0x=lN1w3d&`Op67G}qd$aco5-8SM9s|~g_($^qp(ODROQmZ6Ascc66oIC@&(fxQlDusafYtj69!^iH=PhP_H9 zrRf(T=f^6(gI+u`bs^agtiX>4d@8C38Q}5lVOZ8*8xCyCz=dT~aW8ib!k>t~*)g;| z${*K6BcVTWj?wu4vG?ZTSiSGwFojCSC<#S{GDMl;Ugs&PObyZ`35^;^QK>``D$+ou zLCTOMP0GB^QvMjF89j{HFLA%1d442Lx^Pfz-)lGRGHHY5$Bv29a&#oTs|Q;8EGO+<2l?1Idmh`) zpmI=;KxlLHAe&XJ^>y_SJ6iISXf>c;4_^}8ctQ=mhl6G}H!kfz4Q@Ey5nLDlqTgyET)aW4 zO8v`DvG>a^DBPMNx<;;n&+9(HN{{XQxGbG+y3e4l9hgozY2swPI3CtFOcU-sN)9(SF#P)|r=2YZTN|H}Z{ND>3@vaWWg@PxJ1F z^1hPOT&bbTi%mN-t1FVs{|ZF>ROGBbf9SO2cQxO4m#8(*f{c19N&3(ZIAZfo9+b8R zhxI%~+0EMgbB(;X&rKcP6cK!kiNf)!TQF|^6EeEsNP|q`c>3c3tiQ7pOxBR&mR-Y9 zZRrJZLbw90Jil7v@TP)8=n2|$Z54VKorhD$4v1eD+d$hBJLyRKM}kmU3>MAd&b&+avX&krv7`RTz#&9h$h>iU1(8GE$#f5E?@acdG zdrui&4@^R5izrqaybiiHq`~v-cBoVriz^)7;zj9C znBOCmw++PMBa``q>r2@8BZx!SPlNP*8a&J|i-%Vo;bV8S*kYbNwG{NLRCv9g`WCg& z;I;3d)}e^&HJf16!}-+9u9y!U9Ke=ePcSUC#y?-aQi_rUnHmhmk7jFmW|j;0)U}tq z1Av#;#B-}cE>x{pMT2J-Qo)>akl>?^KV3FahxAeG`C~hu9^4A@Lk>}&AD%q^oGb61 zIEbf7P-<4VCwRuSqY&B{@v>zj*zb28d5tn;XR#F;x=+LP#ufM_K;i~nU(Q*-Z3XMH&C=(U zll=l~P%Svr`u=JljLc9{Za=EJAV(p zOn2ieC(qJgc^&v^HI(*$vqdYvSM3gPlEA0AjSp4TMX^V`f^p1Yfb!mU|sDDTYL=hE5kOafW``a!`T zyl}MFYf|erP8c_BI-Qvmh|8Ppcw2NbUC*{=H|^`NdRZ)tzx)TL-yF`Tdc<>wRY_dC zr<#tBt%LF@S#(hHWsuvKMBiTvTphNOChE4~2IU}}@>3H{VGNJb?ja7FTubeznqbNN zA2j!&4*yx@z<1U}2q|JJHgw9u?-nHxAE<>!w><@8FMlq+zo{Z1%uhIJVoyhBSn%w; zHaO_MXM}1E-k>bM5tL{9U>VhUL_7ew_~A9vRJ67lW|I%@QWQSuD1lI}CSR(c=n}g(TB^ z1Lqu6xTcqyp!6z=-zbe?>xr@aXj(EkrRI{tK09{3`<%MFD)6qQLosq-lf+ZWgVIM% zT%BTF-ZSqA&zw4hF0Ouz)2?}Hm1RJ7eh%}EYO>$TZr;1sHvH=H#S-U*ymh6N=qtamt$G&_t&-E4`+yZ<=Pys8Z+ z3T^n)s8zhUWe&$U$5KI=1|BZ+=To;X3-5PWvD54a+&nRhb=x11ZPwPqom<~Qz|4`@ zvtuwfn<0%=&8AUJrnqAAUg5);Hf->0DDO)?N9zO6!Faj5;GWnGf8CL^+lSim>Rcb- zqDA;D_$>9fm4#g*XK>-n9{kEnm*IvAn@IeLy@9G&@}o05U8$r3)mw1UWij=B5G~&P z9wzh})|<;;){^;PHT2lERIs=%<7#^yRy^L0v+rs057NN?Gj`FO22G)0!$N*>=`9^{ z>55S;@zB!kJIs7|keU{^ldx=kJfm`eKCEkxr}Ip3g0Tady_}0Pmds=e--UD{tPeWW z1moL+xj0$6k5&7m^OFw}kLl4ScCZ=6$-$K^`I|A%XOh#EgrT^;SzgFrzC-ADxRI1g zq`JDY4=%2(L;X%&al(0dIFb>IGV9J5Zm5p|8C!6)g)%P~6%RHtOWu(z@qeZt!7mAo z(73-lnmq0x7`^dAAFIiHz1=D7_1J`uP1=dqPR5B^=A$ucout`pT*A&BT#M5 z7~E=XA~TrRLa)B~;?>U`D)u?+igTv~RsQMLfqs8i=eGR3MjvV+~FHGL}bOIEkq}4#B{KHoSby9@M*^ zCVbdChuqt2N1Xz1D5-q`K3bXlV%|(B0u7i^*+NPCMw6C@3Wgb876+>;(0yra-}ZGs zs2T&prHmZ(K5fe{%0lp%TPz&0v85r?+HsFn8F+rABCL#@EGh+@gj@dlcx+h(xJmb5 z1lCjZ!$3~V4#SX)6JN16scGNbxX}SV^UbNRo)K-@1@b$CBac#wn85@XZNH9nHT7XQl4z} zg?(h&Qctp+PvWk=iy)*WS#*rN2t8_SVYqJ^>6G4w;Dl5LsaA7eQ@0}U=USTRkcsCf zC}M`-i}{=1f%suMdc0kMMsC;1Jirs@$+GaBbu{*vl?IA_(?GMmE(LTB!Sh{u)5#eQ zD14s{144W7g$}Ezd*enpvoI8O+AoE3%8Fbtd=o0q%L28FU#Y~V9;SKq6`t>3gC_Pe zzU*Hteo)RtyBb6MHvbr&J-7uDQ?Apzs6D8tC1Ci5g{XM3iUyGfwqiAfzv(KL8pvbc zR0C{N)0?Y}?P18Af!sS!lOH*4tnB3QNN@;$20E_+ayRI6+g{py+b{$!6sO>Pz4;82 z;zWg27on^ABXlo1iq?~3aob2Gw!HmBs97~0<88V^-W*Bqbhw6{rY5m|f)f|C2C zu>C?O+`Pk?wDSA0!IX!fF?=a1bQ*(}P)G|Ox(E?VQ+f2EQPgRrH7eX_rE?NjtJ)@s zLtJ-Y$~~z*eA0~1ZaaVv1NXztZIXVn;hm6=eQ;}^gOoO}FYoDM%^iC6t-NHp3VrU* z2HhwNJX&YWONZ#jVv7SBBMnL1p5EME7J;TU5B zI5Y7mSvCcD@UN^Y#lB=G@lPA&7-;z>-kyAVtlcHYHIfqxMl4e{j&V=FrIBc2_mC(_qp$NBRMJ?>xM zm6mc5yQ!AoSo1R^clQ^Jf3S`_*4(AH=lwZW{yF`2leC{6>i8qbf=_HZ4puKr`O&#d zSmT~eYxkz3<{f$VP249o+UL`X>sx7KW(K_0T*U2r-GbgHlF%`{9Iu%MV#}}wlG|m) zme0yKYg-{*3SYya$@S#DOCCk&21BB@q4B9Ij-0R?HkKP>%lKZbGSrf({|vG#R>rE0 zz*Uh(I7O{5ddn$u`Nh3-?qvveUOpJ-eQd*KhP4#9bQMNq+0bjhmy}$)jbb#9V!%!h zOc=UfszCzZPq$;=kb!t<%P?7RaEQ46sRDJM5H7p;C*Ysl5QL$($ti<$y{^;qyT8OF+W6yQ3$-L`5Sd-?* zZW11FsvpAJBef9g>WVXh^wCS|iyD=S@MYpmNPpu84|MbBs829m@E$0BndZTtbwg3r zNwP-SHyvGvuE8H=O=Q|(4xcsp&bEsZ*rcB-E{_jH$04V%e|#L)xwev%&s6xnv0l)4 zJ%fIAyebBtY{2Iah8|?xn3V_65ew9#VoejRx0f2q=HIk zv~kXnwQMo`rlg&A=lZm*mAT?J+-5camb`riufp46apV?C8`fDo9K9P0?)%ZK(*?4_ z8AnOweI12}lQ=BK%!oedQx6-D`&>zkfNk z&K<`po0szKz!#KJaEVtPoJe(T+mL&4HSd!(RXR3oBdbd@c#c9K?^Q13flhC!+P0K> zsy?Uv9eP!EEF8jm&)3oB@lkvxemyKw-o#7JH_%!;9gIug%l#t`@WK`~Qd!UlvC_5w zXUJ!8@wOwghPOhisyW{~q|SRU$FlbLBb=4O64HF^>nwd6^Yi8wBJvIdIgso;kED>CIN>D&{%aQe=<*ysERZm!>egCFNZ z4D0ZM)FtSVXNNwcR*_$*GcWG>PMr2>F!pL0!*3N-*g{pZq|Yb@zoibSbvKsxhH2o) z`Ep!hsKCq4?uX0?qp^HKC+t+(9m{_s+ivq>`z60%#iaXG{z;Bs*E^tbe+O*SS|RZP zmNIX>M6s3*eC_@A3Qt9e2YGNe-A?Pvvx3iamnQ>3ul-8SHtEP}tK&JcV>}x)-6Qor zDQu88lGgOeX4m{!iSO)*?ZJaxE_L8LrnBk&XA^YV;m9FM#bBye0)c@+cs2SGkDc^| zf{XS*_xjyDOt(D`k@Ug~J{sYum4hh9B7?UZNM7KZ&hoMjlVH>9AJpS^FdpA}lT4c% zVf+4}l|4qdW4C?1(BtLWa=T9}IbG`iWdZtFFLTFt_IcQKgF9ZyQp4ZhPQXLA<(xfr z1nqyGk8@i0Q>#@B_q%9}#+Lc?sjVvn9F5`Jk^1C+qJ@tC*bax^j>Z$-?pQW#BF@QA z!C$*7X?I9pQE#*~HpD`4OHe<&Q!k*V#3hp(HVoIx*UAiZop`P9AQrkV6QldJ<;o97 zpn0^r=yaevX&N$5cYPwp_f+Qe8byA#-h{WfwTdO9tmxeBQo3qj4o6lx)2Db7{$;t3 zKL412y;EO_@v|i_T9vO*JLMCMcsxUxQacI1mp`G$Vfi3C=m@Th9mEyhhB)!-B-r^; zQwVYhWcf-LP`GuKu0~y;E5$9)r(Zcld)d*DeK&cG+*aYZ{vE2AdQ&u&^da-sK7<}$ z7V)F#ZlrQ;7Z?q=0&SMcz}5PB#f`q}#00s^f z#zww4w26KkGvt&ndh9jdTJlJ|2h_5aio<*%BJCCEO}_*hKR00eK_z0rkG(u`ZX8># z$zr33W>Im@Y-%5Bj5pf925-f+r15ejb^o2tt==k7^kW1*XuM57uNp|0LneJtQbAdr z9ch_wfY6;G{48Bj^2Y6q!_&0bL%p0F)kpHIQIfveN69&&U^809=fcb;cg*PlsL-Q7 z*nj*CcYWfps>dVfY3|Acr!_#9#v=;Ymjq$`EO48}Wx+>B6HDSY;Iqm>`0Vi+F(~^c zd~Y)x=UbJET@UL!bx`fV&9m3xdsS^brk(@3*E{hk&7M4_lLK1JYcIZ$&e!E>EZXkc z1dj&W!=(keq!#XqM?KeIkijZ&8&XNr9lwa$s3qaW1EKlKMKaswCUKz5a7L^Ge6LV| z2J>+E5upM>S*CdKnjXZK8E|8JRq_s-!htRE+);TwESr=9$DVJ&g)t4(e!ZmOvwthl z^lI=K^or^fUQwid84SsefE9Y3W$h&Yv}or*?AfrN>Vp@dii0M3?{&sjT@~)v{TsZO ze0jBPD&fi3-=t%C0o1;zPz39No6<1wb~eR5_fL?4#G~`w+6TYisIDB>^*)pst;E9c z9VEW%gTL7p-n@6^%d@A#fZ?BH_iCSk{q91L-S`3~Yf?~WQ$88CmXP($kF;<^Bqp78 zz>JfDl)F+U=`N7_EHa?%MYV9$Er|NX97nzWFX-9&-jr;KkoSS%bk;K5cykYS$UTY& zu9zWo`XJ1lJs9$w&G5%Z6&k(xuFz!t0=``@hFMJyV0v5(E{YD|W3}pJ_oG@UFZ@7D z$p!3QwZSfxgLv`mZ2ai91 z>LX7v`HD4KDnwn=UkKWHCHY7=cO-#c({d9!ghF6Z=U%ATDnX^9RcT`0{)< zv>BFPIo`h`e4Olw`=5V-P`6VQWYYoi)Ep@8%0VnSbzYbhr-!E&nseVFn%t-47zCD# z6H+u3Kr8GU2y@dQ(Xb0e-0nh-o<4ZkaWUm3tSu>j@NCpdRltjqCSkTp2U-wrMIDc96)Mj@hCY!uA>f${yLQ=37B+^$ z%O68TTNoq`Ub`Hfi?#}N3VWOmDxHK$HG}zb^aC1rH5u}S01k=|5#D4CMcwn36no%- z#LG$t*`1E)TCx{@GR#k`19!)6?VP>&z~94QiZJ;|G1NolRg3Pb$y0vH9Xh?qL#*234oA8e(kDC!<0F!U5lS;S%55tgTCx$Ik8s9@M_WYMI(2>* zyA~SYlQ{1A0`U5o19MKc!!v8f@fp)Lxb;#TWQtZid&Y6tbZiGL8l5MeO}h@&(>tA^k}2~1YGm- zDST{Mi^C7>gXhBujBICu>DsYaAM_4B&UeAk)m?B_ynsu)XTj3%TQL6Z5bzFIgPKmO z>792REShJIcb`m^G^~mh=FuLQ>J|?nFJdUNd0R(*2sS=GtP!5@``Ccb&nt{(gM4(F~{bD50|1AIN}ClmCS{A)(JN8Z)mJc6my^E#52Xey|GG z*~P-Vk%vG~4-j zbT?U#zU5|#!Y!#!4|)cz-;PRSwP})0Ycx$dm-p*TL%81wpXhdC62--f1AuP4SBFZ$r#s3=L#^%ypMDkc5W5wNvRboBkG z!c&b@F(}R+e_YRjSzXj{vHm6qJbXbApFa{V*sa0Edk3O zIw3X47GAyXg+awV$mrx-sJjw}PQKgVPThV=Xx>czN&CU-&=!te5m2$sQ=;hmD09@O za9SsP6-Fp(f!p9Mpq(-nAIMLHhX;bVp}P@Ud9(%3%Q;m0U@uv2Rb(4AZN3^iiz8l6 zK$CKHRtk6rla5)T;TC81%BY2A>AHAaCE*y0n}tcCPN=?pJ!Fj#FuFDgnyk!uS!p;t z364bHT}x2TP^v@c#IxnYRoJ3n0mkoUlbwd7&%2xlRlNcraa{zAnDq>*)^+Bm3%^28 zx(>%xeXQt~odlz1ougg>hp6+X3}JGwvlP`_A{t%04wgL}px8Jc?p=CD9A5|{XY4{V z*&58&QNm%?Qs&a-ELc9rjmMs~1piGTFd@DNuZ*gP@6tT_>iZn$+T;P2M^jkmC ziLsl-NnPtICne?3n`J9#%^**#x!awB@dLcm*-204s zN%wc0@HMI%$+y|aBj%ClxBd_(<^>2T?j>~eTW>z_A)Kc+cLiIl5i5JF5TadmDQezw zys9*g3);S=&%M%c%y=6*mGMH>J@qIb+O&b)&UfTuheBE`AHt1&JxJF?726(arssp_ z)1Q!B2rl#!%qw!>zJwDz(%eg3i&XKum?9om8^Il#w##fj=?TNP4dmp{@c{d;alz^u zm>{;{pSqT8WHf+F`e=}Kj4vgHFSNm7 z_btWs^&jEh?pUf$~x5+drCE?ri**ovST?FIS=HH;|`Er z{5x(mv0|kG=eYhsPq?xC9Gyz(3AXoRIIXTPcHh6Bza)*rsHcNu1uLGy&ld&cop4-? zdMG0wO& zde-akOs*vT^25}r<_E;ANU40AC!>6MQFPJf~p@Z=DXvE z@#x*Iv~1%RC@Z!TY07O-oW1}P-sofF_&cIpr*_<3UlDS$w+UWNN;t*(6y#n%LAJF{ zyhPiVbZ@y}{H~Ss=D9p48g_Z?tb9WpOj_(d#O49y;Q%X$I_CvWTxX&1XS# zG1$c2hJBCDfT}3tzG-V&>-Pzv{ihkc$zPXW503(BGoIS5Pocp|U%@PEBFOJqMM@pN zif=oapv^K{UYl`|e<*o~eydAGKb->l91trQdQTJ{1)d^LZ6~f$dM^7s+6qoBi=+Tm zMKtQVQQY;pS=cehg>2(GZIYEI?iM;_P2ia>&nRqA5(G;g zM;kw=^M$s4Z2xjIOGqyDX{&{<$uThg+HN@Qb)Kx3=&+TzH_@^Ncn;ZtitM5}mkTb<)-lX?Orl7?r zAD%sH2-nYYtt{#sEe>>y<~N^T(gL4!{<31H&~wpH%rZPs`6B)+we!+IQMwlkLkn^2 zVLLvnaTAIRYXvx%CHA~j1N(N5^BRuG;a97lbY2PVx!ZX_m3fX8S_6+NDgF zj&C8ukT~+{nnfA92l1Q3cB+!E5g!&QiY?|jSaIAR+x2du{EVw~a}q+v8f%u@yN0@Z zgwTd<8Du%ikM|rpB(@nnmB)@V#_$34wC;rohdWmY{uhzW^Iy{`4IQEA-AkeT(OOJd zkONyI+VF&KnyA&sT(HjwhkHBcLH{=Apt(mnsHs1O&W>KHCzneJ)hqb>mfNs2E1DmScp}EmvctFL zA+jzP3G>a;B|jJk_jTn*mRGxMa zZZ=(%jqkXD7H58fs)Ae!_?nDb;T3SSSRF6VEQKlQ)4+M@Ch9nE0WO@|4vX>ywB2+R zF!2XfDa^<0w(kM%rD6}q(Za7RseZKitGKewT)b=_%IVQ1bnDtW+Ec%V5~gNS!1n`~ zGPM{C9OT5q1qZ0%aWZJ?E6bXL+|V}J3R(}0g#mr~Q|ERj&_~K?+3+C;pG8@sGVp(WCBlIvm3I$O58E45g7M*0U12F1z&!epzk?n zDl+!Kx0CLR+~`L!TPCr5#TXp>=K?5p=!x^D-lK?WFP<0W3S%1fQliFA3Mtye*MDhp zN~IT;G=39fzaE9LdW&G_Fnv(>EQEH0r^7IharEbMC6+z5f(yMrz@$q{KxQ}!md{^` z?LR)F+2SFzG(QjLTaVC(o!+cHypuSf_egL%mPcWYKcL$az}%1BP$96l@U2T-rT=Sb zyl;IM9Pj1BcAvu_==Q{uL#~Rkx~H*h#2k`)lZfx$>=T`SxY1n+t0-6bF0PZcBTia? zRmLC5T1bNO6Yb!8{8E@~_LWqP7tkN)M>MH$wz$J-A2fbD1&ens#ya;Q_~vyf%yMdl zBhvL)ztd6_hc#1n+zXoC^)|iG*d@f_Hz9P%BB6H49E|VVwxY9?z4P=>3|E~^ue@g* zDZD&4h9itT@ki7%8l7f=9g4%C1PpM%>#M?_&ZBYrLL**xK@MZC>!JCN6}0`;0nxXU zH~LHCCzapvQa|aB_Z&6QaEB8XAG1S~Zl~dtq!aDs9EsP1<#EH0i8$uN4qQF)7VXZ6 zLyKYqSSNR=a;R=!yrJj-7wkv#`Qgun0hhh8{FxfYN4T^48C}W0Et4~@wnbYtiR;&O zAzvw)$?yI5(x3^*nZddkf1+AA*H}phUDq=7-U;T;_rZ4VJ-D|AXhEnl?s$F{CSJC| zUivPWemDZ0dRU89A;I{?e=>CY=7I)3Rf23qEy$$~w}Fr$Gjtd zb*-RwE1GDG;tip?`3AV0xhZ14yKIl-(^VWejx73IplO=D=$Vf;tuE5xvd#0jR@0n) zGy0Fh0~E}MICG@XN!745O0ej=W}cL-maFY^2r&XJuVe&o_0l*h4L7lUn4FFGv(c>*QxLBA`7zjvRaajm#2Z4%#>(r`u}^5L^L z1B9UZOLSr59DY=2CvLf(31g(O-|}#YuT-2%5w6{+d_e>sZ0*FsC1)!hHXp{rqc2y! z)OsxFoc|3cKko+3ff2ygMopjkAnkZFUGhNIV3kn=+_F ztu=Y??#2ZNA41}#31r!r1XE_L#3y}?C_k@M!m%u2dAG4J=*JtnsiIBGmJY%3!ydqn zamQ%upji}f!5%&2;$YbQS#tUZ&#QoWK3b#>sf^G}#w@S04&*g>C^<@n40Vnu>` z3-wF3FCXRGI~A*B9EFtTx3U{SNw}&A_Gu2tQy>HhC)uSSeld4jw)7Y zKzUEeUoZC*x=!9qmLWFyu;Dlz4DE&+OkE{CwKm^)oj@l7y0OvlhZJKGi_H@6Xj^T2 zT&Vj5mv-3!KO0@iVtqcS>3i|VFn#_sFcq}y^?4*;7JkN63NI3Gl3reum}|9NT&xp| z?eC7EQ7WeP?FmMI9?z;_jt$9#1#D{(_PcFZ(QA>26-33?e8Onx5-N9G7r>{)A zC)Lp;PN(B`ygTS5G~YiWTr=0?n3#pa{Jb^fe8`?VsTaY|;*WH{=`cxf9-I!p#+6#@ zpp%4q4Nb9?YU43rZx@Dv-XX&Kg)LmPDjSm1`qJB2Uy>ga%O&uw|z;&&K2S|1CR1>zvB=fc&ClDE#rBfM_RLr|LGMw5q+#0Qg$Va&Oa z)HBXOaQQxp%01@M7O^+)zvsbK{Ui*roi?nA>WgBCqXv9B<;rG5uhX{tdO+9PF!{N8Ij7OF zav`2Y#U-!F=;}vu^{%FyGo7GpT6YSY^j@@@_!hpd4~G9t{~1*LmxSbRJ=%XNDEaRl z{*P*b|GRp-KL0rDzw=T4UjDD=gM29c>n&HR{Kp3UAM-(G{m0G!)Bpa@?w9<-3O%{5}VR~5Iv&Di;P4Q8uLdGZ&79X|ic;b{95>>~LIo?rbLKaER= z4o@5KyW)8KTC*M3ny$m<0X;b2wx)AU<4eRYM8$E#@z{;I_|5JYoHm$9hw9tIqujRa zdj2gg&sC%S?Qem_kQValKu}h63x0lGiCJHnX5KCa-?3$6x#SbBf0T!*?bc(Xk^y(G zUI+WVGr;6iCf|4Kj#GP|L7N|aXyqd%{ISfD)%8YVid!CT+Oka+JZ-R8Zr_C2mZzwA zM>-nV-^Hl;0z_t?!RT$Syky2j(vx@W7@IPfNdONF%mvWbJgHi zi+M@k*AyTA1~z(Ci~jb{!EA0PK0R$0{we%Sit_7mm-ciV_I(}L^#(jEX*$#QN8-E7 z&oJ$J5>DTB7+Wsqh#YZA_Bx;z-?eM!{JJ)k_^UJ3jHwc~)g2N?jh10<{02@MoGS3g zP5dgXlFQ2+C~c$}%Z-a+^@*z75;cJ|-OjSb#^Y?zcMDfM>q4Sq7W_d?n|7+ z14@8TIzzGaNg~dC+AOFHSLg0!LEI+DicbvP2LpE<=d$2OynIzKUXc9GH}-x~VH%zf zZoAv_#kfVdYu!Nn;(QmI3hqIA4>{)zz6;R*VG0_JD}#jXr>V+MhJFuKv3uN6o;>Xy zjS9`6izaH$T=o>y4n3uwXO>hP&{)A*2L}lS=eELE*BDyA{W3YYB#Pdq1`>xS4#(CT z;=}T`ym*u;1w^RxR(Gbxp3`W1%Pff8&=05Ylf&CT9zc(aZSl>|RMHStG2&Gmt{Z8} z*B>CQ8_C#v&Ny`N$;AmbY&h|f9S24gQ`b|+Fg1D{_lr$|ej!0vH7Cnw;Rj{2B!WCJca+k?}V#^N}s=6^hL6in`%Om!YD{4#YSDemgRvlqXHZ=P0I zbzYP>U#@)g?P?ye?-JY%u)-Iif6zKv$@$V^WGe5(nU1HxKXWq{%h%%WyrH=F<0nDp zxt>!Oj9|5|859$qE@ZhmOO+lB6(n0Ju0ACA^qr1h&np-zslR+ z=3r*lQL-C5l1&?)@fD7<9jp1pHZSiLCEzVQ! z$aiX23gMN0*ru4+^^`t`S0wQ7@mn~gHJZ&;UJ74l4dp?nqM@{8Jm(&thwaj*aYStp zk6UIl}_I! zecGf4^T2a`7g|`koMu!h@QUqkX=3tHa2uamp*m9?N(VBXuX(~0=n3hL$^0hctZ><2 zHGds55VYq8^5V6nTzRUJH2qs)_iz`?zLUgDht^PB&|EZ`vmdYQzXm1d-*HgsJ4}mO zNe2ez(zWk-s2Vd%9CP6}{(0hwEpc1GcE>VW6*~Y=q=bM$bQJDb7s@tGgRxI(syIYf z>MsW`1fSPOXv?&n{QQ+ZKiJ+#hi^S&b2%HFI8hVt&8^~PH`-#8QWt(|5iK|rE}$cd z{z&%WG;MQ^6bhaw`A2r*WyO`;_&r{>ZfQqUiIehh4CC;om5DgA!+xyST*8|&op7RY z8CTAm!QWThBzXk~y!Ul4r@i?Jg%2Mx%o&U$_GaUG^-i=<{LGpm(OA0VEPp$x?(8}` zjr~7N!fn+%A^3<3w(PhrCO*&SUr}HCFOwR>H5_Ct*&9NKy633|_G>h`f`MM8jJu z?D5{UvTCM`->N+)N5z#$I_>ERgwv_2WjIvgB^TC}Gk8tIc~cp2W?XpGZFD zDt_v6lV^@JWcT(-I6%zCN9#|*-tn(tTtGtGQ3%E5^lSc0roTF zhZ)uA*zX2^uE}FJ*PrM$T*?8RTg-)$ZYQlSliTI@2IWQD#V0Dt)c4^w{PTGQK3QLZ zOSFT;KeAg`GQ1QxOhos}YFv5c8Z;Ppbsi{bVWLc9Nexep6RPW{(cc~%IP#d$^Ti|kgx@3k2nWzhc95G*&|$M{7$w< zitV-d@)R3H8SWe|$McPwcxc;fS{k0nXU%K?jt1hmhC#Ua)M2q-yd|l9-YhP>YK9Nx zp9&hTO=z2=j^gpDuzP@LwkY4czon91S?21XeY3?9MtH}XRsRnn-t(>owEx}fA z8?kM_e!Q^hETnzTrL%XG@vMF&>b;-MU0g20xrS2Mm{g8IquRo&rE7)C_M5QH2EgOP z22x@90jMwNTh({}8#LpDiSHn%{dG#I9VdO?-Z;F}kC)Gp`u9_ZB%kPUJmpCeZO~2< z3rkWs!Oep*%v?yR{T#Nq`H-I)p9kMZiO{;UGrvBWEkqrCMI`BCUtiw9sme-xwni-S`MjiI_2%7MUyED!Ekljpa%^kt0`E-Xz;thW?s&3}Q`@ZJ$L5vLA?Q1& zbeP3kxNFskNA0VO4j$lwBYSbvyeihKh(w)VGeBzrL&V6wSQ%6%w2rdjCKw}S1erv#q&DNV}kI-1G^Ru1S$8(>BYC56xsQ*=wa2&$0v-(<)ePH zPo5)Rk?`&c7Za?z{F)!^O~fw0$5$pOYE`}7+g8|n?UER0{f1-uS%6~EM$VWYz*)-9 zs29`~J@Z=X;{=5NpiJ)udDD<&vgRzN*IwIc%7p zBM$pyCrDKju%G!7R%14_u5{zeTBkW*xhv}ZK(YVxs)_?cSMv3-*?9bnA^OcO8uEdXUn8oZJ0> zja&VX?eW))^zU5XzuV#O*Z=zYcb)&&dGGm;r!V(Ep8t}6+Wx2LqCjc5OQizEN|JQX>2IR$Bzyqv0> zwp>@a$QiSPXDtkzHzjmN#J}ySY3MBX*D(%~v+XEn`={++|Nr;>{nyfe{QY<0>VI7K zZ||@0?^&yV<5e1Rf9*H_#$WrL_{Z-584fPj@Yjxix7$Dd?Z03Cf6@Z~djI@=wQ2n0 z>G*du{CmFd0PBCh=KgJ+``;V>AHLpHjVImmVH~$v6T3g`M0(yw!TgIajk^%Q28;Xi z&vJE~7t}xnd535{P2`2XC-}t&XIk_rg{-!1qy;&Vn7UmHH*PVdD7EEOB-=>$j~AoM zv9;X$#C0&5@Is7ittS2Jz~8qfkXO_`@vuo6X?7jT?^3pM($Gkmt;tewQ5MDN$Q#Us|#F zW1b#$G`6Fl!J4?d_jl3ex4?@sQiWe%ibKT=*`UsCzx_PBcT! zC(WX32#HWVgs+yi!iwew`s1d>0}SSIrpt7GI`k+XKNHDH2l`^-@+IOy+=j~@B=G5y zADP>kgUu0Qsc##lI3HVsx|d55RMcXx5<(6i*PwT+%^J&w*Z zCqV0xo?`By13W{T?qynN;f>_wsIkdeHhTF^cy~^p_k_>DOA{WFT+hyI{VfNQ7Z{*o z=q}ium@2zqIDn_Mdk@9SCSkSzTzVRki))rm#vXxH^eJ*JOgNTJZ^{&L*}XiW-7-}U zaDIRfKi-l>b!Gh0%NYmuPvu!h<;9&>wnNiQJ6^O^MCH})sBcW*X}J*wet%74E*&K0 zDgLByc?0V`UJ64Ot`H*kS+KXo0V!8!9m-yJ$b zNcnnLc1`${E5hBLu{cTf0JN(e#^a;4vHX#VILlJvLv-4MZ%>Dives1k)f$YO^RGD> ztJaJC_1$S%-Znb5-~*(Hj@13wd=R|qBy81~FK(TR-6{gGyoWx{&36U&^*vyZ=1)|Se$YciN~ z$_Mh7R~kHcT7l?km%^c*22>GR#2+P0+4}8Z$%jVrm$CN8xB4N}*Y3N}_e?z*PfEhE zuDdVO>Dso=iP+-F^Ga#CmI`vIFubFL}GFz<>E>^NuGG zW_P-a3hrh47Dm5*ZsxgnS5c2bff+MrQ=wmcVqu|LS)oeHC9|tnta{(=aL(-U%>_lT zl-?E$G|4ynRpgBMy>qzm%iTlfj-Po&T{k9~Z95-oKJtQ=+2r$0M1-^H$ zO~$fblTXh)X4WuZpV`}yx6SJw%rIAP5}5OS7n&bRpJG1b>Gq<1p4kOW1&&2g!oBYU z{>9P!)E6!DyAI~&vmfj=UpxL)VT+x7(ah6(i_T2tncdQRStxbgu;6R6t(my>fTHtF zD~mK!Clm$jwJS1fdv5ln-qQS-x2oCT;fiLnTn){y@H`4)!wwZ>1&5oDx+LFQhuB+V z+r6r=_L+{E;^9p5it$24d0iUjE?X{}ADNR{WTqxhZhuUm^DP@lyw*aZGx{yek-16Q zW%5Ye+f(o}YYcsp55qJ`9bBn5g8H1UVJ4>{s5{9BS(IsVC7!#9(2h2I+I|k4EAfGz znmv%1Pbi{xDdUM|@55wPX75Kam&B>v1{)ebY!IS(#nAEaJfwTY4^9~vMqSR|fbKG8 zP;b~fbpEsn`X$?yylXcDb*3uF8D;U8FYqVFHcu58>RzDT3$xMd;n}RH++L(>xCISN z(%}2<*~b56Bo777wJ>Q76cUW?OlPlsFs1%ZAz(b93ViC|uvAgF9A z(jA*jY!nug*?zr0WKNob)B*%ZQ0L1}?Rp9PtUlxT%p=HR$UA0?t}R_xcpX=raVBp5 zW+-IXPJI8!Yg*dc1((l2XhdK!e64f<)f^oT#e%!g>Gg@UbhwMjv=$*YZ0RL-i|{D6 zGF#8YYS{q6?W{Wjs}DwOh)59IFuom?B-}wd%hs`H9*dY%wu_q>M#-B9os2~$RdM{I zcTe(%%)QFjEYRlLMXlr)y$s;{m3Hz~W?S?3zZfh?9-}OfZUuq`OBV6_VKGcY%AKr2IwxG6ehm{kzLwHviMNe|swOZzJ!&FX_L&E_HpU4yo^> zfA7A;s-dr6|8e@bfB*lVB7vXpOH95GJpH@=^vj`t?)LM)pVfUWYhBlPni~Fg-`w}n z`c8i)KiB72eAnCl{eITtpZEVa-zR~e>vNJD|F&fM^ACo#f4g75J&3yhxBLD7()#;+ z@Q?oGw_MY2pML-HGyli^i^-qzRlSGqSN%Vo=fB^-{OoW0G@?I$)-Q*C`hPHfuRje~ z$fA#Y|Nr~(`~1-UU(Nj0JYaJllBn;1{+_?Be%#lwe;$6{?cd~ohy;H2xBc@+rTIqz zIIZ8}xqkJ;KN|(BADjQTx&HXD{z2caT@U-HjL_0Q=g}qqlRUaYuT}aDWB?siv0P$-tpPr7QvtA`LBPw-~Y7M-}{#z-cBA`@Y}5$^Q%q{On))W|fdoecO-Y?~4PC4Ew+B_X8IFU;IJ( zr`)j-E7V6#zSD_9P99s`w{G`Z4Zk0^e;vI)j{a+S9RDDWzqea|ydB@#*HiFaJ~Bd% ze>dJ9(!0ywj<=2eBjMgZu-|3Vf3!#aczo-p1pH<+Xv&{_U^yra{SAkd?{woLlxxzEeL-S2-|>+k)>kMVTBUiQ;J?kDQM`-y(f(QCi* z>rW+xygb&pZgJhRVfDJLTbx}t2o38M#BUz>x4%A_^l4VVeAIs1_^xbyQ~N*n*M0s; z@~_rq%YE*Xk5wNL>e}9ShLG=kdT<|K@trq3(8o*m5g}Wjz74DIeCyY~jgWp`wJ+0G z@tt=c(Z_#>{{5)`CjVU$==V=0eV0W@6(S zZ*|#!EuTF2w|3z^d?WgH6Y8g~Uh6&9c)4!f;<*}_8rrY%a9y)@)B4qnaqpt?e{jqX zTyMv}XoEj+=m(DdfiwAmoA{R;F#Lft`hoia3-|#G_yG&}0Sov63-|#G_yG&}0So*A z3;Y2K`~eI60So*A3;Y2K`~eI60So*A3;Y2K`T-020So#83;GSqZ=e6%uKnJh^jVaC zt^MQvqwyc~AN>~cy8`|iHx{Cc0`_KEEeE-@+>2LS5`rgk< z`EU38&(HF&^X>2Ts!vk=_qPh)q1t|@Kl6WF?_9e34p}nvFQxJOxW(l!oBzH2FD`+$ zgS)`Whsv~k>mH)+ZG+23>L3$0Ex2NK6#g2119rEbV)LZhVEr0Tl5*y9pEp8wff%(3-VG%Tq{z*|bvQj{5+3#{0!_<*3$0@|lF9z6 zsMW#%Z1XdMn@S~M;-p~G`y6gKT3Cw2YP7>~WunNt#|`h9FbKBurX!^D6ohwQ0M^}8 zsd(NUsCN1&Gz~q;Ufrcf?np?%te|oH4HY89DN7b=dJCHzu2@UypbECeB8)swEabn; zJ;YLh2^xR21+Mw>kk~yG7ThS(NA(vr;bUt)Xd^!lKmuHb%x65(z*$JGday&iqJ^~)QI~={t(xBo;bjZ3bjl_82 zbh0Zn9uIka2o~PkP87%6a9$VMK#t5bUS{D)pnP{RkePm&ggsUQ)h}lQ^T0+RYI&5C zju&7%jnABgtvQgIDMz=C+DBFuejyn+6eku2;4g2a&}V-_oVJJo`E>|J9p8y(y%2@C zQ63IV9Zh|GOkwq*Jm4|91t?Z50jKaVoHleTvr;JlzAOu+9}brjyToAr?iE)^YR*gO z;&~GedAbe-tvU!YwVmm*{U=Ct#5A~j?P~T?@FxD5-5Xc|%!DqxLSfGV6?RW;D=gk~ z2S&dbjKtq*2{zdchLTr?Vz~S~j#@F5rp4cf0;93WvIx`o|@ros2|ZsDKp5 zT0-CK!9sj(-X#r5xb%TEhVo-+-Ss!{f`=G7KXf~aJ>btddzO*5!#DB5W%V3-yn?J7 zuST|6021q8joWRnfKw%HAjVUbES;xJ20oBu7J+T$yhN^9ScZt?QOV;oKs!Lp~UE znqGvjvu7Z$;kLl;@c=Tja|8&3=FoJuCST>NGqzqo13Wz0m1@TellH2!Al=6qHpsof74>Df@oh8?xo`q5 zw@-kebs|1veU-?R*nnh<{jgebFdVI52o5cfq?P$gNI4*Qgy=lzbuN&UuQwyZ4lRdW zicMhN{Nb=1Jmm(sSQCd>cjn#a(=dC6C=$Bh&2!na7e`q>>z&&Nfl{kAJ+d4^;;Tms zUhKvP=3K(ZZ+(IJcUy`2(c47BGZ8B2?}KN{1#pZz17k;Kk|~Q0K=|SboE&)^S&6@a zqgG0jmM?oj)>k!X^GJuE<4^@N?Q8g_Gh*n0bwg3f%4(z>C5`;tMA3q_AevzFiduwE zM)6Zq*}UP4`D2c+VUKmr?$y9j*f@D8n@jxRM*R%vI7*mvlra-LiW-G3xZlIJyYlgh z%ENTH_ycHLB!=j`RCnNNzI}4h*MIo;vNAaG3skHW3AaT-ph@-Bbfu+YBNy3F$MEsRUZ@N7dh(1$;63huk zYu+B>^H3A>j%I)zd3@M9<}g!o<`uTicf)8xE)aX6PQQgDVLO}GBxg+yj=pdYpJa8= zywo_-#;+ugl8d0&To!)Ya}{2-a)B0;WvG%|77S|O0l6X%q@y+fO?J44Ek-S7H1iI^ znX?V~+6SbGq>_NId6uPL8z!Kb3B%ajo-fe(KplL!JB!{}*g7uuH@34iTq5K02 zMzIcc4@nIkLt8C&v89Cox!fIwa{L^z*a{E9D~&>!?i5JsU){!|EwboTO>tBdHx|Y0 zkmm22Fahqib;i+R!_bcLRp88ui{zuf0H4|=Px4&vKx_A-Kxk3`CADr)o>vP;&1-{E zX%@KVttPdxaw4uS{&-VT5A=E!iVbq|d6Ct-U`fZs+&8ZXbJtJ}hFy0jU({CvU>O9g zye=?X)vtkVQ*L1Yy}7)U8T!!1Mv2P3`C{z0EROi@%fpp*o3V%e3ZzpT%ZQ{#^Q86^ z!{xK9xKCp?*cPf<#oT(&WkDRq$d`r$TWeU zwj-9!O%g}F@2!Eezb%IPuVe&mI=7+eve`tqq!xD#c~4x7^wHheLrCb|D;m^!0yvp@ zkWpK|LdUy1VfvwZl35El(Xk<<{;WQebMP!Mn=*|K+;Isy7e+yIv0Uh7&EP~QZCbg1 zEpdJph${z(Ao*e!d||F7C#>ZUE1aZ^J11OW-k1-AKx!Mwjd1|&PR`)i;p0sHkxPIp zxP^5BF7l>NnGF4ptI%|(P-a3>Jn>$VkE73R!sE69P=xy16CG(Y}j3z(R8 z4O*BFVBOO!k?~^|ya>8SZM_%bZTk-ZQDr{s@VJTU&dFvY+>BAs>!bWJBNJH1+0y9! zu~azyq5?d+NKW7q(*VQNEy=mSJNWekA$qxG0Edz}}w z+*wa*GRAPuwXCoEQq1 zUX0-+PmKhOt~_z+8Ap7cP6HQ1Rgj)@I8kdE0GowOv5I*x7p1NQpWX}vnUU+kuTP9| z$Ji9A8Z;0bUwwruo}R)p@O_JY&T2A(PYb}()>*{jWs-5RaWvC-x0yNp%`!)Owjz$v z-^Qh{+sjp+)B`37hmDsTM`8=p6r;*zF^q?dDKM`|7 z>B}jKRM?q=JN9&;3-`Nd*F0zRaAP`jUtUVcvv8!=p#)EyjRIxq0=W2>H2&s88{pyi zk$BXjP~2D}N^5R7!rYX-@PYCudcyG@*t+aCR-;MaP*4!?+HOHk{Tj+kSM>rzo!7#r z0#7hz=zc;b-vUW;BVpX**=UX}#Fp0DG$U_4*{Zo0lP|q7Y_|tie>jq>vfT^il$(qs zr7M`_XEb1y@HRpxtN@ah-XJdMB-1+OBFJ^Pg=5~A@}AmEgw0hd)X-rs^AsE)UJSz2am=V z;duCRNjZ$)v5ZWm^GH&uG(RZlS1?@WI-E34f|b2J1Ko)>1`h@|QbWc0c&kGMI9Qm+ z&XsDWHcK!Y+--sqO^@-7ERVA#ZBnRBGZnTy9R+jaR@Q?hOIT^x8yn5KM! zC_y0!Ik|Mw&y@u5ES8a~*V5?WJYP6>**{vZ&X8EO}>GB!7`%{8XVl@gxCN zPQX#v8>9x7Fm-uVK+WbB{+x4>7l9c#FIa_Ilo~Nt+m906Px*NLy=_==&k9si^_(#{ zznM#fMNmzgat=NmsCT~!^+j69@%T{avKRofXR2u84Hb0GMhBPajEBb2rEmdUMuJ8y zA(M{{6kq=ccXx-8O|8oy=PwS2 z+5|%!9u0&SoF>Ieda!+#30P$^7-dg4h60TvIQUcvGgI9gT0gl@eUhy4nc*J%^yiht zLAM3UK9pfq25G}8nh4J>4WN@-lBl=y6L>i82wTyh$~UT;eECc+?;9g85CMim zQ?R6T4I{aCJ>&kc2Z-NU3sx$R;%ZlGas?TbOVQ3H-R}yF&n`mLcAEs5>Usw>W=O&N zW(wf#EgKMeYB)(ybR!Ofc7w?`nqcP8ZemZ{h>(7&k>B~@u=%Pzh`FB+6pHzv%lkB= zW7tMbLN_z+N6+v&;_mV8zZyl_JtlFE>mL}mof%3(4ys_G`PE#iO+ELm%7-!MpTQbY zgjYua{w8)43_YmH*i{GP$cL^tYEK>Kzq%cWN1I~ZvmS-9%{b&LV zE)7S6cPgVbhB`R&oj%OjR0{do^GVdt84$gChBZ_i`j);3c~$qY7iiYcm(OyGN6I>PR5l0@!JDR6WUgxBR{1usSJ!sW|n zlGr)5c(?Co@+QUrCF&eOE2`g7f5Vd?#9|X!G*A?ks`)@A<9kHqh5;wy7EY3fZ8Xm8 zN(2v5X4AvRE1+P195nArfLr7Xx$L_dxcr|~IZ1L&Tr$#qP#WMc2!1gu#ozCCRzc$}I6?00+xQ+j=| z#wHVPi}hG8@>(9g6>m*kCPm>>TSaO86J0XVc@n5v*+{B~<-kw7%otvxFkJKCIu;#i z1gyvFQYWP$v~Buf>O6iOOlp%QHdV(-bMak9JfxF(dGi3Q(^^Z*)}G@eCG4^Eu_N5$ z@>y8_(yzRuwfC^KUK!({amsk>#t0laH6NF4ead_kUxU4@hjQ^cADGG$)quzPgOeFa zz%N4|%Ws;9s~c}auzVsOdTRvL+T}#ve-6OfSA*u|A;W3!^oK(4<%~vT6*Bms z8oV%n8<~1=HE>+&4eTOPnH6jWFf^&gDXx5;{y7M09Eq2$7!NJy zT!K+c<`6#@J2KT;ihn7i7Sy#=zz1i(B8zErQO!%D->k$HqSs{w1{KBi8j*< zd(N^M%T3W~vqZj6VLa>nToTQxPk|0~06vwM75E6(!_1uNqsO_K4b zefE2r7Iq56nrtMqe-%Z!_jbZXlJ`hs`~)sb{Q$98&o?@op8#x+&!GX1SE0Dz2`b^s=`$q9vcgy| zuN0(CrOe-9L-AfftmNN0RD0cX8pCxNk!W@ zQv52Mt$Hy9O>R&|*SgKf+W21tF%w@y=L?UpvPdfyKX;K7Cez2_ zBhb@3uaF$nL?ZJVVCgh(T5-9NHh&w5EH1~g?d{%tTe(R{f7N*s!gquGVkx$&V-z}I zB!+}ahjVGWmkQb+#X>J&L+UDqk^ z6Io5fe4TN({X@K8sSaB1*aqe#O{Dj=hCu%iJGjL#8vecY48`yH^ZxaWpZPz&o}v4v z5{2Hw5Btj${eSm*#_#3vV;xGr9Qx@WAAip6zHwXpupsvP@%#Lxc>c?`e=m<8*Smh! zhoAXBE+5@q-Tc$%UtB-_%j9A6uPBfIa)taqJmK&4`JXkvbvN`~um3;hcb}FE_12>G zefs%7KEGXD`sDMk^}eD1L-qQ9Zg>BWp7>&dEG=$}BfA53;Wn|tpQJ&u5Okt7nfXB+TA5E`7=2OkbO4H|{s;tS;`xb@W&V2fP{ZB6vVtF0}m z<(*a>6n+Nl#o8jhRr`pv_agGS^)+mMatf4d$H0U4lc4Rap;T#B68xOF7)q8nAzw>* z)F^ob&*HrTWe4lvR-bS5gPa@roPCnNX;cw;)L(8V*m6r2+0@9B@iB75 zb!QB1V$@N0L@av$TAm*^X9OIj>_uXhjYew*4uJFCx00`}J)E3B!QApx>md4d-Zo%ap+qD7zT$K+9V__k zMynK*NY1a==J*&>=viaw;UD-j}J7#FFa4MgSU6m z_f2=$`-A1!o@Y_~TE>noSHA&AS3BTV_o3**a#4ZU9&@AuzhPviMp^@^$%uDT(Wb9F zRM#cJ_fOafozt>Onf!fNnK%=U8-1Dh^CKAllV6Qh$Hst5Z(o3j#C6n4S{Oz8Y9Sy! z3k|-R#Ym2e0MV7=An55GV45S_XKPkyh43v2wr4WoA6X#Lg9(h*M?;mDg@TSYQJP98YqlrQ!iKY&!$AYia~ zB9eGe1UI(t0%cns5;e1(Fn^d!Zw{u2l$77XC+AEfwkDssIjgIoh>54Li_IX8P&Uh!3~OD64Jw>_`pz?UXhNKNgQi zt$Pf+Jq>YbZj$jKuc^KEMwN?R!ed&xUW2vowvi_LDWJVEn5jN_-*}&U3~)_+k2lFj zaK?`mpt`pb_4hiIai9D`S1bNT4nf4(Dua zBo$fnU`bjA&+zgMsOfPJDydD!@`i;VaK;gsXUPEN{W8So>kBG3CjiLlUx2~VRjB9V z2o&4OI?6MW{(K$W-U#MEmF zcd*En+`S}%uWzsiTH?Aidwwj89pMj0tv&_A#_k2-WFhLl9|?6+E&)F&Ng8oT3feR} zfm?G^i1ze+Zu;;re5~#c?w*qg`SD zJcDuK43KU4BT#tr0l0N_7yYDj8GL>-2!f_o;w7Ss+Xl=dZd=ZiG81hys6C04XbmSf zjhE1R#c_0(Q#KeU`~^RbeMhc84L};R*FoRXC^q_>4BWE6g&Y`e&L4690FC1m$+b69 zY}iQ+B&`rab|qEupQlb^gY?t*Ib+4_hR8n&-uWcMwCFAKGZ zPizPte;@+6jH)H##a(33opM6yK2UUbDtdiB9##hDgNIF3WYNWyaHN+R^ooupLoR3G znTtk|KnrQCxTOqc=PP0BU=`xDvx>x@pN=P%>cTz50?ev~L~w*4p>YAAC2a$uv)_Q- z(>lPrlS}B?6|oRZ{uT0s?~!%;=aPlRFGys!FHuZmk>}^5WKpCd5%oVon>H!YvW0Rm z_-!nfbG%O!n`g6S$=TrG%Db%1wh4%;+$En5JMkYh>(N#7-;(C5!fdXoC_8%26nZ8} zM6lK{mfbiunlI!%jES3h6=@63@Z@CIE~3(xCE63l=^1nD;nb2frH?jJsxr zz;4kNF352hIGbdFaTAN(uZcnPk?)wm<@YfiFd3ETW`T&ON8#n*jX+T-8rHYn}z6Lm$O9TZ~$<7zYsf)@h9}& zKoqSo0nXw}v60)=nD*mwr1WJwjjI%pnxf4*Lw1Wr+q{Q*EIRn zGCT3Nb0gTQO|JYw6E$h(v^vswXaRPdqG3|Ds~NWj8bAvW0Fo=lqOTJ^5c!c)XpeFM zvISB=AS4FqvO&}(zY*7Nc>AgFT`H+v!Oh*4-eY{$hinx z5-L)TpJ5$nE5l<7EY->A(SfLb%RZod#T>=RHGox#wLnH>7416h2_0{}0Mnk|Bukgb zW2pxV$gDZ(q+zc%O3gh=T7s65p%P1}>lF5P*Vr;kr{zzeu^bUmic^Cx`@4-dWt`C~q)nN&LD z;koGzusq+EOt%w>1eA-axx<(TyyB3qKYyc7r4Pej13s7|P5-?|i4te%r z80I_KK`<rpdX^&S>rSNaK(BTmdaCbz`6a0wCplTv>vJJ-6o52aq_u!<`P?+Uw zM8i=AOsivIqkcTPKR^|!%#kMHIZdE(=_h!3Hp>T2S-2Bc@qwu#{iJdqwoh2YPO@gu z{Gkt_Ot&<@{P8>bzDyt0JQg+42oC3aeaU7m^wz^)?FaC+VLF>8F%LyuY=P-Q#rT(7 z;ev^uhanBQb!68FHDbK^3U!y$LpE*4QTdJu{J^QwuzBf75>jA|#9veczZ23lVZ~}( zx=5W&Oe%*$%j_A?;isr%V-sAoUj|7p;X{`*ja*aVrCwiPXgouFJw9f(9abGs0UyFr znVvdXz|I!q8Z3)>ZIv~k;bJUa_;Hr8_l`{bGRFYB?BE&Qn>Yi%uLeSBLt*yG*Z7XAAIOXt zLK^1`fb&a+L(RFhTyxI=V}EN=F0OSL^4|-Y^KHR^i@65w4n7Dk%~e39<4=M$5k~l{ zyc@}$bPlGKnB)5+FC(!}7eQg%WKUi* z6JIM6C%r1;?uk2q{E|4h{&gsvjeSX*DvQ%TM}X|td|+TI4ppPgNtn?yo}K(YvUYYc z4%3;;9F&nDsebzaZ>TgWHQkI=uAVTC8f!p<-dGc!sW%RO)(AT)9(yzub`59s(s z9DMFt4fIwQ0r?V7^2VG2O&yKkoLw78I#dO2Rt_ZaVKldDyB$OUtLU*8*TA^+0zzZX z;0w`*@d5u?DEO@pXcdej!P^p`N^~69Sve9W%-silw!b2ii#=d{bqBEdY=O*X$f7Bc zS8%fPGhkp?39Fp7>EJ*Hh^d(K^AdR6DxE+mQ81GAUQ!8XZkC2G#BNai85(q!wl#eA zESZ&SdQ2rd!`L#Uj*f~r@~xD7*fx_<=*z2Q7}+CAwrn*LxV?J@MXnkVJ<~#5#hB8z za1G>kB?zUW4(fiz7hIQ;A?u&XAkzqSIQ3yQ+3n`coxKZtW7QHMa@`-8JhP|Xv(jMW z%rxkI!4<}7?&pp?nn<*cBw^Ljd$|X_al)N-3V3GDX>R$u)1Y}BVk+yR8Ks$?;9zDH zZol!(s3&v~kkLoL_sDGK^QIE6PFluT=%_WAvSm3D+S8M3bNMxX|MD|O+qZI^gPmcW zhkuKFerH$|+u+jtDKlsaWh_6s9H+J;@W`MfJl8nR^<_ zB(DHz^|N8Jp+9uL`jOOKafFgfbHEn&@yPB$8$41TiEV950eP4T54c6q-3N2=T=O-2 zZwGS%JUn68?LlnSEG@Kr=?K{ES3)QDjHeDWqM_@uQ|$F3b^g>5?ks=SWeBdT@Y~jG zV*{oLq0D3l=&QnpOCN_89n7XbH$y&jMxKGA!f)vF#^uX5*C*7%|}htbZiQ_?sUx zc5m0$mXdR4sk|R(a}sFWqKB|Y&lZ6#@Qr?gXu+WxJULdmv(qBkxy18(Nl%-!~s|F{kLzqkf6bw z=;E;??ea8yGIl>~eku-br2FF4>p~zo7zbw$m;`RjbtY|V6!9MI-MD#Gx$(6~mZUiC z$Ej6S#L>+ikAJ(5GhDBajmK-?q%rQ;qUSL3`gIvNu_gs+(4%nHlUS(JyB@mdl_I@n zo`Y?|Z^4IW2O+~NLy2ShSm;oVP=QxEJvL(+ts_EwrJR-Qz25a^UzIL6RWFc?d_J3h z!R0v_%g!NMT6O>wNN$L?ycO}qnk^-QeNu)b96b2650Bz}6 zGHF=@o^@vmDGBc4x$nt@fhwxFZr(;R_kLGzUP%*ce9i{SF%C?r93(Xn1<2&XR1oCp ziQL5oLT4j?(3mxmK3;MQE_@`3*wX{(Vu3%&TQHCs1neil2S%f3#XRC17C>a}I6CR8 zEIoenB`}z*ND3MrkxuvhZ1a=^=2g}swp!Z`b(v}qy-ln5<41la;Ik4PWIdSOEj*4b zkX}!dHYo{KamU%}=lOh#>~5xRoGVHmm(Jg|w3rB8Q{_Dtn*_Jb4>f6jZb;u8ngFvM zjp3nNuhDDXK-w*Fi27_bV(nGziOx(@ctK|&W!3j${Z}vGS(U?}eV`n0(;7@m)-5rv zcT7WZCti@3M2qHqY9WRTr!#A$Bv85MKKQxK5Zw1mC8a$>V7=3D_|VOtobZao<0C~# zTu3FizcUo-H7Vna6j9<*aD=>ErHqMIJ}53*!T1_XAh}*4s5%;PdVX4{Hn19;%kc(- z3&&Bv8Drt2SB218vY5EZjwSj73rQz`9SKYxfYkSe5J`_WxQztTPb0cWrduQM8z4%q zeXbz>vg)k=y%^rwPsi8^#*J`>-6CS%YR11%okp^iFOhl1%_vaw4oWzuMCa%}de3Hc152lEqDon)5_> z+wdzXShoNdOx#S2e@!FPdTW+uc4rW`)kBGv`U>ihF^+0H;=ttw1+unmFx_)*A8HBj z&HYJ+vq8$`pgrRyah|=5Z}F=i{rY(#5!_W|U+gkKyF-)7x5JP4F;P?4Q^zmyU%#78 z_a*zYX?x@NR?p_s?q#)P!CVnyaM96ZR)G$6OqmF;O&K7;y|u14L}=Dq3G^u8A~X-nMh}`Tkx$_-++xuSa9GE1BuL!Bx3ZHUaclDU zUk-jC*Urr)>j%$g%eIE1fl4hfde##Dco^9VFUIBJJ4uUA8BKe_pyu08P>c3_{=-)I%)d`b`w+E}sVUK4($o+ZITsX$|^pIT6JxoZ>bvddygj z7UhD+*%SW-kv#p;F*NS%e4Lti1}mz6!rr!WSa@bG_MNNE)o5#h;uF#kewho+YeS*b zlU$x)%Tr^Gm9KgA8~vC)b1blxmOb%Utw4H% zb|P~0D*GsF7|p(7&9@l&(b%hEJztu;44Xp7(p@290z2bl=*EbRCc7p`p{mic{5yKj zY0Z!>$jM)TOI%m82NefltX0+p6GQg^jF=()KJ*bkhB zbdDslDKk1bUG2Hx{4)Xkd}tv}{dN(5mF%V$ZmuMgEc|Jc3uOGao;J4fokTa8?+3g& zdceB%3a}NO4wu$$gYQ22(Bo?&sZVLDk$0siT6$95sAHaL?k?{g%r+7NhVQWCZqFRv zJC@r_!#zc8dpy{fcZhH3^!O-aG1Qi)t9_2QmP&B#SuWhDjXW;?m!#Z}ucw3E@zS{! z6Sc9Qj|x*JaNx2A=zx8PGhu270(Um-MMLjz2JOE4jW>191~(Qg;+lkZfUytHaB(eL zIA8JQOh(!ZZo2wG5T_o;h++}AAajcvwFhQ%w0(WLgNW0 z!7$Km27Il)9;mpbfk{gO7-vsA-1dGU`Ro);RL>WajdKq(Yj28?X0(mTJXH;hJ-xy1 z^9PB4^+Rl(G?sm-YJm*q8JVO=`oiUmD@yD2d0W&naX$Yk{AI*kvYL(|pLYx)L9N56 zmr^Y>P})G=eOv@XWm7=i(h10Wk1|!*P{?Ps#Q9@vdDMP}kicFn35i|~W%nO`OTx;^ zSn)3%MBxTS4nqt~gg@!>rMu$=f#tL5vx{?Bv$KAz+cI|=GYyjix19KXy=fxf%U5v6 z{e@&}whg*rbP%eA%d^Ad2`Ex2M>|m=@VE8kt(M$~t}YD0hsW;4w^js^X6-!UJEu2i zo)nH`)LA4Fcb{>3ER65kyK~_|$CyKBc5$oL`4YER1wdoKOd7T;2$yYs%4wip8T*gr zRmx4nr`|2+^tFqbG&2vdb%h*!v!Vb9J=HZnaZZ*ry=gEqIFt<{yf@==v2O5s(^&i< z`XWs#noH*KWB6Z4AlYA)OvLuf(Q2Fsv<6uaXT=jhsy-YX`{e=7HqL^kk;$a}o)OPj zLY>+Vh~y>59^hrpxePw24rArR^YMm_O4MhTfL)S{Y3JeFw7f-~2<r5zk=P(hztNjL!ENmyEij3%% zo%f7Sh3tWbP{Ze_yX)dh{Fw6w=;^;7eP*# zDx-8?0lO7;V98D^@?`!RlCxxzaq@wDFyQQ0BO$S9oXQUd7p^ZN*2|MPReO0>S>hw~ z4ih)AS)T!)R%xQNLT5B);3M1Cu~!y03^q}CYGh`up~$r7avzeOJ8XL zjWhsV?ivuekU+kmMTB;lWa6ij+W9?d1K3W%de$p_FJnTNu$2)GMCbJ>IK4#3MCrsV zI#&=VsBvm1W$%R8%;FvBxk(Xe5E7w^4|`X0H^_i6#RJ&UijZvKDQIx;NQlz!qr>lp z!!1b>h@N}EWF`&fs)fd);SC$Hke30ThLlN^MgYMwZ2z_tPT8*yGeaeSlX4u0Gz(`6B@A$IfgZ7Y z^b2{u@gPaqBhNVBAh_ujdaju@+hhEq^gX z8Z*O??~%(`QR^aPcB+wBsllW)#UH009Y8hKUxCW0Hl!-p0bU%}>!YU(L1hhRNae_r ze8*WebWeIbbx&>P2OkbWNki7LyIo3&rAa*NRD6`AMI1z<-pQC`oRi@n7Y+~*phr8t zjb@#)=CV8;8@hgME?Mx|j9*}_1hLM_^n~=EWaFi*R#KbjU@~*(wHEf)Y$x6WBEw68U|)@KN{=iE8QW?6`N}~qt71RqTog#B$`fp5 zWo3MI7zb`@O*g`_U%6~ue;_3mfu&<_G5+!;$jNdmd^|ar9mcnU(@x!l)+!UwZfh2I zZ&ZgZ=_PpD<;{4v+7S?OO+b=nyn~g+?Hq5_7uc;k&e%9s3kuQK+~5`wzWD+f64330 zM$gIOcU{awp-a!Bn!-i6sd4~%eo%s3n(7aG+9OyIb{zG+rz?1}{vMflGYd6;(?sKE z9VKPmGVopTIR1IxEXJuv5<5$6Cuf+`KyP5my7g}$**2a$f*XNKq3(~ zl#Ai5I>$MEsX`oSX-Z_3P4Kbk4qQ#wlUJ`c_1;^0=7vm}3T&re zG(w&buRRe8ax|tB+uF;#tM>=9rW3zGg=x|z$I1@EfL|WLf$yD=Px>M3IQ9x`P1Yu7 zSBVih;LEiNI!TOkGju=ci9hi_!S)fK7>nNDMm>IGL(u6peCsfEx+!Eft*^Mu-+dgS zlB8*Dw1xtl=*Y4TEyqdBaS>ED@-y2$I*Mintrw_0(WW-kR+WcorH8!Nz!4jnYE)Nse~jUA*4tp z=Sq_N_H})EuJ7S_KKFfnujje%`;XsWvu3ULwb#sh-ZOi>Pp`LXE@NP5LEn~GMj9J* zNpSo`yu3XTSDwtEkIjJK*c?L$LJq->rAhFVwLa|^l>m;}%F$WH+pxmV9r$kF0r){J z2b{8-%zwRQ8WVb7seFCVHsb$zKC>+%n!&g8fc55Uc6UXlRhhmxwQe zX6>=eGiGAB+2=8IraPRws?Zn(i_PE<4{-T=Zd;C(Ye%?0Bx;Yy_;?Gr}$#xm6cFBf%w~}Ch!cL}Q zvH>$Ru%DjoQVyhBbZBY8_p`)U3~y&k0WJ647POjFVn3rsdh2pmI%H8ft@iv1m035L z_Ebor?d*@Tcg?s!OXb@G)s5v?t!I#}r(1_JUDvXmeU4BM-<#5t`qqGOxmG&s+-}(R z_9cBV!yP5p^KsUkBKFY4M4VR{15y*js8!DCxb)`|YGhSj~yXc+?&RVO{?hlWbEgoBj#g+A~$ynx`ELrc~i!G~<(E(8#aJzpi??%@{ zio{+77Y|Q|&+pHMBDZJq6zxu8*O|M^5-g_yx8_5*_l!P-_s#+Lp%;vd0DGhrRPjA^ z<4App3?pId$mp-X1s-|FlKiEepiin4D7~uyom_JF zr#b2t#AFm(sG$R68;QE=boD z%Sdg>qgCu|sP;7?g&z&?$aWq<6{KH8Y#ntX~l%MekmGg zpAD;>rc%LC&rsKBC)OEV!~`z(qG~B2#-ZO9KK#WZ5{s8H+kM(V@i3Q@+u;jkAB!`Z z>5mCG(g>zs(LnjGkw|~kgAUBRNVV^l#%e^BbWE6ze;HSi@X;YU$9FO@unptA3gghl z^A{2|MSH6E`ztoQ#~Gj(|Q*#+m}TjPjbahs`0!%i4UkGJ`LzPb(m((g6_>NrOOiL zV9D|Oc_sq|lxo#lZ0Df`NA+{5$7>!izU&+1{m&}?!;QO%Th&`~fC0?(#o6H9(IX^( z@@J40PzHhpcn^zZN+GYLj*LX5g5C4)kWs}hdhxHFWd1%gICo?Tr#Vm_xd<>@v}V(s z?eh{D!)`@>n*2DR{cR#YB}EU0f9)VAnydNS#1A7mV$Lml-T-Ts-(f`BqnYE$r{QYd z2)NjZ%TaoNgRTj70yCTs!xbIU%)@$~h|)4X z`*C%mblF^KH8@&Ffv60BX3?F!WW~i&{)DV+v<)|$45&8a&^c20*N0eA`bHUY-2wzT z_~&8ruVP#`(-LwY_kxC!PN;E}ivtwvNpS8cbe)ilW@g1B$Ix*ciOu?qZ^UwR)^(IQ zF>n|Bv_8lmf2#(%c^flc)Mb7(&k1S2PUIYZ903=ty~sQY65>lZZv|WX7r}KP2hCW} zPIq6}PnEuSj@eb0NNATccJ)eNOs<5|P|So8*0aKXGq%zFnJ>v=%`Pg}?*Y|+s2N!J zT2T`B1?yC)%xG1eB=zrK)6EB1^l9OL;FP2d9C!RMuB`8-D?;Eovk!+y5_cswY!~%w~=LL2qRpyhj1592$fqAVa%HO-(kON&CnNMT|IaPLTWcCgxTZv9I4sU|;)g z1UV<`!IsC8;7frvQo8VpTA&vMtsdu6b9)`Asb**3o|Ir3nDA-&<|N!>{e?0*@&KpL zs)S3QWP>eAiPWMYJsddWE;Y2x49CqYpdEwPf=%PkgA?W_k^A8$+UT$ybO_gjuN}g` zOrsc3d+`Dlv1BpUJiLtb`GyfA>M}uNN2u{uR^$@1gNkvJfwnc%z>UabL}4Ny@7XQG zF%X@Lehg@G_bW)k;KX^zV0jF3d)-2ttK5MyiWGVKT$P+2F(;=V{UD#N1weVB-K1mr zIo`*?L@=~-4l+Cqna`68`1`KN@UzB=@vW}k=KI~)kMG%R0slp|-4w_OOpN5}6V2lDfYQc4bq{dg2D37mx5 z_~XIVYcoL5b$!adwhuy9ZYI60aE$B+c7 zf-8r)v!sdr&{A@(+@An5K+TLJ*!qJIWxU=4d{b2bB9&&OE(PPAI-RKL+bB%B`j)d% zMgvATX(3qXiQF!(!*7nn!s=Qf0zN*+`bC9UV|*Wps7;4)t|Dapw8e1kHY-rD{4N}) zD9X4A@VBBlWlZ>MWyZ3W;lG)bimX!RbJRAMk&|IzoG+c}WZ%7ADA%o(b4lqbBm8J- zxuF2t;-{rBM_E#XbC%{XZukM2cUYN!%Km}Czj_RJiYSv6YlP6d2aBNV)2nE1ra!RC zK7_O{Z3i7b`Mj!c8t6in5%xT5h?5MBNLzgr>ASUqjNC9l>yuu=*Y@iv&597b##oRK z{$-d>_`HuN8gLOdZ7slN5oeKHKp_w*;=tx68CVl}o)QzO1l*@iRK+KCTy7{&((INK zhkN^o(*rI$U%M1I-)&^|mXzX~I>$kAlQRikIRW=6X>iutK7i%NWVs^aXy`d-KKk`( zCt6Rg;`gO@pt7elskZx$O?*Dm4vu3avG*J7iPghOi*!(mwK`DlmWI`%Hwn6wz|ZPe zV8(J=;AQo3<)hOPhf+Jlaarbz=X*wQUIoXK7U>IcfvybK?h}_0i#T4MxO$AVKau3* zEr~!XMV&-ax0_6qkL8Em8lpbvr{EFRQ<7`E7=;yl1$LsZ(eQO``1VE)N_YA|RTr@7 z*zY>1w>JQXm(RgvyEw$@N-SBx4@V~a=Vm>|EqMYwii&4+&y!ft;Jq8hWktiA2Y$e7_%dy^ zUJKsaw}zG|%A-Sv&Xk$mJqHsQJ23l$CVz2{HBikhu7*N6__suWY*(%P7hVfi0y#;8&XT%@UcIL0upN~Xr zW8p~le$KYoskjaG0-Kk{u&HPXlj|Ky)GPG()3%Rd`AyfE2Z0xHv%Vi4zUv?(|6>EN z?bx8G@kHDB_HaKsYkd!Ib; zGh57)d=VnB<7q<)$GPys#Ysfb_Z4LnlmnZe-Zl|$^QJ#ph=7eg<~YH;gi74GisI&{ zf-DeSmj1LCYYaZb3Eh#@dILQwHS{_ASEvZ+Z;Rm_RFnW(a(t@4zL^MvE40}@9?;?* z!L9ijltyG4ZL4#VuFp=S6w}LTn-`%#t5=hF-M3|nbXj4|92=I>J%I~O#1FH?D-n@MDEcUD$1%6sqkjNXVf`#wNn+FR~C72N~T{pxOZe*4vR#5~#<42kwkR!DhY0YTzic;0NlF zZz)}EP{el2-^9Mrn+Cu4D$`B|9I9!aDR@*?K`%ITkutg-MjsQ{c{^lc@Qll+akpOu zwPd>u72r09oU7hS(;NY&lguODBXd(?@!>4puYZzRS9ch@A1ej5O&@VVZVD~hQiIhO zX7h^H>4WQ;aROb{5vGTjKp6$Xwv6OrTa`*)M_dZ^W&Jk%MR*3>Yn;w&NqWoR5K+cm z?gf9r!#Hw6eJyFf=*G+~=>eHHYe>vhQK*+H4CBv^;jzlkkiS!i(b;+qT=9BO=0+%C zu?;7Q%UTXhJYvncw)hM@`k)YVRx_kJQP2OE%Gqc!*DEN75R%JMi&`ag=Oc2{mJ7 z8hCMo3rkW9Agex)YL_o2axAT~yJP9FXUb13C*%aH%^sK4RxjWSQYOglQn~W}=WuPgYpTAO!smbu+QowlbcyfZypJTpVqj6 z!PHHh=5Q4zVv8WQxzw23xBNVRX4O9ai`~gYebqBk`(`Z+PZC9IcZrsVtW#(9W|eRY z57xuS9<%wGa1YwQIE)M|w;{P1FE}}rEDnAd0LH=>p(S0ROvc^E_}QU zZ1PB={Jm=_^(HN5B=QD$eyE3~75G8N%^8sTsl&{Q%3;ntW!SIw$f02=XG+E< znWr85owg`l4ZM?kzymXXGVQb>ZjcCvHr+>9jsYS-CA^IOvHd0;K5Hcv@HLe#PkJiI zKiWr*_Vuz?3TN^p>hH7GGbwm~nJutAtw~MK*bXk;gt_lkmDo< z{HRC}e1C?4RqFG}@%T2%N#_VWCSC_R1aX!HqVs6e4kNr|R2*cc2El^$!i;&qIl+Ed zL@cvKIb&a^@w?m*$FJi#+LTdA+CGZ&1202@8e@Qnroe`6EeUhd_wv7_ZG`F~w~@=+ zeXxU755FYYU|evE(UsBy>MvQe;b%9J5K{~eiYCFyv@$7;EMvdBoDC;xNwYmamC$MP zR|xb*FD%@CmJ+(&P*yH-hZ@wV!aKEXi2H#BguU$=)$-1lR!Z@ucU?P82|ul+zDwIM zHM0-GV;iCv>AcCLVdo0Q;p0mzd*l}{6Hf#8f5lTiB}wd#U`uEhxex|j+y)gk8c-hH z-2|r{=jAS`h2e|Th@*oAEG`-V2|t7QS9CftyHKMX3G%AQhF^?HLm-o^G!+)fu&`hG zekk$W6+9Nip8x#%87`l@k&)TZ2E?CNGR8%k^yf1_A=^!l`S##EM>u~QnYmZEys{#k z>o}b%H@V)-AGt2TEWBOH7ituv*zh&+&_U&2f21(ITSez|rN4xS7Krov$$il8Da*Va zU(Bf0iEw9!vv7S*EC>>?TxU)u^GQ023g~^xaC3dg!&`d%?q)M;c$pBOeDaC;`&!^Q z_dHwp&RSSB5(?G#C%_#aF<~Ox813;6EbiB3$i79ICsFX8`c&0KH^^8J-KxjH`_M|J zG;jcOHY|a8fkjx|I*c_-DifFM@Y&HRcc}%VYBL1F?JN<|_HL&2V3o{t)>9gRAoMj|y(n6k`=>?D~ z{*@fReg}r_fXs@d4!WFU&Pd4V^3wV$u-lAO__K=5$!jrTHtHhuT9L<5$QFnFZ>ve? z!SPI~e-zrvzJY}^C!zf3n*5zlHltsX1DxxrSK%mn15RI0Kwb6rz_~>ql?qSf2)(Oi zbLZ^`?CNM}_2L=n(O-rwSQ3njxem$qoDCh!Gbrb#B)m%s$Tu*`tD`F{$IoHqu89TsgT?b8f z0yyC(1)dxe_(eSw*lCRr%dOBRYyFOqp76`0ylOo=zv(6Q&UqfS_ly}Ga!jC8_Qn$u z7mdFR0FK%eW8@~U&s{n725bPE(caIeQKQv2ESd5N*6;Kp>>+^_DLWrb(o|vgNXVh? zxt2uYwiN2r4g#&l!pLmqcqY%hl&>Uumf4e=P4>Gely{EFa_l;zI88l{Wd8OrPNqr? z;c2cya-KTeHIaRSGc>ncqI3@P+{>C1)uq8{+ak+kETYL^+iCvO$8$hV6obD=TqgsO z-e`M86kMb$!Ep?bfg>?|bj@!U07hJTskkdri{#-Bhs{*vkKZo{V9;p zZ{b;qrM{Mn&Qf8uR;pni}H zpN{8qdqP3eqEMvpqmAM19m84?5sXo{EZ?-Op1OQU8Y^9%MTVO%!kP^S;D`XLOMdVr zxZQS&_=ok;#_nD8?4~q$^OPs{Y>B78Tsa9I$h^hXk)!dt)dUy%IXIU=h_U z`VBV-@SrSgsWQhaY%s7;uQb!)5fC7D0)s{^;@2~iExY?JoO)9Xng7Ux)f!>Y&Io`_ z`<;-6%uKT8(G;kwzL<(sK8{iJPk8Wp6)Cwg8N~(Kt}p_MFlBah@NeYC;mw z7r1XiB2>2eKo+xSGZ{pfv0tD_wVevVQ%MmkjtsnP6laF&iaF4z*s({|H_lHGCCutO4Ez;)Q|2^7}&58RO()!t3}P}6^BN6g#mI@Qb!lP&wef*7`P?SA%aT#?}JSXxw@v8s)w|1ez5G(86PuFktmWw0G(!7@Kwl3(cu0U2Qpt`%et8 z=%#l-r`wV=ScswOOkwuD!yT~QmEygsP{!N!<&fAIhq-r4AL`gsoJ6S|{8JabIH8}e zqZg;#$guey#%0BBm^-N}GP z&QLKMR4JLG`J|stfC1A(fXSxm&|^zErN2}Wne9`gPt44spJ!jET5 z!MBwq^rsnT=`0N;p0hk4d%xMk5Bw)!&K`N<-D<>{kB&1>rdo0eQ!-FiPb1NC`;77o zX9D->ZSek&3}omi@Krtv;4i$(g|+^ZfZ>!FSTU;|Y<(!ekr$oB4EIY=VU}m9$@Wu+*^%W~p$S6^o!=+{A4TICCy=^$6kM>sKO6miz@oNll6`t=`lN*Y+mk*~)5y7)9?g|LaF! z*-1?8&DVm{YIhOS?TG|+oP)Q*zLUEb!pLQ^-gEN!k)fy zk}!OIw~xo$@IdgJGL$>1W{r$rijD7!GrzuTQ^iZR;H2j@SZ@5+vIlnSX-jBKi@$ZI zW-V3)Qm*1KYoQWtk*~2kK~#6$dDg3bjH0 znW{lxc$F;k^FgmTVinh&Lq$fq3(!z$^9&wQTz&+&axb5F5{8 zeNtRcBqm*_;-sPoNyukswd}rxZFKV9(=IK*iV!D$0We0?n7OCxoK_6vx9zIWQG(!r$C#Bft>USD*(4+3f*sT1}2ZYO()!% z3pqBK*nyjZRiA9bPS+QZ73aEujqhB{RnWw3$>V_3l$CHwyC;4(ejgLSx%4}&ofSNKlLHU5iNTaJCFJGAjcdHn1+^(%+bV7mNm zI(vc$)_H4>)#bk8CWRU-!FdRi5-ebkg&mcw5rKEOPNw7c`cNvzU$MoqHsG9SD=<=1 zLJr)hq80{dleh&{bU;BKZd+!E)tC12rU;t=T~izQBuxm0-EN1%LBX`StQ6Fa)}ft0 zivV5wU}~LD48&@tK=EN4Go5ZADevXVh4xmKxirsWs$G`SQtEDGgd0X|SF&OK=1Slp z$o1vEjiq{QHIY>BYHZr`(&viCX;e8!)~p?O=Oz_!I>vcl>5 zL4BZkJ%TPJ+Pw0C!&Kqp`E=g}H%elA1lIPi1TUpu@uc*cK-q9DuVG{-?R4cT)i4C{ z&7Imn=aLtEewL=BMM}vF&AUKO@&T`B>oM5$(h>j4)xq82=kUQGHWuh5SW2KXDnsbsjj6B7Sz#ht0xmX z%_E>F+JQFMqk}&gPo;g+{jh(hKkcYn#xnMc$EOd@W9yc#rey`X>E^O}>@g=D$gE@2 zv*9ur^gW#3n_!I}IayGzwIkS?Uz^zp%Q~sF#0cK&r4Oj?cQRDUOJy=#okFol6unyc z5EatpL|^&1k!l#0fQv&;vc+3dz%o=wpI>eajTN8s&g?ru_ZM9Pb~OjE^Ep{iFUb4Y zTVG3mNLZI>iR+KihWS!+`~}GB%CR7Eyr^9r3Rn~>0q#LIskM29>yNx+g7?=`)sbQ3kRo(I+=71{6n4=1{zd*2r(|NGK%zn-m};hB6c zZ*KxRDiqGY8d_|Den?_g~?7>;BD~OYB9{?t=^r5G$AG7t~4I&+D!r!?y0o$Gb z%1CsI3;rAJ%M7{_naB79uv>i|6s#_Tr+4>zG*#h%^S3~? z-Bosspe{kwpdv`L%)s2vNGdL50r;_PF+F2UhZ;EG3{vw2F{6@+^v+=&ps_R^Fl`t& z86IWdCda9Tj<&QG$YZ;S^Dt+5ILGkHc#iXWV|2GA7s*vgqC8t^zH@dYy1zz>A3!Fug)@N{43x|mKftT;0;BljxjTO=O7`+QF0*2 z4BTUhP=*PsK+l#*K>hhEEURozg}*xlf~FK;1EZys{x24gY14y|DaY}?#bLl_BO5!X zwDSCtR%0F8XfSD-4jGu?LKhfCkgoGn&_kzM?6*q>CK%;FlikvwlxlEh&agZNXUr|}0j3Gts+n{gaXr}E>&tr&O16L6?;BWm?o3o7pm z^f=d45PI5=rxX?seqGha;y!tx^GhUYT2(~@!v&;mAO&iEWMTI>1j;1j@oT4iu=))f zhQ1pDCUZim7jkbYdU_;z+PD@CU*0Uhns@{XET6%73zosp>DuUmcs(35*9Dgr9R<1W z+n||qVEI(#yPT-pZvLJ2z5HdRA^eAe{JPV9^8D`?iaBm)6Zs-#=A19*=EHCliEoJP z0*-3;sCuKBP;-JFJgy-RC5m!!qeTRjaY>W(e)|9#GhNCU&Qfq>(q51k7J);@odvQF zJb~2_8K7=SQ$?$v1M}zQ*w3ti_U0@DtZllWBdr@Z;!t`)xIE>!qKQgtNMJeK{fK*( z6>#L%NO3fW!+XzO-GKFv!K;E_LMqTE_2$4hm*^6zWGkFU$X z0__*HL{KHG)S3&munlXS(F3qbPF1eg|i4TN^> z0->+#sClJ36A>wPOhP4EF`EBzb`m+#|>C6rHgf^9R;%I0sVf*CH!;ZHaNF#6>Lax14iq^ zK!d?GN?Fnz&7uAA_Owbe*|e`W`J zvIF4Gu8DYZ{c_N|;yI-!cL9&vZ3=wDd3dNpkT(+OAh2)wLH8p*>vT$JYS6FV%E?XCGURWk}5`@*pXZ^T_*#G~n2L zhwgBkh4&fxlg_OIpS+a<{=v(lO8SR@(1A?c7T$)3n~s3s=1X)l&kbiZ3Ng2SBA{|R z2*3Mzl=z1`!!O&L$k8?nvZ`Dh>hPY?se*OPP>w`BTiQtc`xQ_*eksRGa})9i&th5+ z=As^6BAUPQBx%0w#GKich3yTVQ&o=Ic=mK1TIAp`XwnVDA_s7u?sjA)zX!Uj~Q(}G@T+E$8v_cC= zPq!F(T~R?c*~OC322_?^bijg}AkzLK-qpyWc%C0{TiX?2C*g>_HlBpV>m~wJ7!DN!tMPD@ z2fg&0Bh@y~in7={l`R}Bs3$R`gZ(zuvo@9O=cPRFO=x`l23utubWuGshSzz>zU8KgD;MKaTTs z(4MIe-V0vuUWGsG;)1qso2j6_BRFUzjiMc+L8RzmOy6BcDTFxCkH1`J8qtD9rU6})X)ADGa zk@MI!@)2&fDrNV5e~lA}2JL8OhK2gQq0O}8yt0%$aQlM+ypthE?!AzNS4CrieNZlb z^xc$7kCuX4>3m{(OPpgaV!^m<>R>`9Ccuv=ik!;=Y@NdR?<7uUHL@N(3{swH;-0?s z?64pkus#1KkGFdpZg+cx6(ZEBTN3lg-dl0>jgyMlE2tPgDk`BO&#B-WisiKMC2>+D z@I{GzQiWoU6kK`ZIta_d&>@e7TFfTWMq{bi*UKBmlq8U{`G!cCyH-$hEFY&QO$MD{ zBdYEeX3H@nsmd(*~aV)($$?mw>pwGC}P>D_V2KJfLcsO{d8|qZZPsbZQF*ehP~0 zyK5w&WKu4L`Z#cp;|ju*gn%VBJMc7}dTeNY437?d!m*Mi_6pn@PQc@js=jiczMH3=YeX(*Odz5%{PKPH-E3S`CRJ*5Af z8GjWcp67N~SGa#&$juSN6@obfs)N!GFn%5YI zLtMki@QtbL=J!&#wpNwQ-^>Fh(*lXdBXQ#B^O9;5#OB5=W06n85pdw+2NLQcgL^w8 zQKuINIbXx*)<-w8@X;*vaOEbrd1C~b79^;(sQaUgTPTq2IbF0nYXLZrT}$8_p~+{_X~aSw^OpWH!dX?##ECp*c={Tg&n--AB?D}MjhzkmGy{CcIsGOKYyB0?^| z-{hkF8#Vs_@a8|GQ&IhEx<6G2bk+WvF6#GtdiMM^-Tz@Y|6^|dt6cpfPW<1bOi1WY z`|rz9$DY4UI_n?i{;zWMX9fO&?7yt@N3K+UFYDf8f4#oCf9Uf6nvVPXan$+0rnC9| zIIZBX>Hfs; z^?$?4Zu!;gRN|NHzXIQm<{{z1_G=keno&!azl_|yLT^Z)eVZ>+WWhc*7!`TzHx zM}G$Q`I9TLGXF#^Ta&_*@ju2k6qgp*uk^{gS1<9@Z=dMy4>YZEau1GO*h1RAM}YEu zGwGNtGg9!&1}s~Ck9<&{M~YA0uI$wi}3l%17KKBNfjuII9mM_vpnx0!{0 zEkBMl84cu7&V|j?Y(_VqnyVp5o_;nxZ~+~5OQ!0ZM4)H z%MQ6im+ha+o^5la5(_e@en$tq?wcjNz5gW$v@8Pcv*m%l^Z@XikOfDj*tG0!OG;+7 z84PAs;OUQYVDj3jaBiS9j^6o>{c~q5bT}}J&-*Z+OxE4cjCv7f$KnVwnk>)(RlUki z7xbYtx|UHoZG_gwwF3#c687HW2Z92736OEDT%G4|w(qfqe9L>PklvXb|@x z{jQj@nemDzbJ~&K@J$kAJhmpPb6;UFaStwze?*&IsKz6rG_hT~5omAx#WNS!1T1&X z0?8|?iN$3DV)cwqecPr)J7h+XU4u7}rb7coOy?nsz2WHHy8|fUvLadrXCnWC%a|Lw zA6Z*XWj^nFi(Av5Q|8u&^tRJ(w3~ho`@Wi*;Ct~4mRhu%j`Kf9uNw2jEwOvaVretV zdbKo8H!!C+hYSE|4=K_!?kVnsY4lf%e%iU&glLtNkdZm_z&vk5>>K4wgq?ih#Iroo zB8cr*dASGpR?VP=i}cKTHr)aw3Rr#0jYJSQAQl zxZzHTSzyKGaM(XRi(_~1D6&_jk#^~I#_#H4>VTL$|Gwl@X6)$_zEAxHBq^-JRCNo% zft*{kTb&2+eIp4DMd%atz(F9fK_1HO*kAfsZ4GERo(l};`M`TCQ|aSF;Z)5LJ>C<) zaEyG$Lm{1epm5U(_5qb6)R56x5Q`q;5m5DyzDz;;_vgq50N*vykfVB?RsxN+udUcBplI{H}!yZuxr&^?;Q zzQk*#lRwIVzzQQeB)b`}&s<5`;?A%Kuc~9qGm<20i7#{$#Bmnforka4J^-P|ZnATMV?zW+@TvURrRQ(90rfh|=@(Eb$(laWKxdrE6 zeZk!BZiUh#nv9db7GE;Wk!h7!3V3}^pAIgLCB>fa z%>yHxLRiq^hHIP+K#IOKj6cdDJw}-@`0WQE?@0u;taT`@^%-!VkToZ|U<$nSD-Bte zoMUYEw}Lb;KEATyJTtoAfL~wPj8^2D5VYqjRo$6Fr}BaTcVFUrEf8`ms}EJU(>u8rGX8$8-&q;Je*gf?A}~Ox%lZ z()PrfvDED)wmo0SU7w`A3aTxIkIvD3i21x)TLgqhHrwh1_z0ed@%X2)QxzUsuP0?lc9|O7r3D< z5ew_@B0l>CKBtZOWdGx>$bB%BXh>cpGOJaY<4abNae=pqR!tKbadaYG+v7;@js!|j zxs+q+T?~6#2H0^gmZ4#1WzM?FS4{BSEPm&)>r7w1DVV%1niQX-NX!XEm@rF_>*1vY zYuPw{Dd^#ec2ju|F+s5^|Q-Dbt#&!54GPp;-Hp7aBy4xE77QjO7!=N0gW z_9Lf(N)cSk0_ zC}sl^nQZ~HShAFuMg$~GGYmJELo%WZV1po5E7V{u*olt9<=g6@`K3tIGW`>!7FR(; z1+^mmG`HcZNJr#hYlEIvO-1|kTcMFI8|^E4Pd0ooBB8G;$*$e!akW%5FKU4yS(~cE zJbn6%wj1{fva4SbWjAr==6x>X;M`0iX0(yqOY_N>NmXP_{vNFJJ_}}TYJdmw)QEz} zNv5bHndEA;LqEZKw>8W2!_fc|yNEgY>-vxwSCX`Nyv0hZ<^yZaNmAJnjh(ha{^xV*-)q*%c zb!X=FS(<1BMKLoxRfy2Gcs}zco7t10&97}qW#*VPGQzhq(94=v9Q*u!hNaxbgd3+b zO(zdC!t1^=teg#uqkI){Exb<-t50N>X&&V}iaul>_*5{VF}IjNdNKdag=c642yw0Q zE}}7menw;TCi5-@GEpTG{P@eK8N&&HF$v9P49|s=MAvEMyzt3Tuk-)!)tCOW^6_UE{Nc}^{=Y9D1;_vP8~+i1{%6U@pLzdj z|NZ$V{FaYD9Q~guAAio_w%@z>Q{{bx?$Lrq;o@xo(DW#lC#wGM!h3Lwc0S>5o@ftLh|-cOSfO zpzy=e=!JWlVTTWwO`UvYGQp+aIAFd!OSWL0!L`@OIC_Gn$=wy_S^b%^#sN85tjog2 ztb&9q#;yJ{4cDgR7#@0I$SUKXH@uMDWVHFsOp|x=jV1{NktUhSO9inAQ&?J;yNs*? zR4K;O7*)7cwyUsH?cxUf%8He%n4Sp{26W!T{-X0z@#WtyZk6v6hR zn@wyBW|-`Y^DtnoXG{NwJ%w|^isJ_Xs z9%zTqYWdK_*~X3)>oVEI_xgHp zrr(r(-sz?BtlYU&_iiEMGtj}Qie)J zp)?OD8dW4pDN|&KLgrM2$~-kFMFS;86bcQRC@M{w=<~hL`&`%a_Wto**ZW=H_r8Cf zv#x!vbN%+(_r3Sp>$lc#{SqWyTFO>n9YNu(7Iv%qQySLLD+v5Ek7hrZLHd&}(Fi|t zp_j}7VixHDCm+V*tB9fd#+1_dq8xVh)*vp)b0O)v^9gct4cOVS&tbU=pQ`Q&LPo0u z)W~i#q-EKIPf0erWL6;bO^u`#-+$7cQR#R|y9SAtnFU2UhtS3y)>OYjov3~r4^Uh} z;sXI~iHJbk=DdWJP6Fbgql7;Zg|0rFIm+*mD@j z#2*5eai6K*u(&|pq?6rnYc#uVYmeZ_h74Ml6;4W`AJBk4DpXt=KtApcg^6$6u#D|Y z>ggR%jefCOjxkVpSy8 zKue4-T|HKgtyk&5jmzrc?LUjI;4jU<3 zNW+wSi3MMYHZfw@z3(WvPntwJlvmPY#VcTRP!avIZ~~2cElr|s^e{{1JkZkS6VzL* z3@ksKAdi=-(q}sz>4|;TWOjFepgH9bJJVW~Y^w_3{&=OpnUJ-x__D6B`I`;9`0E(K z?NyT8gEkFzs@NFe{l8IkxB3S1-l>;P{JKmyQ8kBTxD-R@X~0LWyHmrvHMGs?GApt& zo`VWa5^AhOe%`lXA3xdyzxXR?fLjF$coaw%FFOd|KRCd+X_wivZJE%RmOvMKn6ssa z({aVwC-CyM82s6ohFgTY5g;_eAV6C>32d<8DK$Rf3n0lGRRlI{$?PJUfbq}4a1 z@T`hzxKQFjghj?w!O#ibsD{uB-M`48erZzrrwR#7tkAN^5Zb;f7p_7GNnG%Vtdp2Q zC(5gk+TmpaNt4Cw>a07k(I0au4i&JWFbS0QOAEv8C$lAya)O0EkJ*TOQtYGKp9QrC zf~jY63<=LDrs>U-h3-~SBq<>r@`ufFM2RKU3C^Lt_fE16&vtTMaxCea_5_;hwb`}h zVIcH1peYurXzE5gdT!!+m{%tYb7m*8R$alc=ZZhAxT?u^uCT?Aj|P!Y84f&G)*_U> zk1B>81b=q{PCU1VR4N`~ls_7y$JIl)*ZBnb9V3G~6$Z&uaSI4OHU{RHhC+vKD(Z4I zCpOnpDK~EtxOksn<^>4x-RN!TyP_@|ZZ1LVE`5L$@ln+KZVr=Z0kBB&H55-cOv8`r zLBQ=q`r?NMJ@_>rwz`i-_tQ3_iO$A!>gyczJysFotyD>S-xHFUU`_ti3I&VzET;SE zAP(Ij#~J!xLsQI)aMpwNk-E}A_Ib?%?%UVxthSyG>svZa`0{%bEt$|mI(56qxK&ZY zjk+_4X0`~qx^fXVJh_N=wbxMdyeQVvZ6POny$7a5=#kaU3|l!epk+Zs63tc7Kq@XF z^m_Pgm^MQK21ci`X(f5E)PBULQId3dt{vW39ZJk@PKN&P_2~YrAUaw*0z@Ruv71XE zDVQ0}`1c@mK~4h1Ix|Vzusl8~GDKn@TEY9^vA}qSL*|uO8?q+9CyEpNeHmVN zW*NP-y_R}g$FkEdF6L@FKSG?R0nwJDY}$Gu^vb2t$1ktM;fCgOYPD)zNYIT=E!(aroEl;YP3ahPyG`{EA$fI;H^9IExl%voxYH_C)~qXjGi5qat_x3?63s+>eg>acFJh7&jb+xiouD&eIPlBh*1Eb5)tckqZ1h%>(FFv?b1b z;{;E#bx8c-AB@V_2*zo~ZG3&+24bbigrNak*94RW@*iN(5V z7>{kCP&lI-eb&B!YP*l3%BeMcGHecLZUqE}bz*PGV#ZFp&73y9z+WC5Op1_@wApz< zVRAUgR2DMEJTH7)B>_+N%!Sr7H7Lklk4&GkA2v-ofDgxoFrRiRGp0#n$#|vpxVFLo z3M+HrJ$ecjJx6iXf;a4jKe}|w+WkM_JMzQ9L5^=?( zjd+%JCi(TP2bFI-4(IJBGiSY@19ka?M(w|W_W#wP5%=`);SzD8v*tayn`(~--i4B# zE@n`kc^93#8bl}jjQ}g&R6H^jf_zVnW<07eS|yZ#%^S1Gb*z9VJ{=;4q1JHUNDU0H zhr?Tg40LbDOrqJALG1^OL9r@_v6YyL177%`tUdbdp?%Wyn(rW(8OTtZ`a)(p6++?Z zemGrogsz-q2p&&U>2$sh^)xSqH!3Q~apg9obQw|W)&f*$F%~xDXpmd2FUXajw!~uY zRKb>qE9s^{5vWU7SVt3Y#7{-+c;g5a{cQk|UsCDZ zDLS-~UkdTlRgh-fHY6xP^iD@1+UYSC1kW{yZ_f+zbl8?Gcb+Ox*I7mF?~1^UG(|4i z`7RQ>Kw13dPnl^QZ7p z)!KV_Q*)r_?U!UA#F3!s!uBYiL~ z_|t}N?3;=^nx^t&I_sF1w!w%oosOsLuV+5CoxtZM)bZsA9W+pJg?Bp1l^17OfSq@C zGJU#-(e)R@sM%v3p4w)Jy5$bjwWjWH_n0JFw0Q-2H|r6j-*=30+@i~#VXUAmpQRy9 zQY3kk5d5X(*b`rm;#z(PdY$+a-#>1{){CD(A9eGXv|Ryw&GL1axSYqw=ih<6qGKdy z=?1i{d>ra4m#$=)E_1EuAX6!E33S#}Gm3ec_~hBCF!t(v zEHW5EG($|m^VJ>nIw6p{O*#ZhPG&3>XV9La?HF-XKh45q4OlD8A&@rBsmiXm{ zZZBDQ)%6bMB*fBLKKk&)FNMClt4+7L6@$ZqF-SCKEAqX}r@pFrD5P8&OqA3KYx#`$ z3+9k5E>i@42ba-3QbTx1bu^dr<`(iCU51q(bqaQe2eUR}t(^V=AJ+5y1XfOYrto6p zL%Q3&k2G9+L8`k(dVv>P5uIW&;<0-v4)Iw^t(M)QEsJB=#Y+}(BGvs+?ypbuLIhgl(Mlx^m+ZdDVht`<4R~zdF&q9j5j_AEvJMUn*fDvnm zV){6LbnAIGf4A}dcFtr`&EOKK~ z*c#GtRst%`gP32-Zi35QYi9fr%%ly4(BN6=xPNUSk=FKu&#fg`TSq{h3iHwWx&kKK z;~-Z2;7M;4nIe-*lreKG;$@X*BIo!aB>Gz!rj|X1dd`pe{Vs%&pA?K6URLvk16xqP zz>lYXq5x@8J~K+jkQoRO0R_1zW>w!C1QH<$223?sa2J6ByiO3Rp>@V|&9PPJ+p$b(P|2GV(7aT`7W?PW%SI21| zGK5UKEatVx6x{5x6REG9#ERETQumlIaBEPC?zwS}33|@LJlXf4_%oJ9-qeSlTPgIZ z;W%npRt(4W$DlgCC)(D_Wq!7RJ9mFtM}VIx#@*=I>Jg?raLqKyjugj?}~R9VCbpO18;+|?d= zemq=?zrI*X+4@^Fyu2X#Uz zSUWd^)ml&l*Ag7)$|7mHBBBxx)_sI&We%_|F9&4|ZK1B8=aKK$7Et)@9Ff~U5s4>% zLw;_@VC~tZ#O?{kdzVYofj1lAq3RUq=`#nb7I&n+{vvTGUO*FGbEKnR8%O%N;$ON8 z(aTsRRwL{rt;l*pZf-Q9S)cWAW9Kt4*|?6Zx;2&VdB=g&t`oHCksPf_d=2~27vzw) z09i{X(|G_;@)62cJe+6;VQQTI$P@)8CG~f*G;k(u8BBCvIY`hc<2EBGHNv)rCmfJ zsgzYrjO6Zb6_Pdd2W<7ntg`7v_^o3}P3n%I`xS1K*!w}wR~rbc&tuPTj{tdoG*uU; ztlipJZ1(gbeCn70Th0ff#g3-b;OIEg{Y@FhJPaZ8XZ&G~x>ljRR;~~cXGk7I%i#sa zEo6>32UD-fL)a80h~LMe=%0s4*02t>&z2p@^9`USQxFa}(nXC|o>IGfKic)^4AHC= zp<{A?qQU9;kXQgj@re@6y(R-6(|oD3TRSQ7D}^n3SJ2Mj@u=(eCK|l|2z1V|CmJ$$ z$r5cn>T*tss8Ab$^q?s_I;Ib@PEX`iGSWc0CYA{dk=b`JV&50%uKj^P7UOjhq5A<7K23IQW}yW!~Q?{Ff%ZS2|L*_l zp8wy!|Ihv~{tthM{RixS*TcW||GIxJ-u~~7`9ErX{O1MOa%J4ww-GQ=0rqf ziL3V}SGTS1YdQA+Hvfyw{bT>PpZ}NR!hepN{$o%6$2R-Np7KB10`iYd|FQqUC-?`S z;2(T~fA9(Z!6*0!pWq*Sf`9M{|G_8x2cPgCe8PY53ID+-{0E=#AAG`p@CpCHC;SJW z=|A{P|G{Va4?ffX!1te<_{@JUkpDwJ|2OXE7yl>k=l?@5*Z=3R#;g3rz3Z|;J+uFYdxDv(bdN{%C0=^+W#N1f2jtyPWLeolyiA7#CUH|qE3b2wRcLR2i zm}BvDjzu=yJpY#N4w^>W3U$bv=RwSqc$JRm9@O58@V3M8|8M#p2@S zf(Oq-+4dYoqA#Au9k36AhNzF=-@aPNx$kG?pZW@ZtRK(y45qVI>@uOnIt3~hkO{LI z{?Y|DyM(;A4@kO03zXzM#v#WN=sFz*_D#4fC%j(A9Z<+5{ri8wNt;kMUlc<8@Tp8U z>DL&9CG*5#T0=5@F;kz-Gak>`@}F?oN!4VXpdX@dB(M^uS+L_}E?s;4H+m{wNp;Rt z!22uSu+~grq+f<37scPvg;|E|uXY`NEOU<8^(l?np7zlsQT+gZa!Lxl4UXZ5UA&1j z$`2a*aZ;G$fO7r|I?=Y|D0D63O2Y#fyf*CzM8qb+1 zhqtP{VP>X$;~iE^=Phg9iA%L^@aK=JWM;S@K;hwT*wTAB|D>M_UCNV$!~sj@o47R@ zpApO#h-5KZC4F@9)eSJjiqfO{QSdy|8uq!5XSHst;Q&otgnb2gfzt|h#)H*p;L25I z|FuSb?0^%F6tBjQ%g#V-p*MLsb~c*Xa+PTp@Zn>?US=|Q;aLZA>XkY4{=K`Pdj2LTq*TG$p+ii!nhU*seJ882?I9_sO2H4j#=@6R ze582lI=k@TbT-*#2Yp!dj{cE8f;UgtN3NfHP6|^0(BRL~q~_9GR-^b7?GHUjmgMZj zNlzwWi#=xS&U+jgf7qI?ZStXklA7$Z)(8w~FBB6wYmNyo>vWUR+E z;j-o?c0m5VV1D0G?s}srXaD(h$@5?X1JNQ}pDSi^TZNJgPgKi|)2R zfi~}>WM|?v`XFc}(7HEtXT%=r^7#)0>3={PMYm92S}EPP^Af&ZW^K1F1lV0ZYrMu(IZqCBXxpZ@J3g#B>gu#b*vj}dtj&V-nZA( zME@lbku9Z?!;Qi=?Ghr|qer}TPU1HG3sgZtk&BN6V0<7tQ~zd%1s`Age46|mYij-*wdgE3E>QJ455 zI$uAFc-=VwZN55m$6zzF`RZ(ZJ^wuTL{^c&&)Hb*_iCD2aTGF(gJDBb9n@+`pn&i( zlsXI8wWEVba`Y;kysZ?+=j}oB9tE+#0>0D1!#ecI>2UhUYX+8DZA{X)<&vQ_<#fm1 z6uAFIlGRoAp;=ZYID=aHT>YqMR3#(^v^y&vvT472bxnHJ_Y5*)kn*>kwi`a=J z=H$2f1@0_;2}XBRNz!XiVfBUt_T2uB0{OKwxtUdw>>at?!mN8?^iRDVq5E`Mm%<96 zt41#&Csjy>K@)Z;ze&Bt$Ft|ADRa%&yE$rjjD(5KBeoGKtb)uh@Z5fxKA$m!Cf47i z_KtNRY#!n2^i{dJbKk&w@`^Sq`>^-2rSUC{NT$wOY<$!nvG)ea@hStzm;8)^0$QMl z1o2lE$e@MoFYtVEBjTAe8JRxbNb2kpaN#r$yuSMsELv-d_VOOU#f5dWRO~6PPLV@L za>LPGM+Y>n;Ux7ueuVTjodos+CjQ!I8Pxv?mp+mr@vFwsnT0xdTGtr5Yh43bFhdrU zJ_*pSKZ%I_QBK~OUqIAA5l$G3kzaPJ$(pI=Flo_s&a_=fd)DP)(YdSHW-(EGAU*+0 z=}Z(%O#48EYhJR*UxfX9<2_aQn=dF*^P!U!qexRpIysWKTv)V6j|3jL30be>5r7Ik zk}-vfuIr>pZX-FPI2ACsE>8BSl+xUXlc8e$NV+KJD08IpJE?s36FVzz#n)~dvYK)p z_)^Xl5_PPCJnLx01?F~ShGib)8DBuAOB!j?-XJpJq!ql=QK5eqCo>+ewD8XlXCe1} zEh$V&#u6(RQSV7fu(WIs_}bJ$<t=Zm`wFMUgLh!*;% zvg{OiaHJm8c$3kGQ6s$eVnggdm-ox7-r=X$NaqNrRqU?lDJsR0~l4ehs zf$x7XCWr5pkP!O@y7f&3C|9bpneW4B-`v>*X({7pcPr7nY%#W@<_;8#y&(a8##Ca@ z9qMOM05`V17JM!^$7(K_M)ue>a0E9)%3C?YHHHh9>J_lLW>JF3hj!dq=}flwL#!~* zH=mYW2qSmy>$8hpYJ~h}KM0gm6WOaY16&oRFaQPte4V?>TtBv8X*=fif%fOfq7pU_U zKeBksGcX)+OLk%=VZ4C987Dd_(-h<~h zU4a&uk<_?NV61L}p0(@4%@zTkIxdD-hSZWFjYS~nnhovieq)Ji)hJLd5c2CsG2+j+ z;XS*pk)3Ec^TO;fy!zUPzj{o7X|4-M{a#bNdy^&kX08oOJh!2q3sF>3y%_xQR%|UB zMZDJL^UJbqk(!DajFQMDmuJc0S8;zyvaurQton|NSKNna$;qhEehqORG-L}DSA+K- zH&l3k0#ob zW(@d$tY&Vehd`fR9WpUXMatpjNGpGc&&_y>r`~S^cXnVT|DVdg+hB^u=*Tmu_z=lF z*9{xCUcj5o<6yLu4C6UC8gKo$5dV0mKxVHSg?qN?lhpo0;9Y$M?_S6B7CKmWNB?J?%D?)(F3#_R(2YI}G1m_Pbp-RH-A%5{g5*8s%>YUywV}7y_%5qoG#?#q(h?*`QX?w58&yS%P=pN zk1y`b0)IC{h}5fNrd(V^wbeS|lus(Ij0h%*$M5o8KO9DJlJD?1@s*^dRt7H^T~CsC zKf`5nA7NL&x$uznW6u3tMQ%K9rs*>hV24NwGC9h}e(MLA4>QHtF;9S2+1Qfp881oi zLyXE2d?D#c4_wS~qTVwlAvtd^^_$f}F5QiSBXXW2+^i5udQYRz=N!R}Ip5&Y+rvba zuR?XLPvAwjS;3;ePw3Jg&LAPH%4r=sjZamW!TyKW1P;T9-TWYrJM%V_y>9%AzUHKa z{inpK_t`2i8a<7Q={N|z)Hwo;#UN=r7q2m}q`C()X#8$JR;<&Cd$Q#<*f!L_b&;{` zwr*pnc3)0cG_F8@@6V!E2lb%oKnE`Nk6=3^J;617COy6)kmhZ+g<_Qf@QOMCA6M;W zXv%eReg8-e>z6lJb>?MKzeb1o)Dwvu@nu}oR)~*355^0PzGIcWa;wHJg5R|x@Aakc1)BooM`o`%2>d4{voYxtIVnA9!Oyr{Qf{-K40NQ? z4}*rBmZC1r9rG8;j>co-BPygXSe+{WiDoNeG`Q;A6cW|*4*$IoLD9YjylhwpCjL5t z`dfp@$~W0~-JYA+vR|5w446RfCs@}O$ zaK##5@^^k1-@9HFc|KZz?_N8ImVTLxuR7!c^FspXCp%z`?9*VN)qnyTzXD^@O*g?POP6z>VkihH6Jy}hYD#5?&_#G<0Jl7;|W`x{qQ6yKge%0BV=YP z94o7adq>|eBFjd>*PhGd=I$%_>ZrwJmGf;lv_YI6-nbF=IN5QL>D|=+nJK8;e!*^D zm5FOAWT8VYNYESh4c-Y=1?P^8VcXd`+%B(t_D%F2x<*NcP8FR*gUyZzw8IeHFpnW< z zi-2Ywkt099R1&2{$@J&c6JT*P1zXP5CGmeUd1s1$&>cQs2y(21ea8c6(^zHnQa>Em z%)JLLJF>}aJ9*HJ3Zq9>r9-GuKFG8=;MB4D4C=L|L7Bg)SKJ3uq~?KZoRq*o{y6{S z@&xwV55nr-T2E8D-_kLnu{igsD+!WMB+heAQI~o-a^HU<`*3(BReQUGglZrxvAzg@ z9X*lNWo?L))M85BTTy0<3VZ0QFOwW8E?lcB$w{q@B8ESt1#OA~@@j=M*-&0892$sb z)pxfGE^CHyKZY1CQRl z3)a(ne}+)a`j=4gY9*;k4W(5y1pKepQ~h>*x@wLj>F_N?UZNT3^6vtAI3*E|F3lzK z5gjBYG?vOp7U0&Kse;$;-s~=Waq@0*4EML|DC|nQ2AfUIg_@w^FinIio1N;nmK|3rT`ykZm1oZ%7zf=KJC z?=YhJ!j?Ja!s*mQ^q_wY>e-q=HC`S9nYjzVvZI3?zn~M=mgUjB#l|DUxQg+OJAq_X zLpcopZA6=P_0sd9at(qmbw%zWhQ+bg{OnF7rCbQpWsSuMsQ7n4r5+3b*0o~txg#EtsJawINmvs6cqP;FBQIg&# z(8!4))ZzuTIGzR~w`JHnoncf}N}r@1d4&#ymLs31jdaPYtGNF19P;vA2l+8lW5RcT z1_dFv1hTRmTRYSOMu)Pw%!$%aXjK3P9czRO!mhGC`&J8P$&BVoC1Y7bl|*6H>sIF@*0o{SvB`Q$#~f_EPxN2v$N$UeoM)o+1k zKl*6J@@hm$2Yn>G1&TWYp(|9K8!(q7K3UJ`tYZ?atqMafMaF^ttlLC+IYONE6jn)_ zrSDumLZR7T`mRw6FO9!*@8Vt-jX(4p811@f35s~on z6L{{nAdj!d5DiU3)5Q*j?9%!`VW8?|&e>NWsM2W>wgz7#$K_3_=csIUTdA)g?$Aq` z@Ys*oY^nu=@2BYK6LDGyPdRM+vU<_()v;v4wniKAGUH@i^tC18caMqmp*Uq*yD7R!A#h zS=Gll>Uc2OUu!|-UW|h~K?8J9(Vkq`HIW$4HXx&#=VQ0dOuB7A$iDwRp5n2x;PrVn z?01}uy}kajdwLJE-`3Vp@dg$4y`mx%p1U>D%QF%miy5*EmoSkK)#}^$IN)gs=zuLuf!nE!(-DF+JrUN~cW>CB^Bkz$RO> zw@XslbG^s8Xw6-MPs+Nq&-gK6Cu?zG%9$kSCXdx~55mE@wycKgN;2;mGt!%s#HFWu zlP}x+*rUVaxan)Nn4U%Fn8ZhJ82!#ChuS2eT>2cWFmi?^uHjUHe$Oo9hJ;MLs#TqtoA=a(>KAp9%)py(@k zZd=H`$`2%_B~k3xk(}w%wpbXrJ%FQa&O-M`d1Sw9C8_yz7x+D6=oNcStatt#JySf9 zG2c9L?{gEwKj(FW{gaf=-)1=;OVqB=D#On=_?_7q#m! z**yC)^LI--6BRZA-`R1C{5+ryc6s^GX0#u|0Sj{;MsZmGqF0C`zYP|&6d_#egFc?e24DNCf%ah2< z1u^WrqmIaxEdH<~^h z+fQQ5lc@{#M}K3xX_5UlYPcm)pyXVN-YKi1NnI=0u-;Yd?sd0e@&tKSbIc%oDiClA zPg41#pF1PHeFgBNMTk~74)D2)A7O0AR8UTk#G7*!Nq3q%n{O$~ZCJF;1$!ycs3pC{{6*DKq_xH2CjLjJzXoL&-Q3y+nU>W=Rfe>s?5y zgN=}(=V#UWOzT8G?N4!&q(IVh;-eW=mf@g<1Lsvb(V=? z%S_&l22DnKc?Qqs{!im!=N*iU`)Fp``XjtzwH3^nKqYvXYGd5xIvW+#E1|N(+DI|; zEgsseOz+2S0j6Jre1265j}8pdR?FFV_tjOHtJ{w&jgB*|(hvD7M|xz}|LuT`);b(| z=_zl=+#BS2#XMea>;+I;{}N}#$-9~sCA z5A$tJ)wYi01tK2_5_*l;V)0r*MsYbc7PBPo*~P-HnOoT4*LsufZq26kyq~mel@oca zH;%nF5)Y;2KN8$(7s1}h0WJ5;V|$v8v%WQ|#Ch~IcELx6h`1l&^a{r@t0$$POw}=@ zx+n^r83{cl?#?2zeHn10bTyudO@L#`Y24an3Y;AbXg1bdeL5J~o6;D9lEc_bZKKd#`}N zy2bdSxe3lHnS}3_o8wKpIXq+y?BVf8$llnCBb>`CD5!O&M-}^tSsVrHxpC-guLSgd zwPUVGpMiw1{qSyT0Xe$=B~P|jfu_}q@hhD@$XWwg;#E}7R(dGIyBN%o?URJ*dI8+a zp%D@`T%E|6b+M0T7LidMV)$(CF@dsQ6iwUlNx1vWEE1%UPZm88VI1_I5MyIo^2Y5B zH;+FCt+f(oPTOpxwpv;ARLx=t4Y8!6eI{_=fH7M)RK|-|@MX51D8tTuB8+l*BQNu8 zEKVJ$!iFpUFwNdMSjsYmPE5GVI~K4P@@@?<@%uBGFhynj;$c1+ys83Zr82o$u?iHg zInvFI2*cqGG^#Lp>~99myG!u6 ztm`;6rW-~n4Y4>}gBtkea3*!JWM8#A>!i7lj;k$$l~##(&%}{__cBcsE3_k=r#NZO zv7i@^RUr?2fi^YjG7oP)B2}F-H0XN~cXR6(B9gLEP^tnmmu*`SD5c3 zqplUF+p=TMzJP)gebl_N6^bS(b5*Aj`On3TP^(oClxVW(|pk~CgR1Zb>vRA4j7L432q(RASvqd20h zXn+q<->CM$D=4d(%3anTA+6;Wp@_mV*m}we`7is$-=_8#PS&}B{?3u!^$Wg4rNoZS zsw4be5pl$E*Gk5%;ST@VxnV~A>@84v?urRgSy_8^yKSzJf*!nK#p=Py1qxOM_dZo!z{p?gZ%|d`a)>J z_eVn81;&INPOfR{lqo!hU8w|v*c52PQUx*3z1Op74?96=`Z zRUQLRu*Vw)mhieqN0QwuKAQ}oe3i;TBz)!!RqP8_4FDn6~xY z;|c-=G*|zapfBvV@CJP-h*tI$uvfF_S}g~`EE6BvzBL}AP1XrtULMC9sNFGrZYe^~ zKT4x|IVKSN`!U@ru&2i_#*An*|cl2N( ze?jDYwE1%uj9O=b%=-a$H+5O}un55!1^!|gxksCtV&p5|tP?cZqQF1f`_ws|r?!M_FGH{^lQFszq$FLwZIk*+lQ;i3lWij>N(>*90Gn zR84IgB!zF*CkYOVb<=Go;euxS2+9V0f^R(`Le_<4BUgVgExo2r4V%x?u&0CY-LaQO zjSr%Emrn_9|GkPbwA9e6Gybf8tru%M={-bERAMLBh>`769JssMclk5Wdi1EE38dQQ zBd6EH{AurGiPLE>*kPiDKgsxz9^rO2cN&jhsFzKWL^^r1XE^Xzi6t?kCMzP_Z~ctL zr8-<)sLTI+jR$`$%$RK(Z}Me24>GFMtvA4e>*DzOx^~*28b*eX2XTjzwD6UmgE(ei7#ea;#9^uOa6dSn z$bUY;8>%|UuUuviX=`+_L_-J~N*aqBOCRtznrtF(*Ov1btj=HYW~AQf#(bX4*=U}g zZ7urMJpobClXKXM_ljCRG|VlUeMpsbz zk7HT`%GIl{3^EWq|g+b8OpSB7fh3u_)uP8VG+GA#Q6SKfF+PBwpab z)~Zkxdqx1^tEJi5%D|uKB0(NYS@Eqp#F%wEWSN8wr?7kB$U8?#C5kTFhu&39fIksv zBt92GpBf~X5YJHlp8c`B+B?(HuqT6Y&k@FJb(rxRe|fn4KGnqNQ6!qR`6jdZ*JP9& zU54yar0H0{I9Ql{ioTIb#uds|#C`N?7~C)l)1M5o$y|Ydn2bn}Zg0YNuA8xktu_>W z8M*&>=@S{*_q?HxI?(&r1KdJ0Xx^JkxaQ$%RxLqF&}IgzhJ#-^Ll zB`JfSJP+bhQXi8Y7aj;)H#ot^n$s}T%?icEOVj7`M`~A;F0gm2Co{V3UX1mqS)`{X zm~39T8K)nYB@K?Fu=EE_`X(ZeZ|fYzv~?$O(~m^l0f)m-VbEf>jo#x@xi&;4RmFDFOTf`fV;FOGn3uk zG4E8AknHYH__VGYnsMX1FwV{gIq0al)+w^~m-N0wqu*O3tnEd%dw zA-rjB1Cw%ZkSEu>0WUvQ3J*L=gO9?+Nt~HC9gcs)o1LLcRCXR?TBesV?yJ+Gb^d6) z{j?d16>4!F{=U$1)L|m1E&~JlBj6G7ELd6ik~g*GBrij{76nSB!7ZlVDBP*eNK86{vLNF{^O ziul3XkuQNS)a1ihU28b9=OnI&*+i^Iz!dQ-@bW35?V(XWGR_k!XqIIMVqpDsWEXJ=qseg1zVPmd2mL ziyws`uDk% zFoCrkUCSjD9i&$?ZO9(^Xu+oHNo-B0xaqd~G4x4FC5>=cMBGHlTuEMwo zW-p!&7gWcxrvo;#o62tEyS1a)u8C4)gqtrvB2)@2Q1OEvF(XL$@O;>OYdm=EU`px} zU2v+BH9A;*htw?fW~bjVU?vCOB0qK|fS#g45H4nmEP`T4@7(Xm@>T+_c}?-yh3-`6 zc_W-|_zw03b;Ir_YCvk0C!-S>jZ;=`#20T7bT`eK*HJj1q=~#T<~oTm7u#JJwi1o9 zV>QYB&$rnl6JHbGJrVqZGG`(;$BWJMLv-MAC{{G>L{gSXc%7Fj%$i|I0t@Of_eq?3 zKQ~63*T>UawxdDgks~CbUytIP0{)@WS=9G-09V4R5p0=Q%$0~*bH`RC3v+!ZbM-qX zQ_j2?+hrjE*D_4YQqxW3)SHN#ffrRSFUEskPtk_8Ms)d}#aw}TAbdCWJ!mK~V4D}| zvU<~V@I<`|x^{m7?o^cJx9XNLJH#0HvN{^C@*52W<#!lyQi1(^82n)J9avRjL_QxJ z%idWf!35X{HLy?-s8@XjoRLvPUTI&LC~+YRWzi!Q9`s>(4|eHwfyy&edJW0I^>!PWV0{(OoCdy3$R1@CG6mL>H3(k$*yNGnVp`2s}CEn`#IUF@9=!tE(zkKspDmJCGQ#+|L>*@w@U!|<p8J1n9mol^P_{=##}>xJ=s#E z$A6e&ME5Ryiq+(w;90I?NTthGh$EG$!COhf>yf29s;;6JdgEE8j3c08yfhuh`$}VX zF5<4LD6w3vxnRYv%_eWNd<2h7r3E8by0QKvs9=}-P5Qbxj2zEt7fc^@h$S~HP2D4x z(G?r+(*aEZ$x2(umQ0ps2c+>K~ZeK(bbA-a7tz_EWVckZC3dL|Jqcv<;57%Sbc`bUlxIlX@v-FzKtAO zT#+d+3OQ*jp^hz1U`dD?wid>2O0-6!)+t+g5=B0!Lw6E0>r4+m$9^E7JDh%%5J$Ts z4^j6G7g_730QwBrD6(Eu+xfkSnzB>o+FR zzY@!Tn~Znsd?yvr7$Ua~Oz`kZJksk7JbvCBpKP$fiwAVT+8=gAT+)EaIoi!U6`mKU zT{8q{ro{3}uPeZTkEQTirzHHXwFyaNoW;`^;b)jy71(%U5p&^S6O+$3WAaMAf|mg{ zVApm-eD1;?kRsv?W?dTv!}^p#|3_WsMWYLEj^$cj+k|)~O>ZT9`0Il3jMU1=`obrm zuD9O!)tfs|U8xwzvwwl1O>xK~Bpzv~@#!?D0I2X#8tFO};OmziVBeT<*j_&u z+FbqsybCgrH+vHKo1DSpe#SF*NilMEiuG6+4gmLg*;<*C}QBzROrgk*i@SP2_G zdAg_vOQ>7~qc_Ks$kzo(FR~h)_NydU@)fAHeHc4hZkezGvXGxR#sR3scHIDx5r z8J)8J>* zFr8c>#xA^d1e-?2(h;7q*p+EwxumNMX!;ErBWL1QLqkBc^f+^a4aAdoQmnAp6(&bL z#R^v6smfl$%oFB9xPM#?FXZk88Pkk`V?!E=ONqe6zNg8ARo?jcjV$7QXANpRA%Tpl zIvKyN9H1QG!kC%lBdt}r_&OJi=6~RLXNxn4`Hm3d#jTU@H?whg-pQZn&KhepCr*n$ zm>orj=GXH>v#yfs2W41I(@Hwyssa&>e2$imQzjn=-C)M6WD=UGLFl|gbd+5MGyiEP z9V2E2&h^{UX-B@0x$B(y^{z|M>9mvlGP4(gx}hQdQJ~JvDws=V<7=#=O$NR6*b4tR z>>;q8y?~w5l4o*j-#2n!S%wXqF$wnfKBvA98i;CR8JCj7M|MspfsD2aD>){ZU2Ne- zRxVUxyCR11*Y!`?_O52;;p1s=Y=#kjb7T*U8F!H}PxyqQ&#l3#L)T$TM+8puc4MPD zW-$^0vxwfRWX4m!oSCF*&I_B83z~Li;~l%wfz`WIkXd*a&U@R;6h6=bHzbWgm)BPC zX8seNO3xy&db1_kxtE7`?`}5Sa6TJ}Dcmq}y0;Sc30}h&D{SDzhmFko^g7~NZ$xFi zC0J41gtjHC;K%NxNXJqW+&R4&RcgrMA9oUgjjKN46iT3nNf@Wj)j zaAt@Co~Rbeoc|FD>}u*!Y4`=uW+}@wMLY$*NF2sYiG*PT`_YN*b5ZZe3?_4vKH`d! z;Fvwf0UTBa8=TU}sHuf`(zhmJt`dOBM<23ha25LT4WQNUd8x()r0v}|;~JYNysOC^Uy1sKM6d;F+l=`0l?v&=iP4-zZ53CHEh3Zn9N!t3PZT2#z`<$RcxjMf* z4x^OX_58Iq9|Qp@5BVSKr8xCM2FurfM4PWZC;nZl1UK?M!6FVU_@+@>Ft*(k6@i(=XL<0DB`lND=SC`o4DZ)bV$ikYFG zLGbpQb@=zybMSj{Kcg+oQP7NX$L|N*(Gp7@!S{Swk2mWWgQhSt`*c1qx>3rQ05Rs} zLX6?|5TwzgOVm79BYV?$9LKdiPSJNENQl+8O_uy+W%%^gS6k8i-dZOYJf z-6_;{`3hJQHIoD==Hrm@b7&*WBiR5Y7M`mVqK6zw!3A^_dvxYI}(JB%_n_mlS z-7gX5vpCzb4~`fiQTcpobp9(o_v95Sx7Fr;$2S1*ajO`HTustb^AoIRMc zbrKVN@duc-Pz2ky$)h$?QKXhDM)M3YGwtXYq&L|L3YLw4oxBkAq+WzBr2hC$qb=Do z{WLZ-&!u0ywxYQb3(!d~5%j?LGFT&8!;BxO#34Ih;(bw9&{wZZybrx~Bvy~(8BR>V zMI$wEXNNl80&U3P&-r|Zxd-Tk`_h~r{~eiRRnC?^uct2tRERhf!*c@1k*CY!VdeOA zavx16uMAV^&xiX_TDv^E^I;f>IX#c6?>j_8kB#IUyFKXnxN`1?EoX9gxrAWQGLLh~ zZlFe|966W$SLoI77F=eZEpT|_&AxvuZ+dXqG-`HDnSKA}F7_(WW`{kt)78QnZX*T8 z=yk&ssIWYmb=#W7`dyhxt_UbAR%=Y&XRhUEegDnWY)^q!3+u3RW*SU74ne!2DA{;0 z1M9s6=-s%51j;9{qQ;(#=B0c>+r9v)lIcwQ3=v>7uMpjyxC0A>5^A zA7c-C=}e7dWS>rukd+gT%k5Lh!|5gb?N_RZ`H};4c=9gfDFk@h7A+%7 zb#zd?*Lha$jTt*id>v=HLUan{I(C9h@B&EOAcPthkvw#658Ze4+B*HK`;*_o-;P62&=FOlE&Mo`ungj}vZ zLrau}95%cF9qh~mr;fj8(sjL=&;?Pb_qI58O0K~lws=GTS<*sQqYm2mMFx)dT*#c# zl>$z6ij2>zc4qPBM@ag41vFl?*GNYq2^lVqGma?|pjRm&Xiii(%6j(=jManG$kT$X z4GhO8W!-UlhZC+g;b`&g1iWZ^6=**+6HW2&2SJa`NRglfC%=}ZVk`Z5Uv^aD10qit zwFB3P=}ZHH!xh;lU)td4Ut_79;1<7lqA&gU`zTF+Xo0>kw^&Z(6W;Q$3aUqzv87Kf z*nu$zxTx$pp(bEQ$ki-hI>VkcMt5NFLWfQ5w1oz97lD!XaaehkIq?g+g0B~=poLZP zLXNpFb~fC=d>WquHcS(Pm&|oQifSNZu|pN`*S|qt4qJg^{tkrP-k|g0EHmAw5O!1u zS>qa)z|+x6DDYzm*&?Ng`F2ty5v{`-+|upIOWB{IO?HPHG*Rx90_3cyt6mCQY8A9VPtu%gID@K>*w5 z;79$s&f@-=A5gDUHU4Vg0v9RFCM!SmVXbE?=(DOLusEoS7V?cio_G^Eb$uQ!f8NZW zVDX4-WrDefqdyC>^UraE54LjfR5W!^b>t@OccXoxwRn)-D!8bl%s!lV!^Fk-KKYRu zLM_i$Bg4TvbgPp#&Gm@kHoX!uPql`C%kjCah36ucdwd7~QWjzBHM)g)b_RS$`%6q$ zBnxe$F5-;GQ=zZ!OD6Gk2{uG?aq_g|u-<+oxxRJ@n><^KncWvg?yvO&VZ~Xzln?E^ zs;WR#uecjIoo>WktEzyT!8zz;?FA>3c%Zi@5m2!hW}J&GFX@*t*s$RRgxlrdkIQe2 z+!xPAQQt=!M}J-g@OC9Mc3n1rPC-jPcAu6EyINv>-^ajMB*DGUC z%jcbF?+jZ&ZLD!a{#E4hSb;2dJ<6-vv=$$j<-kOcSNNjpB1#4aN0QU~Qh~e*5p|Q&1oioPWO?`! zR5c=uJq`|?AVdJF%#!N8LW46jdXv%&7&)%27DF?N{ z#s{9r?8Pr8s41G+Iw=llo{r_c4JN$KoIxgFs2aHCEJeeKmkmeodcmXeL8CoiKY_Cj zn3;OX7;3~E2QrV8(2({)v|p@4V`N1&P@B|3{UI-0T zb70urG^7`8$8!sshWsl-cqiNELWe4Ad}Q<{+R<_c+I$bAx~&5CRnzGu8_a$ z+pCYgSH+@NBl3Z(0woF80-4r|GA3ATEY#u2f%Ov(^W4u$q8lg-j(+wSKm#c>|I;Dl zq^`hJj(mbj>whqlB9ocMNj+dn`v4j9M;Tkwb%H&_-!^nc@!s@pu`7d;cVN7Q6xogCwpm!12%ke0FB+fhCg}M z1lrT^mg}jJ#(lC2@w4HZ= zNCs&;L;6f|F*8>}3do(RgP#{ZX3A|en8H+XB-reLf?NBTt3~(F(#-MX0fa7A1a>Npq;g0kv_yw(z& zu>L5jUUe6a&g?Ok=`TmsNoB?c5})vxgGw0K8=#vxO2paxJDG9d2)TCZ5z2 zMhUik_zOxs)=VloztWF0lUP4nNz_+T3BGu@(?)?kc^{BKcC>oa{riHDt-!BK-x;KDVD=uO=a?AxA3io8O=vZ-|d4BNoDmoD?b)D^s`GDYaqJY6KQZ9IJ8 zpJUvTEBssEk}|evHAEpLLtx;R8EmjQfE~y&%J|sgqcgX$soY4cdMt`sOJ2cd9#5f( zgavAsN66V%8(3!v*@$ktP)2whKB=7#9p74#ua`BLUoooqg10LfNU32z&nP3Fw|w_Ny-GWyAlZQ=ZdNnh}}(aN|jUYh%|u$(MtJ1AJ)l8uv@sl@r@IW$3f z2hp_PlSUf_zUSa*aJk?CL)Pig8*z7u={jSCjQq$eMK9ztLY|$oLYz_WQUFClG2o%z z2d1v@J}=Ov2PH^Wjm5hzk3ZkzP93rZOCU1*(AZeditcyX&+#Q#lVlV zzp#&^A=;cY4!!eTO0xA=vjdu8jDg`9a{Bo(=I-&IyiXN!;KyoB*xQ^3jr0jldzJ>Q z75V7I%C{hAnKpRlC zKzGj==zHNQtX`Lmg`q!q)@@-fNSY*i(efD`Eq#V1{j^YtNi29FS^-Y%uV!+8EyCLi z&Z0HQkA+JNQ$^{YH}#mf@EdKf@454V>)XjWW9?(_M}bD^kXHykb}#s23|_uhCgyd#-;SD6cy%%36$`vW*pm@}qbq6w$b6r%k=4O;lt zfv9*rGUsGo#A0^d z4^(#OHEVl(Bip>Ef}7I!0NdRt!9P2`quIjqir>L9^lXwRoxN5Xx(A+P4r>YPr94Q* zPle1{iQU@7>Z}<=b}iKDg%QtclojyEh(WO86f^F#BC|6~N4Rg0LNhs8VUB(TzB}5O z>`&zLs$^%8f8@#ickwdI#Kitj8ruIqc$t5rXo`sZ;bs15|LeTWAL4(rPk`KigvR|N zPt@x_KK^gN|40A$+ek(K;)lxq^#*^&|DW6cx;=J}{>xva{^KD3r|t2lZllv*FhsBX zKjg^&_?G|s-s`W&Wdr}b-|oL2*ZunE{lfox{BZD}_xs;(@b7u|kAC&{>&_p4`g8r) z{isasZ+?{dcZT>!Kl=CP^!}MwqyHMke{TQl_Hk1GYu)+V<*%RrkM{BUJNx~2H~!H- z{^kjP)}24qUH{nQKezvNdpy+q%MgDz!TzW1@!w_dr6g@-(ag=2;FY=tsFw32_kxtk0Uc31GA4|%4HBi>5<7Sj z+eFA)cSSsX>SX-6Po4&@h~l%>{`8o$H7DCQntrM><2RH&qNdJj1pAfY?dcrRP`?bj z)+^9eM92=9cZzn;vc`kL`Xz@>H-j79d@AS?WwkaO;Lw&CtdWe9K*l-3WX6jW!DV}G zLC>=Y_Ns@5V6AB{9a@-06n**xd$**q<43!hzS|x}O=L}31?M($bLl)*cY!GTHe;kf z+e;l)PdNs)Cw^wv&1z&XH*n;4_D=Q`x0pnUqd03Eb-Sd6R%2`Cyqggdps5dA?p|h=aT3U>aV9wV zw4F&-na1SC1)}AmhRFA$8{QjcMwc@3p8O1y$EPudqY{}T zPbZ;~2effw${L`wtPPA>p@<&|XwbpOpwBm6oru=fxb{FuoT&v&d#-*B%7^6BWSz&S-G3brcl2 z#)Dn;2)4ag!xZCj@QQ*L%Gfs(?p~z|fzvZ^I>-RgFPa!R5V%BH1-kk+f%=6I!PjlL zY_&S_X^n=4pKvuo4d|R*?~3EU{SnX7oEm205?akN4DynM@U*$nCaJ6jq;+ zBzn9_0S#-2ptoK_;F_g0l$BM3>wa7Wb*)UQ4VV39>9BNcFsDR`&`6PioFzTJ}`d$a*;UbhAwNj}2#bc(^0uVu*K z=O$3tI~Q6H)WK_U<;X01C%(9KB^+@x7GA2I0TU;j5#|mg5^aqY@Ni%cj1qoNq?9^I zsjno{F1iSH)C1_6k``L(t%v93$(qc5?7-m*x&oKjz1+wANOqcz5tpNH&7baF&*{7} z<7T~;=4P{!XgD<;BzJCtPfVJj|8s4;J9QN{@kxhf%JFEk3x-P$zekszPQ_vcnaqrn z-Jmsm4WQxf;AL(b3NiT#KhFyXOTOL&8`T5BkwR}Gt&$DKSssTvD}@^27+KiZzMCAH zB97;N*^a&+(|~r9MiI{g*4+DXAKAf)hxtEJg82sf+KH83H>;7)vaM!-AKrVE-J%i0 z>i-Z$hP}F=Yn70dTi3xHR9^s2`xGLPzNu)$qW$Qs83EC6AA*ePeqzehv8m)4lS?O1|6o6VA=ZjXkPPb#(7B;*eRU}ayCx}uN!6~ z+xJnh<}eT3*j&RDu73hFPR}7HyAOh!j^2=&7>;K+xkGv0Tw;`wgAPx)ff~_kP+c^E zob9pX`}F)G?+(hdjgDv83nv1|(_KOAo@pFAwBrUHyMv*cKgC()J)!XJJ~d$TvlR@P z8iR#C^FhUV9W-d$4-HZtp~9o(46xV%Z+ix#-S4-;hJ{Y>Ab%>{G!TeRPo0iW_D+Hc z(d(er5_S07r5#mpUvTM(>8NYjRe1kPJkrl=#CKiyklN=8*x-OA($}hk#`7GoqyKo5 zo8w>bog%dbEk=IaFR>_gr>mSG(cm(Br)IA}SuvW+outX>-Z4gVeOqAY+g;FM^AcfB z$7h5i^zqNthoQ=YIcW2TQE+3FK1w*z56y=InAQdJneCea_>^%INK8Bld&5M4?arf2 zQg1ai;#&{(FNx&Z-NhdzX8}JgYysZ`G>kw z>D53jR#�`guJf;o(X2p2Bk~VGu+kW#p)s=mGlm?s>qQqX?AsDjCgYL$E2Q42;zC zfQlnufkmWNSZ}G2NzEnT*v~B3DC^7klW1mM**nH+oG)|Z;Bwe&AJ0rL-NI;YJ;129 z3FD5}E`-<8_<)VzI-!@>`W&c zVr$4{M^jqoq0OcQy(dWp3t6T6Z;0MrS@L?{Oi-^m8z`1(f~u)0O#Q`);An?1t^9B? z2-i5n9DN$bEDG-gSIYdM%iSEty{&{P=Td<3Rx##!#RQ-_>KK!;R)xv7lVL1&r-R0# zSUi5tC2;J@BXCJy4o%ZhhrBukd^&D5?6#Z*d**)yJopQ}i!NbJZ=5Cx5%F|FxB?YT ze}My5bko7|t!(S{Vs^UlY%XV7B$*>M7yk5_2~IuN0*?}#82^c(pnqc>aC_GY_8o78 zTdd|Vn=&Q=#i8HO(!~HMtR4xfOHvrgEpgyQRu6Q2-vwSS{KZT?eULHwaTVC}tnrlJ z3efXYJ~*WC29@1^2}AXc<8uyUki5PycjbOFxR<#GpR+RJ%wLyLtSiUg)s)XVb0)Nw zaptd$9zoUp6Zto;#j$=$W-K250ls}H0blR!0=FJiG4p+TK(Ntq=zMuKRGT7?vddmD z%jZkMMJgG%@ccC>5_1VIt2KwDZWWw;Z!**zIUBZ4Spr8C>cMTnvgj+;qmnw0Q1H)4 zq}_8DpDCM(ryIBsABjYyoiL1!Pk#;vMKej3d!)cry`OCz5zKv`bDb3t)|0J2pT*hF z5#hwH*b7{J5a+Eb&uZq52altTe>y=Jf)2z!ja0 zEP#DGC86zuqu{%L7&G$y6u9`sHK>=?&Qz^;0(R#Wf$M|quyehT!y-Be#e$^a<2N@! z#Lo(JX=@&Ge&-E2y$>M6?h2T*<~?-WBO;h3vxL2`Sj!)JDbHVZu8Uef9>?)JWZ1~w zKyHG`c43y)2lk3r5%fv&hO0_011+1MjHCQLsC+UB>JO!YH{c#@l z-3mL$pM=^G9bj~&BMJ#yh2jII!bXW6;aceotzr)2sL5jpGyV(m?KMC{Ss(F@@lP@5 z7=qs0Il$DfT}Z^N9DX#FBq|7-SUr8i{}^W|;K@$qIw}*{d6QKHy*nlO!9_;|b5u`q zB8f_z%&x0w=28YdT6+oZ>01mHS{3k~v{clb5&|`qLs8y|EpQ;A6eW(|fuy-G#{ZNj zP;hMH@k*{Uzgclq`P>f3kBk6nH|GGa_ZL9CwXmLJRW?{HEDkKWX$s=6F9tKB)v>*? z0c<=<;f9IIz_t7|V&@9j&1ZH{-s%uK`;m~Lb+H-;w?@)=vJte({5tKBJ11oE7LY?7 zCNM`B^Aj@=2qxa?=bfDPhPgUv3v@ks8;mNHgOxGwnHi^Lfw9;XG&uD$*ezlQEvBpl z-kFbp&Gju%z>WuJwc^0ddx~(9za%u;VL;Zoi=&8q=wcS2Ig|xFL{hcKk}64-5DTr;k(j(TVh@#ZCSp2PgiTPDgHLi3XoNug$7G+KfJB zO^32cYoOoeH;mi2VOUj@0Kc5|1h+Gt;j%}aV7V89zQX#tS2B#4n0xP-6zP0sZ}KTd zK_nI`?9+p5`+hKs&5koE(Vsz!W0>U+yl3^VX(7?-j0S+qF(c`L-Oir&Z|jD{1iT=U9-ty^87Dj!#udfIqW!w^aM*t&nZ0rm|Mi!V)Zz`t zZrq!TyM9a3-Qqn&F?u(4Z=J{P*`G#r*S{iGu@j;08D(Z_)qLRWz6BVkGZ0+(4H(`{ z7&YjH%#_B1sRyNzXU$!tVk63|oSh5I71S7|`AwiM`w{d@c>{J1>3|*TtHH4y^H6bI z0hZQp0L#P{z>U{`p{2GN=$GF8eA{s4Hd(LwI1Aq zU{01kSXN&FgKOU+9Dj!=d98zya8F|N&h#lbd%Eo<5WdPpc-O1|R`a z<2})SYpOyT~h9Q^OpNw1LwP90%RLl3<+5K4!?4L8%={c(i65D1Q(K zo_Nm1)54wL?7881=1>-N7&R6RPp$`(cNF5qW%2BV5lS>|+dca1SQ?hg(;*?k80V2~ zJ4kWcF!f)-&@sFq%sxy3P?!f2e=(O?y>uO8{vZVyT!;jv<^Y;Ml1CygNldduG)%~? zLBoeX@ho}L;C@~XFqkF+$~)`fmtWp6Jz_kFeR+YYII8f z_X#L(m`uVJ6rgD@&mt)?F{mxKYt4HjCm&~brbLi@phzd>& z@>WO0GR6DWFiA}(nPtIQQ0r_T&{S$*w#lAn_8cAulSJ;|CaVsR6jcSJY;3W3RSxj8 zsKZLlsz{;M8m+Z6g?Ll}P7Rf#QZYFg%)WtlURz5m{NAAUQ%PhD%g`mqyYZsfLNr*3 zNY%^%K$b0KhT5+(%C*9M+^oHf%X<^Jv~4QPX*5R(olhAFpAMiAQHs(B$1rHzOGZ9= zEfeHe!mLM$&@~c6{52fh>q%mk9-zpep&c*(o((=^vv_Mw=zy+xgZ>8M|? z0&aMjiKm}Gh9|m>Kzqe%5wrU$-0D@0`ci#xK+7n+ph}wT4!X(cX+49RT$Hi4&r~|F zcN=WKr$Nqsj>G2acZftMOG>@#@!a-IoV9KyHk_)1(Nr6}OLGA6XgC?0XbnC@ea0J% z8{iXp9csPK4c{+yVlyfmXh-NZHW_=cpZEG<@#_<@%JXg<`YaiRWd-3619CWMxqw`J zf1Ek?C=c09Jb*MBrRcZWdT73fBb{MYMpo`Drsw6?)BA2&m|wgWZ|w@f74PfOnTPK9 z;aG~Dd2Pa2DyC$Q&^8Z^WqL7g7Rq(Nu&4pw*1)HD#Rmy z4EcTEj{JNOi(O1=@T2G!9HSqIRc0XA#HDy3b_Q`6 zsmGcsbikzCDdgMWSaM`+3J%?P6NjjnGQ`mf*yG;m*9+8_VdY5YhEVfEc)rbElpp z`t4KMf#G=o32P|Xtd$_4t`St?kOb-y)|^?e?kpa#Hp4x43UG-=GRB^IxTZ;!yq2*5 z8PYwl{M9tJCo?1j1z<}Z_0AZljsD$8@OUdGG58g!dPhv z7U;3#)7?!nU|9WbY13vU$4)h+(cF4Z5b!I<@AYfu-tPK=(er zW2S(cuSVHvmMgg8v|4Vd{{|Dwn)9q=tqs51vze`!I-VUBFoyq+I?Uhebbs`hKiB^U zy36>#=`NOkCw2Uz?(#pY)BVwZQ~pwi$nf9EM1S}0|3~B0Uym(C{!U)|hkj*$^|KfK z=l%W^)qJS+&-?wuFZeh6!aw@e|FypNN7wt$*MHs5H1z*#e)d1DcmDl6`+slzPJfO6 z&y4+>WBj|#v;V4p{F!}!?DMDnultABf6+ewUjFfC+<&hB`uGp;{F_JovFN|2fBbD7 zmK1sT*MP~`f4&~R`KzC$&Oh(>HXjI`?K!;{B!gFt!vKRZ8Uv; zH7)t#%YMlJjRRj@;O1D0aYuSKas2n=`5td>35JD{*x#+pOpRYo7HrjN;v?39f2e6M z%gfH=FPfk)_>gTVaN7$6FS6HSKle-A@184M;Io@tdqD*8a+Ku!*Gh7pnaZ59)ipMv zWR;+*%|jq|bCclR_+w;ufxslr&)nq9kcG*0|8h>|>{?U(QL9W>hPj(2mHYGm7el?|JXOaPRt`d##!3P~E$#x~tUeNf+$q8Bs z+WiQ&e0^_zYV{?5B(=m_@+UV3B${bjGc9Ri7f1-?#2|2Gw&^!>Jt?1<7wGUt(twX$sZe8Tl{)*qZ5mtxaRk@5zK1#!#3g`t}Y1h znk^nXg1iEK8b=d>puO0cTZ^fLM3Yy`{zw%FT4;-$zXK*vN|r)fMAr%(7j zpX-Q`Lw>^%qtj^o#wwaj+n5;<=H(ycH6@@iIU+35N1QapE5du4r+-k0xG#iH^9pIq znh+Ej5MZKhVP>M;+ia4UX==pm9~nAgxxFI#^lq#x%qJo;EXXtbhkV{X;lEbdk`v(- z(O8?WS3r2VJ;&+Hm-#8D7-}HN%kM;`l_X_g%8R0Ev3G!>K>6ZqI(Fqr) zHtKKQt5Lwl`9vJi@%0Mw^qTpDcdCDQM411S$Yz}y74i)Z3v8?=+{b6Cn7gqZVq?Ye zFrOAh{;@=EVG+}U{epvj*IQzA{KO6ai!8sdy;1eQP<6adSaA4n75pJsVbdtG{S7^FNG5Kilk|*%to2Hk%aNe7q(2 zd*?Pk&Y{KUH7&H|yr<>(O|$txC`RYklk~swgWn$VI862WvF-mGhJeNc2eD6>nVU5| z7Sr}+;Co4!9DYb$e08*_`^jUD4hZtowt;=IPv=DlsKEv(G? zG?ty}p#Lr ztm%7qo4<|y4F9yiPYe9Cz)uVOw7^db{ItMN3;eXePYe9Cz`u_LMhtaxln~$Ux8QGV znm3FsIDp^dBU*5LbjSkXEFSw@o8!Irr6K#|0@>wJ?^Tdx2ZSd@mlQAf@f;+^A>zo zOa6bBHjOv30-NT7uWmF2TIyH7*%Y_A-9+u1h+ymEra%i{U30wtX;Zp(Ghgo9-}2QS zX^Ou()v3}8`IbLtvT+x4!wBXn3epkMYAgvj{ruYND)`W!p6~NYrU(*o3qXoa#g4=4L zP3>*kbmnZ^qMf)vbH=YX11&7g8I4Dff6M=i9_@Y!{cS)(Ak&1&Yc_;LGr(IyvMHfM zGqZa${e4_YJOVayDrV((eK{xM(6cu+UwAM^eHk{fy5m)(%jWlIz# z@oU-`yk2IBr!IJ)_NeoG!S%ab`BHc4e{>4ghW6&N^KQekZULk+K!s^XUl0jz7+~8d zA=|u2m3?Zh#eAhM(#4_AVQ4Nv)+R^xwnJOYxbYHt^-6`pV{KXQ2an*|R1OSg%%(Z& z2WhL{e7e=ogMH}r6!h*!G4;`hxmA6K@KF(6@Kb;!dvsotYOmX}yc=rlo^DUlNbZZ# z4MUi+Ru}A{IEj^=j>f_yAG8kbfNr;1F{5&6mK+;}j^+AP-}fOs@zh}-!fn{YHU8+F zvXuJ}SOELv{q0P`Ltt5UYw)Eu_1-KrU?u6N)twlDTys^giakV?<4@_ZSBTkad zop#I&mC+`v4lX)8BoKLFMcOhvUi+9kCE7+d*E+B#bqQ!tErSzMZ8`UPL)_`tjaetQ z!gjfm$nQ47TX~UKpC@FmrI%Ayk}B!5c(B4+Xya~3s#AO8OYR`0^e({R1^K*c$9t4I z%ojHY&f|lO?a}!16%t+Cywhub5goD1V!4-qrQDNbQPcYn8Cf&wcCnPD@)?qkWa0F) z>)5MHW5B=POi{=B9bELd_27z*bn5bU{)}!dm9NfYox3Km(_8g%*`i!BU0jNV^~n%; zI*SIWTT?}+NfEVS9c{^VXDK%#v-(dYY>h46c5=j3hDYJ6#&r@7S%`Y&SNIFTP8d1I3kxL*(Zu;Ad0MQ%9KRG$ZJSE# zritbIz_HDv>|mjZER)@ngudNd(_56meG;uO^y@;DlPTdkMkKL!vm&sQXbatsY>!4g z7sG(V@$B(83pVTYK&;(t%B=L0*cSyqWc?E>(lW0#~#)ZikDXUxmPzrg$Wv5L8Cjk&#;iSoM>! zdnVNl{bOX=i?UGe<)HwIQ#wV1$N1Cis!gD{dMP@vi!@Koo~;x0WpmPjr1VxZl}&@O zO~g^+yOhyMHjp`U8Z6r25rl6|WoN@b@MX1K@r}ro)w_9OnnOoSn7@klweN%a(=NeB z&#^3R=?3a$=Fem^!m(!e3kaCWp;>eW`#f+b^{f}LuyL;Jd@Cikbk7TDj{~q`X)L`O z{teOxZML&qI0n;2aiCzbly&@=fX=HUFt{+AT`o7mEpBR{rj&|gpN%pv6u3(#)JQ^S zIp{3#VePk^<;#|wBeSW==vrfq5uZNtcb@8y<~(n#ev)Mu)Nwr}xA_9A%mMQJ_1I2c zgUcVBhhy88kXzd_$a75~w)3{=-lhkz;WIK%jjLcbSQ(XdyQACkM4CH6jwST-CYM3; zNmJeuleN^CU8or=Ker6)E}Wqmz7kA%@-~vZRKkhg-XlT#J}@XTh@I+`&pLh3gS^rO z+*hj^tXz3MYXx0d>aYgx{>$s!(@0}9&1r}4M_c2Ej+tzgSu|T&K9J>{7W+@n-6+$p z5Ip?XkzTws8T!@Gu^HVkE8CN`vt5Euo#W7X*ea1)&kk7YrHyx)1zK(?<3@FM!jeZK zFu$@2pH3+PZAB$6Pqq_<4Y^F~xVE_QN*1o5!g4w2;b&zfi+*R zgY|=nc3lg$(iC$cR-FD|_g0}ZOE6bq`rqtn#FGuYDB&hmDsgD=%#mx`>JtP^%)otW z>p~AXgB}%QdYSj8KpHmSjLbPyM_A~G2a8uq6hh=88on6IJ)Q8$np|dN zl>^(JI#Wz?Z`R@7e5O|K48zvPOQ4kT0&*qp> zMeC2G8{&da!CCm-NU7>W>UcaQw+4o`?vE!XC4ku=DKJc2PII;oz|#&!SXsV~*BPD0 z&8{!T^8yvGjg;8m657aZ)!dp&)grdaI%lw4nYgkH$LvVL}1GJax&uk`{ zv0aDyvVjW9q&<8a^sQ~rj)b+s>}wHd-(8J$Ov|TFoATl8iSrbC>T@m0mA8?BfOd@=j5?#2%Wyq7&OQYZY#NC<)GT zXJPt53k(>W!}XO7<|H-@#(UW(V5QHiD*cF7@NA(bnr*oYarf;o#hC-%F_Vm>#^T|! zjZm(>n_EAI!`WYqY2?dPlAkmg+%FAg8C&MTkxQ0%-`pPO*o?;YHZ#O)tU>&-qiSq! zl6d~?Ziq8x4`z}U*WvX7Z&5NSM0WF+00c2*Tar!RP zF(6b2wfp&C+@&sLUR({sH|L2qy)Cy3l?@S<%cW6}u?}tQBEgCzVY5O90_Ni;Cd{vM5n7Sz$$J9yp4SitJS|! zT>EddY*l+Erx*^ee4f#a{u+2Du08gb^y5ocN>Nu`36OF0fq>^lOf}Y*RZJTWa>AZy z?w~^pst1vl#ZunM{j#X_CKLWZn{Xz3C!e%}!{O1r9$20A5lZG0U%TIyopkJkbHi2G z3J(z-D^AC_lZekw%%_VI?soSNo&b-MBz)q?VPVB-djF^kr>-Nzj%|p-4#_<@g*+8j zP~8`YW{smI^^WNHXdE0)InR4Mea=shx(W)l{^p^gveJ1)rN5q3hv0w6d=ij^Df(U5t-#^~2k-8P4lq z<{n0uT_l+ePDYzczHro96D{jrP|Ak^)H}eH8RsS8g>8n|d+rHZeZiN;pDSd8y4Arb zxe$yA9E!$6zEFsRA=@#~7LpYF&~d~G3LUA5%jFaCQ@d;&CmD|wPi%4I*$r%5bQ~Xf zyasaBcEM|7X*P1F1#7?TFs$>jLQqM85rtRbo0=0!cV9=`SZkcOcss2x7mr^dR_yA= zcw8ADj7wtIgZZ=^^s8EqBRWMUVAliZ%?CQ-3V~0A6p?u;a&$?BdvLjG9`@6&2}W-J^9- zQ2*R6>t!EyZrwr*y`PEpNfX%PUA;)LYComT?Sm&?xj^Q4E0oMlg}Y-i@JWxy^z5k` zgLS1Si6d}vXoaX?Ry!7q-B@t#I&#J|e&>NNpnQU(*f(~V`Y4RPoEU^A`t~3iFcYoL zOhY%H95(!=G=6eP!0{7wSgno#)_ohwA5@WN<}(yo#lbu@-mQge7wr*!D^UQKOcm~w z@-o~CN;K+&D>=hd;4bW-nDt65LNlIE-tdSzRCU09dpcm0bvrIkVm04zt`puKG8qK& z`mDQ?GV{B6NHpN3JIZcaM|msmQo|+*w(OKr-wzMFvunH&3wCc!NqYxF&CWAiPRwKW|k=i#{7ce~1e+4AsKiA=^72~$$wSZY2Tc=Ccjdm@>CI7X7GUS7majy7O-cQ0f6v{F#UA%pB|m!tpV zW#BY=B|KZ9he5WhSj6dzaM<<{*vzQsC0eE8z`F%#I7JT+e(Z%SGaMoC(Hf`Z;fqvsb-?)@OUcsHLlMWc~^=-u;%gojE|0M|t3h z{OFAZF6b2)(0AWr4ClE4`$aw)|=c@`mWMrRgtwcs(W8N=~XClh#5gUZ@(k= zYXey2?%PzT*_EXiPRB71HQ6Tf64FYHrx0!&CKSwL(?n-D5h>8B(4ox2q7Me$T7rVi z4lLb{(dNZGI9K(gkBJtjZTW&~CPv`<4{M)MLLZ>>6PRFV|{QqQ+#JHVmOOKOWsoHSu;uB^6)qfrDW;Y}($Hna`8p=k|X< zJGPr*`wd1IU8{ykXA;?#n@M2Wc>sEC=+A~$NMPG3k7@sqz2Nv*2YY)i;{!BiiszK! zs6DbPwwEb~D_W~C@_;ETTxgCOgNtypdlt=^kONzj+o0g_WL8vl5PYv)rx5jhq%NNU z`(L!iXX{o&_dbW<^{kof9B87GTKyl;m#u) zXrQDOJG;mjtA`zhaYrU{Hw?Pq)qvxqW>So1H3Hlju8vgkC^{s+w-#Irlme0p~il3mjTYofFXP`T01RCYEg5|t`v4s<{ zqiG11-*aWN2eqNb(4T)HZb5i2L zXHqMSsLEx|a~F}@ycqOa@4@aCE2I9hU9eRBA>>aHQRjOvNy)9GHurUt6Mnt|N9`^$8@mrlIZi6sWD=&Yy5ufpO6exMJR3x~m%q zFEwm2#1ipA&PEV)UCK?Go`-$rOL0DT+p$CKIW&Fuh`%RWMYfB(*a_ppN#=wEs_t#W zHaR=thv?qy{(fs7^FQ#OUDL&D<8ElQ+7$OsG6%br?d{t3F5)~!Oyt}xbXds#)ts`{ zPNG|hXdgNkC7&Io>8EpSXZ_Q*iS4mGIVQ zA?|qB8ckO}g+fVX-04(|Gpf~@^ec6?ykQ|NnJ14^l@5a1R9P-o)rpnvn#X$O6|$P( z3SP3EHcHnCaL3>|ByZ6T%bs1Mt5&nc_mFS+Nx0`b7PimPV#1Jg9I`hU$L{iEYt@$G{S}r>`u2WWq_mqaII{(J z+)<>77slcS>Gha6*pK}S@7J4=5kFuCzg#E%>+jcpk2h$#5o^IgwBQU{=zjrU(D?UX z;>W(_>hnkJkNVI0k^Zmx`nx!?X8g;(X2JdnZ&2T?M$0|qze=B<@BP0f{*z)3s#Aj@n4>?sINVa4Sm)mDA zs6IAU84MSSlvh9XzVeYkHdZ)gJ-Zo5Ri+D>mRIw9nyS4`& zDlFr_80ld~-5$Qfab<9L+6}e#u7j#wVywwy6MoOU0Epchgb`NBd}_D*Wb@b?w#AJi z>mK3EKHJi+>{|f4wcsSZ%y&S~G1;i~E`=VvR>5WBb0)W!Q<X~xaI6qRd@ZR?Y{-KCanN$D8u9{O2SH25_Q9rBT;)dP)XRXzF|M z-K(2;UH;(+%|Fl?Hp5&F(k)qybr1ZK7zwIgnkXmQL#Io}z?aDfMB~hA$TxE^%W8Lx zPJOBY!F4w-XJ!H_FOY=st`qT!)@vFIdnvkiClNLW! z&QuXK+6`q}+X?AblsTXLIT^MKiqNN66MI$81EI$a?vvFsFb#df5AW;?g=0+ctK$P$ z|L7E1rG=u;iZ-}XyPp`ZlaBfiJ8=EJAA?cX4Mb^gdO)nMF&;7(?fLp#AL~a-f>y+L zyAfWN=y387bULOEFD_e7n8t3e5Z4EGnt&p zqE)UnoYte&Y`_yeifd43qcyfLnaVUZSF#y=bW``xHp0u8)3?5c^8u2w3oso zc2MERqAE!hT~u2<3r8DvW81#Gou2nrRa?63j z4^{MnU4VucmTY78aEi%Np~AB#_|kJrpy!y+H1le_-QijDxzWqpGQl82ynV=lwY#;4 zo>q866gLUdJA9!<&tJp&+QF=sbSSJ3kH@~88&1u60EM&XF#o=t#aC*3DOB4Vp1Gz| z$DR{V@@^U^_esGM8lU#ab*rHxyN>gJKQ%(la1Ra#dVumOE+z2@%ygZ zQ+k~j>78gzHxGRW8C@CXR@gx9b{F{>dUos?>&{koETJcM+5E8}Nd&W7qO;dHW4EZhHtL_c~$FnY$$Y;w*n`d@8h#b_7-TGt_@dD0k#^ zTU7902KCQf$=;FX4FmWr_ZtfKre8v|K*yh5yNtcNq6UXw$KVc8Y ze*lFScBG{Hg~F|FQm0vcS*pJ`A7pC5IwT6XV=v>GO*dWcOVAIgab;-O!l`+;-sqewhIk}ZqJlP6|&8AUzi8L0zxHBGf zY|A;;eWSkDO}X`*vdI2?JtrMig(GjZ;T}i$+L`ZO$UiBUqKW%eS&R*FOP6nkS#blH zAKO#)!1DmD-gbs7^5}-|Un)`ug-i5uS^}&Ms^Z^F+epKUJF^4VUD(^01W13el31Y;(Lpil&t+8)LpFcMK2|`ID96>I+k*M`|aZo<1n0b)SV`tNu|r#!KnJFl+`P2 zX1x`*@UrD9%-7cq-XCn>n2cl9lK3SUQ^HZ7ZQDq0`drvp3ZSqjk{4c_jyK!%Wbv21 z*r*}qC>nB{Qu<6}XUlhy+U{&>=a)k3zV&Cb58tKSgt@GA=OAe4Wx!;wFNC$r6Cq3D zCWHumVe#_$q*ObdO^g-r-rudcx7E_HZRAVpojMx21S_&>x(i4k5ykQCAMm4Vb*aAV z1Xemv3;B`i%<17++^?I$Ep>`#qh+O8zr~4QpV3Pd+5V5hn_6AT%S+Xy-iVu z#bmGi5vF(a2A8=hGALooR93Nqj+A6btYCl1y63;-Ix6R=INv`-b1D z%&zI6m&5{27S6(vi)}+QO)5?+{$NRu-MQLz9njKZ(@5eAHN$=S@N9^zVndQ z_V=V=@?o4Pb0JO`;y@|(1@yW5K8l~v9m_ZMWV?2Dg(JO9@S|50ZmzixYa#~Y^jTUY zir{$tj%{tbK5d7`t7q^@?FZrB8NTRwMVYO2Q^Q%;!`SJYF6_y-N^(9ko_7iA$zGq6 zqc`@mNNGnNo2gL+2L|sasSJ18Ru{_#7X!;#D9?&rjrpLli$E)EE1$a6hP^-anXA3Q zbIKnE(u&(o%*a7WWRw)i(z{5A_8#iQdQ6q3r;qY^fqV+pg%DUR(PsgPu>z<+@h^iS#)>HRcwt5>?EPN~)xJiYrKU_9WULW6G5K zNuU8rusPZ0Xx-@gFV7vt%!Gswkk2yVKcYGc$IkT^o2X<2!`Q z-2kc3hj4!KO*k*cZGO4~SU$cxZItTIZTw)5`yMHfdU{)E2r^;*2CC?ELWn!!eMm5* zm<-xp#ZX3{M;Yg|-kx9=6&tSQx z6PW5L@%eIbEAib&9Mjvs7u2j?@H-q8VfG1UT2N`uI*n+>#;9)Nhkd^fiPuK4Go5t! zLBq``ZPzmXX6HgUe{3pV^|xngFP?%+RVaR$Vg^yw9Z36e2mF{MUYuuAHJmjp- z;ltWH!}jv`pgbnd&ZV;oJ64g5C${f^eA@@W`ElqFoldE(?C{#g@pwlDSZ0qaptwWG z-0nOOx!E%cSfIg@BsZ{ohuX1$#)fRfb8S$2T}-XT_Z_M#1!BzGVzg?bgA#SOx&1jB zd>;l{ve+$M|wt;{O04* zSiK>gX?%~v)AF{g9%*L<(TSWWqyJObO1onLL zVMx;Iggs_^Qqb}J#J?+}H;)~df^jc)>8mEbn35wZ%ub{({T8qqnPPrSvKL<&G7}U( zFBSDT@Q6zF-tmR6G;oS)HI*C*>ApNsN+Hu2f|8Nkn;0`<;4n8JfOIPlXMzR=u+m$|zJ4+p*iZSijqM&u4c_qFvf zd!i)f7|cQ4s3*W(*$PK_6&$#39EJ>CZ5RLW68P9KzUM<%XgHKXOKx`NX1&zKS)yRL zZgK+-Rdl7CgTAmNJb;av-XE>xhTui*0|d4fcxl=L5=hq4dPP-C>*~lwdpptKk7{Ut z|2i00MIxMj$OoR8LVgqOLhEa-*tr@pPJ)-kZu{Ef?AEd@ecVcJ+pE`*oS%mAsp^N?oL!g*987<7-(5IzWNNI6@{>8F-$kLUE3Dz_DZEucpx3?VX>%V3;`)r5U z{rX(kKVkyjT|N=+y&FX;_cQs8#bZD;!Gw)fGGKK_UD(9SWuj}}9GIx^CATBuD2zA| z0>>r97~qWa5EFg_tdGpadmW6?XpSbxZ##pB>efK?jxo3?H;kFKcEudqPh#A#93~G4 z<`O3`xHvQ(UAk`~s4(^;(h4UH4B)VH5bc6uG54kNzlWi6WZG> zf;C0=>>B1jqCh)scA=Lile}RHxs~mh$!ima&ae4VwWdt}?rK`6JCWHBTFEK7`cpL|#buG!w?%41%`pFIeOS{+j^*Rk>kfW z4Me4JpUFzG7pF6NDYTXNWEbBf8~cxx6B+t0M%iAApuu=Md~?uX7x$!MkX2`V{!K*H z=0mCdkx+JGYBUq-Eh6v9ow3*8AtG&u)le|3Exi|b(6qRHWHI49sO5XIqX}DV>o@NM z_VPYRMJ}L>=W8K0c{z<7;mn4Pu!G^EC<AE;Fd+nvPngsVZ@s`e3!+AEc~^2 zz1MpReL7!Bjw`ZAHam}v^>pF_JGwE01}V(~qiRWJKP{GB$hCp32S>BFpKnm71XEg^yx#8A z5lyz?oB%s*f4~&&7SK#F*192V9#hPp#1dy~QU0LO{17JtraEd7wXKL{Yj!)^F75t^b2){!6qa5Zq_+)z#t5V9E=6C zdphjW%X3sd{Rp@n?+>Z{Blx3K1rCZmxcmldtfMm^$S^~R$bF)#s}gPVvuDAUfur%& zx})G9Qv&Zh9HVzL%Gjb=rfh=$ZK{hO%BwoOCCj%}6ugts;@!QtupMH(cE&U3E!y~X zOaisdUMZZjn>eH0&^;2-i<9rnG0OY-z+-YMXl> z(u0fW;SLq1bfkoa+N7bprz*Q#W5^Cgb))IEuI%cq^P-al-4T18gnG$SbgHW>>3Ha{ zXRC8GSsTF_RpyfZC`C+{$b|UMd9d~P zNpSPd$Du3cQ1pf#G&>&H)z~!J*H@Ot?HWu z#U4F!sLk;iT;}}%rlz%&7WsB%lAB~uXtV`phRIW2SAAAG)|=J_Zl*S$&(ep%U0Lg^ z5A32`75Pn)i`jwAe$b`isd&DeL&K)L;GLhHgZ&*!*t-+@-0HR(a7opMDl)3+e3}iL zmna8c7i)<+fB8Ta8eM67lnt}Y&B6mJHt;Objg2^w0~uyXur6^nVObpaSkM|Ds=Cmq z`y~`7#^CrYJwds(s!(E@2>B-mGTq9n)Gu!r#H%fUG;2NF&yQzq(i3okcM98dpbsna zNMQ@SBvJ2tcNY7=jZS(jwtKklIaj%GHhi*BMaAKEIN;?N7E!3lzK=C#+BB5kX*7~y z;$=#Z8^n~CbY+%-(roqcanMsvk#X%bS@HJn>>>Z6YRI@W7FPHM`cIt5J{Zqu9}6mA z@dJIftuT)wBE4vdixN9+^bDpeUgsV1YxoI%LY79h{3|OpHmP_OI7$cXOsL5j=v6H>f>C@JzO!LUAc6CKVN>ERA+Rfx$nhuo6HU{H6Kn(OEa04(s}Tdcja$uZi2!2Y2ctGR7~5kkAQS9#%3H^P-gq{xK^yx`Lg+Up@4MXM#k4~N?#EafSQ|bA_37?XL z1zd)(qAW=`;aP?-cw~yuJ1kA;IWJ9UzMurYx4FZsuexCuYk3iL3~J%b&Tssytvsxm zJDt*Ea_Ftq{0F1DYqj+b7|A-yye6a{>Qd*a^$R4(03!s$x9qk|HAVrqzrH}2Z;J{|E^ z)G1gsR339~9EJ|g-{JHF1-yIjDTFLI4^o3uA*|Z~sF$;XYg&0QEBrm^RmZ`Ax5Ht! zLNYA>oFlZEnJv83GflXoTZ%AIIYk(|BVG7hHdpw3Y?{#Jb*ivxWvY<(I0S3jRKUQ& zd+5ootF%G(9Zc(7PS@q0f$@M?dgc=chs}HN?Rs^?4g))3_F zu}0SmM#yb&#*78+aBB?U(r#BU)=*Pe07G!b?i<)E#+aOY4aEM_`l90^nY~xfn_$_@ zI!qk*81vtC6wa4g!L2D)!!_(82I?fS*pIb*WbsX0rsv8gwKm1;kNPnedow)VCxQ8D z`jBJ0K)fR%Da@5G!eBR9;nAlqc;Iym^E%T}cqKBe?Pxr3?Yo?)kN>$8oEOSuUu2KVfYu~rJ>?8Rrj zf(xA0`2<#R@e_utT|oX;7GB9qLCt59!cD6Ov2=yYpfKt(7U>kRwY709@sN~IdC7ge zS0l%Q`slIi?)xD1bU)lVFp4=v=P(JM8?5{43#`t1GS+lgz?-eNu!}_pX_`jsy>(&? z_@so7OuDi=+Z7vVw}%tYE8^c)^lhCEjvwkU|79A#PEK05a-=&7mk6+M#!0rqYCEj{ zA}gE}irlz1#-LK2N;{O?aE_9mFwmjxUiHMS?7~gCy{Dt{e3%cb##1Z?x*nL*3 zWIg81V{cr;RKZ=RDbGvrL5U+oq4{{3^iBjb9pocf9E;N)y} zHSYtw_>hcPd;s>8nm}xuNDMfB3wPb|hY#CDpz*kY#VAS&ZPqO2uE%O&ubzi!_x0^~ z+M+d@j97`$OAgZH@taT~?IXUobmk(DZ-9XH`>@NT0$4ewKThgm#@BA=d8x~~kUIK^ z`1h;=A#ZqtS=)3Ho{WjZ#WONs*o7)A-uN8W9rot1_A}&;9FA%V zN6xzT$b2o; zXpd(H52TRtw3GbtuZLh{-zc=I&9Sq;IGR%u?Si;_QK*s}$g6}D@tJkwKsm()dx}>c z-}r}o`$6Nt(PlQ*oMznCZ1L|=P4YlZjJxhKe;5i@y>lG+R;rAjcfK_D>>9%k4o=2a zhYU)OJ}uw)Y>9H&dW(l;j6=O+BIox7mWzZlV7?URyn+NuPgjymkxT_4ofj_}_zfHUGPKSM$G%cQrTt&*5GF z9N#Hd(PVvtolW%b;Vh>$|G#2f6Wd>YuljnCU)ejA)Wr8znqOrxdf8NReLae9J>3Sb z`wO@eVmxBr(HOR%&K|Pj{P9!FQ7S44<~!Et;AFLatmfWpvc3_^w(cFt#x3f?Uzusm z_LLrjw}Bm5{IvhvU&pJ7C-QjpE;;J%$TF@g$+IU<56A{bG`EJ0L) zWRN5o6ikSsgr3t3sHhlGF@l(Lj`;e%-}${d=X~|*tNQBJy|3>3_=DbS@7}$8t=)U| znq!VJW_wm@xJ{QHHqqOSH>gA9EjkkNg=C=<(5o%b%8Wu*p^m$lgbtE+z4qdA{gTzYAkr=VSfC>)_FFLfo2}$o@`o zV5+v3DJg;r)Gc|&rp3H;r8@=4>q6#BFMhXq51zH`O4-Afv1gcq=-jvfd%ei#r6~?v zH7^hL-rR;mM=k}`Wp4z7H-acmG=Z zShEl^?gWc5_EqqxT@w19PUhR&SMgi>546-;8!OK?Lw3&^$T@eQ`a(mIP^jw4EBj<~ z-ceh&50Jy=qe*=BP-pz(a{(S6?TOp&&4jmy;V);n8i0Z>B57k|qr_Q+Xgw zS(pwrv#$%i%jCG-i(+nk-v+}@A|Lpb#8nPMIOu6-p12@K+&^H6 zC>|n@g|7G__K4V`T@JVJH$v4=7ic@7&a-GYJ#Ci;eWjRRR%aSaD{iF=Z7;=ynhfwY zTZ-KaQt{%VbO{r0rTdFk(3Fi==#5tnpY|)j@|jz?v?P^eLA-W!9&RWP z=1a%6^W5}3e9*#?+5aQGJiCvZ_I2XaZVlp(0$J{VW(cok8TQbBO=|+&(Mq|0^{grV zuyM&M9GpA~pXH^ZoP8!8)bIz}=1G`iZ-%&kE;{zyhz>3f1Ygh7_ zTds}tCJBbtFTk3dgY>aqG7Y*>06`|bxaX5EFz9nDUD|#M-nE6%hvD1s{*_v|ulgIj z<7acDvno8@JQUCEvd0c1*5PXJFQR$Xc9JarqKu-q79}{bUVD>(>l8+FC8# zY2Jv6k<;+&qp{TsPVL5JgHmw6Q54Bk+TuIO2hMNRM3x({9j!9^Vot3C2@9L)(VA*J z=Y(j|O9x$lAH~By>Nq}nG}<_+P~3t-I;l7iFTNTf;T#|7{p-sFclzPWOI#hSt4znz z?Qx4-E@kE}5Y2l05MFdYLD69^#kNZ6n)cIRxxV30vMgTsacCg#y_<}3L)u_SODe>! zI|{zT8zA{~1`PVL0~EZ+keP%fEPt~FgLPE+^|=yIvHfB9XKD!daZV8vEcby!p8;?z z`=Br*W&nSE?SRvI_h*O4H8gAIV2*g84>8VwMc(+A-@GF7$_!SC9t4w*U zR}eY>eh2a@ujxR*Dwr|J7Z;vi#`jhA=qGGvQMDhg>TwN@cM8Ba#y{=vb&G-5ugXQk zP8(VNtCOTLcjfx*TI%5T2(CPr=P3QN6uKw}oZOZ8@cvXb3_S}`4wLz-V>nN^qA7Wi zjc1GHp4jRBMm*D}J+|4z^1TPK6#ru`5An|9*VSWLwk-q#>iV)rVH{17^0lvHN%*^@Hw1r$pdRsPyz>{FtldSfx5snyhV4B3z((#pYa=IL8qM2eV>sGR z29NEV0cZ3|!D-zZ_*rL%R~D9n@^e$DYwJoY?yUshUeWAsola^aPjRQ31hg$tB*j_- z)NyzreqQR#Yuav-=ftUEU!TX6tnmf*=f-mU1$nq3w~}w9<$}C7gX!3H{E+TL;(~to zXkRj49jV5xkKck?n>7wuQ%X19CJPx>kLb%UCAga9$Od!9VBjt#EP5yLjXg}b(!VdB z*pge#@9V@_$Gy=;OI5h@$Ov~CKBM)?+G57VDDIuBEpB!DBKH0@mzAs(!A4^t{h9gz z?!TQ&-6sB_?yr?l#!p^cv|ujly;j4gR*tNCcNiaz9xtrhxs8oof6zOn&Nz06C(CF5 z2H6H(jBZyj7T!~A1 z3jBXwr!`-~z|Ou%u(kU_=_ks0;jMg5Up|NTo!p7avhHN2w-(2ZQ6jT!HB$MmMQ8SJ z;qrzO>KYr(v#p%C=j3E|zp@l&CJ*MRfg{-QfeQIAGPR#`^bk$zya}(=?cn`am(%ME z16=4o06KJ0=K0z4`Bi_0Vu_!9$8 z<7qFyLC@~%>2bIDxKgVZER7w>4HD;4cSy6CZSey{?Wf}N-BvtN{{!&zK-v;wih<)E zg8!*-9^xF$e!pEQ`<^4VtV)LFeyTjB)qw9=T&30GaK_4Rm^pkp4z*fKw_j#p@#5a7 zcku}wKfRHErfc%*@L=(|VJ3dwo=kM*lBn^=nyBprV+eOIZ4CGAc5@Y}(7CAk;nctHI)I(F?XH7${R z#GBO-USb8<(<`56FzlQec*!z&kShc*^cFfa(xv z`0mY4n!c1KpT(A9A`I6Ef#DHbIr7UAKD}NL?kP*&l%ko?>8Y%^VeL3>R+`R{CnS!* ziEnW4=!I$;oI=JS3^hkOVQ(Wvd}-;<+N)CdVaakf|8$Ys*8pwzzJp8id(j--D2%`8D8w6g64fuS z7cIIC7Bvnbna-!FI`s}XiZ`EX#r(L8L~PI@!= z6DV%{2Ct%O;c)=KtA)k(uRpe@$8}>Vu$L9AQX49$esv_ZmhJ4bG9K>UbYr9bx|Eu* zjd!$sAQ{}t3W~<~DO2*8lJ~ODvbRBnq)wvYf^_a{H5c;&b#d>_rRZ$FkF-h*xo1ar zh_4QS!5?qX$4QfgB@?Icg(HUCAw8ZCMtl%d6Z7zMv*ZcoqRVPy*OH9cP?p=Xn${N0 zWA#B#MXQ2fSk`!u*O#VqccsgMZ(I#Md$ka>TSM)WN~G)FVLE%P`bkxDGAP;h1MPNs zBn0^6!tBH>Ov_m)cpPBL5KQo)#}Dc_=NL^Nl_pM`KOJO3Wa?OpZdwQzUK7Jl*m z4D}64B16|H^uqkJv{vnj#S1!$?H(uKk6CBvX~_rZuwR#ho;lG4%}{CX-bIl!w5ue^ z3~shD7SE>?VF!y|e8T5Qwak)4!8(5o2ASTX-Zw9ZUR_(EwjfP-x5Wgb`uu@ciid^u zV~;>xVHgJ)I%9#G6Mi(+;Q3aT(qf{HZh6`A{l-!JXwedw=&&8;{LqIkQ9(#6vQW>t z1V6Y*^ZKeZ{JQ6fy`qK+T51*24gJ%QI(!Ff8*hfy8=J)W>!R>f_vh8B4qGG-*D1K< z&J$sdX9(qWt*Fd88^PzEyo4$GTHL*UJjUF~#^RP*+}C>+?FcLZhwi;l<7P39ojwMB z&e}?WgO9?V%UOa?pK&~3*HMYb7lY}BcObvbSmN3qr|ah{m{m>jW=JR|M?IvZLrOU3 zjs|{mRH9>tJaET*bG~X~gHKBbv+}+r;v}^f&~UdF=G8uNRlpRT{Qi;)9wWF2RZ+J#cE`HaHy>fgNt%q;BdnA#J^q@ z*5uKsy+H|`r|WWH?h<~p$BVD~f1_NdUoc|a(~9slF(})23i!Y2j`@md=ry|zT2F-G z^KPkd$0D4Ka*YwDpAzn0UCEoTc7$m!wo_OiS)ogiA%6R6BFf$yjNgpqcu(qf*xJ;- z>hQ=|ND2$Wo+~9UXUzhXEnFiMM+DPICx5ijiGrg?v^amzbm&_z+FSQ_hR7Cq_MOue z#<$!A-+8WlMY}gYzK{=NT)zojvtsy9#4kE>`x0FnvYj+;KD0AjctZ5fJ_qI1$LVXX z0^B`S4JW-jV2?{$SZ`{@?zYA}zn~rWe;$l_!y|F$D+?OzI2uZu?Nv1nSK zgbssMsPN`iRL%b*nkF?-#hT4%)f$VL{i+1r!uGtm^LgQc@jTS-xQ|xJcVoq^?)Vm# zaLwEu?3{m}YSZX;HF9B)`D}I7mijJmK4T(Q|0%;B!7YN^_e7rA*M*-rq;QvbC4>#Rf|Y6!=;Ygh zcj{T1d9o14zx+UNmbHP`gMP3l6=A*Pr}s(j8LaW0^9od+I3Ip!3ieIQ7NE^BIfpj z0hX#ZL~y!RwsR!qSwmx^hiiVL4SV~tsB$6=uFO+nsvhLmGY#Vftf3Y!DY zL8ikL&~5IGkB;rd(|JY0z5O3)HJ7nf#926#V1c!F6vSInUt&Hu6ws=vjCNh~;NXo%q4ablA2MtdYCWcLr(f=H_pRhNS8#?_9Z3^vzdoV`j*jfB zd{5NqH3_|EEVDoBDhmS^tBa33V|i}3MR0BWR31{PEJXQ*OE}0r2+;aX#*;g<`T%RJ zx-tkGH(2wye737{xT7}K5AA#1wDBK*r6|Ss52$$33(WU7O%P-Ak`J{L>EU2N*iN|=>fGc#pCXw17 z>d7&($I!J>gU78&be$)A4Eg zZ(%}lwlGpxnTyJ-`J3t@R#iL*pp}9tDc`|mwI&*$Xrbj3ZSm}Q4Zfn#4_D@P1q*U-5$b#)0tKA&HN+&t$jVL&QyA6Zm?p1;+HX;;tX=lkvUB z!ux5aRGbhA9V>eA!&PQzKySpB0sW{vXdazSdjYB?uc&K78u#!_CV9^&$?GeEhRf(< zzs*`;5d4Y~7vxgIxKV7-zKk?yzoch#`eLhECY#~|uHl1$_z_pLl3deCy1p4dpcCM=M=&BExVu$=wV zCb6wiSIS$j2et(pxLeyYbXxroF5L+Q=j;hQZO~lUZ?1tjI2a%7xC*P~)3KxZA()}P z2KV-eWuI9`q1mM~UwBbSFAK6cG-Vr`SsfQbi$93+OWnlOJ!Rsyj?=M5V=te7>PvoA zU1)F@e{M7$%?mys6#ZVhlYk0rwe%u1PDmk*e)c@$qarUkT*+phbGTD!F`I?%V*Bze z&RpxrC8k=e(MuOQFWJVQHO+Ch6i<%U2;{i3u0osg5vqzWgclRMdFHmWqQ$umT&yec zX1?wwN0(c$rnFdmQAC2-l7rxt_LhEInDanWeOA4bj0G-jFb%H|?CmLN_Fc$k9-t9CPJXdDz4-NJOe!wOW$=xRziVz?Z-d=s%DC>D!1MO5;$81j`Mbw9QBms@uZ@!Ut>*K^;eQ68`>o+z+F5}YUAzWu z_VM^|mmd}wI?-ygI}{sK3M->uz_ITSDd@Zxzx?_ZPA$@AXZ>LKcAz(2J1l7^dVBIj zn|4?|&kIA-Oz_BPcU)i_!(*=RWH_~jR{BrE67PxjktwzucY7%Jv^JsTaX%??kvi_{ zb_5c71oENE7eun*q&}>ad^HwuAIU?&HQbqs+}gwF7&$I~(hCbh$lPGfo1x%*J~!9()K%%mOP25}d8%#-~Zt<=-e}2 zY;1ThZ0ur1zvf1;^D?Ps#qTEjiyvpR;iqvV6Z47G6(!AaauvYA75t+10_`=F&_J9o?Q;4D7(Psb1PuMpAoo3rbsv;t;LqF zT?P@OUcq(QK)x|6M+`B)DRelUi_?!di^KFKz34AHl35doa=n^`)k8BeCQpUOm2Q!~ zH&5u_TM3Pdx6m5x-gs|F7s@KsLc4@8dVciGyl{WDn}l_wE!rb2 z_w2;O4y5D!MkOryTm~N&^s7F#;e+^MaVE~W8;a?HZRERb2p(VEL|J?jbV;7hsSdLD zdG{DRBp!FTUosUnb-@AC%|Sm3Fu>=G;Cfks@5(Qv*2zqL3l!Pn#5#8Oh(n&1jb58m zc>1GxsMIwLjvX0`Uz^^LjII_<>oJ;x+P2}LujgQl%69AlP*)gj0Uw5-X>y*evK53jAQuA`Y_LhRyw**wNFF zk87^y?h5Ms;Xo!N^*SVc|9+%;M5iw__j703Qjx-8KX&uWIbq@l*I05(N~SaM33Qqc zLW0k1SpVe|JxWx@^P!ED5vs>mW25Z{Dk!64?@*Yj+7tSmRhD?i%SpB7g0Nzq11t6e z_E^4&LL`qqld1^Zzh^(4sy-&VjxrLlRtfy?oAAnw%quz-R4-FA6s#qU@y5wBx$sId zJTN{_$rI#JbIWk*G}{pO#rSoX~8iAd<4B$)OHt;|(2o$eO0F9O;igeT9 zotrmP*@}DB6%8Lm9n%_09bN=8cU}b>BbTakrw>v7wPZT%L-5?Hjbt*-anI?MeErOH zXe=~`Ne!E6e~lHUh03CWq%qp{W)r-~JuGb8MD(Q00S2Cb32P>+h|%k1_?lr1d_HQ8 zQA)shWW!?=bme9fLC9v zzL)%*#*K@E3wTd>Ji?e?)sF-7AM@~;x;bp_ln+rqnO0s1gOX=C;{BtNXK;t%WK&!V zEBvisd&O*e<)_Jg>VDBFC1)IFIu8=^l^~_efmh3KvwyCA6YR2kVQb|E*7yEQXF7Ug z#Y=#`R}KO1wZ!aFWsW;OQLyZM3o`8{z=XPL&^-7MRQGJfo3nJt`@Mt-26mu=Bi(33 ze>whGr4BPX?}pZv$Dq|G4m!kF*wwj@!d({H{ODveb?g!i1D||G)0*pW>RB)7q0k>q zf9?=kHmE^o4_C}cEC$P*5=g%WG`C;*p$@j0j>S`w5AVmLeR0jt!$Qlt zJPd!Tft|gq(PC~t3E!@!*1QFv$7euye;tip)C=!R7{{Ci5jgd}x&2WKb9x#Y&L?NA zgSvce)N!*#JLN1qlz1Gz7fJV#oBHfw-ye6h%Y5bhCaYYGM~e{`#qAyK z@nxA0Z!pZJ*}AbXi1PukkD%cEbo)v?~OkUcV@1x&_}GC~=BId+_C<6JW}N4Z_5#AA*ffHs9!b86FS1 zLu0;F!8zIf&}!QzSbH6#U5Qu8s`~=G(m*ib`90WF9}HD4h4wB98KV55sZ`ePJms!5 zgNv7SgpD?G^uW}XSH{j~m!p@3{?~^Pr3Z5U0$r|~wwTVn-ohu@97|_jA=weKbX*w9 z!QQ^GrsAu;-XA0J@R~26Fl`tWJp3s(?6DL_>ds|FPgDN>?J?;o&!g21`BeN(i{)kx z#7y~1FefA#J}>UZ)7Kw@m{0n+re6j%Z)jH?|8@i(H2)5-vo>&IoGul)Tk)q(Gto^a zxJqYGJ4%{)3e4VL1kVo7L3c+Z4I5T#|175xoZZaPVPY(KjVc%2`VYp$TqAUjC=_pZ zdQ01U6j-w%S+wtMXn*(aZQ5V^m~VHu{N+z0GNbo-GbZ>4m$Jb4WS29JBtoq32O6{AC+Lug{Hz3+k32e_9U%wgmD< zxBHcmlbXfTbNW@*`B`JdF${#c> zZl51QwE0wwuPwwMs%NOj)Y0IfTnwML)WTO!FRl%o3XQEXTz;xQzWuof2EX2md%QyM zg10xg_jEz8gU)Ew)K9!n?#C@3%|WZ`1j%-MM`3uH+?;gnwT}#EXB90zHD8&J8Yq)( zh%v@|JOgKLT%;}Iomn&Ak;AXwA+_o1tWEk)_@DmAG_N5#+q;M29Lj()OBQEUz9cj58f0W?WdnC#?#h zbV?d;y|t9i4whoUM0Fn7?FMvoJB-aI<4AO}fPuP&eCea46ESEJEd~XPqfJ(F-O_;S zOBdI}J@0`8y%FyOFR}I0)fiqoB_y6}V_03SQPBoc?<~O&zsIyxZQJme{KE@*4(2-Ap$M zwWrb{a;Gv|xUS}rlF4v*pL%GSH<0S$?$H!wE3{O~7iadjqW&H#l!4hGfA5;;a;zAt zYdf&h$N-8RxD-}M+QjzTbLj;Bf~LDNFroVuvE;EYrH;rjd|C|qu*|tK6MF3 z7T%}FzeI7S>p`0Ak}jMQSMy!xNTGguJ(<+(pu_pawB<@D-*O(w>K8TPj`}omsC3~! zvqFSj?y!LyJ!&6@%ZW{HR9YjaDgN7Wt;(XQaaN={HLuL`|- z4pv<~EmVed6}_cgTE*>r0fwo<5}Zm;YQscKD5s>>agta1SggPuH2vm&xI3wY^t!); z=PHF{Wg5eMgI$DWG9fh8)|KzI>(3MK-ynOlt(@{qnN?rv4;{ET0iQ%v(f!}b5Nn=6 zKPPVC-LCuKZr|JRV1F5?S>GbB*kck@r^I6yyddrN_B`?092iy;1MY4+q+FYsaH((z z&bFP+M>OnE_hm;K@2JVcNAKc&Gv2{XxpuIipE^~JjuO_HIN|uYVN}=UH%%`)PvT8K zn)7D`ON+ZpkmAiacAf(w3|{V?&~oMZN@GV7fEuV&MV>A>U8_OUmdY!Xf^nL zwI?-Qb81qx=S~;8a#fdnS{9-K%Y3HMlf5#asi;D^8!e&EOokI(66j2a0*G%J!0X%9 z*bBY7KuO^<(q1r&yMI-~O{G)u)g~Dpkvg904@llmejDI;O?Uo&U=7*TyK`5uzc{jk zrzC*yjy`x*!tPWkz$Y?<=T%k;H)tl8&&$Y;pB=ckE*uNmtY($Wld@KlF-)5|z!> z$Mbb~*|i9ATD=Ecty{!Z2Jb{wzc~>7T9p^nbwu+UzE~XpLbQphhvLlFq&{T|oxfWx z)q?~1zF14(_c9EW|_Iz*vz5EZ_AM(Y|6kbn2j zVzRp(T6MlF-TTJDBbil$*E~w#594R?jIefe@}~i|t*NNij~#*UC7=CgX+!vB>nY*r zz!Ivz!;dy~>K7l7D*@sO@?zs+l>HleUEK*#%*z zhccqqnjK=IK{7>T`B91LA9y*USO``6OarA_3I+EbR-0UHBj@)$Bu{Lx?|EYbEVLJe zrTu4sRPd07DEZTkdKT@^%_U>0mfMWMHaKt8Y{4*oCmnv1NE5G}rr!@dh5OYx;!w9P zxTdKF3SV}EbtNd^m*)?@6z!Tg~5i~UZuWuj#M zK`n_3g>%nuQnkb@80!BWv=kn~r@k%1@T2V^-y|3{Y%0a*2}XF($B=g#*x<>CMD8-I zyP(?S%=2G;gu>5;kdtkXt4AktR;t8Po4u73?N0#=nNLcKf7;I~I4&sfNg<#oh289(!%y=`f((`SR8^jNwH{MUki@6CEkjE zxM1Ob7F=x>LDbeBxEl8gL)yn-*4-U=cuyuq9(Kk_(i&*JlOaWnGv$u!8{t>KZqT!r zHNN#x;fUjnV6^fyUHvmb@-g`dr4_1RUrMlN;al3j^Nn!d*p|ZjHVTiP9)g)ZacCqT z0hWJCz+?6qXp&7Jxd&UhY}{sPz1trbo^<46uhsF%8w*%!@CEj%JQKH!8iUCd!`bOr z2yJOxge&yhp@NDsIvsxkKl=?7o8{+VjmsFjabDf4AN>3zMkUB$dp!+o?lcU7OV{HJ zpH;NNzX3X3(dX4ut-)^AMD!ffsrqfM26aui0IfC7+^A3v<0jQom}ZWsDti=mJawa< znUYUfXA=&|Rzs~@Dp*we!p?k2A}iQ7SD!BWVE=to8{FINNiz9}t6uekE47_4c5Y|> zx>-QYRnxJyhYod6w!^qR1{gN|4Q%U@gdNHfp>)jwaZlI>aM^T0*bi>p^3V>A&z&Hj zLcm_x9<*^>3>5d6LJkX-qxw*Jsm@{#?(5zHxy?6W#@tAZR!o8kQXVO=rXH;SIN961 zd@a2BCWou6;=~~Hkv#gb3%YGr;kbe%=;F5v%KfBy{Iv#`>h1>1G+!`pOatTjeIf4k zb{cNp09JZ2pgbxSTt29>Q_sch^STc|vi=R1!2>JJCX&pukK*VC_M~W|gL7`|7Z#pG9P4C@lh-E0 z@LA*F{G3BjQ4e4i(H-g!mf-dWuW6x{2A#3@q&lZb=%`*LUad`nky`%PDMLYg+dCA0 zLL_WG(h&#V`vO%?E0OL@g&!yOL8nVSB_BsS2-vBI{dXGh^Y5>qot#u3ac=@Wb^HTG z&cpG+^zU$cR0?^goE0<0^ZfJXP~4G)Xgq{%Fgg?zTU|X_bo* z_~*FL<)8zf~|I zudvEF!Uv*ScfgUxOx&2$rBXX&7~cCf6L+x+zPWrCDo%fcUDGZ@xT!j(xO!k#;x2Jg zhr`g#AqkHpxUkWfSr~V2CX|jY#YJTog!f6a#FNWvX|p&US8!*Tanl__%fEu_#Xe}A zwwMZ2ok6G619#RP6Ru`d(jgj+DvOO^u!KMth8Dug)?)aiwGp=7StAU~8O{*{yTilb zb>gS8RN>6YDLCpzrZ9S)KixlVgHaXSn&Ou~xY zpI|Gfg4^Po;5=|Gt;;j5zMN1+4mA;MW>+M>-KquaR=1jYP$?pwhn^J8M3%=q#`cz$`h_VDxx^Uf#{bT zL9q)5VaCBAOkNg`A2#-fL0+fu-m=bUC;7)bk@(R**RrL2aRq%79Q3@Q$G@5lp)EcE{0#O>-YyS??`l$>pw*afjy@)=jI+dPjmz2I zU@fjuP(+>f_i66SWC}GOj`I~1;6=a^YVJ9}{@1a~;1+3zw%@ygvY#oO8aRy`=Cz|+ zHNNEez=j+yd%>9d(=ojuN{SKp1OLbq%hh!8-Q-00tPec%x-l-&JWt-Me!xZ9Qutk7 z1A~uBT-k;Fx!0IJcrz~#Hh3gq%b-~_%lbHFC1~>VfQK+kCkaor`wZbnw&I%=C&2V@ zBb0AENb8iR(Y=5K?%89gFiD6O9n=E3qkJ5-UHc!NPOoTkp$;FcuA$?5@;K1H0{jgU z@Or~TvEBRx-u*~g=a!jBc#EyXrkNmi{ql^yc7IA;AFsD>*3B0Nw!bet8&E=hPPEY{ zNW>F6d<6He!?=5wzOc6GEI8k}46Uvoh08CUY5vZ1cJ-~P7G%DNvgO<0=`YDQwzwx- z7^U*w{$}DjB^DM;eh5j+v*G2c-BnHTs@z9)JB*s$U{}>G2ueQY3bx*-=tx2=ZMxEn zSD*EPo3pFvOWz+PeK2Th_kh3k39JxSAjy%Xm@l46lmTi!V)i4}~MInmfd?2xAi zQw*LnTTQ`e(L5-r@gl{o#{Bh4I8V_d%GhQhXpS4pryCy7Qn@Ul zHZ=(}W~i~U`vSQ3%%7Du3<9~8J?Nur2{ry%jM*I&#P?yA6p*r>4ynh&-NllIX+I=M;DeXg@W?w)OJ(SKjdG9 z{PVTqx*topdD;`YIV*stdn`~oBXXu`%eWW|GmTi zQ6uml^<};P@BYck{iOia`bTg7dR9i}-`oFny_r?zUxyA>{pSJw->tX%&wek@j{SAE zf9o>;`P~2e@&EZF@b7gEhWw+;WBxIZ{yhT!v+FMWyH4BpAJr@V)@lE{e(>+}`0wq% zj=;a`v`^Ih>+ApC`uo24t?b`l`PcT}^Fis^e|`S{)Yh`HaVYBa!`hmM;-kx>2wFro;5DqnzkFAK@YstKB2jKa>Ta=b7<99Me3B!m7{xNOJ? zNG#64=K($O{DLJ3egCoe`xc}J@Fio zY>zfQhI4G;5V&z{FfKPZ$0m^{;NsPTFr;Px#^=THh@@yXz2pMjez>Cjv2E-xlP&su zm`wYI)kwUe(X{=>7n(TVohP`Cmpw+#P)V*PjltF4!vI&@eO6VPrG>x$Vax z(G5HxTEZdX3AWCPW{nofM>fZS#?n1|(?8P$C(|hS(kqNho}MG`+&i%FMKFFOIUc!f zFdq9o4UG?Y;qBqk@bQXamErC>+Fxp8A zhpK&HOUrY?ebo)nE*Xmyl1}ezeo?8{MBM6_kMCVNfz#NNq-&(avK#JVkZc!7H|jtq zKAeGhUSsf&R-=8MR(!R;{t;B(ag?%duf!>L((!ESVP17)C;f5lf#ug0@``{L!bP=k z{#vSwp+OZmYHTx}+~|PUKb6x>!!XQ)YvQU0&ZJhBhNA}=K{w@|_+v$s6kEh_;IKqI zpQV8n5q5lffK=PXat|+WRp#&Y@{m}H92j<%nsP?qJMD$MV`nx;jQazhEvV(t0HS4J2lLPi>83uW+S`{l4J$ca~H?Ao^iV1zM3FF$fQ1_BhTyy$62)!rT z?`@xtYLgL*RC6)yOc1r}IFMJ}E`X@VTH^VyA{8IZz&e)-{Hjz5>%BZ#=IC*nks65~ zYkTvJTQc}zX(>i6I3mn{@m@@8odLV&-3QH8i-f%|`eE*_2+}tS#HrfLg>ie+v2>Cq zuAJOruj?}!$14@#+L&IrBSis1*W_SsA0tftQjE)XmGk_7?L2gBd%pW|JB+)P#D1}r zRNioiM{kWI>pjO<-zt)OKG;Qyk{(;o_Jx*971gsQL~_%mUc7f(248oJul-c^)%PrYgD#oof~pFf4k=)`>rZbDp6A+Ok8%sa2|=inO- z9JFHv%lErSbKaliwmV}f)1;QJmxT)}7hmEzY2EnqeB^%4(}X?!lDKm9VlHW@;?m{2 zz)5SZ_}p?3-0e9|NS%@kt2XArM;jkpKQDvpZ2Pc%`=gw8Y6TmP2;ja`(?x}*MvlDr zjjG0W;j8XvaO_HH?(&i5#rY}x?O6srUcU%qoGrQc*`YkU@dS51caVd3hH|cl4(UIY zVr}DSj!QnseV$jq+wH+rq<0+@D&zRZ>is;>F@=-bqB%t^Oo-_v@p$$=wGRpRL)W2A zw7NDHHpJFb=Qn+&+)Ow(fB06>7=M&wXKdvJz0b6_bsw8eSO}L_?-8BsrMY2gFLd9z zPY9g-70zt3M3n>I#8R6PIBQg2&d%7#+j}HXfUF66pYMwI%T-aqJC4&2UE{-@wQ+;F zKfhMZP49Q>^5kAPeAP*fpG6j zIaZde=Z7ALA*53_CX4T&_(mF~Zq&(acEg^$(!S$nX*`1aNa?4&XoA8PAi(UVhKRXp_Re2!}$Oq0EzRLgw&E$DAAgovDbFmm@kk{^D(dS~HS8Wt7Fu1g~Ev1$Y^ zZFE94LOkNNQ}AxK#E^BFuyOxjw7qS`vuiiPhB4W&Wy>;JrLz;$B+gDyk_I*P6R@q- zfh@k3lX~xCXy58igAJnbp^dBfaM@gLlfOafC(TfH$#Fb4R*k*fu7ZpFODMAIE1JF= zi`_iW3I&JTVV?tOf|1P-T;Hh&`?4z!yXUUT_amKjXrW4Aogr1jeSr{ zry4`(g;TjuRIkqRV>Qsz(E_*pmd6d&s-$XKieDt$HTBCOTCZe*Ne6d{T@9@%#^sV= zSK)?Zy~bi6FsA0bedT3mymZ@WyXV`~K$Ja0oYH{c{!cIk#E7 zYcLVlc6>rz{8hp0<$2r_Q!F-LIEiZC-iZU1_v6m2>vaClXf#^?ORP04#dG@xFt~IR z-HYq-WD~IX>`=lt%n2;YZDcqb1M2)VOB+-oFA(zIb5t=a0~H zUMLnP>tLR-GbSwUDLmZ6c&o7q-QXVj_hB@gITa?4HsE2~R`7?7m!xYmT6Er2A=q8* ziPE$vY4jzZZKa`baLoZq?KmDi+mGgD#^=Nn$@w^XKUZhQJ;BCB)o5c= zjc58LVb4uTI50ttPw1O-ShcyBD0z!MIb4pVhw8+i@&5Sam&BvnnuXf~<=A)dWNaSy z5K}i;@I~*nlr`uGj*vKwzrw4)^0Wqwz7vjmPc3m#;z_g-PUGPR7CgAU3-$Ne$USB? z(STp)B@FZq+DrVZ;`(R|+oHvyZ!GnhlSsVyC7kVS3Z6f2!M3X7IC08X)HT_HvtD(@ z=4NY*(>{Z}?MrCD&l7mPL>Ik>S#tgNi*O)nKKf0VL|UzOP_7h( zNMDK$S{f-mGH>*FkW*n1%q`P`NZc|F}b%TKX~HGrE_=V z-Q%)6LUSAL9qP-EZeE2AePpobwOe#KGat7n-lcX^sxUr0T#WJ^MR&U|!Up?#ywqg^ z+PWljKzJ-@?O($E18V8Gs701DjIjC26yCQ<1H?90yk~m9YLeSkR_tnod$!ABsZs+6 z>on1)$w4%`)Bumnma-KSa@betHrc1A0^3@kgK-XYK3Tz2UM1pMId8G=K8e3E(1Am& zlzIEFO4hw6aB6xrf1R+Or+t>?7pJ~}l}Zy!nMB+vvCEVtlhu}(~kcqkb3HD>E^B7GU2%cdFiJVAAoaJn#p zdqlbNQ?CrjZyUxAB_<#o(4#(^7h*!YJJla_PT>%TAWl|&MN>YSVgI&JtfC6o-aDO( zhEC+n9g@~F=@K8*zR&3?cX;>^In>vwWbZYL|I@m@%Kr$w{>H8Tz5QRutx7Ncb?9O3 z{yDb$-;G=SM;z~8eWLyzhrhS~_5ROT@mIfd{<-@y|FQpT{^j-m)s4S!JQNhie{EG|#>gm0 z4`pT4B#d20CTPK;g}$riF7;ZnVCDbVL&Ly9=C5-cCNoe)X5gQH6zcuk2kx(<{PTbH ze{TFgkN@9%#Y%7dwabZr?D?PJ;KT0xwd3F8_K&yy_vZg6Bk=FPpTDoR3IDh|{yhwT z)%P9nKfS)Mdd>>mQJniuyN0`o=yceW!W^z+KZysT8Gi$Q`5r*Gv{C>~kU05hD{!LP<>%*75UcWVsFyADKk4ao;Xt`s*;ze2y> zMA0p8pX$pI4Pr_UiN`QSiMx+*VP{7@apE!=Ufr@5L+!r_2YV^t(g*i>edu=R_TU_~ zU$u)*F3{pSR|`s+vYe+C$Wd$gF}V3|D&Hs>Y=2<3qR^vVIGqmeim8`Ra*WLzaP9I_ z%n%FNL8pv8W16Y8M=spXxxm}@hOiZn;PQm?Jo8p8WW7zJ&c_cz=$6A2^>F~LSzv|o zz0bn?M{}{X&tZl6R9^t&b91q_z2s@O z+>EQVI}OE`k>ZYDkx>8nHx+&P0K--*Lg~R#d}*CjbD`a5@yJLYdN8sM4(~MLrwY-0 z#{9JKQU5ALo$_amO~KT=-xX2wUMu{HF%?hGPNIfkS$s7l1e7JrxY=T$pe~M(I5RmI zwnD0d_Cv|RQ)dGluxt@Gu5AwitD2!Ob0Y#3iPg)N;D+eWV79P?-Ue!sL!%>(uNVso zqaV?c8*UgfYISw6$291AIt2AjWx>^f0j#j}jkwZ4m-o+mNxPjrvC2e>Z+2Gr%Xif<`Cygp95T7ut`a%gW_+rF@IT$4lf3!Fn8P z6hK`huZC%pzwxl)2@ptUDWt_3cD@cLca(W_l=$Vn9lX5V zdH!gof(EAtLqK^njS2n*o$7wVnX{jP0{yt>+&sEuT}LbJ?(;xnS?sXWl7CI{6AIN+ z`2S+>Ti|Ny*1cDWQb{W5q6=E{)>?DUE)pt92$gh`+>)f+A|!;Qd+DkqBx#|xTsZ4W= zoTYBf^K&zc;!35|y~;`>rj*8p+msDyNj%qR_@&GVf=XA&mRSWeL##%IDV5IMuXe6y z-I=n>wVz7&d*@gg@2RsKy+zIW5q1?L1~Fw>{PBO~=Tx zrR#If202Dq-EiGzdEQ{ZWzMXyGW}@Do*wJ0bKmL|&MkOPT1M)eEtP$`#Y#bP&f9Dz z*6OJ;Wx3{cgjHHZm{saEth5{2SQ^uN*mBjG^Og&Ax1AgQ@}{M23u={~7F?PnnqTIf z+Gk(Fy&IydI7 zVqSUo0y=B|7s|kGtmxeA1@xL*+0^dG^@8eMb)>DLI=%5lmWUamMLSwgZW(G(XX_)weg!;hUxawe z^#@|JYgTj-CrZRwkI>9KF81&O#k{CP^8+sfbp6CyMtjU6I{hS<4!R48vut3dP}QG) zc|4X=@qA*Q&*v5S;U)XXq~v7G{Zj-zro;$WadXal;pWV}YG)&;S$)`Sg7Mwc0TbvV zb30*?^jDS4Yb&1~%I%SwvN8Sc6oYE@^&qujIPjIISC}`ZOzIUll8h zt4sFj#cEZ!EYq5K>UQxgprB-sM=M_$U>f)j-tpga4zTfGJqOtMubu;J{C{~4@UQ_+ z^kae{#e#lo$l$)4!Fa_WuliN~G0>AFhX?gH-{;$$t{9$9`uQ@-{{OV_ zSL1-K1DYiLQ0Q;@TjlnFf`k3=f4Uw2e%?RU0>Ap(!T#g%14o0}`K;QodDZfXe;O3* z1~dL(I>-+-9t~7r{^NOyERR3M(dGVwIJ&CDA%E9#u-^}o;KB5Vo`2&1gYuv6_!w;A z&x-$7$J@bi_Sf`}k2gjC#qq}PXNCXH(qH5A!A}MrobhxZ{afRU$FqTQ{~lld&M)kr zwEADi7yTc47X84_pxVFk`N94w>F&RM2Im2T<^NXt>wbHuAGjT??^hiEt@{2|^9SrG z{ik_-cE^8iiNStu{rEpG_pg@wd;jt?fBoNS4gXwW_bJkadFoxe6cA9zCF%YpR2hrgQr!e7n)A~rqP z!oijeq`x0upx-hE96ru^R9shd;AzT z{?_=S(KAr~-{Z^Q`Gx(HR{!hxqW?qB;2-!IRQvDEUzLC0cCi2cisL~&{+<48fnWKn z*V~`-f0h2!&tLtT^RF%c-oO0JUk7nHnEr8pqVdC@40@;myZ_#w{A1&%zKLTF^eoXeS?w9WPG*G_j$0NGq1~k$5p-@ZZz!&I8z87nt;^-gw9YY7?njiAU z@dL8mkMhdF0~tS>^yAlmC;u!K81!T1Kk%aQBQ>x7@k0MjiVntkS?>oPp#KB6iYz(l z?>+qce(Ap!=T-WiFEyawxF7lrrv6)21+LiQAFyHba^oqu`-(vS72fMsO~Jnx80vkoV7#4DcD5KgHwl zFaNn-ML)8eLIy4NAD6HB@pH$n|GeCw|0o}H4F7R;|Mb89p3gwP={z`J9y}+>=|@X` zmH#;ItiS%KQu8m3^m~5e_m|oK{{ByHf$2>}hEP---F1B#y+szFH)y-#yN#C6U+yc= zvWHT+qy4#5M~Nq0d2bc=xki=VmL^AMrG-&0n?}%r&nEQQgGxsF_d@BSD0BLW?hxih zPB*7Tp_h!{9V0so?a2AmP+SnYlH||4KpY>o53N0XiEvSyPA=ze#~MBL$@WXyx3Bk@xp>VeXSy637jGY=R@OJSdHr@y$SkrC@Sw=62#0$BE_XjC( zz1L>~yI)I;8GcfHH*g_2O)*YDjjwDp~uA%U8eGtB}Xbv}{PX&_|nbTKoq`4IlAE_g|EO6Poo5dPy zH!wO|m1ra7YH{B&jAmcZqZ3~Ch=_aY+zV|l=rX{C4mhhpb3BrTAC@}NJAmiZDX$no zYt2v!+BSt=Rbwm~;;%@vus-UBPNx%jV7*xboujsdaf3Z8ZQ&% zv7AH5Atz+XiqWZ}Mauf5lGIM3xxib zQ{u|BF-&xI1X=aWg3RpqmfXb55pGw{MU?i4;jfb->EZB2>~{Nf#A#|Qc(?7Mp=s%2 zs_@+yq;`A*YHn0d_50nTZ8sJ`w(J<%ykH;vVUZhdw%`ilU9%T4OP#?atjH9P468xa zX1dc-X$lw~Y{`8va-Ycl+FML_Vuon7@_x)veg!QjJ4$r9L4!`6cNCK{M3`$4>CEiY z9Qq!HGTR&%)5vx^IyW<4boHqew`j2j-P0sXZRs^6J1*#m`a6eGtbN1y?{+%~k`hDt z)(;!hw;8wJ1{2jdYsBaJ=tnqvu{aAboCz2K{9Z2R`L4g=db#>A--))T3vWhPwsf@Yc;B zy}Y#*&HiA5#6OmWUp{^U2UXmFBTMw@r9dcd{Z^JQy@>?{QG%YQv@BXK9rBrj>%RX)R=xt1Ml5 zV7LfUkfK9Q38>(zyJURLUCKk;OKmyt&YUfnP2XJHPsN>5LKVK5pq&m0c^O*-BvR@` zx@UKbYL71?fv95Qc-Iu+_`Cav#|t&d^ILsINi{a)mGaL-=krmZ8jnNHeQiWGS(`GO zAB)IwcSFg(PZVm*F&5TLw1u-xMv!rrH0Wz5hT-)+1oXl|nd0^p8it-=2y0y}s5~hL z4Ry$Zm-uAS^F5BjS}CJx=;|=)#p7+bfn? zKJ^r1dgqcgtBw(e2p@E0F+(J|=#sO7Trn*#RWes~7%8LM$a~gcO5U11hSV@U#eH-v zft1`jM{4Nr5j(k?2yAV`k-Eych)kA{Zjs&3NdE5!bzl-Qr5S*RW`_^Lx1(H}om3Ne;BTmMwN| zq!MjDM~cp6`%=#P@|HU3V>_ITp5DqEeaW0GR@Elg-;d%>{FY3X zzjP-XYxjtsT%Rl`uZu!9hB+V)%@}&>)cwp@mt)Ao$QAHfySI7X!|zf@<|iQ^^cuyP z4;RpfbNXqEpsCcCmu2*_Z!n_L%SZF9z9F|JA4T3N7~$m&F8QQ4DSE28jD8x?h6k@T zz_mV_30&ShGFlNy;qvd_8*O6;(mm^MV>&0*>8z!dMjOwYh+D_?icL-#(?l(tbg~ z?OmjG?Hp45%L(H0_Lb!Gd&%S*J4TeL+em^}lE}mhshp6h;T$)=UdnyVN`9z81#h*l zyD<6F7`~UPbgtFr&3Ph1hiARk!QfWJHNgi33%A};`ir{;94$>$m_7{fwCL)p-hWDGP-s-+OJjyIT;)Wj?Wy5blZrC(>Jpq!K!Io zt2jN9hUQZ5u5!VJ0llObGX&!7qR@ruv*37~1qVzn5y|We=HB6R1=T4Oxw$b)sL~)S z?6B(<*uP&cVs14Gt&{6Sw^pAct@*OTS50B$J*QAn`;!1s^PJbB-CvVP-tB`TcwYhe z!v6@_JueRNo#DZeUNnq+9Fzd6LnyQ- zEq~_KanR@m@=(owTQKWkJ2-PHPyBFeJQ%GtN z9^JkRjQ6PlQhNFXFIR2`61!%CMI$~64GdIyUzffGyvr596|Y_bCaKlHMyoJ!iDM41 zvhx;jr*J50933d=I?1N}mCL9lOZ?$y4;`?F&b^dMHclx-0)}^Xu;J?F7gYNhHtODa z7d|H!2Ai#12PdsP3CH!Gq_P*C!fuv!Q%zqmYF=QWxV&3g=-8plU1A>zwq+d^_Dk`F zx4laQW6RS;=tWXwd$B}Zy=)bfwfM5oE5(W^O8qS2^>~Y|TRw`_YWILo12e@nI^kf? z18u0<*ibk*2jFL!>4K2@>VfnE}Ci|v@E zL}$85(FuOO)a%1?bV`dMZ7}Hr{_XL0dX_gvk5GIjo}lltU2vm1F9b(6?WO)WC@WCFL#ESU@! zxRHm3b^g$+dRGdP1H=!BqS`cQM~5% z0@~tPKka8Ym3sT7jAp4L$n4v>Xyp2Dh>hP-Bq-kqk4Ihe>)WzLvLBbyn_sozEd>U+ z(G^snvarRdrjx>5H}x8Y7zNUaUvFbJ#p-nVnMxzuUSn~W=)G9I*qDBHhsO4-UPfPW zolooNnKMIe5Y8$66k6@zLVB{CE`9i`1r8Ux(iW##w8pu;T*V}Ps%NAFt-9D2Tl01V ztpQ8X^FFMiCasX8V=@eBUHK3Ato7UJ40Vj2`n+A7)8NE)-93Yzu9`~vxf_wJ=61|z zk0aUaaDtfkXcY>rJxT0p(I?XvyJ0ittCLstXtB=Xx^O;V;dn)}5#nJfx$ zBgah$70YW*5!7`=A|3J$h{q^~R@=UxsZu(I2&SxnE6v{Ktvk|085<-a^Y%B2H8w7w zRaf-WRf$umvqTvk&xes)aeUOOy&oAq_9!xHj}h)|=b8^2<%#UhETwJUx8X0#4e;#* zCMfi3F?xE7!iOyGHHxa;L}whmjRi-m(`FTwMtKe<;x9n2_}va;+7za-GWBKjJf-<` zwXQkyTwKP%Cz{f7P$YF};dm+}iY?qx7D1^$xK57j|B|kZG0Y{SCIXfySIUpSD4Bn^tY_#srD=v1s_P} zSFt%jYyM3^=-SfUbZ`h*Fv?IwhFK7-=lj_wW_y4wX^VOFMa8`1()Y#EFT4m3{cC)0 z3`V_2KM@%0wx+I+OQF2ly2%=wbgb7jic%algDULuG}M1~9SXjXLG6i*MBCD7STy4p zW$-cyX0Z)G8OLNw>CI@|Yvo)Bcm}~&sL@Q3pPqQAVx&m_#XhQN%v7{~U$-Ejpi+2g znhn0zj!woOA+IiQe4hb zQDb73;YFjlly^fW$xe45U5&$qj~`@_OWWkg^-r<9qUk8HaAqLs|KyFJcic+SY?n6K zblrdemROUqUwldQ&{I)pN(m`==S@!0@8w+8I?DkfOzD_}L;T1Ovi#$xbA&P*?fHFc z8*+JH6b0Q1GkL6x-0`X?S6Jb>hhNhe#!Jfw0Q090c|JTTepH}HH1S>u-`mfXukL5h zJ#nivuca^pEYfNt?m32%I$w{XMT!TBF^h+hz?)e}y+Q}joy{X0)MB`Ho%5ic*4N~i z?0FD*ZYsG&hfVHS(TUm~I0#AI&VbG>l@d>H*(>yzwU?tj>M(h{xuL_hLjD&^F zx}vy@siLo2u8S@NWsu5kwL<6nyGSjzz32j3D5?_bi4RAFlC3wdi+1!96wFDcm+{=VSg z_p4B=(I<)BSM*8sjc!<7!e}y1U5>O{+{_!dY!cbe({KXYjeq;C(03hy0V1+cCZbf5p95fYo8#{7}{d= zD38Jm#`YQ+-`q$aOu3E8Hjk#Aw^SO9K8cH88ow1c6dBR?1$me~w3IG1ccdR*nZ#ti znr2wB^En|GVaB&On*_8g!2-Dz$$Vo@8L+*&ivD;;3m`A&1I>3l1&nePKNc(oR%D$4 zx=liOEIKvEcE<`4WOIt&Ee-`bRO^uQQY$$DUS`xOkFCG~{|!L>kUIiL3n##P2mri3 zaXc^EqmX^6EEBN(P$&o!EN8prO$PckIY9P#J77zoHBj5^B)a~<8F;Ac25e9{#+iR@ zab97a9991zm)ub>9t!bMLJ^?HMZ*_C z9d!v%%%y|mh>`K=CifC@iF^~WbwZ3N>)t-$%tVYE!i@%&%va)gL=@$Pwm!`}W#`Fl z-e@Is4?Qmol~n=P^1KDjSNMEZ>?efUVkOe+y(}sRli2DbgGA+-uI%=!L%^9Pg#x?< z;H*nXrp@gZ(sLi`(BBqY;&^~7J?}V+j++$5mD;XP&39Ze00E#%t{UwTj`n! z!muc$;k5%2I-a5HwGtT3J;#s(&%I%`e2#`swjgEh&Rm ziT@2o5XYs5(JR{Dkd=Bzk=jWn`0^dD`CnpkMRseJ($>?S;zNh9aUDos&_uKtt(-*T z)wg?%qz-JNRi-px-qz~$p`leq*{3kE(b^udils6AaHtRqy0nz$H#pM#Ip)mgLOt%z zymT6mZlyjbM^n14$Aq+MD^*m*rJ7HA2+H|O$=k{&sL782kxB`VV&Ar-)=dS;axjk4 zSbm%ut}&lkU^bL~?Q@7K*EGzV^2!oDC!3U)P@PUB)yVKCE1nmzV*2^Ptvdnr789XY z7s6}4=>pC^mMHRBltoytOJUF9p9EWgr#xj(TYiM8IYYOW6E((@h{PjF=q1QX*qtPx zNZCH>)cl#$n^RvfyTE5u!X`eIx~bUEYN!!>#CQn3%&k@8Ka>&aLo)QiC-2};{UT7h zxtG$QL-1~cRLHg=7A}*_f7fl^F21w(sK{ycLu$2I6k3m^2#?K#MKY$zSj8|!vCrjI z;uRs+s0d=1=v_!56>6V{;vS|<^WkD9{B;3Ur0&kRb#zdEAtlsS_@roy)(GzIGhuYb z^9$6D?S7QjvO~h#@)xMr>8jMo!*&9o&5CS28$+eMe6-WsrV}bRD4O7NzKS%@Hv^3x-aar3j*ba%!KeF4T1M|W3X*WAav!yL7_+98h-AraggL`F19# zJ@TWlrC)_Nchy@!w?Y9ddH)i4mst(CO$!rm^vnT#dv5{!Gegm5F@b{Rg={)qwTv?N z_J`eD959E4z0{QxI29t9f1KOJhF`S2pyn2{(W2LP;VX(^u)FU%I4a;I?D6p=b=vb3 zW?R`!=}O~N=H^1NQ;)LHut}F|zcLcMntfC#lI9Ed`IHEpE~JYBt4YyC$^7Hf+Evh) zrI&>dw^hjrf?SlY4vY2oqr>tVtF&=sKH+v9(1y>Qb14t)HN*~96d z(H{R$aQ=aZ{~phOul{ZAKk&Z(|LETXDF5%gM=5m8fPMbC?os*!kosT!PXhaGgolb< zklJ(^P$WwL)^bx()~0A+b*dilQZbFQ@ruB}FZuzS{@{a79+@YZI*UmDy^v4?ZTB0xCMz1In{2MY|~3(aomqN4*H(3V;q@f53t*xnJc zILEmgI2P@V){IO9vzz15C#x6Z&-kshCW$nx ziGy_7C7g4s2HLdA21>en6xx$J7%i=cjGOs{Xu7GPXI}~tw z@&dpl2L)Q;^3nJEjdWCn#^k7MK7?!w33wF1Y5$n5r7Cg;|K?bv%6 zx~LV2&aJM6EFve0*KeorLIO3~bW#Y7eS8_8&ewvo?X=;?u`m{~IbHbm2_KmpFbBHX zJsdhRc`Pa~_X*rRWC7^%wT|O6bt*V)_m&tV7rGa#PemAAt~OxGzA|;TX82Tu$8dis2d_zd@HT3Wn-! zZTUOQ1DLrpq9G(V1@w%E1j( zY~l-$lw1$&SlNZU#&u&KH<(~v6YfFUy;9=PekpWTXO`sh00m~l&Iqid;sMs@5C*+h zi9%)1^P#FOT(R8+3OBlj8f|OZ1|?3c#Uqn?AnaZz6mbi}Ue5{P-rpZXd#TkT@I3+=Zu5lDU>|Ba~(HP73>I&zLQ(rFfa+pd4*M|@eW0Jt~gW3eSJcW-br7^MT z&xnAt3=w>_R2cL%4OQ@eoX0sag}@VJ`OU?jMdj~z@->)RUQ&CY(EQzcpiXB57;bn~ zG}hmXU`>J9A%q9m-255{&Ktq+U!BObt=&fi8|n}jB5KgWIR}LOr%B|Tzldacw1d~) zo8eX6#pI+hX9*v>VH~%QlC_{p9vS{X1KY?6hwLVGf|FZPAY-HBke`b`IhwwRuXD90 zy$)3noyW=+6Ia)>Buj@(rk9NS6Q{=fit0N_GA!nR7YqZ!JUVvUbT}CYNRuJhX zdXRlCU09Rfe#UsbO1@oKFHv+cm+5|xLhia5N%o&L5|3PDEx=BC!zr;sz^=#@IP_&c zy0POPTR+XoV96ONj+X+!-e|d+Clh>?%Sz~AJI!+fUiTj28wBeDq1%ocWWOlGbRDVz z{7wo0ZEF@9l==t{7N13&tWs4`s8q`kV-79&wg*$neaJM)Mh18Qqs= z542oP&+SuM$gi)7=7nZA7_=h(*aoFdK)mKxw*65p(bi}mjzA`Y(m&D)&K`;pD_{AD z$KL7!i)MZTwkjy+`SBs*p3WVxq$pU_;KUHkL#7kyZ3MAtX%*4clm@C$N5w83hrw2N zb#T+@B23=lqv)ZdEcyjn4;GweQ2$_a^w89m+?pl|D@yN2>mLlqn?tgJ(lAw2DsC3o zTqnYGxNg`H{2`X9*anO&OU3~2cyLX25U4pUL>TCkF09cbkcY3QLaYvH$bI}+)P2u; zuDdT^Xh^LC>?MR{8pcZ1{G9+-vWk0UO6U&9$X7{-Ax6r?W@G?rRG9SiFy!g zYz?LPp+Iy;D9gG0z7(9bodcSFG{wX@Gr+yj6~KMEkei**lFKr8$r+_9hfU2$16`9V z0ksMpqFy6`7c^!RXqhL(Ro6FyN7o$$$Ct^8{fZebVBJVBm(z#r0^S2hO#_(ajUdDr zOaWKL!UC2?A^&lkDx|UBMI5BWBB#tx0B4<=1tSk3x*!-UF9>j0HIw#lmLT6s%d} z3z!t_Q-8T#&S{M2j3$^#|}%-uOSiGa4`Wl82SN>-Fz1GX^=%H z)*KK$J@m*>U)C9n_5lIbrl;ub@Pj~o?*aCh#ctf11@rh84syh>3FlFxtW99Hqa4rk zi#H*-agm?oJrRhOO2j{U?+1Z10BGD&BH{q4+}#>E^pSJdAZchAX|n=n@JCJ19GypC z(nprya*AYc)V*>js(pmG_|9=s$y%A5z$3`Sv8TwV4sp=8yecMMaW|BE>^XRFWhtIk ztcR1mYFO0yP$;%~nM*a5t zifSeNW!?Bfz-z)<_JS?BXh%doTf=cHd*zlfT!Fq7zi{~#z6-G*wNQHou(%dH%A$?G z+xQ~iPGJgr%&En=KyoRW_xx-iWLu0VkXp&r){mmiU9_-$Ofv&E}`18%O zxL>&x);IeMIQzo_@rk@ELhTki^!gb$CNSjyTBRQ@Hr<4P!BsQ32Ua}*8$#rm109QS zw|S3o3-i_B`1jlKtOyM#;l2#ylckH1JEFL^o+Qx+-`pe4H>48!_ooV4#_b~l-QV(K zN0S0p{c*munJSU5w?ibayN=jDJDupZQv;W5n@vpEF_xG>^Ol9h>- zusSEyQyEO({*I^!HN+gRR)a+=lK3rFnh<%t0-TpqLf8l2#mgUN@R-6@UiO3Aj0azp z(V3_vju1ML-tD#+Ye+OQV|%G=S&utuYE2$<~D>(>M#^VCs~vFH*aG*r(`hn z0{#5$)1}CkqSMUT!Wi*66}WmU3-$WE9}M9ZgD=TMqVv=aQ2)%>-}npCpaacJdk?ajTPVE0K-61Mzc&+yl=%_)CU9;*XZ_mtmT5U^jZ2U01k_$ll(_ z&o0UYd?oxv+CT^{XjuWSmhhL@k@?)Px;lCikPSsDXA<@j{*n++L*A=Jpl&2A2-^CJ z*l;lo+K}WT)<=WLmbL_W}NXe1>4B?b(a@Rv~%{-V0x1T$$q z0QG#35_f-*LT5kELSrTT1(NWW5D9;|JwXfFFe(aNmmURe3F3;UO8ASWgunD(XQHkI0N+>vYV~n*qWOVJcq;jhUWA&&E+$3 zO6aN6Qhoo>P4RlJB=GBM?a}(l0-)2L;bn`i@;Rxa_~o;3gO!>mu<>02 z0N<|%>{_@?1Q(@q_DxHmiqw`ub$9X!w{0iHt0R^{jZ$ks7rn)KoBK}_S_@`Dp2`Bz zjtmZ2&{IvwX^kUyOrA+LMXEtHGares2}VOJPbGqTcjO~h8T%#-YcJp`0di_q07S>Vd1KFn=tJa!q@#MLiP05^NrVisxF zK);)(L9y3m;msB4+%H`uee`w^>0XJFT2sb~F5NUD=LTdFZ{O4jj;rh^t_nU7iyN{; zoK_i95N1ZwdN%-_nabqu(JjPz$$7v=6ZVms5%Wow+#}fcV*$G9rmUb~{5L{(W;iih zavpHz@nk}`Lz_4rN^i)!&M;2;sZzDoV*~C-rE?l(F6jD184|=ZbVz$S1i}g2}hzpmosBiD2Fzatp zqP<;NBE1gEwEunm@6Na!+e?V|*%9hhW};ICTT!R9;=J0x^L*A?Ah+mQ zhA6Z=m}eJ1o~P)dBqV2S2g)kn0hXioi)M@(MRYekVz*hVgTCHh0BfQ$S9PmD(^9QU zEU^~w4{VP>m+uJ_7H>*Gv_h7Wb#y$qYxz(-=-dht+q0b5HT;TU&ZP?=hckz)v#LQm z-2o^!J_?k6VF?AWyr51+W%7jRINtg24Y5Pjm*_lxka48F`XeI94J2` zJ%1QR_K1WN*>wo-i$Ce}bqH9(S%-IK?j++`k%YA`Q1WV#n1cL0+f) zfm5Eo(1x$$q0A8gnew6&?{rKcAm8x>b)b{6%IOmy@3Ip6Z$C_S`zv5Y3)+R<+J{8V zm(*}Z7%G;Fyd>VbX(Bn%a<6EK^&XPLbHpxeBpF2<&4;F#kUc#$OxoOHa{gR~gokj% zXBH)K8y02J`HD)UW?Ti)a#N0Tulyu|N%~upxnu{T=NG>ITt}j}a-T@SDvc;RcZs;W z-vEr8pG3^)b|yMog-npX7HR4HmZ(2;QP}$?4?WD164-DPh}?$v{9=RA;>9mV5S36G zzwvB>Q2%@;TYn7sBe;4Iq1*SV(vLfol9uv!hjt&_)m&g2o%_P&Hp#B;RM ziV})|t4Q}rRnq!4!{b-G;YVMMBRlSM33h@uM~?LcaM`Rx<~EvQF-b2#>%>p|+K(6% z@{kV-M?55+gtXzI;;roZd-=Tj&kvb^Y(3^xHZFcUG?|2kEW<*z5l&}Cx+rOd4{qUO zCT88&7CtpIBV9*=BJkJ-GSjsWGkkP{sTc<5FR3ylUyeJ^l)V;`U?@R8;?5Dz-#r3yaF8dnGar*#1Hx^AAwaldeGAgtBJVX zpTReu$lv_$h=z^Ox_OomEB+A`D~TVhEtBO8%XkbntIYv96920a@L&Qg$W}s$`YGF?3`zW;?T8~;KimKe9U4o@CBGv27EFR# zB>vZ0S_C-x34kDp|Mijh-lK9`m?fH3?t6CwM(o`V($#&rJ z!3gwj=XoF?&=>HKdtm6^ssKFJehkdhE98b~?f{1RCIG#Avw_^a>A>RaSwOCLIyT~L zG!VQu6j!CExipnQxLxJrUQtB5Bc>%mcQkpzDgl?+$)%S}48eF>CwbU2VM!Jna< z4e*y8$p8XcTni`cZ^efCost(=-(_EuL4+(!>H_;djKav4llJsBY@(=9n zBcW_}34iwc=nh`hj{xBDNbFzs>|ZmAM>ZeUuW9m+)ui zSr&RyVn3Fo|9VL5=W(MPJgOXpF5_%~thaH+CKCINl-RFhzRZCAq_UuOjwui#>AxpS z6$E#W42P?nwE)(U4_2;r~VfmqXgC z@j~kkavUs`;Yn|@gpz$fnDRqk=&f6+V7)6d$P`{pu&DUXo_Jk~j~V=vSR zm-ZNNwr*9TY#w5teb<=sTg zR55Y*a|dy@j0d*puM=MZYeDH1IH-9v3~Nc6B${MV#tq*v5{$|R&}G{$b4?$7<>V;p zU}HCCq7!GFz*zSq4W?{lxFM&9f!)10W_d^zEAS++vCp>y2CElf-VI#PY^@4-Zt-M6 z^{JuooCy{XV{#uoxu+FU=~@BLbk1VCM_q(=zLtSA4YHy7Ntd~t7mnf`%US#++4;94gUm|d`zD@aWeUygZ^V>Db0Zed)(2KO9LJz^oK{)7!Kejg34-k1n}Ty`A@ z3DJe+rf{e;91SBVPzUY}?}h6lrUF4^60DTyMd_zgr2RG>PSJx3G`nyV*|j(pmS@AT z8P5}bZXF08=o=1c)gOa*B$Cu8z2)SS+%<6K-hQa*%tGp;N-@G?1e=skZEug zbZmSDWPfcGR(mCl>EHY+H{0YA)E*cOC9NxkCTYe%D;?aS1#||KrXhrU58VQ9sHP(U zUo&avtm{TKca9+W>t`7hq@i~Vct3wEVjXgn z$E#FA9&b5m^qM-HU&pExQmC!mFi`Yg@m;kurKn21g0;Sw9>O%F{wB zpRb2Kyyq~Ho^nX)tq{bsI0^XT@eIy$9f9a6pM;5R<>=P4=FF6xdPHTl2BK%$4ll5R zksL@0ky)GuFXatK?rBRS@0Aqcj6DY-zOFxb_R}baJiHg$G*=4NAEL$X`w{?It{|av zwB+(@jUHkD~IdYn6KbsnV0S_ajRI|k`y_&~~=4WUET`=Bv~Nss|v0{Vx!Ad#E^ znlY_2GI3svOmosTtcn$b9{Y-rB`q=Zr)|$D{Z|EfEOUFq!@disoaiD%Zl){Z7?*4dF5#gR@gP=>a3p_igAkJ0~;Hy`!!sVl65E9}lWDh~2V_e0ggO>34exS@1@m+-KfO_^D1OXURE`EodmQ%(R&5Q&dEb z4wWwG$UjeQU0*{VFP=qu^~|7W8|xvb+;I5us76kIram^|^=D|Q-75OLb~m+5MV3xC zoJvD_DbU2&rSxpieTZMPGGx;L(Y7AfsP2{WMsh}-l&gw9t(YOlZ~ZK$=2q^5t`Pz% zV)@X5DwF$0@(R&lSF94i*fC42inI-RBj$4RP$*+&XU3fj3t6PlbJ zjGNxdgc?4n!?$@ia_vTjLN-MwphctYAooq{L`RixW47#?WcH19<)HkF+uXb$!Q|`%uk+*8uOA=Z!jnrE}pMNx1WJ>1P=QROJw~awXWiGfe zMn)Vz)C%96dpPIW$BAIw&@JV(AK=4H-@A73qn>hsP)liBwE+hx>NV zVRUYPf)A}*gIu>s2DINd!hv-|5G{;^og>Rpr&@Dnv!)Vp(nA4BvAqM&Tda-DFMka? z1t!3j<5|eL?04|ZQdxLINebltWfizYPK8mg-wnmh`3P}xwb)B0uZ7ObABS|Ja-eSG zk=Thlsf>zaL++TJJSe@<4T@$mp(?v2P^Sk34cWa1+RzmTEn9yEtit9Z#A#2u$*RsM z*3=o92aYnF^=U7dEhR=aY3-#KD!rsOvLyYN!3;;WPNgg+QAiDE4&o>ikJRptN9>a~ z!1r%mKw3APr?GoU6v_5OCJvEC(jFHuCJQDY^W>e8$|v=J^M)RH%8l2A+vg|nr>FTw z`&=^fQ)`bA>(-hgMys_8ZdY@W9NX(~aBvkoqp1&;ecuY#CpSPQCmUcj9tP_NykmC0 zJO?`p%@OM_rMcHivtc#;Iyh5vJM7yIVPlsaWg^5g+_k|838JPY1 zA^D$juH;UQ+5(ZOBcX8z=R-jgRH4@JTcEp)DHQqM1`4|z1PY+@aOh!m`r2?6V;k!# z_<~}iWPFQ(dR6Bmxr-;zb|NjRIB$fIi!KxAtd*xu16z;>&__7XO%aiqH3R9sTTO0~ z@kfS!jiXuPs)(vq1bOxTHmsO2F8`a{J9uG%KGL0xvSps0f?LAF$d#UXaC*O%@v0A> z^AEJ|C+bg(LdLl6EkI|=AcbF#z&!J4c-^Qo@Cb^8EkmQAcXAG}&x~wnX7)oyXA=g0 z@I4LV4=x%+6pVor?m56~``<%r-l$=vB{2-o*^e){w-CP2G^Bw{ zg%5^LfdefkL&q#HgB|cu!0B=jlT=HB`dll>Ywwqwtj6PDQ0xcL2K)-%x)6;$1Unc# z!Y)^2&4O;*CxJ8a9)V>=+2B#v#bDUHOJG-aE!Z!m1h%wT!u*O@N{0Q(i1eQhN6wms z#GkJR(}Wk{NmH{Z&JiK$JXBW5pRiCoIX0NA)OidSZCDSdACG}cs55XMr~dzt_wHde zb#32pl6I1I+KE!FImeu9rB#x$Nk}S55<;btq@9q2Borws?NyRmYmPDJYOj){l7zBJ zLa2mf8%YwvJMZgqeaCY@_wn7&bKLLqyzlcJ-(PdhV~%6ZIe+7Kj`Me(bBuF9>yRFT zYc`fiJkSFhl!}RxbIXX6(MCbg~;OcNszHus!%GU^y$Cy09*JYZ>q|zCU4_t%BpAIhe)_BbK)H|VH zR_uzbvSm@Wrad~cTplSDK7=zdF3PQ&g=GA9z^g$YX|4FNB;G!ztgH7kJ@M>WX5^+U z?EdJ?w0zShUwIuSX0utXYvfqN@{7;Gl&ucT_9>rf_azwfK+TYOV>XDCyaE{0n5|@J zGDgI+YwAp7X!=UCgb|;)L)#TgGe5E8lqolxPLq0!-~Et6@ADHYBTwElQoFwb=PZ6p zA1hgFyy038y|wKKyT&V=erIxqo@AL!ZYv-ip zT_D^R4iNhDl8L9=>!u6_1kK;KC#6iR8l4Z{+1i3&7mB(PY{M z2S#%9QCerXP$VX?h-;;-P4{nM_1&haBz4i6thwk%iY>p3Cr(WxH)jf%A^kzr>ghnX zOAZpBS^dK8lqZXp&LyL6SYcMr+lehNw<61D*NJtke(7WN%L~6O7-5Q$i&_2BZmLPX zGf`|#*3;I@`=T8V80&b^v5ekD1!c&KCf&h=PM2U7T zQ2$m^G-}O%b#)a zB3>6}S+@pv-sz8rJz0r~P2ULWJ?GNBtJan(Y>WU87f&Farf7lsBeq1yL=#%ZsvH*%@eB#~DJQVmvW2?FMko2_!t+pQ8~ue zU%^w8a57s-4EdfDZXx?X(F zJT92=N8Kjl^D%8^gX3rVz@Ax5f4wZzV_HnhhpI8?f*hmO%c0%Mic!993@rbq$e+9? z6XpBL(`yc#7RC{A2*b`J`Pt`D#I%XUx0{psP7~Yp6}&E>c>i!TFj9^-C>}(22W(O1 z)+Drkn9Tt^Xorf$am?+Qqh!CytD@B^;AKl@ zMfo;{->d_Ne@$R|f@H9qDskpeM``ITn@pnvXA1CVuJ+6{*U83nT$VC(tp;f2r*G(; zQA<7|~DS{elCxKF|-zMnddG8#uXYwn2$vmSMqg z0%+PR%^0sqq5XDd(vB(5X-gXpP_~m|uGrzE>-lk@a>iTQ-zha$e5*O_^fIrdO#3_w>NKdJW8+`YcO?_)dkS}oHfAp2S9biu z)@=AhfAPLR`z(@Ro^NWUZ7%xINxwSianIW5FT-8vfN2=&O|*p4XLR{5KR6?WyZ4cp z^IgH)mDZ@vDh`2w1f+ger})m(Tz+{@t-fwjJlgMLit^eHp|Ttcq_krK+9_I(Os8!{ zMoymCS;>?+h#*+*x zvFs*o*slsOgGO3U>q=?sQ)px(o`6r;I)zD9A&r+is4%zJou!-K=g}Ht?$QC=OZ2RM z1~q(nMtAHa=)V2W_%@5L&`-w9VV0BzPy^o)tv#`wc6bp@cg)Z(cE6pRQ+b(A>1#)?-vpvZKg?n6jA(wy#O3Ix*L74qC@oBw zZGm!@9Yp2hjv&5OY_Y-!yKXO>(Qh(}MouBq(Sk#J5oI_7nZ!yVg=G%tv56;I5t#~= z(lwYfc?5YqM7gY9L7S;x{){OVT{?a@ zBh3$uCnE_VkxHtPx02+@mFXHp!ts1iro9(G$NFEbS;s(Gl`O%_G2;a7J^--Fa_}{! z40y2qw~h6`JDd|1aqL(dkn-M$N~#@H{zvQf#fGn6w}Q5 z-*WygvbD*8J3Ffu&wg@~EGkWBve%Af1~e)}VoEEx!VA81L0vN$km^VJtQU~nXhepC zO~i?Vz2wR@&zLAGlkP}8L`stC9SP--CLG2_Y{f8XwJX@#?8`;`8b044K$~-|8i)KN+E~>|1`GS_fbHqokN1Y~ z@S*uFSkRscxbyX6n8NNr4t#0CpWUB{Ill?OPP^slzn5H#8Ld~rg5MF?`LT}064$c$ z=_>bh;f=A_p6CcHE>s`0YQnKKN(NZpm1)>epMYcSHkOdEn2a>XMU^V0OAz%> z*MNo@{m|W1hNxPaj8=qPN9m3V1}h&PGJH2RjqsmMm`qe6uB59F zCTxA6KHa-WCtHAbJd%JV&zkuR`Nz<=;~#3e0d3Cjt^QI9?q)fpH@O3xjCj#PaVU%fE%ZUco7oLU3@~ zM$pd2#y|O+z={e!Q0h4Zay}=4)OqLe8hi!mW4nccEdLaLx{%}7PUf1abm0zaRb<}o z7-oX$TiUXPjeouDxRw)bY3xop>G8su^mREw8u_G>3*j1~j%p!O+;1?>DY10Jfe>=e z-0>vqe@kW*O(&2FYIE}O zicZ2Qu$3^}IF`)N{Xo3m+X)7>`UtYkmS z-;BUTKt-w@3`hXM)bX={jpI@9HRL!L)R}15&Em&X>JjAlCji?M1jwk}2lUMiLHA-Y zkh#$XjBN4&2D5VTgBR`)UlY|B3l={b* z%zpE{ip{LOf-xZxMSR6l!>rPje5al+%qBwdXZ6SEfHo&V>dVQbdO8 z9FW_bidQ|T0E5*h5xSWR%H`GQpWOiLxWE9<_5+~c;!DHjt9Ap66dIhDDiH>ZuP(vsCD3gu_(u+>$joa zSu^1~RzKIP48vE)Rq4cSoq}C18Yrfy1wAvgMBVQ7MaOE*_?>GB&Ylfnh^oj&T60~{ zDW#Jr{<8oMnn$8Z_9e(Lpcb|q-3W_*uBPf){k&gxJ&X((h6ioC^wkMlc%mc&uG6oA zzB&_&&0CWB2ICauU@hogPvWMrkl%O#pnP{GGD2t;Wsvc*C$6 zw@R;`p95;WM5x2$F;x=m3}e!Dftdw@3bi?0F)L-!+vawPuX7d#PQB)u)0l(^jc+gG%iKyrKZ_LU`uYQcRuqNCLUW*`or|tLC@o!S zn`vaHydB#UF^F!n`gusc7LA%8MH#1@k=9ZnQh%C)oB;-msvR&XUQxKo^!=F zS@?lWIi&w=eiS|+&E}l^Gx4RfbnwkPf^kQ!IDwP*ZM^7x7e2MO6gR#wh?~l*OEyx?WJ*ejE*Eej$g;QCKH2Y zeQ?chs#U~oQrYpgW*koVAWUnr7v?|dJ$5$a9#(zA6w{jUf>OU2joC}T#2=~bg=W%| zK!I-~Cn{76mwk8=&h5>`6p~XYmucewwO1J{x;YC65z}yVUmM;(d>kLFn+#PF?eTV1 z0@Zit={F`H1)KE8fuM0&*np`dFdiEQ0?hB~FX?%KPi#K|CDi1>2hAG1uK70my|Yf( zyJ9&&Pj-NKpaZfMzT*n#>+$3h(!fGe4y0C%!LcPOF!;w$VXO1gLf@u3if@$<8+_sf zb#)J^)!wc!OzJzOd$Ej{A>bFGqC&l?Z&YA9hk)vSQgHf#rSL*PJaxBQ4pM%WutSNU zI6Ie94t=V^a+#sRqdRRi)>;6v{(4bgU3lc+#nE(?=e*0YmH5w;tzE`>TpVA zJE$EGwD5Wb#7P{IB71b7^X_$N3kl^?YI(*@DzYMvvv?8)EgK~;xkcxxE9Va2-e(EU zbkkSRW4Z+#u0B;{{W=8Zt*(P37rzTGdCq}%w;saM?7|>3KF`oWH?3IZ=^Op8Ur)kF zca@UCrGe1%i$A=jV+2Ll=fPF>8{vgn)2QB|Y_xIHjz8?zE1!!jL(FNp`M$!aSxeCH zm>)=Ma2HD6P+#Q6+Hb7Edd_RhlPIKub)+le(1$$@=$7hpICL);?Vj}rF~0_&adJBB zI~hk+v-TT%GYJ;W*Fg5LO#khpLl8;V!S^n2VK{5QMy&n1%INC9U3VWka!F`YT@U4< zADn(z6+UV?54FV7;nF4A5PS^71+&M)Xx4sJL{q`#P5r3+MG6(rAcqF_9Ray7RAKIz z(_FC}713Ab0_C-23hL}qMp|u!_+e>(q?LIcub*s=;%|>7UNQGEm&ZZ0N=h4&VeR)7 zeF?p_GNBV?w+a_LfoQwte9&<68oI&SuMKOznq3Llony*$BWu4lB_Gfmjbdb!a1?d4 z+(Zh`uA{E`H=vS88`+@S)DS!VWpwO^vzB$BFwH~yam&h~iZBUvYJG>aTYb?*7QbAF zxB6?R;^?^TMl`KS20f8ogo+%eL0=C5!6rx{v2R9HRCpL;~+^uc>OEUubRUcBIbYH)oAHYBs1rKs=Zuaa0Gr zcGCr1rRcq*D>RF;$1ImM z=^vlt!cmC%pnt^47Wa*F&F{OYfel!WVCpZHVFz!(=Ox>t8Z|HOpR=lbR%Q!a= zJEB;HRn1w)DPEX}l~A2n3NeRsaP$}_%G^cYi%01@d(Py1*=mkutxL)eR^QB_xC5N{ zm$x`pN~iT*b$vOJ^K{ZtieCokhSVL(c$Hhi~8839l65mk`8UWP3rx2Izf}-q7j6Xl5~si@uM*e!au6JBE(h{*ckpEY z&A99~PmI+sCHIa5uya)2<1XStL8Pi9-g+tt*9p0fd$9VM)h{J|^S|YDS0enI{~)${ z%1J!Ceg@w7xEniBn1=t{v>7*2m%)9t`l#G-mKcklk@dnxC`DZdTA#fzvr|%Rjia5Y zzUBp|cTVb%Lw-? zBEaHT@+d0}XdILyMx)1Zda@1yC*27ss5Jwy_!&9dW|q26_NL5Rp8*!XvQN@=pvd45 zD1W{Z_|^!(W2bBoRlt^(zL5sjRR`j%{wrA)OMuj!21IUUAZHgf513fI2O;tSVA+QH z>04O*Bve-l!Txx#)$0PVniUO>@Xi6P%uZbUbUMiMx(SNa-{7f(@wm>>Xsm|C?@IM? zTqGk8x=T(7EbI2**Gx+uP4^7z%D zBK+pHWB5c5bzI%!9Tf>oum~1E%a8Zr67zSU_4a)1y&Vbsrk+4z8xS zucNSmTL!>!g+2h7CX{@(7x=Jq*PAad168wspa!-cO78BB#Edyt0IUB>-rqk5_MXKE zv~UOKqVp**uXifyZmR;U{xfo5@%t5Zh?1NkMOj``c^yAL}vCc@K>R%6BbF0A^ zsu9m_%EqH!hhQUXw@(kx(7``6F9(UDt9mPooN)6`QeZAG60ct%FNzeC7SU^#OK(=sqKY+jTD=W0F0tFAA=B2gR1QOOWmZPdq^I4)Pm^{j#SePhh(U=!w8 z9gp#S10dgA1`k~}3rgR=j_t9PMdc3G7$q4D_RfBXw@Mr{$h_2o=e}GHBG+!w)yTVm zn=MO(nTKECk>lSN_6$8QEV)u7j2_~H$T6*jnZe`0y3ot`*|;>kGwc<9JLffCw5c15 zt-JtjZyll>V~!X;U26;@wroXVpT`Qy=*@6Ll`gtlk_vCURxVn#F~N{AJD^YMHozIz zze2U20vI*+Bg|Ior*tM=htbAz=thnzJh+mfVie8@i^|p-E|M2eW*zfk-y}Qz#f@py zg)X-3c_lb1=1^2``OI**HdrrmtPE^6GN$An_EBR-qNuzdn$!fvek#lOETy*8mI4Eo zxNq|hO5YDJo##-FmmFc|Sx<7NEE{(ULta_oyZ{R*<_8G={B4E3n{BA7+zQHOR7hT$;I78W0m>jfJDBYbZm>xTsQqjM| z`L3Qx-D2kr_HBGY6(5_Sc}rPH9bJ7UiP9?Pp_wz z`&Lo!EV6}#t~52`ehJ&&rGZ_tYo>lG+fe)M9tu{Lr&8Nq+@m(es|a46aHY8N&I0kS zT@=RzP_CG_A9^Qc&zBgG>z1qg`VS(SFwdX0iTvnzI&Xe2g2ak55E)!HZDms-tN3 zrc{^{=!+WMa*@r45?ISy0;l;c_#^&ZYp@uG{(K0h@42P#^uieC@(x3*?=)on#~<;p zv+6Is;jfu+&-FW0$caO6{_QDn^ldezpvdaIrsZ(W@C(XfTrwW}iwAeG{`aDi2FMOL zjq`zu=bfRd@`32b$Sc z0kP&S`mz>)_FI^Vlvw}kzx4nrejrARxqZ+7rr?hruhIs|3y=Nbe_dGrn>W)1o3DKj z-DUl6`FR=%PXwZuxpPpOMGCqfpMV~Uoq#(e0dmRyN@Xk9^F0bhu&?MQ8m*xOs^zUv zP2(7vSucTdl8cHoyfOX;|9AR1nK+8;b3uanlh9Ym6{u>t7Zm*9BTR8Sn(loBPMNO( zhn1D6E!(B}*po>x_LC5{PE6FFxLXRE9a{#UUfd5Qcgqx8^c?2byuYZIkvk zV_)>-v49`jy%>egZA6Lniv>3&j8Xo;0KO}36^fXfS9))9tkJkLdf21qXVA_E=V)QWi5?pe1BkXMXQ~!09 zd%#5TK^SRtMPDz?4n~!y!uS0bpwDmqf!9*{k}nw;>p4uVQBHwsK_>9k;fE9*l?p=& zw!qy=Kd79;NAScZb-0`5-=0aTplYZBRcVz`mU9c>kmdrA5pEAH|EB*el|?6BGL#Fq z2YL_RfcAT;@cZf7$UeOa*SaN!-kaV63fon&)fKa8bB0EWEdM5MOh&6KI-9 zA*3dafu68z)WqsPR=*hSsq@2Zp1(nNSpMm>)}VkN(Wq|8N|arYkLu@~MhjANVXmP$ zYj@+|-{QA|C+FZD_8Xec(oli&(hfL3?IaR^Cy)Br`0X5v-@+7ePO8{+6uU13?NQN2 zk8IgFd(ply)5-$nIYgoQW0_E_Oc}~9)c7NQLrz-o286ILxmrKSSq5f;rLd_Y0j^{5 zTfpk)?z@e80{v}J|4B5J^Ti$tp1-87Swv9dT-+h&tp+qnyh6#v8RGm~EmSazU*4MA zct^}()a;&0iD`vEM_na=#;d^k8Wz7BiXyT4&6IZ{gjGtZkT*XVzj5jbd@yZ4o||zz8d}IqClLe(zoilt z*!)4eis)K$6{RW3MS?6H)VMkmzX5ln)<>6c!4hjU|B5tGrSJipn-)SJ_v!c}e=s-k zIx?v-r-RRj3)f93LaQ?70}J8p|0jQtc038Ic%?=+u=vG-FUWs>1cvDLSJ`hz|GfW;k#AJfAG&{tTODoM!^*4C;A&VjD^fQ zTgbzYv$c``5=+8x>kpkE z0n04Ocm73dR~7 z02bF0aFL4S`vBg1eqj-n|{;zca(_U60^4Z2ZCIUrLw@Z}OAh z`r>F(Hzy&-1TT;(!%CDtb8@zTQv0DA7uw>I?%)MYgl2HGO zt^XuRNJ;DhEPf?@Ka{}I@(V!z^I_o})2U#AF+g~yDPZ$2My&mo5_0C0$>tpJkc~e= zZ-xSCukpZY*CX7}V-qktVFR}HxZ$Xb3v#5sVeI%Fd5N7X#V zemF*Aye-RcO)F(QHU2DC;5`+VgNqnD{u${H)xhAsFi^fM7<=_>8=f>MjZni6tf!jA zFG`U+n&ZsY8P3Af-WhZ@%<52y@5Nf)-II(A*571)qOT0c8 zD3Ka}k=5cNWdkh3K&M#Nu`A{2|#7HXJXv^XS&m73k>H7}ONI9NkVBi}F|PLLEEf zkxWB6I}Sde{j3{F_WOD1y9bhtr1TMyOjQ{@^;IL|ktZT`tV&Si_zPUI{-dILcJA5N zfhi)D_C3ri3kODL`8%d&Nfe3XyO{WI`dpsfXS&>sVx*UaGeXvWOA2Ec6?FllPp!dw zjpj4Am?qHetivpRSXwH^&L0{)V+`boJZ9JW$;PkRl9}=Aj$762=|f(?Hih@a{gIdU5X3! zt{;FITZb`$p&S)y{{;A49>A9R+u&6j&VrYG5z*Ef$S541P5uluC9-A4GL*S4`R%m4 z2pO>7P|tD6v~yR9AcH(`R#AZ{FqjQmPu!&H+`R~~6@kR+8Hi{+v=Ph$*|_C~GSp1= zz?c=0w4})yF!N9sb+IxK?arc6Fkgw*f31yf*I3}VMj;G+cY|8=bCBsetq4brC9&17 z44|X9A+_b#Rk&U@mU>+4fvH@qMFWo~(l@3Q5!0eXbiw#a6ft=N;g_OFw*sdnbHni~C#W#`*W`%&rBtNuv zPz)8$&}N=Q#G*^@Vrh>rW0-9fAzO2GEn4QFgnM%=1>Wax}>3f*7Cil2KGwN~6&32-B zz1@sblE)wXJO4|DQI2f~HFtxVpB!x_CeWP`Hb&4Vyl0_c%nkQhGz}l~co6TL^8wb& z-4vbtw)jW>RH6l!VcVX z+d5o#b~=7TekLBg+l%w@V=ZpjYYGmmbp>W8S5dB}H1;X0nUOk?hOg$NlRnLl$+z7T zz{vJs=DXHp=2zAc(U~j9X=gHnc{nSIR(`#VP&(GaTOI34=4^2Vj*0%r1uCPasp?G1 zu2?kvaTKj{s+o>Rn$LI#IC7U=6BCi;h|W1Yo*Q`mGSdp>coL}x=zec+(aLkmqQ=Fi zX;Zd;kDNY5hu@l?iZQzugz%|UYV zyUD_&$>bE(qg>;?*~GA02I-k_jF|n=j@D0ZDNxW_&wLEnfYSQ+0UbmD>ElyLziBC8 z==LGv{<(2vc+h;$?H<7#aE6DOqcZi|QVPNLF4zkKufl3*QW2&;>F#EA~c)`A;bVP5-@`s&9?MR#bVAzP|5?GkK?hn0;FD zvz(_uYkekMwCgaj|Hx+I*@%#Mej*xtkUx!oO^{&{zqMhV{E6hKcf{KS586PABh8o5M`IEKV1_nnkYLp~^_vt>E@(^uk0~#Bf!u8H<8mlqO#~BN8dn z-n!zz*zg|hRCtCy{^UKqC}|MMdRIZg`&BS_#yP5$c}R7hyIFvE8#=USq-zM%cO{^zxygiCU*IhIq-=}T;Nb8S%~a`P#ADLvPt;TL_WUAd$MVnISM6GKyxt0t-@AThYjD&b;~%M4MK_k71W%8K zGncQ;WuCo?W~}F?(t}TI5GEbQT+Kg;`ya|BkjxtH&lfX5DP8ekn3?J_}N4vPIqIa1lw8WTsH1Fgu`o2J% zYtb%bZmVpj*JxAZg(rs?o}hyJD(4~6wowy(ktt%du*LNI>J=uVQM>8k2yb@Hu^FSp zjAz1hmN7)iS~|H>9VM))WM<57z_%aIC&x^_O_IVU{O(U@1}s-*mUrzFrD^%n+fOGm zf?q3XPfZ8nR8JF=4mQ6tgyk-~!q?r4q9_WteL0ZdEK;MX-!))2Lkb6#k zggLmbi1xbtjXb=#ftk=Yme*nKOnX|a6?y275l!5Af@a4T6FI-L^yf1tfpKaKBjdE3 zshX6`aJ~rWt$nM|hFppf=y-t6_h-p+!)h}Ap%j?eZ^>X;Pw0XiA5n0gHErJ!$1MJC zLq`QJCZhXWcPMM9yE?g%i!EqVlLexI_aB(;{2hPvZ%x=`I!3nyY^dMENR5(Aqxl}@ z8$3zp7m?_d)FUQoOOrcJvoI zH%EsXFB)Y|M(gn2%&DaB6zmc$YMCrL4a@(~2Ns?u=#nWXfp=s+hG?=)KJ zKoE<5>f|wx+5$n4N;!G+auq3aRRugdJ&(~<=%$AXd_)cJ%;;xv#~A6`^XaazC4|P? z7G62DCuQqr1Ff|ZNK|_XuFxK)mq$7xi(|WKvq+Nmximum4ASC$%PM5NMlI;rug#=s z@e$_3&&OQX^*_+K{Z^ukov)et^q@cRlM}Vji7zX_ncF?#{VW3Awx|QsWJmhBF9?={9`@u zzpuwG`@1^xU-hg1{rSIMzh7+s@A}@7|F!`1Ki2Q}{kNC@+kgMLPr8(t%kMh{YyA0? z|8F<`>*@HD|9QK=b|J9T`seLp{<_hwf8H+RcRQEe|GXXg-R|1nf8I{|ce{?Se?7qe z-tixK_4jq+!SBES>-ewpNGJ5qzsmi)2mVJM{nZ11*X;k;$v@)p=bQic?;Ef1;&;#g zkJ=~XzZ&@e2;aZPErs7V{`cqqI{z%A|HL;^{NKLQKl0D_-(LQ2|NS4~A@TbO{=(zm zpa1K4)F1iHx4#>3{^#NG_v6uDIQ(_|*WaIi?@wqg|E`b!@%{hrjz@nzT#v3SqZ6Y- zM0tsEuislt-tQg3@3R{LN80@otoIpV*7cE~K5R7;`LPRDsTvX1!#8;58}&)8!83S4 zX*(_m-c1cYSxV>GyTgUaOK9i)A3-wl1IX3fCZZhF2;o~rV)L3*Lf8Ec*hzjTxBqen zTNSP{@8V6ElM%KkjMeYfo=VKpUmTb17c*vKgssl&L#QM`ncCPMS9btn+5W|{q*#S>)^p-)v(4y4bv(cM;s3R zf>j++AUrdRkw--Znmx3bZiv2*Iu10TuODX8_Un>S)UzU{cgtd=r}aLh|O52??ce_ z-^K9>Ath`rm*Zecw;p3z*h0+`lO?WvzsXxJ^O`7kSci)l*5Ni++=Ly}DAMe@MI{)? z)AJ73gW7vlz{`jr)FnOw^1x-_)HRt1yO0GW6osVr26rGnC61YK^&wsNoUsx!q+5r-ZjvEXZud|o zKt$?m6rkC=tl7=P|0=#mUyKLZaLNh@44pK^p;6PK*K&{ zcPj%4Jw7AXMPcY!ZyZ`D`v&E2bV1T9QkYBChDb)^0Qq5%EmGI8T~H*p(JH!24%ple<&hyGU=(#-*HLCk~C z;IMQ9!S_@oEN#aVG8>K&sZX21Q13@lK4=5LE9#l|W7xfuN9O%uzj8`)OhV#m@Z@L> z9k%l>vYe+1w&^FJ61(kKmTd}Qi>i>qdsUHz$sjEj-iC+4iA0Q150$bwll&NwgOp}Y zBI{?=aI6>nM2i>RDkzA!M(acvKpT<7v(C^6@&wB`bU7Us-#%7?iOB&E{ zYXx%JlYxA{4xz)7cOn5Nj@ct^iB^{dlGW1+3ArT~@q;XWVNGR(=ZWd)sm(%S_6tj3 zGqE1EZtlgcbS_bA-9+^AotMFDF%@o-_89U}q!;}4l}ESk*@vxMj+h@G4}$DlnoQ#L zMX=z77$HX7;yJBqC$58)_}tYw_$`SERCMhq>K*rqT1td2Fx* zuPnGo!Pgl}w*P`&t}p}j(ttao^&p{1CnNWX&d6BC3*+_bGP)fXfn)atdf}uscmfiD zmG-xJFPIg?Cwc~Uz9tZ6@yDBM+VHd;eaNMu1hbwSjQb6A z;-|Rlp?8lGKrST3IQ9>wAf<6Qi-Vv`|-0Z|so2p|^W7bE?;bAFlD8 zzING|my&f@6qfyY<`V1s6?XYkt337^R%M${<##vVA?}N7iegS*Aos$0{$Q{sNWte9 zyNMqo7mv#;o^xz2DLHCcn5>$`ot!pyX0GWzBL~+qvpu1dnR@gz{(S=hF|OaN;LZDa zRil64vM7*1nQgFk+oZJ&GX4Ksh2Gm3CiuK-e$k)F#OPmQcQoJX$ zpdlreTRJoF9C!HGOu6+R%ql%;vt3FvOY&vsFb_6I^X3Q_iSAFGTbk^Ui*nr^3|IP# zn9@ptp~;hGrtl|j;8vqt@GxTKEWKIzmF-dEs#X}8R^1<-$+yjtA&K(i1Ca2$C zZ_$+UPh_vD%71UF{$pF>aSZ<$Y&S z@x6>Yl!Z<{}wSzSb#{faI$GrWwIqyGe{ z-!L7t-m;XGyG9vXA26(2W6D%oDe||4o<*5GiwuSiJZA13xMgah-B=O%G^ENyCb~+y zd~(TPh6G)6FpQ^q_97iI+q1Mxax--=BmM}6X-|M4H;^M95ff9Cfj#9sXlfLf3K^`?JCM1OxA`F+|G`_J1+ z|GsQ?{GYc||9#me{-3w|`=|JyclM9G`g=S3>+SwJ{_8wy{cUG|G4oF>{=a5tD!;qX z@%QoHpZ{;*^V`nE{zv8a{*fQxk2nAC&v&-czd83m3Xk92{$GB0eaj)szAh)r<+Jt$ z<;vj;|K&IM|Jff7El;l% z6`g$q&$^B@E3+ZOtF1`M$80^)@8RV4qWxfrUk&jx{u`mwfB~_xEnw|-Q?fHu9Soc^ z4!?oqFXe+)!~Dd+;rA&%Afi330G55i}D4gTSnB%v|tfEVw~CbE3W@K1t% zuq%ildIaNflZ6%7*+d$I)?LEfy^4r?4HjV5(OuYiBLajy23!-ZZN!`UZTOEY86v;X zo2(HG1H*M^h^x^b@L#z)#YqUG}cV(z)8t@4 z35p3sRKy4hm;(k(7|936N)Gb=J@W+Z@&5F{ibTF zUcGv+zW(FhySw{Vt?G1kpS{;w=kZVdE*fb3g5EuU6?ebxL+>~3We;yzLA#yD!L;Ejch^ z;4NaX;3Rs9Q{c$twIt0;+K;z?G(Y4Og_ZKD)WxPR8s&zvnKwmz`n&{xPBsHKEqj*L z-v^e|?7|Ue3eht4DE(O{2P3_z(KUD^J$$H)*&aIspI`bA<2^QPOmVqbp}(GIrpmHO z`fbd2ZHttDVTp%Nn~B-B_I!KOBJuM67wpZofqcuK>*A>`syzMM40d_qC+RWW$o*`B zOr(q;b_I2LbgK$fHG1;f8|pA-yAc+?IW6^&5!eEg<;;Iy0QyXn&ZQ(8vAiiBFf>$# zb)Pr^Pi3rvN29W7H@9a<59O2O5gE88X+Jv3A0{eku5{?E`#8e=BN&#rlGC$w;Zdal zoAtCCOzt#Cy}$^Xl39c0+TW<5c~7j|GYu7A4WcFS4FtO0gDV~H$xFFE==yCLm@g_P zeO}Ch=tLi$#kb)L_iUQ(Yk>FHY-7qZ&C#dl6?}F@3v7mZvYbcz!6becu61oiWv@&0 z<8gVg78O}+>`>}xcbeJGYliQuvWdj5oaLn65^oPL@pnv1VBoe3To=ioCY6nNJgNdQCpu)G%kOjZ>jeNrpuS#$(vWFv#pIrY1vV zn05PU^5)HLJd{y}cJtcEFjYb;`sJZ>kSZEErIUc^_E4uP&)y8yg4;U%@v_T08c;n%aCpI_JN~(Cmy(V4$pktPw~iodSLw>99m#Y&pjw% z!)BF0-SxS|&vY>x9&}nfxjUTivr%Q;oIf$wG3}f>Gkm&VN1Qy^jDN~nB)<96!ul5a z@^e{fqS--Ro_J(7dr&096YE#<%f0PQt_E#jCzlJn-|4Pka9|pr7g3G#>J0EgayC?k z>$2WW0c`5CO?c^++NMU|tmBIaqNkzkc=%r-wo zR8XztKc1PfF?a0v)o2AVGPyq{_nj{O+_;*1oJkTt^<8CsR|Ny;86meJ^KmvX?KN=tCnnm>;T$(e;?MT{T(_BouqZy7HVhIhRe1~ryFmt zBID;xg^1qH>{&n$XxX_2x3}D&e@-`Gq}_e$^wJtH=DXwTfKXcbn9|O2B~;FuNEH*! znbt(%7NEw?-Gswl4v24u3!(zpvYW_;zn%(&0z`f2Z ziQyUq%L-6xD-P(MxM*lxKJ+lFj1#OIJi z2+tITF;$6$svEh~G+R>9rBJZ?aa}lmtj1W?Zlm$mg2}=V$Cbvz6hp|#urHGSxB3{* zyHF?5Gi{{>{RuJm9VW5aQ7Wi=^{07pbwc&l86@@4G09h($K-xcH(}gLE3)(VDx&V= zDoOZ$NHXm48ZznUZR5e){Atvvg~FZWp2iU`-jc)LJunvpXqb^t9(~_Wm#*6l&o6We zD{q{K54)>r$^BkvIV+If8T^KBy1fX$E;~v6$EeWk?+573Vs-dLl-c+?d-~e#B2`d1 zESa=g0X!s|NWFEXFhHCrEbgc#ThmmicMnxESY?oq>|H`O=qd`u^?Qk&WlvHsqah3o zaF+NbL=(qMcjM^Qo-QkCWKOBr_MD_4sGW(VX z4C|gOTpDVKL2~wVPm-LV8P^X7xy|Bjd;2oEQHfx^ek&F^tYnYomeIin*0CiODOi>& z%OAc7$DK-Y%z1zz=k{qhdW{_J-LM}GbJ{Q`dKZ@@Dq)u+S(x-Xm^^rJ2bGVQ1C>jn zy@$xtw@3EEwMieqvh+FKa9)lcz8(dubd;!lA1@fOPYohvYDwc0SyDLO9Tal3g~n_v zI5=AatoqvsA3C#mldUBq=7RW%DQW#_S` z2X-jz&|}@dhJjMD9}|Sl5dPpKs&{#Tj-op3n&1lWFB-BJ@=~p^JAHUqfifHrwb%75|4>MVpe3fnK=fxM_Uj_4e=5Y5jdhD7Ih8o%5V2@-L8~g4A<8F6R z&Pc${{E;lAVLP1M46Ly(3Fkil0nG(HKy}vumUYaI?p?3Niido{snX`?&h{;I{qHv1 z{)b}fmDPkioeF^`o!O~pJ)marT6A1}lgb4&;&;ObG<%f|w#SV}ovWc#dP&kis*F{A zJ!rd=1^ZeT2c|J+$Wk#LJQUaQ`xi^_V$gNk`|2!Qnw!VGpV{HmEz;+oG#ALp@?(h; zHbYJQNi6F30_#oG;r%#QcwTA9+L{~a)?0me+(~6rT6~Ng&fLx%2c?Sl%r5e8C#+f5 zDo5@xQdwks2;LEW#QfnKxkg)xs5V`huZ*+ff#r|HfeT0SyVB!Vn{LJ@mtWxNN5V|T z#9w72nHTrHx(XI_&Ec(Q_1Fvu!>0UikYYTGMSMEJCXTp^{rU1!t_9CbNRwBlJ`ajeTSNYFDVqB=K9h%d#9mX zu?Kz8v>2ZGo+gJL%42Df4s|^=1CqXMgRd(W5t-~h}lXAw&4I&q}e&K_)kxCYo~mI~{Sm*KOlKH`bC$E<9d5859d$6U+@b9>i)uzt@n zZj%?z!pBtcn=W?jQP5GgD7Cwoq`R73J9rw)+`O2cc!}i;dqkU4PjT#uEi7h+C$&Cy zobBz<#vyzinCi*Fi!FgjkDbMpa+e^r>@yADw-7UZimB0?L3s0OB`9nzrZ2fpDr2%NCR{RE zs^cgrc_lfvNFYmMok>=^qvWFJ8{=BjYT?tIR^xsdiuBW(d4hFPgz;fALP!^vuZZ75 zCy7b@eVWt%p5Q+-)VQnceCiQ(8NZk$Lw$-sx9(O07Nv~iZ}<_)tnt+If$;lmBpxhy zLvQ8JhLryI@WoyVTN1@MwTYljAlDmgBqA{jL$@$fOXVe$*++i&hz`(|XSM`q!)E zw{JFyP0Kabz7a{6o^8eXI|<4yTS)@cra;q=VXSLdclctu8oyN5(!6<(FhTtub*i(% z4M)de&AAXd@*<&sessZsJ0{Skax>-Hxw!#G56H)s*H1B3%8Ol{H3o`(`Y}tNNAzrBZ~iJo2@~6n z68kB!?CF+6V&k$Z9@pK9<*7UH(yv{_yay5-=rmKz&{@x|HYbZGdMNSWltFxb{sZyP z5oc~QrI-y?GUeFwJTF-vYBI96hCL9b^Nxl9kV(wqE0^gq=iZ@M8}$W}O}&|~e=bXp zx`UBVjPc+HXO_M@7G8Cw?B>e7xJdCk%-P)?Ml0GfMf<^Y%Ro(5#5&Q~`3uoM6>8jH zUY#gDQx^&XP8-GN4U#xCjwYWKhe^Cwj1um69y0b%XcKym6eN+dV}yv8iNev(zQ)c6 z?;HIzml1NdsTjW+*^dmJzfYpF?zT}sgK)`Q?8SVuTD!~-^*XMTrHSk4#4p1n$Id2GOHd>-kLL=(LDiDWL9@xPF{enz(@f#* zIs|Q=8SOHXC*j&n!k7(R{*CQLW$fSJ zl3xU4+Exuf|~$Z_tL9kMKnBJ-T|3H9D%hqlI25o#RO9cn>A4 zv71OwSevt)=R3g3y@JS0-3`|~*Yf*m#aLu`jaDw6iE>dV*x99nrQTb*Ol@=+EKv1j z8^&yejr;TQviCD|ncD|m4RwK-OZ}LsQ3LJrvp3&=R|yj)W)RJzu}t;+A+gV^Dz3T0 ziUq|waAkWX(NSH%sOvMuq_Xw=XnnG{Y=RR1(maT(;X^S~eFRs%Q_R#BnsS-#=XpU* zsEL8=6;^$CID1%anG#H&JAzGm8Vlc+ zQ`Wa;FJ7ts4z=IALt(HjBaa5t;scuO!?jL4_Vf$cx_Jn-Jmc8G-;fpcQ0I9*isJ8|Uf9vb z#Rg{2&sM~UK0g(?l9VI*K)5WnwV3h7<_Napw?6+=y`5iKJ;h{GO)7I7HH^>i*B5-| zuH)!9{>Svq9G5i%n)1)iTcK`if* zZKpkM$>8XEZ#LttCa(T=82i!hR8TcwmTm6v*?%qWipaz7H+E3ArJ9y4D8pfk`cbv0 z{j6kKI@Eq}BZmsynGkbCtiQH~Yk7Rd;{4~V-L95jiDBrzLP6Yjt~VbiKTVu4;|8OX z26FYBed7KgC7zr-j>*63WIGmk@ee(TiFy8dmiSYHx1M`Ld+9s!-u9XJr$;w@+%*m! zM0I7#vXj`&t20od6a{JSvP|on3$)z6jteeM#yw6h;5sCnE*)Qm>3!nKd(}hOVjhXB zO=8Ic{aoSB>)~))`u_38>9^#k+(z=CIudeDY$9g+BPqFiM=(|I2l&>TbofTn^8L4{ z&6h;Mze!c-lrf<@huI77il>0mvRd+1`u_2zGmm(!zK)6upV8biQazJBo2X)AC(L}3 zM*V&o!KB}diAF&le6UcVY7e`E+%SLWzlV{rse_5`Z4X${BUyN9Z-{T@?P>HrIU!_c zKa_Ew#Ru=}%K}CxLd1rxnC7&SwahQ0$p_c5oo7<;!x35DwIv+SE6cGV0}c5`hcsNi zRt`Hh?nk}cHXOBe7oWXX2^Xbh;ilGLvi{K>gfw#)ET2T1r0*Xu()L2>TyeIc#3o~)dG7}j}>6C63G`7z<-t78%k_L@bWo$;m?23P1wMNgvhF;kdR!)WH& zCgJNmIq+m7>BDuwLT@D>x-dY*4zd8&ku0glcs+f&PZuYv$C8ksqckwC2i1)j1hJ!f z(CJ~a@F;3EJo1uy8i(E|-}}x0?RH&4YujKIyG*Mz=Lnz0eXzG?5DP6v))D3gy1kpR z=SaeCx=AT%2NYRt_awAj*@ewl5>Yj%4HVyBW9@!haNZCd9C^qFTc@cro50_U>00B2 zQZw{CGKnse>V8OxX|IMuWDJa} zY^Mj>Z;)sAZh^~|6GE?{*3dHbGI;#T7CzVQqwlvwq0a94BH8^QRm2|IftZq zr3T;Ll7l@AUP!M!YkV|n3u6K4;Ja-ddL4~{<6g?_*QjN%_;ff1^}2P;;<7C+jVEf%sd}g_eA30NrKaSb*ilhR5qH!LGT9>)j6Ak|G zXm`;ndLMIZyU4a43KxqfUtyo$ZerK8p0Lec+j-d!c@tHwJ?#4Np8WLdBseIB^3hH9 ztol^}j`ggBfYU?RtxMsoV!8)zj+%!bg4CEs`5sW&WXZ-qOu>k4gYaT0!b}g!gp+;f zO1pb_Q|iSzXSfWl51dE2ZxP*H#i8_v9JwSHP9r_bz-x7c5F`JA&bacP{&G1{sXXt#B1 zK&Cw#Lt^+?gD-6yON2FXZ0qPrR5)D8ldlB$T!t8BX9WC zS_W#LlY^#V3QRCoW|oW1shw&zuC3jKo!)&}n(Un?tsR^esJl4x!{*H zfPOa{h)D`kzhIZ);C^ha;M;x@_MN{$#8M8qQBoaOAtp;8MXY@F{#W zi=;E}CJB*IU1@E=M7F704otFjB#WoG!o3wa_(b}@JH^~fyVJWi9B44aEz%|srxgYe18-M}y0o!_=R&%Qoe#V0D6 zF!J7+<=$`Mlgty?w`->C-6aRMce*Ken=?V&v)h8rRSRayz9&J`t1pkQna0*_X~93= zVxjDQJKmoZ5!~-DPKJO$sPiB_hj=1{3PT`2*%$u zWAmmxBD(hGbdU8;RNGbuy{|~~tq?gF9oUX$k_@^`wHWf6*3nTvS7R@|6LikKr?Az{ z0Lv5^JyxDaX14ADt=wADG%5p&_K$;yD#218#lhgJ-G_hGUWtBpQ)&4@dAzxM78_CB z43~RP#9_zOpmn%1vp?qvy1`3vL2@x(ZNEsJ+8@%`%u`r4)`))1jbRg$s$l-B#pKIS zfo*FI6Ll9Y8?)Hl@fuQDwg~Z2?Rn-g zU?2-xev{>f&)|I%6it-(2C|qWd0tX&2$zba`QM}4`0$J^4lIv>*S@{jm!;#_(&hT- zSojD^_P>|%Eqs7TMXz3bSc*r2k3-SoJUVvNeYD+ql+3xcA75r<;nq1Bq<>|z@L*Cr z9lT-+`M7F|WW_WSqWVOM{r@zTR|JlA7jOIT|eQoVILrEhdFv% zIbclFTh>c)D2&=s5AQ&SYG3of0RNp(9%lh?N}h(11N2_-Meymq6V5t|AgXJDnQt)Z zoizs{d=}9;KYPMdqkM9si!m6@TrQ{$zCiEj_(J5;7m~OEi-qv21LV%DaS{cOCq}hF zXC(Y`qL6k@RhU+KhPZ~f5hXE&)NQ{fSv|H;h)lPZR1E(ujGcbjc;m8GiO0@m!qbZ< zh_8f5ntn+nKaIS|p~!k$R)a>a>Oo7{IN`IW zCP_Z{UQ(^oMv~vU2xEVA2uHj0750Hi zPJihNK~8RDs64-PBcMGekU1rqx+;&?%QODNjnLW>#20=tpntz*;o2&{daO~cq5!DwT3aC>&Y;w zUbx)uk?e)%2x)GWPg|B<2B$rp`25^UTHmr6d~G(sZt8;9->O5OF+aiR`W(!!a)(on zPv}l5(9UHi_4-PGo!*9EG*=LuVU zKaw?j=;$tr@5#^hZLsLoMPbvFr=(<~De2It zpwAzKk)&=B)Zx@~I`(%@;@&e}*xXl%s;Zw5lK<3FztNtw=lW>D_yeUgt=1ydnhg_7 z^2oR)?KEX|4_uw3LbYr4s7Ci(VgpOz;(QCL;HM9vi}pZzM-1^*Eh5^HB23;bOD?a; z1^Jc-wBlEo;Hz*RWQNOfagZ7#{WxfSKbjwL60D8SM$2XLFx1)|oz9U3cpLHwr%DDdAxGee_bf_yE^kGetQ zrq&UcHx}^RO+q&&TA;Bkm-l+0#fZG-{4Q5>sr^zn}zde!pKZ|tM3Fj{9Rhh zSe!+*Rd2$y3TI)4Ya?~5yG>iC#L+(m{piGdm+AB$4xoDD06o%w6B%yTg-WvSkm1o8 zbj+e&;51-7QJLcd>l3YUt=I>hYYM5toC6TDe?I>9+)c(T>;q+mzHrjn8#D{A)9bBK zu*tU@zFIsK43#UWYV`p4u(jcQ;r2{2zJALBo~gY>K($r~e_NU(-(r_tLYBKYb06Tv44Uu?W9P z=GCYQbv<_oUdHDnd!dhDc0m-b7MmGQKK705n6-xft_YS~VmU%;skbC%+hd8DvX}HZ zenI$^dBj*{eotX;v#N0aiHBgJdBK=|k*8-ndeI9Px|3Y*WZ}l!Sn$%a5gZp>H1>&W zAZNOch3|Q>#3j0v6bw@%Rk|;U+OGpN%14Pdb#WA6ts&hvM+TO3PZgXE`w<1N_4LG( zbr|tH4n~GJ!tWvHB~Q-XBNju{(DhC}HL|z_wWZ~BWzHP;5K6jA+AQDnYaDeUXMj25Mr2ywCRsGDZ^kUTOG6zFrRqXSW;d*Px}8okUJB5!0CW%kp%?mk(`%X!p~O3! z_%t2H_YU9b8r68=+!H;N>2T*yUWBl!Z71QwIu~YOcaA-A2%$K82m8IbFDrPg%nR4; zNA!P!lFAtF7AKvrG#G-R&9xX)H6X zUHx+~IuE^$eRoZQiaXl)z{wO}7@VW_T3hku!VIXW`3cS+v#GqxLL6B>n$*b3;lNeP zG3S5+Y5$f+Z_IbZ@%`lS_@UKg;!6pv8QzA!))>(%<`FQhp%--BY=SQ$3#iSK>+s=# zHf{>JMm0@-5x1$)V7J|du9d`~gX&f|Z&gG(q!RpHw6C)b?I~#W@GYJ4wm+Uyn9ZU~ zmcv)sPWVXEVYR_UY-*Sewv*eeoA+NFh2_fDe0K3(9#}jOZe@pYx$AFP@!e~Dp#BmzKlvy#%N{GfcMoH$ zG)A+g$FXeSw^h9HMzv_(6vATJb*5#S1?N?!a>tYj>__ztJf4sNHFW}8oe{v2T@~?# z=N4Rh>jQ=j*$J;l*)feZiCA1V9fxih1XlJ&Y`j`e+GR-|;uy+8W_~7%TN)(y_e7H- zcXgroUROz(nT90vlrh=2@u7r0uMkGB+9kZNHWAbo8Vb2(7lp&8RLJICrb6?8{*t5F zcO=ubw+SDA7?HxDPZHsqk#TBXy>NfwHEL{rRdDcf5KMpR3g@4lkj_~?7u*Zh64f*d z@+8-iIOa46+F@Sg$<5p3V8?CY)RMKrL+jr{VvQvkU9C)yUtcdYn`s;GJpG5N>J4B$ z4m_qS-+v}Ibi0AWPN@gjxpbo3A_w*LVIUvZ2MnY}nH{w`5M0v;o_4mdbnF#6vClR- zd8{#f)aruQM>LSz-_Mbmmu?7E=cP5@^j(ykF{46Yoy5f{m#mjJq?3c)$nq+$Ag za%SmSVeZ@jI&jx+V)bq?QMxb9Ev{Khdo5yweQ%1$k|H0v;>>*GoIi#1yhjOaT>J;V zU0zBe7BE=7wiw};Kbbbj3*P4H!pfQ&=vI_W^Ve*H+4p5|!_Sv=|0`Mg>Afw~|FWX# zSr&M=bO$61sw8CtPr;OK)1>6S4PF^bMp*sRx4}Fa(r93+Lwjwb)6GCb$Jl$%RIU3O9L_J`81Yt zBZ@5zIt_n9EqLE83z$;q8;nlRghL+c%=hS6W;*c=bbq}KFaD^)XSa63)ZIhaW|sua zUF(aRyNm+KN&`0bU^hBy{Vq&iG=zC4%F|)XN7ACWZ8R+66^-JzgrK2=>AB-;p|gFY zAZJ-hf3!WMKYq`rF4x;g;-cjg$Jf&Us}x#nB9ca@a?utn5=a*1k7_xR0#F_nu1Z z*^tvXV^eR;E3`pZy=3O|C>7WKaL1=DPvOrm7p8Uh2pf=Wg8}30v9)F`7(|D$Dc9uK zYW*a9I6Z^jz1j~m$GygzPh%kG`zrJuuZzX5GEnMw31en9LuR5Y>P=FBPv3WA>DV|j z>}?Z-<UD)r(BJUXn%o41Y_8 ziC@TIt-0{S>NH)mEP_rbI7j-}hk&J*2Q1pUjP6Req6s&1g`PUCw0@b?FJ9p>(V6gC zh%D(#i>DazgSN)GLD-6^M3yY!oTFt|9)Nl|KfA?y7nJO?q8D6 zwQ$wk0N+&$mn~g6%W|-}jLc-;fQ7z(OXmLD?|)nV5zn&tYt4Vg|GxKs*>3f>?bd&b zZT=S9{w*Hxw|L;+;z56lEzJLY#ed?l_zU1aXZbgLmVd)%`8Rx)f5T__H++_V!)N(7e3pO1XZbgLR)521 z^%uT>+~vpqI{p8$pa1=S{(m)2^!okRG5OaXC;nwm)c+x{vpWf_nN-Er_H9I;HFId0 zqAIo;bmQZVyI_p31|v30z}7W`fmRiqnAe>hJY&HYB&tLDxH8&UU5LL^YUsGtci6yj zZupw7r|}I|=rw1U7_e_0J2&VEJV@%p{G2v(`oyT{iZkEqtDGk_X0D;QQ>wG`!WHPc<(ysah5*w%hmQ{EM8pR=rJZ zTsWNBztl3BNkLpw6KEox7ve+TPZaC4^G%K}&=u#MU&2q8bQfDAHi~ug?M)|N-NB#L zadFpBCDfbZC8mF`WG)s4>~4>AR63#0lb-}|G}y>)^i0O%#_D{!{{o!V^oC`$uVxSH z=3~CpbFt8*ndSV-q+Qn+Gx|B?fB^({PQcH->bt z#ksBb(MYEQ*Y%8tn$q$3GIJ7dn06E9`j+vvTb=l?t37xwm*Z;&h+;2|b12SM7PaOk zumw|1c+SF|tk!cs_x6wzZNJRpf&EW%p9eqLrL;EQpdQQmFFD0WO_$@3H#D>Oh#z#A z*Gl$7;U$w4$U>G=84De0!5ovFSW)myrhhCK4p>j1g{Z+jrToG{_htFSQwr>$ehPD% z;maTWIDn%=BKeZ@w(Ok7bNc?^9&ldv8Y2rvFrV36I_GAF$$ruF>FhS_RcnO%Jt|>$ z?JnqH(1%?Q`iybePK>F`v(IDV*}6fgY`R%DoT1o=QNxGvmz781rMoPyF|J@4x3&11 zcjs|xwJA5+AcK0dpR$B`IY>8Z;%w(A=yLN3+r9N3OV^a)&iDIqeS=V*wj_mXJb8`5 zHwxK>mHH-5^Q~Bg);g2?>ISjrw%?**>U2@T>VyfUM!fCFd=pG><0n;qi_Qs)#Z7%p zP0k&gY~nX=m`RRCca!q&@5SKZN%aylklhZaUP^?Dw=g0 zg-1%6xT7+TujTvrqfuErFZ(rye942{w)x^%Njq~qwOG9W!GoWe*+<+SpCevv{><(b z-xJrE1cA%`80vlLJ}o)g44dB*z_JgG@Ik1fwZ2)HR~v_ir!0oZgWVuG{V85OoPoO#WyL=5$_z(h=2EbZo)L^092}0C#K}<;yar*P=0ffe#5S*f(`@;q>3#Uw>8adk+9C1w(D~d< z{Ua}%p~&?+-t*FoPSi_WE$`H`n12)TP63Fle+5Fy6C*|X{H6_xY^Cp6M+;PzCt^qFP5g@Et zDD5|#C)HSUqi^oLfVaVVc zIv(6+FS7n{5_JM0R-g)@{Fl9>0b&XV*-aqG5unm)dFO@3Y8uNnr3&FWN4Nryfn8anr9apr=RJ z{OgA7py?4dcG3m*YNM2M{x}tEPo;@!TPEY(i7BF?r;|9<&RP^Jrt#XvH^p}uZLA`7 zm$-hs4o|gdIt@I7V{wsNIu2+Su-eE37oPE?%??FaT09WF zcU^|mwFzJ}F9UsM$*?Y6_u-xam3VGgD=wYZDdjK3L)p;|tR1zV<@`7amV=ML!Rlak zyeW*82c+V?kE8gxx|?7_N?1$jWt@0k0i!hC!KY*^8?ovoyEkw=yZ`83BH9Vu?};#63qfTWcW(CP&}!4 ziRCUo0nLtkSgNkHHXU~qMkNi0Oy8qyWY2dCR0oM znmB5VG`U@SN6a59V`3KZ&g9mWu43$GE0b;P8(-J|7v@iU|?I8BH`knN-_mUZAwS9{#ysy}m-=N$^%*=_^O4nj)}gUDDK>>~{n3wlhg3>*{cT8- zw2rV_ZzhSYbs+QnCKK_?Eo1$<5rX`WI5K?OA^J4yB*}EJ73MVzB4XZka%SaJA>`3K zI?ctMCOQq4l&~Z8nz;FGKoPwky3<+#-O~JMLcmP03z6KeDJPkB(bc zMVGoK3%9OuGJKI8{WBt%+8Jylqq9vRMrQyF>DE&ixHJ<2dU&w`LJDz=bzuh@<=8Vt z8+P#X9SD}@VP?<$;E1n2>KH$PloQ7zVt8bRD;E0}?l^&Q>+7dA%TV3Q&Qbh#l*hs_zo z-aReG;&&x%da^PWWXiGuPM5f0k4131UkjhJbRphpNT)w$5g5PQ7u7rCFm=#3P$+H( zML$YEPl`p8mEXYEAPt^|&jE9396zZTzhrI3Zr&*vd+Qu}?YM$vd&8l>eJ-943uT86 zgh=_p0kHd_3-gl}B)kT0!lEbLxy!60;87IIj$1`zk7*CUN2@>N$;@NzPDj|=IcBW% z<^|^1`#AGGc8TrQ_D8>kN$maGK4Q1q=Wu@PX^|>xiyswxh|8MZ@~0tMCVamF8#UyW zxZ6LJYcA3heM~d?Vaot<{-*C@#VtQ^v9y=ir$S4Vvw0&1407eSTy}^%h=JJE#XTUqLtRynK&6dh;iGa){hoO7hD=MihqDk+@k*IrFAnSRS zx_7=Km-4mf@y2wJNxujaUT%fo4==#(`ww86^{g87tM_qqHKwBWZ=Hzi)D@R!i=6q6fdYzmpA`+FM+qZh#JRdx>t*TUfoa7H^qz zni=w7{%c-uvCo;s{Lk7%t`a{1D_;H{S9EWx#m8k2Zg-vVvA(`Y#zsnuRu2QXotmbnt+$R=#ug=4z zLms0|N+DJ?mg0szO6+5FFZL%g1hX)Dg#1A(IiOxnd#ex(EtX-GR-;|1?(FuZhHUuAI> z$x&`$evKbg|BAn4kHccVQ5=0khF9?zab9;{-bs6i6?@0N~JGMSkFWj;KN z93_?|U0_iyuHw6aR{Z&a65ge4m3VFOeHM|GFRqnD8Xveqgz(+A|EsA}UA{vzQYiNkvga zF!9!S`{x~JpMBmwckFlHIron7{_0h$Yjju5Rb8vP<~P5|%&Ab|IUkv%_guf4>ASm| z36>nCtLJxwmt*sjnXfU(av9^mog>nEdu~nVDHX5R69|3v8r{lu{Wnhp zJ=MW_MepO7L&qtvy}*$95UfuPIU)cKLvp;k3O?EO6LLT53AV)HWtt(Vg@@?{3ZLUql-Dv?FD$Q;mlLBx2$>m zBz&_l3tJ0ofiun+dSuw4t)DM3F}nKru?i2JYFdU$uj=5mkNz-Ee<^#hzZSj!A%^O1 z8sIHYV&L=b!6?E=ov6Bg1Svnvh|_)(sQXxw4UP?G^Zl#AJ=-m42=XM~3qfj!OWCVai{PX>Y1q8uAefS~iJhHv368vY3YT5@4J&88 zh7Wk#1UmmzWD6gFC*A^EEwvu}bOwgKeQQaCMgfl0>ce{VjySWujMUve3X_{>l7*kI zpi#!(aF)6qmKZ}w;t4}CPuYmDZO?JDO$Roa(?X65xazj@`Q+2kMSRoj8}8e9QsA}s z6z#hkgV(QG1pM;vVsT$(+!HHzT!3t+`JledUEuY&Pw@Onc|6D#0mGF0z-I9&6zKH< zxe73PSZR)3RE9vb{zIgiRR})^%RtEuJAm)rYiL8s6J!*30jaC10B7jN3<+=dHtQ*ss4-zO!A;Sgh~m=)7~Aq13! z^y;k%OJWReePoJ02r)_<)p#z=3T)XZ$O@f|WOS5OSy}&bcK!ifHq|4O!SWo)OO=MX z58By7(Qg3J90i^0Cxf1`_rS(PS@c8j%$7UfgSXes1>A*w;8n*e;E}8e^KZ|Cn+|LT z2JKc*QFkhAo>K`&lOi_y(r?h#sSPWiyTC1x%FLIa)dDVm8;o~1W+oY*gJZK)pczvH zuFlK=%h#7M+O~DPU3(j$mH!tuZ`%-53#|lONBhIZeO{1vW(!y5W%_XDJ@UapYKUx?W z?-oVUpQTac<10Yt{Rre&o<^p2wV>O$0bE{~g_4iuqooC{P}g_?uE`gJ$%DOU>XB>E zZ>&6AY7+(=-kwD*XNB?P!y8e@iix;i>?^Xim%*EOXW%~j7wBP+9+|L1678)Op+0dA zWJ-%6k@-5Av>3Y5N3W-$02w~rs(lT=oU@2*8r_FIn+wT_@3!>)tlh*iwT(msOe9a+ z#puVA2e8D|You(N196aALB5!J!E2hWxF>QpSzx_P&~9HcDzz3r)xC^=8r;M-FGt`t z$3}41H<9o@E8=e7qa-jf8b9)ln_*u^Zz zZt~qz7fv))C5Cci@$=$G==7rNh`gJI%Z{%mCQl^sj^1=^VP1!R*1p6HmrwG|%+H1>P8yHpb~OVRkfcWtPiKW0oyy z(^K1nS;tXJnSsNZJflhFyh8&|81MYWY%lwbr&2P7y%4m3v6v#y1iI$(27KC?{=(0U z>w-JHy&4kC{Oga{kP(5NL|2gw6!Qi1JzSZNv{DCsxLr`y9T^#xfhMfyAN9JJK~-6jxa@=T;V)# zK|YTVU9d`JfK|R3E$GL5I8c=gM+@RePu*{as~QKPwP6&_>IkD`D{#QN$N`94}rG2UYW~knd)yWI3e7&Y>J@sQ)HG7c=3(xev%A6;&LUHi@hc z&cY90?;~A}7l`|lSdwr)h|D8KL^pRj{b}2Dq|98EA+JteQW#qE(i8xThrz8PqMtM)x%cmgOVM zSEgiVZ8cE2e2qDg$YYz@VnAx?8&EQt0dG7pShUK7(f@iBjPch1@6f8{7b((XAURYR$zGd< zv-`WiocvMbrn@CxJJ|~lSgT>s;zA0?%E8ND6v?XOUFdsRAUqF7quQhBKvgF`{YDGVGDUc4+ZZ68R)lnSI$)baW`wD@0RgadB#%;%=C zdN<;EZfZ7qmQss(?svDb6Nm^KaMXak;3olIet*uMncT(p2ZS;wf;E`ku~JC8=@Mh& zA&x@qDxhz5Cj2GS3C0zxBBd@n;BBmg^4j-+U*mnC{gzptBr>0%`vRe6S$Z+VOIuCUiMf3bAIYu+gFBA#AdD1-VBu$lL_ z@~jfp>**S+^A4;XVv}RtnW}6dR>;H3gVPi;iNOiVA~d92n2ERi@wf) zcZ(K4%R#|?K3#yyBf==sA^@BT(gtm>f5Pj>U%_>VLUmIqEb?}NfZv>s&aO>>my(}> zr;!iY1q(#bj=*^I9Gr$img|r#!y(?8d8nkj3yilfMC12HVw>CR;H!isWL8fSo+$9- zNbD}c-41t1a?oOU?yEl;F`J9Ui;M6l?KyZ%+Yh|fp^&Ie?!kHGQec5av@gn$MEXN{n#g_0q=eH5x(h(17rGJ ziNlsow03PIQJ-yrAGvm8dAm|l_xLe7p&>-i99aOvy$e`}-F%SY5CSz{Ckplt@O(&J1xY3T*1xo)$7E2)AR%@uHRUjBjs7QjF<5InK zA!It@aW2&$$K!S2v%`ls-d_=`u42dq7i{Em> zq&=sS%wOA$(guX+ZGBhvVaIY_NpL1JGerb^`g)Dsc-5L+e{2&IVb{xZ`#`~&Es~66 z-B-Qlh2f05pAIPNPhqz`jbgX`SOcyYKVrwSdF-?;k1+M~l154@{Gbv%{*)#|I2($vCDeTmgs=33hVH?6(+YK=eqedaaP z(iKHFJG0PDybf>pWr!lO^>L2*XtZc^H0n$XfDQF05HHIU+D&O-yd1SzS(TY^)7vn9JyMHYgcr!}CmkvFr=!pT7U$<`OkPhjC%YU6iJx_ zr)^5WwX2`4ePqe*lpkch_q+z;<9ML(@eNSqoe!>cer9Y$9pLP|%bq3wD?mHu4(ojUwm|c>1HJUW0@y3zNQyrVYP8xx_fP4duR0mc zw114`)~UnhG#TQ|SYZ1JXV63WR9qL}N35Mrz`9&(;u$>+AA5HhY5T}xsZ5Hs+D;Lh zqY`-by;gkTY8E=tc@jqj{ub=FYvH5S(&R>kGg&!b4Zgd!5MOn8gCD-{0FQfT67y2Q zp8v%?__p^otl8WN{cNJZm^Ef(%#OQg&yWw1Tm9wZm9MFK+s zf9`W$2+V#i54S(R34}tQfd1&)z~QzCTV(4AM*@2Vnur|GecKbbXXrtzCnuq*xL}`^ ztb$%epTL@RuR%@YC=io#3MTVTz{M_W!4e+`>UPVc<+K9Yxy*tpWrFwz!$`2I%Ntcb zjDeb;Z-UsP1FXq@B{W?!2}Q443Dw;Wq4c_LSmyQ~cAXG{S8P&I*yvWIb!ms4_)oO@)6=}S$LEjEa* zJUfCff7^p{ENbxc&r0Mg&xQCYYQRImTkx_-VRE4UD|mL^itNsd$4~d}!+z82@V8Sv z@Q_m+uy?d4Eg3J7Wttxm4$&8w_uRyM=QDz}Qxl397$oxR!db7i3s{pMaqOPKMd0<_ zdUi$Q9$;jZ1)4WFGGKijfN3?rRXYi2-X9MpRJwz}O{?H_g_EpwV>W19*TeQ@ykz}n zD6wTW(a?JTVQ{_L1Sp?QWgT~JferG-z)|QrSl8Q%G((@Vs>dF~rt#jeprafJGG4Nm ztOf6qeXgiu?kd2zb-;T!-+*mVAAwAy2H4TJ4Z&@$NaWXOxbIUewk^s-!Lf4a5wycg ze|Zw--Dt=?EW@VtWAK-0L1-r3kFMlZqMwJY$zYB>Vz*4g!^Jn@SBv*(yz3FTPvknP z*zp~Iy)%QH?CS=zOpUQsa07mkk^~fFw8`xqtMS7%?)b*eDqO>V3NM8^fFCO-kcCmT zXp8C$a>z*>AH1H9&+o}5Jzvw2U+_y3SJT9-(Bm_TUq15=%ET}M6OS;_+NapTWmRnc zlbw3yAI~$x1@Bl9yLz^le~6v8Vn5@eo4`Kft}u_x!kJyMJob(o%lbUr!y8eRgg-uA zVYh4evTk#f7_Ei?)_s9DtMq6+`+Lg=s1S3BckJ9H)^+GInDA_fEj=2<92VNmew04~ zo_U0^lM?gU^_!)@+AmrFn|m^ME(s(5{RY@^n=Z)P>xz88??KfWcVK+`6m$q2#Oflq z;IetM(Sb8+$ah5{oRMA(+pN-I?!lc%x^OZ2sCpeH7>S_g_X6<5K6{w|`xe~vQ4ssaE`C`zW*|*NEikzGc9f2p$^t;K}AYGSLTQ*-FW~j6}>kW?-I(URuH& zCbCb0ouc=fiT`?vai4ICQQfJ|${mtoJr>^KRYy9rM$@*iZO$iobD98nn;;7Ifn!XV z-W=X&SHv#wXk#Z2$i*rcB8Ap7VP6X6ThHBdx!Ei?&hMsM>@v$HgB!PUy2 z!LI&Hc=P9Hpcrr)PFeQ@UQnM8|e5baWpcg0gC2Jpx#g&@I~nkGa;t{6%CJvr+Fjjd&Pcee9Rk# z>pw#chjd`Bh&5hRd5yW#nW`6C-pHf<#%%v~1@?hPDei5x^y?QXV?x*H@U|}cR=R*vq*HG&W4+#s*p z1J-$ef~RZtBj2zNxNuoGN(|f&AFbMh#(Td7eW~qm@XI;DK1d-OcFBRU8Qdw*@V){8 z#mAY(sVhN!ixAj-Y%#dv+r(_`cjE0h@`fj6Dh2b9C>z#(6*zu30-rZD0*mElfDK4z zd0r8q>m37bpVenehx6DO_fCU0sSvP&iv?SsM}TQX8H}ic7_^H@5zI%C;MO};U|7=x zl;v!p_fLCZC@cqGk2wZbojm|Fm*=p(hdtqkFdJB8t_ptD++$C=6vHXn;$adURD1AN)%vpVm#Z$_l`&2_TszV;$I%JI4V+UcNS`y58o zQo&uc9w$z{jm{p=#>QzD2<5H8-|D;Ynk|I1*>!*oEo#_NC=Z9^rGTyP#K`6~lkqm; z892rx2dAgsfLp6A!Hi^4vf1qvGJG_FJiYz~6}!gb(~pmmv)18grCS3z;8?=z6~qO- zPq@MeWlFQ>zQpmmrRRf1vrmAdCPR7!(MQ=Sodv+GF&vy_r9kFqQPxT6IhgythWC2K zSoY0JKC`q_nE4Xz$D6w+7M29%GbOPsP>b8o_`b9OBPjvQP$2?0g<4QL+RHS4s0DjQ zyF-!EG$8l=EmPKD2PVk$!UbBz%zJHr;5A;FU9Tg`j{1RK*sRB-a9bBm8 z0co@%bQvcE<&qs(ql#QXhC^A{ZdwYC4ekaz)8k;*nWqqLpA5f_uY~Wn?uS?I9Do7O zHh|Oq_3-eP$p~FM06MC6gWVIo(5XmM^zuRyROlRwJv|!0)sj=_m2oOOC&=xE{7r#8 z@Iz@KS5PJtL3%o!$Z%o=Qr>s~?GEvR8!gMw&#qb=zggfFAjs+({7Q(_?y13-)kKK4 zt2jM7`#pTJrkm*OIEWjkKEt)=Q?S!33o?7GJe4RMLsq**lgQW`c-)O6L{nZBpJ-i3 zoaK1L?WY^@Dl&)WUy^aG!Z@O=C&-zs<4hD{PT*R&)&!Gs;P&Y*1Q7e zCHI0JQwo?^VH73v0pwcR!RLAt@Y#Y;ka5-rZA?4~djcKl|l&^ zQyqcw!wliTX9H*^;FFg-okN<9!Z>(bAe=dRG~vx~z$Y5G| z_fN$8+trAbnJ9GE^&+a$r*N9K_V&NTq&6vAaL-7wWw8`jq;L-~wN>^AKdSn_5x%n)z| zCFTb~>dHrOp=K{!f8Y)@w|)cti?xvX3l?<=@+C)XybITs-bD#6$HA0|m0;TR!|1AL zHJTrO8U~Eh!(4h7@V(W5L{6T7!L}l>v}py8YWCnh}GzwlQO<==oKEQT!ai~8h3D_luf`v_;(0jZHvR_{S zjdLZC!|&hl-f>}6BzqgIki_3@g51aiQul$m*A!AacHDpj3^d-h9hf# zlG<9Tl;3DQKsUH|me3mK-cocIe?vjBYzEvPDXRRSh9>$A`SK(j9F}OTG4)YTQ z@7W2-p!2&WiJSNYg&u~)LfQu{RY=Z-B z1m^89f`X7r=sm`pEp@vHeV3R+?YaiATOtjtf3+8qD-vk=%TX}Ypc%T&m=719oer5* z8$sSeVU!jlfu_iw2Zl)pfskzg(p;m8z`|nasqBPF-y1L?;wqZOZ-i-2hrr0KxuAMa z5SqXIGqN6c1tuOA@JJ0ak@L}+NbaC7JUFczjY^5Y^wb0R#^MMmQ|rf$1zxyt=@=q0 zq(G0H=!Fl+09m%B3{QL=kC%%az^8qbNM5QAeWOr^^=`zF*{_b`N2dW9ANU%Dn@l7| zvXh9E>T0rY$}AW=QitQ>Y{^l**>HYP5Ha0(1HUl7fM?a-#I8Icw9%pl*giW#Ds)EU zGv_i%nolggnWaX;9IA+1gAT4!mZFK@Ca|(1w;8e5;q231KOj=In_azQ0tibP1*ZF%vma?lDe{gD>TE3jgp3u3@??Q+-)Cxcj7Ax+jWsseQDnu6H( z$Jtx$C)thBVK94glwd7W459~hQLMZWSnu}~UY}Y9T#*hC>#}6q69xIHKS-myR2h7k zFNvz8vOsD_G-zx>;B`a3~NkBkoTE2Fs*kP^4jQ*#V03Xo4zoh zBwC8rO&pJBHkpB);kH=mdNP_NegPF9R>a!bYv7rZGImSA8vNn%bY!34hm$Slqp5Az z(HIH1KJa}j7*Q54oToEXq1~Mh~ZWz z(sM&lyjTtX(QpbT9!tQJJv`A&p(F6p5oahuN^n5nT72Z8ESZw=0PnuLo0J3>l1A+F4k1XVPalc9KQ$?;tH;$H; znR9PVb-CAJ`?!greN^I{G57R~5kJ{-5>*rRF3_T zTlJB|*>4Cpj8`BpQy$`aJykU3i!FTF`;2@wnTg|$-6vb{Exf6toZPr5LhX+R;HorP z`j5J@|5zvbM;H6Y2k}q&U)Li$Nr?R4TB%*K|5h^fk9uU^e|!4>^Ur_u$BX|G2Kt8l zQ3(FWxAy((^ibnJuNU;!X{V8YUT@D|r}KsXhR%O{*Z=*${m;gg^j}^0Gmid!`ClJb zx0U~foTd1`Md`nLT>T>+f3M&CgTtTWzutdEjlcCjc#Ep4x+v)Nu0Rz4Ek+-G&lac z4X(dj#DT0D>SUbD-TG!qC!Mq5J5;vN>_kzz`o%$dXWlkixnYnSad+SkRV~0fpB11t zlgpsVd^sYMFbuCNsUiEV$KftFMI_~(!>T3h!_h;cMEKZcfj-d>$!MP?-)E@fp&J@_ z>y#Aasws?r>ed05&AH_B89Q3hoJ2cMA$$C;k})7bpX zZ04iHFnfCVD%-Ixn_YV9CVL}`VY041W}VJg!_|p?tbt1pD`q;Gy}4E#PI&MJl&&uXWx|g^T-Q0ErY#TUPF%pQs!MV0XH6tqf0?|> zDnqxwEkQn!909EV;yCH_7tvU$dtu3OCoybI;8 zeeFj5pMK)!SQK!_63$Vh;Vs-U<;mQQeR=%juY~oj0!>K8snz&(e;lf{yFyaErLna9 z7xcg(1Lc%{Mt0s?LC|Syaw+)@S-&uX=>D?CVkuEH`HMhzt~ZKYgX!2l^fey)qX1e@ z+(@~(J=C#Bjc&Q2L6hG<Ty_q}s?|*yJ zwuF9uXIl~1*LIPb90=sP^DMapk9_`~6(ag`Z)T#ny<5Pi9VfvDEDz0UqoGvQ9C$Zd z2j)Lt2R$w>VU~*?hO$cy@yBV7(BuAGc%$VY%&ym)(3}m9`u_>t8X*c%1ZjObrOW>IDJo0_+eKcL5B}(0^k8Z8{ z1f`P!Sh#f}kyM&VoXg$FWA7~FSht40l9eRJi)AqTV+LLkFOJ8>Z-RmTcGO)il~kxj zl9C*OZcQ(lQ;CqHzotmj*)MVl+96GMW)C2@<>$C6JcTQmyp`X+-jx=veb0{*OXb|c zk5l&vi?}>{!dY5m@)alk=C?}K;gGkp@YyLcNO@%uar<@;+1_(OmF5f3Ji{fZ>#7MT z_MyZ-C5Ft4T}^IVyhbSx{b)#-II;O1f*O#kkN9WYrYQ6XqA#S;!_HZ1i4%{M^3_H-OjUz>!yNx&w|+DBO<_YK$~e_dk`(SfYI%D&(Ta) z0nQEBQw_=AR0Cc+m;y2moB*??%?Dmg2H0CS!izs31Y@1IqAMOFVD`{)AX#-8 zF00Li5AIdKex4aD{e2Yf-`Bz%T4#V(D1_rJuD_7<;45^(eF7osq1Y(z9{%>;3^#^f z!=GN>hlc#Xz7=Tz|JSsU;| zKT-TZryk0Nt|I>SJJ7kJ-|)_|5jgx(44LffXWRF^#GWENQW&8|ra0!JGI?!!E;|F; z99PBPK1yJFMKK&^X9)Fviqkzptz^O1b)+>=nZ&Ph<(^;fA?9n%=&ks4vYndK;dKJP zA;nE$a*nnR=9``$t!b@3kGT8!6?3h#}j_OqXi18*T?Io z>q8Zb8DPjjx_^- zR!l$^{!hS$s3DMfLYImK??wYR$B`4l2asZ$0cV=)k0s9ww2NAb_y>`|S1Z1v;JT@t z9X8~g)=uYFd&|*CtqOj+NF=8XlBjIoOm4#?dCns_jPEki6?Af2nafH@v!qrX7ypJj-TsNrMIaGY+Eq_no$pZ^M4L@y#`4&#xi^>vTMe@UaVM zL90h5V9$w7pm@P7;;K8ADwu_n!nR0ka4CpJ1^BH>Mt@N0~ zJkDPum8zzsQ}fhet}fyMt(@1$O|(p>FT$!hN!@2yO4EQJJs82wm>9@+9_K|ZFMr^t zK03*DU#O)sGJH6@VH0l6%544%Q6c?bt9KD~rD@pfU@4mNY!``?nS%vT;TLbakoQ7} zL30rplK{yAPKzE1u_A+uH((cgJ(_kZkoZrULcS(+;FTR(M00aD9Hljf@=SP~jJE@w zW3!Cz870J@V)l|QD@)@pKgg!sy=1O9I|Wrn=<|g(dUL&nd#9CA$dIEf_ zjUm^jy&;8DPLpGT_}k@AvZ;IYN+K$H6Q>LG1_ASH@W{;%P^~wE9^MyEugi+kyr6Q@ zeOQ*C(RYlREci`pf}H6$gReBaVg$85G2o9XF62ztNAs6lSxFb~{>DGvb)D1D6ys8b zk8>xD7ITpb<^1{pasBsOWbwMrMQHbiv2f6=5YJb1Md@}PP^!EdI@Irg^JkxCJvZ3l zKIbNUw_!c*YnMhh?ET2-ygj&PMlv#wy@BlZ>_=POMBtFm7UGis4L6tG!9!!G;;P%f zsg=_)l4ov9Le(wENqY|hOq!75FLUm?ZXjK9dxaMgD^7`96t?R9F_p*CiV;7f!vAkE-jLz zbQwMOV5$FxPAqlb8E*@jjvtCz;#GZfpu)B>R3UhfxX+kP&Ic)zw|0VOR8fmA8skC5 z(%T4V@ucyz8o1p#!M$7}&zZ{D^G|=6Pn+l6=WF|~;Ou>t)3whvIL#Pg&U;!cf35p# z{%4gDEcR3jUuMUmv5#E{=^I8)7Y?ILja?{KHyNdQt^|y^G^x9KiX>dtA^WrMp-+lJ zbiA7uQI9!=z3q2n|3w0SugE-DzG4D>KXngX@xGqSxmQ7U1Ql~hcq#pPQiv;iGoCIe z9ilAowEn&g0sogr1%NB!W)KV%{m&HZ(GIHL{I2!oFUjXlm(JGH@>f zkii&u*|7vXp1l=HiT-46EtMr#ei!0B4KuKdu$W-Y@|rAKHwLTod8E4R7itY3Pg?Jp zp$w-4vf}u4l6db5_b_Y{jd~Qy_Z~P))3?kbJrmsNinVK~*N_r_-N8`)*%%@Gz{w1U zC9Z}QZJDHO_c~g6A1_CxNAz{yz`A14qsr|<+>e=r|<2#C})OZ&CK5x z=1KR?|H4-ZuH>Yrwo!lWXwKNfhEu*-$k*5_s(++)7hZc&47<_rRW&mC@KHoN)#(C(Mma2MJhrqMha0RFaNmFpob^PC zPTW^Qx{D}Lmb;0ki>=|{;txd6e>|N|GRV9|n$)>B6=vQ^;-(uZaAA@R-+7+{ooQXp z7ZZ2j)E;?K%|~(^uyZ9&Bhci199uk1BOzLM@qs}G|Ke_vlm`d!#KZToaDy)X@~jXa5$MTJ)YXt}74lqd zjVY~}yO6F}V#7`8pF>S-_j1Wk7+ODVCnsarfl@*aaG2LZ{oZtO%C0l0b?_ek+gM3X zCsB>2jMUH%$FgZvA>_wh+{?EY=tC4WwxOgQ`=Gr}4^Azcj$Tddf)|?GVYRk6Qa{ql z+;UrjHF7(#PRC(<%fky^7q~xe2LqdM=#@KZFN^BXGvwqJ#>zz&ynI!XLRr=_?uUE(r zmrBdMj?ml(2K*!HDSU&bee|OC2W%N7MH=tQQN!*IT(oZ~`Q2ZL#~ySb*|konM*1R2 zd8fzSn%_;t7=p=Qd%i)w5rp>IJP~{$W3Q5&a_XYV;;m&-?VUS@#zYAdLWV8T>PCIv2G^= z7ctc|TEQK={)B!o-bRc3o*RaX#ToWUL*ogx(j8MGA!#_+`jA4m|<<#O{sLUHSKcT*KFiS6 z1sNZW&NkA|%Ey~(NT8NhcAC;ffl`&xsoc~ z&*a7^dU3(^gY;v*l98j_CqpW2ZhTlN-ROI+3|=j|i1zNHkeiEs39!wq_#QzQ01bLd6?E^f|P#P<(bO%<0Zb0zNpzcRRm3pu!-3s1ae zC}SLDNW)}|TYDmmwjOWBo!f`#@8c3&aHupfwV6s8vtdqzw}J0q?M?3n3{nv@CI0cp z)m*yjN-pK8gwf8ZCPUK|tnu~e45N)&q4?FS6?9M73YvEIG>)Bile}0nkGtD@o;!K$ z8?mstODD;{;qG58swl-@G*Xh(Xa9>}{r@lXpCI6QL5E&^BFtZ1a+@3XVj1nf70ih)c*|F6 zl-1AdPT~^$>iBY6HTr?Z1_snHK%aMA)2O#vM&S5rZfv4eY9tfNa6=cG>9coxO=~k^ z%x(n@QJ|Jh*UB6--FULttYx!3_t2@2mbtr{3P~87jS*4i+ib4k+$4NVZ#FD86At$^ joEs!(xbOaP)8mJ_%nBN__0{!f8oVuhWM<`m)#CpGv|%oO literal 0 HcmV?d00001 diff --git a/capstone_project/500_epochs_40_lookback_pca_unshuffled.weights.best.hdf5 b/capstone_project/500_epochs_40_lookback_pca_unshuffled.weights.best.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..cd0bff8ea88bbce072076abde9dab00b0e304a20 GIT binary patch literal 140976 zcmeFZ2UrzNvOi1?A_fpaF#v*sVOHvfPx4{1Vune5)3Fx6eTDoKm^4EMnu5? zXS%?MDCR7Rm~+G&zk|U0?wfYMd+*-6`~25=o-;k&UENb%-BsOP{X4VBx&J`rR-Ic( zG+qh{5;79)emu6^zBgaRJ*9pmwZvQUCpJGwHirwF!_7_P5|R=M;-7?sMss?*=K8gy zn-Vmd3yyRfFhD{~*;0Q?*j!9PLcf{*mxP}W|49;X9^g26If$iU#hXut5kNo%BS8L!R5s-^fJ!uHMM_4nhtwS==+R~qYS zBhf)T#;5s(`$Txp@C%O!3=I*dcM`v#QIi^fP47|=KeaqdNXRxunv#Cxx0Y~du211d zeZD@Erul_T{)hGaP~7Hv8b$FdU&=q~X_CjJ(2yyC{*ABvM|>r<|CO&s6>ZVius4mR zB_slx0x{2juGb&rej)hr@Q?I5%&3XJr9YcX{|x>^B=CE^c5ZHWe#1O;-on`lY)FAB7R6t$6iav-EVr7Ur1!2 zPmqq0mQIsB5~q*-J>3xZkwbq&F-NCS_>EOGiMBB_GTbLH#K$+NF*!0k%1@l+>k~OC zz&kJ`Ogt7M0(`<6v&M!*1qB&tS(zDWS(uF%6HShs{Ubw1%(qXZrA1?1;eL@(;UV4; zKlq#E7x8PAEjf`sk&U%Y@d=7(e3O5uccXEh=@UM=k+>x}qLFM$RM6ifMTLZi2K{Y9 zU~pKFU$9sVK9S;CLQE;y&-z{!ntQQ{%*8|d>lZ4ggOA>#QkQ2Y+D=o{xj@tb}x^HDzGfj%LV{M;vr zNkaS^Yx<>w=IBI-QybfFZqmqL<9s5H=uGhm@%EYVgLZOYL}YlNZ&Y)e8XGhvG(5Pm zng~C?$ztlpeu#+?$HVhsW&i4M(+~!Ub z_kmcj;s!@Hi|{uB{IlF2FZ{ENW-BSK$LvQh{@M?}$!QeD?+3>}Qpg`l^d}10qCG$L z>Ze}))T{rxURgF;sefm^GXFVW{j$3GIbVqv8GknM{5sM6S?>SFeAT~cL-5-<{+Bi6 zFWZH`(ypepo|%coe`hYV`m0+1xW;T*HnvQY|3`~VE3r}e?Hcmu8uPb1lAmkLe}T?6 zZr1-wW1BYef1z0|o2NgH>u|rIsK!G7%{`HuPsrrZV2@w7GGhBBcA<$^&~tQx14Cwr zcP92)#^TkqwfG&uKC_w<&YtkE`fPlR*bmd}-jet$zs(Onw3x0XZ1MNBxZk=oJA~%w{OU>n8&&wNlgDwg z&yQ{Y-w*^fIvm7mVP1IZEh*Tyb7wX>$wPK2|nnmW^d6`%Uth-BhbX8U7L9~2tV=n2sY z_7nRmBBn?Ag!@hQ_6rXW4R5py!G2<=#iT}pv10xGVSR$dMySzE6yek8r)fSg@NV{a zG;jGED{VPS5SRVo*=X{BHQo2O{@d8k=bsYzDS@97_$h&(68I^BpAz^ffu9oiDS@97 z`1g^3`!Lu3lH$|-W(bjlZS#h)1qbkZd_)V5?@BWssD)1AZBv`H-v9fw?f;UKUvXFe zb39nnUc3=G_Qy+7yrXZFc}qXE;5_ylH_=u$7x_oHD`zo=rtxa&_omp-`+tfAevi9q z8EqQPc)S)lwBVUq^t=V1)sp{T4V&zZyo7CY!IyPS4=wd;+-!>5-f9XRngWU9M@K3??M^hs%}zEG{QnGE@M~9o$9HRqh0XXiR^0l= zd?~4>3LCL}jhD3K6)`&S$JHo?UoMqqOW0WE?ZM7tenqUC32i&{61 z&BjaX$Ni7DCcEB<3U9g=Hjmqua=#zPf2`qWN}~jtyGf3d`{&kEcm3&2nL zIl#@H3ch+(5b|Av9M*=5Hp^`1c6z*L@k&DKe%qAH+&#$pK_7YIZdvhCsI1VYvTAQk{-BEw_dC*I)giE%-D7DBPO@2p+ta>5j`;9MUow2y3;6~w z=JIGXZPm6XT(byF9-m;9>m3F0!SeKY@?j_m9z#+pJgYG5gI^vB;cK}HUcRYG-$q@9 z6=}-w-n|{hjPXFWsWa`muZ|hky5#$)2-a^A*L8mhGddRoXM}?}nFsF7HGc}~o;b_C zDoT;=tq5>3ltI}%H~h3a1twhAB#atP`&+%`dT-4E6@?P0EDWMn33*WB>x*+nEno+} zIl?|ULtK1x3G+GJg#hArL*JD_Ezv zd=MPxDBkT7jDtKL^^>7zzPH(OgBuWTvJ04SG7ea|mCoz#g()6p7&37> z?_#Ne)?2gTWsD>~mDa<`X^H%T3+q_&uq||Yd@HQ>8)BV>6r%aa_rUE<|f(@Qv(e zIC8;`65X;F(U8v>s>~G!|5AGw}VnkL>*^Ej**1iX$D>QMq4l9Iac$ zI$ITiQJ2Rse!eW|n0@a?*v49(YZs&UR+0TT9R>RGL+oyk))Y(|PTHW1RU)RWuBfCFR&W z{>ZHUIM%Y3=?;iy-!t~Gl+y$0dv-nC81#v)j_rim5}!aY;UnBGABE4n<*}|t3GS^h zqIciU3F`V7W95DoTypUMJW1BzzANX@Y`;C_UcGabbOu8iasi{$L5phV^SI1 zwE7ORTZYs0t;VFg>@0hk$Fcj><)S>DPUw`kjP+S!j@>#J;K$=g#$2Z_?mMn^1Eg;FvZA`6|0o!Y=P7=pE(&0N7z$vODe)y2bzAprlJm`U+H%Z#- zo9NPb#bxCDA_ne%azjDui;&RfBy3;hN#j!sp_&du$O9=#&9x!Vt(RHSwnWI!;F(cu zA9$ru#5uK%VA4*V>0!UkY~-*+wqDW_FDqfzk6W_EdHQF59RDAYDN?)Elpsn9S!K_?k?18=U|$7 zQj#XBnPAW@OH|v?heFn!WA$(K@Ux=}eL33}kNbUNW4?OfyAvMNU@nBj2_0~JrY1-) z4Z^Qci`l&|)gV21J&b?kMM;;xvUl1O2p-##c~qw8kZUT_&y~QcRS}%s?J&+SI-dnU zUBixhl;W5V-n7+68ROz^gVvg9XftyGcB{NA%1SCi3sVhtr1&(e8oC@e`?_N0s~hm@ z#9s8*>49rCFTlX`-Hhu!0nS;dpps!Xv?wdVE{~^E)V@Sq>7t5bKOAPsAFc6R*GF*C zG!0TFccy4p0mgJ#M&C|Mr=$Us=w#V$sJv=}sdI0zbhaD@KOIlwqddUi^ggzZI|cT= z22$3!o^aRYJxs3diqU6E1k1-*(GfQ-x<5>tOB(73$L)vWsN2faL8Oey`#oUq#%yli z*9csx^NK68y#;-@Fjh5J8yb9%vxQd`DX^6z^?D&e8OwBNcPCk5mb>BV7dbj(oq`{& zM!^=n?Vx#ZDp0HneNue^JKQ~S%=7`+)$_ICTG6ZeIW#-%9P6(yho7%zaJoI6@mXkRvT2CN1NVp0;FY7<-R%#VOrSK?9X-SP zO21}_YO&Pi-ZC83Y8faT8H&^Hs8ed;Bi64#j_Okk(D(aH@=)l6b{96lqW9A|dnpTC zmNOTphHKI*t6*$9WeIw9y8!sa6#MW&{N<(NQPo>O76XKAN?)dbRHp>wHI^ z3)mx1*)ko;{JAx6UmHu$8fu}{=&|f|ba(1+B}dC9hLJ(=H>RdHlFG_7(a?M!Jo)sF zx%Eip`@{v(_~0ZOw5FYC;mTAjIp#}`azogNqLr-m^bB(LIDtK~jM00N7RK7HV@k`u zgHJ*{s;ymy3nRjD?oEHTb?!tQeZq#?zkCm`r52!*nHCN*e*_lqL)qn&LY9d7}!8~H!udx@SH_^HeDO|_I zU7`-|ft0GBMdxOAh7{wcFn;|)$Ps*`<(==taqRtKa^>)68f zcbP+d0v=c*4~mjIU|9Q}u<@}J7rw2A?bS78(^cj%tAR(DU*RdyS2r14`aKXFu7^{< z01I%?n8Wt3aG^~B8=-VYEE$%Zfcb;kVcKvJ#J+n)?}|gn&c28#y5uu=g=kDE2;v;7 z#!*G(0*oH5i_tec@qMTg=4F0_8~e87_q#8k_ujq~)9NS=A9s*NjNtI=m;&57XB18v z-yg#26v)R~h!>~v+?5MAAj9_|?(gi0bms+sGDwBYJqM6Vj-=4RLk-l&j~AYM-xnMo zN@3L3HgLQ8CTlJBXkFjlq$$^ihE-2v#otb_`Ihfk z)ka^E>8wp9AderHY=(_(j(~ec0k>|AES?zCAD0YzBnpwXpl|Doc{!OS+&3FJ*cG`R z3!ip`&g~9xLzCyD(ReAk{;UGmx|MRR-EA#~-u9a;B{HiG8@vehwN;L9R_!SJG9sgHh%d zIP}gD8z7oJ$!Bl7w}&qJ2>YydCC*~F#y z;A7t-a3EYCXIxo8hpT(AsGIhv;*~|+-747WJH6O|uG;YZRt_Cps7N9^Yjh9qLDIz| zF}oq1-E1X^Z5Ds$x~}4=;aoBu-Bk+ba4$DM+m7YFO945(ne6QCA-KR|F{E}3!A)Dc z;pdq`Dm&ASOrLLsJNNptfC6K@dpr&5B9bWRcxidwdqrHhN{eoF+X#V!s$ob(0@_|H zXGz0}oiS)lBDXLUgfFAgX^wEM{v({A4H#G_!1w37;k?A|a~9kOt?lDzNA)ef_p^TN{bd0Kp6(B$Ethg~G4bS)o(bJ1hVU1aLdm4J zHx_RH4*LVM*p=rS;K};~R5;HAM!czGt=%>8QlHx_?oJ}PO!HxHp7kV!tru9j?qs-A zAH?(@7BKY}#`OH*0$gFKLg&l#pzq>UurIScO}t}5dk&XDdkZb5(tw8BJoUzNZ%WSaCO*BgKWNVgwhum?mxs|;+>TTT{-YOWPoc~aI7*j~^UY}&j z?-tY4^jNg8y(k#FHxjpKx#1#Ho~h3B_0wtk~a?p2{!A`X&14oL~;OmK)F{ zJtNvaIs}GVTp{-f*V)H@rzn5SNbG#GnsTe{(N^ON^B-XZE}C<3=7b3t)O!_6yl#MJ zUWzDPXBh_M#NiQ1RkX^jVg9q*VC~**Y^Tv!3dwr`t;Az*&d~)k}xSvR~W?52Z zS7S(@S_t3Xts&*b8SLeqX>9vzPb}2XqeZ4K;BDD6RuN%}hm7K=_kphXbzCeM%o|2J z1EaC7M{5{ZbC3!f^0E63J1`pTg(vuA{Pwm2)efz}P31~ZUU?Ws;29P$$Qk`LI%9TD zH3m9oGOy1ZJzKk3l;ixGQ`&EW3WcG(jYmE6b#F~mzDBT78%tnycM|(cjxyOTJ8_gQ z&zE#Eqz{2L-1!-u@#Lr7qDsjvuq(5Ig_w0i{oZ@na5+7ExVty;AH{p2bM@eo_6-{5 zrn0r#;wHR^Mt{x+FX2Zh?~(=6?PDSNTpp9&CPmgG zyTi!{AzE4+lCH-9JQzBK&L42c{4^tan)00Os1U-7sU0a(Go6kV$CJ8dH!OL*2nQ{l z2F4YGvCD*6n7LsHb_kS5>G*g&bis-uZw?flS=$Y#qcd6@&Bh0Z67Z$+emE?1g1L22 zWTo9X%&F&D%Ddf|>D>cOox4zM|0KGqJP0fO&*0MSkt{8y2qbFNXq##U(;k|En%?c$ zT%#P;b9Dnwe7{~GzjAOzjhO*X%Y28$;`woVzm+tq`y%0h%Zr%7G9%&TdKG3dK@!#T z-{Y=#@~mX}G~vb>x}>pJh`!g9Y3cm$@GdnGyjO{6|CFP2^i?&TUL?Rbx3*LC@wVuA zX#_oem&dB4cB0_XUhFX99F(0kqaIg0DssBHq6<^3_||tO4SKW*uX^S(yL2g*IPd{( zozR{YPLKu1!f%{~`Ddmw;}LTiA|#0rCG6_6j;0-5!@6;wG5qig(Ez0)R;NpJq}>~q zqOA*FJ_{&*_bsq1oQtyG!kIr9ohB1?KIm5jQP$X~I!2>m=&nT1xlAZtrkq=%05Vtx`xm$t!s>iZxvdIo>?Rspx= z4;|cbmXm#NL>D}?C=e%5(!N*RJiFW6oXRWOWa zx?*SFcI^1h!w}p*mJW_K#sFnSx->?Lt=_3YT0=JCbJ?DFvtb!+z1bD3$H<_2)C*WX zO^&qe3$Q`529mW7^HO6yvD?XmY@JCp_+4EOOH8uGx}3u@Q-S(d8S&2-_lCqfH{j5C zA>7!mOFO$RqxwR9dc0}~nSF|4ig`{@5xs?2$#AH@w1`a%xC^U?2B6ucr~JwO@i>;! zndspY0dW>8|7OYRqyhvan~qrgChEss3rukCE-J7fA@)C1>S)S$GH9dOH)xhNyHH}j6X<5k`a z#+v0DQ8Z%)%Xj_A^k3)W>V9Lv&3FY)SS3$w^UKh3y*3TgUWu97iKuSB4EB9;!aEUd zsA{t`jTo~OW9(~KY|=U`9BhSMBjmY>$?;^+Q*3YB+-4)HoY@=f$>ip20jmynoKaGy z!1P5&n(goozFwYN^D324)8 z8RD3>LX7}w^ES`c09zL9yi&QgvnsPM^7kgMEq*6DR?2$p1uszf|{eJ zF$|OA;b3`^z^bJNgc9A(abhDkjv; zU@do0U`**IfJzx^{HxWq@Hsh;Gqi7o(n;MxJ7yy}O?b*K2Pm^aYm`Xa-xi|gUV+ey zT2Pl|2&*Q0;m{O48oBBw_DuT5riY|~=EAA?c8V7Es?Ntn*L~2dycYe>siDJ3Tad1h zC79cnmRm1G=PnCzz?M$Jf8qIhGveU~%;1;fq<{VS`tR`uO($Y4IEWUUK}+~Qz!x-r z{!4s0v>bi@i2bqsvwo!it8RaZBWuRBR5mmAkMIT`nw!yb4*9QY&(HV%Yb5Y{yg|EW zHYPTYqZY1ypoGMj!xp7*Zprv>hAsG*-{Z0VDflOgzrsIRnEnwb(bO{27NEo*+S4MD z-)8&^?Q=6i?%&Nm|2h8Y%8Vwt6_0ERe?Q)Ao5gyjIlo29|7?8AU)jsejeoKgUzI=Z z5)!}Xuci0HT4u#&x*wxPjMe&Q=|gk1zXX@P_QE~uH!N4?HVZ!RhRON6u&8_!I@j+Y zlYHEsj`ms!;5vj3S6PyBx3&UnpLAYyZ6%00N5P>lU-?p~1d}!2*jCqR?B*g5N~_%k z!5hu+`pSB*rn|b z@L)F2dONja{q{VAe5rP9#MjpBY-p{hm%(Bd^~}@b7+f+LzQvU)JIIe ziy|J;Wc+p8FKp%vN$N9Fx?;JoFHYOihYHP$1P1=o$)>+Hy*vMb!Qk zZLZ8_ZzRgNHf2&Y^sp@(cFu;nXB)7M<_qz~g?G%cp*@tETcPdH0JiMCG(Z06LiW8* zU3><$nmyi{2Hy*xVn)Gm&ctjGH=*zxzx~NhLFtH*c@LC{K2E2`LR zg_m};0kvmIxMQXa9BDg|GH>=nEa=5vh<#+eK4swa;TISw)o~V?C*bBgPjZ&qi<5S4 z2D83CIATy3_(UjU|GSs@q0dgjM5ir~HR(FPVorCmQW;EVc3p+F9YrkqQ8p}nlSg_KWM^8uMPa9yBFX?28RdNZf2pp z3|AVJL*Wav;9Xoc+q`I%yHGtn2Ilda7u}|+lvg*`c7HJrUvUaMN3)W;V{AaqRBTG@=Q7hBnbwCX8D?PX_S_{bdoCdubvYsT*tbs$>Lbg>W z3PP55Aj_R!S^Z6E@H$P@>RuA0PLJg4f@IJ|0pNjOETt>lf)EpX&Lq)+vaj^UcVsVm zq+kXQ@;)#S!>g`6Soh z>kXKk+Q+pEdkON&~(?tVPGaqqExjoTbr zntzsUxxACU1S!(Tn;YR#^<}|n--DtTF_9$IcN)_>;YG4yOif2GH|U+z30pTr!sQ2m zy*_#1{<)_ZmYdPMSt90PwhPwir(@#hk*xN?eYAPJOLRp$jtQMyVcQpf%&QB=$AhF% zdvXt)F)k9i+|%PUTCZVqva{fjZX60d`_R;wfwXH@v8Zo|8GRXRNUM(|GX)9pm@7NO zQuic*#*Ln|jg>=e$XGD0Y+!6vJsf|WOE&s)kQn6$H*8zen-y(DhBbb?dHrUzj*SP+ zs!~|fK@A5z&xNB^i{Pe>9=up!h;3dQkaBG;beMV@hS!ZJftmroOeqQn>}`WqszbRY z;)HC^S zLwDO>3L62sXQTO4<5m2gtZI7~p)zW?on*%%bl4#mHGyg6cV=!;%uRVTmX|Y;q}(sw zu)}mPvm-O^b?$iTzxfSU72B&kx~e~0JgqZH^l1f>XPsH;h;$|^_A5n~>GT#l^5Pnc+ux1r?TbvNs|!7t-9>=QR`CW6kJ<65VQkmvfxP6HTr%jo z7Y2*5LcOP*<;V9g1b$&YOwmrD88JQZ#Ie=v;sXi(+2Lyt_AM9(zZ*`o%O=8^b8}gy ziX2*xuqENq$*{M|jXlpO0)_QMarC6oEJ3{I|2R=VYlkdnRVuDxJcJ1b^f`xL9|fX~ z{Xx)gCuB1>XOgOoJsujc2OdnmTK+J31t+`iJYyjRXff?IxGh~P_}+gbzH~Lh?$2!S z!@l0e0n0I`66(hpYK@VClI^@U5sln9l3YA{`gAjswzA zPhk}AQ!E1G+`I5y%?F2H^h3S4ab(e77mpR2QY+=PELo;KrhOg7rW{*}%jC@Yb{$=4 zR`Ez?=XU`%U*E`N}oBD45tPm)Cg=)Ty0*nt|@=%*xCEJssr&-0tKvP!bl1jxj$GG+N$Jx*x6L1H+18$#^o zc#Nb)YmR_H-Wb|=R)u(_Xxx4+5ckw5vrAq|6&LvkR^Kb1E+-FU&ffcY$NEGz^RS3* zzBEA4*X%TSeJKTxj`IcT0iDqAwH&`QX0#}`dJ!|uD~Gqsi!#qtV))^(XWUYDNK1$I$Q|X} zQ?0lWk(3 zNMl~R8jh1y#NY+R+-GY~*gByrnx{yYCn|KIL*d>uQu_@j8+o5a)~L~WtycVq>}}ji zhaxEHKOPnJY{}@gGUl!uO*40Qqe)}0a;}CQ@x^&-=-c%?AOGSz8?z-1mR}T51zzH< zjjCC0Wf(|Y`oNxk0D3bpp6xZ<2FVq96n0hwCuaAibH+*R{8m-8 z{JenDAIWoF3|}+h{UJ1SZg<+;_dfJzo9KPOG8Vac2cLD-hE|VLB$x1IqW;@?Rz2C1 z71^}`D5$944n$CthAx7UmUc$Q_Q+$k7S?sdD>-t+60%Kl<9iICeXey zA2NDwXZyQ!VRkP~=~_@VGx=1=1`a?nicMyr#vv^F6~HLhHeA)aCw$1j)tGvCD#?5s zL7|tPv6V{lwA*_>B_Fy7I$vHxj&Bw8eqSNVjhh3HJt9$SM;bHsPzT4AVX%F^C4CfZ zV3%)s(OFGRTzFI5Z_nq_y!|TFWwSTya%D0+>8b^ta+N4+en)m??iNA9p+L+v>}kJp z&mgS7QqRBgTm+|5)!97LAuw)z4V=j^MAJ!!IVtl7<{dJf${UWr?E_sQq{0v*3JY1i z`!dF^tmCesG)^|wq45So>6Ok|Uwt1QYu1 z4qWia5IO^0D5vW|=GIZ22JY^|4BFSQPwXN4?l_0fpWTn{jm)J09W|y9vz3KRNv87` z3YkfP0evt(#TF&x@>i-NaaT?TJU1CaIc@9NYNeN~Rr(T?dH)!~+Q`5)yF64MkRz_2HW;o(#Pd*C~m zf1fCY4rV8C;lV{<{pBslHfVr-k2kDvUmg^3_3Wv0FY*t33B8=FnQgZTyymDpW)<3t z@)wI(uoyS9J8UbvA0q}5$StI5=`-wmY!Z9-IhJnO59P%WY@E{u*sYc!9>jkcx%D7n$(`ir5B8ryk#@Lx$rWjnp zMo2rN$>R%bkyjXX4>-froVS8&r4j|I4dx41+H+CWli0}{5#*yGAjhOvoW+@FuHV|- zkYKZdm<$-RH01Z8JmQM2E-RoFZKo7!)H~yL1p6Gy5J?tCn)!r3rAUkTJL&!wRRK z=hx1OVi_0Cv(`2|hRG$;#FQxXHPD4y38{3fml5^(W``Rp1L4N?NJxp5#wfkb;4(r$ z+Vl~gbyc7>_Y(x;#QW5W($V7<0^%1(pFX9VUD4}qrB*iS1#iOtm9M!hD zt^1yar*&)C_IVpv|2JlEB25x^c_gx=MQ>TRp0Y%hiqL8|vEn-?S;4Ut@TFRhlE3t% zhLSJ}_~6O3QxCC=;jQt;BySvMbeLD$sKJJ<`3gQI=h=ilXSv+!WHvId8@}vxm_53X z$a23sv#zVQay9)XL#%ZtoN=>;ZJo1)#qVB$D$Auw*IO1Jb*f^b-c`K&T^kxx{)AVM zKOnH%^pwAs-4S1(QmQ!Le)*mL*e&D~YyWg7nADqin(G*MwS8$Bp{ ziw!^iJmW9l>C1XJo)l!ot)@!UmuOTnW z$EL@TGLrP3?K%+q=WKYPScwtTM> zGW}GTpDase8%MK)ZHmBG{GWw4r`xl`+G`oi98Uc|1Y)ZlvFyXc1X{)WLEh)K6qR)n zjzn!?I=QCh1LX_Y%Y+A1H8qDb|CGm4w!3mkvfKGRGAb0m{wQ}V@f4fxbqrji@*#k~ z40X9z1ur*S^Y3eR;??@AOj2eS?|bIcTx<>Izr_5CzEnWMtWRePgT zb}dNVc)&+r@`IIQH}d;?c+%*y&uo;87W%CjK)W+kz-?<+dh=`?zBcQH6-zDxS6RSL z_UG8k$e#T6XEp4=t293HdJ^W%bB2Md7jvn%7BS~I6?n$K0HZGwsHPvpik6FD>UbSm zu&Inz2b28BQumj#25$Xj`G-lrz@&W zwML~)V4GpTmnO1yPr3O%S8K+`w)qg=y$yjmB=&N_v0fwqQV zcWD&!bxOgaJ_oSF$WLse$}4_xMv_4IaRKvuWK9}6cgY}DlC}1Q=) z`+yEK*KH3h$a6;>?fLwX(IRG|t4PKTHsEIKC0JB`mL2M_50A(ev-OFID-yt&)LT&;$ikl=>TifGZT6qE8`Xh zc#}=22Hl)0%Q7cq($K2o+*_F&EPHqzginw=!##;7?4G!w|a2%MIv9f+hZ_|J9X>JUT;px21gAwoF*= zD<^u}=02ykJQ3@U$>Qdnwk)OV307xo4WWh0Ss8jlMIMw**%n@mHHy4rkux4 zuM&Y?j4lRfN3#(oMXXY14otTwXT_1Lc;njRFv=qeJWIyYxb>Fwx!)Ku7SjdDKp!g~ zY@_e3ooRGs5xhSj1+JRwm|t=P1l>Fj+b&xYTd;_grd;EP4xL3owk9~dbuL-&%%&w@ z^J&C5W2{)WoD&t!D0^zqiA!#lNM*7Q*QMEIPkpApu^Iv_ z<*DqZE}hOEO1?wGux4)-tZ3`N4~mXsrE`YBotfRxOV$#7)XKTCDkbpK7zvx|IPS!h zqi}A4I^X8B95=tx3AabpaME{Vxm=}=Z1)~z9BkwbTkQ964ugVmoK-ZBR|i32b%;pb zSc*%0ZzsmL8*;aod*j)-D52E2SmD%yDB5r=R-@&=79^}v0Ve?+9 zqSEqwnDyifx9sa^9NR@aR(5zo>47t%=NqR$#Uoq1D6*j1s!N2p1l3i43l+d-@%7|15az2f-K5hr+?TGWc6+(jhX)sRc zfx^@4q2yjCVd%LfcqVcaJe+5TI`Xl?Y=zOnfRuT{h=obQP}PaTE$t=>uh`29?MFEa z53G(CJ{61!>v0Q{R-MIN zJ5JD~(_YkJSeJ?{w>#j_YYoYIGjwhHjIzFN!VtezVAH{w;n~g=O7xkeoyT4882c@YgP1GUnA}aZB4F}4s@1Lq1KG`NxsEx?2jrnZVLPUD zswBk~5)~E`@3V^yHSB4ysqpZI>sYXLKDLcmfotMk;nv#mZVP!>BjFO!w6zKD-Uf1-gF_n7L?N7$HhS?e1UjhQ6ARIi1Bx_1CHTVi7LP zUP-O1lF?57G@hNgf*x61!Z&?7SLm(UOzle7lvm#w>$jdq z`L4CNKtCA|^sHoscjYTW2DvbG-)ZPu)mMy>K1kmp$D)`1(28$f!z*s3t77+tp1j25 zB7FR$j#-y73~7)TzASu%E2X7b;kam6F~o=+ej7*Y9}H%1+xHb^-C2uWHSS`&v}jxs ze2%hm_fx%wdd19Ldr2i+vEs~*OnM{Nz}sJ{qANocNpr40W(3GUyT=9W+~B2fy~>R4 zoH+%`yRV|+xB^ho65y)s3Ka?`bt_WGkFMzHx)c*k;=s3K0jA4jL*HT5B)h{L)$1fk zGSpV66|j|VIJnaumyx*Y-awSSYYa;cO%U5LYvJf+orTi*U!YduJnG5rWkw0MBp-T| zR*K~DNsS>T#|6HT2qi4BF58gng1Lam$kSIN`A& zPAf|03f5ZC5RJvc{+%;~&mLw7OGK$c?_yits*4!+KPrK3t~H0Yt2SeYzI!l}j-dNO zf84m{7&+Y9EyiabLg#I>xYdVm(V(mEas9?rEF9!1xL1A@o&Aoodz?0vZt>uU_c(yA z_jFL_y(Lpi4ixNgSck=z3Eu9r!B001@U>5_;Mp0OBrGcUWSAjJ0=g=e@(Wb=cScPO?ps+QB_` z$GYv?n+G-*M{e3P*uu>^<4AiO{VzTCIIUc|r*eQ_nUzfSe)-65`)f}q*nN*^UAFx7 z#{I<}S++r&-R(A!L0QxnZF^%bVDI@pb=I;cO!mZVsM;GLRcn33p=^)(^Y}emk0@Hr ziV3nRDgC-<@Dc;tut8nRlrM2*jo^pcf+|~s=Y#D25pK;Px(O=LgaT}O{(1k;k-#6m zSJR9iYQf|D9(VMgBbonNOMm~pn(VoMzkCZ$be8+yr)$y6g>(Ks-Ty1O|3W-qRZe ztwv3UFc36AaM!jee)xurRwXEUWT_j}X8=UnLy%6H` z8xcftwwuQ{^3F!uuw%R_y6bGm@Vg?;9!^(GdQ!|cY;EAvf2C4!ohsS5_%O-&qoI3_ zB$Y%ef$c+Ma#bl}P4DvIaOPeJ(H%^S0jcQ_@KV@AV(iwM~=j` zH~g?G!x8>S#={^<8;mZgV#|6I*;x6fte=NGiCc}QJB6{(Vmt|Rp8M0)_zV1+xC5v$ z>;sz^Qq5`1F`$@PA(Xhgh3kx{=VAtWQ%+nzs(;@GQColD$FD}vHEa%e)itA%_8^#J zz8`%;Zn7a|3GA86Y%&W>fHr6mhbNb@@6{Ny&PgarPk=TlcWVrc=<*MFC!? z=ddR09==WL3XJ!br0t#-V4}Z@($}d|XOI%a?6D=ikMZoL-T(-BJ%JLQDA0?_CD>wE zPqBCGz}Dfhz=_*I+h0Xe-FroAMmZ_-XqVhVZjHfEvQf-q z%l5{jj^{W|8jQ8~h-r`P{PYacr1ykG~#2h%WtzMeWi#uxeB?6YuF^o?%1z(wBAY z(`75@+cuIWmAQefb`%Bpm_WCpKl7JgibH-6fqf0*=$67~JSZZ(JTjA+j=jQP7@8p( zJ?%Pfa!Ivi`c(d{ux2!&%j*KvdxQl|;*)TKqzIPT>r7mWBMmmDT zunDmL(q8J^^-$zCB&uT1etTRUp+za}iV*q5f_|yWvFOPkIejx@RQ{TUj}??}o7Z4X_z_FyklxH}kRXBUtWJIk3(>4U8i?nqCJ!0>P~eV^CC{$vb>rHPZs%Bc{; zT>UWM&RpW<11QKmseF^)9zk!yi23l6q(1W^7(Cw&=F{S-@4XDD(Wr#xi>(ZrpNp{5 zmaQr(VsB4Zf~)m*@SM@eCS^!g%zvl|CDGgXYx3fi?T|OlE<)@6Q^Y@A2}wuh(}~BUz-gr|NqT<6&+AUopJO$=t4$hx z9C4Rk{Ve1J86dKEcBk8xZp?F9DKouj2zze`m^H1fF!#`ScDQH_$%x{a-Zc{nA2kfh zUQWRUVZqqvY#+GwRM0tcd&{?kS3>&xXv!R-02S}-`Ppuj%qC+ef9cX}D2dT!(E`{0 zFhfa~?-wxN)TI`i|dyCxq;8<>5`~tu=rOL0m9wS=sdlBz*N3pU+n)a)XrlUo!6g%03 zQU}J+u^VMf?&NAX?>z`k9}1UzQx0kY zoOPmGEk&Y|GkHUG;qh`=^mE+8+Du$+a>I#}F@$~0?Jkwe*o}b#;#!Xst3GL!<;H;sm>BzckY@4!x zZV?D8#ryi}&c z{fYgl7(+(P8G-u1D!Id#Hca6!!kjJ*+FWrTYbMSSQ6$f)JZ+ z8kWP>-@HHxXRg{UFSMl*qzTT)4QSib=`epp2DRV!#&>->arLic>I#3xqzFJ{Ir#mU;l>!8c-05V_D{j`$D(>deJZ2VETmE)ODjjleWOjXA_yJ1D zZRzLEj`v+fCrnLg)OQWaO*BB8PaEl^YYUFuUx2d~d=dEv?xH-^b+kvmkQr$o5cmdq zT)nvjcm~(<>wNmrfJ963KibN+^r>a_GvDxOHyD;4{=_Ls>QIXAG&-%*m%0+p;+|`& z{IW?$AS3)Ngyzhoh1LhSGgGHSWH;gDwgy%n`I;YBX$&nsFWE%Rb+G*FIX32+4<+j^ z2HVt`^wmwCBsPv_4QbLev^fk@w01JZtW27xqDwOlgi-Q49ZC&9PlbA8c`_{|rSg?f zvay5`9Xw!LuMs(4%0X^Y38junph~$=gfD>mM=J!+ZyM7ji432PPFW$7umE*RQmSL zCMB(KrdQfQ%RQ=bW!@sl3FW9X)(wg_@NAUEELb4C`=l#ESo2SPcHhs1ULO98x&0)` zQ0i;NScP9`rR79xR25mQ1CT}^eYW~+D>kk9j4@B*xWNK`V%E0{*!{i$?|4dJ_3{3k z?>;N28^3_uL#IHHstSsFx5B7cfazy!psM*eN@u7;?gl{@=LlwMIGqpZ2)5iB+^Go zLl)yam|lEoqFQ%(Y@ln@qTfn7xp;;>sdQPuWt#8WNKpa?W`3&%Idp8I zBeT}B^z33Z4xB3TsW7DXYX;HryW()wXc4oYLbze%R(cs8N42uo=+N_>aPz1Pj4)|n z&*2^0lo^hbzh^*izaFk7_i2T#j1AwK8G*r3JoEl8M_yY7!c5x~RC+c5+|}_IGaIrO z<;G2N77j#iU=vPjoz3^lv?mQsXOd6e!|6=Tp|GFN7`kWT zYT0snyeFCzMugCfeI*ptss!zm^2xr zD`(S_u_Iw-_c&^3oJ#|iFQezRNt6~XTlvVKidm)zc!T^=?5N#C?m90={^F`&S@N4j zAHIzTrp~9q11FG-(qpU*TLqvZ4Wsp!P+V+(dOK?h6^G6NyDL|4ov0Akbf@7@*%zEu ziz55;%p7)U9p~P+3c1RuLtxo`6IQfEngmoKhT99;qE3U@!aznN4^=XmRtqLc9xzJV zkq*8ejA>7_=!#c0uT?agnRkw(IROI+TWSRDC?3am^(CozM5}jqDz>XxgZs4z)a#Pq z#4Z?fNi(x6zHdsw2V$G)S&}n;bs0qu{0>psAR_^PA5fs3`!u0>n;gwvngPFi7BZ1UI6I)Yf{x{Q z!b{yI7VVKkbq8k(7$!gXB|e;#DtCclpNlv&s|zElEU3Gz7>_&OVKXeJfrRgJ=BChv zE#J+_Z>AOc)eph>X*=Lp-Vc0pXgKw|nU3BL2iYSR4fd@r2J{+cLD~&{xFYfbqxL32 zzuN=WTTBEAxont2Q5C<8rBJk(!FI7ks@t8x7wVb8#ROISlp+O|cgnHv>EFz0{uj3B zM?OeeJmCF`p0U(v)8TW}AvWCoCcJN*5B$kJ%a?y#ValeE|dc4RE$vnZ2A4f$nWiK=Y3A!xIhhVdXF| zh`h`AyIaYipbqx9cY!Hd(As{;q&Hn-tGd&1Y`h-@`&xiZ1f3K7C5s$(b|yIx|NDnZl;tE zv3#uT53+fc&E6KgV$vy2@FjnNXdpX{-=Eonj7u&%hy7r+nh`ACz5|YXNuk({@o?@1 zgYdiz{3vKos?057Eni>2!pP|`T2%z}UDZCUVjz7pR3v{ZBdQfU#UjV+Q+8(#i=5&{ z_U?d!P$p^Y5XWIRcEJMa!SMDiGC5Ui)ci3Me-;Uv;z)9L#Ua7jX~kuvSQ^CKW8D6HW1SqH7S0Jul6I#RJJq@+7MX8UyMjZT#na z57D0QL+FNfA1EB7g5QeOu%p}$^ryz)nRQK^)F%yUjyS<)^q9lht9S6xmjGO@>_Y(@?!C>I3Vdrta|^JGlcU8WWXNM>myjhlNg&P_w}TVi$g4V{=4!w)Z-_yIg`(SDFuF_?d9d?+`yZG>4@%6f>oT z4XpE18OmFHMGgH_QhMe|85Pw~u3 ze(F>5oV#^W8OF`G#An?J#E-8c|51C1`*R4J+`h2WmlA2OFJK!fRyfSY*_OzobJAq`B;$}ybP$b`Zp$MCbQWo>QFtW2P>i! z@zaBYtjl#TOdc7GHSrn{A3BVly^f;p!kujT-QkezHiMMhTyTPsBzpqEbmYc9QpgI$ zdE*>OQMrYNI|(|rrgmuhq7HXO45YvhMYPN>l46uH`OWH)6o1r}P7874QI%_H?}cV| z(QX5&>&R68_V=NRo)FkJVFg6e-%tO!JND`O)djSzZDh z*MDSpMuyYd{kE9*Y61-De~{{DyHLlzW9VR|Mc0B~F{`EtxOQzSe%qQxwS$Z?Vsan+ znczwWE6#$eSQ~_oI!wc_2Y{*I0l>xCP)(v06U*{|8%hbVx}yjp$9+JzhBxR`FbVT- zTf>gi&zQOC=*pxcYA~cAl$@pyq~*J(5#RL~GdO`S>V6NutvO1^yBhiNqzu;W8pd|y>lcCd zjkL((o4^aXFAHAZVjws#8UD-?G|dIfoYQY(_UYnzzGT=lZt|{`y!>}V?vz0hJCH5# zAzSy5cfZRORXWy?YrhpfO}d8VIrYr)^*pwBKhN*TPh}e#e_)|aFq5@b0_zjCSQh`5 z4XLZdl397Q@IgFYRFt5UX@*QRLl@U}|6whonwXSy04%)S2bQ{8GyRU4zz3J2Uv+vW+galCa85E*jfOpufk9VRvW}VCnK*qwyEU`W z)GCEF?6}En`@X?V!wb;iL6nWZ>?jWu=$#tS&tx9q^_bk=U2%g&!z$lm6v(a53aac<23 z%9+18G(6h2o3~tM10(g* zDq>Cg3)ngX0N;MWlC*Mrw%{BlL=ucwXQ4?5$bs|P6fWG~y?ejZOQ{lmVQ6w;tV7mD{4 zawAqp+3?)A`~jWebhF46dcQx#-JVJi>r{q8Po~1FbMDvYi(Hr+p%v@H?hko4&*^gatR`zau`}3_xEm)SOj8dUh7l+a4 z^1VDA+fD&lN7#A=J35sj4`GKLISm;XT3wz>TC=+OjAm!rYO<5=&%V#PuNAX{CHt{^ zrxP_5uA##w^Jw?pBRD0x8r?FY*v9Wcm^^(M-`jMNWnG$2<%13}(=*3WW5j2it>lL< z7C*;z$+k4nRRsp7+p`jZuT`yB$#!mAj`!t8)3&|8na8hF6e|6QGe{4oYJuZia%>LO zKp8$M_=Ql^g553hFm#?I&0QNL@H$+`qWCA4ylO|wQWqTbP{eWzK62r{uQ}6+ztFD2 z9&+_}f*9Dsc-jV&U5ohk!K0wawU|BLGMyRl-}${YQ%N%+j(^aRkNYM_p{;2YD=vA! ztkPOU56$Pn@aNBXTPJZCZLyTqT$=##r4#two(tj0!fDv|@(s4mAeQa$l%@1}4Wa?t zwbWY;#WY&vH}c!wFVz|OTg>K zsW4ij1#>%Z(dukh3=h&{dY^Tm<5C2!oY)`f(B6vH$U8o&+z-uAaqDYOrSY`(@crK3e&xBDt)kJhqZD|k;~J-6pLsuoFs*qA&%`-B|d zpc)M&!ZTwv-F@% z(mjH%C}-gZ6A3tU?iVh$Fs4i1Dsu8N(!?3hMpM&}*Ql{`Bo!%S;hkCYS^r~l)aT$Rjy1<^1-MU@S>(}&En22%FGH2nHN(6db_V~c-U%O8(j9YBU>#<+f5aB?XhF*bv!Qp6vr1@t3XA)z;XW27o)xON!w&PN;KHO`IjO} zemM-2hm|pwQi96zYq)porD*wkzzNQeQEiPHXe&$6Kq2pICbxi$KHWrr(EzyeNYHXO z7N>SKCw5ozDod{1M7tVg@yB7otHjoeruTR;6@D3&1&FbUbw~NolsTMtW(4)hmZDnC zL*_NE6jxc6@N4~bd9_=rv}NiaJYzkB<~r?T7B&iOK=V?XH=ZZy2ObpubRicq;T=;O z8jh{9{i(`Fh1XKA#PhRap?+dKS9GP64S%CS7qU`WP3~o8_b!qRG18<&pE0O>tDBdK zGsHV{MzO&)$!xRFRA%_FgK-h#;HvybjB4Bob28$Y|A?J*eqA8-KFMLse>h-aASq8; zPxplUPj-Jt^7z?`y}PH-sY_E>{;rX9Z0aXG^F|xmJxWMY?>w)af0%Sjw_=Bz2U#ix zkwKmk4Nhrgccw_e@0W61`o*REJ3*)S!sbktK0X(FKfd6usuhb?_j<#b?xjr3$b@z7 zab|NHHsf2*M(j}6B=x*1W+>B-?rj#4hq@HqI;BWi{U>o(9u@QVdoN-AuHA5aml-Uu zf53a&uBT{$w;s@ZpULR0rMJvKtr?eHGN92`^dhFmztT#bQ_-OA;m zX@@a!*AlYaAPswqs<`?^DQvgdBX-i^6D!ae4h_|kFmuBs%+hp#(xy4We6fz7Ag4&z z6Q1Lb23_d=m`t;07BgwH#dLUCt!R^@8!Z?3F2N7mSk5gMc;DQK&(2QawWM=J0gu$- z-RCqma!fieJyenUZI7WP+K2F`ni>~!FAksY9Ru~I^=w6g0v^6`9FNEEgOCW0rdArU zm4gPd3*&=XTYZ-3N|*?P%|=3TlOg8&9A?+uAF%a(vvKAA-DE(v7j&~MC|>lDOZ3-< zdmf6ks3QiHd!)fQa;xBbF`GWFiY2lAW@x>b!^7c~_!aiEk{PnxP>BkrS^5RXoF7Dy zRV&$t^BkE>ETS+?1sY+woRSB(py#4qY~PlFo?mv+ErILZCxUqVJ`}faT0-&Bt0=*5 z4W-Ud!LTjW<;Nc_g6iY1_{4{eY>L@5_!hZ@9aY(cYA2Lo4Cu6UGby#IyKw<9FsOXhH7i2DP_xaNk&Pm9}kC9yi;}@hc!}nt3 z?x4X!28ogSs|XnAF&RSgyRme9D;w;(p98UD_-Khe*$t7$i1%aI-RVK3xM)_Zer;4=GWZj_oM^bY@nf_(-**3Fi#Ze#fK#sG+) zxs1||RM1YJFy?!r2SrWW@%3_FHfGx-S|TP7pR{r@VYfL+ektZs-!%#PT`#%mfpwTR zWfQY1?T=!)CzwvNBj#MYg-^A2vO#FhLe{H6R`UiXf3J?;llGIpC!xii_L`2$4mM;z z#h#63&1htDoSj@h3I`+(KdkvYc-fG-C^;#nAbxg2-=_19lmPvwH1NVkbLr~s(7tFu|f+Ev)U zEDleXlv7;64gPv@8;hTDg+)!jM16MWqQ2n6mecnep6RN?A33`z>!Tty=37$I#Zjc% zl*-=m@^%J+;WS{p;AOXcGP<^3;IGZd!w%zF%yOqU4X9S6Z0;0i{&OTN8+VD>j+;Z? zEnWOACl!kKY~^Gxi<8pHb<{upHvgw@EXnOK0-pdGaM@;#-Ulw@Wrg{8uFotSeI%G& z?AM6jYWHB(dLNMA`4ZD-9}^wZ45Fz1BTzwJ;QnsWCle(fHYV~cFBAR~1E+SgwvIns z)~u7*86kl*O&|G}i&^vS`D{(g3mkX9hnXrUQ-x<5?f<%%itLYY+RLg*c40Ov9{d}J zpBw=L%G9A-wI6L0<_qVlc8fR*J(`*J0L2TQ^FQ*(lIse2iZRH*yJ7Qa%vudB_040n zIfAX-e}cVA3WDu&vw2IuSycK-gXijY;Tr$83Zu;Z_^d@7>QcOL(}pW{pyEPj+VgSM z$+H-5WrAKOg!}%g5xE+!z^_9$(}c(%T>U_gTM+SxJCWRi<9Duuvny-)xdo{x$Uu?l z=0v%+^5G={ z&xke~oxnjO=2b-I?qm6~1E|vIC|53-P3HYmSn;_)s5OXY9f!2(l$RE%bV<9%C!E{Q+v z(#TYH=-m_=xMdIB-XBhPm!t#i)8d*$lbP3Pw7gMCvrpOU$kqQ7r}G4_%$`STPZ zw~CngGn4r*cO{vq!{ni+%&bBOF!9|X6m#Yv);e1-2i5g#{*c}a7X})#!}rqQs#z^N z+#^js7WtU;vxKc+o!s{s)+BqalQn7{#mOIK$S&2BuFg?FxkWY*_Vf_zxf=lnVdwa^ zlLZxb_WNLBmVK;65)`$Mg9)=Yy7udGW-OTKqHeB1dnQ9#;L0a!M-e$p4 zlKU`}q|0xia>gaz<=t+y&kiLYX$y9}#tW9b$ztOyR8e7a5w7$tMe0_ggTR-r%NRqv#bk=vunGFc>Cs6`9qI_2hPzGz#K>s! zj}3N1wc}H?k@V*NP&Xs1fiQTy9KGD#%%T%y;O-y=@+r843#9vtwsk#1{_Q=~xodz5 zDg9xr;ANn?F&4%T%|Nk5YD}PA;wsNw(Sl7$`0<=D&)9R6#&k}k142w!(z=Y>Ab7-$(!Gus zY;=X(&QP+7c!I8P&a;4Rn_2UZMRey|KWMX46RG40n&WPOe-0VaMBhCq-tz;0tZd*n zUfzv1m)h7UIlR;_ry;Z}bsPq}`LPLwI&7UXPYUz3FzeMklp8*S%zxX_0vCZZ zDER`7Cx6GM)K#IpbQ%q-dB;}2Ru)a`7BurWCD6B>0zY5k49z(+h>R1Sa`UWQ$Zvu; zofbI3J7YXaMi`GCU%pVGzH~Z`Yp%d6(^3S^<;U{7@?HGZTS_DqdWeOo&19pab(w1G zagoha9SY3eM=vUxc)n;J{W_h4wYEK?B)5HhKga&GF{GO-N@IKz8g zmIeL7Iot>TK-6+x&khN`4@rd!@Uh8v?6)CYbSJ$Z-rlSNjZdOcQ2SvIAMB!zn74RK z`Yb69JAxH<(OCP{39qgnKx0)DNbB}Sx~cvIUE)mX{?UaLnzlwHJyd}_&!1zhCZlQc zx8-QDfmqf#7xvsjn|zJOv6)LVaC%A&1(vGQ@i9&m5jT(+ZYo5CBtC#puF|513x}fOp)H4q-YgVN!c6_hx)OzigomX_!678IFrsUGtpXtPzL)dpmGZ$PfPg$wTb*0d*{!49xr9G|0}DW+}77@s)i923pR;RSq^- zb7MbC%1g#gQCrxgAbnBcv0dalBOD7mkHf;_lUSd7Z7e`B67Q5HQ&I6XZu96k+~6Sz zaZ|OJZo+MLU~C=hD3*qX#%pXuXg2H|sYN>@Bq-wM7H<6Uy>NW@>GFj;q`~3#2i!O0 zEHh(sg&af-|Fzi(5)8b!*o!Lgp!pVy&-8-StKRJOw8^xpu^*FMkbu|Y(%9h}?cB*@ z^*Aj+8j{?MVZ-&QV3S|XLMQacBTuxU>&iJUY-b(!&Tltsxn02Ky>P9VqU{8x%2xE# z-j09u&=cM3qH)9iRf2BR1O8!$2b(ClpYuA?j1tlV;7FwkGr4k+-UPR%;V`bmGs zbpO4~p?e;d9pJczbBXBtb_rkp-Vp*?H}fe5HZ)?|y7G>kL$rKs53@h%Cg^YMpo=Ht zL2Y^q%j#=`x8xVHi@hTt&QFJKwx5QbHU3zCC6ZvGCDS<)&MX2CiMHELCS}_uwr`0E zb9Xx@vUz)qt*(E|h7X?r%GjKy6!2O5VV57@ktH(zyHWu*5pIu zvjjHqU@A(_O5sO1ig*nC&1pHd;XBC~ZlOgw%UkV95$}zd$odF+jTED0wtna${sUuF zGTHs|9Bi)M2`%g6F-%XJ?%y3JXrv{=>T&DXqCO_fV?#TO%x%NTYr1g1ZX&1KN2>hh zw6XYQOJPM<_Gi9O^R#GWt^)L%-hxKO7ubuH2e3fgLUhm84MSAyY1-Q#s4{9AExumO z>@;-n)8;ZZHS;P{zH5hfgjn=u<3{dX^#%N)w1Y2vy&a@RuLJ$YBu;e1kJnksnDL8& z6l%T#mZd49&ZkA3iEA=`^q+$j!-BA-=Q3;itbnyHUc#K{jc7&d6c#O+f_1TBB)@t; z?25RK{}GS^EXEPV;i+$C(*T#mmCIHSlvCZdiK-kDD8Vw}KA@ zO*)Ity?sDuvjNM{*@|YebEy96b#xolAHq^EU|#hge7U}Z*DJfouUxmE9h@ftvZJL) ztjdy;y=Mh`%K8f)${sMfV>A4jAWx5VJcPNNDUI3u8r#?3;=W$n!)f0b%D=UK%EaFf zrn7o=C=+;^)t7~`dVj%5>hLM{c4q>}Ur&Ug!N_kL(q55NB7*+AX2G-0r>yW^Eh?HV z1W9>4aNpmFML8Kbu3#HKqjCioZ23bp^VmIhMPUbXD2-=nKX!qC;7;(#Re|sjcUU^M z0Mo_G@PO|=!AC;_=z|8~Zyag2P{@~RcmF$DQ1YeqJ2Xl^j z!Rr)X8oF!_mANW`Vrl3rV7Tule}fy}ZZpqvb((oRo(nnM$=kX* z!nb7x@bioY?XX-8_d(#5H`Z{FF_GPz|Ct4Tnp;u#Z6Laed*e-gh00ZzcEFz^8P;J_ zO@_1E`MF!_*s8>rtkd{DZ>FO_POomUxB*vKy=XhH^iG=k*Ceq$8IpqD=`%iV+;T8Z zdC$esD{lL_r+iP}Jof(3AyArD0p;gy@jv5#9{dO2Vf~Ke7h0< zxN6mZlz-R%>;52S|H@Mq6AM@Tw;lQ){Xu;H?e72OpZ~MxrK9YxCj8CI{9oRn|Neph zqk7<c8Lr z&$YkD#c!qmyyxH7|9&5wy7KS0|KD2EHJ8N`N}2fP+g|vSaRAm0)5dRcYH%(`+un0b zHuU&Kb7!??z=_iBAbG+UV$%d2;)Tk1Z8Xq1HC@83(HwXsf%WYiC=>L&Jyz>LuIYYU zKCz9B-Smvj^V6q0`f2#G*%7wStmRA2T@%n3c{p+eam%VSU{RYJRQ%|{ONAo-kJEN| z79PhkZtKI4pov5uPO!x3)`C9faCE5c#L+*uBI{bVV|dBIg1e?x`ko z0i#h7f0RP~l|ZKG3{!TFCDoOV#5)&bnQ05t6Zjq%&rIZ->?gr!Ul+RaqK@is7(@8| z2;$TNsZ8bqe(yCGv`t4>dZt{UYa35cYUFo8EA1guR4}Hi&s0GtcqR<|6T%7~zhcwY zzp%3kT}{?p4v7?WXv%ywR`H;UU(jEk3>>E7_z(AK?~;prikT8TbX`a1CXRrpPZBib zTN-Y<+QpJus?c%x7oIj(cf9aJ2h7`5v4v}6UDAS1qks%*$PcGFGkfwleTYoz zBw>g7MQ&+TD(k;yA54CAo~)C0(?db0w5DJv)v6TIo5K#IToVoVi+^z8ViQ=!`{Q6{ z-G_=#Er3>xg7{C*@Yp^FxZk1)i_>Bl`41q)hD3T}ypUR_Td{5Wqwt|tF`u1hPx+76 zaq2b(Y*5i4*xUCwMyq7wG^M2wByhm4x81|^!Jd>F(oEH_N-5!o8rEJ}PVsA(P~I;m zwyyjP+TEQ9PD#DY&QS+teUz#71#&aT7gOHl-5{T70j4%VbihIa>x&d|@!?o@wLKF0 z9v{fA3ApQygSAxIFpM8@;we6PJQb_l+rcX|hX#l2q`L8o1gvv4slQBRZhGOg%0l4Q z@dXssS%!%-{m5NCfj(Sc#ZqJkGO^OpZ20HFd5E zuK}eYd$>^hJv1WcA;%ZAQR(qq8h}wP@EAnv#?n$}7dWEh2|rh^ zr!<8?STHIVn36lSy)cGqmQBOjq$<1L-^5Sro^u12T%gD;DkML!i~@fTqMVqGB-dEP z7Ko1EwBS>)`e!Z~rZ0vck(Kye=P30l+=qH@8%gFwC|x;Z0G7I|KxdN?J>FFWM{<|I zd<6;m_ME1c);q-Q-tXi8cyo+#0Pc`gHJuhL;YuSl6v zEVi(_yF6&Tx14-3hAgdd%24ioMEi#FzzYuycDLbxg`Yhc_2tb9)wvj)zkCu>#D}E}$xj;Urn) zOfLPBQQu|_Q~1MR;=>WeWx4vNFs(moWwl6u{4Wst1 zE;7B|g$5fIv%(#nb%WmVkFC3>{FjBBpVGy_25C+7&> zeSWuUFCeLWd9E(#gBtek#Qa5}RCnw?mgc$VT zvP+5ZVyh(l?k9q>o)HwC_>)~ae2epzHM5^4U(8=xLwx&i9){&_f%^V}&dG8D;~OrJ zropq6m3v_4*mzjaD?`-2XjbJlm#Q~bKvLj6JZM=}}8zl+oM z$#QgfOD4PuKSWL5GhlOo@NVf&#BX0DL9?)reV=d7D+V9g#eb;VNnVcT@J_Xm_Ov8{ z)T+lQ{iOh^vX8)^tE;KS%Mvb|TxZ319VyT95q#4#g`Vmg;M8frB_2iCIk*c>bu6Y$ zmHo)|SToY{Sm?Xagxy_{$$k5kkLTid*xjoVupxqwL&u?GG;Q->`}pD?tbM8_&1xq2 zHZ~3O0uAAl>qAJ6OoMbj3tptY0jK(HT(Of0JC=V8-X6WfZVg|`#@n2S#b-z1i;n@Y z*yb|)XK^d}e=NNIj#K?}{l6Z!I(6%>Q#(li+qK>Q*Kw==*dKqbNdNZr{ktFjF8}M- z?;iZubszkd*BOzh7;{r&H5$AACc|Cv4T&vCrJ<2?QTp|ACK ztN)I#&G>u6|I6}k{j$5){yNe78-JCGVlHA*!bfp2B{5Yob+NGJem=gT-hqn)mWTYy z5&d=T#r|regP5g)nB^bIzrOeP^Zi%t-~RvGarNJB`i%EH zRsG}e|11vf@c6F-|L(VceC@xB|DW{0KR-Wz-)%GgF*^R;4gc!zYxzIl-`D>_G4o!S zMORG<@la0{Hb_QMUmXXgzcdnOm6(C&?U%G(P}Eo?3ZoXEVN6Z+7U;g#enIEp8FoWWD06z^@=!D$Kcm&F|d zXZqkv9PO|Y@BO;Xwwc9n)5q_j=llqIx$q^GS%&b6%SY0L31=v68IR`aY3#F=K3f;Q z7A^(G0ES7?D|V25f4B$t`T4>|OAp$ARGItPS;r+ltK{~Vxsi@ZIK1uc;SQ?}u|IOd z3g);ThtV4%VVUenuot{FzyEs5xoH$J-?oF?;<3M3Q znolx=XG6hhfj7i@7O+c(&uK$)GWXlWg+^6N^XkoNSkt+ZH9dGF=pzhc(o!*WnHO}n zCHgY^0#lYf$BB#mex2=%wt${1O9?KBQ}6JHIBLR6wtt`;b-vN0Evu5y+#{Kmr9H36 zmb9f|*B|5hG6(3{^OGqrKaZ83h46FZJv=t9FEjsKfqQnzQdbfi>U$OJlZy(qmRnSe*2@v* zlD;#i(rVFY5j3ZrD!8awMiz#Gjv4##UmhXN5bu{{sT5vTa znEqgA3L8;HI+MNG%ZY-=8bUy4Jnmh$kTO>uq0$%oS%3GdkUYnm)%(iQf_Y!~foBAk zzNH3RE*3?@ULO?J5kj2ayM`IG$m98s#mqHtG`5H~!~N_CK6U$h)Xf&O9kw(0VzGc) zQ5>^9mO{rZI~<^r%w&c2&S#xQpSTtMU?Im zij+(3HRoKr)GoIqbaTt)AtaTMBq4N@N|Z_$N=e8qwbz_;ZK))QTtg~^B=_8JA$Z1M4y6pV$(x)am zrA{+6ON_MjY}C7s5)E86QFK^Z(`Eh|igGn8hW8B~FY5I^*ebHNXX)a3cSO>CF+|(e zj4KvqncLhS>Moj@V{OxOYpQ6|gC(WOmu?=b9iAd89v>wdm!D;G)~(Ij)tQ!-;|n$u z%uGZjEuD@#^{py3tCz76OEODi{8xywOJhWL^QHN}anicreib&2OB6-x`eoVdnZ8sc zC^sz)%MghcPQFxpZ0%{$>TX*_OW+mh{+GQ(Ynob1o*yALJ$v1>QJ>StW^d{!8&kAY z^m*4Z(Tm4Q#q)O-7r)^eh7eThl})-|9r2;l~^Q+qT1frXh`i(O(#>^zK!QZH$G&GP7SQF+3aXls<|dnbX&uuH0ky* z8}CI4rPW&UC6nvzG%$RSOg`3W`(3dyusYEy*+3PQY zpSH~*UcOGWdSepN89a-=Il7o$T~~pWHbQE4GmFklk4Ji6^T?qcpUGa|t-Q5wI`W>c z&fGAng5~*RkgPr8+stJ6i~&vv>>h+fGfv|9X(J_)Gw;c}pnk$Yu@k$!ELvi@IYH8Y zRw$pZsVsRpQ3Fc%?vjiQxWiXC8c8y?tdI=-ltVKOyGyE9=dy|)5Ah(lOlX$$ihLXp z&Zj(gC6eCXkj5redc)D5@=Ry8ZQB82^RgS2oO43fZHoxFvW>id_l1@n8-*_1ScbdV zcSb75W~1A8%=odH8|lOo!;$BK8OS{-g9wCG{GkYSHuCiu-s;O{e#^}nl6{RaY?YCV zBqgJUzjt+Lkz>uyqe@es2(6;!EoBElNexXyOG57O-CW%Gi^t_GU3y)o5hvyTR8bMB zwn^x4C!ehu*UbJJJ4Eyp9CdAa!m14KBK(zB3UZVTtm(pfUsn55e@7gxcJ9|+85#5M zamRnlKEU9w?E?({+CISG|9&6fpZ9fcN9LVm+Yv`czM>Bey0Dpe+dq3Kl7i=`S(Ma{~$m7kM=J=``dPn=*XXS z$f2YCf4Kh@?Kf@r=X?M4;P?JD_&5FkXyUKt0q?eRlJK3OzvXY$9<&ean1}!9`}p_u z{%0ldv%l?_Kknc4sDnGt1xuDMm}Bv0qu|id@dw+E_)z;!`w4{Kucsp8{^vZp(tnUg zSC=~EUwQ19_Z>lSNBf=6KLdacdY;eR}W9d`ET_K({e$$!z_ z{G;vde;m&T-)omx+Wq$SZ`l|3hwbD3ZC^Sx?O&_?*}fQlzkSJf{ppa#&+&Z6e3ef3 zKYcoIK*#vM)&5*>@A6%5JI?pB9{;WL{j2u3%Te~vxIX*Qe=doRd2ZMApO5=j>;1id z`EC6A-{((Szx$Kl`nmrt@vDDJyJjSOSCGHuU#efW5A4vpe>J`OSHIt%{Y!_|Yk$|H z4*9glfr9_`__h9V`xRQBwzvO1@vGpc_*L*jdb;BdJMOH#{k?rL`BO(nKDxucbojrY z=|3L7Dh0K3@LRrqZ*RPR%kbZs`fK@U;q&$jyMMPEf6KmTziuD@Z~O9heqjHkr~lc$ z7=Gt7_`Cjeu>JRrU)8?rZO8omS&uvT_;>qT3H%(tdc65<|IgH)=lQdrd;YcQ-}{%} z#;+ZE+0p)Sf1>@}pLBSrcDeuFpZw3}U;k3?sV1%WRFVk{nCr8|XUW1j^Or91@>wXO zBNfE29`V)rhRB1Yxq6!)$Yd>|7yMTnNRKG z>%U*3dQ&?m+TR%}JK26<^1a_qrv1dx-}}$Vx6^07(=PqmX@~FQU#@KL_@fBkp! z&mw^iKUVf#U$i^g%I^>K@5E?Fo>%5w`vnZY>#d5+qfWoh@L%ht|5~0`_1FGR?fmuq z&R<9C6SyE?ZlKT7CBJ5Mr_K%VnLE#K!JiVm9mE`qAA05pek7P53GgEUe{k*Q%Zb3S< z@{juw{r{pLiTcEm}c1- zP4w4b7mb;Y&x8gt>hsn>)ulqN=u=ZB~ z@(xLOFpx5e_o-P&ie^)@|;KTY{af-kZtVOS}5WawSt``I!m z6s$xGhP;H6b~ds7S`{tN&6zCO)2kfzO;%$KJ{Abifg{2pU7L|Xw^BAiy%AUBtwtx< zGXAY+GX4-BBdIT3PJ;pzg{sB6^sAzfZH#_r;W^%zXuBJ;`D<<9FO?^;|Cs5(!#$To z^*u^}i86J5Fp8vYJ<7Z-FU1cgE=5nBKBM#UJ>adn*+j{DHY!`S*Sy$Yk)E2KgVmHm zN$l1fqW!@V89m)ktO~Npks+E$yr}>Wl4Z!kyp^;*q8wgY{*3d>J_p&mOJS9x8a=YM z7k&BZ5;WJ2fz#_BVr?ZaI_S!MeB_WU{c_N!4Y(aPB#N!jNs$OeKL2ecXhStOI$c zY-8b9jSMO?WCKyuxI>C`^3akKyNL}`OIBx`KqlMMh}Z56V(eZF2Y%UtWk%YOF!j~6 z*@1()P3d@)5=2Y)*TI34lIf)ZK~!~h0kq!kF6G6Tq*YpwE`~R7!U#_iz+WI=14?1u zq?P2{_#onRQ578BJ6q^I6p=$E${ zJd~Fw3h{@?ofRv|^MEE&X(CT6JM~7PuP>6NleOvA2xZhjjELp55yUB}6Tf9%HxzW@ zE4bDx9-BnpgP#KS&=mvB=!bJxp Q^pnJVw?4R)3Kw(^u%=5JMRrT^z9x`L)!Sw zX7}k#Z$Cb0#6A$!n8+K>Qs!mSV)?OVpLnshKiRWbh1WOi$vO;sN6iOl3Wc)9IHgQX ztC`DKO9!I#6Y(TA@*B~b9EemxCy+y0kt79`!O0&xkx^cqNn?N~Rb5a5%bv0T_dScf zBbCvuaXGYElObJ0lVJ83PZ(d-gZL_@lcn-;*z$4>X$aj*p6*shxxLbeSU!``?8(Ub zX%CXo@{t>ThR|^KEwo7&;lkS#zAi|Bvb%YD^ST^uQy7Buhx$Q(^*dNNtuLLQeglKm zmUL`E4e2s57Bxi}&?9f^$=(u6w0W@+sqwGIP7$`ecGXCv7SV!dmUl+qo<4v#r>gP| z(R*o>6%YMh_dz#@cV^tijFSXC-bhYdR~9arCq{NI<0awYVUnSHi|7oSdpr^MA%Sxh zB@;~LBp3A_@^TmZO6W`DVCvu^^&H|D*H;uS=e+P#yP#}Rr?qbcg z3+QR-Mx;uy1o+K#f!b%Y;N-NG)L4ll16M`D<~i>`^zK-o;eVX;R_jW7H8hjEU0aCE zXa}U+l1btld(p?ndT3RGIl1*Uob+1UonKmKh~mgI&at;M3?EYfx6UL~e`grod0;z4 z76gh{e&rH&H}V;}ek9qwi0!fHB8vCuDPcY2CC2kr`0Pi?eD9*y;OO*tUbl1=kDCti zE@un*mF2x@j%ya*V|YJSPHPx%_qD%JygH3UN9#}-w;2M*stw3(za}m zDGOR|w~~bLW8!s3lt@soAfi9s9?hwkfUk}UC+3^hLG^L2WNISDayv!zxpy-d=j027 z;2sFK-T||82O|9jdvfQ92h4TRhD-c>amk&9RArqeuwgcnvV%Fqvfm+erDi^{mmvCN zjXTtxA4)E9r^qc&d45UMNC-ZMbF&NgG1GNE!{IfusI~b$`K7lV-sN)>ny#$mDjoX^ zTgIQl-A4>(>(<92BQTqeG8rl~^L@sf$#voLg@K4dS)tdiUc%SDkLds%FY4Z!P4=wK zrM8V_^i0t<>bKz?&3oOQdd1nYZGovoH@+F&GKR!=Qx0+8aScgcxN^E`UZfEWgd%4v zl7U>w2>H>}t+f>d-;lnn@mn^qTA_zR>N4Qe6FOv~BnM$= znVk1nL&`4Oqd_mG;>gqCq=a1q*Nku`eb^&-@HY{?4Vpket{)gM^brs!?|{$l4?@=p z#}S)}b70FfO*q?p0eMBTc zzC54%YAlrbkj%+-rOYa;&v5b?c|`kvB9|uHtIZQR+a9;AmRb zrwv4(8^&nY?giQ5ddPpqUT82+hm`F&0Q~)w(Z0Af_{^HKVkPw_;0;BhlW<(?6rlT{kPFq`jI)kKf$MW_ahEo~=0fK<5xb?E z!O&PWrtEZ-IQR$)itIGWVYx$CQW69tQ!N!dp1Wx{j+WO^TOdI zCOj8joSA`lWSqzIwkgrC_l%(aP8osgxTj#--kxwcY9$dCHe|=CKzOiQ6(G(TSWfE( zdD}V+_k2`J+$$^b*}iw-X|+^xN#Qsda3>O$ufL4_8*GSQa~54*6b1!Hl)%9h1K5A% z0+>rj(5$a-2yh(<7ob>-~~N5WGLU@yoJ|2YCzAdQQ@0n4x)*rJ7`ptjPUA|T4GZb&U@*}6OYM5 zk=fu>qCyYgldXf%%qLBF?rn2|)2G3&GGhGf{Qz?JP*1u!Zama^6UtS3S;FZDG9l~h zOuNVIAd+NH*p`w3Kh=N6mgEx&-Fi?w>xCRis8~zhsE$MWJDqXw5#i*lPAFVy;YOa- z9l=AN+fwnYhv4wAC7`6X3Aig}z^Fn~6m;EzsGaeER}N~y3DX0x>*Iy=P^}&iE5{Jy z`TI!t>%&MAHlMs-ji|Ejba>-pC`s2jP0r{k@XFSsp~o2y?!eRxrY5KjitH4SyXHso zX}kkI(4_&I@2lX#pBf9@P0R3o6CvAg?iSQGe=6-0Hca?A^96slP?4XvFc4KMb{5KR z&=eY0K9;^JC4vq$$Rtw~a_G8?74+tXRBFBTF*TI$MuRME*=6>rq|NjJvRNx2BO~?_ z+beYlN2PEli8p!o&;+*XS&}dJCy;v&M$=s@+CZ_ z)?83VFAXAbwQL(H+g>aVa+f2?1J;mmv$1F)alwo@f+$}LfpzMx#J)w0tE}wkPOV1J z$;uC;ZhQpH{WIXl2_~qA-gr{>eh&0rqYW)S%*3p_FMZib6L`IiC0jS_CC~j1Be@A) zq<^ZA8Y;|yN&cZ^oJl2d*rvb_o^B7%EXn4&MR1Hs(igaPS7+qbwT+xLACGSYH^51H z99J}HfH3ab34Fc|u-$KMMjmAg={-9}IP~T#{`eIIzA|MwS{x=XthuWtOt5dEF5(H) z`F%E_rFrzQZ8`N8r_-_oWxi-qH(C?v$~NKcWO?HQWNc?fT(|BeX%Tg(p_e14V&OyT zN{r!UWh+wC&6z}6kD)b%@4@r_n#>}a1vJBZqoHlt@S(0QG1{L4R%doa(e?qj?1ef} zxaf>c{rZyg!SjgBg)Q(d`hu;eOd>uvE z{3bwyWT+O=kY(p!biyOS{471_Rk#A~-M@nB%{HR3>o>uGj5+X>%tdZim(6_HnNh^t zZaOP}I}|Bx;`pHPSNO{o(UkFG`D1rw7}Dg%zijQt7kEtLcM5j$TI)ZPxBG>>M*q8L z%hcO+)VxkYz4W1^@>@Q&zP1|IEZ0T{JrOxJBApCojF6k~5w=jUCRRR?kg9CK=}&j! zb>aP}jd~~?leLK(a?l$3z)djn{(So2XaUhoT?KQsq+@TN!GT*g;v;Q{TbSmLuYcOX z72RI}*6a9TjbMxy^y~qB@2X+fC)S+CdUXOil>$jI6%4;R3AD|Fp!9P9QG6PTZ=OyA z!RED0B-+ibOWDA@o?6Z2);W-i;~sFc&%}Vs!DI0IIwkV8{~&l}%OIT9DIdEzm6L%N zv|)vbJ#!%`7zhS%Vv*T{u}o3RGLovDv^JT)v1@kw0;{z_< zRA!4dcpSBfB$(|XMV}6#gp>uu&y}TPh121DB-PiZQ)I^*dEUQv43x}^<5WD4FmGOd zhLflq5;%M$2QH7olO;DHeo?{A_-Z8VW_kkq=?U56d>m3*IE%u2!-PW?zTo>_Q{?g7 zxzeSyT^6MWhXdbwD~T#T7&0w ztzP2uPsW0>U71I+$Bk$F8oGeSx60%r*Bv`73j`^bE1A(7wsW7>rr_5XQaPEI6w5rV zo);*AE7a$LJ-D$F?aT<(F~9d-HMp za>PV1@9-3mZ!O2Y?YEh(GH}3(d;+TX%mtr^MA4~7F>MVVh?N>_Xshpj5If48wwOI9 zzAshi#V$6qd&Om3ZKY1fIvjGNcze@lthz`aG*B z=Ik2ql-6-)pNxi{B{U# zY@0^XJhQNK&N9;Ww2~BmeGkW~7an@{MN^J=7nrqKTI*M`7lnv;yZw_e;{6-GO#3ApJaU^3*Dp3&Jg$8%u zV&teza7+}SAs^o0u08hRx=J7Fo0$(idn+?CONPT)M`yz|mpy6Z zj1qFU>I&3(+z7&-9mGC8s>$}1-3Y(`D)B})iJvh**LNN!RkHf@!94|3yHStC8+ww1 z_FZ^K^&UuO_cBg@(->H5R1D88%BOb*1=5%OkHfF`vY_HsZEQ1><7Y8G(l{fLb@}Bu zO0?`O@xS?wKQKgrU#GmDZ_D=s_f=Q%i2=6!yTBd1z0Un2Vp_*W!OzghMY>6NOYz6BT&zsjIK|{)1>%g zcU2qS=RI5+U*^Kqvoi1uDgJmO#UCr0jo_mw89{*KQ?N;jKLl(mStzg}$0`G1jTC<* zxny8jDgJPm;tzW%{xCgViBZ41@T3%fxGEkeDN_955PBImO7X`_DgJmM#UFZ=6-uaoZLpjk5c?GQi?yY6n~uQDM$39lGy!H{NW8Fc!Akj-cyP{Dy8`2 ztQ3FvnJncc;01LUI+S1NvW4F&#UI5XDtvzILG(_FKeRT=2ot3EW0w?vuu}X{EyW+n zQvC5%ia)x49E@D0_~V@vf5dK|2F*K(@g*t#n0>e>?YDV6RD2i8-Ct-4gQfVRUWz~7 zO7X{p6i+xNH3N>k@frUQt_K->Uvc}VS`YfYJhcC`0@JbH-mxy$(f;xEu$Nccmv-!a zv+(%)^|0Xo(G{TI%i|xmUdaCM(2swZJY4=6Gyb|>}So5ki0 zWkOOxGn|G`vMUo}hxwjd4vnz&-*?JQi1@$JL>FbE!g?q5<{$p%a zyBj~y5zz#jC>Y#-8U#Eg><;AbSHu@=-O4w5_vUAeoyM2H>kVu2UQ_>0 zA@p_sW&Db12l>*+kI4gm4FBR<1=^x6&zl~8$I2evN9YDODx1-r9M4#Uj=gdtGnYu= z(}5tQHd~&kxz8o0ACq9p^Yi$%sRFroVFb-wxe2~Zo5ppT?*>(dpN6-VdC&>A^~BqE z4YW!-2jlwP#9R8xVy%^qOmOH*keL60xqn|1*eh)WJ2lf8>+v(l)zLcKyMD@yp|Klm z65qg@ZffA{r7T=Bq@L@sa1bhc{|*RWyuj9Xz{uVV zs0`Z)l(${O`aRvq`3b*p#ul6LhP+s~bki`>35^BM78;VOWly=noY}~5)=ron*M|Ks z@wj?zXHL7zUDkS+HMh>|F7>Hmdr?n)sUO;~;1s{%{b_K~>J@6bwvpStG8ZhJ82}DQ=a$y_13-La zEzrm?VlqmUi7tCZZ1C|AXLWuY3{tMec9rwMz;CuBT(5z7bapgy>Kp-Qbk-tEw%6b> zLm8lSVjz5!+!Mg^&Twed2xu6vgJ}1-3N$u3z+|$UR2fk)Iz9kAo}`MBR*fPbJ}>6_ zJgC6yE~=69E*SdUmp9ML19lR-=H)BCf!(#cG`+T?GZ>}^-%c4J_HuW0IIPbgXI1!{FFb1sC3T& zUaRkbM_xTpe$#kzD@BG`H%*be8WK-nqAprKdkfs)Jc2mfizUr(^1*npfULQ>nep$s zpF2T=aDVCBO{^^UGYgEfao)V)U?Y^^##(JGzCD*TDk|ZpnhA`a`+FwijSOrMDI)79 zMtEw^&Y;968a#Vq$1TyWA#e64f)_HHc$V^RZ1h48wSJD~lo$GwSs%|a@&_6*PV7aN z&NQRK8@+MLeGM$UVlBYo<6yxHC3N9HH6~x`ahi(@M1K9mW}#Qv=0o+&z_|t}%_<6p z8ATzNfuGs5Q49IoQ=`e37FA@~C7<24`Veck-U5sw(J04g7`BSjAW(G|)oQUOUg6XE za*YVmIah@(u9vRi^>;=K^*K(JJ&fs27VQh{3RL(dxHO=iNodN(CMjw7*uL3B`*SV# zK6s0GYOW!ed(aQwx^*4Sl{v|!%t+uoA2;`DVe@5uSlloP#_!6eq6jPg zgvus#I`lZnR$GS^0%iGLKI;5|k_OUU7E?9Xw_>?9bwtr=B(j)1o%mn9k8X9J0)|df zqmAZ>+0&&LDH}J4>$YGe4t4g&6~`;MmP%8`bN^RsFzBlqxHG~R zSDdTHWvg`X=b@=g>!>#c9x|r|wZlcAI&upqbJ<#;5v+u+UUk{&lZce z{w26Nv5YhAwE&#&djj9u6#xsKSut<7#FN!Ck73Jm_IQToHQdsaNV=_0XEe{KgVp}W zadqJxCcwuSg*?s$liv=;DOU`!)2Q9t)RanAKyTpPy*JWy!9h53<9jq(bd$|D8^EWF zAj%Akh7ay$uzPI_+3bm((AW5jC}f!c?upApdo&Kv`)VY+HD`Os1&d=OAnii zN;kqyAEH3C(J8#LJQ+^4u?53)2IAzq8?nKZD6XtV4f~}E7;WQvak)}|5KtSq9d`F(PCiSI2p9sZp7jM zBG~S{ELyA>yBJpgkjNI>K_SDbJ)P#~K;f_bZW6*gW|ApI_$7H8>2;)qaF>~W|F zM%kOg@@M|inzh52-M(HN$11RX=aitNErUi5TuItm-l3){OVusT1E~!#gW8@) z(NU9a=nj*DqR*A08Rz;#r?-wMU&D&h;`8u8l_hVkvWzY*&10PUKgUVAE5S3Z zG|+929+}#E9Do)h!Mn=7xV7tGftxB2)Q`7@0bBRs&v&YO$8Cj{fNo?B%G(eQ5@7WPRs{a;<8Jr z%+-w$WES?|G~>Q8a-!MHm7u-YJx~!BeZJ4k?BmQxjJ?6&x3Pk$v8RCJy}pcL6zjz5M}b(Dx8inqAMWyR8f_FFl4&e4Im$>>WU47Uh}OtKVa^wm)I+ zD~#aJ=p}GdZyy8HY#3JdoI;b|IrA$V_M(!DM%bO^l7oiwydh`GPh46iV6fFQqb z7M-G(fSi}!plZM;kf*t`@U3+uXEbRD?C#KwSPnKJ_lL2>{MHoCGct)O`nH;x)N%p3 zWF5qJ`g-9NsmVCE%Nz3O+Bs}vr~_ix*usW5S*SjR2mSXC#-ksa!^WA7oGKFrf=Biz zP4jp<_~{LNYjzW;9kCM|kB#L*TI|r2fh(l77#}d5U4jF($I{}j$GN8MyP#^ra0tUp zVZUdou*-;z@Pk|w?0&c_ST$D&&z=h)QHQV5>atXVZ|1;$Vh>V~vY0V53z4jBTumMn ztUwwIPQgQQRs8y@bjgv%L=H(cZzb0|8tm-sIb(-9S$NQI3EzVHnpl9f7m-r9Vq){2;1l}6ww zZwvcHccZz;9b8=F3^m~rlAERr4IVE7Y1@0C9^TD(Myd|J;CcwR*{mQ3re~4+FHE4C zyB*oka0ib|w+5zt`l6TR(>b&F1<=5JHGFCiL@Ol2;YE9S^s>&GSiTz$6AnbdqBoT& zAZ`SyVMZ|HHO%m8|1#q6!Gu(9Yk)?&yErQ;zwy>S%+rApChL&Z7Wv7#xzAgPi7@pu=%7D0Hzkkg2YM zy%ZnO)h#aYO-wemU#kp*6V}1N?df#D(Cf@R9Rb{6)teajDZ&j06`)s^26BD<8K1N0 z#pR#Q#gD;b;(y5tN1W{gTaKQ0{2YGZn>ACGkBd<6+#Tv?ee4xFQI0gas`3pGCp zXyWiJP`a)j)Y%NBOLmuVy2_9G$dmZqb$_BQ>IHJu=Rq%-NOEy<6LvLB0LuA2(HWm)rs{qS ztUHkiC#TM%PkKy-j~=R`eNz+3Ay*O9b=nRCzty5cl0@>zvJ(>`*of5*ln}e}B=|N& z1J!TSByGa|MEs-=NVGNK>wDe-%Z9q}seY^IPCAjzKKP2hy|tP>zO+B9KKKjK_mb!5 zt+3;#of*IuXia8kRqTNIiJjTXlr3aH*ip38)tw)ydj`fe947bl1yFg=HoC9E9DdbE zmhzrJnOQ4=-wQ|BXgY`VR#Jp_l`Pcs}hscM11^1DDk~> z7aLfO0CC#~f)*7QICc3Zq%$Cpdzo6wtsM6rkhPBm(pPxWgZYoZXw68x;K+77^HKzo zS-6~29+gczA4TKbql1XAMF45z7SOzH1IT-c23A+H<_3?=fQuqiQ5`!N+q-Nc#S#vd zm2E4G1kOTp*}=^1wh^dkWH`+An8A?4`N`&FHoT zZsgSdG$vtwGX!)wxSVKRgiF&2=FUwGf}O*C&m;UC5Q?3212fFeJBeJGtFzM?#HcKt@n0 zTV8DrL+o7nWQ{e_n&>k2%G=JujKUHXa_yQ?yP?ZSZd;&Sb7Ubq{1)Ln~iNa2EI4mgw zVJ;x%XgW}f(Le(XBS~nVawg=sHOY^hOMFL1qC1Ke@U2-Wx$(lE2)kYYV-(MjXWDkS z!C@S^`fxMxRvd&}|8uvI(JmVv-YnZyo^k080%V%VYU zb|RzKk$m*)Ry3l=ZvHVppO*m&sA23NcKh_zZ2e>pUe79&uVovF>2n?4-Ruf{(c>lc z^V!I@`Ds#_8WFlux0v|q6(Jqpb>!2b5_01_kJNl_Vh!o~^YfSx*fK|xa4vmG?UR`l zgsz9Pp1u-`V{KsURb|w3?i~_feOS7-KO6dFDx#9A3wY+DJ2=I~L~!+H7#7y}aAl9= z;5@f2I412m=jx;ipFfKd=gGDSWR;f?eeEm|8K;1ooL+&7!-K$Tx{O#FcP1)={owKW zBw!z)#^eM8qBrptBRl;G-nS@)b1Gj5#}3jY&LxXM?aB|ppuz+P-0wnH?7CM{r%;|Ghsoa0<#Zo!#vhk?>P9`MVdTxf1NlG<;Ug=5|o zz^DF?$c6{A;VHdh;H0}6dFxB-SkJiQh%GO$K^ID7(k6)uWs{+gw0g?OO^aCTlmYqe zZYaBPG+5N>Hnd8qgNd8>({#yhCQ!BL)SJn5x6W9qjbjd^WxPWe;X+tMq z7!bzIKH`M6k|Bt{z;hoDrh$1!jqv>28_ATj3HWTOh#$2a6@jQM}-|48|95ecIS0>53`kcD^ z4&diL^QN(Ow$%2EJvrPxke=U%P{7sqq%pA%8$L{nEY*^b?p;4{n=d}V^^az8H&RTw zih~r-co&GBA}@<$^Y<{rbfgz5G!b00nudFQJ;ltpIU8?YU_~NV=*cqcUtXv%oo%!C*W_=W~GjgsTGl;y!o$;(X%oRsnKWZe(7r+dy8Q ztOiT^rIS3~m?&*Cf`YrUcv$31@^+Ug6t|6{NcjX=-lPYX#AC4Q_F_=%KAyZbHiL`f zGMOc+@wBxH(FsFVLbr8pq#q3%dqMX4$U#&zPmaawjM);uCUz(}z zAY=4IYa=?X(TWV5y0S~ua*_ItTr_j;C$y!mi8H=`8CMzAK^qaD`|iGkVQ)xU89>{&$_g=!$-*uD3MT*-0Kw%87=x%X*-*7D=et@&-w* zOyO3KyaL`ub|Gqpx0#raU1*v#|I?#r0m-~OkluK%NO~H10hLkCsNdj~R9<~AoNQZ$ z-dA)d8jfROq)I$W-@G0L)Ty#9dmQP8=sR3#w=7_+sYV`n%A&-lzEmx+QNTN8&^=ET zBn3;2@QBQ09(kN*i$AJJWL-RYt8rI^E=Ggtr~Ah#T?ctMa=S!jUn-wEEQL+594={; zE(OWt#xNDi=Omk>ktD9yP=3XTw|GIG8r>TI6gT!fC(xex3Oab(QqzpVC}&hZj`;1ZZ3KpoR5P%wvg2-ir7sWgT+N{gq>#{5W9?jit@Z#*;#i6A~xYU zTGiQ|e>Y+WyK?ea^l{mE$){KeJJ(T(rOnykQLvscqa>W&``C@2qQkSAMqMP^KeFl{}j0}d;ron034OpXTHvsurdLPT=>25Y|_|RzJEeB z`@qnU%?VAC*qziv&2M+0=H6e?yxJMU!;)F-PETjPC{<2qvhgkNzyCV9N45yFzkXw* zH{C~Jr}l&XGwYz-^2b0%-BWB_nMG#VsGuvY&xv#PdEzUZ1~z}p!tWoBr5_EqliG+< zDr4v=P`0jTBx`!(+qd;$?w})7x9$R*y=Eq0?~Mb^ZZ5E9{#txCGFz;y5dZ_`SL4PU zXJ~y{9-iIiPp+J}&FoFGf$tATk_V^zp*Kqw!~1>AxCFb87VCRn<6P_Hp~&$umXq7c zRgd97o5n5pI9`r8#3+j4%R1<{x((aU?}pyw9fIpJFbT+%lg6hk@;s7D)=b-j@?D0Y zuZ}%&Vo4;XMn|N%YW^x+#>a0Miko6WtVW&V1dNyJu?bC1xU7wH84XY6- zJEglYW|awA+@+4Xmnc$uG?(3C9ZelB?xt>yZhY#fCA@@jq-R1tQIk_Ec`_XOxuQ=9Z2j|p+aP#dR(mK__0-v1zOmV{zCS=%oTzz#Pr?+1~hMpdlWSvlYYm&s>zvdhFupO=dkx zV~h{z0u7&@!2GES2^pq{9ou~2m`zP!#nl?-M5jW$b!sl05Vsop!8TGgaw;g#`3wxQ zEE$>EPYQ>uqyBThQ2FusWbrQ>*$vi?ym&$$ z+52XuwBBBC6WIAAmmF&;?DV`Lax zJymejJP3RmQHHZ0^kd98Gbo&G1uDjOW#$i;AsMIQVf4ATSf`p`{e7m?L3}wi0!=bEb>>XC*9Ac zu#Lv%?73;Ge4m3hZ0W?~ylg=%|8Y(ct0cDw)$1*WqYgxXgji>&ji=zyu@%@hS(aS( z=?iPhKjFdV`^ojsyKwS+Yn*s$Gi2uPCR6v7z(w79p~dHiV3SNG;=U~$JczyxCzP9j zGfphnTrwP(x|zWdc`pS;4eP|~-(SZ|I@>});v)t(I}(qB&jjAo89P0*!`l9xNa!!i z$e`*j&{RiOeED)UcYo+{#&7LzZj`)8?a|S^wf@H(sGZBmpCEf8x#pc z`%p%(=n}C@j2A0!NR|2s5z$`kL0$~HLg1woi27HH)7yB?e%EeB^V4l?<1h|hCs|@= z^Zw{{rUN_q`de_@KOOxa^4>kFrmyWAPm*+!N(UX3qVs95Ip^9Dl8PLoBqSjn$f+EX zN+%t4lnO~IDHXNXoNMh85|V^aBuSEloRgg2J$|?E7|;FO<99#rxZn4F-{&`ef2}>o zy2e^-UhA4`U-O!u&u2=l8DLXB09x8D9U=ZBj+1(U#J)gLUNQz1m{-sddfh14qL6)J zYES2vtmH!6C{`@Eg$~2-jz)+g{Bo%y62 z+w(fF+hLPjK9Q`rgP)=r(xf8=pRSe@oSI(2NZ}Ryv_t0_+50S1Yk_`*)zfXrJKB#YtpBa}W4ZqfV4ewTYtQVUTEq z1#TM@e0SSldseltgL0nlhF5evmjBkiD`LB~H z{rhhO3Q(5e6%2tTYZY)|S1PY%p)a-gNjk8Fw}5etXdOMdkotVy7YyFkq#8Gs0uLEW zrqXW=B^IZ}c&m*eyIaS?#3d&g_m~7~b;K>kG~FG`txAJ>jY-(Ix0@GHe6VWO**;Jk zJ`qN|-i5OqHh|j{fRn!sQ0L1E;O*NTloq(oD;X-mJ2jNJu0~s8+{9zc>*k`GWoc}4 zZ38iKwW7UJML6^3MmA;MT+)5Dh;6rYC7(Zhgc5O6+3vXUbnVjdP&Y1*{kf-6ly~hx z&6ds#`z;aco7@1Wk6AIn$4*kcAD{AeKQtok%V$G_`O28t;K6$wvYtq6IsiQGSQEci z%oKYwqPao@@GjrU>z|`ad9Zqv`qS~0UZ^`c`D8YGbC?yyqq(5snmUQF*-GNtFOYFt z3}91c6>RIZ0$xpa#I|7-N*MEvxV{2xn{GE{S9T7>>|cfby;F#8=^eab(2yyVIY%~s zEMz-wFNP80_A##G6N&zxNJ8nR17r%XL zve2-|n&Z$g;(tTJ9$H!GHk41-)t7O3*#Z2C+iuWxV>Sxi_jqtI+jh|F_HHIGS{AXl zwrW5zzY;6GE1&V#H*?7x^F{3E&)M+!)>H6dff{i9=*8w;JAhW+EM@&BcCf_?s$fD) zBPiN+h%xje?5>_uxL=mXLUqWfwaxXUBix;Qq!-c$DQKR(iV_DIPD$DU8e|gHlI;@6sXQYHS1L ze5Khoy~zlK3#p<-E$qOvA8fq%2Rw38s2A^~}&c<$wfHlri+%$>BESM?_g5{S|4qHaS;-!+@ zp1206vG2jPPmeJ*7>0BvNhGdp$=zGY@r&Yv#|NIARzB!2E`Yjr>@D46wT8< z0{c@7da4nKO`PQp^GVa%I-yaS;NNTY2N z#jS`WVx6a{Ed^n4#zJ#2ZL%cWL&P1o0M5!pk729LcLZ`2+sbMCRKN^M%oWF6250yDhkE>`rlg8dk<#By` z%h4oXCul#zi=Hg+NsFnjAn4r{bbkg#AHCy)6-&a&vY^+%-Ohq(pMM`m-P8k;;jc*L zN@;jkpbzIuT%g2WXtPt_guu!7qu9GD=In=l6)+^X3e2d;0gfWwn4Uas7^N~3)Ln`M z^JGPwcY`{xAZiCQqy8B&`YDajn~CJjy`RLhU_I0^dVuHi4v>DvpQtTMW#z(5Vc*G4 zO0drpzrXkZ9EiV%?V3BGU&FE_BgUU(V(6N&3U-k@WP{X~I&Ubnb?_JgSqYX@9F_{H|6;lz>R3Dcz+5X zq_}|E;wY%;zX}CsEC(&di?JX~lKrZ^45jtB;e6gPHbQS2j#)67e9zKjtvZugkgT8D61L9@aY)294PVL6R8*Ox4Kwv8 zqdTM1$gvz{sJiDoG}|rWgC4F$S0${8gyMB3c5*tHYWoEj-FyIocgeHvLDqOxm^8Wn zErh&R3L>pnr9g^aD7xalm+i?_MS+_xB4<)ZnqE4=CruYni@gF0DnN96zdDh+up3(z zs^b}QTZlk74F%i@XDxG688riQgs#(E#1tP!cTyr(ws9(T&DOK}-Z9PYq z%qu2M-y%5Si3FjuPd7Vrs~vrmu@ZVrzC-W&s?5zE#6nAVAT-;Rz@7OXgf|>5A)4I_ ziR0TC=J+*vbSrTVJ8v)&ZAn%~mu7|%@eoOPH}f(QGu+4A5x1hHLiEt_m6Eu5<79C8 zu{$x#HK9L!P-mO&JKF`p4VR0?PN>*d(9wDx20wp*ZOe~= z1v|$_I+?i4fF_-A1Mws-K0@cfE}!{k4N639O{~75pX2Cp@iCdX4`8m zG;Ll1(RzQ5*%I*Jr`3g1I#lu5v+aYm!M4cjcC;vQ&GS%SkvXDf3+-|dXOEl?{1>u!&t63juV!)135oPa^;RMqD=WNra2IDGJ(e?HAJ3#oKE^WF!$HXA4(gJ4 z8q{puPq58>sNnciw6I@>1|_3$Ofuhfv9OYX%4-|y4#qu1-IvNjY(6X^uQ&MQ+O8atJ?`Z?pw0os?tUOAKkqC z&Eg^mnid`Ly^f*}rqK!$bGUK8y6JT;JUV&JRbkiaZf*}K;)=qvQ$khJD?75x<)g^5>r4Vy8J&=GD&wI?H zo4Q1BIFxD_^RZI-!5L6KSBF0@YP!Al2#}AR`vQh};`k>8Czr z}JQHbwt>Oa5 zOR=slYuT~dXHnimL$1Yf61#C`B|WlgknQ}|$68iSU|;peacvK>*%@yF&_;1h&ZufV zeMX}NRaIngynP=;Wt_gS7}@hPxHXic2WYA8?L6d3v;Ng!M> zA0+G<%gp&U0!~N}gL1u5_}OkA)jBEzSO~M3l0gJ}wpd`Vt1RWu@^QVg6DfhlxOe${ z-dXk{uwH0N>KfiuMN2&amOiVf73ET3YsLm}=fQY*(!v9Vi)!%Sd}T3LH^@|O>|w-u zIt6J{Mi5eN$ar{&Y6H=UrmtH2{QU^6TbOm2Kkkcg~hNj?`(n>smQM6J^8hOeUvtu>l+;ewNv-AQp1YhE1wHm-Om~>uSB1QHMk&~7bw5{5;d=)jZ=9{ zahA6G$sR!~V_xA-%$tOGQClT5!F(Lp%B&zA)G1*3+=1$?zd$WC8K5K;n&9VxpJ1oy zBouQh6E9UX!CO|&#H*#$@ThfCNKtJxky>cQ^qNn^KEt1I*1>zsy6>TsO6gws%Z~R0est8Pd<8GWGYiAxWV8yyA}kKsqW3}8OK{_fr$ji#hI}iWo7sZ zJ}v0mv8TlTeLmY#+0L0yaAko^6Y^V=#VrtSqUV+2h-;hq?8{fkK?^CegjsQ#cc><~RqWsQC94P);jg(WApDt;NU4C)bt0$8|b`1*d;Hk$qt&Ph#JmCMUErz?JFl z;LwE}cvrcKY}*b{+S{eb#@<_e%_N8ad9qe zIr5O?HmjrGW18TRo6XF@<$hQ+->CA)r~pjo5$t48$lI8w2g9Syk#CYCDZYJ!86Q^- z>vV^C>Z4@Qw#;bCH0u`mUe~|`n%bhkECrVF%tKMS@kn-RA+8x%O&%>BLx?JY3*OBl zh9zULy!m|E`G5j{u)-61oLvtkv=q6rPh07_Q7&lii4e|syDdMQCryiRa@@u7Gice{ zh4lFY>YRzG9@@CAk6Zcm1gB`=Mr+NV$+|t7&b8iq1TvX==s#1380?h7D?@m2&nOLS z^g|DkpPjg#+e#*H7{|*zydJsgX|r2rRH0#)9F%i(B#yY7jPcHZ5@yw6MF$P4 z{2{^UXf?6-Zv{un&8c4bJw&*xnPQCtNt4NFyskeKe#pGcObT5|qC1D6oT&k;arKrc zx03{))3bqbIV-sNd?bmzdIad~za#MYsYU7zTe9I@{YU1HqC6)QYWAC(sMd_;7C*9%LO&*V9)F9EIENeq_JK{X~8DwK(h6V$PgVrF#Q@ zlPOu>=(9(QX|ZXuxyIx*DC_-VdY!Nr+qPXI=9H-BUg`)6emIh%mFKXjbkM4}mWY?3Uyc?9@3F_$0gpq^$j^o_$Sh^(O}0_tjwHKD6Pdb(hGz z@3Vng?{2E4>At{u%2X01e+^HYJ{uMbzJp6IWx#}pY)s$mgD>y*VWa44WH6|oiaFT` zejFQ*{qIi3@4r>yET<+$7)KFuPm8?2IvPm*(gIDjy5vaMM$*0Y2y{sM31}a2@L=dM znKDiWjaVVgE?nTwIzJf)jNm=MKwEr%gaVtnrWk)*I0}2!?Wd+>-UqK*#YkY>RYA_W zn{e`qGBS19dT2B85ZujWk|K{(Q0|Ze4MjS~Ly_^Q`k58vx?VC~LMK6wOe|h-{S469 znNNJ?ykp{*Yk(cm7h%lpB;uUR7nFr*}ArDKs=#jCrY{}LYa!CD~8k^yyf%qp>huA-CWN-Q=n*_7rB@x!X*sbRI;HjGPtb5(Zb5gbKG>D zc<$q5J&@5c0N&QFAx&F9Fy$v2p?BfCv}OA|C{TzcJ#WH+qW>v0Gx0XjdMry@ z4kaRLcsvdbc+FU?{DpPL$7*)p1PVSX%9k?92)C)>n_==GDJC*!~tf45;eEG2Advw0BU@qE7=w^ zQnkW?_0-x7UHg)$iN~K2clEoJ#(Gn>k+r}9pPs|^tBI6&vNJeU+FTTM zsL`AGI`Sjq{Mrpmm3+gUQzXH+8~X$?$L*Oe;W8?qN{pI1Zv&W2o#hq(d`QV2*bk=V zRrA7b$nd-yPGHNqPe60kS4wwKliX^{q=XNSG9qv`E;@4#OZ@aB1zuahC3|hg_em@> z{Zt$^*HE<1GW#;Pb@+~8K&}>Cw2ML^V=jVN5kD^Qngg5Ye*k55m?8B6z;#RWVDr9N zp!EDz7^NXW4^_yb`-Rs?qDmR^yHm=F?NQ`ygJ$#`iCpyPw=2|NTu6;CSqmHvUVgQMx0V9Iw6Q2JCTVZEHx-_ zAj*Bg;NJGLymJwH;GNE5cp=w<$JslVr4i)ls3BjX`?Kd5~i{f%@%`1b|3eDsxJy;K-eKg0Jd| z*nf*6JUTlG^i2R{YDXGgXS0JTxTb?k-&K15?x5LB z5q6!3VOCiOp=BkWbmjR)L{2h5gr9lBHfHG2I{NNt)RzlfQ@t+TKBR&kI&T8G{bBT% z97+1sFA-*-^#|HKWiB_ZPn!*{KSL+p9zh4oz9&x$&B50%)gKz;yE~y)$sy&Zf`Vp+?GeYw!DJ}$HcO! z4?4-x`~<4s`VsXsdXTacN|ANP7D0t@L(1x-G`UtemsLuzuD77<<|bCHTKZrd}poXlE(e7ADd?z8xSuGOWUpwJvmrSS;H3xsucBk)a2D zG-%0vSLqRl&e8$db?7ZxLMJ~>p${Csh=(sX5=GP9(9PkINTpb$e5n=$E8a!2DU~#w%E=L+{L|>&~a@rwwt5*!UoZCv7F0Q29pB94P+wJ81uL9`2Tba7$xq}6cxvY7Y zHcUBRgaW@#VPArDq_oxuSy&UUX80g?)#5oewCq5NgUNJenLit9FrNe$Eu;tZhshb) zb~Mn2>C+$G>Bi~J@US92!jU>r1D&kdo8MyJPlXKL zy&vw`kbx6xR>I1NAxeJSVPYliMhQoUz;&x%lZ09)^k(}bSn}!_lQJp^A0KdM-jA9C zDoqqg=(Z}W2iAHpR@M=HD~lwdnfmy^{I9Taeg;0}tbul50nl%IPr4=qFi$o2BJVq@ zY~{||Xz`t+XjyAD=4_LQZ6G4DzPa$iixXs%sw-A2^rPz|bokyi6)^LGGFf_OH21(g zlvc?RLzz()T>e;Z{s9YH`uqcZuDeK_)`5h!dZf+`%d3%lcAq(I?;D(J>T493_mPdY zh~$(-D$^(3@4*FE7nAGbEU?|nJ<#LjUCdD~Nb1^U{Lv+qTw64Q8dr1>wN_H>mY2_w z-IpqK<;r-RU0sFe>(9XQ+n=GReJ13&voX(PMi~h2DTXyd322&iUC=KW!5WHBK|O}1 z#B_-m`>|~&w4e0?&y21h7c)gUN>T~y{=y9g%y0lY4F))L_GnnQk564Nl18h%MA*k* zDJc0e6b?xqga=Z^aKzIMtiPET>X@d%ZYVgy4hJ5AD-6}i1(BAx-SWw7kCp*9aCs{9 zo!kjdTaJXKv;3f6LI;T|*ojoiPEZQo&q>BC4Z3zVL+<#7(R)`Wa8JSsZE-+@u3S_m z+?H6+B|YvXTdYO6p{NkP<@yImWzj;;&s>^i2)dpf!zFIa>m+mh)Pv=ZEU zRSs2}0$~hFqqJRz$@8sz^xh|e{j{T*%=KRaGgPkQ7{#mX`;=mQUEGB0kXB=DeEdOv z>2ARo&s8vAUz@vCr-Uk+_kjT3FynCH6uv%D5{NB3TNQXa4-0wryu35zSYI0oZs~3Z zmM?z_ly;}%hG()+cfm|z+R0#*x^~Jd)(kwLw+iZ7obU*R7nHR1Btca68obHQNTlub)-QE{R97XuDlYCW+2Aa7OsWjsiY~ONqyxA@L^J5EcWcJX^zUQXa!9 z8jV9|m)$2Fw~w)-roM$a<%wjynK}J7zZ02#JxgTzZ^2ie=b_YIOZ?$n1> zpwV(goG*~_H)!r2#f1%DAy~7)eY;} z(;;c>Xi5QX4Lb$B)WS&ax^3{Md=5LUPo$}Q+Zi2cIm6Qkzl&q;8{q|a3z^z3jOS$< z;5R^qM5|rLCr3(w*Rmr7{x1a}ho1#zhmC_pPn3!I6+NsKz5&y|Hw7K`P{K7GUi49*|i-4OjHn3VwKqxX-6HFzaj`K`1rE%&m{b8+AVOw+{Th#y9B+YIvsz*6oMrf{%oq~C*&J_k?4r&;W$>ilJ=Ax% zV<@}Ok=Bm%gYHupFkfyeYwwzXx_6Di&lMBcnmws>(v~1p`F0n(|5q5=p4o{u9ZO*2 zc`M+ewIwd)E@oEVC%#& z$UI7)V8_>tv~?HUn`uhcMODK5lfH2J&|6ZUHyccNbRO<7(qJdXoJ8JNMe8hrT*mfp zH*^2lDBL?>4;y-S62Fw~%!Z4OaQ37`lxJK)l#hAimGVw#*W|?{H)szkpR0o0-_dNc zxfXEVEJQck?b(8plj&1q9;3_YNjTHSfpi`4Bq|p@(f-umS@Jmw8(T*LrlP(l4|lrHgsi>5K=On(+H_Q+j!L8YyjwX8gYPQCe@FfUK##<}Vpny^2HRyfTEl3j^x#Nas5 znnV*NHV*K-<+JD|YsC24l@pMLtqeE+kuMkhSe~}L=uVPM_*{cPiVL%G;NHMoZjbdU z?!hb@&i>RAa6kPsIAAiCxJouM`8Pvh!pLayia!OdTBi)REVL&+4z@s8z8&q0tS1xO znov>1ax}YG8MniHrg?1!Ht=mhj|Y~J-*KLd&iWX^P@PE6pxK%+ExyQmD3wKpz6-$a z(c^es>$O0!|0q!D(M`Geexojm_?BA+;(+nO%ghbOtAfta5|oC@Q$b_NMS=H)Vy0F8 zxs{yPF~&0_3ZGk-&E&{!rxY#QC{N8A+%DxtS%j8=S)Y$nVs0;~(Ah4^-kZ2V6SX6-}#!nfYVo&N#Y6p3_@GDIUDSH8ISA&U$J6OWOyMH z8&Gb#9!X3pfIice5l9!|uPyZGD@zzwe7iqxRNM#KNHx((2*ux5oMB(^OvvmXh%LD( z$5k|!5N5j$)cW!Yx$f2FCd`sV+V+05&aWhu2c#YxCb*|4}<+2?1@CDCx$fnkxRH0~H@4WFb+&d^5GjrXr=Ikm) ze}({4fg3s& z5T(YaAl_9L3%=ha(?UAIQ0YNjoGGC4rv?cwo|S~WqwDYr-53r|JC`XK(frG4Wq8V9^j|6>&tkHTF2y!izK#z;y0@=6;_Z zKF%G6IsH3}ug3D( zD-CS(j3>0_NHhNQ+g=b@902=6U*ayeXUvx5#b7di1mvyanFWV5$%Pe%L96z5@MT*) zP^>Nit}6`iSO0m$R_P+JbMm2tGpiXWc^yxktRvDFP-7O|dOjuy|hl_U)S2$JK{}r$%J=orI#7^%Waq*c8;aD zZFz##D=zXW?Ktp#&1qnDtr3sC>P%LhI0M=>6~MeV-xyh~5BN%L4zTRH%nTGfAcMWp zl(O7%rce7Mu^ZdQd)e8DZ_Cs%zeF|u!J-Ag;}uP!+77TKW0u1!2d7b)E1!^}H5%aP zT#D>?_>jtRIRtgaKF8jd#L1pR%lJMXBZXo$-2$(VYhd4DDWQ$MB9}bwCTI6Zo1c4k zxzK4xB){3EnB@5?QQ0LTA01C60b@fc!%_|Md{RC0F0l`Y9qF%92h38Lx)A!7FUtBgJpTWAa~S#Q2kH? z3SXb%0gEVddag1ouDK6-Gp`889?Pbk`U=^qv6!AzPSZP5Q&~@?iTq5#12!<@1uZO} z#=rS=jR?V<3VfV9ah!mHG(J!UZ&FjicZZok#7|~cJ{(VJ zXyyR1%w*=yI0@>*D{*S5_^qX1+YF{oHh~%lP6lC|F1C`5r$R+&whwmWaEXyUwPWc> zrd?z+fn+jWev#Ccp*9p*7KtWjC&Rm&E7`>%x6$nt9%$T@GvuD-FSf+25fz`h$nmK0 zz)d!rsh(y{WrQ3A3-+C0LTndOLRU?y{EP#yCvXE}E5c4!GO++3F~?`_cvH7p+rZl} zEv(Wzp6XduLmhg@V_saGL3KFQQ16o7f?&Z#yyEx?D)*=%%yv$~0pe}Ep4cgZ!Ll%% zrxXhEv`_Ma9<yffK@w_{z^qxq>`1exuu2RC(nfES@t3P!9;M zCaO>~VKn%ZBm>*+)-iMLNs@?l*9Dg0mq7RgFF3F$pZPqch#LOv1KmEQGhy)-z)9sG zRkC&zF1VzR1FzizyQcqysPHAWPA#N9C7gnrMA{AIb5eof+ZJZ=4KZSAzlKV6%>~&L zft5bsYwC98ZvoXTtCY;Vo**xH)*q*bHnEcO2_iD^Uk? z9s?a!Ol3xQAn2ifP+u)@QI zcxho0)NZdr?L*fIb8Z(%Qg%i^-dd7XavpHw5g+_P=Ny?DW(FI4b)nxHZ5pdj<8P&n zX}O@^oXxQn{Nnx_bi@k^J=~KmOmjNQkMEgUZQS|-UP(5bpyA23Z|0eRzPa`NH{p(hPsjv$#@)56F5zuOqJ_ZQ#<_c^3L5(!4l?U!H!rR z;63*pto9P^E5x_OwW4{NvtlOYb8s2>5fn*%jW#CIO%T@Ia0jRMeCLL)C8K?1FG$Q- zjM~Z~kfM}3YiuM-Gp;+?EBTPNbQP!FavOolw)GTyH6GW6B{SV!fjmK#2G}fU;URee zZq!WyciKeyS5FhM#I;wv2)nRK+q{#MSBgHBZ`N9Q>PZ?S#QQ+gk3-n3u!l+8&yxFg z3&H-jbyV!>(LgKLoVs6^%JbVh-Ky@cIaEp7M_${uGPS1}_Q<1YsIKWF-sl*M2IiIG zcaIv$#@XVuL2n~cd^wFxsaZ!C|Bl5=hk|(LmF>aSd(SAvmMH4|>8vUliBv}Ra2b&J z^b|kzC(N~Tx}<5rJq9n;p@zH;QI|dD;?Pq^nZ$#mn7ye%U??Jk(b3`Y4o<#K*q^;r z(+foq=QkPX<&DQvIu~PYv58d29GRF57)-V=!s{CQ8uk7R1YG`6nHG9zaF#FzB zAGL)ia?NYZ;5)uF7y7xFTXEqQc1`nSd?(ldS;J>kti&V6!gdl)o1-Ie@`wiBA-9xtu6#Pbri>=ALl58zt)TR5H?O=&tj1@-I$@I%F%=&nm-Q@6bbbg%-b zU4NKly+4JUPk{owF?;Xqp>r}60+xt_Qm?|+g8#9ZbRv%ULqO5|kHcw;@)8zK#b<~}0LlYSiO zkxSHc#i`~^&jpWM{77hP5ii^>21`CZ%PewA1I}J@prCCW+1)gk{kcRD%7@2O)fPp> zIjfOc{B{s47^zSvn|$C^j|O~T%y%5F#^;adV7QeFd{JlM2DUXr$fa4-6D+Fzia?9B z=W!LG!O5}w$LmDv)%#eh=IbuN-rJE3%?PK`{hM)9Jj19rTmaoeg92miJNW+CZCJx+ zAEk#62-^D#m`Q07l~O?gg2C1bf%=UoUW&goBere5#o$gCJkJn;qMPYFm!*rb557P- zsu97myG4}krK^}z z{-e(PmtOUMZvX50)!pHL^t~njqX6_j>i7Ho$J77z-+$XDeYBYSpF26L|51(qf4TEt zPp6>q&+Y!&g+NF1pWDU%xli}5e{Pra$Bw_}pWBuEu`Aj8&+VlC*a^S>`SHJa_{X^V zd!2a0KiB{3_^-#2&aS^*D*x}E_#flwuQ%{_X8*?;|LBju_59zzZ~Xh-KX3lO)jlEr zyB+^u`S-8ymcpMK|L6AqLj3Ljn|~w3|6`y2G5-AiIfCKhShy9DcP`TL&Tt>Dodbdx8gq1Bv4M*le&1<{Juy-=*>Y2%gB-Nr9=nJw_ zsRvSVXDPAO(YU@UR)p7>N4=MRKz09av0A=Nq?dO7JdkO(rv`s52Ogd7xTEM0g>E63 zWV8dPJ>ydbLjzPn;yz&Gs)e^a9uG{cf8+A<_1I9y0qnnb07}h#hv#-vycg+J%;3)} zV0^CdG(^zmeRoz)0he{c^smKV!KT~?((=;sKN^wKEm z!*+blbq)xf$%AuB0`R;vRccbqIM6z?3@lMg#BNVy!6jM_mW!8lA`do-$m4%L>sVN?jsa_`zZ)Gn2g!M3Ox3eA4sgr0Q01URQ<3lIc+!+ zKKtbZe3Pw(m#zrV#~>M&2oc@lav#bcNMgs|i=gxEn;3&gL;AbFNKa<|O>m&c2)s)= zfUf3|(8$*+)FLg zzC-QYYr2!$?pC!(dEQQUXr&AD`qq{ru&3RgDPgAK7PbL&hrZhR|+ zn^F~Uw%j=?#_K-S*LxPnZ&ik8+HO!0-&f!#%40G6DT^}tcoCRwR>M=Sv0G*HH>9#i

%l9xpq-`0M^@&ukWeepsBhbpw$rgW= ziln^!_~7H?dr&*kf=QZXiNB8g&1|m}2g}U-!I23fj&a_7?6Uh7NV#SUavYy?fhTJb zbvKJ_>8?TdMM5lHp0yA|(8f(%7bslMn+-!}RWMlg z0fjfuBl~J*W24;ZWGT(Sjix)$?;gPNuU{i8Qp_=X_l=+L~G&-$qn__eoQ5ScfM8C@D+HEs4$Fv)ulF7U2r zMmaZ=hWSn)V7Cge-m(#lt2xfpq$V?BC5&L#89rRIV>>Z?q=pNh?5Ew>=}_&KGN=h} zBi4ofBqGk3;mtTgidR>lDGzJeFrQ#HLp2N6Wvpg8!*+n_(k4Jm`nbg|CXn%K&FAT; zJ^;(bZsEXE8%AbQ5YFXw@g$qHsZPcDU{uk1%F8xKkmSCRk&;;m+V35~Zqd7#C8Y&~ zTiHv^t&|2g$}&K2`6ph~PjzN`#Wm)_;}LMwGYGqFk_LXeF;^|0!xwS*c+22}&nk}5F*NYd4w3m;`qydkgEUaA`kq$cNEo>gF7nVJGO&_!{;zwvy)5<5d(9$_qkdyL3wC=lz;}*OR zb-k=bVToe&Etf1h>X$hkr?Z{@Ie|xK-8s+ScubxCk#EM${UF1JEzP3`4!lN-QtzRV zY56GF|09bPyucML;a4_cTz2sThv<>VJgLHmvtOvjR z*a`0B(0y*zmlk%iS`Az0+l4n@$Rhuv`_B|H(Y}|MtA+@ALfsef_Wd zQ+N1l#_+d{`oCMA|34cae@)i@^3PxGe?30()Bbji|H?oAXXE2<^*sr({y!6-%7njq z`qzx;?~lWOnstf)+)nDxX|?2kZm0I=v|-9WxBL62`0v;H$GH0YarRg5{yP5aan$l> zoc$G`^We&{C|4>@2_`Omi~#k|5pC^ zca7lo&g$xjf>!$4X^#Kzy2t;YuA6DG((=snO7rIYTGKU4W}2_OdDOCEd7+uwsBh+m zoswp5C$5`!vpdX}3|=%3ne1V)tw_>rcH9B;C=a2MnQt)tYis- z!d@NM+8|;;MG(w_AflpT76T%nf&m01M~MPTMkFdAASxn?AW9I$gctzDgn^`B__*JD z&VB1Vr|SE2>)tx|*RHX;tM;f~d+zQzdyYBjuO-2-{MBi=f8;Z=n4SU(`^~7FofO&4 zKv*4r8f6_@L{nR5;GuI7B!B)+5L>t(H(6)kSFM>u_{IdHb7U2oJT?z^8qFovf6vkO z1wYVt(_qwfaUHp;wGa+9i5rdCrV*dpA4q}pa-t!7h>KJ3H`3`D=6Ebi3 zd^>?2{%%_}wp-vDE8pctw!Pg!k1|hK^XxKqb6N)fYtCeL#tXtdcK?R^4|PzdpIhO| zl0uYmDv_4?U4svX@==1iFKCp!h%z_5M*%{mC|zMGPIsIR-k&H@@i#KJe@n{}9>X@nY;^O99Zo*~iwQs4Kq}Joh>N8#TC;UKcJt7t zB?k6*V6+Frb=s)^=noXJcOt&vK7=od6%iqqG<34$D1PJZg9rC1vFn4kVl&Tuc*}|c zvUKbiXg(li^j`K1k!p*i3#=sQ%G{sa;%%`;ANJ>S$G@wvbH1OVYi_;eS59x{GuJ0^ zRa_nyoP3-7bUs8APwR2=y?s=Etd{@ud<%VeXq0um6^7SbD5s(@0WSUHk8NY-&;c7` z`lG&9=uE{nc1GA-Ar2Q6v(fGx{ zOrmqOk(52&j~KBw>}>x93+2vWRm2bCiuA8|UuQO9Z(RdMW7CaPop#WE>q``TG@@%$ zl=#9DHAdAJ1^KCa{Mf=p4Yd5eg3-cF!ba=!AScXw%e5Ap&?~Ep>HN`?oWn*jwpH>k z-}k~DYTP-G3*$7&JJnA5dW#CmXwJviv%=_Gr7R>+P0^-oZM4-T9?cDHLHm~r;=KV= zNlbt~G@JNw+;-&2yzK()@&$I-fB7Ojbl@bZoU#q1?4LkxJygVQ$p{AiR>6;5Qpw`U z*U-nnbLehKAiT6K25s@NLG_bsP>7rWQP_GCB5w(-`$+<8aNp>w=1lkp$HL}sde}s! z5X`dqLoRKzA|tFVnw_!|pO~afy-kB~YPJyZh62dyC&1gc%)-{a%H)t>Ch?9tg0{Q* z;DfQ*`1cc0_5`%VDOcy=&wmq1O2|da^i!iKtz|DPA+EJxuJ9N{<7bY!{80detHkZ1ib9B?xUKH_|Fyj>H% zHT;a4y;j7g(aPw>+EwJ^S4&W{ejjk3s$z&=!KZ#l?f94mz z8sZ--a%3<4mEwBUW5_Opp-^B})~0=(NIB(0*qJ zVq8<{ncp>#vnWIPo!vm#>mvGD(S*(o#UYEFU@X(R4K7q)kEd5Tle@mrbf1C&J_H}Y z=nfZh&D0gB1i2B}kQQ`z{A$KP)(!dJ&L>6h&Oli!3EUOt1%+QXqD+I$C{QOG1!%_O zntf8R>FRkDVqT0#Q!dhsqgil!PcfWsJQeR92?FMKZ0N01dPL*#Y`FL4RrG!OIy$Uj zj!(ahA_`lEKtSICy1}0=CdS&dn{j7c#EAa1_q1iY15A1Q934qWqkVR_;I5!b zbYJd0n4VLP9(`^`9aj>O-NkVHO=mCsJ-i7Y!aImJFOJTRV{mNn6Dae*m3;l-0fv4D zfX;$q#_^*eukz(-=CPd$+~3DCjtN0b@`-Yue25#fRA&;?P=1j4@v#E5t(nDRMUxru zD34jOCkfU19Sv#RX^7Q=+l%~3UyjbWt3YEjCn%af&bJAk6;D`?_bexJ* z1z+LAmnY(NiO1;%!?UO)qZ#jbPl15A7c!AQ#~YaWhZ)}a720gFWOnCiGaC<2=P90b zXCC_QVkC6kn2YtrfO+T7>xf#Kfr@il5p=2UD)sQ3T%$|fiD80(Eh$POh@PiSRz&qr_Br^ zgJBWC)J6$0&etQfGM~G zevrF`)(CKzXCwm?uNkA$R&!99Og>Sw`w1@}u7^{1PQ$fDo0yv~Q@M~6ukrA-KoYj3 z1Y7KnVLjg)^XE<4!b&zv(Xuo{!p({q?<3;Db?$GWjv_3ZeZ2^$dM_dQ+zYC?z=52t z-Nn7qvn0O#c{KOMR%9V#MRt741I13pXh3%aPhYG7vsb?d?`3v?VhdgPz6itkc5fJd zEC9t$yvtZ9m?Nd)T}Z9-82Rx&4;J;$fG?^AuzqqE?{maKQr*^yoYX6Ue(piE?rZ_+ z9ZZ2qo)UO_+)-#4cNdY8&B#bR2c>z&4(pS_pgB-?=o->M>uGV)LOg|wCJ{9w;CkAAtoY+jD^5z4jL$C^@tI1bJ>uGM+^4KS|x11-aG}VeDyK%TEy(W9tvj<2In@h#|cZW7v|6@e4Q_Ci?;XFN@9 zC&_ynM~j>RhTTtKhO8Ue?CJ@IfIC_KsujKMuK*964k9I=0&+(o85SRsz&%@!!OpC^ zXwJwMBn5MjOmjT`RVD@Viu2ISpT&5k-zA!SG8@Wlya-Q@PQ^$+7$`rorE~rC$0sz6)ag1=Y|49ZSc{0J{diImm)=J z+~SjgJYu4ViIhGZ*C+k-@pWN^I+$woN~h54GVG^nm`D$UIw;IH@p z#drU`nJq1n=al&Ir0B>=TK!m%D~b$bU+k{sKUNWA&y>&O&a4n8Df%C1!)ymwFaH8< zw@asqez##>XC>OR>Lb|Ua2b_)wW75tNhrWJ0^jo73v(r$af|*=GOI6+=B)wvIrj`M z8a+VNb3H*s_eMOBv=iAbt^s|+_DEZ+0oSTsfeBB$;P0(IaHZ@JOw->61&s7i$9o$b z*x(0pFD^i)(ua|+1D_Tjn+gy7Er4I2ha&fhA9kasNeXOjZDnR}qRhkKUgoH54|6M^hjBInFkT^qS6r*O~mi53meFl2Oz6KY*8Ny1c$UI)M z6=)9z1FbF$-&wZ6X$8+2qo>JW#hXH)qm1wamtauzZ4J1UbQ^~H?c~WnHDb*u4_OUN z!BHWa$U$C(u5`b{4ha1wX_ZfXmB8@v!e9P?-?OysSC}$8{ivLmv;24QHB>%lC3{+|d=q zNad4zok>t~hdAy?I|7$IZ$Ja{H=~tBS?Jw^SnMDq37@>oMSHV~@cPse8Y7wok!2C| zwAIDdp96unh7G-QXDU%{Glg9{s!`?~M>^2F0BcD_ksO6V@crywjIW%=g~$Dfx)~t> z6J3#o_ez|#iz8*W4fNo7N$eJ%hMM#v343WO%r4e2vX#yvHZzo|fVmr4r<=|#5IHlh z)fVDMcdF7Kzmw^rncw&^Q%Ct_-A?R|R#~pYCzg23@TFsW1h{IiPcJCYbF&H?Rtb&4k||A7~smBrLJd^Z^B zb%&MeouFLPk6HWkG4nwr7M7tzaPQLz;FagioAxe^xu~rI7FMN#Wp8AlXTJ;+BQzJ7 zo=^h6+E1ZWi?@uGaU}CXUI4a+F5&UpeCcfN3Y6OY743*U4*4H9k*c%m?ELDP#NlTT zS{JHip#q!~{S0<=5ya;czutXO37SRs3N$A^*2Uz&sUU1e_ z8!1l}W9*-Z0jtG#pn=Ff=1_MsGgr)nmsM!Z#E(2@Zg?$anhos1g4{ww2eEZvm6{n? zCT)%6wa+pY!!k_j{RVJyr?g>Rgd4GIX+{C#4Xrk8azznt`DE|wB>1yM99xDQfikNb z5xlb*eOAgwE#0yBjHx6{7d?+GXfgiWQ9=vmWWn6|MNlh77h72ef#{1i)ZzD3GLUBq zC+w?6%uPo+LEju}pNJxVy9R)i@jiUrAQmtF6Z-Q}tl&1WluNs#(O_PMLP|-N?bk>D9{W7b4=$rdxt-(8GM4)3F7yX>KG&@-g5 zGmS2{uYS;JK!W!j?y(+(21NxG>{O64_dlFv$>n_sPYaXv^AD0nK8KTTnD^r z=}MBR2e_xLMRq@#hOeFvf`fVEF_o!N#C3Tn`k|JFG<;{EB)4MpV(t{AF7Xl7Et^cf zKQo0b?N5m#S&5({!pOEY6qFzhq>)t%tkev5(y$Q%H4GB#e%N0lw*N1MazbCRZvs zfpSw*XiVG^?#q2XTk-G}f8X&C~e2dWBdx2F6?In4!0eC&P2U!X0}g$}=FWL=%x4l# zj*!JZiWA9%(?R6g#sDO?+zHD)2**wNKdEq+Ax`83@ipEFvb5_WC~qF-UzsaHce%vS z2ay7_#J!!nX&z!!>Qln?pEY5{$^z&S*uihwca`sYUyxh4^C*`KY0`;}(^t?za4 zQMNqJ8uvery!!#V0wtlqPhF_$_X|CM=$Vgyr(dMf;yH*{dE-+BFSZlx$*3U!`*R){s znEz<<7Is#P6zxnmBxbW?xc;La-0lM{G+LBp-EI_Nv13a}q0tLE(cFQMx?Nnmz9k9# zl1IBLfQM4Lcvhnmu!gT9JoM~4lNzuN)b0L>9&En>dVcsr zX4ePCdgVg+2IxaeTQBI^;{jDx_%MqcO27d+1O2Eg$7+wQfc{-2aCmecbRGK5o1O9j zM}Oano-W-EiXL4DViuXWcjP1jS0u1S!ggl4xd`&ib4Nk9=iy6hwUDD&7KlF^3+;_7 zkg3jXY(KgVJ<^#9JvR@a&Cjkecc(1o-tADrzUCY8SU!VR+ec8}fErHFV>LT)bRAal z6DKeCPU3t&7<18k`mxT;=VaH5^T_SkUwpQCGW}Vzoc*Etn@u^INe`S%qMdW|(aeY1 z-=fgu z09;t`60V+Y33Q*-qYbJWpjxmRzqO7*=5ss1BX|-q?$e0C;6v!7IuFe%D1)N=I22=; z4!3+>i_W#4#?3_qV9F{R)ML<%>_P+Rv)M`z1`fedqi%Fkwu)Jhd6qoSeTS1L7QmB< zkI;DSEb_Wi2HOdgVr^+VINtRVC0@OV8j?%#_2qn0tvz14{i`r$WVT}&qdY3imLmJ+ z3rJsn4%w!+9=OiA%+GIeCsXVpU7Hj_)IWuDqaqeYr*`;p?j~2M(kw{tyT57!5AKlqDszdDL?5Ep}CP2f4P#i~m-70hM&CW(yVU@lxU4G|X%~9nNJCoy!)d zOYXmhkvhXL*+3I+SZj!S8a}}lwKk}_HyoEnD8tL{vN%&G8o!r4PT!qPKu(F1P)3$G z+50$z@tar+y4wPPahfo2@azIf!Q#;7T0VG{R{(CG_5}Pi5pd_kJ*I1eEUeOxg>su6 zdG}JY!KRp5KP+C2KkF3 zW}{2@W5HnI6eJ>CkDDcZ;5-9SNo6xuVTbezv>ihZ@UtVM2e%0uTP`Y z6$(^gt^jQ6@rBQ;kE4F05N6-*6{N^N44c7Ka7wBlQozT_!=C%-cIGi$arG70svC)( z-Ht>vw};}@F}2u3_C8!Amxs)|Cga2EGw5B#8uT@3+)kf&VpU5PzyWLi{WX}psl7@r z3+ob#2g)4x@)`I=H$Q&oO2TBmpndhAwea#@!_yg0us&1Cj-%!;O?$gcy-f7z&!X1@3twTgaxAL zcAGL@wX_}Vx_1%D+?tDZUB&3jC;L#|ND9p8I*Y9`r9i)vBEHwW0XnA|GE<^^z=>8X ze1WeDPRvb%0^{YUWDc%}_i8_Yv{zP8Rd58Z4xY=Lw9$k0T~6qsv;p~Ttp)~<@`2i^ zJa})KB;%v;7w4K*pz8Tm42qfy7wd_Ty$vI9>8Kull&{RFn2VwUH8r%M5#Tb(RP_4n z3y{10Gb|pr|F>0UBtH4-cw7X+J)O!}sJM`Md_IF4Z(V{l%FFQ<_8w}SCBt6gYw)|` zxR)1Bakh=QWI)J?b|wqs{rwtbTGR=;Wd1i2p|y}JJ(@!D0^4cB z+w=U>#Ya@93L=-=Ht;u`}^M@V70NgBTW`y<3!30TFxLZU9s)xpaT^rjN z>~04(O%(!;DG1JX0PyXJDNNV?8_X%CVj#Ob0lnZ?GWstxz^INqcpf&5cTX)0Nj6wR zy4MTz$rgcy`8Cj9;xy9T-Ucr{-p?cyNyA>1)$m+uGD;7=58K)%fqHZc#5K%-I-b4A zsx=FKvseU@&x)WiV?ky`WgdMeAB2*|;<1{YF9N@Bk}6?K_D5qrnK8+LG`|~sVP3Ovy?$QI;bNL87UMU5S8^od# zdkru`XL342mr>mPdhB!SDB@kQq>J{&b9*AR*cbnLCTuz=u}#FlombXs1Wv;}f%i*RwlN>*OFRROIkHjXUuDy=ZXBct1LQRSBHD zSPeI1ECMcb6?ripw!nY0BHH>zh^g761m5p{z@&d|WAv9DU_w0GnbU7~jPCv6Tjp!aI8OJ=ri>!@{Z1iAA5Rv5A#yNsp89Mug@Of8t)I~ z_7*cTcMgJSk%=Jv#wzHzN*p!M>SKtrI?Pfxhm~tQaPzj)AogQ5SfIip@pwtzz|$ah zR8Ja}_I9BBdFE)dxivMfRp34=FQz+t?<2{&*U0GMHnw5SGPZOdA&bI9sP__Y4gW-c-uqP(Z?9aIY*M&mK$KXzd0^m?!&x;Z_+(WE=-wa<0wX7&mudSAd*8UD=5}+K z=h@7Jn6v@6H>D_`{svfWX9gE;c+BjYITI>PX#{)1)F6AlA0A#=z{Ij0AZa{qYSs7= zM?V4Jc+MlHF3$lnzh#*h)obx?UI@}0Z~<;7DHM6O9$W0wLl)a_qT?n98TQpHSg$Y% zZ3%5e;WQd$t^Wl=_Qb-#0}Q(7C_%8L9t!l^1vZ|3iljEwGVk^I-0>;axZ_$XekLn` zWghj?D6u-Oq*90dFvuf^GhX34i`2M=`N|y6sh6~M&ZY`4I?+wfTiEL&kG|}dWM|lP zv#}N)G+So@O&C=}3qMXI&O>FO;>cq7qc$7c-dBMS%Pruia9?KHUKbg#&w;T;)i#YxD}^{OA?zu{q1=tJyLljRlO>KooQk zZfE?HcY-Z0`po*46~KPW6xb153V^U8=&iob8*;kM1SB)?>UKReQ@e)Q)@aX!vv(NX zFV}bp(hcax>TVGK;VEv60=i=<->yl__*7$k9G#EzNsgJjG@McTu z4XMup5&UW7Hd1lDPS;~8*3yEHj~4F0hlakw@+E!f=8|wMBOFipv(l){`+jo3Ab_kW zi-$)KJV&-&3&3Y(C$O5_LgqKaL0(`o2!7tk>v0YO72j&1KPdpC&3?e+YAiFP`vpjz z{s~oXe1z)rwV+baG$y@hH~c#uuM)cDfJ(J)fG&G0U>Aen?e&J}o}>Ysws=2Wzb_I< z*$YE~8+X8$KzZcQehn&5u3;?4?f2$&QIw^*5|0e;2T4y0z!!UG;Bes&Z?CN#cGLe2 z1^oqKTVf1Ui0wve_*rP*uq@6xzW{Xb3Sr?+In>p71)B`+LPGBgt>ka-@C9;U?M zC9idn`B!5Y)wlp%+g8IENLRBOk^QLsz7bLR3-HnEAbR7EDR2-BAJ)aDWVPy$8E+ws0Mm1 zyA9^)w!@Q4UNeg|2l1K9_Q3Ke00gHplW@BE&9x8nfxd4s{SC{ak&I3wfh_qc?yzB6qb$wbYfOOZpYCdu^5 z28IiB`I|L)q)p)*c_Jf9<_H>b{qg!n67NDdvrS!Owvr(|=j6k0v-aid>=t5ef8?_M zkA7m8Y+1VRXb5|$_z$hMTFEycN%V_!6Fcc}C^mWHO0Q(fL6vw9q&Z_MJ$f!2dU`HI z6L131tzC#-&b2{Xq7Bd?a0JNm;X+YQK;E;Cg2HXIMqlT3B0 zFS=9dj6NLq!E?Q&uyy=Js9P_GbR}i6*t#ULIn)Hzj1_?;GRJU>r5_00HpaP@9KIc)BNLkj%?;6tdy-BvI)q)9i@lfyDAu{#8HtbD$0q3kuXADvvz`rV= zVUBqm%$~X#MJ8Vb6^j&*tsWnbOmra$F-pkz2mnSJrr2S+2KcIY2V1o|BW=e>FzRWD zR#8nN9T5uqS8Ye@uC0XIModxZmrD3i4x#R+=J?!IKcJ{J6$N@v#4}b}Q+#CtJUIO{ z{5$b7+P3v6qa#*GR@^GZjxR*BkJos|*ay(gJwfNRzM$`ckFl=W zR~#~PB6|M&848LG#yWF7>DjNP$UkR2S~WC<^f(3szw!DzXCf_0xltqWOedt|oHci{ zLfdHfBTw#P!6KS4ra{XNd-2KheSAf?nQYpJyKJMLIB_^GMa%O}v$-a{bVANz{*Fs$ z=q7^#79Gosp_7yNGh)kj+zeQx~M*8>C{AQax54s9l6gimqp-P;6U`hEq*j$6rkMCDPMQXP!uR@dFkL1UPy3}0Xw)=*!4gB9R2x9_syor$>t1a9f_VPxR0U4sW;a$E zO(4$}eB=}p1o(}!^T~q^6|}d>44;|qPY&7LqZKBvu=bs++^s!6Btv}%D_F$f#4iH0 zO%H>s=X{|5^xI@?Z3ghMdJg4UjxxSc=V53?19Z=O3?)<;^y2L_u;}P&Wc%t2_W!wy zgoqlWhb~co%!tJ952i4W>IAXXlWAymRSigzW{@fyfDgo!Lbqeluu1;}l+??EFKlFB z+9?&ZJe=aa0@gsX;SFR@PekpxGE{f-Rj@>;5Ki)2gI4KlGgd=S@e@H$+%uF6=d^^O z$kyrORlc90Mfros>aZpZNFZq1ad8wqgNMId?!c|H>)Rq1l--^vGsuWYXLWpR2gw zPWOpSx7kY4l5h)Yre6ZLi~Z5Au`?vVsTlH9dyv8LHs~W(h|D-1n*K8a>4)XxYu#<& zyh{)oN{hhW8Rc}Bx-m4#mPX4j8sMKc3xVoFj=t)cN>rzwgcUEJAh8#gG_IXuvC|s} z^W^|sc-0y|_^<{?tCTaQDf;jEa+BZi@A^cry6ai){@nFs zj&BgPd?3gbuBaw~J8tl^51*uhI|!#c>kIaZH_d*}Q%ok#wY}&&(sL&!hC7fGWAwD`|+Y;{l(8g^emao_6j+ZBUUX7(0XE~t%G zP1%HpHbjAuJa?KJw~a*ZX@TzU()c9`q&{W-7`G%6cCQaJ>}rB%mH4BNo@t49&HJvH?CYr<*X^QMF2{X^x9ifPf7 z1KevfU7|lvhSi9PgHmKVp8fSIjgSQB@xgj@_ss(MUH=VQeCsxHSyGD@*mvN@tBKI^ zhCja4eS`#m?Vy*$=irI47U*4XI^iZqf*)@E;MdS`=DYG<#x1Rr5tM!m0)BmEdbwpF z`EDpM6wfM#Jp>i&%s^Pg_qMBFq|5Eb!I> zi8zT<_XKMyGc_7N%|KP{{i{F1* z`T750_WMsd|J|Pd-`Xd>{{GjR{LkJe{<%K?f5ly#4DI$;Bw3^T(VO{VWLW4pO+M#> zYj=m^x;|YzQ#ToxmC0e7mX>kdiU=+9nT`&;8OE;jHHmXT4{PPtf@bsAp-<}S3g^Vn*-4uWYC#;|*5(tjCY=viIDv|gK6HvG8C)0Jr18wSNp;TQ1a-X1x zwl$03x`S50RrUg`xIG!aJ`<0F%+8>hC3Qe)tr~pvY#mUpZ$N47pFw=ZH1KpfLeE5^ z@avNw;0--lIRCF9&Nh7rWiJa6C3k!La5xi3RGx>gcDmur@%-?O`MKno!vqptAdTcN zyhi&RzQeUM_me}7>(ERWCh|qdiexL#LOF|9Af&Pz zHQc&R+^>)81Nu}Um;4Roo92?6#^UG~-3^koFXANce8f)=ATg%%@Tp>7(%60qR81a4 ztph?dKn7A#=US4reFw;xu?k*(@dEfw>LbS{>7$6KHB1<|ghxN@q-*TOuv@JgjJWJZ z_Gla7^CnsJSZe~Qw`J+Qz9TU6bp|a)h@)YwwzY0d7ICA|COqAx@Kn(Ao00;FS6uylKj1 zbhl#}bvzw_H|BW|$@cTWJwAnu7e1!STZP!g&QsXSuh+nN`{%>?g4f}PKPK$VE(f$T zw~iTjnF&sIrlR-vRDpAACXfAe7|gg`3`NdwhGjXn(0285c$_*j6T>0nVV#OTEO&-+ zziyy~O#zH9znm!-7Gmy|jOU!W41kOS6}Q9GrQMsh4M>;abs69x}KSUb6hHbhi4+#`0@sbdNT!QR4Kp+*;C9t<4B~n2a!q5 z(NHpeB``Kwfm7tH(b5O<#OhEtS|%({T-7~5)~9H6&nbfJNWMl|_bww(F5d(9;+Mn6 znYCbBf-8A{_}aMhr3=1pw!zs)2gnx9bY$l4I38D%CZ$3h=$9T#hs_~*>UfJJ?MZ^0 zSI#8?p_25uSp^N)a*k&6MUaHW3p7AiB3ExQ_IOtd%Avw2V=l{`Z>ZyI*u~K5P#f}d z>2B@-O6Qy&4X_i6R`4BKrx@MdH%4a!JfkZ^>$offj=z3PfoqjJ#=aKU;J=ZKN4LJPQSgE@Kr zR*JTsNv40R&Qr!(8a=wfLmHvh$mq*`+B*8A086(A)A}Ru)B*QIkoyCkowq!Jrw0h=MEjZ zXZR2s>6`{lNxk|{{wOn z=)hCgr^1%#<1klwI(=<@5_UC>FdO^jfQ(-~1}P=yOvX<`bcGp3GfPxe94 zm;2#Hn?A;Mw-iWUeh>cWT?)HKYT({o2B1fx5%j=u`%{)glZQTgJk#m8;2vTiWc?d_gj+onW^wN;ErWCr#?RM^?-Dvv(}4S>MH! ztdYBir>~Z0AH>9t=i3&N7dOSI(uQ_=WS1+MAs)iczA=>+mF1J49@_9(paFVqbrxPM zsRBPHPe2LvcCc@&bU@)1>^%Mwsl~J~8QZep z+gGtjHO&*JJo^c?9ruCw$GO1d{5H_?Q3;hvEQT_T-0W zP_Ok?BxiOLJ8T6wrZ51TvMR7=(`IacM+C3m8A4{%m}A+UHSn}w2$H=v0t@e4zzQ3p z(3`O~xOzB(dR&p?%(@^I?6$&-#!P7bug}zKdIdREJemD-)Q2(n3WHSrvLI>!$s_VhtP7dOp%DxtOBX|nx2%3gi&*P*+um~QW^cK`Q zz5)B@h9i5$cE*&k;3+BHf`a;!!TAMFDD0FqR6%}-FC)jh;VKO4X1zoF{Bixo*Ai5- z{IX$M+p%kc)V}YL^Y69EWE@Unz`yh~802++LabtZN z`tbnZyH_9b+QZY)_TNreDpr?d-V-2m(*N?FJ8FYNZsT`3%u({@$ONb(G|W3*8b)78 zD{%3N&6p=V9YBQ|vBP$BDE%8|N*vb3f`7z)45M%()qgRpVEj{5K;xR+=FEp7&u8uN!Fem@c) z+rvwq7=sKSY{$><594j-62xNab>3oU!~`{*W6u4d#Ayitg->o9&YZIsMjh-!>Mgzi zdnYl(pFzv?Rp5v2U#Qkq05v6!pnJP|nS!h>a7DT;-s+N!KW~@BN3_Gh;DyWJ`Z-^8XC>c)b!)`f;zwsVA@^L;F@FAh8AjOA zU!H7)*)=LDC(b3j72sE%e@C9q%_Qwwf$Z5y6S$Z+b<|zLkluUqhm|aPN`*r?&d`}s z(MM0{kMHg9_&R00;946T6z>Cf>dvA-{iX11aT{J#a~SoszeD$D3BqVwb3C`<8Qyv$ zi8w9yA!ZLB!+ix4kvEY;B)^bI?h%HErgeeU%5q?Cu{2EO_A@milNp`Ie}Enc1rZt2 z@a=U`7Y;|XtC67Kb(`O%s=ML0CpFcI=(Pm*#RAmSlL3gGuP6C?wOa)WVM=}R| z-+=+!kK@{WWk~c1c)XzsioH>VH)||W9;c6lhd#ho^Sb%``uX}KGiLnwdQ6=7-?~h`9W2LXb;dN; zSdF!*no5!$>fj5438W>xnzZMi#wS(Z;P+Z~)Yt9`i4!%THHEjynw%VBm-!p?zO00F zXbwya3jx`~FW{8?I&kV!68du~18&Qo33n9*0Wp3e$`_o1nxBP?$KsEojq6szycLPi zNF*L!<)+~%{SwM4-aN5b$>7Gm!FE2F;t&(dGRPaCU4z%+!kW1^=RPca@?sNyd96p8K@)%_eM1mHRm6u#O z0c3}yCY`bF2|U<+k!0)fXwUy@@4cgX)ZNzrFR8HKc~EW^f2;mPA%U3Y@LvM zUs}A@R+=9pqesdXK5{DOHGSisdON^qcSA$*B2;g_wN4bGpBBDLYK@X=+< ziJAX%RO6?E?5=l7&SA+o*hinIpV?|^^#U1Xq34oH)52AF^pZ=O1Mpl`+Bagf9 z&`<4pH1z&eVke>STa1@NyFL|x-ML}(>V6(*?ogasSV%TL;9yc#JslbLhy?FmLT|gu zU|XfPWTW;9dP!#~vsv(thSp@^mt!*FVbBQZ`LvG3K1hV2at|aqdk6R+3CBA4$qA<k1( z&6^n}3mYy)viGYp_>hgmfNx4BnV+TM#cjZ7I3hb=?#1qt_t48Z-7xrPE}3#u3eV`R zK?@Bc>BxYEjBhYxO(%}y2?r&4&#@dVxV(b3Puh=_=5->)%@@FMl0QujsKjow*P`or zIpn>vJ9v+pMGY?*5$jqPYKIDt<a4P<9+yttL*>^EXE*Mu z^2;=vnb*l-(Dt?obgyJW_+%S?=ON-=177+^Q^UUTa3aVG-!i>IO2;gN$%WP|6Rjhoeom&VGsa^7T}8By(O7nI<#$%o z(ZPs@8Hf~>VAt5$fC6;+iXa;ZY^_8yeGOqrpKKB(YC;3!`k=w!L5kjLKvY%@@wxdF zF2uYd=Px&KyJqIV5FG`YXIMl{z4j8B>Q*jdQV41ol#g!fb`Y7X`Pg55qD9TA4j5k; zKwVS?i0Es8&z&7W)h`|b^%qji&63jF$5QEv?N88z`}3*Urj1m>2xH|76`67MEbO;I zg8jXm51&g?nM}VgaQN(2w7LHye(ks!qWG9>_Nn40DXz-oeX*)A?xHFmmD$PfdUH`E z7j%{>4pHRWl*jRzU-t+P2VlPb$vLXeB88^ozxb}nSXlZ!hs7!1<*!;h!u4zABseY? zk1onaZD&Hs=rT13zxSN3d}T&nxzv-QADvw4%Wz5#?4eW33K{B<JY9Y<8>y1U;*_xZGzmWXW36kdAbm^XM_xa8i}rTM-9d-oMFQd=b*OwUeoIDq2)- z3p0;K)3g<-)XHKm{W;GJ>85p|7yHC$&i55GaD64#nXAuTa2!tZwtl5=_9Z~?o@Vsx z!9}7P*_S*r)MK-+Dp706GjQm8hBf4Vkq^O2%rqp9RsY)0-mA~RxeveMwX_na$@Sr% zDC~yg10&Jp3Ijn;^^$1RnE7l^T?WnhwMp0_UnKlkuP8Y0i54xS{lxlN@0j-1B36+t zEjoL8xX4=DNN8Apj(4um7pZGJ<9mhWh_ZJ3@Jl;(@Uzr1!13WUdTf&>v_Be)9?sJv zw{NFP{<9QQ#Z$e=@)gg>8O^2W-pU5jeMOoj&vIn;)3ey1+bTHMqZ%!GW`UC?<+BU3 z-r=q9oVap-fqZwmPy6QS!Hu@JNH5%&)_NC9@@8()_JEzl-0lgTE8B|pWh^8{Hz})X zPGHaMo>MQPh8NSrc$QT#?)6xmIcqP4#}O~NMbmrJRce`xIE^FmzB2Gu@hN?gGMRw1u`$XK*7zFwsK zaffilwS+(Z{kUlOokpRu^p$9QW|o9Ae^6-r=uHwkf6+s?o4{J4C3f$Y4Rx0~4hCn= zu-4*dBuMEFMFU-Ni;e}Gu3yd;dT-*nE_Xh5);RFL{0q;!84Ve17q60Z3`U$RLc_`` zP|N*H_)6=zGe zi^jY+7T?y7wMaV<4`2JFp$B`{n%iCs$5qZ#$*{sZ=wbSE3#5Ay&zPTtdl$cl?TuwP z$ZQ+Pmh@PVo@QKdUBbcb)+0}7H|fu>6 ztFD^F)&GLfK{0I3;j8TQ3I%4|eu@{WWrfzR{&Z9EA+kWs^ErdP`21~YELuf@J(n`# zWkxBpEm!XIJuz>n>FHT?&xk81fADz-Fqw*mevGlus~m|#F7?Al?8Bi+wh>tjDaW#( zyet&g=HNgFL$Xa0ueta$j|2=Uu}}}w=BAXqw3zc-q61)g2x;aunsZN=lBti?Shc(J+;kvjlc=gkR zxb5ROb{=QJ6_x(z=_p3sXWeDH)=0R|3ju!70W2y!mR$8gyj5RdTKCSeE5|(Hp6m?f zobrq@*9&|>`$k^JpafRg3uMBs86@$`dtQ*l11=rY1nK_zq671a#O@~&_)Eo)X~A$L zdVD8L6#Mdo;Or(X-kq#sx#mPO@7Mi^U$xmwG`d_>tebpRup=@;f2l8`c{9{SIxmdG z3vS-$4^C|rTFldl(mr$6`D(ms zHRzpX68ia87N?%-hwc5BaS7&UEp}X*iNBwgXw+&uRJy%@t9kYjhGQe^1l;){knG>A!6vvIBCAI!gH-KnGG9ud5lL%F z@QV@5>dh=>ye^wWZ~?G}?4ui`qG|a>8;YM5l9`gY{@kPzlB43lj@DGrrS~S#6TbJ6 zw&_J&v(X0^pONr8%=ChdC)tF+6p{+3DdP4G*m7h zg~@C$IwR4YNtyl&Ec5lqeVux!k5|JFWC(sBr;09*eFN7G;!s$!B5Ig#4v~)jq`N^E zuD)nSKGCU=?|Kh=Ur8n&=lhbZAMT_iUkbi-SA+hR&E#W{7A`+6xajI4a={}4qID0zja5tW=I4XRgjF%5{opjJ{z8WyQF4QX3v%G;Wdmmi&8M;2 z>Nv-)4sF$s#WmyS5FZI1v{gQr`)T0^Nxhfgr~UOw+X)6f20%vGxgx*nMEuHY7s=?Z zB5mJnNw4{NsAr!#PORyTP7V(sr|a&Za}U07`pxs<#a2Cfvso6{wsR=!lPTHz<2&AN zJf4~j-$u?iJtrSd6k;b$cM^Pe5S>tZi&m;0qn<&X__|XWEbhMpZ(VP|3@c=SDz;*} zeI&nf(+y#JybdyFn8?C#9sn``j%J5K_wg$eVMjQk&co2KSNu+|2+^%m!PVxrFDI7I8d;##=@z||q1nItK2OBoep}tlbA+nIbOZZ6!)YgVV9xrpg3AUL2FNN(;i%f zz87-vBzY_H`l&?DX`mC?*VV{@ycX1qo=noT`qAT-SHShvXe9F`9vSu;i-bmH@>a(S z*Y}>yHMjY|Z`ZTr`RNv1y8R{c(%(*YN;q%cAN}aNYZAONqBqUhYK*&QKP77qmXq{- zgP4kuKpnp4<1Sd1~c*8S0j0lDi`F6XR*7770H>?!m_!9@5 z+3XuXS@-rKBC`{otkG@(Gkxd9GWOQ-i#}pDX5v$#Jna|%L@A0lUT((!{_4ZLKKt=g zk37NpifW`H@d$otcm^puDUf}Y`*Cf@N?N}m3!2kxNNs8!Qr>1jeKvKG@@#><@0Cs4 zNDkKWh{gqV5}vK97Ax?rz&Do7MEYhu_*V7^V%+rzH4k2l9=_Hksppm9NbV*=6bhi_ zXAwyY|A~s{Izw=3Hd%9EBF(hdC-(w9v2;~5t~Ggs3U16J>OCcRSL0L^GW9wPG18)` zjs@`g;dUHQ_JmA`D1aH_e7gGdHJ7O1Z4|M=(p8c)GN=EmA{Om0ma4O(2tNs z!*{@W39hunqaW$MX$y&^@%)&4DN%^VRkr#;B1s7v!jH(l$*=5AXJKj9{89IfBD06* z*ukrN7(cXvWm;+q^Od)=aYqtq*=Z+X%#SL5)|n0bxBOk<*q@b)_e&0 zVFDxGouvNnT==#%^6a+uVzS>snz;;1Vjp)LrsqGW@T$f6{N%WAw8O}b=Kj{;dwRkd zcjpk5w-B>6LkIHHVx8G$$+_cJY!TbMDS#bKjKwdOYymrY4LCl@3XgV=hPek?v4_cE z^4d8DZre-t-8>iU_*`=T>0g7o!R9pM)>n9DI20mIPlFGZ&Tu%Rf~0!J;j&m$Ty9+f z!pOPwLG3xb^oc}cv8{p}w|9mqQ@yAj9Z#ADtfyzyc`WN8L)eC5I<;*OdpBD(=i7VOY)JUTnm}lk_QF2lud&lrOH%YZ1l_f< zMq^i*kcsDvAiX?|oO6qZOIHpM1=I0J?%NV*ADlt%+;*dL%savHbs`E3>O$u(+(O%S z5whQ>9=E-9;~pO>hv$L)Y4n=upxW0LpH6yDyhmJsapVGhIOi?dyKXk^C$}4W#9PwA z6)N=bqfP9v>T(+RMh<@Xgu-~ENYLp1N)yeD$P|;!c<{G0e$#6e(Msc&tYmBo*|5ii zUvugmzrZ@5xvOjQPO_4E^H*=M42J^}d@_aErK$?2Qw!=UU6Tt{=ds~3!0}`?--TlaS}?mw{!GHHrFV*Z z7%!(N{3>`&^5(XXD~2=K)I3doy5Du0QhSRu{(i-j#PxJwupZCN-%Wzoy`ZND7NW0T zIS2~agB-2yTD;>{;7=;u+>WbFpxM_4=TD$eyt$UsIs%^0?e{Zs@$#SX_e_!HPa- zu&2{+6c!$V4DySy_r!_tZJQd2?1+QYGrDnBe>=P>Jq>O){ld5E3c>oi2;Q4(k@Y6q z@s@#AQ0TuBKOZp#bjD7i$w`X5?n-y!G=-3)hqq{BA0KwZ@FaaIGnQBVX2);#x=a*L z#*vk&ZLBQGiCGMtL@Ne&&^Hg1_?I8_=$Ak-Uo^*tag~fMV*Butt%2~+W-Ltbo`RRe zM8G_$C_JO%87|=V!e_A}bOjV+gZXpu=-bsWoVt>hh8S>_2?MW7q448WG8~EzBhoEL z(6Jkna1Ing!(3B3y3_|}&qzbMkL$>j%d-K$no4`0m_Uw1`_QLaiKtG`mL}yG zvfvMf^hnulWS!@XPmhtv&y*~q(54A@W?kiad2S)5Lwe|h_zGxReH8DylSn&jrO5s> zA7m(k@4Y;b- zRhVXdS2XvmCckxuI$iE-Atc{T7t((e@H*?`1efu4;;tctFV=S9ol2kc(;n)I{PYWW zhe8>4p;J|Kt6+tonouPub*l3vSu+Lkqi2wQ&W@TJ1;HuBMG_7E-=wX_8P>mXXW4q$ z#H@U!xH}W4}aKZMhkk_xg?PNBcnj3{(EonvF0w%G z{K!H2Xd;Tstd<~;DtNYo3fKBQ7uXtms^+N)eq(PUoRdagKYoI9i;C!;a~H_3YCGCC zieSTDwPY3VOP5U^%Od>S>7=)zI6GUS{h0g+M;isQ9TNYTvr`?bSf%lozUYd=C0w<> zHe%wjK7%)5&-m}rL;3QZ(}V#-qeOJC2a^{qWHV3Z^O0TKgwZ$1tHXKybr3Zr)iTr#<9g`c-5RW@>?<%E2|2A6gnnQ+}TH~8b!my-#B6dspN_wlR zLc(!V^pRMR`ua@zYQrfQGpiEcIpR#0xJi+yz%gvF*%E5g^ny-VZ3y@Ea;f~`LVC0N zCp$IMfF)#Xhdo^?L~~{{JX>1K9xRzhZd46|UMF;fO3@Bcp{)iV($Y?5ey-z#ynKZ5 zB`&;*wzRPLx1#vdA{D+%*MOgp=+DQSln4a_75I6`31Rjup}P;jS8T+tLjxTqt|@Dx7@j7)(#qB;fE3x9N=;^>h>I&9~J? zu%DMApl+58gk8>p-u54vrZ@;zty0Fb)-ht?d5cagByd+>4ac?&pg$hAz^dFE^vJS3 zRijO)ty?E9Dfi|LFW;nt_x%F*Wse&hp&nj=4}?7CHHbf^;yxNOLv8g%blWF+lzcb>``GX7eq3uKhfv? zO^I*kQ%UT_mY!eL0s8_^vVy~MG(rCYeY#i$rcXm`Y+f;YbYcVVf6|%%cJ&viWS2n2 zASDttEQy!eP$|Jb1Mp6tSt$DU7;HVp3We3Rb0>CwK_$Keu=)ZKet1X@3U>Ixtf1HE zMUB5i?7atX9DN^qpE!>m-?YS@JG}5sd3&TK*M-()4?yp&hoN4MQ?X?b2TjWu%rjS$ zXv<&3{=YKu-qk_i@lr(Gj`SwpCZplq!RfH5Xgjn&RU{eW{t%#)05eZ(6U*zD@xD9r z!8Eo8+l;~BaX5hbKdfR|XeV7_69psW>dEKLom78aFnQ~cM_c_u`57nkY2xA-@>>$W zQ@pW;Zc3U!rq6388Y6Ugl`(C!d7LVZ`>DXf-M2HXf)t6i^e`CzC>*w|;qjr0FldE^ zc(ha{tom6GdCmT?_4z^kZsB84JKYWamHSYODf!@Xs}Q93&H+W^6xcyqh?cw#{(8{> zyNO~r$6g2rB&Tq=cnA0SsToop-oeR#o`u)!4a9{jwqfW_=4O6d%ZEF>uGYnGE1X(p$ES`!h(u&aRiQkd5#a86CZXFn( z$p@_`{otUg5_Wky5+4~h5FR)@15>RJxWQu&cGakX{HX|UmX{)O`8;L?T43n$gJ|}| zvR1{R#1LNNX!lC87DhGS;WD{k}6za&*8viM{t$RLQ_tg!t_g4(DXhOEA8TO z-yak3(%}J+7cz*9ks1fLXFkPhI`$HMZV^099#5o0!-J?!sTF)5F$=Ef?`M-1YYMh+`m$PmWAZb_jZJJ& z;BVWjvXLY9vS(U3!j@UGta(c*?Pub^TrAA_{^wKa-VwuT&a!eoTBd^4oT_1?{T

    s`u9MrU9{J%E>99-%%j=ZXc$;AI?StSkUtRbeDlM9@ zE=6o~#h2Gk$l@Pga}=t^uM-)4`^58_K}@13Br027DCCrwiCp`Q=f|b&66_<)iALW{ zs@1z1q&p7c#f2hjIw}MvcxJIQ&9`LVi+oBQkKycjy3EdYJzJ9P#kc+*$hVf~z}Sc& zNE=uKcdR$^4kQzG}Nbh*^>8CcR@;lJVjf%uK zJQ_#ztfTTL9)bCWV4{5J3p%k_oj!M(ONTraF^wnPG^<<%d?sk%><>?{cdi|?Jb4rc zt)0T1R@Fln7EQu?mAWiKZ2NL z{}`4lUx7PLyyM;k&p>)@-kkW=PTZxh$2nJB2hn9z|EcbIHIp8T$XdlngVMFVBk3+<@< z`{88qmw`;Wn$oX>X0wV7i)iWasWkn`oXH5d(RC>#*$VpZLb%RxGzspP);!sGmbEI#%yO=fuhL z(PtKrJuwZq{E!0cGG(+bq>eoj@1`CXYS@o{`rydM(1c~q{BWZ%-Yk45-%pGn^F|ez zOLSA?-i_wRxg-+fDuVAE)@2#%&ho#1`_M%*8zB;xv-ce*sgBk!UZeaKD_I)N&-pZv z^epIL?l11}p5N9ASvi}9Q?*`XtfC?fRJcd9p4}EUtqZ5Gik?DzbT2V2O0`@xZ?fPw z(w1L1ZH%~A?_jZ>ccsV!TU!nYcx$QFaz$uUO%=|Rm5Liis98SRFD>3Vc!g+8?=JDQ z+2=(OR~K3?_c0Jv21SYvS#PC%SL*Q!+TG;gvBjX&S2Ew=QFP<@UHsYNhjj6wb8PwZ zt2?w+((QE8Wj{7Yjx2DAlUhQRMWz9wWkG!(~m?!#&7yG9U z;-B`v&PS$wWd3i`R*3Sy+jI{+xm0whYv1|18|)wL%?#_jL*&&QqmYuqW>e?IQdcHVE$KOgrG6Zt>vjc>c_;rBNlt@KsG$t8t& zXq7se*X4sw^l|216cCgq;R(!>9e_V@$_&PHcX@*HdSz7W zoq&!{7I6;;rg3{Z596(u^>MX>m~Qkh#J{|D+Hm|Z_8F6ma`!F9{M5_v zA&X(tfnP*=o@#uWGbi{t=L!YOs@R_Um-#W?X9ancg?#ew)4b?SxF}`*QhalI9H_O% z!3MV$P=TqqMgD6QX+?K?P3eY*<59ne* z3`b%L(E9EIh~MRm?-w4UGRp=)Szm3Kv-dRVwc8aBTB-)p@86+}y$H(mFOvMV(Rg~> zZn0+c7=DJ8f~as%fap+141XauL(p|xF6u2aQkb(GOKKcgi#6UAVPbU%mghc%wcb%= zZlye)RoI(ojnD+)MG`#t>_DWZp2p!<+M%RnD!0()9U6ZXKyG9er&XPW^1k2XmaPgw z!p@WU-XuBj%N;|TF7}`S*6H}Ns0cD*<0bk@`*Hb?8>sKgQhclW01Wu?4PW)XEgGrQ z!vB1~pXcxB3o|T6@#7X6^V3(Q2s`HXVO;A1A-Z*=K=&jCs`Q~)E((r)?S(pq z+QEj45xBAF75-AGVx`Oe?> zS|BVL7|l26F5;uO24RO;8gmIaCZt>~6B2{BgG&2Z=zZ%IxP=ZU(VZ<4j)4-{8v+pC zln38pRLOg91V&a?M0jY8UY}TlM>N(VcZ)~d6I6sM4rg)OTinr6iCrrtv7}>eDRlMV zTHLSl30BcLj3>30poMRS~Bje7C-e8#ct5Ayt|HlDq= znan0vx%2gd8Lzuy4Zp)FU%30|Io>_05a!*x3%?wap>ahVnzXDpxdQ#*meeFL@Oc6L zH~_EYkCLwvyfFB}Jsi;zM&`Im+*rVZJBHbL@{ub3Z_k1nUIvM}bg zxX}AcuwPEDMayY54wv4rP&S)t;Z>M~#*UqcPOs31e(^{A?7b@|y+;+b ztUkqEUww~TlIn=J%?L$tqb>-u9q&?S1s%SzIg}rf)h%{ zR`_VdTTb_A847oLZ82?95jR8eA!>g9g41*i3FNJ8 z2YlP!Blf;lB-C$F6O~H^i$29q5H2pgY@h! zaK`Qo8Ml7H;Tmmt&#@+Aw^|Mtp7FwqjtwSt6S9zuX*_-tP>k{iu9U=giXm}zJAPa- zLM)WT@+U@y2~*9U3$GHU^V6=%3ZMGRicI^ONpQr;0!oh%t;jFJ4NEGpgY+@nDRlux zYiOh10~)aQd3Wq2(UP~R9|tGi#9|?E2kGguMX63jI6{^u3nCMc-bgQ8U=@n=Q%2wg zYxCit^BIuu`XtfkxPx2f`hwcA5~7>whO6DyLZC|=en8`ZJqjl-F4tk{to`DKhzz0U zTb3lLtFNexQxh741_}?omWzr~YnfiKnaI{~iKwaZEZB?)2ODu649#9od^8@Q`x36? zDw%#@>X8ne`DSGQ0AJ{u-y(@?FT&p6BsG9$w~)x7EFAb*!i|i)i>yNTVA3FvYpe9g zv}vQ6W^6o^HI=}D+n)6H$C&9Obk`~2@hPTLCUe{3}=eKmjmAS@}+9PVzcjgsro@-C!io9T? z1g}x++D(cix{-seOvpT4ie^W-VY`+?XrtX_Zo6w1@>?cw?;KE}s^Rwu_)g?UXeHD6r^#it2x&%qPM&mgOpeK{r^L z(V5GoXzuIXZ0FXkH24(b9XunLPX8Q?Zykj#jW?j}^b5%Nl8u5F_rUO3I&gA+C{!+Q zhW96Pu)ZX>Y3jWv95Qmo8t1g|jVDzWnKPo$>*28$k5292_DbrMsYtTSnqsp#;j^G|};;7bUsuX>@D;Lz)#cicK1zOy!NY z)8*sVu;)=xv{LgeUAXcs8&!kw$j%a2*QX9jhWbLs2VGQKFHP=F?E`DRzQa*VnxML* z8)?nGxbOJ- z#v@>A`3)7>%R_PAAbeWe8hjhNVcog!*hyo8NL6IPTSyd&SMEvTD+b21W0MP+sntt9 zS5b-8Sbyg0K1vC@#v0oHP)|C2s2#if*d z^UOqaeG86mdqGYlzC<_YpTMnMg=p!*X?V(Jj*PYGN5%*$Or}N=HX7uCl&lAx)mngC zG%mxM-3PFy`fjj$)Jc5K>5z!NHkSM9p9}NimWh5Hx-OD6OBO`>&xC|ea$<`qyZC8a zVnyd1Mv6aue+_aOS@7=MFX%WbO?N#ukZ5%3lP{C81UEeZcTaC4ALbN--Kca>zFWn8 zlEi{#owh=Pn*o{{v>9c}ws3~!N04u6C4RD9V)Il}+7j3o>%5qa)pz$IM|4`zrP7Vq zYr-v*X8Q>rugZqVW=)AU^AK@G*&#mZ&1j)<%3r^;R%oKN(s$U$|fE zEHeGlj=OTUW1G2Q*p^j+G@FOKs@LOQVT#z~MlaAjCkKXV$MLfHm!WU;94=Hr4fn$; zXxqW_7PCh>qG4f<+*+BT+)Y&%w2jL^5hijpa+w+qG+&FOm-oYN_oi{0t3&W6SAF!x zMHW-3(J;?;9-`ZR@*b(ibomo?rWqd2$h!SxLr*l_HawjzT5mzEqrcEYydAIU*ayG1 zTMMtNyx7uJknefiAxlmvE<>vp*0uKq?^6D zr*%)ccQKu)_FX%-aq~v1<=BG5m%qX8Z2++m!RY$pZam)c2y(^^c>i<>|K;vel%$j+ z*o?EK*Cp}e2a_ZD+s(^q#h&x5KMLjFB^&a$+6S}QGwOuxj`4U}zT_OU<2&roz6nQ+ zW}`a!A;jBv1a$vi0S7>yD70JSRxKs));(^)?bSx#wTC17*I5<`pMAOSKXf>*qmT>g zmPWV8el)`{nC!ee4Q(?&gZiERga&?%pt??`3hU(+(oy~|H{4uDDhAB0`7Pt!H;eP;FLsfoY>!(Go*>Q zpW0?@vZ@?wC`z>NlVZ@!*KWmTKj<+V*>lqLkkqQ2ir3a@rXqw)iqiCPLTl9qu(O2m7YX*K8ODN z)C+X9Uf=<@1F*Yu7UJBVWW<_2ZRU`(i@pE4-tRrikds z=wZ}*p*?$9%~(ZK8Z+tI#Sguaj=jn+f`;vHfIG#odHE@{BgcTG?y-W|k*=`rtQ;}f zZ;8{cnZuXPp{*H z>tj9Wz?ys9)0UTLy`L32)M13re5l423ooLoU2=jV&$EkxbE&P{Bf7y)q77A0L1GH` zv-0T^=z*72tajFXwrQFUW*)onq_1ai=epzg>h5^X>-q<*Sv?G^)WzfF8Tas!npAY- ziaA+%W;puP6oaR9$s@<2gWN=|GNjh`rG?3WIxex}9%5RN+>lp=^zEJApg!g;cAg?R z2hHDyZ28ZU|1)<{FLWLI?`VaZ+dgQ2;a)x?FP?fUUnQo_vE*j{98%_X77Vy2B(E@) zY&;ds0@R<7#j_&tdL54i+!)|Q!r;W&!cb{^O zcHDi4jZEc8*9OV{p*@m>%#_7)n@5uiJ?kNS;wShq!-OPsbzx1}GTd1kZ*k*`0Wun% zg2%>dS)|_$m*{AfS`1&F$esNmi@yfPapx{MkS!-CqJg$W=yi`i_;voa=&zcGsuF*3 zm$lnb+(mDglhMKz+&35I>+YwCewob8={*anzDZjv`m_1novc^49+h&jWpR1HPcxm1 z25oD@@0TUvo<6c*s(8_25}d?Zic4^zdjbCa{S)ScEzk=#nw&OtK_KCD*avJbya!astTi-w$@JkEr<7M;J6O6%^_& z;L3vz&~`uYC*RYD%)p{{&ixgsLvyKe;P3dC9Ra1R5E|(q z(Af{O;Emh~l6qQS^lapGA*{Cxf79SD-?m+cPS7)>3GM3ub{P=d`~Xf>jwj-5PuTFq zh6r&yHG2_AOYa{b?kyT^qq>Woy+>cyIO&bpyFt3>0n6Q#)+#F2T z2lary&p?v+;WoVa>cs4PRH@gs5wxt)Q}Rsy%6F|O;BS7=q>qTX$W+qCpdms^!7xY84W_Y%>X+uR&H-$kG>~5BSmJ4S2Q5hp5JaWd2qL zP?MuWsO{J9Fy@*LFF^XKR2qWKP1~aoGXBk&q zPScJZVz+C2=&`kJBX3r_mYRd1A+%rrKo(n zGIeP_O6-&q$j-(Xev_mg+0?H|^sGetNZV^6QCJ!R?z0wwUmrs#E0o~kbHWK(7)IKk zPav({!)RP}9$oXLnbt(_qsKqq;!T6|=wr5%ItvQqr}8o)Jy3yuSuv25$rgi^w-s#t z#xu=DhIGaLA7p!5Z*qQlGN1NlCVzLfGJkGaD+}#&fMzThL!AQ*N#0Kpd7&t&#acfC zj4pn{E&~HWq~S&s{b!N2{v1iEmZuvBFQg6z=~Sc^L2nMq!JIb|luVZJLnD%z>$Q0Crv0X3!6sQ$ zIxt?e%TXj~7ew*-`AsZ2<2<$0bK-rE==1%xqFHq55jN{?rl7rlnBc)T@Ci2U?4nBDPOPwDq(|RI0E-IH+=v509V0e?QEzO_F+OQi}%D4`FA??3wKn?feGzu*jOx zlTs|fI)(;R3=q(HLt#ay6F>h;GT*RvFWc%pkfq&RMRSvt=|AEse~-KU!BhTR|6kxJ zW`9EpZ2k@b_(vS&e{bCF53cn8bp6-uGyQ+kKL6dg+u!@gzqiA`zW&6&*8j)T{^lnC zr~1bqu<(z4{%ZSpK4tAK#wCD#qAan$Mm^JMLJqXA3u2_)1HJ z=qISNk~N3Qp65N^_doCZp6~ts_V3rdhqd;)_Fj9hwfA0o?O&-bgPi4M z)nx@OL0VeSL7?)z;=qOQPctmt?Xz-lC$bTqn!EK+fZPTi~`ai|WZS(by^IA^eB9fIB zItl_6(Hx%<80j13Gb=DMDmXk$RNh_mffh+>`D^`_v?$e{76>F;GOa~F;c^1UHhR)O z>G}Ek&j<_)_?L8k3T_*n7FPVdUGhKawDQA0JS-@9YRf18RlDx0{JmW*BHAvmD^|Al zVp9p1fBqo|^Eva_B z-!6}1(_7(j8SQu-euwwBdAqt5zU~itqMgo^79kdegtmDrCrD_MLphOnstH1TXNz=4 zm~Uuci#8Dmx`@chh+;9ZR=RDX*DlI}kf`WTpZ+3*p9!1xgl&7mPLv3U437wpiT1Jh ziDPaiDhUjW3iPpTPgu3c@xQMRTDsQG2baF0j3~6rZ);8<7&35#+s~e8wU)H@s!czM ziY!dbOj^3r&c4=-f0YH@gEP)K-eYrVGRT<}wWh>GI1{X=}CqJDBt+g?lCGjL{1 zU|4jpZ-};$mUgQ?5|vN*Bc7Y5*YMwA#A~-OzlB6AYg>TPk-ouUzJ4Js#nF*5fubTm z-)R47KEYuTBECjV^NnZ$O$dt#2{F>LGBeV$Fqw{NtiMGLLS!04FB zFrTQO?ehcxkpV5p?Zr_oXhAU{|4g3ZGCF#P*8Ye zXbYLBz`y_zcFQ=-nMdRW7hN46 z7#SY*`wsqWSj!;zh*~{0F#69q7#TPTg>3mt2XI;hzb}-v#2&p#KTEvi<+MT$%rpt6y@}vcJ;)ziPd*`z2Su z_JP{J_JRLz_kn|253Rr7JOAx$_O~PLUrAT%8OqGW;=i)TG&lPzvj2Q|Yd?>*??3+! zo!+cPdhqv$vtNg|-yijV9p3)WZ!!n9*p>cDWLs@ce<4}zR*8R}*O7rCF)fw;i^hgg zzF`63p`-t9BM@!4MYd_t(KKE=G&pRQ=*VxcWh^?TwtP9%H?FmyE&spp#NW1Q`O^dV z|AvG6pC2LqOd0;`F|+y?V`lzOy6D%K{a1`Fe>G;4<_Uhv z)HXBo&wH4b`tjO-zoGgEN%+0-)G5ICr#bB(5JFlEc_OJWGdF7uRyJ04HdfZ=mZHJ; z3yk*lG5?8RYxgtQ^f$M*HMg>8nHoQ#7C)gPSW9hl3tJnj{$`dfbprzZeP_4Q7UcpX zqJl$ynkvl$jm>O-+R8%0qgpJC+M%tgB{WcE{qt`rnIMwapW3Dk;_EN6_WAnH)^4%A zM)|fFKih8MeA>*2ZFaO4itYDvB04|Kg)PkahcKnZ=>9AG;=nHs{Nlhb4*cT4FAn_T zz%LH`+Z^z8A2CQwbi3c~$6(v$57F)i@JIiMc0Y`BZ5!EkyyiClAhkAsi+{Ue|CbT? zyWiEn?+?~`W@zyo`{y7gI(fA4ynP(n{X2?{TXDcj2(jxDs*05x5E9G|j1#S7t`K=}G-*Z{~ zd%TFY{EF1pa)UN{HA8=oXEwDpFBsMuw>V<8gt)eR8&u#C+?E>O8n??uL7U%HJ6=s& zzPVp3op!!8PixJ$<7oxA<{f9W#_jTI(Bd2_3hj6`#;qxjwsNhXP=R2@gVsblUZqG& zw}dy&t#P~m+8^5^Cs@+vzb60Ff34LM_U{gCE&glWMReNz*V_HI+T+&oHf^5YKlr}(%vE(1|+w1-Gfc;zMZwWC$$5tM+bx^F$!COqcwV=ffwIyu+`703l zvbKiyyo5*twqPo2X|~y7v;^Ix1>F|3;Yo^m-vSpGZzb5`%hwVl#A-y|bw5L!25ilA zZd(Cc>ePeg_<#14YsLHD_4`+Tjs>QzU#v85jsKNiUm84$L1ah=!nyB3PgUz7tIO_zb!y+OqC;rp#qSGCytI0jNH>2e#Z?L8o3Q zV1FYi?EJhxs!cSfoY7sGzmvTgv(v`+(j6h|)omDXO_lZO^c!{4tfjnRoB1bm zZ-LQ|5fD`-!wl6-S-PqnoyBUCa+C##nZktB2SJb52^+=r7q|;)07g1 zYw%MR?}N%S7W_TSi&VL?7P5Q-=-E0|G<$2qjap`e33@g5T9Pk>(zajt%E!m~!=h3ae<~jIkg)D4TVAK7{Rc1#bMxvB2W?)4C6xA?n&0I)5?)yJ|kh zaL;~hY~(`jjDKIWe(B6C@4bher|sD=M+r{q@1_fW- z#w}1O;#XXs0a1&CxUS`0dHZ?h=qT@idYe?iKzR`a4seG>BXVfP^f0z_>|$mk=ETHi z>S6+y2JeS;Vj52y_@U)T*kOrxoJ#dR@bp2pB7QCS2hW04%?|9%G#}~!%lUiSN&Ldt zzVvDFUfB7_8#aYMhWoNASbp9VKiyPiO5vTrAS{&iUQ-Gu9k$`*@nf;WoJdxBI*t9d z&%^HK7;&cQ*+{Hl2wXS+2;v$Y*`|#hS?=0yZ1~*6_~!k0vNhkpow;(8UOc)ErlSA@FNV#A}&EG~t zCq+3nFZdjHC%jTPVx0%hcD@4F=QL2?hP_PUs|>DpAH}4CjaZ@h7yk2uY#7UZ0>|cB zP*P223ExV|RZa%yX(-c>Zr|u!;6t*sW;A$DEZ(i%2R%uoa}?G=*_a)8bjb=V^nzhWt|6R1>m> z9;Tb);boPuY5XjTdB2{_Ki5EJ_H3Bh`xy0BUC*qKo!~Fm8PPqP_jLZ%5m1g%hV8MV zAkOPCB^UIBULzN>g6Z}sid??jee z{01UZ4?&ZA5DPcYV19OD#8Rc0(Su^{#j9+-!mcxyH${h4>-T}}N$UxwZ{lsjw5UqW zfjNE+fS$thwD!F_--i+)Z=w||kbh1K8p7GS7pg*Cs{|ICT1G{m7Q=@*O_VZLi{Clk z0L9MOva&8xc>a+Zey`pJ`(g*MT`v(oZaxbuCK<5L4ez;=3k0mND3lI_RB?8u?zHaw zZIYMy#qXi5)ku>p(B~6VvVe!n_stzCB;7mdAqL6GIS}E8`6&rKR2ElI*8WHiY~b0ls!v6vY4IAQo(#9YxXiq zmW|xyz`o9WLAm;_Ou@jG_4wh-j;+<;jx~tk`}b3cW?rYT&$4XxpaiCGX$PylC*g%V zwICIP?1HQj&Ab-HoDJqM_uRQa64}(a*c^gqbjL6jisSnw!KaJ%^fhA~pLAv)t1-;u zo@c3oUnic1?5>7oGZ(`3PEK%bj2P-JmO`gB`S9K219#EpES1ez!K7|QGu;t0$+n{# z`y`>nPP~#~5+@Sz#^(#5>i39WyYK)fxK_aB8{MI_%_sRM79;s({jKr+xB$M|vK;2K z6MSaYNz#53U!oeDz=h8>WBUh7g1lcP&F=6HG)*FD|Je>~guw$!p3sjwlGY2KR*lB9 z^ZR1LZgaTcEXM9tyytp7Q^5nt)-czh1LkacL3=|B;Mp8aEW3uZ>SiA8meykTiVWFI zt?S%}$*Rmf@(4Vt(&vkhcEgM3cC!n*DHu874Y$L^0LwScMgEN?qPuhH+kID|Sa~0F zmt9Cl(*$I{I+1fX-^RJuts}q74$w2>IPZBpmQ8Yf1o7(E*!{^4%q_7ST-maKKf8Sf z4L(KiT3Z{9K1Sfmwb`)BJCIp5yR+miY1kzok?HE)qtTa)*>x1YV_~YmBH>9Xg!nqg=&@4e8o;Em@9ts}K*?2wWcD%~LM$gW$3$z1gWg-SAllZx-4( zkbMjB#;4^w>BR&eJTT-LdEC+FcU$%&wG$Q~vF#a^zL8 z13Grlh#h*F${wevu$nP46!@KSoogO|!`{;{pj?JY&FTxCG;4Xy>(lV5^~Tc5m)Bu% zU0n)Va@iIQ~@vYV|Jh*MeSA7pWXb96JX01lyNx zH!(!v)pOwB-2_Y4b;eLzaTsa!gR5A18@grc(1Cd`gQF86K0eHv#akLOHJ z!qLVuP+Zo7(mw74K6ewF&^eB+z3vKACn&?zX?M9Pl*FfgjX)=bG@NOzgAWH^Va^lO z@sx}iT6;Nx#m$GbMYAgxG&`IvAIJ+2=2Sx2pygN=Q^GsYT~4FpciP!a0J>#s!PIFp zpPc=ZnC5?JF_q}v=FxP zols$JJ-=zyKs?>F3$~&%tlaF30>OE5nEZ(PUz|_Q6W7sF{eE=Ja~LyL8N?Fr{vcWB zJydx*n|(anh4r?1&fEChfYh?SY{h&dHrVMFgzL_rA&v%k=tuy2)MF0YQd$b%r{+=m z=RTBDz8rFQ3%Q#4uc4fmh1_XQY_$J>c>FhtJEe!HFNKC_ zjqv1>9lTR80;)=te@z3}rrs9botFdpJ>*%l zbvORWDm^x6pBN^Ud(eW?yObF2h_2S2yhObV|J+R#JCtuKsWU6&7SxtdgfhXKNAj%N z^gJnS?S~sA!rGnK-QF9fTZi-{BO#7^|e1U|ryVz2aNpWU@sUzrOutmi}Ov3fZ7+lWM3 z)>Vc%2!ohQBZp1jUh+34X5ysP=D4YcH|v?=#$6h$jGr}$3-b8F?>(Wwj@K=R8SgIg z1LylNY0VTE)Z7trC)^^P?aJH(MPt@gXErNyPGUDc_SE{^_Pa=wUR8OIe{+s+(eUA;_%Ap)1@7ncS895 z>twE*%*6IBLha0pFi_$myiasx0k#^L1N2dMuGW4lQPODXZJD|=bEkk=aehBPgwl@59$jZGCYAn?%UY`<)S zXQK0kr%nhH$rDEJRma`)Dk)kun{GBt2b;omXcXCxNpI_et4ary(Y@Nm}#YOnKT@|8jjwfYSoS<(x^U+QrgI({FihM|a z3=!><6kU_}UiCH@^ja2|rCFCc%z!JV`hJM zaP=$UKkzav^>`*&-d_ZD!w->!z=;}r-J$c((%9Fnx8Q>0P*6L5lVqko6Y1}z_;7d^0G2f2+DwfPl-5=7pr4Q)L#%Ztnj9Dw0=WS}_kRXDkB;yE*tmED7?C378vKAuL~)PkCF!@w{{iHAPMh8kgMqd&u&D~ zJMo+R)JxY`joWi7>mH7e3^zlEoMN)NXo33`CNizb*ZBsKov34vld$CRb^ftd1QtJ( z#Q~Gg5{->xf%BX(`%FG89obB-Vj0X}wK)|PFTn}D4Ds_gN%Vhnj8spF!~5U*)99tW z*_TEkmD*Y3YPXkU@;HMTm(_v4R4Qj5F4R=2sRF%4(e|= zu*~f}=#j)S>Qk|eZcT3{&j~g-X;3~iSZrXI^|ev)oHBdqX9ZIid0~#n%F+V|=HbMP z-SCd{2vjOO#DAJ>NKu+_5xf_-r zHN>ky1=M`)02edfpDnB@Ab~+i>1}XjT0IfvO`|ELt`nZR+7}Pp&}PM9fo#CcNahyW z2wjfvrJ#WdIN@GB)*tOpYjd)&*>n`1+VX(5M7-fnm-j%^SruH-@egofMIwah&jVGn zNw_ESDoiYvgcH~LP`5@iD6j8@gD%j)P}0YbdMFBWQTj1-U{+R(p0DD7~$K zy73+?U`@|5b!`>AA0mhGB70uLU}x&|Xd$jv>dEd65wfSV_OMesp1{x-Uf5}WJsD25 zW_^CVM)w=Hq0@uUTv3v9Y4V*P*k8XhDt%Q2)5RUw`gG!Be23x}gjk7u-^x!OA=^W^B2PCA|_bNja4tp}7~H2{vI+;`d`g+a80<_Hih? zy*G-7F^s=$%U-WkV=J~6)2OF|(e2#^@KzDB4{431b@iEW?Yuo(TeF-Vmo%2TzwiN@ zxTlaYPz>k$c;VH+Yv48h1--NW0NZ6{F(=i4eHduqu=_y<>veJpjGB%(-&28g8avDW ztXNO#Y%&^G%Rk|d4bo-saWih-?~C2%=`)vWBVeq3HAHT`24_z!pe+{{fI^)b49cCy z98O%M1A3>Ej} zp5<&Qsd+38b>I84qR83oKy3!3zt<_reKwTkg^Xfb;%|%WY)ja!)O7Mv?m`9bsa%cq zIq0+Ng1yA^YS6zi6i+x-($Ly3ly|i!d)jESx$la zyC8Py0gx(CCN5+NolAd5X$ubX!E+bFMw@kPL&ZV(5!;>XVfY*#T&U-7iB-@fpA0_d zNhnV2_5~hDOT+O)0z9^V5tOVc5iYyl6E#gM=z69K2r{>Utifwe!_Aq^y!ef~{-^+; zY9gl0RmJ-F0QjoBm#}^<*Cm}%m0bfDFLxM@T3>+*M_HO5`5G$6^kR?pKcuF#DO~@P z3g~X90ph0&nd9MAFh@e0*{-|TSkHz{T3U|Ty)&7{LrYwG_PbE|`dFMT z*PU(!s$qP`U9jYo8+-7*j1BkHMK6?cFo|=c%d@00S%OKFq#C|u~gn3zgEoU4085xEi=U62eZUwg1m-u1veTtbUx^c61j zc3=@7ZP@C%9Ed$A1hwrYc-LG7<|DJ*+=CtRHG>PaPpHay2V8nT zm(Dk>z=YUjmMcC3C!f~B>g!re#^wc?F6;(dhS}ioHOiRc017d)piXZg2uw(z)+U*SyK=7>|ws0=#u$&WoAm?JzA5kZ$1 zi?bVR9l662ugGn;FFo{`0!7gaQS6i~9;e^RBPss)Nac4tVaK;{l-*QF zW4y%pej9tyhvXfl-cH{9j(bwv_Si-;Ht=A@<@UHtSrv{C>BG)05ov%$Y!AZJ;%e&dgzxCC_AuHFg=Y=-)zYZ3^YPJS0X^?On;$dyF0JZ(i=N!{1Hlqy8nkIUypYzwImi82 z*BGEf`qFUIFP^DI@1l*1c9Pzkhurx=W7*0^S$5@w1g;oj!^Zbc;oa``gS}&wP~AfV z8{N;tvPqjurVZOlH|`|Tz^2jm=Q3nj?FuV9w9AWz@!5wc6?j{^!5srKEB-jvLL(J}}iroV~lAd-MZJ#a1HT7RfW+gF@bYU`E@o6Jf zPG1a9A4fA6SzWehxEgj|?n!KMGE)ib$6lUKgcY-n!R^jl_-ZXZX4Lx(Ef_1ZRjlzq z?POUL$W0?j>usbP%c0~Qo(rGY5o-_h20^VCs1~kdC(^!??reK>8&*TF_GH1enI0JG zpC+=?-{h>{52b=kf-X_3>Al7>XpGZlONXYhwKoRgG7QH2Dig@Hjb=@E$1s*6$s#Y^ zr>GlBq){J^*rgksyW+?Kw|g-$+3j$OTS^e8gcAk`!CB@t_b~g7kn5n!dQS_-%07zB zaHSQhKIx8L>yPr1a-(2>`9ZvVaSq(CFr{djZHOwJSgrO!c-A-;8{OoY&YCmOalaER z{;dRJk7nXy*Hbid^w82*(K9eE^#@-$bPjIb<;s%7ztYih4!9@hJ#^N#qP!|QJfEeH zvji?!^I`z2uwG7Qdv9U^Sw`&SfR1eYkg+JZFal*GmXr?lPsaSBQLJH`B5R6%M%NqT z=~&Y!{$!&We^1f{uD%)076>{+Y!^KYa$Cww=3DW7cWj1viWhjF-Y?VJW=bC}59j_rthUiK+n=Qo7~ zmakw*lXXSs1$M(P0!KC z_Su=hfpVXUanytagI7v2sJZms$~j1?a>SJCBsRjNjISSO4qwjS z=h&)E6!fZq4w5RkCToiBk*v6Pv&6XIt2c$a3%hXcPpc`u(UWwpiS)a&BsVdKav*Q0M&XgHe1@6KwTTXBuOzSxv10N=TjL zQtoBo>T}xsjJ?N%A-0i_=eB_lkh3CVcL$Jnz6lx^XYy5vD!9&cG@ZzcXOlw@)2+3D zl?!sY)j7(1uMd)}?1BVM;@mJz$(-3`cf)ap{b^)&DXcL|gSC6aVg5y;msJP&s~Z$J z-PN7&VvZvW@}EKRE;9HKqbQ_aR&?bXK%I&%aFgq;Vb;4>G{dDUCe&UazKcBjE`N!7 zcFF*nvx?jw88Y_fHf?6%a5B9!1&|}GNi@R6l1aE{cs@#e*uvgF+RJ+ujl@IihT?eD z(Ks_vv{ z@pmts;ByAL;*~EeXva)_Jh+mPxq%{Ev7-laXFVZZ|0^lVy`dNH&cWvMVklK{gU+Z~ zF}rn_;ri)zDrN0YBvZDr>b*jw#)FOCnaTWL1AEt^Q z>B1`GI;#8-#8iR;p`S3D9Od3Z+<}g;#oib@s4K9rx=9Xs!$Mft$z+^osK5r8y`qu& zOYubGLx8%Ir6;c);lShyKkw85HbAc@yMId;Rj&rIlt~rjyWu&^zTTINRC?oUET@W^ zLiW-kz+rgkLD2f%6&LODq^IZC;J3{4sCu~%+Iw!ID>pxK^2fWN>B3mJ5dIDtn{_F( zn+|lT7=a&8$kD^W-7!CDyEqV#pw)H2ScZlxSIW%pLvKHCED4&Gz`Kc`qr*WAs#JGTm)+mNM%S0ruYQL? zVbQQTPKeJfkHGTf@6q|t0eCU3iTdvDjq7@+Gp8;cQToC+UbiY7$3Jx>?^*ZB$Tor3 zyK;(Ov0;(J7STCcqsSOtt-507Vi~+)#bDK@)wE>!D>gSpx~%%RTv@thki#Vdp7Gf+ zY=MP2oc~b{DaImw1v;3cFUE#i^}(-tJssjMzM=!}y_xJfWaqnX#*?eQ))amrVF}Qo6>jK8HrKScH^@*Br8b*d@(;dL1JN{%_-^#nO}ERO>|X$!M>5G-UuL>H>bQt^+rZtyoq2UF;12qqBFAru%s--* z^j?m}$I{xEQ#_d<-5K524#PKD-n4A(5H8`a8RqVbhk#qpp?W|VbK3ub4_^KoT;Jx3 z-0&wPZD`GAb`WO{wHBy$_&DqqKBHdEOYJjkHu3H~r!#+U1T&YEMePM@%rD9lmmgPR zOVf_Qj9s;qqUOx5?~Or=@%4PyQ;l$E*>B*tQW++A|KJi99me0-3DTB`X184m(6p;P z`h<(__0~?|T{2!$#g4HUI3<^E44sR&a56sAd``)FXUM`|im9GX1)WqKJYHtXe8m$e z!3ycw$I;x^ZyRXj`6|BT&Ln)c)Ea633|KM9m#rOWLv^D(naA-!Qt4xdeU>p{A@}ZV#(_LN3(RlLN4%e5PACBL1^=ER-3Vs z?suNZx(`;z*m?7C`VwQ7Dt(n#3;rtX+*CnQ8ZR$NBxb9I9HV7+#(m^h_SWI_-dd-u0ksM59|*Sc3sN224`G7!Vh<@ zkHH0_`Z3Rg{tnJXY2a@g!}2%129pt&AV_%#iWTgny)u)iB#MV^XTQPlsts&g@)}rm zeG?i;+-DBndtvYm6}&ON3)C$iCE8Q2;|)gSF`opHE}8t5c?7M;JLd5)QBIyc#AT3c zX2`5m9MMNC8P3T*=EAQ{ESolYDcjp^6D^h&D|;V*n!o>Eoh9}i46841EtTXdSbEAW zitMQ8u*NqDM=MLwp~P)`o{AeSD6_?W1!t(_%XF-j*~>c({SF2<^f9Kqqv*c;5jNLF z(Dxm&R4noV5jq*+$4VWCNV69#r=yI+H`$OfiG~F%@$hoGpx%+m8%;y7-;Rb+XYgp8 z5x!`W;$>4JQE7}kTdi>#mWKCan&v>#Rj;^@zpY36n@OOOtAb;fPJ+X)Q}I%SB0d?n z9ZIZoK)ybWJEf~pwpn&QP0M;lkGoluASs237w-nkExsq_XmZ4ea=)eh$+|{=oIG7}j;X4vW2mIIqY3&_+2EpN;9scG_7uSZVNl+_L4k z-m(nq-QH2d*fTUNr+`(QOhvl~K4`sGgT2_A4auqExHeGJA#s-t_x9aI)H1w|)9+rw z7|qTOljm!ddFhD!bncESgEz|TUbHtWw{;+9RKjoT7B4u@oKv7iGB~chCm!+ZLdH@BbSMy6qUav- z`IpOJxHgbx&j=^uhlk1MxMd3)N>uYl-0?_Gyqh+y7Aoi%vPRQ((fX z_n)A1Hjn7lpjU8Mb|}uy>kQ4o+hBkC5teuI2t4Rn%VpCGa840}^Lx^%NYVg;`l_?M z7pu@nT@0;`=pw&rBKE%h1=biDqSBdC`mww-%65MY*K76I?Mq2aNA(;vuULY!JVGH; z@(g6okY|(LMX@_l%izujRZ@KSgvy^RLgO88Iljt@b>)p&*x^OE$!rs7dR&5Am3ztG zM~aPI6T$X*DF{D%6OBqTV);3>aAooVD)oCp6}@M|juOC>y@e#^o64GLJ;c101W#QR zaJuylbRq^Y-Rb9H+Ep7iVU9m;%qRh=JBJ}-mrk7&+`ZaDPvI2@XL zACw>6gcCi7Lf>8Q=w;bO_+iJfZw^wdyv*7D=DR6OmCF>$se;|I$P6~N_8@H**^_#N z4P)L0L+v%=lCb9k1C|9vWVgGJ>)S_;b=^=62^;<4YKR*?jqE{cANG^a_gK=ec82-~ zohZlmJMi?rR%3DW~0cK zKWa8*+dDJeU6<(Dn4$Dd=>_yu(ZJ7>*FcU(Af^^(l@_ctqV8$AOsqj<=c-f$>4R>V zbxDP}JTj&D19dR3(FPAS_hN-{?@9fF5&ORI6Xd$h##)K}q&YmDZp>Oqod(TgNiPI! z{M^16jG)F!9UFX#K43 zq`b=r>n3JVT%I-i{=6f8v$eqK>;p~i+k@E*kz*3t7dR*J32fS`0EovQB&pC1pUw@! zTr(|{sJ#TXI$yzV`wccG<_fRAe-FqXn#3+C%p$d#)p+t=9Oi!bMDv#@;{bNR8?hyrJ2kdv3ZaP#HOSpLX}4XY18 zWvfy&a4({U*D>T}&;e5?W^fM#wR?7 zmq~}|TwXK^??{1zS}?p?*F^nJOeOzL0jMxS9;Dq(>2b{=vXwDnyz)`{@^u*Q*EvDM zdmN%;0(JiS^gWz)S}01K_{2+Bxv+W0a`5eYXI#|psqo`I3z)ki8Qrvl(P!W=+`ieJ zu8KV(SABOp`l*S#@MSCQIN*oFj9{$ZCmHb=97vOeB zk<7BTgISRUiad3=suD$(Gj$j{-6a6__3zI<59!R7e@3jcUyKvXKbA_%yWzrDdXTeh z4cDx8igw<#V;8=>2Y*9X%vf{1v^jhnYlzuI7AvG6|MO666rC3aKgpnVCeuM%%nUzg ztj2(iOW{mtI_{Zhir0EREPb})B&;92N0{Yh0O4Ct!=W-$oUStxUg_sk!}z)U>(db| z!f84tI`>Cw4Hx#N=S7fN`-Izd)C~`x@?bBU58xQqQwQi)^q{JX7((_%aH7vzxNNakSmm2bO=A z!PLRY+#B|eRu*}I;e|r(P_mv-(NLN>PF;hY6hrCZaw!be+sEy+m%%;-J0J zoc58l6fI!fs7tiy%_E-wuo2vZ-Pwo~IeKj;M3<6$dR;UZ=i0{!xt@;fkbFLvbUQ{- z5z|Q{e-%{E??(2vmh8Z=h0s+;j9q&+2xNNLlxEM!g0y03^gsWWPAWR%`U!R56exxp zm^(XSv5V7`REH}`xuBW-gzlJllhwRH{ff0N7U@dQc zNEemgUMiJVkzwCnOEM#?O#D7rKvR})hMLHMLKoF#rHke4v2fjG?pqf{)R9BhdEIs< z)ER^mjRX$P>uVr!t|q_S&k#~wCgY?_t{5>uA3ya`cEBZO__oI@+84V5B_FH7Qg=J* zy?h8e9Ws%=?@_0zEBtZHQCCXZyam3$cnVAFuaIlR0_akHha35>6WV{c2GQ#hDYE-) z3|nY{cWpG`U%f9hXnW|gxh?)<{@-|C*!GfB5b%$0Y5w!?3;+1uvh_t!`#aEfKD5XG zM*pw2_B)~dUk3cl{&WB1TG9SPzkm6TzU{qkd0V^w)qBh4+E&E&cUb?S?)>`fe~1Hr zd~ezQ9(+pMJZf*&&sWl-e+Sb39@3>9@L!DE-+%w{o%#Qg_un>u_5Rz&^q=2}w)V`l z{h{bT^{1U9zX$w3)z2Pn)!OxQd;Z_hPi-&j1^-vP|E{^+%7B8<*7%R}&9;p{m2L30 zY|HC3$OR>bl){6Ds@ee@&RSH(8GpR-2P z`1bGqyYkRR_HU7Y=myv^{sk8}V-wpWJ_sZ>D8N0tZhVGr6x}u-#8h2f*j=%EkQn-m z^lJ9Alub@_{_Y`e*(D47;W~#sx#hs3=B{E|UK`jOn{3d@mf%%l8X#~)1u0qHvtM(Ud0ZTSllXTV!KAsC+`1G&p+^-QuN*@o*ID8w zTLJshbtYY%+!r?Y&`0}`7a=gPH#Jl}grL2WSnSqJZ;z#ecc(KjZKVr$$GIEJ@jcId z(#Yjb`>^k1=Gz~-oQtkclUX;^YcB}t9FG~+~ZlA=_#@UXnf-?ceiKXxenB1S_MnK zoF|QnY@te^HYIW0S>9_oYKSpITl*Ja9eatF8?gZ{cOS%StTcwJaWm-2?Q}pnNfh2j z_RvZOcRY3G42BJ1gOi4^PZ!3sjEdFl@USmnabAhNoBpy?_RcCwp52Eve<-4y?LF8A zM+Y|aj&$k9DH=?2z#BU0Dn(m{OGA(8)4@OK8pRzu#1#AN;_Ip_NnBHm-O?Tis#TFx z67N7tr41BzOpKpcaFkE?zXC4`Qi%<@Ooudn(B`SKe7D)PRA}wVx{9rbD{)yY{jNAW zAM}liViwZOOF3NK!Ecl(Gn5&boTJT4CbPreAF}tchiSIADs8ruWVhdz!}78ycH1CHu8fw@nb3M$3b-#eaHw{kUo>L&*sj4egqfyuLqS*bEtWPEtOs_ zR7U^-4p3% z{1}|~-jGRal~H|%`_yRW%#sdlW5U!NNE_|K`e^Jf-F0U@+dphKjZRAfuh?wbmu*h_ zM>o+u6%UFk%B0w?Ls>}K8_s|Ibm~&`fdZdhrn<@lw0C$mCH1=vXYY(>cV_GO$qzVEn* zIc8)s!vhPc2=nOm%Rn~I*9o5FC^AXu&RG2}hgGO1)1hPOv~o^QFr7Aw%{M#%y1)b2 zzlNxbC!k7lHO6}EgVf7c`F!sZsxjJ5GySH+4?#zIpD~HqPZ+@(d&IB@+##5t=fzA{ zspA~kQRH&t1soUo^1siD!_If+vCO%B@y>(`wB}PPmo8IDcgL$>L7EH&oaSle!n<_+ zoFPB1CWp4#oTk`W9pFdECUBW^5p*;3@GKh9{R9Ea@;l1RGe^?riYsJnauK4ReW#(7 zl^Fi$G!5I<5APZDBK(%hvKINk*wuzYy@6}E8_+;gestmM+`L$ZiI8?_)IrXKIo$Tr zPBed==q;eg_I_sDP<)z~PSN@bP?|i0&bU{K{KvE5lWip(zLkaFAD^J1q1zy;*J`kz zvXy+)meH!NkNJraC%C)E?m@Qhfl}*EE^KaQT6kIFC*! zS7XDvzCO$q@3tiM>+`u|aFY(0ZsyH=J7W*!opgR_4wqmQ$ji+vC%xInc`6U2&C9>i zzI$TmR%b&SjdLJ!Odp(8B48!CSDF3FQJB$nIJ2zW#iZr8vxr`ipdB)nZCrks=59@7 zQ~RHW-D}fXRnh}`ne>61W9v@FPiM1)q9Q&r{T{u(ryxAO^f(p2)yMlYSJ8$iJ@A{_ z3Er>6P0GH$jvlzG&{WACJXb!OyVPA(c;z=$5VxPh3U?QAZjZaO=Uom$2Lm0JNSiUu zV;TAGj35Q0wWQ=fRrDr9-l6$ocidOj31c-P9i-*U;Ov=)LXb*h^ra`5ZIPyH<;8fg zg2OdCMEbo-9qye!KzClpqvMv){%_XVvBiyZsaARmygD0;YZIi|rCBE2WZw;txA+d* zSuhO-ED&H%nLDJV6^+qX>+$LCJUp%X0oCLNuzjV~kQ*2R_W2nkp0EWUd@Q9Idx30A zZ*Wre(X3yFWkGnl?Kh8%P*R)gO-yngTuWBaGhLF+xsTL zBqu4JY-9?Xq#OymUUVhsmrDzK>Ehf^b4taxzNDm%4)nr)B=fzh z3g0$4;)iM_HvfMxbl!0}zEK#bw9_s{+CwE8wBG03iOixzgHS~MDA`1z($FB4N{a?k zN-2uo=iCw{LPnAhLX!xkl>DCmtIyl>KKD51T-WznGlU^Z44ZT2JN7ibg#&xiQ6eaT z{3VUJe(oM{)Y-`&oxF~2+i;eQ^vvdq`xFw{MFF;7zW1;XbiYGXlLno+P=tI8JdTGF zFOmhdrNnY@C6=s_A?6{3Zw^n%+K-o@$U~NHfB6hI-&LXQtJadQwi#G^u?RdCMFRiz zWUBhr1%&;q;J}S}?E8x2(IQKhymeZ#F+8)muEgoV!pRDKgH58&< zwKe+RHiWExWpeF(Bz5oI$_`DLMJH^|r3(~}@uf}|^Z6?b=}`VgSl{&*e>k2(Gm=7+ zV{>p-)p0a@ore{!8@a#plU*7g%6tfj0fog$a8}-rvr3!{_G?^d$Kr>tYvJy`<=7eQhaW7b)35#tBz9v4K5LHwyPixO zb(g`f>o#Ddoed=3?Snu1`#^YRB_2}{V(-Q(;=`D7=x$BMq(#kmM`AirW8MOBqrBA5 zBN(?N9Z9|pWn5M0XVrIbEH4@TMyY(7YxNjF? zm=@LI_B^|488XTrX2;gcUKgS*E%n(spv^)e= z40gf9^PQ|%&qTUEK_1S|Gsj2k5@})OX|Na+!_!5Rq2%sFdc;MR-uJ6z&xf?2aK|rP zj2dv`dJNY7;j@XerAQOG$$s$3V&eCo;C%4ekX#{0J%gfA;c_Ug78eEMC1y0?jS6nc zm_zM$wlQ~FjHr{JHpI`FOH(pUVCnI5ICb6+ykO0c>2GXkP`oA0)v1A?q>WTMDi~g$ znMI#>SCWkA$#l{oc^DcRWPZ7Bpa$m3XnYjms-8U!x^F3YurK=%6DawSeX!veEej~8DGR4U?~7yf7I#N{HNP75=C*;a z^8qIC)>BmP-AWB~0ZSv+&~IAj>85*i%*Oquw8`fSR)ur-qS@MXqQo}n2{(h)?>@s8 z4H>4jYANsALrwhedlIRyj)kU=rO3V%Fl7>* zb5w-aY$HmO%9rux?+Ig&9A}RnngVmbY@tI6Z{X9DH8_)A0TXT}uP7pgQIfylgtajI zw%}pL^bnTU8^!wN`SGgTGLWQeAmqjIk2u)UTCEARPqmD>dPEF-mu_c-`j;6!VV zs^I{a$q~-JYy>!P`9QRN<6``J{3czSD^XJXB-bA z4Wc)!K-pL$mh8F)#_hiB`hHcs9#aP{E=qKbc`+#M(`I4{qEKP!LVWUCiHTH>BGTVK zvgPf6Q8aG@SZr`7A{Q%}cl+c5?1FucUt%cn8D@)gb-4yW9+VE1}NQnk5_?Aza>^yk5a^m@ib zkn1{+0Wrz+Qkf)O_D7Sx3VOnJ1iZwV-mkGu@;fVkDIZhXPU8Ld*YRn^2R0#+4?$11 zf_s1*ZX15a%P!G@8`4FP?0NuS8po4*hjV=Ae{bP+z#NZwX94(AnurHSk-Rs@z_MMG6dbW+ z+cHiuS5K@WgQxDpnW7aWB=J7GoS8yMxET&_%z<43_2BS(GUo#~Ll*~EA{3OzMmvTf zWbTFE1G1c-^DTT>Qp{%Q3(_31M6xi-oUDr@px+h&Ri$=pux39@x4A_2In`lF#|Cof zq7yMqIY6dW{lLzGBlJSYE2eWT1C|FrRWCbYMYg{ihctf?HsuOStZjG?RL+#ggYk!fe=38l zef*Q3xOFaG5-wz#J!;WvN-liU{|(;^jx%d#1~dBx${9sRNqF^Co}PEJq;Uqv!NxBV zZX^&|ZeNDQd#^Ebp6sXBm6~zopJMp%<^r_jRl%;uOVDGk2O4kO1OZ0P%$u$LSbb{- zQPj1^MIz$1zxKuQ9cQPK&p)p+M|#Q_(W+Ubq3WmgyZm!tb#pHXJSjod6QoJd} zcWynn;`XLjAbz44r)&@4^k2#3d*)QKZpUIGb0Y>yb?nHjg|?)9qd0VYpN00@%z4`m zg~M8(F-9WEn7gZVF_zm#;BEa0W?SP-a_9Rg#cbM{R1|TLZ^EgivuqFC0j>;aQ{_k!gP2+!=TnGj#fxgrBnXp2%{rrq6kk z7iy9;D`Do)Rx!e+hLQ6x?t{<31}quB!_@AaKnD(eV79{)c18LDJaOX)(|&my=q~Z2 zODE06JIBVLrG6*tCzt~-vK3%r*gTvmYffTjTi~A(D^lsugHxl=K||m;v#QvF=3_8e z@}%Z#Z$ zRo@5|;0)?7wy^tGoMi7msHFaD)yS&Z>ZIzYKDr(MhyIE@V)Sh>PIDKdlb7b<+K)O}B2QS(2> z(f0-x*2~itsUh%uo`DfP@9>9~1nnCeU_Tst#8c+qXXnX>!pw_h?5FZPSiA2Kn2roX z*kgUzmRJf|bE_fs%`9A(b%QZy1?gS+emuOijomtX5Z=o-q23BkgOFi?6Y__krgIgL zG-KwWj~pFh*OQ={SVrX$kMuXxqx(W}vb}XT)Sc92^Jh9iqDLBR4Ymqfi2KhL1x) zPX^@h%~9R;4`esivb$GC^4;6HeXd)8Kdbi@v(izQlr59OgWf|BDydA?j*nV&K)cq7=@J(r0q4I#(+5uLzzb$FCwH-TW_97`6%$GGg#kF~ z&7JKnk#M)aMA7>K8@1sXdvo?4T4>aZ#c##X|IZL_--Kb_oR6Y7 zP?yX;88L)_suTFbJQmc=V(?6*B-v>mfniTK(-Wszi0|h5OT%(Ri1R)>1$n{CTd~w2 zp_=F>%pp&z*0I{Zu0dO32c%S35|KHDY--X!D10bR?<7jGtEO#-t(mrPs8^e86-dBf zKVx!sk_acA$pOn5maOmHg~b1&9@&(ff*VH}UftwWazMC%?Q%WNR_u|0^l6mUezuJ~ z;ckUeoyiyCzG;kKzYu+}Avh?+k_2{BR9 z9&B1|=oNrMR{tQ-SPyn(zGQ-Cet{mzay*e(jkhiA>F`ofdU-=u^{iusaJ9vlShT)n zKONkN?n#q~!P_|0>YPPY{7TRwEsg8HIHIhXGxmOTfQg2caH}#5C*GKV)!g~h{jIfH zO+tx1R$0&b=+1&Ksi#331?am+M#zrLLN}i&>@#^koVd6NwC|n*;B?$m+Wujs;uQ=t znTe_!^D$)kXIA{?72K@Pqd^+e$ObV9c<&>`^qZf9IFDrP6lsI7;xSf3$CRuTh-S=O z-09SV*-Y>e6-dovakH5uu4T7T#R*!>^SXzaFm*Xp5B-9`a~<&C@@)3Opf+Shm7s0F z32036N0+lZiP+XrD3Xz;nirGblhK4^G$ z59Wv`f&PD^@Lrw_&`C7rw*rlJvE(zO!i2r?3U|EB!Jo^7 z>0z65P}p%A_Fo%j`QDX~<8Q?TOpvCVoKm4#XAomgRDe*{X$V>z!c^aW$=_QhNc>cm z&^-A#SiW47W>+=g{KRXt+wK+~is(akpL~dV@d^t;g5Ky$VuoJIqi>osD#cxb|BnAb zFOHYt({PA@zbg!C3ZmjXDe_;!O4fH_0yH0b$6j`_q1pmP&=sOa<+r8b&C^lTb!ilC zOF0DtVefbucfIM!C#Q(xQ)yCFx`0-~bC3(4MyEW!$7D?pwz+;W9j^Y>r5a%xR4?2L zA4E+8;RD)O{^UDq8J%F3J7u$%8;+s#eFtiL<04A_7lMB!X3$UxEjaxkoDLtXK(z(2 zux#N(oR^iwgrBH{KO(`X_A(xKEHkIGRc)wUiXnYD;12t*N|Ro)meO_QxJU3I^Km&J znrqh5f*tx){$L~fF2I0hY%j%nGiBQJ(Tj$N4&dC79-iQ&*)-7TFBBj6z&PB)>ROj{ zoUl`d2rUg}CkpPtZDU8U`|<^9IHMZ#DkRD6xNh9MHwMq19K+Jp8u)-7!v~A&p~W|X zO1UNDc#u9DsW_G5)l~SY_>{M*?j$|)r4T0f2QuTokolo+L6fyz$s*NMxU$RuJO)qV z9ix+cv7349sf>vv+h2m5*|m?9?&$%UXCG1Srx`8px{1xEd|Gs*62uh(X?VCQ^KhF9 zZl=EI_|1%}=l5Z^tR8I;A(IPQ%`q=3qC^fX8h2tq^kgCs5cz$7yLj0 zqvIgB5p!49!I9e4_{1)V);RowC!99*WRf&V zYU*No_U|GF8S%7h_gCVm&iQi8NJAh-aACO#0UK8qBA4C^WwePTbI^SE3$5s4vGqB}vfH{u=g8%7?i<_n|&0 z7T+I~A(<^_Ij`e>NIiTVlb!I z*=)4)WYQs+hCk<2!#_1cI6T=4+hjk%#_BQr{ci_ZU)Kcp7A8_0>%v=pGg&)hCv0%r z%j8|ih8Guapiy*lIG#Vgh7|>A^ZLJBH^q2NaY)F&-+*VYd7n z#-yp2bv6G2-4I+c8buu`=-X1a`l{+@hQ9(< zOGbmyyV*FZp-9|K=P^ch=Wy@e!(``Qg0bIkV9;p^djG;_unJA&-@+_(u-1YrXJ-(q z<3-lzon-r*9*~RP=g9)@r2Twp2jrEk=1n{Go++{}1z&knqB8OoqBUROU6(cFLPa-P zb{_!Y#>?=mZwqr}pp(5et(eqX_+oQDcbR{ainVqPvL z!!f8&V({%IWnBOMC`@*BAx+Fec8!A`nH-P?0<#`)_4hee*M27PXI3*!DK_Md&HEAHKpbxr=xo zWEyzOYc9ej>I>PC#jM%O#}HJ*;@-U!I%lUbUze$oj4NSG!%qPkUZ4enSz9o&Xgc~G zQllvUi-}TIrHdAcc+kIU z5;^56Ow~LNK)}m2i_@fCD}l-pJM}Lv?Y^W2A1SnLMFTX^;sfp z?nirq4>8iBEm&TZNk;8v6Df|f@oek_nfGrt(b#w$CI?v1%Vjy_$cQjm&+(Ps`tKo2 zV^eX@b0=2zXCT=^@?mJ|PQu?2%=FE4B@b(-L-BYoi1bB~uQBq~m-@bQa3)6bH}S+m{Vw2osVm99C8g;g2MXCBb|SHwpNXr_pTl1pMNq)Wine~9L3Fb{@LK3JIP>od--rJn2wl}D z*2}_~+XIVGmmbZ2Et^BuWd)MxEMY=_yo5E?A}Fdi8|)+&)kgE zPaR!@pSfCEXXF*cP8Vc{B)`G8OQLkWdo9Rox8a{KP2%!z0|xho;L@@b&i}j>_L_#n z&U4vtLs*&qnYI>#W_hwYi~&_!aRWBYQ74MwONjG_40u{3Nawy1p-sgdydB{IV6ka4 z+#l9vCO;|UP2b@F*9)3?PyPOaPw_g~cR7+B-17>Wvhtz!(P=tc>jLwvqnt@mIDx$~ z+nA$!5^+WEXRQB}3Hw!&(QU0xwgO|BkX@fp(O4?!K<264#+ z_~r9yC|&IfmKN@O!B`Ejp;||f?az-B|wjvC6x&u-n+p^U2XpK<4WYxm^`sGvc@|iKjD*- z174djku1B=1uf^VVW^@AI7vT*$Kl)>UpAj?c);<&Ip6N*2{9<9e+SC$NW)0SG!opk znucq6!-VAdXuKpG?#hVM*USAdOy&VIaP}&0T0WgRn0oR;_Q;Zth2?y8fyrz{ff0Q- zI~8ku?ttH$Oyq0ug}H6Hs}c1d9xCW_*qz5uS@b}ny_8<0UmC( zB}1~sP?PqC%^I}iI5zUc=|vw#r;Ct1$K^nhCP*jl#cEY zyp>(pj*?x9bO~I=zU%LxHD?C(eOihk3hU{4|7WP>X2jdRR|Og_bN(mY^C)q&0Ah}M zVVAc)Bp-LgvphR?h3FeB*80FNDVj-=K0ale^;6MyUIr-5iJ=zngRy^mALO3br$#>8 zS*N5OSeUbgSvK9C4VlPLA#ok3Nge~i^UgF)%@6F#<01035i3<{Pd1<4P3n2Zcv#E^ zJBcR>>MdeDgOuqLITNNlFzV4O7>Z+sP^xwXI1-{1r5>Z-$p8F^!CZ7#6qDj_D*5a!+T zr_=Pz>BvhHEO(2-yRK3+VY@9cz1YThm#LGq^j3C?Wj|#zd|hQ0wKr|RQ*TbAQRWb{uVFeEb~}(s!bhmcLQ|gp{=Zl{vXag! z+DOfH_p;jzw9q_F23?ldQk77^l|!d!WmrF^&l!f8soQDkgS&V%ad;-qGT~;&CI(0^>$8_X z>4M$OTAop16Z_6BmMZk~QA{|7E^=b%wDMFaoKgg0^LOFMtwm(PC5|h|F$Eou=z;g4 z#~ddqhS+l)Pgjn)>abpj-hJ_esBiIM)Kc83Rq!p0amxX|>1<-ZNd;f>@*r=@S*%!Y zLiV(~!@)oC@DmpUArD}t{01_t6^H3P<9x-VU$E!i9wHOxOuN)qQn&l{WLe}S)Vark zL_{$O$PXYDQYI*)`H5)gJ%UZnjg06#Z(MXgoSn5}DjmPE8?~NjK}Xmra&JZrgk2KG z89P_e`1sSvd=cRG+5&LCG{_#E@(0bQ%95O1b^2*?Ic$7>3OmU%RWdd=_GK#A3XDTYy>kT@~GiZ!jX(lSzHL6Ju3UhC`!K#P`%(s_c_s z6B*h93fs6lRBkw)t}0+FD(#rRem;0sMVez&dEw%dLcjI=ZLb@4@*CMdBEAwcvb1T`ZF3H!ut^gV%p=A6A$MIJ+r!kg> zbfx(}cvU*Up!OiHx^{+i7H@_bW|=(xXBK=%O~@|)BcLe8&Gm;H+0no%ux_Y;-$#{U zr^htRJO7(`Q8SIsxLCm(e}+7V4o^(b`wa(-`*7(TK9F_c%=Wj7ae~JPU-$b{o~~6q z>$;umkylNDCH^ruRB1==FWdp#jsx$`-957mIBy>)D`>rLLiB57uqST$S_ zpGPf(&oWNBOTZxXJAaj3EcX5GTs;9^8&4)z z^Goo}Uq6_8_W?SH-p8oU8ve*XOO8YMA9&^G!*{2HE2k;*e`g5#_dST1bO&E| zSr1NrlLcj7kMUZy6W(h8+_d*3j{I|~Hr{muLS(1VC(&VC&PFFVKmCs4yWj9neu!dc zMc#(Eg;zmo&omsf{SNICdvRh{3|sa7AKB;^4{z_f5qF}3$5w3JQXdz-(P)4W;TD&`#_MNIC#cP#lc!e-=J5uS4eK8@rg zX}$m0HwpFd?3^JHi~h$fD_=woXjFlBQVKjY*iN3sWwLOwov|q?V@DVDfN)|8Jz@Kj z^^Z&Ba&boR^4LaD@)Rc;xk+pUX~VFqX?V>`ljply0LHpwc_J5&!BY1>{B*4rCfK8& zztMFo%lo9r`TU~*ZVfvdevT=_RKcX%O>~>gyw6-2mmhz)P?JRx6_0{UPjKY)(Cp_wq z0?*XX5U-jFXv?$ZUzK>zKWY)ry5vkI`dp7my}g$tx(U#O$pG>K!@<)#mv>ajlj~Upl5J83gm6DM+3OgD?zl*9I{akFzwIcwJz6y9)89 zF{w%nt(7gwbMrxbmD32)QDQXFFO`*V%!LF$546+S!Q6TFl^>c?g$n$1X!MqWmEC?k zg$>`}ltUK$esYLoI^84ei)$bhl*7Jx-3h|s40@?=LbZShdS6VD94@-ax_tVEUb}>e z`oesCC$xh|CTBokM>t9S@rjZ6&yuVeIzp1xno^&b0n~VQ0sq@m2TzaLu;vdQV(Wfc zV#4)Uf{r`W-hvxYn&QI>U6+OA>U}Xj%2o=_#9PV z9R;UaBT?u<0dwo-6&Su=$1Fz?5+^>9ZZu7!3Lm#ncfnH_l6#%qxqB0~tyV)r{YQ8~ z;uL@H)=CUo@tT(p6-?2~myB_vEfo6*;2QB*ys+{W?`DM^GjB~Jzi{UqT%7U~*L{e> zjBoB_R!TQ>-MtelA_QT(_HVp*`YDEdRv_`u5>VT|h6#+|VyVj1>5q0->NB*3mG;QP zE)xowJ)!Ir!yU{+`_k}UIIt}gqqqtkPmG33;g(+5k$KLL<;RPuvgJz=^gnk{u?tAA7Ov*S=y+&oOmpMi1)SJ=z)D9c!aB$o?IKlq@;9^f5d5| z#rD8|!prERjTUr6^%dUlh-3(oFG1tCxAC3(67tX_Kw!KmZl%h=7%+YLyJZ}Wc zTo2lL!w!e9j4@xl6Jg-XHRj2^HvSg#U%Z2{+~+tr6HNxYFn@C$uC$zkp%*(D^Hmna ztm!-J?RlNOx+#Iq?>0cs&GxK>ekoh*@|Uslivp8nretk<5UEKCL&}}iZ|v>qmK2W9 znVm_*12`s^y%c1Kgf{c)^5}+k)tijBJ>}pw^)884m$cw$(CphW=UoWJP-_E-}T(W zx*7!xP9KEywH#-B-6Hz*lm+`N<_g5BC!uvQm#r~I!1ZS$mc9OkiceFSo^xx_ec%Q2 ztN8&dSlSHXekIk(i`;>k@rFM>Pn0-GX5#XPrX)Gdlv#S$gr~Dkjd&h>%#`1I$|#9T z(0wbKSmh@SUH(py6pjZ$PpK`fIOh#zgWs7M){j9+Cj%8O@ogq6UcxB{18K1<3*!&w z)5s%-(9&-vIqB`nPyFSClibcz{>ygu=#Ka7KJ#mA9=zf6<&R^at_ORZ^G@L6^UUj- z_ZY_c0@a}vm#MRQ(`SjgUAM)uok(X3`dT;!9`eegTFU!6h})DyAF(S>~d zWQKX~pW@7%dW#nMVF%T%3MJ6vx#v3{#%&E2};v}DdyE^`{7j~J`ja{GV-?2<+ zFPcx7lwwe<$iS_Kw^OCD1~e;}aBG3je%y2=pIxqb9i}Xiq*=y>G)_Q_s5N|KHBA;{ z*Ix$bH~5m~P2Rk}9(#Gm_Fe#GzjLs&wiW;LoIq0Bl&EZpGIf^b<{Cz(bi`VP?5v50 z#|NgdZk`9o882gMH7rTuhU;0W1MA4|HLE!Gx(KnJ{spQcUxSaC0qI;(PV_j7nVh&5 z`F%#68s62X>CVEyE2@Sxi+)JoO)wx#mtXxx3!hi%vR9OQQR@=!IV{5Q8X+;k4fq{iuM9E&2K6{~yQ*ULkPcMs+*ZE5zhh)Hk z`SaJ~V5i;f<4k@80aa(OD-1|yEWIP=N3Xg#G?mh@McnIUSuCkeN zXPGR^Z9t!u;@-G%ti>=C@3m%gZpY%|K}&v?&>40^za=a^CQLIH{^46xCcx|UqEv2p zE}jecjUv;wLa2!(OcC*5%f4{?ij^e1m5?WI6U-R#A4^EqvGZ(P`BLI&bB>OEH6Zx3 z8ozmLf{(E}q?gM~b2a|RbC|}1tmewGpK_?hK1B@ z#DZ+h2qW#*2IPDHWOAYC40(D_gRGQQ1#Q(A%#o9&jJ>H4XSS=fIYLGW?2IrspIfU60b;*T&o2ZM4C#b|!VfflDWJ%v7G%i*Fp%d2_ zL#JvQP!>%F&JMG(axG|nvW2+bJB!aAePl9Jg-JwHIlS4Lf=9LllE5K7(B@biM}#9# zH`Kp6X*>cn?4L2mEHmkjd#=>@zBGI)_=svboj5)*h8gYV^VWDo@I(eVo%4DrlGK$$ zTQzmbdvmLs?~EO>d2tfS$W^2#*3TxMcI9x#>H-F3PlaDQuRz536e_dzG+pXpN%#JC zqtfOKwJbl$v8zu|gKxUj__83=YFEYnw#|c~3?FKL-HWUV(4uZ>@6mL^D`rgY6czaU z0Cabku$PKX^XK*kQa$Nwd{1LR`grgpl-DrqoZFok$Gu}x4yhQJaR_#fz2Ogc&cl~P z8TM-KCH_+3_^)j#Z0O7eVY^c(G*O#Q4b~uaFD4P4p&sUJ!W1f`>Vd~6TX2kKKI8sA zg6q9ULQK34ooKB@(>m`k-pg{?+6kMO;SF0zlI>gO$Fff_8r=@P9|oA!9Sf-H?_#*| zV?FsiF$_CH-{IXkp}2dR0B+S^!XD<%vjit)Z0ep*uHU+dV^S*E84yb5alEax(&s#x z@c-CR<|Lf&6|k9mx)t`>M$q^Aod1G|(#Ka0v*x=$;v>;(G}b1N)X)dGfBq7BFy zf(5w6QGib1iinNJs_@0=6O35kMH}60XcpVZrtCMPH#yHlqP#PV8_U3doMsy~O`tm0 z1<6&3Y_K-D$(GNPB(idL^nJTK<4Og|bABq+soeza9y>BVLyYY2JdTsiv@4j1Ml*IhV?r82>cPd7jKHWvAn!yb@S_^%A(Zg;9Ogm!Nw` zoF?s;BcjdyXz3e@yWFK=&{mh8i`|WnH9tY>y=}~wfZNow%a!B@jG&n?=ew;`#`C^W zY*^I+Vtr7UV<;NG3>O-DBNL3< z9zcQ6D1I)O4NuesFunFDaZh~AK76_grY?4(y90+naG4&_d?`UM@AX3e4gN%bnjair zdKdQniowlcb1)+PHxv4|9}L#)f=R(yn0&4mB;N{gxfZ%)y1p!lvA=|BpYB6asuoty z^~cHebII06=kSbEHdg0^!-AJPP~>G9+)ip?BQIpr5=NAc<{6VEzOQ)lziPnEFq?#B ziqNdN2T^NoDEEE(q5Vuh*74Lr>h4|1i&vRSVvSalp)3nBvc-U&GsuIdotLP~9br20 z&yRACApqsvC_#mZ8;t=WLiOo|Y)ZSK_n}4ZO{&Ec0N&W#Z<; z2bSa8mU=1^*8@i(QM48^gVboLSu>_j&4=Ixf7#4yJCJbRL>}Ll;IjmH>a>oQ`YwUG zKl7pLC=Y68a2|JW0irqMG?Jj#@L{m8_}b30CdnQfQEhVkZoohwqIk(EhLp z-E~J$+`E-k-)_LSdu~X21y*+!T@LG0#Yu4=$^evc*=ApT+2!0<*%2b7q8@EZ%-kldTNj*FY7QlP7!zZw?p0d zR8$!DCX$@aWMY0K9G*GKROoI)-a!EpP*y-*wF%I_X<_7Gsi}k#C=Ito$HU(gJ?s#FgaR+q10DJ6#g(lE=tL{9|959;8cg3z(T0 z(^7sjd%?>Aa)!0gBK;@!m(N2F>mU@kb_s6jo8aB$YG7?DMK-&=<(3ZvLxSfh!N@vb)#JXSSY>r@Ho5wD+qN_y+yMcnywe zwMB#GRU#G+jLg7i85iJO*W-@_9SkHlk-y6g$P`DzrYh zfkQjHVeZmqJac0yHL3gw&zhY14!b1SDK+NMb~_q$G?Y1iu_afZQ{2*328Y&8V;e1O znB5^S8Tl9eV1C7dxX-ym{qy!dH$xF4$ydWj{0B9h;UPzV&QhRS8y_(>7xeMc?@@RgJp<5V~79$m$l{E%V?${wP`6&3p0 zsTe;bZeXwLFF=P4WpIGE2o8Y_^Y$#FI?t8fG=0oS9hyUq=kn;^iHg|8X^DQ17%hz2o$Afi~Ayo@ih)0h(42ulGxx7Fcb8ID@#&LXQmrh~3jCHV3YBtn8vcR{O z3DB*Tj8#Gitc^^7@svvD#=$JO{UeMOGdzx&ajxLjuV(YitO;J%^V#ww1w1;3V_(0D zU~gRzBCX<|@B)|DBA_%G4;+=Ht*brB6IVmjn6ZHD_>}_LJ6!Qta33?jy$a5DTmU_p z1ZKjCT#$2D;>A1(gt^v-(ZW9lRxdn95|k9!6K7m#6~~TuO!&$-+BAq^+b+YcV|ODFw22WRP5?D)&oOW!5Q-cwvYcR~=kcDrJttcay8~Ae0lg86Zm-seKy*{{_5|*sdWMv z;{5`Dzr4wsRJ{Pn%ohB(YY{DS_`nE$alm=fT;8S73#gG-1@qTJ z-e3@HZ|{M}r-6!he8o(~>v;M=H}CmHYcgZecG|s9j{FY4h)xN{xRzVXS!&4T);)(E zj^Rvia}%dG$)@c+Wj3#5IbX5*K5Ttt1v!HaU@fIg1mvnfdPX;!mVJyoe;*1fvo!hs z?GJzz{DvE%Ynb?g27aISM-Wl`j|_*D^8T<1cx+D&&Uh}1nqIfT&0z+e_Msl79k1ZH zStat8tssrLYjLZ=F82N;Q>-JmAmYFccGdGWNS>BM``M*<`^pQ(;$J)#eisB=F(s-t zWiic;&|wxuTxQQC#-MZUO|Z9Dp&yL2I1MP!vowPB2iG?(MJ5ifi+@(#b`PINn^@> z2(^5&jyyLLrpk|hqMA@JT7w5&EjI+BS{#F&JBJ^Rnek%!_M+qpEsPodY@T0+%t0ly6 zgYzs5-j|7&>ZZ_jKQpl4uQoo?Ud?&UZOO+SO}J=86oMk0VPW%a_ICh7cON5Y|HgtY zEtv;m0|nIr?^iO%;4@~QOAy^pu1g4KB-c)VK!6UN) zgPdIHfS(K#oY;&}dNSDDQHS;!JFz6W8`V`jG5U%t3cM?0^R!psrAtXTnw^K8(T_pO zY6H`HJC*wWmZ7`ZS;XP3F#h$J1yUQid2GKly{9pV`|m`P)|L@83O&Fs`)z}7R@E{s z-=?!}bJkHunRZy}d>BR=g>e2%KW49+6++8L=v;D)`W#w8mdN+p+8Wf~B#9T^$I@wG|DnJWRa(4m0A)B2{Ug1rrfQ%@;eEc&s0&Wn{hHY=^gnxV9*$Mq_Wcr>DTN}H zDH%f2=vu$?Dk_R7ic}gYB&0;8GS6cn38@sCG)Qu-^VB?$=0Q$Z9T>RFt*5Y@b=lAp3VLSJ(Czr4E1yytnFtZoKi2{%N#+qt8 zyw!ldJ)Oebf>X&MR7_3F;;7`rE>;kq%*w>Z^v5w4K5w7Mx}zSleXk=RYQPG9Z}%!x zP>lfhbN3{R)xUBhXU;!;&CCMrMHT$*_XcEjxsJ_Io(U@yg7CNeFj3yfaGL!7B4_to zo36^|aZ)?pvy$pYwtKuhD*9ye+TwXE-u|*^?Uk#NsiR_WWK=NKS~^qxt(W|pwFSJY z+zFPTa~7>Aj$4*3`12kcvyZ!?Fi!6h=W%-~`|~n{xBWAOEjO&isb}lC=w)L>oBl4x z{gsn!z3Yr|X__79XDKkXGRA{jnotvPOM+|kjgxyqAO>@9z6@>;&$$3eiL=^=Ks+RaHL<3KjpJNrbc1xxSwU&#IUUR;aWhh_R1LbTz&0H#{ zQqiU!Oi(poGb|cei~az7zJDPmRj$LwXImv>n({F$`Yz5i-i@WkU2M_f{*XA`gzY@2 z&5jq2z^mL5n7Hy5^X-h|W*!>`rl)&>??QJrL6Qi=JauUMY*SeJCXkgKVK{EdEM_3z zfK%Nvv0CRFzObm}f@fKgtE>`Nr#%X?CiNmoggjfRX)AfPwUgiYcmSMPBY6CT83UWx zi~Li8*DM%CzW-{1v6RaaCXVaq_Ydwpg3# zjqygC;t6oJ*KRtzAhFivsV`X-^hTF}`^@@Y25!n<0L#~eGo#V7Nc8Xodl6T{Ur0XB zwZ%EGiOw&u|ECnT_gM}9{b?wBT~mQw6Mo`weaoOM@AFCG=^<) z^5a*Z&F8H(|@&~-3^W+ewd)Sek zvYf~*otwgTxSV5K%3YZBt5MWdwHpTviRbcPosyh(yvFvn#=y2-O0*l+v-aD&QSbXc zcIo&x*5$aE&GYR?Zxo`qm``7@A#$w9VtfiKPv`Oe=Iy-Z-N(%7l_o9w-NI&14iE(% znM@rc%K781f|I^W15K8+aZg$^7AC!12(_y@UI zYwQAzVb3`ke+~HTwGz^oZdS7HwhEv}TbvFtYlEa1#Kf@N}sbbuO$s)y$5+MtuBB_sl!9AY!i9=Bi8sBZf zl|2%ap7j>L&dp%nx6`=tr3=}+lNVUMdkOYGF_-2~?oFp}7xDR((x_CJO#8oy(0TSQ zUc+Y>AGFE^o0hL*PJ-Jexy2fO3ykCJx+@dn%MdIxp$vJNaKCVyZ zO*OU(b(tM(|AsQ`u~DE5AtO2GggvY1uS@rLwWH6IGHMe1q*~?EC~_5&ntA_PUtvwz@JGW@y{owF0 z!on{y-R} z8kKL~!>WXxWP0BmdW89+>WA8BcKHy_k4r*+g(kXuyu+F|_XYR0E1BVnE99ys3wN*n z#^WUpT*JX_SbE(HZR6_L<{cBDMNRl0Qg$Y&+bPnIYpLw!$Pa8_dmH9_zR&NP!SgFp zbWqcyfO&s05k0ls$zK*`a~n+>*p4a}X1i+wf4l1mcj$^E`R6Hjn|YI)HmaSyx%v@%Klp~rcMWB;22UpW;mfG^gj2Pi`xzeVr$uSM zuk)jhzmxR(b`OtLcVb6Q3cQpVNhfkwVbx-Fl3BZshP$l8^FxZbbmtS?gK8g)EPBM< z4Kqin!!hLRqs*6^sWR2#yAnyy4NUSa#tXmtLTX+ePWUy9wfkO>w2VK*ti5a5drpS# z6%C_)vQi|gERRDJTbQ(=JRK4kG)*4)-0q@BXu9Jg&MM!{58k#47l*mRh;MSVx%f64 zu9?q?&B}!tpIbP#|KHj@_PRo*p%53(9?e?XKVaC5eJp)lG0Sn(XEIH)c;8gYHy=WsVvR0*O1^_iPPvUsHY@D?)h)vqJ3#Tj<=F)-)U!6?l1}Iyzf@NWJ z)IEWl_62c`v@rMGTa$jRu%U_iV_8hD9g`ZJiQkXj#escC(Um1PnQv_fP22K=`AqTV zf~Ut}|F8?9_UHFRp0{IZ?(#FZRLDAf_wH4vvh+Q7WNi(a9kHs*PTkI==Tx)aF99Dy zI=ko-k1;2{@x4PH)7%wNWHUpNt=@i+udhf#N4al|)W&j=3kCkwhGe$j>SQnu6S1#` zizKEp72Fcz{SqaBjblgGAu^SARcUCdg z?IzH_@iKae6IjdRMWlUBn1>tg!FmN>W6y?P7w#ofxYzGA(~A<(>FzY48Z!f}KgF?! zEiv#+We=M>vy|sT-g5?3pKw(`HUFiTGgHky!LNGXgFA~%uwj-q+m{)Fa@9GU>5s!W z{joOl?9Rl{UkakHW&ZePyf^8cnGefnET`54D;%-?m~Hd!rBlCP=3 z?2Xuw9quq=x}$PXud0c4Q6<0gZXU12yq%yz(i{P^t+ zr@XCzPilF@66f2&m(4>kzkeULR@WBZB%eY5bsnt7ehn^r$iWc7b7fr7o82+FDmuH$ zlI`#q#oW&!+v<`CZoRr$@)8${yfL0Grpv(G@ILfbtO#%Wc;K6Z`#^7QF`rN*#{_LV*u@+*M!% z?8C0i0T?Cn!vL##fg@Tdx;pfs$l52G8R)9B*k#xFdD%yJv(!r{F4&4|^chqAJ4ZMl z0^7?~n^xQAaswTMQ0|d4b=H*OyKR~D@~VVC95k86XLYd~PfT#o@2S`^qK&K8t)khb z<6-mmMNEFuLnc%8ifIq}DELD=xM>BIST-hyEggN9y|Z_Lx4Kf$(GbM1IkS_kSf&H2 zO_kijR4Xi-6^CcKhLT9;Ba1m{$wdZAIK`!_@Z`t>bW{Dwg?lCNFH3H-Kqn2lzV-uK z)^Crk|EA?aPD25+V?S_7nI3%Dh2I>P-GL(cC19xj0rxe=@coQUg!)A^tsh#5kJv>_ z$eE9^eOGYe^e8e5*pGwu?GzRMjFyCJI>Khl5A63}XF3#JA-W*2o{p71X6u?Fx#__U zv?GmYr=sGqdgW2cT;ZBIQ9Rm~+g z6|oUjuC&L*7%k@rKIniD%ndE#@3oxby#fWF-^nY?@tPgn{kapTK3_`P>>rB;>&%6X z0=N2@@p``LW<8U-Sj_S++~PJTyb+#fP3+#1t<3Cv6e{?1h#G#Bh}zW8^JC_D;RS3{C9$~l8rjxY=DYpn%r;ZU|za~YOO4WOPxSBn1_j`jQ}T(P#E8QmXB z)3Wzs_-IRZFd_k;>O|q=>y}h-;~Y->r3|9Cd)So^8l0a>E+(e!z^nHMk>@BKJgA~X z5xoYHR_065ulqA;BL9PPpTO9nPu={L(OE)o_B{N&C`VINqoHPg3B*RVbEo14ljitT z7WV2hHf}4H^z8c1u9QpQ`F2H!Z8yQy$=_ zB)c#Ko$sH=z*8e>^520}A&SRECI;;F9TD7%&1YM~3*nuMFn@M45Lcd#W~0uBk>iV< zqHX(&a0+L{yLiTt=HhRXMHZFpL%fI|`z95WxncCQG6Q`NK4v!_T}PFn>QH4_j(7D; zDQ$vKJM*bVi>6=bYEg@!=il?OPh}z7_AuM40|I>+9-7b5C{QkJetaYQ=plc##0#>XIc16+WE**}U48U8CViNHOhfA4j^X zsY3sD4QqdY8KY7XIn|7GiOu~?Jbh^<3(S;-B*EVn8od@LIC@an&ReYQj6MsytBEq7 zE}{zlz#|PwIKx=RcH0Sm&QU|)XYD_R_jRQkI|-3gL|GC6PU2u#ts%k;EMamYPcx*%su zO;4@(b*Js&Ufd}b6Elb(IM9N&t0lp^rL(EG!!oeHsD%q{1!v)!bW}H~W#V(UxWK>| zxDs{@x8)2VS1$(~Rjoksf`_YJTLygMx{yAZP~|gUI^vfIg%Kw3W!@`1zJ3~vxtdk` z^XV}58#SQQO%CRN$;Cs;&LX*6JYG+d2aRXrxL334uwWeS^Ql2Ms~AL7nbaaX1nW;atE$n=k(H*Skq8h zFqS!tT9+F5u!~dqxsZ>k377e*oBmvC+kS~(RTMX{(F0lFQh&Iczu}8?3#=RT{ z0Y{Fax4{4*(|CcmS+Nx#eY0Upd=3hG^J#2X)lob;(2C_Y*+S8wO*lS>_+Mvb!C{UZ z_-0S1C&?%A#%&e!N?M1@!^?1>6r%0^Eo?@cI=G9*3w@GOuG?WeY)~+Q;6@u@F*2}z zv@Ff(ye0Izjc7@86Mx5S9$S!`$;G=5ht5tZam&ZWsPsISKi0mAwR}0q=GvOWLZu}T z*5y&Fd?@Yqa@)Z5oS6d&VLU zdeY&(gTy*d1WS8^0*Kuc;f?hH)|Ro7Hytq)UT)mSI@gzByXkSZu-=M$aDFVL8a+YH z4k;QYWQl&O+Tqyty)g6sBp7wIn|a#P=BpY0^V9ldC$^jTah)R?;mF6TA5dTu~; z1#UZPi%};!*@-@jD8n}l7f1;n*3gfvbh05HQ9i^OUA`!}^kOOJGIj^Mr8|ku5oXG- z{0P8}&1LwbzJYIDlFOpbbg&-tOf21E1P_a=k(<32l1!JO-;n;0|85A3YiVQa3zZ?H z5Zv7qG(ncUkW?E1I`c<_M0#N1)R+LcD|hh|0LihIr6;8Sz>zL7alKavoZ zSitC~#n3dUr*?d&1%JV6E}K4K5?WgXvv&p}-01HGTaBVv+VA1Ewl9@&U_mJRDf<<> zH|*neb072JUhC1xD+$M6Fh_^T1^mR0iK6vit59W=9EO$4@#T{yb1qVXqjke|-eUF$ zOn0$@9y@D%la?xO6Z?o~Rz-sW5I|PV7WO|8TrbLMwFU5&_S#J?{cqEGbQwqhR zS@Ggxn>g_nnN+cgcDT5f~RDw9zb)EQhOQiV5y+m>8iD>ab z^Gxxd*J)zg?g;Uwi%s16#Gy=ab09yma5_^tF%i3LM)1pYj0HYI3hSJFmfuFVdFw2Z zXxX3?j9L7F+aZd^`K6O_uuvEOp^?m|1ngiLK^mATTQ4zQ`pvTk5_xpEvh-BhcC2lhz>cGbIr|ZoNd@2+wrnW zOe64+Xz5{d9J8pEb;%wVoR_j}=FUmXu=F;kCgkFL1m@f{zcXyhvnu#`S%nhzYeBBS zkUF<_2djCb!aVn0V=Hc#V!T}ji$7C=E$Meyo6&UEF0eP0{@Alkl)w%S72LAXYng6z zqp0zmGz)YP^F#b^iAD??&6g}xXNQFMDhV&==G^$q-cf~X@!aui1#I`e1JEU~utHXTVN+T* z@#ZNy&`^7c?LYsP(_E~|DkL^wccdR2&hHCdTK?isBQ}Xuo-PynEgdh`n;tFRmN8fS zJUv;w^Vm9Z_<>d8_4SovE;2^EuR2X!n-wKqbTdl)$0b#q_hhqpx`VqoeM*LSq3Tw# zwDvslU-<^^GRf068B-P@<1Z;n8ZCKwC77?cmL@7hC7hk|i?0vqPiyulp^@7#hL_1xw258zbY3i0o?OT-J;tQPBOt`hsl z%@QY^4H2uk%oNuSi4adqh!R%~uoCYb^IOz4^{7NWwwe~rEreT=JLKPVU+8&+af_$kgJtjAxt434EUPMvI|{bJgDJ)XT^t_$gVBZb-_!Bo92_Hb?`jgBaT8_ttx^6!3>{Axhm zqH<5Mzg8vNT%1o^R(F7GiF6%n*hVoAKcIV%I@$a85?bh*nDl)BWxx0e{`qB)eYrpE z=o%y5TU|oKpZmk0+-CSVb_DF1TLBLv-63;)6%6k=4g>t7$vQn9c4(KvXtIRm zsSN!qJ;6?K2iNOS0L|?*pfNufg}RNPP5TFfa{D)WJ@OLl_@pR)s$Bxg%gc%XT?!5Z z%pSS0a6E{Wafd0Wy&tVKPZXsc z$e?27Bg|m218yH@gEK+|c2rAWn9=Vb89x*J)vg`Dn|?yQaaojgO>ouRm4VT*WwuAP z=fL6ZRqV&x4H$c6DUSP$tnz#!s>Jw1+Mw&?vFZRDb$bC^68e1~<(`qVMHAc$u@!tc zVRWkDJ(h@ui<^tz;MygzR5h{|m3NM;^P9&DF7tMp7_f*8OR7n+tr;dyDW=tzl0c@Y z4jtMGsJm}~M0!d$j7*JUtA4A&2h$#yCVv%tx9HcsQFeeOGY5%7{U5MLC0oP}%T>h; z&j@TT7szH!yysORKcdpe+J7!)hW4#YR8)=$J9EX>MKNL=vqO9^AXQv)Jwhys`OOyV z%*B^ZQ`pVOX0GVGF?RO~gms-6Fz##w9KO63CWNnq=bNmdx_mLO)@M8{_&gmto|p3< z6XW5HcZS4!%sS|vv=SAukMk%aHS(X|ncw>F-{N2AJ0kGkf8D?C z%cQ6O{_Fm~a`b=X!_@faLjUEz{O>>if8fK^_~$jR{U6WefA;nI{l~-q%U}QJ^YM=> z;$Obvf1QVaef+<_{<-)5v6zYfy7m9hPyh4!BmS4K`QQD3fB9aUEdKFp&itoO^Zym! z>-hi5_d5Q+^1Y7#pZC4~A5U8;sej$q|5}fN^*`2QV)KuW|CMLd&*2}(&-}ZS^dF9q z+Y+h`xXL_Z6^K9jmeS1{QAOb_O^>l+?<$-rW{Ti5+7Jv%x8`Aw*CO(2D5mB?uhC>4 z(6b>tzv-hQy)w{*j+C2Z5d228Le&c9{hUcF1*Y0DM+2r;KaLvvea06iZoJN%D=cW_ z9d!K8ahZaH zAXjq9Xf)k=;D^~C?J1$Ejm12kBzVGl)1gJ5aKgtDqBYBzrKcXLNUh~G{oEyrBPx&r zw$rj*L!qW#2YQaIpeL74u)*(J*kY~EB4wUYP^c$$3!XUjKOZ?u6KC)kpaw-Yr%{;b z<)`b<=dSKHhr!{OnA)fy*7WT>`{3kC^LR6;SSbgWU&k^pS!JlKo=88pS&^BdC;Tp# zhS1fcvEAi8#z;*erEVp9m0&_jqita8X-??1TT}gA2O4b^&8A56%xYC3Htg4>xd#d-dcHNOBj^D>}_nAS=U1@=nIvFND0se2A4N2Wx40G$J z(HZd&_)@t61B^uU>7xoc2ae=cP1S&!&vERr;d{=1^d2hrT_JcxRj~Zs19Unqq7i0> zFyM9>O2-evA>Z;S&dh+yVoe0bmo3#SkmGzu7qUKWzFhn8c<7yao!hqi9Tlnyy@QrV z)YA7JyK^)LKiC?R%FBN6F(#BhUzy1MW?yHgt9_`a(4HRtxq&OC`qAUNnUtqCmL9)u zBgcjVVD!@scxyZIYk2~ymnJ~}+9+|B)$T;u+VvWj(KUQ@&15@D|+MAWJ`{u zW&T5e1KnG_6*5%>U#z|bETq=1+RY^8Fva!OclQyo*~Jl+0D9hTB3GyL2M8=xS2+Sq0FT5JxM#6iGl@;Xv1X zy3(CQW?Dup_CgNazOtS7jGxbG=>1{OgdFq1(t6nOCyA+SaT8nKYR7dK(&2;e3#fRq zmnBCQlG$xg2oI%yC8=GGXJKh+7lt33ps@EcYhnJ)}=RAH)QV zcv!rWve(z+G%SS?X_w*N%FFD=f$dD;z8mzYJ(lQyy^fo+?6@E4f)C+HJSlc(V3&BbAZDG@i z5inu*Xp+|B1-5{|q4*mDTAu4sd*K8!xcQh3=r9+&z#W(~+==K}9J4FjM}enilCjor zbeuIFx69_h-QokVB>MpUiX6eum~stcmo9|K<8o;8qzUYhdGvi(Fgc8B#?HEWX4mTnmJM;GyzR2QS6dSK zPEzB$HI~4bIA!u#(8z)Ve&M{~!hHLSOUy#>#TX9VNO~b(u>Qgb4Cdreq3j`Q_`Q_; zkXHqdfhTB#FGq51HMIwgbYPzIGSL5P0jl2qE$9XNs1ZKr|cGXp`Ziay@xoOCgo;UB}__JZx zuj9_LdQMfiPPPvH!!`vZu+XtOG;ydV1YACXAG?BK?y0k!N>Vi@u9yI8-i-l0PeagZ z(u4BC1c|v~jU?4`4fL4qB>#6njVp%3A17Uij?RJex0K-T_YbTlauk^?T?`w|b0B28 z5t}(mhFrGKU=@FpMP8Og>pwmBE=5+j(LhBp0u z7y{-#BHgv{htEkkPX5jeXZ_Vmb1 z1>9_Vv(I`l439cPl-U}AkLAUznoolK%IlEba>(}iIwOQ(s_e_1eb7CpmMbp5$3DF@ zMJ=;Qa9YIzch&ykmC`j)^AJsU?8JbbAvXE%x$IKhk>56bEP6n9Uz zW4&f4aw}Gyz|}rdG;z&*P&_b!f7x{u7gV63!t~fFyvJWF@M$? z=Gya_$<9rOV>jC{^_3Nrxq3q1yE>rwbQ7~~9s;EowK(&$zu2DH&O8%WfSs;4latzB z>;Cf~xZElca@jN4<;xEEviD!MKO&B8(0h*)<9EW6Mjt5W`ZDV+dN3(tJH5}_K$Z)_ zAb9Zu4CBloEL$IqeQgEr#C0x1==;b$QN*S%X?QX3hV9#~{q(gX32l3%xagihRydy% z^3{o;y}}WkG@S7Hivi%OZ414k`_S|6>v*0|VF&N0vh*u%Q1|DqXt(l8Xsuj8hTZWn z(%}k5?K+C9gEqndn|$u@u4c%TYazRLM|hR#6R~ZQy0~?>8Xc264mw-LpzHjRuUy*zl=SVtRKZY*hOQI=p8#Uq6sIg|0~Q@&0}@aE@1k+2s{Q^kVf=An18mM z4?eM%yE=Lur+j4;|4O+OO6+vm)#Ed8du{K!0=Xc#ep#Wew?!WGewYdBvxV6hk1gPH zWD40`je{8}W%N#W69sz4F!k0T2n`+w+xkDWg_^~J`@j;H4er9oE+go>R)D&FJ4#24 zH9+TX54UlH4#rNbVCn-Kv31@kh>h=H#}0Z^Ymx_^xKYE+*(gQb4+}v5P(RTB?uU8D z%9*|8R#-fmQO#w4`r9}Ql?=3T*U+y*e$o@1hK-z)br$7S)`)>y2G zmcpqsKk`PJ1^7ig4px8JNOFap7~GR4YP#V=olE_2_SK;n7M=p5FJ6HYuL?MghW>QZ zECyRAWRYc_Hg`>a6m`EJhBIU$*z{6oR7j{`t#&u~KQa5ksIHk0DRic19@_|1>aa3U z6{jx~`uZ0GdG9qXtWVrG{Na9pX-)Ww*UUAAy1yNZ-};b~8nhZX!Rr5!@yb}|T{mo8LG#+nor-ICVSUc61er>3w0IM0$XdX=i z5}xw`>l|q9_b+(V?c}ESW!UVA)2? z@ZLuwwrXMkd>x)b=_~g^s7(&#_fiLwvMc0y`!aaU%cfgWmf~8A;dJTs9C7m%54P6U zNpfiC2YR$hV23Yyfz2zk=-vAmSdKHva*h~AZj6ONsb^vADmj{9IfyAn|AD&$*OT&( zDBArY4>o8Edzh)Ykgz}w?u4{Lyu&V7v3V3k{T@`uOdQ4UT<%b~l#wV@Welyy#Y|?b zhIrBB0Em`44Qn=xq91dpx9k=c2os%`Hu_udL{Sf0mEur-Fc{scC` zf7wt6RXQ_c6AX2WBbU{^;k?~2SlM2WTO_HJ#G>HOtG8^~lV&EcuVDGPEQ<09qaRz} z^5cHXK(_f`3>ZEJGpQS0?N4#jbJsG1`_Hkx;}G}EdpLD3uVrh_R5C9`OK?{3r$zb_ z?&+E#I4@U^8Ji7+ryiaB2gfpY<@pP4--{^96XuNa!oG8TvWCHhd0TP3+#z;uX9&be znuJ;ZGu+-@2XXYJFg9h`7&t7e2wTFoz$|=?K8|~EeN;T#uH?sQ&sa!G{a!G|fgw<1 zr49#@l9~0^EXcLd6z@#jPTSnO_~<94Y(Zuc9!(<%Q`rhWt}7v+P#Oyh_retaVvss{ zjWwIQQNbR8;VzTUhN#t1T1*`GeeW22{bCFmCmO-sb2>OUvWH^;?TrnBlF7xi?5Y`k(Z9gX{MZdi+m(cUiU_{FNP~v4ksxpO5VRNd22!e&&t4mQ;uu zMwyd`kmopXdlGmSDgc)ygWRhG-hELrTW4Jf-*U##6m=Wgbw7t02^pi@-!=3uzduc% zF3eD-_;C#*)#>b}3elXd74-AeUNDNPVWBN@s0N0v%Gx=}k{Y3_cx;_38(_UcBJ)0yiTaME z6$=(&dUqmSHe3yo>nEW`Z7tkCegNe8rO@_q4M-1FquDqWFDs3Jh^sefj&m=j7`hQY zcN@W+#f|K1s2we#DyH|P4lZ;F-o?rDDIjDxN-ZA32K4l$f$R_aXl=pg+^zuGuRGbc zURjiL+KIin7ezUSYdN#Z`{b4AOb#>UkxNXbTQ_#lq)Tf^XU{2Y{Srr?I_KjJy$#r^ z=0%OE@7YuCC=|9Q&}+d32ujPz{i;7)OsPR@mmXF4-;5P$Jpw3y}@J4 zQQjf5o{HDY(eCLfOy97Msdgxni%c}7ge{;u&k)aapQLLMlWAW|CEB-I($cP%eD#{C ztm0Ut;6yW}i2c*h($a(;YhK1fUk9*30kRmgu!wtj+=8A?oya8?N7M5tAIdNQnz4K( z1#T^aKiXSGSEElu%jOc?-Sd)bZQl-ShAp5iC3|pzi#4r&r_Y*345EY=Mf~ysC-_6L zhv9?jE4D7SFU`}K0##bcc&E-B6TKVQ-pej5dWpcs3mM2;SzKqiW^II69iM^4)hbKZKDbnDny z+?bI<%Ldf(*S09oA(;#G;>RpnddLM;hpwZiL96J*v;_j&QjrR*+-StktF%4KoAszB zlV$W^I^4gWfqXbK_-zRjob5#`mG_{`%lA;X)EpG6?4d|1780cl$o%*yIPmr}zw)js zWtxwGo>@ICuVyt$*8hfOw+!Lg&ne(x?E~@ewMDO|e8%R{nu2dFhC~mfsOrE}F5K|} zKW3Ra=7is8P%c-`;Uo3n_L z#iLf!VTSB$K2ItiY&V6H*P@RQdi((^vu6|@(YtPpbTaBpG7}vuo{F!|J!7N7W9Y`4 z{SZA*L-e_A7Q1FRiKT|>a4juW@K`exp8F?rb=8V&{o++H{rE{t|Jz$^t#OKZ6dmDS zPfmmQPIc;(+Q>k04lI0m8O&VovuW|dyxHwKIDe^^*nLi4ez27*4Q@At@LA~+Z95*0 z8{2TdX4k^#HE~cb=M8yWFssj~;h6IS{^X-`nC5qh(`wU!ITy5;U+pJ>oBM^G8)idV zt%A#Y^;fQqvxFIOO%SKQjduF0!SPuV)}X(aE`M<$%Xb}u<8dPkx7MU=n@9A(zy+A? zG)!Jp3>oe}Q19jrJpD~@G|u?VJo*i!j7|4M*#UC=<_{V4@tF%#`rC}(TO;ZDV;^vq ziKK<~k*xC9R(?w5d4X}Fk5axSWOvn*!y!d-aQDB1Rjcq8mH z{OSCg6KtOF?8_eOjRV(&LSXS#ZsGe<_I-0ElPcw@_vr&Ht@Ml9E@ZpzGbY3|bITm<*t)wy7VqwNX7SPmDl7v)_4s@mxx@;lE^EeF2j|0v zTYs@<$jwuHl@D?cLwNhqDk!!MWM=CW;O_6qb$^mexEX>sHt@$?W>EhQXZ81@g;U?) z?=hoL`!g~8p;%-@{qt2dANV;fE4a+@P zb<;@BKvoqdox24)Ce4RRUrq6Dl}Pf`kA(J3ziFB3W)R)uDT*uSE(}Oxg%)zS^|6XL zf3XW}*!%$UvKuL6(o^`Qd`zw4uJ^ssZ~ z&$|wy{XgdkUeI@v2bON+WKjUEy@$YOohq2}Je94hoCZ(-US^lgwQ0h*X0Ac;ByV`e zi4<3uqveP`EHLXXyB&3y{mDGYTz*f3oa52>^0^@$r$H#IY|Mh{*23CB`{9;Qvr=~y z@~~s};xG>*D5)(Z`J!>qu5%k#b{-1OPMUqbqF)` zD;h6iMX)=ajoi!XTJ+&|!)9pvlZ!q68Z>>EJmy945I4`6O|R?0BNwi5AKtG9W^x8n zhNg2$-BH~7m4~1(u9m~`hESEbh3hT<5U{5f54)wpr+HK0T}A@icCi=K4b-H&A8w-I z`evGh{lN77G~5+)5@(;EO-3K@Q@PuI+M6|l4c0C~l|^UKV`>j4Wf^&D=-c^lTC|N) zjX&@i!}H1DlaRUV98P1(x6$eY^^&>IU7;-Blijq{pvv(@yyN5bl(j#fDKx9mgN+>3 zPzSH`BZQt_8cgHtpJBk6RRXi;1rFD?q>;WU6ngwJOxwia=W!AACgwC7()@#62<=P7 z{l)|TIZv``a2Ps<*^=Xt0I>Mem!=E#&2`m-sQZkf>6BCDkbVoZ&PkzmH zlpn==s{3%)*qO4N>n>0wy~jmUq9_N9@;cjlU z=`7anJjO)CqPwg&{i$9^PD93%^cs%hPtB)a2Gc3ynj1}(^n!>`8*&g_E!|pQ*q^^j zRFP>+Ig2hbo%XN1>GymlC8tD_)tV%z(!p)p=}mY^AI!eyaf3W2qsr2KT=;=*Tw8RL z=~P$abi-^WCAvXXf3C3g>hb89dYsi>`_5Hu=ta+`_|eR1CG4=T7R0~q3zofXpmt;- z`WBq$-SQVhT|zIgIlqsFn`zUuehbj+jiPY9SL4W6No?>*As5K*;C7EH<~vEAf(8nC zq}>--XXh@kTo+E!_fMnS+#+58;0^MDYGUx&@d ztjW)O5X2_$qNTFin3U8B$m==G;+N&I1%_^{H8cv--mD@|`DOGjJ_CGhV(GnP79KzM z5Z2DOrqiN+&~MR77M3xQc~(wmV0-{)*6(1ampRkyZf9I*+Sm3mcU#DPOHstS`>g3# z5>}*Zl4zeY!W%^)IwXA6othJeCS;pS*3Oz8WpI)*SIGF8*Ljo z>SxjNv5nZQWzP&|HKmcC26@nD@7!sSUndt?z7`VJs+$2AQOa1x-t=|^W`H#=>i}DUyB=n7Jatuk@ zx|43!rGa`&BIbr~hGR}SEObsXjku}}lUgNQkcBN3ndXU}_y3CaVZQ9bqDboXw2a&#e#ZmXu&jvuVK+#CAV%;hD5 zPs4b^6K4A@6%;;PMvt9AG-*%(Sw^JMg%20ufMgtK`pm+p%da@~))^pqc!xbP@TZfn z_pB|8u+%-Sx<(X?C+g&UH0+QFbFsDIW|!6BOw4 z@dEDn%x7$zyFSvsMCck+h$9t;vLw+j*056wF7A$jq_i2>I`}lE9qB_ex>F=zH4O8n z>XV7R1w1#&U{7cSO52acT^|gf+I|yQ`lT>!xjB+^y{__xH=WU-RD#JLG|Anq7(TUr z!2TO8K*m7G4J^5aD|Z9rObr8*ASJAqiG{r+&joC0$7ego!lilxIyd)o&CjhT*<}SQ zXj$Wo2in%qR-uiv#Ib@E*(K6)fm3>6$}k8lvZ0F4H(7+MDa~n^LJ8Z;aCqfnXp9&L zTef?%cUD{BV3RA_C{JXqB^EsIXD?Dc{TYu5b(_1l6CtHi2lV2?>C9Ub9KS(Bm?4dX z3!8`3&7Lz7bhiq#bvLfE;~vLoj90LzF58^#yygThThjn8bYuMcyYQ!fIusxC2kYQf zwn}H}q5PdUY#4l0aEz(ot3G*>}6%(3AeJEgP;JO<}-Zeaz?S){{{{jrD1d@f|Y&NfLbU!CP@;+^Tl?MnW> ziUIaXM?y07PfuBJ_Wg(_nCH!BmXcb1m-%Us7@!HXgd1;5E$O(vyrfabS3 zlk%@F)UQn>|D}DwVrQ1<)@nrv3oT-aGUZsKHWe0kUc$3xHUEvhH;>EdefPc_C}|)S zsWb^CmFBqCd6Wh+HA@sqGfFbg&9g=-(jb+hq>yy2^9UgslY|hN6{%$Ei=Oq{zFyC7 zfA{|F{d)GkU;Ezo{cL|&*IL)Qu63@nb**)tpW`?_Z_WcWiMX3SqVtVMpjEp#%+{C# z1D|6kS0zmD)LY_43kjy#UKp0om=Ci>R&w51n$Yqyj^~xOgG||?fuUSI?U)(GAm_E5 zh$>1#Xx0p-vvDNO{XPs1@qFRxZ7v@1=eWrxodAR4s6;<_9nj~$9T0^ z-@J@g_K4FRR{G$+z!?^cAEv{34;Yh_a-ud>fJp7LLu1Adgu{~A)#~zaOxqg+9_m4h z+<5j=@dj!a{G7Va7sP$p_N3glf@v!d#0c}(^vbI>bjOYHL^m)6aqdhcMrB9p9F^PX(8WO-c`}1h zo$LrBQ&fqym^8IoF$#yhXs7!p>);sua9)ETmqS~fgeMJ-v9nd=@WYZpws3tMbIWuS zd|a^`XT(%6=@ke-U8QPFRLM+h#v*G`f-kl zJ2$J0rtX)8I?gXoq)Uiw7MhE~=S!d&HsK?71e7n(rt7%*|47n6jIQOO#;TJvNNFDQ zs4PNv8$I&q-DkRQMhY$p;W)?~8-2~|ZtA9GOo9Y+XtMugl=Ud4@kf`TPxMyMsj8#b zWko>oel0|q8p8scgJkc)BKq8G4#s&6P~V@fJjK#oc;4C`jSM4cl*%8ZQYHXJw%;Mi zS=mHW@+h4nmqn6q1{0%4OKE=a3@Yh46)fT(ak(Qc%%w63l2-3b{r%OUXzw67of-wA zX341cV<#>jt_l)!$3oKbj(G@w)nl5gl_2s6x&s7W^thMm?buXOd`Ifa_ zG8r|RmXg=%?(}1;Kbt)`nMjv$wPl(~oSyQ7nar=Z%=|t-;m~|@>rxA$5i_}5HT(m#FLeW9K{_dZfSyJ%GaSx;{lRl zeL83VL;9oRF0(CtK7^f|0Jndd!4++SmP=#d4y4hg!HKj`))n-Q zseyXQWLREih)-Wf!~V6;*e@G0NWq{3*|6gcz2UY8zkJVT6L+6t#w(P-N?eIOydD}l zX);u{8DOcVEO^U|2D{2KR_cu=Toqk{_g2_}?~SP_#>EoqTIq%Ih`dc8lRYy6JN+xF8=>* zdlftn9Z&M-nZQd6XIOSp0|w_lXV*M4rz!J3(|d|q^sR&l4z2QovZrzoxhD!2uQ*HQ z4A|1ZoG37RsRbW%0vN_T@5j?y3fvgT14Gy=FkUj z88AR2al_#v(o)^SbUl9pwUH<2xm}q|f~Pw+c^t&gSB>au#qsFy;Rdd3U}=gUr{~L` zBP~JRbayo8LzZ@qIw%O>ygOlhlcqPMaOga_7%xkK;}^WTp8~Nv9B^FI1QH?MM-zQc zQrB@lRHeF#{)iS}_T_Aai3&AD=FBjNx!=m{aMOj4lTMOMJxTOPizIRfWDJ$FmsAG3Q2tm1qG3 z=O5yke0s-j^R+_v_^V`jfF0zYuz+#FBj8r4Gwsyeh8h!Ca^5AJRo*qua_rxy^%bY$e=AjZA3oP7?*_ZM~Ct^w6v=P>Lgd8&6MHw!ERGP zk*5mx#@CXI5sGwCZwf8xizSyAH4!nA!Iyq=8~gf9aNc)e$oSxk-EY+DhIgvtXmXuC zNc)308x@fSc?smjjTHLzOc;?290wEnE9lk_hN#{oMjviTV8fqUf_U|KM$Dp_ByW?a z$*Tns7KmdmNri!sA-1-noqUvgN4j<^5|T^5`Nd zTr4nSOC%%0u>;T4q`{iy zd(hfIkI8jxB(oLsnCHho(T;05WSNTwSFavJEA|{m;nsSAo2?}B~;AE|U;Et&iM9=rMIelkgF9p-*^W#511Le*(;G{`cADJ_XOFrblq)|KGhD4 z*WaUS_}ef_d?t+B7RC-)>?ZGT4P%VEqCn*+r^&7KAd?pxlTpXg(S6BHtav<;R9!1) zPrP4)kHwc!m)1UF*K&!-hD5>Z8aJwZc|8r(?4&iEhts8X1LTSA2P!%wjNmtiJDanc#5T{I4r|y)zhDY; zrBnfB^&inT`K35~?^2|rL{T8QkFgt>Pi743CO17}vEo)a>%?gyH+QYaqz8NH)gv3= z!Dl<@ls!&Yk8Wa8^{&mRJ-rkLG$(@a{7W=qbQ1ex(-X4m!~*1(RD3zGLK{|` zW6uY1n&`krw0yUQ+*A=E;+m?^xAr)yyT*f*Ne@v_SdUNS`^awnuz&Je43_pm^L_&&-fM;`IR!X<^jN~{It3Yv zotX6R7fAB#dAaRFNMG;n`>674_wj$B*M z`O?tKXnf`}vB=y*m(O=1AH?IxuFPBP0hMGtt3DSe)yY$7rF^tnwu*k`*krPt$JunD zvFw)z`7~~m5z6yf0!zK@!D97x)zG5UpQ~gPgCH7&L)nbdV*#thQd#d6R7N? zNNT!6*%=*bsO|QY!Xr^K`}jWEcuNeImB?Y4vo#$Y{+Xt~v&PF)3?O7!4ZUAOVA*C< z$ecSJ27`RDIJ%uoSi1*RCWjNYM;JRtji*uZx|lO;J=McCFxN^O^Y@5?-Jv@q$TgC* z(1kv~daU%n(B>mrT%? zo`wz*nWQt$4i~(9N+U&wXz0rYXrMeEqb$v7ws;L0HaQ;d3q^t8-WGEGb~>K&{|3H! zQRtg^1g@RVhNSjnT4lg_mAD^+Ki=&J18*)T&C7%2ZLVXiZ*g(3Qa?)DI!WWceGK2y z0n~YEFme9}suHk{R;9+U0|C8g?{k}u-~1FujaSF3dBS)hZZlrWih?*-F8|o+6R-7r z1le^-8>9?U3G;I@YQKrXZ##EEP3$I`ZB{^zMW)a{M(AVhtcBFND2nGAAx8(_KO(^! zrjv$nAGllTM1-f*;;~K%2zu(ov#m10EhZ|s#zK)yRjeYBH`2+xCG();(-84)5QWK7 zG7z>+fb-a_!8-%a#B13Hvfx_*jIL588NCXq7ibS#rUl|3Y2`%ac0K)csTr#{S&b44u!#sqxuTw3u2=rB)=s%>ER3ny`|2taJ+OehSlN zk0YSZXBabNHXJ6Nvc(}zqscsEN_EwuAT^F-V7`(7i>eWHX5;ni~3~O z7JuBk>lKyOeMnU-1R+koo$Q&;aU*IU(s#+GRHj)KCY}+7^RM#A`dOlkyha8%ZcT^e zM<1Yhc_tb=*t4th`pA#|05Gn9g0f2=!qo-V*s&a_m76f!@GOBIzpJqOVgTKk9Rs7D z9mSP%J`g4AZ{)1~1UmPN6hs$FfD0a@CGP1kTtx(`{1~!$rXxr`7KSe4LJZT8L8q>2 zT3?g^4LQ*eSnNzjt`~qL4KI@Xrh?$;(R7g!L)HzyM^+2^a0l+6nX{V*TNbZC?Jh0+ z*py0S5-Z57F0R%*012FG+D~(mlh3AuW+1aJn0dAiowP*6#eva{}Sg;#+S;#>TGZXhs z2n7Dh9!B||B!QG2REX0=HdS%{>&1Sk;%3ROwCJU)?~Eba_jQq~QM18$`6rH>^qKa) z)qzu{`Sh}z5j`!KN<0f(aom+cws}408<=~LtQROF)1*F-5WyH^ImU*co)mm4SWj2I zHo*R$AL}xADdLW*1$?chF~C3Vj$OKI$>Gg6$=h+^Xyr2=J9ewlM`Kms>#ZH&F*HE$ zJ1z!eA?|sXB0~3{4xx8&9=lmXpBQN!BH`ycsN=U{BISOawkV~;&h1x;O8$7LT-#U(s(e3Yg!w9PcTtfWYk7D0F>TLY4eq!;!bE zNOaX(dP%yNZ}m8h9W9rRHr*=p=VW=}e|!^po!m|2+7I$qc_@+Uic~tda53aI2~x}X z?`e{D8!8KF;K(aC=mj}xFb-;@j#Ccv&iM$ECT?!8YNUv-7aXBG-fLsSvZ?H*BjwCk zzchH8e}kBLm|)`VnarAmcf{p;AkN+*0ZnI{8KwMGlzL&zN>EW!)ocpmuFs)zqx$LM zn|J7FK%0mC?rIa1+1yK`+MnNe_( z9QL|NCpzCHJ0`^t^;&Nn^)&@IrKUs8oJq{=&7){t);iA5@n+rY_r*NN`^C(v;ltok z-4Lxf`ju3q{^X0AXHYx+SlWMeJMYd(aVnj+o{H}L!PdTOOI~ddf>SZ0=pZ+aP5ahJ zuZ?`k8gg|s;n(ldLyshA*b8y?s@OTEm!^@aYdgr9;nQJq4+BS!%poJ{xaaGuY zc^_}lv0cz*KN@l;oJObTQSf++1hvcji1zm!Ve-N&V9ash549epV@z~e-R1+l=E>Xn zPeTJ?b#NY=(fXDsU-!Tqokj3!*Eu?FIb|1IRUwBOWFaO-3ePPb24UQIrvLO#bd^5> z(H}<O585ZrL?3efXxb2N98uV{6f0Q;C zs*SFZEjyl(Hy>DyzUp~U$ljFZMGDv`uaES#vcwo-|+QOr({Pj$YLd(kb4;O*6B zB#(=a-##rz3&XNWnDjX!oA;f{`-P+7l~=@H*BOf!ekC_@p0Gk=Ea|DlW$-NC1=^*b zFc)lV$=0Xk?9ZRxu`A2=RH2EE{EeBD1|r1m4CsjwLrY!kuUMhn*7(~*8^ zHH6)TYIxi|ik^HqpHa~&r(;$cqWHrB_LW&9>m=?=vbcPq#CB!gWUiLO@X0W8THl|1 zwd zn-yu#KhLBxrKC5xoq5@Rkr8<{m5l!w1E(rqkxk(XAUoU?!v(LxvU_KUS+NUx=qYkJ z`l)7%Ou%SMXt6GUs(dpzeI=Q`$0M{VOcnLp z;_$0NJMntEfu{LMgYueB)M?gI{`;}cu%Szn_>FT1ak0&0&$=(Pv`2vG9$kx{?M(6O z;C1#}<2VSF^JWG=j)ZAD1xO+n`+I7=4#~M9Rv>R1U%qt;TwoK4s6YWZT^Nr)I&OkS zK@737eoseBkHF{oDrAyb2GOeDLS{IBgpn5&rVZ= z`M3CQ5@wONj@JnkrI1|nmsCGDj!pb*ORTOPrC!DFsjYPmf2)=aKTBQ(+Is>q`&A&3 zzq6PQb91B#9?E#fWicJP7EM*VWnjmKUb?S$7FDRWLn0E()`o4s4YzKPCqqAZ*>_G* zJ0lD1E_uK_(JZHxQhw+&DHzu8i=cH49~jew=X9G{16^$tPCnZnq9e?ep#7p8P8}^r zV1ozVpO%QT*o(Z1xq0Lg=e75CAcZz_eLY9%I-5Af0#EnvAnhvzU{PNm6JK$j+4-=S zuVto;^msh1Pk#@=mdR9q#494zN$9W>93?F83A5hnF?qOUIP~?W(e>^QaBtON+Sl@# zZCU+}26?<9Yaxw`I1H$e57vLDsb?GE*)JiM!7-{SmU^wYUTK$ zy0-|5UCg3--IsXMhB0j26d~d<3@}0;>C7f&^gFd1A8ZxEjwd$cV8bP9o)k-#ZurLJ z_xMxO)zuLAP>LhgSR#>2Yjn7p5}7(v7H%*YCT zS~Jz2_MeFVTO1dkV=eE8(K57nIToZ`UD!`w-?MHDc2kuo6G*xxMHDhp;7h#@jQLVY zU#TpF*H>hS#qAV+;{;($SCD~tkra9$r;?2kl|%Wsab(-KC>(V(f{cEv3ErEm!9&gr zs#Lvs;`eS)`L06h%#G`I4h526+bHtKttRG4vkNx8)gjXzKe8Jdj?>K3Rq*Ws_xDa( z0E%O#V^8S=dU(_rTzVpbE*l*~u5S`#_lqhq`->jaAo&d1KW{ur-yMS%_teO{i4G`y z-<^o+&7@X6d-1tPGCwiz5Dgy~WG^1dCMBKGpdS8&NxFKQN=}oc>-*yHc+Mx*sPP)c zOgKV3-YQ^p-!*oN`Z3n)LIpFovXoVwe~w7q@1X1t0rWXAm27*ch2t*9;;obGn9T2) zc>Git1P|trtocg&p)tJtKxUJ$SkgjhWp`_R&tiSmIOjj%K`!1?AC` z$%39VS~5_~)$@#lR@)fHJw&wLHCobKeL@y)oV5bV8r$fd(TfNxCC}?HD}uq{kxW_0 zOPcmj99wwL$mH0!H1FpWe0wI2%wuJNtTLO)uBN1KmLc^I?4z5uR@0r2Z;|^JB}{ss z1I`%piRLzK!1eN1;A&bS(#TcN_1FRD_ASIyO%wS#LA~TcvmtH$qm4*vyJKOn4A}JF zC7ve)>4v?%%$SIGGc;bUMbVF=V8cpTJiNVvOy@bkQs2X19vTZdCd2896nipy`8Kq9 zI-h!Kn!vP*TJor`mzp{ZC%PUMI8P^$^e>o2$|s0(%rq(7VOvhh(#0`&_FQyp9u9Fk z`;dwJPMh{?@t@_m5wRc%W?nF*Tl!Mr5$6|9OZ|u<7c;4u@`5yB2{jf8r_EAfc&bW} zs2^TJWjCF~j;=vkc=IgFD1TyqviVd}$Q>u0ts|;MVlU|OU;$irN z^j|h-`+9y*&(h&IC*m>*(J&$nD}`~k+gadkc*U-{qk;=Hr(xHQCiafj7MQHiN>_6} zuu<93er6C(nY<8-v{rj;iYFe9Ui z=J7*G>+o^-R*K`ltH#32#@qDWB?qP@XNYQfgs=-^mjaEuMT#8NATvIRjV+WTU5j6l z-g`>qc!(t&%4?+BiTUiU^J7Spq8IG$-ABX|Dsi?&A|4$|N3$YNz?B#AT2vfNvs;J; zUo>%1MkYMCzMIZpF9hv24a`=qhT2Xlhj?sxM%_Oz#Z3=5_DHo2v6nZ)d;U{FEYE|Q zHHfnxHZLRQrkm+Y;Il%VF{IpC0TeT`$ioF=d3%@MrE0UeT*G~D_}%?kv?nErxe|Di z+>^Ra@#-L>wS6-z+wOrMnu1A;xDsY=uc3<$AB1u7-&ob8XLJ&8B$Nd7bGpcMNc`al z7DF!NBpUV+<^)w^spCyXDH933^QT z#a*K^2ixgJt0CgjegGE0D6Gsj1EUA#Xlm|;bGXk*jZgy9b9wwgr*DM${*0&Y%W-V$ zM$#LS%24}6k#z4iAQ=blGD2?xP@~5c!-j?9$MQu~;PFG|tJiyaXon8W=n=;S6NX{8 znGD=}OQ|)-^pQ4O3^%x%?UTA4{JV4&?WlQ5eUPiu_-uu{B?@S#^eCA8W&-CIyNOk) zbD@*_q~Xm5O|opvV(NL3UYnM=&g)WN4a zCt>Q>WDMSZ5Lev3!ge&>r4EK_xT;$k1w!V*qenKFsql?Ho3@LbUuTPwL3d& zHFNM|CChXb(105YK{eN$23BOT(WMt)z2|HG!>&YXAT*L`H>bS&)w|fXbYIxr{DD#L zH^c*Wu~cd8Pcl%q2n{2+whwghZU&3c8~%KlBB}<5?>?f#M4VX<6?@{!+l$Lg18_%0 zH|B<)BXy56uw$+}`4OfEt75;A=uSySU7Nwf_sz(zY1TOAzAnp>I=mf`h{JZtz{U4d znTMH4Jcm{f^6j}UnX|u#6^Wfs`E(LF=|hO35~V{Ti@^OtF3vU?flDh7li=&q$)mVP z!rFK6_9G;>^a zEfM2#p_IM|&_}l}GMiSkaAU8DZ0d2&3x2a2eY{^E)=EW_Q{SAyt5BUB)Y=bf=eYdk z_Bgh8P#Yr8R6)i(FXrsl21xOcC%Jqn%;)OEf;_jvx2+SXWkWs)+>oH{mIEZ`@fH%F z{*Yl0&8B6hh9F(?hzy(524X@|z$K&5Ns$Be22+It15uRic1O=fH@ZW!h8COMpt5OA z;L7nsw)ZyjM&cFH)SnL-eK(1X`ZlT+T1Cq*Tx8E4-Uy!Ev1C`k6((|o76fh7VijtH z=wZWIcw|H&ab3L^iW*MReR)Ti!D|sz(RwUs%n?LRy21xtYP??mCg>QOLxu!?@N8Li zus_Lpt+s`eWb_s2YNV@32dk#KN&jZ6t7(9BjS+nwpC* z1FNcTMye(U#)VG8?+)8Z(CuNwNw^RmD#=l${2+Kgu#)->6w={k)ns!}BJDLiOuvrs zpj5q^?29x8Dkw|z8y8WHCB`5SZvs))`-!HCKD-gj;~AFRp*Ic`Fuhq7ym7DE$?y+} zG*niJh)B9IKdr?u?`b_#%&`=uMyX*L=W%(TFJL|?Hjfrp#o)u!<54fFh+grr2OZgq zB-JjQ?DYG|jwo43^kW9;*UTf#rz4Kw8&`>AN1vfqYxd)^`Hz_yXXHWmOeHatJ4pYK zb)n)ZKdD%`C98HJXy)3Ti&=*qHl%KN74tBykL3G&pdTM);fZ16@k-`+5|-!9NP0$K z1AhS+hwcD_m*Lp2+D3K5$6~r@FY~ZO&V0-Fk)-IV4_nw!%VvKG11%*>$m(7KcYXYz z^H4Z>-Z+czW?Vq_>z9+MMb6~j*&Z&4zm^ssTZrK=N0~Qs5qyz}1yGQ^3LJ-(lD*XKD}|tb#F1CP48!Tjt_sLz1b!9K8E@$h=F(*K@S+ z*28Bw%4G?jyH|`0D#fub)|Qg%kLfk7G`eLVzH?VSHE^xxwN2Vh&F=C^fB?r^+{I@$|FHt9OgUY*a6DPebH;~*)@YSsV!mtL zEF5#=1$Ei|p7!q$!;xJ^@NrrkuXm*`Z43NLL@d(T%$ujl%845I{X6%(4c&ttcRBB8 zB?A;Ow*-rxWyGhA^HB)kSfKuuV5uq!>y~jO7T^EMq zqmFSTLE;W>Pddb&y7ZGIK8d4`zpbXny_MkQb|I$QXblav76tpbiFAddFkJb#k?y^o zNqZ;XBp>fCA|_%k^l_9v2xf;ePqk*_8`ctsl!Rf*3puFyGz;?^ml98d)$rYYfS0-^ z86^&0Va|0ggcF-bQ#IW!>CtSL zoAl(my&$FB%v_E5K+mn64gH_gh>4Ucy%`{h!Rwxp$SVgKdjVP6_R)oL{iF)e-OTqA z;-R6Z2Qj`DL6%Q7gaA!bd?uy^TgPVNjYi@>qC2PXrET`tgq~UQg1SIF4?-E4cd3 z#i$M8JaHRe_RE3+;`SnpK0bMnioH#s`dkg}mhiJg`(r8zOXFfaMIx|qnE;k#&cbM2 zKFRTjuUpUQ#UJlw!vlX;+~gDs0-NOFi_sLEzjOqgTjNbThje*I>=E*Z$%6P$6Kmj5 zOwN8G)H%HfN4<0d=&@#;&j4YcIK%Bv&xycc0s8OxUl#o7xAohP@9(U${^#ZY4|?EV z`s-=_(^(4&{qkA+?JxLitAM~?*Z<>wd(%yR9U)BO@4NY5`tAMK`VIbjzn3>gzgqp< zzwYnb{y(q(@9zOyn_2&4HR<-}sha({wEgow`nv~K`-TSlu9-Rg_j;(W_r}mr-{1`^ z{`osA1HIP&ZLeQfm4JZi?+^TC`B$IXfM>sU`2D%R`X~P7 zQxV<&t(Rm7hms3&@n~eRpUf~e$5$82vBAd`uT-?a6D=-oVRQhSAGF|wjEnd*@*^(h zjiKXIr?Xuu2iQq+F4(%H2(lg=MrUg^Oujfk#@hhC`Ys3sC;UMmG=SXMqlh|I_9*$# z9x%ThP0oj*^UKBjgl{JJtm7s&8mG|ZYY1GO`-QH!^NFlEu7x!}c#yO6I0i^;NA+$) ze5bY-*H&ks&)Ly%$)JqbThE2uOQ~dx#2%9LqY$LHIN0*t&9rsS5T99c1hPNK!zil? z@*%MdnOYI^MStY8kvKf}b*+hkU$ zFbHrt-LgKFkYHQ`Ey9~fS;A^KTQnEmdWU0XWiBxkkH%da@?piTF4`3~9w*JKWQJv4 zrxy2DpwzNloHBDC%V!=DuS+UKGs6tL7wCh?hsEgg0-54<@hCdg0B=XJ_$>7Z-g_&79f5N;Ou;*=c7tXmODij6L2ioyI(qeiK!hC%X|Kd< zw~gqz*gH7=>K*#Q-Hbrrt#N;se z9(@2VEA6QN5RuL{s+GXlQU&vTRtZMuiJ7~9F(uc-vf$0SSd5$Rg_}0n)7bXSuyWgE zoVG~_jz92+wTmKY>Nl=V^?^F7how-BE4?!dKS|f;=dXfR=~Ut$qy&1;!a*lg+dTgX zr)RwR0@=q?fCxA;$?cxzSt}y(#8g>m+r0sQRQur3+B4*yg90k<)`9m5#jtHhC1mOd zLdecybQX$+hPAQ8={%ROvt~HHUN{rxok&J`yJq;Ypcu0xdG*RS4g*_mhlVm2$a%d( zJeeEM=%$bf$dz;8y;URW4@)~LW#a}_Dt=_4b}afnH;3oTQ`orbZZc^_1Q_ouhc?c` zbb0S;Msh(9vsJDfqI)Ky)7m$1&ha+d9{d14C$jPOw8s!OVlPzI-XJj@AMw85Ih^wF zF=f~cJTr4NS4X)Q7A7r+e6|>Vn9ATNr`5#TxD6_Jei-ti5c?7}$@wJ`So1jrQgZiF zlShSYyu1kpOKoSrw2n33vuz57?e8RGHAd3Hz(+W>^*oBcEM@tvxhR`9lgph-MwxZC z^>yn-QC{{KdxUSr>ito`Gx86GCq2nvpO*y(MmS(Y?j7Pg=NJ`IQ^$Sovv7Xq1Tb+N zs(WP?Pb<4PHu@aEJ6!xZLqZx3+6F_V@c}$!aGzFG?u8>7JJ7nv3#0mKabN0Hnq6Xn zJ)VV}ro9t;F2rNw`BU`Nr!3T&_MLu{H0HcUWf{xX_ayzI5H+5#3i9goufVnKCrPkS+^b!57cAb zpbX_Z9A`C$oy4Y+2+T?L;o^(F*y**BV_v*ua`-3dq}!9R_>2sgUvUO9beG&bqz2VJ z2XWPVAx=vYBwt*@P{?I1+E$c;|EaNbwqpmb8CHmrX+^k4tr+9ig<;^xQ5fx>NX{2> zjLFW+_~gt@4Bg0ipIuf(9DRV=JrO{|(npMbYy&2@)G?y=Z8?+Zfb(j zOMr2oGeGOA6DBS!$Ign^^m*@gxHTYWuGw>zeE+UO)~vij+?r$2lS#qP%bl=#O;-J_ zUT<6_|CaHLdq^g2eM#5G8PijONhCZqmaF~n#f#eFkY5wUTBaSrXRVJ=3NE9m^J;8K z8diTuYb(lCr(kzf2?mUm#j_Vx>!+Qu0Yj}jWRPj2r<_NCRe2ey>kPxS?L`cJcB9X) zw$hN7Tk+#SBDPi@!G?#a_;geYm-}V}8|}hiaoliHdF(BdXBGp>2Ntn@%9lC*X&EN^ok1J%YRsEGom%-kKz*(z?v@Osm(k>gKhW_+jDEHllH-oAFdV&E;voqw23TFn>(~Xg8f_r8Y~|dkT0# z5igT2GqL6Tc{<4<-DK48dIEZ9rSSczE2x}XfNxJ9qM4R2@Xm-3xM(Pd$p(EmeY;$J zk%Jz+zOI%%s#`+azQp6rhDG(vAOUfXU-!eSgdSbXc{tjN(S2n{N$&b#<^i`%v8^(m zZkoFXc7zMompxns$qt&N;^9wZUJB#XyF8HJ>VzDGhb-+=fnl+n4=^K3TPI6mgQx>n zTNsVv2MKgZ-=X4*RPodHEX)zF!RIm>FmG)Im@b};)8{#ZrSW;J-JnnV-ruJWnhR)! z+IEh&CS|UeQUUgTUNr3Sbci=i19jtmvOii9jT~<O}9s)wb{0#Orf$!%{y8PFAH(S7u}<(=RswGSRF_2&u3SfG^idhEF?igI=u=)7ALL_N#E zflTIGBF0MH~5C6rMQA{2DtEUFOfh`-4~T$kh|*yo67K^fGDW ziA;Pd?~56#^ND1Letnio8@VUcNS>9?!8J}l*%|Y`@bv7BsfW8C^Mb2+y{fpGoEf8w z6Jw{~SgAuuou}bY_XV_+bi^kY?&Eg$BV(<{$1$@4;Yy#3xs!nnZYiBZhGMun@Ixnw zZH@wXjP!!>9pXH(lhUx5AB2khvE~ZlFQq1z!5O(+Ce%kEtq^!PNY^-C*nrA;~*s=NaL!9c#*BcFvTvBid<6!cFQw# znjwmJmaK(0k7~(#!&X||7L674_h?#RD7!&z>Uovw>#lSYsL%(N82n!YjLU+h|E*IMzOMWIob0_DG?w3WQ z!;g_PjyL5fehx;Jb1{krEr^TUho#9Mh{wVwbmRRT9PK}y+_Or8fS7XhKI{gDKW%Bv z>t$eeVHK3F)xdC)1$sY6n}=$PoBw;d)yO}mRKInrzpnqsb*mHee$DVKME-u(_P<-V z`j`FjYexE;lkvMBelP#y=bzp7>%0s8{`3X@<@s;G|MC0IiKV{|`QPon`>*qC zPB{H)t>@fd%fDW4zjfoVKi~g-IsJ2WSU})Es~i6#j!xK;U+oI}^T2;?-|zdP>Yq=$ z-|hSLDFK0h62X6O{7)?ZQTswx|2opSfAHPw1LA2y_Eh>fcn#m>&~y5=Srr%Fn+Mr< zs@eIs-a&$p5gX;#h#&1kaP#S_ENTFCsA1(~B{NBGGM7I-0<`U`S#y6b=Kj`AY{ z@(^r4Ct{%6RRl?PJb&TiOQhM*aE!4M`lJ_NFU0xp3SjpPM<6kasp|ST%oG_9eIxA9(Ln}WzV0DiOFPNC z*Z#PFZylHhM8GGLeA*sQXwFFku>Cj#mMC*$*g5eS?3+QpmWh%1lAo#ANimSzQ4dEn z)iEk?2U%mA3xlT<;n)T-d?&FNwW72j_w!N+;21tmXAjf!TLtm1b2VDtea(oi+5lnm zxV(os9Fy7n3$dtirxGVVGGb%h(0A-Q;`werZlr{oZYY3l`OTjv)`A@g&ilvpup6Xd2mVR?7efF!K&98`$vkvnvEZc;$*-j zo3g=hLKT0m`64p$RuYMQzZ{+voPzH=WKesh3mX|Xj%ixZ$l7gwjz5fmOuK)OmuxBq zaq~lA{q+&%2CY@tk$M^96ynH?NiFp9&q(~yYy|o1G|_G66fXFGhz?IV2%~gj;qfvv zz}#FI?mQXdY)ZhNs|7eRUX7X^jKIM4PWUpx7_7Mbk(VZZd>Qjn^o@+>XkTbT@GoVoB(Qbweg#1BQyQ2EbnyEK4ibz6aP2r*mCwFU!imd z@*2uuhRjSR;dTJ}DG5MJ^b;D{c9>bld2XNE6@~LZX0gM*9HJx3p5jWgBs}agz>qF? zGCEffKku%nyFa!FL(@CS*Hur+HYHuyR%-`LeF|!?*iS6)eI~L8Qz1rK^z5N4ez?d= zon9M~1Ht?Nx~gOmdOtGa^6f+EuDgP;-6$HD3l-1&ez6F*$)-Tj7OrN+;}g6Tr0OZv6elE>z<@Q}KbO7ru0HDWx3duG6?)vK{%b{X9mQN^S_8wL)y z4m0NYv+A@jn$ z;q_Vc@Y5pJ=fWN;Gcz6>t;=BMY$3SdKR_%xj)S$(HP|w@5HuFPVRI_Bg2;(3SR&uS z6d$|7PN)uo?MWd_mva{5-Ms+!t5p-#Za>gFu@eJdc%jcTFU*ag(C>2|9*9>kYd5N3 za$XRT;n>0FQ(rNMo(A&HA9{t`;zS``uZ379*}*INnzhj02M~B|nSC*5<;y(UI7CP?t(0m2M^d<*_l+!FP(aFbM#6Lp9|#aFqUKzTp(A<>np);U&SLlbQ6J);d zwU_xj@g?Ts^VXPmX|6SQd^X42B-_h;qLr`t4i`7`bxJGE4GnDQ_bJh2kN&qA8Z*7= z_3y5v;JqMown2+VnN4P{?3QChj(IUnLe0$3qYotOL>zJ3avWNXJt+UpTaF7JNYvIG zf!GNIavx3s>5nU5OPUwYXDA##zfOjpM?$Rc!azJf(vaDkwiFj%w!-)csSK0n0>M&3 zbiRHd+|w}u_etZ~I;TZoqrhWc9|?!z(nu&%nNJvpov5_giQOE(4Bw?k;C}l*82vwH zn?y=yp86^}bZWF#WQ``As^NJtX9Cz`M)TI)J+sRmO@-%|oNCsQG0B)>cgknyyOWyK zt47T8Xbtl~?o6WQapMB1Cuc$?d^gqZjySD5USP)kSjHr@czI3Z;pw&M3on|vI=Iy4 zHCCHm&F(f`H@~B{ckY>5n;qsRn%=kMXq zdAEdst-vs@<$?l|T<)d3z-He-|9}lEg1v%#*Z=K=q*cxTWS3hA7>NrQ4GI4`&ENg_ zYwhp<|E+ZW{WbxCzs~=E@1^>u>hgQZ#$WYk4`qhYRlW`>d8Q!?6Mrf5eO+Zd$D=D9A0$T zhGm|z^)*ckp>5i7n69;emQ6hh-Qixq)9mKYOS}f^lTMS4FQ(A`_A$Aj%45{#wDNLq z9e|oMwy=N10f^7t2rf1a@ZEbQ_}q*~Ed{Kca`en>b7dp)wP%&v#(={%C)i8>oK0Z zs7Cpb3-QhM1GpqO4!pKTN)5LIBz<)0oQP#m2l2#HTM&F+a6R8t?sMk^@Nvur52Y3q7&PrCt`nqer= zT@p_=BxaCh_Az8wxHs3^vy6LI7{w)*b#jKorgMjiDYE;TnRw?Lg6v)==2kzHH7g(N zM^*`(#bd|Va>FL;l=;1@B?GJs1Z`Q8X3}+5nUiaJ zD}G?!BCsB^O{~|H$W@*^MB-0<#NBd($w$Mr%mO|+avI@B$w5;iO)NP9S+d@X9QCY< z{8607#m==Le^ZR%Zg#)5L*P5vnJW?Wo$WPLkFyUeAs_5J zMvi}FLP{R47Cf^YCuTId#lCO%it98x#8Ep<$lk^)q-|dg5fA4CGCDt&6x=#Vp1S*( ztnSJpSMBK$Y@Aq29-UcF4plBKbIXx!7QV08LHrI}^TAaHAneur|?zv(>8iw@g`+;rcVh5}6WaHhSHHPn98LTc-PhHKc}YEnP3r z+Ep$npMKxeb3~S48m1{ua?KHZtNtwh*0+Cr^fx7edFyo3gx8VWxw#>vyVEg2uKZPQ z&-W&={o9bfK6XJ6vt=P^n;*)_CfbQ3GA9)IL!X=roTHf3=a)@hY}jCd_pNVVsd z&nV-ZULn)Ebu$DZvaN!Y?kI7`w)8SNAkSU%I3V_K^fKwqKhGU>J;I%rB*k0huL_dZ zUJz^L$&{%cY81GNlDQd!8pWUIUKOA7JwP^us|)76p32>9C=p)_cjhKoNt1(;rAgzO z{bG0d1*Gbdq2lH`pR%EQH;8wgtSP(en#s{;c5v;5^SG()qqwKGik#7qe8K4%0#dVZ z6#1@TkNEh!NbV-ji4;0T3)bAy=h9vUm95(n!ntZmahoi2#ZTSaO{Jw5k`7aJILX2+ z@ptDC!LbciW$TRtxEmX6$t|@jxbwl|1o-hbfx48~bR<2R>v4=1SMk;gzF&M}`ZlJp z%)qHzEXPwIht%nqGGINIGraH22HR%wk8{~#7uOW7u63WO^4arcH`Z?}1MhXYy>phC zxb1S`-fGMw^GXHc5#Hs3(ezAC|MpOFS9%y(tuoB)@*__CQAXWtN8~+InKLmaNgKwK zk0z`a?2On)YNNhfQG!dPd8-l`I@VNdow-tQF{@YDz$9& zxLU69=`_JUP%e-*2^56co)Ad9@5|qLTG@2%lqB)E8$)LnJ{r$0@5}Gq^vp`oqHQbo zrPuYvH@_!0kvuX_CQ+>0c15fluO>*^qD5*th6>D=%^|7FkR;#VAo){Pk`JIc7vVUT z?4377U=l4yZjH1jpRM{Pn2qKNEVUWVddE^u`t}cTSEx@}^L#~e*3&gy$=-ND*-&Y6 zfh$3FdO2_zlD~=1o!cwUkJKnj27P&%!X}itBsr1SP_%gRA{VkeMByxn(ZLx649`U`kp5&^-LEQa}9B!pX8Yi~CRTdCyz!^Q* zB#zpe#SObt%c+i!AUFCNlID^zoQ=MW;Lw(O&V0KI*K{j~tP0%5?NhlXzHK*^+^1G0 z*zS8qprw>6kjYp>9<@mndj-wrHWnS@-Vb>s*tl*iXRq99nwI=rykCE`S>EnTkaFTj0?zS%{UvJOhRv5=}C$mb(&6a6o#&aYtaJXZdu-C2Vd(&}p{CXL3 zx%6OiRii5BRT4(dUUl2F@}8@y#6nwgyuC3wug*abI%(o+GF5!$= zlbJ={^9v{Uhs6lOs&5N?C2Yu)kq-oef~v^gXictW0m(@0`9%O5ql~`f6A$QYBK#pdHaf3d~noSI9B<;@g$T87j zmh{c%A2+dq+L_BZ)Yryx{(bv@G7kLS zzsmoGFXVUr&3|-GNpQ~tkq^>677nO{xn*Au^||9-s@xcMiC69zE)e_L+^8cLCe?VgF}oL)j+ zeR`*Cb}S(ntk+3~f0Q()lTMS?PUa*zob|#r%L>72_Rc{j281ul1W90D<;Q3 zDRJ9xZ6K4lx#SB~A(>t#&(*%3#znNKbGtjlT$oZU$(yQBPTa!<#rH$XG?7aAIo(vj z-fVlpb9czypD7?aI!AI}@@5ztHr?TDhddRe&1vRrZmX0>_vQNZ^^GB)s=Ol4#3XT- z4(X5;lEz&5DKGLwtXAxL?n}X=dFk9L9ge&# zHGlUtPR|`2eJBiGR_a@)(T0;&WJkred3n>WkFC+bz zFBMmeRVmj@>^mYo!@GAp}MnUz=LpDIgzxy2g3Gk>lD&tl;*Y zs^?rj?dUrL6L8~ZyyUzzjJWt`67YLa0yeMJf>r+BjBNJoVVr#Yv3J#CTw?zbUQw4h zO?^KiN~$VEMK%S{clB+2^5`&dsZ4`u+CbCqWK{8uQV=Yy*^A1CUWB~QujrF;*U=7{ z2{7xxL8w|$hF3Pv!ZaH4QNWAAw7qCFy(m0{r}@SoS5lXO&%+MGwh>7vQU4iw_~jhf zvOfW6F9vi*Zx*z)xdvh;7T^UN4^rC8qgdu~6Ef1@$J!X31_xhc()yhfij+%^GVx*S zL@sd`8Ser~;^FjWzb*v1rLX7fEhr$?l+t+hWlOdK)!{c3 zRQdC>mhesH?PE&M<3$%gyo1pjjqvuTx0%iod;awA6Zy4+9}^WSne0&H&YG?2Vrn0} zVX^~G<1w#AEaX2eVfdDBQh>DtvPDTxZdM*ZV6h0b_j-LisK0OYV z*PVx2V`x}*I|QcIxf1t+Yf!$g3+2$W9Ze2ZLVi=m;#%fQ!L4f&AoI?2NV<(B%=P2Z zrl_Te7d;5iKVA%rZHA*WR?c|ph6)(e=nZFo%fW9X&cV0O4I^~?15sDkC3tn_O?>^+ zBS6DL9>02h0qz=ooUs_s@g2rSv#q?{{I0hq?C?kH3Fo+Uy!W0eF?5a|zGQkPbI&Lg zKQlUqnANZcZ&~$#h_#r=KYt|!9nyZ!JiHl4JlA>$ciOoCtR$4y6z0IA?>!0A_o=Y0 z6=$B!^nx`W#qh-stVnj38)4_YnNe}9f!B5_;tzP!iCgDli9>PqC}74cLe*^yBXK<# znU5Mzdtb??V?$*bcaP(!;g&B{F8+!(q-!vTq7MZcr!??^sg72Mk zvUt&&Q^jsw_lisk-l0Bf(#}dlJ9c=LmnRqA5c|l7Hc)L~)yNG~YDM z)%emwrQ+T*gK+=OaNPdv2cqWeeUw6};;ZMWFyE<~zP5%jJQo@EeRc`z+CPVF_${4n zJDAM!`C3I~p^Nbkfwx(C?R9)ti^c4!(#oP#?PYwa{bQk&?R=De&VbF0UW!ZXOr>u$ z&csJlVMLb2WP+Kwm@vOc;c8tH{J|& zQ8}fWP|JW4N{`YpFV+Cx7r!v6Vvza7+H z{{8lkL(9)+4&1r%NBbwRAKL#)`Iq*C%-{XXdi#ayZ_T&Qg#WDHZ-@V{H0IwA{a@q2 z@8{e7UaYR*0p`Di$6BAwYhAH_SUgj|U$1cI&*wD!dfre8hyRS@lKV4pTqFCc{|CnY zaWD0YbN%Hnod4<9>!<(AXV>4tfh_-{e9`?=h5r3|{qw88RQ~<)CSlo64tNXz^hbH~ z|JG0Um*UNoLw}+*{3SR3mVD`o_*wto@@2s5{g)wrFJCl&wcPqw|LJGM@BMlGwf>L-~Z&J)PKgE@}v4W_~$v&KhB$f*&%KkAo(_UrHU%HOX~&it}p`z_(0y#Av;`RBA>i(-HFuY_M+(2jaPyZg5TmOy!!DYX_?HB!PeEs6jKgQk$zq7Z&|FuTm|3(Hj=#TPH_fHjm zZ*TX%#eVtNPyhY$vFyJoA3X;G{vW3PmYn1NT8{a*ockYs5&xvO|Gk{k{Dt$#Fa6gK z`+wSw&iHkjSN}M4i2M0p;O}tsA&wqUXYh$Fu&!PS2_4QBvG~_SF@$!%UyyN^|tkO*U>5+^1 zMK|RAq^p0?4#Jz=x3LI(sDn4CSiE*7yax0 z|1SRDa-d&7Rs4D%fxk+L^8SDRXYlmfwVx7yb_})TpXE>qH>v*pz<Xrs0a!{$8uyz55*C{Jta<|3w-9-xM$$K=u9XziI;B016vG zfdLd8K;Z)@VgNM&3mAX}4!{BjV1Wa$zyVm`04#6-7B~P49DoH5zyb$g!3SW$2VlVm zV8I7q!3SW$2VlVmV8I7q!3SW$2VfxvU?B!zAqHR}24EouU?KhkOaJH3%gaCNsey9$ z@7GJW{+oKKU-I_j{NF8q+CS3&=|>DX_Dhie1z5Vjt|wgk>-GAk+JE|F)cy5(^MBPV ztpDrvepUOYE&kZAesZdR-rVo?%lOrT-_w78ze`B@#kqc0#-E<>M|;TgpO$z32KH|b z{G&OLHlz+X-2Dyn4%orKmpOEAbP0O-Lk=Xreh$kL!hyEzbxP&Hlfu0+R_N*K!&v;x z4=^iZ0_>!ZptJ)D^!=p4V8MnlSnJG4IyX!WD0>_>%KX5?Vv|#W)9N8mCf*pvzr(SH z@EPc?@fBcp&7OJ@5{m_YvxAqe*`YD-rojU;Npw@sCHg~&8qn>y!z*`rMBh4h6)dSS z0?}E{c!=9&-qIt~39Hs{!IHfUebUCbfahUEcxd0-LzoB|VUFe$U*Qn0=_h?0)H4cKRc-qDNa2+w{ykxhBanT5x za$EzWywC`_6I+Pu`@`XU4=3p1_XP$dBtY$#RUmiF10;QWE1_|bAQXQ4KV`I+0p5yqp1UKbB@1wknCV0?@fi6ZiUNgt z!+^|?Da;pTC1l{VurJ1OE7qD?30hLuF+Qa>lz+PlqZQRW3;bMhnbmllDR7YD$D7ms*1 z)a#h?C^y7Ul43%ZW?*MlFT}UzsRF~Bt<43c@FmCa8%z?d@Hn053R9W*t#6cR^N<_2OZ?zfydN~oNK7+w{JMnc3BG}rKLl|j8XQpJ$EV`-0 z0lgl-2Wy_Y9Vw5=-&~RK zupF*7D3Ar)$Kas~nrN5y9aLDCLwPHGqqScs&^{w8(XzvP5>>a$|l2b3+CaR>xd~t4cbS&(YxtJ{5z$+4m5@ADkEXO0v!3inz{{Ns_l(}kTrTY( zV&@bRHq)09rWJqhsLDF zFwu8LVe%zXco|m9JSg;|$89<+N^aec^l$9Kdn#gZu;B`F*wfA^bQ{x3?b;#_npA{q4<7sKkROCtUSMX2NM3C;4BfM*tQAj$11M*1}{vH~7boT|!LZbu(}|mc;p%W{Fg{{3%BazU zJFJrE#_StNZ(19u_qN8hqmA$$$J-*TAsTTyqo@@&a&&h2Nh)x=46duohgH2(U|r96 zlzk!%+4&3y=8dsn1hD|A${&J_7n8su0|gvtD)20f)!F;2bWyydBD-Ww9EcFkgnmwE z+59;XXtLAXw58E(p>Q^OcF>OzrP|Xffsc^s$8MhCB_k~95TaLIET&I= zlVs%QDKQp{4uRmH&Fq!H3rNFuG+W;7k8L&&U~cS^p*^X$P~I$>HU6>>&eR@{Dwa=0 zu6Fq}p<+shtT;_gse6V(=E{pYWg#2p>WJJsS%N>u5m$A~BWf46BktrAc4gi%_RI?> z{`cr{%?m%K|FSc>WF?ce!gnnl-h-p8z z5h}wAxO-j%6MTOZz#?^-lWWId>7ntAriB`9wO0NFz{}DO)Hnnss{>E|D>t_qOgLb+0o* z^vy34m8I^6u}U%c`6r!JJb4M-><*;AdR4*d2_@K_tdU5Y9}5Rbx6>xoqtFJ}gBhI4 zK`oxE@UHksVGaK`)N|Z`E|uRy>zX(44pj}oEtN+j%bXQ(*d9}K5l!E$_3bEGPW&jsi204LRHph4>vv$T;p|4*k z6F4#*xA+pvh8Lbe8^cdC%0nD!Ls>cI$D^;jg^m&oWn)MiBx$1rg;Szy(NT=n)u~|g z)IfH~jMb>lM4cV?EM7G8oq*9uO`-y>55b3OZ)R;Ks6yRilTZ?S0@;_Gpkv8JsLM=& z?geWZ)5C-5efcqLgU4rj^VKS%c!w35_U$^M$x8D^c-&_t>}dAQMt%OKRnIBeMZBV< z7t+SJR3{X18$+2zDRZHP?{`%2^#ifC3L*I!ABaj@K(HTu@WAvu=Bs}IZoT~sp;+^V zICI;aIdt$YyV@udMn$;dZp#vxCr7^#VJlh)qmoFX_~Bf(>FRKHP0S%?*0OX)*Ki)5 zi=QQ|!8W>WmJaYc%>yk63xf+&(ZL^Q zarYz!_Z=;RQoX8}wy6v05MLa3**y}d+oVw6yJZ#a_P?F3}RS8%J30%q9A;4RnIiE$FPTNv6fOE{ff!|Dv~XEC{Nx@=C+U5mWn<<* zt2MQtLe0}?#~nq?Z)^=Sb$b9>z4AQ@^l}2j*XZC^cTJ&Q7MD}@=#c0IhoPMblVM|y z2|jLF3U>JUDb#TCDg|Z*z;?SWJi5A)-aT>*Jh?KRRuu%Id%>|l&BFj{H+tc3N))kx za}$vDqFM?Fk5cKPQ&>%11(Y7K4mw;qPlb59p^au%=zhu(?A$T{Bzkn{XD_wjn<;a_ z%uGJsVR}zwd20w8QtpLTx(s9815!bD&_QflXc}Afunc|Yri=VWnKF~tlep$*H?{^} zkD3-mG3)0}rWaN{M}8S~!t<*(qqiM*=_f9y=sHCOXY){6O{S zO=s^-Hb#6s5fL)GSoG;$A)#xl2)|!o*v+S)6i-rUuP5E{VI{@N$k_VVHynOP|hkj zCcrkA2hh8CEi>y#6VY6nPTUB0C+s}OvaiQUu<3i0n2`so(6Ld9c*bj6B0%db9j0&; z`z$a3D-XY9dYWle8@G))88QO+r$2@AqI-BRIZ8=>%^6eKYb< zyUo0wbXW8proxXhew1P3cr>MBB=k0VL01{=M?wB0pkY7>Zr7{J?Dj7PXzMgI>q)1P zO>F=ZYm*4ht-TJFLh2anFS=M@!2+}+b3DpWilv@qF9MVDF=Vne9^^kb4J17?fbYkb zypg;RCgevWouo#ih59v^n%WEKmbO`BPKu~c;k-i4`9{dV<0uHqlf{`W)8HA6a3nZA zftFMA2VZYHV9Iu>w5RVRux)53##T>(-GeWKw@a1a?DjyoQrOCiidI0~Uh6=`tK33H zS{qz$i-GCAbLbEGv!L>){j`)%9!+a%f@7h3uqb(V`thO~p#2>OmChUSnwyovrj7&5 zj~^%KE4ME(QI6)ITj>I9+P#S#Hv2USi3}=uJ%2f)nF^>yL0+u>ll5?)wK5a-k)vWv z2qr<_fftmx7CABzNauVq7^XS{x1zQnnZ{SVl*hx_&fME{vp&NdNw)#9*Vdx(oDQhl z9tF49Jzx%78Q@LFlIf0?ETEwiNNv<|r8`_jl)Kwa#H(?pCWf@VT zIuTC$5yALvqtTRe@lb#1V7z12BRX!LfH-`0IdL;B1o^BY*_p&8@MOnqlrdfpg~V+o zF1)J7gUai1o%g4ip_!BMIvX0@2s1%P;&k!$8eJmjV=QV&o(mo+KEY-@K7`Dd=^@RF zMF8hs@&d)9pzcAyxYjgL>$2;4uTL&SaT~_r7xA1vySyAeDV@Rql?RlsQy4sCQ-zg! z@8!wuZ3Tweao~o-0=lx+5J*<1;BLfN=Ie&xaQTyqFm|B@F#M2>@Q6sTz~>kYJX*pu z?S2TgeFNwi$@|pG!(X6mODgsDWh2;mSRE>RWrK+`Qo+XFFFa2ooKc*Ak51gdpq01l zu{P~4C{eVt!0a@l9GtBS_2OqBt-5sZ^x=mEgjEOS`J+YTz z%DVve(1kZ>R&Qy6;`ilD!!!|QH)bPy$if-ckSdJ#@=MgwV>nZ^aSQL{Q4eI=7J}q8 z4uj8Qbn(Qaq3E6P3-8gbQS8t~&2(l=5u*bgz~C5f^v-cC$cl-DK9^oHr56nG1p$H@O^?o*bT$S_%Z$Q{09aX*&|#YV|eojQxTYgxGSrO#5)t=i!R9UuQ;Qz9(&>0 ziT9wgdJJv3l_UhmR}ku}wxhjSbJ&Vc6+nC25~Q|rCel;hMd*dqfei%+C zs!s;THPY~htR^%6;0QP~t{8rJXa$B}5TY?{!2rHXhk*~u7`*KvB;V|y7i}0y+c|!N z)5V$8IkP(Okf#an<9T4$;w;`dB{NacJ`==WwS=mzUQ1i&ZV|;+)C1k_`IyHxOQT(e zq%g`U1(W)ih7FzF0W=-I^G-z`pnMYIg`egqg3jztBN^9dYFRpg>7TnUvWbnP?JKP@ zsjM+TY4-~-eYBC0rBWi5Pb{ET?yM6^&z~nGRtA8DBVE7+!)d@1+@+SE8AE#rAWvDg zh_`w@4^zw114sIH-`(1}5)8dIOEluc9<*F1mr{t>fSy}y7YRR2roCo-LzgCUwDPfp zLR%So`qQ=!;7=!`H0NgOXv4VgQ*_J< zYu;j+ETq%;f#R)nM4>*8BDI9`G$*G@Iqz@*$?M;s!%fSmCyTC9b@uaU!-MAyTk>qE zoka=4s%HnN@t@j-YfX|->B?7>%=3x(=ji9y1!o1^p;?*I-m1p%UrI9p61ljz&4E`U z+vjf)2NQ=1-5CEh=P}_ldAP@M0Zr1uc=6KHRL19Uy!Nyd{`6Z2NK!0D7fgi!B^SWE zik5hHvoGD6XUOa{9tS2Ce*&JL6wpd9Q@rjD#Ctwnf~-Lnny#IMz9;UZYw$LD&!cc^ ztAs4xek~RoH#*MfD(E*E^B2m1sns;iJwXpN~5-i5$ zBS>cJLEwmQRK~d9(4xg_gblvo;Q5HDyb$>}2E3Iy*xE6YRAOfut)Kp0v~$!r7*{zM zRjh9`l;Td)u7eXrMYCSfFSP?i2bAJK^4)pJW#2yR_~r-Ht+8LJ;J7$!PMZN{^ymOq zpmrAfwC@$~D0Kz1&dWI$J6D?Nn0kngw=hGRyF*2q&nCjR@~!j~T7tS2@~NL-z7IMp7c=@~| zJbI#zDtMDehj`f2`*#kZkB+Lx-X~9ojZY3yRRN$C?kPa1|Y%7PRyhxF8@kpjPAf8TmIiJb3yM~pWHbxiCS{Px&CX~A0PS~+Yh@NG2 zf~L4;=Ayha#huMU?qMq^-O+Yv*kcnBKYcV>Vc0`&Iju!E_*=kb;$UQj;xIvkA~S1J zHC-KM$iVTYR77VPy`xzIsMZp&{<<`iRe2LIE;_XJ^hvzTjjO0B??=%A8{I(3rBqZM z@|cp64rONLRfz(t#t@brMZk2IEU~g`5FBHlVh4=clMEmv5E1YI*fR1OU16?ZxJbBy{sB}CM zt@fNmYw^RulG0_^7t7;xO2AB@xTh2I89V_F)w=-fq7~qJ!!S6B>f!aimPdpAeSm~< zzTuJE8eqwlI5_XRB|UnWB?Jyhw38f5Pli*#M8STndY2dNw7Lm+eJ}<3d~f`dL!t0$ z_aP=qE0@*_y27|wSb*VIt6<>4Ev)pY*Qn6oO~DEkJ4WKoGM?T@Z+6sN7dXR3g?Y$c zq>4ZAnI2%zJJ6?pKd3~Y%Ew6{J$ouXadQ}&ctjGLnJ|jA3cpJ)SX#`azFGla6*(1*HfUQ`A zP!06}UutZK*UJyk53Ow3vMg&m3dMIbA~{ZL=N1I|Z@bgHu%@ot<05w$rK9eX{8o$Xl#&M8?UD-Aws zHQ7aYnl#`!ZcVsmOFlE@lqzm>rxcZzo1xF{hIq>68HDGdXta0&AH*E(#6HT3P(!#O zl9;mwNZppisyfHRA+~0Wddd|_-l&0RIB6kLvzmZUTa|;4^I+gI3my~e^PK9P69HR1 zFJM2;-s06xeFmhiM}w!&f@!@uhTzMoG&~7uGF_&_;Wn*en3g^t#BHFE*`o+>R4W~B z*eGU9OCLgsu_3hXH#u7E(kD3U(GhC@rfT4}Z30~Hk_$FQW`HvX-}71@hcOc0?$Yze zvnVd99t+#_2D-Hd2nkI@xjD@&w3=mv?4PCqTw5OR%Tfhr%0!}OuSxX0XOW=dh&yI( zmO+niBf*>K57^y(lVQ8!WuRg^0_qfpK!3T#@*D27?vgMqGMRCyKTWHSzrvKB zm;+ASuZG`OZ(%hAZ&5~3cEPUww#);Yh1mDI8(GKTHSpG{k&LD20u|#-Fb@=V@xU}M zbS^y%1%@34=@ELk^66d32J7Wz$d6)m&)=a>D-|=VB31y?;~UW=gNfkj_E>l<{~6QS zW`vKQb(jup$p8%tc2kZO9(1*BF|}gDEp)!YnMz$Vf<-%eK$~bh(RFw$u#~hR*51mb zr>wDMI|yyova1bmE>^)jW=RuiU<`k&)kQW<>MT?6{4mp0dkj4r=18zJC&6d3&P-v* zA#|W29@?Jx3Jb54(>o5E5!p`mgy-ZCWGFv}6`Z^TYV{YOb+-Y^Y~4Zp_M;A0Ex3i3 zc;+*Qu1v&r^-9smovTo+nm!&h*?<^%G#V{Kv(0);?CPh~Q@ef8BKSI{VGN8!`5%Ex z*M1Os#fipMjDY#tbi6=fJi}Wv629=Pf<<`?fKzln`fwo}e7c?vGk}?YOrEtR5_f3!G15@%D3(A-{ui?JzYQf?~RDsk8p8xD4FsY0Wbl-`=4w-V=%X%bo z+Wr`uTtQ(wRRbu++#6tA@eizh|6Qm~7K<9g&oHqQ2csLag-pQU>saLc2uiqM0ULa# z0==aYg-4t|qqZ__{K-ajHn2wmZJITiDOG+-^_|9nh&f5Tyld*{q1_JpZ4OBjYi`n> zwRe!#F@zm|Ajz7a(nONyQyJZ`W}cc<63WVQqzpX{L$v${lU6R(cizTXdfV|as8Uab z2Bw?nTlOpQxx{Szk^rP*d7b|KuVdrk)h%>9c z2}9P^vrFan^D8!Fu@Wbxn2H-Kc>Wq|(RbZ=VnjzgUE`NX#JaZOxauS5SFo9>di?`R ze-sdR_kn4 z%SU>H%^19J#Z-K|PbuA$y`6cwubFz6CWab4#Tee!cQ#9u2`v9IjgCEOiTs5L;OrM? zT+6x>c_idxUX8i5>bZx!u|0Ck&d^J|g!C-v>lMXx=g5G?%dgOpTpcZaQyaEUxMu|H zH&K_LcYwKai-EfM7&hMZqmX{*iHNj|)UmQ``jta8FG=z}NNnHCYq@D9%zZvu=!;*# zTY5P$6ljU)vi>@az<#9uJ>gAb~#~eLOd%U$Mp>zW^x+)se(`v#N z9FT`nDc5;(&K6Klx+AGIQ!9k;nIzu#=Ka8GPYBrRG6|dv`$(cl#?f8|~K?Iaj|Ku#oQaSVNwe@6{z%tc#XwHRI8Dx{Z6&tz^!*V0389xhB; z8%Ik>9ySVj*nk{XT%@4?FyzFm5cTCZq^}eQ@Dk&nW7%bZZr1JkH%XlT=NQ zyy)VO2znVWT6FE}Eo7+fN1xwegP+%r;W@3Ghkse-LRX(NVKl$UQgAAk%)CZaLzCZ|1qsAzM4)T$wQFyfXr{!r9*{xR)f-Ne&*6bn{N@j+E;LqX@qR!Yj|D@9*Sq9hib#T4RXLGjl~ z;N8AZBZn*L;0NsH?H?P)v@C9+dzuj{K6MQXXnqA7zJ3tS452Bv@3RXXJ{q8r2U9@_ zZwNk4tP7Q5BhX1_EqY357|3^b!tBb@>B#SV5a{|2tK2XN=Jn}{k++rM;F4e{5%7g~ zC`2BO9qI!@sy7+lpRWmC+wX-JCCupIRTeNW?EoEEAf%U1(gB%$b0nwhp7e{F8{mSI z32+0_-tCA6nxww)7I|-&YXgzOe?OHSm3rDd}4uM9^>G)%O7b=zbz|&f$!iHuy)8?Hl zGk^FBVENDs%^NlmsCLG{VHHmpqeMg8we~Qbn41ooH*TXgtaGOel@Yb`$W64j(}B`i zG@Kpn&2@Hyx z!Hjo#Lh+KLVVC4pj2)}Pd-tUilrnK3*vO0K@172tUZ>*A-i>Fr_xYkX-71GqdGo>C zhxw?dJq&bDOM}wO%9zsC?Qq=NKw2}Smzr4K3nS;BpxU?_pxsRa61F+u{l)}rrJuX7 zQjejnEvHca^UP?KF?WPYF_Xd7pfF1N#TntdBIQEc1se1f&k>l^Ss7p*)r3`kD588F zB84_nGektN3a5=0K(!b$9ZBH`6X!Z=gWuw*^tOPP^#K z)X7*ubvbs>q*QdcK#gjiv5+d*Jyle>yjrB2RcZ89Mhy$kbfR8uxGHS#5rS;f8lm>M z96IXNO;PA(K8n~{z{7<@>E|J}XgWWPHlHx9Fg2~1K03IU3iPf)q0ys2=0ZO@`|1!; zL)w1&<&3?;E~#O()#&-O&UAIk!SXZ+@00bfyVQ9x_VQ?z=?kj!@KgknyhR!t?@}7` zN$jJ4IVQ2?nUK6>ft@xRLCLNihV{(;BKmaghUj>y1~y+Ojm{-mQDVbR6e~$$dk59S ztH(Ei8`dJY@}54hcALnM*lFY&q=0l@cJY!n?ZUUF@?h$T@r<|34|;+u0~E0_wEv(4 zDt^^!DtD6(qby8C4>msr3#LZG!Qm}*i=PCpaCzT107{ ztT0%fD2;I@GPLy0gCY;PAK0x)7qRC<`TO*3okW4JwL`yrI~xgiwmt)I^`A}1T|HcJPEUERDPQ^S~yu`P7T z9fTg()?>q%S1@719pR2`G}WBOFKlQqK-zw(;JNP*{7j=Re3BM{B;&Q{Talr_($x{G zjZUZ6oAAND;oVrRj5Z{}C9wb0FgP$?NeBsrHU9eY6Uo%>(wU*CW22Ad!Sd{6DC!~ z2(LVPn08Uh0DuXiMx?E#hfA~6jop3nZ?8S2x^y`Eu=fMFxPBawJ9Q&)XRL`4ovCy$ zZNqMStHqvDZom_djKDmUq=`<|(fo01F0fO#<}>Z%jxaBWrJ&qAd&1}ZL>Lmbj(I&T z8Cgu<2Tkwwz$1GZdY*tJS_|!nS~3{%6KAvfz865qvjylg&O;eng9t0E7I&U_6aQhH z#~5FkfZy~fMmKw{(5~6~c&*9|!civ%rDq0ms3| zuZ+?Tnhg86b*Ym+st+NQ+3J0oF)1cG3GG?0eBiI@pNLN&T zp)PoQgW95WDk-M{G@4IU7Y^!^q}gVh1Z zY;!8O&B?+*~;q38Eo~Y}JDqH*l19x_>qqY5W*^6!(%*)T7$So zUnbNv|fJ*$|=r<#Cl8$~R;dWv4~@&cP0aGX`D9>uTNuP)3- zc#*kh7k|F4V$th6)=Y?k3Gf!zq50}>iIim%(6`&&gg|;Wq4IPVF1q=I;ji_<p@;e5uVy; z%cNg=iG6MILHt4Hn8)4COhbq4o^p-y%XW~ z)pPNv?dsr#RU(SosY_cC@sN(Zh)IldT=sJ9#vtk_}>%;v_nR{eLGG}U&rEs zGtm2Fe`a^WGXFLE6oqo*>^f@ z>(g%9uJkyub6z*#ZAu}c&>%E?c0QY%8q02Q8p)rvM8W7<^~fUA=$m}yu6Jyx(HzEa zsTBA>?7ewZPEr5&9~zZPDov6kMbdT7-up^Oh%zTh5<)U%N)keoG-=XEb4i8jI%n^F zg`|=w4aOv)GDMPO%KW?5`rh|i-}}D*c-HzpzqOv{kLRy*oz)**=d<_O*Eyfp`~BX^ z_a(iGMIA(WaGidEA$z&*iP zP(|I2`pvj0#Iurw*L7D2w}xwpO?s=Swat2JTXlf$Z&XLiQ%(xq7s>O?ueo4{{4MtC zvReA^YbqJ^noUdh#&PfUYvBx08I2qt%>R0P3PiOf76wF~FO}#vxNBw>5RJ%ME7iJLcnJ#};0yI7(9ZDE6v^f2d0Mhe@ynZP%N@H@_*zyCwW1U&22;B>V$Z-3LS0OZbQO zc&2XqT0Zx)2G-i;4qR)~NL%15-bungwx-l_PbK`L_<0#9knj)do5P^7gnvAf@Q-;C z{&8~uAZuUVg9{}5!$HD7bQ4O+bmeY%D=iy84d791#Rm)w-$G4SJ<=!PAN_s9@zFjE z{3QH?m++5!68;e`;UC=+{&9a(A?%Rw51WZv!eR;ku*@UK@30Mh&~uq&Ro*0iA*y8A zq4yZCDMGI#{3ArdKjfP+6CvRrMS2qc5%*rOE>g@59}>?#mGBRxgNxWZ68=&D&X9;D z{3BMvKV>$`*X~_s*CvaAe{8crTEagTO8Cc? zRi~K$l^^DxKBBCD2><{6{C~p_^Y9;jn12aw`#+zJ^s}%_0Rd>@Q<(e@8|#X`ovEAM`8Z2@=N`%>hVv%*gxy> z@8|y;_1N)`dT9UmnedXq z2PN1;bPeae{K>BVZH5cptVDQaHT2!;%*@@c%V}CA0BMcCq9@%+h<;yCwJm zWmbO#wc;sk+}AL+VRJ9P?u##;v41=18Ik~Bp3@ZStkHwU8kk=aX+ccl)o@FODRw?O z2^5=5mGtjx@b~=DKx^F*W?fFS0zvAFS>h0oj-_p^bV0k;cPmc!)UEkP_&1I;5%mS!m_J{nwQ4F=t zjs}zM0fpVU0e#jRz(-}L(5s(M zft!(muxqP~us=GFO-1+V%6%@B@8xN~mJ50_5z%3JpYW%GP(FU80(|T*gQlxHp-iJ2 zq^l~b8Dl{rTn=I8?1y@1#b4)P<;y3hz;DYACw44RpU zc;5pp@Xm+hw8L4(V#>{_{9>K6Ahf)K%rY^ge+D^Rd4%VRuFhhwXD@_XyB4Zx`RrqJM+0}%8rrDLRX$fq@i^s_((TkKP!fp1O&6^%+>;pr4|y*-&& z=;?D_4~}6XVXG~XnG%g@5U#mV!yC7MWG{T2#gB0x!{KHlytuiTi@Cjm*RPnsRWEY^ ztsxMESXB$|FPd)AurETi^hg)OO@0mbOP}WJBUPAXvuXuTaWLEEGMX8?b{?mfswyaS zPG!zDIP#U^1Sap?Mesi42N;~|%T#7t@y-?coTqoBq&2I{9j$xBnqg1QX+#<8SY*a1 z%|F0fuRC8F)0oQ)E*-S+?&ev!b>o@h?pu87kP+N6zvH-mbQHJY?kQ{!vMny8Jp?mf zN#5yX4sag9Gp5?+iP)xH#=veC0qR4iV^KyF*L?lDz?3@Inl5?&Q?lEl@>)5 z@VTk>jJBEzd$8s{OD;u$o}|M}(%i#fOUoIaINtyo?GPLrJ`Ya0pUKut&&Jn=%px`= z-{B)eGbaAbZn~t&7nv>-5XHioaOLV~*ft;Fi@ScqfV+|Gm}R9f<#GsY{2t6^2i_+e zAKAmI8`-343Z5J=Z?p3cQSn<>T{8p~t>7*m?|u6TZjzuZK>MROpXe z6u@R5C*CruHZ+;AK@a!6tBpv;O_rEjXU0*D><&600JFPV)u^W+yFaC zbjdT8ksC1OZC6>da<#@dNhuQ-E;VGfA97^{=SMTjDZ!lDq~-h_gO?UIDi=y*M<=lD z_66YUoNc_)^=R(LSxel$&X0SSu^I;jt`f;GlV$6j1co|PWwgT{(L_2QG*ZK4I=*?EaPTW5h)KJTIK z%fpyMn>0XZh8ax#@C-OC+6{&sj>e8#camM(rb7R=ZoK^X6A-YnM5NSxhuroE+_2f18Snev^t}##e=1T)ys^BbmrZ*3% z&aDPP6W0n+c_|r|Yz^IHZ?j1<+Gx+y``p+aHBfKvL1>tn&ad8OOuZ4bxnV@dU>2|n8Ukgmnd0a) zH{{r_1zz@4BQtS3F8gIGW~__w?lsHBZw)7qsM)SUnqnk$+rLCyksZcfmz^Ls+^b!7 z+w{E9dIbQ16-TLReK}0ouOrTQ*T{x-J);S`PoT*^qlooXX}aC`2b5Md6Ca8X5}zGV zMORgp2z`&%_*a#cpa2fsRgR%HUarbLh(HF zM%b?#C(%8Q62yEz4QT}2~v_o7j<&1cqiEst^^hd%*g!39e9gV7T&wm zf{hNB0O>03zZzE8o- z#o@TZRE?i85X{OL8uF9iD)!>za#l6Ug#B=~6qw2dVFllnxXq@TZ_WB37)ZYkwlLL< z&xasU+Y$}_#GPJl|JY8DA2kwt?0CUU^onO^CmFE@CuOnvS1oSnr|GzB_8IQRU2S%3 zLLp~!z!r*sgksgkT-fzw4`Z-;3`mI!Kr>g!V8f{UB5m(ej8{=C*snDbrM*kWFA8PI zPqK<{^OAwz2juy%(5swJ>u#`T?z7UzsrP~Wv2dK=bVX#wuSdJyg-iU4&*8nV7np4O zOaRWG|+jqf>pU~IHs-N776V6AmY6&uIYKAcrs$c`tl#_A7 z?JKzFR4#cCMv3gBQP`S2j`D5JK{cQ6kVBf1UcDICb(GO@rA0_>eFdb?8Pq+4fSaU^ zSZ~WATI&z7TXas77iQkzQ0h41w)r=ldi)BZPa`SqG=Y~RF2G;667b=(L*bv;6XeM7 z?C;eN`N&rIY?%c< zyUiMUzAF?ATAjnPh1cL7Aj>*^ZV@fK=EJ|NzQ!yr9*sp-ig@XmZ{QuC%!mEGCVCe$ zlh<25mN(8QWo^<S@YBUvN_juJ^r5EZ_fMd5XkJJ%=^+ENOy}llngZt z`@^vzk$b7KnL4rCu$J5AbV`tK><7&B4&W69L3GdBNYd_8#8$sgW}kjvK+#F*cn;+ya}Zo<<_k9`%sMKggb?-oqK_Q$TM_gTNm3O zn8pO$jTMI4mO{gmZ>PGe>Z8H6Kfr?L$AnZr;LHc1$zjT;-7O>$QCCy;;I|n*dnp(}KLNjR(~xk?_mSaDMnmmR#H>Cp@U$OxA^7 z1nvo^xNk<$Kx#o8$a-ADn{HJ`i#J&?wF^R#t$z%8K6$v<$~}%0y>$|w{ux6w?>Gs+ zSdJ4inM=h}ewD9; zcYmeB1ochi$Jg(` zC1CBgG4r2wvy-~>iTd}owDNF0p@ypHrq*mWYtvN{%MQc8D|q&YODLOHc!uQ_gg|sZ z8J8y}(c#XX=+lVpps%qO8@80QCxf(+9`g=wL6O9RUO>`&6Up#%1e7*u@U`OKM&-N*O&idl=3Qe@R@Uv|Iy zPq;HH80H_F#Tq!I@$L(+aOOKzdEX6Fc-y_}fKX-}9RFnlND4p8w$;qUH$0y)pEr+W zZ+^eTYsJL?=>kPgx+|HupKqAzsbEWTI+~facJicQuOnW1Dj$COJDRlZ_rj{3rNydM zGQdZ&r_*XfC1f*k1W`!|17|HVxRa|2K*7PQBKgWU?4@@Jj0-)&##;uHFU7iW&yCy6 z8>6LU-xQ9GxiFFxE++hfS*I`;A;dGhwu3s3Cl0sH0)uQzcE6Pf8(hE1x^xYZWIvem zi_}g+nlOXa6pchF8H!lPJs#AT><0I)<^!&|7EIi+5neC+h<~*tpw)^$8Q*t8anPZ6 zXo;*N@i}@0R&0%h<1=z_mgb zj87dytO9nDxH((6SyN)LMEK8n>7?_;Wv%#GQxj94Aixg?N?7AhhoD~g2Rtyr0B=d% zLA?C ztIqEJyc0arN+tW}o**@YspQ1v#)BsHyayj!jTHakzTe{d_mY12$}?zA!uVc#;+4jpLdPWhMk1dp129m$rXdJcTdP?hkJm# zu|V89yPJBS2%^9H2H~YRWubrAJve1$I=U|%4f~}wiYpy<(s#p4!646orHLu1_Mtj2 z)sl|3FOujB-lWoOXEWsZ^(32?I+`DOehc*7mPJfHek1{}=Ax8$*+_7I4R0S@2bdAl znNvSFAp0%?mVGVcOCMpdeSsubWjv+d8~b3GSrd3|>xlG3H5{Wl4Xxc82~;j-5%tb= zlv9~bf}TCZP723h!b3eg@76o4Hd+g6ZLK7)70X$*4TXGb_EOeo*(SQ9Y&nVDlR-}A ztOSzZ5!`N`4P;qN0}H6v8eZN8gTohOg0 zmN?-~kF$8WO)#8qX9)9Dl!5+T1Nzc&3U*BoB~{;4vF-Ko{O2{Vfjs*jWEMXq)9E$P zHo=fw%{B*B?>2LrUKeucs~UJC_l%qP7XafOIVg5w3Da2@O&4d5Abo!Ibl@rlWu|j! zXl#+#!!?|M-Z;^@Uwq&IDP1nDXQ0)P1b*IB_WNQ zaoS&Pv;i1VL;VO==8C6yL&i-aZ0e*(ex$L-``dAYnkH=e)Wqf)ZJ@62wm_nxK)MaR zV3fr)VxuiXyr-GrJs#E9GY@ zi=kaUW9pz_xo=&MaMGr4;+YA}^uobh+BX4_{z+1B>4O7s)Z{{%W?oOPF6xCe(pGqC zyp{MWmnUqim*}k1kJ8#RXXuW&#n5uwE;4faHIU=7TKIlP6nglcLrN+|RH*kHwdGBO z?GF-Aj6w~(<5@$-X!+3$ox>o{TH?z!QziXF(#YgfzHqx&IeTS77QS`0oO&zoV(ait zZgo!so;r!Zdfg3ZosA2!|IrAHJ$Zh>#~WTL>SWtIYQck3a2RY$x zWb`$Y>S#uRy-Tjb3y+4eS{pf1cF-K&{jCg7=Eczft!g%HF(T&n+EC5#5WM^#7Qb*! zg1k-)ue7-cbgT@8FCXt@la}?v{oY2oqiM#(n5A<&Ee;l?Qv%{U+%!oW}pXV*pHin)%voYv97zwWw^bIy$;V(!{fu5eB3s zLe0j*$VT}D_!GMg?p~w?)lbLN?J;sW-~y{_#whMW)G2hRFzm-vw)>GBP_QjZ7staW(hU7 zou@uK9#H?|CBSRwMzKyrEKoDr<87Rx3kkrB3L!gjYga1!xh(|qa_x? zGA4mve%6$hE_EVjlV^*4Vs*tCHD~GGh7IV?%AZKN@*H&UUB!Q%bRX6S)Kb|XU$7wk zB`8`u6->W#5!DQML4Rp4H0=2a)|=LmA4a9fSw5BDF*J$k_&$t8De2;lM}DxV&J6Z% zABW`RmUC}(htk6V&v}&(d)U{}8LaEbbueu2H*k4e4)Lvxu?Z9!)0Ur}u5+=4|GK`uo)8l@r#hjUf%5IAi zrm#V@D?85O$|q-w?~7cRTie40Ll;H}EW%d`z!xKnj}2|2?=k}JZBOgJKI>M|E*xY;q#IPBE?Kt86-%{xyKB+MQ}=^ zgG5q6xO8)HIP(;^lsW``7Wg>~Ws;v|^|)woWhq9b`+6EJ)=95r zCoQZKv@4wAj?-AaYAs96nkHY{aDIjUe@oGcgd@FFj@?U3M4i5!4QvFz&= zW59Sp6|<{ck+Je#&xehg%6VM-X_0fpi_uf8=g(`tWE|UdvB$(RzW%{b{+Y{NCcyht zNl`3erQJ37hHD?V9AhmudHpc{6FSVqD?Z?cev9Xx_X7UX7#)7;`<3kW;7rjz_43je z<7Z8^)e2%Rs_o*iBUypw;|L~xiWYO&Ay)AG)@8w9+7XL;4HLL&^G0#g%#R2n7C$PP zUnE%@b5`+Rk4d!QRn-`1RPfG23-R)KGf_^mKDs?*GFvldd#T65sjO#yD09^QCR$#m zNro-`21;G)IP<(hV6{e?tsQ9PigxSbfU_GcJj{lZZL0&J<=IxWxoR?cX7!n!A}dS$ z_Q|pSeWqAC&lsdO*aFwH_F%&fS9mpc9zchBvBus&_DF{gIG|F?4sObXiwcr~exV%= z4cF&;^j2ZDPtkbLb2_!^(j-xChUn@3Z!}MOB8WQIFjb{xCajn{6^?}4>E$k-d>b|a zhERXrFjC@wR-V9iE{(@w2Ge+t#t$_A`ACiP!OsPEOvf z*lpZcCyaA_H|{q=e(HZ^D6^$F*8YkJvn;Yh)kFrNlrNb;6CZ^g!Rh| z*~&;Ue)f7NDd?-ji|0+mpE*zPOT8O*)oRhkKXXaLhc5)3+sHq09Z5ILI|B00N3dPf zvWSfP2asy(4Q`E7A!;%Ev8!Vg_zEFm4qgFa?z=(f$2ho|RbmcYeoOw$8vu;PHyqj6 z%@+Kzq6Loz*w@`|{NO`Jreb~|X`UVhx{5aweXF&^L=vX<=UyW(YFxw*J}(j3YWv}U zs;59R?JZDTWkN2W%O>(MD&iw!)+5vLSzr^~1WQcMf*oFgpt%1H{t+At;|-hP+qX%e zKB|Zn+C0IhjVA)v5_Nu0q%HPWxr1M&CF1TC%1F~pg>l*afjqvl7_+5Tv>53CT&UYFKnUW*XxpqUDJM*c+qc`yJA8Xc< zhkR^<6YO32gH2fM%-feuKqV=j+>g=wXlKU=Ne0FvwEDd|MW-^6)$yV9Wq>P+DX62@ z^NH{nGZruX_*1;MT+TA~xhIOyA0z<}@A7s7r^w1jM}=40f8yt<6NG~cbCAU}4ZO$Y z5pDhJB6R8*4Xr%Va8l+zba#}lIBQlqd#P>(_S)}Fhn7^Mir0^jjnP`PSUiWuY__56 zh6U1ym_e$e)(gvqr3p(nS)%53+m4}A(1gBT5>5T@#_@G4H3_Is;?$z&;`n(6u$9>a3j@}Z{I>n1 z&t)`vpt=Z6tIdP)!JQ!ByEAxwX#|X_pF}!GWWql$G$qe}_u+@R^T6C*eUg8x0$P9Z z#1)U$;^_PZ(8|OIC-oU))6)~!oqoBn+m}J=yU+<;GEaqXUM@kq z`tH$p3puPkM}{nmJdUHdakz590;oG9mpG14qRBh@CGRB3xa0N-xMd429;l5pL(PP%%y<+;s=p&gldubVk!UqFLC z-XRIKBC@(~InV4ZhPym>!m!>Ck|*yLi411Akd^5-{_gwexD$XPM=Z!V%g z9Z&F~K~>Z_Z!X%-7|;}}Ij}s`lb*i$N%EZiiw?$CqkT9JK=jy$mdmQR%`oAp5%-Z+KI*x5J4-&dXiZhLME7cR*ZHw|$YHuSwAjs}QE zELknInb8R5ez`@Cs5m19rQfvPMq6xoE`=T`UyRK4j|;VG_8_V9F+#gmQve=v;`R%r z)Y!d@b$R-m?ce+xWqg<9qSZb@1*TKLwCM5Fqc;cyJX#IBI3s?_QcakWC{3k|#<73w z?jVD=JKGTgd)D_cv>0`rmOI4v>`Uly4o$8TQn?7|Dg{L)i0J3t3Jtj|Cb zGcNHRg8Oje`gC}q=mJ@GF%#Mfuj3gz^6)bGD-hNFk-Rr|;2zm@D79xB8Slsg?KQ!m z``j{i$M*zurg=PE&{_*a_F(WvVH*8)>;&m>P-Z42L(#U`^6-||b$qd^fWDTSfeQ*s zLHS(+;O*^B+BOC9MyEdm8%bt>^_wJ??z;$j7k$G)suQWjgZZ>W&z8UN)dJrCxPYpbiG&HWBDegHfm~xl=v{7w$FrhSiBCvSk4cIVK zm34KiCPq0EgdQ%v!{;pkB_9cPRAD9g#iv-8pz&xhwuyJw-!ERc zXdGF5>!5f=W(V=T<|v%*wN|*V>Vtj@$?wI%$%Z6%g&0My7f`Q=S*Sc+g3a(U_3Q8w}N2T z1@W%HF!5)3O|e(NBb1c62^mzaN8w)65Rmv=SG-9QSEhM#(XFZASAHw&tCfUQCme!n zlx0w;cq`ao-A;Pk649Q7zueNnaIX02T)6n41wC>kh}x^vuoWR`XqVee0M=HMFMZGX zb2)vWc-INQEK>o^X9MBZAGK`KmSO+6rAtP80zcw!rezeyCbJ8k^ zS8|WAXZjN4a=52-hD$j52z9Cb=u5((%}rnf15s+h6tH;nWE53d#>aeq1yeM#;njBy zY{1kS^1#(q;x#wo%>}1~`I?3B;^}EZI&2pxuGL3hzHH+?eks$bR?)(4$?sb6pf+rZ zI|#eR&jbGEcY&L!2I-2`MOsr2vbDe3(Ut>dBy@SHI7|4JXz6r{Px`+gD;HM@H?O!P z9GGcYc6gwJO}V3Hd9Uze+1n$m<*WskG^t2gT=8x>YJ4%Sta*STnk%k~<&GJM-S>^B zo$sB5PZuwzCmy_}hn3aJyuB|XPD9$#a)SkF_;HL5bRvf}mJPhaL6D8Wq*RV6zFQ&TIy|?Si23 z`EtC#SxwxO5`}zwrUM(RXx6FO6hwMS^id1c$j|)AwEU@w&`w8+_GyiV@mDSa^ZQLC zbh84kzq=`5@5p7YuNuu6zQ4hXj^7sb=YM2|EJ_3m z_3lIOld>>=o(k8sCK?ZPO7Wxj9pyt$oM!9)X0am|q+{#P2SM0)U{UdcR=lLB;(V)O`2D5a|Oe{AcomtxSjZgYM5s#g=j1RgO%BpTIWqr%b zm|l56yUr}ZiUAi0*W<@)+C}1qS2k=);55GJ@@Jx5_kj)A9LRm{*TJ40FL||&BKDAR zEfb;siPgL}n{9p@1p2IQ0S75*(l5Ukc6(GoFG)W9p`vfZraFQol}YNX8_Dhou!2f6 zXTTP}P%1Ot1)6^kfax#>mo#{9mEM91kPMI=R^{tJCdVM%|ImMCZ*S4@%R|)Xow_9w)uwpi+ zXa%(VlfbRG^05lbZAJg5UmtCMLp#3SLC*)(Q5U`*^s%=Kwq6Lo7}?ww%+t_=*%<8&0^gDV&#xJ1exuB{u6{QAXY*M+ZhLF1P()xIznR+}p+asrf*M z7b^JFp-lL9d>iF;=p-rmH?pq&`VY z(bDt{^jZEYdSl6Kn$}T){94a~KcmJ_)g)W2Gdfu4ssCC$Nh?v|QISd}8Tx!N zm37k=XUGJSlta%XdCFmU{|70dxwJ1ea4n}F^JGxYQ)S^U+yWO|zXk_u9J00?1DSQeKh3`fUnGN_)?>KTTCYkMMY9y+M z>i8G+GQjB9dYJJu0eZh32j4|hknmAgiTA@d=t_DntZoWJpW`@YVdimkHuVP%*=GzN z?{kC-Ukc!v)LU#`kR?3SoR>DuMzG=W~nJ;F=dpI^dDu>l`Z51%tEgVfY=1w2f zx35c*h5AK~|F!oWw`^rNGdtRg4|p@R zbShiQ4Gi8EwFNF`lbl*g4|FvN-hK*U^cHMl?9Vz|gv-t2lB_aBHf9r9r}J{$Mq7#g z=f)7m^;iK@=~{->oHf}8dKMO?@p^(}-;r4QU=&V^_`~jeaD(m8jJ4P}E|MRm6~WnD zHnF%{o6di5*W@FHW^=pN7P7lL_6ep;OvGt-)p_|~Tim>g<@~DC*b&|yOw74#zF}4@ zXxlKB*Du&E@)ECOx#_dG=l~JZw&gf0HEbJauH;hc_A3)C7@+{1d=i12br87Y_m-T(;F?Kle~I4j8Ll<%)Zwu$ksraAcbf zKHI1WTFh4g)k&wp^MH#WVod<9)X^kYw^LqWVKBFFX1(Y_dlFme+Q_XhvtnuGZ&8Tt z8dgVN1GgkvvU%{VpyS(WCbqYXyMBZ6ss^9gNsJII3e#XVelg-Ti&k-2iQ7f*mD~8- zC~4kYS6$Q`Udi5(j}o|&gJ*K`O5_DXZVv} zO*w~cC)wEwiTt(Bks`lS!4_h>+^GSqcWLGKYj}^HhiJ#d9b{f~F$QwSu=$*Cy!Ocv zsMWg}JgT_D`G5W*(%*jwJi24cE1gqBXD&;8?EH<=p_S!){HaLxfzokih^-A9vSJI) zKIV?S7X|PO!+oLk{Wg@caW`JKFqM~z8-)-0xUi0N0{cfV3REm>Wolp{oNs>+c)@d= z;}IJiF!KZ_eO{Zt`y~<7)$750egVkUk02c*Lbz*>&XFLIB!6(eKGi;wfl-Dt8Dkx*(`*4*ztmj3rsO7QzTS&RO_9ONRF;zGBRx6!N%KMO;iUvyW#XP8 z8Kly?ig(VlWQ|5#r@pVY5dYRG^k?D_c8SErU+D*@?N&m6 zXeu3}Is)DIjX|LyuZV2HAWnar%XT?fl7>V@q}R9!#aiv9mz{WcZF4)0*jY|IF8jg0 zd0Wt>))=V0dnc{g_=<#B{KSFB6nNK7iX`~95}A5`5C;T=@Qpj1z$l?D^-pHlp7WaA zmM86?wcCyitn9?sy7OUx;TzV1D&UCCc5p$u2V1$71NAxg@KKG&ShdKB{}Pu1cIY<& z_eh3nz8yx6&)ts~{uQ(1=VTD63zzE^J6Eel&g{?(|!~`%KMR^IZc%W zEel|6I&M)bsY1|{`wJHw7$Znu_JO;HnyP0c00FLdR$P#d! zM7jUKS2X7$H;p{TedQ`#xg-Vz{B}TrCpF=omJ|Go3k!rQRYAm_@hTa(_l$Tq`$21) z&BFF43t&%g8hIx_gsp#h6L0=7mfy9~meu^Z6HI4EL5H=Ap@;DjViOkLsc8uCCUm=W5iXy)^ij5kR61!G6C3Gzm&VGvmc(mJxszh2`|6YmOm)XkdM>T z@Kc*j^sV7r@@#J?`k3*VsLfKQ%w038rGO>6=8>HItV-x#P5GvM*~oKJ2A#p12pj!E z=={`aboMUYzJc-Ubbdfr}4I>q{EL3w1ApvbXvVSR0eRYr1+OBRWTfn2!I09NrCBycI zI^fi~pU^vME`0m_9VF8nKwA@)?1htq9+FCaZS4?Ndck;dYjY)Z^4CDV`{$F++fL-# z+VO(W((B~z!c5-e76SF*^Wm7%weXTo6rM0<7J1yUj1+1HpaJ^?s2Vv0Wr^#UN?8WY zS@0eYMBfGvrYOS7qaOekE8w)PuRwHopG3p#jH9cULNa6=(5-lkyBcM%UwuB;Xnq0) zd!J%Q6pw_a`ffPl5QC*^&cHK_JU3SVl&E9DB*Adf#^*V`fk(?G5ztf!IdFqVo<8qkoOBBi7>D}z|tJ!d}1B6HKjAwt`xzDxFcIG#JkL1;ZCowzHzxVdCNRRMlDBWDvRK>tnQPCg;M-lifPIP-FXum&W`7;UX{dF=f@eO= z>9@&nu<{0;(OV18G%QEI2A%^}N=x)WAr6inega3#N=A)QyGdGjIP}CD_)%Z%p^3_N zPT5Tt$Q5XSi7%z_E#EwH>v6e6qZ!NyKc~VGRd>LhLx-S&y&As8tAodG&-kJdh4}Tf zUbttN6Pqc?b;^lSC0=(fvO?+itW+f{a69!84t$Ge3qB?w^^WhXvm{rmbiq*4I2c23 z9}9zu{jZU7W+*ZU4WaHO%NSEh&o4hINPOe%3$*F=SR}=4fG_0cLDe32T$|X6tK|IX z_iRJt|92!gbj6V-B!7kM<-hb<5KkYl3hZFzPPF50ByRq54z$hiht%XaHN3oycAn9t zIawo6@62kVdSfG)+9J`{H%=rC4mHH=qZ9muDfV77$UFMH1Q$B*u@-|0#N4u*hfXZC zo~{AMJInHEZf7{z@|*mGg9#Ff$&)`x*2L}FaCqp$eEy!+IAYah%l~22_~U)E$-7Z~ zyz1J8%#6N#-ZzyYGd!*Md2cJRsYe9SufN1!h?A)Dyo*J;rsa6tt0Pb<3x^+GE%JJu;IkhrfrB#M^ZiKkcV!jRco(CA4oSlpBV_l=Ba_xNqV zc3XF`W~08dqdGG99EO8GrhEc7q+=vMnM-(eb2+M4{1`Vgx2d0+88Lp@35|~=i+y8C zNXpdi;=znhBxSui_55;LZ1q+M%M3!1?v!Axp{fBee zu>2yS&8%(EH$g16-!FxdfvolM{&>c77E;0mG<;_NK z1!qXLoeMJ1en^6kEhkb+2H4)Z2G_a;l67`|kX^GKkAHa){z(a@ZeEhSvt{o^O}k$3 z(PK*`IfcuSTn$9)F6oi%2n}4YARn3?8wQ31oW%3=ipU$eAb!2uB~bn$mi<@}i8M|2 z(Q$L$VD~Af;OFV4y!!DW^lkVC_=VSk8^WS#@D>x)Hq8d;S%vUA@~7a>j@N8$;0&y0 z*#lmpKADDJyRt}`mhH6o;d|eJvx{VHJhr4r1tt_WU!(JL?<3##UIN0tXJz!=g9TLjrV=TC9537+?f~D-qaJV`aW4WR#z7N>D-6x?aX08w6)k_hz_k$ zrJ!KjX|^FW6B(T`gZCyzqanj$*)YleEQj8Qq8$w3bIhU`C&hVCaqtF_<}=B}hKcCu zrf{UZ;UjC*ngVVIwTR-oa@kyiwJ=t_3V6=H3l1BGlA4zZlnm&hkOf~r*Pg}5&moH4 zaN7>`^}Bz6f5|OY{J4$AOEQD-Po~!H7$niP7|V%=bhkEd6US zH$p$0dKI3=ik9KT_-Z!Zsi=S=;B4f6UxqPot`cb485(ezru&#?p6yoo@?a7rW~R-dS~bOPtrvA9HCbZ*oZ?*j#|3c&&8>GpO+~umz|bzX0q7VsSa(6lNUbd2_rFSCYGlz zA1B`0OD$v5J`2}BONa4_uf&&pPY7q_$%~&2t`lzeTtUvOUl4~HPryxii&1(0J{sf7 z2~!rG6n=kTEYvo5P2X-x7I!YrrQ<4wis4~ z>jNXj?Iz|}>0tsgzIU4r{W*reD%H#sZMP%bmIX-4YZuNS71Zgmws_BgEBAT#OK31% z!D8A5ePYm645IvOvES)wRQbj%@WDA9Ep4Ah-8`g8^Tq2_c5pN!$DE|B(js!pZ2*S1 zouXP2FXm`JRkqyk9#OobP1GG9g5pKH$(yc1Xc=&ZZ%grngAq%(R67&IwJw1IwKROsB;>d?2=pBN3$M&q0N+;yf!f(-lK;Pg|N3S&`dkuA z`kyrbx#7(?$%11CANg@gAMf$Gn`MYs-EC~>mq3p-pXMeSNpg^ua3K4@6J#nljcr|@ zfTM423AHA?;Y(+g3o0`uYo70YWV!dAkQ;7AcQs!oXS_CWXgG(?St;=%FKe(}pov;{ z2eJtrA#{NxIq&wRAa+1}TKIi+6HJ1t!i{-SOsk_91pio1e6T9~dF3iBye~(8R@4Ak zR7-L?ouO2DEKm)M5|pP0BZGktf{vY6P{iv!RI-{;RiA0J+{#p(H~u%t(Qp-xtC@wI zM>Pqj+r;6h?2To9$=T>CKh$#J)DO_)M;yGi#_s>4=v*9PdfqVJm2Of=(uE|XQtdf2 zXS=ENB`J}FBuSE65<&>+Ub;(?N=O$C;{FWB9)b7tm! z-{<)}P^$ea?Ch1`tda`&o4u9z$tL?rPK&N^NcA}1yXPynGdEm#gnP$SZ_9?8-imJE zzB{nWm<}g~Y2l%)*~}Z|IPzqnI1~0sMc6hufy0Fpg|TNdp|bK!{-u~RjLe^OfJ45b z^J=F^^0o~4M7f=qei=hzwWr9U#GlN!Ly2hN#d5l(CkUH~&SbsDO`OxQOz!zF6E0^c zf%2M?gu->yMNFO@q};_8F5Z$1PF$Ty`VJ?M^*woGd#8pf93tsk|CAM#O5Nn@Jz@{*X^xICrAu5xJnbEU1<~TI%!9lrA;CKr>I|IrCHAP)bGtKinsWm@ls2 ztZxGqX&QlMEx$@vTj=9QPaeb7;tHTS&lxM9mEb;+|1z=Be=ceymMO1y#(Lm{oT)0F8H4`rKw)nnOYg6{|9 zkhi8WV6X3g+}*(f?t#iEF0;B^y6I9r8GLkw>_$LnS(O1TM)#BMxQi_F3X8O$S%MRr zjETkb53jgxaW10n@N#N@$cQK}@mpE|F-mQr#;?Z%?LC)3z57+ls74M} z@RNYrb0_>%dNKSQ6N9(jZ^L_>uh2iQFXg;uNnzU~#avR+KQLuR7Lz1Zj`u|!XHKJF zEd2D2d+-Zzl%FqGcUld*&U?Xcv5nW< zAdRLwY3CA5o2KnHZTct$lJXZo^}>hnpRF8|Dc1$f^DNOBJ_ZEN z5_pejR*}v2qHqgeY|(BCzbP*S67TtpQB)}#tnLig{wxI-o=5=S6Va%DuO5EeRDzd8 zX+q1+=itrrW4N6A1Ez@`$J6&H0HbjpXh1T*wM=0L3?zc&zC zJs%J})k$adTGOz9q%IYdDUx}uy8=5;WKrV|#YlXq1TfhCkhXuVgnb`1;FaZ%QEbL^ z=y;$AGWAaw2~HYLzxI;#clb;4mdnyLp8p-DMBBsiOfUShj@aRGz?s8OmY|e zMLjnXDrr`~#Br}<$P z7z#Yc*Z!bxR=8zq`AuUn$&Ss+}TZaATOW36X~`4xw<6m4Y7G%0lzI z%}lEv<})o7oS7qEICMrDR)^Wqul4@GxRwii>w{Mq=~xjG?{_Ar&~3*!L?|=)1(%u7 zg#iK=$xq;-72v?4Ffm3XnWhjCYkL;NIXE>`qeQ=CEc)wfi?G zy<-k`|D!^5%_h(xpEq$|6_>$*qbp&%Q8yR4>k|CBy$)|IE&(Gy&%wZhMwIbK33$Eo zJK*YNpvo2r+%0a&R%;B>y@5AP|JXH9CzSzDh=TGS%1p2vex7)cBZR0XR&1p zzVM{BCU7onqJw^a;2D=JrU&D*c(d7Gygxk>D0*4CsJXsOdr{uZ5$bEHIGFEoh;F=omZv2%MWC*+pOUYLLeWAcP(NFa z&Tpv1KW1MRR9O^*4s(_g7x6f2?I+`^)N#NhKSx;Bj~>xIZKChcNzd64jYX<3D7WP? z^~~`NFn@lBr;T-hM7jy3_stTo@n|f&E5DmwnyCRcpO*&bf;S5~&zayw`)1Hm)wfa8 z3wc}>`Un}@1|Vgq!#W)f!3kMgfZem%B9db?JE`)CshmDd?+v5qfyNS0)hbDwx23?# zJKSl<{~Sqk%>hum#2C!^ISLGJgu(~0akS~6Fxnucb^hCee#)_1U+hcfsnnen{-n;{``*QUxs*jkNdUOIY`M0&<9)0ZeU6>E7=% zspPLUh%R`>JDC_Mii*g>5`hEMz4`$E8NUE-FO(>|MI3Xb z&I@kImuDI`d=+k|aZ@K{p@jPvtHvFfKAT=V^8utzKBU)~%Y#z01YEx3 z4w(=Z3)6QY5_Y^3)J)WaHO{lKceMj{TJ#Pj9Y`ThRu|)Bb8l|burmF?sh??$o(fa9 z>hUMUA3MUl|Qdd!{DX=vx%Wd4Jd1ge?NcvCRbR{@auZxc`jK4e4ZjesSa$-XNToA{K)F*Q;T2Yyw%^_Xh%|TBz7_l2jPX z7s~u9+;r)O-re?5!KiE2f$YqoeUs)^B+OHS-r+5h` zzE>6AJ@AupJSoL=%~%L0l^i2s+ayFa#1f(V)H-9dM=Y}LLN|~650{HEn9usiv z3j1;T1TIbOFH`XA0rkdij5pLV0Y>$-5TlouIA&EQIeRaWky=+kPe_pBN^j4?sjBIS z>Wsr}t0KW2JyHF7)`=K3Kj-@EOBgO$84S#mgSm6^sP)>184@Z@+M}CD!enXwijcF! zP4h1p8Em0d+Aff4vF*r4#P6ST--+y0?!kGQ)|gm5VP&jDeqq6UT#@!2$FxktV{z8- zH@}a5j~Xa$wW?`m%__9yt07o!5egk7#G!wt3=qa0V4Kc=1EVSDsa|t)9KQen0}oSL z^^zj3v}lDua)|avE>We~NU#E6GN)S&r{%8@ST!!e z>-|oW7dDYpsOmeCYZ{7&E3T1XauQcMNt2GzpXgE8dmz^C#0?+H1_K+vpn$H!*y{E# zK|W*Y4->(B!(;}ER#m~X;#Z#PNS19)Z0>0mx zZuZJQ1!3VKj_xHz8Cw_8ItpsYASjAXnlb~_ zrJe$g_y40cLoa|_aYO2BS1{>Q{Ye{it-*IsE~DRT_z|gW zSS`TP@9J@xe~#(io;M_-RvZlu-$3^W3|FY}m;t0gHlJ1yJe*^LCy!2NJm&sj zCNxJ8-@#O(KmR2g^w|`S9tvcKY?6SX`5)jbItv|s-6PNbyNJqq7nRNZ*afvVw*l&R zICv`UO3M*B;(B2>){}OFYa>4qsr)tg!PYjxK>Y_i<83@hy?Kgy#M{fp{R@S?WEavI z@1)*Miy`IbLYSXbLwL%`QP?MMKssYJ$>S=TyO6PyACUEk zx2f`of8@|~9%#-OB=?j{sppfI!(fGl;ODags9~E2W&i61RvJ%-nZr78ysw)Wf7Iq` ze;#0i(|vH;HfhuvpU$Rm>0r(WDUj+ii_Co^i9=U;L+&~sDjYfl){RDz+8f67l@<4K z!ApeuGBn^8*G)u6dl5V78%4|LP}vkLokbx$kqj^)$h1oMMJKv2C~WJ6U&Ads>1k5Hh6Q)EMc|UNiundJ)ZM+Hh5(o zP6n??;{EZX;M50MVEyqjGUuz|yn>fxtkh8W!X$wU$vun;hGZG{d$zRe+v8wknh$UHD}u8lJ`7`- zimaN8;WFKJC^sz?<*fNkrYT;Ack`~W_MQU%K8<|n{@jg!?d4{=yEvZJ{PN2-Kj zo3uEytOWkH>;!%kP8XWmhoO<>&iu;(m&%LxL$j++vRr|&IwyW(2E#LwD<7%&Mf@dX zxoQhB;kNZzq+*=nhwje?I;S3rxJ`eA*u9>~k!|K*Zy&=hpDnnSo43dW^&w&X`lG_Z ztuus9pZ+qIlBSG>ric$;kU@TKPJ^a3LBa=n&O((wK76MgL;GECVBDL^pj^BwvuB$( zty;B{%ahRH*I(OB%Pp8ejcPN{tnD&!3wX`V5Y6%iV#}EOlO_Pogo#{chXbyTn!>x* zU<*w>oq(z0CTOm*ljvPh6HedX&Ny$n3jPeHz>#kY>B5veCgQmZDW3I2Wg?ZXR`pla13=Fn#y@E+*?+?cRpxd-%H!SkN{m{-Z;L}hAHcr z%mlufiQVtMG~MLB3eFIZfvu0k_@)u(NZQ>?z%fRdl38&Eo~G2OUELADv+4nGKcfiZ zzh@J%z-E{lE5}N>zXnUbX}~9k8bBoPIJzs0#`#xHVTr;h;4qp)TA$ki-x4$M)JBv! z9lIB#zD)uTrk2(H|4;(m*7b4eWKxSkA2@8K^5b8P}wq{me{=wGncY(`AJ_$2|YRI_BnWG z(IoDGC~N%PlNF5p@DKP;g2I{Ex6rrf73AvABw!wbNb&l4sPNoN*c>tuZji7*VX`&6 zxGjJMH_!hAd2Mi#8hQS`p7>N_}3ms@ujJ8JtLUEvzBsIGZDy9_JZm?LF~W7 zzI5)q36PrFKr7YC^WH~WuW=4>G5%SbFy9(@beHoXf>x^dpCsjt}FT)zS=Cn-r zE^bk16g_@qKT2Qb#@05nIPkzG%6(rHIws;$ox13UMq5njpuupg&@n*yhfU{B=k38B zyJ87fHi1P}Cvlv=6Kz&`Ua;B!F1CCg}ZQ1{Qiastvqs}q z#bm~hDokGYVCPw>cx1I2vwf~I9DJop>wT#$%b74v+i4#FS9;em1G4`>R&zh-tn)!3 z5jrrq(v6OPxdGeWRHl<9cT<17C&LSpqI<#EGsfH13PzmIK)=(r;A&TYjL(YWo9u0{ zQ2Pz|12K4dIvX79E=LyQ0E-=5KnG>LqBV}q2Mfj)!i5Xh01vfE#KvDARakeBvW&x+ z{b|G{r?q4MFNVZz@h|Q=v?Xmf&y_uTK#`6O+4$zdi9(NG2eHnbcpxcaDYR1BIAWm! z?Kef0tWtv{@R145I`@W_I1k9s_lNYykTlL9T$fBKp2kHrd1Bj*3<>^POG}vT1qUU{ zIMQ=^7IrLO+1ImRW&7DmsI$9Ywprr=ne_| z;SI{%MuBJ7De`6CK{D*Jj5O@m<~MJU;)*rjb8S-U^vc)Gusi58Y}-G~+}C@^bXS-% zD=R;der*Ht%D{>EvwYZFnn8+7PcdUZV6FkL=N$M8tkiM=}0W@Xd)@ zP^hZT^#z*HaYO3tt9=>(1h;|L&l6$(%cC%7kv%!HDi!U%7X=l)g>-RZG*;R$iELeA zi>pP9y)TRYp*_c5!V6QqNpZqk{Cv+0nAD(+6_xjh@-wBNXaxeb?yuxap=fWORERvh zl2FNgQxG+_9)v7O0#Tm3z}50mI{Ky~#)sli@wD|!>d`hJ5Q~SmM&&T$FC>aD!eM1q z0Ih@S%RrngY;RvfdzBuc+m}F+zUnr(*gt`e{CpBO_bx((Y1;vJfQQ3MLcs)w%ixH| zM!a@yA#BVUggPNv^r0O-aL6lD9n^td7+ z5bQN#G&^qK-bp94&36F;L5=t@aw)# zHh!%RUsvKJY|uf>gNIj9&+QZ}3Pr_3e%YdodrN5H9*alP8^FAaGe}31E%+EC5a}yk z(`nFwp`NV*N*9_KeVJHdaNSPGy7Qsk96ccqy$0g%R`X**nwW)Z`a+`>*|g5Veen8* zmF0u>C45ezj5+9jfk}?p3NqX3Icgpx$2RN|F6+?cJcH&EoxXGq)SP8vMq`98?B)wM zH++FFy$EypsU^wSeHl)FcpiFF*20Ga|A@qin_Si8r;Prb72H}N0VA}mKv38Zk|RA) z7!WrOw?4Rqfj5QI!xu2CO7x*wRutS?wHloZh@lmxq%u;W6Huiy#~Oasg^H(!iGpw@ zCl)fF#C!F?%b8-doYYBD)PEISv2?>-YitNoif<9al~c{hE+&s@Y%ixb-Iaoe4g}%yJ1#`W)dmPN!wK`&0FV7J#A2cv zu2EK!9c)s?uGWUwr@oEOTWN^xZq9}gms6p;*>vi-d75D0&3VeiE1nLDFl2`RGUWA! zyL4-PDcf;u2QQ-{nEiOh`ouG-<0JKG zm*}@hEWN_sOt%F%c#SB}#ez;W3!;lEZ)2CQ8|lU#Yf~S^6qGpYIav2cfj*J~xVsD1 zvgJ#EptwH=aGcC!^8HT=R{C=S{&}&AoOIO%Wt%SpSCE3vG8DPT#OORq%inEQxxasYYaMe;kKMD0DV&+OFk9t_#*DNp6OuxZv zSNY&TiAf;gPzE`zG?{!AR zjtp6e^kl)Hz9ta<3#x-d_KEnI`7FL_-33;vj1?++?&r%jM8Y^TC#HXv7xOhE3T&jB z7-Op)#IF1?leFL_QzX!bQTNI@huccblmGI$mQ$kr$8a{e*rmqVhNK~XxfZx-%oBs< zzhMaF%QQU?gL(nCXsNt%PWQk4WMIZo^5zyp@Q5n2XPOIi*1U_E4IJ`Y&5<XQa(|~%rK
    za>1qX#rR)c@Voy6_VUL<%p6ACkj8Zp@z1~3c31d5i|0KJm+>+ zmFnp9X3AkX-F2ymcj?C(>Ro{*xmNiJgqiPR)-@Z!?uC3(Uy^}d7?;D39&Pl5NJ$c+ zA_EQlbJ_XgYr*{o%K_D5$(a6H%!I}qqo$;rl4rBtpjwAv@3vbgkX35FJLf<#rpw9XZCSbQFm+17K-+Mm{ROQ~`OAoX$Z?(jk z^Bq%!@;gGA`@)I*Mw@5+)LBco!oYh%$-9cM(?W+i-6Y0k+<(mvTav@SxZ9M!zePbP zR#VA|iT?F5e?B)A-v)+j5WmdV19w;i(r@_hsiBk#?o&WCxwA&}nLIm6_0b!s>355( zHeq;Q_Y6^OnbU~9u{&e(?-HXl_<-(;EakFdrlIL?Co@I2bbzFnBX;;R3wqzsKqI#- z$ds71z{~3{F5o#=7~DnI*xLiKI-ng_%Aec2DnLS>n@_%6=EHwC^NGopyD+?9b-H>{!cJEDo(k&WESrvP=? zz2fOjS_i6b9Hm`PJm+M#wL;s>Ha0B!4C^$t08GB6M>{^=f^$UNtY)!gcx+M%+~WR< za`w{XCP-iBM#JN=kGc}Rsk#Z@ns%3du6!J{nts8~DHq7cg`OntNi#nBa}I1i&Z73# zKBN{R38E%0ArYEOS@rl#MrU4)X@8L}sVsE|4>qU3Ui}oHxbh2^F&sc}`e|Z3KaIC| z$v?8<)fjOLStB&N$1pbLV_-;RT5d`dz3?7k(#$OzVRDt!{P z^#ne1HZ7Ut2=#%>nvL|dwQH&IpCu#?3ivOJhg5*)_=1@=-ufDO;0#;z3Xg*Z_V|{vU{iaIrY z7Z$^pA8sj(`0BA-IrjAziDkE=DPRE>CGwN=YA=8 z8~?`)Wb9^r1V7+n*+U@s+-an&5=V3%3(?un-|#t+Ce`DFKICUNVe#lbXj^ASYG3Hm ze{Uy(DSJz(2fiBsV_8SF5kvR#YKUX zZDJtovosico{WBqyuwy%v+*g#VC?w36+LH-fqUY2K~JGJGJ0-F0sxqRX>Pnr3dTZ2?9_Lyd^yMrHJQNYb}M(B=T5FW6Q zBR^+b((4lfu=1ay?Dv{4w3qTTx?DmP*cEPtpOfv$BMVFRs`hXAuPz0d%Z0wRrRIaC8bu!@)JO?3wO&=(v>|R#ZtN%O*sk;#Z5f#mhxZ zy!s_{>V#K#)ss{bdXFW?#2*sJ{bQhi(RQxy?i!S5Y|K~RdyX@bsf2PlkTdSF<63i< zq9N$PL{=hkAOr(Q9xS*bi?Um<-G*7|m-!jbAImYOgas+8{ z*g-tLYjavg)+F!S4gC3b7WU6v&ot~hfCFy)Mcz`;keA94FVAZHY3^q*;oS?m=k+$2 zY&=eT2oFH8xsSGAd4hCKyasKY$^^bg0w~uyb9&Dk9jNe77G8^e01BK0p!l&dZGTXi z?!C90O)cxE=ewCf!St1&Ff4*@Uv?EenrcmK)~|!|lrT7N_W+%07z%~ul6Zb( z9or=G$%69*=wQWfQUW{&p&O`;rDwF{p+m>O?Fooh_h#rYox`C6Al^Pvd0a zQh3!uiHM)-6r>-Q!l5pk1iwtWsXw0k=$y8AlH1dU=R4}*_-`T>Q9=MzJ$r{8E=&PI zenwd7Z7YsB;fAXl3rxM7?xWqC4ajlwA6%GIj+^F`V)k`3Y2C3C`__J@JVw%%r-xAzj`)NvXv)>{vm zCo`FbdmYeTn2hOeh{C}S=UOny)ewB%Go3AwBrhT2Ldi_=ahehwEls3#cA5Fi#zJ+Ie zMhE3(9!FJN3|Q`cUsQKUqAw9u?5EHKY9DU_>61SRMk@Xwt3?7dDKiIU8iazu=`q?EBUn#*ASMSVWBhfsd zb-;)lLR#=nODg@??FFgQRU>{q)4<@q2x2Aofj9=5;^W3n+<4D+!s2jFDRwg$uf2~y zD->`$7GET$uah|A@}p$`(Ii+A5GM3oVa_CHL<)@-$uU;zZV(e=J8tZcC=c@SNp#3Y ziBmt;M=x))5I*?z6aIXr%02N{6~=Q0$k#iH`El+Qmx~q1W=~(7>Zu1@Z=YbJmW6X8 zhM#G(#4mKxF<+wiBo#;PHRG2B_;F%rFK=k+8nPz%1x^gz$|XO(&Mi8n3YWI7=A3`( z5ZQP~Fj*!XHSWpgRd)PG1--h+*39h1*S}}b)t@}+8ueOMzsUpfy1wvMd^kbNtaV25 zLpIdfL`7`TjaY+v3lc}7sEXMYl=z)Pw1po{|F?Gm4m;LD&5-$z`Z_BcsmirrYo>=@ zF489r&#q_lp1egPZebK5=_1CsIBw=!(l5-fVROF>R8nX`f|_iQyvziUxAYP6T4_m- z&FZ3coQu&jih$gT5YE0$9yFTBaxZsCKs${tTI16YYW7dWIvsK_L$ira3*CeJ{Wsy9 z$b;C|Jb)~!`GP-gp9|-t7=ZHD1Ei4%QE-SQ&$oIfJz(U@%B3@8$gi8e<+c^Hcu!;v zY^1Qmvu;?lelF>GAO%pU3T>9W6Yq?cAuY2gVz|tbvN$)5}dtKwf(gzlCf29A23T;Y{07$%Vhn$3%ef7KW4rV~Y3 z%`qaziyTOEeHX0;wYjX4L{ep#$HkcBfXPRd$YQrJ&f3g`&=t42-kkYl#K;cX>_`x< zp1g-?REraurECQyv>3-e)a6{;AA(}hJM2AA#473YfQ@y|!Ur>B;qZzTT=ep19AKqL z*?v35ebrYk$HtT_ytfj&8rK5*dB?!0-9>KItV5#AbV+#Xp(6(`3;K997oUySua687M56DfUug8?K#lLjXgZx*h%~lEu zZaSlT55Dta9=zk3{Y~UeEb5}PbY4)ZxA);s(K7hxe+SS7{%88O_&j*&4UJS(Yv{(X zM1gjuC))Vd32)ZOU}cQvA@OxO*mcP$puFygGA1%VSV>*x}up67zKz5c756?ZL3eJSq*Qe?>1UTK$#xH8_+aoizV^@r`^i)I z{%1|Nc!Nmy!|g<&O0%GHtsfu6r}IJ|u_Pzs-fR3)z< zzmrGNT;6mnCTotZmj}QXExPc(LsLLTyDZ6Aw1HbtJ_rsSYQXAofQr0VNlWA_!s`P* zbi~bVU{7TS_%c#V{4hR=N^~~Dfs?xXx`Vc=4Q3D~Eq0IVGTg6+++O!Bu#LY+#-GIMT$(ENH@=afF~ zGIT*^qU_eMvOD3<2us-a;W*uNFMzplHVJF{9>tLkqWY*9QoVC-KsUpWbf@eT5a9C< zT+-KM6dq=f;UDkO=f1nJy~Per{&Ws6EfjHwPgpXa_vV7KVt3hw#By17=6NBD6R!!TDFu;cM-R;r1_p{Ob064lS-C?}ts8^!OMiy6gfm zP1_It&Jy+8Pl$Y7)+d?S!%lp~7g~I+=jp`tL;>gP@tUd4*Mp5S3usnN1C=k~LkpAL zjE++l%CeCp_od8X%Y;T?tD_~%+Xt9|#x&T;Pltwq9DMm>3v))q)XKgZgyTkx8T)h} z*kM(RXJntj5xz#4NnHePH$MfRYQK|?cbd>~jTzlFZUppxUSOY*^QiT?B#zsY22b(a z!NUpu^p&R)q&&czqm9`92>S;$+H>cvbhsE@x>j&ZD$uitFk$=zi z$YmhC@HfaRyoGgQo}>IW79$b!Ppec88#r90b&K4I^!GqcVRIgsn+^yge-Aj=DdX!- zN#w35J3B6TE@_r774pC?IHA)|ILlx*SF=5v`)*+Y6+f^akqx7G?sYJ;iFWpnD>qO5medsm>4YSku$D zDgBgYwtJaBa`|`!ecs|h+lRG^SQ`&n@ogr8ul5H`MS>+kzLy@`x7d>1DwV*FT>Z|o z6C|1T-JUN{G3}?K{Z_F-N#d;RlX-$z*-X}@|87|h&y4Mwd9`fBhV6Q z>4TZS_1OKh60zg?aon8s3f^6#LL78=(q0>XBCn~9=z!@E zH3rQfZ(Au0Jy4Cf7axI9&?ItoQ6r99F^3$gPG;rQM6B|9N3!SsW4N5elY=E^aPL)Z z^2I}+2y+gD%ILpHI zhn8PI1;vWhK9C*A@Zg%Yz4D39X#;(Zyg5DN2 z(O|R%6wVZJgTH&h_`L;aNbMvrtsbQdhQ^Ss!hP^Yq{H+p3IlP6s_EwF1MHJ?&tPfL zE!=dp1DT034eCVwtCPN(gs)qJ$ftakI%@`3IVZ!oO)n9BS_8|jdJ04cX#96KL2mXd z;Zj2#vf`pRmOQ3JO2*dE(-dF9s#otZSEUV>3lc?hOeeCT_Z1W@ZU*bC&B^G;P=4#( zBu;L=2|qhoiF>djiite(7WQ`2OaT8gJXzlfMM!O^!P+zY=5*$wFyan4DTJ%g#QWGGp}WrLraNLxM0%=3fBm-J>KZvjuODI||i(K7s1eKZ5wRv-nPh-dxw=B*x>ZCG=mg5Pn%O z4@SuMk&_cz!AdfdlZ&urR0pS`F~ku_78T@rkUQZA4l|e&!!_|@^M^T8F7obL<+Y(6M3Gb zVSe*MGBh!Um^`!vEs_n~$Tl;w#ApYM+xk`5=P6*`)K&_;`a@uKW-%8!wuSr1cHrAw z0ttLDhnu|%0j_ARur>azD6il&XMfK~cp^ibq`5V~8D8Do@y?Y*Pyau>^;0;opDj!4 z=ile7Cl!KQqcp7gp+}T86v$kYSbpL3o1C8B0L(24!Ja!V;A2`fNNU>TKI*UI%IheO@StDtE1HGIa$4m(P@(Q*7IxJyzJ zKT^>m`JFfMfT3<9NcZsereEfn`hIZ~+eo zVgHG#@NC*RIhvzGp!-QWIPg6&>7Gu&>&wXK;1=%ner4|2QbXbPBg@< zGKyVq&J^Y-){zGJQrHz>U7q(>iZ7R{SspsJ1irBC=W>cKa-cU4d}?}1_}kWVUvu+e z+`KB`c-aI-a^H8Ze^r!Fj>#cvHVMr6L!QDvuEk^)SAxC8r^CYOi6HCT9O3bholv3f zG7PXz71fVEr1e4eX@Y;tNQ^k*59j6W+^|wP>N0EjFkh02|tqv6Zno$}Nfz z%#9HUW;-vZk4s3Sp}D5`A@vD${@Fq+*6at$^OfLT?YXR@i6qb)wWntd#iPWF>G0zR zO)ypMvFJPckxM~6C}Z0jFnG}o!dGW8NfraEJJ*pg-I-uG@ij2rSA)kbAHd4lUL-}~ z8mVb0B;2_u;Js=p)e+qTw~FZjuJjKzI776jJ1xVt>RK=)`Y)c5>W)TV+S1I&Z2GHI z90@+&1sXP&A}g)0sAcsnRIba1O9mw1467=^8JD-#)tT zNl-odEo>hZ%}iRGeH~tugNMyl)EgQ*J_e5~{<|C}WPZ5D+ zxT}QZ^jzb%Rm>v?T?iUGFAn9#mx-Ro6z=dfeJ1WLhM5}mU_^Z)QR^sRRG8P~=+oCQ z&htI^>+~M9uKGnJ>rRr{9apfqX$LX!^n^E`?!t%qZm?9*YHE?2P%u478Y%c~Wv%5^ z(S*gyl6CJ}!L8CYKBd%w`>7w;5DZ-m90DsU|H)ZC!^ck6TmNIYzkx z1E0~ z`PVql*EH4tmt}2lApW&c-p5zFP>``Kov&m^g`7x0Z@P6c{PLDA|K5VG9)1C);zryQ zU;uo4oH3U+%<8=M#dl>y{ex}&w8oV?NJefwc-Bycm)6cB_F0Fp!)hs{5rrwUH6B<= z(wbfI5mGK+gG|$@VOHOAkX<`_9jkTlA{$nsO6A1LQ2~|{f%Cp}_F97trCmn^vIGCo z8NzN>`C2hjS6fD%Y3*mDSbj^WuW{D zX`m$ao$7L4g<^C^&`z;KNbI6KSZrbq)EB2yM#YgZv{oH6nYRp)hokc0j0MVOM##KGOO!A+9gSyBX56u;lWiT36 z_s3FU!LPx<40li**h*ixag1@Y5Q2{r3t&UYY4SVD52uT9_`0zJGxR7J9F;PsFZ5TS z!^3T8+uu-FxjKkc%fG+_1FdvZmpxc_eVD{dD+i&QM@+lf4WRPRR^VV&1Fb#Mpn2VE zwAjNPhVaZmSyC(2v@RFRJ)TdGT}uMz2YW#4rb1Hhx*Hy}ltV)|6hP1gf7(kz8&@nH zMQ1Zo;bOZUkf~S($~y1jh?+>Uq`C~r9_q&KvmBtajxyB6ap2M^V>(XR5!6kLfY#Ji zvTf)TTs3$Nyi?l@-x`hp*X$rXm^K8GGoQfR^<7~1hRtw5YYrJSt|pQFEIl`KG7+b< zVfnm;&@t>NH?Eiov};XCduBNk(Y^>9ZC&l+f$$N+$MV4I_Q9nE`HR$nw|{@^Hg0E}&=-j}C7~fqOmzgDtCI(A!G#<+&VF zb88`-UN4%VX_esWl@l4IF*kDc?0HyxP!T#FQGz!U?~#6GVD7!kGY_KGR(k#S-5xmRASWkgQRZk1l}HVP}#g+Sh?#qQT=1Z znQGN>8hO{bfxI?wGf9GR&-+BGQy!smxjNJ90x9%rW)*IZiXkB-6v2=F(oSz9a6#Zh zw6A0zGa`r}qJAzO-qL_C1}c$4BZ{~rbHwboCQ!+7CXt&7$`O7Ph+ABO54 z!fw0kf$qHs@^MES-q2z}{=M2uzk9b8@0*oKR(x<|Dvl~~J^6od$aey*q~*!)Uk~Zl z?f&S0)V+H=7E#+aY?od3NkS1qC2`GK>q0vT5z+=J5-RP4q@7eqk`N^%NwP^vT(j1? zB$XtDBuQkGB&j4yrINnux$pb=sme;^jRZQ6&r_B{~beNACzfHW$frogF5aOPf|?<;6y#_?;x2YaC1n40~` zN87ppQk4oNN0btgC96m|hw|a;@t-Jv_tIf5&{XBwTZxlNG!97FqCY~kBO)x_0) z2wgqA3M%<~fi<5LNWxwfa;5DgitYMKgdTi1QLs4#k4V;oQ^U>l+batsvR$4?n7zYw zDVuR{^J(OvlZ=*6=*E{!-H_Yb8kYYf6XXf}LSQQ~mYuVVd8DMy^v2Ag$ESV(S)PxW z^u#Ib>xZ}4&V?tLv#Jkq>zhgNW$rwX`EsS8?S797R0VxkJIV=lzJz~W&SZ?jO~4TI ziRWCfm*;x1fw?X{6X+K&qCuap!*wFBfbr$yaO+bMSoFZ0^X`fn5x4GyN!}S)cHlZZ zD7lTye-=X*NE1+R=0+M6&!Oc%2H-Zwr{phwg1r`B0|p8A_!0_^x*EaB@}= zH633|!hQ$B3ez#N^w%&D|{gbB9im*h3UntI_Yhx^%1s5`pMF ztNL^um>nGmEbbkr5rGS!Mr{cEZrKFZulbFWln_WBYjP0KFFjIH-2+1a;qSEZqGgXGMsp%zaxr* z_+;=Jd1_UEi~Sp=k8-N?=r(5~SQomE>wdlz?n#@8yqe0fjR0XCFeRCp?7J0Py{N*T zwtUnOY=q~!w-UXJt~gMO3%&Ma@$aHGRCD$UH7cmXe$m_T-Ieo@ty>lH_E}7(c<>PK znh#wE53r#jC)ld}@p#~zDVY0A8;F0^qBY`T$jh>lkvwxBmz2x}5oI;({HZfRV6PqN zw`;_HF^+hHx-i*y*oHP$BqtBfE~17WHD}?Q;2l0ucVJJI2xk$aW&tPNWPM_!7E1fphSLKZ0dwPuJ{3QlOv+zc2zZJc zOo9}?F;SxNjJKXWh%{Nt=oT-+nCy-(q`B}Nvv1WpMrp?irtMe`FpU;yc&-tLSN*$~P<#?ZYM*7! zUN0w04dp?O)9tOu_&V%apSs((bL9yT>H2KK@ zmVc!LmQC;{_XL{aU(WA@UbRikO{v$cr*|RlJ8%$%FHxX_H!om*&0Uze;x}mYyIE`z zumK1a-i5Plv$3o58q~8m19C=7(c7L8HrI#+tYbFvn{5gEqolc$54nTM=Tk}k24ybJ zilHCDR&Iy)2b^(*L#Vem%D1-#uA|PxqBRm-5Q!suXB^{_wu^A{w=c*(G#E*?UFEzC z@T56WletMw?r@r@Aa^qEH&)91#ZK3|g$!rCBt2M#d|0v(zA~4G2d1szXUZj`+V*h# z`)eWSYd3 zGmD4l{Vz6LsEaAlj3sO{2A}-R;XK(Eob_r1Bt3gf>N+f`)Nmi^Ny`Hs0vt~A+zN0> zN0Sk7Q8IV*@&ugO$MBLp5lqDPJNVn{US`4lNM>}#i{dFS)`E|NI*jTUNo;&afYsj= zhIhQT0wMk3Ot)iE(WvG{rmbg~m&zqfjnPM3a?KG}O?<_?(Y?X0OivbYt4G1;Zvxzp zXbB!{^u`MFCNm+w30vUOfVnz@ID=`&%SNqH0HAS45?pRJx$|HJpmjqu< zdJ$Z!e~&gln+>b~ZUI&^FEGZO*USU|N$i%)6KuXi0yI!v!G7aevyJyCuW}SIbIe6~ zEnB=9cY*f9#^3c!hs!Fni5X`sHmm{C4q!&9+d zgKNWM1al!XSWkWtYn$@}jPG3mvh8m1Bt0?M?pVRN^~EyH!ioaT)?1*G*9hHw>)56) z8xVYUCA_@U4_vl)gxaHbKyt)2Hs%$>)f(3zQzr^>?HxqGyWvKdb@4sG3#O1)!%kpZ z`*Sen9DrZWosGDARj7S{ES0p|g5HMZ0G|#4ey(sLsW`hgPf0tOj^on=eeQFNn~4(e%;1Cd-?9aG8e=xNcs28_q=RXc3uhgjZ}>bv@-W5L$yDX@cEv6Cim%0QZZbK z#bE_`GS3bCIUa?<;k8^O(oXa%+t9|BQAF0l1X+l*u&=GQ!ias-;K;+*MAFU%ZaZQ{ z-+$Q$uRTY|Z}2qgI|$e}v;P3oGx8vfKZ_Zd@Q0WE^$~MP+6PF+tb)(P6rp*M4_2}M z&Svd3Wy(@^Qs1T|sCvbiEa)&~u7sB|K5rVqiMnKX&0ZA8ciO;?Lu(0d^9T0**dGip z?8f`vWrLWQ!@zO4k*iJd*Z`?QT5F4)%*G7! z>l69D%Oc^DyvI0aP8N*3Bo52-Qn04ubbQbv0;F{+%oz8U2#`%AP`r|_pem;*x>I1-L~B2B&3!oFFvo^R(8jT5Vm z!m^9c`5Q|gBLAIl`Dna}RP`LB#j6B;XuDx(>#C0PUN_R^Vp8bEof7`X?HRDCvyw{s zKBWV9orv@@CsZ`Ul|NZHnT%S5<4j3QXnIiu9$he%@3i434B{S!b}s~+laE%Dh4y@| zNbdyxy%b60HGeaw%K0{45hc(C7c=4?nQ{cG9uekSXY=8}c4andW*BcmdK$|L{Cbdq z3npHPK<1<>a1%PtgcP1&Pe>H<^aEEhA>MZxXDM;=h{7#qrM<*>tu0TrID_+H&MJKQHUNddfqviQN6c>)z)g0t_}3>C(JNq-)aQiJ1M3!3H4P;=t4#s% z%&rjdIgXc@x0g4~wv3f;qWIXWg&=P19=>{eCnNOL6njl;D^A$#31)Rx09~1-y>xOW9>J4*l$GWH|WM`nTT;;GETTL~PC&`&oz*3DoRxO4!kbE0_v z?D^~tvD2Ih)ioTCq_ey;)kitw2X`=s{v2a;bf+-kZZ1ryf&nx>sKo|O&N8m$SF_IJ zYuU7`_MlZ;hw~_OtBIN6civdd2pG%x#in2OVKbtVnEUUF8KHx>c!rULiM~1$+;e=) z8F+dTAB3vxfI6M zK^~ev6Y$e;r?VPQWnf^u50A$)W}UcefXpE=&~mea1=(}3K|nJMQ$C9$qffE*Of<_W zFX8E)np7NeqK}D8NWjDIDw#!zg1$#)38-!V1I5~}Vgm~Yptb)K{<9qfCdtEAH8!!KPO$f#~oVa8CSG z^tAmb9%y_43d&c4ciP85X5Bt?W0oqsQ@j(;+*XgI`<9SZNq>-ON-FG{7Y_5rvf$#G zF9{RIK#AlZFsT-h-SW>+R5Yc@7@YbW&&sWAWQ`Ur!+ih0*ilo2HV5~En9nJo$c2ZKPR+muruLv`Pb#zI zRv6h6>q@@ptS19~^^Dk&-L#~s8?;q~gW7|qL8q7oBP8!mmIoBGm1f#_$0aRtEkllm zs(k~%G7!9&9!1O|q{+z_=YW;;cf8tdm_&=o6V9RK)JD1h`+O4Q1d07+?hbBa8vh2- zsO-h0N|4hV9jJ?4KRk!?4Z8W2Qag}ee+=I)Hy>4f(4cJ0b>cB6f=XB<3;19zz_hm| ze3Po}i0AoA6_m+Jky&|@@att0 z@S?Sn0JVkzZ6kS*5P-n9Ob0e2NelbOIpFM(^x{X8MA-fp$8qQK9x#u460eY8u!p!S zS?JY@EAaUX-DVE^*QdyY3Dw%!x`WCodW>4*}1dz=G#kgyh z4I|y`2YyKfqPxPUvBt;w@O)Do+*0-cYHR((8ZB2yvf6%lBzlyT$QrTHm;JzK`Yh_! z97a_wE@Q8ali-oM&#-l=4%oED6x^6Io5|k8W%oaf!GnJrL92%ddAal+ZdqT6>dp-e2BmkOfM5@0X-l&R;G0&y2T;uRss#N4O@2NeB5+(;Sw zIs7(bb>|#17?vYv6!zdHZ8t!~xC_YaoWQEgYylj%8z5`7q`*hr0P%yKFv0URy8b1I z?3%9+N;XX;&jyUK+f9FH_7s7GX})Zk$wEBYDjnSsu_e-tC-H@w51{QM2(^vVSowP+ z(BPdV{Qk%eq#v4({FXk2N5{vIM7RWA&2+rnhw_X zQ}+WuxP7e;$T77F^m@n*MZ9u{+Cz2lME?u;<*G6HzHvX-%NV59P7Mo7sYR~Z!I>o56GZR>s*tG^XK$PyxAKQur(w*#NtEJIFK9c3+o z6v6c;MsRvoJTqbNBpCEs40Y@0kg&m75Z@kRf?+-M{k9Sox(F}}++Xa*vrEvgh)S?y z&Q@D3l@eRx3C z{=6nGyj1u}^eVEwp-Y8se&=Q9Nuk*RC*bFv?WoOaA~)f>ELYrU9u4%%q81U!#OlFu zJm4B*q7idjF#i$=bw^sUZwe1~|4?Ukp4EUS>Wta$d_X$NrxT^v9QaVW0BW0DhYG4r z$?AE02Hh(bfbL6+frs2?yo@hIoO9;#Qqz~>u-G+VD?1xhW#)p&qM0U6 zb8{HO0|cBtH<^S9c;aJQ1so<9tAOR6da$$T25Z(N0d%8Q!PIGAnT(n4(ARaFV2)mk zh;6Q9ln)#f@aw#UHT4sq-+>OYK<_NO&N&sAtQ2T21Zo&w%~q@}%IGHk^DU9vIfwf-$}hv2v0oUcc2j z_upv|EZYf&=8v*3PsISa#R-hosA z)*elK8%7QcYmqSDAxy0b@s3lYOjJ`oaNTm9)Cl!3yh*+S9*#J;aYHsrRM#QG8}`H0 zwq&wxavnZ%YcE2NZi3s}VsL>+19wvK8hY30GliKJ>~1R7y2Nr|u* zkozFRe0^}47rSpYlW{~1^u|tS4JPepbWJ|-QhWs2it5jpMLQKaKDLRRscF}NV%!)L z`D-F@dC#&zu7ViaM$_WE&H`S2$;sea?JzUDTm!Z@yx_@7J23v<_rXn>VTQjm6Bx(} zgTY_T%oeLxKxOwwUi6e&An&XVImH=_QBe@QDt&@$%<<(wkZb+FXKh|Bc76MwsB0iD!sM@j)&-9_X)@#wxgl--`OD51w`umJm>+Zv$Yistf5~Rb6Tn#1RZDt$svnjjHZA`d80mS zAijxlStv}OS&2X!-$TrT^*cb&jX|J)dIgvrFcqqH?J!BsyA9TST)=+G(#CR^=QGr6 zGAHt@5H5cag=zX6*lqEGjdhS}U4Yj*}GQF=S`t>27r<6^J~cL!c_D*?p# z3NU$3w+PBH9xPiGgcldPS3mB&&B)MLbBkV9ZrqUB|XQif%)g#AW?oNjy5j>O*JaC$jpf3YtBIqqW(N~ZxYbn z-bE${&Va!o!XWYSEEEF{z_zc4!R*flG+j3k27c3lwRcU3Ae9zf6X*aP`PN3yJX=p& zZ1mx^_Hu~OWY{pTlPUFj&KSCy;!^2J#MNOcjMmssy7w92yAH-|h5_Z+zh6d#fEX+* zTT2dfKE?YVs}sdJ8Za=S2UxpAvRiiPK;Oi19H_n@xP@L~wWB>*jp!+$)%`js+2+j- zn!13>iY4rsE;SH#)0OwyvxRNFs>X{^j)Q$YIpC#-A^32?3Y#tqWmdA%V7Js|9KQGr zF!*>2oc8j$uqnISuaA-F} z2Dk`#d2>oG;_j!S#6d?2#-LTQItD&ApWMRh-N zY2F7967p6F`AQk1GT}gCWhD<~ZY+aZ#joHMatCHrM4V*b2L5aig!;{_(kxS_d|{Ue&pvAy+Mz|*pX=Dm0YbnC3Ze1V#R zv8eO|-#if+e8{vh1%(uDPJE*5Wojhlp0seY0)>^p13_PŽ!scLD)Rfb@mLa zz}>*J_|nQmd~~J;o2S5)k!!%!F%IclLGhK03TE-F!{kZYI{_E9Aa3gZj@UduCcvLx zr;TIh!Sb8mv3#2l4cxyP_Z^%?Z*LSOa-SE#wO8KoZ7NQpju)AHud*`udihDJjJt@@ zZx>>&n}Q9_8{yt#hQKFVhhM6B5T?$Eq zK^W^1m`+RIYz8I{D`C^2Dr^w?8@oDf=g!%AmijH=!6^4J9G3MR*J$jbH5KL5!9fuw z=O3dB9hIPf=pR&8KgBgA5lnf)X;87}5$L)3m!uX%!G<@Fc+ae**=+}LfjVKP@#vD-BBaPnk zk%re@sQO?MUE6X6xQW-`tg2WlezYF`9SEkfZz5=yqY+u@DvYkitwlZSHVNiX?QpC@ zBMdq6iq`%qhwb(=P?6^aB=___nPa0#?lt#%Mpw%LgvDrH8bdFop(|z)`%?}uIKYT>43^`@iNz@J zfh$a#F^8bV<6Jr2GgFKK-PhK$#D%W zE3$`QoEWaeM<_^M?cy(b0yLHl!bnf%Yt}`KU+WB63qOO!rCOv z#k&QuoT92sc)VjT-t}CWsc^o>s%UAmn=Wr)MoT=vZAo{+$#{k@OwGc55|!ZjpE#I# ze1XZ4j}JgoQz*_I3&xZ6rO5sR>)5b+5SQvsC&(iU1{WPC3R4R4tjQ@PX@xb(d21&4 z#=LP-_!m-sSAd&6`ngcbM$m^BavPe4Kw|?BQ$H7h zMoYUBirylGUc?oE9S7zx&y8a6gME6$x4a38x#SYrKh0QMsToUdngt$fnbN}-C^U{w zBT9x`VlUt#l|I`H1@telQhNqFl2!>ThH^>TGj{Sx+LCp3ZWMDR*K1&nhW-q*m zBv(I#CWcP%QQS%DVfPMR>z|JzF3hJJl236X)K^n)sjXD`bTr)(+y?{sL(t{#XS76u zfyS}hm|)%-t+K#c!se4(YAZByc~9m$$FVwyG`S|7w|RL}=t=^I|q zmMwVi!%{~7YXT10n8Un(k&jOuHOETe7dA_XqN`H=0;kA)_WJ!fAnv_2c)3TJn6^J> zf#qsekcP?oFlgkCvFO7>;a z1sS)2*TT7Ei)t9YbT^3^`d$Q^53V3h$z32^d}@ix(iGJHfbjEtAH&g>Cj!nQgeSED zvT-jVlQQ&CUDIpq@%0@2_SF?icI~Hw8lHTM3(iD2=NxovN~cD3->|i%81}!Q#_VWn zWY2~~(=_}P^ISq7)Mr?OfaA7!W$1LQx-}2ky_`y1s_gN6VG~d^{EG>D{c&ESdn-`W ztiiV?M1XR|iNG*yBlPa*M!%yDk%YQuVC!#Za(uWQpHXqZrkkWe`WsDLtKmjw%*{ul z&q~R)t5e8%%_3N<>dPK9_`xakO%#lSSCZ(qyC&PMkHd_DXYja$Fn7y>7`cJw_nDI0A&c;vRcYW#<2)c_Wx{9+%fKiPc_NhI&O2Sz z%rwdEgqszY|Afra0H|`UzBhe*&!?(?If~i;%(58shJg#0|BU zA+PlBA(IMiuG$I_)VNC&Cas*nU1S^qFP)SFJ2oj03ypp}Ia89m%qWQ5@y{mJ;$MM( zffW>Ai1`+cLfjm#J56<-hlP5-F!qz%QD(3vx3nXOEDjt-xyqC1+=f_Q?&4Y4xO^(p zbxKZvS=b9?m*`McUuDk7D_JHsvzc>QBa9vF$mCTnF2!?cFeD$h0GmP$z?~^X9@e?g z2j}ZS=eas8A+ZZ2{Wt-pevpIdzvgiEA5sV2Xd)B}Hl(*>Jm8XHC)y_ z#J^l;fljK1@kKxB(9CnMY3H~RiSsr@{Tsxn)67e7^npJtm@C5nDzOv!oVG%xZ9Ez- zkY~z$Y)Bi`bBIiPi-3zJn@xWZ3gYFY;E~QFG;WeA6mmQW73AW8Mf43Ev~3~x2|tSJ z?J`BZe{wfqPRiYd<#v%XOq zqV2(+$ksiT@C4!GtGm3R-G(RR(xEnj1FX4Tq1JS}nHjxoe+vA3Aq`!pzlMF=z0vBb zxzP3F9!?YyCd;c3Ib|7ww&)I!FT0wF>9j_?^u;{Lvry+dPjp7ZOP12NeN)Nf3(ENS zPi2&8?T9u`@y2Ef8&J@;cCx}-pkb)E6X+GK24Rtz%)^EpP+GeR4M^U@i&R7LCk;cU zKgb_kJ${E>{%bXOay0_Vty&G+ze+*Q^cGP4ogj^i43XKl5@!hu_*P`2*}I1XeRl7O zAS+ECWWUJ;64`zzs4WQ>mc@V#!>{4Oq{Gnkg8=WY`wF(bnSd%L%R`ZBe`H&F8tSdC zKuRwRaGGy1FkF|9+U93N;gCh>3*QOuQ9VPPeoruM-f@{0x;)}WDITI>4T;E>wLsDB z4Dzz^At>}5Z1nugG>IYZP*(;yv$h&}#)fczNl9azoJjkw4k7g`Zt(CfdypWi$*vat z1721aA>)g^V9@*?R=TkQI-L9p3@@MLcc0Ehr8VGwzhFCr^F z6OmzAALH`o4_;Kv0xSM((Ca0}C|T?St8*gI<2EZY#GJz?N?ZW%*B-EXY!^G!>aI4GxJPj zH{&ol|3(>TSqy?0}-FZ_F&zQ?`r$5iZs=EvX^Mdgx zc+NiPu;vuXv|0~GUR)=w#=!K>%YJINP}Fpv**@wY`3O~++9DZQSp+hl;rfl%Bv$b#mTOL*eckdWFBTSp5jSw&!E<`?8PR|hwE zpCSjo`~=NcX223ZK3^@X1I5p;C1-wLgz0+&VeGC76!=z?yKG?qacFyjz)evSSTvJN zn>>$WMC{qI+o_xxX}_6Ni?>*(*qA-DO^&k(7=!ntA31U>`ZyMf*1RGAA`maggHD*T zn)w?hfj3MU!FTgzfb8cd0!=|-Q1ncMOuz-g8k~~Vm%-k{<5*GRC72=V49e>s7WG?2 zu{MWfk^f!|Vlqn?rl0%FyBwGf26L8Uop)+vN}W0|*!vTAew+X%)vsgqmOTYWW~YEM zZ6!9#*%e${nT>wWSx7Q|U&67LA)xZgL2%*SEjDRW4$#uqgWpEi!OsJtaHiXKnA`Oi zslE>(CJwfY_fjviVcv1v*Paaz4f}xB@h2P)Er_)w3(=6tUgDXVikE*GhD}p9z&^es z_BrgYm?%^RoWu8EVJ>&R7M>2Q1jSdl073X5BbKLKA zI!rv8PVc@3+!G)g7S4(VydOzeC0P#`eHGz`6)$DeUxyQ^n?bNjj0-ur_xb7SBPhS~ zDJlPX65jS&2R$+x&_K2>ca_0WB4yErq)Q9%*^f_fw6_gV-ek{d-1~*yC{Rfs&9Oq! ze^+uI@}t;@Rc0WeE`|Y|g`7Xn>VQ^BZ86^6#I88I79Sc{ggzzvQPRqB7lksM-x9jm;G&?KR^-n^ly5}Mf z^b-W7WHJjsp2ByZx?#IJ7m&=Ad3bL61k5`y1VZz&fuWTZf9d;6=y&oLvOvECuQ1KQ zQ40gns1zTSwo4F;9dT$(pli3s=rOM+RhKAje!<_xQnO{ zO`{I)uCb}I42gZa1&I$&Mrj$XaPZ_a{Z6fbP=b`C3LU4+jD6$ZYy?gI(A!e19Xu%_vtUtG$Ixk3~(X1R96pv+;&V3Z% zm`8ygkfsvW^-#_|3ED7b(03Lj+YECMu@a}9n_oeh>JzXb?-+2tKTOJ|W@D!|ichb3 zK%@%h1C@8s%id9HS} z9&N}kfTi8dFjQWfnx^GYy+dz7?)Hg1r5mgl+P+%rBMw)1DgTaO;YlAR|&w_zcWis;1YS8908zUQ!V@?1eVDt(q9`x=r+ud6j!VO;><)-Hvn;`*FLDzebM z@hdsE*p!|NkH=~ol(2)8CJ9@ehdoEViATpKvh9|wK*#=+pno+JdJay6=KC&_Uk8*x z;MJ2L@#{U<_~|D+uqX;G*tUe(er*!>LY5H!gci#b90(`53%eMt_pOZn?(;DF_&a## z^J272y$om0ROALK%;FbKdk#WR>6WC*gp)JZZb3QY_1v(WE`9?%$UPhVmO7spq2W%G zOt-53Ag1FEUO3M}Ca*cDv7r-%IvR4c&9k|F`h(O9q=M{7f3hl13p9S( z%S_>%fkG!)cxqZ0YVdV}YV-+8FFr=uwyhu}%!pJ7^waLobHe4E<8WrzYG}1!Cz7?P zgvw5hXm)ot9jYE@cw=__;Xnh3#Lt7tqvzqBxJUG`T`?+`XOK(vROF_+i!1m3Eeg%- z#7z$rz_@1~lk!Xka`CA~AzGg< zLw7v8O0U}`Fc$*m@x>O&b1hw$0aZK7)AQuBV)MNP{M{c(R@e+$-%vtL6T^Ail9%&C zU(M$>Wn921PZydR#TCF@=P5Md^GSZH(Qoe6PYL|^EnO(aQHr~|WI@U2blDO+(?XD; zeg{jQYsEgjdnldcO0%1F`J!hk7!{qTeA^ik+^qId_OFv2{wZpTJO9YxyKlXT^0%*; zH*QGl18ec$v3=BFwggHu3uOYDZebb_60gU8Gf^E?CE52w=>D^%q%}XEUJIFn z+!{{f2kaRl@77Au1iK=d14O9YQx0EkRD~P6a~8>Z zQqMhdp#(F>=FxWHn{@U0C0ze(0T=eH3L>e`P@!?567Ms4{Dg&>V5D1=H1upHX9pwc z;L0#+&e7pNAL}Ne_&opng)-!-K7oL*g89jq)@_e4 zx6-ecy2U@`eZE_VwR*!D{f7*m>lO}I2uDCI?GA37CCv>^m*j`W&t>*$>XnEr zt|M7E%;c+`)iiBODC9Q=2y-8W3311+`j-^j%q*Gl$qu67xA>`#GKrs(PCMh`spSSo ze#^Ee__X_k65g4)T+3a2JUwbPR5rVe--^#924`2$^_RWrV4oB}-Tw{##*O07&2ZvY zCl0YTS;LG%ia!o*Nyp%kImH=%bak0DKUe$`0b9=Vqk2zpXFDhmdhwv?(ut3tg7y+x zC{xHU8HJ{@e@ghS`qd~o^C?=e>1fGg4*_*^a4)#>P=R!~ZYQQQ?+Z81J65X!BpoHNbO2Ia3BAT`aM(V*XzOf z0on?VYnlPfPG;9Hd<1<&k3f$(Jfu)U;P1)0+_V){ltYf;!y8BW%YVm_?G`&=Q2b)< z!T`*7x-Q@-{_+67pZ=SK&9CCBeH1qxH&_NFM$d!fqMbll&H;7hltXTu1h;o+83d8% zxq&C+Y2&@MJX=R2v^vuRKUzvzt&2R8P@Y3FR$rpZ4?RiBPf5N_KtAd&euXpMeus_W zO9g#Vc@V+NCYfKH3A`IYS2~MQg&;-#Z22lQTYfn<+1<^pH&lS0#o|aghox18ySQmn z)%dD|eWZzV9ossG@auJ-@fU>(p;E_#SawY%Uesny`_xUSmA()^%jgH`u?gp=ikv{6 z)i$J1EECe8*?1}Q0FMe)5-oj2+8=+Io=pn`pE%R_i7VB)w#vmErNyVQz=}2Q-hzCil)!t4nm+VTW(`7XHLry|4Ea?ybqxCZGHSv!a8*y>; z9Bbxju{&$^co)!lb&>VEFb(<+zhtDMv!U_QS6EAAkc~XKgu&ZgIQqL2*^Yzzz}fl2 zjAhLlXrti`noeGZ>krgp(>;rM<}(0FAbDtS_hZF&@ePRC;ikFCQy zgVf1jtTv^echRm#t+c!Ri^=$+J^bz)9^C#rSFz8Qd?>qHO`yAzj`t}3C6&hM$u;~%hOS)Ynzh`NmB> z2P{g)X1;|;pf^6C^AXpVo}ea?=`>2!fWLX{D!5L?OIkTjf*9am>@OTk^d5g;h2p&N zwYgu2%$imrB660_`%}rBl%2@u$TXu_8w!D`Z#ButT*4myV2llR{UR#Mj3_!^9{-B*Lu8b83aI5blE5>KCh>O;;xLNf zuLnzDX5wz7z268H_ufX?`~2x5?_p4|w3uAg0nFb+AFF5=abtKkja7=*3mNJ0?zYwjjSoojMZ}6`t_|NVC z^LjM0>Yu-u`CrQ9zt^Mxd;|Z*?0;)gMZmI-v0M?rvI|*F8lX( zw*Rsly7TYt{>KXB|K$t)_xkqFn)ScmkFC7)&l3GV%a8qkR~`vD|NkhD|6Ts5=D_m!j>*0MZhec%Sat|DP6$~DK{`RtC!+i#cSaD&UW?{ z^ASYX%{CFXe8o=lNM)jy#o(eCOIR(K|Nks@3~1gt0ju|?2%xl@h;8xX*$!=I?(I9r zPQUUMnys5cdJ{|FqdmSbb)PV;4|qttGPI%J;Ci;kPz2ldr!WbJZeu$iIoN$A1b8g^ zf(w4#!PIGhszHQ%e zluj~7C}krf?D~_jh{-Uf)*8_3raaF955WDuPXkXsMYQavGZ_n>iY2nP0e|~%jL@ht zTeTO!U_(!k9^`>GSC+w;JK<>JnH7dDw*uyBS;L`^u_({m4%XIWpk&m7yVH|6T7Qh0 z`a8X>yl4hb{F6NKnh=0X_P!(z_O@8>k3O~BR0SpO{$xB36| z6XnltpzDHn;w6c9*cbbzV9Cf!#5Hv_QTFi_NU4hu=P!f~?M;OvPwukD-&%MI}75Ganebcd&03q(HUKNIDQU1P!OzqqmMi=yS<&l)qS< zTY2U*xb|Hde0eGb3RO$t?Wqf)%40rsJ5 zD0yksj5~GpXnBnsHnjJ6mfwp&g0vxioB4qq`W?mFXM3F77+y}!Iv%Ghw9X1N z)1J^@vi_*@LoqmbXD>H#?|tyGolDHSN@%=<4tLgQ0bR~ZCEeFdzzKa1enQo0{tc5Y zIMai{uoKWuw+oS(4_TD=xif-8(CaNeH zkRVY&!c2GX-Q6?YJ%AvHfQX=A00T)u1QbO@1w4>zJt>V4S(<$5f^k%85;HXeDRfaj28!g%!p1_19Dlt#)Jf^33$q9tvZHS4{OcGK=YkdB|u!$lT^?F80-AfSO*7T)J>UUA>_eT24 z#|-+8bu8mOIgB!SGR!o^oE7Qcs4IQ4_9(wQ+?qPHxt*W;>L&dlxR&18dX8C{T0|?G z%@kPYy%znN8X$a@*;!V;OqM*yp~65NWxctL z-XGgb8yh4s<7dQCr4mwt_?~*vbQ#E>l{KE)(X2&nlkuZc?={gU8>E=2E=L*Fj!Zi6 ztByb%`7Vk$VMV$1bdQv~kK5b5-5$Qx4&fO>cP{owYpYpNvd@e;D$^I&Anvhgt6I{;<_?hf% z-B}_ze+PPF-H}qUg_(>&{ygE98cb-rBb{xWyPe&ue2Zn2mI!Te-!^n?UFbJMs>vr-s3bX)r8e=XnV+xFuXlc+l4m(lMPv;9 zb84$F>EJ8=)50CJKk||_P!O>uJ7YxwshVXkzo`m@krpENS-NHV5}Be8Mk=C`mokREu9E)BU2DN$_hH-Hs0tmH1s{ZmP4)!g@CbJAYnu z@W)HaCwV1RYkj1&L*YQl#pC{^k1jRwO`9H+jEl^tOa}BRIy|8#c?bl~3%MX$Y zQgU>*`UR@IJWP0KtVR*ZlY3E6d}dui`+kql7YPFIfQoMlfDj*$=RR)Gz-|;VNCgbLY}VN z%Vlc!7mB96zD?!$%P}%)z);mId7p5L89x3IfbB1-uHh z%t8&zY zCj(gFK-UuCuHH(%D9ePkIpE1eoR~w|o)QV?Ed4-zM-J0It@&g7g9nJb>{hY?(|uUD zXPHQ6Xp$gt{h_hB2SigRuO43HN!hp289$nto}jKhbiw7Jt3VX3kctMJR7ZQ4^n zUChX#rTd>z1-cofi0M0eKs{TuslJs8(axoZi}NU{;j3)o@(zlKSje<3Frubf&Z5d~ zILtb$R?&o?4ODl#5_9G;C2;b@S&uIH8WhvHqWu|^F1<{dH4BN#j1!scd z%fwFB6<=N(!F~-K6gG{-lTz^(LcP=OtbT+%J({^&^u1#ZdpSmhdK8+%s<$bzS4VJq z(d(`B`us@hJhzkzI8{&E{%915%QjQ`_8aMC1A9tC70$Ci>~7Nw563dymSfl4^eDY` z$d|DRTvWD9>?WN$Y|8-IctZ)xBt~I%jA7;au|nu`Bg>OFPAr>yIL&ap$w@;eLn%Ws zEUo-k=?wPr-nH!F+|$(bvHZh6eNL%e(OMxWOQcg;2Sm%PHw*7`zfh0v`m-YY32b6@ z7=5JfIQ`&RICW7=pT0U4-w*U25cR33XO@(i&{E9cXH`ZCjWNud^^Cb$xzAAg%t=Fs(uDF=_nky@w2v7!zCLA`j1CFZ z^mEGhOFOXj^Ho^uz0+t(xkuF21|_~2YI|XdeZp9bN}??B-YI_D_HpzD-#mIz(QexK z<22Uw*;Ce``jODww4A4{FD(+JtYJ9kjMxCl7IxleQ}*KSXnOFKDW$S=hUmj+GgbOL zQh41nja7TCJyvsiEWh{uC3aA%d~99&Y5Fp6eAyk7@nzX#HM(c4eZn~JF)ZU;jw`EM zC|TAT9La=QW)#aitftolHt>s|Q^LFmJxc!hBMNVRAf%3t`B8mdQ6`ZVWBX%G=07{X zfyJ zq!Y>_Q^^(Vt~NduaM6l-nJ-68e3!+uMI!j0bX}=mCzDHOw#HD-cIDKf5HJ4RNICZV z!v^6et7`tm%vP%YrYhA&ca@Y}n?)B6$cTJ7&83qb_fdNSCD;$=(%5eAg=2N?U6{K8 z)9AK#NBU|UkGXp3fXM01Hv0Cc4&!4;2&(!u*?o?Zf+Wisg3ITXMb7f+qLVYH3JSiv z3A{t52#$ekB3V+N9d0yZ!x?Si>+VPV*!8I;O^Wg?H~v0F>8pue_e!%V+GbRi@mXqX za4gj}(8=e_JW+hRA*FP|hyzt+`>GT@D@(8U7g2+u{L)>~WA*Ds=F*|pX0Yga1yTQa zMRtAbboS7)&#Ws?j;VMc%kJOym<{42i~NXp^vF(WQA1{{FmL5S(bfC|OrlpGRkzMW zw7K(|2>LB$7s;HW=%?exa>(4MO(ybuhv5dE%8s|xMCob50y(#_SkE+iMP_Hoz2)lk z4EvXqR?~jo90Nz;hOxSA^E;+fdM2g9(0Ms@%7;>_H9JM9FSefE=yjYPTL8iC%Z(B# zm|L@UVd-pr^J3Ab*-My^gbemj)R}XoV>^bj)>ot1sdI1e+x#pU zi)~YB$K0`6DW`krqAO`^lKVQL_xvIH!A(!bZYeDi+m%^7(fFZAYSsinTfq*I#Pm8* znAt9Nm3b#qIOg}?u_HpLc?V(rKU@+@IER(Cybl*z%Sy1v9(tBY<<^uwNLs@_bf_HL zQ(K-jS@BfZbwr9Ew=ja5dj1-p`Fy3+{M8*we&Tg@k#(kUv?q3t!2!I6aJ$5mpSyRy9<~g|8GnQ@`knEI-aS9=`6jWlj&(6WpA(C z#-i&?nb3nRj7iD@M(f~gR_mGvD|yaQxK_)NANIt%)W#XG3O;d^`Q#q9{jnX3>T6M7 z9Wgp>N(=Rpug<%oze!j*`&enxsxE%n=tW^DFOQ!2>nQakELC{h(wjb@Q%HMGk7Y#z zaiTzXTUN06FuQ5ta#3xoE2BR1FxwVuBT_f}EOL3>NgJNdXSZ)$&q&2em5I$fLNCu; z$m9>*XE(e&CGrS~7QMe~Lwi(u(6)o?$M&pRP%2ijl5grt(z;He!oWKZ=;v)Vv_*of zaFbWLkf@bqvpc0Jg)jBgNA5%Fdx4X%`EfY?PB~d5WwA@B{-%YxobXtvdHE9C_Bx9e z=&xfs@9w6zU7198J9;r<2XxEEIjo?AQ!pkytyM7JW<8_-bU+ZyF*7{y{6m?GXiwSN zP8~yIcL&4aiT4CtMy`CV+e)EU&w4g+zP4~+&MeAbN0Ey09<5M zYrb%asNGeCH5A*(X3qkmym8))_{9wNc8$6ykd!F%58g#fui7r!`eB*qNh2n@SfIgZ z%vTdxjm3Mz`9-2FHT9nSI44u7Dz{K;-M0jp2{dF8*az37B?r3(f9`Y|Ka@u53_SA8LWvhDG z5H%%{+arQ5e^bX)-de$gitDhJjRF>(KTmk#sZA-d`dvv{HHWRWm7%1DF0mi8oY|8v zw)6k;t7rY`(DF(B*Z%FoKlz@d|7*VTKl!>d{x#ptKl#39{%gKJ+5X2i|5bmn!k;7f zD-QS<{qM(bno9qWoR;K&6wW{UOMU+1>Hp9B|Cv0b|3vWD_0`tsL(_{pEBW}N%i_rvZ#`8enQHQ(1i`3x`oYrYA8YKzUqf6ey~Li-;` z{PVo}M?L$0Zyu#B`9oxXY3v`u_~&`_|F53?XO}2vTc0q-{2*(jFjL4`d6G3)pCFv! zti>N(I!9DDAE)n+6S7xgjxZ-KhOscTm2SM-LVruy$-ar*Ejs3Pf*MSHMys?*Gks=r z80T@%=|hUgXq}aJ=m~u>!pq?%%){Xj;Y7Ddq9ZF!=p!dnL?s6=ii*ZNiCXkFiu@^3 zkZI8;sxgfz+c1PiT;$|WVM;!tr2MzV-uo_=E^9HTD>T=zmXjxo zreDsYN33n>Intq`PR$NF#oCnF^Uj}fDvM@ptO6P5)me0>EXf3K)1_^?Y#HUnw}p^8 zO%1u0Gs`cYpw(p6m|2UUC@0_!y(eIY$X2OOm{gp{#NMo>Q<@~1z>cD^oUuxJ!q3UH zN$_`C^Yd9+Y06Y)tM?#fUhKk1=$5dPJC)d5M|7A=ug%#E_kAq3{WeP^+t3bryO^sv ze35s5xaggQgg~e26x;e)j;&SbWCJFDV!daCv(euD?DB7X5jd{I&Ks-AS=p4v>Q9_c zZEKAcy>wROB^u{Y#3P5&(WWiJ>6aha!h<8Dn*z+gQsWLFw@%fv9uidEvSB zW3>cET3G#0lbAD$p3>&d$#mmbJiyA86&ZD$EKz}Df`y?N57{x@$cW^Wf>u; zdYJzAzTd7p*yi$NG(EJ3U>AP}rwu3LiT4*`J@zm0S2NUcCyy=Yw}^Y(bzX|_*|_i6 zY~L*W-i8>c%zT0-*5}Zw42UmsxP{O!im`8C^S<*Y)ik?zeC?SI0gCU*V%ch99%y zO^J5G*AAZ`mc=<@w!>+-SZp?`nBj~=Z~&f?m%*(YjL5k|(j>mo4lHtfLC$)ogKHMc zlXF~;VAD@(5`tygz{%1YceMCOI)%<5XHRg4-(Ri43(9-J;ib}mn`Z%ILXY7wmtwK7 zj4bl5O*ih-rNRG(T*u#>$>xo=?8Xgi2>xME$dmc9fI2$;D<(Hg(D!jE<|zjFUP+pS zbnpps%S{_Rzxq1=SeG^q2ai$>eZ~CO%e07uqDMUIy&9y_4l(}0Sd?G7eI-%D$>A+{ zUyXN0$&eXURRoCL!k3>qjsNTVDV~obkN5cY2j2H}r-%WfV+c+D z7E)uGDQ17F2A^?B0n7Hh2%86np`58SK3}tf*r{O))gCP-?x?ONKO5|T@3zK~IX_}B zm-XF5e60f9->QROSN~1~AHGK1>v;^3_8m~JI00{LH3WebQuwjFyC9%S1FYH>1~P*b zFeN7^)WT>wK!{XgH8LA2&L0o18aIQbbDXiN+vQl9)kK)`)F0mebshAOM}T45U2xCE zkF>zo!L>S)*xLN}SmxdHz<99*{-Wb2`s#%WI;Aod%;~v8ykj501@6J%X2WGzPddYf zjzyqBHee2Q#Ry#!2;o5Eau4gAz`Dd_C^o?NH*88;Sl z$AiU7sijh3q+7fU#mz-XCm!TwuEj~Y;Z?*!uNY$CxCTVm^y>J&5n z8RK2#o!$=OM13_3c}YUMqninpp$#M>6$ts?IHZT7B#}@(07mTUi1|lLQGeza_|!NH z_ej&jZ?X`F34Y&eNuC=M%qxic%(pH*L#>^= zfw)v>A%+w|7Uspqy6}o9R6zm z{qYz6X+Qpv_4{|BkG=g*vmgIi9{)H${<40L{W*Z&>3?57O*MZ$iSYiC&EML8md}6h z{P+utZ{WJEYXW^YZ`$Tg8WUn-PHVRMu35Wrojc#~Z{&ZVjsB6Q#{L}s<9X`uAOC;& zDc*1A`M=TBZ#4ZI&HP3SexrZGNBxG6{tX}f8$S9seDrVl=-=?szu}{Q!$<#ykNyoG z{Tn{!H+;-*_?X}DF~8wse#6K7hL8CTAM+bN<~MxIZ}CZPw*Q)!Eg8kzu_Az z5&yUO^4I;w=C29(Z?^xLKL4TJVq(Ys{QlqR{|kNo{HH$ugX86Yia!6F;{4x_{jUW6 zR|5YR5|~ybL~X|3Lx@YO@%GtT*wyv+;Oxz2H1)9$Tzgd>lAin!)wZ5mjCVq7F0sVP?h+0L7%bf9d$a+xSj^$LdYvU3+^JKPM_9uRLib-7*j0;B^UM z@A?A_7azp0>h|JR_w{(F#!YfdqyhOMVwgDHj`Ai8d%^smlW+^qgpi&$p6m=w2b9|m zOld_XDkdl(e{GAz^wLbpf&Dmo>3|7bxN$aV@2!ExH)7lpeFf0#_y{~NFC}dC-r{=? zju|4m-XJe6XTxJx>k#EtFTwuc&A``p7d)FWomeKc0Uepg@DgSRp*W=qM3Vyqe&Qpl zs;EI+|C9{^SDXgvSSg-dVMA0rSAwVN4}zFhRs8#s9E`lx0$lty#2X8BsMJg=^ z2*cE9EaTi&e75{9w5eZ2^!pi*DgDW?SU%E#iF*yEO;jVoF<w6NkQDgZ9h|veeTT z_Bor9bqA+G+ZPtR-DxRgSpmhrXYP+$NzbH;_6}32H??@U@&tVEByXa&b240;TEi1_ zYX{qWviYm{CwOZLKfn~#cG50j2~m?N$vf+y%G-30!4E8tBz?LCFg5!w-tC!&n3%YSI#&3Eo3c|hs?1ao^WXk+-(%pFiICepr z|5hZla`6_6+{Rxtv zP!IA?Uk3ASSYQ)>5|26|1EvmH<7x`Qgv?Yokp5^pkrRibZ=PMnUG|6p;=V4F4V^$Z zt=fqjmq^2%HATQ@Cl3aQc$lxz3$Sl?J+^opf>p>*#(tu?$iX#jIMX7+mam@yPk-2k za`1L&GifH=e=8AbnRSlSzjXnKZo7_FMqh;^x0Zm}NgZIL$vGtFk_@azN)fA%1!!b; z9MBBD4whu(;YlKMY|#D&JbO$Y4=vY4rwCnP)V)R6o_$$ZMRp6;;z`1vG2dX&9a*?S zH5tr|BjDFIJM`Y0*QkE=H1MiC0=(n~pd%h-u%JbNC~H0@Zh+fZ_l8G!@6uw_a44Rr z12p+vR}5bed&5Ad<^+`MAHua7tjV6oyW!cIqj(wL3N5;r1wVc?Laaa}G(8y&^7o6w zv*(NmcUy6y=-pgQzp|aMU!n?Sq-PMKb17)D*(AJEY$G;)l{NJK`i!`F(1-{GK48J! zA|6FXt<|znP$nR*KVS34~WFzZ!>*&j@b=8#tq`npbl}9rmIBAkazD)Oob0cgk5k6c|9wSt+4+ayu}(keSvnqW|6GAD zuD1s(UoXW~!<`6o$JOA~kyxT_S0x%f)QTI~2*803a~RSnPT0?=#UG@#0P#DwflBcK znBy6PdFlNCqlg^v%+kTuKf^IR_!>g%X%lx6Y=I=l3|^~@Lj{{u@b**3pj-4Bq&P*K z`>iJuC{~+esSD1+nv^48RXc#L$F$M7oM5Q-VkW9^=Pg>fqz{<1O@i#@2e^J$B=*MJ z3dTHV@EDcT=mVZTthHZ-twcX!Gu%3{xL=OYPKS>}iyL74?h^3BUIN}(5Qs|l4WbKN zR)KYg9l*6yvFMx0IPUk*9tp@&BV7;72Y90fanD2?J1*W&h!PS=^}Uk#aCI7|SZNO& zuE-_UT-Z*|U6u`1&ARZPh56{5mOf}ACWfNdm%vL?>cPSmV_150BQdnWk|2#~EO3Di zx$W8tSY|St@NjNKw*>FO=jgd$pgIMgEsIdowyX+>-CT1$Fxy^c6M#vLb~yh+%I@&U@~YoKa4jK8N{h=4dB)B z3&i}*9;l+28gVwr3KZjOpx-eS;=-d|{N9NP@OeiV;Qy$EldC+i)ajP+;SU4gcyBW{ zzefd|%+;4kmZbz*731p`k<+ zsFr>SGMAJfs$NELkN920e~AR#`3@swWl_SScpm17j>ce6yrR@{eu z_8i3YO&8IvJqe7)_Ts+5t>}bviNs_cO{UsO;`2(~ICC%VfqS`X#MUT^)W7ctJH!j{ zV<{_8L@67(#Ggl=CD_8|XE`A4k~F->g>a;>!p_1ZCNSsmnLO$ASIWo%ImQea;7aLM}kf{v`D9=5%6D?;F_R zslwAXz6(Pu4wHFWhvBt7M!b%&T=Ley3jUYR(%6<>0oC|r9G&3K@Z!ug@Jx?$gngQp|xN~VdX%z?2Z(=sEZP84!yTA?8dc|^yQWuapqyQT}>JsJs`*EAT%>*b5Ku_~J z;PxM@(AMrz5Wh|Ww!WGKPb<{ph*|)^wlBf;W84XyiBX`(DuFoR5|56|>&Ayd^g!c1 z4Y<5+7?(U#i!1z)hKjQ{g3Hd=pl5p>HZ?*C9y@FW;>t9!LnGJF;J8f0XI~U2u?pK^cNdBA{|q)NPKP~f+renr8btH@5b)9p zMUL+Nh(u}kU zE%C%!J`E6)zC9yOR|Vo%T72|d11I8hpgA#VlP!6s#s((%R>19+n&`~7+b{%Xao>BL zg_=3HfXsvKFhwJrn5wQ%EPNt?-cesloEVUSFux0bt~mvp^#+3zw}oMgJ9J_9cVD77 z;3$!IJ{y>KxWVf(b*TLzb!>Z=7?`#CGCbDRk1icqMSy{~V6f#piB05yic=C~k;GRx z>+>`oKlK`M_lqlk3FkY4Omw4et4yU;&ORbdzc}FA=Ef2dBNLz^e98M>9|z{0JtYioX!*0mf$zce~@O|o{|^pcHk}s*NBMjm*7Ho{Mh1%A$*+eY@Xqin4%Ei79J_%V{5VQOR@?`bVESqe2bI)u{zv3p=xW^1g$-97Ghj!v0k4nHZzBQmu z9)VKp?<0YmM$u;$zTmBx95CE87cEGI_-xb>i9B0DY)@-KH?4BRZ+NW7)P8*;PU^iN zyyl1C&yH-?KdLQ6)L-*j#)tTI)%jY0({vEL3O9-^M z7DQ>9+8 z^W05zIB+J0W=jF`>NU82?;u*>>rPC{>H}-tOUT+-0B%rH#zhckG#){>5Vq-j^+dBcW$Q$0WU-2OO`g#8OwKDv>B!ZVHEAzg6 zV{s=-ao)aX?W7CXg}Yi-5&1hifnxJPe7);e+;pcI4{5nWt_+(?rnpQaM_1|biYrRN zBbh81y4r}?JxQ00_;m>k!kw6++D;VgEg@GXC1G!N*pVp;dZ=wb11%ICN%5N{h`YfJ zj`LWB(%?spKooSAFn-#FpB8r~Hhh#t^UiyX`3CMIvAd+;)b>#DbMbok%|eYh6tWgv zwM)lyur%V3M-{N!_=(6l`4F9QLY0{G;t;@v`5?IWBR(|dZoV$igmM)*AnNV}+~a8) z7KywE9~uN${vto@;`(D8%ee{$S!#vYuv!$it>qMwdfc3&Q*;Q88`p+3JaRC&lv1Rp zQ=*5gRzJx3+~tP`uk7VUuFOR?DTN!z%U(yOi=`Rls_*8Er4b-pRYycC(gnNLs>taZnbuhaV84&Jyfsz zX00l^`}Qpi|L6#<9i&jLGGnaERE1OG?Sq=0YPCA33d}%Xw_Sl7)6b&Q9?XIVq)(%V*dDmjbsijfD?_OEw{RY6 zcM<{XE|Qr)CGcIw)3LrDd$0pcM{82|=2AlZs z0X9p0E)0o~M~#n+<2KhGH+b7az`6KauB%=-$ndyoa7kMVZCcX?awab1%-;ADWD9Q2U3xN$SkCG{|+qo6&I;Ck-)sY z48W&ZQi#9nY~Y$2#nD@T0L$qc;ug9LBU@7+VkJiwVY59>Ba5SVA!^auXu%p|ZqS!j zB=ABx_Y3b9N4)(f64qkNRg%hssb=G`p!~bo!5J%s_weT5usQJ#THn-OL@ z=!}TrOM%P4Tx_+&8SI8yF*iL)37DC-a^;3|kVEblusDT9n1-$qTpOp4Udz%3lA4b} zxPccka{)+gsonEnUQ5vL#4s&*Ih=E&~&~PGgC@gV?>=H}HLL7Hs-@0xA1eiPx5Q zVIagW zosm0BSK!o~D$qndBRHCsAfhjV$eN-K9#f5k-RrG{<@hgT`nqC7Pqu?6kUzq=R_h_! z_^-g3!)tMa<2!)roOR^(C=_gz4d5BySVDH3z69!I4iG=8#qn_V2+^(bfbi#GaKVqY z#DjTLkkE8V~5cLU`_tC6wD^f`u9MqHQr4aN^EFKMfCK53h{JmW5U$4@WCed60`d zjZeWddX%ukcQ=7)8|u;V3OVrW)J@=n?Ic7gbjUzaz7|WH`3Ujr`T-V1E5W{9ogm?@ zH`2Rq1iYUShU~BUinxsL$A0+n;8#~Eg8x# zG^6^A2fo+K2Rk`wnAm^&CE@xp1Xny7px=8&4p-2&A}qfwCO_5LL#vWn_{KvAby?B` zKV@WdJ!;QG^2}Wz{$m&1@3N2RI*1Ss<}#?#VQ1pHjU3$L+>hT+l*f#ddGJ?EB<5Ag zfhC7G5p#X=iS6T#fEf36@Z*W-Rbh>z%$+OF%dB`oQm&!+YP}l5r>qOSwo1ag14rEK-eRm{#buJ-KIJY@RM^ymKY6Oa$B7)oY79Y^{AnIPqp?SN!;pg0DM6X{8 z_Q1U$*2o8LA66r%gI)lgl7U~ll|~$lsRpl?eZ<&H77#%crBv$+c0=$MOSWv1YTN0c$@)F#k+q8?Q- z$${>7HiLOqlg9pMhYTEc)nOTfkCCraegYV#1Tnu(P;9Us88H|IANPbI+Fm0_W$plW zelZW`EtDe4=V@XuBAWmiA_k2r4N#wh*$~$x(&1YhnPA7LZSr3>*g2E!M#i z{|2;spBC0qDFt}XE8wg6AvENi2eHO~0Q`JXN-8fWK>G)2(mv)VyrQnev(u?1_H=vl z@2-?W9av8)WMn!W*4{>TxI5uzXC@HgMw8$+q>ESMcL3;ryui2kA;bUl48grClzA`b zmf@C?61+#>UXUZtLh-k=Y6uwo7N|HU;qdSXemK;er`~p#>~@_;&bE{%We4?m2Cy8Q zzMBPaUp68%TXe~Aa0Pho4947ag3ztzrR22w6wH5~J-P3t9=d100KWd>NIF~9A`>s% z;nW1Hf_I-9L9Bie(cAnMe`V`I2xTUtgxh-f&aDOcI!zkh7|YY+P4R(lZ`26Q)OFxs zcRIeWJ&m}ZSPiJL`S(V#1(jW*MmYN&9((RQ0p{)*!WTa>CPFr7!Y5yHz@ddQ_`<#E zSaa0?m}4*p`}WiiBQvzoOS`+c@mCG;`dn+waP5lwkh3}N%y8E$QsZyF)n&gD-DP!=J&NI=d@V7WTpG8d1H-y1Cg$5o5bs%qP z5H9mNm$-DZ5Lnbo;3{uVAk`~+LE(k>+>y_PV3t-pc5>eeuzP0;erfkoJfiCu`n(1w zW^WAxX`J==GV2lK-s)hO?Y9S&N;(8?+nNx2-81lb<%`(4DJ5WCuo2eau>{Q=%*JAl zdcKj7v&1@L%r5cyVC8Q!h_NF>$X0FON4Nw=j^J4y z`e&i%i9tg4y$aOtS%F_DpMm#psUS=GJ;~eOB}w(I3B;3+rsV!gY233s6*h&tCD ztA&r*BQ22Ds=#&1(vi%2D$qC07r8#>`yvPn(BiuUs7Nc}zW0t|n^X#*=g%TM+OHa0 z)ba$sGQR~eG!)>i`~0v6ZehUmqBU-pqljF0cy8HQLILF7~OQ{;}^ zDb5`3F*K%bg~7UMGhopIJ!D3`40sf$#XXdC9Gp;egBr{Dn53MKUbyygbmZ4T@Qr^G z)(g{7bM*>L{c|!0(-Om=X_bNfMNMqprcUHb@g%fx>PEo&Z~z<5=eBfx0-GP0q7OFM z0D9kZ&Q+AaT9FLy*Y)A(97|2Ou-^joi4G&~*{4z4Fhj&}dk$CkmM5a1--04v$~cc2 z4}m;Z6VtSxhi6@J!fHNUhMO-XVy2&*@v_i5So5Kt=qcRH^?tIRR4J!;&F8n^Cd3}B zV`l?MY$!nYuAWM$UpRoSPLd*KF-Ls@+G4GC~ykux~7$q)=G+u$4v5&EOv6VW+1 zhf`ou02|ImA$JfitTSxkOxYfTW^T2Cv*oXFxU2UW6yLdl)Vc`JgdiGJC9&8}{Q{ul zFXF70w#B$R5$lF~L1Ow5mD=>#0cxA59Yxv$I9uMEeI$g27af z=yVYA-jj;%j9v_+-`&LIlXOti=C_FZtGU<;bP$nWa2(w#UxcjJ^5V`2fsLk3Nap?e_=VXVS+5I?eD=8HcrE)=n(Mu_6Y2) zg#k=?w~^SPoJZWuJ_PzOPxwpxCaU>W6T2KQ34RjS;HT4L@%98aLM^Ws96Mi3_KZD8 zEH{!Oub=x4?`JFU=1Ei$Ef3f5ZyQUXsikYEvP^mUy;&m2Q6U3cr*!h} zT!;rREYI^VKA6Do-ND6;HY@R%v1fy=SHyT_d!LiDcZcAOt15}?shwcvl|)?0;|qQ% zZVqqyg$8ovusQkl+Eg+lU6MCS3t#E zgU|=UbYyi?7gxHLL3{&ea#c(|ah6{@!_5j_LO4 z!?mbLrWC2l@k5Ze*RYG912GkyM2@e^E6^e>hPqBp!9GaDa~3SQf&Q@4U6D@KLyI z({XfQ-5Hpzv;^+(e1*H+KhB9++eAd9>?7Zte+Un}62~V0Ab`WWujtb$_IQX(I2!gg zh?uh&$HkFy^l?!-ytS_%lgx{SGWSa0q84xL^|MguAeM{DFHgXpNycK)r={>hj{@lB zxM|Gq(guw8yTcpyN3eICJy@Pp2o}H64OW}^qm?%=a*4#}2JS}RK>SWOL?*-+Y+L`; zVDkO9NSJXlQ0+f~9NZjkusJymu}F|cy0en8hz9`c+%slJy|v~9+Bc)Du%6Qx5RHsV zL)13i6RDcP$Bv{hyI6zG*r|qX z4=0d@^^dv9hCyg%t_Jd9Bo^I^w;&zy&pFMl*U?a$93)UG89(t-0ju7=0em`ChbCud z!7BqBfPJS7((e1gpxLMf!v-E8QlX<@Q->m4UHuxgORqythkXI|zI%|@qo0wvi+VA` ztt1Rhl_Y*?YG7B7+yh*#?|`n}OOAgcgq`h# za!W7{Z*SE9t}2HwzB`W?@mxfH@wJ1pdetyTTO0Kw?!mZSSzI7{9_C!X1IC>QfguTz z#HMvz;^F&os8jTEqL7k>+l+egsF%~Qrg|J6eHekco;HAnuQn1Hv3Ugj{SZh!;|Z&` z-awn(W@6tTOM;NhYfx+bAi96Vjkr0x7ldCaChhhjpk7Og)D8FnS2Qc|EOIJ|H;dNt zPw7dZ;YMqzAD!}a-HKLn4!s=b7{n9AV;LBGu#+cW84qsfoad)tGJM5nT>L|m5>KU! z#m9XXTwn^A=IXm*DgdTdIU|?mg1Gy#l3SzSE z76(&T0kbsjg1D7uiMd%_c;%Buiith7*8?qiC;YL!hf6Z>t@y;7M%c>Eww>$wK zOUEz2OeNd{t3a2`C&GQW88voMB^Klz0t+_hgT>1~;uk*}5lfRbpr3LMu+5!--#wUy zMNfYZ{8t-eS*LxmA74As=!f}8PJt9*r#2ZB(b{l+^E&hx{R1jBLg>>Pi);*i$N9qQ z0==`cnCGS0?N^sON&6#hBh#J;bq+K^jL|Ws%YSt zKNFv*<%G(6FN6~39I)3v&to5bZ(?t6>cOfK8C>k+6R`H^5ztFbhK>7p=z-)L=%Bw6 zush`fMvIrByWLu0QHBL_2A3f9x6A-dK$4Ix??A<6PZC|vR*+4;QuxxUt(hpk;6N;!g;U$4@2kSNYxw0@sd3ZtSq&+qel0R8vO-Cc1`QR3QuMq3!oBZ%-sgF~-_Q5S zMhAANVRz0tM&z;*^Cr;^UfDj$6gn8==3zaCA0q-vyLlwR!U)duaKVq#gxMwQ9GPnV z+&@g|ByI^5L>AlUz@MkLB1wk|yd^RN4BswgD$@ms^=p>LxOL+zv6tBt!$h1dvy4}A z>kfNDbC*HLP6?><$JVfBslxmPbF6q^ibocP-(uX4IOC_~&v~KK1~`1p4Fd`FN4z(O zj7UrVC@c7lWxmVF^3wAxc}^1th;8E)b{6j?zG|n&$Svz3iH{SfA4O|PDAs1it4^{@M~~suA`7T3yBK&hrm)YeyivQj3cJ(cDg94u2iDd# zVC~|=K>W%J)ZnHK=$Mok&QmjGf^*Z!yp@s6$Xf^CyXYmJmoX2ddN-ib<6_upz7p;@ z(M{a7T~Pjky~OSK5r$QbK~52w%=Y4RP%`rtwlL%8rGKW5YOB;AYtKNZ%| zoc2oYj|-xxY1M1+TQCf#?B0uRDt7Ycb7{2wOBMVo?*bj}m+MEcezBv=#UNj3I?R$ow9l406WPH(Ki5Dm?Kn(OK zWPwGNLvZhN3Z?y+2U=$rVUr;xdhxzTjOWL1P`u_biB2m68p%P7wgF)KRy1J;A8W42 z%Pm+*M2txYh3vbh3$f*?)8tR4F}QIo7#}T-rp?97vC=Vr)KT;m1?lQAQlTHovq1yc z`RyU&C?<{P3eRAM|3rcB|HR4j^->VdK)7$HlQG$-&)DiNLDyrgarBNBD49J1!aQiS z)-@JKZuS8|BVkO?z9!s$Oq`dMUW7OKhO>KSx?l@^RbH9N88)PWG042u1J38F8ZMYW zXt=mri6`DCPC`UZGgUE$SousL&%RCuD=vyPaP`XM`ASF-lzf{#-6+O<$mnO?#T9w~ zDi)L7OT$^(sT4~_ekbu0#U%N_I$mVnH2cs04BI|KogH&;W4}x!5vEUHdj7A^`t_GO^jL%nEw%^-?n9&3qHt6H zG(FtCoU#|n!@U+F5EV4T+aa^)^DbwQK`}(lVMW|MYw|cQuS{XqPe;0zS�HSi(1J zOQ65THLCHnBKm3GLv5VMpk;Pkg-FpJy6c(Zv(ftCcKTf8q1BBLwTlKt*&%+ z($>hlKaEl>*?@cpi=mid0=!-S9xoV9!>WG^XsfCFBj4><4e=j=H-@<;O$6o59jyDe%m-9xSr(Lam*S^dE;!q;T;Aq-y+ zRSyR<=Va6oZS<5ef486cDLTPQdS0V%O1-Qj(Jx*lQdLjGr4N*%yk2Zx&K@lVViSkPy7wsJAMp%+i0-* zk87B)^T(OwtWRWIC7uy-i^3N&^zadhL_G1I4Kp*+7NN?OV87*aN{^^B!p^(kioz7) zG&7ZY+a`cCk5-TeeEmatsGb{`?hfY)L%2||3SSXs@Q#tWr1l*}yG&k35&IB5Tiy%y za)ps*S`<`tcftD6XJL|tB;Gh{7BSpo3WMJ(knCqF^r?|J9J=))IQCcsZ5S@X>j$l| za*!EZ!Tk)jML{G-&jb0t$6@e)BJgiu4L$gB3UJvB`uQPERKU9mByHaT>$b<>zd5H# zU&%B|)$`$I|HuK>Re_a}yfGPq7v2AiATq_@oVhYQz;(0XD&sa2cp;i)Y* zkTZzEl5a%t)3|UpTDlbdG-Sc1?}<3@>ILX*KL_E-Gw{O70GQwLlSp+e#iNla@IlA} zXtqX!x|&lCdTy`8Po>1rn(1A@L*oe9G3ibJeNcjLTJ8l|I{R_#JO2GjmtxAVDlxN7 z4-i*gjee%zK_bx6LHdULnO_~pu-8Zo-dwc`tPSr+#=}3k0bgnnb36g_I2=p^7jj?m zI*EARMX&EhO#Yf~DCJaxTOWtQ_HRqk=22Hv)?$b7+r3QX;|?O{!-2J9dAR@F8=y5X z1;n+Uz)0Cs_%pi-E?eeBPIVjLyBM=&Iu-b^EMyY=F5)d_v5eDrCvMhU$untj1IxB+ z8N3@$F=$03QDy0n=xOl9FT&vuv3wGkEJ2t5kWKsB2o2i+7#bqJud|Id3r;)1Sk5 zFHmKoybhpEx-2^QC=Vpv(PX%37*rH$sd!uSRyH0Mq$Y9Fn_=luC}a_>?6>)9x_+@*}t ze5%Ml?iVnWEl38YzCz1i_0R%5K)nUG$t_Vi^wT&79XptecNb*AmW~;?c}oMx*kljC zK}m}9b&PYhp@}xGiQ%GWdnxoihO%5O3Ioq=10^eB^druF(Yt=&A@|_mY%c0t4P{dE z=`ERRw3Wwh&eA~{%GYc)=dw^O$INUs^|v~heyA5i|J>eBxllXNh@>Xmg%i2|c1wV2 z-+$EJd)Fw~5ze(SxlT1nzN7V&ztS@oEoqlJznx5>fp#6BuK)5U4ub4HPij?>P)$hFLZk>4^%&l8a zMXpK$COI?cLY_LE_~{NZKkx&LvJbfh{(@lbo>;Ca&ZIU)zNb&^i2<4N;oLiq*T7b} zCVHsl8k$-$0seVS!;v4caCz4uG?~)_l_&})M@UoVWpYHaDVcZ&2%#a}4={qyjQIJc z0`t~6xO9y=7=M76BNchjdk=!|IN5=voZa_ zualM!VbQpM6xz4?IoW5F0k;30%}BXFLoHg10QZgrviz(GWwXY>_Pk7_|05iAFEAm8 z-K0>B$6Yi}MGSu}ZlJ2#__Ctg6D0ld5p3J$2}M)`iSw@pYEf?|^Y<2nR!vq!PRI(b zQBYzfRnIYfD;JSDW_kMBIf~@fxB&CiMV|G3IuonT(j!YEbm(P`)fg6@poVP=@a-BE zY?`EiLq!iVd9(L1_G+)ee_^6bm!Bg}DUK!6>ZM>+g*YzMOGH z3KHLGi4T3(f|D~1p@qgOcwwd$`4XA}FAO!4)xMH=tGh7!bRrkYxaKhW$D-2x0cbXrWV;G}3YPkGc23tHmNI0@-L>G>s>bzLqm!wE!5IkbAbNCTYR-g|Z zHk)F-mNpWRJLlQ8HVfD?$L%;L?IGjreF#~!>XV;A3rI?O2YceqTW0+6E2j9vFw-3_ z#v6RU7=PKMiaVorlkTm58QZKYNM#+3;DYybH;7{|!dl4Gsj?^HG@(|l2A*Lg%Vu2+ zq8DyV_P0=La1@?% z;R@7UCySpesKBV11&Ced+DYA23J1B*3@PU?rF8BAzK&L;L3$@Nt;CEX9 z@N(G(v-bX_I+LcrgWVS>>%4o^hEq?d@$)}`iBAwrxl~RExhm3rUuS}gmgAI?{0QX| zr49rXC+H36Kkk29wZNyG+0?lkUg%EhAefAwfQQC}xfN$-K+&eFSg@UEP`R>9!x}z^WN=TbnE$`1c(6P3?z%M)&B*bMv6^ z9eJq!shV4-PvhK&u_$2H1lDwWjeKRWInPkVoiY6Pb2bDrQ6$vvG`d;2pIMb5NoLnMp;P1sK4=()|1Ko>cDV@=^m0V^ zJbdvA?MAe_s2OGb%tKEDj*t|!M%?G0jr}&2p&6PYm=T=-G@7^x34X)NUyjTq+Kx#cZ^oi<>kg z(d|&{Xa&`JN(~l$@uz;9se*#PcR`_S9WC{bfhHq|V9|CzIIp-3*;u`&oieph7uSfo z-x&$jix9o@?N8wSs5AH#*i3%&&O(8MV%*ZnYR>ZrQ`o-Pp7wjyj8`qOM8-by=;>53 zJ;nFYzRur6zq>U+-&=JBZn(R-QRRZJRu)#ej*4audhQqa|5twoe*3m zW{i?P&qwft1`hfi4xOqK(D}_{NHpm__1$1C_}8qDo*&+eK8>t|>}O3fWOs&&d)mru z6PW{-*_|a3qZkZ7?qM>4%VDtp+C9dlZZmc?ensYW>VhLXIQWrI5c>6s zhjVK!83z)@6pi>JWzQ8jq;m%x`*;P+zjX;Lcj>|Rh85us$^Qu25{6DW7clw_cIb?4 z67wWEA2(~IvDE6$KU~sPh-+3_1(*0S? z;zO62XJ_h|@ypHZ{CWwzC2t5dYYgDuQ7;(bm-|qX+#Ps;BD(0fUu zB)=l_8CTJUS}VLwHyygTsNl!f6riKRQZ%vuHg!TflRJGn4rG1nq<$^DO`F3zw1&J6 zlH6_%4PdUm?s$@Zsecgt@#02K`eLuJ5rU9*Z zv>m8#<-t|95L~v|LQ1?gBmczNv{%J)M8BK^>5_lI!$^ca)XlF>Z>y3{iPLbCSU#=2 zM+KxcNpR<3e`@RQCFt<291!$OiMHg$qbxV(UZzml8qZTkn% zL^>5kWdl9CIqAsvxB!;)P{FOfi}-Je9crDX=;cHF<}qm($H8JV%zt_ZM!UMe@|xY4 zx-E~72@BC@&I=*!o>w4V^(kDkrvoTf%EEh}dZAj_DR6b=BfRUPG6qh1G_~IsjbApW zYfAUioR1=O$XFUGmYM_B-W0+8i!cz|#bHV-e1U9>9+^5Ug^EAyA++>G*m(6V*&V7$ zNo71>O6Am8y&!*dJE#MxYUL3h*?1^@riWN8r~zXVImGf9pBeSt3q3VPNwWWAY^&c& zuJ0Vgdu>Fa^XyR+ZKDgq2Bk3?%EM#sw{cg-cBa9l2Q?U7hO2F@NSu8wXr4AetCzUr zzJ|v*c=`-PaUP(nZ;CS7RfqbzcF?=tUPf91`gGJn4a6Q^idGlg;q3mN%h|H#4p`rj z2{o>UpiPOd;gLqZFQjh){aiyGTx&kZwcPxJ-Z*fZ&mEdWqxY^*V!?ATb&reGKU{%n zeq*#GEJPpTn&_H-EmUW<2yCcR0FCQrpoKbBXojUGn6Fp>jbf7E=N%7dg$g;em0b^H z#B{;a@Be7upuP0h(O~R8U<}xeWl%7n5M;@w;Y;SO`03|^T(c9=+~n>mxNbs=zIS+p z$OQgI5pu#fARTbA+%OXb5JmQ2VLo~A%7k$5Z{-}E??yD!Q;4CuF!Or)CT?8X zh(ABw4}K|NTpblgwUysRs-(%g zOZj|TjLkzNo^^(u?zzdTuGxTh9(ct5tkPxkkKSk34T$sU3VB@ES;LrnSi_A*3B+c0 z59wbf$qKRc?3!(nMBVBSe%av2HZGk+wYg2?U+sG`W7?Me<2i$TV?M)f`3T_oLXf#8 z+zX!JPU6Cm18F91M9=dCvC)`M?-xy_N-KAvo$rTHo^lL1ut9}{$ybsE%MXE1b(W~$ z+*$hQ%qqC~$6WNWL>%9!PQW1!)~NhL265g#mz;7EK(WSosh{%7Rm&i=cP70_fF_BJp9Buta@6 z>S-MXpZ%WUDM=L^vGW?2(#+%1v0Grm$q{bbg>;m)$`s$%k;V@W57JssRdMr<1Ud$O zq9YY+VDT46Jh|criOdOymzJy~aa(fmix6k{&v6(R4t$21A9azdxiYHyBZ~g+l4i!v z@56EVbMTJtK@@vy2EEAY064~T#@8;D!JKUxa9BEn9QDtmxuLyG=A~V*C(47g8IMB4Y*jsGQ@oW~KW%N^ z_``a1#j_AE?VH2wYkk91ZAr)4gIsirnE-XDg8kcWjJ##nv4<2Lffp3U+m|02_TzuAm!bT04jFw^ z4qH#H#+?Z9V6S ztRlRE)aZAcxy0g&CjPZn9(ONU0cMn>q146tbSBzG_ne|&b-D(s%;(}G#<3_)Ih`#z zS&S+Q^nitH1kNgrhv|K~C_s20#MkQK!gWtcyonsHD!d4SujN9ynq#zz|9h~wg~gM* z{=qb{aFEdS4-L!_rHyuo5r3{I+@A9c=iT}T&p-4gYR4ec@ZFN^F1V=QnxsIcZ^V(; z9~Y9m`apa&w+^44?Fd#@JVj@gh)}9;`_Wv}n`r#$der&Hj%>d?iT?PzgT^)w=7`Ht zbnJX1Zhzzl%T~zZp7*XOD(@9M>~VwH9Vm$<0`-Blc{&aPF7RaiASgO$g5H_Sp>=$Z z+Rs<&#Pm2uJV`-zUPdkAl^$aL7_?x06wf3IiZFE0UA9F@7yQgU%&Qpw&102!Gn!2- zNmlsIcPbGX$MBjHHo}3u|W@)o`mbN z*Mf4xZRFh180e6{f<)v}Am`{B{MN^UWZ9L`?W>Kb!_$f=0JI>1xJ^WBB|nVtGoQU} zxdM_$w&7zIA#}ih7eL`W4$^VZM~nUTga`e2RAIA5~t>`C=cznR{eV|JaHwPH}CIK2xGc+ZGgX?OQGN6MsD9EJ%8*Z{*GB zZ@ycvpQ0qloj?0Hx85s(^X$04e&o@IoV$-!>4*MWrZ05QhAWn0!?C&Mq$izuh%Dhy-)UOR|0r!jqNHd)QeZ6wIKTf8=3cjXt+weLK*G1BS zd{0Kx!#-~3Rx9w+xQxD&uLt$s?WgY)=2E`04Um^iTie;ME*MP;hZQ2n_p2-D`CO@rU-n*=hxp)e37M^RW>aCiCYi3nKKB zSGVeQ#l7N|RV#8&Z87DRTvX6&4+!TdP2T3tP@JVdxvX5jdiGMzgHONorN0?+X7`-u z_+|uiN1N33efQ1f=IqGS@4pnyQCQx_xoEbLqal{Vc{uFNb?sxg@9#BodCzL}%Oy3q zAzj}3l|+Z57AwH9J>Ji`7yg73bFG~d;+(2KUD?iw^q=Omx@vPII=r~z%I%!@H~#8T z*|~5uU5kFMo($iuGy>d@?}27Q1*j;gBDy6jarQ1XN^Dy)=c;Zeh%S7{4g8f#M7|B6 zx4~fAd}0`Qrs&eO|K(Hll_{WMwIK5F5I|=70=QxSaW-P(Cfw_91_u2?F~_{C=?n80|WQQ^WO<5*397y6=*0w`9qQELZ*h8Ghv9*g{g)#~~H{=W&@uAXZP_ z2%H-}p-A!XT+h&VXnxx+yw&3bnlZbXi1dEL0r6hosiQihuW}qnM8@K$PlMq*^^1u4 za~P$zD>N9gM^G7) z93qCiM10tr9`{JL2aOYMs(|Bf1Cal=T)KPm_*Cb{D$XN(w2(My;v?SKodvXJpcA0W+t^L$;>!1xMF zeDIn!5Y#ll_m4T^dD+h>r>+^4`A9EpseORve#=BkqbpGVrHv?OyFVBZFGf{^Mf8KR zg)qmW0KWWu8O}Gbhf75x5VcAbo7|4TR}@Add}WP~K30dldsgEI+m)eUgbC19utGa# z`r+zcH>fo{h@7TUQ2G6Q==WU%Pfa$0xn*+jYV#9lcw3BCZ2g0l-jISf(jsAwd^Q02 zxuni)HQMWP;1xRz}4^LK>Uq#wCu}6c=+fT3C*n_ zeiy&sn?5P}#t-b0+$gs)>sEbKrrWip-nTYW!zwHEs7G3Kz|J z1gB|1xG&^8RDXB^?|WSgRO+huY=0)!Z050pI1N{w+{x4?N8qFKQ)EFJhk5vb=Dq*b zNdE*g3|fqM2Hrkmq|`y1NN=rUL>uoT!tO+cA>QHlu}0Pm?WXLd<31Y{pNzmF)}CVW!^#GLbNsrGBd7NLN1p zw{H$ZYz0}%UC(if%w4#CKp6zI8WGp<7nqlx>sL;omgWwF-k2;p0c*6Pp^!5GMnW-5WY4?-aV0El4N(ZKmx$R04GgLA>O38u|No8s=OVAU`E4$yA{aoFy)U zQ#>u9e+UPT%6)>S7ayaRu^c|jCWVsCV%Qx}#fvCL~HAM#_-T+Vd+Z~WY-fn;r-VsWJjmU3;y zHM1|%p_eG~PkkZ9dw3M9t^b9Bw(Y?phFm7Z)ts?8X9F(?Mv{MX9^gMG1~DT40r6cH zczQ-2%#8Vlchm|qf?Y3|-MvwK-6GsmL%;i=o-YSVE$KEv(mOI)2pim_9wQ$NRIvyXI)a2lW$7RA@ADDUW9imM_Ei zAK3ABmPsRFn?(i}l#_YCjQ8Oq6FqFDt_z#D|1qaWe94wFozkrkQvb`O3T@CSm&?b$R1 z31sa##_(F(X_2yd_}R;8=9New&V4U(F|dfd9C|=MERw(r zjvS%C%QPXehYOM0OE>TRl{XoKyhds_aqnwrV&}41`>@|ByZIH_#RV^`a>+$Qz z?n^i5n*Wr{^f-yiw@Om;Ua4_|3_IZ!5i`*H%aLU7Nrb#3$I<%u09tJ6LM(8in%*(K z4g|E!Lo*^C!gYUg$m^_msB6w&=Bc6t5#vVEZN2rV>fdh2y;Ke>^!;GV@+Rck;YWfu zHNz(@5{T!ef%Trm)9){?0c+pgK;cK~QOHfc*Cdbc*%OSR?p>{7<|L)S0h#M$OH2_& z^Y=4$;eVI|BM4i3vg6owoy9$S&XfO~rNjMBD)CPGZzLGEmEj%VcVoB%CQ!kHPCps4AF014^i2?mB5RGY<)& zBb!!`frpEs_Sr~a)piW-pS2lHWCH(WX7W?g2H2%Vatl-Jz zto#BKgIsHW(6C+Cu&uPsux5EZE96&(_Z+y$41ZpT6I5GxGj)XUq3hWOCt@z~HWw*i z+1(e|8;d@Wk1LbOxy=cz)d7FJ$i|C3ILXFbZuvF|48%u-@}!w!+x63dy-v;c56>BY17B}CDs4X7X@4tehjLaQE> zlCK{Okm1u1@=$Og6ZG{3s#V{~2ua(3Zoz6|kV}wM>o{^g&`v(;9V9)IeAco2B#!3G zE^)LPbSrnoD_a|3;`iMkYS0V~oUWz=UpO=Kt{5ZBuTgk1nFE#ACo&4_ejw3p2Go_P z819+C&B)TM1^jFOKo(i2qJt7Y(c&jYK>dRXk^F82Og$$-RYn*3it5qS^8?J5N6V2; zTOhmmX$1K=>wKw{LYO4FMfxRg@3-F$KJCE3r@1)i?rATdqwP-v5KsmErfmv*ugqU7QGAB zAR7~+;AyECMj*NY2W7rsUv{Zr0o_(sGHpNk{dp0uSL;1HhyS&Gr44&#mYa*VgLrxyMOL|WT z@TxZM<@3cl==ldN5HiPtS74ouJZ&GbwuZgnX3rWTu&b5z6iWm@+sY`T_Z7$#&chOp zGuXm$J?6Z)1bfeWHQ=R{lbX)UK%H{LhjgxCpNU;~bl8VEI=`J?+bS}}yEIvQ=XAXK zfgS4=F$&<53`Y9FO#J+J8rB`oV*0cLm`jP#cpGyO?-3csxqTLBu&EnceDFkHBpc9Z z+e_NFER^eXVlm8D3#DD&E~KxI+R}cT6tI;?0$kvIp0n_oF=vC`S$f`^cuxM|G}Qg- z3yBy9&oZn{_mKE3XT^Goz@-zxTuc zmN(P41`%)-OsA}le4qzX)RTZ-+kxTFfMiU+CX6}Cr}68|F)&CYkk3v&ohDJXEzl5Cyc%v ztq&VJI)Ui!)$niiN4#M12e=;IrtZ#fgnYt+){XO|_xHtv@5g#*n7opD)2)kc4c~=J zTzSM^t_-bRu@TQ#XOUKa7us%HjRvx-$hk#@w5&i0qqp6ZrFv$OOLLP^@qwSXXpg?Bf~HnlB6KMb-SQtfdR+QpwraOt%SY=+A@3 z;~&8IV|OMdqXery6Q_)0#JS6x>|jFQAT{I5H*(PVB`UU4!@&0woy=JVA8g2??PUCD z6Pt0Ewao^u*G$3v26ynG<6Ug~R%f(Z+87AE*@iuJ%i)ia-_Wcl7Fu;FBA<>aGCRQx z>uc$Q&&PM6#lC%%$&(Q9d&y+R{{F6=wDJ6w;Fyc(IRWt*rM}j zHnYD^lC^h}Bd1$EI6F-)ahZY>g@89}^lC#t3t5GGjX}cp%@SDJ) zQ_85zcsnz5)lFedg!S z@>Y=VN9&>9sV`t`It{uU+K42+Y=liyu0-nSB$gif#T;mHB1@Y!7>&eJq_EqI{HaJL zaZd6)eVuSn+7rVQ-O|W&+%3bplo*l3t~Ta(vzAIUwdx6H4MD>yfJDL&-35#UMQgoEaxn{60Z52*9WulCii$$QT7mMMj zfDD#&3Wj@UN5GE8S(KZ>9L}+WZs6jR1nS}Gw^Yx*cCMkzVvq=<=qnB}`W%rNoE;}c z>CSZ(oF%f4X;ax^N={^qy8gzAW4eK%uU>n}X}8Gdrdg`cmsTlIdWZi}AH@r~JMTg$ zFC+ktTB~zC|HV*x|l1KTu_;Ni17gJ%auQ{g`u5z!< zJx`gmUZ7OXT(||FbEr3diX7kTT&STmO@(NLf@&uj?#_GvsJLBspt`&`9e7xPbN);s zt)S}wD7F;z6(`YISx-R9{t(U{!6X{~_`o&oI!sHSv83PH3R8#He4`iNcuC7Ads7}O ze!<2%OR9^r3RFp&aE-$(fwGA@rSLa~9(P`ej#y**#&s`lXQBjMEU!h^9~GqL9!aO; z5TY+!LENt5bx>H%1)Og#Kqfjh;NaZ|^dzDVte5-^1si!ORFJTfWocxDY^D_xnyPF}^H@D!M1&*kOZ_j)b@fP^8B~b8d53=8M zk+yA#;ZBCea=JHrz`Gl?XwC5$@FG^1+ilTE>#t}A%FnB~eFDuK-;p5NXo(lqo~}ZB z4d>IHnGL`yPll@~q5}5F@VI`jw^Bh3we;QCK5nftMIVhdrl}iUwDHc3AYbPNl#eH(@+$+fsCQZXWaVkOi!6%A^Aeq>yLS zb5QBh0KR$KfEdkaP_p0w=Dl_RO9q|5YB3s`?{lKII!l6qBeu}pV+H*Ex`*EMZ5BGu z%jSyjUQg~-9tThMaG9$ zCf<6YZ8Hss;>-y=^B`n)shz_SuF~wXqj|KH5W^Ea{*z~UF`6lCQzkWAl8Iu?M;P0k z%xph*2MUMnV=E`Bm^a0>C`R@!F>3E4`7dvg{FBa1-TfS_xjGa}UP^>Q(iEOf3BU@G zPR!#-5k@6ejYKT^gWvETkRxB@@b_OW_@hoc_AU=4JIfR?eMtyit2$5Vw#{OGE#bky z{m$fk*9yS|D;F&0& zDZ3Sgecqe{Vt2EkaPw8P?M5x=pJ|3>_?H3OjwWDpcpNS+)u0C`1C+AB6t>`gkU#wx z*ze?vL3-}^NP{rtW`2od<1hhI;$kW5wHYLH^=ot_Wj5cx^MSs#${pT0WJRCulBO3( zoPyF@&0&V(1JrRo9$)#^$f9%3$bCi^J?gdt4@uX-^?Rq`i{k{z7sm=fI!vWs4 zo(2;4(_z)DW@=*3Vvy7?i@Pk`&|2M3puy@4{xAI#C0QLx#BH8~5%<&B*un^PAJkzU zpF6}X{whmutzOL0@jOX-D^tmHAw70NClhCiZpO-rUZ5(c4aq(aq1IS0$0vP@asSEL zC{jq4?@iLgTJJM~iT7EizcL#2{{D*P%{`#TNgk3&$7rl^F6Nv!V-mND69an=J?XAU zzSSUz>MDWX%1pQ-;vWnv-UJ5@iV~sZquArGGV5@u3wH|3Gik3kxNi~jcG8Hr4FBdda>SNisXSA1q5AcqB4Qp0Dg2NvzQ19d;G`3rU zEa2A}o=Nx7ih0iXXV@3uk(G(Be!m8#ekH(I9V^sAzeBbAK7we!r|8-+gH{P-Ksk-s z_&o)n7(YiqzoCkbNmHd4Uu#Ffi>1Lq@i4f*{}|Zn!_NTv8H3tF=5qH>7;wwgzJtpl zSE$`HFuo${iatbFqA}Wq_WNA`J5O3u6$+!&spn?!g`+fzb{Inb*9##}O@}%AC>BMG z4$}+lSKtmh1#Xe6gWB<(;Px>=sAJMa0@mL~E0Qx{SgbINYyHb5u@3Y>{!m4yeMu!<23|Z7sXh(-3S{um9CdUn#1l)n zEQh7>3g|_!3UXI>fF*|>lD(T8i0HZvaOt~6_~3;MaAZb2=*}JmQnyp_PAM+@^F@>V zS+0q|KEQ@%IH1xOkeQ5Kg@j3!OSgeyVPwq-Nv zk^J-Iw3SJ{G6{>?=JC!hQej7~#UWWCd3M^3znk$f%LaC2Gs`19(eAq*WJanoy75Vk z?9sbL#J$fkuS+7?tCHVIq(lbE)ofvw`PlNk0h>^2>2Y$az=-taPr`kw0?4J60r2co zQnob-sB450<+46HoX?WBhHNKoXC$eCoH^7VuO2AyH5h5hj^ZqP{#?12iwk|kL3Y{@ zvP;ME6uTYyEf>OjkEx&ypUlvfDis{~N)aw`Lqsbi9$Z(5!e5>5f)5!i z-0>|Q-Of=a=gdTq=VN8G@!<^=Z>0wJ#-^iJ#!G>Z%s%LENTbEhigfdNeIk7)0QP&f z!l-ajcxPrXb6%txnXaGYq_L+tN6{8|E=i2qJo7eLL=p6seS|p5vw%?>7dz9>=&6nA zv{&;Ja5sKE64>#Uuygozr}-djwa*mGZ%w3~OeJwcVm$%)WofgIf@*Xk&8Wx}m z%Lw9~>J0A}z6JpvU0`C=ke?B$076@P$;ZDJkyWA}vqW?*p1t-6lOXZ|H%xwG)W_OL zVe@yMYhp5e?B-lU-I2S73|qt=(KW%#J{K@Jx({)v%RDaZLoc+744gfm@{FlRXxu!B zRU7z740rmIp{*k9^%yboRcbY3HeV6?tyw@E+q6j;+suNyTiG8ih&iWrhVe{kWW~RC zqn^*rICD!Fv3HMVV)T9?E_WMB$d04!HfFGT|Hh!S&0Mzk)n;%*Itk04W!Sll5M5yY zh`avD7uYm-63yo&@@v#hWVO>@@(H-`8OBN6t+^7^q!yz)A{ZH{OW-?R?IdNT4?5HN zk(4Y20-mQ=~ZV+x44!a^W5BNYGzc zS(Hl$pKB*Y=0DJE-x1XHxd>#{euoO75p>>d2KYM^!!PqgQS6>;ILkO6I%qFseA;8k z`3;xAf4}BoN0kjQx-=D*xM{;;nU`pRaXS%+nvDm9q~Lt}B$QNehn9|e4@}dlP~gfg z^voaw47_tCmv>V%*DsU&o_zyezvf2dYpdZ=fgjBC6Y)&RJxSsd70Uf@_&AxfKY}Q) zzl=lwdw^#uY$T014V*2L!in{1^yi%qQCrq^{MdXBR`{Aj)J8Butow;tCnS%N&{Mv&joT}H!Rh>3J^1RY;ry|LZ1TJ!lw`~=V5cgx*=s+~FmHZUlMDWVY=gsj@*Vk-@VOhwh5m)?k;*H$lDiM- zCM^ZbpSjGf@B-Mssf%p=C;^PB^@(V4Jwc;R;QrnVl-iLbG~{y>&Ci=dI<85Rnps1{ zRV@!JswqWd!Ybg&&?xj7PeE;2^~_`;*Zt#Xk@Ygnv5R-0u9l$jbTBww95f9&K7w7 zLuuv$htK{8%|>dzp~zHfHW+@G2#Nzt@UfVSDCbZ+u-K(bcDOmx)aG&$zOM`>BM)L% z{syjEFUI<2$TP+1M~K6|>|zF#2y8dq+jltb3zm zkRU1`AV`LpuGl?*pnwXZ1Vs^1Q9(>3Q89}F1tg;+0RaUup(sd{Ac`1K1jT?TCX!+z znIqob`+fIX`#XEx@2++3z3V&k$Mn>6O;7bR)zvli{DQm$y(8KJnyx93-@mO$(_l2=KhV|PNpw!*YIMX-z$#=uAeU}x=gxvyN+U83&xX&Wzh4 z>Cn;0QYFh2IIEk@iFwR^60fE6+8A!kh`r>f_IOcbohmtHyF>Km_Iu7@-xhLW|4(k% zHV;ny&Tejb;ZiQS(1y&rx0lq%#ih=2Ayk&>N51k-1zbG%DNA>euC}!LKdTXwBym6g_Dw@3V~PE%h#{eP|tC64{FLFXWIuCnxk^ zlN*uWRD(~-m7@jE46yu{b`TVrM5~|hT05q8So=yTYOGgcmy1PV%|BBam{~6z?spWW zDhvUcZ860Ddp(x?Xh~AOr1PHBp2Sn87RY>92VcEBjC!Squy2SV>;Fy{XXBM@+x{$~ zwmt~u_&z2I%5fN)zCg>X{BgD8b^P;UIs16nK5UrFk2x$6S96xiZSn>67nQkRhb)m<0k8l5+zd-U593y+hI1Y}uhA^FK#&~aL9On)u!h&f zM0fSmh~4@uBA5bTK=lTyxJDE7<~z`xMc(9yZZgTWJI@Zf<+HiQE~r0$EBE}WEG6St zvlDi;q9Vmyyoq^?EX~yEoC+PPFiDRqpEior`0Xb44o;&?0LeHsi|aWfL%pij z;FB@?AiGaY)Nz;M8zhtSJ+FzvQ8YQ>a-6$;ToR_%&t?|Atiy4kvAD@ihI_G0oCR_AKS?tLurUmZqP>mMbJbIn;YX$SxLMylr`;P&z!<6X#>n?EZarA=JL zo;O~BzaAe&4pfd{8;s)FS@P+`{LCr5P>;V?^>m^j8~%Pl(~x(NBKgt+;WjsW5Sloe zEKn983#o8aGh76}%$keCc8HNKJ!xS;wye-#$Q7MFGn1*0WJs8oHJ%SbG=4j#wusI+VC8jRIxzcImRYp8~&GWI}tv4fvf$O1Uvcia<6eQ<3Sz?{G+A zKbokQOYhw(!zX@7Vwv1ZwC#dB6LT7a=#*=C)Sx9?_kbn2iOsdYG~+{m&ELfn&4I7d2-fi5k2g8iFHwI<>##iWQy@+5Z(6&4~TDO z?$Sf}Mqe3DGkJlRKQy5WHSW+wbvGdT{gte*{EYkJBgmH>8ffZ7NnR)H844=h%VU|s zsmokd)?{xjdR|(EOXq1Ims9WI3+JiuoSY23S)zj;-q=ldtzL?+IEpx#+^hKbGh@~w zMw;x`aOURbwonUCAS(VT2Y@di2zXXxUSn8-~ z@0dz%_1#haP8sJxZK5$txjU&0EOjcrbSJ+fTvm#rVs! z8swaUNW51OY>r!w^=-vb`PxjR_w^^*)>j3jM%Pg>@dngzXg6-SWe)q+X|m+g9=!C$ z9N}{1c;Votc%-n$ju{okuaiE?;_<$-@WMSqAUkLtx!2GJJ|Fak35(Yv`M|HZNW+NT zHF_RCH@JtL+Vli9AD2Ma4YrUQf38F2UjPj$*4)VCGcNgyB-)?behUZ#(G>-t!6MCGfaxjvE19V~XFQ|5Y3Kt+e&KX^tNhbz9 z5^TKJ!Q=kr*y6JToW+d`*madD&Pi_pKAC|2lCuZ5PpVM&>^7`+*pCdFH?iYw*RtmM z!%_M3BrbpAQ)0%?*F#t(D4nyKT;Y6B*Ur<#<>@B2M(i8wBmW+ckV+tH@0wxS{T23= zZ-LW%%&E@<4>aYd7klrGJJ}#_&xKr9ptsc@u#wX1$dkFFMX#HkSPf>C>EUK)*c2LO zR==7v*EOFeQj2q>>mQ|2v6~ACb4JNDI7C1?M*lP&Uye<+er5CC>YT{+LL58SHJy{M zPUT7;UZ+~UvFxle6FlY7II`XQIK6S+Pqe!^nLYSSfqP(~%Votw(IXj2dacWap6yM< zj@!+-xb=1CI@DI-kOH5`$!OjboilSc4Irh4 z3^+pWGJNfM6BT9Hz>DlcI%%3e47)1J*!?L-Xt*o$&>w;2o*UrTmj_{u(In>0IT7Ce zd=RKe7_c7{)lv8MLE`lG44yZpglyY!ABn2x5XI@ajQY$2q}J{?~AN5Q*-{=8^foAEL|2W9ew^PZXMZqa!jA_*q6D_*k@( zcx|*ML-*2%M$&3_#?q@eXYLt3#yNP!C|%U#X@a)wRG_Q8)?+m}RX9Qa8e@GSiz%Ai z31nnc!MV;T(ENTk$a$fHf8<5MZ@$LDG4BfmwQmsYj;cpaG818ZQ5_6=b{6!W?qy_l z8o-aH z9Y)~Rn@>#NLw969UJh{5=Mr6y=i_vE@IyVu4R3HK8C9r7jtFh)nwG#FxI(D3l`4MrM3?CC}GVy^5eTacj(X^ zHo>Y9r|Cx%`a=PqAN33NwcZ-$hFxuFtI7q)crOlL?JR zBGWJdS6{HpR4m#MTK?E&7X8Z9e7xI2(TECb`dqD&mM82Y;zo+5HWFj_H70Shs5#oE zW5(u@Nr%luHoecNLv#*Tmf6pJtc;~0TbFav!AJQ2vh(OU?~~L$Cqjf0d^u{ph|736 zj8-GNyew|`H5W@iJ;KHuzfJ>U64^u7n}AK04t-WX1InxEkiC8iL{iU< zl$oltH6b0?44$AXrgyM?m6l|eK$3H#`@y7XF08b1D1H>tg#%ih*shU;9lg(v6t|tm zuk&h2_oR3E+w zf=mS~K}qslcoMu~oT3Q6_m)8m`pi*TZVHnW+=!+m8Zf)=o?`;;T!d!)TC0}ZJ?tV^ z2#Dw=^)ZOS29C{4vQ-RLyz?8H6mCE#AOD0+e%9#zVJqTI`=E5y4!HH(40JVAhLL)d z2jo`PVXwqu_#;0bOt`O(=Uv<)Jp2^VpYuz=r?Vr8&hkAlawvw({PmPfNM4LKEoe3A zo4*6CxWIcf>g^`e49#%W*rP|snMGE_h>bU#r6Hccmv)+e|Kh3sSppe zDa{>5+=ybLEtk-1ujOIp$R@JYTnY{~bl??BE|KZ!(;4+gKEiRPi_mmt0`B5-Z&$Rs z(Oq{tqLj{n_x+yu<+3&+cj_COJEkA5*rSivKCOZa=PBaK^Zi)f#1*;6y~a1M zc*FjnMc62OGuklLA6d#b;SFA^vD4Zo@Y*t2tfFp$dUt!EciLX~iqc{@;^Z@Edawe% zujv%>3_83vUmMzsZ-&mdi@?d$aH9Cr3>jX*!Ytpzg7;_!9CUAE9`_Tt-%uUJdVPau zW2b`cWnbWq&_9Gc~H3KBs@GM0dJz= zpt0>6&}w{#Cbd-K{7YZKlgte;Dx}2z{2<1UT?M{VEej64b5mZ7~npY0;@)n@GOkb2}US&#d)s+g_k zThP8ZMz5|{0^Lr09qp*wB6iTl>^^LXW} zm+oTO+8}ba2~vrdc5o-JBhcD-5~i;11&T$T@JQB6Y@^c-R-Q~J{aVeqU{4G++n-eAox6;V)NsOa&~a$=0^NmayE;<7vqgYO{yZhID9)9{a}Db@2SN$m$p%P$3{fVhm&oy3;Ff>Xv$gL zqix#;$bwn3$cO3j>=v(aL}o`P8E@)LUet=Qo;Nyhl&UifM>}i6$YZaAkhyp-2kvQ) zLh&WB=zx(Q9&sQXm9TrrvH6zdDriG#KX;L+;R)cz`t$f$xgQ+1_zyCl@C~IHE+bi! zF2eey7*4&mrlitn8jkroNE5e@%#JIE+aT@gVVdA<^H^Q1X<)j-jV818HPK6KO0mwk5b7(6{LfE(W4#x=eM z^wE-7LA_ZY8L`fd&8-_Qx;J+^F-)%^XaA_e?-}NFtyu)HUK&B8>PL|AmJ>+jR9ntJ zU;`Vq`y8Bh>jWn@t)2MG)w68p1gH}4KsA1*&LJNFMbsFze|}FfBWhObo3vMU$s~ zp{}lv*epXu(ZiwBH1N<7Zhq%DObcSE!Go#vjoW3>&DrC)Ymxz6)BOl;(bGs#-!W~v zEo?EpG24T7O}NKZ=-aVR)d16l>e!+U!qV1#%o3~5WkC+ZpmVl7#M=P`fDKHM6~xcjo^+q_83uR}yp&d{XQE{numXeV9A zS@!#+Qe6D@BqsOM!CmVltTxA1nDJ^9{^^{G_k1{xm!|C}*TyE$rE+<&Rj7qk_;oLX z%`dT~(i4d8E<*G2@1Z1%29!KAk}6%Qp=werdY@8(>6~b|W_&&TGc5)_U)ezpe!T`~ zV?{dIV>&ACuV8og9zhPmz4XKW6FBHdFZ*u05()o4ohxx43too#h?dwYoBp1$nx1}j zj*L74Ss&M_SU7G0JFP<+y%~3m`lsK($gJmzG5 zWjEB_lu3Ro&!fw&MzII_hH>rsljzzqF}g|q3|qJ58Jc^=l(ea9(1Onjbdl~oyt&H~ zDY^}SX#>@C<6t2yKC+Q!+bsnd)&2O6x)Y7iHD)$wdkcT{pFq(gWbj}dN4J@dB&8v) zn7ft-9xT3sT>Xui<{7nUhxkimKQC;U4cuVTD~FGyTB_pmY2;a%>(1hc<=cCq^PTd*lY@`b`Ho+_Fsw;kSzg%)b0g@W?Ha8Ex|i?p00^q&?Cl zn?kNIlW$!|o^?dH;qFvo_UJT;47&w=x^@}+8!@oNs2KU~SxjZFm4i;V98%c&9y&%3_r9^jC19HXdv1;HsVAysZ`ZOk?jkRlN{G}G` z!KjhNzLG@BLW=%8%%AJN>nL~X16bb4d*q^zkSpzG>fTNjvi=vzHnWppaQi~CwY*Yb zzg`Ju%I_s@e;T=nfA>ZiCO) zSdb+Z(O9i^33vF^Dy*Ne5uC33j-TaPqtd}MsJx{dT>Cu?ZO+_CPgYZ$taKF~4420Z z1tv^L%qZxo`v$l6b|XGr48#46@isYoX7BNGy1)s-a{=2(=*1Frck(FK@K+Db->yr% zW@`!dDD5H(l3a*f%64{@#71H-?;W(+!h0zMZB!A0kUO(>y^dtf{R6&b` z`JX9dUVZw7{SR<*_TPMZS@=| z854yZa-X9q^Mo*25J`$_4x=Gu5B6-HAx=oXK@}bRh*d`^RUH#Wm%Fd!=9QlWd+(%) zzKEupw))4j8Xq^1Pl8akTL>{P`@^jYFvb;L+eB8e31} zP1KPlb&&;h{jP7YjrWIpvE7xPt>4VrH!tTpMk`V<*_LV!AI1JSdK|a<{KPXf%BbkX zBIp`3%cKrcqb3JZpy*xYp5eXJ7Pj4j7|pVd-Nbr*)cq!&r;D`sCrx zbJt0ebO^i>8bZWvQs9Z)si@N4iU^u?iBi52a#{EjzjYpocNGUC2Y!6D|2+~exv~lB z`-Q@syH|jn@g_QA&R(=jb$OE}uXf@By@S+MQ;+-7#&wj>@@uX zepFF{LoV2XZ&fYW0PO+gR1Y4~x50}yHQ~6Cq4ap7D>_wGLk${u-{GCbusJ54ylu)v zmoImqJLeCf&?Y6^wl;=-Hyy=ucVcmZ)=I1o-GE7MC_I=ePL_!kp!}mk7<}R#*;&5= zSQW>xqh}|fSDXt~yuKT$KFDU%ZGW>(cgND9#27(*%WZOIxD4CoW6F(bHX&68dr8m$ z1FIhbHjD6PuH+~qPcVCp^E}6I7 zuNTSW-WWM9VCrfzE8-b9_H`9IX|9H8W&maT2+}i zW&4WER?o(r_EDyepHfBnWv9v0sIy#9N(7Bx{f4s-tL8qxSEq$$5v;}rSrVJ)M}H|P zv3o~Ii>wPPxt&hN+?+WQ-16r~xsZ=C;@TNPf4tid0m#kmrfQvep)GP(X*c%9KhK2f60zWu(F#>mODZWADEJh_NW zyZa5?^sd5(+OFY^wIfN=&f_#>q$jRF{F>bTYR(=Bw#DCGZDdE!=!g4aPSbo>1uW&~ zj`e0$(9ivi)F-_IGq=AX&FXZLgTqnQ)d6gK+#99#5oB$5089j*m?dFbkWNq$__HJj zIv!_X0k8dBH|9HGbey_6n&j)4 zejLD!AMcQpZsF89eg?chL4rs{B%vFlUf=^Gq>#U(JZ^1kMj_^bNR@A&^#@z}(&aNW zd+9)2Uq(R-&4VyKfxn)QW|1pAmaTN5G&PkNg^zDaWBV>YLY^~DQ*nO*={8=&cAse` zzvS&WEyFxelRsMYpe|n&`x1~?<|{E=IF~iQ6@|);mS;&1a9Yyabhm+>7$61=D{O#R6$$yZ4)x3 zad=mO0aU|tP*c`qwEW2);F<7^u6^(d3GB?sq#I9Rir5zVBuj>@e*RiGI%K8LxR;N? zi~Vq$?rq|EBnJELb0DqjJHXXlhlpXxDKKY57PRAeS>SU#UYCD`Iy7maIiq!G_6Hg2 zeoq9yDicyJc>+y3c@SMoXYrq@I>g>_h#p!Rj`P~j;>|pF|ETa0*zRxy{@Njqh6Z!+ ztqXzZV$clQcup6*T&>8N{A%aNozK)qgJ0W8y2(BgS#lK~4%G1789_$rXu5fU7i*I` zfn$r4$*iGcG*G<{dSL;uQDOGe~lrJ$IoM*?_bD{*_H$2=d`eWHZzFI zSsnKDurIKAvn~zpoQf2JBgj(ab~f)+JUd%F1GD==NuS<9)a)dUwmO|bL%#jwN#S91 zGaay{s-?ug@h!K1-9&QXej3N54yUI3#6=2;hq%bW6w^lE^StEc8Z$pFWAll{2BOI8 z&*|hz{XAEcA1^0<5V^@K5JRsorrR!j6b;y|A!NLR=<0{jtYcR&C+GQ=GtKHC8}3$c zx0-pMl1bw1@7WTp+LK^WM6RUh*UvD{^SC)Dab74gpP)%6=gQItldj|QBQrRk3`BJ2 z>Ekt8#(-cH$JG>h+0y8MTus>Piq6SGJ=EtF^&H|8hDn+m3XfGa|>% zS-`b?F4(iv9GGRD1uDIg*gBq)cmDUu#F#QZS+k@%R~NFSehiv@QovvQ|@@ z*-_A0>OR)3`;AD;E-ud5i}>E%Otn8>7OZPINEIhOr2%j6vr9Gh5!tXSgtqg%|KD;X zxuldCs?#H@&*hULsccfQDT1a39$-(+J%Lu!2>Q8Y9JzA4oRIISs4^0e$y@yKl+y2L z(zil($@P3z=bJG$y--bZ>myKi?`Px$?6HRGZE8>-gx-yML6v-V<0qq{IXTA);^-g5 zItNt|@5vWA`G)y4HX}i_%t{9JhfXw2`#RjL`MoB4DZYu`vDD_0X6z9%;O ztb*xuhhok#x{cgib%eXOqJ#~2FkSS?E0?>M(m-Bb?xPEz@4;&uOQ^~?WA?k*d3NaK zCoa&^k=2QJWw%X_2*)X(N8MjD}!WKY)miQun)0r zpXb8xV_Nj{6eTu)?;lX{Fqm=aor&ko=*PwAChfQDCWoz;6YVz(VW33`KA~R%j><~$ z9#Mbr*+OSxJo5;-F=7rrU7|s`LTU1c=Y(wQsi(72m!m~zjc7)j4A$%@MqyosWE;_C zX9T^$dq2IxZu5J{#kZGGbYlWB)@nneS`*Ne`fS+Zy^jgDROE5dZ*-(y45|R5w16pi*C{+E^%8U} zS%R{1_oL2gaa@y?$L?S732(|y2hWnE$erv7XxX(Cq_Q9bScN|T^P1ghV`d5-H(47- z^PDlgJ30(jz76b}+OXBi*=S$AEZAQmODun`Vk+;;6Z51Y#wjEhtBs98VqMR0#kGy3 zHfS*k_>^Yc&lHl_#N*_9Lkw=I{ff=^jUj38FM*|wU(mIlvBF>3%W?9)YTV)e9j)6l zjs_oGNv?012DTk}Ol(r4!6aTYyYBP|RFNWym)_RF2UjmblX0|pn79O!Q#;z>Zo?GT@A(+K!6S!;+6qX{^Go!O-(nmQ)<=)& z$^l=kL#$AAp5+COiNV5TK8NGMHd*W7Ig_l|wQJU*p0Pa6{?R;YxMd3duzfX~d6~z_ zHXLDJ-OFPg0uu21hgF0GPk_pmk~C%iOu9?Kowk7~oZ{)Z1T9y`YJ09yedZ1lJ7|l6 z#C|$?`~or}%n5DX)Q-k7Pr%f&CcJ5-El8bHh@Hl#fyFWzc%#K$ywmN0@PLVn(BPXT zk}!0~6MB^KT)`Ri?!7J^A72Ej6GPBt-)?44sS8Y2{RtOUdZK*;Z=f_khhLgK2b&)~ zkJUd8N37FHeAF-wmKCJos=7M>E&2g^R2vXpc?TzsKL8{1R`Pz6AJJgEGIIL02RE62 z2Vu}V&Y=_JpNI+!$xO$@uhS9xt0X4o`ga5WYx%z)pXQ~Ke;rfw@8|xX@$vun-T%M8{(p*x>fbH+ zS3Le}`Ts>c_Wd0X&3`}1|I_i9Gjo=`IN$R<{<=KG>Ms2+-TB{}`p?(?f7feX@b}sL zM~%PU2>!cX`@;Wyy_mo24J`WK*ZaTun*T9x|7XAYU&oz)^{0Pr|NH&uLG@q1(B!`( z_g4u1vmgD>9(VqAUHxmk`LE^weten>{_07givQj@{xd%Rv&J3yzZ?6nc>LG$e?K0s z)qllfvdsUac>H@?{=a5H#JSL*i9u4{VfMMCq z%;LN2;QgXmn5(&qB)|Yj-eC@VUq8oIojg}yMgx2@JqfO=u7}dW$z;KK1JDsz2u|A> z;D?J-@w=7pFMES%C~l<)8r@ z1GJzen0%s-klRa1F8bPDG;_={)Lykn^wm9toEt!#`KZ0rI3=5|Jt)sUyOB?9R;tsg z@mJX4lLN7ZgA%(*bd!A4kYR@cE7_8x!-%TA4N;)U)FosolI#furHLi*)r5_x`ut`-Dds%$PZTeezorYu0%&n*!~Y|CeA zl|M18MyGIALlskMIvu{O(_${i6bQeod=UJ(Eg`hpsQ})p-4#sRIZW8nt;}%G<)PxE zFfi}1C$qh$2JBUcWl}yWF|*xeKv&RN@J>mFUz?JJGcWjpLwUh)?4f?)B(dqtY_tTd zx~2%uH}1k}JLO<$-XgGnFopE`o1?RLlJH6Yi^!VCBD)!>p}Kiu=-Nnk`22@D&PiMj zZ;Bs5HEP~yN9#M(qvVNY@g+DIFAkT?8bU^wqL|Tatl)OjePQ?mX{Mod3p`(=32c@< zWg?ZTailoLhjoJL?oQcDI7QD>{UU#oxiPDgNMBt2(n{ z{3Q4-YcKev_K3NUN|~7|wIq9?B{mdTBjNy$WJ+me$=apOb$)jtl6D(Hmf zT?r_$N1K)ZBE-*r6oG;PRg|;x09rfrfJ|7C2vRm1g6FD{XxTn3>Zlfte}{*mE7y;b z5>*XSTI&Kv++)amkI}^Ek_HW{9!BFVr{bTFT-Y5^eC|neCb|=Hh3rkU!q2X5;S4sW z;j7cs@D=|PrY;iec}{P)=u`0oTD#ygdoiGf4gQmlQ+HrGam57gV`d@_5IVC>OHSg{ zYhS2S%~kI0GGqL(=m~jg&`fXDsG@+fLGa8n62!hZ1XolarZmwA&(lz$n%i}-^dX8` z^kqangK#hR+2Rc~Ryf;2GaObgWc91Tw!I^u7;t^@TgyWpqxk4#b64<@1UCMs-th<}*Pg|0+~ zy?lBXc`uPo?=P8;lT4rBz~&-U@zWA(t?(okXT|ZzLMIgPM}xdQCL~%%P7phb3Zm1M zg7tQtfe!lWurr1Uw`*zlj~M*wU@!Ub{wV4X3P*+RU${T1BiPWwI(pZABuP1! zg&Iyv(2(q3bQO;~T7I&f_Ky!CSJs5^Yh@Zt$hcbq?Vtf+)WhS<0*5Q8C$WriKD$S7 z-uN6Sdb)whuIUq&nayC}Xj|Cr+ySO+mIlqAvKc&?=l_*F1^V8GVE4tt!t*;~nMo#^ zcx-H{aJmg)LNyhj$;M%5*47uWJIE3RS`I?rsMV<4PaOnQ&qX^t&maY+553uf`MhHX z19q%IQ=8P`pUt7*^<^<^JohwwbbARgA2k7Dr^!&)HlFJLNkek-on(rD_XM8eiFFrQ z;stFh@SN$}@tTT*#A>o1I?lF}g3F=Ut1N}M>3qWOp(oIrpi~sb0GxeS9u$9&WpYFE z7`3=o;C(n61*H2!<@9av@b7bAPm~m+F5iFyb{#+y?e`($z^m}Z(0AbA^aW z_yN7*y~saW9rf}MVKq`a@@sL7omQip`+EpN} z&wF_}LwxgQKB_wy3r|a^puU{p^l_#ve!M^oeLZ{yXcZlXOs5o`e}Dy7i5@)D&+GDh zFD1i2eZtN@m++9)ZuLfXkC~Q{WM$?y9wu^ z5xw_`^GZn~+H1htl|MpSQD)e-Oi`4jtVwNho^V&-6q35LsU%P3OFTy!TQe zyD=w`6fAM&J{*2RW(B;Ww;N1o=>Da|u6+;BeUGAt=HG{=ftx_py=%~8+fw8SwmTun22-e^zzmn4#T z+I{GYaXbvs*bTmdYrrnG9A>E3l4mzAVdvBn(9+=}ax&I|_kJtEdZru}9D9i0d;8#7 ziRmaq#U8F#w_Ck7ID$)tRh%AHE=uD9}@UxePUr$M5du5gu99fT-c4^^z zJ5z|kL32`>R1Vt)49J%evxzTWL>EporPFhMqptYftlsh>l(Ogy9PCr2KR+zN{RWvF z6IO&9TaI96)pgU&GO0A~oUG}TB|_H1U!EJPe!=c)WvS~YD=HZ^hl|=4M>fpczzS<# zlGFRex!PC#oWIy?Vy!rq{+V1zUCUFE|B@_VQqTadU!07V{wSq7AJ$`}r%5wcjl#;^ zkw|WjhA7Qr4Eu3-56z7^K)Ppb##h!|B#!(3(9M6UQO~{sS~}_&SwAWW`^c05HKhYg zNQo5`Y&Zz7@>u*)j;g3^!ciuCu@WlP91D9^b0DYn8npGO#;?xDq7(5wKzz$Ew4=+O z=)LDLf@KmYUYG$}_Eth+UNx2qn+(3(dJRmn^6{1{A91Z;J&d|~3M;?W!)DRJ$kNyZ z&bFw)io9=@+@u58t5Oj!rtf)e)l{-=VLp!oE=C5;t>}ha8PajlqBmDmqdDFyQQOto z+=fOgD%W1b&RTYmb}Kz1b*&O4a8e7obAG=-2F4?)TjBxT_}O0-dSNd^E}kP@(m7a&|`-s`xBSg zS9r2WAI&yM=e^pbNS$63@fs6@&ixUPfyH}p-q9dLtZtdyt_(8S?Xu6hX&RX$P`TA)@;d6SN&V=JCSSB<1qXtQOw?Utgdh5|O%6$j zn=I^8FglVgZtQm7LvUiLoN(!C36sw!Gflj$JcSi^%>*-t2bw5k`k8#sUuMEOhcS7I zZo6dcpd+&%w5w zpG^KMai%`l7vN1mp!VaSNky})iGTGNli}xLg_AZ8n6yatn#}$jVPc#<+2m<(DhTgL z5iT_zB^)Z15Hv~H3%tzPeLG9^AIOxBIJ7Ve(7Lh!ifp0SJ5W1#;0A(O-N=ahb3 zg)_FMkk?;0F0eURFp)}azPuY*tiZppU{kVKj3`@FWrD4CZ}K%I*1*<9Dui} z3SurihE%K^Y7ak4*d{SBNeRJuqK&xgcr|_+dj_vlXu%`x-Ei)ELvoy11go`*@tDW0 zq`)qc5G`vu345UR<6dJ;tq}D7^I|kxjQ3G%(Z{522RqQAgRlM~xLvcIU3)2$3@J>d zn#mHZ_X$HX_d`0#Tdz&S+;r%58!@&eT131u<=JT^NPEXHP~}4MOy&I3GUy9Ycio&*Si;dAM-pGAu2& z6Lqa0P2jp@tf-|8(+;QN$hjK$>dn!(W#(|Ws7?&@RM&x`jcZ``jv{<>X$I<1c)*04 z&f}5Kvw?@N2&{NC0bT#W`zCK7sPHL|vmL1i$8OXomU#p4=ZKkbhV&Y!D60;?=-o#n z3`T>o9t_BGn~4<*FW_za9w7Qe4;wBp!516}g0}tOlJW(I=`Br zXRZx+U(s{au!h&6s#ZhTG>T??16b;bD*T{33LSD^hW18XCGXY^GSBj^gDy@6-P2h^ zS|ZEPS?L<|`k(`8Z+nQdTf2c+Ko;((3nOTv3`NQ(NU+f#lya<^UU)2x$2bf_V_Vxv zgyTUR-fYfwo{vUzfGTdukv9#0CPS~rI*Puvt)kbhCbA7zGT7^l>&aqkV~Qjdxw*R6 zvEQR(Z1x0al8`%!-Q3>7wjAL3RfjJUI{6p%()UNxk1YdZ-t>b*xnZ#3R}0BpPVkWn z$H;a;9;&~pffmb7;kK?fr(X|w(Ra~viDTPEBt9pe?A-Q^41d{%R&E+ebAo-yo7Y#+ z3EgH`t`iIneU<`qVrDZ=VY&47xyjhtCITLQ!{BDCqi}lZ3#Py6I06=n$mZB}aAL|E z81m`_>JGJLBgZYmrK!81|LR$29M2gumHvvpES(2B(hWhL)*Q58M;86ye;rR-6NTMp z|HOJ}Ur?*rIJj;*CC^m9l5aO}Ah{ed@=oCzh6f_qDyL3#s8I)BUr*86%YpcVZYtZ6 z`vpG@{)4`=drj}b(X4M3(I~Vz_dkk#Y4KPy91g>AD!EUcVh&98ziJjs_^lAG> z)DBcc$~msA?|lhYw8a%imQO)tW-Td=hm3IFgWvLlz#fxJ*)sTfbk5 z(2`&9cd9C8Ow;f<&jeB_dk36Xss;WPo#=I-E!){PksNIOjz-w#lL(6|xXgSTQ>cA~ zjEMY0;_oZbDU(x3;NDnbVKj+5={*_u$!FlQqnF6bC5`xH>rqbetTvImaS{*fm~XbQ z=l~mcBG1$^Xetp&U*serw7H1;a}a2lO5b{};5vU-WBce%cH+Kba%YSThhjWLqVLm4 zPV*-cQ{2W%-jK%<{>z~`G(lA|1@NisHTLN>3-VmPl)igC3*TMfjIFF6ij*6axKF%c z*pM)hgf7#;t|!IWhy-3^_2v*p0ZnY^-2{4G>@w0j`jheQ3l|niu4KM$FJ|JdrX#;- z46jG*7UnbNFm$3Z)A?jGgKoQm6>m4gCA~an@w^mhvzQA8=gZ=ir#*qifGl{2IbL^i z95}bp1L%(nXHI3SGIOlNc@K}p=z_B%@8_Wnd!+n9jQ=!V)3OLe9w>k@H(tVE8v{7l z*aMX(>p*c4z`lkoI5AKKUS*Xtvx+u=>Zt`dKQ$Ab(GSkS%)?>C~{W3A~c||^{wS3BJHtIs#$)~X;j~5Gm zSthJnJQl2d76SsGR3mwpk!YA|IGi+w=Z8#*0&*XC4~Y*~kX8@xmvU!6_*VIc3AFeo0#Yho-R?#L(u};{f$P#7!kwDHLpA+e+`Ut({kcxLP+Fu`!CT7GFPrE?SSEU94 zn}Mf3Dj-coF=U|d4_*}NN;+F7kkp1HFo@T9ds;^6fz%ALKDL3<4_a6;4AIJmmMA*( zJR19@1vkdc!nWOdoOyaYR=&TP_Y2h$ooqQwAkU3>JEMV~(@3I;m&57D-d>V;)0{3C zC1Q_tUB+=gl-QOBb;Kfn4P7QF%^k|0MaBod#`BD=S(AJNynE$wVBJ0sy?#-LkW4pu zq2om!ciUsNF8=p>_X{;<$g;*?V#x>3airh35`WmNfL~0SMLq9^lRI}T&~hXqvMM9V zENK&5I5SK*<3Y8+Z{JeE)aHi*X%Bn2t*Aj5X0=x^CdQVrQ_vT#f-{8Cb=#S-C2xea z_k4s;ckJdhrDPd(%Mz&V`<)5){~_3)Bq#9Qqa^fh?Gp}}zZ7OQs0-dH>M#!i7Q^{n zTfng#AK{OmhKv?(uGW?_2Drn1(8`PjEpw+b+h^A?%^rW46Jv*=$Tj)QLa8L?gwH*} z2;nth+Wr*S5_=EUzOn@m4W`mk#RRlVJc-}K0cf~ix;d>JL6EvLXS&9qqc618#pIQjdOW%UB4%v)R zr80OIH=ogGYlVwz>T!3iBI+whhFAATGH%%tjH3M~uu(}5?H?x(f@EvqqP}2I^T9*7 zc8Ll+6(J55Ou8a0(9&m|dEbceaU0R6mA{w^jUCXp-5rEh?P4x?dV@-4V%F{pgCG`z;+cP9poAj!4I;iu3~_@JpV+Njw>P95YmWBabbcMsO15j&FL$Po{S z%*IPdyu}AOzYXKcljf3L5fa@0MbUZ2Q~AGf+)lQTks0Cs?)w}iQbwUtXsa}&goc)i z(vLDTOJ!6NlHH;uiFRbALZp(021!Gt|M@>SPrS~9%z)q|pYsvD(8%MKvZ=oD0DP(-@j55VX}JHV3A z7;vlG6t+8#BMa+Qa8Q0Metba+TC80L&v$XmAZI$saGylJ%=1J_rbl5JYQo>n=##Ir z4dKqEdc?B61DT$&g$rLif};-%aR-;Kfnnaq;nT3kq@ZdP{wMRA+hWi!nysnBsO=p< z-@XQVt}r5Zry^XvL=jzkbqFq<&69^~9>6R96HxHpP_(Gs5#4gjCP!TZz>tO>^r^_j z(xqDDva)YNMU(rkzWQ!EfF-Cl)^o9xL) zJyjyS^#Kj{-9=O0*`wCZSo(ZGoYl;H;<7y#P@hWu*u z>@W>~`#J?_SlS3SYs?`fW9Ra1)SB)bOr(oje5i8DBC>p6IkEG>?Bkl%crlHoQ)UH{ z=dsOn@4NFX#Ud0pf0H9NAN52m3jnQ@Cj-zC0QL5SA)jBb0SyfUxzMVrAcyp0{VF=6RB5Tgx~hHbN_x% zf~~u9L22YNI!5U-_SUq5YSyC8^4jC@+p+{MT&4pyti405_Y;)SFto{g(O8$upco9Qoqa|9QBn@wf z{9F}UVzl`ohcP?vz0%J0PM!@8MF2#>tQ)No>-t8n}2 zNz{L&K#)09Np4x@v1IKycJAIP;!^BPtjb&2gA8>%FxiG33fV|v>++~!a0iSy#5&i7g1zzr&f|kr*fK*d1Q)2~8l0=-#RbSsB?s*1k?WyB;8~>o?7VoKc zVJluT>Msm*pFnk_?$I{$NaVPxmb#?plC^W3VDKkpWN|DN%uhAvjE>@618- zEgp$}=8E#D4}AaN44Ck+6B!pvs zZ;~&cl%QfyF^KuQ7d=<9qrAQW`F89o)_R*vwElP!CB=nk`3*o!`(BZxt#xEZoeniG zKZ5hyi|7vBF62xmV6(lo}TJF592!-quS5n(?w z4^r1l^2EWrnzH$)*~;QU9CX`*Uy$ES%0El8%}qWman5{FWG?dHwQI8Zm652sPYWLM zkAl+;AHvzEN@(a=b3E`g6HA;k$0s8vquFV?yxXyIdLUGVreRI8@@_1WUZqVFD~o7` zat3N{38A^+?PUG^DzswnYxuSGKTsKP5*%pQ3x0mJrx6Xq@WY2}aHiS|9bY~cHY{8R z`sa_v7T3M;g6dpkc`pIBf4qj=Y_`(q(#!Z>k{oJmlYnd>2Og)z#LVS4SlcNMN6kw{ zezQc*R4Z@Xw;&C_=p9S0Rkh;mS}QaZvY+JMY#_Vb9*~KuhsiIce7vN$n2zm?#dK&9 zc6oD|jJ9}=`)CRKczz0rsB1=&&Zh<1U8bx^U0QH9T#5ct31M@O$}__S^T;NtuT=l= zNj7znKaQ&V!TdWFY0qnS_IIF;Ew?;Htmilq`E(N|`^gRY&K?0fADn{oz5hb1W!co` z?L8zX%C`HuW}^qX;%M;uEdE#8O`1PpGL4FrBuclMp~|2XJuY>Z3i%WG&-V}-Gjfe= z?$1R&o3fy~_c1Vi+b+#EA`D)ak|bW0ndDBZ8!dH{qF>%S;29ILSuOaA+OHwRmFm*jHtAT#@HGEJ z(-%8=MPsp$*TO|fW9bKAE}SS+P7>?%c+;+Nd{lKgmaIHM2j48=FU(wy_1+w0CTsnO z+Mgu$%(jTHRB*>~<^#m&CSaRi#vxDniO?-)Dm2X0LvM#$=#`Q+q-Xzhnxtor?-w&&+`xnnzgX5Kksz4F)as!>_YG-d2}Wf$8Ss?FLNff|DN10OO#I9;JmlevGFndx5>93j z(?ivKV66_#`}K+5nf{3Gt+F7`AJ!46f(RyfwFMvf?-%`iO`Tlmc}ZU!9AKA_2mWC* ziF^oaAUR$;;B+w#s8V@=Cr7~v*PV!!%zU&#Fq#;5e2FrqZv0P$UT#r@cpF#l6ssvLM;}cVx8H*JkF}U6*J15#B1qOZrYyXVre)!!oYjWrUo)wYi zVLC!?{n8}RQ!biGsXhlY|C0f;54r#o#WJwvPzX0sTpeWpG2@J`{4$r#;$aKRGJj^O z#Vs~@2f8OZgW@Hb;P37+P~rtN~R4Q1Ro;RTSD z+RokkF9F1h>|M`wBDnaZFueZB1t{~<5H^|&lABvJvA@e5EaOp%`wKi#YLE{YZl8o* z)CFjGn*u&LpownY$wsq{GO?{>E_vZYNY9IQ^wBgFu6Z;9_t=<&d$;V&pPfzSjL9)j zH0=QB`u-E7jQYwYIvnOY>^#lw7T-ma`2FDQ#$2#GcMI@45(;L9d;;42@-W4016TJW z3$!;a04Z+v-~}5m+R>(i%{lVG+CPAM@?Sdj78}NJ&L`;c)f(RwzX}g-FEihNK?&^> zsFHydr_sI}bJ2>Vc2qs~1baTq73*9{1dl$RLO1d!;7+p)k$Z0rSe#bR*`AC+JtdXY zdVUpt9&3XZURyyDX4K>EB5`ok=?h*HZ%FhFf06DtCFJ^ne;Dp*Vl$7eMFFW9=;Wwk z@*;UI4itzQS585AkcvEIJ9~tzQ;J>96bR9~Vd6<0_;Vw-Su#F=#WK&5Kl3&C6BkSI zeip{;G9&Sio3-r6yH9-aFN98QDknKfYnbz&N9g6)mq4v>FZ|&*5f&!TU>@%~aYLdV z4gNWZP?v*@?tG*T9Z;iFBxI8zb{9a0*(?#+;Xfd-`zonO^wQIxA?ou7nFea|!B;$8(4Bew&|mYlo4ASKy2CI?lQ28>gWg z4I9^alOxZb!^_fk;GXC@dGy{DkfxA_f-bpoUm7jA@5@?5pIs`hkdj6La^kSaDHE+| zHbFWG zjZnu1M?CVj9ObRvN_Oeo2FpH$ar-_DaK@U!!2E~-vH#Eno$LV?Q#XT~8^b_9U}#$yXm)nww!ih_zCFIl zovCORz3zNC=Gjc{(fFgV({3ZDaUz2&Wgc*)TRbXuvH;4~*TJFl=fQeD92d5y!ULj= zhr@t3mu{vz}!pb;kp3s6!`|v`gOx7CkWOXg(6=1Fbp;B24ZV3qF3IZ z(U?C6kl(L~C^i2QG)KGU~l0 zW08CD8mm%L^T3nrc>5Ch)QORXc^b5J({6No(QNAWd@}VjEJP9xUpN(~QOLILG3j-!KsPogqvkLk|F>S8_ckoSLGfRqk%|ycsVl)@nXmC! zr9D95$Y*fY^9^!0GGasSA!ONz1+MNsMowL|#NS6s!Ca|FXw7OR>hD)aMhQ&GQ42XHP zY~fz4AmSK!DTt9fM|RTwB^u1)m=k{cbP#(=%8<#dJXNgp0KEk~|h!J@AW_{`kxy1C*C^3WX0}LHeHo^gZ(owY_gda>I*I z;J9oq;rwc|zKuUkuS}a@e&ksw3K*vjubuv3Zr`~Flzu#E-dFL!EbC~#`L2&WK>tAj zx8iRDS1GoPv)Hy9FB+`pYN)N5W@igm)nE?JPdNgEqchCfO-;-exchUBEFA?$O27k? zy3G$P-wa|lL;!K87v^^5MF5-6hbvAe!fmT#;h9S}!L671SaFICcVurA*K#WYX56&` zC$~PwYCD=hsNgm@Xcf)!O0!YAUOVmZJ%T1Y@5ixGF8JB@Bq%YZ0>)jf#D%-(LhbAg z7?(|lzoJTTdP@{p_2?_OF|i1Ga~`-!Vgb0)w8BjG957!r`;Xc8Tk3e#JzY3>XB7G| zHkNa)od_I~wP<>m6;||piTXZ%0;(M=f!0tg3QHW1?;J?sLPm|j)w@4Hrk2ZTw;uxL zUsX9Vg+y=-CxDt`i-^Ry9jIG-BIuu5gldvsfTGa}Tq)3j@o&Y6zi~X2xUd?A`9#A9 zx$j6o>ln0EEf|s`U*WWRRb+1W1zFwtEBY?(1l#V3<42a}^gW%2TKyh_hC~i-0mD#DOT^cefO!AZ5VUg1AlPLm!_*B8@DVQ)*dH?w z_P?EliY~7q(O*O?(%?EUue}u=+^SC}WL4sadZ$pZdoK>$bPz9#Nr08hRmjNo9Tsbb>8Fz-xdetBh zGnHos_a*q|qM0o7nL3@i^d|}aeT&U_6hPv@A3D0bfvh-xo~=;)$R~I$BU%y}j*!yBz{aqe*~=C>sv zd?QJ~-zOcMpz;dbabXscxPy@SxT9dy?yz(-vtDl8?>hwr6JV4fMcuR7wR>FfV zbFlhVZPe`00{=6xCau3)k!;yYmUdc*PwB3O8@nR-N4vL?WhHLRBcX~&EL#ke-0ZzBiHH|^k*_8ppOe08_6`V99ol#=AjW ztb}M!auV^Je+fk>acJCyYaq8_0rdPjK-ygAf~>*)aABGe-Yv>QIYsD_nS#@J)P@>z z*kBde9Q+Lq@gMO%yDU;Pu#|4uEOkjsv7SXbNJNn$!f?xLS0@42Tj~$D(pkTBw zTfHcef4Q`isNa;Qdw!SGh3_-a^+SoEWV8(Gkt{~1nsTrL_QJEaZ6R>j4J$pAL|3hT zvg|W^$%IYC)ab*ZyodeZQeZ9c`aTLzG_3?$ z31%?*@O@CiKLQT-yYRcAX(7Ga3fIBJZn4feR*clF&lKv(U9S3*K&w0-kB&9hw4RbP?QU<`^oJ_)VOT?T2T2}si$1(QyXft%-?po`-fz9_m! zYR#6%mKJwlZPa}?w{mT<@{l8kQtnEUBY(8Pos7rKPO7Vxr^(1)IQTXBBU+k{wO=Ckwk&XJnR3lZ39-?erayVzmDj7Z#f_YAV!ah}fUJca|+6;YY*5rKclRl3|lD0ou3m%2o|vNeh0 z$SwPGMBery?V7QIMu*Gc(z=7}#`_z@YwlO-vt!k>s{gT7j?Ninrs*o0>A@yW9uq=j`D_jaulAo@APp=!^O`$D_<8N>oH~q34(p zcDa>C>2iOPn~X8nqQ;HWl;r-_6mTD;CxfIrsYrFX7FVNw(EQ8g_t56E5NPkq&8XNlg!ONCv_@+`g?6`3N>np9p1JDtU+#23I{4?;i1s?iAcOV+H0Mn?HiqP(=C8g{Y??231_^g!MK*;n(jwxmkb9 z@O@(&bfe$~^1md3xAqJErVvq48h8)YMlLsS)9L6gE~q}U@1Q# zJd<37+TF%NR#M0{ht5MQBa?C4_x*74vqGr#*c!>5?53y24x&1TMBsF{AJ&a_M19AH z&~=^3K-zK|r+a@tY>kC<<r%r3jbr$eh?V4(p$a#06sw7=sXENet_Y>eQ(noA(# zp#-{lD;c*a8se0kv(V?mWYlv#hm6v(L+8fop>dtE$Z}X8IUOn@BsdXlzG?wSeVC3p zvnaB%?j&(jy@{6&d6W7CN5Ym#qls%%vG?T>qVu?n95vrZCymv>^JL!P=^>MpP%NiJ~hhn}#2XOqdYPFu3L=puFO%|nYc!oZ3(M(D<>Fyz$SNDhi& za>|p#cXNgK^UY}V*|(F9BdKJ=;;F>r(=WVg{$~`GE=40mIjD~ZrlBn{o5=}Ii)aiP z;2V|K;8U?w5F#r96z#8Y19y(o2&#bT#{gJ)-4wfBFM?@%rgN3AZ=%&om`GK|!1UZx zPfm1)3=d2{gpBVy- zy!YZQG_P)(Ppryfm83n`H70GS>Yts7~MeZ!b8!)H%4f8 zsFa{W*_Q2%eNO{KZn7cM0hp1jPkYA;ScHr(mi8RQvY+;e-alXX&0P-qggobh<=a7j zE(gCQ_mCH<6ppADn!jW7(UM427@R8yUN@D%D*=YM<((AHeiI9q-t~lm(kt-@iH0X? ze?XVANieqC4!S-XO?5@wc1aIKXn$B5+kfc6Q%dE?((Yy)?01qVTuLJ|Q>>xo+$-4V zkrGYuSEM^8rc;k51ytsch|jEyMVoRgP@4J;Vp8@3KXARvrfTpg{=*a4**1k={mq={ zU3H9<)F4F!I>>9<_|o#uH-{ z=)b{ZqAdC`xKhOXO79A#06%NKG^YoWr8G z9w6gROr#&bE}^IL4Or2pSmIKz!pqsz*_NNe1`? zqR~O{5-oi4hKiZ*Aqhu}iQ5V{jF*%k$!t#%pIVarH?Nh_zSsCh*h+k_b~(LgTudwH zIHU1xH|d$f2GrBT8INvkhWls&nElb1+mL>lTk*4z6!ewAOO5idyH6Iyk9z~eN5z4Q zV_zb$#u1%28xJ#T*1<)$jv(tN8)*OY-^e~&9|oUT4Gdn-gL_}4qbDW(;GgpWj?yEr ziAd2I%m(^Avpd&X~?U5k}<4)*%D048f~hCHC^3v>??vlxS<%u$y|@$wyy%{L?pr<}Iv)8D*tk49RGeJ}Vpc(*h4q15=}x+N`VSQU zrV*Rjh?u`hWpHl17a#p9mA<)ohvY3^hBo}wM<-VokrR9#ExI6s4LybQeTNE(wTplr zSO3Ac8fn0>TpntT-wD=xwbBLZQTVEMHvAR13_s9qhK=>kT%qDUwAbY@$xu*1=if-6 z{KG0ZlKYR{;ZEV^TPDcGFdHSeY2XLH#qhSM2;lHd3`+OQ;`6kT_FnJ7lUn<6!BPzZ zXIw)@%J0GIU8{&iq8e2^FM-Sb#fVdjCV858fgN9Kg{yxBV5hXb=pi|b7l{|J+@*K1 zKT^Rx(M7`D*X`JbjmpA32j`N&_dIVb<-iW>8zg}K^=%cn<%BNEkW)q{WZapvYA1HtYd|fwJw+o;=h5BQ zwgSiEgY38`V9q~J;x)q>Xl4CDsGU)v*`JkyJx~*VUFmTRVJ{}VsKG^ z9B`d#%{03+aF*(6xZ$q@{@kI1>RT>ylQQPv!=;fVmOp};&i{f>+NWVBi({;(yc)Yd z*^XwNIDxcI5Ug_~iDdmr5|JLq!@o=qmtNImI)i(N{Jbyt{#p|p0T+{Aj|h12RyH}E zS3*yS2jhdb4m7LVfpBHb?E2q0oE~0}Ee*w1y{v_r~DQJI)DJmD5;^ z>UiP$>mSJ5SBv@i?~hZHgQg_WwwsRb?;&P-U-5RmdHf9Lmt^>R9@Fzq;`4T0A?w4V zki@72*7T(aITVbAUXvV9oBtRzc6~BaBSW|(q?x?2sYIMuCn_;tAP~&E$(+CYFem7Y zce+QTinpco+Myg4B43TQmPRsZltA}~??=WfczA4uImq|B3dTI{0NRopsjS~I_;isB zAkkiENeo@hv%TDGOB`ierIS=Lk1sdu!YX~tS8#f z3h0@P6Qpl^InCyS+3Nbocx|*Qf7rc~guE4J)jslUb?!QnE6Rg>T#-P3sJFt$Qf**l zZ3a}*pN`h--bbHGe?yNe_u}(V9Gkpiu;1Yw%hWwYCkZ%uR=XD;dvq54n4V2aMNCxZ z5^22Pl@k^BN+y4XH1V2l9);Zh#s!R@17qzJU}<3xwcgT(W*w&B(c~QDTJs&KPBH|8 z$|}fc)^!{n?}I;!OQ7q|#nJgnB`SL}3{A1MM`I_|qlNPOQOE47L?wAAxTP@_4odst ze^dI&Wo2s;4yel*7b^ReV9&5v+onzm&MfI{TeykGMx@Z zgtDT(d3e%~H&kQj2$3EWLcedcXV32{lknq`Bqy$ux+LZy*}zy3_jL_QI8}_;*=e-@ zOg+xV7!xxkTs5i+4eohO&tLdMX2uziLN{gNC-qL0kN2RSu%2wxHbH5cW#nJUSNz6n z3^t8Rg6W6LfcHK%kn-vg@N!n8Vj@1erCt_1YDe%GydK&($^iZH59s&y_jqH}Gqm81 z5UKsxfU4>pSriPw`kO|;0d;ls?!sPFInYX0tcd`{bt&NOy>v8%`q1eoNAQVP+35cM z5^{C&7*eoQ4JLD0B*;%dRPuUALlmGdkDkQ*a17g(`w*qtTtqVtULxq}R4hss^S*AQ z$>uQzcrN!$_{DF8UQbgICh&zc!^4n2&sDH*sYxWa!J0l?Y0Ho2-r>02%USn>S>(*! zrOb1)reKzCI(9qVNLrOO*n_y0sNvQVFl3trG~@TeS-1M>e36GBs6v}M7S6W-|->JyDiiYDS-=Gge%PlD#!utu{TIFre;XstN%pm{#_FBe0(5A~tde`mQ- zvk{o~xsnDSYrr=@4ZvNVhw##W2v9m9b zpRWc9T(OjVN-7{)Vsa$)hd8g~+=tFTHOA$x-Xvb+ZV9{}!LPdph}a7k{CtX@MSzSa z6JFaabdV8HkBm@0ApJ4xFP9?r)^n-K3T6J?@oQM!;~>-DU_q?tWtQbMRd6co7MA|K zj?}ZAEGVcNy>Z$O*ILQLxb{G}uFa37aB5_V!g9LF=?<#9(TK9I92OM+xy){BZeS+U z{Y1Gg4g5QPE1l(<#s1E^fEBdESnpFqsl9OSwbbwM&h`C(dpMhW|F|0jhW$X}E3U$w8@+&v!3ein#O(i9{Q^EtlZ77U9zeq; z8O-)?#o95Wz`kHh`SPJPy3PFc&Q5Z_`wj*Z2d~LW8|AI4bxl zY%6T!J{_5ekLN8SuYaP&eWQIW$nAizs3eh|eUQS_ud=+Uk3Q+- z&rr$so&3!ABY3gNMW*6!M{L60FjGA*fzvceQqreP<*ubLQgR2W8d<>uCop_oz72*q zMlb_|uQ;VWhF1LZ#2O;LqoZA(;E2^D*8Xc7GbuVw?gT8uDNZSL`j)HAY)>0D-Vx6h z9hpQ8FIeCmP4zJRy%jK!_5rK>)WBWWLv$tbL{E<21--Jz(27k5;O;md?uBV9I`Qr( zHg`}(_XjOtQ%(u8PpqVFhZM1HVFSGUWvYVrv1NpD}<>zlkRA@0`GI>ZO>*f)VuDOn{w|Vo8C% zA=z;K5MA_m5P!;foF0wNxPHF_GIRg<=1NPNcTzFQ7ccss`ui8 zzq9#a_e}CSbBN|YYGW%Jwu#ObY53(Q%*>vQN10R3fKQ#f;L_1cp!Lmm8m_2@1B!a_ z5RX5F4a^K?sqs3HdzFbqRqj`Y-1{Sv|AO4_iu*fB|;FkVH%3W^*HUaJT|#f1N3G% zBGW1jGI?qxS`%0UuL-N*i;xI-@cL&QsA+Z!I$XU3tA%4!3>GfYM>v>e< zjdSH6zqyXhQG{szvV-NR%)%QCM}y3z>PUCq7<6`-2IWD^I46TleE>e@-LM@{jm;UjiN*RfN_${3Cy69tO(G%3Z=t79qzp+53gYxb&JD-x;pY0-L39o34uJwS0x0V~bIVY$!1r6NH~cJ)>gYJMgKW z%KQf1S?s98eJmExEl?_(O|Qt7(d#B|yyRerA-7{?RqTE7^U- zP4Oo%PCSTuYG=~@f0Kye=oFUA^vQp51ALOnS8Cc@gDRIyMunHNxu^H7AgYvw1}^i_ z>DgIGbzLY-(!PU!Owz%s+V5bD%T+WS)&nb*uY+(cDfGZa6)w7QkbJ0?#yiS?W8Gps z^7?5ETv*E3X|0o_U~o6y)bfbPOjcy4rWw%p;o>B^Y7WWY4XAzILAG;`GwSU+ZNB~& zglE7E6g969s{MV8&$fu;w6pujse2eVit;dRja|^_-5{5;{tOg+J&aU8jG*2`MY2Oj z4y{`#Bx!Y5;7Tb8L>+WQz2{%>22Oxw0~4^*{%)kRW-dJ|a-k@7t)vGZl;XXye~^u+ zM?r7gC#!&H=P2ET)gRf?$k-ulZ|_7D-(4aeHoY{Z(uxg<_E)~sWjL#>d+<7c9V>{s z1D}dCscY{UJZyQ1#DlYN_p%%4{+5+Q&%1!ry=Q<{4ap(;Q4%-iTH>GG!zik4GP$lJ zPO{Wbq4c09*zBb;{M>L2PAzSK)=P@8+`)b1MmL1sZeCQ23lsH$>rl*jEnfD?4zjWA z0DU3i8O09y@ivi*Si!%qI0u}^D-V>=&BMzCRxVZ8{G9?Q43R-C_S(2W=`cPfsYj#4 z)$!_(S*&lEkxijy$l7}eE!}Deyhb1r-*p{tP-(@t0x#2DeNwP+^)t4&bP^K}xD7{- z{Y$PsZ3DkO=ioM@AbfE4Ox(3?6t$Z07zuY~vz+&$hjbx&TQ)`*r|U&(e6`rAeQ|u{ z)MmlDvnqlY3)ZlZv1gdhQx`!<9TS?iD^bhZVPJY_9(L0WBsndkh~^R#cJ7_X54Z6f zpYqs{1;_FzJii<_+S`KBS9hWH1LH}JLn#@V89{SIB;AfW6ZSKE6m}siX(h> zz(R3P6g_(x$*ws|THJNnrYRvrHKdSD4B1BGx9X7l3U<6r^9}MmJ&joJ{7EbN)%XvA zdsvsVGQDu_3iThp%O4qd#xD~xeE7*MP<*-=+3JdP)B#gy^e8X3fQuww4nAQK)hcw9 zBScfAeWjEo`guTj<8k5sbM%kIA`=!QYN= zKsE2CgVIV36kK)^rwrc21s{KqqF){;r3{JODmO65pM_q&tHE%-40?X;ISPITNJDl2 zQLbChx<%Ra;OWQM$&<+>q<$vxd2@lz+%%3(&FaP)4}ypw=L;1ym6GQZ&FJd4=VCzv5aL^iT2{U%O%C(6M@{54_U=gq|`+I^@ZGK#vnl!2~q zvyn{EO;YBjKwp@zX4-ec@xs+Szuk8tOE(>d|A|~r0ykN-e#|MfcE)F-C;o=qsq$y5 z&)z31RtNK;mh;$->MdlaUYsCQwAW!=D0|f}#$UP>D$pN)kH2lPj=oQhqC+`;f<<~C z1bTnp5d)z$471Nfvb!J9dX;3F@2ALDjB6p19-{=0c?o9K_7Cl7)Ff|idVtDxd*P|i zw)ppAalER=o;o~t1cq1VGDdd=KgKXdu%Z7PA0OF8bAt{ueM@h_{@#rOi`pT) zdBaZ-e>wwgwf%#ew^`%5fxq;@hA{ZwpA7!7`(>)Mrv`oz+@}Rbf51Dj0Ce|v22pW} zC(-v0upLFds43$BzhZ4Ao8Fcz;^;Zh3Q-WW?tBWi-4;)Z70k$^bATQBVT|J1!+7Bp zQ@*z(0pm%j!qIV-^kaV#Q%}?oe0A{`MinOuI8wqQPyc3;1>(ZyNo7K#jlNX!{b87W z@Hl>SdlSu;yhK86l=;8kU!nPnjtP!67P9c~^~itpW2)fv2UthVL1O-rbmPYfcooqpa>S1@J48O(vi}=H{h9GfHg1w zqNqy5-XZ(=&58r~`Q=A~l*~$|KlK=zwd^?Fe=-(C{3wG4)*2*GG_xKjo=591=E8mQ zer(AhKdRhoiiYNt;OSd6(9@e$=h;oaFlTTpJL+lFoj7K$q1^t z76|`tiWYcF$neAUOL(oD@q&4d_k|uW^XRR_a42Wi7M*qvU;11mP(1XK zS*Dyt+@@bJY-uT{=70p|+tX z&{XzA3-(lk+Vc-cl-w@#cET;5Mnkiz{WWp*Zd8fi_J9};mBuh*au zaSv8{a3i$4%aj_b@M7R;i(C#L6zGn3`LS<27~2U!0mph8xlkeiU-KcN2f@4b2WRpvlSZzR14lG%kux_97bsLNn*hV z14-BeuRXOQRqy~lVAxEbJQ9bMHAT$wV+$>iw1zXbNR#^Rh4AM3{Yb+(ii|7XMm*Q# zv+;{AVeKc2`L5*IEau`Tq!=J6)O~T1j9qn+KG>7MAKzFZsC#^k54)~IkKWIxcTl|G zbep!&>$=F_l0cxtr5)&#y$y~35l!XfB<(l zJTI#Xr>#9o&eXmnpLV}O*T+#R`C=N)SQCcYZ7vaQk_~d>MzEi}9LW#Xrb@?Vvyq*p z#N)|47Q4cm`W@RvivNW0E~(A9y80x&_QR2d+<3q%E)n?}Q7b)v!;f8cFXNxOGvS#^ z(ayzX2&5$q;?3)&Y03RGTG}r9zttpC)Wa45UVN{Sr@x|*Wy%*^e|waOzc~@U(kupc z4slRgd?h-$AOYBH6(f^h_F}JFCE(M$(PZAQhv4zs$*7=E6D=t8Lz0!Zh+C>QHe4k^ zbYx zs87R!+-ugyt&4QPGurNrC@a4YYI{2%s|rd zZupH*AgFh*22Y;GQSE&B8f_*f)QeYwu;!sL>?m|Ym;Jq{X4_7btWyF7Rt!*m2fhK3 zO=qbY;&~Kn`4RZ|Po9WPdm{GxkO7ZR?ZWnvTy%Wl8W^fIngn!Yqco#n7;~6qVh>;y-|@ho=xgMpUZP6V0P54JfwyO##9y2Ip?=O=thH)C zjOKZiSaxg!1NFBxY*8b%$I2Q?M(Du#T*nEMYbycWXRXH5Q2hWCzZ9ar zm63F2w+v13zPp^iNU$^beL>sKyQpWj1DgNGM#5=HV~Q7k)<1aT4gTH^xVrH=sqAg1|SM*RU$>AywVC8zh*HK}XhDpfo!n zBE2jg!Ee??eBMs9G1VCD?ytoA^!kv5L*>Xi-Y^euHZDio3LgJUDu_yUxD6vxl3RoJFo(Ug-Z2hHr4 zM68A;>=ZB_?A%>W9zChW+V-!hmtp*9?#s#4a$Of7`)mg)+$DnqL?y`O39@MB>1p&V zb#Wr177yhu6PW#Sp=itWPxxY>5`Eui7sFbWM(@5p6U)}hW3-#g7<}zyGI{OqmFIK?$OOXO~cti6Iuf{D3^VnL!pz6oGs}?=|c?GpIfg zi!N%}qsT5#yyj~`9 zFr^y0yKF@7%s-N~Lb1px=_Zt(+KF3}eVB8P!s%l6DOyCip6M5AXChmgIjs0L&h(da zxzhuWaj)n$aR?*&98kYnIF|o?|9|hg^Y7-zi0{tG^D;93{rFT?e~*vS_hGn}{9Kpq|EpDIqz=~%*TbZu zAC~viT3Uv2*NT6Q>mA0Gmi!tgJZ!5~bNko0pBD1J_JU**v=Z;8iW8KtN*o`H{LI1`z z!0O#SwiVxDAR8G7#S-9EL25*Uu$MH3@$u}`AGE4aamZAyS{&ozB8aRtB0tfL>-XfrJW;&J2H^6Rj zXwtyJHtYp~{p?&Le~roRW5DJH8_N8mH2X_k75dOQ2&V0*1=XQXfu#F$;5XZj*V9}I zPrO@$Pru^b8xc^4uG?dfkZ~{6DdFO(X&S^bg?Db;AcbTniV`w&7r7zsgOBZx#{#8R zG%??Y_qYlZy>1p=#K)#jaTG{a#1y*rUKSY|;-^>o3DP0bgXqS1VN^JS=NZ&&LA`Z0 z27ASf;e%_hfY(=V>=J$xz6rTZu_FS|HeS#BlNVb+yiX&r`05Kdg$Jp~I#&+ZE?5$ z5ZP;&O5f!*ex$#dL1xOU0Vr*t%+P}2 z`=iaEc+NE_k|TgGJM?3psiv?ZvIjmFzKYG}<&6J`T2t`?1;dGlWlOB~DGAM#Api zCe!P}$btuD_}-B?qWyjq&7Z!OuuoZ#s^ce7k8J|n$>#-D^`ukpOk}{M#tG0^FB@d( zy5fVAV_AE$S^Tbqk?eB}r7ESZmXYEwavgYH796UuP==ss#sat)=9szJDz2;>RwVm<49@K&D& zxa66O?$6|dpezDd58At?WXJV|U#1RxNp_c{ua7vtHxM@@OaU2A?nbNZ_I4Mv0 zxsKYMjFNB+$9`2foXz(I7A#W-7qr+w!GQz)h1qZikcXyg>+!gr-SG2OC9pzC6VY+U zd79s)pwL|et(0*BY0f&J+*A=|Di`B56Hdb}i+3XBM^MU#tgLElwdKblQi(So0 zBM&(}p%ane02eljbW`5*WI*6a4``q#4|?-I0z<1SxP8$}(5pEPIO|B_r$%w0D3XQT zy+5OFqyrJufLo=7Fejr0XJ#xzJGCp(ZhdVe;3~@VvUNtr7aefnyTf2vF|X&R;49jw z&5wIC{E+ZVUsQcViuUQ?$Lkx+NO^-W-EvKs?pxr6bFQZl$yL|L@fF!vUf+t`xBCQS z1h2!zmlUubm-AG5w!LCQ<`6*DQfp}HquZ4^E{i_ z9<8USY$ZsI%gzIK6O(5@C$M+iKCX!ae&VDhG=lnewdmY1w@QjBImgU$hq<` z{3P-O*4CR5;PwUQdwP?L3j^qq23c~%E1$gfUq;uLuBShV>(c9DDVo~00LdLqrdU-I zscQvW*{vU^1FslBomRd=2@QtB8G0wFH$z$M*P|VfN68hiqcWG8Fpx^UN*E7J>(+v% z;>j>MVlswYPwK)he~^q+&@tUC`2Nfo98f7n1W#UpW_m&>F{=e{ikeG8-rD07sR(@A zoJH$@Oht`)p19#q2-zw02a#puaI=9M**-OgbkC2+mKQ{b1-y>5dg`H6=49~7<_+6> zK?r5*X$d!#XoF69g5mlTkd-V)t-h8DW8a8_+eS@nqvLPcnu8J43hR$l$7X&oT|)t7 z$56*hB9gbBt#CtS(I@CSINZR5ny82-sQMY@7 z0z17iqmfCPjJ6TQXWm##Ifm?u%EPbOOG(avBWYP|gbto(!4!!iN@CqEc5loPYKVIQ zEYr`YTqZc9c8h1=<%Kf#8pA_qZ&M36!O5f+3c2&@qyz{X9|Km`^ZXDld_$>6LaDUv z2f_4sA2cze0d{yB;i>8i2xB9H67o#YA$>)%UTZE9a!A6}u21lZN#p37QUU0h*JJGJ z#-St6TG7RGr{U4c6KMyblX!OeM&hFUfJ~MdkJ(0(c%0)3Ahi%tJ|{{kx;O@&kLL9+ zUzvu@@GH3en-!(68jL({4S{KgOR4UHcFM_J0<1U?1G1*y1EmIccs;t~fMLpdAY*tO zzcVXAZFoA+~{UY&sobNIj_Hw8;^CF-bp4j zY80e7{t^tISRBosTSR-kc}`EYIfTEQ7eED97J)`5Kgu8{1c>m@h1*yzppPYrr|^1d z@*GNd8Y>}4O^pxA*5*+?EeTY1wFKxdj{(ngC7{?k73|B6qKpmVzy-^Ls3m6z_B=Po ztJ+r+y^b-+r)?9u+y=;0?e)Yf>>4&&`wkn3DbZr>(a7b%F$~k>=?YISZPg=ypIquB zmmCk^+MPNiRyu{`CCTH;4mI>7&;T5z=kt8WZ&TM4FTipKbzrAB2P@3#geE)esO2yU zo&DAURz1k1lIDj|8UmuAq9Yd6^p1gUAtHEva0q31GYG8M6OQb3+u`oL^YJ*#MP&R* zQDk_}6rEklB5_+6klfM9*nNEs-fbyIJ3Agiw#&+KZ;d|v_0~dq|Hg6H&Rd2Sx6i;~ z<(o;J*E2G3S_U`PDxpvz9S|65N{tJ=L!CdK2s;uc0=k5!d20U=PV3aAT4qBecKI_1 zV`M=2x?<{J%m5JA3kF3I9?&Wy3QtLop~5_zzt$MGVhOK~PD)*gr6 zr}2{%z6O$Mz7d-X#NZ8i!c6J(B;rspn++8VAz3$}T$vZ_&2B&k40wM({s^2n`YnvVlZq$v zbf?n?=3v#-ZP;y5HgTNcg)%k_p>VG`M6dP~*r~kjrs=c#1BrZGVn8oBNMm4<2`J)@ITHg0dldG zrejQm=K4B?f1QFxb|C%PCs4vW&!c+6hjcYu=wSga(N@JZsJX)TZ~ ze;KP>Jq$jaI){_HQfOV1&s6lBi$r2)A25+ghoeO*Q2K+7XvPh7Bshu>tEubZ-OKZF z;^vD`JxmN=x-bW~(ndJ+?O04KWuWK<8ImpG3uJEV;n<0ZwDkl*(6G*(mU+v&#}={> zyT^FZo@2M6CoghHr;-uw@Be~R6n$y8KyAEiR4<;tf~QAQ$b8=p2o%=B>Zoq`e#R-ZCHo0dw>*b)9d6(T>0}(GD-R#! z=b&9X+R&}gI)pk8q33%ZLp6^&z8Y-x+ zYm6M{s-Vj3DOl@+K9%#+)j(aS8IVK#l4ccMyWG@`O zbQ%3POOiM&_8>NQb!o-7@uX*71MXX7Mx*%0v|L{x6R<{rbHnuvlc}&CZ#sVkpWER? z0*=d(RX6YBGCyCqbIEipbj^dBcZhcfM~_RZi7kZ^ANh!fYZ!7^^cKz*RX|6pL~xZt z06xXL>3Uyq8+lnI@;Yb`t#^2vRDfqts z5eM*pw*SBOyyEA0{K&J9b7^n2&*Eq{z-0oMu#@P?!4%Ph{Cp?^$ z>LUkvKV<3ufAa4>XCuXOB+o|Xzn^DUhR;p^Ri6EK`T3vY@nanx+4so!`}@CS{{1}! zfB2{UTxb5;I{d@p{(}<_<9O6nCdw3s3lb?GKDujaAS3oggz?Ke$g$b)#T*DO;@oTm zTRGed%OqO?2XoX2LkGHx9Erm-Bq#_OE1U6Z)1 z*1a4Jmj>?8=B=Ee<+SFPtw%L)y;#J=_}DSM63HANLz?5!0m+nF-y1GMBhM~=at_vsSTM2=&pGI#IbXF7C#FgNtrLORk#o2xvZt*Ih~nI)5q zn5+A?aPqBaj@g_)7>_U$G(P$)oolCxM_*b?nnQFL`+#J!U`U-4yW|hrDnX62y6hY0 sy5ULMNlt*PlRt$PH$A}FFfN9xF{P2-^Kul^ac4AVl+$}AzEhm}Kf?A&G5`Po literal 0 HcmV?d00001 diff --git a/capstone_project/Machine Learning Capstone Project Proposal V1.docx b/capstone_project/Machine Learning Capstone Project Proposal V1.docx new file mode 100644 index 0000000000000000000000000000000000000000..368978680d7795b10070600630649bfd03443c52 GIT binary patch literal 32134 zcmeF3W3MPdfToXa+qQj=?R#w7wr$(CZQHhOn|o(AlgwuKAIw%#^`)visp@|6rYrTd zyc9493IG@Y1ONa4AwaLiLRu*x06-EL001%o1dyhXt&NkhjgzjDyPdJ4Hl3Tb6+rw1$!jBnOc3UWOVm6^a|$;$x5c)Y5*YV;;L@OG@1HHf> z+$MtxL;K#mRZDU`4VA5$Rnqbd%EY@!CgnE)X@F=?g8gn41>uXBS*ym=s;#yPh<1%Y zd=lD-CvoJv=3E?#=D%_r|JHSNQI3?w4_7wQ7lGl zK6WKs7ggcn<=|ej@ zF#oryM)|+=A}vk9o6iLJ=*j?}+ES5?ulZrC$NM!c7%z^mG>zbjWY&oIIUQ z%B^GuW-f7;@_^Oqt1suRW$KCTTDn=cMuN+$k7;HEn8J$9)S27ZuF&(uC*|`*F;*5F zG=>O}@DiCY*A;37kM$^Z#NkLlD#pf7VLwMzcJz!ssRC!Dmu#rRnw#G8H;<~Z>8`+O zvt#){ncS{ThNF&w>)Wo=8BkeCj5tJFP(IUOSuxC#X2%;;L9y+b7c4&u|LR7@1k*s~ zLx#^jdO2qSYv{l`trxhD)^g($s?(r(dwvQ9Hqx8%{!6<5n~_P~{Ik@5e2hZ_0N?;X z0J_>b7}5W4P>gI1ovr`H;eX`de?bHIFAV?P=YMt?Qjt;I{1*nUCBKA)oyB2-1h_D% z3z#Mo#X;t^5lt~7Py3Qg5H(6qdFvy8JVF@!%RF{;?Im)~{g|i{#>(Pqh zK0*v+@!p*|S|TqkJTArh%`m(lM1Rj|H60i29KO58aQ-SS z)_CCc%5f?ppgJpn3$aeT+3^@;i6G2Kl5AG}@I!##`gsxCTlJ*-rzEtuP#XbX$crW4 z7s5Dek&iVA?e9PaDvY`ekWwt?R3RFYq&b$y3V%C?ps zEKJ<3!g9Wt0rGvq{=dN9*MqGJVg&$@ssI2${KxBmg8ko--tyLTypU`-`4pb=m46$W zTF0fq4(Gnnc|v2~wT`N<|6U*r0`QMBlGyrM`qe+NKbd`|Pp7XWp@Gy|^L$P}=j48A zh>mM$Xn4p`FYf(v{?l4iy#HQe_{*apdqg~5=WJ@WahNL>+x=pHEdBsIjc1W!h|L$v z7UKJ~y5ajx@2j2-hwIJAe#H+2vB{_1{xMr9fzVdEUR5g>)qavYCA015Wr~t@Hp6on zC0b%*q#DCMbz&r9;@h56h}{!=kCoBA^i_zk<%OPch{ZO7#kr#e{e?V=ZF-u)uGu!~ zcVpqt$w14z2GF7v(Z|6TipnBEU2vGu3wAw_W33;r z=L5{#K14##%lfMc;3E90U(h}h&$224Hu29bHV>)q&|Z#C1aL-XRwH24o$t*-7S>*kSy4(rBB?38w-1fU_}Eg zN6&hB`gazF=8!`3QwmM!5xWb*!GOaf$-F^vciBnr)+5B$P3o}BrSKeik*&y5=+O!y zbm=~;JRckh5EjFX?E%dWsy;6STx)c-Y6v)JewAXu<}@OD0G$$PAxQv^e99M=1C{6F ziIR07|IFNl7>(`)L#CCTkwlywac|e#{46d?0$3(Dx_{?I{$q6aw-jYBC*E95XdF{Q zSZsQce8IxN4eXQ7ONR-t?{2D?@#|540cF#n60W;v65XL#OCe*PJ&N8yNzd|ed||=J zr4#@dn8jZUW){SUpHMJxg=0-6fIzk3BG+IqK(Q9XA=EENr0{i^5M&5dec=V7TNuX^AQ&zw^~z1>W~WK>Qa7R0<*^aY{VDD=^@Ewd3m52$Jz`=AWoai zalat$mqgqAka4M~rEr)Gd-aZHF-Kyjob${5NE;@7P5=*RbhA&)2&N4cphg55wjBnM zBqP{kQ0i>|5yGM@axgOhE1eb}@6e)|E1fYbEt84)6uUi(6>Vn#ACFpu!{&vEAx4JV zPhq9XaHR2VJPlV?)ujw{oHQtAb0&EId41uQybvT;RYL#>2>8RA*gi_3p-wf_x28;T zS*v^tjk;oEdq9eL(v^|@v`7P341`=MgNTlOC5`(nEGe~G9Xt1lwE#eTJ(X0C&%W8e zk%a^ajxdiShPAGdY#KK$uD)~~TI#WAR~T8Eg3OnZBSh5kD*r5g$jvt)tk{cKFQWc= zZJL*tr8pT=nj}cja4=CYKF){uQS2Zk@b#e-c^<;LT}gF=2$haxOh0>_xbs*p3pA?M zM14jwWAKElZb1He>tja1MT$c@%jpx{ZeOUMpGvSEL6AF&C456G6LX=@ugyIkwovVY z8Ys2tcROtqBY`_9_tp)}nh9^{J&XbtBMJ0Pwy7@P40>q1zV$HxzTMD_{VgSZ|A_)9 z?j+`Ar^5I_N>aI42l6`@YYW~D>xVth*S&{zjuMu=rU8z*Z$>^qLYME!CJ!9$-p=4b zPy}%YQ-2Cpr`2u-fjnpteSohDXB?>SJSZff z7>n4b$g2pWglbaxCK8Ob-s_RO5YkbCYUS9Aav@s(M%b0c+JPw~SQkcCnmjV?&mE=*Zyv9Xj6nX@um|n5#!3-FwIJGXN8j2#o z!~`t!Kf=opc!E^74EF(0#7K_rUaNC5DDq(f5G4aXMcB-G1A8z>I00b1pA7PfcU8A>#0W2%$K3v9k^d}w;>({5|6GQbfl zPjx>fR*VNsh;az^{vSA8)ZEh7S5ns3^S0t>c=C3X4)*b1#YVDelZ1cxgN)X*ARZ6n zO)*A`3|2;;j9+Tir&nc|vC}@Hv^jk=IsD_J6oz0LV#DDVA10;xjZoZyk9hU!<623T z)J^!C(n2`}xzGv_V*3zv`V|z^dSwiPR&3zw6)sLv5#NC*>vN`@gej432reMZSQi6# z%`Q9ftd0Kmo_HtdBgJ#eR)6PA_F-hQQSazMisT(UR{!M{b9&sjFAkQPVV41Dm(2Y- z$!|gImnMjNT79AF>Sk^7EsuzgDCaJNm?@73sKH0{uMpmN`2g4%$50bz=*ac^mIHYd$}|_`3+Hq0 zowTH{3E@(p#NG@fr;4{2lw@$4G z(Q)p;UQ@gQKY^^poltNKbECMn4^0w~$aW4vaJWLd5Oi{mQ8J>aGGSKHF$|y~*1$yE zTlH~xJdWe%b9}JNrpW=}wV?;A>eBz}9bKM;F(Dz{L05)e>@#|x~vREs=6W!y-w){$b_%K zE}kk+qLk2)jI2M4_=(NE-X8~)5RM}Ac)1Qwo*Pb@>@^UU z#dqWxvOYMr2yg-5?GKY0)MhGO8l;5BQ`7k|CcbKo4etPuJg*oI#m#U0@`R<6p&`mKJ5aEvV+0$XwaorohpApLNs z=R2dZrD4CwLuM0DG?(1Zc{Ik6aG@aRb7V1mda^XNcIsYAaB7>kF>59YwQv4y!4}Pg zq#<_mC|ULs(?TNJxDUJm(!mUlrm6oDNYqbG#CK1fC}J?{ukR28(1~37Lz0*-Jpnl3 z6p1c~G;tyQsgR?{jNk&hX+2DZ+n1|GpdB4ih=45C30jQh*>s|A)__B8m)8u}K8+yb z&Meoap4a88IahN;z+X2FkevJ&zl9OGrd&b@d-`+YPi^^Rlb@DtH;%g?VMz8b?gY7rWo&{gVMzH2k;3i->yhsOFLcq3dPB(N?CO1E zeW?&+aU4r&bI8Cds|>E?h0)Pm zRX;G=p}A~E4aGQ67eS8h9jT zDe=O|(QSJ5w{Cr0qw7y#C8nIkQG)ByG&m`FzE}?ed-U_VxeXphh_vHgg4ts*F)0u&1z$RB53K%!< zV|#z;A%N9FyMWkI|6`cqbs{%%5wC(ydg#kEuJ<$M3u`|2U&^D)=?;dG;3`EOI7u+b zVAmZY(ZrqOOuG*95yp3p zt5wYcP%c-MBj3g-fDi*7R5pSV;{(qi7?#C?h!BVg{U0gJy9hdb{N1PT_ z^H*J(8X)YYSr-%}#GAEK6UZZs)huV9D@}aaZA8l{(j?)=N*}~+su9M(=3`f zEX0c*1WQ1{9Qfo#!@~E}5}NW?O)dY<0W=ow6FHdzE5VEf#GwTz%4kd%SnY}iR5uYg z&;-fCe@%0Gg(soVoWk7GJ|&&2sd2qA8~r1IO;dQ_l5TeEiizCNz8xqp&#Rf2~+Nc*N>{5fV( zjcgZ{xN->UA)+)#-@sH4WZ{no*kd%=v@%SV7rZ(E_zXKid86OwPvjPro#q{m3qwYD zlb50!#+!m{5Zd(v+#^eH)d~@sW#1DqV9f2B`V9bmR z8<#?|p#LO`bkXOtC@$BNazDZwm9cqvVfp;=$I|6MVLTxBlwOM6K|kRf@-S_YVN_!S z!L>`(V^7041iEa|zgb3y@=6x1FZO!!AA$0MEnXYLHA~;h1y%@FsaK%|5LO3_-p`uAx1E!NmRWS!ok4GVOL937W^etzV!r~8?6rgxw^k1zn^f5DFUCm zSsdc_ia)8qWbG%e3{sJYlF?2v5`9}0%QiHy+(47R=!$`jW-o*Wk6k$^MK~OlY-bY9 z22(g!tPce(ft~|;((amKfP{F(5MpIZ$imOCR;vuTLYw$ zyx52F80c=!NBcT#W{A_o83jK{H|Hf@O|&P@hn*|eb#2!xPKIt>D=4GleAuBF4}C03 zw@_ieeGVzC_PthcXZa@dP;P!De_W+Ap&Bs|b$-KJ>V^5qEu25s-&4`Elcr0 z04Lz$mTxQdN52=&V`Q$?A`ebLhfE6&!yGtLW}j7CaAtA)!dn>j^Tn;MBE*-d{Emo1 z8TDPL2&x`BIpUlqBswJM9UZZwB8jR(-c^(4I(7=fg4Pjjx(^V-)j2+VW4SMP0ZJe@ z@&Z!}J}4G3U@Z*nGtNIah_$|A+t6f1vf$Dw~MMA{@$BL$T_5dP6#FBLDTQPeXq3{J~!~D>~=kSts!Qj6M?VZ#dITC>qqS7OpM4+*RmkVS60Fh@iTGu z{PAsYVp_O(69Y5D{HDlm_O=s|n_gUTAn6h*LJw2@K-OYO3Ok&t6wXJJs`XXDfYe?l z;ybbiVtVy*#Z5QstAnFifHOqD9ibC_Mp(dQRUq?ugRRI!Om2wa3nnRp&@##53(km} zS9}xv{JIOWYkb(siH0p9s$&$rgUC=yBcwTD9lvS{B#f!HhPB13Y>b~;#Y=RMmFfCG zYOZ!@!!}OjY0V14hOF6uB*Fx;KN-w<$XjkB0k2j?r!yl`%5$$7XGJmJ@XI~#CWNXd zf3Hh7Qn8TqEDb%qPDT9?#!Rs-MWHj(4c`clXtA2E!~Xie1}dm0G)=Q{z;(6{B%Gej1KptMr&rgbooQC5PBzq?0XUlK%drX8Wg7y3z{tUx znfpY`k?`7B`#O40OW2UeNqnLcT$RSnZmb6dr1^a#7C<8-CA;J=orH#YD@-Ar3L_b2 zm?Dh;#joFb3g5fU)^_aw{oGx9?s0>H>GS4(J7Mq9GzQH16zMB*dr zbN0rJ@)HCgs{lmk(1&t zf@1MHTJ)6UeYWxZ%M0O*KX&KWJ86(4z#n0I`#M6FRO+hzH(=oE<#BBSh@4uMMnmGL z4;qvrVd&jIlPn{6pe#HQs;f0rjzSoqb1$64A)V+-Ssn&XKRISnEll$drRE=1C?s;! zM|IL*W86O3pS1HzBep=%Tz|t$P_9FOCmR-{<}#69-i-@+t1-+NH=ZjLM6H877D(qgip)bQCn!kL5|`ukj0|_AUI7>(9Lj55rKgLmxYED%C@RJr{>L5_Qu$VIBzm#DmHZBya^& z7*9X6I~1c_gnkP_7PnTVOoHY!UiBA*E6L#aV{rm(r9%vwThRHp#Xm;YcvHwYgi1sT z#FL94KASq}TRzcxEDjjJZK?+dmBkI5NVreT7xK_p8FBHDOI8$43$s+WwQtL<3eC*u zvmg-mwJGqGLL^G|#7#aP?gDWoVTkZpkjUMWPa!pf|CR2iv>|{Fgn)a(%h#qc(7foE zYosH^p=|u|yOyT#sZ(rI7ad+XabxV?oyp>w!7d4GI&X&h+CgiQb|U{I+J6`+{Q+;# z=Gl@O_N%v}Psfo8_4LgHxDQ6b;BZBhCrzfdo|qaZHX=_K#jqDrpV1UAK>T?(lR(JsexMfXIY$r&m> zqvY8Z9ddMUU#bYDLq>WW`kS;V!#9vm%$fE>gcm%df1OG~__+$*4o3A3#0|;_6-)Wa z%Ccr6Zr{_skg#lEMEJ#SWqL0k+b}v~cV}s6>uM9(M2Agank4m{0|hsX(TmVATbO=_bkd{O^lbA_iw#(>z-xBy+YTG1Hw*vDKtsw(;gB9Lp>%8uAemjSDoMt%OWnrIK{W&`GXJA|hxv3&$x4C*>0KN>TPH;5#xa*p!_75(8u^ z?6mf5>j&`)$olI_rW4kMkRdUy_M@Ex?}=%=E-nK8L=pf)TSy<^YT(0yZ^qQu5sBse zbt?i_;9h$Pf&l6nWRMhYXbZe{H0Iq)DMk2X#4(3kTIo!-#$okeK!KYFrlY?4&X{Aw zw;SPbTrg|;n_z+ZB|=ga3!Kln$r&D~xT5Je2KHqJK-o|Z*k1oAMCI)j7sX!+M}ziS zSbadvD5sDGPva>)H)z}|RMsMh$hs3AOAv;8$~Y4K>vUzx((fdk1z}>C$5)QDNW~;5 zb_w;uF}GMwRF*pI*-atjZ&DVNRE#2s!>Y7SK}px~hu6%SqJtUk4H?&uQ?bwgfdvWn zoOcrWJVOIh9iOu@<<45?tOZ0{YXcY8G7p7tLG(j2t2k-~4C$UDTb8G zMS2VqGRkcf-JF5zL`?XG!$ntO%gZJzahGAaD=~F#R{hTgb_*;ng-21EU|6%lSmdrE zh6o8U2r-fPeO#J@^-;=Pz92`O_>&rI2tTbyKOkNxWxfV4a#Cy#3SyC#4qa;yEv0l& z+bJCoO76H1SL9@LdqF^m|D5^dZ5ir`^i}BOARpR(Vqu?L<^DQELM?7a+`?Bs66FTi zhfRl{3&Au|hIYUn2!VGa1mBJ+BAMiR0|B7_VFN|usOHZQF5P`UAE5wN_89QNXsoZi z%kNtva_YhE8k4M zfd*u9F@joK!q^45BOE0$s_*0U&wGSvWy<9=#do!j(^Q{xzl{q^SEHk%3Nqp_TrCD) zY;Xnq8uBe5lV>iju&b~Wla(oB4#a#EEaBM&SvJyK2Y11MsIU z5nRms-Tpwxu9w*G=!+U+${H!DMz>demL;@el$QfTTA6N~!09&Hl~G{zAq^HGiwcim zhiD2?ZScUo$sKgr9K8oq3^q@M$x#CF%;tPLBBTW5zumKfwn`XL@ScU`dswDG@iYzj zNGr`1RfmR9NYQKB0(aaI+gM8~`Ht7kR`p*1V`5u|cS-u+x=kGNS08PIy497ukM2oD zpr@L0$Or%Ks2Z{AIQDSWYCy)DkasX0Du9^c*V_ASAtI~_i@%g&?y=fzNO^%ba!nMy z^C#XlHI&P-=vZ&1=OUXnFmG<-D7zZp>$2bmJ#&bWZ}+*5e)T_=^vr=b>odU=$fEWV zpvet1#SsMs*NVbpz$Gjv31H3EleCm1E+zPjee<8HZIZ`1=*y+{XvC&!w*9+L{?&|5 z2t@R%q2~uhq6GA%(Dfs1B2ISmH_QsYPno7l38tHWf$8wY3ZkXTa`KD@w93xv+8F#Z zNfvZybDTyG`<)ug_pEZodvBKy_FDip&)s5}4Ir^_o;kpN`=UT9Y%Ta=VLsog@J=$< zza77oqGuG%_Oy(Ouq}N1hew9;!<`3tMrI3>EgML2Jg^>c4Xa8#Ba{e&{uZEHJonX$ zUDbZP)LM3-V$rqY_{@L5jj{TU-miDlkcf`RV$jyVrLn!Bzb0@NNMLOPCOYc|30?PET8e>M93|BUS-U>q9TD zNJHIpPqg-P{LMp!USU?91jZLj^)5;0;SjtrOp7Fo1Gh7??C%R?5!lu>ya#0at1_Vf zw0VrV%q86|<6}8GsJKB%?VHAR?zPDW+8bOe|Ac5d#rhkx1MGJjM=69)#_QpRjeT0$ z9?VWPQGA6nPaoC`x?I#P2|c?7$ja_Kd!PNcPlq&^2yl%RI-0MDoq6JlzU{Rfbjwhxh$o8}(6UZK$JL=;M(q1=vt=LW$ z8Ss+=PFc3XxJpwB3>A3aPn3QPAu>pWFPRh3cu}uhD^TWk1Z(0Q8%c=EVE|nz-N5dK zZc6D72zd#(8zr~qTW@u}z08lM{D{9n2k^oN2L#GNd6LmP_@_Gwr`sZrTcnM>>^@NJ z8NVVIoJlx$An^tZ_q#jGZ}*+&`~bYjd-sGd%IXN>Ma7x{3>r4>--{Lffj>ac{*a#( zGWIOZ_*OIknTyz|;h!m`Lwskn&+EG!s*6AFAk)&$mt<{_^xiD1AtG=FyEq3+vLkzL z5xeK~CkwYsE_k;(DWvKj+4gTQHg|LKAAdqO9rxF8pn7vsF)-i!tm=f=?Qv7vsD&XY zNa-FCC3B;+&|;_bR0cc~kdN(ffsr{#TsXez306Mbh0R?vDjX%Dv^9`m(#Wjp{jkVK8Tx!I7xTp=It;AZkN=M3 zYT+}Yk^DhzsH`1x;(*1!*gfFEVNxi1mn%fp|BY&?s5i&g9HHQtMt>k5F2EK>2Ojv&1cFXu2d8F<&@MT?p@PWZap{U{$ywG12kJ_sHmRW`DO-$8GD0}snvV#_xMz*05;4d2FU&)yKQlajq_`c-qjirE zsf9`u7KZIC>}b4JE|?lU+s6xCnl{KtE>L)nYyd$IM(j!w*O&X#+C%2^N4ExkB|6nl zXPYgI4Vy<#d5cn;FRa$Z{Bw_2C(fES^slJg>B`0PyNjE(TtNS@(5f#DyY0pHi|=o1 z^T+9aNve8uO^t@_N8NHqSC`{*G*@TK(zNHhgWb=HIe5BMZDuywtplvcHpc3-#d_mR z=uXvI*OHAU`(eN;X0LW{Y$nW}VkH9wdsozNR~L6~#$u(*XGfFDuIOP7=d6d??{eK@ zwXWsHpz`x~*V1+qeMR@j@JRBkrwp+f%8gA^jV_hhEEaH^da@?8V@Dc~ZdciN=FhRD zrj1IiMhRc$$;xqP1aD?E_N?nm)smNzsI@E0h3@icck4}2=Clm`?x^H_KYbVVbKYPn z&1~k0r}18gRIN>v6YXzFHw(T>tK}xkYG$a!T-j>v%3#34q?3ay{Au*~XWlIznr6HG zyR%}4CG}$C#R->LuNJf4^2s;Z>e*|k%JFe=w@Tyo@YqTd>o_s;>=|l)&^J z^-NRSSeU(LuC&+r_Hr7!)9x3k^NDOYo#{#LvZ5O|#T&j?)Mn-jBH<->Q&)1Pw8EM`CWLG1QVE2o_jsF>CcP3cec;nb7IHa-fr)t$sw z9gfMQ%J+&cogTGC_w#}dGuVFzqvnkcyIv|tn@DULNRacGOZRyVDpl7TozE4zRhKgv z(L`twvQ0a@8@;Zz={il9DH9VWp9e+BD9x4V8fa(ORtkvZP^T|ik{T8}d=#VYyALaa z_rFRklWvl9Nl9(@qEWvgts#je~y;@UJcc!gv4#%A@zZX(xYfom;;b8_VMM{0& zwW_gzAC-F-Gd_+J8#^-iqSzK?>$mQA99|qZy}0=tw<{w)U*CU~g%CO?t2* zZgriqTz+qKlySi7D$5mTyW1~#W4`oEY;7(ZymxGQwWmr{PT%j>DcHC}w4tg#UuAb+ zazCzTOq|vmw?svI9d>e?R)kpPM_L{3cT51j7pDGBm8U#TpE#E;yL))JpWD#g<|y@Q z_G(8l$68x{tZ8zxw_doFlx>{6lxx*Js~V=@PfUKbSE`{Kclz9F*-5N(eE+*t$XCah zdN}z{oO0t5ZFF{|z@m8WI) zCEt3XPrAMu-m$LgtB&b;ii2wVj>nN@ZS}#V)ynMCs`sO;J#+dMP1{_y$4PNTn?U2T z`Mbc40=Bjjlj?hU1B_DZ;@Nn>)!MvZP|<)@gk_g@L%%IFjer)el)Gk7W|b3q>05Z?=R*FxKh zd@I%JO!sEiv2B_t=HcEJ`s)67?aS^hA5He<%#VV<$+OSOHV2xg9h=4g(2t)6i=7v( zvrrRD!Ckt#)z_Po4rI6Q)ZNaWCr>w(4hTlf0zDsYp6^~IJ1;pO)6loh1)i4Viu5$# znfu>XRdypjxT>}@C&B4nHZ--&5038wo;_X-A=fX5hMrY!x05Qj^J==sriZ1_pI6V_ z^K>&u!+Fk}&XugQADOR{uTfndwMqClA&Vx| zg}JRChclwKu?=#=pX(lW&TQ)RpQ^SuC)d*6K9CQKUy5i!22I8QuZV9xA1ez?bsiNS zQcc!1cj%?pR&k@|@{grBiN`A?jYN@R9*S`2$Gon5*lPYRD>Hn%JyeHT?(~=6kI5b; za)CC#FZPdLA1Ej=-FB?Bd?pQ(4l1|Vy<4q~@QM28K305Zhw9tS@oJt17%?-GKbN0h z1?**2;Mpvsc zKQ`{yPmYc=Y*L>Ub~a9#jqbPkM=8*+#ry6*UUy6tr`&Qs>FiiD6{m%h&(7miJ>$5y z-|C*ci#h1W3w=G_jP!VonI`+=7?c{DMi?E-t@|fGKHkpE+g%s7GZ?hEjXLG`3uiHO zxondK%k`)D8~vYGkEEYl+OkJ8dTxfhU9(b;?tGRo7=3-vqP3G% zycsUJTlVfBXf$8>*}gqJH)|rTI@(TF!xM0U7CpJwrFPL0H2A}8K-^toEI4`}bJ>i0Fps_HSO)mr?=bw+-|H_ z(*{fTEorxUG+Dx->-xHUbn@Qy@|@O2)4A^J)Yh6{ z{{24TbZmE1=Y>Te>-5*6rCS}IFi6+TIc+%hBHZ*kXMNxTc6;^}?`$Czi6{7={@y{{ z%rm$g!~hI~f|4wBb60c%5$2ai?DdgD<%&)nSy#&yCZukxD3dxFS0p8^vI;SEHQ+RS zs&lZz%1V{~$Vs`NC1?3=F1f4LFdik{(C6e_@v_v6Mwa08y`r_w!Swh4L2fY5812M(rlo8?%Q{)AH+PQDzJu7 z|4pFzGyIusKuJQ$xIBlhsKbq=?bv(h3EV=N`nGfAx_RwTG20naDuS)d@*K~Xq;eI; zjB1QWZJlZQX*t`7gs-TUr|Lv^a*0YMFMH+htzvA7K_*eB+yuIlq_c1fJ?f&HEpmA? zCRrFHb7km>@oU27&w{5cw$q`EZ=H~^t}>ve$?kgC-Bbu?Ir9Zd4#^kV|q@TamTg#-xf;SZ{K3l35`S+1AQ7DGaFG~Mlc zrVM#*`j@^FuNuTLYIf3sXWXXI-RCxMh&Ppd5f+}@{lq+DB8%}9wb$=oy#UaaM9@!U z+D6fN(3)+jR561V3Pf5{ctLO^sL3GN2_sOKR&0cJCpO;fa(=5m&>j7^%s*Kqs@E^` zWC5ANo(l}F_;mC5Ddb87+J!uSbywVNa5g@bMtMc5oeAKPZg>L`pT=0o7p=+aj&M&* z!|5pUt)Xjx9?TP$&m*Q5zJ{EO^#mAQo(?DjH!`$R-?ZV#8RDt&k+26b&NV}00VOSwwkZWnSs^#!&eVM$f zG1Qa(O7JG|poXKaGtHtzb`QwsBFAbM#zEvUxFhF=y4Ld7V5F@YfN1H|i;AkjkSV~= zkO(V8(s*e99o~EELX4Kexcf~Ov&Y#a!hC1SRmCAp?n)r-OT^prDkbt~Z+0aGpz3!eeHTrso#vVKG@cY%h z`vRGdsfqcU<_Au>MMbc00EBawB?9tx29*cu|GKn9cSJJFyaGhu|77M3M&$@7kM0X&c{y1bL|PFTCtMzaJ>EVnESEw zJSVY%Nf7~S3n}q0fWtC@G(Uv29@CE1mekloc4R`es!1S&Av`bv*Ts^MX>0erfKPcd@$sAWC$1_5@NMsOL5A6Z0@NU>~FkCQcY8DBccj|f}~|+ zrYO93`;fwpm%6BmH%x@+uIVE_6oxnh76&#+!~qZJZ;&>*CQHSng>Cwk3}7_40?0D# znn%iCtXmWB4cRULI)*wZ&(AMIuua@L$8h^(}}A z>EKN;D!^Y^#o?FBkOQ>f4@vA9WC2Jc&kf|w0Cy~^i^Y*A4}3)th@)>XDP4q}AyOxO zj?UviFuK6<1N#3`wk!hU!6$$L0A|7eo3dqYV@dz7GX95!nU$nzxv7Q{ybFH9hr@urO4E3H66f9a{+#-1{p#GSX{YRT z2ItVaOWSzO!Ao=UxOmRO9jwl`HQU{+|0DMLT+7#(DYabEZrSN#bhMA9@w&an6TM(H zZ(4Rp&AEj7_x zMiq9{Wmhlfd$6hX-mjnJ%N-|SxXZcNerC<>vO**(a?gYpts(TX>z@turx#{)(BeYF;sX~8R2BS3>f zO$kGC;(+*g3jZ8M|5F$qP%IJ!XQ|`4R+(f+@&<5-lb`@28|)D!2H7Cw0zjlzSu*cd zK8~Ne9|}7`ipL}{a&RmNiN(wuOMztAx*dAgP9;|}8Fd*DB}AM;IZ^fCKTBHPQWYB! z&NyJXivZ`S0bmT90xe=XePO7vMr%C}C2*vXRKdvo3`vGWr_OF42Bo~fv1$mMw|WcJ ze9+y72a3UuGr8PYgHoLk>tN@IRaAl{k*k>{qJcp*T${%LT_N`CYTjXTcoArt>K@V{ zZofWj_1#_IuX|UJ#5u_h1VfC1#Htn~QmjlOJpXjg8ESPCp!&zD86nf2WV$?=9EhEy zwF4$n83mUiPepcxIE}i*oL||z6ji!hpSwCC;z=LxUNiv@?hFCRMIR(N*~*%Z-~-p5 z6~-Y(EntcR#p4QuEe1F4q7;~hbaD!S&tDlfB?GgDb$~KUk;<_Nj$w_1N-WxdwCRc4 z4`b=w&~xB{)z=f>e?gB|*zsB6}t`kMY| zYsH@|>s(g2bG3D13JJq%ItgrR5!JjTNbiTAzj*lNm8&PV>?)}<#KcKiBD_}2YROs={#Scn z*&JuGbSY+LW(JEbW@ct)W@fUO$rhspmMmswW@ZKpEoR#G#N2mgd}lY_AF%yFQ616e zR4F^Fo>SGCmG*wiEjEG+TgyR237=%C$}x_UV@WARp-G)YM+_M z#r(@RhAlq}+&N~uH7OzHurYtahZCp5@{Dqp%5 z>so|9vL0)5Hy;rQ-b7;>?3<<3z)~31&m9jkss*?UuI@r??!D1w;&E6>{VA3Dc0^@3 zY^H+y-d#w3Euo20+ssexdudl7*=ohkq;-(Mr10wkudr)WBSZFM2j^vc2 zjveT|P_tK&<7CMk-RaWcui24!H{;Z1Y3_KOTz&Oh_`v%GFdn{6lgJ)O5fS<5neO>Z zz(1WPxO7ys48^Z$(mXjNd#nzOlm^a>eKh)8qfiGs+a+OKSrDbgFYQF|nC`LU&=4er z&}N)p0^(uLekvU=xqf*HlIBx8{2+=iLo3Vtm6S5wEULj0&M!^v2=2|zrq&zMm7{FN zD+;egVhCo8<`W^xLFy$}HWi+F0^Uw)3cMd^S&7t8x5|U5jy%nUiv*TL|2G0+s2uKu!kI#s@+69!ISZ{3$XTWBzzZqOvAYPNb}0869`|Ob!&UvP#tX7#(s-n6?YY*SmkJK= z_s5+!svL$6vdL0LG>i49C9&1I^~;_LZy9Xd5^7TRua<4(r@VrM5Vu^;J7oRTbTM0s z=FE%^4tZT>@F+UIBC4$64luIb>$4(4X$c7AQq7-w^RX+wmS0Xi(0b3=91Dk+XnH)R} zJ8w``MZwAjrA1tIMU(l+X3cSGAO>RVep0YTKLCq)M1s8?V8S=!HThg(mzg{`l1ZY4 zhzs`w_>pK{YE3Ks6xV?}Drw{t2X<+H!yA=hADQPGMS(jlmX4Z|QhG{p)tc=~2Emo% z%H4p2T<9PNc%}5ZxDiH=X;S4U_-Ey$Ws}FTjB*_&cIab=Tf;NH;woiGCE|IE&k6AG zEGZ#C(yWxU?@p*=UWza(Dh0KY)in^^7nPF0ZZ5jg1I9aLHMP>DD{gmew1qzT;aDQw z$T-yzOM_c}_@%k>0^~aGsgb$*TXu5Vt1`{~oYE~(i-=3Mf>vHI_Y~e6In6Co>q3RUt`rlapxu$8Lkr#I(xn}8hiLGww$e#{ zMrKAsEx9p!2WcB?VyYtx~ViKx9ZE9Di@#M3UPiIxmm4XD7?Y{&@Rlcgq^PZq`n4 zCoh_Xc)n6$5&kfB=gK!@{oYh@{We?Oy58veC2qgs`^cp$Jr+w@ZR(w!>uJWgW}mI@ z&u2Fa!hs0WSw5cR=be{YhZ}#f^RcwLXJcK~UCG@R2AY~Y+tA_~Tnx+GcbXU-AFWS3 z{*w_uTD0!k9q!t*%-!`@-Y!CRCsWy(Tzp#@LIZ(H%a+%<7%~`)n!HF4rAsyyOBQQ? z-jYQwadPwO(h-)jzW|+K_ap9COg>|qNd*i?dUZZNR$D&%s4FV9JJfs0W8Z48F0eCX zR2<%ep%juDm)(kRpdmh1GTs$~v87q?B`8&BJ}`p6T6HDEtCXx-tj z_}3ffMxRg<)pl{dQ%qmax=onwSX`ykrK?XqdTtU#q9?@qJ`Nm}31(o)sU_M|5?1AZ zwyI=61aDSDU%jlSVP^Kzep72YxEOWBk{)?b{`>|G+hHy+EtBqFDE0cVg07hmCk`|F zF1ZXH@tvmix#oQJ?Z<%t$GfWO33wm0oRvwKq347AYAh^VG&FTPzxi0*nUJAU23dN+ z4ZJ9AKV$y|*=79T@ltU-isnvGvPR(?sC>j#40tx=5fQoKf|i72%q4cdLy-+qJV|m_ zwo_s7LOkV=hVZI~6>U=qs9D%h&D21B)=Yax&LVlMsP|p{zuVcca3T;y6^$Bn8$dE?Mq~ zsl37n3;2R0D-R=Ln5qtvYcqRk6!j=!#Kg&!bT3(%W(+OA#nPV^(6D_Aval8dhNr4z zTcilNEdZ~_Pc2BFpaVS-pB?^6%*TcDZP3doO9Ko4ER9t|ODG0UJHC2OSSE&zNo-YQ zt#Aqi)ftlrM&uH?ZoIF@z$e<6Zomsq`qI)2ukpcz`P(ho7m(xK|`UY_twqPX07!D1aDm@FoOji&r$&KT-6X6$GSfViBF zZBA^W99R=+dL9&_24;$3TL)$AXT~&KrK*OH);=v!7LYf#rw_(PfizUsfORaY5Aed< zM+mOpN=|8NovQ8v`Ho_Kv;o^1743c`Ly zu`;fDggVKVcbobgI$Ls4S|cN38wSKZjlIcN!ylxI>D@dROpPFSpoDc@)pu#KC>k+= z>4jlxkY{>-MNIRuym3uJ zdgo8foy|F7xh{w$?5%G}3>hIEv=(4GF9|igKQVUB&SbET+e(?!cj-T&F5Mm|Am}Rb zWcI1ud%k-lcyCPis-|PVU5PHR%F{jNJl!pgujoCsWemzkamgiRr>TA14Xe>x2-~%5 zbzoy1cmX|H!t?X}Nm+DD&cl$AP_$Xhv=P?ksZ%5)>ij(0jCH5lnMJYJ@4Mm3TJe>> zRot(!bY!qNLB60dVFQ7cn!o*&pg)a5j@2u}qWFsszo%I1B;su7V}e^2;RkCc&7?1E z>7bL(bEdKk)=xENpV`vqI&HEo)RxpuuOlGxM|bPqrqooQmGIu0={CwY=wvVR{SmXT zDu{H7n?Dq)b2DT@w)c)-7d^vm#|@OnJJebT$lLmbE8+wRFCp zKOQG0bT;A_yhUdbydU^%xzWZzjo(;#`;%GBj~!PprMHQmE1e_GR{ldyXxlr7WXB8T z)tmdjK08-Q^KN`#fPmnnfPirRvn_OX@w72@R=0Gq5H&M1HFo*qA$qE#?YugG;CC+b z4jLxUix}%#O}?sJXgun;gUv2W>is06NExUd@ZsWS2YAQrSmIn%PYACcdksBC%k%&&A?980>-cn?$xk@*A=4jaet%l2bZ-}924qV5tH09IclZyXvm_)8yjdD zOgls{?!+|Rvq8BXqH-uf-PfoC6|xuSBR*4=53YXN7Q5!#)dPndhk6i3X`)e$RKP=Y9qevqXRMFQ{Vj{*~*|)*3t>(*+(Cx8V@ZTi;wAs2Pv}B zF<`7p?)A<_X4-+?j?Y+P5w&-M1z#>B`blT}5LK!p)~p*`@BBVrjqXX4FzlnhHAVE$ z)$4u8oV#uF&P9qx@gTaGHBI&UxMnDqu3MBn>*YL{W7WP}q$#--M^8HcnA+@sl;&4}0GbsdK8j-f64x$-$RWerXi_Q{LdfGc(8m@YD7_ADq zo6Zmq(yk2)1Q{6JK*$rp{ZA8wXo?RVKOeWbp6L>asDQdgjJ9jscDiJ{RA{@G9KP6| zliWwxs$s8bEQNzdAvWrxFh~W6VctD*4u0xKhi#MJFzfXQjJHPIo>;Bwbffc;ST53d zzlJ!{lyWKXO$~gi=6vP)60v|D9PK|+2q{Q zc&I`*9mLa{p__XrLegqKhiBc!NP!n<7Hg4vj^a3C*s1G;g4^&jXF9J0XJz)~B{3>M zOK~YSOP~#^^g)=t1|=SKXU#8h7ALjfa%VOA3TTi48YH>S;=S8h+&FJ%Yts%ty74Q5 z`&8rdsk0%dtIylV!nl^ZU3RloD5Ya=`vEBdeG%>$4BuVr5fk>UIwvejNwPY!=+re) zF5PN(MRK{W=X_Zx{h@ZUlDwu;+<|X-p1e1nGzd`TlbTR!+W74&_pW`H4J6JT-+6X-T6ST#CL#yN|Dr(HMHjtsRO&H2&Q83@|j~^Es=u(hRWg-NzKb(#mW%d^FCb5sCw@ zwQyg#0H^=G@$A4BSXUH4@WLBlxo>;x@XUCgs8!L;f{s>cZO{S_;ltv-;3^dMAn{D> zPz_1`EF&ibQk*Z_Za`NQxmesKk{iD|IULFe2#HG-5rUUi#0R$iA40>S3?NoGPt<@= zVtWt;|Er%6*s*QU8Ut&&9Q86AU_{1V3Ie8p-nU69)~2L3Qg8V)+n}ii5Udi}f%})Z z*@RSOX@EzU1lj0BH^At8`pB@zFd!Nu6amBT&i~(%V>=7edKxpoIsARZb5N?6cz;nx zf7#fR1?mysfH5(eX55pl`hOW^;3hX<1n_a@gHW}r0ldfUJz0PUC?x$F`o=fpQWATR z&(*e@UM;L)7EqXOOt{7FT#H3D?DXXDFe%*%o+| zch!UxOL^H%JjLQ2V`xG-u}Sx1#y}u^(sdY_C=P5!Lw8yh|Mau^(T?v(O`@l(UL0SW=ziG>PSf z;R7eeN0gv^-vP?rpV_|PefHr@jDC@fhGG0#=Es@u1gYP4+4+Y!xqohsXy}@nGpP-J ziK=d?=Xfrx8ro;@Ina_bFJ}Ldy33IeCIdTb^AKrVJ@$@?MAw;EtcEkoje1bLDQ)c4 z1o63G_({U4J0cdg))g{HEmp3iaoNEkpP(oG5r(w|o6u<@|8St+Ii=Az-cehRL1+t@)EV$tqqU!MsQlkG^R7sG&oiM=;gVTikRL?;MsYv%L`St52esnio zl>Ijd>sf8-pEL}wB08@xgOstvj{w$sYKj!L7Y=i zRE(wyXz*jn6W21NN+aRzm(HaYQDQ!A%U6*5H&Pwv0OZ>|#j~a97MelXO0iLC?4y;y z1!%vqc+hf639FZU-(1yR1K8&c*ez~IzFN!^Yc!6B1}i@FH80eovfEf#VlHuZRu05sMV5h3GCbB+G}4KRKKVf?`BwE zCc6}bc}~>27*0~wJT)=OL+o3hKRD$|V8v+PbZZkEptt4Z7Dx~wWaB_!y06&S7FzjK z$>ZtA%1`c7HGR)bxnc|QXJ^lh9^JPtmO*-Oz+HuZE5{I6-*Mm~$#>%T$p=28eVJXh zp{A;p=w+J7US3_Vf-g-kax*yK8*iOm5Uyasso+>31+p(DPM~*X|2)0IQg(<*h$L0iT? zJ>4Xh4B5l$fsGH~EF`ZD6so5iof(T-)EhGX z=&Y}K{C2gi&;R=3lx9{*ERBzZRQx4@-?>q}8K?l->TRE#@@?p(j%kk0xd&2SsM1ssb8CIUS4z})GzJ%%55oe;7lXi0aoQ|uGnf9{us z>CWtIc<4wSsz&5~;5FR3pMvyJfbIGm+|`|Ye;c~7=Guo5BK-0rHfS*rA+k`fz{8dY z%o_<|$7z4F*K;&25*mFQBs#S^^pofCi$4t|E)aNo2aOw))(dr%T8=v7>6cMNqLI%xM@AY?_9Da)22A zH@QNbAGKdRt-15@i#s(Alw%hE)km` z%h6741_{*W@e`r!5xG6Inis+f$PbdiyraqW>3K7Cs{X=YBeUEoBWj;4ztk!7ODDcL zu5~N`bRwY^zLJM*xv_hah^hJ>-0>@fme$OWcK2m#vU_LoHT11P$=thQCb zCsKgQVPm(DqX%d;DE;cklFGnHfGDatfEac=b{F&95T+jFU%L|k2t;ep`QZ#eC-|rU zZFzx?D_>$@SxRc~7a<}*9zFe%i2MMCW4VnpqSpj=;L&tk)?$p|3?LI(M4S={fL`?J z55>h9#w~aY18AiF6#-X(q|?wY7Ak3xAUDv&EeR?F^b=CK#1Y&h^rJzs6fkUyx&JM> zwVef-J=_4H+}}o=1(Ro$P5Kx0+sq%TctktUhV?kC4I1aK|KY!kGL%lhs*nH>(F8{PLHbLf zt23}0Hyg+g+Gkue(tEVrf7kloPH`w3TkkPP<)ooCMT7fT=rdf|_Y94(r> zCI+2T`xm75E(y}vuiRB22L&-Lo~5?+z6IeSV45dg?umU+AJ?0VKKltwcuz&}Gk27> zzgXoyupH|KxyLXkb2q0+MSDpBX6ISPC3M{vo-IB#-qv6TEw2}$lkINK^PP7_nUaFP zl#knRQ%PIbazC$J4vui;SncW*Q;Aex=V8p9lasr>xeIGBmd8Zv(5#m>Hq7u+U0}+m zLauzO$o<2-d?)70jRPF3c*=P8UNAB*q1Q<)N4ZtjRO51$WBzeZ=o^em%TL16$sL85 z(R-;z-@<)3{b=;d4xzbG7@`Zo7)KECTapsYI>{UGd0E#qS zw?L=5z|Ax^V=OF+cK>J~bb-llOaZ=}@{oNeuQ_kN%YfycI6N2pIlG-h-(zpvcD{|a z$r0tK%yB^eq?Z{5!M2-{=3}H!!GMbP1+dN?L@-#DJ}f5Ns^UXzQFc0g^)au^u3Y(d zXm)$Y1Wr}mad~m}#VdN#0iazSk)yFJA#XIPi@Y4TnZ*rQRpA5`oG+KF>_J$ON7iMk@ehnK`=N&wkjJ0H zW_OSadoS;)<2RJ%bmnVHRT5QLlG0toCWO@K&@q_^GpYnTuJJ_ETek)FMbf|`Lt?qw z_TKl!jmN*Y>-#yBtSH8Q^z^OvDN?DTI@*GBl@_X{-bs}-bn;`)DQ%HX=&|dN>&td^ z`q0Atpz!2-V8o0$|DDQEw9kO3dy@S}!J{kNrz;qR0jUq~3UFn|?n+O^P(^qoRbybL zLv)Y)u~e!}oXwb&t@8uqT-dUC1Ql5!xoR&8k$AP==X##5fwLdK)orjy--KmWS0r3p z@Yz26z;OD`tE}jGv}F-9v6d1KgKT)W&5V!!dYALH;N3Oq2Q>HV1^d6s#0_!|!#hAB zfg3=$8xo-G0N`SB1t)t4X9hzDhhI7oP@m)fml^pSNZj}+P9dU^ttAjmqmd*lH zv_IbHBu^K#&vvp@hEm8>GCnnTc`>dAcW~LQR6foJ?e<0DGUI;0#2ZSHyLBjPnq#ty zM%}Vib5DLhE~<Lm2X+Awu zJ#35!OmAp&%L0sD)(V?Jg6zO9cCb5`wxH|wbExN{W5?j+$MQ_6ryXa{3o?xh6dZf9 zpof&bRK@+O?eCLUGkL6qb^Q11FGMpzs{*HN(`Kh}4P78(|Ya>MHi4i+q zcQLVuC@-z|Vzd!^l^#%!xC{vFqA!Jd2-8*uT?yKJVA1!v!7DGWwlO>Fgu$PGU_7V zvGq=Ax+!vpdHkRb6*RWe(ls}qn2;j1!$?DDJJ%=PNN?_j%i+k)jKDQ>G3i4@}hUPI^ z0+krBg&xc|c51KTFWYe73rzGHidGWS$aGpJUofF7sTkmS(rQ3<$(Fj3>I&PWrWcwc zjcgt<&}tLZEjD$&h%x<$GYh62;9rKgpo%Tl2s94j47E1Ua20V8g4rN0V^C%V>SjXA z72uAN6uF372voeA3@n;era6jDnRKaHHHY2!$bH*ABGw*$#hjf@CY0h4&^+X2>%< zoEd8-yn`Lj78^!L`3#6i{BLg@&`BWn{Z%jqP(uv`VE8}kN&r$ZT~rK>Z2oY^z7$>i z6-KnsbILP*kq!n&p$8S=`f8H1qND}6){ou5*46mSp~?Q8#@u;6U?~!1p#4{X;5rz z8sag>ex<0TFYal&&C3Vpkji8KJ{P0y8l_D>U#h}fpw*l0x&6vvxMP4yjwzODDrJ?H zL1061Bafyrodz_3h%A?6URVk8RfR`;S-gtAF-07RNY*;5S2B#_jB&sws@j*kE^VR2VjyZNEB zbKtg5v73;}`=-5}>{CAv`xG9DS7Tr27bu zoYjc2eKn@i)6VmJM@eHaFpAj7!UUK6?)}J8E(J;sr#mV2vm*=Rgqz9POJq7fVat`z zdr^CteYwy}tM1+(j2Lp%V3u)?Zcz~yVGEn3+Z~}iRHQMfbTkD#>oG9kOp0!qV)ppgj#vjp~c6d@7TPj=sfQj>z{(XGjmcSBB)8jQ&l$S;=Vb_nk#9!5Qj z!;_{(&tJliQ&AC!hR{(O)St2~z0KKC)>*dY61JJ3y(72wa`EJl{mpb}5x$h)%O^Z> zOxJb-T=Bo1HIXk6919>Zc4>fs(Ej7B?xse{e+xi5)mpdDU_|oIse32hY488oP+dTg z(o#D6^{23QqdN#$H3ZhOoyOhbdB6>K){0y*?*nv|Z`f<=Zc}B!uD&VL^43I9@UtSxth7e6D}c#HR@Bk-O_!=*zlk z2GP)oQ2iySkzwzFQ;;D!M1kayfTWFwdw=KNo;c*stYT>158?rYQ5^Y+;U({+9=q2q z1L8>3q+%h9uS_od2Pn1Sp6mW&t2lF4&e2$;$>*-#B?23lHbucOKra&-17ODIk31;0 zaB!Vl5-1VI_OIgAZxS_ty9e(t;($8ilk+%8W(xR0o;097LHGB0XBVXUp#^RytZ}~; zcw}Qq2XzA>pFc$BzbcW4b>H3;`E$%}nrHtIf4!wSKNWv|d6srKRC-j%u{fd9a6p#q zw$Qh@3`wT^Y#$0=f)r^qbU=DO7j3k_8GKG`reJz&+Sd^O*z(OJnxprV!n-=Y=p%R& zYo=)HNNZ(5Tg{d9(B5dObB-LA=rc6rnfT0L?QUOfIE*0m`uPJMQqSG}#ah~>El=D% z{_S?p=Bh_{Km!ep2O;v>GjRATNE5ZA=gm9(Ym@AO^HGLJD60TNM7nqSJIDLf08NWq zsY>THi>+L=osC_KoP@>QnqP&V56^jaV*b?l7y0vTU<5!0wd)%oTJOJSlBcf%_tUT3 z6hI)t|1A4QT89FJUDBejMnm|Lr3^dny6@t>b$A@M^=Ay?3 z(NyNKB%l7kJ~SsJ9Z|p~mj(8$OGYY1b^ey9-eRMkny0baC#u?h9BGTp}sG)=C_@wPT-%d&(GJbH4?{CO3WU@c&E_Q|4mi zq**8a_ARn7ZJC&5a5PPQGyNDXS9HA?s(-0LNGy%J!9{chaf*IQj2tCo zcraO$vXh|Ed3CthL9~IfK^%=v_`DqxERc6csdR8` z?NfhUW;L8z)HZ8s8gk1bC>Y;Onb`MuF8iL_&^k{$z|GO=$UBps&iJ0O2uwpSMm4N_PUIf>UGU%H1!7(h zWGB6Z@VKN7jK3y^kXYDNLidh5g|nQmbZ2KsaeS@o=LS1Ox7<4s z<_d_LXpjBuEi#(MX^%IEy^mqxJ9T;IuwWNUz(Z{k5^s$ZG}w27gszM1I=Jf>4?&Uw zCLN;(-x#V&y2vQHu7KO1km2J$*WveAOlv2MDJ8!sy{Pnp3!_dO+=doq#a-_TI)tVu z*OUKUCeL@V=ILpFa{_4G>=nq1t12d-*s;GqJr9?4SM5v(bT`-h7PLr`Z1x+@!YH=+ zgDOMGiNTu3T-qKy3 zug(7b3kyO;SWHk0!hq*)HvLPot}hlON-2d~=QrONr&8<9Y58;Y*#!4*cdoqlk7ms! z1bz+*^k>{z%@a1&O=@SjL{b8~Cpfez=Qw(F0UIV@71*7JyVJp@u7t%uQhZ;Q6`R*@ zDv$@(xejH|k5|`V7fUiWLbNX*aSvqA?+n*u&;5cO+1sBxqg#*G`F{Pu*j@3$)O!r1 z3hsPbub6IR6MZS!j7a~|rj-%IJvPVu*f%aQQ)~Aa)ju=tlkP9V`|__VMej@sG#)@8 zf&o^G|4C-CH8rs`WU#a~G&g1XU}|e-WMW`21Z;!^RBas~!U&rROM&)?h4qyU8w*Xx zcU^!+BNZD2{B&~ zNGw={FhG||iU^;3deG81(`_xWQ-_kCf~idtn!i|91kLE;}sAZ|#O*Z3~D7h4h|l6#1JTo^AF!#qV+ae^Ho7|4H%p zsQ%yKzlSpZ1?aee+)gY_@-n{2#mM-|@e1W&XnN*#C+DZDaF0!|xLAF9tg2 uKNmqgM)S-*BOK2(K5En?L|Or9{;|K3l!#eu4^dEHwO z=`w*K^v2Ch^~b)t=y7HlS4ognEd)Qt5bg<48K*i+J!D21HTB{U*2RX^^({hEo(mYu z;MR7bmc#5ly*-?xF5dIwqJ|C3`ipRXVUsP_G#@Mi)&cX0u|e}SF-^$$y?)~#IxmS2 zT^K5`q0#qBzIKso@oQq?slJ;3z5=fg6Yd$TXG05T6}}x1@yIuPfDil#CZbfagQ7dHT+~Hi6T4ggD>A4ZrXdW_(L-s+{w9 z#aS@REsi%}ehM?4UYmb$pLT6;`hX1p@cRo4pzyz794`^8_3___EB6n=(El*5?__G@ zOi%Zp`TxiE|HXj*pN<}rv?&EF2orV-x@$P*%f1Okw6MM-QQ%H=2^^Af1?UbpRlL#D zT}05Ku&H0ZWX4=qq!T*UqtcOpBMGS-pE!m698=lRGy0?soSE@=Llf50 z{8pfORD(@_1x}Y8%MZ%zc5N~ebqw6lex1&U%0_a;Db|YenFh;-VU{!}(WnZFZO^iB z`B~&wKRPay2C@J$a`w^3H5*t<58h?H&~vnw8=p{<2F=&|Q#iPh-h%HR+x_ntkrxsf zjQEESIcNX?8~_MFcY7xj`u_$L6MJJ<+kce!A1?gwpaJ|xi2wZj-#wPp6y^UBf?rt(B9iA5b^UD)vK4gKI1L!y_8H)N3x)maIpOrmttK^+x8gda17wXeW*5cDM1CJ_Sm6bYpTqfKDa|x3R>kq&@L>0 zwQLv5pr4mznJ|^M1cKpyiProEUNWA7Fpz@FeCv+stx{`zF@ou!s0`Ml%@jn{+S&#Y z&I~#(B#LqjYH7w3Io2TA7`)F>4ya;=_d)gCMNa8Q+sk~>yHY_l)In#7tw99uMLtBz;->u#dJ?iW$+!_gL?Kd8D6BMC7pg>>J^4 z;v^VSS90-ec<(!1&MCBjR>m4VIo3_Gj_x4qpe&%!!M*G6CIb6Euw|Vs z9OrF_IpJktZQWx{ct!h86f*cZHMH)3Y^%N)@{+*@8S9g*L+cpwnWNr@)MLZw0RzYHnP8<+~{!~ZW`oWKR&ypIf$bbOV}JrY#MOW^{ZFm9>{TVy%he*oWxCY=ow7T@AZkSdB+KIQBLNpni}yytshI(2UWU3s$a(bpArB){Kyk+AK-$3ZIR zq0so<{eF6XDW#V_ML^RAN8BYF!|^1^-c3v;ubvA|ei@9l4f~w2*y(Q7q@os{$qEB! zntf+m9~`|aq~PS>ZbO62hSgx$H@WJ28RLqb;Ceh?JDm&O5W>#H{A{u=xpeG0dbeUe zQe4$9yK3sUX7bK$gm^A^$pbP+6(Bb$;TLqY#jaL(9p$hEHO zAPJ0_XIFYYc2%)Wu1b|jO=&S*8N3{W%G}A5T%a$xIHWEQ8uxMh!9fuS%Jr+eF|%LG zdI@JcJo2s=-q!@UtWGxNgoTYgf782wR6x=LAdq@k~tKn0|;X^c|H zC`)~Pm|43ABW7gMX?9>O{>8yb-Eg1$E)$#hoJmoXX7nr?u~&H>9T$evSl6Ya=>Dtb zH5L%_pq}V)0UH2M(*+rPGloIFF1HkURFiE3? z$c7ELLZ|a5BldLot}8#mwjlzDKH#YdU@%%OeEo?5PlDEEJvA zPg$lrsxe6-xnhWj#2C)h6n%a(K?hl`lS@`#kI!&z`q#m`7Km^1pULOh&tixR!zf*W zi%;5=2~WM29VotH0rr5oJ`+F@awSa>n=DT~qHJqwNGiF2H>kf!ec@16i6=9CG_t!* z1R~m_q8fwm``42;^@<5;Y$%xp(P)Rs%hZGv`A2m|KWQo5DW9vRn@r>Cwjl*6!100#Y>?O)cn!)#`;0Uec=D$64( zSN2r*9D@tUBx&v{@j$hy=>p?owI82Qam!$3*UkX?#=*B$n2S6%!Y25Ltfcd~7tA62 zJwdjHb#<~gj&)b?W+N~*-^kH~)RFdKa1{_#@2kifq4|0r*CZ$!Xag!1#bJXDKvmHw zHZ+JjPU>-3$#b^PZIHF4utVzlPOt}+=l;yhQ{d6}I#vD3!gAvc>~ZF;D@g?Vqpa`N z^#^i*a{xR;1qa3Fhq?WtC&kw;vLC(`j14i_#N>4Cd0y?fql)M3jp4vxDjpph;y+2-`n<$A>6S^GenYQDKMMp*lA!auzW5qv_HG>mag|~W2!gw4>4s!u}Jt^o7c2Dl$PQN+-o0G3qeG&!;KXOt%OaB!pAvAXm2IPD)xZV8E?wkrEeg~XIVY+#V` zS^IXeHjItXrCAf!A+HDZ8cA70Y4ugzW!CoBQ!<_1=Y4iI*39}8Q%)Y044n%vi23qv z8P!U*O0g$sF~JL~;&t~KRgFKs%VW8DiM(5X)on9W(y`%~*Sy;u(~kHWW@|dAuykPq zc^u6mlaE@Pyt;A(q~RlUuxyv0k2j9cwK+sPjh(LLt`j~X2on1o$weQE9S*+jLa)-~ z8cj#APYpZ6F9FD_*MwdPZzGK8vRUD+!&e6QQBSe-`8KX-yJ+QAZrr?!z=|vuAnqqm z1DNdkKayJ^Pwwh-+p6wGA|?(3Bt-T5CBaO__ZN=A0bm`mw3Z@ zgb})Ifa6&n)BvL@7#TOM6A_GYKy>Nqjxl1FI4;@7)y%m6G;O6g6NUrL8}>zB9;^_8 zVmEnlLP0&VQRM&ioKzh9(^_rCb~cNKB-mGx&a=N&^a1}3M@aex$mA9d0a8x3#FaTg z?5wgZMs=YW0Clx=e2heX>s)u=z)H!E?-inu2myK$!nW4t?8nQoTv}+(3~W+wkd0Cd z2V446JeM(wY?0Li5uNn+C!)#HNwvhoZ@p?Z|4f2jVeI*m{&(JhWN}X@aL@ab11b-w ztt`6*LB=@w``?pLW(Y0i6;0S;riu^(3w_u+ju^|{!DcOq)N=l zW|)?(2ND(aGNlesOaW=2%lEeu_~BBzSwWeLn{wB2%@zoIaU2^+*3ewIURXkGrO&V% z!1ke#n*Fc?>;89{hzk*j9U`18@^)8(fZL2TZ8m5CH=;ICk4Rx|r)!gExkDhA07l+3 zQA$s~p5Zi>YVJ`p$65^jfd_dRwpcYBmUx{&gA^kQz%LP5QNsdoA#m~aAH&7&vvhN|xIiw{ z+`}1aOZZH3!K9O|oT|#Sk*bHG$jF|nh{KsZwh-yi@(XN3`1CJ;|G6lK9KwMsz~UrY zqT}vIBDRe1+KqPaq{_J%KVvz9(C8ckG(LSO=PBo*&m*$m>aqmqHiC z%gAx5Y|>_S4BA`Lsb!L9rZhqCIX7PsT$P8aWJ(Qjab1%$N*tx_Sqxn@&l|vBB7ga_ zW!HcxCk~B;Xu5;|qGg#2$O6#v=m>;kbnq4?p?wHq^p7F*ngZ0-Bgy)!;<42_$x$yU z;eIT*hOf5xx}l>=4VwDGDpXZXqCsN0G9VuD!^*!7v88Q(YRk$o4a1#=sOs4q!%=c@ z*oEGN^tRfJz4-KhptD>(MBW6lz9OK2am;6&2qJ{IVkVc?3g|_v$jqlI#)R{OJVLEP+&?kYG161IMNuZASl!45mZB5I>lBNfMpBsqI?gS8 zAy)eu<1_%%2mE$FU~@9G7z=H`=Bv2zqH3;?5d<|&O5=?*k1~jGUFEET063zXtWkct z;IY>-sZ6>>OPO1UqmsI*isatiKeM~heKpbLEWEpRG2uGYyevm0q=ldhVT`P2d1tu? z-}9$%erlY9efs9ue4*VGe=&f}sE*$IslqOlbb`*8Nbqu)-AZ?X-x3NSScz97m@7)h z9US-!H&=T7gv@yb@*5cZE2e8aixv&-85=rr7Bq=SbA-5o`{%%$Z~=HmT4>?m zSV@QcbqcQS#R-O(vqh!Ol9i2>U|7L%5J6E(la*)X6li>b@dVN(6uoImce=;i@Cjm2 zq>B0jsmLxm3-3)?@MK39O4%;?A@!An^~Lh>B1k}RssYYc#u@Hk6NYBlm_4Xu9pH_2h0VilpG)>9w6AwV}qBhQjCF7l7bT?EMXw^ zn+6Q_QM!HbXUNtwraEV%XPo7vTooHoh*BgiW16DudI5bjN(9NJ>FT&Bc8pexSNrRt z@7j;4PnJs{$h&Ay$CapDaZ;3MsK%nUz#0;4kv=p>RK5YD+t+(96KU$sQddylxPcvl zlE=xnqGui3xY5+F&gN7UEN^f=3M61u;BbXM%!+@H&qX=2eA>v2hfPL&Hl;JJu7YSP z-NG3dwV?obz4(EmO-jM3AQu!e0(41&0dEMaudTH}*RUyYo(jF(v%GI%=p43st`ST4 ztw$xQz${2DG?iP`zc_K}xK(jsxps3hKnS_p0zdC9Jxi$~MZZ*Pxa2L*w*3uKfy*$R z%n+=1vX5gyEY6!Nl(KYmyPT{J7Hd-ExQ-)ZmMrl68)8ry7hE zKWKQ{qN5IsS+xUb0NGhfIIG4D!HUF59{O#}ch?385mEU|Lyub#-Lhz%3m0XDf1Wm_ z42I$Mda9%GY$Au2g%zli zq+6}!0es$0BFp_^Nhax7S|8Qxc&QA-Z{!?VHQ9hAq2_D0?v;L7gO??wYBlVArt2EH z{hp5(B3G71v?0FgKv=+VlDB$Dww%)3V5vVfFP6=BMW78LMFIGj6cYo>c%-^0v8**L zpC_AzSkg@D20rR1o#-o$DMIqy;~K)SzgxXsQMWb> zK#R1J1t~VH1aX}7M${%`*l2=g7_*ELV_8g*bnZPx%%Tk_GpP2YuG%i-jlEU0qs<;> zphbx{D%vf&$ItvsrtPG*Hsl>LWQ5Dt)pS);Su|XuzU_kQAk>rU!%42nd)x|4{j}Yh zdU2jc4l;p?aGRG}+5Jgz%Lexi7^)a%q-iK~&{-@MG~}#{gwmr1l*Cg>lIjWN zlluW5P_u;oPE2k$aNp8|#-A286eGSb4|y}*%1mM>%3<&|h6GwUWPLPeW~z{ihqlmX z8Q9Cx%AX!OmWE8pw-lWW~za-+UxjILPo#7Q7ka?*@D z<7e)|PM;`-*slDX_Y+aqQ>XC(er!mx1cB=@hrV?nb`dahUw zFpJW@Vv$62-L+_3a?>f9=(=OCA`6^ji6YRe|M`91E>yC03enqZ@GU_?;4n2T(ySVZ zdc^7O2emn4uDfsK$C^1=i9xuAlA;P+O$-ap1$Xqw3j0OLhX}soz}LV}LQYX{oGGq= z-6F1x_P4cFD%FHzyZE(fj71N2lpk2EY5z%fWxEqMM8N*@qIHtC2L434y@aV~%&=xm zeEQ`z0d;|fcHcChUwGM}ue&h>rJu2m7Qid;W>HEx@UI($FsL|qtpOHsdSuoP16}Xm zqgQm6mgH*+H>jn(ocA=UTuEgPDcqB%i=TLGH|fN}qJYn_Rnpol9s@UO`2qxVZTb2^ zeU(~frPUemDZT~s1R211SLi~WE!CtPX?M-wCDvZyK`&DJaRuC-DbT#D`+QWg{QyX$ zwsTKwQ#my9i(fsqBv+fs8@d@`lnF26|m*7XT0^g13N|r?dg$%fqX{8xQxUH_$c-vY1I(V;fYEvBTp2 zAlIeoEs<2%Fh-o!vQCfUFibR<@MNcy>6S_mNk}rsHJy+&TpA-Dl3`vuO_>Nfss<-R z+QTO!h091=HK}TZfwr)_7hC3!T8b>2=Xr376d-6=1d&1ZN*i)Qt<>>aF!jXxc!IQX zTj(m3UK1mC(f)x*cKwx1{B7_)uZoBa-bgP24_Cg1{t>Ps2k35~cEXcuSpz$Y^TWcF zc!2s4A5`a=xY?n)pD7>?sF)b<`sf6~BG~HKLa0oaV#I=v2`q(8(MpIvvPo#tLD*`31VSoB|n=f&)p;h%Zk$vp(lP#RT% zp0`qwObU7&AV?C0=pzhzY(rKB@_7%m%P84ttQCI7(dZN1J-6%$eF|L2%^A7Q;GXYo z#uDs@h-7nY$>-p6ThJwc>748{pl05`NPB7MIR}p81}9&LH4U*#m+m9(NYzY@;$bf- z6D#0Ir7b9>*#Z+aBGMru(@aW2@wf)&r`$I)@oov)s^2 zVyQanTL_-$&0j}J%;hNPNkoF4`L@ZQgO0a5SP)Rdu$S=DBFzLum9wF5WolgTAkx=F zAV1QwBduDxyvLEfQ_&PbhEl?VfTRU$ZNSu8u~Ig8+R>8tqXsv!DrC%@nw7Qe>%JJ#|osr1ZKz&gPYltq&_qQi-N z;*=Xl{xfESH*F!WS=#o5;FRBJtHf)HZT$vJwB+R9AuL1}Z>(O^6N50evMGquANNRc z#%4h8kF6iVs#+f&;+#9C5IwmQjm(vxJK9eAW~6$LD-=5Wm%TT1J{Emev`woEf;I(Y zmvB)R9Wi9v>$)WZ(^g5lV6Qkz;xg&cLyTM0wujbZBQ9GRvR7$2hy=nbLu^-tn|Z08 z+LcX~;@mvKG1=+2`3RWe&rg2*=cbg#K&~v(6=$eoVtPAclJE9NuQ! zzA(_zWlIVp!vltPN$R=qTui`Ak}3B!p6)WF_i68*(k@=hn5v!*=RqzNb}5iW=$fIF zH8BMp4{WsJPSF#RDE>k-r2LHdD32A8L@4w|E3Av5=3sOncH=FKCUrQ^<_mkBN`QJc6H*}lOH$Cbf`JFd zLiTt?@I?-(gfLKL~f2t-c>Y=~~($o&t>}JiYQ`J9{pk4m4V_i&1ua zrROD~VaMZ!Z8C;Ip5{H|&GG_CdWW%1`}ePhv^y#gWkBd*xLUFA*GBVJZ)yhta_1~k z3AO&RT#xvZrdwtpKX1kV5ywUzVm2c z*Im7NhClC+=KkMKLE@ITC)E0j`O3vL61tu1ZiJpWSF1D5>G#vF4Q6`yiw#ncfCjy} zj@rNu>WY()ECSfY1+`P6Pak?%_}o}X*rxtJtq9|^r-Wm~v+s)_zMo_F5}p?o555cQ7&oyZ*vMT^FSJ7~CdSum-tPyS4f!zaLx4n9yzY$& zD=pIr3AjwUv43|q*xYWxqnX_URO}@ZAhA;7?y0GUc+-UJIQWAH;B`C^iX(fEVUo&3 z;W^BTu3MQr+s|k_l*Ze_l-_ZMZ znieLx_Y_F3yWYlop|AFopvneGzYl5ZrcB&vj(y$jj9OI{F$yy9C0cddj82hS{gYM< zKd7O1LMdrrHzgW_+7;zMiSPz-HezGhuBNRU#VE^@vWGFYgB4#cKc|rV#O8Fs3sxJM zF9@-BE?i!n*ylx7FYqatbAm0}scGUBLFsRfovRRpt*V^Rh3R!C&ovu~a z(o|#bx87kR=ul_l5#^x5Q2mNsO|1>;3v6J8w|e>9(d{KT3s83({8ufFXidDxa@@FD@s#>me(Z;kvqY%slAKUq@dBe)sdA%PyVVM2&E_TMOwew;R zcI-g?^zNIwdO0kbJwIap$N;VycjMN433@EO@mlH)t8di`(j>id5d(!;&5@Lx*s%w75MuEm zYMLa4qd!v`^gA~S=V_YKEW;g#lWVAX4;S#b2+G6PX%^7~Au_TMHQT*#4e-WkhD%39 z%TWB0D#MdQa=_}uNNMES*hgcyGa7lcw_6g*l^I@I{N7Fkhw&9d4h2q92xYt z`bOzu&GpYmkTjp#8J#Gu47Ds%F)?|jS#*mfj9-S@In0lnO`|usD@WymS2RwC#2C~R zRR})PN%}okE(MNyBF;g2Dy$!HWtr4izsj4bjy%9WJeB#bKu&t%);B@+0Y|M++&K~|WBvqighGsKM^(_>W4o|3_d8%Yw2n_W z(zs6fTCi5jvj`Sw1YTxD)SfQ6Hss!5N^D~zDOeQOQngW*_s)T73KhG_{R1fWlnHcw z{+fhOTiW%kI&anEsh3EhZV2}V9`|;LvrYY+);p4Q;sk_8?WN9xuNn^T-}i$qiah!r zlGzFd6pQWXHL=a6?fZcmZy8MNGD>3hV#_YlD_%i-uxBpk1Cn7%n%F%>b0!7{hk`yc zSR@@^5mlB52Pj$Z?L`rxj6^t6srHb;Ld=@t>ifAjYVReR3*m@r9HdHJytRE)-t0V9 zC?>IrIUEaTG3v}d&5UZD@rWS1+QF)tP%h@y4#a5`(Qxg82DW<6l;CmbWrMmpG8R?{ zEyB77s_b`GYmO@eF(6y_%c3pX5oq*tBFy~&6TStn+0Qb&?3B@oY$7dqY?zNdkEms- zEv?KeYzOY>O)jEvqkQWZmhSz+hb;{sMgv)4YiLkKDsi6SUEacR` zPRLVUicl&lMU9g64PgCuwUU5tF1peq#s`%Rjnc#$ZZE9VB|e1_7$W_MSoM)>qkDe1 z75VZ4q&n{DQTh6Nc5>RAGVQ~h(j5=6>HX`DQwtF0$7-b(x#MVdP)dZsp45@x9jX&{ zDcrqOWXJRpsZJQbvnunSkXw9JAREAZItfg$WmLloBGLybz;83ccjhWSnt_YVdA$(nzKuG9juWssB~G zLgXZ|DYM?I*xBSo5iHBHN=gL`=En5D@lF#gQefvi_Hm}ttbg6Wc`N0{&zj0l(GHgt zPTuTAsJDPO>#WeVPdoLt*F@xHv~I-mR0C*SP@9`r_+b_0I90QzUdbMroYvvEJLno= z&|ndv+#)3W27lqF@-gdmJA-u{do5@odh;lV6kHQf(Qk+aUjSWzi_3Rx2xd!Xp|swp za$QiHWWR*Iae?k3kEtf*j_#ecyei~$UgvE0NF14=xmw$Zqh(?Bcrl3@nB(9d!x&AU zH94l&^l^d5=?2|}A(N3rmbuH3GB_&$Cxa(=rxkB>Ii&wTQX7`1{o*h<0DwQv|0KV2 zHg$2av@>`953Mz6ZpLkjA^GYX{2Jz;;>z!4(VF1YWnI|-c{gf!@&_bwFo$>|N?09@ zua;6o<*xBD1;M^Zs;H~G>dL9=UxefHvp!EdufwaZ?$o|vw{%c$>bBNyjD9Zr^AByB zxH89xcG6$e(B7)kAJ=`{U+@0D3|jK097-&PVI$4MU7ES~dSQ(Ye%#ot@utc$cAdkS zN)LtC*heM)yu`c9&inJ=*}3aFQ;b+?FE772kz+7dMyKESxn6BPiw@Z;Uw_!0;f+L^ zZu9b}bUr*ZIz0KCZD%lFx{dy|8GVd$_ti{>)8*z-4L3|&`KnzQ8!8nYdwh-Yu)8qb ziEO-`?n?K*`1m%D<1gA7ayaYM<%B`W|C>8)8&&a56IN*t;_LQ|?ex6e^|DP8wZ_Tq z-)+UWw0jq9F{|jKZu?o7Hz)&;-elo+nTNkwL*K$0crmnmK}&eiT4QY|cPYGnOCbRw zKBDH192j$s$7al!CV~fNs+)J;UO5>QlCu);JCD$Cqy9LSVXn`IGV1lEV8d?go-a8I zdTui;dUR8M7QLXPEuC8{h$9p^ zYVUWQ&sXW?2q{bqBxQFmfm!B@)ITLaOm6oRs;E^mX+mMDQM!>wn&+5t^CM?5Nm?7h zaCtV>1*VYx`H5!&<=?R_X^HWaW;7)yV;>QenG{$cr4XbwaGmq~0&z+6(t;Hp_B6rU zyRx9Lo|AbAxDrS~>V6C8aT_>aUtB_=3>qQtkP{{Y*d~VusQ4(zCKU@@MxhWxtWj}| z9Ix;LVx+&IqbSI*D}9p3hE1XdQwOd=iRw)=ZS@F|NtBfICHK-g(tlCIFD1;J;I9*P zoZyY6P@E_q0#Vo)8Jv`~9YaU!Y$(t4Eo~{FJa8w0Ub317FwVIcp*}&ZmTW zEoY1SFHM>l4Y!G;iKdWnHE#&vVp!pfM@e|53+zVjS^CBhhshPJ4@3GHSt*U-YLgpq zZa2w}(Qf<6TKW3YwWuDz%!*PoKT!-vsl-a)l`PmN3B_!wii12F%Si(jv=r0?o;G6I z0WRaFSq{^~<>cWWMYtjbuGTDo!e2;~qQ3G8|W#fh9^E|dO|B6H#4*ico8GRQgcQwz!Xk! z+kp-R!fP4me_AxcnEB=--4?6_YGw$}gKz`(Zg90=>AJz}%i??D2&wjy27IPF2MW z5F47AM#chdBy*Y)Pld+FS;AN+WTNcqFwcUoE<(=ALc`UM{$h6f*Wxp*I1I$^>d~W$Yt8^={m$pht@h`TC+YI&a=0*ulj4lZ~1LpxM#DnKF$gFswt-& zeL8cs)u_8_V+{Q0wb{PadHpYZv2o|`b9-L;jo!AiR{Rn%7r#y~^~UJ2ZnKTOe@F33 z%?-OUez}i64&0M~ymCwYm!GP7ygYFpUY7VrYpLJD`|OLNj>UmYkw5bFSLvE;+Wghz zD2w4wvF4xnRmS$1@m0o)w5i9X%XGbwr^|HBk+M8jE&lmS5Bch-_$43>zS8^fnwn1K z_TN(`kKPY6iwE>)uG}bLNyi*6OpsbTytXE`u&h(p_s9>D;~uPXS@*IR*?UW?tSQoK zrcOG&j>EU%Ey)Fz_q*Y<=^hMdBmVFUXfvp7_Kxh8PbYOm9CrHYmuANYGqtXoFh^y) zvQZ{C-V7f*>#swa_h#p}7x(`o=Wi6iG_pYf0O(5q0Q^Uk|6h`OXBST!)Bj@pD;;V3 zLk^@K__|-gIm_2MT>c~u$PwO%oEMh>nZKnu1~UyZqZ<;1;z`^&KhMfEN= z*oM%?Jdivwb;#t& z6aVnsy5IWXU3bxFfEp%r=f;2qJF7=ZQYgKdA-`RPeSSs^W6tnPYCs@)X4?hpW=eY( zNOrs%s_50L?(p#3lIKA38hQ^P-~ZG zlVaLgo~Mn*|JTMBk-mRFujJ~ z?{QtOjW!~V*KpsP5fBG_O0lmW^g4LZ>PP?-75sOCFnl2_mO}d^62jf#TRc$V($_pc zajvWkV4_*;vaK^>@rG!oBU<3}x&=M?rV>E!)(Y_)8??36aNQitFhqPEr zyilodosWjnFo9sO>@}qY_`EMjHZ1K{e)LSPL{kUZqcl?)^S6lJY#M@+9^i@;o{8EcSke zKYDFF&BA`SaFH-zZG_wDjQ3#D2>*y-Q4${M3SteB3AG|vb(}0=WQ5yK`r%UJi@&o) z;b&zV4IHnPuaPBOXizurTF)jG`VxkQrHNe@#M;nzG181Cuu}XP>I*xxJ7kj#*w9qN zsy*mwvj!+3Sd8@%&pW$eeU=#bSVqyx_|;Bg3I}Uz6Tw53`9Pj=OJlP|d#?%LIvIc_ zu&q=8n$XWb#Tq{o>5_0WJ`XgRndXWn+)B*+IFy;enxG4HMrn_9K`;E2>06M?4oR^B zR&go|6xHlX)h_eTP_y?;4lo_VGQ&pYTo$9e?9v2TNCglq@*B$nSc3ON4)`Fn2U2i< zumeAj?}F4=*~;f^me>Iy@EJN$)dxl$&jK)+hE2L&+KqYW3RjBj-Fgw&0YR|_ULMa1 zFtWu(_C&6`L&TOZGq9{6Hh31^0m=VgJ@X&Q0$j-LToZgJvI9#KnZ^GI z`~SnawVeftJIfm}~!muQEV{8od(Q}63y;$BC zUB7te<;d*(6@1)=yGq)+mL~<(axnNC7ivzor%J^7IB!$xoP7M+Iz}Au1*n>&_`96OgR_AEGsL5zvW_b0L%&-Tw-INu?*J3oU8W#QA6+lC^1RVsL)`n1J{ zMhkaRa+MZ`KC{b51${cBh4p%#1!L}J;KQzqg%Cnu!PTWzL}=a99431D1yzHI0q(&K z506O~gsjUS_%<0qK0)EFKYG(yC18CDgoDOm>jZWzo;0UMs5cg{{N&jz*AdKXpMPQB ze2ZtEKoDo@7U|R%xtYdc&w@Q#AD@qetswT8m4&S+KVdu0Z_Qa5)RliCh|C4~&gx~; z^E})&S?!>1c_5!x-pA#wgqxD!Yy`=x+Mv9P#g@110k>Vjf3G-tX*LI^4iigd9o{MvbeEL1SD31nla!m0xh`UIIqTM|=nQq)4uHK+IHOqJgu$k= zPmn0kxGbHJ{?hYfS({ydKMWUGiF0loJr6%*DD@W>2Qx3xLQemUFeVGVA3nD!yr2_> z>RjhSv|br+KfBozK7TEb9@kN6EDS+K3=RazLq{K6mt_rkfKnKdqWe{Vsl0I4`A`B; zhC|da3t}=!`-&!(Lba2-8P3|aIz-BWAy2aDM;;0L)?m03iMM64TDr*2vW9-;bsL)-IV&Dq=(EDW$p1nNn+zG|isS9C^ss`c^?=D<^6ga+?+b4+%$kh zrj6)N%^Tj|ic2DS0S87EODA-lm7oYk>OA5@u_18dMmi8AJ91-i(INjulSVWuA^3M; z1dp;4Vsv9(B!;u989AvyWE=XO$3VhQ>X17EuPDR@f^;0vh+7X+Z0cIYsaN8xMoOad zjjZ6H=qaIEH(PVngHAM^X)4)gIB*EX2|-7cgwL+Xo@LEQY%j}hi>Ck2;o2_!*_mp zFmy^=agTo*QEa7)k&|YV_)mFMNya)M^XO!T`flb0O1|iJDa7zvi^ds0pEKcnn2=Zo zcZ-YY2K*fDoERxm==f-gCV4MjtMle~se@<>LyI^Hjqq(ZI!GYz+zd?#47+Rzeq=%4lK)Sz=p7$J; z_g!cGe*d3Yi&?{Bu8W78JRnuV0DS zbsUC%@UT@1J59%5{^a3A;0|fSDSjmpbAhYy$y1V2M0U+2FFu6M z!nO>fv;QodcT1@qPu*ip21}xR39q9)J403|?*mj6`75#I%GM(h|Cd9}vB_SK2hxP? zD0|3PNi2MZ_m1o*ZDXnLvzUgwdVv?%)3t?1tcUN?1M_`_N|%Hz7o(3;8>(@4ic4xv z`F4$RhPU5%i|=V6o9!b~S*0ntDbO+-;vqSY=)y+kUC9guhOZ+xaI&(2mC zhCm;mUxGYE%47Ts9iY(kH@EpFPlo|5<5+fcLwhOYso=X5UflO#F@X)Z z-5#)Pj*CP+A2Kw85=Ph7VxJhtk{1gjN^q^QIJe>>mj`yI&+Ch*eeIPwc0{x4hpa2= zGj|MuN;-XbRVpd@iO{>gNvL<9E-Ad{uyNewoFZ zD$1A-dAfIcdrbj;WHhS)_YHCoY(8&|Zrqp?`*BACoAD&oKMi0GYCW5KKT^vtby2hs zk)G0|n-M5FIL>q0_3_DQmF;O1bo8Tly5Hjm7eLJXcedJGfta!coFOy-^hyR|2AQ}x zIosK2+gNj2I-A)jJKEVh{lu%Z5PA@E4lVG^|9;DS)ovBcg%=7BX$cy9a9bB-ieJzpZY{a%HA23FXX?dsxXU({;TCtmpm}1 z`DkL3#j(!QwXp5m@kIiA(dJws<&-Rkj*=V~L-#C}?aLLT@J3?Baf9M}OP}$lOH}ds zKpbN{FAL0zYVWsx`6P7WH47b>yR`> z)Gby!^YB6~)zX>Ij!2Z)*tfYcPOtLj#5>-7OPyBZ8&>CMj*j)DkwFq)hfk0YMa48{ zu|NWtc(xl?ArF?U^V#=S2;V{;3vfl`Wle4~Vkfi7k`0*VP`*p#c`2gfR(*HVMbFOp z%0}YYsN|6yEzKF~_-UH#_iF*1Ah#2#ZzNp(H25=f+RV>7yayBOdIerGqc$13*QS@u zVl})t?D3le8lL=p6wI1S)*b*OU>}%r@qkeP^iTNt%HcG!xBoHO0)2!2*8&Cj|7WTV z{OF0*MEX@6y`d+Ou+ttp^5Ig>$2*qT+TbDf>dFXZ`iJjh>I@e0)dw8EsJW#3SO{lQ zeQ$g@X^MufBKmY~3>;@}nDn-KF8NgM@X#vG96!G_-+`q60-d{+@U{4!i#;`>RXBM} zdBvbxxNo1fx~PR&rt-9EzQdcOCq|!nrucN*o7K)q*ekansk|o=<^1DXzGSJ#gehnj z3va5`A`HAsW3$n*^dD};JjPofq~a~6s>#IB(HBlE8083`UQWh*)H~&fr7~+jiFCCl zNd78X;4K~t%Q$*@8=qk#*j-c=OFq5~E1%hRhc9GXX|xVSDQ#vZ zvPYCf_I>X~?}!OH3tpg2Z=_oHyeSlc@CJ60`^oFoPs(`_De*MD7;HhQJ)XWhYO9!( zcj@K5m(-{va8|lu=4cu$7}FS&5;^JORh1Kx#lg+Gha-$;HM3{ADBMo-(*%pm5E*sK3CcgcQi^+@l|%z0VFvgj{M&T%|25N8f-5nH zI5}h$IW*A~KY|tRffX?B6%T@|H6k6b?Z>0gk5p7aSSJi?h$sQZvY5p6!X8jfaE&ZE z0|ScY*%`EtytqCB>UoM%>>*MA;Q}(-ML=82tS2tc!NDs$!607GC&*v+c%iqgOE^x{~zlX1It#;Y>T?k6Sn$Bu~^IRaemM6eLV4HVU*Oyr`g>4o&oHH4%N|jhyu4 zZ76c^)KSLC(u1DkTV+k?uIiSIQjrj9X$0c5XWSKvBV{SjIWm+Pyb8JyB0edvl9A5s z{lasrbU7nu&{jzHcXp}UCjFLVo7RtnM;_>?A_Uc|XOf*1Pu^kL{8ZC4K+hRrB&W$$ zb;~3=tf)q%wyyWSIr$}H6-Qx5-QgPuijeFZ!FS^^PhFy(GE9`H^W^GwW_v7M3K=aM z5;BlVXPU`crDafCGae`r>9T248@WNTh<2^dd^qyx1`t1Ms02Reuggit?09&AkQ!)C z_u)2OhzBCMv|HYj5iFQGn$ibMUs*+D%$@Jnj}i+C(t;{doH}$W?9}zROD`q*YO?MBj&_Ohu&60j|{Pw7UenHKt^rrEzei$VMZl3nwjO|)3{ zmO!8>Yzu2P|LWuvu;g9nDhUoA=R-6{L&|38el**Il-VX4`nJms#z?mrV~9ovS_$u^ zbmgWnAZSlGj&OhdC1P+@le=WQ6%KI#n;;`I#zyAHIYZi4BTGb-nS>mVWVLoSEKK4K zK8@|+v->`>oJn4ZTFLCn!T9{e&Fh{q=W9*OX^M?QLfk2={Cc@&2XuFJIa20lIuah$ zB>g8A6FU{|^ZWVix`f>RCE>If_|y-xBvzMI&~WFrVAp}E34t8MFBtG)AzOGgCiKb- zyVHuxG)F@x10IFp2_sVQi}1}en^o^4qIY;8SU+DxZNiGgyH!XOuf3}wuRmT=>y-WTnt)JttB=#Te1`WPha0Zu z42FI2_6K?M_L+K5ickT)bu;5zE?HV!_2UKdl=ss$v>Dgd&3s;MRw`!d7D?9IJi%LT zkB#xbByE0H!Y4klVV0)#KKGV_K1fDyy1HbCxORvf29M>gbjZ{tx3l;fK~=cNoZsLVit+DG(PVcM;Vxc967zf31wojg ziy`f9WE1%5eF7V7?AFC61Q8~7mogPsPbyRWFOPR$f?8iCz7e7u%@s#H(?$=*fOdIh z=cf7+1uVtQieBZqXOqbVwuA8DC()2gRXXYR!-E1pp|J(?>~)#TLss~<%=yK+oc&kT zQ{~qdTg=+__~3R61B<{QR?_Ir5gJi%W|74zsvQm45T`}RwR=;$3WYW8SSZpbybC9K4h7LpHSj; z93Ah@rtR6>e|b!GxYV)m#Xa1=hLzQw27mS(A^Z}tj>W;_;2P($PGQYyBf~wEPl7Wd z-7EcC=z6%DwZXMSy>*}0Mlssf+O|RQiN(>Z?|WbG`|#{|$neJ$CHN8ouFG3~m#crg zlzM9N{c9b-^_1m6ARu@7o$F~?I$KCRe{N>t{BOkP^yLX|i`~Q(8i`U>SeNJL_#Fzf z{$yB}Mz%a-<%=PriORaQ7vTQL{VmcMTY=Xc5QT!80xPGAX;T;yMH^c0or5jA1*8Q} zBk-owQU`S_%`^$toCPdI3F~}s>1eLrCO?hPmQoyZy2ID3`0`7b-xX}C(=5IDjJ;Yy zB2}N-*v$xD$=-5b7(7RXm3iQ^SPxE={<7VC8-;1ab*p}R1&<*kq0i!e$HFqbqfR>F z%qWII=6LdQV8I9G=XVTka_Q|W4}22uXCW(oZ+f{9aPYaWse0XOnyr`mqa*i7$2`+g zzWUcJ)o{CdBFsLT)7U&CDXjOOJqYX1{X@vlV!>}KdiDzhFF=N=s4;nx@)fra6I@Bf*mUl5;PBo4$hF^JkS~o$QQSBq%w1L5 z*4*TUncJmvo-<lhyn>|AOZf@5xa#e=ldj#j6SY#eSw1#!qNPY3=O4edU3kMzhizKp#dHHm)# z+U2jArQT1N*(S{Lykm% zNCK1edFkcGgCO#0HQ?w#=Mjx=~Xr?%|5Q|uqQ6OqJ2_MY}P}mKgvFS z&5Wnp49DSHB1yuLsF!X~JdYCE;aq;#ijF<+Yt9WXL*e7`c|d2JOO)hX_&km+u*@5G zEb8u^0XIHKk(10_3lTRy<2>L2J@9}o$4RDhDNB^%YG-!Detm@MeNdOiO9)FgDoX`T z(_om$bh|SwTb)TR=5PX>S=bffM#A~drTS&us#WWdMafUXsHH=&=UN4OoFlS7?!(LE zhrOJY;5nS+hH!ZQ3~l~Q`!&I>nJL^NUVLwyjB;*E4kH7f9<#>Yh4L;>!-WtToFl)8 zcS&D)M3S~PCcWU6DLTW%-{Zev2#irST+s(#cyU5`g>*lfQ>ZlrCwL2ub>-`yz^!3B zK^GS2bG`Dr^#K_#@QRlA?uxA5vwE&oNIZ)`MEJO#OAuj|@PHHweI|CyE#;>YInVq$ zr^!c@I4_L-Ctkk5@s9={-}c%& zp$Slk0ubXSzv!4pi7*25!#wJnbYWBu|{c{p=Jo>Ioj|eB?@ydGeDw zgC$*=VZ>xRmGU4-C?` zCwe5SYzdU3sm9-BAQPFu$F0&zGLYZ3Z!#jtsqr6(u{xDRsC2tjVdse;1WI+j5=5{d z1DF=h4=i}KGKa%M3E;x$`iBlyKcQQApNtQRIzY%?aSNi?B>3_6Z&Aw%UoE+U018MZ zS_B5ToeBJF?+*f)`dAW2PK65L#eWQq0D{Sf4G_%G9|Y6y`!`hbSb$)5&*lhK%L4?{ z#8X+q4EXI!cNu4gW#>~5#j^lh*NtlhkUZ#TQGQ7c1y+QC&ky<8rRI^@y}Rhi=t)p( zBUFIHZioE8nv**{V)HQJxpMyfh{w@2_9%Z@N2kmK5VS*P9@Er#glk2i{J#~Y`yj`^ zA9y;?TBzptZpzb*6$M}fC@1_l^!Z}^5;}lKRs>mTM{c5P|0pmzQk5W3gWWhmkP%5* zoh48n?VnXSOK=ke8b&I#@vNaji+>b?d@Kl&6=0RUskcwOYIa+gPY=f{7}1O1;~L zhfkY{(Hs;&D?HgLxGzlOju%$4!gJMH`Z#0(0bkHnf@Ntmm0OWG2})`LKt@+Xp^aN& zFUCQ)mT)#}T*&G?ho+oTSBJn|dnBCzWONM7El25YQFSjhJIYvNglnw;Br_QbJ0A{ML4MJ7-)RQ-I0EZ z$=5(m<2VHQ+6{F|s`Uw3=Ocf$mlk+e1UA?{VqLY1@8GC_Vl;S5V{;TQ-ft(WDA3@W zB=s_y@H&%)(f%AhWbrEg^a_sKZAbz=lkurpwL}l>zPp`o1({SymJ0Co3(Q5;MZm)~ zGwWgyl%!!=64S1FjC;?bFXosQ=O_RJ>)BK=;$hxlgGRVk#T)x81M4{m-s{p2z5!m> z1n-4A!q0|_T(>Rsl3)c>xvNRh&N~uY$l}j?118nz`F%&khD(gfLoOFlcC(NSKDVEd zpy0NYrYoV;&Obi0YKC=;JL#qO1{<@VsIN(<*{!5gV%=+lT5~-CUAx$;G}3r%GjCd+ z5H!v&3s_mLD7f#F2yVztOdL+197*42nEPs!z0a=qc|YQv*uBAoho>{5EtJdz(l8RA zT}^at6u9|UW`gjb_0V=`mcY}e#S}E#ggsiYDlB2ldu$f@-Z6^{I~+_f$I}@WLS(Vo zZr32cwa#`h67?f-VJR1_mliu|8V6Cga9zYBCu)i~YdCQnWx7o8{cxWl6WL(IyFRCdv>nlW3MKuwH~|NKJ|4r z%z!XYUCw$#V%iQ43pcc^TCvIXPP=dxuAR9P(nd6)pWZ}9-I`csZL!e~KZEbHi)en_ zFJQXdHTcIXM?!xW3RNKW3*x}b1@n+G2z zalVIBe!}FXLP%)N*D`Tr`yyC!Mx@5hE&%7w*`kTp(B)w!)`qbGNjq+|M$!;o3_7Mn zlq_p=-|&DH`H+es)l@ubQYbc68$`<2H#ssrqQ5Pn*osRr0OvmVDdQ%#P1alTZcXbq zD+1qfcc3n2vfnO7tnEKSnHE5?7->rclqs_gvxuFZw2-^1kqA0|X%M6*0dM>XK2)Vj z6J5JgrH)<+53}4gFP?pKlojjHW6k2}U=J^)h*lVTtS}1QJ!SFr@^=4L5-MBUNZ|in z9g`8;UMuY)`|ToySQ`;5H22&!45jwlNSRlu#5`reEc$PE|L`dt%5r}i{Mq#XH!Wxd$VUFfa(*J5o5DXk zq5m#K2QCu-TVM2>PB%L-|MD6IE-L@lm-(jr<|fHsa#yy$)8J+Z{mX(; z`LBZh5lP?F-^>Mn>Bm(6(%(o4Z#vw}Lw-3>Y5p-DZlohOeg2$hez|}^I7Yt}^53(L XvK$JqSNI2r!vj$wgFwk9Kfe1vrgu>U=UQtMiv7D+vUQ3;+rM4gdf^03eEg>ot1#z$?I4*dJAXLS!NNMKGoV3(XVTb)!ZsF}(Q>+CJyvBOy}?Aw)tY!)VUCSs=kbOTBZh#0OolzV7J zu9+K0IzqvPo<)||vf(hf&1s&k=u@l+^n2zpMXHDcRr2}T{tBvr;Mpptv6+P4QcxI4 zpGBznRiXt`@?bLC6eS{pzXrE*m8m3GHqv=*#1U1IS1z0l_LLw|3Ru(;5=KpQK6c`- zupuigpSEX(+6|!zJaE#Je6Y?>I~|xu6l0~7^1%+!1v>*3M<|bz_Lz`|jNI7;wXk5c zyb4eirhSLgxHKH8q%pdVuJ)#>3b(yEsbKsvis5fgEi;AZcG z4X((H6teElIr65sL~(mfj-V$}t8!0ok}qtGZm|FWzP^9}Wd9Ez$Bn~my8AX<>2DW? z`u1@hdm~E+I@-U^|Kr>LjUD=5UOh5?O#+A?I`|4?OK;eVZ4Huec4bp6&xP;|C@}3D z&;@q9aJ93e0KZjsP5bcvXiR1?BOqg*tK=tWm7dx{?sA5%=$3`6RZ|3*tlF?fy1xmG z=w!8-wap^k&$z_ApOFl|^LOil`H6W5jhU(oG=qja6NKaB7e7b4&AE& zrKc6Is==6HmRb-8Rc#co6#1iHHuOhRA~mo4WIK$^=r^hI3rWcN?nW!Xr?lM)mS|6AY-MGv)b? zcK_}plma90g5OuhfdK%p0l)!WZ0rr`{^2NwHU>^s-y!j@Solw;0sIb#-@X5PAAb@V zWcujggItI|1^2VqDW(bM3!(6xf(TW$jxtsIoegz-KRsacgB5A?MqHY(j+t+4FB``DBu zCfgnvT6FJ1Kt=b1%*#F_(i`v^krgxeF?y%(*h>WawxtW46STUIdovVu*rT%PYryFr z7cqpcB*HhcXk0TJbTQn|q6=}71X==d-bqYtb_rwOX&+$rL`DyIN~FUr^8gYWF{VcO zv7?SXB;xOc>Q_Y)Xny$V*5A{z2h}(RyI{R`q($@{9BrVsoBp{>`VkfYA07RO{k{!1 z+VyQY|89hBLJThiPyhe|^Z)<|-#z{|!hbcteRU~^HFm@fn}tuX#K{`!q38s=f%IFG zMTHE^s*9{MR3QPvLE>&eeuhyq?|$vWs|mWaB>?`ocuPs=bHlon{&=xmzf13rSHLTu z_rxMg%3lNxoaYz!VBDmNg$8A$Ass$jnKm6~HNEyIcZyVY%Nb$$PkYx_J{~$a{hX9c zdDMOI!m=+0k8utxpmL}`#$uFoPQ!PnEX%bw0%K;zskv!)~A~^G) zRxF@1RA8IAuU*%{YU%^wZXX#X53tP`O;KWc0m{OJcQ1^%T$stJzzM}qH2Ud9J1vx3 zD;nulYPXy`>@4m6REI#cFirYQ`d{+NuU`0HlO3(>yOZ0U1M|3f1ejQh40&88)x>-9 zEPX$%EmkukB3&gsedt@qu^jAQ>St)@t(Z_r4ndP)9<>e|Qj{&3yX8-{$$p}7Ckun2 zAr-;k6;+q6t{5Q4br5vx7w%zv@;tWrjrsFL_<8|d`a{KxGvgk|D_Q!cv(864ybEsC51R}kaWztro`(t$q z4P6C&!{=y4le7Pq%|5rmvBH?(eeN49!K}MKG@Qp5)99RH_^ICARb&0z*lsar&gxDB zjX}8yKvh|!a1XoWKJkjgfMVgVC1ZMSV^)OwL@1at)lm}+6`#*f(Vjo_YBMH7KU=f# zx0J>UZ$Y47b%ilVBKIi1cxH(WYDiPvQ92zA%!$bEaZYI+jD-8C50mQzmi^5F`0r+4 zs|~HOl>BEa8U=mg`A9@jYrHJs122fB?*+r3EEYF_3YhFEhr@R89)SH76Tt( z#EoFd&u{CtnaRNmVqv7rUW@4esWK1D%RvQo&iI}Np`8f&LKi7%i2`8{YLXTWK{~Eq z10Z{Rla`mRXToth(SHq{XGXolVjuTeBZy3Z%sUu${0C{I>GXpMrD;ps>eaq^flIuu zT4$_xw5GpYBy%x1H@`Xp(VAUgRO}ra(8|17qqo$EA9_IfRKx!x)N+$n~Kma$(A0d{6*dAsC~XsrHIGg{n{=zQzhWJLBx; zK~1Kym=MB|gkh78y_9Bh>S{f8KS@ge^dI@i4rNEqrFiW+~)`#p-gpCectgaZ0)%5yP^u^ zxy`bvj!hg#yxgO&>I+c0I^zXvS7L1^>J;b#F-|bh?ng^qyX4O;$Jv&UVp0;)L?4C9 z;;%f@*B-BSZ|B&MP$@-EV8D>;kRrNMcQhj@i8v z(7k?H5rBF_=>qi}_D;9N#8ayXPuQmP?Eq^okW)+v!>v6nH;iyr)xVLoPeGx+!iR4IyBKM+&-tDcfmB9xiN zNvQON{(c7Hj;GE#5mLj4bl|5|mXM_V~QeBe)!SD7HWZ)mFyZEP%(SZ2o8F)hh~5l{rdbW#CK#cRhE8f zy2p09m^FBFboFHw&1hd51i-hBuY1n|LcXfPhy@?0Oo56&YL=sQ2JMA-FGJQlPl**K z#IG_SS?DscxhOEX9vus#Lm|=i2mdw!O^@5ZD_6toN+ANk(Zioogr;L- zi=d@fslG!^6__M!0Jgr}d(|W>DX!pzy%)#ZOqs+~0{B5Ii{3#FcU`gy**+g%PP7mT z@*t6OS?pBRnEDwYN{G@U&(~zelyI?WE$X7_w8IshIkR$v2N~Y8H z4wg{215y7XN8rMjLzb)|hgj|$LLo~3Z~@LDO}2B{|bArfxK zISI;uewy#d+nN5A9)GDWkSju7Nr#9#=HizaGv7ea?H(9Q`YzU{bACo|4=46j zlOPK~a9mN3+mLh5?AnjS2Kh_9Au*e$&`Fo(U!96oO{UCkL|=R%~-&&G;0k zH1YCmTq}feWXXpIa!>oF+T0R?QGpMqEb|ROS?WK*qL3S7(j_&vwu?7hEVD2BuS}c? zkZflz-no(|3;h0FPg@tAcO{N5`$W(K4|rL7Zynq|7^o?*c2KOI*k%?^tY4Yoc4te# z805Ac4;S59=U5hrSuaE4VbBF*Ro<;)C1P#1Lt)x>*I^m&c#(w;0*3L;iLCxfZEu$( z^>E%Bf~S=4EZXk~v|n&v->Hp%Ur*C-2vU@OCpHVe(;_JUTu(ci8d(|9{e5Qm>yz$W zO~z)86}by;*#+Ox#(>Nj6U-@mxh8`~3aj5b1lKGqd094}Z&ut3Yjw{Tu&-4w1ZCMO zL{GyHb-Cz`d4i;uoC-7&%Yowx9P@;yRpzteJ>>g}8$s!SqM)vFup zD{Z`2S}pl)t1Vr_Z58P&p0FyYG(fz7bj@*>&K_Dj-1(;fs;>fym6I7KM0_eXN6eD> z9__N7n->4DXnKZyj%JQmNSDl68r7=igBs#tIXpM4nj1K*^kBsfupM1TO&T|~oo>Sn z@2VVKe^6B{1V^ythR*Ek!dBp{UYX284X4&!NIYY9FPUR_2K$?m=S$Y1-wDx#H=u9r z<--BM7^=CPYvM}@Me48-OivbxT+0)z4noHy}!G$ zz|WeHPDaq>yg#0gL{#y7e6)$8Tub?h8a>Aj3gu_)gJ0aCBQq)6k&qGDb)xiv&)tSk z5GS(tq)UQ)WQSwlPf!@AxnOf}_BU+f03H-Tx_a49A-KYah2^7Uy5uhdUfNG`YAUMh ziQZABxv`7)njh-R4_+8}st&Y8APseOh(kIt!AXkVSPNk@JfTY?!-@+a&pN#O#zJ0P z%AYPfrM&t}@+cqE3gi5ul42|*B1<=pXf%WNPE$UC{&cpi^8j;V|2^v-f!!)L3^`62 zh=+KXdc&Dbj;#`hy_=c@;|=t?RARVC@!3dIhVt4`3|+LtS4^$pFd4v0QhKXLwuW+} zbF8=~0y!L4ai-mmgN~@_nV+rKPCW=`nwZjnHx>*&AN|5k31sWQI{4V-8b}(o^$nIJ zx=p4Ew8`u^lo<-1n+XA>vt7CwsVjg2%RpZO2HB}Zd5HO?t#^W4(RyrW7m_V;6itV> zGWN}iW+kKAL+N1rF-)KX+@d>gFAS_w3L>^bvv!hmZhkz_2Tq4w;sFZksBJkDMtWP@yl!I{ zL`^RtCFW3DNGXqvIU#|xI9L*imcYJzjLO1_o9SmNk9o^e!O#k9#NS%D%R4CCnK>+w zj3VXJ*rpC5RO#JnX%(6yq5jrYeSa#0IGLJS5hjp@Lp1VgS!*~F14f`0bgQdLnOVTq z394@?GhbLN*w1xEeptDj6|BXiBjGkjcEgx)pAkiHl{JcYyPNE&}3kPIJJGyyWlCQRsfSHSU^pVgMnd63IdR1CZqbY zM;dpRgH%*3s1vWL1?{=65(jj4)RG)D*!^8wCrPyG{K!I8Qkt7U*gvh_A9wP(d{d=}i~K)J*;dj!=QQl22djVcVRRcX{Z zk*kZ6^ngw*$sYY{N^#~5Vx8v?@G20GCJa=hV{tt!J6SLI%V8O!G5&}fzM}GcPZnYJBV`M!#mvF62~GCv-S$Cx zRc0ZIbpnD9ut#1>Pvb7OskrgCd5nWSe=lL8CD;zDZaf6f8=gX_nG|VinkA~sB)9k#%=tHSf zh6i+No{n(X9UxoKq`$(1_MK?$Q0nRM9@X-;aGT001nUe@PWN z7&$tcS(`Zg71rw2)}p^tMP53(UwJ!67tB}4Q76zs5}8^2wRNf{ynKxd8v>3D#4TCb zRXOoSMPws(^vgXwYQ}K`t(lalYP|2yWo0(mW8S5$kKO}Y)eBN9m#tn4JeyUYZv>m9 zzccixSH0w1tlYZXDMA)vY`#95@TAZ3utn2Z*Wn|aRoU9!7UtM-7hPQXF3T*#ccfg% zH3)eey%Zwvn|#_W!aw(JY}?M#1sRmr$}0y`xO!66w3Z#8ej996(otJym@l~qKG91{ zE^hP*Hc-*=j)i|topV)tlhNlY3VEy3ogOREa<5=vwTsp$={gi-M({^WM{ai zx$K^MFwvc6w|alM4dfu$sM{X5X>maB=N4x#ScR8=j0gX=LHA;Pz+!yZXn)%14^MV* z{&Y|BEbUT*Yv=a3(Q3Ge@OEYb)Q!(ysqpc(Z0lTJ1TIHX`P~#)y470Q!chTd)I~&w zfQ_NCAq6a7?6Djt zPAg_iMN91>Bdl{iSi6NCj$;R<#r3GwF}~*VbvnpLelZeS2hU_oW_MUM5$U5og9>BD z5Ti~1(YcnAU^vwIIw-3G!%f33DgMZQ=F4_UuKi}N6L0R+f}wND7=N8{+Qew})P)^V zlTXe;^hPIk%?&u}y!xUNehEhx!k9eZO3d_;!^-7BxVW(6weY0%<kar@)Vvr$ZB$(uG@q@f3VcqdvFaJ1|!pY_u_^|kqSpF4a1$piG!<5jJUsSLp zvE%!=4twz)$5taG7+7kekb2bjnaHdR(`)h?c0n0>EB4@?MKJ_ZdJxo5%Zsy+Cc40q z774&>G;xdkIio^uP(+fP7BJ&nj0dlfP4lnNS9@w=H9qZ=3g{(_3cdOgv_j!56Gr9u z!VD-J`^Bj{2>Ob4Nf5_Y0;c!V))MAXcMb8ZG4zLts1p1dR92}2$V3iqLHf5;>6`}F z93}E&9LW=Bzxb!heo>x-Bw?iKTemo~=BFyOjG)w)8ttMGP~x%!0}aW9F7Mkk`zt$2n8~T>RV=jkZ~Z- zu=@!!?I3gmk+{k}nmk=XYBav%C7-DH`mDU|Dp?BfMM_F4r1} z%*o1%G`S=`iU@m?TWz2Ds;V<;P%YQIwwRPP}@rk2PK5W{JHr~F27pf>0pvl8RLy1Ws|WU?c3Er0=6 zgCmpw3Zqk^3x4^mq63swmiq*Q^K7?#X53FLNaXs4qhQ}C_^Yz=UWD@`@aN(q6eBm7 z7PCVdp`@kWZRoS8U(DnC{Sr)}lvm9t@L)WqepVL+6O8B&e)8=h@?geBkTjUhzcB8x zrZS#bDj?_dl>MqrN&ioBeBwj3YMf6g2Wa^|>qzO2+sq@9G`+H|lHwn8ICjO(bN!e7p$o+4|8-IN*57zkveWk#jIio zy3~0FAvz4dMXx;;8o{q5D&t%VyPxIY#-DyOuFFZ+7El zVJL01SX}!os9Fu`q$vwi_>8ONutwXxxcG&ho?l7SQBD`gRGR+Ki3zLrVr#6?MfWcR%z>At)q`cqj9dQe^u6@6(iAU+ZL7B9;{?&Mt##`ccjc{@9lPwEZ?Prb%SU-7 zZjJ~KcVNuDjZ8=7UCu>8^K^fj$QSAAi%d-hbHPeVj9KrycpWWXm4Q7*LY2Y%NZL`^ z5<^Gi$r3|dq+HcSy?1`fTlOkBUKw|dr}Q42mX=G2{nwPywfDosv?1MT-%pf~_;*ex zHE`{XpSEUg&}>s@w@44Rqh2iXP&cv{8M|}yvuOz%M$TI8jzc#QEl4G1w>uFt8D0#i z_3!89bf^huopA^Cn<;JK+s$rfja5=vY<1gCERh+vd>=VAXW|DAV+VL9lT}(1O1%g254w&O5&%F)3;+P`pI^HUj&7Dle=i8mH6?BK*bzJ7s=xTB&7P)lc;ne22DwAC z9vyvu6_;e`PS*Y!S{2I|jpxexd{Cg4uh*^*kHZWAVNFp@RK<%>dQhU!dpXkS6wbR# zA~EaUE93IywZ%bw^Tg?wQFyx1ySeOjnjMc=(jGQob<$Bg{k+}L;r)2GPcp6|ki>z9 zFHwo(b!t*;Y~$n*|DcIzzvtenLASPcMRdc^B$XkHOZj=_a^;D8(N3)jq8Hnd9SIuX zpb{odF8^$d^n4!t_7*yTG07{g3XbTOX&s=IF6ogc=CL#4o?@F*L_v-dB(J>>QiIC$ zvjQUg2k#EWmf;nD8d6I>5&>i}9N04jq!!t2m35AOw(D#cM0I|Ww<+^)7 zE&}?@_xV6jz`jNaLS}=b$Tbebz+G%VMEzvXyi9WArb|l!MjO=6n%hF>E(s@FBlwOk z8qpFie*i~DY*n0_~WzZ(Hf zlcg(7P9hVTq9)I{h$;&agUwil-QM7}v0*Qw5T?sqcoC%XE za}ZDogUF8@_nwUhJLx2oKyRcp<_uriT#{-=^|X}*YFGXxR)^G0srDK@lQ0?9n-COV zv|@H}(V%lJ{7I}k#8}x_@3YkJY>lvwa-A%J=KGqrEkS8i@Xh^u8jh5|6k{rtX#xSs zDTf{Ps(y@;{m~&s^LXhUOnewqycc;1d>HG05P3Pq8@jNVU}n3XJ&osH{8wB|xX!()UkMIU3%9dZ>4P_g*1Ye_J zOk*q*js+2lvvxJ$*(3n|0`K7rfO$AKB;Qv8n;)_+x7J`MG3^kli|e@@4Pu+X_@4cT zN;*I&BN+gO6EN`?^IMU(-w`#sYyFXL6ByY7XkjG7SKkT;$qlLc8UahDRM)JWNcTZ- z6FB$(l+3#?1#l|8d4c~C#|Ai-j>TMp`j<>8ILy+2JSG?ma|Em4GbDixaA1|s>6SEC zRii|pv{j5m_b+7@eLp8CW|=*pSKz2ot{m@{)bziG{r@7|!rGMB26_-r`d>zz1(|1_ zP4r))KWEe0A^4t$HT*1@Pea-vF#qcvvf9`9Ux{pfB(t!YO4G!%0S>3*GRww&cVAqe z7TZK8;>~RTTi<^VofAc1VPC4dmQ@x+QUM3>_xDHv@(i3wZGOP>+=Ajq5@Ip^B|7T= zLEjec(|p3;x2QP;u$w>~36BgZgn*LeW-|@Tu*3q2f)dFACi&|u2a`-24y?+AI0BEe z)blYngDDMQ98JMq=sqoP;~SRhqJUz@ICkw)WC;-Uy4n{eZ0|g^+=;Vx&mZPVCdq8_ zJ;~N+fv+V9?ZN+H^4Q=Xo22Dcqb=kQh&?`&r{P;Bbb*55FRu{&h3ds~jnAr7ruW`e zArLg>8;YcnTW?!54&N3Yz6)o?6Iy+n%W>i|W1$EXvjglj$Ih(DeYD3h?s-OH?*TV~ z^}To z4UM;Ys%(FCBu}J+{XDM1!NaSesUK+|ipxmjShs^P)K~pXhi}TG(57rU*A{zPvIS-3 z&JLPhFlsDw+Y_1%*Wo1kT?{FGJZHJgF6X2t=mSEj^#r$IVplqN;7~NzIcpybJ}e~D z6USmO)iY!2aE;L7@Bku^fk#_r6$JnOTh<-LvpFg#La>d3v!pQSflVgd|IGn4xXbN0 z0Ani+4`xLqkN_MLwmP{yRQ-l}FV4-|zXDVQa2s}DU|2FQa7AXJXxiUvN;{M8=k0a9`6kM`E7HmDo9LXy5F=vj zReu>JOXL@ksItawpyqQJPzc>FR9f@Kf@>TpZWayw1&`(^s)kz9%=Q8CLq#WUE-YH> zeTC6Tz`>T#*)lG_NAkpNL0*i)st&aBV8SwHX$CHvFyDqdZ~t&YKwj5M3eV=bLJK0L zy#THEXLncUGW8xMP@1ADz;|j?fAsJZi{DDI&$d`&Ff&?k^E7NF14I%Tdshnh9Yv)r zU*&-nU=dV}{TU6D-y?`5P^_gd2QoIy z_Ykw7$z6&5-Br_IfV%TfcVcP zrnQrmzLEWR-svASWg@JMxmMgLb5w2cHdp;a7BTg~ zNryBhc4$>a3<_{?dmPpkj^~-NQR7tkOu=V@?C_#(DpK8p8U?}Ay6q|2N)I=jW@pOb zt?J>_+E{~<-!r0g+tnJcx^|2E{kd;#{D@*r7XpbUv?nQNU}rr#p7;?A2t_27z-da1 zJP5IEp9k3z-m!EXsnch*8>fkq78g#bw((X<4*%pe4fw-)XPs@ zF>i@Iu29^9Kud6v5kP$|Z48m|3q|`bvExb!v9@Q@yxoHP*b1#owIx?t;Z(-)1kVA# zeq?)iO<`gl>jE3*WqrlsdLJ_+50No9wex6=GbIi02@GnI(QWc*K#iSA-x?O_NKEYe z7hIVJj2S2G)n9gmoI*)`7V_*`b>o2qy}#){a?1js5}OMTKS ztc{e|3OCX>iXu}BUUi@W`*BZCQWrtIpj@cUMA+#<50rT94U$cZ!FsF?eVz^c^F>@4J4#dy;B*=#+jCw@zstCFyJqW5wm$<6@ zivEh_wCQ~au6MJR33*9J*qw57z;TO)Wf*?fuVv=3Cvna1hAE5Xi+YEZnsOJw=9D-z zD2xvxG_|gR=o@_vWjd4Tfmd`p6oule-huD!$+)PDw#qJ`izwC5cQN|*#J8Kn)=6s$zF zL@&G{i`6Kb;psEq>HShdWi5y%A+sd8B>#>DsX`UdjvQgm)!+m)j4UVJoB!ump4U?C z>+8YRB*2962Y@?gb(C+3-M~P49v1VS@`WbQUarXlP_a1iTp8x#7>3ES5?$$;?z-!I z-AhjGSgy1AnX)o|#MscL5`*>bz2yOmKZc`uu=VsWjp^@uN$0XVT6-$;HQ4^7Fu_)a zMESSE4!Z4S)4V5Yd7*yYOYrTTVNxYsVQN$RZW;ntVsstv%>)=Z;guXEdA+a5wQSs1A`EVD9!p)F zuB}5Ym1b-PY23VE9ZFq2>a9y%c?a0Bb-Z;&ww-M7{B=UzTXjd%e(@s@=z86#oM~ba zelOh$OHXN6&+z9OpJ#mOpAeg^vwn#fn4R!U_YvZL|IR}HJ9?d-aEjaco*|UJt7Opu z$N>zT92{+|RIM!O%p8rZWbJKi9sZ`T`1!;DdEA z*1djQjRzv;0bdJ)sL(y*g9)JPw83@DSO`24mUwL6 zM9@YvnLQj};=QJ}n0#R)mb2Q!n9_yTl-D2=?<$V`gr!_7h<$j2go>_{%>Z$UQ# z+9*0fN|Kz0~k^f75|ENj+ONoE$?|%xC|HW<>OkGi6o>pWbkBoN569wWux>`U* zj)>~WqR96nV?1v=$mia%ETX>INBW&F#7ZAln6-FL3Y|i6HRfZWal>gL-5ZoWe<{I?Z+mjeIoIdpoqwtofN@7){!Q;7ck z|7R+U{k1cx9qpJGymcs1$4u`J1~Tj_cKo1k(*C$SRYs@~;{IUh+k=)w15FdRQi+$D zGc%We##7_SBYM7_b6Sk3aCY88C8KlOc+O~*O3od1d~K3>=75oRck0$~44y7d<`5sK z!5};4miRCtOkncdgFSTmMMxIW@GO{!;I_My+%ZGe<67#NGH-NQ)S+6rnu6 zXlUi+M|BvXJb??+AVpy;iF0;05dFCTI_)-*%Kf*aUh8)wjq>RE)~#B!Q3>D zr6WPq={cU;;@Kav2nn`ho>l&G$*SGVi)32s&tm+^!I*=G+Bq&ewwCA_Y1l46*qX4U zzS%%*v@1?ny9N_mB47AixbYY4_ljVSpgU$mc%@WJ?nZF8{6Q*$D^1&*p3X9!=>}xt zUzjj4kO{zF1 zpVq`N+)qB$*i#}Pyjf+@EY5=`OY#4?Y`$z*vpn+K3|7B?NdFdV{(ps;TJc)QNje${ zX&Pm4=?QTuT5%}|+Ol!+2BmO2XxsS+@JBg$0H|k@!yh1i`Vx>REgWtG%HoX@7$hVh z%CD~jBN$~ZVFT_jAZ2cRE%opD>-~uMP2^gM*@7w&}OK;=v&6O_gcrpLi_&eZJ%AQ9I4i-4K3xV}d7i*YV!wld z1D75%o_Dy1p5Ut5!JQS&NQJ}maYX=8(li-rq-Uy91~$+^R^e+1gOHhpJ<4bL&hJXz z%+n?H90AUPvTvz{u?$Ad&`&J|IcB)k);F` zLrNRvnwp1ynqYj8*3p#oHb3O$gRo2FvHh8k(r}8x9Q(1XB* zvTS6Kb^5WJ~FtNBeEubdFp;xWOMp28Q;)8GGSEJcIj@&p; z6yB^Q43I`gKZSe$bvPc{FqK?5BGq=!l6sheVTmtjn(gn`s2@`R5{I7aiKe@re1Lc* z-60(&#|{pDJDw%Z0^))5%s))PfU-#j1=ojwGP}8gfA`z$krJLp>4Fgg?1v6xJ2PPF zAoe6Yg}LUeg^eF5GnAiqUFF+}8vp~7Mu!*0Ip+5qgqL&5lCj%AN~m0%m>R_0PtDyR zP}U4pLM*Sjc+l$8@oxwL65X+KWuSoCW zJx)H4xs`+_%m`n-hn}V)!Qv02AU3MJW}A7Kupw?R?MTP%FhF>OZ|~<~OC$IgYf{0c zR6NPVy|T~L{b!G4vx#KB`VLyByZ`{m-{$=HMiv(%eT9E1P&n7vu*ndE_u(!33K;O% zUAfYtk}lF*P$=3AaqsXLLLVyaCd9X!>-q!@#Ukrb`U5o`;>Jkbwzshb&DE8LL%Zoc zF}q@=sT?+y0>~Aji+U8NL-z8(_(adh2)8&|L5}`jAX@F#)P1d^d zQ&-&vp&A_!K@q4myG2gb`|G8aeZ-V?AF>kCc*Z99=8&txmBx<8S;@Zp+T8mJ+SHr& zOY7rGf^+87LaXIxfj4?W!7R|Zs+R_+DWWMVnb67!#M({^?Al zG?oT#<$Ge@oifBzg!TN*8LRkGj8iYN7+GRNqY`A#*RPW*K%bH@vSB9rL9sn{f~~Js znBaCpDLZViZWGZPpBUfSDLyE2dz!&_0Y1&hnutelOzOrEOW zElC1Y8ys4@xpan|Re6Q9#K(KNk#@EKpr#I()()JIykKM4;CdiEyddw;+;zO`SF6b>_bk##8*Nnx=lp5iUSGPc$06i5}!;#CG;GpB|Qp3 zB)l(C11JI9O6*c&jQc%FSG-dfwwnzS6H|e`fuu2_-*|66AzZthqlU}~KNIL>2C+?=0qqER5>&e!auAsb4^N-5d#s0vDHoo%{oAAXNo6#hlgWLiusGg0HSV`A!jbnPr zMcLDgSIO#srjf_2==XXc!!d}me1~OvnKYF;2^9a6V^QyIi##QbH058fEU_ZvImxc_ z;j|x)DQiqe)enq~em$pA5G9k!pJbiV7SN$637Q!Wje1UGTna@SmlO+aigh9Oc%5(XU4+1yTw z8r;PGsP_KotM3thQNlR5fHyFkv*~Rz3xyUbxf46%btKU_Lje)?yNQp|<(ZLVPs*?hGx;nl*|-s&=W}nV&nUg) zmAZkCFI5{?-$n1Lmb&vNhxi5#ROY?cc8hqT$l7@a76{pl^I6OJK0HZA!iee5-mP6? zd$sf*tFsU~ne)lJ{>Am=#ss=n1;n<+hex;?w3c}8;(3ysD^PT>=|Zy zH_3L26pypyLv31+AxH3Dq6_tep(>Z%kXqh+gD?oQiO0ck^659+?DPgTiu}UbG>cLU zMB0J9Ki3Ixb6BqvN09N>i6;Ry<-jdNEjS{hmXV)#v73FMsuoG2MTa8eaCZn3VUbbF zQ(H*=_JSnF*P@F(n`7a;cHa~bFAR#L&mR(;(RirTe$v1&V@=TCjTRS){J<=0TjgM= ztLW}%_kb+uS9{By(epIF39aV^P_iU^3bxAX$SHbfd`TacbPM9OE})mJ=qpNS&3*zv z{vrPZ4%oXBQei5XYh1kU_q>C;&E>N~h08iKm3Z4DYqnP}!WHEai8SzD5}9elyXEaT0`7WyG9Hk z#2=`80$wp5E{tFzNN8J+@3vW9sN(R*0J=sswrX5<+oZbXNxGKJV~tO7Z{w`Lp{=Pc z`~3%o+N#3PNcak%-gf;BdUwM?Hcf2m^xFA`8-{F;td@1SPY{#4}6!!(345{x~(n#2uJ-O`4YfO-)tQ5O198_Jndd@8-Rj z$b6u8vl85=lUx8Fe!hZjzN+RR!mTdBmNFrD!emr4n9=Czcnuk~4R2NVyX$TRiNZYk zg#Af6X5>sdJ6ZI&GD}gLM!Ah&gJ7M*Zv7+YF{b=~5ZVF6#ddqc!|Kx=NSQi8G$h>RrELeB+CQAoT>oA_`W6y0O3n{9(&*_A)VlVL=*rfGtm5|4Av7hK5SuNqQb93q?g?wzSl`V zUl$WDCEY`QIQhbVSq(MDd&Y#WJvgHzxQnjh^93aD47K1ALQB zbgokIZx(5Abv*nR)l3xFh95Z3&gP7W+{u?Q$hQ38%F^RrM3Zvs<$_7kHM zqk=Yt$$byIC;$Jea0~}QDmMehPse{9@jSTF4fcPDj!fD72D`nYn~;Y3GxYmX)&Do8 z4BqGZj(&G%JPcO89mIY)*_ZmZ0NI4UhQ3*bP)_*GSZe~zRl`rgRsT{jI8Ytiw+^o3 z*Z}lU)0)k`)uZ~iR$dca*oJMtDJ$b4=s?+Diolo)_(A#2Ux!n%o;@0`JIP-j=4(j7 zORq5YZN9lF877$=V3FU}axw|M(s1h*>-Jwvj|E$X9L zUB1vMrx67FOo)yEKYWhGKDIj!JXiRT@_ok7t_q=`EkFb|XFiIZ*;EE;l%xSPgKu!^ ztjm4^$73-M0Jj5k+USJd>^`~Vka{pF-hYGI_YF?%{R^r=20P_ls}u#IMaEVf89Pwc z4ywPw=?z-9D9+0O_b<01*Q9ceYL)stPrA;fg zw)wcd=`WDXtr&RrlljMk0}e?|UO`997_m2L{zRO6<2^H$b=L@X_EI2v<8Vr+v+(gg z7ZIiYI+p^tyI>qgWTtv|8wmN^pYboBSFnS+r~|K}UX2H4;QoU|=SAlEi*m`re%?O* z1)%DH@UTWk{UmGxcw{>~s&zuJw5B6bPxvs8eh^TaOMyQg3LjdPLRD(=Y(I4@H}c_g zD(b!cJiZVsIeJ51r%RpBO|_EtikAuwk|G^1_|AZNjfedf6^L29XLzQ|^{RtDwn475 zfOM97UQt0{J1f#t)|jYc1b}{o$bR=)nRku7WIE^S~`!K(4V?$yM6msE)TfJ*cEf~ zsrcCqZ|as$)pxycRiJOFx`uD+$^90KEgK=tRBK;uM8~i9pLMLl&VF8|{`W&X*3p|eTkd3p09(Q>z!4llvw_Ib`@Vnpmb?$(vQlRh`=6q}>xfIwvF*3+<@N^5+Sd2>c65Sshux1G z^NQG#joAnl#!8~Qp$p%vwuHCA2@Wuw+kSi?b6zA?(SL(Xf`W0{3l-f(Y4>WkvcQAQd zZWY1F?{nwk;ote)(*QhA$kld8lB|X+@#n-x< ztMiW}CQL{skWc59uL z8@0E;+saT^JtM0A^xKxUxf%PziC0EbV@cz>5SR_hgCGPluO|M70^Mwd#FN!s%T z?Dyy#suYSBL- z^9>U22olQ)Z~@+^2B01&h0w~t@C0Zj((zL08c|Q#LDt9toJGWU<_@|^=trd>%-)<5ggXpzjk!Hv)YJ4#J2X!0o1BBarvwple58t&7lpS{bGtzIGQ~ zGx|CVgl0WGsAiN^8R+^^XJ-+*85kmr7;w(jqML#`Nr`OAbYo;wuuWN_n}s^ng>2Sb zQw9d~i7#~Bs51b_x{p{Oy97RMif#b<=sLoPm6p%|MHy>H*N;BniO?Tr1J#c<{E2P? z`iKa^gmMRz^nf-#f^H6KO@lCnfgv3@)&dVmSiKYA%?jKg4VqpQV2}Zxef7x~!~+0< COL2Js literal 0 HcmV?d00001 diff --git a/capstone_project/aws_v1 - fx spot prediction notebook.ipynb b/capstone_project/aws_v1 - fx spot prediction notebook.ipynb new file mode 100644 index 0000000..b0f4034 --- /dev/null +++ b/capstone_project/aws_v1 - fx spot prediction notebook.ipynb @@ -0,0 +1,2140 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To run on EC2:\n", + "Enter the repo directory: cd aind2-cnn\n", + "Activate the new environment: source activate aind2\n", + "Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "Find this line in output and copy url to browser: \n", + "Copy/paste this URL into your browser when you connect for the first time to login with a token: \n", + "http://0.0.0.0:8888/?token=3156e...\n", + "\n", + "change the 0.0.0.0 with EC2 IP.\n", + "\n", + "you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# get data from mongodb\n", + "import io\n", + "import pymongo\n", + "from pymongo import MongoClient\n", + "import datetime\n", + "\n", + "#client = MongoClient(connect=False) #Makes it \"good enough\" for our multi-threaded use case. \n", + "\n", + "# mng_client = pymongo.MongoClient('localhost', 27017)\n", + "# mng_db = mng_client['fx_prediction'] # Replace mongo db name\n", + "# collection_name = 'fx_tick_data_typed' # Replace mongo db table name\n", + "# db = mng_db[collection_name]\n", + "\n", + "#print(db.count())\n", + "#min_date = datetime.datetime(2016, 1, 1, 0)\n", + "#max_date = datetime.datetime(2016, 12, 1, 0)\n", + "min_date = \"1Jan16\"\n", + "max_date = \"1Feb16\"\n", + "\n", + "#https://bitbucket.org/djcbeach/monary/wiki/Home use to speed up" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"mine\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1Jan16\n", + "1Feb16\n" + ] + } + ], + "source": [ + "print(min_date)\n", + "print(max_date)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# # each of these is a stage in the pipeline - match, project, group, project.\n", + "\n", + "# cursor_group = db.aggregate(\n", + "# [\n", + " \n", + "# {\"$match\":{\n", + "# \"date\": {\n", + "# \"$gte\": min_date\n", + "# , \"$lte\": max_date\n", + "# }\n", + "# } \n", + "# },\n", + " \n", + "# {\n", + "# \"$project\": {\n", + "# \"_id\" : 0\n", + "# , \"bo_spread\": {\"$subtract\": [\"$ask\", \"$bid\"]}\n", + "# , \"bid\": 1\n", + "# , \"ask\": 1\n", + "# , \"date\": 1\n", + " \n", + "# }\n", + "# },\n", + " \n", + " \n", + "# {\n", + "# \"$group\" : {\n", + "# #\"_id\" : \"null\",\n", + "# \"_id\": {\n", + "# \"dateAgg\": { \"$dateToString\": { \"format\": \"%G/%m/%d %H:%M\", \"date\": \"$date\" } }\n", + "# },\n", + "# #\"high\": { \"$sum\": { \"$multiply\": [ \"$price\", \"$quantity\" ] } },\n", + "# \"dateSample\": {\"$first\": \"$date\"},\n", + "# \"high\": { \"$max\": \"$bid\"},\n", + "# \"low\": { \"$min\": \"$bid\"},\n", + "# \"open\": { \"$first\": \"$bid\"},\n", + "# \"close\": { \"$last\": \"$bid\"},\n", + "# \"avg_bo_spread\": { \"$avg\": \"$bo_spread\" },\n", + "# \"max_bo_spread\": { \"$max\": \"$bo_spread\" },\n", + "# \"min_bo_spread\": { \"$min\": \"$bo_spread\" },\n", + "# \"count\": { \"$sum\": 1 }\n", + "# }\n", + "# },\n", + " \n", + "# {\n", + "# \"$project\": {\n", + "# \"_id\" : 0\n", + "# , \"date\": \"$dateSample\"\n", + "# , \"high\": 1\n", + "# , \"low\": 1\n", + "# , \"open\": 1\n", + "# , \"close\": 1\n", + "# , \"avg_bo_spread\": 1\n", + "# , \"max_bo_spread\": 1\n", + "# , \"min_bo_spread\": 1\n", + "# , \"count\": 1\n", + "# }\n", + "# }\n", + " \n", + "# ], allowDiskUse=True\n", + "# )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# cursor_group = db.aggregate(\n", + "# [\n", + "# {\"$match\":{\n", + "# \"date\": {\n", + "# \"$gte\": min_date\n", + "# , \"$lte\": max_date\n", + "# }\n", + "# } \n", + "# },\n", + " \n", + " \n", + "# {\n", + "# \"$group\" : {\n", + "# #\"_id\" : \"null\",\n", + "# \"_id\": {\n", + "# #\"month\": {\"$month\": \"$date\"}, \n", + "# #\"day\" : {\"$dayOfMonth\": \"$date\"}, \n", + "# #\"year\" : {\"$year\": \"$date\"},\n", + "# \"time\": { \"$dateToString\": { \"format\": \"%G/%m/%d %H:%M\", \"date\": \"$date\" } }\n", + "# #\"date\": { \"$dateFromParts\": {\"year\": \"$date\", \"month\": \"$date\", \"day\": \"$date\", \"hour\": \"$date\", \"minute\": \"$date\"}}\n", + "# },\n", + "# #\"high\": { \"$sum\": { \"$multiply\": [ \"$price\", \"$quantity\" ] } },\n", + "# \"high\": { \"$max\": \"$date\"},\n", + "# \"low\": { \"$min\": \"$date\"}, \n", + "# \"count\": { \"$sum\": 1 }\n", + "# }\n", + "# }\n", + "# ], allowDiskUse=True\n", + "# )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "strConnDef = \"DRIVER={ODBC Driver 13 for SQL Server};SERVER=localhost,1433;DATABASE=kai_dw;uid=kai_ta;pwd=tenpen12\"\n", + "def getQueryRaw(strQuery, params=None, strConn=strConnDef, commitOn=None):\n", + "\n", + " if commitOn is None:\n", + " commitOn = False\n", + "\n", + " if params is None:\n", + " params = []\n", + "\n", + " pypyodbc.lowercase = False\n", + " conn = pypyodbc.connect(strConn)\n", + " cursor = conn.cursor()\n", + " cursor.execute(strQuery, params)\n", + "\n", + " if commitOn:\n", + " conn.commit()\n", + " return \"sql insert was successful.\", \"sql insert was successful.\"\n", + " try:\n", + " rows = cursor.fetchall()\n", + " #print(\"rows\", rows)\n", + " # print(\"PARAMS:\", params)\n", + " description = cursor.description\n", + " conn.close()\n", + " return rows, description\n", + " except:\n", + " # print(\"THE QUERY: \" + strQuery) TODO: add query\n", + " conn.close()\n", + " raise ValueError(\"There was an error fetching a sql query. Make sure the index exists for your selected dates. THE PARAMS: \", params)\n", + "\n", + "\n", + "\n", + "\n", + "def getQueryDataframe(strQuery, params=None, strConn=strConnDef, columnMustAlwaysExist=None, commitOn=None):\n", + "\n", + " rows, cursorDescription = getQueryRaw(strQuery, params, strConn, commitOn)\n", + " if commitOn:\n", + " return \"sql insert was successful.\"\n", + "\n", + " if len(rows) == 0:\n", + " print(\"No rows were returned.\")\n", + " print(\"THE PARAMS: \", params)\n", + " print(\"THE QUERY: \" + strQuery)\n", + " print(\"Rows length is zero. No records returned\")\n", + "\n", + " if columnMustAlwaysExist is None:\n", + " columnMustAlwaysExist = \"Empty\"\n", + "\n", + " columns = [\"Information\", columnMustAlwaysExist]\n", + " rows = [\n", + " [\"No results were returned.\", \"There is no data.\"]\n", + " , [\"No results were returned.\", \"There is no data.\"]\n", + " ]\n", + "\n", + " else:\n", + " # bytes conversion needed because of the linux pypyodbc bug\n", + " columns = [column[0].decode(\"cp1252\") if type(column[0]) == bytes else column[0] for column in\n", + " cursorDescription]\n", + "\n", + " results = pd.DataFrame(data=rows, columns=columns)\n", + "\n", + "\n", + " return results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    yearmonthdayhourweekdaydatebid_priceask_pricebo_spreadhighlowavg_bo_spreadcountopenclose
    020161317102016-01-03 17:00:15.4931.087011.087510.000501.087231.086610.0001651421.087011.08701
    120161317102016-01-03 17:00:38.9931.087031.087490.000461.087231.086610.0001651421.087011.08703
    220161317102016-01-03 17:00:41.4931.087131.087490.000361.087231.086610.0001651421.087011.08713
    320161317102016-01-03 17:00:41.9931.087131.087450.000321.087231.086610.0001651421.087011.08713
    420161317102016-01-03 17:00:44.7431.087031.087450.000421.087231.086610.0001651421.087011.08703
    \n", + "
    " + ], + "text/plain": [ + " year month day hour weekday date bid_price \\\n", + "0 2016 1 3 17 1 0 2016-01-03 17:00:15.493 1.08701 \n", + "1 2016 1 3 17 1 0 2016-01-03 17:00:38.993 1.08703 \n", + "2 2016 1 3 17 1 0 2016-01-03 17:00:41.493 1.08713 \n", + "3 2016 1 3 17 1 0 2016-01-03 17:00:41.993 1.08713 \n", + "4 2016 1 3 17 1 0 2016-01-03 17:00:44.743 1.08703 \n", + "\n", + " ask_price bo_spread high low avg_bo_spread count open \\\n", + "0 1.08751 0.00050 1.08723 1.08661 0.000165 142 1.08701 \n", + "1 1.08749 0.00046 1.08723 1.08661 0.000165 142 1.08701 \n", + "2 1.08749 0.00036 1.08723 1.08661 0.000165 142 1.08701 \n", + "3 1.08745 0.00032 1.08723 1.08661 0.000165 142 1.08701 \n", + "4 1.08745 0.00042 1.08723 1.08661 0.000165 142 1.08701 \n", + "\n", + " close \n", + "0 1.08701 \n", + "1 1.08703 \n", + "2 1.08713 \n", + "3 1.08713 \n", + "4 1.08703 " + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "str_query = \"\"\"\n", + "\n", + "\n", + "select\n", + " --distinct\n", + " const.year, const.month, const.day, const.hour, const.weekday, round(const.minute/15,0) * 15\n", + " , const.snaptime 'date'\n", + " , const.bid_price\n", + " , const.ask_price\n", + " , const.ask_price - const.bid_price 'bo_spread'\n", + "\t, max(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0))'high'\n", + "\t, min(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'low'\n", + " , avg(const.ask_price - const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'avg_bo_spread'\n", + "\t--, min(const.snaptime) 'open_datetime'\n", + "\t--, max(const.snaptime) 'close_datetime'\n", + "\t, count(*) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'count'\n", + " , first_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime) 'open'\n", + " , last_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime) 'close'\n", + "from dbo.fx_spot_data_features const\n", + "where\n", + " const.snaptime >= '\"\"\"+min_date+\"\"\"'\n", + " and const.snaptime <= '\"\"\"+max_date+\"\"\"'\n", + " \n", + "--group by const.year, const.month, const.day, const.hour, round(const.minute/15,0)\n", + "--order by const.year, const.month, const.day, const.hour, round(const.minute/15,0)\n", + "order by const.snaptime\n", + "\n", + "\"\"\"\n", + "res = getQueryDataframe(str_query)\n", + "print(res.count())\n", + "res.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'date'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2441\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2442\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2443\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'date'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#cursor = list(cursor_group)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mdf_res\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdf_res\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'date'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;31m#df_res.rename(columns={\"_id\": \"date\"}, inplace=True)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdf_res\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/data/eurusd_features.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mset_index\u001b[0;34m(self, keys, drop, append, inplace, verify_integrity)\u001b[0m\n\u001b[1;32m 2828\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2829\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2830\u001b[0;31m \u001b[0mlevel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2831\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2832\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdrop\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1962\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1963\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1964\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1965\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1966\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1969\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1970\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1971\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1972\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1973\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1643\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1644\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1645\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1646\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1647\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 3588\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3589\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3590\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3591\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3592\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2442\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2443\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2444\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2445\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2446\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'date'" + ] + } + ], + "source": [ + "#cursor = list(cursor_group)\n", + "df_res = pd.DataFrame(res)\n", + "df_res.set_index('date', inplace=True)\n", + "#df_res.rename(columns={\"_id\": \"date\"}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "df_res.to_csv(\"eurusd_features.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df_res = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df_res.set_index('date', inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# load kaggle reference dataset for comparison\n", + "#df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + "df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + "# Rename bid OHLC columns\n", + "df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open', 'Close' : 'close', \n", + " 'High' : 'high', 'Low' : 'low', 'Close' : 'close', 'Volume' : 'volume'}, inplace=True)\n", + "df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + "df_kaggle.set_index('date', inplace=True)\n", + "df_kaggle = df_kaggle.astype(float)\n", + "\n", + "simname = \"bm_kaggle\"\n", + "\n", + "df_res = df_kaggle" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAIUCAYAAAAnl0eaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QHXd95/v3J5INJjyYYMGCJF8rRODICWadwTYPN9hL\nANnAKrBkyyYbFi+sYgrzcLeSiza7CeRyqy4PYZclGBSFFcY3KbwEHKKAsCEEwi0cZyXA2JZBMJGN\nLcEG8RADdoIj/L1/nBYcH8+MRppzuvuM3q+qLp/+9e90f/vMb8YfdffpTlUhSZLUhZ/ougBJknT8\nMohIkqTOGEQkSVJnDCKSJKkzBhFJktQZg4gkSepML4NIku1JvpHk5nmWJ8nbk8wmuTHJWW3XKEmS\nlq6XQQS4Ati4wPILgPXNtBl4Vws1SZKkMetlEKmqTwPfXqDLJuDKGrgeODnJo9upTpIkjUsvg8gi\nrAbuGJrf37TdT5LNSXYn2X3GGWcU4OQ0OnXCsem0yKkTjk+nRUxjMa1BZNGqaltVzVTVzEknndR1\nOdKPODbVZ45PtWVag8gBYO3Q/JqmTZIkTZFpDSI7gBc33545F7izqr7edVGSJOnorOy6gLkkeR9w\nHnBKkv3A64ATAKpqK7ATuBCYBe4GLummUkmStBS9DCJVdfERlhfwipbKkSRJEzKtp2YkSdIy0Msj\nIm07bctHjqr/bW98zoQqkSTp+OIREUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhE\nJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkz\nBhFJktQZg4gkSeqMQUSSJHWml0EkycYke5PMJtkyx/KHJfnzJF9IsifJJV3UKUmSlqZ3QSTJCuBy\n4AJgA3Bxkg0j3V4B3FJVZwLnAW9NcmKrhUqSpCXrXRABzgZmq2pfVd0DXAVsGulTwEOSBHgw8G3g\nULtlSpKkpepjEFkN3DE0v79pG/YO4GeBrwE3Aa+uqnvnWlmSzUl2J9l98ODBSdQrHRPHpvrM8am2\n9DGILMazgRuAxwBPBN6R5KFzdayqbVU1U1Uzq1atarNGaUGOTfWZ41Nt6WMQOQCsHZpf07QNuwS4\nugZmgVuB01uqT5IkjUkfg8guYH2Sdc0FqBcBO0b63A48AyDJo4DHA/tarVKSJC3Zyq4LGFVVh5Jc\nBlwLrAC2V9WeJJc2y7cCbwCuSHITEOC1VfXNzoqWJEnHpHdBBKCqdgI7R9q2Dr3+GvCstuuSJEnj\n1cdTM5Ik6ThhEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQ\nkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqzMpJrTjJ7wM13/KqetWkti1JkqbDJI+I\n7AY+CzwQOAv4SjM9EThxgtuVJElTYmJHRKrqvQBJXg48raoONfNbgf9vUtuVJEnTo41rRB4OPHRo\n/sFNmyRJOs5N7IjIkDcCn0/ySSDALwKvb2G7kiSp5yZ+RKSq3gOcA/wpcDXw5MOnbeaTZGOSvUlm\nk2yZp895SW5IsifJX42/ckmSNGltHBEB+AHwdQYXrj4uyeOq6tNzdUyyArgceCawH9iVZEdV3TLU\n52TgncDGqro9ySMnvgeSJGnsJh5EkrwMeDWwBrgBOBf4a+BfzPOWs4HZqtrXvP8qYBNwy1CfFwFX\nV9XtAFX1jclUL0mSJqmNi1VfDTwJ+GpVnQ/8c+DvF+i/GrhjaH5/0zbsccDDk3wqyWeTvHi+lSXZ\nnGR3kt0HDx48tj2QJsCxqT5zfKotbQSRf6yqfwRI8oCq+hLw+CWucyXwC8BzgGcDv53kcXN1rKpt\nVTVTVTOrVq1a4mal8XFsqs8cn2pLG9eI7G+u6fgQ8PEk3wG+ukD/A8Daofk1Tdt91gl8q6ruAu5K\n8mngTODL4ytbkiRN2sSDSFU9v3n5+uYrvA8DrlngLbuA9UnWMQggFzG4JmTYnwHvSLKSwV1azwH+\n61gLlyRJE9fKt2aSPA1YX1XvSbKKwTUft87Vt6oOJbkMuBZYAWyvqj1JLm2Wb62qLya5BrgRuBd4\nd1Xd3Ma+SJKk8WnjWzOvA2YYXBfyHuAE4I+Ap873nqraCewcads6Mv8W4C3jrleSJLWnjYtVnw/8\nS+AugKr6GvCQFrYrSZJ6ro0gck9VFVAASX6yhW1KkqQp0EYQeX+SPwBOTvLvgb8A/rCF7UqSpJ5r\n41szv5fkmcB3GVwn8jtV9fFJb1eSJPXfRINI89yYv2juqGr4kCRJ9zHRUzNV9UPg3iQPm+R2JEnS\ndGrjPiLfB25K8nGab84AVNWrWti2JEnqsTaCyNXNJEmSdB9tXKz63iQnAqcz+Arv3qq6Z9LblSRJ\n/dfGnVUvBP4A+FsgwLokv15VH530tiVJUr+1cWrmvwDnV9UsQJLHAh8BDCKSJB3n2rih2fcOh5DG\nPuB7LWxXkiT1XBtHRHYn2Qm8n8E1Ir8C7EryAoCq8kJWSZKOU20EkQcCfwc8vZk/CJwEPI9BMDGI\nSJJ0nGrjWzOXTHobkiRpOk38GpEkb07y0CQnJPlEkoNJ/s2ktytJkvqvjYtVn1VV3wWeC9wG/Azw\nmy1sV5Ik9VwbQeTw6Z/nAH9SVXe2sE1JkjQF2rhY9cNJvgT8A/DyJKuAf2xhu5IkqecmfkSkqrYA\nTwFmquqfgLuBTYeXJ3nmpGuQJEn91MapGarq21X1w+b1XVX1v4YWv2m0f5KNSfYmmU2yZb71JnlS\nkkNJXjiBsiVJ0oS1EkSOIPeZSVYAlwMXABuAi5NsuN+bBv3eBHysjSIlSdL49SGI1Mj82cBsVe1r\nntJ7FUOncoa8Evgg8I0J1ydJkiakD0Fk1GrgjqH5/U3bjyRZDTwfeFeLdUmSpDHrQxC57Rje8zbg\ntVV175E6JtmcZHeS3QcPHjyGTUmT4dhUnzk+1ZY27qx6QpJXJflAM70yyQmHl1fVC0becgBYOzS/\npmkbNgNcleQ24IXAO5P88lzbr6ptVTVTVTOrVq1a8v5I4+LYVJ85PtWWNu4j8i7gBOCdzfyvNW0v\nm6f/LmB9knUMAshFwIuGO1TVusOvk1wBfLiqPjTesiVJ0qS1EUSeVFVnDs3/ZZIvzNe5qg4luQy4\nFlgBbK+qPUkubZZvnWy5kiSpLW0EkR8meWxV/S1Akp8GfrjQG6pqJ7BzpG3OAFJVLxlTnZIkqWVt\nBJHfBD6ZZF8zfxpwSQvblSRJPdfGt2Y+A/wBcC/w7eb1X7ewXUmS1HNtBJErgXXAG4DfB34a+H9b\n2K4kSeq5Nk7N/FxVDd+i/ZNJbmlhu5IkqefaOCLyuSTnHp5Jcg6wu4XtSpKknpvYEZEkNzF4jswJ\nwHVJbm/m/zfgS5PariRJmh6TPDXz3AmuW5IkLQMTCyJV9dVJrVuSJC0PfXjonSRJOk4ZRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLU\nGYOIJEnqTC+DSJKNSfYmmU2yZY7lv5rkxiQ3JbkuyZld1ClJkpamd0EkyQrgcuACYANwcZINI91u\nBZ5eVT8PvAHY1m6VkiRpHHoXRICzgdmq2ldV9wBXAZuGO1TVdVX1nWb2emBNyzVKkqQx6GMQWQ3c\nMTS/v2mbz0uBj863MMnmJLuT7D548OCYSpSWzrGpPnN8qi19DCKLluR8BkHktfP1qaptVTVTVTOr\nVq1qrzjpCByb6jPHp9qysusC5nAAWDs0v6Zpu48kTwDeDVxQVd9qqTZJkjRGfTwisgtYn2RdkhOB\ni4Adwx2SnApcDfxaVX25gxolSdIY9O6ISFUdSnIZcC2wAtheVXuSXNos3wr8DvAI4J1JAA5V1UxX\nNUuSpGPTuyACUFU7gZ0jbVuHXr8MeFnbdUmSpPHq46kZSZJ0nDCISJKkzhhEJElSZwwikiSpMwYR\nSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzvXzoXd+dtuUjR9X/\ntjc+Z0KVSJI03TwiIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqTC+DSJKN\nSfYmmU2yZY7lSfL2ZvmNSc7qok5JkrQ0vQsiSVYAlwMXABuAi5NsGOl2AbC+mTYD72q1SEmSNBa9\nCyLA2cBsVe2rqnuAq4BNI302AVfWwPXAyUke3XahkiRpafp4i/fVwB1D8/uBcxbRZzXw9dGVJdnM\n4KgJwPeT7G1enwJ8cxwFH0neNNHVt7YfE9blflxTVRvb3ugCY3PYcvn5jlqO+zWpferD+PxBkpvb\nrmFEX8aMdfzYzVX1c0tdSR+DyFhV1TZg22h7kt1VNdNBSWPlfkyv+cbmsOX6uSzH/Vpu+zQ8Pvuw\nb32owTruX8M41tPHUzMHgLVD82uatqPtI0mSeq6PQWQXsD7JuiQnAhcBO0b67ABe3Hx75lzgzqq6\n32kZSZLUb707NVNVh5JcBlwLrAC2V9WeJJc2y7cCO4ELgVngbuCSY9jUgofEp4j7sbwt189lOe7X\nctynw/qwb32oAaxj2FhqSFWNYz2SJElHrY+nZiRJ0nHCICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzvQyiCTZnuQbSW6eZ3mSvD3J\nbJIbk5zVdo2SJGnpehlEgCuAjQssvwBY30ybgXe1UJMkSRqzXgaRqvo08O0FumwCrqyB64GTkzy6\nneokSdK49DKILMJq4I6h+f1N2/0k2Zxkd5LdZ5xxRgFOTqNTJxybToucOuH4dFrENBbTGkQWraq2\nVdVMVc2cdNJJXZcj/YhjU33m+FRbpjWIHADWDs2vadokSdIUmdYgsgN4cfPtmXOBO6vq610XJUmS\njs7KrguYS5L3AecBpyTZD7wOOAGgqrYCO4ELgVngbuCSbiqVJElL0csgUlUXH2F5Aa9oqRxJkjQh\n03pqRpIkLQMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYR\nSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktQZg4gkSeqM\nQUSSJHWml0EkycYke5PMJtkyx/KHJfnzJF9IsifJJV3UKUmSlqZ3QSTJCuBy4AJgA3Bxkg0j3V4B\n3FJVZwLnAW9NcmKrhUqSpCXrXRABzgZmq2pfVd0DXAVsGulTwEOSBHgw8G3gULtlSpKkpepjEFkN\n3DE0v79pG/YO4GeBrwE3Aa+uqnvbKU+SJI1LH4PIYjwbuAF4DPBE4B1JHjpXxySbk+xOsvvgwYNt\n1igtyLGpPnN8qi19DCIHgLVD82uatmGXAFfXwCxwK3D6XCurqm1VNVNVM6tWrZpIwdKxcGyqzxyf\naksfg8guYH2Sdc0FqBcBO0b63A48AyDJo4DHA/tarVKSJC3Zyq4LGFVVh5JcBlwLrAC2V9WeJJc2\ny7cCbwCuSHITEOC1VfXNzoqWJEnHpHdBBKCqdgI7R9q2Dr3+GvCstuuSJEnj1cdTM5Ik6ThhEJEk\nSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhE\nJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkz\nvQwiSTYm2ZtkNsmWefqcl+SGJHuS/FXbNUqSpKVb2XUBo5KsAC4HngnsB3Yl2VFVtwz1ORl4J7Cx\nqm5P8shuqpUkSUvRxyMiZwOzVbWvqu4BrgI2jfR5EXB1Vd0OUFXfaLlGSZI0Bn0MIquBO4bm9zdt\nwx4HPDzJp5J8NsmL51tZks1JdifZffDgwQmUKx0bx6b6zPGptvQxiCzGSuAXgOcAzwZ+O8nj5upY\nVduqaqaqZlatWtVmjdKCHJvqM8en2tK7a0SAA8Daofk1Tduw/cC3quou4K4knwbOBL7cTomSJGkc\n+nhEZBewPsm6JCcCFwE7Rvr8GfC0JCuTPAg4B/hiy3VKkqQl6t0Rkao6lOQy4FpgBbC9qvYkubRZ\nvrWqvpjkGuBG4F7g3VV1c3dVS5KkY9G7IAJQVTuBnSNtW0fm3wK8pc26JEnSeE301EySFUk+Oclt\nSJKk6TXRIFJVPwTuTfKwSW5HkiRNpzZOzXwfuCnJx4G7DjdW1ata2LYkSeqxNoLI1c0kSZJ0HxMP\nIlX13klvQ5IkTaeJB5EktwI12l5VPz3pbUuSpH5r49TMzNDrBwK/AvxUC9uVJEk9N/E7q1bVt4am\nA1X1NgbPiJEkSce5Nk7NnDU0+xMMjpD08kZqkiSpXW0EgrcOvT4E3Ab86xa2K0mSeq6Nb82cP+lt\nSJKk6TTxa0SSPCzJf0myu5ne6p1WJUkStBBEgO3A9xicjvnXwHeB97SwXUmS1HNtXCPy2Kr6V0Pz\nv5vkhha2K0mSeq6NIyL/kORph2eSPBX4hxa2K0mSeq6NIyIvB947dF3Id4B/28J2JUlSz7URRL4I\nvBl4LHAycCfwy8CNLWxbkiT1WBtB5M+Avwc+BxxoYXuSJGlKtBFE1lTVxha2I0mSpkwbF6tel+Tn\nW9iOJEmaMhMLIkluSnIj8DTgc0n2JrlxqH2h925s+s8m2bJAvyclOZTkheOuX5IkTd4kT80891je\nlGQFcDnwTGA/sCvJjqq6ZY5+bwI+ttRCJUlSNyYWRKrqq8f41rOB2araB5DkKmATcMtIv1cCHwSe\ndMxFSpKkTrVxjcjRWg3cMTS/v2n7kSSrgecD7zrSypJsPvycm4MHD461UGkpHJvqM8en2tLHILIY\nbwNeW1X3HqljVW2rqpmqmlm1alULpUmL49hUnzk+1ZY2vr57tA4Aa4fm13D/+4/MAFclATgFuDDJ\noar6UDslSpKkcehjENkFrE+yjkEAuQh40XCHqlp3+HWSK4APG0IkSZo+vQsiVXUoyWXAtcAKYHtV\n7UlyabN8a6cFSpKkseldEAGoqp3AzpG2OQNIVb2kjZokSdL4TevFqpIkaRkwiEiSpM4YRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLU\nGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktSZXgaRJBuT7E0y\nm2TLHMt/NcmNSW5Kcl2SM7uoU5IkLU3vgkiSFcDlwAXABuDiJBtGut0KPL2qfh54A7Ct3SolSdI4\n9C6IAGcDs1W1r6ruAa4CNg13qKrrquo7zez1wJqWa5QkSWPQxyCyGrhjaH5/0zaflwIfnW9hks1J\ndifZffDgwTGVKC2dY1N95vhUW1Z2XcBSJDmfQRB52nx9qmobzambmZmZaqk06YimdWyetuUjR9X/\ntjc+Z0KVaJKmdXxq+vQxiBwA1g7Nr2na7iPJE4B3AxdU1bdaqk2SJI1RH0/N7ALWJ1mX5ETgImDH\ncIckpwJXA79WVV/uoEZJkjQGvTsiUlWHklwGXAusALZX1Z4klzbLtwK/AzwCeGcSgENVNdNVzZIk\n6dj0LogAVNVOYOdI29ah1y8DXtZ2XZIkabx6GUQkLR9e3CppIX28RkSSJB0nDCKSJKkzBhFJktQZ\ng4gkSeqMF6tKy4wXh0qaJh4RkSRJnTGISJKkznhqRuqxoz3NcrzydJQ0vQwi0nHOsCOpSwYRSb1i\nMJKOL14jIkmSOuMREUkas2M5quN1KzpeGUQk6Qg8XSRNjqdmJElSZwwikiSpMwYRSZLUGYOIJEnq\njBerSjruePGp1B8eEZEkSZ3pZRBJsjHJ3iSzSbbMsTxJ3t4svzHJWV3UKUmSlqZ3QSTJCuBy4AJg\nA3Bxkg0j3S4A1jfTZuBdrRYpSZLGondBBDgbmK2qfVV1D3AVsGmkzybgyhq4Hjg5yaPbLlSSJC1N\nHy9WXQ3cMTS/HzhnEX1WA18fXVmSzQyOmgB8P8ne5vUpwDfHUXDH3I+lu6aqNra90QXG5rDl8vMd\ntRz3a0n7lDfNu6gP4/MHSW5uu4YRfRkz1vFjN1fVzy11JX0MImNVVduAbaPtSXZX1UwHJY2V+zG9\n5hubw5br57Ic92u57dPw+OzDvvWhBuu4fw3jWE8fT80cANYOza9p2o62jyRJ6rk+BpFdwPok65Kc\nCFwE7BjpswN4cfPtmXOBO6vqfqdlJElSv/Xu1ExVHUpyGXAtsALYXlV7klzaLN8K7AQuBGaBu4FL\njmFTCx4SnyLux/K2XD+X5bhfy3GfDuvDvvWhBrCOYWOpIVU1jvVIkiQdtT6empEkSccJg4gkSeqM\nQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmS\nOtPLIJJke5JvJLl5nuVJ8vYks0luTHJW2zVKkqSl62UQAa4ANi6w/AJgfTNtBt7VQk2SJGnMehlE\nqurTwLcX6LIJuLIGrgdOTvLodqqTJEnj0ssgsgirgTuG5vc3bfeTZHOS3Ul2n3HGGQU4OY1OnXBs\nOi1y6oTj02kR01hMaxBZtKraVlUzVTVz0kkndV2O9COOTfWZ41NtmdYgcgBYOzS/pmmTJElTZFqD\nyA7gxc23Z84F7qyqr3ddlCRJOjoruy5gLkneB5wHnJJkP/A64ASAqtoK7AQuBGaBu4FLuqlUkiQt\nRS+DSFVdfITlBbyipXIkSdKETOupGUmStAwYRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYg\nIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmd\nMYhIkqTOGEQkSVJnDCKSJKkzBhFJktSZXgaRJBuT7E0ym2TLHMsfluTPk3whyZ4kl3RRpyRJWpre\nBZEkK4DLgQuADcDFSTaMdHsFcEtVnQmcB7w1yYmtFipJkpasd0EEOBuYrap9VXUPcBWwaaRPAQ9J\nEuDBwLeBQ+2WKUmSlqqPQWQ1cMfQ/P6mbdg7gJ8FvgbcBLy6qu6da2VJNifZnWT3wYMHJ1GvdEwc\nm+ozx6fa0scgshjPBm4AHgM8EXhHkofO1bGqtlXVTFXNrFq1qs0apQU5NtVnjk+1pY9B5ACwdmh+\nTdM27BLg6hqYBW4FTm+pPkmSNCZ9DCK7gPVJ1jUXoF4E7BjpczvwDIAkjwIeD+xrtUpJkrRkK7su\nYFRVHUpyGXAtsALYXlV7klzaLN8KvAG4IslNQIDXVtU3OytakiQdk94FEYCq2gnsHGnbOvT6a8Cz\n2q5LkiSNVx9PzUiSpOOEQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmD\niCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1\nxiAiSZI6YxCRJEmdMYhIkqTO9DKIJNmYZG+S2SRb5ulzXpIbkuxJ8ldt1yhJkpZuZdcFjEqyArgc\neCawH9iVZEdV3TLU52TgncDGqro9ySO7qVaSJC1FH4+InA3MVtW+qroHuArYNNLnRcDVVXU7QFV9\no+UaJUnSGEw8iCR5UJLfTvKHzfz6JM9d4C2rgTuG5vc3bcMeBzw8yaeSfDbJixfY/uYku5PsPnjw\n4LHuhjR2jk31meNTbWnjiMh7gB8AT27mDwD/9xLXuRL4BeA5wLOB307yuLk6VtW2qpqpqplVq1Yt\ncbPS+Dg21WeOT7WljSDy2Kp6M/BPAFV1N5AF+h8A1g7Nr2nahu0Hrq2qu6rqm8CngTPHV7IkSWpD\nG0HkniQnAQWQ5LEMjpDMZxewPsm6JCcCFwE7Rvr8GfC0JCuTPAg4B/ji+EuXJEmT1Ma3Zl4PXAOs\nTfLHwFOBS+brXFWHklwGXAusALZX1Z4klzbLt1bVF5NcA9wI3Au8u6punvB+SJKkMZt4EKmqjyX5\nLHAug1Myr25Opyz0np3AzpG2rSPzbwHeMuZyJUlSi9r41swnqupbVfWRqvpwVX0zyScmvV1JktR/\nEzsikuSBwIOAU5I8nB9foPpQ7v91XEmSdBya5KmZXwdeAzwG+NxQ+3eBd0xwu5IkaUpMLIhU1X8D\n/luSV1bV709qO5IkaXq18a2ZO+e682lVXdnCtiVJUo+1EUSeNPT6gcAzGJyqMYhIknSca+Pru68c\nnm+enHvVpLcrSZL6r4un794FrOtgu5IkqWcmfkQkyZ/T3N6dQfDZALx/0tuVJEn918Y1Ir839PoQ\n8NWq2t/CdiVJUs+1cY3IX016G5IkaTq1cYv3FyT5SpI7k3w3yfeSfHfS25UkSf3XxqmZNwPPq6ov\ntrAtSZI0Rdr41szfGUIkSdJc2jgisjvJ/wA+BPzgcGNVXd3CtiVJUo+1EUQeCtwNPGuorQCDiCRJ\nx7k2vjVzyaS3IUmSptPEgkiS/7Oq3pzk9/nxDc1+pKpeNaltS5Kk6TDJIyKHL1DdzRxBRJIkaWJB\npKr+vHl5C/BbwGlD2yt8+q4kSce9Nr6++0fAe4AXAM9tpuct9IYkG5PsTTKbZMsC/Z6U5FCSF461\nYkmS1Io2vjVzsKp2LLZzkhXA5cAzgf3AriQ7quqWOfq9CfjYOIuVJEntaSOIvC7Ju4FPsLj7iJwN\nzFbVPoAkVwGbGJziGfZK4IPAk8ZesSRJakUbQeQS4HTgBODepm2h+4isBu4Ymt8PnDPcIclq4PnA\n+RwhiCTZDGwGOPXUU4+ydGlyHJvqM8en2tJGEHlSVT1+zOt8G/Daqro3yYIdq2obsA1gZmbGb++o\nNxyb6jNOoAD0AAANjklEQVTHp9rSRhC5LsmG0Ws8FnAAWDs0v6ZpGzYDXNWEkFOAC5McqqoPLbla\nSZLUmjaCyLnADUluZXCNSICqqifM038XsD7JOgYB5CLgRcMdqmrd4ddJrgA+bAiRJGn6tBFENh5N\n56o6lOQy4FpgBbC9qvYkubRZvnUCNUqSpA608ayZrx7De3YCO0fa5gwgVfWSY6tMkiR1rY0bmkmS\nJM3JICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQ\nkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTO\n9DKIJNmYZG+S2SRb5lj+q0luTHJTkuuSnNlFnZIkaWl6F0SSrAAuBy4ANgAXJ9kw0u1W4OlV9fPA\nG4Bt7VYpSZLGoXdBBDgbmK2qfVV1D3AVsGm4Q1VdV1XfaWavB9a0XKMkSRqDPgaR1cAdQ/P7m7b5\nvBT46EQrkiRJE7Gy6wKWIsn5DILI0xbosxnYDHDqqae2VJl0ZI5N9ZnjU23p4xGRA8Daofk1Tdt9\nJHkC8G5gU1V9a76VVdW2qpqpqplVq1aNvVjpWDk21WeOT7Wlj0FkF7A+ybokJwIXATuGOyQ5Fbga\n+LWq+nIHNUqSpDHo3amZqjqU5DLgWmAFsL2q9iS5tFm+Ffgd4BHAO5MAHKqqma5qliRJx6Z3QQSg\nqnYCO0fatg69fhnwsrbrkiRJ49XHUzOSJOk4YRCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktQZ\ng4gkSeqMQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIk\ndcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpM70MIkk2JtmbZDbJljmWJ8nbm+U3Jjmrizol\nSdLS9C6IJFkBXA5cAGwALk6yYaTbBcD6ZtoMvKvVIiVJ0lj0LogAZwOzVbWvqu4BrgI2jfTZBFxZ\nA9cDJyd5dNuFSpKkpVnZdQFzWA3cMTS/HzhnEX1WA18fXVmSzQyOmgB8P8ne5vUpwDfHUXDH3I+l\nu6aqNra90QXG5rDl8vMdtRz3a1L71Ifx+YMkN7ddw4i+jBnr+LGbq+rnlrqSPgaRsaqqbcC20fYk\nu6tqpoOSxsr9mF7zjc1hy/VzWY77tdz2aXh89mHf+lCDddy/hnGsp4+nZg4Aa4fm1zRtR9tHkiT1\nXB+DyC5gfZJ1SU4ELgJ2jPTZAby4+fbMucCdVXW/0zKSJKnfendqpqoOJbkMuBZYAWyvqj1JLm2W\nbwV2AhcCs8DdwCXHsKkFD4lPEfdjeVuun8ty3K/luE+H9WHf+lADWMewsdSQqhrHeiRJko5aH0/N\nSJKk44RBRJIkdWaqg8hSbgU/33uT/FSSjyf5SvPfhw8t+49N/71Jnj1t+5DkmUk+m+Sm5r//Yhz7\n0PZ+DC0/Ncn3k/zGuPajT470mU6DJNuTfGP4HhRH+rn2XZK1ST6Z5JYke5K8ummfuv2axO/thOr4\n1Wb7NyW5LsmZQ8tua9pvyBK+TrqIGs5LcmeznRuS/M5i3zvmOn5zqIabk/wwyU81y8b1Wdzv93Zk\n+XjHRVVN5cTgQta/BX4aOBH4ArBhpM+FwEeBAOcCf3Ok9wJvBrY0r7cAb2peb2j6PQBY17x/xZTt\nwz8HHtO8/jngwDT+LIbW+QHgT4Df6Ho8djG+p2ECfhE4i8GNjw63Lfhz7fsEPBo4q3n9EODLzd+H\nqdqvSf3eTqiOpwAPb15fcLiOZv424JQWPovzgA8fy3vHWcdI/+cBfznOz6JZz/1+byc5Lqb5iMhS\nbgW/0Hs3Ae9tXr8X+OWh9quq6gdVdSuDb+ycPU37UFWfr6qvNe17gJOSPGCJ+9D6fgAk+WXg1mY/\nlqPFfKa9V1WfBr490jzvz3UaVNXXq+pzzevvAV9kcGfnaduvSf3ejr2Oqrquqr7TzF7P4N5R47SU\n/Wn1sxhxMfC+Y9zWvOb5vR021nExzUFkvtu8L6bPQu99VP34niT/C3jUUWzvaLW9D8P+FfC5qvrB\nsZW+qBoX0+eo9yPJg4HXAr87htr7ahLjrS8WMz6nQpLTGBxp/Bumb78m9Xs7iTqGvZTBv8YPK+Av\nmtPNm+d5z7hqeEpzKuKjSc44yveOsw6SPAjYCHxwqHkcn8VijHVc9O4+In1SVZVkqr/fPNc+NL9A\nbwKe1U1VR29kP14P/Neq+n6SDqvSUk3z71gTiD8IvKaqvjs8Fqd5v/osyfkMgsjThpqfVlUHkjwS\n+HiSLzX/oh+3zwGnNn93LgQ+xOAJ8F15HvCZqho+ctHWZzFW03xEZCm3gl/ovX/XHGKi+e83jmJ7\nR6vtfSDJGuBPgRdX1d8usf4j1biYPseyH+cAb05yG/Aa4LcyuAnecrKcH2Mw7/icFklOYBBC/riq\nrm6ap22/JvV7O4k6SPIE4N3Apqr61uH2qjrQ/PcbDP62Hcsp8yPWUFXfrarvN693AickOWWx9Y+r\njiEXMXJaZkyfxWKMd1ws9aKWriYGR3P2Mbhw9PBFMWeM9HkO972g5n8e6b3AW7jvBWdvbl6fwX0v\nVt3H0i9WbXsfTm76vWCafxYj6309y/Ni1SN+ptMyAadx34tVj/hz7fPUjOErgbeNtE/Vfk3q93ZC\ndZzK4Lq8p4y0/yTwkKHX1wEbJ1TDP+PHNwE9G7i9+Vxa/Syafg9jcA3HT477sxha331+byc5Ljr/\nZVjKxODK3S8zuEr3PzVtlwKXNq8DXN4svwmYWei9TfsjgE8AXwH+AvipoWX/qem/F7hg2vYB+M/A\nXcANQ9Mjp20/Rrb7epZhEFnoc5mmicG/2L4O/BOD88UvXczPtc8Tg9MCBdw49Ht04TTu1yR+bydU\nx7uB7wx93rub9p9m8D+7LzC4cP2Y61hEDZc12/gCgwtmn7LQeydVRzP/EgZfnhh+3zg/i7l+byc2\nLrzFuyRJ6sw0XyMiSZKmnEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQktSLJafM9zVPqiyT/cilP\n0E3ymub261okg0gPTfsf7CQvSfKOruvQ8pfEx1RorKpqR1W9cQmreA1gEDkKBhHdh3/YNWErkvxh\nkj1JPpbkpCRPTHJ98zCxP03ycIAkn0oy07w+pbml/+GguyPJXzK4gZi0KM0/8r6U5IokX07yx0l+\nKclnknwlydnD/5Bq+r09yXVJ9iV5YdN+XpIPD633Hc37XgU8Bvhkkk82y56V5K+TfC7JnzTPKNIQ\ng0h/rWx+Sb6Y5ANJHpTkGUk+n+SmJNuTPGC+Nyd5Y5Jbmj/uv9e0XZFka5LdzS/hc5v2+/1hT/Kb\nSXY17//dofV+qHmy457hpzsmuaRZ5/8EnjqpD0VTbz1weVWdAfw9g6dAXwm8tqqewOAuja9bxHrO\nAl5YVU+fWKVarn4GeCtwejO9iMHdcn8D+K05+j+6Wf5cYMEjJVX1duBrwPlVdX7zLJr/DPxSVZ0F\n7Ab+w5j2Y9nwX7/99XjgpVX1mSTbGQzeXweeUVVfTnIl8HLgbaNvTPII4PnA6VVVSU4eWnwag+ck\nPJZBav+Zpv0s4AlV9e0kz2LwP4yzGdzKd0eSX6zBUxz/XdPnJGBXkg8yeKbA7wK/ANwJfBL4/Fg/\nDS0Xt1bVDc3rzzIYhydX1V81be8F/mQR6/l43fepo9Ji3VpVNwEk2QN8ovk7eRODv4+jPlRV9wK3\nJHnUUW7rXGAD8Jnm6cwnAn99zJUvUx4R6a87quozzes/Ap7B4Bfoy03be4FfnOe9dwL/CPz3JC8A\n7h5a9v6qureqvsLg4USnN+3Df9if1UyfZ/Do69P58eOuX5Xk8LMW1jbt5wCfqqqDVXUP8D+Odae1\n7P1g6PUPGTyIcT6H+PHfqAeOLLtrnEXpuDI8Bu8dmr+Xuf9xPtw/zX+Hxybcf3wO9/94VT2xmTZU\n1UuPoeZlzSDSX6MPAfr7Rb+x6hCDoxkfYHA48ZoF1nt4fvgPe4D/Z+iX52eq6r8nOQ/4JeDJVXUm\ng6Ay3y+gtBh3At9J8r83878GHD46chuDo2wAL2y5LmkhXwU2JHlAc8T5GUPLvgc8pHl9PfDUw0ee\nk/xkkse1W2r/GUT669QkT25ev4jBucXThk6lDP/Bvo/mYqiHVdVO4P8Azhxa/CtJfiLJYxk8rXHv\nHKu4Fvh3hy+qSrI6ySMZPHr6O1V1d5LTGRx2BPgb4OlJHpHkBOBXjnGfdXz6t8BbktwIPBH4v5r2\n3wNenuTzwCldFSeNqqo7gPcDNzf/HT4VvQ24Jsknq+oggyflvq8Z33/Nj49Cq+HTd3soyWkMjmLs\nZvAvwlsYBI8nM/jjvBLYBby8qn4wx/sfDfwZg6MVAX6vqt6b5AoGp2xmgIcC/6GqPpzkJQwe43zZ\n0DpeDbysmf0+8G8YPA76QwzOo+5lcFj99VX1qSSXAP+RwZGbG4B7htcnSdJcDCLHkSaIfLiqPtB1\nLZIkgadmJElShzwiMuWS/CmwbqT5tVV1bRf1SJJ0NAwikiSpM56akSRJnTGISJKkzhhEJElSZwwi\nkiSpM/8/Q2Ep4tIP3CQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAIUCAYAAADMoPyZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX24HWV99/v9zXrZOzsJxMTIoUAMb+KFApskYGl7+diq\ngLYPWLzQpEBCS4nl1IdYq1WfPtU8nPYSK20NrSeSKJCoTdCjVU5FAW0t5TQCCUReVCSE8BpJsjc7\nyd5rr5dZc58/1twr95p1z6yZ9bJnr72/n+uaa611v/5m9mTmzlq/73dEKQVCCCGEkKnGSTsAQggh\nhMxOuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQQlKBixBCCCGEpAIXIYQQQghJBS5CCCGE\nEJIKXIQQQgghJBVm3SLk0ksvVQC4cQtuqcNzk1vEljo8P7mFbB0x6xYhhw4dSjsEQqzw3CTTGZ6f\npBfMukUIIYQQQqYHXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEIIIamQTTsAEbkUwAYAGQBf\nVkrdHKgXv/69AAoArlVKPSoipwDYCuAE1GRCm5RSG7oR09JPfi9R+303/243piWEEEJmFal+EyIi\nGQBfBPAeAGcDWCUiZweavQfAmf62FsBGv9wF8OdKqbMB/DqAP7X0JYQQQsg0Je2fYy4EsEcptVcp\nVQawHcDlgTaXA9iqavwEwAIROVEptV8p9SgAKKWOAvg5gJOmMnhCCCGEtE/ai5CTALxofH4JzQuJ\nlm1EZCmA8wE8ZJtERNaKyE4R2Xnw4MEOQyake/DcJNMZnp+k16S9COkYEZkH4FsAPqKUOmJro5Ta\npJRaoZRasXjx4qkNkJAIeG6S6QzPT9Jr0l6EvAzgFOPzyX5ZrDYikkNtAfJ1pdS3exgnIYQQQrpM\n2ouQRwCcKSKnikgewEoAdwfa3A1gtdT4dQCHlVL7fdXMVwD8XCn191MbNiGEEEI6JVWJrlLKFZEP\nA7gXNYnu7Uqpp0TkT/z6LwG4BzV57h7UJLp/6Hf/TQDXAHhCRHb7Zf9TKXXPVO4DIYQQQtojdZ8Q\nf9FwT6DsS8Z7BeBPLf0eBCA9D5AQQgghPSHtn2MIIYQQMkvhIoQQQgghqcBFCCGEEEJSgYsQQggh\nhKQCFyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQ\nQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIKXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEII\nIanARQghhBBCUoGLEEIIIYSkAhchhBBCCEkFLkIIIYQQkgpchBBCCCEkFVJfhIjIpSLytIjsEZFP\nWupFRG716x8XkWVG3e0ickBEnpzaqAkhhBDSKakuQkQkA+CLAN4D4GwAq0Tk7ECz9wA409/WAtho\n1N0J4NLeR0oIIYSQbpP2NyEXAtijlNqrlCoD2A7g8kCbywFsVTV+AmCBiJwIAEqpBwCMTmnEhBBC\nCOkKaS9CTgLwovH5Jb8saZtIRGStiOwUkZ0HDx5sK1BCegHPTTKd4flJek3ai5ApQSm1SSm1Qim1\nYvHixWmHQ0gdnptkOsPzk/SatBchLwM4xfh8sl+WtA0hhBBC+oy0FyGPADhTRE4VkTyAlQDuDrS5\nG8BqXyXz6wAOK6X2T3WghBBCCOkuqS5ClFIugA8DuBfAzwF8Qyn1lIj8iYj8id/sHgB7AewBsBnA\n/6n7i8g2ADsAnCUiL4nIdVO6A4QQQghpm2zaASil7kFtoWGWfcl4rwD8aUjfVb2NjhBCCCG9Iu2f\nYwghhBAyS+EihBBCCCGpwEUIIYQQQlKhZU6IiPwjABVWr5S6sasREUIIIWRWEOebkJ0AdgEYBLAM\nwDP+Ngwg37vQCCGEEDKTaflNiFJqCwCIyA0AfsuX1UJEvgTgP3sbHiGEEEJmKklyQl4H4Djj8zy/\njBBCCCEkMUl8Qm4G8JiI/DsAAfB2AOt7ERQhhBBCZj6xFyFKqTtE5PsA3uYXfUIp9avehEUIIYSQ\nmU5SiW4JwH4ArwF4k4i8vfshEUIIIWQ2EPubEBH5YwDrUHuK7W4Av47ac1t+pzehEUIIIWQmk+Sb\nkHUALgDwvFLqtwGcD2CsJ1ERQgghZMaTZBFSVEoVAUBEBpRSvwBwVm/CIoQQQshMJ4k65iURWQDg\nOwDuF5HXADzfm7AIIYQQMtNJoo75ff/tel+mezyAH/QkKkIIIYTMeJJ8EwIR+S0AZ/py3cUATgLw\nXE8iI4QQQsiMJnZOiIh8BsAnAHzKL8oB+FovgiKEEELIzCdJYurvA7gMwAQAKKVeATC/F0ERQggh\nZOaTZBFSVkopAAoARGRub0IihBBCyGwgySLkGyJyG4AFInI9gB8C2NybsAghhBAy00mijrlFRN4N\n4Ahq/iCfVkrd37PICCGEEDKjibUIEZEMgB/6TqlceBBCCCGkY2ItQpRSVRHxROR4pdThXgdFCJne\nuK6HSbeKuQNZTJRczMlmAKCpLJtN+ozM3s2bVszETrXqwa16AICypxL/DWx/z0m3Wn/V5QOOIJvN\nwHGkYe5Cxeiby2CyUuvreh4qlng8T6FQqWIon0GhXMWcrIPJShVDA1kUSlU4gtoGoGT0H3AEHprL\nc47AU7U+AOApIJ9xkM06cF0Pnuc1tLftlwKQcRwU3SocEQzkHExWPAzlGvd3OpPEJ2QcwBMicj98\nhQwAKKVu7CQAEbkUwAYAGQBfVkrdHKgXv/69AAoArlVKPRqnLyEzhSQ30LhtOynzPK8hvuBnXea6\n02fe0UIZ67bvxiP7RnHB0oW449oVTUlxvYg5yd9kJiyAPE+h6FYBBWT9+6Drvy95yriJZyColc3J\nZjBRcjGUz6DqeiiXm/+uJsp/HXAEbqWKAUdQrnq1G77n1csBIJvL1I9v1fNQ9ucz+3pGX/0X8KoK\nAsDJCMaLLvJObSFRKFUxNJBBoeTCEfHjURjIZTBZri0GzIWGAiB+HKWSC6+q6vsxmG/c70m3ijlA\nfTGVUR4Kpdo5UtALGq8Wlz4Onuch7y90ShUPeQHKbm3f9SIn6y9UzAVTVo4dmwFH4Cog4w+cyTgo\nVmr7ohdGvSLJIuTb/tY1/J95vgjg3QBeAvCIiNytlPqZ0ew9AM70t7cB2AjgbTH7EtL3uK6H0cky\n1m07dgPdcu2Kpnb6Bhr3Rj1WdBtuymFjxikLI24svZ530q1i3fbd2LF3BACwY+8IHMB6DOIe67hl\nSf4mrou+XIjo/7kDwKTrAQLMyRzbD70YGXAEVffYDV+XjRbK2PX8KN551hsAoH7jDqNqLHB0e/Oz\n/uahYaHheRC/rNW5pNvk/f5559h+lJRqmFOPX3Vr7YFjZQ3HyIhjINCu6noN8+rXrNQORC2GWh+v\nemwe80xxcOxbFV1e/5bFsi/BOBuOnzFHr8/LJImpW0QkD+DNqB3/p5VS5Q7nvxDAHqXUXgAQke0A\nLgdgLiQuB7DVlwf/REQWiMiJAJbG6EtI3zPpVrFuW+MNFGi+gW5YOYwFg1nrjTVYtmn18qabsm1M\nW99+LPv69W/DI/tGG45ryVNNx6DkqVjHOu68Sf4mum0y0WL6mAuQsqdQdD28bjD+/29LnsL2h1/A\nmt84FSXv2LcEGRFkpXazMRcdJU813eAlMF6w3jYngJbtgoT/zWY2vVyIxD56IvJeALcBeBa1v/mp\nIvIhpdT3O5j/JAAvGp9fQu3bjlZtTorZl5C+Z+5ANtYNdN323dbFha1t3DFnStlEycUFSxfWy8KO\na7ePS5K/iW6bt58G05ZJ/6t/oHb8AGlYTLRi7kAWl7z1RMwbzEKMNUGhVK1/6yCQ+nv9U0fUeFH1\nx+JEy3ZBwv5mswKvivlpLkIA/D2A31ZK7QEAETkdwPcAdLIImRJEZC2AtQCwZMmSlKMh5Bhxzs1C\nqRrrBvrIvtHYN9ZObsr9WDbgCDasHG74X6ztGMQ91nHLkvxNdNvpRJzz04xZ50skYbzo4ow3zMOe\nA+M4acEcKBxbbNiYKLmRx0nnUEShFx9Jj3c//M36jSTLmqN6AeKzF8DRDud/GcApxueT/bI4beL0\nBQAopTYppVYopVYsXry4w5AJ6R5xzk1HgM9feS4uOm0Rso7gotMW1W+gJuaN1cRWpm/KrcacKWUA\nsGAwi02rl+OXf/MebFq9HDnLMYh7rOOWJfmb6LbTiTjn50TJrW+O1BYVZlmr7dmDRzFRcnHvk/vh\nSO3czDuCQkj7vCOR4zmClnPmHMFAi3FsW9jfbLZsvSDJImSniNwjIteKyBoA/y9qyaBXiMgVbc7/\nCIAzReRUP99kJYC7A23uBrBaavw6gMNKqf0x+xLS9+QzDuYNZPHZK87B03/9Hnz2inOsi4gNK4cx\nJ5tpKre1BZpvyrZ2M6XMhgNgKJ/BxquX4Zd/8x5svHoZsoJYxzpuWZK/iW7bb2ilyYBTy+EYzEj9\nc5zt5NcN4dB4ESvftgSAQtlXf+RD2uvk0rAtK9H1A47Ub3xJ4gz7myUdo1+3Xp2bolS83+5E5I6I\naqWU+qO2AqjlmnwBNZnt7UqpvxGRP/EH/ZIv0f0nAJeiJtH9Q6XUzrC+reZbsWKF2rlzZ2SbpZ/8\nXqJ92Hfz7yZqT6YlqYvqo87N6SbRZdmUS3Sn/fmZRL0UpOwpzDGku+WqB08Bg1mno3F7QdADZDbg\nOJEy3Y4OQuxFyEyBixASQupXkzjnJpm18Pwk05WOzs3YP8eIyN+KyHEikhORH4nIQRG5upPJCSGE\nEDJ7SZITcrFS6giA3wOwD8AZAD7ei6AIIYQQMvNJsgjROqTfBfBNPkOGEEIIIZ2QROD8ryLyCwCT\nAG4QkcUAir0JixBCCCEzndjfhCilPgngNwCsUEpVUFOqXK7rReTd3Q+PEEIIITOVRB6sSqlRpVTV\nfz+hlPqVUf25rkZGCCGEkBlNN43gU5eQEUIIIaR/6OYiZHYZjhBCCCGkI/rrmdGEEEIImTF0cxGy\nr4tjEUIIIWSGE1uiKyI5ADcAeLtf9B8AvuQrZaCUavchdoQQQgiZhSTxCdkIIAfg//Y/X+OX/XG3\ngyKEEELIzCfJIuQCpdR5xud/E5GfdjsgQgghhMwOkuSEVEXkdP1BRE4DUO1+SIQQQgiZDST5JuTj\nAP5dRPb6n5cC+MOuR0QIIYSQWUGSb0L+PwC3AfAAjPrvd/QiKEIIIYTMfJIsQrYCOBXA/wXgHwGc\nBuCrvQiKEEIIITOfJD/HvFUpdbbx+d9F5GfdDogQQgghs4Mk34Q8KiK/rj+IyNsA7Ox+SIQQQgiZ\nDbT8JkREnkDtuTA5AP8lIi/4n98I4Be9DY8QQgghM5U4P8f8Xs+jIIQQQsiso+UiRCn1/FQEQggh\nhJDZBZ+iSwghhJBU4CKEEEIIIamQ2iJERBaKyP0i8oz/+rqQdpeKyNMiskdEPmmUXykiT4mIJyIr\npi5yQgghhHSDNL8J+SSAHymlzgTwI/9zAyKSAfBFAO8BcDaAVSKivUqeBHAFgAemJlxCCCGEdJM0\nFyGXA9jiv98C4H2WNhcC2KOU2quUKgPY7veDUurnSqmnpyRSQgghhHSdNBchJyil9vvvfwXgBEub\nkwC8aHx+yS9LhIisFZGdIrLz4MGDySMlpEfw3CTTGZ6fpNf0dBEiIj8UkSct2+VmO6WUQs0ArSco\npTYppVYopVYsXry4V9MQkhiem2Q6w/OT9Jokz45JjFLqXWF1IvKqiJyolNovIicCOGBp9jKAU4zP\nJ/tlhBBCCOlz0vw55m4Aa/z3awB819LmEQBnisipIpIHsNLvRwghhJA+J81FyM0A3i0izwB4l/8Z\nIvJrInIPACilXAAfBnAvgJ8D+IZS6im/3e+LyEsALgLwPRG5N4V9IIQQQkib9PTnmCiUUiMA3mkp\nfwXAe43P9wC4x9LuXwD8Sy9jJIQQQkjvoGMqIYQQQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIK\nXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEIIIanARQghhBBCUoGLEEIIIYSkAhchhBBCCEkF\nLkIIIYQQkgpchBBCCCEkFbgIIYQQQkgqcBFCCCGEkFTgIoQQQgghqcBFCCGEEEJSgYsQQgghhKQC\nFyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVMimNbGILARwF4ClAPYB+IBS\n6jVLu0sBbACQAfBlpdTNfvnnAfx3AGUAzwL4Q6XU2JQEH2DpJ78Xu+2+m3+3h5EQQggh/UOa34R8\nEsCPlFJnAviR/7kBEckA+CKA9wA4G8AqETnbr74fwFuVUucC+CWAT01J1IQQQgjpCmkuQi4HsMV/\nvwXA+yxtLgSwRym1VylVBrDd7wel1H1KKddv9xMAJ/c4XkIIIYR0kTQXIScopfb7738F4ARLm5MA\nvGh8fskvC/JHAL4fNpGIrBWRnSKy8+DBg+3GS0jX4blJpjM8P0mv6ekiRER+KCJPWrbLzXZKKQVA\ntTnHXwJwAXw9rI1SapNSaoVSasXixYvbmYaQnsBzk0xneH6SXtPTxFSl1LvC6kTkVRE5USm1X0RO\nBHDA0uxlAKcYn0/2y/QY1wL4PQDv9BcyhBBCCOkT0vw55m4Aa/z3awB819LmEQBnisipIpIHsNLv\np1UzfwHgMqVUYQriJYQQQkgXSXMRcjOAd4vIMwDe5X+GiPyaiNwDAH7i6YcB3Avg5wC+oZR6yu//\nTwDmA7hfRHaLyJemegcIIYQQ0j6p+YQopUYAvNNS/gqA9xqf7wFwj6XdGT0NkBBCCCE9hY6phBBC\nCEkFLkIIIYQQkgoy20QlInIQwPMh1a8HcGgKw+kmjL0zDimlLk0zgBbnpmY6HKtuMVP2ZSr2Yzqe\nn/309+uXWPslTuBYrB2dm7NuERKFiOxUSq1IO452YOyzg5l0rGbKvsyU/UhKP+13v8TaL3EC3YuV\nP8cQQgghJBW4CCGEEEJIKnAR0simtAPoAMY+O5hJx2qm7MtM2Y+k9NN+90us/RIn0KVYmRNCCCGE\nkFTgNyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQ\nQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIKXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEII\nIanARQghhBBCUmHWLUIuvfRSBYAbt+CWOjw3uUVsqcPzk1vI1hGzbhFy6NChtEMgxArPTTKd4flJ\nesGsW4QQQgghZHrARQghhBBCUoGLEEIIIYSkAhchhBBCCEkFLkIIIYQQkgrZtAOYTriuh0m3ijnZ\nDCbdKuYOZOFWqih5ql42J5fBZKVWN1FyMeAIsrkMJkpuva6hzBhrouQi7whyuQwK5SqGchk4jgAA\nPE+hUKliKN9cRwghMxXX9eB5HkqeariuOo6DbLa7/08Om8vEvN7b2oT11df84HhBouYGAMep7bPn\neQ3t3Uo10Ti2cSdd//6UnT73F34T4uO6HkYLZew5cBSjhTLWbt2FkaNFjBXdetmDzxzE6ESt7k1/\n+X2s3boLY0UXbqWKtVt3YXSi1mas6OLnrxyulRXKyAjq7Q8XXTzwywO4fstOjEyU4XkKnqcwMlHG\n9Vt24k1/+f2GOkIImanoRcFY0W26rnqeB9f1pmQukwFH6veAN/3l9xtu8FF99X1grOgiLOpWcwO1\nxYdegOj2wQWIbZxWdwvP8zDgSO2e5Vanzf2FixCfSbeKddt34/TF87Fu+27s2DuCwXy2oeyi019f\nr3M9hR17R7Bu+26UjPe6zZJFc+tlVYWG9suWLMSOvSO4cdtjKFSqKFSquHHbYw3j6jpCCJmpTLq1\nb5rDrquTbveuga3mMjezTVi5ra8uqwT6xe0f1j7OOOWIcYJ9S/4379MB/hzjM3cgi0f2jWLeYO3V\nVnbcnFy9TvPIvlHMHcjW3+s2Zpl+rz/PGzxWN5TP1N8Hx9V1hBAyEzGvkybB6+ZUz2W2CV6/4/QN\niz3pfpr3ok7GabftVMBvQnwmSi4uWLoQ48Xaq63syGSlXqe5YOlCTJTc+nvdxizT7/Xn8eKxukK5\nikK5ah23UJ4eK1VCCOkFEyW3fp010ddN89o5FXPZ2oSV2/qGjZdkblv7TscJ9p0oudPm/iJKTY/f\nhaaKFStWqJ07dzaV65yQl8cKOGnBENZt341bV54HBamX7Xp+FMvfuBDrtu/GI/tGccHShdiwchgL\nBrNYc+dObFg5XG9z8GgRf/29X2DDymHMG8jg3P99f739z/Yfxm3/8RxuXTWMufks8hkHo5NlrNt2\nbFxdlxEgm3VQKB9LkhrKZZDJcP3YZVLP0go7NwnBDD0/zTwN23XVRrsJq0nmMtv8bP3F1nJbX30f\nOG4wa/0fvquAbBf+krY4jh/MxjpJxoouFgxmu5mc2tEgXIT4mFnTvVTH5BxBLpvBi6MFLBjKYSjr\nYMxfWBwaL+OUhUP1uucOjeOkBUMYzDn40FcfbTjhFs3NcyHSXWbkRZ7MGGbk+amvu0AytUfShYg5\nT6u5bPeAYL2tr6k+sVFwPQx1Ue0zjdQxHQ00fX4YSplJt5bZvGn1clxz+8PYsXcEuz/9btzwtUex\n8epl9TLNRactwqbVy7Hmzp3YtHo5zll/X1PdOevvw0WnLcJt1yzHVZsfwm3XLMebP31vU7t123bj\ns1ecg3fc8uOGutuuWY4PfXUXNl69rD63TkLatHo55nMRQgjpY/R113ZtjcSrYn6CG7qZ4NpqPn3d\n3rR6ufXnoND+XhVK1b4NsdWPFSrIzMvHjrkVVU/hqs0Phe6L7Z4E1BYv+WkizwW4CKmjk1D1K4B6\nkmlUQmqrxCQzsXXeoL3dI/tGccrCoaY6MyE2bHxCCOlXzOutppdJqXr8VvN1klwaVj+Uz0K6fO+P\ne+ym8z1jekaVAmbCzgVLaxJanWSqX80Vp9k2uFoOJqbqxNbxor3dBUsX4sXRQlOdmRBr6zd/sHFx\nQggh/YR5vdXYrqk2klz/guKAVvNFxRDVX6nw+pHxMhZ1+ZuQuMcuWD6d7h38Pt9nTjaDDSuHkRFg\nw8phXHTaInx398vYsHIYO549VC/LOoKLTlvU0HbALzPrPM+rv3/24FFsWDlcrzfbDTiCDauGsWAo\n11Sn+zmCprqhHOW7hJD+Rl93bdfFqG1ONtn1b042U+/bar5WMUT1z0bULxjKtdyvJFvUXLZ7UrvH\nrtcwMdXAZtterlRR8VRTQqpuEzcxdU42A9fzUDGSicy6ctWDpxSGAnV5R6iOmRpS/5GUiakkghl7\nfurrbpIkS6B1cmowGdUkLKkzk3VQjeHSGpUUqgCUQ+q7pY7ReEDDPSUYS9BKvhdW+Ojw3OSdzEdL\ndNdu3YU3f/oHWLt1FwolF0d8e9w3/1Wt7KXRSdzx4HMYLZQxUaqE2rYXy27dtl3bAHtKYbJcxXix\n0jDPK4eL+PJ/7kWhXMVXd+yr93vwmYM4XHShvNrXZ44I5g/muAAhhMwYslmn4fqWz2frz08ZK7pY\nc+dOnL3+Pqy5c2eDzXmUrXvYAkSPd/5N9+OqzQ9hMuCVEWUTb8aydusuHDpaarJ0X3PnTrwlUL/m\nzmMLN70AidqvuHhA/f4UZgPvVVX9mObz2V4sQDpm+kWUEtq23bTC9RSayj7xrcdxyVtPxLrtuzF3\nIBdq215VaLDl1WXrtu+G59fZxrx8+KSmsbppXUwIIdOduBbrYddG3T+pbXqU9XmrvlGP9OjUvt22\nVTo4PtMJJqb62LK0TQt3zSP7RnHGG+ZZ1TFRtu3mq03tosfUdbaxCCFkNtCpnXu3bNOT9I2q76bt\nei/GSRN+E+Jjs8I1Ldw1FyxdiD0Hxq3qmCjbdvPVpnbRY+o621iEEDIbSGJPHtW/23bnUX2jHunR\nzTiSjjPd6YvEVBE5BcBWACeglvezSSm1QUQWArgLwFIA+wB8QCn1WtRYrWzbTSvczauXo1CuNpR9\n7v3n4juPvYSVFy6Bpzw44lht2+cNZHDdll11C9+s6VYXSFrNOYJND+zFyguX4PtP7scPnny1YayF\nQ3lMulUM5TMolGuvkxUPQ7muut7NdlI/kExMJRHMqPMzKmnUJImdexxajacQfqBb9Q2rX3PnTmy5\ndkXX90vnhLQap0fJqCYz37ZdRE4EcKJS6lERmQ9gF4D3AbgWwKhS6mYR+SSA1ymlPhE1Vhzb9roK\nJZ+B63oNmc56IRBHHXNksoKsI8g7UvfrHyu6Dc+VmZN3MFn2sGAwCw9APjBW3hHseG4Et/3Hc/UF\n0PvOPxnfeewlrHrbG7Fobp4Lke6Q+kHkIoREMGPOz7gLEE1Se/Jejteqr61el8W1f+/F/vR4ITLz\nbduVUvsB7PffHxWRnwM4CcDlAN7hN9sC4McAIhchYWj74PWXvQXr736qwQDmifUX46rND1nrghbt\nus2m1csxfNP9x6zZfat1/Wrar+vXtVtrFu2638arl+Harbtw2zXLsWPvTnziW49j/WVvqb/euO0x\nbF6zAvP67DdAQsjsJW6yZFt27gnHKnmN/wk/Z/19eMJ/YF1YH/0Th+4bZY+u68zyOPulHyFi2w9b\neZR9O4DENvdTSd/dvURkKYDzATwE4AR/gQIAv0Lt5xpbn7UA1gLAkiVLrOPqpFGdIBq3LpiEaiat\nmvVhiaxhSatmYqq2ezfH169D+ellPEOSEefcJCQtenF+disRNAlJxuokKTaObXontvFR5UljnS5M\nz6VRCCIyD8C3AHxEKXXErFO135Wsvy0ppTYppVYopVYsXrzYOrZO8tEJonHrgkmoZtKqWR+WyBqW\ntGompmq7d3N8/VooT38JFgknzrlJSFr04vzsZtJlt8cy40vSJ6yNrTzOuGFzRZW3GnO60jeLEBHJ\nobYA+bpS6tt+8at+vojOGznQ7vjaPvjeJ/fjc+8/t8HyNu/b49rqTNv2z73/XNz75H5sWDmMF0Ym\nGq3ZjVeDT7fFAAAgAElEQVSzDlANr9/d/XK9TtvFP/rCaMP4+vXWVefTvp0Q0leYFupRWzt27p2O\nlXUEE6VKoj5RbWzlccYNmyuqPGrM6WbVbtIviamCWs7HqFLqI0b55wGMGImpC5VSfxE1Vhzbdp18\nqpN9MiLIZxxrnZmYquvCbNvD1DGmSsaWmJoLjE91TE9I/UAyMZVEMKPOz7jJqd1MSm1nrDh9oto4\nhiqy01jMvnOymabjFzbmdFfH9Ms3Ib8J4BoAvyMiu/3tvQBuBvBuEXkGwLv8z21h2raf9b9qduoH\nj5ZQ9RQyAowWyrjjwefw8mvFJpvcn79yGGu37sLIeBkZQaOVu2Hbri3dtZWutivWr4P5bN26OJup\nlQ0YZRnHqb/OG8hyAUII6Wta2ZfPyWYS27mH1Q84AtdXL+pxWjFZruKqzQ/h/Jvub5qnlQU8ULOW\n19btZl8dy2S5Gtu+Xc834Ag8z2vax8lytb5/milYgHTM9I7ORyn1oFJKlFLnKqWG/e0epdSIUuqd\nSqkzlVLvUkqNth7Njs22/SPbd2OsUEHZt8e95K0n4hPferzJJnfJorn199qavRSw0aUNOyGE1GjX\nlj1uvzjjxrFGjxonifV6WH2SMXTbJH374V7TH+mzU4DNtv2RfaM4ZeEQRBqVKcE2YWqXYBlt2Akh\npH0FStx+U2GLnnSOMBVM3DF0204t7acbffFNyFQQlmH84mghkTomSgFDG3ZCCGnflj1uv6mwRU8y\nR1h9kjF0207UO9MRLkJ8tDrGzDD+wsphLBjKtVTHmGqXjKBBMWOqYrTaZTpnKhNCSK/RCpmkqo64\n/eKM26mqJol6J0oFE3cM3TZJ33641/SFOqabxFHHmBbtVderZyO3UsfEUcA01PkKmKh+pjqm3t5/\nzYhgMN/Yfu5AFsVyFZ5SGApYzetXs58ua1Dh5DLIZGbd+jT1LF+qY0gEM+78tD0qI47teNx+YfWZ\njAOlENs6PjhONpepW7B3Q72TZIygBXy3Le3bTGSdFeqYnmOqY7TyZaLs1p/1ElTHPPDLA5gsV/Gl\nB/bipdFJrN26C2/+9A+aFDOmOmbAkUblzERNMTNaKANQTaqajACHiy4e+OWBxvZGv4/etRt7Dhyt\nx/7Ru3ZjtFDG9cZ+vPxasR77HQ8+V+9n1pnzjEyUUa3Gf7YDIYQkJZt1kM9nMSebaakU8TwPruvV\nFyBjRbfhWh3EVXZli+PYFyAK4YobU1UDAG6l2qCMSapyCRJHKRNU+JixHTpawtqtu9qaO4g+zlMJ\nFyE+NnWM59WULovnDzapY5YtWRhbMaMzmc1XXacVM4A01WmlzbIlC5vaX3T66/Hxbz6OG95xBk5f\nPL8e+w3vOAMf/2ZjPJ/41uP1OC9564n1fmZdcJ5CZfpnVRNC+p8kSpmwtkFViBsynjmGuZVjzB+m\nakmqcmlHiWNT5rSjsImzTbWipv9SaXuETR1jqlmC6ph5g/GfJxP17JjgHLZ+5rNjdHv9esYb5tXV\nOwBC4wk+c+aMN8xrqjPn6ccsa0JI/9GO2sP2fK9WbeKoV9qZP0xZmfQaGkfxE7w/JI17OsJvQnxs\n2cammiWojhkvtqeYCdYF57D1M58do9vr1z0HxuuxAAiNJ/jMmT0HxpvqzHn6IauaENL/dKIUCY6h\nN/OaGGe8Tubvlhonaozg53ZVOnG3qYSJqT46J2Td9t14ZN8oLli6ELetXoZi2cN4qYJ5Azlsf/gF\nvO/8k/GJbz2OD/23U3H2icc3lOl+G1YO4+DRIv76e7/AhpXDWDCYxVjRbXhdc+dObFg5jF3Pj2L5\nGxdiTt7BZNnDwqF8LZHVTz4dcAROxsFk5VgybFSSaxzr+GBCa7nqoapU0/imbf1AzmlIyNX9PKUw\nGGjfkEwbqLPtj47ZtK03k2ld10PZa47Pto86MbeqVNPcc7KZqKSrGZf4R2YUM+78rFY9uFWvvmNj\nRbfh+quvnRrtcqpzQsy2W65d0TC2q4DxUvN4C4fy9TFMFGr5d1Hzm5jz/2z9xS1jj0PUGPp+oT/r\n+0ic45aUNpJTOzo3uQjxsWVct1LHVCpVlD0VSzETVx1z9vr76ieSXqDoRYt5kumFUXBB85ZfW4Dv\nPPYSVl64pKFOt89lgImyh1vufRqvHilhw8phzBvM4rrA+AsGs/VY/u4D5yHnCG4MnOiDOQfPHhzH\nSQuGmv4R/Gz/YRw/J9dUt/HqZahUPdy47VjZ595/bj3m7z+5Hz948tV62R/91qkolKtN4788VsBJ\nC4YgULhx+0/rZVv+63l87JKz8Ia5ees/zoVD+bB/YDPuIk9mFDPq/KxWPZRcD9nAXrV6/on5zJlW\nyhAFNPznRdu1B8dpNX/ZU8iHqG/MZ7j0SikT9vyZVv3aIQ11DBchPkeLFazdugu3XbMcH/rqLuzY\nO4In1l+MtVt3Yf1lb8H6u5/Cjr0j9fYXnbYIn73iHCwYyuGGrz3aVLf+srfgki88UH+//u6nGl6D\ndZ+94hy845YfN4yx8epluOFrj2LT6uU4Z/19DXWbVi/H2q276nVmez2mWWe21/ukYwgbX5fpfbXF\n54jUj5dZd9s1ywGgqe7HH3sHPvXtJ6zHa/3dT2Hj1cswfNP99bITjx8MHf9DX23c/9uuWY79h4v1\nfV+7tbnfptXLMX8wZzs1ZtRFnsw4ZtT5ebRYgVKABPYq7N8sAMwfzNWv02FtWo2hx7HFE9Z349XL\nkDFu7GabJ9ZfHDv+VkT1Na/FtvHizhty7euUjs7N/sle6TFmEqhpjxuVfGpaugfrbImfUUmhpywc\nahojzOa9VZKrHjMqOdaMIWz84L7a4tPvg3VmkqvJKQuHIhNnzTGDSbfB8YP7OG8wizMG5jXsZ9R+\nEULSIW7CafDfbJx/1+38u49K8tTXJNv4ndiwB4nTN2y8fr7WMTHVx0wCNe1xo5JPXxwt1BNEg3W2\nxM+opNAXRwtNY4TZvLdKctVjRiXHmjGEjR/cV1t8YQlg40V7ctiLo4XIxNkjk5WGsqjxg/s4XnQb\n9j0qYZgQkh46eTRpcmacRMxW9WHxhPU9MlmJTEptN7k16b5HjdfPFu5chPho2/ZnDx6t2+F6nhdp\n175gKFe3YjfrPn/ludj44z246LRF+Nz7z633v/fJ/da6DatqYwXH12Nr21+z7uDRYpM9/I5nDx0b\nM1Cn27vVakMMG1YOI2MZf8CR+ue/+8B5mJvPNLVxBA3Hy6x79IVRa92CoRxuXdVYZsb83d0vN5Q5\nvg1+cHw9drHsNpRt/PEefP7Kc0NtjfvBxpiQmc5QLoNsApt0/e/W9niNJJbtYf/+o+zgg3GabTqx\nYU/St9V4tr65PrFwZ06IgbZtNxNN3UrN2CaYfNqQtOonmJpqkqAtepRl+pxsBq7noWIqQKa5OmYo\nn0HFrcUcbB+mjglVreQyKLv2GMKOTbVqV8zozzlHkLUcN6pjSJ8y487PoDpGE0yyDCZLBh+vkcSy\nHQCy2QwcSx+bOCHnSP1/6o7jxLJ6b5Uk6io0JeRG9Y2bdBrVrs2E07jQtr0bmLbtZ/2vmv36S6OT\n+NIDezFZruJrP3kea7fuwqGjJTz4zEH8+Td+igMTNSv3V8aKDRbCpi36yHitjR5T193x4HMYGa/N\n9/SrR3Ck6GKiVKlb8H7smz/F4ckK1ty5E2/+qx/gjgefO1b3/xyrq8850TjPgYlj8+j9+vrDz2Oy\nXMV1W3Y2xPqrI5OYLFfx1R37GtrrNuWqhwP+fusYvvaT53Gk6Nb2/3Cxbhl/eLKCa/24zLG0nXxG\n0DT+axNljE1Wmo7hngNHMV52cThg0XykWMHh0rEyW8xHii6+/tDz9b+jbjPVlsSEEDuZjIOM4+Bw\nqdEu/fBkBUcmK/UbadBKPJt1MCebibQrt1m2a1y3Cs+z/+c7aAd/JGAdH4eqp/DK2GRDbIf9n0IK\nhiLIZhNvWsTr8slytcE2PoyofU7Djj0uXIT42GzbTUvzy4dParBO1/boNtt20xZdW7sH6/S4O/aO\nYMmiuVi3fTfmDuRC7dfN9jZr9jjzXD58ktXiV9vSXz58UkN73WasUMFH7/pp3TLeHMvc/zgxayt6\nc/yJchV//o2fNsV1+uL5GCtU8JFA+yOTLtZt222dx+yv/2bm33GqLYkJIeFMulXcuG130/VzrFCJ\ntBK3Xa+TWJnbHkvRasy421ih0nR9vnHb7npd3BiTxhDH9n460h/ps1NAWNa1TbVx3Jwc5g82KlFs\n/YLvbXXm3GYMwXHNz63mDJtHq2eC/fS85n6ZaEWL2T+oxIkbs+04hylm5g1mY7UPOx5BpU0/ZYwT\nMhsIu+5q5WHSfp1YmXdLUTeUDx9nKJ+t71fcueLG0K8KGX4T4hOWYWxTbRyZrDQpXmz9gu/Nz2a/\noHIFaLZfNz+3mjNsnjAlj57X3C8TrWgx+weVOHFjth3nMMXMeNG11gXLwo5HUGlDdQwh04uw6+6L\no4VIZUcrRUgrtUih3PytQKfqFr2FXc90XVIVT9wY4sQ+HemLRYiI3C4iB0TkSaNsvYi8LCK7/e29\nncxhy7q2qTa0CkWrMGzKmaD65N4n9zfV6XEvOm0RXhiZwIaVw5goVeplenw9rtk+WBd3nu/uftma\nRa2VM9/d/XJDe1PR8vcfPK9BCaTHMvc/TswZi9plbj6Dv/vAeVYFzIKhHL4QaH/cnCw2GAobW8w2\npQ3VMYRMH1zXw4AjTWq5z195LhYM5SKVHbbr9ZZrV8RWqQzlmq8DcZQ3cbYFQ7mm6/Otq4brdXFj\n/OVNl+CXN13SsF/tqmv0Vi67KJfdaZUf0hfqGBF5O4BxAFuVUm/1y9YDGFdK3ZJkrKS27cFnmtjU\nHkHlTFB9ElSa2Oq0Cic4vqcUhiwKED23TR1SKLlwzHkM9U65Um1Umvj9wvZRZ4jnsjV1jG0sc/+j\n4gpTxwzlMyhVwtUxQfVO1PNkzJiDz6GhOob0MTPq/Azappe92nWuUKrCkUb1iE3ZEbxeu5Ycj1YW\n8GHxdMMC3VWAp4ChgQwKvmLQrNP71y27dU2S8bqomJn5jqlKqQdEZGkv55h0q00W7UHb9k2rl+Oa\n2x/Gjr0juPcjb7dauW9avRxnf+beprLTPnVPw2dtNb55zQo4Isjns8j7feZnHYyXXFy/ZWfT+Lr9\nkPFbn7bine+fUPMMa956XaZWN5jPYjCkn61sfsNYTsRYtbKouBrqAuMPDYTHkLXEl8k7GIgVc64h\nPkJI+tiSJK/a/JDdetyrNlyjgv1tPzNE2pi3GC8yFgtRc+nYSoYap+opVB3pyOLdRtVT1keIhI5p\nOQ5p0BeLkAj+h4isBrATwJ8rpV6zNRKRtQDWAsCSJUusA9ks2oNlUYmjQHwLdDN5aihv/3lgKJ+x\njh/WnvQncc5NQtKiV+dnp9bjrRIukyZpdmK/3m5CaC8SSfsxOTX9ZVD7bARwGoBhAPsB/F1YQ6XU\nJqXUCqXUisWLF1vb6MQeW8KoLakyLBkyuCq3WaDrzxcsXWhNkAKAQrlqHT+sPelP4pybhKRFr87P\ndm3Lo/onSdJsNV6SBNWkyazaBr4bSbDBcZOOOR3o20WIUupVpVRVKeUB2Azgwk7G00lJZqJlzk/2\n0WU6gTMqOdRmsR603c0I/GSl860JUkDN1vjWVecHkpvC2xNCSL+gbdKTWLa36h83STMsKbVd+/Wk\nyazZNvu12rIJx5wuSfp9kZgKAH5OyL8aiaknKqX2++//DMDblFIrW43TqW17q+TQVhboVht2P9nT\nTAC1JaYGY7Aluc7JZlD17EmbZqKtaWnelABrJJ827aNRVyhV4TjAgBGzLhvM6VgdTLreMft6/wJQ\nMCzmh3LHbJQ930jIVhdF0MpZ/wMLljExlfQpfX9+BpNRTRSAqn8rCrM0T4otSTOTcZDJOPA8BbeF\neVe3k0anYg4PaBAexB2zwyTVmW/bLiLbAOwAcJaIvCQi1wH4WxF5QkQeB/DbAP6skzm0bfuDzxys\n26l/9K7ddWv2l1+rWZO/+dPHLN2//J81S/cHfnmgbjWeFdRtdnXZgCN1G+CxoouiX2darj/4zEEU\n3Zo9uq67bstOFMpVFEpug538aKGMg0eLDfbw2uZ8tFBGxVNNFuiAwsuvFXHHg8+haFjUazv16wPx\n3PHgc/W6Bnv0iWOfr9+6E2OFCkbHG8tGfcv467fsxMhEGbf/595a3ZadOFqsYGSihOt963jdxvMU\nPE9hZKJsrYvztzP32fOay2jbTkg6hC1ACq6HilKYdD0UKm59AdLuf41NK3T9mA3zRqwUQhcgQRv1\nKLt03VbjBV7jYtq022Iwrdc1rlKh9Y5lzDjjpmnr3heLEKXUKqXUiUqpnFLqZKXUV5RS1yilzlFK\nnauUukx/K9Iu2rLXtCaPsmY3rcCXLVnYYJOrX80y00pXvzfLLjr99XV79GCdrf3i+YNN9vCnL54f\n2h6QesxjhUrd9jzKAj7Khl23/fNv/BQT5Wps2/rXCpUmm+Ybtz2GQqWKQqWKG7c9Zq2L87cz+4XZ\nGE9X62JCZjKTbjXU4rzqAWOFCsaLx9qUE1qlJ7EuL1TssSSxbNdt9edK4LXdLU4MVYWuW7qnaes+\nvdNmpxDTujyogImySdf24rrMtGA3y8x+2k48WGazTA9rbyp3dNm8wWyi9uY+2vbNbBfV9pSFQ5H9\nTTv5MIt2rfppRxFks1vulgUzIaRzwv7daRtzXR9l1R6HTv7Nt6OI6fb1JGn8M8HSvS++CZkKdLay\nmWEcx5pd24vrMj2OqYAJqmO0nXiwLMzu19beVO7osvGiG6u9OU/UvkXZsJttXxwtWPsH3wPhFu2F\ncrVtRZAt0zwq+5wQMrWEqTNeHC3UH89gs2pPusVRhxTK1Y5VLqaCsptb3BjixNjJuFMJFyE+Wh1j\nWpNHWbObVuCPvjDakIl8x7UrMHcgiyfWX4w7fctdM1tZvzfLdjx7qG6PHqyztT94tNhkD//swaOh\n7QFVj3nBUK5uex5lAR9lw67b/t0HzsPcfCa2bf3rhnJNNs1a9dOuIshmtxyWfT5dMsIJmU2EqVkW\nDOWQcYAFQznMGzzWJt+mQiSOOiQv6FjlsuXaFfXrzIAjyAVe293ixtALS/e0ro19o47pFnFs223q\nkKA1u/6cdwQ53x7cTC76/pP78YMnX8WGlcNYMJhF1m+TdwSZmOqYuprGcZpUHt1Wx4QpYPpZHRO0\n4dfHMiQLvO/VB2RG09fnp+t6qHqedSdcBWSke+qYThQnSftmcxmrZXwn9EqVE2fcNlUyM9+2fSqw\n2bZrLjptEdZf9hZc8oUH6u/X3/1U/XXj1cswfNP9dYvcddt3Y+PVy/CZu3+Gddt3Y9Pq5Viz+SGs\nv+wtGMg6+NS3nwid57NXnIN33PJjPP6Zi/Ghrzbb+q6/7C044bgB3PC1R7Hx6mW4bvNObLx6Wd1O\nvlXMn73iHJRcL9RyPmjzbrVhz2h7eLOuuWye33eebj9gqQv8Luk4EloXRTbrNNi2Hy1WQm2Rp4NV\nMSGziUm3GmkrXjX+L3zdlnh25ubjGTRHi7Wfoo9MVpJZmKOF1XsIpYifMNoZT6laXoz+aeRNn763\nYzt3kwlfaZnE0r7XTOkiREQyAH6olPrtqZw3Djbbdo0t0dJ81YmgZgKorcw2RnAeneSpk0xtcYgc\nS1gNJtO2ilmPP50TlboBE1MJmT6YifomYY+6aNWm1TztjNPt60W3xuv2dWu6XRendMmjlKoC8ETk\n+KmcNw5m4mZYoqb53nzViaBmAqitzEwKbZXkqZNMbXHo5Nnga5yYXxwtxLac72eYmErI9GGiFN9W\nvJMkSl3XjoV5t23U2xlvvNi8j53GkTSuqSaN76XHATwhIl8RkVv1lkIcDdhs222Jljq500xM/e7u\nlxuSfYJlE6VKvf28wQxuufI86zxmkuejL4w2JRPpMbQ9r06iNZNpo2K+5crzMG8wY517w8rhGWUJ\nb0tWZWIqIekwJ5uJbSveSRKlToBNamGeNDE1asv5WzvjZQOfu2HnnmQ/07g+TnliqoissZUrpbZM\nxfxJbdsnSm5DAmg9YdJI8sznGpNDbWW6fUYEAzmnYQxzHl03dyCLSqXakGBq2rbr5FOdKGomjEbF\nXHI9eB4wJ9+YADuUyyCTmVm5ErZkVdq2kz6l789P1/Xgel4sW/GoJMpWyZNaZNCOhXm3k0KTjKfQ\n+EfOBgQP3SRxAm42UiDQX7btSqkttm2q4wgSZtt+eLKC63wb8YlSpV6nLdSPFF38/JXDDRbtR4ou\nRo4WG8pGxsuYk81gaCCLjONg/mCu/uqIYP5grqHOEcFAPttQr+uyWadel804Da/mWMF+GcfBUD6L\neYPZprln2gIE8JNVjX3s4NkIhJAOqFZrCwObrbhpge75n83HLdisy6PIZh3k81lkHadpruB8QWzt\nzT5Rduq29uffdD+u2vwQJi1eR+aYQPOdvN04bG2Chuxh+xmG61ZbPj6jXab8qiwiz4nI3uA21XEE\nibJt13a3cwdyVvvbJYvmNtm2D+azTWW0DCeEzEbCrNKDFuiVmNbrcQizig9arnfL9jxpe7NNN+Ow\ntenUTr7kWyf0gjRSYlcY7wcBXAlgYUjbKSPKtj3YxsRm0d6qjBBCZhNxVClJFDSdzNmO5XovlDbB\ne0u34phu6pdWTHlkSqmRQNEXRGQXgE9PdSwmpqrlgqW1B9JpFYnWVOs2psbaZtEeVWbTthNCyEwm\nSnWhr6nmNTPsGquJcx0NmzM4XxzixJS0ffDe0q04ksYaFxFJ5N0Ue9wUElOXGR8d1L4ZuUEpdd5U\nzB/lmDpaKGPX86NY/saFWLd9N044bgAfu+QsfPybj+ORfaN48BPvgCMO1m3fjUf2jeKCpQvrFup/\n/b1f1N1Rx4ouBAo3bv8pbl01jOMHamULBrMoe8DQQDI3UDIlpP6HYGIqiaCvzk+dHJoUD8CRott0\njV1gmCCaiantzpOUsRYxddq+m3HY2hw3mO049yIiObWjczONRci/Gx9dAPsA3KKUenoq5m/Xtj1o\ngW5mFmcDSpgBR5DNZvDCaAELhnIYyjq1hKtJF39217GT49ZV52PR3DwXItOD1P8IXISQCPrm/OzG\nwiCOOmaqFiBxYupG+27G0e25e6mOSePnmGnnlgocs23fePUyXPOVmgW6tk7fePUyXLX5Iast+vq7\nn8Km1ctxzvr76va3a+6sWam/45Yf18tGxsv41LefqI+xY+8Ibtz2GDavWdGTr7gIISQNupWAb7vm\n3nbNcohvLd6rRP8oW/OJkotzfDWLzU49rG8pgbIkjt27+dO+tqoP0tKiHWi4b2mmOmVgyu9+vlvq\nZwC83S/6DwA3KaUOT3UsJrbEVG2dHmWLHpaEGrRtH8rbk1qH8jTPIoTMHLqVBGm7XprPpupVsmXc\nxM5eJYUmHaMbCbJpJq6mMfPtAJ4E8AH/8zUA7gBwRQqx1LElpmrrdLNMY1qh25JQg7btI+Nl6xiF\ncpXfhBBCZgzdsv62XS/Hiy5Eav9b75XFeNzEzl4lhcYdQ39j0Y0EWbNsqr8JScO96XSl1GeUUnv9\n7X8DOC2FOBrQNt+mBbq2TrfZopu27aa9LqCabNtzjmDBUA7/8MHGMW5ddf6MskonhBBtnd4Le/Gs\nYS3erXmS2rd3ajnf6fxBe/Wo49BqrNlq274DwMeVUg/6n38TtcTUiyL63A7g9wAcUEq91S9bCOAu\nAEtRS279gFLqtVbzx7FtNxNTtXV60BZdW6HbElNttu1zshkU3SocEeSzTsNYc3IZlF0PVdU8T94R\n5HLhlvG5bMB+3bCHb7Jtz2UgIihUqg1lTIwF0EeJf2RWMq3Pz14liZoJlnlH6geh18mprRJjtQAh\nad9uzN+tsYK28K3s8CPoL9t2ADcA+KKI7BORfQD+CcCHWvS5E8ClgbJPAviRUupMAD/yP7eNluiu\n3boLb/6rmiX7oaMl/NvTB1Byq3j1SKnBSnhkvAxA4cBEGR+9a3eTbfvRyXK97MFnDmK0UMYzB47i\nSNHFeKnRlnh0ooyK59XaTZQb6g4XXTzwywNYu3UXXn6tiDsefK7+WnQ9HDjaGJeuGy0ci0uXjRTK\nOFqs4Hrfhv76LTsxMlHumR0vIWTmY1sIaPv1OFbnUe1Me3HzTud5HlzXq1u02zbHcXC4xU8hYXNH\n2Zp7nocBR0L3a7JcxVWbH8L5N90fy+IdAFylGsYT2G3bO9mXoAV+0vF7RRqLkJ8D+FvUckO+DeA7\nAN4X1UEp9QCA0UDx5QD0M2e2tBqjFdq2PWh3e9Hpr8d4sYqPffOnTXWA4OPffBw3vOOMJot2x3Ea\nxli3fTdOXzwff3bXbowVKk1jKYUGy3izbtmS2u96n/jW47jkrSfWX8cKFXz0rsa4dJ0Zly5bt203\nXgvMfeO2x3pmx0sImfnY7NHj2K+3a4ke17590q3ixm2d26uHbWF92hmzqtDQPomVe9x5W8WS1mNF\n0siI/C6AMQCPAni5g3FOUErt99//CsAJYQ1FZC2AtQCwZMkSa5swS/bj5uQwf9CujtF9znjDvKYy\nUzGj1TVabXPKwiHrPPp9sE5nhJuKHHPOYHtbG11mm5sKnfSIc24SkhZxr502kqhM4rRLSpzHZXRL\nzWL26XRM836QNI5W86athLGRRjQnK6WCP610hFJKiUjobwpKqU0ANgG13zVtbcIs2Y9MVjBWsKtj\ndJ89B8abykzFjFbXaLXNi6OFhrmDahpbRrh+rxU5ew6MYyDrRKp2zLh0mW1uKnTSI865SUhaxL12\n2kiiMmlXURKl5AheizuJMYpgn07H1PeDTMKfStpRwgRJ47Eiafwc818ick4XxnlVRE4EAP/1QCeD\naXVMMJN4x7OHMG8wg1uuPK+pDlD4/JXnYuOP9zRkGW9YOQzP8xrG2LByGM8ePIp/+OAwFgzlmsYS\ngZOCs1oAACAASURBVFWFs2HlMB59YbRBkaNfFwzl8PcfPM+q2jHjqit5Vg3jdYG5qdAhhHSCTZ2R\nS6AUaVdR0krJMSebwa2rosfqRM0S1qedMTOCJhVQt1U1rWJJQxkDTKE6RkSeAKBQ+/blTAB7AZRQ\ny6xVSqlzW/RfCuBfDXXM5wGMKKVuFpFPAliolPqLVnHEUceYqpVipaZoGcg1qlC06sVUodjUMUFF\nS0P7gBIm5wiyGSeROibrZ2rHUcfok6xhH7OZdjOiZxqpZ2hRHUMimNbnZ5hKJa7KI6kaxHFq16xu\nKGM6VaJ4SOd/8zbiKmHCaFMh0zfqmN8D8N8BvAfAGQAu9j/r8lBEZBuAHQDOEpGXROQ6ADcDeLeI\nPAPgXf7nttHqmAefOYhDvuLkzX/1A1y/dRfKVQ8jAdXKK4dripPxklvPPB4tlHHwaBGHJpqVKTbV\nyuhEGXc8+Fx9zCNFFw/uOYi1W3ehUHIxWa7i2jt3NihyHnzmIEbGyyi7Hv796QN1RY/ZJiOC67bs\nbFLMlKteU/vRQhmuO3XPXyCEzDzCVCrzB3NwpPX/sk01ylipUeVxYKKMSdeD4xybA+h8AaLVJJFK\nGLRW+TgAygkUhnFVQ+30DdsXt1L7j2mr/lp1NJVM2SJEKfV81Nai7yql1IlKqZxS6mSl1FeUUiNK\nqXcqpc5USr1LKRVUzyRCq2NsCpWxQgXrtu22qlB0trHOPF48f9CqTLGpVtZt341L3nqiVQnjhmQ7\n6/iOFt1QNY1+H4w1bMy0sqIJIbMDm4ImVOURuNZ+/JuP47VCpeE6lWS8VmqSqDZxVT5J1CydKHI6\nVfPE6T/V9wNmI/rYnh2jOWXhUOJnx9iUKWGqFXNMrYQJe16NLj9l4RBEWj9fwZwnrP10y5YmhMws\nkqpDgp/19a6d8VrN02qsbl8zOxmvG8qbTvr3At59fGzPjtG8OFpI/OwYmzIlTLVijqmVMGHPq9Hl\nL44WsGAoF6mmCcZ64vGDoRnUaWRFE0JmB0nVIcFr1IujBSyal4/1vJSk87QaK47qpOqp2GqWTtQz\nnfRVKvlzaaaCKbdtT5uw5CqdE7Lr+VEsf+NCrNu+G4/sG8UFSxdi49XLUK56WLftWNnn3n8uvvPY\nS1h54RIsGMxizZ07sWHlMMZLFeSzGdxy79N49Uip3u5955+M7zz2Eq5YfnK9bsPKYWx/+AXc+m97\ncMHShdiwchgL5+Yx6f+m5/oGNvMGsxgvushnBEdLLhbNG8BEyYXn102Uqpg3mMWRyQqyfmZ62UhQ\n0gmzYcmuVddrSGjS7VsluXpeoJ9hPx9MlJ2Ty8Cteqh4zXVD+QwmK16ohXxTwnDMZNqE/aZ14h+Z\n9fTN+el5CmW32vZv/WMlt+Fa+/krz8X8gSzm5rP1f7+9smsP4gE4UnQb7gcbVg5jQeDb5rKnkE/B\nfXSs6DbFEoargPFS632x0SJhtaMd5yLER5/UJa/5+S1RKhTbs2Osz22JoY558JmD+B/bdtdOjlXD\nyGcc3PC1RxtOmJfHCrjySz/BBUsX4h//YBilisLHvvnThjZzBzL44y278Mi+Udz4O2dg5YVLmk68\nn+0/jNv+4zl8Zc0K64npKQ9lF00LJ72oWv0bS5sWZhtWDiPjCD78z481Ldb+6LdORaFcbZgnuEBb\n9bY3YtHcfMNCRC8Og/EtHMpHLkTa6Nc3F3kyK+mL89PzFAplt+Mbsv7PTaFUhSNAPuNM+QLEFo9N\nYRJHHaMwDf6AqMVRjtiXKCIWIn2jjpnWTLpVrLlzJ6qewjVfeRjnrL8P48XaM16eH53ENbc/jFfG\nirhq80M4Z/19OP1/fh/n+BnGEyUX56y/D9fc/jAA4Lotx8qu/nKtTLc36675Sm3MI5MVrN26Czd8\n/bFjCUPb7Pbupy+eX/8cZidf9VAv08mzYVbwVWVPVpo7kIu0gLcl6+qE2bhJscGkXZuFfJidfhzL\nZibhEjK1FCrVWEmaa+7ciTd9+t76tubOnQ31QO0nFwWFqlItk1JfOVJCyVMoVttPVI2KSccDoKHP\nc6OTqMTZpw7i6samYzvr0/finPX34arNDzXtS6utV9dO5oT42BJTtc16MLHUJCwxNVgW1j4qYdRm\nsW4mnYYlzJptwmLWbcLs6s0E27Bk2rgxR+1j8NgGLeSj4oui3X6EkPap/fttbXrVyb9NW7uhfLYh\ncbUd2olJX9va7T9VTOfYpkcU0wBbYqq2WQ8mloYl9oTZtgctfc26PQfGccJxA6HJWCbBpNOwhFmz\nTVjMuk2YXb2ZYGtLpg2zjLfFHLWPwWMbtJCPii+OZTOTcAmZOgrlKtyq1zJJs50Ey6ik1JHxMhbN\ny0MptL0YaSemV8aK+LUFgy37dxJXN+iGPT3Qm4RV/hzjo23bTev0R18YxYaVww1W6Z97/7lWa9yg\nbftrE6WGMrP9CyMTDXbqAjRb7q6y27s/e/Bo/XOYnXzGQb3s3if3R1rBZ8Ru9ztRqkRawC8YymHD\nquZ+8wezVhv5rMVWOGhDb7OQD7PTj2PZ3E4/Qkj7DOUysSzHk1qbm/9ubTbxrxvK1a+zSe3OO7Fb\nv/fJ/RhwBPkW/TuJqxtbVGy5mGP06trJxFQDraYwE0YrlSrKnmpKMDUTe4KJqbYyW3tzzIrbqByx\nqk8CY2VC7OTL1UaFSifqGNf1rEqbMHVMUAGjj+WcXAbVamAsv85UxwC135XrxyaXgef/HmlTuXie\namqvxxjMNlrgUx1D+pi+OT/jqmOikj2jCLNsdxWQlc6SQJPElMk6dXFCVP/pkpTa7vEGequO4c8x\nPlpNsf3hF/C+80/GJ771OD70307F2Scej5fHCjhpwVCT0mLeQKYmkQKwduuuutxprOhinlINZW/6\ny+/jgqULsWn1cowdLTXMo8e8ddUwqp7CDV97FJ97/1sxmMs2zaljGS9V8H8cPwcj480KkDn5DNZu\n3dVQZkqB//EPhlGaqDSqaoy5ddk/fHAYg7lmhc4xhYmDvH/85g/m4HkKR0tV3LjtMWOfzseiubVW\nr4XUOY5g3oADz1MYmShb2+ivAc2vA23tv+TLqW8MkVO3UtUQQjrDcQSD+fBbS7XqoVr1kBHBoaOl\nxJJRzztm4W6SD2kfpqYx5a1x5atnr7+voS54M7fZpgfv0GMxJL+2WJP0sS0azGv1dIJXYx+tptBq\njR17R7BsycK6IsWmtKgqNNm2a2vdqkJDme5X9evNeXTdjYYi5nVzB6xz6lgWzx+sj9WsjlFNZaY9\nvFVVY1Hj/NlddoVOWJZ0oVJbZDTuU03xElUXp3/c+V4rVHBjhMU+1TGEpEuhUk1kI96pUiPM4t2c\nK24s7dil2+ZNus9J+/TTdY7fhPgE1SDAMXWMfjWJUsJEqWO0+iZMtaLVJWHqDh2LOX6wzXFzck1l\npj18mKrGpmyxlYVlVQ/lM9ZxteIlqi5O/zjzxbXYJ4SkQ1AtaNKLf6Nh49mUi3Fj6STOdvZ5Oqtb\nOoXfhPgE1SAA6uoY/WoSpYSJUsdo9Y05jzmmVpfocYL1OpaJkhva5shkpanMtIfXqpqwuVuVhWVV\nF8pV67iFcjWyLk7/uPOF7VvQYp8Qkg762hV1XY2zJZ0vuJlzxY2lnTht8ybd53b69AtchPhoNYWp\ngNHqmGcPHrVmF2cEoeqYjMCqjsn49Talza2GIua1iZJ1Th3LwaPF+ljN6hhpKtMKlVBVjUWN8w8f\ntCt0wrKkh3IZ3Lrq/MA+1RQvUXVx+sed73VDOdy6yq7CoTqGkPRwXQ/lstugGGlHkaK3uI+ct6lp\n9HU6aSy/vOkS/PKmS7Dl2hVTqsJpp0+57MY+RmlCdYyPadtuKmC0OiaoMLEpYcxkJJs6plBy4Ygg\nn3Eans0ydyBrVYK4/m+nNmWKtofXYwXVMZ5SGAqoUKJUNaaqxLSmt6ljohI7bWoVbcMeVRenf9z5\n9H4MWZ53Q3UM6VP6+vwMSw7txEYcaKnaaDl/N2NJQjtKlU7URD1Oxqc6phtMulWs3bqrwdDlotMW\nYePVy5BxBNfc/jBuu2Y5rtr8EHbsHcG9H3k71t/9VFP7TauXY+3WXVh/2VtwyRceqJc5IphnZCXP\n90+K+YO1V23Q5ThSr8vns00ZzfV+xkl1bKxaG/OEq/fLNLYx524oC7TL5B0MBMaKoqZ0yTbsU5y6\nJG3itNfvj6lq+KUfIWnRKlFSX1c1+roJ1JSH+n0TXrXhWhiGVvMdLVas9bZrf+icFpQCPNX4JN2R\n8TI+9e0nQsc1beDDCIsrrI/1WMU8RmnBRYhPWCKoTvIMJqhGWbgHrc1nSgIRIYS0QyeJl928hkYl\nmobN3y5D+c4fHZG0fz/eb/or2h4SZvN9ZLKCjCMNSaE79o5EWrgHbc5pFU4Imc20SpSM8ziMMJJc\nW8PG6dTWPOybkE7HTdo/rH4633/6PidERPYBOAqgCsBVSq2Iah+VE2J79Puu50fxzrPegLGi22Ba\ndsJxA/jYJWfh4998vKH9gsEsDkyUccu9T+PVI6VYj50n04K+/s2dzHj6+vxslZMRZcZlmooFSZrv\nEGVcltRArGFcfxGSNxYhBdfDeMltuEfcumoYr5uTb5mf0m5ctmM13XNCZsoiZIVS6lCc9nFs201b\n8WKl2pBMaiaaFstVqz16RgSDflJknKTQYDKpTrBUqjHpsiEu12uZtEkSkfqB5CKERNCX52echFBN\nMPHScZx68n8Som66UfG0myyqH2Fhs2evLU6AoYEMCv4jM5LSQ7v1bsHE1G5g+ybkttXLUCx71m9H\nlr9xYf2bkQFHGmzSP3/lubjlX57Gaa+fi5UXLmno/49/MIzXCqrRMn3lMIYGMrjeGGPz6uUolKtW\ne3cdw4qli+q254QQMp2w3fCj/mc/J5uBI9Lw08Ec1Gzak3wj4HkeXBdNN18znuB4W65dgclytelx\nF62+DRlwpD6mvgrbYs07aGsB0sk3NFO0AOmY6R9haxSAH4rILhFZ2+4g2rbdtMb1PFjtci86/fUN\nFuratl23+fg3H8cN7zijbhVu1lkt07fvhuehoUzbCNvs3XUMUZbmhBCSJja79Cj7cZuCRo/RDdty\nM57geO3aqXfLlr0XY/WLdftM+Cbkt5RSL4vIGwDcLyK/UEo9YDbwFydrAWDJkiXWQWzqGG2xbqIV\nMzYLdbONqY4xCbMVnxdY3bayd9f1YZbmpD+Ic24SkhadnJ82lUZStUfU4ymSqkCiLNrD1JHtKE26\nqbSZyXbtmr7/JkQp9bL/egDAvwC40NJmk1JqhVJqxeLFi63j2KxxtcW6iVbMBC3Ug232HBi3WrOH\n2YqPFxvHaGXvruvDLM1JfxDn3CQkLTo5P9uxHw8boxu25VFxtDtHtyzWezVWP9DXixARmSsi8/V7\nABcDeLKdsbRtu2mN6ziw2uXuePZQg4W6tm3XbT5/5bnY+OM9datws85qmb5yGAMZweOfuRh7P/te\nPP6ZizEn64Tau+sYbl01jMFszYDHUwpHixW41VpGthdhgEMIIb3Edb3E9uO2Rypoy/V2bcvNLSqO\ndufolsV6r8YKHoOwLU17975Wx4jIaah9+wHUflr6Z6XU30T1iWPbbtqWV93GMq12MW3bM9lGtUvF\n9XD8UB7jJRdz8/HUMTZ58MKhfJO9+3ixZrH+0tgkFgzlUPUUPvzPjzFptXNSP1BUx5AI+ub8bKWI\nsak94ihaOlGJxI2jW3N0M9Zu73cYHSSyzl51jFJqL4DzujGWtm1ff9lbmuzYH//Mxbhq80PYePUy\nXPOVh7Fj7wieWH9xk6Xu7k+/Gzd87dF6WZi1u2npvvHqZQ1JsQDqCUibVi83MsWrVmvjz15xTlO/\njVcvww1fexSb16yIZX1OCCHdIiohMtQePcJaXFuul4qVSHv3JETZtJt26u3auSsVbUWfNKarNj8U\nadfeFVKyd+cdyse0Ww8mA+kEVDNRNU4ia1hSqZm0atrCB9uZCUhhiVOnLBxqKmPSKiEkLVrZigc/\nx020TCN5tJP52rFcD2s/ExNSNX2dE9JNTLv1YDKQTkA1E1XjJLKGJZWalu5HJiuRCUjB+IJtXhwt\nNJUxaZUQkhbtJlrGGXeqk0fbnU/fM5L0jWrfSXLrdE9k5SLERyem2hJBM36Cqk5Ivei0Rchbkoay\ngTJbYqpOWjUTTF8YmbAmIJmJWkO55sTZDauGMX8wG5K0en79sfaEEDJV6GTSJImWtqRU27hTnTza\n7nzBe0GcvlHt486bbzMBNu7foBf0dWJqO8Sxbf//2Tv3OCuqK9//VlWdR59+gN3iC0RAfEQUm4ca\novE6SUbUuRe9OkSYKGJyQ3SSgNfoNYl5tEbHMRBHmORjxMTgayAajSGfqJjMaIyJo4I2Lw3aCiJI\neLVAd58+j6ra9496dFWdXafrdJ/u06dZ38+nP92nateuXXWq91619lq/7Q0ETWd1v2y7R4Zdzxv+\noFVNhW6ayEsCWb2Bqa6ku0cCXlYXEZDO+wNYvbLycYWgBYJiWdK9z1T8ZnFgKlOEqno++yqPrmnF\n+61SZOB7I2rA52AFhg72uYpRYpDq4RuYWk5ksu13XzEZT7+5A5dPG+NbkK4zm0d3LlYg2+5I6gal\nf2viCna0d+PpN3dgztljsXVfJ+743V/dTJY1m3cXLIZ331VTkTNMLFrpz5hZ9dp2LPuvNnsxpClo\n0lQ3eNX5Xaeyg4sZeMZ983clld/2r/8wQC1hhhqapkDXEUm2vSGpuS55XTdCDZG+GiDC/gn2igmF\noOd71qaRtW1EUnPLdecMLFjViofmh6+R6tRRrIxD2AJ3jmciyDUr1hbIthdb3K+3NhaTgg+Tvh8I\neLSykcm23/LkBsw8/VhXht3JPhlVn5TKtssk3BetagVAbl2LVrVibFOtT379+gsm4uYn/NLsB9J5\nLFpZKNk78/Rj3c8s284wzFAlqmx7PlAmrE+T1RflJ2eKgnNElUjPSfZHqSNKuw6k8wX9/sKV4bLs\nMtn2vkjCR5WCHyzZd/aE2IRFXjsZLt6MFqdsULY9TMI9mHnjLd9QE0N9slAePkze3WmH85kzYBiG\nGYqUO9tkoLNDemubNzOytzqitDUVLz3bR9amUu/LUJOCZyPExolA9uZpe7NlvBktTtmgbHuYhHsw\n88Zb/lB3HrsPZQvO7ci7y9rj/ZzOGawFwjDMkEOWbSHr04LliEjapw109kZvbXP2F2tHlDIO+ztz\nke5HsP5gm0q9L6Wc07ui8UDB0zE2ssjru6+YjDWbdhVktOztyEhl22US7kvnNAMQWDL7TDdbZvv+\nLl8my30vtmHxbH9GzshUDEvnFkZLr9m0y/3MGTAMwww1TFMUyKQXywCJBTM8CFIZ8WJZN71ljATP\nEbVtccn+3up45/aZkdo1MhUr6Pe9MSHBn3dun4mH5k/3bQt+Lmdm0GBly3B2jE2YbHs6Z0gzWryy\n7VqsZ1/OMGEKgZQnoyWjGzBMgZiqQCP4yjvZLpmcAUP0kh3jybRJ5wzOgCkvFb+R1ZYdU2pgaqlw\nIKuPqng+TVNA7yWWIGoGiCxDo5zZMaW2TVEUXzZjOdAFYAoglVCRtjMeB4PevgPOjqkAxWTbX7zp\nAnzrqY24/+ppuPrB16TSume0PO/+veDhdQXbrnv0Dbdurxy7I5Ob8rgfvS6wejvTxS1vf+YpGIZh\nhhrpvAHZi22YJHlRGXKJjLgj4Q4AHZl80bqLEUW2/eTvrfHvMw3f/igEz7Ox5cJIbbn/6mmgEof2\nUu+DV55+MKZdwuCRzKaYbLsTJOoEonqRBaaGbQsGpjIMwwwnwgLlByIY0tvHllp3Kcf0p63B80QN\n1q0rMe02rJ5qGGuGfgsHiWDwqCxI1AlEDQvq8QahyrZ5A1MraXkyDMMMBOmc3BNSagCmQ7F+0tvH\nllp3Kcf0Jfgz7DxRg3U7M3rJnpC+3mNgcAJQw+DAVJtisu0jUzH825U9gaiyoB5vEKosWNUJcg3K\nsTMMwwwXUjF58Ghf5M976yedQNW+1B3lmP5Kw8vOE7UtWhnOFbXdlR6PODDVg0y2PSiPHpRODwam\nyoJVvYGsNZo6KCp0TMlUReBfqQykqikHpg4qVfN8hgWn9lWSvFiQpCyhIGrdxY4pp3x6lLq8ZeIK\n9fnL7ku7SwxClcGBqeVAJtu+bE4z8qbANx5fHyqdvnROM97auh/3/3GrK9Ge1gXyWR0LA5Lr6z5o\nx/RxTWiqjXNWC8MwwxJFIcTjhUNL3P7tuP4dA6I3GfFiEuJOoGqwbi/FzuN4A4J4l94Ik2Dvrd3S\n84XEeiQUvzR8MUn13trgeDecLKL+3N/BgF/JbWSy7V05A994fH1R6fRFq1oxdWyjT6L9QDqPhRLJ\n9RknHslS6wzDMOiRYY8iI94fCfFSzuOVSHfK9VX+vJTz9fWYsPJeifuBvr/9hT0hNjLZ9qjS6U4k\nsxONHCbH21ATY6l1pl8M9BRItcKL6VUf/cluGczzFMuaKVbfQGftRC0/1LNmhk5LKoxMtj2qdHpn\nxp8JEybHe6g7z1LrzJCGjRxmsCg1u6WvGRz9yaLxHh8kqsx7Kefri4x7b+UH+v72l6oPTCWiiwAs\nBaAC+JkQ4l+LlS+mmNrnmJBdB30xIYYJ5A2TY0Kqi4p/IVEC/9hIKA9V6AmpiuezFKLGhAD9C54s\n5TwO16xYOyAxIcXiO/pyTFh5RVEix4QA/Q5O7dezWdVGCBGpAN4B8PcAdgB4HcBcIcRbYcdEyY7x\nyrZn86ZfTt0jne5EMsck2TGqnU3jlWHPGCZLrQ9dKv6lsBEyeLARUjoDZYQAvcul9zdostQsmnKV\nK3fWThiOpHxCIWiaNcYM4v09rLNjzgbQJoR4HwCIaBWASwGEGiFhOJ6QhqSGfR1ZLFrViqMbErhp\n5inYuOMApp3QiFWvbcdlU8bglic3uFblj/9pCoyApbl49mQsWbMFuw9lXauzPZ1DY4o9IAwz3OH4\nlN4pmrHieUsvhwECWJkfug4kYELPW4N1MQ+Bkx3zlkdm3Vve2Z5QyB0vZPU4WS/OwB92Tsfz8lbL\nhT2ZMnkDC1b6x5W6hIaU5H6YpumTf5B59qN4YirB0GtRaYwG8KHn8w4A5/SlIic7Zvm8aW408Zob\nzsfNT2zAfVdNxfX22i+3PLnBnV975f396Mjo+NZTG33bbn5iA1pmTcLMe1/y1bl83rSCtRAYhhna\nsPep/DjZGE5fC8DN3PCtdyJZP6a/53Qodm5nu3dtG2/5sO3Sa4hwTmm9K1sLxpW7Lj8Dal28sGLA\nd6+82Z69tquM97gvVLsREgkiWgBgAQCMHTtWWsa75osTTeys9eJktRRbV8aLN4NGtp4MwzhEeTYZ\nplIM1PM5WJkxsnN6z9XbucOyXfqaBdNb2d7qPb4xFUnOXZbtOVTHoGp/Ld8J4HjP5zH2Nh9CiOVC\niOlCiOmjRo2SVuRd8+WscY0A4K714mS1OJ+9OBk0XrwZNLL1ZBjGIcqzyTCVYqCez66s7utrHZx+\n0vtT7nNGObfsGG/5qPVEPWfUej9sT4fWHaynlHZVkmo3Ql4HcBIRjSeiOIA5AFb3pSJn7ZiYR4P/\nvhfbsHj2ZLzy3r7QdWXqk1qBZv/i2ZNx34ttPv1+XjOGYRjGIuq6L+XsM51zRllrxdkeVr6va7YU\nW3usoN65hePKyFQs0howzngWpV2VHpeqOjsGAIjoEgD3wkrRfVAIcWex8lGyY7zrw2RyBgwh3KyY\n4LoyKhHimuLLmFGJkIwXrh3Da8YMaSoeMczZMYNHFa6RUxXPZyn0lrFSrqBU2Tkdws5dju3eNFkv\nsrK91ZvOGlAI0EKeAtm9CmZ7yjJtynSPD+vsGAghngHwTDnq0jTFDdBxfqc8c2j1qr0v6fyOSfZ5\nttl/czAqwwwt2JirPFHWfRmoczqEnbtc22WTDbKyvdVb14esFt94ViEhsijw6MgwDMMwTEVgI4Rh\nGIZhmIrARgjDMAzDMBWBjRCGYRiGYSpC1WfHlAoR7QXwQcjuIwHsG8TmlBNue//YJ4S4qJIN6OXZ\ndBgK96pcDJdrGYzrGIrPZzV9f9XS1mppJ9DT1n49m4edEVIMIlorhJAvmTjE4bYfHgynezVcrmW4\nXEepVNN1V0tbq6WdQPnaytMxDMMwDMNUBDZCGIZhGIapCGyE+Fle6Qb0A2774cFwulfD5VqGy3WU\nSjVdd7W0tVraCZSprRwTwjAMwzBMRWBPCMMwDMMwFYGNEIZhGIZhKgIbIQzDMAzDVAQ2QhiGYRiG\nqQhshDAMwzAMUxHYCGEYhmEYpiKwEcIwDMMwTEVgI4RhGIZhmIrARgjDMAzDMBWBjRCGYRiGYSoC\nGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMR2AhhGIZhGKYisBHCMAzDMExFOOyMkIsuukgA4B/+\nCf5UHH42+afIT8Xh55N/Qn76RcWNECJ6kIj2ENGmkP2nEtErRJQlops8248noheI6C0i2kxEi6Kc\nb9++feVqOsOUFX42maEMP5/MQFBxIwTACgAXFdnfDmAhgCWB7TqAbwghTgPwSQBfJaLTBqSFDMMw\nDMOUnYobIUKIl2AZGmH79wghXgeQD2zfJYR4w/67A8DbAEYPZFsZhmEYhikfFTdCygERjQMwBcCr\nIfsXENFaIlq7d+/ewWwawxSFn01mKMPPJzPQVL0RQkR1AJ4EcIMQ4pCsjBBiuRBiuhBi+qhRowa3\ngQxTBH42maEMP5/MQFPVRggRxWAZII8JIZ6qdHsYhmEYholO1RohREQAfg7gbSHEPZVuD8MwDMMw\npaFVugFEtBLABQCOJKIdAL4PIAYAQoifEtExANYCaABgEtENAE4DMBnA1QA2ElGrXd23hRDPDPIl\nMAzDMAzTBypuhAgh5vay/28Axkh2vQyABqRRDMMwDMMMOFU7HcMwDMMwTHXDRgjDMAzDMBWBqDkB\nKgAAIABJREFUjRCGYRiGYSoCGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMR2AhhGIZhGKYisBHC\nMAzDMExFYCOEYRiGYZiKwEYIwzAMwzAVgY0QhmEYhmEqAhshDMMwDMNUBDZCGIZhGIapCGyEMAzD\nMAxTEdgIYRiGYRimIrARwjAMwzBMRWAjhGEYhmGYisBGCMMwDMMwFYGNEIZhGIZhKgIbIQzDMAzD\nVAQ2QhiGYRiGqQhshDAMwzAMUxHYCGEYhmEYpiKwEcIwDMMwTEVgI4RhGIZhmIrARgjDMAzDMBWB\njRCGYRiGYSoCGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMRKm6EENGDRLSHiDaF7D+ViF4hoiwR\n3RTYdxERbSGiNiL65uC0mGEYhmGYclBxIwTACgAXFdnfDmAhgCXejUSkAvgJgIsBnAZgLhGdNkBt\nZBiGYRimzFTcCBFCvATL0Ajbv0cI8TqAfGDX2QDahBDvCyFyAFYBuHTgWsowDMMwTDmpuBHSD0YD\n+NDzeYe9jWEYhmGYKqCajZDIENECIlpLRGv37t0bWk7XTXRk8tAN67cpBNJZ3f3bu88pm8vpPfv0\nnn0ME4Woz2Y14Dz/3v+HoVQfUzrD6flkhibVbITsBHC85/MYe1sBQojlQojpQojpo0aNklam6yZM\ns7CTM4SASlR4gGSTW5dpcofJRCLKs1kOBnpAl/3/mP34Pyh3fUzfGKznkzl8qWYj5HUAJxHReCKK\nA5gDYHVfK/N1eMK/T/EaHPY+RfFbIfs7c+jK6YgphLwpoKiEjkwehsGdJlNZBmNAlxnwzva+GD/F\n6htoTFOgM2t5ODuzOkxT9H4QwzB9Qqt0A4hoJYALABxJRDsAfB9ADACEED8lomMArAXQAMAkohsA\nnCaEOEREXwOwBoAK4EEhxOZytElRCdCtzsgxKmJC+PYJ+7PTPTXVxVGjqejWDSQUghCWYWKkYkhq\nCjRFQc4wYQqBVEJDOmcgFVMLjBmGKTfFDQQDtQkNXVkdNZoKTRvY9xLL+AG6df95Af+2RJH/i45M\nvuix/bkO0xTQdaPn/1tYnzWN/1cZZiCouBEihJjby/6/wZpqke17BsAzA9AmAJa3I5+3pmOEGSzT\nSx2mcMsZAujozqE2ruFP7+7F11e24qxxjVg2txm1cQ3JuMpGCVMUXTd7HbidwTdYttiA7sUxEAbD\nECn2uT91Odv6eh26boRuj8cr3l0yzLCjmqdjBoW4QjCENb0C9Bgojgsk2L07n03TxLee2oisboIA\nLFzZCkMI/I+Tj8LP5k1Dy6xJaKxNIGeYuPGXrfjyQ2uxvyvHrl+mgLDplLApFtnAfCCjY8HD63Dy\nrc9iwcPrQs9V7umOqOctd319nQYaTDjwlmHYCOkVw7YJHOOA7CBVktw50zTx7p4OHMjoAICWWZPw\n+OvbYQqBi04/GrUJDZ05Hc1jj0DL6s045TvP4vpH38CNf38KRtUnsHDlm0jn5W9izOFLmGEQHJAP\nZHRp2awpsGhVK155fz90U+CV9/cPSDuD7Sn3ecPqi2KYVDqoVWZwcOAtw7AREp2Ag0IIQCVCzuO5\nUBQFpxzdgFRchRZTcdzIJL5y/gTUxFVcfPqxyOUNLFrZigPpvK8jveXJDbj90kk4uiGBVFx1Oykn\nKM4JlDMCb3cc9Hr4oIueKUAh5APyolWt0mNrExpe3xaqB1gWZO0JO6/MaIhiSMjqK8XQkXlHgsZB\nKUT1ZIQZHGFtZJjDCZ7k9JAzBUwBX/yHRpY3JBiQCv8vF0MIvOyJ+1g6pxkjkxoaU3F06wYemj8d\nqqZgY8uF7px9Kq4imzdxx2Wn++pyg+JiKgxToCuro70rj1Rcc4Ne6+IaunUDKTuuxKlTJUIyrrqx\nAt264f6OKwRVUXxxA9LyMRXdeWNQAhaZcASAzqyORata8fq2dpw1rhGPffmcggE5zNDoyuo4a1xj\nnz0RsniU4PMgMxBk582aAiOTGpbPm+bW5zUkAPg8HN5rXj5vWkF9/TGwSh3wgwGxck9GYSyKaZoF\n1/LQ/Ol9ajPDDDd4ZLExYcV/KOSfatGDHhC733FiRGR85pSj8M6dF2P5vGloTMWRNT0xJeiZ0jEN\nAWG/4XbmdHzZ8ybY3p0DICwXuyGgEJCKaWiqi0OYAo11cSQ1paAd+zsy1vHpHG78ZSsWPLwOGd2A\n8LRZt40qw/ay7O/MIZ3X3fKdOR2GKaAohEzeQGdOl771ZXN6wbZgSqNhFHpvOAWyNHKSt31ngPfi\nfA56FRIKYemcZsyY0ARNIcyY0FT0fFGnDbzlZO2JS85bo6kF7Yvq4ZBdh+y8snsQtq2vlJKS7DW8\nnH6BYRgL9oTYeK0xrydEtT0hbkyIp2CYkJlzuGEKZHQDbXs6MPun/+16Rt7auh/3/3Grmx2Tsadp\nvG+Ci1a2Yvm8aVi0yvq94OF1WDqnGTsPpDF6ZMr97dR19xWT8fSbOzDn7LFYNudMLFy1Hi2zJuGV\n9/YhnTN8b2GLZ0/Grb/egt2Hsrj7islY3boTl08bg5tnnoK7n9uCzqyOm5/Y4Jb/0efPBABc/+gb\n7rZlc5sRU5WCbQ0JDV05HbUJDbm8gUOBN8Clc5rRWBu3ppkMAd0wIWIKOjI64gohFistUyj4lu54\nlQwhXI/OYKagDgSyQdoZkIP3NsyrEPQ+RCXqtEFCITw0fzqypnDPQZLzdutGQftkHpMwD0ewPtl9\nkN2DqN6Wh+ZPj+y1iFLONE2p14RhGIvq65EHAcdjYJoCOdMyNJwB0TFQTDtiVZOMk6rzWyHEFcKp\nxzT45u2njrU6XCdjJiXpcF/f1u52xLUJzT32xFH1vt9OXbc8uQEzTz8Wi1a1Ihm3jpt4VB0umzK6\n4I3y5ic24PoLJvqOu/mJDRhRE8dX/24ibn5ig6/8Nx5fXxDHslAS27JwZSuyhnDfNjO6KY1b6MoZ\naO/KQVEJqn1fTQHkTQEhrB/TFKHS+U5sTDqrFwQIC9P2Nkm+12oN/OvK6nir5UJsbLkQ7991CTa2\nXAgABW/XI5PaoMR/9IdiBlUUD4eM4H2QnSOqtyVq8GvUck6wsMwLE/T/sT+QORxhT0gvJBRCVjJd\n4MSIyAiWVj1/v76tHXVJzf27NqGhI1P4JnjWuEZ0ZXUs/MxE983VOTb429k38ag6t86zxjWiO2eg\noSYmNXAmHlVXcFwqoeKko+uk5Y9vTEXaVpfQ0DJrEk46qg6gwjiF17e1oz6p4eOunKWhYt/bdFZH\nTVzFgXQOj/33dsw5eywWrWrF0Q0J3HbpJDco0zAFOjM6/vLePpw7cRSSRNjfmcN3n96E3YeyWDqn\nGXUJDTGFkNENt37DFMgBiMNEtdnepbxJOwaL1yMxlAiLT4ni4ejPOaJ6W3ozVgCEBt3KyjmeTJkX\n5qDESzgyyV0yc3hRXb3xIOEVKwvGhDhv3qYhCrJjZCiqgqwp8P5dl2DD9y/EE9d9Ep12Cu9Z4xqR\nzhqojalYOtf/JrhsbjMUAq49bzxqExo2fP9C/PX2i1zDpNM2XLx1te3pdI2XpXObkdSU0NiBtj2d\nBcels0Zo+Q/b05G2deV0nNBYAwERWldXVkdTXRyAgEKE7pyBJ9Z+iM6sjpqY5np0Xnl/P777Pz+B\nbN7E9Y++gZNvtVKas7qJvzvlKJj29zQyFcO//O8z8NOrpuHI+gQAK44iqamup8XxSlWfH6S0AMqo\nwmSDSV/jU0qJozij5XlM+NYzOKPleek5YhG9LbJtxYJueyvn9Wh6Cctukr3wMMxwhs1uCU7gqBCi\nJybE8OuEAFZMSEIhnHzrs+6bTGc2j/pkDI1O7IGnT2nvymH8kXXI5nXMmNCExbMnQyHg4+4cRiYK\n3wSDc85L5zRj3QftmHP2WOzrzGDpnGa8sb0dMyY0uTEhS+c0I6EQ2j5OAwJY90F7wRvl4tmTsWTN\nFt9xi2dPxnee3ogJR9YWxhrMbUZCVTBjQlNBTEhwm0oEBcDB7jyI5HELNXbchzABEJBKaLj2vPFQ\niJCIKThuZBKPffkc9y1+wcPrpG+Xiue7MIXAQ3/Zivf3deGmmafgqNo42tM5ftMsA/2JmwBQ4AEo\nJT7ljJbn3b/fuX1maDlvtpnsHAqAVFzFfVdNRUNNDIe681Jvi2ybzIsStVzY9mIGC8McTpCbcnqY\nMH36dLF27dqC7bmc1XllzcKARpUIcVUpCIBM5wz3zfPk763BjAlNbhDpv//TFHz9P97E0rnNWPXq\ndiz7rzbXAGhMxaGbAnVJDemsjj+9uxfTxjVi0Ur/wL/q1e245w/vum2cMaEJ9101Fdc/+gaWz5vm\nBnJ626MbBmKqCgH4AjLD0nFTcRUftnfjnt+/g9XrPwIA3Pi5k1wPTFdWt4wDyfXndRN5j9vfSen1\n1u9MZzllurJ5nHf3i/j3uc2YdkKjrxP/0efPREwhLAykop5867PQPW+ImkJ4586L8YUHXvUZGKoC\n7OvMo2X1Zvd78Hb8zvdTn4zJHo2KuxCKPZthg7733nq9ILLtUbbJ0mKD93Fjy4UF2xwDQXaOk7+3\nJlI577YaTcWp33vO971HPXYgtkW9/7IXh5FJLdJ9rdbnkzns6dezydMxMiS31A1WlXhEtJiKjS0X\n4oF5U903nMbauJvlcuVZY31Boaaw3tyFAPZ15nDuxFFudozrml3ZipmnH+trw+vb2tFQE8MjXzob\nAKAqCm78ZSs+OpABQPjoQAa3/fZtpBIafvHyVpx867P4xctb0d6d8wfLdefddFwiwufu+aNrgADA\nsv9qQ21CwyOvbIMphJWuq1qL8qWzVoDdNx5fj31d/no/OpCxzmenB//i5a0FAXkKKfjZvGmYceKR\nBe7obzy+Hl05I1Iq6qHufIErO66pvriY4fKmWUoQZLnPEzVuohx4r6VbNyLHgZSSetvXFN2oU0Oy\nYGHZdtmUkePFZJjDierrkQcBb9at86cbJ+JZYTdITFGg5w03vgKwBr5RDQm3jBMA+oUH1vYqPOUE\njzqcNa4R2/enkYqrWPdBO6ad0IjbL52ErzzSkya7ePZkZHIGvnjeBHz17yYinTdQG7eCRX/yQhtW\nr/8I33h8PX74j5Px6R++gO3701IX8vb9aVxyxrEQArju0XW+N7uZk47GjBOPdLNoALiZNj/8x8nQ\nDYF7rmzGoe48Hv7LtoKplPuvnuYG1gavecwRNVhzw/mYeFQd2vZ0okZTpVM6v2ndCQCYdeZx+Orf\nTcTEo+rQnTPwt4PdbjDvljsu8gm4xRRCV1YPe9McspQSBPnQ/OkF6qphBN/OZc9h1CDPYnin7Irh\nvZaogalhqbdhBKeB+jvV1B9kwbgMc7jBRogEr05IWB8ukQdxWTx7srvfa5A4n53UVsDqNMMMgc6s\n7uvA775iMpY8vwV7O7LutMx9V0311XXzExtw/9XT0J03kDMIX33sTV/Mxg8unQQQoS6hYsP3L0Rt\n3AqK9U4FLZvbjJxuYuWr2zGrebQ0HiPM0zD6iBrfNMn986b6pnaAnmmiv/7gIry3t8s1jhZ+ZiLa\nu3JoWb3Z15Y6T7yMFYgr8Nym3Zh15nG46cJTcMuTPZomP/6nKZhzzlj84uWt+OJ5432DsSmGZuBm\nb5QSUyBTV5UNrLKMjaixD6VmrvRFnwSIFjvSH69Mf/VEGIbpP2U1QoioBsBYIcSWctY72Hgl2p2Y\nBhFIUPAZKvZIF4upyOQMjKiJoSam4sWbLkBdUgUgoCnkDqq3/3azr657//AOls1txsKAIfD0mzvw\nwLzpqImraNvTiSXPb8Hq9R9BU8hNvW2o8b/VO2m7X3lkHe66/AxfZ7pwZSvunzcNK17eisumjHEH\n74WfmYifXj0N9UkN2/encefv3naFzI4bmSyo3zEGZIbT7oMZtMyahIlH1aG9K4tM3vTHutjBteOa\n6jC2KYWGpIbv/sMnMHFULeafOx4r/rzVPb5tTydWvrod15w7Htc90uONWTL7TPz7PzWjM2Pglict\nb8yK+dMx9YRG1CWtti04f4I77eX73vryQFSYUoIgcxEH1qgCaIDcGOir+FkY16zoW6xBmFcmiodD\n5vmJ6nUKIywmhGEYOWWLCSGi/wWgFcBz9udmIlpdrvorgRA96qeyVXNVsgwUrwy7bgor88MuoykK\nYnYgZcusSTAFsPtQ1lfP7kNZqERomTUJW+6wytXEVDy3aTd2HujGVT97FTPvfcmN23BiIpzfXhzP\nSzEdj5mnH+sO3ropcM8f3sV1j6zD9v1pXLDkRTzd+pE7vdIZGGCcAbA7b2Dx7MkFacWaQu4KwV1Z\nozDWZVUrpoxtxLee2oiTb30WNz6+HlnDxP/59ATUJlRcNmWMe3zL6s24bMoY1MZVXx03PbEeCU3F\n2KYUXt/WjhXzp+O040bgK49Y8/1feWQdTGF5BLzbgtdSLSiKEjmmIGoMR5gYWKXkxR+aPz2yrLwX\n2X2IKkLWnxRdIJqAWdiigg7ljOlhmGqknIGpLQDOBnAAAIQQrQDGl7H+QcMJPlUUQt4UiClUMLdO\nSk+KrnucaWJfZ8aeihEYmYpBtSPmT77VGlRVBVgy+8xCTRDP4N2y2vKULJ3TjDWbduHuKyYXDDav\nvLcPS+c0u9uc34tnT8bB7lyojkc6a7jBm15e39aOsU0prLnhfMw68zh3W0NNDDd+7iTfuWtiKo6s\nS2DJmi2u4XTfVVNRG9ew0NMJH9+Ykp6nzlaADQbrpnOGzzgKM4Qcb4wzYEy1s2y8x+mmwM4Dadx/\ntTWg3n/1NOw8kO5V12Uo0q0b0u2yIMioA2up68l4UZSBiWfvq/HTV8VU2T2Iqt4aNYi3t6ki1glh\nDnfK6SfMCyEOkj9Yoir/o7xej7hiCZLFAncqOD0DWF6TMSNqYKIne4YAjEhqeOfOi9302CNSittZ\nHurO43u/2YzLpxznBmx2ZnS8u6cDnzimAfM+NQ71Add3TUzFeSeNQkIhqJriHrf7YAaaQlj52nYs\nndMMRfEHBS6ePRmAcMXJgq78d3d3omX1Ztx9xWQAwN6OLNJZHfPPHY+vffaknnTfvBXsectFp0JT\nCc7XnIyrvgDYsPM4QmkOTrCu83dwX0MgkNQJnK1Lqlgy+0xpkGsqpmLSMQ1up04ETDqmYcAG0IGk\nNqEVpCmHaWaUEsNRypTKgod7psMcT0wlyJnCp4ILSTtKCaaNMtUku39RVw0uRem1WrO3GKY/lPOJ\n30xE/wRAJaKTACwE8Jcy1l8RerJjei+rKQoyuuEaIAfSeYxMxaAphP0dWax8bTsunzYGS9ZscSXG\nV722Hc9s3IW9HVksnTMCv35zB57btBuLZ0/G/q4cbnpiA+67aiqab/+9ex5HT0AXgAay032tNWhq\n4ypmNY9GKq5CNwXuuvwMHN+YwoftadQlNBhCuN4Vb0CnE/TqeB/uu2oq6pMa9nf2CH4t/MxEV07d\nq+3R3pnzaXs4RsxPXmjD4tmTfYvhOfonXpxYEt0UoQG6L950gXsdtXEVP/jd29jbkcWS2ZOlnb9s\n+fSe+fnqMkRk15c1BV5+dy9mnHgkAGtA/s939+KzpxxV9hiOa1as9cVDxIroZkTFa9REXSDuF/On\nFyzGKDu2HMG0QYL3L2oQ79I5zZHP4Ux1Vlv2FsP0h3IaIV8HcCuALICVANYA+EEZ668IzgJ2cLMs\n/Km6gEc7xB7buvM6bv31Ruw+lMXi2ZMRV+NorIvj2vPGQyXCPVc2u16Fa8/r8TLEFMLVnxyH/3Hy\nUUioiuvRcNzCBcqkBIAsSXJhWi+FikJoqovjV+t2AAAumzIaREBTXRw1moqMbuCac8ej1qMe+e7u\nnqBXwFnfJYa2PZZnxOlovXLqAFxtj2AA7C1PbkDLrEloWb0ZdQnN9dQ41zj3nLF45f123/Xc+bu3\nYQprquqmJ9b79plC4FtPbfQFpjrtPGZEDf70zp5IK6k6mT3xgXtcBoSwN/Gvr2wtEHH76+0X9WvF\nVq/BAQDv33VJwRu/TH0UKC2DpLfsE1n2Tr6EANGBDqaN6l3qzWPk/b9mnRDmcKRsRogQIg3LCLmV\niFQAtUKITLnqH0y8su0C9uDuZMzY/btXadbZl9dN/OndvfjUxFG458pmvLu7E0+t24EvnjcBRASV\nyJet4V2HpmejZTCk4paB8tQbO/CFc07wZYzc+bu3cc+VzTj51mex5Y6LcUbL866K6Mm3PmsFwf72\nLQBAy2/fcvftaO/Gkue34N+ubMYp37Hc+2tuON9naAA9UybB2JGwWBJZAOxJR9ehZdYkPPyXbZh5\n+rFoecRSMV3+0vu48uyxvutxgnWdNjj7OjJ5ZHVr3RjvwHPTE+vRMmsS9nZk0banE/NXrMWv/3mG\nr/MfTmJlQLQ38bPGNaJbN0oayLyy6DKDI2waI66QO9eq2hlkpeh1eImavVNqOq7X2/LYl8+Bni+M\nrQkaXe/cPjOyMRXVqFE1BUbI6s2sE8Ic7pQzO+Y/iKiBiGoBbATwFhHdXK76BxOvKmrCDk51DQW7\nnyCJUIimKvj0SaPw0J+3uoGol00Zg5q4dZsNYaXqmqYoqEMl6zwOhm4irhCe27QbOz7uxsx7X8KJ\n334GM+99CbsPZd3BwbsQnZM2K8uY6crqrrfjw/a0++b2kxfaCgJf775iMn7yQpsb0+EQ/OzULQuA\nfXd3J2be+xKW/Vdbj4ppXMPnzxqLhKb4gnAVAD/6vBWs+8zGXWhZvRk7P+7Gw3/ZhlH1iVAht8Wz\nJ+O+F9swY0ITRo9MoW1PB/Z35lAblwdoOveh2pAFKxZT3CxFQdRLfwJY+6PXETV7JyyjJ4xgJsw1\nK9b6FrrTYmrRdNxi6rSybVpMLWgDAGTz0T1THJjKHG6U87XwNCHEISL6AoBnAXwTwDoAi8t4jgHl\nQEbHzgNpjB6ZwqJVrVg250wIkLvNUSktiDOA9dblaGDMPWcsvvqZiUjnDADCVe10DI14rMfTAgAg\ny9tiuFM+gC6sYMqlc5sRDywUt3ROM/Z2ZHwL0S2d04z39nZIp2+seWmBZzbuwowJTRiZirkCZc9s\n3IWJo2p9QbEr/rzVnZrxxo6s2bSrwAXtrPciE1UDAqv75nQ0JDXENcX3BpiKq8jmzYJt1543PvSN\nP53TcUQqjnuubEZnRscbH7Rj/oq1mDGhCQ9cMz10fr4a3zZlgakbWy4Mdf1HfUM/kPGL4fUngLU/\nKqph8RUPzZ9esDZLcFtUomqtRNUJyZqi4L7IPC0AoFE03ZKlc5rRmKq2yUKG6R9lW8COiDYDaAbw\nHwB+LIT4IxGtF0KcWZYTlImwRZg6MnkseHgd7r96Gr7yiLWwlLNQl7PNUSmVLTp1RsvzBQvMOYZJ\nQ1KDplgLwMUUcv/2DrhdWQOaYi38dqg7D00haAqBYK0R4y3vLEjnXSjO2VajqTBME7lA553WTTTU\nxNCR0RFXCTFFQTpvuLEaCgE1MQ2ZvIH2dM4NJl34mYm45tzxqE9amTx1cQ2dOR0NNTHs78wiFdeQ\n0BR0ZnU0JK36H/rLVnfBPmeV3sumjMHoI5IgooIB9f27LgldpM40Bdq7ClfDbayN49TvPoctd1yM\nE7/9TMFxAKDnjYJBTIupvtV3PVTcOunt2QzGasju2VstFwLo+wJs/dnWn3OUIp8etX1RFs6LsrDc\n+3ddUvAs1WgqTNOMtIBdTVyNtAggL2DHVCn9ejbL6Qm5H8A2AOsBvEREJwA4VMb6BxTnDcib7hnc\n5qiUevHGGXjL1NpaGE4wpG4arvpqMN0XAOKqPe1jCqgKIZWwVthViCB38lpvWEFIAXK6o21iDVBa\nTIVqTykpBKRzOkam4q60vEoEQwiArCmjo2rjblzGRwe60ZnJoy6hQlEIikpQyJpS6soaaKpL+AZD\nZy0XJ9g2FVMx8/Rj8fSbOzDvU+OgEBW8fe4+mJF6OzoyOgjAqte2+2JIVr22HfPPHR+uhZIzIIQo\ntZMfspSimBpGuRVOo56jr/EV/YkxcdjYcmGv1xslHVfPG5GuIywYOqoyazXHLDFMXylnYOoyAMs8\nmz4gor8rV/0DjdOpe+XIg9scldJgx+90ct4y3gXsahMa9nVkoSWtKRlv4Cvg1xxR7Lc407SCYjU7\nA6ZXAmUUwKfk6qUmprn7drR3QVEUfxrtnGaMb6wBESzBNY/mCWBNExEBxzQkrDVgbr/I56mJe6Y8\nhACOG5nE1z57EjI5A4YQeOSLZ/s9OzEVP79mOgwhCrw9NZqKL3xyLDRFBRFw7Igk/vmCiTDMnumb\njS0XuuW9i9U98qWzXU0TZ4CpRp0Qr2JqscGylHRQB29gapj2SF/pj9y5bOAuhf6kEEc1iKK0+fVt\n7ZF1SzhFlzkcKWdg6ggiuoeI1to/PwJQW676BxqnU3fiKmZMaEImp/u2OSqlsmBAr5Lp4tmTXQ0l\np2NZtKoVeVNA9RgLXuMjbwq07elwg9zau3J4+d29OJDRYRqmLwCuPZ3D3o4MDmSseWhv+Z0fZ/CL\nl7f699nl29M56IY13XLjL1ux4OF1SMY05HRDqtzoykl359HemfO1YU9HFhnddOv17juY0fHSO3vw\ni5e3uvtu/GUr2tM5xBQqKN/elUO33VbvNbbt6UBGN2CY1kq+jvx6e3cO3XrPPfGexzlet6dxhoMs\ndimKqVFRFAWneQwQh74GtcqIGqwaVVI9Kv0JLo16HVHb7I216U2ZtVpjlhimP5TztfBBAB0APm//\nHALwizLWP+CMTGqYeFQ9GlNxLJ83DU31Sd+2804ahcbaeEHHryiWamljbRzTxzWiLqEBEG7HElPI\n9Yj4uhj7Q0Y30JXNY/TIFH42b5prCMw48UjXIAgaCaPqk759Tvlbntzg6nlkJeU1VcXNT2zA9RdM\n9O3z4rTVOd83Hl+PrpzfULnxl+txIJ136w22b+rYRp+uyPUXTMTNT2zwaT14y3dk9IKiK304AAAg\nAElEQVRtJ46qhy4rv7LVXYlYN4XvPF7Zdtl5wgb0oUx/Ml4cgsd360bBgNnfwTu4LaohEVVSPep5\noxoNUa836noyYYYFIF+Tpz9GJMMMF8r51J8ohLjC8/k2Iiq+etMQRbZYnaMF4sRROGm2zj6yX7KT\nMdUNgLzvqqnQFIKCHo8IAYD91u9k00w7oREja+K4dsVat4MKxpd4cbaFxaO4KbGefd7yThnvPi/B\nVNYwLZDjG1Mgkkut1yU1TEz06Ip42xRVa6Qu2dP+YuVl+iW9xe9UE7LpmFKQZXJElSKPuty9bFtY\nto0sGDSKpHrU80bNeol6vVFjcmRtLtWz0XeZOYapTsrpCekmovOcD0R0LoDuMtY/aMjWhSks1POn\nM+3x0QFrKuRgVocQVoBpXCHsONjtulrTOQMmeoLWHG9H3hS+QdIbXxIcdLydoCwexU2J9ezzlg/q\ni3Rl9aJu4bAA0A/b06Eu6M6M7tMV8bYpqtZIZ0Z3r6lYeZl+Sdhx1agTUqr3RuYZOK3leZ9GBlD4\nJh71jb8UIbHgOWTeh3g/tEiieiT6u2JulFWMixHVk1V9EUsM0z/K+cxfD+AnRLSNiD4A8GMA1/V2\nEBE9SER7iGhTyH4iomVE1EZEG4hoqmff/yWizUS0iYhWElFSVkd/CNojjoGieII7tJiK5fOmYfQR\nSVx73niMSPQEfiqKglH1Saz7oN3tgB1RsqC3w2sQeGNQnJgTr5GwtyMjjUe5+4rJrp5HQlJeNwyf\nyJdTLugWvmbFWvd8P/r8maiNq7423HPlmRiZirn1Btv3xvYeXZEZE5pw34vWOjKxEJd1fVIr2Pbe\n3g5osvJzmzEyFXO3ec/jXVV4uMy5hxkRwYHtQEaPHKsQVQAt6uDdn6kXAlx5f2fFYxmlnDeK0RD1\nesOQTbHIiDrtU60xSwzTH8qmE+JWSNQAAEKISOm5RHQ+gE4ADwshTpfsvwTWujSXADgHwFIhxDlE\nNBrAy7BE0rqJ6HEAzwghVhQ7X1iuey5ndQBZU/gyLXJ5A3mvPkCsZxXZ4D5HdMu0F5PzumNPa3ne\nJ6s+4VvP+HRF7p83DZmcgRFJDTlTuOdJKARFVXxZHk77nGkfb7tScRXpXGCfJ9MkTF8kphBimoJ0\nzvBdo7PybyKmuKJrzrXmdRP5wP1ysmNigXPXJjQ3OyZYviamIqebodkxHTkdCgj1NZaYWipWqIUi\ny47RAvctk9PRVJ8cFjohYToTj335HOmKu7JMjmC5tjsujqR9EabhEUXXA0BBu8M0PGTbyq0nogQ0\neErVO7lmxdqiGiNh3wnrhDDDiMrqhBDRjSHbAQBCiHuKHS+EeImIxhUpciksA0UA+G8iGklEx9r7\nNAA1RJQHkALwUWmt70EXPbobTvyHaYpCV5HHZnP6FK/MuyGEm9LqJTglEvR2xBWCltCgKgpgGj2p\nurBEqAD/ejUqWZojwS+QiGAKa209xbSWPVdUQmenjpxm4rbfvoWJo2oLVsN11Fd3H8piRSCdUaZH\nAsDO9rG0Q8iwdEmm3P576KbAivnTMfWExp57aViGmUO9psAwLLeSolj3LebxUpDS8wzldROLVrXi\notOPxqXNo6GohG69pzwRQVHI7bzrkzF0ZPK4dsVrw1YnJCy2Jmqsgqxc2LozUReDixK3Uu7VbKOe\nFwDSuokD6TxScWt16OMaEtLF/qLWF1xduJTvhHVCGMaiHE98vf1boNAiKoebZTSADz2fdwAYLYRY\nS0RLAGyHFXvyvBCiMOcwIhpZnVR3zvImCGENjt15a6ANam2E4Qp/BXCmApbOaUaNPX1TE1Nx3kmj\nfJ6N9nShOuizaz/Ec5t2u+qjc84ei9qE6luga+mcZqx6bburVLp0bjOSmoID6TzqkzHUxFXUJzXc\ncdnpUBXC/3mopwP9yvnj0ZCMuav7dtuLxjl133fVVOQCb4dOWy6fNgZLfm0ZL0vnNmPhZyZi8pgR\nOO24EfjKI/72Nabi0DR7HR3DxH6JEmrwWueeMxZ1CQ0r5k/HwYzua5e3/LK5U9BUG3eNt1RMlepo\npELW9xjqRF3ALuogH7bcfX/0Nfp6LaUgW3AuSNYsFKp767aZ6MzqvtWYi3lRZPRlsb+w74R1QhjG\not8xIUKI24QQtwE4EdZUifN5GYBx/a0/DCI6ApaXZDyA4wDUEtFVIWUXOPole/fuDa0zpSluRkaB\nmqhbWYS2ef5WFAVZU6AxFUfGENh5II339nbhjJbncfXPX4MQQGfOmhuWzR0vWtWKS5tH45X39/vS\nbw0TBeVmnn6sL41VgPCtpzbilO88i+sffQM7P85gxZ+3Ip3TcXRDAgCwYv5012Bw5qY7szpG1Sfc\nug6k8wXtctriS/dd2Yr5547HVHt9nWLpsem8EelaF65sxZ6OLHIh9+Z/TxmDV97fj4Ur30Tas3aH\nqipoCqRTN9XGoapDK/QvyrMpE1grNR1URpS00bDzVwLZgnNAtBRdUwA3P7Gh1xRd2SJ0Mk0VWexI\nKd9JWNkabWgZyVH7TobpK+X0/U0WQhxwPgghPiaiKWWodyeA4z2fx9jbPgdgqxBiLwAQ0VMAPgXg\n0WAFQojlAJYD1rxmbyf02hzONIGTtuudaXH2eaccDGGJjqXiMcy89yV3CmDid54FYE2tbLnDWtsk\nmIYa5qJtqIm5fzvpqM5x3nJO2q1bty0dD8Ad2FtmTcLCla246/Iz8HTrR5h6QqO7Vo5T7uYnrHLO\nInbHN6ak7XLa4k33LZZWW5vQoNtLmpdyrb2lAjt/p+JWrEg6Z0g78zKHP5WFKM+mpinQdQBmj5EV\npqI6UHinunTdlE5jDDQy70HUFN1UotCACVu9VxZ/E6wv6mJ/znei2NOsDoqiuHpE3rgmx1M4VCi1\n72SYUinnE6/Y3gkAABE1ojxGzmoA8+wsmU8COCiE2AVrGuaTRJQiK3jgswDeLsP5fJNIzsq3boxL\noO9V0BMTYpomEgphVH2yIPvEIZge601DDUtfPdSd9x3rHBcs59Qr+wz4B/axTSnMmNDkWysnWM7h\nw/a0tF1OW4LX48jcB8t3ZnW0p3MwTTM0hVZ2rW17OkPvjTcNefv+tKsYa5pmoTJrOucaQdWGpimo\nT8agkBX7omlKgYfC8boFl6zvL0GDQ3buwUDmPZAZErKU36iZNVGzaIDoHidFUaTfn2wbwxxulPOp\n/xGAV4joB0T0AwB/AfDD3g4iopUAXgFwChHtIKIvEdF1ROSk9z4D4H0AbQAeAPDPACCEeBXArwC8\nAWCjfS3Ly3EhXrEyx35wDA0nNdcbI+Js80693HNlM5bPm4aGpIYdB7vdziuYHutNQ+3K5qUu2t+0\n7sSMCU2+9FtVQUG5NZt2+dJY12za5bsu78C+91AWLbMmFdXtcOoamYoVtMtpS/B6Vvx5K974oF3u\nlhbCVXJ9+s2dka717ism4ycvtEE3hbR8zNOee37/jjuNEza1VY2KqWHIBrGoUukOUVVYOzJ5mEKg\nI5OHrpsF5x4MvN6fYtomspTfhEJYOrfvxkVUg0Pe7oontjDMkKWsKbpEdBqAz9gf/0sI8VbZKi8T\nUVJ0nTRXb7pn3E45dfaFpcLmjMIUXW9qnyw91rssuCzVNHhu5zy6KVCXLEwddtJkD2V1LFwpDyYl\nAOfe/QJWXDsdpx07wh/AObcZdXHNbaemEOKago6MjoZkDF05qy2dWQM53UBjbQJtezpx4qhanPrd\n53zZMU771n3Qjk+fdBRO+U5PinLL/zoNl00ZjYaamPRaP2zvxr1/eAe7D2Xx06umQlUIuinQUBPD\noe48NIWQ1FS8t68LP3mhDavXf+ROdxFButT9O3deXHUpuqUgS+ctlgIbXO4+anqqLLU17Bzl2uZM\nsfUnpbZS24L3qw9TL8Pi+WSGJf16Nsvq/xNCvCWE+LH9M+QMkKh4V7lNKNZ0jDcN19rXU94x5BTV\nCmINDnLe6RhTCOzvyLjTA3GF8NhrH0DVVEy5/fcAAR8dyAAA9nfm8P+e3IgJ33oGtQkN33h8PT46\nkAEphKxuuvEpQgAvt+1FbULDybc+i1Rcw6SW53FEKo6WWZOw5Y6Lcd9VU3HcyCS+eN4ELFmzBceM\nqAEA3P/HrRiR9L817vw4DUMIfOGBVyEE8MUVa9G2pwvNt/8eX/jZqzBMgQ/bu3HdI+tw1p3/iRO/\n/Qxm3vsSdnzc7b6Vzl+xFpNvex5feOBVfHQgg/v/uLVAybXlt29ZdT7wKgAgGdfcN2sC4cj6BO65\nshkPXDMd9ckYkpoK1b6Xjhrt1Q++hpn3vuTGr0Sdvhmu1GhqSUqeXsJEtWSUOyYkiqKoacpjUaJ6\nKYLTVLIg1HIgEyALtts0zaqdGmSYcsKTkBIco4KIoNvGRnAaxnGxCvQYJsXSeJ19cYXQVJ/E8nnT\nsLcjg1O+twbPbdrtDtDpnIGW1ZvxyCvbkIqr2NuRhaYQOjM6dh/KYua9L+HEbz+DKT/4vbu41uTb\nnsf9f9xaINu+4+Nut3zz7b+3snEgsPtQFm17Ot0pjY+7c8jkDeTzBr7yyDqMHpmCSnCni4JTLq+8\ntw+1cRU/+vyZvsFuZCpW4PL2TqsElVyLZQUoCqEuYRkldQkNikKS6QcVy+ZOkZ6vWrIPoqLrZsGU\niGybpvUEPJY6dVDqVE65KMX4OZDt+0J+sjgRWfxMX1fbdQhOAYZhmoXfH8McbpRdMXWoU6piqqPy\nGZyiScVVdOcMKIHplaCSZ0IhXLNirU/3YkRC8yktuvof54xFXVxDzjDRUBNDJm/AsOvK5w0cDLid\nl85pRkIjXPfom+5ieJOOG+lqicQ1pUBXwxQmFMVKX3WmdgrUV4sprHqUWbP5gMppTIVumAUqssHp\nq1Jd04ZhIu2ZakrFVDfV1jQF0nZ7glNWAEo5z5B1dzvZKFEVQIHC6w47vjfFz1LUTGXbdCFgCBQt\n53jwelN5fWDeNHy5zO0biKkc7xSXphDearkw8vFOEKuEIft8Moc9lVVMHe4oBHgdHM7quUQEAb+a\nKClAzlbydIw7Z12ZVFzFteeNdzuf+6+e5sZLpGIqrjl3PDozecRrFFeXxDCtukxTIGcHvAbT/7SA\n8JlzHpUIcVUpSAF8b18XRqYUXPWzQjXR+6+ehsm3Pe/bdt9VU7Hg0XX44T9Oxv/71QbXYLpi2vFI\nxAhf/4+eDnzZ3GbEVAUP/2UbLpsyBrc8uaFg3zUBgbWgdofXqEjnDCRVRSrg5hzneEwAbxqpAtMU\n2N+V9cXELJvbjKbaRNUFCoZNfQQH0KVzmqXLwZumKU0RBdDryrqy80QVMNNiKk6LYFzIVtGVpd6m\n+hB0W0yYzFknqa/CaTKuWeEfpIvdw/Dvjx3UzOEDP+294PSf5AZg+Pfrwm+YANZNDZuiyZkC3brp\nEwfb35XDQ3/einPvfgETv/MszmixYikIhNNbngcRYcHD6/C3jgwIwPb9acs1/L01rhv56p+/hv2d\nOez8OINbf70JiZiKU7/3HG799SbsaO/GgofX4dTvPYeW1ZuR1BQsmX1mwTRGbcI/VeFdYG/0ETU+\nEbGbnliPzozhcz0vXNmKA+k8Zp5+LG55coN0X9BV7RUYswyHHL780FqcfOuz+PJDa9Gty0XNvMfJ\nSOesoNxgG9K56owJCU4HhGX/hCGLSQgiyz6JuviaDFlcjqy+qKm36axRksx7b8JksoUBtZgaabHA\nsG2yKUDZucO+P9nCggwznGFPiAfn398RH9vR3oWn3/wI888d31PI8xKtEsEUwidgRrDXoXE+22ae\noy+iKYSauOq+fW3fn0YqruLzZ43FK++3+9ZyOdidw1njGtGdM9AyaxKWrNmCez7fjLFNcm2PsU0p\n3LCqFavXf4Qb//5knDWu0Q3YbJk1CROPqkNHJo/OrI4n1+1wt7Xt6cTTb+7AvE+N89Xp6HacNa4R\n6azhnscrIhZsg7NN1j5Zee9aGem8gYUr34y0Hkdva2zI3ppf39buW7+mWpB5BcLuSxiyN/GMbk33\nAZbXzTRN6UJ3wXpl7Qk7R5Q1b4BosvQKAYtnT8bNT/R42KISJkwWPEdUQTQAGBFos5BcR42mQlEp\nklAarx3DHI6wJ8SDY0s4UyljGmtx7XnjEVepICDV8X6Ywi9gFnyPcfY5ga3duglh9pRrqosjGbPW\ndVk+bxq23HEx7rr8DCRUBU+u24Glc5rxq3UfYua9L2H3oSy6cjrSIZkf2/en8czGXW6Q6DI7SPSZ\njbvQsnoz/nYwA9008eS6Hbhsyhi0rN6MU77zLFpWb8acs8eCUKg98sp7+1yDyDmPE/j6YXu6oA0f\ntqfd/bJ9wW1eF3gqXqhqGSZq1pvrXPbW7DWmqoliA6gX53PwGZS9dZsA0jkD1z/6Bk6+1ZL1l5WT\nnUfWnjCPSRRdDxky74hGlv7HXZef4f6fRKU/wmRhhlNwUs/5HNRuiSqUdjhkbzFMEDZCJHhTdAHL\n0FBUgkqE/Z1Za2rju8/hSw+tRUY3XG+HaQh05w18yZ5OWPDwOnzcncOh7jxuWNWK7fu7oNky7wQg\nndWxvzMHIsKh7jyIrO2NtXE01sVx7Xnjse6Ddtzxu7ddo0AIgT+9u7ego/y3K5txVH3C7eyTmoLu\nnI77rppqpd7Om4ZjGhJIxjTMPWcsRh+RdAeH+21RtbrAgNGYiuMTx45AMqZg8ZotvuyTJbPPRF1S\n9bVh2dxmjEzF3GwY2b6gkeNdUC6dKzQcnFWGix0nw3lr9h63ePZkVFk4CIDS1yk5GGEtlXzI9ESw\nnOw8UQ0TGWECYTJkqbcpTUFTXRxElgEfhgB6NS7CztHQR8MpDFna9HDL3mKYvsLZMTZh2TF63vAL\nJgVEwZzg0O3707j3D+9gwpG1mH/ueNQlNOw+lEFNXPVlqPzo82ciphAWrmrF0Q0J3PC5kzG2KYXd\nBzO469m/utMnMyY04d45zTiQzrtTJms27cK8T41DzjCRiqnY15nD8Y0pfNiexshUDElNQUxTkM4Z\niCuEWCDbJSzbJ50z3EE9nTdQE1N8mUDe7BhvtktWN2Ga1rocTh2mKdCtG9L6hRChWS5AT0zIwpVv\neoJJp+CImpgv2yN4nAxdN9GZ03Egnffdo7q4VnXZB7puFgTnhmVxyFaQ3dhyYcG29++6pCAjRVYu\nLPtEFuRZ7sya4LawLBoBFGSkyeqTZWXJsoZk5aLefwCIxwunVHTdLKgTGB7ZW8xhD2fHDCZO/Ic3\n4FTPGxiZiuGeK5td5U8QUJfUUBNTfXPEed3EiFQM9101FfXJGLpzBoQQ+PQPX/B1rq9va8eRdQmc\n8y//6W7TFMLXPnsSvvDAq7jr8jNwwZIX3X0zJjThgWumI6koqE/2dGRuxojduXljIpxydZ5tPZkm\niu94X132vlRcKThOUcg9V2H9hHq1sF4HRSE01cbxwDXTe4ydmBqoM5pEuKYpqIMGVSH3rXkoLhAW\nBa/2h/McuWu3BDJeamOF8QdRl5IPy46RIVuoLeqxfUXWZiBaD+iu3xJ4jmQLA8rKye5/WHCvDFmd\nAEp+rhlmuMFGiAxPr5Y1BeK9+PBPa3neTQFNxTXopoCSN3yLhznprropkNdNNN/+e9dw6M6bBZ1r\nWAzFoe58aJBnKl79rlxvyq3XOOoLYR1/NRJ1EOvI5KUDdVSjoSFiyqqiKKiP95w7l9NLSnf1/m84\nHpPeKMXQCbYvjKjPSCkGDMMw0WEjREZghorgV1F1NqpEyJkC79x5sW/awzFaZkxo8mkAxFUFmkLY\n05Gx4ySmuNMgy+ZOCUxDWLoawTqefnNnqIGSzhn9HriZ6qY/3gxAHiQm0xjpz2Ab1NKIiqJE9wgN\nhjEwnIxchqkUPGLZmOjpgCnQf+kC0AK6H4pipefKFkMjAKoWEAqzY0kSCmFMY6015WBPNQAomIZQ\nCPjjlj346VXTUF+j4VB3Hr9p3Yk1m3dj2VzLoPEaKF6Dhjm86Y8AV5jB0Z/Btmcaz/KY9NebwdMa\nDDN8YCPERoEV3GaYAkQEwxRI26vR5kIEhBRbJ8RLzA4OrHUybEzR0wl7gimDHovgNIRpCkwf14Tr\nHl3nBrBePWMcrph6vDvtIoudYA5visYqSBRTy2VwqKoCwyg8ryyAOIqRxFMbDHN4wEaIjaIoiMN0\nZ2JUhZCMqW7H6q6i6+kXDXuVXdPoMTQ0KEja+/vzViYL0oSwgl0dyhU7wQwfNE2JHGwJlM+D4Bob\nnvOqqlJghBQzkqLEcDAMM7zg0ctG1nlDWN6RhK3tAb1HfKxnWmbg3tjKGaTJHD5UKlZBVZWi2U9O\n2zigk2EYBx7ZPMg673pP5xjcVs8dJ8OUDAd0MgzjwKMowzAMwzAVgY0QhmEYhmEqAhshDMMwDMNU\nBDZCGIZhGIapCGyEMAzDMAxTEdgIYRiGYRimInCKLsMwDMMMIOO++bvIZbf96z8MYEuGHuwJYRiG\nYRimIrARwjAMwzBMRWAjhGEYhmGYisBGCMMwDMMwFYGNEIZhGIZhKgJnxzAMwzBMCZSS7cIUh40Q\nhmEY5rCGjYrKUfHpGCJ6kIj2ENGmkP1ERMuIqI2INhDRVM++kUT0KyL6KxG9TUQzBq/lDMMwDMP0\nh4obIQBWALioyP6LAZxk/ywAcJ9n31IAzwkhTgVwJoC3B6iNDMMwDMOUmYpPxwghXiKicUWKXArg\nYSGEAPDftvfjWABpAOcDmG/XkwOQG9jWMgzDMAxTLoaCJ6Q3RgP40PN5h71tPIC9AH5BRG8S0c+I\nqFZWAREtIKK1RLR27969A99ihokIP5vMUIafT2agqQYjJAwNwFQA9wkhpgDoAvBNWUEhxHIhxHQh\nxPRRo0YNZhsZpij8bDJDGX4+mYGmGoyQnQCO93weY2/bAWCHEOJVe/uvYBklDMMwDMNUARWPCYnA\nagBfI6JVAM4BcFAIsQsAiOhDIjpFCLEFwGcBvFXBdjIMwzBMvyg1XbjaV92tuBFCRCsBXADgSCLa\nAeD7AGIAIIT4KYBnAFwCoA1WMOq1nsO/DuAxIooDeD+wj2EYhmGYIUzFjRAhxNxe9gsAXw3Z1wpg\n+kC0i2EYhmGYgaUaYkIYhmEYhhmGsBHCMAzDMExFYCOEYRiGYZiKwEYIwzAMwzAVgY0QhmEYhmEq\nAhshDMMwDMNUhIqn6DIMwzBMuSlV9IupDOwJYRiGYRimIrARwjAMwzBMReDpGIZhGIapUkqZdhqK\n68ywJ4RhGIZhmIrARgjDMAzDMBWBjRCGYRiGYSoCx4QwDMMwFaHa4xmY/sOeEIZhGIZhKgJ7QhiG\nYZghD4uPDU/YE8IwDMMwTEVgTwjDMAxTFthbMbQp9fsZjDgc9oQwDMMwDFMRSAhR6TYMKkS0F8AH\nIbuPBLBvEJtTTrjt/WOfEOKiSjagl2fTYSjcq3IxXK5lMK5jKD6f1fT9VUtbq6WdQE9b+/VsHnZG\nSDGIaK0QYnql29EXuO2HB8PpXg2Xaxku11Eq1XTd1dLWamknUL628nQMwzAMwzAVgY0QhmEYhmEq\nAhshfpZXugH9gNt+eDCc7tVwuZbhch2lUk3XXS1trZZ2AmVqK8eEMAzDMAxTEdgTwjAMwzBMRWAj\nhGEYhmGYijCsjBAiuoiIthBRGxF9U7KfiGiZvX8DEU3t7VgiaiSi3xPRu/bvIzz7vmWX30JEM6ul\n7UT090S0jog22r8/Uy1t9+wfS0SdRHRTf9peTfR2n4cyRPQgEe0hok2ebUW/46EIER1PRC8Q0VtE\ntJmIFtnbq+5awpB9V4H90v9nIjqFiFo9P4eI6Iah2FZ73/+1v8NNRLSSiJJDtJ2L7DZuHuj7GbGt\npxLRK0SUDfa/feqjhBDD4geACuA9ABMAxAGsB3BaoMwlAJ4FQAA+CeDV3o4F8EMA37T//iaAu+2/\nT7PLJQCMt49Xq6TtUwAcZ/99OoCd1XLfPXX+CsATAG6q9LM3VJ7vofwD4HwAUwFs8mwr+h0PxR8A\nxwKYav9dD+Aduy+oumsp5bsK7Jf+PwfKqAD+BuCEodhWAKMBbAVQY39+HMD8IdjO0wFsApCCtczK\nHwBMrPA9PQrAWQDu9Pa/fe2jhpMn5GwAbUKI94UQOQCrAFwaKHMpgIeFxX8DGElEx/Zy7KUAHrL/\nfgjAZZ7tq4QQWSHEVgBtdj1Dvu1CiDeFEB/Z2zcDqCGiRDW0HQCI6DJYHcjmPra5Golyn4csQoiX\nALQHNod+x0MVIcQuIcQb9t8dAN6GNaBV3bWEEfJdeQn7f/byWQDvCSF6UwDuF/1sqwar79NgDfIf\nhVVSwXZ+ApZBkhZC6AD+CODygWpnlLYKIfYIIV4HkA/s6lMfNZyMkNEAPvR83mFvi1Km2LFHCyF2\n2X//DcDRJZxvqLbdyxUA3hBCZPvW9MFtOxHVAbgFwG19bG+1Us7nbagQ5fkcshDROFhexVdR5ddS\nIlGexTkAVg5ai8KRtlUIsRPAEgDbAewCcFAI8XwF2ucQdk83Afg0ETURUQqWx+T4CrQvCn3qo4aT\nETLgCMvnVJU5zbK2E9EkAHcD+EpFGhWRQNtbAPybEKKzci1iyk21/W/ZxvCTAG4QQhzy7qu2ayk3\nRBQHMAvWdOmQxI7ZuRTWVPpxAGqJ6KrKtqoQIcTbsPro5wE8B6AVgFHRRpWZ4WSE7ITfQhxjb4tS\nptixux33nf17TwnnG6ptBxGNAfBrAPOEEO/1sd2VaPs5AH5IRNsA3ADg20T0tX60v1oo5/M2VAh9\nPocyRBSDZYA8JoR4yt5cldfSR3p7Fi+G5V3dPaitkhPW1s8B2CqE2CuEyAN4CsCnKtA+h9B7KoT4\nuRBimhDifAAfw4pDGor0qY8aTkbI6wBOIqLxtiU+B8DqQJnVAObZkcifhOWC29XLsasBXGP/fQ2A\n33i2zyGiBBGNB3ASgNeqoe1ENBLA72AF0v25j22uSNuFEJ8WQowTQowDcC+Af3x5wEIAAAWQSURB\nVBFC/Lif11ANRLnP1UbY/9aQhYgIwM8BvC2EuMezq+qupR+E/T87zMXQmIoBwtu6HcAniShlf6ef\nhRXfM9TaCSI6yv49FlY8yH9UrplF6Vsf1VvkajX9wJovewdWhO6t9rbrAFxn/00AfmLv3whgerFj\n7e1NAP4TwLuwIpMbPftutctvAXBxtbQdwHcAdMFy7Tk/R1VD2wPnbcFhkh1T7F5Vww+sQWkXrGC2\nHQC+FOU7Hmo/AM6DNdWywfO/c0k1XkuJ31XU/+daAPsBjKiCtt4G4K+w4i4eAZAYou38E4C3YGWb\nfHYI3NNj7O2HAByw/26w95XcR7FsO8MwDMMwFWE4TccwDMMwDFNFsBHCMAzDMExFYCOEYRiGYZiK\nwEYIwzAMwzAVgY0QhmEYhmEqAhshQxQiGhe2imE1QETziehw0O9gSqDan2vm8IGIWoKrxDLlh40Q\npgB7QSeGqQr4eWWY6oWNkKGNRkSPEdHbRPQrW93vs0T0JhFtJKIHi61+S0T/SkRv0f9v735CtKrC\nOI5/f0pgaSnZJiKxbEgTUxuRRNJy4UZblEoQZekijGqiIEYwqKhokYsIiokorAxKAysq0mAaV07+\nKZ2QsCClFm0iFVIstKfFeUYvwzs2aDN33pnfBwbue865l3OG572cuefOeaQeSRuzbJOkDkl7Jf0o\naXmWPyjpU0mdlE2XkPSUpD15/nOV634saZ+kg5IeqpSvyWvuBhYO1i/Fmt5YSW9m/OyQdKmkOZK6\nM9a2qeT2QFKXpHl5fFVu198wXs0uhqTVGX8HJL3Xp66/+Gyr3GM/yLLxeW/enffqpsl2XQdPQoa3\nG4HXI2IGZXe6J4FNwD0RMYuSivrhRidKmgzcBcyMiJuBFyrVUylpl5cBHZLGZfktwMqIWCxpKWUr\n+vnAHKBV0qJstzYiWoF5QJtKhserKTsQLqTsKnnT/zB+G5lagNciYiZlx8UVwLtAe8bq98AzA7jO\n2XgdtJ7aqKCSzPNpYElEzAYe79Okv/hcD8zN8nVZtgHojIj5wB3Ay5LGD/YYmpUnIcPbr3Eut8tm\nSn6DwxHRm8DoHWBRwzPhOHAKeEvS3cDJSt2WiPgnIn4CfgamZ/lXEfFHHi/Nn++Ab7NNS9a1SToA\ndFMSFrVQEst1RUkI9Tfw4YUO2ka8wxGxP4/3AdOASRGxM8vOF9dV1Xg1uxhLgK0R8TtANa4kTaT/\n+OwB3lfJwHs6y5YC6yXtB7qAccCUQR9Bk/Ja6vDWd0/9Y5QcFf99YsRpSfMpE5eVwKOUL1qj6/Z+\nPlEpE/BSRLxRbSjpdkoGygURcVJSF+VLZjZQf1WOzwCTztP2NOf+WOobZycwq9cyyoTkTmCDpFmU\ne+eKiDhUa8+ahJ+EDG9TJC3I43uBvcBUSTdk2f3AzkYnSppASSL1BfAEMLtSvUrSGEnTgOspCfj6\n2g6szesg6ZrM5jgROJoTkOnArdn+G2BxLs1cAqy6wDHb6HMcOCrptvxcjesjQGserxziftno0Um5\nL04GkHRlb0VENIxPSWOAayPia6Cdcm+cQLl3PpbZeZE0d+iG0Xz8JGR4OwQ8IultShbFNsoSyNb8\nj4A9QEc/514OfJLve4jyPkmvX4DdwBWUzIin8vtyVkTskDQD2JV1fwL3AV8C6yT9kP3rzva/SXoW\n2EV5YrMfs4F7gPJ+0mWUJcI1Wb4R2JIvQH9eV+dsZIuIg5JepEwuzlCWoY9UmjSKz7HA5lyuEfBq\nRByT9DzwCtCTE5XDwPKhG01zcRbdUUbSJuCziPio7r6Ymdno5uUYMzMzq4WfhIwAkrYB1/Upbo+I\n7XX0x8zMbCA8CTEzM7NaeDnGzMzMauFJiJmZmdXCkxAzMzOrhSchZmZmVgtPQszMzKwW/wJHcOPn\nk2csnAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#df_res.date = pd.to_datetime(df_res.date.dateAgg, format='%Y%m%d %H:%M')\n", + "df_res.head()\n", + "sns.pairplot(df_res.loc[:,[\"bo_spread\", \"hour\", \"close\"]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "year 2081682\n", + "month 2081682\n", + "day 2081682\n", + "hour 2081682\n", + "weekday 2081682\n", + "Unnamed: 6 2081682\n", + "bid_price 2081682\n", + "ask_price 2081682\n", + "bo_spread 2081682\n", + "high 2081682\n", + "low 2081682\n", + "avg_bo_spread 2081682\n", + "count 2081682\n", + "open 2081682\n", + "close 2081682\n", + "avg_price 2081682\n", + "range 2081682\n", + "ohlc_price 2081682\n", + "oc_diff 2081682\n", + "period_return 2081682\n", + "pca 2081682\n", + "dtype: int64\n", + "2016-01-03 17:00:15.493 2016-01-31 23:59:41.170\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    yearmonthdayhourweekdayUnnamed: 6bid_priceask_pricebo_spreadhigh...avg_bo_spreadcountopencloseavg_pricerangeohlc_priceoc_diffperiod_returnpca
    date
    2016-01-03 17:00:15.49320161317101.087011.087510.000501.08723...0.0001651421.087011.087011.086920.000621.0869650.000001.000000-1322.240112
    2016-01-03 17:00:38.99320161317101.087031.087490.000461.08723...0.0001651421.087011.087031.086920.000621.086970-0.000021.000018-1322.160522
    2016-01-03 17:00:41.49320161317101.087131.087490.000361.08723...0.0001651421.087011.087131.086920.000621.086995-0.000121.000110-1322.161377
    2016-01-03 17:00:41.99320161317101.087131.087450.000321.08723...0.0001651421.087011.087131.086920.000621.086995-0.000121.000110-1322.161865
    2016-01-03 17:00:44.74320161317101.087031.087450.000421.08723...0.0001651421.087011.087031.086920.000621.086970-0.000021.000018-1322.161011
    \n", + "

    5 rows × 21 columns

    \n", + "
    " + ], + "text/plain": [ + " year month day hour weekday Unnamed: 6 \\\n", + "date \n", + "2016-01-03 17:00:15.493 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:38.993 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:41.493 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:41.993 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:44.743 2016 1 3 17 1 0 \n", + "\n", + " bid_price ask_price bo_spread high \\\n", + "date \n", + "2016-01-03 17:00:15.493 1.08701 1.08751 0.00050 1.08723 \n", + "2016-01-03 17:00:38.993 1.08703 1.08749 0.00046 1.08723 \n", + "2016-01-03 17:00:41.493 1.08713 1.08749 0.00036 1.08723 \n", + "2016-01-03 17:00:41.993 1.08713 1.08745 0.00032 1.08723 \n", + "2016-01-03 17:00:44.743 1.08703 1.08745 0.00042 1.08723 \n", + "\n", + " ... avg_bo_spread count open close \\\n", + "date ... \n", + "2016-01-03 17:00:15.493 ... 0.000165 142 1.08701 1.08701 \n", + "2016-01-03 17:00:38.993 ... 0.000165 142 1.08701 1.08703 \n", + "2016-01-03 17:00:41.493 ... 0.000165 142 1.08701 1.08713 \n", + "2016-01-03 17:00:41.993 ... 0.000165 142 1.08701 1.08713 \n", + "2016-01-03 17:00:44.743 ... 0.000165 142 1.08701 1.08703 \n", + "\n", + " avg_price range ohlc_price oc_diff \\\n", + "date \n", + "2016-01-03 17:00:15.493 1.08692 0.00062 1.086965 0.00000 \n", + "2016-01-03 17:00:38.993 1.08692 0.00062 1.086970 -0.00002 \n", + "2016-01-03 17:00:41.493 1.08692 0.00062 1.086995 -0.00012 \n", + "2016-01-03 17:00:41.993 1.08692 0.00062 1.086995 -0.00012 \n", + "2016-01-03 17:00:44.743 1.08692 0.00062 1.086970 -0.00002 \n", + "\n", + " period_return pca \n", + "date \n", + "2016-01-03 17:00:15.493 1.000000 -1322.240112 \n", + "2016-01-03 17:00:38.993 1.000018 -1322.160522 \n", + "2016-01-03 17:00:41.493 1.000110 -1322.161377 \n", + "2016-01-03 17:00:41.993 1.000110 -1322.161865 \n", + "2016-01-03 17:00:44.743 1.000018 -1322.161011 \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#plt.savefig(\"test.png\")\n", + "print(df_res.count())\n", + "print(df_res.index.min(), df_res.index.max())\n", + "df_res.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['year', 'month', 'day', 'hour', 'weekday', 'Unnamed: 6', 'bid_price',\n", + " 'ask_price', 'bo_spread', 'high', 'low', 'avg_bo_spread', 'count',\n", + " 'open', 'close', 'avg_price', 'range', 'ohlc_price', 'oc_diff',\n", + " 'period_return', 'pca'],\n", + " dtype='object')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#df.drop([\"vol\"], axis=1, inplace=True)\n", + "df_res.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "df = df_res\n", + "# all these should refer to the price prediction period, so for tick it doesnt exist\n", + "#df['low'] = df.bid.min()\n", + "#df['high'] = df.bid.max()\n", + "#df['open'] = df.bid.iat[1]\n", + "#df['close'] = df.bid.iat[-1]\n", + "\n", + "# to include seasonality as a feature\n", + "#df['hour'] = df.index.hour\n", + "#df['day'] = df.index.weekday\n", + "#df['week'] = df.index.week\n", + "#df['month'] = df.index.month\n", + "\n", + "#df['momentum'] = df['volume'] * (df['open'] - df['close'])\n", + "df['avg_price'] = (df['low'] + df['high'])/2\n", + "df['range'] = df['high'] - df['low']\n", + "df['ohlc_price'] = (df['low'] + df['high'] + df['open'] + df['close'])/4\n", + "df['oc_diff'] = df['open'] - df['close']\n", + "#df['bo_spread'] = df.ask - df.bid\n", + "df['period_return'] = df.close / df.open" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2081682\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAELCAYAAADQsFGkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xt0nFd57/HvMzfdLEuyrTi+JU6I\nQ+OkIQRDoJwCJQVMaEnaBS3QghvSlQWE3ji0De1ah9OeZhUWbaGUAiclKUlLAoHCIS1JQxoCKZc4\ncUJutnNxQuJ7fJElW9cZzTznj3ePPbYlS5oZaUbv+/usNUvv7Peddx5JM/PM3vvde5u7IyIiyZNq\ndAAiItIYSgAiIgmlBCAiklBKACIiCaUEICKSUEoAIiIJpQQgIpJQSgAiIgmlBCAiklCZRgdwKkuW\nLPHVq1c3OgwRkXnloYceOuDuvVMd19QJYPXq1WzatKnRYYiIzCtm9sJ0jlMTkIhIQk2ZAMzsRjPb\nZ2ZPVJR9ysyeNLPHzOxbZtZdse9jZrbNzJ4ys7dUlK8PZdvM7Nr6/yoiIjIT06kBfBlYf0LZ3cAF\n7n4h8DTwMQAzWwu8Czg/PObzZpY2szTwj8BbgbXAu8OxIiLSIFMmAHe/D+g7oey77j4e7t4PrAzb\nlwNfdfcxd/8ZsA14Vbhtc/fn3D0PfDUcKyIiDVKPPoD3A3eG7RXAjop9O0PZZOUnMbOrzWyTmW3a\nv39/HcITEZGJ1JQAzOzPgXHgK/UJB9z9endf5+7renunvIpJRESqVPVloGb2O8CvAJf6sWXFdgGr\nKg5bGco4RbmIiDRAVTUAM1sP/Anwdncfrth1O/AuM2sxs7OANcADwIPAGjM7y8xyRB3Ft9cWuoiI\n1GI6l4HeCvwEeKmZ7TSzq4DPAZ3A3Wb2iJl9EcDdNwO3AVuA/wSucfdi6DD+MHAXsBW4LRwrInNs\nz8AI6z9zH7v7RxodijTYlE1A7v7uCYpvOMXx1wHXTVB+B3DHjKITkbp7au8Rntx7hCd2DbC8u63R\n4UgDaSSwSMIM54sAHBrONzgSaTQlAJGEKSeAvqFCgyORRlMCEEmY4Xw0hlM1AFECEEmYYzUAJYCk\nUwIQSZjhsVADUAJIPCUAkYQ5WgNQE1DiKQGIJMxQ+Sog1QASTwlAJGFGQiew+gBECUAkYco1gMOj\n4xSKpQZHI42kBCCSMCMhAYAuBU06JQCRhBnKjx/dPqTBYImmBCCSMCP5Ip2t0TRg6gdINiUAkYQZ\nyo+zsqcdUBNQ0ikBiCTMSL7IijALqGoAyaYEIJIwQ2NFVvZECUBjAZJNCUAkQUolZ6RQZGFbls6W\njEYDJ5wSgEiCjBSiS0A7cml6OnKqASScEoBIgpQvAW0PCaBvWJeBJpkSgEiClAeBtecyLO7I0Tc0\n1uCIpJGUAEQSZGgsNAG1pOlpz2kgWMIpAYgkyEghagJqy2VY1JHVZaAJpwQgkiBHawChD2CkUDxu\nbiBJFiUAkQQpLwbTlkuzqD0HaDRwkikBiCRIeUH4jlyGno4oAagZKLmUAEQSZPjoVUBpFnWoBpB0\nSgAiCVKuAbS3ZOhpVw0g6aZMAGZ2o5ntM7MnKsoWmdndZvZM+NkTys3MPmtm28zsMTO7uOIxG8Lx\nz5jZhtn5dUTkVI72AWQragBKAIk1nRrAl4H1J5RdC9zj7muAe8J9gLcCa8LtauALECUM4OPAJcCr\ngI+Xk4aIzJ3hfJHWbIp0yuhqy2KGRgMn2JQJwN3vA/pOKL4cuCls3wRcUVF+s0fuB7rNbBnwFuBu\nd+9z90PA3ZycVERklg3nx2nPRYvBpFNGd1tWNYAEq7YPYKm77wnbe4GlYXsFsKPiuJ2hbLJyEZlD\nw2NF2nPpo/cXdeTUB5BgNXcCu7sDXodYADCzq81sk5lt2r9/f71OKyJETUBKAFJWbQJ4MTTtEH7u\nC+W7gFUVx60MZZOVn8Tdr3f3de6+rre3t8rwRGQiQxVNQEA0H5AuA02sahPA7UD5Sp4NwLcryt8X\nrgZ6NTAQmoruAt5sZj2h8/fNoUxE5tCIagBSITPVAWZ2K/AGYImZ7SS6mucTwG1mdhXwAvAb4fA7\ngMuAbcAwcCWAu/eZ2f8BHgzH/aW7n9ixLCKzbChfpDtc/w9Ei8IM53F3zKyBkUkjTJkA3P3dk+y6\ndIJjHbhmkvPcCNw4o+hEpK5G8uN0tFTUANpzFIrO4Ng4na3ZBkYmjaCRwCIJMnRCE1DP0cFgGguQ\nRFPWAEQkPqI+gOhtf8vG7Ty59zAAtz6wnVWL2gF4zyVnNCw+mVuqAYgkhLuHq4CO1QA6QjIorxUs\nyaIEIJIQY+Ml3DnuMtC2bJQMtChMMikBiCTE0FiYCbSiBtCSjT4CRsdLDYlJGksJQCQhKtcCKGsN\nNYCxgmoASaQEIJIQxxLAsSagbDqaGXS0oBpAEikBiCTE0NHFYNLHlbdmUoyOqwaQREoAIglR7uht\nzx6fAFqyaUbVBJRISgAiCVHuBO5oOX74T2s2xZiagBJJCUAkIUbCt/y23IlNQGk1ASWUEoBIQgyN\nRR/yHbkTawBp1QASSglAJCGGQyfwSTWAbEp9AAmlBCCSEBONA4DQCawmoERSAhBJiOF8kVwmRTZ9\n/Nu+NRN1Ape8biu7yjyhBCCSEMMnTARX1ppN40Be00EkjhKASEIM54sndQBDdBUQRJPFSbIoAYgk\nxHB+/KQOYKiYEE4dwYmjBCCSEFENYOImIFACSCIlAJGEGB4rTlgDaM2UawBqAkoaJQCRhBgujE/Y\nB9BSrgHoUtDEUQIQSYhJawBH1wRQDSBplABEEmLSq4DUCZxYJ78aRCRWbtm4HYD+kTzbDw0fvV+W\nS6dImZqAkkg1AJEEcHfy4yVa0ie/5c2MlkxancAJpAQgkgDFklNyyGUmfsu3ZFNaFziBakoAZvZH\nZrbZzJ4ws1vNrNXMzjKzjWa2zcy+Zma5cGxLuL8t7F9dj19ARKaWL0bf7idLAK0ZrQqWRFUnADNb\nAfw+sM7dLwDSwLuATwKfdvdzgEPAVeEhVwGHQvmnw3EiMgfK8/zkJmgCgjAltKaCSJxam4AyQJuZ\nZYB2YA/wRuAbYf9NwBVh+/Jwn7D/UjOzGp9fRKahPM/PpDWAbFpNQAlUdQJw913A3wDbiT74B4CH\ngH53Hw+H7QRWhO0VwI7w2PFw/OJqn19Epq8wVRNQNq0aQALV0gTUQ/St/ixgOdABrK81IDO72sw2\nmdmm/fv313o6EaGiBjBJE1BLRquCJVEtTUC/DPzM3fe7ewH4JvBaoDs0CQGsBHaF7V3AKoCwvws4\neOJJ3f16d1/n7ut6e3trCE9EygrTaAIaLRRxLQqTKLUkgO3Aq82sPbTlXwpsAe4F3hGO2QB8O2zf\nHu4T9n/P9WoTmRPl5p2WzMlTQUA0IVzJYbykt2SS1NIHsJGoM/dh4PFwruuBPwU+YmbbiNr4bwgP\nuQFYHMo/AlxbQ9wiMgMjkywIX9aiKaETqaapINz948DHTyh+DnjVBMeOAu+s5flEpDoj4YO9LTtJ\nDeBoAlBHcJJoJLBIAozki7RkUqRTE195rQnhkkkJQCQBhvMTTwVdVu4b0IRwyaIEIJIAI4Ui7ZM0\n/0BlDUBNQEmiBCCSACP5Iq2nqAEcWxRGNYAkUQIQSYDhqWoAR5uAVANIEiUAkQQYnaoPQJ3AiaQE\nIBJz7s5woUhbdvKrvlNm5DJaEyBplABEYq5QdIolp/0UNQCIRgOrEzhZlABEYm6qQWBl0YygqgEk\niRKASMwNTzENRFm0JoBqAEmiBCAScyP5UAOYMgGkVANIGCUAkZibbhNQi9YFThwlAJGYK9cApuwE\nzqoTOGmUAERibni6TUCqASSOEoBIzI0UiqRs8uUgy1qyacZLTl6jgRNDCUAk5kbyRdpyGaKF+yZX\nnhBucGx8LsKSJqAEIBJzU80DVFaeEO7IaGG2Q5ImoQQgEnNTzQNU1hoWjD8yqhpAUigBiMTccGF8\nyktA4di6wIdVA0gMJQCRmBvJF6e8BBSONQENqgaQGEoAIjE3Ujj1YjBlagJKHiUAkRgbL5YYLZSm\n1Qlc7ifoH1ETUFIoAYjE2OHR6U0EB1ETkAH9w/lZjkqahRKASIwNhG/z0+kETpnRnkvTN6QEkBRK\nACIxVv42P51OYID2lgyHVANIDCUAkRgrt+e35SZfDrJSh2oAiVJTAjCzbjP7hpk9aWZbzew1ZrbI\nzO42s2fCz55wrJnZZ81sm5k9ZmYX1+dXEJHJHJ5BExBAey7DoSF1AidFrTWAvwf+091/DngZsBW4\nFrjH3dcA94T7AG8F1oTb1cAXanxuEZlC/3C5BjC9BNDRkqZPTUCJUXUCMLMu4HXADQDunnf3fuBy\n4KZw2E3AFWH7cuBmj9wPdJvZsqojF5EpHU0AM6oB5HH32QxLmkQtNYCzgP3AP5vZT83sS2bWASx1\n9z3hmL3A0rC9AthR8fidoUxEZsnASIGWTIp06tQzgZZ15KIpoY9oRtBEqCUBZICLgS+4+8uBIY41\n9wDg0deIGX2VMLOrzWyTmW3av39/DeGJSP9IftrNPxBdBQRwSB3BiVBLAtgJ7HT3jeH+N4gSwovl\npp3wc1/YvwtYVfH4laHsOO5+vbuvc/d1vb29NYQnIgPDhWk3/0BUAwB0JVBCVJ0A3H0vsMPMXhqK\nLgW2ALcDG0LZBuDbYft24H3haqBXAwMVTUUiMgsGRgozqwGEy0U1FiAZpndx8OR+D/iKmeWA54Ar\niZLKbWZ2FfAC8Bvh2DuAy4BtwHA4VkRmUf9IYVrzAJV1hCagPl0Kmgg1JQB3fwRYN8GuSyc41oFr\nank+EZmZ/uECZy1pn/bx5RHD6gNIBo0EFokpd+fwSIG27PS/57VkUmTTprEACaEEIBJTI4Ui+WJp\n2vMAAZgZPe051QASQglAJKZmOgisbFFHTlcBJYQSgEhMHZ0KegY1ACCqAagJKBGUAERiaqbzAJWp\nBpAcSgAiMTUwEn2Iz7QJqKcjy6FhXQaaBEoAIjFVbRPQovYc/cN5iiVNCBd3SgAiMXUwNON0THMx\nmLKejhwlP7aWgMSXEoBITB0czNOeS5PLzOxtvqgjB6CxAAmgBCASUwcHx1i8IDfjx/W0R4/RWID4\nUwIQiamDQ3kWdbTM+HFHawBKALGnBCASUwcH8yzpqKIGEB6jsQDxpwQgElN9Q/mj3+ZnYlF7uQag\nTuC4UwIQiSF35+DQGIsXzLwJqC2XpjWbUg0gAZQARGLoyNg4haKzpIpOYIhqAeoDiD8lAJEYOjgY\nfXhX0wQEUT+ArgKKPyUAkRg6ODgGUFUTEIT5gNQEFHtKACIxVB4FvLjaGoDWBEgEJQCRGCo3AVUz\nEAw0I2hSKAGIxFDfUNQEVHUfQHuOw6PjFIqleoYlTUYJQCSGDgzm6WzJ0JKZ2UygZYs6ssCxNQUk\nnpQARGLo4FC+6uYf0GjgpFACEImhvqGxqpt/oHI0sBJAnCkBiMTQwcF81ZeAwrEaQL9qALGmBCAS\nQweH8lVfAgqVM4KqDyDOlABEYqZUcvpq7APobo86gQ+EAWUSTzNbK05Emt7h0QLFkle1FgDALRu3\nA9CRS/PDZw6wJDQlveeSM+oWozSHmmsAZpY2s5+a2X+E+2eZ2UYz22ZmXzOzXChvCfe3hf2ra31u\nETnZgTAIrNqJ4Mq62rJHF5aXeKpHE9AfAFsr7n8S+LS7nwMcAq4K5VcBh0L5p8NxIlJnR+cBqrIG\nUKYEEH81JQAzWwm8DfhSuG/AG4FvhENuAq4I25eH+4T9l4bjRaSOypdu1nIZKEBXe5b+EV0FFGe1\n1gA+A/wJUB4vvhjod/fxcH8nsCJsrwB2AIT9A+H445jZ1Wa2ycw27d+/v8bwRJLnwFCdmoBas4wW\nSoyNF+sRljShqhOAmf0KsM/dH6pjPLj79e6+zt3X9fb21vPUIonQF/oAeupQAwDUDBRjtVwF9Frg\n7WZ2GdAKLAT+Hug2s0z4lr8S2BWO3wWsAnaaWQboAg7W8PwiMoGDQ2N0tWXJpmur4He1RQlkYKTA\naZ2t9QhNmkzVCcDdPwZ8DMDM3gB81N1/y8y+DrwD+CqwAfh2eMjt4f5Pwv7vubtXH7qIVCpfvvnT\n7f1k03b0frW62qIawGHVAGJrNgaC/SnwETPbRtTGf0MovwFYHMo/Alw7C88tkniDY+N0tNQ+xGdh\na3SOfiWA2KrLQDB3/z7w/bD9HPCqCY4ZBd5Zj+cTkckNjY3T21nbJaAAmXSKBS0ZBjQldGxpKgiR\nmBkaG6cjV59B/hoLEG9KACIxUnJnOF+sSxMQKAHEnRKASIwM54s40NFS3UpgJ1ICiDclAJEYGRqL\nxmAuqGMNYGy8xGhBg8HiSAlAJEYGQwKoWxOQBoPFmhKASIwM1TsBtCoBxJkSgEiM1L0JSDWAWFMC\nEImRvqE8mZTRnqtPJ/DC1iyGEkBcKQGIxMiu/lGWdbWSqtNM6+mU0dmqwWBxpQQgEhMld/YMjLC8\nu62u513YlmVgVAkgjpQARGKibzDP2HiJFXVOAF1tWdUAYkoJQCQmdvWPANS9BtAdBoNp8t74UQIQ\niYnd/SNkUsbShfWdu39hW5Z8scTh0fGpD5Z5RQlAJCZ29Y9welcr6VR9l9ourwuwZ2CkrueVxlMC\nEIkBd2f3wAjLu+rb/ANRExDAnv7Rup9bGksJQCQGtvcNM1qofwcwQFd7tDTkbtUAYkcJQCQGHt81\nAMDynvongAUtGVKmGkAcKQGIxMATuw6TNmNpHVYCO1E6ZSzqyPH0i0fqfm5pLCUAkRh4YtcAS7ta\nyKRn5y29rKuNLXsOz8q5pXGUAETmOXfn8V0Ds9IBXLa8u42dh0Y0ICxmlABE5rmdh0YYGCmwYhba\n/8uWdUVjCzbvGZi155C5pwQgMs89ETqAZ+MKoLLy6OItu9UMFCdKACLz3BO7B2ZlBHClBS0Zli5s\nUQKIGSUAkXluy+7DnHPaArKz1AFctnbZQjYrAcSKEoDIPLdlz2HWLl84689z/vIutu0f1ALxMaIE\nIDKPHRgc48XDY6xdNhcJYCHFkms8QIxUnQDMbJWZ3WtmW8xss5n9QShfZGZ3m9kz4WdPKDcz+6yZ\nbTOzx8zs4nr9EiJJtTVcmz8XNYDyc6gZKD5qqQGMA//T3dcCrwauMbO1wLXAPe6+Brgn3Ad4K7Am\n3K4GvlDDc4sIx67KmYsawKqedjpbMuoIjpGqE4C773H3h8P2EWArsAK4HLgpHHYTcEXYvhy42SP3\nA91mtqzqyEWELXsOs6K7je4wYdtsSqWM85YvZPNujQWIi7r0AZjZauDlwEZgqbvvCbv2AkvD9gpg\nR8XDdoYyEanS5t2HOW8Ovv2XrV22kK17jlAsaXWwOKg5AZjZAuDfgD909+Pqhh6tITejV4qZXW1m\nm8xs0/79+2sNTyS2RvJFnts/OCft/2XnL1/ISKHI8weH5uw5ZfbUlADMLEv04f8Vd/9mKH6x3LQT\nfu4L5buAVRUPXxnKjuPu17v7Ondf19vbW0t4IrH21ItHKPnctP+Xnb+8C1BHcFzUchWQATcAW939\n7yp23Q5sCNsbgG9XlL8vXA30amCgoqlIRGao3Bl7/hzWAKIBZ6Z+gJjI1PDY1wLvBR43s0dC2Z8B\nnwBuM7OrgBeA3wj77gAuA7YBw8CVNTy3SOJt2TNAZ0uGlbM4CVylWzZuB+D0ha3c8dgezlzUAcB7\nLjljTp5f6q/qBODuPwQmW3360gmOd+Caap9PRCLlD+L7nj7A4gUt3PrAjikeUV/nLu3ke0/uY3hs\nnPaWWr5DSqNpJLDIPFRyZ+/AKMu6Z28CuMmcu7QTB57ZPzjnzy31pQQgMg/1DebJF0ss75r7BLCi\np422bJpnNCXEvKcEIDIP7R4YAaKlGudayow1Sxfw9IuDlFzjAeYzJQCReWjPwCgpg9NmYRH46Th3\naSeDY+PsHRhtyPNLfSgBiMwz7s7WPYdZ2dM+a4vAT2XNaQsA1Aw0zykBiMwzO/qG2XdkjFec2dOw\nGDpbsyzvauXpfeoIns+UAETmmU0vHCKXTnHhiq6GxrFmaScvHBziyGihoXFI9ZQAROaRwbFxHts5\nwM+v7KIlm25oLOcu7aTk8KNtBxsah1RPCUBkHvnOY7vJF0usa2DzT9kZi9ppyaS498l9Ux8sTUkJ\nQGQe+dqDO+jtbOGMRe2NDoV0yjh/eRe3P7qbvqF8o8ORKigBiMwTz7x4hIe397PuzB6iuRgb7xfX\nLGGkUOTLP36+0aFIFZQAROaJWx7YTjZtvPyMxjf/lC1d2Mqb1i7lph8/z9DYeKPDkRlSAhCZB54/\nMMRX7t/Or75sOQuabAK2D77hJQyMFLj1ge2NDkVmSAlApMm5O3/x75vJZVJcu/7nGh3OSS4+o4dX\nn72If/rv5xgbLzY6HJkBJQCRJvdfW/dx71P7+cNfXsNpC+d+8rfp+NAbzuHFw2P8v5+etMifNLHm\nqkuKyHFGC0X+4t83c+7SBWz4hdWNDmdCt2zcjruzvLuVT9z5JCP5ErlMSgvFzAOqAYg0qVs2bueD\n//owOw+N8Lo1vXx9086ji8E0GzPjsp9fxqHhAj94WuMC5gslAJEm9dyBQX7w9D4uWtXN2b0LGh3O\nlM5esoCXr+rmvmcOcODIWKPDkWlQAhBpQvsOj/K1B3awqCPH21+2vNHhTNv6C04nmzZuf2w3rrUC\nmp4SgEiTGS+W+PCtP2V0vMh7LjmT1gbP+TMTna1Z3nTeUrbtG+Q7j+9pdDgyBSUAkSbzN999mgd+\n1scVF63g9Ca96udULjl7Mcu7W/nIbY/y13duZWBEs4U2KyUAkSZy1+a9fPEHz/KeS85oqhG/M5Ey\n432vWc2vXLiM6+97jtd/6l6++INnOaT5gpqOEoBIk3j+wBAfve1RLlzZxcd/dW2jw6nJwtYs685c\nxDVvOIfeBS184s4neeV1/8Xln/shP952gEKx1OgQBY0DEGkKI/kiH/jXh0injc//1sW0ZOZPu/+p\nLO9u48rXnsWegREefP4Qj+w4xHu+tJHO1gyvO7eX9eefztt+fhmpVHNMbpc01sw99evWrfNNmzY1\nOgyRWePufOqup/jek/t4au8RNvzCas5d2tnosGZNfrzE0y8e4akXj/DU3iMMjo2zqqeNyy9awUff\n8tJGhxcbZvaQu6+b6jjVAETm2ODYOJue7+Mnzx3kzsf3sr1vmLQZ6y84PdYf/gC5TIoLVnRxwYou\nSu48uqOfO57Yyz/eu43BsXF+85Wr+LnTO5tmuuu4m/MagJmtB/4eSANfcvdPTHasagASF4dHC9z+\nyG6++fBOHtnRT8khkzJe85LFnNbZwtplXbTl4tHsM1Mj+SJ3bdnLpuf7KDmcubidXz5vKecvX8jZ\nvQs4u7eDha3ZRoc5r0y3BjCnCcDM0sDTwJuAncCDwLvdfctExysByHzh7owWShwZLXB4tED/cIFd\n/SPs6BvmqRcHuXvLXkYLJU5f2Mp5yzo5a8kCzljUTi6j6zDKjowWeHLPETbvGeDZ/UMUS8c+m5Ys\naOHsJR2sXtLOyp52VnS3saKnjdZsGiO68qi7PctpC1ti039Si2ZtAnoVsM3dnwMws68ClwMTJgCR\nueDuuEPlVyEDSu7kiyXy4yXGxkuMFUqMjRfZf2SMB58/xIPP97Flz2GGxsYZG5/8qpbOlgwXruhm\n3eoeVnS3qXljEp2tWV551iJeedYiiiWnbyjP/iNj7B8c4+DgGPuOjLF1z2GOTLHwzKKOHMu7W1nZ\n3c6qRW2c1tlKV3uWnvYc7bk0KTPSKSObNlqzaVoyKXKZFGaGAWYcfT2kzVjQmqEjl47l/22uE8AK\nYEfF/Z3AJfV+kkNDea74/I8m3HeqCo+HjwD38s0peVSeOvriOPYiKO8vhZ9UPn6iY0rHtt0Bi15g\nKeOkF1e5ZpYyI5UyMinDgWLJj34zSqeiF3LKOO453KHox47JplOkU8de3IaFn5GpXtjl3eW/nXv0\nl/Lwt6n8m5px9G9VeW6zk89z4vmPPepYWVR+ssq/xdGbO8WiU/Jou+SQMsikwu9vx/9fC8UShWKJ\n0ileE6f6m5y+sJWX9HbQmk2TTafIplO0ZlO0ZtO0ZdN0tUUfOvqWP3PplNHb2UJvZ8tJ+wrFEgPD\nBfpHCoyXSuDR6384P87h0QKHR8bpH8nz0AuH+K+tLzJezT/4BCmD9lzmuM+EbCpFJn3s/RW9V489\npvw5Em0fH0P5fZGa4KVRfn+uXbaQL/z2K2qO/VSarhPYzK4Grg53B83sqRpPuQQ4UOM5ZlMzx9fM\nsUGD43t+6kP096tNouO7D/jie6t++JnTOWiuE8AuYFXF/ZWh7Ch3vx64vl5PaGabptMW1ijNHF8z\nxwaKr1aKrzbNHt90zHXd9EFgjZmdZWY54F3A7XMcg4iIMMc1AHcfN7MPA3cRXQZ6o7tvnssYREQk\nMud9AO5+B3DHHD5l3ZqTZkkzx9fMsYHiq5Xiq02zxzelpp4KQkREZo+uTxMRSah5lQDMbL2ZPWVm\n28zs2gn2n2lm95jZY2b2fTNbWbHvk2b2RLj9ZkX5WWa2MZzza6Fzupni+0o45xNmdqOZVT0mfjbi\nq9j/WTMbrDa22YrPIteZ2dNmttXMfr/J4rvUzB42s0fM7Idmdk6Vsd1oZvvM7IlJ9lv4H20L8V1c\nsW+DmT0Tbhsqyl9hZo+Hx3zWphowMofxmVm7mX3HzJ40s81mNumUMo2I74TH3j7ZeRsuGgXZ/Dei\nTuNngbOBHPAosPaEY74ObAjbbwT+JWy/DbibqM+jg+hqpIVh323Au8L2F4EPNll8lxGNhTLg1maL\nL+xfB/wLMNiE/98rgZuBVLh/WpPF9zRwXtj+EPDlKuN7HXAx8MQk+y8D7gyvo1cDG0P5IuC58LMn\nbPeEfQ+EYy089q01/H/rGh/QDvxSOCYH/HczxVfxuF8HbpnsvI2+zacawNFpJNw9D5Snkai0Fvhe\n2L63Yv9a4D53H3f3IeAxYH34RvNG4BvhuJuAK5olPog6zT0gekOupDqzEp9F8zt9CviTKuOa1fiA\nDwJ/6e4lAHff12TxObAwbHcIPHYTAAAF4klEQVQBu6sJzt3vA/pOccjlwM3hpXQ/0G1my4C3AHe7\ne5+7HyJKVOvDvoXufn947d1M9e+Nusfn7sPufm84dx54mOrfG3WPD8DMFgAfAf6q2rhm23xKABNN\nI7HihGMeJcq4AL8GdJrZ4lC+PlQblwC/RDQgbTHQ7+7jpzhnI+M7KjT9vBf4zyaL78PA7e5e6wrg\nsxXfS4DfNLNNZnanma1psvh+F7jDzHYS/X9rasqoIv5Tle+coHy2zDS+o8ysG/hV4J4mi+//AH8L\nDM9iXDWZTwlgOj4KvN7Mfgq8nmiUcdHdv0t06emPiZpRfgIU51l8nyf6FvnfzRKfmS0H3gn8wyzG\nVHV84TEtwKhHIzb/CbixyeL7I+Ayd18J/DPwd7MYX+yYWYbob/pZD5NMNgMzuwh4ibt/q9GxnMp8\nSgDTmUZit7v/uru/HPjzUNYffl7n7he5+5uI2vGeBg4SVeUyk52zwfEBYGYfB3qJqpPVmo34Xg6c\nA2wzs+eBdjPb1kTxQfSN7Jth+1vAhc0Sn5n1Ai9z943hFF8DfqHK+KqN/1TlKycony0zja/seuAZ\nd//MLMZWTXyvAdaF98UPgXPN7PuzHOPM1btTYbZuRB1ozwFncawT7vwTjlnCsc6+64jafiHqwFsc\nti8EngAy4f7XOb4T+ENNFt/vEn1zbGvGv98Jj6+lE3i2/n6fAN4ftt8APNgs8YXbAeDcsO8q4N9q\n+BuuZvJOzLdxfCfmA6F8EfAzog7MnrC9KOw7sRP4shpfg/WO76+Afyv/zWu91Tu+6Zy30beGBzDD\nf9BlRN/sngX+PJT9JfD2sP0O4JlwzJeAllDeSrTmwBbgfuCiinOeHV7o24iSQUuTxTcezvdIuP2v\nZorvhPNXnQBm8e/XDXwHeJyo6eVlTRbfr4XYHgW+D5xdZWy3AnuAAlGt5yrgA8AHwn4D/jHE/jiw\nruKx7w+v/23AlRXl64iS1bPA5wgDR5shPqJv2g5srXhv/G6zxHfCuVfTpAlAI4FFRBJqPvUBiIhI\nHSkBiIgklBKAiEhCKQGIiCSUEoCISEIpAYiIJJQSgCSSmX3AzN43g+NX12NKXzPrNrMP1XoekXpQ\nApDEMbOMu3/R3W+erfOfYnc30bTPMz1nuvqIRCamBCDzUvhG/qRFC+ZsNbNvhNk2X2FmPzCzh8zs\nrjBlLxYt0PIZM9sE/IGZ/W8z+2jYd5GZ3R8W+viWmfWE8leY2aNm9ihwzRTx/E5Y+ON7hFkpzeyP\nzezBcN6/CId+AniJRQvAfMrM3mBm/1Fxns+Z2e+E7ectWkjmYeCd4Xf4pJk9YNECN79Y1z+qJI4S\ngMxnLwU+7+7nAYeJPqT/AXiHu7+CaObP6yqOz7n7Onf/2xPOczPwp+5+IdEw/4+H8n8Gfs/dXzbN\neC4Oz/16M3szsIZoHYGLgFeY2euAa4FnPZoY7o+ncc6D7n6xu3813M+4+6uAP6yIU6Qqp6qqijS7\nHe7+o7D9r8CfARcAd0dr/ZAmmt+l7GsnnsDMuoBud/9BKLoJ+HqYY77bo4VCIFrx7K1TxHO3u5cX\nFXlzuP003F9AlBC2T/N3myzm8symDxHNMSNSNSUAmc9OnMjqCLDZ3V8zyfFDsxxP5fkN+Gt3/7+V\nB5jZ6hMeM87xNfHWU5wTYCz8LKL3r9RITUAyn51hZuUP+/cQzbTZWy4zs6yZnX+qE7j7AHCooj39\nvcAPPJrHv9/M/kco/60ZxnYX8P6wLCBmtsLMTiNKUp0Vx70ArDWzllDruHSGzyNSNX2DkPnsKeAa\nM7uRaKrlfyD64P1saNrJAJ8BNk9xng3AF82snWjO/ytD+ZXAjWbmwHdnEpi7f9fMzgN+EpqjBoHf\ndvdnzexH4ZLSO939j83sNqJpl3/GsSYjkVmn6aBlXgpNKf/h7hc0OBSReUtNQCIiCaUagMgMmNlb\ngE+eUPwzd/+1RsQjUgslABGRhFITkIhIQikBiIgklBKAiEhCKQGIiCSUEoCISEL9f4tOzVoPcWjQ\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# create ohlc prices\n", + "df_res.head()\n", + "print(df.high.count())\n", + "sns.distplot(df.period_return)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "#df.drop([\"_id\"], axis=1, inplace=True)\n", + "df.head()\n", + "#df.to_excel(\"df_res.xlsx\")\n", + "import dill as pickle\n", + "with open(simname+'_fx_features.pkl', 'wb') as file:\n", + " pickle.dump(df, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "dataset = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFUXwOHf2VBFepMqIL2pgBQFO2JB7NhBsYOgKCD6\nqWBBUaSJFRVsIGBFRRCkCdIElC49SC/SQkhIu98fM7s725IN2WSzcN7nwdm50+4ESU5uOVeMMSil\nlFJKqdjginYFlFJKKaVU+DR4U0oppZSKIRq8KaWUUkrFEA3elFJKKaViiAZvSimllFIxRIM3pZRS\nSqkYosGbUipPiMinIvJqJseNiNTOw/o8JyIf59XzlFIqUgpEuwJKKRUNxpjXol0HpZQ6GdryppQ6\n7YiI/uKqlIpZGrwppSJGRBqIyBwROSwia0Skk98ppUVkiogkiMhiETknxH2KishQEdkmIkdEZL6I\nFM3kuTXsbteHRWSXiOwWkT6O4wNF5BsR+VJEjgL32WVfOs5pKyIL7LpvF5H77PLCIvKWiPwrIntF\n5INgdbHPOywijR1l5UUkSUQqiEg5EfnZPuegiMwTkaDfg+136SUiW0TkgIgMcZ4rIg+JyDr767hW\nRJrZ5f1FZLOj/KZQXzOlVOzS4E0pFREiUhD4CZgOVAB6AuNEpJ7jtDuAl4DSwCZgUIjbvQU0By4E\nygD9gIwwqnEZUAe4CnhGRK50HLsB+AYoBYzzq/vZwFRgFFAeOA/42z48GKhrl9UGqgAv+j/YGHMC\n+A6401HcGZhrjNkHPA3ssO9fEXgOyGx9wpuAFkAzu+7d7LreBgwEugAlgE7Af/Y1m4F2QEmsr/OX\nIlIpk2copWKQBm9KqUhpDZwJDDbGpBhjZgE/4xvMfG+MWWKMScMKoM7zv4ndwtQNeMIYs9MYk26M\nWWAHR1l5yRiTaIxZBYz1e/ZCY8wPxpgMY0yS33V3Ab8ZY74yxqQaY/4zxvwtIgI8DPQ2xhw0xiQA\nr2EFocGM9zt2l10GkApUAs62nzHPZL649Bv2M/8FRjje5UHgTWPMn8ayyRizDcAY87UxZpf9jhOB\njUDLTJ6hlIpBGrwppSKlMrDdGONsIduG1VLltsfx+ThWsOevHFAEqxUpu7b7PbtyiGP+qoV4Xnng\nDGCZ3d15GJhmlwczGzhDRFqJSA2s4PR7+9gQrNbG6XZ3aP+TfJdQdUVEuojI3466Nsb6eiqlTiEa\nvCmlImUXUM1vHFd1YGc273MASAaCjofLQjW/Z+9y7GfWyrU9xPMOAElAI2NMKftPSWNMsKATY0w6\nMAmrlexO4Ge7tQ5jTIIx5mljTC2srs6nROSKk3iXoHW1u34/Ah4HyhpjSgGrAcnkGUqpGKTBm1Iq\nUhZjtab1E5GCInIpcD0wITs3sVvuxgDDRKSyiMSJSBsRKRzG5S+IyBki0gi4H5gY5mPHAVeKSGcR\nKSAiZUXkPLsuHwHDRaQCgIhUEZEOmdxrPHA7cDfeLlNEpKOI1La7Yo8A6WQ+jq+viJQWkWrAE453\n+RjoIyLNxVLbDtyKYQWo++3n3Y/V8qaUOsVo8KaUighjTApWsHYNVovVe0AXY8w/J3G7PsAq4E/g\nIPAG4X2/movVNTkTeMsYMz2ch9njyq7FmlRwEGuywrn24Wfsey6yZ6r+BtQLdh/7XouBRKxuzqmO\nQ3Xsa48BC4H3jDGzM6nWZGCZXZcpwCf2/b/GmugxHkgAfgDKGGPWAkPte+8FmgB/hPP+SqnYIpmP\nl1VKqfzPHl+2FShoT4aIaSJigDrGmE3RrotSKv/RljellFJKqRiiwZtSKiaIyN0icizInzXRrptS\nSuUl7TZVSimllIoh2vKmlFJKKRVDNHhTSimllIohBaJdgZwqV66cqVGjRrSroZRSSimVpWXLlh0w\nxoRapSUsEQveRCQOWArsNMZ0FJEyWEklawDxQGdjzCH73GeBB7CSVPYyxvxqlzcHPgWKAr9grW2Y\n6aC8GjVqsHTp0ki9hlJKKaVUrhGRbTm9RyS7TZ8A1jn2+wMzjTF1sBJm9gcQkYZYCzc3Aq4G3rMD\nP4D3gYewklnWsY8rpZRSSilbRII3EakKXIe1bIvbDcBn9ufPgBsd5ROMMSeMMVuxMpe3FJFKQAlj\nzCK7te1zxzVKKaWUUorItbyNAPrhu05fRWPMbvvzHqCi/bkK1sLKbjvssir2Z/9ypZRSSilly3Hw\nJiIdgX3GmGWhzrFb0iKWUE5EHhaRpSKydP/+/ZG6rVJKKaVUvheJlreLgE4iEg9MAC4XkS+BvXZX\nKPZ2n33+TqCa4/qqdtlO+7N/eQBjzGhjTAtjTIvy5XM0YUMppZRSKqbkOHgzxjxrjKlqjKmBNRFh\nljHmHuBHoKt9Wldgsv35R+AOESksIjWxJiYssbtYj4pIaxERoIvjGqWUUkopRe7meRsMTBKRB4Bt\nQGcAY8waEZkErAXSgB7GmHT7mu54U4VMtf8opZRSSilbzK9t2qJFC6N53pRSSikVC0RkmTGmRU7u\noctjKaWUUkrFkJhfHksppWJVUnIyrb56mxZFyzIr6QAI1h/cW0fPiL0vnuOGRwrUoP/td+VhjZVS\n+YEGb0oplYXzRw3lsGPfCCB2YGUHU3VLlmT63Q9l677dZ//AUWBW0n+Om9v3dG99Dvj6MC3eWrpG\nKXVa0eBNKaWykJ71KZCR/fHDY6+5I9vXKKWUBm9KKZWFlT2fjnYVlFLKQycsKKWUUkrFEA3elFJK\nKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkoppVQM0eBNKaWUUiqGaPCmlFJKKRVDNHhTSimllIoh\nGrwppZRSSsUQDd6UUkoppWKIBm9KKaWUUjFEgzellFJKqRiiC9MrpVSMqTnudcAggPUf71bEgMC3\nl97HeRWrRKeCSqlcpS1vSikVYxoVONP6IL7l4tivXbJs3lVIKZWntOVNKaVizM+394x2FZRSUaQt\nb0oppZRSMUSDN6WUUkqpGKLBm1JKKaVUDNExb0qpfK/eK8MBMO4C5wxL8SsX2Ni/d15WTyml8pS2\nvCmllFJKxRBteVNK5XvrX9CWNKWUctOWN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhmjwppRSSikV\nQzR4U0oppZSKIRq8KaWUUkrFEA3elFJKKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkoppVQM0eBN\nKaWUUiqGaPCmlFJKKRVDchy8iUgREVkiIitEZI2IvGSXlxGRGSKy0d6WdlzzrIhsEpH1ItLBUd5c\nRFbZx94WEclp/ZRSSimlTiWRaHk7AVxujDkXOA+4WkRaA/2BmcaYOsBMex8RaQjcATQCrgbeE5E4\n+17vAw8Bdew/V0egfkoppZRSp4wcB2/GcszeLWj/McANwGd2+WfAjfbnG4AJxpgTxpitwCagpYhU\nAkoYYxYZYwzwueMapZRSSilFhMa8iUiciPwN7ANmGGMWAxWNMbvtU/YAFe3PVYDtjst32GVV7M/+\n5UoppZRSyhaR4M0Yk26MOQ+oitWK1tjvuMFqjYsIEXlYRJaKyNL9+/dH6rZKKaWUUvleRGebGmMO\nA7OxxqrttbtCsbf77NN2AtUcl1W1y3ban/3Lgz1ntDGmhTGmRfny5SP5CkoppZRS+VokZpuWF5FS\n9ueiQHvgH+BHoKt9Wldgsv35R+AOESksIjWxJiYssbtYj4pIa3uWaRfHNUoppZRSCigQgXtUAj6z\nZ4y6gEnGmJ9FZCEwSUQeALYBnQGMMWtEZBKwFkgDehhj0u17dQc+BYoCU+0/SimllFLKJtZwtNjV\nokULs3Tp0mhXQymllFIqSyKyzBjTIif30BUWlFJKKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkop\npVQM0eBNKaWUUiqGaPCmlFJKKRVDIpHnTSmlcqT+gOHeHbE2RryfPWX27uI+j1K6aNE8qp1SSuUv\n2vKmlIq688oUsT74BWuhaOCmlDqdacubUirqJjzxWLSroJRSMUNb3pRSSimlYogGb0oppZRSMUSD\nN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhmjwppRSSikVQzRViFJKZUP7d4ayEexcdMYnN11VYP5j\nfaJVNaXUaUJb3pRSKhs2eT6ZgGM78rIiSqnTlra8KaVUNmx9/OloV0EpdZrTljellFJKqRiiLW9K\nKQX8unYtj02fZu2I1SVq/NZafa3NJdzZokXeV04ppRy05U0ppYBqYSx236RMmTyoiVJKZU5b3pRS\nCmhYsyZbnnwq2tVQSqksacubUkoppVQM0eBNKaWUUiqGaPCmlFJKKRVDNHhTSimllIohGrwppZRS\nSsUQDd6UUkoppWKIBm9KKaWUUjFE87wppVQQtd4e6l16XrzlW3vq2qZKqejSljellMqGxTu2RbsK\nSqnTnLa8KaVUEFt6aQubUip/0pY3pZRSSqkYosGbUkoppVQM0W5TpdQp4Y1fZ/Lx8pUY9+QCx3ZT\nv97RqpZSSkWctrwppU4Jz3S4AvCZGArA1M435X1llFIqF2nLm1LqlLHxWW1hU0qd+rTlTSmllFIq\nhuQ4eBORaiIyW0TWisgaEXnCLi8jIjNEZKO9Le245lkR2SQi60Wkg6O8uYisso+9LSL+PSBKKaWU\nUqe1SLS8pQFPG2MaAq2BHiLSEOgPzDTG1AFm2vvYx+4AGgFXA++JSJx9r/eBh4A69p+rI1A/pZRS\nSqlTRo6DN2PMbmPMcvtzArAOqALcAHxmn/YZcKP9+QZggjHmhDFmK7AJaCkilYASxphFxhgDfO64\nRimllFJKEeExbyJSAzgfWAxUNMbstg/tASran6sA2x2X7bDLqtif/cuVUkoppZQtYrNNReRM4Fvg\nSWPMUedwNWOMERET8uLsP+th4GGA6tWrR+q2SimVqZqjhgJYueTc39IE4rv3iV6llFKnnYgEbyJS\nECtwG2eM+c4u3isilYwxu+0u0X12+U6gmuPyqnbZTvuzf3kAY8xoYDRAixYtIhYUKqVUZrb21PVO\nlVLRl+PgzZ4R+gmwzhgzzHHoR6ArMNjeTnaUjxeRYUBlrIkJS4wx6SJyVERaY3W7dgFG5bR+SqnI\naPL0cO+OgLG3AKuHaH41pZTKK5FoebsIuBdYJSJ/22XPYQVtk0TkAWAb0BnAGLNGRCYBa7FmqvYw\nxqTb13UHPgWKAlPtP0qpfOZ0b+6u8e5Q+5PxWYbLfxv/iHanKqUiL8fBmzFmPoEr0rhdEeKaQcCg\nIOVLgcY5rZNSKvJWDdXWNV9Zh7Cp6ekUjIvL8jyllMoOXR5LKaWyKb6Hjn1TSkWPLo+llFJKKRVD\ntOVNKXVaefbXX/lp7TrSgRST4TPxwru1ukSNf7nNP1VIqG27KtV48oK2nFu+En/t20WNEqW4fvIX\n7D6eQIdqtahbtiIbDx2gecXKXFjpbBqXO4vktFQ++2c5Z5cozcGkRO6qdz7/HjvMN5tWkZhygjEb\n/vSpo/g9N04MGX7H3JmaShUsxEMN2vJwvYtO4iunlMovxFrMIHa1aNHCLF26NNrVUErFiOTUVI6d\nOEFaRgapKSl8NnMm9WvX5p9t21jybzwbgRMCYOwgzbquLPAfUFjgrrKVOatqVSqULEn1UqXY9t9/\nTF80j9qVz6ZpnTpUL1MGAaqXKUOhggVxiZBhDC4RDiUlcSwlhQrFiuHCGhdXKC6OuLg43PkxU9PT\ncYlggAIuF8YYUtPTMcDGAwd48bexHBdDa6lKh/NasD0xEVdGBhVLlqRB5cokpKay/eBBdh85Qipw\nWe3a7D1+nJqlSlG8SBEKuLTTRaloEZFlxpgWObqHBm9KqXB9/8efvPjd/IBUIc4g5wLg0zd0coNS\nSgUTieBNf/1SSoXtxe/mAyHmWdqFf+ZZbZRS6vSkY96UUmHTdCFKKRV9GrwppcJy+Ggi7V4abe0E\n6zZ17PuXz37mASqWKpE3FVVKqVOcdpsqpcKy90iC53N2R8ruO5qQ9UlKKaXCoi1vSqmw1Kt2lnab\nKqVUPqAtb0oppZRSMUSDN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhuiEBaViwA9z/ub1L2aRbgiS\nnkO8+yFSdSDQpkEV3uvZOW8qHIYGLwwHgqcZqVS4ALOf7RmVeimlVH6nLW9KxYB/tu23Arcc2LB9\nX2Qqkwd2n0ij3kvDqffy8GhXRSml8h1d21QpFVXzVq/moa9neAv81ktd/6KmJzlVfffPPN7e+QMA\nItbPIpdj6xIA4y0j8Byxr729/HVMPzCXBBIAw31VO3Nd9cvz8nWUCksk1jbVblOlVFS1a9yYfxo3\njnY1VBT8tHdBpsczjDuAC809kmD2gXkcsQM3F/D7gQUavKlTlgZvSqmoafzicNLcO8HG6wn0v6w1\n97drk/eVi4Aao4dYHzzLiRnPvnPrbnWKv/+ZvKxe1I295PR6X6UiRYM3pVTUhDNo4/PZixg8ZxGt\ngFe73sJTn3/LN8/HcFdqFi1JOdV04iAS7a+s+AWHbze9gWvqNc3dCiilcp2OeVNK5Sv1X7JnoUJg\na5y9W0RgZSwHcLmo9sRBmBDB2/lx5bmoeg2W79zJovSdnAEkAVUxPFa3A+9unMZhsb7cyWJ1P7pb\nC0WM435gjUWztlcXqUvVkuV4tNk1uETnwSmVmUiMedPgTSmlTgNL9m7lnnlfWjviF9xhPAGef8Dn\ncgRv/sf9j33X9mnOLl42V99D5Y258bUBcJEBQJz9dxznmTSSQRwAhjiqIBxEJI4m1dZFobaxRScs\nKKWUCkvLijXZcOsL0a6GOqW4G392Et4gCBUpGrwppZRSysclNTZFuwoqExq8KaVUhL0051fGrl9p\n7fjMnvXONt32QL+o1E3FruTUo2xOmM7iAyPA051pbd058OIkgzj7mMs+FgecV/x1alW4Os/rrHKH\nBm9KqVyzaeceOr37lbVjBzGL+j9MieLFwro+KSmJ84Z84DNhwSVwda1qXHNuI3r+MM0q91sazD3Z\noUeLpvS+4ooIvU34Lqlcwxu8KRUh4nIR5yoKFAKSs3l14VyokYoWnbCglMo1X85ezGsz7ESsdnA1\npsuNtK5XM6zrbxz1EesOHQuYbYpYQVyGvetcH9V/rdQN/Z7E5R5lr5RSUaazTdHgTanT0UNjP2fu\nzv8CEvoCbHz21EghYoyh/9yfmPjvWqvAb7Zn4L71Jdh853N5Wk+lVPbobFOlTiEjv5jBuBmrrB07\nGHHmOvNvUfLui2e/YYXCfPlq97ypcBTN3flfYKF7naRThIhQNK5gtKuhlMqHNHhTKp/YeyjBt+Ak\ngpEDh05ErD752YbTJEHvwHbXMLDdNdGuhlJZSkk5zvq9dQBvLrg4+5hLvPvuFM5x9ve2OPubXOUq\nu/KopqcGDd6Uyide63Uzr0W7EuqUlJiYyPlTh3kL/Lpc19z4PAVcujLCqeZI0r/M3HU7kEwcZ4Ok\nADsciXe9iXatv/0MR1CVDpxFk7IjKVO8eZbPKlTojEyPx2V6tEqW91e+NHhTMSkpKYWUlDREhAIF\nXHw1/g/+3baXpudWZ83aHcyZuwVrVDsULAAp6eBuxqpetRiPP9aBvi98ByJBl2H64v37qF69Qp6/\n16lu+sp1PDHJmiEaqjvYuf37uccpUjDvuw5rjRwKBKmb/TmzRebxG5Pm3u/TvA2PN2+bG9XNUrFi\ngbN73YHbeYgGbqeo1Qc/JJ1k4jCkE+9JIeKUjjuw8kz/cRzdw5r/boP/rBUWPIGeWOfH0ZNm1ft6\nzm5SbWeuvIcKpBMWVEz6bfoqtm7ZzxlnFCKuoIuPPpzjM/YL8O67/PadaSUAIxLwg7dq1ZKM+/CR\n3HyFU8KJEyk0f/5dz9f80fPPpkCJsuw4fJhBd98QcP4DH09kQbzdPZJF8GYEBnW8lEPJxzmxezdN\natTgkhY5GuMbtkgHb3HAiEs7cn3dBrlUY0tiagpvLpvOxkP72Z1wmO0kWlXIZLKD/a/Cc87SDv0o\ndkbmrSiRcPHMPoA3P5n/clzW1goU3GUVCpbkQOphz34p1xmUKFyMtmXO55s904gjjgltRur6qhEQ\n7vJYzar/G5X6xTKdbYoGb0pF06BvfuOrxauCBmBrBoc3Lq3+i8MDrnVv/e+7/oXTY6zbydqblMA9\nM75gZ9JBUhwBZ2bBG/iubTrx4m40LVs91+s6eO5XTEtbBkAlhD2SDliBmnvBe+e2KmcysNnjrPsv\nnu0Ht1OlZBXqlqtBkQIFKVGwBBsOb6BQgUI0LF0/1+uuVE5o8IYGb0oppVROHDlyhCUHBwPf2WPe\n3F2kj+NihGccXBVmc/bZZ0ermqcMTRWilFK5oPnIoRwiq25T6FChEh/edlee10+pSFpysDWBY94y\ngLcBSDdWt+lOLuVstkahhsqfBm9KqXwhPT2dRq+87dn3X/IKfPPe+ZQ7zxPY2D9n3auHMjvoSOHy\n677dOXrOyZq3agVdVk4B/JL0CjQoUoqfbzz1c/2pyGlfc120q6CySYM3pVRIn/86jyG/+g1LCJJA\nePWQkw+WVm/YwK3jpvjePwQBTB4k493yxNO5+4Ac+nxT8HVTjYF/kg/ncW2UUnktIsGbiIwBOgL7\njDGN7bIywESgBhAPdDbGHLKPPQs8gDVLuZcx5le7vDnwKVAU+AV4wsT6oDylYti89cFnkkXyH+Wa\nw0lhnxv0uQKVgN0CzYvF8fqdd0aqavnWRzfdG+0qRMXL895jsVnnNyM1yAxVrNmQVhn4TH5wzJZ0\nXxPnOZbhdz94rfEoShUqnfsvp1Q2RGTCgohcDBwDPncEb28CB40xg0WkP1DaGPOMiDQEvgJaApWB\n34C6xph0EVkC9AIWYwVvbxtjpmb2bJ2woFTea9zHd4ZoZuk+3PvLBvagaKFCYd2/25iv+GP7nuDd\npsAGnXV6Wrr7974cJjnM4A2u4EKuqN2WPUf2UrZ4OWbHz6EEJXAJJJFIvMRzJsVoUKg+ZV1l+PTE\nx0AGLoH+NV/hRFoS9SrkbnoXdfrJV7NNRaQG8LMjeFsPXGqM2S0ilYA5xph6dqsbxpjX7fN+BQZi\ntc7NNsbUt8vvtK/PNNmWBm9K5Z6mTw0PbO0KksIj0+BNoOYZBZjyfM+I1m37/v1cMfrLwOdHYMxb\nJDQZPQTngmfOMXzbHuwb7JJT0vTtyxiwbpL1VyMmMJ8b3rQlFYCJlw+NUk2Vyhv5fbZpRWOMezTv\nHqCi/bkKsMhx3g67LNX+7F+ulMqHBFiVg7Fup7p3Lr6Wrr//Yu1EeIzewaTjNP9uJFZyXTzPELv7\nz53HrZTEUclVlPXGCiM33vZCZCsShsS08NfbTcj6FJVDxhg2/fcpuxJ+J5HFjuWx/JPx2l3I9rai\nayB1q3eJQo1VMHkyYcEYY8T961YEiMjDwMMA1avnfjJJpU5XK4dZwdnl/3uX/UkpPscM0Livt/u0\njAt+DzMxbyRUK1+eDf/Lv8HjJfUbEV+/Ua7c+88dwdM1GOOYfQocIZ0jGcd8yvLaTTUv5KaaF+b6\nc+Zt/pMRe8fYa3R6l3CqIuXpe+7jVCpaKdfrEAsyMtJJTt/DCfZk67pksymXaqRORm4Gb3tFpJKj\n23SfXb4TqOY4r6pdttP+7F8ewBgzGhgNVrdppCuulPI1a1CPaFdBOXSo04itdXInMIxVI/aOBSDD\nscg6wG728+OO6TxSp2vU6pZfnEg7yoY93xKfMgEX6X5BvUtThsSQ3AzefgS6AoPt7WRH+XgRGYY1\nYaEOsMSesHBURFpjTVjoAozKxfopdVr65o+/efWr2UDgWLGAMsd+8YIw99WeFCwY2W8b0/5ewZPf\nz/IW+KUi6daiMc9c2z6iz4wV3adO5Jf9diubY0mrrfc8G971M75k+qH4LNc2Pa9YRSZ0yN21fC+a\n8QzONVS9Y94IXh5kbdMyFGPcxa8Hvf+3F76Xi7XP/4wxfLXZSrbrXmjeJVCcQaSRRjq/UkjKksZ3\nQAYZWGvuehemh93711CpvP5SEAsilSrkK+BSoJyI7AAGYAVtk0TkAWAb0BnAGLNGRCYBa4E0oIcx\nJt2+VXe8qUKm2n+UOu1t33OQm5/71Ce3WufLGnN5iwY8MvQbIHhS2+UfBHYrVil5pm9BFl1qxQpC\nWipULFGCAgXiMj85TBv37KXTu+OBEKsYOHK5jV26+rQN3hKyMV4smOmH4rM8xwB/J+7N0XNyi0sE\nZ4KYwxzjut97hj3bFGDUeYOoULRsHtY6OqzAzS3Ds03gWc9i8inA5VV+oXjhqv6XqxgTkeDNGBMq\nsdIVIc4fBAwKUr4UaByJOil1Ktn4776AWZ9zl2+kTKni2b5Xm8a1+fud6I4VS0gOPyjJ6biI9PR0\n6g0b6b1PkNbGzU89lcOn+Npx8CBtv/7E51newNsw4sKruKnheVne54vrczZAfFPn53N0fST90f6N\nXLnvTX/4dum7/I4XdPmXnJruqr042lVQeUhXWFAqBlzesj5LW9YPeuzBjm1y/fm3vvkp6/ccyrJr\n1b/lD4FPHriZ1rV9F7NuVqM6617JmwDyeFpa6IPGqrsxBongqP62X4/x3B9xbO0Q8smF08MK3npN\nnciPQbpNg+1Xk4LMvTNnKUga/jDQ89m/G9O/63VQo5voWLNZjp6XGzKwArjKlGd4m1eCntN1yQOA\nM0mvtwv3DIqTLIc9x8Ax81IMF5Roxz3n5M8xoOM3dQJ2O+przyC1/7+Lkwyf8YDX11qd95VUERGx\nPG/RonnelMp9aWlpvPz+x6yMT2IzeFqSmheDZcdDB29NK5Xiix5dItbdGqv+3b+fdj98yvkCD1x8\nFQlHkzmSkMhV9RvwxLQvqEBhZkkyl1GKey+7hFFzf+Yv0vFpd7SDv6DBm8DnF91EoaKFaFn+nJOu\n52sLJ/Pl3r8AK1AxBA/eRGDRVc9TpGDhk36WirzExAQm777cZ8ybNQYuMHirL29Sp+a1Uarp6S1f\nJemNFg3elIp99QcM9+74JfgFOFNgWT5bVWHl3r2sio/ns2XzeO7yjrwz+2eWgiOAtb+3+ryP8Rnb\nJ3YQLH6moJyLAAAgAElEQVTnBtzD8TlUy5v7GhETcMwZeG24Ne9zvWVH+znuv+fACQvepa38t/D9\nRe/63Of2hY/Y1/ueGwd83urjXH2H/O5gwj8sOnAr7ha4uCB53s4t+TVlS58brSqe0vJ7kl6lVAwY\n9cMcPp71l0/gsGJE9gKl48kpXDDA8cPTca81r/em4f98gzPnxIugExb8ZIQ+FBUfLF3M4MXzrB2B\n+2b9HLr+4rdjIr/CwsB5P/P5jpWO1A++A/3delTLf92c/mZcOjzrk8JQnjLs57+A8trUjsj9Y1np\nM+vBAeuzt03chfNfmgZu+ZsGb0qd5hau3x5QlpSUTNGiRcK+xxlFHGuWOoKxla/2Cn5BiEDnm243\n0/jss4MfzEcebdGKR1u0inY1PAa268hAOka7GtwzbRjrzQGf8XLuVR/cC8OLwINV21OyUBFGbp2M\nO8gMnioExrcaQPmi2V8Y/p02wVOK5JUjxw8yfMv9uN/PRQZx4rvwvTtw6tcwbxMriAjX1tTxbrFM\ngzelTnPjn7kXgMOHD3PJgLEYoNWz7/sEYYNvvZJrL2wS8h5b9x/07jjSfDR5/m3PPRCoWaY4va5q\nx6+r1zN17eaA+9w65jsQ+ObBzjSuqqvjxZpkUsM670T6CW6q1d4O3gK503y4BMoXLc2rS8bwR/Lf\nQbpNwb9r1AVMaPUOcXHRHWd5LOVQVJ+vTm0avCmlALhz2ISg5QZ45pvfMg3eChcILx1D2TOKUKxQ\nYUqeUTTT84oVyj8D4WuOCrJQusDWx5/O+8pkQ+tJb3DADqYyS9I7tMmN7Eo9wsMN2530s5pPfQ4I\nTNMB1pJdlxasw+DLHww4NueKt8K6/8LkFSGOBHYNZwD7kg9QqVjFwNPzUJVS5zCwVPDgVKmc0uBN\nKQXA1JcfPelrK5cuxZo3go+Ta/TccM+P2KU79rP0i+99xry5rXiuB4ULFyIcdV/1rqnq3pogY+i6\nNm3EC9dcFeZbBNekQGFWOZPlCmR3ReWHPxrBr6R604UIPFK7Cc9dck2O6paZA2G2gvVZ9QNgGL5+\nJhA4ycF/tunK64On38jM9rT9AWUHjx/m5oWvklm3qcuny9Xrca7ngkYXMGztMNbKIXtWLDSnGlcW\nuJKzzqiQ7ToGszNhG3/v/JMlx//gsOzx1NVKL+JeuN1dZu2/2OBzzih4ZtD7KRUpGrwppbK0dede\nOg0dHyLpbOhUIWsG9w47yW5yRjqRbm9LSA0vgMnMj489nqPrdx05wnRPIOX9any4aVWuBm/hJuht\n8d3LHANCTXIAb0D39FkXBz2+7JrXwq7XkROJ3Dx/IKmesWChZRhvAOf0Dj/Bmp+sQM9YgVuGgWWy\nnWVpY+mxN43Lz7ow7DqF8t2ur9hwfBWQkWk93YQCuRK4JaYe5MstNwA4ctJ5Z4cWoy231hmS5X2O\np+xh5o6r8MwyFedsU2h11gxKFNXVF2KBpgpRSmWpyVN+s0XDTNI7/38PUbp47rZCLIvfzh3jv/E+\nV2Bj/+zNlu01cQI/79oVkKIj6ExYT+AaKr0HxD/aJ1vPj4ZvNy3juZVTABDH2qL+LW/FBRZ1eili\nz80wGTy79FMWHl0LeFuuMl/bFKZePBKAF+a9zd9sCDjX3TrXulAj+rbIn0l0oy0jI40p8c1wBm/W\nyECDi8pcWWMGIt4wdV58bce5xnMuWC2NnvxxfmMR42hOw2o/5vr7xCpNFaKUyhOrhuWvHGtOd7oD\nN4c6g4cHDeD2HU2gzeiPrJ0g+eTC4piQEctKFgxvNnHJCD/XJS7euKDbSV9/SbWW/L19Q0B5hrGC\nhyIpZ+Skeqc0l6sA19damQdPCuwmV5GlwZtSp7Fze/m2qH3x4JU0bRJ6YkJuqz/QO5bNZ1ycvV2f\nWaJeR0AVKrFEhRLFfXsHHdf8r3VrHmiT8642p5S0NOqOsd7Jk6TX+VyfxLqOC52teF2eiWid3K48\nuxHrz24UsfulZ6RzzfQXOWRM0PFyLoGCwF1VL6ZMoeK8Hf8TAL9dMohCBYKPdUxOTmb9+vWMOzKO\nVSTbXZeBY+Cc5rCE5AUH6FS2E/Xq1cvWO2w6uJ43t7waJLGvb4oPa8wbvNn0K1xy6q6d2q7GJs/n\njIwMdu78nV0ZA3DJNrvU+sd0BsOoU72zz7XHjq9h53/tAd/UKO6vVpz9dxhn/8/uohdnVemfS29y\n6tHgTSnlcf/Hv7FsZHSCN58hHCFat9bu2k3DypV8yjY8l71Wwc1Pn9wi9M5Zp/6BWHz34N2khQoU\nYFanu+n/03gW2y/VWgzt6rXij63/0KJ6dWZsWcWFVRoyZtdaz/3c258vuT1kfWqNe81encF7vjun\nmvseFaQA+0kNMtsUNtwS2ZUW0kwGhzMZhpNhIFVgxeF4yhYubpcajqckBwRv1ioLgSsshBqT58uw\nhM0sPTicAYeeomHpumG/w57k7LUYZWRk4Io7dYM3p/3HJrMr4ynA2K2c4P77OM7TQGe/KzKfUR6o\nbI7reDrRMW9KqaCaPjXcE0R5vkuEmLCAwOo380fX6u7Dh2n3wVhP3c4S2GMHNP517lCxAtP27Qu5\nLFWwMW+jr+3EQ9N+xP1VOdPlYvVjJxcQ5kTNcdYkgewuj+U+d377HlQoUSaidTLG8NBvo1iZvhsI\nbHmDwFa5zMa8OWebPsJltGvUjlKlSkU9h1sw01ZPZE7GRMf4L+9YMfd6ok3lam5sFHoCzPB1V/pe\n62hl7F5vdm5VXeUxHfN2mjLGkHQsmeSkZP7be5hel7/hPegSrunWilp1q/LvzgP89K69hI/L+vYx\nZftIXK7T4zdFlUPBfq/Lg/Fe9V8a7n18kOAp065TsAI3hz2ZnPvePfdQa9iwsOs24677qFW6NBM6\ndWbj7t0sX7GCIfffH/b1kbT17uei8lyA86a8gDM5rifwso/LSf4/Uhh8Epx4Z5vCjRffeHI3zaYe\ny+4n3a6Ff7fp0KafhezinZMxMeQ9M7C+NmuYxo2EDt58F6hSKjRteYtBhw8cZe53f7J5zXZmfLMA\nY6egEnFZbdneX7e9F9kBW+N2NRgyIX8nF40lk6b8ycgxc60dzwB48e67W3vsn2rP3HcRl7U+l5Il\ns9ulkD817usYzwUBwZZPeZCyZlXKM+7Re3zu2fql4RwmePDmjh2dAdwLP05hwuoNnvOc99/0TPBA\n75yh3oDNZ8KCz9Z47lVMIBHY2lP/7eTENb/9jwRSAG9gNKFZfyqXLhfW9RO2TGHczmk48625t95u\nPKuly+VZigq+aj067Do+uuzegPu7g7fBjT6mWOFiYd9LqWAi0fKmwZtSOTD+h0W8+8V8aydY8IYj\nmHBZnwVYOD42g4AmTwcP1k42eBt5+7Vc1ThwULkxhvovjwgavLn3NzxvBWYrtm7l1q9+8HmOO/AL\nFrylpqZS/+1R3mf5BW9d69RhwHXXB33//CTcbtNZHXpQvWT21wbNj9LS0vjonwlMO7TIas0KlV4E\nb/DWu9IDtK6Rf9ahVUqDNzR4Uyfv7gfeZueu5OAtPC5vADbj6yfCzvx/qvv81zkMmf5XwPixR9ud\ny+OdLgegUX/vDFZnoLb2tazHxHlmm+INqsoXLMD+tDSrzH3QEbydrvYkJHDhT3YQan+dqwkcwpAo\nVu62G6U6b3Xukqv1aD71f3gXX7er41h79LfLXuDMQt70HUdOJHL9/IGOa3y7XmdfHn439vAlH/N7\n6l84W8qcM1K7l7uPS+q0Pqn3yq6BK+8jmaOZjnk7R5pzd6OX8qQ+Kv/SMW8qZnQ4f4B3x29gjPHr\n5i1UtACXdWjE08/dkKt12rkrOazzDh1J4qwKGrwBdOlwKdXKVaDnV7/6lL8/fwXvz1/hEwSP7noj\nFzWoGfa9e48dH7R8f2oa/7zwJOI3kKruoOBB4sZn8yaoazvmfXYkJfoG/vbnrY88HVDfSDureHG2\n3JV7494aTbb+zfqPaxPHrFaX/0QIP60KVPcJ3ABKZtLt2JbwZ4YCduDmKwPj+Rbz64HZeRa8SRhr\nMLgomAc1UacDDd5UvlLmrAK0aduES9s3zvVnzZnaL1fuO2DoJGYs3u7ZNwILJjyV6z/MAaYsXM0L\nn87ItDvzr3dzFtzsTkgI67wdhw4HLR/w9XQmrViTZZerU9+vf+Ktzp18ypY8+TAtR4z2nF9Q4MFz\nG4ZVt0h44vwL6LtgTkB5CUBEqPGhvVyR8z0zy/MWpNx9fnyXvM9/1ZoiLCKZrnEt+Tx9ic8xY9wB\nmwAm5PJYc3ev5qLp/fGmLzE+rXIW4Y7K7Xi0QfZ/Wfv+onfDPjch+RjdVzwJfi1jVs42b8vhB83G\nhjWpq8+K2+xrfO9nfbaOvNLk+7Drp1R2aLepUhF2YeehPvtG4PdxT1CwQO7/rrRwTTw9Rnl/YGQ2\nNm3xsMcpXCjvWwK27N7Hde+OCz4G7rqL6NCyZY7u/93K1aQkHef5OX947osY33Qnjmd+2LEjT035\nmWNAE4GtQBGBczAsFvj5trtoWKkS2ZGWkUHtj4Z6n0feBW8jls1i1KYF9n19719CYNmt2c/vNmXK\nFPZl7GOEbHHc19BVynI2ZzNIlgGG84GVnokD4acKEcc1XatfyX21r812HbNijKHLkocIHrxZz3cB\no1t8Ftb9+qy4HWvNU79uUk96D2+3KVhrkbrXEn2u4ZQc/zI3ZsOF9v3t93AvVSUZjqTC3joB1Cz8\nIOdXzdlavSrndMwbGrxFkjGG0YO/44ePFloFnnFfnn4Spm54I8TV4Vu/die9unzkfa7/7Fj7l96x\nEx+jytnlc/y8002zR4N3J/rvT3rmbupWq5CndcuJY4mJNBtmzxr0e6+HGtWl743XAdBkyNskZaR7\nLwyVs82xDTzme83WXjmbYFLjoyGZroc65+YHqFmqLKv27uT6aV8G1N17rvH8M9l6z7NBn5Walkb9\nb9/wOdcdMP1+RQ8qlclebrd3/5zGh3sWgGdsmveeoVOFBAZv7n3/Y7WlAlvZi3/A595ObPUSZYqG\nXqTrpj96+F3rnrAAkIFL4KPmwzgzFxaMDyU1/QQvr7WS1gYL3vrU/o7ChcNbniwU3+DNZd+/GhBv\nr0FaBJccB9xrkArXVllAkSLZn+m+Zd8I9iRZa8s6g1Pv2qYAVTi3+qIcvdPpQoM3NHiLpP27D9Hl\nokHeAp/gDUAiErxt27qPh297z7NvHPe3nmttxk7qTpXq4aUQUKe+eq8MD5osGILPas3u4vRunUYO\nY7V1V4zAd9fewPm1awNw75iPmH/8qGOyhgmoS/xjJ78ofXJqKvXHD3PcLzB4ixO4uWo9hlx680k/\nJzsOJx7j4llv4gzevGPe3IHZyQRv8PsVQ0hNT+Wquf0JHrz5rrDgwlAlrjyjL3oxaF1vW/CY/cn4\ntKz5bEO0vN1W8Ha+TZ2AFfD5XvNes3HZ+6JF0HvrLwG86Uq8weCZdKs7LU/qkJi4lxUHWtv1cAZv\nANaC9RULfcRZZ12dJ/WJdRq8ocFbXnjqnndZt2QbeNff8QR2zlazxq2r8NYn3aNTSXVaqP/KcOtH\nmDtgsqMFZ1DnDOSeaHMBPS9um+V9k1NSaPjeO94Cv5a3MgLLej5NzXeGep8XsqvT9x6eoO7hvlnW\nI1oafP+S/Smwtc4l8F27x7j1D+/4Mv8JC8uvHcTQ5T8wYe8Sv2u9wZsANQqUZvzlgV3Al816msxy\nt3kDL+hZ8w6urhZ8DVoreAsMzny2mY55C37N4zX60bDMuUGfmdtCB2/Qre78qNRJ5YwGb2jwlheu\nqfuMc4SytQ0SvAFMWzMo2C2UiohDSUm0GvqBt8BuaXOmLQnePWq1kLmAmd26Uq2s7zqKuxMSuOjj\nj0J2myKxn6D3nl/HsiRhh0+LnqfR2zEWzT94O1vgl04v8dXq3xkcP8NxTpBxbPhe6xJY1OH1LOsW\nKngD6Fb2Ku5sEpkxcPcufpBgwZ0zIAp3zFt+t2rreP7JsCbNeLo3BTrV/CtPJk/lthO7a3k+x4n1\nf54LF1Jxfb5/Pw3e0OAtGub/9jeDelpLwQQbr/bV3Ge489I3veUiGBHaXFaXhXM3eMpLlS3K4f+S\nAu7x4YSHqVnrrLx6HZWJpk8Nx/87xKphOU/FsWjzVu7/1Eqs6w6QGpcuzDe9M2+5TUlPp/Hrb3sL\nHAFbhaIF+aP346Skp9PwLf9zjCfI++au2zm/SpUcv8OppsH3AwG/MW3Aqhte8pxz7s8vOM4JZ8wb\nLLhqEC45+SX5Zm1ZypAdn9v3t+77ev3HaVohMLlzLHh97bW4uxrdY/LcAaVzokHzIt1oW+OegOsT\nExOZuPNqwBrXGScZuICq3MJu+QarOzP4hIU4gRYlxlKl3Plh1XVefG38J17EAS2rb7ZW9ImiUMEb\n5dfiisvfiTQ0z5uKit27jmZ6/M5L3vD+BACr1Q74c/5Gx1mGY0eD51k7cii8/Gsq9zTt7Z304J+6\no8nTw0Fg1VsnH8SNnTEnoGz14RNBz633imMChqNOrcqX5ItHugWcXyguLuSyWDlx36efMDfBSn/i\nTiA89uKruKxJk4g/K9/w+7tf0fGViN7+0pl98LYCelvc7qlwOfc3sla5uLxWCy6vlaOfc/lMAXxX\ncA2uUomaQctn7OyH/8LDGcAOvqUsF3GYeXhXSXVvrb/IG2oF5sXLTPW4Ufyb3iOgPNqBG0DhSlui\nXYWo0pY3lSuubvq89cExU3Xa3y9HsUYqO57/+Gd+XGMH2+IbNBUBxj11B3WrBKbPaP38CBLSvN9T\n3K1qa1/PfjBV76XhgRMTHPUYe9PVXNSoAQB1Xg+cYbvpJCcs/Bkfz+2Tv/XeK0gPjLu8BLCyR2x3\np7oFtrzBmhsGBpyXkp5Ky2kv499tWo0i/HDNi2RkZNB6+v8AKxCrJaXYyqFMU4VYz8tqzJsw9eKR\nkX5tpfKctrypfGvaylejXQWVA68+2JGT+Ru864Jz+XDh3zl+fqhfKgXfRendfn/sfi5+f6znHAN0\nfGM415UowtCEZDb1Cz+Q23r4UNjnZt4GnbdqfeVe69Q7A3bz7f8L+/p1Nw0M67zP1s1y7Hn/nrZj\ntZgnpPu2nG/Faq3MMM7EvE7CdcWa8svxwP9vMoxxXOP7/8TWwzt5cvVr1ChcicpFytGiXFPmbf2D\nNWwGvF2G7Yu25cHzcr5E2BN/3YlzXF6cOxUJUJxKPNVwEMUKFs/xc5QKh7a85QMditzt3XE3R1tz\n8Glz07kM/OKpXHnuoF4fM/+H1b4pQYC+797F5deeSt0U0XXjYyPZe9hemzMgxYX47VufO7Suw50d\nWtCwVvDksMkpqVzU3b2upQQM2ndvl3+Q/9b/vHrgcLalETDB4J+Xc1bXDGOoN3hE0AkL8x7smu38\nZpmp8a47EXNgqhDP7NJHvSlDvHneAq+Jv79vRAZYXz9hBGs57rn/kMYduLlR7v47HjXrZ8YmL/SM\ngWtCCdZwlDZSgRTiGHJZN4pnshyW0xWzn7IDPO94uRmXDg95/sJdKxi8ZTQl5AzKFi5Fq3JNmb1r\nPoc4Yl9vBW+1pQqDWg/I0XumpKXQd1VXfIM3d3JcS5szrmJp0lTHOf6zQ1282PiHHNUjVqWmHmL7\nXmv1E/fXK87+Xz7O/sfgLXfvi+e4C0GKr6J48dD5/mKJtrzFiPau27w7dnAmLmFc/CjKV8k8CW1G\nau4F1/N/XB20fOLbMzR4i6B2LerzzW/Bv9Y+7G9mRQsJzetVp1zp8H7oRVvjfuHnX1s7qLcVuAVR\nf8DwwGsFlj/TnWKFC2dZj3qDR4Q4Ymj38af0at2SXmGkDQlHISAlG+cv7HgPrX+2ku8OjCvPwIz9\nFAB6U5Kanw7B06rkDOq6PpOtOv10x5PZOj+nmv3yPN7WMGu7xm6LXMReANrPeSVgZmphcTHtspcp\nFOe7XvDMy8JfkB6gTeVzmVzZd3msO2tcH/b1iYmJPL72cazceZmnCnFPAHiz0ViKFvZNcrtg42/8\ncPwDFidNtc/1ihM4k6acTwOaVLgk7LqdagoWLA38gDXWrxhxUgTYRxwHgR5BAreHgVb21/0RoM4p\nE7hFira85YFQwdsHywdTq0mN6FRK5Uh6ejovD/uBmQu3Bm1N63RZPfp37xi1+sWaZgOGc9y94xe8\nOcuCdZk2f224t/tSsl4tAYHNfXLWmn3w+HGajX3P7znWJv6xPnT78Rtm7d7qU+5+n20PevO9paSn\nU/fzoUQieMuOut9a40+dqUL+uTl7rVPO4C07KyyUlSJ8f9kA4uLiCNc1v/ey7x88ncjktuGvceo2\n6s9RLGc52QneRjX7KuA+/Vbcap/rO7PTJeS7tU1/2nILGWz0vKe1lNaZuEgAhMJUIE7OJI0NuGeZ\nus+9sPo64lxZ/xKlsqYtbzFiRsbXUXnu9OnzGN51AhSCum1KsWF+AnIOmC1C1dZF+XDia2EtwOwv\nLS2N29u9wvHDKVYaEPB0uU5Z+XK2vikD3HLlYBKOnPBJNwLulRe83YrnNavEkFEPZLu+uWHmvLXM\nXLg15PEfZ6/PNHjbvXsfN/X5IqDbtFH1AowZ1CuSVc11/i1va94Ir/uz8QvDSSdIsOX/2aHuK97W\nubYVSzLmoW74/zhxj3nLTaWKBF/aqCFWa9K1Nc7xBm+ZKBQXR/z9/SJat+yypgLAhH+W8PI/v3jK\nRQy1KU63xpfxybrfiDfHfCYzXFKyLiPb+o4liz+6j84LgreAVpZifNved2WE5XvX89Tq0Z7ngRUw\nFUFIkQy8Kyxk/g43/dHdc60L+PrC97N8754X9MzynHC8ee43Pvv/Hd7BiO09gQxeWHUDcQIDG0+O\nyLNyqlnxZ1me4DtDu2bhp9h/YhaFpSzli11AocLF2HDQ/2tTRAO3fEaDt1NUctIJK3ADSIEN86y2\nCbPZ+tG2Y1ES97Z6kXF/Zn9YesLRJCtwI/CH5OYNu6nboGq27peUGDxFhL/9+xKzdd/cdNWlTbjq\n0pNPEXFT3y+Dlq/enkbLrsMQYPFnuTPWMdKWvdKd5i+8hwFuysY69/dc0JjP/gzenfzPgN40fnl4\npgkVKp1ZAoAFzwUGi7XfCBwrtbmv79fznKFWN51/C9+WJ7P+urtcLuJ7hF4G69am53Nr0/ByaUXD\nhlsCl5fyn20KsIkEnl8z2VPuztVtDMw9sjHgHr/tCD1ZZZcJ/PdbpljwrrBkn/VJsycDuG3Boz5r\nm37VenT2b+TQc/mdgG+LnHfCglV2hpRlYNMPWX1gcWCdMjICflFOS0vjow0vkcASnxY+n0XtHct8\n3VJuDBXLnpOj96hSvgVVyq8MKK/LHZ7Ps+Lr2s92SmbBtpqeOgE0KD2DEiXq5Kg+6uRpt6lSUZKU\nnMqlD7onHVgbZyvU+bXK8OGA+6JRtbA17msFSc56h9vyFo56L/uOg1v/Qm8mL/+bvr/M9inf8L/s\nP3Py5Mm8snkzB4E6AruBmffcS/nymY9DjaS+n49hUtoBT6uTc23Wr1p1ok39BgHXbPpvD+2njcV/\noXjv6nWGFTf35cxChQKuzcyuY4e4csZIz/NDdX061za9vnwTphxY6dlfds1rtJr2HIbg11prm8L8\nK9/0PvfIfu5eNtjzPs4JC971Tb3dsu4y33OdW3fgl+G5T06CtxMnTtBnzX0Bz/FOWPDWd3DTb4Le\nI5iha28n3Z6J69896xLvuqHuYK57vbknVf+UlGP8vN0a6+mu8wUlP6Fy2QuCnu8N3ny7TePEeOok\nQKNyayhWLDbG5eY32m2qouqahs85usuEi9rX5YURXaNZpRz5atIcPvjMWpvReGbgWhsjULF8AfYe\nSOPmqxrSu/t1OX5e0SIFWfxldFvXvl+wgoET7NQPQQLImQMepHyp7KU/uPiFkfz+yhMB5Z2GjWXT\nwcM+XayTe9xN3bMqhLzX+hcDg7ILz6kJzM5WndzWbNtGp6+/9Wlp+7RjRy6uWzfb96rx7luee7i3\n2V2UflLagcBCux/zzsU/Eh8kePtkyR8h7+duGTv3eys48l/qqkHBMvx4ozfp6vLdu7hr4cf4LI+F\n1eriXFnhUPIxLpnxRsBzphxY5ag0HD2RSOfyrZi4f1HmL+5QuWR5Zl8+NOsTHa6f97jn80PSmU+Y\n6GmlcyG0oSm9Wz8achZvjyVPcMweKRnO2qbeVihh5PmB4978JZ9IYtAGqzUrzj1hgwwggzi7G/jZ\nhr9kdouIKVToTPwHE4QK3Cy9gLdxJvotJpNodnaz3KymyiZteVMnpfdd7/DPXzuDLo8FcEu31jzU\nO/yZX/nBJdd5WwOCBW/OcVjzfsh/i4wfPJrIlX3tFgZHQFGwAKRYK+l4ArNGFYoxbsDDJCWn0Lrf\nuz7XBE7A8H1OsOWxGvXztpDN7teVCmUD03KMnDaPPzZsYtW+wwF1LACsyiRViHuVhWCzWt+95Tra\n1w8v+DrnLceMRucEhqeyH0RHIngDqDH2TYJNWLC2ju/PfmuPBu57W8T8j7kDs1Ii/Hnr8z7Pr/+d\nlXA3cG3T4El6Q+nzx2fMPbre53kuxz0XXjU47Hv5G/3Pt3y/b65PK1c9qvFWu5MfL9h1yf2eGbC+\nAVboCQvBWt561BzEh/HP4ezqtM6xArUG3MV6lgNrPF2t7WUgLRu2POm655Z58ZeQym4gsOXtoupr\ncbmCj/VU2aNrm6LBW7Rc0+BZIPjapu79WE/UuyV+L/f1stZUdAcwk0Z3o1JF76Lm13Z5iyPuoTye\nYMc38GvTrDJD+9+Z6/Xd+O8+bh80zufZ/vnf3O/hElj+TvBgqWnv4d5R7PgGb1880IHzGjWMSH1H\nTpnFB4tWgMCMJ7tSNZM8bPd/+DEL9iUEDd4WP/EQLd/+yLMfarbp+j5PEncSE3SCmbdxHfdOnxJQ\nF/d2wW33U7lsWZ9rkpOTqffl2z7nbrj3SeK3bqXDgsmeevaRYrxFIp6ccG5BgjfxfzZ24OQ4t1yB\nokdFVS8AACAASURBVCy6OfQqEBM2LGXg6imewC+z4K3Fzy+Q6qmD8QnOIPRqCeLoAnWue2oFTNb+\nnCu8rW/t5/TGmV7EJfBkldvpcM6FXD+vp+frEthtCt9e+F7Id3XruuQBcARkceKue2CQJgRvkXMH\nYm82mchzqzsTLHgDb563PjU/4cxiwbvkk1KP8cGmmx3P996rtNTh7no5G7OXFWMy+C2+gU99vcGb\npV2NTblah9PJKRm8icjVwEisluqPjTGZ/rp2KgdvHc60uiDF/QNHhDd/7UfT1vWjWKvTx+sjfmLq\nrH8Ab0DQqUMD+jpmkaampnLZHSMxQNOq0LRFNb78cYdPALFg4qmxfJI/93g3AARWv3lyY92uffNd\ntiQ6sqbZX7t1A570dHt9/+ff9J82OyB4m/loF6qVK0ud17wtf+GkCvFs/YJbn4kLT4RujTt06BDn\nj/8k8H6O7ZpuvWj06UhvvTzHjOecbQ+cfMvR+JWLeH61Y7UDZyub/Tk7Kyz4azTZSh0SbMybe983\neDN82eYxGpSqBsDx48e5fN7LAXnewlkey7tYu+9s06kXj2T+v3/xxrZPfO9hX3MlbXjswnuzfLfA\n4C10t6l7AXln+fDzxuMSF/1W3IZ/Ut6CntZS3+DtmXMmULToGSHrNHzdVRAw5g2uLvkGtStl1s0Z\nGTO2PgD8Q5wcALzv7QKalJpPqVJn5XodThen3Jg3EYkD3gXaAzuAP0XkR2PM2ujWLP+oWrditKsQ\nVO+732fdyh3eAhGu7NSEPq/eHr1K5dCzT17Ps09m3vVbsGBB5n/r21X2WNY/O5TDG3fdwG0f+aXT\nEXzGKx1KOhb0Wncr58YgM04BNuzYwbXjJ4V+uKOFMSs1Rw311M0Alxc6k4SC8GeIurUc6x3873zO\ntgcDA7ZO349h5ZH93gL73AU3P0Ll4qWC3n//8YSQdQ0VtD39zXB+kmO4W9hGNOxM77WTCNVtGj7r\n2i4LrRQdJaQwZcWaMOEeH+ddHst3/FUwma2s0Lb6+bSt/k5A+Q8rfuGLxJ+YtWABOGZplpHivN/a\nd0zdZy0/Ye2/axmyd4jfXdzjvCzvNRtHz+V3408y+Z/m2uKP0abGVQxcdQPpjvIhmzt7JznYY97e\nWncjGSYpyNg6SMdqeZt+tB/Tj0L3eic3zjNc7Wt+kqv3V5GVr1reRKQNMNAY08HefxbAGPN6qGtO\n5Za3/OSauo6EoeL9VXjqOuuvJjExiVtav+o9Tuysb3r1zUNJSra/zdrfk885pxxj3u4W+qIcuvKB\ntzmWnBrQxbo4l5ZCC9e3f/zNS1/7zuR0t1jNGfggZUt4Jy+06jscT/IHgTn97qVcuXLZfmb710aw\n/YSze9DavHhNW+5qlbMWh9pvDscdKLjf45d77uTa8d5B587xjFt6B//6r9u3j2snfhFwzdy77+eS\n8WN86u3edqnTgJevCG9iy/ZDe2k3+VNvgUBBgdRMuk233vNsWPd2S0lPp/H3rwW9lwQN3rxdkZ/X\nvJWu8ZP8AjsT0CrnGDXBkqtfy7JOzyz4gMVJG/2eZ21vP+tiHm5wU9Dr3BMW3C1u7aUVM1mEp7WO\nyM02DUf/lbeSVbepi4yA4G3qundYY37y/H3EBek2dQlU5CpuqZe9v2+Vf51yLW9AFWC7Y38H0CpK\ndVFhcOcvKlasKNNWDYp2dU7Ke8Pu5v7un/uUffDWPbn6zN8+yZ+JeNdt3xvy2NHjqZQt4d33z9p1\n6ZtfnHTXaW4JtSD95qcDg7QBU36m1gh7QoMjdUfLAoWY0L0nW3v6dn/XeHcol4wbE9By1xL4slsv\nCmUjVUe10hWJvy/3VlQAKyHwhltfCCjvOHk4m9KPBrnCzdBl69cBed4yb5kztJz2LC6BRR0Cf/f+\ncuaXjGYF7kArmPXHdgQtt8a8eWUYmIE1u9XbsgcT23gDtmFr32NZwl84x9h5ujldjtQjft2jraUt\n9zV7NLMXBaAjD/Azn+BstXPyvmMBulR7k2olrKEvZxQpQ0aS87i75U9wYShPY/5jNXuZxofr/+SR\net9lWZfsmLrVvd6od7JGRVdXmp79XESfoyIvv7W83QpcbYx50N6/F2hljHnc77yHgYcBqlev3nzb\ntm15XlelImHUZzP48rdVnn3/tUCDjcdynrP049hI5JsX9h85woXvjQk55q2wwJq+wb9etYYPC3qN\n+17jb7qZNtVqes7v9t0EZu3e4XeNd3tx5ap83smb+BQgOTWVep8ND3qNu9WpnsTx631WN3yNz9/A\nd8ICFAQ23ts/6Du4nTNxkOc6Z0vZso5PU6Ko77qc1kxTCN5t6j/pwHBt4XOYmrI5jJY3b6udf/Bm\njOGSWf3wBkx2q5PL/a7O5zrHvDkDL2tbQQwHHWPqXiz1COc2PDfgazLqnw9ZdGQpwYK3zMe8wXvN\nvAm1e/91h2fconNh+tebTCDOZXV6frbqFTaxHP8xb76pQpzdpBlB9t0tbwVxSYp1HfDISeZ6CyVY\n8FZc2tC6xqcRfY7ydSq2vO0Eqjn2q9plPowxo4HRYHWb5k3VlIq8+Ws2hh53FaT8ylY1WL1hF7sP\nZ2dZ9JPX9qnhHHEWOIIOAzQuBh/0fZSLXv4g4Piawd5Wr4b/845hcgdEfw94nMIFs7EkQw7Ne+TB\nkMc+bd6C+5Z5h18svqtLpsl6x9x8R8hjwbT/8j02JCUG/3t2ePKiaz2fKwD7/I6v7uzbknjixAme\n+PYjpovVctbW0QXsb91/e2hVtWbwg4B7LNqSjv0Zt2kxb6+fFXDGLyc2h9ny5ma4/dfXmdjB2+Un\nIvx+hf9YM3hjyedMT/RdocG7wkLwb/MH7EMue0zdy4c/xLXA2zXpspfYsvbD/1HRoeh1zEieAhi6\nL7/b0Z1pvbxVL3crWSFP4AbQtUlg6+bLq28BThAnvmPqAPo1/DXsekXaNTV1OHmsym8tbwWADfB/\n9s4yMIqrjcLPbJCgH+6SIMEJHrwUtwItLVpcWtyhuLtb0Ra3Foc2uLu7hiQ4xYpLbL4f4zuzyUaQ\ntnt+kJ2Ze997Z0l2z7xyXiogkbbjQCNRFC86muPKeXPBhZhBUFAwRXvPMFV02uu82Vd0nh/XlXx9\nppi8hHry1nDMZM6+1OwJwKURzodYK06ew+1XbyylQhSbZ3t2IH6cOGQbY+/dMnrRevgUpX3ZMpbr\n2IdNlTk3OnXHJghS0YLOIxrYwblK4sLzJvOYEEM49stkGVj4dSMqLhiHn64CVbkeS4AQHWkJbPoT\noiiSZdkYEKAQcNqgAyf/sJMKAWiXtgizHxw3acTFF+BUnQFq66bc64do5nTep/O1huK9eaDhgcK+\n2nR+4dYUTGVNDu++ekK9w5KenTPVpgCxdJ44+7GOGtO/fPOSlmd6q+d9hHwc54xpPRuAILWiqk99\nVgsr5GsSsWqWojXLns5DIX4aeYPJ3suw2Wz0PFsffXsshWgOyrGI+HFjpvPA6is9eCicwo3kwCMk\nz520XmuvAzGyBsCtW7e4GnoMN56CsBQ33gI/4J3kW84/W4+bsAgYQtF0JYn9ER+4/q34t0qFVAem\nIHmQfxVFMdxEKhd5+/hQNN4A7BvTe+RKzuzVrlDePxGv3wRRst9Mp8ibcu3EyI7EjRub0NAw8veb\nahwjz02XIC47BrQ3rZdrkFl498pQM6G7ducOXy343TTWfp3DnduQImFCdV5IaCg5J0wzETH7uRUy\npGdufakqeu3Fi/TcoXhCRJM4swJRgAk+Jfm2aAk8fjaK9V5s0ZEEFo3rM88fr92BVdjUjrxJP+3J\nmWgiYPZab1bkzT4kqr++pFQTiqWWSJcj8gaQ1ubOX7zR2TGStzVFO+ORwlwNX2LbT0RWKkT5abNb\nxxF5U/TY9OFbmxBqOXZpsXkOOy8o+PFkE8O6evLWP/skUiVMS8+z9TCGYQHC6J51BqkSpAvXvjMI\nDnnLHL/quhCqMQybiKrU9xrgcL6zCBOD2BnojX2Y16o9FkDJzAHRXvO/jn8leYssXOQtZvD04XMa\n+wyVDgQ5c0XtMmD3002XYmxH3nIUTsvUxYYUxX80ho1dzI5DfxlJg3zPu1ZFLin9n4L8XY2eK0fk\n7fwEI9HK08eo+6bM7VCuEB2qfGFa55J/AHUXrlff21QCPNQRkQ7FctKpWjXGbdrCL2cuS/Z09q8N\niFxxRL81a1gVcNO0x/6lStKyeHHT+JtPnlBu+ULT+cyCG3s6diU4OJjs88yE1UC8BGj8v3SMrN+Y\nsLAwPH+diF7nzT7nzdIGxtcxQd6UwoW/37yhxJYJhJ/zhnq9ZtI8jCrtOGTs49tPSre3yJdTjo26\nbxo5sCJvWs6bY/LWnCo8EO6yQzgPiFSnCFs44ZC82YAlPvMt9/865CU9zrbHPtSq77BQJlllvs38\n4SrRXfj3w0XecJG3mEQ1T9ljJpO30l9nIWWajKRKnZg5I6Q+fIN/aUbxMjGjsP9PQNna40E0em0U\nstqgdh46Nq8WoY0S9WWNKZsWMjy8/J8j3Juvu53mlgPyFh0UHzWdZ+9DNPsYJTwQYGXTuhTMnAmv\nEWaSqPy/VPTIwKxG3zlc58W7dxScaVTgt19H+ilq/9fA5R864h43Lp4zpP9LURmD1VydDfk4sK2x\nnVrmX8YZxlqSN0FdyWDPOfImzU0kwJl6A8j++3DTXKNKjXPkLS3x2fqVtWTFl779UBTvwidvMiES\nYK+c+3b/yUManR2DTQAvBPyEMAqShtfCG97xglAhMX/xd7ieN+WnDVhVYiYNj/xoOSYVSZnsM54W\nx1vIu3Wut+n0Qsss7zs8hIWFMexSHbmQQypW6J9ns2nchMuV5XU0qZDEZKdFzjmRXtOFzx8u8oaL\nvH1O6NR4OtfPPdB9Q0D+YpkZN7/NJ9zVp0eJ+hN1ZXiQKiFsmPvPIW8fCz+tWs/6y1pIxp5UFcuY\njiXN61uSNwO51r326yMRzMrzfuHGs+eGOeFV9NqTt2PN25AycWI2nT5F54O7zd0SLEKePTPloGN1\no8hz5vlG0haR5y2WIBJisCuSToD79iFUe1uCtVCv1+rh2v2hI2oRkLfztYYa7BT4YyD6UOip6iNZ\neGUnMwN22s11TN5sAswp0IF2Z6ZbzrHpcuq0alPNI2c/Vp1jUU1q+IlsS855C5+8GatNI4udd5az\n/9lKg+1BeZ0jb7FJTvucv5vGfkzsD8wmvwrDTeiAG4eA2NiEa8RjHEF0BF6TPekREiVK/wl3+s+C\ni7zhIm8A1VLqdIjsQp2FKuRi5LJOFrNiHlXz9Tesrbzecnb4R1nfhX8Wcg2Uc950hMUq580K+69c\np9Ua3ZegANcsuixYifQiwPXuXdUk/ZjAw9evKbZ4lmpf+qkjZAIEtunFzv37aXn1sImk3WwZtTZZ\nWZbrhHDDDZuCnuwJNtFumnStT6KShMZPwKSH21QbegJWzj0LwUHBHOY2+pywJmmK0a1Q7SjdQ7td\no7ksPo5y2FT6ibof+xw0M3kzk7sPRd6cxYTLVQBwQwn1GkV6JakQe+kRqJVqMSmSZPkge7pxZw33\nQvqgz4UTkAs+1D1pnsn8GW8iCDH3N/Vvxr9RKsSFKOC7buX5fbJc1p8C6reryaoRUtPsoYvafbR9\nfCyR3vZt53DtymNAa4+k5KLt3P3PUCEv3lgOv9l1WFAIxsLBjcid9cP2EhRFkQKdp2jrC3B2qvOh\n0OfPX1NqxFx1fueKhWlbuWy4c876B9Dg1/XamlFEmZzZDcezvywBQOFJM3geFGy0b7HOkxcvSJnE\nuu1UlqmTsCd8FVKnYX79xrx8+ZL8i+aaPW8O1tEj87zxGHLYYgD+jTQx1eorR3FVPRLQh1ybJcrO\n4lfXwrWVjfg0r1gJgPR+CelxcY1pTOJ3oWwSbptkQo4/iXoS+6hi7fjmWFQf8AQ2lDa3ytJjzJGJ\nnOUKIKjErZWtCeWKlgOg9YnmUVw7phH5340XoXdIQeTI2yb//GiEDKp7XrAclzVDXbJSN9J7cuHj\nwOV5+w9i9erV/NJtPwgCeerF4smTUKZOHUrixIkjnvwZoGJZjSTak5+de/4ZyuAVWk7i9XvRIXn7\nY1JrUqaImf+PtuNXcDzggcE+AszvUIdWP683kY9lbSqRN2/eCO0W6zVZrj3U5m7u1YIaExeoY/Tr\nXRrVjaUHDzPS94hhzpTvqlElf86o3JoBoijiNWaKKRTq16cb2cZPMhQ73OjpuCLairztrtuAL9eu\nNN6XMzlvOpKjhYFFmmbNw/AvnWudpaDLkjFssKg27eiWiZniLXVcZAoWootCf/Y32DeL9Iq0y1CB\nZnkqxch6etQ+0BFz+BTWlPw5nFlmSORN239RitOmiOOH3jlnxnKFUwaRXoBx3s6FOC882Memp5Jw\nsZudp0857pZrR6TuITI47n+cB7TATYDC8XeSOvXn2S/73wxX2BQXeYssAq/epV3FcdoJfZ/SQMfN\noCODqvnl8nVB/UciKYLA1tNDHc5z4cNgxII/WHNc8rroyVS5XOnZfeWueqwnH8fHdSZOHDd7UxHi\n/ftgyg+ZwTP5Y0VZr3uZHLSuXt3hvCVLljDS7zEI0MgGISKsAr4RYPQgozdwzpw5THz0RgqV9teu\nPXj5kjIz5jvssKA/f6Blc9ImSxbh/Tx//ZoCv842nc/qHg+/oDd261iva1+A4d+yB25yyNZjwThZ\n8NaaCJ7+tgNJEyTEY8kY7LsmxJRUiDRVDpvmrEDzXKXDe0sMaLl1JmdC74VL3uyP9Tlviljvl7t6\nYCZimvyHTQDfsrrKXhyRNznUij5sCkr4dZnPPKfvzRHGnxnIPa7pyJsWhpX+YrTj9OThx3zGHq8T\nLzUgSJa+/hTkTY9Hf1/k1LPvUN4zgEqelz/K2v9luMgbLvIG8PeT5zTKKfdF1OW8LT4/NFyV+JjG\n8QNXGNhuibq+/qcoCFSqm5ueA61lBioXG6YdyJ8iq7f0InGSeJbjXfi4MFScCnBidEfixjGKdd57\n9JRKExapY8BOW033WgS+8UrJyKbfs/XsRbqs3Wawr84VYHC1cjQqWlC9HF7BwnW7vLeN5y7Qfcs2\n816A5fW+xSdTpnDv++Hr1/hYkDdjMUUElaKCds+OvHWC3pNnZUM315KACeDf0Oh1rrN2OhdCnstj\ntLGjC9ak75lN6rH8F4ogwL4qPUgZP6HBTv6NgyRtXgtCGHF7LFE3VllHOjckfT0q5ioKOCZv5pw3\n5GsOihGcKljQjrt7dMM7VT4iix1XNrDl/VI7e2byBjA834ZI249pvA95xpZb5cCk3abLrdOFUkHU\n6bx1pozH59mL+Z8KV86bCwDcD3hieb5pvsHaJ62SnC0I9J7ehC+/Lhrj+0iRIrFEHsOMDwRZ8sfh\n5yXhh2m+b12KpfMP6j/9nSJuQUHBVKs8Xp0DsHxlW1KnTh7p/dtj7i87WbrhFGD84t+/vpfjSTGI\nYs0nGcJ/9uTj6NyuuLnFfIJwhDpvwPN370llR95+3X/cKfvKb8fa648YCVTxzsMV7zymcTmGSvsY\n6ruHoVv2qOevDZQI2s+79zHl0EltgsU+a+XPS638eRFFkWwTjKTPJ1MmSs6YwYOgIAOZ8u+qhVRT\nJUhA1UTJ2PLyaTh3AoHte4Zzx/Dy7VuKLJ3BuBI1uHjrFgU8PBh+eBP35OuX6nckfvz4eCwcazRv\ncU96CAIkBs40NKcLLK7WmkKbJhrOeQJ1sxakbtaCpvGOEL3He0HtbVpqex/1XDVyq8QNYHf5iXy5\nyyqULUR6B3GIQ4jgXPu4jO5Rq5CsmLM2FXG+QGPYhVpIFZvWnjbzcRjJ8KJJTvODQ2Rw9cZRLvIj\naqcI9ffJJhc+tMeNXXjSnpv0AV5hfr+ncDRwAz4eO6O1FxdiFi7P2z8EVf+nE4XUEbEk6RKz8oL0\nAV0ttS5Pw15YVzdn1aWRJE6c6APvOPqoVHKEdiDfxrYD/Q3q6BXK6avt1BgQO3dFv3AhNDSML79W\nCgukc6N+qk2ZEl7Rtv3k2StqdJzrsJtB3DgC++dHXUft9LWbtJq01kD4Tv/snL2vBk7m5kvjntb2\n+J7s6c1eXFEUtdZY8jrHB3cgfvzoiReHhYWRa/hUk4dKT2b1xCaDm8Bt+bPs+zxeDK7lXD7ZurNn\n6bFzp8OQp3+XHhwMDOT7TbrkfQsvmp68dd+8jrV3byi7RRAgoK1zhF8lb7p9pIkTnyMNHHs+1IpT\nQ9hUeg4S7TxjghBz+W72KOqrEUh7z1tr95IsCDqI4uH7NqUPXb2tk+HvP/uLpmeUMLF1tenmMtPC\n7ZIw8fAMjnHOsAe9jRxxsjOg4E+RvsfN/ivZ+WI9kryIfdgUxuRfbTlvwoXuvOGaTJ60CtiuniuI\nF8+6cCYmsPZGK0ROIajkLQyITe0sJ8OdtzfQC72XLgWtyeXxz8gn/ifAFTblv0PeJnadxfYFsmdD\nR8SGbu6MT0nJ7b998wEmtVqmXgNI5OlOmlQpGDy3HclTJzXY/Cpbd0KCwkzyIr4Bk9QxXetO4eq5\ne+r1pCndWH7QmMNhhaqFBkCIZlPJeZP2D1tPDg13fuUSww2dGzQiIb3YccCsYdW2zRxu+D3VERaB\nXTsj/wH9MSCKIr3G/c6B83fM3jUBfu5ZhyL5oi4BMG/DXmb5njJ560QBmpfPT9e6FaKxeyPy9p5s\nIG8Xx0ZPvDfnUF3bLHnfE2qU56vC3lLIVPFI6b677TXhrv9k3MPLt2+ZsmcfSy5elMUYNBuWhFBH\n3vRwRqQ3r82NC4SiejDs1imRJA2Hn983zLHKeXMX4EpTxVul28Oy0fJ7EF7Om86mzr59yPVa3UEm\n+/Y4+tCPNkcXoyejik2bAKeqj+DUk2v8cGyhaT2FpBSwJeM8T1DIW5H4nkwp2Y5yO3uqdvdUkN5b\nv79v0+6sVjRiaJNlEVpVrgFkFlIzpeRgdR8Nj7Q12AErqRBYUHRBhO8DgN/Di8y8Nxxr8qaFIPXH\nHztseuXx75x9NsZuT1Ajwy7ixk0azkwXPhZc5I3/Dnn7VKiWXac/JSfI+F4dS7U8fSFMIlMC4HvJ\nSOjevHnD1KlT8fb2Zlq/I3gUh4Cj0qf+qt3dSOJApkFBVMhbhS9Hy2O0/X6u5O1jomB7LVwoCjCs\nQTlqlXEubDZl8z5+2WV8Sj89rjOxYhmLGYKDgykwQCfZoCOLbUrkoVutyoSGhpJv8DR1iKPG9Fbk\nLWkcgSM/dXVqz1Y46B9I0zVrDXuzJ8z211IjklCAb7zy0K5qVYM9j5m6cKQd8fL/obuqIffwxTOK\nrZxnt45oWs9Rh4VAC/K2+foFOh3dFAF5i6hgATILCdhUuxMlNozmbTgivYfKdafVvoVc47FJN07f\n29SGmSwO8KrNz37rea4jUMq1xQW60vKspsOnkDd7LLi8nt8e7ZbtW+XFOSpYMOe8JSEh04tOosWJ\nNijFDPnIR/ei3Wl7opm8olkbTt/btLhQjYYFmpr2eej8bjaK003kzaghJ3VZsAnQN/eflvcbXVx/\nvJFTz4Ya94CLvH1OcJE3XOTtU0FpTi8aP83ZcvHjaL258HEQEhLCpYD7NJ4lh4MEOD9RI10zNm1n\n9r4LDpu+iwJ8552NoQ2+IigolALDzOTt+xkLOPHwmWnuF2mTM+cH6Usyx3BjJfTVgZH37k3evJkZ\nV65Z7vNGdynfKsuUSbrzonpfAZ3NHTGWnj7JgEO7LYlfGuDIj+HnwdljzLHtzL50ys6WkwULujkR\nkbf/Acfl0OmLoHcU2zwOwiFvS0o0p1AqTwAKbx6odnwIr2AhrS0xr3nOa7RepmAkb709a5MjThp+\nuDbLaEP+6Vt2LLFtsam+v6s2Xxei3FRG6sywJWAnc+6tsfDOaYRrRfG5RATnyJt03DH9IObcHyqN\nRVo3tZCBzrnGEzt2bAae/xr7Ru82mbgppPFDkbeIcPh2Fx4H75T3Ju2xuuelaNkMDnnGlft5UXPr\ngAz/O0rixBmiZfffClfBggsmqHlvelKlC7MiQM+pTajwTfQKFhbu6E1zveSIHap6D0TWQCB2XDeC\ng8I0oidvJ0/hVEya2yFa+4gORFHky+rjrcNmNoG9mz5OYcLnjFixYpE/e0bOT7ImSw1KFWH2PmuR\nT4CVTaqRP3dOcvc3Fgs0L5RDPTzx8Jnl3D0PnpBjmLF4AmBEhRLO34AO3WrWpFvN8MfoixUAPKdN\nBAFqTZ+IBzC+bUdyzpthDJtaIH3sBOprj3lSQY1+zrqaDSiUxljpmj2hMacwsFkf7jx/RukNjpLW\nBfwb/WTI/QoTRbL/Fn5aw3FdzlviOO5c+Sbi0KmCEgk92f8qwCTSa48HolTlahPUjwHDvkGkVlZZ\nkkSnHayQPy8hAXHcpLzJsTk70ufKdIP9smie4zn3JI9qmCjXS6GI8dqQCJRI46NtMBNAxx0WlH06\n6q4w+GxbUMdKcx9xi4GX6+s8b/oCAaibuh95Upa0tBdVLLpeEi03Tctr82IagdylsFthToStxI3f\nkEK9NbGRA9ip7i1/7FXR3kfsWEmAvsBolLwGF3H7sHCRt38B2pbuz+2rcsWpzeJTNSxMInCi9Efl\nu+xAtMlb6vRJ8b082uH1BMnh9RNpL982LcGtW484sP26YczFU4+oUmQIq3f3JlGi+NHaT1QgCAIp\nU8Tm4eNg07X2LYp99P18aHSZuZq9l25LB4pnTFesGluAE3YdFrYePUvPVbu0E3aet3KjFxrGHxvU\ngQQJIi5WWHjqKr2/qY7/o0fWAxyQg6h43OzRe9Mm1ly7rq5jRd79u3anxKyZ0oEI5wU4D2yaOyPc\n/QEE2nvclBw9HeK4GSt1AVLENX8cH3kQ6HghRLIsH01AYy2R3BYRq4oitlw/Se8r61USphEyiYhF\nDtL4sjul9ykpCVhaqheJ3K2LqPKnyo5vqmmW1wDWlZL+n+oeam+wj46IKcQuYiiEL3wM9ZY8upFt\n4gAAIABJREFUeSduHuK3Z5McjgsVNQIniiEOxzmDw7dnc+7NMhPR1BNE6bWNG3QGwjgRZiSYsJEw\nwCvOQHJlqB/hmqcCZ/CaSbJtxatWlXwpxxPfTlImX8YOwKd7GP+vwRU2/Rdg18Z9jG+1XDqwKz6w\nrzb1vTudiBAcFEKt3LpqTaWQ4bpjT5s9NKFeaa6+YMHbJzVnj/+lHg8cU5vSFZ2XLnAhaijaYTIq\nTbUgb3oCIwJdqxVn1tYjvLM3JGAiPUp48eK4iMlVrgGaN6101vTs99cJBdvb1J2LLHGrs2ApFx4+\nMuSkuQNdSxVn9GGpy0McAd5brK33wN179oxSS35RjyeUKUePA3vk90Ef1oRMghv7fuyGx5wJGAoW\n5PtJI8DR1pHz6D5+85oiq6c7FTbV9OLsQ6CgFAtYzQ2vMf3F2kM5cd+PlicWmT5WTlcfZvD8KRWn\nzon0Gj1hjnLe7HH/xV+0lfslKzbqJC9P5vhpmHl3KY5z3jSR3nEnJnIx7IJ6XSFA84ssBODHk98b\n5upz3gblnE7yeCkAGH22E39zX76m5ZdJx1JpjJ5spSInz2zXEQmysyuN6ZlLp3doh7/+vsqGh611\n75s0t6XXISfetahBakxvDP+6Aanjt8YjpTnv2AXn4Aqb/kcRGhrK0CZTObblskrW1tycTIIEUqim\nWpr24c51c7NWzh/eZQGHNp4Hpbmw7lF10C/NLOc4BU0JFIBhU1rh7h436vZkVPxilFFqQxDIkjU5\n8+a3jbbtfyOOzzSTn5GLNvHbST/L8XWK5qdlFSlEaRDpxexrsSJtLef8xpFAiZgJglmnbmuXpmRK\noenxVRk6mZuicUxkMW/fAcYdOm70pun2PL5yRap556d1SefDV+mSJCGgk5bzVniGQjJEk1ftlhiK\nx+wJ0oHFPTyIYK2Gfyzl8OO72glDIUPEXi5R1A3VoWLyLOx4ciOC1R2jSNpsnPsq4v6jvdJVYvy9\n7U5aVe5HYGURqTCqwu7uoAs7bi9n/L0LCwuj7dkR2GPr012szDWT8plLMeXoPA6GmqUwuqXpqL7u\nUagrLU+01n3ESWu+D3pP3Dhx+R+pec5fhvkJhDT4UFglbgB9vR0/DA88r+nAKc9IT4QrIIbJHlJ9\naFfAk/BbiKVOmoO2SfdbXgsLC2XZDel32k0IIxfDKJitWrj2nEEZD+vPBhc+PVyet38gBn0/hWN/\nXtRO2ARSZkzCktPOe8as8ODBY1qUGGUmb4IQKa+bgicPX9K4kjRP8byt2tmHJMmkEGlYWBjVfIar\nX0fbjg+OlH2VvKmkQGDWnCZ4ef03ci0Kt1aS61X3CSfnRj+sGBnk7SVXhuqIWTpg+9hudFy0nl1X\nAgA5F8nOS2fpadMdz6pfjS9zOe55euvWLZovWcMdnRfQM0lC/J+/srMvqvYFwK+X476mUUXfWTNZ\nwVu7dWFB+Rq02L1ZXT+gVQ+1EtUK79+/59y5c3x3aRdqZaoCO89YwPeSd9xa500b2zBzAYb7RJDs\nJyNUDCPfhmHq3HTA9tpDDGNWHNrN2L93oWiwgUhRIRXN89emRHoPdVzxrX3RPICiXNkpckdw4xkh\nhq4JO74YQ6xYsezIm/ZzVq4eZEkl5Qh+tb+TacyiIiNJ4i5VsDc61JFgQkyet+qJKtAkj7HDS4vj\nLZBywaRjxfMWXQw734ZgHgKax6qt50QWBHaR9ySNi6mihaCQV6wKqCCvJ3V6qJ/NOdFsBQGPlxHw\nagYgpeBoHRagZMaLuLlF/4HbBQmualP+m+Ttc0TVPLILXf5eWrmvL0mSJqRqgYGgSETa9TZ99y6Y\n2mVGRZm8uWDEk6fPqNR3gXQgfzlM+KEm5QtmD3feqzfvKdVXa+atkJyzUzQiePDSVX6c/6dmW4Bj\nozpQtP9MdY5+3fC03l6+fEmHcfNRvlqWff0FHh4e9Fv7B3vuPDbsY8o3laiWLy+hoaHkHjXNJGps\nT/wOtm9BKp0MTf1fF3Py8WN17O/ffk1BT89w3w+ALFN14sz2HjQdWexftDgjTxy23JPeaxYb2FCl\nHtW2S4njCOBbqha5czompwo8Fo8x2ItKtWl8AdIhsuW7gdx+9TcVtk5Xr2cmPrd4bQqbZnRPxNaq\nmsdx/72rdDylJfAbq01BCVeqe0AXdjTsyTpsqj+vabdZi/T+Udbs8QoJDaH+0U6GitQhnt3JlcYs\nqt3z2E9AKMFCEK95rhJlGzC3yCLT+MjCqtr0+/RDyJa0ULRtxwQ2+ecFpBw5N5JSxXM/t59uwO/F\ndERuSdcM5O0Sbm6Oc1lFUeTCnYzoq01zZ7zrcPx/Ha6wqQufBaweAF6/eEuSpAnp2L8aM0ZuUc9X\nKTiYBm1L0KJdVdzdY7PVRdgihSKtdMnRAvRu5EO98qUA2Hfltmn8mRt3IiRvCePH5ezU8D12Pl5Z\nTefixYnDhfHdyKcT6XVGoDdRokQsHu68h/CHxb+x56ZzXwSlZi0AAQalT0GTJk1Y1bIpXddsYPON\nG4jAt6vXEU+ACz3D9751yZWXP65c4BXIGU1QNE583ge/4RyQBEhHLCYrxE2HOeVr8MPuPwzngkEj\nbjKqHdzITSfIW0zgLSI3AK/VcuhT0Ejatm+kwoFc64ao4wUBssdPZbBRJl0OOGVvWaB5mpJ0LlSd\nir795HbrGo5UkYin1Bor4rCvYnN7uUlU2uNY1+/2swdkTJLGcC6WWyyZPGrrpEucmku3LzH87mRr\nkV65kMFN3VcYbU80Ucc2T9KO4llLObFnDUPONSMMzbs2JO/GSM0HmHGlvPxKNOTSVU03hsyJolZt\nrSAsTF+gFUao7GnLmKw2GZOZW36FhYVx5HY2QFR7txbL5I8gR2jO3tJIm00QiE8rsmYcarLjQszC\n5Xn7j+DVq9d8l9NYhLDRfyJzhvzOH8uOqecAhNg2/rw2IUbWbf31eO4EvDQI7rongg37ovbHXbG0\nrCMnP+Ir8iPLf+tI6tSJo7nbzx/25M0GHJsfM2HAHSfO0WPJTpMXbcfA1qRKZqwEzNdzsmXBAgKs\nbl2XXNnDb/huj5yDtdymPhWKM3b3EWsJF6TCBbU5vcX6yutptapQPXduso+fhCgax9yIgLwZPG92\n6+vz3+wxbIcvv/rJKQ12wrt6L95NJ4oWeu7dzOqbOhkWR543XRT2f8Bpiz6noCNuwIVafYgTx/kW\nZt9sGoEfQXbeOckrdrjCQOLG1UJq796/o+xu6e/bvhm9VcHCvgrSZ83Gm/uY6i+1nlLHInnkCgge\nnCPAosMCbCitE4e2w/b7e/j15jLjHCekQpSx/xOSMLaQY/tWGHjua5m8fT6N6aODe/f2EBjcEs2r\nJlI001VsgvR/fvbWl4Afyu9D+gQHSZYs86fa7j8CLs+bC04jYcIEpnOxY8fiwR2zxpYYInnTwusd\n6Czmr4tZrbSMmRNw++Zr9Vh5xo4scZs1Zyer1kmkX5QLKvb+2TuCWZ8eJ36J+XwtBVtOXrQ8f//p\ncwN5C3jwxOg/EYw+lUgTt0FGIrZg15FwCxY2njcLil7v59iTdz0KOW5ZBPDX3WQyQGlN7zl9okzE\njOQssH1PSqXPpJE3S0hzMv8yzjD3Zsvexqb08vmGGb1JFdfGVP/TOPRc6Yo8srqnIuuqkepJ5U/4\nYp3eDnua5lw7DH0l6uWvzd5wP4IAUZUI0aRCRErsHGYS6dU+OrT9asUBxvsot7Mn7VNX5cIjneCb\nbnaTBOVpUqQ2NfZZ9XcVqX2gAzZBkwzRo1LaclRKW850/nXQazqe6aj7PbN/bwWSk5yRhaZYrBk+\nhudfx+jzrXmDJIMz5EItQCOGg/JuNs0JCgpi5o2aKKHWbrl2WNqef62M/Eo0SIUkJjNfZ18R4d42\n+OeX9wIQxhcp9pM4cfhdF9KlK0c6/B1e9860O8J1XYh5uMjbfwi+d8xaSSMWtbMY+WFRpbD85aCX\nEZGPtx4dGC5pXLAs6i2S9ChdMqNE3j6QLlbJeprswYafW5IyxefflmbXJa0WUgDOTrYmRJ5pknNh\nwocrjHgIUlqYAFcGmdd5HxzM6A1b5WAP1PHMaBqTc+xktRMAAvj1jtx+d1h0VJg4fSIzgOICHFYM\ny1/4g70K4DHLvspUYEDRsiy6fJLbb145XEvJ0Lv4XUcuXbokFSsAfxSpSZ48eQDoVqqKOv5dSAi5\nVo23tHX6/UO7PUjIu0Eihsqv+6Yv25AjuTHsCJADd3KvHwLApTrSzzsvH5vGReXPJjyttYrpC+NO\nHA4+MlY32gSIFSR5CP8oK31+SQULUcPQoyPxk4mITYBSCUvQNpd1dfqAU91of6oxIIUsayatRxVP\nc1jRChVi1WdTiNlj5yaYH6IBTjxeazh+/PY2KeKZf68l2BP4VJRL41hrzhoS8Xv59hqJE/tEcm74\nuHQ7PfrctxwZ78WofRckuMKmnzHWz9nCrB4rEOTqtNjJBDYF/vrR97Fo2kZWzjionRAE9VM4PKFe\nRwiPvG07ZlR7373zNKMG/qF+GW0/OCDS630K6Mlbi6+L0KbhF59wN2YU6GTsH7pzWGsqDJ4vndOF\nCk+N70SsWB/3GS/nEF0Fq24vjnTevpu7gDOPn6njrvftxiE/P5qu2SSf0zxkvUoW54dSJck6Ufuy\nU9bJHCcOuzt0JKpQyJuk8i/ZvNS8E3sDrtNuv68uDCyq9xXYsleEHu579+5RcsdiEGBTgRrky5dP\nak5v513TChbgRgMpdHrs4U0a711iGlssSTqWVmxluZ49edPj3N3bNDk91xA2NYRFla3IxzmFZFwX\nnhjG2gTYb9Gd5did8/S9vkDdq1bsoNhTCiJEbPZFDw48b/ZocrS1zn4Y8YS4zC5q3cGi/anv0UiI\nRHamF4rYuxVV3Hh8jI2P+ql7k9bV57ylwE14qO0/ijpvlx4s4sYbifzHVHssg/3bwwGp5ZmLvFnD\nFTb9l+PhfaP6fPD76NmrlkEXdhAEfG9PdWqed8lsRvLmJPyu3qNjvVkgSNWmXQbWonrdImw96Xy+\nm9+VO4bjoKCgSOXqfCoc+s1xXtSHQqEftLyxU3OMROfmw0fUGbrUrH8mvz508YZatNB+1GQOPISE\n8MGI25s3byg8eg4AxQRYNCxiz1iO4VphBAJc7d8VQRBwt+tWkG2MuaWWgtbFfQgKCrK0/zbEsQL+\nrb//5oul2oOTfdg0PVLY1Art9vnq9mN8WL7/6jnpEiUxzRm69w8W3LxgN17kqzOb6fH2qWl8Ore4\nHKjfg6wrRwEiWVeNZGeVHymWKjPXvzM+8HitGc6x53fxWjPMoHOmF/K1Im4ALU5LnQWksKnAqepS\nHl1R336WfQmu8UT1oiqeNxGR0jt6mXLetj4wVUPIOxOVenXMXieB9aWmO53iscRnvlPjALU11rJL\n8znyTuoF2uV0A9IIGelbwNrz6SzWXJrENbabRHrdMHsn09CJR6zlhxzLo7Wmglypm3IjYLwqj+JG\nOdMYURTZd1MqdLIBpTNfUwsUIkLujAMB6xC9CzEHl+ftX4btq/cxqcMK7RFb/vn79XEc8L3I1DFL\n4aFA7Eyw8aBz5O2fgPfvQ6heVf5AlW99566+jid8QhRvrHnlFK9jlZJeDGvvnBaXIzTtOJkLciGZ\nPXk7fiWAttPXm8ibvXcL4OREyds2dslalp2+iQgkd3djzyirnKOoIddAY6/Tyw7Im31vUz15uzbA\nOGf6rv1MO3rCVGTg10cb12HhIrY8fmK0KUBcm43LXa1D8qIokmWGMSxlT9565fJm/JWz2nF+HzqU\nlPKTPOaON8252Tr8/Mp+e/9guT150xULKBpvekjEDWmOg24J178biNea4apdTT/bSN60uebm80qz\nlG/JR7tSlUieJCnnH96k+ck52JDtRaLDgkLePjaaHWuhegMrCOX5vkhTy3GdTjUGHckSgCkFV0Zr\n7dGXqiNVb9qTt/Bz3j4WbtzZxJ0Q6e/GBuRK8SspEpb9pHv6N8Gl84aLvNmjWpp2smi5kbwNXdae\nYuXzaOMy6b6obAK+gUYl84+NysWGaQc2qNesMK3b1XB6/p+bTzBxoqTsrnx579jxEzbnGhp+VFiR\nNwQomTcjhy7e1jTEWn9B7TKFo7yOKIoUaj9Fta/83D2uLTsuXGfE0t0a0dGN0cuG5O8uebscNab/\nUMg51FjNigCHOrdk6t7DrDx3WR3n7S7we08j6fL/6y8qL1gu5br1+Xj7/mHxfLa+fgaCRX/TGEDO\nJaN5h7naNIkApxv1c5q8KcixVvubC689lhV5U47dBDhZfQSF5bZYim/meDVlL5GDlUjv9nKRLxrQ\no/GRNnL1pxbaXeIzn2bHWqjruAkwMs9YUsdL7bTdnme/k+1p+81Ibjrkj7gThT0mXK4M6NtlSUK7\nHXPuCmeWsTF9s+xHIr2uC58GLvKGi7xFFd8V/YlXf0ldKz2KJmTWGnPLmY+JI0eOMKjzNvXT/+v6\nhVn72yn1myJdhrgs+i1mK1c/R/y2/QATlkrSLccWRb+y9OdVW5i357KBBJ22aJPlDLrOWcPOa7dU\nO3riF27XBAGO9W9HwgTuTq+1d98+2u4+abDnnTYlv7X+XpMJsVvnYu9OxIkVyxA2HVq2BI1LFKfD\nyt/YcvuOwetY4H+JWdOmtXqcZYrkXcsDbOoatfe+9YZV7Lgv6+0JInVsiZjS5kf1eub5xirThZXq\n8GUms4isFc79dZfa2xbr3hPps3trxWZ4pU6PKIpkWyXnwil9Sb/ujbuTaQaKzpuz5M3NJuWhGcYq\nWxPgYMWhxI5lDGmX3tEbe3JmA9aXGkwS90Qm8mYTYOsXjsnb3Ud36XhNChXHF2BZSUlsuv7hH8HO\nq6X8zER6Rvs4n7rhCCvPzuIEu3R5eNAr2wySxzcWgoSGhjLysiTaK4Uqw1SPn5teiBgRQUfeALpE\nSN5GARuxAU3CIW8PX5zg8OPWoBPe/SrLOdO4sLAw9tyStAeVJopfeJirgF2IHlzkDRd5i2kEBwdT\nK4cckrEJVGiYm57DW3z0fVy+cIvObRerxx26l6fOt873o/y3YMmGHUxbL33IKgTpxK8fTi4kPKj9\nTWVCVjN/Zjadv6mes/Li6UndpVGRI41qyFSenyJeXB69fW+wr19n+4/N8EiWzJTz5tenG6UmT+OB\nktOmkA8BrvWQ3sug0FByTtfSCPyjSN7UvqagEqjAH6SHjlzzx/NGCYPKe7jZKmJ5mtyLx/BGnuPf\nuDdZl4812D/+TRdSxJOqGFesXMEA/E2etzZpvOlT9ivVpt7rJpmOnOdtuMe3DLn1O+GRt70VBxEv\nljvfbxvNDZ7pihukn1tKDiZh/ISW99xg70CeiC8xd1jQqk4Bvj7YQX5lTwi1RH+bACuKz7Vc57+E\nDf4F5FdhDskbwK7AHGiCvGWxsUcubPgJnwytHPbGdsF5uMgbLvIW01g3dxtzx2yTDpSKUr/oJeeG\nhypFh+rymMzVpi7ArJW7+HXrGZN3Szk+NLMTcePGNhQsIMDPXepQPJfnB9uX0tdUWe+CRXP6yEKp\nNAXratNF+w8zco+kA3e2x4/Eixcv2mvGNDxmTzAWJ9h5IfXVptgRpVPfdSBZQiOh0dpjwQjvcnyf\nv3i464uiSI7fRhKKRsQ6ZyzGjLtHtUGCjowBGXHnjvBG3os0pGH83AysXM9k/9nbV5TbNRarfDg9\neTtWVQqdltj2E3pypdg/YFdx2uLAKAKDHltUkmqeKc0ObCqjtcja7L+DBQ/WArKwbzTI248nm6jr\nzCywCDc3N0RRpOuZRuirZpVKTX07rjH5Vzu9TlQg6bzpq01ttPQ6ECkbm/wrAfdVLyBAyZRbSZJQ\nkyY5f3cwT4NXIBE9rc2XO2UplHlRtO/jvw4XecNF3qyw/Nf1LOknEzBBoN+qlpQpG/XcqQ+Jw4cv\nMLjzGhAEOvetQc2vP899fmjsPHiFfnP+NCTkH/61C25ubhRtOUnOY5QuiTZA1Mjb8bldsdlsBAUF\nUbzTTHX+qdndOH72Om1nb1bnHp3SIUardVUCJ8Dxoe2IF08Kjeb5ydyw3hnPW9khkyWdN0GTMQGp\n60LLUlFrC7T67HnmHT+O39+anIjys14OL0bXjF6hiB4lZ0/gnrqGjryp92MkdPbk7WrjbsR14v/n\n9bt35F0zGX2BAQLEFiAbblwRQgCRllkL0r9IDY4+8KfJgWWaAX3xAUAkPG/7K/Xhi50KeTPOVchb\nDfecPI/1nsNvbqhzC7ilY1aFLqZ76bJzKGd5Ye55Kv8sHD8LY4p15vt9/fibl/I1I3lzhIZH2qIn\nfMt85kU4R0/eJuaZQwL3BHQ53VC+Kp33ipeHgPfndPcsvRfVkjTni0wx9/v0IfD8+SMOPqkFwksg\nDDdSUcVzz6fe1n8KLvKGi7xZoVqa9tqB/Ensez9iDaTPFdW+GIES8VIS/EeOr4tPCXNfyFGj1rBj\nh5yjIQjs2vnTx9omzTpNxO++qHZsiBsHdi91TjLEp4mUb2XwrtkRGHvP2+HZnYgd25hTZI+C7Ywh\nxJQJY7NtXNS1zOyhJ2+zm39F6dzZAGvyhgCXRkZM4JYfPcmwLftMBQtgrDYFqeI0ODiY3ONnOHyf\nOvoUZdGZ07wIDjacR4CiqVMxvUoVfJYuUc+FFzL1nDFR24eFFy2jezz2t+hgOTfzfMWDrc2pmzIj\na5/cxkD0gMDmfSxtBIeG4rVCyZszki0DETSEKFFDlVZN7TXyZj8n4oIF5dqp6iPVPY478DurX51S\n5woClMeNkZW1MXqU29nDYH93+UlU2tNNfU8yCsn59YuoSU8o5M0mQFW+pIlPoyjZsSdvVVJ8Q9Y3\n3sx7NwAb4Eke4gmJaJ4/4r/3+Ze68YQbQLAux02y2zPXtijt70Nhf2A2FO9cHKEjPpnNfxtnb+UF\nniO9z/XIlzGygsH/Pbh03lywhO+Dn2Pc5rWzt+nynawYLov0RkWg1wrNGg/l/nVIl0WgmE9Bduw8\nTbZcSRk3XlJSt5LfevL3W0tbadP8L0b2FBX4PTAev7eWE7PE0SXmD8VizSdpxMAOzrbJOj0r8qHM\nM4G3aTpltbr2OV2nhZr9JnPzPZJnb3QnLoy3tn9xTDcqDp/OvTeOtdMcYdiWfSAtYaHqZTy3+uQ5\n+m2VNLj03kk9upYrjU/GtHy/VuoxmRA4G0Fv06ji9ru3Wt6bnZdNEEAUjHcUxz0ujrDi/DH6ntYl\nrNuTNQQCGvcly3Krys6IH8oX5v+Gktnzqse51g1x9Otmgr2sWmHfftiAo1VG8Mer06bxuwihzPY+\n7K80ltkXfVl6f5cuP834v1phtyxRIZPJuzxm3KH59C7Z2mQ3IkQ3123bqY1sYpW6n2zkp1NBrXfs\nBH6P0MbDh9eZ/bAHUsGCFsoFrSjgn4BQ1gFWfzcScZPwG+Aibx8DLvLmglNI65lMevEB2kndlx1l\n9/xhvf9psMGZ/X/z14OXpE6TKFJdFVq0rEiLlhVjfI/O4ODvMSvMe2yh9kHZcdxyjlx5EM7omMOU\ndXstz999+kwibjIGLN3M2BZ1HNrZMTD8NkZdf1nG1psP1Y/9K04I9Spjrw3oxsOXLyk93U501eLX\nM9u4SYZrSqOqrJMmaTad/LUO6Kj9Hz99+pRCK35lWMJUJEqUiG4Pbji1dz1W3PHj29RZmVijrula\nw3zFmHJ6F38hEc7XJhuigbj5yw3ppd6mEa/e/NxahPNrEYCLtfuro7S3QqBPti9omudLAEpuHshr\nkxUNYcDW2+fYK+e6Fd8qFT4pfVBD5C08fWtut6WsKjggnbtDzvOxOg/rw6ZVheqGay8wCyRHBIm4\nmVHCrSHlclhryzmLRdcrgPy/El7F6ZkHY7j5ZiVatamNr7KcidB+GQ+pXdmhmwWAOxy66SlXyEIi\noQm5Mw3HO9PtaN2DC1GDK2zqgiVuBTzgh0qyHplM2L5t/yWtulVTx1TL3U/7qI0nQAj4nhnhtNr5\nPxH7T/jRb+R66fW6mNPyUsKmCHB0ccx7hdYdPs+wpTtMROXMjA+ng1Zn4gKu6dpW2ee8rTh2kmGb\n95lCoeYEf925cMbqm9O/fPuWgtPktkeyh0cJp97o1Z0qEyfhJ8+3Cs+6CXC9i/b/EBYWxv4zZ9h8\n5gyVCxdm+P4d3LJoTG8Fj7nj1TGra9Snrq9O4NUuRIkA/fKXp22hoiY7L16/5urjx7Tfv5zWmUrx\n19OnvHxznxP8TTnBg8ENzSHBbL+NMNi3CpsCzC/yHW1PrjKcEwSomdCLsRUku96bjaFLQRBVD5Ig\nSF0QBKCwzYPZVaR+oaO3jmaj8JzDlcdQansflLCsfbGCAnupkM4pv+KrPBUsx+rR5lAfnogvEQRY\nUzJ6kQc9eZtdeGm0bOkx8qLWeN4mQN/cf1qOCwkNZuZ1qZdtRFpvi663ACTdw4jkQqRq0zDi05MS\nqb4mYcJETu/90M0sKO+Jm/r/40HRTHuctuGCBlfY1IUYQ7taowg8Lz8RK21Q7ARufcp6sXTONpZN\n2oXuU1v6+Q6wwd9PXpEsRcQfClWKDFFf/7z8R7J6adpI634/yKxJu+QvVcl+k1YladqqfBTuLGZR\nunDWT72FKOGL3J7qaxvSV0gGix7ZQUFBFO09ExFII8A2B83prXDo0g3aLNooHQgw7rtK9Fq9Xb2e\nu785D65VCW96Vi9PWFgYuYdG3PFD0M+3g/+9+2RJlxaQyJZ+VrnUKZnf7Hv1jNr+3EGoNRSRLFMn\n4t9F8pr8ef0anQ7uBmD1/h0G/1Bc4KodcfOYMwFDHpu8Tvtdm/j9yzp03L2evxzcY2YHbsDECRJQ\nNEECjmfWuiuUXz6Nm8AiMZBFK0bRI2txOhTT/k786hm91g3WTuWU+EI9vvqNrrr7pHnNZgXKqa+V\n53ylw0JCkCRM7HAyLJBiW6Q92gQRRCixrY/h40QURcuHvB5xazDx/Wb5SHCKuAE8lQvvY5ZFAAAg\nAElEQVQZFNsNDreT/1/D1PDscp+5pjW7HO/CC57jpiu4mFtkiVNr9jxbDxDValPPuHlol3OoU3PD\nw8zr1XRHIndenyZDgoKWY5tlX+C03dpOeNocoWRmf0RR5NitLID08Z835boo23Mh+nB53v6jGNVj\nKvvXBEAYNO1dkYYdnauQevv2Ld8UGAo2gTYDK/NNoy8jvXZISCg1imsq5J5eqZi9XCuymDJ2HX+u\nv2Agb30GVaZi1WIGOxW/GKV+ia7Z0JkkSaw1o6IDURT5os4Eg8dn//oPKxY8YMZ6th33l9YXIG3S\n+Gyc/GMEs2IG5X6axtN3odKBoOW7VRsykzsvpCS+LMkSsWFAa4NUiKVIr+zV6lutBE3KmuUtjh07\nRu9NB8kmQHIBNigX5GcHZwoWlHUArvUzE81s4yajJ1F+vSRvWpnZs7n3+o22dwHaexfg53Nn1GT/\nIy3aMHTHFv68axcWku9rSKlynH9wmzUBfoY9TSpcmu6nD6AvTLjWoitxYscm+/zxBFlKhUBy4GQL\nLTjosXis/o4lspu1IANLVlFPFVo+lmdo/1/fpPFiwpffmt4HgAdvnlH2T7lC08mCBSXvTDlW5gCc\nrWnsJFDWdxBvCTGMtenmTPFuRu7/ZaTagWEoMiMDs9SnkqfZyxgdbL21m/l3VumkQqQ9JBbcecVb\nlWy5CTDNezJ7z+1lg7AGEMmMJwN1D5ZW6HamAdZSIUoDeaibsgeF0pbi+bunTPZrLo8LI6WQlXZ5\npIeU0ZeqUYOx5M+d32D/1q1bbHwjzUlAdZrn6PGvjmb8F+GqNsVF3qKKz609VlSgJ2+/re1I8uSJ\nP8g6ZWuPN5CGX8Y3xCt7hhhdw6fpJE3+Q/c5XSoFjBj2IwkSxKdIS2PulkKYTs6Pepj1+fO3lB2o\nhBehULrELOjTyuH4fD206lKHlbD67xkBLo42k6qxG7az8MQFy7mtvL345dy1CMmbfW9Te2Qbq+xV\nFzaV7Zxu9wOJE0iux8sPHlBjxXLV7urv6lMofXqyTJtoJoto95tNgDoFCjDh7GnjGF3/7sAfjB45\n+w4LevK2uGwtymbVKqityNvi0t9S1jNbuPdthRfv3lJks1lAWOvOZiUVAoVipeNM6B2V2Cnntb6n\ncKq6dXcWKedNm3O48hgGnVjMrmfnAaPw7p4P1N9ULxXiJoiIGHXZFhX7JdI2J54ZyB2uhUve6qXq\nhXeaEgQFBTHq2rfyuDB84tTiVMh6bU8WvU1tssdQKWbQh03nXyuLEnrNG7sdxT0bR3r/0cHrd35c\n+EvKKbYJUDRT4Edd/98CV9jUhSjD91b0+gV+Dtixt1/Eg2IA+zZ8mrZch37pTKxY0p9o0ZYfpoIr\nXjxjvVuCeFr14+Blm1h3UvIq/dzmK0rnyqZGABVKYV9t2mnOcnYFaAFB7/TW1b99aleiT+1KtJq/\nnIO3pPFXhmq2en1dgzoTJ3NZzpC/OtBM1LxGag8chzu1InlijbwHKbIg9pDDl8vOnGHCEUm01p4w\nH/D3p1D69IAW8bSCHzDhzGlz2FWE8uk9+KVmXeovncfRN8/MuXUyKqfxYF51sxAuQGBTs1yI59LR\ncFCzE9DY3KDeCi/e2ZcaCJyr/RPusWLTY+8K/nhi1QJJ5FTIXWyCFDLdXaE3FXZL5FMpQvBx04Rd\n34W8p8x2KWwoyA3cFSKYVB4zrEhThgFld/Yi/Hc35rHUZ37Eg+zQ/pREjvQkKy/FmFxwFX3PtiWY\nv9WxY/KvNc2PEycOQ/JuVI9FMYz7l28QTBDxiMM97hNfiMc7AhAw8H5CkfLLfr4qRTfa59iN/v36\nK/gYEHXy9mdAXhSS+GX6E8SJEz/COfHjSmkjEsH8PtyxLnxYRMvzJgjCd8AQIBdQTBTFE7prfYFW\nSL+DnUVR3CqfLwwsBOIBfwJdRFEUBUGICywGCgNPgPqiKAZGtAeX5y3yaF9tNAEX5MpFRfbjE3ve\nQkJCqV5SrpJTwmbaI776ZaVUnlYsO1IbA+z8SETuU6Foy0nqx/aHbI/l3XWyus6UFlXpumgLADsH\ntiZlUimXMV9PbcyFCd347fAJhq7bb/ImrezUkHzp05C7n+atW9+hIV7p0lBm4GQe68aOrFKCb0pJ\noVXfc5fotm6ryfNmT+D05O1c746422nevXj7lkLTZ6N84YlyiFAJnWadpHk7kwhwqpv2vj58/Zri\nv8w2ed6a5c7PkAqVAFh29hT9D+wy3bf201jQ4EyHhRRCLE40t65OPBB4mSYH1msnBLhSrydxI9D6\nA8j++3B5Hem4dOI0/Fq5jWFMZHubCoJII6EwWVNlxBYnDrXz5cVnywCHc20ClE2Wm9GFm6lrltvZ\nE/uw7O7y2oNKlb1dUTx8gxO3oHiBAsQU3gS/ocOZDkghUKR1HPRD1ZO3JCRjaMGYl2OywuPHj/nt\nyXcycYtZKOQNIGus/uTI+HG9eP9lfA6etwvAN8Ac/UlBEHIDDZB6PKcDdgiC4CWKYigwC2gDHEUi\nb1UBXySi97coitkEQWgAjAXqR3N/Lligx4zv6VhugvopnDpjkkjbOLb/NIPb/qaSJwSBxKngt93W\nQpwRwZTSYZHjUbZSdvV10uSx+fuJ5F3Jk98i8/4zQ4mGSuWu9OPw8sjJihz/BP1Mi2Tz5NwkjTDp\ne5sKApyf0E3NexNk74w+Ob/B9BVcHNMN79hwNhhyAF7ppMIUVSxCJk/9th7m3N2HDKlXizI5zEUh\nzQuZBZmv9Q8/bJo4Xjz8ejsec6O79p5mmTyJLJMnOSReDRMmY8Wrpyy6dI5Fl87h174rjb0L0di7\nkKVtqWBBBwHOftcG79XzmJMhPz/cte8rKb1xCyp853C/pT1yEeCRiwWXDjPs9B5AJOdv4wlobHxw\nmXpiJ9NuHEHJX2tlkVN24OV9vNYMU3Pe1GrXSGIlJ+DhCQQB4iYIIitJ8OcZIKjEB+Bw5bGW8yMT\nLh3xYgGb0Ypaah/oiL57wrpSkRMid3dzJy1puS/1xJChlPM4xrMoyIU4g92XF3EGqVgid5yaVMna\nlRQpUtA+RcwTN4DqnhcMx9sDcgBSLmByfsLbo8UHWdeFmEGM5LwJgrAH6Kl43mSvG6IojpaPtyJ5\n6AKB3aIo5pTPNwTKiaL4gzJGFMXDgiDEAh4AKcUINujyvH08jOyziAPrpbJ0pXRMT94AtlzUyFtV\nb01aQO9F23p66EfYbdTxxVdajtu8SY3JkT0dAG/evKFKo5kgCGRLDwtmOC8VEl3y9jnAvjG9nrw5\nktxQ8tlOD+tE3NjmZ8VcgzQvnjM6bx8CJwL8qbde9mjZkTdTIYb8OqBjD+rPn83R969M9/xLpZpU\nyGYmm1KHBY0Ulk6RnmW1Y97bIem8aV6yOAhcqtefhqtHclIhJnZeNKXq9NrtQOqcXChfM3vP9M9U\n+g4Lynmbbt20xGNDVevOCGV39qIUiTjIC5IBibCRRciIIIQx5EtzCy0rND3Qi+dyvetErz5kS5XJ\nqXn2aH2iufxKlKtNFxmui6JI19ONpE6i8v1OLbiS6OD9+/dMvSFpJPbO7QvA5MuV0UuJdMm5I1pr\nRBbbA3IhCQlDeY+rH3Xt/xo+B8+bI6QH9IIzd+RzwfJr+/PKnNsAoiiGCILwHKkAy0rR0YVPgB5D\n63Ng/RDLa3rSFh7WHujN3JkbWfPrSRAElm/t/sEKDaKKvZusc9z2Hb0uvRBF/O6aPYPh4fCKfw5Z\ny9/V2FLLI3k8Ng74kfOTzOTqwvhu5O09OcLMpYKDp6v2SmXNwLyWZg9TaFgYeYZpnpXy2TLz8/ff\nGMZ4DTfu7cJPnYgj5wVmH61du/5TxERQEekF8Nd74aZq5083bUXBJXZJ7SIM2r2do++tJWtb7dhM\noEzePOaON+xXYjnSu3Xg8V2K/jqJNgWLMerMQQCyxUvMjgbtVFsNFo9RP0iv1OuKu7t7hPdljyBE\n3rx7xyu3hBD6wnJMzrVD+SJRFvKkSu3Qzq4Kfaiwy9qDBpCK+PhW609oaCgltg/gPm8ovlVqT6cU\nLOhxEGkvzxB5Rih3CAARjjy4QPE0eU327bG49PgIxziD+UUWhntdEASmFlqhHnc704BuZ+qrjd1H\n511ObLeIQ9d6XLq7X3394tU9EidMJx9F7PlT8Ou1kgC6wonwdd4iQiXPy1Ge68LHR4TkTRCEHUAa\ni0v9RVHcYHH+g0MQhLZAW4BMmaL2tOVC5FDNS06eFgQGzG3AiB9XmcZUzddfO5AfxZOlScjybcb+\noqcOaE91fz149tmRNwXv3wdT6TupsMM+qd3LI+VH2UPRFrpCBZ13y9n2WDGBgKdvydd9MsdHdcLd\n3fyRcWFcN/L0tsiZdMBvD/jfIfeAyVwa0Y3LOm/b9QcPDeMGf1WBHMM0QnZ1YDfa++Tj56NStWJG\nAZW4AVzvGznPXSNgOdDSy4thO7az8Px5A8na0qgJj0Ose5wtvngOBAjsoHlfPWZpIUCP2RMk75Zi\nT68np3tfHhLCqDOH1GO/dy/YEXCNip5ehIaGGp6Ac/4uvRe1MudkWtmvybF8FEpZxtCspWji8wVZ\nV44yrQHgvWm8clsOse+VP5U8c3Ch1iDybRqmuyJwvpbkLT9bczj9/ljDn5yhNG7MqC6dL+Lbj4e8\npqhvP7t1BI5UGY3f47uqSO+20oPZVyFmiJczWHhtCdv/3icfibgTm198ZsWAZYk09b/QiDRkpLt3\nxEVFp27uwPfVJGwCtEu3hCRJUqjXukWyr2lLr0MRD4oAfwbklqtaRYqn/YP/uWeJtk0XPg4iJG+i\nKEal19BdIKPuOIN87q782v68fs4dOWz6P6TCBas9zQXmghQ2jcL+XIgE7gY+0g5EkSmDVuJ7eYxp\nXMK08Oq+8VzsWFL1QZWCg7WTckHC1hNDYninMYu4cbWnaQHY94H13T4XnJsikaD83ScbigF/6j+d\nncD5iWaSdHGc+VyevkYv2dmhnfAeMt3hutnTpOLKkPAJWNfKFfkidy7qL/yN26JWtNA4SwaWBt4h\nHnDOSRI3vHt3FKWyl69eSeRNh7rLl3Dgh/bmiQ4wq3gFph/dyWsBbionRQj8oRce8zSykkEUONha\n+l16HxJCjiWTUHLevsCdip5eALi5uRHY9Ce6bVnFuocB8mwB31tXpKpTXT3P4BsHGe1/UEfaJHuH\na3Sl5J/GyvLLX/cj9wbNU76kZCOaHV4GiAw8/yeDLkjK/3qil3/TIPQacAAHZI+Pb8Apk+f1WFWp\n73Gb7ZMose0n9LlpjQ+OYX3F4cQUvj4oFR38j9gsLGUWem6arTHbj+9T9xBEEM2OSXI4i4r9QpgY\nxuiTI3nJc57yCE+y0qfQAGw2m6Ha1CbApPzWHReSkNapvb5F68kcwisghePBOjx98Re/35ckRxRB\n4eZZ9qjV6FHBoQCp+laqaoW7L1fyP/d/d+HXvwkfKuctD9JDbTGkgoWdQHZRFEMFQTgGdEYrWJgu\niuKfgiB0APKJovijXLDwjSiK1jX0Orhy3j4NquWSJQoEAd9LVo2xjbAkbyc/79w3F4xQct6mNa/B\nl/m91PN5dV63CxYkLiaQQw6XWon0NvDMwIqbWjZGZD1w9lDCpv5duuM5zZirqEDxxKYFDncwhsT3\nXr1Csz2b1d0GtO2J53xZ6NmuEMK+2lQ5bpE6M4OrNeDKk0dU/UMO25paXEGDxB6sehmgHiv6az2y\nFKF9MUnMN+fvIwjV5aL1y1OB0ZeN+VTWOm+Oq00FAQoSjwU1+nHj2X3qHZZIuSJ14WiuTdDEgG0C\nVImfj/4lotffUyFvrRJ/Q8181r6GVX7r2PjkD3l/WluvRcV+4fLfl5l4Y4y8f4mQphXSM7TwGNqf\naix7pqTz1VLVpXoGaxFkeww8XxuQyJb06yLlk/XPszn8iRYIDQ1mvl951Z60V8hARyp7NYi0PRc+\nLT65SK8gCF8D04GUwDPgjCiKVeRr/YGWQAjQVRRFX/l8ETSpEF+gkywV4g4sAQoCT4EGoij6R7QH\nF3mLOdTI2ZMwXZTI199cCfbkyUu+L62RtQ5Dv6VmvcIfY3ufFNeu3adVb+2pW+myULqu9B6JwME1\n0e91WqypRBzyZE3JxYBHapj0+IKPX23qDPQFC/DhyNutx4+pNGuJ+n6kj2tjdy/nEtujA0vyZlec\nEdjB+XzGMvMncYsQE3m72bI3Hgt1+WQCBDaTUhU8Fstebj25kucFNO6rNafXka4sgjvb6zve1937\n9yl/eJ5uWuTIm/LzTA2zBy0kJISSOwZazpXIm+aFa/g/H9oVCZ8Mfb2vB+/kALEN+KPsNNOY0w8v\nMsJvJooKoQ34veTscO06g06nlIISo4RI0wyd8E7uQyybY8/XrPN9uMcV3ARRJbXuQjJ651kY7X39\neq20+rql14Fo23Ph4+KTFyyIorgOsGxwJoriSMCUxS5750zZqKIovgMc18m78MFhs0WcKtu66kjk\nsisAatYrTNU8Wq5b8swJeHJH1/FQEFjg25Nnj57TtbnsQbCB7/HB2Gx6ScrPG56euvCGXeLQh4jb\nj+nwFd0mr+T6XavukR8e+bvpNNSc7G/6oYgbQKYUuvdfJMaJ25+nT9Nxz24Q4GjL1qSUBX8DOksE\nqPicn/kr6K26viBAgI60hYWFkWWORLxrpfVgWh2JkKgFCyjeOum35eC3bcnwP02i59wDvVwFzEol\ntUwqslhLT5hWrDq1cnib9u7fyDrUNeTQRpbekSRJHDWmv1Z3ED5rh/FcOgnA2a8GENvNKN4cGUQU\nykuKQHkK062CpARVe9dAnotvVC24Nh7VaeCpedDaZ67LpJur5EpWkRr7OvFHWWP4PY6gFXLYnBD/\nlcKm0qddv4w/ce3FVTa8XIONMARgjtzfdGrBJXQ53cQ03//1JXInLRgueWuXz1zcIYoioy9VV/fX\nV6401ePuqwusvtMZG1A+Xn/yZJb6u955cIEtL6RiltYuwvafh6vDggsqNl2KWHNp3fExDO+2kENb\npKKDqrnlLw75W+HJ7deGY4C06f5HLLvvAivitmLZHhZMlxKLO/WuxFfflIjsLXwwxI4d29DT9OjJ\na/QYKSmnCwIciAGvG8CxxZqHbfnIj9PP1BmoMiHAuYld1V6L9h0WHEFpSg+a/MblERHPLTJsMi8F\niFj7PXoYsXeP+vrk3btU1XVr8Jw+0ThYkO7BY+YE9Vj/c+ODQMy+ISMSx45jOK7lu8Rgo93Dc7Do\nnMHjd+b+bZW87blyiRYnJXmTaSW+4qss+UxrrLhjryUnIQ8JuMgrBAFyrB1muAUQ8d6kCPqKjM1Y\nm5qFNC27Nf5HGHbpD2m8INIrV1UaZ5G8QMuu7maK/3Z5rqM7F9hU0UhqeudqSP9LWkVvnfRlDNcr\nZS5JpcwlHRmU7illVtakjFg4d+nVlWx9Ju1RCZ1mSp6JHGlzsOHEGsBGZiGzOt4m2JheaJl6vMJ/\nFsde7OXQsx0cfb6DCd7mwq3wIAgCVRnJlv+3d9/RUVVrA4d/OyEoRSU0lSaRD0IEC1UUCxApAQED\nAnKNiooiTQVZAiJFQRQXfngvouD1Ij1SBBUlFFERc6WICBJCJzRpAooxCoTs+8c+05LJJJNMySTv\ns1ZWJufsmTnzZq+Zd3ZlFJWJdzmXfakQc8Pxxnn8z61ePZco3mRvU+GVuGhr5qi7dd6sfKxGnSs5\neuACZa5RLFuf/4HJvxw7RZ/upqtjYdILREYW3cV3n3hhFnsOWqvY+DB5K4gmT5vE6IMB7Wl0201+\neY5XZyeyeNsJ2sdUZfJTOdcmazx8ChecZlSmTHJNzNwlb290a82IT8wCpF/0782N15tJ7YdPn6bd\nu/PYNXaIy2zTqV070O6WGN++MCeHz56l1ZxZ1vOZ98XeNWqw4JejOcq62y2hbvmrmdaxK+2WzCVO\nRfB4s7tp7pT4xH7wNvsw4xIOPjHM5QtM7Q9NQvPqTS0ZsyvZfjyp02PEVHY32R+i5k/kg+tuJzY2\ntkCvd1nqFkakfmFeLs6tc66/U7qasamLdyczYe9K+/3D7bNpNY0jrmNbpmO2UniYtmbYuu6wsLTp\ncK6NrFig63Wn63cDAWtdtNqP0Kp6i1zLPryxrynrNHlCkcXE+q9R7epqOcoP+DEBxx6kMLXxfGtT\negDN/epJYm9t57PXMiO1PxnsJ0xl8UT1pVx1Vc5Z+OcvHmdRmumgqkocXeqNylFGFH1B7zYVJdCV\nwAVzc9CrnXhn7ApHB0UW3FC/IjM+LtiaZtWqV2X1hjG+uEq/uHw5i1bdTSuMVoqV8wdRvqz3627l\n16FjZ3hw1GxQ0DfuVvr1zOVD2voHPPveKtbP8E/yNuax3nj6z8x9Op6eM8wIinpulryKqRJJ6mmz\nD2TKq88RFhbGhOWOpRE6vpfo2oKl4Ksff6bH9ZVYfPwM9QAVpokeP4Vu0bV5sVM7IsuVo95ER1K4\n56XCddvO/ilny8aCY0cd1wRUBM4q+KLzg5zJyuTRFY5RI3v/PE+7xXNBQZK+RNLmr0hzSt7W9n0+\n1+dOe9yMb3t781qX43ErZgGwtcdzNFpiZo0qBVvv759jZwVv2RI3m9T4sSzYkcyEfWusI2aXhJs/\nG8v2zuNcyl4LVFKR7Lb29tyaabbbCwM2x5kxeB1XjecsrmvhbfhtD10jc0+w8pKw/iXO6T8IU7D8\n7ql8etc0hiW/wn5O5UjczvxxhlEpY/idS7xVaxx9whOYdXke5SnNtGbT7Mnzsz8MIoN0ylCOqU3z\nu0uD8mniBtAvJu/lS64ufT22mcSSuJVskrwJryRtc10ipFOPu8jIyKBbMzO8MWHgfXS45WVHAaWY\n+lE/6sbUINRl7woKU3mP2ft2088Mf8skKcmJQ7wa53fopGOlnO9Tj9Avl3Jb/h2cnQmcNahT2+1y\nITa2xA3gYuZlEr/7jvmbUswBBTMT7ueJ+Y5ZeLvGDuHvzEz6f25mRe4BBln7nX68O40M9TX/7HG/\nT1/D6DaxjG5jEuQb//mW2zJbBrt+MbGt8/bGN18yPfUnxwmrrhz/9VfuWPqhY3LDU56Xm3m+WSzP\nN4sl48IFblroWOIj/ZLrenPPJX/O7E5mY/BjZ85w9+oZ7IwfmucivvWWjLdfn60+z7r9Ee6oHgVA\nZER5e9ky2L+noZSiR3RLekS3zPGYTZJG4TzGrFnSS4y6sRNncR6vqUhum3N5IYBRayfzX47zxR3j\nKVvWcwf5XzrnunuTW451UxIGpYwkS5sWthcOjyOxxfu0pVWOchk6HZTmL9JZkpLI6r9W2Lstw6xF\nlcOsj8opt3m/s8LR8/uYeXgott0LoGAzTm361lufdyFR7Em3qfC5TxKTmf56kv3T4ZaWtXjzXbMJ\ndvsmjjfaerdUZOqH/p8x6K0+A9/nwGEzhJsw7AusznmnD48MngVKEQasW+a+q3Tc2x+z+r9p9r9t\n3YTfLwydXRb8KeZl1xmqKEh9dQj1x5rj1yjYmMd6b8ES9Y5J6vpHN+TFtu1zLWff29Rpf0+t4Ntu\nfbihUu4LPLeZPZkDXLbuC6B5sEYMk9t0zfU+zrNNbQnZvl4j7eMSAU78cZ64Vf/iT1s3oILU7qNd\nxrzt6lbwVu8m1uK8tq8mj1Vuxryzm3DedF4Ba1qNoVxp1+EQrda+YJWBr9u4T5p94eGNT2GbiWpm\njZrxZd0j4+lStwsAa1OTWPjnAit50/bfzhvThymIUOG0juxCXK28t9/Oyspizs7RHGUbSkFDOtK1\nQf7XDwT4LeMEC4+Y7tJwJQlcqJNuU1EkPdC7JQ/0zvkNPbtuve4JwNV4b9DTbRn68pIcx68o7egP\nvMrDcLzboq+1J29lS8Oq2c8TXojZe0WZ81Ihla5QrBufs2vwbPpf3DVxOijY+doQ5j/amYfnLGfF\nMz2Jql7dXm7XK0UrYUs7cYLWi+aDMqMFUp1a3Vbt3sG7e3awosMD3FSnTr4e777ranpM3ADi6tzM\ntP0/EQH23RNiq9Xjy23b6LvdzExMe8R1xxLbbFP77grA0T/PUbO8Y2zZ5lNp9sQNYHWHgfm65tzc\n9sVobMnNjx0nsCXO8dxdvp7EnDObAKeB95YLlzPJ70jW9uscdWnVvW97KAnxyQMIU2Y8WwThLLjz\nHTel3DdURFeMtt+OjYkjljiX82v2LOez9AX2v7M0XCKTcuqqfLwKMzmrT8P8bR+Ym7+zzuVdSJQo\n0vImgq5dMzMgevVm990fouhyTt563hrFmIfNZtuNRk7hIubjMkJZiYiVvGVveatWoTxrX3jK5XHr\nvzLFZS21JY8/yM01axJIa/bu5umkzx1rqjklb7WnOVqIvFnnraC01kTNM5MasidvzrK0pu7CiaAg\nvnI0k2Pzt6Cst2zJ27AKrUho6VjWo3nSS6ahWtla+MykhjdjEmhRvT6tvzKJ5pXAl/e9Cfim5S0+\neYBTixosvjPn+DHbhIWbS8UwoknB/2dm0oLmzQbziIjwbk/TgvrhwEK2XDKzaftFrwvIcwr/kZY3\nIYqB8+l/szJ5B2/NN8ukTBwQR2wL/82q9KXclgrZ+voQBo+cQufWDWjbtq1LF15tIA1IHe/+vpv2\n7s1xbPevvwU8eWtbNxqSPrd3m/+ekcE11pisvBK29IsXafih2aqpVbVazOqcd/eaJ0opj0mbTZhT\nnHvVzbl8iK+4W5wXYNIN3Xnx0MfWtcBXseMoU+pKNqZtp9VaM8BeKbivdAP7fb6JLXxX6bKWeS8T\nMv/2Dwr9PFCwcW+F1SSqJ1v2vEs9+gf8uUXRJC1vwqemT17BJ3PMhskrt08I8tWEhg3bDjD63eWc\n/8tsYlSn2jUkvvFksC9L4LrDwoFBQ12S0Lw88/5UDvA3q54a5tX9Qs3tSaPIBLpUacRYa7eEQ+mn\n6ZVsFi2Or9qYT06b9+gwBd2vb8HQhq5rnB374zQJm82EBn+OexOiKAj69lhFgXkjFowAAAd2SURB\nVCRvRcuG9SmMG5gISPJWGM37mA8+DUwf+SBNomsF94KCKEtrJi1bzqyU/S57m+55ObBj5GyL9R4c\nnL8ut9ozzO4Kaf08zzD11o5TR+iyZh49b2jIosM/Uz+8PCt6PevT5/BGx6TRnLQmWYQBGzpMINxp\nJvbIzXP45pyZWfxhowH03WbGow2s3YEZh8w4vm9i814gXIjiQrpNRVAtnbWe5K9TSNl8GJRiZcpr\ntLi7gSRtPlShbBjR1X23qGko+nT7Tmal7A/2ZXjNm6TtP5u+Y/xOszhvWp/hHssqzKKx5axtqMqW\nKu2xvL8taDOCJVuTWXpuHfNaj+TX387SeeP/k1C5Kc827cbrzVw3nq9PBLu4RMvrbuGrQ98yoq60\nMgvhLWl5EwV25OBpfjl6grHPfAThsHJ74WZUCVfTF33NinVbeSiuBf+43/P2QCK0vbdpHZN2bgDc\nJ2/f7NlJn42fYTaQh7uq1GZu+94Bvsq8aa25fZVj3bdNHV63n9t18ghPbp/K3AaD2H3+JK8fW8SC\nJi9So4LnGbhCFDfS8iaCqmZUFWpGVWFliv8GRpdkM1dsRQNTPt4gyVsx17/5vfRvfm+u54f/uNrl\n70yVRUbmxaC3urlTnnDSyaRm+DUux4dvfx+AR3dOpZaKBGDZoe8YXCE+x2MIITyTljchhAgBly5d\not7CyZQBEmKa8mKjWEp5sWNHIOzatYuoqCiuuOKKYF+KEEWWtLwJIUQJERERwcGEkcG+DI8eOTgH\nDjr2NxVC+Ickb0IIIXxCkjYhAqNotbkLIYQQQgiPJHkTQgghhAghkrwJIYQQQoQQSd6EEEIIIUKI\nJG9CCCGEECFEkjchhBBCiBAiyZsQQgghRAiR5E0IIYQQIoRI8iaEEEIIEUIkeRNCCCGECCGSvAkh\nhBBChBCltQ72NRSKUuo0cKiAd68M/OrDyxHuSZwDQ+IcGBLnwJA4+5/EODCyx/kGrXWVwjxgyCdv\nhaGU+kFr3TTY11HcSZwDQ+IcGBLnwJA4+5/EODD8EWfpNhVCCCGECCGSvAkhhBBChJCSnry9H+wL\nKCEkzoEhcQ4MiXNgSJz9T2IcGD6Pc4ke8yaEEEIIEWpKesubEEIIIURIKTbJm1JqplLqlFJqRy7n\nlVLqX0qpfUqp7UqpxtbxaKXUT04/55VSz1vnKiql1iil9lq/IwP5mooiP8V5nFLqmNO5joF8TUVR\nQeNsnRuilEpRSu1QSiUqpa60jkt9duKnGEtdzqaQcX7OinGK7f3COi51ORs/xVnqczb5iHN9pdT3\nSqkLSqlh2c51UErttv4HI5yOe1+ftdbF4ge4B2gM7MjlfEcgCVBAC2CjmzLhwAnMGiwAbwIjrNsj\ngEnBfp3B/vFTnMcBw4L92orST0HjDFQHDgJlrL8XAX2s21Kf/R9jqcu+i3NDYAdQFigFfAn8n3VO\n6nJg4iz12fs4VwWaAa85x8763NsP3AiUBrYBN1nnvK7PxablTWv9LXDWQ5GuwBxtbAAqKKWuz1Ym\nFtivtT7kdJ/Z1u3ZwAO+vOZQ5Kc4i2wKGedSQBmlVCnMG/IvTveR+mzxU4xFNoWIcwwmwcjQWmcC\n64BuTveRuuzET3EW2eQVZ631Ka31ZuBStlPNgX1a6wNa64vAR5j/CRSgPheb5C0fqgNHnP4+ah1z\n9hCQ6PT3tVrr49btE8C1/ru8YqMgcQYYbDXlz5QukHxxG2et9TFgMnAYOA78rrVebZWR+uydgsQY\npC57K7f3jB3A3UqpSkqpspiWo5pWGanL3itInEHqs694+mz0uj6XpOTNI6VUaaALsNjdeW3aM2Vq\nbiHlEuf3ME3Jt2E+DN8KwqUVC9aba1cgCqgGlFNKJWQvJ/W54PKIsdRlH9FapwKTgNXASuAn4LKb\nclKXCyGPOEt9DrD81ueSlLwdw/XbRA3rmE0c8KPW+qTTsZO2bhLr9ym/X2Xo8zrOWuuTWuvLWuss\n4N+Y5mXhWW5xvg84qLU+rbW+BCwF7rTKSH32jtcxlrpcILm+Z2it/6O1bqK1vgc4B+yxykhd9p7X\ncZb67FOePhu9rs8lKXn7DHjUmnHTAtPVcdzpfG9yduV9Bjxm3X4M+NT/lxnyvI5ztjFx8ZhmfOFZ\nbnE+DLRQSpVVSinM+MJUp/tIfc4/r2MsdblAcn3PUEpVtX7XwozDWuB0H6nL3vE6zlKffWozUFcp\nFWX1QD2E+Z9AAepzsVmkVymVCLQCKgMngbFABIDWerr1JvsO0AHIAB7XWv9g3bcc5g35Rq31706P\nWQkzk6wWcAjoqbX2NCC02PNTnOdimuU1kAb0y5bwlTiFjPMrQC8gE9gK9NVaX5D67MpPMZa6nE0h\n47weqIQZ/D1Ua73WOi51ORs/xVnqczb5iPN1wA/A1UAWkI6ZVXpemaVW3sbMPJ2ptX7Nekyv63Ox\nSd6EEEIIIUqCktRtKoQQQggR8iR5E0IIIYQIIZK8CSGEEEKEEEnehBBCCCFCiCRvQgghhBAhRJI3\nIYQQQogQIsmbEEIIIUQIkeRNCCGEECKE/A+zhXSpwiKKCgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAE/CAYAAADPHl79AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cXVV56PHfc84MIYJBkRQR0ECBFtCiMKVUq1UQZ8Za\nQdsqlgsICip4fUHknSteQUFAKCpaWqmEqoje3spVh4HyYm0FMbGgAoIRQYgoQVtQioHMee4fe0/m\nzGReAjkzZ+/M7/v5nM/ss/bbs87OnDyz9lp7RWYiSZKk+mp0OwBJkiRtGBM6SZKkmjOhkyRJqjkT\nOkmSpJozoZMkSao5EzpJkqSaM6GT1FUR8dmIOKPbccyF+VRXSXPLhE6SJKnmTOgkaRJR8DtSUi34\nZSVpnIg4MSJ+HBG/jojbI+J1ZfmCiPiviHh+27aLI+KxiPid8v3xEfFARPwsIt4aERkRO63HabeK\niGvKc34jIp7Xdo4XR8R3IuLh8ueL16MOb46Iu8vj/SQiDm4r//eI+ER5vB9GxH5t+90QEWdGxL8D\n/w3sGBFbRMRnynqtjIgzIqJZbv+7EXFdRPwyIh6KiM9FxDPajveiiPhuGccXgU2niHfazzYitoqI\nr5bb/CoivjlVsll+5u8q6/9QRJzTvm1EHBkRd7Rd3z3L8kmvu6R6MKGTNNGPgZcCWwAfBP4xIrbJ\nzNXAPwFvatv2DcA3MvPBiBgAjgVeCewEvPxJnPNg4EPAVsAtwOcAImJL4GvAhcCzgI8BX4uIZ011\noIjYrNx+MDOfDry4POaoPyrruBXwAeCfyvOMOgQ4Cng6cC/wWWBNWacXAa8C3jp6OuAjwHOAXYHt\ngdPLODYB/hm4DNgS+BLwF5PFPNNnC7wPuB9YDGwNnAxMN2/j64A+YE/gAOCIMqa/KuM7FFgEvBb4\nZbnPpNd9mnNIqhATOknjZOaXMvNnmdnKzC8CPwL2Lld/HjiobfO/LsugSED+ITNvy8z/pkxs1tPX\nMvNfy8TmFOCPI2J74M+AH2XmZZm5JjO/APwQ+PMZjtcCnh8RCzPzgcy8rW3dg8AFmflEWb87y/OM\n+mxZhzUUidirgfdk5qNlcnX+6GeQmSsy85rMXJ2ZqygSzj8tj7MP0Nt2ri8D35km5uk+2yeAbYDn\nlcf6Zk4/EffZmfmrzPwpcAFjieJbgY9m5neysCIz7y3rMt11l1RxJnSSxomIQyPilvL23n8Bz6do\nzQK4HnhaRPxRRCwBXgj833Ldc4D72g7VvjyTtdtm5m+AX5XHew5FK1m7e4FtpzpQZj4KvBF4O/BA\nRHwtIn6/bZOVE5Khe8vzTBb38yiSsgfaPo+/BUZvMW8dEZeXt2IfAf6Rsc/qOVOcayrTfbbnACuA\nq8tbqSdOc5yJdWiv3/YULXHrmOG6S6o4EzpJa5V91/4OeCfwrMx8BvADiluLZOYIcAVFi8+bgK9m\n5q/L3R8Atms73PZP4tRrt42IzSlaxn5Wvp43YdvnAiunO1hmDmfm/hStWj8s6zRq24iICcf7Wfvu\nbcv3AauBrTLzGeVrUWbuXq7/cLn9CzJzEfA/KD8ris9jsnNNFfOUn21m/joz35eZO1LcJj22ve/f\nJNo/+/b63Qf87sSNZ7rukqrPhE5Su80oEpRVABFxOEVLTbvPU7SAHczYLUEokpHDI2LXiHgacNqT\nOO+rI+JPyn5nHwJuysz7gK8Du0TEX0dET0S8EdgN+OpUBypbzQ4o+9KtBn5DcQt21O8A74qI3rJP\n2a7ledaRmQ8AVwPnRcSiiGiUAyFGb6s+vTz+wxGxLfD+tt1vpOh7N3qu1zPzLcxJP9uIeE1E7FQm\nhw8DIxPqNNH7I+KZ5W3rdwNfLMv/HjguIvaKwk5lMrc+111ShZnQSVorM28HzqNIRn4BvAD49wnb\nfBt4lOI23lBb+RDFYITrKW4P3lSuWr0ep/48xQCFXwF7UbR0kZm/BF5DMSjgl8DxwGsy86FpjtWg\nGJzxs/J4fwq8o239t4GdgYeAM4G/LM8zlUOBTYDbgf8EvkzR8gfF4IE9KZKsr1EMbKCM/XHg9cCb\nyzje2L5+MlN9tmW8/0KRPN4IXJSZ109zqK8AyykGg3wN+Ex5/C+Vdf488GuKQRtbrs91l1RtMX2/\nWkl6aiJiV4rbdgvKAQZdFxFvBt6amX/S7VhmS0QksHNmruh2LJLmji10kjomIl5XPlPtmcDZwP+r\nSjInSRszEzpJnfQ2iseC/Jiin9c7ACLitoj4zSSvg5/qiaY43m8i4qWdqYok1Ye3XCVJkmrOFjpJ\nkqSaM6GTJEmquZ5uB7Chttpqq1yyZEm3w5AkSZrR8uXLH8rMxZ0+bscSuohoAssoprp5TTnZ9ReB\nJcA9wBsy8z/LbU8C3kLRafpdmTlclu9FMRH2QooHfb57hvkKWbJkCcuWLetUNSRJkmZNREw3BeBT\n1slbru8G7mh7fyJwbWbuDFxbvicidqOYgHp3YAC4qEwGAT4FHEnxEM2dy/WSJEmaRkcSuojYDvgz\nimllRh0AXFouXwoc2FZ+eWauzsyfUDxRfu+I2AZYlJk3la1yS9v2kSRJ0hQ61UJ3AcWUPO1zC25d\nzoMI8HNg63J5W4oJokfdX5ZtWy5PLJckSdI0Njihi4jXAA9m5vKptilb3Dr2wLuIOCoilkXEslWr\nVnXqsJIkSbXUiRa6lwCvjYh7gMuBfSPiH4FflLdRKX8+WG6/Eti+bf/tyrKV5fLE8nVk5sWZ2ZeZ\nfYsXd3ygiCRJUq1scEKXmSdl5naZuYRisMN1mfk/gCuBw8rNDgO+Ui5fCRxUzve4A8Xgh5vL27OP\nRMQ+ERHAoW37SJIkaQqz+Ry6s4ArIuItwL3AGwAy87aIuAK4HVgDHJOZI+U+RzP22JKh8iVJkqRp\n1H4u176+vvQ5dJIkqQ4iYnlm9nX6uE79JUmSVHMmdJIqrX/hId0OQZIqz4ROUmWNJnMDiw7vciSS\nVG0mdJIqa/ixy4je2Ry7JUkbB78pJVXaVY/8Q7dDkKTKs4VOkiSp5kzoJEmSas6ETpIkqeZM6CRJ\nkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoRO\nUqX1b34Y/Zsf1u0wJKnSTOgkSZJqrqfbAUjSdIZ/c2m3Q5CkyrOFTpIkqeZM6CRJkmrOhE6SJKnm\nTOgkVVr/Zod2OwRJqjwTOkmSpJozoZNUacOPLu12CJJUeSZ0kiRJNWdCJ0mSVHMmdJIkSTVnQidJ\nklRzJnSSJEk1Z0InSZJUcyZ0kiRJNWdCJ0mSVHMmdJIkSTVnQidJklRzJnSSJEk1Z0InSZJUcxuc\n0EXEphFxc0TcGhG3RcQHy/ItI+KaiPhR+fOZbfucFBErIuLOiOhvK98rIr5frrswImJD45MkSdrY\ndaKFbjWwb2buAbwQGIiIfYATgWszc2fg2vI9EbEbcBCwOzAAXBQRzfJYnwKOBHYuXwMdiE+SJGmj\ntsEJXRZ+U77tLV8JHABcWpZfChxYLh8AXJ6ZqzPzJ8AKYO+I2AZYlJk3ZWYCS9v2kSRJ0hQ60ocu\nIpoRcQvwIHBNZn4b2DozHyg3+Tmwdbm8LXBf2+73l2XblssTyyVJkjSNjiR0mTmSmS8EtqNobXv+\nhPVJ0WrXERFxVEQsi4hlq1at6tRhJUmSaqmjo1wz87+A6yn6vv2ivI1K+fPBcrOVwPZtu21Xlq0s\nlyeWT3aeizOzLzP7Fi9e3MkqSJIk1U4nRrkujohnlMsLgf2BHwJXAoeVmx0GfKVcvhI4KCIWRMQO\nFIMfbi5vzz4SEfuUo1sPbdtHkiRJU+jpwDG2AS4tR6o2gCsy86sRcSNwRUS8BbgXeANAZt4WEVcA\ntwNrgGMyc6Q81tHAZ4GFwFD5kiRJ0jSi6N5WX319fbls2bJuhyFJkjSjiFiemX2dPq4zRUiSJNWc\nCZ0kSVLNmdBJkiTVnAmdJElSzZnQSZIk1ZwJnSRJUs2Z0EmqtP7ND6N/88Nm3lCS5jETOkmVN/yb\nS7sdgiRVmgmdpEozmZOkmZnQSZIk1ZwJnSRJUs2Z0EmSJNWcCZ0kSVLNmdBJkiTVnAmdJElSzZnQ\nSaq0gUWHM7Do8G6HIUmVZkInSZJUcz3dDkCSpnPVI//Q7RAkqfJsoZMkSao5EzpJldW/8BD6Fx7S\n7TAkqfJM6CRJkmrOPnSSKmv4scu6HYIk1YItdJIkSTVnQidJklRzJnSSJEk1Z0InSZJUcyZ0kiRJ\nNWdCJ0mSVHMmdJIkSTVnQiep0ga2OIKBLY7odhiSVGkmdJIkSTXnTBGSKu2qhy/pdgiSVHm20EmS\nJNWcCZ0kSVLNmdBJqjQHRUjSzEzoJEmSas5BEZIqzUERkjQzW+gkSZJqboMTuojYPiKuj4jbI+K2\niHh3Wb5lRFwTET8qfz6zbZ+TImJFRNwZEf1t5XtFxPfLdRdGRGxofJIkSRu7TrTQrQHel5m7AfsA\nx0TEbsCJwLWZuTNwbfmect1BwO7AAHBRRDTLY30KOBLYuXwNdCA+SZKkjdoGJ3SZ+UBmfrdc/jVw\nB7AtcABwabnZpcCB5fIBwOWZuTozfwKsAPaOiG2ARZl5U2YmsLRtH0mSJE2ho33oImIJ8CLg28DW\nmflAuernwNbl8rbAfW273V+WbVsuTyyXJEnSNDqW0EXE5sD/Ad6TmY+0rytb3LKD5zoqIpZFxLJV\nq1Z16rCSKqh/88Po3/ywbochSZXWkceWREQvRTL3ucz8p7L4FxGxTWY+UN5OfbAsXwls37b7dmXZ\nynJ5Yvk6MvNi4GKAvr6+jiWKkqpn+DeXzryRJM1znRjlGsBngDsy82Ntq64ERv+sPgz4Slv5QRGx\nICJ2oBj8cHN5e/aRiNinPOahbftImscGtjySgS2P7HYYklRZnWihewlwCPD9iLilLDsZOAu4IiLe\nAtwLvAEgM2+LiCuA2ylGyB6TmSPlfkcDnwUWAkPlS9I8tnbar2Zz+g0laR7b4IQuM/8NmOp5cftN\nsc+ZwJmTlC8Dnr+hMUna+Fz1q7/rdgiSVFlO/SWp0pz6S5Jm5tRfkiRJNWdCJ6m2+vtOp7/v9G6H\nIUldZ0InSZJUc/ahk1R5A1seOemgiOFlp899MJJUQbbQSaoFn0MnSVOzhU5S5fnIEkmani10kmpl\ncMfjGNzxuG6HIUmVYkInSZJUc95ylVQrQ3ef2+0QJKlybKGTJEmqORM6SZKkmjOhkyRJqjkTOkmS\npJozoZNUaQNbHMHAFkeMKxvc7WQGdzu5SxFJUvWY0EmqFZ9BJ0nr8rElkirtqocvWads6PYPj3u/\n/5+cCcA1/3bKnMQkSVVjC52kWvE5dJK0LlvoJNXC4HbvKhYaDYZ+esG4dbbMSZrvbKGTVHkDWx3V\n7RAkqdJM6CTVQv72twDrtM5N5qUHnjPb4UhSpZjQSaqNofsvXO9tTeokzSf2oZO00fnmP7+/2yFI\n0pwyoZNUeVc9dHG3Q5CkSjOhk1R5g1u/o1hYsABYv350kjSfmNBJqrx8Yg00guh2IJJUUSZ0kuqh\nlbbMSdIUHOUqqdL6Nz+Mq371d8QmvQw+++huhyNJlWRCJ6ny+jc/rNshSFKlmdBJqrRoNolmk6Gf\nXwQ99hKRpMn47SipFga3OabbIUhSZdlCJ6nSrnr4Eq56+BJotSBzbfnAC07pYlSSVC220EmqvIGt\njiKaTQAGdzyuKNxsQRcjkqRqMaGTVAs5MkJsuikAQ3ef2+VoJKlaTOgkVd5VD13M4OK3M3T/hd0O\nRZIqyYROUmW9apO/BqC5xaIuRyJJ1eagCEnV1whoBIPb/s9uRyJJlWRCJ6nycmSEHBmBVovB576n\n2+FIUuV0JKGLiEsi4sGI+EFb2ZYRcU1E/Kj8+cy2dSdFxIqIuDMi+tvK94qI75frLowI5+KW5rGr\nH/880dsDI6312v4V/Wfziv6zZzkqSaqeTrXQfRYYmFB2InBtZu4MXFu+JyJ2Aw4Cdi/3uSgimuU+\nnwKOBHYuXxOPKWk+GhkpZot44JMM/fSCbkcjSZXTkUERmfmvEbFkQvEBwMvL5UuBG4ATyvLLM3M1\n8JOIWAHsHRH3AIsy8yaAiFgKHAgMdSJGSfU0+vy5HBmZcdvrh0+Y7XAkqZJmsw/d1pn5QLn8c2Dr\ncnlb4L627e4vy7YtlyeWS5rHcmQENuntdhiSVGlzMigiMxPIGTdcTxFxVEQsi4hlq1at6tRhJVXV\nE2u6HYEkVdpsJnS/iIhtAMqfD5blK4Ht27bbrixbWS5PLF9HZl6cmX2Z2bd48eKOBy6pOqLHx2VK\n0kxmM6G7EjisXD4M+Epb+UERsSAidqAY/HBzeXv2kYjYpxzdemjbPpLmqasevgSaTWh1rJFfkjY6\nHfnTNyK+QDEAYquIuB/4AHAWcEVEvAW4F3gDQGbeFhFXALcDa4BjMnO0t/PRFCNmF1IMhnBAhDTP\nDSw6vFiwpU6SptSpUa5vmmLVflNsfyZw5iTly4DndyImSRuHbBXPoPOhlJI0NWeKkFR9ZnOSNC0T\nOkmVFs0m0WgWc7lu965uhyNJlWSnFEmVNvpA4dEHDEuS1mULnaTK6l94CIy0iN7iwcJD91/Y5Ygk\nqZpM6CRV1vBjl61TNrjLCQzu4hRfktTOhE5SpQ0/dhlEEM0mg88+utvhSFIl2YdOUqX1b3YosWAB\nOTLCVas+3e1wJKmSTOgkVd/ICDSbDG7/bhjtT3f3uV0OSpKqw4ROUj00Ap54AiIY+ukF3Y5GkirF\nPnSSKi1Gp/wq53I1mZOkdZnQSaqHRjFdhKNcJWldJnSSKqt/4SHk409Alq1zP79o7brB3U7uVliS\nVDkmdJJqY/DZRzN019nQ46wRktTOhE5SZa19sHDE+J8jLYZu/3B3gpKkCjKhk1RZ/QsPAcr5XMtB\nEZKkdZnQSaqs4ccuI3p7iMbYV9XgTu+HTPvQSVIbn0MnqbJGW+hoNgiAtY8waQH2o5OkUSZ0kuqh\nEQzd9zfdjkKSKslbrpIqa/ixy6DZdrv12UczuOS9XYxIkqrJhE5S5UWj4aAISZqGCZ2kSmsfEFEU\nRHcCkaQKM6GTVGnZajGubW7NCIO7nsTgrid1KyRJqhwTOknV12qtnct1dJaIBAZecEr3YpKkCjGh\nk1QPo33o1owwdMdHoKfBVd8/s7sxSVJF+NgSSZUWvb2TlpvMSdIYEzpJlTX6YOHo7Rl7qLCDIiRp\nHd5ylVR5GUAATWeHkKTJmNBJqq5GQCMIohgF0Wp1OyJJqiQTOkn1MfGZdJIkwD50kiosn1gDQDSb\nRWvdyAhDKz/e5agkqXr8c1dSPZSPLRnc4dguByJJ1WMLnaTKitGHCY8OhoiAHD+n6/4vPgOAa751\n6lyGJkmVYgudpMoa/u3noNkkWyNFQdmHbnCXExj8vRO7GJkkVYstdJIqq3+zQ4uFVkJvFKNcy1uv\nQ3eeBdgyJ0lgC52kCht+dCnRbBIRY1N/AUN3nd3FqCSpekzoJFVajoyMzQ6RCY1gcNeTGNz1pO4G\nJkkVYkInqbLW3nIdNaGlTpJUsA+dpNoZuuMj3Q5Bkiqlci10ETEQEXdGxIqIcBibNI8NP7oUGL3t\nSnHLtdlgYMfjGNj9lO4GJ0kVUqkWuohoAp8E9gfuB74TEVdm5u3djUxSN/RvenCx0NP2VTXSIjZp\nkkD/H34QgDWb9QJw7Q0nz3GEklQNVWuh2xtYkZl3Z+bjwOXAAV2OSVKXRaMxfmAEcNVtZ65dbyIn\nab6rVAsdsC1wX9v7+4E/6lIskrps+LefY2DR4cWb0RkiIhhacU6x/jsfWLutSZ2k+axqLXTrJSKO\niohlEbFs1apV3Q5H0izpX3gI+cQaEsZa6Hp6GNz5+G6GJUmVU7WEbiWwfdv77cqycTLz4szsy8y+\nxYsXz1lwkrojYOxxJWvWwEirm+FIUuVULaH7DrBzROwQEZsABwFXdjkmSV0y/NhlRG/ZMyRoa6Vr\nMvAHpzLwB8W0X/u/+IyOnG+ns89np7PP78ixJGkuVaoPXWauiYh3AsNAE7gkM2/rcliSuihHRohm\ns3yTY33pgKu+dwb77/O/uxSZJFVHpRI6gMz8OvD1bschqWLaJogYuutsBvY4DShvx3bIihPe28Gj\nSdLcqVxCJ0njRJDZKu62RkCzUQyKeNoCBvY4jatv/VC3I5SkrqtaHzpJWtfE6VsjuOrWD5G9Tfr7\nTu9GRJJUKSZ0kqqv/aHCrYnZnSTJW66SKi8ixid1EQz+3okM33lWdwOTpIqwhU5SPbTGZoqQJI1n\nC52kyupfeAgAGTF+NGsmQ3ed3ZWYJKmKbKGTVH0R6zyfZHA3526VpFEmdJIqa/ixy6DZgFbbVF+Z\n0NMkgYEX/q+uxSZJVeItV0nVlkn09IzrOzd0+4e7GJAkVY8tdJIqq3+zQwHIdECEJE3HhE5S5UVE\nMcq1fGSJJGk8EzpJlTX86NKxBK4xlsgN7nhclyKSpGoyoZNUWf0LD4GRFtk+KKIRDN197pzG8bxL\nPjqn55OkJ8uETlIl7d/4K1qrfwuUt1xH+9G1koFdTmBg91Om3PdlB5zTsThM5iTVgQmdpGobvdXa\nNvVXwPhHmUyiU0ndvUccz71HHN+RY0nSbPGxJZIq6ZrWlwDo3/wwkhx7rnAENBsTnzM8zr9+5f2z\nHZ4kVYoJnaTKGn1sSdAYu+XaCFj9xKT96F7RX0wHdv3wCXMWoyRVgbdcJVXW8KNLJ1/R05xyH5M5\nSfORLXSSKi16yq+p0T50rVzbf67/RR8AYPg/PgiYzEmav0zoJFVajoxAo0GM3nId/clYIjeTvrd8\nDIBlnzm24/FJUhWY0EmqrNE+dEwx9Vf/Xh+gBbCgl2u+deqcxiZJVWIfOknVlwnZ9r4x9tXVmJDk\nvey15/Cy13buOXSSVAcmdJKqq5XQSmI0gRttqVszUvwskzlb5yTNd5GZM29VYX19fbls2bJuhyFp\nFvQvPKRYaDaITRcUAyR6e8neXli4AJpBa7MFAFx942ldjHRmn/jhvgC88/ev63IkkropIpZnZl+n\nj2sLnaTKGn7sMmhO+JoKirLM4i7s42s26By7nXr+Bu0vSVXgoAhJlTbudmsELFiwdpaI7G0SwHCH\nW+d2vPA8AO5+1/s6dkxb5iTNJlvoJFVW/6YHk48/XryJKJK6kVbROjfSYnj5BxleXjy6ZL+Xf/gp\nneP2M97bqXAlqWtsoZNUeZlZPIcuAtasITfpnXa2iA3VyZY5SZoLttBJqq5oQDSI0UeTlIO4IgIa\nMPCCU9Zums0G++53VjeilKSuM6GTVHnZahXPoRtN7EZa62400qI10uLlA2dPeow933Y+e77NARCS\nNk4mdJIqL9oeJExmMcp1TQsi2P/FZ7D/i88oBkpsun63Yfd4z7qJ3S5nnM8uZ5jwSaonEzpJ9VHe\ncs2yhe6q752xdtW1N5xctOBNmDli1Hf/9r1892+LARC3XuBACEkbFwdFSKq8BNrTtPac7Zpvncor\nX3Ymr3zZmfC0p/6VdtepJnmS6ssWOknVlS3IVpHMtSVxGUE2GvT3nc7+fafDSNFy1xhJshH86as/\nusGnXvLJ81jyyfM2+DiSNBdM6CRVVrayGOnaLPvGTbyl+sTI2PIUt1qfqnuOGXt0yZJ/2PAEUZJm\nkwmdpErLkRFojRT3XTMhk2g0yGb5oOFNeoiEVk8DWvCNrx/PN75+fEfOPV1St9s/n96Rc0hSJ5jQ\nSaqs6O0henuKlrpGW+tc5tgd2MeemHTfP3n9uTMef/eTzmf3k9Yd2brjheetnf4L4J7Dj+eew8eS\nRJM5SVXjoAhJlTX86FIGFh0+VlCOcgVg9RrYtJcGMPytU4upvxpFmrc+yRzAbR8ZPxBi57PK5O5p\n0+93+4Gnr9fxJWmubFBCFxF/BZwO7ArsnZnL2tadBLwFGAHelZnDZflewGeBhcDXgXdnZkbEAmAp\nsBfwS+CNmXnPhsQnqf6yVTyiZFwPud7yqysCmlGMcG3zb/903KTH2vMd5/PdT00/mvVHJ67/aNc9\nv34qAN999RkzbClJs2tDb7n+AHg98K/thRGxG3AQsDswAFwUEaNP/PwUcCSwc/kaKMvfAvxnZu4E\nnA9M/rh3SfNONJvjWufy8eI2a2TS2qQH1hS3YK+94eQZj7XnO6Z+ePCTSeYkqUo2qIUuM+8AxuZZ\nHHMAcHlmrgZ+EhErgL0j4h5gUWbeVO63FDgQGCr3Ob3c/8vAJyIiMtvvsUiab6J9hOuEnwk0Vj/B\n8PIPAvCK/uLvwOuHT5j0WDO1zj1ZtsxJqorZGhSxLXBf2/v7y7Jty+WJ5eP2ycw1wMPAs2YpPkk1\n0L/wkLWtcUz82y4TetbvK+wPj/gYf3jEx9a+n2zqL0mqsxlb6CLiX4BnT7LqlMz8SudDmllEHAUc\nBfDc5z63GyFImkPZahHZLFrnMqFVJndPjNDapIf9X3wGrQVlS16vg/clzT8zfvNl5isz8/mTvKZL\n5lYC27e9364sW1kuTywft09E9ABbUAyOmCymizOzLzP7Fi9ePFMVJNXU8GOXFSNXM8d+NhvFa9SE\nLh/XXz12u3Wfg89jn4PPI1rQasFeRz25lrkln1q/0bKS1G2z9afslcBBEbEgInagGPxwc2Y+ADwS\nEftE0fHuUOArbfscVi7/JXCd/eek+a1/4SHQSqLZGGuVazSJkdbaW7CNVotsBPFEC3obvOJV646n\nuvmzx8ImY4nfrRcUfemmeg5dO5M6SXWwoY8teR3wcWAx8LWIuCUz+zPztoi4ArgdWAMck5mjc/Qc\nzdhjS4bKF8BngMvKARS/ohglK0nFLBGj1qwhe3qY+NdeAqxpjetXF62x9csvfvIDIu55x+SPP5lN\nrZ/vAkDj2XfN+bkl1VfUvRGsr68vly1bNvOGkmrlVb3F33SNp5VP+W02iQWbQE8P2dtL9vaQT1sA\nzeDqZaez374fAeDa605ae4w/ftN5jCwoWuZu/uyxALzwnedzyyc2fLTrC678AADff+0HN/hY7Uzo\npI1bRCwitY56AAAKOUlEQVTPzL5OH9eZIiRV2+gfnTG2HFG8Heltrt2sPZEbdeMXirlY937zx8aV\ndyqpmw0mcpKeChM6SZV09ROX07/ZoeTICDQaYzNFRDmna2Od51+u7T83OjDij99UzMd6c5nYAR1L\n5DrdMidJG8Lx/ZIqLxqNsdGsmdBo0ALiiaJr7qv++ENrt73+6hN42WvPKXdkwpxh69rtlPGDInY6\nZ6w1b8mnznVQhKRaMKGTVH3tfX0jYM3I2JdXs8jY9tv3I7CmxctedTa5Jnnp687lxs+/jxs/P9Y6\n96Kjz+dFR48lcLuddD6UAyd+70M+bFhSfXnLVVJlDT+6lIFFh48vLJO7BKLVYvjG04AioWsArZ5i\nSrB1ZpaY4PnHn08ArSb8/mnnQ0+R1K047Vh2vKBopbvnPXM/ylWSngoTOkmV1b/wEABi4abjE7S2\n59Lt/+JiPtVrv3Xq2tUvPfCcSY/3HxeN7z8XsPZbMIAfnlbNgRKSNBMTOknVlW0PkhsdDAHFIIlG\nMLKgd+2z5/bb9yPF3dPeBt8cPmGdQ+11ZHFLdfnfjU/a7vjQuknc3e85dtz7JZcWgy3uOWzd40pS\nFdiHTlL1NYOIBvT0MHTf3xQtdGVyF8A1ba1zU0kgm1Ov3+XM89nlTPvRSaonW+gkVdbwbz8HwODi\nt68tG9z+3Qzd9zcM7nYyV9/8v9aWJ0Vyd90krXN/eMTHaAIjzbEhrz/46PrfXrVlTlLV2UInqfKG\nVn2aoVWfHleWPQ0G/qBomdv/JWdw3XUncd11J/Gy154z9tiSNi3GTwU20V2nvJdWD+x09lgr3ZJP\nn8uST5/LsUvPZsnS4rbr737xzA2vkCR1mAmdpPpo60e3w0vgqu+dUQyKaBsvsWiTdXf7ziXHQk+x\n3wvfuf63VbcBXt32vkjmWuzy5Q9NsYckdYcJnaT6aLUY+ukFnH3SpfzkW8HAHqets8lXv/x+sgEv\nOfAc3nbiJ8etG9xjq2kPv+KE90Ij+fjHPw7AjW8/jovefhwfO/QE7jn0BH78xlNoTtMPT5K6xT50\nkmrhsssuW7t8w1fuLBZ6m9MOiPjBj3877v3QrQ9xy8XT951b8f5ihOsOHz+P87f/XQ488MBx6+/6\ny3WTSEnqtsgZHr5ZdX19fbls2bJuhyGpi2699Vb22GOPjh5zh4+fx0/+5/tm3lCSnoSIWJ6ZfZ0+\nrrdcJdXeccd8lSP++qKOHtNkTlKdeMtVUu1d82+ndDsESeoqW+gkSZJqzoROkiSp5kzoJEmSas6E\nTpIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM6CRJkmouMrPbMWyQ\niFgF3NvtOGbRVsBD3Q6iC+ZrvWH+1t16zy/We36x3mOel5mLO32i2id0G7uIWJaZfd2OY67N13rD\n/K279Z5frPf8Yr1nn7dcJUmSas6ETpIkqeZM6Krv4m4H0CXztd4wf+tuvecX6z2/WO9ZZh86SZKk\nmrOFTpIkqeZM6GZZRGwZEddExI/Kn8+cYruBiLgzIlZExInrs39EnFRuf2dE9JdlT4+IW9peD0XE\nBeW6N0fEqrZ1b91Y6l2W31CWjdbvd8ryBRHxxXKfb0fEko2l3hHxtIj4WkT8MCJui4iz2raf1es9\nVR3a1kdEXFiu/15E7Nnp+pfle0XE98t1F0ZEdLKek5nLukfE/hGxvKzj8ojYt22fSf/NbyT1XhIR\nj7XV7dNt+8zpNZ/jeh8c47/DWxHxwnLdxnC9/yqK76pWRPRNOF4lfsfnst4d/f3OTF+z+AI+CpxY\nLp8InD3JNk3gx8COwCbArcBu0+0P7FZutwDYody/OcmxlwMvK5ffDHxiY603cAPQN8l5jgY+XS4f\nBHxxY6k38DTgFeU2mwDfBAZn+3pPV4e2bV4NDAEB7AN8e5au+83l8aM83+As/9ue67q/CHhOufx8\nYGXbeSb9N7+R1HsJ8IMpYpmzaz7X9Z5w3BcAP97IrveuwO9NrAsV+R3vQr079vttC93sOwC4tFy+\nFDhwkm32BlZk5t2Z+ThwebnfdPsfAFyemasz8yfAivI4a0XELsDvUPwnP9e6Vu8ZYvkysN8s/oU3\np/XOzP/OzOsBymN9F9iuw3WazHR1GHUAsDQLNwHPiIhtZtj3SdW/PN6izLwpi2/ApUz+mXfSnNY9\nM/8jM39Wlt8GLIyIBbNVuWnM9TWfVBeueTfr/aZyn26YlXpn5h2Zeeck56vK7/ic1ruTv98mdLNv\n68x8oFz+ObD1JNtsC9zX9v7+smy6/afbZ9Roa1T7yJe/KJt2vxwR2z+5qjwp3ar3pWXT9GltSdva\nfTJzDfAw8KwnX6X10rXrHRHPAP4cuLateLau9/r8+5tqm07Wf9tyebo4Om2u697uL4DvZubqtrLJ\n/s3Phm7Ue4eybt+IiJe2nWMur3k3r/cbgS9MKKv79X6y59tYrvf62KDf754ncSJNISL+BXj2JKtO\naX+TmRkRT3lY8VPY/yDgkLb3/w/4Qmaujoi3UfxVuO+ke66HCtb74MxcGRFPB/4PRd2XPtXzTqWC\n9SYieii++C/MzLvL4o5e77m2oZ9fnU1W94jYHTgbeFVb8Zz8m58rE+r9APDczPxlROwF/HP5GWx0\nprjefwT8d2b+oK14o7reGtOJ328Tug7IzFdOtS4ifhER22TmA2WT7IOTbLYSaG892a4sA5hq/+n2\nISL2AHoyc3lbnL9s2/7vKfpwPGVVq3dmjv78dUR8nqL5e2nbPveXic8WQPtn8aRUrd6li4EfZeYF\nbXF29HpPMFM8023TO82+T7b+Kxl/i3myODptrutORGwH/F/g0Mz88Wj5NP/mZ8Oc1rtspVhdLi+P\niB8DuzD313zOr3fpICa0zm0k1/vJnm9jud5T6tjvd85B58r5/ALOYXzH149Osk0PcDdFR9DRjpS7\nT7c/sDvjO5DeTdugCOAs4IMTzrNN2/LrgJs2lnqXx9qq3KaXoq/c28v3xzB+UMQVG0u9y3VnUPz1\n1pir6z1dHdq2+TPGdxy+eZbqP7HD9Ktn6/p2qe7PKLd7/SRxTPpvfiOp9+K2a7wjxX+MW871NZ/r\nepfvG2V9d9zYrnfbvjcwfnBAJX7Hu1Dvjv1+z8oH4mvcRXkWRZ+mHwH/0vaF9Bzg623bvRq4i2KE\nzCkz7V+uO6Xc/k4mjPop/1H9/oSyj1B0urwVuH7i+jrXG9iMYkTv98o6/k3bl8GmwJcoOtneTNuX\n5EZQ7+2ABO4Abilfb52L6z1ZHYC3M5ZIB/DJcv33Gf8l1rF/70Af8INy3ScoH5g+y7/Xc1Z34FTg\n0bbrewvFYKcp/81vJPX+i7Jet1AM9vnzbl3zLvxbfzkT/gDbiK736yj6lq0GfgEMt62rxO/4XNab\nDv5+O1OEJElSzTnKVZIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM\n6CRJkmru/wNh7xHC3s7IPwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHVW1sPF3dTphljEgkwYUZVJBIiIIl9EMigG5Kjgw\nXAZRQEBFQERQUQGFYC4KwgUBB0QBlSvEAJFB/UQJgwwiEBCEECACgoo3pLvX90dVJ6c7PSan+9Tp\nvL/nOU+fql21a+1zOpXVe++qisxEkiRJzaGl0QFIkiRp4EzeJEmSmojJmyRJUhMxeZMkSWoiJm+S\nJElNxORNkiSpiZi8SepTRFwSEac1Oo7h0Oi2RsTNEXFIL2XjIiIjonUY4zk/Ik4eruNJGphhOwlI\nkppLZh7e6BgkLc6eN0lNKQqew4ZIRIxqdAySeuaJT2oyEXFCRDwSEf+IiD9FxN7l+uUi4u8RsWXN\ntmMj4t8RsXa5/NmImBsRT0XEIeUw3OsHcNi1IuKG8pi3RMRra46xfUTcHhEvlj+3H0AbDoyIR8v6\n/hIRH65Z/9uIOLes788RsVvNfjdHxFci4rfAy8DGEbFqRFxUtmtORJzWmXhExOsi4lcR8VxE/C0i\nfhARq9XUt3VE3FnGcQWwfC/x9vnZRsRaEfGLcpvnI+LXvSWWA/i8Xlt+Bv+IiOsjYq1e6lkjIr5b\nfpcvRMTP+vnMd46IJyPic+Vn8Vjn516WXxIR50XEdRHxL2CX7sPIETElIu6OiJfK38GJ5fpevwNJ\n9WfyJjWfR4AdgVWBLwLfj4h1M3M+cDWwX822HwBuycxny/9oPwXsDrwe2HkQx/ww8GVgLeBu4AdQ\nJBDAtcA0YE3gbODaiFizt4oiYqVy+0mZuQqwfVlnp7eXbVwLOAW4ujxOp48ChwGrAI8DlwBtZZu2\nBt4FdM4bC+BrwHrAZsCGwKllHGOAnwHfA9YAfgLs01PM/X22wKeBJ4GxwDrA54DFnj04wM/rQ8BB\nwNrAGOAzPcVUxr0isEW57dRetqv1aorPdX3gAOCCiHhjt2N/heKz/U232LcFLgOOA1YDdgIeK4sv\noffvQFKdmbxJTSYzf5KZT2VmR2ZeATwMbFsW/xDYt2bzD5XroEg2vpuZ92fmy5RJzABdm5m3lknM\nScA7ImJD4N3Aw5n5vcxsy8zLgT8De/ZTXwewZUSskJlzM/P+mrJngXMyc0HZvgfL43S6pGxDG0XS\nNRk4JjP/VSZSUzs/g8ycnZk3ZOb8zJxHkSz9R1nPdsDommNdCdzeR8x9fbYLgHWB15Z1/Tp7fnD0\nQD6v72bmQ5n5b+DHwFbdK4mIdYFJwOGZ+UJ5zFv6iL3WyeXncQtFIvmBmrKfZ+Zvy9+t/+u238HA\nxeXn2ZGZczLzzxGxDn18B5Lqz+RNajIRsX85dPX3iPg7sCVFbwrATcCKEfH2iBhH8R//T8uy9YAn\naqqqfd+fhdtm5j+B58v61qPo/ar1OEXPTo8y81/AB4HDgbkRcW1EbFqzyZxuic/j5XF6ivu1FAnY\n3JrP4zsUPVFExDoR8aNyKO8l4Pss+qzW6+VYvenrs/06MBu4vhwOPqGXOgbyeT1d8/5lYOUe6tkQ\neD4zX+gj3p68UH7+tcfu7bPt6ZiP9LC+z+9AUv2ZvElNpJxrdiFwJLBmZq4G3EcxPEhmtlP01uxX\nvn6Rmf8od58LbFBT3YaDOPTCbSNiZYoer6fK12u7bfsaYE5flWXmjMzcg6K36s9lmzqtHxHRrb6n\nanevef8EMB9YKzNXK1+vyswtyvKvltu/KTNfBXyE8rOi+Dx6OlZvMff62WbmPzLz05m5MfBe4FO1\nc/VqLNHn1YMngDVq5+8N0OrlsHXtsXv7bHs65ut6Wd/XdyCpzkzepOayEsV/sPMAIuIgip63Wj+k\n6Nn6MIuG9aBIPA6KiM0iYkVgMPfvmhwR7yzniX0ZuC0znwCuA94QER+KiNaI+CCwOfCL3ioqe8Om\nlEnEfOCfFMOondYGPhkRoyPi/RRz1a7rqa7MnAtcD5wVEa+KiJbyIoXOodFVyvpfjIj1KeZrdfod\nxTytzmO9j0XDz73p8bONiPdExOvLRPBFoL1bmzoN+vPqo93TgW9HxOpl/DsNcPcvRsSYiNgReA/F\nXL+BuIji92e38nNePyI2HcB3IKnOTN6kJpKZfwLOokg8ngHeBPy22za/B/5FMRw2vWb9dIqJ8jdR\nDPHdVhbNH8Chf0hx8cDzwDYUPVhk5nMUCcCngeeAzwLvycy/9VFXC8WFE0+V9f0H8PGa8t8DmwB/\no5g8/5/lcXqzP8XE/j8BLwBXUvToQXFBx1spEqprKS46oIz9FeB9wIFlHB+sLe9Jb59tGe+NFIni\n74BvZ+ZNPey/JJ9Xbz5KMdfuzxTzBI8ZwD5PU3xGT1FcdHJ4Zv55IAfLzD9QXEgxleLzvIVFvYh9\nfQeS6ix6nlMraaSLiM0ohlyXKyf/N1xEHAgckpnvbHQsI01E7Ax8PzM36G9bSdVmz5u0DImIvaO4\nZ9nqwBnA/1YlcZMkDYzJm7Rs+RjFENsjFPOyPg4QEfdHxD97eH24r8r60kt9/yznWmkIRHED3p4+\n8+n97y2pWThsKkmS1ETseZMkSWoiJm+SJElNpLXRAQzGWmutlePGjWt0GJIkSf264447/paZY+td\nb1Mlb+PGjWPWrFmNDkOSJKlfEdHXI/eWmMOmkiRJTcTkTZIkqYmYvEmSJDURkzdJkqQm0m/yFhEX\nR8SzEXFfL+WbRsTvImJ+RHymW9nEiHgwImZHxAk169eIiBsi4uHy5+pL3xRJkqSRbyA9b5cAE/so\nfx74JPCN2pURMQr4FjAJ2BzYLyI2L4tPAGZm5ibAzHJZkiRJ/eg3ecvMWykStN7Kn83M24EF3Yq2\nBWZn5qOZ+QrwI2BKWTYFuLR8fymw12ADlyRJWhYN5Zy39YEnapafLNcBrJOZc8v3TwPrDGEckiRJ\nI0bDL1jIzASyt/KIOCwiZkXErHnz5g1jZJIkSdUzlMnbHGDDmuUNynUAz0TEugDlz2d7qyQzL8jM\n8Zk5fuzYuj9hQpIkqakMZfJ2O7BJRGwUEWOAfYFryrJrgAPK9wcAPx/COCRJkkaMfp9tGhGXAzsD\na0XEk8ApwGiAzDw/Il4NzAJeBXRExDHA5pn5UkQcCcwARgEXZ+b9ZbWnAz+OiIOBx4EP1LdZkiRJ\nI1O/yVtm7tdP+dMUQ6I9lV0HXNfD+ueA3QYYoyRJkkoNv2BBkiRJA2fyJkmS1ERM3iRJkpqIyZsk\nSVITMXmTJElqIiZvkiRJTcTkTZIkqYmYvEmSJDURkzdJkqQmYvImSZLUREzeJEmSmojJm6RKaW9v\nb3QIklRpJm+SKuOQQw7l3WMPb3QYklRpJm+SKuPJqxsdgSRVn8mbJElSE2ltdACS1OmXz1/IVRdN\nb3QYklRp9rxJqpR9Dp7EpPWPYtL6RzU6FEmqJJM3SZKkJmLyJkmS1ERM3iRVj/d6k6ReecGCpMqY\nuOp/ARDLL9fgSCSpuux5kyRJaiImb5Iq6dK7Tm10CJJUSSZvkipp7bXXbHQIklRJJm+SKunFF19s\ndAiSVEkmb5KqpyPZd9PPNToKSaokkzdJ1ZHZ6AgkqfJM3iRVTpLQ0vX0dOwh3+LEYy5qUESSVB3e\n501SU/jT3fMaHYIkVYI9b5KqI6L4WQ6ftvukBUlajMmbpGrq6OA9G3260VFIUuWYvElqGh3AHtuf\n1ugwJKmh+k3eIuLiiHg2Iu7rpTwiYlpEzI6IeyLirTVlR0fEfRFxf0QcU7P+1IiYExF3l6/J9WmO\nJEnSyDaQnrdLgIl9lE8CNilfhwHnAUTElsChwLbAW4D3RMTra/abmplbla/rliB2SSNNZvEq575N\n/+s5C4uOPnmPRkUlSZXSb/KWmbcCz/exyRTgsizcBqwWEesCmwG/z8yXM7MNuAV4Xz2ClrTsmTxl\nB1pW8AJ5SarHnLf1gSdqlp8s190H7BgRa0bEisBkYMOa7Y4qh1kvjojV6xCHpCY2YYWPkm1txUIv\nN+vt8OJTSRq6CxYy8wHgDOB64JfA3UDnqfc8YGNgK2AucFZv9UTEYRExKyJmzZvnfZ6kEc0HLEhS\nv+qRvM2ha4/aBuU6MvOizNwmM3cCXgAeKtc/k5ntmdkBXEgxL65HmXlBZo7PzPFjx46tQ7iSKq3z\nXm+SpB7VI3m7Bti/vOp0O+DFzJwLEBFrlz9fQzHf7Yfl8ro1++9NMcQqaRk249/fI8aM7nObfT68\nNe/cZaNhikiSqqnf2b8RcTmwM7BWRDwJnAKMBsjM84HrKOazzQZeBg6q2f2qiFgTWAAckZl/L9ef\nGRFbUQySPAZ8rB6NkTSyHX7EuxsdgiQ1XL/JW2bu1095Akf0UrZjL+s/OqDoJC1bWrxvuCT1xzOl\npOrpSGhpYa83f6rRkUhS5Zi8Saqe8pqF+f/ouvrdu57m47EkLfO846WkyomWUQvfT9ziJACytYWO\n0aNgTHHaOuPM73H8Z5d8Bsb3r76arTbfnC033XTpgpWkYWbPm6TKyAULyAULioWOjq5l3W7c+8sb\nnwJgx72+zo57fX3h+m0PPHtAxzr14cfZ6+fTlyJaSWoMkzdJ1dXLkxb6s82hU9nm0Kl1DkaSqsHk\nTVLlZPui52BFWzuMCgK4YdapdIxpYbedv8pN1x8PwEbrr8Bxn9h94fZ/uKS4yOGOC48d1pglabg4\n501SpcTobjfqbW+HljG9bn/Zt45cbJ2Jm6SRzORN0jJp9vFFgvetm2fy8vw2jpswocERSdLAOGwq\nqXJiVHm1aUdC+b6eTzx9w2lTecNpxZy4s+65m/Me9Al9kpqHPW+SqqnzYoXMxa48laRlmT1vkioj\nRo0qE7UOiJq+trYOEph2xs+YefPnuPCi/wLgPyafycsvvzygun/+h7u7LL99dC8bSlLFmbxJqozO\nq0wz6XKbkABYbjTXXvlHADZ+3avZ5V1nQFsy6T/PHVDdn/vpTWxxYjFUOgo48aMfrGPkkjR8HDaV\nVAkTVtp/0UJ0neE2/U9fZcLbvtjjfrdc99lBH+uBzy+6GvXRT3560PtLUiOZvEmqnvYOGN3/6Wkw\nQweXHvw+xr/+tX1uk5n8e8ECVhzT+61JJKnRHDaVVAkrb9zDypbgw0ftCsAHD34bY5ZbVLTuq1dc\neKPegegvcQMY992vs9n3zxlwnZLUCCZvkirhqnsvKy5Y6Jzr1lH8/MG0mQA8cM9fufSaoxc+4/SH\nlx3VkDglqdEcNpVULb3c0O2ePzzNB991DoxpZdX1Wnn+BfjVzBPqeuhTt96RS+6/o651SlK92fMm\nqZpqLlr48aW3UPuI+udfWPJq33LaN7l/7tweyw7a+h3c8pHFH7c1VDoWPEnHP64dtuNJGhlM3iRV\nR2fC1hLQ0lJcuAB894wZxXLL0p+y5rd3MO3qiiRMz+0K//I5rJIGx2FTSRVTJnAdHdDSUvS4ZXL9\nH75A8TaJWLqHZd3yt38sXYiS1ED2vEmqln7yss7EbbdJZ3Di53+0RIe44P2Dfwh9e/qILknVYPIm\nqToy6TK5LQJaR/U4XNrRAbfd/vigD/HnU45lp80377Ju/vz5jDvvG33u97bpX+Ct131+0MfrS8ur\nH6Ll1Q/VtU5JI5/Jm6Rq6rxlyIK2Qe027fu/YNuDzx7UPm+8+L8Htb0kNZLJm6RqqR02zRzQkxZq\nXXbTQwx2gHO7AW637iDrlaSh4AULkqqldth0VAu0tUHr0J6qfvTxz3D33Kf63W7SBjsOaRySNBAm\nb5KqKaJ4ykLCDlNey1c//xPu+N1DXDXzpD53+4+N1uCWvzw/4MNsPO0soP8H1N8x6ctLfZWrJNWD\nw6aSqiWzyw16o6WFk08/nFtm/Il/vrRo/luWr52mfL3L7md9/kBmXfSpJT78uO+eSXt7+2LrTdwk\nVYXJm6RqqUCO9LrLzmp0CJLUK4dNJTWFGbefAsAe7/wKO+6+Ud3q7W+4VJKqxuRNUsXEotuEtCx6\nP2H8qcVVpMu18usb/0KsVJy+zjvzw3WP4BNrvrHudUpSvZi8SaqeQcwv2+KN6wHwjv3O4neXF71o\n2xw2FYA7Lhj8c0MfO+izg95HkoaTc94kVUtn3pYJLaMWrp4x61SuvumzXRK712zQddd37OdcNUkj\nX789bxFxMfAe4NnM3LKH8gC+CUwGXgYOzMw7y7KjgUMpTscXZuY55fo1gCuAccBjwAcy84U6tEdS\ns+vIRcOm7W0wagy3/+bPvO2dm7LKKisu3OymGcd32W2vHTbg+CM/CCxZj5skNYuB9LxdAkzso3wS\nsEn5Ogw4DyAitqRI3LYF3gK8JyJeX+5zAjAzMzcBZpbLkpZx2VHzbISWFkjICE7++Pf63bczcZOk\nka7f5C0zbwX6uuPlFOCyLNwGrBYR6wKbAb/PzJczsw24BXhfzT6Xlu8vBfZa0gZIGmE6h0U7E7kI\n6ICJW32hy2Y7TzyDnSeeMczBSVLj1WPO2/rAEzXLT5br7gN2jIg1I2JFimHVDctt1snMueX7p4F1\n6hCHpGaXNc/G6kziatdJkobugoXMfAA4A7ge+CVwN7DYbcszs/NG6T2KiMMiYlZEzJo3b95QhSup\nwSastH+f5ZP33brfOu598K9se+DZ9QpJkiqpHrcKmcOiHjWADcp1ZOZFwEUAEfFVil45gGciYt3M\nnFsOsT7bW+WZeQFwAcD48eP9E1xaxgTFXLhPnrB3l/U3//L4xbY9+GtXDlNUktQ49eh5uwbYPwrb\nAS92DolGxNrlz9dQzHf7Yc0+B5TvDwB+Xoc4JI0UEYsNl0588+cbFIwkVctAbhVyObAzsFZEPAmc\nAowGyMzzgeso5rPNprhVyEE1u18VEWsCC4AjMvPv5frTgR9HxMHA48AH6tIaSSNDt4fTE0EHMGWX\nL7H2Oqvy3xceAsBO7y0eSn/rNcfxjv3OYodNXsXULx3agIAlafj0m7xl5n79lCdwRC9lO/ay/jlg\nt4EEKGnk26Pl/QC0rLDC4g+m7+yBi+Df/4Kf33R0r/Xc9vBLfR7n2rvuZYc3vo7VVlyxz+0kqcp8\nPJakSkuKm/a2AB3A7v/xVQBuvOVz3HrNcYOq6zNX3wjcyANf9ia+kpqXj8eSVB21T1eA4sH0PW0G\n7LrH6QD87413AfC7yz+98Nmmnb51zS1DEqYkNZLJm6RqK3O5jgjo6GDs2ouKbr7515w57UamfOjr\ndHR0sGDBorsRTf7kVC68/s4uVT3w5WPtdZPU9EzeJDXcDR0/oWW55YuF6NbbVi5Ga3G6+tvcJFqC\naE++cPZtADz/Mmz/0anseOA5fO+623nssTlcN+3YQc0LGXf+Nxh3/jeWsiWSNPRM3iRVymI3c6x9\n6AJww29OAmDmr07scf9pV/6a93/pCgBmnWsvm6SRxwsWJFXCkT8+kHP3vbRr9tZRLrR0/Ttz5k1F\n4nbrNcex417F7UJu+0Ex3+3X985mo9VXHvTxr3zvvmy6xlqDD1yShpk9b5IqYc89dyuTtUW3BqnV\n2gqve8Na7L7TV9h9p6/0Ws+Ob3o9G2zw6kEff/x6G7Dy8ssPej9JGm4mb5IqYcLyH6ZI3GoeSN8S\nC3vf2l9uY9plhzcsPkmqCpM3SdWRNT1vAB1ZpHKjggQmvf3LRFty460nNSY+SaoAkzdJFROLnm3a\ny33e+jL+4LMZf/DZQxCXJFWDyZukSpjxfz+A1lZi8etNu/jEMT5ZT9KyzatNJVXCRz5yALR3wKiW\n8ueoLuUB3HDHF/utZ9ZFn+px/ReuuJYr732IP53m7UMkNTd73iRVwryrOnou6DZ02tbWtkT1X3nv\nQ0u035I498+7cu6fdx2240lattjzJqnyoq2DC6Z/ij22Pw2A9hWKU9evZp4w4DrO3HtnPvvTm5fo\n+I8+9xQbr7neEu0rSfVmz5ukSvjvP57ctZet86KF0iH7nAsdHcWrm122G9dv/e/ZZuslHjKd8tvv\nLNF+kjQU7HmTVAlHbV30qi28OW9mcdeQ0a1kJixoL24b0tr1b86rLjyUtceuNpyh9uvITX/V6BAk\njWAmb5KaTu1w6UASty0/OxWA+85csp63e9/b/4USkjRcHDaVVC0di98qJABGF1ef/nTmZ4Y3Hkmq\nGJM3SdVUPoz+Q8fswvQHvgYUSdxKK63Ibjt/tYGBSVJjOWwqqSISOoBRFBculBcrfPRj71q4RQew\n2/anwZjB/d05mOHScZedAcBj+x8/qGNI0nCx501SNZQXkS4cNM2ETPZ624n85td31f1wmckOXz+b\nV155hd3+5/y61y9JQ8XkTVK1dN4upLzqdP4/4SuH/bjLJh1tyS7vOoMbb7y1xyq2OWwqZ176v30e\n5tBzz+UZYMaMGTz6738tXH/W+Ams6KCEpAozeZNULW3ti24XAsWjsoD9P74LjB5F1Nz77Utn/o6d\n3vv1Hqu54rez+zzM/xx1FEdtszV77rknK9as32fzrfjT/p9e4vAlaaj556Wk6ulM0FZYHoDpD3yN\nW66/j6AYVo2WmuHVtuLd9Jv+yE7bvp6VVlqJWd85hojoXutijt51FwDuP8pkTVLzsOdNUjVlwiuv\nLFycO+d5oDhp/erWk/jPvTaB1kUJ2pcuvJHdDy3mrkUEWx05la2OnDqsIUvScDB5k1QN2QHZQbTU\nnJY6kukPFVd/7jrxzWRHBxnBrnuczlU/fYhbr/sst1732T6rfcsxJnCSRhaTN0nV0tJ1uHPSJkVy\ndsgHv0lL++I38O30ux9+mt/9cNHw593ndr09yBYnTmWLE03kJDU/57xJqqZuSdz8l4vELVuDlvnt\n3HjrSb3u+taPFUlartB79ZucXmzz8AlL9sgsSWoUkzdJ1RDFQEBm+Tgs+r/gYDDu/5pJmqSRweRN\nUiX874sXseeqB/dY9se7ZnPq1P143SavZu1XrwrAzpPOBODm6b3PefvjOcfy2DPPLbb+jV+eCqOL\neSMbf/NsAB49+lNL2QJJGh7OeZNUCXuucSiMKk9J5dMVoLglyPEfvpipX7mcxx97ekB13fmdY6EF\nXnrpJcats2aP2zx8wrE86JCppCZk8iapYrLrTXpLLz7VxuePvByA3Xb9GhN22rjPXjeAnY+/qMf1\nD568KGl79OhP2esmqamYvEmqlMXStpaWIpkb03WWx403PNxvXXeeZ8+apJGn3+QtIi6OiGcj4r5e\nyiMipkXE7Ii4JyLeWlN2bETcHxH3RcTlEbF8uf7UiJgTEXeXr8n1a5KkptQ5VJrdloG37Thu0NWZ\nuEkaqQbS83YJMLGP8knAJuXrMOA8gIhYH/gkMD4ztwRGAfvW7Dc1M7cqX9ctQeySRpBc0Ea2ty92\ni5AAbr/tCWjr6HG/d77vG7zzfd8YhgglqRr6vdo0M2+NiHF9bDIFuCwzE7gtIlaLiHVr6l8hIhYA\nKwJPLWW8kka6zp63ct5bto6CBe0wKuj8e/OII3dh0qS39ry/JI1w9Zjztj7wRM3yk8D6mTkH+Abw\nV2Au8GJmXl+z3VHlMOvFEbF6b5VHxGERMSsiZs2bN68O4UqqtpqnKHQmcOViB7DHDqfxvvdtxwor\njOm1hhde+DvHTPvB0IUoSQ00ZBcslAnZFGAjYD1gpYj4SFl8HrAxsBVFYndWb/Vk5gWZOT4zx48d\nO3aowpVUGeWwaSYf++K7e9xit12/xm67fg2A31z9GX5z9We6lp/4XW7907NDGqUkNUo9krc5wIY1\nyxuU63YH/pKZ8zJzAXA1sD1AZj6Tme2Z2QFcCGxbhzgkNbuOrs8u/c4p1/KLP36xHDItTlg3/Pbz\n/VZz+K5vHoroJKkS6vGEhWuAIyPiR8DbKYZH50bEX4HtImJF4N/AbsAsgIhYNzPnlvvvDfR4Jauk\nZVwmra2tBF0GU5n5qxP73O2wD+zGYR/YbUhDk6RG6Td5i4jLgZ2BtSLiSeAUYDRAZp4PXAdMBmYD\nLwMHlWW/j4grgTuBNuAu4IKy2jMjYiuK8/FjwMfq1iJJTSlGjSrfdK7odse3MT7NT5JgYFeb7tdP\neQJH9FJ2CkWy1339RwcaoKRlREsUw6a1XWxlAvfLe05jwvhTGxKWJFWNT1iQVA2d890ye91k5TU8\nZUmS4xCSqiHLm/C2LP5cU4A99nwT2+7whmEMSJKqyeRNUrX00vH2mVP2Gd44JKmiHIOQVB0RfQ6b\nSpJM3iRVRbQAsehq09KkzU7k2h/+piEhSVIVmbxJqpSErjfrbWvj3C9fC0BHR88Pp5ekZYlz3iRV\nQ+2FCqMW/V2Z7QljWpiwzSlFYjemlet/d/KwhydJVWHPm6SKKee9deZyKyw3JEc57LuXccqll/a7\n3UV/+C2HT79wSGKQpCVhz5ukSsgFbdASi5600MOFCwHMqFOv26+e/RsAX+xjm0deeJaznrqhLseT\npHqx501SddQ+Eispkrn5r/DL+79Cy5jgTePXBuCRR+by97//X7/VPfroo7zlmKkAbH7SVDY/aeqi\nwhZ6PAPeNucxHp73DK+74iu863p73CRVjz1vkqqr7H371fW/5drffoGWliLbOuzQSwCY/N638Olj\nJve6+97Tft5r2ezjPtXj+n1vvKL4uep6/GT+U/zgTR/l1mf+tATBS9LQsOdNUrV06X0rkrczj/sl\nk7fu+pjkDuAX0+/ts6o/nnMsO7xmLAAn7Pq2QYVx+l4H8cgHT2Lr172Oo7ffc1D7StJQimyiG2KO\nHz8+Z82a1egwJA2Bd435UDFMutxyxOhWorUVRo+G5ZejY8XiooUZf/zywu13mXAGq64CP7vy+EaF\nLEl9iog7MnN8vet12FRSJcTo1uL+bp1/UAZde+F68OI/hj4uSaoakzdJ1dDeDtFS3CGkIxdesDD9\n4TMbHJgkVYtz3iRVR3Z9gsL0x6YycYuTmLjFSQ0KSJKqx543SdXSeZ+3foZMP7Tvtrx/77pPJZGk\nyjN5k1QNUQ4EdHQsTOAmjTuWT377Q0yevPiVoocetMtwRidJlWHyJqnS/vvIK5j86NuYMP5UALab\nvD6/uXXNG4ZuAAAS00lEQVQeM2/+XGMDk6QGcc6bpGrKhJZRi63+za3zGhCMJFWHyZskSVITcdhU\nUjWsAvwDIKGl54sVNt50dc77/tHDGZUkVY7Jm6RKmPHs95j4qoMWrYiAtjZoLU5TM2ad2pjAJKli\nHDaVVC2dtwjp51YhkrSsMnmTVAkTNtmfbG8vnqyQNY/JGuVpSpJqeVaUVAn5eNuihZby1NTL3DdJ\nWpaZvEmqjFxQJnCdvW4d6bNNJakbkzdJlRGjFr+vmySpK5M3SZWwMHFbOGTawvS/ntO4gCSpokze\nJFVPRzY6AkmqLJM3SdXQEsUrYuGFCpNec0yDg5Kk6jF5k1Qt2bXXbdLmn2PS5j6EXpI69Zu8RcTF\nEfFsRNzXS3lExLSImB0R90TEW2vKjo2I+yPivoi4PCKWL9evERE3RMTD5c/V69ckSc1oxr8uI8aM\nASDCvyslqTcDOUNeAkzso3wSsEn5Ogw4DyAi1gc+CYzPzC2BUcC+5T4nADMzcxNgZrksSYuk894k\nqSf9Jm+ZeSvwfB+bTAEuy8JtwGoRsW5Z1gqsEBGtwIrAUzX7XFq+vxTYa0mClyRJWtbUY2xifeCJ\nmuUngfUzcw7wDeCvwFzgxcy8vtxmncycW75/Glint8oj4rCImBURs+bNm1eHcCU1hY4ODj9790ZH\nIUmVM2QTS8p5bFOAjYD1gJUi4iPdt8vMpHiaYY8y84LMHJ+Z48eOHTtU4UqqoPOP+xW0tS9VHd/9\nxc31CUaSKqIeydscYMOa5Q3KdbsDf8nMeZm5ALga2L7c5pnOodXy57N1iEPSSNJ5096lmPv2lmOm\ncs6Nd9UpIEmqhnokb9cA+5dXnW5HMTw6l2K4dLuIWDEiAtgNeKBmnwPK9wcAP69DHJJGmj563eb9\n7cVhDESSqmMgtwq5HPgd8MaIeDIiDo6IwyPi8HKT64BHgdnAhcAnADLz98CVwJ3AveWxLij3OR3Y\nIyIepuihO71+TZI0kuSY0WREl3W7vOsMPvCh8xcu7/D+s9jh/WctXH7HYVO5+Lr/x+1nHslGr1p+\n2GKVpOHQ2t8GmblfP+UJHNFL2SnAKT2sf46iJ06SFpPZQUDxtIXShK1PYcZdXwTgmqs+wXv3+Xav\n+78CfOtnv+e/Jm/Pz7708aENVpKGWb/JmyQ1RGfi1tZOto7qUrTKKqtw0/XHL1z+7U8+vdjukzft\n/d7fb/jKVAAeOunYOgQqScPL5E1SdbS3QwCjlm467h0XmJRJGrlM3iRVU8TCJC4y+WU5ZFoP39iz\nr4fGSFK1mbxJqqZyqDTa25e6J6679755s7rWJ0nDyac/S6qMX770XRjVCh3J9L+cDT6gXpIW45lR\nUmVMfNVB0N7W6DAkqdJM3iRVSwLLB5M2+GTNuiV/yoIkjTQmb5IqJ1rKG+u2RN8bStIyyAsWJFXH\nqFE9r+/2hIXddv0aADN/deJQRyRJlWPPm6TqaWtj+pPTGh2FJFWSPW+SKmv67K9z7Y9v47WbrM2E\nbU7h2t+fTGtrfU9bG59zNh2jE0h+/f792XDttetavyTVmz1vkqonk0lv/wQA557yc4770IUAvPvt\nXwaK4dLBDpluceJUtjhxas+FC4ofO1512ZLFK0nDyORNUuXkgjaO+dKURcsAbR1ccPV/DcnxHjum\neDbqH/bZf0jql6R6MnmTVEm77LLLYuuOPvS7S1XnCTss/mSFR4/5FACPHfEZ1nbIVFITcM6bpOpo\nby9+LjeGKa89lulzv7WobFTw7+eXvOr7v+bD6iWNDPa8SaqeTH7y8BnF2851LZ6uJAnseZNUERNW\nKuabRXmvt5VXXrlL+YxZpw53SJJUSSZvkqqt1R43SarlWVFSNbyh+HHM+Qcyfd53Fq5+9cYNikeS\nKsqeN0mVMOOunu+x9vSjwxyIJFWcPW+SJElNxJ43SZUxcfVDAIgxo5n+zHkNjkaSqsmeN0mVk533\newM22mq5BkYiSdVj8iapMrb/yBbQ0dFl3YbrjWtMMJJUUSZvkirj/11272LrjvjcPqy21goNiEaS\nqsnkTVIlTRp3BAARLWy51bjGBiNJFWLyJqkSJqy0P9nWBqPL66jmFz9e9aoV+PzUjzQuMEmqGJM3\nSdXSkf1vI0nLMJM3SZV1ySWXNDoESaockzdJlZILXln4/oqT72LS649rYDSSVD3epFdSNUQUP7O4\nSIHW4vT0vkO2bGBQklQ99rxJqobM4lUrgkNPOICJbzmZiW85eUDVXD/rj9x85wNDEKAkVUO/yVtE\nXBwRz0bEfb2UR0RMi4jZEXFPRLy1XP/GiLi75vVSRBxTlp0aEXNqyibXt1mSmlpLLOyJ+9mlNw9q\n15O+PZPjzp0+BEFJUjUMpOftEmBiH+WTgE3K12HAeQCZ+WBmbpWZWwHbAC8DP63Zb2pneWZetyTB\nSxo59v3KhIVXmuaCNliwAIDvfPWXPW7/97//e9hik6Qq6XfOW2beGhHj+thkCnBZZiZwW0SsFhHr\nZubcmm12Ax7JzMeXKlpJI9aPTqxJ0lpi4Zw3YNF8uBp7f3AaADfNOL7L+tsv/hQAL7z0T1ZeYXlG\nj3Zqr6SRpR5ntfWBJ2qWnyzX1SZv+wKXd9vvqIjYH5gFfDozX+ip8og4jKJHj9e85jV1CFdS1bxr\n9L4AROvoInGDYv5bBNMfPB2Atra2QdW56wkXAnDXt4+tX6CSVAFDfsFCRIwB3gv8pGb1ecDGwFYU\nSd5Zve2fmRdk5vjMHD927NghjVVSBfTQywbQ2rr435pHHb7DUEcjSZVTj563OcCGNcsblOs6TQLu\nzMxnOlfUvo+IC4Ff1CEOSU3qm/ecwtFv/mLXlS0ti3rhetB9uLS726cd1WPCNxj3Pvs0r19lVVZY\nYYWlqkeS6qkeyds1wJER8SPg7cCL3ea77Ue3IdNuc+L2Bnq8klXSsmGzzTYrhkyBoEjYpv/1nKWq\nc2kTN4B9bi2GXh/6z4HdpkSShkO/Z7eIuBzYGVgrIp4ETgFGA2Tm+cB1wGRgNsUVpQfV7LsSsAfw\nsW7VnhkRWwEJPNZDuaRlVXmvt0nrHsH0ud9qcDCwaqMDkKRuIrvfFLPCxo8fn7NmzWp0GJKGwIQV\nPgpAjG6FMaOJ0aOhtZXpT3yzYTH985X/Y7nW0YxuGdWwGCQ1r4i4IzPH17ter6GXVA2jul0/1dL4\nB8CsPGb5RocgSYtp/NlRknrS0bF4QidJMnmTVDGjHKKUpL44bCqpGppo/q0kNZI9b5KqpZeb9EqS\nCiZvkqqppYXpj01tdBSSVDkOm0qqhg6HTSVpIOx5k1QtnY/EcvhUknpk8iapWjp74NrbGxuHJFWU\nyZukamlra3QEklRpJm+SJElNxORNUiX97LGzGx2CJFWSyZukSpjx7+91eRzWY4/9tYHRSFJ1mbxJ\nqowZ/7wUWlsh4Zidz2l0OJJUSSZvkipjwsoHFG98VJYk9cqb9Eqqlhbv7yZJfbHnTVIlvGvMh7os\nT5/7rQZFIknVZvImqTLylQUcesoHuOpxn2kqSb1x2FRSpexz1O6NDkGSKs2eN0mSpCZiz5ukSoiW\n8M9JSRoAT5WSqqOj0QFIUvWZvEmSJDURkzdJkqQm4pw3SZUw4/9+0OgQJKkp2PMmSZLUREzeJEmS\nmojJmyRJUhMxeZMkSWoiJm+SJElNxORNkiSpiZi8SZIkNZF+k7eIuDgino2I+3opj4iYFhGzI+Ke\niHhruf6NEXF3zeuliDimLFsjIm6IiIfLn6vXt1mSJEkj00B63i4BJvZRPgnYpHwdBpwHkJkPZuZW\nmbkVsA3wMvDTcp8TgJmZuQkws1yWJElSP/pN3jLzVuD5PjaZAlyWhduA1SJi3W7b7AY8kpmP1+xz\nafn+UmCvwYUtSZK0bKrHnLf1gSdqlp8s19XaF7i8ZnmdzJxbvn8aWKe3yiPisIiYFRGz5s2bV4dw\nJUmSmteQX7AQEWOA9wI/6ak8MxPI3vbPzAsyc3xmjh87duwQRSlJktQc6pG8zQE2rFneoFzXaRJw\nZ2Y+U7Pumc6h1fLns3WIQ5IkacSrR/J2DbB/edXpdsCLNUOiAPvRdci0c58DyvcHAD+vQxySJEkj\nXmt/G0TE5cDOwFoR8SRwCjAaIDPPB64DJgOzKa4oPahm35WAPYCPdav2dODHEXEw8DjwgaVtiCRJ\n0rKg3+QtM/frpzyBI3op+xewZg/rn6O4AlWSJEmD4BMWJEmSmojJmyRJUhMxeZMkSWoiJm+SJElN\nxORNkiSpiZi8SZIkNRGTN0mSpCZi8iZJktRETN4kSZKaiMmbJElSE4ni6VbNISLmUTwLdaRaC/hb\no4NoANu9bFlW2w3Lbttt97LFdi/y2swcW+8DNVXyNtJFxKzMHN/oOIab7V62LKvthmW37bZ72WK7\nh57DppIkSU3E5E2SJKmJmLxVywWNDqBBbPeyZVltNyy7bbfdyxbbPcSc8yZJktRE7HmTJElqIiZv\ndRIRa0TEDRHxcPlz9V62mxgRD0bE7Ig4YSD7R8SJ5fYPRsSEct0qEXF3zetvEXFOWXZgRMyrKTtk\nJLW9XH9zua6zjWuX65eLiCvKfX4fEeNGSrsjYsWIuDYi/hwR90fE6TXbD+l33lsbasojIqaV5fdE\nxFvr3f5y/TYRcW9ZNi0iop7tbGS7I2KPiLijbN8dEbFrzT49/r6PkHaPi4h/17Tt/Jp9RvL3/eHo\neg7viIityrJh/b6HsO3vj+Jc1RER47vVN5L/jffY7rr+G89MX3V4AWcCJ5TvTwDO6GGbUcAjwMbA\nGOCPwOZ97Q9sXm63HLBRuf+oHuq+A9ipfH8gcO5IbjtwMzC+h+N8Aji/fL8vcMVIaTewIrBLuc0Y\n4NfApKH+zvtqQ802k4HpQADbAb8fou/9D2X9UR5v0hB+v8Pd7q2B9cr3WwJzao7T4+/7CGn3OOC+\nXmIZsd93t3rfBDzSiO97iNu+GfDG7u1h5P8b763ddfs3bs9b/UwBLi3fXwrs1cM22wKzM/PRzHwF\n+FG5X1/7TwF+lJnzM/MvwOyynoUi4g3A2hT/mTdCw9reTyxXArsN4V9uw9ruzHw5M28CKOu6E9ig\nzm3qSV9t6DQFuCwLtwGrRcS6/ew7qPaX9b0qM2/L4mx3GT1/5vUyrO3OzLsy86ly/f3AChGx3FA1\nrg/D/X33aKR/393sV+7TKEPS9sx8IDMf7OF4I/rfeG/true/cZO3+lknM+eW758G1ulhm/WBJ2qW\nnyzX9bV/X/t06uxhqr36ZJ+ya/bKiNhwcE0ZtEa1/dKye/nkmgRt4T6Z2Qa8CKw5+CYNSMO+84hY\nDdgTmFmzeqi+84H8Dva2TT3bv375vq846mm4211rH+DOzJxfs66n3/eh0Ih2b1S27ZaI2LHmGMvK\n9/1B4PJu64br+4aha/tgjzdSvvOBWKp/462DONAyLyJuBF7dQ9FJtQuZmRGxxJfxLsH++wIfrVn+\nX+DyzJwfER+j+Gtv1x73HKAKtv3DmTknIlYBrqJo/2VLetzeVLDdREQrxYl+WmY+Wq6u+3c+nJb2\n82tWPbU7IrYAzgDeVbN6WH7fh0u3ds8FXpOZz0XENsDPys9gxOnl+3478HJm3lezekR93+qqHv/G\nTd4GITN3760sIp6JiHUzc27ZpfpsD5vNAWp7RDYo1wH0tn9f+xARbwFaM/OOmjifq9n+fyjmXCyV\nqrU9Mzt//iMifkjRhX1ZzT5PlknOqkDt5zEoVWt36QLg4cw8pybOun/nNfqLp69tRvex72DbP4eu\nw8Q9xVFPw91uImID4KfA/pn5SOf6Pn7fh8KwtrvseZhfvr8jIh4B3sAy8H2X9qVbr9swf98wdG0f\n7PFGynfeq7r9G89hmhA50l/A1+k6KfXMHrZpBR6lmKDZOcFxi772B7ag68TOR6m5YAE4Hfhit+Os\nW/N+b+C2kdT2sq61ym1GU8xtO7xcPoKuFyz8eKS0uyw7jeKvspbh+s77akPNNu+m66TePwxR+7tP\nZp48hN/vcLd7tXK79/UQR4+/7yOk3WNrvt+NKf4DXGOkf9/lckvZ3o0b9X0PZdtr9r2ZrhP3R/S/\n8T7aXbd/40P2y7CsvSjmVc0EHgZurDn5rAdcV7PdZOAhiqtUTupv/7LspHL7B+l25U35y7Npt3Vf\no5gM+Ufgpu7lzd52YCWKq2vvKdv5zZp/+MsDP6GYAPsHak6KI6DdGwAJPADcXb4OGY7vvKc2AIez\nKGkO4Ftl+b10PWHV7XceGA/cV5adS3mj8SH8joet3cDngX/VfLd3U1yI1Ovv+whp9z5lu+6muAhn\nz2Xh+y7LdqbbH1qN+L6HsO17U8wFmw88A8yoKRvJ/8Z7bDd1/DfuExYkSZKaiFebSpIkNRGTN0mS\npCZi8iZJktRETN4kSZKaiMmbJElSEzF5kyRJaiImb5IkSU3E5E2SJKmJ/H+R2oE1UwVndAAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAE/CAYAAADL647AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XVWd///XO0nT0hulbSi90hYKUhCr1IKORQa8AMNM\nBW/l64AwIHYEL6M//aHOPBwdGVHHn18dUcSRrzAKha+IoqKgIqAO0IsUbCmFtlzaUkppaek1aZLP\n74+9ku6mJ8kJTXMueT8fj0POWWvttT/rnOTw6dp77a2IwMzMzMwqX02pAzAzMzOz3uHEzszMzKxK\nOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjixM7N9SPqBpC+WOo6+UIljlbRd0tRXsN1k\nSSGp7mDEZWblwYmdmVkFiYihEbG61HG0kXSRpD+WOg4zyzixM7OKoEy//c4qxUxbX7znnkE06139\n9kvSrFJIulLSKknbJD0m6dxUPlDSFkkn5No2SNol6fD0+lOS1kt6TtKl6VDc0UXsdrSk36R93ifp\nyNw+3ihpoaSt6ecbixjDRZJWp/6ekvS+XPmfJH0r9fe4pDNy290r6SpJfwJ2AlMlHSrp+2lc6yR9\nUVJtan+UpHskbZL0oqQfSRqR6++1kv6c4rgFGNRJvF2+t5JGS/pFarNZ0h86S4DSe/6RNP4XJX01\n31bSP0haLuklSXd1eK9D0uWSngSezJUdnZ4fKulGSRslPSPpn9v6llQr6T/SPlcDf9Pd59TT91zS\nccC1wBvSIeItuT4u7fD5/zH3urNxzZP0ZHpfr5GkYmI2s72c2JmVv1XAbOBQ4PPADyWNjYhG4CfA\n+bm27wHui4gXJJ0JfBx4C3A0cFoP9vk+4N+A0cAS4EcAkkYCvwS+CYwC/j/gl5JGddaRpCGp/VkR\nMQx4Y+qzzclpjKOBzwE/SftpcwFwGTAMeAb4AdCcxvRa4G1AWxIh4EvAOOA4YCLwrymOeuCnwH8D\nI4H/C7yzUMzdvbfAJ4C1QAMwBvgM0NX9Gc8FZgKvA+YA/5BimpO2PS/19Qfg5g7bviO9R9ML9Puf\nZL8XU4E3AxcCF6e6DwDnkL1HM4F3dRFfR0W95xGxHJgHPJAOEY8o3F1BhcZ1DvB64ESy9/vtPejP\nzAAiwg8//KigB1lSNCc9fwuwKlf3J+DC9Px64Eu5uqPJko+ju+n/B8D83OuhQAtZknQBsKBD+weA\ni7robwiwhSyJOqRD3UXAc4ByZQuAC9Lze4Ev5OrGAI35fsiSr993su93AA+n56cW2Nf/AF/sZNuu\n3tsvAD/r7r1MbQM4M/f6Q8Dv0vNfAZfk6mrIZsmOzG17eoH+jgZqgSZgeq7ug8C96fk9wLxc3dvS\ntnXdxNuj9zx9hn8s0MelHT7nP3YYQ6FxvSn3+lbgylL8jfnhRyU/PGNnVuYkXShpSTo8tQU4gWx2\nC+D3wGBJJ0uaDMwAbk9144A1ua7yz7vT3jYitgObU3/jyGZw8p4BxnfWUUTsAN5LNrOzXtIvJb0q\n12RdRORnu55J+ykU95HAgNRP2/vxXaDt0PMYSfPT4cKXgR+y970a18m+OtPVe/tVYCVwdzrEemUX\n/XQcQ358RwLfyI1lM9ms4/hOts0bTfZe5MeQ/yw6fv5djbWreLt8zw9AoXE9n3u+k+wfFWbWA07s\nzMpYOt/qe8AVwKjIDnUtJfufPxHRQjazcX56/CIitqXN1wMTct1N7MGu29tKGkp26PK59DiyQ9tJ\nwLquOouIuyLircBY4PE0pjbjO5xLNSntp33z3PM1ZLNHoyNiRHoMj4jjU/2/p/avjojhwN+T3iuy\n96PQvjqLudP3NiK2RcQnImIq8HfAx/PnBhaQf+/z41sDfDA3lhERcUhE/E8n4897EdjDvp9H/rNY\nX2C/xerJe14ovh3A4NzrI7rZh5n1Eid2ZuVtCNn/ADcCSLqYbMYu7yayGbH3pedtbgUulnScpMHA\nv/Rgv2dLelM6L+3fgAcjYg1wJ3CMpP8lqU7Se8nOkfpFZx2lWbQ56Vy7RmA70JprcjjwEUkDJL2b\n7Ny4Owv1FRHrgbuBr0kaLqkmLZh4c2oyLPW/VdJ44JO5zR8gO0+sbV/nAbO6eR8KvreSzpF0dEoS\nt5Idqm4t3AUAn5R0mKSJwEeBW1L5tcCnJR2f+j00vQfdyiWeV0kalv4R8HGyWUpS3UckTZB0GNDd\nrGJn++nuPd8ATEi/K22WAOdJGpwWelzySvZtZj3nxM6sjEXEY8DXyJKSDcCryc71yrd5iGyGZBzZ\nOVtt5b8iW7Twe7LDhg+mqsYidn0T2UKGzcBJZDNfRMQmshPcPwFsAj4FnBMRL3bRVw1ZwvFc6u/N\nwD/m6h8CppHNQF0FvCvtpzMXAvXAY8BLwI/JZgIhW1zyOrJk65dkCyBIsTeRLVK4KMXx3nx9IZ29\ntyne35IlkQ8A346I33fR1c+AxWQJzy+B76f+bwe+DMxPh46XAmd1FVMHH07xrQb+SPa5XZ/qvgfc\nBTwC/JluxtqNrt7ze4BlwPOS2n4Pvk52/t8G4AbS4hszO/i07+kmZlat0qUplgIDI6K51PFAdhkM\nspPs31TqWA4WSQFMi4iVpY7FzKqfZ+zMqpikc5Vdk+0wspmhn5dLUmdmZr3PiZ1Zdfsg8ALZdeJa\nSIdAJS1LF5Tt+HjfK91RJ/1tlzS7d4ZivcWflVn18qFYMzMzsyrhGTszMzOzKuHEzszMzKxK1JU6\ngN4wevTomDx5cqnDMDMzM+vW4sWLX4yIhoPRd7eJnaTrya5b9UJEdLwwKukCnd8Azia7BcxFEfHn\nVHdmqqsF/isirk7ltwDHpi5GAFsiYka6bc9yYEWqezAi5nUX4+TJk1m0aFF3zczMzMxKTlJPbvHX\nI8XM2P0A+BZwYyf1Z5FdrHMacDLwHeBkSbXANcBbgbXAQkl3RMRjEfHeto0lfY3sYqJtVkXEjJ4O\nxMzMzKy/6/Ycu4i4n+wq7Z2ZA9wYmQeBEZLGkt2qZ2VErE5XfJ+f2rZLs33vAW5+pQMwMzMzs0xv\nLJ4YT3aT6DZrU1ln5XmzgQ0R8WSubIqkJZLu8zWVzMzMzIpX6sUT57PvbN16YFJEbJJ0EvBTScdH\nxMsdN5R0GXAZwKRJk/okWDMzM7Ny1hszduuAibnXE1JZZ+UASKojuyH3LW1lEdHYdvPviFhMdrX8\nYwrtNCKui4iZETGzoeGgLCwxMzMzqyi9kdjdAVyozCnA1ohYDywEpkmaIqkemJvatnkL8HhErG0r\nkNSQFl0gaSrZgozVvRCjmZmZWdUr5nInNwOnAaMlrQU+BwwAiIhrgTvJLnWykuxyJxenumZJVwB3\nkV3u5PqIWJbrei77L5o4FfiCpD1AKzAvIrpauGFmZmZmSVXcK3bmzJnh69iZmZlZJZC0OCJmHoy+\nfUsxMzMzsyrhxM7MzMysSjixMzMzM6sSTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTMzMzOrEk7s\nzMzMzKqEEzszMzOzKuHEzszMzKxKOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjixMzMz\nM6sSTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTMzMzOrEk7szMzMzKqEEzszMzOzKuHEzszMzKxK\nOLEzMzMzqxJO7MzMzMyqRLeJnaTrJb0gaWkn9ZL0TUkrJT0q6XW5ujMlrUh1V+bK/1XSOklL0uPs\nXN2nU/sVkt5+oAM0MzMz6y+KmbH7AXBmF/VnAdPS4zLgOwCSaoFrUv104HxJ03PbfT0iZqTHnWmb\n6cBc4Pi0z2+nfszMzMysG90mdhFxP7C5iyZzgBsj8yAwQtJYYBawMiJWR0QTMD+17cocYH5ENEbE\nU8DK1I+ZGQDf+H/ns/mFraUOw8ysLPXGOXbjgTW512tTWWflbT6cDt1eL+mwbvoyMwPg97c/xBNL\nny11GGZmZalUiye+A0wFZgDrga/1tANJl0laJGnRxo0bezs+MytTE6cdwdiJo0odhplZWeqNxG4d\nMDH3ekIq66yciNgQES0R0Qp8j72HWzvdpqOIuC4iZkbEzIaGhl4YhplVgtraOmoH+NRbM7NCeiOx\nuwO4MK2OPQXYGhHrgYXANElTJNWTLYq4AyCdg9fmXGBprq+5kgZKmkK2IGNBL8RoZlViy6Zt7Ni6\nq9RhmJmVpbruGki6GTgNGC1pLfA5YABARFwL3AmcTbbQYSdwcaprlnQFcBdQC1wfEctSt1+RNAMI\n4Gngg2mbZZJuBR4DmoHLI6KlV0ZqZlVhwzObeeh3f+HY10wudShmZmWn28QuIs7vpj6Ayzupu5Ms\n8etYfkEX/V0FXNVdXGbWfzXu3F3qEMzMypLvPGFmFWdUw8hSh2BmVpac2JlZRampEyMnOLEzMyvE\niZ2ZVZShwwcxZuzwUodhZlaWnNiZWUVpamxm8+adpQ7DzKwsObEzs4py+nmv55jjJ+5XvuG5l1j+\nmO9IYWb9mxM7M6so9/98Eeuf3rBf+T9e8n3+6UP/XYKIzMzKhxM7M6sorS3QQgBw03fvYdUTzwHZ\nuXf19f5KM7P+zd+CZlZRdm5r4tkns2TuJ//9R+67O7txzfp1W9m1s7WUoZmZlZwTOzOrONs2ZbcU\n2761kb8seLzE0ZiZlQ8ndmZWMXbvbARg6+Zt7WXLH07n26kUEZmZlZdubylmZlYuPnL2lwAYNf7Q\n9rLhI7Ovsc98bg5bX95VkrjMzMqFZ+zMrGKsefwFACYcOaa9bNuWZgB++IP7+dH195ckLjOzcuHE\nzswqS3Mzd9zwh/aXkdZLjG4YzvCRw9rLW1uD1tbo6+jMzErKh2LNrLLU1bH1xRf3K371ayaxaeP2\n9tdPP7sZgKmTR/VZaGZmpebEzswqS0szOxub9it+29tOZFtaXAHwpW/9nJqaGr77lQv7Mjozs5Jy\nYmdmFefFp/ZfJLF12y62bdvd/nr985v7MiQzs7Lgc+zMrLIEjJpyyH7F13z913z9K79of71nj9jT\n7GugmFn/4hk7M6ssEnt2738o9rFlzxG5tRJ/dcpU5LzOzPoZJ3ZmVjlS5vby+pb9qgYPgR17106w\nYNEqnNmZWX/jxM7MKl5zcwu7du5btnXH/smfmVm18zl2ZlbRAnjwvhW0tpY6EjOz0nNiZ2YVr35Q\nHeMmDGfYsAGlDsXMrKR8KNbMKsKu7Z3fB/beu5fy3NqX+zAaM7Py5Bk7M6sI5068vNO6Y48f34eR\nmJmVr24TO0nXS3pB0tJO6iXpm5JWSnpU0utydWdKWpHqrsyVf1XS46n97ZJGpPLJknZJWpIe1/bG\nIM2ssv12/h+hFSIK3/v1tz9/uI8jMjMrT8XM2P0AOLOL+rOAaelxGfAdAEm1wDWpfjpwvqTpaZvf\nACdExInAE8Cnc/2tiogZ6TGvB2Mxsyr19Y99P7vUSaEVEgMH8Owz+9871sysP+o2sYuI+4Gu7s0z\nB7gxMg8CIySNBWYBKyNidUQ0AfNTWyLi7ohoTts/CEw4kEGYWXVrabuUifb9yjr21WM5//1vYPYZ\nx/d9UGZmZag3zrEbD6zJvV6byjor7+gfgF/lXk9Jh2HvkzS7F+Izs2oR+87YvfOiN3PMiRM4ZHB9\niQIyMysvJV0VK+mzQDPwo1S0HpgUEZsknQT8VNLxEbHfcjdJl5Ed+mXSpEl9FbKZlVLrvufYrX36\nRYYeOpBNL3hFrJkZ9E5itw6YmHs9IZUN6KQcAEkXAecAZ0Q6IzoiGoHG9HyxpFXAMcCijjuNiOuA\n6wBmzpxZ+IxqM6tqt3z/94yZNJL167fiqzeZmfXOodg7gAvT6thTgK0RsR5YCEyTNEVSPTA3tUXS\nmcCngL+LiPYbAUlqSIsukDSVbEHG6l6I0cyqQYdbvzbubOGZp7bQtNv/tjMzgyL+iSvpZuA0YLSk\ntcDnyGbjiIhrgTuBs4GVwE7g4lTXLOkK4C6gFrg+Ipalbr8FDAR+o+wm3Q+mFbCnAl+QtAdoBeZF\nRFcLN8ysPymQv9XXQ1MT2WHaGu3fwMysH+k2sYuI87upD6DglUMj4k6yxK9j+dGdtL8NuK27mMzM\n2jQ1NePDsGZmGX8bmlllSRcpvujsq6Ale17g6nZmZv2SbylmZhVpw6pt0NKalluZmRk4sTOzCtHZ\n7cTAX2RmZm38fWhmZS8K3Uosp3ZAHwViZlbmnNiZWflrn60rPGvX0tJ3oZiZlTMndmZWOQrldQPh\n8LFD+zwUM7Ny5MTOzMpfa4GMbk8zAMOH1tPU1NTHAZmZlScndmZW0YYNG8QR49OMna9PbGb9nBM7\nM6to27fu4s2nz8xe+M5iZtbPObEzs8qifaflRo47jN/f/RffTszMDN95wswqSYekTsCu7U2seWYL\n1PrrzMzMM3ZmVrECaGzcwZRpR5Q6FDOzsuB/4ppZWdu9e3eX9S89v4dtO9ZDzYFfpXjxmnUAnDRx\n/AH3ZWZWCp6xM7Oy9h8f+07XDQQ16p1/o55/w62cf8OtvdKXmVkpOLEzs7J2/38vJAreWiLaf7Q0\nNxfV168eXE5zc+Hbk33ytl+8wgjNzMqHEzszK297um9S7C3FbrhzAXv2FO7w8fUv9CAoM7Py5MTO\nzMrWC2tfJJr3dH3h4dy32IABXV/yZOW6Tfz5sacL1l38V7N6HqCZWZlxYmdmZetz7/5y1w0iyL7G\nAiJ4w5umddvnR7/9y4LlJ0+e0OV2v3tqBX96ZlW3/ZuZlZITOzMrWysferr7Rq2t0AJI3P/7J2ht\nDZqaOj/nrvAZdvDJ237ZXn/Ml7++X/0l9/6M991zW/fxmJmVkC93YmYVL38nsUcffZYHF+6dWdu+\no4nGliZGDR/aXtbc0kpd7b7/rt3euDcZbPWtycysQnnGzswqUnvu1TYFlxKzBxY8yT33Lm9v99ZL\n/5NzPvjdfbb9/I137dff4cMP2a9sT7GrMszMyoQTOzOrePkJtsFDBrDxxe1dtv/Fwsfbn3/wv27j\nXV//AX9cvS47pJt6XLd5Myd/91tsa+r6AslmZuXEh2LNrPLlFsP+n+/9CeprCzYrdIT1j6ueJYBB\nddA0EJrSt+L1CxewZU8zb7nxe7zj2OOyjbtedGtmVnKesTOz8tfZOW8dEq29CyOCoYP2/Xpb98KW\nzvsBdgc0t9A+a/fb5U8AsGFPI/+1dAkBRGQdfOqBnwHwznuu4csPH5wLG7c2PkBEZ0s9zMwK6zax\nk3S9pBckLe2kXpK+KWmlpEclvS5Xd6akFanuylz5SEm/kfRk+nlYru7Tqf0KSW8/0AGaWZWrAYh9\nEq8I2L5736To3E9dT7RmuV0Af1n9XJfdrsldyDh/pl1rayu3PbuUo265iie2v8AP1yyg5WAkYI0L\niFaf42dmPVPMjN0PgDO7qD8LmJYelwHfAZBUC1yT6qcD50uanra5EvhdREwDfpdek+rnAsenfX47\n9WNm/dCxbziq+0bRyfOmKNhMAK3w99+8hbsffqw9a6sB6PLbJuvhG3/6bXrdSktr9vP+55d3ttEr\nN+QCamoH9H6/ZlbVuk3sIuJ+YHMXTeYAN0bmQWCEpLHALGBlRKyOiCZgfmrbts0N6fkNwDty5fMj\nojEingJWpn7MrB9a8WAnFwRW7hhsPn/reGi2FWjucAQ21+aTN9zV3kUrZElefvIt8q+zDX/41MP7\nx9N6EE6+2/g3tG5/qff7NbOq1hvn2I0H1uRer01lnZUDjImI9en588CYbvoys/6o03Pien6huejw\nkw7XMBbs940Ybf/JJXvfPP1d+7QZUAefeOSmomJobGzkW4+fXlRb2Ak+x87MeqjkiyciOymmx9/S\nki6TtEjSoo0bNx6EyMysYvTkG0TFz66p/T97nTBqHJMHj2DywMH7V3bj50/9vAetW6C+vkf9m5n1\nRmK3DpiYez0hlXVWDrAhHa4l/Xyhm772ExHXRcTMiJjZ0NBwwIMws/IzYEiHKzJ1zKOKSOjGjhq0\nz+b5vK7TpQkSFDi9TYhD6uu56YwL+MRJXZ16XNiRHNmD1k3w0q96vA8z6996I7G7A7gwrY49Bdia\nDrMuBKZJmiKpnmxRxB25bd6fnr8f+FmufK6kgZKmkC3IWNALMZpZBbpz282otmfrp7JZtr3Z24ZN\nu6Em+7IrdLi1M6eOHL1f2/818RgARg4awimHT+lRXAALWdiD1jNg5Dk93oeZ9W/FXO7kZuAB4FhJ\nayVdImmepHmpyZ3AarKFDt8DPgQQEc3AFcBdwHLg1ohYlra5GnirpCeBt6TXpPpbgceAXwOXR4TX\n+5v1d69gpq7NP//j25h8xDAA3nva8YX7S2X/Z+47GD8kO/w5bswRWXlN9njX1Onc++IzrNyyke17\nGlmxZQP1QD01HNL1ctp2rfy4+MAPvQRqBxbf3syMIu48ERHnd1MfwOWd1N1Jlvh1LN8EnNHJNlcB\nV3UXl5n1E+rBgYUO588JOOv0V3PW6a/muz/+A+e/7XXc/NBj7fW17F1DMVhw8lFHsn5XE9TBaRPH\nMX/FUkYPPIRzph7Fy2ph3a7d3P/MSt553Ay27WmkCfjlaR9FRZ5rd+G4n3Ljc+/oviFA8x4Y6Ftd\nmFnP+JZiZlb+ipihE0BdlgjVAK11+yZFH3zX7C633xlQV1NDa/pWrE8LF3583vmMHjyUhzc+x7+9\n4S0MqR9IawRvHJMdil3y4jPUSowbPLLbGIcPH84Vw+/pfjAAOz4OO+rgiJ6fy2dm/VfJV8WamR0o\n1RQ/s/Wrz3+g/ULEl5x+YvttZf/xlOymOZ95Y3bpzOEpsZs8YiRD6+uZPX4yQ+qzQ6M1EkMHZM+/\nveK3XPtEkclajzV338TMLMczdmZWWaLD9F1n/zztJNcbc/hQvnP5uTyw4hne8YYTef2xR7Ps+Q1c\n+uYsobvn6WcAGFEzoNsz504YdgQvN75EjXp+Xb3i/BbwAgozK55n7Mys8kgFrzHXMZfrbB7vDcdN\n5pjxoxg8oJ6xI4dyylF7r7L0vbnv5otvO4MFGzd0fjmU5NYz5lFXW0Nt7cH6Kh1xkPo1s2rlxM7M\nKkdrFzNjtQWyvC6O0P7Lj37Dt3/1ByY3jOKECWPbyw8ZMIC5rz2RV40eXVRIW1saeal5d1Fte6zu\nQwenXzOrWj4Ua2YVaP8ETx1ejBjW9V0bWoElTz7Taf0jz28oKpIdNBXVrseGfhoGHXZw+jazquXE\nzswqW7rEScdUb8rE0dDNoopVm3d2Wjd+xPCidj+qbjB1PbkkS5Fqhl7c632aWfVzYmdmla2Te782\nNbd0m9h15a+POoZfzO1+xuxfT3wnNQewHzOz3uTEzswqW1pIETX7zppFQHeLVRu6OFpbW1PDhEO7\nX7zw7RW/oZYa3nD4MUUEa2Z2cHnxhJlVroDT/vZ4kBg5akhWlu7CVVer/dZTdNTdVeKGD+z+ll4r\ndjzPih3PdR+rmVkf8IydmVWeNBMnoC798/SWn/8TZ5z27+1Nnl67udtu/ur4ow84lP98/fupPQjn\n2JmZvRJO7MyssnQ4p+6+e5d3aJBdVvikGZOp6eJ6J0eMGMpxk4444HCmHzr+gPswM+stTuzMrKKN\nHFXLhh0t6flgxkw4lJWrNvKF/2dOl9vd9In3ceghgw54/4fWDz7gPszMeosTOzOrHPusPs2eq6YW\n0j0iduzYTfOewbQWuM5dR6OGOSEzs+rjxM7MKlsuh2vc3cqTq16itXTRmJmVlBM7M6toNXX7zs69\n6ujhvHrGsSWKxsystLyUy8wq2nOr9rQ/f+Mbp1E3aAi3/XRhCSMyMysdJ3ZmVjmiw7lzdbXU5k6V\n+7d/fzdPPb2R5u4uUGdmVqWc2JlZ5Shw+7Dvz/8Y4ycd2v66ts639zKz/suJnZmVtelvyl1EuOOM\nHTB23Aiu/8k/tb8eNHBAX4RlZlaWnNiZWVn7+u8+DzU10FrcWteLLngzr5sx6SBHZWZWnrwq1szK\nmiTUfghWBWft8o6ZdgS7djUd/MDMzMqQZ+zMrPIUONeuzcrVL/DAQ6v6MBgzs/LhxM7MKosEAzo/\nj+5/HnyChx95uu/iMTMrI0UldpLOlLRC0kpJVxaoP0zS7ZIelbRA0gm5uo9KWippmaSP5cpvkbQk\nPZ6WtCSVT5a0K1d3bW8M1Mz6h8NHDefQ4b5dmJn1T92eYyepFrgGeCuwFlgo6Y6IeCzX7DPAkog4\nV9KrUvszUoL3AWAW0AT8WtIvImJlRLw3t4+vAVtz/a2KiBkHOjgzqyI1NR3uFZt58YWXWfn4ek45\nNbvbxNQpDTz1zIt9HZ2ZWVkoZsZuFrAyIlZHRBMwH5jToc104B6AiHgcmCxpDHAc8FBE7IyIZuA+\n4Lz8hsrOin4PcPMBjcTMqppqCn9djWoYxoxZU9tfjxlzGEceObqvwjIzKyvFJHbjgTW512tTWd4j\npIRN0izgSGACsBSYLWmUpMHA2cDEDtvOBjZExJO5sinpMOx9kmYXPRoz63f2NDbz0qbt7a9XP/U8\nS5etK2FEZmal01uLJ64GRqTz5D4MPAy0RMRy4MvA3cCvgSVAS4dtz2ff2br1wKR0KPbjwE2Shnfc\noaTLJC2StGjjxo29NAwzK1sDsjNHLvrndMBgUD0AL23ZwYpla9ubDR9+CMOGDurz8MzMykExid06\n9p1lm5DK2kXEyxFxcUrGLgQagNWp7vsRcVJEnAq8BDzRtp2kOrKZvltyfTVGxKb0fDGwCjimY1AR\ncV1EzIyImQ0NDUUN1swq19BxA5BqeGnjlqygObtW3aBBAxg5amh7u3v/uIKFi58uQYRmZqVXTGK3\nEJgmaYqkemAucEe+gaQRqQ7gUuD+iHg51R2efk4iS+Juym36FuDxiFib66shLdhA0lRgGilJNLP+\n66/ePhOAn333vqygOfvRtHsPW7fsam+38sn1fR2amVnZ6DaxS4sergDuApYDt0bEMknzJM1LzY4D\nlkpaAZwFfDTXxW2SHgN+DlweEVtydXPZf9HEqcCj6bDuj4F5EbH5FYzNzKrEvK9dwFvfPRtqa3jt\nX09rLx8U1upTAAAU8UlEQVQ4qI5hIwZz5FF7Z+23b99ZihDNzMpCUbcUi4g7gTs7lF2be/4ABQ6X\nprpOFz9ExEUFym4DbismLjPrH8790NtY8NtHAdjywrb28po60dLcyp6m5vayHc7rzKwf850nzKwi\nvO604wF4fu2m9rJd2/cgiQEDfNtrMzNwYmdmFaKurhZqYNzUMe1ltQPEgPpahg7buwp2UH2hrc3M\n+gcndmZWOVph3ZPPt788/ZzXsn7tZu67e2l72e6mUgRmZlYenNiZWcU4ZNhAXn3K0e2vNzy3hfpD\n6hky3NetMzODIhdPmJmVgy/88HLGTBrFj/7zbo6ePo6/fsdM7v7Fw/zi1kW87ZzXljo8M7OSc2Jn\nZhXjhJOz2bqP/ft728te87qpbH1pd6lCMjMrKz4Ua2YVrbZWDB48oNRhmJmVBSd2ZlbRtm9v5Pl1\nL5U6DDOzsuDEzswq2pSjD+fv3ntKqcMwMysLPsfOzCra4CGDmHyUV8WamYFn7MzMzMyqhhM7MzMz\nsyrhxM7MKtqunY2sefrFUodhZlYWnNiZWUUbdEg9Y8Ye2v66YXRtCaMxMystJ3ZmVtEkUT9w73Xs\nLnjfGZz46okljMjMrHS8KtbMqsrfnv1a/ubMGaUOw8ysJDxjZ2ZVp6ZGpQ7BzKwknNiZWUXbvauJ\n9Ws3lzoMM7Oy4MTOzCragPo6Dj1sSKnDMDMrC07szKyi1dbWMHjIwFKHYWZWFpzYmVlF27plB8se\nebbUYZiZlQUndmZW0Xbv3sP6tS+VOgwzs7LgxM7MKtpzT2/i4QWrSh2GmVlZcGJnZhVt245dvPD8\nllKHYWZWFopK7CSdKWmFpJWSrixQf5ik2yU9KmmBpBNydR+VtFTSMkkfy5X/q6R1kpakx9m5uk+n\nfa2Q9PYDHaSZVa8VS9ey8on1pQ7DzKwsdJvYSaoFrgHOAqYD50ua3qHZZ4AlEXEicCHwjbTtCcAH\ngFnAa4BzJB2d2+7rETEjPe5M20wH5gLHA2cC304xmJntp66ullr54IOZGRQ3YzcLWBkRqyOiCZgP\nzOnQZjpwD0BEPA5MljQGOA54KCJ2RkQzcB9wXjf7mwPMj4jGiHgKWJliMDPbz3EnTuL41/jesGZm\nUFxiNx5Yk3u9NpXlPUJK2CTNAo4EJgBLgdmSRkkaDJwN5L+BP5wO314v6bAe7M/MDIBhIw5h1JhD\nSx2GmVlZ6K3jF1cDIyQtAT4MPAy0RMRy4MvA3cCvgSVAS9rmO8BUYAawHvhaT3Yo6TJJiyQt2rhx\nY++MwswqzgP3Lef+u5eWOgwzs7JQTGK3jn1n2SaksnYR8XJEXBwRM8jOsWsAVqe670fESRFxKvAS\n8EQq3xARLRHRCnyPvYdbu91f2v66iJgZETMbGhqKGIaZVaPmpj3sbmwsdRhmZmWhmMRuITBN0hRJ\n9WQLG+7IN5A0ItUBXArcHxEvp7rD089JZIdrb0qvx+a6OJfssC2p77mSBkqaAkwDFrySwZlZ9bvr\njsXscV5nZgZAXXcNIqJZ0hXAXUAtcH1ELJM0L9VfS7ZI4gZJASwDLsl1cZukUcAe4PKIaLvg1Fck\nzQACeBr4YOpvmaRbgceA5rRNC2ZmBRx19Dj+smS/SX0zs36p28QOIF2K5M4OZdfmnj8AHNPJtrM7\nKb+gi/1dBVxVTGxm1r+NGnsoOLEzMwN85wkzq3AP3PdYqUMwMysbTuzMrKJFlDoCM7Py4cTOzCpa\nw+hhpQ7BzKxsOLEzs4r2mpOPpa6os4XNzKqfEzszq2hSK6pRqcMwMysLTuzMrKLt2rmLlhafaGdm\nBk7szKzCTT16HA2H+16xZmbgxM7MKlz94AEMHFzffUMzs37AiZ2ZVbRnVz7P+mdfLHUYZmZlwYmd\nmVW0Deu3sGePz7EzMwMndmZW4Y6aNpYhw30o1swMnNiZWYVb/fgGdrzcVOowzMzKghM7M6toGuRr\n2JmZtXFiZ2YVbcvmnaUOwcysbDixM7OKtmvbrlKHYGZWNpzYmVlFe3mLZ+zMzNo4sTOzirZ7z55S\nh2BmVjac2JlZRfM17MzM9nJiZ2YVrWV3qSMwMysfTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTOz\niqbaUkdgZlY+nNiZWUWLllJHYGZWPopK7CSdKWmFpJWSrixQf5ik2yU9KmmBpBNydR+VtFTSMkkf\ny5V/VdLjaZvbJY1I5ZMl7ZK0JD2u7Y2BmpmZmVW7bhM7SbXANcBZwHTgfEnTOzT7DLAkIk4ELgS+\nkbY9AfgAMAt4DXCOpKPTNr8BTkjbPAF8OtffqoiYkR7zXvHozMzMzPqRYmbsZgErI2J1RDQB84E5\nHdpMB+4BiIjHgcmSxgDHAQ9FxM6IaAbuA85L7e5OZQAPAhMOeDRmZmZm/Vgxid14YE3u9dpUlvcI\nKWGTNAs4kixRWwrMljRK0mDgbGBigX38A/Cr3Osp6TDsfZJmFzUSMzMzs36urpf6uRr4hqQlwF+A\nh4GWiFgu6cvA3cAOYAmwz6nOkj4LNAM/SkXrgUkRsUnSScBPJR0fES932O4y4DKASZMm9dIwzMzM\nzCpXMTN269h3lm1CKmsXES9HxMURMYPsHLsGYHWq+35EnBQRpwIvkZ1PB4Cki4BzgPdFRKT2jRGx\nKT1fDKwCjukYVERcFxEzI2JmQ0NDseM1MzMzq1rFJHYLgWmSpkiqB+YCd+QbSBqR6gAuBe5vm2GT\ndHj6OYnscO1N6fWZwKeAv4uInbm+GtKCDSRNBaaRkkQzMzMz61y3h2IjolnSFcBdQC1wfUQskzQv\n1V9LtkjiBkkBLAMuyXVxm6RRwB7g8ojYksq/BQwEfiMJ4MG0AvZU4AuS9gCtwLyI2NwLYzUzMzOr\nakWdYxcRdwJ3dii7Nvf8AQocLk11BRc/RMTRnZTfBtxWTFxmZmZmtpfvPGFmZmZWJZzYmZmZmVUJ\nJ3ZmZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXCiZ2ZmZlZlXBiZ2ZmZlYlnNiZ\nmZmZVQkndmZW0WoHlDoCM7Py4cTOzCra8OEDSx2CmVnZcGJnZhXt9bOPpbau1FGYmZUHJ3ZmVuFE\nTY2/yszMwImdmVW4upoaWltaSx2GmVlZcGJnZhXtyeVraGkpdRRmZuXBiZ2ZVbQNz28udQhmZmXD\niZ2ZVbRRDcNKHYKZWdlwYmdmFW3m7BMYdqgveWJmBuCLBJhZRTv5lGns2Lyr1GGYmZUFz9iZWUUb\nOmwgY8aNKHUYZmZlwYmdmVW0uro66uprSx2GmVlZcGJnZhVt3ZqX+Muip0sdhplZWXBiZ2YVbcDA\nGgbU+3RhMzMoMrGTdKakFZJWSrqyQP1hkm6X9KikBZJOyNV9VNJSScskfSxXPlLSbyQ9mX4elqv7\ndNrXCklvP9BBmln1GjJ4EKPH+JInZmZQRGInqRa4BjgLmA6cL2l6h2afAZZExInAhcA30rYnAB8A\nZgGvAc6RdHTa5krgdxExDfhdek3qey5wPHAm8O0Ug5nZflQDtTX+ijAzg+Jm7GYBKyNidUQ0AfOB\nOR3aTAfuAYiIx4HJksYAxwEPRcTOiGgG7gPOS9vMAW5Iz28A3pErnx8RjRHxFLAyxWBmth9RQ02t\nzyoxM4PiErvxwJrc67WpLO8RUsImaRZwJDABWArMljRK0mDgbGBi2mZMRKxPz58HxvRgf2ZmABwx\nYQRvOPXYUodhZlYWeuuM46uBb0haAvwFeBhoiYjlkr4M3A3sAJYA+92uOyJCUvRkh5IuAy4DmDRp\n0gGGb2aVavjwwUx/jb8DzMyguBm7deydZYNsJm5dvkFEvBwRF0fEDLJz7BqA1anu+xFxUkScCrwE\nPJE22yBpLED6+UKx+0v9XhcRMyNiZkNDQxHDMDMzM6tuxSR2C4FpkqZIqidb2HBHvoGkEakO4FLg\n/oh4OdUdnn5OIjtce1Nqdwfw/vT8/cDPcuVzJQ2UNAWYBix4JYMzMzMz60+6PRQbEc2SrgDuAmqB\n6yNimaR5qf5askUSN6TDqcuAS3Jd3CZpFLAHuDwitqTyq4FbJV0CPAO8J/W3TNKtwGNAc9pmv8O3\nZmZmZrYvRfTo1LayNHPmzFi0aFGpwzAzMzPrlqTFETHzYPTtawSYmZmZVQkndmZmZmZVwomdmZmZ\nWZVwYmdmZmZWJZzYmZmZmVUJJ3ZmZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXC\niZ2ZmZlZlXBiZ2ZmZlYlnNiZmZmZVQkndmZmZmZVwomdmZmZWZVwYmdmZmZWJZzYmZmZmVUJJ3Zm\nZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXCiZ2ZmZlZlXBiZ2ZmZlYlikrsJJ0p\naYWklZKuLFB/mKTbJT0qaYGkE3J1/yRpmaSlkm6WNCiV3yJpSXo8LWlJKp8saVeu7treGqyZmZlZ\nNavrroGkWuAa4K3AWmChpDsi4rFcs88ASyLiXEmvSu3PkDQe+AgwPSJ2SboVmAv8ICLem9vH14Ct\nuf5WRcSMAx2cmZmZWX9SzIzdLGBlRKyOiCZgPjCnQ5vpwD0AEfE4MFnSmFRXBxwiqQ4YDDyX31CS\ngPcAN7/iUZiZmZlZUYndeGBN7vXaVJb3CHAegKRZwJHAhIhYB/wH8CywHtgaEXd32HY2sCEinsyV\nTUmHYe+TNLvo0ZiZmZn1Y721eOJqYEQ6T+7DwMNAi6TDyGb3pgDjgCGS/r7Dtuez72zdemBSOhT7\nceAmScM77lDSZZIWSVq0cePGXhqGmZmZWeUqJrFbB0zMvZ6QytpFxMsRcXFKxi4EGoDVwFuApyJi\nY0TsAX4CvLFtu3R49jzgllxfjRGxKT1fDKwCjukYVERcFxEzI2JmQ0NDUYM1MzMzq2bFJHYLgWmS\npkiqJ1v8cEe+gaQRqQ7gUuD+iHiZ7BDsKZIGp3PpzgCW5zZ9C/B4RKzN9dWQFmwgaSowjSxJNDMz\nM7MudLsqNiKaJV0B3AXUAtdHxDJJ81L9tcBxwA2SAlgGXJLqHpL0Y+DPQDPZIdrrct3PZf9FE6cC\nX5C0B2gF5kXE5q5iXLx48YuSnul2tJVtNPBiqYMoAY+7f/G4+xePu3/xuPc68mDtTBFxsPq2XiRp\nUUTMLHUcfc3j7l887v7F4+5fPO6+4TtPmJmZmVUJJ3ZmZmZmVcKJXeW4rvsmVcnj7l887v7F4+5f\nPO4+4HPszMzMzKqEZ+zMzMzMqoQTuz4gaaSk30h6Mv08rJN2Z0paIWmlpCuL2V7Sp1P7FZLensqG\npVuytT1elPS/U91Fkjbm6i6tlnGn8ntTWdv4Dk/lAyXdkrZ5SNLkahl3uk7kLyU9LmmZpKtz7Q/6\n593ZOHL1kvTNVP+opNf19nuQyk+S9JdU901J6u2xlmrckt4qaXEa32JJp+e2Kfg7XyXjnixpV25s\n1+a2qebP+33a9zu8VdKMVFcNn/e7lX1XtUqa2aG/av77LjjuXv/7jgg/DvID+ApwZXp+JfDlAm1q\nye6yMRWoJ7v/7vSutgemp3YDyW7btgqoLdD3YuDU9Pwi4FvVOm7gXmBmgf18CLg2PZ8L3FIt4wYG\nA3+d2tQDfwDO6ovPu6tx5NqcDfwKEHAK8NBB+uwXpP6V9ndWFY37tcC49PwEYF1uPwV/56tk3JOB\npZ3EUrWfd4d+Xw2sqrLP+zjg2I5jofr/vjsbd6/+fXvGrm/MAW5Iz28A3lGgzSxgZUSsjogmYH7a\nrqvt5wDzI7sN21PAytRPO0nHAIeT/c++r5Vs3N3E8mPgjIP4L74+HXdE7IyI3wOkvv5Mduu/vtDV\nONrMAW6MzINk95Ue2822PXoPUn/DI+LByL4Nb6Tw+95b+nTcEfFwRDyXypcBh0gaeLAG14W+/rwL\nqvbPu4Pz0zalcFDGHRHLI2JFgf1V9d93Z+Pu7b9vJ3Z9Y0xErE/PnwfGFGgzHliTe702lXW1fVfb\ntGmbncqvknlnmvL9saSJHDylGvcNacr6X3LJW/s2EdEMbAVG9XxIRSnZ5y1pBPC3wO9yxQfz8y7m\nd7CzNr35HoxPz7uKozf19bjz3gn8OSIac2WFfucPhlKMe0oa232SZuf20V8+7/ey/x2aKv3z7un+\nquXzLsYB/313e0sxK46k3wJHFKj6bP5FRISyW6+9Iq9g+7nABbnXPwdujohGSR8k+1fi6QW3LEIZ\njvt9EbFO0jDgNrKx3/hK99uZMhw3kurI/gfwzYhou79yr37epXCg72GlKjRuSccDXwbelivuk9/5\nvtJh3OuBSRGxSdJJwE/Te1B1Ovm8TwZ2RsTSXHFVfd62V2/9fTux6yUR8ZbO6iRtkDQ2ItanqdoX\nCjRbB+RnUyakMoDOtu9qGyS9BqiLiMW5ODfl2v8X2Tker1i5jTsi2n5uk3QT2bT4jblt1qYE6FAg\n/170SLmNO7kOeDIi/ncuzl79vAvoLqau2gzoYtuevgfr2Pfwc6E4elNfjxtJE4DbgQsjYlVbeRe/\n8wdDn447zVo0pueLJa0CjqEffN7JfvdTr5LPu6f7q5bPu1O9+vcdfXACZn9/AF9l3xNkv1KgTR2w\nmuyE0bYTLo/vanvgePY90XQ1ucUTwNXA5zvsZ2zu+bnAg9Uy7tTX6NRmANm5dPPS68vZd/HErdUy\n7lT3RbJ/zdX05efd1Thybf6GfU8yXnCQ3oOOJ1effRA/474e94jU7rwCcRT8na+ScTfkPt+pZP+D\nHFntn3d6XZPGO7XaPu/ctvey7yKCqv777mLcvfr3fVDeFD/2+yUZRXbO05PAb3NfTOOAO3Ptzgae\nIFtR89nutk91n03tV9BhlVD65XpVh7IvkZ2c+Qjw+471lTxuYAjZCuBH0xi/kftSGAT8X7KTcReQ\n+7KsgnFPAAJYDixJj0v76vMuNA5gHnuTagHXpPq/sO8XWq/9zgMzgaWp7lukC7AfxM+5z8YN/DOw\nI/f5LiFbFNXp73yVjPudaVxLyBYF/W1/+LxT3Wl0+IdYFX3e55Kde9YIbADuytVV8993wXHTy3/f\nvvOEmZmZWZXwqlgzMzOzKuHEzszMzKxKOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjix\nMzMzM6sSTuzMzMzMqsT/DwTnGDSgc8FCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAE/CAYAAADL647AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXVV9///Xe2YyCbmHZAjkRhJIkIAQJQ1oC7WiCJQa\nQauhVISCiAWr1W/7Q+33Z7VFwdavYkUpCgVUbpViEbGAoKB+uSSRAAkkkIRLEpIQciW3uX6+f+w1\nk53JXM4kkzmXeT8fj/OYc9Zae+3POmfm5JO199pbEYGZmZmZlb+qYgdgZmZmZr3DiZ2ZmZlZhXBi\nZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdWYSTdJOmfix1HXyjHsUraJmnqPmw3WVJI\nqjkQcZWC7sYo6QuSfpB7fbaklek9fVvfRWpWupzYmZn1oYgYGhErih1HK0kXSPptseMoRER8NSIu\nzhX9K3B5ek+fkvSypPcUKz6zUuDEzsz6hDL99junGDNtffGeF3kG8XBgcRH3b1Zy+u2XrFlfkXSF\npOWS3pT0nKSzU/lASZslHZtrWydpp6RD0uu/l7RG0muSLk6HqY4sYLdjJD2Y9vmIpMNz+3inpHmS\ntqSf7yxgDBdIWpH6e0nSebny30n6TupviaRTc9v9WtKVkn4H7ACmShoh6YY0rtWS/llSdWp/hKSH\nJW2Q9IakH0samevvbZJ+n+K4AxjUSbxdvreSxki6N7XZKOk3nSVA6T3/mzT+NyT9S76tpL+S9Lyk\nTZLub/deh6TLJL0IvJgrOzI9HyHpFknrJb0i6R9a+5ZULelf0z5XAH/a3efU0/dc0tHAdcA70uHM\nzbk+Ls71ucesXhfjulTSi+l9vVaSOolxtqT5krZKWifp/7Rrcp6kV9PYv5jb7h8l/Sh9vtuAauBp\nZX9fPwQmAT9LY/n7Qt4vs0rjxM7swFsOnAyMAL4M/EjSYRFRD/wXcG6u7YeBRyLidUmnA58F3gMc\nCbyrB/s8D/gnYAywEPgxgKSDgZ8D3wZGA/8H+Lmk0Z11JGlIan9GRAwD3pn6bHViGuMY4EvAf6X9\ntPoocAkwDHgFuAloSmN6G3Aa0JpECPgaMA44GpgI/GOKoxb4KfBD4GDgP4EPdhRzd+8t8DlgFVAH\njAW+AHR1f8WzgVnA24E5wF+lmOakbc9Jff0GuK3dth9I79GMDvr9N7Lfi6nAHwPnAxemuo8DZ5G9\nR7OAD3URX3sFvecR8TxwKfBYOpw5suPuOtTRuM4C/gA4juz9fl8n214DXBMRw4EjgDvb1f8RcBRw\nKvD/pwS0TUTUR8TQ9PL4iDgiIj4KvAr8WRrL13swFrOK4cTO7ACLiP+MiNcioiUi7iCb4Zidqm8F\n5uaa/0Uqg+wfxv+IiMURsYOU4BTo5xHxaEpwvkg2IzORbNbnxYj4YUQ0RcRtwBLgz7rprwU4VtJB\nEbEmIvKHv14HvhURjWl8S9lzdummNIYmsoTsTOAzEbE9JVnfbH0PImJZRDyY/uFeT5Z4/nHq5yRg\nQG5fPwHmdRFzV+9tI3AYcHjq6zfR9Y2zr46IjRHxKvAtdieMlwJfi4jn0/i+CszMz9ql+o0RsTPf\nYZqlnAt8PiLejIiXgW+QJWWQff7fioiVEbGRLOEtVMHv+X7oaFxXRcTm9D79CpjZybaNwJGSxkTE\ntoh4vF39lyNiZ0Q8DTwNHL+fsZr1G07szA4wSedLWpgOT20GjiWb3YLsH7/Bkk6UNJnsH8K7U904\nYGWuq/zz7rS1jYhtwMbU3ziyGZy8V4DxnXUUEduBj5AlMWsk/VzSW3JNVrdLil5J++ko7sPJkrM1\nuffj34HWQ89jJd2eDhduBX7E7vdqXCf76kxX7+2/AMuAB9Ih1iu66Kf9GPLjOxy4JjeWjWSzjuM7\n2TZvDNl7kR9D/rNo//l3Ndau4u3yPd8PHY1rbe75DmBoB20ALgKmA0uUnQ5w1j72Y2btOLEzO4DS\nzM33gcuB0elQ1yKyf/yJiGayw1Dnpse9EfFm2nwNMCHX3cQe7LqtraShZLM2r6XH4e3aTgJWd9VZ\nRNwfEe8lm+VaksbUany7c6kmpf20bZ57vhKoB8ZExMj0GB4Rx6T6r6b2b02H6f6S9F6RvR8d7auz\nmDt9b9MM2eciYirwfuCzyp0b2IH8e58f30rgE7mxjIyIgyLi/3Yy/rw3yGau8p9H/rNY08F+C9WT\n97yj+LYDg3OvD+1mHz0SES9GxLlkyeXVwE/SIf/9tc8xmVUKJ3ZmB9YQsn9s1gNIupBsxi7vVrIZ\nsfPYfagQsqTkQklHSxoM/O8e7PdMSX+Uzkv7J+DxiFgJ3AdMl/QXkmokfYTsHKl7O+sozaLNSf/w\n1gPbyA7NtjoE+BtJAyT9Odm5cfd11FdErAEeAL4habikKmULJloPtw5L/W+RNB74u9zmj5GdJ9a6\nr3PYfUi7Mx2+t5LOknRkShK3AM3txtTe30kalQ5nfxq4I5VfB3xe0jGp3xHpPehWLvG8UtKw9J+A\nz5LNUpLq/kbSBEmjgO5mFTvbT3fv+TpgQvpdabUQOEfSYGULPS7al313RtJfSqqLiBZgcyru6v0v\n1Dqy8xXN+i0ndmYHUEQ8R3be1GNk/+i8FfhduzZPkM2QjAN+kSv/BdmihV+RHTZsPQ+pvoBd30q2\nkGEjcALZzBcRsYHsBPfPARuAvwfOiog3uuiriizheC3198fAJ3P1TwDTyGagrgQ+lPbTmfOBWuA5\nYBPwE7KZQMgWl7ydLNn6OdkCCFLsDWSLFC5IcXwkX9+Rzt7bFO8vyZLIx4DvRsSvuujqv4EFZAnP\nz4EbUv93k8043Z4OHS8CzugqpnY+leJbAfyW7HO7MdV9H7if7Byz39PNWLvR1Xv+MNklQ9ZKav09\n+CbQQPY7ezNp8U0vOh1YnFa2XgPMbX8O4j76GvAP6ZDz/+qF/szKjro+X9jMSkVaGbgIGJhOii86\nSReQra78o2LHcqBICmBaRCwrdixmZt3xjJ1ZCVN2y6SB6VDc1cDPSiWpMzOz0uPEzqy0fYLsciLL\nyc4D+ySApMXpIqztH+ft64466W+bpJN7ZyjWW/xZmVlnfCjWzMzMrEJ4xs7MzMysQjixMzMzM6sQ\nNcUOoDeMGTMmJk+eXOwwzMzMzLq1YMGCNyKi7kD03W1iJ+lGsutevR4R7S+sSrrA5zVk9yLcAVwQ\nEb9PdaenumrgBxFxVSq/g+wGzwAjgc0RMTPd9ud5sntNQnZR1Uu7i3Hy5MnMnz+/u2ZmZmZmRSep\nJ7cI7JFCZuxuAr4D3NJJ/RlkF/ucBpwIfA84Md3g+lrgvcAqYJ6keyLiuYj4SOvGkr5BdjHSVssj\norMbR5uZmZlZJ7o9xy4iHiW7yntn5gC3ROZxYKSkw8hu9bMsIlakK8bfntq2SbN9HwZu29cBmJmZ\nmVmmNxZPjCe7yXSrVamss/K8k4F1EfFirmyKpIWSHvE1mczMzMwKV+zFE+ey52zdGmBSRGyQdALw\nU0nHRMTW9htKugS4BGDSpEl9EqyZmZlZKeuNGbvVwMTc6wmprLNyACTVkN3Q+47Wsoiob715eEQs\nILva/vSOdhoR10fErIiYVVd3QBaWmJmZmZWV3kjs7gHOV+YkYEtErAHmAdMkTZFUC8xNbVu9B1gS\nEataCyTVpUUXSJpKtiBjRS/EaGZmZlbxCrncyW3Au4AxklYBXwIGAETEdcB9ZJc6WUZ2uZMLU12T\npMuB+8kud3JjRCzOdT2XvRdNnAJ8RVIj0AJcGhFdLdwwMzMzs6Qi7hU7a9as8HXszMzMrBxIWhAR\nsw5E376lmJmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZ\nVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJnZmZmVmFcGJnZmZmViGc\n2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdm\nZmZWIZzYmZmZmVUIJ3ZmZmZmFaLbxE7SjZJel7Sok3pJ+rakZZKekfT2XN3pkpamuity5f8oabWk\nhelxZq7u86n9Uknv298BmpmZmfUXhczY3QSc3kX9GcC09LgE+B6ApGrg2lQ/AzhX0ozcdt+MiJnp\ncV/aZgYwFzgm7fO7qR8zMzMz60a3iV1EPAps7KLJHOCWyDwOjJR0GDAbWBYRKyKiAbg9te3KHOD2\niKiPiJeAZakfMzMArvn/bmfj61uKHYaZWUnqjXPsxgMrc69XpbLOylt9Kh26vVHSqG76MjMD4Fd3\nP8ELi14tdhhmZiWpWIsnvgdMBWYCa4Bv9LQDSZdImi9p/vr163s7PjMrUROnHcphE0cXOwwzs5LU\nG4ndamBi7vWEVNZZORGxLiKaI6IF+D67D7d2uk17EXF9RMyKiFl1dXW9MAwzKwfV1TVUD/Cpt2Zm\nHemNxO4e4Py0OvYkYEtErAHmAdMkTZFUS7Yo4h6AdA5eq7OBRbm+5koaKGkK2YKMJ3shRjOrEJs3\nvMn2LTuLHYaZWUmq6a6BpNuAdwFjJK0CvgQMAIiI64D7gDPJFjrsAC5MdU2SLgfuB6qBGyNicer2\n65JmAgG8DHwibbNY0p3Ac0ATcFlENPfKSM2sIqx7ZSNPPPQsRx0/udihmJmVnG4Tu4g4t5v6AC7r\npO4+ssSvfflHu+jvSuDK7uIys/6rfseuYodgZlaSfOcJMys7o+sOLnYIZmYlyYmdmZWVqhpx8AQn\ndmZmHXFiZ2ZlZejwQYw9bHixwzAzK0lO7MysrDTUN7Fx445ih2FmVpKc2JlZWXn3OX/A9GMm7lW+\n7rVNPP+c70hhZv2bEzszKyuP/mw+a15et1f5Jy+6gb/96x8WISIzs9LhxM7MykpLMzQTvLF2Cz++\n7iGWv/AaAMNHHsTAgb4jhZn1b91ex87MrJTseLOBV198jQlTDuW/fvhb6puaOWL6OFav3Fzs0MzM\nis4zdmZWdt7csJO6Q0eyfWsDzz65pNjhmJmVDCd2ZlY2du2oB2DLxjfbyp5/Kp1vp2JEZGZWWnwo\n1szKxt+c+TUARo8f0VY2/ODsa+wLX5rDlq07ixKXmVmp8IydmZWNlUteB2DC4WPbyt7c3ATAj256\nlB/f+GhR4jIzKxVO7MysvDQ1cc/Nv2l7GS3ZzzF1wxl+8LC28paWoKUl+jo6M7Oi8qFYMysvNTVs\neeMNIvZM2t56/CQ2rN/W9vrlVzcCMHXy6D4Nz8ysmJzYmVl5aW7ize3bWbVi/R7Fp512HG+mxRUA\nX/vOz6iqquLfv35+X0doZlY0TuzMrOxsWtnExCMO2aNsy5s7efPNXW2v16zd2NdhmZkVnc+xM7Py\nEjBm6uC9iq/95v/wza/f2/a6sVE0NvkaKGbWv3jGzszKTsPO+r3Knlv8GvnT7v7wpKnIeZ2Z9TNO\n7MysfESAxNY1zXtVDR4C23evneDJ+ctxZmdm/Y0TOzMre01NzezcsWfZlu17J39mZpXO59iZWVkL\n4PFHltLSUuxIzMyKz4mdmZW92kE1jJswnGHDBhQ7FDOzovKhWDMrCxvXbiIiUAfnzf36gUW8tmpr\nEaIyMystnrEzs7LwF0d/rtO6o44Z34eRmJmVrm4TO0k3Snpd0qJO6iXp25KWSXpG0ttzdadLWprq\nrsiV/4ukJan93ZJGpvLJknZKWpge1/XGIM2svP3y9t9CF+fQ/fJnT/VdMGZmJayQGbubgNO7qD8D\nmJYelwDfA5BUDVyb6mcA50qakbZ5EDg2Io4DXgA+n+tveUTMTI9LezAWM6tQ3/rbG7JLnTR3sNJ1\n4ABefeWNvg/KzKwEdZvYRcSjQFf35pkD3BKZx4GRkg4DZgPLImJFRDQAt6e2RMQDEdGUtn8cmLA/\ngzCzyta0PT2pqt6j/Ki3Hsa5H3sHJ596TN8HZWZWgnrjHLvxwMrc61WprLPy9v4K+EXu9ZR0GPYR\nSSf3QnxmVili9/HY7dt2cfJpxzH9uAkcNLi2iEGZmZWOoq6KlfRFoAn4cSpaA0yKiA2STgB+KumY\niNhruZukS8gO/TJp0qS+CtnMiqll9z3DhgwdRENDM2+s3cKG170i1swMeiexWw1MzL2ekMoGdFIO\ngKQLgLOAUyOyOzxGRD1Qn54vkLQcmA7Mb7/TiLgeuB5g1qxZ0b7ezCrfHTf8irGTDmbNmi346k1m\nZr1zKPYe4Py0OvYkYEtErAHmAdMkTZFUC8xNbZF0OvD3wPsjou1GQJLq0qILJE0lW5CxohdiNLNK\n0O4SdvU7mnnlpc007PL/7czMoID/4kq6DXgXMEbSKuBLZLNxRMR1wH3AmcAyYAdwYaprknQ5cD9Q\nDdwYEYtTt98BBgIPpouNPp5WwJ4CfEVSI9nFDS6NiK4WbphZf9JB/lZbCw0NZIdpq/a+eLGZWX/S\nbWIXEed2Ux/AZZ3U3UeW+LUvP7KT9ncBd3UXk5lZq4aGJnwY1sws429DMysv2Sm5XHDmldCcPe/i\n2sVmZv2KbylmZmVp3fI3obklLbcyMzNwYmdmZSItnu+Qv8jMzDL+PjSzkhctXR9srR7QR4GYmZU4\nJ3ZmVvpaZ+s6mbVrbuqw2Mys33FiZ2alr4vDsAyEMYcO6btYzMxKmBM7Myt9HeV1jdk03fChtTQ1\nNfZtPGZmJcqJnZmVtWHDBnHo+KHZC1+f2Mz6OSd2ZlbWtm3ZyR+/e1b2wncWM7N+zomdmZUX7Tkt\nd/C4UfzqgWd9OzEzM3znCTMrJ+2SOgE7tzWw8pXNUO2vMzMzz9iZWdkKoL5+O1OmHVrsUMzMSoL/\ni2tmJW3Xrl1d1m9a28ib29dA1f5fpXjBytUAnDBx/H73ZWZWDJ6xM7OS9q+f+V63barUO/9HPffm\nOzn35jt7pS8zs2JwYmdmJe3RH84jmps7qNm9BLa5qbBbT8xfspKWlo6Xzn7hp7/Yl/DMzEqKEzsz\nK21dXXs43ZGiw7yvA9+649c0NHTc4XOvrethYGZmpceJnZmVrNdXvUE0NXZ+4WFpj2+xAQO6vuTJ\nklfXs2DxSx3Wnf+OWfsYpZlZ6XBiZ2Yl60t/fnXXDSLIvsYCInjHH03rts9Pf/fnHZafOHlCl9s9\n9NJSfvfK8m77NzMrJid2Zlaylj3xcveNWlqIZkDi0V+9QEtL0NDQ+Tl3LZ2U/91dP2+rn371N/eq\nv+jX/815D9/VfTxmZkXky52YWenrwa3Cfv/7l5j31Mttr7dtb6C+uYHRw4e2lTU1t1BTvef/a7fV\np2RQ0BLQ3NLC8k0bmT56zP5Evs+iZSOqOrgo+zaz8uUZOzMrS225XusUXErMfvmrRTz08HNt7d57\n8b9x1if+neWr32jb6Mu33L9Xf4cMP2iPjqurqhhz0ODeD7xQLZuJ8M1vzaxnnNiZWenr5jaw+fTn\nsHEj2LBx+15txo8Z0dbPvfOWtJV/4gd38aFv3sRvV6yGttW1weqNG3nPTd/nzYauL5B8oKhmKpLv\nf2tmPeNDsWZW/nL5z398/3dQW71Xk0EDB3R4RPe3y18lgIMGQH0tNKRvxRvnPcnmxibe+8MfMGf6\nW7LssYM8qyVaEHISZmYlwTN2Zlb6OjsiqT2btOReDR2059fbyrWbujxXb2cLNDXTNmv30JIXAFjb\nsIsbFi0koO3Q6BefuBeA8x65nque+hmv79pa2DAieG3HswW1bal/jIjOlnqYmXWs28RO0o2SXpe0\nqJN6Sfq2pGWSnpH09lzd6ZKWprorcuUHS3pQ0ovp56hc3edT+6WS3re/AzSzClcFrRlba+IVAdt2\n7ZkUffCK/yBaspYBPLvitS67fTV3IeP8GtuWlhZuf/lpjrjjSp7ZsprbVi1gzKBhBYUqiXGD31pQ\nW+qfJFoKvPKymVlSyIzdTcDpXdSfAUxLj0uA7wFIqgauTfUzgHMlzUjbXAE8FBHTgIfSa1L9XOCY\ntM/vpn7MrB866h1HdN8oOnneEB1WCaAF/vLbd/DAU8+1zdBVAeS+bfY+sJr1cM3vfplet9Dckv18\ndO3z3cfZU0M+SlX1gN7v18wqWreJXUQ8Cmzsoskc4JbIPA6MlHQYMBtYFhErIqIBuD21bd3m5vT8\nZuADufLbI6I+Il4ClqV+zKwfWvp4JxcEVrtjsG3lezaLFqCp3RHYXJu/u/n+ti5aIEvyWnLd7nF8\nN9vwRy89tXc8LQfg/Lr1f0rLtk2936+ZVbTeOMduPLAy93pVKuusHGBsRKxJz9cCY7vpy8z6o07P\niev5ZUCi3U/aXcNYsNc34l6XVAG+/e4P7dFmQA187ulbC4qhvr6e7yx5d0FtYUfKTM3MClf0xROR\nnRTT429pSZdImi9p/vr16w9AZGZWNnryDdKDybWOmh47ehyTB49k8sDBPesM+NlLP+tB62aore1R\n/2ZmvZHYrQYm5l5PSGWdlQOsS4drST9f76avvUTE9RExKyJm1dXV7fcgzKz0DBjS7opM7fOoAhK6\nw0YP2mPzfBedLk2QoIPT24Q4qLaWW0/9KJ87oatTjzt2OIf3oHUDbPpFj/dhZv1bbyR29wDnp9Wx\nJwFb0mHWecA0SVMk1ZItirgnt83H0vOPAf+dK58raaCkKWQLMp7shRjNrAzd9+ZtqLpn66fa535r\nN+wCZV92AqguZJYt+MNRo/f6hvyLidMBOHjQEE46ZEqP4gKYx7wetJ4JB5/V432YWf9WyOVObgMe\nA46StErSRZIulXRpanIfsIJsocP3gb8GiIgm4HLgfuB54M6IWJy2uQp4r6QXgfek16T6O4HngP8B\nLosIr/c36+/2Yaau1RUfP5XxdUMA+Mi7julyHz/48Ps5dGCWSE4Ye2hWXpU9PjR1Bo9seJVlm9ez\nrbGepZvXUQvUUsVBFJZ8tvCTwgMfcRFUDyy8vZkZBdx5IiLO7aY+gMs6qbuPLPFrX74BOLWTba4E\nruwuLjPrJ9SDAwutCWBaNSvg/afN5P2nzeTff/Ibzj3t7dz2xO77yFazew3FYGDKIWN4vbEZasSf\nTBrPHS8sZszAgZw1dRpDhw5h1c6d/G7lCj5w1HG82VhPA/Dzd30aFXiu3fnjfsotr32g+4YATY0w\n0HezMLOe8S3FzKz0FTBDlz/MKoCaPZOiT3zo5C633wFMHDWClvStWJsWLvzknPMYM3goT61/jU8e\n9xmG1A6kJYJ3js0OxS584xWqJcYNPrjbGIcPH87lwx/ufjAA2z8L22vg0J6fy2dm/VfRV8Wame0v\nVaUkLjdT15lffPnjbRcivujdxzEgfQt+8qTspjlfeGd26czhKbGbPPJghtbWcvL4yQypzQ6Nbti1\nnaEDsuffXfpLrnuhwGStx5q6b2JmluMZOzMrL9Fu+q6z/552kt2NPWQo37vsbB5b+gpzTnor48eO\npZFm5p54PAAPv/wKACOrBlAN7GxspLa6mgA21e+k7qAh7GhuJCKYNXIir+94nSr1/Lp6hfkl4AUU\nZlY4z9iZWflRx2e1qV3SJ2D1us1s2Lx9j/J3HD2Z6eNHM6R2IO+YPpFZk3dfB/37c/+cfz7tVJ5c\nv45mYP3O7exsaiIIGtO9W8cMGsLzW9Zxy7suoqa6iurqA/VVOqr7JmZmOU7szKx8tLSbGctnd9Xa\n81Zj6aJ1h9WN4OARg/fq6n//+EG++4vfMG7UCI4cO6at/KABA5j7tuN4y5isbNLwkQytrWVAVTXj\nhgwHYEhNLTNGZqtmtzY3sKWpvleGt5eaTx6Yfs2sYvlQrJmVob0Pfardi5HDsnPkqqo6PibbAjyz\n/NVO9/D02nUFRbKNA5TUDf08DPKMnZn1jBM7MytvaZaufao3ZeIY6CSpa/XiG9s7rRs/cnhBux9d\nM5ianlySpUBVQy/s9T7NrPI5sTOzitTQ1NxtYteVPzliOvfO7X7G7B+P+2Cns4JmZn3NiZ2Zlbe0\nkCKq9pw1i4DuFqvW1XZeV11VxYQRI7vd/XeXPkg1VbzjkOkFBGtmdmB58YSZla+Ad73/WJA4eHR2\n2zDSXbhqqtXtbWG7u0rc8IHd39Jr6fa1LN3+Wvexmpn1Ac/YmVn5STNxAmrSf0/v+Nnfcuq7vtrW\n5OVVG7vt5g+POXK/Q/m3P/gY1QfgHDszs33hxM7Myov2nIZ75NfPt2uQ3VbihJmTqeriHhSHjhzK\n0ZMO3e9wZowY330jM7M+4sTOzMrawaOrWbe9OT0fzNgJI1i2fD1f+V9zutzu1s+dx4iDBu33/kfU\n7n2NPDOzYnFiZ2blY4/Vp+m+sFXVQJbYbd++i6bGwbR0cJ279kYPc0JmZpXHiZ2ZlbdcDle/q4UX\nl2+ipXjRmJkVlRM7MytrVTV7zs695cjhvHXmUUWKxsysuLyUy8zKS+yZyL22vBGAxc+u5J3vnEbN\noCHc9dN5xYjMzKzonNiZWfmI2HNVbE011elUuaOPmcA/ffXPeenl9TR1d4E6M7MK5cTOzMqH9r58\nyQ23f4bxk0a03darusa39zKz/suJnZmVtBl/lLuIcOy92vWwcSO58b/+tu31oIED+iIsM7OS5MTO\nzEraNx/6MlRVQUtha10v+Ogf8/aZkw5wVGZmpcmrYs2spElCbYdg1eGsXd70aYeyc2fDgQ/MzKwE\necbOzMpPB+fatVq24nUee2J5HwZjZlY6nNiZWUnbuX0XkZ+lk2BA5+fR/d/HX+Cpp18+8IGZmZWg\nghI7SadLWippmaQrOqgfJeluSc9IelLSsbm6T0taJGmxpM/kyu+QtDA9Xpa0MJVPlrQzV3ddbwzU\nzMrTru31PWp/yOjhjBju24WZWf/U7Tl2kqqBa4H3AquAeZLuiYjncs2+ACyMiLMlvSW1PzUleB8H\nZgMNwP9IujcilkXER3L7+AawJdff8oiYub+DM7PyN+qQEdk5dlVV7e4Vm3nj9a0sW7KGk07J7jYx\ndUodL73yRl+HaWZWEgqZsZsNLIuIFRHRANwOzGnXZgbwMEBELAEmSxoLHA08ERE7IqIJeAQ4J7+h\nsrOiPwwLbuqyAAAXIElEQVTctl8jMbOKpqqqDhdOjK4bxszZU9tejx07isMPH9OXoZmZlYxCErvx\nwMrc61WpLO9pUsImaTZwODABWAScLGm0pMHAmcDEdtueDKyLiBdzZVPSYdhHJJ1c8GjMrN9prG9i\n04Ztba9XvLSWRYtXFzEiM7Pi6a3FE1cBI9N5cp8CngKaI+J54GrgAeB/gIVAc7ttz2XP2bo1wKR0\nKPazwK2ShrffoaRLJM2XNH/9+vW9NAwzK1kDakDign9IBwwG1QKwafN2li5e1dZs+PCDGDZ0UDEi\nNDMrukISu9XsOcs2IZW1iYitEXFhSsbOB+qAFanuhog4ISJOATYBL7RuJ6mGbKbvjlxf9RGxIT1f\nACwHprcPKiKuj4hZETGrrq6uoMGaWfkaPHYAUhWb1m/OCpqya9UNGjSAg0cPbWv3698uZd6Cl4sQ\noZlZ8RWS2M0DpkmaIqkWmAvck28gaWSqA7gYeDQitqa6Q9LPSWRJ3K25Td8DLImIVbm+6tKCDSRN\nBaaRkkQz67/edlK22P6///2RrKAp+9Gwq5Etm3e2tVv24pq+Ds3MrGR0uyo2IpokXQ7cD1QDN0bE\nYkmXpvrryBZJ3CwpgMXARbku7pI0GmgELouIzbm6uey9aOIU4CuSGoEW4NKI2LhvwzOzSnDpNz7K\nIZPr+N29zzD7tLcw77evAjBwUA3DRg7m8CN2z9pv27ajWGGamRVdQbcUi4j7gPvalV2Xe/4YHRwu\nTXWdLn6IiAs6KLsLuKuQuMysfzj7r0/jd/f9HoANr+2+MlJVjWhuaqGxoamtbLvzOjPrx3znCTMr\nCyeedjySWLNy9zXqdm5rRBIDBvi212Zm4MTOzMpETU01VMG4qWPbyqoHiAG11QwdtnsV7KDajrY2\nM+sfnNiZWflogdUvrm17+e6z3saaVRt55IFFbWW7GooRmJlZaXBiZ2Zl46BhA3nrSUe2vV732mZq\nD6plyHBft87MDApcPGFmVgq+8qPLGDtpND/+twc4csY4/uQDs3jg3qe49875nHbW24odnplZ0Tmx\nM7OyceyJ2WzdZ776kbay498+lS2bdhUrJDOzkuJDsWZW1qqrxeDBA4odhplZSXBiZ2Zlbdu2etau\n3lTsMMzMSoIPxZpZWZty5CG8/yMn0VDfRHNLS7HDMTMrKid2ZlbWBg8ZxOQjBrF1606aGpuLHY6Z\nWVE5sTOzijB8+EHFDsHMrOh8jp2ZmZlZhXBiZ2ZlbeeOela+/Eb3Dc3M+gEndmZW1gYdVMvYw0a0\nva4bU13EaMzMisuJnZmVNUnUDtx9HbuPnncqx711YhEjMjMrHi+eMLOK8mdnvo0/PX1mscMwMysK\nz9iZWcWpqlKxQzAzKwondmZW1nbtbGDNqo3FDsPMrCQ4sTOzsjagtoYRo4YUOwwzs5LgxM7Mylp1\ndRWDhwwsdhhmZiXBiZ2ZlbUtm7ez+OlXix2GmVlJcGJnZmVt165G1qzaVOwwzMxKghM7Mytrr728\ngaeeXF7sMMzMSoITOzMra29u38nrazcXOwwzs5JQUGIn6XRJSyUtk3RFB/WjJN0t6RlJT0o6Nlf3\naUmLJC2W9Jlc+T9KWi1pYXqcmav7fNrXUknv299BmlnlWrpoFcteWFPsMMzMSkK3iZ2kauBa4Axg\nBnCupBntmn0BWBgRxwHnA9ekbY8FPg7MBo4HzpJ0ZG67b0bEzPS4L20zA5gLHAOcDnw3xWBmtpea\nmmqq5YMPZmZQ2IzdbGBZRKyIiAbgdmBOuzYzgIcBImIJMFnSWOBo4ImI2BERTcAjwDnd7G8OcHtE\n1EfES8CyFIOZ2V6OPm4Sxxzve8OamUFhid14YGXu9apUlvc0KWGTNBs4HJgALAJOljRa0mDgTCD/\nDfypdPj2RkmjerA/MzMAho08iNFjRxQ7DDOzktBbxy+uAkZKWgh8CngKaI6I54GrgQeA/wEWAs1p\nm+8BU4GZwBrgGz3ZoaRLJM2XNH/9+vW9MwozKzuPPfI8jz6wqNhhmJmVhEISu9XsOcs2IZW1iYit\nEXFhRMwkO8euDliR6m6IiBMi4hRgE/BCKl8XEc0R0QJ8n92HW7vdX9r++oiYFRGz6urqChiGmVWi\npoZGdtXXFzsMM7OSUEhiNw+YJmmKpFqyhQ335BtIGpnqAC4GHo2IranukPRzEtnh2lvT68NyXZxN\ndtiW1PdcSQMlTQGmAU/uy+DMrPLdf88CGp3XmZkBUNNdg4hoknQ5cD9QDdwYEYslXZrqryNbJHGz\npAAWAxflurhL0migEbgsIlovOPV1STOBAF4GPpH6WyzpTuA5oClt04yZWQeOOHIczy7ca1LfzKxf\n6jaxA0iXIrmvXdl1ueePAdM72fbkTso/2sX+rgSuLCQ2M+vfRh82ApzYmZkBvvOEmZW5xx55rtgh\nmJmVDCd2ZlbWIoodgZlZ6XBiZ2ZlrW7MsGKHYGZWMpzYmVlZO/7Eo6gp6GxhM7PK58TOzMqa1IKq\nVOwwzMxKghM7MytrO3fspLnZJ9qZmYETOzMrc1OPHEfdIb5XrJkZOLEzszJXO3gAAwfXdt/QzKwf\ncGJnZmXt1WVrWfPqG8UOw8ysJDixM7Oytm7NZhobfY6dmRk4sTOzMnfEtMMYMtyHYs3MwImdmZW5\nFUvWsX1rQ7HDMDMrCU7szKysaZCvYWdm1sqJnZmVtc0bdxQ7BDOzkuHEzszK2s43dxY7BDOzkuHE\nzszK2tbNnrEzM2vlxM7MytquxsZih2BmVjKc2JlZWfM17MzMdnNiZ2ZlrXlXsSMwMysdTuzMzMzM\nKkRNsQMwM9sX9bsaeXX568UOw8yspHjGzszK0sBBA5h2zPhih2FmVlKc2JlZWVN1sSMwMysdTuzM\nrKxFc7EjMDMrHQUldpJOl7RU0jJJV3RQP0rS3ZKekfSkpGNzdZ+WtEjSYkmfyZX/i6QlaZu7JY1M\n5ZMl7ZS0MD2u642BmpmZmVW6bhM7SdXAtcAZwAzgXEkz2jX7ArAwIo4DzgeuSdseC3wcmA0cD5wl\n6ci0zYPAsWmbF4DP5/pbHhEz0+PSfR6dmZmZWT9SyIzdbGBZRKyIiAbgdmBOuzYzgIcBImIJMFnS\nWOBo4ImI2BERTcAjwDmp3QOpDOBxYMJ+j8bMzMysHysksRsPrMy9XpXK8p4mJWySZgOHkyVqi4CT\nJY2WNBg4E5jYwT7+CvhF7vWUdBj2EUknFzQSMzMzs36ut65jdxVwjaSFwLPAU0BzRDwv6WrgAWA7\nsBDY41RnSV8EmoAfp6I1wKSI2CDpBOCnko6JiK3ttrsEuARg0qRJvTQMMzMzs/JVyIzdavacZZuQ\nytpExNaIuDAiZpKdY1cHrEh1N0TECRFxCrCJ7Hw6ACRdAJwFnBcRkdrXR8SG9HwBsByY3j6oiLg+\nImZFxKy6urpCx2tmZmZWsQpJ7OYB0yRNkVQLzAXuyTeQNDLVAVwMPNo6wybpkPRzEtnh2lvT69OB\nvwfeHxE7cn3VpQUbSJoKTCMliWZmZmbWuW4PxUZEk6TLgfuBauDGiFgs6dJUfx3ZIombJQWwGLgo\n18VdkkYDjcBlEbE5lX8HGAg8KAng8bQC9hTgK5IagRbg0ojY2AtjNTMzM6toBZ1jFxH3Afe1K7su\n9/wxOjhcmuo6XPwQEUd2Un4XcFchcZmZmZnZbr7zhJmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZm\nZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmVlZqx5Q\n7AjMzEqHEzszK2vDhw8sdghmZiXDiZ2ZlbU/OPkoqmuKHYWZWWlwYmdmZU5UVfmrzMwMnNiZWZmr\nqaqipbml2GGYmZUEJ3ZmVtZefH4lzc3FjsLMrDQ4sTOzsrZu7cZih2BmVjKc2JlZWRtdN6zYIZiZ\nlQwndmZW1madfCzDRviSJ2ZmAL5IgJmVtRNPmsb2jTuLHYaZWUnwjJ2ZlbWhwwYydtzIYodhZlYS\nnNiZWVmrqamhpra62GGYmZUEJ3ZmVtZWr9zEs/NfLnYYZmYlwYmdmZW1AQOrGFDr04XNzKDAxE7S\n6ZKWSlom6YoO6kdJulvSM5KelHRsru7TkhZJWizpM7nygyU9KOnF9HNUru7zaV9LJb1vfwdpZpVr\nyOBBjBnrS56YmUEBiZ2kauBa4AxgBnCupBntmn0BWBgRxwHnA9ekbY8FPg7MBo4HzpJ0ZNrmCuCh\niJgGPJRek/qeCxwDnA58N8VgZrYXVUF1lb8izMygsBm72cCyiFgREQ3A7cCcdm1mAA8DRMQSYLKk\nscDRwBMRsSMimoBHgHPSNnOAm9Pzm4EP5Mpvj4j6iHgJWJZiMDPbi6iiqtpnlZiZQWGJ3XhgZe71\nqlSW9zQpYZM0GzgcmAAsAk6WNFrSYOBMYGLaZmxErEnP1wJje7A/MzMADp0wknecclSxwzAzKwm9\ndcbxVcA1khYCzwJPAc0R8bykq4EHgO3AQmCv23VHREiKnuxQ0iXAJQCTJk3az/DNrFwNHz6YGcf7\nO8DMDAqbsVvN7lk2yGbiVucbRMTWiLgwImaSnWNXB6xIdTdExAkRcQqwCXghbbZO0mEA6efrhe4v\n9Xt9RMyKiFl1dXUFDMPMzMysshWS2M0DpkmaIqmWbGHDPfkGkkamOoCLgUcjYmuqOyT9nER2uPbW\n1O4e4GPp+ceA/86Vz5U0UNIUYBrw5L4MzszMzKw/6fZQbEQ0SbocuB+oBm6MiMWSLk3115Etkrg5\nHU5dDFyU6+IuSaOBRuCyiNicyq8C7pR0EfAK8OHU32JJdwLPAU1pm70O35qZmZnZnhTRo1PbStKs\nWbNi/vz5xQ7DzMzMrFuSFkTErAPRt68RYGZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdm\nZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJnZmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZ\nhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJ\nnZmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhSgosZN0uqSlkpZJuqKD+lGS7pb0\njKQnJR2bq/tbSYslLZJ0m6RBqfwOSQvT42VJC1P5ZEk7c3XX9dZgzczMzCpZTXcNJFUD1wLvBVYB\n8yTdExHP5Zp9AVgYEWdLektqf6qk8cDfADMiYqekO4G5wE0R8ZHcPr4BbMn1tzwiZu7v4MzMzMz6\nk0Jm7GYDyyJiRUQ0ALcDc9q1mQE8DBARS4DJksamuhrgIEk1wGDgtfyGkgR8GLhtn0dhZmZmZgUl\nduOBlbnXq1JZ3tPAOQCSZgOHAxMiYjXwr8CrwBpgS0Q80G7bk4F1EfFirmxKOgz7iKSTCx6NmZmZ\nWT/WW4snrgJGpvPkPgU8BTRLGkU2uzcFGAcMkfSX7bY9lz1n69YAk9Kh2M8Ct0oa3n6Hki6RNF/S\n/PXr1/fSMMzMzMzKVyGJ3WpgYu71hFTWJiK2RsSFKRk7H6gDVgDvAV6KiPUR0Qj8F/DO1u3S4dlz\ngDtyfdVHxIb0fAGwHJjePqiIuD4iZkXErLq6uoIGa2ZmZlbJCkns5gHTJE2RVEu2+OGefANJI1Md\nwMXAoxGxlewQ7EmSBqdz6U4Fns9t+h5gSUSsyvVVlxZsIGkqMI0sSTQzMzOzLnS7KjYimiRdDtwP\nVAM3RsRiSZem+uuAo4GbJQWwGLgo1T0h6SfA74EmskO01+e6n8veiyZOAb4iqRFoAS6NiI1dxbhg\nwYI3JL3S7WjL2xjgjWIHUQQed//icfcvHnf/4nHvdviB2pki4kD1bb1I0vyImFXsOPqax92/eNz9\ni8fdv3jcfcN3njAzMzOrEE7szMzMzCqEE7vycX33TSqSx92/eNz9i8fdv3jcfcDn2JmZmZlVCM/Y\nmZmZmVUIJ3Z9QNLBkh6U9GL6OaqTdqdLWippmaQrCtle0udT+6WS3pfKhqVbsrU+3pD0rVR3gaT1\nubqLK2XcqfzXqax1fIek8oGS7kjbPCFpcqWMO10n8ueSlkhaLOmqXPsD/nl3No5cvSR9O9U/I+nt\nvf0epPITJD2b6r4tSb091mKNW9J7JS1I41sg6d25bTr8na+QcU+WtDM3tuty21Ty532e9vwOb5E0\nM9VVwuf958q+q1okzWrXXyX/fXc47l7/+44IPw7wA/g6cEV6fgVwdQdtqsnusjEVqCW7/+6MrrYH\nZqR2A8lu27YcqO6g7wXAKen5BcB3KnXcwK+BWR3s56+B69LzucAdlTJuYDDwJ6lNLfAb4Iy++Ly7\nGkeuzZnALwABJwFPHKDP/snUv9L+zqigcb8NGJeeHwuszu2nw9/5Chn3ZGBRJ7FU7Ofdrt+3Assr\n7PM+Gjiq/Vio/L/vzsbdq3/fnrHrG3OAm9Pzm4EPdNBmNrAsIlZERANwe9quq+3nALdHdhu2l4Bl\nqZ82kqYDh5D9Y9/XijbubmL5CXDqAfwfX5+OOyJ2RMSvAFJfvye79V9f6GocreYAt0TmcbL7Sh/W\nzbY9eg9Sf8Mj4vHIvg1voeP3vbf06bgj4qmIeC2VLwYOkjTwQA2uC339eXeo0j/vds5N2xTDARl3\nRDwfEUs72F9F/313Nu7e/vt2Ytc3xkbEmvR8LTC2gzbjgZW516tSWVfbd7VNq9bZqfwqmQ+mKd+f\nSJrIgVOscd+cpqz/dy55a9smIpqALcDong+pIEX7vCWNBP4MeChXfCA/70J+Bztr05vvwfj0vKs4\nelNfjzvvg8DvI6I+V9bR7/yBUIxxT0lje0TSybl99JfP+yPsfYemcv+8e7q/Svm8C7Hff9/d3lLM\nCiPpl8ChHVR9Mf8iIkLZrdf2yT5sPxf4aO71z4DbIqJe0ifI/pf47g63LEAJjvu8iFgtaRhwF9nY\nb9nX/XamBMeNpBqyfwC+HRGt91fu1c+7GPb3PSxXHY1b0jHA1cBpueI++Z3vK+3GvQaYFBEbJJ0A\n/DS9BxWnk8/7RGBHRCzKFVfU52279dbftxO7XhIR7+msTtI6SYdFxJo0Vft6B81WA/nZlAmpDKCz\n7bvaBknHAzURsSAX54Zc+x+QneOxz0pt3BHR+vNNSbeSTYvfkttmVUqARgD596JHSm3cyfXAixHx\nrVycvfp5d6C7mLpqM6CLbXv6Hqxmz8PPHcXRm/p63EiaANwNnB8Ry1vLu/idPxD6dNxp1qI+PV8g\naTkwnX7weSd73U+9Qj7vnu6vUj7vTvXq33f0wQmY/f0B/At7niD79Q7a1AAryE4YbT3h8piutgeO\nYc8TTVeQWzwBXAV8ud1+Dss9Pxt4vFLGnfoak9oMIDuX7tL0+jL2XDxxZ6WMO9X9M9n/5qr68vPu\nahy5Nn/KnicZP3mA3oP2J1efeQA/474e98jU7pwO4ujwd75Cxl2X+3ynkv0DeXClf97pdVUa79RK\n+7xz2/6aPRcRVPTfdxfj7tW/7wPypvix1y/JaLJznl4Efpn7YhoH3JdrdybwAtmKmi92t32q+2Jq\nv5R2q4TSL9db2pV9jezkzKeBX7WvL+dxA0PIVgA/k8Z4Te5LYRDwn2Qn4z5J7suyAsY9AQjgeWBh\nelzcV593R+MALmV3Ui3g2lT/LHt+ofXa7zwwC1iU6r5DugD7Afyc+2zcwD8A23Of70KyRVGd/s5X\nyLg/mMa1kGxR0J/1h8871b2Ldv8Rq6DP+2yyc8/qgXXA/bm6Sv777nDc9PLft+88YWZmZlYhvCrW\nzMzMrEI4sTMzMzOrEE7szMzMzCqEEzszMzOzCuHEzszMzKxCOLEzMzMzqxBO7MzMzMwqhBM7MzMz\nswrx/wBqQ1b+/IecaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFXawPHfMzNpkEAooYUuTZoirGLB3vvuq666tl17\n73UtuIriuoJlbeiKvbAWbIuKIq4NEVakKUUJQuglIT1TzvvHvTNzp6VOysDz/XzCzD23nZkJyZNT\nniPGGJRSSimlVGpwtXQFlFJKKaVU3WnwppRSSimVQjR4U0oppZRKIRq8KaWUUkqlEA3elFJKKaVS\niAZvSimllFIpRIM3pVKQiDwvIvfWsN+IyIBmrM9tIvJsc92vuYlIbxEpFRF3A8+/VEQ22tfolOz6\nKaV2LRq8KaUazRhznzHmgua+r4hMEZFlIhIQkfOi9p0nIn47YAp+HdyQ+xhjfjPGZBtj/A2oYxow\nCTjSvsbWWo4/T0S+akg9lVK7Bg3elFKNIiKeFrz9j8BlwP8S7P/WDpiCX7Obr2ohXYFMYElz3KyF\nPw+lVDPQ4E2pVkpEdheR2SJSJCJLROTEqEM6iMiHIlIiIt+JyG4JrpMlIg+JyGoRKRaRr0Qkq4b7\n9rW7XS8SkXUisl5EbnDsHy8ib4rIyyKyAzjPLnvZccwBIvKNXfc1wVYxEckQkX+IyG92N+JTNdWl\nNsaYx40xnwGV9T1XRApE5EYRWSgiZSLyLxHpKiIz7Pf0UxHpEPWeeOzt2SJyj4h8bR/7iYh0jnOP\nQcAye7NIRGZFX8txvQtEZHfgKWBfu6WwyLnfcXxE65x9vctFZAWwwi4bIiIzRWSb3Tp5WoL34Y8i\nMi+q7FoRec9+fqyILLVfZ6HzeyHqnPPs9+Of9vfZzyJymGN/RxGZan9PbReR6XZ5BxH5QEQ22+Uf\niEjPhB+cUkqDN6VaI7ur7X3gE6ALcCXwiogMdhx2OnA30AFYCUxIcLl/AKOB/YCOwE1AoA7VOAQY\nCBwJ3Cwihzv2nQS8CeQCr0TVvQ8wA3gMyAP2BBbYuycCg+yyAUA+cGcd6tJQo0Rki4gsF5E74rRK\n/R9whF2nE+x632bX2wVcVcO1zwT+jPX5pAMxQY0xZjkwzN7MNcYcWlNljTE/AZcQbjHMre0FOpwM\n7AMMFZG2wEzgVbt+pwNPiMjQOOe9DwwWkYFRr+1V+/m/gIuNMTnAcGBWDXXYB/gF6AzcBbwtIh3t\nfS8BbbDejy7AZLvcBUwF+gC9gQrgn3V8zUrtkjR4U6p1GgtkAxONMdXGmFnAB8AZjmPeMcbMNcb4\nsAKoPaMvIiIu4C/A1caYQmOM3xjzjTGmqg51uNsYU2aMWYT1y9V572+NMdONMQFjTEXUeWcCnxpj\nXjPGeI0xW40xC0REgIuAa40x24wxJcB9WIFFU/gvVrDRBStIOwO4MeqYx4wxG40xhcCXwHfGmB+M\nMZXAO8CoGq4/1Riz3H7904jz/jez++33tQI4Higwxkw1xviMMT8AbwGnRp9kjCkH3sX+fO0gbgjw\nnn2IFysgbGeM2W6MSdRFDbAJeNj+3N/AanU8TkS6A8cAl9jX8BpjvrDvv9UY85Yxptz+npgAHNT4\nt0OpnZcGb0q1Tj2ANcYYZwvZaqyWqqANjuflWMFetM5Y461+aUAd1kTdu0eCfdF6JbhfHlbLy3y7\nO7UI+Mguj2F3FQcnGoyrX9XBGPOrMWaVHWAuAv4GnBJ12EbH84o42/He06C6vP/NyfmZ9AH2Cb7P\n9nv9J6BbgnNfJRycnwlMt4M6sALfY4HVIvKFiOxbQx0KjTHGsR38vukFbDPGbI8+QUTaiMjTdrf+\nDqygO1caOLNXqV2BBm9KtU7rgF52y1lQb6CwntfZgjUeLO54uFr0irr3Ose2IbE1Ce63BSsgGmaM\nybW/2htj4gY9xphhjokGX9a38vEuCUgSrtNYZfZjG0eZM6iK996W1XB8vPPWAF843udc+328NEGd\nZgJ5IrInVhAX7DLFGPO9MeYkrBbM6VitjInk2y2sQcHvmzVARxGJ1w18PTAY2McY0w440C5vDZ+V\nUq2SBm9KtU7fYbXm3CQiaWKluDgBeL0+F7Fb7p4DJolIDxFxi8i+IpJRh9PvsFtFhmGN7Xqjjrd9\nBThcRE4TEY+IdBKRPe26PANMFpEuACKSLyJH1ec1OYlIuohkYv2iTxORzGDAKyLHiEhX+/kQ4A6s\n7sEWZYzZjBWEn2V/Hn8hMtjdCPQUkXRH2QLgD/bnMQA4v5bbfAAMEpGz7e+fNBH5nT0hIl6dvMC/\ngQexxkXOhND7+ycRaW8fs4Oax0t2Aa6y73cqsDvwH2PMeqzxhE/YExTSRCQYpOVgBfVF9vi4u2p5\nbUrt8jR4U6oVMsZUYwVrx2C1WD0BnGOM+bkBl7sBWAR8D2wDHqBu//e/wJoI8RnwD2PMJ3W5mTHm\nN6xutuvt+y0A9rB332xfc47dRfYpVqtLQ32C9Yt/P2CK/TwYFBwGLBSRMuA/wNtYY+xagwuxxt9t\nxRrA/41j3yystCIbRGSLXTYZqMYK7F4gapJINHvs2JFY4wnXYXXxPgDUFLS/ChwO/NseRxl0NlBg\nf16XYHW/JvId1iSXLVhj105x5LU7G2v83M9YY+OuscsfBrLsc+ZgdaUrpWogkcMTlFK7OhHpC6wC\n0qJ+iSuVkFjpYC4wxhzQ0nVRamenLW9KKaWUUilEgzeldkH2OKbSOF/NsgqAUkqphtNuU6WUUkqp\nFKItb0oppZRSKUSDN6WUUkqpFBK9zl/K6dy5s+nbt29LV0MppZRSqlbz58/fYoyJu7JMXSUteLOX\nMpmHtTzK8XayxTeAvkABcFpwaRQRuRUryaQfuMoY87FdPhp4Hivnz3+w1mOscVBe3759mTdvXrJe\nhlJKKaVUkxGR1Y29RjK7Ta8GfnJs3wJ8ZowZiJXk8xYAERmKlThyGHA0Vsbt4Bp2T2Ilrxxofx2d\nxPoppZRSSqW8pARvItITOA541lF8ElYmcOzHkx3lrxtjqowxq7Cyre8tIt2BdsaYOXZr24uOc5RS\nSimlFMlreXsYuInINe+62uvZgbU0S1f7eT7WIsVBa+2yfPt5dLlSSimllLI1OngTkeOBTcaY+YmO\nsVvSkpZQTkQuEpF5IjJv8+bNybqsUkoppVSrl4yWt/2BE0WkAHgdOFREXgY22l2h2I+b7OMLgV6O\n83vaZYX28+jyGMaYKcaYMcaYMXl5jZqwoZRSSimVUhodvBljbjXG9DTG9MWaiDDLGHMW8B5wrn3Y\nucC79vP3gNNFJENE+mFNTJhrd7HuEJGxIiLAOY5zlFJKKaUUTZvnbSIwTUTOB1YDpwEYY5aIyDRg\nKeADLjfG+O1zLiOcKmSG/aWUUkoppWwpv7bpmDFjjOZ5U0oppVQqEJH5xpgxjbmGLo+llFJKKZVC\nUn55LKWUSlUVlZWMfe1RRmd1YlbFFhB7h9hfzkn6Yj0XCW9f7OnLLX88EwBvwE+ay41SauenwZtS\nStVi1GMPUWQ/NxAOrEJBFgxq355P/nRhva57+efTKQ7ArIqtsTuNCQdzCTztK7CWrgGWFW1mcG6e\nBnBK7QI0eFNKqVr4az8EAvUfPzzlqNPYUl5Gt+ycep8bbXjHbo2+hlIqNWjwppRStVh45fVNcl2P\ny5WUwE0ptWvRCQtKKaWUUilEgzellFJKqRSiwZtSSimlVArR4E0ppZRSKoVo8KaUUkoplUI0eFNK\nKaWUSiEavCmllFJKpRAN3pRSSimlUogGb0oppZRSKUSDN6WUUkqpFKLBm1JKKaVUCtHgTSmllFIq\nhejC9EoplWQby0vI8qTRLj2zSa7f75X7AYMA1j/BR4PY228dch57ds1vkvsrpVqWtrwppVSSZadl\nkOlOa7LrD/NkW08k8TED2ndqsvsrpVqWtrwppVSStU1Lb9Lrf/DHK5v0+kqp1k1b3pRSSimlUogG\nb0oppZRSKUSDN6WUUkqpFKJj3pRSrd7geyYDYIIFzhmWElu+4tZrm61uSinV3LTlTSmllFIqhWjL\nm1Kq1Vt2h7akKaVUkLa8KaWUUkqlEA3elFJKKaVSiAZvSimllFIpRIM3pZRSSqkUosGbUkoppVQK\n0eBNKaWUUiqFaPCmlFJKKZVCNHhTSimllEohGrwppZRSSqUQDd6UUkoppVKIBm9KKaWUUilEgzel\nlFJKqRTS6OBNRDJFZK6I/CgiS0Tkbru8o4jMFJEV9mMHxzm3ishKEVkmIkc5ykeLyCJ736MiIo2t\nn1JKKaXUziQZLW9VwKHGmD2APYGjRWQscAvwmTFmIPCZvY2IDAVOB4YBRwNPiIjbvtaTwIXAQPvr\n6CTUTymllFJqp9Ho4M1YSu3NNPvLACcBL9jlLwAn289PAl43xlQZY1YBK4G9RaQ70M4YM8cYY4AX\nHecopZRSSimSNOZNRNwisgDYBMw0xnwHdDXGrLcP2QB0tZ/nA2scp6+1y/Lt59HlSimllFLKlpTg\nzRjjN8bsCfTEakUbHrXfYLXGJYWIXCQi80Rk3ubNm5N1WaWUUkqpVi+ps02NMUXA51hj1TbaXaHY\nj5vswwqBXo7Tetplhfbz6PJ495lijBljjBmTl5eXzJeglFJKKdWqJWO2aZ6I5NrPs4AjgJ+B94Bz\n7cPOBd61n78HnC4iGSLSD2tiwly7i3WHiIy1Z5me4zhHKaWUUkoBniRcozvwgj1j1AVMM8Z8ICLf\nAtNE5HxgNXAagDFmiYhMA5YCPuByY4zfvtZlwPNAFjDD/lJKKaWUUjaxhqOlrjFjxph58+a1dDWU\nUkoppWolIvONMWMacw1dYUEppZRSKoVo8KaUUkoplUI0eFNKKaWUSiEavCmllFJKpRAN3pRSSiml\nUogGb0oppZRSKSQZed6UUqpRhtw1Obwh9lp6Et6OKAe+u+ESOmRlNVv9lFKqNdGWN6VUi9uzY6b1\nRCIeYgM4mwZuSqldmba8KaVa3OtXX9rSVVBKqZShLW9KKaWUUilEgzellFJKqRSiwZtSSimlVArR\n4E0ppZRSKoVo8KaUUkoplUI0eFNKKaWUSiGaKkQpperhiH8+xAqwc8+ZiFx0PYGvLr2hpaqmlNpF\naMubUkrVw4rgE2Ni9q1t1poopXZV2vKmlFL1UHDF9S1dBaXULk5b3pRSSimlUoi2vCmldhqby8to\n40mjbXp6vc/9eOlSLv3kI2tDrC5RE7W26n37HsQZY8YkoaZKKdVw2vKmlNppZLjdeFwN+7HWqw6L\n3Y/o2LFB11ZKqWTSljel1E6jXUZmg88d2q8fv15zXRJro5RSTUNb3pRSSimlUogGb0oppZRSKUSD\nN6WUUkqpFKLBm1JKKaVUCtHgTSmllFIqhWjwppRSSimVQjR4U0oppZRKIZrnTSml4uj/6EOElp6X\ncPmqK3VtU6VUy9KWN6WUqofv1q5u6SoopXZx2vKmlFJx/HqVtrAppVonbXlTSimllEohGrwppZRS\nSqUQ7TZVSrV6pVXVrNuxg0F5nRMe88DHn/Hs/xZakwyCEwzE+lp507XNUEullGoe2vKmlGr1sjPS\n6d+pY43H3HzUYQCIRJbPOO33TVUtpZRqEdryppRKCR5X7X9rrrhVW9iUUjs/bXlTSimllEohjQ7e\nRKSXiHwuIktFZImIXG2XdxSRmSKywn7s4DjnVhFZKSLLROQoR/loEVlk73tUJLoDRCmllFJq15aM\nljcfcL0xZigwFrhcRIYCtwCfGWMGAp/Z29j7TgeGAUcDT4iI277Wk8CFwED76+gk1E8ppZRSaqfR\n6ODNGLPeGPM/+3kJ8BOQD5wEvGAf9gJwsv38JOB1Y0yVMWYVsBLYW0S6A+2MMXOMMQZ40XGOUkop\npZQiyWPeRKQvMAr4DuhqjFlv79oAdLWf5wNrHKettcvy7efR5UoppZRSypa02aYikg28BVxjjNnh\nHK5mjDEiYhKeXP97XQRcBNC7d+9kXVYppWrU77GHHHnkTCiP3PT/+xN7du3eonVTSu06khK8iUga\nVuD2ijHmbbt4o4h0N8ast7tEN9nlhUAvx+k97bJC+3l0eQxjzBRgCsCYMWOSFhQqpVRNVl2p650q\npVpeo4M3e0bov4CfjDGTHLveA84FJtqP7zrKXxWRSUAPrIkJc40xfhHZISJjsbpdzwEea2z9lFLJ\nMeL6yaHnodYnu4F98YM151czxlBWVU12ZkaT1U8ppXYVyWh52x84G1gkIgvsstuwgrZpInI+sBo4\nDcAYs0REpgFLsWaqXm6M8dvnXQY8D2QBM+wvpVRrZQgvRVUDnz/A5h1lKRe8VXi9pLvduKMSBPd9\n/CHsEDZyKa6ox4KLb2iGWiqldjWNDt6MMV+R+Mf3YQnOmQBMiFM+Dxje2DoppZJv0UMNX70gzeOm\nX5eal7dqjTaXl9EhK4uc9BqCzhoCWK/fT5rbHX+nUko1kC6PpZRSCfRunxu3vOByHfumlGo5ujyW\nUkoppVQK0ZY3pdQu5daPP+b9pT/hB6oCgQRj1gzGue3oFo1JFQKx3ab2n8Xjevbimt8dwB553Vmw\naR192uVywvSXWF9RwtG9+jGwUzeWb9/CmC492K9HH4Z37kalz8sLP/2PPu07sK2ijDMHj+K3kiL+\nvXIRZdVVTF3xfcS9IxYRFINbIOAYjycCwUxNuWnpXLj7AVw0eP+Gvn21Kq6qYFNlGQPbd26yeyi1\nqxNrMYPUNWbMGDNv3ryWroZSKkVUer2UVlXhCwTwVlfzwmefMWTAAH5evZq5vxWwAqiygyNnANcJ\n2ApkAGd27kG3nj3p0r49vXNzWb11K5/M+ZIBPfowcuBAenfsiAC9O3YkPS0NlwgBY3CJsL2igtLq\narq0bYsLa1xcutuN2+0mmB/T6/fjEsEAHpcLYwxevx8DrNiyhTs/nUq5GMbSk6NGjWFNWRmuQICu\n7duze48elHi9rNm2jfXFxXiBQwYMYGN5Of1yc8nJzMTjatpOl+BrVUrFEpH5xpgxjbqGBm9KqboI\nBAzTv/6eu6Z/bQU2EGr9MY7Wqd8Bzz/Q8MkNSim1M0tG8KZj3pRSdbK1tMwK3IC4f/PZZd83X5WU\nUmqXpGPelFJ1ktcuu1HpQpRSSiWHBm9KqTop2lHGuLunAHG6TB3bzgH+wX2f33w+XXPbNU9FU9DW\n0nI6Zbdp6WoopVKEdpsqpepkY3FJg8/dtKPh5+4KSiqqWroKSqkUohMWlFJKKaWaiU5YUEoppZTa\nxWjwppRSSimVQjR4U0oppZRKIRq8KaWUUkqlEE0VolQKmD57Afe/NAu/Pb/IxF1v0y4I/knmXAVB\nYN/d83niytOarI7ri0vwuFzk5bSt0/G73zEZiJ9qpHuGh89vvTL5lWykbSXldMzRlB5KqZalLW9K\npYCfV28OBW4NtXzNpuRUJoG87LZ0bJuVlGutr/Ix+O7JDL57co3HlVVXU1rVPGk2AgGjKT2UUq2C\npgpRSrWoLxcv5sJ/zwwXRK2buuyuxKs67KisJGAgNyuzSeuomsbby77k0bXTARCxfhe5Ih4NLnGU\nES6Lfjyl89F8tvVLdlCCAOf1PI3jeh/azK9IqdolI1WIdpsqpVrUuOHD+Xn48Aad2y5Tg7ZU9v6G\nb6JKTNRj9HNHkUQWfbb1K4opBXvXf7d8o8Gb2mlp8KaUqlV5tZcqn48ObZLTLRo0/M7J+IIbjjFv\nzpa3Ww4dy5/H7ZvU+ybLhrISsjxptM+IH0T2nfKg9ST0mkxk0GE/D7Y6Ffz55iara2s09aBd6/Uq\nlSwavCmlWkxdBm28+PkcJs6ewz7Avef+H9e98BZv3pG4K7U5tc/IxC3NM3S40uel0u8jN6PmAHrk\nGxMoc7yzIuHg8NGRJ3HM4JFNWk+lVNPTMW9KqVZlyN2TI4M650L3dlGmwMLbr+W3bUVkpaeRl123\nGa6prNxXTbnPS+fMml/rgDcmYBzdj1bwZm2Ncuexf+++/K+wkDm+QtoIVAA9MVw66CgeX/ERRWK9\n3ZVirBltduAnocfgdYP74ejMQfRs35lL9joGVzMFs0qlqmSMedPgTSmldlLbq8op8VbSO7sjczeu\n4qwvXwaMo7sWwFjxsUQGfMH9wYkD4ujuFTGOCQbhc98+4Hr65HRq+hemmtwXBQMAcBEAwG1/xm6C\nn3sANwAGF/kI23CJmxG9fmqB2qYWnbCglFIqoQ4ZbeiQYeWl27trP5afckcL10jtHKwAzo/BDQQo\nDAV1qnlo8KaUUkqpCAf1XdnSVVA10OBNKaWS7O7ZHzN12UJrI2L2rAmN4Vt9/k0tVj9VszLvZjI9\nubglraWrEqHSu4NfSz5hzpaHIdSdGcDqugQI4Barq9P6NgsgAm5gz5z76d/l6JaqukoyDd6UUk2i\n2u/ntw2bOfHx18KFAnNuuYh2OW2pqPYiImSmJf4xVFFRwZ4PPhU612CNsTq6fy+O2WMYV07/CIhc\nYsuZZuTy343k2sMOS/ZLq9VBPfqGgzcniS1SrY9L3Egr/LDE5cLlygLSgcp4R5B4DndGk9VLNT+d\nsKCUSrqAMSzdsIkFPxdw30xHIlaB5845mbGD+7GttBwRoUMNS2qd/Ngz/LS9NHRu6KeVWEFcwN50\nruHqDN4QWH7TNbik9f0iVkrtmnS2KRq8KbUrunDqi3xRuDWcQsSRTmTZLddgjMHtSu2UFcYYbvni\nfd74balVIJG524hI3UHo9f96xm0x1yr3VVPh89KpljQjSqmmp7NNldqJPPLSTF6ZucjaiNOCZJyN\nR85tkdCxQ7tk8PK9lzVTjVvOF4VbYwvtJZO2lpVT7feT375ds9crmUSELHdyxly5EG19VGonosGb\nUq3Exu0ljb7Glu1VSahJ67f89taxwkJTGz/uGMaPO6bR18n0pJHpaV2D71XTqvQuI8MzEGmmpMnV\n1eUs2zgQCOeCC+WBs/9ucNvHuuwvazKFtbNH/rpmqefOQoM3pVqJ+676A/e1dCXUTunnTWs58b9T\nwwVRXa5LTr4dT4p3M6tIae5u7Khcy2fr/ghU4KYvSDWw1k68a3DZyZfdwUTNBBxBVQDoyohOj9Ax\nZ3St90tPt/IJGmM3gocaeiMnUTg6DBzyG/FKd00avKkWZ4zB7w/g8bhrP9hWUVFNdbUPEcHjcfHa\nq1/z2+qNjNyjN0uWrmX2F79ijWqHNA9U+yH4Y6N3z7ZccelR3HjH23bXo8QsFv7Sk+fRu3eX5L3I\nnVx5tZd0txuPu+YA4JOFP3H1NGuGaMR4Nce283HBbVeQmVZ7i5HX72djWRk92yWnq7T/Iw/Fr1tE\nmYmpb/jRxJTfMHpfrhh9QFLqV1+D8hL/ctwT0cBtJ+R2tWfxtr/jpxIX4KfADsiCgVQAZ2Bl7PQi\nxg7krMcNLNl6KmyNXmHB4BKDmyvZq/eNoXuO6FVIlW8TYMjwdG2ul7pL0gkLqsWVllSyvaiMXr3q\nvqzOpzMXseqXzbRpk447zcUzT8+2djjGfwEYsQK4EJGIwe3GLsNxDgI9e7bnlacvbuAr2nVUVVUz\n+vbHCbgAA5eO6oOnXSfWFhUx4U8nxRx//rNv8E2B3T1SQ/AW/AwnHH8w2yvLqVq/nhF9+3LQmMgx\nvsGfXwFjKKqqpFNWm6S8rpqCt3D96h68uYGHDz6eEwbtnpT6RSvzVuNxufAFAvx9/ies2L6Z9SVF\nrKHMqkLM5IaodUqxHwXmHXUTbdsk532syYGf3QCAi8i1U12hx4D9aNXNJZDnac9WX1HomFxXG3LS\n2zKu8yj+ve4jPOLm9X0fqdP6qmvLN5Cb3o5sT9O/1tbGmABl1T+SnTEq4THxl8cyjuDNOu53vX9r\n4trufHS2KRq8KdWSJrz5Ka99tyhuALZkYvxxaT+t28RuXTqRbre0DrlzcuS5wedxJm0suyPymoVF\nO/C4XHRtl934F5PCNleUkuH2UOH3ctbMlyis2EZ11Fqk1mOwIHHw9saBf2Fkp95NXueJX7zKR77/\nAdANYaP4ASt4c9l1DK65Khh6Sg7jR13Bz9sK+G3rGvJz8xnSuS9p7jRy09uxrGg5GZ50hnYYUqf7\n+40fFy5EJ3KoZqbBGxq8KaWUUo1RXFzM3G0Tgbcd3aMAV+DiYWtbIJ/P6d27twa8jaSpQpRSqgmM\nfuQhthOZ/Ncp2PV+VJfuPH3qmc1eP4Cy6mrapqe3yL3VzmXutrEEU14HTLCrOgA86jjKUMjBdPHN\nwuNqR5q77sNcVPJp8KaUahX8fj9D77F+WQg1j4ULidO1CjDvmkvJzkhvcKLe7TXsM44nH29a36Dr\nO22rKqdjRv3GXX2xcAHnLpiBuE1Mkt6hWbl8cPLOn+tPJc8R/X5q6SqoetLgTSmV0Isff8mDH0cN\nS4gTMC1+sOF51xYvX84pr3wYe/1oxjE3TsJlEcGcAVywo7KKrDRPnYK38movq7cXsXvXvFDZr1df\nX89X0XDbGxC8vfzLIsQdf8jLz5VFyaiWUqoVS0rwJiLPAccDm4wxw+2yjsAbQF+gADjNGLPd3ncr\ncD7gB64yxnxsl48GngeygP8AV5tUH5SnVAr7clnTzyRbUlQRCtacMVkEO2ozcYbaCNANWA+MznZz\n/xln0KtD+zrfv016GoPyWq4LaLd2net9zjO/P7sJatL63fPlE8wxPzlmpDofwxMcrJA9gMvOAiRi\nwrNWcc5mdSSQFYMQQELXsboP7xv+GLnpHRpc51Vlv9CnTb86zYBVqq6SMmFBRA4ESoEXHcHb34Ft\nxpiJInIL0MEYc7OIDAVeA/YGegCfAoOMMX4RmQtcBXyHFbw9aoyZUdO9dcKCUk1n/fYdpLnddG4X\nuSbm8BsiZ4jW2sUpMH/85WQlGKO1eO1GcrLS6dPJ+iX5l+de4+s1G8LXdKZ2AZbfsWussKAinfXf\nG9lOZYLgLRzEWWGS4WAZy9EDDmJD8UY65XTm84LZtKMdLoEKyiiggLbSlqHpQ+jk6sjzVVMAEAy3\n9r+XKl8Fg7s0Lr1LwAQ0cFMRWtVsUxHpC3zgCN6WAQcbY9aLSHdgtjFmsN3qhjHmfvu4j4HxWK1z\nnxtjhtibll1WAAAgAElEQVTlZ9jn15hsS4M3pZrOyOsmx20Fix7Ib4L9mRKnHOjX1sOHt1+Z8D7V\nPh/pnvp1BKzZvJnDprwcd8zbiltbPrgbOeVBdtjPo+u4+oIb45/UQrwBH2W+SnLTk59y5ZM18xn/\n0zQM4dYvq1XLDrjsvGEiQhfgjUMfSnodlGpNWvts067GmOBo3g1AMN1yPjDHcdxau8xrP48uV0q1\nQgIscox18wcCbCoupXuH+q9yUN/ALRU8ftBxnP2FNZZP4k22aIRtFeWMefsRKwt+VOAqdusTArni\nprsri2XGWjd3xal3xL2eAXwm0OD6VPi8uETIcMd+jmW+qvhjGONo/Oq+qjb+gJflW6ewqXQeZXwX\nXn80Ihkv9lJZ4W7mrq7xDOp9TstUWsVolp+YxhgjwSyRSSAiFwEXAfTu3fTJJJXaVS2cZAVnh/71\ncTZXVEfsM8DwG8Pdpx1d8N8EiXmLyirYWlrObl2TN7asV14ey//a8i1siYwbPJSCwUOb5NrzCwsS\nBESRpcX4KQ6UUltarnSXh84ZDV9arNRXRZrLHTd4+32//fh9v/0afO1ovoDfWntTIpfT+/KX73l4\n479CDb/BFRryJY8b97iC7lndk1aHVOYPeKnwraeKDRHlwYZzY4j7/VJpVjZL/VTdNGXwtlFEuju6\nTTfZ5YVAL8dxPe2yQvt5dHkMY8wUYApY3abJrrhSKtKsCZc36vzctlnkts1KUm3UEQOGsmpA0wSG\nDZGX2XwrXOzwlSAIHdIjJ6U8svE5IByEWPnKDOvMZt5d+wmXDDy32erYWlX5ilm+4W0Kq9/HhRUE\n+zG4sdrejtSUISmjKYO394BzgYn247uO8ldFZBLWhIWBwFx7wsIOERmLNWHhHOCxJqyfUiltzeYi\neuXl1vu8N79ewL2vfR47VizO5APnMe3Thc/vuYK0tOT+2PhowY9c886scIFEzio9f+8R3HTM4Um9\nZ1PzBQJ4A36yPGkx+9aX7aB727q1cl024w3+s3mVteFY0mrVWbfW7fyZL/PJ9oJalseCUW278vpR\nTbuW7/4zb8Ya2xY1yQDilwcnHzjWNs0hg9fHPRB3AsCb+z3ZpPVv7YwxvPaLlWzXapMM2O/ZBHz4\n8PMxGdIJL28DAQJ20Oa0btNienQZ3txVVw2QrFQhrwEHA51FZC1wF1bQNk1EzgdWA6cBGGOWiMg0\nYCngAy43xvjtS11GOFXIDPtLqV3emg3b+MNtz0cEUyfsP5jj9hvJxQ+9GXfQPgL/eyq2WzG/ff1a\nSdqmgd8H3dq3w+OJ/nHfMCs2bOTEx18F4i/+LsG0IALPfb8o5YK3Cr+XHdUV5Htig+v6jC0r8VU1\nqh6fbC+IUxrbWbGgbGOj7lM31n0TdcvVJHh4CZWc8OXVUYFdZKoQMLhD5fDYnhPoktW47vqACbC1\nejt5Ga13VQErcLPeY78dwBkToERutReThyrg0Pz/kJPRM+b8Ct9m/KZx32+q+SQleDPGnJFg12EJ\njp8ATIhTPg/QsF+pKCt+2xTzK3fu4gJ6dulY72vtO3wAC/5Z+1ix4rJKfH4/naLShCRDSWUdf0kk\nyO1WH36/n8GTHgm/f3GC3F+uuy7mvIAxlFVXk5ORUe977igtZ/9pz4auHw6urYkED+93JL8fumfC\n832BAB6Xi5dOaNwA8ZWn3d6o85Pp6yP+3iTX/f3X4S79eEFhWgNX2XASBHcrT/dx5oDvGnV+liev\n9oNUq7HzTfFSaid06N5DmLf3kLj7zj9+3ya5Z/u2mQAsK9zMra98yIoN2yPzrSXoao1+/Nf5f2Ds\ngD4R196rb2/euuRMBnbrTJo7Oa15iZT7fAn3hQdpm5jFtr1+P1vKyxsUvO0/7V817r/m208SBm+V\nPi+/Fm9naKcuXDXjDd6L020ab7uXpPHFGYlTkJT5qthSWUqf7MStR0Onjw89j+7GjO56nTDs9xzf\nb6+E12pp+ZLHw/veE9reXLUZj3jokN6Bc+eej7V2p7ET+VpdjC6ENuRQKdYqFa7QIu2B0PaYduM4\ne7fGjQFtKq+uPBErXXVk12mw5c0tgVACY4AT+i9OeK1S71rSXNlkuOs/NEM1vaTleWspmudNqaYV\nCBgCAT9/e/JZFhZU8AuEWpNGt4X55YmDt5Hdc3np8nPidrdW+/ykJ6kbtr78gUCD1z1tiN82b2bc\n9OcZJXD+gUdSsqOS4pIyjhyyO1d/9BJdyGAWlRziyuXsgw/isS8+4AfjDwVoobXBSBy8vXjA70nP\nSmfvvN3i1iFgAlT5fWR5Ei9mf9+37/Lyxh8AK2VEgPjBmwjMOfJ2MtPqH9iqplNWVsK76w+1gzUT\nmnEbL3jbXSYxoN+RCa8VMD4EF9LKWxxTUatK0ttSNHhTKvUNuWtyeCPO6gzZAvOTuKrCoi0bGdSh\nE2kuN676DsCyLdy4kfcX/8gXyxZy26HH88/PP2CeXV8gHHhFd5s6fhcG87+J41icx4aqFh28xQvm\nrPL4+00o6Fp+Svxcb8m2omQNvdt0JcMdGSwuK1lNv7b5pLvid/wcMftawuPyIicshJe2inx0i+Ht\n/Z+IuM4fv70IsFZLcCYFdgMv7vNso19fqgmYasq9BWSnD2Jbyc/M2fJ/YAd5oVY6rPfLJbBH+3/T\nqcMeLVnlnVZrT9KrlEoBj02fzbOzrNaWYFfojw/HBkrFZZXkZGXgskeJ/7h6PcN7dcXtclFeWc3v\n7no8fLAjoFhw71WMvPPRcBwSFZzFm7AQreHpY+Mb0dnKGb5s6xZ65OSQk16/FqSn5n3HxO++tDYE\nzpv1QeL6S9SGSd4KC8YYfCbA/d98xPNrfrRvFiews13eq/m6OQfm9IpbPjinT9zyoJkHT65xfzw7\nvLHpffPoxGa2xrwHAxhQ7+vvDFySTpbH+kw6ZA+GLdb3SvBvidCj/X5p4Na6afCm1C7u22VrYsoq\nKirJysqMKCupqKRNRhoul/V3+ohe3UKBXJtMR+uKIxhbeO9VeANxWvcTBDpv/uUPDO9T8y/3ZBrc\nqf6LwgNcMmYfLhmzT5JrU38iQpq4ufOA47iT45rlnusrtpLpTqdDek7MvrM+msQysyVivFz02DmA\ni3sfSaeMtjz4y1sEW9kkbooQeHWfu8jLqnlh+HZp4boEjJ8Kfyn/3Pf+hr7EpCgu38bkX/+M9frC\n3ZVuiUyTIsBNQ5snsYLbZeVaFBGO7Zd4vJtq/TR4U6oVWrutmJ4d29d+YBK8evPZABQVFXHQXVMx\nwD63PhkRhE085XCO3W8EPn+4DSwYuAGs2rwtfMHgLABgxO2PWpewW/T6dczhqqPG8fGiZcxY+ktM\nXU557m0QePOC0xjeU1fHa43yMnITdjVX4q3TNar81RzX93A7eItlXd8K4PKyOjDh+6l8VfFDqNs0\n3BUKwUH5zi7WZ/YaT1tP8/z/SaS0envCfQ1Jl6KUkwZvSrVCTT0DM54zJr1uPXEEX8HNm9/8lGP3\nG8HSNRsZ0adbzMzMDE/dBjV3apNJ27QM2repebWFtvXsxmxK/R6Ls1C6wKorrq/xvNLqarZWlNOn\nfcvM1hs77QG22MFUTUl6HxpxMuu8xVw0dFydrutxxX5vjp5xGxAxnC/EGOHgtAFMPPSCmH2zD/sH\nW6q2k+nOINvTJmLfjupK2qVbrb/fVizAmZ/Ob6yxa0icVl2EKn/LR0b5ubsxPvfd2g9UqgE0eFOq\nFepaz0S6yTDjb5fUeszIvvHXh+zRIZclD8SfUDDstsnWr10D89ZuZt5L78RdpP3H2y4nIyP+TMjN\nJWXk5YTzzQ26N7ymavAxOHbOee1z9xjGHccknlEXVFJVhSBkx7n/CE8Gi6KS5SZaUdk5i7VNWhpu\nsep80TMP8zHeiIkIFw8YwW0HHVNr3RpqS8JWsMiA5/pF7yDApJ8/CwV31uSG6FQhAUBYeMI91Nca\n3+aYsgVblnPNj0+HtiWqu9QfENLd/ojJBkHnuQ5lv8FjeXr5EyxlOwaDS4TR9ORwz+F0a9Ol3nUM\ncqaNKSxZzYLC75lb/jVFsj54RKhr1x1s8cNKNyICd+7+Im3Smv//r9q1aPCmlKrVT6sLOe2RadaG\nc6JBLXnelky8NsEC6rEqA34StbeVV9etOy5aibdu5wWMQRLU9L1Lr6jzNRZu2cCoLj0Aq+svKy2N\ndcXFVuAGdn+Z9fTplYuaNHira4LeMW//jVLHa4/XnSdicIvhmq4Hxb3G/GPuq3O9iqvK+MNX4/Ha\nTbyumPfdKk9zBxzrlAbTXliB8YtmFi/9PAu3yw74MAQMzJc1zPdN5fKNPg7ttl+N9agOeCms2EC/\ntuGJFduri6kKVNMt00pY+/a611hevghrzJo9GcR6R4gOgq1ST50Dty2Vy8hN74vHVXsrc5l3Gy//\nehIRq0fY03jcYmjLAZwy8MFar1NevYHP1h4JoXPDqUQEGNttJu2yYldfUK2PpgpRStVqxHU1p/KI\nTtobfPzqrxfSIafhrRD/W7uOPfO715jOY37BGk5/9c2I+664tW5pRSp9XjI9aVw97Q3eLyyMSfMR\nbyZs9GoJ8RITf/B/Z7NbbgfcLjfpSeoCL/NWUR3w0SEjOStevLVyPrct/BDnslLBdCIQbnnLEZhz\n4t1JuSdY+eZunfc83+5YCoTTf0S3vDknLrgEZhz4CAB3fPkoP5jlAHbw5kwdAmPTh3HjmLol0fUF\n/HG7gXcm1b6NpHus2dWBgI8PC/YifvDWgyP6zozI6/ZlwQDHscGUIvYEDAnnjxO79TGcjmU0Q3u9\n1/QvLkVpqhClVLNYNCl5OdbqY1R+95jxddFCgZvDwImTWXj9FWSlRS4Mv2lHCftOeQawAjMT7BJE\nwo0pzttFb9fR0M5dqPB6WVtcxMCOyVkP0yXJXaKpfVpm7QcByR727xIXD/zuL/U6xxvwUuorJ9vT\nhoN67c2CNcsde03EY2Z1m5jzE9nZAzdjDAFTHdp2uTyc0H9hM9w5tptcJZcGb0rtwva4KrJF7aUL\nDmfkiBGhIq/PD9J8EyiGjA/Xx8Rp1Vp021V4XK6Ilrh4HVi5QIYn9sdbl3Y5kanQjIRaz/46dizn\n71tzV5sxhmq/P+61nYoqK9haWUGfdu3pO+XBWlvrRExkkOjYX3DOzQBkedKpeZpH/RzeZxjL+gxr\n0Lk7vOW09WRGBJP+gJ9jP7mTbcbEtKIFW/EyBM7seSAd03N4tOB9AD49aALpCVZ9qKysZNmyZbxU\n/DJLqIzJRRbPbOZS9s0Gft/pDwwePLher2vltmX8/dd7Yxe+NwHH2LtgwmB4cI/XcLXiFQhEhMy0\n+Pn26mJc35Wh54FAgMLC/7IucBcuWQ0ECNjd3tlMYmDv0wDw+dbg8fSitHwJhVuPsOpht+q6CX/7\nu8Aus95kF1fRLf+WBtd1V6PBm1Iq5C/Pfsq8R8LBW1FZBSJC5yZYnD5a3CEcUS1fX/y8nH1260e7\nzHCr0fLb6tcq+Mv1sYvQB81bX8jobj3itvYFZ53GC8QKLrsh4tjczCzaZWTiEmHWiX/ilvdf5Tv7\n+LEC4wbvw9erfmZM797M/HUR++UP5bl1S2Pu+eHBpyesa/9X7rNXZ7AL7Do5t7uIh81448w2heX/\n1/CVFsp8lWS60yOCN2/Az/a44wbDZV7gx6ICOmXkhPaVV1fGBG+HfX6dPQHAucJCbJhupdyILjfM\nZzXztkzmwuw/cVR+3WbRAmyojN9iFLDHBkRPnAgEArjcrTd4S6bNpe+yLnAdYAgYq9vU2O97OdcD\nVvAmEvxDz/pTwxgwIqEu1sSS00K9q9Axb0qpuEZeNzkUPEX8lIgzYQGBxX+vWxBljGFraTnGBeVe\nL31yk5tKY31REeOemhqqWzeBDXbgFD1W76iuXfho06bQdq1j3gxMOe5ELvzoPYLvSrbLxeJLEweE\nTaXfK9YkgYg4U+IvjxUvePvPQeczoHOPpNXHG/CzumQbE+e+xkK/NTMz2FIloQCM0HZoFqs95s45\nu9UYe8F4CY95u5hDGDdsHLm5ubjr2BLsnDna1D5a/DqzA9PsICWARwIEcOEOJeQNMFKO5uRhiSfA\nTP7pcOtYCRBetsp6/ZcN/rxpX4BqNjrmbRdljKGitJLKikq2biziqkMfCO90Ccf8ZR/6D+rJb4Vb\nef/x/9rl1l+HH655BFcSFuQ2xhDwB3C30MLiqhk04u+6NduL6JnbPu4vTmOgvMpL7865cVvbhtw9\nOW6wGHxcVssap+OemmrfyDpnQw3j1p446yz6T5pU53Ftjx91PIf27c/rJ57GLxs2MG/BAh7885/Z\nUFpCm7R02mU0X366VX+6rdnuFW3PD4MzWcNBFoTj38iP3WoZk+CjHcAFAyvnoRlYrXPOiRNBJx94\ncr3r2ZDA7fL5f8aPF2e3qdsetP/QyBdiWgl9AR9VgUpmB6ZFlJuIV2adv9h8xMkkDt5cJH8pOLVz\n0pa3FFS0ZQdfvPM9vyxew8w3v8HYKahCs4SCzfjOH1x2wDZ8XF8efL3m5KJ1sWNbKaVF5fTo3/B8\nSq1NIGAiVg0I8nr9lJRV0jE3tutw2off88hzX1gboRYpCW2HWm7sj+Tm8/bnkLF70L59MkcvtZxh\nN8bmW4PwULJ4KUScM1P3ys/jlUvOirjmfndPZquzIOpcITKAu+O9D3l98fJwK2EogoCVN19LwBh+\n3bqNAZ3D3TK7PTTJqmecuociEGNC12orUAasujL+/52y6mrS3MmbWbqzOubTv1KCNYA+OA7q9b1u\nIa99LsXeMjpnJJ4esaVqG++vnsXbG78g+JdF5Ng0g3PZKZc9k9Il8NrYKXWu4yXzzya4YHt08DZx\n2LO0jZrtWx2ootxXTm56zUt4KRWUjJY3Dd6UAnw+P8sKNjFsQGwSWq/XT3FpBZ07xKa8eHX6HB5/\n6StrI17w5igPjbYW+PbVxgfQLWHE9Vaw5gzAIn6C2K8xbt634Pvj2H7kj8dy5PDYQeXlVdWMmvh4\nbFBIeHv57VYA9+OqVZzy2vSEwRtAcWUl7e1xcl6vlyGPPhZZF8fjeYMHceexx1NUWYHH5SY7Pf5g\n+ub2646t5GZk0THDmk0Z023qHPPm6CadddTl9G6f+oFFwATw+Xz8a9k0Pto+hwCJgzfr47fGZV3b\n/XzG9m35dWiVCtLgDQ3eVMP96fxHWbuuMlzgDDBc4QBs5r+vTpj5f1fz4sezefCTH2Lyul18wB5c\nctxBpHncDLslasaofezS+2ofExecbeoMqvLSPWz2+cLl9r5g8LarsBLVhluGN5SUsN/7j4UPEOgl\nsB1DmVgtW7+XPjx42tlNWq/RM/5KqCUsWBVH3rVPD7mD7PQ2rCrdQH5WJyp81Zzw1XjHOcFxcdb2\n54dOpq4mz32W/3p/ILKlLJhzDC7rfB4HDRzb2JdYJ+MXnkclO0ID84Mtf24x1uQLoL+M4qxh9V+h\nQu1cdMybSgnGGI7ea3xkYXCeOM6WKusxPcvNIUcN5/rbTmrSehU6A7cabC+uoFuXXSN4215WQVW1\nj7aZ6eRkxY7fOueog+nVuQtXvvZxRPlTX/3IU1//GNGKNeXck9l/9351vve1U1+NW77Z6+PnO64J\njV9aV7wDj9vFoAmxgR5S9wS9jXXAc0+ytqIsdF9nHVZdfD0/b93C7p3zkna/6ETF3XJy+PXM21hW\nvIFebTvSJkG6jYYa9u5d9n2dSXQjJ0C4oidCRBmb1ofsdKulMD+rE+nuNNLdaXGPFWBfBtarjlbg\nFl/AwMdbPm+24E3iruwayUX8165UfWnwpppczKDhGn7GdezmYd8DRnDwEcObtlLA7Bk3Ncl173po\nGjO/WxPaNgLfvH5do2e9FZdU0D6n5rFyH367mDuen2ltRI0vC5b98Hji4Kba5yfN4yK9hoko60tK\n6lTfwqLiuOXj3/yENxYsiZy1Gqynk2P7lrc+5IFTjgega042IsLcay5i74enhPK8pQlcsMfQOtUt\nGa4e9Ttu/GZ2TL3bYX3PH/PW81ZBxOusIc+b81j73+Aw1oJzEue/GtCuS8LkvZsrysjLalial7Fk\nModKznXvzYv+uRH7rBQdVoDkksTLY32xfjH7f3IL1uuODALDw0uFE7vux3XD/6/edXxn/8frfGxJ\nZSmX/XgNRLSMhVvr3GL9aJq8xz8Rge3eHXTN6IrHFf/X5A0/nmo/c65t6nxtLu4Z8U69X5NSdaHB\nm2oWH/9wd0tXodk4A7cgn99PWi2JXWuzvbi81uCtY7tsQtFMHAbY8/LJIDB38pV4/QHaZoZbbLq2\nr30pqzMP3oczD274GKJz9t/TCt7ieOS4/Tl41F64XJIwMbAvECDD4yG3bVuW/zU2EH174WKqK8q5\nffbXVoE40oRATOD09AnHc92HH1AKjBBYBWQK7IbhO4EPTj2Tod0jx0IGjOHoYSM4dVT8ng9fwDFn\n0ARXcmhc8J5IdOD28PxZPLbyG+vWAbAWEbDGwrUTmH9K3fK7/eukW0PPd/9Q2BTYxMPyKxD8g8xw\ntnSiP/0YM+M2DIZRCAuDQWpEkt7w32zBwC/4CIb3N33D+7Osz+vc3odz3oBjG/BO1Cw77rJi1utw\nOz4at8sDGDqld0wYuDnPTSzAHYtOslOFBOzXH8AtcNvQDxv9x9xzy4MJpa11Z4PLjFlLXgXshLgB\nOxGuta9fxgWM6lm3tXqjVfuLqQ4Uk53Wu1H1VsmhY95UiDGGKRPfZvoz31oFzp+89g+aGcuttCTV\nVV7SM8JdABvXF9G1e93ydS1bWshV5zwTvm9Ut2nwp/zUNy4lv0/yup12FXtdEn/MWfT2O7edgx9D\nv24dcSchfUxT8vr9VFVWstcke9Zg1Ou6ePhgrj/J+oU/4sFHqQj4wycnytnmeIxtoQy2fVllq66K\nnGBS6fOyqaKM3jk1f8+XVFWxrrSEI9+205c48q857zf7D+fTL7cTizYWcsJHL8ceG6pvuJty1Vm3\nEo/X52PIWxMjylz2GqD/PexyunfsWGOdV5Vspnd2p1BQ+Pj3H/H0hm8i7h1+HkwVYs/stCsc2a1a\nc563Qa6u/GI2hNLGRK9X+sY+d9MxKzwLdVXpOvq2DS+b9vuvLyfRmLfgGpzPjJ5Edh0WjF9fsZE2\nnizap7Wr9diaeP1V3LP0NAzEDd5uGPA2GRl1W54skeeW74ex/ybwiJVHzkUvRArs/HCZuKTcuqc9\nm+fY/G/IzKz/TPdfNz3M+nJrbVlPcAxfsMUSexQM+ezRe06jXtOuQicsoMFbMm1ev51z9p8QLogI\n3gAkFLytXLyW/kN7hHLGbd5YTF7Xuq2CuHrVJi469YnQtnFc37qv9TB12mXk9+7c8BekdgrGGBau\n28hpz72WsPXMBBtBJPy14paGjX078ZFJLCYc8L197EmMGjAAgLOfe4avynfYQV1kV2fwseDSyNUW\n6qPS62XIq5PCBc6M/o7uvT/0HMyDB/+h1uv5AwF8JkCGu+6tvsXV5bRPD68PWlRWyoGz/k508Bb8\nb2sFhs7JB45jsAI5Z/Dm7Fp8b9xdVPu9/PHbe6OCtzjpP+zWu+6uTjx7wF1x637qN5eG6xJKFRIZ\nDLoi9odbB09P/yNveV+NODa4/4m9XrFXFWjeP3L8xsvTy63EvW7HAvEALrL5y6CPmqUeZWUb+XHL\nWLsewc81EGrRcwNd05+hW7ejm6U+qU6DNzR4q011lRcgopWsvq4763F+mrsaxwAd69ElEa1mw8fm\n849/XdaI2ipVsyH3TLZ+hQUDpmBqEvsf47IW7Am2yly93++48sADQuev2V5MhzaZZEcl062srmbo\nE/8MF0S11nUUmH/l9fT750OhJYEI1iNhi15kcFdw0Y31fbmNUli+nQyXh86ZObUeu/s7wWEN4eW1\nnEHW2+Mu5ZSvnePLjN31aQU3Pxw3gYf+N53XN86NOjdynFs/TwdePTQ8fs8b8GEwHDXbHhdHuLUu\nGLx5JBD6484FXNnvdI7uFbkGbamvFMHFeXOvp27BWyAiKAx3nQbsVrvI4O2KvjfRJiObXm364Jbm\nG21U6S/iuZXWxK3Y4A3+MuirZquLSh6dbapqVVZSibikUcHbT3N/C7dq1GDxnMIG30OpRIwx+I3B\n43Lx7Q2XsM9DTzl22o/OIMpF6Pv1kW+/55Fvvw+NexNg5nlnk50X2R2/vrTMSm2foGFlm/246orW\nl59vwda1DO/QA09U13f3rMiW8LM+nsrckrX2+xQAxG49Cwcq8YZh9QIGdujGLX2PYGKBNRnG8fcb\nAKNnWKs9xL59wpyj7k9Y97Qax5RZ55/T8RjOGFHzGDg3bkSEf+/3ZI3Hnf3dBaHrhhnHt46LKWNe\nqKVOzSfTnctlg79o0LmLVr3Kz4EHCXZtArgFTuz3Az5TRpqr9m7k5mQCJSAeROrWrVu1vn/oebCL\n34UL6bqs2ZZEa0na8qbqpGRHBRkZHtIz0vjq0wVMuPINIDgmSBw/zeGZd6/iwpPt/FNit86JsO8h\ng/j2i+Wh8txOWRRtrYgZ8/b06xfRr3+35ntxKqGR10UtVQUsmpS4O7K0sopNxaX071rzItNzflnF\nn5+fDoRbt4Z3yODNa2Nbbksqq9hUWsZunTtS7fcz/P5Hwzsd3aZdstL4+torqPb7GfqPRyMv4pi0\n8OaZf2RUfn7kPaqqqPb76dSmDbuCn4rXMSCnK2mu8KSQ3d8ZH3oeTAfiAhaddHeofI8P7rD3B5Ph\nmsjUIaHzw61a3xw5oc7djT/tWMWgnD4RkzBm/TqPB9e+aF/fuu79Q65gZJfY5M5NqcS7lUx3W9Jc\njRurdv/SYwkHVIFQy59VFmx1NIzO/AsH9I1cfcRvvJSXVvLv9ccC1rhOt93C2IdTWSdvWOfbeeWi\n10h1C4xpN5XsnGzape8WXpUngS8LBkBUi58b2Lv3L7WeW18msBVIQ1x1G2+YKHgjbymuegwTaAna\n8mAHs2IAACAASURBVKaaRcHKjbjcLrrYY9rWr9tR4/EXnvQoEX/C238gfP/ViojjSkvi51kr3l63\n/Guq4Zau3cjAbp1JS5ASZOS1jkSpUX/EBldZWPRQbBCXnZlBRlrtP1amzpwdU7a4qCrusWMedIyP\ndNRpTG42r15xYczx6W53aGWFusqpZU1SfyDAGf+awveVZRGTG6YeeCSHjBhRr3u1Bru3r9uC9NEN\nGAuO+xubKkvommX9gg2YAAFj8LgatizYwZ/dgHPyA1hdlmd1OZQ/DzsBgEP7j+HQ/o36PZcUHlc6\nLknG8mcerBVca9a9Xb+Ysm2VK/h6/ePgaC0NWsO/6cQBFPFl1H/Z8NZJ/RPnxYunt/sxfvNfHlUq\nSQ/cAMRV8x980TK6/5r0OqQSbXlTTeLokfbC1Y5WtY8W/K3lKqQi+PwBPO7EP4Bvf/YD3ltiB9tC\nROtbpsAr153OoPzYpcT2veMRdnjDaTKCrWpL778WYwwrN25lYLfaJ6H4AwGG3vNI7MQEwtvPnnwU\nBw638roNvN8xw9bev7KGCQvbKyrITk+Pm47k+4IC/vjuW+H6RwUwzqTA7QQWXt76ulLrq9xXxej3\nre5NZ0P4kpPGxxxb7fey90d/w+putAMul6EXmUw/5k4CgQBjP7FWXXCJoY+05zeKI8aRhWebmjit\ndbFj31x2qpUZBz7SBK9eqealLW+q1fpo4b0tXQVVg5oCN4B7LziehnyCf/rdHjz5Tfy/7kWEbrm1\nD54HqLKXw4oeaylELkof9N9L/8yBT06172OddvwDkzmuXSYPlVSy8qbIcyp9PtqkxR8Huqpoe53q\nCFBzG3Tz6v/afUSMWxP45Y9/rdO5W6p28MOJfyUzweoHTi/8NAtnOB/M2bZGrBbzEr+z5Vz4DStZ\nczChbySr4Li2I/lP+QKI6aS3WDnhIvetKirkmsX30TejOz2y8hjTaQRfrvqaJfwChCcsHJF1ABfs\neU7c6wZMAG+gmgx37V2hV/9wBs6UJO5QehTIoTvXDZ1A27S6fX8r1Vja8tYKHJX5p/BGsDna/im3\n7x/2ZPxL1zX42pvWbqVLz/jN0ROuepavpi8O38/+qX/j42dy6LGJ/ygwxlBeWkXbnMaN/UglBYVb\n6Ztfv2b9oJMvfYSNRfbanDEpLiS07eyOO/Ww4Rx3wAiG9o9t3QKorPay/2XOcYWOnY7Wov891TLr\nfwYChpKqKtpnxX6PHD1+Mqvt2AwJvyc//61xdQ0Yw+CJD8ddVeLLC86tNb9ZffR9/CH7mWNGadRn\nUHBJOGVIn2cedOyLzPVW8OcbERGMMczbVMjvuvZsUJ1OeP1hlphyK8gReGjE0Zw8dHSDrlVXj836\ngKmV34YCqxG0Ywk72Fe6UIWLfxxyPjlRyXGNMWyo3EL3rMhJI4d9fp29fqu17RKYeXDidU6/Xfcj\nE3+dQjtpQ+fMXPbuNJLP133FdjtYDOYiG0A+E/aNn1qkyl9Jia+Yzhlda3yd1b5qblwUDADt1sBQ\nrjMrgNu3zZHMq5hB9GzX8OxQF3cOn17jfVq7quoFpKftjkjNwwyieb3bWbPRaiUP/tkYTIzstv8z\nhMuD2xKx352zmJyc2HRUft8viHTA5U7e/++mpi1vKeII16nhDTs4E5fwSsFj5OVbP8CCQXT0GJOA\nt3HBtQkkPv+r9xbHLX/j0Zk1Bm8+r5/tm3bsUsFbbi0rG9Rk3JghvPlp/Pc6gv3ZZ6ULew7sRecO\nDVvWqLkNv2lyRHem89EZrBpg9i0XhgM3iJgtOuSuyRHHhgLQWy6jrT0mrbzaS5XPR4c2sZ/H4IkP\nRxaEWu0M4559nqvG7s1VjrQhjZEBhEboRbcmxZnoNuf4sxj7wcsgMN6dx/jAZjzAtbSn3/MPEnwj\nrDQn1jUKzr25xjrsqK6iyu8LLX/1/unXNPj1JLKpspgumfHzN+71n9uJbilbYrdFzmEjYDhi9j0x\n3aEZ4uKjQyKHUBhj+OyQSdTHvj324N0ekctjjesykq6ZPUhz1d6CWFZWxhVLryDY/esSO+AjPAM3\nmDDYbc/O/fuw58jKiPze+3blZ7xT9iTfVcywj42UzUhGsTsjuhyUsC7VgSrSXfULiFpCetoeDZrJ\nmZbWAZiONdavLW7JBDbhZhsQHlMnwSTPXATsY7/vF+NiUNzADcDl7r9LzC6Npi1vzSBR8PbU/ybS\nf0RfALZtKCKzbQZtGhEkqObj9/v526TpfPbtqohAw2pJEk48ZDC3XHZ8jdfw+fy4XC5csX1JO4Ut\npWV4/QG6t7e6knz+AFvLyunaLjZFwV53TaY8uBEVvDlbtX64+YqY4G3P/2fvzON8qv4//jyfZfYN\nY+yMfd/JEqWFQvuqVCgpa/aiEH1TKWRLSslS0S+VJAptKISyb8MYZJkx+/7Z7u+Pu3+WmSEqNa/H\ng/u5957zPufcz2fufd33OnUmuYCEJGuwfPqac7Yh4NjoS9dmpxfkk5yTwy0rDCklDHM8MXA0j3/5\nKd+dTfS7nqQn5Xxv2Y5C0gvyuW7lO5g0eMq2OPJW4HLi9HiIDLr4h369lTJ50hW/Eofu8dVOnc5L\no2qYf42Gkbz5jzY1V1RQ98uJED6/YRJWxd8w3+XgZN4F6kcFDqLo/tMwbZ4quTJWaVjVSSZxLo/L\nb0mrdEcWUfZwrIaAgzm/zmEXO5U9Oc9b0eQN5rT62Ef22N33yWtXNW2a5o0S1zY9lZdEldBqJYrK\ndXsKyHedISKoVrFtvbH6+D14SMCCUkJLgJUILGQBFoKJwyoicElHkIR6LeRtx+oHsV4FBPNqQKnm\n7SrBes//FdumbMWSlZa6GHz77SZm9lkOQVCvQwxHNmUh6gik41C1fRgLVkzVKiQAeDwe034guN1u\nHuz8ErnphbLJDrSnwJo9U7Sbcm52QYm0c/d3e02OMPUqj2VKISKgRatKvD7niRKv/0pAkiTcbg/f\nbT7Axl8SA7b78vvDRZK3s2eTuXvUEi2NivrQblzdxvsvD7vc0/5T2HPyLI2qVAjoJ+etedv/mmz+\njAkLxfhyaLNaTMStyYSZuPFTtsr42YvXtnhtrna8Q/koFj/1hEHToby1e5O/y4xQm52qkf7TGTRC\nrhPbI762Tt6MMMwpxGajbEgYJ/qNvaR5hNjsXB7dt/wdLT+0nSmHvtaOCiFRh0geb3ID7x3cwAkp\nxxTMcH10Paa2f4Awa7Cm+TiRlcwDP6saUIGu/pSoTAQru040jfxt0jamJnyizUMlZCEIHF4VECzC\nv6LBI8FdmwdppboswNJ2bxJi1YmGW3JrpaRUDG079GIvlF9Ma/6paT814zRvnhqKXtsUXmyyqkgZ\n1cJq4JE85LtzCLUWnX/NIoIJtfl3pygOrSLHsyv7cVUS4KFm8EhSCr8jWJSjfHhbgoLDOZI21OtP\nMKSUuP3DUEre/qUoyC+UiRuAA45sks0ZkuzLy+mt+TzafiIfbpfd0iVJ4tCuJBq1qVms7Py8Qpm4\n4etefOzIWeo1rIrH4yHlXGaJyFtejv8UEd5ISc4tUbsribx8BykZuXTr0pRuXS49RcTdY5Zhyo+H\nfC33nXJxzWMzEAK2Lb407ZBugr887KVptYpFytr50iBaT3gLCbjbYK3yThrrjUfaNGHxDv/m5N/H\nDaHtq3NxYs7Da0RlhUDtHD+CPIeTkxkZNIiT3RDqvOYVfQocG2O+nrWnz/Cr4Ts+vOjrHmKzgc3G\nicGBy2Dd16wl9zVrWaQcu8WKPehypJ7wj/P5WdgtVmKCQn00OkfunejTvtHnL+pmWwUJZPPCfpl4\nGIvJSxL8mHmU1MJs7KE2gpSqAxtO/+5nJvI3cAbfv99KEeV92oFEgSEK1QjtqxLmY5Ik97YIOSvZ\no9ueMVRYgI/bv+NHWskxdNdDiizdBCyUHG1q7rkwUY4Xmy1g34VtPv39vRi7XC7ePTKZbLZjEZJ8\nbfFgF5KiLTbngrs39n0qlKuNEAJrCRPZqihwncNmiaBK+TZUKb/H53w9emmfvztRD/A2/+bzc1JN\n5bi83oZl1hMVVfei5lGKy4dSs2kpSvE3Ib/ASZf+atCBvDFqoVrWKsuCSX0vWu651CwEggrlrnzk\nW5MxMkkyzlvVvF0O1J+i+8GBHGn60dbtvLhhi+n4kef1MZOzcwi22bRgCUmS/JLPVatW8dKxY6QB\ndQWcBTY+8ijlvaovXEmMWfI+n7gu6JGUhuv4cbs76NCgoU+fhNRzdF23CN1kqfdR5ey+Zwx2q8At\nSSTmpFAzojw2YSXIT2oUFWdy0rl5vZ6eJVCJK2P5rB6xTViXulczi+7sPpX268bj8Sp1ZS5MD1u6\nTtPHzUyh985XseDBg4RFdVgXxhJXeuF7VaZpbmqSW4syDqCSnkshbwnZx4kPr47NYqOwsJDR+/ua\n1qMWvbcayJtFwKvNdC2cJHk4k3+YKmG+3yHA9AMP4ibDtA6rYs60KMp4C5I2ZlGVFgrd6Tg92UTY\nq/ucczhy+OqU7OupRsi2jX6PyuXa+pWlkzf1muuBF/KvR55rk9j9hIdfHX65/zSUmk1L8beie6Px\nBnOZoFO3+rww039IvorTiSlUrfnXPRwvBh9/8gNvL5ZrM0rqU8ZAqiqUt3H+gov7uzdh2FPdffrn\nFzgIDQkq8XihIXa2Lbt036tAqFiuZBnKAT7/eTcvLv9OPyDMROyrcX2oHld8FJemHZPgugmz+Oml\nZ3za3DFjEQlpGSYT66rBvalXMS6g3MMTfYlg14b1dfLmBxHBwdgMfoRG4rY/KYk7/k/N4SZHZX5w\n2+1cV69e4MUZIEmSouERxM97Q1uHur3YovSfuC54DaDLe2jbl5zwQ97e2x547apmrPnnMjnSly5f\n9UZBZfnyLt1BfNfZMzz8y7taG6FYOm1Cr6xwoSCH8/mZPLTZUJZMkbcudZ9pP6swl4fiOvJhcuA5\neqNydHm+v3F6kW1cHhcuyUOIVf77un3TEO3ck+IB3mOFQvokLAg60IwRHZ72Ie1Oj4Mz+X8wbf+b\n5JCF0S9PJmKB6qFqRnlmtVxe7JoKCvN5+YiszbKqxNXgZ2YRMK7R10WJuCgEWWIIClCZICjI1wwb\niLjJGAbMRjWrgoVwPqFVjVaXYaaluFwo1byV4qLhKHQy7vF3ObDrlE9pK9XWce/j7XlyxO0+fTPS\ncogp+8+qqafi+p66NsBI3nxSTwCbvvAtMp6QmEytGuX/tgCEtKxcbh6jaBgMhMJuA4dcSUcjZo3j\nwvlw0gDyCxy0HzvP1Efymr7kZb9Sy2NJksTupLO0iK9Mo7GyhkwI+H5sH9KcbmqXL2tKgjtr3Sa2\nHElgb3KGzxxtwN4pIzidkUl0SAiRIWb/mvoveZXpMvSdd29PujYoGfmq/YYe0ShZZFubEIJjI0tG\nopNzcnC43VSNji6WvBW4nITYio96jF80DTV/mCGCQNk3NBTKfC2GfQw+fihkQ5jPyVt5P0YIfr3v\nBdP4DT6brHxSS12h9VWT9PrTXibnZ1E+JJIsZz7RQWGM3rKYH7MOm8azGObxS7dXi70WgfDOoZV8\nnvyjSctVn2q80Vn2F8xwZBBtjy6Rq4C6lj7b+xryzvkjb6rWSyjlpnSiZ0wVMrjmyyw4MR6tjBQS\nHklgE24sAhqJhznETgQHFCLnoat4kWsaXXPJ1+NKYdOJ63FyFvDVvF1b/QCWP1karBQyLofmrZS8\nleKicf6PdPreLBMdLVjBi7whxFWfqPf4ifP0HSbXVFQJzSfvPE4lQ93OHo+9QabqyqORH7PWrkOr\nykx/TvaZ2XfkDI3qVLoiBO/oyWQefPlD/YBCOI1+Xeo6LAJ2zTVrtVKzcykXGS6XxpJ8+wAsfeIW\nWjRupO17PJLftThcLoJsRSv2Z635jre37gYB64f3oWrZsuQ7nQRZrVi9/IP6LVjIluRs89qU7bZn\nnuSa2e9q+7553uR73OHRw33kXio2HT3Io9+u8ZmLul1/V2+kEBvVI8sQotRZLCgooP4yc13WI48O\n50RiIt22fAEWOZJytIjgDXK1eetQiFAA8qaaJoUXeYu1hbL1nsBVIJYf2cGkvWtkYiIkv+RNRZuv\nJmiFnYSQEF6ETyVXwuBvpsqyCI+WbFcIdCKk9PnhJl371vWHEejkSb60QyvdQ7Oq9Ri0c6p2LXw0\nZAJWdtTLqQVCn+1PoNYGVfvaFWKlH5PHtyEhGUijel4lYtOarmD8vgcwkjdJkvRIVUX+mFqLCA/z\nnysy35nD2wn3GMbXZZWhLr0b6GbfTMcZQq3RBFkvn8lSkjxsOCFreS3Kd6qTNxmd4xMu23gqHO4U\nPJ4CQuzVLrvsfzL+leRNCHErMAvZX3KhJElFvq5dreTt1NGzVKtbdMTQLRF9tM/CYgEhmPbNWJq1\nb3Clp1cK4JU3V7P2u0OATmDuuKUhYwxRpE6nky695JI9zapC87bVWbrqlMn0+PMK/cEZiOxcjVD9\n3QB5nZMHEuUnKa83cgodpObkUaOcHGHdY9o8juc6TLIADk4armlSPv/1d55b971PPrmZd9xCz2aN\nqDvVkCPOh0z5pgrRtgatlZnwwfFn5KSxSZkZ1IwpY1pDeno6LT96z1eetpXY228YTRfrZE0vtaVr\n1JKekDVH/oJM8lwO7BYLdj+pLwA+2rOVF/aZTd66f5mMY71KVmHhSGYK1cJjCDVoChuvklOHePu8\nqZ+9/diEkFjWYSANY6qR4cghMzeLB7fPNvQ1OPsLQFJIgpd8i9BJmznaFL7sNJ3NJ3cw49Qy09zk\nAALoKjowsOOjPuvLceUQYgnBZrHh8DgYsOMpLbOe5m+mkDHZRKqnClGDBozjzWzxERZhYdTvD2ga\nOJVw2bW5m5P0PldnBSEhgQMNZh7shi95g1ujX6NOJd3M6fQUYBX2y1RnVcf6xCeAg1jFBW1s9Xo0\njdlMTEzFyzoeqL976YrUSv0n41/n8yaEsALzgK7AaeBXIcSXkiQd+HtndvkReYkJWKvWKzoT+N+F\nEb3nc3DPaf2AENx8RxNG/69X4E4KDu05Rb0mVUqUpuSvxLjhtzNuuK/p1wi73c6WlWY/p6cfCdz+\n30Lc/CE0qHgTIUCY3Y7NkDLktYfv5P53fdPpGIlMen6OX1mNK8t/D0fH+w+SOHL6ND0++sTvOSTZ\nR8xvWKM6ByBKSRBcc8507aAEXGcPoSDYzva8bE2e0cx5zQezde2lQWZSf9/UIPd9uYSd6efMAwPr\nbu9Lg7Lmv/ndF87SPLYSKXnZBMLOu0f61TKO+nQmq8nRNGxvNnqAEQc+UWaoVgwQJm2a6kdXNOQV\nPvbLfACiRDDlhLf/p9CJGxgz5PiMs77Lmzg9LtySB7uwYjUUvr8hvj3X17jGJ4L2i91fszR3NRt/\n3iI7+ysEqKyIZGqrFwiyyPOxYGFeq9kknTnF6+fVyhfGmGZJi6h9q9WHDN3VG2+oyWQtXmQZoEfk\nQDrEd+PFvXcquj0AD9MS7kclQ1YB4xp/zRsH78Ij5WuaPiNR1PwKM8diyYKn623AIqzYr5DpsmvN\n966I3KIg1IzUpbho/KM0b0KIDsCLkiTdouyPA5Ak6ZVAfa5WzdvVhu71DAlDdZsHaw/KX01ubj73\ntv+fqU1JzaYlzS93pXDrPdPJL1Bus8p9pHbtWN6f/XjgTiXEkaRkqlaIIcwrkOHm/rPJyXf6mFi3\n/YlSaJcDK7f8zuT/+17e8TKb/vBif8pF6RGs7cbM1JM/CPhh7KPExhZfdN4bXae+yalCw31IGW9i\n90483K4ox2pfFLpc5BQ6KBceBkCdaTNRH4LqOr5+5CF6fPSxTN7AYOqH4yP8X//f/viDez6THdWN\nZtkfe/fj+o/eN81b3T5WtyFTbupZonmfyUih4xfv6wcE2JFwGp9rJs0XJD4yDqfbjcPjJtxefKCM\nw+2myedTTbI0UyvgS97k9BUWAe/F382TJ1ca+pjNppq/nPwRiwW23zqVDEcukfZQrAE0K8/+/Dbb\n8o8qe+bEuw9WvI4BDe/226/HT0OxKho6i4Cuoh0b2YrqO2jBGKn651OFAGQ6kokO8h9c89ye+zCa\nTY0aPZngefQIWHTytvbgXPZJqzWtozHaVCVzFgFl6EKvehMvW/qfUvy9+NeZTYUQ9wG3SpLUX9l/\nFGgnSdKQQH1Kydtfg0Dkbc3+l/9xGrOLxfET5+g3SPZtUx+86z8fTlBQySNH/y343/Jv+GSrouj2\nIm9fju1DzYp65Km32RRg37SLTxNyJcnbxeDFr9ew5MhhZQ6SNpdrbEEsHyQndJVrbwo8kkStt2Zg\nCipQttcIWPb4sKvm93PbqpkkuOXIS9BdWAOnCpE0LZlFmMmbucKCbDLccOOLhNvN2qJlG5fxDnJO\nON1PTt7aLG48koUWEbWY7ieR7u2bhmpzNafuMJhYgf/rOF/rM+/QQn7O3IbRx04zc1p0k65aTUBd\ncwfRmT6tngp47TySB4uwsHnPWr5C9ru0esnXa5t6sAorj1V7jWpRsuvLj4kfsjVviaGSA8jkTZ5T\nRRpzgX0I4cFKOZ6q/1nAuZQUha4Ugm1yxP/axEaYUqsAFSx9aFZj/J8epxSB8Z8lb0KIAcAAgOrV\nq7dOSkr6y+dailJcDsxbuoEl38pJM42BBSZfLDDmKjD5bu1YWLymLq/AwYXMXKpXKFNs238qsgoK\nsAgLEcGBCVFKZiYd33rf9zoqD88QAfvH+L9etWbO0NrLkEz+cx/dfQ+N4ypzPjebumVjeXDFUral\nnPfxk1O311WuypI7enEoLYWa0WUIttoocDqpv9iL8Bq0WAANhJ11feU5xi/xcvcVYAeOPvocGYX5\nxAT795+qveJlvHPACQE7bxtFVKjeJ8dZSJvVr6H/0ryjTX3JW4/g2qx1JCgETjYxqrnVhNA5r8Wi\nO/h/0H4YtSPjsCumT0mSuP67sdq4KpmyaiRKriNqJGRCGd9iIG2SpBAvQ7uJMU/RvFFzn2vyzpFF\n/Jj+szxfPEgmwqeYLIXwkyoE3mq1TJMz4rdeBg2oRympBa82Xa6ZdhfvfYkEdmH2eVPnrqYKMZM1\n1cfOpvrdaT5vdgQOTXP3dBG53kqKXOcJwu3xgH/yFik60D7+gz89TikC41/n8wb8ARjDTqoqx0yQ\nJOkd4B2QNW9/zdRKUYrLj837jvr4SqmQH43mcze3i2ffkTOczXD4dgiAkCA7cWUuLT1Lp5EzyVQ+\na15BBlLTJBzeHvM01055W5+0st3/qq6Fa/S8oeKB0ub3SUMItst+cofOptCgUuD8fx7J7DB/MVCv\n448DApdW+6B1G/ru1DX423o/5jdZr+r/tuJBX6d4f4iPkolb12VvcSQ/V59QAOvX8E56/sAKCM6b\nKTz7HhiBR5JILcwlJjgUh8PBM5++yzdC/pY6FSH7YOo52lWtqe3/kZfht932257jw4RtzD78nc+5\nrwuPIYTQNG/a1x3QmicxaesHrLhlHH/kpRFiDaJccAQ/3fS6T8vXf13Kupzf0PV3ukZM/RMRWtyn\nPKZb4W4WIf9GpmQsQPysa8/8JfTV41clbWtB7o8i65bQnqwvWANIDNrVG4ukkCmL/FZlLNUlCDL5\n5PVpOgGQS3JlOFIpFxzHlH33AoV+3SvHNvqGAnc2IdYrn1Qb0IgbQPea/zp38v8M/mmaNxtwBLgJ\nmbT9CjwsSdL+QH1KzaalKMXlgcPhpO3YuT4RncZUIRLoecUUorDj5SG0eWGuj8bLSN4eenUmu7N1\neQI48D/9fG6hg/AAWrVzWTn0WriUs7kFZipjICqSgN2jBxMWFESdV721W7JzmxrtOapdWwZd19ln\nnDNZWXR6b6Hex7D2Y0NHcvhCCj2WLzWtc+cTA4kJDik2BUnrhTO5ILnQzKwCbixXjUV3PcTNi14j\nwXjtlM82AS7Dik889hySJFFz2auARFML7PchTZKSSkQ35woBAyu15u1zO7R9dX3hAnbe9QJHsy5Q\nKSyK9l/r2j5h0D7tvWMyzb+aYHjRMEebCgELW/enZZxODgEK3U4ynLm4XG4e+MUo25gA12yOVU2I\nNouk5GQztlW1cmZCpham/y35EFMTZmmkrb1oznZ+M7X1Nps+JB7kUyEXnBeS7PfXJ7Y/H6a9i0b8\nNPIGM5t/iMViYfTu+5WvStIIJMDE+osJCw7HI3lILTxPueC4EkWGuiUXVmHWp3x6aBTJYhdWygHn\n5Tko6+hfb3OxMlUEqjKi4uTJkxx2b8dKKogPsZIPPEXzmPvYm7EKq/gAmEzbyh2w20sWmFSKwPjX\nmU0BhBA9gDeRNcrvS5L0clHtS8nbX4/uDcfpO8JcmD6+YTne/vTvdbovxaUhN89Bx/HziiRvxuMq\ncbParBw+m8wDcz72aSMJqBwezIYXBvmM13CiUlrLcOzQFJ3Q7T9znoYV49iflMR9yz73aWtK9SHg\nl2FPEhsRwcm0DKqWicbj8dDgjdk+RMzbzHlT1Sq88+CDpOblsebwYV786XttJD29hw4JWe30Yutr\naBRfkwc+W24ikvv7DSE8xDcisMbC180r0Oah5mbD7zn9mHH1kpbvTZjWo5MqI3nT/NRA7qcQWgQs\n6fgI7SvVIstREJC8AVSyhHCePH18L/K2su0w4mPNkbEuj5vOG2T/KUnyaG39kTf12qjmU2NONV/i\n5bsVygJV3zuLcPttu+yad4t1/H9656OY0oigBz88W2sqlaNrauRND5AA8DCy9lziwisDkO5IJsIW\ng91SvP/j+fz9VAhtrO07XfksSOiBGsCgzkFNFhzJrTxY74UA0nQ43Gk43ZmEB9X0e94jOdh4ojne\nqU38lccC6FgjsdgxS1E0/pXk7WJRSt4uD9KSM+ndbrK8oz4VjBk2jVurQcvgRd7qt67ErCUB40uu\nOkyZtoQNW86bCI263u9WyE7pefkOwkKvDuf0QMjKLyDMHsSp1AzufGWxfLAY8rZ3uk60cgoKoCxH\n5wAAIABJREFUaTfpLZ82koDBXVox+JbrTSI8HolDJ05w7wdfaNc2TkCygYg81bIOI+64nWmr1/He\n7wdleQb5R14oWXBEnlNOK/u/L79kRWKSzxyfv7Yjj7dvT47DgUUIwhTNQlJqKl0++sBHXhVhYWW/\nJ4my2Wn43hwfed7Eq3dMZV5+sDcej4ea700H4TEQNaEQDsmPDAkzoTP6sUkmy59O/sxJeuX25nQW\nQsCR+yaQVpgHLomO3yiVIvBK42EibxJCSHSNrs8rnXpxOOsMDaOqYLOYNUrt1o5XHvVmIuYvJ5we\nXODRjsnjGcmb6vOmBkQY2iim9H7iFs6JP1jPXiQkmooKHOR8QPJmAZa2W4g/JOYc57XDk7T5+5I3\niRYR7elTZ5hPqpJSlKKkKCVvlJK3y4nuNRWNmXJT6nR3LcpXrEZchSgWvLQGhGDSe31o37mRqZ/L\n6cZmv7wJI/8puO7O13WTG5jIW687GzPosVs5npRCnZqB63N2eFDJD2bRzY6/fCQn7s0vcHI+NYv4\nKv4zr/9VOHUhgwoxEX6rIjQdOdN8wA95uxhk5BWQlptHrfJ65Gr7l+eQ4XCZ5Js0ZQKW97mPltWr\nUe9/vlGu6vdyc3xV5j8sa0Q8kkSuw0FksF5qK6uggJbzdJKp6XyEqrVR2YVkIq0HnxpCSHAwNedO\nN/STTOObCZfAGLF6YoBcTi2rsJCMwnw6/98C+YRSoguMBMxblnrMTMiM53zIm9I3UsDXtw3l+jWz\n9XYGWUIhRurVKI68xUmhrOk5hmCrr+nsxrXjydaujswq/ZM3NTkv/HjT60iSxOHzJ3h6/xwsAsoK\niUwBLalIrsijkGzcIpJzpPto3jRS55Ws95MO8+j1y9OAboZV28RRhpntXqffr/0wBmvIwQduBMJH\nrhWY00qvXpJSmEz54MB/8yo8Hg9TDtylBQRYBTxTbzERdvPf+xsHu8lzMJh0o6hLvwYLih2jFFcf\nSskbpeTtn4QhvWaRsD8Z42t+83bxvPZu/79xVn8/OvSabnoox0XAqndk8iZJEg6nm+Cgf1rs0F+L\nzPwCJn62hm+OngR8I28R0LxSHB/260XjV8wlpsAfuZZ3Nz7VjxplYujx3iIOp6Wb+mh9MZA3RRPm\nTd62932S8lFRrP5tF8O2KJUejNoyra1O3sbUaMDg7no1DoAaC/X6uUbfOmGYC+jKb5uQdL83uSwB\nlQScMxE143r0Y/6qK9T79CWlrVmLJ9D76gRO1TYJdt02kaNZKTRSsuy3WDMBo1lxUfun+S35CPMS\nN6ISPRCaX5k/8mYRsKDFYJ7+bY6pj5Fs+dOaGYMQvEmWQNLMeyhpP7zJmyTJGjyrxWNau0WADTfa\nT0D4RpuqyHCkExNUfPT2xtMfsSljOXq0KfSuMZnaka1N7fyRNzvlGNTAN3n1XwVJcrM5qb6y58Eq\nBmPhZwR2LOIIoUzDwRAgl7plthIZWeVvm+vVhlLyxn+HvOVm5XPhbAY16vuW1Ope/mnzAYO5s9VN\nDXn5Q99cSVcCtzZ9XhtXgxCs2/3SXzJ+Ka4uNJyg+LwZyNShySXT5v1y5Bh9/u9L/YCAI+NHIEkS\nB8+n0KiirBXxl6QXAUdHDr+s+QmTc3O5Zsl8Tb68NZO7E0+OYeOmTTx++BcfApn0uP8yWQUuF+fy\nsgmz24kLjaDQ7aLA7SQ6KJQ8l4Mmn6gmT12WrJUzk0JjLjYAYTFo8dDbPhvZEXdYODOSvwWf+qQS\nXUJq4XQ4+YWTyjmFkFS8hlGt7ryoa5bmyCbEYmfgT6+SJGWjltCyeBE9i1GzZtC8yQmEzXVSjeRN\nJmAePwRQJ0j6+pXC9MKjfF263Fkt3scluQm1Bi5t9WfxxsFbALBq9Vb1hL+qLx14sGLMGwd3xC0h\nNqaWj7x8Vzqhtj+XGujAiZmkMg9fXzj9+mmfgebVkvivlbm6VPwbU4WUIgDCo0IJjQj2e+7+ETfy\nfzOVsP44wYMDb2PFS18BMHnxwL9qiqzbW2RsSZHIySkgIqJkZV8GDVjAkUNy/T3vCgUbf7g6kku2\n762Y37zmrxKMDyY9TKPal7+WoBGSJNFi2Jum8XfPLrkpNDMzl2v/947mdzWsa2sGdLsOp8uN3WYl\nI6+A8GA7dqtuUt99PJFe739hGvNS0KFebdP+2zd0AKDNzHlkFjrN2jA/46RmZVE+Jsav7FqzlOS7\n6N/HDXFxvN/rUbKzs2m2+B3dbAqmCg0BIUGNd5WAhSLaeTvSW4Qg0h5MuVA56bBL8uD0yA/4MFsQ\nxx/Wf+89l0/lkC5Jnx/QJ7IuS3KOFDFBqEs4fW/uCkCVhAhG7V+pT15BVIGb1eKURgI9kkxwdqZe\nvBN7kLBhE1bGN+vD03vm+p13UZC1hIJVneaS6yogxGrH6ieq87Wt0/mdQ6CYQwGesDxKl7ZdAOi/\no6/WVjJsVUkuyY3DU3hFyZt5dDPUa+wPWe7TxOJL3go9OYTin7ytPt4MnZBB1xpbyXedISqonqld\no/gRwKW5RpTiyqNU8/YvRqDw8JUrV7Jw+E8gBI0fsJGa6mbWrMlERUX9DbOUkZiYQnx8bLFRYAA3\nX6eTxKuVvN30+AxyC6WA5G3NjP6Uj70838fT05ez7dhZk3wELBx8F0+89YUPyVnYpwttW7UsVu41\nY2bKsYcKeUPAV2P60fONRZo843gHpo5g2ZZfeHntVtN4bz10Ozc0qoPD5eJMRjbxsZemMZAkiXqv\nvukTVbp/1FAaz5xtCnY4NjpwRLQ/8vZJ99t5YN1qfSwBevgm/smil1+aZDj2QPV6vN7tLtO4u1JO\n07xcZZ+0I+rf8TNLX2WV0VSqaEKG2mow15Okzdno8+ajcVO2R+6bEHD9xeF8fgaR9lDCbMG0+vp5\nRa6ugTHtC4mh1brRu9GN5LoKCbf5fwEtCjmuPIItduwWs5/dnZuHoPrXGYvXr+z4lo+MoiCTN33+\nzWjFU60G+YynYsHvr3FIScJrFfqapzX3b+LMdKYSZg3Hbgkhw3GWP9KO8WWafA+zeiUFVvdHNNxw\nUWu4GPx6/FfO0Q+rgDbh3xEXF1dsKpFSXF6Umk0pJW9F4cjuk8Q3qExQsK5gPZVwlgE3GDK3C/2u\nt/aEl2O6F5LPZhAUZCOmXNEJX29tpoSvK74/qoM/QvDNb5Mveh2l+HN4ZfHXfLJNLvtkJDZdGlbh\n+0N/aPtG8vHF+D6EBdmpEHNxiUMLC53cNHku6UptbXW8kZ3r079Hj4D9li5dyssJsjb1YaucfHU5\ncI+AqROGmx4sCxYsYHpKnmwqfV7XDJzLzqbz3IW6z5vWRSFiBg3Z5sf7UqmsHjABkO0oJDIomAKn\nkxyHg9jwcDJzc2nx/ts+860dEkqCI8980EcDp5M7ox/e0X4jsFutCCGIX/Saxn1NfZXtb/cN5kxh\nLj3XLMJbM6OaPv0FIXiTN22KFv9tVRHPNbyJvg07+azXiFxXAemF+YTZghj9wwf87j6j+8cpkswm\nUKP/nDKeYpJUk/Xe8N0obZ7GaFNJ0uuXruk8kzRHNpH2UEKswX7Jm1B85yzGzwbz6/xWM7EKK+E2\nsxYtz5VPmNcxj+TBI7mxeZG413+fwBmOoJM3oxlRv94W4aEKjbmn7iAswkVscDw5zlTeOTqEQuQE\nycb0H0L8NeTNiJT0/ezKuF+ZswcLFm6osQOrCCslc1cQpeSNUvIGkJ6aycMNDLVHlWRKS/ZO9skS\nL0kSORl5RJYJv+hxXE43wiKwWv37Nfy6+RATBi6Vd4RQHtxCNoQIQdd7GzF6Qi8AUs5lEl0mjKBg\n+cbY7ZophvnLm0/XjSEq5kqbKkpREpgiTgXseGUIwUHmh9qZlDS6vrFYawP4EimDhrFDGLw/fgTr\ndu9n+GffmuQbyc6Adi0Y3u16TSPlL9pUJYlHx+tkbs/ZcxxPTmH0N+tNbdQ+Hz1wH+2qV9faH05N\noW7ZWJxuNzkOB+XCwkjOzaWdF3nzCabQzKeGwALjcSOBMxA6Y39hrC1lumbG+7NZk2f0WwNI7G3W\nOt/12Rz2uTKVKelk7ZWWtzHut9WKDGV8pc0P3UZRIdxM2Jt/OVFOjWuQoSbPVcmRSs6EcpEtXkEC\nQvUlM5C3l6r24oYGsuP+Dd+NMiTk1YmeTN7kcQQoRd7VQAhzLjh9q5I3jylQQvWTsxrajoofQbO4\npvyWvpuGUfVJc6RTOVT2K85zZVPgzqVssK/7woZDq1hXqAYyqHnefMkbwEtNV/n0/6tR6Mpg3cku\n4JO7Tb6OWk1V1NuvhE37TgfQqsp9RAT5mmdLcWko9XkrBQBnE1N9D0oSjzWdZNCs6Rk9n3jhTu57\n+qaLHqe4dCCxsVGyE4VbeagoKoVazYJ4a6nZTBMcYjc5jD/S/1qWLdyiNxDCh7h5PBIWL+cPh8NJ\n926va30APlo+gAoV/nzqjcXLfuS9T7bLSzE8bDd9McZv+5zcQjKy8qha6eLNfvmFTk6eS6d+DT39\nQNu+M/QGwpd8/LpwxBV5O242fKZpHJ88b0BmQSFxXuTt/U2/lki+Ku+XfHnbuFoVvn2mH+XCwwgP\nDkKSJPKcTlq9ImfNf2f777zz6+9a/yMTZII2ff1GFmzfE3CchnHlaVapInc1b4okSdR5w6xZble9\nOh3nzuWcw2Fa7/ERIwlWUqbEhYdza2RZ1mWnGUJBtZVo+ycGjdaK1vtDdn4+bZbNZVrHnuw/eZIW\n8fG89MtqzigCDjw4hLCwMOI/eM1wobz847xMn+rnKGDXQ4bE2QqWdO9Pq9XTTcdqAvfWbsm9tVvi\ncLsIshq08rlphPqJevb4WY8xKtU0Od+WbL3lFRxuFzd8N1471p1GGnEDWN9lGjd/P0Y7L0OPfjVL\nN34R3soHiWDsuIVTO6LeMtSSXkZUDZEjJOtG1CZIBFHWEEEaZoskzOZf83xzgzu5mZIHaEzZdzuq\ndstc29RMQnUzqoey1OO2ms8TbI0kzObfP7M4HD62jf08jdEsDICwYBUeBPdg4QA1GUQSzwI5eJeh\nE+Jt9v2xjvY1fculleLvQ6nm7SrBrdGP6zsGIhZTOYrl++QbdPcKcnCCFrFmsfiSN2DFwalERf01\ndfRKguysfBwOF+VizXPq2vF/pn1JwBffjDYFNtzUZarewHBn3vi978PsYiFJEtff+YY2NsDU5+6k\nc4d6ftt7PBIut5sge/HvRKkZOfQc8o7+6PEiSkFBgs0LAzsLp+fkUyYisFbytyNJPDHjMxPh++2t\nkjkf3z5hJknZ5jl9NuoRqpUvQ4jXw12SJJo++6ZpHb9OGkxY2KUnLXa43SRdSOO2t5dpWi5TKg0v\nEgtQ1SY4pRSnfKRxPSbd0bNEY32+ezejNm7U5XmZII8/M4otJ07wyOqVGk/QzK8GLdqJQaM1mSO/\n+pzP/kjQ9i0Cjg/QCX9SZgZVI6P8ltTSyJvB9FklOJwtD5ojxg+np1C/THmSstO5YfV8fS6g5Xyz\nAB7FdGj0efsz/m7e8EgeTuelUT08lrZrdc2ft9n0ydBrea9gkzaHe8u3pV+jWykTpP/NpztyiLKH\nkZyZwmO/yyXAvKNN1VJUX3We7ffFpcBdQLAlmBlb57Edmdj7izatH1SHF1pe/D3iq+PL2Zj1uTIX\nj26SRb78rzX/1G+/l/cNxM0pvMnbsPhlhIdduRyPnx17AoldWqCGrGmzc2etnUX2+/FEPYxaulj6\n0zD+6vAnvhpQajblv0Pepg+fz/pFimbDQN4mfzWMdh2bArD+q83MeOJD7RxAeLVg4srH8tKiQURG\nRxAUomtL7qg7CmehW5GpPyHXJuoan+H3vsnhPWc0mWXjbHy4ufio0u4tn0dyyXPVfN4MW6Pvm8Ph\nwu32EGqoUtCtw0sGQqA5tGgO/t/8MI7MzDzKGvzvBjy5gGMJaQZTneC7jc8VOc/8fAdWq4WgvzjP\nmiRJjH39UzbtOWUiJCrZemvMXbRpGthMcTI5naqxMT6aSBXvrvqR+Wt3+WjrJAF9b2zG8HsvXvMa\nCE3GzjSRt/2vXVqEWp7DSajdRsMpOhlUr82wjq0ZeGMnGk6dZQqQUOFdxuroOPMcsvLzmfXDTyzb\nvx+XYa4+ff2QNyNqzplu0ERK5n7K5yYWK/v0UXxMyG2i49iRdd7UR9V2aDolC4QAh/oY3CEUxC97\nRXEnVXOo6X8fmiyFVEiSfLsQJh83fX1H7p3oIx/k36cHCauwsC05gSe3LdFm5x0EsbzTIPJcOTy1\n/QN9yV6EqaWlHLulFK1f67CaTGzTm/s2v6TJXX7tC8QGRXEi8wwDd+tBIxaj35ofvzj9nIfyohyz\n208iSClH9dDWASY54JsqxCJgUdtFfq+DNxKS9zPvzBRFjsEsi26mtXrJf6npKhyeQgSiRGWyLha5\nzjOE2Sppv4NDF/6P3RmvmuZgBXpW/Y7g4D+XPqQUlwel5I3/Dnn7qyBJEo5CF8EKyeted6x+UrFf\nrD38Gt0bjwOPTKYEsPbAVJOcE0fPsGz5B7Rq3YLZ47cS3x4St8k3lxXfjyAmQJoGFV07GHLDGewm\nKnlb98NzZKTnEltej8i86YZX5DZQYvKWlpaDzWYlKurf6VuXV+Dg2pHztH1JwJReXbijc9HRpLtP\nnKVp9YrM/noT731nfkv/bdowbDazCd3pdNLihbn6AQMxerJDY0bc0Q23203TSXqCXWNheoDjF9Ko\nHB1Fi6lzzMYwATF22Dbu0tMWbDl+gsdWfmaenwigyVPOVUAiQsA99Roz8NZbATiYkkJMSAgdlrxj\nkCWZ+h9/aqTmEpCclcE1y981r8diaO+HvBkrLZzwIm8eSWLhnq28svcHE3mTJHT/NSHPSTUTGsmW\nMKyxhghn9Z1D6bBqKvmobSQkScj50ZQXg5+7jOSJnz7gCBeU8fT5ovqpWSSMekT1/Av17uSthM/J\nVOSrpEsIwZIWw3l8t56H74ebZAtCpiOX84UpVAqJJdOZw/qkrXyS8p3miwV+fNxUEuWHTBnbliGS\n2W2n02/Hk6iapeaiKSPbjmTAjj7qVfbR1lnxICFrMztYuvNQi8dM30uhO49N+9exgWVYvHz3rJof\nntFsCuMafc3lQJ4rmTCb7m5x9MKX7MqYrMy/lLz9E1FK3iglb5cbjkInZ0+lUaNOhSLbdW84zo9m\nTLBuv66VcznduN0ejQiW4uqB6l/ocrk4kHiW3vMVc5Awl8Wau3o9b/+0L2DRd0nA/c3rMLjHDeTk\nObht7mKtr0reHpm7iB3JGea+ErQoG8aSIf0Jslqp/5LBX02CraOfpkzYxRHumV99xdxDhlxnBpJ0\nbKScOqTWmzMM89erLCQO0zVwielphNuD+P54As9u2uCX/FUEtj49mpNZGVSLjC6Rb+Kr29fz9oFd\npvHNPm9FRZeqkDQSZzQ3GzVv0cCviuk0y1HANV+9pvfVaoaiVXlY2qEvreJqAtD6qwmKTtF/ySuV\nwFUSkVwQWQrlMbbVydvYmncSbyvLsISFgPAxtb7TZixxwVE8sHU8us+WSqpgdWe5ruy6xI0sOLNS\nOa5r59SC7gJY3sFAthXkuvLIc+dTPlg2W5aMvMlrGVJlIgvOTpbbKmusIKoysP5U0tzJLDg2Eu/k\nthY8mqn1cpK3i8Uvp57hgnOjMjd5jj1qHkCSJDId+4gJbmpqn+/YTYi9IUIE1ho6XRkcOtsE9Xuy\nAlWjtxEVVfWKrOFqRyl5o5S8qcjNzic8MlTzezOZKQ1mVoRg3Py+XHdb8Xm8ikJOVj73tZviM5ZK\n3m5tPgE8HhACe4gNp8Ojm0+V6TRuHceQMfdSo1ZcwAjWKwlJkrihx+tmvzP1QWgR/Ljaf2BCKXRc\nSEunyysfBCRvy/v0oGnD+jR63hwh2rdVfcbeI6cOaTBxpm9fSXkMWM3yACZ1acd1jRtT6HZRu/yV\n8xc6l5NNh/flh34zATWAaU8OpuHCeYEjRxX1TGt7OCufGEhybg7XfDRfbQ3IRek/v+0hWlXUI11P\nZWey/VQio7Z/o8lKfGws+1LOcfs6lfCaCRkCEh561uQ755Ek6n7ysm5axqwp8+fzlu0sIMtRQOWw\naFySB4fHZcrHdjL3AmWCIoi0hzDkh/fZlJOIRtY053Zz4Xg9A5G67wGEUhFB/rz5ZjnQqMvGUUob\nRXsnJOqJcGZ1noTdYmNvSgLPHpKJmiq/i2jJmM6yH/DdWwajBgOoASMWJINZVCeYRhnG86DWNpWj\nYi1Kqa43ms8nwuabGmnS7gHkkq7IM8tR/d8sQtayqePeX+E5Gpfv6CPrz2Dx0Y7ovmm6X1t95pDI\naVpbW7PDsxwrnyjz6IKVWliE7G9rEx6a2VdQtapM2DySE4swv2xLkoeSVE7Ye2oeIFtgrAgaVTt9\nmVb570NptOl/HKeOnqNyzfIM7DKRU4cNEafeflAej0zgFKK+7uMtf5q8RUSFsu7gKwHPh5eD3FT5\nD/6+xzpw8mQKm9cfNbXZvyuFgb3m8+kPz2IRFsJLWGHhckEIQVz5IM6nOMwaDmBQv2v+0rlcSWTl\nFRAREsyI+Sv58cAp+aBqMrSgPehtAra8PtQUlPDNtt2MXmGOMts7Q9e8dXnlA9O57RMHEx6uv6FL\nkkSh04U3Pth1mLH39OB4Sor/SavPCgMJATg8QR87p7DQf98ikJGfz4vr1rH6eKIs3iDbWN/0+PCR\n3LlE94Pao/xb/a5igi5CkXa4/3AtWjU2LFwmol7tg7wKu9ssFmKDzbdjIQSH088XsRqJOh+/qqUI\n2Zt2hiZlKsmT84oYLAqR9hBswsLhrLM0iK6M3WLFI3k4l59F5bAYKoXGsD5hN88d/sJHy6fPVftk\nOu49X0Axy8J1G+Ugj2gpjHfaD6NSRHm/vZrF1WVt3Gy/5wrdDqY3f5aqoRV5eNswnVQbR5VkeuN9\nW/QXfaqGeeir8f9FT24uk/odST/zSYasrfVIutZQnYFbQiFwIEny34HTI0c3F+f/lu08S4g1BrtF\n1jD/fHIBe/OXmTR5oMvXP1tIYCjg4Ve3bDqWUFOtfAfiO6paRlKvSjfC7WbNmDdx23ViLrnMUGSr\nWrWuNC0/g7AwM6ltWm0wMLjINZXi8qFU83YVI/VsBmUrRvP96k28/sRH8kGB0dHF8AosPw2X732V\nvJwCKlX3r7FwFDoRQnBHI0MklhrIcHSa3z4qPB4PfySlUq1meUOiXnOSXoDm7Sqw+9fz2v74l28n\nvm51atTyf/MuxZ/DyeQMKpWLpOOw2Tjx8vMykDeVYAjkz8O7t2f+N1sp8BZoaOsdaLF/mtkvLd/h\n5ExmlqYhO5eZzQ2vL9T6dqpdhU3H/zDJ8uuLJszErSS4a9Ey9iWnmHzS7MDQDu2Yvm0bAHYBSqIQ\nH/KmpizJzMvj2qXvaXLf6NyFUZt/ACTMjl5QXVj56ekRxC94A+0RblhPRWDbk7pGN7OwgPO5OdQr\nGxtwHSm5ObRdOTeg2VQ7pmiL0EyTRo2b0I4Z++qxDhLmoAYJ9Ydx4K7J7DibwOM7FhvIjmz6/K3H\nFM0kfC4/g9t/mKbIMJsdveuWym6synwkmVj8eLM5rUkgnM06zwClXrIq/65yN1I7oiqzTn2Aqv0y\na9Zk8vZhu3cBmLZjOvvc+wAJq0Wei0XAwjaylvPpnY+Y+uopPGBigzmUC5W/rym7B5FDshLN6UEI\noSmLLcKNqtFTfd7iaECaOIqEA4vwrbAwsO4K3JKTKHscDk8eNhGERcik/nz6Ib5MflK/tkrfx+v9\nXKLrdinYdKIOvrVNoUJYf+LLP3/Fxv23o9Rsyn+HvLndHs206Ha7mfTQTHZskLPmYxGsTJpJeLic\neLd7xUF6Ry/y9uWJGQgsfnO2vfTMIn7+Yo8anqa/qgrBxPf60OG6xsXOMysjj6iYMDN580oKteqX\n8YSEXHyZHG/cfP1UL5OnoFbtcowZewd16lQIGIn5X0dugYN8h5PYqHCmLvmKFTsUjahJCwU/TBxA\nmTJh5DtctBtnDkbwJm/7XvclVoPe/4wfjibJzQwERlLkf/PMo9Qor5OWWybPJEn1g/djhi0JeVvw\n0ybe+HmHF/mTNJlzu91M9+bNipUDcsqSk5kZ1ClrftFpPXc6sp7bj9nUz7jeZDTJQN7O5+YQFRxM\nqE3WeDy0Zhm/XFDIrNHnzUCaQLmekjyGRtKM72teROzG2Fp8n3r8IsibPtaBuyZr88105JPuyKV6\neFksXqY0j+Thk90/Mv3ser9kTd0XBjKlEq3lbcZSMTqOm74fqY1rEbC0/fOEWoKJVlKKZBRm8+h2\ngw+cIitEwHvXTCPCHs6sbe+y2b3TJ5HvqEpDqFC+LBVDKmLBwuM7+pvMvlYB85q9Q3BQMM/uHEUm\n503kLZyKtBOtubvlI6Z1S5KER9GqWQ3VGCbslfPAGTVlqo+ZXlEBVN+8mnTlngYjkZCw+KnRWhQ8\nHjcfHuuojOehIVNoWae7qY3LU4BAYLX8+XtvKf4cSskb/x3ylrDnJNXrVSIoxM7ER95k+9f79ZMC\nylcvw9LfitaMFYdz5y7Qr8NUNE9lA3krTutWkO/g7Ol0atbVAx1Sk7Pp3XWaSfO2YuOzxJSVi2x7\nPB66t9NTgnz766Ri55iXW4g9yIbdbvVL3uYveJT4+Ip/eeqPvwLn07JxezxUjo0GoHV/1bleV5nt\nfOevLSTdZIzsr2Y0C1YWsP61EYz5eA1r9sgBAhahvL8byJvwIibehO3dh3pSv3JlCpwuqpf1jU4+\nefIk/Zau5JQmU6J6ZAQnc3L1RgYiIwl5N2FM4LqmF4uj6ReoE1OO8W+/xcdKzKaRcC26sSf9vv9K\nI2+JT4wyJafOKMgnzB5EkFV+WBcWFrJnzx7uP/Cdr+nTi1xtumsQVSOiqfXRVIxEz5u89a3Vhhfa\n3Fqi9bglD01XTdH6Vkaw/k797zLbWcDn2zczI+NHjOSsrYjj4SY9qVOuLFXCyuLyuOltWJSSAAAg\nAElEQVS0/gV0sin7fzUBTgjI0YIXZF+tDde/hs1m8yJvqh8bzG84mlpx1clzFfDgL2PwJm/vtZqM\nxwJxIbE8/PMQnLh8NG89Im+iV8N7TTVL+/3aD81PTcDCNh+U6DoVhyl7n8RJMqBHm/aPf53FSfJv\nT7ldXbagBYcrhxWJN6FGs4Lg4TrbTW0KXKkIYSXY6j/SP/HChyTmzAXl1UTTCgIdq+3Hai0lfZcL\npeSN/w55+yciIzWH6LLhCCG4tbGiQleeS8t/GkdMmQhubTEB0E2nxvxuBQVO7uw89aLIW8r5LMLC\ngwmPKL2ReCM1LYOu4xQ/LeVB/sZTt3Fjy7pF9tuZcJLH56zU9lWSs/tNnQhuOXCYpxd+bZK9/ZXB\ntH1+ntmnS9FE/fjCAELtdsJDfP16srOzGTJtIeqj5cO7ryc+Pp7xn63hh9NyOgqV7My+txvdGjfC\n4/HQaKq5uLwRkkX26/nhqT5ULSdrytLz8un/8Qp2p6ZpfVbcexcta9YMWAlBRa1Z07Vr4TOWYX9E\ny9bM3L3DPCejdksJYLBK8EW3+7ht46eoRGtNx9tp0rChz9guj4cjGSk0Kiu/CMUveVWXh5dmzDAX\nuVyWHrVpDG4IE1AJiW/un8CpnHRu+maOJqsGYZwkF2NmfSGgVmg0X90yghM5qYTbgjmU9gdDdukl\noeSSVbL5VB7Ho/z5C8y1TBUCYzKhGh38jfP2DjDQy2pZhO6Uv+a6Ob7Xze3iwW1D5Dkp3mrP1xhM\nldgqxAab69iO3v4c4MYpHOSSqVxHmcS9o5hO/wwm7L0bb3Nj32pTiY9u8qdlXw6sPi7PQ67NWoab\na3zDmfRvOZY9F4mT8jkTeTuA1RrYR0+SJPadroYx2rRRtT8Ctv+vozRgoRR/K/LzHETGhOEnUTy5\nWfnElIlgyPPdmfPyOu34LS0n0WtAB/oNvJWQEDvfKIQtOyu/RGOWrxBVfKN/Mdo8YS6ZNfbhdjxw\n47UA/HjwpO6Frbg//X7sdLHkrUWtqnw5vi81KgTOAdWuXm3zAQGhQUHse30ETcfM1MiW6vOWnV+I\nLUAEcWRkJItfKpmG0Onx8ND8RfyWmllsW4HghgVLQMDEqrHcdu99vP9wL15Ys5a1xxORgAdWfkGQ\ngIOji9a+PdOwCWsO7SMHOKscaxsURqEzjz1ADFBZ2Hlrt++L44Ibe/LU92tMfvNugU7ckDc9f15N\nkh/ydjInnagg75cTXZh/R/uikY/EcaDep0r+REP/b++RAwcafv6idkwIqBuukMcImQyXr1wfdnnP\nStCv4rUMa9WDm9eOx/tb2nqLTDyvXe+bbFhfh/diBOu7zKDrD8O1fWG8mMCpjHNUizHXHLVZbXj/\n4qpGV+HE2SSGnnvWf5JeSclPLunVEgbseFRr2zdmIO1rX+szd28UugtJLjxPtbDqTN7T1xQg8WKT\nL7V2bslFoTuPMFvR97G5h25E/86V9CJA59ixxEd3INxWtojeRcPjcRr38JBKgescVcp0p3q5u3C5\nM7FZow3tPWw9Jf/9qwmIr6l+XItA3X1SJ20WIQjjCapU6HXJ8ytFyVCqefsXIuVMOvZgOzGG6gM5\nObnc38AchPDpwVeZP2klG1fu1I4BWIIsrDn8xmWZS/+7X+dUYrZp3JBIWPXTZFO7E8eSqVGrPMXl\nw7q5k5JHTrlLq0l733izN3XrVjCVzvo3wpu8WYDtC2Ui4nS5OZ2cQc3Kl5Y+Y8OOPYxautHHfLlh\nQn+iIkM5kZJGg8pyMtAmo82pP4zaqE/630PjejVIy8mjbERYicZuMEmXN+y61szevNNXy6ZsD08Y\nIRenVwiq9/gSgAVm33ELnWrVotWct3y0g8eKIW8mzZtxDkDi0FE+7R1uN0FWK1M2rOX9BMWlwZ/P\nmyInqX/RaWjO5WXz0pb1rDmr5qUzaq5U+6iyb2As0cBvD/mWMcpxFtJqle76sO+OZwkKKjra0S15\n8EgSdouVe1b/jwQcGIMe1KL0v9w0geBgnWym5KTTc7M8lu7zpgRRKGuxWHS/r59uku81Xyb9xKzj\nX+BtErUIiRYinj1SotbHGISwqpPBH9ML3575jkUnP1bGVoraG8mbZvpVkud6jR0tYnitlVm+0+Mg\nx5VDmSAzgfJIHizCwoQ9dyvkzbcwvdPjIM+VSXTQPzc4K8+ZQKitlkbOzpz5gRPOfspZuYh92+qH\nsQj5O9998kbgKOq1rBK+heiYMlgt/+0X7aJQqnkrhV9El4vEajWToIiIcJ92FmEh+Uy6z3GPU1aD\nX46i5ws/L1mutPjaccU3AqrXjOBkYo62L5Bv9Y0bVfEbhBEI8xdsZMXnqmO7vM4VHzxFxQrRRfb7\nu7HjvcCkw26zXjJxA1i3c7/5gEKOzqZlElc2kroV5eCCxHOp5nZeP5M6NasgSRJZeYUlIm/eed4+\n3LTTJ7WGERsPJ/gcOzo+sCbvUnzcagk4bnivLQsoxlfi50zXzGxGQjbzph60iKsECV7XEf13qv5f\n471p+gkg6fGx5qL0yvGHqjUnLtjCrOO/oWtivCDpfWqHxFF7xcvaQfVPeP9dY/n21sHYhKBquFnD\n2uAz/UVKCDh4t6wNz3TkU+hxUik0RiNu3oN6JIkOG6cglIoOqu+Yd9CDPD35KujRrDK6bBxNr7Kd\nOZlxSpcuSfLPT8Aj4TfyaJs76fnTMEWOeR53bh6MRcDn187DG90q30i3yjfiVLRNqr9briOXIb8P\nUSYqYdF+xPrFLEc5Xm71po9Mi7CY/OaMxwFeavY5r+ztTx5yGpwX992Bbh6GiU2+8unrcDiYd+w2\nVFPriIYbfNoALDzSWZunMVVIFDW4u+7HfvsYseq4HKwjz9RDx7JrKRdTzdQmzF5H+5ztOE25Ci2p\nbE0MKLN59dKC9X8HSsnbvxBBwf6/1rWnfXMlTft4qJ+WVxa3tFZ825Q7vKSGzgnBN9snIoTA6XST\nmpJNxcpm59r3lz5zWebQqWM1Vnxu1tiGh18+P7qOD+hpD1a99TjlY80PzNx8B+Ghl7/O4aXA7ZGT\nm3534Jx2zNvnDdCSwdasWI59bxRv9oyPu7RSPKmgZb04NGkELreHhJRUGlSUtRUOl4tY4IJCnO6q\nqT98EtPSKR8eTps355lqmCaMvbhAjg3DfLVrM+bMYA4SHQT8AtqDH2By/ZaM2Pi1icyB4IW217H4\n4E5O5uaYSJYR6lXaf/8QDhw4IAcrAGva3EbjxnKEd982ncl1OqgaEUOBy0XDFXKCW28T6q6CZCVg\nwTxGk1Wvmcplrb7hSeqXU82OQknECvUJpdEXLwJw4C55ezr7AnrqEJAkoblKGAO65fQfZqiGHTXX\nmFzxwEjiZPSseg27bDFsu3Dc0F6Wl5frwOVxs+Y6+f51+6YhXCxUsjV528skcBxVS3RdZCeeaPCE\nT/t8dz4v/z6eQbt6A7IP121lHuCWmndiFTYibJFFjneT7UFWu4waO3nNVuH7Eg2w48Jnpv0L+aeI\nDa3mt60viY+jS8UZflsGhkz80nP3+pA3I8LtFRE+xuiiceBUFW2OVqB+tTMXObdSlASlZtN/ML5Y\nsI75oz5GKHfKoHIWvkx8r8g+aecziS4XgdV2caHm3sjNLqCwwEnZ8pEsnv0ly+du0U8a0oisLSJR\nbyAURd7UoAW320NOdgG/7TrCyy98pT0V1m954dIX9RfCSN763d2GJx+63nT++KkLVK9UxqdG6F+F\nFkOVKFEAAV88/xh3TV1iOoaAXa8PxaYknD2TloXNaiEu2jfj/OVEgxe9IliVB/mecUPxSBJhQWat\nx/3vLOL3Cxlan6PPDeeXY8d4bOVqpb9uvhzYphW927Tm2nfkfF/aWoEawUGsfeop8p0uyoRefK3b\n+Pmy+c8YWXug71B+TDzKwJ/WKuZc8/32xBNjitVwnzlzho4bZF++1S160rRpU7k4vU/eN7T9Iw88\nh9Vi4dfkJB7+cam6Uq3tNTGVWXJTP9ySB7vFxoGMswRZbNSJKu9D3lQUup38evo4g/cu80n3oece\nU+cg79chhuMi3ScYYdPNvtHr20/vZdzRRahEUa9XKkzVCzBGqhrm8fm188h25hFpD6ztfXRbf4N8\niTARyvy2b/m0O1+QzIv7R2jXS3Xen9OqeO1WIEiSRK4rlQi7/5x+xy5s58uU8cp6ZJOuMZWIlfJY\nxXk0s/Il5nk7cG4xx/Jk8m8sj2WE21NAriuJqKD6FyUb4MCpF4D3ZfmUkjd/KDWb/suRfNacfd5R\nWDzR9rg9BCLk3asO03eEYO2pWQHl2IOs2kOlecc6ZvLmBwX5Dk4npVKnQSXtWMLhMwx5YL7ml/bM\nhDvocW8bvtk5OZAYDVarheiYMBIOmUusOByOYn11/gn4+RNfzY0RtaoFTsp6KUjPyefGUW9rmo+l\n4x6iYXU9111Scgp3TV5mIivGz8dOnWP3rBEcO5vKG+8tYcsFiACNuAFUjIm8aEd5I9R6qQB5eXm0\nfmUBAO0EfDDFj2ZMVb0oaPaKEmGoEMtfRz5NdFgoVkNOLAHUfe1NfccLQzpdi9vt9ju/fJcLSQK3\nn7+fk+npXLdMfXFSVEwGUlgFODFotKlPrtNBjtPBwJ/W6vMxrklInM3JpHKkb+qGyT+uYVHSXvNB\nSeL2379iVH6auqt9H5WtwWx+cBS1l0/F45Gos+IVvu/+NC1jq3H0fv2FJ8tRQJvV09ie+QcNPnvJ\nEHVrNmcevPtFnzkFW+0M37tMGVvut+mWFwi3BdN27XhDXQJJuQcJjgvdLUPOhyandOm0YYxGvL7p\nMpVQaxDfnDNGQwj0Sge61s9X6yT44to5CCHwSB7SndlFkrel7Rb6Pe7yOHFLboKtss9shZA45rf+\nEIAPDyxka4FcC/SZ33pRkWqMa/l6wDGKggf5t7fywAyOsN4nSa8VmYhqP0EBlRlKCp/zVP0PL2lM\nbzSs8BjHEvX5W+ni08Yigtn1R0/5PR3oVOOI5gPn9hRgtQT2LW5U7X/A/y7LXEsRGKWat38Z1n/6\nEzMGf6zf1ZXt/x2dxua1+5n1ylJIFthrCL7cEpi8XS2QJAmXy4PHI9HjVsWUpDxbN343rujOfxPa\n99a1ciqxvaVjPaYMuu2SZZ6+kMG4SYvYr9gKt701DLvVytm0LEKC7CScPseAOV+YCJs8vmFf2e6c\nPpSDf1zgq++38PGek0hAuRArP0w1kP+LRFZ+AeezcqhbQSatDSeYAx4OKuRNdfxXUX+K2R/OGMTw\n66iniQ4N5WxWNmVCQ3l30y/M3rYDSTHRqS8fCc/qxHDwB4tZdyFVkyEhk4kQq5WDzwzHHyRJotbc\nGUiq9gqhaAV1n7cxDZvz+qHdmtwxzdrxxDUdKHS7aL5YJp2SgfAl9R/L6ZxMqkb497Ec/+MaPtLI\nm8r45PGEgMRHxlHgcuJBIswmv8zUXi7ne5MkvZ0xuABgUefePL5lmTaOSti0n4BBm6cn1pX8nrtd\nasSA9jdSLbYCe5OT6LtzgY/mzaLNWfaJU5MBWyw6YVndeTLRQbo5Ma0wm3y3gyphV65uLUCf7f00\n7d71ojN3N7+baLtvFOfQXb3Bi2TNarn8kseVJA+vHuyJrFkzaxCtxfi8/VVI/OMbTjrlUlcWoGHs\n+8RGXCdrDx37iQj+Z6Q8uVpRmueNUvLmje4VB6J5+qoQgskfDqJV5wb8cTyZGvUr0b264UFlgbUn\nZG1FTmYeLqebmNiifTouBYcP/EHdBpX9Vj7ods0U03we6NOa/gN7FiszL6+QCxdy2LcnkenT1wO6\nRmnDhuf+kVUW/JE3BHRsUo2f95/S5v/8E9dz53Wt2X/sLPVrxF20iVWSJFoN8tJCCfh+2gA27DvK\n/5Z9bw4MUD7vnjVC05I1GymnATHWM72SOJJ8geplYmg+1ZDHSyFIPw97nFk//sLyPQe1U81DBP83\n2ky6Tl24wA0Ll8q+bs+O4GxWNpWiLv/vGeScbDbFreGpJQv5JjcDBJx4enQxPS8eDZb+f3vnHR5F\n8cfhd+7SE0IPvffem6AivQgoP0GwAApYKApIUVCqFJGiYEHEgiAIoqAoXaVKkd5Beq+BhJB2uZvf\nH7t7u5dLQgIhgMz7PJq73Z3Zubll77Pf+ZaxxGJdJtXu3VkE7HhusFu8uSVuEuJtx1MDCfH1J97l\npMIiPXJbF2+Jl2ET52NLvF0IzVl+W4v3qbZUX+7Te1zeYDDZ/JNfXj8TfZkw/yxeNV7NJL1mZYSV\n9b2DBtLC85u647L0J4DZtWbQectL7vMIYGz5D8gVmCvZfs7FnCBXQH7sermq/rvaAZ4RqgUoS8+K\no245puvx5wiwZSJA952bcKAJYC2XpeXM61066WCAm46LIGwsON4GQ1h2LrHpludV3B8o8YYSb7dL\nuxpvE3VRq1pZuEYIn/+kmbnjYuNxJrgIugspNxwOJ77JRIRu2rSJoW+s0N7Y4Olnq/Hz/O3uX5K8\n+f2ZOT91kasPMj+u2sCHs7S6m1tmalGS1uXGtPLZvGV8ufqAh3jb8WnSQsyR4MQ3BYHYb/rPrDx0\nEsAreW1S5aysx20Z8johweY15XA6EQivXHAOp5MbsXHs3b6N7n9u9eivSt4wfuj6vJYmBHO7IXb3\nDeyNn48PxceZ1rr369elbqlSjFu2nGWnz3iMuXLmUH7q3s39vuhHmtN3OWBxn7RFqBoWw26/zGPV\neT1qUkja2kN56ak2lMiSnQAfXwrN8Iwy/a7J0zxeIOU8fAa7L56lzYrvPJZdkbC4wfOUz1sIKSXF\n543Rd2oWrz1PDSDIP3WBOFqeN0OkCfdrw1qWWLxpX52nVc60vMGGRiPw9THF2W9ntzDugJHrzrDo\nae7wi+oOI0tApiQqLHiLN6d0YdeX8M5ePkuvw1p0bbAQzH5E8197duNrJLaWGX8Lko+xtTxdN6IT\nognySTky2uGK9ygmP2/XNP7hD4t4gwHFPyF7kGf+OZfLxfv7n8JM2utyi2WrT5sNibCIN4A3kxBv\nZ6P3kSegNEIIvjsyDtDyyKUk3i5FbmXjlW7mnACNCmr320Cf3MQ6zmCzBeAjsrH6VGltnHrbxwsf\n9u5QcUco8YYSb+mBIz4BX72clMPhoHUpfbnRJmjYsSz9R72UIeNwOl3ExjoIDvbnwN5TvPHKd+59\nPfs14KlnHsmQcdxPzPplFVMW7QZMgbT16/Qr72TlwJlLFM+THV970gKuQj9TFEmgVaVCLN5z0iuH\nmXGMdcwI2D/GFI0XIm5gt9nImckz+i4+IYHw6Bhyh2Yyl0z19jmDArgUHevRP+DO67bytc4UzpbN\nQ7yBZn2rO3kKFxISPLbbBRx+S5vLeKeT0lNNN4JjaRRvOy+ep3KuPBSeZuRHlO7znHhVe+goM+ND\noi1WMYCTXQcm2V+Cy4VEy7FW9rtxROttjj0/kGJz9JQiuhhZ3eo1XAKKZMrG3B/m8i7HSFyNoXvu\nSgx6rBWgpfcos9BqHTLzr2kiTehtk7O8weB8T/LB+cVYxVviVCFrGg0l0CeAF1aM5SjXsVrThJAs\ne2QYIUGmde5mQiz+Nl98bHaeWzuUy65ITMuYdPtfTazch9KhRQFos74nApdbcFoT8dosVR7m1p6e\n5DwDnI05T77APMnu/6/wy7HK+ivNqvdkkV1o36sNKZ2AQAgbf54ohRks8Rg2VqPlwRtErfzdsCdz\nf1CkHiXeUOLtTnHEJ3D66CWKlskLwMLpK5g+zrCAaXfapUduzzk3NTStMcLixyRYsWUoAOfPXMMv\nwIfsd2H59kEiOjaez+b9xbzV+7ysW8b7vz/tjb+/L1Vf9RQ7n735FKFBQZTInyNZQXYnGHVNjfPt\nHX/nS6tGpCngVXLr0Ht9mbluI6NXbwIBu956DbuvL34+GR935ZISp8uV5LwWnjYBaYgn9/8sPm+G\nC1viYvLA9nY9yRYSwpWYm8S7nOQNDjXLYwHDyj/KS1W9M/5fiY0iR4AmhKSUlJo/Gqel336F6vDR\naUtUojDFGUBhAjnJTQ8/uY5BZXmvSXuP8xyKuECwzYcn135MYn84KcFu+Txbmo0hOiGOhn8O0wMY\nJIahVQhYnyji9IV173MmPhy7LXG0qbU0lmnlWvyoubT+27FVfHPhZ3N/KsTblTgt8MPP5kuor3mf\neW3bi+5+plb6hlgZQ4hPJvrsfM7jMxuRmlbL27iKC7zOczvEOiOJSbhKVv8iHtu1PG/WaFMbL5dc\nn6o+bzrO4CMCWXGqA3Be/660z/BIzuVkCTFThhw4N5lL8Z+jCT098lWAH3WpXmh2Er0r0oISbyjx\nlhRzvl7ErMG6ABOCIfO7Uu/Rqvd2UMmwceNehr2h1dV8Y/CTPPl0NQB3xGx6JAp+EPh99W5Gfr3K\nwyF/0zd9SHC6eOTVKWaNcgHSBkhT3PwzvQ82m434+Hhq9/7Ufdz2aX3Zsuswr0773S0SNn/U0yta\n1+lyuXO4pRYpJdFxDmq9Z57vnxGvExioLY2We9ssmWXst1reDC5H3SQ0wB9/XYA9Nnwyl7AEJujD\nGtCgFt3q3Z7l9afde/l661YOXgn3tBAKaF+qJGOffBKny8W12FhyBKWuIsS12BhuxMdRMNQzUvSR\naRM4h3EOi5VNaEEU7nNLtLQhicTboef74p9CNPW+qxcpky2MvZfP0WblTI+2CPAFigs7B0UCIHmp\nSGUGVGvGwfDztFvzrXlyy3lNq5vL3ZGwiDub++LTrF/rGg/i8T8+wCqwPAIUgJYBZYjwiWNj9FH9\nPJIqPvn4rIF30Mubf4xgF5GmL50R1KCPsbx/ASbXeYsX1g7mGjf0MXmKN4BYZyxX4695WNE6bnoF\nq+D7vtaXyc6tgVW8jS/7KQ6bg5H7jXyY2vaSgeU4Hrdb/8y456J5li48XlALPIpwhOOSTrL45uBy\n3AXCAu6tdU9KFyCIjLzChqutQdwAXNgJo2mR1fd0bA8bSryhxFtSNM/dw3yj39mXnvfOPn4/ExMT\nj8vpIjgkgOaPv4+x4mU4+I/+8H/UqlPaq90HHyxk+fKD2hsh+POPtzNqyHTuPZEj56U2RgH+fvDX\n7JRThhjUelHzt/LIbWa1PEldtBnvgY3TeuPr68vh05fJlyNzkkl/q7zuuYSYM8SXFePNJKdOl4sD\npy5RvnBur7Yp4Uhwcjo8gtYfznT3P61LK+qV1bKzJyXeELB/tKeAO371GrEOB2VymxU25mzexshl\na5NNa2L9PGvf6IavgNpTZ3gfq7/vXbsGs3bu5FpcvCmk9DQbNXKHMbVpU2rNnuXu91ifftyIj0NK\nSai/p+9nkU8meiarsFjPEJDTx491L/UgwGINdLpcxDkTKDPzI892wP9yFuTnq6fxEHrAiS5mLdCD\n1y6RNziUUL8AHE4nJeeOJ7EAM9takt9aLGs2m7HPOnqJsJl1QzXrme6HZktevBnHWstUbW8x2t3r\nB+vm89PNHe62QkBDfHi/SdLpI+r/8Za7T4AvavSjx9aJ7vcFRHa+fvy9JNtakVKSIBM8qh8Y4s0m\noBlP8GKt527ZT1K8uaOjcRYAGmRtSYnYKnwdNwIbUITyBIoQulQ0/71rVSIkNmEjyhFJiK9WLmrG\n/r6EcxRw4ELzf7Ppc9u/zIrbGt/dYt2J4hjWOT/Ri6r5X8bX7vnAsutUeUDLs2gT7alQIK0Jgx8+\nVJ43RZIsveCddPJOObzrNG+20zOGG4Lw0LgUWqSezs+P4Py/kLeooGatKqz6YwdFSmRh6DDNmTwh\nwbvN5avRSfaVJ/e9K2915ILn+7j41LfdPMvbx6pml0l62gs8hQueZbJKFki+TuKOz1NeyrTbbF7C\nbeeJ03T6aIH7nLsna31IKWk5+CNOx2vj2T62N3s/NPtPcJqZvvaN60v9EVO4FGvJqZbEc2KR7FmR\nUnL40hVKhmlpREYuWwu4Nav2WngkzHCz8uC/jFq5xhS4SRhq33y8HtXz5abTQs2xOxOw9LXu5A4J\nSdGym/xzrSG0vNteToin9IyPsIorN1oFdMsGQVBQoFZSwqNvreHcPVt4Z4fFYd3Dj0075vjz71B0\njhFlmsQYvTDUl2Ro4cdoX/lR/Ozaz0CZhcNTnI9EAezaWXQRXG3pYGzA5qbvs+TmTvc+YxR/CAdr\nVgxiXZMPmLZvKbPP/4nNvdTq+a2+vnUiUkrdf05yliuM/3sGPWo+x5W4CAoHJ23BEkLgKzyjV1Py\ndUsNK7b/ymLmAdrXV5yK9K4ymKiEcAJsmZhg+zHZtkIIBIILFw8y/fJANL8xM2DAQ2g/ADhZiMPZ\nGh9b5kTXSYTl9XxAibeMQIk3RarIUyRR/qN0vOkYtbfPHYNFx3aADfZcuU5srJPMJF1V4diRi8RE\nxxMY5Glt6tS5AZ06N0i/waWBDT+mzsqWWrZ8qwm0G9GxDJzyI/8cvnyLFunDlEVrk9x+8ko4p+Nw\nC6Wh3//O2C5ttDHGxHE5MoqiuczcXKuHpZwXrs9X37P85CXzB75fV/JlSbmYtXHs9gE9uBEby+Of\nfu1xLRoiz32wgOLjJ7mFnRBwA7gQeYN607/EGq1qPUEmv6QjNI/30r7jyLg4Em7epOrcrxkZEoYz\nKJARl08mGmVKaCecdeowVYNCmd32JYL9/HFJ6U6c27FCTT7a8ScX0RIm30xiNjThpnGg/SD87T56\nbVNzPpIb08gTaxl1ch0A+9sMSaKNYFDxx6lToDRhAZlpvmJsEmMwcQHLT+9mTTNtTLWXG3kWtXMb\nz2BXY65oWz1NmOCOthTu9wZ/OvYw0CeIkFtEhKYFl3ThcMW7E/MaWJdNm4kWHvsi9Qq3IT7e+eCS\nwxBuHgioI56nfpkX0zxuKzP/bYhxZdiA54uvx6anMol3XifOeY1MfkXYeWEcJ6N/wIw2tdGq6M5b\n9v9oYa2O8N8nKwNn2Hm+sTs3XSbxImULjqJSwdO4ZCwuGYeP7f6uDf1fQi2bKpoWODYAACAASURB\nVJLk3OnLdH3CSGug3c2f6fEEXfs25+rFSAKC/Xim5kjTMhIkkAmwdMf7/2k/tXVbjzB49CLt9cL0\ny+VlLJsiYOHEruTNefs3wRsxcUTHxpMrq+mEvXDjHkbOXuVlxdv5Sfrnb4uJd3AxMoo+MxdxWC9b\nlZTP29wt2xj521oPPz/jr8fink3bltjqBrh94qTwLE5/IyaGKlOm6f1prVx6/8cG9KPpxEkcAe88\nd/pJbAKOWCJOXS4X63bu5LedO2lavToj167klKXCApgVFrTlOxe7Ll6gep58FJ7+ofuYBS2f5X9L\nf/A8p9YKoyZpr9KP0LJkKXxsNkpkMStxRN68yaErV+ixbg7dCtblYng4N6LPs41rPC4KM6yj55Jg\ndEI8FX/W/g17l9IyIki1DTOqt+OVbfM8jhECWgQV5/lqj1E5W0Eq/WZdujTSiGDxj9OsZZXIx4zm\nWoLXMSvG8KuMZFPTcdRdOcjdLnGwgkHiVCFv5GxFq3INkzzWSte/3+KajEEI+OmR1K08xDpjiEq4\nQQ7/MI/tVvE2rVr6OeeP3mcWngcYUm6Jx/4bjqv42wK5Hneeuae6A1q6jl7J5HoDmPnvS4CW91AT\nbxuwWSqOSGl+x1q0qYsg+lMn7GlCQlIfDPb3yaIYc2ImFi5EjYJrAHC6onHJKHztYcl1obCglk0V\nt42Ukv3bTlCuehEAXm89hhN7tCdiRBJVp4Faj5Xki7ELWfSNnk/IbnPf6WUMYINrV6PIlooI0abV\nh7tfT5/fk0JFzaW/hT9u4LNJ+g1L7//Fro/Qqeu9sahZqVet2F0/R+LcZ2klwM9HX4oyebxsEfdr\nG+AECiaRQzU+Pp4aAz9FArkFrJicenH39/6jdJ+pLU0iYHy7xgxYsNK9v+xgS81S/b+nKxTnlYb1\nyB4cSI2xn3v1meSjZVLPBhKOnTtP0bzakprL5fJoUDdndqZ0bM/ZyEg2nznNEesJEvcnwIWk6McT\nOfamZmlb8u9hem/4C4AFa1dq49Lb+gOHLKWxhBCUmD7ZHL0wj+3x52J+fOIpev61iEvWU1rGUMEv\nkDLZwnC6PK01ocHB1AgO5p9CZuWQxnOnckLCCXmCmXPH8Gqhqgx6pBkAQT5+HGnvabV+9ueP2SEj\n3R/0UNuh5s5teNGx8mPk8Nf+PVuLzAOESLiZxHexi7PUXKaN0fCJq7NikPu1lKaocEkXJ29epkiI\nlhz3Lf+WTIz7zT2+1Ag3KSXXiXG/dzgTeGFzL7BGgwqYU2u6x4NlgD2QQdvfJpIIjGhKGzC9+iyv\nc0QlRBGVcIPclqADI0mvIVqL+Jfj9dIjbjneZD8HkmvxZ/jhVA/3FoAzN3eQP7hKkm06l/gmxT6t\nn7dNKixtyfFIoWNIKdlyqqh7W/mci9yv7bYg7KSfVVRxa5Tl7SFlbP8prP3pGDih08BGdOzlXZrJ\n5XJhSxSFGBERRYea74NN0P29JrR97ok0nzshwUnL2maeqVIV8jLlm1fc7z/6YCG/L9qrvdFvPoOG\nNqFRs5oe/TR6fIz7x/3Lb16mcOFc6V5RQUrJ409N8LAOrVuU/smCExKcHD51mbJFc/PuJ4tY8c8x\nt5UsT9Ygfp38Wrqe7/jFcLKFBJE52HPJqP7bUwg3/NQELB7cheAAPzpNmsnpiDgACmYLYU6/F6k7\nzBRbSSXpNba907wOLz5W28MKALBlyxYGLt5AcQE5BLh/CmyJRJsh9sDje0i8//BgT6EZHe+g4kef\nYBVRRwb0wyUlDaZP53TUTbNPAT0qV+bT3TvcVr5NL3VnxKplLDl72nPydMvg8Lr12XPhND8dP+Ix\npglV69J/xwbTv03A6HqN6FimMqW/mkCc2x/O+KtFd2YHfvpfd/KFhOJrs1P4uw/wmAkBXYtV4b1H\nmro3VZ8znnDM/HVNsxbm82ZJO+VfiL7OY0uM+rBWS5xnhQXDj81mM6NJsew3vsLFT/QhLCCUGGcc\nWf1CeHzpMKJxeBxrs7T5qFJnSofmp+WGUZpPm5AMLfYstfOXJ5NvYJJjTis3HFH8fvIvfrr0uztV\niBGwECoCiCLGHRFrFzCl0mTW7l7LIqElD85HfkZUH02cMw4hBH6WpLwu6cImbPTd2UGfE5eebkMT\nb0YxeR+gbc7+VM1Tl4jYcCYf6aIfI8lJMV4vr+UTHLu/OU8yngplK7j/bUjp4vTpM/wa3QWAYFrQ\npdRb/+nVjIcRFW2KEm+3i0d5LGDpKc8s5vGxDk79e4HiFQpwv2IVb59+0YUSJXJjv0OrVVI81uZD\nD9Hw+Zh22Hz8KVsy/UL/a3Uy/bKMaEgE1M4G495/jeDgIKq/bC6tgimOts24/aS9ERExPPaesbwI\nVfOGMmPAS1yOuEnurN4W1ApvTfYUUFZRZXlv/btvbF+2HDtNjkzBFM2p+Qp98MtKvt2qCXRjOdNY\nNnyhbBFmHzjunoPkxNved97g30tXKJfHs6SRw+lEAmUnTNGP1UWJpZ8dr79KaHAwZyMiORF+lRcX\nLdSPkfzUrgNhmUJ49NsZpmXO8ttp1DgtbhO0rVKF8Tu3e35myyW4pkM3CoRmJjbBQZCvn1eFBfQq\nA0LAd4+1plL+wmTy88cmhEd+N6PNd/We4bEixUkrkbExVP9tgrkhCfFmLGkaPwl2O1T1yctO5xn3\ncR5thGac397CM4rUECKaz5vZZladN/n8wGI2R/6rfxwz8e7qhhNIT6ISbhJsD+K5za+6x+AjpJ4Z\nzRCWMLPmV+42sc4YfIQvPjYfIh2R2ISNEB9v8/SYnYO4zHF3hKjZn54PDWgfNpBKuesQHx/PmMPP\nYIi3Wn6t2Z6wyD0mG06Py8suXO78awJtboxlU5dM4KvDT2DMfXnf16ld5Pn0nLZbcjP2CHsvNtLG\nLqBGwRM4nFdwyTj8ffJl6FgeZNSyqeK2SSzWEuMX4HtfCzeAVWsGZ8h51v6S8WW5hIDlU18hODAA\nP18farx8dyK4AgM9k8wGB2qO+jabYNj3i1m4TbMqfda9FbVKaEuvxiog4BFtCtD7izn8efyi+32l\nfJrvXvn8uQnyMyMBB7VpzKA2jek6Yw4bTmnHHxxh9vUu0PSDyZzQCyoces97+bbkaDOh74IX21Gx\nYH4ArsfEEudIJtRXF2Pf79zJhE2bvdKZCClYcegQrz1Sx/ysSS2tAkckjN+x3XufhFph+ZjWvA2v\n/fQ9m6Ove/vW6RPYKE9hvmrxbJJDPdHJO81NkdljYYM5nuPPv+N1TFJExiYONRDsbvM2AT6+9F/7\nA79dOeTh62YItO0JZ7Hpgu6vhgNp+Nd4d3uQ1LTl50TUJQqHhBGbEMejK0fofRjWPO3orEDh4DAm\n1nyFOKeDxqsHe05EOnPDEUWAzTPoZFatGSm2CbCb1r9QPa1Hj+2aOLJbSm2VpQoDK73Pe3t64uCa\nu824ij979enn58fw8r+630vp4vyBoziIJxA/znGWIIKJFccRmCWpzEcE+PTgEwgBr5RY5tH3RccW\n4PbEm5SSpScqYPjgNcq3FT+/Wy97BvlrbiOaRfYFAHxsWZGJAzIUd507srwJIdoBw4EyQE0p5VbL\nvneArmjuNW9IKZfr26sB3wKBwBLgTSmlFEL4A98B1dCC55+VUp641RiU5S3t9Gg+luN79bwW+uPz\n0hOTU250l0lIcNLiET1Kzlg2s/6aAAiYtaAXufNkodFj2rFG3rc/dCEXEx3PlSs3KFAwO/8larw8\nyX0zv1vlsQAq9TEta592a0HPrzWn6j/e60bmTIFERsfxxMjppnib0Jf5G7cyYuE6L6vbD707UiFf\nbrevG8CiXh0Jy5KFVmM/54rl2NFN69C2bm0Alu7eT9+Fy72CKw4N9RRwVvG24rUuFM6e1WN/ZEwM\nVadOwxAIUl8OPTJAm79ik0xrZ1YB2/r2I8ahLfvdiI+n9lfTvJZpO5etyPCGjQH4atsWRm1cayno\nmfivZ0CDafmTHn5wAMKmHZtD+LC1ixm1HJPg4GxUBMWz5GD9iQO8uN70M0LAwfb98ff1TI9hcC46\ngrxBmngu8aPmpmD8U6oXmpuvm2hO8RdiIvERNh5dOsHjGGvSXNCWUaXu7GfT3V2fE9XIkyOMTIGh\ntC5fjlrL3k2yrZF0t07WEvQt14b8QZqPa/0/+pN4WfavBpOIToglyCeApmv6YCx7Ds/8MrUqVUry\ns94O0Y5oeu7U/MsMK5rAZX5eYS77WsVbFrIxtPJU7OLulomSUhIeHs68K8/Qo9Rf6dq30xXH8pPV\nMMRbMZ8hlCqQsVa8h5n7wfK2F2gLfGHdKIQoC3RAq/GcF1glhCgptQJqnwPdgc1o4q0ZsBRN6F2T\nUhYXQnQAPgCSfiRV3BFvffICvepPcN+lcxfKeosW3vz8w598OWKlWzwhBKG5YP6foz2Oi49z4Oef\n9I+LFS+XjsTCDXi0YXEyZ9aeDrPl8Cf8iuaDVa6iWR8zINCXXLnufbi60+XiWkQ0ObJqyy51Ok7U\ndugfZ+OctKUV+ecuCrbkqFqsCLsnmYLJWttUAL8M6kz5/pO195alXkOUdJg6l33j+lLRDrudUEpA\nyby5OXn1OleMTnXxNHj5RnafvcTw9q15tJR3UEiXat4JmQ8PSTmYIjQwkCMDkz/maD9zTotOnkTR\nyZO8hZf+eZ8Nzsq8qGvM3L+bmft3c6RHH7pWq8kz5SoSHhtDkSye/4YKf+G9DLirXXcqLfiSL/JX\n5NWzuxNZ7LSJ+6ZhO482AXYf8odoSVHrFS7D8cJl+Gb/RkbuWA1ISs//kOPPaw8uZ29q+bYWHNjK\nlKMbMaJJXylay2ss62+cp+RPI93fmzuYALM+qcfoPJZNtbFKCXPYiu2Ktt8v6GmKkYVjXAfMOqMA\ns+r0oUBwDgLsnveC5JZLz8depVhIPvOcSN6P+IrFTHEf02Z9L/d+m4CFddOWiDzAHkAe8nKec5bn\nQy2cJyUPs+uEczn2ArkD03eZcPWBWexgJgCl7M1pUfItsmfPTo/s6SvcAOw2f1oU2euxbeXxUto+\nAdkZRKXCL6f7eRXpR7r4vAkhVgP9DcubbnVDSjlWf78czUJ3AvhLSlla394RqC+lfNU4Rkq5UQjh\nA1wAcspbDFBZ3tKfyGs3iYmOJ1c+zx+k0YNmsn6RFpZurInIRCJr6o89KVQsJ37+vjSrqD2FS2vB\nRCFYvmNERnyM2+bxVpqPmwS+nfIiTpegQL6sSFcCTZ/TfiCK5xd880nyqUISnC7Cr98kLLvmN3an\n4u1+wCreAJYOfplmY792+4QlXoIE0y9vx8je+Pt6Pis6nE4qDp/iPubgyPRPW5KYyLg4YhMchAWb\nvkxbjx+j/SLdopVIvHnVk0UiEGzo0p1+8+eyKeaGl1/eV42fpGFxT7F59Ho4DRZ8hTV44tGc+Znd\n+vYy/l+N1Wqf5gwIIdbpIMTXXCLU8ryZvmb+2NjXfjAdFrzPdvf5PYMPDrUdyrEbVzhw5hj9Dy6x\npP+wBh2YBeBJZFEz+rHpok4IyCeCWNTsXaSUHIg4S8nQPPjY9HLnfwygLpnYQCTZgRBsFBUFEMLF\n8Cfe9Pq8CS6nu61Bp/UDiEBL1j2x5CCKhxW8rbnstrWL/kpb6v2y+kz3Pocrnkuxlxh/cIDmL6fP\nxcdVfkjcTZqIi4vj46NPATCw7FIAJu1vArjcvoRvll51R+dIKyuPl8aIum1Q+FCGnvth436wvCVH\nPmCT5f0ZfZtDf514u9HmNICUMkEIEYEWgHUFRYYSHBpIQLB3ktK3RjzL+kXDtTeJHs2X7dOXMa0R\nhUlESP28fiDTP/2Vn77eBkIwZ3k/smdPOTFrRrNmsebjdupsOHnCMuPrq/1orFhz0H3MkbMp9+Fj\nt7mFG8DGuQ+OWKvYx1OkFc0RxKIhr7Jnkre42juhL+UHWoIYEqPvqDLMiHKEusXy8+XL7Th8wfOf\ndoLTSflRpmWlQfFCfPZCW49jSo7yXN7f+05vd2H6EmPNff++k7QQ9Lfb3Ulwi00y/QiP6VY4l5QU\nn2L2s6NTV6rM+sqjD4lk2tbNbIqN8hBtBl1X/cYJXbwVnv6h1/KvoX3WXT5Dza8n061KDcbs3KB9\nvqDMrHjWjCzu8N049410c5vXyJVZs8JlD9CszdEJ8VyLi/YQb4mJw0V0bCw37ZnAGZnEEZLSP4/g\nidBi5AoJwbOElhl9+mfDt2n45wfmx0j0uXMRzJLmg4mKi+GJP0dyjpvUXm767W1q6hmAsQFtLNeQ\nhEsnpziODdh0YS+1c5f3ODaxcAP4rt6HyX7mtDCj+rfJ7vO1+ZEvKD8fV53r3tZ3Zwf67nzWHVgw\ntvwcfO23Xl2wsv/sOvfryKhzhIbk1d/Z8EromwxfH9Zq/VqrNrxYYlMKLVKmcZGDtz5Icd9wS/Em\nhFgFJFX4cIiU8pf0H9KtEUK8ArwCULDg7T1tKZLHbrd5RW02L2nWWhz0aXs+6K2XhdHv4PFxDlpb\ncrcZ27PlDuHb3/pz5MA5ylbSvqvt682nuosXrt934g0gNs5B5I0YXnhd++FO7HBerkTaaoHeLjVe\nsgQqCLcWYuXHryEQZMmUPikWUuLo1Wgq9JvMP2N6ExDgfcvYO74v5QaagscYY3LZDdYfO0PZdyez\ne8SbHBhliqx/L1zyOG5Yq4aUGmkKye2DevJcheLM2aMFURSy4RZukLxgs+Lv44Mhc54D5gAvlyzJ\nyFUr+XbPHsuyr2DRsx24EB/r0d6oBPrdPm3Z84/nXiaTnz/Bvr6UmzHFLdIKT5uAte6pcEcSC/2N\ndp6LwsGYnX+7+z8cE8Gak0d5vFAxnE6n5QlYUuuXz0FA64JlmPhoK8r+8AFONHH1btHadK3TgGI/\njHbPl5VKizWhY13+tCKB1TeO8mrO2ux48l2q/m5GkAoh2NNas5bvenIUg35fwHJ28Sh2prYcDkD1\npYO5SBQ1lg726FULdBjO9otH3Ul6V9QbxtqG6SO8UsO3h2ex8ppRNUQSgC9f1fLOKXgrzkQfJ39Q\nEYz5c0otMvSdvc+RlwL0q+QZVBTrjMbPFoBNmPfS7SdXsTRqEjYBncM+JSxbfnz0dCT9yqatrunL\nJf++9UG3YMnxsnqQhKRO3mWE+he64z4VGcMtxZuUstFt9HsWsIYq5te3ndVfJ95ubXNGXzbNTKKq\nf5YxTQemg7ZsehvjU6SBsyc8yzJ9+v6PLNw+kvArN8hrCQwIzA0xiep7+vrYEAL6dp5hXVsBYPnW\n4Xdx1HdGgL8v5UubPi0CWLOoP7FxDgIDvAvAZzSBfr5eP9Dpxe6P+hLnSKDGoKkeJYxaDpnKJWDP\nRG+RtG+8ue1SZBQOp5Mm47/WNujj3DWyN5WGT3UflzgZcYncYRwcnrwA87Pb6d+8Ca2rVaHDzB85\nKc2gheeL5mf2iTMEATvf7kO804m/T8q3t1H9+mFkG7wRFaWJN8t4O877gU9aP5ViH0WzZHVbmj+t\n3YBPt/xJpIAzxrxJOPnqAAp/aYqVPFKwqtObhPj5EZeQQKlZkzBU4+MEUCm3ZoWx2+2c6PQ2fZfN\nY+Gl4xjOhEtPHWDxnP1uX0MhYPTxTUw8sUn/N2Z+aRtavkm9JR97jPnA00Mo+4vpmzqtejte3zof\ngC+ObWT68Y3uwRufreLioRgpKgzWCS0f4OIjW7zk4JL67xDhuMngTd/Q4M9hbtFoE9BhwzhmP/Y2\nmf2CuVPC467TdasmGEPxY2Zd7yj6TsWfZ+U/azHmJZ54Om/pCmipQlzSxdhto7lBBOFcpCglGVh1\nCDabjR7bn9fqr+rLmR9Vmo2UAiG05UWXrs+zCO+0QTcTbmD39cEmzPtFjDWZMJGpjtIMj7zIj+ef\nAcCuW0Zb5/2KLIH58LMnkW07FWw4rqUIcqJFuZ6P+plQ/7vvuqBIH+6Wz1s5tIfammgBC38AJaSU\nTiHEFuANzICFqVLKJUKInkAFKeVresBCWyll+1udW/m8ZTyXz1+nUwN9+UQIlu4fk3IDoGmVYeYb\nQ7xtu7993xRw5moEfj52wjKHuH3epnRpyRMVSwKa31qVd8ylzr3j787Nv5S+XJo4+hMB7QvnY94p\ncx1751s9uXAjimLZU19/0krRjzULyrE3+1Hk44mePn36qQ1LrF3APy+/TrZAM83Civ17eWXdMvdo\nj7/SnyIzjETPlgjURP50IN3FTZ4MysXkZ15kzeljdFvzk3u/VbALG7TLVJAFUSct/WgC662i1elR\nsynRCfFUWjgew9QnBAwp35gx+83KF0ZOMUgcJ+RCCOFOdpvYG6IyAcx8cgiHw8/QcbNWksodeOv2\nl7O2NZL+aq/tNmgaVIEhdTpxu8S7HDy7UYtI7RralicrJG1rmHdkIb9e/d0jxxto4u3AtQNMPDpO\nH7823ry2/AyvOpYe25/X3QNd2AS0zt2RMlkqkisgL742P3fi3qR4b08bDB8yo28bMLDsAvxsAUm2\nSQ6n08GMI1qFGUO82YDcdKdFyc5p6ktx77nnSXqFEE8DU4GcwHVgp5Syqb5vCPAyWj3iPlLKpfr2\n6pipQpYCvfVUIQHALKAKEA50kFIeu9UYlHhLP1qW7o/Lkh5r6THvSLCrV2/wQj1TrPUc8QxPtq+W\nEcO7pxw+fJ6uA806h+sWDeD0uWt07KVZFCWw4SczgCE2zkFAKqJsrdyMieeJVz8BoFyxnOw9rls8\nBfzzTcZHm6aG8gM8/eMM8XYzNh5hEx653e6EU1eu0PjzWW7/sfwBdv7sn3Lh+/SgyBQz0MTjTmkR\nXid6pt6f8bEZkzmJw8sH7nCnfpSaPdFj24nOg7geF0PleYblTHqIPiG0PG/u4vQW8VZUBLDyWc9x\nSSk5HxNJnsBQzl24QIONX+rNTDOhZ2xRUgIMM0LVBjtbmpVSohJiSXA5CbH588iq99DEmpGEWGKK\nNzPBb8fMtXi9+jPJzte5mMv0+GcMcWhWPhvw+2NTvI7bcWkf7x/5FEOk2oAfH9EsS7HOGMLjIsgT\nmIuLcVfI6Z8dezKCy8AlXZyLOckHB43yYp7VGjrl702l7LXwsSVv3f1izzucYb+H2PITWRhY9huP\n+qNpIcEVxw3HWRaeNAXvyyXX31ZfinvHPQ9YkFIuBBYms280MDqJ7VuB8klsjwXaJd6uyDhstlu7\nynZrNlo7SPffebJ9NZqVG+Len71QMFfPRGuBC3qnQz9+gaxZA+nT5Sv9rg9Ltw73Kr11P1OkSA6v\nbZkzaU/PiR9/4h0JnLt4naIFc3q1SQnrg9S4nq3oO/kH/j0bneaxpgcV+5o+bLsn9+XU5euEZQ4h\nwC/5W4bV6hbvdGJzCbhD8WZUSyiYwzL/knQXbkt27KDX6r9AwJau3cmRSQs2Of6GJoBqf/EZF+Nj\nPNqseK4LRfUUIS6Xi6JfaBa71nkKM+UpTZAUnv6hMWS3uELAhmdewdfXh1A/f6SULD/h6Sz+eVhF\nABrPM4XKhBpNaFqsPJn8PIMTjj2XdLLq4X//yuwzu3GLMn0MRvpXIeDw/4ZS6+eRRFiWSHe1ehdf\ne9rFhR0bCPBxL1d7LuEaZBVQi/K811CzGLX58z0iZLQ7crV74RZ0KKJZ0HL4Z6VHwf8x+dR83aon\nabm2N78/NtWjTz+RvCUr0hFBREIEeUVuAu0B2BD6sql2txtc4G0ORx7ilxs/YdOtkF9Un4VTwoeV\nvmLALu+UGcdu7qds1iopirdXK4z12ialZNyBlu55eUePNAU4G32QPIElOBr5N0vOD0MADQOHUK6Q\nVt/1zIW9LIt8HYBuSrA99KjyWIo0M6rvt/y9TAs6SJwqxFg3cecftdn4betwroVH8UKzSRg/Xsu3\njwTg5s04bkbFEpYrM/PmruGrj9cA0HtgY1q1rZNhnyktOBxO/tlxmIHjftc2CFj/U/JpQx5ErOJt\n1psdeOFjPTWCgN0T+5gRxamk7BBLQIPe9MD7t15irTJyMtECgoGbmFLgcBIVF+6ERz6azAWpXZtf\nNG9J41Kl3PuKTJ3ocawE7TqXnpYwD2vca9r14CXedCvMnud64bIJAn198bf7UPibD7z6sJwNBLyQ\nryS96zQmV1Am1h46QOet2nPzsCqN6FLWs+4vQKn57+v2KulhNStDEPu56VFJwVw2tfq1SSYUeooW\nVcyi6AuObmTUgSWatU7AgDLNeL5oPSIdMfx0ZD2fnfjL3Q9Y04yYy5XrG43DIZ346cJnw/n9DNn/\nlVu8/V53LAF+yUfPppUEVwLxrniCfIKYd3gBv11bqo9FE2/TKn9GoF8g3bZ2xoaLghTh3eojcbji\n8bXUNr0Ue44/zv3Clsg1GNa9iZXnpXk8O/bvYBlDyMHTdC/b3b190v4mCCNyVP/bKHgo5QrUB+Cf\no9+xy6lZS7uVXIfiweWeL5veDyjxlrE0L6WH/utOI9qPkv4roAu3vAX9OHcqnsAsgoXr3k+yH4OE\nBCeOeCeBQX6cP3eZzm21KLB5S98ia9Y7d2i+G1wJj+Kt4fM4ekYvjXOPxFtsfAIBfj5Ue2UySJjR\nsylVKpdN9/M4XS7GzJ7P/J3naVomjAndvTOxVxk0mXi3Yod9H3iKq6TE24fPNGTAz38A8HP39pQp\noAWInL5yhcafzmL/0D6UGaU7oAuY2qYZTSqWSd8PZ+FUeDj1v/tWH6MmaDrmz8+cc3p2I2kZv0WI\nGeMrGhLC+AYteea3ebQQfnSqXpdaVau6hW6jrz7mX6kllj7+cn8Py7Mh3l4vWonPT+xyb1/c/EVK\nZc+FXxKWsCLfj2FG7lo0aNAgzWIa4Mf9//DuwaXG8DGXTT2XUfe10XxTv93zJ5NPmglj7e5oWkkR\nezZOuq6gxeOC3aZH1FrEm03AohpvkzNL2pOCJ0eb9T0B7XbUOW9bnshfk8y+mZBScvDGMcqEmgmf\nn9/cTTvWw+/NxdjSo8kbmtd93PGoY+Twz8GgPT0wvnQ7MLnyTAbsfsE96cyryQAAEjRJREFUN0/Q\nlsfLNSaz7+35ViZm+oEe3OQI4KJb/p8JCgnCLjwtezcdV5h7XAuiCaM5rUsOSaInxf3OPV82VTyE\nBAC6X1yvkS35ZNgSc2HEBflLZmXER13InT9bqorE+/jY8fHRfpjy5M3Jik1D78qw0wOn00X9/010\nC9Zl3/fShGdg+kefxjsSOHLqCp1HzQGgW4tKvNq+occxpy9dp3DurG5R8cbny1n3RfqLN7vNxnud\nOvBeCn7lY9o9Qf/52g97SctKaXxCAhHRsZTNmZX9lzWxu2/km9hsNsb+biYhffrL+Z5WJwFz122i\nVVhWFl+6RknAZtcCF9qWKszAlk2Id0kenfqlu4/Dg+/MGvfZP5sxbMbGgt+cs2fMMQFZ0Jx7f2v1\nDJFC0vHXBe59x25G8czieSBgiYxnyda/2FKmNGFB2kPIqq7eyWcNTrykpeIZv3mlx/ZWy74DYEGT\n53hmxffaUGyw48nX3ZUVbhdNuJlhGAfbDmPO3g28f2QlVr+0Cr8OY3er4QRbrGGZgXwiK4f02p4n\nXFcx5u2PRu8RlRBLt3WfEC6t9lLYfP1fnszibSVMDRHxN+i1+QPCZQQ2AYsfncov9T5lwIaRHOEi\nrQrX10egpTcJE1l4bVNPInAwseBwuthf4JuE2QQLXyZVnUSQrxZk8sbWXkRzgyAyMaX6J+QJzItL\nOr3O77lEKniyUvp6+bxS5rNbHhPsmwNjOVoJt4cbJd4UaWLpLs9Emy3b1eP6tUg61NMsBy/2bEjX\nVpZwfSGY+sOrlCiTnwedxMYNm7AhbGakXlKs3bKHQRO1/E2/fv4KoSGB+KfgN2YQn+Dk37Nm3rON\nB07zaqJjSuTX/MC2fXnvw/ubV69M8+qVvbZHxMRxITLKLdxA+2xz16/nu01mao4Zz7ek2/e/u4XQ\nwWF9iU1IYORqLdPZYQk9f16GBH46dIJo8RfvNn8iXT/DiIaNGdWoCb52O0U/nujtsSVgR2/PIIBd\n3Xphswk+Wr+arw7pnwfpvlic0TEUnv2Zu/2J7gNSHMPAWo0ZWKsx0XFxlJ1nWisTl5V6c8NvzGyp\nWYFOX7nC4yuns//pfgQEpBzFWHLBKPdYDKZUbUezIproz+prpp0IQhBrKYnVrlRd2pWqS4LLyQ1H\nLFn9NVFabakhIjRrZcNVI+lfsIku3MyTbWjsee8wePuP8WzmIr/XGUVQUPLF0Z24iNYtl1Y+rJv0\nA1+vfe/gkpoAfevUcD6rOp7KrvKE+mbimiPcLd6iZRQuJNEikgX75rAiZqk7GtWmp16x6T+VEyrN\n5mbCTUJ9U1+C70zkEb4+1UfrD+3SGFLut1S3T4xaMlWAWjZVpAMXzl4jOFMAmUK1hLGL5m5g2ljd\nEVcIKj5SgPGfvwJA02pmypCSFbMx9Zs3OXv6KjnDQlNVAzUj6NJzOsdOaXUi3b/gNvh2Shc6v/Et\nWn4twdqFSS+VjpzyM8vWH3e/N5YJl3z5OsGBfvj5PrzPTHGOBCqPMKstGH93vNebyqOmgoAsAjal\nkO8to4lzJhAd7yBrYCBFPtH833qWrkD/Rk08jjOqi1yKjqLmLC3S0UjIa/jJrW3bhULZvQNZjkZc\npWhoNhp+N5FjuqeaseTYJFdRpjdNOmtSvNNJ6Xmmv5zxgLH96b5k9jcTOF+4EUmL5VOJ0p30fQT8\n/WR/av72oTuYYf/T77mrT6QFh8tJ7eV6dKk+kGezVmFBxHasZbQAVtUfSrBfMFfiIsnul4kYZxwt\n1gzRj4G/GkxM6hTpwvObu7vHqEXYarnb/pf1aRoXbQzA34f/Yt7Nue6oWOOvUZhe6BG0/jZfGmZ7\niiYFtMCUSEcEvjZfAu3e4tPlcvHd/vc4wy6EgPK0oE25Hmka+/XoC8w7rVn67EIJuAcdtWyquC/I\nnagG6lMd6/JUx7q3bNf22ccAyJI1GB/f2wudvxv0eqUx/d5d4LU9wN/85xKagoGjUslcbvEW5Ae/\nfdWbeIeT0JC7Xw0ho7GmCsnuL1gzqo/XMeFRMdQbo4mZNW93Z2q7hvT+8Q+WvNaeIvnMRMgZUds0\nLZy4cIEn5n8PAgIEHOhlWt2WHdzDJ4f2sLT505QpWhTA7XcWFuSdNFUADXMXSFK4AWTzD0IIQfNi\nFfj06E58AYf+5PC/whVZtWsX3XZrD0QnXjRLTvnZ7e5o02I/mCl8dlw5Rf18ZtDF1ssn3cINYHmz\nnoT4+ntYkyMdsWTxS901Wvn3d92fa0fL99nW3Dz306s/ZP717QBu8WMQ50wgGIh3JQAQ5OP5D8la\nXq/pGvNaWv64d/Jdg6iEaF7c3B+b0PzZ/PDh+0fMaFSndGIXdtxlLRLZyktlK0WgXfvcDcu0oCEt\nPPavPLyYX6M09wUhtB7ipYMAaS4j+9p8vfzTDGw2G13KeyVeSBOxrmu3PkjxUKEsb4p7TpMamkP0\n0o3vcerEZYoUz3WPR6RILVbx1rZCITo2rEeZvGFUeWcy8Wg/dH5Cd5MU8GOP53jm8znuNgCFsmdm\nWR/PdAylR1jqpQpY8NIzVCigFW2RUuKUEp+7nGpm5b+HeGXpb+5xHrcsmRb+1LQQpSXP2+0ipaTI\nbM3CZhVviXFJSYl5mpB6OmcpJjTULEM3HHFEOeLIE5Q+pegq/65Z2vpnqc8Ldc3EuDWXDtari2lC\n0a77L04s24kaeUvyxJ+a0AwAVjUaD0D9P7T5u13LW4TjBl22DMKGGd364yNm+auzMefI5puVbtt6\na2P3Lc+Aqt4PGaml784OgGRc2e/wT8eo2JTYemwe2xza8nvn4ouJd0YR6pf3Fq0U9yvK8qb4T2H3\nsXlZ8R4GIqNiWbZhLxO/1+ovjunRnIa1k46qjI6NJ+g+KM9lsPdDT2uZ8TC4Y2xfer8zmdYNytOo\nUSO3NcXhdFIYOAEedU2tbPn3X09fMwnHr0dRQS+4FxEbx/XoGApnv7vXSuMSpWDpb25jzanwq9h8\nfMnk53dLwRYVH0/5b7TkurVy5GFik1bkz5R6P6nECCFSFG0G7mVPAc+WqODeHmD3wZaO9dSsyXmt\ndMv6CF9e+9sYAn82HE6gTwCbT+ym/h/m8mgjv3LuNqsb3tlSaWbfTCysm7yzf75ATeR8X2vGHZ3H\nYHLlH9Kln7RQrUh7th3+jJK8jr8tBF/bf8+Kr0gbyvKmSFemTVjCou+0m/evW4fjlwrn/IedTbuO\n8d5ni4mM0RLSFsubmbnjuiZ57OGTlyhZKCxjB/gQY62wcOj1N4l1OgmPiaZwKtJdvD79E44Sw7Ju\nb4EQt+VP9iBQe+kQHEDTLOUYU+c5AE5GXebZDVrS4vpZS7Pm+n5AW0ZtkL0so6p6lnRadWYHow9r\nFUzupt+bQnE/oPK8ocTb/camdfsY3nMuAEt2jnygqijca85ejiBrpkCCAvyo2WWS2/o07Z1nqFaq\n4D0d273EJSVD58xn/rFz5kYBh9/NOB+567ExVPlSs+4c733rZdJ4p5OSMzTxcuLVlCNM08r+y2do\ntWIW7QqVZ97JPZTxCWHJs3e/VFhytFw6lAtoPmwC2NzsfY/yU+9unc0f4XsQSMaX7cTbB2cC0CFv\nPRac1xzvVzf0LsWnUPxXUcuminvKz9+uY8Nf+9j3zykt79m+0dR+tBzLdnsn5j1/OpzM2YIJCs4Y\nH5EHkayZvNOIZAmyUSpf+iQBfVD5Zfd+frQKt3tAbEJCmo73s9vTJNq+37aJIXvWAHCiyyCPfRdu\n3iAsKMRtuRNoSWOD9TJUQT73dhn9+waD+Gnn3/wUvprZT7zDlevhtNo8iRdyVOeN6m0ZVrUDI4Vm\nkbMJG6UP+nIQB43y1mDX+e0MLtntno5foXgQUZY3xW1z+vhlzp25wLDXfgAfWLYr+Yiq2Oh4fP19\nUpW4V6ExfcFqflu9nXZNavJi63r3ejiKu8g32zYwYo9WrzKxeDt3M5LDZ8/QZfOvGJGbj4YVZlbT\njhk9zFsipaTW8iEY49zSbCxno8MJ8Qng/LWrdN09ldnle7Mv/AzjL/zMnGoDyZ4pM77Cjo/t/ok4\nVyjuJsryprinFCiSkwJFcrJsX4VbHhsQdP842T8ozPhtOxKYsnCLEm//cV6qVpeXqiWdXidvcCj/\n2+FZeeFmQizRCfH33OqWFJnw4QYO8tu1AI18QZrluNNurVD7i/umkEtoDvcLT66nfan6BPsEEKKc\n8BWKVKMsbwqFQvEA4HA4KDlvAkHA/4pXYmjNZnc9XUpaOXToEIUKFcLf3/+26q0qFA8DyvKmUCgU\nDwm+vr4cf+Gdez2MFHnh2Ew4BovrDyR3YJZ7PRyF4j+LEm8KhUKhSBf+sVRaUCgUd4/7y+auUCgU\nCoVCoUgRJd4UCoVCoVAoHiCUeFMoFAqFQqF4gFDiTaFQKBQKheIBQok3hUKhUCgUigcIJd4UCoVC\noVAoHiCUeFMoFAqFQqF4gFDiTaFQKBQKheIBQok3hUKhUCgUigcIJd4UCoVCoVAoHiCUeFMoFAqF\nQqF4gBBSyns9hjtCCHEZOHmbzXMAV9JxOIqkUfOcMah5zhjUPGcMap7vPmqOM4bE81xISpnzTjp8\n4MXbnSCE2CqlrH6vx/FfR81zxqDmOWNQ85wxqHm++6g5zhjuxjyrZVOFQqFQKBSKBwgl3hQKhUKh\nUCgeIB528Tb9Xg/gIUHNc8ag5jljUPOcMah5vvuoOc4Y0n2eH2qfN4VCoVAoFIoHjYfd8qZQKBQK\nhULxQPGfEW9CiK+FEJeEEHuT2S+EEFOEEEeEELuFEFX17aWEEDst/0UKIfro+7IJIVYKIf7V/2bN\nyM90P3KX5nm4EOKsZV+LjPxM9yO3O8/6vr5CiH1CiL1CiLlCiAB9u7qeLdylOVbXciLucJ7f1Od4\nn3G/0LerazkRd2me1fWciFTMc2khxEYhRJwQon+ifc2EEIf07+Bty/a0X89Syv/Ef8BjQFVgbzL7\nWwBLAQHUBjYncYwduICWgwVgPPC2/vpt4IN7/Tnv9X93aZ6HA/3v9We7n/673XkG8gHHgUD9/Xyg\ni/5aXc93f47VtZx+81we2AsEAT7AKqC4vk9dyxkzz+p6Tvs8hwE1gNHWudN/944CRQE/YBdQVt+X\n5uv5P2N5k1KuBcJTOKQN8J3U2ARkEULkSXRMQ+ColPKkpc1M/fVM4Kn0HPODyF2aZ0Ui7nCefYBA\nIYQP2g35nKWNup517tIcKxJxB/NcBk1gREspE4A1QFtLG3UtW7hL86xIxK3mWUp5SUr5D+BItKsm\ncERKeUxKGQ/8gPadwG1cz/8Z8ZYK8gGnLe/P6NusdADmWt7nklKe119fAHLdveH9Z7ideQborZvy\nv1ZLIKkiyXmWUp4FJgCngPNAhJRyhX6Mup7Txu3MMahrOa0kd8/YCzwqhMguhAhCsxwV0I9R13La\nuZ15BnU9pxcp/Tam+Xp+mMRbiggh/IDWwI9J7ZeaPVOF5t4hyczz52im5MpoP4YT78HQ/hPoN9c2\nQBEgLxAshHgh8XHqer59bjHH6lpOJ6SUB4APgBXAMmAn4EziOHUt3wG3mGd1PWcwqb2eHybxdhbP\np4n8+jaD5sB2KeVFy7aLxjKJ/vfSXR/lg0+a51lKeVFK6ZRSuoAv0czLipRJbp4bAcellJellA7g\nZ+AR/Rh1PaeNNM+xupZvi2TvGVLKr6SU1aSUjwHXgMP6MepaTjtpnmd1PacrKf02pvl6fpjE269A\nJz3ipjbaUsd5y/6OeC/l/Qp01l93Bn65+8N84EnzPCfyiXsazYyvSJnk5vkUUFsIESSEEGj+hQcs\nbdT1nHrSPMfqWr4tkr1nCCHC9L8F0fyw5ljaqGs5baR5ntX1nK78A5QQQhTRV6A6oH0ncBvX838m\nSa8QYi5QH8gBXASGAb4AUspp+k32E6AZEA28JKXcqrcNRrshF5VSRlj6zI4WSVYQOAm0l1Km5BD6\nn+cuzfMsNLO8BE4AryYSfA8ddzjPI4BngQRgB9BNShmnrmdP7tIcq2s5EXc4z+uA7GjO3/2klH/o\n29W1nIi7NM/qek5EKuY5N7AVCAVcQBRaVGmk0FKtfIQWefq1lHK03mear+f/jHhTKBQKhUKheBh4\nmJZNFQqFQqFQKB54lHhTKBQKhUKheIBQ4k2hUCgUCoXiAUKJN4VCoVAoFIoHCCXeFAqFQqFQKB4g\nlHhTKBQKhUKheIBQ4k2hUCgUCoXiAUKJN4VCoVAoFIoHiP8DKNsV7qFGMyIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.colors as colors\n", + "import matplotlib.cm as cm\n", + "import pylab\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price vs pca')\n", + "plt.show()\n", + "\n", + "if simname != \"bm_kaggle\":\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs pca')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['ohlc_price'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs ohlc_price')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return shift')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['bo_spread'].values.min(), df['bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['bo_spread'].values))\n", + " plt.scatter(df['bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('bo_spread vs period_return shift')\n", + " plt.show()\n", + "\n", + "#plt.figure(figsize=(10,5))\n", + "#norm = colors.Normalize(df['volume'].values.min(), df['volume'].values.max())\n", + "#color = cm.viridis(norm(df['volume'].values))\n", + "#plt.scatter(df['volume'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "#plt.title('volume vs pca')\n", + "#plt.show()\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price - 15min future vs pca')\n", + "plt.show()\n", + "\n", + "#plt.figure(figsize=(10,5))\n", + "#norm = colors.Normalize(df['volume'].values.min(), df['volume'].values.max())\n", + "#color = cm.viridis(norm(df['volume'].values))\n", + "#plt.scatter(df['volume'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "#plt.title('volume - 15min future vs pca')\n", + "#plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# this creates a training dataset for the model\n", + "def create_dataset(dataset, look_back=20):\n", + " dataX, dataY = [], []\n", + " for i in range(len(dataset)-look_back-1):\n", + " a = dataset[i:(i+look_back)]\n", + " dataX.append(a)\n", + " dataY.append(dataset[i + look_back])\n", + " return np.array(dataX), np.array(dataY)" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAANKCAYAAAAdrnZ5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeUFFXax/Hv08NEZoDJgCRBQAUkgwQBMaxpzRlcM2sW\nc87ouq6r6+oa0PV1VcxpTasiCgqKBAWUnDOTBwYm99z3j+oZJgMDTNPy+5zDYbrqVt1QXdX99L11\ny5xziIiIiIiIyL7NF+wCiIiIiIiIyI4peBMREREREQkBCt5ERERERERCgII3ERERERGREKDgTURE\nREREJAQoeBMREREREQkBCt5ERERERERCgII3ERERERGREKDgTUREREREJAQ0CXYBRERERERk/+Jn\nggt2GeoTxigLdhlqo543ERERERGREKDgTUREREREJAQoeBMREREREQkBuudNREREREQaVVmZP9hF\nqFfYPtrFtY8WS0RERERERCpT8CYiIiIiIhICNGxSREREREQalXOlwS5CSFLPm4iIiIiISAhQ8CYi\nIiIiIhICNGxSREREREQalXP79myT+yr1vImIiIiIiIQABW8iIiIiIiIhQMGbiIiIiIhICNA9byIi\nIiIi0qjK9KiABlHPm4iIiIiISAhQ8CYiIiIiIhICNGxSREREREQaldOwyQZRz5uIiIiIiEgIUPAm\nIiIiIiISAjRsUkREREREGpWGTTaMet5ERERERERCgII3EfndMLP7zcxV+rfBzN43s07BLpuAmXUI\nHJeTdnG7s83solqWTzaz9/ZYAfcQM7vXzNabWZmZvVJPusvNbKWZlZrZ5D1chlrbTEREQpuGTYrI\n781m4LjA3x2Bh4BJZtbNObcteMWS3XA2kAS8Um35VUBJo5emHmbWD3gAuBOYDKTXka4l8BzwDPAu\nkLOHi1JXm4mI7BNcmYZNNoSCNxH5vSl1zk0P/D3dzFYDU4Hjgb3aS2Nm0c65gr2ZR7DUVTczCwPC\nnHPFjV0m59yCxs5zJxwc+P9fzrkt9aQ7CAgDXnbOzdv7xdo9v+f3tohIKNGwSRH5vfs58P+B5QvM\n7Agzm2Jm+WaWZWYvmllcpfWtzOxlM1thZgVmtsTMxplZRKU05UMAR5nZq2aWC3wSWHeymc02s21m\nlmNmP5nZ8ErbxpjZP81sk5kVmtlMMzu2cqHLhwSa2flmtszMtpjZ/8yszY4qbGbtzexNM8sM1HGe\nmZ1faX2Smf0nUPf8QF79qu1jlZn93czuMbN1wJbA8lfMbJaZnWpm84FCYGBgXTsze8vMsgP7/dLM\nuu6grH8ys6mBbXLM7NvKZQkMOzwDGF5pOOz9lduo2v5GBtq70MzSzOxZM4uttH5EYB8jzOxdM9sa\nOM5X7US7hgWG5q4xsyIzm1+tXV8BXgu83FyeTy37uR/4PvBybiDdRYF1UWb2mJmtDeQx18xO2INt\ntsrMHq+2v4sCaWKrtdEfzOxjM9uK10OImfnM7PbAe7IocG5cWG1/Q83s+8B7douZzTGzs3bUviIi\nsmPqeROR37sOgf83AZjZEOBr4CPgTCAReBSID7wGb7hZLnALkAl0Ae4HkoE/V9v/48AHwFmA37z7\n694DngpsHwX0BRIqbfMicDLe0LplwOXAZ2Z2pHNuaqV0A4HWwE1AdGCf44EqX+YrM7MU4EcgH7gZ\nWAt0B9pWSvYRXs/PzYH63QJ8a2a9nXPLKqU7H5iPNzyx8udFB+Ax4EG8dl1pZgl4PZxZwBWB/G8H\nvjazLvX02hwITACWAuHAecD35g1zXYE37LUd0CJQDoB1ddS9G/AFMBEveGmLd2w7sn0obbkXgf/g\nted5wL/MbJZzbkYd5SRQ31vxhkXODOQxwcycc+7NQFnXAncDI4ECoLbewZfwhlP+CxgFrACWB9a9\nBwwA7gssOxv42Mz6OefmBNLssTbbgX8D/wf8Ay9IB3gauDDQFj8DxwAvm1mWc+5TM2sGfAr8N5DG\ngB6BsoiIbKfZJhtEwZuI/O6YWfm1rSPefUV5wKTAskeBH5xz51RKvx7vvrjuzrnfnHO/AjdWWj8N\n2Ib3JfXaakMEpzvnrq6U9kwgzzl3S6U0n1dafwjel+2LnXP/CSz7EpgH3AP8odJ2zYATnXM5gXQt\ngSet/iFsNwDNgb7OuY2BZeV1x8yOA4YAI5xzUwLLvgFW4QVx1YPTk5xzhdWWJQJHVwomMLOHgKZA\nL+dcdmDZtMB+L8ELVGpwzj1QaR8+vMBrADAaeNA5t9zMsgFfpeGwdbkHWA2c7JzzB/aZDbxtZoOc\ncz9WSvumc25cIM1k4I/A6UCtwVsgOB0LjCvfDvjSvJ7Q+wP7W25m5UHYTOfc1jrqvM7MyoO6ec65\n3wJ5HAWcSKVjA3xlZl2Au/B+INjTbVafd51z91TK6yDgSiq9d/GC81Z4weaneD90NAeucc7llddh\nN8ogIiKVaNikiPzeJOJNYlECLMbrpTjHObfBzGKAQcA7Ztak/B9ej1EJXg8Z5hlrZgvMrCCwbgIQ\nidejUdln1V7/CjQ3b1jisWbWtNr6/ni9Ee+WL3DOlQVeD62WdmZ54BZQ/oX/gHrqPxL4olLgVt0A\nIL1ScEBgIpdPa8l/Ui2BG8D6yoFbwNF4QcSWSu2aB8wG+lXfQTkzO8TMPjSzNMCP19Zd8YKAXTUA\n+LA8cAt4HyilZt0qAgrnXAleL1Z9Q1K7AzFUOm4BbwNdzCy5AeWt7mi8nsxp1d6fk6jUhnu4zepT\n/b19FFAGfFhL+XqZd//jcmAr8IaZnWJm6nETEdmDFLyJyO/NZrwAqR/el/EOzrn/BdbF400S8Szb\nA7wSoAhv+Fn50MKxeMMhPwROwQsKynvXoqrll1b5hXNucWCbjng9bplm9kalL/etgK3Oufxa9hNj\nZpGVluVWS1Pe41e9DJUlAnUFbuX51zYDYhpVh3aWL6tNbcuTgHOo2q4lwJFUHbJZwbz7DL8KrL8R\nOALv2M2l/jrWpVX1sgUCuSxq1q22tq0vz1aB/6vXvfx19f03RBLQkppteD+BNtwLbVaf6nVNwjt/\nNlcr3yt4I3laBX5sOAbvfHoHyDCzz8ys4x4um4jIfknDJkXk96bUOTerjnW5gMP7Mvx5Les3BP4/\nC3jPOXdX+QozO7SOfboaC5z7DO8etuZ4w+D+gXev0Ll4gVWsmcVUC+BSgXznXFFdFdtJWWwPNGqz\nEUipZXkqkF1tWY261bM8G/gY736r6vJqWQZeL2gb4Bjn3KLyhYF2a4gadQv0BiVSs24N2TeB/WdV\nWp4a+H9391++j/XAqfWk2d02KwQiqi2LryNt9eOcjdeLOQSvB666dIDAUM3jzCwarzfxCeAN4PCd\nLKOI7Aec7nlrEAVvIrLfcM5tM7PpQFfn3IP1JI3G642rbFQD8tuMN3xsON6XbvAmunB4k6O8Ct4w\nzcDrqbXtZxdNAq4zs1TnXG09ZD8BD5jZMOfcd4H8Y/CCzA93M9+zgfm7MKV8dOD/irY2s8F4E6LM\nrpRuR71i5X4CTjOzOysNnTwd77Nud9v2N7xJWM7Cm4ij3NnAEudcxm7uH7w2vAmvZ3ZRHWl2t83W\nAYdUW3ZsLelq8w1ez1tz59zEHSUOvA8+MbPuwB07mYeIiNRDwZuI7G9uxZucpAxvZr88vPvYTgTu\ncs4twbt36zoz+wnvHp5ReLMz7pCZ/RkvUPsCryevM94X/lcBnHMLzexN4JnAELjleLNNHow3GcTu\nehL4E97sgw/jzX54CNDUOfeYc+5LM/sBbxKP2/F6kW7GCwr+thv5PoE3YcY3ZvY0Xg9SKjAcmBqY\njbG66Xj3R71oZo/h9SjdH9i2skXAKWZ2Kl7wscE5t4GaxgG/AB+Z2XOB/f0V+LLaZCW7zDmXbWb/\nAO42s1JgFl5geALeBDR7wkTgS2Cimf0Vb6bPZkAvIMo5dwe732YfAk+b2Z1snzGz284Uzjm32Mye\nB94K5D0LL0DsBnRxzl1mZifiTVDzEbAG7/7MP+MFfiIispsUvInIfsU5N9XMhuFN9/4aXk/Carxg\nq7yn6kG8xwKUzyr4AXAdgee47cA8vMcAPIF3H9RGvGnp762U5nK8oOJevCnUf8Wb1XG3e96ccxmB\nxyE8hjdcMxJvMo6/VEp2KvD3wPoovBkWR1Z7TMCu5ptpZocDD+MFkC3w6j4Vr01q2yYt8Pyvx/Gm\nll+K95iBW6slfRboDbyMN8TvAbyApfr+5pvZ8cAjeMdsC/BmLftrqHvxhg1eiReYLgNGO+fe2hM7\nd845Mzsd7xESY/F+VMgG5uANu90TbTYe6IT3fo7E+1FhHPDCThbzamAJ3nv4Qbw2XoD3WAHw2sTh\nHYMUIANvMpw7d3L/IrK/KCsJdglCkjlX1y0NIiIiIiIie15e3r37dBASF/egBbsMtdFskyIiIiIi\nIiFAwyZFRERERKRRabbJhlHPm4iIiIiISAhQ8CYiIiIiIhICNGxSREREREQaV5mGTTaEet5ERERE\nRERCgII3ERERERGREKBhkyIiIiIi0rg0bLJB1PMmIiIiIiISAhS8iYiIiIiIhAAFbyIiIiIiIiFA\n97yJiIiIiEjjcrrnrSHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBERERGRRmV6VECDqOdNREREREQk\nBCh4ExERERERCQEaNikiIiIiIo1LwyYbRD1vIiIiIiIiIUDBm4iIiIiISAjQsEkREREREWlcGjbZ\nIOp5ExERERERCQEK3kREREREREKAhk2KiIiIiEijMqdhkw2hnjcREREREZEQoOBNREREREQkBGjY\npIiIiIiINK4yf7BLEJLU8yYiIiIiIhICFLyJiIiIiIiEAAVvIiIiIiIiIUD3vImIiIiISKOyMj0q\noCHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBERERGRxqVHBTSIet5ERERERERCgII3ERERERGREKBh\nkyIiIiIi0rg022SDqOdNREREREQkBKjnrXG4YBdARERERPYLFuwCyN6j4E1ERERERBqVabbJBtGw\nSRERERERkRCg4E1ERERERCQEaNikiIiIiIg0Lg2bbBD1vImIiIiIiOwiMzvOzBab2TIzu72W9c3N\n7BMzm2tm883s4t3NU8GbiIiIiIjILjCzMOBfwPHAocB5ZnZotWRXAwuccz2BEcDfzSxid/JV8CYi\nIiIiIrJrBgDLnHMrnHPFwFvAKdXSOCDOzAyIBbKB3Xo6ue55ExERERGRRvU7eFTAAcDaSq/XAQOr\npXkG+BjYAMQB5zjnynYnU/W8iYiIiIiIVGJmY8xsVqV/Yxqwmz8Ac4DWQC/gGTNrtjvlUs+biIiI\niIhIJc658cD4epKsB9pWet0msKyyi4FHnXMOWGZmK4GDgRkNLZeCNxERERERaVyhP2xyJtDZzA7E\nC9rOBc6vlmYNcBTwvZmlAl2BFbuTqYI3ERERERGRXeCcKzWza4AvgTDgZefcfDO7IrD+eeAh4BUz\n+xUw4DbnXObu5GteL57sZWpkEREREWkMFuwC7IyCBUfv09+Pow/9ep9sR/W87QFmFuacC/m+XxER\nERGRxvA7mG0yKPa72SbN7EEzG1vp9cNmdr2Z3WJmM81snpk9UGn9R2Y2O/BU9DGVlm81s7+b2Vxg\nUCNXQ0RERERE9jP7XfAGvAz8CcDMfHg3F24COuM9bK8X0NfMhgXSX+Kc6wv0A64zs8TA8qbAT865\nns65qdUzqTy96Pjx9U1UIyIiIiIismP73bBJ59wqM8sys95AKvAL0B84NvA3eE9A7wx8hxewnRZY\n3jawPAvwA+/Xk0/l6UX36TG9IiIiIiKNSsMmG2S/C94CXgIuAlri9cQdBfzFOfdC5URmNgI4Ghjk\nnMs3s8lAVGB1oe5zExERERGRxrI/DpsE+BA4Dq/H7cvAv0vMLBbAzA4wsxSgOZATCNwOBg4PVoFF\nRERERGT/tl/2vDnnis3sWyA30Hv2lZkdAvxoZgBbgdHAF8AVZrYQWAxMD1aZRURERER+LzTbZMPs\nl895C0xU8jNwlnNuaSNkuf81soiIiIgEwz75fLLqiuYM2ae/H0f2mrZPtuN+N2zSzA4FlgGTGilw\nExERERER2W373bBJ59wCoGOwyyEiIiIist/SsMkG2e963kREREREREKRgjcREREREZEQoOBNRERE\nREQkBOx397yJiIiIiEhwWVlZsIsQktTzJiIiIiIiEgIUvImIiIiIiIQADZsUEREREZHGpUcFNIh6\n3kREREREREKAgjcREREREZEQoGGTIiIiIiLSuDRsskHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBER\nERGRRmVOD+luCPW8iYiIiIiIhAAFbyIiIiIiIiFAwyZFRERERKRxabbJBlHPm4iIiIiISAhQ8CYi\nIiIiIhICFLyJiIiIiIiEAN3zJiIiIiIijatMjwpoCPW87YCZtTCzqyq9HmFmnwazTCIiIiIisv9R\n8LZjLYCrdphKRERERERkL/pdBW9m1sHMFpnZK2a2xMwmmNnRZjbNzJaa2QAzSzCzj8xsnplNN7PD\nAtveb2Yvm9lkM1thZtcFdvso0MnM5pjZ3wLLYs3svUBeE8zMglJhEREREZFQVFa2b//bR/0e73k7\nCDgLuASYCZwPDAVOBu4E1gK/OOdONbORwKtAr8C2BwNHAnHAYjN7Drgd6O6c6wXesEmgN9AN2ABM\nA4YAUxujciIiIiIisn/6XfW8Bax0zv3qnCsD5gOTnHMO+BXogBfIvQbgnPsGSDSzZoFtP3POFTnn\nMoF0ILWOPGY459YF8pgT2G8VZjbGzGaZ2azx48fvweqJiIiIiMj+6PfY81ZU6e+ySq/L8OpbspPb\n+qm7fXaYzjk3HiiP2lw9eYqIiIiI7FeszB/sIoSk32PP2458D4yCiiGQmc65LfWkz8MbRikiIiIi\nIhI0v8eetx25H3jZzOYB+cCF9SV2zmUFJjz5Dfgf8NneL6KIiIiIiEhV5t0OJnuZGllEREREGkNI\nzIJeOqnjPv39uMlRK/bJdtwfh02KiIiIiIiEHAVvIiIiIiIiIWB/vOdNRERERESCaR9+EPa+TD1v\nIiIiIiIiIUDBm4iIiIiISAhQ8CYiIiIiIhICdM+biIiIiIg0Lt3z1iDqeRMREREREQkBCt5ERERE\nRERCgIZNioiIiIhI4yrzB7sEIUk9byIiIiIiIiFAwZuIiIiIiEgI0LBJ2ev8TAha3mGM4osB5wYt\n/+NmvMXiPw4PWv5dP5nCxIFnBy3/Y356h/RLugct/5SXfwt6/lOGnB6UvIdP+wCAtIsPC0r+qf83\nj8zLDw1K3gBJLy5g6tBTg5b/0Kkf8d8+o4OW/yk/v07GZd2Cln/yS/ODfu4FO/+3e14UtPzPmftK\n0I5/8kvzAfhuyGlByX/YtA/5rN/5Qckb4MRZbwT93A8VptkmG0Q9byIiIiIiIiFAwZuIiIiIiEgI\n0LBJERERERFpXBo22SDqeRMREREREQkBCt5ERERERERCgIZNioiIiIhI49KwyQZRz5uIiIiIiEgI\nUPAmIiIiIiISAjRsUkREREREGpeGTTaIgjfZZ911x8dMmbyEhMSmfPzplXtsv4fcdCFJg3tTVljE\nrw8+x5bFq2qkiW6dTM9x1xPePJYti1Yy775ncKV+mrZvTY97r6BZ1wNZ8tzbrJrwKQBN27Wi5yPX\nV2wf0zqFpePfrbccMX0GkHr5teDzsXniZ2S/90aV9RFt2tHy+tuJ7NSZzNdeIufDtwEIP6AtrW+9\nryJdeMvWZE14mZyP36szr643XkzS4N74C4uY/9Cz5C1eWSNNVKtkDhs3lvDmcWxZtILf7n8aV+qv\nd/tD776S5CF9KM7ZzI/n31xr3ikv/0bGdUNxW3Or1q/7EGLPvx0sjMLv3yf/839XWR95+Ik0Pf5S\nMHCF+eS99hClaxcDEH30aKKHnQFmFHz3HgUTX6+z7nVp7PzjB/bmoLGXYD4fGz/5mrWvf1gjTaex\nl5I4qA/+wiIWP/wMW5esIDIlkYPvuY7w+BaAY+N/J7L+3c8AOOTBm4hp1xqAJrFNKd26jdkX3bRT\ndY87/zbw+Sj47gPyP3+5yvqow08g5oRLwAxXuI28V8dRunaJV/djRhEz7AwwKJjyAfkNaPvwbkNp\neu4dmC+Mwu/fo+CLl6qWr+dIYk69FpzD+UvZ9vajlC77GYDYC8cRcdhwyvKyyb3/lJ3Os8XA3nS8\n/jLM5yPt04mse/2DGmk6Xn8Z8YP6UlZYxJJH/sm2JSu2r/T56PXS4xRnZLHgtocB6HDVhSQM6Y8r\nKaVwwyaWPPI0/q3b6ixDj1suIGVoL/yFRfxy33g2L1pVI01M62T6/eVqwlvEsXnhSmbf/Ryu1E9i\n30MY+MQN5G/IAGDDNzNZ8uJHXrlHHUf7U0eAc2xZto5f7h+/0+0S3m0osefdjvnCKPj+fQr+V+1Y\n9DqSpqdeC2UOV1bK1rf+WnEsGirY5/6ulCWi15HEnnYtzpVBmZ+tbz5KydJfdjmf3reNotXQw/AX\nFjPjnpfIWbS6RpqmByQx6K9XEtE8lpyFq/jpzvGUlfoJj4thwIOXEtsmBX9xCTPv+zebl60H4KTP\nH6ckvwDndzi/n4nnP7BL5WqM4x8/sDedxl6K+Xxs+uRr1tZy7nUaeykJg/riLyxiycNPs3XJCiwi\nnJ7/ehhfeBOsSRiZ3/7I6n+/BUD7y88jcegAcI6SnM0sfvifFGfm1FmGQ2/+EylDeuEvLGbu/c/X\n+bnf+5FriWgey+aFK5lz77O4Uj+pw/vS5YqzcGVlOH8ZC/7+GjlzF+OLCGfQi/d65QsLY+Okn1g6\n/v1a898Xz30JXQreqjGz+4GtzrnHg12W/d1pp/dk1Oj+3H7bR3tsn0mDexHTthXfnzGW5t0P4tDb\nLmP6JXfXSNflmvNZ9eZnbJr4I4fefiltThnJ2vcnUrJlKwsef4XUEf2rpN+2ZiM/jL7de+Ezjvzs\nOdImz+SQGy+svSA+H6lXjGXdPTdRkpVB+ydeYOtP0yheu/0D3Z+3hfTx/yT28KFVNi1Zv5bV119W\nsZ9Or7xH3o/f11Pn3sS0bcm0M6+jeffOHHLrZcy49K4a6TpfM5rVb31G2sQfOOS2yzng5JGs+2Bi\nvdtv+HQya9/9gu73XV1jf5EpiV49MjfULJT5iBt9Nzl/v5yy7E3E3/s2RXO+xb9h+5dlf8Z6cv56\nES5/CxE9hhJ34X3kjDufsAMOInrYGWSPOw9KS2hx4/MUz52CP31tnW0Q9Px9PjrfdDnzxj5AUXoW\nfV56jKypM8lfta4iScKgPsS0acWMc64mrlsXOt88hl/G3I7zl7H86f+wdckKwmKi6PPvx8mZOZf8\nVetYeO/fK7bveM1F+LfVHThUqfsFd5L7+Bj82Wkk3PsmRXMmV6175npyHr0Yl59HRI+hNLvwPrLH\njSLsgIOIGXYGWQ+dH6j7cxQ1oO1jz7+bzU9eRllOGi3uepviud/i37i8IknxoukUP/ANAGEHdCHu\nz0+Qe+9JABT+8CEF304g7pJHdz5Pn49ON/6Z3264j+L0LHq99Deyps6goFL7xx/el6i2rZh97pXE\ndevCQTdfwdwxt1asb33WSeSvXkeTmOiKZbkz57LqhdfAX0aHK/9E2wvOYNVzr9ZahJQhPWnariWT\nTrmJ+B6d6HnHRXx34f010h163bksn/AF67+azmF3Xkz7U0ew6r1JAGTNWcxP1/+9Svqo5Hg6nnss\n35x5G2VFJfR79FoO+MPhO9cu5iNu1F3kPnE5ZTlpxN/9NsVzqh2LhT9RPOdbAMLadKHZn/9Ozj1/\n3Ln915VnMM/9XSxLycLpZFeqf/MrHyf7rpN3KZtWQw8jrl0qn//xNhJ7dKLv3X/i69EP1Uh32PVn\ns/j1r1j7xU/0vftCDjxtGMvf/ZZDL/sjuYvWMO2Gp4nr0Iq+d17A5DGPVWz37WV/pTh3a8Pqv7eP\nv8/HQTeN4dex91OUnkXvlx4ja+qMKte++EF9iG7TmpnnXBU49/7MnDG34YpLmHfdvZQVFGJhYfR8\n7hGyp/9M3vwlrJvwEatffBOA1meeSLuLz2HZ356vtQjJQ3rRtG1LJp92Iy26H0T3Oy7hh4vurZHu\n4GvPY+Ub/2PjVz/S/Y5LaHvKkax5/2syZ/xG2pTZAMQd1JY+j17PlDNvpqy4hOlXjMNfUISFhTHo\n3/eR8cPcGvvdJ899CWm65032Wf36t6d58+gdJ9wFqcP6seHz7wDY/NsywuNiiExsUSNdYr9upH3z\nEwAbPvuO1OH9ACjO2cKWhSsqeqRqk9i/B/nr0ijclFlnmqjOh1CycT0laRuhtJS8774hdmDVIM2/\nOZfCpYtwpaV17iemZx9KNm6gNCOtzjTJw/qx8X/ldV5Kk7imRNRS54R+3Uj/ZnqgzpNJHt5/h9vn\nzllIyZbavzR0vaE8cHU11jXp2IPS9DWUZawDfylFP/2PyF4jq6QpXT4Hl78FgJLl8/DFp3rbtupI\nycpfobgQyvwUL55FZJ+j66x/bRo7/2aHHETBuo0UbkjDlZaSPmkqiUcMqJImcegANn0xGYC8+UsC\n7RxPcVYOWwM9QP78QvJXryMyObFGHskjB5M+ceoO6x7esTv+9DX4M9aDv5TCGV8Q2fvIKmlKls3F\n5ecF6j4XX0JKoO4HUrJiXkXdSxbPIrLvLrb9gT3wZ6yhLHMd+Esomvk/Iqq1PUX5FX9aZDSV30Ol\nS2fjtm3epTzjDulM4bqNFAXaP+PrqSQOHVglTcIRA0iv1P5hsU0JT4wHICI5kYRB/Uj7ZGKVbXJn\nzgF/WWCbxUTUclzKtRrRl7Wfescn59flhMc1JTKp5nmY1P9QNkyaAcDaT7+n1ZF9d1g/X1gYYZER\nWJiPsOgICjPq7oGorMmBPfCnr604FoUzPieiV9X3QpVjEVH1WDREsM/9XS2LKyqo+NsioxtU/QOO\n7M2qT6YBkPXrcsLjYohKal4jXeqAQ1g3cSYAqz6eygEj+wDQrGNr0mYsBCBv1Uaatk4iMqHZrhek\nmsY4/nEL7p8SAAAgAElEQVSHdK5y7cuo5dqXNHQAaV94AWLlax9AWUGhl3eTMKxJGDgvf3/+9uMS\nFh1Zsbw2qcP7sv5z7wfO3Ho+95P6d2PTJO9zf92n39NyhPe57y8oqpRXVJW8ytdZkzB8lcpX2b54\n7ktoU88bYGZ3ARcC6cBaYLaZXQ6MASKAZcAFQBgwD+jinCsxs2bA3PLXQSm87JLIlAQK0rIqXhem\nZxOZkkBR1vYhfeHN4yjJy8cFvpQVpmUTmZyw03m0OmYQG7/6od40TRKTKMlMr3hdmpVBVJdDdjqP\ncs2OOIot302qN01kcgKFadsDycL0LKKSEyiuVufSynVOzyYqUOed2b665GH9KMrIrnN9WIsUyrI3\nVbwuy0mjSccedaaPOuJ0in/1PvxK1y+j6enXYU2b40qKiOxxBCWr5te57b6Qf0RyIkXp2993RelZ\nNOvWuUqayOQEitIzq6SJSE6gOGv7h3Fky2RiOx/IlvlLqmzbvOehlOTkUrBuY73lAPDFp1KWvT3Y\nL8tOI7xT3XWPHnY6xb96XzxL1y8j9oxrK+oecdgRlO5i2/tapFZr+000OfCwGukieh9FzGk34GuW\nyJZ/XrFLedTYV/W2zcgi7tBq7Z+UQHGlNMXpWUQmJVCSlUPH6y5l5XP/qdLrVl3qiUeTManu4Dkq\nJb7KtacgPZvo5HiKMrefRxEtYinZuv08LEjLJio5vmJ9wmGdGfH2IxSm5zD/yTfIW7Gewowclr32\nOcd+/hT+omLSf/yVjOm/7USreO8Ff87290xZThrhHWs/Fk1PH4uvWSKbn9q9IezBPvcbUpaIPkcR\ne8b1+OISyX3qql3OJzolnvy07dfDgrQcolPiKczc/iNERItYiitdg/PTcohJ8Y597pI1tDmqL5m/\nLCGh+4HEtEokJjWeouwtOBwjXrgVV1bG8ve+ZcX7U3a6XI1x/Gu7rsV161J1/7VcHyuufT4ffV5+\nnOgDWrLhg/+Rt2BpRboOY0aRetwISrflM+/ae+osQ1RyPAWbtrd/YVo2USnxtXzub6v0GZhFVMr2\ncy91RD8OvuZcIuKbMXPs37bv3GcMfe1hmrZtyep3vyJ3/vZey4r898Fzf59Rtns/Bu2v9vvgzcz6\nAucCvfDa42dgNvCBc+7FQJpxwKXOuafNbDJwIvBRYLsPFLhJOWsSRsqwvix59q29n1mTJjQdOJiM\nV/etMe6+yAgOvPA0fr5uHO3OOWG39xd+cH+ijzidnL9cAIB/4wry//cyLW4ajysqoGTtYnB776bn\nYOdfzhcdRbeHb2X5P1+u8qszQMoxQ3eq121XeXU/jexHvF5U/8aVbPv8/4i/+QVcUQGlaxbj9tIN\n58W/TKL4l0k06dyXmFOuY8uTl+6VfHYkfnA/SnI3s23xcpr37l5rmjZ/OhPn95Px1c5/cd5Vmxet\n4qsTrsdfUETKkJ4MeOIGJp16M+FxMbQc0YeJJ91AydZ8+v/1WtqcMGSP5l1+LMI796Xpqdey+YnL\n9uj+67KvnHvFP08i++dJhHfpS+xp15D7+OV7Pc/KFr78GX1uG8Wxbz/I5mXryF20Ghf40vvNRQ9T\nkJ5LZEIcI56/hbyVG8n4eckO9rhrgnX8ASgr4+eLbiQsNoZuf7mdmAPbkb9yDQCrxk9g1fgJtL3g\ndFqfcULF/XB7Q9rkWaRNnkVC74PpesVZ/HT1I4HyOaaOupMmsTH0e/wGYju12eN5B/Pcl33Tfh+8\nAUcAHzrn8gHM7OPA8u6BoK0FEAt8GVj+EnArXvB2MVDrVdzMxuD13PHCCy8wZsyYvVYBqV+7M4+l\nzaneUJjNC5YTnZpI+e9dUSkJFKVX7SEq2ZxHeFwMFubD+cuISk2otxepsuTBvdiyaBXF2fUP6yrN\nyiQ8KaXidZPEZEqz6h5mWZvYvgMpWr4Uf27NYRItTjiV5n/w7hEqyswlKjUJ8G74j0pJpDCjZp2b\nVK5zSkJFmqKM7B1uX1lMm1SiW6dw+Over5O++FQS7nuXnIfOpWyL9+ujPzcdX0LLim188amU5aTX\n2FdYmy40u+hBcp+8ospQucLvP6Dwe++m96anX09ZzqYa29ansfMvzsiquAcQvPsBq7+nijKyiUxJ\nqpKmOJDGwsLo9vAtpH/1HZlTfqpWSB9Jww9n9iW37KDWnrKcNHwJqRWvfQmp+Gupe5M2nWl28f3k\nPnFVtbp/SOH33mQrsWdchz+77iG7teafm1at7VtSllsz/3KlS2cTltwGi21RY9KbnVVcvW2Tt7dt\nuaLMbCIqpYlISaQoM5vEEYNIGNKf+MP74osIJ6xpDF3uGcuSh/4BQMrxI0kY3I/frq95D82BZx9N\n+9O8YWg581cQnbr9PRCdkkBBtSFOxblbCY/dfh5GpyZUDIMq3bY9YE+fNhffHRcR0SKWpH6Hkr8+\ng+Jcb5jrxm9mkXBY1V7FupTlpBEW36ritdcTU/fxLNkDxyLY535DylKuZMmu1f/Ytx8EIHv+SmJS\nt4/eiE6NpyC95rGPqHQNjkmNJz+9/NgXMuPe7ROpnPT542xd55WzIN0rR1F2Huu++ZmE7h13Onhr\njONf+3Utq0qa2q6P1c9P/9Z8cn/+jYTDe1cEb+XSv/qO7o/fUyV4a3/WMbQ91Tv3Ni9YQXTLBHIC\nt6NFpSZQWK39vc/9ppU+AxNrpAHI/mURMQekeD11m/MqlpduzSdz1gJSBvUE9v1zX0Kb7nmr2yvA\nNc65HsADQBSAc24a0MHMRgBhzrla+6idc+Odc/2cc/0UuAXXmve+4ofRt/PD6NtJnzKL1icMA6B5\n94Mo2ZpfZehEuezZC0gd6d0T0/rEYaRNmbVTebU6dggbv5q2w3SFSxcR3roN4aktoUkT4oaNZOuM\nHW9XWdywo9gypfYhk7mff1QxqUnGdzNodXx5nTtTujW/1iGPObPnkzLSu9m59YkjyPjOq3PG97N2\navtyW5evZcrxlzP1tGsA7wtC9gNnVQRuAKUrf6NJajt8SQdAWBMiBx5PUeCm+HK+hJY0v/ofbH7x\nDvxpVWdms7iEijSRfY+icPrndZanNo2d/5ZFy4hu04qoVilYkyakHDWUrKkzq6TJmjqTlseNACCu\nW5dAO3sf3l3uuJr81etZ9/YnNfYd368n+avX1/hCVJeSlfMJS2lfUfeoAcdR9MvkmnW/5km2vHjn\nnm/7Vb9Vyj+cyP7HUzy3Wtsnt6v4O6zdIdAkosHBAkDeoqVEt21FZKD9k48eSva0GVXSZE+dQUql\n9vdv3UZJVg6rX3idmadfxqyzxrD4/r+zefa8isCtxcDetDn/NBbc/ghlRcU18l35ztdMPu8uJp93\nF5smz6btSd59rfE9OnnXnsyadcqctYDWR3n3BLU96Qg2TvZm9otM3H6PVItuHcGM4tytFGzKIr7H\nQYRFRQCQNKAbeSvX71S7lK76jbCK8yCcqAEn1DwWKduPRZM9cCyCfe7valnCUtpW/L2r9f/qnHv5\n6px7Wf/tz3T4o9cjktijEyVbC6oMmSyXPnMRbY7x7jXucPJQNnzrzWoZHhfj3U8FdDx9OBk/L6Z0\nWyFh0RE0iYnyyhkdQctB3Spmodyp+jfC8c9btLTKtS+5jmtf6nFeoFP52hfeohlhsTFeOSIiiO/v\nXesAotpsDzoTjxhA/up1Vfa5+t2JTB11J1NH3Una5FkccMIRALTofhClWwtq/dzPmrWAlkd5n/tt\nTjqi4nM/ps32H7uade2AL6IJJZvziGgRR5Py8kWGkzywB1tXeRN07evn/j6jrGzf/rePUs8bfAe8\nYmZ/wWuPPwIvAHHARjMLB0YBlc+IV4E3gJrTRckec/ON7zNjxmpyc/I5ctiTXHPtCM44q/du7TNj\n2i8kDe7FsA+ewl9YxK8PbZ+dqu+Tt/Hbw+Mpysxh8dNv0PPh6+h8xTnkLVnFuo+9D7SIxOYMfuUR\nmjSNxjlHh3OP5/tzb8a/rYCwqEgSB/Zg/l9e3HFByvykP/8P2jzwuPeogK8/p3jNKpof581itvmL\njwlrkUD7J1/AF9MUysqIP/lMVl11IWUF+VhkFE179SPtX3/fQUaQOe0Xkgb3Ycj7/8RfWMyCh56t\nWNf7ydtZ8PALFGXmsPSZCfQYN5aD/nwueUtWsv7jb3a4fY+Hrie+z6GEt4jjiE+eY/n4d9jwybc1\nylBb/fNef4QWN77gTVE99UP8G5YTNeJsAAonv0PTk6/EF9ucuAvurtgm58FzAGh+9ZP4Ylvg/KXk\nvf4wriCvrpz2jfz9ZSx78iV6PHEvFuZj06eTyF+5llanHgvAxo++IvvH2SQM6sOAd571HhXwyDMA\nNDvsYFoeP4Kty1bR9xXveK98YQLZP3of7ClHDyH967pnG6217hMeIf6m58AXRuH3H+HfsJzoEWcB\nUDD5XWJPuQJfbAviLgjMSur3k/3geQC0uOYJfE2be3V/7ZEGtf3WNx6m+dgXwXwUTvsQ/4ZlRA33\n2rZwyttE9j2GyEGngL8UV1xI3vjtjz+Iu/xvhHcZgMW2IP6xb8j/+BmKptacerwKfxnLn3iR7k/c\nB74w0j77mvyVa2l5yh8A2PTfL8n5cTbxg/rS9+3nKSssYukj/9xhVTrdMAZfeDjdn/SmZ8+bv5jl\nj9c+413a1DmkDu3J0f/9O/7C4ipTeh/+z5uZ8+BLFGbmsuCfb9HvL9dw8NVnsXnRKtZ8NBmA1kcP\noMOZR+H8fvxFJcy6418A5Py2nA2TZjB8wjic38/mxatZ/cG3HHZbHTPdVlZxLMZjvvJjsZyo4YHz\nYMo7RPY5hqhBJ3vHoqSQLS/U/kiQnRbsc38XyxLZ9xiiBp+M85dCcSFbnt/1+m/8fi6thh7GiZ8+\nRmlhUZVetCOeuYGZD/wfhRm5zP3HOwx67Ep6XH06uYvWsOJDb6KoZge2YuC4y3HOsWX5embc5z3a\nIyqhOUOfvBbwhuyv/nw6m374dZfqv9ePv7+MZU96517Va5937m386MvAta8v/d95jrLCIhY/8jQA\nEYnxdL37OvD5MJ+PjG+mkf2DF1AdeOUFxLQ7AFdWRtGmDJbWMdMkQPq0OSQP6cWIj57EX1jEvAde\nqFjX/6lbmffQeIoyc1n49Jv0eeRaul55FlsWr2btfycD0PKoAbQ54QjKSkspKyrh5zu88kUmtaDn\nA1diPh/mMzZMnE761JqPkdgnz30JaebqmaFnf1FtwpI1ePe9bcMbHpkB/ATEOecuCqRvCawEWjnn\nduYnqP26kf1MCFreYYziiwHnBi3/42a8xeI/Dg9a/l0/mcLEgWcHLf9jfnqH9Etqv0+oMaS8/FvQ\n858y5PSg5D18mhfQpF1ccwKCxpD6f/PIvPzQoOQNkPTiAqYOPTVo+Q+d+hH/7TM6aPmf8vPrZFzW\nLWj5J780P+jnXrDzf7vnRUHL/5y5rwTt+Ce/5E0i892Q04KS/7BpH/JZv/ODkjfAibPeCPq5D1jQ\nCrAL/O+22Ke/H4edlbtPtqN63gDn3MPAw7Wseq6OTYYC7+1k4CYiIiIiIpXtw0MT92UK3naRmT0N\nHA/s/jR6IiIiIiIiO0nB2y5yzl0b7DKIiIiIiMj+R8GbiIiIiIg0Lj2ku0H0qAAREREREZEQoOBN\nREREREQkBGjYpIiIiIiINC6n2SYbQj1vIiIiIiIiIUDBm4iIiIiISAhQ8CYiIiIiIhICdM+biIiI\niIg0Lj0qoEHMOTVcI1Aji4iIiEhjsGAXYGf4X4/Zp78fh43O3yfbUcMmRUREREREQoCGTcpe98WA\nc4OW93Ez3sLPhKDlH8Yonu5yZdDyv3bJc0wceHbQ8j/mp3f4ZtCZQct/5I/vBT3/RSeNCEreB386\nGSBox/+Yn95h8uAzgpI3wIgf3mfDBb2Dln/r137h2a5XBC3/qxY/H/T3/v6e/5uHXRy0/M+b939B\nq//IH98DgnvtmXT4WUHJG+Co6e8G/dwPGRo22SDqeRMREREREQkBCt5ERERERERCgIZNioiIiIhI\n49KwyQZRz5uIiIiIiEgIUPAmIiIiIiISAjRsUkREREREGpUrC3YJQpN63kREREREREKAgjcRERER\nEZEQoGGTIiIiIiLSuDTbZIMoeJNGd8hNF5I0uDdlhUX8+uBzbFm8qkaa6NbJ9Bx3PeHNY9myaCXz\n7nsGV+qnafvW9Lj3Cpp1PZAlz73NqgmfAtC0XSt6PnJ9xfYxrVNYOv7d3SrnXXd8zJTJS0hIbMrH\nn165W/uqy7C7z6b98G6UFhTz9e2vkrFgbY00xz5+MSnd21NW6idt3iq+vXcCZaVlxHdM5ai//ImU\nbm358YmP+eXlr+vMp+uNF5M0uDf+wiLmP/QseYtX1kgT1SqZw8aNJbx5HFsWreC3+5/Glfp3vL3P\nGPjKoxRlZDPnpr8C0OnP55B8RD8Aev3jHhaMe4bizJwq+SUc3ovOYy/Gwnxs/HgSq1/7qEaZOt9w\nCYmDe1NWWMyCh55h6xIv34PvuoqkwX0pztnMjNE37qCV915+ySMHceClZ9O0wwHMuvQO8hYt36my\nADTtM4CUMddgvjByv/qM7PfeqLI+ok07Wo29jchOncl89d9kf/h2xTpf01haXncLke0OBBwbn/or\nhYsW1JrP3jr2iYf3pOuNF2M+H+s/nsSqV/8LVD32h/3jHhYFjn3CwF4cNPYSr/0/mcSa1z6sUY6D\nbriExEF98BcWs2jc0xXt3/XOq0gc0o+SnM3MHH3D9jY8qD1dbv0zYdFRFG7MYOH9/8CfX7DDto/s\nMZjmF9wCPh/5kz9i66f/V2V99ODjiT3xIjDDFeaT+8ojlK5ZAoDFxNLi0vto0qYTOEfuSw9Qsmze\nDvOsbuhdZ9N+eHdKC4uZdPt/yKzl3O8+agQ9LxxJ8/YpvHz4TRTmbPPK3yyGIx/5E83bJVFaVMq3\nd75K9tINNbbfnfd8XdvGHtSerreOISzGa/P59z1Vpc0jU5MY+MaT9da9sc79gW89FZS6r/z3jj97\n+tx2Pq2POAx/YTHT7/k3OQtX1yzfuUfRdfQxxLVL5f1h11KcuxWAuA4tOfyhS4k/pD3znv6ARf/5\nIqj1j2qZzMC3/kH+6qrvwb1x7fFFhNPv+QfwRTTBwsJI+2Y6K1702ju2c3sOue1yAA57/Dbm3/tP\n/PkFJBzeiy43eNeqDXW0RZcbL/auPUVFLHzoXxVl3dG27c4/ic7XXch3f7iEks15tR6H6hrj3Jff\nt/1u2KSZdTCz34Jdjv1V0uBexLRtxfdnjOW3v7zIobddVmu6Ltecz6o3P+P7M8ZSkreVNqeMBKBk\ny1YWPP4KKwNBW7ltazbyw+jbvX9/ugN/UTFpk2fuVllPO70n418atVv7qE/74d1o0SGF1465j2/u\neYMRD5xXa7rFn8zg9ePu542THqJJVDiHnjUUgMLcfL4b9w4//7vuoA0gaXBvYtq2ZNqZ17Hw0fEc\ncmvtbd75mtGsfuszpp15HaV52zjg5JE7tX27c05g26r1VZatev1jpo++BYDMabM58JKzqmbm89H1\npsuYe+PD/HTeDaQcM5SYDm2qJEkc1JuYtq2Yfta1LHr0ebreOqZi3abPvmXODePqrXdj5Ldt+Rp+\nu+Nv5M5ZuPNlCZQn9crrWXffbay46kKaDR9JRNv2VZL487aQ9sI/yf7g7Rqbp465hm2zZ7Dyyj+x\n8tpLKV67ps6s9sqx9xkH33Ipv4x9hB/OvYGWxw6h6YEHAFWPfda02XS4+Czw+eh88+XMu+lhZpw/\nlpSja7Z/wqA+RLdpxU9nX8OSvz5Hl1sqtf/nk5l3w0M1yt31jqtY8ezrzLrgRjKn/ETbUafU2Q4V\nzEfzC28n62/XkH7bGUQPOo4mrTtWSVKasYHMhy8j486zyfvoRVpccnfFuuajb6Vo3g9k3HY6GXed\nQ+mGFTvOs5p2w7rTvEMKE469l8n3TGD4/efXmm7Tz8v5+OKn2LIuq8ryPlccR+bCtbx98jgm3fZ/\nDL3r7Fq3b/B7vp7z5eA7rmT5cxOYMfomMqbMoN3oqm3e+boLyZ4+p+7KN8a57/O+2uxzdQ9oNfQw\n4tqn8ulJtzPjwVfod/cFtabLnLOUb8f8ja3rM6ssL96yjdmPvlFn0GY+a/T6F6xLY+aFtzDzwlsq\nlu2Na09ZcQmzr36A6aNvZfroW0k6vBfNu3cG4NA7/8yyf00AIGPyDNqPPtmrz82XMueGh5l+3g2k\nHjuEprW0RXTbVvx41rUs+ssLdL318u1tUc+2kSmJJAzoScHGjFrrVpvGOvfl922/C972BjNTD+ZO\nSh3Wjw2ffwfA5t+WER4XQ2RiixrpEvt1I+2bnwDY8Nl3pA73fskvztnCloUrKn6Zq01i/x7kr0uj\ncFNmnWl2Rr/+7WnePHq39lGfjkf1ZOGH0wFIm7uSyLgYYpKb1Ui3esr8ir/T5q0itqXXXgXZeaT/\nupqyetoCIHlYPzb+r7zNl9IkrikRtbR5Qr9upH/jlWfDZ5NJHt5/h9tHpiSQNKQP6/87qcq+/Nu2\n/xodFh2Jc1WHRjQ79CDy122icEM6rrSU9K+nkTysf5U0ScP6s+l/kwHYMn8pTWJjKvLNnbOQ0i1b\n6613Y+SXv3o9+Wt2/VfPqC4HU7xxPSVpG6G0lC3ffUPs4UOqpPFvzqVw6WLwVz2+vpimRHfryeav\nPvMWlJZStq3uttgbx755oD0LNqTjSv1smvhDRXtWOfZRkTjntX/Buk0UbkgLtP9Uko6o1v5H9Cft\niylAeftvL+vmOQtqbf+Ytq3YPMfrccyZOZfkEYfX2Q7lwjt1pzRtLf6M9eAvpWD6l0T1HVElTcnS\nubh871f04mXzCItPBcCiY4k4uA/5UwK9hv5SXP7Ovw/LHXjUYSz+aPu5H9EsutZzP3PhWvLWZ9VY\nntCpFeunLwYgd0UacQckEp0YVyNdQ9/z9Z0vMe1akfuL1+bZM+aSMmJglf0VbExn24qaPQnlGuPc\nb3boQQD7XN3LtTmyN6s++QGArHkriIiLISqpeY10OYvWsG1DzeNflJ1H9vyVdV77E7p3bPT612Zv\nfe74C4oAsCZhWJOwis+XmHatyfllYaB880g58vBK1x6vPmkTp5E0rF+VMiQP68+mz2tee3a0bZex\nF7HsmdeBnR/611jnfsgo28f/7aP21+AtzMxeNLP5ZvaVmUWbWS8zm25m88zsQzOLBzCzyWbWL/B3\nkpmtCvx9kZl9bGbfAJPqzkoqi0xJoCBt+wWpMD2byJSEKmnCm8dRkpeP83tnTmFaNpHJVdPUp9Ux\ng9j41Q97psB7UdPUFmzdtH0o4da0HGJTa364lfM18dH1lIGs+b724XF1iUxOoDBteyBbmJ5FVHLN\nNi+t3Obp2RVp6tu+6w0XsfSZ18HV/PDqdMW5AKQeewQrX6zaexSZnEBR+vZ9FqVn1TjGkcmJFFZ6\nrxRlZBOZnLjzFQ9ifjsSnphMacb2X2tLMzMIT0zeuW1TW+HfkkursbfT4akXaXntLVhkVJ3p98ax\nj0xJoKhyW1Vrz4pj/4dhrHrpLa/9K+2ntratmSZrh+2/beVakoYNACB55GAiU5LqTQ8QFp+CPzut\n4rU/O42w+LrbPmbEqRTOm+Ztm9yasi05tBjzAMkPvUnzS++tt+3rUv3c37Ypl6b1nPvVZS5aR8dj\newOQ0qMDca0TiG0ZXyNdQ9/z9Z0v21auIynwZT5l5KCKNg+LjqL96FNZtYMhg41xLlbf375S93LR\nKS3Ytim74nV+Wg4xKTWPX0PFpFbd196uP0B06xT6/+dv9H72gYple+tzB59x+GuPMfyLl8ia8Stb\n5i/zyrdibUWgmXLUICJTEolKTqAwvfK1qvZrT9U0Xp3r2zbpiH4UZWSzdVnN4a71aaxzX37f9tfg\nrTPwL+dcNyAXOAN4FbjNOXcY8Ctw307spw9wpnNu+F4rqewSaxJGyrC+bJo0PdhF2eNG3H8eG2Yu\nY8OsZcEuCgBJQ/pQnL2ZvEU172MAWP78WwCkffU9bc48rjGL9rtmYWFEdepCzuf/ZdX1l1NWVEDi\nWbUPvQmWimP/5XcccMbxey2fxY88S+vT/0Dflx8jLCYKV1q6R/cfcUg/Yoadypa3nwLAwpoQ3uFg\ntk16l4x7zsMVFRB70iV7NM+d8fP4L4mIi+bsj+6ixwUjyFy4ljJ/4/xMvPDhf9Hm9OPo939/JSwm\nuqLND7zsbNa+/Sn+gsJGKUcw7M91h7rrX5SVw7RTr2Dmhbew7Kn/7P2ClDmmX3Ar3//xCpp360TT\njm0BmD/uOdqeeSwATfbC9aCcLzKCDhedzvLxNYe0723BPPdl37G/Dvdb6ZwrH5g+G+gEtHDOTQks\n+w+wMz+hTXTOZde2wszGAGMAXnjhBcaMGVNbsv1CuzOPpc2p3jj2zQuWE52aSG5gXVRKAkXpVZuw\nZHMe4XExWJgP5y8jKjWBooxam7mG5MG92LJoFcXZm/dkFfaYHqOG0+1sb3hc+q+rq/xiFpsaz9a0\n3Fq3G3DNiUQnxPLNPeN3OZ+izFyiUpMAb6hFVEoihRk127xJ5TZPSahIU5SRXev2KSMHkjysH0mD\ne+OLjKBJ02i63///7N13eBRV28Dh32w2PYH0BqGGjlJCD02KFQUVbAgCIop0BKXZAfVVsaKA6Pt+\nKjawgIBKM3QIvRNaQknvfTfZ3fn+2LDJplCTbALPfV25YGfOmWfOmTkze2bOzE7g6BufWS07/p+t\ntPlwFlFLf7FM0yelWl21dfTzLrWN9UkpOPl7c3lLOvp6oU8qPYzkWlR1vKspSElC61t0t0fr40tB\nyrU9N1GQnIQhOQndKfPwoKztm/EeXNR583hgEB73DLB8roxtr2jtcPQvunpdVn2CueN+54ezSd19\nAEf/YvVfRt3qk1JLpPG+av3nno/h8GTzs3DOwYF4dwu9YnoAY1oidl7+ls92Xv4Y00rXvTa4CR7P\nvtx/KRsAACAASURBVEbKB+NRs817hTE1AWNqIgVnzY9N6yI24PbgyKvGBGj9VC9aPmZ+XrVk23cN\n8CCnnLZfloIcHf/O+tby+emN88i8WHqY+I3u84rWrty8uedjOViszn3C2gNQq2UTfO/qQuNxw9C6\nuQJQZ/C9xKywfi6rKtpiyeVVednL+OXhJo/3ofGj5uu8KceicA3w4vIWc/H3JDcxrVSeG5WbYL2s\nyi6/WmDAUJBNnUfvJeihvpa8lXHsKc6QnUvavmP4dG1LzrmL5J6PZf/EefTf/Qvx67bj3S0UXVIq\nTn7Fj1VlH3uc/IrVRWGZFa22zLzOdQNwDvSj8/fvF9adN53+7z/sGTWT/NTS7dgWbV/c2m7XO2/6\nYv83Ale6Z22gqJ5Kjo/JKS+TqqpLVFXtoKpqh9u54wZwYcU6y8tEEjfvJej+ngDUbh1CQXYu+pTS\nB67Ufcfx72MeTx/0QE8SNu+9pliBd4cRt257xa18BTuybDM/DZzPTwPnc27DIVo8bH5Gx79NQ/Kz\n88hNyiyVp+WQMOp1b8HfU74pc3jileIAJG2JIPC+y3XeBEN2Lvll1HnavmP49TGvT9ADvUnaYq7z\npK17y8x/5osf2frgWLY9PJ4jcz4mde9RS8fNJTjAslzfHh3JPW/9QpOsE2dwCQ7EKdAPRavFr18Y\nyVutXzCTvHUvAff1BqBWqyYYc8pe72tR1fGuRncqEoegutj7B4BWS62efcjefW1DfY3pqRQkJ+JQ\nx3y12bVNKPoLRUN30tf8QfTEopcDVMa2zzxxtrA+fVG0dgT072bJU3zb+xRu+6wTZ3CuW7z+u5O8\nzbpNJ2/bg/+95i+3tVo1wXAN9W/vWfisiKJQf8RgYn9fd5Xag4Jzx9AG1MPONwjstDh3uQfd/nCr\nNHbeAXhN+oC0xa9ijC96GYwpIwVjajx2AeaXyzi26oQh5tpeWHL0h838MmgevwyaR9SGgzQbVKzt\nZ+nKbPvlcXB3RmNvB0CLId2J23uagpzSd31udJ+/UnspXucNRg4m5vf1AOwf+yo7H3mRnY+8yKWf\nzc9jluy4QdW0xawT5tEJtip79P+VfpPq6Z838fdjr/P3Y68Ts2k/DR7sBoD3nY0oyMpDl1xxFxxT\nj0VVafntPWqBRkPMr39zZOb7lhiVceyx93BH6+YCgMbRHq9Od1pemGVZP6DhyEeJ+X1dqfL49w8j\neav1sSdp614C7i927Mkuuy4u5805e4Gt949mx8Pj2PHwOPRJKUQ883KZHTewTduvMWz9TFsNfebt\ndr3zVlIGkKYoSg9VVbcCw4DLd+GigVAgAhhsm9W7dSRtP4BPt7b0/O0TjDo9R95eZJkX+tErHJ23\nBH1yGpGf/UCbeRNp8sLjZJ2K5tKqfwFw8K5Nt//NR+vqjKqqNHjiPrY+MQ1jTh52To54d76DY+98\nVSHrOm3qr0REnCc9LZe7en7E+Am9eXRIuwpZNkB0+FHq92rN8A1vUZCXz8aZRVfTHvxqHJtmf09O\nYgZ3vfkkWbGpDPnF/Bavs+sOsmfhWlx8avH4bzNwcHNCNam0HdGH7+97q9SBPHn7AXy6tSfs108x\n6vI5/vYXlnntPprB8XmL0SencfrzZdwxdzIhzz9B1qkoYlZtumr+8oSMG4prvUAAvDq34eR/rO8Y\nqkYTpz5cStuP55hfwbx6EzlRlwh62DzkJfb3daTs2I93t/Z0Xf65+fXNc4vitnpzMh7tW2Hv4U63\nlYuJWvozcX9uKnd9KiueT69ONJ36LA4etWjz4UyyTkVz6FregmkykrDoE4Lfeh80GjLW/0X+hWg8\n7nsIgPS/VmHn4UWDjxejcXEBk4rnwMFEjX0GU14uCYs+JXDaHBStloL4OOI+frfcUHmxiRW+7VWj\nicgPvqH9p7PN9fnnv+REXQKst71np7ac+s9iVKOJ0wuWcudHr5pfP756E7lRFwkaVFj/f6wjdcd+\nvLu2p/PyhRh1eiLnLbSsa4s3p+DRzlz/Xf9YQtTSn4lfvRG//j2o84h5SG7y5t3Eryl/Hyhe9xnf\nvof39C/MPxWwZSWGmHO49DEf3nM3rcBt0Bg0bh54PDOzsLxGkl83v3k249v38Bw7H0WrxZAUQ/qS\naxlhb+385qPU69WaoevfxpCXz6ZZRUPNHlgynn/nfEduYgZ3DLuLdqPvNrf1Va9yfvNRwud8j2fj\nAPq+OwIVlbTTcfw7+7sy49zoPl9eewHw79+duo+a6zwpfDdxq6+hzoupirZ/+Rmq6lb2y2K3Hiaw\nx50MWPMeRl0+u1/92jKv18IpRLzxX/KS0mn6VD9ajLwPJ+/a3LfiLeK2HSHijf/i5F2Le356HXtX\nZ1STSrOn+7Nm0GwMhcf+qi6/R9sWNHzuCfMwxWIXGCvj2OPo40mr18ahaDQoGoWEjTtJ3r4fgIC7\nwwgefA8A+uQ04labvzdEfvA17T6ZDRoNcavNx6o6D/cHIOb39aTs2I9Pt3Z0XfGZ+WcT5i601EVZ\neW9GVbV9cWtTSr4F7lanKEoDYLWqqq0LP08D3IA/gEWAC3AOGKmqapqiKM2BXzDfoVsDPK2qagNF\nUUYAHVRVHX8NYW+vSi7h705P2Cz2vRE/YWSZzeLbMZTPmlbOb8RdiwmnvmR9Z9u9Srj/7l/Y1NV2\n1zz67Fxh8/gnB/S2Sezmq8MBbLb9++/+hfBuj9okNkDvHb8SO6ziLrZcr6DvDvBFsxdsFv/FyEU2\n3/dv9/g/3nltQ2orw5OH/2uz8vfZuQKw7bFnY5chV09YSfruWm7ztg8oNluB62BY5Fitvx9rX9BX\ny3q87e68qaoaDbQu9vmDYrNLvWdaVdWTwJ3FJs0pnP4/4H+VsY5CCCGEEELc0qp11636ul2feRNC\nCCGEEEKIGkU6b0IIIYQQQghRA9x2wyaFEEIIIYQQtqWaquUjZdWe3HkTQgghhBBCiBpAOm9CCCGE\nEEIIUQPIsEkhhBBCCCFE1arGP4RdncmdNyGEEEIIIYSoAaTzJoQQQgghhBA1gAybFEIIIYQQQlQt\nedvkDZE7b0IIIYQQQghRAyiqqtp6HW4HUslCCCGEEKIq1IhbWgWfOFfr78f2k/KqZT3KsElR6SIf\n7GWz2M3+3MxnTcfaLP6EU19iZJnN4tsxlI1dhtgsft9dyzk5oLfN4jdfHW7z+Gs6PGWT2A/s/QGA\nUw/1tEn8pqu2cOy+vjaJDdDqr42sbP+0zeIP3P89Fx7vZLP49X6OsPm+f7vHP/dImM3iN/ptu83K\n33x1OADrOj1uk/h3R/zMpq6DbRIboM/OFTZv++LWJp03IYQQQgghRJVS5Zm3GyLPvAkhhBBCCCFE\nDSCdNyGEEEIIIYSoAWTYpBBCCCGEEKJqybDJGyJ33oQQQgghhBCiBpDOmxBCCCGEEELUADJsUggh\nhBBCCFG1VBk2eSPkzpsQQgghhBBC1ADSeRNCCCGEEEKIGkCGTQohhBBCCCGqlPxI942RzpuwGZf2\nnfB/bgJoNGSsX0Pqih+s5jvUrUfApBk4Nm5C8ndLSfv9ZwDs6wQT9PLrlnT2AUGkLPuGtFUrrnsd\nes55jPq9WmHIy2fDjG9JOn6xVJq7PxiJX+v6mAxGEg5H8+9ryzAZTHg28qfvO8PxaxXMzgWrOPDN\nhuuOX57ZM1exOfwUXt6urFo99qaW5dWlLU2njETRaIhdtZHz3/1RKk3TqSPx7toeo17PibcXkhUZ\ndcW8DUcPIeihfhSkZwJw9ssfSNl5gFotQ2g+43nzQq9yTHZt3wm/MeNRNHakryt7+wdOfsW8/b/9\nmtTC7Q+gcXUjYOJ0HOs1BFTiPnkP3cnj11Uvtojfctpw/MLaYtTlc+iNRWRGRpdK4xzkS7v5E3Co\n7UbGiSgOvvYFqsGIf69Qmr4wBNVkQjWaOP7hd6QdigRA6+bCna8+h3vjYFBVDr215Irr4dK+E36j\nJ4Kdhox1a0j7dZnVfPs6l9teU1K+W0raHz9Z5nk8NITadw8AVUV//hwJn7yLWpB/1bIX5xbakYAX\nxoFGQ/rfa0le/pPVfIe6wdSZ+jJOISEk/t83pPy63HoBGg2NPv0CQ3IKF96Yfc1x75g+DL/ubTHq\n9Bx4fQkZJ6NLpXEJ8qXDO+Ow93An40QU++Z8iWow4h3ags4LppAbmwRA7KY9nPrqD9zqB9Lh3fFF\n+ev4cXLRlY9FTm264DniJdBoyNm0ksyV31qvQ/d7qPXQcFAU1LxcUr9+j4Lzp8HeAf83FqPYO4DG\njrzdG8lY/tU1l/+y27HtVaf4xTm364z3qMkoGg2ZG/4k4/fvrea79byb2oOGoigKprxckpd8QH70\nmRuOB1VX/mYvjcC3WzuMOj1H3/rScl6xKn+QL3fOnYR9bXcyT57jyOufoxqMV8xf78n7qTuwD6iQ\ndeYCx97+ElN+AU0nDMW3RygA7RfPxcGzNigQV855r8mUUXh3a4dJl8/xtz8n+1TRea/J5JEodhqr\nvG5NGtDs5TFoHOxRjSYiP/iKrONncG8ZQvNXLp/3rnzis3XbF7eG26bzpihKODBNVdW9V0gzAuig\nqur48tKICqLR4P/CZC69+hIFKUnUX7CY7N3byb943pLEmJVJ4pJPcevS3SprQcxFzk8abVlO4/+t\nIGvn1utehfq9WuHRwI/v+r+Of5uG9H7zSZYP+U+pdJF/RrBu2n8BuGfBKFoO6c7RH7egS89ly9xf\naNSvzXXHvpqHH2nD0Kc7MuOV0iec69Vs2rMcmPg2+sRUOv73HZK37iUn+pJlvnfXdjgHB7JzyARq\ntWpCs5efY++zs0CjuWLeiz+t5sIPf1rFyj57gT0jX0E1mnDw9qDHmq9AYwcmo/VKaTT4j53ExTnT\nKEhJosFHi8rc/gmLS29/AP8x48nZF0HsO6+DVovG0en6KsUG8X3D2uIaHED4w1PxaB1C65mj2DHi\ntVLpmk94kqgf/iJu3U5azxxF8MC7uPDrBpIjjpKweR8A7iHBtH93EpsHTwOg1bThJO04xP5XPkHR\n2mHn5HjFsvs9P4WY16aa296HS8iJ2GZVdlN22W1P6+WD54ODiR43DDU/n8CX38C9Rx8yN/191fIX\njx84biLRs17GkJxEo0++IGv3TvQXitd9FnGLPqdW17AyF+E98BH0Fy5g5+J6zWH9wtrgWi+AjQNf\nwvOOxrSZOYItz7xRKl3LiU9wdtnfxKzbxZ2zRlJ/UG+iV2wEIOVgJLsnfWiVPvt8HOFPFnYgNQr3\n/P0Zcf/u5Y5pw8peEUWD56iXSZw3HmNKIgHv/B+5e7diiCn6YmtIjCXhzRdQc7JwatsVr+dmkjBn\nFBTkk/jWi6j6PLCzw//Nr8g7uJP800evuR5ux7ZXreKXWBef514i7s3JGFISqfOfpeTu2UbBpWhL\nkoKEWOJeHY8pJwvndl3weeFlYmeMuamYVVV+1+AAtj06idqtm9DylWfZPWpOqTRNxg/l/I9riV+/\ngxYzRlNnYB8u/boen25ty8zv6OtJ/cfvY/vjUzHpC7hz/mQC+ncjds1mUiKOcPqLH+m/80dcGwaT\nuGE7pxZ8Q4dv3iVp615yS5z3XIID2WU5741h3+iZ5vPeS6M5MOkt9ImpVnlDxg0j6uvlpO46gHfX\ndoSMG8aBca+Tc/YCe0cVnfe6r15a9nnP1m1f3DLkmTdhE05NWlAQF0NBQhwYDGRt2YRbZ+sThTEj\nHd3pk6gGQ7nLcWnTnoK4WAxJCde9Do36tuHE77sASDgUhaO7Cy6+tUqlO7/5mOX/CYejcQvwACAv\nNYvEI+cxGYyl8tysDh3rU7u2c4UsK+9SPLrYRFSDgYT12/Hp2cFqvm/PjsSv3QxA5rHTaN1ccfD2\noFbLkKvmLcmkz0c1mgDQODiUm86paXPyi23/zC2bcOti/UXdvP0jwWhdvxoXV5xbtSFj3RrzBIMB\nU072NdWFLeP79wolZq35IkP60TPYu7vg6O1RKp1Px1bEb9wNwKXVWwnoba5zY57eksbO2QlUFQCt\nqzNe7ZpzcWU4AKrBiCE7t/yyl2h7mVs34lpG29OfOVmq7OYKsENxcDT/6+iEITXlqmUvzrlpc/Jj\nYyiIj0M1GMjY/C/uXbqViq87FVlm29f6+ODWqTPp/6y9rriBvUO5uHobAGlHzmLv7oqjT1n135LY\njREAXFy9lcC7Qq85hm+nVuRcSiQvrvw6cQhphSHhEsbEWDAayN2xDpeOPa3S5J86gpqTBYD+9FHs\nvP0s81R9HgCKnRZFq7XsB9fqdmx71Sl+cY4hLSiIu4QhIRYMBnK2bcS1Uw+rNPrIo5gu7wunjqEt\nti/ciKosf+zaLQBkHD2N1t18XinJq0MrEjaZz8Oxazbj16sjYD4vlZdfsdOgcXRAsdNg5+SAPjkN\ngJTdhy3nH11cInYuzqgGA4kbtuPbs6NVXJ+eHYn/Kxy4fN5zsZz3coud94rnVVUVrav5vKx1c0Gf\nnApc+3nP1m2/WjJpqvdfNVVt77wpijId0Kuq+qmiKB8BbVRV7aMoSh/gWeD/gDcBR+AsMFJV1WxF\nUUKBBYAbkAyMUFU1rthyNcA3wCVVVecoijISmAmkA4cAfWG6B4E5gAOQAgwFkoBIoJuqqkmFyzoF\ndFVVNamSq+SWovX2oSA50fLZkJKEU9MW172cWj36krll4w2tg6u/B9nxaZbP2QlpuPl7kJuUWWZ6\njVZDs4Gd2TpveZnzqytdYtEXSX1iKrVaNbGa7+jrVSJNCo6+XjiVmm6dt+6Q+wi4vxdZJ85y+tNv\nMWTlAFCrVQgtZr+IU4CvOWHJq4+AvbcvhqSiJmNITsK5WctrKo+9fyDGzHQCJ8/AsWFjdGdOkbDk\nM1S97pry2yq+k68nefGpls+6hFSc/DzRp6QXLbu2OwVZOUVfQBJTcPLztMz3792B5uOfwMGzFnsm\nvw+Yh+nlp2dx5+vPU6tpfTJORHH8A+uhOMVpvX0wFG9711F2Q2oyaX/8RKOvl2PKzyf3wB5yD+65\npryWMvr4UFCs7guSk3Budu1tP+D5cSR8vQSNs8t1xXXy8yQvoWh/zktMxdnXE31yUf07eLhRkJ1r\nqf+8hFScfIvq3+vOJvT+eT66xDSOffQDWedirGLUuacrMf/svOJ62Hn5YkwputhkSEnEMaRVuend\n7noI3cFiy1Q0BLz7LdqAumT/s4L8M8fKzVuW27HtVaf4xWm9fTGkFD8PJuLYpPx9wb3fAHIP7Lqh\nWJdVZfl1xdqb+VjmRX6J450hq6i96RJScfL1Aszttaz8mSfOEf39anqu+gKTPp+U3YdJ2X249LrW\nciNl537AfE4rfd7ztlq+PikVR19vHH290CcmF00vlvf0x/+l7cdzCJkwHEWjsG9M0ZDtWi2b0Hz2\nizgF+JgnlHHes3XbF7eO6tuthK3A5UtQHQA3RVHsC6cdxtyx6qeqantgLzC1cP5nwGBVVUMxd9Lm\nFVumFlgGnC7suAVi7gCGAd2B4kewbUAXVVXbAT8BL6uqagK+x9yRA+gHHJKOm41otbh27kbW9vAq\nCdf7jSeJ3XOG2L0397zBrSDmt3XseHQ8EcOmo09Jp8nE4ZZ5mcfOsPupqewZNQPAPEa/Ail2djg1\nbkra2pVET3oOkz4P7yFPVWiM6ho/IXwvmwdPY9+0BTR7YUjh+mio1awBF1ZsYNvQWRjz9DQe8VCl\nxNe4uuHWuTtRzz3OuREPo3Fywr13/0qJVRa3Tl0wpqehO3O6ymJelnEymnX3TyL88Vmc+2kdnRZM\nsZqvaO0I6Nme2PW7KyymY6tQ3Po8RPqyz4smqibiX3mamLEDcAhpiX1wowqLdzW3c9uzdXyn1u1x\n7zuA1G+/qJJ4ZbF1/QNo3V3x69WBrYPGs/n+F7BzdiTw3tLDO1VVJeGf63+c4krqPHIPpz/5HzsG\nvcDpT/5H81kvWuZlHj9NxNAp7C0873GT573q1vZF9VKdO2/7gFBFUWphvhu2E3MnrgeQh7mjtV1R\nlIPAM0B9oBnQGlhfOH0OULfYMhcDR1VVvdyh6wyEq6qapKpqPvBzsbR1gX8URTkCTAcuXx75Brj8\nTXUU8N+yVl5RlDGKouxVFGXvkiVXfnnA7ciQkoy9T9FwAPMVyOQr5CjNLbQz+rOnMaanXT1xoTuG\n9uKJlbN4YuUscpMycAsouqru5u9JdkJ6mfk6jX8AZy83tr5z/S9FsTUnP2/L/x39vNAnWQ/p0iel\nlkjjjT4pFV2p6UV581MzwGQCVSV25QZqtQwpFTc32nxXwrF+w1LzClKS0Pr6Wj5rfXwpSLm2ayAF\nyUkYkpPQnToBQNb2zTg1bnKVXLaL333ZfLovm48+OR3nAC/LdCd/L3SJ1vtuQUYW9u6uKHbmQ7OT\nn3epNACpB07iUscP+9ru6BJT0SWmkn7sLABxG3dTu3mDctfHkJKMtnjbu46yu7TtQEFCHMbMDDAa\nydq5Befmra8p72UFycnYF6t7e59rb/suLVvh3qUbTf63jLoz5uDapi11ps8sN33Dx/rR+8d59P5x\nHrqkdJz9i/ZnZz8v8pKs6zY/PRt7NxdL/Tv7e6ErTGPIybMMXU3cfgiN1g4HDzdLXv+wNmScjEaf\nWvad+8uMqUnYeftbPmu9/TCmla5/+3oheI2ZTdL70zFlZ5Sar+Zmozu2D6c2Xa8Yr6Tbqe1Vx/jF\nGVKSrIZBar39MKaWXheH+o3xfXEGCe/MwJR95f3raiqz/B4PDKLBp0stn52KtTfzsaxo5AGYj3da\n96L25uTvhS7JnEaXmFZmfu9Od5Abm0hBehaq0UjCvxF43NnMki7ogV4A5F2Mt0y7fE4rTp+UYrV8\nR1/z+U2flIqjn0+ZeQPv70VSuPniTOLGnWWf986bz3sOwY1LzbN12xe3jmrbeVNVtQCIAkYAOzDf\nibsLCCmcvl5V1baFfy1VVX0W8/vtjhWbfoeqqncXW+wO4C5FUa7lCePPgM9VVb0DeB5wKlyvi0BC\n4fDNTsBf5az/ElVVO6iq2mHMmJt4uPgWpTt9Evugutj7B4BWi3vPPmRHbL+uZbj37Evm5usbMnlk\n2WZ+GjifnwbO59yGQ7R4uAsA/m0akp+dV+aQyZZDwqjXvQV/T/mmRo4xdwkOxCnQD0Wrxb9/GMlb\nrd/Zk7R1LwH3m094tVo1wZCdS35KOlknzpSbt/izC769OpFzzvyWTqdAv6ITceHwkYLEeErSnYrE\nodj2r9WzD9m7d1xTeYzpqRQkJ+JQJxgA1zahVi+7uBZVGX/b0FlsGzqLhPC91LnfPJjAo3UIhuw8\nqyGTl6XsPU5A384A1B3Qg4TN5jp3qVt00q/VrAEaBy0FGVnoUzLQJaTgWj8QAJ9OrUsN57Mqe2Hb\n0/oHmsveoy85u6+t7RmSEnBq1tL8zBvg0ibU6kUH1yLv1Ekcgupg7x+AotVSu9ddZO26trpP/N/X\nnBr2BKdHDOXSu3PJOXSQmPffKTd91C8bCH9yNuFPziY+fB/BA8xX6D3vaExBdq7VkMnLkvceJ6hv\nJwCCB/QgLtw89MrRu7YljUerRqAo5KcXPe9T596rD5kEyD97HPuAYOx8g8BOi0u3u8nba32HwM7b\nH5+X3iNl4esY4i5YpmvcPVBczB1Gxd4Rpzs6UxBbffd9iX9l+jMnsQ+si9bP3BZdu/clZ882qzR2\nPv74vzyfxE/eoiCu9NuQr1dllj99zR9ETxxt+Rx0v/l5rtqti84rJaXuO45/H/N5OOiBXiQVHu+S\ntu4tM78uPhmP1k3QOJrvbHl3bE124YVC7y5taDDMPOrAuY6/5dzl1y+M5K3Ww7uTt+4l4L7egPm8\nZ8wp+7xXPK8+OQ2Pdubr+J4d7iD3ovmJnLLOe4ak2FJltXXbr5ZMSvX+q6aq7TNvhbYC0zDf4TqC\n+Vm2fcAuYKGiKCGqqp5RFMUVqIP5eTRfRVG6qqq6s3AYZVNVVS8PDP4a6An8oijKI8Bu4BNFUbyB\nTGAI5ufeAGoDl78BPVNivZZiHj75naqqFf+2ituByUjioo+p++YH5p8K2LCW/AvR1L7XfODN+HsV\ndh5e1P9oMRoXVzCZ8HxoMNEvPoMpLxfF0QnXth1IWPjhVQKVLzr8KPV7tWb4hrcoyMtn48yi54Qe\n/Gocm2Z/T05iBne9+SRZsakM+WU6AGfXHWTPwrW4+NTi8d9m4ODmhGpSaTuiD9/f9xYFOTf2/ENx\n06b+SkTEedLTcrmr50eMn9CbR4e0u6FlRX7wNe0+mQ0aDXGr/yUn6hJ1HjYPdYv5fT0pO/bj060d\nXVd8Zn5l8tyFAIWvQi6dFyBk/DDcmzRARUUXl8TJdxcD4NGmOfWHD0I1GDGPMsZ8l6Ykk5GERZ8Q\n/Nb7hT8V8Rf5F6LxuM+8/dP/Mm//Bh8vRuPiAiYVz4GDiRpr3v4Jiz4lcNocFK2Wgvg44j5+9/oq\nxQbxE7cfxDesLb3/+AijTs/hNxdb5nX85GUOv70EfXI6Jz77kfbzJ9Bs7BAyI89bXkQS0LcTde/v\ngclgwKQvYP/Mzyz5j73/f7R9exwaey25MYkcenMxjYcPKLfsSYs/pu4b5raXuWEt+RdLt716C5ZY\n2p7HQ4M5P244ulMnyN4eTv2Pl6IajejPnSbjnz/LjlNu3ZuI+/Iz6s99D8VOQ9q6v9BfOI/n/eb1\nTVu7Gq2nJ40+/dJS996DHuXM86Mw5Zb/IparSdh2EP/ubei38kOMunwOvFE0IqLLp9M4+NZSdMnp\nHP/0Jzq8M57m44aQcTKaC3+EAxDUrxMNBvdFNRox6gvYO3OhJb+dkyN+nVtzaN4311B+I6nfvI/f\nrE/NrwsP/5OCS+dw6/cIANkbfqP24NHYudXG69lXAMx3GGY9g52nD94vvg4aDWg05O7cgG7/titF\nKzP+7db2qlX8EuuSvPQjAl5bgKKxI2vjagouRuF+9yAAstb9gedjI9G418JnjPnNshiNxLz8byQt\nmQAAIABJREFU7E3FrKry58Yk0v23TzDq8jn29peW6e0+msHxeYvRJ6dx+rNl3DlvEiEvPE7mqWgu\nrdoEQPL2A/h0a1cqf8axMyRs3E3X795FNZrIjIzi0u/mn+lpMX0UGgfz11oVlU7fvk9BehaxqzeR\nE3WJoIfN1/Jjf19Hyo79eHdrT9fln5t/ImeueTiqajRx6sOltP14jvkncgrzApx8ZxFNpoxEsbPD\nlF9AZLHzXr1hD5tfsFR4gdeUVfZ5z6ZtX9wyFLUa30lQFKUv8DfgoapqjqIop4BFqqouKLzz9R7m\nF5YAzFFVdZWiKG2BTzF3vrTAx6qqflX8pwIURXkTaIr52bVnKHphyUEgX1XV8YqiDAQ+AtKATUBH\nVVV7F66XPeaXmHRSVfXkNRSl+lZyFYh8sJfNYjf7czOfNb2530m7GRNOfYmRZVdPWEnsGMrGLkNs\nFr/vruWcHNDbZvGbrw63efw1Har2mZDLHthr/u2mUw/1vErKytF01RaO3dfXJrEBWv21kZXtn7ZZ\n/IH7v+fC451sFr/ezxE23/dv9/jnHin7py6qQqPfttus/M1XhwOwrtPjNol/d8TPbOo62CaxAfrs\nXGHzts9Vf2m1etDP96jW348dZ6VXy3qs1nfeVFXdCNgX+9y02P83AR3LyHMQ8921ktN7F/v/68Vm\n/ZcynltTVXUlsLKcVWuD+UUl19JxE0IIIYQQQhSjqtWyb1TtVevOW3WkKMoMYCxFb5wUQgghhBBC\niEpXbV9YUl2pqvquqqr1VVWVwcZCCCGEEEKIKiN33oQQQgghhBBVyyT3kG6E1JoQQgghhBBC1ADS\neRNCCCGEEEKIGkCGTQohhBBCCCGqlFqNfwi7OpM7b0IIIYQQQghRA0jnTQghhBBCCCFqABk2KYQQ\nQgghhKhaMmzyhsidNyGEEEIIIYSoARRVVW29DrcDqWQhhBBCCFEVasQtrbzXfav192PnN5OqZT3K\nsElR6dZ3fsxmsfvv/sXm8Td2GWKz+H13LcfIMpvFt2Oozct/u8bvu2s5gE3j3651fzn+6tChNos/\nYN8ym5f/do//V8cnbRb/vj0/2vzYs637IJvE777tD5u3PVvHrylUtVr2jao9GTYphBBCCCGEEDWA\ndN6EEEIIIYQQogaQzpsQQgghhBBC1ADyzJsQQgghhBCiapnkHtKNkFoTQgghhBBCiBpAOm9CCCGE\nEEIIUQPIsEkhhBBCCCFElVJN8lMBN0LuvAkhhBBCCCHEdVIU5V5FUSIVRTmjKMqMK6TrqCiKQVGU\nwTcbUzpvQgghhBBCCHEdFEWxAxYC9wEtgScVRWlZTrr3gHUVEVeGTQohhBBCCCGqlKrW+GGTnYAz\nqqqeA1AU5SdgIHC8RLoJwK9Ax4oIKp03USWaTR2JT7d2GHV6jr39BVmRUaXSOAX6cufcydjXdifz\n5DmOvvEZqsF4xfwt54zFN6w9+WkZ7HxqWpmx++/+hUt/bMArtHWFxwdAo9D5f++iT0rl4EvvAdD4\n+cfx7dEBgI7/ew+tmwuoELtqI+e/+6NU7KZTR+LdtT1GvZ4Tby+0LN+rS1uaThmJotFY5W04eghB\nD/WjID0TgLNf/kDKzgPUahlC8xnPmxd6E8fE2TNXsTn8FF7erqxaPfbGFwR0+fmTUutf3PWW3a9P\nFxqOfgzXBnXYM2omWSfPAeB/T3fqDx1oWa5bSD2bxLdzccbJzwvFvvzD6/XG1NZyo/XcKTgH+pIX\nl8TR2QswZOWUWebID76h3hP3W6Z1/mEBydv2cfaLZRUev+T+FrV0OUmbIyxxwlYuwsGzFgDnv1/J\nuSU/33RdlLfve3W6k8YvDkWj1WIyGK64jMrY/tpabtz5zku4twghbk14mdu91fTh+IW1wajL5+Ab\ni8k8GV0qjXOQL+3fGY9DbTcyTkRz4NUvLMchgNotGxH23zc4MOtz4jZG4Fo/kPbvTLDMd6njx6lF\nKyqt/K3nTsGlXpC5zO4uGLJyiRg+vdS+CNDt94WoBtMt0/ZDxg/Dp3soJoOBvEsJnJi7EEN2Loqd\nHS1mvYB7s0YoWg1xazeXitXipWfwDWuLUZfPkTe/JDMyulQa5yBf2s6biH1tNzJPRnHotYWoBiNB\n94bRcPhDKAoYcnUce/drsk5fwLV+IG3nT7Tkdwny4/SSFUT/+FellL/RmMfx6dkRTCr5aRkcf3sh\n+clpZW774jw6t6PRpNEoGg0Jq9dz6fvfSqVpNGk0nl1DMen0nJr/KTmnzhXN1Ghou/QD8pNSOP7K\nPAAavPgMXmEdUQsM6GLjOTX/M4zZOeWuQ2W0PSd/L9q+NRZHr9qgqlz4fRNRP/5TZfGv1PZFlakD\nXCz2+RLQuXgCRVHqAA8Dd1FBnTcZNikqnU+3drgEB7B98EROvLuEFi+PLjNdk/FPc/6nNWwfPBFD\nVg51Hupz1fyxq8PZP3l+mctz9PMGQJ+agXMd/0qJD1Dv8fvJiY6xmhb9/Sp2PT0dAKcAHzKOnmbX\nk1PwvzsM1wZ1rdJ6d22Hc3AgO4dM4OQ7i2n28nPmGRoNzaY9y8Ep88rMe/Gn1UQMn07E8Omk7DwA\nQPbZC+wZ+QoRw6dzcPK8wpTX34t7+JE2LFk69LrzWTPHLW/94cbKnn3uIkdmfED6wRNWy0r4Z5ul\nPo69+Rl5sYlVH3/EK4DKoZf/Q15MAkCFxGwwfBBpe46wc8hE0vYcof7wQeWWud5TAzj08n8s8Y6+\n9gkedzbDu2vbCo9fcn9r/soYFLtipxUFdj4xmfA+w/Hp0aFS9/389EwOTXuX3U+/xPG3Pge44jIq\nevub8gs4u+Rnznz2LWXxC2uDa3AA/w56icNzv+aOmSPLTNdi4hNELfuLfwe9REFmDvUG9S6aqVFo\nMfEJkncdsUzKOR/H1qdmmf+eno1Rpyf+372VVv6jcz6y1H3iv7tJCt8NlNgXC+t//7g3b6m2nxpx\niN1DpxLx9DRyL8ZS/5mHzdu2b1c0DvbsfvolIp55hToP97eK5dutLa71AtjyyBSOzf+KVjOeLXPb\nNxv/FNE/rGXLI1MoyMwheOBdAOTGJrL7+bfY9uQrnPn6N1rPes6y7bcPnWn+GzYLoz6f+H/3gKZy\njr3nv19FxNPTiBg+neTt+2g4anCZ9W9Fo6Hx1Oc5Nu0t9j89Ad9+PXAusS6eXUJxCg5k3xNjOfP+\nF4RMe8FqftCQAeSev2Q1LX3PIfYPn8iBEZPJuxhL8LBHy6xTqLy2pxpNHP9oGZuHvMy2Ea9Tf0h/\n3BrWqbL4V2r7omIoijJGUZS9xf7G3MBiPgZeUVXVVFHrJZ03Uel8e3Yg7q8tAGQcPY3W3RUHb49S\n6bw6tCJx0y4AYteE49ur41Xzpx88QUFmdplxm015BgA7RwcS1u+olPiOfl74hLUnZuVGq2UZc/Is\n/zdkZmPMzUM1GEhYvx2fnh1K1E9H4guv1GYeO43Wzbz8Wi1DyLsUjy42sdy8JZn0+ahG8/FB4+Bw\nxbRX0qFjfWrXdr7h/GbmzvOV1v9Gyp4bHUPuhdgrRg7oH0b6oZNVHv9yPs+2LUjYYN7nKiKmT4+O\nxK0NByBubTi+PTuVW+a8S/HkFruY4NOtHVmRUZaLGRUZv/T+plqtkz4hpcLrvzzZp6LJT04DIOec\n+UJoXmxClW1/k05PxqGTmPILylw//16hXFqzFYD0o2ewd3PB0af0ccinYyviNprvXl5cvQX/3kXr\n3PDxe4jbuAd9WmaZMXw6tSb3UiJ58cnm8l+lDm+2/v37diV+/bZS0+s/OQC49dp+asRhy/6eefQ0\nToVtClVF4+yIYqdB4+iAWmCwiuXXK5SYYtte6+6CYxnnIO+OrYjfZO4Mx6zZgl8vc9z0w6cxZJnv\nKqUfOYOTn1epvD4dW5N7KQFdfDIerUIqpfzG3KLzmp2TY7n1X5x7iyboLsWhj01ANRhI2rAN7+5W\nNybw6tGJxL/DAcg6dgo7N1fsvT0BcPD1xqtrBxL+XG+VJ33PQSjcFlnHInHw9S5zfaDy2p4+Od1y\nB82YqyM7KhYnP88qi2+Vt0TbrzFMmmr9p6rqElVVOxT7W1KiBDFAcLHPdQunFdcB+ElRlGhgMPCF\noiiDbqbapPMmKp2jrxe6hKIDii4xBSdf65OPfW13DFm5lhOjLjHVkuZa8pfk27MD+qRUABQ7jeX/\nFR2/2ZQRnP78e1Ctv7QCNH7hCfOyPWpZhovpE1NxLHGScfT1QpeYYvmsT0zB0dcLp1LTrfPWHXIf\nnb7/gBazx6J1d7VMr9UqhM4/LKDzsg8Lp5Ret6ph3fmryLJfjV+/bmSfjq7y+Jfz+fXrRsK6bYUx\nbj6mg1dt8lPSAchPScfBq3a5ZS6+DADnIH98uoeSuudIpcQvvr+dfO8rSxsCcKkfRKdv36fByEer\nZN+31MVdXQDQFfsiU5X7X1mc/LzISyhapvkYY/1Fz97DjYKsnBLHIXMaJ19PAu7qwPkVG8qNEXR3\nF2L/2VEsxpXLcDPl92jbgvzUDPIuxpdaD68ubaw+34ptP/DBuyx3fRM37cKUp6f76q/ovvJLzi/7\n0yqtk68XuhLb3tGv9DnIetunlNlJCx7Ym6QdB0uvz93dLNu+5H5VkeVv9MKThK38koB7epQ5DNqv\nXzerzw6+XugTi7XDpBQcSpx/HX28yC+WJj8xBUcfc5pGE58l6sv/K/Mce5n/A/1I27W/3PlV0fac\nA32o3bw+6UfP2iR+ybYvqsweoImiKA0VRXEAngBWFU+gqmpDVVUbqKraAFgBvKiqaulxzNdBOm/i\nlqNxdKDhMw9zdnHpE0tF8glrT35qBlknSz8/B3B20U8A5F6Kp+7geys0dsxv69jx6Hgihk1Hn5JO\nk4nDLfMyj51h91NT2TPq8htrb69mXqtVCCZdPvqElKsnrgQOHrUw6fItd38qRYkvMlcqs1eXNlz8\nZS26wqFkFR2/+P5Wf/jDaBzsLfMSw3ez74VX8WjbgtptmlVI6Cvt+wCuDevSeNzNDvmtflpOG8aJ\nT38q90usorUjoFcosRt2V8n6+N/dnYQy7rrVahWCKd9QRo7KV1Vtv8GIR1ANJuL/3mqJq5pMbBsw\nhu2PjKPeUw9WSlyv0JbUfeguIj//0Wq6orXDr2co8Rsrf9ufW/Qj2weOJf6fraXOa5frv6J4dutA\nQXoGOZGlO0SX1R0+GNVoJGld6ecMK8rV2p6dsyOh70/m2AffYSg26qaq4ld12xdFVFU1AOOBf4AT\nwC+qqh5TFOUFRVFeuHLuGycvLKkkheNixwAsXryYMWNuZJjsrUGfnI6Tvw8QCYCTnze6YnfCAAoy\nstC6u6DYaVCNJpz8vCxp9EmpV81fnEtdf1wb1qXXP0sB0DjY0+r1cex88iXyUzMqLL5fn8749uyA\nT7d2aBwd0Lo60/qNCRx9w3rMv0mfj99dnYla+guOfl7ok6y/WOiTUnHy8yaj8LOjnzf6pFQUrbZo\nWA5Y5c1PzbBMj125gTYflP5pkaKhcx5A+fVVeaxPYhVV9qvx7xdG/PptpbZxVcTXJaXi1qQ+MX8U\nXSGtqO3t4O1hvuvl7UF+iaEzxctcfBlgvnJ+8ee1lRofzPubMU+Ha6Ngy4sknPy8MebqSFi3jaBB\n/UneuqdC6uKykvu+o68Xd743neNvfU6HJXOvug0rY/8rrv6Q/tR72PzcUsbxczj7e5NWOM98jEmz\nSl+Qno29u2uJ45A5jUeLhrR/ZzwADh7u+IW1wWQ0khC+DwC/sLZknIwmP7Vo21RW+RU7DX69OxHx\nzCulyuzfL4yUnQeo+8jdlRL7Sqqi7Qc+0BufsFD2j3/TMi3g7u6k7DyIajRSkJZJxuGTuNYPImzZ\nO4B52zv5Fy3Tyc8LfWLpc5D1tvdGVyyNe0g97pgzhj2T3qUgw/pRAd9ubck8GWVpGyX3q8qo//h/\nttF2wUyilv5imXa5/kNCnrJMy09KxdHPp2h5vt7kl9g++uRUHIqlcfDzRp+cinfvrniFdcSzSyga\nB3vsXF1o+upkTr39MQB+9/XBq1sHjk56rdT6VVXbU7R2hL4/mZi/tls9b2brtl9T3Ao/0q2q6lpg\nbYlpi8pJO6IiYt5el+SrUPFxsrdzxw0gaUsEgff1BKB26yYYsnMtQ7CKS9t3DL8+5uFOQQ/0JmmL\n+UCYtHXvNeW/LPvsRf7t8wwbu5uvvuenZZJ1+jz5qRkVGv/MFz+y9cGxbHt4PEfmfEzq3qOWjptL\ncIBlua4N66JLSEHRavHvH0byVusHipO27iXg/l4A1GpVtPysE2dwCQ7EKdCvVN7iz+z59upkucvj\nFOhneWGEU8Dlk2H5b+CqXClF61SBZb8iRcGvbzcS1m8n68SZKo+fdfIsjn7epB86iaI1XxuriJjJ\nW/cSeH9vAALv723dCSpR5svLuOzku4srLX7J/c21fhC6uCTLNJfgQJzrBuDTvQNO/t6Vuu9r3Vxo\ns2AmZ75YRsbhSEv8Kt3/Sji/fL3lhQLx4Xup+0APADxah2DIzkOfXPo4lLz3OIF9zc8UBg/oScJm\n8xe0TQ9NYdODk9n04GTiNkZw9N3/Wb68AQTd05WYv62HTVVW+T073klOdKzVcHTAsi+e/8E8bPBW\na/teXdpS/+mBHJr+HiZ90R0mXUIynh1aA6BxcqR266YAlpeJJITvpY7Vts9FX8Y5KGXvMQL6mJ8H\nq/NATxK3mLevk7837f4zhUOvLyT3QulhqoH3dCN2XdG2zzh+tlLK71zsvObbswO554s9f1is/ovL\nOnka5+BAHAuX59uvO6nbI6zSpG6LwO/e3gC4t2qKMTuHgpQ0zi/+nj2PjGbvkDFEvvEhGfsOWzpu\nHp3bUfephzk+Y77Vtrisqtpem1efIzsqhqhlf9kkPpTd9sWtTe68iUqXvP0APt3aE/brpxh1+Rx/\n+wvLvHYfzeD4vMXok9M4/fky7pg7mZDnnyDrVBQxqzZdNf8db0/Cs31L7D3c6fHnl5xd8guxf/5r\nFd+kz0cXl1Qp8csTMm4orvUCAciLScC1fhBdfvqIuNX/khN1yfI2spjf15OyYz8+3drRdcVnmHT5\nHJ+7EDC/ySryg69p98ls0GgsecH8ymr3Jg1QUdHFJVm+oHu0aU794YNQDUaKXmykv+Ztddm0qb8S\nEXGe9LRc7ur5EeMn9ObRIe2ucynmIR4l1/9my+7bqxNNXxqFg0ct2i6YSdapaMubNT3atUCfmGw1\nRLAq49e+sxl5F+NpOesF0Jg7MBURM/rb37lj3lSCHuqDLj6JI7M/spSvZJkjP/ia9p8XXYlu9cZE\n7Gu7k7b/KMff/LxC45fc306+v5SCjCw0hS8zUBXo8sMCTPn5nF/2Z6Xu+3WH3ItL3QAajhpCw1FD\nADiz+Mcq3f7dfl+I1sXF8jMRbg3rkB1lvgOeuO0gfmFtuWvlAoy6fA69UdSp7vTJdA69/RX65HRO\nfvoj7edPoNmLQ8iIPM/FP8K5GjsnR3w7t+bI/K+tppdVhpstP4B//7Ayh0xa9sVL5g7Grdb2m730\nLBoHLe0+fRWAjKOniPzPV1xa8Q8t5rxI5x8WoCgKsav/pcmEYZb1SNp+AN+wtvT6/WOMOj2H3yra\n9qEfv8zRuV+hT04j8vMfaTtvAk3GPkZmZDSXVprPZSGjH8GhthutXhllXkeDiR3PzLZse59Od3Bs\n/lLLMi8/N1XR5Q95cSgu9YJQVRVdfBKR731VetuXHJ5tNHF2wVe0XvA6aOxIWLOB3KiLBAy8B4D4\nlf+QtnMfnl1DCf15ESadntPzPy21b5XUeMoYNPb2tP7IfAc061gkZz8o82ZHpbU9z7ZNqTugB5mn\nL9DjB/NbryMXln5cwxZtX9zaFPUKD4GKCnNbV/L6zo/ZLHb/3b/YPP7GLkNsFr/vruUYWXb1hJXE\njqE2L//tGr/vruUANo1/u9b95firQ2337N2AfctsXv7bPf5fHZ+0Wfz79vxo82PPtu439UK9G9Z9\n2x82b3u2js9N/dJr1cmaHlytvx+7v3+xWtaj3HkTQgghhBBCVClVrZZ9o2pPnnkTQgghhBBCiBpA\nOm9CCCGEEEIIUQPIsEkhhBBCCCFE1TLJPaQbIbUmhBBCCCGEEDWAdN6EEEIIIYQQogaQYZNCCCGE\nEEKIKqWa5G2TN0LuvAkhhBBCCCFEDSCdNyGEEEIIIYSoAWTYpBBCCCGEEKJKyY903xi58yaEEEII\nIYQQNYCiqqqt1+F2IJUshBBCCCGqQo24pZU+qVG1/n7s8cm5almPMmxSVLrEUa1tFtvvm6Ns6jrY\nZvH77FzByQG9bRa/+epwNnYZYrP4fXctx8gym8W3Y6jN4+/s+ZBNYnfdsgqAAtO3Nolvrxlu87rf\n2+d+m8XvsGmtzduerbY9VI/tb+v427oPsln87tv+sFn57RgKwKrQoTaJ/9C+ZWzvMdAmsQHCtq60\neduvMeRHum+I1JoQQgghhBBC1ADSeRNCCCGEEEKIGkCGTQohhBBCCCGqlPxI942RO29CCCGEEEII\nUQNI500IIYQQQgghagDpvAkhhBBCCCFEDSDPvAkhhBBCCCGqlKrKM283Qu68CSGEEEIIIUQNIJ03\nIYQQQgghhKgBZNikEEIIIYQQokrJTwXcGOm8CZtxaB2G21MzQLFDt/VXctd+bTXfscsDuN73LCig\n6nLJ+u5tDBcjAXDu9zTOPR8FRSFvywry1n9/3fG9urSlyeSRKHYa4lZt5Px3f5RK02TKKLy7tcOk\ny+f425+TfSoKgOazX8SnWyj5aRlEPD31BkoPru074TdmPIrGjvR1a0hd8YPVfIe69Qic/AqOjZuQ\n/O3XpP7+s2WextWNgInTcazXEFCJ++Q9dCePl1vOplNGomg0xJZTzqZTR+LdtT1GvZ4Tby8kKzLq\ninn9+nSh4ejHcG1Qhz2jZpJ18hwA/vd0p/7QgSWW7gmkXVfdzJ65is3hp/DydmXV6rHXlbciVEZ8\nj07taTBxNIrGjoQ164hd9mupNA0mPodnlw4Y9XrOvvMxOafM9dru568w5eWhGk2oRiNHxrwEQJM3\npuMcXAcAOzdXjNk5HH528lXXZdvWs7w7fx1Gk8qjg9sy+rluVvMzMvJ4dfZqLl5Mx9HRjrfnDqBJ\nUz8Avvs2gl+XH0RVVQYPacewZzpdd11s3XKGd+b9g9FkYvCQdjw3pnup+HNmreLihTQcHbXMnf9Q\nUfz/283y5ftRVRgypB3DR3S5ppi1OoZSb/zzoNGQvPYf4n9cXipN8Pjnqd25Iyadnuj/LCD39FkA\n/B4ZiO8D94CikLTmbxJ/XQlA3edHUbtrZ9QCA/q4OKLf+whjTo5leZXR9gDqDrmXuo/ei2oykbJj\nP2c+Nx//3ELq0fyV57FzdS5MqQFMpWLaevtfyS3Z9ju3o9Gk0SgaDQmr13Pp+99KpWk0aTSeXUMx\n6fScmv+ppe0DoNHQdukH5CelcPyVeVb56jwxkIbjR7LrgWEYMrJuel0rq/5bTx+Of1gbjLp8Dryx\nmIyT0aXSuAT5EvrOeBxqu5F+Ipr9r36BajDiHdqCTgumkhuTBEDcv3s49dXvRRk1Cr2+m0teUhoR\nkz8otVyPTu1oNOk5KKz/mDKOvQ0nPYdnl1BMej2n539iqf/QX5ZgzM1DNZnAaOLQcy9Z5Qt6fCAN\nx49i94Cnrerf9m0fJ0BXKqi4JciwSWEbigb3p+eQ/tFYUuc8hGPn+7ELamSVxJgUQ9p7I0h97RFy\n/lyE+zOvA2BXJwTnno+SOvdJUl9/FMc2vbDzC76++BoNzV4azaGp89j95BT8+nfHpUFdqyTeXdvh\nEhzIriETOPnuIpq9PMYyL37NvxycMvfGyl4Y33/sJC69/grnXnyGWr364BBc3yqJMSuThMWfkvrb\nz6Wy+48ZT86+CKLGDidqwrPkX7xQbqhm057l4JR57HpyCv53h+FaRjmdgwPZOWQCJ99ZTLOXn7Os\nY3l5s89d5MiMD0g/eMJqWQn/bCNi+HQihk/n2JufFU69vo4bwMOPtGHJ0qHXna+iVHh8jYaGU57n\nxPQ3OTh8HD59e+Jc33qf9egSilPdIA489Tzn3l9Iw6nWX5yOTZrN4WcnWzpuAKffeJ/Dz07m8LOT\nSd2yk9QtO6+6Kkajiblv/82XS55g1Z/Ps3bNMc6eSbJK89WSHTRv4c/vK59j/rsP8e47683xTiXy\n6/KD/PjLSH794zk2h5/mwvnU66oKo9HE3Lf+YvHSp/hzzYusXX2MMyXiL1m0jeYtAvjjzxd4571B\nzJ/3tyX+8uX7+Xn5aH5f+Tzh4ac5fy3xNRrqTXqRUzNe49jIF/Dq0wunEvVfu3MHnOrU4eiw0Zxf\n8Cn1Jo8HwKlBfXwfuIcTL07h2OhxeHTphGNQIACZ+w5wbNRYjj83Dt3FGAKeesxqmZXR9jzbt8K3\nZ0d2D5vG7qemcn7ZKgAUOw0t35jIyfeWsPupyxeU1LLr34bb/2puxbbfeOrzHJv2FvufnoBvvx44\nl9gPPLuE4hQcyL4nxnLm/S8ImfaC1fygIQPIPX+p1KId/Hzw6NgWXXxiha1uZdS/X1gbXIMD2Djo\nJQ7N/Zo7Z44sM12LiU9wdtlfbBz0EgWZOdQf1NsyL+VAJJufmsXmp2ZZd9yARk/eS1Z0bNnBNRoa\nTX2eY9Pe5MCw8YX1b932PbuE4lw3kP1PvsCZ/yyk8UvWx96jk+ZwaNSUUh03Bz8fPDq1K7P+bd/2\nKSi7QsStoNp23hRFaaAoytEypi9VFKVlGdNHKIryeQXEDVIUZcXNLkdcmbbRHRgSL2BKugRGA/rd\nf+HYto9VGsPZg6i5mQAUnD2MxtPfnDewEQVRRyBfByYj+ZF7cWzf77ri12oZQu6leHSxiagGA4kb\ntuPbs6NVGp+eHYn/KxyAzGOn0bq54ODtAUD6wRMYMrNvpOgAODVtTn5cDAUJcWAwkLkI9YNuAAAg\nAElEQVRlE25dwqzSGDPS0Z2OBKPRarrGxRXnVm3IWLfGPMFgwJRT/rrkFStnwvrt+PTsYDXft2dH\n4tduLlZOVxy8PajVMqTcvLnRMeReKOdkWSigf9gV519Jh471qV3b+eoJK0lFx3dr0QRdTBz6uARU\ng4HkjVvx7N7ZKo1X984k/fMvANnHI9G6uWLv7XnNMbzvCiN545arpjtyOJZ69bwIDvbE3uH/2Tvv\n+Car9YF/T9I23XQlbYECQsuwIKPsLeDALcJ1L5YLZAgqigsQ9HevgDgB9XpVrnrRq6KAlyVThmXL\nXm0pXUnadCdpkvf3R9q0aVpakJKi5/v59PNp3jzPec55zvuc8573jKgZftPVbNhw3E3m1Ek9vXq1\nAqB16yjOnTNhMBRx+rSRTtc0JSDAFx8fFd17tGDd2mP1zqPT/jlatAwnLi4cPz81w29OZMN69zRO\nndLTq3e5/TZRZJzLx2Ao4tQpA9dc08xlv0ePlqxbc6QGK+4EtW+L5VwG1swsFJuN3A2bCevbx00m\nrG9vjGvXA1B8pNz/EeEEtIyj6MgxHBYLOBwU7v+d8AHOe7sgeS84HOU6R/HTRrml2RCx12zE9aR8\n9j1KmQ2AsjxnGxnRszNFJ1MpOplaxYLn4M3b9V8Xf7bYD+mQgDk9E0uGM/b167YSWT32B/Qk5+eN\nABQeOo66Suz7aSOJ6NOd7B/XeqTdeuJoUj74V03VfNE0hP9jBiWRvnILAHm/n8Q3OBBNVJiHXFSP\nRDLX7wLg7E+biRnc3UOmOv66CKL7dyHt+19q/D6kQwLmc1mutle/fgsR/d1niyP69yTn54q293i9\n296rJo4h5f1PQfGsAO/HPu4PDo0URVE16r/GSuPNWS0oijJWUZSa14f9QYQQPoqiZCiKMrIh0pdU\nog7T4cjNcn125GWjCtfVKu8/YATWg1sBsJ07iW9CN0RQE/DzR9NpAKqImAuyr9FGYMkxuD5bcoxo\ntBHVZCIxZxsrZfS5aLSRF2SnNnwjtdj0lW+7bQY9vpHa+ulGx2IvMBE7+Xlavb2UmInTERr/WuXN\nOVXKkONZBo02opqM0xf+HtcvrPy6YX3rFvqL4BcV6Xa/WfUGD1/6RUVizdFXkTHiF1Upc/X82XRa\nOh/drTd4pB/SOZGyXBPm9Mw685KTU0hMTIjrc3R0KDnZ7sut2rWPdj2UHzxwjsyMfLKzC4lP0LJn\n91lMeSWUlpaxZfMpsrIK6rRZlezsQmJimrg+x9Rmf81RAA4cOEdGhonsrAIS2mrZvTvNZX/z5hNk\n1sO+07dV/G8w4FfN/75RUdX8b8A3KorSM6mEdOqIOjQElUZDk17d8dW5D9IAooZfT/6uZLdrDRF7\ngS2aEta5A90/nku3918jpEOb8uuxoECXhS/S419v1uoLb9f/Xw2/6n2N3ohf9b4mKsL9/swxooly\nyrR+egxnPviXxwAhon9PrAYjxSdTGi7zlwh/XQSlVfrS0pxc/LXugyO/sGBshcUodkeNMhHXJDD4\nq3n0WvQsIa2bua53fOZBDr/9JYqj5hGsn7Za7OuNaKIiPWTc68hQKaNA4oJZdP7oLaJvvb4yP/17\nYtUbKTmVUqPdxhj7kj8PjX3Pm48QYhnQDTgEPASsAqYpipIshHgUmAGYgP2ApbaEhBCf4lz/2x0I\nBaYqivKTEOIRYAQQDKiFEA8DPymK0lEIoQbeBG7EuXFgqaIo7wghkoD55ToG4BFFUep+apJcFL7t\nexAwYAR58x4EwJ55mpLVnxD2zBIUSyllZ4+B4rmv48+KUKvxb9OW7A8XYT5+BN34CUSOug/DF594\nO2suQhPjcZit3s7Gn4ZDTz2H1ZCLT1gTrp4/i9K0dAr3H3J9HzV0IIb1Wy6ZvbHj+vLG3DXcdedS\nEhJ0tO8Qg1olaNMmitFj+zB+7JcEBPjSrn00KtWl33A+bnx/5r7+M3fevpi2bXV06BCLSq2iTRst\nY8f2Y+yYZQQE+NK+fQxqVcO+gzSnnSXrq+W0/b85OMwWSk6dds22VRB7/90odju562p++38pEWoV\nvk2CSR7zAqFXx9Pp9an8OuIphFpNWOf2/Pbo89jNFq7dtAxBDApZdSdaDW/Xv8RJeN/ulJnyKT52\niiZdO7quqzR+xD00kt+nvOq9zF1G8o+msPbmp7GXWtD160yPt6ay4c5niB7QFUtePvlHU4hM6tAg\ntg8+9TxWQy6+YU1IXPAapWnpFB09SfMHR3Fo6isNYrM2LiT2gaHA+suaQcllo7EP3toBYxRF2SaE\n+AR4suILIUQs8BqQBOQDvwB760ivFdATaAP8IoSIL7/eDbhGUZRcIUSrKvLjy3W6KIpiE0JECCF8\ngXeA2xVF0Qsh7gZeB0ZXNSSEGF+uz+LFixk/fjySSuymHLfZMlV4NI48z3Xj6uZtCX1kFqYFj6MU\n57uum7f8F/MW56bvoBGTcORd2AOKRZ+Lpsrbc40uEos+t5qMEf/oSCqsarQRWPRGLgVlRj0+2sqZ\nNp8oLWVG/Xk0quga9NgMeszHncvFCrdtInLkfbXK++sq3/hpdJ5lsOhz8ddVKWe5L4SPT526tRE9\nrB9Za7cSH197vv5KWA1Gt/vNTxvl4UurwYifTgscKZeJxGowln/nvDdtpnxyt+wguENC5eBNrSJi\nYB8OjptSr7zodCFkZVXOtGRnF6CLDnGTCQ7WMGfurQAoisINw96jeZzzLfhdI7tw18guACxc8Asx\n1XTrIjo6hKysyljOqsX+3Hm3u+xfN3QRcRX2R3XlrlFdAVgwfz0x0aF12nT6tor/o6KwVvN/mcFQ\n7v9yGW0UZQbn23jD6jUYVq8BoNmYh7HqK9/SR94wjCa9e3J82gsedhsi9iw5ueh/2QlAweGTKA4H\nvmGhWHKMmPYepqzKoQmCSI/Bm7fr/6+GtXpfo43EWr2vMeS635+6SCyGXCIH9yGiXw/Ceyeh8vNF\nHRRI25cmk77sOzSxOrp+utCVZpdP5rN/3HTKck2Xp2D1YNC/5wJgOnyagOjK+zlAF4FZ774X2moq\nwickCKFWodgdbjK24lKXXM62/aieV+MXFkxE57bEDEwiul8XVH6++AQH0G22+341q75a7GsjsRiM\nHjIaXRQVUaHRRrlkKtreMlM+xs07CO7QFlthMZpYHV3+udAl3+XjBewfP83lf2/HPs7n2sY/eJOn\nTV4UjX3Z5FlFUbaV//8FUPVIsl7ARkVR9IqiWAHPUx08+Y+iKA5FUU4Ap4H25dfXKopS067rYcBi\nRVFsAOUy7YCOwFohxD5gJtC8uqKiKEsURemuKEp3OXDzxHbmd3yiW6CKagZqHzS9hmPZ5/7WWhUR\nQ5OnFpK/dAb2bLe13IiQCJeMJmko5h2rLsh+4ZGTBMbF4h+rQ/j4oBvWD8OW39xkDFuSiRk+GIDQ\nxATsxSVYjZemYzQfP4Zf0+b4RseAjw+hA4dQtPPXeunaTbmUGXLwa+bcdB3UOQlLWmqt8lXLGX1d\nPwxb3Jd26bckE3PTIMBZTluRs5zVfVSTbo0IgW5oX7LXbqtb9i9C0dET+DdviiY2GuHjQ9TQAeRt\n2+kmk7t1F9obrgUg+Op22ItLKDPmofLXoApw7kFR+WsI69GF0tOVB9SEJXXBnJbuMRipjY6dmpKW\nmkt6uokyq53Vqw5z7bVt3WQKCsyUWZ1bJr5dvo+k7i0IDtYAYDQ6T1PMzMhn/dpj3HRLRy6Ejp2a\nkZqSS/rZPKxWO6tXHuLaIZ72reX2v1m+l+7dW3rYz8jIZ92ao9x8a6c6bRYfPY5/s6b4xTj9HzFk\nIKbtO9xkTL/uJPK6oQAEdWiHvbiYslznw6NPmHOZp59OS9iAvuSu3wg4T7CMuXskJ2e+5twTV42G\niD395l2EJzl9HhAXi8rXhzJTAcad+wmKb4FK44dQO7t2Bc/2ytv1/1ej8OgJAuJi0ZTXpXZYf3K3\n7XKTyd26C92NgwEISWyLvaiYMmMeqYu/4LcRY0keNZ5jr75F/u4DHJ+9kJLTqey69RGSR40nedR4\nLHoj+0ZPbVQDN8B1wEjmxmSa3zwAgPCO8ZQVlWIxeObVmHyY2KHO/Whxtwwka9NuADSRlcuswxJb\ng0pgNRVx5N2vWXvTRNbdOpndL7yL4bfD7HnpA7c0C4+eIKB5Ff8PHUDu1mr+37YL3Y0VbW9bbOX+\nV/lrULu1vV0pOZ1KyelUfrvtYXb/bTy7/zYei97AvjFT3Pzv7dgHGmR7kaRx0Nhn3qovYv6j23Jr\nS6+4uuB5EMAhRVH61CkpqR2HncIv5hI2dTFCpaZ063fYM07hP9h5Wpt5438Iuu0JVMFNCHlwpksn\nb9bdADR5agGq4DAUu43CL15HKb2wI5IVu4Pjb31El4Uzncfx/rSB4jPpNL3TuaY947s1GH/dQ2Tf\nbvRZ/q7zKN8577v0E1+bTFi3RHzDQuj7w2LOfPQ1mT9uuKDyZ3/4NnGz/g4qFflrV2NNSyFs+G0A\nmFavQB0WQauFi1EFBoJDIfz2kZx54mEcpSVkf7iI2GkzET4+lGVlkrnwjVpNHfvHx3R9+0VQqcj8\n6ReKz6TT7M7rADj33VqMv+4hqm9X+nzzjvMnEea85/JRTboA2kE9afvMaPzCQukyfwaFx1PYN9l5\nhHVY1w5YcgyYMy7+BLRpU79l165UTHklXDtwARMmDnbNtlwOLrl9u4MzCxfT4R+vIlQqclatozTl\nLNG33QhA9oqfMe1IJrxPEl2/XIzDYuHkvEUA+IaH0e5156yOUKsxrNuEadceV9KRQwdgWFf3QSUV\n+PioeGHmDTw29kvsDgd3juhMfIKWr79yPijdfU8Sp08ZeHHGjwgBbeK1zJpzs0t/yqRvMZlK8fFR\n8eJLNxAaWvt+y9rsv/jycMaNXYbDrnDnXV1ISNDx1ZfOB5R77u3O6VN6Zjz/AwJBfIKW2a/f6tKf\nNPE/mEyl+PqomfnK8PrZdzhIe+cD2r45B9QqjKvXYE5JQ3vrTQDof1xF/s7faNKrBx2/+Lj8pwIW\nuNTbvPoiPqGhKHYbaW+/7/o5gBZPP4HK15e2f3fe+0WHj5G2sPLcrIaIvYwff6HDzCfotewtHDYb\nh2c5dWyFxZz98id6/PMN1/4ohXM1+t+b9V8Xf8bYPzV/KR3nvwIqNdkr11Fy5iwxtzv3rmb98D/y\ntu8mvE8SSV9/iMNs4cTcRZeoNBdOQ/g/Z+s+ovt1YegP810/FVBBr7ens2/2UiwGE4cXfUnS3Il0\neHIU+cdSSft+IwCxQ3vSauQwFLsdu6WM3TMu4Gw6u4PTC5aQ+NaroFKRs3I9pSlnibnd2fZm/fCz\n0/+9u9PtK6f/T85znpTsGx5Gh7kzAGfbq1+7GdOuuhZ4OfF27AMr6+8kyZWGUGo4JacxUL588QzQ\nV1GU7UKIj3CuJ7oVmAacA3bgnBouADYA+xVFmVBLep8COuAW4CpgExAP3AN0r9Art1ux5+1xnLNv\n91QsmwSKcL7ReLA8X75AW0VRDlE7jdPJl4mc0d57M6v75Hc29PHe+TNDtn/D0VsGe81++582sr73\nKK/ZH7pjOXaWec2+mvu9bn/7wNu8YrvPZucx0mWOz7xi31f1kNd9nzzkJq/Z775hlddjz1t1D42j\n/r1tf2v/O7xmv//W771WfjXOnxpYkeSdn3y4bfcytg2o/nujl49+W37weuzjnGho9OjHJjbq52Pt\nR4capR8b+7LJY8BTQogjOH/p1zUfXn5AyKvAdmAbFRtFzk8asAtYDTyuKEpdP2D4UbnOASHEfuC+\n8iWaI4E3y6/tA+SxehKJRCKRSCQSiaRBabTLJhVFSaFyT1pVBleR+SfwzwtIdp2iKG6/fqkoyqfA\np9Xsdiz/3wZMLf+rqrMPGHgBdiUSiUQikUgkEonkD9HYZ94kEolEIpFIJBKJREIjnnm7WIQQLwLV\nFxsvVxTlES9kRyKRSCQSiUQikVRDkT8VcFH86QZviqK8jvN31yQSiUQikUgkEonkT4NcNimRSCQS\niUQikUgkVwB/upk3iUQikUgkEolE0rhRFDmHdDFIr0kkEolEIpFIJBLJFYAcvEkkEolEIpFIJBLJ\nFYBcNimRSCQSiUQikUguK/K0yYtDzrxJJBKJRCKRSCQSyRWAUBTF23n4KyCdLJFIJBKJRCK5HFwR\nU1pZD3du1M/HMf/a3yj9KJdNShqcnNEdvWZb98nvbOgz0mv2h2z/hqO3DPaa/fY/bWR97+q/WX/5\nGLpjOXaWec2+mvu9bn/7wNu8YrvP5hUAlDk+84p9X9VDXvf97qHDvWY/af1qr8eet+oeGkf9e9v+\n1v53eM1+/63fe638au4HYEXS/V6xf9vuZWwbcLtXbAP02/KD12P/SkFRGuXYqNEjl01KJBKJRCKR\nSCQSyRWAHLxJJBKJRCKRSCQSyRWAXDYpkUgkEolEIpFILity2eTFIWfeJBKJRCKRSCQSieQKQA7e\nJBKJRCKRSCQSieQKQA7eJBKJRCKRSCQSieQKQO55k0gkEolEIpFIJJcVxSH3vF0McuZNIpFIJBKJ\nRCKRSK4A5OBNIpFIJBKJRCKRSK4A5LJJiUQikUgkEolEcllRFDmHdDHIwZvEa/h17Efwfc+DUGPe\n8i0lqz52+17T+2aCho8BAYq5hMLPZ2M7ewyAgGEPEDDwLhCC0s3fULr2i3rZjOjdhYTJjyLUKjJX\nrCf18+89ZBKmjCayb1ccZiuHZ79L0fEzALR/8Umi+iZhzctn1wNTXfLaIX24aszfCGrVjOQxMyg8\neqpeeQnq1hPd+AkIlRrTmpXkfvNvd/80b0Hs5OfQtEnA8NnH5H73tes7VVAwMU9PR9PiKkAh8+03\nMR89XGuZ2055FKFSkVFLmdtOfZTIPt2wWywcmf0ehcfOnFdXN6Q3V411lvm30TMoPHoagOgb+tPy\n/turpR4O5NXLJxW8OGMFmzYeJyIyiBU/PXFBupeChrAf1rMbrZ4ei1CpyV65hoxl33rItHp6HOG9\nu2O3WDg1byHFx51+VQcH0ebZCQRe1RIFhVNvLKLo0DEiBvcj7tF7CWjZnIOPTaP42Ml65WXrllO8\nMXcNdofCXSO7MHZcX7fv8/NLeenFnzh71oRGo2b2nFtIaKsD4PPPdvHt8n0oisLIUV158OGeF+yL\nLZtPMu/1/2F3OBg5qivjxvf3sD/zhRWcTctDo/FhztzbKu3/ayfLl+9BUWDUqK489EjvetkM7ZFE\n3FOPg0qFYdXPZH+13EMm7qnHCe3VA4fFQsr/vUXpCWcs60bcTtRNN4IQGFb+TM5/nXEQ+9D9RN18\nIzZTPgDnPv4XBbt+c6XXELEH0HzUjTS/60YUhwPjr3s4+e4X+IQGc828ZwjpEE/myo3n9YW36/98\n/Cljv1dXWk8ai1CpyP5pLelf/NdDpvWksYT3ScJhtnB87iJX7AOgUtHlo39g1Rs5/NzrbnrN7rmd\nqyY8yo6bH8SWX/iH89pQ/u84/SGi+3XGbray99XF5B9N8ZAJbKolad4E/JoEYzqSwp6X3kex2YlM\n6kDP+VMpOacHIPOX3zi+9LtKRZVg0OdzKNXnsWvyPzzSDevZldaTxkG5/8/V0PZeNWkc4b2TcFgs\nnJj7tsv/Sf9Zgr2kFMXhALuD/eOecdNrevftXDVhNDtveaBW/1/OdkDy10AOeSXeQagIeWAmpgVP\nkDvzNjS9bkLdtLWbiF1/jrw3HyH35REU//ghIQ+/AoC6WTwBA+8id8695L5yF5rOg1Dr4uq2qVLR\n7pmx7J/6OjvvnYLuuv4EtmruJhLZpyuBcbHsGDWRo298SLtnx7u+y1r5C/umzPFItvhUGr/P+Dum\nfUfqX36ViugnJpH+ynOcfvJhQgcNwS+upXv5CwvIXryI3P9+7aEePX4Cxbt3ceaJhzgzcQzWs2m1\nmmo3bQz7przOjnunEH19P4JqKHNAXCzbR03k6LzFtHt2nCuPtekWnT7Lwef/4VHm7P9tZddD09n1\n0HQOvfZO+dULG7gB3DmiM0s+uv+C9S4Vl9y+SsVVUx7jyPTX2PfQU0QNHUhAS/d7Nqx3Ev7Nm7L3\nvsc4/ff3uGpq5YNTq6fHYdq5h30PPsmBRydRmpoOQOmZVI7NnEfB/kP1zord7mDO7J/5YMk9rPjx\nMVatPMSpk3o3maVLfqV9h2i++2Ecc9+4jTfmrQXgxPEcvl2+jy//8yjffj+OTRtPkJaae0GusNsd\nzJm1msUf3cePK59k1U+HOFnN/pIPt9K+Qwzf//g48968g7mv/+yyv3z5Hr5ePpbvfniMjRtPkFof\n+yoVLZ5+ihMzXuLw6MeIGDIY/5Yt3ERCe/ZA07wphx4aQ9r8RbScNAEA/1YtibrpRo48NZnD456k\nSe+eaJrGuvRyvvmeI49N4MhjE9wGbtAwsRfeLRHtwB7sfHAaO++bSuqyFQA4rGWcWvI1J9/5rG7/\ne7H+6+LPGPttpj7GoWmz2PPARLTDBhBQ7T4I752Ef1wsu+95gpN/f5/4aY+7fd901C2UlMd8Vfx0\nUYT16II5K+eSZbch/K/r15mguBjW3/EM++d8zDUzHq1RrsPT93Bq2WrW3/EMZQXFtLxjsOs7495j\nbLrvBTbd94L7wA1ofe+NFKZk1GxcpaL11Mc4NO019j44odz/7m1veO8kAprHsufexzn5f+/R5hn3\nQevvk2ayf/QUj4Gbny6KsJ5dz+//88RyBZeyHZD8NbiiB29CiI1CiO6XOM3HhRAPXco0JZ74tO6E\nLScNhz4d7DYsO1ej6TLETcZ2ah9KSQEAZacOoAqPdurGtqbszEGwmsFhx3osGU23YXXaDL06npL0\nLMwZOSg2GznrtqEd2MNNJmpgD7JWbwSg4NAJfIID8YsMA8C07wi2giKPdEtSz1GSVkvHUQv+bdtj\nzTxHWXYm2GwUbN5AcO9+bjL2fBPmE8fAbne7rgoMIiCxM/lrVjov2Gw4ij3zVUFplTJnr91G1ED3\nkNEO7EHWqk1VyhyEX2QYoVfH16pbklJ3mWOu63fe789H9x4tadIk4KL1/yiX2n5whwTM5zKxZGaj\n2GwY1m8hvH8vN5mI/r3Q/+8XAIoOH8MnOAjfyHDUQYGEdk4kZ6XzAVqx2bAXFQNQmpqO+ey5C8rL\nwQMZtGgRQVxcOL5+aobfdDUbNhx3kzl1Uk+vXq0AaN06inPnTBgMRZw+baTTNU0JCPDFx0dF9x4t\nWLf22AXaP0eLluHExYXj56dm+M2JbFjvnsapU3p69S633yaKjHP5GAxFnDpl4Jprmrns9+jRknVr\n6n5pEtS+LeZzGVgzs1BsNvJ+2URYX/cZu7B+vTGuWQ9A8ZGjqIOD8YkIx79FHMVHj6FYLOBwUHjg\nIGED6ndvN0TsNRtxPSmffY9SZgOgLM/ZRjrMFvL3H8VhLTtvnrxd/3XxZ4v9kA4JmNMzsWQ4Y1+/\nbiuR1WN/QE9yft4IQOGh46jLYx/ATxtJRJ/uZP+41iPt1hNHk/LBv0C5ZNltEP/HDEoifeUWAPJ+\nP4lvcCCaqDAPuageiWSu3wXA2Z82EzO47sc7f10E0f27kPb9LzV+H9IhAfO5LFfbq1+/hYj+7rPF\nEf17kvNzRdt73NX21sVVE8eQ8v6noNReAeeL5QouZTtwpaE4RKP+a6xc0YO3S40QwkdRlA8VRTn/\nq0vJH0YdpsORm+X67MjLRhWuq1Xef8AIrAe3AmA7dxLfhG6IoCbg54+m0wBUETF12tRoI7DkGFyf\nLTlGNNqIajKRmLONlTL6XDTayHqXq774Rmqx6SvfdtsMenwjtfXTjY7FXmAidvLztHp7KTETpyM0\n/rXKm3OqlCfHszwabUQ1Gadf/D2uX5gvdMP61i30F8EvKtLt3rPqDR6+9IuKxJqjryJjxC8qEk1s\nNDZTPm1mTOKajxbS+tkJqPw1F52XnJxCYmJCXJ+jo0PJyXZf7tOufbTrofzggXNkZuSTnV1IfIKW\nPbvPYsorobS0jC2bT5GVdWEPDdnZhcTENHF9jqnN/pqjABw4cI6MDBPZWQUktNWye3eay/7mzSfI\nrId936goyvRVfWvANyqymkwkVr17HflFRWFOSSW4UyLq0BCERkOTXj3w01bGqvbOW+mw9H1aTpuC\nOjjYLc2GiL3AFk0J69yB7h/Ppdv7rxHSoU2d5a+Kt+v/r4Zf9X5Hb8Sver8TFYG1avuQY0QT5ZRp\n/fQYznzwL48BQkT/nlgNRopPpjRc5i8R/roISqv0q6U5ufhr3QdHfmHB2AqLUeyOGmUirklg8Ffz\n6LXoWUJaN3Nd7/jMgxx++0sUR80DKD9tpLtv9UY01WLfTxtZrY4MlTIKJC6YReeP3iL61usr89O/\nJ1a9kZJTKecvez36UW+0A5Irm0Y5eBNCfC+E2C2EOCSEGC+EUAshPhVC/C6EOCiEmFJNXlX+veea\ntkqZIiHEgvI01wshtOXXNwohFgohkoFJQohXhRDTyr+LF0KsE0LsF0LsEUK0Kb8+XQjxmxDigBDi\ntVrsjRdCJAshkpcsWXLJfPNXxLd9DwIGjKBo+XwA7JmnKVn9CWHPLCFsyoeUnT0GisPLubx8CLUa\n/zZtyVv1AymTxuGwlBI56j5vZ8uN0MR4HGart7Pxp0Co1QQltCH7+9UcGDsZh9lMs/tHNqjNseP6\nUlho5q47l7Lsi2Tad4hBrRK0aRPF6LF9GD/2Sx4f9yXt2kejUl36t5PjxvenoNDMnbcvZtnnu+jQ\nIRaVWkWbNlrGju3H2DHLGD92Ge3bx6BWNWw3Zk47S9ZXy0l483US3phN6cnTzv0vgP7Hlfz+wGiO\njH+Kstxcmj8+rkHzAiDUKnybBJM85gVOvvs5nV6fWrfSBeLt+pc4Ce/bnTJTPsXH3PdRqzR+xD00\nktSPvvRSzi4v+UdTWHvz02y8ZwZnvv4fPd5y3vPRA7piycuvcf/cpeLgU8+zf5fLl0sAACAASURB\nVPQUDk+bReyImwjtfDUqjR/NHxxF2sf/rjuBBuJytAOSxktjPbBktKIouUKIAOA3YDfQTFGUjgBC\niKrz7T7AMuB3RVFe90zKRRCQrCjKFCHEy8ArwITy7/wURelenvarVXSWAW8oivKdEMIfUAkhrgcS\ngJ6AAFYIIQYqirK5qjFFUZYAFaO2S7io4c+B3ZTjNlumCo/Gkee5blzdvC2hj8zCtOBxlOJ813Xz\nlv9i3uLc9B00YhKOvCwP3epY9LlodFGuzxpdJBZ9bjUZI/7RkVRY0mgjsOiNXGrKjHp8qry994nS\nUmbUn0ejiq5Bj82gx3zcuVyscNsmIkfWPnjz11W+5dPoPMtj0efir6tS5nK/CB+fOnVrI3pYP7LW\nbiU+vnENKr2F1WB0u/f8tFEevrQajPjptMCRcplIrAYjKAoWvYGiI86lbcaNv9Ls/rsuOi86XQhZ\nWZUzLdnZBeiiQ9xkgoM1zJl7KwCKonDDsPdoHud8C37XyC7cNbILAAsX/EJMNd26iI4OISurMpaz\narE/d97tLvvXDV1EXIX9UV25a1RXABbMX09MdGidNssMBnyrxJufNooyg7GajBE/bRTFVWSsBufb\neOPqNRhXrwGg6ZiHKSufobPlmVz6hpWriX/d/V1eQ8SeJScX/S87ASg4fBLF4cA3LJQyU/1mwLxd\n/381rNX7HW0k1ur9jiEXv6rtgy4SiyGXyMF9iOjXg/DeSaj8fFEHBdL2pcmkL/sOTayOrp8udKXZ\n5ZP57B83nbJcE42FQf+eC4Dp8GkCoivv5wBdBGa9+15oq6kIn5AghFqFYne4ydiKS11yOdv2o3pe\njV9YMBGd2xIzMInofl1Q+fniExxAt9nu+9WseqO7b7WRWKrFvlXvbJ8rokKjjXLJWA3Ouioz5WPc\nvIPgDm2xFRajidXR5Z8LXfJdPl7A/vHTPPxvLo/xChpLO9BYUBT58udiaJQzb8DTQoj9wA4gDvAD\nWgsh3hFC3AhUvTsXU/fADcABVJz88AVQ9XgzjxMhhBAhOAeM3wEoimJWFKUEuL78by+wB2iPczAn\nuQBsZ37HJ7oFqqhmoPZB02s4ln3ua9ZVETE0eWoh+UtnYM9OdftOhES4ZDRJQzHvWFWnzcIjJwmM\ni8U/Vofw8UE3rB+GLe4HDBi2JBMzfDAAoYkJ2ItLsBovfWdoPn4Mv6bN8Y2OAR8fQgcOoWjnr/XS\ntZtyKTPk4NfMuek6qHMSlrTUWuWrljn6un4YtiS7fa/fkkzMTYMAZ5ltRc4yV/dXTbo1IgS6oX3J\nXrutXuX5K1B09AT+zZuiiY1G+PgQNXQAedt2usnkbt2F9oZrAQi+uh324hLKjHmU5Zqw5hjwj3Mu\nFWqS1JnSlLMXnZeOnZqSlppLerqJMqud1asOc+21bd1kCgrMlFmdey2/Xb6PpO4tCA52LtU0Gp3D\nm8yMfNavPcZNt3S8QPvNSE3JJf1sHlarndUrD3HtEE/71nL73yzfS/fuLT3sZ2Tks27NUW6+tVOd\nNouPHse/WVP8Ypz+D792EKZfd7jJmH7dQeT1QwEI6tAee3Extlznw6NPmHOZp69OS3j/fuSu3+i8\nHlG5rCusf19KU9zjsCFiT795F+FJTp8HxMWi8vW5oAc2b9f/X43CoycIiItFU16X2mH9yd22y00m\nd+sudDcOBiAksS32omLKjHmkLv6C30aMJXnUeI69+hb5uw9wfPZCSk6nsuvWR0geNZ7kUeOx6I3s\nGz21UQ3cANcBI5kbk2l+8wAAwjvGU1ZUisXgmVdj8mFihzr3o8XdMpCsTbsB0ERWLrMOS2wNKoHV\nVMSRd79m7U0TWXfrZHa/8C6G3w6z56UP3NIsPHqCgOZV/D90ALlbq/l/2y50N1a0vW2xlftf5a9B\nHeDc/6fy1xDWoyslp1MpOZ3Kb7c9zO6/jWf338Zj0RvYN2ZKjf6vTz/qjXZAcmXT6GbehBCDgWFA\nH0VRSoQQGwEN0Bm4AXgc+BswulzlV+BaIcRbiqKYL8BU1dmw4lqlasgiME9RlMUXoCOpjsNO4Rdz\nCZu6GKFSU7r1O+wZp/Af/DcAzBv/Q9BtT6AKbkLIgzNdOnmz7gagyVMLUAWHodhtFH7xOkpp3Uck\nK3YHx9/6iC4LZzqP3f1pA8Vn0ml6p3Mde8Z3azD+uofIvt3os/xd55G9c9536Se+Npmwbon4hoXQ\n94fFnPnoazJ/3EDUoJ60nToGv7BQOr81g8LjKeyv4VTK6uXP/vBt4mb9HVQq8teuxpqWQtjw2wAw\nrV6BOiyCVgsXowoMBIdC+O0jOfPEwzhKS8j+cBGx02YifHwoy8okc+EbtZo69o+P6fr2i6BSkfnT\nLxSfSafZndcBcO67tRh/3UNU3670+eYd588jzHnP5a+adAG0g3rS9pnR+IWF0mW+s8z7Jjvfn4R1\n7YAlx4A54+JPQJs29Vt27UrFlFfCtQMXMGHiYNdsy+Xgktu3OzizcDEd/vEqQqUiZ9U6SlPOEn3b\njQBkr/gZ045kwvsk0fXLxTgsFk7OW+RSP/P2EhJemorw9cWSkcXJeW8DEDGgN60mjcc3rAnt33yZ\nkpOnOTLt1fNmxcdHxQszb+CxsV9idzi4c0Rn4hO0fP2V80Hp7nuSOH3KwIszfkQIaBOvZdacm136\nUyZ9i8lUio+PihdfuoHQ0Nr3W9Zm/8WXhzNu7DIcdoU77+pCQoKOr750PpTcc293Tp/SM+P5HxAI\n4hO0zH79Vpf+pIn/wWQqxddHzcxXhtfPvsNB2jsfkPDmHIRKjWH1GsypaUTdchMAhp9WUbDzN5r0\n6kHHzz/BYTaT8vcFLvXWr87EJzQUxWYjbdH72IudXUbz8WMIbNMaBbBmZZO6YJGb2YaIvYwff6HD\nzCfotewtHDYbh2e957LX97v38AkMRPhWdO1NgPyqWfJ6/dfFnzH2T81fSsf5r4BKTfbKdZScOUvM\n7TcAkPXD/8jbvpvwPkkkff0hDrOFE3MX1ZFow9EQ/s/Zuo/ofl0Y+sN8108FVNDr7ensm70Ui8HE\n4UVfkjR3Ih2eHEX+sVTSvt8IQOzQnrQaOQzFbsduKWP3jHfrb9zu4PSCJSS+9SqoVOSsXE9pylli\nbne2vVk//Oz0f+/udPvK6f+T85wnJfuGh9Fh7gzAuXxdv3Yzpl17L6jstcVyQ7YDkj8/QjnPKTne\nQAhxOzBWUZRbhRDtgX3AA8AaRVEKhBAdgS8URelSPrCbBgwEBgMjFEWx1ZKuAtyrKMpXQoiZQLSi\nKBMr0lAUJblc7lWgSFGUfwghduBcNvm9EEIDqHHO2M0GhiqKUiSEaAaUKYpyvifVxuXky0zOaO+9\nmdV98jsb+jTs/qDzMWT7Nxy9ZbDX7Lf/aSPre4/ymv2hO5ZjZ5nX7Ku53+v2tw+8zSu2+2x2Hh1d\n5vDO+Uu+qoe87vvdQ4d7zX7S+tVejz1v1T00jvr3tv2t/e/wmv3+W7/3WvnVOH9qYEWSd37y4bbd\ny9g2oPrvjV4++m35weuxj3OiodGT+rdejfr5uOV/djZKPza6mTfgZ+BxIcQR4BjOpZPNgI1CiIpl\nnjOqKiiKMl8I0QT4XAhxv6LUeHpFMdCzfOCWA9xdj7w8CCwWQswCyoBRiqKsEUJ0ALYLIQCKcA4u\nL90PrUgkEolEIpFIJBJJNRrd4E1RFAtQ0+vSt2uQHVzl/1fqkbbHcTxV0yj//GqV/08AQ6qpoCjK\n2zXlRyKRSCQSiUQikUgaikY3eJNIJBKJRCKRSCR/bhrzD2E3Zv50gzchxE6cB5xU5UFFUYJrkpdI\nJBKJRCKRSCSSK4E/3eBNUZRe3s6DRCKRSCQSiUQikVxqGuvvvEkkEolEIpFIJBKJpAp/upk3iUQi\nkUgkEolE0rhRFLnn7WKQM28SiUQikUgkEolEcgUgB28SiUQikUgkEolEcgUgl01KJBKJRCKRSCSS\ny4qiyDmki0F6TSKRSCQSiUQikUiuAISiKN7Ow18B6WSJRCKRSCQSyeXgijgJ5PSIfo36+bj1f7c1\nSj/KZZOSBmdTvxFesz1o2385estgr9lv/9NGVna/z2v2b07+N+t7j/Ka/aE7lrN94G1es99n8wqv\n27ezzCu21dwP4LXyNwrffxvhNfvqu3L5otNor9l/4OAnXvf/X93+hj4jvWZ/yPZvvBr7ABv73uUV\n+4N//Zafe97jFdsAN+76yuuxf6XgkKdNXhRy2aREIpFIJBKJRCKRXAHIwZtEIpFIJBKJRCKRXAHI\nZZMSiUQikUgkEonksqI45LLJi0HOvEkkEolEIpFIJBLJFYAcvEkkEolEIpFIJBLJFYBcNimRSCQS\niUQikUguK4o8bfKikDNvEolEIpFIJBKJRHIFIAdvEolEIpFIJBKJRHIFIAdvEolEIpFIJBKJRHIF\nIPe8SSQSiUQikUgkksuK3PN2ccjBm+SyEt6rK/GTRyNUKjJ/XMfZL77zkGkzeQyRfbphN1s49vq7\nFB0/jUYXSfuXnsY3PAxQyPxhLeeWrwSgw6xnCGzRFACf4CBsRcXsfuSZOvMS1K0nuvETECo1pjUr\nyf3m327f+zVvQezk59C0ScDw2cfkfve16ztVUDAxT09H0+IqZ37efhPz0cP18sHV0x5C168LdrOV\n/a9+SMGxFA+ZgKZaus6diF+TYPKPnGHfy++j2OxED0qi7eOjUBwOFLuDw299Tt7+Y+VlD+Sal8YR\n1jEeTXgolryCWvPQduqjTh9bLByZ/R6Fx84AENG7C22nPIpQqchYsZ7Uz793ph0aTMc5UwiI1VKa\nqef3F+djKywm+ob+tLz/dle6wfEt2PXwc5SkZdBprrMOOv/rXfJ+3UXa4s8I69mNVk+PRajUZK9c\nQ8aybz3y1urpcYT37o7dYuHUvIUUHz8NQNevl+IoLUWxO1Dsdg6Od6af8Op0AuKaAaAODsJeVMyB\nMZM90v0jttXBQbR5dgKBV7VEQeHUG4soOnSMiMH9iHv0XgJaNufgY9MoPnayVp9fCC/OWMGmjceJ\niAxixU9PXJI0G8L3gW1a0fqZJ1EH+mPOzOHk7Lewl5RePvvxV9H6mSdR+fmi2O2cWfAhRUdO1OmL\nLcd9mfdTMHaHYGSPUsYN8szzrtO+zFsZjM0O4YEOPhufj6UMHloahtUmsDng+o4WJg4rqdNeTXR/\n/j6aDeiEzWxl+8yPyT2S5iHT9t4hdHjgOkJaRLN8wNNYTEVOP93cm8TRw0EIbMVmds7+HNPxs/W2\n3RCx0JA2/2jsN5T9+t5/Eb27kDD5UYRaRWaVdrUqCVNGE9m3Kw6zlcOz36Xo+Jnz6gbHt6Tds+PL\nY0/PoVfevryxdwGxH9Gri7PfV6vI/HE9aZ979vvxU0aX9/tWjs55h6LjZ1z9vl9EE1AgY8Vazv3H\n2e9rr+1DqzF3E9iqGXvGPk/h0VM12q6gwzMPE9W3Kw6zhYOzPqi13+08ZxK+TYIpOHqGA6+8i2Kz\nE3tDP1o/dJsz3krMHH7zIwpPOOO148zH0PbvhjWvgG33Tj9vHirwZuxL/hzIwZvk8qFSkfDMOA5M\nfg1LjpFuH/0fxq2/UZKS7hKJ6NONwOax7Lr7KUIS25IwbTx7xz+PYndw6p1/UXT8NOpAf7p9/A/y\nfttPSUo6R15+y6XfesIj2IuL65WX6CcmcXbmNMqMelot+JCinduwnk11idgLC8hevIjg3v091KPH\nT6B49y4y5r0CPj6oNP71coG2XxeC4mLYeOdUwjrG03HGaH595GUPufYT7+XMv1eTuWY7HWeMJu72\na0n7dh2GXb+TvWk3ACHxcXR7YxKbRk4DIHHaQ+i3HyC0XSs23fMcZQXFXL9uMUGtmlNcxceRfboS\nEBfL9lETCU1MoN2z40ge8wKoVLSbNoa9T8/GkpNLj3/Ow7AlmeKUdFo9dAd5vx1k3+ff0/LBO2j5\n0B2cem8Z2f/bSvb/tgIQ1KYF17w5naITKag0fqQtW0FUv24cGDOZqxfMJqx3EldNGs/hqS9j1Rvp\ntOQt8rbuojS1suMJ652Ef/Om7L3vMYKvbsdVU5/g98crO8RDk17Ell/o5qsTr/7d9X/Lp0ZjL6qh\n/lUqrpry2EXbbvX0OEw793D85TcRPj6o/DUAlJ5J5djMebSe9mS96r++3DmiM/c/0IPnn/N8yLso\n/mD5oWbft3l2Iqnvf0LB/kNobxpG03tHcPbjZZfNfssnHiH90y8x7dxDWO8kWjz+CIcnvXheV9gd\nMGdFCB+NNhEd6uDu98O5tr2V+Gi7S6agVDDrh2CWPJpP0zAHxiLn22E/H/hkjIkgDZTZ4YHFYQxs\na6VzC9t5bVan6YBOhLSM5oebZxB1TWt6znyIn++f4yGn33uSc5v2c90nz7ldL0rXs/bRN7EWlNC0\nfyd6v/Jwjfo10kCx0JA24Q/EfgPar9f9p1LR7pmx7J00C0tOLt0/eQP9lmS3fi+yT1cC42LZ4WqT\nx7N77Izz6raf8QQn3/0M097DxN4yhBYP3M6ZJV9dtrJfSOwnTBvH/kmzsOQYSfr4TQxbPPv9gOax\n7PzbBEITE2g7fTx7xs1Asds59c6nFB0/gzrQn6RP/k7eLme/X3w6jd9f+D/aPftYzXVehai+XQiM\ni2XLXZNp0jGeq58by47RMz3k2k64j5QvV5K1djtXPz+G5rcP4ey3aynN0LPz8VnYCouJ6tOFxBnj\nXfrnVm4ibfn/6PTqU3XmA7wc+5I/DV7d8yaEaCWE+N2befgjCCEeEUK86+18XCmEdoinND0Tc0Y2\nis1GzvqtRA7o6SYT2b8nWT9vBKDw0HF8QoLwiwzHasyjqPxNoL3ETElqOhptpIcN7ZC+5KzdWmde\n/Nu2x5p5jrLsTLDZKNi8geDe/dxk7PkmzCeOgd3udl0VGERAYmfy1zjfAGKz4SguqpcPogclcW7V\nFgBMv5/ENyQQTWSYh1xUj0Sy1u8EIP2nLcQM7u7MU6nFJaMO8AdFAcAnKICIru0pPJVOydlsStKy\nKDM5O9uogd3d0tYO7EHWqk0AFBw6gU9wEH6RYYReHU9pehbmjBwUm43stdtculEDepC5aiMAmas2\noh3oXm8AMdf1I3vdrwA4LFby9hwCQLHZKD5xipBrEjGfy8SS6ax/w/othPfv5ZZGRP9e6P/3CwBF\nh4/hExyEb2R4vXwLEHltPwzrN3tcD+6QcNG21UGBhHZOJGflWld5Kh4SS1PTMZ89V+/81ZfuPVrS\npEnAJUvvj5T/fPjHNaVgv7Oe85P3ETGoz2W1j6KgDgoEQB0URJkh9/zywMF0H1pE2omLcODnA8Ov\nMbPhiJ+bzMr9Gq5LtNA0zAFAZLAzzoSAoPKxis0ONgdwEat+4q7typkVzlgxHDiNX0ggAVFNPOTy\njqZRnGH0uG7YfwprQUm5/ikCo+sfIw0VCw1ls77UFvsNar8e91/o1fGUVGlXc9ZtQzuwh5tM1MAe\nZK3eCFS0yYGuNrk23cAWsZj2Old75O7aj26we3kauuz1jf3KfqW831+3lagB1co/oAfZP3v2SVaj\nyTUDWdnvRwBQknqO0rSM8+axguiB3clY5bw38s/T70Z2TyR7g7PfzVi5mehBzv7PdPA4tkLnfW76\n/QT+ugiXTt7eo5QV1OOFcTnejP3GiKKIRv3XWPnLHlgihJCzjpcZP20klpzKxsiSY3Q1xBVotBFY\ncgxuMn7VZWK0BCdcRcGh427Xm3S+mrI8E6XpmXXmxTdSi02vd322GfT4RmrrVQ7f6FjsBSZiJz9P\nq7eXEjNxOqKeM2/+2nBKsyo7eHN2Lv4698bXt0kIZYXFKHbng6M5x+gmEz24O4O++Qc9Fk5n/6wl\nAAQ202E1FdLuqb/RpMNVdJo5DnX5G/Hqg1yNNgJzDfXg73E916XrF9EEq9EEgNVoci5jqYZuWF+y\n13gOnNXBQYT37Yk1R+9Wt1a9wSNvflGRWHP0VWSM+EVVylw9fzadls5Hd+sNHnZCOidSlmvCXEP9\n+0VFXrRtTWw0NlM+bWZM4pqPFtL62Qn1m21oRPyR8ldQk+9LU9JcD4KRg/uh0UVdVvsp73xEyyce\npds3H9PqyUdJXfLZ+R0BZOeriGlS+UImpomDnAK1m0yKQU1BqYqHlzZh5Lth/LCnsr7tDrjznXD6\nz42ib3wZneMubNYNIEAXTnGVdqA4O5cA3cU9hLW5cwAZWw/WW94bsdBQ9V/B+WK/Ie3X5/6rqU/z\n7PciMWdXaXv1zrb3fLrFZ9KJKh/I6Yb0ueyxV9/Y12gjsGRXKYM+t8Y+yV3G6CHj7+r3614W7ZEH\nXQSlVfxrzslFo3OvA2e/W1LZ72bnetQTQPPbrkW/fd8F56ECb8a+5M9DYxi8+QghlgkhjgghvhFC\nBAohhgoh9gohDgohPhFC1No7CCHeEEIcFkIcEEL8o/zap0KID4UQyUKI40KIW8qvPyKEWCGE2ACs\nL782XQjxW7n+a1XS/V4IsVsIcUgIMb7K9UfL09wFuE/VuOdrfLn95CVLlvxxL0kAUAX4k/j6s5xa\n9InH+nrddf3rNev2RxFqNf5t2pK36gdSJo3DYSklctR9DW63guyNyWwaOY3d0+bT7vFR5XlSEdqu\nFYbtB8namIy91EKbR25ruEyUz/hVEJoYj8Nspfi059r7hJenkfntT5Tl5f8hk4eeeo4DYyZzZPpr\nxNx5EyGdE92+jxo6EMP6LX/IRk0ItZqghDZkf7+aA2Mn4zCbaXb/yEtupzFTm+9PvrGImDtvotPS\n+agDA3CUXfhA5o/Yj759OCnvfsSekWNIefcj2jw38ZLYszsEhzJ8+ODhfJY+ms8HvwSSYnAO8NQq\n+G5iHr88Z+TgWR9OZKnrSK3hiO7RnvgRA9izYPllseetWPBW7Ndlv6Huv/pw5PX3aD7iRrr/803U\ngQEotssbe5cr9sG5yiRx7nROvv3PWvfVXQ4ikq6m+W3Xcvzdf9ct3MBc7tiXNC4aw+xTO2CMoijb\nhBCfAFOBx4ChiqIcF0J8BjwBLKyuKISIBO4E2iuKogghqs6DtwJ6Am2AX4QQ8eXXuwHXKIqSK4S4\nHkgolxPACiHEQEVRNgOjy2UCgN+EEN8CfsBrQBKQD/wC7K2pUIqiLAEqRm1KTTJ/Nax6Ixpd5ds0\njS4Si959mYlFn+v2Bk+ji8RaLiPUahJfn07Oms0YNu10T1ytImpQb3aPrt+G4TKjHh9t5UybT5SW\nMqP+PBpVdA16bAY95uNHACjctonIkbUP3lqOuo64O64FIP/waQJiIsjb7/zOPzoCc06ee/r5hfiG\nBCHUKhS7A39dpIcMQO7eowQ20+HbJARzTi7mnFyMe44Q2f1qTnz8HfHlgzeL3n3phUWfi78ukoqh\nVEU9CB8f/N3qJ8Kla83Ndy1j8YsMw1rtMJToYf3IqmXgbE7PIGv5CoIT27nVrZ82yiNvVoMRP50W\nOFIuE4nVUJ6H8iVJNlM+uVt2ENwhgcLyZTuoVUQM7MPBcVNqzIPVYLx424qCRW+g6Ihzpte48Vea\n3X9XjXYaK3+o/NTue3PaOY488woA/s2bEt7HfYluQ9vX3jiElEVLATD+so3Wz9b98BzdxEFWfuWA\nKytfhS7UXk3GTpNAB4F+EOin0L1VGUcz1bSKqpQLDVDo2bqMLSf8SIip+4Gy7T1DiL9roDOvv58h\nKCaCihYnKDqC0hpi/HyEtW1O79ceYcMTC7Dm13/ZljdioaHqH6gz9hvSfn3uv5r6NM9+z4h/dJU2\nWetse4WPulbdktQM9k2eDUBAXCxR/bpd1rLXN/Yt+lw00VXKoI2osU9yl4l0yQi1msS508les8Wz\n3z8PLUZeT/M7hgCQf/gUAdGRmMq/89dFYMlxrwNnvxtY2e9GR7jVU3B8Czq++BjJk9+gLL9+2yQq\naCyx3xhxKI1hDunKozF47ayiKNvK//8CGAqcURSlYk3cv4CBtejmA2bgYyHECKDqsV//URTFoSjK\nCeA00L78+lpFUSoi8vryv73AnnKZhPLvnhZC7Ad2AHHl13sBGxVF0SuKYgUqjx+U1EnB0ZMENI/F\nP1aH8PFBN7Q/xq2/uckYt/5GzI2DAQhJbIutqASr0dmwtZ3xFCWp50j/+kePtMO7d6Yk9RxWveca\n8ZowHz+GX9Pm+EbHgI8PoQOHULTz13rp2k25lBly8GsWB0BQ5yQsaam1yqcuX8vW+19g6/0vkL0x\nmWY3DQAgrGM8tqJSLEaTh44x+TAxQ51LUprfMoDsTckABDaPdsmEtmuFys+HsvxCLMZ8zNlGbEUl\nBMXFEDO0J4Upzv0Ahi3JbmnrtyQTc9MgZxqJCeU+NlF45CSBcZX1E31dP5euYUsysTcNBiD2psEY\ntlSpNyHQDe1L9tptbnZaP3YP4FxaBFB09AT+zZuiiY1G+PgQNXQAedvcO+PcrbvQ3uAc6AZf3Q57\ncQllxjxU/hpUAc49YCp/DWE9ulB6uvKErrCkLpjT0mut/z9iuyzXhDXHgH/5qXZNkjpTmnJlne7V\nUL73CStfPisEzR/6G1k//HxZ7VuNuYR26QhAaLdrMKfXvQemYzMbqQY16bkqrDZYfcCfaztY3WSG\ndLCyJ8UXmx1KrXDgrC9ttHZyiwQFpc59EOYy+PWkH6219prMeHD8qw2sGvUqq0a9SvqGvVx1W18A\noq5pjbWohFJD/WemA2MiGLTgKbbNWEphana99cA7seDN2G9I+/W5/6q3q7ph/dzbT5zta8zwwc50\nEhOwF9fcJlfV9Q0PdSoLQatHR3Luu7WXtez1jf3CI9X6/WH9MWx175MMW38j+sYqfVJ5+QHavfAk\nJSnppH/l2e+fj7Rv1vDrA8/z6wPPk7MpmaY3OR8jm3SMp6yopMZ+N3f3YaKHOPvdpjcPdPW7/tGR\ndH1zKgdeeY+StLq3ZVSnscS+5M9DY5h5qz4rZQI8T6KoSVFRbEKInjgH1aGZBgAAIABJREFUfCOB\nCcCQWtKt+Fz1NYUA5imKsriqoBBiMDAM6KMoSokQYiNQv01NktqxOzi54CM6zX8ZoVaR9dN6Ss6c\nJfaO6wHI/H4Nudt3E9GnGz3/877zpwLmOs+DCb2mPTHDB1N0MoWkT52nS55ZvIzc7XsA0A3rR866\nC1g247CT/eHbxM36O6hU5K9djTUthbDhztkq0+oVqMMiaLVwMarAQHAohN8+kjNPPIyjtITsDxcR\nO20mwseHsqxMMhe+US+zOdv2oe3XhcHfL8ButnDgtcpbr8fbz3Jg9hIsBhNH3vmSbnMn0u6JURQc\nS+XsD//P3n2HR1H8Dxx/76WHhPRCQuihdwKhgyAqoCgCiiIoCIKCCCgqon5Rmqg/UMQCYhdBAVGk\nSTP0IiC9BAgESL/0dpfc3f7+uHjJpRBQyCXyeT0PD8ntzH5mZneyO7uzexEABPbuQM1+3TAZDJj0\n+RyZ9pEl/6n3vqHVW8+CArUevMtydyz70jWCB/YBIGbNFpL3HsG3cxs6rfrI/FrqWR8DoBpNnHv/\nC9p8OB00GuLW/UH2JfMbwS5/u4YWs6cQNKAXuvgkTkxfYInr2aYJ+kQtuthEy2dOft7UHWm+It9y\nqTlt/M/rufTBYpq8PwNFoyFxw1ZyL18lYMB9ACSs3UTa/kN4dWpHm+WLMen1XJi7EAAHL08azX4N\nMF+J1W7dQdrBI5Z4Pr27od1a+ssKADCa/nFsgEsfLiH0jSkoDg7oY+O5MPdDALy7daTOC8/g4OlB\n43lvknMhijMvzSi7HDfopSmrOXgwmrTUHO7qvoAJz/dk0JA2/3yF/6L+12t737u7EziwHwApO/eR\ntGFrhcaPencRdSaOQbGzw5SXR9R7H5fbFPZ2MH1AFmO+8sCkKgxspyM0wMiKA+Y/8UPDddT3N9K1\nYR4PLfRCo8Dg9jpCA42ci7Nj2ip3TKqCyQT3tdDTs3FeORFLitl1nKDuLXlwwzsFrwv/0rLsrk8m\nsf9/X5OblEajx++m6aj7cPHxoP/qt4nddZz9M76m5bgBOHq60eH14YC5724c+vaNBb9NfeF2xfzX\nff82xr+R/U81moj8v6W0/uB181ewrNtO9qVrBA00H/di12wmee8RfDq3pdPKReavb5n1yXXzAgT0\n6UrNQebyJ0UcIG7d9gqt+432fdVo4vz8pbRc8Ib5qwLWbSfn0lWCCo77sb9sJmXvEXw6tSV85ccF\nXxFkbkcPy3E/mrCv3ze3+eIfSNl3BN/uHQidMhoHz+q0eP81ss5f5vjkmaWWIWnPX/h2bk33nz/E\nqNNzYuZnlmXtFrzCydlL0GtTOffRD7SaPZHQcY+SGXmZa2vNL3GpP3oQjh5uNH1lVEGdjOx70vxW\n0VYzn8erXVMcPd3p+dvHnP98VenboYBN+774z1BU1XYz+hRFqQNcAjqrqrpPUZSlBb+PBXqpqnpB\nUZSvgb9UVS1xhFAUxQ1wVVU1UVEUDyBKVVWfgjz+wP1AXWAH0AAYCoSpqjqhIP89wEzMUzSzFEUJ\nBvKBTsBoVVUfUBSlMXAUuA84h/lOXFsgA9gOHPt7fddxR0+b3NHlYZvF7rHnZ87e39Nm8Ruvi2B9\nWMU9D1dc/0M/sK3jEJvF771/Jfu638Zn78rRaedam8c3UsrrsyuAHcMAbFb/StH2q0u+cKCi2A1K\n4fsWo2wW/4kTX9q8/e/0+Ns72e7Z2F77Vtm07wNEdLbN9PKee1ezqcNQm8QGuO/gCpv3ff7Re3Ar\n3qm+vSv1+XGzjdsqZTtWhjtv54DxBc+7nQYmYh4grSx4I+SfwGdl5HUHflUUxRnzjjqlyLIrwEGg\nOjBOVVWdolhvA1VVNyuK0gTYV7AsC3gC2ASMUxTlDIUDNlRVjVMUZQawD/Mdwn/+yiEhhBBCCCGE\nuAk2HbypqnqZwmfRitoGlDtHSFXVOMwvGynNVlVVxxVL/zXwdbHPPgRKm/fRt4yYXwFflVc2IYQQ\nQgghhLiVKsOdNyGEEEIIIcQdpDJ/EXZlVmUGb4qirMH8/FpRr6iq+nvxtKqqPlUhhRJCCCGEEEKI\nClJlBm+qqg60dRmEEEIIIYQQwlaqzOBNCCGEEEII8d8g0yb/mcrwJd1CCCGEEEIIIcohgzchhBBC\nCCGEqAJk8CaEEEIIIYQQVYA88yaEEEIIIYSoUCZ55u0fkTtvQgghhBBCCFEFKKqq2roMdwJpZCGE\nEEIIURGqxC2tY/fcU6nPj1tt3lwp21GmTYrbLmFkS5vFDvjqOFvCH7FZ/D4HfiJyQHebxW+4difb\nOg6xWfze+1eSb/rWZvEdNCNsHn9f9wE2id1p51oAjCyzSXw7hpFn/NImsQEc7UZxqFc/m8UP277B\nZtsezNvf1vu+rePbat8H8/5/qm9vm8VvtnGbTfs+wPZOg20Sv9e+VWzu8KhNYgPcc/BHm/f9qkK+\nKuCfkWmTQgghhBBCCFEFyOBNCCGEEEIIIaoAmTYphBBCCCGEqFAybfKfkTtvQgghhBBCCFEFyOBN\nCCGEEEIIIaoAmTYphBBCCCGEqFDyJd3/jNx5E0IIIYQQQogqQAZvQgghhBBCCFEFyLRJIYQQQggh\nRIWSt03+M3LnTQghhBBCCCGqALnzJmzGsXkX3B9/BTQacnf+TM6GL62WO3fsh2u/UaAoqLpsMr+d\nheFqJAAufYbh2n0QKJC742dytnx/3ViNpozEt3MbjDo9p2Z+Qua5SyXSONfwo+WsSTh4uJNxNoqT\nMz5CNRivm9+nYysaTRmJotEQs3Ybl7/9FYD6Yx/Fr1sYAMFv/R/xH87BmJJsFc+1bQf8R08EOw3p\nm9eTunqZ1XKH4FoEvvAqTvUbkvzdUlJ/WWFZ5jlgCB733A+qij46ioQP30HNzyux3rI0nDISn05t\nMer1nJn5saU+3h1b03CyuT6xa7cR/d0vANhXd6P5rMm41PAjNy6Jk9PnY8jMpnrTBjR+dax5pQpc\nWrqSpB0HAWj7yQxzXuV+AAzqVkBnKcPuXRd5Z85mjCaVQYNbM3pMZ6sypqfn8sb0dVy9moaTkx0z\nZ91PaEN/AL779iCrVx5FVVUGD2nD8Cc7lFnXslR0fM8ObakzcTSKxo6E9ZuJXba6RJo6E8fg1TEM\no17PxbkfkB0ZBUCbHz/HlJuLajShGo2ceOZFAFzr16Hei89h5+qMLi6RCzP/D2NO7k23RXHTp61l\nR0Qk3j7VWLvu2X+9vuJ274pi3txtGI0mHh7citFjOlotT0/X8ebrGwra3p63Z/UlNNQPgG+/+ZOf\nVx1DURRCG/oxc3Y/nJzKP5RVb9+OWhPGgkaDdsPvxC9fWSJNyISxeIS3x6TTc/nd+eScvwiA/8MP\n4tf/XlAUktZvInG1uZ8HjRyOZ+eOoJrIT0vn8rz55CenlBq/Mm3/O63v3Yzbve8DuLVrT+C48aDR\nkLZpA9qVK6yWO9YMIXjKyzg3aEDiN1+SvLrYvqrRUG/hJxi0yVyZMf2Wlu121N+7Y2tCJ41EsdMQ\nV+S4UlTo5FH4dG6DSZfH6ZmLyIo0H5MaT38O387tyEtN5+ATUyzp608Yjm/XMNR8A7kx8ZyZ9TGG\nrJwyy9DoxafwKziGn3z701LPAVyC/Gg56wXLOcCJ/y1CNRhxrR1E8zefpXqjupz/dAXRy9YB4OTv\nQ4sZ43H09gBUrq3ZxpUfN5ZYb2Xq++K/4Y6886YoSh1FUU6W8vnbiqLcXU7eGYqivHT7SneHUDS4\nD3+NtAXPkjz9IZzD+2IXVM8qiVEbQ+o7I0l5YxDZa5dQ/cn/AWAX3ADX7oNInvk4yW8OwbFVd+z8\nQ8oM5du5Da4hgewZPJEz7yyhycujS00XOuEJolesZ8/giRgyswke0Ov6+TUKjac+zV+T5rB36GQC\n7+lCtbrBAFz+fi37n5gKQPafe/F59CnrYBoN/mMnE/PWVC6PH0H17r1xDKltlcSUlUHikoWkrrE+\nsNt7++L1wGCuTBlD9PNPoWg0uHfrVep6AarVqWmV36dTG1xCarBvyPOcnbuYRi+PseRt9NLTHJ08\nm/2PTSbgni6WvHVGPETqnyfYN2QiqX+eoPaIhwDIuniFP0e+wsERUzk6aTaNX3kGpdig0aCuw6Cu\no+jAzWg0MWvmJj5dMpS1v41lw/pTXLyQZJXv8yV7adwkgDW/jmHOOwN4Z+4WAM5HJrJ65VGW/zSS\n1b+MYUfEea5El37CXJYKj6/RUHfyWM5MfYujI8bj27s7LrWt91nPju1wrhnEX4+PJeq9j6k7xfrE\n6dQL0zn+9CTLwRug/svPc2XxNxx7aiIpu/YT9NjDN9UOZRn4cCuWLB12S9ZVnNFoYvasLXyyeAi/\n/jaajRtOc/GC1irN0iX7aNzYn59/GcXsuf2ZN2cbAAkJmfzw/WFWrHySNWufxmg0sXHDmfKDajTU\neuE5Il99k1Mjx+HdqwfOxdrfIzwM5+BgTg4fTfT8hdSaNAEA5zq18et/L2eem8yp0ePx7NgBp6Aa\nAMT/uIrTY8Zz+pnnSd93kBrDHy8zfmXZ/ndc37tJt3PfB0Cjocb4iUS/MY2LY0fh0bMXTrWs//Yb\nMzOJ+2xRyUFbAZ8HH0Z/5cptKd4tr79GQ6MXR3NsymwOPDYZ/z5dcS3lmOQaUoP9Q57n7Duf0ejl\nZyzL4tf/wdHJs0qsNvXgcQ4Om8zB4S+ScyWO2iPK3vd9O7emWkgguwe9wOm5n9P0ladLTRc6YRjR\nyzewe9AL5GdmE/yg+bhqyMji7Ptfc3nZb1bpVaORcx9+x96hL3Jg1OuEDLnHcg5QtP6Vpe+L/447\ncvBWFlVV31RVdauty3EncKjXHGPiFYxJMWA0oDu4Cac2d1mlyb9wDDUn0/zzxWNovM1XXu1r1CU/\n6jjk6cBkJP/cIZzalT3m9useRtzGnQCknzyPvXs1HH08S6TzDmtG4vb9AMSuj8CvR/vr5vdo2oCc\na/HkxiaiGozEb9mLX3dzHmN24RUwxdkZUK1iOYc2IT8uhvyEODAYyNi1jWrhXa3SGNPT0F84C0Zj\nyUpp7FAcncz/OzljKLirV3y9AL7dw4q1R3viN+wAIOPUeezdzPWp3rQBudfi0cUmohoMJGzZY8nr\n2609cRsiAIjbEIFfd/PVbpM+D9VoMhfJ0bFEPcty4ngstWp5ExLihYOjHX37NWX79kirNBcvJBEe\nXgeAevV8iYlJQ6vNIioqmRYtg3BxccDeXkNY+1ps3XLuhuLaKr5bk1B0MXHo4xJQDQa023bh1TXc\nKo1313CSfv8DgKzT57B3q4aDj9d11+scEkTGsVMApB86inePTjfTDGUKa18bDw+XW7Ku4k6ciKNW\nLU9CQjzNbd+3CX9sP2+V5uJFLR3CzSe09er5EBObjlabDYDBaEKvM2AwmNDpDPj7u5Ubs1rjhuhj\nYsmLi0c1GEjZvhPPztZt5dm5I8lbzIPE7DMF7e/thUvtELLOnMOk14PJROaxk3h16wKAqciVbk0p\n/fxvlWn732l972bdzn0fwKVhY/JiY8iPj0M1GEjf8QfuHa3vPBrT09BFnkMt+BtelL2vL24dwkn7\nfcNtKd+trn/1guPk38eVxK17LMfJv/l2b0/8xgjg72OSq+UYnXb0DIaMrBLrTTl4zHLsST8ViZO/\nT5ll8OventgNN3YOkGA5B9iBf8E5QF5qBhlnLlpm4vwtLznNcgfPmKMj+1IMTn7eVmkqU9+vjFRV\nqdT/Kqs7efBmpyjK54qinFIUZbOiKC6KonytKMpgAEVR+imKclZRlMOKoixUFGVdkbxNFUWJUBQl\nSlGUiTYqf5Wm8QrAlJJg+d2UkoCdl3+Z6V26P0zeiT0AGGIu4NCwLUo1D3B0xrFlN+y8A8rM6+Tn\njS6h8Mq+LjEZ52J/YB083DFk5lgOBrrEFEuasvI7+XujTyicCqlPTLb6w11/3FAAqvfoQ/KyL6zi\n2fv4YtAmWn43aJNw8PErsw5FGVK0pP6ygnpfrKTeN2swZWeTc/TPUtdrLr9Psd+90SWWLLdzic9T\nLHkdvT3IS04DzAcs8zQRs+rNGhD+w3zCl/0fZ+d9bmlDS12V+9HQwuqzxMRMAgPdLb8HBFQnMSHT\nKk2jxgGWE7MTx2OIi00nISGTBqF+HDl8lbTUHHJz89m18yLx8Rk30HK2i+/o64M+sXAfykvSltgu\njr4+5CUmFUmTjKNvYZqm82fS4vP5+D9wr+Wz3MtXLCcCPj274OTve6NNYDOJCZkEBla3/B4Q6E5C\novXJWaNG/mzdaj6hP3E81tL2AQHuPDWyA316f0qvHotwc3Oic5e65cY0t22R9tdqcSzW/g6+vsXa\nX4uDry+5l6Jxb9Ecu+ruaJyc8AgPw6FIOwePGkHLFd/gc3dPYr/6rsz4lWX732l9r7Jx8PUlP6lw\nO+drk7D3ufF+Gzh2PAlfLEE13diFMltz8vO22veLHyfNaXzQFT2WJqWU6B/XE3R/L5L3HSlzubO/\nl9X6dYnJOPuXcw6QkFLiPOF6nGv44d6oLumnLlh9Xpn6vvjvuJMHb6HAx6qqNgPSgEF/L1AUxRlY\nDPRVVbUdUPysujFwL9AB+J+iKA7FV64oyjOKohxSFOXQkiVLblcd7ggOjdvj0m0gmT8tAMAYd4ns\nDV/h9dJivKZ8iuHKOVSTqZy1VLyLn5mnO2bs2IJn/1s3pUFTzQ238K5cGvMoUU8NROPsjHvPPrds\n/TdELTxxyDh1gQOPT+HPUa9Se8RANI7m7nDqfwsBMKibUJQAFOqVuqqyjB7TmcxMHYMGfs6y7w/R\nuEkgdhqF+vV9GTW6E8+MXs64Mctp1DgAjebWXyGzdfyiTo1/heNPT+LM1LcIHNgP91bNALjwzkIC\nB/ajxefzsXN1wZRf8kp9VfT0mI5kZugYPPArflh2hMZNArDTKKSn6/hj+3k2bRnHtojx5Obm89va\nU7e1LLorV4lfsZKG784idN5Mci5GQZG/NzFffsvxoU+SvDUC/4ceuC1lqOjtb+t939bxKyu3Dh0x\npqWiu3C+/MR3iNpPPoxqNJLw+y6blcHOxYnW70zh3PxvrGbd3Ap32t9+cWPu5BeWXFJV9WjBz4eB\nOkWWNQaiVFX9+4nW5cAzRZavV1VVD+gVRUkEAoBrRVeuquoS4O9RW9W4RFaBTKkJaIrcLdN4B2BM\nTSyRzr5mKNVHziBt/nOo2emWz3W71qDbtQYAt0ETMRa5iwfg0utRXHqYx+N6bRrOAb6A+Uqus78P\nuiTr5yTy0zOxd3dFsdOgGk04+3tb0uiTUkrNr9jb4RRQeHXMyd8HfVLJ5y8yI7YQ/L93SV7+leUz\nQ7IWe9/CO432vn7kJyeVyFsa19Zh5CfEYcwwt0fmvp24NG5OZsSWEus1lz+52O8pOPv78Hdr/l1u\nxd4eZ/+i9fG25M1LScfRx9N8183Hk7zUkle7cy7HYMzVUa1eCJlno4q0hQGTeglF8UVVzQ9h+/u7\nEx9feLU9ISED/wB3q/W5uTkxa475ZFhVVe69+2Nqhpinkgwa3JpBg1sD8MGCPwgslrc8FR0/T5ts\ndWXU0c+3xHbJ0ybj6O8HnClI40OetqD9tea2NKSlk7JrP25NQsk8dgrdlRjOvGh+FtS5ZhBenayn\nyFZG/gHuVndLEuIzCSg29dHc9v0Bc9vf1+czaoZ4smf3JYKDPfD2dgXg7j4NOXY0hgcGNLtuTHPb\nFml/X1/yirV/vlZb0P4Fafx8ydear5hrN25Gu3EzAMFPP0lekvUzegAp2/4gdO5bxH6zrMSyyrT9\n77S+V9nka7U4+BXuZw6+fhiSS+5PpXFt2gz3jp1xax+O4uCInasrwVOnEfPe3NtV3H9Nn5Rite+X\ndpzUJyXjHFDkmOTnXaJ/lCawX098u7Tjr+ffKrEsZPA9BD/UG4CM0xdxLnKsdvb3QZdYzjlAgHeJ\n84TSKHZ2tJr3InG/7yYx4mCJ5ZWp71dGpko8NbEyu5PvvOmL/Gzk5gay/yavAPIvncLOvzYa32Cw\ns8e5w33o/4qwSqPxDsRjwgIyPn8NY0K01TLF3duSxqldb3T7ref/527/kZT/PQJA0s6D1OjbHQCP\n5qEYsnIsUwCLSj18Cv9e5rfeBfXvSdLOQ+b8uw6Vmj/jzEVcQ2rgXMMPxd6OwD6dLXlcQwIt63UL\n70reNeuHy3Xnz+IQVBP7gBpgb0/1br3JPrDnhtrOkJSAc6Om5mfeANdW7ci7Gl3qegG0uw5Z5U/a\ndYjAfj0AqN6ssD6ZZy4U1Mcfxd6egD5dLHm1uw5Ro19PAGr064l2l3mapnMNf8sLSpwDfalWOwhd\nXBKKnQYHj79PqhQ0Sk1QC9u8eYsgrkSncO1aGvl5RjZuOM1ddzW0KmdGho78PPMzBqtXHqVdWC3c\n3Mx1Tk42P/8UF5vOti3n6Hd/8xtqO1vFzzp7HueaQTjVCECxt8e3dzdS9xywSpOy+yB+95qf+3Rr\n2ghjdg75yalonJ3QuJifQdE4O+HZvjW5Ueb9yd6zYPqqolBzxCPE/7rpptrBFpo3r0F0dGph2288\nQ8+7GlilsWr7VcdoFxaCm5sTNWpU5/ixWHJz81FVlQP7o6lbr/zpVdlnI3EODsIx0Nz+3r26k7Zv\nv1WatL0H8OljPtmr1qQRxuxs8lNSgcJ2dvT3w7NbZ1K2RQDgFBxkye/ZpSO5V6yu4VlUpu1/p/W9\nyiY38iyOQcE4BASi2Nvj0eMuMvfvvaG8iV9/QeTwoZx/ahjX3plF9rGjlXrgBpQ4rvjf3cVy/Pib\ndtchAvv2BMzHJGN26cfoorw7tqb2Ew9y/OV5mPR5JZZfXbWZ/U+8wv4nXiFxx58E9Sv/HCDl8GkC\nLOcAPUjacahEmuKavTGO7EsxRP+wvtTllanvi/8OGXSU7hxQT1GUOqqqXgYetXF5/ntMRjKXzcHr\nxU9BY4du1y8YYy/i0nMIALkRK3F7cBwaN0/chxe8CtloJOXtxwDwnDAfTTUPVKOBzO/moOZmlhUJ\n7Z6/8O3cli6rF2LU5XF65ieWZW0WvMrp2YvRa1M5v2gZLWZNosHYoWRGXiJm7fbr5leNJs69/yVt\nF043v1r/tz/IvmQ+eWswfhjVapnfSOfapj2Jn/xfifonLf6AmjPeB42GjK0byLt6GY/7BgCQvmkt\ndp7e1Jq/BI1rNTCZ8BwwmOjxI9BFniFrTwS1P1iKajSijzpP+u+/lbpegOxL1wgeaJ5WGbNmC8l7\nj+DbuQ2dVn1kfi3zrI+L1OcL2nw4HTQa4tYV1ufyt2toMXsKQQN6oYtP4sR08xRWz1aNqT3iIVSD\nEVU1cfa9peSnZ6JxdqL1h68DYK88gIk4TBRO9bG31/Da6/cydvRyjCYTAx9uRYNQP35ccRiAR4e2\nI+qilunTfkNRoH4DP96e1d+Sf/ILq0lLy8XeXsP0N+6lenXnMrd/aSo8vtHEpQ8W0+T9GSgaDYkb\ntpJ7+SoBA+4DIGHtJtL2H8KrUzvaLF+MSa/nwlzztFMHL08azX4NMF/l1W7dQdpB8/Mdvnd3J3Bg\nPwBSdu4jacOted/SS1NWc/BgNGmpOdzVfQETnu/JoCFtbsm67e01vDa9D+PG/ITRpDJwYAsahPrx\n04q/AHhkaBuiopJ5fdp6FEWhfgNf3prZF4CWrYLoc08jHhn8NfZ2Gho3CWDII63KD2oyceWjT2k4\nbxbYaUjeuBnd5Sv4PWBuu6TfNpB+4E88wtvT/PsvCr4qYIEle/0Z07GvXh3VaODKh59gzDYPIGqO\nGYlzSDCqSSUvMZHoBYtKj1+Jtv8d1/du0u3c9wEwmYj79CNqz5qHYqchdfNG9Fei8epn/kqV1A3r\nsPfyot7CT9G4uoJJxeehQVwYOwpTTtmvwr9VbnX9VaOJyP9bSusPXjcfJ9dtJ/vSNYIG3gNA7JrN\nJO89gk/ntnRaucj89TWzCo/Rzd6ahGfbZjh4utP518VcWvojcb9tp+GLT6NxcKD1h28A5hednHu3\n9EdUzMfwNnT9+UOMujxOzfzUsszqHOCjZbSc/QINxj1KRuRlrhWcAzj6eNDx67nYV3NBVVVqD+3H\nnqEv4t6gFkH9upN5PpqO388D4MIny62DV6K+L/47FFW982b0KYpSB1inqmrzgt9fAtwwT51cp6rq\nKkVRHgDeA7KBPwF3VVWHKYoyA8hSVfX9grwngfsLBnllufMauYiEkS1tFjvgq+NsCX/EZvH7HPiJ\nyAHdbRa/4dqdbOs4xGbxe+9fSb7pW5vFd9CMsHn8fd0H2CR2p51rATBSchpfRbBjGHnGL8tPeJs4\n2o3iUK9+Nosftn2DzbY9mLe/rfd9W8e31b4P5v3/VN/eNovfbOM2m/Z9gO2dBtskfq99q9jcwXbX\n3O85+KPN+z5QJeYj7u/xQKU+P+6447dK2Y535J23goFW8yK/v19Ksj9UVW2sKIoCfAwcKkg7o9i6\nqtacDSGEEEIIIUSVdCc/81aeMYqiHAVOAR6Y3z4phBBCCCGEEDZxR955uxGqqi4AFpSbUAghhBBC\nCHFTKvMXYVdmcudNCCGEEEIIIaoAGbwJIYQQQgghRBUg0yaFEEIIIYQQFUq+pPufkTtvQgghhBBC\nCFEFyOBNCCGEEEIIIaoAGbwJIYQQQgghRBUgz7wJIYQQQgghKpR8VcA/I3fehBBCCCGEEKIKUFRV\ntXUZ7gTSyEIIIYQQoiJUiVtau7s+VKnPj7vu/qVStqNMmxS3nXZMU5vF9v38NBGdB9ksfs+9qznV\nt7fN4jfbuI1tHYfYLH7v/Ssxssxm8e0YZvP4+7oPsEnsTjvXApBn/NIm8R3tRtm87Q/16mez+GHb\nN7Cu3TCbxb//8DLyTd/aLL6DZoTNt7+t468Pe9xm8fsf+sFm9bfDvN9vCX/EJvH7HPjJ5sc9W/f9\nqkK+KuCfkWmTQgghhBBCCFEFyOBNCCGEEEIIIaoAmTYphBBCCCEFYG+QAAAgAElEQVSEqFBq1Xg0\nr9KRO29CCCGEEEIIUQXI4E0IIYQQQgghqgCZNimEEEIIIYSoUPIl3f+M3HkTQgghhBBCiCpABm9C\nCCGEEEIIUQXItEkhhBBCCCFEhZIv6f5nZPAmbMahWVeqDZ2GorFDt2sVuZuWWi13bNUL14eeB1VF\nNRrI/vEdDBeOAOD25CwcW/bAlJlC2owHbzimd3hrGkwahWKnIe63bVz5bk2JNA0mj8KnU1uMujzO\nzvqIrMhLADR67Tl8uoSRn5rOn09MtqSv1qA2DV8ei52LM7q4JM7M+ABjTm65ZXFr157AceNBoyFt\n0wa0K1dY179mCMFTXsa5QQMSv/mS5NUrrVeg0VBv4ScYtMlcmTG97Dp3bE3DySNRNBpi124j+rtf\nSqRpOGWkuc56PWdmfkzmuUvXzVt39BCCBtxNfloGABc//YHkfX/h3aEl9Z8bhsbeHpPBcN3679p5\ngbmzf8doMjF4SBvGPNPVanl6ei6vv7aWq1dScXKyZ9acAYQ29Afgu28OsHLlEVQVhgxpw4inOl43\nVmWI79mhLXUmjkbR2JGwfjOxy1aXSFNn4hi8OoZh1Ou5OPcDsiOjAGjz4+eYcnNRjSZUo5ETz7wI\ngGuDutR78Tk0jg6oRiOXFnxG1pnz5ZZl964o5s3dhtFo4uHBrRg9xrr86ek63nx9A1evpuHkZM/b\ns/oSGuoHwLff/MnPq46hKAqhDf2YObsfTk639lAyfdpadkRE4u1TjbXrnr0l66zevh21JowFjQbt\nht+JX76yRJqQCWPxCG+PSafn8rvzyTl/EQD/hx/Er/+9oCgkrd9E4upfAfDq0ZWgJ4fhXCuEM89N\nJify+m3fbOoI/Lu0wqjL4+iMxWScvVwijUuQH23nTsDRw430M5f5641PUA1Gy3KPpvXo8tUM/npt\nEXHbDgJg7+ZKqzfG4N6gJqqqcuytJdctx+5dF3lnzmaMJpVBg1szekxnq+Xp6bm8MX1dwfa3Y+as\n+wv3/W8PsnrlUVRVZfCQNgx/ssN1Y5XG1n3/em7HvgfQ9KUR+HdpjVGXx7EZn5Fx7nKJNC5BfrSZ\n83zBtr/E0TfN2z6gRzsajhuCajKhGk2c/r/vSD12DoA6Q++j1sC7AIUrv2zn8vJN/6qct7L+jaaM\nxLdzG4w6PadmfmI5rhTlXMOPlrMm4eDhTsbZKE7O+Miyv183v0Yh/Ot30CelcPTFeQDUH/soft3C\nAGj/9Tzs3VxB5ZYd9+o98yi+3duDSSUvNZ3TMz8mT5uKYm9P41efoXrj+qiqqdS2qCx9X/w3yLTJ\nAoqiZNm6DHcURYPb46+T8eFYUt98AKcO/bCrUd8qSd7Z/aS9NZC0tx8m6+vXcRvxtmWZbu8a0j98\n5uZiajSEvjSG4y/O5uDjk/C/uyuudWpaJfHu1BaXmjU48MgEIud9SsOphTHiN0RwfPLMEqttNO05\noj75nkPDp6DdcYCQYTcwmNRoqDF+ItFvTOPi2FF49OyFU63aVkmMmZnEfbao5KCtgM+DD6O/cqXc\nUI1eepqjk2ez/7HJBNzThWrF6uzTqQ0uITXYN+R5zs5dTKOXx1jKeL28V1es4+CIqRwcMZXkfX8B\nkJeWwbGX3uHAEy9y+u1FZZbJaDQx6+2NLF76OL+tf44N605x4UKSVZoln+2mcZNAfvltHHPnPcSc\n2eaTkvORiaxceYQfV45mza9jiYg4T3R0SrntYNP4Gg11J4/lzNS3ODpiPL69u+NSO8QqiWfHdjjX\nDOKvx8cS9d7H1J1ifeJ06oXpHH96kmXgBlD72ae49vVyjj89iatf/kCtcU/dUN1nz9rCJ4uH8Otv\no9m44TQXL2it0ixdso/Gjf35+ZdRzJ7bn3lztgGQkJDJD98fZsXKJ1mz9mmMRhMbN5wpN+bNGvhw\nK5YsHXbrVqjRUOuF54h89U1OjRyHd68eOBdrf4/wMJyDgzk5fDTR8xdSa9IEAJzr1Mav/72ceW4y\np0aPx7NjB5yCagCQeymaC/+bRdbxk+UWwb9LK6qFBPLHQy9yfNYXtJg2stR0TSYO5dKyjfzx0Ivk\nZ2RT66GeReqh0GTiULT7T1jlaTZ1OIn7jhExaCo7h04j61JsmeUwGk3MmrmJT5cMZe1vY9mw/hQX\ni+37ny/ZS+MmAaz5dQxz3hnAO3O3AOZ9f/XKoyz/aSSrfxnDjojzXKnsfe8m3fJ9D/Dr0ppqIYFE\nDJzCidlLaT5tVKnpGj//GJd+2EjEwCnkZ2YT8uBdAGgPnmTXY6+ye9hrHH97MS3fMP+Ndqtfk1oD\n72L3iDfY9firBHRti2vNgH9V1ltZf9eQQPYMnsiZd5bQ5OXRpaYJnfAE0SvWs2fwRAyZ2QQP6AWA\nb+c2181f69F+ZF+Osfrs8vdr2f/EVACcA31JP3n+lh73or9fy8EnXuLgiKlo9xym7qjBAAQ/2BuA\nA0+8yF8TC84RlMI7SpWl74vbQ1GU+xRFOacoygVFUV4tZbmiKMrCguXHFUVp+29jyuBN2IR93RYY\nk65g0l4DYz76Pzfi2LqXdSJ9juVHxckFUC2/G84fRs1Ov6mY1Zs2IPdaPLrYBFSDgcStu/Ht1t4q\njW+39iRs2gFAxqnz2LtVw9HHE4D0o6cxZJQc47uG1CD96GkAUv88hl/P8q8EuzRsTF5sDPnxcagG\nA+k7/sC9o/XVb2N6GrrIc6il3MGy9/XFrUM4ab9vKDeWuc6JqAYDCVv24Ns9zGq5X/f2xG8oWefC\n9io7b3FZkZfJ06YCkB11teDTkn9mThyPoVZtL0JCvHB0tKNv/2Zs33bOKs3Fi0mEd6wDQL36vsTG\npKPVZnHxopaWLYNxcXHA3l5D+/a12br55gYQFR3frUkoupg49HHmfU+7bRdeXcOt0nh3DSfp9z8A\nyDp9Dnu3ajj4eF2/IqqKXTVXAOyqVSNfW/6J7IkTcdSq5UlIiCcOjnb07duEP7Zb3zG6eFFLh3Dz\nxYR69XyIiU1Hq80GwGA0odcZMBhM6HQG/P3dyo15s8La18bDw+WWra9a44boY2LJi4tHNRhI2b4T\nz86drNJ4du5I8hbzIDX7TEH7e3vhUjuErDPnMOn1YDKReewkXt26AKC7chX91ZgS8UoT0KMd19bv\nAiDt5AUc3Fxx8vUskc63fTPLVfWr63YS0LOwz9V99F7itv2JPjXD8pm9mws+bRpz9ZcIAFSDEUNW\nDmU5cTyWWrW8CQnxMm//fk3Zvj3SKs3FC0mEh9cBoF49X2Ji0tBqs4iKSqZFyyDLvh/WvhZbt5wr\nJUrZbN33y3Or9z0wb/uYDUW2vbsrTj6lb/v4bQcAuLZuF4EF296Yq7eksXNxBtV8LHSrE0zayQuY\n9HmoRhPJR84Q2Kt9ifXejFtZ/7iNOwFIP3kee/fCY2lR3mHNSNy+H4DY9RH49TCX3697WJn5nfy9\n8e3Slphft1mty5hdOOPFkJGFMSf3lh73is6osXN2svxcrW5NUg+ZL+DkF/RNz6Z1LcsrS9+vjFRV\nqdT/yqMoih3wMdAXaAo8pihK02LJ+gKhBf+eAT79t+0mg7diCkbI7ymKclJRlBOKojxa8PnHiqIM\nKPh5jaIoXxb8PEpRlNm2LHNVpPEMwJQSb/ndlBqPxtO/RDrHNr3xfHsd1Sd+RtbXr/+rmE5+3ugT\nCu8w6JNScPLzKSdNcok0xWVfuopvd/PUIb9enXHy9y23LA6+vuQnFV5tztcmYe9Tfr6/BY4dT8IX\nS1BNarlpdYnJlp/1iaXX2TpNMk5+3jiX+Nw6b80hfenw/fs0mf4s9u7VSsT1v+vvQWzJaSQJCZkE\nBnoU1iegOokJmVZpGjUOYOvmswAcPx5DbGwaCfEZhDb04/DhK6Sl5pCbm8/OneeJi8/gZlR0fEdf\nH/SJhftVXpK2xHZw9PUhLzGpSJpkHH0L0zSdP5MWn8/H/4F7LZ9d/mgptZ8dSdtVX1DnuZFEL/m2\n3LonJmQSGFjd8ntAoDsJidYXJRo18mfrVvMJ/YnjscTFppOQkElAgDtPjexAn96f0qvHItzcnOjc\npS6Vnblti7S/VotjsfZ38PUt1v5aHHx9yb0UjXuL5thVd0fj5IRHeBgON9DHi3P29yY3obA/6RJT\ncPazHpw7eLqRn5mNajSVSOPs50XgXWFEr9pqlcc1yJ+81ExazRhLt2WzafnGaKsTy+ISEzMJDHS3\n/B5Q1r5fMCg7cTzGsv0bhPpx5PBVy76/a+dF4it536sMnP28yI0vvLCiS0jB2b/YtvdwL7btk63S\nBPQMo8eq92n/wVSOvW2eGpd18SperRvj4OGGxskR/y6tcQm4/vGqIumKHEt1ick4+3lbLXfwcMeQ\nmVNsfzencfLzLjN/o8lPcX7R95ZBbFH1xw01r9uzOlFLfgRu7XGv3rjH6PLrpwTe282y/szz0fh2\nC0Ox0+Bcw3we41xkO1SWvi9uiw7ABVVVo1RVzQNWAMWnXz0IfKua7Qc8FUWp8W+CyuCtpIeB1kAr\n4G7gvYJG3gV0K0gTjHmETcFnOyu6kHeKvL+2kfbm/WR8PAHXByfaujilOjfnE4Ievpd2X76Lnatz\nqXfKbiW3Dh0xpqWiu1D+s023S8zPm9k7aAIHh09Fn5xG6MQRVsur1a1J/fH/burNmGe6kpGpY+CD\ni1n23UGaNKmBxk5D/fp+jB7dhdFPL+OZ0cto3DgQO82t/1Nm6/hFnRr/CsefnsSZqW8ROLAf7q2a\nARDwYF8uL1rKkcFPc3nRUuq/8vwtiff0mI5kZugYPPArflh2hMZNArDTKKSn6/hj+3k2bRnHtojx\n5Obm89vaU7ckZmWlu3KV+BUrafjuLELnzSTnYhSYSn+u5XZq+tJwzixcUeKEVbHTUL1xHaJXbWXX\nsOkYc/XUH/nAv4o1ekxnMjN1DBr4Ocu+P0TjJoHYaRTq1/dl1OhOPDN6OePGLKdR4wA0mlv/woHK\n1Pcqi4SIQ+wY/BKHX5pPo3FDAMi6HEvUt78RvmgaHT56hYzIaMvJ/3+Vb5e25KWkk3m25PNzABc/\nMz87nnMtnpqD77vl8aM+W86eB58l/vddlvXHrduOPjGZ9l/No+HkpwBQb+HfiIrs++KmBQNXi/x+\nreCzm01zU+SFJSV1BZarqmoEEhRF2QG0xzx4m1RwO/Q04FUwqOsElBhVKIryDObboyxevJhnnrnJ\n57P+40xpCWi8Ay2/a7wCMaUllpnecP4wdn41Udw8UbPS/lFMfVIKTgGFV8yd/LzRJyWXk8anRJri\ncqJjOD7JPM/dJaQGPp3blVuWfK0WBz8/y+8Ovn4YkrXXyVHItWkz3Dt2xq19OIqDI3aurgRPnUbM\ne3NLTe/sX3gF0Mm/9Do7+/uQbknjgz4pBcXevsy8eSmFU1Zjf91Kq/cLp3k7+XnTct5UTr+9iLAl\ns0otU0CAO/HxheuIT8jAP8DdKo2bmxNz5povYKmqSp/eCwkJMV+JHDSkDYOGtAFgwfxtBAZU52ZU\ndPw8bbLVHVlHP98S2yFPm4yjvx9wpiCND3nagvYumA5pSEsnZdd+3JqEknnsFH739eLyws8BSP5j\nD/VeLn/w5h/gbnW3JCE+k4BiUx/d3JyYNae/pe739fmMmiGe7Nl9ieBgD7y9zVM17+7TkGNHY3hg\nQLNy49qSuW2LtL+vL3nF2j9fqy1o/4I0fr7ka819UrtxM9qNmwEIfvpJ8pJurK/WHtKn4GUSkH46\nCpcAH1ILljn7e6NLSrVKn5+WhYN7NRQ7DarRZJXGs0ld2s41P4fn6OmOf5dWmIxG0k5cQJeYQtpJ\n88tV4rYevO4JnL+/O/HxhXe6EsrY92fNMa9DVVXuvftjav697w9uzaDBrQH4YMEfBBbLWx5b9/2K\n1HXZHKBg2wd6k3rM/LlzgDe6xGLbPj2z2Lb3KZEGIOWvs7gG+5vv1KVncvXXCK7+GgFAo+cetbpr\nVNEUGqJQ+Oy6c4AvYL6D6+zvgy7Jelp3fnom9u6uxfZ3cxp9Ukqp+f17hePXPQzfzm3QODliX82F\n5jOe5+SMj6zWbdLn4X9XOJeW/nTLjntFxf++m9bzp3Fp6U+oRhPnP/zGsqz3/pV4NKlLw2cGAZWn\n74ubV/RcvsASVVVt/laYO+OS1S2gqmoM4Anch/lO2y7gESBLVdXMUtIvUVU1TFXVMBm4lWS4fBI7\n/9pofIPBzgGn9n3JO/aHVRqNXy3Lz3a1moC94z8euAFknrmAS80aONfwR7G3x//urmh3H7JKo939\nJwH39QCgerNQDNk55CVfP6aDV8HJg6JQ+6nBxK7ZXG5ZciPP4hgUjENAIIq9PR497iJz/94bqkfi\n118QOXwo558axrV3ZpF97GiZAzcwP5P3d50D+nRBu8u6zkm7DhHYr0ids8x1zjxzocy8RZ9d8OvR\nwfJ8m72bK63mT+PCJ8tIP172szDNWwQTfTmFa1dTycszsnH9Ke7q1dAqTUaGjrw885u2Vq38i7Cw\n2ri5maeEJCebn7+KjU1n6+az9H+gxQ21na3iZ509j3PNIJxqBKDY2+Pbuxupew5YpUnZfRC/e80n\n+m5NG2HMziE/ORWNsxMaF/MzKBpnJzzbtyY3yvyimrzkFKq3bg5A9bYt0V0r/2H15s1rEB2dyrVr\naeTnGdm48Qw972pQou75BXVfveoY7cJCcHNzokaN6hw/Fktubj6qqnJgfzR161WeaVplyT4biXNw\nEI6B5vb37tWdtH37rdKk7T2ATx/ziweqNWmEMTub/BTzyZO9p3man6O/H57dOpOyLeKG4kav3MKu\nx19j1+OvER9xiJr9zZM3PJs3wJCVi15b8m+L9tBpavQ2T8MOub87CTsOA7B9wGS2PzCJ7Q9MIm7b\nQU6+8zUJEYfRJ6eTm5BMtdrmWTi+HZqRFVX2c3jNWwRxJTqlcPtvOM1dd5Xc9y3bf+VR2oXVKrHv\nx8Wms23LOfrd3/yG2qIwvm37fkXaPew1dg97jYSIQwT3K7btSzmuJB86TWBv87OwNe/vRsIO89/b\noi8hqd6oDhpHe/LTzacdjgXHH+cAHwJ7tSdm040dR24HlUhMbLT8XqNvdwA8mhceV4pLPXwK/17m\nKfZB/XuStNNc56Rdh0rNf+GT5ex64Fl2D5zAidc/IOXQScvAzTWk8IJwtbo10SUk39LjnkuR9ft1\nDyMn2vz3VuPkiKZguqJ3h5YARH66qtL1/crIpCqV+l/Rc/mCf8UHbjFA0bdf1Sz47GbT3BS581bS\nLmCsoijfAN5Ad2BqwbL9wCSgF+ADrCr4J26WyUjWD7PxmPQ5KBp0e9ZgjL2Ac49HAdDt+BGndn1w\n6vQgGA2oeToylxS+Zc99zHs4NOyA4uaJ17vbyVm7CP3un68bUjWaOD9/KS0XvGH+qoB128m5dJWg\nh+4BIPaXzaTsPYJPp7aEr/wYo07PudkfW/I3eWsynm2a4eDpTqdflnBp6Y/Er9uGf59uBD9snj6h\n3XGA+PXbb6D+JuI+/Yjas+ah2GlI3bwR/ZVovPrdD0DqhnXYe3lRb+GnaFxdwaTi89AgLowdhSnn\n5h5IPvf+F7T5cDpoNMSt+4PsS9cIHtgHgJg1W0jeewTfzm3otOojTLo8Ts/62NJepeUFaDBhOO6h\ndVBR0cUlcfadxQDUHHIfrjUDqTtqCHVHDSkogROgtyqTvb2G6W/2ZczoZZiMKgMHtSY01J8Vy80H\nyaGPhRF1MYlpr/6KgkKDUD9mzi68ovjC8z+RlpaLg70dr/+vL9WrO99Um1R4fKOJSx8spsn7M1A0\nGhI3bCX38lUCBpj3m4S1m0jbfwivTu1os3wxJr2eC3MXAuDg5Umj2a8BoNjZod26g7SD5q/MiHp3\nEXUmjkGxs8OUl0fUex+XHr9Y3V+b3odxY37CaFIZOLAFDUL9+GmF+Y2hjwxtQ1RUMq9PW4+iKNRv\n4MtbM/sC0LJVEH3uacQjg7/G3k5D4yYBDHmk1U20/I15acpqDh6MJi01h7u6L2DC8z0td1v+EZOJ\nKx99SsN5s8BOQ/LGzeguX8HvgX4AJP22gfQDf+IR3p7m339R8FUBCyzZ68+Yjn316qhGA1c+/ARj\ntnkA4dm1E7WefxZ7Dw9C58wg52IU5195o9QiJO4+in+X1tz16/yC18Uvtizr8OFUjs38HL02jbML\nl9N2zvM0em4I6eeiLS8juJ5T735Lm1nPoXGwJycmkWMzFlN/xP2lprW31/Da6/cydvRyjCYTAx9u\nRYNQP35cYT5RfHRoO6Iuapk+7TcUBeo38OPtWf0t+Se/sJq0tFxzH3rj3srf927SLd/3gMQ9R/Hr\n0pqevyzAqNNz/K3Cbd/+w5c5PnMJem0aZz4q2PbPDiHjXLTljlpg7w7U7NcNk8GASZ/PkWmFd5na\nvTsJBw83VIORk/O++tcvrLiV9c+NTaTL6oUYdXmcnvmJ5fM2C17l9OzF6LWpnF+0jBazJtFg7FAy\nIy8Rs9Z8/NTu+Qvfzm1LzV+WBuOHUa1WwZtgYxKoVjuIjisW3Lrj3nPDcK0VhKqq6OKTODfPPOvB\n0duD1h+8DqoJfVLJl0ZVlr4vbos/gVBFUepiHpANBR4vlmYtMEFRlBVAOJCuqmrcvwmqqKU88Hkn\nUhQlS1VVN0VRFOBdzG+HUYFZqqr+WJDmaWCmqqpBiqI4AGnAcFVVrz9qKPqaxDuQdkzxF+9UHN/P\nTxPReZDN4vfcu5pTfXvbLH6zjdvY1nFI+Qlvk977V2Jkmc3i2zHM5vH3dR9gk9iddq4FIM/4pU3i\nO9qNsnnbH+rVz2bxw7ZvYF27W/vK+Ztx/+Fl5JvKf4HN7eKgGWHz7W/r+OvDip/DVZz+h36wWf3t\nMO/3W8IfsUn8Pgd+svlxz9Z9H6gS3369JfyRSn1+3OfAT+W2o6Io/YAPADvgS1VVZyuKMg5AVdXP\nCsYVizDP3MsBRqqqeqjMFd4AufNWQFVVt4L/Vcx32qaWkuYL4IuCn/OBkq/YE0IIIYQQQlzXjbyO\nv7JTVXUDsKHYZ58V+VkFxt/KmPLMmxBCCCGEEEJUATJ4E0IIIYQQQogqQKZNCiGEEEIIISqUqWo8\nmlfpyJ03IYQQQgghhKgCZPAmhBBCCCGEEFWATJsUQgghhBBCVKj/wtsmbUHuvAkhhBBCCCFEFSCD\nNyGEEEIIIYSoAmTapBBCCCGEEKJCmWTa5D8id96EEEIIIYQQogqQwZsQQgghhBBCVAGKqqq2LsOd\nQBpZCCGEEEJUhCoxH3F92OOV+vy4/6EfKmU7yjNv4rbb3fUhm8XuuvsXYoe3sVn8oO/+4te2T9gs\n/oNHvmdbxyE2i997/0oO9epns/hh2zdwuHdfm8Vvt20jxtXeNoltNygFwGbtH7Z9g823vZFlNotv\nxzAWNRpns/gTzn1m833f1tvf1vG3dxpss/i99q2yad8HiOg8yCbxe+5dzaYOQ20SG+C+gyts3ver\nCvmqgH9Gpk0KIYQQQgghRBUggzchhBBCCCGEqAJk2qQQQgghhBCiQplsXYAqSu68CSGEEEIIIUQV\nIIM3IYQQQgghhKgCZNqkEEIIIYQQokLJ2yb/GbnzJoQQQgghhBBVgAzehBBCCCGEEKIKkGmTQggh\nhBBCiAplkmmT/4gM3kSF8gxvQ70XRqNoNCSs28K1738ukabeC6Px6tQOk05P5JyFZEdGFS7UaGi9\n9H3ykpI5/cpsAOo89yTeXdqj5hvQxcYTOecjjFnZ5ZbFqUVnPIZPBY2GnIhfyFr3ldVyl859cev/\nFCgKqi6HtK/nYLgSCYDi6obn0//DvmZ9UFXSlr5F/oXjN9QGLaYOx79ra4w6PX/9bwnpZy+XSOMa\n5EfY3PE4eLqTfuYSh1//FNVgxKddE8LnTyYnNgmA2O1/Evn5L7jVrkHYOxMK8wf7c/azVQB4d2xN\nw8kjUTQaYtduI/q7X0rEazhlJD6d2mLU6zkz82Myz126bl7/Xh2pO/oRqtUJ5s9R08g8a95G9tXd\naDn3RdybNCBufUSJONXbt6PWhLGg0aDd8Dvxy1eWSBMyYSwe4e0x6fRcfnc+OecvmmM+/CB+/e8F\nRSFp/SYSV/8KQM2xo/DoFI6ab0AfF8fleQswZpfc/tXbtyNk/LiC2JtIWFFK7PHjqB7eHpNez+V3\n/4/cIrF9+90HioJ2/SYSfza3Q40Rw/Dtfx+GtHQAYr74hoyDf5ZYb2l2RTowd50bRpPC4Pa5jOmR\nWyLNwSgH5q53w2AEL1cT3z6Tjj4fRnzuSZ5BwWCCe5rref7unHLj3Y62Dxo5HM/OHUE1kZ+WzuV5\n88lPTqmw+F49uhL05DCca4Vw5rnJ5ESeL7cdbsT0aWvZERGJt0811q579pas83q6TX+E2j2aY9Dl\nse3Vb0g6fbVEmj7vj8K/eS1M+UYSTlwm4s1lmAw3/qJtW+//tuz7tyv+je7/3h1bEzppJIqdhrgy\n/gaHTh6FT+c2mHR5nJ65iKxI89/gxtOfw7dzO/JS0zn4xJSSZX7sAUInPsmu+0aSn55Z6eoO4B3e\nmgaTRpnr/9s2rny3pkSaBpNHmY9BujzOzvqIrMhLOPn70PiNiTh6e4AKsWu3EPPTegD87upEnacf\nxbVOMEdGv0rm2Yulxv5bkxefxLdzG0w6PSfe/pSMc5dLpHEJ8qPVrBdw8HAj4+wljv9vEarBSI17\nu1BvxABQFAw5Ok7PW0rm+SsANH99LH5d25KXmsGex6ZetwylqYi+L/57ZNqkqDgaDfWnjOXUS29z\n5Inn8bu7Gy51alol8erYDueQGhwe+iwX3vuEBi+Ns1oeNOR+cqKvWX2W9ucxjoyYyF9PTSL3aiwh\nwweVXxZFg8eTr5L83gQSXxmES6f7sA+qZ5XEkBSLdvZokl57hMxfPsdz1OuWZR5PvIz++F6SXnmY\npOmPYoiNKh6hVP5dWlGtViDbHnyRY7O+oNW0p0pN13TiULFS7a4AACAASURBVC4u28S2B18kLyOb\n2g/1tCxLPnqOiMemE/HYdCI/N58EZEXHWT6LGPY6Rp2euD8OAdDopac5Onk2+x+bTMA9XahWrM19\nOrXBJaQG+4Y8z9m5i2n08hjzAo2mzLxZUVc58er7pB09Y7UuU14+F5f8yIWPvi1ZKY2GWi88R+Sr\nb3Jq5Di8e/XAuXaIVRKP8DCcg4M5OXw00fMXUmuSeUDqXKc2fv3v5cxzkzk1ejyeHTvgFFQDgIzD\nf3Fq1LOcHjMe3dUYAh9/pPTYE8dzftobnB41Fu9ePXGuXcsqSfUO7XGqGcSpEU9zZf5Car9QGNu3\n332cGT+J02Oew6NIbOD/2Tvv8Kaq/4+/TpKmK91tWgpll7333i5coOAARWWJbBVUnCiC46e4B6g4\ncXzFzVD2XrL3pmV0pnslaZL7++OGtmlaWpASquf1PD7Sez/nvM8593zuuWeGlEW/cvjhiRx+eGKl\nO252B7z8ewDzHszij6npLN3rw4lkrYtNdoHgpd8MfHB/Fn9MzeCtYdkA6HWwYFQmv0zO4OdJGWw8\npmfvmQrG4aqo7JN+WMShMRM4NHYSWVu2U+P+YVdVv+B0PCdeeJncfQcqLvRLYPAdrZn/6fArGmd5\n1OnVguC6Rr65/nnWPLeQ3jPLLsNjv29n4Y0z+e7WWei89TQb2qPyIp6u/570/SrUr1T912ho/Pho\n9j42m233Porxuh74lfEO9oupwdahkzjy6sc0fmJs0b2kJWvY8+jLZWbL2xhGaKfWmBNTy863p/Pu\n1I+dNoZ9j89m+7CpGAe45z+0azt8a9Vg210TOfbaRzSaruZfsds5+d4X/D18KrvGPkXNO24sCpt3\n6gwHnn6drD2Hys+7k/BubfCLqcGGO6dy4JVPaPbk6DLtGk0cRtx3S9hw51QKc3KpdXs/AAoSUtk2\n7iU2DXuCk5/9TPMZxc/n/JJ17JzySoVpKIur4vuSfyUe7bwJIdYKITp4Mg3/FCFErqfTUF0IaBqL\n+VwiloRkFJuN1JUbCevR2cUmtGcnUv5cC0DOwWNoDf54hYUAoI8II7RrB5L/WOESJvPvPerXMJBz\n8Cj6iLAK0+LVoAW25LPYU8+D3UbB1r/wad/Hxabw+F6UfHUk03piH9qQSACErwF9k3bkr3OOHtpt\nKPmVqwY1+rTn7OKNAGTsP4lXgD/e4cFuduEdm5GwajsAZxdvoEbf9pWKHyCiU3PyzqVQkJgGQMG5\nJMwJKSg2G8krNhHey9XlInp1JGnpOgCyDx5HZ/BHHxZMYLOG5YbNjztP/pkEN22H2ULW3iM4rIVu\n9/ybNMJyPgFrYhKKzUb66vUEd+vqYhPcrQtpK1YBkHf4KDqDP16hIfjWiSH38FEcFgs4HOTsPUBI\nz+5qmnfsBofDGeYI+ojwMrXNJbQz1qxTR41LanfvQtryVUXxaA0GdKEh+NSOIe/IUZQL2vv2E+zU\nvlz2n9NRO8xOTKgDvQ5uamVm9WG9i82Svd5c19xCdLCatzCDAoAQ4O+t2tjsYHMAFaw8qaqyd+QX\nzxZqfHwA5arqm8+cxXL2/MUzfxl06FiHoCDfKx5vWdTr34ojv24FIHnvabwDffGLCHSzi19f3EFN\n3heHITKk0hqerv+e9P2q1K9M/Q9s1pD8Eu/RlJWbiOjV0cUmvFdHkpatVfN08Dg6gx/6MLVdyNxz\nGFt22e1L7JQHOfnB1yjl+J2n834h/2o7kuzM/0bCe5bKf8+OJP/p3gZZ0zKLZiDt+Wby48/hHREK\nQH78eQrKaIPKIrJXBxKWrgcg68AJvAL88A5zb3fDOjQnefU2ABKWrCeyt9reZe4/hi1HndHNPHAc\nH2NoUZiM3UcozK54pU9ZXA3fv9ZRENf0f9cq/+mZNyGEtmIryZVCHxGKJcVU9LclNQ19RKiLjXd4\nKNYSNtaUNLzDVZv6k0dx+qMvQSm/oYq8eQAZW3dVmBZtiBF7enLR3/b0ZLQhEeXa+/UZhHnfJjVs\nRDSO7AyCx75IxKzvCBr1PMLbp0JNAB9jCAXJaUV/F6Sk4xvh+iLWBxsozM1HcXZIC5LT8SlhE9oq\nlj4/zKHLe9MJqF/TTaPmDV05/9eWor/NKcV6lpR0vEt1br0jQkvZpOEdEYqP23X3sJeCPjzM9dma\nTG4dba/wcKwpxaPI1lQTXuHhFJyOJ6BlC7SBAWi8vQnq3AEvo/uHWvhN15O1fYfbda/wcApTS8db\nWjsMa6rJxUYfHo45Lh5Dy+ZoAwMQ3t4Ede6IPqK4rkQMvpWmn3xInWmPojUYKlUWyVkaooLsRX9H\nBTlIyXZ9HcWZtGQXaHjgkyCGvB/Mb7u8i+7ZHTD4vRB6zAmnW8NCWsfYLqpXlWVfc+QIWn3/JWED\n+pDw+ddXXb+6Y4gMJjcpo+jv3KRMDJHuH5YX0Og0NL69M/EbDlZaw9P135O+X9X6FdV/79LtnvP9\n6moThrlEu2BJrfhdG96zI5bUdHJPxF/UztO+7x0RiiW5ZLtfdhvkapPmZuMTFYEhth7ZBy99abS3\nMdSl3TWnpONtdH0GXkEBFOYUt7vm5HS35wRQ67a+pG7Zc8lpKIur4fuSfyeV2vMmhPgViAF8gHdQ\nO30NFEWZ7rz/INBBUZSJQojngPuAVOAssFNRlDcuEv39QohPnWkZqSjKdiFEKLAAqA/kA2MVRSlz\nQ5EQorczTaAO/fQC2gMvATlAQ2ANMF5RFIdzpmweMACYIIQoAOYCBsAEPKgoSqIQYgwwFtADJ4D7\nFUXJF0LUA7512v9WmfKT/HNCunWgMDOLvKMnCWrbokybWiOGoNjtpC5fd0W19U074NdrEKaXRwIg\ntDq86jYh6+vXKDx5gMD7pmO4ZSQ5P314RXXLIutIHMsHTsFeYMHYvTWd5j7KqkHTiu4LnZaoXu04\n/N4PVZ6Wq4n5zFmSvv+RRq+/jMNsIf/kqaIR9wvUGH43it1O+so1VaId+9psHGYzBSdOoTi1U/9Y\nQuI334GiEP3QCGqNG0P8G29dEV27Q3AwQceCUZlYCgX3fhxM69o26obb0Wrgl0kZZBcIJn8TyPEk\nLbFR9oojvQwqKvvzC77i/IKviLr3LoyDbiXhy4VXVf+/Ru8XhpGw4ziJO09cFT1P1f/S+p7w/cro\nV3X9LwuNt546D9zBnimzqlTnWsm71teH5nOmc+Kdz7Hnu+8NvlqEtm9Grdv6sm3sCx7Rv9q+L7l2\nqeyBJSMVRUkXQvgCfwP9gU3Ahd2ZdwOzhRAdgTuB1oAXsAvYWUHcfoqitBFC9ELtsLUAXgR2K4oy\nSAjRD/gKaFNO+GnABEVRNgkhDIDZeb0T0AyIB/4E7gAWAf7ANkVRHhdCeAHrgNsVRUkVQtwNzAZG\nAj8rivIJgBDiZWAU8B5qR/EjRVG+EkJMKC9TQoixqJ0/5s2bx9ixY8sz/c9gTU3Hu8SonXdEGNZU\n1w3OFlM6+hI2emMYFlM6YX26Etq9IyFd2qPRe6H196PRc1M5NuttAIw39SO0WwcOTHm+UmmxZ6Sg\nDY0s+lsbGok9w33fgC4mluBRz5P2xkSUXHVTvj09GXt6CoUn1aUM5u0rMdz6ULla9e4aQJ3BfQHI\nOHgK38jiEUVfYygFqRku9tbMXLwMfgitBsXuwDcyFLPTxpZX3HClbNqLZsaD6IMNWDPVZTWR3VuT\ndSQOS3p2kZ2PsVjP2xiKJbV4BBLUkVAfYxhZRTZhWFLTETpdhWEvBaspzfXZhodjLRVfocmE3lg8\nqq+PCKfQpI7ImpYtx7RsOQA1Rz3gMksQdsMAgrp04ti0p8vULjSZ8IooHW9p7TT0EeHklbCxOrXT\nli0nzakdPeoBCp3atozMovCmJctoOPvFigsCiAxykJRVPNOWlKXBGGgvZWMnyM+Bnx789Aod6hZy\nJFFL3fBiu0BfhU71C9lwXE9sVPkfNVVZ9hdIX7WG2FdeLPMD7mroVydaDutNs7vUfSsp++MxRBXP\nrBuigslNziwzXMcJN+MbamDNxEv7SPZ0/fek71e1/gXKq/+W0u2e8/3qapOGT2SJd3DExd+1vrWi\n8K1hpNPXbzjtw+j4xevsGDUDa7pr3fG071tS0/GOLNnul90GudqEFdkIrZbmc6aTvHwDpnXbyi2T\n0tQecj21Bql71rIOncQ3MowLJeNjDMWS4voMCrNy8Aoobnd9IkNdnpOhYW1aPPMwO6a+SmHW5e+W\nudq+f60jT5u8PCq7bHKyEGIvsBV1Bq4ecEoI0UUIEQY0Qe3MdQd+UxTFrChKDvBHJeL+DkBRlPVA\noBAiGOgBfO28vhoIE0K4LwRW2QTMFUJMBoIVRbmwfmi7oiinFEWxOzUu7PC0Az85/90YtbO4Qgix\nB3gWuLCTtoUQYoMQYj8wHGjuvN79QpovpLEsFEWZryhKB0VROsiOm0rOkeP4xtTAu4YRodMRMaAH\n6Zu2u9ikb9yO8cY+AAQ0b4Q9N4/CtAzi533D33eMZsfQsRyd+SZZO/cVddyCO7el1rDBHHpqDg6L\ntVJpKTx1EF1UbbQR0aDV4dvlBsy71rrYaMOiCJ3yBhnznsOedKbouiMrDXt6EtqoOgB4N++E7Xz5\nB5ac/t/KosNEktbuJOYWtSqGtGxAYW4+FpP7y9q04xDR/TsBEHNLTxLXqktBvcOCimyCm9cHIYo6\nbgA1b3RdMgngF1MDH2eZR17XHdMG16VFqRt2EDWwNwCBzWOx5eZjTcsk5/CJCsNeCnlHjuFTMxp9\nVCRCpyO0Xy8yt2x1scncvI2w6/oD4N+0Mfa8PArT1Y6rLljNu94YQXDPbqSvWqumuWN7ou4ewoln\nX1T3ZlRCO6RvbzI3l9beStj1F7SbYM/Lw1ZK28sYQUiP7kXautDihje4RzcK4i6+hOkCLWraiDdp\nOZeuwWqDZft86NvUte72a2plV5wXNjsUWGHfWS8aRNhJzxVkF6gNnrkQNp/QUz/i4rNuVVX23jWj\ni/PfvQsFZ1wPE6pq/erK/m/X8cOg2fwwaDanVu6hySB1/1lk63pYc8zkp2a7hWk2pDu1ezTjr8c+\nu+jS8bLwdP33pO9XpX5l6n/p96hxQHdMG1wPdjFt2EHUTX3UPDWPxZ6nvoPLzc/JM2y8eRRb7hjP\nljvGY0lN4+8Hn3DruHk67xfy71urZP57YNro2o6YNv5N5I0l2qAS+W/89Hjy485x7vvKfE4Wc2bR\ncjbf9xSb73uKlHU7iB7YC4CgFg3VdreM8k3feYjIfuo+/Oibe5G8Tk2nT2QYbV97jH0vfED+mcRL\nSkdprrbvS/6dVDjzJoTog7rEsKtz2eBa1OWT3wN3AUeAXxRFUYS4rB506Zp4STVTUZRXhRBLgIHA\nJiHEDRXEa3Z26EDd5n9QUZSuuPMFMEhRlL3OZaF9LjeNEid2ByfnfkKLuS+ARkvykpXknz5L1O3q\nI0v67S8ytuwkpGt72v/wMQ6zheNz3q0w2gaPjkXj5UWLt9RR35yDRzn5xscXD+Swk/XVa4RN/1D9\nqYD1v2E7fwq/fkMAyF+9CMOgsWgMwQQ/MANQT74yvaCeQJf11WuEPDIHodNhSz1P5vzKLaNI3riH\nyB6tGfDbm9jNVnbPnF90r8u709jz0qeYTZkcevd7OrwykSYThpJ1JI4zv64FIHpAJ+oO6Y9it2O3\nFLJjxgdF4bU+3hg7t2Dv7AUumkff+Iy27zwDGg2Ji9eQd/ocNQdfB8D5X1aQtnkX4d3a0nXRe+ox\n1S9/4Myvo8ywABG9O9Ho8ZHogwNpM3cGOcfi2DNV/emGbr98gM7PD+Glvl586sRgjj8LDgdn3vuI\nRq+9DFoNacuWY447Q8StAwFI/WMpWdv+JqhzR1p885nzyOriJVgNZj6DLjAQxW7jzDsfFh0JXnvy\nI2i8vGj0f6p+7qGjnHn7/VLPW9WOfe1lhEaLadlyzPFnCL9F1TYtXkr2Be2vF+Awm4n7v2Lt+jOf\nVbVtNs68W6xda+wo/BrURwGsScnEv1VxfQXQaeGZ23IZ83kQDkUwuL2Z2Eg7329T907e09lMA6Od\nHo2sDHo3BI2AIR3NxEbZOZqoZcaiAByKwOGAG1ta6NOkgkGLKir7WmMewiemJopDwZqSQvxb75cp\nX1X6wT26UnvSI+iCgoidM5P8k6c4/uRzlXoGF2PaYz+xfXs8mRn59O31FhMn9eHOoW3/cbxlEb/u\nAHV6t+D+FbOwFVhZ9fSXRfdumT+RNc9+TV5KFn1eHEZOQjpDfngCgFMrdvP3B0srJ+Lp+u9J369C\n/crUf8Xu4Nibn9Lm7WfVn1xZvJq80+eIHnw9AAm/LCdt8y7CurWj64/vqz/X8nLxEvzmL04luF1z\nvIID6PbbPE5/+gOJf6wu/1lfQ3m/kP/jcz+l1VvPqT8VsHg1+afPEj3Imf9fl5O+eRdhXdvR+ccP\nsJstHJ2ttkFBrZoQdVMfck/E0+ELdZbx1LxvSd+yi/BenYh9bDRewYG0fONpco/Hse/RspeRpm7a\nTXi3NvT6+R3sZgv7ZxV/H7R/60kOzJ6PxZTB0fe+pfXsycSOu5ucY3Gc+11dhttg9J3ogww0e3Kk\nM092tjzwDACtZ00ipH0z9MEB9PnjA45/sqjSj+aq+L7kX4lQKujFCyFuB0YrinKrEKIJsAe4EdgL\n7ADOAE8696p1RN1P1g21Y7gLmF/enjdnR/CIoijjhBA9UJcjthRCvAukKooyy9l5fEtRlDJbTiFE\nA0VRTjr/vQj4BsgEllG8bHKZMx0/CSFyFUUxOO31wCHU/WxbnMsoGymKclAIYXKGzwCWAucVRXlQ\nCPE78D9FUb4RQjwC/N+F+C7Cf7qzt7HHII9p99j4Kwn3V81HV2WI/no3v7W7z2P6t+/6hlVdhnpM\nv//WH9nRb6DH9DusXsrO/jd5TL/9qmXYf3Lf9H410N6pLvnxVPl3WL3U48/ejueWGGkZzvuNx1Vs\nWEVMPPqxx+u+p5+/p/VXdx3iMf1+WxZ51PcB1narxM/2VAF9Nv/En53u8Yg2wI3bv/e471PhGcTX\nBovaPHBNfx8P2fPlNVmOldnz9icwTghxGDiKunQSRVEynNeaKYqy3Xntb2fnZh+QDOyHomXc5WEW\nQuxG3SM30nltJrBACLEP9cCSBy4SfqoQoi/gAA6idtS6ou7Ne5/iA0vcfhVSURSrEGII8K4QIgi1\nPN52xvMcsA314JVtQIAz2BTgWyHEk8gDSyQSiUQikUgkkkvGcU133a5dKuy8KYpiAcocvlMU5ZYy\nLr+hKMpMIYQfsJ6LHFiiKEqfcq6nA5WarlEUZVLpa87lm9llpa/0LJmiKHtQT6gsbfcR8FEZ10+j\ndg4v8GxpG4lEIpFIJBKJRCK50lT2tMlLYb4QohnqvrgvFUWp+Ee3JBKJRCKRSCQSiURyUa54501R\nlGGlrwkhPkA9pbEk7yiK8nll4xVCPIS6ZLEkmxRFcTuuX1GUtcDaysYtkUgkEolEIpFIrh5K9dia\nd81RFTNvbpTVwbqMOD4HKt3Zk0gkEolEIpFIJJJ/E5X9nTeJRCKRSCQSiUQikXiQqzLzJpFIJBKJ\nRCKRSCQXcChy2eTlIGfeJBKJRCKRSCQSiaQaIDtvEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVVF\nkT/SfVnImTeJRCKRSCQSiUQiqQYIRXZ7rwaykCUSiUQikUgkV4NqcRLIty0fuqa/j4ft//yaLEe5\nbFIikUgkEolEIpFcVRzVo495zSE7b5Iq57d293lM+/Zd3/Bh43Ee0x9/9GPO3N3JY/q1f9jO4vbD\nPaZ/y86FrOoy1GP6/bf+6HH9b1qO9Ij2ffsXALCl120e0e+6/neP1733Pej7E49+jJ2FHtPXMtzj\ndf+/rm//wsdj+toHzR7Lf/+tPwKwpMMwj+jfvONb1ncf7BFtgF6bfvG470v+3cg9bxKJRCKRSCQS\niURSDZCdN4lEIpFIJBKJRCKpBshlkxKJRCKRSCQSieSqoihyz9vlIGfeJBKJRCKRSCQSiaQaIDtv\nEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVXFIZdNXhZy5k0ikUgkEolEIpFIqgGy8yaRSCQSiUQi\nkUgk1QC5bFIikUgkEolEIpFcVRRPJ6CaIjtvkqtOy+n3Y+zRBrvZwu4X5pN1JM7Nxi86gg6vTMAr\nOICsw6fZ+exHKDY7Ye2b0nnuo+QnpAKQsPpvjn3yKwD1h99InUF9QFHIPnGO3TPnV5iWHs/cRZ3e\nLbCZrax66ktMh8662bQY3ofWD/QjqI6RBV0ex5yRB4B3oB9954wgqHY4NouNNU9/RfrxhEqXg0/r\nLoQ8+DhoNOSt/o3s375yLYMeNxB42wgQAqUgn/TPXqMw/jh46YmcOQ/hpQeNloJtq8j68ZNK6zaf\nPgJj99bYzVb2zJxHdhnl7xsdQbtXJqIPMpB1OI7dz32IYrMX3Q9qVp/un89k99Pvk7hqO/51atDu\nlUnFaa9p5NjHiwDo8sM7CI2GhN9XEf/1r25ajR57iLCu7bBbLBye9QE5R08DENqlDY0efajMsLWG\n3kitO29EcThI27yLE+9/A4ChYW2aPPkwWn9fcChXVV8XaKDVK48T0LQhiUvWcuzNzyp8Fh2eGkbN\nni2xma1sefYz0g+fcU/fvf1oet91BNSO5Meek7Fk5gJQ9+YuNB95EwiBLc/Mtllfk3nMvf5eILhT\nO+pOHo3QaElespyEhT+52dSdPIaQLh2wWyycfOVt8o6dAqDtD5/gKChAsTtQ7Hb2j30cAL8Gdan/\n+Hi0fj6YE1M4MetN7PkF5aahKuoegM7gR+vnxhDQsBaKorD3xYp9vyQ9S70HUst4D1z3xkiMLWrj\nKLSTvD+Otc8vxGFzXJJOZXlmxu+sW3uM0DB/fl/8yGXHc7E6fIFLrf/Gfl2oN/ou/OvW5O+RM8g5\notaR0vUf/ju+X55+eWw46cMrK0OxO2BIm1zGdM12ub893puJPxmpGWQD4LrG+YzvkcXpNB2P/RpR\nZHcuU8eknpmM6JRTps6Vzn+90UOJvm0AhZlqek9+9C1pW3YT2qkVDcYPR6PT4bDZykxLs2kjMHZv\ng91sZe/Mj8k+Gudm4xsdQds5k5y+f5o9z6u+H9m7PY3GDUVxOFDsDg69+TUZe4+qaRp2EzG39wUU\nsk+cZd+L89ziDenclgZTRyE0GpL+WMnZb352s2kwdRShXdtjN1s4Nvs9co+dQui9aP3BbDReOoRO\ni2nNFuI/+x4A/9i6xE4fh0avR7HbOfHGfHIOHy8z75fClfJ9yb8b2Xm7TIQQU4H5iqLkezot1Qlj\n99b4145i1e2PE9KyAa1nPMj6B2a62TWbfA8nF/7J+eVbafX0Q9QZ1Ie4RasASNtzlG1T3nSx94kI\nof4917N6yJM4LIV0eHUSNW/octG01O7VgqC6RhZe/zyRrevRe+YwfrrrNTe7pF0niV+7n9u/eszl\nertxN2I6fJY/J35McP1Iej1/L78/+HblCkJoCBn5BCmzJ2JPSyHqlS/J37EB2/nTRSa2lASSXxyH\nkpeDT5uuhI6ZQfKzI6HQSspL41EsBaDVEvniJxTs2YL1+IEKZY3dW+MfE8WaQY8T3KIhLWc8xKYH\nXnCzazr5Hk4vXEbC8q20nDGS2oP6EO8sfzSCppPvwbR1f5F9XnwiG4Y9XXR/wLL3SVq3k+bT7mfP\no7OxpKTT8fNXMG3YQV7cuaJwYV3b4htTgy1DJxHYPJbGT4xhx6inQaOh8bRR7J48yy1sSLvmRPTq\nyLb7p6EU2vAKCVSLVKuh2czJHJr5Hrkn4tEFB9D7zwVXTd9hLeTk/B8w1I/Bv37tCp9FdM+WBNSJ\n5LebZxDeqj6dnh3Bn8NfdrNL3X2C8+v2ct2CJ12u555LZcVDr2HNzie6R0u6vPBAmeHVZ6Kh3qMP\nc+ix57GmptFy/ptkbNxOQXxxJyW4S3t8akWze9jDGJo1pt5jj3Bg3PSi+wenPIMty/UjscETk4j/\ncAHZew8SMXAA0ffewdnPFpaZhKqqewDNp99Pypa97HzyHYROi9bHu+xyKIM6vVoQXNfINyXeA4vK\neA8c+307K6YtAOD6N0fRbGgPDny3vtI6l8LgO1oz/L6OPPWk+wf3pVBeHb7A5dT/3FNn2f/UGzR5\naqyLVln1/7/i+276gQZ6L/+8zGdid8DLy0P59J4UIgNt3P1FDfrGFtAwvNDFrn0tMx/dlepyrV6Y\njV9GJRbF0+f9WvRvXMYniNBUSfkDnP1+MWe+/cNFzpqZzd5pr2I1ZeBfP4Yu3851uR/RvQ3+MVGs\nHfwYwS0a0mLGSDY/+LxbsptMupfT3y4jcfkWWswYScztfTnz00pM2w+QvG4nAAENY2j36hTWDZmG\nd0QIde++gXV3TcdhKaTtK5OJvr6ra6QaDQ0fH8v+qTOxpKTR9tPXSdu4nfwSZRHStR2+taL5++7x\nBDRvRMNpD7Nn7JMo1kL2TX4eR4EZodXS+qM5pG/dRc7BY9Qf/wDxC/5HxtZdhHRtR73xI9g36Tn3\nZ3GJXCnfl/y7kXveLp+pgJ+nE1HdqNGnPWcXbwQgY/9JvAL88Q4PdrML79iMBOeo+tnFG6jRt32F\ncWu0WrTeeoRWg9ZXjzk146L29fq34uivWwFI3nsafaAvfhGBbnamw2fJOZ/mdj20QQ3Ob1VH/zJP\nJRNQMwzfsIAK0wmgb9gcW/I57CkJYLeRv3k5fh17udhYj+1HyVM/li3HD6ANMxbdUyzq7IbQ6hA6\nHSiVW3wQ2bs955ZsUNN84AReBr9yyr950azG2cXriezToehevbtvIHHV31gyst3CAYR3akH+uRS8\nw4IAMCekoNhsJK/YRHivDi62Eb06krR0HQDZB4+jM/ijDwsmsFlDCs4llRm25h3XE/fVryiF6ghv\noTMdoZ1ak3sintwT8QD41apxVfUdZgtZe4/gsLp+n5ttMwAAIABJREFUhJVHTN+2nP59MwCmfafQ\nB/jhGx7kZpdx5Ax5Ce71z7T3JNbsfGf4k/hFhpSrZWgai/l8IpbEZBSbDdOqDYT06OxiE9qjM6l/\nrQEg99BRdAZ/vMLKjxPAJyaa7L0HAcjasYfQ3l3Lta2quqcz+BLWtglnf10LgGKzY8ut/Jhavf6t\nOFLiPeBdznsgfn3x4EjyvjgMFynvf0qHjnUICvL9x/GUV4cvcDn1Pz/uPPln3FcYlKz/+lD1uf5X\nfL+0vi07t9xnsj9BT+0QGzEhNvRauKlpHquPXfqz3hrnQ+3gQmoG2d1vhneskvyXR+6xOKwmtb3N\nO+U+ax3Zuz3nl5bw/QA/vMPK9v2kVdsAOLd4A1FO37cXWIpstL4+Lu2dKNnu+7i3+wFNYyk4l4g5\nQX33pa7aSFjPTq66PTqR/Kf67ss5eAxdgD9657vPUWBWdXRahE5bpK0oCjp/9bnp/P2wmtIvWkaV\n5Ur5fnXBoYhr+r9rlX/1zJsQYgQwDXVZ7T7gOWABEA6kAg8pinJGCPEFsFhRlEXOcLmKohiEEH2A\nmYAJaAHsBO4DJgHRwBohhElRlL5XM1/VGR9jCAXJxR+iBSnp+EaEYDFlFl3TBxsozM1HsatLkgqS\n0/GJKP5QCm0VS58f5mBOyeDgW9+Sc+o85tQMTny9lOuXvoPdYiVly35St158Jso/MpjcpOIXfV5S\nJv6RweSnlt0pKY3pyDnqX9+WxJ0nMLasS0B0KIaoEArSyl7CUhJtaAT2tOSiv21pKXg3bF6uvaHv\nbZj3bCm+IDREvfoVuqha5P61COuJg5VKs48x1KX8zSlq2ZYsf69gA4U5eUXlf8EG1BnOqL4d2PLw\nbIKbu468XyD6+i4k/LUZX2Ooy3VLSjqBzWNdrnlHhGJOSSthk4Z3RCg+bteLw/rVjia4dVMajLsX\nh6WQ4+99Rc7hk/jVrgEKtHn7GbxCAt0+Iqpa/1LxNYaQl1Tc4Oclp+NrDKHAlHXJcTUY3JOEjfvL\nva8PD8OSYir625pqIqBZYzcba0pqCZs09OFhFKapPtJs7iwUh4Pk3/8i5Y+/ACiIO0NIj85kbNxG\nWJ/ueBvDy01DVdU9v2gj1owcWs98mMDY2mQdOc3B//u6/MIqhaHUeyA3KRPDRd4DGp2Gxrd3ZsPs\n/1Vaw1OUV4cvcDn1vzJofV1nPv/tvl9aP3nFpnLLJjlXR1Rg8dLCqAA7+xL0bna7z3sz6NMaGAPs\nTO+XQWyE66DQ0sP+DGxWziCFX3SV5B+g1tCbiBrYm5zDJzn+7lfYcvJc4jX2dV/x4hMRQkGJd505\nOR0fYwiWtBK+HxRQyvfT8DEWt/uRfTrQZOI96EMC+Xvq/6lpS83g1DdL6Lf4PewWK6at+zFtc30P\nekeEurz7LClpBDRv5GKjjwjDUqos9BGhWNMyQKOh3YI38K0ZRcLPy8g5pC6NPPnOAlrOfZ76Ex4E\njWDPwzPc8i2RVBX/2pk3IURz4Fmgn6IorYEpwHvAl4qitAIWAu9WIqq2qLNszYD6QHdFUd4FEoC+\nsuN2dck6EsfygVNYe/fTnPp+OZ3mPgqAV4AfUX3aseKWR/nrhknofL2pNbB7laZl1/y/0Af4ctev\nz9Dy/j6YDp/FYb/ye2C8m7fH0O82Mhe+X3xRcZD05H2cf+QW9A2b4RVT/4rrlkWzafdz+N3vy53p\nEzotUb3bk7ByW5WlQWg1eAUZ2DHqaU68/zUtZz/mvK4luHUTDr7wLjvHPkdgs8p/bF4JfU8R2bEJ\nDe/oya63fqwyjYMTnmTfqKkcnv4iUYMHEtBaHWg48eq7RA0eSMtP5qL188VRWPZ+lytBeXVPaDUE\nNqlL/KKVbBj+DPYCCw0eurXK0tH7hWEk7DhO4s4TVaYhKZtr1fdL6xt7d64gpovTLMrKqgnn+XV0\nIsPbZzPppwiX+1Y7rDnuyw1N88qJoWo4//NyNt85ke33T8eSlkns5BEu9/3r1aLBhOFVop28dgfr\nhkxj57S5NB43FABdgD+Rvduz5rYprLpxAlpfb2redIXbfYeDXQ8+xtbBowloFotfPXVJcPTgGzj1\n3gK23TGGk+8uoNGMCVdWVyK5CP/mmbd+wI+KopgAFEVJF0J0Be5w3v8aeL0S8WxXFOUcgBBiD1AX\n2FhRICHEWGAswLx58xg7tuxZiv8C9e4aQJ3Bah834+ApfCPDiu75GkMpKLXMwZqZi5fBD6HVoNgd\n+EaGFi2FsOUVH4aQsmkvmhkPog82EN6hGfnnU7FmqrNeiat3ENrKvQFvMaw3ze7qoYbfH48hqnhk\nzz8qmLzkTLcw5VGYZ2bN08WHjNy3ajbZZ00XCVGMPT0VbVhk0d+6MCP2jFQ3O6/aDQkd+wypr07F\nkes+I6Pk52I+uBOf1l0pPHuqTK06Q6+jtrP8sw6p5X+hxH2MoW7LTAozc/EK8C8q/5I2wU3r0e6V\niQDogwMwdm+Nw24nea26H8HYvQ1ZR+KwpmdTkOK6jMTbGIol1XX5nyU1HR9jGFlFNmFYUtMROh0+\nxrAyw1pS0kldo3YOsw+dQHE48AoOxJKSRubuQxQ692Vl7D6If53oMuOoCv0Lm/gvRqN7+tHwTnV5\nbNqB0/hHhXLhqftHhlKQcvGlvqUJblSLLi8+yOpH3sKaVf6HnNWU5jIrpo8IdysLqykNvTECOOy0\nCcNqSnPeU5+lLTOL9A1bMTSNJWfvQcxnznP4cXXfmk+taEK6ui6vuhp1L3P/Ccwp6WQeUGc/E1du\nr7Dz1vIi7wFDVDC55bwHOk64Gd9QA2smlr2v71qjvDp8gcup/5Wh5DK3K6l9rfp+aX3T5l0EtXSd\n3blApMFGUnbxp1dSjhZjgOvSR4N38QBF74ZmZi0XZORrCPFTBwc3nPSlWaSVcP9yBgvzXZe1Xqn8\nW9OL26CE31bS+o2niu0iQmn12nQOvfQ+Heare297LJwDOH0/KpSMvaqtT2Qo5lLvusKsnFK+H+Zm\nA5C++wh+NY14BQUQ1qEZBQkpRe1+0pq/CWnlWu6W1HSXd5+3MQxr6XdfahreLnkOw5rq2n7Zc/PJ\n3HWA0C5tyT99hsib+nLybfVQKtPqzTR6SnbeLoeqOfLp38+/dubtErHhLAshhAYouYahZCtkp5Id\nXkVR5iuK0kFRlA7/5Y4bwOn/rWTtvc+w9t5nSFq7k5hb1I+mkJYNKMzNd1k2dQHTjkNE91fXpcfc\n0pPEtbsAivZRAQQ3rw9CYM3MpSApjZCWDdH6qI8uvFNzck6fd4v3wLfr+N+g2fxv0GxOr9xD40Hq\nEo/I1vWw5pgrvWQSQB/gi8ZLC0DToT1I3HGcwjxzpcJaTx7CKyoGbUQ0aHX4dbuegh0bXGy0YZGE\nP/4aaR+8gC2x+BRCTUAwws8AgPDyxqdlZwoT4svViv9xBRuGPc2GYU+TtHYHtW7uCUBwi4bYcgvK\nLf8aReXfq2iz+OrbHmX1rVNZfetUEldt58CrXxR13ACib+jK+T/VfVxZh9TOpE8NI0KnI/K67pg2\n7HDRSd2wg6iBvQEIbB6LLTcfa1omOYdP4BdTo8ywqeu3E9K+BQC+MTXQeOkozMwmbdte/BvWRuPc\n/+BXM/Kq6leGY9+vZunQmSwdOpNzq3dT77ZuAIS3qo81N/+Slkz6RYXS+60JbJrxCTnxyRe1zT1y\nHJ9a0XjXiETodIT370nGJtfZ0fSN24m4Qe1oGZo1xp6XT2FaBhofbzS+6h4MjY83wR3bUHBKrY+6\nYKc/CkGtEXeR9NufLnFejbpnScuiIDkN/zrqPqfwTs3JPeXu+yXZ/+06fhg0mx8GzebUyj00qcR7\noNmQ7tTu0Yy/Hvus0ntMPU15dfgCl1P/K4M1Q63H/xXfL60f0q5ZuWXTItpKfIaOc5k6rHZYdtif\nvrGuJ7Sm5mqKqti+BD0OBYJ9iz9zlx7yZ2Dzi8y6mXZUSf71JfapRfTuVLQ8VWfwo/XcGZz4cCFZ\n+44W2Wwc/jQbhz9N8tod1BxYyvfT3H0/bcchovqrs5a1bulJ8jpV169W8UBnYOO6aPQ6CrNyMCeZ\nCG4Ri8bb2e53bE5unKvv5xw5jm+t4vxE9O9B2sa/XXU3/k3kjeq7L6B5I2dZZOAVHIjWoB5toNHr\nCenYmvx4NX6rKYOgtuoKhOD2LSk4m1ju45BIrjT/5pm31cAvQoi5iqKkCSFCgc3APaizbsOBC1/L\ncUB74H/AbYBXJeLPAQJQ98NJKknyxj1E9mjNgN/exG62uhzn3+Xdaex56VPMpkwOvfs9HV6ZSJMJ\nQ8k6EscZ52EE0QM6UXdIfxS7HbulkB0zPgAg48BJElZtp/fCl1HsdrKOxhP/8xpaPflAuWmJX3eA\n2r1bMHzFLGwFVlY//WXRvZvnT2TNs1+Tn5JFy/v70nb09fiFB3L3788Rv+4Aa5/9hpAGUfR/9UEU\nFDKOJ7Lmmcrvs8FhJ33B/2F8+l31pwLW/kHhuVMYBqgTw7krfyZoyGi0hiBCR6mnDCp2O8lPP4A2\nJJyw8S+ARgMaDflbVmLeVeFkMAApG/dg7N6Gvr/NdR7ZXHyscqd3prN31idYTJkcefc72s2ZROPx\nQ8k6Gl90GMTF0Pp4E9G5BfvnfOZMr/qx0fadZ0CjIXHxGvJOn6Pm4OsAOP/LCtI27yK8W1u6LnoP\nh9nKoZc/KAp79I3P3MICJPyxhqbPPkLnhW/isNk49JIaxpaTx9nvFtPx81dBUdQjrDu2umr6AN1+\n+QCdnx/CS0dE744XLa/zG/YR3asVty991flTAQuK7vX9cCpbX/iCgtRMGg8bQLORN+IbFsTNP71E\nwoZ9bJ35Ba3G3YY+2ECnZ+8vSvOye14qW8zu4PTb82j6xkyERkPK0pUUxJ0l8rYbAUj+/U8yt+4g\npGt72n43D4fFwolX1FXlXiHBNJ6tniQqtFpMK9eRuV0dTAkf0IuowQMBSF+/hdSlK8vNb1XWvYOv\nf0Xbl8ej8dKRfz6FvTPn0WDELRWGA/U9UKd3C+53vgdWlXgP3OJ8D+SlZNHnxWHkJKQz5IcnADi1\nYjd/f7C0UhqXyrTHfmL79ngyM/Lp2+stJk7qw51D215yPGXV4X9a/yN6d6LR4yPRBwfSZu4Mco7F\nsWfqbMC1/gO0+/AFFLvjX+/75emXhU4Dz1yXzpjvjTgUGNwql9iIQr7fpQ7I3dMul+VH/Pl+twGd\nBrx1Cm/ebkI4z07Itwo2n/Zh5o0XmQlV1Jm8K53/hhPvJyC2LgoK5sRUjryq+nCtoTfiVyuKeiOH\nUm/kULfkpGzaQ0T3NvT59S3sZovLcf4d33mCfbPmYzFlcvg9p+8/MpTso/Gc/W0tAFH9O1FrYE8c\nNhsOSyG7ZrwHQObBkySu2kbPhXOc7X4cZ35eTfPpDxaL2x2ceOsTWsx9AaHVkLR4Ffmnz1Jj0A0A\nJP76F+lbdhLatT0d//cRDrOFo3PU+PVhITR+djJoNAiNhtTVm0jfrHYoj732IQ2mjEJoNTishRx/\n/cPyn8clcKV8X/LvRijVZATxchBCPABMR50x2w28AHyO+4ElkcBvgC/wJzChxIEl0xRFucUZ3/vA\nDkVRvhBCTAImAgmV2Pf27y3kSvBbu/s8pn37rm/4sPE4j+mPP/oxZ+7uVLFhFVH7h+0sbl81exAq\nwy07F7Kqi3tjfrXov/VHj+t/03KkR7Tv2692Brf0us0j+l3X/+7xuve+B31/4tGPseO55ZVahnu8\n7v/X9e1f+HhMX/ug2WP5779V3X+7pMMwj+jfvONb1ncf7BFtgF6bfvG47wPX7lGJJfi02Zhr+vt4\n9KFPrsly/DfPvKEoypfAl6Uu9yvDLhkoeUTSk87ra4G1Jewmlvj3e6gHoEgkEolEIpFIJJJLQLmG\nj+O/lpF73iQSiUQikUgkEomkGiA7bxKJRCKRSCQSiURSDfhXL5uUSCQSiUQikUgk1x4OuWzyspAz\nbxKJRCKRSCQSiURSDZCdN4lEIpFIJBKJRCKpBshlkxKJRCKRSCQSieSqck3/TsA1jJx5k0gkEolE\nIpFIJJJqgOy8SSQSiUQikUgkEkk1QC6blEgkEolEIpFIJFcVedrk5SFn3iQSiUQikUgkEomkGiAU\nRW4XvArIQpZIJBKJRCKRXA2qxZTWh43HXdPfx+OPfnxNlqNcNimpclJHN/eYdsSnB1nddYjH9Ptt\nWcSRW/p4TL/J4rWs6jLUY/r9t/5IoeMrj+l7aUZ4XH9Lr9s8ot11/e8AHsv/tVD2O/vf5DH99quW\nedz37Cz0mL6W4R5//p7Ov6d8H1T/91T+tQwHYEe/gR7R77B6Kf9r/YBHtAHu2vulx32/uuDwdAKq\nKXLZpEQikUgkEolEIpFUA2TnTSKRSCQSiUQikUiqAXLZpEQikUgkEolEIrmqKPK0yctCzrxJJBKJ\nRCKRSCQSSTVAdt4kEolEIpFIJBKJpBogO28SiUQikUgkEolEUg2Qe94kEolEIpFIJBLJVUX+VMDl\nIWfeJBKJRCKRSCQSiaQaIDtvEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVVF/lTA5SE7b5JrAq/m\nPTDc+xRCo6Vgw08ULPvU5b6+TV/8B00Ch4LisJH7/WvYTuyqVNyhXdoQO/UhhFZD4u+riP/6Vzeb\n2EdHEtatLQ6zlUOz3if32OmLhjU0rEPjJ8ai9fPBnJjKwRfewZ5fUBSfd2Q4nb9966Lp8m/XCePY\niQiNlszlS0hf9K1rnmvVpsbUJ/FuEIvpq89I/+WHonsafwNRk6fjXbseoJD4zmuYjxwqN/+NHn0I\nodGQUE7+Gz32EGFd22G3WDg86wNyjp6+aNgWLz+KX+1oAHQBfthy8tk+YjqRN/SgzvDbS8UeAmS4\naW7ccJJX5yzH7lC4c0gbRo/p5nI/K6uA555ZzNmzmXh7a5n18i3ENjIC8PVX2/npxz0oisKQoW25\n/4FO5ZZzeXhaP7hTO+pOHo3QaElespyEhT+52dSdPIaQLh2wWyycfOVt8o6dAkBr8KfBExPxq1cH\nBYWTr75L7sGj1SbvntAP7NiemAnjQKPBtPRPkr//0c0mZsI4Ajt3xGGxEPf6mxQcPwmA8Y7bCR94\nIwiBacmfpPys+kGNEcMJv/lGbJlZAJz/7Euyt/9dFF9V+J6xXxfqjb4L/7o1+XvkDHKOqHVCF2ig\n1SuPE9C0IYlL1laqTMrimRm/s27tMULD/Pl98SOXHc/F8HT927D+BK/M/gu7w8GQoW0ZM7aHm/6z\nT//O2TMZeHvreHnObcX6X27jxx93oSgwdGhbRjzYpUK9f+LrbX/4BEdBAYrdgWK3s3/s4wDEzpyO\nb0xNQH0f2HPz2Ddq6iWXRWmq4vkHdmxP7YkPO33vL5K+K8P3Jj5MUOeOOMwW4l6fS77T9yKHDCJ8\n4A2gKOSfjiPutbdQCgvxrV+POo9OROPrizU5mVOzX8dRog0uTdsnhxPVozV2s5Xtz31C5pF4Nxv/\nmuF0eW08+iADGYfj2P70PBw2O14GXzrPeRi/qDCETsvRL5cR99sGAGKHXUf9O/uAEJz6aS3HFy4H\nqqfvS6oPctmkxPMIDQHDnyHr7XGkP3cbPp0Goq3RwMXEengbGTPvIOOlO8n54jkCHnix0tE3fnw0\nex+bzbZ7H8V4XQ/86tZyuR/WtS1+MTXYOnQSR179mMZPjFVvaDTlhm0y4xFOfrSQ7fc9Tuq67dS+\nz7XDEjv5AdK37ik/URoNkY9M4dwLT3Jq/AME9u6HPqaOi4k9J5vkee+S/vMPbsEjx04kb+d2Tj8y\ngtOTRmE9e6b8/E8bxZ5HZ7P13keJvL47/mXk3zemBluGTuLIK/No/MSY4vyXE/bAs2+xfcR0to+Y\nTsqabaSu3QZA8l8bi64ffPE9p4J7x81ud/DyrD/5aP49/P7HwyxdcpCTJ1JdbD6Zv5kmTSP55bcx\nzHn1Nl59ZQUAx4+l8NOPe/jufw/x069jWLf2OGfi08sv6zLwtD4aDfUefZjD019kz4gJhPfvhW+d\nGBeT4C7t8akVze5hD3Pq/z6g3mPFH1J1J48hc9su9tw/nn0PTaEg/ly1ybtH9DUaak+ewPEZz3Fo\n5MOE9uuDT53aLiaBnTriXSuagyNGcWbuu9SZMhEAn7p1CB94I4cnTOXQmPEEdemEd3SNonApi37l\n8MMTOfzwRJeOG1SN7+WeOsv+p94gc89hl7gc1kJOzv+BE+99VXF5XITBd7Rm/qfD/1EcF+OaqH8v\nLWPep8P4Y8l4li4+yIlS+vM/3kiTplH8+sc4XnltEHNm/1mk/+OPu/jhx9H88tvDrF17nPiK9P+h\nrwMcnPIM+0ZNLeq4ARyf+X/sGzWVfaOmkr5+C+nrt1xSOZTHFX/+Gg21p4zn2FPPc/ChcYT2641P\nqfwHde6AT82aHLh/NPFz36X2VNX3vMLDMA6+jUPjpnBw1HiERktov94A1J02hXOffM6h0ePJ2LCZ\nqLuHlJuEqB6tMNSOYtmtT7Djpc9p/+wDZdq1mnI3x775i2W3PkFhdh71BqtaDe/uT/apBJbf9Rxr\nR71C68fvQaPTEtiwJvXv7MPK4S+yfOizRPdqgyFG7eRXR9+XVB9k503icXT1WmJPOYvDdA7shZi3\nL0Xfpq+rkSW/6J9C7wsolY4//1wS5oQUFJuNlJWbiOjV0eV+eK+OJC1bC0D2wePoDH7ow4IJbNaw\n3LB+tWuQuVud6Urfvhdjn84u8RUkppB36my5afJp1ARr4nkKkxPBZiN7/WoMXbq72NizMjEfPwp2\nu8t1jZ8/vs1bk7V8iXrBZsORl1uuVkGJPCSv2ER4rw4u9yN6dSRp6boS+fcvyn9FYQEi+3clacVG\nt+tR13V3u3aB/fsSqF07lJiYELz0Wm4a2IzVq4+52Jw8kUrnznUBqF8/nPPnMzGZcjl1Ko2WraLx\n9fVCp9PQoWNtVq6o/KzTtaBvaBqL+XwilsRkFJsN06oNhPTo7GIT2qMzqX+tASD30FF0Bn+8wkLQ\n+vsR2Lo5KUvUD1rFZsOem1dt8u4Jff8mjTCfT8CamIRis5GxZh3B3VxnTIK7dyFt+SoA8g4fQWsw\noAsNwad2DHlHjqJYLOBwkLNvP8E9y6/bJakK38uPO0/+mQQ3LYfZQtbeIzishZVKW3l06FiHoCDf\nfxTHxfB8/TtP7TohxMSEoNdruenm5qxe5RrHyZOpdO7i1G8QTsL5LEymXE6eNNGqVc0i/Y4d67By\n+eEyVIr5J75eWcL6dse0an2l7S/GlX7+/k0aYSnhe+mr1xPcrauLTXC3LqStuOB7zvyHqvkXWi0a\nbz1oNGi8vSlMSwPAu1ZNcvcdACB7525CLuKTNfu2I+6PTQCk7z+JV4AfPuFBbnbGTk05t0IdgIn7\nfSM1+7UDQFFA5+cDgM7PG2tWHg67g8B60aTtP4ndbEWxO0jdeYSa/VU/rY6+7wkcyrX937XKf6rz\nJoR4TAhxwPnfVCFEXSHEESHEQiHEYSHEIiGEn9O2vRBinRBipxDiLyFEDef1tUKI14QQ24UQx4QQ\nPT2bq+qPJiQSe0Zi0d+OjGS0IZFudvq2/QmZ9QdBUz4i5/PnKh2/JcVU4t9peEeEutz3jgjDnJxW\nbJOajndEGN4RoeWGzTt9jnBnR87YryvexnAAtL4+1LlvEHGfuS8LKYlXWAS21OLRXpspFa+wiErl\nxyuyBvbsTGpMfYq673xC1KTpCG+fcu3NKSXylqLmrSTeEaGlbNR8+rhddw8b3KYp1vQsCs4mueka\nB3Rzu3aBlJQcoqICiv6OjAwkJTnHxaZxk8iiD7P9+86TmJBFcnIODWMj2LXzLJkZ+RQUFLJh/UmS\nkrLL1boW9fXhYS51y5pqcitbfXgY1pTUEjZp6MPD8K4RiS0ziwYzptDq07ep/8REND7e1SbvntD3\nCg+nMLVkWZrwCg8rZROGNdX1mejDwzHHxWNo2RxtYADC25ugzh3RRxT7asTgW2n6yYfUmfYoWoPB\nJc6q9L3qiqfrX3JyDlFRxR/uUeXpLz8CwL5950lIyCQ5KZvYRhHs3HmmSH/9+uMkVqD/T3z9As3m\nzqLlJ3Mx3nqDW/wBrZtTmJ6J+Vyi271rATVvJfJvMqGPKO174aXyb1J91pRG0v9+ptX3X9J60ULs\neXlk79gNgDk+nuDuaicwtHdP9M42uCx8jSEUlGjjC5LT8TW6do71wQasOfkodvXw+vzkjCKbE9+v\nJLB+NLeufIfrF81mz+sLQVHIOnGOiHaN0Qf5o/XRE9WjNX5R6jeC9H1JVfKf2fMmhGgPPAR0BgSw\nDVgHNAZGKYqySQixABgvhHgHeA+4XVGUVCHE3cBsYKQzOp2iKJ2EEAOBF4ABVzk7/0msu1dh3b0K\nr9j2+A+aRNbc0R5Ly+HZH9Do0VHUfWgIpg07UGw2AOqNvouzPyzGXmCuMm2h1eLToBHJH7+L+dhh\njGMnEjZ0GKZvFlSZZnlEXt+D5DJm3QKbN8Rhtv6juEeP6carc5Zz5+BPiI010qRpFFqNoEGDcEaO\n7srY0d/h6+tF4yaRaDRXftOzp/XLQ2i1+Mc24PTb88k9fIy6k0dTc/gQzn628IppeDrvntYvifnM\nWZK+/5HY12bjMJspOHEKxaF+4KX+sYTEb74DRSH6oRHUGjeG+DcuvtdVUjGefv5jxvZgzuw/GXz7\nPBo1MtK0aQ00Wg0NGkQwenR3Ro9aiK+vF02aRKHVVO0Y+MEJT2I1paMLDqLZ3JcoOHOOnL0Hi+6H\n9++FadWGKk2Dp9AaDAR378L+YQ9hz82j/gtPEzqgL+kr1xD3+tvETBpHjfvvIXPzNpRCW5WlI6pb\nCzKPnGHt6FcxxBjpNe8JUncdJed0Ikc+X0Kvj5/AXmAh8+iZos6fRFKV/Gc6b0AP4BdFUfIAhBA/\nAz2Bs4qibHLafANMBv4EWgArhBAAWqDksNa+UI0VAAAgAElEQVTPzv/vBOqWJSaEGAuMBZg3bx5j\nx469knn5V6HOtBXvIVFn4pLLtS88vhNtRC2EIRglN7PC+L1LjMh5G8OwpLruUbCkpuETGUbWBZuI\nUCypaQidttyw+fEJ7Jk6CwDfmBqEd1eXVwQ2iyWibxcaTLgfncEfgOBbBpO5+BfXPKSloisxeq8L\nj6AwzXXfRbn5N6ViM6ViPqYu18nZtI6wIcPKtfcxFo/aeRvVvLnmPx0fY4n8O/MpdLqLhhVaDcY+\nndj+wJNumpEDupO0YiMNG5adLqMxgKSk4tHu5ORsjJEBLjYGgzcvz7kVAEVRuGHAB9SKUUdC7xzS\nhjuHtAHg7bfWEFUqbEV4Wt9qSnOpW/qIcLfnYjWloTdGAIedNmFYTWmgKFhSTeQeVpeapa3dTM3h\nd1Za29N594R+ocmEVwl/00eoo/quNmnoI8LJK2FjNakzBmnLlvP/7N13eFTF+sDx7+ymQgjphd4C\nBFAICRCqCKKCCoJgwU4VpIsVvKI0O0UsYPldr3JR0YsgRelVIAIC0msIJW3TIG2T7M7vjw1JNkWK\nwCbwfp6Hh+w5M+edmT2z58yeOWeTVtgeRFBt4NPk5l+hy0sp/PwxLVtBg6n29+Jer75XkTl6/wsM\nrEJcXFrB67gy4k+b3qsgfreus6l5MX6/MB7qFwbAjA/XEBTo+bfx/lFfB3JMtmNOXmoayZu24REa\nUjh4Mxrw6dSWvwaPvZImuKFsdStSfz8/chKL9z1Tfv3z0/j7kWsy4RneAnNsHHlptqubqZu24NE0\nlOTV68g+fYajL00EbFMovSLtb4do8EhX6vax3bOWsv8k7oG+wFEA3AN9yEqwvxc7JzUdlyqVUEYD\n2mKlUqB3QZo6vTpy6CvbbQrppxPIOJuIZ91qJO87wclFGzm5yDZl9baRfcmMt71f0vcvTzmemViu\n3VLTJstQfN/R2K7M7ddat8j/d5vW+u4iacz5/1soYwCstZ6ntY7QWkfIwO3v5UXvwxhYC4NfdTA6\n49a6Bzl71tmlMQQUPlzAqVYoOLlc1sANoFLNYNyCA1BOTgTc1R7TJvuHCpg27SCoe2cAPJuGYMnI\nJCcplQsHj5WZ19k7/4CtFHWe7cvZRbb7j3YNe52tfYaztc9wznxv+7AvPnADyD5yGJdqNXAODAIn\nJzw7dSF9+++XVR9LajK5pgRcqttu+q7cPBxzTMknZ5VW/8Bu7TFt2mG3PnHTDoJ63FFQ/7z00utf\nPK93q9vJiD5XYjCMUgR0bUf8qi2Updlt1Yg5lcyZM6nk5lhYsfwAd97Z0C7N+fPZ5ObY7vf7aeFu\nwiNq4eFhmx6YlGQ7xY49l8aaVYfpcX+zv2uychc//dBR3GpUwzU4EOXkhF/XjqRs2W6XJnlzFP73\n2O799GjSCEtGJrlJKeQmp5KTYMIt/0lzVcObkxVd9v2V5a3ujoifcegIbtWr4RJka2/vO+8g9fdt\ndmlSf9+G791dAagc2hhLRgZ5ybaTNycv2zQ75wB/vDu0J3nNettyn8KpV14d2pEVbd8Pr1ffq8gc\nv/9V51R0MmdOp5CTY2HFsv3c2aVk/Jz8+D8u/JOIiNol4p87l8bqlYe474Hb/jbeP+nrBjdXDO62\n+88Mbq54tWpB1onCh1N5hbcgO+ZMicFQeVK87/l06UTq1uJ9bzu+3S72vUZYMjLITU4hJz4RjyaN\nMbja2r5KyxZkx9g+6y72SZQi+IlHSViy3G6bx75fw6pH/sWqR/7F2XW7qPOA7Z44n9vqk5ueRbYp\njeIS/jhIjW62QWCdnh04u872ROvMuGQC2zQBwNXHkyp1gkk/k5D/2jbwrxTkQ/Wu4cSssNVN+r64\nnm6lK2+bgH8rpd7GNjjrDTwJzFJKtdVabwX6A5uBw4D/xeVKKWegodZ6f1kbF/+A1UL6f6dSdcw8\nlMFA9pZFWM4dx+2OhwHI3vADri274da2J1jy0LnZnJ87/rI3f+SDL2gxc6LtsbtL15Jx8gzVetvG\n4ucWrSTp9134tmtJ24VzbI/snfIJANpiLTUvQGC3DtR46F4AEtdvJ3bp2iuuc/xns6j51ntgMJC2\nagU5MdF4de8JQOqKJRi9fKgzcy6GSpXAqvHu1ZeTw57GmpVJ/GezCR4/EeXkRG5cLLEz3y4z1OH3\nvyRs1gQwGIhduo6Mk2eo3rsbAGcXrSLp9134tQuj7Y8f2X4qYcrHBfUvLe9Fgd3alzpl0issFHOC\niexzCWWWycnJwGsT72HooAVYrFZ692lOgxB/vv9uJwCPPBrOieMmJrz6C0pB/Qb+vDXlvoL8Y0f/\nRGpqFk5OBia8fg+enmXf81ce42OxcnLmXELfn4QyGEhYvpqs6NME9rTtU/FLfiV12w6824YTtmAu\nVrOZY9NnF2Q/OWseIa+PQzk7Yz4Xx7HpsypM3R0S32ol5qNPCXlnCspgxLRiJdmnYvC7vwcApqXL\nOb/9D6q2aUWzb77Cmp1N9HuF0x/rTZqIk6cnOi+PmNmfYMmwncDXGDKQSvXroYGcuHhOzZhtF/Z6\n9D3/O1rT8IUBuHh50uLDV7lwJJrdY6YC0G7RxzhVqoRyvnho9wSu7J6w8eN+IirqFKkpmdzZaQYj\nRnYuuNJ0LZSH/W/Cv7ozeNB8rBZN74daEBISwHcLbCfIjz4WwYnjibz6ymIUigYh/kye+kBB/tEj\nfyA1NQtnJyMT3+h+6fj/oK87e3vRaOprgG26tGn1BlKjCn8ix7drR0yrr82DSi665u9/ft9r+M4U\nMBpIWrGS7OgY/B+w9b3EX5aTdrHvfftl/k8F2PpexqHDpGzYTOjc2WCxkHnsBIlLVwDg06UzAb3u\nByBl8xaSfl1VZhFiN+0huMPt9Fj6HnnZZv74V+FPEXWcM44/3vyK7MRU9s78gch3h9Ps+YdIPXSq\n4IragXmLaT15MHf/OAWlFHtn/kBOqu0hYe0+GIlLVQ90noVd074h94Lt4WqO7/s0AUr//SBR4Smt\nb52LlkqpcRTet/YF8DO2KZI7gHBsO/qTWutMpVQLYDZQFdsgd6bW+nOl1HpgvNZ6h1LKD9ihta5z\nidC3TiOXInFQU4fF9v9iP2vblv0I4euty9YfOXR/Z4fFb7x0PWsi+zksftdtC8m1Ou7xxc6Gpxwe\nf2unng6J3XbjEgCH1b88tP3Ort0dFj98zQqH9z0L1+4+yCtl5HGHv/+Orr+j+j7Y+r+j6m/E9lMD\nO7r0cEj8iLXL+aF56T8HcCM8vOdrh/d9bBcpyr336j9frs+PXzz+cblsx1vpyhta6w+BDy++VkrV\nAfK01k+UknY30KmU5Z2L/G2ijHvehBBCCCGEEOJaknvehBBCCCGEEKICuKWuvBWntY7G9lRJIYQQ\nQgghhCjXbunBmxBCCCGEEOLGk1/FuzoybVIIIYQQQgghKgAZvAkhhBBCCCFEBSDTJoUQQgghhBA3\nlNbl8kn85Z5ceRNCCCGEEEKICkAGb0IIIYQQQghRAci0SSGEEEIIIcQNJU+bvDpy5U0IIYQQQggh\nKgCltXZ0GW4F0shCCCGEEOJGqBBPAplWb0S5Pj9+7cScctmOMm1SXHcJA5o5LHbAV/tY27avw+J3\n2fojh+7v7LD4jZeuZ01kP4fF77ptIRbmOyy+kccdHn9rp54Oid124xIAcq3/cUh8Z8NTDm/7HV16\nOCx+xNrlDu97jnrvoXy8/46Ov7nDgw6L32Hzzw6rv5HHAVgS/rhD4vfcOZ8tHXs5JDZA+02LHd73\nKwq5fnR1ZNqkEEIIIYQQQlQAMngTQgghhBBCiApApk0KIYQQQgghbihrxbg1r9yRK29CCCGEEEII\nUQHI4E0IIYQQQgghKgCZNimEEEIIIYS4oazytMmrIlfehBBCCCGEEKICkMGbEEIIIYQQQlQAMngT\nQgghhBBCiApA7nkTQgghhBBC3FBa7nm7KjJ4Ew7j0qw9Hv1fAWUke9NPZC7/0m69a+R9VO4+EBTo\n7EwufDOZvNOHAXC/6wncOz0ESpG18UeyVn17xfF9IlsQMuZZlNFA7JI1nPrm5xJpQsYOwLddGNbs\nHA5MnkP6kZMANJ4wHL924eSkpBH1xLirqD1UbtmagCEjUAYjqSuXkfzjf+3Wu9SoRfCYl3GtH4Lp\nP1+SvOj7gnWGyh4EjXoR11p1AU3srHfIPnSgzHo2HPssymDgXBn1bDjuWXzbtsRiNnNw8sdcOHzy\nb/MGdImk7qCHqVynOn8MeJULh04AEHhPB2o/3qvY1r2BlCtqmwmvLmHD+iP4+FZmydJhV5T3Wrge\n8b1at6TOqEEog5H4ZSs5N/+nEmnqjBqMd2QEFrOZ49NnknHE1q5h33+ONSsLbbGiLRb+GvICACGT\nXsS9ZnUAjB6VsaRnsHfgmEuWZfOm47w9bSUWq+ahvi0YNLid3fq0tCxen7CU06dTcXU1MnnK/YQ0\nDADgm/9E8dPC3Wit6dsvjCefbn3FbbFp4zGmT/0Ni9VK335hDB7SoUT8ia8t4XRMCq6uTkyZ1rMw\n/tfbWbhwF1pDv35hPPVM5GXF9GwVTq0RQ8FgwLT8N+IWLCyRpuaIoVRt0wprtpnodz8k8+hxAAL6\n9ML/vntAKRKX/UrCT4sBqDF0AFXbtkHn5mGOjSX6nRlYMjIKtnc9+h5AjX73UuOhe9FWK0m/7+LY\nHNvnn0eDWjR+eSjGyu75KQ2AtURMR7//f+em7Pttwqg3ehDKYCB+6SrOfPu/EmnqjR6Ed9twrNlm\njkybXdD3ATAYaPHF++QkJnHg5al2+ao/2ou6I55l231Pkpd24R+X9Xq1f7MXnyKwfXMs2Tn8OWku\naYeiS6SpVM2f8OkjcKnqQerBaHa9/gk6z4JveCitPxxH5tlEAGLX/cGRzxcVZjQo7vhmClmJKUSN\neb/Edr1ah1Fv9GDIb/+zpXz21h09GO/IcKxmM0enzSpo//Af5mHJzEJbrWCxsmfwC3b5qj3Si7oj\nBrD9/ifs2t/xfR83ILtEUHFTuGWnTSqlJimlxju6HLcsZaDKExNJnTGM5Ik9cW3TA2O1enZJLIln\nSXnnGZL/1YeMXz6jytNvAGCs3gD3Tg+RPOUxkt94CNfmd2AMqHll8Q0GGr0wiD3jprL9sbEEdOtA\npTo17JL4tg2jUs1gtvUbyaG3P6PRS0MK1sUtW8fusVOuru758QOHjebMGy9zYvjTeN7RBZeate2S\nWC6cJ37ubJL/932J7IFDRpCxM4qTw57i5MiB5JyOKTNUo/ED2T12KtseG0vg3e2pXEo93WsGs7Xf\nSA5Nn0ujlwYXlLGsvOknTvPXK++Tuvug3bbif9tM1FMvEvXUi+x/86P8pVc2cAPo3ac58754/Irz\nXSvXPL7BQN2xQzn44pvsfup5/Lp2wr22/T7rFRmOW41q/Nl/KCfe+5i64+xPnPaPnsDegWMKBm4A\nRye9x96BY9g7cAzJG7eSvHHrJYtisViZMvlXPp33KEt+GcryZfs5fizRLs3n836ncWggixYPZtrb\nPXl7+ipbvCMJ/LRwNwt+eJaffh7MhvVHiTmVfEVNYbFYmfLWCuZ+0Z9flg1n+dL9HCsWf95nm2kc\nGsTPvzzH9HceZNrUXwviL1y4i+8XDmLR4qGsX3+UU5cT32Cg1ujhHHnlX+x/9jl8utyBW7H2r9om\nArfq1dn35CBOfTibWmNGAOBWpzb+993DweFj2T/oebwiW+NaLRiA8zv/ZP+AYRwY/DzZp88S1P9h\nu21ej77n3bIp/p1asf3J8WzvP45T85cAoIwGmkwaxaF35rG9/8UvlEp+re3o9/9Sbsa+X3/cUPaP\nf4tdT4zE/66OuBfbD7wjw3GrGczOR4dx7L1PaDD+Obv11frdT+apMyU27RLgh1erFmTHJVyz4l6P\n9g9o35zKNYNY8+AL7JnyJbe/+myp6UJHPcrx+StY8+AL5J7PoPaDnQvWJf15mA39X2ND/9fsB25A\nvcfu5UL0udKDGwzUGzeU/ePf5M8nR+S3v33f944Mx71GMLsee45j735M/RfsP3v3jZ7IngFjSwzc\nXAL88GodVmr7O77vk1t6g4ibwS07eBOO5VTvNvISYrAmngFLHubtK3Bt0cUuTd7x3ejM8wDkHt+L\nwTvQlje4Hrkn/4KcbLBayDm8A9eWd11RfM8mDcg8E0f2uQR0Xh4Jq7fg36mVXRq/Tq2IW7EegPP7\nj+LkUQkXXy8AUncfJO98+tVUHQC3ho3JiT1Lbnws5OVxfuNaPCLb26WxpKWSffQwWCx2yw2VKuPe\ntDlpK5fZFuTlYc0ouyxZReoZv2oLfp0i7Nb7d2pF3PINRepZGRdfLzybNCgzb2b0WTJjyjhY5gvq\n1v5v1/+diFa1qVrV/dIJr5NrHd8jNITss7GYY+PReXmY1mzCu0MbuzQ+HdqQ+Ns6ANIPHMbJozLO\nvt6XHcP3zvaY1my8ZLq/9p6jVi0fatb0xtnFSPceTVi79ohdmuPHEmnTpg4A9er5cfZsKiZTOidO\nJHHb7dVwd3fGyclARKtarF51+LLLaIt/llq1valZ0xsXFyPd72vK2jX22zh+PJE2kfnx6/tx7mwa\nJlM6x4+buP326gXxW7WqzeqVB0uJYq9y44aYz54jJzYOnZdH8tqNeLVra5fGq10kSavWAJBxML/9\nfbxxr12T9IOHsZrNYLVyYc8+vDva9u3zO/4EqzU/zyFc/P3stnk9+l71PncT/Z+f0bl5AOSm2D4j\nfVo3J/3YKdKPnSoSoeTgzdHv/6XcbH2/SmgI2WdiMZ+z9f3E1ZvxLd73O7Ym4df1AFzYfwRjkb7v\n4u+LT9sI4n9ZVWLb9UYOIPrTr0t7m6/a9Wj/oDvCObNsEwAp+47h7FEJVz+vEun8WjUldk0UAKeX\nbiSoc0SJNMW5BfgQ2KEFMT+vK3V9ldAQss/GFXz2Jq7ZhE8H+6vFPh1ak/Drxc/eI5f92Vt35ECi\nP/l3qXP/HN/3sT9xKKesqHL9r7y6ZQZvSqmnlFJ7lVJ7lFLfFFvXQim1LX/9IqWUd/7yUUqpA/nL\nv8tfVlkp9ZVSKkop9adSqvgcMXEZjF4BWJPjCl5bU+IxeAeUmd6tYx9y/toMQN7ZYziHtERVrgou\nbrje1hGDT9AVxXf198GcYCp4bU5IwtXfp1gaX7LjkwrTJCbj6u97RXHK4uzrT15i4bfdeaZEnH39\nLy9vYDCW86kEj3mFOrM+J2jkiyhXtzLTZycUqUNCyTq4+vsUS2NrC7cSy6+s/gF3tbt0oluEi5+v\n3f6Wk2gq0ZYufr7kJCQWSZOEi19hmiYfTua2zz8k4IF7Smy/SvOm5Cankn0m9pJlSUi4QFBQlYLX\ngYGeJMTbT7dq1Diw4KT8r71niT2XRnz8BRqE+LNr52lSUzLJyspl08bjxMWdv2TMouLjLxAUVLXg\ndVBZ8VceAmDv3rOcO5dKfNx5Qhr6s3NnTEH8jRuPEnsZ8W1tW6T9TSZcirW/s59fsfY34eznR9bJ\nU1S5rRlGzyoYXF2p2iYC5wD7QRqAX/e7SYvaYbfsevS9SrWq4dU8lIgvp9HykzepElo/f3kwaGgx\ncwKtvn6nzLZw9Pt/q3EpfqxJTMKl+LHGz8d+/0xIwtXPlqbeqIGc/PTrEgMEnw6tyTElkXEs+voV\n/hpxC/Ahq8ixNCshGTd/+8GRi5cHeRcy0BZrqWl8bg+h83fTaTP7JarUq16wvNkLT3Jg1gJ0GT8Y\n5uJfrO8nJuHq51sijf17ZCpMo6HpjLdo/sUHBD5wd2F5OrQmJzGJzOPRpcYtj31f3DxuiXvelFJN\ngYlAO621SSnlA4wqkuQ/wEit9Qal1FvAG8AY4BWgrtbarJS6+DXRBGCt1npA/rIopdRqrXUG4rpw\nbtwK9459SJn+JACW2BNkrvgKrxfmoc1Z5J4+DLrkfR03K2U04la/IfGfzSb7yEEChozAt19/TN9+\n5eiiFfBs2gBrdo6ji3HT2P/8y+SYknHyqkqTD98iK+YMF/bsL1jv17UTpjWbrlm8QYPb8fa0lTzU\n+3NCQgJoHBqE0aCoX9+PAYPaMmTQAtzdnWnUOBCD4dp/Ozl4SAemTf2V3r3m0rBhAKGhwRiMBurX\n92fQoPYMGjgfd3dnGjcOwmi4vt9BZsecJu67hTR8dwrWbDOZx08UXG27KPjxR9AWC8mrS//2/1pS\nRgPOVT3YMfA1PJs04Lap4/i9z/MooxGv5o3549lXsGSbuXPDfBRBaOIuvdFiHP3+CxvvdhHkpqaR\ncfg4VcOaFSw3uLpQ86m+7Bs7yXGFu4HSDkWz6r5RWLLMBLRvTqsPxrG29wsEdgzDnJJG2qFofMND\nr0vsv55/hRxTMs5eVWk6402yYs6QfugYNZ7sx/5xb1yXmGW5kr4PdAXW3NACihvmlhi8AV2AhVpr\nE4DWOlkp2wFHKVUV8NJab8hP+zVw8U72vcB8pdTPwMU7Ru8Geha5X84NqAXYzd1RSg0BhgDMnTuX\nIUOGIApZUhPsrpYZvAOxppScN26s0RDPZ94idcZz6Iy0guXZm/5H9ibbTd+V+4zGmnJlJyjmxGRc\ni3x77hrgizkxuViaJNwCfbkY1dXfB3NiEtdCblIiTv6FV9qc/PzJTUr8mxxF8poSyTMlkn3Etstd\n2LIB3779y0zvFlD4jZ9rQMk6mBOTcQsoUs/8tlBOTpfMW5bAu9oTt2ozDRqUXa5bSY4pyW5/c/H3\nK9GWOaYkXAL8ufhR4uLvS44pKX+dbd/MS00jedM2PEJDCgdvRgM+ndry1+Cxl1WWgIAqxMUVXmmJ\njz9PQGAVuzQeHq5MmfYAAFpr7rnrY2rUtH0L/lDfFjzUtwUAM2esI6hY3ksJDKxCXFxhX44rI/60\n6b0K4nfrOpuaF+P3C+OhfmEAzPhwDUGBnpeMaWvbIu3v50dOsfbPNZny2z8/jb8fuSbbt/GmFSsx\nrVgJQPWBT5OTWPgtve89d1E1sjVHxr9WIu716HvmhGQS120H4PyBY2irFWcvT8wJSaT+eYDcIg9N\nUPiWGLw5+v2/1eQUP9b4+5JT/FhjSrbfPwN8MZuS8e3cFp/2rfCODMfg4oyxciUavj6GM/MX4Roc\nQNi/ZxZss8VXH7Jn8IvkJqfemIpdhjv+Ow2A1AMncA8s3J/dA3zITrS/FzonNR2nKpVRRgPaYrVL\nk5eRVZAuYcseDK8YcfHywKd5Q4I6hRPYvgUGF2ecPNxpOdn+frWcxGJ9398XsympRBrXAD8u9gpX\nf7+CNBc/e3NT00jauA2P0IbkXcjANTiAFv83syB9iy9nsGfI+IL2d3TfB1pSAQZv8rTJq3PLTJu8\nSvcBH2PrBH8opZwABTyktW6R/6+W1rrETRda63la6witdYQM3ErKO7kPp8BaGPyqg9EJ1zbdMe+2\n/9ba4BNE1ednkvb5q1ji7eZyo6r4FKRxDe9K9rblVxT/wsFjVKoZjFtwAMrJiYC72mPa9IddGtOm\nHQR17wyAZ9MQLBmZ5CRdmwNj9pHDuFSrgXNgEDg54dmpC+nbf7+svJbUZHJNCbhUt910Xbl5OOaY\nU2WmL1rPwG7tMW2yn9qVuGkHQT3uAGz1zEu31bN4G5WWt1RKEdC1HfGrtlxWfW4F6YeO4lajGq7B\ngSgnJ/y6diRly3a7NMmbo/C/504APJo0wpKRSW5SCgY3VwzutntQDG6ueLVqQdaJwgfUeIW3IDvm\nTInBSFma3VaNmFPJnDmTSm6OhRXLD3DnnQ3t0pw/n01uju2WiZ8W7iY8ohYeHq4AJCXZJhnEnktj\nzarD9Li/GVei2W3VORWdzJnTKeTkWFixbD93dikZPyc//o8L/yQionaJ+OfOpbF65SHue+C2S8bM\nOHQEt+rVcAmytb9Pl06kbt1mlyb19+34dusKQOXQRlgyMshNtp08OnnZpnm6BPjj1bEdyWvWA7Yn\nWAY90pdjE9+03RNXzPXoe4kbo/AOt7W5e81gDM5O5KaeJ2n7Hio3qIXB1QVltB3aNSU/rxz9/t9q\nLhw6invNYFzz30v/uzqQvCXKLk3y5igC7u0MQJWmDbGkZ5CblMKpud/yR59B7Og3hMOTPiBt516O\nTJ5J5olTRD3wDDv6DWFHvyGYE5PYPWBcuRq4AQUPGIldv4Ma93UEwLtZA3LTszCbSpY1accBgrva\n7kereX8n4jbsBMDVt3CatVfTemBQ5KSmc3DO96zqMZLVD4xh52tzMP1xgF2vf2q3zQuHjuJeo0j7\nd+1I8uZi7b8lioB7L372NiQvv/0Nbq4Y7T57w8g8cYrME6f4o+fT7Hx4CDsfHoI50cTugWPt2t/R\nfR8o/fHT4qZwq1x5WwssUkp9qLVOyp82CYDWOk0plaKU6qi13gQ8CWxQShmAmlrrdUqpzcCjgAfw\nGzBSKTVSa62VUmFa6z8dUakKzWrhwrfT8Bo3F2UwkrV5EZZzx3HrbHtaW/b6H6jccxgGj6pUeXJi\nQZ6Utx4BoOrzMzB4eKEteVz4dio668oekawtVo588AUtZk60PY536VoyTp6hWm/bnPZzi1aS9Psu\nfNu1pO3CObZH+U75pCB/0zfH4NWyKc5eVWi3eC4nv/ie2F/WXlH94z+bRc233gODgbRVK8iJicar\ne08AUlcswejlQ52ZczFUqgRWjXevvpwc9jTWrEziP5tN8PiJKCcncuNiiZ35dpmhDr//JWGzJoDB\nQOzSdWScPEP13t0AOLtoFUm/78KvXRhtf/zI9pMIUz4uaKPS8gL439Gahi8MwMXLkxYfvsqFI9Hs\nHmN7hLVXWCjmBBPZ567+CWjjx/1EVNQpUlMyubPTDEaM7FxwteVGuObxLVZOzpxL6PuTUAYDCctX\nkxV9msCe9wIQv+RXUrftwLttOGEL5mI1mzk2fTYAzt5eNJpqu6qjjEZMqzeQGrWrYNO+XTtiWn3p\nB5Vc5ORk4LWJ9zB00AIsViu9+zSnQdCqkpYAACAASURBVIg/339nO1F65NFwThw3MeHVX1AK6jfw\n560p9xXkHzv6J1JTs3ByMjDh9Xvw9Cz7fsuy4k/4V3cGD5qP1aLp/VALQkIC+G6B7QTl0cciOHE8\nkVdfWYxC0SDEn8lTHyjIP3rkD6SmZuHsZGTiG90vL77VSsxHn9LwnSlgNJC0YiXZ0TH4P9ADgMRf\nlpO2/Q+qtmlFs2+/zP+pgBkF2etPmoCTpyfakkfMrE8Kfg6g1qhhGJydafiebd9PP3CYmJlzCvJd\nj7537pd1hE4cRpv5H2DNy+PAW7Y8eRcyOL1gKa3+7+2Cr7M1Z0ttf0e+/5dyM/b94x9+TrMP3wCD\nkfhlq8k8eZqgXrZ7V+MW/0bK1p14tw0n/PvPsGabOTpt9jWqzZW7Hu2fsHk3ge1b0HXxhwU/FXBR\nm1kvsnvy55hNqRyYvYDwaSMJHd6PtMOniPl5PQDBXVtTp+9daIsFizmXna/OKSNSKSxWTsyYR9MP\nJoHBQMKyNWRFnyaol+2zN27xr7b2j4yg5Xe29j823fakZGdvL0KnvQrYPnsTV20kNeryTvcc3feB\nZZffSKKiUfoWuWaplHoaeBHbE3j+BKKBdK31+0qpFsBnQCXgBPAskA6sA6piu9r2rdb6baWUOzAT\naIftyuVJrfX9lwh/azRyGRIGOO6b2YCv9rG2bV+Hxe+y9UcO3d/ZYfEbL13Pmsh+DovfddtCLMx3\nWHwjjzs8/tZOPR0Su+1G22Okc63/cUh8Z8NTDm/7HV16OCx+xNrlDu97jnrvoXy8/46Ov7nDgw6L\n32Hzzw6rvxHbTw0sCXfMTz703DmfLR0d9yy59psWO7zvQzl+VGIRE2qNKtfnx1NjZpfLdrxVrryh\ntf4a2/1spa3bDZT2S68dSkmbBQy9tqUTQgghhBBCiL8n97wJIYQQQgghRAVwy1x5E0IIIYQQQpQP\nZfw8n7gEufImhBBCCCGEEBWADN6EEEIIIYQQogKQwZsQQgghhBBCVAByz5sQQgghhBDihpJb3q6O\nXHkTQgghhBBCiApABm9CCCGEEEIIUQHItEkhhBBCCCHEDWXVytFFqJDkypsQQgghhBBCVABKa7ld\n8AaQRhZCCCGEEDdChbik9VKN0eX6/PjdM7PKZTvKtElx3SUMaOaw2AFf7WNt274Oi99l648cur+z\nw+I3XrqeNZH9HBa/67aFWJjvsPhGHnd4/K2dejokdtuNSwAcVv/y0PY7uvRwWPyItcul793i8bd0\n7OWw+O03LXZo3wcctv933baQVW0edkhsgG7bf3B4368o5PrR1ZFpk0IIIYQQQghRAcjgTQghhBBC\nCCEqAJk2KYQQQgghhLihrI4uQAUlV96EEEIIIYQQogKQwZsQQgghhBBCVAAybVIIIYQQQghxQ8nT\nJq+OXHkTQgghhBBCiApABm9CCCGEEEIIUQHI4E0IIYQQQgghKgC5500IIYQQQghxQ8lPBVwdGbyJ\ncsGlWXs8+r8Cykj2pp/IXP6l/foWd+LReyRaW8FqIX3B2+Qe/fOytu0T2YKQMc+ijAZil6zh1Dc/\nl0gTMnYAvu3CsGbncGDyHNKPnPzbvB4NatPopSEYK7mRHZvI/jdmYcnMKtiea6Afbf4742/LVbll\nawKGjEAZjKSuXEbyj/+1r3ONWgSPeRnX+iGY/vMlyYu+L1hnqOxB0KgXca1VF9DEznqH7EMHyqx/\nw7HPogwGzpVR/4bjnsW3bUssZjMHJ3/MhcMn/zZvgxFP4tchHGteHlln4jk45WPy0jNRRiOhrz1H\nlUb1UE5Xf2F/wqtL2LD+CD6+lVmydNhVb6c8xfdq3ZI6owahDEbil63k3PyfSqSpM2ow3pERWMxm\njk+fScaREwCEff851qwstMWKtlj4a8gLAFRqUJd6LwzH4OKMtlg4OeMz0g8e/cdlvRnb37NVOLVG\nDAWDAdPy34hbsLBEmpojhlK1TSus2Wai3/2QzKPHAQjo0wv/++4BpUhc9isJPy0GoNqzT+LVLhK0\nldzUNKLf+ZDcpOSC7V2PvgdQo9+91HjoXrTVStLvuzg251sAPBrUovHLQzFWds9PaaC006NNG48x\nfepvWKxW+vYLY/CQDnbr09KymPjaEk7HpODq6sSUaT0JaRgAwDdfb2fhwl1oDf36hfHUM5GX+Q5c\nnptx3/NqHUa90YPBYCB+6SrOltL3644ejHdkOFazmaPTZhX0/fAf5mHJzEJbrWCxsmewre/XGtgf\nn45t0FYruSlpHJs2m5wi+97Vupb1j/x+1jXd9+sNeQS/Tq3AqslJSePA5I/JMaWUedxpNO5Z/NqF\nYck2s3/yJwXbL8ot2J/bp4zBuWoVzh86wb5JH6HzLJfOb1C0+ffbmBOT2f3COwAEdImk/uB+QH4f\n7dvdgX0fNyD7Mt4mUQHJtEnheMpAlScmkjpjGMkTe+LapgfGavXskuQe3EbyG31ImdSX81+9TpVn\n3rzszTd6YRB7xk1l+2NjCejWgUp1atit920bRqWawWzrN5JDb39Go5eG2FYYDGXmbfzqMI5/Op+o\nJ14gcUMUtZ7oZbfNkFFPk7xtd9mFMhgIHDaaM2+8zInhT+N5Rxdcata2S2K5cJ74ubNJ/t/3JbIH\nDhlBxs4oTg57ipMjB5JzOqbs+o8fyO6xU9n22FgC725P5VLq714zmK39RnJo+lwavTS4sP5l5E2O\n2sP2x8cR9cR4Mk+fo/bTvQEI6NoWg4sz2594gainX86PULnsdihD7z7NmffF41ec71q55vENBuqO\nHcrBF99k91PP49e1E+61a9ol8YoMx61GNf7sP5QT731M3XH2J077R09g78AxBQM3gNrDnuHMvxew\nd+AYTn/1X2o998w1Ke7N2P61Rg/nyCv/Yv+zz+HT5Q7cirV/1TYRuFWvzr4nB3Hqw9nUGjMCALc6\ntfG/7x4ODh/L/kHP4xXZGtdqwQDEff8jBwY/z4EhI0nbGkXwk/3ttnk9+p53y6b4d2rF9ifHs73/\nOE7NXwKAMhpoMmkUh96Zx/b+4/IjlHyUm8ViZcpbK5j7RX9+WTac5Uv3c+xYol2aeZ9tpnFoED//\n8hzT33mQaVN/BeDokQQWLtzF9wsHsWjxUNavP8qpU/98wFDUzbjv1Rs3lP3j3+TPJ0fgf1dH3OvY\n73vekeG41whm12PPcezdj6n/gn3f3zd6InsGjC0YuAGcXbCI3c+MZs+AsaT8voOazzxyTYp7Let/\nrff9U98uIeqJ8UQ99SKmLTupO6AvUPpxJ/j+zlSqGcSWvqM4+PY8Ql8aVGoZQ0Y8wanvlrGl7yjy\nLmRQvWcXAPzahf1t/lqP9CAj+qzdsowTp9nz8vsA1H7yQQf3fXIv9f6IiksGb0UopSKUUrMdXY5b\njVO928hLiMGaeAYseZi3r8C1RRe7NNpceFVLubqXdk5SpswzcWSfS0Dn5ZGwegv+nVrZrffr1Iq4\nFesBOL//KE4elXDx9cKzSYMy81aqFUzqn7YrXclRewjo3MZue1mxCWScOF1mmdwaNiYn9iy58bGQ\nl8f5jWvxiGxvl8aSlkr20cNgsdgtN1SqjHvT5qStXGZbkJeHNSO9zFhZReoQv2oLfp0i7Nb7d2pF\n3PINRepfuaD+ZeVNjtqLtti+0T+/7yhuAb62jWmNwd0VZTRgcHXJj3Dlx5CIVrWpWtX90gmvk2sd\n3yM0hOyzsZhj49F5eZjWbMK7Qxu7ND4d2pD42zoA0g8cxsmjMs6+3n+/Ya0xVq4EgLFyZXJN1+ZE\n+mZr/8qNG2I+e46c2Dh0Xh7Jazfi1a6tXRqvdpEkrVoDQMbB/Pb38ca9dk3SDx7GajaD1cqFPfvw\n7mjrq9YiV9sNbm4U/2C6Hn2vep+7if7Pz+jcPAByU84D4NO6OenHTpF+7FSRCCU/KP/ae5Zatb2p\nWdMbFxcj3e9ryto1h+3SHD+eSJvIOgDUq+/HubNpmEzpHD9u4vbbq+Pu7oyTk4FWrWqzeuXBSzX/\nFbnZ9r0qoSFkn40r6PuJazbh06G1XRqfDq1J+PVi3z9yWX2/6EwPg7sr+koOin/jWtb/Wu/7Rets\ndHMt3Fgpxx3vsCbErtgIQNq+ozhVsW2/OJ+IpiSs3QbAuWXr8b+jVX75IsrM7xrgg1/7lpxdvMZu\nWxnRZ8mMiQXAHJ/k4L6P/YlDOWXV5ftfeSXTJvMppZy01juAHY4uy63G6BWANTmu4LU1JR6nereV\nSOfSsiseD43GUMWX1FnDL3v75gRTkb+T8GwaYrfe1d+X7PikwjSJybj6++Lq71Nm3oyTZ/Dr1ArT\nxj8I6NIW1wA/W13c3aj9xIPsHj2ZWv17llkmZ19/8hILv+3OMyXi3qjJZdXHOTAYy/lUgse8gmvd\n+mQfO0L8vI/Q5tJnSGQnFKlbQnIp9fcpliYJV38f3EosL5kXIPiBO0lY/TsACWu34d+pFR2Wfo7R\n7eLgLeey6nUzc/HztduXchJNVGnSqESanITEImmScPHzJTcpBYAmH05GW63EL/mNhF9+AyD6oy8I\nff9Nag9/FqUM/DX8pRtQm4rH1rZF2t9kwiPUvv2d/fyKtb8JZz8/sk6eovqApzF6VkGbc6jaJoKM\nI4VTU6sPeArfu7tiycjg8LhX7LZ5PfpepVrV8GoeSv3nHsNqzuXoR//hwsHjVKoVDBpazJyAs7dn\nmW0RH3+BoKCqBa+DAj3Zu9f+CkKjxoGsXnmIiIja7N17lnPnUomPO09IQ39mzVxLakomrm7ObNx4\nlKbNqpUZS4CLf7F9LzGJKqENS6SxO9YkmnC92Pc1NJ3xFlitxC3+jfhfVhakqzX4CQLuuZO8jAz2\njZ54/Stzla7lcafec48R3L0TeemZ7HreNgOntOOOi1cVsuML2zQ7IQk3fx9yklILljlXrULehcyC\nLyKzE5Jx8/cpLF8Z+RuNfYajc77FqVLZg1xzcmGc8tL3xc2jXF15U0r9rJTaqZTar5QaopR6Tin1\nXpH1zyil5uT//bpS6rBSarNSaoFSavzfbHe9UmqWUmq3UmqfUqp1/vJJSqlvlFJbgG+UUp2VUkvz\n13kopf5PKfWXUmqvUuqh/OV3K6W2KqV2KaUWKqU8rmujiAI5u9aQPKEnaXNG4dF7hEPLcnDqx9To\ncy8R//cOxkru6DzbN2F1Bz3M6e+XYsm6flPNldGIW/2GpCxfTPTowVjNWfj263/pjNdBnWf6oPOs\nxP26CQDPpg3QViub7x/Clj7P56eSLvJP7X/+ZfYOHMPBF98kqHcPqjRvCkBgr+5Ez/mCXX0HEj3n\nC+q/PNLBJb35ZMecJu67hTR8dwoh70wm8/gJsBbeR3b2q/+w99GnSVq9noAHH7ju5VFGA85VPdgx\n8DWOzfmG26aOy19uxKt5Y/a/MZudQ17PTx14VTEGD+nA+QvZ9O41l/nfRBEaGozBaKB+fX8GDWrP\noIHzGTJoPo0bB2E0lKvTiJvOX8+/wp4BYzkw/i2C+/TAs3nhl3wxn3/Ljr4DSVy1geA+9zmwlDfO\nic8WsKXXMOJ+20SNvvcCpR937K7MXUN+7VuSk5zGhUMl75+73q6s79P1hhdQ2FFK+SilVimljub/\nX+bldKWUUSn158UxyKWUt0/dAVrrcCACGAUsAnoXWf8I8J1SqhXwENAc6J6f/lIqaa1bAMOBr4os\nbwLcpbV+rFj614E0rfVtWuvbgbVKKT9gYn76ltiu0o2jFPmDzx1KqR3z5s27jOLduiypCRh8ggpe\nG7wDsaYklJk+98hOjP41UB4lp0CU5uJVMdvfvpgT7aeWmROTcAv0LUzj74M5Mcl2Ba6MvJmnzrF7\nzGR2PPsy8as2k3XWduXQs0kI9Z9/krb/+4Qaj9gOpl73F92F8+uQlIiTv3/Bayc/f3KTEkukK02u\nKZE8UyLZR2zTlS5s2YBb/ZJXxC4qmNKIbbqHOTHJbr05MblYGls9s0sst88bfF9n/NqHs/+NWQXL\ngu7uQNLW3WiLpWBKh8Lnsup1M8sxJdntSy7+fiXehxxTEi4B/kXS+JJjSspfZ9vv8lLTSN60DY9Q\n2/vtf28XkjdsBSBp3RY8in2jL2xsbVuk/f38yCnW/rkmU7H29yPXZPvm3bRiJQefG83hMS9huZBO\n9mn7K1UAyWvW4d3Jfurz9eh75oRkEtdtB+D8gWNoqxVnL0/MCUmk/nmA3LQLWM22q92l9b3AwCrE\nxaUVvI6LP09AYBW7NB4erkyb3otFi4fy9rsPkpySQc2atvOOh/qF8eP/BvPN/GfwrOpGnTrSv/9O\nTmKxfc/fF7MpqUQau2ONv19Bmot9Pzc1jaSN20rt44krN+B7R9sSy8uLa3ncuSjut80E3Gmben7x\nuFP9wbsIm2UbvGitcQssbFO3AF+yix37c9Mu4FSlEspoyE/jU5DGnJhcan6v5o3w7xRBh0VzuG3K\nGHwimtFsUskvzVx9Cs9PHNH3gZYlClUO6XL+7x96BVijtQ4B1uS/Lsto4LLnoJe3wdsopdQeYBtQ\nE6gLnFBKRSqlfIHGwBagPbBYa52ttb4A/HIZ214AoLXeCHgqpS72rCVa66xS0t8FfHzxhdY6BYjE\nNtjbopTaDTwN1C4lL1rreVrrCK11xJAhQy6jeLeuvJP7cAqshcGvOhidcG3THfPudXZpjAGFN3g7\n1QoFJxd0emrxTZWqUs1g3IIDUE5OBNzVHtOmP+zWmzbtIKh7ZwA8m4ZgycgkJymVCwePlZm3YGqC\nUtR5ti9nF60CYNew19naZzhb+wznzPe2e9JSly4qUabsI4dxqVYD58AgcHLCs1MX0rf/fln1saQm\nk2tKwKW6rU0qNw/HHHOqzPRF6xDYrT2mTfYzgxM37SCoxx0F9c9LL73+RfP6RLag9hO92PPiO0UP\nFmTHm/COaAaAIf+bT835y6rXzSz90FHcalTDNTgQ5eSEX9eOpGzZbpcmeXMU/vfcCYBHk0ZYMjLJ\nTUrB4OaKwd02Pcfg5opXqxZknbA9oCYnKRnPFrb29mx5O9lnzt3AWlUcGYeO4Fa9Gi5Btvb36dKJ\n1K3b7NKk/r4d3262L6srhzbCkpFBbrJtyqqTl22aoUuAP14d25G8Zj0ArtULpwx6tY8kK+aM3Tav\nR99L3BiFd7jtPXevGYzB2Ync1PMkbd9D5Qa1MLi6FJyMatIortlt1TkVncyZ0ynk5FhYsWw/d3ax\nHxCcP59NTo7tlpkfF/5JRERtPDxs/TkpKQOAc+fSWL3yEPc9UHKKuyh04dBR3GsE45r/Xvp37Ujy\n5ii7NMlbogi492Lfb0heekZB3zfa9f0wMk/YPuvdagQX5Pft2IasmJJfKDjatd733WsWfsnr3ymC\nzFO2z7uLx50zP/3GjiG26aMJ66MI7t4JgKrNCrdfXMrO/QR0sT0xtdp9nUncuKOgfKXlP/bJAjY9\nMIzNvUfw18SZJO/Yx75JH5XYrmugr0P7PlD646fFjdQL+Dr/76+BB0tLpJSqAdwHfHG5Gy4397wp\npTpjGzC11VpnKqXWY3vU6XfAw8AhYJHWWiulriZE8UH0xdcZV1JMYFUpV+nEP2G1cOHbaXiNm4sy\nGMnavAjLueO4dX4YgOz1P+Aa3g23dj3RljzIyeb8Z2XOki3hyAdf0GLmRNtjd5euJePkGar1vhuA\nc4tWkvT7LnzbtaTtwjm2R/ZO+QQAbbGWmhcgsFsHajxkm7KRuH47sUvXXnGd4z+bRc233gODgbRV\nK8iJicaru+0+udQVSzB6+VBn5lwMlSqBVePdqy8nhz2NNSuT+M9mEzx+IsrJidy4WGJnvl1mqMPv\nf0nYrAlgMBC7dB0ZJ89QvXc3AM4uWkXS77vwaxdG2x8/sv1UwpSPC+pfWl6ARi8MxODiRNhs27ec\nafuOcPjdzznz42+EThxOm/9+SGE/vbxBdlHjx/1EVNQpUlMyubPTDEaM7MxD/cKueDtX65rHt1g5\nOXMuoe9PQhkMJCxfTVb0aQJ72vah+CW/krptB95twwlbMBer2cyx6bZnJzl7e9Fo6muAbXqMafUG\nUqN2AXDi3TnUGTUYZTRizcnhxHsflx7/Ct107W+1EvPRpzR8ZwoYDSStWEl2dAz+D/QAIPGX5aRt\n/4OqbVrR7Nsv838qoPCnPupPmoCTpyfakkfMrE+wZNgOGzUGP4tbzepoqyYnIYFTM+bYhb0efe/c\nL+sInTiMNvM/wJqXx4G3bHnyLmRwesFSWv3f26AvHt5KDuadnAxM+Fd3Bg+aj9Wi6f1QC0JCAvhu\nge0E8dHHIjhxPJFXX1mMQtEgxJ/JUwung44e+QOpqVk4OxmZ+EZ3PD3drv59KcVNt+9ZrJyYMY+m\nH0wCg4GEZWvIij5NUC9b349b/CspW3fiHRlBy+8+w5pt5th022DA2duL0GmvAra+n7hqI6lRtp/I\nqT30KdxrVQetMcclcPz9T/9RvS+6lvW/1vt+g+GPU6lWNbTWZMclcvidzwFKPe6c+fE3POrWoP1P\ns7Fk53Bg8ieF5ZrxCgemzsVsSuHonPncNmUMDYY+yoUjJzm7xHYsN235E792LUvNXxb/O1rRePwA\nAIzurkT+9wPMSakO6vssu6o3TVxLgVrr2Py/4yh7HvtM4CWgShnrS1BaX4MLg9eAUqoXMEhr/YBS\nqjGwG7gX2INtemIM8LLWOip/2uRcoB22AeguYJ7W+v0ytr0eOKS1fk4p1QH4VGt9m1JqEpB+MV/+\nAHK81vp+pdTbgJvWekz+Ou/8WDuBLlrrY0qpykB1rfWRS1SvfDSygyQMaOaw2AFf7WNt274Oi99l\n648cur+zw+I3XrqeNZH9HBa/67aFWJjvsPhGHnd4/K2dyn5wzfXUdqPtMdKOqn95aPsdXXo4LH7E\n2uXS927x+Fs69rp0wuuk/abFDu37gMP2/67bFrKqzcMOiQ3QbfsPDu/72C42lHvPB40u1+fHn8TP\nHgoUnT43T2tdcC+UUmo1EFQiI0wAvtZaexVJm6K1trvvTSl1P9BDaz286BjkUuUqN1fegF+B55RS\nB4HD2KZOorVOyV/WRGsdlb/sD6XUEmAvEA/8BaXMD7GXrZT6E3AGBlxGeaYAHyul9mF75OqbWuv/\nKaWeARYopS7eDTsRuNTgTQghhBBCCFFB5A/Uynxwhdb6rrLWKaXilVLBWutYpVQwUNrDHNoDPZVS\nPbDNNvRUSn2rtX7i78pVbgZvWmsztoePlLautFHo+1rrSUqpSsBGbFfE/s63F6+iFdnupGKv1wPr\n8/9Ox3ZPW/GyrAVaFV8uhBBCCCGEEMASbOOIt/P/X1w8gdb6VeBVsJv997cDNyhHg7erME8p1QTb\nSPVrrfUuRxdICCGEEEIIcWnl5M6t6+Vt4Ael1EDgFLbnd6CUqgZ8obW+6nn9FXbwprUu8cNWSqmP\nsV2CLGqW1rrzDSmUEEIIIYQQ4pamtU6ilN/b01qfA0oM3IrO/ruUCjt4K43W+vlLpxJCCCGEEEKI\niuemGrwJIYQQQgghyj+rowtQQZW3H+kWQgghhBBCCFEKGbwJIYQQQgghRAUggzchhBBCCCGEqADk\nnjchhBBCCCHEDWW9uX8q4LqRK29CCCGEEEIIUQEofZP/Ql45IY0shBBCCCFuBOXoAlyOIQGjy/X5\n8byEWeWyHWXapLjuvm/+jMNiP7Ln3yy4/VmHxX9s7/9xok/x342/cer9bwsrWj3msPjd/1jA5g4P\nOix+h80/Ozz+2rZ9HRK7y9YfAdjfvcRvhN4QTVesYVlEf4fEBrhvx38d1vZga3/Lv90cFt/4TDZb\nO/V0WPy2G5c4vO9t6djLYfHbb1qMhfkOi2/kcYfVv/2mxQDs6FLid4hviIi1y/mh+dMOiQ3w8J6v\nHd73K4pyPXIrx2TapBBCCCGEEEJUADJ4E0IIIYQQQogKQKZNCiGEEEIIIW4oedrk1ZErb0IIIYQQ\nQghRAcjgTQghhBBCCCEqAJk2KYQQQgghhLih5NfKro5ceRNCCCGEEEKICkAGb0IIIYQQQghRAci0\nSSGEEEIIIcQNZXV0ASooufImhBBCCCGEEBWAXHkTN1zYy48T3OF2LNk5RL3+BSmHTpVIU7m6H23f\nGYZLVQ9SDkaz/bV5WPMsOFepROu3BuJRIwBLTi5/vPElacfOAnD/8vfJzcxCWzTaYmFV/zcvWZaW\nL/enWkdbWba9/iUpB0uWJeTRrjR6ohtVagXyU6eR5KSmA1ClThCRkwfiHVqbvR/9j0Nf/3rVbeIe\n1gbfAWNQBgPnV/9C2qJv7dZ7dLqbqg8+jlIKa1YmpnnvkxN97Kpihb7wNP7tW2DJzuGvNz/l/OHo\nkuWp5k+LqaNwrurB+UMn2fOvj9F5Fqrd2566T/VEKcjLzGb/219y4WgMlWsH02LaqIL8laoFcHTe\njyW269UmjHqjB6EMBuKXruLMt/8rkabe6EF4tw3Hmm3myLTZZBw5UbjSYKDFF++Tk5jEgZen2uWr\n/mgv6o54lm33PUle2oVyFRvAJ7IFIWOeRRkNxC5Zw6lvfi6RJmTsAHzbhWHNzuHA5DmkHzn5t3k9\nGtSm0UtDMFZyIzs2kf1vzMKSmVVq/KI8wlsR9NzzYDCQ+utyTAu/s1vvUqMm1ce9hFuDBiR8/RVJ\nPy2034DBQL3Zn5BnSiJm0oRLxruoyfinCMjf9/ZM+qzMfS9s2khcqnqQdvAku//1CTrPQuAd4TR8\nrh/aakVbrBz44BtS9hwGoM6j91Kr952AIubntUQvKNkX/0n7N54wHL924eSkpBH1xLgS+Wo+9gAh\no55m073PklvG+1/UpuNuTF/tg8UKfVukM7jtebv1UadcGfFTANWr5gHQrVEmwzukcTLJiXE/+xek\nO5PqxMiOqTzV+tIxvVq3pM6oQSiDkfhlKzk3/6cSaeqMGox3ZAQWs5nj02cW7P9h33+ONSsLbbGi\nLRb+GvKCrb0mvYh7zeoAGD0qp4i55QAAIABJREFUY0nPYO/AMaXHd3D/82odRr3RgyE//tlS6l93\n9GC8I8Oxms0cnTarIH74D/OwZGahrVawWNkz2Fb/WgP749OxDdpqJTcljWPTZpOTlFxq/Ms14dUl\nbFh/BB/fyixZOuwfbeui61H3OsOfwbtdK3ReHtln4zg6fTaW9IxS43u2CqfWiKFgMGBa/htxCxaW\nSFNzxFCqtmmFNdtM9Lsfknn0OACBfR/Er8c9oDWZJ6OJfmcGOjcX9/r1qD12BAYXZ7TFSsysj8k4\ndKTMNgh7+XGCOjTPP+/4nNQyzjsi3xlecN4R9dpc23mHhzttpg2lUpAvysnI4a9XEL14E1VqBxH5\n7vCC/B41Atj3Scn9uihH9H1x85HBm7ihgjvcTpVagSx/4GV8b6tP+MSnWP3E5BLpbh/9MIe/Xcnp\nX7cTPvFp6vbuxPGF62gy6AFSD8WwZexHVKkTTPhrT7J+yLsF+dYNeqdgcHVZZakdyNL7X8H39npE\nTHySVY9PKZHOtPso5zbupsuXr9gtzzmfwc63/0uNLmFX2ArFGAz4DX6B2DfH8P/snXd8U9X7x983\nHUkXtM1oC2Uvochqy16COHCCIiqoDBkiyBBQ9OsE3CAqigx/7q1fvyqggiBToJQpe7ZAZ5IOupI0\nyf39cdO0aVpApKTgefviZXrvc87nnOeeJ/eee0bs5mzqv7aM4u2bKD2T4jYpzUon45mJOIsKCOrY\nFd34maQ/OfZvS+m7dyCkYTQbBk8lvG1z4p4czZaRz3jZtZp4PylfrCRj9RbinhxNgzuu49T3v1Oc\nns22cS9iLyhC1709bZ8aw5aRz1CUmsHmYbNc9ZHot/I9Mv/YTutpD3rUs9m0ceyb+hy2bDMdlr2O\neVMSJSln3CYRXePRNIhhx72PEBbXkubTx7Nn7Ez3+XpDbqU49Qz+wUEe5Q006AhP7IAlM7taH/tM\n26Xf6vGH2TX5RazZOST83ysYNyZTXEFf260jwQ1i2DpkEnXiWtBq5lh2PDzrnGmvmfUIxxZ+Qt6u\nA8Tc2o+Gw+/g5JKvqi+Hqywxjz5GylMzsZuMNH3rPQq2bcF6qvxhxlFQQMb7C6nTrUeVWWjvGIz1\n1Cn8gkPOrVUBfY8OhDSIZt2gaYS3bU7bWaP4c8SzXnbXTLqPk1/8QsaqLbSdNcrd9kxJ+8havwOA\nsOYN6PTKZNbfPZ3QZrE0HHQdmx58Btlup/PbT5K9cZdXnS/a/0Dmij848+0vtHl2kld51QYtkZ3b\nY8kwXpAfHE6YsyqSZfdmE1XHztCPYriuRQnNdaUedvGxFhbd45lnE62dH0ZnuPPpuzCW/q2Kzy+q\nUtFk6jgOTHsWm9HMtUvmkbspiZLU026T8K7xaGLrsev+cYS2aUWTaY+wb/wM9/n9k5/26hgdff51\n9+dGj46q9uG9NsRf02nj2D/1OWxGM+2XvkHO5iRKUsrrH9E1nqDYGHbeN57QNi1p9vgj7B1XXv99\nk//jVf+0L3/g1AdfABBz1600GDGU4/MWVV+OC2DQ4PYMG57Ik094v1y4KGqo7nnbd5Oy+BNwOGk0\n/kFih99F6vufVKnfcPIEjsx4mlKjidaLFpD351YsFdpe3S4JaOrXZ98DDxPSuhUNp0zk0KNTCdBp\nMQy6nX0jxyPbbDR9dhaR/fpg/u13YseNIv2TLziblEzdLgnEjh3F4WlPeusD0T3bEdowml9um0nk\ntc2I/89DrBn+opddu8lDOfLZbxWeO/pw/Nu1NB/an7Mn0tn02ALUEWHc9OMrnFrxJwWpmaweqnyH\nSSqJW1cvIG3tDjrOHFZlOXwS+4Krkn/FtElJ4V9R19pO/es6kvLzZgDMfx0nICwYja6ul11U59ac\nWb0dgJSfNlG/XycA6jStR1bSQQAKUjIIqadDHVnnosoSe11HUn7+UynL3hMEVlOW3EOnKEo3ex23\n5hSQs/8kTrvjovTLUDdvTWnGGexZ6WC3U7RpDSGde3lqHd6Hs0i5eVqP7Mdfa7goLUOfeNJWbAQg\nb98x/MOCUWvDvey0iXFkrt0GQNqKDRj6JChp9h7FXqA8oOX9dQyNIdIrrS6xLcVnsrBkmjyOh7Vu\ngeVMBtb0LGS7HePvm9D27OJhE9mrM9m/rgOgYP8R/EJDCNBGABCo1xLZLYGsn1d7aTadNIqURR9D\nNdsO+1IboE6b5hSfycSSno1st5P9+2b0vRM9bHS9E8n8RdE/u/8o/qHBBGrDz5k2uGEMebsOAJCT\ntAdDX886VUVQy2uwpadRmpmBbLeTv/4Pwrp297Bx5OdhOXIY2W73Su+v0xHauQt5v608r1ZFovrE\nk7ayvO0FVNP2dIlxZK5R2t6Z5RuJ7qu0PUeJ1W3jF6Rx7zEd2rg+efuO4bTakB1OzDsPEt3P07f/\nxP8AebsPYj9b9UuhFpNHcPzdT5HP1QAq8Fd6IA0j7DSIsBPoBze3LmLtkaDzJ6zE1hQNDcNLqV/3\n/N8/oa1bYEnLwJqhtH/Tmo1EVG7/Pbtg/O0PAAoPHMa/Qvu/ELTX9cC0ZkOV53wdf2GtW2BJy3TX\n37hmI5E9O3vq9+xM9q9l9T9yQfWvOMqtClJfcBs4FwmJjahb9++3h+qoqbrnbd+t9CJQrpdar6vS\nLuSalljT0rFlZCLb7eSs3UB4924eNuHdu2JevQaAooOuthep6Et+fqjUgaBSoVKrKTW77sWyjF9w\nMAB+ISHnHPGsf10n93NHzjmeOwzVPHfIMvgHawDwD1Zjyy/C6fBcrWXoEkfRaSPFGd7PCmX4IvZr\nO065dv+rrVy1HRpJkhpLknRYkqRPgH3AB5IkJUuStF+SpBcq2KVIkvSCJEk7JUn6S5Kka1zH9ZIk\nrXbZL5MkKVWSJJ3r3HBJkpIkSdotSdJiSZL8fFPLK48gQwTFWeVfsiVZuQQZPG8SgeGh2AqKkV1f\njsVZuQS7bPKOnCK2fzwAkW2bEByjJThKOScj03fxTAZ8+TxN7+pzAWUJpyizvCwVdS4n/lo9dnP5\nW2O7ORu/SH219mHX30rxrq0XpaXRR2LJKr+5WLJzUFfqgAXUDaO0oMjtf0u2ucpOWoM7+mL8c7fX\n8ZgbupP+259exwP1kVizyzt0VqOZQL1nvmpdJLYKNrZsM2qdYtP0sdGcXPSx1w/DRPbsjM1kpuhY\nSnXV9qk2gLqyfrYZdWV9vdbj2liNOaj12nOmLTp5Bp2rE2Lo1w21oeoHqIoE6HSUGsvf6paajPhr\nz5+ujOhxj5L1wRLkv3ln0+gjKKkQb5asHDSV4q3qtlduE9U3gT7fvUHighnseXEJAIXHTxPR4RoC\n6oaiUgdi6NGBoCitR77/xP/nQtcrEasxh8Jj3lOwqiOr0J/oOuWd4ugwB9kF3reQXWlq7lwWw9iv\nDRw1BnidX3kwhIFtLuzNe6BO61F/m9HkVbdAnRZbtrGCjZlAXblNm/mzuXbpfAy33eiVf1j7OEpz\n8rCcyaha38fxF6jXeuZtNKPWab1sPMtoKreRIe7NF2m/bB5Rt93gka7hmOEkfPcB+gF93KNwtYma\nrHsZUbf0J3fbjqr1dZX0TSYCK7W9AJ2uUtszKd9TJjOZ3/yXdl99TPvvPsdRVMTZZGVU/fS7S4gd\nN4p2X31M7PjRpC37qFofBBkiKKkQ2yVZORf03FFmc+yr36nTtB63/f4WN3w3l92vfe7VFhve1IVT\nv577vuyL2BdcnVy1nTcXLYD3ZFmOAx6XZTkBaAf0kSSpXQU7kyzLnYBFwHTXseeAta603wENASRJ\nag0MBXrIstwBcABeY+SSJI11dRaTlyxZUkPV+/dx8P9WEFgnmBu+fpEW9w0g71Cq+yFy7Yi5rBr6\nLBsenUeLof3Rd2rp49JeejRtOxHW/1ZyPnnPp+WIjG9D7O3XcXjhlx7HJX8/DL3j3SMnl4qI7gmU\n5uVTdPi4x3GVOpAGD95N6rIvq0l5ZWufj4Nz3yV28E0kfPgqfsFBVY6UXUpCO3fFkZeL5djRGtWp\njqx1yay/ezo7ps+n1fghABSmpHPik5/psnAWnd95grNHUt0PYDWJSh1Io4cGc2Lp15c87zbRNtY8\nmsb/Hs5gWPxZJn3v+TLH5oA/jgZxY+tqpileYvY/+gR7R0/h4IwXiB40kLD2cR7ndf17Y1qzsUa0\na0P8/fXok+wZNZUD018kZvBA6rRv4z53aulnJN89GuPq9cQMvqXGy3K5OVfdAWIfGILscGJctf6S\na/uFhhLeoyt/3T+SvUOGo9JoiLz+OgD0tw/k9HtL2XvvQ5x+dymNp0++5PplRHdvS96hU/x8/WRW\n3/MMHWc9gH+Ixn1e5e9HvT4dOb0q6R9r1bbYF9ROrvY1b6myLJe9CrlHkqSxKHWOAdoAe13nylaY\n7gAGuz73BAYByLL8qyRJua7j/YF4YLskSQBBgNdke1mWlwBlvbZaPPha8zQf2p+mg5WRsJz9JwmO\nKn/jGhQVQUl2roe9La+QwLBgJD8VssNJcFQExS4be5GFpGc/cNveuvINCs8o7i/JzgOU6Yxn1u4k\nsm1Tr7K0GNqPZq5ROfP+k4RER1L2TrCizuXEbjZ6TIP01xpw5Hivnwls1Az9hCfJnP04zsKzXuer\no+GQATS4sx8A+QdOoKkwKqExRGLN9pxuUppfQEBYiNv/GoMWSwWbsOYNufY/Y9k++RVK8z2nkum7\nd+DsoZPYcvK9ymEz5niMDKn1WmxGT22rKYfACjaBBi1WUw7avt2I7JFIRNd4VIEB+IUE0/KZKZz5\n/AfUMQY6frTAnWeH/5vPnjEzKM3JqxXa4BrFqahv0GKtrG80o4nSUuY5tT4Sq9GM5O9Xbdri1HR2\nT1HWjAY1iEHXo5OX3ytTajIRoC9/IAjQ6bGbTedIUU5wmzjCunYnNLELUkAgfsHB1J8xi7TXX67S\nvtGQATS4U3nYyj9wgqDoSHL3KOc0UZFYKsVb1W3POyZzdh0iuL5BGanLL+D0j+s4/eM6AFpNGIol\n23Pq0j/xf3UExUYTFGOg86dvuOy1JH70GsmjZ2GrdP0rEhVqJ/Ns+a03s8APQ5jn9KdQdfkto09z\nC7NXSeQWq4gIVjqlG48H0SbKhi7kwjqpNpPZo/6Bep1X3WwmM4EGPXDQZaPFZjK7zim+suflk7Nx\nK6GtW1CwZ7+S0E9FZO9u/DVmavX6Po4/m9Hsmbdei9Vk9rJRG3SUrexS63Vum7L6l+blY96wldDW\nLTm754BHeuOq9bR5/VlO/5/vXuZURU3W3XBzPyK6J7B/ive6aXfepkr6Oh22Sm2v1GRytb2yMuoo\nNZmoE98Ba0Ym9nzlfpe3cTOhca3J+f0PtDdcz+mFiwHIXb/Rq/PWfGh/mrieO3L3n3SNxisvnYKi\nIi/ouaPMpvEdvTj0fysAKDydTVGakTpN6pGzT9nUJbpnO3IPpWLNOfd92RexX9v5Vz8c/wOu9pG3\nIgBJkpqgjKj1l2W5HbAC0FSwK1tM4eD8HVoJ+FiW5Q6uf61kWX7+0hb76uLY12tYNfRZVg19lrQ/\ndtL4NmUTBO21zSgtLMFi8n7Qz95+iNgBynSwxrf3JP0PZapEQFgwKn9lmkHTwX0w7jyMvciCX1Cg\ne066X1Ag0d3i3LtQVuTo12v59Z7n+PWe50hbu5PGtylrfbTtmlJaUHVZahrrsUMExMTib4gBf39C\nevanaPsmDxs/XRRRM18i+60XKc04XU1OVXPq29VsHjaLzcNmkbUumfq3KOvpwts2x15YjNXs/aBp\nTt5PdD9lTUr9W3qTvUGZEqOJ0tLxtansee5dik9leqWLubE76au8p0wCFBw6SlCDGNQxBiR/f/TX\n9yRns+ebypxNSRhu6gtAWFxLHIVFlJpzSV38GdsHP0zykLEcfn4e+Tv2cmT2AopPpJJ02wiSh4wl\nechYrEYzu0dN83p486U2QMHBYwQ3iEHj0jdc3wPTxu0eNqaNyUTfrOjXiWuBo6gYmznvnGkDIlzr\nPSWJxiPvJu0H7zVBlSk5cojAevUJiIpG8venbp/rKNha9TWrTPZHH3DkgXs5OmIYZ16ZQ9Ge3dV2\n3ABSv13NpmFPsWnYU0rbG1ix7ZVU0/YOEN1faXuxt/Yia30yAMGxUW6bOq0aowr0d+/sGOjygyZK\nS3S/RNJ+9azPP/F/dRQdP8WmW0azZfAEtgyegNVoZvuImefsuAG0rWcjNdefM3n+2Bzwy8EQrmvh\nuUOosVDlnpW1Nz0QpwzhQeUPaysPhDAw7sLfvBceOoomth7qmCgkf390/XuRu9lzdDxnUxL6G5WO\ndmibVjiKiik156LSqFEFKetyVBo14YkdKDlxyp0uPL4DllNnvB7IK+Lz+Dt0lKDYCvr9e5GzqZL+\n5iQMN5XVvyV2l75Ko8bPo/4dKT6hTJPVxMa402t7daHklPc9x9fUVN3DO3ek/v2DOThrLk6rrVr9\nokNH0NSvR2C00vYi+/Umb4vn9MK8P7ehHdAfgJDWrXAUFVGak4sty0hom2tQqdUAhHXqgOWUcv8r\nNZsJa3+tcrxjeyxpnr4/9vUaVg99ltWVnjsiz/nccdDjuSPtj50AFGfmENVFGXFUR9YhrHGM+6Ux\nQMObu3Lql/MvZfBF7AuuTq72kbcy6qB05PIlSYoCbgbWnSfNZuAe4FVJkm4AyiZIrwF+lCTpTVmW\nsyVJigTCZFm+8EUP/2IyNu4hpmc7bln+GnaL1WMUrdfCqWx/4UMsxjz2LPiGbq89wrWPDibv0ClO\n/KAshK/TJIYuc8YgyzJnj6eR9Nz/AaCJrEvPN5Wd4CR/P1JXbiXzz7/OWZb0jXuJ6dWOW1e8isNi\nY9sz5WXp8+5Ukp7/kBJjHi3vv57WI29Go63Lzd+9SMamv0h6/kM02jrc+NVzBIQEITtlWg0fwIo7\nn8ZeZPl7TnE6MC17k+hn5yOp/ChYs5zS0ycJu+FOAApW/Y+Ie0aiCquDbqxrVq/DQdrM0X9PBzBu\n3oW+Rwf6/LAAh8XK3hcXu8/FL5jJvjlLsZpyObzwSzrMnUSLR+7h7OEUzvyoLGZv/vBgAuuGEvfE\nKABku5M/H1K2ivfTqNF1vpb9Ly2rWtzh5Pj8pbSd/xyo/Mha8TvFJ08TfYeyhibzx9/I3bKDiG7x\nxH/9Pk6LlaMvvf2361jrtAHZ4eTIvGV0WPAfJJWK9OVrKTp5hnqDlDUk6T+swvznTrTdO9Ht24U4\nrFYOznnvnGkBogb0JPaumwAwrttGxvK15y+M00nGondoNOdVJD8Vuat+wXoqlYiBtwKQu3I5/hER\nNH17EargYHDKaO+8i2PjRuEsvvh1Ftmbd6Pv0YG+/3tTaXsvlLe9xLdmsnf2EqymPA6+8yWdXppE\nq0eGcPZwqntELbp/Z2IH9sJpt+O0lrJz1jvu9PGvTSGgbiiy3cG+Vz/EXuhZzn/if4C4F6YQ3imO\ngPAwuv+4mJPLvibj5wvwdRX4q+DpATmM+cqAU4ZB7QppoS/lq52hANzbqZBVh0L4alco/ipQ+8vM\nu8OEMtEDim0Sf57U8PxN1XeWvHA4OblgMa3feB5JpSJ75e+UpJwm6nal7WT99Ct5W5OJ6BZPxy8X\n47RaOfay0v4DIsJpNfcpQNk8wvT7evKSdrqz1vbvhen3qjcqqajvy/jD4eTEm0uIm/c8qFRkr1hD\nScppou+4yaX/q6LfNYFOXyn6x15+x13/1i/NctffuHoDeUnKy8RG4x4kqGF9kGWsmdkcf+Of7TQJ\nMH3a9yQlpZKXW8x1vd9k4qS+3DXkH+xoXEN1bzp1HKqAAOLmK1sIFO4/UvVOm04np95ZRMtX54Cf\nCvMvq7CknEJ/20AAjD+vJH/bdup2SaTtZx+4firgTQCKDh0md/0mWi9+GxwOio+dwLj8FwBS571N\ng4njkPz8cNpKSZ33jre2i7LnjoHLX8dusbL92fJ7VK+F09j+wv9hMeaxd8E3dH1tAm0fvYu8Q6mc\ndD13HFjyI51nj+GG7+YgSRJ7F3zj3tXaLyiQqK5t2TH7o/NeCp/EvuCqRJLlq3PQUpKkxsByWZbb\nuv7+COgOnAbygZ9kWf5IkqQUIEGWZZMkSQnAG7Is95UkyQB8CUQBW4BbgcayLFslSRoKzEIZuSwF\nHq0wPbMqrk4nXyBftx/hM+2hez7iy3YjfaZ/394POTG46u3WLwdN/7uZXxLv85n+zdu/ZFPPO32m\n33PT/3yuv7bb3T7R7rdF+Z29/Tf394l+3C9rWJFwv0+0AW5J/sJnvgfF/46PNOc3rCH8RljY0vt2\nn+l32/CTz2Nvc687fKbfY+OPOPjcZ/p+DPNZ/Xts/BGA5H4DfaKfsHYl37R/yCfaAPfs+djnsY8y\nS6zWMyxycq1+Pv48561a6cerduRNluUUoG2Fv0dUY9e4wudkoK/rz3zgRlmW7ZIkdQMSZVm2uuy+\nBi79KnWBQCAQCAQCgUAgqIartvN2CWgIfOP6fTgbMMbH5REIBAKBQCAQCAT/YkTnrRpkWT4K/IOJ\n5gKBQCAQCAQCgaAqrtKVWzXO1b7bpEAgEAgEAoFAIBBcFYjOm0AgEAgEAoFAIBBcAYhpkwKBQCAQ\nCAQCgeCycnX81PjlR4y8CQQCgUAgEAgEAsEVgOi8CQQCgUAgEAgEAsEVgJg2KRAIBAKBQCAQCC4r\nTrHd5EUhRt4EAoFAIBAIBAKB4ApAdN4EAoFAIBAIBAKB4ApAksWQ5eVAOFkgEAgEAoFAcDmQfF2A\nC+Ge8Mdq9fPxN3lv10o/ijVvghrH+HCcz7T1y/azttvdPtPvt+U7Dt3a12f61yxfx5quQ3ym33/r\ntzj43Gf6fgzzuf6W3rf7RLvbhp8AfFb/2uD75H4DfaafsHaliL1/uf7mXnf4TL/Hxh99GvuAz+69\n/bZ8x6rOQ32iDXBD0tc+j/0rhVrdc6vFiGmTAoFAIBAIBAKBQHAFIDpvAoFAIBAIBAKBQHAFIKZN\nCgQCgUAgEAgEgsuKU8ybvCjEyJtAIBAIBAKBQCAQXAGIzptAIBAIBAKBQCAQXAGIaZMCgUAgEAgE\nAoHgsiKL/SYvCjHyJhAIBAKBQCAQCARXAKLzJhAIBAKBQCAQCARXAGLapEAgEAgEAoFAILisiN0m\nLw4x8iYQCAQCgUAgEAgEVwBi5E1QKwiI60nofU8iqfwo2fg9Jb8s8zgf2OE6Qu6cBE4Z2Wmn8KtX\nsR/beUF5R3btQIspI5H8VGT8tIbUT//nZdNi6ii03TvitNg4MHshhUdOnjNtaPNGtJo5Fr9gDZYM\nI/ufewtHcQmaaD1dvlpAcWr6ecsV0qkzhrETkVR+5K1aQc53X3jWObYhMVOeQN2sBaZPPiDnh6/d\n51QhoUQ/NgN1wyaATMZbr2I5dKDa+recOhJJpSK9mvq3nDYSbbdOOKxWDs5+l4LDJ8+ZtunYoeh6\nJ4JTxpabz4HZ72Iz5RJ1Y08aDbujUu4RQO55/VGRp2f9xPp1R4jUhvDT8kf+VtpLQU3oh3fuROPH\nHkZS+ZG1YhXpn3/vZdP4sTFEdE3AYbVy/OUFFB05AUDHr5fiLClBdjiRHQ7+Gvs4AMHNGtP08Qmu\ndpjNsdnzcBSX/OOyXo3+r5MYT8OJ40ClwrTyNzK//NbLpsHEcdTtkojTYiXltfkUHz0OgGHwHehv\nuREkCeOKX8n+/kcA6o18gPDuXUF2UpqXT8qr8yk157jzq4nYa/LwEOrdfj2leWcBOL7oC8xbdhHZ\nuR3NJgxD5e+P026/aD9djdfe1/rhnTvSdPIYUKnIWr6atCpiv8nkMUR0jcdptXL0pbfcsR//zRIc\nxSXITic4nOwZo8R+4wkjiOieiGy3Y0nL5OjLb+MoLPrHZa2J+v+Te/A1T09A1z0eW24+ScOnue31\n/brRZPQ9hDSuT/LoWRQcOn7OMrR6fAT67h1xWKzse3GRO84qElRPT7s5kwmoG8bZQyf467mFyHYH\nwY3q0fbZR6jTqglHF31F6ufL3Wni/jMefc9O2HLP8ud90z3qfKXFvuDKQYy8CXyPpCJs2NPkLxhP\nzjO3o+k8EL+YZh4mtoPbyH1+MLkv3kXBR88Q9tALF5x9q8cfZs+0uWy7byqGAT0JbhzrcV7brSPB\nDWLYOmQSh155n1YzxyonVKpq014z6xGOL/qcpOGPY1yfRMPh5R2WkjNZbH9oBtsfmlF9oVQqoh6Z\nzJnnnuDEhIeo06cfgQ0aeZg4Cs6Stfhtcv77tVfyqLETKdqRxMlHHuTkpNHYTp+qvv7TR7N76ly2\n3jeVqBt6EFJF/YMaxLBlyCQOvbyYVjPHlNe/mrSpn/1E0vDpJD04A9PmHTQZdTcAWb9tIunBGSQ9\nOIP9L7zjUvh7HTeAQYPbs2TZsL+d7lJxyfVVKppMHcfBGS+w+8FH0fXvTVCjBh4m4V3j0cTWY9f9\n4zjx+rs0meb54LR/8tPsHT3F3XEDaDZzEqcWf8yeEY+Rs3Er9e4bfEmKezX6v+HkCRx58ln2jxxP\nZL8+aCr5v26XBDT167PvgYdJnf82DadMBEDTuBH6W27k4ISp7H/4UcK7dkZdLwaAzK+/48CYRzkw\ndhL5W5KIeeB+jzxrIvYATn+13B1n5i27ALDlnWXP9FfYNvxxDry48KJdddVde1/rq1Q0nTaO/dNf\nYNcDE9Ff34ugxp5tL6JrPEGxMey8bzzHXnuXZo97xv6+yf9hz6ip7o4bQN723ex6aBK7R0ym5HQa\nscPvuiTFrYn6X/Q9GMhc8Qe7p87xyrbo+Cn2zXqdvN0Hz1sEXfcOhDSIZtNdkznw8lLaPDG6SrsW\nE4eR+uVKNt01mdKCIurf0Q8A+9lCDr3xESmf/+yVJn3FenZMftnr+JUY+77AWcv/1VZqZedNkqTG\nkiTtq+bcR5Ik3V2D2islSQqvqfwF3vg3uRZH9mmcpjPgKMWStJLADtd5GlmL3R+lwCD4G9vLFp/J\nxJKejWy3k/37ZvS9Ez1yE+qZAAAgAElEQVTO63onkvnLOgDO7j+Kf2gwgdpw6rRpXm3a4IYx5O1S\nRrpykvZg6Nvlb9VZ0/IabBlplGZlgN3O2Q1rCe3aw8PGkZ+H5ehhcDg8jquCQwiKa0/+qhXKAbsd\nZ1FhtVolFeqQtXozut4JHuf1vRPJXLm+Qv1D3PWvLm3F0R0/jbpK3egBPao8fiEkJDaibt2gi07/\nT7nU+qGtW2BJy8CakYVst2Nas5GInp5tJrJnF4y//QFA4YHD+IeGEKCNOGe+mgb1OLtnPwD5ybuJ\n7NPtkpT3avN/yDUtsaalY8vIRLbbyVm7gfDunr4K794V8+o1ABQddPk/MoKgRg0oPHgYp9UKTicF\ne/YR0Utp284KcaDSaKj8vVQTsVcdhUdSsJmUFyVFJ06Xlepv+Qmuvmvva/2w1i2wpGW6Y9+4ZiOR\nPTt72ET27Ez2r2Wxf+SCYj9v+25wKI+XBfuPoNbrLkl5L3X9z3UfLaO6ezBA3u6D2M9639+KU9Mo\nPnX+GS6gxFn6yg0A5O87in9YiDv/ikQmxJG1diugdMoMfZRy2nLPcvbgcWS7wytN7q6DlFZRPt/H\nPlXfmAVXBbWy8+YLJAWVLMsDZVnO83V5/k2oIqJw5Ga4/3bmZuEXEeVlF9ixPxGzf6bu5EUUfPjM\nBedvzTZV+GxGrY/0OK/Wa7FkmcttjDmo9VrU+shq0xadPKNMGwQM/bqhNpTfOIPqGUj8+HU6vlf9\n6GCAVo/daHT/bTcZCdDqL6g+AVExOM7mETPlSRq/tZToSTOQ1Jpq7S3ZFeqWrdStImp9ZCUbpZ4a\nr+OeaZuOv48ePy4i+sZenFjiPTpouL77BdXn30CgTuvRlmxGk9d1CNRpsWUbK9iYCdSV27SZP5tr\nl87HcNuN7mMlKafcnUBt3x4e7VBQjuLbCv43mQis5P8Ana6S/00E6HSUnEwl7Nq2+NUJQ6VWU7dL\nAgEV/Fx/1IO0++pjtNf3Jf3DTz3yrKnYix1yM50/e4PWTz+Cf1iIV30N13V1farN747/HQTqK7U9\noxm1Tutl43GvMZrKbWSIe/NF2i+bR9RtN1SpEXVLf3K37bj0hb8EnOs+Wm5T9T34UqExRHjkb8k2\nozF4liGgbhj2gmJkV4fYkpWDplI5/w6+j32sF114Qa2nVnTeJEmaJknSPte/Ka7DfpIkLZUkab8k\nSaskSfJ6FSRJUqIkSX9KkrRHkqQkSZLCqsl/hCRJP0qStE6SpKOSJD3nOt5YkqTDkiR9AuwDGkiS\nlCJJks51/kFJkva68v/UdUwvSdL3kiRtd/2rcnhBkqSxkiQlS5KUvGTJkkvgJYFt1xpyn7mNswsn\nKevffMjBue8SO/gmEj58Fb/gIGTXPHOrOZfNd45n+0MzOPbWxwCogoIvqbbk54emWUtyV/5IyuQx\nOK0laIfcf/6El5gT73/J5jseIfO3jcTefZPHuTpxzXFabJe9TFcr+x99gr2jp3BwxgtEDxpIWPs4\nAI698jbRgwZy7dL5+AUH4SwV6x0uNZZTp8n86ltavjaHFq/Opvj4CXCWd4rS/u8T9t77EObf12G4\n87YaL0/af1fx510TSXpgBlZzHi0ee9DjfEiTWJo96rtph4JLy1+PPsmeUVM5MP1FYgYPpE77Nh7n\nYx8YguxwYly13kclFFwuROwLyvB5502SpHhgJNAF6AqMQdnhoAXwrizLcUAecFeldIHA18BkWZbb\nA9cD51qp39mVRztgiCRJZePQLYD3ZFmOk2U5tUL+ccB/gH6u/Ce7Tr0FvCnLcqIrP8+dNVzIsrxE\nluUEWZYTxo4dW5WJwIUy0hbj/lsZicuq1r706A789LFIoRc2u7XiaITaoMVqzPE4bzWa0USVv9lS\n6yOxGs3K279q0hanprN7ymySRz5B1upNlKRlAiCX2t1TPAoOKwvOA+t7rm8AKDUb8deXj7T56/SU\nmo1edlVRajJiNxmxHFHm+hdsXo+mWYtq7TWGCnUzKHXzrH9OJRulnhav495pATJ/24ThOs8pgFHX\n9yBz9aYLqs+/AZvJ7NGWAvU6L1/aTGYCDfoKNlpsJrPrnNLu7Hn55GzcSmhr5XpbTqVx8PHn+GvM\nNEy/b8CanlnTVbkiUXxbwf86HbZK/i81mSr5X0epSRkxMP2yioPjJ3N4ykwcBYVYTqd5aeSs+YOI\n3p7v8moi9mw5+UrnUZZJ//F36rRpXm6nj6TdqzOuuHUvVzM2Y6W2p9diNZm9bDzuNXqd26Ys9kvz\n8jFv2Epo65ZuO8PN/YjonsCRF+fVZBX+Eee6j5bbVH0P/ic0uPsGun72Kl0/exWrKc8jf41BiyXb\nswyl+QX4hwUj+SmPxZqoSCyVyvl3ELF/YciyXKv/1VZ83nkDegI/yLJcJMtyIfBfoBdwUpbl3S6b\nHUDjSulaARmyLG8HkGX5rCzL53rtvFqWZbMsyyUujZ6u46myLG+twr4f8K0syyZX/mVRfD2wUJKk\n3cBPQB1JkkL/Rn0FlbCn7MMvqiEqXX3wC0DTeSC2PX942KgMDd2f/Ru2Bv9A5MILm90a3CAGTYwB\nyd8fw/U9MG3c7nHetDGZ6Jv7AlAnrgWOomJs5jwKDh6rNm1ARB0lsSTReOTdpP2wWjkeXgdUri//\negYAbJne8/ItRw4TWC+WgKho8PenTu9+FG7784Lq48jLodSU7e4UhrSPx3oqtVr7inWIGtAD08Zk\nj/PGjclED+zjrr+9sOr6V0wb1CDanV7fO8Fzd01JwtC/O1mrN19Qff4NFB46iia2HuqYKCR/f3T9\ne5G7eZuHTc6mJPQ3Kms9Q9u0wlFUTKk5F5VGjSpImXig0qgJT+xAyQllgxr/8LpKYkki9sF7yPzx\n18tXqSuIokNH0NSvR2C04v/Ifr3J2+L5tZ/35za0A/oDENK6FY6iIkpzlHUkZX4ONOgJ79WdnDXr\nAFDXr+dOH96jKyWnznjkWROxV3Gtjr5PZ/caF//QYNrPn8Wx9z4nf+/hf+QvwaWj4NBRgmJjULuu\npb5/L3I2JXnY5GxOwnBTWey3xF5Y5I59P4/Y70jxCeW7PrxzR+rfP5iDs+bitNbeWQ7nuo+WUd09\n+J9w+rtVbB3+BFuHP0H2+u3UG9gbgLpty+OsMjk7DhDVT5l2WO+WPhjXJ3vZXCgi9gU1SW3+qYCK\n83UdwD9dQVu5C13299/dW1cFdJVl2fIPyyMow+mg8Iu51J2yBEmlwrL5Bxzpx9H0uQcAy/pvUHca\ngKbb7eCwI5daOLt4+nkyLefIvGV0WPAfZdvd5WspOnmGeoOUtQPpP6zC/OdOtN070e3bhcqWvXPe\nA0B2OKtMCxA1oCexdylTBY3rtpGxfC0A4R1a02TMvco0StdbG2dhQZV1znr/LRq8+DqoVOSv/gXb\nqRTCb74dgLxffsIvPJLGCxajCg4Gp0zEHXdz8pGHcJYUk/X+28RM/w+Svz+lmRlkLHil2voffuMD\nOr71NKhUZCz/g6KTZ6g/aAAAaT+sxvznTnTdO9Ltu3eUbZrnvOuuf1VpAZpPGEZww3rIsowl08jh\nV5e69cI7tsaabcKSnn3B16gy06d9T1JSKnm5xVzX+00mTurLXUM6XnR+Ptd3ODm5YDGt33geSaUi\ne+XvlKScJup2pQ1l/fQreVuTiegWT8cvF+O0Wjn28tsABESE02ruU4AyZdb0+3rykpSfydBd35vo\nQQMByNmwBePK3/9Brcu56vzvdHLqnUW0fHUO+Kkw/7IKS8op9LcpvjP+vJL8bdup2yWRtp994Pqp\ngDfdyZs9/zT+deogO+yceus9HEXKbSN2zEg0DeojO2Vs2dmkvun51rtGYm/iA4S1aIyMjCXDyKFX\nFitlGXITwbHRNBk1hCajhrhKoObvLn256q69r/UdTk68uYS4ec+DSkX2ijWUpJwm+g4l9jN//JXc\nLTuI6JpAp6/ex2mxcuxlZafegIhwWr80C1Bi37h6A3lJyg6DTaeOQxUQQNx8ZW114f4jHJ+36OLL\n6eJS17+6++iF3IMB4l6YQninOALCw+j+42JOLvuajJ/XouvTmZbTRhMYXof282ZRcCSFPVXsSglg\n2rwLXfeO9PzvWzgsNvbPLvdTxzef5MDcxVhNuRx953PazZ1M8/FDOXskhTM/Kff1QG1dun70Mv4h\nQciyTKN7B7L53sdxFJVw7ezHiIxvQ0B4GL1/fo/jS5WfIPF97GMALv4mLKjVSL4eFpQkqRPwEcqU\nSQnYBjwAfCrLcluXzXQgVJbl5yVJ+ghYjjLqdQgYKsvydtd6t5KqRt8kSRoBvAS0RZlauQ0YBZiA\n5WU6LtsUIAGIAn4AusmybJYkKVKW5RxJkr4Adsmy/LrLvkOFEcLqqL1jr5cB48NxPtPWL9vP2m41\ntjnpeem35TsO3drXZ/rXLF/Hmq5Dzm9YQ/Tf+i0OPveZvh/DfK6/pfftPtHutuEnAJ/Vvzb4Prnf\nQJ/pJ6xdKWLvX66/uVfl37y8fPTY+KNPYx/w2b2335bvWNV5qE+0AW5I+trnsY/yPF3ruSVsYq1+\nPl5RsLBW+tHn0yZlWd6J0nlLQulULeMCfhhKlmUbMBR4R5KkPcBqoPot95T8vwf2At/LsnzO8XBZ\nlvcDc4H1rvznu049BiS4NjI5AIw/X1kFAoFAIBAIBAKB4J9SK6ZNyrI8n/LOURltK5x/o8LnERU+\nb0cZsbsQzsiyfGcl3ZSKOq5jjSt8/hj4uNJ5E0qnUSAQCAQCgUAgEAguG7Wi8yYQCAQCgUAgEAj+\nPfh66daVylXVeZMk6Ubg1UqHT8qyPAhlaqZAIBAIBAKBQCAQXJFcVZ03WZZ/A37zdTkEAoFAIBAI\nBAKB4FJzVXXeBAKBQCAQCAQCQe3H6esCXKH4fLdJgUAgEAgEAoFAIBCcH9F5EwgEAoFAIBAIBIIr\nADFtUiAQCAQCgUAgEFxWnGK3yYtCjLwJBAKBQCAQCAQCwRWA6LwJBAKBQCAQCAQCwRWAJH4g77Ig\nnCwQCAQCgUAguBxIvi7AhXBDyIRa/Xy8qui9WulHseZNUONs6DHIZ9q9N//A6i73+Ex/wLZvWNV5\nqM/0b0j6mk097/SZfs9N/+On+GE+0799x+c+11/X/S6faPf983sA1na72yf6/bZ85/PY85XvQfH/\nioT7faZ/S/IXJPcb6DP9hLUrfR57a7oO8Zl+/63f+tz/vox9AAef+0Tfj2FIUoBPtAFkudTnsX+l\nIIuxjYtCTJsUCAQCgUAgEAgEgisA0XkTCAQCgUAgEAgEgisAMW1SIBAIBAKBQCAQXFacvi7AFYoY\neRMIBAKBQCAQCASCKwDReRMIBAKBQCAQCASCKwAxbVIgEAgEAoFAIBBcVpxit8mLQoy8CQQCgUAg\nEAgEAsEVgOi8CQQCgUAgEAgEAsEVgJg2KRAIBAKBQCAQCC4rTllMm7wYROdNcFmJ6NKRZlNGI6lU\nZP78O6c/+6+XTbMpo4nsFo/DYuXI3HcoPHICKTCA9u/ORRXgj+Tvh+mPLaR+8BUAjcbch7ZnZ5Bl\nSnPzOTz3bWymXI88W00bia57RxwWK/tnv0fB4ZNeupoYPe3mTCGgbhhnD51g3/PvINsd1aZXBQaQ\n8P4LqAL9kfz8yFq7lRNLvwUgtEUjWj8xBoCO82ZiMeagTbwWh8XKvhcXVakfVE9PuzmT3fp/Pbew\nXP/xEehd+hXTN7xvILF39AMZCo6dYv/sRThtpbScNAx9r3gAWr/0JEdeegdHYRHhXTrSdPLDSCoV\nWctXc6YK/zed/DAR3eJxWqwceeltio6cKD+pUtFh2RvYjGYOPDEXgMYTHiKyRyJyqR1LeqZbqzra\nzniQqB7tcVhs7Hp+MfmHUrxsguvpiX95IoF1Q8k7mMLOZ95DtjvQxrem8/xpFKcZAcj4YztHlv5Q\noXwSfT6dQ4kxl6Qpb9Qq/cguHWg+ZRSSn4qMn9dw6tMfqEzzqaPQduuEw2Lj0Jx3KDxyErVByzXP\nPEZgZF2QIf2n1aR9swIA/XXdaDx6KMGN67Pz4ScpOHS8Wr9Hdu1AiykjFf2f1pD66f+8bFpMHYW2\ne0ecFhsHZi+k8IjSzq55egK67vHYcvNJGj7Nbd9s4gPoeiYgl9opScvk4Jx3sRcWe+RZE7FX0d9d\nPnoFqzGH3Y+/qpRp3FD0vRIAaLfgGQ7NWYjNlOtz/wO0mf4ghh4dcFhs7Hn+fc4eTvGyCaqnp+NL\nkwisG0r+wZPsflZpe1F94mk5fgiy04nscHJg3qfk7jkMQJP7b6bBHdcBMmePnWbvC4u98q2TGE/D\nieNApcK08jcyv/zWy6bBxHHU7ZKI02Il5bX5FB9V6hN1953oBt4IskzxyRRSXn0TubSUoKZNaDR1\nIqqgIGxZWZyY+xrO4pJq63+5Y6/r128hqVSkV9PeW04bqVxvq5WDs991t63Irh1oOXWkV9qmY4ei\n650IThlbbj4HZr+LzZSL5OdH66fGE9aqKZK/ioyV62ve982aKr4PDEB2ODn11rsUHTpSpd9rIvb1\n/brRZPQ9hDSuT/LoWedt+xfK07N+Yv26I0RqQ/hp+SOXJM+/Q6tWrfjww2V06tSRp59+hnnz3rwk\n+foy9gVXH2LapODyoVLR/PGx7Ht8NsnDHkN/fU+CG8d6mER060RQbD22D53A0dcW0Xz6OABkWyl7\nH3uWnSOmsfOhaUR06UhYXEsAznz+P3Y+NJWdI6Zh3pxMw5FDPfLUde9IcINoNt/9GAdfWULrmQ9X\nWbwWE4eT+tUKNt/9GPaCIurf3u+c6Z22UnY8+gJbh89k6/CZ6Lp2oG7bFgC0eWocx979HICiM5lo\nE69l012TOfDyUto8Mboa/WGkfrmSTXdNprSgiPp3lOl3IKRBtFd6tT6CRkNvZutDs/jzvulIfiqi\nB3QHwJz0F3/eNx2AktPpNHjgLlCpaDZtHPunv8jO4ZPQX9+LoMr+7xqPpkEMO+59hGOvv0fz6eM9\nztcbcivFqWc8juVt38POBx9j14gp5VrVYOjRnpAG0ay583H2zPmAdrNGVmnX+rF7Of75L6y583FK\nzxbR6M6+7nPmXYdZf/9TrL//Kc+HN6DpfTdRkJJe+/RVKlpMH8Pex+eSdP8UDFW0/chunQiKjWHb\nPRM58uoiWs4YC4DscHD8nY/YPmwKO8c+Sf3BN7nTFp04xb6nXiN/94Fq61ym3+rxh9kzbS7b7puK\nYYC3vrZbR4IbxLB1yCQOvfI+rWaOdZ/LXPEHu6fO8co2N2kvScOmkvTA4xSfyqDRg4M9ztdU7JXR\ncOhAilLSPI6lfPYTW4fPAMC8eQeNRw7xvf8BfQ8ljtcNmsZfc5fRdtaoKu2umXQfJ7/4hXWDplFa\nUOR6MANT0j423vckm4Y9xd4XF9PuGeXlkFofQeOhN7LpwafZMPQJJJWKejd088xUpaLh5AkcefJZ\n9o8cT2S/PmgaNfAwqdslAU39+ux74GFS579NwykTAQjQaTEMup0D4yezf/QEJJUfkf36ANB4+mTO\nLP2QAw9PIHfjn0QPvbva+l/W2FNJAOyeOpet900l6oYehFTR3oMaxLBlyCQOvbyYVjPHuH3Vavro\nKtOmfvYTScOnk/TgDEybd9BklFJfQ/9uqAID2Db8cZIeeoL6gwbUuO9jx40i/ZMvODB2EukffUrs\n2KrbU03FftHxU+yb9Tp5uw9WrXuRDBrcniXLhl3SPP8OOTk5PPbYVN54Y/4ly9OnsS+4KhGdt2qQ\nJKnQ9f96kiR9V+H4l5Ik7ZUkaaokSddIkrRbkqRdkiQ1811prwzCWreg5EwGlvQsZLsd45pNaHt1\n9rDR9exM1q9/AFCw/wj+YSEEaiMAcJZYAJD8/ZD8/cA13O6o8KbXL0jtPl6GvncCGb9sACB/31FX\nnuFe5YtMiCN77VYA0lesQ98n8bzpHSVWjzLJLu3ghvXI3aXc1ALD66AKDLgg/Sy3/noMbv1E0ldW\nrS/5qVCpA5H8VPhpArG6RhzN2/YiO5wuPx4mUK8lrHULLGcysJb5//dNaHt28SxDr85k/7rO7X+/\n0BACXP4P1GuJ7JZA1s+rPdLkbd8NlbSqI7pPPGdWbAQgd98xAkKDUeu8faFLjCNjTRIAp5dvILpv\nQrV5lqExRBLVswOn/vdHrdOv06Y5JWcy3W0/+/dN6Holemr2SiTrV+WN/dn9R/EPVa6zzZznfgvu\nKLZQnHoGtT4SgOLUNEpOVd9ZrahffCYTS3q2S38z+t6V9HsnkvnLugr6we52lrf7IPazhV755iTt\ncbez/P1HUBs8r31Nxp7aEImuRyfSflzjkZejqML3gUaNLPve/wBRfeJJW6m0vbx9xwgIC0ZdhS90\niXFkrtkGwJnlG91tr+y7BsAvSOPxPSf5+eFX4XvAYvSceRByTUusaenYMjKR7XZy1m4gvLvnQ154\n966YVyu+LDp4GP/QEAIiI9z5q9SBoFKhUqspNZsBUMfWp3DvPsVnO3YR0atHtfW/nLEXEafcjsva\ne9bqzeh6e+aj751I5krv613eVrzTetxrNOryzGQZVZDa/X0sl9rdp2rK98gyfsHBSllCQrCZc6r0\nTU3FfnFqGsUX2Pb/DgmJjahbN+iS53uhGI1GkpOTKS0tvWR5+jL2aztyLf+vtiI6b+dBluV0WZbv\nBpAkKRpIlGW5nSzLbwJ3At/JstxRluVLM2fgKkatj8SabXL/bc02ez3oB+q1WLPNlWyUByVUKjp9\nNJ9uyz8ib/seCg4cdds1HjuMLv9diuGGPqQu+9JL15JVrmvJNqMpy9NFQN0w7AXF7gdRS3aO2+ac\n6VUSXT99jT6/LsOc9Bdn9x8DoOjEafcNsk6rJvjXCfVMbziPfla5vsYQgSXL7JXeaswl5bPl9P7p\nPfqsXIy9sATztr1UJuqW68ndupPAyv43VvBtma90kdgq2Niyzah1ik3Tx0ZzctHHXp3jqrSqQ2OI\npKRCXUqyc9DoIzxsAsNDsRcUuX1R2SayXQv6fvUyXd6eSVjT+u7jbR9/gANvfYnsrL58vtJX6yOx\nZlX0fQ7qSm3f28bsZaOJ1hPaogln9x/l71BV7KkrX3u91qOdVVXGc1Hv1n6Yt3he+5qMvVZTR3B0\n4WdVtsdm4+8FIOrG3qQs+8rn/gfQ6CMoySx/wLZk5aAxeLa9gLphlFZoe0qsl9tE9U2gz3dvkLhg\nBnteXOIqZy4nPltBv+Xv0P/X97AXlmDa9pdHvoE6rWdcm0xe370BOh22bGO5jdFEgE5HqclM5jf/\npd1XH9P+u89xFBVxNnmXUr7UVMJ7KB2RyD69CDToqq//ZYy9yt+v1uyqr7el0r1GrY9E43XcM23T\n8ffR48dFRN/YixNLvgYge+1WnCVWei5fSs8fF5H6+c/ldaoh359+dwmx40bR7quPiR0/mrRlH1EV\nlyP2BefGl7EvuDq5qjpvkiRNkyRpn+vfFNexB10jZXskSfr0HGmbSJK0RZKkvyRJmlPheGNJkva5\n/lwF1HeNtj0HTAEekSSp+lf9gkuH08nOEdPYOuhhwtq0ILhJQ/eplCWfs23wGLJXrafeXQMvY5lk\ntj4wk423jaduXDNCmirTYfbPWUSDu28AlNEx2eG45NL+YSEY+iSw8c6JrB84Hr8gNTE39fSykx0O\njKvWV5HDhRPRPYHSvHyKDlf/jiL2wbsvida5yD+UwupbHmPdvbM4+fVvJM5T1mBE9eqINTe/yjU0\nV4u+X5CGuJdmcOytDz1GAGoDjR4ajOxwkPXbxsuip+vRCVtOPgWHvNfPARx/X1kPm/XbBurfdfMl\n0awN/s9al8z6u6ezY/p8Wo0fAijfA1F94vnj9smsuelR/ILU1L+5+hGwv4tfaCjhPbry1/0j2Ttk\nOCqNhsjrlelcKa8tQH/HLbR+/y1UwUEeI06XGl/Hfhkn3v+SzXc8QuZvG4m9+yYA6sQ1R3Y62XTr\nWDYPfpSG9992SbTO5Xv97QM5/d5S9t77EKffXUrj6ZMviaagduKL2BfUXq6aDUskSYoHRgJdAAnY\nJknSduA/QHdZlk2SJEWeI4u3gEWyLH8iSdKj1djcDiyXZbmDS1MCCmVZ9toZQZKkscBYgMWLFzN2\n7NjKJv86rMYc1BXezKoNWmxGs4eNzWj2mHql2HhOB3EUFpO3cx+RXTtSfPKUx7nsVRto+8Yz2HLz\nibldWXdgNeWhidIBygJfjUGLpVKepfkF+IcFuzpaTjSGSLeN1Zhz3vT2wmJyd+xH160DRSdOE5l4\nLYERdQEoOJpKHVX5exKNQYsl+zz6UeX6luxcNFFar/TaztdSnJ5NaV4BAFl/JBHerhUZv24CoN4t\nytqIwy/Md/m2kv/13r61mnI83p4HGrRYTTlo+3YjskciEV3jUQUG4BcSTMtnpnBk9gIADDf3I7J7\nAvsmP0tlGg8ZQKNBygNH3oETBFWoS5Ah0muahy2vEP+wELcvKtrYK0yJy968B9WTfgSGhxLZviXR\nveOJ6tEBVWAA/qFBdJr9SK3QB1fbj6ro+0isldq+t43WbSP5+RH30gyyVm3EtH6bl4/PR1WxZ618\n7Y1mNFFa8s9RxqqIHtgXXY94dk16AYD6d91Evdv7K3nWUOwZ+nVB3zsBXfeOqNSB+IcE0fb5Sex7\n/h2PvLNWbaTdvKfJ2bbLJ/5vNGQADe5U2l7+gRMERUeSu0c5p4mKxJLt2fZK8wsIqND2lFj3ngaV\ns+sQwfUNBNQNQ5vQhpL0bGyu74HMP7YT0a6lh73NZPaMa53O67u31GQi0KAvt9HrKDWZqBPfAWtG\nJvb8swDkbdxMaFxrcn7/A8vpMxyd+R/FX7H1Ce/qOR3PV7Gn8vN8L602VH29NYYK7d0VE5K/PxqP\ne1DVcZD52yY6zJ/FyWXfEH1DT8xbdiM7HJTmniV/7yFCGtWrUd9rb7ie0wuVzSly12+stvNWk7F/\ntTBhwiOMGaOsJT09EY4AACAASURBVB848DYyMjL+cZ61JfZrO+JHui+Oq2nkrSfwgyzLRbIsFwL/\nBRKAb2VZNgHIslz1pHCFHkDZfLtqR+guFFmWl8iynCDLcoLouCkUHDpKUGwMmhgDkr8/+v49MW/a\n7mFj3rSdqJuUL7ywuJbYC4uxmXMJCK+DX6gyv18VGEhEYnuKU5WNCjSxMe702l6dKU49Q8Z/f2Hn\nCOXNrHFDEjE39wagbtsWrjzzvMqXu2M/hn5dAah3S1+MG5KV9BuTq0wfEB6Gf1mZ1AFEdm7n3jwh\na80Wtj4wE1CmQzistvPq5+w4QJRbvw/G9eX69QZ661syTYS3baGshwC0iW0pdOlru7an8QO3A+B0\naRccOkpQgxjUZf6/vic5m5M8y7ApCcNNfd3+dxQWUWrOJXXxZ2wf/DDJQ8Zy+Pl55O/Y6+64hXfp\nSOz9gzjw5EturYqkfLvavclAxrpkYm/pBUBE2+aUFpZgNXn7wpx8gJj+ynrIBrf2JnP9DgDU2rpu\nm/C4pqCSsOUVcnDh16weOInfb5vCjqcWYtp+gJ3PLKoV+gAFB495tH3D9T0xbUr20DRt2k7UTUqH\nu05cC+xF5e2k1VMTKE45w5mvfuZiKDh4jOAGFfV7YNroGXumjclE39zXre8oqrqdViSyawcaDb+D\nvTNfdV/7tO9/ZftDyoYhNRV7x977ko23PcKmQRP56z8LyEne5+64BTeIduer65VIcWqaz/yf+u1q\nNg17ik3DniJrXTL1ByptL7xtc+yFJVir8IU5+QDR/ZW1qLG39iLL9T0QHBvltqnTqjGqQH9K8wu8\nvgd0iXHu74Eyig4dQVO/HoHRUUj+/kT2603elq0eNnl/bkM7QOl0h7RuhaOoiNKcXGxZRkLbXINK\nrazxCuvUAcup0wD4h7viQZKIGX4v2T+t9MjTV7G3zbXbZNn1jhrQA9NGz+tt3JhM9MAK19vVtirH\nSsW0QRXalr53AsWpypovS5aJiIS2AKg0auq2LX+Arinfl5rN/D979x0fRdE/cPwzl94gPaFKR2oI\nhN5F1AcrjyIKKoiKSJOqgqgoIuhPQUSRYn0Ee0Ox0XsNvdcQWkgP6e1ufn/skeRyCSCSXMDv25ev\nF7mbne/s3Mzezs7snk9YM+P18DCyz9p+5heVVd+/kcyZ8yHh4RGEh0dck4EbVJy+L25MN8zM2zUi\nlwDKktnCsZkLaDrjFZSTifNLVpAZdZoq990OQMzPf5G0aTv+7VvR+tsPsWTncPgN44TMNcCPhpNG\ngsmEMpmIX7mBpI3Gga32M4/iWbMa2mIh53w8R/9vrk3YhA07CezQko4/vIc5O5cDU+YUvBc+8wUO\nTJ1HTkIyR99fRLPXR1Hv6YdIOxLF2V9WXnJ7t0A/mrw8DGUyoUyK2BWbSNhg3PMTeltHajxg7Ffq\ngWM4eXrQ6cdZmLNz2T/lw5Ljz15E86nPUm9IX1KPnOSMTfxwu+0v7D9G7IottP9iOtpsIfVwFGd+\nWg5Ao/GDMLka3bvFpzNJ23+Y42/P5fgMo/4xORH723Iyo04Teq9RzvOL/yJ503b82rei1TdzsWTn\ncPSN9y77sdYdPRiTiwtNZxozLxdjlSRu/S5COragx+IZBY8Lv6jtrPHsmrKAnIQUDrz3Fa3eGEGj\noX24cDiaUz+vBqBKjzbUeuBWtNmMOSeP7RPev2z5KkJ8bbZwdMZHNJ/5kvG47iUryYw6TdX7jKW1\n535eStLGHQS0b0nb7z7AnJ3D4akfAFC5+c2E/qcb6ceiifjMOCk9Me9LkjbtILBLG+qPeRIX30o0\ne3si6UdPsmf0lBLjH3nnI1q8O8l4/PmSlWREnaFqb2v8n5aSuHEHAR1a0v67941Hp79e2E+avDoK\n35ZNcPH1ocPieUR99A0xv66kwdgnMLm40GLWS4DxsIPDb80v2K6s+t6l1BvWH6+axgUdvzYtOPLW\nPIfXP0Dchl0EdWxBt59nYs7OsXmkd+tZz7FnynxyElI4OPsrWr4xgobP9CH1cDSnF68GILRHG6r3\n6owlPx9LTh47JhjHxpT9x4lZsYXOi95Am81cOHySUz+upMn4gYXBLRZOzf6QBm++Dk4mEv9YSvbJ\nUwTdbSwxj//1dy5s2Ubltq1puvBj6+PqjUekZxw6TPKa9TSa9x6YzWQeO0H8kj8A8L+lG8H33gVA\n8voNJP5p+zAjm/0vx7538b6h8FkvgslEzJJVZESdKXgK5NmflpG4cQeBHcJp//1s4/H4r39QsO3h\ntz+22xag3tD+eNasitaa7PPxHH5zAQBnvv+LRpOG0vbLGSilOLdkFfVHPFqmdR/9znvUGP40yskJ\nS24e0e/YzjoXrYuy6PuBXdvQYMwTuPpWIuydCaQdOcnuEp5K+XeNG/MDW7dGk5KcSfcuMxk+ohv3\n9wn/x/leqZCQECIjN1OpUiUsFgujRo2kcePmpKWlXXWeDu374oak9A3yA3lKqZbAZ0A7rMsmgaeB\nT4H2WutEpZR/abNvSqlfgG+11guVUs8A/6e19lZK1cJYKtm06L+t20ymlGWTxdwYlXyV1nbs7bDY\nXTb8xLK2Dzosfs8t37K0Td/LJywjt239hvWd7nNY/E7rf+aXVo577PM92xc5PP7qDqX/dEJZ6rbx\nBwBWti/98e1l6ZZN3zu87zmq7sGo/98i+jks/p2RXxJ5Szne/1tMxMrfHd73VrTr47D4PTZ/5/D6\nd2TfBzCzyCHxneiPUi4OiQ2gdZ7D+z7GeXCF18nzqQp9frw+c0GFrMcbZuZNa71DKfUZcHEd2Eda\n6w1KqanAGqWUGdgJDCwli2eBL5VSzwOLy7q8QgghhBBC/FvJPW9X54YZvAForWcAM4q99jnw+RVs\nGwUU/fGVSdbXTwJNi//b+vfkf1hkIYQQQgghhLgiN9IDS4QQQgghhBDihnVDzbxdCaXUi0DxhfDf\naa2nOqI8QgghhBBC/NtoWTZ5Vf51gzfrIE0GakIIIYQQQojriiybFEIIIYQQQojrwL9u5k0IIYQQ\nQgjhWPK0yasjM29CCCGEEEIIcR2QwZsQQgghhBBCXAdk2aQQQgghhBCiXFmUxdFFuC7JzJsQQggh\nhBBCXAdk8CaEEEIIIYQQ1wGltTzppRxIJQshhBBCiPKgHF2AK9HKa0CFPj/envF5haxHuedNlLnf\nIvo5LPadkV+yol0fh8Xvsfk7VrZ/wGHxb9n0PUta9XdY/Lu2L2JD53sdFr/jusUOj/9nm4ccEvuO\nrV8DsLRNX4fEv23rNw7ve46qezDqf23H3g6L32XDT3wbNsBh8R/c/bnD+96ytg86LH7PLd86vP4d\n2fcBlHJxSHyt8zCzyCGxAZzo7/C+L25ssmxSCCGEEEIIIa4DMngTQgghhBBCiOuALJsUQgghhBBC\nlCuN/FTA1ZCZNyGEEEIIIYS4DsjgTQghhBBCCCGuA7JsUgghhBBCCFGuLPJLWldFZt6EEEIIIYQQ\n4joggzchhBBCCCGEuA7IskkhhBBCCCFEubIoedrk1ZDBmyh3jcc9RnDHFpizc9k9eS6ph0/apfGo\nGkT4GyNwrezNhYNR7Hp5DjrfTEjXVjQY0gdtsaDNFg688wXJuw9jcnWh/YKXMbk4o5yciFmxhaPz\nf7DL179dCxqMfhxlMnHulxVEf/GzXZoGYx4noH1LzDk5HJzyAWmHo65o25r97qL+yAGsvX0QeRfS\nbGLWH/U4yslETCkx648eRECHcCzZuRyY8j7pR6Iuua13/Vo0fG4wJlcXtNnC4bcXkHbgGD6N63Hz\n808bmSpVYv03Gf8YwR3DMGfnsmvyPFIPlVz/LacNt9b/SXa+ZNT/RZUb16Hjp5PZOfF9YlZsxT3E\nnxavPYObf2XQmlM/rSTqq7/s8vVtE06dZ58Ck4nYJcs4u8j+M6r97FP4tWuFJSeHo2/MIuPICQBa\nfTsfc2YW2mIBs4XdT4212a5q33upPXwQW+56hPwi9V8RYl/UaOwAAjuEY8nOYe9rH5ba9sNefxaX\nyt6kHopizyvvo/PNVLm9I3UeuweUIj8zmwNvfkTa0VMANJ30NEGdWpKbnMqGh8eXGr/h2IEEdQjH\nnJ3Dvtc+LGjbxeM3f/1ZXCr7kHroBHut8T1vqkrTl5+hUsPaHP3wa6IXLQHALTiAZpOH4epfGdCc\n+WkFp775Ayib/lZncF8Cu7QGiyY3+QIHpnxAbkIyytmZm18YTKWb66J1yScEjqx/v7bh1B31BMpk\n4vyvyzm98Ee7NHVHPYF/+1aYs3M4MnU26UdOoFxdCPtgqnFsc3YiYdUmoj/+GgCv+rWoP34IJldX\ntNnMsbfnk3bwaInxAcKf709oJ6Pvb31pASmHou3SeFULpN2bQ3Gt7E3ywZNsnTgPS74ZF28P2r7x\nNJ6hAShnJw5//gcnF68DoH6/ntS5vxsoxYkfVnN00VK7fB3R/xqOeZxAa3vfP2VOie3dvUoQzV8f\nVdDe902eXXCsu+T2JkXbz6aTE5/ErrFvAhB8SzvqPtUHr1rVyqXufW4Kpd1bQwu2964ezL45P5ZY\n/2XR9wGaTBpS0PY3PjzOLs+/q2HDhnz66Ue0bBnOiy++xDvvzPzHef4dL074hTWrj+Af4MUvS565\nJnlWhL4vbiyybFKUq6COLfCqEcrq3mPYO/Ujmk4YVGK6m0c8TNSXf7C69xjy0jKocW93ABK27mPd\nwy+wvv9E9rw2j+YvPQWAJTePzUNeZ12/CazrN4GgDmH4Nq1nm6nJRMNxT7Br9FQ2PzyakNs64lWr\nuk2SgPbheNSowqY+Izg0bR4Nn3vqirZ1Cw7Av00YWTHxdvvScOyT7B4zlS0Pjya4Zyc8S4jpWaMK\nm/uM4ND0uTR8bnBhzFK2rTfsUaI+/o5tA8YTteBr6g17FICM46eIHPQ82waMZ/fo1wFQToXdPLhj\nGF41Qll131j2vP4xzSY8XmL9Nxr5EFGL/mDVfWPJS82g5n3ditSjotHIh0jYvLfgJW22cGDmItb0\neY71A1/hpj498a5d7ATGZKLOmKfZP+5Vdj46nKBbO+NRq4ZNEr92rfCoXoUdDw/h2FsfUHes7Zfn\nvmcnsXvQaLuTN9fgQHzbhJN9Pq7E/XFobKvADi3wrFGFdfePYt+0BTR+/skS0zUY3o+TX/3GuvtH\nkZeWTvV7bwEg61w8W4a8xoZ+z3H84x9pMmFwwTZnf1vD9menXTa+V41Q1t//LAemLaDx80+UmK7+\n8P5Ef/U76+9/lry0DKpZ4+enpnPo7c84uehXm/TabObwrC/Y+NBYtgyaRI0+t+Fl/ezLor9FL/yF\nrY+MY+tj40nYsJ3agx4AoNq9PQDY8shYdo6cYuRT5AKGQ+vfZKLe2MHsGzuFyP4jCbrV/jjg174l\nHtWrsq3vUI6+9SH1xhkXYXRuHntGvsyOgWPYMWAMfm3D8WnSAIA6QwcQ/cm37Bg4hpMffUXtoY+V\nWoTQTs3xrhnKH3c/R+Rrn9Jq0oAS0zV/ti9HFv7FH3c/R15qBrV7dwWgXt8epJ44x9IHX2L1E9MI\nG/sQJmcnKtWrRp37u7G8/6ss7TOJql1a4F0j2G7/HdH/PGuEsuGBkRycPp9Gz5X8edcf/gjRX//G\nhgdGkp+WQbV7jM87sEP4Jbev2bcXGSfP2ryWceI0u59/m+SdB21eL6u6T4s+z7K+L7Os78ssf/gV\n8rNzOLtyu12+ZdX3Ac5dwbHn70hKSmLkyNG8/faMa5bn39H7v2HM/6j/tcuwAvR9ceNx6OBNKTVE\nKXXFLU4pVUspte8axPVVSg29fEpxrYV0bcXZ342rtSn7juHi44lbgK9dusDWTTi/YgsAZ5asI7Rb\nBADmrJyCNE4e7qALn1R08T3l7ITJ2cnmPYBKjeuRdeY82efi0Pn5xC7bQGCXCJs0QV1ac/73NQCk\n7j+Ks7cXrgG+l922waiBHHt/IZTw5KTMItvFLd9AUJfWtvvapTXn/1hdJKZnQczSttVa4+zlAYCz\ntyc5CUkAWHJy0WZj1sHk6mpXlpCurTjzW5H69/bELbDk+o9ZsRWA00vWEtKtcF9r972dmBXbyElO\nLXgtJyGlYAbPnJlNetQ53IP9bPL0aVSf7LPnyYmJRefnE79iHf6d2tik8e/Uhrg/VwGQfuAIzt5e\nuATY5lOS2iOe4OScz+w+84oQ+6KQLhGc+30tABcu0fYDIpoQu9Jo++d+W0tIV6PuU/YeIT8tw/j3\nvqO4B/sXbJO88xB5qRmXjB/UpXWR+Edx9jHadnH+EU2IXbnZGn8NwV2NNpebnErqweM2M7AAuYkp\nBVfxzZnZZESdxS3IKFtZ9DdzZlbB9k7ubgX/9qpdneRI4+shz9o2KzeqU/C+I+vfp1F9ss7EkH3u\nYvtbT0Bn2/YX2KkNsdb2l7b/iPXzMdqfJSsbMI5tqsixzeY44OVJrvU4UJJq3Vty8tcNACTtPY6L\njyfugZXt0gW3acSZZdsAOPnLeqrd0tIaC5w93Y1Ynm7kXsjAYrZQqXZVEvcex5xtHHvitx+iWg/b\nz9lR/S/mjytr73EF7X01Qdb2HtQlotTt3YL9CezYkrOLV9jklXHyLJmnYuxilFXd22zbtgkZp+PJ\njEm0y7es+j5A8s6D5KWm271+teLj44mMjCQvL++a5fl3RLS+icqVPa5ZfhWh71dklgr+X0XlsMGb\nUspZaz1Xa/2/ssr/Em/7An978KaUcrr6EgkA9yA/ss4XHmSyY5PsTvJdKvuQl5ZRMAjJjku0SRPS\nLYKu379N63fHs/u1+YUbmhSdFr1Bz2VzSdiyl5T9x4vF9ic7rvCLLScuCbegAJs0bnZpEnEL8r/k\ntoGdI8iJTyL9mP0yGCNtgl1+tjEDyI4tkne8kbdbkH+p2x5991PqDX+UDj/Ppd6Ixzjx4aKCdJUa\n16fNopm0WfgOQEE9ArgH+5NVJFZ2XBLuQcXq39e7WP0XpnEP8iO0ewTR3y8vcV8BPKoEUvnmm0jZ\nZ1v/rkEB5BbZn9z4RNwCA+zS2OxzfEJhGg1NZr5G2EfvEHL3bQVp/Du1ITc+kczjJ0stkyNjX+RW\nQt27Bdu2BaPtZxbWfWySXXsBqH5Pd+I37bpszKLcg/1s2pnRr+zj5xeL715C/FJjVAnCp2FtLuw/\nVhDjomvV3wDqDHmYjos/JPT2zpyY/w0AaUejCewcgXIy4V7FmPlxDyncxpH1X1Jfdg0qqf0lFktj\njW0y0fKzGbRf8hkp23aTdsBYHnV81ifUHjqAtj8uoM7wgUTNXVhqGTyC/Wz2Pys2CY9ix15XX29y\ni+x/ZmxyQZpjXy+nUp2q3L18Frd9P5Vdby0Crblw7AxBLRviWtkLJ3dXQjuF4RlqW2eO6n/ZsYX5\nZccl2rVlu/YeV9je3YL8S92+4eiBHH1/4WUv2FxUVnVfVM072nLqz80lxi+Pvi9KVhH6vrjx/KN7\n3pRStYA/ge1AS2A/8BjQCJgBeAMJwECtdYxSajWwC+gEfKWU8gHStdZvK6VaAHMBT+A4MEhrnayU\nagV8Yg1pv5DbtjwDgf9a4zoBXZVS44EHATfgJ631K8B0oK5SahewDPgNGKe1vsuaz/tApNb6M6XU\nSeAboCfwllJqCLAF6I4xCHxCa73uqipQXJXY1ZHEro7EP/xmGg7pw5ZhbxhvWDTr+0/E2duTiLdH\n4123+qUzugZMbq7UGvhfdo58vcxjFVXtv7dzdNZnxK/eQnCP9tw8cSi7Rr4GQOqBo2ztPxrPm6rR\n7utZmFxdsORem6uYjcc9ysH3vi71pMXJw41W/zeK/W9/QX5GVolprtbeYS+Qm5CEi29lmsx8laxT\nZ0g/dIzqj/Zh/5hXrmmsihS7OP9Wjal+T3e2DC7fuJfj5OFGi+ljODzjc8zX+LMv7sTcrzgx9ytu\neuw+qj9wB1EffUvMkpV41apG60/fJPu8sXxZW679lVOH1L/Fwo6BY3Dy9qTJtBfwrF2TzKhTVO19\nOydmf0LC6s0E3tKBBhOGsXfU5DIpQmiHpqQcOsXqJ6fjXSOYLvOeI37HYdKiYjj06W90mfsc5qwc\nUg6fsrlgdC1UpP4X2LEluUkXSDsUhV/LxuUSs7S6z88wZmVMzk5U7RrOnlnflUt5RDmqAH1fVDzX\n4oElDTEGMBuUUp8Aw4DewL1a63ilVF9gKnDx5iZXrXUEgFJqcpF8/geM0FqvUUq9BrwCjAI+BYZr\nrdcqpf7vCsrTEmiutU5SSt0G1AfaAAr4RSnVBXgBaKq1bmEtR7fL5JmotW5pTTsEcNZat1FK9bKW\n89biGyilBgODAebNm8fgwYOLJ/nXuKlPT2rcZ9yzduHACTxC/UnebbznHuJPdlyyTfq8C2m4+Hih\nnExoswX34AC7NABJOw/hWS3YuFpe5Cb1/PRMEiIPENw+zCZ9dnwS7sG2V+Jz4m2XmORY01woSBNA\nTnwSytm5xG09qofiUSWYtguNpukWFECbz99i26AJ5CalWNMGFtnOyM82ZiLuIUViBhl5K2enUret\n0qsrR2ca1zTiVmzi5gn2N1ZnRhv3YzR4+n6C2jcHrPUfEsDF2nQP9ic7vlj9p6QXq//CNL6NatNy\n2nAAXH19CO4YhsVsJnb1dpSzE63+bxRn/9jA+VWRduXJjU/Etcj+uAYFkJOQaJfGLTiQi5+mW1Bg\nQZqLy0LyUi6QuHYz3o0akJ+WgVuVYFp8+m5B+hYfz2T34HHkWevf0bE7LJxurfvjeIQEcPEd92B/\ncuJs24LR9j0L6z7E36a9eNerSdMXnyZy1HTyLlzZUqV2C42HKaQeOG4zE2X0K/v4zsXiZ8dffjmO\ncnIi7M2xxPy1nrjVW21iXHQt+ltx5/9aT4sZE4j66Fu02cLRWZ8XvNdj83dUurkO9Z4y7olzVP1f\n3M/ifTk3vqT2F1AsjW35zOmZpOzYh3+7cDKjThHyn+4cf/djABJWbqTBC8Ns0tfr24Pa/zXum0re\nH4VHSABgXLn3CPEnq9hxNTclHdci++8Z4leQpta9nTn0yW8ApJ+OI+NsPJVqVyVp3wmiflpL1E/G\nsrxmIx4gM9a23OXV/1p++SG5CUlos7G8zz0kEDhs/Ds4wK4t27X34ML2nhOfVOL2wbe0JahLBIEd\nwjG5ueLs5UHTySPYN3k2xfX85rUyr3sw7qlLPhRNTlKqTZ7l0fevhaFDn+Gpp4z78Hr1upuYGPul\np9crR/X960VFXppYkV2LZZOntdYbrP9eCNwONAWWWWe2JgFFp0C+KZ6BUqoy4Ku1XmN96XOgi1LK\n1/r6WuvrX1xBeZZprS+2+tus/+8EdgA3Ywzm/q7iZb74qKDtQK2SNtBaz9daR2itI/7NAzeA6O+W\nsb7/RNb3n0js6kiq9eoMgG/TeuSnZ5GTmGK3TWLkAUJ7tAWg+l2diV1jDAY8q4cUpKnUsBYmV2fy\nLqTh6uuDs7cnACY3F4LaNiP95DmbPNMOHsOzRhXcqwSjnJ0J6dmRhHW2g4z4dZGE9jJOdio1qU9+\neqZxT08p22YcP8W6Xk+ysfcwNvYeRk58IlsHPFcwcANstgu+tSMJ67bZxExYF0nof7oVxDRnlByz\n6LY5Ccn4hjcBwC+iGZmnjS879yrBBQ8ocQ81vjCOf7GEdf0msq7fRM6vjqT6ncXqP8G+/hMiD1Cl\nh7Euv8ZdXYhdY9wEv/Ke0ay8exQr7x5FzIqt7Jv+GbGrjffCXnqK9KizRC36wy4/gLRDR/GoXgU3\n6/4E9ehM0vqtNmmSNmwl+A5joO/duAH56RnkJSZjcnfDycNY329yd8O3dTiZJ6LJPBHNtnsGsP3B\nwWx/cDA58QnsemK0zeDJ0bE3PvICGx95gbg1kVTt1QWAyk3rkZeeWWLbT9p+gJBbjLZf9c4uBW3f\nPSSA8DfHsOeVD0q8r6Y0mx95ns2PPE/cmm1F4he27ZLjt7PG70r8GvuBeHFNXhpCRtRZor/8zeb1\na93fADxqhBZsH9Qlgsxoo5+b3FwxWe+B829jXKw4Nu9bh9c/FLY/94L214nE9bbHgcT12wixtj+f\nJg2sdZGMi28lnC4e21xd8WsdVnBhJjchmcrW44Bvq2ZknbYt17FvVhQ80OLsqh3UurujUT/N6pKX\nnkV2wgWKi9t2kOo9jXudat3TibOrdgCQeT6JkLbGTJObfyV8alUh/Uyc9W8fADxD/anWoxWn/rBd\nvlde/W9Hv2fYNWAkuweNBqDKfy7f3pO37ye4oL13I36t8XnHr4sscftjc75i3d3PsL73cPZOepek\nyH0lDtyAcql7gJr/aWdX51A+ff9amDPnQ8LDIwgPj7ihBm7guL4vbmzXYuat+PqpNGC/1rp9Kekv\nfVf9P1c0fwVM01rPK5rAutyzqHxsB7Lul8gT4OJTM8zIzy38LXEbdhHUsQXdfp6JOTuHPa8WfjSt\nZz3HninzyUlI4eDsr2j5xggaPtOH1MPRnF68GoDQHm2o3qszlvx8LDl57JhgfGm6BfoS9uozKJMJ\nZVKcW7aZuPU7bWIbj9T/mPBZL4LJRMySVWREnaFa754AnP1pGYkbdxDYIZz23882Htv/+geX3PZK\nHHnnI1q8O8l45PmSlWREnaFqb+O+jXM/LSVx4w4COrSk/XfvG49Lf31OQcyStgU4NG0u9Uc/jnJy\nwpKbx+HpRj36ht1MzUd7o/PzC5Y25qUUzhDErd9FcMcWdF88w/pTDYX132bWeHZPWUBOQgqH3rPW\n/9A+XDgczemfV19yH/1aNKD6XZ1JPXqKzl8ay1gPf1DsmofZwomZ82nyzmQwmYj7bQVZJ08Teu8d\nAJxf/CfJm7bj1y6Cll/PxZKdw7Fpxufr4udLozcmAMYsT/yytaRstf18L8mRsa3iN+wksEMLuvw4\nC3N2DnunzC14r9XM59k3dT45Cckcnv0lYVNHUn9IX9KOnOTML8aN7HWfvB/Xyt40ft5YxKDNZjYN\neBGAsCkjQ+kULgAAIABJREFU8GvVGFdfH7r9+gFHF3xvFz9hw04CO4TT6cdZmLNz2T/lw4L3wme+\nwIGp88hJSObo7EU0n/os9Yb0JfXISc78shIA14DKtPtsGs5eHmituemhXmx4aCw+9WpStVcX0o5G\nF1zpPzbnK4Ay6W/1hvbHs2ZVtNZkn4/n8JsLjPL5V6bFu5NAW+xmtx1e/2YLx2YuoOmMV1BOJs4v\nWUFm1Gmq3Hc7ADE//0XSpu34t29F628/xJKdw+E3Zlvr3Y+Gk0aCyYQymYhfuYGkjcZJ9ZE351D3\n2SdQTiYsuXkcfWtOCS3PELNuN1U6NafXkv8jPzuHbS9/VPBe5/fHsO3VT8iOT2HPu9/S7q2hNB12\nPymHogtm1A7MX0ybKU9x2/evo5Riz7vfkms9tnR4x/hZF51vZscbX5CXlmm3/47of1nn4uj4w3uY\ns3M5MKWwbmza+/uLaPb6KOo9/RBpR6I4a23vRn9pWeL2pQnq2pqbxw3C1bcSAF0+HMfaZ94u07p3\n8nAlpF1Ttk/5rNRylVXfN2dk0WzKSPxbNcbF14cuv87h+IJ/tnQzJCSEyMjNVKpUCYvFwqhRI2nc\nuDlpaaX/BMu1NG7MD2zdGk1Kcibdu8xk+Ihu3N8n/OozrAB9X9x4lL7CG25L3NgYBEUBHbTWm5RS\nH2GsC3gKeNT6mgvQQGu933rP2zitdaR1+8kU3vO2G2N55Drr65W11qOVUnuAoVrr9UqpN4E7tdZN\nSynPQCBCaz3c+vdtwBSgh9Y6XSlVDcjDGHTt0FrfZE1XA1iHsQTUA2Om7tUi97xFaK0TrGkL9kEp\nFYhxb1yty1TV1VfyDeC3iH4Oi31n5JesaNfHYfF7bP6Ole0fcFj8WzZ9z5JW1/Cxx3/TXdsXsaHz\nvQ6L33HdYofH/7PNQw6JfcdW4/eAlrbp65D4t239xuF9z1F1D0b9r+3Y22Hxu2z4iW/DSn4kfXl4\ncPfnDu97y9o+6LD4Pbd86/D6d2TfBzBO/8qf1nmYWXT5hGXEif4O7/sYkxcVXiPvByr0+fHB9O8r\nZD1ei1mjw8Aw6/1uB4DZwF/Ae9blkM7AuxgPM7mUAcBcpZQncAK4+ANUjwOfKKU0l3lgSXFa66VK\nqUbAJmX83k868IjW+rhSaoP1Zwf+0FqPV0p9C+zDGIz+/cvqQgghhBBCCFGGrsXgLV9r/Uix13YB\nXYon1Fp3K/b35CL/3gW0K2Gb7UDRJ088V1pBtNafAZ8Ve20WMKuEtP2K/f1cSXkXn1Urug/W2bha\nCCGEEEIIIUQZc+iPdAshhBBCCCGEuDL/aOZNa30S48mS5UopdTvwZrGXo7TWjltkLIQQQgghhLgi\nFiU/FXA1rssnJWqt/8K4r04IIYQQQggh/hVk2aQQQgghhBBCXAeuy5k3IYQQQgghxPXLgiybvBoy\n8yaEEEIIIYQQ1wEZvAkhhBBCCCHEdUCWTQohhBBCCCHKlcbs6CJcl2TmTQghhBBCCCGuA0pr7egy\n/BtIJQshhBBCiPKgHF2AK1HP5+4KfX58LO3XClmPsmxSCCGEEEIIUa7kaZNXRwZvoswtbvmIw2Lf\nu2MhcxoOcVj8oYfncqpvG4fFr/nNVpa06u+w+HdtX8SKdn0cFr/H5u8cHn9hs0EOif3I3k8A2NTl\nHofEb7/2F4e3vfcd2PeHH56LmUUOi+9Ef4e3/X97fPNn7g6L7zQw22H732PzdwD8FtHPIfHvjPyS\ntR17OyQ2QJcNPzm874sbm9zzJoQQQgghhBDXAZl5E0IIIYQQQpQrWTZ5dWTmTQghhBBCCCGuAzJ4\nE0IIIYQQQojrgAzehBBCCCGEEOI6IPe8CSGEEEIIIcqVxuzoIlyXZOZNCCGEEEIIIa4DMngTQggh\nhBBCiOuALJsUQgghhBBClCv5qYCrI4M3Ue6ajX+U4E4tMGfnsPOV+Vw4dNIujWfVICKmDcPF14cL\nB6PYPulDdL6ZgFaNaDtjNJnn4gE4t3IbRxb8DECd/ndw033dQGtSj51h5+T5ly1Lpxcf5KauTcnP\nzmXFC5+TcOC0XZqm/bsRNuAWKt8UzCftxpKdnAGAWyVPur/xGJVrBpKfk8+qif8j6ei5K64H97B2\n+A0cCyYTGSsXk7r4f7Z10Ol2Kt3zGCiFzsok6eM3yYs+Ci6uhEyeh3JxBZMTWVtWcOG7BVcct8n4\nxwjuGIY5O5ddk+eRWkL9e1QNouW04bhW9ubCwZPsfGkOOr9wbXrlxnXo+Olkdk58n5gVW/G6qQot\np40oLHu1YI7M/R6Adt/MQplMnPtlBdFf/GwXq8GYxwlo3xJzTg4Hp3xA2uEoAPzbtaDB6MdL3LZ6\nnzuofv8daIuFxI07OPb+QgC869Xk5uefxsnLAyzaJs6l8iuLslyJiBf6Ua1zM/Kzc9k06WOSDp6y\nL9PDt9DokZ741Azhu84jyUlJB6DWne1oMug/oBT5GdlsmfIFKUfs2+9Fvm1aUmvkkyiTE7G/LeXc\noh/s0tQa+RR+7SIw5+RwfNq7ZBw5AUD4NwuwZGWhzRa02czewWMB8Kxbizpjh+Lk6U52TBzHpryD\nOTOr1DKURdsDcPb2JOylp/CpVx2tNbtfvXzfL6pzseNAfAnHgZ5vDyK4aU0seWZi955k9cuLsOSX\nzYnHixN+Yc3qI/gHePHLkmeuOp+yaPPBt7Sj9pMP4lWrGtsGTSDtkNFGnCt503zaWHwa1SPmt9WA\n4/u+o+OXZt1xd6Yt98dsgQdapPNU+1Sb97dGuzH8h2CqVc4HoGfDTIZ2ukBUojNjfg4qSHcmxZkR\nnVN4rE1aiXGu9f7XfrIPVe+5lbwUo7zHP/ySxE078W/TnLpD+2NydsaSn19iWRqPe4zgji0wZ+ey\ne/JcUg+ftEvjUTWI8DdGWPt+FLteNvp+SNdWNBjSB22xoM0WDrzzBcm7Dxtl6vcfatzbHdCkHjvN\nnlfn2eXr1zacuqOeQJlMnP91OacX/miXpu6oJ/Bv3wpzdg5Hps4m/cgJlKsLYR9MxeTijHJ2ImHV\nJqI//hoAr/q1qD9+CCZXV7TZzLG355N28GiJ+/53XKu+L25sMngT5Sq4YxheNUNZce9Y/JrVJWzC\nQNYOmGyXrvHIhzi+6E/OLt1M84mPc9N93Tj5/QoAEncdZsuz79ikdw/yo85Dt7Hygeex5OQRMX0E\n1W5vd8my1OzSlMq1gll028uEhNWm6+R+/PDgm3bpzu84TvTqvdz7vzE2r7cccgcJB0/z5/C5+NYJ\nocvLD/PLwHevrCKUCb9BzxE3dTjmxDhCp31OZuQ68s9GFSTJjztH7KtD0BlpuLdoj/9TE4idNAjy\ncol7bSg6JwucnAh5dQFZuzaRe3TfZcMGdwzDq0Yoq+4bi2/TejSb8DgbBrxil67RyIeIWvQH55Zu\nptmEQdS8rxvR1vrHpGg08iESNu8tSJ8RHcO6fhML3r/1j/c5v2Y7TcY9yq7RU8mJS6L1p9NIWBdJ\nxskzBdsFtA/Ho0YVNvUZQaUm9Wn43FNEPjERTCYajnuCnSOn2G3r17IJQV1as+XRcei8fFz8KhlV\n6mSi8eSRHJg8m/Rj0ThX8qbr0k+tZSo9v7Ioy5Wo2rkZPjeFsPjOCQQ2r0ObSY/xZ//X7dLF7zzG\n2TW76fnJ8zavp5+JZ9njb5KbmknVTs1o98qAEre/uP+1Rz/NgTEvkxufSLP575C8fitZ0YWDFN92\nrXCvXpWd/Z7Gu3FDao95hn1Dxhe8v//ZF8m/YHuSWPe5EUTP+YTU3fsJ6nUrVR/+L6c/XlRiEcqq\n7QE0Gf8ocZt2s/35WShnJ5zc3UquhxLc1KUpvrWCWVjkOPB9CceBI79sZdm4TwC47Z0naNynE/u+\nWnvFcf6O3v8No/8jrXnhefsT7r+jLNp8+onT7H3hbW5+YbBNLEtuHsfnf4N3nRp41akJ4Li+7+tD\n1z8/qRjHnmLMFnh9qT8fPRRHSKV8+n5Whe71s6gXmGeTrlX1bD58MN7mtdoB+fz0RExBPt3er06P\nhpn2QZSpTOof4PTXSzj15a824XJTUtk9bjq5Ccl41alBuy9n2Lwf1LEFXjVCWd17DL5N69F0wiA2\nDnzZrtg3j3iYqC//IGbpJppOGESNe7tz6oflJGzdR+ya7QD41KtBy+nPsuaBcbgF+VGr7+2seXA8\nlpw8wqeNpOpt7W0zNZmoN3Ywe0dNJicukfCP3iJx/VYyi9SFX/uWeFSvyra+Q/Fp0oB6455m1+Dn\n0bl57Bn5MpasbJSTE2EfvkHS5h2k7T9CnaEDiP7kW5I378CvfUtqD32MPSNesv8s/qZr1ffFjU3u\neRPlqkq3Vpxesh6A5L3HcfHxwi3Q1y5dYOvGnLNeVT+9ZB1Vure6bN4mJyec3FxRTiacPFzJjk++\nZPraPZpz+OfNAMTujsK1kgeeQfYn3wkHT5N2NtHudf+6VTi72bj6l3IiFp9qAXgE+Fy2nACu9ZqQ\nH3sGc9w5MOeTuXEpnq272KTJPbIXnWGcLOcc3YdTQHDBezrHmN1QTs4oZ2fQl77Se1FI11ac+W2d\nUeZ9x3Dx9iyl/psUzGqcXrKWkG4RBe/V7ns7MSu2kZOcarcdQGCbpmSeicMtoDIA2efi0Pn5xC7b\nQGCXCJu0QV1ac/73NQCk7j+Ks7cXrgG+VGpcj6wz50vcttp/b+Pk/35G5xlXePOs5fBvE0b6sWjS\nj0UDkJ+aXhDnUvmVRVmuRI3u4UT9shGAhD0ncPXxxCOwsl265EOnyDhn3/4Sdh8nNzXTuv1xPEP8\nSo3l3ag+2WdjyImJRefnk7BiHX6d2tqk8e/Ulvi/VgGQfuAwzt5euASUnieAe42qpO7eD8CFyF34\nd21fatqyanvO3h4EhN/M6Z9XA6DzzeSnl3BCW4raPZpzqMhxwK2U40D02sKLI7F7TuJ9ifr+pyJa\n30Tlyh7/OJ+yaPOZJ8+Secp+hYElO4cLuw9hyc3D1d/4XB3V9z2rV3Fo/KLHnuL2nnOlpl8+Nfzy\ncXWC/zTKYOWRv/9Zbz7pTk3fPKpVLuFpfYGty2T/S5N+5CS5Ccb3bcYJ+1nrkK6tOPt7kb7v44lb\nQMl9//yKLQCcWbKOUGvfN2flFKRx8nC3+b5TRb/33e2/930a1SfrTAzZ54xjX/yK9QR0bmMbt1Mb\nYv80jn1p+4/g7OOFq/XYZ8nKNuI4O6GcnQpia61x9jI+N2cvT3ITki5ZR1fqWvX964XGUqH/r6hk\n5g1QStUC/gS2Ay2B/cBjQBNgFuAF5AA9gADgC+trAMO11hvLt8TXL/dgP7JiC09Es+KS8AjyIych\npeA1V19v8tIz0Waj42TFJuEeVHii5N+8Pt2+eYPsuGT2z/yStBNnyY5P5tgXv3Pb77Mw5+QSt2kv\n8ZsvPRPlFeJL+vnCA33G+RS8QnzJjL+yE/CEQ2eoc1s4MduPEdysFj5V/fEO9SMrseQlLEU5+Qdh\nTowt+Ds/MQ63ek1KTe/d/R6yd20qfEGZCJ3+P5xDq5P+1/fkHtt/RWV2D/a3qf/sOKNui9a/i683\neWkZBfV/MQ0YM5yh3SPY9PRUfJvYXnm/qOpt7Tj310Y8gv1tXs+JS6JSk/o2r7kF+ZMdl1gkTSJu\nQf64271euK1nzar4hjWi7pCHseTkcXT2/0g7eBzPmlVAQ4t3X8TFrxKxyzYU7vcl8iuLslwJj2A/\nMs4XfuFnxCbhEexHVsKFK9q+qLq9O3Nu/d5S33cNDCAnLqHg79z4BHwaN7RLkxsXXyRNIq6BAeQl\nGn2k8YwpaIuF2F/+Iu7XvwDIOnkKv05tSV6/hYBuHXELDiy1DGXV9jyrBpObnEbY5KepVL8mFw5F\nsf//vii9sorxLnYcSD+fgvcljgMmZxMN723LuqnfXnEMRymLNn8lnDxsZz7Lu+8XH0A48thTXGy6\nM6GVCpcWhvqY2XPO1S7dzrNu3PdRFYJ9zIy/JZn6QbYzc78f9KJX41IuUnhWLZP9B6je5z+E9upK\n2sHjHH3vf+SnZdjkG9zdfsWLe5AfWUWOddmxSbgH+5GTWKTvV/Yp1vcTcQ8u/N4P6RbBzcMfwtWv\nEttG/Z9RtvhkTiz8jVuWzMack0vC5r0kbLE9DroF+dsc+3LiEvFp0sAmjWtQADnF6sI1yJ/cxGQw\nmWj5ydt4VAvl3I9/kHbAWBp5fNYnNJvxMnWGDQSTYtfTE+z2W4iyIjNvhRoCc7TWjYBUYDjwDfCs\n1joMuBXIAuKAnlrrlkBf4D0Hlfdf6cKhkyzt9Syr+07kxNdLaTNjNAAuPp6EdmvJsrtG89ftI3D2\ncKN6r45lWpYd8//C1ceDB39+kWaPdiPh4Gks5mt/pcatSSu8b7mHlEXvF76oLZx//hHOPnMXrvUa\n41KjzjWPW5LG4x7l4HtflzrTp5ydCO3ainPLt5RZGZSTCZfK3kQ+MZFj739Bs6ljrK874Rt2M/tf\neY/tg18iuGvby+RUdmUpTyGtb6befzuzY+Z3ZRZj/7Dn2fPEKA6Of5XQ3r3wCTMuNByb/h6hvXvR\nbMEMnDw9sOSVfL/LtVBa21NOJirdXIvo75ezrv+LmLNyqPv43WVWjq6v9ONc5FFith8rsxiiZFfa\n9ys1vvKBZlnE/6fHnsahuawYdpafn4yhf6tURvwQZPN+rhlWHfXg9kYZpeRQNs7+uJSN9w9n66Pj\nyUlMof7Ix2ze96pdnbrD+pdJ7NjVkax5YBzbx82g4ZA+ADj7eBHStRWr7nmWFXcMw8nDjWr/ucbf\n+xYLOwaOYXPvJ/FpXB/P2saS4Kq9b+fE7E/Y8t+nOP7eJzSYMOzaxhXiEmTmrdBprfXFy2ULgReB\nGK31NgCtdSqAUsoLeF8p1QIwAw1KykwpNRgYDDBv3jwGDy55luLfoPaDt3JT7+4AJO8/gUdIQMF7\nHsH+ZBVb5pCbko6LtyfKyYQ2W/AI8S9YCpGfUfgwhLgNuzFNGIirrzeBEY3JPBtPboox6xWzMhL/\n5vZf4E37daXxg52M7fdG4x1aeGXPK9SXjNgUu21Kk5eRzaqJhQ8ZeWTFVFJPJ1xii0LmpHicAkIK\n/nYOCMacHG+XzqVmPfwHv0j89FFY0u1nZHRmOtn7t+Me1p680ydKjHVTn57UtNb/hQNG/V+scfdg\nf7tlJnkp6bj4eBXUf9E0vo1q03LacABcfX0I7hiGxWwmdrVxP0JwxxZcOHSS3KRUsuJsl5G4BfuT\nE2+7/C8nPgn34AAuFKQJICc+CeXsjHtwQInb5sQlEb/KGBymHjiGtlhw8a1ETlwiKTsPkGe9Lyth\n4w4qNzO6Z7Y1TnmV5eIN/cU1eOgW6t1vLI9N3BeFV6g/Fz91rxB/suIuvdS3ON8G1Wn36kBWPjOT\n3Auln8jlJiTazIq5BgXa7X9uQiKuwUHAQWuaAHITEq3vGZ9lfsoFktZtxrtRfdJ27yf71FkOjjXu\nW3OvXhW/9rbLq8qj7aXsPUZ2XBIp+4wZz5jlWy87eGt2ieOAd6gv6aUcB1oPuxMPf29WDS/5vr6K\npiza/JUousztWsa+0r6fvHM/XjdVLTGP8ohf9NhTXIh3PudTC0+9zqc5Eexju/TR263wAkXXetlM\nWapIzjTh52lcHFx33IPGIbkEepVysTDTdlnrtdr/3KTC76Bzi5cT9vYLhemC/Gn+5ngOvPY+EfON\ne287LXoDsPb9UH+Sdxtp3UP8yS52rMu7kFas7wfYpQFI2nkIz2rBuFT2ISCiMVnn4gq+98+v2oZf\nc9t6z4lPsjn2uQUHkFv82BefiJvNPgeQG2/7/WVOzyRlxz7824WTGXWKkP905/i7HwOQsHIjDV6Q\nwdvVsMiPdF8VmXkrVHwqobS1c6OBWCAMiADs1zsAWuv5WusIrXXEv3ngBhD17XJWP/wiqx9+kfOr\nt1PjLuOkya9ZXfLSM22WTV2UEHmAqj2Mdek17upMzOodAAX3UQH4NqkDSpGbkk7W+UT8mtXDyd34\nOALbNCEt6qxdvvu+XMO3903l2/umErV8Fw3vM5Z4hITVJjct+4qXTAK4+nhgcnECoFGfTsREHiUv\nI/uKts09fgCX0Bo4BVUFJ2c8O9xGVuQ6mzROASEEjn2TxA9eIT+m8CmEJh9flKc3AMrFDfdmbck7\nF11qrOjvlrGu30TW9ZvI+dWRVL+zMwC+TeuRn55Vav1XKaj/LgU3i6+8ZzQr7x7FyrtHEbNiK/um\nf1YwcAOoent7zv5prCK+cMAYTLpXCUY5OxPSsyMJ6yJt4sSviyS0V1cAKjWpT356JrmJKaQdPIZn\njSolbhu/dit+rZoC4FGjCiYXZ/JSUkncshuvejUxWe9/8GvZuCDOpfIri7KU5sjXK/m9z2R+7zOZ\nMyt3UvueDgAENq9Dbnrm31oy6RnqT9eZw9gwYQFp0bGXTJt+6Cju1aviViUE5exMYI/OJG+wnR1N\nWr+VoNuNgZZ344aYMzLJS0zG5O6GycO4B8Pk7oZv6xZknTDao7OvtT8qRfXHHuT84j9t8iyPtpeT\neIGs2ES8bjLucwps04T0E/Z9v6i9X67hm/um8s19UzmxfBc3X8FxoPEDHanZqTF/jfn4iu8xdbSy\naPNXIjfZaMeO6vue1UIcGr/osae4plVziU525kyKM7lm+OOgF93r2z6hNT7dVNDE9pxzxaLB16Nw\noPb7AS96NbnErFtCZJnsv2uR+9SCurYpWJ7q7O1J2IwJHJuziAt7DhekWd9/Iuv7TyR2dSTVehXr\n+4n2fT8x8gChPYxZy+p3dSZ2jRHXs3rhhc5KDWthcnUm70Ia2ecT8G1aH5Ob9Xu/dRPST9r2/bRD\nR/GoXrg/QT06kbh+m23c9dsIucM49vk0aWCti2RcfCvh5O0JgMnVFb/WYWRGG/nnJiRTOdxYgeDb\nqhlZp2NK/TiEuNZk5q1QTaVUe631JqAfsBl4WinVWmu9TSnlg7FssjJwRmttUUoNAJwcWObrTuz6\nXYR0CuPWxe9gzs61eZx/u/fGseu1j8hOSOHAe18TMW04Nw/rw4VDJzllfRhB1VvbUOuBHmizGXNO\nHpETPgAged9xzq3YStdFr6PNZi4cjib6x1U0f35AqWWJXrOPml2b0n/ZFPKzclk58fOC9+6cP5xV\nk74gM+4CzR7tTviTt+EZWIm+v7xE9Jp9rJ60EL+6ofSYPhCNJvloDKtevPL7bLCYSfrk/wie+J7x\nUwGrfyXvzAm8b/0vAOnLf6TyA0/i5F0Z/yeMpwxqs5nYiQNw8gskYOgrYDKByUTmpuVk71h/RWHj\n1u8iuGMLui+eYX1kc+FjldvMGs/uKQvISUjh0Htf0fKNETQc2ocLh6MLHgZxKU7ubgS1bcreNz62\nltc42Qif9SKYTMQsWUVG1Bmq9e4JwNmflpG4cQeBHcJp//1sLNm5HHj9g4JtD7/9sd22AOd+XUWj\nSc/QdtE7WPLzOfCasU1+Wganv1pC60+ng9bGI6xbN79kfmVVlitxdt0eqnZpzr2/T7f+VMAnBe91\nnzOKza98RlZ8Cg373UrjQXfgEVCZO394jXPr9rB58mc0H3IPrr7etJn0aEE5/3jotZKDmS1EvTuP\nRm9PRplMxP2+nKyTpwm55w4AYn/5k5TNkfi1b0X4V/Ow5ORwbJqxItzFz5eGU40niSonJxKWryFl\nq3ExJfDWLoT27gVA0tpNxP++vNT9Lcu2t/+t/xH++lBMLs5kno1j9+R51H3srstuB8Zx4KauTXnU\nehxYUeQ4cJf1OJARd4Fur/Yj7VwSD3zzHAAnlu1k2we/X1GMv2vcmB/YujWalORMuneZyfAR3bi/\nT/jfzqcs2nxQ1zY0GDsIV99KtJgxgbQjJ9k1aioAHX76AGdPT5SLcWrRcs4raLPFYX2/Ihx7inM2\nwYs9k3jq62AsGno3T6d+UB5f7zAuyD3UMp2lh7z4eqc3ziZwc9a8c28CShnbZ+YqNka5M/mOS8yE\namM241rvf73hj+JTvxYaTXZMPIemG324ep878KweSu1Bfag9qI9dceI27CKoYwu6/TwTc3aOzeP8\nW896jj1T5pOTkMLB2da+/0wfUg9Hc3rxagBCe7Sheq/OWPLzseTksWPCbABS9h8nZsUWOi96w/q9\nf5JTP66kyfiBhcHNFo7NXEDTGa+gnEycX7KCzKjTVLnvdgBifv6LpE3b8W/fitbffoglO4fDbxj5\nuwb40XDSSDCZUCYT8Ss3kLTRGFAeeXMOdZ99AuVkwpKbx9G35pT+efwN16rvixub0tfJFcSyVOSB\nJZFAK+AA8CjGA0tmAx4YA7dbgSrADxgzdX8Cw7TW3pcJ8a+u5MUtH3FY7Ht3LGROwyEOiz/08FxO\n9W1z+YRlpOY3W1nSqmzuQbgSd21fxIp29l/m5aXH5u8cHn9hs0EOif3IXmMwuKnLPQ6J337tLw5v\ne+87sO8PPzwXM45bXulEf4e3/X97fPNn7g6L7zQw22H732Ozcf/tbxH9HBL/zsgvWduxt0NiA3TZ\n8JPD+z6gHFaAv6GKT+cKfX4ck7auQtajzLwVytdaFx9lbAOKPzrpKFD0ktrzCCGEEEIIIQSglPLH\nePBhLeAk8KDW2u5GTqXUaOBJjImevcDjWutL3oMj97wJIYQQQgghxLXzArBCa10fWGH924ZSqhow\nEojQWjfFuBXroctlLIM3QGt90lppQgghhBBCCPFP3AtcvIn6c+C+UtI5Ax5KKWfAEzhXSjqbDYQQ\nQgghhBCi3Fh0xf6pgKI/+2U1X2s9v7T0xYRorS8+hvQ8EFI8gdb6rFLqbeAUxrM1lmqtl14uYxm8\nCSGEEEIIIUQR1oFaqYM1pdRyILSEt14slo9WStk9nEUp5YcxQ1cbSAG+U0o9orVeeKlyyeBNCCGE\nEEIIIf4GrfWtpb2nlIpVSlXRWscopaoAcSUkuxWI0lrHW7f5EegAXHLwJve8CSGEEEIIIcqVxlKh\n//8xV4PdAAAgAElEQVSHfgEu/tjwAGBxCWlOAe2UUp5KKQX0AA5eLmMZvAkhhBBCCCHEtTMd6KmU\nOooxwzYdQClVVSn1O4DWegvwPbAD42cCTFximeZFsmxSCCGEEEIIIa4RrXUixkxa8dfPAb2K/P0K\n8MrfyVsGb0IIIYQQQohypanYT5usqGTZpBBCCCGEEEJcB5TWdk+uFNeeVLIQQgghhCgPytEFuBJB\n3q0r9PlxfPq2ClmPMvNWPtQ/+V8p9fQ/zUPiS/zrLbbEl/gS/98b/9+87xJf4l+D+NcFi7ZU6P8r\nKhm8XR8GXz6JxJf4N1xsiS/xJf6/N/6/ed8lvsR3dHxRgcngTQghhBBCCCGuA/K0SSGEEEIIIUS5\nugY/hP2vJDNv14fL/mCfxJf4N2BsiS/xJf6/N/6/ed8lvsR3dHxRgcnTJoUQQgghhBDlyt8rvEIP\nQpIydlbIh7/IskkhhBBCCCFEudJafqT7asiySSGEEEIIIYS4DsjgrYJRSpmUUh0cXQ4hhBBCiLKm\nlKrt6DIIcT2RwVsFo7W2AB84uhwASqkOSql+SqnHLv5fTnGdyiPOpeIrpVY5MH6Ao2ILg1Kqk1Lq\nceu/g/5tJxfWPlBVKVXz4v/lGHuKUqqnUsqrvGJWFEqpFVfy2o1MKeWhlGrooNieSqmXlFILrH/X\nV0rdVY7xlVLqEaXUy9a/ayql2pRX/CLl8CznkN9b4/6r2roQV0vueauYViil7gd+1A56ooxS6gug\nLrALuLgoWQP/K4fwR5VSPwCfaq0PlEM8G1prs1LKopSqrLW+UN7xgc1KqV3Ap8AfjmoDjqSUCgHe\nAKpqrf+jlGoMtNdaf1wOsV8BIoCGGJ+BC7AQ6FjGcWdj9LESaa1HlmX8IuUYAbwCxELBc5w10Lw8\n4gMngIeB95RSacA6YK3WenFZBrXGulT9VyrD2O6AJxColPIDLt4kXwmoVlZxSyhHR2AycBPG+YEC\ntNa6TjnFvxt4G3AFaiulWgCvaa3vKY/4GP19O9De+vdZ4DtgSTnFn4PR524BXgPSgB+A1uUR3Lrq\n5yPAG6iplAoDntZaDy3j0Cal1ESggVJqTPE3tdYzyjg+UCHafztgNtAIow84ARlleexxNIv8VMBV\nkcFbxfQ0MAbIV0plU3gAKc8OHAE0dtDAIQx4CPhIKWUCPgG+1lqnlmMZ0oG9SqllQMbFF8vpBLoB\ncCswCOME9lvgM631kXKIXVF8hnEi9aL17yPAN//f3plH2VVVafz3BcIghBlBG0GJNIjIEEHCoIiK\nouKAiMio4AQog4oKDcqg4hJFm6EVRAigIIZWEBuZlNEwJyBRBhuQqZ0VQgiBEPj6j3Nu6qVIJSHm\nnnNTb//WqvXq3FRl76p6776zz97720DrwRuwI7AJMAnA9h8ljSpg99b8uBWwPunnBdgZKHmIcRCw\nru1/FLQ5C9vjgHGSVgc+ABwCfBxo9W9gexSkzB/wJ+AHpHvv7sBL2rRNuucfDLyUFDw0wdvjwMkt\n2+7ldODT2YcaSgJHAa8DrgawfXvhrPdo27tI2jXbf1JSSbW5zW2PkXRbtv+opCUK2v828Dbgomz/\nN5LeUMDuB4H3kvakJe61Q1H7+X8y6XdxPmkPthdpPxAEsxHBWwdpNhGV+S2wOmkTUxTbU4HTgNMk\nbQOcC3xb0n8DX7Z9bwE3fpo/ipMD5iuAKyRtS8r67C/pN8Chtm+o4VdhVrE9XtJhALZnSir1ZjrD\ntiUZoFT5nu2zsr39gK1tz8zrU0jZp1I8DNTIOAMg6fuk4PUvpJ/7/eRAuhDvtr1Rz/q7+bX3pbYM\n2j4BOEHSAbZPasvOfDDF9iUV7T9je8qgeKnkAeIMSUs3NiWNBp4uaP+Z3DbQ2F8VyqYmbD886Pdf\n4r67ve2vS1rS9jEF7A1F7ec/tu+VtJiTDOO4HMgfVtOnoHtE8NZRcunMOsBSzTXb1xaw+3PSG8co\n4E5JN9Pz5lWifCW/eb0T2Bt4OXA8cA7weuAXFDiJajbSNcg9b3sAe5I2sAeQTkI3Jp3I9UP/1bT8\ne2g2MWMpF1CMl3QqsIKkj5EyoKcVsg2wIqlc7p95vWy+1io95Ur3A1dLupjZX/tFSpeAlUnlQo+R\nfgd/bwLZQkyTtDtwHun5tys92fc2sX1SLl17OT3vz7ZLlKsDXCXpG6SDq96/fang+XeSdgMWk7QO\ncCBwfSHbkMqFLwVeJukcUhb8wwXtnwhcALxY0ldJBxdHFLT/cH7+WdJIUhb+rgJ29wZOIGXfagZv\ntZ//T+ZM6+2SjiMdng9rbYok8xC8UGJIdweR9FHSTXMNUs/ZWOAG228qYHubuf277WsK+HA/cBVw\nuu3rB/3biSVKFyX9gTmc+JaofZf0e1LJ1jjbjwz6ty/Y/nrbPtRG0hhS7f8GpCzwqsD7bd9RyP52\nwFtJ5WuX2b6ihN1se29S+dhV2f4bgKPaPlDIvX5DYvvoNu0PRtKrSCVcnwYWs71GIbsvJ20ktyLd\nAyYAB9t+oIDtOfYaF+x3nJNQk0u892T7LyKVSs967ZGqLZ4qYT/7sDLpPVfAjbb/Xsp2tr8e8OZs\n/1e2SwRPje1VSM/9t2T7lwMHtV1CLelHpDLBlwL39f4T6flXpN+2A8//tUgHtkuQ7nvLA98pVG1U\nheWWXr/TQcjj0+/s5JDuCN46iKTJpAblG21vnG/mx9p+X0Efvm77C/O61pLtZW0/0badefjQq/i4\nFKnvaCXbrZVO9dhWP4qUDEbS4iTREAH32H6mkN1XAH9qNoy5jGq1Epv3Hh9WBzbPy5ts/7mU7doo\nqfu9nhS0rgDcCFxn+4yqjhVA0l3U6zXuFLkCY5mSvc6SdgSubISqJK0AvNH2hYXsrzSHy1NL3ftq\nku95lwHPq+6x/WAB+yNIB4Tj27Y1Fx+WAaZn1fHmNbCk7Sdr+dQ2EbwtGBG8dRBJt9jeLCsObm77\naUm/s/3qgj5Msj1m0LU7SpyAZeW1jwCvZvay0X3atj03JE20/doCdlYFPs/zf/4ip39dQNIngXNs\nP5bXKwK72v5OAdu3AlvanpHXSwATbBdRfMs2q5RNZ9tN6XQvU0iCKqe2nQWRdDKp1+06239s09YQ\n9qvdfySdDxxou3ivcbZfTeU12z8X2JeUdbyFVD58gu1vFLJ/u+2NB127zfYmhew/ALwMeJR0aLUC\n8GdSNuZjtie2bP8sUqat9757fO333lJIutX2phXt3wi8pTm8lrQscLntYTv7d9TS63Y6CJk6/Z5O\nBm/DupZ2EeaRfOJ3IUm04mdA6ydPkMQScuZvXUl39Hz8AZhcwgdSyeDqpJKpa0jlo1ML2QZS2V7P\nx6aS9qVcj+g5wN2k3rajgQdIG5l+4mPNBgKS6hrwsUK2F28Ct2x7BqmMpQi5bPpa0in00fnxqFL2\nST1vT5BFg0iKh1NJvaat9/7Z/hRJbXCMpB0kvbhtm4Ooef9ZhdRrfJmki5qPQrYhqbxeRipfg6Ty\nenBB++vnTNt7gUtI98A9C9qf056opDbAFcA7bK9ie2Xg7aQxBfuTxgi0zYZzuO+2HrgqKSojafKg\nfcdkSUVK5TO/lHSIpJdJWqn5KGh/qd6qo/x56Zl7wSJACJZ0ENs75k+PyjXYy5OaqEtwLulN82vA\noT3Xp9r+55y/ZaHzSts7S3qP7bPyaWxJtT1IIikNM0kB1AcK2V7Z9umSDso9htdI6rfgbbHe8tFc\nPlIqgPqbpHfbvijbfg9Qsu/lIAbKprdtyqYL2t9yUJbx5z3VAL9r27iknUmzvq4mZR9OkvQ52//d\ntu1MzfvPUYXsDEVNlVeAkUpCGe8FTrb9jLLqayFulfQt4L/y+pMk2fhSjLU965DK9uWSvmn7E5KW\nLGB/hKQVc9DWlHGW2CcelB+LDUQfgl3y4yd7rhkoMueNJJY0phFIkbQpML2Q7WARIoK3jiJpa2Ad\n2+NyGd2/AX9o226u9Z8C7Jo3zKuRnifL5l60h9r2AWjq+x+TtAGpbKTo6bvtbUvaG0Tz8/9J0juB\nPwIlT/+6wKXAj5VUHyHNwSp1gLEvcE4u3xNJOn+vQrYBnrL9lCSUpLPvlrRuQfvLSlqzea1LWpOk\neAkwY+hvW2gcAWxm+6/Z/qrAL4FSwVu1+08JQah5UFPlFeBU0kHZb4BrlQQcSs73PAD4IgMzFq9g\n9o182/xJ0hdISqeQgom/5PfiErJ8xwM35PJdkdQuv9q20aZMuERv2zz8qK3kfDBwvqSmXPwlDASU\nw5JQm1wwInjrIEqqb5uSxBrGASNJs762KujDp0inwH9h4E3DQAnVp+/lWvsjSBL5y5LeUIshaXmS\nbHQzoPQa4Jimkb1lvpLtf5akuLgcSXmqn/gCKWDbL6+vAL5fwrDt+4Cxud+gKV0pyeCy6UcpVDad\n+Szwa0n3kTZwryDNGVwGKDFCY0QTuGX+QdkS/+b+80UG7j+tCxUBSJrKQL/hEqR7/zTby5WwD3yG\n9DOPljSBrPJayDa2TyTJ5Tc8qDTrspT9acxecVKa3UjvO41AyoR8bTEKVH7YPjv3/Db91e+zfWfb\ndgc97+fkV5Hnv6Q5HtK53KiOycAppJLtx0mvxdarHYJFjxAs6SBKQiWbAJOaRmkVEgvp8eFeklhK\nqxLBg2x+Zk6X86Ndbs4Ukn5CkqhvNqt7AhuVVPwMyiJpD9s/HOJ5WHLOWa9P25DLpnv78ArYXRJY\nLy/vaVukZJDtb5AOiX6UL+0C3FFC6bZLSBLwHlIpXbGAQpVUXrPtKodmkv7T9sGas1hPkfmmNZG0\nnO3Hh+rvKtUyIenLpNlmPyA9/3YHXlJC5TnbP6lnuRRpZMMk20UOMHLv3+OkvndIgfsKtncuYb8G\nyy61TqeDkCee+t9OCpZE5q2bzLDtptY/n3iX5mHKlstAGgwOaeOwGenUCeBdwM2FfRlte6ee9dE5\nqG6N/MYxt9PHIrOeaiJpvO0PZNGcOW2i2jzAaF5no+b6VQWoUTYt6U22r5Q0+IBitCRs/7RN+w22\nPydpJwYqDb5n+4IStqG+4mJD7ve8MFdiFAnelJQ29we2Jr3+rpN0SsHg/QzSoVmTZdqTVH3S9qHZ\nD/LjN1u2M1ck/TtwCM8f0t620vC5pH6zicx+3xVle77ebXujnvV3Jf2GQplv2wf0rnMFxHlDfHkb\nbGB7/Z71VZJaz3zWxEWqgYcfEbx1k/G512cFSR8D9qGAytsg7geulnQx8HRzsc3sg/MQYEnXAmNs\nT83ro4CL27I7BNMlbW3719mHrWi/cfjW/LgVsD4DfRc7A8P6Bt5DtcZ126fm3pLHbX+7tP2GimXT\n2wBXkg5LYGAT12zgigRvALZ/AvyklL1BnEn6vR+e178nvRZbD94GBc4jSM+DYllP4GySsmaTgdiN\nFNiUOvkvfmgGYHtifu1/3PbubdubC+eTyua+z8CQ9taxvUPO9G5TqK99KKZJ2p0UMBnYFZhW0x9S\n2XgpJkkaa/tGAEmbM7AvCIJZRPDWTWaQGvQfJ23gvmT7isI+PJQ/lqCgTHpmNWYXRpiRr5VkP+Cs\nXMYDae7Oh9o0aPssSOMagK1tz8zrUyivtlkF23/Km6gza4jG2H5W0q5AteAN2JFcNp19+qOk1rOB\nto/Mn+4H7MTsp/+tl7bMpe9Fyb1ifV81FRff1fN5o3L7nkK2of7Jf41DM2DWa38tSUuULFEexEzb\n361hOFf7XAy8pob9zG7ACfnDDPT8FWFQ2ewI0iHq+aXsA68FrpfUBNBrAvc0lSglW2eCbhPBWzd5\nMXAgafN2BimQK0pPFqyGaMPZwM2SmlKp95JOw0tyF3AcMJo0KHVK9qPEzJkVSSIlTZ/BsvlaX5A3\nUc9JWr6QQMxgJmSlyR/Tc+rbyDcXoHbZ9IXAY6T7T5P1aT14s129XDVTTXHR9t4l7MyF2if/vYdm\nIt0DP1zQ/v2k1/9FzP7aL9Xv+nNJ+wMXMHvFS6kxPZMkbWa7ymga2w8wl8MKSYfZ/lqLLvSWzc4E\nHrT9SIv2BrN9QVvBIkwIlnSUXMLwVmBvUunMeOD0rIRXwv4GpHKZpoH578BetosoH0kaA7w+L6+1\nfVsJuz32L2VgAzvr1N328UN+08KzvTdJ6fMq0gbmDcDRts9s23ZXUBpMvwlJZbJ3E9V635/SbMXB\nuEDfSWP/EGAdYDvSvMV9gHNtnzTXb1x49n9re4MStrpIvvecBGxA6r9aFXi/7dYPbiStkW03JbLX\nAQeV2kBKuotU7fEQKXhdC7iHtJEtdvIvaTmSwZJjApqS5efRHGYWsD+nvlbbLtJzJulu4JUkddtp\nDGS9O5HxkTTJ9pgW//+vDxZGmtO1YOHxoiVf3ukg5MmnH+ikYEkEbx1G0kak4G170kZ+LHCF7c8X\nsH09cLjtq/L6jcCxtrds23YXqL2BlbQ6sHle3mT7z7V8qYGkOZaoNqWlwx1J25EObwRcVrJsWtL3\ngJNsTy5lsytIGkG6z95MBcVFSVeQxCMaAY09gN1tb1fI/lqkLP+sgzPSIRbQ3hyuoRRee+wWVXrN\nwaObvut+If/9n0dbf/cXiqTbnBW4W/r/nxccqrDSd78RwduCEWWTHUTSQaShwH8nNS5/zvYzeWPx\nv0DrwRuwTBO4Adi+upLqZS2ul/SaGhtYScdkaeSf5fUISedUbqQviu2zJC1Bkqs3aQNdpA8ll8wd\nyYDi3q9JcuWtj83I/X6/zP1+RftcexQ+Fwf2lnQ/qXSrU6fvbWL7OUn/lTeINeYrrWp7XM/6TEkH\nF7T/XuCjJHEakYLI0wpkfZuSWTMwHoaea0WQtClJrGZUXk8B9rE9saAPG5B6rZZqrrnQnDHbD+bM\nc3Pvm1CwXHx+aOW5kPvM9wfWltSbYR9F6rsLgk4RwVs3WYk0HHO20668sSilwne/pC8y+wnw/YVs\nV6MjG9iXNbX9SvO2xgNFy0ZrI+kdwKnArEHRkj5h+5IC5s8jZRwa1bvdSf1vb2nbcOV+v+IKnx3l\nV0qjCn7q8qUp/5C0BwMz7nYlDSkvxUdIc+WmQSoZA25gQH2yFXp6rM8ilYk+ltcrAq2XqvdwBrC/\n7euy/a1JwVypctEjgTeSgrdfAG8nHR4VCd4kfYmkLNooy46TdL7tr5SwPx+0lQU5F7iEVKbeO5Zj\nasF+w77EjlEBC0KUTQZzJL9pHs3svRdHNW+qw5WhykYaSpSP5H7Hc4DJwLbAJTWl62uQey92sH1v\nXo8GLra93ty/c6HYfl7JrKTJtouosNXs9wtmqV4uQ+p1nU5Btct8/zkJ2IJ0iHQ9cIDth9u2ne1P\nBjZznuumNPftloLP/eeVxbVdKjcf9lvtsxpkazKwEXCb7Y2UZg7+sGDZ7D3ARj1//6WB222vW8L+\nvJD0H7aPbdlG74zNVYBRtludsdnPLL3Emp0OQqbPeCjKJoNFitHAy0hyuYsDbwbeRKETyFrUrO3P\n5SoNJ5AyTxOAaySN6Vj5SttMbQK3zP2k+VMluFzSB0kZT4D3A5cVsg3p1LvYTLVgdiqrXh4DfMj2\nowCSViIp4O1TyP444KZBSr8lh5OPkLTioJ+/5D7lGqUZqz8iBc+7kOadjoEiirNP5Qqbmbnv7q+k\n9+FS/JFUrtmozC4J/F8p40NlXm3vA1AgcBs8Y3MJyszYDIIXRGTegjmST+AOIamtzcprd6VxeTgy\nhMphQzG1wy4g6bskpbvxpE3UziQFvF8C2G4tuBmUeQFYjIEMWKkMTJV+vyChNCy76fu5zvaFhexW\nzTxle03PE6SfvVjJtqS9gP9gYLbWzsBXbf9g6O9aqPar3YNzxcX3gc8CH8yPT5AyX0VGSEi6ENiM\nlPU3SfH2ZuARaD/7X/v5rzQQfhNgUmMzBEvaZakl1uh0EPLUjEci8xYsUvzN9s9rO9FPuMJQ6g6z\nFPAXYJu8/huwNGmIsWkxMzWvzIukV7vFkRmV+/36HknfIcmlN31n+0razvYnC5ivnXlqsktVsvy2\nz5Z0K6nKA1Lvd7Eh4fO6B0v6UFuKt7Yt6XU563SK0ria5VxgREUPF+SPhqsL2ob6z//aMzaDYL6I\nzFswRyS9mdQs/ytmHxYa5Vwtk/scjgVeavvtktYHtrBdsnyp06j9Ya1zs932rKFq/X7BrN//qxqx\nkqzy+zvbrypgu2rmKZg7BV77ZwEnu9KQ7Hkh6Se2d5r3Vy7w/78XcDip4kKkkvWSmdeqMzb7kci8\nLRiReQuGYm9S2dZIBsomW814BLM4k1Rvf3he/56kdhjB2wA7k95ca9D2zbxmv18A9wJrkgYVQ+o5\nunfoL1941M48BfOk7df+5sDukjo5JBtodVh4fv7fS+o7M7C37RvatDnI/jeVZmw+Tup7+5ILztjs\nR0JtcsGI4C0Yis26ojDVh6xie7ykwwBsz5T07Ly+qc+oeRrW9knhrZJ+wez9frfkPqzIfrfPKOAu\nSTfn9Wakv8lFALbf3abxHKxFwNZN2n7tv63l//9fpdWfX2nGbe+cwVMllZgzWHXGZhC8UCJ4C4bi\neknrx6lvFaYpDYpuyrbGAqVnfnWdTpda/ItU6/cLAPhSbQeCztLqoVEIgtWZMwjVZ2wGwQsigrdg\nKMYCt0v6A+WHVPc7nwEuAkZLmgCsSqr9DwaomXlrVfmxlLJcMCS3AtOzZPu/k8rHL7H9TGW/gvpM\nqO1AZdq+74oBlV/y5yXv9U8AkyXFjM1CmCibXBAieAuGYvvaDvQrtidJ2oZUcy+SVHxsHGfn/Hl/\nyYIh6RjbX+pZLwacbXt3ANtj27Kd7R0HfIU0IPpS0mzFT9v+YZt2g1lcC7w+z5i6HLiFNO9r96pe\nBa0j6TNzuDwFmGj7dtufKu1TSbK64nTnRqQs1rOU7Sfzl3yhZRdqzxmMGZvBIkGoTQZBx5D0IlL2\nbS3bH5O0DrCu7f+p7FrrSDqJuZREljgBlTQO+L3tr0laktR7dpvto9q2ne3fbntjSTsCO5CeC9fa\n3qiE/X6nURSUdACwtO3jJP0mfv/DH0nnksQymjE5OwB3AC8Hzrd9XCXXiiDpRuAttp/I62WBy21v\nWdCHanMG50Xbapv9yBIjV+90EDLjmT+H2mQQBPPFOGAisEVe/x8p0zTsgzdSyRrAVsD6JJVNSKId\npfov9wHOyYIx2wK/sP2fhWzDwH35naQN45Q0vzcohCRtQcq0fSRfG1HRn6AcawBjeoKXI4GLgTeQ\n7snDOngjZdmeaBa2n8iHicWoOWdwPmhVbbMfsUOLbUGI4C0Iusdo27tI2hXA9pPqk917MwBX0n7A\n1rZn5vUpwHVt2s4nvg0nkAZlTwCulTQmbypK8D951th0YD9JqwJPFbIdwEHAYcAFtn8naW3gqso+\nBWV4MT1zTYFngNVsT5f09BDfM5yY1nuvk/Ra0n0oSHQ6SxT0DxG8BUH3mCFpaQbUJkcz+4aiH1gR\nWA74Z14vm6+1yfGD1o+Ssn/Hk/4Wb3red7SA7UNz39uUrID2JPCe5t8lbRezh9rD9rWkvrdmfT8w\nq1xX0km2D6jhW9A655B6rn6W1+8Czs29YP2gvHwwcL6kP5L6rVcn9XsGQdAhouctCDpGHhJ6BClw\nuJxUQvhh21fX9KskkvYGjiJlPEQqWzqqycz1M01PVm0/+pX4/Q9vJG1KuucCTLB969y+frghaSRJ\nLAtCLGs2JN1me5PafgwnRi6+aqeDkGdm/q2TVU8RvAVBx5D0Q1KT/HTgfuAm23+v61V5JK0ObJ6X\nN9n+cyG7B5H6DqcCpwFjgENtX17C/ryIDURdIngbvkg6ETjP9vW1fSmJpPfN7d9thwIjIOmtXXkf\nGC6MXHzlTgchz8z8RyeDtyibDILucTrwemA7YDRwm6RrbZ9Q1632kbSe7bt7+s8ezo8vlfTSQn1n\n+9g+QdLbgJWBPYEfkLKgXaDTb3ZBsAgzEThC0rrABaRArh8yb++ay7+ZYS6fL2kyc1c53jA/duU9\nIOhzIvMWBB0kzxbbjKR2uC9p9s56db1qH0nfs/1xSVcx+5tpMyS+9b4zSXfY3lDSCcDVti/oUrYr\nMj916dJzIWgHSSsBOwEfBNa0vU5ll4IWkbRW/vST+fEH+bGZ7Xlocaf6hMi8LRiReQuCjiHpV8Ay\nwA0khcXNbP+1rldlsP3x/Ok7gP1J835M+j18t5AbEyVdDrwCOEzSKOC5QrbnhwdqO9AP5BlX9Eqn\nZ4Z9BjzglcB6wFrAXZV9KUaea7kTaa7drP2h7WNq+VQC2w/CLDGo3oOZQyVNAiJ4a4k8Dz54gUTw\nFgTd4w7gtcAGwBTgMUk32O4nyeazgMeBE/N6N+Bs4AMFbH8E2BgYSRrYuwpwZgG7wCzBgP1IIi0A\n1wCnNMIBtufanxL8a0h6Dem5tlJa6m/Ah2z/FsD2mRXdC1okq7zuCNwHnAd82fZjdb0qys9I7zkT\n6T+FY0iv961sT8iLLYkZj0EHibLJIOgoOePzYeAQYHXbS9b1qByS7rS9/ryutWT7o6RZX2sAtwNj\ngRtKlGxm+98nBY6NsuaewLO2P1rCfr8j6XrgcNtX5fUbgWNtb1nVsaB1JH2C1N+1NjDrfpvHRwx7\nJP3W9ga1/ahFnmt3BrA8qVT/UVIPdFeHhi/yLL7Yip0OQmY++2iUTQZBMG8kfYokWPJaUoncGbQ8\noLqDTJI01vaNAJI2B0oJBxxE6je80fa2ktYDji1kG1KZ7EY96ysl/aag/X5nmSZwA7B9dZ7zFQx/\nngOuZNDBDYVmPHaA6yW9xvbk2o7UwPZEYCNJy+f1lMouDXvcqY6ERYcI3oKgeywFfAuYaHtmbWdK\n0qP6NZK0kXgor9cC7i7kxlO2n5KEpCWz+uW68/62hcazkkbbvg9A0trAswXt9zv3S/oiA6IFe5BG\ndgTDnwOpe3BThZ777uLA3pLuJ5VNNkJRG9b0rxQ5aDuSXLIu6RrgmAjigq4RwVsQdAzb36ztQ4NT\n4RgAAAWkSURBVEV2qO0A8IikFYALgSskPQo8WND+54Cr8gYKknjA3gXt9zv7AEczII9+Xb4WDH9q\nH9zUove+uyKp8gPgWqCfev7OAH7LQG/1nqSZn9FnHHSK6HkLgiAYAknbkPofLrU9o5DNpYDPAm8m\nbZxuAb5t+6kS9oNEPoV/zvbU2r4EZZB0Aemg5GBSqeSjwEjb76jqWCEkHQR8lHRwIeC9wGm2T6rq\nWCEk3W5743ldCxYeiy02qtNByLPPTu1kz1sEb0EQBB1C0niS0uY5+dJuwAq2d67nVf8gaTPSCfyo\nfGkKSbRgYj2vgtLUOLipjaQ7gC1sT8vrZUhiTf1SNnkD8Dnbv87rrYBv2t6irmfDlwjeFowomwyC\nIOgWGwxS1bxK0p3VvOk/Tgf2t30dgKStSaVTfbGBDRK2r6ntQwXE7P21z+Zr/cJ+wFk56y7gnyTF\n5yDoFBG8BUEQdIuaSptBGsswS93V9q8l9ZVwUNC3jANuyuWjkMomT6/oT1Fs305Sm1wurx+v7NLw\nJ4Z0LxBRNhkEQdABBiltrgvMprRZYsZdPyNpTP50L2Bp4Eek3/8uJCGLz9TyLQhKkV8HW+fldbZv\nq+lPCSTtYfuHkub4Grf9rdI+9QuLjVim00HIs89N62TmOTJvQRAE3aALSpv9zPGD1kf2fN7pDUYQ\nLCzyQOp+G0rdzHEcNdevCoKOEJm3IAiCIJhPJH3I9lm1/QiCYOEhaTHgQNvfru1LPxGZtwUjgrcg\nCIIgmE8kTbI9Zt5fGQTBooSkm22/rrYf/cSIEUt3Ogh57rnpnQzeomwyCIIgCOafTr6ZB0HwLzNB\n0snAj4FpzcVcShoEnSGCtyAIgiCYfzp9UhwEwQLTDOM+pueaSQPbg6AzRPAWBEEQBPNPZN6CYBhi\ne9vaPvQfMSpgQRhR24EgCIIgWISYUNuBIAgWPpJWk3S6pEvyen1JH6ntVxAMJgRLgiAIgiAzxKyn\nKcDEPMQ3CIJhSA7axgGH295I0uLAbbZfU9m1YcuIEUt2Ogh57rmnO1lpEZm3IAiCIBhgU2Bf4N/y\nxyeA7YHTJH2+pmNBELTKKrbHk2v5bM8Enq3r0jDH7vZHR4metyAIgiAYYA1gjO0nACQdCVwMvAGY\nCBxX0bcgCNpjmqSVyaJEksaSsu5B0CkieAuCIAiCAV4MPN2zfgZYzfZ0SU8P8T1BECz6fAa4CFhb\n0gRgVeD9dV0KgucTwVsQBEEQDHAOcJOkn+X1u4BzJS0D3FnPrSAIWuZO4ALgSWAqcCHw+6oeDXMc\nk1cWiBAsCYIgCIIeJG0KbJWXE2zfWtOfIAjaR9J44HHSAQ7AbsAKtneu59XwRhrZ6SDEfqaTgiUR\nvAVBEARBRtKJwHm2r6/tSxAE5ZB0p+3153UtWHhE8LZgRNlkEARBEAwwEThC0rqkEqrzIvMWBH3B\nJEljbd8IIGlzIF77LdLV4KjrROYtCIIgCAYhaSVgJ+CDwJq216nsUhAELSLpLmBd4KF8aU3gHmAm\nYNsb1vItCHqJzFsQBEEQPJ9XAusBawF3VfYlCIL22b62A0EwP0TmLQiCIAgyko4DdgTuA84DLrT9\nWF2vgiAIgiARmbcgCIIgGOA+YEtgbWBJYENJ2L62rltBEARBEMFbEARBEPTyHHAlsAZwOzAWuAF4\nU02ngiAIggBgRG0HgiAIgqBDHAhsBjxoe1tgEyDKJoMgCIJOEMFbEARBEAzwlO2nACQtaftukgJd\nEARBEFQnyiaDIAiCYIBHJK0AXAhcIelR4MHKPgVBEAQBEGqTQRAEQTBHJG0DLA9cantGbX+CIAiC\nIIK3IAiCIAiCIAiCRYDoeQuCIAiCIAiCIFgEiOAtCIIgCIIgCIJgESCCtyAIgiAIgiAIgkWACN6C\nIAiCIAiCIAgWASJ4C4IgCIIgCIIgWAT4f2+l+5OX/kY/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAAElCAYAAACrn37VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm8VfP+x/HX55yiiKJ5IirRRaRMIVMTEZJrdoXMcnGv\n+Zpd3Gt2jQklU4ZkCMlQMjWLkEpoVNFA+alzPr8/vmufs89pdwbaa53TeT8fj/04Z6291v589z5n\nrb2+6/v9fr7m7oiIiIiIiBSXk3QBRERERESkYlJlQUREREREMlJlQUREREREMlJlQUREREREMlJl\nQUREREREMlJlQUREREREMlJlQURERESkkjOzgWb2o5l9vo7nzczuMbMZZvaZmbUvy+uqsiAiIiIi\nUvk9DnQv4fkeQOvo0Q94oCwvqsqCiIiIiEgl5+6jgZ9K2KQXMMiDj4E6Zta4tNdVZUFEREREZMPX\nFPghbXlOtK5E1bJWHBERERERWUseQ7y8+1SzE88kdB9KedjdH15/pVpH3GwHEBERERGRQvn5eeXe\nJ6oY/JnKwVygedpys2hdidQNSUREREQkRu5ryv1YD4YDJ0dZkfYElrn7/NJ2UsuCiIiIiEiM3Mvf\nslAaM3sa2B+oZ2ZzgGuA6iGePwi8DhwCzABWAqeW5XVVWRARERERiVH++mkpKMLdjyvleQfOLe/r\nqrIgIiIiIhKj9dStKBaqLIiIiIiIxEiVBRERERERycjzVVkQEREREZFMKlHLglKnioiIiIhIRmpZ\nEBERERGJkcYsiIiIiIhIZvmrky5BmamyICIiIiISI7UsiIiIiIhIZsqGJCIiIiIiGamyICIiIiIi\nGakbkoiIiIiIZGJqWRARERERkYxUWRARERERkYxUWRARERERkUxMYxZERERERCSj/LykS1BmqiyI\niIiIiMRIA5xFRERERCQztSyIiIiIiEhGalkQEREREZFMTC0LIiIiIiKSUSWqLOQkXQAREREREamY\n1LIgIiIiIhIjdUMSEREREZHMVFkQEREREZFM1LIgIiIiIiKZqbIgIiIiIiKZqGVBREREREQyU2VB\nREREREQysfz8pItQZqosiIiIiIjESS0LIiIiIiKSkSoLIiIiIiKSibm6IYmIiIiISCZqWRARERER\nkYw0wFlERERERDJSZUFERERERDLRpGwiIiIiIpKZWhZERERERCSjSlRZyEm6ACIiIiIiUjGpZUFE\nREREJE6VqGVBlQURERERkThpgLOIiIiIiGRialkQEREREZGMKlFlQQOcRURERETilJ9f/kcZmFl3\nM/vazGaY2WUZnq9tZq+Y2RQz+8LMTi3tNdWyICIiIiISpyy0LJhZLvA/oAswBxhnZsPdfVraZucC\n09z9MDOrD3xtZkPc/fd1va5aFkRERERE4pTv5X+UbndghrvPii7+nwF6FdvGgc3MzIBawE/AmpJe\nVJUFEREREZE4/YFuSGbWz8zGpz36FXvVpsAPactzonXp7gN2AOYBU4H+7l5iM4e6IYmIiIiIxOkP\ndENy94eBh/9k5G7AZOBAoCUw0szGuPvyde2glgURERERkThlpxvSXKB52nKzaF26U4EXPZgBfAts\nX9KLqrIgIiIiIhInzy//o3TjgNZmto2ZbQQcCwwvts33wEEAZtYQaAPMKulF1Q1JRERERCROZWsp\nKBd3X2Nm5wFvArnAQHf/wszOip5/ELgBeNzMpgIGXOrui0t6XXNf/4UVEREREZHM8gbVLPcFeO7J\nqywbZSmNWhZEREREROKUhZaFbFFlQUREREQkRmUbglAxqLIgIiIiIhKnStSyoGxIIiIiIiKSkVoW\nRERERETipG5IIiIiIiKSkSoLIiIiIiKSUeUZsqDKgoiIiIhInDw/kSkT/hBVFkRERERE4qRuSCIi\nIiIikpFaFkREREREJBN1QxIRERERkcxUWRARERERkYxclQUREREREclA3ZBERERERCSz/JykS1Bm\nqiyIiIiIiMRJLQsiIiIiIpKJa8yCiIiIiIhkpG5IIiIiIiKSiQY4i4iIiIhIZpWoslB52kBERERE\nRCRWalkQEREREYmRBjiLiIiIiEhmGuAsIiIiIiKZaICziIiIiIhkpG5IIiIiIiKSmbohiYiIiIhI\nJuqGJCIiIiIiGakbkoiIiIiIZKZuSCIiIiIikom6IYmIiIiISEbqhiQiIiIiIpmpG5KIiIiIiGSi\nbkgiIiIiIpKRuiGJiIiIiEhGalkQEREREZGM3DVmQUREREREMlHLgoiIiIiIZFKZxixUnjYQERER\nERGJlVoWRERERERipAHOIiIiIiKSkQY4i4iIiIhIRpWpZaHyVGtERERERDYA7lbuR1mYWXcz+9rM\nZpjZZevYZn8zm2xmX5jZ+6W9ploWRERERERilI1sSGaWC/wP6ALMAcaZ2XB3n5a2TR3gfqC7u39v\nZg1Ke11VFkREREREYpSlbki7AzPcfRaAmT0D9AKmpW1zPPCiu38P4O4/lvai6oYkIiIiIhIj95xy\nP8qgKfBD2vKcaF267YAtzOw9M5tgZieX9qJqWRARERERidEfaVkws35Av7RVD7v7w+V8mWrAbsBB\nQE3gIzP72N2nl7SDiIiIiIjE5I+MWYgqBiVVDuYCzdOWm0Xr0s0Blrj7r8CvZjYaaAess7Kgbkgi\nIiIiIjHKUjakcUBrM9vGzDYCjgWGF9vmZWAfM6tmZpsAewBflvSialkQEREREYlRNgY4u/saMzsP\neBPIBQa6+xdmdlb0/IPu/qWZvQF8BuQDA9z985Je19x9vRdWREREREQy+7b3XuW+AN/mhY8SmclN\nLQsiIiIiIjEqY3ajCkGVBRERERGRGOVnYVK2bFFlQUREREQkRlmalC0rVFkQEREREYnRH0mdmpTK\n02FKRERERERipZYFEREREZEYVaaWBVUWRERERERipMqCiIiIiIhklK/UqSIiIiIikomyIYmIiIiI\nSEbqhiQiIiIiIhmpslCUxxBDRERERKRSXIVrBmcp4rLmFyQS95Yf7mHTGi0TiQ3w628zOWjTsxOL\nP+rXB6i50VaJxV/1+/fkMSSx+LmckHj8Jpt1Tiz+vBXv83vewMTib5Tbl9X5gxKJXT3nZNpsdlQi\nsQG+XvEim2zcIrH4K/9vduJ/+6SPvaTj16/VMbH4i34Zl/j7N6ueSGz31QA03mzfROLPXzEm8WO/\nslDLgoiIiIiIZKTKgoiIiIiIZKRuSCIiIiIikpFaFkREREREJCNVFkREREREJCN1QxIRERERkYzU\nsiAiIiIiIhmpsiAiIiIiIhlVpm5IOUkXQEREREREKia1LIiIiIiIxKgydUNSy0JCttt/By5+70ou\nGXM1nc85eK3ndzmiA/3fupQLR17G2S/9ncY7NCl4rlPfzlz49mX8/e3L6XTa/n8ofpcu+zHps5F8\n9sU7XHzJmRm3+c/t/+KzL97hk3GvscsufylY/8BDtzD7+08ZN2HEH4oN0LFLWx6fdC2DPruOYy/u\nutbzzbdryL3v/IMRP91Dn/5FP59Na9fkmifP4LGJ1zBwwr9ou/s264zTpWtnpnz+Lp9PG80l/zgn\n4za333Edn08bzacT3mSXXXYsdd+jeh/KhMlv8+tvs2nffueC9ccedwQfjxtR8Ai2KMvHUcSVlw9n\nn73+y+E9Hyj3vutDNuLvf/DujJk4mLGTh3DeRcdn3OaG2y5g7OQhvP3RQHZq17pg/SefP8Oojx9j\n5NgBjHj/oYL1Dz5+DSPHDmDk2AF88vkzjBw7oMzl+WDMLA475BEO6fYQAx75eK3nly37jf7nv8hR\nRwzkuL8O4ptvFhU89+Tg8Rx5+KMccdgABg8aV+aYhbFn0rPHA/Todj8DHvkwQ+xVXHDeUI7s9QjH\nHjOQb6b/WPDc4EGfcsRhD9Or50MMfuLTMsfc9+BdeWPivbw1+X+ccdGRGbe58rbTeGvy/xj+0R20\nbbdtwfqTzz6UVz65i1c/vYtTzulZsP6fN57MiAn3MPyjO7jvqUvZrPYmRV6vS9fOTJ46iqnT3uPi\nS87OGPO/d1zD1Gnv8cn4EUXOMSXte9Y5pzDps1GMn/QWN958WcH6HXfcnnfff5Hxk96K1uRmjJnk\n3740G+KxD3DgwXvx0cTn+XTKi1xw0SkZt7n5Pxfz6ZQXee/jp9i5XZsiz+Xk5PDO2CcZMvSOtfY7\n+/wTWPTLOLasW/tPlzNb7//uu+/km2++ZMqUiey6664Zt2nRogUffzyWb775kmeeGUL16tUB6Nx5\nP5YuXcykSeOZNGk8V199ZZH9cnJymDhxHK+8Mizj6x5w8O6MmTiEDyc/zXkXnZBxmxtu68+Hk59m\n1EePs1O77QrWf/r5c7zz8eOMHDuQN95/ZK39zjz/r8xfMWatzz75Y58aGYNWMPlu5X4kRZWFBFiO\n0evGPjx28oPceeDN7NJrNxq0blRkm59+WMLDfe7hri63MOruNzjy1mMBaNimMR2P34v/9bydu7vd\nyvYH/YW6LeqVK35OTg533H0tR/bqy267dKPPMYex/fatimzTrdv+tGrVgp3/ciDnnXsld91zfcFz\nTw5+gSMOP/UPvnvIyTEuuONYLj/yPvrudj0H9unI1tsXff8rfl7JfZc8x9C7315r//P+cwzjRk7j\n1PbX0W/Pm/ju6wXrjHXX3TfS67BT2LXdQfT56+Fsv0PrIs93634ALVu1YMe2+3He2Zdxz303RWXM\nWee+X3zxNcce048PxnxS5LWeeXoYe3bswZ4de3DaqRdGa38u78fDkUe14+EBmU/qcVjf8XNycrj5\n9gs54ah/sn/HU+h19EG0brN1kW0O7LoH27RsRqddTuCfF/yXf995UZHn+xx6IV06nU6PzoUV27P+\ndh1dOp1Ol06n89rw0bw+fEyZypOXl89NN47k/of68PIrpzPi9WnMnLG4yDYDHv6I7bdvwIvD+nLT\nvw/l1ptHAfDNN4t4YegUnnr2ZJ5/qS/vvzeT778r+984Ly+fG294gwcePpbhr5zJ6699wcwZi4ps\n88jDH7L9Dg156eUzuPmWw7nl3yND7Ok/8sLQyTz93Km8MOwM3n/vG77/7qdSY+bk5PCv28/g9KNu\n5NCO/el59L60bNOsyDb7dW1Pi5aN6brLuVx9wYNce2c/AFrvsBV9/taFPvv/k157XcT+3Xdjq23D\nsTr2nSn03P1CDt/rImbPmMeZF/cu8pp33n09Rxz+N9q36xKOn+LnmO7706rVNuzUdn/OO+cK7r63\n8Nhb1777dd6Lnod1YY8OPeiwa1fuvjNcwOTm5vLo43dywXlX0mHX1M2H/Iyff1J/+7LY0I59CH/P\nW+74J8ce1Z9OHY7hyD5d2W77ojd4Du66N9u23Ird2x3FxeffzG13XVbk+X7nHMv0r79d67WbNG3I\nAQftwQ/fz18vZc3G++/RozutW7eidesd6NfvbB544L6M2916683ceefdtG69Az//vJTTTutb8NyY\nMR+w664d2HXXDtxww01F9uvf/wK+/PLLjK8Zzr0XccJRl9C540kccfTBbNemRZFtDuy6J9u2bMbe\nuxzHPy64jVvuvLjI80cf2p8unfrSvfMZRdY3adqA/Q/cnTnfr/39m/yxz+qMH0gF41i5H0lRZSEB\nzXfZmiWzF/HT90vIW53HlOETadt1pyLbfD/hW1YtWwXAD5NmU7txHQAatGrID5O+Y/Vvq8nPy+fb\nT2bwl+7tyhW/Q8d2zJr5HbO//YHVq1fz/NBX6XlY0bv3hx52ME8NeQmAcZ9OpnadzWnUqD4AYz8Y\nx08/L/1D7x1g+w4tmDtrEfNnL2bN6jzefX48e/cs+h6WLlrB1xO/Y83qvCLrN928Bjt1asXrT4wF\nYM3qPH6NPqdMZs6czexvv2f16tUMfe4Veh5WtBWj52FdeWrICwB8+umk6H02oGPHXda579dfzeCb\n6bNKfI/H/LVX2T6MDDp03JratWv+4f3/rPUdf9cOOzB71ly+nz2f1avX8PIL79Ct5z5Ftul26D48\n//SbAEwcN43adWrRoOGWZY5x+JEHMOz5tSuWmUydOp+ttqpD8+Z1qL5RLj167MC773xTZJuZMxez\n+x6hQrPttnWZO28Zixf/yqyZS9hp58bUrFmdatVy6NCxOW+/Pb3M5Zz62Ty22mpLmjffIsQ+pC3v\nvFN0/5kzFrHHHi2i2PWYO3cpixf/wqxZS9hp5yZpsbfi7ZFflxpz5w6t+G7WfObMXsjq1Wt47YUP\nOKjn7kW2OejQ3Rn29HsATBk3nc3rbEr9hlvQsk1TPhs/nd9W/U5eXj7jPphG18P3BEJlIS8vXJBP\nHjedRk3qFvsM084x6zj2hjz5IgDjPp1E7Tqb0ahRfTp03GWd+57R7wRu/88D/P777wAsWrQEgIO7\n7MvnU79i6tT0iyZf+/NP8G9fFhvasQ/QvsNfmD3rB76bPZfVq9cw7PmR9Di0c5FtuvfszLNPvwbA\nhHGfU7v2ZjRsGP6fGjdpQJfu+/DkEy+v9do33vp3rrvqXtzX/lv/Edl4/716Hc6gQU8C8Mknn1Cn\nTm0aNWq01nYHHngAzz8fvoueeGIwRxxxeKmv3bRpUw49tAcDBgzM+Pza595Ra517ux+6D0OffgMI\n597N69SiQcO6mV6uiOtuOZ8brr4/42ef/LFP0QuHCsrdyv1ISpkrC2ZW08zalL6llGbzRnVYNq/w\nYnvZ/KVs3mjdTagdjt2L6e+GA2HB1/NpsXtLNqmzCdVrVKfNAW2p06ROueI3adKQOXMK78TMnbuA\nxk0aZthmXsHyvLkLaNxk7RPcH1GvSR0WzSm8I7do7s/Ua1y299CoRT2WLf6Ffz50Mg9+eAUX/+9E\namyy0Tq3T38Pc+fOp+la77MRc35I+yzmLKBJk0Y0adqo1H1LcvTRh5V52w1do8b1mDe3sCvN/LmL\naNy4aGtYoyZFt5k3dxGNmoTKqTs8O/x23hj9MCecuvbnukennVn04098O3Numcrz48IVNGq0ecFy\nw0absfDHX4ps06ZNg4ILwamfzWP+vGUsXLiC1q3rMXHCHJYuXcWqVasZM3oWC+YvL1NcgB9/XEGj\nRpsVxm64OT8uXFE09vYNCyoBUz+bWxC7Vev6TJzwA0t/XhnFnsmCBaXHbti4LgvmLilYXjh3CQ0b\nF62INWyyJQvmFt5hXzB3CQ2bbMn0L79nt73bUmfLWtSouRH7dWtPo6Zrt2T2PulARo+cWGTd3B+K\nHj9NmpZ8jpk7Nzr2mjRc576tW29Lp0678/6YYbw58ll22y10A2zVelvcnZdfHcSHH7+6zs8iyb99\nVdW4SX3mzllYsDxv7kIaR8d2wTaN6zMvfZt5P9KoSQMAbrrtIq676h7y84u2FHU/dD/mz1vEF58X\nrexVNE2bNuGHH+YULM+ZM5emTZsW2aZu3bosXbqUvLy8aJs5NG1a2PV47733YsqUibz++iu0bdu2\nYP1dd93OP/95+VqfTUqjxvWZW+zc22itc2/9tc/PTcI27s6zw+/kzdEDODHt3Nvt0H1YMG8R0z6f\nmTFuRTz2K6LK1A2pTAOczeww4L/ARsA2ZrYLcL27Z6z6mlk/oB/AQw89RL9+/dZTcauebfdqTce/\n7smDR90FwKIZC3n//rfpO+RcVq/6P+ZPm0t+3vq5q1IZ5Obm0HqX5tx78bN8NX425/6nD8de3I3H\nb3gl6aIV6NhxF1auWndrh5TPEV3PY8H8xdStV4dnht/OjOnf8cnYzwqfP/pghj0/ar3GPO2MPbnl\n5rc5+sjHaL1dfbbfoSG5Oca2LevR9/Q96Hf6s9SsWZ3tt29Abu76PYGffsbe3HLzW/Q+8hFat27A\n9js0IjfHaNmyHn1P34t+pz9NzZrVabN9Q3JysvvlMevruQy48yUeHXYNq1b+xleffUt+XtELk7Mu\n6U3emnyGPzs6q2UByK2WyxZb1qbzvkfQoUM7Bj/1P9q22Zdq1XLZu1NH9t37cFauXMWSpV9hNMYp\nf/eUJP/2UlSX7vuwaNHPfDb5K/bet33B+po1N+bCS06lT6/zEixdPCZOnMRWW23Lr7/+So8e3Rk2\n7Hm2264thx56CD/+uIiJEyfSufN+WYndq+u5BefeZ4ffyYzp3zNl4ldccPFJHHvERaW/wHpUnmMf\nOAhYv18KWVCZBjiXNRvStcDuwHsA7j7ZzNY5qtTdHwYeTi3+ifJtkJYvWErttNaA2o3rsHzBsrW2\na7R9E3r/5zgeO+kBVi5dWbB+/LMfM/7ZMDCv26U9WTa/fF2C5s1bSLNmjQuWmzZtxPx5CzNs0wSY\nAECTpo2YP2/dYwPKY/G8pdRvVjjwt37TLVhcxvewaN5SFs1dylfjZwMw+qVJGQdIp4T3EDRt2pi5\na73PBTRrnvZZNGvEvHkLqF69Wqn7rkufYw7nuWdfZscdty/T9hu6BfMX06Rpg4Llxk3rM39+0X7i\nC+YV3aZJ0/osmLeoYH+AJYuX8sYrY9h1tx0KKgu5ubkccvi+dN+37DckGjTcrMgd+YULVtCwQa0i\n29SqtTE33nwoEO6ude/yIM2ah2P2qN7tOKp36DZ3953v0zCtpaDU2A02Y8GCwpaEhQuX06Bh0f1D\n7MMKYnc7+H80ax6Ol95H70Lvo3cB4K4736VRw9JjL5y/hEZNC7sVNGxal4Xzi451WDjvpyItBo2a\n1mXhvLDN84NG8fyg8L3792tOYGFaK8WRJxzA/j068Lee16wVt2nzosfPvLnrOsektgnHXrXq1de5\n77y5C3h5WOiuNn78FPLz86lXb0vmzlnAB2M+ZcmSwhZLs7q4F60sJPm3r6rmz1tE02aFd5abNG3I\n/HlFx+nMn7+IJunbNGnAgnk/clivA+l+yL4c3HVvatTYmFqbbcr9A67n3jufYKsWTXjvo6ei12zA\nqA+epFvnv/Hjj0uoCCZNGg/AuHHjad68cIxQs2ZNmTu3aCvokiVLqFOnDrm5ueTl5dGsWTPmzg13\n2FesKDxfjBjxBvfffy9169alU6e9OfzwnhxySHdq1KjB5ptvzuDBTxR53QXzF9G02Ll3wVrn3kVr\nn5/nLY72Lzz3jnhlNLvstgNLf17BVi0aM+rDxwq2f2vMo/TYvx+LfgznjKSPfaA9laCysCHOs7Da\n3YtfzaoS8AfNmfI9dVvUZ4vmW5JbPZd2h7dn2sipRbap3WQLTnzkNJ7tP5jF3xY9sW5at1bBNn/p\n3o7JwyaUK/6E8Z/RslULtm7RjOrVq3N0n5689mrR4+q1V9/m+BNC1pSOu+/C8mUrWLBgUaaXK7ev\nJnxH05YNaLR1XapVz+WAozvw4Wuflb4j8PPC5Sya8zPNWocvll33b8N3X627EtOq1TZs3aI51atX\np88xh/HaqyOLPP/aqyM5/oQwMHP33XeN3uePjB8/pdR9MzEzeh/dk6HPVZyWjqRNnvAV27RsRvOt\nG1G9ejV69T6Qt14bW2Sbt14fy9HHdQOgfce2LF/2Kz8u/Imam9Rg01qhD3HNTWrQ+aCOfDWtcKDj\nvgfsxozp36918VGSHXdszHff/cycOUtZ/XseI0Z8yf4HFB2At3z5b6z+PXQJeOH5KezWoTm1am0M\nwJIlvwIwf95y3n57Oocc2pay2nGnJnz/3U+FsV+fxgEHbFdkmyKxh05mtw5bZYi9jFEjv+aQnjtS\nmqkTZtCiZWOabd2A6tWrcWjvfXjntaKZfN55fRxHHLc/AO06bseKZStZtDB8+W5ZL3SRbNysHl0P\n34NXhoYWhH0P3pXTLzyCs//6b35b9ftacVuln2PWceydcOJRAHQsOPYWMWH8lHXu+8rwt+jcOYyZ\naNV6GzaqXp3Fi3/i7ZHvs+OObahZswa5uSELkvvaNyCS/NtXVZMmTGObllux1dZNqF69Gkcc3YU3\nXi/aCvXma6P563GhgrZbxx1ZvvwXFi5cwo3X/o92bXqy2196ccbfruCD98dxzun/4ssvZtJ2m27s\n9pde7PaXXsyb+yMH7XNihakoAAUDkocNe5mTTz4RgD322INly5azYMHa31nvvvseRx8dvotOOeUk\nXn45fIc0bFhYierYsSM5OTksWbKEK664iubNt2GbbVpz7LEn8M4773LSSUUzTRWeextH596DePO1\nD4ps8+brY+lzXHcgnHtXLPuFHxcuyXju/XraLL6aNoudtj2c3Xc8ht13PIb5cxfRdd/TCioKkPyx\nD0wr218pWZVpzEJZWxa+MLPjgVwzaw1cAKyd80/KJD8vn+FXP0/fJ88hJzeH8c9+zI/TF7DHiZ0A\n+OTJsRx8YXc2rbMpR9zUp2Cf+w79LwAnPnwam9TZlPw1ebx81VB+W16+Li95eXlcfOF1vPzK4+Tm\n5jDoief58stvOO304wB4dMDTvPnGe3Trvj9Tp73DqpW/cWa/Swv2f3zQXey77x7UrbcF02d8wI03\n3s2gx4eW6/3fe/Ez3Pry+eTk5jBi0Id89+V8ep62LwCvPjqGLRpuzgNjLmOTzWrg+U7vcw+k727X\ns3LFb9x7ybNcMfBUqm+Uy/xvF3PbWYPXGevvF17NK68NJjcnlyeeeJYvp03n9DPCiXvAI0/yxoh3\n6Nb9AL74cgwrV63izNMvKfiMMu0LcHivbtxx5/XUq78lL778GJ9NmcbhPU8CYJ9992DOnHnM/vb7\ncvxFirrkohf49NPvWPrzSg7Y707OO39/evfJnG4vG9Z3/Ly8PK685C6eGvZfcnNyeGbw60z/ajYn\n9Q29GAcPHM6oNz/moK578uGUp1i16v/4+9m3AFC/wRY8+tSNAFSrlstLz73Ne28XpgztdfSBDBta\nvhtI1arlcMWVXTjrjOfIy3eOPHInWrWuz3PPTALgmGN3ZdasJVx1+WuYGS1b1eO6G3oU7H9R/2Es\nXbqKatVzuPKqLmy+edmz9FWrlsMVV3XjzNOfJi8/nyOPaker1vV59plQ4f/rsbsxa+Zirrz8Fcyg\nZav6XH/joQX7/73/CyF2tRyuvLpbmWLn5eVz/SUDGDDsX+Tm5PDC4FHM+OoHju0bWuSeGfgW7785\ngc5d2zPDPgclAAAgAElEQVRyyv2sWvV/XHF2YcaWe4f8gzpbbsaa1Xlcd9EjrFgWWjmv/u/pbLRx\ndR57ObQqTBk3nWsuLExte9GF/2L4q4PIzc1l0OPP8eWX33D6GSHTzIBHhvDGiHfp1v0APv/yfVau\nXMVZZ/wjKm9exn0Bnnj8OR58+DbGTXyT1b+v5ozTQ+aWpUuXc8/dAxjz4fCCAZdOYT/xIp9/Qn/7\nstjQjn0If8/LL76N54bdQ05uLk8PHs7XX87ilNPCxeITj77IyDfHcnC3Tnz62UusWvUbF5x1fSmv\nmh3ZeP+vvz6CQw7pwYwZX7Fy5SpOPfX0gudee204p59+JvPnz+fSS6/gmWeGcOON1zFp0mQefTQM\nWj766N6cfXY/1qzJY9WqVRx77Illjp2Xl8cVl9zJ08Nuj869rzH9q9mc3Dck4Bg08GVGvfkRB3Xd\nk4+mPMOqVb/x97P/DYRz78CnbgZS596RvPt22dI1J33sA6+V+UNKUH6C2Y3Ky8qSRcDMNgGuBLoC\nBrwJ3ODuv5UhRpVvgbis+QWJxL3lh3vYtEbLRGID/PrbTA7aNHOO5TiM+vUBam60VWLxV/3+PXkM\nSSx+LickHr/JZp1L3zBL5q14n9/zMmcJicNGuX1ZnT8okdjVc06mzWZHJRIb4OsVL7LJxi0Si7/y\n/2Yn/rdP+thLOn79Wh0Ti7/ol3GJv3+z6onEdg9ZQxtvtm8i8eevGJP4sQ+V4yp8RMfjyn193GPc\n04m8tzK1LLj7SkJl4UozywU2LWNFQURERERE0mxwYxbM7Ckz29zMNgWmAtPM7B/ZLZqIiIiIyIan\nMo1ZKOsA57buvhw4AhgBbAOclLVSiYiIiIhsoPL/wCMpZR3gXN1CB7wjgPvcfbWZVfmxCCIiIiIi\n5bUhzrPwEDAbmAKMNrOtAU1dKSIiIiJSTpVpzEJZBzjfA9yTtuo7MzsgO0USEREREdlweeVI2gSU\nfYBzbTO7w8zGR4/bgU2zXDYREREREUlQWQc4DwRWAMdEj+XAY9kqlIiIiIjIhirfrdyPpJR1zEJL\nd++dtnydmU3ORoFERERERDZk+ZUoTVBZWxZWmdk+qQUz6wSsyk6RREREREQ2XI6V+5GUsrYsnA08\nYWa1CdNo/wT8LVuFEhERERHZUFWmbEjmXvZ2EDPbHCCaoC0WZtbP3R+OK57iK35FiV+V37viK77i\n69yj+Iq/IXtqp1PL3RHp+KmPlVrDMLPuwN1ALjDA3W9Zx3YdgY+AY939+RJfs6TKgpldVNLO7n5H\naYX+s8xsvLt3yHYcxVf8iha/Kr93xVd8xde5R/EVf0P25E59y11ZOHHqwBIrC2aWC0wHugBzgHHA\nce4+LcN2I4HfgIGlVRZK64a0WfTTYa3OUpVoaIaIiIiISMWQpRmcdwdmuPssADN7BugFTCu23fnA\nC0DHsrxoiZUFd78uCvYE0N/dl0bLWwC3l6f0IiIiIiLyx8YsmFk/oF/aqoeLddlqCvyQtjwH2KPY\nazQFjgQOYH1UFtLsnKooALj7z2a2axn3/bOS7rem+IpfFWMrvuIrftWNX5Xfu+Irfiz+SPecqGLw\nZz+fu4BL3T3frGwVljINcDazKcD+7v5ztLwl8L677/QnCisiIiIiUuUMbHtGuesLfac9UtqYhb2A\na929W7R8OYC7/zttm28pHFpQD1gJ9HP3Yet63bK2LNwOfGRmQ6PlPsBNZdxXREREREQi+dl52XFA\nazPbBpgLHAscn76Bu2+T+t3MHgdeLamiAGWsLLj7IDMbDxwYrTqq+MhqEREREREpXTYGOLv7GjM7\nD3iTkDp1oLt/YWZnRc8/+Edet6wtC0SVA1UQRERERET+hGxNyuburwOvF1uXsZLg7n8ry2vm/Pli\nrT9mlmNmeyddjiRFuW9FRERkAxd1F5EqyP/AIykVqrLg7vnA/5IuB4CZ7W1mx5vZyalHTKG/MbP/\nmFnbmOIVYWa5ZvZuErGj+HWTil1RmFlDM3vUzEZEy23N7LQY4+9jZqdGv9eval9m0THQxMy2Sj1i\njH2DmXUxs03jillRmNmosqzbkJlZTTNrk2D8TczsajN7JFpubWY9Y4ptZnaimf0rWt7KzHaPI3ax\ncmwSc8jno7hV6n9dQstCeR9JKXM3pBiNMrPewItellRNWWBmg4GWwGQgL1rtwKAYwrcjDEgZYGY5\nwEDgGXdfHkNs3D3PzPLNrLa7L4sjZjEfm9lk4DFgRFL/Awl7nPD+r4yWpwPPAo9mO7CZXQN0ANpE\nZagOPAl0iiH2vZRw88TdL4ihDOcD1wALKRx/5sDO2Y4dmQUcB9xjZiuAMcBod385m0GjWCV99ptn\nMXYNYBOgXjSHT+obcXNCzvBYmFkn4Fpga8J3owHu7tvGFP8w4L/ARsA2ZrYLcL27Hx5H/MhjwARg\nr2h5LjAUeDWG2PcTjrkDgeuBFZRj0qg/K+rVMACoBWxlZu2AM939nCyHzjGzK4DtzOyi4k+6+x1Z\njg9UiP//PYF7gR0Ix0Au8Gs2zz1Jy9IA56yoiJWFM4GLgDVm9huF/7Bx/sN0ANomcaHq7iuAR4BH\nzKwz8BRwp5k9D9zg7jNiKMYvwFQzGwn8mla2rF+sAdsBBwN9CRdMzwGPu/v0GGJXFPXc/bm0lGdr\nzCyvtJ3WkyOBXYGJUex5ZrZZybusN+Ojn52AtoQKEoTsa3GNl+oPtHH3JTHFK8LdHwMeM7NGwDHA\nJYQJeLL6N3D3zSC0bADzgcGEc+8JQONsxiac8y8EmhAuVFOVheXAfVmOne5R4O9RGeI63tJdS5h9\n9T0Ad5+cQKteS3f/q5kdF5VhpZU1Efuft4e7tzezSVHsn81so5hiA9wJdAOGR/GnmNl+McQ9FjiC\ncD0W17k2k6T//+8jfBZDCddgJxOuB6QCqHCVhdSXVsI+BxoRvjRjFY1ZOBQ4FWhBSFs7BNiXMGAl\njoPnxegRu6iCNhIYaWYHEO5qnxPN9XGZu3+URLli9mvUHcuh4I5LXK08v7u7m1kqdmzdYdz9iSjm\n2cA+7r4mWn6QcIc9Dj8Q32e9FjMbQKgoLSS856OJKm4xOdzd26UtPxAde//KVkB3vxu428zOd/d7\nsxWnDJa5+4gE469292XFrs3jvmH1u5nVpPDc0xL4v5hir46+/1Kx6xPzzVd3/6HY5x/HRXN3d7/V\nzDZ29+tjiLcuSf//4+4zzCzX3fMIN00mAZcnWaZsykY2pGypcJUFgKgpujVQI7XO3UfHEPcVwolq\nM2CamX1K2okypubgb4B3gf+4+4dp65+P6S5HwUVbEqKL5BOBkwgXTOcT7vTsQrjjUBX6z19EeM8t\nzWwsUJ9w0RiH58zsIaCOmZ1BaOF5JKbYKVsQuqD8FC3XitZlTVrz/yzgPTN7jaLHfixdAYC6hOb3\npYT3vzhVaYrJr2Z2AvAM4Vx4HGmti9nk7vdGXUFakPbd5O5xdP8EeNfM/kO4UZL+t4+rsvaFmR0P\n5JpZa+AC4MNS9lnfrgHeAJqb2RBCK9/fYop9D/AS0MDMbiKc866KKTbAD9H/n5tZdUIr45cxxD0V\nuJvQupBkZSHp//+VUUvSZDO7jXCztkKNq13fKlM3pDLN4BwnMzudcJA2I4wZ2BP4yN0PLHHH9RO7\nc0nPu/v7MZShlrv/ku04pZThWzLc0Yqj76KZTSd0gXjM3ecUe+5Sd78122WoCMysGmHcgAFfu/vq\nGGN3AbpGsd9095FxxY7in0rokvFuVIb9CDNSZq0SG43VWCd3vy5bsTMxsx0IXSL+DuS6e7OY4rYg\nXLh0IpwDxgIXuvvsGGJnHCsWU/dHLHNiB4/juyeKvwlhnFLBsUfoevpbHPHTylGX8L1rwMfuvjjG\n2NsDB0WxR7l7HBfrqdj1CP/7B0fx3wL6Z7tLopk9Teh20wSYmf4U4f8vlvFSFeD/f2vCDcKNCOe9\n2sD9MXW9TsRdrc8p9wX4hd/cn0hzREWsLEwlDGj62N13iU4eN7v7UTGW4VZ3v7S0dVmKXQM4DfgL\nRVtW+mY7dloZ0jMS1SD0Gd/S3bPWFSEttlXRQc0FzOxcYIi7L42WtwCOc/f7Y4i9DTA/dYESdUlo\nGMfFYrFyNAL2iBY/cfcFccZPioXMM/sSKkh1gI+BMe4+MNGCxcDMviShsWIVTdQdZ9O4ElukxT0S\neCeV3MLM6gD7lza763qKvWWG1SvivFGSlOh89yawVu8Fd/8uhvg5wNHu/ly2Y5VQhk2BVVFWzNQx\nsLG7r0yqTNl2R6vyVxYumpFMZaEiNvH8lnahsrG7f0W4wxqnLhnW9Ygp9mDCeIluwPuEFpYVMcUG\nwN2XpD3muvtdhHEUcahnIXXs62b2TuoRU+yK4oxURQHCQD/gjJhiD6Vo62hetC5u/0dohv6ZkCUk\nli54ZvaKmQ0v9hhsZv2jiny2dSeMUejt7ju4+6lxVhTMrIaZnWtm95vZwNQjpvCpsWKJsORTFj9l\nZptHF01TCV1h/xFX/Mg16VnwovNQia1u69FEYBEh+9s30e+zzWyime2W7eBm9kRUOUotbxHX/767\nL3D3du7+XfFHTPHzgX/GEasEowhZ0VJqAm8nVJZYaJ6FP2dOdMAOIwxyfRmI5YAxs7Ojlo02ZvZZ\n2uNbwsk7Dq3c/WpCyrAnCBfpe5Syz3plZu3THh0sTBMe1/iWIcBXhLEJ1wGzgXExxa4oci1tlF10\nhyWurCDV3P331EL0e5wZSVJdEUcT7rRdF/28NqbwswjZwB6JHssJlfXtiGHshrufR8iG097MeppZ\ng2zHLCbJmxX1CBfIb6ZX1mKKDSFl8ZuE7iAQLlovjDF+26gl4QhgBOEceFKM8SHzNUFc5/6RwCHu\nXs/d6xJu0L0KnENIq5ptO2e4SbNrtoNayPiHmU0tdt0x1cw+y3b8NG+b2SVm1tzMtkw9YoxfI70L\ndvR73HNexErzLPwJ7n5k9Ou1UR+62oQBV3F4inCS/jdwWdr6Fe7+U+Zd1rtUk+tSM9sRWADEfcFw\ne9rvawgX7MfEFLuuuz9qZv2jMSLvm1lVqyy8ATxrYaAxhNSScR0Di8zscHcfDmBmvYDY+ixH+lPY\nFfGAVFfEmGLv7e7ped1fMbNx7t7RzL7IdnAz60PItf8eoc/yvWb2D3d/PtuxI63cvY+Z9XL3J8zs\nKeLLRHVtTHHWJcmUxQDVLQysPQK4z91XW5SVLEbjzewOCidHPZeQSjMOe7p7QQuqu79lZv919zPN\nbOMY4ueY2RZRJSHVLSqOa6T+0c9YJr8rwV+jn+emrXMglnkWCMkV2qcGVJtZB2BVTLETUZkGOFe4\nygKEGWSB1u7+mIX0aU2Bb7MdN2p+XQYcF93NbUj4jGpZGHj8fbbLADwc9VG/ipARpxZwdQxxC7j7\nAXHGKyZVWZpvZocC84A4725UBJcSKghnR8sjCZMFxeEsYIiZ3Ue4WP2BkO86Tr+5+29mVtAV0eKb\n1baWmW2VOtYtzN5cK3ru93Xvtt5cBXR09x+j+PUJTfFxVRYSu1kRRwKJUiSZshjgIcKNmSnAaAsD\nPmMds0DIPnc1hXOcjKToxWM2zTezSwmZuCBcvC6MvovjuK66HfjIzIYSzn1HAzdlO6i7z49+xtKD\nooRyJJ1p8EJgqJnNi5YbU1iB2SApdeqfYAnOIJtWhvMId7lim8XVis7ceGr0M3V3J7Zc91FZahP6\nqab6ib9PmEk0ji/OG6P4FxNmc9yckBmhyoj6jz4QPeKOPRPY08xqRctJZOYq3hXxZ2Lqikj4v/vA\nzGYSLhi2IczzsSkQR0rhnFRFIbKEeLuLpm5WXE3hzYqsJzaAtWaR3ohw7o9zBtckUxbj7vcQ0oem\nfGdhrpnYuPuvFG1Vj9PxhO+d1GDqsdG6XGJo2Xb3QWY2njCDNMBR7p71ySAtwdnTi5Uj400hjy91\n8VTgQUIXyOWEYzHrrblJqkwtCxUxG9Jkohlk3X3XaN1ncaUPi+LNIMwmGdssrlaYurENoQtGqq/u\nYcCn7n5ijGV5gTDYMHVxdBLQLs6MVFWRmT3n7sdE42Yypa7NZmX1RHd/slilNT12XPMMFGEhnXFt\n4I30sRRZjrkxsH20+HWcqSst5DnfGXg6WvVX4LM4MrFVJNGYnV6ErimxXbxasimLE7tJY2Z3ufuF\nVjjXUBEezxxDiTCzzd19+br658fVBdnWMXt6HFkIo/jpEyLWIKSwnejusVSYo7EbywnjFiFUFOu4\ne5844ifhpm3OK/cF+JXf3pdIc0SFa1kgwRlk08Q+i6tHedzNbDTQ3t1XRMvXAq/FWRagpbv3Tlu+\nLqrEZU10oirp7kosudYTlmTf1dRxVhFmUI+9K6KZHeju75hZ8QpxSzPD3WOZ0dzd/2FmvSlsSX3Y\n3V+KIzaEjECE8SFN3L2HmbUF9nL3R+MqAxTM5D4suokSS2XBQrarc4B9COeiMWb2YIyVxYGEmzSp\nu+gnEVrX47hJMzj6+d8YYmVkZtsBl7D2pHzZzvP/FOGcO4Gi30FGvH32Y589PZ27n5++HLXuPrOO\nzbNhR3dvm7b8rpllvWUnSfmoG9KfURFmkE1yFteGFO0b/Xu0Lk6rzGwfd/8AwMw6kf2BRuOjn52A\nthT2me0DbNAnjBR3nx/1z3087nEj7v5QFHu5u98ZZ+ziEuqK2Bl4h9CSB4UXDakLhlgqCwDu/gLw\nQlzxinmc8JlfGS1PJxyLWa8sFKuo5RD+B+KckGwQIfNT6g7r8YSL6LjubMZ+kybF3SdEx38/dz8h\njpgZDCV0QxlA4aR8WefuPaOWrM4xjUtcl8RmT19XeQjdMOMy0cz2dPePAcxsDwqvCzZI+RWrY0+J\nKmJl4XfCgL7lhIuFf3nMM8gC30ePjYg5bSThC+tTM0vdTTyC8AUep7OBJ6JmcQi57k/JZsAoTSxm\ndjawj7uviZYfJL5sLIlz9zwzyzez2jGNESke+zgg0coCcCRRV0QAd59nZllt8XD3VDfAs4HeFL27\nmfVTegn9llOzuMbVbz/JjECHpf2eysLWK6bYkPydzSRu0hSIjv+tzWyjuLr8FbPG3WMfpwXhAItu\nDu6URPzI8YQZpO+mcPb04+MKXqwLWg7hpl2cc+zsBnxoZqkK21bA16luuXF2RY9LBRsFUKKKWFlo\nAFxAuFAYSAKTcqR1CYp9kKe732RhUqB9o1WnuvukuOJHvgRuA1oSZpFdRqi0xJHzeQvCoOZUP9Fa\n0bqq5BdgqpmNJO3OUkxdscZGmZCeLRZ7YgyxU5LsijgMWEo4/6Tuamf9lO7uFaL7FwlmBHL3U0vf\nKquSvrOZfpPGCOfAv8UYH0Kr+lgL81ukH/9xtKq/YmbnAC9RtEU/rrTlE82so7snkqrb3WdTQuXY\nzC53939nsQjpXdDWAN+5+5wsxiuue4yxKgR1Q/oT3P0qM7sa6ErICnRfNPDl0ShTS9ZFKQMHE6Xs\nNLPFwMnuHsvI/OjCLM6Ls+JepvCCaW7MsW8BJlmYY8MIg/2ui7kMSXuRGLu9FLNL9PP6tHVOYYaQ\nOCTZFbGZu1e5L600iWUEMrNmhC5Aqe5mY4D+MV6wpN/ZdGBrYryz6e6TgXZmtnm0HHfaVICZ0SOH\n+McvpVqv02etjnPMwB7ACWb2HaGilGrVqyh3tPsQ5oDKlkOKJ1Iws1vjSq6QdOrYJKhl4U+K7iou\nIOT4XkO4s/y8mY109zimJH8YuMjd3wUws/0JFyt7xxC7Ikjsgika0DqCwlmrL3X3BUmUJSkeJsPa\niJCRxwlZWWLpFhD3WIl1lOG/ZtaFZLoifmhmO7l7XDO2VxhmlkPIgtKZZDICPUYYbJoaI3BitK5L\nTPG7E75rUq26owk3TbJqXRnILJrEPc5MZGmt6puHRY9r9u6KkOe/W8LxS5Pt29BdCHP8pOuRYZ2s\nJ5UpdWqFqyyYWX/CJFCLCQOd/uFhJssc4BsgjsrCpqmKAoC7v5dQVqakJHbBZGbXR6niXo6Wc8xs\nSIKD7mJnZocQJmgqyPVvZme6+4gYYtclpG9MZYT5gJC+MZY0wtEgy7ejSktsY5WsMF1tNeBUM5tF\n6ApR0e4uZo2755vZ/zykrE4iv3l9d38sbflxM7swxvhHAKcTWvWM0Lr8iLvfW+Jef17qDr6z9gVh\nrPceLcya+1iqTGa2DOjr7rHM4hy16rclVFqB+PL8u/t3ZtaewnPf2Ji7X5YmK/8L0TjBc4BtzSy9\nq/FmhHETkiUa4PznbEmYDKVIk1T0RRZXSslZUVeoVDq5Ewl9OTdoFeSCqXmqb6aFfPfPAXGP2Uja\nHcAB7j4DwMxaEtLnZr2yQMjEMZowyBdCru9ngYNjiJ3kAO8k0tVWRKOi1K0vRulL47TEzE6kcI6J\n4wiT0sXlNMK8Dr9C6IIBfERhdqSsSLub/wSh29XSaHkLwqzCcRoInOPuY6Iy7EOoPGT93B9lQduf\nUFl4nXBX+wNC0o+sM7N/EVq1Ul1AHzOzoe5+YxzxyyBbLQtPEb5b/k3RNMUrYhwvIhVchZuUrSKI\nTtLXUbTv7LWpk/iGysy2Lun5OPoURinshhBmczwAGJF0Ks+4mdk4d++YtmyEifk6lrDb+or9ubvv\nWGzdVHePLUuImb1MyIaUxADvKi3KyrQpIXXlKmLMxhSdf+4F9iLctPgQON/df8h27Cj+VKCjR/Mq\nWJh3YVxc//tmNilq1SlxXQJlmOju7WOIPRVoB0xy93YW5vx40t1j6YZmZl8TJh9N/f1rApPdvU0c\n8UtjZle4+81ZjpE+v009YDN3z9r8NlXdZc0vKPcF+C0/3KNJ2SqQlkBzwiCvaoSZDA8khrsrSUpy\ngFHU/JtyN6EbzljgfTNrX8Gag7NtvJm9TmhVccLdrnEW5aH37E4Q9paZHRvFhjC49c0sxsskyQHe\nVVrCWZmuB05x958BLMyo+1/CAPc4PAZ8YkXTVsc5GV2OmW1R7P3H/R39fpRc4GnCueevhDmH2kPW\ns6L9FvUgWBONmfiR8D0cl3mE7k+pLGgbE2OCj3W1LLl7X4AYKgrF57fZiOzPb1Ol5buyIVV2Qwgz\nSX5O5RqDUpkVb27/mdAcfTvxZ+NJWg1gIWGgKcAioCYhD322Jwg7A7iQwi54uYR0mmcS0x3mJAd4\nS8HkaAWzGLv7sJhC75y6UIaQMtPMYrur7u53mNl7hPcO8aetvh34yMxSue37ADfFGB/CnX0I45bS\n7UoWz8NR6+lnFmYNfoQwm/IvhG5gcVkGfGEhZbUTBvx+amb3QCwtmzun915w95/j/P8ngfltqrrK\n1LFHlYXMFrn7K0kXoiqpCFl4KgovJd98NvNtl3Zn2cz+ku0UwkkO8K7qzOx+oBWF4wbOMrMu7n5u\nDOETv7OeZNpqdx9kZuMpvCA/yt1jnb2+tPOwmZ3i0QSa6zmum9nu0cXyg2b2BrC5u8cxt0/KS9Ej\n5b0YY0Py//9Jzm9TJVWmO9GqLGR2jZkNAEZRdHIYdY3Isqif6s1AE3fvYWZtgb3cPc7uABVdtvNt\nl2QwkO3+y0kO8K7qDgR2SA1ujrpGxJUZqSLcWU9UVDmItYJQTv2B9V5ZiBRMiuZhgrJYlVYJMrMX\n3L13Sdv8SbcDH1uYV8oIXUDj/P9Pcn6bKkktC5XfqYQuENUprPxlu/uHBI8T+kteGS1PJ2TjUWWh\nUJIdHeOIvSJVUYjMAmLL917FzQC2AlLjl5pH67KuItxZl1Jl8/iv6JOiZXVyuOj/fwZh3IATusHF\n1g3Lk53fpkpSy0Ll17GiZECoguq5+3NmdjmAu68xs7ykC1XBJHk/Io7YSQ7wruo2A740s0+j5Y6E\nv8dwAHc/PJvBK8Gd9aoum8d/RZ8ULavnPgtzTKXP8/GQmcUxz0di89tUdZpnofL70Mza6q5WIn61\nMDFYqhvEnoSBZ1Ko8qRQ+GOSHOBd1f0r6QJIhZa1c0+S2fgqiETm+YBE57ep0ipRXUGVhXXYE5hs\nZt9SxWZxrQAuAoYDLc1sLFCf0HdTCg0tfZOsyXpWotIGeEtWjQdWRSkstyN0xxzh7qsTLpdUDFV5\nRt9s36QxwvwmKXkxxEz3CzA1ygal+W1ioJaFyq970gWoqtx9opl1JvSZNELazCpxoWJm91LCzYbU\nSTub+bbN7Hp3/1faci4wyN1PiGLvma3YaTFvA24kTAr2BmF+k7+7+5PZji2MBvaNcry/BYwj5No/\nIdFSSSzM7KIMq5cBE9x9srufF3eZ4hJl/1nl7vnRcg5Qw91XRptcmuUiJD3Ph+a3iZkGOFdyag5N\njpltQmhd2NrdzzCz1mbWxt1fTbpsMRgf/exEmGPi2Wi5D/H1426eSs1qZhsTxg3EmWseoKu7/9PM\njgRmA0cRLmJVWcg+c/eVZnYacL+732ZmU5IulMSmQ/RIpQ7vCXxGSKE71N1vS6xk2TcKOJhwhx1g\nE0KFeW8Ad38rm8GTnuejAmSDqnI0wFnkj3uMMCHPXtHyXEK3mw2+spA6WZvZ2cA+7r4mWn4QGBNT\nMfoCQ6IB5gcAr7v7XTHFTkmdlw4Fhrr7sjBnk8TAzGwvQkvCadG6nATLI/FqBrR391+gYFbf14D9\nCOflDbmyUCP1vgHc/Zfo5lVskpznowyymg2qKqpM3ZD0JSAVTcvo7tVqgKgJuKpdKW4BpM+UXCta\nlzVm1t7M2hNm8Lyb0PXkG2B0tD5Or5rZV8BuwCgzqw/8FnMZqqr+wOXAS+7+hZltC7ybcJkkPg1I\nm1uIcB5u6O6riq3fEP2afq4zs90IXSElqESXtpWD/4FHUtSyIBXN72ZWk8JsSC3Z8L+kirsFmGRm\n7xIqSvsB12Y55u3Fln8mdIW6nfC3OHCtPbLE3S+Lxi0si7J0rAR6pZ6PZhRWer8scPfRhC5fqeVZ\nQMEARzO7193PT6JsEoshhH7zL0fLhwFPRf35N/TsgBcCQ81sHuG824hw00QkKypTy4J5ZRphIRu8\naPBADqIAAAzJSURBVFKYqwgXqm8R+u//zd3fS7JccTOzRoRJigA+cfcFSZanIjGzie4ed2uHoM++\nKjCzDoTzLsBYdx9f0vYbEjOrTkiuAVUouUZZmNkkd9816XJsSPrW61/uC/CBi+9OpKeFWhakojmF\n0Ef2ecLMvf3dfXGyRYqHmW3v7l+lNYX/EP1sYmZNov6s2S5Df8K4kRXAI0B74LJsD+4rp6rWLU0k\nFmZ2D/CMu9+ddFnikprsMYPtzEyTQBbKdjaoKkcDnEX+uEeBfYEuQEtCd5zRVeTL6yKgH4Vdf1KM\n+LoC9XX3u82sG1AXOAkYTGjlqSjUHCqSHROAq8ysDfASoeKwobcsHFbCcxv8JJBmNpWSU3bvHP2s\nSN8BEjNVFqRCcfd3zWw00JGQjecs4C+EQbcbNHfvF/16CHAOIYWeEzIhPRBTMVJ37Q8hzK/whSkV\nkRTS/8IGLMrI9oSZbQn0Bm41s63cvXXCRcsaTQJJz+jnudHPwdFPza2SZZVpzIIqC1KhmNkoYFPC\nNPdjgI7u/mOypYrdE8By4J5o+XhgEHBMDLEnmNlbwDbA5Wa2GRWvtXR20gXY0JlZLQjpI4s9tcFX\n2gWAVoTZu7cGvky4LLGI5pXpDbQg7drI3a9PqkxxSM0rFSWOSB+TcJmZTQQuS6ZkG75KVFdQZUEq\nnM8IKTN3JMwcutTMPopS91UVO7p727Tld80srkwkpwG7ANUJkzPVAx6PKTZQMMjwbEIWKID3gQdT\ngw3dfV19jOVPMrOdCBXTLcOiLQJOcffPAdz98QSLJ1kWZSE7EpgJPAPc4O5Lky1VbF4mmq2aqpeB\nD8Lx3sndx0YLe6P0+lmllgWRP8jd/w4Q3dH+G2GwbSNg4wSLFbeJZranu38MYGZ7UDi7c7b1JeTa\nbwZMBvYktPLcG1N8CF2uqgP3R8snRetOj7EMVdVDwEXu/i6Ame0PPEw0i61s8GYS/tbbEs65O0eD\nfEeXvNsGoZm7d0+6EAk6DRhoZrUJ3Q1/JnwfSJZkKxmpmXUntALnAgPc/ZZiz59AGLBuhGQmZ7v7\nlJJeU5UFqVDM7DzCAOfdCN1NBhLf7MWJShtoVh340My+j5a3Br6KqRj9CeNFPnb3A8xse+DmmGKn\ndHT3dmnL75hZiScyWW82TVUUANz9vSjHvlQN+cA7rH2zILZ5VhL0oZnt5O5Tky5IEtx9AtAuqizg\n7ssSLtIGLxv9e80sF/gfIUnMHGCcmQ139/TeCd8Cnd39ZzPrQbghtMfar1ZIlQWpaGoAdwAT3H1N\n0oWJWc/SN8m639z9NzPDzDaOUrm2KX239SrPzFq6+0yAaBbhvJjLUFXNMrOrKRzkeCIhhbFUDReQ\n/M2CWKXdpKnG/7d3t6GWlVUAx/9LK6kwp6wkfCmtwZCQslGnlEAj0EBsMMkkDRuwKQYFoQiKxpdP\nihWJlU1paW+jH9ImSkVosHF8QceGSksZBWukTzY5Nr7kzFl92Ps4Zy577txzuXs/95z9/w2be55z\n9t1nMXA5Z+31POuBiyLiaappSAHksBvQtKuThDXU0z8j4l7gSpOG9gzaKS2cBGytN9QkItZRbWr6\nWrKQmfePnP8g1c2BWZksaFHJzGtLx1DKcKFZYdsiYglwB3BPRGwHuo7rK1TrNIZfUt8D9L1jSVe+\nAFzBnnaRG3EqQp8shpsFXRu9SfNWqso2VDuZ92W9BlRV/L+yp5HGBVTTgF0j1pKWZiEdzp49mqCq\nLsxWNVgJ3Lm/i5osSHpNZq6oH14eERuAQ4C7Og5jE9Xc+Y9TfVjfTTUVQi3LzO3AJfVdxkFmvlA6\nJnVqMdws6NRIN6BLqdZF/ZqqqvAzqo0pu1yvVdJ7M/OckfEVEbGlWDQ9MJ8FzhFxMdV+TENrM3Pt\nfN4/Ik6jShZO3d+5JguSGmXmvYXe+haq1rFX1ePzqT64zy0UT29ExIlUdxgPrsfPU23Ut7loYOrE\nIrlZUMpKYHlm7gSIiKvpvrlDSS9FxKmZeR9ARJwC9KkLYedyHrWFOjGYLTl4FjhyZHxE/dxeIuJ4\n4MfAmZn53P7e12RB0mJTsnVs390IfDkzNwJExKlUUxF6MW9bexS8WVBKsPfaqN30axPCL1FtyDfs\nhvRvqo6EaklLrVMfBpZGxNFUScJ5VDfcXhMRR1FV0C7IzCfnclGTBUmLTcnWsX23e5goAGTmfRHR\nt0YD6qefAA9FxO31+FNUyXMvZOYWqm5Ib6nHOwqHNPXa6IaUmbvqrpJ3U7VOvSkzH4uIVfXrNwDf\nBA4Fvh8RALsyc9ls141sq9GrJI1hRuvYY4G9WsfOqDZoAUXECfXDC4E3Ar+i+r//DNWi18tKxSZ1\npf47GM7f3piZfyoZTxci4nOZ+fOIaPwbz8xvdx1TX5x18Oqxv4D/9oXri1S7rCxIWiwWQ+vYvvrW\njPGakcfeUVIvZOajwKOl4+jYcB+Vg4tG0UNtVBbaYrIgaVFYJK1jeykzT5vLeRHx+cy8ue14JHUj\nM39Yb+S1IzO/UzqePpmkmT0HlA5AkjQxLi0dgKSFlZm7gc+WjqNvBvM4SrGyIEmaqz51h5H6ZFNE\nXA/cCuwcPllPzVILWtrBuRUmC5KkuZqcTzdJ4/hg/fPKkecSOL1ALFpkTBYkSXNlZUGaQnNdt6SF\nM59N2UpxzYIkaa42lQ5A0sKLiMMi4saIuLMeHxcRK0vHNc1csyBJmjj76LX+PLA5M7dk5uquY5LU\niZ9SbUz39Xr8JNX6hd5sTNe1gZUFSdIEWgasAg6vjy8CZwA/ioivlgxMUqvenpm3Ud/AzsxdwO6y\nIU23QebYRylWFiRJQ0cAJ2TmfwEiYg3wO+BjwGbgmoKxSWrPzog4lLqJQUQsp6oqqiWTtGbBZEGS\nNPRO4JWR8avAYZn5UkS8so/fkTT5LgPWA8dExCbgHcCny4Y03SZpGpLJgiRp6BfAQxHxm3p8FvDL\niHgz8Hi5sCS17HHgduBF4AXgDqp1C2rJJCULMUnbTUuS2hURy4BT6uGmzHykZDyS2hcRtwE7qG4Y\nAJwPLMnMc8tFNd0+8qaVY38Bf+DFG4u0r7ayIEkCICKuA9Zl5ndLxyKpUx/IzONGxhsiwmpiiyap\nsmA3JEnS0GbgGxHxVERcW1cZJE2/R+tFzQBExMmAVcUWDWIw9lGKlQVJEgCZeTNwc0S8DTgHuDoi\njsrMpYVDk9SuDwP3R8Q/6vFRwBMR8RcgM/P4cqFNp0mqLJgsSJJmeh/wfuDdwN8KxyKpfWeUDqBv\nsuiezOMxWZAkARAR1wArgKeAdcBVmfmfslFJaltmPlM6hr6xsiBJmkRPAR8FjgEOAo6PCDLzj2XD\nkqTpUnINwrhMFiRJQwPgD1Q7OW8BlgMPAKeXDEqSps1ggqYh2Q1JkjR0CXAi8ExmngZ8CHAakiQt\nsME8/pVisiBJGno5M18GiIiDMvPvwLGFY5IkFeQ0JEnS0LaIWALcAdwTEdsBFz5K0gKzG5IkaeJk\n5or64eURsQE4BLirYEiSNJVc4CxJmmiZeW/pGCRpWk3SAmeTBUmSJKlDye7SIcyZyYIkSZLUISsL\nkiRJkhqZLEiSJElq5DQkSZIkSY2sLEiSJElq5D4LkiRJkhoNnIYkSZIkqYmVBUmSJEmNBmllQZIk\nSVIDKwuSJEmSGtk6VZIkSVKjQVpZkCRJktRgkqYhHVA6AEmSJEmLk5UFSZIkqUNpNyRJkiRJTQYT\nNA3JZEGSJEnqULrAWZIkSVKTSWqd6gJnSZIkqUOZg7GPuYiIMyLiiYjYGhFfa3g9IuK6+vU/R8QJ\n+7umlQVJkiSpQ220To2IA4HvAZ8AtgEPR8T6zHx85LQzgaX1cTLwg/rnPllZkCRJkjqUuXvsYw5O\nArZm5tOZ+T9gHXD2jHPOBm7JyoPAkoh412wXNVmQJEmSOjSfaUgRcXFEPDJyXDzjsocD/xwZb6uf\nG/ecvTgNSZIkSerQfKYhZeZaYO3CRzM7kwVJkiSpQy21Tn0WOHJkfET93Ljn7MVpSJIkSVKHksHY\nxxw8DCyNiKMj4g3AecD6GeesBy6suyItB57PzH/NdlErC5IkSVKH5rhgecxr5q6IWA3cDRwI3JSZ\nj0XEqvr1G4DfA58EtgIvAhft77qRmQserCRJkqRmr3/doWN/AX9113PRRiz7Y2VBkiRJ6lBLaxZa\nYbIgSZIkdaiNTdnaYrIgSZIkdcpkQZIkSVKTCZqGZOtUSZIkSY2sLEiSJEkdcs2CJEmSpH0wWZAk\nSZLUZIL2OXNTNkmSJEmNXOAsSZIkqZHJgiRJkqRGJguSJEmSGpksSJIkSWpksiBJkiSpkcmCJEmS\npEYmC5IkSZIamSxIkiRJamSyIEmSJKmRyYIkSZKkRv8HTqMxXMLHyw8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back=1)\n", + "y = y[:,target_index]\n", + "X = np.reshape(X, (X.shape[0], X.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# fit model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mforest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mRandomForestRegressor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_estimators\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mforest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mforest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrees\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 326\u001b[0m verbose=self.verbose, class_weight=self.class_weight)\n\u001b[0;32m--> 327\u001b[0;31m for i, t in enumerate(trees))\n\u001b[0m\u001b[1;32m 328\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 329\u001b[0m \u001b[0;31m# Collect newly grown trees\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 777\u001b[0m \u001b[0;31m# was dispatched. In particular this covers the edge\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0;31m# case of Parallel used with an exhausted iterator.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 779\u001b[0;31m \u001b[0;32mwhile\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatch_one_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 780\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iterating\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 781\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36mdispatch_one_batch\u001b[0;34m(self, iterator)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 624\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 625\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dispatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtasks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 626\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 627\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m_dispatch\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 586\u001b[0m \u001b[0mdispatch_timestamp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[0mcb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBatchCompletionCallBack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdispatch_timestamp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 588\u001b[0;31m \u001b[0mjob\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 589\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jobs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 590\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mapply_async\u001b[0;34m(self, func, callback)\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[0;34m\"\"\"Schedule a func to be run\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 111\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImmediateResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 112\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;31m# Don't delay the application, to avoid keeping the input\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;31m# arguments in memory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36m_parallel_build_trees\u001b[0;34m(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose, class_weight)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0mcurr_sample_weight\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mcompute_sample_weight\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'balanced'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 120\u001b[0;31m \u001b[0mtree\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcurr_sample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 121\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[0mtree\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/tree/tree.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight, check_input, X_idx_sorted)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcheck_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1124\u001b[0;31m X_idx_sorted=X_idx_sorted)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/tree/tree.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight, check_input, X_idx_sorted)\u001b[0m\n\u001b[1;32m 360\u001b[0m min_impurity_split)\n\u001b[1;32m 361\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 362\u001b[0;31m \u001b[0mbuilder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtree_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_idx_sorted\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 363\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_outputs_\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n", + "0. pca 19 (0.453368)\n", + "1. ask_price 7 (0.217941)\n", + "2. ohlc_price 16 (0.075821)\n", + "3. close 13 (0.069535)\n", + "4. period_return 18 (0.064586)\n", + "5. bid_price 6 (0.060840)\n", + "6. oc_diff 17 (0.057908)\n", + "7. month 1 (0.000000)\n", + "8. day 2 (0.000000)\n", + "9. hour 3 (0.000000)\n", + "10. weekday 4 (0.000000)\n", + "11. 5 (0.000000)\n", + "12. low 9 (0.000000)\n", + "13. high 8 (0.000000)\n", + "14. avg_bo_spread 10 (0.000000)\n", + "15. count 11 (0.000000)\n", + "16. open 12 (0.000000)\n", + "17. avg_price 14 (0.000000)\n", + "18. range 15 (0.000000)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAJOCAYAAADGcdzeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xu0pXdd3/HPl5kEJaARMnJJAok1aCMCwhBpizpKkSSg\nQeslqFDxEmMNiosqkVaUWtcCkVovSBohhlYkKDcjjgLaom0VzISGSwLRSUjIhEtGLoqAJiHf/rGf\nwc1kTubMnD2z2ef3eq11VvblOXt/f+dM9ux5n+d5TnV3AAAAABjH3ZY9AAAAAABHlyAEAAAAMBhB\nCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAgCFV1UVV9dPLngMAYBmqu5c9AwCwQqrqhiT3\nTfLpuZsf3N3v38Bj7kjyW9190samW01VdWmSPd39H5c9CwAwBnsIAQCH45u6+55zH4cdgxahqrYu\n8/k3oqq2LHsGAGA8ghAAsDBV9eiq+vOq+lhVvX3a82fffU+rqndX1cer6vqq+qHp9uOS/GGSB1TV\n308fD6iqS6vqP899/o6q2jN3/YaqelZVvSPJJ6pq6/R5r66qvVX13qr60buY9TOPv++xq+onq+qW\nqvpAVT2pqs6uqr+qqo9U1bPnPvdnq+pVVfXKaT1vq6qHzd3/z6vqzdPX4eqq+ub9nvfFVbWzqj6R\n5PuTfHeSn5zW/vvTdhdW1XXT419TVd8y9xjfW1X/p6p+sao+Oq31rLn7711Vv1lV75/uf93cfU+s\nqqum2f68qh46d9+zqurm6TmvrarHruPbDgCsIEEIAFiIqjoxyR8k+c9J7p3k3yd5dVVtmza5JckT\nk3xBkqcl+aWqekR3fyLJWUnefxh7HD05yROSHJ/kjiS/n+TtSU5M8tgkz6iqx6/zse6X5POmz31O\nkt9I8j1JHpnka5L8dFWdOrf9OUl+d1rrbyd5XVUdU1XHTHO8MckXJ3l6kpdX1ZfNfe53Jfn5JPdK\n8t+TvDzJL0xr/6Zpm+um5/3CJM9N8ltVdf+5x/jqJNcmOSHJLyR5aVXVdN//SHKPJF8xzfBLSVJV\nX5XkkiQ/lOQ+Sf5bksur6u7TfBckeVR33yvJ45PcsM6vHQCwYgQhAOBwvG7aw+Rjc3uffE+Snd29\ns7vv6O43JdmV5Owk6e4/6O7reuZPMwsmX7PBOX6lu2/q7k8leVSSbd39n7r71u6+PrOoc+46H+u2\nJD/f3bcluSyz0PLL3f3x7r46yTVJHja3/ZXd/app+/+SWUx69PRxzyTPm+b4n0len1m82uf3uvv/\nTl+nfzjQMN39u939/mmbVyb56yRnzG1yY3f/Rnd/OsnLktw/yX2naHRWkvO7+6Pdfdv09U6S85L8\nt+5+a3d/urtfluQfp5k/neTuSU6vqmO6+4buvm6dXzsAYMUIQgDA4XhSdx8/fTxpuu1BSb59LhR9\nLMljMgsVqaqzquot0+FXH8ssFJ2wwTlumrv8oMwOO5t//mdndgLs9fjwFFeS5FPTfz80d/+nMgs9\nd3ru7r4jyZ4kD5g+bppu2+fGzPY8OtDcB1RVT507tOtjSR6Sz/56fXDu+T85XbxnkpOTfKS7P3qA\nh31Qkmfu9zU6OckDunt3kmck+dkkt1TVZVX1gIPNCQCsJkEIAFiUm5L8j7lQdHx3H9fdz6uquyd5\ndZJfTHLf7j4+yc4k+w5xOtCvPf1EZoc97XO/A2wz/3k3JXnvfs9/r+4+e8MrO7CT912oqrslOSnJ\n+6ePk6fb9nlgkpvXmPtO16vqQZnt3XRBkvtMX6935Z++XnflpiT3rqrj17jv5/f7Gt2ju1+RJN39\n2939mMzCUSd5/jqeDwBYQYIQALAov5Xkm6rq8VW1pao+bzpZ80lJjs3scKS9SW6fToD8jXOf+6Ek\n96mqL5y77aokZ08nSL5fZnuv3JW/TPLx6cTInz/N8JCqetTCVvjZHllV31qz33D2jMwOvXpLkrcm\n+WRmJ4k+pmYn1v6mzA5DW8uHknzJ3PXjMgsye5PZCbkz20PooLr7A5mdpPvXq+qLphm+drr7N5Kc\nX1VfXTPHVdUTqupeVfVlVfUNU7z7h8z2iLpjjacBAFacIAQALER335TZiZafnVnIuCnJTyS5W3d/\nPMmPJvmdJB/N7KTKl8997nuSvCLJ9dOhTA/I7MTIb8/sxMZvTPLKgzz/pzM7afXDk7w3yd8keUlm\nJ2U+En4vyXdmtp6nJPnW6Xw9t2YWgM6aZvj1JE+d1riWl2Z27p6PVdXruvuaJC9M8heZxaKvTPJ/\nD2G2p2R2TqT3ZHYy72ckSXfvSvKDSX5tmnt3ku+dPufuSZ43zfzBzE5G/VOH8JwAwAqp7gPtoQ0A\nwFqq6meTfGl3f8+yZwEAOBz2EAIAAAAYjCAEAAAAMBiHjAEAAAAMxh5CAAAAAIPZuqwnPuGEE/qU\nU05Z1tMDAAAAbDpXXnnl33T3toNtt7QgdMopp2TXrl3LenoAAACATaeqblzPdg4ZAwAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgtyI4dO7Jjx45ljwEAAABw\nUIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMOsKQlV1ZlVdW1W7q+rCNbbZUVVXVdXVVfWnix0TAAAAgEXZerANqmpLkhcleVySPUmuqKrLu/ua\nuW2OT/LrSc7s7vdV1RcfqYEBAAAA2Jj17CF0RpLd3X19d9+a5LIk5+y3zXcleU13vy9JuvuWxY4J\nAAAAwKKsJwidmOSmuet7ptvmPTjJF1XVm6vqyqp66oEeqKrOq6pdVbVr7969hzcxAAAAABuyqJNK\nb03yyCRPSPL4JD9dVQ/ef6Puvri7t3f39m3bti3oqQEAAAA4FAc9h1CSm5OcPHf9pOm2eXuSfLi7\nP5HkE1X1Z0keluSvFjIlAAAAAAuznj2ErkhyWlWdWlXHJjk3yeX7bfN7SR5TVVur6h5JvjrJuxc7\nKgAAAACLcNA9hLr79qq6IMkbkmxJckl3X11V50/3X9Td766qP0ryjiR3JHlJd7/rSA4OAAAAwOFZ\nzyFj6e6dSXbud9tF+11/QZIXLG40AAAAAI6ERZ1UGgAAAIAVIQgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGs64gVFVnVtW1VbW7qi48wP07qupv\nq+qq6eM5ix8VAAAAgEXYerANqmpLkhcleVySPUmuqKrLu/ua/Tb93939xCMwIwAAAAALtJ49hM5I\nsru7r+/uW5NcluScIzsWAAAAAEfKeoLQiUlumru+Z7ptf/+yqt5RVX9YVV9xoAeqqvOqaldV7dq7\nd+9hjAsAAADARi3qpNJvS/LA7n5okl9N8roDbdTdF3f39u7evm3btgU9NQAAAACHYj1B6OYkJ89d\nP2m67TO6+++6+++nyzuTHFNVJyxsSgAAAAAWZj1B6Iokp1XVqVV1bJJzk1w+v0FV3a+qarp8xvS4\nH170sAAAAABs3EF/y1h3315VFyR5Q5ItSS7p7qur6vzp/ouSfFuSH66q25N8Ksm53d1HcG4AAAAA\nDtNBg1DymcPAdu5320Vzl38tya8tdjQAAAAAjoRFnVQaAAAAgBUhCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADCYrcseYFlue+4zF/p4fcN1R+Rxk+SYn3nhwh8TAAAAGJc9hAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwmHUFoao6s6qurardVXXhXWz3qKq6vaq+bXEjAgAAALBIBw1CVbUlyYuSnJXk9CRPrqrT\n19ju+UneuOghAQAAAFic9ewhdEaS3d19fXffmuSyJOccYLunJ3l1klsWOB8AAAAAC7aeIHRikpvm\nru+ZbvuMqjoxybckefFdPVBVnVdVu6pq1969ew91VgAAAAAWYFEnlf6vSZ7V3Xfc1UbdfXF3b+/u\n7du2bVvQUwMAAABwKLauY5ubk5w8d/2k6bZ525NcVlVJckKSs6vq9u5+3UKmBAAAAGBh1hOErkhy\nWlWdmlkIOjfJd81v0N2n7rtcVZcmeb0YBAAAAPC56aBBqLtvr6oLkrwhyZYkl3T31VV1/nT/RUd4\nRgAAAAAWaD17CKW7dybZud9tBwxB3f29Gx8LAAAAgCNlUSeVBgAAAGBFCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEWNOOHTuy\nY8eOZY8BAAAALJggBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEA\nAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEA\nAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAg1lXEKqqM6vq2qra\nXVUXHuD+c6rqHVV1VVXtqqrHLH5UAAAAABZh68E2qKotSV6U5HFJ9iS5oqou7+5r5jb7kySXd3dX\n1UOT/E6SLz8SAwMAAACwMevZQ+iMJLu7+/ruvjXJZUnOmd+gu/++u3u6elySDgAAAACfk9YThE5M\nctPc9T3TbZ+lqr6lqt6T5A+SfN+BHqiqzpsOKdu1d+/ew5kXAAAAgA1a2Emlu/u13f3lSZ6U5OfW\n2Obi7t7e3du3bdu2qKcGAAAA4BCsJwjdnOTkuesnTbcdUHf/WZIvqaoTNjgbAAAAAEfAeoLQFUlO\nq6pTq+rYJOcmuXx+g6r60qqq6fIjktw9yYcXPSwAAAAAG3fQ3zLW3bdX1QVJ3pBkS5JLuvvqqjp/\nuv+iJP8myVOr6rYkn0rynXMnmQYAAADgc8hBg1CSdPfOJDv3u+2iucvPT/L8xY4GAAAAwJGwsJNK\nAwAAALAaBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAwGEEIAAAAYDCC\nEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAwGEEIAAAAYDCC\nEAAAAMBgBCEAAACAwWxd9gCbxR8/7TuWPQIAAADAuthDCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACD2brsAVic2577zIU+Xt9w3RF53CQ55mdeuPDHBAAAANbHHkIAAAAAgxGEAAAAAAYjCAEAAAAM\nRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAg1lXEKqqM6vq2qraXVUX\nHuD+766qd1TVO6vqz6vqYYsfFQAAAIBFOGgQqqotSV6U5Kwkpyd5clWdvt9m703ydd39lUl+LsnF\nix4UAAAAgMVYzx5CZyTZ3d3Xd/etSS5Lcs78Bt3959390enqW5KctNgxAQAAAFiU9QShE5PcNHd9\nz3TbWr4/yR8e6I6qOq+qdlXVrr17965/SgAAAAAWZqEnla6qr88sCD3rQPd398Xdvb27t2/btm2R\nTw0AAADAOm1dxzY3Jzl57vpJ022fpaoemuQlSc7q7g8vZjwAAAAAFm09ewhdkeS0qjq1qo5Ncm6S\ny+c3qKoHJnlNkqd0918tfkwAAAAAFuWgewh19+1VdUGSNyTZkuSS7r66qs6f7r8oyXOS3CfJr1dV\nktze3duP3NgAAAAAHK71HDKW7t6ZZOd+t100d/kHkvzAYkcDAAAA4EhY6EmlAQAAAPjcJwgBAAAA\nDEYQAgAAABiMIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAA\nDEYQAgAAABiMIMRwduzYkR07dix7DAAAAFgaQQgAAABgMIIQAAAAwGAEIQAAAIDBCEKwCTgvEgAA\nAIdCEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAABiMIAQAA\nAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQsDnpB07dmTHjh3LHgMAAGBT\nEoQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghDAUbIZf3PaZlwTAACMQBACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBrCsIVdWZVXVtVe2uqgsPcP+XV9VfVNU/VtW/\nX/yYAAAAACzK1oNtUFVbkrwoyeOS7ElyRVVd3t3XzG32kSQ/muRJR2RKAAAAABbmoEEoyRlJdnf3\n9UlSVZclOSfJZ4JQd9+S5JaqesIRmZKl+OOnfceyRwAAAACOgPUcMnZikpvmru+ZbjtkVXVeVe2q\nql179+49nIcAAAAAYIOO6kmlu/vi7t7e3du3bdt2NJ8aAAAAgMl6gtDNSU6eu37SdBsAAAAAK2g9\nQeiKJKdV1alVdWySc5NcfmTHAgAAAOBIOehJpbv79qq6IMkbkmxJckl3X11V50/3X1RV90uyK8kX\nJLmjqp6R5PTu/rsjODsAAAAAh2E9v2Us3b0zyc79brto7vIHMzuUDAAAAIDPcUf1pNIAAAAALJ8g\nBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwg\nBAAAADAYQQgAAABgMIIQAAAAwGC2LnsAuCu3PfeZC3/MvuG6I/LYx/zMCxf6eAAAAHCk2EMIAAAA\nYDCCEAAAAMBgBCEAAACAwTiHECzBos9f5LxIAAAAHAp7CAEAAAAMRhACAAAAGIwgBAAAADAY5xAC\nFsJ5kQAAAFaHPYQAAAAABiMIAQAAAAzGIWMAa3AYHAAAsFnZQwgAAABgMPYQAhiIvZ4AAIDEHkIA\nAAAAwxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGDWFYSq6syquraq\ndlfVhQe4v6rqV6b731FVj1j8qAAAAAAswkGDUFVtSfKiJGclOT3Jk6vq9P02OyvJadPHeUlevOA5\nAQAAAFiQ9ewhdEaS3d19fXffmuSyJOfst805Sf57z7wlyfFVdf8FzwoAAADAAlR33/UGVd+W5Mzu\n/oHp+lOSfHV3XzC3zeuTPK+7/890/U+SPKu7d+33WOdltgdRHvjABz7yxhtvXORaYF127NiRJHnz\nm9+81DkWyZpWgzUBAABHWlVd2d3bD7bdUT2pdHdf3N3bu3v7tm3bjuZTAwAAADBZTxC6OcnJc9dP\nmm471G0AAAAA+BywniB0RZLTqurUqjo2yblJLt9vm8uTPHX6bWOPTvK33f2BBc8KAAAAwAJsPdgG\n3X17VV2Q5A1JtiS5pLuvrqrzp/svSrIzydlJdif5ZJKnHbmRAQAAANiIgwahJOnunZlFn/nbLpq7\n3El+ZLGjAQAAAHAkHNWTSgMAAACwfIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAM\nRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBbF32AAAH8uY3v3nZIyzcZlwTAACw\nmgQhhuMf5QAAAIzOIWMAAAAAgxGEAAAAAAbjkDEADptDMAEAYDXZQwgAAABgMPYQgk3AXhoAAAAc\nCnsIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBlPdvZwnrtqb5MalPPmRc0KSv1n2EAu2GdeUbM51WdNqsKbVYE2rYzOuy5pWgzWtBmtaHZtxXda0\nGjbjmh7U3dsOttHSgtBmVFW7unv7sudYpM24pmRzrsuaVoM1rQZrWh2bcV3WtBqsaTVY0+rYjOuy\nptWwGde0Xg4ZAwAAABiMIAQAAAAwGEFosS5e9gBHwGZcU7I512VNq8GaVoM1rY7NuC5rWg3WtBqs\naXVsxnVZ02rYjGtaF+cQAgAAABiMPYQAAAAABiMIAQAAAAxGEDpMVXVJVd1SVe+au+1hVfUXVfXO\nqvr9qvqCZc64EVX1ZVV11dzH31XVM5Y916E60Pdpuv3pVfWeqrq6qn5hWfMdrjX+/P1cVb1j+n69\nsaoesMwZD9Uaa3p4Vb1lWtOuqjpjmTNuVFUdX1Wvmv7svbuq/sWyZzpUa3yfXjn3WnFDVV21zBk3\nYq3XjFVWVSdX1f+qqmum17wfW/ZMG1VVn1dVf1lVb5/W9Nxlz7QoVbWlqv5fVb1+2bMsyvS68M59\nr+XLnmd7JX2wAAAISUlEQVSjqurHqupd05+9lXtvtJaq+vFpTe+qqldU1ecte6ZDtcbfUfeuqjdV\n1V9P//2iZc54qNZY07dP36s7qmrlflX2Gmt6wfT+6B1V9dqqOn6ZMx6Ou3oPUVXPrKquqhOWMdvh\nWuN79bNVdfPce7+zlznjRlTVmVV1bVXtrqoLlz3PMghCh+/SJGfud9tLklzY3V+Z5LVJfuJoD7Uo\n3X1tdz+8ux+e5JFJPpnZmlbNpdnv+1RVX5/knCQP6+6vSPKLS5hroy7Nnf/8vaC7Hzp9z16f5DlH\nfaqNuTR3XtMvJHnutKbnTNdX2S8n+aPu/vIkD0vy7iXPczguzX7fp+7+zrnXi1cnec0yBluQS3Pn\nP4er7vYkz+zu05M8OsmPVNXpS55po/4xyTd098OSPDzJmVX16CXPtCg/ltV8bTiYr59eJ1buH6/z\nquohSX4wyRmZvY4/saq+dLlTbVxVnZjkR5Ns7+6HJNmS5NzlTnVYLs2dX8MvTPIn3X1akj+Zrq+S\nS3PnNb0rybcm+bOjPs1iXJo7r+lNSR7S3Q9N8ldJfupoD7UAl+YA7yGq6uQk35jkfUd7oAW4NAd+\nX/RL+977dffOozzTQlTVliQvSnJWktOTPHkTvD86ZILQYeruP0vykf1ufnD+6YX5TUn+zVEd6sh5\nbJLruvvGZQ9yqNb4Pv1wkud19z9O29xy1AfboAOtq7v/bu7qcUlW6ozxa3yvOsm+Pe2+MMn7j+pQ\nC1RVX5jka5O8NEm6+9bu/thypzp0a3yfkiRVVUm+I8krjupQC3RX61tV3f2B7n7bdPnjmcWGE5c7\n1cb0zN9PV4+ZPlbqNe9AquqkJE/I7AdMfG7650ne2t2f7O7bk/xpZv8w3wy2Jvn8qtqa5B5Zwb9z\n13gNPyfJy6bLL0vypKM61Aat8Z7v3d197ZJG2rA11vTG6f+pJHlLkpOO+mAbdBfvIX4pyU9mBf+e\n2ozvi+ackWR3d1/f3bcmuSyz14uhCEKLdXX+6Q/Rtyc5eYmzLNK5WeF/4B3Ag5N8TVW9tar+tKoe\nteyBFqWqfr6qbkry3Vm9PYQO5BlJXjCt6Rezmj8t2ufUJHuT/OZ0OMhLquq4ZQ+1YF+T5EPd/dfL\nHoQDq6pTknxVkrcud5KNmw6tuirJLUne1N0rv6Yk/zWzfzTcsexBFqyT/HFVXVlV5y17mA16V2bv\nIe5TVfdIcnY2wfu97r45s79n35fkA0n+trvfuNypFua+3f2B6fIHk9x3mcOwLt+X5A+XPcQiVNU5\nSW7u7rcve5YFe/p0eN8lq3YY5pwTk9w0d31PVvwHZodDEFqs70vy76rqyiT3SnLrkufZsKo6Nsk3\nJ/ndZc+yQFuT3DuzQyd+IsnvTHs2rLzu/g/dfXKSlye5YNnzLMAPJ/nxaU0/nmnvmhW1Nckjkry4\nu78qySeyerutH8yTs7ni8aZSVffM7JC+Z+y3R+FK6u5PT4cpnpTkjOlQnpVVVU9Mckt3X7nsWY6A\nx0zfq7MyO2Txa5c90OHq7ncneX6SNyb5oyRXJfn0UodagOkfdOdk9sOLByQ5rqq+Z7lTLV53d1Zw\nL42RVNV/yOxQ55cve5aNmqLxs7M5fkg778VJviSzQ7Y/kOSFyx2HjRCEFqi739Pd39jdj8zsH0XX\nLXumBTgrydu6+0PLHmSB9iR5zXTIwV9m9pPYlTrB2zq8PJvjkMV/m386H83vZrZr56rak2TP3F4M\nr8osEG0K0yEG35rklcuehTurqmMyi0Ev7+5VPsfTnUyHXv6vrP65n/5Vkm+uqhsy2239G6rqt5Y7\n0mJMe5/sO0T7tVnt1/J090u7+5Hd/bVJPprZ+U5W3b9O8t7u3tvdt2X2d++/XPJMi/Khqrp/kkz/\nXblTBYyiqr43yROTfPcU71bdP8sssr59em0/Kcnbqup+S51qg7r7Q9MPZe5I8htZ3df0m/PZe3ie\nNN02FEFogarqi6f/3i3Jf0xy0XInWojN+BP/1yX5+iSpqgcnOTbJ3yx1ogWoqtPmrp6T5D3LmmWB\n3p/k66bL35BkZQ9F6u4PJrmpqr5suumxSa5Z4kiL9q+TvKe79yx7ED7btAfkS5O8u7v/y7LnWYSq\n2rbvN9BU1ecneVxW/DWvu3+qu0/q7lMyO1T7f3b3yu+hUVXHVdW99l3O7MSqK/1b/Obe7z0wsxD+\n28udaCHel+TRVXWP6TXjsdk8Jze/PLMfMGX67+8tcRbWUFVnZnbI7Dd39yeXPc8idPc7u/uLu/uU\n6bV9T5JHTO8JV9a+wDr5lqzua/oVSU6rqlOno2LOzez1Yihblz3AqqqqVyTZkeSEqtqT5GeS3LOq\nfmTa5DVJfnNJ4y3E9MbtcUl+aNmzHK41vk+XJLlk+vWJtyb5t6v2U4g11nX2FBvuSHJjkvOXN+Gh\nW2NNP5jkl6e9T/4hyaqfe+LpSV4+/aVzfZKnLXmeQ3ag71N3vzSb5Fxjd7G+VfavkjwlyTunc+4k\nybNX9beCTO6f5GXTbwi5W5Lf6e5N82vaN5n7JnntdGT21iS/3d1/tNyRNuzVVXWfJLcl+ZFV/AUB\n++vut1bVq5K8LbPDdf5fkouXO9WhW+O9xPMyOz3A92f2/ug7ljfhoVtjTR9J8qtJtiX5g6q6qrsf\nv7wpD80aa/qpJHdP8qbp9eIt3b3y72VX/T3EGt+rHVX18MwOv7whK/pvxe6+vaouSPKGzH6z4iXd\nffWSxzrqasX+HQwAAADABjlkDAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAACA/9+OHQgA\nAAAACPK3HuTCiBkhBAAAADAjhAAAAABmAsSSvmEJzLbbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1]\n", + "\n", + "column_list = df.columns.tolist()\n", + "print(\"Feature ranking:\")\n", + "for f in range(X.shape[1]-1):\n", + " print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + "\n", + "# Plot the feature importances coming from the forest of decision trees\n", + "plt.figure(figsize=(20,10))\n", + "plt.title(\"Feature importances\")\n", + "plt.bar(range(X.shape[1]), importances[indices],\n", + " color=\"salmon\", yerr=std[indices], align=\"center\")\n", + "plt.xticks(range(X.shape[1]), indices)\n", + "plt.xlim([-1, X.shape[1]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mitem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill_between\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'low'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'high'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# plot first 200 entries\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(*args, **kw)\u001b[0m\n\u001b[1;32m 251\u001b[0m \"\"\"\n\u001b[1;32m 252\u001b[0m \u001b[0;32mglobal\u001b[0m \u001b[0m_show\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_show\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 254\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/ipykernel/pylab/backend_inline.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(close, block)\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfigure_manager\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGcf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_all_fig_managers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0mdisplay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0mshow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_to_draw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/display.py\u001b[0m in \u001b[0;36mdisplay\u001b[0;34m(include, exclude, metadata, transient, display_id, *objs, **kwargs)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[0mpublish_display_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetadata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 301\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 302\u001b[0;31m \u001b[0mformat_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmd_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minclude\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mexclude\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 303\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mformat_dict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0;31m# nothing to display (e.g. _ipython_display_ took over)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mformat\u001b[0;34m(self, obj, include, exclude)\u001b[0m\n\u001b[1;32m 169\u001b[0m \u001b[0mmd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 171\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 172\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 173\u001b[0m \u001b[0;31m# FIXME: log the exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mcatch_format_error\u001b[0;34m(method, self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 213\u001b[0m \u001b[0;34m\"\"\"show traceback on failed format call\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 215\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 216\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 217\u001b[0m \u001b[0;31m# don't warn on NotImplementedErrors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0;31m# Finally look for special method names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_real_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36m\u001b[0;34m(fig)\u001b[0m\n\u001b[1;32m 235\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 236\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'png'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 237\u001b[0;31m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'png'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 238\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'retina'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m'png2x'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mretina_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, **kwargs)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0mbytes_io\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBytesIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 121\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 122\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)\u001b[0m\n\u001b[1;32m 2198\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2199\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2200\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 2201\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2202\u001b[0m \u001b[0mbbox_inches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_tightbbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mprint_png\u001b[0;34m(self, filename_or_obj, *args, **kwargs)\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mprint_png\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename_or_obj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 545\u001b[0;31m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 546\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0moriginal_dpi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 463\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 464\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 465\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 466\u001b[0m \u001b[0mRendererAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrelease\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1143\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1144\u001b[0;31m renderer, self, dsu, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1145\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1146\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, dsu, suppress_composite)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2424\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2426\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2428\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, dsu, suppress_composite)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 481\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlegendPatch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 482\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 483\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_legend_box\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 484\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'legend'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/offsetbox.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 280\u001b[0m renderer)\n\u001b[1;32m 281\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 282\u001b[0;31m \u001b[0mpx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_offset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 283\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 284\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_visible_children\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffsets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/offsetbox.py\u001b[0m in \u001b[0;36mget_offset\u001b[0;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[1;32m 219\u001b[0m \"\"\"\n\u001b[1;32m 220\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36m_findoffset_best\u001b[0;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[1;32m 432\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_findoffset_best\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 433\u001b[0m \u001b[0;34m\"Helper function to locate the legend at its best position\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 434\u001b[0;31m \u001b[0mox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_find_best_position\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 435\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mox\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36m_find_best_position\u001b[0;34m(self, width, height, renderer, consider)\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0;31m# take their into account when checking vertex overlaps in\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 949\u001b[0m \u001b[0;31m# the next line.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 950\u001b[0;31m \u001b[0mbadness\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_contains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mverts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 951\u001b[0m \u001b[0mbadness\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_contains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moffsets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 952\u001b[0m \u001b[0mbadness\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_overlaps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbboxes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/transforms.py\u001b[0m in \u001b[0;36mcount_contains\u001b[0;34m(self, vertices)\u001b[0m\n\u001b[1;32m 658\u001b[0m \u001b[0mdy0\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0my0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 659\u001b[0m \u001b[0mdx1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mx1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 660\u001b[0;31m \u001b[0mdy1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 661\u001b[0m \u001b[0minside\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdx0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdx1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdy0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdy1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 662\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minside\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low',y2='high', data=df, alpha=0.4)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low', y2='high', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close')\n", + "high_index = df.columns.tolist().index('high')\n", + "low_index = df.columns.tolist().index('low')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Create y_scaler to inverse it later\n", + "y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + "t_y = df['close'].values.astype('float32')\n", + "t_y = np.reshape(t_y, (-1, 1))\n", + "y_scaler = y_scaler.fit(t_y)\n", + " \n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back=1)\n", + "y = y[:,target_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 98% training / 1% development / 1% test sets\n", + "train_size = int(len(X) * 0.99)\n", + "trainX = X[:train_size]\n", + "trainY = y[:train_size]\n", + "testX = X[train_size:]\n", + "testY = y[train_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_9 (LSTM) (None, 1, 20) 3360 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 1, 20) 3280 \n", + "_________________________________________________________________\n", + "lstm_11 (LSTM) (None, 1, 10) 1240 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 1, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 4) 240 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 4) 20 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 5 \n", + "=================================================================\n", + "Total params: 8,145\n", + "Trainable params: 8,145\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "\n", + "# create a small LSTM network\n", + "model = Sequential()\n", + "model.add(LSTM(20, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(4, return_sequences=False))\n", + "model.add(Dense(4, kernel_initializer='uniform', activation='relu'))\n", + "model.add(Dense(1, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.02140, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.02140 to 0.00056, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.00056 to 0.00035, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.00035 to 0.00024, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error improved from 0.00024 to 0.00011, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00005: val_mean_squared_error improved from 0.00011 to 0.00006, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00006: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00007: val_mean_squared_error improved from 0.00005 to 0.00003, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00003 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00018: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00019: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "Epoch 00022: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "Epoch 00024: val_mean_squared_error improved from 0.00002 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error did not improve\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error did not improve\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error did not improve\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error did not improve\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error did not improve\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error did not improve\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error did not improve\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error did not improve\n", + "CPU times: user 16min 23s, sys: 1min 23s, total: 17min 46s\n", + "Wall time: 15min 1s\n" + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training.\n", + "simname = \"bm_kaggle_4\"\n", + "from keras.callbacks import ModelCheckpoint\n", + "checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "callbacks_list = [checkpoint]\n", + "%time history = model.fit(trainX, trainY, epochs=100, batch_size=10000, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPYAAAJcCAYAAABwybgsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X2U5XddJ/j3p2/VTd8bQhKSBicJ\nmnZFTjIwE7CJIA+DwyAJCMHlQR7iiuue4BndcfcIY3wAhNnZkz0zKqKg4pgZHQTMwKDM0gwBJwwq\nMKaJGUxIIIET6U5c0hPIY1VSVd3f/aNuJdWV6u5boe/9Vader3Pq5P4e7/sS/sp5n8+nWmsBAAAA\nAAAAAAA2l21dBwAAAAAAAAAAAB5OsQcAAAAAAAAAADYhxR4AAAAAAAAAANiEFHsAAAAAAAAAAGAT\nUuwBAAAAAAAAAIBNSLEHAAAAAAAAAAA2IcUeAAAAADpTVbdU1T/pOgcAAADAZqTYAwAAAAAAAAAA\nm5BiDwAAAADHRFXNbMYMG821GX4HAAAAQKLYAwAAADC20dqoN1fVF6vqvqr6/ap6QlV9vKruqapP\nVdWpo3ufWVWfrao7q+q/V9XzV73nJ6rqhtEzX6uqN6669vyq2ldVP1dVt1fV31XVT4yR7cVV9aXR\nO2+tqjetuvbm0Xtuq6r/tapaVX3P6Nqnq+p/W3XvG6rqL1Yd/0ZV7a2qu6vqC1X13FXXfqWqPlRV\n76uqu5O8oaq2VdWlVfXVqrqjqq6oqseteubHqupvR9d+acz/3Q/7zqo6e/R7frKqvp7kv6x3bnTv\ny6rq+tG/k09X1Tlr/t3+fFV9Mcl9yj0AAADAZqDYAwAAALAxr0jywiTfm+SlST6e5BeT7Mjyf2v5\nZ1V1ZpKPJfm/kjwuyZuSfLiqdozecXuSH07y2CQ/keTXq+rpq77jO5KcnOTMJD+Z5N0rhaEj+P0k\nb2ytnZTkKXmozHLB6PtfmORJSf7JBn/v1UnOG/2O9yf5D1W1fdX1i5J8KMkpSf4oyf+e5OVJ/lGS\nM5J8K8m7R1nOTfLbSX5sdO20JGeNkeGw71zlHyU5J8mL1jtXVd+b5ANJ/o8s/7vaneQ/VVV/1f2v\nTfKSJKe01pbGyAUAAAAwUYo9AAAAABvzm621b7TWbk3y50n+W2vtr1tr9yf5SJKnJbk4ye7W2u7W\n2sHW2ieT7Eny4iRprX2stfbVtuy/JrkyyXNXfcdikne01hZba7uT3JvkyUfJtZjk3Kp6bGvtW621\na0bnX53k37bWrmut3ZfkVzbyY1tr72ut3dFaW2qt/WqSE9Zk+Vxr7U9Gv3M+yU8l+aXW2r7W2gOj\n73vlaALOK5P8v621z4yuvSXJwTFiHOmdK36ltXbfKMN65340ycdaa59srS0m+ddJBkl+YNX972qt\n7V3zDgAAAIDOKPYAAAAAbMw3Vn2eX+f4MUm+K8mrRiuf7qyqO5M8J8nfS5KqurCqPl9V3xxde3GS\n01e95441E2PmRu89kleM3vO3VfVfq+pZo/NnJNm76r6/HetXjlTVm0Zrw+4aZT15Tda9ax75riQf\nWfW7b0hyIMkT1mYZFY3uGCPGkd55uBxrz52RVb+9tXZwdP3Mo7wDAAAAoDOKPQAAAADH3t4k/761\ndsqqvxNba5dV1QlJPpzliTFPaK2dkuW1UPXtfGFr7erW2kVJHp/kT5JcMbr0d0meuOrW71zz6H1J\nhquOv2PlQ1U9N8k/z/LUn1NHWe9ak7Wted/eJBeu+e3bRxOODslSVcMsr+M6miO983A51p67LcsF\noZXvrlGWo70DAAAAoDOKPQAAAADH3vuSvLSqXlRVvaraXlXPr6qzkvSzvM5qf5KlqrowyQ99O19W\nVf2qen1VnTxaM3V3HlpxdUWSN1TVuaMizdvWPH5tkv+5qoZV9T1JfnLVtZOSLI2yzlTVW5M89ihx\nfifJv6yq7xpl21FVF42ufSjJD1fVc6qqn+QdGe+/Tx3pneO6IslLquoFVTWb5OeSPJDksxt8DwAA\nAMDUKPYAAAAAHGOttb1JLkryi1kuxexN8uYk21pr9yT5Z1kumnwryeuSfPQYfO2PJbmlqu5O8lNJ\nXj/K8vEk70zyX5LcPPrnar+eZCHLK8X+IMkfrbr2iST/OclXsrzG6v4cfV3Vb2T591xZVfck+XyS\n7x9luT7JTyd5f5an93wryb4xftth3zmu1tqXk1yc5DeT/I8kL03y0tbawkbeAwAAADBN1ZoJwwAA\nAABbSVW1JE9qrd3cdRYAAAAADs/EHgAAAAAAAAAA2IQUewAAAACOE1V1fVXdu87f67vO9u2qqo8f\n5rf9YtfZAAAAALpiFRcAAAAAAAAAAGxCJvYAAAAAAAAAAMAmNNN1gGPp9NNPb2effXbXMQAAAAAA\nAAAAYF1f+MIX/kdrbcc490682FNVFyT5jSS9JP+mtXbZmuvPS/LOJP8gyWtaax9ade07k/ybJE9M\n0pK8uLV2y+G+6+yzz86ePXuO+W8AAAAAAAAAAIBjoar+dtx7J7qKq6p6Sd6d5MIk5yZ5bVWdu+a2\nryd5Q5L3r/OKP0zyr1pr5yQ5P8ntk0sLAAAAAAAAAACbx6Qn9pyf5ObW2teSpKo+mOSiJF9auWFl\nAk9VHVz94KgANNNa++TovnsnnBUAAAAAAAAAADaNiU7sSXJmkr2rjveNzo3je5PcWVX/sar+uqr+\n1WgC0CGq6pKq2lNVe/bv338MIgMAAAAAAAAAQPcmPbHn2zGT5LlJnpbldV1/nOWVXb+/+qbW2nuT\nvDdJdu3a1da+ZHFxMfv27cv9998/6byd2759e84666zMzs52HQUAAAAAAAAAgG/TpIs9tyZ54qrj\ns0bnxrEvybWr1nj9SZJnZk2x56gv2bcvJ510Us4+++xU1UYePa601nLHHXdk37592blzZ9dxAAAA\nAAAAAAD4Nk16FdfVSZ5UVTurqp/kNUk+uoFnT6mqHaPjf5zkSxsNcP/99+e00057VJd6kqSqctpp\np22JyUQAAAAAAAAAAFvBRIs9rbWlJD+T5BNJbkhyRWvt+qp6R1W9LEmq6hlVtS/Jq5L8blVdP3r2\nQJI3JfmzqvqbJJXk9x5Jjkd7qWfFVvmdAAAAAAAAAABbwaRXcaW1tjvJ7jXn3rrq89VZXtG13rOf\nTPIPJhoQAAAAAAAAAAA2oUmv4iLJnXfemfe85z0bfu7FL35x7rzzzgkkAgAAAAAAAABgs1PsmYLD\nFXuWlpaO+Nzu3btzyimnTCoWAAAAAAAAAACb2MRXcZFceuml+epXv5rzzjsvs7Oz2b59e0499dTc\neOON+cpXvpKXv/zl2bt3b+6///787M/+bC655JIkydlnn509e/bk3nvvzYUXXpjnPOc5+exnP5sz\nzzwzf/qnf5rBYNDxLwMAAAAAAAAAYFK2VLHn7f/p+nzptruP6TvPPeOxedtL//4R77nsssty3XXX\n5dprr82nP/3pvOQlL8l1112XnTt3Jkkuv/zyPO5xj8v8/Hye8Yxn5BWveEVOO+20Q95x00035QMf\n+EB+7/d+L69+9avz4Q9/OBdffPEx/S0AAAAAAAAAAGweW6rYs1mcf/75D5Z6kuRd73pXPvKRjyRJ\n9u7dm5tuuulhxZ6dO3fmvPPOS5J83/d9X2655Zap5QUAAAAAAAAAYPq2VLHnaJN1puXEE0988POn\nP/3pfOpTn8rnPve5DIfDPP/5z8/999//sGdOOOGEBz/3er3Mz89PJSsAAAAAAAAAAN3Y1nWAreCk\nk07KPffcs+61u+66K6eeemqGw2FuvPHGfP7zn59yOgAAAAAAAAAANqMtNbGnK6eddlqe/exn5ylP\neUoGg0Ge8IQnPHjtggsuyO/8zu/knHPOyZOf/OQ885nP7DApAAAAAAAAAACbRbXWus5wzOzatavt\n2bPnkHM33HBDzjnnnI4STd9W+70AAAAAAAAAAMeTqvpCa23XOPdaxQUAAAAAAAAAAJuQYg8AAAAA\nAAAAAGxCij0AAAAAAAAAALAJKfYAAAAAAAAAAMAmpNgDAAAAAAAAAACbkGIPE/XS3/yLvPuqm7uO\nAQAAAAAAAABw3FHsmYI777wz73nPex7Rs+985zszNzd3jBNNz613zufv7prvOgYAAAAAAAAAwHFH\nsWcKtnKxZzDby9zCga5jAAAAAAAAAAAcd2a6DrAVXHrppfnqV7+a8847Ly984Qvz+Mc/PldccUUe\neOCB/MiP/Eje/va357777surX/3q7Nu3LwcOHMhb3vKWfOMb38htt92WH/zBH8zpp5+eq666quuf\nsmHDfi/zij0AAAAAAAAAABu2tYo9H780+f/+5ti+8zuemlx42RFvueyyy3Ldddfl2muvzZVXXpkP\nfehD+au/+qu01vKyl70sn/nMZ7J///6cccYZ+djHPpYkueuuu3LyySfn137t13LVVVfl9NNPP7a5\np2TYN7EHAAAAAAAAAOCRsIpryq688spceeWVedrTnpanP/3pufHGG3PTTTflqU99aj75yU/m53/+\n5/Pnf/7nOfnkk7uOekwMTOwBAAAAAAAAAHhEttbEnqNM1pmG1lp+4Rd+IW984xsfdu2aa67J7t27\n88u//Mt5wQtekLe+9a0dJDy2hv2Z3H7P/V3HAAAAAAAAAAA47pjYMwUnnXRS7rnnniTJi170olx+\n+eW59957kyS33nprbr/99tx2220ZDoe5+OKL8+Y3vznXXHPNw549Hg36vcw9YGIPAAAAAAAAAMBG\nba2JPR057bTT8uxnPztPecpTcuGFF+Z1r3tdnvWsZyVJHvOYx+R973tfbr755rz5zW/Otm3bMjs7\nm9/+7d9OklxyySW54IILcsYZZ+Sqq67q8mc8IsPZXuas4gIAAAAAAAAA2LBqrXWd4ZjZtWtX27Nn\nzyHnbrjhhpxzzjkdJZq+zfZ73/an1+Ujf31rvvgrL+o6CgAAAAAAAABA56rqC621XePcaxUXEzXo\nz2R+0cQeAAAAAAAAAICNUuxhoob9XhYPtCweONh1FAAAAAAAAACA48qWKPY8mtaNHclm/J3Dfi9J\nMrdgag8AAAAAAAAAwEY86os927dvzx133LEpSy/HUmstd9xxR7Zv3951lEMMRsWeecUeAAAAAAAA\nAIANmek6wKSdddZZ2bdvX/bv3991lInbvn17zjrrrK5jHOKhiT1LHScBAAAAAAAAADi+POqLPbOz\ns9m5c2fXMbaswezy/8Ws4gIAAAAAAAAA2JhH/SouunXiCaNVXIuKPQAAAAAAAAAAG6HYw0Q9tIpL\nsQcAAAAAAAAAYCMUe5iolVVc8wtLHScBAAAAAAAAADi+KPYwUSb2AAAAAAAAAAA8Moo9TJRiDwAA\nAAAAAADAI6PYw0QNRsWeecUeAAAAAAAAAIANUexhoob9mSQm9gAAAAAAAAAAbJRiDxPV21bpz2zL\n3MJS11EAAAAAAAAAAI4rij1M3LDfM7EHAAAAAAAAAGCDFHuYuOGsYg8AAAAAAAAAwEYp9jBxg34v\n84tWcQEAAAAAAAAAbIRiDxM37M+Y2AMAAAAAAAAAsEGKPUzcoG8VFwAAAAAAAADARin2MHHDfi/z\nij0AAAAAAAAAABui2MPEDfu9zC0sdR0DAAAAAAAAAOC4otjDxA1mZ0zsAQAAAAAAAADYIMUeJu7E\nE3qZW1TsAQAAAAAAAADYCMUeJm7Q72XOxB4AAAAAAAAAgA1R7GHihrMzWVg6mAMHW9dRAAAAAAAA\nAACOG4o9TNyw30uSzC0sdZwEAAAAAAAAAOD4odjDxA1GxZ5567gAAAAAAAAAAMam2MPEPTSxR7EH\nAAAAAAAAAGBcij1M3Eqx5z6ruAAAAAAAAAAAxqbYw8QN+jNJrOICAAAAAAAAANgIxR4mziouAAAA\nAAAAAICNm3ixp6ouqKovV9XNVXXpOtefV1XXVNVSVb1yneuPrap9VfVbk87KZAxmFXsAAAAAAAAA\nADZqosWequoleXeSC5Ocm+S1VXXumtu+nuQNSd5/mNf8iySfmVRGJm9lYs/84lLHSQAAAAAAAAAA\njh+TnthzfpKbW2tfa60tJPlgkotW39Bau6W19sUkB9c+XFXfl+QJSa6ccE4maNifSWJiDwAAAAAA\nAADARky62HNmkr2rjveNzh1VVW1L8qtJ3nSU+y6pqj1VtWf//v2POCiTM1iZ2KPYAwAAAAAAAAAw\ntkkXe74d/zTJ7tbaviPd1Fp7b2ttV2tt144dO6YUjY1YWcVlYg8AAAAAAAAAwPhmJvz+W5M8cdXx\nWaNz43hWkudW1T9N8pgk/aq6t7V26THOyITN9rZltleKPQAAAAAAAAAAGzDpYs/VSZ5UVTuzXOh5\nTZLXjfNga+31K5+r6g1Jdin1HL+G/ZnMLyx1HQMAAAAAAAAA4Lgx0VVcrbWlJD+T5BNJbkhyRWvt\n+qp6R1W9LEmq6hlVtS/Jq5L8blVdP8lMdGPY75nYAwAAAAAAAACwAZOe2JPW2u4ku9ece+uqz1dn\neUXXkd7x75L8uwnEY0oG/V7mFhV7AAAAAAAAAADGNdGJPbBi2O9l3sQeAAAAAAAAAICxKfYwFcPZ\nmcwtLHUdAwAAAAAAAADguKHYw1QMTOwBAAAAAAAAANgQxR6mYtjvZU6xBwAAAAAAAABgbIo9TMVA\nsQcAAAAAAAAAYEMUe5iK5Yk9S13HAAAAAAAAAAA4bij2MBXD/oyJPQAAAAAAAAAAG6DYw1QMZnt5\nYOlgDhxsXUcBAAAAAAAAADguKPYwFcN+L0kyv2hqDwAAAAAAAADAOBR7mIqVYs/cwlLHSQAAAAAA\nAAAAjg+KPUzFoD+TJJlfMLEHAAAAAAAAAGAcij1MxUMTexR7AAAAAAAAAADGodjDVCj2AAAAAAAA\nAABsjGIPUzG0igsAAAAAAAAAYEMUe5iKhyb2LHWcBAAAAAAAAADg+KDYw1QMRsWe+UUTewAAAAAA\nAAAAxqHYw1Q8NLFHsQcAAAAAAAAAYByKPUzFcHYmiWIPAAAAAAAAAMC4FHuYigdXcS0sdZwEAAAA\nAAAAAOD4oNjDVPRntmVmW5nYAwAAAAAAAAAwJsUepmbQ7yn2AAAAAAAAAACMSbGHqRn2e5mzigsA\nAAAAAAAAYCyKPUzNsD9jYg8AAAAAAAAAwJgUe5iawWwv84o9AAAAAAAAAABjUexhapZXcSn2AAAA\nAAAAAACMQ7GHqRn0e5lbVOwBAAAAAAAAABiHYg9TM+z3Mr+w1HUMAAAAAAAAAIDjgmIPU3Nif8Yq\nLgAAAAAAAACAMSn2MDWDfi/zij0AAAAAAAAAAGNR7GFqhv2eiT0AAAAAAAAAAGNS7GFqBv2ZzC8e\nyMGDresoAAAAAAAAAACbnmIPUzPs95Ik9y+Z2gMAAAAAAAAAcDSKPUzNSrHHOi4AAAAAAAAAgKNT\n7GFqBrPLxZ55xR4AAAAAAAAAgKNS7GFqhv2ZJCb2AAAAAAAAAACMQ7GHqVlZxXXfwlLHSQAAAAAA\nAAAANj/FHqZm0LeKCwAAAAAAAABgXIo9TM3KxB6ruAAAAAAAAAAAjk6xh6l5qNhjFRcAAAAAAAAA\nwNEo9jA1g/5MEqu4AAAAAAAAAADGodjD1AxnreICAAAAAAAAABiXYg9TMxit4ppfVOwBAAAAAAAA\nADgaxR6m5oSZbeltq8wtLHUdBQAAAAAAAABg01PsYWqqKsPZnlVcAAAAAAAAAABjUOxhqgb9XuYV\newAAAAAAAAAAjkqxh6ka9k3sAQAAAAAAAAAYh2IPUzXozyj2AAAAAAAAAACMQbGHqRr2e5lfXOo6\nBgAAAAAAAADApqfYw1RZxQUAAAAAAAAAMB7FHqZqMNvLvGIPAAAAAAAAAMBRKfYwVSb2AAAAAAAA\nAACMR7GHqRr0ZzK3sNR1DAAAAAAAAACATU+xh6kysQcAAAAAAAAAYDyKPUzVsN/L/OKBtNa6jgIA\nAAAAAAAAsKkp9jBVg34vrSX3Lx7sOgoAAAAAAAAAwKam2MNUDWd7SZK5haWOkwAAAAAAAAAAbG4T\nL/ZU1QVV9eWqurmqLl3n+vOq6pqqWqqqV646f15Vfa6qrq+qL1bVj046K5M37M8kSeYWDnScBAAA\nAAAAAABgc5tosaeqekneneTCJOcmeW1Vnbvmtq8neUOS9685P5fkf2mt/f0kFyR5Z1WdMsm8TN7w\nhOWJPfOLij0AAAAAAAAAAEcyM+H3n5/k5tba15Kkqj6Y5KIkX1q5obV2y+jawdUPtta+surzbVV1\ne5IdSe6ccGYmaNhfWcWl2AMAAAAAAAAAcCSTXsV1ZpK9q473jc5tSFWdn6Sf5KvrXLukqvZU1Z79\n+/c/4qBMx2B2ZRXXUsdJAAAAAAAAAAA2t0kXe75tVfX3kvz7JD/RWju49npr7b2ttV2ttV07duyY\nfkA2ZGViz7yJPQAAAAAAAAAARzTpYs+tSZ646vis0bmxVNVjk3wsyS+11j5/jLPRAau4AAAAAAAA\nAADGM+liz9VJnlRVO6uqn+Q1ST46zoOj+z+S5A9bax+aYEamaGBiDwAAAAAAAADAWCZa7GmtLSX5\nmSSfSHJDkitaa9dX1Tuq6mVJUlXPqKp9SV6V5Her6vrR469O8rwkb6iqa0d/500yL5M37M8kSeYW\nljpOAgAAAAAAAACwuc1M+gtaa7uT7F5z7q2rPl+d5RVda597X5L3TTof0/XgKq5FE3sAAAAAAAAA\nAI5k0qu44BAnzGxLlVVcAAAAAAAAAABHo9jDVFVVhrO9zCn2AAAAAAAAAAAckWIPUzfoz2RuYanr\nGAAAAAAAAAAAm5piD1M37JvYAwAAAAAAAABwNIo9TJ1iDwAAAAAAAADA0Sn2MHWDfi/zij0AAAAA\nAAAAAEek2MPULU/sWeo6BgAAAAAAAADApqbYw9QN+zNWcQEAAAAAAAAAHIViD1M37Pcyv6jYAwAA\nAAAAAABwJIo9TN3yKi7FHgAAAAAAAACAI1HsYeoGszOZV+wBAAAAAAAAADgixR6mbnliz1Jaa11H\nAQAAAAAAAADYtBR7mLpBv5eDLXlg6WDXUQAAAAAAAAAANi3FHqZu2O8liXVcAAAAAAAAAABHoNjD\n1K0Ue+YWFXsAAAAAAAAAAA5HsYepG/RnkiTzC0sdJwEAAAAAAAAA2LwUe5i64exoYo9VXAAAAAAA\nAAAAh6XYw9StrOK67wHFHgAAAAAAAACAw1HsYeoGo2LP/KJVXAAAAAAAAAAAh6PYw9QN+zNJrOIC\nAAAAAAAAADgSxR6mbmUVl2IPAAAAAAAAAMDhKfYwdQ+u4lLsAQAAAAAAAAA4LMUepu5Eq7gAAAAA\nAAAAAI5KsYep2z67LVXJ/MJS11EAAAAAAAAAADYtxR6mrqoymO2Z2AMAAAAAAAAAcASKPXRi2O9l\nblGxBwAAAAAAAADgcBR76MSg38u8iT0AAAAAAAAAAIel2EMnhrMzmVtY6joGAAAAAAAAAMCmpdhD\nJwb9XuZM7AEAAAAAAAAAOCzFHjoxtIoLAAAAAAAAAOCIFHvoxNDEHgAAAAAAAACAI1LsoROD/kzm\nFxV7AAAAAAAAAAAOR7GHTgxne5lbWOo6BgAAAAAAAADApqXYQycG/V7mHjCxBwAAAAAAAADgcBR7\n6MSw38vc4oG01rqOAgAAAAAAAACwKSn20Ilhv5cDB1sWDhzsOgoAAAAAAAAAwKak2EMnBv2ZJMn8\ngnVcAAAAAAAAAADrUeyhEyf2e0mSOcUeAAAAAAAAAIB1KfbQiYFiDwAAAAAAAADAESn20ImhVVwA\nAAAAAAAAAEek2EMnhg9O7FnqOAkAAAAAAAAAwOak2EMnHlzFtWhiDwAAAAAAAADAehR76MTKxB6r\nuAAAAAAAAAAA1qfYQyeGszNJkjnFHgAAAAAAAACAdSn20InBgxN7ljpOAgAAAAAAAACwOSn20ImV\nVVwm9gAAAAAAAAAArE+xh04MZhV7AAAAAAAAAACORLGHTmzbVtk+uy3zi4o9AAAAAAAAAADrUeyh\nM8P+TO57YKnrGAAAAAAAAAAAm5JiD50ZzPYybxUXAAAAAAAAAMC6FHvozLDfy5xiDwAAAAAAAADA\nuhR76Myw38vcomIPAAAAAAAAAMB6FHvozKDfy/zCUtcxAAAAAAAAAAA2JcUeOnNif8YqLgAAAAAA\nAACAw1DsoTPLE3sUewAAAAAAAAAA1jPxYk9VXVBVX66qm6vq0nWuP6+qrqmqpap65ZprP15VN43+\nfnzSWZmuYb9nYg8AAAAAAAAAwGFMtNhTVb0k705yYZJzk7y2qs5dc9vXk7whyfvXPPu4JG9L8v1J\nzk/ytqo6dZJ5ma5hfyZzC0tdxwAAAAAAAAAA2JQmPbHn/CQ3t9a+1lpbSPLBJBetvqG1dktr7YtJ\nDq559kVJPtla+2Zr7VtJPpnkggnnZYoG/V7mF03sAQAAAAAAAABYz6SLPWcm2bvqeN/o3DF7tqou\nqao9VbVn//79jzgo0zec7WXxQMvigbWdLgAAAAAAAAAAJl3smbjW2ntba7taa7t27NjRdRw2YNDv\nJUnmFkztAQAAAAAAAABYa9LFnluTPHHV8Vmjc5N+luPAsD+TJJlX7AEAAAAAAAAAeJhJF3uuTvKk\nqtpZVf0kr0ny0TGf/USSH6qqU6vq1CQ/NDrHo8TwwYk9Sx0nAQAAAAAAAADYfCZa7GmtLSX5mSwX\ncm5IckVr7fqqekdVvSxJquoZVbUvyauS/G5VXT969ptJ/kWWy0FXJ3nH6ByPElZxAQAAAAAAAAAc\n3sykv6C1tjvJ7jXn3rrq89VZXrO13rOXJ7l8ogHpzMrEnvlFxR4AAAAAAAAAgLUmvYoLDmul2HPf\nA1ZxAQAAAAAAAACspdhDZwazywOj5q3iAgAAAAAAAAB4GMUeOrMysWdOsQcAAAAAAAAA4GEUe+jM\ng8WeRcUeAAAAAAAAAIC1FHvozPCElVVcSx0nAQAAAAAAAADYfBR76Mxg1iouAAAAAAAAAIDDUeyh\nM71tlRNmtmVesQcAAAAAAAAA4GEUe+jUsN8zsQcAAAAAAAAAYB2KPXRq2J9R7AEAAAAAAAAAWIdi\nD50a9HuZX1zqOgYAAAAAAAAB28ijAAAgAElEQVQAwKaj2EOnrOICAAAAAAAAAFifYg+dGswq9gAA\nAAAAAAAArEexh04N+73MK/YAAAAAAAAAADyMYg+dGvZnMrew1HUMAAAAAAAAAIBNR7GHTg1M7AEA\nAAAAAAAAWJdiD50a9nuZW1TsAQAAAAAAAABYS7GHTg36vcw9oNgDAAAAAAAAALCWYg+dGs7OZOHA\nwSwdONh1FAAAAAAAAACATUWxh04N+70ksY4LAAAAAAAAAGANxR46NTxhudgzv6DYAwAAAAAAAACw\n2ljFnqrqVdX/OekwbD0PTuxR7AEAAAAAAAAAOMRYxZ7W2oEkr51wFragwexMkmRuYanjJAAAAAAA\nAAAAm8vMBu79y6r6rSR/nOS+lZOttWuOeSq2jJWJPVZxAQAAAAAAAAAcaiPFnvNG/3zHqnMtyT8+\ndnHYaqziAgAAAAAAAABY39jFntbaD04yCFvTQLEHAAAAAAAAAGBd28a9sapOrqpfq6o9o79fraqT\nJxmOR79hf7lbNr+41HESAAAAAAAAAIDNZexiT5LLk9yT5NWjv7uT/NtJhGLrsIoLAAAAAAAAAGB9\nY6/iSvI/tdZeser47VV17bEOxNaysoprXrEHAAAAAAAAAOAQG5nYM19Vz1k5qKpnJ5k/9pHYSoaz\nJvYAAAAAAAAAAKxnIxN7firJH1bVyaPjbyX58WMfia1kprct/d42xR4AAAAAAAAAgDXGKvZU1bYk\nT26t/cOqemyStNbunmgytoxBv5f5haWuYwAAAAAAAAAAbCpjreJqrR1M8s9Hn+9W6uFYGvZ7uc/E\nHgAAAAAAAACAQ4xV7Bn5VFW9qaqeWFWPW/mbWDK2jOWJPYo9AAAAAAAAAACrjbWKa+RHR//86VXn\nWpLvPnZx2IqG/V7mrOICAAAAAAAAADjEWMWeqtqW5OLW2l9OOA9b0LA/kzkTewAAAAAAAAAADjHW\nKq7W2sEkvzXhLGxRw34v84uKPQAAAAAAAAAAq41V7Bn5s6p6RVXVxNKwJS2v4lLsAQAAAAAAAABY\nbSPFnjcm+Q9JFqrq7qq6p6runlAutpDB7EzmFXsAAAAAAAAAAA4xM+6NrbWTJhmErWt5Ys9S1zEA\nAAAAAAAAADaVsSf21LKLq+oto+MnVtX5k4vGVmEVFwAAAAAAAADAw21kFdd7kjwryetGx/cmefcx\nT8SWM+j38sDSwRw42LqOAgAAAAAAAACwaWyk2PP9rbWfTnJ/krTWvpWkP5FUbCnDfi9JMr9oag8A\nAAAAAAAAwIqNFHsWq6qXpCVJVe1IcnAiqdhSBv2ZJMncwlLHSQAAAAAAAAAANo+NFHveleQjSR5f\nVf8yyV8k+b8nkootZTg7mtizYGIPAAAAAAAAAMCKmXFvbK39UVV9IckLklSSl7fWbli5XlWnjtZz\nwYasrOKaU+wBAAAAAAAAAHjQ2MWeJGmt3ZjkxsNc/rMkT/+2E7HlDBR7AAAAAAAAAAAeZiOruI6m\njuG72EKG/eV+mVVcAAAAAAAAAAAPOZbFnnYM38UWsrKK676FpY6TAAAAAAAAAABsHsey2AOPyMoq\nLhN7AAAAAAAAAAAeYhUXnTtxtIprTrEHAAAAAAAAAOBBM0e7oaoed6TrrbVvjj6+4JgkYstZmdgz\nZxUXAAAAAAAAAMCDjlrsSfKFJC3LE3m+M8m3Rp9PSfL1JDuTQwo+sCFDq7gAAAAAAAAAAB7mqKu4\nWms7W2vfneRTSV7aWju9tXZakh9OcuWkA/LoN9vbltleZW5RsQcAAAAAAAAAYMVRiz2rPLO1tnvl\noLX28SQ/cOwjsRUNZnsm9gAAAAAAAAAArDLOKq4Vt1XVLyd53+j49UluO/aR2IqG/ZnMLSx1HQMA\nAAAAAAAAYNPYyMSe1ybZkeQjSf7j6PNrj/ZQVV1QVV+uqpur6tJ1rp9QVX88uv7fqurs0fnZqvqD\nqvqbqrqhqn5hA1k5zgz7vcyZ2AMAAAAAAAAA8KCxJ/a01r6Z5Ger6sTW2n3jPFNVvSTvTvLCJPuS\nXF1VH22tfWnVbT+Z5Futte+pqtck+X+S/GiSVyU5obX21KoaJvlSVX2gtXbLuJk5fgz6VnEBAAAA\nAAAAAKw29sSeqvqBqvpSkhtGx/+wqt5zlMfOT3Jza+1rrbWFJB9MctGaey5K8gejzx9K8oKqqiQt\nyYlVNZNkkGQhyd3j5uX4YmIPAAAAAAAAAMChNrKK69eTvCjJHUnSWvvvSZ53lGfOTLJ31fG+0bl1\n72mtLSW5K8lpWS753Jfk75J8Pcm/Hk0NOkRVXVJVe6pqz/79+zfwc9hMBv2ZzC0q9gAAAAAAAAAA\nrNhIsSettb1rTk2yiXH+6P1nJNmZ5Oeq6rvXyfTe1tqu1tquHTt2TDAOkzSc7WV+YanrGAAAAAAA\nAAAAm8ZGij17q+oHkrSqmq2qN2W0lusIbk3yxFXHZ43OrXvPaO3WyVmeCvS6JP+5tbbYWrs9yV8m\n2bWBvBxHrOICAAAAAAAAADjURoo9P5Xkp7O8OuvWJOeNjo/k6iRPqqqdVdVP8pokH/3/2bv3KEnT\nuk7w3ydumRF16epuuqGhG2hpuhAWbzSIzDgOoDPd7SruCiOKyuxhlj2uuLNnz+wOe3YPi6xnd3D2\njOsuqMcRHcWZ1Vnd2dNKA7OCl/EyCig6NlLS3ASBpqEvVZUZmRmR+ewfEZkZlZV1ye6MiqiOz+ec\n97zP+75PRPyyMg9a2d/6/fbsuSfJa8frVyZ5f621ZjR+62VJUko5kuTFST56gHq5inQ7zfQFewAA\nAAAAAAAAdrQuZ1MppZnk+2qtrznIm9dah6WUNyR5b5Jmkp+ttd5XSnlLkg/WWu9J8o4k7yyl3J/k\noYzCP0ny9iQ/V0q5L0lJ8nO11j87yOdz9dCxBwAAAAAAAADgXJcV7Km1bpZSvifJjx30A2qt9ya5\nd8+9N02s15K8ap/Xnd3vPk9M3U4r/cFmtrZqGo0y63IAAAAAAAAAAGbusoI9Y79bSnlbkl9OsrJ9\ns9b6x4deFQvnSKeZJOkPNnNk6SA/lgAAAAAAAAAAT0wHSVB8zfj8lol7NcnLDq8cFlVvHOxZ3RDs\nAQAAAAAAAABIDhDsqbW+dJqFsNi6ndGPYn9jc8aVAAAAAAAAAADMhwO1RimlfGuS5yVZ3r5Xa33L\nhV8Bl2enY89gOONKAAAAAAAAAADmQ+NyN5ZSfirJdyX5oSQlyauSPGNKdbFguhOjuAAAAAAAAAAA\nOECwJ8lLaq3fn+ThWusPJ/mGJLdPpywWTa89CvYYxQUAAAAAAAAAMHKQYE9/fF4tpTw1ySDJTYdf\nEouo1xlNhdOxBwAAAAAAAABgpHWAvb9eSjmR5J8m+eMkNcnPTKUqFs7uKK7hjCsBAAAAAAAAAJgP\nlx3sqbX+z+Plr5ZSfj3Jcq310emUxaLpdYziAgAAAAAAAACYdNnBnlLK9+9zL7XWXzjcklhEvZ2O\nPYI9AAAAAAAAAADJwUZxvXBivZzk5RmN5BLs4XHbHsXVHwj2AAAAAAAAAAAkBxvF9UOT16WUE0l+\n6dArYiF1mo00GyWrG8NZlwIAAAAAAAAAMBcaj+O1K0luPaxCWGyllPTaTaO4AAAAAAAAAADGLrtj\nTynl15LU8WUjyXOT/OtpFMVi6naa6Qv2AAAAAAAAAAAkOUCwJ8n/NrEeJvl0rfWzh1wPC6zXaWZF\nsAcAAAAAAAAAIMkBgj211t+eZiHQ67TS3xjOugwAAAAAAAAAgLlwkFFcZ7I7iuucR0lqrfX4oVXF\nQup1mlnVsQcAAAAAAAAAIMnBRnH970k+n+SdGYV5XpPkplrrm6ZRGIun22nmzJqOPQAAAAAAAAAA\nSdI4wN5vr7X+RK31TK31dK31J5O8YlqFsXh6nWb6OvYAAAAAAAAAACQ5WLBnpZTymlJKs5TSKKW8\nJsnKtApj8fQ6rawOdOwBAAAAAAAAAEgOFuz5niR/L8kD4+NV43twKLo69gAAAAAAAAAA7Ghd7sZa\n66di9BZT1Gs3syrYAwAAAAAAAACQ5AAde0opP1pKOV5KaZdS3ldKebCU8r3TLI7F0us00x9sptY6\n61IAAAAAAAAAAGbuIKO4/k6t9XSS/zjJp5LcluS/nUZRLKZup5Vak7XB1qxLAQAAAAAAAACYuYME\ne7bHdn1rkv+71vroFOphgfU6zSTJ6sZwxpUAAAAAAAAAAMzeQYI9v15K+WiSFyR5XynlhiRr0ymL\nRdTdCfZszrgSAAAAAAAAAIDZu+xgT631jUlekuSOWusgyWqSV2w/L6V8y+GXxyLZ7tjTHwj2AAAA\nAAAAAAAcpGNPaq0P1Vo3x+uVWusXJh6/9VArY+H0dOwBAAAAAAAAANhxoGDPJZRDfC8WULfdSpKs\nbgxnXAkAAAAAAAAAwOwdZrCnHuJ7sYB2RnHp2AMAAAAAAAAAcKjBHnhcjiyNgj0rgj0AAAAAAAAA\nAIca7PnUIb4XC6jbGY3i6hvFBQAAAAAAAACQ1kE2l1JekuSZk6+rtf7C+PyfHmplLJxee9SxZ1XH\nHgAAAAAAAACAyw/2lFLemeRZST6cZDt5UZP8whTqYgF1O4I9AAAAAAAAAADbDtKx544kz6211mkV\nw2JbajXSKElfsAcAAAAAAAAAII0D7P3zJE+ZViFQSkmv09KxBwAAAAAAAAAgB+vY86QkHyml/FGS\n9e2btdZvP/SqWFjdTjP9wXDWZQAAAAAAAAAAzNxBgj1vnlYRsK3XaerYAwAAAAAAAACQAwR7aq2/\nPc1CIEm6bcEeAAAAAAAAAIAkaVzuxlLKi0spHyilnC2lbJRSNkspp6dZHIun12mmL9gDAAAAAAAA\nAHD5wZ4kb0vy3Uk+lqSb5B8kefs0imJx9TqtrG4MZ10GAAAAAAAAAMDMHSTYk1rr/UmatdbNWuvP\nJblzOmWxqLodo7gAAAAAAAAAAJKkdYC9q6WUTpIPl1J+NMnnc8BgEFxKr9NMfyDYAwAAAAAAAABw\nkGDO9433vyHJSpJbknznNIpicfV07AEAAAAAAAAASHKAjj211k+XUrpJbqq1/vAUa2KBddut9AV7\nAAAAAAAAAAAuv2NPKeXbknw4yXvG119TSrlnWoWxmI4sNbOyMUytddalAAAAAAAAAADM1EFGcb05\nyYuSPJIktdYPJ7l1CjWxwLqdZmpN1odbsy4FAAAAAAAAAGCmDhLsGdRaH91zT1sVDlWv3UySrBrH\nBQAAAAAAAAAsuIMEe+4rpXxPkmYp5dmllP8zye9PqS4WVK/TSpKsbgxnXAkAAAAAAAAAwGwdJNjz\nQ0mel2Q9yb9K8miSfziNolhc3c6oY09fxx4AAAAAAAAAYMEdJNjz3PHRSrKc5BVJPjCNolhcvY5R\nXAAAAAAAAAAAySikc7n+ZZJ/lOTPk2xNpxwWXVewBwAAAAAAAAAgycGCPQ/WWn9tapVAkl5n9CPZ\nHwxnXAkAAAAAAAAAwGwdJNjzP5VSfibJ+5Ksb9+stf4/h14VC8soLgAAAAAAAACAkYMEe/6zJM9J\n0s7uKK6aRLCHQ9NtC/YAAAAAAAAAACQHC/a8sNZ6cmqVQHY79vQFewAAAAAAAACABdc4wN7fL6U8\n96AfUEq5s5RyqpRyfynljfs8Xyql/PL4+R+WUp458eyrSil/UEq5r5TyH0opywf9fK4uvc4oa6Zj\nDwAAAAAAAACw6A7SsefFST5cSvlkkvUkJUmttX7VhV5QSmkmeXuSb0ny2SQfKKXcU2v9yMS21yV5\nuNZ6Wynl1UnemuS7SimtJL+Y5PtqrX9aSrk+yeAgXxxXn+V2I6Uk/Y3hrEsBAAAAAAAAAJipgwR7\n7nwM7/+iJPfXWj+RJKWUX0ryiiSTwZ5XJHnzeP0rSd5WSilJ/k6SP6u1/mmS1Fq//Bg+n6tMKSXd\ndlPHHgAAAAAAAABg4V12sKfW+unH8P5PS/KZievPJvn6C+2ptQ5LKY8muT7J7UlqKeW9SW5I8ku1\n1h/d+wGllNcneX2SPP3pT38MJTJvep1mVgeCPQAAAAAAAADAYmvMuoCLaCX5m0leMz7/J6WUl+/d\nVGv96VrrHbXWO2644YYrXSNT0O0009exBwAAAAAAAABYcNMO9vx1klsmrm8e39t3TymlleSaJF/O\nqLvP79Rav1RrXU1yb5Kvm3K9zIEjnVZW1oezLgMAAAAAAAAAYKamHez5QJJnl1JuLaV0krw6yT17\n9tyT5LXj9SuTvL/WWpO8N8nzSym9ceDnm5J8ZMr1Mge6nWb6RnEBAAAAAAAAAAuuNc03r7UOSylv\nyCik00zys7XW+0opb0nywVrrPUnekeSdpZT7kzyUUfgntdaHSyn/LKNwUE1yb631XdOsl/nQ6zSz\nahQXAAAAAAAAALDgphrsSZJa670ZjdGavPemifVakldd4LW/mOQXp1ogc6fbbuWhlf6sywAAAAAA\nAAAAmKlpj+KCA+t1mulvDGddBgAAAAAAAADATAn2MHeM4gIAAAAAAAAAEOxhDnU7zfQFewAAAAAA\nAACABSfYw9zpdZpZHWym1jrrUgAAAAAAAAAAZkawh7nT67SyuVWzsbk161IAAAAAAAAAAGZGsIe5\n0203k8Q4LgAAAAAAAABgoQn2MHd6nVGwZ1WwBwAAAAAAAABYYII9zJ2uYA8AAAAAAAAAgGAP86fX\naSUxigsAAAAAAAAAWGyCPcyd3VFcwxlXAgAAAAAAAAAwO4I9zJ2dUVwDHXsAAAAAAAAAgMUl2MPc\nOWIUFwAAAAAAAACAYA/zZ3sU18q6UVwAAAAAAAAAwOIS7GHubI/i6hvFBQAAAAAAAAAsMMEe5s52\nx55Vo7gAAAAAAAAAgAUm2MPcWW4J9gAAAAAAAAAACPYwdxqNkm67mf7GcNalAAAAAAAAAADMjGAP\nc6nXaerYAwAAAAAAAAAsNMEe5lK300xfsAcAAAAAAAAAWGCCPcwlHXsAAAAAAAAAgEUn2MNc6nZa\nWR0I9gAAAAAAAAAAi0uwh7nUazfT3xjOugwAAAAAAAAAgJkR7GEuGcUFAAAAAAAAACw6wR7mUrfT\nTF+wBwAAAAAAAABYYII9zCUdewAAAAAAAACARSfYw1zqdVpZ3RjOugwAAAAAAAAAgJkR7GEu9TrN\n9Ac69gAAAAAAAAAAi0uwh7nU6zQz2KzZGG7NuhQAAAAAAAAAgJkQ7GEudTutJEl/Q9ceAAAAAAAA\nAGAxCfYwl3qdZpJkdTCccSUAAAAAAAAAALMh2MNc2gn26NgDAAAAAAAAACwowR7mUrc9CvYYxQUA\nAAAAAAAALCrBHuZSr9NKomMPAAAAAAAAALC4BHuYS92dUVzDGVcCAAAAAAAAADAbgj3MpV7HKC4A\nAAAAAAAAYLEJ9jCXejsdewR7AAAAAAAAAIDFJNjDXNoZxTUQ7AEAAAAAAAAAFpNgD3Op12klSfob\nwxlXAgAAAAAAAAAwG4I9zKVu2yguAAAAAAAAAGCxCfYwl5qNkqVWI33BHgAAAAAAAABgQQn2MLd6\nnaaOPQAAAAAAAADAwhLsYW71Oi3BHgAAAAAAAABgYQn2MLd6nWb6g+GsywAAAAAAAAAAmAnBHuZW\nr9PMyrqOPQAAAAAAAADAYhLsYW51O830jeICAAAAAAAAABaUYA9zq9dpZdUoLgAAAAAAAABgQQn2\nMLe6nWZWdewBAAAAAAAAABaUYA9zq9c2igsAAAAAAAAAWFyCPcytno49AAAAAAAAAMACE+xhbnU7\nLR17AAAAAAAAAICFJdjD3Op1mtnY3Mpwc2vWpQAAAAAAAAAAXHGCPcytXqeZJFkd6NoDAAAAAAAA\nACwewR7mVncc7DGOCwAAAAAAAABYRII9zK2djj2CPQAAAAAAAADAAhLsYW51260kyerGcMaVAAAA\nAAAAAABceVMP9pRS7iylnCql3F9KeeM+z5dKKb88fv6HpZRn7nn+9FLK2VLKP5p2rcyXnlFcAAAA\nAAAAAMACm2qwp5TSTPL2JHcleW6S7y6lPHfPttclebjWeluSH0vy1j3P/1mSd0+zTubTkSWjuAAA\nAAAAAACAxTXtjj0vSnJ/rfUTtdaNJL+U5BV79rwiyc+P17+S5OWllJIkpZTvSPLJJPdNuU7m0O4o\nLsEeAAAAAAAAAGDxTDvY87Qkn5m4/uz43r57aq3DJI8mub6UcjTJP07ywxf7gFLK60spHyylfPDB\nBx88tMKZvZ1RXIPhjCsBAAAAAAAAALjyph3seTzenOTHaq1nL7ap1vrTtdY7aq133HDDDVemMq6I\n7WDPyrqOPQAAAAAAAADA4mlN+f3/OsktE9c3j+/tt+ezpZRWkmuSfDnJ1yd5ZSnlR5OcSLJVSlmr\ntb5tyjUzJ7rbHXuM4gIAAAAAAAAAFtC0gz0fSPLsUsqtGQV4Xp3ke/bsuSfJa5P8QZJXJnl/rbUm\n+cbtDaWUNyc5K9SzWHqd0Y/nqmAPAAAAAAAAALCAphrsqbUOSylvSPLeJM0kP1trva+U8pYkH6y1\n3pPkHUneWUq5P8lDGYV/IM1GSafVyOpgOOtSAAAAAAAAAACuuGl37Emt9d4k9+6596aJ9VqSV13i\nPd48leKYe71O0yguAAAAAAAAAGAhNWZdAFxMr900igsAAAAAAAAAWEiCPcy1ro49AAAAAAAAAMCC\nEuxhrvU6raxuDGddBgAAAAAAAADAFSfYw1zrdoziAgAAAAAAAAAWk2APc63XaaY/EOwBAAAAAAAA\nABaPYA9zradjDwAAAAAAAACwoAR7mGvddit9wR4AAAAAAAAAYAEJ9jDXjiw1s7oxnHUZAAAAAAAA\nAABXnGAPc61rFBcAAAAAAAAAsKAEe5hrvXYr68OtbG7VWZcCAAAAAAAAAHBFCfYw13qdZpIYxwUA\nAAAAAAAALBzBHuZadxzs6RvHBQAAAAAAAAAsGMEe5tpuxx7BHgAAAAAAAABgsQj2MNcEewAAAAAA\nAACARSXYw1zrdlpJkv5gOONKAAAAAAAAAACuLMEe5pqOPQAAAAAAAADAohLsYa5124I9AAAAAAAA\nAMBiEuxhrm137OkL9gAAAAAAAAAAC0awh7nW67SS6NgDAAAAAAAAACwewR7mWrezPYprOONKAAAA\nAAAAAACuLMEe5ppRXAAAAAAAAADAohLsYa61m420myWrA8EeAAAAAAAAAGCxCPYw93qdlo49AAAA\nAAAAAMDCEexh7vU6zaxuDGddBgAAAAAAAADAFSXYw9zrdppZ1bEHAAAAAAAAAFgwgj3MvV6naRQX\nAAAAAAAAALBwBHuYe712KytGcQEAAAAAAAAAC0awh7nX1bEHAAAAAAAAAFhAgj3MvV6nmVXBHgAA\nAAAAAABgwQj2MPe6gj0AAAAAAAAAwAIS7GHu9TrN9AeCPQAAAAAAAADAYhHsYe71Oq2sbgxnXQYA\nAAAAAAAAwBUl2MPc67abWRtsZWurzroUAAAAAAAAAIArRrCHudfrNJPEOC4AAAAAAAAAYKEI9jD3\ntoM9qxuCPQAAAAAAAADA4hDsYe51O60kSV+wBwAAAAAAAABYIII9zL2djj2D4YwrAQAAAAAAAAC4\ncgR7mHtGcQEAAAAAAAAAi0iwh7nXM4oLAAAAAAAAAFhAgj3MPR17AAAAAAAAAIBFJNjD3OvuBHuG\nM64EAAAAAAAAAODKEexh7unYAwAAAAAAAAAsIsEe5l6v3Uoi2AMAAAAAAAAALBbBHube9iiuvlFc\nAAAAAAAAAMACEexh7nVajbQaRcceAAAAAAAAAGChCPZwVeh2moI9AAAAAAAAAMBCEezhqtDrNNMX\n7AEAAAAAAAAAFohgD1eFXqeV1YFgDwAAAAAAAACwOAR7uCp02830N4azLgMAAAAAAAAA4IoR7OGq\n0Os0s2oUFwAAAAAAAACwQAR7uCp0BXsAAAAAAAAAgAUj2MNVoddppi/YAwAAAAAAAAAsEMEergpH\nOq2sDoazLgMAAAAAAAAA4IoR7GF6huvJb/4vyUfvfdxv1dWxBwAAAAAAAABYMII9TE+zk3z4XyV/\n8ouP+616nWZWBXsAAAAAAAAAgAUi2MP0lJKcvCv5+PuTQf9xvVW300p/sJla6yEVBwAAAAAAAAAw\n36Ye7Cml3FlKOVVKub+U8sZ9ni+VUn55/PwPSynPHN//llLKh0op/2F8ftm0a2UKTt6VDPvJJ377\ncb1Nr9NMrcnaYOuQCgMAAAAAAAAAmG9TDfaUUppJ3p7kriTPTfLdpZTn7tn2uiQP11pvS/JjSd46\nvv+lJN9Wa31+ktcmeec0a2VKnvE3k86x5NS7Htfb9DrNJMnKxvAwqgIAAAAAAAAAmHvT7tjzoiT3\n11o/UWvdSPJLSV6xZ88rkvz8eP0rSV5eSim11j+ptX5ufP++JN1SytKU6+WwtTrJs785OfWeZOux\nd9vptkfBnv7G5mFVBgAAAAAAAAAw16Yd7Hlaks9MXH92fG/fPbXWYZJHk1y/Z893JvnjWuv63g8o\npby+lPLBUsoHH3zwwUMrnEN08luTlS8mn/vjx/wWvU4rSbIq2AMAAAAAAAAALIhpB3set1LK8zIa\nz/Vf7Pe81vrTtdY7aq133HDDDVe2OC7Ps785Kc3k1L2P+S22R3GtGsUFAAAAAAAAACyIaQd7/jrJ\nLRPXN4/v7bunlNJKck2SL4+vb07yb5J8f63141OulWnpXps84yXJqXc/9rfoGMUFAAAAAAAAACyW\naQd7PpDk2aWUW0spnSSvTnLPnj33JHnteP3KJO+vtdZSyokk70ryxlrr7025Tqbt5N3JFz+SPPTJ\nx/Ty3Y49gj0AAAAAAAAAwGKYarCn1jpM8oYk703yF0n+da31vlLKW0op3z7e9o4k15dS7k/y3yR5\n4/j+G5LcluRNpZQPj48bp1kvU3TyztH5L9/zmF6+E+wZCPYAAAAAAAAAAIuhNe0PqLXem+TePffe\nNLFeS/KqfV73I0l+ZCPFEyIAACAASURBVNr1cYVc9xXJDV+ZfPRdyYt/4MAv73ZGP6r9jeFhVwYA\nAAAAAAAAMJemPYoLdp28K/n07yf9hw/80l7bKC4AAAAAAAAAYLEI9nDlPOdbk7qZfOw3DvzSbkew\nBwAAAAAAAABYLII9XDlP/brkyI3JqXsvvXePpVYjjZL0BXsAAAAAAAAAgAUh2MOV02gkJ+9M7v+N\nZLhxoJeWUnKk09KxBwAAAAAAAABYGII9XFkn707WTyef/r0Dv7TbaaY/GE6hKAAAAAAAAACA+SPY\nw5V16zclrW5y6t0Hfmmv09SxBwAAAAAAAABYGII9XFmdXvKsl46CPbUe6KVdo7gAAAAAAAAAgAUi\n2MOVd/Ku5NG/Sh748wO9rNdppi/YAwAAAAAAAAAsCMEerrzb70xSDjyOq9dpZmVjOJ2aAAAAAAAA\nAADmjGAPV97RG5ObX5icuvdAL+u2dewBAAAAAAAAABaHYA+zcfKu5HN/kpz+3GW/pNdpZlWwBwAA\nAAAAAABYEII9zMbJu0fnv3zPZb+k22kJ9gAAAAAAAAAAC0Owh9m44WRy7a3JqXdf9kt6nWb6G8Mp\nFgUAAAAAAAAAMD8Ee5iNUkZdez7x28n62ct6Sa/TzOpgM7XWKRcHAAAAAAAAADB7gj3Mzsm7ks31\n5OPvv6zt3U4ztSbrw60pFwYAAAAAAAAAMHuCPczO078hWT5x2eO4eu1mkmR1Y3OaVQEAAAAAAAAA\nzAXBHman2Upu/7vJX74n2bp0WKfXaSVJVjeG064MAAAAAAAAAGDmBHuYrZN3Jf2Hks/80SW3djuj\njj19HXsAAAAAAAAAgAUg2MNsPevlSaOdnLr3kluPLBnFBQAAAAAAAAAsDsEeZmv5eHLrNyan3n3J\nrd329iguwR4AAAAAAAAA4IlPsIfZO3l38uWPJV/62EW39bZHcQ2GV6IqAAAAAAAAAICZEuxh9m6/\nc3S+RNee7WCPjj0AAAAAAAAAwCIQ7GH2TtySPOX5yal7L7qtK9gDAAAAAAAAACwQwR7mw8m7k8/8\nYbLypQtu6XVaSZLVdaO4AAAAAAAAAIAnPsEe5sPJu5O6lXzs315wy84oroGOPQAAAAAAAADAE59g\nD/Phpq9Ojj31ouO4llqNlJL0jeICAAAAAAAAABaAYA/zoZTk5F3J/e9PBmsX2FLSazezKtgDAAAA\nAAAAACwAwR7mx8m7k8FK8ql/d8Et3U5LsAcAAAAAAAAAWAiCPcyPW78x6Ry96DiuXqeZ/sbwChYF\nAAAAAAAAADAbgj3Mj9ZS8qyXJafenWxt7bul1zGKCwAAAAAAAABYDK1ZFwDnOHl38hf3JJ//cPK0\nrzvvcbfTTH8g2AMAAAAAAADAE8zmIFl9KNlcH603N8bHnvVwff/7F1rf9FXJ137vrL86HiPBHubL\n7X83KY1R1559gj069gAAAAAAAABwVdkcJGcfSM48kJz5fHL2C8mZPcfZLyQrX0pSD+czG+2k2Uma\n7WS4JthzFRPsYb70rkue/g2jYM/L/ofzHnfbrTy00p9BYQAAAAAAAAAsjFqTujU6p+5eb6+3z2uP\n7AZ2znx+HOD5/PjeRQI7pZEcuTE59pTkmpuTm1+QHLspOfKkpNXdDeU0OxdZX+R5KVf+z4ypEOxh\n/py8K/m3/2PyyF8lJ55+zqMjS830N4YzKgwAAAAAAADgCa7WZNBP1k8na6fH50f3XO89Pzp6TbOT\ntJaSdnd0bi2Pz3uuL/p8OWmPz1ubyWB19N6D1T3rfrKxMr6efL66e2/v8+HabljnvJDORIjn8bhQ\nYOfok0fnY08ZHUduSBrNQ/iG8UQn2MP8OXn3KNhz6j3J17/+nEdGcQEAAAAAAABXtVqT4XqyuT46\nbx+b66PgyXBjdN7cmHi2kWwNx+GTzWRra2K9OTrXrfH97fXmnvXWufcH/QsHd7Yu1WyhJEvHkqXj\nyfLx3fPmINk4m6x+aVT3YG38Na0nw/7o6zhspZG0j4zCQu1u0tle90Zhmu11pzcKC5Uyek3KuKvN\n5Lmxz7399k2cl44L7DBVgj3Mn+uflTzp9uTUvecFe7rtVvqCPQAAAAAAADB7w41RIGTt0dE4orVH\nJq4fTfqPJOtndgMlO11Rsue67rmevJcLdFhJzumscij3LrDnsVxvDSfCOpNBnbXphFv2UxpJaY5C\nJjvrxu663d0N5By7Kbnh5PlBnaVr9lyPz51jo/c6qK2t3QDT3tDPcO/9tVGdnd5uOGfn6I7v90Zd\ngoyd4glMsIf5dPKu5A9+YvR/8Jev2bnd6zSzOthMrTXF/zgDAAAAAADwWG1tJYOVZP3sqMPI+pnx\neXy9sTIKQDSa40BEaxyK2F43d4MSjdZugGJnvc/9reFoHNDGnnFC+40Q2tm3597k/uFG0myfO7ro\nkmOPJvft87rNjXPDOXvDOtuBnbVHR2GMi2m0R11dGq09XVIae7qgNC7wvHFuZ5XJ/dvO+W+G5RDv\nTXZrmdxWLrJ/4rrRGv2ZNrf/3Dujc7Ozz/XSBZ4tjZ8tjb7P2z9POz+XjXN/Rs9Zl8xl2KXRSBrj\nzjrdWRcDVwfBHubTybuT3/vx5P7fSP6j79y53e00s7lV8/EHz+a2G4/NsEAAAAAAAOBQbG0m/YeT\n1YdGQYHW0miMSufoeJxK77F1hThste52kEiZCHVMng/5P6LXOvrz2dwYH4MLrDfOv39e54v13fqH\nE/cGE10y9nbNmHyP1FFIo9kan9u7183OPs9aE3v27N++N/nnNvlnORlaOKfTyCWCDJsbE8GcM6Og\nzoVCO+tnRsGd1Et9F6680pwYJdQ9t0PJ3rFCzaXx93ufbicbK8nql/d8v8frzfXLrKUx+kf4yyfG\n52uSJz15dO6e2PNsYs/20e7OZ7gE4Coi2MN8uvmFSe9Jyal3nxPs+YZnXZ/ldiPf8mO/k7uff1N+\n8G/fluc+9fgMCwUAAAAAAHZMhnRWvzw6+hPr1Ycn1uNn/Udy8XBFGQd9Jo+jF1jv8yxlT5eT/Tqf\nXOzZxP1LhkDKPkGU7dE3e0NAE4GUunXh0M5hBk9K4+KdXDq9pHfd+R1dWkujcMbmMNkajOrbGuy5\nHp57f7g2Cs9cbN/WVlI3R1//1uZovbV5OF9zcylZOjr6GVg6Plr3npRc+8zxvWPj8/b62MT+o6Pr\nTm93pFLdHNW7s56od2c9vPj9rc1RsKm9d6xQ99xzq/P4v/5LmRyHdE7Aqz8KXm2HdjpHBXMAZkyw\nh/nUaCa335l89NdG/89ds50k+bqnX5vf/ccvyzt+95N55x98Ou/6s8/n5c+5MT/4stvydU+/dsZF\nAwAAAADAAdU6OjI+161z1zsBgq3d895QQd06PxixHULYu/9SwYy94Yx9QxsT19sdQS4npNNaHgUr\netcmveuTE7ck3etG6971o0DJ8jW7nUa2RyHtHBPX62dG4aFHPjPx7Oyorst1XleUifVkV5RzuqZ0\nR19H6vnfg32/P/t9v/a5X5qjrjfN9vh8ofWlnk+s23sCPK3lnf/eMve2f/7P+zmf+LPb73mzvRva\nuVq+1lmZHIcEwFwrtc5he7nH6I477qgf/OAHZ10Gh+Uvfj355dckr/215Na/dd7jR1cH+fk/+FR+\n9vc+mUdWB3nJs67PD770trzkWdenSA4DAAAAAHAxtY7H9qxMjOfZGyY5c36wZN99K8lgZRQ4yHYg\n5yJhnUyEeeZdaYy6dzRa+49g6hyZCOZcPxHUuW58TNzv9KZf73Bj4nsz/n6Vcn44p90T/AAAZqaU\n8qFa6x2XtVewh7m1sZK89dbkha9L7vxfL7htZX2Y/+uP/io//TufyBfPrOdrbjmRN7z0trz8K28U\n8AEAAAAAuNpsbSZrj47GOfUfGZ3XHhmPixmPjNk+Ntf3ub6cPeuj8UoH6e7SPjIez7N33NN4dE+7\nuzteKWV3dE1pjNdlz7rs2bv9POc+32980+QIp3NGPV3G/uZ2SKc9EdJpnRvWmQzvNBqH/A0GAECw\nhyeOf/n3kgc/mvzDP73k/M61wWZ+5UOfzU/99sfz2Yf7ec5TjuUHX3pb7n7+TWk2BHwAAAAAAK6o\nzcFuMOcgx9qjuexONo32eMxQZ3fcUHNpPHZoaZ/riT3t5d1QztLRPWGdicBO58iou4uACwAAh0Sw\nhyeOD/5c8uv/dfJf/vvkxq+8rJcMNrdyz4c/l5/4rfvz8QdXcuuTjuQHvulZ+Y6vfVo6LX/xAgAA\nAACegLY2k/Uz4+P06Lx2erw+PV5f4Nn62aRujt5ncjxUzcS6Hmw96I/GIF1QSbonku61lz6WT4z2\ntpZ3gznb4RxhGwAArkIHCfa0pl0MPC633zk6f/Rdlx3saTcb+c4X3Jzv+Nqn5b33fSFve//9+e9+\n9c/y4+/7WF7/t74i3/XCW7Lcbk6xaAAAAACAx2n9THLmgeTM55OzDyRnvrC7Xn3o/LDORUM0Y6WR\nLB0fHcvHk6VjydGnJNcfHY1oSs4dEzW6sWedC9zfs24t7wno7AnxLF0jlAMAAJdBxx7m30+/dPQX\nzv/8fY/p5bXW/NapB/O237w/H/r0w3nS0aX8g2+8Nd/74mfk6JJsGwAAAABwhdQ6GjN15gvJ2S+c\nH9w5O74+80AyWDn/9a3l5OiTkyNPGgd0jo0DOnvCOjvPrtm9Xj4+Gie1E8ABAABmRccenliec3fy\n/h8Z/WX22JMP/PJSSl76nBvzt0/ekH//iYfyE791f/7Juz+an/ytj+fvv+SZ+fsveWauPdKZQuEA\nAAAAwBPG1tYobLN+NtlYGXXI2Vi5yHp8Xj+dnP3ibnBnuHb+e7ePJMeeMjpu+prk9vH66FNGvxM9\nOr5evkYwBwAAFoyOPcy/B+5LfvIlybf9H8kLXnsob/nhzzySt//m/fn/PvJAep1mXnTrdbn52m5u\nubaXW67r7axP9Nop/qIMAAAAAE8sg7VxZ5zxeKvt4/Tnk/5D+wd2BquX//6NVtI5OjqWjiZHbtgN\n7myHdI4+OTl20yi4s3Rsel8rAAAwd3Ts4YnlxucmJ56enHr3oQV7vuaWE/nn339HPvqF03nHv/tk\nPvL50/mTv3okj/YH5+w7utTKzdd2c/O147DPdb3cMr6+5bpuji23D6UeAAAAAOAQbG0mKw/uhnT2\nhnbOfCE587mk//D5r20tjwI3vetHgZwjNySdIxPH0Qusj52/r6VDOAAAcDgEe5h/pSQn704+9C+S\njdWk0zu0t37OU47nn77qq3euT68N8pmHVvPZh/s7588+vJrPPLSa3//4l7K6sXnO60/02jvdfXaD\nP7089UQ31x/t5NpeJ82Gjj8AAAAAcCDD9WT9zGiM1fqZPcfpZG18f+3R0Xir7eDO2QeSeu7v8FIa\n4+44T0mufWby9Bcnx28ad8sZH8dvSpZPGHMFAADMHcEerg4n70r+8KeST/xW8py7p/Yxx5fbed5T\nr8nznnrNec9qrXl4dSL48/DqOPTTz6kHzuR9H/1iNoZb57ymlOTaXifXHenk+iOdXH90e72071oQ\nCAAAAICr3tbWKHzTf/jcY+2RpP/IPkGdvQGe08nmxqU/p9FKlo7vjri64StH572hnaM3Jo3m9L9u\nAACAKRDs4erwjL+RLF2TnLp3qsGeiyml5LojowDOV99y4rznW1s1Xzq7ns883M/nHunnoZWNfPns\ner68sjFeb+TUF87koZWNPLw62OcTLh4EuqbbzvFuO8eWWzm+3M7x7vi83M7R5ZZAEAAAAACHa3M4\n6oizN6BzqWPtkaRuXfh9G+1k+fgolLN0bHQ+/rTxenyc83zymLjfWtJhBwAAeMIT7OHq0Gwnz/7m\n5C/fM5qTPYf/wqbRKLnx+HJuPL6cFzzj2ovuHW5u5eHVwT7hn4MFgSYdXWrthH6OLbfOCQHtd31s\nuZ2jS60cWWrmSKeVI0utdFqNw/rjAAAAAGDWhhvjsVWPjsI2a4+Oj9MT6/Gxvs+9jbMXf//la5Lu\ntbvHtc8493q/Y+l40l6+Ml8/AADAE4BgD1ePk3cnf/6ryV9/KLnlRbOu5nFpNRu54dhSbji2lOTY\nJfcPN7dydn2Y0/1hTq8NRkd/mDNrg5xeG593rgc5szbMF8+s5eMPDnO6P7oebtVLfk6n2UhvHPQ5\nutRKb6k5Cv+Mgz9Hlpo5sjR+1jl3fXSplW6nmW67ec6502yk+JdTAAAAwKKpdTROamMlGfSTwep4\nvZpsrI7OmxvJ1jDZHFx4vTUY37uM9aB/bjBn2L94jaUxCudMHtd9RbJ8Ynx9POleNw7lnDg3oLN8\nzVz+4zsAAIAnGsEerh63ffNobvape6/6YM9BtZqNnOh1cqLXeUyvr7WmP9jMmbVR0Gc7DLSyvpmV\n9WFWNoZZWR/m7PpmVjeGObs+ul5Z38zZ9WEeOL22s15Zv7yQ0LZGyU7IZ7ndPH993rNGuu3R9XK7\nmU6rkaVWI+1mI51mI+3W6NxplXSazbRbZXS/OdrX2d7baqTVKEJFAAAAwLlqHYVghv1ksDY6D9dH\noZjh2p7z+u6+weq5oZyd9co+98Yhnrr5+Ottdkajq5qtS687veT4U0eBnJ2wzjiks3T8/BBP54hR\nVgAAAHNu6sGeUsqdSX48STPJz9Ra/8me50tJfiHJC5J8Ocl31Vo/NX723yd5XZLNJP9VrfW9066X\nOdY9kTzjbyT3/ZvkSbePZmi3uqNze3xuLe8ek/cW/F8PlVLS67TS67Ty5OOPv9Xx+nBz31BQf2Mz\na4PN9AejdX8wvh6vJ69XNzbzyOpGPr+zfytrg1Gw6AC5oUvq7ASBGmk3S1qNRlrNkmajpNUoaTYa\n43PZPTcvcH+8v9nIOc+bjZJGGY1ja5bt6wvfb5SM1uP7u+fsvK5ktK+Uc8+NUlL2u87uZ23vL8n4\n88rO7+i217vnJHs/K9ufcf77Z/tedj9j+3nG77f3/vZnlwu91i8QAQAAnji2tsbdYzZGY6A2t49B\nsrk+sd4YhWa21zsdasbPz+lWM76/3ZXmgp1shufeG65dOKhTtx7b11caSfvIKEDT7o2CMe3uaH3k\nSeN7vdGednd3fc65u/u8tTT6h2zNzmgUfaM9Om+vG03BGwAAgAU31WBPKaWZ5O1JviXJZ5N8oJRy\nT631IxPbXpfk4VrrbaWUVyd5a5LvKqU8N8mrkzwvyVOT/EYp5fZaD+OfuXDVev4rk3t+KPl/f+Bg\nr2u0J4I+22GgiRDQzi9LWqNfmDS31+NfoDRaE/cmjmZrYt8+r937r6ca7f1/STP5rNmZ+Lz5/AXO\nUquZpVYz1x15bB2ELqbWmsFm3QkBbQy3MtjcysbmVgbDmo3NzawPtzLYrLvPhqPnk9e79+v4PHqv\nza1kc2srw62aza2657yV4WbN+v/f3t3G2pbfdQH//u49M51pR/tAC9FpSwcYxWqkrTe1WjENmEiF\nMLyotspD02j6pkYwPoHRoCS+MDECBoI0bbVoQ4GxyIQX+FBIlcQ+TAGBthgnReg0hakWKmDaueec\nny/2Oueu/Xj2PWfvu/c59/PJ3Tlr/Z/Wbz3svfba97fXvnmcw+Oj6fKTdkc9V96dHB13jrpzPPzt\nDSYn3S0miUC3En1OEn8m05PKmmo7Shqa6Tfddnm7W0+tOl3+ePxxXMl0EtI4Yek0xqn56T6jRS2t\nWzbWyrZnLH88yPxyFqzXklgy12dVrMvrVq3LopgWtcmydV043vw+O6vdeNBx6dy+PCP2qbZrxLR8\n3CXt504N0wVz6zvbeq5+ef9F22GRVWOuimfRsb6o3fxuWr3OC7qcO8ZFz6VF/eaOpTXjWtn2jPcB\nt7Mvly17cYyLl7vu25JFca+/7NVjrbNOs41Whb1snZZtg3ViOGu/LOq0/LhYEcfSmtWve4tiWmff\nLovlPNt3UQzr97vd5Z3/uXmRY3n5cpYedEutXucLxniR16411+/8+3Nzz8PbPVeeJ6bVS1y+7Ok+\n53teLKpfZ1+s/bq+5hZa95y/an+cdR5Y1m5VHNP9bu/1b9n72WWxzL036J7cteX4KJXD1PFx0kep\nk7KezE/Kjm+VHR+mjo+SPkz1YXI0/D0pPz5MHR8O7Sfz6UndpHxSN2l3czL+8SQppo4OJ8s8unk6\ndk7qTvueTN+cLGOon/Q/Sa6ZJObUKHGnjg9Xb9AL6NPPVQ6WJMEcTH/W8ozfnzzwhemD+5N77kud\nfiHs/vQ996XuuW/qS2N1z/2jL4udfHFsaDNuu2ef0wAAAHC1bfuOPa9M8kR3fzxJqurdSR5JMk7s\neSTJPxqmH03yfTX5hOSRJO/u7s8n+dWqemIY779tOWb22Su+JflDr53c4vj0Fsmfn7ll8mj+8HPD\nLZVHj9P50a2UDz83fCB168Orkw+uTr8JNn4c3dzMrZTXdfLhVFVS14bHMJ1x2bWZ+pm6zPQ//Z/r\n8fTJQmv0QdWidkvqxuVLyxaNNamrVO6tyr1Jnr3wY9oFGTMLs2jWbZfk2vDYoJMldSedzvBvUj6U\n9UlI3aP2PRXqMDfMT9edlvTJaDldzq3pnt4So/rZrTGJtU5rb7WrZDae0b6Z3aw9WsjCPTMb/3jk\nPjkqJsuvqT6Tb1PeKhtHm9RoO0/Hc6tXn/4dT4/WpSrdNep3Uj9qs3TNTuKfWavZ7bNsB8wVj6dq\nYZ91jvyeeR7N7/fZdaupNitz1Fbs51tNFgd9UlqLevfcxPKIzkiiW1Y9PgYW1c7VTcU9PkrHTRaP\nt/iYX8+6SYKr98G6/cfP6/UWvKpV9fzRPHu0Le27oH5ZSIuPkrP3xVRcdatyUYxT/1G34Jmy/Eia\nj2f8OrQo3kV91v+v5nUs3/YLn48bjmDd58Dy5+d+WLWtptvtbsx1x7uoM88zt1m/qu0+mN2uc8kH\nC6Jed5+t+3q2j9vlIlYmZuzh2m7jeX3e8c46OtY5Hhe3We84XrfvbPmyc+jS8uqp8++t6VvzNdW/\n5+pu9T1pN9/m2un1xvSYp8urXlg3mT7O9eFxLT2aHv7W/hzLR105zEEOcy2HuT796OvzZaO6o1zL\nzRzkKPflZp6VmznIzT7I07knT+dgMp/ruZmDPN3jsoM8nYM83dPzN0dlT+ee3ByWdbMPTqcPM56+\nns2+L1rmc8NjsTuVGDppv7LytqrWTTS9naT0SfvltSv31kW24x2KcXm3FeOdb5dtLeFznWVPj7f5\n59j6XwxYs90WXgcuw3Zc19pL3nCI21jjy7AdL0Oe5zaeM2sv+xJsn125DHex387zeguD7rm7cZ2T\n3b727Mpl2Ndf+fDz83f+/JfvOgzOaduJPQ8m+cRo/skkf3JZm+4+rKrPJvmCofz9M30fnF1AVb05\nyZuT5MUvfvHGAmePPfCCJC/YdRST/wA8Pjr9Rtt0YtD41tAzt5A+vbX0oltGr+jTxzm9TfTJ9NSj\n56fTq9uN12UyMZrv+bqF7cZ1M/2n/jd7KDs+nh9rqv1sDIs+rVn8sfK5221Bzfy9vc61ouOqT3pu\nY32XJkMty0KZbbdh3TPxj6ZPy0cf4p7ZdjTuWcfy6XNh2TE+ml77ndmd+U/4+abz/126eqiz9ved\n2NfJ3PY6s37dZZ2zcmVSy7Lskoum1mzJ2rcP21aMm34Nn3E7r1FL2654XTnztaZuJXgtfP2Ziad7\npm62flHZdNxzyXLncva5ZNl/y17Iho7Hfbkr3nTCxYqg1j13dNIbP8/cTtLMOTbs3DG7YIxeOnO+\nZZ5lzSEv9lxafd5anKx01j5btO3WfI27rfco69n882zJ+/o1ei1dt9uM8ezmtxPj+uvSi5pe6PC7\nNWB3Vr5v6pn509Jxn6WvPeuVzfXt6WuZZYmqPXde7ZXtkxqWVdPtqhZPn6TezHwhpauSnhmrKp1b\nX34ZpxClkuNUUtdOU3hOl3/afjJe17V0XU9n+FvXcjz87Yzmcy197SDHqdN2J/2OR/OT6es5roPR\nWAc5HuqO62AyTk3SiG61nSTgnNT1qP1xXZ+sy6K3HyfzK14Apvv1wrqD4TH7I+ALvxByRpvlcazX\nd37dVsewLAn8rAUtfLVeGM/trfPKK4yV/dbYGEvGX3fbrhpjvX4b3v8bjOOsfudd1qqeK2M8Z/zr\njjE93prtbudjivXfnG2y2W3ZxBdbpsc7fywXtX6Mmw1yK6u80+242efWLu32eLw623HTLsMqb2e/\nXIY136y78fhO7sY9vflz67Y88Ix7dh0CF7DtxJ6t6+63Jnlrkty4ceNyPGu4GqqGn9q69E8jAOCc\n7vQXMS7BFz8AAAAAAIAN2vCPz8z5ZJIXjeZfOJQtbFNVB0meneT/rNkXAAAAAAAAAACupG0n9nwo\nycNV9VBV3ZvkDUkem2nzWJI3DtOvS/LTPblf1WNJ3lBVz6iqh5I8nOSDW44XAAAAAAAAAAD2wlZ/\nQ6i7D6vqryf5D0muJ3lHd3+kqr4ryePd/ViStyf5N1X1RJLPZJL8k6Hdjyb5aJLDJG/p7qNtxgsA\nAAAAAAAAAPuiJjfHuRpu3LjRjz/++K7DAAAAAAAAAACAharqw919Y5222/4pLgAAAAAAAAAA4Bwk\n9gAAAAAAAAAAwB6S2AMAAAAAAAAAAHtIYg8AAAAAAAAAAOwhiT0AAAAAAAAAALCHJPYAAAAAAAAA\nAMAektgDAAAAAAAAAAB7SGIPAAAAAAAAAADsIYk9AAAAAAAAAACwhyT2AAAAAAAAAADAHpLYAwAA\nAAAAAAAAe0hiDwAAAAAAAAAA7CGJPQAAAAAAAAAAsIck9gAAAAAAAAAAwB6S2AMAAAAAAAAAAHtI\nYg8AAAAAAAAAAOwhiT0AAAAAAAAAALCHJPYAAAAAAAAAAMAektgDAAAAAAAAAAB7qLp71zFsTFV9\nOsmv7ToO5jw/yf/edRAAXFnOMwBsk/MMANvkPAPAtjjHALBNzjMX98Xd/YJ1Gl6pxB72U1U93t03\ndh0HAFeT8wwAH4KPMQAABx1JREFU2+Q8A8A2Oc8AsC3OMQBsk/PMneWnuAAAAAAAAAAAYA9J7AEA\nAAAAAAAAgD0ksYc74a27DgCAK815BoBtcp4BYJucZwDYFucYALbJeeYOqu7edQwAAAAAAAAAAMAM\nd+wBAAAAAAAAAIA9JLEHAAAAAAAAAAD2kMQetqaqvqaq/kdVPVFV377reAC43KrqRVX1M1X10ar6\nSFV961D+vKr6T1X1P4e/z911rABcXlV1vap+vqp+cph/qKo+MFzX/EhV3bvrGAG4nKrqOVX1aFX9\nSlV9rKr+lOsZADalqv7m8JnZL1fVD1fVfa5nADivqnpHVT1VVb88Klt4/VIT/2I43/xiVb1id5Ff\nTRJ72Iqqup7k+5O8NslLk/zlqnrpbqMC4JI7TPK3uvulSV6V5C3DueXbk7y3ux9O8t5hHgDO61uT\nfGw0/0+TfHd3f1mS30ryV3cSFQBXwfcm+anu/vIkX5HJ+cb1DAAXVlUPJvkbSW509x9Lcj3JG+J6\nBoDz+9dJvmambNn1y2uTPDw83pzkB+5QjHcNiT1syyuTPNHdH+/up5O8O8kjO44JgEusuz/V3T83\nTP9OJh+CP5jJ+eWdQ7N3JvmG3UQIwGVXVS9M8rVJ3jbMV5KvSvLo0MR5BoBzqapnJ/mzSd6eJN39\ndHf/dlzPALA5B0nur6qDJM9M8qm4ngHgnLr7vyT5zEzxsuuXR5L8UE+8P8lzquoP3JlI7w4Se9iW\nB5N8YjT/5FAGABdWVS9J8vIkH0jyRd39qaHqN5J80Y7CAuDy+54kfzfJ8TD/BUl+u7sPh3nXNQCc\n10NJPp3kXw0/+fi2qnpWXM8AsAHd/ckk/yzJr2eS0PPZJB+O6xkANmvZ9YvcgC2T2AMAXCpV9UCS\nf5fk27r7/47ruruT9E4CA+BSq6qvS/JUd39417EAcCUdJHlFkh/o7pcn+b3M/OyW6xkAzquqnpvJ\n3RIeSvIHkzwr8z+fAgAb4/rlzpLYw7Z8MsmLRvMvHMoA4Nyq6p5Mknre1d3vGYp/8+SWjsPfp3YV\nHwCX2quTfH1V/a9Mfkr4q5J8bya3Dj4Y2riuAeC8nkzyZHd/YJh/NJNEH9czAGzCn0vyq9396e6+\nmeQ9mVzjuJ4BYJOWXb/IDdgyiT1sy4eSPFxVD1XVvUnekOSxHccEwCVWVZXk7Uk+1t3/fFT1WJI3\nDtNvTPITdzo2AC6/7v6O7n5hd78kk+uXn+7ub0zyM0leNzRzngHgXLr7N5J8oqr+8FD01Uk+Gtcz\nAGzGryd5VVU9c/gM7eQ843oGgE1adv3yWJJvqYlXJfns6Ce72ICa3CEJNq+q/kKS70lyPck7uvuf\n7DgkAC6xqvozSf5rkl9KcjwU//0kH0jyo0lenOTXkvyl7v7MToIE4Eqoqtck+dvd/XVV9SWZ3MHn\neUl+Psk3dffndxkfAJdTVb0syduS3Jvk40nelMkXL13PAHBhVfWPk7w+yWEm1y5/LcmDcT0DwDlU\n1Q8neU2S5yf5zSTfmeTfZ8H1y5BU+n2Z/Azk/0vypu5+fBdxX1USewAAAAAAAAAAYA/5KS4AAAAA\nAAAAANhDEnsAAAAAAAAAAGAPSewBAAAAAAAAAIA9JLEHAAAAAAAAAAD2kMQeAAAAAAAAAADYQxJ7\nAAAAALiQqnpNVf3kruMAAAAAuGok9gAAAAAAAAAAwB6S2AMAAABwl6iqb6qqD1bVL1TVD1bV9ar6\n3ar67qr6SFW9t6peMLR9WVW9v6p+sap+vKqeO5R/WVX956r671X1c1X1pcPwD1TVo1X1K1X1rqqq\nna0oAAAAwBUhsQcAAADgLlBVfyTJ65O8urtfluQoyTcmeVaSx7v7jyZ5X5LvHLr8UJK/191/PMkv\njcrfleT7u/srkvzpJJ8ayl+e5NuSvDTJlyR59dZXCgAAAOCKO9h1AAAAAADcEV+d5E8k+dBwM537\nkzyV5DjJjwxt/m2S91TVs5M8p7vfN5S/M8mPVdXvS/Jgd/94knT355JkGO+D3f3kMP8LSV6S5Ge3\nv1oAAAAAV5fEHgAAAIC7QyV5Z3d/x1Rh1T+cadfnHP/zo+mj+NwJAAAA4ML8FBcAAADA3eG9SV5X\nVV+YJFX1vKr64kw+H3rd0OavJPnZ7v5skt+qqq8cyr85yfu6+3eSPFlV3zCM8YyqeuYdXQsAAACA\nu4hvTgEAAADcBbr7o1X1D5L8x6q6luRmkrck+b0krxzqnkry+qHLG5P8yyFx5+NJ3jSUf3OSH6yq\n7xrG+It3cDUAAAAA7irVfd67KwMAAABw2VXV73b3A7uOAwAAAIB5fooLAAAAAAAAAAD2kDv2AAAA\nAAAAAADAHnLHHgAAAAAAAAAA2EMSewAAAAAAAAAAYA9J7AEAAAAAAAAAgD0ksQcAAAAAAAAAAPaQ\nxB4AAAAAAAAAANhD/x8Q5j5wGrfO2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPYAAAJcCAYAAABwybgsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X+U7XdZH/r3c/Y+s09mT4ghCXiT\ngImUusKProDHgIVeQUASkID1XgSbVin3xvbqLV5rSmgRhWploUWUEhVXo/diCyJcLnERasAmRcVU\nDiGVX8EkFM1JKImBYGZPMpMz53P/mD1xzsmcOTNk9v7Oybxea83K/v6c9x7OX6z3ep5qrQUAAAAA\nAAAAANhZ9nQdAAAAAAAAAAAAeCjFHgAAAAAAAAAA2IEUewAAAAAAAAAAYAdS7AEAAAAAAAAAgB1I\nsQcAAAAAAAAAAHYgxR4AAAAAAAAAANiBFHsAAAAAAAAAAGAHUuwBAAAAeASrqnOqqlVVf5vf+6Wq\nev52vhMAAACAIyn2AAAAADBRSkAAAAAA3xjFHgAAAAAecdabULTVqUXbPeUIAAAAYKsUewAAAAA2\nYTx15rKq+rOqGlXVv6+qx1bVh6vq3qr6aFWdOr73mVX18aq6p6r+W1U9Z817XlVVnx8/88Wq+pE1\n155TVQer6p9X1Z1V9eWqetUmsr24qj5VVX9dVbdV1c+sc9s/rqo7xu/8yTXPXlBVB8bPfqWq3rrm\n2sVV9dnx97iuqs47xu//rar62aO/x/jzu5I8PsnvVdV8Vf2L4/2NNviep4z/7l+uqtur6merqje+\n9sNV9cdV9UtVdXeSnznGuT1V9fqq+ovx3/j/qapTxu9YXVv26qr6yyT/+XiZAAAAACZJsQcAAABg\n874/yQuS/O0kL0ny4ST/MskZWfn/Wf5ZVZ2V5ENJfjbJo5P8ZJL3V9UZ43fcmeR7kzwqyauS/FJV\nPX3N7/jmJKckOSvJq5O8Y7UwtIFRkn+U5JuSvDjJP62qlx11z3OTPDHJ9yR57ZrVWL+c5Jdba49K\n8oQk702SqvrbSd6d5MfH3+/qrJRzZo6T5QittX+Y5C+TvKS1Ntdae8sm/kbH8ltJDiX5W0meNv4u\n/9ua689I8sUkj03yc8c498Pjn+cm+dYkc0n+3VG/57uSnJfkhVv5rgAAAADbTbEHAAAAYPPe3lr7\nSmvt9iR/mOS/ttY+1Vq7P8kHslI2uSTJ1a21q1trh1trH0lyIMmLkqS19qHW2q1txX9Jck2Sv7fm\ndzyQ5E2ttQdaa1cnmU/ybRuFaq1d11r79Pj3/VlWCjnfddRtb2ytjVprn07ym0leueb3/a2qOr21\nNt9au358/geSfKi19pHW2gNJfjHJSUn+7lb/aOvY8G+0nqp67Pj6j4+/x51JfinJK9bcdkdr7e2t\ntUOttfuOce4fJHlra+2LrbX5JK9L8oqj1m79zPh33BcAAACADin2AAAAAGzeV9Z8vm+d47kk35Lk\nfx2vmLqnqu5J8uwk/1OSVNVFVXV9VX11fO1FSU5f8567W2uH1hwvjN97TFX1jKq6tqruqqqvJ/kn\nR70zSW5b8/kvkpw5/vzqrEwguqmqPlFV3zs+f+b4viRJa+3w+B1nbZRlkzb8G23wzN4kX17zzK8n\necyae25b57mjzx3xvcaf+1mZ6LPRewAAAACmrn/8WwAAAADYgtuSvKu19r8ffaGqBknen5W1WR9s\nrT1QVf9fknqYv/M/ZmWd1EWttfur6m15aLHncUluGn9+fJI7kqS1dnOSV1bVniR/P8n7quq08fWn\nrsle43fcvs7vHyWZXXP8zUddb0cdH/NvtIHbkiwmOf2o4tNGv2e9c3dkpSS06vFZWe/1lSRnb/Ae\nAAAAgKkzsQcAAABge/12kpdU1QurqldV+6rqOVV1dpKZJIMkdyU5VFUXJfmebfidJyf56rjUc0GS\nH1znnp+qqtmqenKSVyX5nSSpqkuq6ozxRJ57xvceTvLeJC+uqudV1d4k/zwrxZqPr/PuG5O8qKoe\nXVXfnOTHj7r+lSTfuuZ4o7/RulprX87K2rJ/W1WPqqo9VfWEqjp65djxvDvJ/1VV51bVXJJ/k+R3\nNigLAQAAAHRGsQcAAABgG7XWbkvy0iT/MisFntuSXJZkT2vt3iT/LCulma9lpYBz1Tb82v8jyZuq\n6t4kbxi//2j/JcktSf4gyS+21q4Zn78wyWeraj7JLyd5RWvtvtbaF5JckuTtSf4qyUuSvKS1trTO\nu9+V5L8l+VJWyje/c9T1n0/y+vEKrZ/c6G90nO/5j7JSjvpcVv5+78vG67vWc+U478eS/Pck9yf5\nP7f4DgAAAICpqNZMFgYAAAAAAAAAgJ3GxB4AAAAAAAAAANiBFHsAAAAATgBV9dmqml/n5x90nW07\nHeM7zlfV3+s6GwAAAMC0WcUFAAAAAAAAAAA7UL/rANvp9NNPb+ecc07XMQAAAAAAAAAAYF2f/OQn\n/6q1dsZm7n1EFXvOOeecHDhwoOsYAAAAAAAAAACwrqr6i83eu2eSQQAAAAAAAAAAgG+MYg8AAAAA\nAAAAAOxAij0AAAAAAAAAALAD9bsOMGkPPPBADh48mPvvv7/rKBO3b9++nH322dm7d2/XUQAAAAAA\nAAAAeJge8cWegwcP5uSTT84555yTquo6zsS01nL33Xfn4MGDOffcc7uOAwAAAAAAAADAw/SIX8V1\n//3357TTTntEl3qSpKpy2mmn7YrJRAAAAAAAAAAAu8EjvtiT5BFf6lm1W74nAAAAAAAAAMBusCuK\nPQAAAAAAAAAAcKJR7JmCe+65J1dcccWWn3vRi16Ue+65ZwKJAAAAAAAAAADY6RR7puBYxZ5Dhw5t\n+NzVV1+db/qmb5pULAAAAAAAAAAAdrB+1wF2g8svvzy33nprzj///Ozduzf79u3Lqaeemptuuil/\n/ud/npe97GW57bbbcv/99+c1r3lNLr300iTJOeeckwMHDmR+fj4XXXRRnv3sZ+fjH/94zjrrrHzw\ngx/MSSed1PE3AwAAAAAAAABgUnZVseeNv/fZfO6Ov97Wdz7pzEflp1/y5A3vefOb35zPfOYzufHG\nG3PdddflxS9+cT7zmc/k3HPPTZJceeWVefSjH5377rsv3/Ed35Hv//7vz2mnnXbEO26++ea8+93v\nzm/8xm/k5S9/ed7//vfnkksu2dbvAgAAAAAAAADAzrGrij07xQUXXPBgqSdJfuVXfiUf+MAHkiS3\n3XZbbr755ocUe84999ycf/75SZJv//Zvz5e+9KWp5QUAAAAAAAAAYPp2VbHneJN1pmU4HD74+brr\nrstHP/rR/Mmf/ElmZ2fznOc8J/fff/9DnhkMBg9+7vV6ue+++6aSFQAAAAAAAACAbuzpOsBucPLJ\nJ+fee+9d99rXv/71nHrqqZmdnc1NN92U66+/fsrpAAAAAAAAAADYiXbVxJ6unHbaaXnWs56Vpzzl\nKTnppJPy2Mc+9sFrF154YX7t134t5513Xr7t274tz3zmMztMCgAAAAAAAADATlGtta4zbJv9+/e3\nAwcOHHHu85//fM4777yOEk3fbvu+AAAAAAAAAAAnkqr6ZGtt/2butYoLAAAAAAAAAAB2IMUeAAAA\nAAAAAADYgRR7AAAAAAAAAABgB1LsAQAAAAAAAACAHUixBwAAAAAAAAAAdiDFHibqJW//o7zj2lu6\njgEAAAAAAAAAcMJR7JmCe+65J1dcccU39Ozb3va2LCwsbHOi6bnjnvtyxz33dR0DAAAAAAAAAOCE\no9gzBbu52DM76GW0eKjrGAAAAAAAAAAAJ5x+1wF2g8svvzy33nprzj///LzgBS/IYx7zmLz3ve/N\n4uJivu/7vi9vfOMbMxqN8vKXvzwHDx7M8vJyfuqnfipf+cpXcscdd+S5z31uTj/99Fx77bVdf5Ut\nG870M7+43HUMAAAAAAAAAIATzu4q9nz48uR/fHp73/nNT00uevOGt7z5zW/OZz7zmdx444255ppr\n8r73vS9/+qd/mtZaLr744nzsYx/LXXfdlTPPPDMf+tCHkiRf//rXc8opp+Stb31rrr322px++unb\nm3tK5gZ9E3sAAAAAAAAAAL4BVnFN2TXXXJNrrrkmT3va0/L0pz89N910U26++eY89alPzUc+8pG8\n9rWvzR/+4R/mlFNO6TrqthgO+llYUuwBAAAAAAAAANiq3TWx5ziTdaahtZbXve51+ZEf+ZGHXLvh\nhhty9dVX5/Wvf32e97zn5Q1veEMHCbfXcNDLwa8p9gAAAAAAAAAAbJWJPVNw8skn5957702SvPCF\nL8yVV16Z+fn5JMntt9+eO++8M3fccUdmZ2dzySWX5LLLLssNN9zwkGdPRMOZfkaLy13HAAAAAAAA\nAAA44eyuiT0dOe200/KsZz0rT3nKU3LRRRflB3/wB/Od3/mdSZK5ubn89m//dm655ZZcdtll2bNn\nT/bu3Ztf/dVfTZJceumlufDCC3PmmWfm2muv7fJrfEOGg35Giyb2AAAAAAAAAABsVbXWus6wbfbv\n398OHDhwxLnPf/7zOe+88zpKNH077fv+4u9/IVdcd0tu/TcvSlV1HQcAAAAAAAAAoFNV9cnW2v7N\n3GsVFxM1O+jlcEvuf+Bw11EAAAAAAAAAAE4oij1M1NxgZdvbvHVcAAAAAAAAAABbsiuKPY+kdWMb\n2YnfczizUuwZKfYAAAAAAAAAAGzJI77Ys2/fvtx99907svSynVprufvuu7Nv376uoxxhOJ7YM1pS\n7AEAAAAAAAAA2Ip+1wEm7eyzz87Bgwdz1113dR1l4vbt25ezzz676xhHGA56SZLR4nLHSQAAAAAA\nAAAATiyP+GLP3r17c+6553YdY9d6cGKPVVwAAAAAAAAAAFvyiF/FRbfmxsWeecUeAAAAAAAAAIAt\nUexholYn9iwsKfYAAAAAAAAAAGyFYg8TNZzpJUnmF5c7TgIAAAAAAAAAcGJR7GGiVif2jKziAgAA\nAAAAAADYEsUeJmpvb09m+nsUewAAAAAAAAAAtkixh4mbG/QzWlLsAQAAAAAAAADYCsUeJm52ppfR\n4nLXMQAAAAAAAAAATiiKPUzc3KCfeau4AAAAAAAAAAC2RLGHiRsO+hkp9gAAAAAAAAAAbIliDxM3\nHPQzWrKKCwAAAAAAAABgKxR7mLjhTM/EHgAAAAAAAACALVLsYeKs4gIAAAAAAAAA2DrFHiZubtDP\nvGIPAAAAAAAAAMCWKPYwccNBLwtLy2mtdR0FAAAAAAAAAOCEodjDxM3O9LN8uGXx0OGuowAAAAAA\nAAAAnDAUe5i4uUE/SazjAgAAAAAAAADYAsUeJm44LvaMFHsAAAAAAAAAADZt4sWeqrqwqr5QVbdU\n1eXrXP8nVfXpqrqxqv6oqp605trrxs99oapeOOmsTMbcoJckGS0ud5wEAAAAAAAAAODEMdFiT1X1\nkrwjyUVJnpTklWuLO2P/sbX21Nba+UnekuSt42eflOQVSZ6c5MIkV4zfxwlmdmY8sWfJxB4AAAAA\nAAAAgM2a9MSeC5Lc0lr7YmttKcl7krx07Q2ttb9eczhM0safX5rkPa21xdbaf09yy/h9nGBWV3HN\nW8UFAAAAAAAAALBp/Qm//6wkt605PpjkGUffVFU/muQnkswk+e41z15/1LNnrfPspUkuTZLHP/7x\n2xKa7TU3LvYsWMUFAAAAAAAAALBpk57YsymttXe01p6Q5LVJXr/FZ9/ZWtvfWtt/xhlnTCYgD8tw\nsLJBbWRiDwAAAAAAAADApk262HN7ksetOT57fO5Y3pPkZd/gs+xQwxmruAAAAAAAAAAAtmrSxZ5P\nJHliVZ1bVTNJXpHkqrU3VNUT1xy+OMnN489XJXlFVQ2q6twkT0zypxPOywQMx6u4TOwBAAAAAAAA\nANi8/iRf3lo7VFU/luT3k/SSXNla+2xVvSnJgdbaVUl+rKqen+SBJF9L8kPjZz9bVe9N8rkkh5L8\naGtteZJ5mYyZ/p7M9PZktOR/PgAAAAAAAACAzZposSdJWmtXJ7n6qHNvWPP5NRs8+3NJfm5y6ZiW\n4aBnYg8AAAAAAAAAwBZMehUXJElmZ/qKPQAAAAAAAAAAW6DYw1TMDfqZV+wBAAAAAAAAANg0xR6m\nYjjoZWFpuesYAAAAAAAAAAAnDMUepmJoYg8AAAAAAAAAwJYo9jAVw5l+Roo9AAAAAAAAAACbptjD\nVAwHij0AAAAAAAAAAFuh2MNUzA16GS0tdx0DAAAAAAAAAOCEodjDVMyOJ/a01rqOAgAAAAAAAABw\nQlDsYSrmBv0cOtyyeOhw11EAAAAAAAAAAE4Iij1MxXCmlyQZLR7qOAkAAAAAAAAAwIlBsYepGA76\nSZKFpeWOkwAAAAAAAAAAnBgUe5iK1WLPvIk9AAAAAAAAAACbotjDVKwWe6ziAgAAAAAAAADYHMUe\npmJu0EtiYg8AAAAAAAAAwGYp9jAVqxN7FpaWO04CAAAAAAAAAHBiUOxhKoYzK8UeE3sAAAAAAAAA\nADZHsYepWJ3YM1LsAQAAAAAAAADYFMUepmI46CVR7AEAAAAAAAAA2CzFHqZi0O9lb68yWlruOgoA\nAAAAAAAAwAlBsYepmZ3pm9gDAAAAAAAAALBJij1Mzdygn3nFHgAAAAAAAACATVHsYWqGg56JPQAA\nAAAAAAAAm6TYw9QMB/0sLC13HQMAAAAAAAAA4ISg2MPUDGes4gIAAAAAAAAA2CzFHqbGKi4AAAAA\nAAAAgM1T7GFqhoN+RotWcQEAAAAAAAAAbIZiD1MzN+hntGRiDwAAAAAAAADAZij2MDWzM32ruAAA\nAAAAAAAANkmxh6mZG/TywHLL4iHruAAAAAAAAAAAjkexh6kZDvpJktGiYg8AAAAAAAAAwPEo9jA1\nf1PssY4LAAAAAAAAAOB4FHuYmuHMuNizpNgDAAAAAAAAAHA8ij1MzXDQS2JiDwAAAAAAAADAZij2\nMDVzD67iWu44CQAAAAAAAADAzqfYw9QMHyz2mNgDAAAAAAAAAHA8ij1MzXBmpdgzr9gDAAAAAAAA\nAHBcij1MzXDQS2JiDwAAAAAAAADAZij2MDUPruJaWu44CQAAAAAAAADAzqfYw9QM+nvS31Mm9gAA\nAAAAAAAAbIJiD1NTVZmd6Sn2AAAAAAAAAABsgmIPUzU36Gd+0SouAAAAAAAAAIDjUexhqoaDfhaW\nTOwBAAAAAAAAADgexR6majjoZ94qLgAAAAAAAACA41LsYaqGg15Gij0AAAAAAAAAAMel2MNUDWf6\nGS0udx0DAAAAAAAAAGDHU+xhquYG/YyWTOwBAAAAAAAAADgexR6majjoW8UFAAAAAAAAALAJij1M\n1eygZxUXAAAAAAAAAMAmKPYwVXMz/SwtH87SocNdRwEAAAAAAAAA2NEUe5iq4aCfJFlYso4LAAAA\nAAAAAGAjij1M1dy42DO/qNgDAAAAAAAAALARxR6manbQS5KMFpc7TgIAAAAAAAAAsLMp9jBVQxN7\nAAAAAAAAAAA2RbGHqVpdxbWwpNgDAAAAAAAAALARxR6majizUuwZmdgDAAAAAAAAALAhxR6majjo\nJUnmF5c7TgIAAAAAAAAAsLMp9jBVw4GJPQAAAAAAAAAAm6HYw1TNrRZ7lhR7AAAAAAAAAAA2otjD\nVA36e9LbUyb2AAAAAAAAAAAch2IPU1VVmZ3pZbS43HUUAAAAAAAAAIAdTbGHqZsb9DNvYg8AAAAA\nAAAAwIYUe5i64aCfhSXFHgAAAAAAAACAjSj2MHXDQT/zVnEBAAAAAAAAAGxIsYepG870MrKKCwAA\nAAAAAABgQ4o9TN1w0FfsAQAAAAAAAAA4DsUepm5u0M9oSbEHAAAAAAAAAGAjij1M3exML6PF5a5j\nAAAAAAAAAADsaIo9TN3coJ95q7gAAAAAAAAAADY08WJPVV1YVV+oqluq6vJ1rv9EVX2uqv6sqv6g\nqr5lzbXlqrpx/HPVpLMyHcNBP0uHDueB5cNdRwEAAAAAAAAA2LH6k3x5VfWSvCPJC5IcTPKJqrqq\ntfa5Nbd9Ksn+1tpCVf3TJG9J8gPja/e11s6fZEambzhY+We3sLicU2YNjQIAAAAAAAAAWM+kWxUX\nJLmltfbF1tpSkvckeenaG1pr17bWFsaH1yc5e8KZ6NhwppckmV+yjgsAAAAAAAAA4FgmXew5K8lt\na44Pjs8dy6uTfHjN8b6qOlBV11fVy9Z7oKouHd9z4K677nr4iZm41Yk9o0XFHgAAAAAAAACAY5no\nKq6tqKpLkuxP8l1rTn9La+32qvrWJP+5qj7dWrt17XOttXcmeWeS7N+/v00tMN+wOcUeAAAAAAAA\nAIDjmvTEntuTPG7N8dnjc0eoqucn+VdJLm6tLa6eb63dPv7vF5Ncl+RpkwzLdPzNxJ7ljpMAAAAA\nAAAAAOxcky72fCLJE6vq3KqaSfKKJFetvaGqnpbk17NS6rlzzflTq2ow/nx6kmcl+dyE8zIFszO9\nJMm8iT0AAAAAAAAAAMc00VVcrbVDVfVjSX4/SS/Jla21z1bVm5IcaK1dleQXkswl+d2qSpK/bK1d\nnOS8JL9eVYezUkB6c2tNsecRwCouAAAAAAAAAIDjm2ixJ0laa1cnufqoc29Y8/n5x3ju40meOtl0\ndGF1FdfCkmIPAAAAAAAAAMCxTHoVFzzE6sSe+cXljpMAAAAAAAAAAOxcij1M3b69e7KnrOICAAAA\nAAAAANiIYg9TV1UZzvQzr9gDAAAAAAAAAHBMij10YjjoZ2FJsQcAAAAAAAAA4FgUe+jEcNDLaHG5\n6xgAAAAAAAAAADuWYg+dGA6s4gIAAAAAAAAA2IhiD50YzvQzUuwBAAAAAAAAADgmxR46MRz0M1qy\nigsAAAAAAAAA4FgUe+jE3KBnYg8AAAAAAAAAwAYUe+jE7MAqLgAAAAAAAACAjSj20Im5QT/zij0A\nAAAAAAAAAMek2EMnhjP9LB46nEPLh7uOAgAAAAAAAACwIyn20InhoJckGS0td5wEAAAAAAAAAGBn\nUuyhE8NBP0kyso4LAAAAAAAAAGBdij10QrEHAAAAAAAAAGBjij10Ys4qLgAAAAAAAACADSn20Inh\njIk9AAAAAAAAAAAbUeyhE6uruOYVewAAAAAAAAAA1qXYQydWiz0m9gAAAAAAAAAArE+xh04MB70k\nyWhpueMkAAAAAAAAAAA7k2IPnZgzsQcAAAAAAAAAYEOKPXTipL29VCn2AAAAAAAAAAAci2IPnaiq\nDGf6mVfsAQAAAAAAAABYl2IPnRkOellYXO46BgAAAAAAAADAjqTYQ2eGg37ml0zsAQAAAAAAAABY\nj2IPnRnO9DOyigsAAAAAAAAAYF2KPXRmOOgp9gAAAAAAAAAAHINiD52ZG/QzWlzuOgYAAAAAAAAA\nwI6k2ENnhoN+Rksm9gAAAAAAAAAArEexh87MzvSt4gIAAAAAAAAAOAbFHjozN+hlXrEHAAAAAAAA\nAGBdij10Zjjo5/4HDmf5cOs6CgAAAAAAAADAjqPYQ2fmBv0kyWjJ1B4AAAAAAAAAgKMp9tCZ2Zlx\nscc6LgAAAAAAAACAh1DsoTPDQS+JYg8AAAAAAAAAwHoUe+jMg6u4Fpc7TgIAAAAAAAAAsPMo9tCZ\n4cAqLgAAAAAAAACAY1HsoTPDmZViz7xiDwAAAAAAAADAQyj20JnhoJckWViyigsAAAAAAAAA4GiK\nPXRmbmBiDwAAAAAAAADAsSj20JnhuNgzUuwBAAAAAAAAAHgIxR46c9LelVVcij0AAAAAAAAAAA+l\n2ENn9uypDGd6GS0tdx0FAAAAAAAAAGDHUeyhU8NB38QeAAAAAAAAAIB1KPbQqblBP/OKPQAAAAAA\nAAAAD6HYQ6dmBz0TewAAAAAAAAAA1qHYQ6eGM/2Mlpa7jgEAAAAAAAAAsOMo9tCpuUHfxB4AAAAA\nAAAAgHUo9tCpWcUeAAAAAAAAAIB1KfbQqblBL/OLVnEBAAAAAAAAABxNsYdODWf6WVgysQcAAAAA\nAAAA4GiKPXRqOOhnYWk5hw+3rqMAAAAAAAAAAOwoij10ajjoJUlGpvYAAAAAAAAAABxBsYdODQf9\nJMlocbnjJAAAAAAAAAAAO4tiD52aWy32mNgDAAAAAAAAAHAExR46NZxZndij2AMAAAAAAAAAsJZi\nD52aHfSSJPOKPQAAAAAAAAAAR1DsoVMPruJaXO44CQAAAAAAAADAzqLYQ6eG42LPwpKJPQAAAAAA\nAAAAayn20KnViT1WcQEAAAAAAAAAHEmxh07NzvSSJCPFHgAAAAAAAACAIyj20KnhzOrEnuWOkwAA\nAAAAAAAA7CyKPXRqz57K7EwvCyb2AAAAAAAAAAAcQbGHzg0H/YyWFHsAAAAAAAAAANZS7KFzw5me\nVVwAAAAAAAAAAEdR7KFzw0E/I6u4AAAAAAAAAACOoNhD5xR7AAAAAAAAAAAeSrGHzs0N+hktKfYA\nAAAAAAAAAKw18WJPVV1YVV+oqluq6vJ1rv9EVX2uqv6sqv6gqr5lzbUfqqqbxz8/NOmsdGN2ppfR\n4nLXMQAAAAAAAAAAdpSJFnuqqpfkHUkuSvKkJK+sqicdddunkuxvrf2dJO9L8pbxs49O8tNJnpHk\ngiQ/XVWnTjIv3Zgb9DNvFRcAAAAAAAAAwBEmPbHngiS3tNa+2FpbSvKeJC9de0Nr7drW2sL48Pok\nZ48/vzDJR1prX22tfS3JR5JcOOG8dGA46GdBsQcAAAAAAAAA4AiTLvacleS2NccHx+eO5dVJPryV\nZ6vq0qo6UFUH7rrrrocZly4MB/2MlpZz+HDrOgoAAAAAAAAAwI4x6WLPplXVJUn2J/mFrTzXWntn\na21/a23/GWecMZlwTNRwppckWXhgueMkAAAAAAAAAAA7x6SLPbcnedya47PH545QVc9P8q+SXNxa\nW9zKs5z4hoN+kmRkHRcAAAAAAAAAwIMmXez5RJInVtW5VTWT5BVJrlp7Q1U9LcmvZ6XUc+eaS7+f\n5Huq6tSqOjXJ94zP8Qgzp9gDAAAAAAAAAPAQ/Um+vLV2qKp+LCuFnF6SK1trn62qNyU50Fq7Kiur\nt+aS/G5VJclfttYubq19tao4yQp1AAAgAElEQVT+dVbKQUnyptbaVyeZl278zcQeq7gAAAAAAAAA\nAFZNtNiTJK21q5NcfdS5N6z5/PwNnr0yyZWTS8dOMJzpJUnmTewBAAAAAAAAAHjQpFdxwXGtTuxZ\nWFLsAQAAAAAAAABYpdhD51aLPSb2AAAAAAAAAAD8jU0Ve6qqV1W/OOkw7E5z42LPaHG54yQAAAAA\nAAAAADvHpoo9rbXlJM+ecBZ2qdlBL0kyMrEHAAAAAAAAAOBB/S3c+6mquirJ7yYZrZ5srf2/256K\nXWU4M57Ys6TYAwAAAAAAAACwaivFnn1J7k7y3WvOtSSKPTwsvT2Vk/b2TOwBAAAAAAAAAFhj08We\n1tqrJhmE3W046Gd+cbnrGAAAAAAAAAAAO8aezd5YVWdX1Qeq6s7xz/ur6uxJhmP3GA5M7AEAAAAA\nAAAAWGvTxZ4kv5nkqiRnjn9+b3wOHrbhTD8LS4o9AAAAAAAAAACrtlLsOaO19puttUPjn99KcsaE\ncrHLzA36mTexBwAAAAAAAADgQVsp9txdVZdUVW/8c0mSuycVjN1lZRXXctcxAAAAAAAAAAB2jK0U\ne/5xkpcn+R9Jvpzkf0nyqkmEYveZHfQzMrEHAAAAAAAAAOBB/c3cVFW9JH+/tXbxhPOwS83N9DNa\nUuwBAAAAAAAAAFi1qYk9rbXlJK+ccBZ2seGgbxUXAAAAAAAAAMAam5rYM/bHVfXvkvxOktHqydba\nDdueil1nbtDLaOlQWmupqq7jAAAAAAAAAAB0bivFnvPH/33TmnMtyXdvXxx2q9lBP60lC0vLGQ62\n8s8SAAAAAAAAAOCRaVMNiqrak+RXW2vvnXAedqnVMs9o6ZBiDwAAAAAAAABAkj2buam1djjJv5hw\nFnaxuUEvSTJaXO44CQAAAAAAAADAzrCpYs/YR6vqJ6vqcVX16NWfiSVjVxnOjCf2LB7qOAkAAAAA\nAAAAwM6wlZ1HPzD+74+uOdeSfOv2xWG3Wl2/Na/YAwAAAAAAAACQZAvFntbauZMMwu62WuxZWFLs\nAQAAAAAAAABItrCKq6pmq+r1VfXO8fETq+p7JxeN3WRu0EuSzC8ud5wEAAAAAAAAAGBn2HSxJ8lv\nJllK8nfHx7cn+dltT8SutDqxZ2QVFwAAAAAAAABAkq0Ve57QWntLkgeSpLW2kKQmkopdZ3ZGsQcA\nAAAAAAAAYK2tFHuWquqkJC1JquoJSRYnkopdZzizsoprZBUXAAAAAAAAAECSpL+Fe386yX9K8riq\n+g9JnpXkhycRit2n39uTfXv3ZLRkYg8AAAAAAAAAQLKFYk9r7SNVdUOSZ2ZlBddrWmt/tXq9qp7c\nWvvsBDKyS8wN+pm3igsAAAAAAAAAIMnWJvaktXZ3kg8d4/K7kjz9YSdi15qd6Wek2AMAAAAAAAAA\nkCTZs43vqm18F7vQcNDPaHG56xgAAAAAAAAAADvCdhZ72ja+i11obtAzsQcAAAAAAAAAYGw7iz3w\nsMzO9DNaUuwBAAAAAAAAAEi2t9iztI3vYheaG/Qzb2IPAAAAAAAAAECSLRR7asUlVfWG8fHjq+qC\n1euttWdOIiC7x3DQy8LictcxAAAAAAAAAAB2hK1M7LkiyXcmeeX4+N4k79j2ROxaw0E/IxN7AAAA\nAAAAAACSJP0t3PuM1trTq+pTSdJa+1pVzUwoF7vQcKaf0dKhtNZSVV3HAQAAAAAAAADo1FYm9jxQ\nVb0kLUmq6owkhyeSil1pOOjncEvue8A6LgAAAAAAAACArRR7fiXJB5I8pqp+LskfJfn5iaRiV5ob\n9JIko0XFHgAAAAAAAACATa/iaq39h6r6ZJLnJakkL2utfX5iydh1hoOVf46jxUM54+RBx2kAAAAA\nAAAAALq16WJPVb2rtfYPk9y0zjl42GZnVv45zi8e6jgJAAAAAAAAAED3trKK68lrD6qql+TbtzcO\nu9ncmok9AAAAAAAAAAC73XGLPVX1uqq6N8nfqaq/rqp7x8d3JvngxBOyawwHvSTJwtJyx0kAAAAA\nAAAAALp33GJPa+3nW2snJ/mF1tqjWmsnj39Oa629bgoZ2SVWJ/ZYxQUAAAAAAAAAkPS3cO+Hq+p/\nPvpka+1j25iHXWzWKi4AAAAAAAAAgAdtpdhz2ZrP+5JckOSTSb57WxOxa83NjIs9VnEBAAAAAAAA\nAGy+2NNae8na46p6XJK3bXsidq3hoJfExB4AAAAAAAAAgCTZ8zCePZjkvO0KAv3engz6exR7AAAA\nAAAAAACyhYk9VfX2JG18uCfJ+UlumEQodq/hoJ95xR4AAAAAAAAAgM0Xe5IcWPP5UJJ3t9b+eJvz\nsMsNB70sLC13HQMAAAAAAAAAoHObLva01v7vSQaBJP8/e/ceZedd3of++5vZmpFmj2br7suMbAtj\nGxtjLpYNmJhCGwLkAuFOkiaQJpAuVkLOOU27krYradJ2NWmTnHS1SRNCICf0JDmUGEISGg7JIRQw\nF9uEm42NjW+SfNHF1kgzI81oZt7zx7vHuliWZmzt2SPtz2etd/3e/b6/d+9nxCxAo+88T5oDOvYA\nAAAAAAAAACSLCPaUUr6RoyO4jruVpKqq6pozXhU9a3iwkUnBHgAAAAAAAACARXXs+f6OVwFtQ4ON\njE/NdLsMAAAAAAAAAICuO22wp6qqBxbOSynnJbmu/fLLVVXt7lRh9Kbhwf48tH+u22UAAAAAAAAA\nAHRd32I3llLemuTLSd6S5K1JvlRKeXOnCqM3NQeM4gIAAAAAAAAASBY3imvBv0py3UKXnlLK5iR/\nk+QjnSiM3tQcbGRCsAcAAAAAAAAAYPEde5L0nTB6a98Sn4fTag72Z3J6NlVVdbsUAAAAAAAAAICu\nWkrHnr8upXwyyZ+0X78tySfOfEn0suZgI/NVMj07n9Wr+rtdDgAAAAAAAABA1yw62FNV1T8vpbwx\nyXe1L72vqqqPdqYsetXwYP0tOTE9K9gDAAAAAAAAAPS0RQd7SinNJH9eVdVNpZQrklxRSllVVdWR\nzpVHr2kO1N+Sk9Oz2TQ82OVqAAAAAAAAAAC6p28Je/9XksFSymiSv07yo0n+sBNF0buag3WXnonp\n2S5XAgAAAAAAAADQXUsJ9pSqqqaSvDHJf6uq6i1JntuZsuhVzfYorqmZuS5XAgAAAAAAAADQXUsK\n9pRSXprkR5L8Vfta/5kviV62EOzRsQcAAAAAAAAA6HVLCfb8b0l+IclHq6q6vZTyrCSf7kxZ9Krh\ndrBnUrAHAAAAAAAAAOhxjcVurKrqM0k+U0oZKaWsrarq3iTv7Vxp9KKhgboJlGAPAAAAAAAAANDr\nFt2xp5SyvZTyjSRfT/LNUsrXSinXdq40etHRjj1zXa4EAAAAAAAAAKC7Ft2xJ8kHkrynqqrPJkkp\n5buSfDDJNZ0ojN7UNIoLAAAAAAAAACDJEjr2JJlbCPUkSVVVn0sifcEZtaq/LwONvkzM+NYCAAAA\nAAAAAHrbaTv2lFJe1D79TCnl95L8SZIqyduS/F3nSqNXNQf6dewBAAAAAAAAAHreYkZx/cYJr3/p\nmPPqDNYCSepxXFPTc90uAwAAAAAAAACgq04b7Kmq6pXP5ANKKa9J8p+T9Cd5f1VVv3rC/Zcn+a0k\n1yR5e1VVHznm3lySb7RfPlhV1eueSS2cHYYHG5nQsQcAAAAAAAAA6HGL6djzhFLK9yV5bpLVC9eq\nqvqVU+zvT/LbSV6VZGeSW0opH6+q6o5jtj2Y5J1Jfu4kb3GoqqoXLKVGzn7NwUYmZwR7AAAAAAAA\nAIDetuhgTynld5MMJXllkvcneXOSL5/mseuT3FNV1b3t9/jTJK9P8kSwp6qq+9v35pdSOOeuoYH+\nHDgs2AMAAAAAAAAA9La+Jey9oaqqH0vyeFVVv5zkpUkuP80zo0l2HPN6Z/vaYq0updxaSvliKeUH\nT7ahlPLu9p5b9+zZs4S3ZqUaHmxkyiguAAAAAAAAAKDHLSXYc6i9TpVSLkxyJMkFZ76k41xcVdX2\nJD+c5LdKKZeeuKGqqvdVVbW9qqrtmzdv7nA5LIfmYCOTgj0AAAAAAAAAQI9bSrDnL0sp65L8pyRf\nSXJ/kj8+zTO7kmw95vVY+9qiVFW1q73em+Tvkrxw8eVythoebGRCsAcAAAAAAAAA6HGLDvZUVfVv\nq6raX1XVnyW5OMlzqqr6xYX7pZRXneSxW5JcVkrZVkoZSPL2JB9fzOeVUtaXUgbb55uSvCzJHYut\nl7PX0EB/JmfmUlVVt0sBAAAAAAAAAOiapXTseUJVVdNVVY2fcPnXTrJvNslPJ/lkkm8l+XBVVbeX\nUn6llPK6JCmlXFdK2ZnkLUl+r5Rye/vxK5PcWkr5WpJPJ/nVqqoEe3pAc7CRufkq07Pz3S4FAAAA\nAAAAAKBrGmfwvcrJLlZV9Ykknzjh2i8ec35L6hFdJz53c5LnncH6OEsMD9bflpPTs1m9qr/L1QAA\nAAAAAAAAdMfT6tjzFMxN4oxoPhHsmetyJQAAAAAAAAAA3XMmgz1wRjQH6i49E9OzXa4EAAAAAAAA\nAKB7zmSw5/4z+F70sIWOPVMzgj0AAAAAAAAAQO9qLGVzKeWGJJcc+1xVVX/UXt94RiujZy0Ee3Ts\nAQAAAAAAAAB62aKDPaWUDyW5NMlXk8y1L1dJ/qgDddHDhtvBnsnpudPsBAAAAAAAAAA4dy2lY8/2\nJFdVVVV1qhhIkqGB/iTJpFFcAAAAAAAAAEAP61vC3m8mOb9ThcCCox17BHsAAAAAAAAAgN61lI49\nm5LcUUr5cpLphYtVVb3ujFdFT2sK9gAAAAAAAAAALCnY8286VQQca6DRl1X9JRPTc90uBQAAAAAA\nAACgaxYd7Kmq6jOdLASO1RxsZGpGxx4AAAAAAAAAoHf1LXZjKeUlpZRbSikTpZSZUspcKeVAJ4uj\ndzUHGpkwigsAAAAAAAAA6GGLDvYk+a9JfijJ3UnWJPnJJL/diaJgeLCRScEeAAAAAAAAAKCHLSXY\nk6qq7knSX1XVXFVVH0zyms6URa8bGuzP5PRct8sAAAAAAAAAAOiaxhL2TpVSBpJ8tZTyH5M8nCUG\ng2CxhgeN4gIAAAAAAAAAettSgjk/2t7/00kmk2xN8qZOFAXNAaO4AAAAAAAAAIDetuiOPVVVPVBK\nWZPkgqqqfrmDNUGagw2juAAAAAAAAACAnrbojj2llB9I8tUkf91+/YJSysc7VRi9rTnYbxQXAAAA\nAAAAANDTljKK698kuT7J/iSpquqrSbZ1oCZIc7CRqRnBHgAAAAAAAACgdy0l2HOkqqrxE65VZ7IY\nWDA82MiRuSrTs8ZxAQAAAAAAAAC9aSnBnttLKT+cpL+Uclkp5b8kublDddHjmgP9SZLJacEeAAAA\nAAAAAKA3LSXY8zNJnptkOskfJxlP8rOdKAqGBhtJkslp47gAAAAAAAAAgN60lGDPVe2jkWR1ktcn\nuaUTRXGOqKrkj9+WfPn3l/zo8EKwZ0awBwAAAAAAAADoTY0l7P2/k/xckm8mme9MOZxTSkke/noy\ntHHJjzZ17AEAAAAAAAAAetxSgj17qqr6i45VwrmpNZaM71zyY8OD/UmSiem5M10RAAAAAAAAAMBZ\nYSnBnl8qpbw/yd8mmV64WFXVTWe8Ks4drdG6a88SDQ3o2AMAAAAAAAAA9LalBHt+PMlzkqzK0VFc\nVRLBHp5aayy5638mVVWP5lqkYaO4AAAAAAAAAIAet5Rgz3VVVV3RsUo4N42MJbOHk6l9SXPToh9r\nCvYAAAAAAAAAAD2ubwl7by6lXNWxSjg3tcbqdXzHkh5rDvYnSSZn5s50RQAAAAAAAAAAZ4WldOx5\nSZKvllLuSzKdpCSpqqq6piOVcW54ItizK7nwhYt+bKC/L42+kgkdewAAAAAAAACAHrWUYM9rOlYF\n564ngj07l/RYKSXNwUamBHsAAAAAAAAAgB616GBPVVUPdLIQzlFDG5PG6uTA0oI9STI82MjEtFFc\nAAAAAAAAAEBv6ut2AZzjSklGRpfcsSdJmoP9mdSxBwAAAAAAAADoUYI9dF5rLBnfteTHhgYamZwR\n7AEAAAAAAAAAepNgD53XGntaHXuGBxs69gAAAAAAAAAAPUuwh85rjSUTjyRzR5b0WD2Ka65DRQEA\nAAAAAAAArGyCPXTeyGhSzScHH17SY83BRiZ07AEAAAAAAAAAepRgD53XGqvXJY7jag40Mjkj2AMA\nAAAAAAAA9CbBHjqvtbVex3ct6bHmYCNTRnEBAAAAAAAAAD1KsIfOa43W6/iOJT02PNifmbn5zMzO\nd6AoAAAAAAAAAICVTbCHzhtoJmvWJweW3rEnSSanjeMCAAAAAAAAAHqPYA/LY2QsGd+5pEeaA3Ww\nZ0KwBwAAAAAAAADoQYI9LI/WWDL+9Dr2TM3MdaIiAAAAAAAAAIAVTbCH5dEaTcZ3LOmR5mB/Eh17\nAAAAAAAAAIDeJNjD8miNJYf3J9MTi35kuN2xZ1KwBwAAAAAAAADoQYI9LI+RsXo9sPhxXEMDC6O4\nBHsAAAAAAAAAgN4j2MPyaLWDPeM7F/3IQseeiem5TlQEAAAAAAAAALCiCfawPJ5GsKc52J/EKC4A\nAAAAAAAAoDcJ9rA81l6QlL4lBnsWOvYI9gAAAAAAAAAAvUewh+XR36jDPQd2LfqRwUZf+vtKpmYE\newAAAAAAAACA3iPYw/IZGU3Gdyx6eyklzYH+TE7PdbAoAAAAAAAAAICVSbCH5dMaS8YX37EnSYYH\nG0ZxAQAAAAAAAAA9SbCH5dMarUdxVdWiH2kONjIp2AMAAAAAAAAA9CDBHpZPa2syeziZ2rfoR4YG\nG5mcMYoLAAAAAAAAAOg9gj0sn5HReh3fsehHhgf7dewBAAAAAAAAAHqSYA/LpzVWr+O7Fv1Ic8Ao\nLgAAAAAAAACgNwn2sHxaW+t1fOeiHxkebGRCsAcAAAAAAAAA6EGCPSyfoQ1JY/WSRnENDfZnamau\ng0UBAAAAAAAAAKxMgj0sn1LqcVwHljCKS8ceAAAAAAAAAKBHCfawvEZGlzaKa6CRmdn5HJmb72BR\nAAAAAAAAAAArj2APy6u1NRlfWseeJJnUtQcAAAAAAAAA6DGCPSyv1mhy8OFk7siitjcH+5MkkzNz\nnawKAAAAAAAAAGDFEexhebXGklR1uGcRdOwBAAAAAAAAAHqVYA/La2S0Xsd3Lmr7QrBnQrAHAAAA\nAAAAAOgxgj0sr9bWeh3ftajtwzr2AAAAAAAAAAA9SrCH5dVa6NizY1Hbhwb6kyST03OdqggAAAAA\nAAAAYEUS7GF5DTSTNesXPYpLxx4AAAAAAAAAoFcJ9rD8WmPJgcWN4mouBHtmBHsAAAAAAAAAgN4i\n2MPyGxlbdMee5kAd7JnQsQcAAAAAAAAA6DEdD/aUUl5TSrmrlHJPKeXnT3L/5aWUr5RSZkspbz7h\n3jtKKXe3j3d0ulaWSWvxwZ7Vq/rSV5Kp6bkOFwUAAAAAAAAAsLJ0NNhTSulP8ttJXpvkqiQ/VEq5\n6oRtDyZ5Z5I/PuHZDUl+KcmLk1yf5JdKKes7WS/LpDWaHN6fTE+cdmspJc3Bho49AAAAAAAAAEDP\n6XTHnuuT3FNV1b1VVc0k+dMkrz92Q1VV91dV9fUk8yc8++okn6qq6rGqqh5P8qkkr+lwvSyH1tZ6\nPbBrUduHBxuZFOwBAAAAAAAAAHpMp4M9o0l2HPN6Z/vaGXu2lPLuUsqtpZRb9+zZ87QLZRmNtP9j\nHN9x6n1tQwP9mZwR7AEAAAAAAAAAekungz0dV1XV+6qq2l5V1fbNmzd3uxwWozVWr+NL6dgz18GC\nAAAAAAAAAABWnk4He3Yl2XrM67H2tU4/y0q29oKk9CXjOxe1vWkUFwAAAAAAAADQgzod7LklyWWl\nlG2llIEkb0/y8UU++8kk31NKWV9KWZ/ke9rXONv1N+pwzxKCPROCPQAAAAAAAABAj+losKeqqtkk\nP506kPOtJB+uqur2UsqvlFJelySllOtKKTuTvCXJ75VSbm8/+1iSf5s6HHRLkl9pX+Nc0BpLDiwy\n2DPQn8kZwR4AAAAAAAAAoLc0Ov0BVVV9IsknTrj2i8ec35J6zNbJnv1Akg90tEC6Y2Q0efiri9ra\nHGxkanquwwUBAAAAAAAAAKwsnR7FBSfXGkvGdyVVddqtw0ZxAQAAAAAAAAA9SLCH7miNJXPTyeTe\n025tDjYyPTuf2bn5ZSgMAAAAAAAAAGBlEOyhO1rt6WsHdp5269BAf5Jk0jguAAAAAAAAAKCHCPbQ\nHSOj9Tp++mDP8GAjSTI5YxwXAAAAAAAAANA7BHvojtbWeh3fddqtzYVgz7RgDwAAAAAAAADQOwR7\n6I6hDUljTTK+47RbFzr2TAj2AAAAAAAAAAA9RLCH7iglaY0uahTX0EB/kmRyeq7TVQEAAAAAAAAA\nrBiCPXRPayw5sIRRXDM69gAAAAAAAAAAvUOwh+4ZGVtUx56FUVyTRnEBAAAAAAAAAD1EsIfuaY0l\nBx9J5o6ccltTsAcAAAAAAAAA6EGCPXRPazRJlRx46JTbmoP9SZLJmbllKAoAAAAAAAAAYGUQ7KF7\nWmP1emDXKbetWdWfvqJjDwAAAAAAAADQWwR76J6RdrBnfOcpt5VS0hxoZEKwBwAAAAAAAADoIYI9\ndE9rtF5PE+xJkuZgQ8ceAAAAAAAAAKCnCPbQPQPNZM2GRQV7hgb7MzkztwxFAQAAAAAAAACsDII9\ndFdrdFHBnmEdewAAAAAAAACAHiPYQ3e1tiYHdp12W3NAsAcAAAAAAAAA6C2CPXTXyGgyvuO025qD\njUxMG8UFAAAAAAAAAPQOwR66qzWWHB5Ppg+ecltzsD9TMzr2AAAAAAAAAAC9Q7CH7mqN1ev4qcdx\nNQeN4gIAAAAAAAAAeotgD921EOw5sPOU24YHG5kQ7AEAAAAAAAAAekij2wXQ40ZG63X81MGe5kAj\nh4/MZ3ZuPo1+eTQAAAAAAAAAeEpVlUwfTA7vT0p/0hrtdkU8TYI9dNfaC5LSt4hRXP1JkqkjcxkR\n7AEAAAAAAACgF8xOJ4f2J4cer0M6hx4/yeuTXdufVHP1ezzvLcmb3t/dr4OnTbCH7upvJGsvPH3H\nnsH6W3VyejYjq1ctR2UAAAAAAAAA0HnTE8mDX0ju+1/JQ3+fTD12NKBzZOoUD5ZkdStZsy5Zsz5Z\nvS5Zd9HR1wvXNl2+bF8KZ55gD93XGk3Gd5xyy7HBHgAAAAAAAAA4ax05lOz4Uh3kue+zyUNfSeZn\nk75VyQXPT9Zf0g7mrDs+tPPEtXZoZ3Ak6evv9ldDhwn20H2tsTp1eArD7VFcE9Nzy1ERAAAAAAAA\nAJwZs9PJzluT+z9bh3l23pLMzSSlP7nwhckN70223ZhsfXEy0Ox2tawwgj1038ho8q2/TKoqKeWk\nW4YG6m/VKR17AAAAAAAAAFjJ5mbr5hb3faYO8zz4pWT2UJKSXHBN8uKfSi55eXLRS5LVI92ulhVO\nsIfua21N5qaTyb3J8OaTbhluj+KaEOwBAAAAAAAAYCWZn0se+Xo9Vuu+/5U8+IVkZqK+t+W5ybXv\nSLa9PLn4hnqEFiyBYA/d1xqt1/EdTxnsabaDPZMzgj0AAAAAAAAALNH8fHJ4fz0Wa/5IMrdwzBz/\n+kn3Zut17sjx5wv3H709eeBzyeHx+nM2XZ5c87Z6tNYlNybNTd39ujnrCfbQfa2xej2wKxl90Um3\nNAf7kyQT03PLVRUAAAAAAAAAT+XwgWTvt+tjz131v/euXpcMb0mam4+uC+cDzc7VMjebTDyaHHio\nruO4tX0cfLgO7Zxp67clV72+Hq217cZk7fln/jPoaYI9dN9IO9gzvvMptzQH6m/VKaO4AAAAAAAA\nAJZHVSUHHzk+wLNwfvDho/v6ViUjF9RdaxY615xoVbOe4NJcCP60z08MADU3J6tbSSn1c7PT9Wc9\nEdI5IbBz4KFk4pGkmj/+8xqrk5ELk5HR5OKX1ufD5yWNwbre/oGkv1GvfauS/oXjZK/b+xauLdzv\naxytEzpEsIfuG9qQNNacMtgzNNCfUpJJwR4AAAAAAACAM2tuNtn/QDu4c1ey9+72+d3J9DFBnYG1\nyebLk2e9Mtl0WbL5imTTFcn6S+qQTFIHcSb3JpO7k4k97XX3Mdd2J4/fl+z4UjK1L0n15Hr6B+uA\nz9x0MrnnyfcHR5K1F9RhnUv/YTvA0w7xLJyvWS90wzlBsIfuK6Uex3WKYE8pJc2BhlFcAAAAAAAA\nACczP5/MHkqOHF7cOr6rDvHs+Xby2HeSuZmj7zV8fh3gueYtdXBn8+X1uvb804dlGoNJa7Q+Tlvz\nXB3umdh9TBBoz9HzxsDxYZ2R0TrQs3rkmf1ZwVlEsIeVoTV6ymBPkjQH+3XsAQAAAAAAAM49c0fq\ngMvkQrBlb/tov556LDkylcweTo4cOmFtB3WODeYsRulL1m9LNl2eXP49dXBn0+V1J5416zrzdZ6o\nr78evzW8ZXk+D85Cgj2sDK2x5J6/PeWW5kAjkzOCPQAAAAAAAMAZMD+fVHNJNV+/Ln1JSrsjTXt9\nuqOc5ueTw/uPD+c8Edg55nyq/frQ4yd/n75GPZJqzYZkYChprK5DMI3Vyao1z2xtbqq76wArmmAP\nK8PIWHLwkWR2pm6ndhLNwYaOPQAAAAAAALCSTT2WPPKN9vH1ZO/ddXhmURYZoqnmjx7zc/X7P7HO\nn/B67iT75pdQU7uuY8M+T4R+ThIEWlhnJp/iM0oytCEZ2lQHdrZcVa/NzXXQ5rjzTcnqdU8/XASc\nEwR7WBlaY0mq5ODDyfqLT7qlHsW1lP+BBQAAAAAAADqiqpLxnXV455FvJA9/vT4f33F0z9oLks1X\nJP1nsitMVQdqSn/S13fMef8xa98Jr0+8fsIzTwRnqqRKu4NPVX+NC+vJrqV9vaqO/pksXBtonjyw\ns2ZD0u+f6YHF898YrKI2Fw4AACAASURBVAyt0Xod3/mUwZ7hwUYe2n94GYsCAAAAAACALps+mIzv\nSg7srP8tbXxXcmBXfT61L1mzPhk+r31sOWE9LxnaWAdgnom52WTvt4924VkI8zwxPqokG5+dbL0+\nue4nkvOvqY/hzc/4ywfodYI9rAytrfV6YNdTbhkaaGRqxiguAAAAAAAAOuTwgWTf3fX4qP0PJo3B\nuvPKwNp6HRxOBhaOY173r3p6n3fkUHLgoTqkc2DXMQGeXUdfT48f/0zpS4bPr39xvrW1Dtfsui2Z\neDQ5MvXkzyj9daeYY8M+JwsArT2v/lqOTCWP3l6Hdxa68Dx6RzI3Xb9f/2By3lXJla9LLmgHeM57\nbv3nAcAZJ9jDyjCy0LFnx1NuaQ42MmEUFwAAAAAAAM9EVSUHH6k70Cwce+6qwzwHH3p679k/eELw\np3lM+Gft0ddHptpdd9pBnql9T36voU11aGf9tuSS70paY/W/pS2sa89/6iDR9EQd8JnYfcJ6zPmj\ntyeTu5P5k/xCfWNNMns49TyqJKvXJec/L7n+Xe0uPM9LNl1ulBTAMvLfuKwMA0P1PMnxp+7YMzzY\nn8lpHXsAAAAAAACesaqqRzxN7qkDH5O72+ueE9bdyeTeZO7I8WGVJ45TvT7NeWMwKaVzX+PcbPL4\nfccHd/a21+kDR/cNDNdhlW0vTzZfXp9vuiJZf3H9dc9MJDOT9Tq9cH6wXk98PTNZ/7ku7J94tL2n\nfTTWtDvtjCWj19bnI2PttX2sWv30v+bB4frYeOmp983P151+Tgz9TDxa/3lc0A7xtLZ29j8jAE5L\nsIeVozVWp5OfQnOwkUNH5jI3X6W/z/+BAAAAAACAc8r0wTp80RqrxwIJEyzd3JHk0P7k0GPHhHX2\nHBPa2Xv8tdnDJ3mTkgxtrEc0NTcnY9clzS11h5aF4MoTQZfJuuPME9cnkyOTSyi4JKvW1EdjzdHz\np7rWWJ2sGnrqPVOPtYM73072fDt57N5k/sjRjxs+vw7uXPPWOriz6bJk8xXJ2gue+vutMVgHZc41\nfX1Jc2N9nHdVt6sB4BQEe1g5WmPJ4w885e3mQP3tOjUzm7Wrn+acUgAAAAAAYGU49Hjy4BeT+z+X\nPHBz8vDXkmquvre6lWx+Th262Pyco8fIhcsf+KmqOryy/4Fk/4P1CKe+xjFBk0Ws/QOLr7uq6nFN\nhx4/5th/wuvHk8P7n3x/ZuLk71n6k+amOqAzvDnZeFm9NrccDfAMb6lfD218ZmOW5ufr+k8MAD3p\n9cHkyOFk9lBy5MRjql6n9tV7Fq7NHq7XUyn9yYZtdXDnitfW30ObLq9DPKtbT//rAoAuEexh5WiN\nJQ98/ilvNwfrb9fJ6TnBHgAAAAAAONtM7q3/HeCBm5P7P588+s0kVR16GbsuufH/SC54QXLgoWTP\nnXX3njs/kXzlj46+x8DaY8I+VyRbrqzXkbG6A8nTUVV1p5eF4M7JjiV1oTmZcurgz9yR4wM7czNP\n/VZ9q5I1648eI2PJec9L1qw7/voTQZ4tyZoNT//PZ6n6+o6Og8p5Z/79qyqZnT4a/lkI+xw5lAyO\nJBuelTQGzvznAkCXCPawcoyMJofH61abg2ufdLs52J8kmZieXe7KAAAAAACApTrwcDvI8/k6yLP3\nrvp6Y02y9frklf8yufiGZHR7smr1U7/P5N520Kcd9tlzZ3LPp5Kv/veje1Y16xFLx3b32XxFsu7i\nulPOocdPHdw5sdPN6lay7qJk46XJpa+sz9ddXK9rL6g7Cz0RKlnqutCl5pi1f1Vd77HBnCeOEwI7\nq4Z6e0xZKfX3y6m+ZwDgHCLYw8rRGqvX8V3Jluc86fbwEx17BHsAAAAAAGDFefyBuhvPA5+rgzyP\n31dfH1ibXPSS5AU/lFz8srorz1I6qjQ3Jc3vSi75ruOvTz12NOizsN77meRrf3J0T2NNPTZr5uDx\nzw6O1EGd9duSZ72iHdxpH62tdZgGAGAFEOxh5Xgi2LPzpMGeoYF2sGdGsAcAAAAAALpifq7uvr8w\nNurR24+O1xrfUe9Zva4O8Fz3k8klL6vHRPV34J+khjYkF7+0Po51ePz4wM/87NFuOwuH4A4AcJYQ\n7GHlWAj2HNh50ttHO/bMLVdFAAAAAABwbpqdPhrOObT/mPOTHIePuX94/Mnv1dxcj9S64b11kGfz\nlUlf3/J/TQtWt+pRX1uv714NAABniGAPK8fw+Unpqzv2nERzsD+JUVwAAAAAAJwD5ueSuSPJ/JH2\nOnvM69l6nZ1uH4eTuZl6XXh93Pki1yOHj4Z0jkw9dW2lL1mz/ugxtCnZeNnx1xaO9Zckmy5LSlm2\nPzoAgF4i2MPK0d9I1l6YjO866e3moFFcAAAAAACsANMTyWPfSfbdk+y7t173P5jMHjoayjk2pDM3\nc3xgZ+5IkurM1tRYkzQGk8bqpDHQXhder65DOGtX1yOoVq87eUhnTfv6wNrudtwBAOAJgj2sLK2x\nozN4T/BEsEfHHgAAAAAAOm12Onnsvjq0c2KIZ+KR4/eOjNada4Y2Jf2rkr5Ge11V/1Jr/0D7/FT3\nGsfsOebeQjDnuKDOCWv/Kh1zAADOUYI9rCyt0WTXV056a2hVPYprYnpuOSsCAAAAAOBcNTebjD+Y\n7PtO+7jnaJBn/44c11VnaFOy8dnJs/9RsvHSZMOl9esNz0oGhrr2JQAAcG4T7GFlaY0l3/rLZH7+\nSW0++/pKmgP9OvYAAAAAAHBqVZUcejyZeDSZ2N0+Hk0mjznfvyN5/P56NNaCwZE6tDN2ffL8H67P\nF0I8a9Z17csBAKB3CfawsoyMJXPTydTeZHjLk24PDTYyNSPYAwAAAADQc6oqmT5wfFBnYnc7rHNs\ngKd9bf4kP0vuH0iaW+qfP295TnLl9x/tvLPx0qS52UgrAABWFMEeVpbWWL2O7zxpsGd4sGEUFwAA\nAADAua6qkj13JQ98Pnng5mTXrcnBR5LZw0/eW/rrnyc3NyfD5yXnXZ0Mt88Xrg2fV19bvU5wBwCA\ns4pgDytLa7Rex3cmoy960u3moFFcAAAAAADnnPm55NHb20Gedphnal99b/j85KIXJ1e+rg7wnBjY\nWbM+6evrbv0AANAhgj2sLK2t9Xpg10lvNwcamRDsAQAAAAA4u80dSR7+Wh3iuf/zyYNfTKbH63vr\nLkou+57k4huSi1+WbHiWLjsAAPQswR5WljXrk8aaumPPSTQHG9l98CStVgEAAAAAWLmOHE523VZ3\n4nng88mOLydHJut7Gy9LnvuDdYjn4huSdVu7WysAAKwggj2sLKUkrbFTBnsm984tc1EAAAAAACzJ\nzGQd3lkYq7Xz1mRuur635bnJC3+kDvFcdEOy9rzu1goAACuYYA8rzymCPcOD/UZxAQAAAAA8XbPT\nye5v1WOwHvl6ve75djJ/JElpj7w6dl148GT3TrFOPJrMzyalL7ng+cn176o78lz0kmRoQze+cgAA\nOCsJ9rDytEaTu//mpLeaA41MCvYAAAAAAJze9ETy6DeTh9sBnke+Vod65ts/Yx1Ym1xwTXLNW5PG\nYH2tqpJU7TXHnC9hTZLmljrIs/X6ZPXI8n3NAABwjhHsYeVpba1/m2N2JmkMHHdraLCRqZm5zM9X\n6esrT/EGAAAAAAA9Zuqxox14FoI8++7JE0GboY1155wbvjs5/5r6fP22pK+vq2UDAACnJtjDyjMy\nmqRKDj6UrL/kuFvrh1YlSW594PFcv027VgAAAACgx1RVcvCR40dpPfz1ZPzBo3tGxurgzvPeXK/n\nX5OMXNgelQUAAJxNBHtYeVpj9Tq+60nBnje8cDR/9IUH8lMfujUffc/Lcsmm5vLXBwAAAACwnKoq\n2X1H8s2bkttvSh679+i9DZcmY9uT6/5JO8Tz/KS5sXu1AgAAZ5RgDyvPE8GenU+6tW5oIB9453V5\nw+98Pv/kD2/JTe+5IeuGBp60DwAAAADgrLf37qNhnj13JqUv2fby5Lp3JRe+IDnv6mT1SLerBAAA\nOkiwh5VnZLReDzw52JMk2zY1874f3Z5//P4v5d0fui0f+onrM9joX8YCAQAAAAA65PH7j4Z5HvlG\nkpJcfEPyvb+eXPX6ZHhLtysEAACWkWAPK8/AULJmw0k79iy4ftuG/Ke3XJOf/dOv5hf+7Bv5jbc+\nP8V8aAAAAADgbDS+K7n9o3WYZ9dt9bWx65JX/4fkuT+YjFzY3foAAICuEexhZWqN1X+ZPYXXv2A0\nD+ybym9+6tu5ZFMz7/1Hly1TcQAAAAAAz9DBR5M7/rwO8zz4hfraBc9PvvuXk+e+IVl/cXfrAwAA\nVgTBHlam1ta65exp/Mw/fHbu3zeZ3/zUt3PRhqH84AtHO18bAAAAAMDTMbkv+dbH6zDP/Z9Lqvlk\ny1XJK/91cvUbk42XdrtCAABghel4sKeU8pok/zlJf5L3V1X1qyfcH0zyR0muTbIvyduqqrq/lHJJ\nkm8luau99YtVVf3TTtfLCtEaTR743Gm3lVLyq2+8Jg/tP5R/8ZGv58J1a3L9tg3LUCAAAAAAwCIc\n2p/c+Vd1mOfev0vmZ5MNlyY3/lwd5tlyZbcrBAAAVrCOBntKKf1JfjvJq5LsTHJLKeXjVVXdccy2\nn0jyeFVVzy6lvD3JryV5W/ved6qqekEna2SFao0lh8eTwweS1SOn3DrQ6Mvv/uNr88b/dnPe/aFb\n89H3vCzbNjWXqVAAAAAAgCRTjyV7v53svfv49fH7k2ouWXdR8tKfrsM851+TlNLtigEAgLNApzv2\nXJ/knqqq7k2SUsqfJnl9kmODPa9P8m/a5x9J8l9L8TeanjfSHql1YNdpgz1Jsm5oIB9853V5w+/c\nnB//4Jfz0fe8LOubAx0uEgAAAADoKXOzyf4Hnhzg2Xd3MrXv6L7+gWTjs5Pzr06uflNy+auT0WuF\neQAAgCXrdLBnNMmOY17vTPLip9pTVdVsKWU8ycb2vW2llL9PciDJv66q6rMnfkAp5d1J3p0kF110\n0Zmtnu5pba3X8V2LbkV78cZmfv/Hrs0P/f6X8u4P3Zr//pMvzmCjv4NFAgAAAADnpEP7k333PDnA\n89i9yfyRo/uam5NNlydX/kCy8bL6fNNldXeePj+bBAAAnrlOB3ueiYeTXFRV1b5SyrVJPlZKeW5V\nVQeO3VRV1fuSvC9Jtm/fXnWhTjqh1e7YM77j1PtOcO3FG/Lrb3l+3vsnf59/8ZGv57fe9oJoAAUA\nAAAAnFJVJQ/cnNzy/uSBzycTjx6919dINjyrDu1c8dp2eOfyZNOzkzXru1czAADQEzod7NmVZOsx\nr8fa1062Z2cppZGklWRfVVVVkukkqarqtlLKd5JcnuTWDtfMSjB8flL661FcS/S651+YHY9N5T99\n8q5csrGZ//1Vl3egQAAAAADgrDc9kXz9/0lu+YNk9+3J6lZyxfclm684GuBZf3HSv6rblQIAAD2q\n08GeW5JcVkrZljrA8/YkP3zCno8neUeSLyR5c5L/r6qqqpSyOcljVVXNlVKeleSyJPd2uF5Wiv5G\nsvaCZHzn03r8Pa+4NPfvncx//tu7c9GGobzp2rEzXCAAAAAAcNba8+26O8/X/iSZPpCcf03yuv+S\nXP3mZGCo29UBAAA8oaPBnqqqZkspP53kk0n6k3ygqqrbSym/kuTWqqo+nuQPknyolHJPksdSh3+S\n5OVJfqWUciTJfJJ/WlXVY52slxWmNfa0gz2llPz7Nzwvu/Yfys/f9PWMrl+Tlzxr4xkuEAAAAAA4\na8zNJnd9og703PeZpH8gee4bkuvelYxtT0rpdoUAAABPUuqJV+eG7du3V7fealLXOeMjP5Hsui35\n2a8+7bcYP3Qkb/pvN2fPwenc9J4bcunm4TNYIAAAAACw4k3sTm77v5LbPpgc2JW0tibbfzx54Y8l\nw5u7XR0AANCDSim3VVW1fTF7+zpdDDxtrdHkwEPJ/PzTf4s1q/LBd16XRl/Jj3/wluybmD6DBQIA\nAAAAK1JVJQ9+sf7lwd+8Kvn0v0s2XZ68/Y+T9341ufGfCfUAAABnBcEeVq7W1mRuOpna+4zeZuuG\nofz+O7bn0QOH8+4P3ZbDR+bOUIEAAAAAwIoyM5nc9ofJ796YfODVyd2fSq77yeSnb01+7GPJc74v\n6W90u0oAAIBFE+xh5RoZrdfxHc/4rV500fr8n297QW574PH83P/4Wubnz50RdAAAAADQ8/bek/z1\nLyS/cWXyFz+bpEq+/7eSf/at5LW/mmy6rNsVAgAAPC1+NYGVqzVWr+O7ktFrn/Hbfe/zLsjPv/Y5\n+dX/eWcu2djMz736imf8ngAAAABAlxw+kNz3meSWP0ju/XTS10iuen1y3buSi16SlNLtCgEAAJ4x\nwR5WrieCPTvP2Fv+1MuflQf2Tea/fvqeXLxxKG/ZvvWMvTcAAAAA0EH7dyQ7vpQ8+MVkxxeTR29P\nqvlk7YXJK/9V8qJ3JGvP63aVAAAAZ5RgDyvXmvXJqqHkwK4z9pallPzK66/OzscP5Rdu+kZG163J\nDc/edMbeHwAAAAA4A+Zmk9231yGeB79YB3oWfk64qpmMbU9e/s/rzjyXvDzp96NuAADg3ORvO6xc\npSQjo8n4jjP6tqv6+/LbP/KivOl3bs4//e+35ab33JBnb1l7Rj8DAAAAAFiC6YPJzluSB79Ud+PZ\neWsyM1HfW3thHeC56CXJ1hcn510tyAMAAPQMf/thZWuNJeNnrmPPgpHVq/KBd16XN/zOzfnxP7wl\nH/6pl+aC1poz/jkAAAAAwEmM7zzaiefBLyaPfrMeq5VSB3ee//Zk60uSi16ctLbWvwQIAADQgwR7\nWNlaY8ndn+rIW2/dMJQ/eMf2vO19X8iNv/bp/KMrt+St27fmH1y+OY3+vo58JgAAAAD0pEP7kzv/\nMvnOp+sgz4Gd9fVVzWTs2uTGn6s78oxdl6we6W6tAAAAK4hgDytbayyZeDSZnUkaA2f87Z+/dV0+\n8d4b86e37MhNX9mZT97+aDavHcwbXzSat1y7Nc/eMnzGPxMAAAAAesLMZHLX/0y+eVNyz6eSuZlk\n+Pzk4pcmW3+m7sZz3vOM1QIAADgFf2NiZWuNJamSgw8l6y/pyEc8a/Nw/uX3Xpl//uor8uk7d+d/\n3LYz7//sffm9z9ybF120Lm/dvjXfd80FWbt6VUc+HwAAAADOGbPTyT1/k3zjI8m3/zo5MpWsvSC5\n7l3J896UXPgiY7UAAACWQLCHlW1ktF7Hd3Ys2LNgVX9fvue55+d7nnt+dh88nI/9/a58+Nad+fmb\nvpFf/os78trnnZ+3bt+aF2/bkOKHDwAAAABQm5tN7vtM8s0/S771l8n0eDK0MXn+25Or35xc9NKk\nr6/bVQIAAJyVBHtY2Vpb63V817J+7Ja1q/Pul1+ad934rHx1x/58+Nad+YuvPZSbvrIrF28cyptf\nNJY3XTuWC9etWda6AAAAAGBFmJ9PHvxCHea548+Tqb3J4Ehy5Q8kV78x2fYPkn4dsAEAAJ4pwR5W\ntpEL63V8R1c+vpSSF160Pi+8aH1+8fuvyl/f/nA+fMvO/Manvp3f/Jtv58bLNuct147lVVedl9Wr\n+rtSIwAAAAAsi6pKHvpK8s2b6uPgQ0ljTXLFa5Or35Q8+7uTVau7XSUAAMA5RbCHlW1gqG7be2B5\nO/aczJqB/rzhhWN5wwvH8uC+qXzkth35yG078zN/8vdprVmVH3zBhXnL9q25erTV7VIBAAAA4Mx5\n9I66M883/yx5/L6kb1Vy2auSq/9tcvlrksHhblcIAABwzipVVXW7hjNm+/bt1a233trtMjjTfvfG\nZO35yY/8j25X8iRz81Vu/s7efPjWnfnk7Y9kZnY+V14wkje9aDTffeV5uWRTs9slAgAAAMDS7b0n\nueOjyTf+LNnzraT01eO1rn5TcuX3J2vWd7tCAACAs1Yp5baqqrYvZq+OPax8ra3J4/d3u4qT6u8r\nufGyzbnxss0ZnzqSj39tVz586878u7/6Vv7dX30r2zY184orNueVV2zJ9ds2GNcFAAAAwMq19+7k\n9o8ld3wsefSb9bWLXpp8768nV70+Gd7S3foAAAB6kGAPK19rLLn/c92u4rRaQ6vyoy+9JD/60kty\n/97J/N1du/Ppu/bkj7/0YD74+fuzZlV/brh0Y17xnC15xeWbs3XDULdLBgAAAKDX7bnraJhn9x31\nta0vSV79H5KrXlf/bA4AAICuEexh5WuNJtPjyeEDyeqRblezKJdsauadm7blnS/blkMzc/nivfvy\n6bt259N37c7f3rk7SfLsLcN5Zbubz/ZLNmSg0dflqgEAAADoCbvvrIM8t3+sHrOVklz0kuQ1v1aH\neUYu7HaFAAAAtAn2sPIt/FbQgV1nTbDnWGsG+vPK52zJK5+zJVVV5d69k/n0nbvzd3ftyR/efH9+\n/7P3pTnQn5c9e1Ne+ZwtecUVm3NBa023ywYAAADgXLL7W0c78+y5M3WY56XJa/9jcuXrkpELul0h\nAAAAJyHYw8o30g72jO9MtlzZ3VqeoVJKLt08nEs3D+cnb3xWJqdnc/N36m4+f3fn7vy/dzyaJHnO\n+Wvziiu25JVXbM6LLl6fVf26+QAAAACwBFVVj9a6/WPJHX+e7L0rSUkuflnyvb+eXPkDydrzu10l\nAAAApyHYw8rXOibYc45pDjbyqqvOy6uuOi9VVeXu3RP59J31yK73f/be/O5nvpO1g43cePmm3HjZ\n5rzs0k25aONQt8sGAAAAYCWqquTR24+O2dp3d1L66jDP9e+qO/OsPa/bVQIA/P/t3XmQHOd93vHn\n7Tl2F3sBi2MBLO6D4CVRJCFSJChTluSYknW4KkpEH7KiUuKoSi7bqbgSO0e54qpUxVVJZKd8xC5J\nsWQ78sHIMSPTsmQdtAiKByhKFA+ABAGCuIHFsdhd7O7MdL/54+2efrtnZrEAdnd2F99Pcdjdb7/d\n885gZmdn5tnfCwC4CgR7sPD1rpVMYUkGe3zGGN002KubBnv1Lx/crtHJqvYeHNa39p/Vt189o8d+\neEqStGFFl/ZsX6X7d6zU/dtXaXVvR5tHDgAAAAAAgHkTRdLlc9LoSXe5dCJdvvld6dzBNMzzjk+5\nME/PmnaPGgAAAABwjQj2YOELClLfeunS8XaPZF71dpb00O3r9NDt62St1cEzY9p7cFhPvn5Oj714\nUn++76gkaddgr+7bvlJ7dqzSvdsG1NdZavPIAQAAAAAAcE0q49LoqWxYZ/SUNHpCunQyXj8pRdXc\ngUbqXi0N3ird92np5g9KPavbchMAAAAAALOLYA8Wh76hJV+xZzrGGO0c7NXOwV79sz1bFUZWLx4f\n0d7Xh/XkwXP60jNv6o+efEOFwOgtQ/3as2Ol9mxfpbs2r1BnqdDu4QMAAAAAACARhdKxZ6XXvyld\nPOpCO6OnXHBnaqSxf7lH6l0n9a2TNt8Xr693Va5717v2nkGpwB97AQAAAMBSZKy17R7DrNm9e7fd\nt29fu4eBufDIJ6Xjz0m/9P12j2RBmqyG+t6bF/Td189p78Fh/eDYiMLIqqMYaPeWFbp/+yrt2bFK\nbxnqVyEw7R4uAAAAAADAjaVyWTr0LWn/Y9KrX5UuD7vpsnrXpaGd+noutNPR2+7RAwAAAABmmTHm\nOWvt7hn1JdiDReHrvy499XvSvz8tBUG7R7PgjU5W9czh89p78JyefH1Y+0+NSpJ6O4t6x7aVun/7\nSj2wY5V2rOmRMQR9AAAAAAAAZt3YGRfi2f+YC/XUJqWOfmnnj0k3v1/a8V6ps7/dowQAAAAAtMHV\nBHuYiguLQ/8GKay4v2bqWdPu0Sx4vZ0lveeWQb3nlkFJ0vDYlL77ugv57D14Tl9/+bQkabCvQ3t2\nrNID8WVNX2c7hw0AAAAAALC4nX1VOvA30oG/lY4+I8lK/Ruluz4u7XqftHmPVCy3e5QAAAAAgEWE\nYA8Wh/4NbjlylGDPNVjV06EP3rFeH7xjvSTp6PnL2ntwWE8cHNa39p/Rl793XJJ002CPHtixWu/c\nuUr3bB1Qdwc/IgAAAAAAAFqKQhfgOfCYu5w76NrX3SG961elXe+X1r5FomIyAAAAAOAa8a09Foe+\nIbccOSYN3d3esSwBGweW6eF7NunhezYpiqxePnlJTxwc1hOvDetPnj6iz+89rFLB6M5NK1w1n52r\n9NahfhULTIMGAAAAAABucJXLbmqt/Y+5qbYuD0tBSdrygHTvp1xlnuSP1AAAAAAAuE4Ee7A41Cv2\nHG/vOJagIDC6fahftw/161MPbtdkNdS+Ny7oOwfPau/BYX3m71/Vf//6q+rtLOq+bSv1zp2rtGfH\nKm1d1S3DX5sBAAAAAIAbwegp6bWvuTDPoW9JtUmpo1/a+WPSze+XdrxX6uxv9ygBAAAAAEsQwR4s\nDl0rpNIyV7EHc6qzVNADO12VHkk6P17Rk6+7aj7feW1YX3v5tCRpaHmX9uxYqQd2rtae7Su1sqej\nncMGAAAAAACYPRMXpSN7pUOPS4e+LQ0fcO39G6W7Pu6q8mzeIxXLbR0mAAAAAGDpI9iDxcEYV7Xn\nEsGe+TbQXdYH3rpeH3jrellrdeTcZX3n4LCeeO2s/vbFU/qLfe7f5NZ1fbpv+0rdu3VAb98yoBXd\nfLAFAAAAAAAWieqkdPQpF+Q5/Lh04nnJRlKxS9p8n/S2n5a2v1ta+xb3ORUAAAAAAPOEYA8Wj74h\nKva0mTFGW1Z1a8uqbn3sHZtVCyP98PiI9h501Xz++Kkj+twThyVJN6/t1T1bB3Tv1pW6Z+uAVvdS\n0QcAAAAAACwQUSid+L50+NsuzPPmU1I4JZmCtGG39M5fkbY9KG14u1TkMw0AAAAAQPsQ7MHi0b9B\neu3r7R4FPMVCoDs3rdCdm1boF969U5PVUC8cG9HTh87pmTfO6y/3HdMXv3tEkrRtdbfu3eoq+ty7\nbUDr+rvaPHoAsW2XYQAAIABJREFUAAAAAHDDsFY6e8BV4zn0uPTGE9LUiNu35jbp7Z+Utj4obb5f\n6uxr71gBAAAAAPAQ7MHi0b9RGjst1SrMX75AdZYKumfrgO7ZOiBJqoaRXjw+oqcPn9fTh87pKz84\noS8986YkaeNAVxr02bpSGwe6ZChlDQAAAAAAZsvIMRfiOfRt6fA/SGOnXPvyzdJtH3ZBnq0PSj2r\n2zpMAAAAAACmQ7AHi0f/kCQrjZ6QVmxp92gwAyWvos+nHtyuMLJ65eQlPX34vJ45fE7feOW0HnnO\nTa+2rr8zM3XX9tXdBH0AAAAAAMCVRaF04Q3p9EvSmVekMy9JJ1+QLrjpwrVslbT1R9zUWlsflAa2\ntnW4AAAAAABcDYI9WDz6N7jlyDGCPYtUITC6fahftw/165MPbFUUWR08O6anD53TU4fP68nXz+mv\nv39CkrSqp6zdmwd087pe7Rrs1U1re7V5YJmKhaDNtwIAAAAAALSFtdLYGRfcOf2ydCa57JdqE3En\n4z43GrxNuudfuCDPmlulgM8TAAAAAACLE8EeLB59XrAHS0IQGN002KubBnv1sfu2yFqrw8Pjeubw\neT1z+LyeP3pRf/fyKVnr+peLgXas7tGute6YXWt7dNNgr4aWM40XAAAAAABLytRoXH3n5TTEc/ol\naeJ82qd7jbTmFmn3J1x4Z/BWafXNUrm7feMGAAAAAGCWEezB4tE/5JYEe5YsY4y2re7RttU9evie\nTZKkiUqo18+O6cCpUb16elT7T43qqUPn9FfPH68f19NR1E2DXuAnrvCzqqejXTcFAAAAAADMhLXS\n+UPSieezU2ldfDPtU+p2AZ5bPiCtuc2tD94mda9q37gBAAAAAJgnBHuweJS6pGUrCfbcYLrKhfr0\nXb6RiapeOz2qA6dH9eopt/zqi6f0pWeO1vus7C7HlX3SCj+bBrq1srusIKDCDwAAAAAA885aafg1\n6cgT0ht7pSN7pdGTbl9QlFbulDa8Xbrr51yIZ/BWqX8TU2kBAAAAAG5YBHuwuPRvkC4dv3I/LHn9\nXSXt3jKg3VsG6m3WWg2PVeqVfZLAz1/uO6rxSljvVy4EWtvfqfXLO7W+v0vrlndqXX+X217epXX9\nXerrLDK9FwAAAAAA1yuKpLP7XYDnjSekI09K42fcvp610pY90uY90sZ7pFU3SUWq7wIAAAAA4CPY\ng8Wlb4N04XC7R4EFyhij1b0dWt3boT070nLcUWR1/OKEXj09qmMXJnRiZEInL07qxMUJPX34vE5d\nmlQY2cy5ussFrVvepXX9LvyzfrkLACVBoPX9XeoqF+b7JgIAAAAAsLBFkZtK6429rirPkSely+fc\nvr4N0vYfdUGeLQ9IA9sk/qgGAAAAAIBpEezB4tK/QXrjO65sMx/8YIaCwGjjwDJtHFjWdH8YWZ0d\nndKJkQmduBiHfuLwz8mRCb1yclTDY1MNxy1fVtLavk6t6unQyp6yBrrLWtXToYHuZL2sgW63r7eD\nCkAAAAAAgCUoCqVTL6TTah15Upq86PYt3yTt/HFXlWfLA9LyzXyeAwAAAADAVSLYg8VlYKs0dUn6\nb7uk7e+Rdr5X2vaj0rKBKx8LtFAIjNb2d2ptf6fu2rSiaZ+pWqjTIy78c3JkQifiij+nL03q3HhF\nR49e1rmxisamak2PLxeCeuBnZU9ZK7vLWhmHgPwA0Mrusvq7SurpKKpYCObyZgMAAAAAcPVqU9Kp\nH8bTau2V3nzKfVYjuQo8t3zQhXg275GWb2zvWAEAAAAAWAII9mBxufsTUme/9NrXpQOPST/435IJ\npKG7pR3vdZf1d0oBUyRhdnUUC9q0cpk2rWxe9ScxWQ11fryi8+MVDY9N6fx4RefGKjo3XtG5eHt4\nvKI3zo3r3FhFlythy3MtKxfU01FUb2dRvZ0l9XYW1ddZamhLL6XMsqejqM4SzwUAAAAAwDUKa9Lw\nAen496QT33PL0y9JUdXtX3WTdPs/joM890t969s7XgAAAAAAliBjrW33GGbN7t277b59+9o9DMyX\nKHQfKB38e3c5/pwkK3WtkLa/W9rxY27ZO9jukQItTVRCnRvPBoAuTVQ1OlnT6GS8nEq207axqdq0\noaBEuRCot7OornJB3eV42VHQsnJRy8pu2V0uuPWObJvrW1RXyS2TtmXlogoBpdMBAAAAYEmJIunC\n4WyI59QLUvWy29/RL61/m/uDqqG7pE33ST1r2jtmAAAAAAAWKWPMc9ba3TPqS7AHS8b4OenQt9Kg\nz/hZ1772rWk1n433SIVSe8cJzJJaGGlsygV+Lk1WNZaEfzJBoJrGpqq6XAl1eSrUeKWmiUqo8Uqo\ny5Va3F7T5Wqoq3k5KBcDdRYDdZZc2KezWFBnyW27S6Cu+nra1lkqxO1Bdl8xUKkYqFwIVI6X9e24\nrVQwTE8GAAAAALPBWunS8WyI58T3pakRt7/YJa27Iw3xrL/LTbMV8J4MAAAAAIDZQLAHiCLp9A/j\nkM833HzvNpQ6+qRtD7qQz/b3MNc7ELPWarIaecGfWpMwULycCjVRDTWZuUS5tkiTtVATlXi7FqlS\ni657nIGRSl74xwV+sstywahcDFQMXBioVAhULAQqBcm6WyZBobTd729UCnJ94+10aVSIjy0EbrtY\nCOKlidvSvsXA7QuodgQAAABgvo0P50I8z0vjZ9y+oCgN3ubCO0mIZ/XNUqHY3jEDAAAAALCEEewB\n8iZHpEOPp0GfS8dc++qbXchnYJtU7naX0rLceo9UXiaVuvnLNOA6hJHVVBL2qUWarLr1qZoLAlXC\nSNVavAxdEKgSWlVq6XbaHuXaraZy+2uha6+GkWqRW1bDSLWGtvl9HTRGKgVxGKgeEHLhocagkNtX\n9LaTgFCmb5PzJNtJ32JgVJhpv9x1Z9q9sfvthfz+3HHGEGgCAAAA5kVYk06/KB17Vjr6tHT0Geni\nkXinkVbvyoZ4Bm+TSp1tHTIAAAAAADcagj3AdKyVzh6IQz5fl448KYWVmR1b7HIhn3K3C/qUu9PQ\nT7Je7pG6V0s3/bi05lb3LT6ABctaqzCyLgQUpcEfPwRUDa1qkQsD1eL1sL5uVYuDQmEcFgojq2pk\nFcbt+X2Nx1iF3vldn6h+/oZj43357WpoFVl37tC73lrU/tf6evjHZINAgTEqBFIxCBQEUsG4qkbF\n+j6TOTbwwkLJ/uQcQbw/MEYF42+r3i85xpj0uly76gGkgskGl4KW20G67QenTDYc5a4nO4bMmJIx\nmvj64+30trjxBt4+glIAAACoGz+XhniOPSsdf06qXnb7ete5acmHdktDd0vr3ip19LZ3vAAAAAAA\ngGAPcFWqk9LkRaky7i7Vy1JlTKpcjrfj9srl7HplLO7bbN+oO/fAdumWD0q3fsj9FRxfxAJogyS8\n5Ad9wiYBoVbhotA/Pswenz9vlDtXtr9rDyO5AFKyHqXXEcbrkXe+zL4oDi9l9qW3MbJWkXXnD+M+\nkZVCa70+itvj6/K2F0AGakbqwaQ4NJQEgFoFmfw+pun+OEyUCxIlxyVhJD+IVG/3tpuOK3NdLrCU\nhJ+SIFXzdtXHlpzTxKEmF26SjNI2E98vgbcupUEof7/cf/VQlh8Yy1agSoJbgQqFxmBatg9T7QEA\ngHkQhdLZ/a4Kz9FnpGPPSOcOun1BUVr7FmnjvdKGt7tl/wY+iwAAAAAAYAG6mmAPk2UDpU6ptHZ2\nzzl6Wtr/FemV/yd993ekvb8l9W2QbvmAdMuHpE3vkILC7F4nALRg4gozRX7sXJGNwz1hlA0vhVHz\ncNR0ffLbtkmQyLUrbveCSPWgUbrtjy3Z54eaXHhJ3noyBjVcd/YcVqFNbrtVFKXBqEqYjsEPRlmb\nHX/TcdZvT3qcH9xaTEGqqxH44SOlIaJs6CgNGpkksKT0OCltC0waTirkQlRpBSo/bKVMJapkXxKw\nSsem7LYX1pJ/Lm/Mfj9TH0N6nH8bg8ALiPnHKDtOv08S1MpUtQpMprpWoWlgzKva5e3LV79KA1/p\ndfmSsFh9vUlf4/XNX1dmPVepy686BgDAVZm4KB3fJx2NK/Icf06auuT2LVvlqvHc+bPShnuk9Xe6\nSsIAAAAAAGBJoWIPMNcun5de/aoL+Rz8hhROuQ/fbv4JV8lny49IxXK7RwkAwLzLh5XqgaNI9UpN\n9fBRnAKyVrJKA0Y2afPWozjkZBUv/XV5+20ugGVdlal8lajGPpFCq3oFKn8ZedeVrMf/1W9vdmze\nbfCOk2zmtiTBLb8qlR+Qyt+Xad80rOWqVLkrS8aW7PPv1yi+o/zrst51ZO7/3NhaLZdqkOtaZII/\ncdin0BA+8gNfXnUqZafiSwJI+f3xKZpWmbpSW72CVZN+gfGCT/kxJvvi/zXs90NT8UoS9CoESXgs\nDWkllbsCr7pX08ph+Spi01Tp8kN3ze67IGhe8SsfqMsE0rzrTe6ffCWzevgtvr0maB1o86uTAbgB\nRZE0/Goc5HnahXnO7pdkJRNIa26TNr49rcgzsI1qPAAAAAAALFJMxQUsVFNj0mtfcyGf177mpvPq\n6Jd2PeQq+Wx/N39dBwAAlixrGwNKfvjHSg2Vq5oFvpIqVG7KvWzVq1YVrJK3PUnAKxmPpHq4Km5N\n+3rtVjZzvH9dkb+Mq2D5UwlGuX6hVxnLr6CVnNt64a58MC0zHi80Zr2xJdv18TSZ1jA/9WGr6RBr\nUXYKxHhoDdebjKl+/+bGrSb9Mb18RSyT286HjDLVrPzgWBI+iqtbFZLgVJCdojGthKUm1cCyUzk2\nq8gVtAo8edW50mphaQArPSatYtasb73aWD2Ala2GVQikQhCkUzyaNKyWBNXyVb7yAbck1CWlITQ/\nKOb2elW8cqG2fFhM3v1XD3IF2ftOIth1Qxs760I8x/a55fHvpdV4OvtdFZ6N8WXobqmjt73jBQAA\nAAAAs4ZgD7AYVCelQ9+WXnlUOvCYNHFBKi2TdrxXuvXD0s5/JHX2tXuUAAAAwJxIqkA1qy6VrTSV\nBsD8KQD96QFD75hWVbrSSlhe+Mn6ASnVA2bWX8bHRDadbjATSMuF1RorXjUG2fxj6tW6ouwxyfia\nVc5qVhErnWrRC47Z7NSM/jSMfmCuHj7zzpNWGmtxnVH+37B1f/98/m1Ha62CXUmQqZgLLaXhrCSo\nFdSDXA3TBQbZUFQ9YBX4Fa2yUzf60zQaub5pZStvOkfJVf2KL8k4i/GYstvZftn1IBPW8sNq/hSH\nrYJp9TCbf2w9BJZeXzEOsc2L6qR06oU0xHPsWenim26fKUiDt0kbdktDu91y5U7FdzQAAAAAAFiC\nCPYAi01YlY7slV5+VNr/FWnstFQoS9ve5Sr57Hq/1L2y3aMEAAAAgFmTBH3SEFO2UlU+1GRzIaJ8\n5a50akSbCTdlK2ypoS30wkzJuNwyDV6l22nwKzkgX1UrOVMUN+TDTw1hMM0s2NVY/Ssb2koqa+Vv\nV2StamGrY9Pb6ldP84NkydSN/riSwJvkh7rSqSKTal/VcOF/5hQYqRgEaeCn4Ad/AgVBbn+Q3V8I\njIqFbHipGEhrwxPaNrVfWyZf1qbLL2vd5EEVbE2SdKk8qFO9t+ts3+062/8WXVh+q1RapmIhOT45\nZ7xdCOrXUQzS9VLBXX+pkF53ti3dntcQEwAAAAAAuCKCPcBiFkXuL/deedRdLr4pmUBatUtafVO8\n3CWtuklatVMqdbV7xAAAAAAANJWf1i+MQ0a1KFIYudBRfZ93yW9nwlxXqDiVVqtSrnJVEvqSwiiq\nX0d9Gdrm7VESHGvW36qjNqLtlf3aXjmgXbUD2lV7Vf0alSRdVqde0na9oB36frRDz0fbdSJc3paq\nVUnwp1iIl9NtB2l7qZAGiur9ikE9aJSEiOrBJC+EVA8dJW2FQKUgFzoqeIGkXF8/5FQqmEz4qUBY\nCQAAAACwiBHsAZYKa12p7v1/I518QRo+IF14Q7JR3MFIyzelQZ/Vu9IAUNeKdo4cAAAAAIDFy1pp\n6pI0dsZV1R07na6P5rbHz8QHGWnNLdLQ3em0WmtukYJCw+mTQFItdCEnt8yth1G8jNsjq2qYBqIy\nfaJI1TAJHKXHVaNIYWhV9dortah+PdUwOdYdn/Sphsn+qN4nOV/SnhlbPJ75Vq9MlASCvDBQKa6o\nlISHkqpGjdWXgibVmpr096smxdulTNUmr38hrehUDz55oaV8NaXmU9S5qeiS6w1M2hcAAAAAsPhd\nTbCnONeDAXAdjJHW3eEuieqkdP516ewBafjVdHnocSmcSvt1r8kFfuJl7zp3XgAAAAAAbjS1igvi\nJMGc0VPNwztjZ6TaROPxQVHqGZR61kj9Q9LQndKKLS7Es/5OqbNvRsMIAqNARqWCJDUGfxajpDJS\nLWoMJtUDSZEfCHJ9kkBSEhoKo8gLHKVhpWqYO74eakqDSP71VsMonYouU4HJBZkmqtnKS/UqUg2V\nmaLM7QrbEGDyGSMX+GkIBQUqxFPHFQvpfn+71Gr6OG+75B9byIehsufOBpFahKfiUFV9zN5Ucn6F\nqFLRjbVcyFaLoioTAAAAABDsARafUqc0eJu7+KJQunhEOvuqq+yTLH/4iDQ1kvYr97qKPiu2ug8c\nyz3u0uEvexu3y91u2i8+UAEAAAAALCS1ijR+Ng7sxJfM+tk0rDN5sfk5ugbSwM7Ge92yd23a1jPo\nLp3LpSCY39u3SBgThzaWRk6ppXyAKUwqI+UCTaFfYcmrbpSvuBR6U8U1m5IuqrdH2WnkrLvu/FR3\nSV8/QOVvh5HVZC30xuFNP+eNsR64igNS1bA9gaZ6BaY4CJRMDVdOpoMrBCoXGqsdJYGnpNJRoWBU\nMK0rJPnVkQrG9akvA6PASIFJ+wfGxNvZdmPic8Xtyb7MeAreuLwgVL5PGuAKFMShrfrSiNATAAAA\ncAMh2AMsFUFBGtjmLrseStutdR9g5iv8HN8nTY1JlTGpNjmz6zCFJiGgHqmj1y17B6Xlm6UVm92y\nf6MLIgEAAAAAMFNRJFVGpckR6fI5aeysV2WnSYBn4kLz83T0Sd2rXTBnzS3S1gezIZ1kvXu1VCzP\n723EonWjBJiaiaJs5aNWYaR8kMg/JooUT/GWVlaqJtO7hZEqXjWmZNq4an1aOFeZqZKbKi5Tncla\nTVTDTCgq8sbbNBDVJEi1GARGuZCRcRWdmgSPAmMUBKqHlYI4gJT0T0JJQVwRKoj3Jce57TTglASL\n0m2vv8n2N0YyMnEm0sTbqh9j5M6V9KvvD4yMO8T1lerX0Xws/nXnx3flPq2OScYaBLntuI9MdtuY\n7O1MAljJ+JPbKG+7vp67D/xz5cfebJkZd4tj/PuScBgAAMDiQbAHWOqMcX9l2LtW2vZg8z5h1QV8\nkqBPZVyaGs22Nd0ed+vjw2579KQUVbPn7l0nLd/kBX7i9eWbpP4NUqE09/cBbgxR6D74n7ggTV2S\nOvulvg18QA8AAADMNz+YM+PLRW/9kqQWX6yXe6We1en001vf6dZ71mSDOj1rXNVZALMmCIzKQRIE\nWNrJpigJAcUBoMjKrcftkbWKIrn1yO9n48pK/nbanoSbalF2qrh85aZ6KOkKfdKxeGP0xmHr16/M\nWPLjj6xVaF3/ZF/Svxqm94G16bkiv3/cZuv70nNYK1kl+yQpafP2WysrZdbTYyUl51c6BsweP4QU\nJGEj0xhGqoewJG+/FzBSs2BT4/HJdTaEu3LnnQlrZ/5gyIfR6tW4kgpdXpAtDcgpU40rv78+ynxI\nK3Pfpu3psnVfP5yVbqehNree7pMf4JK7PVJ6/7r7KV7Gv1/5d1tyH6Z9pj/GD40Zk61qZnL3Wb3a\nmR8u8wOHSUBuBq72ae/fr/mwXRpuyz/eTdPHrf/vq8x5G68v3T+z/q0fD2bax5Hf7j+2mj0Xg2a3\ny2Rvb/3xnHscNh9v7v4w+X2N90H++Pw5Wj3lZ9o/85j2Hi2tfkS06p9cj//48MOsBCIBtBPBHgAu\nXNO1wl2uRxS5cM/FI9LFN6ULR9L1N5+SXnxEslHa3wQueLF8U1rlp76+yX0gG1alcMqVVk+WtcnG\ntnBKqk1JYSW3zPWLapIN3Tgif5lbj6ImbWH8CUPoHWPj3/ACud96g9y2ucJ+fzu+T5LrjGreJUzH\n7m/XL1Hz/lHNnbfUlU6nVuqSSt25tmXxpUsqL/O2l8XbXdm2QslViQqK7mIK8XbB2y5efYl6P5wz\neVGauJhdb7qMvwSYutTkhMY9jpZvdEGy/o3u4m939rd+5wAAAAAsZmFNqk1I1QmpejleepfaRPb9\nU8N7qGTf5BXavH1Tl6YP5iQ6+tzv4smyb4O05ja37l+6VsTVdeIwT3nZvNx1AG5sQWAUyKi0tPNL\ni1o2ZOSHirKBoZZ9onQ7DRIlgaXsMZnAUpw0Ss4RZYJLaeApCSS5RXqeJJyUBJnqPer7vP7ebW28\nfdmxNgtdtTomG5qyDdeb3Cb5420yPv/fweZugzK3ufH45NxR5tzp/WZlG4IULc30Y71c+K0xDOfa\nkmkS039jt8/afBguDbw0Dcp4/8Z+OCYbnMm214NtUTbsltzH+X/b7OMIwHzJhH28IFA9YBentPyA\nnR9a9MNXUhrq8oNT+aCX6utumX/u13+GqvnPHredP9Y/SS5IKC9k2OS2JevJvmScfrU+/7YlG9nA\nWvb25e+Demgs3567L/L7GoJ03vmz/WdmpoGu5D67UoW9/P2ZVAX0Q5t+wDN/mxpuR5MQnVrcX7es\n69OH7lg/w1uOhYZgD4DZEwRS/5C7bL6/cX9YlS4djwM/b7rQT7L++jddKGiuFDqkYocLniQhFBPE\n60GTtmQ9yB0TB1aKHW7dmPi3IOsCOdam4SUbxQGhqMl+f9s/PvJCMkXvUnCVZ/JtDcGaJvtl0w/y\nK8mH+Um1pbOu8lJ9/7gLD80a0zzskx+3jVygp2k4x1PslDqXS13L3bJvyH34n2wny84+F/wZOeou\nF49KJ1+Q9j/mvnDwlXtzwZ8NaUWp/o2u2lUwzSd51rovNaoTueVk/CVKi2Vtyj1+CmV3CYrpeqHk\nrbdqL0lBKdte7FiaVbAql90UDJeH3XL8nLd93v37lJa5oFq5O17vcV/6lLtdkC2zHve52uAZMDXm\npgAZPeVes5L1sdNue3zYPb66vYoBPavT6T6643W+kMT1iCJXITGqud+tkiBvWHXtYRLyTfZF2VBy\nlFufyb5k3RQav3DvjL+QL/fyc1WKfy+YctUspy7Fl1F3mYzXo5qbyraj191/HX3xdrwsdxM6Xsis\n9Z5v+edi8hxM9uXD+M0C+rnt+vOuSZ+w6h5f9YDOZe93T79tMl3PV1S9GiaI30eV42Wnt+4tO/u8\n30U70p8L0106+qb/HRsAgCtwFVSkwoy/lgOWrnxoK4q/tY+sneaL7sYvjJt9yZ7Zb0zmusLID5Cl\nlbr8gJkfkqqHo7ygWRjZGb/9mWnYKxOkagij5cNmfkAqF0JrEZ7KV3i5wmbL4xsCfN4J8rchOW9j\ncCwfDstWOJPf1hDWs02Pk81WRvOvM397bK5Ps9vctFLUFfrm27PnTs+XrWDU/PExk6o//pGZ0GH9\nOZWG65JAZJTblwni1e/z5kG/ZiG/Zo/RZsfKpgNu9hxuFXJJb2/jMf7jKYr8IKH/PEhChvHPmOQ+\nyfWXF0JMxp/ermS98d+52fPUPy75Gq3+mG8ZWmr+eE2fX9n9VzLT8KQf4vV/FmcfK62XfiVEq/Rn\nZn6s0z8fm98n/sZPvHUdwZ5FjGAPgPlTKEkrtrhLM9VJaeSYdPENF/YZH44DC/EHxsXOxg+Rk8BO\n/YNk7wPlZH+hxJcjV6NWib8QuJwLBF1O15t++ZCvKhTNvI8x2WBOq2Wp8/puWxS5MNPIMWnkzfjx\ndjTdPvasqxDkC4pS73qpe2X8RUouwFObvL4xzbZCRxxw6ZE6etKwS7knvnTH7T1ee76/tz8oes+f\nOG7vL6Vs25Wea1HoQlf1kM5wNqTTbLs20fxcpuD+gttGLpSWD21diV+VqtyTDQcVO+P9na5iVbHL\nq3g13XZnWv2q2NX6508S8ss8J/JVwmpqqCKW9JfSIFf952C8Xigv7C/XkzBcffrHZArIMTdlR309\nv2/M3cbk3ympPlavKtZs3a88tszdN81q9U5disM6p7zgzilp7JQ0ejpennJjyCuUXQCwZ600sM31\nufCGdPRp91hu9jYxmUKkZ9AFgLrXpOv5aUSKHVd339bDot6yHiiN22pTTYKIfvgw9zOuWTDR/1kY\n1eJwYikbMJ3RdhL6jPcVvOBnErCtX5KfM/n2fB+/Kp7XLv9nVLN1/5PM3M+3Zuv16haTLZZT3nar\nPpNedYypmYV1/OqHC4qJQyotgj/+l/n+vqRaoR+AnvZip++b+2uzdNVcZVvSbt3vPq1COlOj0tRI\ntv16ghSSu0/KSein17v0ZdeT/eUed1xyHzQNbl1le3JfNHsuBoUmz8V8P5MNysu4+yX/3KhXfZnK\nPheSSjCZPn7lzvj50vT6p/k5EUz38yNo8ryrNj4nZzUEf5WCYuPvIEllza4VUt96b79fdbOzsS35\nXaeYD+x0pO+nCnxkBAAAsBjMZ9DNvy6qmgEAMH/M1cxButDt3r3b7tu3r93DAAAsZlOj0sjxuNJP\nHP4ZOeoCP8XO+EuQzvhLk+tZdrovJcNK+qVRWIkv/na1RZ9atn9UdV+6J0GIynguJDGeDUrMSyCp\nSRAoqqllHr7cIy1b6S7dq9L1zHayHHBhLz/AEtbialRJCG3MrVfG0/bKWFqdqjLeYv2yN2WFN03F\nNd0FBfcFmpQN6sz1F/NBMQ021r+cK6UBSL/CUxKEbPnhzzS/K073e2RUc/f3VJOAzky/FA2Kceis\n1335GNWyYcOr/fLcFLJTEMq64E6zf9/SsjSw0zuYLnvXudBN71q37FrROtAW1lxIbey0NHYmvsTr\n42eybZO6pvb7AAANaklEQVQXm5+jGD9+WoV00j9XmVvJY7mYhN060p9nQdH70jtXLWa67QUbUJll\nJnD3Vf3Lc++L8/p2p1e9LanIVkxDT34oqmF9mr5JBb9MBcKit+5VKqxX0mvWFp8jCl2IZTK5XPLW\n48p7ky32T420+19idgSlXOCmLxu46ey7crsJ4p+PfkCoVXAov4z3XevrUktGmSqVMjMITl2noJg+\n9pNgSWa7I/v8yPdJKlMmAaUZBcOuEBozQe55VUq3g0Lrfc2egw3PxRaVN/MVLVv1qYcUAQAAAAAA\nsBQYY56z1u6eSV/+/AoAAF9Hr7TmZneZD8Xy/FxPXlj1AkD54IUXCkqqwzRUAUlOlA8YNGvzamgW\nStnAjn+53opMhaJUiKtAzLakykw96JNMeREvp92eSKsHNEztV5h5mwnSL/qkuIJBxVUuSKbmyKxX\n0ooiYTWtcFBfr7ixJevTmfaLxBb7gkIc1hpw092VexurQvnVo5LpZ5IgT7n7ytVqksexP51gMt1g\ndSIOACXr42klsmRd8kI6a90yCex09F7/F6iFYnrOK6lNuYpimRDQGRf4yVShMVe/zLclX5QnQZ3p\nAovFDtdvLqb58yu7RfGUNUlljJZVWvzpLKfp02zb/1lUX4//1/DzawbrrcI5yX1ab1tib7m6V17b\ncVGYBlT84I9sY6WXaasy+RWYWu1TLnhor64t317uTkM6xY7ZCVcsG7i+48OqF/iJq4k1vGa0ei1p\n1j7D29QsPFMP1vjPvXxb5AVLO9MpcgEAAAAAAABc0Zx/ymyMeUjSb0sqSPqstfa/5PZ3SPqipLsl\nnZP0UWvtG/G+X5P0SUmhpF+01v7dXI8XAIAbQqHkpjjrWt7ukSwOxqTTXWDhWEqP42KH1L/BXW4U\nQSAFZUltCjhifgWFpfN8XQgKJRcOut6A0NVKpucSoRwAAAAAAABgvgRX7nLtjDEFSb8r6X2SbpX0\nU8aYW3PdPinpgrV2h6TPSPrN+NhbJT0s6TZJD0n6vfh8AAAAAAAAAAAAAAAAwJI3p8EeSfdIOmit\nPWStrUj6M0kfzvX5sKQvxOuPSHqPMcbE7X9mrZ2y1h6WdDA+HwAAAAAAAAAAAAAAALDkzXWwZ0jS\nUW/7WNzWtI+1tiZpRNLKGR4rY8zPG2P2GWP2nT17dhaHDgAAAAAAAAAAAAAAALTPXAd75py19g+t\ntbuttbtXr17d7uEAAAAAAAAAAAAAAAAAs2Kugz3HJW30tjfEbU37GGOKkvolnZvhsQAAAAAAAAAA\nAAAAAMCSNNfBnmcl7TTGbDXGlCU9LOnRXJ9HJX08Xv+IpG9aa23c/rAxpsMYs1XSTknPzPF4AQAA\nAAAAAAAAAAAAgAWhOJcnt9bWjDG/IOnvJBUkfd5a+5Ix5jck7bPWPirpc5L+2BhzUNJ5ufCP4n5/\nIellSTVJn7bWhnM5XgAAAAAAAAAAAAAAAGChMK44ztKwe/duu2/fvnYPAwAAAAAAAAAAAAAAAGjK\nGPOctXb3TPrO9VRcAAAAAAAAAAAAAAAAAK4BwR4AAAAAAAAAAAAAAABgASLYAwAAAAAAAAAAAAAA\nACxABHsAAAAAAAAAAAAAAACABYhgDwAAAAAAAAAAAAAAALAAEewBAAAAAAAAAAAAAAAAFiCCPQAA\nAAAAAAAAAAAAAMACRLAHAAAAAAAAAAAAAAAAWIAI9gAAAAAAAAAAAAAAAAALEMEeAAAAAAAAAAAA\nAAAAYAEi2AMAAAAAAAAAAAAAAAAsQAR7AAAAAAAAAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwABHs\nAQAAAAAAAAAAAAAAABYggj0AAAAAAAAAAAAAAADAAmSste0ew6wxxpyVdKTd40CDVZKG2z0IAMCS\nxesMAGAu8ToDAJhLvM4AAOYKrzEAgLnE68z122ytXT2Tjksq2IOFyRizz1q7u93jAAAsTbzOAADm\nEq8zAIC5xOsMAGCu8BoDAJhLvM7ML6biAgAAAAAAAAAAAAAAABYggj0AAAAAAAAAAAAAAADAAkSw\nB/PhD9s9AADAksbrDABgLvE6AwCYS7zOAADmCq8xAIC5xOvMPDLW2naPAQAAAAAAAAAAAAAAAEAO\nFXsAAAAAAAAAAAAAAACABYhgDwAAAAAAAAAAAAAAALAAEezBnDHGPGSMOWCMOWiM+dV2jwcAsLgZ\nYzYaY75ljHnZGPOSMeaX4vYBY8zXjTGvxcsV7R4rAGDxMsYUjDHPG2O+Em9vNcY8Hb+v+XNjTLnd\nYwQALE7GmOXGmEeMMfuNMa8YY+7j/QwAYLYYY/5V/JnZi8aYLxljOnk/AwC4VsaYzxtjzhhjXvTa\nmr5/Mc7/iF9vXjDG3NW+kS9NBHswJ4wxBUm/K+l9km6V9FPGmFvbOyoAwCJXk/SvrbW3SnqHpE/H\nry2/Kukb1tqdkr4RbwMAcK1+SdIr3vZvSvqMtXaHpAuSPtmWUQEAloLflvRVa+3Nku6Qe73h/QwA\n4LoZY4Yk/aKk3dba2yUVJD0s3s8AAK7dH0l6KNfW6v3L+yTtjC8/L+n352mMNwyCPZgr90g6aK09\nZK2tSPozSR9u85gAAIuYtfaktfZ78fqo3IfgQ3KvL1+Iu31B0k+2Z4QAgMXOGLNB0k9I+my8bSS9\nW9IjcRdeZwAA18QY0y/pRyR9TpKstRVr7UXxfgYAMHuKkrqMMUVJyySdFO9nAADXyFr7D5LO55pb\nvX/5sKQvWucpScuNMevmZ6Q3BoI9mCtDko5628fiNgAArpsxZoukOyU9LWnQWnsy3nVK0mCbhgUA\nWPx+S9K/kRTF2yslXbTW1uJt3tcAAK7VVklnJf2veMrHzxpjusX7GQDALLDWHpf0XyW9KRfoGZH0\nnHg/AwCYXa3ev5ANmGMEewAAwKJijOmR9H8k/bK19pK/z1prJdm2DAwAsKgZYz4g6Yy19rl2jwUA\nsCQVJd0l6fettXdKGldu2i3ezwAArpUxZoVctYStktZL6lbj9CkAAMwa3r/ML4I9mCvHJW30tjfE\nbQAAXDNjTEku1POn1tovx82nk5KO8fJMu8YHAFjU9kj6kDHmDbmphN8t6bflSgcX4z68rwEAXKtj\nko5Za5+Otx+RC/rwfgYAMBveK+mwtfastbYq6cty73F4PwMAmE2t3r+QDZhjBHswV56VtNMYs9UY\nU5b0sKRH2zwmAMAiZowxkj4n6RVr7X/3dj0q6ePx+scl/fV8jw0AsPhZa3/NWrvBWrtF7v3LN621\nPyPpW5I+EnfjdQYAcE2stackHTXG7Iqb3iPpZfF+BgAwO96U9A5jzLL4M7TkdYb3MwCA2dTq/cuj\nkn7OOO+QNOJN2YVZYFyFJGD2GWPeL+m3JBUkfd5a+5/bPCQAwCJmjHlA0nck/VBSFDf/O0lPS/oL\nSZskHZH0T62159sySADAkmCMeZekX7HWfsAYs02ugs+ApOcl/ay1dqqd4wMALE7GmLdJ+qyksqRD\nkj4h94eXvJ8BAFw3Y8x/kvRRSTW59y7/XNKQeD8DALgGxpgvSXqXpFWSTkv6dUn/V03ev8Sh0t+R\nmwbysqRPWGv3tWPcSxXBHgAAAAAAAAAAAAAAAGABYiouAAAAAAAAAAAAAAAAYAEi2AMAAAAAAAAA\nAAAAAAAsQAR7AAAAAAAAAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwABHsAQAAAAAAAAAAAAAAABYg\ngj0AAAAAAAC4LsaYdxljvtLucQAAAAAAACw1BHsAAAAAAAAAAAAAAACABYhgDwAAAAAAwA3CGPOz\nxphnjDHfN8b8gTGmYIwZM8Z8xhjzkjHmG8aY1XHftxljnjLGvGCM+StjzIq4fYcx5u+NMT8wxnzP\nGLM9Pn2PMeYRY8x+Y8yfGmNM224oAAAAAADAEkGwBwAAAAAA4AZgjLlF0kcl7bHWvk1SKOlnJHVL\n2metvU3S45J+PT7ki5L+rbX2rZJ+6LX/qaTftdbeIel+SSfj9jsl/bKkWyVtk7Rnzm8UAAAAAADA\nElds9wAAAAAAAAAwL94j6W5Jz8bFdLoknZEUSfrzuM+fSPqyMaZf0nJr7eNx+xck/aUxplfSkLX2\nryTJWjspSfH5nrHWHou3vy9pi6Qn5v5mAQAAAAAALF0EewAAAAAAAG4MRtIXrLW/lmk05j/m+tlr\nPP+Utx6Kz50AAAAAAACuG1NxAQAAAAAA3Bi+Iekjxpg1kmSMGTDGbJb7fOgjcZ+flvSEtXZE0gVj\nzDvj9o9JetxaOyrpmDHmJ+NzdBhjls3rrQAAAAAAALiB8JdTAAAAAAAANwBr7cvGmP8g6WvGmEBS\nVdKnJY1Luifed0bSR+NDPi7pf8bBnUOSPhG3f0zSHxhjfiM+xz+Zx5sBAAAAAABwQzHWXmt1ZQAA\nAAAAACx2xpgxa21Pu8cBAAAAAACARkzFBQAAAAAAAAAAAAAAACxAVOwBAAAAAAAAAAAAAAAAFiAq\n9gAAAAAAAAAAAAAAAAALEMEeAAAAAAAAAAAAAAAAYAEi2AMAAAAAAAAAAAAAAAAsQAR7AAAAAAAA\nAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwAP1/Nt8O2ertn9cAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPUAAAJcCAYAAACb/gMvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X+s5Hd93/vXe2fO7M4YB4y9SWtM\n461KkV1oTVi7IBKUhCaxSa9JFHCAkoa2kiNVSKmaohiFOIXmD1fpTWkUSEJSt025QBGUG26ztxhu\njYIaUry4iNjYYBs5eO0m3jqxY/vM+pzZ/dw/9pzN2fX+OMfsd76zex4PyfKZme8cv4/kP596v6u1\nFgAAAAAAAAAAYHHs6HsAAAAAAAAAAADgeKIeAAAAAAAAAABYMKIeAAAAAAAAAABYMKIeAAAAAAAA\nAABYMKIeAAAAAAAAAABYMKIeAAAAAAAAAABYMKIeAAAAgG2mqh6sqr/T9xwAAAAAnJqoBwAAAAAA\nAAAAFoyoBwAAAAAAAAAAFoyoBwAAAGCbqqqdVfW+qnpk7Z/3VdXOtc8uqar/UlWPV9WfVtXnq2rH\n2mc/W1UPV9WTVfW1qnpdv38JAAAAwPln2PcAAAAAAPTm55K8KslVSVqS30ny7iQ/n+RnkhxIsnvt\n2VclaVX10iTvSHJ1a+2Rqro8yWC+YwMAAACc/2zqAQAAANi+/l6S97bWHm2tHUzyniQ/sfbZapK/\nnOQ7W2urrbXPt9ZaksNJdia5sqqWWmsPttYe6GV6AAAAgPOYqAcAAABg+7o0yR9teP1Ha+8lyS8l\nuT/JbVX1jaq6KUlaa/cn+SdJ/nmSR6vqo1V1aQAAAAA4q0Q9AAAAANvXI0m+c8Prv7L2XlprT7bW\nfqa19leTXJ/kn1bV69Y++3Br7bvXvtuS/Mv5jg0AAABw/hP1AAAAAGxfH0ny7qraXVWXJLk5yYeS\npKr+blX9taqqJE/k6NmtI1X10qr6/qrameRQkmmSIz3NDwAAAHDeEvUAAAAAbF+/mGR/kq8k+cMk\nd669lyQvSfLZJE8l+UKSD7TWbk+yM8ktSf53kj9O8u1J3jXfsQEAAADOf9Va63sGAAAAAAAAAABg\nA5t6AAAAAAAAAABgwYh6AAAAAAAAAABgwYh6AAAAAAAAAABgwYh6AAAAAAAAAABgwQz7HuBsueSS\nS9rll1/e9xgAAAAAAAAAAHBSX/rSl/53a233Zp7tNOqpqmuT/JskgyS/1Vq75YTPX5vkfUn+ZpI3\nt9Y+vuGzv5Lkt5K8OElL8vrW2oOn+m9dfvnl2b9//1n/GwAAAAAAAAAA4Gyoqj/a7LOdnd+qqkGS\n9ye5LsmVSd5SVVee8Ng3k7w9yYdP8it+O8kvtdauSHJNkke7mhUAAAAAAAAAABZJl5t6rklyf2vt\nG0lSVR9N8oYkX11/YH3zTlUd2fjFtfhn2Fr7zNpzT3U4JwAAAAAAAAAALJTONvUkeVGShza8PrD2\n3mb89SSPV9V/rqr/WVW/tLb55zhVdWNV7a+q/QcPHjwLIwMAAAAAAAAAQP+63NTzrRgm+Z4kr8jR\nE13/KUfPdP3bjQ+11j6Y5INJsnfv3nbiL1ldXc2BAwdy6NChruft3a5du3LZZZdlaWmp71EAAAAA\nAAAAAPgWdRn1PJzkxRteX7b23mYcSPLlDae7/u8kr8oJUc8Zf8mBA7nwwgtz+eWXp6q28tVzSmst\njz32WA4cOJA9e/b0PQ4AAAAAAAAAAN+iLs9v3ZHkJVW1p6pGSd6c5FNb+O4Lqmr32uvvT/LVrQ5w\n6NChXHzxxed10JMkVZWLL754W2wkAgAAAAAAAADYDjqLelprsyTvSPLpJPck+Vhr7e6qem9VXZ8k\nVXV1VR1I8qYkv1FVd69993CSf5bk/6uqP0xSSX7zucxxvgc967bL3wkAAAAAAAAAsB10eX4rrbV9\nSfad8N7NG36+I0fPcp3su59J8je7nA8AAAAAAAAAABZRl+e3SPL444/nAx/4wJa/9/rXvz6PP/54\nBxMBAAAAAAAAALDoRD0dO1XUM5vNTvu9ffv25QUveEFXYwEAAAAAAAAAsMA6Pb9FctNNN+WBBx7I\nVVddlaWlpezatSsXXXRR7r333nz961/Pj/zIj+Shhx7KoUOH8tM//dO58cYbkySXX3559u/fn6ee\neirXXXddvvu7vzu///u/nxe96EX5nd/5nYzH457/MgAAAAAAAAAAurJtop73/D9356uP/PlZ/Z1X\nXvpt+YX/42+c9plbbrkld911V7785S/nc5/7XH74h384d911V/bs2ZMkufXWW/PCF74w0+k0V199\ndX7sx34sF1988XG/47777stHPvKR/OZv/mZuuOGGfOITn8jb3va2s/q3AAAAAAAAAACwOLZN1LMo\nrrnmmmNBT5L8yq/8Sj75yU8mSR566KHcd999z4p69uzZk6uuuipJ8spXvjIPPvjg3OYFAAAAAAAA\nAGD+tk3Uc6aNOvNywQUXHPv5c5/7XD772c/mC1/4QiaTSb73e783hw4detZ3du7ceeznwWCQ6XQ6\nl1kBAAAAAAAAAOjHjr4HON9deOGFefLJJ0/62RNPPJGLLrook8kk9957b/7gD/5gztMBAAAAAAAA\nALCIts2mnr5cfPHFec1rXpOXvexlGY/H+Y7v+I5jn1177bX59V//9VxxxRV56Utfmle96lU9TgoA\nAAAAAAAAwKKo1lrfM5wVe/fubfv37z/uvXvuuSdXXHFFTxPN33b7ewEAAAAAAAAAziVV9aXW2t7N\nPOv8FgAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAA\nAAAALBhRD535+7d+Mb/4X77a9xgAAAAAAAAAAOccUU/HHn/88XzgAx94Tt993/vel+Xl5bM80fz8\nyROH8tCfnbvzAwAAAAAAAAD0RdTTse0c9YxHgyyvHO57DAAAAAAAAACAc86w7wHOdzfddFMeeOCB\nXHXVVfmBH/iBfPu3f3s+9rGP5ZlnnsmP/uiP5j3veU+efvrp3HDDDTlw4EAOHz6cn//5n8+f/Mmf\n5JFHHsn3fd/35ZJLLsntt9/e95+yZZPRIFNRDwAAAAAAAADAlm2fqOf/vSn54z88u7/zL708ue6W\n0z5yyy235K677sqXv/zl3Hbbbfn4xz+eL37xi2mt5frrr8/v/d7v5eDBg7n00kvzu7/7u0mSJ554\nIs9//vPzy7/8y7n99ttzySWXnN2552QyGuTx5dW+xwAAAAAAAAAAOOc4vzVHt912W2677ba84hWv\nyHd913fl3nvvzX333ZeXv/zl+cxnPpOf/dmfzec///k8//nP73vUs2I8Gma6alMPAAAAAAAAAMBW\nbZ9NPWfYqDMPrbW8613vyk/91E8967M777wz+/bty7vf/e687nWvy80339zDhGfXZGmQ5ZVZ32MA\nAAAAAAAAAJxzbOrp2IUXXpgnn3wySfJDP/RDufXWW/PUU08lSR5++OE8+uijeeSRRzKZTPK2t70t\n73znO3PnnXc+67vnovFokOVnbOoBAAAAAAAAANiq7bOppycXX3xxXvOa1+RlL3tZrrvuurz1rW/N\nq1/96iTJ8573vHzoQx/K/fffn3e+853ZsWNHlpaW8mu/9mtJkhtvvDHXXnttLr300tx+++19/hnP\nyWQ0yPLq4bTWUlV9jwMAAAAAAAAAcM6o1lrfM5wVe/fubfv37z/uvXvuuSdXXHFFTxPN36L9vb/6\n3+7Lv7rt6/naL16bncNB3+MAAAAAAAAAAPSqqr7UWtu7mWed36Iz49HRRVDTFSe4AAAAAAAAAAC2\nQtRDZyajo9t5lkU9AAAAAAAAAABbct5HPefLebEzWcS/U9QDAAAAAAAAAPDcnNdRz65du/LYY48t\nZPByNrXW8thjj2XXrl19j3Kc8dLRqMf5LQAAAAAAAACArRn2PUCXLrvsshw4cCAHDx7se5TO7dq1\nK5dddlnfYxxnMjr6v9fyyqznSQAAAAAAAAAAzi3nddSztLSUPXv29D3GtjVeP7+1alMPAAAAAAAA\nAMBWnNfnt+jXBTud3wIAAAAAAAAAeC5EPXRmsrR+fkvUAwAAAAAAAACwFaIeOrN+fmu6Mut5EgAA\nAAAAAACAc4uoh85M1qIem3oAAAAAAAAAALZG1ENnxkuiHgAAAAAAAACA50LUQ2d27KjsWtqR6aqo\nBwAAAAAAAABgK0Q9dGoyGmZ5Zdb3GAAAAAAAAAAA5xRRD50aLw2y/IxNPQAAAAAAAAAAWyHqoVOT\n0SDLK6IeAAAAAAAAAICtEPXQqclokOVVUQ8AAAAAAAAAwFaIeujUeDTIdGXW9xgAAAAAAAAAAOcU\nUQ+dmoyGzm8BAAAAAAAAAGyRqIdOHd3UI+oBAAAAAAAAANgKUQ+dmiwNbOoBAAAAAAAAANgiUQ+d\nmowGWV6Z9T0GAAAAAAAAAMA5RdRDp8ajYaarNvUAAAAAAAAAAGyFqIdOXTAaZPVwy+rhI32PAgAA\nAAAAAABwzhD10KnxaJAkWV6xrQcAAAAAAAAAYLNEPXRqMhomSaaiHgAAAAAAAACATRP10KnJsU09\ns54nAQAAAAAAAAA4d4h66JTzWwAAAAAAAAAAWyfqoVPrm3qmq6IeAAAAAAAAAIDNEvXQqfWo5+ln\nnN8CAAAAAAAAANgsUQ+dGi8NkyRT57cAAAAAAAAAADZN1EOn1jf1LIt6AAAAAAAAAAA2rdOop6qu\nraqvVdX9VXXTST5/bVXdWVWzqnrjST7/tqo6UFW/2uWcdOdY1LMq6gEAAAAAAAAA2KzOop6qGiR5\nf5LrklyZ5C1VdeUJj30zyduTfPgUv+ZfJPm9rmake+O1qGe6Mut5EgAAAAAAAACAc0eXm3quSXJ/\na+0brbWVJB9N8oaND7TWHmytfSXJkRO/XFWvTPIdSW7rcEY6NhkNkzi/BQAAAAAAAACwFV1GPS9K\n8tCG1wfW3jujqtqR5P9M8s/O8NyNVbW/qvYfPHjwOQ9KdwY7KqPhjkxFPQAAAAAAAAAAm9Zl1POt\n+MdJ9rXWDpzuodbaB1tre1tre3fv3j2n0diqyWhgUw8AAAAAAAAAwBYMO/zdDyd58YbXl629txmv\nTvI9VfWPkzwvyaiqnmqt3XSWZ2QOJkuiHgAAAAAAAACAregy6rkjyUuqak+OxjxvTvLWzXyxtfb3\n1n+uqrcn2SvoOXdNdg4zXZ31PQYAAAAAAAAAwDmjs/NbrbVZknck+XSSe5J8rLV2d1W9t6quT5Kq\nurqqDiR5U5LfqKq7u5qH/ji/BQAAAAAAAACwNV1u6klrbV+SfSe8d/OGn+/I0bNcp/sd/z7Jv+9g\nPOZk7PwWAAAAAAAAAMCWdLapB9ZNRoNMRT0AAAAAAAAAAJsm6qFzk9EwyyuzvscAAAAAAAAAADhn\niHro3NimHgAAAAAAAACALRH10LnJaJDlVVEPAAAAAAAAAMBmiXro3Hg0yPIzoh4AAAAAAAAAgM0S\n9dC5ydIwK4ePZHb4SN+jAAAAAAAAAACcE0Q9dG4yGiSJE1wAAAAAAAAAAJsk6qFz47WoZ7oi6gEA\nAAAAAAAA2AxRD507tqlH1AMAAAAAAAAAsCmiHjr3F1HPrOdJAAAAAAAAAADODaIeOjceDZM4vwUA\nAAAAAAAAsFmiHjrn/BYAAAAAAAAAwNaIeuicqAcAAAAAAAAAYGtEPXRusn5+a3XW8yQAAAAAAAAA\nAOcGUQ+ds6kHAAAAAAAAAGBrRD10brwW9UxFPQAAAAAAAAAAmyLqoXOTJZt6AAAAAAAAAAC2QtRD\n54aDHRkNdoh6AAAAAAAAAAA2SdTDXIxHg0xXZn2PAQAAAAAAAABwThD1MBeT0cCmHgAAAAAAAACA\nTRL1MBdjUQ8AAAAAAAAAwKaJepiLo5t6nN8CAAAAAAAAANgMUQ9zMVka2tQDAAAAAAAAALBJoh7m\nYjwaZLoq6gEAAAAAAAAA2AxRD3Nx9PyWqAcAAAAAAAAAYDNEPczFeDTIVNQDAAAAAAAAALApoh7m\n4uimnlnfYwAAAAAAAAAAnBNEPczFBaOh81sAAAAAAAAAAJsk6mEuxqNBnpkdyeEjre9RAAAAAAAA\nAAAWnqiHuZiMBkmS6aptPQAAAAAAAAAAZyLqYS7Go2GSZHll1vMkAAAAAAAAAACLT9TDXEyW1jb1\nrNjUAwAAAAAAAABwJqIe5mL9/NayqAcAAAAAAAAA4IxEPczFWNQDAAAAAAAAALBpoh7mYjIaJnF+\nCwAAAAAAAABgM0Q9zMX6+a2nV2Y9TwIAAAAAAAAAsPhEPczF+vktm3oAAAAAAAAAAM5M1MNcrG/q\nWRb1AAAAAAAAAACckaiHuZgsDZMky85vAQAAAAAAAACckaiHuXB+CwAAAAAAAABg80Q9zMVouCPD\nHZXlVVEPAAAAAAAAAMCZiHqYm/FoYFMPAAAAAAAAAMAmiHqYmwtGwyyvzPoeAwAAAAAAAABg4Yl6\nmJvJaJBlm3oAAAAAAAAAAM5I1MPcOL8FAAAAAAAAALA5oh7mxqYeAAAAAAAAAIDNEfUwN+PRMMur\noh4AAAAAAAAAgDMR9TA3k6VBpiuzvscAAAAAAAAAAFh4oh7mxvktAAAAAAAAAIDNEfUwN+PRIFNR\nDwAAAAAAAADAGYl6mBubegAAAAAAAAAANkfUw9yMR8NMVw/nyJHW9ygAAAAAAAAAAAtN1MPcTEaD\nJMl01bYeAAAAAAAAAIDTEfUwN+tRjxNcAAAAAAAAAACnJ+phbsZLa5t6RD0AAAAAAAAAAKcl6mFu\nJqNhkmR5ddbzJAAAAAAAAAAAi63TqKeqrq2qr1XV/VV100k+f21V3VlVs6p644b3r6qqL1TV3VX1\nlar68S7nZD6c3wIAAAAAAAAA2JzOop6qGiR5f5LrklyZ5C1VdeUJj30zyduTfPiE95eT/P3W2t9I\ncm2S91XVC7qalflYj3qc3wIAAAAAAAAAOL1hh7/7miT3t9a+kSRV9dEkb0jy1fUHWmsPrn12ZOMX\nW2tf3/DzI1X1aJLdSR7vcF46duz8lqgHAAAAAAAAAOC0ujy/9aIkD214fWDtvS2pqmuSjJI8cJLP\nbqyq/VW1/+DBg895UOZjfOz81qznSQAAAAAAAAAAFluXUc+3rKr+cpL/mOQftNaOnPh5a+2DrbW9\nrbW9u3fvnv+AbInzWwAAAAAAAAAAm9Nl1PNwkhdveH3Z2nubUlXfluR3k/xca+0PzvJs9GBybFOP\nqAcAAAAAAAAA4HS6jHruSPKSqtpTVaMkb07yqc18ce35Tyb57dbaxzuckTlaP781XRX1AAAAAAAA\nAACcTmdRT2ttluQdST6d5J4kH2ut3V1V762q65Okqq6uqgNJ3pTkN6rq7rWv35DktUneXlVfXvvn\nqq5mZT5Ggx0Z7Kgsr8z6HgUAAAAAAAAAYKENu/zlrbV9Sfad8N7NG36+I0fPcp34vQ8l+VCXszF/\nVZXJ0sD5LQAAAAAAAACAM+jy/BY8y3g0yFTUAwAAAAAAAABwWqIe5moysqkHAAAAAAAAAOBMRD3M\n1Xg0zPLKrO8xAAAAAAAAAAAWmqiHubKpBwAAAAAAAADgzEQ9zJWoBwAAAAAAAADgzEQ9zNV4aZCp\nqAcAAAAAAAAA4LREPczVZDTI8uqs7zEAAAAAAAAAABaaqIe5muwc2tQDAAAAAAAAAHAGoh7marI0\nyLKoBwAAAAAAAADgtEQ9zNVkNMh09XBaa32PAgAAAAAAAACwsEQ9zNV4NExryaHVI32PAgAAAAAA\nAACwsEQ9zNVkNEiSLK/Mep4EAAAAAAAAAGBxiXqYq/GxqOdwz5MAAAAAAAAAACwuUQ9ztb6pZ7oq\n6gEAAAAAAAAAOBVRD3M1sakHAAAAAAAAAOCMRD3M1XhpmCRZXpn1PAkAAAAAAAAAwOIS9TBXx85v\n2dQDAAAAAAAAAHBKoh7maj3qeVrUAwAAAAAAAABwSqIe5mp8bFOP81sAAAAAAAAAAKci6mGuJqNh\nkmTZph4AAAAAAAAAgFMS9TBX6+e3RD0AAAAAAAAAAKcm6mGudg53pCqZinoAAAAAAAAAAE5J1MNc\nVVUuGA1t6gEAAAAAAAAAOA1RD3M3Hg0yXZ31PQYAAAAAAAAAwMIS9TB3k9HAph4AAAAAAAAAgNMQ\n9TB34yVRDwAAAAAAAADA6Yh6mLvJaJCpqAcAAAAAAAAA4JREPczdZDTM8sqs7zEAAAAAAAAAABaW\nqIe5G4+c3wIAAAAAAAAAOB1RD3M3GQ0yXRX1AAAAAAAAAACciqiHuZvY1AMAAAAAAAAAcFqiHuZu\nvDTMVNQDAAAAAAAAAHBKoh7m7uimnllaa32PAgAAAAAAAACwkEQ9zN14NMiRljwzO9L3KAAAAAAA\nAAAAC0nUw9xNRoMkybITXAAAAAAAAAAAJyXqYe7+IuqZ9TwJAAAAAAAAAMBiEvUwd+PRMEkytakH\nAAAAAAAAAOCkRD3M3QXObwEAAAAAAAAAnJaoh7kbi3oAAAAAAAAAAE5L1MPcTdbPb63Oep4EAAAA\nAAAAAGAxiXqYu4lNPQAAAAAAAAAApyXqYe7GS6IeAAAAAAAAAIDTEfUwd+ubeqaiHgAAAAAAAACA\nkxL1MHeT0TCJTT0AAAAAAAAAAKci6mHudi3tSFUyXZn1PQoAAAAAAAAAwEIS9TB3VZXx0sCmHgAA\nAAAAAACAUxD10IvJaJDlVVEPAAAAAAAAAMDJiHroxXg0yNSmHgAAAAAAAACAkxL10IvJ0jBPPzPr\newwAAAAAAAAAgIUk6qEX49EgU+e3AAAAAAAAAABOStRDLyajQZad3wIAAAAAAAAAOClRD70Q9QAA\nAAAAAAAAnJqoh16MR8NMV2Z9jwEAAAAAAAAAsJBEPfTiApt6AAAAAAAAAABOSdRDL8ajQaaiHgAA\nAAAAAACAk+o06qmqa6vqa1V1f1XddJLPX1tVd1bVrKreeMJnP1lV963985Ndzsn8TUaDLK8eTmut\n71EAAAAAAAAAABZOZ1FPVQ2SvD/JdUmuTPKWqrryhMe+meTtST58wndfmOQXkvztJNck+YWquqir\nWZm/yWiYw0daVg4f6XsUAAAAAAAAAICF0+WmnmuS3N9a+0ZrbSXJR5O8YeMDrbUHW2tfSXJi2fFD\nST7TWvvT1tqfJflMkms7nJU5Gy8NksQJLgAAAAAAAACAk+gy6nlRkoc2vD6w9t5Z+25V3VhV+6tq\n/8GDB5/zoMzfZHQ06lkW9QAAAAAAAAAAPEuXUU/nWmsfbK3tba3t3b17d9/jsAVjUQ8AAAAAAAAA\nwCl1GfU8nOTFG15ftvZe19/lHDAZDZM4vwUAAAAAAAAAcDJdRj13JHlJVe2pqlGSNyf51Ca/++kk\nP1hVF1XVRUl+cO09zhN/cX5r1vMkAAAAAAAAAACLp7Oop7U2S/KOHI1x7knysdba3VX13qq6Pkmq\n6uqqOpDkTUl+o6ruXvvunyb5FzkaBt2R5L1r73GeOHZ+a9WmHgAAAAAAAACAEw27/OWttX1J9p3w\n3s0bfr4jR09rney7tya5tcv56M/6ph7ntwAAAAAAAAAAnq3L81twSpOloz3Z0884vwUAAAAAAAAA\ncCJRD71YP781dX4LAAAAAAAAAOBZRD30Yv381rLzWwAAAAAAAAAAzyLqoRfjJVEPAAAAAAAAAMCp\niHroxY4dlfHSINOVWd+jAAAAAAAAAAAsHFEPvZmMBjb1AAAAAAAAAACchKiH3oxHg0xFPQAAAAAA\nAAAAzyLqoTc29QAAAAAAAAAAnJyoh96MR8Msr4p6AAAAAAAAAABOJOqhN5OlQaYrs77HAAAAAAAA\nAABYOKIeeuP8FgAAAAAAAADAyYl66M14NMhU1AMAAAAAAAAA8CyiHnpjUw8AAAAAAAAAwMmJeujN\nZDTM8sqs7zEAAAAAAAAAABaOqIfejEeDTFdt6gEAAAAAAAAAOJGoh95MlgZZPdyyMjvS9ygAAAAA\nAAAAAAtF1ENvxqNBkmS6YlsPAAAAAAAAAMBGoh56MxkNkyTLq7OeJwEAAAAAAAAAWCyiHnozWdvU\ns2xTDwAAAAAAAADAcUQ99Gbi/BYAAAAAAAAAwEmJeujNsfNboh4AAAAAAAAAgOOIeujN+Nj5rVnP\nkwAAAAAAAAAALBZRD71xfgsAAAAAAAAA4OREPfRmcmxTj6gHAAAAAAAAAGAjUQ+9OXZ+a1XUAwAA\nAAAAAACwkaiH3kxGwyTJdGXW8yQAAAAAAAAAAItF1ENvxkvObwEAAAAAAAAAnIyoh94MdlR2Dndk\nKuoBAAAAAAAAADiOqIdeTUYDm3oAAAAAAAAAAE4g6qFXk9FQ1AMAAAAAAAAAcAJRD70ajwaZrs76\nHgMAAAAAAAAAYKGIeujVZDTI08/Y1AMAAAAAAAAAsJGoh16NlwaZOr8FAAAAAAAAAHAcUQ+9mowG\nWXZ+CwAAAAAAAADgOKIeejXZOcyyTT0AAAAAAAAAAMcR9dCrifNbAAAAAAAAAADPIuqhV5PRwKYe\nAAAAAAAAAIATiHro1Xg0tKkHAAAAAAAAAOAEoh56NRkNsnL4SGaHj/Q9CgAAAAAAAADAwhD10KvJ\naJAkWV61rQcAAAAAAAAAYJ2oh16N16IeJ7gAAAAAAAAAAP6CqIdeHdvUI+oBAAAAAAAAADhG1EOv\nxkvDJMnyyqznSQAAAAAAAAAAFoeoh15NnN8CAAAAAAAAAHgWUQ+9cn4LAAAAAAAAAODZRD30aizq\nAQAAAAAAAAB4FlEPvZqMhkmS6eqs50kAAAAAAAAAABaHqIderZ/fevoZm3oAAAAAAAAAANaJeujV\n+vmtqfNbAAAAAAAAAADHiHro1WTpaNSzLOoBAAAAAAAAADhG1EOvhoMdGQ13ZHl11vcoAAAAAAAA\nAAALQ9RD7yajgfNbAAAAAAAAAAAbiHro3WRp4PwWAAAAAAAAAMAGoh56N7apBwAAAAAAAADgOKIe\nejcZDbO8Mut7DAAAAAAAAACAhdFp1FNV11bV16rq/qq66SSf76yq/7T2+f+oqsvX3l+qqv9QVX9Y\nVfdU1bu6nJN+jUfObwEAAAARBxskAAAgAElEQVQAAAAAbNRZ1FNVgyTvT3JdkiuTvKWqrjzhsX+U\n5M9aa38tyb9O8i/X3n9Tkp2ttZcneWWSn1oPfjj/TEaDTFdFPQAAAAAAAAAA67rc1HNNkvtba99o\nra0k+WiSN5zwzBuS/Ie1nz+e5HVVVUlakguqaphknGQlyZ93OCs9mtjUAwAAAAAAAABwnC6jnhcl\neWjD6wNr7530mdbaLMkTSS7O0cDn6ST/K8k3k/yr1tqfnvgfqKobq2p/Ve0/ePDg2f8LmIvx0jBT\nUQ8AAAAAAAAAwDFdRj3fimuSHE5yaZI9SX6mqv7qiQ+11j7YWtvbWtu7e/fuec/IWXJ0U8+s7zEA\nAAAAAAAAABZGl1HPw0levOH1ZWvvnfSZtVNbz0/yWJK3JvmvrbXV1tqjSf57kr0dzkqPnN8CAAAA\nAAAAADhel1HPHUleUlV7qmqU5M1JPnXCM59K8pNrP78xyX9rrbUcPbn1/UlSVRckeVWSezuclR6N\nR4M8MzuSw0da36MAAAAAAAAAACyEzqKe1tosyTuSfDrJPUk+1lq7u6reW1XXrz32b5NcXFX3J/mn\nSW5ae//9SZ5XVXfnaBz071prX+lqVvo1GQ2SJNNV23oAAAAAAAAAAJJkuJmHquqnk/y7JE8m+a0k\nr0hyU2vtttN9r7W2L8m+E967ecPPh5K86STfe+pk73N+Go+O/m+4/Mwsz9u5qf8lAQAAAAAAAADO\na5vd1PMPW2t/nuQHk1yU5CeS3NLZVGwrF6xt6llesakHAAAAAAAAACDZfNRTa/9+fZL/2Fq7e8N7\n8C2ZiHoAAAAAAAAAAI6z2ajnS1V1W45GPZ+uqguTHOluLLaT9fNb09VZz5MAAAAAAAAAACyG4Saf\n+0dJrkryjdbaclW9MMk/6G4sthObegAAAAAAAAAAjrfZTT2vTvK11trjVfW2JO9O8kR3Y7GdjJdE\nPQAAAAAAAAAAG2026vm1JMtV9beS/EySB5L8dmdTsa2sb+qZinoAAAAAAAAAAJJsPuqZtdZakjck\n+dXW2vuTXNjdWGwnk9HRK3A29QAAAAAAAAAAHDXc5HNPVtW7kvxEku+pqh1Jlrobi+1kPFo/vzXr\neRIAAAAAAAAAgMWw2U09P57kmST/sLX2x0kuS/JLnU3FtuL8FgAAAAAAAADA8TYV9ayFPP9XkudX\n1d9Ncqi19tudTsa2sTTYkaVBZXlV1AMAAAAAAAAAkGwy6qmqG5J8McmbktyQ5H9U1Ru7HIztZbw0\nsKkHAAAAAAAAAGDNcJPP/VySq1trjyZJVe1O8tkkH+9qMLaXyWiY5ZVZ32MAAAAAAAAAACyETW3q\nSbJjPehZ89gWvgtnNBkNsmxTDwAAAAAAAABAks1v6vmvVfXpJB9Ze/3jSfZ1MxLb0Xjk/BYAAAAA\nAAAAwLpNRT2ttXdW1Y8lec3aWx9srX2yu7HYbiajQZ52fgsAAAAAAAAAIMnmN/WktfaJJJ/ocBa2\nsclomMeXV/oeAwAAAAAAAABgIZw26qmqJ5O0k32UpLXWvq2Tqdh2JqNBHnnc+S0AAAAAAAAAgOQM\nUU9r7cJ5DcL2Nh4Nsrwi6gEAAAAAAAAASJIdfQ8AydFNPdNVUQ8AAAAAAAAAQCLqYUFMRsMsr8z6\nHgMAAAAAAAAAYCGIelgI46VBDq0eyZEjre9RAAAAAAAAAAB6J+phIUxGgyRxguv/Z+/eYyTLDvsw\n/05VdXVXzWvfXIq7JJfa5TAUGVnWglT0iiRSNncDhxZEwZQdiDGIMH4QQRAkDhMggqIYQSTAFmyI\nSkCJAhQpBiUIMLSAliISU7Ilh6a4skIJVLTU8iHvkiKzL+7OTPd0V3Xd/HGru6urqx8z0zV1Z+v7\nsBf33HPOvffUo1+1vzkHAAAAAAAAACBCPTTETqhnfUuoBwAAAAAAAABAqIdG6HU7SZINoR4AAAAA\nAAAAAKEemmF3pp7BcMEjAQAAAAAAAABYPKEeGqFn+S0AAAAAAAAAgF1CPTRCf6UO9Vh+CwAAAAAA\nAABAqIeG6Hc7SczUAwAAAAAAAACQCPXQEHvLbw0XPBIAAAAAAAAAgMUT6qER+l3LbwEAAAAAAAAA\n7BDqoRHOjJffuiLUAwAAAAAAAAAg1EMz9HZn6rH8FgAAAAAAAACAUA+N0O200mmVrJupBwAAAAAA\nAABAqIfm6HXbQj0AAAAAAAAAABHqoUH63XY2hHoAAAAAAAAAAIR6aI5+t5P1gVAPAAAAAAAAAIBQ\nD43RW2lnY2u46GEAAAAAAAAAACycUA+N0e+2s275LQAAAAAAAAAAoR6aoyfUAwAAAAAAAACQRKiH\nBul329kQ6gEAAAAAAAAAEOqhOfrdTtYHw0UPAwAAAAAAAABg4YR6aIyemXoAAAAAAAAAAJII9dAg\n/ZV21oV6AAAAAAAAAACEemiOfredjcF2qqpa9FAAAAAAAAAAABZKqIfG6HU7qark6mC06KEAAAAA\nAAAAACyUUA+NcWa1nSS5sjVc8EgAAAAAAAAAABZLqIfG6K3UoZ6Nre0FjwQAAAAAAAAAYLGEemiM\nfreTJFkX6gEAAAAAAAAAlpxQD43R79Yz9axbfgsAAAAAAAAAWHJCPTRGr2v5LQAAAAAAAACARKiH\nBtmbqUeoBwAAAAAAAABYbkI9NMZuqGcg1AMAAAAAAAAALDehHhqj1+0kSTa2hgseCQAAAAAAAADA\nYgn10Bj9FctvAQAAAAAAAAAkQj00SK8r1AMAAAAAAAAAkAj10CCrnVZaJdkQ6gEAAAAAAAAAltxc\nQz2llHeVUp4spTxVSvnQjPbVUsqvjts/XUp5/UTbv19K+VQp5XOllD8upazNc6wsXikl/W7HTD0A\nAAAAAAAAwNKbW6inlNJO8uEkjyR5c5IfLaW8earb+5O8WFXVg0l+JslPjc/tJPmVJH+nqqpvSfJ9\nSQbzGivN0eu2szEYLnoYAAAAAAAAAAALNc+Zet6W5Kmqqr5YVdVWko8lefdUn3cn+aVx+deTvKOU\nUpL8lSR/VFXVZ5Okqqrnq6oyfcsS6HfbZuoBAAAAAAAAAJbePEM9r0ny9MTxM+O6mX2qqhomeSnJ\nnUnemKQqpXyilPJvSyn/YNYNSikfKKU8UUp54tlnnz31B8DN11sR6gEAAAAAAAAAmGeo50Z0knx3\nkr813v9QKeUd052qqvpIVVUPV1X18N13332zx8gc9LvtbAj1AAAAAAAAAABLbp6hnq8kuX/i+L5x\n3cw+pZROkgtJnk89q8+/qqrquaqq1pM8nuQvz3GsNMSZ1U6ubA0XPQwAAAAAAAAAgIWaZ6jnM0ke\nKqU8UErpJnlvksem+jyW5H3j8nuSfLKqqirJJ5K8tZTSH4d9/sMkfzLHsdIQvRUz9QAAAAAAAAAA\ndOZ14aqqhqWUD6YO6LST/GJVVZ8rpfxkkieqqnosyUeT/HIp5akkL6QO/qSqqhdLKf84dTCoSvJ4\nVVW/Oa+x0hz9bjvrQj0AAAAAAAAAwJKbW6gnSaqqejz10lmTdT8+Ub6a5EcOOfdXkvzKPMdH8/S6\nHaEeAAAAAAAAAGDpzXP5Lbhm/W47G1vDRQ8DAAAAAAAAAGChhHpolH63nfXBdqqqWvRQAAAAAAAA\nAAAWRqiHRul126mqZHM4WvRQAAAAAAAAAAAWRqiHRumvtJMk61vbCx4JAAAAAAAAAMDiCPXQKP1u\nJ0myvjVc8EgAAAAAAAAAABZHqIdG6XXrmXo2zNQDAAAAAAAAACwxoR4apd+1/BYAAAAAAAAAgFAP\njdIT6gEAAAAAAAAAEOqhWfrdTpJkYzBc8EgAAAAAAAAAABZHqIdGsfwWAAAAAAAAAIBQDw3TWxHq\nAQAAAAAAAAAQ6qFRzqyOl98S6gEAAAAAAAAAlphQD42ys/zWla3hgkcCAAAAAAAAALA4Qj00ymqn\nlVLM1AMAAAAAAAAALDehHhqllJL+SjvrQj0AAAAAAAAAwBIT6qFxet2OUA8AAAAAAAAAsNSEemic\nfredja3hoocBAAAAAAAAALAwQj00Tr9r+S0AAAAAAAAAYLkJ9dA4vW47GwOhHgAAAAAAAABgeQn1\n0Dhm6gEAAAAAAAAAlp1QD43TW+kI9QAAAAAAAAAAS02oh8bpd9vZ2BouehgAAAAAAAAAAAsj1EPj\nWH4LAAAAAAAAAFh2Qj00Tq/bzoZQDwAAAAAAAACwxIR6aJx+t531wXaqqlr0UAAAAAAAAAAAFkKo\nh8bpdzvZHlXZ2h4teigAAAAAAAAAAAsh1EPj9LvtJLEEFwAAAAAAAACwtIR6aJydUM8VoR4AAAAA\nAAAAYEkJ9dA4vW4nSbKxNVzwSAAAAAAAAAAAFkOoh8bpr9Qz9aybqQcAAAAAAAAAWFJCPTTOzvJb\nQj0AAAAAAAAAwLIS6qFxeuNQz4ZQDwAAAAAAAACwpIR6aJx+t5PETD0AAAAAAAAAwPIS6qFx9pbf\nGi54JAAAAAAAAAAAiyHUQ+PsLr81MFMPAAAAAAAAALCchHponL2ZeoR6AAAAAAAAAIDlJNRD46x1\nhHoAAAAAAAAAgOUm1EPjtFolvZV2NraGix4KAAAAAAAAAMBCCPXQSP1u20w9AAAAAAAAAMDSEuqh\nkXrddjaEegAAAAAAAACAJSXUQyOZqQcAAAAAAAAAWGZCPTRSv9vJ+kCoBwAAAAAAAABYTkI9NFK/\n287G1nDRwwAAAAAAAAAAWAihHhqp323nyqaZegAAAAAAAACA5STUQyP1up1sWH4LAAAAAAAAAFhS\nQj00Un+lnXXLbwEAAAAAAAAAS0qoh0bqddtZ3zJTDwAAAAAAAACwnIR6aKR+t50NoR4AAAAAAAAA\nYEkJ9dBI/W47w1GVreFo0UMBAAAAAAAAALjphHpopF63kyRm6wEAAAAAAAAAlpJQD43U77aTJOuD\n4YJHAgAAAAAAAABw8wn10Ei7oR4z9QAAAAAAAAAAS0ioh0bqrdShHstvAQAAAAAAAADLSKiHRup3\nO0nM1AMAAAAAAAAALCehHhqpt7v81nDBIwEAAAAAAAAAuPnmGuoppbyrlPJkKeWpUsqHZrSvllJ+\nddz+6VLK66faX1tKuVxK+a/nOU6ap9+1/BYAAAAAAAAAsLzmFuoppbSTfDjJI0nenORHSylvnur2\n/iQvVlX1YJKfSfJTU+3/OMnH5zVGmuuM5bcAAAAAAAAAgCU2z5l63pbkqaqqvlhV1VaSjyV591Sf\ndyf5pXH515O8o5RSkqSU8teTfCnJ5+Y4Rhpqd/mtgVAPAAAAAAAAALB85hnqeU2SpyeOnxnXzexT\nVdUwyUtJ7iylnE3y3yb5H4+6QSnlA6WUJ0opTzz77LOnNnAWb2/5reGCRwIAAAAAAAAAcPPNM9Rz\nI34iyc9UVXX5qE5VVX2kqqqHq6p6+O677745I+Om6K3UoZ4rm2bqAQAAAAAAAACWT2eO1/5Kkvsn\nju8b183q80wppZPkQpLnk7w9yXtKKT+d5LYko1LK1aqqfnaO46VBWq2StZVWNiy/BQAAAAAAAAAs\noXmGej6T5KFSygOpwzvvTfI3p/o8luR9ST6V5D1JPllVVZXke3Y6lFJ+IsllgZ7l0+92sm75LQAA\nAAAAAABgCc0t1FNV1bCU8sEkn0jSTvKLVVV9rpTyk0meqKrqsSQfTfLLpZSnkryQOvgDSeoluNa3\nzNQDAAAAAAAAACyfec7Uk6qqHk/y+FTdj0+Uryb5kWOu8RNzGRyN1++2syHUAwAAAAAAAAAsodai\nBwCH6XfN1AMAAAAAAAAALCehHhqrZ6YeAAAAAAAAAGBJCfXQWP1uJ+uD4aKHAQAAAAAAAABw0wn1\n0Fg9y28BAAAAAAAAAEtKqIfG6q9YfgsAAAAAAAAAWE5CPTRW30w9AAAAAAAAAMCSEuqhsXrdjpl6\nAAAAAAAAAIClJNRDY53ptrO1Pcpwe7TooQAAAAAAAAAA3FRCPTRWr9tOkqwPzNYDAAAAAAAAACwX\noR4aq9/tJIkluAAAAAAAAACApSPUQ2P1xzP1XNkcLngkAAAAAAAAAAA3l1APjbW7/JaZegAAAAAA\nAACAJSPUQ2PtzNSzMRDqAQAAAAAAAACWi1APjdU3Uw8AAAAAAAAAsKSEemis3konSbKxNVzwSAAA\nAAAAAAAAbi6hHhrLTD0AAAAAAAAAwLIS6qGxhHoAAAAAAAAAgGUl1ENj9cahng2hHgAAAAAAAABg\nyQj10Fj9bieJmXoAAAAAAAAAgOUj1ENjtVsl3U4r64PhoocCAAAAAAAAAHBTCfXQaP1u2/JbAAAA\nAAAAAMDSEeqh0forbctvAQAAAAAAAABLR6iHRuuvdszUAwAAAAAAAAAsHaEeGq3fbWd9a7joYQAA\nAAAAAAAA3FRCPTRaz/JbAAAAAAAAAMASEuqh0frddjYGQj0AAAAAAAAAwHIR6qHR+t1OrmxafgsA\nAAAAAAAAWC5CPTRar9vOhuW3AAAAAAAAAIAlI9RDo/W77axbfgsAAAAAAAAAWDJCPTRar9vOupl6\nAAAAAAAAAIAlI9RDo/VXOtkajrI9qhY9FAAAAAAAAACAm0aoh0brd9tJkvWt4YJHAgAAAAAAAABw\n8wj10Gi9cahnwxJcAAAAAAAAAMASEeqh0fZm6hHqAQAAAAAAAACWh1APjSbUAwAAAAAAAAAsI6Ee\nGq3X7SRJNgbDBY8EAAAAAAAAAODmEeqh0czUAwAAAAAAAAAsI6EeGk2oBwAAAAAAAABYRkI9NFp/\nZ/ktoR4AAAAAAAAAYIkI9dBoZuoBAAAAAAAAAJaRUA+N1tsN9QwXPBIAAAAAAAAAgJtHqIdG66+Y\nqQcAAAAAAAAAWD5CPTRap91Kt90S6gEAAAAAAAAAlopQD43X67azYfktAAAAAAAAAGCJCPXQeP1u\n20w9AAAAAAAAAMBSEeqh8XrddtYHQj0AAAAAAAAAwPIQ6qHx+t12NszUAwAAAAAAAAAsEaEeGq+/\n0sn61nDRwwAAAAAAAAAAuGmEemi8npl6AAAAAAAAAIAlI9RD4/W77awL9QAAAAAAAAAAS0Soh8br\nCfUAAAAAAAAAAEtGqIfG63fb2RgI9QAAAAAAAAAAy0Ooh8Y70+1kfWu46GEAAAAAAAAAANw0Qj3M\nR1Ulv/uPks9+7IYv1eu2c3UwymhUncLAAAAAAAAAAACaT6iH+Sgl+dPfTH7/52/4Uv1uO0kswQUA\nAAAAAAAALA2hHubn4iPJV55ILn39hi7T63aSJOtbQj0AAAAAAAAAwHKYa6inlPKuUsqTpZSnSikf\nmtG+Wkr51XH7p0sprx/X/2Ap5Q9KKX883v/APMfJnFx8tN5//rdu6DL9lfFMPUI9AAAAAAAAAMCS\nmFuop5TSTvLhJI8keXOSHy2lvHmq2/uTvFhV1YNJfibJT43rn0vy16qqemuS9yX55XmNkzm6583J\nba9Nnnz8hi6zs/zWla3haYwKAAAAAAAAAKDx5jlTz9uSPFVV1RerqtpK8rEk757q8+4kvzQu/3qS\nd5RSSlVVf1hV1VfH9Z9L0iulrM5xrMxDKfVsPV/8nWTrynVfpjcO9Vh+CwAAAAAAAABYFvMM9bwm\nydMTx8+M62b2qapqmOSlJHdO9fnhJP+2qqrN6RuUUj5QSnmilPLEs88+e2oD5xRdfDQZXq2DPdep\n3+0ksfwWAAAAAAAAALA85hnquWGllG9JvSTXfz6rvaqqj1RV9XBVVQ/ffffdN3dwnMzrvjNZvXBD\nS3D1d2fqsfwWAAAAAAAAALAc5hnq+UqS+yeO7xvXzexTSukkuZDk+fHxfUn+eZIfq6rqC3McJ/PU\nXkke+sHkyd9KRtc3087O8lsbAzP1AAAAAAAAAADLYZ6hns8keaiU8kAppZvkvUkem+rzWJL3jcvv\nSfLJqqqqUsptSX4zyYeqqvrXcxwjN8PFR5L155Kv/MF1nb43U49QDwAAAAAAAACwHOYW6qmqapjk\ng0k+keT/TfJrVVV9rpTyk6WU/3jc7aNJ7iylPJXkv0ryoXH9B5M8mOTHSyn/z3i7Z15jZc4efGfS\n6lz3Elz9lU4SoR4AAAAAAAAAYHl05nnxqqoeT/L4VN2PT5SvJvmRGef9wyT/cJ5j4ybq3Za87ruS\nP308eedPXPvpO8tvbQ1Pd1wAAAAAAAAAAA01z+W3YM/FR5Pnnkye/8I1n9rttNJpFTP1AAAAAAAA\nAABLQ6iHm+PiI/X+yY9f1+m9bluoBwAAAAAAAABYGkI93By3vy551VuuO9TT77azIdQDAAAAAAAA\nACwJoR5unouPJP/uU8n6C9d86pluJ+sDoR4AAAAAAAAAYDkI9XDzXHwkqbaTP/s/r/nUXredja3h\nHAYFAAAAAAAAANA8Qj3cPK/+tuTsvcmTj1/zqf1uO+uW3wIAAAAAAAAAloRQDzdPq5VcfFfy1L9I\nhpvXdGqv2xHqAQAAAAAAAACWhlAPN9fFR5OtS8mXf/eaTuuvtLMh1AMAAAAAAAAALAmhHm6uB743\nWeknT378mk7rd9u5sjWc06AAAAAAAAAAAJpFqIeba6WXfPMP1KGeqjrxab2umXoAAAAAAAAAgOUh\n1MPNd/HR5OWvJF/7oxOf0u+2sy7UAwAAAAAAAAAsCaEebr43/tUk5ZqW4Op1O9kYbGc0OvnsPgAA\nAAAAAAAAtyqhHm6+M3cl9789efLxE5/S77aTJFeHZusBAAAAAAAAAF75hHpYjIuPJH/x2eSlr5yo\n+06oxxJcAAAAAAAAAMAyEOphMS4+Wu9POFtPb6UO9WwI9QAAAAAAAAAAS0Coh8W466Hkjm9Onvz4\nibr3u50kZuoBAAAAAAAAAJaDUA+LUUrypkeTL/2r5OrLx3bfW35rOO+RAQAAAAAAAAAsnFAPi3Px\n0WQ0SL7wyWO79rqW3wIAAAAAAAAAlodQD4tz39uS3h0nWoLrjOW3AAAAAAAAAIAlItTD4rQ7yRv/\navJnn0i2j15Wa2emnvWBUA8AAAAAAAAA8Mon1MNiXXwk2XgxefrTR3br7y6/dXT4BwAAAAAAAADg\nlUCoh8X65h9I2t3kyceP7LYT6rH8FgAAAAAAAACwDIR6WKzVc8kD31uHeqrq0G49oR4AAAAAAAAA\nYIkI9bB4Fx9JXvhi8tznD+3SbbfSbpWsW34LAAAAAAAAAFgCQj0s3hsfqfdHLMFVSkl/pW2mHgAA\nAAAAAABgKQj1sHgXXpO8+i8lT378yG69bjsbQj0AAAAAAAAAwBIQ6qEZLj6aPP37yeVnD+3S75qp\nBwAAAAAAAABYDkI9NMPFR5JUyZ994tAuvW5HqAcAAAAAAAAAWApCPTTDvW9Nzt935BJc/W47G4Ph\nTRwUAAAAAAAAAMBiCPXQDKXUs/V84ZPJYGNmF8tvAQAAAAAAAADLorPoAcCui48kn/n55Iv/Mrn4\nrgPNvZV2nr20uYCBAQAAAAAAAMAcbQ+TjReS4dVke5Bsb423Gyzf/kDyHX9n0Y+O6yTUQ3O8/nuS\n7rnkycdnhnrM1AMAAAAAAADALWV7mFx5Nrn0F8nlr9f7S1/b2y6P91eeTarR6dyz1Una3aS9krzu\nu4V6bmFCPTRHp5s89M7k87+VjEZJa//qcL1uR6gHAAAAAAAAgPmqqjpgU1VJqon9VN3mpb2QzuWv\nXUNYpyRn7k7O3Vtvr/7W5Oy9ydl7kpXeXiCn3b32cmvlwP9r59Yl1EOzXHw0+dw/T776h8l9376v\n6Uy3nY2t4YIGBgAAAAAAAPAKV1X18k9XX042Xx7vX6rDK/vqJtquvpxsXalDJZ218bZa71emjo9t\n7+2VUyWD9WSwUe+3JsqDjWRwZbyfbF+fqLsy1X9jL5RTjbI/rDNRd0MOCeucuzc59+rk3Kvq/Zl7\nkra4BsfzLqFZHnxnUtr1ElxToZ5+t531wXaqqkopZUEDBAAAAAAAALhOVZVsb9XBmeF4v72VDDcn\nyjPaRsNxIGW7XvVkt7x9gvrtcWhlp7ydDK6OgzkvHQzqjAbHP47uuWTtfLJ6vt6vnU+2B3W4Z/35\n8WO4Wo99MC5vb87hCS1J90w9u81KL1nZKffrcM1OeaVfB4Varfqc0kpKGZcn9qV1sG63bUZd96yw\nDnPl3USz9O9IXvedyZMfT97xP+xr6nU79Qxmw1HWVtoLGiAAAAAAAACQ7UEdCLn6UnL1G/V+4xsT\ndeOwyE64ZHfpokwdV0ccV7Pbk+ybUeVU6g7pc63HSR3AGW7ubdtT5ZuhtOrJFEorabUnyuP6ztpe\nKOfsq5I7H9of0lk9n6xdmDoe71fP1de8VqPROKS0sRdiGkyEf3aDQOPjZBzIGQdzuv39xyv9elYf\nE0LwCibUQ/NcfCT5xH+fvPjl5PbX71b3u/UPhvWtbaEeAAAAAAAArl9V1TOKbF1ONi8nW5fG+/Hx\n4Erdr9WpAxCt9l4wotWeqG/t71PGbTvBiVZnr74ajZcBml4iaNayQUf1G5eHm/WMIJPLFXVW68DD\nrKWOVqb6TZ63swTSaHt/SGdymw7s7DxHh2l1xuGPlakZUFpTs560DmmfPM7BGVSSqTDHadZNzs4y\n2a0c0X/iuLSnnuvVpL2adLp1Xbs7o2116nit7r9zXquzF9RpjQM6BwI7O+WSRgZdWq2kNX6/ASci\n1EPz7IR6nvx48h1/d7e6Nw71/OnXXs53fvNdixodAAAAAABwWkajOjyw/kKy8WL9P667Z+ulVLpn\n6mVUWq1Fj7IOgAw369klUvaHO3b/J/scxrk9rGe12N6qZ0U5UXlzvGzPxv6ZL46aDWNm++beNUbb\nSXul3lqT+87EcWfcp7tXPtBnZe8607OG7HsujwostGb0bdfLBR0I51yaHdjZGm/V6PRfsxtVWhPL\nB03NTnLm7uS2qRlKtgezX9fBRv11ddjrfbLB1DO17Gy925K7Hhwf3za1n+q3dqEeYxODJQC3EKEe\nmueONyR3vyl58vF9oZHv0igAAB5CSURBVJ6HX3d7zq128jd//tP5gTfdk7///Q/m2193+wIHCgAA\nAAAA7JoM6Kw/v7dtTB6/uL9+48XjgxUr/XHI5+z+wM9u3azy+LjVnpjpZHp/TN2+mVPWs29pncPs\nm62lvRf2OVA/EVhJpsI5EyGdUw2dlMNncOms1W39O6ZmFxn3Ka16OaHtQR2e2R5MHQ/31w8360DN\nrLadc0aj8VJK2+PlmcZLNJ3GY26Pw2GrZ5PuuXrfvyO57bX763b6rJ6f6H+2nl1mpV9fq9quxz0a\nTZTH4x2N6uOdx7BbnlU/Ggd2DltKqFeHedor8w/C7IbUpsJbw6tJyl4op3uuGaE6gCUm1EMzXXw0\n+df/pP5lvlcHd95w99n83od+IL/8qS/no7/3pfzw//p/5zvecEc++P0P5bsevDNF0hcAAAAAgFtJ\nVdVbxvtqtL+8G3YYBx12gwST+2pG3bj+QP/h4QGL40Ias9q21k8e0GmvJv07x9vtyb1vqcu9O/bq\n1y5MzLZyebw00pWp8vj46jeSl7+yv3176+TP/eRsKPuCFePZUHbK+/a9ermiVBOvy/ZE2GP6+T6k\nfvq1ScbL7YxnuWl3jygf1z6eBWfWckytzq0xa8rO+38y6LPvOZ31vI72lnrqnq1nfOJwpdTLH1kC\nCaDxSlWdIFV8C3j44YerJ554YtHD4LQ8/Znko+9MfvijyVvfc6B5fWuYf/bpf5ef/90v5usvb+Zb\n778tH/z+B/OON92TVusW+IUUAAAAAIDFGm7NCI5MHW9enhEqme43rhvtBHJGhwd1ptsbrxyxhFKn\nDrv0J0I5kwGd/u0T5TtvzjI8w61kMPG6bF6uQx8Hwjn9mzMbCgDADKWUP6iq6uET9RXqoZFGo+Qf\nvTF54HuT9/ziod02h9v59T94Jv/bv/xCnn5hI2+691z+3vc/mP/ora9OW7gHAAAAAODWMholmy/X\nM77sbFe/US9/NNyst+3NvfLOcjHTddsTbcOtcZ+tvePBej0jzEkdtfzTzjI9O0sqpeyFRUprXB7X\n7WsvU+2tpGR/3wNLNpWjl3GabCutGcs+dWaHc3aPOxP1K3tLQwEAcGqEenhl+I0PJn/yWPLfPHXs\nNInD7VEe++xX83O/84U89f9dzuvv7Ofvft8354e+7b50O9b6BAAAAAC4qbaHdRhnMpwzc/vGwQDP\nYcs3TWutjJcXWq2XduqszjheO6TPWrI6GdCZDuucHbef2QvsAADAKRDq4ZXhTx9PPvajyY/9RvKG\n7zvRKaNRlU987mv52d9+Kp/76sv5pgtr+cD3viHvfdtrs7bijy4AAAAA4BVoNBovFfVycvXlZPNS\nXT5wfGl8PNG2dTkZbWff8lDZ2e2Uq2srDzfr6x9l7ULSu/1k29qFOlgzHc4RtAEA4BYk1MMrw9Z6\n8tMPJH/5fcmjP31Np1ZVld/5/LP58CefyhN//mLuOtvN+7/7DflPvuO1Obe2MqcBAwAAAACcgq0r\nyaWvJZe/nlz6i+TS15PLX6v3688dDOpsXspuoOZQJVk9n6ydr5eL2il3z9ZLLiV7y0BNlneWkUrZ\nbTpYP1Vud5PeHTMCOrfthXQEcgAAWFJCPbxy/LP3Jl//XPJf/tHEH4bX5tNffD4/+9tP5Xf/7Lmc\nX+vkP/3O1+dvf9cDuf3M0Ut6AQAAAACcmqqqwzcHgjpfmwjwjMtblw6e3+4mZ+9Nztw5Ec45fzCo\ns3pudlv37HV/xgoAAJyeawn1dOY9GLghb3o0+fzH62DPvW+5rku8/Q135u1vuDOfffob+fBvP5V/\n+smn8gu/96X8rbe/Nv/Z97wh95xfO+VBAwAAAACvKKNRMlivZ9DZujzerkwczyhvXq7DOZef3Qvv\nDNYPXrvTS869qg7svOpbkgffkZx9VXLu3no7O973bhfKAQCAJSPUQ7O98V1JSvLkx6871LPjW++/\nLR/5sYfz5Ncu5ed+56l89Pe+lF/61J/n7Q/ckftu7+f+O3q5//Z+7ru9l/vv6OfOM90UfyQDAAAA\nwCvLcKsO2bz8F+MZc76WXPpqvb/y3OyAzuDKya9f2snq2XpmnO6Z5Mw9yTd9214459y9+0M7q+eF\ndQAAgJksv0Xz/cI7k9F28oHfPtXLfvm5K/no730pn33mG3nmxY28cGVrX3tvpb0b8Lnv9jrwc/8d\nvToAdHs/F/orpzoeAAAAAOAGjEbJ+vN7AZ2Xv7o/sLMT4ll/7uC57W4dsOnftT+Qc2B/SHnynHZX\nSAcAADiU5bd4Zbn4SPIvfrL+o/v8q0/tsq+/60z+p7++N/vP5c1hnnlxPc+8sJGnX1zPMy9u5OkX\n1vP0ixv5zJdeyKXN4b7zz611xgGf3u5MP/eNZ/q582w3d/S76bRbpzZeAAAAAFgKw616lpyrLyWb\nl6a2l/fKV19KLn99YradryWjwdTFSnL2njqwc+E1yX0PJ+deXX/OeG5i698hiAMAADSOUA/Nd/HR\nOtTz+d9KHv7bc7vN2dVO3nTv+bzp3vMz219aH4zDPut5+oWNev/iRr78/JX87p89l43B9oFzbuuv\n5I4z3dx1ZjV3nOnmjrPd3HWmOy6v1uWz42MhIAAAAABudVVVB242Xjy47QvpvHxI+VIyvHr8fUo7\nWTtfL211/tXJ6797L6AzGdg5e0/SNuM2AABwaxLqofnuflNy++uTJz8+11DPcS70V3KhfyFvec2F\nA21VVeX5K1t55sWNfOXFjbxwZTPPXd7KC1fq7bnLm/nCs5fzmS9v5YX1rRy26t1hIaAL/W7OrXVy\nfm0l53vj/dpKzq11cm6tIwwEAAAAwOkabdchnAPhnG/MDuxMbtXBf/y2q9VJVs8nq+fq/dr5Onxz\n1xvHdef22nb7TdaNyys9M+sAAACveEI9NF8p9Ww9n/losnm5Xp+6YUopuevsau46u5q/dP9tR/bd\nHlX5xvpO2Gcn+HN9IaAd/W57N+RzvreyGwA67Pj8WidnVjs50x3vV9tZ7bRP8RkBAAAAYKG2B8nV\nl5Or36hnwrn60oxtRv1O382Xj77+6oWkd1vSu73eX3jNuHzEtnYh6awJ4wAAAJyQUA+3houPJP/m\n55Iv/nby7/21RY/mhrRbJXeeXc2dZ1fz0KuO7789qnL56jAvXx3U28Ywl64O8vLV8X73eJBL434v\nXNnKl5+7sns82D4mFZRkpV3S73ZydhzymSzvhX86OdNt58zqTlsn/dV2zq520ltpp9dtp7fSTr/b\nztpKO6udVooPaQAAAIBlNNxKBleSwUaytV6Xd/aDjWR7qw7ebA+S0WCqPKzbd+pHw73+B8qD+nh4\ndX9IZ3DlmAGWOmSzdqGeLWfttuSOB+rj1fP1/qhwTttHywAAAPPmLy9uDa/9D+oPFp78+C0f6rlW\n7VYZL/11fWt/V1WVzeEoL2/UQaCd8M+VzYltazuXN4dZ3xzm8ub2uK5ue/bSZt22NcyVze1sbY9O\nfO9SUod9VuqQz07op7fSzlq3nd5KazcMtLay19brtrO60s5qu5Vup95W2jv7ktV9x610d/q1W1nZ\n2beLQBEAAABw0PagDtUMr+7th1eTwdVkuDG132lbHwdy1veXt64c0nalDtzcqNZK0u7WAZrjyp21\n5K5XTQR1bhuHdS7s33YCO92zScuS7gAAAE0211BPKeVdSf5JknaSX6iq6n+Zal9N8r8n+fYkzyf5\nG1VVfXnc9t8leX+S7ST/RVVVn5jnWGm49kry0F+pQz1/+H8kndV63ezOatLp1R9arKzV+51t57i1\n3MtKlVKyNg7V3HP+xq+3NRxNhH7qMNCVzWE2Btu5OtjOxtZ2Ngb1dnWivLE1ysZguNv+0sYgX39p\nf9/1wXa2R8fPKnRS3YkgULfTSqfVSqdd0m6VdFol7VZrvC+7+3ZrRnu7TPXbO69VStqtpNUqaZe6\nrpSd8qz6Oqi1U9+avEYpE1v92k3uW6WkzDrO+LhV75P97a1xuGnyuN7v9d29V3busb+uVZLsnJu6\nrd7X7Rlfb7p+J1c1Oc59fQSvAAAAXjmqajyDzNbE7DGbe+UD22DcvrU348yBWWqGE7PVzJjN5kDd\nePaao0I61fZ1PsCSdM8kK/2k209WztSfT3X7Se+OcV1/3KdXt++r64/7j9s7a0mrU3/uNSuk02pb\npgoAAGDJzS3UU0ppJ/lwkh9M8kySz5RSHquq6k8mur0/yYtVVT1YSnlvkp9K8jdKKW9O8t4k35Lk\nm5L8X6WUN1bVdf/FzSvBW344+eNfS37j713bea3OOPgzHQQaH7dX6j6tlfrDkt0PUzr7t/ZO+0Rb\nu3PIuSsTH8Ks7O1ntU2277S1u3vXbNiHN/XMOd3cfqY7l+sPtke7IZ+t7VG2hqMMtqtsDUcTx6Pd\n48H2KJsTdXtt1f7j4SjDUZXt0c6+mtqPMhyfs1O/vds+mtG/ynB7lFFVL5G2XVUZjaqMqiqnmEta\nGnXoZ6e8F/pJ9kJDZV/fsu+8nXDQOKe0/1q719nfb+9La7rPwesnBwNIO+Gn3THuG/P+cyZudWjb\nYdfKRP8DfY+5/+RFDt7n4OM6bCw5cM7EuKbvfYLHcfi1ju+Twx7rEWOb2XZEv+nHOzmmk4593/mH\n3GvW+UeN7bDxH7zCjOd9uveB9iOeqwPnzv65dNQ1jxrP/sdVDu138GU6+jHPOOW6xzjra2nWeQfe\nS4eMa9Z1Dut7XPjxWl7La7nvrGsd1fdgvxnnnvDex73nTnLOdKejhn0tj/+wc457r8283glem73r\nHfJ1d+Q5xxxfx+t71PvxsJajrnktz/FJ7nX4eSd7rLPfo9f/Xj78Ptf+4K71/TGPr/UTPrXX/N66\nnvf+rGse/3V47d8fr3VMR99x+jqHnXN9XxeHtR/7c+Gk39dP+Ayd9Gf+Ua/HSX/3mNX3sHHsP+f4\nnyvHtR/1O8uB56BKHSAZbadkO6Ua1eVqO6m2U0ajccBk3KcapYy2k9Gw3lfDlGpYt42G++tHw71r\nbQ/GdTvn1m0Z7Zy/UzfY7ZPtwe41U42PJ6+1PW6bOHf3eDekM0jZ3gvtlNHg6Cf0BlStWZ+l7Hwm\nM6O+ezbp35VqHJ4pK72kXX8WVHXWUlbW9oI1O+0ra/VnRjv73c+SJvo27HMaAAAAXtnmOVPP25I8\nVVXVF5OklPKxJO9OMhnqeXeSnxiXfz3Jz5b6k5F3J/lYVVWbSb5USnlqfL1PzXG8NN3FdyX/4EvJ\n5qWpaZGv1v+qa7hR7wcb+4/39Zs+72qyeXnvg6mJD6x2t51/4TXa3vcB1k2zG+5pTWyl3qdM1U+0\nlYm2A/1Kdj923FfeuWmZ+JBqst9RbVPlffup847ov1JKVpKcn/nx7Iy0TDUrQXPSfkla4+0U7dyp\nqpIqVcb/1fXjump3SNXu0KpxYfc4k+3723Zrqp2rZfc+u+0715s4oZo8d1/fpNp9zquJ9nJwPBOv\nzfTTWk3cZOYrMz3+6Z47z0n23o71OXvLvu3efeLxlYnnef94Jh7H+Mz6tdgpTzyWUsbXKBPP08R7\n9bAxTwynTPeYfn4OewGOuX6VcvBaR54/cd5R7dX0Yyv7+hybTzvita7rZw96p7bMOrM6UDh8RMcM\n8PBxHXxuJlsPtO17i5bdXvu7zL7e7Pf8yRz2betAv+ts299n8uv6ZDc+qlepDr6bZ30lzTz3kK+v\naxnDrNfj4Per8f3KXuOsMe77n3QzvlIOfycdHEs14w7H1Z38fzOfxOHP/cyvx1MewUm/Bg7/+myG\no56rg31P95qnfb0bdezPmWtsP6pvE0w/rzODMyfoM8vsn3ozvped8Hq3iiNDLw18tNfy3em0x3/8\ne+vg/Y47Z9YYZ9cdP57D6qbrD/sZemh92fvtfHJfdvd7Xyll4re8nbad602eM91nf/lg3eQ4Zt27\nZJT2eGulmiiP96U57+XtqmSYdoZpZzvtDCb3VSuDdKba6rrtqrV73jBrGaadQTrZqjr1PlP73fqV\nDNLJIO1sVZPHdd+dfjt9BulkWLV3x7FTv3Pv0/296DCb4222mxUKrfsf2XhNTScNmZ441Lnb/9pD\nd4c1nvh5vEljPPy0I653fS/ZXELQJ733/uud/tfYyf9RwAn7zeH7wK3wPJ7Uie88hyGe9iVvhefx\nVsh4zuNr5sT3vgWen0W6FWawP/2v61O+4C1iGR/3Ir/3LFLTX+u3vOZC/ucfeuuih8F1mmeo5zVJ\nnp44fibJ2w/rU1XVsJTyUpI7x/X/Zurc10zfoJTygSQfSJLXvva1pzZwGqx/R70tWlXt/ou3vaDP\n9sGpno+cGnprf7+jppoebSfVONRQjaa26uBxputm9Jt8LHVh4ri6trYD5cm6ifNGo2P6T99n1ic1\nsz9Svu5+c1Cm9td2cjnixKM+5bmGx3toEOqwBMp0v1NWVVPjnyjv1rcPqZ9VN3HdunBEebRX3j3n\nkPKJfyM77ffZSZMdB/9X6dGXOe71vhmvdXLg+Tq2/aT3us7GIwMthyVLbjRWMycnTQXNbYyn/T18\nyqGPb0b9od/Pyoz7HVG3r77shbuO+v4zawwz2w8UDoz7QFDuupzsZ8nJ/pfuNTil9+OJLzNn+8MW\nxwzqRO/n1OHSE7nxfrNHfI1PbjV9MOtr76jrz+PnzEm73ci9j/u5NSuMc9xrdi3ft2b0O+VPjU7/\n6+yQ3+tPcNahj+1G3q6H9jj93/Wqw7pe73M8+X26yrG/N1UH6qbeL4d+7zlZ3YFzq/1/yxwWUq0O\n/FytjuyflPG9pq5RJiI947HshfLL1PjGx9X+a+2Uq/E/htkXGyrJKPvbU1IH43fOG1+3Kq1UpZ0q\n4/34eFTqmE9VWhkdaN8rjybqR6WdUemMz+/snVs647b2RFt7qn/dtj3uu9de90lpHRp0TnJkuHt/\nWL2a2dYZb2tHnHvcNY4za4yzr390n5Pc/+CfUDPuffC0Ez3ew/oddd2TnXeSB3LYuBc3xht6/U9x\nHMedd733OurMI8d4neM/6TX2X++E/a7hZ9iJf+c65TFei9P4Ry37r3f9Y7lRJx/j6Q9yLr8+Lshp\nf20t0mLfj6+c53EeboWHPZ+/C5fPMr7Hl/AhJ5nPz9fTdn5tZdFD4AbMM9Qzd1VVfSTJR5Lk4Ycf\nbv5XC68cpYyXyZr1cRUAsAxu9j++aPg/9gAAAAAAAE7ZKS86s89Xktw/cXzfuG5mn1JKJ8mFJM+f\n8FwAAAAAAAAAAHhFmmeo5zNJHiqlPFBK6SZ5b5LHpvo8luR94/J7knyyqueneizJe0spq6WUB5I8\nlOT35zhWAAAAAAAAAABojLktv1VV1bCU8sEkn0jSTvKLVVV9rpTyk0meqKrqsSQfTfLLpZSnkryQ\nOviTcb9fS/InSYZJ/n5VVdvzGisAAAAAAAAAADRJqSfGufU9/PDD1RNPPLHoYQAAAAAAAAAAwEyl\nlD+oqurhk/Sd5/JbAAAAAAAAAADAdRDqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACA\nhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAA\nAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAA\nAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHq\nAQAAAAAAAACAhilVVS16DKeilPJskj9f9Dg44K4kzy16EAC8Yvk5A8A8+TkD8P+3d2+xtl5VHcD/\nf8+hSltDW0Wip0iLNGol0gIh1SJpwAdAIn2oFgVsGg0vJALBcDEYAokPJEYugSCkoCU2CNSiTR+M\nWkmVBwrlIpcWI6naHlI4JEC5RaB08LA+kk3hJGSfvc5ae5/fL9nZa85vri/jexoZX8aak3WSZwBY\nJ3kGgHWRY07cI2bmoT/KwgPT1MN2anvbzDx+03EAcDDJMwCskzwDwDrJMwCskzwDwLrIMSeX47cA\nAAAAAAAAAGDLaOoBAAAAAAAAAIAto6mHdXvrpgMA4ECTZwBYJ3kGgHWSZwBYJ3kGgHWRY06izsym\nYwAAAAAAAAAAAHawUw8AAAAAAAAAAGwZTT0AAAAAAAAAALBlNPWwFm2f2va/2n6m7cs2HQ8A+1vb\nh7d9X9vb236q7QuW+XPa/kvb/17+n73pWAHYv9oeavvRtjct4/Pb3rrUNe9qe9qmYwRgf2p7Vtvr\n23667R1tf009A8Beafui5Z3ZJ9u+s+1PqGcA2K22b297rO0nd8z90PqlK29Y8s3H2z52c5EfTJp6\n2HNtDyV5U5KnJbkwye+1vXCzUQGwz92X5MUzc2GSS5I8f8ktL0ty88xckOTmZQwAu/WCJHfsGL8m\nyWtn5lFJvpTkDzcSFQAHweuT/NPM/FKSx2SVb9QzAJywtkeS/HGSx8/Mo5McSvKsqGcA2L2/SfLU\nB8wdr355WpILlr/nJXnzSYrxlKGph3V4QpLPzMydM/OtJH+X5JkbjgmAfWxm7pmZjyyfv5rVC/Aj\nWeWXa5dl1ya5fDMRArDftT03yW8luWYZN8mTk1y/LJFnANiVtg9J8qQkb0uSmfnWzHw56hkA9s7h\nJA9uezjJ6UnuiXoGgF2amX9P8sUHTB+vfnlmknfMygeSnNX2Z09OpKcGTT2sw5Ekd+8YH13mAOCE\ntT0vycVJbk3ysJm5Z7n0uSQP21BYAOx/r0vykiT3L+OfSvLlmblvGatrANit85N8IclfL8c8XtP2\njKhnANgDM/PZJH+R5K6smnnuTfLhqGcA2FvHq1/0BqyZph4AYN9oe2aSv0/ywpn5ys5rMzNJZiOB\nAbCvtX1GkmMz8+FNxwLAgXQ4yWOTvHlmLk7y9TzgqC31DAC71fbsrHZJOD/JzyU5Iz94ZAoA7Bn1\ny8mlqYd1+GySh+8Yn7vMAcCutX1QVg09183MDcv057+3jePy/9im4gNgX7s0yW+3/d+sjg9+cpLX\nZ7Vd8OFljboGgN06muTozNy6jK/PqslHPQPAXvjNJP8zM1+YmW8nuSGrGkc9A8BeOl79ojdgzTT1\nsA4fSnJB2/PbnpbkWUlu3HBMAOxjbZvkbUnumJm/3HHpxiRXLZ+vSvKPJzs2APa/mXn5zJw7M+dl\nVb/828w8O8n7klyxLJNnANiVmflckrvb/uIy9ZQkt0c9A8DeuCvJJW1PX96hfS/PqGcA2EvHq19u\nTPIHXbkkyb07juliD3S1MxLsrbZPT/K6JIeSvH1m/nzDIQGwj7V9YpL/SPKJJPcv03+a5NYk707y\n80n+L8nvzswXNxIkAAdC28uS/MnMPKPtI7PaueecJB9N8pyZ+eYm4wNgf2p7UZJrkpyW5M4kV2f1\ng0v1DAAnrO2rklyZ5L6sapc/SnIk6hkAdqHtO5NcluSnk3w+ySuT/EN+SP2yNJS+MaujH7+R5OqZ\nuW0TcR9UmnoAAAAAAAAAAGDLOH4LAAAAAAAAAAC2jKYeAAAAAAAAAADYMpp6AAAAAAAAAABgy2jq\nAQAAAAAAAACALaOpBwAAAAAAAAAAtoymHgAAAAB2re1lbW/adBwAAAAAB42mHgAAAAAAAAAA2DKa\negAAAABOAW2f0/aDbT/W9i1tD7X9WtvXtv1U25vbPnRZe1HbD7T9eNv3tj17mX9U239t+59tP9L2\nF5bbn9n2+rafbntd227sQQEAAAAOCE09AAAAAAdc219OcmWSS2fmoiTfSfLsJGckuW1mfiXJLUle\nuXzlHUleOjO/muQTO+avS/KmmXlMkl9Pcs8yf3GSFya5MMkjk1y69ocCAAAAOOAObzoAAAAAANbu\nKUkel+RDyyY6D05yLMn9Sd61rPnbJDe0fUiSs2bmlmX+2iTvafuTSY7MzHuTZGb+P0mW+31wZo4u\n448lOS/J+9f/WAAAAAAHl6YeAAAAgIOvSa6dmZd/32T7Zw9YN7u8/zd3fP5OvHMCAAAAOGGO3wIA\nAAA4+G5OckXbn0mStue0fURW74auWNb8fpL3z8y9Sb7U9jeW+ecmuWVmvprkaNvLl3v8eNvTT+pT\nAAAAAJxC/GoKAAAA4ICbmdvbviLJP7f9sSTfTvL8JF9P8oTl2rEkVy5fuSrJXy1NO3cmuXqZf26S\nt7R99XKP3zmJjwEAAABwSunMbndVBgAAAGA/a/u1mTlz03EAAAAA8IMcvwUAAAAAAAAAAFvGTj0A\nAAAAAAAAALBl7NQDAAAAAAAAAABbRlMPAAAAAAAAAABsGU09AAAAAAAAAACwZTT1AAAAAAAAAADA\nltHUAwAAAAAAAAAAW+a7BZle4q9yLYgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "print(\"epoch\", epoch)\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left')\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0022660818189899888" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0009000000427477062\n", + "Epoch 00002: val_mean_squared_error did not improve\n", + "Epoch 00003: val_mean_squared_error did not improve\n", + "lr changed to 0.0008100000384729356\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "lr changed to 0.0007290000503417104\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error did not improve\n", + "lr changed to 0.0006561000715009868\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "lr changed to 0.0005904900433961303\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0005314410547725857\n", + "Epoch 00012: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "lr changed to 0.00047829695977270604\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0004304672533180565\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "lr changed to 0.00038742052274756136\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0003486784757114947\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "lr changed to 0.00031381062290165574\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0002824295632308349\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "lr changed to 0.00025418660952709616\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "lr changed to 0.00022876793809700757\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "lr changed to 0.00020589114428730683\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "lr changed to 0.00018530203378759326\n", + "Epoch 00032: val_mean_squared_error did not improve\n" + ] + } + ], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler)\n", + "\n", + "callbacks_list = [checkpoint, lr_decay]\n", + "history = model.fit(trainX, trainY, epochs=int(epoch/3), batch_size=10000, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQIAAAJcCAYAAACo4EsPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmQn1d9JvrndKul1tKWZO3dMpZA\ntvHewgpxMAEcIN7A6gwZQhJSSW7uhUwlN7n3Tpg4e6DmVjF17w2ZLCQzmZDKDJkkHigkgw3YDDaE\nxYBsS95tyRvaJcuyLMna+9w/9LOQhZaW1a23l8+nStXd73t+p59jlf2H66nzLbXWAAAAAAAAAAAA\nI1tb0wEAAAAAAAAAAIAzpwgEAAAAAAAAAACjgCIQAAAAAAAAAACMAopAAAAAAAAAAAAwCigCAQAA\nAAAAAADAKKAIBAAAAAAAAAAAo4AiEAAAAAAjRinl2VLKu5rOAQAAADAcKQIBAAAAAAAAAMAooAgE\nAAAAQCNKKeOGY4bTzTUczgEAAACQKAIBAAAADJnWGKuPlFIeLKXsLqX8bSllTinli6WUnaWUr5RS\nprfWXl1K+VYp5cVSyqpSyjuO2ueXSymPtT7zdCnlw0e9e0cpZV0p5d+WUraUUjaWUn55ANluLKU8\n2tpzfSnlt45695HWPhtKKf9LKaWWUha13t1TSvlfj1r7S6WUbxz1838spawtpbxUSrmvlPLjR737\n41LKZ0opny6lvJTkl0opbaWUW0opT5VStpVSbi2lnHvUZ36hlPJc693vDfCf+wn3LKUsaJ3nV0op\n30/y1eM9a629uZTySOvv5J5SysXH/N3+dinlwSS7lYEAAACA4UARCAAAAGBovS/Ju5NcmOS9Sb6Y\n5HeTzMrh/zfzG6WUniS3J/n3Sc5N8ltJPltKmdXaY0uS9yQ5J8kvJ/lEKeVNR/2OuUmmJulJ8itJ\n/vKVgtFJ/G2SD9dau5Jclh+UX65v/f53J7kgybtO87zfS9LbOsd/T/I/SimdR71fmuQzSaYl+Yck\n/3uSviRvT9KdZHuSv2xluSTJXyX5hda7GUnmDyDDCfc8ytuTXJzkuuM9K6VcmOQfk/wfOfx3dUeS\nz5dSxh+1/meT3JRkWq314AByAQAAAAwpRSAAAACAofXntdbNtdb1Sf4lyXdqrQ/UWvcm+VySxUk+\nmOSOWusdtdb+WutdSVYkuTFJaq2311qfqod9LcmdSX78qN9xIMnHaq0Haq13JNmV5KJT5DqQ5JJS\nyjm11u211vtbz9+f5O9qrQ/XWncn+ePTOWyt9dO11m211oO11v8vyYRjsny71rqsdc49SX41ye/V\nWtfVWve1ft9Pt27Y+ekkX6i1fr317g+S9A8gxsn2fMUf11p3tzIc79nPJLm91npXrfVAkv83ycQk\nbzlq/Z/VWtceswcAAABAYxSBAAAAAIbW5qO+33Ocn6ckOT/Jv26NoHqxlPJikrcmmZckpZQbSin3\nllJeaL27McnMo/bZdsyNNC+39j2Z97X2ea6U8rVSyo+1nncnWXvUuucGdMqWUspvtcaY7WhlnXpM\n1rXHfOT8JJ876tyPJTmUZM6xWVrFpG0DiHGyPU+U49hn3Tnq7LXW/tb7nlPsAQAAANAYRSAAAACA\n5q1N8t9qrdOO+jO51vrxUsqEJJ/N4Rtp5tRap+XwmKpyJr+w1vq9WuvSJLOTLEtya+vVxiTnHbX0\ndcd8dHeSSUf9PPeVb0opP57k3+XwrULTW1l3HJO1HrPf2iQ3HHP2ztYNSq/KUkqZlMPjwU7lZHue\nKMexzzbkcKHold9dWllOtQcAAABAYxSBAAAAAJr36STvLaVcV0ppL6V0llLeUUqZn2R8Do/X2prk\nYCnlhiQ/eSa/rJQyvpTy86WUqa2xVy/lByO3bk3yS6WUS1rFmz865uMrk/yrUsqkUsqiJL9y1Luu\nJAdbWceVUv4wyTmniPPXSf7vUsr5rWyzSilLW+8+k+Q9pZS3llLGJ/lYBvb/s06250DdmuSmUso7\nSykdSf5tkn1JvnWa+wAAAACcNYpAAAAAAA2rta5NsjTJ7+ZwiWZtko8kaau17kzyGzlcTNme5OeS\n3DYIv/YXkjxbSnkpya8m+flWli8m+dMkX02ypvX1aJ9Isj+HR5z9fZJ/OOrdl5N8KcmTOTxWa29O\nPT7rP+bwee4spexMcm+SH21leSTJryX57zl8O9D2JOsGcLYT7jlQtdYnknwwyZ8neT7Je5O8t9a6\n/3T2AQAAADibSq1uMAYAAADgxEopNckFtdY1TWcBAAAA4MTcCAQAAAAAAAAAAKOAIhAAAADAKFVK\neaSUsus4f36+6WxnqpTyxROc7XebzgYAAADQFKPBAAAAAAAAAABgFHAjEAAAAAAAAAAAjALjmg7Q\ntJkzZ9YFCxY0HQMAAAAAAAAAAI7rvvvue77WOutU68Z8EWjBggVZsWJF0zEAAAAAAAAAAOC4SinP\nDWSd0WAAAAAAAAAAADAKKAIBAAAAAAAAAMAooAgEAAAAAAAAAACjwLimAwxHBw4cyLp167J3796m\nowypzs7OzJ8/Px0dHU1HAQAAAAAAAADgDCkCHce6devS1dWVBQsWpJTSdJwhUWvNtm3bsm7duixc\nuLDpOAAAAAAAAAAAnCGjwY5j7969mTFjxqgtASVJKSUzZswY9bceAQAAAAAAAACMFYpAJzCaS0Cv\nGAtnBAAAAAAAAAAYKxSBAAAAAAAAAABgFFAEGoZefPHFfPKTnzztz91444158cUXhyARAAAAAAAA\nAADDnSLQMHSiItDBgwdP+rk77rgj06ZNG6pYAAAAAAAAAAAMY+OaDsAPu+WWW/LUU0+lt7c3HR0d\n6ezszPTp0/P444/nySefTF9fX9auXZu9e/fmN3/zN/OhD30oSbJgwYKsWLEiu3btyg033JC3vvWt\n+da3vpWenp4sX748EydObPhkAAAAAAAAAAAMFUWgU/jo5x/JoxteGtQ9L+k+J3/03ktP+P7jH/94\nHn744axcuTL33HNPbrrppjz88MNZuHBhkuRTn/pUzj333OzZsyc/8iM/kve9732ZMWPGq/ZYvXp1\n/vEf/zF/8zd/k/e///357Gc/mw9+8IODeg4AAAAAAAAAAIYPRaAR4M1vfvORElCS/Nmf/Vk+97nP\nJUnWrl2b1atX/1ARaOHChent7U2SXHXVVXn22WfPWl4AAAAAAAAAAM4+RaBTONnNPWfL5MmTj3x/\nzz335Ctf+Uq+/e1vZ9KkSXnHO96RvXv3/tBnJkyYcOT79vb27Nmz56xkBQAAAAAAAACgGW1NB+CH\ndXV1ZefOncd9t2PHjkyfPj2TJk3K448/nnvvvfcspwMAAAAAAAAAYDhyI9AwNGPGjFxzzTW57LLL\nMnHixMyZM+fIu+uvvz5//dd/nYsvvjgXXXRRrr766gaTAgAAAAAAAAAwXJRaa9MZGrVkyZK6YsWK\nVz177LHHcvHFFzeU6OwaS2cFAAAAAAAAABiJSin31VqXnGqd0WAAAAAAAAAAADAKKAIBAAAAAAAA\nAMAooAgEAAAAAAAAAACjgCIQAAAAAAAAAACMAopADDu11qYjAAAAAAAAAACMOIpADCt/8dXVWfqX\n31QGAgAAAAAAAAA4TYpAw9CLL76YT37yk6/ps3/6p3+al19+eZATnT3TJo3Pg+t25JENLzUdBQAA\nAAAAAABgRFEEGobGchHopsvnZVxbyfKV65uOAgAAAAAAAAAwooxrOgA/7JZbbslTTz2V3t7evPvd\n787s2bNz6623Zt++ffmpn/qpfPSjH83u3bvz/ve/P+vWrcuhQ4fyB3/wB9m8eXM2bNiQa6+9NjNn\nzszdd9/d9FFO2/TJ4/OOi2bltlUbcssNF6e9rTQdCQAAAAAAAABgRFAEOpUv3pJsemhw95x7eXLD\nx0/4+uMf/3gefvjhrFy5MnfeeWc+85nP5Lvf/W5qrbn55pvz9a9/PVu3bk13d3duv/32JMmOHTsy\nderU/Mmf/EnuvvvuzJw5c3Azn0VLe3vylce25DtPb8tbFo3ccwAAAAAAAAAAnE1Ggw1zd955Z+68\n884sXrw4b3rTm/L4449n9erVufzyy3PXXXflt3/7t/Mv//IvmTp1atNRB827Lp6TyePbs8x4MAAA\nAAAAAACAAXMj0Kmc5Oaes6HWmt/5nd/Jhz/84R96d//99+eOO+7I7//+7+ed73xn/vAP/7CBhINv\n4vj2XHfZ3HzxoU352NLL0tnR3nQkAAAAAAAAAIBhz41Aw1BXV1d27tyZJLnuuuvyqU99Krt27UqS\nrF+/Plu2bMmGDRsyadKkfPCDH8xHPvKR3H///T/02ZGsr7cnO/cdzN2Pb2k6CgAAAAAAAADAiOBG\noGFoxowZueaaa3LZZZflhhtuyM/93M/lx37sx5IkU6ZMyac//emsWbMmH/nIR9LW1paOjo781V/9\nVZLkQx/6UK6//vp0d3fn7rvvbvIYZ+Qtb5iRmVMmZNnK9bnh8nlNxwEAAAAAAAAAGPZKrbXpDI1a\nsmRJXbFixauePfbYY7n44osbSnR2DeezfvTzj+Qf7v1+vvd778rUSR1NxwEAAAAAAAAAaEQp5b5a\n65JTrTMajGGrr7cn+w/154sPb2w6CgAAAAAAAADAsKcIxLB1xfypWThzcpatXN90FAAAAAAAAACA\nYU8R6ATGwsi04X7GUkqW9nbnO8+8kI079jQdBwAAAAAAAABgWFMEOo7Ozs5s27Zt2BdlzkStNdu2\nbUtnZ2fTUU6qr7cntSa3rdzQdBQAAAAAAAAAgGFtXNMBhqP58+dn3bp12bp1a9NRhlRnZ2fmz5/f\ndIyTWjBzcq48b1qWrdyQD7/9DU3HAQAAAAAAAAAYthSBjqOjoyMLFy5sOgYtfb3d+ejnH82Tm3fm\nwjldTccBAAAAAAAAABiWjAZj2HvPFd1pbytZ9sD6pqMAAAAAAAAAAAxbikAMe7O6JuSaRTOzfOWG\n9PfXpuMAAAAAAAAAAAxLikCMCH293Vn/4p7c9/3tTUcBAAAAAAAAABiWFIEYEX7y0rnp7GgzHgwA\nAAAAAAAA4AQUgRgRpkwYl3dfMje3P7Qx+w/2Nx0HAAAAAAAAAGDYUQRixOjr7c6LLx/I15/c2nQU\nAAAAAAAAAIBhRxGIEeNtF87K9EkdWbbSeDAAAAAAAAAAgGMpAjFidLS35aYr5uUrj23Orn0Hm44D\nAAAAAAAAADCsKAIxovT19mTvgf58+eFNTUcBAAAAAAAAABhWFIEYUa46f3rmT59oPBgAAAAAAAAA\nwDEUgRhRSilZ2tudb655Plt27m06DgAAAAAAAADAsKEIxIjT19uT/pp8YdXGpqMAAAAAAAAAAAwb\nikCMOBfM6col887JcuPBAAAAAAAAAACOUARiROpb3J1V63bkmed3Nx0FAAAAAAAAAGBYUARiRLr5\nyp6Ukix7wK1AAAAAAAAAAACJIhAj1Nypnbl64YwsX7k+tdam4wAAAAAAAAAANE4RiBGrb3F3nt32\nclat29F0FAAAAAAAAACAxikCMWJdf9m8jG9vMx4MAAAAAAAAACBnoQhUSrm+lPJEKWVNKeWW47yf\nUEr559b775RSFhz17ndaz58opVx3Gnv+WSll11CdieFh6sSOvPPi2fnCgxty8FB/03EAAAAAAAAA\nABo1pEWgUkp7kr9MckOSS5L8bCnlkmOW/UqS7bXWRUk+keQ/tD57SZIPJLk0yfVJPllKaT/VnqWU\nJUmmD+W5GD6W9vbk+V37882ntjUdBQAAAAAAAACgUUN9I9Cbk6yptT5da92f5J+SLD1mzdIkf9/6\n/jNJ3llKKa3n/1Rr3VdrfSbJmtZ+J9yzVRL6f5L8uyE+F8PEtW+clXM6x2W58WAAAAAAAAAAwBg3\n1EWgniRrj/p5XevZcdfUWg8m2ZFkxkk+e7I9fz3JbbXWjScLVUr5UCllRSllxdatW0/rQAwvE8a1\n58bL5+XLj2zKnv2Hmo4DAAAAAAAAANCYoS4CnTWllO4k/zrJn59qba31P9dal9Ral8yaNWvowzGk\nlvb2ZPf+Q7nrsc1NRwEAAAAAAAAAaMxQF4HWJznvqJ/nt54dd00pZVySqUm2neSzJ3q+OMmiJGtK\nKc8mmVRKWTNYB2H4+tGF52be1E7jwQAAAAAAAACAMW2oi0DfS3JBKWVhKWV8kg8kue2YNbcl+cXW\n9z+d5Ku11tp6/oFSyoRSysIkFyT57on2rLXeXmudW2tdUGtdkOTlWuuiIT4fw0BbW8nNV3bna09u\nzQu79zcdBwAAAAAAAACgEUNaBKq1Hkzy60m+nOSxJLfWWh8ppXyslHJza9nfJpnRur3n/0pyS+uz\njyS5NcmjSb6U5NdqrYdOtOdQnoPhb2lvTw7219z+0MamowAAAAAAAAAANKIcvnxn7FqyZEldsWJF\n0zE4Q7XWXPenX885nR35zL95S9NxAAAAAAAAAAAGTSnlvlrrklOtG+rRYHBWlFKytLcnK57bnrUv\nvNx0HAAAAAAAAACAs04RiFFjaW93kuS2VRsaTgIAAAAAAAAAcPYpAjFqzJ8+KT+yYHqWPbA+Y33k\nHQAAAAAAAAAw9igCMaos7e3J6i278ujGl5qOAgAAAAAAAABwVikCMarcdPm8jGsrWb7SeDAAAAAA\nAAAAYGxRBGJUmT55fN5x0azctnJDDvUbDwYAAAAAAAAAjB2KQIw6S3t7sumlvfnOM9uajgIAAAAA\nAAAAcNYoAjHqvOviOZk8vj3LHzAeDAAAAAAAAAAYOxSBGHUmjm/PdZfNzR0Pb8zeA4eajgMAAAAA\nAAAAcFYoAjEq9fX2ZOfeg7nniS1NRwEAAAAAAAAAOCsUgRiV3vKGGZk5ZUKWGQ8GAAAAAAAAAIwR\nikCMSuPa2/LeK+flq49vyY49B5qOAwAAAAAAAAAw5BSBGLX6enuy/1B/vvTwxqajAAAAAAAAAAAM\nOUUgRq0r5k/NwpmTjQcDAAAAAAAAAMYERSBGrVJKlvZ2595ntmXTjr1NxwEAAAAAAAAAGFKKQIxq\nfb09qTW5bdX6pqMAAAAAAAAAAAwpRSBGtQUzJ+fK86YZDwYAAAAAAAAAjHqKQIx6fb3deXTjS1m9\neWfTUQAAAAAAAAAAhowiEKPee67oTntbybKVxoMBAAAAAAAAAKOXIhCj3qyuCblm0cwsX7khtdam\n4wAAAAAAAAAADAlFIMaEvt7urNu+J/c9t73pKAAAAAAAAAAAQ0IRiDHhJy+dm86ONuPBAAAAAAAA\nAIBRSxGIMWHKhHF59yVzc/uDG3PgUH/TcQAAAAAAAAAABp0iEGNGX293tr98IF9/cmvTUQAAAAAA\nAAAABp0iEGPG2y6clemTOrJs5YamowAAAAAAAAAADDpFIMaMjva23HTFvNz16Kbs2new6TgAAAAA\nAAAAAINKEYgxpa+3J3sP9OfORzY1HQUAAAAAAAAAYFApAjGmXHX+9MyfPtF4MAAAAAAAAABg1FEE\nYkwppWRpb3e+sXprtu7c13QcAAAAAAAAAIBBowjEmNPX25P+mnzhQbcCAQAAAAAAAACjhyIQY84F\nc7pyybxzjAcDAAAAAAAAAEYVRSDGpL7F3Vm19sU88/zupqMAAAAAAAAAAAwKRSDGpJuv7EkpyfKV\n65uOAgAAAAAAAAAwKBSBGJPmTu3M1QtnZNkD61NrbToOAAAAAAAAAMAZUwRizOpb3J1nt72cVet2\nNB0FAAAAAAAAAOCMKQIxZl1/2byMb2/LsgeMBwMAAAAAAAAARj5FIMasqRM78hNvnJ0vPLghBw/1\nNx0HAAAAAAAAAOCMKAIxpvUt7s7zu/bnm09tazoKAAAAAAAAAMAZUQRiTHvHRbPT1Tkuy40HAwAA\nAAAAAABGOEUgxrTOjvbceNm8fPmRTdmz/1DTcQAAAAAAAAAAXjNFIMa8pYu7s3v/odz12OamowAA\nAAAAAAAAvGaKQIx5Vy+ckbnndBoPBgAAAAAAAACMaIpAjHltbSU393bna09uzQu79zcdBwAAAAAA\nAADgNVEEgiRLe7tzsL/m9oc2Nh0FAAAAAAAAAOA1UQSCJJfMOycXzJ5iPBgAAAAAAAAAMGIpAkGS\nUkr6FvdkxXPbs/aFl5uOAwAAAAAAAABw2hSBoOXmK7uTJLet2tBwEgAAAAAAAACA06cIBC3nnTsp\nS86fnmUPrE+ttek4AAAAAAAAAACnRREIjrJ0cU9Wb9mVRze+1HQUAAAAAAAAAIDToggER7np8nkZ\n11ayfKXxYAAAAAAAAADAyKIIBEc5d/L4vP3CWblt5YYc6jceDAAAAAAAAAAYORSB4BhLF/dk00t7\n851ntjUdBQAAAAAAAABgwBSB4BjvvnhOJo9vz/IHjAcDAAAAAAAAAEYORSA4xsTx7bnu0rm54+GN\n2XvgUNNxAAAAAAAAAAAGRBEIjmPp4p7s3Hsw9zyxpekoAAAAAAAAAAADoggEx3HNG2Zk5pTxWWY8\nGAAAAAAAAAAwQigCwXGMa2/Le67ozlcf35Idew40HQcAAAAAAAAA4JQUgeAE+hb3ZP+h/nzp4Y1N\nRwEAAAAAAAAAOCVFIDiBK+dPzYIZk4wHAwAAAAAAAABGBEUgOIFSSpb29uTeZ7Zl0469TccBAAAA\nAAAAADgpRSA4ib7FPak1uW3V+qajAAAAAAAAAACclCIQnMTCmZNz5fypxoMBAAAAAAAAAMOeIhCc\nwtLenjy68aWs3ryz6SgAAAAAAAAAACekCASn8J4r56WtJMtWGg8GAAAAAAAAAAxfikBwCrO7OnPN\noplZvnJDaq1NxwEAAAAAAAAAOC5FIBiAvt6erNu+J/c9t73pKAAAAAAAAAAAx6UIBANw3WVz09nR\nZjwYAAAAAAAAADBsKQLBAEyZMC7vunhObn9wYw4c6m86DgAAAAAAAADAD1EEggHq6+3J9pcP5OtP\nbm06CgAAAAAAAADAD1EEggF624WzMm1SR5at3NB0FAAAAAAAAACAH6IIBAM0flxbbrp8Xu56dFN2\n7TvYdBwAAAAAAAAAgFdRBILT0Le4J3sP9OfORzY1HQUAAAAAAAAA4FUUgeA0XPW66emZNtF4MAAA\nAAAAAABg2FEEgtPQ1laytLc731i9NVt37ms6DgAAAAAAAADAEYpAcJr6FvekvyZfeNCtQAAAAAAA\nAADA8KEIBKfpwjlduXjeOcaDAQAAAAAAAADDiiIQvAZ9vd1ZtfbFPPP87qajAAAAAAAAAAAkUQSC\n1+Tm3u6Ukixfub7pKAAAAAAAAAAASRSB4DWZN3VifnThuVm+ckNqrU3HAQAAAAAAAABQBILXqq+3\nJ888vzsPrtvRdBQAAAAAAAAAAEUgeK1uuHxexre3ZZnxYAAAAAAAAADAMKAIBK/R1IkdufaNs/L5\nVRtz8FB/03EAAAAAAAAAgDFOEQjOQF9vT57ftS/fempb01EAAAAAAAAAgDFOEQjOwLVvnJ2uznHG\ngwEAAAAAAAAAjVMEgjPQ2dGeGy6bmy8/vCl79h9qOg4AAAAAAAAAMIYpAsEZ6uvtye79h/KVxzY3\nHQUAAAAAAAAAGMMUgeAM/ejrZ2TOOROy3HgwAAAAAAAAAKBBikBwhtrbSm6+sjv3PLE123fvbzoO\nAAAAAAAAADBGKQLBIFja25OD/TW3P7Sx6SgAAAAAAAAAwBilCASD4NLuc7Jo9hTjwQAAAAAAAACA\nxigCwSAopaSvtzvfe3Z71m1/uek4AAAAAAAAAMAYpAgEg2Rpb0+SZPnKDQ0nAQAAAAAAAADGIkUg\nGCTnnTspV50/PctXrk+ttek4AAAAAAAAAMAYowgEg6ivtztPbt6VxzbubDoKAAAAAAAAADDGKALB\nILrpiu6MaytZvnJ901EAAAAAAAAAgDFGEQgG0bmTx+dtF87Kbas2pL/feDAAAAAAAAAA4OxRBIJB\ntrS3Oxt37M13nnmh6SgAAAAAAAAAwBiiCASD7N2XzMmk8e3GgwEAAAAAAAAAZ5UiEAyySePH5bpL\n5+aOhzZm38FDTccBAAAAAAAAAMYIRSAYAkt7u/PS3oO5+/GtTUcBAAAAAAAAAMYIRSAYAm9dNDMz\np4w3HgwAAAAAAAAAOGsUgWAIjGtvy3uu6M7/fHxLXtp7oOk4AAAAAAAAAMAYoAgEQ2Rpb3f2H+zP\nlx7a1HQUAAAAAAAAAGAMUASCIdJ73rScP2NSlhkPBgAAAAAAAACcBYpAMERKKVna25NvP70tm3bs\nbToOAAAAAAAAADDKKQLBEOrr7U6tyedXbWg6CgAAAAAAAAAwyikCwRB6/awpuWL+VOPBAAAAAAAA\nAIAhpwgEQ2xpb08e2fBS1mzZ2XQUAAAAAAAAAGAUG/IiUCnl+lLKE6WUNaWUW47zfkIp5Z9b779T\nSllw1LvfaT1/opRy3an2LKX8bSllVSnlwVLKZ0opU4b6fHAq771yXtpKsuwB48EAAAAAAAAAgKEz\npEWgUkp7kr9MckOSS5L8bCnlkmOW/UqS7bXWRUk+keQ/tD57SZIPJLk0yfVJPllKaT/Fnv9nrfXK\nWusVSb6f5NeH8nwwELO7OnPNoplZvmp9aq1NxwEAAAAAAAAARqmhvhHozUnW1FqfrrXuT/JPSZYe\ns2Zpkr9vff+ZJO8spZTW83+qte6rtT6TZE1rvxPuWWt9KUlan5+YROuCYWFpb0/WvrAn939/e9NR\nAAAAAAAAAIBRaqiLQD1J1h7187rWs+OuqbUeTLIjyYyTfPake5ZS/i7JpiRvTPLnxwtVSvlQKWVF\nKWXF1q1bT/9UcJquu3ROJoxrMx4MAAAAAAAAABgyQ10EOutqrb+cpDvJY0l+5gRr/nOtdUmtdcms\nWbPOaj7Gpq7Ojrzrkjm5/aGNOXCov+k4AAAAAAAAAMAoNNRFoPVJzjvq5/mtZ8ddU0oZl2Rqkm0n\n+ewp96y1HsrhkWHvO+MTwCDp6+3JC7v3519Wu4UKAAAAAAAAABh8Q10E+l6SC0opC0sp45N8IMlt\nx6y5Lckvtr7/6SRfrbXW1vMPlFImlFIWJrkgyXdPtGc5bFGSlFJKkpuTPD7E54MBe/uFszJtUofx\nYAAAAAAAAADAkBg3lJvXWg9JAGctAAAgAElEQVSWUn49yZeTtCf5VK31kVLKx5KsqLXeluRvk/y3\nUsqaJC/kcLEnrXW3Jnk0ycEkv9a66Scn2LMtyd+XUs5JUpKsSvJvhvJ8cDrGj2vLjZfPy+fuX5/d\n+w5m8oQh/dcPAAAAAAAAABhjyuHLd8auJUuW1BUrVjQdgzHiu8+8kPf/p2/nEz9zZX5q8fym4wAA\nAAAAAAAAI0Ap5b5a65JTrRvq0WDAUZacPz090yYaDwYAAAAAAAAADDpFIDiL2tpKbu7tzjfWPJ/n\nd+1rOg4AAAAAAAAAMIooAsFZ1tfbk0P9NV9Y5VYgAAAAAAAAAGDwKALBWXbR3K68cW5Xlq1UBAIA\nAAAAAAAABo8iEDSgb3FPVq59Mc8+v7vpKAAAAAAAAADAKKEIBA24+crulJIsdysQAAAAAAAAADBI\nFIGgAd3TJubNC87N8pXrU2ttOg4AAAAAAAAAMAooAkFD+hb35Onnd+eh9TuajgIAAAAAAAAAjAKK\nQNCQGy+bl/HtbVn2gPFgAAAAAAAAAMCZUwSChkyd1JF3XDQrn39wQw71Gw8GAAAAAAAAAJwZRSBo\nUN/inmzduS/feur5pqMAAAAAAAAAACOcIhA06CfeODtdE8YZDwYAAAAAAAAAnDFFIGhQZ0d7rr9s\nbr78yKbsPXCo6TgAAAAAAAAAwAimCAQN61vck137DuYrj21uOgoAAAAAAAAAMIIpAkHDrn79jMzu\nmmA8GAAAAAAAAABwRhSBoGHtbSU3X9mdrz25JS++vL/pOAAAAAAAAADACKUIBMNA3+KeHDhUc/tD\nG5uOAgAAAAAAAACMUIpAMAxc2n1OFs2ekuXGgwEAAAAAAAAAr5EiEAwDpZT09Xbnu8++kLse3ZyX\n9x9sOhIAAAAAAAAAMMKMazoAcNhPvWl+/ss3nsn/9l9XZFxbyZXnTcvVrz83V79+Rq46f3omjfev\nKwAAAAAAAABwYqXW2nSGRi1ZsqSuWLGi6RiQJNm972Due2577n16W+59elseXLcjB/urYhAAAAAA\nAAAAjGGllPtqrUtOuU4RSBGI4UsxCAAAAAAAAABQBBogRSBGkt37DmbFMcWgQ/01He0lV86flqtf\nPyNXv35G3nT+NMUgAAAAAAAAABglFIEGSBGIkUwxCAAAAAAAAABGP0WgAVIEYjTZdZxRYscrBl11\n/vRMHN/edFwAAAAAAAAAYAAUgQZIEYjRTDEIAAAAAAAAAEY+RaABUgRiLFEMAgAAAAAAAICRRxFo\ngBSBGMt27TuYFc++kHuffiH3Pr0tD61XDAIAAAAAAACA4UYRaIAUgeAHFIMAAAAAAAAAYPhRBBog\nRSA4sZMVg3rP+0Ex6E2vUwwCAAAAAAAAgKGiCDRAikAwcIpBAAAAAAAAAHD2KQINkCIQvHY79x7I\niue2596nt+Xep1/Iw4pBAAAAAAAAADDoFIEGSBEIBo9iEAAAAAAAAAAMPkWgAVIEgqGjGAQAAAAA\nAAAAZ04RaIAUgeDsObYY9NC6F9Nfc6QY9KbXTc+Fc7py0dyuLJo9JZ0dykEAAAAAAAAAMNAi0Liz\nEQYgSbo6O3LtRbNz7UWzkxxTDHpqW/7um89m/6H+JElbSc6fMTkXzpmSi+Z05cK5XbloTlcWzJyc\njva2Jo8BAAAAAAAAAMOSIhDQmGOLQQcP9efZbS/nyc0788SmnYe/bt6Zux7dnP7W5WUd7SVvmDXl\nyM1BF845XBCaP31i2tpKg6cBAAAAAAAAgGYpAgHDxrj2tiyaPSWLZk/JjZfPO/J874FDeWrrrlZB\n6PDX+57bnttWbTiyZmJHey6cc7ggdOFRNwjNOWdCSlEQAgAAAAAAAGD0UwQChr3OjvZc2j01l3ZP\nfdXznXsPZPWWXXly0848uflwQeieJ7fmf9y37siaczrH/eDmoKNuEJo+efzZPgYAAAAAAAAADKkB\nFYFKKe1JfqPW+okhzgMwYF2dHXnT66bnTa+b/qrnL+zenyc373zViLHPr9qQf/jOwSNrZnVNyEVz\nXikIHb5J6II5XZkyQT8SAAAAAAAAgJGp1FoHtrCU79Za3zzEec66JUuW1BUrVjQdAxhitdZsfmlf\nnti8M09u2nn4a+vP3gP9R9bNnz4xF7VKQa8UhN4wa0o6O9obTA8AAAAAAADAWFZKua/WuuRU607n\n6otvllL+Isk/J9n9ysNa6/2vIR/AWVVKydypnZk7tTNvv3DWkef9/TVrt7985OagV0aMfX311hw4\ndLgo2VaSBTMnH3WD0OGvC2ZMyrj2tqaOBAAAAAAAAACvcjo3At19nMe11voTgxvp7HIjEHA8Bw71\n59nndx9zg9CuPLttd175z+b49ra8YfaUXDRnSi6c23WkKNQzbWLa2kqzBwAAAAAAAABg1Bj0G4Fq\nrdeeWSSAkaOjvS0XtEaE5YofPN+z/1Ce2rrryA1CT2zeme8+80KWrdxwZM3k8e25YE5XLpwz5cgN\nQhfN6cqsrgkpRUEIAAAAAAAAgKEx4CJQKWVqkj9K8rbWo68l+VitdcdQBAMYjiaOb89lPVNzWc/U\nVz1/ae+BrN68M09sOjxa7IlNO/M/H9uSW1esO7Jm2qSOw8WgOV1H3SA0JdMmjT/bxwAAAAAAAABg\nFBpwESjJp5I8nOT9rZ9/IcnfJflXgx0KYKQ5p7MjV51/bq46/9xXPX9+1748eWS82OGS0LIH1mfn\nvoNH1sw5Z0IunNOVC2Z35YI5U3LB7Cm5YHZXpk7qONvHAAAAAAAAAGAEO50i0Btqre876uePllJW\nDnYggNFk5pQJmTllQt7yhplHntVas3HH3jxxpCB0eMzYP373+9lz4NCRdbO6JrRKQVOyaE7Xke9n\nTJnQxFEAAAAAAAAAGOZOpwi0p5Ty1lrrN5KklHJNkj1DEwtg9CqlpHvaxHRPm5hrL5p95Hl/f836\nF/dkzZZdWb1lZ1Zv3pXVW3bls/evz66jbhA6d/L4LJo95Ugx6IJWSWhW14SUUpo4EgAAAAAAAADD\nwOkUgX41yX8tpUxt/bw9yS8OfiSAsamtreS8cyflvHMn5do3/qAgVGvNppf2HikGrWmVhD6/akNe\n2vuDgtA5neOOlIIWHVUQmje1U0EIAAAAAAAAYAwYUBGolNKW5KJa65WllHOSpNb60pAmAyDJ4RuE\n5k2dmHlTJ+ZtF8468rzWmq279mVNqyD0yi1Cdz26Of/0vbVH1k0e3/6q0WIXzJmSC2Z3pWfaxLS1\nKQgBAAAAAAAAjBal1jqwhaWsqLUuGeI8Z92SJUvqihUrmo4BMKi27drXGjG261Wjxrbs3HdkTWdH\nW2vEWNcPRo3N6crrzp2UdgUhAAAAAAAAgGGjlHLfQHo7pzMa7CullN9K8s9Jdr/ysNb6wmvIB8AQ\nmjFlQmZMmZAfff2MVz3f8fKBrNm688iYsdVbduU7T2/L5x5Yf2TN+HFtef3MyUdGi71yi9D5Myan\no73tbB8FAAAAAAAAgAE6nRuBnjnO41prff3gRjq73AgEkOzceyBPbd2d1Zt3HrlJaPWWnVn7wp4j\na8a1lSycOTkXzJmSRbO7jhSEFs6cnAnj2htMDwAAAAAAADC6DeqNQKWUtiQfrLV+84yTATDsdHV2\npPe8aek9b9qrnr+8/2Ce3rr7yGix1Vt25bGNO/Olhzelv9UjbSvJghmTD48Xm/ODUWNvmDUlE8cr\nCAEAAAAAAACcLQMqAtVa+0spf5Fk8RDnAWAYmTR+XC7rmZrLeqa+6vneA4fyzPO7s3rLrqzZvPP/\nZ+/OYy3N87u+f35nvVvdW9U91ctM94hmZux4nBhEmkX8EQkcYiMUDwFLDHYARRBIggERRREoKICd\nSIGQEBIMiJhEMdgyhoA0IIIhtgIEQ8Y9xhjPYty2Z6a7p/e6td7lbL/8cZ5z7rlb1b3ddbuqTr1e\nUunZn3puyZKnq9/9/c2XGfuxL72VUVMIlZI8f2Utn3hqIx9vAqFPPLWRjz21kY3+eVamBAAAAAAA\nAOAszvNvYn+0lPJbk/ytetb1xABYSivddr7h2c18w7Obh84PRpN85d1pIDSdIDRdauyf/Nw7GYwn\n8/s+cnl1OkGomSL0/JW1PLO1kme2VrLWEwkBAAAAAAAAvBflrE1PKeVWkvUk4yS7SUqSWmvdvOuD\nD7kXX3yxvvTSSw/6MwCW2mg8yVev7UwnCL11Oz/XTBF6+a3b2R9NDt27udJpoqDVPLPZb7YreWar\nn2c2V/PM1kqurHVTSnlAPw0AAAAAAADAB6uU8rla64v3uu/MYxdqrZfe3ycB8LjqtFv5pVc38kuv\nbuRbvvHg/HhS89r2bl69vpM3buzljZt7022z/6XXb+bt2/s52qz2Oq0mDlrJM5sreXZrJU/PtlvT\n7dWNfjrt1gf7gwIAAAAAAAA8QGcOgcp09MJ3Jnmh1vo9pZTnkzxba/3shX0dAEut3Sr56JNr+eiT\na6feMxxP8vat/WOR0Gz/p165nr//M3uHlh5LklZJrl7qHwqGntlaPTRZ6JnNlaz22hf9YwIAAAAA\nAAB8IM4cAiX5C0kmSX59ku9JcjvJ9yb5lRfwXQCQJOm2W/nw5dV8+PLqqffUWrO9M8zrN3bz5s29\nvH5jL282wdDrN/byi+/cyY///Lu5tTc69uzWanc+UWgeDW0dnja0tWopMgAAAAAAAODhd54Q6FfX\nWn9FKeVfJEmtdbuU0rug7wKAMyul5In1Xp5Y7+UbP7x16n139kd54+Y0Enp9cbJQs/3C6zfzzglL\nkfU7rePLj82jodU8s7mSq5f6abfEQgAAAAAAAMCDc54QaFhKaSepSVJKuZrphCAAeCSs9zv52NWN\nfOzqxqn3DMeTvHVr/8gyZLt54+Z+3rixm899dTtv3tg/thRZu1VydaO/sAzZ9NfRaUMrXUuRAQAA\nAAAAABfjPCHQ/5zkbyd5qpTy3yb59iR/7EK+CgAekG67lY9cXs1H7rEU2bU7g+kSZLOlyBa2P//2\n7fzTl9/Jrf3jS5FdXuvOo6Bnt1by7NZqnruymueurOW5K6t5enPFZCEAAAAAAADgPTlzCFRr/YFS\nyueSfHOSkuQ311q/OLteSrlSa92+gG8EgIdKKSVPbvTz5EY//+ZHTl+K7Pb+KG8ci4V288aN/bxx\nczc/89p0KbJF3XbJhy83cdDlaRz03BOref7KWp67spanLvXTEgoBAAAAAAAAJzjPRKDUWr+U5Eun\nXP7RJL/ifX8RACyJjX4nH39qIx9/6vSlyPaG47x+Yy+vXNvJq9u7eXX7YPtjP/tW3r51OBTqtVv5\n8OWVPHdlLc8/cTBJ6Lkr01joQxtCIQAAAAAAAHhcnSsEugf/1hEAzmml284LH1rPCx9aP/H63nCc\n167v5tXt3WOx0D/8wlvHJgr1Oq08d3k1H2mWGzsaC13d6KcU/y8bAAAAAAAAltH9DIHqfXwXAJBp\nKPSxqxv52NWTpwrtDsZ57fpOXtmexkKvLsRC/+Brb+TdO4ND9/c7rSYKWptvF2OhJ9d7QiEAAAAA\nAAB4RN3PEAgA+ICt9tr5+FOX8vGnLp14fWcwOrLk2HT/lWu7+elXr2d7Z3j4fd32fHrQSbHQlbWu\nUAgAAAAAAAAeUpYGA4Alttbr5OuevpSve/rkUOj2/iivzZcdW4iFru/kJ796PTd2h0feNw2Fnl+I\nhBZjoa1VoRAAAAAAAAA8KPcMgUopT9zteq31WrP7zffliwCAD8xGv5Ovf+ZSvv6Zk0Ohm3vDvHZk\nktAsGPqJL1/Lzb3RsfedNFFoFg9trXU/iB8LAAAAAAAAHktnmQj0uSQ104k/H02y3exfTvLVJC8k\nh4IgAGBJbK50s/lsN9/w7OaJ12/sDk9cduzV7Z3881+4ltv7h0OhSyudhUBoNc9sruTpzZU8damf\npzZX8vRmPxv9jqlCAAAAAAAA8B7cMwSqtb6QJKWU/zXJ3661/r3m+Dcm+c0X+3kAwMNsa7WbrdWt\nfOOHt45dq7Xm5u4or2zvHIuFvvruTn785XdyZzA+9txqt52nN6dh0FOX+vNQ6OnNlTy12c9TlwRD\nAAAAAAAAcJJSaz3bjaX8q1rrv3Wvc4+aF198sb700ksP+jMA4LF0e3+UN2/u5a2b+3nr1nT75s29\nvHlrP2/d3Mtbt6bHOycEQ2u99nyS0CwUeroJhQRDAAAAAAAALJNSyudqrS/e676zLA0287VSyh9L\n8tea4+9M8rX38nEAAEmy0e9k4+pGPnZ14673HQ2GZvtvNqHQ5792Mz/2pbfeUzA0mzgkGAIAAAAA\nAOBRd54Q6Lcn+eNJ/naSmuQfN+cAAC7UeYOhN2/u5e0mEnrz5v58stDnv3YzP/rFt7I7vHswdLAc\nmWAIAAAAAACAR8eZQ6Ba67Ukf6iUsl5rvXOB3wQA8J6cJRiqteb2/mgeB50UDP2rV6/nzZv7pwZD\nT2+u5Oql/qFg6Og5wRAAAAAAAAAftDOHQKWUX5vk+5JsJPloKeWXJfl9tdb/7KI+DgDgfiul5NJK\nN5dWuucKhg6WJWuOb+0LhgAAAAAAAHionGdpsD+b5FuSfCZJaq3/spTy71zIVwEAPGDnDYbebEKh\ntxZCobMEQ6vddp7a7M+XJXvqUrMc2SwWaq5trXYFQwAAAAAAANzVeUKg1FpfOfIvoI7/2ywAgMfI\nYjD08afOGAw1gdBswtBbt6bnvvi1m/lHt/Zze3907Plep5WrG9OpQk9dWjk5Htrs54m1XlotwRAA\nAAAAAMDj6Dwh0CvN8mC1lNJN8oeSfPFiPgsAYLmcNRhKkjvNkmRvLUwWevvW/jweevnt2/nxn38n\nN/eOB0OdVsnVS9NI6GoTBz29GA41+0+u99Jpty7qxwUAAAAAAOABOE8I9J8k+XNJPpLktST/IMnv\nv4iPAgB4nK33O3mh38kLH1q/6317w3HeXliC7GDS0PTcq9s7+cmvbufancGxZ1sleXJjFgc1y5Bd\n6ufq5srh40v9dAVDAAAAAAAAj4QzhUCllHaS31Fr/c4L/h4AAM5opdvO80+s5fkn1u5632A0ydu3\nD4dCb9+cLUs2PfczX7uZd27vp9bjzz+x3juyDNnBsmSzpcquXupnpdu+oJ8UAAAAAACAszhTCFRr\nHZdSviPJn73g7wEA4D7rdVr5yOXVfOTy6l3vG40neffOIG81gdBiKPTWzf28fWsv//qNW3n79n7G\nk+PF0OZKZzpJqImDZhOFZtOFZiHRev88QykBAAAAAAA4q/P8W5j/t5Ty55P89SR3ZidrrT95378K\nAIAPXKfdytObK3l6cyXJ1qn3TSY113amwdCbt/by9kIwNFum7LO/eC1v39rPYDw59vx6r50r671c\nWevl8lo3V9Z6ubLWzeVme2W9d7Df3LPR76SUcoE/PQAAAAAAwKPvPCHQL2+2371wrib59ffvcwAA\neNi1WiUf2ujnQxv9fDKbp95Xa82N3eHBZKGb+83SZHu5vjPM9s4g2zvDfPXaTrbvDHJzb3Tqu7rt\nkq3Vg1DoIBI6HAzNrl1e6+Xyajeddusi/ggAAAAAAAAeSmcOgWqtv+4iPwQAgOVSSpkGOWu9fP0z\nl+55/2g8yY3dYbZ3hrneRELbdwbzYGh6brr/i+/cyU/uXM/1nUGG4+PLlM1cWukcmzg03fZyZX02\njehwRLTabZs+BAAAAAAAPJLOMxEopZTflOQbk6zMztVav/v0JwAA4Gw67Vae3OjnyY3+mZ+ptebO\nYJztO4OFKUMH+4uTh7Z3BvmFd25n+84wt/dPnz7U67QOTxk6afJQExLNoqKt1W7aLfEQAAAAAADw\nYJ05BCql/KUka0l+XZLvS/LtST57Qd8FAAD3VErJRr+TjX4nzz9x9ucGo0mu7zah0J3BoSlEi5OH\nru8M8nNv3Z5fG09Onj5USrK1ejQe6h6ZRjTd32qOt1a7We+ZPgQAAAAAANw/55kI9Gtrrd9USvnp\nWuufLKX8D0n+r4v6MAAAuCi9TitPXVrJU5dW7n1zo9aaW/ujXL9zePLQtTuDg6XMmnNv3tzLz75x\nK9s7g+wMxqe+s9Mq2VqdxkFbq91cXm22a71sHjo+2G425/qd9v34owAAAAAAAJbIeUKg3Wa7U0r5\ncJJ3kzx7/z8JAAAePqWUbK50s7nSzUefXDvzc/uj8cESZXeGubE7yI3dYa7vDKfb3en2xs4w79we\n5OW3b+fGzjA3905fvixJVrvteSC0dSwYOiUkWu3l0konLcuYAQAAAADAUjpPCPR3SymXk/z3SX4y\nSc10iTAAAOAU/U47T2+28/Tm2acPJcl4UnNr76Rg6OSQ6Cvv7uSnXx3m+u4ge8PJqe8tJdlcORwI\nnRQTba32jk0jWu1aygwAAAAAAB5mZw6Baq3f0+z+n6WUv5tkpdZ642I+CwAAHm/tVsnltV4ur/XO\n/ezecJybuwuh0M5CSLQYEzXHr23vzo/Hk3rqe7vt0gRCnVxe682XM9s8EgydFBJ1263388cBAAAA\nAACcwZlDoFLK7zzhXGqt339/PwkAAHg/VrrtrHTbeeqcU4hqrbkzGOd6EwrdODJ1aDaFaLa82Zs3\n9/Kv37yVGzvD3Nq/+1Jm6712EzZ1c2WtlyvrvVyZ7a91m+Nenlif3vPEes8EIgAAAAAAOKfzLA32\nKxf2V5J8c6ZLhAmBAABgCZRSstHvZKPfyXNXzvfsaDzJzb1REwwNDqYPLQRE2zuDXN+Zbl/d3sl2\nc/40vU4rTyzEQ4uR0OW1Xp5Y7063a70mLupmo98RDwEAAAAA8Ng6z9Jgf2DxuJRyOckP3fcvAgAA\nHjmdditPrE9jnWT9zM+NxpMmEpoGQtt3BtPtznC+f+3ONC764hs3c31nun/aCmbd9nRJtStrC5HQ\n+mzy0MIkotkEorVeLq100mqJhwAAAAAAePSdZyLQUXeSvHC/PgQAAHj8dNqtPLnRz5Mb/TM/M5nU\n3NybxkPX7gxyfWfQbIe5tnNwvL0zzM+/fTvbX5nGQ6NT6qFWSa6ctGzZQix0eBJRL1ur3bTFQwAA\nAAAAPGTOHAKVUv5OktnfnLeSfDLJD1/ERwEAAJym1ZpO/bm81ssLHzrb9KFaa27tj3L9zjQWOpg+\nNFyYQjTI9p1hXrm2k59+dbo/GE9OfF8pydZqdx4QPbF2ZLmyWUzUhEWX17q5vNpLr9O6n38UAAAA\nAABwyHkmAv2Zhf1Rkq/UWl+9z98DAABw35VSsrnSzeZKNx99cu1Mz9RaszMYzwOh7YWA6FqzRNls\nEtHrN/byxddvZntnmN3h+NR3rnbb2VztZGu1O/+1udLN5mx/4fz0+ODe1W47pZhCBAAAAADA6c4c\nAtVa/9FFfggAAMDDpJSS9X4n6/1Onrty9uf2htN4aL5cWbN82Y3d4aFfN3dH+dr1vXxx91Zu7g1z\na2901/d229OYaRYMHURDnfn5rROCos2Vbi6tdNKylBkAAAAAwNI7z9Jgt3KwNNihS0lqrXXzvn0V\nAADAI2ql286zW6t5dmv1XM+NJzW39g4ioXkwtHc0IGr2dwZ55drO/Px4ctI/rk2Vklzqd7K11j0U\nDW2udLO1thAXrXROjIm6bUuaAQAAAAA8Cs6zNNj/lOT1JH810/jnO5M8W2v9ry/iwwAAAB4n7VbJ\n5bVeLq/1zv1srTV3BuODSGgxGGr2b+6NDh2//Nbt+fH+aHLX96/12ocDotXOsalD84lER2KjlW7L\nkmYAAAAAAB+Q84RA31Zr/WULx3+xlPIvkwiBAAAAHqBSSjb6nWz0O/nw5fNNIkqmy5nd3JvFQ6PT\ng6JmOtFr1/fyxddv5ebuMLf2776kWa/dyuZqN5fXurmy1s3Wam++f3mtl63Vbq6sTc9trXZzZb2X\ny6vdrPXaAiIAAAAAgHM6Twh0p5TynUl+KNMlwn57kjsX8lUAAAB8YFa67ax023nq0sq5nx2NJ7nV\nTBtaXMZscXmzG7uD3NgdZvvOMK9d380XvnYj2zvD7A7Hp763125la62by00oNN9fn8ZD05hoGg1t\nrR3ERKtdAREAAAAA8Pg6Twj0HUn+XPOrJvmnzTkAAAAeU512K1fWe7myfv4lzfaG49zYHeb6zjDX\ndwbZ3plGQ9d3hkf2B3nl2k5+Zne6vzc8fSmzXqeVy00odLkJhWbR0DQm6k0nE83216fb1V77/fwx\nAAAAAAA8FM4cAtVav5zkUxf3KQAAADxOZpOInt483ySiveF4Gg81odD1nWbbhEI3dobzgOir13by\nL1+dRkaD0ekBUb/TmsZDzdJl8/31g3Ozpc2uLJxb6QqIAAAAAICHx5lDoFLKn07y3yTZTfL3k3xT\nkj9ca/1rF/RtAAAAcMxKt51nttp5Zuv8AdH2LBqaBUQLE4lmcdH2zjBffmcn13ev3zMgWum2jsdD\ns2lEzXJml1a62Vjp5NJKJ5f6nWysdLLR72S910mrZRkzAAAAAOD+Oc/SYP9erfW/LKX8B0m+nOS3\nJPnHSYRAAAAAPPRWuu08u7WaZ7dWz/xMrTV7w8lBQLS7EBIdnUi0M8wvvHN7vj8Ynx4QJUkpyUav\nM4+ENvqdbKx0D4KhfucgIuofvu/SSnOt38lar51SBEUAAAAAwPlCoNm9vynJ36i13vAXjQAAACyz\nUkpWe+2s9lbz4cvnC4h2myXMbu2Ncnt/th1Nt3uj3Nof5dbeMLcXzt/YHea17Z35vTuD8T1/r1bJ\nQTTUREIbJwRDB8edbPS78/suNc+udFuCIgAAAAB4xJ0nBPq7pZQvZbo02H9aSrmaZO9iPgsAAAAe\nXaWUrPU6Weud5x+7jxuNJ7kzGE+Dof0mIGoioun+8CAu2j843r4zyFff3Znftzu8d1DUbpUTgqHD\nU4lOnFy0cN+llU76HUERAAAAADwoZ/4byVrrHyml/OkkN2qt41LKTpJPza6XUn5DrfUfHn2ulPKt\nSf5cknaS76u1/ndHrpp4E0oAACAASURBVPeTfH+SfzvJu0l+W631y821P5rkdycZJ/mDtdYfuds7\nSyk/kOTFJMMkn03y+2qtw7P+jAAAAPAw6bRb2VptZWu1+77eMxxPcudQMHQwpWh2bhYWzeKh2/uj\nvHN7kC+/u9PcN8z+6O7LnSVJp1Xm04bWup30u630O630O+2sdKfbfqfVnJ/tN9sj+yvz/fbJ72nO\n9driIwAAAABIzjcRKLXWawv7d5LcWbj8p5IcCoFKKe0k35vkNyR5NclPlFI+U2v9wsJtvzvJdq31\n46WUTzfv+W2llE8m+XSSb0zy4ST/dynl65pnTnvnDyT5D5t7fjDJ70nyF8/zMwIAAMCy6bZbubzW\ny+W13vt6z2B0EBTd2j+8rNlJU4p2B+Psj8bZH02mS6XtDrI3nEzPDSfZH03394b3Dozu5VA4tBAZ\nrSxGRgvx0KHIaOGZ02Kl06KkfqeVVkuEBAAAAMDD4f3NKD/spL/1+lVJXq61/kKSlFJ+KNMpQosh\n0KeS/Ilm/28m+fNl+p/xfSrJD9Va95P8Yinl5eZ9Oe2dtda/N/+YUj6b5Ln79LMBAADAY6/XaaXX\n6eXK+vsLio6qtWYwbsKgWSjU7O/No6Hm3GiS/eE4e812fm7xvoXIaPae2/uDU98zntT39f29duvE\ncOjyWjdX1nq5vNad72+tLp5rtqvddNqt+/SnCQAAAMDj7H6GQCf9rdlHkryycPxqkl992j211lEp\n5UaSJ5vz//zIsx9p9u/6zlJKN8nvSPKHTvrQUsrvTfJ7k+SjH/3oqT8QAAAAcPFKKU1A005WPvjf\nfzSLkBYmFB0Lig5FSfeOlXb2R7mxO8yX3riZ6zvDXN8d3jU4urTSOTUWutKERJfXerm8cG1zpWsa\nEQAAAACH3M8Q6GHyF5L841rrPznpYq31Lyf5y0ny4osvvr//7A8AAAB4pHXarXTaraz3L+73qLXm\n1v4oN3aG2d4Z5PrCdrZ/Y3e63d4Z5pVrO9neGebm3jD1lL+5aJVka/XwZKEra71srZ0QEq0eTCba\n6HcyHcYMAAAAwLK5nyHQl08491qS5xeOn2vOnXTPq6WUTpKtJO/e49lT31lK+eNJrib5fef+CQAA\nAAAuQCklmyvTKT7PP7F25ufGk5qbu9OJQtNwaBYRDXOjiYau7w5zfWeQt2/v5+feup3rO8Pc3h+d\n+s5OqxyaMHRs6tAsJJpdW5+GRKu99v34owAAAADgAp0rBCql/Nokv2TxuVrr9zfb33LCIz+R5BOl\nlBcyjXU+neQ7jtzzmSS/K8k/S/LtSX6s1lpLKZ9J8oOllP8xyYeTfCLJZ5OU095ZSvk9Sb4lyTfX\nWifn+dkAAAAAHjbtVsmV9V6urPfyQtbP/NxwPGmmDQ2mEdGdwTwYmoVEs/1Xt3fy+a9NQ6O94el/\nndLvtI4tX3ZlvZut1ePLl6322um0Wul1SrrtVrrtVjrtkl6zP/1VTCYCAAAAuM/OHAKVUv5qko8l\n+akk4+Z0TfL9pz1Tax2VUr4ryY8kaSf532qtny+lfHeSl2qtn0nyV5L81VLKy0muZRr2pLnvh5N8\nIckoye+vtY6bbzn2zua3/EtJvpLknzV/kfS3aq3ffdafEQAAAGAZdNutXL3Uz9VL51vvbG84PrJs\n2WA+jWi2rNl0GtEwP//27Vz/6vSe4fi9rbzeaZV5FDQPhGbxUGth/8g9vea4Mz8uTWx0sN/ttNJp\nlfQ6rRPfca/9XvN8t9OaB0ztlnAJAAAAeLiVetpC80dvLOWLST5Zz/rAI+LFF1+sL7300oP+DAAA\nAIBHUq01O4PxQjw0zP5onOF4ksG4ZjiaZDQ52B+OJxlNagbN/vRXPfP+YDR9fjieZDiavnc0mTTv\nrhmML25IdCk5FiL1joRE/W4rl1a6udTv5NLK9NdGvzvdrnSyudLJpZVuNubXp9f6nZYJSQAAAMCp\nSimfq7W+eK/7zrM02M8keSbJ6+/5qwAAAABYKqWUrPc7We938tyVB/010zBpPKnzKGg4nmQ0i4gW\njgfjg3joWGy08MzR4+lzTXw0nmQwqk3cNN3fG45zY3e65NrtvVFu7Y2yOxzf87u77XIoEJpuu9ls\nAqJLxwKig4hodu9Gv2NqEQAAADzmzhMCfSjJF0opn02yPztZa/22+/5VAAAAAPAelFLSaZd02slq\n2g/6c5Ikw/Ekd/anUdDNveE8ELq1P92/2Rzf3h9Ot83xq9s7ud08d2tvmMkZ5nSv99oHgdAsFjph\nOtFpMZHpRAAAAPBoO08I9Ccu6iMAAAAAYFl1261cXuvl8lrvPb+j1prd4XgeBd2ax0OHj2fXZwHR\njZ1BXt3emQdG72U60SwgOm060eZKd35+vTeNitb67fQ7D0eIBQAAAI+TM4dAtdZ/dJEfAgAAAACc\nrJSStV4na71Ont5cec/vGY4nud0ERDf3FiYQ7R+OiW4vHN9uphMthkdnmU7UbTfLxjVx0Hq/PT9e\n73eyMTvud7LeazfnOgfn+u2FZzvpdVrv+ecGAACAx8WZQ6BSyq9J8r8k+YYkvSTtJHdqrZsX9G0A\nAAAAwH3UbbdyZb2XK+vvbzrRzmB84jSiO/uj3BlMt7f3x9Pj/WlAtDOYTjR648be/NydwTjjs1RF\nSXrtVtb77awdCYs2+p3m3EFYtHEkMDo4157fLywCAABgGZ1nabA/n+TTSf5GkheT/M4kX3cRHwUA\nAAAAPJxKKfO45v1MJ0qmUdH+aNIEQ+MmDhrNj+fB0P4otwej7CyeG4xy8z6ERQcx0eGpRLNwaK23\neG56z2KMNLvWbQuLAAAAePDOEwKl1vpyKaVdax0n+d9LKf8iyR+9mE8DAAAAAJZZKSUr3XZWuu08\nufH+3zcLi27vT6OhWTA0i4nm55qwaDE4moVFrzdh0Z33EBat9tpZ67Xn27Vu5/i5Xier3dl+O6u9\nzsH1bnO9t3i9nV67lVLK+/8DAgAAYOmdJwTaKaX0kvxUKeVPJ3k9if/MBQAAAAB4KCyGRbnPYdHi\nEmez48Ul0HYG4+wOptud4Ti7g3F2BqNc3xnka9fH0+vD6bm94eRc39Fulax12wtRUecgFOqecO6E\nqGi1iZAWn1nrdbLSFRkBAAAsk/OEQL8j0/Dnu5L84STPJ/mtF/FRAAAAAAAP2mJY9KGN/n1772RS\nmyioCYaGTUC0Pw2FZtcOxUXzew/O3dob5a2b+9kZjprwaBob1bMNMWp+xizERIenGM0Do277+LlD\nIdLxKUazyUftlsgIAADgg3TmEKjW+pVSymqSZ2utf/ICvwkAAAAAYGm1WiXr/U7W++f57zTPptaa\nveEkO00sdBAVLcRCzfHB5KLD0dHsme2d4cG5JkI661JpM/1O69D0oWPRUPfIJKOF+Gh27rTYyJJp\nAAAAx535nzRLKf9+kj+TpJfkhVLKL0/y3bXWb7uojwMAAAAA4OxKKdN4ptfOk/f53bXWDMaTI/HQ\n8ahod2Fq0aF7hwfTjd69PcgrszipCY8Go/u7ZNrqkdjopElHx5ZNmz3bbadlmhEAAPAIOs9/cvIn\nkvyqJP9PktRaf6qU8sIFfBMAAAAAAA+ZUkr6nXb6nXYur93/94/nS6aNToyNTlsybW94ODa6vT/K\n27f2D997ziXTkhxMMOqesOxZrz0PiVa67fS77fQ7ren+wvbYuW4rK53D237HEmoAAMD9c54QaFhr\nvXFk1Oo5/9EJAAAAAACOa7dKNvqdbFzQkmn7o8mhZdJmYdFBdHRybDS/3kw6euvW3qHze8Nx9s85\nzeiobrscCoNm25XuCTHRXbZHg6SDdzTbbjsrnYNtp926T3/CAADAw+I8/0T1+VLKdyRpl1I+keQP\nJvnxi/ksAAAAAAC4P0opWelOp/c8sd677++fhUb7w0n2R9MwaBYInXe7P5xkbzQ+eNdwkmt3BofO\nL27PO+loUbtVDoVB/VOCooPt8bhodWFq0mxJttWFaUmzSUorHcutAQDAB+E8IdAfSPJfJdlP8oNJ\nfiTJ91zERwEAAAAAwKNiMTRKuh/Y71trzXBcD8KgWUw0GmdvISRaPL77djFIGufG7jD7C8d7C9vx\n5PwF0uJya6snhEPHzh+LijrHn1m4r2vCEQAAnCsE+mTzq9P8+lSSb0vyTRfwXQAAAAAAwF2UUtLr\nlPQ6rWTlg/29R+NJdofTJdb2BpPsDJsl1xaXXRsePt4bzpZmm2S3uX9nMM71nUG+dv3w/bvD8087\n6rbLwRSibruZVjSNj1aOxka9dtbOEhwt3NfvtFKKqUYAADzczhMC/UCS/yLJzyR5fwseAwAAAAAA\nj6xOu5VL7VYurVzMBKTZcmsHQdEsIJrGRHtHY6PBODsL+0fjo3fvDKbvWDg/HJ+vNColh4KhXqeV\nXruVbruVbrs024X9+fWDa73OkePZ9c7icSuddjn87hN+r17nyHG7Zfk1AADOFQK9XWv9Oxf2JQAA\nAAAAADm63NrFGM6mGs1ComNTjE4PjvYG4wzGkwzHkwzHNcPxJIPRJDuD0cHx7PqoZjSZXp9dG72H\npdXOot0qh8KgY1FR54QI6YzR0uJ+v9OaTktqoqiTlntb7bbTsVwbAMAH7jwh0B8vpXxfkh9Nsj87\nWWv9W/f9qwAAAAAAAC7QLGrZvKCpRnczmdQMJ00YNJoshEMHUdGhyGg8yXA0DYgOrtfmntn1I8cL\n545GS7MI6ube8d/r6PvfT7R0dLm2lSYUOnR8ZIm22fGh5dy67awsLOG2eNwVGwEAHHKeEOg/SvJv\nJOnmYGmwmkQIBAAAAAAAcEatVkm/1U6/k6T/oL/m7o5GS4MmFJpNSZottbY4TWm+bfYXJyvtNeeu\n7wyP3bc/mtz7g47otMqxaUQrJwRDi8u6HY2OFuOjeWy0cNxtl5Ri2TUA4NFwnhDoV9Zav/7CvgQA\nAAAAAICHygcZLY0n9VBUNNufR0RHwqHFkGgeGy0ERzf3htNQ6dB954+N2q2StSYqWuk2S6W1pkut\ndVrTZdU67ZJOu5Vee3qu22ml2yrpHFlerTPbb832D65P750ed1qt9Jr3z5Z3W7y/0zr+3vl3tIRL\nAPA4O08I9OOllE/WWr9wYV8DAAAAAADAY6ndKlnvd7LeP8+/vjqfyaRmb3Q4GNodTLIzGB0cL0RF\nB2HSJLvDUXYH4wwnNaOF5dRG45rBaJI7g3GzhFtzrrk2XFiabdRMV7po3VmQNAuHjgZJd7vWhErd\nJj7qNec67ZJ+c1+vs/CrOe7Pj9vpdabvmp9vzi0+Y9ISAFyM8/wvqV+T5KdKKb+YZD9JSVJrrd90\nIV8GAAAAAAAA91GrVbLW62Std3Gx0b3UWjOa1IVYaJLRZBoTjSYH4dBBRNQER5Mj8dGR0Gg0mS7f\nNpzM7jl8/3A8WYiYDl+7PRqd8t4mXhpN9wfj809Uupte+3hQdOr+CQHSLD7qnnBP/4T3dI88d9Lv\nJU4C4FF3nv+V860X9hUAAAAAAADwGChltgRYspr2g/6cc6m1zgOiwWiSQbPdHx0+Hi6en907mmQw\nGmfQBEbzZ0aTDMbjhf3ZtmYwGmdnMMr13cV3LN4z3U7u45ClbrMU2/GpR+35dKTZNKXewkSl3pHp\nSr3OwRJuswlJs2Xjeu3DE5cWl4frzaczLSwd1zzfbR3eb7VESwAcd+YQqNb6lYv8EAAAAAAAAODh\nVUpJrzNd8mu9/6C/5sBofDg42p/FSOPDAdH+wvFZY6bF52ZTlgbjSe7sj3J9FkUdmc50eLrTxS0F\n126Vg1jolEDp5EhptjzcdL/bbjWR0jREWtxffPfBsm4nT2JavGd2ffasSUsAH5wHN/cQAAAAAAAA\n4H3qNNN11noP+kuOm01Rmi6xVpuJSAfLsA3Hh5dqO/F4VDM8skTb4pJvx985XSZuNJlOVho2QdOd\nwbh5x0m/58G76gW0S0djoeMR0eHl23oLIdLser9zUoRUDkVHx97Z/J4nPzv9ZbISsGyEQAAAAAAA\nAAAXYD5FKa3kIQyVTjKeHA6EBgsTlmYTj4bj2eSleuKEpcXpSIMj95x076AJnnZ2h/NYaXru8FJw\nw3HN+H6uBZfpZKXefOpR+1BctBgpdU6YvnR0wlK30yzhdmi/NEu6HX7u8P7p1w7/3qYrAfcmBAIA\nAAAAAAAgyTSMabfaWem2H/SnnGgWKu2fEhfdLU46NWI64Z7pudos/TY9tzMYnz5RaTSZTm66gFhp\nUadVjodDzRJv3dYp++8xQuq0DyYzzfZPDqKaJeZmQdXCfrdl6hJ80IRAAAAAAAAAADwSHvZQKUkm\nkzqPgubLsU3qoWlHi0u7jRaiosG4zsOjwcIyb7NwaXH/7kvETbI/nOT23mj6nnnQtBg3Hdx7EUvC\nzbRbZR4FdTutk2OmeUxUTp3C1JktIdfsT4On4xOXOq3pVKfO4kSm1uF3nPz7HP79TF/iUSUEAgAA\nAAAAAID7pNUq6bfa6XeS9B/015zNbNLSbEm20WQhNprMIqQmWBodhE2jyfF4aXTC1KTRPECqJ09U\nGjeR06jm1nA0358GVQvB0+J3jC+wXso0YJpFS512mYdFnSZqmp2bbst8CtL8vtZBZHTi9YX99vyZ\nw/ctPn/8Ow6f77ZaabdLus07Dn+nsOlxIgQCAAAAAAAAgMfYozBp6aha66EoaDg+PF3paGw0Gh8s\nHzfbn9+/MLHpIHyaXa/zSUyj8UGINFo839y7N5xkNB4dOjc88p7RPHy62GXkjppGRgtxUDNRaTEa\nmk1v6rRb+cH/+Fen33l0/u+BA0IgAAAAAAAAAOCRUkqZL+f1qKr1cGg0njQTlWbbE+KhYxHSCaHS\nQbB0+H0nP79wfVwznNSMJ5O0TRB6ZAmBAAAAAAAAAAA+YKWU9DolvTy6MRMPH//XBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS+DCQ6BSyreWUn62\nlPJyKeWPnHC9X0r56831/6+U8ksWrv3R5vzPllK+5V7vLKV8V3OullI+dNE/GwAAAAAAAAAAPCwu\nNAQqpbSTfG+S35jkk0l+eynlk0du+91JtmutH0/yZ5P8qebZTyb5dJJvTPKtSf5CKaV9j3f+0yT/\nbpKvXOTPBQAAAAAAAAAAD5uLngj0q5K8XGv9hVrrIMkPJfnUkXs+leT/aPb/ZpJvLqWU5vwP1Vr3\na62/mOTl5n2nvrPW+i9qrV++4J8JAAAAAAAAAAAeOhcdAn0kySsLx6825068p9Y6SnIjyZN3efYs\n77yrUsrvLaW8VEp56e233z7PowAAAAAAAAAA8FC66BDooVRr/cu11hdrrS9evXr1QX8OAAAAAAAA\nAAC8bxcdAr2W5PmF4+eacyfeU0rpJNlK8u5dnj3LOwEAAAAAAAAA4LFy0SHQTyT5RCnlhVJKL8mn\nk3zmyD2fSfK7mv1vT/JjtdbanP90KaVfSnkhySeSfPaM7wQAAAAAAAAAgMfKhYZAtdZRku9K8iNJ\nvpjkh2utny+lfHcp5dua2/5KkidLKS8n+c+T/JHm2c8n+eEkX0jy95P8/lrr+LR3Jkkp5Q+WUl7N\ndErQT5dSvu8ifz4AAAAAAAAAAHhYlOnwncfXiy++WF966aUH/RkAAAAAAAAAAHCiUsrnaq0v3uu+\ni14aDAAAAAAAAAAA+AAIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAA\nYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAA\nYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAgP+/vfuNtS2t7wL+/Z1z7p0ZZmhh2pEQwDJt\nSRSaSnUk0VZD2lRp34DJ2IK2QWNSX9CExje0RtNKNGmNim9qaU1JpooOFMFOfGNrRZQXDgx0KAVE\nR6TpkJGh5Y8MDPfec87ji732uWuvs/afc+85d5+7zueT7NlrPetZz3rOnbOfvc5a3/1sAABgAgSB\nAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABg\nAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAA\nAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAA\nAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSB\nAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABg\nAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAA\nAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAA\nAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSB\nAAAA4Cy0luxfSQ4Pt90TAAAAAOCC2Nt2BwAm5fAgObiWHF6bPR9cSw6uduv7veVri/UO98+oQ3UG\nTZ5Fm7vJ7l6ys+SxeynZ2e2V9dZ3L82ea+ds+gYAXBz7V5Orz3SPr80eV756fflqt3xlvn1Z3d72\n1oWAdu9ILt2Z7N214fOdyaW7bvx599J2/y0BAAAAgK0QBOJ8efZLswvmtZOkuhv7O9dv8FeNbOst\nH5WXQMDtqrUuTLMkMLNpsOaoXldn6baxer3l4X6HXf2FY/eWm097b9VRSGhvFhSah4Tm6zu99ZXB\no73x0NGxUFLvWP1Q0vBYx/qyt7htXWBr7Xh2M/uv23fNoW+2760lad1y95952cK2Nr6ttRztfGxb\nVmy7kbaHdW+i7aNt646/yfOafmz0fKv7kdn79fw1UDvXX0e1u6JsN9nZGSkbLI+VHe2zs2HZ7qCP\nq8q6Nk5La7P39lUYwAAAEtZJREFUovn71OH+7L1xXnZ4bbC+P3svOlz1OOi11Ss7vDZYHzvmSB8O\nRvqw8phd3XbYG2cvXR8bdy8tWd9Ldi9fX950n6PyU9zPueX5c3hwPHQzFtC58sxinWPhnt72g6ub\nH//yPcnlu7vHPbPH3fcl996/WHbpztlr4dqzyf43Rp6/kXzjK8m1zyf7z87W+883qnZHAkInCSLd\nQFDJ6wQAAAAAtk4QiPPlv/x88ujbT6+9YwGhYXioBtvGQkU7s/vcp9bWmkDT2huohzd207YdDsqy\n4b6HI2Ub7HvseBvsO7/ZeNZ2+jcVe4+d4fLl2fLeHdeXl9bbW1wetr9wrMvHb27u7J7+jZOjoMKp\nNno2TbZVN7Svrbj5fG3kZvPIze1VN8jn7e1fOX68Yze6h9tuwe8r3JTqvT+d9Pks98/sfeLwYPZo\n/ef92VfoDMvOvRoJHu2Ml6WNh2Tm49Y2Q6VHQaexoGN/ZrYlj0t3DQKYg7aqjs+e1x9TD/ZnwYh+\neT+8O69ztO8tHIc3ChetCR0NA2RVI2U7i+G0GiwfK1vVzop9dnZG2hkee5N2uuMv2+foNd9mwZdj\nAZ3eLDvLAjpXejPu9Ote+/rm///27lwM51y+O7nzm5JveuFi2R295VXll55zugHAZeZfLTYWEFp4\nHgsYrXl+9svXg0j99m5mzN0bCwjdMZsNaeG8+nK3fGm2bWG52z5cHt1/bHlevzsvBwCAi+joenv/\nesvw+kvvmszRB3h612aO1nsf7jnar7t20w676zj9azk3u60trm+07fD6taaFYxys2DZWb922jFwf\n2R2U9T9otje+bdjG0fWYZW3eaLtj7QyP1b9esaI9M/ID3FZcFeN8+a4Hkxe8YvHErQ2DJf3yw0F5\nW1I+qL8QclnW1mEXUFjXVnezbm1b87DLweq2Vt1YPQoPDbbNb0Is3XdndbvL9l12vLU3e9cdb8nx\na/f6BfybDdYsrecT/Zyy+R/FS0NJw+DRSMhppTXhq7XZrBUV1obF1h37FPYfjgVLx5bhtsFzsuG2\nsXZutO2s2LZJ20v6csPBm/74PcFxrh8O6l+IOgoUrSvrXdhaVXZ0YWtYdrCkD/OywQW0hYtjg7L+\nbEcrZxZbMjPZpsGcYzOfjcxWtvAVi6c8s9GtMD+3Gg0VjYSM+gGihfUl+x0LIa1qc6TetWcX6x39\nPgwvKM5/R9ri7+d8+1kEcW+Veei9f968zs7eSAjn7uQ59y7OwnPHc5cEdgZll++5fQMhVbPZdy7d\nmdx1i455sL9B8GiD5/0rXejoSnJwZfa6+PrXutfWla58vny1m3Xzyun+LLUzEipaEUI6ChudNHg0\nElza6/4uGc4SeLSc2fpGyxkvH233pMsnON6y5VXHOGqqv96WlK/bdprtnXb/lvV1cH53w8u5iX1P\nsrxpn7t6K5cri9cGetuWXmtYci3hpNc6FtrPCeufwXn1/LrP8P194Wbm4CbnsfOCTcpHbnIeKx8e\nf+xG57rykTbn5yvVCxr3P0S3szO+7ShQvGzb/INzY+Ujj4Vtg7aPbevaPtbesm1r+t0//1+4kd4P\n/h+sqdNfH968X1Ln6Lg3UaeNHXuwz7E6vfW0ketyg+t6x5aXfdhuSdnojKHD/fauf5Dv2PIt/GAe\nJ3d0TX/ZmDMy7q3ddgMBj357q/px7JpDPzAzDNsMrk2Mra8K6fSvUawM6Yzsd1v9Hdkfc3ePj83H\ntvXeGxa2Dcbs/rb5+f2xbYN667bNP+B0bIxfNp52ZUcfQl02vo8999o9N0bOCU+0fjNtnFYfbrDP\nVb3rdt17yPBbAObvSwvbVtVdt76urZO0fZu97y2cQ/fvGc/Xe/dWR+sM7r0eqzPyWKjTG/OT62NC\n/2+I/vlgesv97aPlJ5xAYqG8Njhuv5+3yf9vzsRtejWUyXrJn509AG4XOzvJzuUkl7fdE5i2nZ0k\nO7M/XGGuqruQ381GNFX9m4TrwkPrbvgtDSGdwj4LF9EH++zsLgZzlgV27rhndmPGhYrt2d1Ldp87\nC1rdaq1dD+HNH/tXlix3waGj5auDUNHYvtcG+3RlV7+eHHxptrzseLfF7HTA2dg0OLSTZOQ9+7a6\nEbvEsRuzI7MLpnL95x+5gTK8uTKFf5fzZGGGiLGZHJbNItHbZz6759I6wza6siTHQvHLlvevJodf\nO15+uN+95w5C+bfi9+SmQkp7OfrdHw3JZrC8SZj2Rutlw3qndNz5+qazr4yGbHr7TcHw9XM0w0v/\ntdOfXbU3M0t/v91Ls9k1x/ZbqLtz/PXaP+aqY4x+lfqS9dFjjM0Gu7PhtrGwj7//VjoKRJw0+DlW\nbxgqGwaPRsJI89fwwXxW5hVjwkbry8pups3TWl/Rv/m/2dG3CPQ/FLbfm+F6uK2/3v+A8P52xr/h\nBw83CRXV7uzfZGlgph/Q6dfph3FGgjiHg/V+HU7JJsGhNYGlNz8+C1Jy2xEEAgAAOM/mgSd/vjF1\nVbOZdPbOYcD68HAkbLQieDR/rJo1Jbl+we2GluedW3GMTZZPdLyRT8uuXe7182hx5BPB67Zt3N6w\n2s22d4P9O/HMTxvcMD615ZxOO0d9HSwfPSfXZ0sebjscKWvXL/qfqP6w/Zyw/rz9nLD+yDH7M9gs\nm71g2U3QYzdOu31Gy+ez7JykfGzmhCUzHgwDP2dh009xL2wb3HRatm3VTaWFm1JjN6zWBJhGPzl+\nkMVwzM7iDbRNvpblWJ2RoM6yOlO+iT6/8Xxsps6rvdk5+8vDENLIDJ8nXR6GlK4+sxhYmttk9rSj\np03qbdreinoLb1k32d7othoZc1bNzNIfpzbYtjATS2XpODU6Vm4wQ8zSfgyOtWzbMJQDZ6V/DhE3\n4ydl+G0DB/3ldaGiE6zfbFuHB1mcDbE/S1YvOLJqpsXR7SOPY3VqcKxhnRrpT79OjfRnXmesDyPH\nT7Lw90H/PHb0G2DakvKx+m1FO/3ytsFxD8+mn7W7hRcHp8GVZAAAAIBVdnaSne5r2gC4efObOtk1\n6yfLzWck8f4LwBT5tgHgDIkpAwAAAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABAgCAQAA\nAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABJx5EKiqXlNVn66qJ6rq\np0e231FV7+q2P1pVL+1t+5mu/NNV9ZfXtVlV93dtPNG1efmsfz4AAAAAAAAAADgPzjQIVFW7SX4x\nyQ8leXmSN1TVywfV/laSL7XWvjPJ25L8Qrfvy5O8Pskrkrwmyb+oqt01bf5Ckrd1bX2paxsAAAAA\nAAAAACbvrGcEelWSJ1prn2mtXU3ycJLXDuq8NslD3fJ7kvxAVVVX/nBr7Upr7f8keaJrb7TNbp/v\n79pI1+brzvBnAwAAAAAAAACAc+Osg0AvSvIHvfUnu7LROq21/SRfSfItK/ZdVv4tSb7ctbHsWEmS\nqvqJqnqsqh77whe+cAM/FgAAAAAAAAAAnC9nHQQ6l1prv9Jae6C19sB999237e4AAAAAAAAAAMBN\nO+sg0OeSvKS3/uKubLROVe0l+eYkf7Ri32Xlf5TkeV0by44FAAAAAAAAAACTdNZBoA8neVlV3V9V\nl5O8PskjgzqPJHljt/xgkv/cWmtd+eur6o6quj/Jy5J8aFmb3T7v79pI1+ZvnOHPBgAAAAAAAAAA\n58be+io3rrW2X1U/meQ/JtlN8o7W2ieq6q1JHmutPZLkV5P8q6p6IskXMwv2pKv37iSfTLKf5E2t\ntYMkGWuzO+RbkjxcVf8wye90bQMAAAAAAAAAwOTVbCKdi+uBBx5ojz322La7AQAAAAAAAAAAo6rq\nI621B9bVO+uvBgMAAAAAAAAAAG4BQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgA\nQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJiAaq1tuw9bVVVfSPL72+4HC741yR9u\nuxMAt4gxD7hIjHnARWLMAy4SYx5wkRjzgIvEmAfny7e11u5bV+nCB4E4f6rqsdbaA9vuB8CtYMwD\nLhJjHnCRGPOAi8SYB1wkxjzgIjHmwe3JV4MBAAAAAAAAAMAECAIBAAAAAAAAAMAECAJxHv3KtjsA\ncAsZ84CLxJgHXCTGPOAiMeYBF4kxD7hIjHlwG6rW2rb7AAAAAAAAAAAA3CQzAgEAAAAAAAAAwAQI\nAgEAAAAAAAAAwAQIAnGuVNVrqurTVfVEVf30tvsDcJaq6rNV9fGqeryqHtt2fwBOU1W9o6qerqrf\n65XdW1W/VVX/q3t+/jb7CHBalox5P1dVn+vO9R6vqh/eZh8BTktVvaSq3l9Vn6yqT1TVm7ty53rA\n5KwY85zrAZNTVXdW1Yeq6mPdmPcPuvL7q+rR7v7tu6rq8rb7CqxWrbVt9wGSJFW1m+R/JvnBJE8m\n+XCSN7TWPrnVjgGckar6bJIHWmt/uO2+AJy2qvqLSZ5J8mutte/qyv5xki+21n6+C30/v7X2lm32\nE+A0LBnzfi7JM621f7LNvgGctqp6YZIXttY+WlXPTfKRJK9L8jfiXA+YmBVj3o/EuR4wMVVVSe5u\nrT1TVZeSfDDJm5P8nSTvba09XFVvT/Kx1tovbbOvwGpmBOI8eVWSJ1prn2mtXU3ycJLXbrlPAADc\ngNbaf03yxUHxa5M81C0/lNnFU4Db3pIxD2CSWmtPtdY+2i1/NcmnkrwozvWACVox5gFMTpt5plu9\n1D1aku9P8p6u3Hke3AYEgThPXpTkD3rrT8YJNTBtLclvVtVHquontt0ZgFvgBa21p7rl/5vkBdvs\nDMAt8JNV9bvdV4f5ihxgcqrqpUm+J8mjca4HTNxgzEuc6wETVFW7VfV4kqeT/FaS/53ky621/a6K\n+7dwGxAEAoDt+b7W2p9O8kNJ3tR9pQTAhdBm31Hse4qBKfulJN+R5JVJnkryT7fbHYDTVVX3JPl3\nSX6qtfb/+tuc6wFTMzLmOdcDJqm1dtBae2WSF2f2bS5/YstdAm6AIBDnyeeSvKS3/uKuDGCSWmuf\n656fTvK+zE6qAabs81X1wiTpnp/ecn8Azkxr7fPdBdTDJP8yzvWACamqS5ndEH9na+29XbFzPWCS\nxsY853rA1LXWvpzk/Un+XJLnVdVet8n9W7gNCAJxnnw4ycuq6v6qupzk9Uke2XKfAM5EVd1dVc+d\nLyf5S0l+b7u9AjhzjyR5Y7f8xiS/scW+AJyp+c3wzl+Jcz1gIqqqkvxqkk+11v5Zb5NzPWBylo15\nzvWAKaqq+6rqed3yXUl+MMmnMgsEPdhVc54Ht4GazdIK50NV/XCSf55kN8k7Wmv/aMtdAjgTVfXt\nmc0ClCR7Sf6NMQ+Ykqr6t0leneRbk3w+yc8m+fdJ3p3kjyf5/SQ/0lr74rb6CHBalox5r87sqyJa\nks8m+duttae200OA01NV35fkvyX5eJLDrvjvJnk0zvWAiVkx5r0hzvWAiamq707yUGb3aXeSvLu1\n9tbufsbDSe5N8jtJfqy1dmV7PQXWEQQCAAAAAAAAAIAJ8NVgAAAAAAAAAAAwAYJAAAAAAAAAAAAw\nAYJAAAAAAAAAAAAwAYJAAAAAAAAAAAAwAYJAAAAAAAAAAAAwAYJAAAAAANxSVfXqqvoP2+4HAAAA\nwNQIAgEAAAAAAAAAwAQIAgEAAAAwqqp+rKo+VFWPV9UvV9VuVT1TVW+rqk9U1W9X1X1d3VdW1X+v\nqt+tqvdV1fO78u+sqv9UVR+rqo9W1Xd0zd9TVe+pqv9RVe+sqtraDwoAAAAwEYJAAAAAABxTVX8y\nyY8m+d7W2iuTHCT560nuTvJYa+0VST6Q5Ge7XX4tyVtaa9+d5OO98ncm+cXW2p9K8ueTPNWVf0+S\nn0ry8iTfnuR7z/yHAgAAAJi4vW13AAAAAIBz6QeS/JkkH+4m67krydNJDpO8q6vzr5O8t6q+Ocnz\nWmsf6MofSvLrVfXcJC9qrb0vSVpr30iSrr0Ptdae7NYfT/LSJB88+x8LAAAAYLoEgQAAAAAYU0ke\naq39zEJh1d8f1Gs32P6V3vJBXKcCAAAAuGm+GgwAAACAMb+d5MGq+mNJUlX3VtW3ZXY96cGuzl9L\n8sHW2leSfKmq/kJX/uNJPtBa+2qSJ6vqdV0bd1TVc27pTwEAAABwgfikFQAAAADHtNY+WVV/L8lv\nVtVOkmtJ3pTka0le1W17OsmPdru8Mcnbu6DPZ5L8za78x5P8clW9tWvjr97CHwMAAADgQqnWbnT2\nZgAAAAAumqp6prV2z7b7AQAAAMBxvhoMAAAAAAAAAAAmwIxAAAAAAAAAAAAwAWYEAgAAAAAAAACA\nCRAEAgAAAAAAAACACRAEAgAAAAAAAACACRAEAgAAAAAAAACACRAEAgAAAAAAAACACfj/hQx2uebc\nveQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPwAAAJcCAYAAABn6yjlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xmc5Xdd5/v39yxVp7au3tNJOqE7\nC0lHVg0MCI4wCCQEcJtBdBhHxhmccbwjF0WDA14XRhlGERzBZa7ovXJH4aIoQwKEJYiAKM2ihHSH\n7KQ7W6fTW+3bb/6o09VVvXe6q09X1/P5eNTjnPP7/c6vPr965JE/ktfj+y1VVQUAAAAAAAAAAFga\nap0eAAAAAAAAAAAAOHmCHwAAAAAAAAAAWEIEPwAAAAAAAAAAsIQIfgAAAAAAAAAAYAkR/AAAAAAA\nAAAAwBIi+AEAAAAAAAAAgCVE8AMAAAAAAAAAAEuI4AcAAABgGSqlbCqlVKWUxhm+732llO85k/cE\nAAAAYCHBDwAAAAAdIQ4CAAAAeGIEPwAAAAAsG0db0ehUVzk606siAQAAAJwqwQ8AAADAaWivUvPG\nUso/llKGSyl/WEq5oJTy0VLKgVLKJ0spq9rXPqeU8oVSyt5Syj+UUl4w7z6vLaVsa3/nnlLKT8w7\n94JSyo5Sys+UUh4tpTxUSnntScx2Qynlq6WU/aWUB0opv3SUy/5NKeXB9j1/dt53n11K2dr+7iOl\nlHfMO/fKUso32s/xmVLKlmP8/j8upbz18Odov/+TJJcm+V+llKFSys+d6G90nOccbP/dHyql7Cyl\nvLWUUm+f+7FSyudLKb9VStmd5JeOcaxWSnlzKeX+9t/4/y2lDLbvcXD7sx8vpXwryadPNBMAAADA\nYhL8AAAAAJy+H0zy4iRPTvKKJB9N8gtJ1mX2v7/8p1LKxUluSvLWJKuT/GySPy+lrGvf49EkL0+y\nIslrk/xWKeXb5/2ODUkGk1yc5MeTvPtgSHQcw0l+NMnKJDck+Q+llO877JoXJrkyyUuS/Py8Lbbe\nleRdVVWtSHJ5kg8kSSnlyUn+NMnr2893c2ajna4TzLJAVVX/Ksm3kryiqqr+qqrefhJ/o2P54yRT\nSa5I8sz2s/zbeef/SZJ7klyQ5L8c49iPtX9emOSyJP1Jfuew3/PdSbYkeempPCsAAADAmSb4AQAA\nADh9/72qqkeqqtqZ5G+S/F1VVV+tqmosyYcyG6G8JsnNVVXdXFXVTFVVn0iyNcnLkqSqqpuqqrq7\nmvXXSW5J8l3zfsdkkl+pqmqyqqqbkwwluep4Q1VV9Zmqqr7e/n3/mNlQ57sPu+yXq6oarqrq60n+\nKMkPz/t9V5RS1lZVNVRV1Rfbx38oyU1VVX2iqqrJJL+RpCfJd57qH+0ojvs3OppSygXt869vP8ej\nSX4ryavnXfZgVVX/vaqqqaqqRo9x7F8meUdVVfdUVTWU5E1JXn3Y9l2/1P4dowEAAADoIMEPAAAA\nwOl7ZN770aN87k/ypCT/or1V1d5Syt4kz09yYZKUUq4vpXyxlPJ4+9zLkqydd5/dVVVNzfs80r7v\nMZVS/kkp5dZSyq5Syr4k//6weybJA/Pe35/kovb7H8/sikXbSylfKqW8vH38ovZ1SZKqqmba97j4\neLOcpOP+jY7znWaSh+Z95/eTrJ93zQNH+d7hxxY8V/t9I7MrAB3vPgAAAABnXePElwAAAABwBjyQ\n5E+qqvp3h58opXQn+fPMbr/1V1VVTZZS/jJJOc3f+T8zuy3V9VVVjZVS3pkjg59Lkmxvv780yYNJ\nUlXVnUl+uJRSS/IDST5YSlnTPv/UebOX9j12HuX3Dyfpnfd5w2Hnq8M+H/NvdBwPJBlPsvawIOp4\nv+doxx7MbDx00KWZ3SbskSQbj3MfAAAAgLPOCj8AAAAAZ8f7kryilPLSUkq9lNIqpbyglLIxSVeS\n7iS7kkyVUq5P8pIz8DsHkjzejn2eneRHjnLNW0opvaWUb0vy2iTvT5JSymtKKevaK/jsbV87k+QD\nSW4opbyolNJM8jOZDW6+cJR7fy3Jy0opq0spG5K8/rDzjyS5bN7n4/2Njqqqqocyu/3Zb5ZSVpRS\naqWUy0sph29ddiJ/muT/LKVsLqX0J/m1JO8/TkQEAAAA0DGCHwAAAICzoKqqB5J8b5JfyGzY80CS\nNyapVVV1IMl/ymxMsyezYc6Hz8Cv/ckkv1JKOZDkF9v3P9xfJ7kryaeS/EZVVbe0j1+X5BullKEk\n70ry6qqqRququiPJa5L89ySPJXlFkldUVTVxlHv/SZJ/SHJfZqOc9x92/teTvLm9FdfPHu9vdILn\n/NHMRlO3Z/bv98Ecfxuwo3lve97PJrk3yViS/+MU7wEAAABwVpSqshIxAAAAAAAAAAAsFVb4AQAA\nAAAAAACAJUTwAwAAALCElVK+UUoZOsrPv+z0bGfSMZ5xqJTyXZ2eDQAAAOBss6UXAAAAAAAAAAAs\nIY1OD3C2rF27ttq0aVOnxwAAAAAAAAAAgKP68pe//FhVVetOdN2yCX42bdqUrVu3dnoMAAAAAAAA\nAAA4qlLK/SdzXW2xBwEAAAAAAAAAAM4cwQ8AAAAAAAAAACwhgh8AAAAAAAAAAFhCGp0eoJMmJyez\nY8eOjI2NdXqURdVqtbJx48Y0m81OjwIAAAAAAAAAwGla1sHPjh07MjAwkE2bNqWU0ulxFkVVVdm9\ne3d27NiRzZs3d3ocAAAAAAAAAABO07Le0mtsbCxr1qw5b2OfJCmlZM2aNef9KkYAAAAAAAAAAMvF\nsg5+kpzXsc9By+EZAQAAAAAAAACWi2Uf/AAAAAAAAAAAwFIi+OmgvXv35j3vec8pf+9lL3tZ9u7d\nuwgTAQAAAAAAAABwrhP8dNCxgp+pqanjfu/mm2/OypUrF2ssAAAAAAAAAADOYY1OD7Cc3Xjjjbn7\n7rvzjGc8I81mM61WK6tWrcr27dvzzW9+M9/3fd+XBx54IGNjY/npn/7pvO51r0uSbNq0KVu3bs3Q\n0FCuv/76PP/5z88XvvCFXHzxxfmrv/qr9PT0dPjJAAAAAAAAAABYLIKftl/+X9/I7Q/uP6P3vOai\nFfm/XvFtxzz/tre9Lbfddlu+9rWv5TOf+UxuuOGG3Hbbbdm8eXOS5L3vfW9Wr16d0dHRPOtZz8oP\n/uAPZs2aNQvuceedd+ZP//RP8z/+x//Iq171qvz5n/95XvOa15zR5wAAAAAAAAAA4Nwh+DmHPPvZ\nz56LfZLkt3/7t/OhD30oSfLAAw/kzjvvPCL42bx5c57xjGckSb7jO74j991331mbFwAAAAAAAACA\ns0/w03a8lXjOlr6+vrn3n/nMZ/LJT34yf/u3f5ve3t684AUvyNjY2BHf6e7unntfr9czOjp6VmYF\nAAAAAAAAAKAzap0eYDkbGBjIgQMHjnpu3759WbVqVXp7e7N9+/Z88YtfPMvTAQAAAAAAAABwLrLC\nTwetWbMmz3ve8/KUpzwlPT09ueCCC+bOXXfddfm93/u9bNmyJVdddVWe85zndHBSAAAAAAAAAADO\nFaWqqk7PcFZce+211datWxcc27ZtW7Zs2dKhic6u5fSsAAAAAAAAAABLUSnly1VVXXui62zpBQAA\nAAAAAAAAS4jgBwAAAAAAAAAAlhDBDwAAAAAAAAAALCGCHwAAAAAAAAAAWEIEP3TM1PRMp0cAAAAA\nAAAAAFhyBD90xJv/8uv5D//fVzo9BgAAAAAAAADAkiP46aC9e/fmPe95zxP67jvf+c6MjIyc4YnO\nnotW9uQTtz+SL9z1WKdHAQAAAAAAAABYUgQ/HbScg59/87zN2biqJ7/ykdszPVN1ehwAAAAAAAAA\ngCWj0ekBlrMbb7wxd999d57xjGfkxS9+cdavX58PfOADGR8fz/d///fnl3/5lzM8PJxXvepV2bFj\nR6anp/OWt7wljzzySB588MG88IUvzNq1a3Prrbd2+lFOWatZz43XX52f+p9fzf+/9YG8+tmXdnok\nAAAAAAAAAIAlQfBz0EdvTB7++pm954anJte/7Zin3/a2t+W2227L1772tdxyyy354Ac/mL//+79P\nVVV55Stfmc9+9rPZtWtXLrrootx0001Jkn379mVwcDDveMc7cuutt2bt2rVnduaz6IanXpg/ftJ9\n+Y1bvpmXP/2i9Hf7xxEAAAAAAAAA4ERs6XWOuOWWW3LLLbfkmc98Zr79278927dvz5133pmnPvWp\n+cQnPpGf//mfz9/8zd9kcHCw06OeMaWUvOXl1+SxofG859a7Oj0OAAAAAAAAAMCSYEmVg46zEs/Z\nUFVV3vSmN+UnfuInjjj3la98JTfffHPe/OY350UvelF+8Rd/sQMTLo6nX7IyP/DMi/N/f+7e/PCz\nL80lq3s7PRIAAAAAAAAAwDnNCj8dNDAwkAMHDiRJXvrSl+a9731vhoaGkiQ7d+7Mo48+mgcffDC9\nvb15zWtekze+8Y35yle+csR3l7o3XndVaiV528e2d3oUAAAAAAAAAIBznhV+OmjNmjV53vOel6c8\n5Sm5/vrr8yM/8iN57nOfmyTp7+/P+973vtx111154xvfmFqtlmazmd/93d9Nkrzuda/Lddddl4su\nuii33nprJx/jtF042JOf+KeX512fujOv/c7Hc+2m1Z0eCQAAAAAAAADgnFWqqur0DGfFtddeW23d\nunXBsW3btmXLli0dmujsOtefdWRiKi/8jc9kw4pWPvSTz0utVjo9EgAAAAAAAADAWVVK+XJVVdee\n6DpbenFO6O1q5OdeenX+Yce+/NU/7Oz0OAAAAAAAAAAA5yzBD+eM73/mxXnaxsG8/WN3ZHRiutPj\nAAAAAAAAAACck5Z98LMctjRbKs9Yq5W8+YZr8tC+sfzBZ+/p9DgAAAAAAAAAAOekRQ9+SinXlVLu\nKKXcVUq58Sjnu0sp72+f/7tSyqb28TWllFtLKUOllN85xr0/XEq57YnO1mq1snv37iUTxDwRVVVl\n9+7dabVanR7lpDx78+q87Kkb8nt/fXce3jfW6XEAAAAAAAAAAM45jcW8eSmlnuTdSV6cZEeSL5VS\nPlxV1e3zLvvxJHuqqrqilPLqJP81yQ8lGUvyliRPaf8cfu8fSDJ0OvNt3LgxO3bsyK5du07nNue8\nVquVjRs3dnqMk3bjdVvyydsfzX/7+B35zVc9vdPjAAAAAAAAAACcUxY1+Eny7CR3VVV1T5KUUv4s\nyfcmmR/8fG+SX2q//2CS3ymllKqqhpN8rpRyxeE3LaX0J3lDktcl+cATHa7ZbGbz5s1P9OsskkvX\n9Oa1z9+U3//re/Jj37kpT9042OmRAAAAAAAAAADOGYu9pdfFSR6Y93lH+9hRr6mqairJviRrTnDf\nX03ym0lGjndRKeV1pZStpZSt5/sqPuebn3rhFVnT15Vf+cg3zust1wAAAAAAAAAATtViBz9nXCnl\nGUkur6rqQye6tqqqP6iq6tqqqq5dt27dWZiOM2Wg1czPvOSqfOm+PfnobQ93ehwAAAAAAAAAgHPG\nYgc/O5NcMu/zxvaxo15TSmkkGUyy+zj3fG6Sa0sp9yX5XJInl1I+c4bm5RzyQ8+6JFdvGMivf3Rb\nxianOz0OAAAAAAAAAMA5YbGDny8lubKUsrmU0pXk1Uk+fNg1H07yr9vv/3mST1fH2cOpqqrfrarq\noqqqNiV5fpJvVlX1gjM+OR1Xr5W8+YZr8sDjo/njL9zX6XEAAAAAAAAAAM4Jixr8VFU1leSnknw8\nybYkH6iq6hullF8ppbyyfdkfJllTSrkryRuS3Hjw++1VfN6R5MdKKTtKKdcs5ryce55/5dq86Or1\n+Z1P35XHhsY7PQ4AAAAAAAAAQMeV4yymc1659tprq61bt3Z6DJ6Au3cN5aW/9dm86lmX5Ne+/6md\nHgcAAAAAAAAAYFGUUr5cVdW1J7pusbf0gtN2+br+vOY5T8qf/f23sv3h/Z0eBwAAAAAAAACgowQ/\nLAmv/54rM9Bq5r/ctC3LZVUqAAAAAAAAAICjEfywJKzs7cpPv+jK/M2dj+XWOx7t9DgAAAAAAAAA\nAB0j+GHJ+FfPfVIuW9uXt960LZPTM50eBwAAAAAAAACgIwQ/LBnNei2/8LItuWfXcN73xfs7PQ4A\nAAAAAAAAQEcIflhSXrRlfZ5/xdq885N3Zu/IRKfHAQAAAAAAAAA46wQ/LCmllLz55VtyYGwy7/rU\nnZ0eBwAAAAAAAADgrBP8sORcvWFFfuhZl+ZP/vb+3L1rqNPjAAAAAAAAAACcVYIflqQ3vPjJaTXr\n+fWbt3V6FAAAAAAAAACAs0rww5K0bqA7//GFV+ST2x7N5+96rNPjAAAAAAAAAACcNYIflqzXPm9T\nNq7qya9+5PZMz1SdHgcAAAAAAAAA4KwQ/LBktZr1vOn6Ldn+8IF8YOsDnR4HAAAAAAAAAOCsEPyw\npL3sqRvyrE2r8pu33JEDY5OdHgcAAAAAAAAAYNEJfljSSil58w3X5LGhibz71rs7PQ4AAAAAAAAA\nwKIT/LDkPf2SlfmBZ16c937u3jzw+EinxwEAAAAAAAAAWFSCH84Lb7zuqtRrJW/76PZOjwIAAAAA\nAAAAsKgEP5wXLhzsyU9892W56esP5Uv3Pd7pcQAAAAAAAAAAFo3gh/PG6/7pZdmwopVf/cjtmZmp\nOj0OAAAAAAAAAMCiEPxw3ujtauTnrrsq/7hjX/7yazs7PQ4AAAAAAAAAwKIQ/HBe+b5nXJynbRzM\n2z92R0Ympjo9DgAAAAAAAADAGSf44bxSq5W85eXX5OH9Y/mDz97T6XEAAAAAAAAAAM44wQ/nnWdt\nWp0bnnphfv+v78nD+8Y6PQ4AAAAAAAAAwBkl+OG8dOP1V2d6psrbP76906MAAAAAAAAAAJxRgh/O\nS5es7s2/ef7m/MVXduYfHtjb6XEAAAAAAAAAAM4YwQ/nrf/4wsuztr8rv/qR21NVVafHAQAAAAAA\nAAA4IwQ/nLcGWs38zEuuytb79+Tmrz/c6XEAAAAAAAAAAM4IwQ/ntVdde0mu3jCQX//otoxNTnd6\nHAAAAAAAAACA0yb44bxWr5W85eXXZMee0fzR5+/r9DgAAAAAAAAAAKdN8MN573lXrM33bFmfd996\nV3YdGO/0OAAAAAAAAAAAp0Xww7LwCy/bkrHJ6bzjE9/s9CgAAAAAAAAAAKdF8MOycNm6/vyr5z4p\n7//St7L94f2dHgcAAAAAAAAA4AkT/LBs/PSLrsxAq5m3fmRbqqrq9DgAAAAAAAAAAE+I4IdlY2Vv\nV17/PVfmc3c9lk9vf7TT4wAAAAAAAAAAPCGCH5aV1zznSblsXV/+y03bMjE10+lxAAAAAAAAAABO\nmeCHZaVZr+U/v2xL7nlsOO/74v2dHgcAAAAAAAAA4JQJflh2/tnV6/NdV67Nuz51Z/aOTHR6HAAA\nAAAAAACAUyL4YdkppeTNN1yTA2OTeecn7+z0OAAAAAAAAAAAp0Tww7J01YaBvPrZl+Z9X7w/d+8a\n6vQ4AAAAAAAAAAAnTfDDsvWGFz85Pc16fu2mbZ0eBQAAAAAAAADgpAl+WLbW9nfnP/6zK/Kp7Y/m\nc3c+1ulxAAAAAAAAAABOiuCHZe21z9uUS1b35K033Z7pmarT4wAAAAAAAAAAnJDgh2Wtu1HPm67f\nku0PH8j7v/RAp8cBAAAAAAAAADghwQ/L3vVP2ZBnb1qd37zljuwfm+z0OAAAAAAAAAAAxyX4Ydkr\npeTNL9+S3cMTefetd3V6HAAAAAAAAACA4xL8QJKnbVyZH/j2i/NHn7sv39o90ulxAAAAAAAAAACO\nSfADbT/30qtTr5W87WPbOj0KAAAAAAAAAMAxCX6gbcNgK//+uy/PzV9/OH9/7+OdHgcAAAAAAAAA\n4KgEPzDP6/7pZblwsJVf/cjtmZmpOj0OAAAAAAAAAMARBD8wT09XPT933VX5+s59+dBXd3Z6HAAA\nAAAAAACAIwh+4DDf+/SL8/SNg3n7x7dnZGKq0+MAAAAAAAAAACwg+IHD1Golb3n5NXlk/3h+/6/v\n6fQ4AAAAAAAAAAALCH7gKK7dtDo3PO3C/P5n785D+0Y7PQ4AAAAAAAAAwBzBDxzDjdddnZkqefvH\n7uj0KAAAAAAAAAAAcwQ/cAyXrO7Njz9/cz701Z352gN7Oz0OAAAAAAAAAEASwQ8c10++4PKs7e/K\nWz9ye6qq6vQ4AAAAAAAAAACCHziegVYzP/uSq7L1/j256esPdXocAAAAAAAAAADBD5zIv7j2kmy5\ncEXe9tHtGZuc7vQ4AAAAAAAAAMAyJ/iBE6jXSt5yw5bs2DOa937+3k6PAwAAAAAAAAAsc4IfOAnf\necXafM+WC/KeW+/OrgPjnR4HAAAAAAAAAFjGBD9wkn7hZVdnbHI67/jEHZ0eBQAAAAAAAABYxgQ/\ncJIuW9efH33uprz/Sw9k20P7Oz0OAAAAAAAAALBMCX7gFPz0i67Mip5m3nrT7amqqtPjAAAAAAAA\nAADLkOAHTsFgbzOvf9GV+fxdu/PJbY92ehwAAAAAAAAAYBkS/MAp+pfPeVIuX9eXX7t5WyamZjo9\nDgAAAAAAAACwzAh+4BQ167X85xu25N7HhvMnX7y/0+MAAAAAAAAAAMuM4AeegBdetT7fdeXavOuT\n38ye4YlOjwMAAAAAAAAALCOCH3gCSil58w3XZGh8Ku/61J2dHgcAAAAAAAAAWEYEP/AEXbVhID/8\n7EvzJ1+8P3c9OtTpcQAAAAAAAACAZULwA6fhDS9+cnqb9fzazds6PQoAAAAAAAAAsEwIfuA0rOnv\nzk/9syvy6e2P5m/u3NXpcQAAAAAAAACAZUDwA6fpx563KZeu7s1bP7ItU9MznR4HAAAAAAAAADjP\nCX7gNHU36nnT9VfnjkcO5M++9ECnxwEAAAAAAAAAznOLHvyUUq4rpdxRSrmrlHLjUc53l1Le3z7/\nd6WUTe3ja0opt5ZShkopvzPv+t5Syk2llO2llG+UUt622M8AJ3LdUzbk2ZtX57c+8c3sH5vs9DgA\nAAAAAAAAwHlsUYOfUko9ybuTXJ/kmiQ/XEq55rDLfjzJnqqqrkjyW0n+a/v4WJK3JPnZo9z6N6qq\nujrJM5M8r5Ry/WLMDyerlJK33HBNHh+ZyLs/fVenxwEAAAAAAAAAzmOLvcLPs5PcVVXVPVVVTST5\nsyTfe9g135vk/2m//2CSF5VSSlVVw1VVfS6z4c+cqqpGqqq6tf1+IslXkmxczIeAk/HUjYP5gWdu\nzB99/r58a/dIp8cBAAAAAAAAAM5Tix38XJzkgXmfd7SPHfWaqqqmkuxLsuZkbl5KWZnkFUk+dYzz\nryulbC2lbN21a9cpjg6n7ueuuyr1Wsmvf3Rbp0cBAAAAAAAAAM5Tix38LJpSSiPJnyb57aqq7jna\nNVVV/UFVVddWVXXtunXrzu6ALEsXrGjlP7zg8nz0tofzd/fs7vQ4AAAAAAAAAMB5aLGDn51JLpn3\neWP72FGvaUc8g0lOppT4gyR3VlX1zjMwJ5wx/+67LsuFg6289aZtmZmpOj0OAAAAAAAAAHCeWezg\n50tJriylbC6ldCV5dZIPH3bNh5P86/b7f57k01VVHbeSKKW8NbNh0OvP8Lxw2nq66vn5667O13fu\ny1989fC+DQAAAAAAAADg9Cxq8FNV1VSSn0ry8STbknygqqpvlFJ+pZTyyvZlf5hkTSnlriRvSHLj\nwe+XUu5L8o4kP1ZK2VFKuaaUsjHJf05yTZKvlFK+Vkr5t4v5HHCqXvn0i/L0S1bmv318e0Ympjo9\nDgAAAAAAAABwHiknWEznvHHttddWW7du7fQYLCNfvv/x/ODv/m3+04uuzBte/OROjwMAAAAAAAAA\nnONKKV+uquraE1232Ft6wbL1HU9anZc/7cL8wWfvzoN7Rzs9DgAAAAAAAABwnhD8wCK68fqrM1Ml\nb//Y9k6PAgAAAAAAAACcJwQ/sIg2rurNv33+5vzl1x7M1x7Y2+lxAAAAAAAAAIDzgOAHFtlPvvCK\nrO3vzq9+5PZUVdXpcQAAAAAAAACAJU7wA4usv7uRn33Jk/Pl+/fkI//4UKfHAQAAAAAAAACWOMEP\nnAX/4tpLsuXCFXnbR7dnbHK60+MAAAAAAAAAAEuY4AfOgnqt5C0v35Kde0fzh5+7t9PjAAAAAAAA\nAABLmOAHzpLvvHxtXnzNBXnPrXfl0QNjnR4HAAAAAAAAAFiiBD9wFv3Cy7ZkYnom77jlm50eBQAA\nAAAAAABYohqdHgCWk81r+/Kjz92U937+3nzlW3uyeW1fLlvXn8vW9uWydX25bG1/VvV1dXpMAAAA\nAAAAAOAcJviBs+wNL35y+rrquf2hA7nz0aF8atujmZqp5s6v6m3msnX97RhoNgK6bF1fnrSmN92N\negcnBwAAAAAAAADOBYIfOMv6uht5w0uumvs8NT2TB/aM5p5dQ7n3seHcvWs49+wayme/uSsf/PKO\nuetqJdm4qvdQCDRvZaANK1oppXTicQAAAAAAAACAs0zwAx3WqNeyeW1fNq/tO+LcgbHJ3PvY8IIQ\n6N7HhvOl+x7PyMT03HU9zfpRQ6DNa/sy0GqezccBAAAAAAAAABaZ4AfOYQOtZp62cWWetnHlguNV\nVeXh/WO5d9dw7n5sNgS6Z9dw/nHHvtz89Ycyb4ewrBvobgdAh0Kgy9b155JVPWnUa2f5iQAAAAAA\nAACA0yX4gSWolJILB3ty4WBPvvOKtQvOjU9N5/7dI7ln13DueWw2BLr3seF87LaHsmdkcu66Rq3k\n0jW9uWxt/2wEdDAKWteXNX1dtggDAAAAAAAAgHOU4AfOM92Nep58wUCefMHAEef2DE/knoMrAj02\nnHvbUdBnv7krE9Mzc9cNtBq5bF1/Lm9vNXYwBNq0pi89XfWz+TgAAAAAAAAAwGEEP7CMrOrrynf0\ndeU7nrRqwfHpmSoP7h3N3bsOrQh0z2ND+dt7ducvvrpzwbUXr+zJZevaIVA7Btq8ti8Xr+xJrWZV\nIAAAAAAAAABYbIIfIPVaySWre3PJ6t684KqF50YmpmYDoIMhUHt1oL/4ys4MjU/NXdfdqGXz3IpA\nfblsbX82r+vL5Wv7M9jbPMuGk2+jAAAgAElEQVRPBAAAAAAAAADnL8EPcFy9XY1820WD+baLBhcc\nr6oqu4bGF4ZAu4Zzx8MHcsvtj2R6ppq7dk1f16EQaF1/Nq7qyYWDrVywopX1A610NWpn+7EAAAAA\nAAAAYMkS/ABPSCkl6wdmg53nXLZmwbnJ6Zl86/GRdgw0GwLds2s4n96+Kx/YuuOIe63t78qGwVY2\nrJiNgDasaOWCwVYuHDz0fqC7kVJsGQYAAAAAAAAAgh/gjGvWa7l8XX8uX9ef5IIF5/aPTebBvaN5\naN9YHtk3lof3j+WR/WN5aN9YduwZzZfv35M9I5NH3LO3qz4XBc0Pgg4GQhsGW1nb3516TRQEAAAA\nAAAAwPlN8AOcVStazazY0MzVG1Yc85qxyek8un88D+0bnQuCHt43nof3j+bhfWP5u3sfzyP7xzI1\nb9uwJKnXStYPdC+IgBasHNR+39NVX+zHBAAAAAAAAIBFI/gBzjmtZj2XrunNpWt6j3nNzEyVx4bH\n88i+8Ty8v71S0L7ZlYIe2T+Wu3YN5fN3PZYD41NHfHewpzm3StCGFd3ZMNjTDoRmY6ELB3uyqrdp\nCzEAAAAAAAAAzkmCH2BJqtVK1g+0sn6gladm8JjXDY1P5eF9B1cJmg2DHp63ldj2h/Zn19B4qoWL\nBaWrUcsFK7rnVgea2z5s8NDqQesHWulq1Bb5SQEAAAAAAABgIcEPcF7r727kivX9uWJ9/zGvmZye\nya4D40esEnQwDvr6zn35xO2PZHxq5ojvru3vWriF2NzKQe1IaLCVge6G1YIAAAAAAAAAOGMEP8Cy\n16zXctHKnly0sueY11RVlX2jk4dWCJq3StDD+8ayc+9ovvKtPdkzMnnEd3u76kcNguavGLRuoDv1\nmigIAAAAAAAAgBMT/ACchFJKVvZ2ZWVvV67esOKY141NTufR/eN5aN/ovCBoPI/sH8tD+0bzd/c+\nnkf2j2VqZuEeYvVaybr+7nYM1L0gDJq/jVhvl39tAwAAAAAAACx3/s8xwBnUatZz6ZreXLqm95jX\nzMxU2T080Y6Axua2EjsYCN2zazhfuHt3DoxNHfHdgVZjLv654OC2YfO2FLtgRStr+rpSs1oQAAAA\nAAAAwHlL8ANwltVqJesGurNuoDtPuXjwmNcNj08tiIEWvh/PnY88lkcPjOWwxYLSrJesH5i3hdiK\nVjYMds+FQRcO9mT9iu60mvVFflIAAAAAAAAAFoPgB+Ac1dfdyOXr+nP5uv5jXjM1PZPHhiZmI6B9\n7S3E2mHQQ/vGsu2h/bn1jkczMjF9xHdX9TbbMdChMOjCwXlbia1oZWVvM6VYLQgAAAAAAADgXCL4\nAVjCGvXabLAz2EouOfo1VVXlwPjUodWB9rV/9h8KhG7buT+7h8dTHbZaUHejtmDLsA0LthCbXTVo\n/UArXY3a4j8sAAAAAAAAAEkEPwDnvVJKVrSaWdFq5soLBo553eT0TB49MH5kENR+/w879ubj3xjL\n+NTMYfdP1vR1Z8Ng96EtxFYcWino4KpBA90NqwUBAAAAAAAAnAGCHwCSJM16LRev7MnFK3uOeU1V\nVdk7Mjm7UlB767D5YdCOPaP58v17smdk8ojv9nbVs6a/K6t6Z39W9x1838yqvtnPK3ubWd3XldW9\nXVnZ22XlIAAAAAAAAICjEPwAcNJKKVnV15VVfV3ZcuGKY143NjmdR/ePHxEGPT48kceHJ7J3ZCL3\nPDaUPcOTGRqfOuZ9+rsbWdXXXBAJrextZnVvl0gIAAAAAAAAWLYEPwCcca1mPZeu6c2la3pPeO3E\n1Ez2jkzk8ZGJ7BmezJ6RQ1HQ4+3Pe0Ymsmd4NhLaOzyZA6cRCa3q7cqqPpEQAAAAAAAAsHQJfgDo\nqK5GLetXtLJ+Reukv3MwEtozMpnHhycWREGPD0/OC4jOfCS0qnf2XHejfiYeHwAAAAAAAOCUCX4A\nWHIWOxK697Hh7BmeOGEkdHA7sZOJhFZZSQgAAAAAAAA4QwQ/ACwLTzgSGp3damxum7F2FLRnZHI2\nFjqFSGigu5HV/bNx0Jq+2dfVfd2H3vcfOr6mrzs9XVYRAgAAAAAAAI4k+AGAY+hq1LJ+oJX1A6cf\nCT0+NJHdwxN5vP2zc+9Yvr5zXx4fnsjkdHXUe/U067PxT//BOOhgEHT0SKi/u5FSypl6fAAAAAAA\nAOAcJfgBgDPoVCOhqqpyYHzqsCBofPb90Ozn3cMT2T00kTsfGcru4fGMTc4c/XfXa4fCoKNEQvOP\nr+nryopWM7WaQAgAAAAAAACWGsEPAHRQKSUrWs2saDWzaW3fSX1nZGIqu4cOrRa0+xiR0P27R/L4\n8ESGjrHNWL1Wsqq36xhbih0ZCa3q7UpdIAQAAAAAAAAdJ/gBgCWmt6uR3tWNXLK696SuH5+ano2A\njhIJzT++7cH92T08kX2jk0e9TynJyp5mOwjqPiISmn98Tf9sINTVqJ3JRwcAAAAAAAAi+AGA8153\no54LB3ty4WDPSV0/OT2TPSPtOGjeVmOHR0J37xrKl+6byJ6RicxUR7/XQKuRNX1dGexpZkVPM4M9\nzazsnX1d+DN7zWD7XF9XPaVYTQgAAAAAAACORvADACzQrNeyfqCV9QOtk7p+eqbKvtHJ2W3FhubH\nQYfe7xudzL7RyezYMzr3fvpYlVCSRq3MxUAr5oVB82OhuYBoXig02NNMT1MsBAAAAAAAwPlN8AMA\nnJZ6rcxt6XXF+pP7TlVVGRqfmot/9o1OZv/oZPaOTC44dvBnz8hE7ts9PHfdcVqhNOvlKCsItX96\nu444Nj8iajXrZ+aPAgAAAAAAAItI8AMAnHWllAy0mhloNbNx1al9d2amyoHxqew/LAo6PBY6eH7X\n0Hju2jWUfSOTOTA+leo4sVBXo3Zo1aCehasJHX0rskOrC3U3xEIAAAAAAACcHYIfAGBJqc3b7uuS\nU/zu9EyVobGp7B2dOGIVob0jk0dERA/vH8v2hw9k/+hsLHQ8rWbt0KpBPV0LtiJb0dOYfW0t3I7s\n4HHbkAEAAAAAAHAqBD8AwLJRr5XZFXl6m6f83anpmRwYm92GbO/okasJ7R1ZGBHt3Dua2x/cl/1j\nUxk6QSzUrJesaM2GQCt6mlnRaiwMg1rHDocGWo0067Un+icBAAAAAABgCRL8AACchEa9llV9XVnV\n13XK350fC+0fOxgJHf65/dq+buee0bl4aGrmOPuQJenrqi+Ig1Ycb1WhViODvYeO93ZZXQgAAAAA\nAGCpEfwAACyy04mFqqrK6OR09o9OHRkHjU5m31GO79w7mm0PTZ7UVmSNWjliVaEVh60qdNRoqP3Z\n6kIAAAAAAABnn+AHAOAcVkpJb1cjvV2NbBhsnfL3p6ZnMjQ+dYJVhdrh0Lxg6OD7yenjry7U21U/\n6pZjKw4LhI6IiHqa6e9qpFazuhAAAAAAAMCpEvwAAJzHGvVaVvZ2ZWXvE1tdaGxy5uiB0Mih7cfm\nH9+5dyzbRg+c1OpCtZIMtA5bRejwz0cLidrnWs2a7cgAAAAAAIBlSfADAMBRlVLS01VPT1c9F6w4\n9dWFpmeqDI0dWlVo/4LVhabmjs2en11h6O5dQ+3jUxmdnD7u/Zv1Mhf/DMxbSeiY4dD8bctazXQ1\nbEcGAAAAAAAsTYIfAAAWRb1WMtjbzGBv8wl9f2JqZl4oNLVgJaGDwdDBFYYOnt+5Z3Tu+Im2I2s1\na4etHLQwCJrbfqzVPCIkGmg1U7cdGQAAAAAA0CGCHwAAzkldjVrW9ndnbX/3KX+3qqqMT83MC4Jm\nI6GFqw1Ntbcmm/15bGgid+8anjs/c/xeKAPdsysKDRwWCh3cgqy/u5Herkb6uuuzr1319HYf9trV\nsNIQAAAAAABwygQ/AACcd0opaTXraTWf2HZkVVVleGL6UDB02NZjR9ua7IHHR3Kgff7A+NRJ/66u\nei293fX0dTXSe1gMdKJYaO58+/t93bP36G7UUooViAAAAAAA4Hwl+AEAgMOUUtLf3Uh/dyMXr+w5\n5e9Pz1QZmZjKyMR0hscPe52Yysj4dIbGpzIyMZXhiemMjLdfJ6YyPD77+uDe0SPOn6x6raS3qx0R\nzYuJDgZBC44f7Xz7df4qRa1GPTXbmAEAAAAAwDlB8AMAAGdYvVYy0GpmoNU8Y/ecmakyNjU9FwTN\nvc4LgobHp+aCogWv7XO7DowvOD48PnXCrcsOKiXpbR57haH5KxH1z/sZaDXS32pkoLs5+9qaPW4V\nIgAAAAAAeOIEPwAAsATUaiW9XbMr7iTdZ+SeVVVlfGrmqCsQHQyCFqxAdJSViPaOTrZXIzr03Ynp\nmRP+7ma9tIOg5mwc1GpkYF4g1N/dzMC8QOjgNSvmXd/f3UirWT8jfwsAAAAAAFhKBD8AALBMlVLS\natbTatazuq/rjN13vL0S0YGxyRwYm8rQ+FSGxqZyYHyy/dr+3D53YGwqB8Ym8/D+sdy169C5kwmH\nuuq1ufjn4IpCByOhgVZz7tyh480jrutvNdLdEA4BAAAAALB0CH4AAIAzqrtRT3fj9COi8anpDC2I\ngtrx0Pjkws/tYOjgdQ/tG5sXE01mcvrE+5Z11WvzVhc6FAzNj4IG2qsQzV+BaG7bsvb1XY3aaT0z\nAAAAAACcDMEPAABwTupu1NPdX8+a/tPbwmx8ano2ADpsRaHZeGh+TDQ5d83+sak8uHd0Lho6MDaV\nqZmTCIcatfR3N9LbVZ977WsHRL1djfR3z37u626kr2ve++7Zc7PXzH7u7aqnu1FLKeW0nh8AAAAA\ngPOP4AcAADivHQyH1p5GOFRVVcanZuYCoQVblM2tPDSV/WOTGRmfznD788jEbGz08L6xjExMZ2h8\nKsPjJxcPJUmjVhbEQb3tMKiv62Ao1I6Guo4dDfV3H7q2p1kXEAEAAAAAnAcEPwAAACdQSkmrWU+r\neXrhUDIbD01Mz2S4HQYNT0y1A6HpjLRDodnj7fPz3h+MiHYPjcy9HxqfysTUzEk+R9px0PxQqD63\nAtHRoqG+owRGc6sXdTVSqwmIAAAAAADONsEPAADAWVRKmV11qFHP6r6uM3LPyemZjIxPZ6gdD83+\nTLejoHlB0UQ7Gpp37cj4dB7cO9YOj2bDotHJ6ZP+3T3N+lwo1NfdyECrkf7uZgZaB9830t9qZKDV\nzEA7FhpotY+1r+tvNdKs187I3wIAAAAAYDkQ/AAAACxxzXotg721DPY2z8j9pmeqdih0KBoaakdE\nh95PLVilaOjgVmZjU9m5dzQHxibntkCbPoktzLobtdkoqDUvCmrHQitazXnh0KHzAwePd89e09dd\nT0M4BAAAAAAsA4IfAAAAFqjXSju+Of2AqKqqjE3O5MD4ZIbGZgOggyHQwShoaGwqB8bnn5u99lvD\nIwuuO4luKD3N+rwVhA5FQUccWxAOHVqVqL81u9VZ3VZlAAAAAMA5TPADAADAoimlpKernp6uetYP\nPPH7VFWVkYnpuVhofhg0FwuNTWVofHI2EjoYEo1N5tEDY4dio4mpVCcRDh1cOeiIVYW6jx4L9bca\n6WnW09tVT6s5+7wHP3c3ailFQAQAAAAAnDmCHwAAAM55pZT0dTfS193IBSue+H1mZqqMTE4fPxZq\nB0Wz5yfnPj+0b6x93ezPqeiZFwHNvTbraXXV09s+1moePF9Lb1djweeeZmPB93q6aunpasx97m7U\nUrMqEQAAAAAsG4IfAAAAlo1arcyt3pPBJ36f6ZkqwxNT87Ypm8zY5ExGJqYzOjmdsfbr3OfJ6Yy2\n389/3T86mUf3jy343sjkdKZPZv+yw8yPiVrNWnq66ultNtLqqqenWWufb8yLiGYjo96uxpGf29cc\njI56uxqiIgAAAAA4hwh+AAAA4BTVayUrWs2saDUX5f4TUzNHhEIjE8cIh9rvx+YFRvOjo9moaN53\nTiMqarXDodkViGpzgVFXo5ZGrZZmvZZmvaTRfm3WamnUy2HHa/nf7N1/tO15Xd/313vvfc65d5gB\nLR0TAxgmQrVDlrV4JahZaRfUOq4YcVkMQ4qx1pY/Akq6lsmSlbYa2q6UpF0mVaAh8kOpES3VlamJ\n0KS0JsYWuPxoIxBWpqBl0JRxwPl57zln7/3pH/u7z/5x9r3nnJmz597vzOOx1l3fvT/fz/d7PmfA\nJevy5PPZGSzNGa7N2fSe7rnRYDFv5bm1n+MINQAAAACe6gQ/AAAAcJPZHQ2yOxrkWRe3ExQlyeFk\nuthVaC0UWvnehUJHwdFadPTYwST7h9M8Mp1kPJnmcDLNeNJy0F3H02kOxtOMp+1ofNuGg9oQHC0+\nL4dDK+HRYDUm2u2uo8Ggi5pm83e750aDyoWdYW67MJoFYBdHue3CztH3W3aH4iMAAAAAtmLrwU9V\n3ZXkbyUZJvmZ1tp/vXZ/L8nPJfmmJA8keVVr7ber6tlJ3pfkm5O8u7X2+qVnvinJu5NcTPIPkryh\ntXb2/2kiAAAAPE3NI5ht7VJ0La21TKYt4+kiCjpcCoVmn2eh0NHnpTmLe617ZunzdPVdq9HR7LoY\nn80/GE9z9XCah6+Ou591rZ+z+BmnNRxUbrswOgqAZp93jj4/8+JOnrly/3g0tDsabPFfDQAAAAD6\naqvBT1UNk7wlybcnuS/JR6rqntbap5am/VCSL7fWXlBVdyd5c5JXJbma5D9L8se7P8veluQ/TvKh\nzIKfu5L82jZ/FwAAAOCJq6rZrjnD5MLO8EYv58xaaysx0P7hJA9dHeehq4d5+Oo4D12ZXR++eng0\ntjz++S89Nvve3TvJ3miQZ15cjoXWdhPaGx3dXw6J5vNv2xtlMLDLEAAAAMBTzbZ3+HlJkntba59N\nkqp6b5JXJFkOfl6R5Ce6z+9L8tNVVa21R5P8RlW9YPmFVfXVSZ7ZWvs/u+8/l+R7IvgBAAAAtqyq\nsjuq7KbbeefiTr7qmY/vXdNpyyMHy5FQ93n/MA9dmUVD8zjooaVo6Hf/4Eoe6qKiq4fXPyKtKrl1\ndzkC2hwGrY89c2nXoQs7A0eTAQAAANxkth38PCfJ55e+35fkT1xrTmttXFUPJnl2kt+/zjvvW3vn\nczZNrKrXJnltknzN13zNWdcOAAAAsDWDQc1263kCx6odjKcrYdDR7kJXFqHQw2u7D/3Lh67mX3xx\nvgvROJMTjinbGdbKMWPL172d2dFwu6NBdoeLz4uxWh1bu78zrA1ji3lDuxMBAAAAbLTt4OeGaq29\nPcnbk+TSpUvX/9srAAAAgJ7ZHQ3y7Fv38uxb9x7X8621XDmcHO0odNrjyT73+4/m4auH2R9PczCZ\n5nAyzcF4mhPaoTMbVDbGQjvDyu5omN1hLY0twqN5THSmGOnYvNn9vWvESHujgePSAAAAgBtm28HP\nF5I8b+n7c7uxTXPuq6pRkmcleeCEdz73hHcCAAAAcIKqyi27o9yyO8offtaFJ/y+ybTlYC0COuw+\n74+nOZy0o7GDpfuLsbZhbOk94zb7vvbug/E0jx5Mjo3Nr7P1tBN3MzqrW/dGuXVvlGfsDXPrhZ3c\n1n2/9cLsetuF+f3F5/n92/Z2cuuF2bN7o+G5rgsAAAB46tt28PORJC+sqjsyi3LuTvLn1ubck+QH\nkvwfSV6Z5IOttWv+7Utr7feq6qGqemmSDyX580l+ahuLBwAAAOD0hoPKxd1hLubmDFgm03bt2KiL\niVYioaV46XDcsr80duVgkkf2x3nk6jiPHHTX/XHuf3g/j+zPdkZ6ZH98ql2PdoeDo0hoEQSNVseO\nhUQ7x565ZWdo1yEAAAB4mthq8NNaG1fV65N8IMkwyTtba5+sqjcludxauyfJO5K8p6ruTfKlzKKg\nJElV/XaSZybZrarvSfLvttY+leQvJHl3kotJfq37AwAAAADXNBxUhoNhLuw8OUHS/Mi0eQw0D4Qe\n3h+vjD18dZxH9g+7sUke2T/M//fw1fw/9y/u74+nJ/68quTW3aVQaCkQesbueki0s/L9GbtLuxBd\nGGVnOHgS/gkBAAAAj1ddZzOdp5RLly61y5cv3+hlAAAAAMCZHYyneXR/KRw6Fg8drnx/9GAeEi3F\nRd1uRKf568C90WAlAFoOgp6xN8reaJjd0SB7o8HRdfF59d7ucJC9nWF3HRxd94azebujQYZ2JgIA\nAIAkSVV9tLV26aR52z7SCwAAAAB4gmZhzG6+8hm7T+g902nLY0e7Dh3OdhTqPq8HQkfxUPf5d//g\n6lFsdDBeHH12HkaDWgRCG6Kh2XW4FAst4qGNkdE13rE3GmR3OFwJj5bfsTOsVImPAAAAuPkJfgAA\nAADgaWIwqNmuPXujJBee8Pum05aDyTT7SwHQ/uGku06XrpMcjGfz5n/m0dD+eHFvZWztHQ9eObzu\n/Ok5bWS+Gggdj4Yu7AyzNxrm4u4wF3cGubgzzIXdYS4cjQ2XxgZHYxd2Zvcv7Czm7I0GGdjdCAAA\ngMdB8AMAAAAAPC6DQeXCYBax3GjjY+HRLDS6uhIenRAZLQdJK8HRIkB6dH+c33/kIFcPJ7lyMMmV\nw0muHk6yP358ux1d2BmsRECLMGiw+L4UCy3mDo5HREfh0eDYmLAIAADgqUXwAwAAAAD03mg4yGg4\nyDP2bszPn05bro6XI6DpLApaC4MWodB08f1w83NffvRwdU53//HYHQ2OoqKLu7PdhY7vSDSLhY52\nIFqaP4+PVkKk3fm8xTOj4eCc/8kCAACwieAHAAAAAOAJGgwqt+yOcsvudv/KdTpt2R9PVyKgKwfz\nmGi6CIOWIqPjY9PFvYNJHrp62L1junjfeJL2OI5JGw1qERAtxUEXjnYwGixFR8sx0WA1MjqKigZr\nOxsNu2PVHIcGAAA8vQl+AAAAAAB6YjCoWSSzO8xXbvHntLYWFq3tQLQ8fnU8PRYYHe1U1MVDVw4m\n+YPHDlajpO7P4eRxlEXJyi5FiyhocZzZ8q5FF0YbjkXrxi8svWM5Ppo/vzOsVImLAACAm4vgBwAA\nAACAFVV1FMd8xZZ/1ngyzdXxdGmnouM7EV1d2snoSje+vxYdXTmYZL+Lix68criy69H8nY9n16Lh\noHJhNMjeziz+2R0NsjMcZHc4yO5odt3pPu8MB9kbDVbnjRZzd9auu2vv2xkNstddl9+7eH51vl2O\nAADg6UvwAwAAAADADTMaDnLrcJBb97b719XzXYv21yKg1ahouhQcLe9kNM3hZJqD8ey6P5nmcDzN\nwWQx/tiVydH95evB0vXxBEfXMxpcKyw6OUzaHdWGsU1xUmVvNMzezmxHpJVrd7za/LozHJzvLwgA\nAFyT4AcAAAAAgKe85V2LnpWdG7KG8WSaw0lbhEBL4dB8bD0kOujmrwRHG8Oi4/Pm731kf7w03lZC\npPn4ePrEa6ThoI4CoPmuSHvd9cLG68kR0d7a903X0cCxawAAPP0IfgAAAAAA4EkwGg4yGiYXd4c3\neinHTKdtJTRaDoP2x5Psj2e7H812SVr9fvVwkv3Daa6O16+zufPrg1cO88UNz149nOSJ9EaDykoA\ndHIsNMjeaHjida+7zo5bq6Mdk0bD2eejo9iGlaHoCACAJ5ngBwAAAAAAnuYGg8qFwSyWuRHmOxed\nFBHtr0dFm+KjtetDVw5XYqXlEGlyDjsbzc3jn53RIKPBILvd53kctHMUCh2Ph+bHq+2MavbsaHn+\n6udj0VEXI82e2/zM8ecESgAAfSf4AQAAAAAAbqh5lHLr3pP7X1uMJ8d3IrrahUXz6+GkZTw/gm3S\nctjthHT0+egItdYd2zb7PJ83nix2T5o/Nz9m7XDczZsuPh8sPXceR61dyzwIGg2qC4w2xEVLOyLt\njQbXPW5t9mexM9Lsunx/aX53b3c4EB4BADxOgh8AAAAAAOBpaTQc5NYbEBqd1nTaZjHQenQ0XouO\nlu6tREfzedPlZ46HSweTafdcFyeNF+/cP5zmoSvjxS5Ja0e8tSfQJFVlJQba2xnkwnI0tCEourCz\niI2OBUVrsdHKEW3d++djYiMAoO9uzv8ECwAAAAAA8DQ3GFT2BsPcpD1SWms5nLSVHZFmR6etHcO2\nFAjNj1Zbua7cXz227eGr42u+/4nERklWo6G1yGh3OJgdyTaolSPUdoaV0XA2vjMcZDScHd826o5M\n2+12TZo9u3qM2nz+zmB+9NvivUfPDrtj3RzBBgCc4FT/EbGqhkne3Fr70S2vBwAAAAAAgB6oquyO\nZkeC3Xbhyf3Zy7HRSjC0diTbsaBoQ2y0Mv9wMXblyuToeLX50WtHn7vr/Mi2bRsOahYNDQZrsVAX\nIM0/DzbESUfHty2HR2uB0do750e6zY972x0NstdFULvDxfje2pxdgRIAPGlOFfy01iZV9Se3vRgA\nAAAAAAA4yUpsdIPX0lrLZNoyns6PR1scwbYcCI2n02Ox0Oq9+fjsSLbxZDp753i6dn8tOpoeD5Ae\nOxgvPbv+XPe5e24yfYJbJW2wiIJqNRxaCoNWQqH52MbxWsREo+PvWA+ONr6/uw4HQiQAnjrOsgnk\nx6vqniT/Y5JH54OttV8+91UBAAAAAABAD1TNjv0aDZMLO8MbvZwzm07b0e5F82DocDLNwXgWLS1f\nj8ZXxloOxpPuuZb98fG5h5Np9je849H98Wz+ZH1+O/oZ52m+U9IsABouYqKlOGinO5ZtfvzasNv5\naNgd7za/NxrMdkc6GuvG5z9j2O2oNBzU0fFuy+86mtP9jKN3Dtfee/Szlsa7OQImgKe3swQ/F5I8\nkORlS2MtieAHAAAAAAAAemgwqOwNhtk7y39r+CSZH912LDhai4kOxrOg6HBDnLS/EhBNjj7vb4iS\nlt/76MEkk3kINV3suHT0fTrNpNspaTKdrfPJVpVFCNTFQiuh0TxUWg6JjkVFy2PzI982HP82GGRn\n1B0r1x0XNz8Wbmdl/uLzPJ7aWR9bf2bgGDiAx+PU/6+7tfaD21wIAAAAAAAAwNzy0W3Zu9Grub7W\nWqYtOZzMAqBxd1TbeL1yz3MAACAASURBVLopGFoNiSbTlsNpy2TpmLXV9yyOfVuec/TO9Z+39LOW\n37X8M64cTjK+Ot3w7PxousVRcYeTabZw8tuKnS4+Wg+D5lHRLDia7Yi0fm8+fyVEGtTa/NWIaTU4\nGmR3tPyewcqxdMu7Px2NDQYZ2GEJuMFOHfxU1XOT/FSSb+uG/kmSN7TW7tvGwgAAAAAAAAD6oKoy\nrGQ46N+xbqcxD4fG05bD8TSHXTg07oKgRRzUzVuKhQ4ni2DpsIuJDjY8O57Odl8aT6c5HLdr/ozx\nPFhambf8MxfzzvtYuGXz3YuOYqBhFxl1wdDOqBsbLmKh3eXdjkbHw6Kd4SB7o8FKxLR4rouejo6l\nWw2Udka19HMHRzs8AU9dZ9mc711J/m6S7+u+v6Yb+/bzXhQAAAAAAAAAN4fhoBYx002+29Ky1trR\nkWuH09mxb4uwaC1KmiwfCbe4Nz9G7nB+PNzS+PzZ+f3FvdXnH90f52DtnYdrP2u8hW2UBpWlIGke\nDdXR50U0VCtz5jsozefPdkFaDZOu/Xn1++5ovnvTYiel+Y5Lyz/PrklwdmcJfm5vrb1r6fu7q+ov\nnveCAAAAAAAAAOCJqqrZkWDD5GJu7t2XJmsB0kpsNJntZnSwEhp10dCkrYzNI6KVsfV7RwHTPGZq\neWQ8Pvo5h5NuF6fu88HSDkrbCJPmRmtHts2Do53B0udNUdHa8W673fFuRzsvLUdGXeQ0Giw+DweV\n0WD2zGhQR99n1+7+8Brjg8pwuDo+qNm/92DbzhL8PFBVr0nyC933Vyd54PyXBAAAAAAAAABPH/Nd\nlC7s3Nxh0nS6etzawTxQ6o5jW97d6HDlaLe1nZPWjms7Os5tKVaaR0bzYGm8tMPS1cNpHrm6unPS\n8v3lHZluhGPh0FJYdOag6Oj+piBpU6g02PC+tee7+7fsDvOyr/9DN+SfEU/cWYKf/zDJTyX5ySQt\nyW8m+cFtLAoAAAAAAAAAuLkMBpW9wTB7ZykNbqDlY91mOxUt7aC0FApNpi3j6fw6XXyfXGP86P50\n9fvRdbrh+aXxY+9fHb9yOFmML61vPJ1ueOdibYeTs+3A9FW37eXDf0Xw01en+j/Dqhom+d7W2ndv\neT0AAAAAAAAAAE9Yn451Oy/Ta8VLK5HRbNzJY/12quCntTapqldntrsPAAAAAAAAAAA3mcGgsjuY\nlzxPj8jp6eosG23906r66SS/mOTR+WBr7WPnvioAAAAAAAAAAGCjswQ/39hd37Q01pK87PyWAwAA\nAAAAAAAAXM+pgp+qGiR5W2vtl7a8HgAAAAAAAAAA4DoGp5nUWpsm+ctbXgsAAAAAAAAAAHCCUwU/\nnX9UVT9aVc+rqn9l/mdrKwMAAAAAAAAAAI451ZFenVd119ctjbUkf+z8lgMAAAAAAAAAAFzPqYOf\n1tod21wIAAAAAAAAAABwslMf6VVVt1TVf1pVb+++v7Cqvmt7SwMAAAAAAAAAANadOvhJ8q4kB0m+\ntfv+hST/5bmvCAAAAAAAAAAAuKazBD9f21r760kOk6S19liS2sqqAAAAAAAAAACAjc4S/BxU1cUk\nLUmq6muT7G9lVQAAAAAAAAAAwEajM8z98STvT/K8qvr5JN+W5D/YxqIAAAAAAAAAAIDNTh38tNb+\nYVV9LMlLMzvK6w2ttd+f36+qF7XWPrmFNQIAAAAAAAAAAJ2z7PCT1toDSf7+NW6/J8mLn/CKAAAA\nAAAAAACAaxqc47vqHN8FAAAAAAAAAABscJ7BTzvHdwEAAAAAAAAAABucZ/ADAAAAAAAAAABs2XkG\nPwfn+C4AAAAAAAAAAGCDUwc/NfOaqvrPu+9fU1Uvmd9vrb10GwsEAAAAAAAAAAAWzrLDz1uTfEuS\nV3ffH07ylnNfEQAAAAAAAAAAcE2jM8z9E621F1fVx5Oktfblqtrd0roAAAAAAAAAAIANzrLDz2FV\nDZO0JKmq25NMt7IqAAAAAAAAAABgo7MEP/9dkl9J8lVV9V8l+Y0kf20rqwIAAAAAAAAAADY69ZFe\nrbWfr6qPJnl5kkryPa21T29tZQAAAAAAAAAAwDGnDn6q6j2tte9P8s83jAEAAAAAAAAAAE+Csxzp\n9aLlL1U1TPJN57scAAAAAAAAAADgek4MfqrqjVX1cJJvqKqHqurh7vsXk/y9ra8QAAAAAAAAAAA4\ncmLw01r7a62125L8jdbaM1trt3V/nt1ae+OTsEYAAAAAAAAAAKAzOsPcX6uqP7U+2Fr7x+e4HgAA\nAAAAAAAA4DrOEvz8paXPF5K8JMlHk7zsXFcEAAAAAAAAAABc06mDn9ban1n+XlXPS/I3z31FAAAA\nAAAAAADANQ2ewLP3JfnXz2shAAAAAAAAAADAyU69w09V/VSS1n0dJPnGJB/bxqIAAAAAAAAAAIDN\nTh38JLm89Hmc5Bdaa//0nNcDAAAAAAAAAABcx6mDn9baz25zIQAAAAAAAAAAwMlODH6q6p9lcZTX\nyq0krbX2Dee+KgAAAAAAAAAAYKPT7PDzXVtfBQAAAAAAAAAAcConBj+ttd+Zf66qP5Tkm7uvH26t\nfXFbCwMAAAAAAAAAAI4bnHZiVf3ZJB9O8n1J/mySD1XVK7e1MAAAAAAAAAAA4LjTHOk191eSfPN8\nV5+quj3JP0ryvm0sDAAAAAAAAAAAOO7UO/wkGawd4fXAGZ8HAAAAAAAAAACeoLPs8PP+qvpAkl/o\nvr8qyT84/yUBAAAAAAAAAADXcurgp7X2l6rqe5P8yW7o7a21X9nOsgAAAAAAAAAAgE1OHfxU1TOS\n/L3W2i9X1dcl+bqq2mmtHW5veQAAAAAAAAAAwLLBGeb+4yR7VfWcJO9P8v1J3r2NRQEAAAAAAAAA\nAJudJfip1tpjSb43ydtaa9+X5EXbWRYAAAAAAAAAALDJmYKfqvqWJP9+kr/fjQ1P8dBdVfWZqrq3\nqn5sw/29qvrF7v6Hqur5S/fe2I1/pqq+Y2n8P6mqT1bVb1XVL1TVhTP8HgAAAAAAAAAA0FtnCX7+\nYpI3JvmV1tonq+qPJfnfrvdAVQ2TvCXJdya5M8mrq+rOtWk/lOTLrbUXJPnJJG/unr0zyd2Z7SJ0\nV5K3VtWwO1LsR5Jcaq398cyio7vP8HsAAAAAAAAAAEBvnTr4aa39emvtu5O8rapua619trX2Iyc8\n9pIk93ZzD5K8N8kr1ua8IsnPdp/fl+TlVVXd+Htba/uttc8lubd7X5KMklysqlGSW5L87ml/DwAA\nAAAAAAAA6LNTBz9Vdamq/lmS/zvJb1XV/1VV33TCY89J8vml7/d1YxvntNbGSR5M8uxrPdta+0KS\n/ybJ/5vk95I82Fr7X66x5tdW1eWqunz//fef5tcEAAAAAAAAAICb2lmO9Hpnkr/QWnt+a+2PJnld\nkndtZ1nXVlVfmdnuP3ck+SNJnlFVr9k0t7X29tbapdbapdtvv/3JXCYAAAAAAAAAAGzFWYKfSWvt\nn8y/tNZ+I8n4hGe+kOR5S9+f241tnNMd0fWsJA9c59l/J8nnWmv3t9YOk/xykm89w+8BAAAAAAAA\nAAC9dWLwU1UvrqoXJ/n1qvrbVfVvV9W/VVVvTfK/n/D4R5K8sKruqKrdJHcnuWdtzj1JfqD7/Mok\nH2yttW787qraq6o7krwwyYczO8rrpVV1S1VVkpcn+fSpflsAAAAAAAAAAOi50Snm/Ldr33986XO7\n3oOttXFVvT7JB5IMk7yztfbJqnpTksuttXuSvCPJe6rq3iRfyiwKSjfvl5J8KrOdhF7XWpsk+VBV\nvS/Jx7rxjyd5+yl+DwAAAAAAAAAA6L2ababz1Hfp0qV2+fLlG70MAAAAAAAAAADYqKo+2lq7dNK8\n0+zws/zSP53kRUkuzMdaa286+/IAAAAAAAAAAIDHY3DaiVX13yd5VZIfTlJJvi/JH93SugAAAAAA\nAAAAgA1OHfwk+dbW2p9P8uXW2l9N8i1J/rXtLAsAAAAAAAAAANjkLMHPle76WFX9kSSHSb76/JcE\nAAAAAAAAAABcy+gMc3+1qr4iyd9I8rEkLcnf2cqqAAAAAAAAAACAjU4d/LTW/ovu4/9UVb+a5EJr\n7cH5/ar69tbaPzzvBQIAAAAAAAAAAAtnOdLrSGttfzn26bz5HNYDAAAAAAAAAABcx+MKfq6hzvFd\nAAAAAAAAAADABucZ/LRzfBcAAAAAAAAAALDBeQY/AAAAAAAAAADAlp1n8PPb5/guAAAAAAAAAABg\ng9FZJlfVtyZ5/vJzrbWf667fe64rAwAAAAAAAAAAjjl18FNV70nytUk+kWTSDbckP7eFdQEAAAAA\nAAAAABucZYefS0nubK21bS0GAAAAAAAAAAC4vsEZ5v5Wkj+8rYUAAAAAAAAAAAAnO8sOP/9qkk9V\n1YeT7M8HW2vffe6rAgAAAAAAAAAANjpL8PMT21oEAAAAAAAAAABwOqcOflprv77NhQAAAAAAAAAA\nACcbnHZiVb20qj5SVY9U1UFVTarqoW0uDgAAAAAAAAAAWHXq4CfJTyd5dZJ/keRikv8oyVu2sSgA\nAAAAAAAAAGCzswQ/aa3dm2TYWpu01t6V5K7tLAsAAAAAAAAAANhkdIa5j1XVbpJPVNVfT/J7OWMw\nBAAAAAAAAAAAPDFnCXa+v5v/+iSPJnlekn9vG4sCAAAAAAAAAAA2O/UOP62136mqi0m+urX2V7e4\nJgAAAAAAAAAA4BpOvcNPVf2ZJJ9I8v7u+zdW1T3bWhgAAAAAAAAAAHDcWY70+okkL0nyB0nSWvtE\nkju2sCYAAAAAAAAAAOAazhL8HLbWHlwba+e5GAAAAAAAAAAA4PpGZ5j7yar6c0mGVfXCJD+S5De3\nsywAAAAAAAAAAGCTs+zw88NJXpRkP8nfTfJgkjdsY1EAAAAAAAAAAMBmZwl+7uz+jJJcSPKKJB/Z\nxqIAAAAAAAAAAIDNznKk188n+dEkv5Vkup3lAAAAAAAAAAAA13OW4Of+1tr/vLWVAAAAAAAAAAAA\nJzpL8PPjVfUzSf7XJPvzwdbaL5/7qgAAAAAAAAAAgI3OEvz8YJKvT7KTxZFeLYngBwAAAAAAAAAA\nniRnCX6+ubX2dVtbCQAAAAAAAAAAcKLBGeb+ZlXdubWVAAAAAAAAAAAAJzrLDj8vTfKJqvpckv0k\nlaS11r5hKysDAAAAAAAAAACOOUvwc9fWVgEAAAAAAAAAAJzKqYOf1trvbHMhAAAAAAAAAADAyQY3\negEAAAAAAAAAAMDpCX4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAA\nAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAA\nAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAA\nAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4If\nAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAe\nEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAA\nAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI9sPfipqruq\n6jNVdW9V/diG+3tV9Yvd/Q9V1fOX7r2xG/9MVX3H0vhXVNX7quqfV9Wnq+pbtv17AAAAAAAAAADA\nzWCrwU9VDZO8Jcl3Jrkzyaur6s61aT+U5MuttRck+ckkb+6evTPJ3UlelOSuJG/t3pckfyvJ+1tr\nX5/k30jy6W3+HgAAAAAAAAAAcLPY9g4/L0lyb2vts621gyTvTfKKtTmvSPKz3ef3JXl5VVU3/t7W\n2n5r7XNJ7k3ykqp6VpI/leQdSdJaO2it/cGWfw8AAAAAAAAAALgpbDv4eU6Szy99v68b2zintTZO\n8mCSZ1/n2TuS3J/kXVX18ar6map6xqYfXlWvrarLVXX5/vvvP4/fBwAAAAAAAAAAbqhtBz/bMEry\n4iRva639m0keTfJjmya21t7eWrvUWrt0++23P5lrBAAAAAAAAACArdh28POFJM9b+v7cbmzjnKoa\nJXlWkgeu8+x9Se5rrX2oG39fZgEQAAAAAAAAAAA85W07+PlIkhdW1R1VtZvk7iT3rM25J8kPdJ9f\nmeSDrbXWjd9dVXtVdUeSFyb5cGvtXyb5fFV9XffMy5N8asu/BwAAAAAAAAAA3BRG23x5a21cVa9P\n8oEkwyTvbK19sqrelORya+2eJO9I8p6qujfJlzKLgtLN+6XMYp5xkte11ibdq384yc93EdFnk/zg\nNn8PAAAAAAAAAAC4WdRsM52nvkuXLrXLly/f6GUAAAAAAAAAAMBGVfXR1tqlk+Zt+0gvAAAAAAAA\nAADgHAl+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAA\nAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAA\nAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHtl68FNVd1XV\nZ6rq3qr6sQ3396rqF7v7H6qq5y/de2M3/pmq+o6154ZV9fGq+tVt/w4AAAAAAAAAAHCz2GrwU1XD\nJG9J8p1J7kzy6qq6c23aDyX5cmvtBUl+Msmbu2fvTHJ3khcluSvJW7v3zb0hyae3uX4AAAAAAAAA\nALjZbHuHn5ckube19tnW2kGS9yZ5xdqcVyT52e7z+5K8vKqqG39va22/tfa5JPd270tVPTfJn07y\nM1tePwAAAAAAAAAA3FS2Hfw8J8nnl77f141tnNNaGyd5MMmzT3j2byb5y0mm1/vhVfXaqrpcVZfv\nv//+x/s7AAAAAAAAAADATWPbwc+5q6rvSvLF1tpHT5rbWnt7a+1Sa+3S7bff/iSsDgAAAAAAAAAA\ntmvbwc8Xkjxv6ftzu7GNc6pqlORZSR64zrPfluS7q+q3Mzsi7GVV9T9sY/EAAAAAAAAAAHCz2Xbw\n85EkL6yqO6pqN8ndSe5Zm3NPkh/oPr8yyQdba60bv7uq9qrqjiQvTPLh1tobW2vPba09v3vfB1tr\nr9ny7wEAAAAAAAAAADeF0TZf3lobV9Xrk3wgyTDJO1trn6yqNyW53Fq7J8k7krynqu5N8qXMIp50\n834pyaeSjJO8rrU22eZ6AQAAAAAAAADgZlezzXSe+i5dutQuX758o5cBAAAAAAAAAAAbVdVHW2uX\nTpq37SO9AAAAAAAAAACAcyT4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAA\nAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgB\nAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgR\nwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAA\nQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA6BHBDwAAAAAAAAAA9IjgBwAAAAAA\nAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAA\nAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgB\nAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4A4P9v715jJMsO+oD/Tz/nPbOzu7bXu+tdPwCztsHYiwWs\nHSEQCZBIdogDNsFyokjkA0ig5AMPJYIgRUoiApEiAiECySQOhhiTWBFSeAQRbMC7a+O3Y2zMmn15\n197ZndnZme7p7jr5cG9NV92uqu6enZ7q6v79pKu699xHnZquuX37nv89BwAAAAAAAGCGCPwAAAAA\nAAAAAMAMEfgBAAAAAAAAAIAZIvADAAAAAAAAAAAzROAHAAAAAAAAAABmiMAPAAAAAAAAAADMEIEf\nAAAAAAAAAACYIQI/AAAAAAAAAAAwQwR+AAAAAAAAAABghgj8AAAAAAAAAADADFmYdgUAAABgZvV6\nyZOfTp76fPKi1yRnX5aUMu1aAQAAAAAHnMAPAAAA7FSvlzz5qeShDzTTFz+YXH56c/3Rm5I7vnFz\nuv11yZHT06svAAAAAHAgCfwAAADAOL2N5IlPJg99cDPgs/JMs+7MXcnX/O3k7jcmt3x1s90jDzTT\n5363PUBJbn1lcudACOiWr0nmjLANAAAAAFw7gR8AAADo620kX/rEZrjnix9MVs436256afK1fye5\n+03JXfclZ+4c3veO1yevf2czf/mZ5LGPJA+3AaBPvz/5yK8165ZPJbe/fqAnoHuTY2dv3GcEAAAA\nAGaewA8AAACHV28j+dLH2yG6Pph88U+S1Tbgc/ZlyT1vTu56Y3L3fcnpO3Z+3KNnkpd/WzMlSa3J\nU3+ZPHL/Zi9Af/yzSe01629+xWb45443JC+4J5n3JzsAAAAAMJq7hwAAABweG+sDAZ8PJH/9p8nq\nhWbd2Zcnr3pL04PP3fclp158/d63lOSWVzTTa7+/KVu9mDz2520A6MHk87+ffOzXm3WLx5IXv254\nKLATL7h+9QEAAAAAZprADwAAAAfXxnrypY8NBHz+bDPgc/Mrkld/z+YQXaduu7F1Wz6RvPRNzZQ0\nvQA988Um/PPIA8nD9yd/8h+S3nqz/sxLmt5/+gGgF70mWVi6sXUGAAAAAPYFgR8AAOD5W7ucXDqX\nXHoq2VhrhjM6elNy5HQyNz/t2nGYbKwnj390OOBz5dlm3S1fnbz67yV3v7GZTr5ounXtKiW56e5m\nes1bm7K1y8njH98cCuyv/zT55HubdfPLyYtfOzwU2Onbp1V7AAAAAOAGKrXWadfhhrj33nvrgw8+\nOO1qAADA/re2klxuwztXp3ObgZ5LTw2sb1/XLo05WGlCP0dv2tl07GwbFDqTzHs+gR3YWEse+2jy\n0B8nX/xgG/C52Ky75Ws2wz133ZecfOF063q9nH+0HQasHQrssT9PNlabdSdf3IR/7mx7Arrt65PF\no9OtLwAAAACwY6WUD9da791uO3fQAfbK2kry7GPJhceSC48385eeSmqvGa6h1iR1czltWe2NmR/Y\nZst+k46x0/3685lcj5H7Zft6pCaLx5tG3yOnkuVTm/NHTg8vL58eXrewfKN+agAHz/rqcFDnamDn\n6fGBnrXnxh9v+XQTyjl2c3LiRckL7mnm+2VHzybzS8nKM817jJqe/qt2/pm0v0TGvNepzZ6CdjP5\nvXGwbaw1AZeH/rjtwedDm9/ZW1+ZfP3bNgM+J14w3bruldO3N9Or3tIsr19JnvjE8FBgn3l/s25u\noRn66+pQYPc2PQiVMrXqAwAAAADPnx5+AHar1qYR88LjTZjnaqjnseTZxzfnL5/buu/8UtPoktI0\nspS5dj7t61zb+NKdH9y2jC+feIx0jjFmfmi/7KJOc+32Y+qRNL0/rJxPVi40r6vt/KTG3qQZrmJk\nMKg/f3pg3ZjtDCfD81Fr08C8sdq8rq925q800/rqwHZXmgbY3nrGB+YGA3ITwnIj9xkM243aZ9Jx\ncg371Ob9drNPKcnC0aZnicWjycKRZPFYsnikXT7azh/rrOsvH93cbm7uhvyo971+eGdL7zud8M5g\n7zv9nk5GWT6dHLupDezcvBnY6Yd3BoM8x25uwjTzi9fv8/R6ze+CoUBQGxS6dG58YOjy00ndGH/c\nxWOdEFA3NHR2rQKHtwAAGotJREFUdFBo8agQxH60fmU44PPwhzZ7lHrBPU2w52rA59bp1nU/ufhk\nGwC6v3l99CObwajjtw4MA/aNyYtflyyfmG59AQAAAIAkO+/hR+AHYFBvo2kcuRrkeTy58OhwkOfC\nY8n65a37Hr81OfXiZhiFU7cNzLfTydua8AnDer2mMXr1QicM1F8+P7xu1HZjh5EZsHRym9BQd11n\nu8VjGoH3Wq3N/8GN1eHgzHobphkbtlnbuk8/bLPTUM52x964Mu1/nV3aJqA3KhC4F/vUXrK+0vR4\ntna5+b86KaQxyfzy+DDQYhscGgwXDa07OrzPpLDRwtEbN4zU+pWtw2L158cNp3Xl2fHHWz7VDol1\ncyesc7YT5hkI7yws3ZjPer3Vmqw+OzkQdHlUD0PnJv9/nl8e02vQNr0MLZ/0O+J6Wr+SPPaRgYDP\n/QMBn1e1Q3Td1wR8jt8y3brOko315Mufaf49+z0BPfW5Zl2Za/5tB4cCO/tyYUsAAGB21ZpceW7z\nHvPKMwPz58eXX36m2XfkPZURD0gdPdvcUwKA60jgp0PgB9gyxFY3yPPs48mzX9raGD232IR1TvWD\nPLe3ywPzJ2+b3UbTg2BjrQ0DnR8RGtomQNRf7q1Pfo+5hTE9CJ0eExoanD/TDC9TN5pAS60D8xtN\nKKI3+NqZ7/VGlPW3qyPKepv7jH2Pzvpeb0RZf7vu+/aG67XleCPeY2J4ZyCIs11vT7s1v9z0rLWw\n1M4vNj+LofnFZnlwfsfbjTr2Ulvezs/NZ3xoZlSopjO/myDOLAQONtba8M/lJjy5ttI05K+3r/1w\n0Nh1/eX+MUata+d7a9dWx7nF0b0SbQkUbbPuysUJve+ca8494yydHNPzzs3jby75PbS9WpvvTTcE\ntJPA0KRw6dxCc64fDAgdObP5euT0+LKlE7Pxf3cvra8mj344eeiDTcjn4fs3w9UvfPVm7z133Zcc\nv3m6dT1oLp1r/u0feaCdPtxcTyXN9/SOe9uhwO5Nbn99850FAAC4EWod6DF+QlDn8rggz/ntHzxb\nPD7wN/tAT/IpnYexnt78W2nccUY9eNV/4EpICIBdEvjpEPiBA+zqEFttkGdwiK2rw2w92jTWdS2d\nHNEbz2Co58XJsVs83XzQ9RuAt/QmNCpANKanoUm9bsyaMpeU+SaoUuab5blRZYOvnfm5ueHjDIVg\n+sGZtmxswOZ57jO3oBH9sNtYHx8cWr+8GRrqBoe2rOvPT1g3qdeYpRMjngKb1PvO2eY7zP6yttJc\nb0zsVagdiqx703FSmHFuob2heGbgBuOZnYWGlk/N5jXK+mrTw8xDH0i+2Pbgs76SpCQvenVy1xvb\nkM+3NP8fuHF6veQrfzEQAHogefIzufodvuVrkju/sR0O7BuTW19p2FQAAGC0Wpu/9UYFcS4/PSHI\nMzBt9zDX4rHhoM6W6cyE8lO7G7Z8/crmg0OjemUeGmJ9tyGhEUOqCwntXK3NvYa1S02vTmuXmgfx\nrlzqlF1qhrq+8tzAfGebxWPJ6TuS03e2r+106nb//sANJfDTIfADM2rLEFuDIZ4dDLF1sg3vGGKL\nvdbbaIaXGRcMWl/pBGbKQDjmGkM0V1/LiLK5zr7znX1Hre8fS0gGdq23sbXnoaXjbsbQBChWL7Rh\nof5Th/35SWXt68SnEUvbo9wOA0Ld9Tdq+Lq1leTRNuDz0AeaEMnVgM9rkrvf1AzR9ZJvFvDZj1Yu\nNEOsPTwQArp8rlm3dDK5/XVN+OfMSzpPxQ7MCwUBAMBsWl8dHupq4tBYI9ZNekAqaXpI3lFAp7P+\naPsQzH7v7bgfEtoSBjqEIaFam+/DlecGAji7COIM7TewzZXnmvna2119Fo8nS8eagM/S8fb1WLJ6\nsXmA/OITW/c5futACKgbCLqjWT+LD2YB+5LAT4fAD+xDa5cHgjuDQ2w92vbUs8Mhtkb1zHPyRXpH\nAABmW63NjaudBoSu3oBtyzZWJx9/6eTuexXqbz/pOmttpQmFDAZ8NlaTlOS2r2sCPnfdl9z1zc0N\nSWZLrcm5Lwz3AvSlT04Opw0OhTp4A39cQGiw3LB3AACwc/2HEq881/Rwsnqx7emkP9+u65dP2nb1\nQvuwxgTzS9uHdMZd9y+f2j9hlP1k1yGh7YaN7/Y8vU1I6Mjpgd5yRgRrJgZxxgV42nXbDbHWNS6U\ns3i8Wb46393m+PB8d7/Fo9v/nbm+2rRVnX9kYHp4eLk7/Pv8UtNGNSoQdPrO5PTtzfsD7IDAT4fA\nD0ywsd40wqyvNgnr9dVkY21E2ZXh+W3Xtcfpll06Z4gtAIC9tnZ5970K9UNDa89NPvbC0a0hoCNn\nmptfjzzQXPuVueRFX9cMz3X3m5KXfFOzLQfP2uXmRvPQU7/ns2V4u+4Tv5ef2X5Y1DI/uaFg8Ps3\nKjTkIQAAAPazjfXmmnj14kDw5tk2ePPc5vzV9d1tOyGeUT3hj1SaIMjyiTYccSJZPtm8Lh1vyrft\neeeMwM5+sZOQ0NC6bUJCu7F4bETIphvEOTE6lDNpv4Wj+7sdqNbm33xcIKj/gHu356GjN40PBJ26\nvXmYXS+5QAR+thD4YV/od1nYDcCsX+kEZvplg4GZgbKr23fL+sftrhsM8IzYfrddHU4yt9CkmOeX\nmpvr88tNt5rzy814uAvLTZrcEFsAAPvX+pVOKKg///SEXoXOJ8dvaYbn6gd8jpye9idhv9tY3xz2\nbstQATsIDW33xPHCkd33KmQ4MoCtam3uL/XWmoa4/dwAx86tXW4afS+f23y9/HQ7//RwWe01D+Ed\n7/cEcUtz7Xfslmb5eFu2dFzvfBxs61c6PeZ05reUDYZ0RoR4tuuZta/MtaGJbUI6SycH5vvrR2y7\neMy5/LAbFxJaOd/8HbWTXnX2eyhn2jbWmtDPyB6C2t6DukO4zS007WZDYaDBgNDt7rVMsn6lOceu\nXtgMUI6brgwuX2z+/l9Ybr7XC8vt/4MjzevVabnpIaq/vj8tDqzv7794dKDsiPsL7JrAT4fAzyHW\n67UBl5XhsMv6ytZQzGAQZ32lE85Z6azvhnA6ZaP232682t2aX25DNf2AzdJwwGahDdlsKetuvzwQ\n0FncYdnS8Hz/1S8sAADgRllbGdN70NPjexUaLNvu4YedDEe2fLL9+2hx8++k7vzc4uRt3CSfLbUm\nvfXmdW7Bz4/9rdcb7i2i3wCypdHjwnCDx6jy3lpzzDLXnPu658ehc+bg1ClfPuX+0fW2sd78btsS\n2tkmyDMpOLt4rB0C5qbmtZTkuaeSS19JnvvK5veha+FIGwI6uxkIOn7L5pAx3bIjZ5xH2XuD58Kr\n0/nRDcArnfJuiGen9/jLXBO+6QdvBgM52wV2Rq3fyRBEwOxZOb8Z/ukOGXbhkeTCY83fHoOWT00I\nBN3RPFw/vzidz3Mtehudc/TF4WvQoWvYzrn8SuccvtNz9NLJ5vy6PHCerb22rfdyO6zdymbb8Prl\n59/GO7e4g7BQt2wnoaJtwkfzi35/zCiBnw6Bn33miU8lz35pl4GaUYGdwR5xuoGdtrz7i/Balfnh\ncMvV3mv6ZUeGAzcLRzpBm37ZhJ5vutvPjwrwDNwcdoIGAAC4NrU2Nw4nDTk2qXy74ch2o8yPCAIN\nvk4IE00MEi1ss9+k+TH7btdI3w/DbKw1r/1pKssbTYP0TpZ7602DeW+9LdsYOGZnuW5s/dxzC83P\ncW6h+Team9+6vO02C03j4NzCLrcZLBt8n4H33ck2E+s711le2PrdWVhubmJruL8++j1IbBvOGdEo\n0m0E2YmFo22jx+B0arMRpD/NLbY9s10YOEe20+qFzdftLJ3cPhg0GBAaChedmq1GrN2otfm5Tepp\nZ1SQZ+X8+GOW+SZ8c/RsM4xIf74f5BkqG9hu0jA9/Xpe+spmCOjSU00QaGTZU833eVL9roaAznZ6\nDxoRHDqoP3+26vW2Nub2z3cr3fPehfHnwtVnk+ygLWzxeBtoPLXZAHz1tR/C6YZ4xgR2Fo64fw88\nf72N5OITowNB5x9uwkKXzw3vU+aSEy8aHwg6fUfzu/75nKNqbXoKHDwHT+pRZ0vwfGDb7YaV71s4\nsnlNunSivVbtBHeWTw6EecZM19pbZa/XtlWvDAeD1lcGwkED69cu73K7gfJu2Oh5jdRStg8GnXhh\n8j2//Dzeg70g8NMh8LPP/Prbk8/+zvbbjQq8DIVuBgM0zzeIM+F95pebm50AAACQbA5HtvpsGxbp\nD728tov5td1v31vb2bbX6+GXrjI3HCiqG9uHYfba1SDLYhtEWRhYnm97WRq1PBBcuRp0WRwom7Tc\n3iPo9TY/d2+9DRFtTFget816cxN3x9sMlHe32UmD5l66GjRb3LyvMy6odvXBpu76cfv0eyseF1jr\nHm9x4N5OJwy3F42wtSZrlyYEcyZNnW13NMRLGR3KGQrsjChbGrH99QxQ9DY2wz8r5yeHg4aClQNl\n232PF4/tIBw0GCQ6M1y2sHz9Pu8466ubgZ2RPe2cSy49vTXcM67nnCRZbnuZGxXQGRfkWT61P0IH\naytbQ0D9136vQYNll5/O2O/B8unNIcTG9h40EBxaOn5DPyoZ7q1hKJhzYcQ5b2C+G+LZaWhx6Lx2\navT8kVHlA2VLJ7QBALPpynNtL0EjAkEX2t6Dur3TLB7bGgg6dvOIa9mBYE43tLOTEEqZ75xvTwyf\nd0eGdjqhy724Xp0l/YdqdhIMuhos2mXYaPlk8o73TfuT0iHw0yHws8888enml8GWgM1grze6NQcA\nAIBr0ut1wkHjAkfbhI22CzOVfoBmfkzg5gYsu3cwrNfbDGL1A0TdoNDV9YPL62PKRoWa1jvfhxHf\nkfVx35vV0eXrq2PCaxPCD8/H/NKIaSdhpKWmrqN60tlpw8fc4piG54Fp5JPJne0Wjx3M739/6J2R\nwaAJ0+C224Ue55d3NvzYkTObIaLlk02D2tXwTifIc7WsDe9Melp9frkT2rlpfE87V+fPHK6Gro31\n9t/yK51gUCcgNBgSGjvM2NEd9h7Uls3CMGO1tqHPXjsNzPc2mvVbynrD09j9e8Pla5e3hhJXtgnu\njOvRqat7rht7bhwR0BnshccwgQDj9XrN786RPQQ90oSFnntyeJ+lbjBnQg+QQ+fyTohHb2dwzQR+\nOgR+AAAAAGDGbAmvdQNF3fDQbgNI7fDxo8pHvsdq03AxtjeJcWUDjR83oneZw6zf09LIHoaemRAk\nurC5Tfcp+HHKXBMO2e2QWYtHNX5db7U2P9ehnoJG9SjUn39qfCirzA/0GHRzE7ZK2SYsU8eHaLoB\nmt0Gc4bKN57nsB7XQ9mmV7HtetUZ6G1svwerAA6LtZUmaLt03PkZ9omdBn70TwgAAAAA7E9zc8nc\nspAMO1dK21h1PDn14ms7xtpKJxjUDjm2dGK4R55Z6AnmsChls2emm1++s33WLu+s96CvfC5JaQJe\nZa75mZe5Jhh0taydX5gfXT44DZX158tAeXf/Mlw+6pgjj1vGvNcuj7t4rNOTg4ZggANn8UiyeNu0\nawFcA4EfAAAAAADoWzzSTCdfOO2asJcWjyZn7mwmAACYQWLYAAAAAAAAAAAwQwR+AAAAAAAAAABg\nhux54KeU8p2llM+WUj5fSvnxEeuXSym/0a7/UCnl7oF1P9GWf7aU8rfasjtLKX9YSvl0KeVTpZQf\n2evPAAAAAAAAAAAA+8WeBn5KKfNJfiHJdyW5J8nbSyn3dDb7x0merrW+IsnPJ/k37b73JHlbklcl\n+c4k/7E93nqSf1ZrvSfJNyX5oRHHBAAAAAAAAACAA2mve/h5Q5LP11q/UGu9kuQ9Sd7c2ebNSd7V\nzr83ybeXUkpb/p5a62qt9a+SfD7JG2qtj9daP5IktdZnk3wmye17/DkAAAAAAAAAAGBf2OvAz+1J\nHh5YfiRbwzlXt6m1ric5n+TmnezbDv/1DUk+NOrNSyk/WEp5sJTy4Je//OVr/hAAAAAAAAAAALBf\n7HXgZ8+UUk4k+a0kP1prvTBqm1rrL9da76213nvrrbfe2AoCAAAAAAAAAMAe2OvAz6NJ7hxYvqMt\nG7lNKWUhyekkT03at5SymCbs8+5a6/v2pOYAAAAAAAAAALAP7XXg54EkX1VKeWkpZSnJ25K8v7PN\n+5O8s51/a5L/U2utbfnbSinLpZSXJvmqJPeXUkqSX0nymVrrz+1x/QEAAAAAAAAAYF9Z2MuD11rX\nSyk/nOR/J5lP8qu11k+VUn4myYO11venCe/8l1LK55OcSxMKSrvdbyb5dJL1JD9Ua90opbwxyTuS\nfKKU8tH2rX6y1vo7e/lZAAAAAAAAAABgPyhNZzoH37333lsffPDBaVcDAAAAAAAAAABGKqV8uNZ6\n73bb7fWQXgAAAAAAAAAAwHUk8AMAAAAAAAAAADNE4AcAAAAAAAAAAGaIwA8AAAAAAAAAAMwQgR8A\nAAAAAAAAAJghAj8AAAAAAAAAADBDBH4AAAAAAAAAAGCGCPwAAAAAAAAAAMAMEfgBAAAAAAAAAIAZ\nIvADAAAAAAAAAAAzROAHAAAAAAAAAABmiMAPAAAAAAAAAADMkFJrnXYdbohSypeTfHHa9WDILUm+\nMu1KANwgznnAYeKcBxwmznnAYeKcBxwmznnAYeKcB/vLXbXWW7fb6NAEfth/SikP1lrvnXY9AG4E\n5zzgMHHOAw4T5zzgMHHOAw4T5zzgMHHOg9lkSC8AAAAAAAAAAJghAj8AAAAAAAAAADBDBH6Ypl+e\ndgUAbiDnPOAwcc4DDhPnPOAwcc4DDhPnPOAwcc6DGVRqrdOuAwAAAAAAAAAAsEN6+AEAAAAAAAAA\ngBki8AMAAAAAAAAAADNE4IepKKV8Zynls6WUz5dSfnza9QHYS6WUh0opnyilfLSU8uC06wNwPZVS\nfrWU8mQp5ZMDZWdLKb9XSvlc+3rTNOsIcL2MOef9dCnl0fZa76OllO+eZh0BrpdSyp2llD8spXy6\nlPKpUsqPtOWu9YADZ8I5z7UecOCUUo6UUu4vpXysPef9y7b8paWUD7Xtt79RSlmadl2ByUqtddp1\n4JAppcwn+Ysk35HkkSQPJHl7rfXTU60YwB4ppTyU5N5a61emXReA662U8jeSXEzya7XWV7dl/zbJ\nuVrrv27D3TfVWn9smvUEuB7GnPN+OsnFWuvPTrNuANdbKeW2JLfVWj9SSjmZ5MNJ3pLkH8a1HnDA\nTDjnfW9c6wEHTCmlJDlea71YSllM8oEkP5LknyZ5X631PaWUX0rysVrrL06zrsBkevhhGt6Q5PO1\n1i/UWq8keU+SN0+5TgAAXINa6/9Ncq5T/OYk72rn35XmJinAzBtzzgM4kGqtj9daP9LOP5vkM0lu\nj2s94ACacM4DOHBq42K7uNhONcm3JXlvW+46D2aAwA/TcHuShweWH4kLZ+Bgq0l+t5Ty4VLKD067\nMgA3wAtrrY+3819K8sJpVgbgBvjhUsrH2yG/DG0DHDillLuTfEOSD8W1HnDAdc55iWs94AAqpcyX\nUj6a5Mkkv5fkL5M8U2tdbzfRfgszQOAHAPbeG2utr0vyXUl+qB0KAuBQqM0YwsYRBg6yX0zy8iSv\nTfJ4kn833eoAXF+llBNJfivJj9ZaLwyuc60HHDQjznmu9YADqda6UWt9bZI70ozO8sopVwm4BgI/\nTMOjSe4cWL6jLQM4kGqtj7avTyb57TQXzwAH2ROllNuSpH19csr1AdgztdYn2hulvST/Oa71gAOk\nlLKYpuH73bXW97XFrvWAA2nUOc+1HnDQ1VqfSfKHSb45yZlSykK7SvstzACBH6bhgSRfVUp5aSll\nKcnbkrx/ynUC2BOllOOllJP9+SR/M8knp1srgD33/iTvbOffmeR/TrEuAHuq3+jd+rtxrQccEKWU\nkuRXknym1vpzA6tc6wEHzrhznms94CAqpdxaSjnTzh9N8h1JPpMm+PPWdjPXeTADStPrKtxYpZTv\nTvLvk8wn+dVa67+acpUA9kQp5WVpevVJkoUk/805DzhISim/nuRbk9yS5IkkP5XkfyT5zSQvSfLF\nJN9baz03rToCXC9jznnfmmaIh5rkoST/pNb6+HRqCHD9lFLemOSPk3wiSa8t/skkH4prPeCAmXDO\ne3tc6wEHTCnl65K8K0077VyS36y1/kzbnvGeJGeT/HmSH6i1rk6vpsB2BH4AAAAAAAAAAGCGGNIL\nAAAAAAAAAABmiMAPAAAAAAAAAADMEIEfAAAAAAAAAACYIQI/AAAAAAAAAAAwQwR+AAAAAAAAAABg\nhgj8AAAAALAnSinfWkr5X9OuBwAAAMBBI/ADAAAAAAAAAAAzROAHAAAA4JArpfxAKeX+UspHSyn/\nqZQyX0q5WEr5+VLKp0opf1BKubXd9rWllD8rpXy8lPLbpZSb2vJXlFJ+v5TysVLKR0opL28Pf6KU\n8t5Syv8rpby7lFKm9kEBAAAADgiBHwAAAIBDrJTytUm+L8l9tdbXJtlI8g+SHE/yYK31VUn+KMlP\ntbv8WpIfq7V+XZJPDJS/O8kv1Fq/Psm3JHm8Lf+GJD+a5J4kL0ty355/KAAAAIADbmHaFQAAAABg\nqr49yeuTPNB2vnM0yZNJekl+o93mvyZ5XynldJIztdY/asvfleS/l1JOJrm91vrbSVJrXUmS9nj3\n11ofaZc/muTuJB/Y+48FAAAAcHAJ/AAAAAAcbiXJu2qtPzFUWMq/6GxXr/H4qwPzG3E/CgAAAOB5\nM6QXAAAAwOH2B0neWkp5QZKUUs6WUu5Kc9/ore0235/kA7XW80meLqW8qS1/R5I/qrU+m+SRUspb\n2mMsl1KO3dBPAQAAAHCIeKIKAAAA4BCrtX66lPLPk/xuKWUuyVqSH0ryXJI3tOueTPJ97S7vTPJL\nbaDnC0n+UVv+jiT/qZTyM+0x/v4N/BgAAAAAh0qp9Vp7YwYAAADgoCqlXKy1nph2PQAAAADYypBe\nAAAAAAAAAAAwQ/TwAwAAAAAAAAAAM0QPPwAAAAAAAAAAMEMEfgAAAAAAAAAAYIYI/AAAAAAAAAAA\nwAwR+AEAAAAAAAAAgBki8AMAAAAAAAAAADPk/wO6hR0MIHEqoQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQEAAAJcCAYAAABD1/AMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3WuMX/d95/fPb+6cC4eX4W2GkkmZ\nlExZl2FMa5XISezYjmTLFhlk63qzbhfFAg6KDZB2t27kNkmboA+cbps1vFgn2GxcBM2uvV6nJmVL\niWXDki9JZIeSKFlXkpIs884hxcvwMiRn5vQBRyNSIilS4syZy+sFCBye//kffA8gSA/mjd+3VFUV\nAAAAAAAAAABg+mqoewAAAAAAAAAAAODtEQEBAAAAAAAAAMA0JwICAAAAAAAAAIBpTgQEAAAAAAAA\nAADTnAgIAAAAAAAAAACmOREQAAAAAAAAAABMcyIgAAAAAC6plPLTUsqH6p4DAAAAgIsTAQEAAAAA\nAAAAwDQnAgIAAAAAAAAAgGlOBAQAAADAZSmltJZSPl9K2T32z+dLKa1jn/WUUr5ZSjlcSnmllPKD\nUkrD2Ge/U0rZVUoZLKU8X0r5YL1vAgAAADDzNNU9AAAAAADTxv+a5PYk/UmqJJuS/G6S30vyr5Ls\nTLJo7N7bk1SllBuS/FaS91ZVtbuUsiJJ4+SODQAAADDzOQkIAAAAgMv1T5P8YVVV+6uqGkjyB0n+\nm7HPziRZluQdVVWdqarqB1VVVUlGkrQmubGU0lxV1U+rqnqhlukBAAAAZjAREAAAAACXqzfJy+f8\n/eWxa0nyr5NsT/JgKeXFUsq9SVJV1fYk/0OS/z3J/lLKV0opvQEAAADgqhIBAQAAAHC5did5xzl/\nv3bsWqqqGqyq6l9VVXVdknuS/MtSygfHPvtPVVW9b+y7VZI/mtyxAQAAAGY+ERAAAAAAl+vLSX63\nlLKolNKT5PeT/GWSlFI+VkpZVUopSY7k7Bqw0VLKDaWUXymltCYZSnIyyWhN8wMAAADMWCIgAAAA\nAC7X/5Fkc5Ink/wkyWNj15JkdZLvJDmW5O+TfLGqqoeStCb5XJIDSfYmWZzks5M7NgAAAMDMV6qq\nqnsGAAAAAAAAAADgbXASEAAAAAAAAAAATHMiIAAAAAAAAAAAmOZEQAAAAAAAAAAAMM2JgAAAAAAA\nAAAAYJprqnuAOvX09FQrVqyoewwAAAAAAAAAALigRx999EBVVYve7L5ZHQGtWLEimzdvrnsMAAAA\nAAAAAAC4oFLKy5dzn3VgAAAAAAAAAAAwzYmAAAAAAAAAAABgmhMBAQAAAAAAAADANNdU9wBTzZkz\nZ7Jz584MDQ3VPcqEamtry/Lly9Pc3Fz3KAAAAAAAAAAAvE0ioNfZuXNnurq6smLFipRS6h5nQlRV\nlYMHD2bnzp1ZuXJl3eMAAAAAAAAAAPA2WQf2OkNDQ1m4cOGMDYCSpJSShQsXzvjTjgAAAAAAAAAA\nZgsR0AXM5ADoVbPhHQEAAAAAAAAAZgsREAAAAAAAAAAATHMioCnm8OHD+eIXv3jF3/voRz+aw4cP\nT8BEAAAAAAAAAABMdSKgKeZiEdDw8PAlv/fAAw9k3rx5EzUWAAAAAAAAAABTWFPdA3C+e++9Ny+8\n8EL6+/vT3Nyctra2zJ8/P88991y2bt2aDRs2ZMeOHRkaGspv//Zv59Of/nSSZMWKFdm8eXOOHTuW\nj3zkI3nf+96Xv/u7v0tfX182bdqUOXPm1PxmAAAAAAAAAABMFBHQJfzBN57OM7uPXtVn3tg7N//b\nx9990c8/97nP5amnnsqWLVvy8MMP5+67785TTz2VlStXJkm+9KUvZcGCBTl58mTe+9735td//dez\ncOHC856xbdu2fPnLX86f/dmf5ROf+ET+6q/+Kp/61Keu6nsAAAAAAAAAADB1iICmuNtuu208AEqS\nL3zhC/n617+eJNmxY0e2bdv2hgho5cqV6e/vT5K85z3vyU9/+tNJmxcAAAAAAAAAgMknArqES53Y\nM1k6OjrGf3744Yfzne98J3//93+f9vb2vP/978/Q0NAbvtPa2jr+c2NjY06ePDkpswIAAAAAAAAA\nUI+GugfgfF1dXRkcHLzgZ0eOHMn8+fPT3t6e5557Lo888sgkTwcAAAAAAAAAwFTkJKApZuHChbnj\njjty0003Zc6cOVmyZMn4Z3fddVf+9E//NGvWrMkNN9yQ22+/vcZJAQAAAAAAAACYKkpVVXXPUJt1\n69ZVmzdvPu/as88+mzVr1tQ00eSaTe8KAAAAAAAAADAdlVIerapq3ZvdZx0YAAAAAAAAAABMcyIg\nAAAAAAAAAACY5kRAAAAAAAAAAAAwzYmAAAAAAAAAAABgmhMBMaVUVVX3CAAAAAAAAAAA044IiCnj\nP/7o5fzK//29nBkZrXsUAAAAAAAAAIBpRQQ0xRw+fDhf/OIX39J3P//5z+fEiRNXeaLJ09PZmpcO\nHM8Ptx+oexQAAAAAAAAAgGlFBDTFzOYI6P03LMrctqZsenxX3aMAAAAAAAAAAEwrTXUPwPnuvffe\nvPDCC+nv78+HP/zhLF68OF/96ldz6tSp/Nqv/Vr+4A/+IMePH88nPvGJ7Ny5MyMjI/m93/u97Nu3\nL7t3784HPvCB9PT05KGHHqr7Va5Ya1Nj7r5lWTZt2Z0Tp4fT3uJfTwAAAAAAAACAy6GyuJS/vjfZ\n+5Or+8ylNycf+dxFP/7c5z6Xp556Klu2bMmDDz6Yr33ta/nxj3+cqqpyzz335Pvf/34GBgbS29ub\n+++/P0ly5MiRdHd354//+I/z0EMPpaen5+rOPInW9/flyz/ekW8/sy/r+/vqHgcAAAAAAAAAYFqw\nDmwKe/DBB/Pggw9m7dq1+bmf+7k899xz2bZtW26++eZ8+9vfzu/8zu/kBz/4Qbq7u+se9aq5bcWC\n9Ha3ZaOVYAAAAAAAAAAAl81JQJdyiRN7JkNVVfnsZz+b3/zN33zDZ4899lgeeOCB/O7v/m4++MEP\n5vd///drmPDqa2go+Xh/b/7DD17KwWOnsrCzte6RAAAAAAAAAACmPCcBTTFdXV0ZHBxMktx55535\n0pe+lGPHjiVJdu3alf3792f37t1pb2/Ppz71qXzmM5/JY4899obvTmcb+vsyMlrl/p/sqXsUAAAA\nAAAAAIBpwUlAU8zChQtzxx135KabbspHPvKR/MZv/EZ+/ud/PknS2dmZv/zLv8z27dvzmc98Jg0N\nDWlubs6f/MmfJEk+/elP56677kpvb28eeuihOl/jbVmzbG5uWNKVjY/vyn/78yvqHgcAAAAAAAAA\nYMorVVXVPUNt1q1bV23evPm8a88++2zWrFlT00STayq/6xcf3p7/82+ez/c/84Fcu7C97nEAAAAA\nAAAAAGpRSnm0qqp1b3afdWBMSffc2psk2bRlV82TAAAAAAAAAABMfSIgpqTl89tz24oF2bhlV2bz\naVUAAAAAAAAAAJdDBHQBsyE6mQ7vuH5tb14YOJ6ndx+texQAAAAAAAAAgClNBPQ6bW1tOXjw4LSI\nZN6qqqpy8ODBtLW11T3KJd1987I0N5ZsfNxKMAAAAAAAAACAS2mqe4CpZvny5dm5c2cGBgbqHmVC\ntbW1Zfny5XWPcUnz2lvyy9cvzn1P7M5nP7omjQ2l7pEAAAAAAAAAAKYkEdDrNDc3Z+XKlXWPwZgN\na3vznWf35ZEXD+aOVT11jwMAAAAAAAAAMCVZB8aU9qE1S9LZ2mQlGAAAAAAAAADAJYiAmNLamhtz\n57uX5m+e2puhMyN1jwMAAAAAAAAAMCWJgJjyNqztzeCp4Xz3uf11jwIAAAAAAAAAMCWJgJjyfuGd\nPVnU1WolGAAAAAAAAADARYiAmPIaG0o+fktvHn5+IEdOnKl7HAAAAAAAAACAKUcExLSwYW1vTo+M\n5oGn9tQ9CgAAAAAAAADAlCMCYlq4ua871/V0WAkGAAAAAAAAAHABIiCmhVJK1vf35UcvvZLdh0/W\nPQ4AAAAAAAAAwJQiAmLaWN/fmyS574ndNU8CAAAAAAAAADC1iICYNlb0dKT/mnlWggEAAAAAAAAA\nvI4IiGllQ39vnts7mOf3DtY9CgAAAAAAAADAlCECYlr52K29aWwo2bjFaUAAAAAAAAAAAK8SATGt\n9HS25n2renLflt0ZHa3qHgcAAAAAAAAAYEoQATHtbFjbm12HT2bzy4fqHgUAAAAAAAAAYEoQATHt\n/OqNSzOnudFKMAAAAAAAAACAMSIgpp2O1qZ8+MYleeAne3J6eLTucQAAAAAAAAAAaicCYlrasLY3\nh0+cyfe2DtQ9CgAAAAAAAABA7URATEu/uHpRFnS0WAkGAAAAAAAAAJAJjoBKKXeVUp4vpWwvpdx7\ngc9bSyn/eezzH5VSVpzz2WfHrj9fSrnzCp75hVLKsYl6J6aG5saGfOyWZfnOM/syOHSm7nEAAAAA\nAAAAAGo1YRFQKaUxyb9L8pEkNyb5J6WUG1932z9PcqiqqlVJ/k2SPxr77o1JPpnk3UnuSvLFUkrj\nmz2zlLIuyfyJeiemlvX9fTk1PJpvPb2v7lEAAAAAAAAAAGo1kScB3ZZke1VVL1ZVdTrJV5Ksf909\n65P8xdjPX0vywVJKGbv+laqqTlVV9VKS7WPPu+gzxwKhf53kf57Ad2IK+blr5+XaBe3ZZCUYAAAA\nAAAAADDLTWQE1Jdkxzl/3zl27YL3VFU1nORIkoWX+O6lnvlbSe6rqmrPpYYqpXy6lLK5lLJ5YGDg\nil6IqaWUkvX9vfnb7Qeyf3Co7nEAAAAAAAAAAGozkRHQpCml9Cb5r5L82ze7t6qqf19V1bqqqtYt\nWrRo4odjQq3v78tolXzjiUu2XwAAAAAAAAAAM9pERkC7klxzzt+Xj1274D2llKYk3UkOXuK7F7u+\nNsmqJNtLKT9N0l5K2X61XoSpa9XiztzUN9dKMAAAAAAAAABgVpvICOgfkqwupawspbQk+WSS+153\nz31J/tnYz/84yXerqqrGrn+ylNJaSlmZZHWSH1/smVVV3V9V1dKqqlZUVbUiyYmqqlZN4LsxhWzo\n78uTO4/kxYFjdY8CAAAAAAAAAFCLCYuAqqoaTvJbSb6V5NkkX62q6ulSyh+WUu4Zu+3PkywcO7Xn\nXya5d+y7Tyf5apJnkvxNkn9RVdXIxZ45Ue/A9PDxW3tTSrJxy+66RwEAAAAAAAAAqEU5e/DO7LRu\n3bpq8+bNdY/BVfBP/8Mj2XnoZB7+n96fUkrd4wAAAAAAAAAAXBWllEerqlr3ZvdN5DowmDTr+/vy\n8sET2bLjcN2jAAAAAAAAAABMOhEQM8JdNy1NS1NDNlkJBgAAAAAAAADMQiIgZoS5bc350JrF+eaT\nuzM8Mlr3OAAAAAAAAAAAk0oExIyxvr8vB46dzg+3H6h7FAAAAAAAAACASSUCYsZ4/w2LMretyUow\nAAAAAAAAAGDWEQExY7Q2NebuW5blW0/vzYnTw3WPAwAAAAAAAAAwaURAzCjr+/ty4vRIvv3MvrpH\nAQAAAAAAAACYNCIgZpTbVixIb3eblWAAAAAAAAAAwKwiAmJGaWgo+Xh/b76/dSCvHD9d9zgAAAAA\nAAAAAJNCBMSMs6G/L8OjVe5/0mlAAAAAAAAAAMDsIAJixlmzbG5uWNKVjVaCAQAAAAAAAACzhAiI\nGWn92t48+vKh7HjlRN2jAAAAAAAAAABMOBEQM9I9t/YmSTZt2VXzJAAAAAAAAAAAE08ExIy0fH57\nbluxIBu37E5VVXWPAwAAAAAAAAAwoURAzFjr1/Zm+/5jeXr30bpHAQAAAAAAAACYUCIgZqy7b16W\n5sZiJRgAAAAAAAAAMOOJgJix5rW35JevX5z7ntidkVErwQAAAAAAAACAmUsExIy2YW1v9h09lR+9\neLDuUQAAAAAAAAAAJowIiBntQ2uWpLO1KRutBAMAAAAAAAAAZjAREDNaW3Nj7nz30vz1T/Zm6MxI\n3eMAAAAAAAAAAEwIERAz3oa1vRk8NZyHnttf9ygAAAAAAAAAABNCBMSM9wvv7MmirlYrwQAAAAAA\nAACAGUsExIzX2FDy8Vt689BzAzly4kzd4wAAAAAAAAAAXHUiIGaFDWt7c3pkNH/91J66RwEAAAAA\nAAAAuOpEQMwKN/d157qeDivBAAAAAAAAAIAZSQTErFBKyfr+vvzopVey58jJuscBAAAAAAAAALiq\nREDMGuv7e1NVyX1bdtc9CgAAAAAAAADAVSUCYtZY0dOR/mvmZaMICAAAAAAAAACYYURAzCob+nvz\n7J6j2bpvsO5RAAAAAAAAAACuGhEQs8rHbu1NY0PJxsd31T0KAAAAAAAAAMBVIwJiVunpbM37VvVk\n05bdGR2t6h4HAAAAAAAAAOCqEAEx62xY25tdh0/m0Z8dqnsUAAAAAAAAAICrQgTErPOrNy7NnOZG\nK8EAAAAAAAAAgBlDBMSs09HalA/fuCT3/2RPTg+P1j0OAAAAAAAAAMDbJgJiVtqwtjeHT5zJ97YO\n1D0KAAAAAAAAAMDbJgJiVvrF1YuyoKMlG7dYCQYAAAAAAAAATH8iIGal5saG3H3zsnznmX0ZHDpT\n9zgAAAAAAAAAAG+LCIhZa8Pa3pwaHs23nt5X9ygAAAAAAAAAAG+LCIhZ6+eunZ9rFszJJivBAAAA\nAAAAAIBpTgTErFVKyfpb+/K32w9k/+BQ3eMAAAAAAAAAALxlIiBmtQ1rezNaJd94Yk/dowAAAAAA\nAAAAvGUiIGa1VYu78u7euVaCAQAAAAAAAADTmgiIWW9Df1+e3HkkLw4cq3sUAAAAAAAAAIC3RATE\nrPfxW3tTSrJxy+66RwEAAAAAAAAAeEtEQMx6S7vb8vPXLcymLbtSVVXd4wAAAAAAAAAAXDEREOTs\nSrCXD57Ilh2H6x4FAAAAAAAAAOCKiYAgyV03L01LU0M2WQkGAAAAAAAAAExDIiBIMretOR981+J8\n88ndGR4ZrXscAAAAAAAAAIArIgKCMev7+3Lg2On8cPuBukcBAAAAAAAAALgiIiAY84F3LcrctiYr\nwQAAAAAAAACAaUcEBGNamxrz0ZuX5VtP782J08N1jwMAAAAAAAAAcNlEQHCO9f19OXF6JN9+Zl/d\nowAAAAAAAAAAXDYREJzjH61ckGXdbVaCAQAAAAAAAADTiggIztHQUHLPrb35/taBvHL8dN3jAAAA\nAAAAAABcFhEQvM76/r4Mj1a5/0mnAQEAAAAAAAAA04MICF5nzbKuXL+kMxutBAMAAAAAAAAApgkR\nELxOKSXr+/vy6MuHsuOVE3WPAwAAAAAAAADwpkRAcAHr+3uTJJu27Kp5EgAAAAAAAACANycCggtY\nPr89710xPxu37E5VVXWPAwAAAAAAAABwSSIguIj1/X3Zvv9Ynt59tO5RAAAAAAAAAAAuSQQEF3H3\nzcvS1FCsBAMAAAAAAAAApjwREFzE/I6WvP+GRbnvid0ZGbUSDAAAAAAAAACYukRAcAnr+/uy7+ip\n/OjFg3WPAgAAAAAAAABwUSIguIQPrVmSjpbGbLQSDAAAAAAAAACYwkRAcAlzWhpz501L89c/2Zuh\nMyN1jwMAAAAAAAAAcEEiIHgTG/r7MnhqOA89t7/uUQAAAAAAAAAALkgEBG/iF965MD2drVaCAQAA\nAAAAAABTlggI3kRTY0M+fuuyPPTcQI6cOFP3OAAAAAAAAAAAbyACgsuwob8vp0dG89dP7al7FAAA\nAAAAAACANxABwWW4ZXl3VvZ0WAkGAAAAAAAAAExJIiC4DKWUrO/vzY9eeiV7jpysexwAAAAAAAAA\ngPOIgOAybejvS1Ul923ZXfcoAAAAAAAAAADnEQHBZVrR05Fbr5mXjSIgAAAAAAAAAGCKEQHBFdjQ\n35tn9xzN1n2DdY8CAAAAAAAAADBOBARX4GO39KaxoWTj47vqHgUAAAAAAAAAYJwICK7Aoq7W3LGq\nJ5u27M7oaFX3OAAAAAAAAAAASURAcMU29Pdm1+GTefRnh+oeBQAAAAAAAAAgiQgIrtivvntp2pob\nrAQDAAAAAAAAAKYMERBcoc7Wpnz4xqW5/yd7cnp4tO5xAAAAAAAAAABEQPBWbOjvzeETZ/L9rQN1\njwIAAAAAAAAAIAKCt+KXrl+U+e3N2bjFSjAAAAAAAAAAoH4iIHgLmhsbcvcty/KdZ/fl2KnhuscB\nAAAAAAAAAGY5ERC8RRv6+zJ0ZjTfempv3aMAAAAAAAAAALOcCAjeove8Y36Wz59jJRgAAAAAAAAA\nUDsRELxFpZSs7+/N324/kP2DQ3WPAwAAAAAAAADMYiIgeBs29PdltEq++cSeukcBAAAAAAAAAGYx\nERC8DauXdOXGZXOzyUowAAAAAAAAAKBGIiB4mzas7c0TO4/kpQPH6x4FAAAAAAAAAJilREDwNt1z\na19KSTY+7jQgAAAAAAAAAKAeIiB4m5Z2t+X2lQuzacuuVFVV9zgAAAAAAAAAwCwkAoKrYMPa3vz0\n4Ik8sfNI3aMAAAAAAAAAALOQCAiugrtuWpaWxgYrwQAAAAAAAACAWoiA4CrontOcX3nX4nzzyd0Z\nHhmtexwAAAAAAAAAYJYRAcFVsmFtbw4cO52/feFg3aMAAAAAAAAAALOMCAiukvffsDhdbU3ZZCUY\nAAAAAAAAADDJREBwlbQ1N+ajNy3Lt57em5OnR+oeBwAAAAAAAACYRURAcBWtX9ub46dH8u1n99U9\nCgAAAAAAAAAwi4iA4Cq6feXCLJ3bZiUYAAAAAAAAADCpREBwFTU0lNzT35vvbR3IK8dP1z0OAAAA\nAAAAADBLiIDgKlvf35vh0Sr3/2RP3aMAAAAAAAAAALOECAiushuXzc3qxZ1WggEAAAAAAAAAk0YE\nBFdZKSUb1vZl88uHsuOVE3WPAwAAAAAAAADMAiIgmAD33NqbJLnvid01TwIAAAAAAAAAzAYiIJgA\n1yxoz7p3zM/Gx3elqqq6xwEAAAAAAAAAZjgREEyQ9Wv7sm3/sTyz52jdowAAAAAAAAAAM5wICCbI\n3TcvS1NDyaYtVoIBAAAAAAAAABNLBAQTZEFHS375+kW5b8vujIxaCQYAAAAAAAAATBwREEyg9Wv7\nsvfoUH700sG6RwEAAAAAAAAAZrAJjYBKKXeVUp4vpWwvpdx7gc9bSyn/eezzH5VSVpzz2WfHrj9f\nSrnzzZ5ZSvnzUsoTpZQnSylfK6V0TuS7weX48Jol6WhpzKbHrQQDAAAAAAAAACbOhEVApZTGJP8u\nyUeS3Jjkn5RSbnzdbf88yaGqqlYl+TdJ/mjsuzcm+WSSdye5K8kXSymNb/LM/7Gqqlurqrolyc+S\n/NZEvRtcrjktjbnz3UvzwFN7MnRmpO5xAAAAAAAAAIAZaiJPArotyfaqql6squp0kq8kWf+6e9Yn\n+Yuxn7+W5IOllDJ2/StVVZ2qquqlJNvHnnfRZ1ZVdTRJxr4/J0k1ge8Gl2392r4MDg3n4ef31z0K\nAAAAAAAAADBDTWQE1Jdkxzl/3zl27YL3VFU1nORIkoWX+O4ln1lK+X+S7E3yriT/9kJDlVI+XUrZ\nXErZPDAwcOVvBVfojncuTE9nSzZaCQYAAAAAAAAATJCJjIAmXVVV/12S3iTPJvmvL3LPv6+qal1V\nVesWLVo0qfMxOzU1NuRjt/Tmu8/tz5GTZ+oeBwAAAAAAAACYgSYyAtqV5Jpz/r587NoF7ymlNCXp\nTnLwEt9902dWVTWSs2vCfv1tvwFcJRvW9uX0yGj+5qk9dY8CAAAAAAAAAMxAExkB/UOS1aWUlaWU\nliSfTHLf6+65L8k/G/v5Hyf5blVV1dj1T5ZSWkspK5OsTvLjiz2znLUqSUopJck9SZ6bwHeDK3Lr\n8u6sWNhuJRgAAAAAAAAAMCGaJurBVVUNl1J+K8m3kjQm+VJVVU+XUv4wyeaqqu5L8udJ/t9SyvYk\nr+Rs1JOx+76a5Jkkw0n+xdgJP7nIMxuS/EUpZW6SkuSJJP/9RL0bXKlSStb39+UL392WvUeGsrS7\nre6RAAAAAAAAAIAZpJw9eGd2WrduXbV58+a6x2CWeOnA8Xzg/3o4/8tH35VP/9I76x4HAAAAAAAA\nAJgGSimPVlW17s3um8h1YMA5VvZ05Nbl3VaCAQAAAAAAAABXnQgIJtH6/r48s+dotu0brHsUAAAA\nAAAAAGAGEQHBJPrYrcvSUJKNW3bVPQoAAAAAAAAAMIOIgGASLe5qyx2rerJpy+5UVVX3OAAAAAAA\nAADADCECgkm2ob8vOw+dzKMvH6p7FAAAAAAAAABghhABwSS786alaWtusBIMAAAAAAAAALhqREAw\nyTpbm/KhNUty/5N7cmZktO5xAAAAAAAAAIAZQAQENdjQ35dDJ87k+1sH6h4FAAAAAAAAAJgBREBQ\ng1+6flHmtTdn45bddY8CAAAAAAAAAMwAIiCoQUtTQ+6+eVm+/czeHDs1XPc4AAAAAAAAAMA0JwKC\nmmxY25ehM6N58Om9dY8CAAAAAAAAAExzIiCoyXuunZ++eXOsBAMAAAAAAAAA3jYRENSkoaFkfX9v\nfrhtIAODp+oeBwAAAAAAAACYxkRAUKMNa/syWiXffNJpQAAAAAAAAADAWycCghpdv6Qra5bNtRIM\nAAAAAAAAAHhbREBQsw39vXlix+G8dOB43aMAAAAAAAAAANOUCAhqdk9/b0pJNm3ZVfcoAAAAAAAA\nAMA0JQKCmi3rnpPbVy7Mpi27U1VV3eMAAAAAAAAAANOQCAimgA1re/PSgeP5L4/uzNGhM3WPAwAA\nAAAAAABMM2U2nzyybt26avPmzXWPATly8kzu+vz3s+fIUBpKclNfd26/bmFuv25B1q1YkLltzXWP\nCAAAAAAAAADUoJTyaFVV6970PhGQCIipYejMSB7/2eE88uLBPPLiwTz+s8M5PTIqCgIAAAAAAACA\nWUwEdBlEQExloiAAAAAAAAAAQAR0GURATCdDZ0by2M8O5ZEXX8kjLx7MlnOioJvHo6CFWbdifrpE\nQQAAAAAAAAAwI4iALoMIiOlMFAQAAAAAAAAAM58I6DKIgJhJREEAAAAAAAAAMPOIgC6DCIiZTBQE\nAAAAAAAAANOfCOgyiICYTURklJ0DAAAgAElEQVRBAAAAAAAAADD9iIAugwiI2ezk6ZE8/rNDeeTF\ng3nkxVfy+I5DOTNSiYIAAAAAAAAAYAoRAV0GERC8RhQEAAAAAAAAAFOPCOgyiIDg4i4WBTU2lNzU\n153br1twNgp6hygIAAAAAAAAACaKCOgyiIDg8omCAAAAAAAAAGDyiYAugwgI3rqTp0fy2HgUdDBb\ndhy+YBT03hUL0tnaVPe4AAAAAAAAADAtiYAugwgIrh5REAAAAAAAAABcfSKgyyACgokjCgIAAAAA\nAACAt08EdBlEQDB53iwKes+18/OupV25fmlXVi/uTIcwCAAAAAAAAAAuOwLyW3ZgUsxpacwdq3py\nx6qeJOdHQX//wsH8px+/nKEzo+P3X7NgTm5Y0pXrl3TlhqVn/7xuUUdamxrregUAAAAAAAAAmLJE\nQEAtXh8FjYxW2fHKiTy/bzBb9w6e/XPfYB5+fiDDo2dPLGtsKFnZ03FOHNSZ65d05R0LO9LYUOp8\nHQAAAAAAAAColQgImBIaG0pW9HRkRU9H7nz30vHrp4dH89KB4+fFQU/tPpIHntqTV7cZtjQ1ZNWi\nzvETg16Ng/rmzUkp4iAAAAAAAAAAZj4REDCltTQ15IalZ1eC5dbXrp84PZzt+49l675j2bpvMM/v\nHcwjLx7M1x/fNX5PZ2tTVi/pfMNasZ7OFnEQAAAAAAAAADOKCAiYltpbmnLL8nm5Zfm8864fOXkm\n2/YNnndy0Lee3puv/MOO8XsWdLTk+lfjoKVduWFJV1Yv6Ur3nObJfg0AAAAAAAAAuCpEQMCM0j2n\nOetWLMi6FQvGr1VVlQPHTo+fGLR1LBL62qM7c/z0yPh9S+e2jUVBneMnB61a3Jn2Fv+pBAAAAAAA\nAGBq85ttYMYrpWRRV2sWdbXmjlU949erqsquwyezdd/g2bViYycH/cWLB3N6eHTsu8m1C9rPRkHn\nnBy0sqcjLU0Ndb0SAAAAAAAAAJxHBATMWqWULJ/fnuXz2/Mr71oyfn14ZDQ/e+XE2MlBx8ZPDvru\nc/szMlolSZoaSq5b1PGGOOiaBe1pbCh1vRIAAAAAAAAAs5QICOB1mhobct2izly3qDN33fTa9VPD\nI3lx4Ph5a8We2Hk433xyz/g9bc0NWbW48w1x0LLutpQiDgIAAAAAAABgYoiAAC5Ta1Nj1iybmzXL\n5p53/fip4Wzb/9o6sa37BvO32w/k/3ts1/g9Xa1NuX5p11gc1DkeBy3sbJ3s1wAAAAAAAABgBhIB\nAbxNHa1N6b9mXvqvmXfe9cMnTmfrvmNnw6CxQOiBn+zJl398Zvyens6WrF7cleuXdGbVkq6sXtyZ\n1Ys7xUEAAAAAAAAAXBEREMAEmdfekttWLshtKxeMX6uqKgODp/L8OSvFnt93LH/12K4cOzU8ft+C\njpasGguCVi/uzOqxQGhRV6u1YgAAAAAAAAC8gQgIYBKVUrJ4blsWz23LL65eNH69qqrsOTKUbfuP\nZdu+wbwwcCzb9h3LN57YnaNDr8VBc9uaxoOgVefEQcu628RBAAAAAAAAALNYqaqq7hlqs27dumrz\n5s11jwFwUVVVZeDYqWzfd+xsILR/MNvGfn7l+Onx+zpaGs9bJ7Z6SWdWL+5K37w5aWgQBwEAAAAA\nAABMV6WUR6uqWvdm9zkJCGAKK6VkcVdbFne15RdW9Zz32cFjp7J9/9kgaPtYIPT9rQP52qM7x+9p\na24YWyvW9dp6sSVduXZBexrFQQAAAAAAAAAzhggIYJpa2NmahZ2t+UfXLTzv+pETZ7J94LUTg7bt\nP5YfvXgwX3981/g9LU0Nua6nY3yd2KunB71jYUeaGxsm+1UAAAAAAAAAeJtEQAAzTHd7c97zjgV5\nzzsWnHd9cOhMXhg4nm37BsdPENqy41C+8cTu8XuaGkpW9nRk9ZLOrFrcNR4HrezpSGtT42S/CgAA\nAAAAAACXSQQEMEt0tTWn/5p56b9m3nnXT5wezosDx7Nt/2unBz27ZzB/89TejFZn72koyYqFHWdX\nii15bb3YOxd1Zk6LOAgAAAAAAACgbiIggFmuvaUpN/V156a+7vOuD50ZyUsHjmfb/mPZvm9wfLXY\nd5/bn+GxOqiU5Jr57Vm9uDOrxuKg1Ys7s2pxZzpa/S8GAAAAAAAAYLL4DS0AF9TW3Jg1y+ZmzbK5\n510/PTyalw+ejYPOnhx0dr3YD7YdyOmR0fH7+ubNOXty0NjpQavGTg/qntM82a8CAAAAAAAAMOOJ\ngAC4Ii1NDVm9pCurl3QlN792fXhkND975cTZk4P2H8u2sdODHnnxYE4NvxYHLZnbOr5ObPWSzrxj\nQUeWdrdmafecdDo9CAAAAAAAAOAt8dtWAK6KpsaGXLeoM9ct6syd737t+sholV2HTmbb/sHx04O2\n7x/MVzfvyInTI+c9o7O1KUu727J0bluWzG3Lsu62LOluy7K5bWevd7dlQXtLGhrKJL8dAAAAAAAA\nwNQmAgJgQjU2lFy7sD3XLmzPB9csGb8+Olpl95GT2XnoZPYdHcqeI0PZe2Ro/OcXXjiQfUeHMlqd\n/7zmxpIlc8+GQq8GQ68GQsu6z8ZDi7va0tLUMMlvCgAAAAAAAFAfERAAtWhoKFk+vz3L57df9J6R\n0SoHjp0aD4T2HjmZvUdPjf05lKd2Hcl3nt2XoTOj532vlGRhR+t4FLSs+/xg6NVrHdaPAQAAAAAA\nADOE334CMGU1Npw99WfJ3LbkmgvfU1VVjpw8k71jJwjtOzKUvUfHoqGjQ9l56EQ2v/xKDp8484bv\ndr26fux1Jwqde8rQgo6WlGL9GAAAAAAAADC1iYAAmNZKKZnX3pJ57S1519K5F73v5OmR8VVj5/95\n9nShrfsGMjB46g3rx1qaGrJkbmuWzZ2TJeesHDv3z0VdrWlutH4MAAAAAAAAqI8ICIBZYU5LY1b0\ndGRFT8dF7xkeGc2BY6ez58jJ8VBo/FShI0N5cufhPPj0UE4Nv3H92KLO1vNWjY2vITvnhKH2Fv/b\nBQAAAAAAACaG30YCwJimxobxYOdiqqrK4RNnzls5du4asp8dPJEfv/RKjpx84/qxuW2vrh+bk6Vz\nW7Ose06Wz5+T5fPbs3z+nCzrbkuTE4UAAAAAAACAt0AEBABXoJSS+R0tmd/RkjXLLr1+bO/YurF9\n54RCr64he27P0QwcO5XqnPVjjQ0lS+e25ZoFr4VBy+e355r5c7J8QXuWzm1LY0OZhLcEAAAAAAAA\nphsREABMgDktjVnZ05GVl1g/dnp4NHuPDGXHoRPZeehEdh46OfbPifxw24HsGxw6LxJqaihZNq8t\ny+e1vzEUWjAni7tEQgAAAAAAADBbiYAAoCYtTQ25dmF7rl3YfsHPTw2PZM/hoew8dPINodD3tg5k\n39FT593f3FjSO29sxdgFQqHFXa1pEAkBAAAAAADAjCQCAoApqrWpMSt6OrLiIqcJDZ0Zye7DJ8fD\noB3jkdCJfPf5/RkYPD8SamlsSN/8sUho/htXjvV0ioQAAAAAAP5/9u4tRrL8Puz7738uVd3V3XPZ\n5S5pXiRRIAWBfnDirB0EQZAHJ5ESBOZDjIhxLBgxDfnBgg0kMCAhDwn0FCNAAiG2FQhUgkiQowhy\nAvDBsBzHSJwETkhKkZyQtOSFSGp3Se6Su90zPV1dXbeTh3Oq+lR1dU/3zNTMnJnPB2ic+7+qh7uz\nw67v/P8A0FUiIADoqJ0yjx9+bT9++LX9jddHk9kyCmovNfbW4Wn8z197N77/YLxyf6/I1uKg80Do\n43cH8aH9XqQkEgIAAAAAAIDnkQgIAF5QO2Uen3p9Pz71+uZI6HQ8i3eO6ijo7Q9WQ6H/75178cHJ\neG28LD52Zzc+8cpg40xCr+yJhAAAAAAAAOBZEQEBwEtqt5fHp14/iE+9frDx+snZNN45Op9J6K1W\nKPS7bx3F4XCyOl6ZL2cQ2hQK3R2UIiEAAAAAAADYEhEQALDRXr+IH/nwQfzIhzdHQsejSR0JfdAK\nhZrtb//hUdw7XY2E9nr5ylJjH7m9G68f9OPDt3biw7f68frBTtzaLYRCAAAAAAAA8AhEQADAIznY\nKeNHP1LGj37k1sbr90eTlUBosdTYW4en8aVvfhDHo+mFZ/pFFh++tbOMg15bi4TEQgAAAAAAALCZ\nCAgA2IpbO2V85qNlfOajmyOh4Xga790/i3fvj+K94/Pte/dH8e79s/j6d+/HP/r9szg+e3gs9Ppa\nJPThW/14/dZO3NoRCwEAAAAAAPByEAEBAM/EoFfED32oiB/60N6V97VjoXebSGgZDT1GLLQ4LxYC\nAAAAAADgRSACAgCea9eNhU7OpuczCV0SC/1vv38WD66IhRYzCYmFAAAAAAAA6BoREADwQtjrF/HJ\nfhGffIxY6N37oytjoZ0yW1l27PVWJCQWAgAAAAAA4FkSAQEAL5WbxkLvNpHQe00ktDj32LHQwU7c\n2hULAQAAAAAA8GSIgAAANniUWOjd+6P4Xiscevf+KL7+nauXIVssPbYIhF476C9nFFqcuzsoxUIA\nAAAAAABcSQQEAPAYrhsLPTibriw99r3js9YMQ2fx++8ex//x5vfjeHQxFirzFK/t9+O1Wzvx4YP+\nSjj0emu2oVf3+pFnYiEAAAAAAICXkQgIAOAp2O8Xsf/afvzwa/tX3nc6nsV7x4slyM7iveM6Enrv\nuA6HvvX+ML78zQ/icDi58GyepXh1r3e+5Nitfrx2sLYM2a1+fGi/H2WebetbBQAAAAAA4BkQAQEA\nPEd2e3n84Kt78YOvXj2z0Nl01ppNqI6Eltvjs/j2vVH87ttH8f7JOKpq9dmUIl7d6y0DoUUctAiF\nXmvNMtQv8i1+twAAAAAAADwpIiAAgA7qF3l8/O4gPn53cOV9k9k83n8wXplRqI6FzpbLk/3T796P\n7z8Yx2xeXXj+zqBsQqFFGLS6DNmHm+1uTywEAAAAAADwLF0rAkop/dWI+G8j4jgivhAR/3xE/ExV\nVX9/i+8NAIDHVOZZfOT2Tnzk9s6V983mVbx/Us8qVM8wVMdC77aioW98/yTeOx7FZHYxFjroF/Ha\nrf7q0mMHO8tY6PXm2n6/iJTStr5dAAAAAACAl9Z1ZwL6C1VV/XxK6cci4m5E/GRE/EpEiIAAAF4A\neZaa2X6ujoXm8yqOTicrMwq9e3+0Eg799h8exnv3z+JsOr/w/G6Zxyt7vbgzKOPu4Hx7d1DGnUEv\n7u412+bc3b1eHAiHAAAAAAAAHuq6EdDiU5d/KyJ+paqqryafxAAAvHSyLMUre714Za8XP/qRy++r\nqiruj6bxvQ3LkB0Ox3E0nMThcBzvHJ3G4XAc904nUV2cYCgiIoosxZ1FJNTa1hHR2rlWYFTm2XZ+\nEQAAAAAAAJ5D142Afiul9Pcj4pMR8bMppYOIuPhXuwEAICJSSnF7t4zbu2V86vWDh94/m1dx73TS\nBELjODyZrMRCh8NJfX44jrc+GMY/ebs+N94w29DCfr9YmXHolb3eyuxD57MQNft7vdjr5WYdAgAA\nAAAAOum6EdDnI+Kfi4g/qKpqmFJ6JSL+g+29LQAAXiZ5a4ah66qqKk4nszgcTuLw5DwYOmqioQ9O\nzvePhuP41vvDOByO43g0vXTMMk9XzjjUDooW527vllGYdQgAAAAAAHjGrhsB/UsR8TtVVZ2klP5c\nRPzxiPj57b0tAAC4WkopBr0iBr0iPnZn99rPTWfzODqdLAOhdkDUnnHocDiJb3z/JH57eBRHw3FM\nZpesVxYRt3aKZimy1Vjo7kpQVJ+7vVvGnUEZ+/3CrEMAAAAAAMATc90I6Bci4o+llP5YRPxHEfGF\niPjliPhXt/XGAABgG4o8iw/t9+ND+/1rP1NVVTw4m16MhU7a4VB97f0H43jzvQdxNJzEg7PLZx3K\ns/Ml0xZfy0hot4xbu3U8tOn8Tpk/iV8KAAAAAADgBXLdCGhaVVWVUvpsRPyNqqp+KaX0+W2+MQAA\neF6klOJgp4yDnTI+8crg2s+Np/M4Om1mGjoZx9HpJO4NJ3HvdBJHp+N62xwfDsfxzfdP4mg4ifuj\nSVSXTzwUO2XWREF1JHS7FQm1j2+3Q6ImIMozsw8BAAAAAMCL6LoR0HFK6Wcj4icj4l9JKWURUW7v\nbQEAQPf1iixeP9iJ1w92bvTcfF7F8Wi6MRZafg3Pr731wTC+ejqJo9NJDMezK8c+2CnWZhfqNbMO\nbQ6JFhHRXi+3fBkAAAAAADzHrhsB/URE/NmI+AtVVX03pfQDEfGfb+9tAQDAyyvLUh3hDMr4gbj+\nzEMR9exD57HQakC0HhIdDcfx3Xv3l8eT2eXTDxWL5cvWYqE7gyYiWl/SbFDPPHR7t4x+YfkyAAAA\nAADYtmtFQE3486sR8SdSSv92RHypqqpf3u5bAwAAbqpXZPHaQT9eO+jf6LmqqmI4nq3FQmsRUWsW\nou8/GMeb33sQ94aTuD+aXjn2bpnHnUEdDL2y12wHvbi7PNeLO4MyXtnrxd1BL+7u9cw8BAAAAAAA\nN3StCCil9O9GPfPP/xoRKSL+q5TSX6uq6je2+N4AAICnJKUUe/0i9vpFfPTO7o2enc2rOB5tioXG\ny1mGDof1zEOHw0l8/dv343A4jqPTSVSXTD5U5qkOgga9uLtXLuOgu4Py4vnm2q2dQjgEAAAAAMBL\n67rLgf3HEfEnqqp6LyIipfRaRPyDiBABAQDASy7PUtwZ9OLOoHej52bzKu6fTuKD4TiOhuP44GRS\nx0HNfr0dx9FwEv/svQfLiGg231wO5Vk6n11ocD67UHsGortrsxHd2i0jz4RDAAAAAAB033UjoGwR\nADXej4hsC+8HAAB4SeRZqmf32bt+PDSfV3F8No3Dk3EcDpuvJh46bCKhxbVvvT+M33nrKA6H45jM\nNodDKUXc2d0w09BiabLWkmV3B2Xc3evFnd0yitz/HQIAAAAA4Ply3Qjo76WUfjMi/vvm+Cci4u9u\n5y0BAABslmUpbu+WcXu3jB+KvWs9U1VVnIxnyzhoMbtQHRDV4dBiNqJ3jkbx1W/fjw9OxnE2nV86\n5q2dYiUU2rxfL1m2mHFop8yf1C8DAAAAAABccK0IqKqqv5ZS+nci4l9uTv1iVVX/0/beFgAAwJOR\nUor9fhH7/SI+8crg2s+djmfxQRMKHQ3by5Y1x01U9L0HZ/H77z6Iw+E4huPZpeP1i2wZMN1qtrd3\ny7i1U6ycW7nWbPd6eaRk2TIAAAAAAC533ZmAoqqqvxMRf2eL7wUAAOC5sdvL42O93fjYnd1rPzOa\nzM5nGWqWKvtgOI77p5O4dzpZbu+dTuK941H8s/eO495wEsdn06g2r1gWERFFluLWWjDUjoXqmKgd\nDxXL/YOdMvJMQAQAAAAA8KK7MgJKKR1HxKYfRaeIqKqqurWVdwUAANBBO2UeH7mdx0du79zoufm8\niuOz6cZY6N7pJO6PFvvn97xzeLq8Pp1fURBFxEG/aM00VFyMhwbn+6szERXRLyxjBgAAAADQBVdG\nQFVVHTytNwIAAPCyyrK0DG8+ccNnq6qK08msiYemq/HQWki0OP7G90+W955OLl/CLCJip8wuzDS0\naTaixSxFtwfn9w4sYwYAAAAA8NRcezkwAAAAnj8ppRj0ihj0ivgjt2/+/Hg6b800dB4PLWclGk3j\n3vD82nfvj+L33j2Oe6eTOB5Nrxy7WMRNgzLuDnpxZ7eMO4Ne3BmU9f7e4lx9/Xazv98vxEMAAAAA\nADckAgIAAHiJ9YosPrTfjw/t92/87GxexYPRdMOyZecx0dHpJO4NJ3F0Oo7v3h/FP/3ucRwNx3Ey\nvnwGoiJLdSg0OI+ELuwPyriz22ybc3tmHgIAAAAAXmIiIAAAAB5JnqW4Pahn+rmp8XQeR6fjuDec\nxOFwEkfDcRydNtvhZGX/20ej+Nq378fR6SSGV8RDZZ7i9m4v7jZhUHv/snDojmXLAAAAAIAXhAgI\nAACAp65XZPH6wU68frBzo+fOprNmZqFJHJ6MlzMNHS4jovN46J2j0/jqt+/F0XASp5PL46FenjVL\nltWR0HK/WaLsbnsJs8F5RLRbiocAAAAAgOeHCAgAAIDO6Bd5vH4rj9dv3SweGk1mca+JhA6bSOje\n6biZhajZP6mXLXvrg2H8v2/X+6PJ/NIxe0UWd5pI6HYTCS2CoTok6sXBThH7/SIOdoo42Cljv1/E\n/k4R+70iskxABAAAAAA8OSIgAAAAXng7ZR47ZR4ffoR4qF6ebLwyy9Bhc+5eKyr6ww+G8btvH8Xh\ncBLj6eXx0MJ+v1hGQSuxUL+sQ6FlPFTEfnOuvr54poxBmYuJAAAAAICIEAEBAADApXbKPD5yO4+P\n3L55PHQ4HMeD0TTuj6bx4GwaD0bTeHA2iePRNI6bc8ejSbOtv75zb9TcV389TEoR+70mFFqGQ00w\n1L94vH7fIj4a9CxtBgAAAABdJwICAACAJ2ynzOOP3N6NuP3oY8zmVZyM63joeENA9GA0jeNFSLSM\niqZxdDqJtw+Hy/uG49lDXytLcR4MXRELXba82UFz306ZiYkAAAAA4BnZagSUUvrxiPj5iMgj4gtV\nVf1na9f7EfHLEfEvRMT7EfETVVV9s7n2sxHx+YiYRcRfqarqN68aM6X0qxHxRkRMIuJLEfGXqqqa\nbPP7AwAAgG3JsxS3dsq4tVM+1jjT2TxOxrPlrEOLqOh4uX8+G1F7dqLDk3H84fvD5X2nk4fHRHmW\nlpHQoJdHv8hjp8yiX+TRL7Lot/Z3yuZckUV/437e3J9dOU6/EB4BAAAAQMQWI6CUUh4RfzMi/vWI\neDsivpxS+mJVVV9r3fb5iDisqupTKaXPRcRfj4ifSCl9JiI+FxF/NCI+GhH/IKX0I80zl435qxHx\n55p7/nZE/MWI+IVtfX8AAADQBUWexe3dLG7vPl5MNJnN46S1dFm9ZNmG2YlG9bnTySzOpvM4m85i\nNJnF0ek4zibz5bmz6TzOJvMYTWdRVY/3PW6KiXZuGBMt718JjFr3t8ZY3N8rssgzARIAAAAAz4dt\nzgT0JyPizaqq/iAiIqX0axHx2YhoR0CfjYj/tNn/jYj4G6n+63ufjYhfq6rqLCK+kVJ6sxkvLhuz\nqqq/uxg0pfSliPj4tr4xAAAAeNmUeRZ3Br24M+g90XGrqorJrDoPg6bzOJvMYjSZXzh3Np3HaNI6\nN50tQ6JNgdHi+uHJeHXs1njT+eMVSGWeVmYl2inz6Jd53Nkt486gbH7Nyrg7KOPObrO/12uu18dl\nnj2hX00AAAAAXmbbjIA+FhFvtY7fjoh/8bJ7qqqappTuRcSrzfn/a+3ZjzX7V46ZUioj4icj4q9u\nelMppZ+KiJ+KiPiBH/iB6383AAAAwBOXUopekaJXZHHwDF5/OpvHeDa/MiYatWY1Wg2S2qHS+bPD\n8SzunY7jzfcexOFwEkfD8ZWx0X6/iNu7ZdzdK+PuoFfvN4HQnUEdDN3da+0PenFrtzQLEQAAAAAr\nthkBPSt/KyL+UVVV//umi1VV/WJE/GJExBtvvPGYE44DAAAAXVbkWRR5Fk94gqMVVVXFyXgWhyfj\nuHc6icPhOI6aOOhoOFmGQkfNtXcOT+NwWN97WTuUUsStnXI1FFqZeWgtIhr04s5eGQf9IupJmAEA\nAAB40WwzAnonIj7ROv54c27TPW+nlIqIuB0R7z/k2UvHTCn9JxHxWkT8pSfw/gEAAAAeW0op9vtF\n7PeLlR9qPMx8XsXxaFpHQ00gdG9Ybw+Hk7jXbBfXvvH9kzgcjuN4NL10zDxLcWe3jNuLUGh3bcmy\nVkRUz05U3zPo5eIhAAAAgOfcNiOgL0fEp1NKn4w61PlcRPzZtXu+GBF/PiL+cUT8mYj4h1VVVSml\nL0bE304p/RcR8dGI+HREfCki0mVjppT+YkT8WET8qaqq5lv8vgAAAAC2LstS3B7Uwc5NTGfzZsah\nSdw7HcfhSR0KHQ3HrVmIJnF0Oo7v3BvF179zP45OJzEczy4ds5dnzcxCa7MLDS5GRLtlHmWeRa9I\nUWRZlEUWZZ6i18y6VOYpyiyLzHJmAAAAAE/U1iKgqqqmKaWfjojfjIg8Iv6bqqq+mlL6uYj4SlVV\nX4yIX4qIX0kpvRkRH0Qd9URz369HxNciYhoRf7mqqllExKYxm5f8ryPiWxHxj5u/mfY/VlX1c9v6\n/gAAAACeR0Wexav7/Xh1v3+j586ms2amoUUwtLpM2WIWoqPhJL71/jB+562jOBpOYjx7tL+LVWQp\nijzVwVCeRZlnUTSxUJlnUTYRUa/ZL/OsPm72y0VQtNzPopenJjRqwqOifmaxX4+Roiwuec18bewi\ni7J5Ps+S2ZAAAACA51qqqksWl38JvPHGG9VXvvKVZ/02AAAAADqpqqo4ncziqBUIjSazmMyqmMzm\nra9qZX88ncd0fr4/mc1j2twznp0fj1vPTGfzGLfGWbk+ncdkXo+1LSlFHQc1EdEiXipa4VC/yOJg\np6i/+mXsN/v7/SJu7ZT1/k4RB83+Qb/e3ykzgREAAABwqZTSb1VV9cbD7tvmcmAAAAAAvMBSSjHo\nFTHoFfHRO7vP+u1EVVUxm1d1dDRv4qC1AGkRGq1ER9N5TOfN8SXPXNxfPR5PqzibzuJ4NI3v3BvF\n8WgSx6PplcusLRRZagVDdSB0q4mHDtbjoX4TGe2UzfU6MNrr51Hk2VP4VQYAAACeVyIgAAAAAF4I\nKdVLjBV5xG7kz/rtRETEdDaPk7NZ3B9N4sHZNI5H0zhu9u+PpvGgOT4eTZvrk7g/msa3j0ZxfDZp\n7p/GbP7w2bwHvXw589BytqG1WYnaIZFZiQAAAODFIgICAAAAgC0p8ixuD7K4PSgfeYyqqmI0mdex\nUBMSteOh47NWSDSarsRD3z46XcZHN52VaBEPXTYrUfv8YlaiQS+PvX4R/UJMBAAAAE+bCAgAAAAA\nnmMppdjt5bHby+P1xzil7+EAACAASURBVBinPStRe+ahdkj0YHRxtqJ3jkbx4IazEhVZir1+HQnt\n9fMY9M73F+frc/Xx+b1F7PXy1eN+Hv3i+ZjZCQAAAJ5nIiAAAAAAeAlsa1aiRUh0ctZ8jWfxoNl/\ncDaN4dksTsb1/nvHozhpjk/OpjGZPTwoiogo83RJSLQaDO03EdFg5VwTGvVERQAAALzYREAAAAAA\nwLU8qVmJFs6mszoKWgRD42k8aB23w6LVc3Vo9O790XL/5Gwa02vMUhRRR0XnYVArJOqdh0ODVlS0\njI7WoqJFaNQrsifwqwEAAACPRwQEAAAAADwT/aKeleeVvd5jj1VVVZxN5zFcC4bquGi2EhUtQqPF\njEQnZ7M4Hk3ju/dGK/feJCraLetlzwZNJFVvixiU+cVzi/0Nz7Sf2+3l0S+ySCk99q8PAAAALz4R\nEAAAAADQeSml2Cnz2CmfbFS0iIQWwdCDxXE7IhrP4nQ8i+G4Do7q/VncO53Ed++drpw7ncxu9D6y\nFDHoFecRUbmIhYrVcKi8PCY6P796z06RR5YJjAAAAF4UIiAAAAAAgDXtqOjV/Sc37nxexWg6WwmD\nhuPp+f5kFqdNTDTcEBbVIVEdIH3/wdn5ufE0hpNZVNebvGhpd9NMRWvnlsFRuTkmakdI7eAoFxgB\nAAA8VSIgAAAAAICnJMtSE9E8+R/NtpdEWwmLmnDoPBhqhUPL8Gg1OPrOvUmcTlbPXXd5tIVekdVh\nUJnHziIYKluzGrUjo3JtBqPm+oXzlkkDAAC4lAgIAAAAAOAF8KSXRFs3ns7rWGiyPjvRdGW5s/NZ\njVrnW5HR4XAc7xytnjubzm/0Xh62TNr6DEft0GjjbEZNnLSY8cgyaQAAQBeJgAAAAAAAeKhekUWv\nyOJ2lE987Pm8amYeml0rNFrEQ6PJbG2Go3qZtJWxxtO44SRG0V/MYnRFaDTo1cHVTpFFv6xnJ+q3\nji9syyz6RX3fTnm+tWwaAADwpIiAAAAAAAB4prIsxV6/iL3+9pZJO10ufTaN0/G8DokmG5ZHWwuN\n2vHR9x+MYzgeLscaTWYxmtxsFqN1RZZWoqB+KypahEPr2/WQqF9msVPU236xerzcLsZunimyZEk1\nAAB4wYiAAAAAAAB4YbWXSbu7hfGrqorxbB6jyTzOprM4a7ajte3ZZB6jxXZSL4G2fs+mZ46G4/Pj\nafvZ2Y1nOGrLUlyIjy5GSGvn14KkxWxI9exIWeyWqzMnLZZm27XEGgAAPBUiIAAAAAAAeEQppWZ2\nnjxiC0ulXaaqqpjOq5UoaNP2bLndFCFdvj0eTeN7x2cxbo/V7E8foT5aLLG2jIN6eQzKInZ6eQxa\n5xbLru2U5/u7redWwqNWaNQrsi38KgMAQLeIgAAAAAAAoGNSSlHmKco8i4On/NrT2TxGzRJro8nq\nEmrL4+bcYjm19n2nrfvvnU7iu/dOz883S61VN+yMiiytBEbtaKjeL2K3zGLQK5qIaHW2okEvXwmS\n1mOjnTKzfBoAAM89ERAAAAAAAHBtRZ7Ffp7Ffn87HzFUVRVnTWR0OjmPiE5XAqNpnI7nq+HRSmB0\nHh4dnkxaQdI0RpN5jGfzG7+v9ixF/SKLMs+iLOoQq8yz6OXZMswqi7Xjtf1esXa8cazmnmLt+JJr\nuSXXAABeeiIgAAAAAADguZFSip2yjm3ubuk1prP5hWhofTaiURMNnU7mcTqertw3mVUxmc5jMquD\nokkz3v3RPMbN+cmsaraLc/Xxoyyndh1ZilZQdB4MLQOiDcFScY146UKwVGTnS7WV9QxKm47L3BJt\nAABPmwgIAAAAAAB4qRR5Fgd5Fgc75VN/7fm8isl8fh4StfeXUVETEE3XjteCouX90yqm8/P9lWuP\nECxN59Xy/KMqsrSyNNtuma8sxbaIhdozLO22zrWf3Wnd1z4u82SZNgCAFhEQAAAAAADAU5JlKfpZ\nHv0iIvrP+t1craqqC8HR2WS+ujxbM2vS6WR1NqXF8WhlGbf6+P5oUi/ZtnLfzZdoy7MUg7WgaKeX\nx2AtPNrtZTHoFct4aLfM6uu9ohUdZU2kVLTGqmdGEhoBAF0hAgIAAAAAAOCClFL0ihS9YvtLe83n\nVYymq7HQ6XjeLMk2W4ZHi3Pt43o7bYKieYzGs3jveBSn4zouai/9dlN5lpYx0U55vrxasVwiLUWR\nNUuwZWl5rddsF0uuFVla3lMslmjLz+8vs3rJtiLbcG3xmln9v0WRtc6tvw+zIwHAS00EBAAAAAAA\nwDOVZSkGvSIGve19dDWfV3E2nV86a1EdDbVmOGrFQ8Pm2mJWpOmsinGznc7nMTydxbR1bTJvLdPW\nLLG2eGbbimw9IKoDodWAaBEjrUZGq9fakVMdNvXyepzFV5ln0S/Wzrf2+8096+fNsAQA2yECAgAA\nAAAA4IWXZalZBix/Zu+hqqqYzZtl1uZNMNTEQ5NZFdNm2bVFXDRuQqLz62v3z+fLJdvqZ+sxpvOq\niY/qGGkyPx9/eX9z7cF0uvF9TObVSvA0mc2jqp7cr0U7Cirz1AqF8jog2hAWLYKi/obgqHdJbNSO\nlnr5WpjUvi/PIsuESQB0mwgIAAAAAAAAnoKUUrNMWMRuPLsY6VFUVbWMi8bTOlZa2a7tn03rcGjT\nPWfN/mTDs2fL/XoWpnunk4vXp7Pl8fwJhklls5Rbbz0Uap1bLMvWnjWptzar0qX7rWXjyiKLXns5\nueUycpv327M7CZYAuIwICAAAAAAAALhSSmkZtOz1n/W7OTdrhUlns9mFqGjSio4ujZba5y65Z9Ka\nYenkbLqcUWnSml1p9Vx9vC15luogKT+PiBbLvi3+d6oDpcvipKtipRRl1pxrLfu2CJDKZRiVlrHU\n4toimlrcU+bJ0m8AT5EICAAAAAAAAOikfGWZt/JZv50Vi9mTJrP2smz1/ri1JNtiubXFsmzt48X+\nZNpESIuxZvN6vOl5eDSerS4xN14uATePk/GsGaOOk9ph02R6/ppPcmalhUUMtDLD0tqMS/X1PHrt\n+1aCo8WsSHmURVoNjlpj9S+Muem1zu/LzagEvGBEQAAAAAAAAABPWHv2pOg963dzPbP5xRmOlku3\nLQOmWYwX8VIrIFrMnHR+rlpZFm59ebjz8/VY908nG+6tYjydLe+ZPeFKKc/SyjJwq7MYnS/btmlm\npWJtqbblMyvHrSXjimb5t9YsSvXsTRf3N41fZpaBAx5OBAQAAAAAAABA5FmKPMtjp8yf9VvZaBEp\ntUOiC2HSpbFROyw6X7btsjDpbLqYXameYWk4njx0xqbprJ79aVuKLF0ZIBVNpLQpOtoUIC1mVWrv\nt8fZtGTcpnCpfj6Lsnl/ZZEtl6sTLsHTJQICAAAAAAAA4Ln3vEdKERHz+WLpt3o5tsWsSIvl2MbN\nEm7t/fbMS5uPL9lfLg1Xj9/eP5vM48Fs+tBxxrN5VNvrliJLsQyTirWoqFgs57bcv3i9jpTShcio\nzM5naFos/VaHTlfMpnRZ2NTct3wPZl2iw0RAAAAAAAAAAPAEZFmKfpZHv0OfxF+2DNx07Xw7appe\nERYtZkeabrq2IYSazs/veXA2ffgYzbVtyrMUxeJrESVl5zHR6vnVezbfe8nzV4zTvrfMs/o9rZ0r\n2q/ZGm+xhFzRjJuSqOll0aHfegAAAAAAAACAJ6kLMyytq6qqiZeq5bJt7SBpOj9f9m26mClpw4xJ\n03m9RFw7aho35+sAqY6UpvNquTTcZF4tX+/8vnmMJvOYNrMvLc+3xpmtndvm0nHr1kOk83CoHQud\nx0S/8O//8Xj91s5Te388OSIgAAAAAAAAAKAzUmqiljxiN7oTL7VVVdXERa0wqAmUNkVGi3vXzy1m\nR5q2lqGbNoFUe7zFvbPWtY3Pz+eWQ+swERAAAAAAAAAAwFOUUooyT1F2OGTi+ZM96zcAAAAAAAAA\nAAA8HhEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdt9UIKKX04yml30spvZlS+pkN\n1/sppf+huf5/p5R+qHXtZ5vzv5dS+rGHjZlS+unmXJVS+tA2vy8AAAAAAAAAAHiebC0CSinlEfE3\nI+LfjIjPRMS/l1L6zNptn4+Iw6qqPhUR/2VE/PXm2c9ExOci4o9GxI9HxN9KKeUPGfP/jIh/LSK+\nta3vCQAAAAAAAAAAnkfbnAnoT0bEm1VV/UFVVeOI+LWI+OzaPZ+NiP+u2f+NiPhTKaXUnP+1qqrO\nqqr6RkS82Yx36ZhVVf0/VVV9c4vfDwAAAAAAAAAAPJe2GQF9LCLeah2/3ZzbeE9VVdOIuBcRr17x\n7HXGvFJK6adSSl9JKX3le9/73k0eBQAAAAAAAACA59I2I6DnUlVVv1hV1RtVVb3x2muvPeu3AwAA\nAAAAAAAAj22bEdA7EfGJ1vHHm3Mb70kpFRFxOyLev+LZ64wJAAAAAAAAAAAvlW1GQF+OiE+nlD6Z\nUupFxOci4otr93wxIv58s/9nIuIfVlVVNec/l1Lqp5Q+GRGfjogvXXNMAAAAAAAAAAB4qWwtAqqq\nahoRPx0RvxkRX4+IX6+q6qsppZ9LKf3p5rZfiohXU0pvRsR/GBE/0zz71Yj49Yj4WkT8vYj4y1VV\nzS4bMyIipfRXUkpvRz070D9JKX1hW98bAAAAAAAAAAA8T1I98c7L6Y033qi+8pWvPOu3AQAAAAAA\nAAAAG6WUfquqqjcedt82lwMDAAAAAAAAAACeAhEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAwJNWVRHTs4j5/Fm/EwAA\nAADgJVE86zcA8MKYzyPmk4jZOGI2qb+Wx9PV/dm4OW7Ob0XawpDbGDOPyPKIrIjIy3qb5RHZYr85\nztvH61/5dt4bAPDymE0ixg8ixicRZ812fNxsTyLOWvvjB/XX8r4H588un38QUc3qsfNeRLEbUe5E\nFDsR5e41tzut526wzUt/NgIAAACAl5AIiOfH6F79g/WURUSqtymrf3i92G48n609k/zAu6uqKmI+\nuyScuUFUs9zf8MxV983GEfPp2n7z2u395Zhr41f+lvcztQyCyvOoaBkW5a1rm6Ki/JrXioj8shBp\n/bXW3stK4NS69rBY66G/n23x+Yf+VvqYr11Vi52IarGtVrfL+254rYrW2JvuueraprHjmq97k7Ef\nNs51tg95rWttn/b7iPq/14t/Fxb77SBw5VzR2s+ueS5f3b/0XNF6fv312u8xv+Jc8x6elKqq/5vT\n/pqtHS/+W9k+nq0dz6ete2atsTacm0823DO7+D7W38N1XrM9VjVv/T5anv++mJeXHD/ufb1HHGPD\nmP5s+fyZzyMma8HNuBXknLWCnEXIc7Z2z/q9s7Prv345iOjtR/T2Ivr79f7g1Yg7P7h6vtyt/x2e\nnkZMRhu2o/r/A518L2JyWh+3t+f/QbuZlF0RCd0kQrrmtth5sr8XAgAAAACPRATE8+PLX4j4X37u\nyY13IQ5aC4cirQZGG4OirP6M+4mN1bpv01g3+dD1xh/Qzh/tw9pqvnbuus/ON5y74tmq+TDxUT/o\nuK5FfLH4YDDvnX/Yt9xvfQjY22+Oe82Hhb3WB4e91XtX9tsfPD7kvm3MYlNt49dxC2NWUf+zsv7B\n8YUPllvHKx+GX/XB9aYPoi/58Hx8dvkH3Rc+fG+91rb/eYXHsohiH2W7zeej+fd+1vr3f1b/d2Dj\nuenT+yV7HBfCoEtCpKg2BzKLr8WsIc9Cyi4PKi9EkBviyqJ/dRCZUuv3+Ekrsl0cT+vwYdP5+WTz\n8dP6fTi7LCZ6WGTU+nPDyj8P2cUALi2CtGa78fp1zz3qMzd97XaIt+m1F//OV/X/tiuz6bSCnI2z\n7qwHO2thz+Tk+v/75f06yuntN8FOs7//4YvnFgFPby+if3DxfH+/DoCyfDv/rLVVVR2ab4qDrtxu\nio3Wtmf3L8ZIk9PHm6Ey71+Mjop+/ZX3mtmQ+s2fhfsRRXPu0v3e6rN5r7nWv2K/bJ7pb+fP2AAA\n0AVV62cPi5+trP/MZXlttvozmI3H09bPclo/v6lm9V/QWOy3f97zyNfW7nvsa9XF91zNV1//2tdi\n7ecdeVz42cnKz1YuuWflL5gVG8ZcP/eo424ab33cy8bZ8Pr+/xVAZ4iAeH58+t+I2Hvt/A9s1XpI\nsn5+3gpUFuerDefXnom45PzauFVcY6z2a141VnX+B++rvpfrfLjajo4ixfJv3D702eySa1c9e9kz\nD/mgd/09XrltXj/lN4xqLol2Hhb3+IMqT9L/3969x9h21XUA//5mbh9IkfKoSFqE8ki0KBa9IVHQ\nEAgK/FNMKhSFVKPBPyCB+A9gNCDRRIyK/yAPA0lRtDwEafxHHhKUP2x7gfIqoleE0KbSQilSwXt7\n5y7/mD1z9+w558yZuXPmzDnz+SSTWXvttdde594566yz12+vfXbji/MgIGnqIKadght2mNzece57\np+Mn7T+fY6c8fqMvSHboW5KJfcikfmZL3Zmwb7d1Z/Lxe6p7p2Om/L2M/dzZ/oWXtYy+ANW/oDXM\nW+vVMcjrX/TadvGrX8+wDePyem3YUnd3rv5qQlMF24z72WHVsrGrkI0558aqSItmYlDRmMChbdtn\nJgcm7em4B84FVKz1PiO2XFBcm5DXSy90wGmt/631x+E7HrI6CMzpgnB+8IrdB+ts5K1eMNuXOStV\n54JoDsrZtT0EHU34vXY6OXOqC2b6XnLmdLe65qleeqPMLlZimkrtMgBpRODRlvSkoKMxQUvDFQBH\nrhq4Uzrn0pt1nU96F+fr5+/lfJtV9bfbmPyd9u1nffvdvnFtHYzv9pzOeRw7bf21mTV6vLrb9Ma4\ndOPawHDfmGsNI68lZJfl+/Vnl+VnMK7euO4z/Hxva+euE22ZqByMC6bOHzW5OmZSdNwE7FT5wzp7\n2/0b4jaCimulCxieZt/q1nIbwZzbjhmU23bMNPm9urfs6wUyj903ot2jbmTY/Dm7dbv/fWbqMoOJ\n+GnKDCfvpyoz7jwTyqRlW3D8yOt6I4LkN9PD63eD9KhVPjdv1hukd2rDsD3L+P15EW3r2/p9TtvF\nvhEBHJP2jQz8GHGucf1v//277VrF8L12dsR7atS1hL0E6KwNzt/VtTCq19+ubu9/t+0bVW6HfSvH\n1sfqo+rv3/Cy076Nm5v6/WobbI/qe8+cmv4zYFsffZhujhsxhpy4vZdjxm3vd327bHPV4Drbse3b\nk/aN3e5dzzvvuqZo16J87vXnTvvjz81+eTC3uq3MiJ8tZXqfHyPLtHPnSs71B/3vFZu/xyz6sOW7\nxk7la0I9/fya4rz9di7I/zczIQiIw+OHf2L9B2BRrKwkKxcmuXDeLYHltrKSZGVxJ/KZnY2703Lx\nvFsyO5sThDsFDu00CbjHY7ZdJB91zPBi+OCYWhkE6/QCdoaBPccucpFinlZW1/9PLrrk4M+98TjE\njaChzQChLmhobPqBrcec6fLWTg3SYwKQHvh+8v37Jp/vUF14Bw7WLoKGku2fpQsdzNvZttLfxkqA\nvfxUkmHA04jJlY19y/DvcphsWfGhC+4f3kCwbVWIwTHHLt5+zHBlilHnSTchvnY6W4PmT/cC5Xvp\njSDhjQD6frofyL92Ogfyd7IyTcDQhACljb/9JKMDb/vpXQTo7rrciHMdxHlHfh9ove8OwyCaMcE3\ny2C4osvmqi39906Xt+3x5IMbd45d3KtndcRxq716++WG22POMVXbxp1j5VwdUwXsTLPP97+JNt9r\nYwI7RwZ99gLEdgxEHZM3KrhpXP8wcXvaMrupc0bbW5KDMv1/j82bvTY+v9bWb4TZcgPwAztvz6P/\nq+FNhVMEJ60cy+Y4b1KwzLaAmmEgzrBM/3rXoAz7ZJqgoR2ClX7zo8lDL5/z62AvBAEBAAAcVlXd\nBAMsuapzE26Hzdmzg8CkKYKO1k5nS2DAYVq1ZU/n3uv5esdtJkfcZbvTvqnrGxY73/r22L49r/50\nPsdOm8659Ob59jG97XHgZ0fs6/LHPi58N+WH9WeX5Secc+r29/7fRj1ac+TKBKvjJ0Z3zB8RhLMl\nf9T5h3VOk7+xWs4MJmd3c/f2ln29Cadxk0bbJp2GgUjjjpkwmbVT+/oT6v2J/G2T+yMm+8eWGRe8\nMzx+iSfQh6t+jktvCTQasSJoP0BpYrDSIChpVIDS6e8lZ79z7hwbpv7MzZTldvMZPqpcZctKr+dd\n36hyNb4vmrhaS43phwZ921QBJP36RrVjmn1TrP4yqh39wJtlfh8yf1Xn/tZYLpurQE0RMLTb7Y3g\npH2pu1sNZ+TKir2gkZErMq6e2z+2zOBnS5kanGtYpka0p1+mRrSnX2ZUGwbnT7LlO0B/HDvyyS9t\nTP6o8m1CPf38jIvAWAAAChVJREFUNsV5z86mnRc86IDfGOwXV5MBAAAAxllZSVYuTi5Y4lXHAA7S\nxoRmTGgywVFY9ROAo8tTBoAZWtm5CAAAAAAAAAAAcJgJAgIAAAAAAAAAgAUnCAgAAAAAAAAAABac\nICAAAAAAAAAAAFhwgoAAAAAAAAAAAGDBCQICAAAAAAAAAIAFJwgIAAAAAAAAAAAW3EyDgKrquVX1\n5ao6WVWvGbH/oqp6T7f/5qp6XG/fa7v8L1fVL+5UZ1Vd2dVxsqvzwlm+NgAAAAAAAAAAOCxmFgRU\nVatJ3pzkeUmuSvLiqrpqUOw3kny7tfbEJG9K8sbu2KuSXJfkyUmem+Qvqmp1hzrfmORNXV3f7uoG\nAAAAAAAAAIClN8uVgJ6W5GRr7SuttdNJbkxyzaDMNUlu6NLvT/Lsqqou/8bW2qnW2n8lOdnVN7LO\n7phndXWkq/MFM3xtAAAAAAAAAABwaMwyCOjyJF/vbd/R5Y0s01o7k+Q7SR4x4dhx+Y9Icl9Xx7hz\nJUmq6mVVdaKqTtxzzz17eFkAAAAAAAAAAHC4zDII6FBqrb29tXa8tXb8sssum3dzAAAAAAAAAADg\nvM0yCOjOJI/pbV/R5Y0sU1XHkjw0ybcmHDsu/1tJLu3qGHcuAAAAAAAAAABYSrMMAro1yZOq6sqq\nujDJdUluGpS5Kcn1XfraJP/UWmtd/nVVdVFVXZnkSUluGVdnd8zHuzrS1fmhGb42AAAAAAAAAAA4\nNI7tXGRvWmtnquoVSf4xyWqSd7bWvlhVb0hyorV2U5J3JPmrqjqZ5N6sB/WkK/feJLcnOZPk5a21\ntSQZVWd3ylcnubGq/iDJZ7q6AQAAAAAAAABg6dX6IjpH0/Hjx9uJEyfm3QwAAAAAAAAAABipqj7V\nWju+U7lZPg4MAAAAAAAAAAA4AIKAAAAAAAAAAABgwQkCAgAAAAAAAACABScICAAAAAAAAAAAFpwg\nIAAAAAAAAAAAWHCCgAAAAAAAAAAAYMEJAgIAAAAAAAAAgAVXrbV5t2FuquqeJF+bdzvY4pFJvjnv\nRgAcEH0ecJTo84CjRJ8HHCX6POCo0e8BR4k+Dw6Px7bWLtup0JEOAuLwqaoTrbXj824HwEHQ5wFH\niT4POEr0ecBRos8Djhr9HnCU6PNg8XgcGAAAAAAAAAAALDhBQAAAAAAAAAAAsOAEAXHYvH3eDQA4\nQPo84CjR5wFHiT4POEr0ecBRo98DjhJ9HiyYaq3Nuw0AAAAAAAAAAMB5sBIQAAAAAAAAAAAsOEFA\nAAAAAAAAAACw4AQBcWhU1XOr6stVdbKqXjPv9gDMUlV9tao+X1W3VdWJebcHYD9V1Tur6u6q+kIv\n7+FV9ZGq+o/u98Pm2UaA/TKmz3t9Vd3ZjfVuq6rnz7ONAPulqh5TVR+vqtur6otV9cou31gPWDoT\n+jxjPWDpVNXFVXVLVX226/N+v8u/sqpu7uZv31NVF867rcBk1VqbdxsgVbWa5N+TPCfJHUluTfLi\n1trtc20YwIxU1VeTHG+tfXPebQHYb1X180nuT/Ku1tqPd3l/nOTe1tofdQHfD2utvXqe7QTYD2P6\nvNcnub+19ifzbBvAfquqRyd5dGvt01X1kCSfSvKCJL8WYz1gyUzo814YYz1gyVRVJXlwa+3+qrog\nySeTvDLJbyf5QGvtxqp6a5LPttbeMs+2ApNZCYjD4mlJTrbWvtJaO53kxiTXzLlNAADsQWvtn5Pc\nO8i+JskNXfqGrF84BVh4Y/o8gKXUWrurtfbpLv3dJF9KcnmM9YAlNKHPA1g6bd393eYF3U9L8qwk\n7+/yjfNgAQgC4rC4PMnXe9t3xGAaWG4tyYer6lNV9bJ5NwbgADyqtXZXl/7vJI+aZ2MADsArqupz\n3ePCPBYHWDpV9bgkT01yc4z1gCU36PMSYz1gCVXValXdluTuJB9J8p9J7mutnemKmL+FBSAICADm\n4xmttZ9K8rwkL+8eIwFwJLT1ZxJ7LjGwzN6S5AlJrk5yV5I/nW9zAPZXVV2S5O+SvKq19j/9fcZ6\nwLIZ0ecZ6wFLqbW21lq7OskVWX+Ky4/OuUnAHggC4rC4M8ljettXdHkAS6m1dmf3++4kH8z6gBpg\nmX2jqh6dJN3vu+fcHoCZaa19o7t4ejbJX8ZYD1giVXVB1ifD391a+0CXbawHLKVRfZ6xHrDsWmv3\nJfl4kp9JcmlVHet2mb+FBSAIiMPi1iRPqqorq+rCJNcluWnObQKYiap6cFU9ZCOd5BeSfGG+rQKY\nuZuSXN+lr0/yoTm2BWCmNibCO78UYz1gSVRVJXlHki+11v6st8tYD1g64/o8Yz1gGVXVZVV1aZd+\nUJLnJPlS1oOBru2KGefBAqj11Vlh/qrq+Un+PMlqkne21v5wzk0CmImqenzWV/9JkmNJ/kafByyT\nqvrbJM9M8sgk30jyuiR/n+S9SX4kydeSvLC1du+82giwX8b0ec/M+uMhWpKvJvmt1tpd82khwP6p\nqmck+Zckn09ytsv+nSQ3x1gPWDIT+rwXx1gPWDJV9ZQkN2R9nnYlyXtba2/o5jNuTPLwJJ9J8pLW\n2qn5tRTYiSAgAAAAAAAAAABYcB4HBgAAAAAAAAAAC04QEAAAAAAAAAAALDhBQAAAAAAAAAAAsOAE\nAQEAAAAAAAAAwIITBAQAAAAAAAAAAAtOEBAAAAAAB6aqnllV/zDvdgAAAAAsG0FAAAAAAAAAAACw\n4AQBAQAAALBNVb2kqm6pqtuq6m1VtVpV91fVm6rqi1X1saq6rCt7dVX9a1V9rqo+WFUP6/KfWFUf\nrarPVtWnq+oJXfWXVNX7q+rfqurdVVVze6EAAAAAS0IQEAAAAABbVNWPJXlRkqe31q5OspbkV5M8\nOMmJ1tqTk3wiyeu6Q96V5NWttack+Xwv/91J3txa+8kkP5vkri7/qUleleSqJI9P8vSZvygAAACA\nJXds3g0AAAAA4NB5dpKfTnJrt0jPg5LcneRskvd0Zf46yQeq6qFJLm2tfaLLvyHJ+6rqIUkub619\nMElaa/+XJF19t7TW7ui2b0vyuCSfnP3LAgAAAFhegoAAAAAAGKokN7TWXrsls+r3BuXaHus/1Uuv\nxTUqAAAAgPPmcWAAAAAADH0sybVV9UNJUlUPr6rHZv1a0rVdmV9J8snW2neSfLuqfq7Lf2mST7TW\nvpvkjqp6QVfHRVX1Awf6KgAAAACOEHdZAQAAALBFa+32qvrdJB+uqpUkDyR5eZL/TfK0bt/dSV7U\nHXJ9krd2QT5fSfLrXf5Lk7ytqt7Q1fHLB/gyAAAAAI6Uam2vqzYDAAAAcJRU1f2ttUvm3Q4AAAAA\ntvM4MAAAAAAAAAAAWHBWAgIAAAAAAAAAgAVnJSAAAAAAAAAAAFhwgoAAAAAAAAAAAGDBCQICAAAA\nAAAAAIAFJwgIAAAAAAAAAAAWnCAgAAAAAAAAAABYcP8PaVBck7IscfMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left')\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0021724022948290786" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is not small enough. The model is still not an usable model in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAJCCAYAAABAuEcoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYVNX9x/H3mb6NshQRKUtsoDTB\nTjQae6wxGntiEnv8mcQYe9QkxhJjNEajIRoTY40tasSGiogUAQFBirQFls4u23en3t8fd3bKzpaZ\n3dnC8nk9D8/ee+65957dBZ5nPs8532Msy0JERERERERERATA0dUDEBERERERERGR7kNhkYiIiIiI\niIiIxCgsEhERERERERGRGIVFIiIiIiIiIiISo7BIRERERERERERiFBaJiIiIiIiIiEiMwiIRERER\nEREREYlRWCQiIiIiIiIiIjEKi0REREREREREJMbV1QNorH///lZRUVFXD0NEREREREREpMeYP3/+\nDsuyBqTTt9uFRUVFRcybN6+rhyEiIiIiIiIi0mMYY9al21fL0EREREREREREJEZhkYiIiIiIiIiI\nxCgsEhERERERERGRmG5Xs6gpwWCQkpIS6uvru3oouzyfz8eQIUNwu91dPRQRERERERER6YZ2ibCo\npKSEgoICioqKMMZ09XB2WZZlUVpaSklJCSNGjOjq4YiIiIiIiIhIN7RLLEOrr6+nX79+CorayRhD\nv379NENLRERERERERJq1S4RFgIKiLNHPUURERERERERassuERSIiIiIiIiIi0vEUFnWR/Px8ADZt\n2sQ555zTYt+HH36Y2trajJ4/bdo0TjvttDaPT0RERERERER2TwqLsigcDmd8z+DBg3nllVda7NOW\nsEhEREREREREpC0UFqWpuLiYkSNHctFFFzFq1CjOOeccamtrKSoq4qabbmLChAm8/PLLrF69mpNP\nPpmJEydy1FFHsXz5cgDWrl3LEUccwZgxY7j99tuTnjt69GjADptuuOEGRo8ezdixY/nLX/7CI488\nwqZNmzj22GM59thjAXj//fc54ogjmDBhAueeey7V1dUAvPvuu4wcOZIJEybw2muvdfJPSERERERE\nRER6AldXDyBTv3nrK5ZuqszqMw8Y3Is7Tz+w1X4rVqzgqaeeYtKkSfz4xz/mr3/9KwD9+vXjiy++\nAOC4447jiSeeYN9992XOnDlcc801fPTRR/zsZz/j6quv5gc/+AGPPfZYk8+fPHkyxcXFLFy4EJfL\nRVlZGYWFhfzpT3/i448/pn///uzYsYO7776bqVOnkpeXx/3338+f/vQnbrzxRi6//HI++ugj9tln\nH84777zs/YBEREREREREZLeR1swiY8zJxpgVxphVxpibm7h+qTFmuzFmYfTPZdH28caYWcaYr4wx\nXxpjdukEY+jQoUyaNAmAiy++mBkzZgDEgpnq6mpmzpzJueeey/jx47nyyivZvHkzAJ999hkXXHAB\nAJdcckmTz586dSpXXnklLped4RUWFqb0mT17NkuXLmXSpEmMHz+ef/3rX6xbt47ly5czYsQI9t13\nX4wxXHzxxdn95kVERERERERkt9DqzCJjjBN4DDgBKAHmGmPetCxraaOuL1mWdW2jtlrgB5ZlrTTG\nDAbmG2PesyyrvK0DTmcGUEdpvO18w3leXh4AkUiEPn36sHDhwrTubwvLsjjhhBN44YUXktqbe6eI\niIiIiIiISCbSmVl0KLDKsqw1lmUFgBeBM9N5uGVZX1uWtTJ6vAnYBgxo62C72vr165k1axYAzz//\nPN/85jeTrvfq1YsRI0bw8ssvA3aws2jRIgAmTZrEiy++CMBzzz3X5PNPOOEE/va3vxEKhQAoKysD\noKCggKqqKgAOP/xwPvvsM1atWgVATU0NX3/9NSNHjqS4uJjVq1cDpIRJIiIiIiIiIiLpSCcs2gvY\nkHBeEm1r7HvRpWavGGOGNr5ojDkU8ACr2zTSbmD//ffnscceY9SoUezcuZOrr746pc9zzz3HU089\nxbhx4zjwwAN54403APjzn//MY489xpgxY9i4cWOTz7/ssssYNmwYY8eOZdy4cTz//PMAXHHFFZx8\n8skce+yxDBgwgH/+859ccMEFjB07liOOOILly5fj8/mYPHkyp556KhMmTGDgwIEd94MQERERERER\nkR7LWJbVcgdjzgFOtiyroQ7RJcBhiUvOjDH9gGrLsvzGmCuB8yzL+nbC9T2BacAPLcua3cQ7rgCu\nABg2bNjEdevWJV1ftmwZo0aNatt3mCXFxcWcdtppLFmypEvHkQ3d4ecpIiIiIiIiIp3HGDPfsqyD\n0+mbzsyijUDiTKEh0bYYy7JKLcvyR0+fBCYmDKYX8DZwW1NBUfT+yZZlHWxZ1sEDBuyyq9RERERE\nRERERHZ56YRFc4F9jTEjjDEe4HzgzcQO0ZlDDc4AlkXbPcDrwDOWZb2SnSF3jaKioh4xq0hERERE\nREREpCWt7oZmWVbIGHMt8B7gBP5hWdZXxpjfAvMsy3oTuM4YcwYQAsqAS6O3fx84GuhnjGlou9Sy\nLG3dJSIiIiIiIiLSDbUaFgFYljUFmNKo7Y6E41uAW5q471ng2XaOUUREREREREREOkk6y9BERERE\nRERERGQ3obBIRERERERERLKmvDbAmY/OYH1pbVcPRdpIYVEHmDZtGjNnzmzXM/Lz87M0GhERERER\nEZHOM2XxFhaVVPD4J6u6eijSRgqLOkA2wiIRERERERGRXdH7SzZyrnMa4VCoq4cibaSwKANnnXUW\nEydO5MADD2Ty5MkAvPvuu0yYMIFx48Zx3HHHUVxczBNPPMFDDz3E+PHj+fTTT7n00kt55ZVXYs9p\nmDVUXV3Ncccdx4QJExgzZgxvvPFGl3xfIiIiIiIiItkQCkcYvuYFHnBPxrPoma4ejrRRWruhdSvv\n3AxbFmf3mYPGwCn3tdrtH//4B4WFhdTV1XHIIYdw5plncvnllzN9+nRGjBhBWVkZhYWFXHXVVeTn\n53PDDTcA8NRTTzX5PJ/Px+uvv06vXr3YsWMHhx9+OGeccQbGmKx+eyIiIiIiIiIdbf66Mh6eupKJ\npgqA/qYCy7L4alMlg/vkUOMPMbQwt4tHKenY9cKiLvTII4/w+uuvA7BhwwYmT57M0UcfzYgRIwAo\nLCzM6HmWZXHrrbcyffp0HA4HGzduZOvWrQwaNCjrYxcRERERERHJlrpAmFF3vEuB18UvTtiPCw8b\nxvcen4WTMP/2vQbAd/sW88ysddz55lex+z751TEM75fXVcOWNO16YVEaM4A6wrRp05g6dSqzZs0i\nNzeXY445hvHjx7N8+fJW73W5XEQiEQAikQiBQACA5557ju3btzN//nzcbjdFRUXU19d36PchIiIi\nIiIi0l4LNuzkXOc09guX8MmUMbzzxSGs8l7Mn0LnxPoMr/qCFVurku771gPTKL7v1M4ermRINYvS\nVFFRQd++fcnNzWX58uXMnj2b+vp6pk+fztq1awEoKysDoKCggKqq+D+IoqIi5s+fD8Cbb75JMBiM\nPXPgwIG43W4+/vhj1q1b18nflYiIiIiIiEj6bn1uGsf87g3y/Vt5wD2Zy11T+Jfnfv5WeikuE+FG\n939ifVf0OZocl2GI2UYvqhlt1gAQDEe6aviSJoVFaTr55JMJhUKMGjWKm2++mcMPP5wBAwYwefJk\nzj77bMaNG8d5550HwOmnn87rr78eK3B9+eWX88knnzBu3DhmzZpFXp495e6iiy5i3rx5jBkzhmee\neYaRI0d25bcoIiIiIiIi0qJ7Vp7Je6Gf8NN/z0lqLzTVKX3X54zi8C3PM8P7c770XcH/vLdTZDZT\nGwh31nCljYxlWV09hiQHH3ywNW/evKS2ZcuWMWrUqC4aUc+jn6eIiIiIiIi0yV290+76aOQczhq0\ngyHbpiW1b7t+KwN7+bI8MGmNMWa+ZVkHp9NXM4tEREREREREJPsiQQImNRQKRrrXpJX2uvX1xTw3\np2eVlVFYJCIiIiIiIiJZ158KqrauTWkP9ZCaRRV1Qc6fPIvpn8/j/tfnYFkWr84voT646y+z22XC\nou62XG5XpZ+jiIiIiIiIpOvjFdsouvltPlq+FSKZhTx9TA2LQsNS2oPBULaG1ymaC39++9ZSZq8p\nY4b35/zPcyszVu3gly8v4g/vrujkEWbfLhEW+Xw+SktLFXS0k2VZlJaW4vNpbaiIiIiIiIi0btrb\nL1Lsu5Cdz/2YsoryjO492TkXP+6U9kjQn63hdbitlfWM/PW77H/7OynXJlhfMd97JQDDHNu5/R9v\nMtd7FQtnvtfZw8w6V1cPIB1DhgyhpKSE7du3d/VQdnk+n48hQ4Z09TBERERERERkF3Be+G0Avuec\nwY0PPcgfGk05CThz8YRrAVjdZxJ7n/s7mP5HWDEFgMtd9leGHkZFVTW9y78iHKjrtPG3x45qP4vW\nbmW296fcHzyfl+YeyHmHxGdKjS57n36mKnb+ifd6AG50vwT8orOHm1W7RFjkdrsZMWJEVw9DRERE\nREREZPdi4unQHxyPplzeOOwMRqx90T7ufRB77zURLnghdde0i19j8wdP0nvenYRD9R065PZYu62S\nB55+gd9ccyln/f4FznZ+yonunTzkeZwDXz04KSwyjqYjlYCvf2cNt8PsEsvQRERERERERKTz1QeD\nLV7vf9DpCWctRAxODw6nvSQtEgwkXbrplS854t4P2zrErNlQVsubj1zHX+tuZN7MqXzm+xm/dL8S\nu36965Wk/sbhbPI5gbpqavy7Vl2mxhQWiYiIiIiIiEiTJvjntnjdsc9xsWPLmOY7ujwYlweAcKOw\n6KV5G9hcUU8k0rV1it/5y3X8zPU6AL7AzpTrP3E1qlvUzPd7vHMB20pT79+VKCwSERERERERkTbJ\n8fkIGXvGkCMxPPlpasjkcEbDonAg5RqAP5TZbmvZdoX1cuy4+vN/t9o/MdwKnPFE0rVwbWn2BtYF\nFBaJiIiIiIiISJs4HIaZoZEAfLWlJn5hwH7x4wk/BMC4osvQQslL2452LOJ0x0z8oaa3qO8sKwed\nFjs+3Tm7yT7hhICo3orWLLpiGp6x34NxF7JqtF3Y+uk3PuiwcXYGhUUiIiIiIiIi0mZHOxcDsF9w\nWfKF81+wv37TDlCc0bAoHIrPLLIsi2c89/MXz6PUB7t2ZlGlZ4+mL9xVwYKhl1BreQmG42M0oXoq\nrDwYfBC4PPDdxyl22AWwf191e2cMucMoLBIRERERERGR9N2wqsnmXEejos4jvwN3VUChvbu5iS5D\nsxLCoppAfDZRfbBrZxZZkRaKUjvcuAnFwqJN5XUUb95ODd6kbqOH7fo7oYHCIhERERERERFpwuez\npqU2nvkY5A+A//sCrluQdCngyG3xeZbDnlm0Zmt5rK2qPr4kzR9oeee19qqoC1J089vMWLkjqX3p\npkqKbn6bL4u3ptyzcN9rATBON24TJhStq/TujNl83/UJOSTXX+q754gOGn3nUlgkIiIiIiIiIikm\nvHd20vkWqxAOutg+6bc3FH4DgNqDfgLA8EJfi8/LzbGvr9tWEWurqqmLHfv9dSn3ZNOfp64E4OKn\n5jBnTWmsQPV5k2cB4CU1rAr1LrIPoju5BYN+AMZu/A8AfU11Un9PXp/Y8cIN5XxZUs6uSGGRiIiI\niIiIiKRwkbwsbJApa7Jf7rd+DsDwb/+kxef175UHwIhCT6yttiq+xXyovjblnlA4wuaK7IRIifWG\nzps8mzveXAJAVb29/MxrUsMiV04vAIzDHvMtL9mFr02k6VlQJm9A7Pisxz7jjEc/Y+2Omib7dmcK\ni0RERERERESk7foMs2sT7XN8i92My67vU1AeL4S9fvOW2HHAnxoW/X7KMo649yN21gRSrmVq7wF5\nSefPzl5PZX2QicP7AuAlwJrIIBaNvD7Wx53b2z6Izix6cPOlAEQwTb/E7WPhN64CwGCHUw998HW7\nx97ZFBaJiIiIiIiISMfrvy8A9SF7+de84jJee39a7HKwibDow2XbANhY3v7ZRbkeV0rbk9PXMLxf\nLm6n4XTnbL7h2IJxxWc+GV+B/TXa1sfYs4QO2fqfZt/j9trL7fKoB2Dc0D7N9u2uFBaJiIiIiIiI\nSIolg88FYPOJT2Tnge5cQpaDrdu3Y1kWa7bXUEA8IAoHUgOh9WX29WzMzqmvr+VFz+/oS2Wsrah/\nHjm1W3nZfWesLTEsGtSvEIAdFfHaRJX1LRfi9oftMOxx98McaNby8fJt7R57Z1NYJCIiIiIiIiIp\n/M58gpYT556js/NAY6gilwJq8Yci5HldDDXbY5dDCTOLIhGLJz5ZHTs/cK/e7X794Yvv5HDHMhb4\nrqI/dpHtX/93CT8vuY7xxMOo2nB8BlLhoGEADC2fG2urroqHTU3pV7cOgKOcS3jbexszVu3g8Hs+\nbPO4Lcvi928v7dTaRwqLRERERERERCSFFQkSwonTRFrvnKaIp4B8U0e1P8QepXO40f1S7FrxltLY\n8Y/+OZf73lkeO9+rT8s7raWjV+262PE839V807GYmkCYAaF43SS/tx9m1Qfxmzx2naNhY4+O96nc\nwUrfGADqBoxLec9eIw9JOj/SsYQtlfVsr/K3adxbKuv5+6drufTpz9t0f1soLBIRERERERGRVGE7\nLOrjzV500C+4me85Z1DjD1GwY0HStU+WlvDxim0EwxE++dqecfSu5yaKfRdSE92xrD3CVnJR6mc9\n99KLhNk6vYbg/eUSRvu205j3W79ky7BTARjx70MZVrecYmcROZe9ndLXdeRPk85HmfUAVNS1vHyt\nOQ5jj7sqCz+DtN/ZaW8SERERERERkW5h0ZyP4K7ePPTgb5vt44gECeLCOShLy9ASfOuBacxdkxzK\n+Aiwels1X2+twkGEy53/Y6RjAwDBuop2v/O90ISUtmMcC5nlOcI++dlC8ORSd9zvU292ONjcZ2Ls\n1GuCbPaOAG9Bal9jKDnid7HTAaYcgGC4bTO0LLsEEmVZ2BEuXQqLRERERERERHYT5VXVvDVtJuPe\n+S4Av6h6sNm+gdJ1hHGAMYSLjiZ87O1ZG4eLELVV5Ulto8x67n57Gec+MYtfuV7iNvfzsWuj1z3T\n7neWVdentFWSS2VdkPXuEeB0A+D25DR5f9Gkc5POw67cZt815KTr4JDLALjK9T8OMcsJR6w2jTts\nWQwzW3ESbtP9baGwSERERERERGQ3sWjyFZw+7ZRW+wXDEfYOrSI3uv2789K3cH7rV+1+//yRvwTs\nWUR1eJKuXe9+hdFmDVaghqtdbyVd27g1dWlYa4LhCIfdM5W3Fm2ieEcNXpO6DOwu1zPk4KfU74y1\n9RpoF7Wum3RTUt++ewxj/difx87d5atp0Yl3xw5f9v4WK9y2ZWT+im1M9/6CO13tD8zSpbBIRERE\nREREZDexX61dJ6iYPVvsd9+D9zHAVLDOu39W318T8QKwxHcZE429A5n/R1Nj14ebbVznej3lvnl1\ngzJ+V3ltkK2Vfm59bTH3TFmGj9RlXEWOreQYP3VWQnDVZyhcv4yc425O6T/wmCtix2PNmpYH4E6e\noWTqy5vp2LKLH58GwInOedQGOqdukcIiERERERERkd1EMLp0qr+1M9YWaWJ51KXV/7D7W9mNDZxu\nb+z4m86vAPD03iPWdppzVsqsIoAC6jJ+13/m2fWOqvwh3l+6lVwSdiMbdmTsMIcAtXiTb+41GByp\n37vHGw+AckyGNYSCNa33acSyLCzsAteDzE7eXLgp42e0hcIiERERERERkd1E0JkPQL6J1+/5eNHK\nlH5uY9fHCTm8Kdfa45DwgpQ248mPHZ/inNvkfXnUU7KzNqN3PfDeiqTzb5jNCWfxgGy0o5gjRw5N\n65mOhLArfNFrrd9w7G0EfP0AKK2s47GPV2FZ6dcu8ociOE28MPaOan8LvbNHYZGIiIiIiEgPFolY\nTc4ckd1PtT/EzqArpX35q79LaXNjL3eKZBBspMPjdiedBywnOD3N9I7LM3W80c5ZNXs7Eu5fPyvp\nWu7KN9N7iDMeFjn3Pa71/t+6kbUTbgPg3ilLeeC9FSzemP7ObrWBcFJh62Wbyrn8mXksWL+zhbva\nT2GRiIiIiIhID/aNW6fww6c/7+phSDfwxqM3cHBwXux8Rq4ddozum7rLVm+qAaisSy0K3S69Bied\n1uMB03o0UUAdHmdmEcax+/Si2Hch33d+zGB2MNA0qhl04Hczeh4AztSwrTXG2MvIAiE7gPOHIi11\nT1JTH+QT7/Wx80+XrOWDpVv57l9ntnl3tXQoLBIREREREemhVmypAuDTlTu6eCTSHVxU9XTS+ZpK\nByXOIXhDdjBUtvxTuKs3O7dvxhVd+pRfuEfKc9rloB8knfrxgCcXvv/vFm/LM/U4HCajVx2fZxeg\nvsn1IjN918Uv7HsSXLcA1s3M6Hlt5rB3WjPRpW/BcPph0ZL125LOD3Csix13ZLFrhUUiIiIiIiI9\nUCgc4bbXF3f1MKQL/eYP9/GX519j6YKZfP7FFynXa/Hhd+bjCdmhYuGLpwGw+JFz2W71BiB07J3Z\nHVTfoqTTsCO6BO2AM2DCD5u97Uxn5sHORSvsgKifqYo3HnEtXPQfKPxG8oymC17M+PnpCkYnABVQ\nxzizikAGM4tue2l20nli3aXaQOqMsGzJfP6UiIiIiIiIdHt/+uBr5q3r2Lom0r3dWXsvfI39pwlD\n++ZQF8rHWVPGspWrGBVtP9pph4yLXGOZNP6A7A7K6YK7Klj14s3ss/xxcq2EotVnPAJf/KvZW3M2\nTAdGtO/9B10SPz7yOnjvFjj0Stj/lPY9twWlNXao85D7MUY4tvJ+1YnAwFbvq/GHyE0oRA6Qgx8f\nfurxUO0Pkc68r7cWbeK1L0oyGrNmFomIiIiIiPRA84oVFEnLhhx6JiXVhnGONWx85rKU62F3Xoe9\n2+krAGC9Sa5hxO3bmuht85dvbvZaU0I4UxsHjowfH3EN3LIRTrk/o+dmas8+uQCMcGwF4LevzuHV\n+a2HN6c/OoN8ksOiX7ufZbnvRxT7LqLWn97Mov97YQEfr9ie0ZgVFomIiIiIiPRAq7dXd/UQpJvL\nz8tlr8F2WHO8M3VL+3pHboe9u5YcAGrCjQIdlzf5/PvPxO8JZRZhfJJ3ctJ5xbdSd33Dmw8ms1pI\nXPYR/OzLtLvvOzA/6dyHnwfeW9HqfWu21/CE+6Fmr3+8fGvaY8iUwiIREREREZEeqLQm0NVDkG5u\n73FHUdVrv2avB3E3e629hg22l2E5aaF+z4l3wwFnxk59wcxmyxUGk8OU3vsfldH9zRoyEfoOT79/\nRfIsonzq086nihzNB0J/nbqk1fvL2vj/gMIiERERERERkd3EPM8hAFQcczc43fQvOrDZvumXYc6c\nN9cuoO0hmHpxr4OhzzA48v/s8/EXAVAY3JLRO6rq/MkN7o6bKdWi2tKk016mhs0VddQHW15G5nO3\nnCjlUc/DU79u8TkTfvcBhgiODH+bCotERERERER6oMI8T+x4eL8u+pAs3c6IM2+DuyrofYwdxOw3\n6btJ19/rc17seEx1x20t7/bZfyf3NRtTL17+Ifw8YSe/s/5KEDeWZWX0jpSAxJ2T6TCzo1dyXaZn\nPPdzkfNDznz0sxZvey/vty1ezzF+Hp66kuMe/KTJ628u2gTAo+5HWOO7OIMBKywSERERERHpkZyO\n+KwER6Y1WWSXV+/3N9ne78BjU9q+nnB77Dj/oLNjx/1NZfYHFmX67Q2Ax+Ntpaet2vJSVV3N+tLa\n1jtHeU2jWUumiYLXnWHCD2HwQUlN5zo/YcXWKr4sKW/2tuH1y+Inl/w35fq1TrttY3ldk/df94Jd\nh+pU5+eZjlhhkYiIiIiIiLTN/HVlvLsks6VB0jn8m5eltNVbTdcgWmLidYsOOfJ46g61Zx0VX9xx\nM4saloQ5TXqzhfy48RLk6Ac+Tqt/OGLhbbzErdEMn07jcMDwSUlNBvv7fuHzDa3fX3QU7B0P+WoO\nuRaA813TAHA7sx8GKywSERERERHpgeoCdh2THOpxWOltsZ2p7z0+i6uenc+WivrWO+9C1myvpujm\nt1mxpaqrh9Jm4UD8d7J8wElAE8uyog6bMIFSq4DrIr/E43aR85274a4KivZpvp5RuzmjwVWaS8v8\nljt1plALagMh+psK/K4Cu+HoGzPf9SybDvwuuPNip72pAeCFz9e3fu+pDyadOveP7/I2kJ30zfU0\nviPel7b921dYJCIiIiIi0gNV+0MALPP9mLvr7+nQdx3/p6Zrpuyq3vvK3oHq5y8t7OKRtF0gFA+G\nagYdDjS/89heew1lykmfcuMvbuiUsdmDiS4/+8YxaXVvmFmUrvqqcgabMryhKrizHL59W+ZjzKYh\nB8Ot8fpMRY6tnOqY3eIt83ImUewsggH7J7X78nrHjj/3/ZSi+qXNPuMm14ttGq6rTXeJiIiIiIhI\nt7efsZe4HBGe16HvaQimuptAKEKNP4TLaSjwpb8NfO8cu++yzR1Xs6ejBcLxYMiXmw+0vOTrkiNH\ndPiYknhy4epZ0Lcore77OTayHxvpG2z9d+IPhamvKos3dJeaXY3G8ZjnEb6o37fZ7o5IkLBpIrbx\n5CWd/s1xP3BdUptlWTzjvpejnYtpC80sEhERERER6YH6Usn73pu6ehhd6qg/fMRBv/uAMXe9n/Y9\nVfVBFqzf2YGj6hxBv10IenHfE3C40ysi3en2OMAOjTLwlOePLV5fXFLB/re/y4ylxQCs3ffSNg6u\ng5z1eNLp5f2/ZOmmSq769/yUrg4rRCQxLPrRO3DWE+BMXnbW11Sn3FsbCLc5KAKFRSIiIiIiIj3S\nE56Hk85Ldqa/i1S68qijAPu5kUhm25p3hq2VTe8I1pJrn1/Ay/NLOmA0nStQZwcIkYMvw+H2dfFo\nsmeCYxXbq5r/vc5bZ88omvu1XQuoavA3O2VcaRt/IeT2i53+uPrvfOeRT3n3qy1MW7EtqauJBLEc\nCTPihh8J4y+AvAEpj7Ua1X6qaedsP4VFIiIiIiIiPdAwk/zB81sPTMvq819fUMIc709Z7LsMSF72\ntKvaWlnPJ19v7+phZIXvk9/zTKNOAAAgAElEQVQBsGXLJpzddWZRG9UGmg9CGmo1ecN2iOnK6dUp\nY8rIjWvgugUpzZc+PZeim9+m6Oa3ATCRULwQeKJG4d82qw/hRmFtVWJY1HtYxkNUWCQiIiIiItID\n7WnKks4bf5hsr1+8tIh8Y++4daxjQbcLi/yhzHeB2hadibS32chc79XsSSllNYFsD61TjAitAaCf\nJ4jLk9PFo8muz9eWNXstp3ItC72XMyy0DgBPbjcMiwAc8eVlIwcVNNnFHakn4mpmVtjRv4r3I8Tn\na8vwh8KxIK22NmEmYWFR5sPL+A4RERERERGRBE97Hkjafas7qPEnh0VLNla0eo/HZX9EPtf5CQNM\nBXe4n2HW6tIOGV9HW7LftQAMnngq3vzCLh5NFlz2Uexw8vQ1zXY7YMt/6WNqOCnwAQCenLxm+3ap\nPvZsnzVmGKMCi5nrvRov8WAyHLHwWn4irmZqOh39K+i/P9MjY3ERZsaqHRzzwDQOuOM9NlfUMW9x\nwg5pBYMzHp7CIhERERERkR4uYDk7/B3BbjazqKo+eZv1zRX1rd7T8D3stOyZHqc457a45Kk7Czjs\nGSlOl4eCoaMAWOw8oCuH1D5DJsYOHeEWalFFa/e4LPv3783JrIB2Z1qZO57t4Vweqr2VAaaC0xyz\nOcUxhwHs5IH3VuCjHtNcAXCXF679nOXWMNyE+Ou01bG/40fc+xHPfvZ1vO+kn4HJLP5pYg82ERER\nERER6Um+tPYG7CK4JkvbiOd7kz9OBkPdq8B1VX1yyJPOMryGpXRVxD+g+7vZjKl01fntWSrG5SQ/\nL5/IHeWMcXSTLeTbaZ++zYefxor+3q0IGMjxddOZRcDmqjD5Jv739EHPE7Hjok+e50pvgEp3y0sI\nJ4zYA/e61EDThx2WWU4vZo8DwJ0LlKc9Ns0sEhERERER6eEc2IHHRU/Oydoz783/T9J52OpeYVF9\n0F6G9qNJRQAU+FqfKxEMRTjJ8Tn3uJ8CYHVkT0LdbMZUuiatfQQAV7RAsqMHBEXBg68A4DuFm5rt\nYyz79+7A/urrxjOLBhUW4CLMusjAJq/n4sd4Ww67DvRswWkshpstSe052LOMzHnP2g2B6ozGprBI\nRERERESkh9nZqCizK/rBeebqUkp21nLr64vbHYKcXvNK0nk4FGymZ9eoD0Y43jGfXy0+ndtd/6Y2\n0HrB62AozN88Dye1dbfC3ZlyuprYTWsX5Vr3KQAjS15uvpNl/77c2LNtPL7uGxYN6dcLN2ECpP6O\n8qjDa4I4PS2HRTmr7J3TTnLM5SjHl5zisAPhgx3RZWg5fds0NoVFIiIiIiIiPUjxjhqOfuDjpLaG\nD865Hic/f3Ehz89Zz6KS1gs+ZyISbL0mUGeqD4Z50vMguYFSLnO9k1btId/2hUnnezs2Ewhmvqta\nd+J09pzqM8bltb+GW9ihLjrDzU2IiGWSdh3rbrxeH6Mc62Mz/xLd5rJnBLnSDLtOds7l3577eNzz\nZ0aZddzsftG+0PD7H3pYRmNLKywyxpxsjFlhjFlljLm5ieuXGmO2G2MWRv9clnDth8aYldE/P8xo\ndCIiIiIiIpKR0/4yI6VejycaFo0d0pt563YCsK60hqKb3+b2/y7OynutYAtFh7tAfTD5Z5DezKLU\npXQDdn6RtTF1hRxP9w1LMjbyNAC2e4c226VhGZqLMH7ckKUaXR3BEa2vtLdjc8q1C1124JvjaGVm\n274nATDBsSrW9I73lvj1vAH215+8n9nYWutgjHECjwGnAAcAFxhjmiqh/pJlWeOjf56M3lsI3Akc\nBhwK3GmMadscKBEREREREWlVtT91Bk3DzKKDhsU/jl3/n0UAPDt7fbveVzrwCAAi4e61DC1Yn1yj\npaWwyB8KU1EXJBhO/dm56ndmfWzpqKoP8t8FG7HaWAtqqxnIgpzDcfaAWkUxE+35J29tzOPNRc3U\nLYrYv+deps4Oi7oxc8S1sWProEua7jNwZMsPOeE3zV6qKtgbeg9p09jSmVl0KLDKsqw1lmUFgBeB\nM9N8/knAB5ZllVmWtRP4ADi5TSMVERERERGRNhnm2M4YsyarxZrXOoYDsH2Y/REvHO5ey7UWripJ\nOg/7my/wu//t7zLuN++zaXtZyrVgGruodYQH3lvBz19ayOdrU8eUjj2sbSyt6r47gbVJdBmalwDX\nvbCg6T6ReGjp9LS8k1iXy+0XOzS9BjfZxZvfynwbl6/ZSwVVq9s0LEgvLNoL2JBwXhJta+x7xpgv\njTGvGGMa5oSle6+IiIiIiIh0oLe8txMMZy/4sICF+UdhorttdaeZRaXVfqYvWZvUts+mN6kNhJiy\nOHXJT4MPFiXcc/L9AMxZ2fzOWx2pNFqkfEtlG2pBRWdIDcjpXjvUtZvLDn8atoVvijOhnlFBcEeH\nD6ldvPnxY39Vk118eb1bfobD2fy10x5qw6Cij23zncneAoosyxqLPXvoX5ncbIy5whgzzxgzb/v2\n7VkakoiIiIiIyO4lcclSpImPe6FI9mYWOa0QlnFhVy4BK9J9ZhbVBsLkUZfU5rfcHHDHe1zz3Bcs\n2lDe5H25JNRdGmXXx3FHuqZwd+8cO4Qrr808hAtFZ1HlDBmb1TF1OaebCAavSS5wXXTz2xTdbO8K\nVm+8XTGytvH1iR+PPsf+uv938Cd8D57WwqKcwuav7TmuzUNLJyzaCCRWjxoSbYuxLKvUsqyGf1VP\nAhPTvTd6/2TLsg62LOvgAQMGpDt2ERERERERSRBOWDI1N7JfyvVQ2GLcEPvDZ7HvQop9F3KX659t\nepfLChFxuGO7LUVC3WdmEcBwsy3pvCwU/wA+Z21p0rUJw+wP7b6GEOJnX4Lb3oUqKUDqREs22rvV\nVdRl/nOtr7XDIuPu5suwMmUMfjxc5/ovz7vv5s9TV6bUdApZu1CNJk8u/LoUbt0MQybCHTvh/OfZ\n7B4e62K8BS0/w5sPV37a9LV27ASXTlg0F9jXGDPCGOMBzgfeTOxgjNkz4fQMYFn0+D3gRGNM32hh\n6xOjbSIiIiIiIpJloYSwqDc1KddfnLuByvoQ9iIy26WuzHZJauAihOVw4Yh+IO1OM4siiQFCdDlZ\nVX18fI2Lerud9kfjWDDkyY+FRTm0sE17ByrbuJJ7XX/PKIT7Yv1OlmysYNXCGQBUhD0dNbwuE7Ds\nmWxHOpfy0NSv2Zkw8yoSsXAk1CzinH909vAy53TZoRGAwwHGEDQJhblbC4sABo2BUx+E/U+1vzaI\npBZsT1erMZNlWSFjzLXYIY8T+IdlWV8ZY34LzLMs603gOmPMGUAIKAMujd5bZoz5HXbgBPBby7La\nVp1LREREREREWpQYkvQzlSnXC6hl3Y4IN+y1FEpTLmfESQjL4cY47Q/vkSZ2EusqwXAET0Ndm8Jv\nABAOxZeTnTk+uZhwYXAzY00JOQ1hkTsHXF4sDAXOrplZdK/rSY5yLuHVqi+wNyZv3pTFm9lQVsvz\n706jgFp+M8b+2L3n/od1wkg7V6DRDmf3TFnGJMdi+1r4ZByRhHBv9Pc6c2hZU1YXjk/tiYaWLTIG\nDrnM/hOogbd/abcPavsytLTmJFmWNQWY0qjtjoTjW4Bbmrn3H8AuEOeJiIiIiIjs2hJnFg0wFSnX\n73U/yZzISK4t/We73+WywuBw4WhYhtaNwqKq+hBeEw2LfL0ACAXioU+40Q5nj+/4EXjhiZBdpwh3\njj3Dw5GDO+THsiyM6dzlTcHox3VXpPWw6prnvgCg2Hc9AF+GLidsGYaNmtjSbbukQEKM4SbEK/M3\nUOy7F4Cq8C9xNswsyh/UFcPLipCVULQ60793njy4K/XffqayVeBaREREREREulg4utvZdx1N1zAZ\nYrazl2nnlKIoFyEspxvTDZeh/fqNJfGZRdFlPOFgfGZR47CowVWu/9kH0Q/olWE3OfhZvLH9H74z\nlZdjb4nepz7z3djCNeVUkke+z916511M4t/flb4f0J/4DLoafxinFWCVe3+4YUVXDC8rwt0gqun6\nEYiIiIiIiEhWVPtDnOSYy0Oex5vts48pycq73IQhYRma1Y76KNm2ZGMl3lhYZM8sigT9HOX4kt+4\nniYYTm9L+f6mgotdH1Ky095ZbVtlPZOnr242bMqmscFFAATasLvXQVtfJgc/XlfP/8j/zegSNIAr\n/z0PZyRI2OzaIVmR2QJAidW/y8bQ8//miIiIiIiI7Ca+9/hM/uZ5qNnrH4Qnst3q0+z1dIUjFi5C\n4HTjcNofzK00lqF9+4/TOOXPzezclEWHjijkbKdd5LlhZlEkGODfnvv4oesDcuu3JPWvoeW6MA2h\ny+OfrOaeKcv5ePm2FvtnQ45lB1TpxFIjzXrGmVVJbT4T7PSlc13hYc9fY8eLSspxWkHCjl07LBrm\n2A5AHvWt9Ow4CotERERERER6iG1VTdS32fekpFOPCbIhMiB2vjaSeW2XYDCI01gYpxuHw55ZFE4j\nLFqzo4Zlm1MLb2fbd/csY5QjuuNZtEBwYcJeS3uXf5bUv8QR3+B71b4/SXne9ujPdWN0hlEwHMnq\neFvSeGv4przrvZk3vHe02q+n8xLEZQUJO3rGLnAdP3+teQqLREREREREeoDiHTWpjcffBRf9J3bq\nNiG8BPEn7CjlIkwow/AjEIyGUk43Tpf9rKYKXP/8xQUcds/UjJ/fboGEn0V05lNfUx1rMsG6pO4O\nK15vaZ+h8eAodPhPqbM8sRCuoYD4nLVlLC7pnDpGJnEreLGLN+91cJOX/uh+okeFRV05L0xhkYiI\niIiISA/w6zeW4KRRkenDr7G/Xr8MsIMhL6Gk7cfdJpR2DZ8GwYC9PblxenC57ALXf5v2dVKfkp21\n/HfhJrZW+tnntnc46aHpsWsvfL4+o/dlKmnmjzEEcNGLeIC0bGNZUv+kn5snP3boyulDjgmwraI6\n6bn/nFnM6Y/O6ICRx611DAPAobAo1bn/bLL5dOdsXFaQyC6+DK1BL0/XxUUKi0RERERERHoAl8Mw\nkPJ4wz4ngCtaHLnXYAB+4PwAD0F7+/HzX6DKNxg3IQKhzGb+hGMzizy43PYHcyf2M6Ys3kxptZ8F\n68uT7lmxtSp2fMtri7O+lKuiNshNr3xJjT/1+wlYLnqbeFjkJMyFf5/NlMWbWVxSgTNhZhEmYdvy\naL2jOUuLWb6lkrpAchiX6c8tE37s2THGatsuc+XnvZHN4XQvfYbCiXezI3eflEsuK4S1ixe4buCM\nBLrs3a4ue7OIiIiIiIhkjdPhIJK4cGXVByl9eplaDnQUs9oaDCO/Q8keb7NX8av4WwluagMhcj3x\nj48hf3QZl8uHK7oMzUWYspoA1zz3RVrjXbKxgoOG9U2rbzqemL6al+ZtoMDnYvGSTVyWsIlYEBe9\nqI2duwkzc3UpM1fb27DP8CWGRQk/w+hOav6anZz8cGph7v1uf4f7zh7D+YcOy9r30aB3JLrMzco8\nkLJu304fV89YitWsI/+PHYtm0b82ubC3sUKU1nfysseOEm6iBlkn0cwiERERERGRHsDpIDksakYv\nahi5V3RLbpcHDyECLYRFG8vrOOCO93h+TnzpWChgh0XG7cPt8QHgJsSO6vQ/3GZ7+3mXw/7en5yx\nlrvc/0q6FqTRzCKTPFvHSUK9JZPwMdltf2+jzLpm33vza4vTKkKdqb7YYVFLz7Ysi/97YUFy421b\nMT09KIqynL6UNhchttf0kLBo/MVd9mqFRSIiIiIiIj2A02FiS8GA5NAjgceE8eXk2F2cHtyECDZa\nThWOWNQG7ABlXbRw9luLNsWu19TYbS6PF1c0LPqb52G2VKS/1XdLAVV7xXZCiwo1qlnkblTbyZE4\neye69AyAPccD9owsgGMcC/jIcz0D2Jl0f2Vd6zvBZarWsqdGtbQMbUNZHW8t2sR2qxeV3kHwsy9j\nAdfuIOLyJp3/L3wYHkLsP6RfF40oy77zQJe9WmGRiIiIiIhID+AwBpdJCD2umdNsXxP9kG1cXpzG\nIhBMro1yw8uLOOCO9wBomAA0a01p7Pr9/1sEQEF+Ac6EWSwbd9ZyufN/9KfpncK+7fiC6/bdYT83\ny1mRx9nEx9uT7gUgbFzkmfisp337+7j91FGxcydhvuz/HTjhdzD6e/H78wcCcJCxlzpd7XqLbzi2\ncEiv5LCoLti2ukItMQ0bp0eDrO//bRZ/nroydn1jeR3/+GwtYG8ZPz/3m9B3eNbH0a25c2OHKyJD\ncBGht6mlsCC3hZt2AdfMhu8/A56u+z4UFomIiIiIiPQAToehL/Ei0gzYr/nOLnv2iYluKx8MJC8f\ne33BRgAiEYuwZbG32YhJmLVUWW3P0unbqwCc8bCoftNSbnM/zzzf1Zzv/Ihckmca/cPzR67fcB0A\n4Swv3RrWL/7Beq4VDYImXGKPk8qkvscPd/GDI4pi5y7CBF35MOk6cCQUuI7ujJYTDZrG7mGHbHcc\n1Ys+CT/r+iyHRZZlxXdosyJsrqjj87VlPDT1a+58YwkA1z7/Bf+cWQzYYdGooQOyOoZdgcdr/86D\nuKjDQx9j71rnjaQ/w61bGjgKDjizS4egsEhERERERKQHcBrDW97b0+rr2r4UAEd0VlAo0PSHa38o\nQs7O5Xzo/RVXO9+KtZ89xl7mY4dF8Z2nXvl8Tez4PveT3Ot+stkxRLJcsygUjj9vhWNvO+iJLinL\nTyhuDcCiF3A74/WdXITB0cT+T8YQHjiGo4d6WPbbk8lx2IHZoA+vY6Hvylg3f5Z3RQuGrfhSOSvC\nWY99Frv2r1l2/aSGndgcRPCaEIMK+2R1DLsC47GXU37lHo0fT2xGm7/fAV05rB5Bu6GJiIiIiIj0\nAMa0Utzakw8Be+aFqbBr+jiiy9FCjWYWeZwOAuEIVf4g3hp7ltFEx9ex6y4rumzN5Uvaar6fSV5+\ndqZzJmc6Z/JZ+EA2E68jc5xjPuHIwRl8d61LLJjtsgJJM56aYn7Th3c8Q6nFh4swVlNhEeDM7UO/\nSD14nBBOXq7nIEIER9ZnFgXCEXzRotvGirC1Mv77ufZYe7t4j8uBixCrfD+wLzSq37M7cESXofmN\nj8McC+Ptub27akg9hmYWiYiIiIiI9AC9Q9tb7nDZ1NihiYZGDnd0ZlEoOSwaGVnJBc4POfT3H9JQ\nh/oQx4rY9T2r7KVQuDyQFw+B9jDJtXwaTHJ+xTnO6bHzpzwPEs5y0SJHfTm/cr2IkzDOSCC21K4l\noxwbmOhYaRcGbyYswpMH62fBXb1hx4qkS791Pc0AyrMeFvn9gXj9KSuCIcLX3kuY6rmBUDgIwNF9\nSrnJ9WLCXa3vhNfTRKK/40hCYAngylFY1F6aWSQiIiIiIp0iGI6wYksVo/fSB7mOcMHGe1ru0H//\nlKaGmUXhYHJY9Kb31wC8ED6OhhVWDTuCAXxry9PRIzugsPIGYmq2sSdlaY/XV1kM7Jl2/9aMW/4g\n+7reZEVkGGebT8Cfn/a9bhPGahQ4xJTMa/a+i10fcrJzLl+FTsx0uC2qqKmJz8OyIpzqmIPHhNnH\nbGJ46WfAaK5afQ05roQaVUVHZXUMu4Kw0w6LnCZ5SaMvf/dbkpdtmlkkIiIiIiKd4q8fr+a0v8xg\nycamd8qS9oktDWuOI/Xjn8MdDYsaLUNLtGRjeew43LjOUG4hAOasxwHY05SSLhOqbb1TJiL2sq2f\nuV61w4NAVSs3JJu3obLpC7U7Wryvv6kk4I/XfCreUcN/5m1I/VllYO6qLfETK8Kjnr/E31djLwf0\nhBv9/IZMbPP7dlVBY9fLcpL8sy4s7N8Vw+lRFBaJiIiIiEinWBwNiTaW13XxSHomK5OPdwWDAQhH\nP2w/N3NV7NK2ynjw4SLE9JXxAKi6PkQkYvFs6Dj8lht62c/Ba8/iucD1sX1+3UJw5bQ83nAo/fGm\nI2IvBdvbsbnlfrdtabK50t/2ZVyJYdExf5zGja98yRmPzmjz877ROz7LaX1pcuhVa9mzaWpcCbNn\nfjKV3ZEVXZIXcbig3z6xdoevV1cNqcdQWCQiIiIiIp1qs8KirNpQVssjH66ExALXp/6p5Zt+9DYA\nYWNXJtlUWkldIMwr80s49J4PY93ucT0FCbM2qgMhjrzvI1yE2UnCMq+8Rtu25w2AS99ucQhWJLth\nkTuU5kwidw4cdhWc+mBSc15OMwWir5kTP554KZz1BFzy36QuIX8NEN+hDOCrTc3MVEqDFY6HT6FQ\ncj0kE7Znga3MGWc37P8d2Gv3m1UEEAnZs+kixg0//F/8QkH2ljfurhQWiYiIiIhIp2goAvzh8m1d\nPJKe5afPf8GfPvia2mBCwejeQ1u+KfphOj/P3k3KTYhbXvuSG15elNTt+65P4lu4A5c8NYctlfW4\nTZgQCTV+Ggc/njx7WdSR/5fy6tp9TgfAimS3KPSG3o12V7vy0+Y7n3I/jL8oqen7h45ouu/AkXDt\nfBh7HpzyAIy/AAaPT+ryh7cWUnTz2+z/63dSbg+F21DIOxBfYuZotMSqqrqao//wMRvL61gd2RMu\neKHJJYa7g2B0+aRxuqFXQkDkanknPGnd7vk3SkREREREOt2oPQsA+OY+qieSTRHLDhOSMonWZu1E\nd/4a2Mf+nZxyQL9mZ8K4iT9rzXZ7FzUXYYJWQliUPzB2uHXf8+OznCZcmvK8cJ8iAKxwdsOiRZvj\ns3Espxf2HJvaafT34seNdkvr3zuv+Yf33wfOnhwPIXL6Jl32Gns5lNWoTFHRzW+zz23v8MHSra1/\nAwmctfGd7RzEf7F+PFRVV7O+rBYfAfzs5qFIdCmjlbiT3d7HddFgehaFRSIiIiIi0uG2VdUzZ236\nO2VJ+gq8dt2hQGL2YrUSxDR8uPbbS7eGff0vVm6zg6ApnluSuv7V80js2BWdZeQiRF5OQk2ihPBk\nj5yExMSTGsAYpz3eSJZnFu2orIm/o/F7Bx5gf/3eUwkDSa5R5HC2fbNwHy0XF793yrKMnpdYG/tS\n1/sABDx9CODCQzD2znrcmQ20hxnbzw7Sxgy2Q0/uLIeLX+3CEfUcCotERERERKTDHfr7D/myxC5w\n3fY9oqQpeV57hk8wMWFoLYhpCEpq7BksJzrnM8as4WXPXRzgWNfsbS7CnOP8hFOdnzPQX9x0p0A8\ntMHtS7nscdrvrvO3sntbhpwJy+VwNgpRLn3bLgLdKCBi0s/jx/VtrzHkI8ChRYUMKLDrHr169RFJ\n148bNbCp25pVWZO6U5wnUE695cYbDYu8JsiwPfq1ccQ9g8dhh0W5vexd+TAm9XcsbaKwSERERERE\nOoUPP8c75rdrS3FJZaIfjkOJy9Bam1nUwFsQO3ze83sOcXzdYvejHIv5o/tvTV884lr7azAh6PD1\nSenmjoZFgUD2wqJIxEqqrZQitxCGHpLaXnRU/HjOE21+/zM/GMd/rjqCubcdT/HNY5i4+nHOGhkv\nAO5zO/nVy4t4fs76tJ73wqzVTba7vTnkGD+nOmZzsLuY/n16t3nMPUJDKOrJb7mfZExhkYiIiIiI\ndIpfu57lSc+DFJZ/1dVD6VEa5lFYJMyoaG53rMOuTj4fYgcoO6xeac34+runhV3WDr8anJ7kwtFN\nzPIwe9q7eAWC2dsNLWxZOBNq+6QUD2pOXsLMHHdum9+f7/DHTx4eA9P/wPnr74qPL2Lx8vwSbn19\nMX98b0Wrzxs1MCe1sc9w+hQUcLZzBo95HsEZrofgbr6z4L4n2l/3P6Vrx9EDKSwSEREREZFOMdjs\nAMDr39HFI+lZHNFAJhYW9R0BfYua7nzKfXBXRfy89xAA+ptKepl2Bg+9h8BtW2DMOU1f/9Vq+93R\ndwZDwfa9L0E4YsXqKdnSDIv67x8/bgge0tVvn/hxffRnWh6fOXR45IvYcY0/How9+vEqrFbCrFF7\nNBEWfecBCNUntw1qooj37mSvCfbfqb0mdPVIehyFRSIiIiIi0inqozs35dVv6eKR9CwNu6bH4ofO\nqtlyw8omBuNMbWvQsFQo2mfG11uJZGlJYjhi4TQJYVHN9uY7J0rcEe34uzJ76U8+sGshAbx+JdzV\n255VlGCl9xKKfRfiKU9eVlYTaHmZ4PCyz1Ib9zspNSwK1qT2E8kChUUiIiIiItIpgti7TYX0MSSr\neod3cpxjfvIyrGw79UG+HPnz5Lb8zIo247KLPzfsxOYkQnlddmYXhSIWrrZ8/46Ev4tNFONuUW4h\nDDuixS7uaIA1aduLSe21/paX4B24fUpywyX/tb+eeLf99RvH2l+PuzO9sYpkSP9Li4iIiIhIh6oL\nhHERYrjZCkAooo8h2XRdyS95yvMgBbFlZBnOLNpjTPPXfH3g/OfhkMswpoVZQ+lomPEUfY6LMIFQ\ndgKuuWvL6E3CLJu9Dk7/5sOvgV5D2vZihxMGNfHzG/7NpNP1kf5J5/5Wvu8Kz6DkhmhtKcadby+7\n+sF/7a+5hRkPWSQd+l9aREREREQ6VMSyeMnzO8Y51gAQ0mZoWTUgUAJAPm2sOXTJ681fu6kYRp4K\nwPqd8SVQliuDWTh3VSTXSYpuaz/UbGPhhnKue2FBu0OjvnluLnJ9GH/f5R+mf/PJ98L17Si6fuWn\ncGe5/eeYW+22U+7jK+/4WJed/uRbKutbnlG1rPfRVJMT/9l5tduXdC6FRSIiIiIi0qHClsVER7y+\njRWxZ5TMXlPahaPqOVzYS5qGm2gtqJzU7epbfoC36fZfrUmqf1SbkPKZH01p6o705NmzbPx4+MVL\nC3lz0SaWbq5s+/OIF/nuEsbE/xx9A1z1GQwaQ69IebxPoJq/uB/hYucHAPzsxYVJj5i5egfrS2vj\nDZEAQdydMXqRJiksEhERERGRDmU1mjSyZEMp90xZxvmTZ7N0U/tCAonzNBR4Pu/ZzG709YJTHkhu\nO/XB5G3lgWAkIZAp2LMNI4yKblHvI0Bd0B5za7uDtSacpULZ7eZwwqDRAPhMfPZQHnWc7pzN3e6n\nOdnxOau2VSfdduHf5/yeRgsAACAASURBVHD0Ax/HzsPBQKzGl0hXUFgkIiIiIiJZVVEbpOjmt/my\nxJ5ZEW4UBITDIf45sxiApz9b29nD69HW5I2HXoMzv/GwK5LPD7kspcsZByXU9fH1zvwdDZxuIg43\nuSZhWVvbnwZAKNRyweiu0C8vvlSvF/FZQ094HgZg5dYqIDkoe+Hz9QBs2VlJfaSdNaJE2kFhkYiI\niIiIZE04YjHut+8DcMaj9vbfkUZhUeKuXS/PL+m8wfVQ67z7x46H7dGvhZ7tk795dvwkOjuorSIu\nHzkEYuftnRlkBezi1usPvq1dz8kmhyM+E2uAKU+5fsJD0wmGI/z0+S9ibbe8tph3l2zGQ0gzi6RL\nKSwSEREREZGsaapQcWpYFI4dX3TYsA4fU08WiVjsTNh+3uXJaf9De+3VdPvX78WP21sjyOnlx653\nY6evtjM0tPz2si7Lk9eu52SViX/c3iMlLLL/Tbw0dwNTFm/hf55bY/WMrnr2CzyEcHmaqSUl0gkU\nFomIiIiISNY0lSFEGuVH7oSwqMCnIr7tMX3ldqzEj3U129v+sMs+hAO/C5dNbfp6O+sKJQr1LgLi\nxblfnLuhfQ8M2jOLTHcKi4j+Y8jtxwhfcm0uL3bA9+s3lgAWox3F3O1+Onb9JOc8hoeKO2mcIqkU\nFomIiIiISNY0nkUEUL5zR9K5m3h9me1VfvyhcONbJE0RyyJCQkK3YU7bHzbkYDj3n83XPLr4lbY/\nu5Hg/qcD0JcqDjTF7X+g3w6LrO60xXzDzCKnl5zAzqRL71w5HrDzt1z8sfYis7nThifSEoVFIiIi\nIiKSNY2zovpgmHOfmBW/bhzsXeiJnb/6RQmX/mNuZw2vx+md48Gik7aNH3G0/bVw73Y/ypVjhzq/\ncf+Lt7230pd27ooXtAtIO9zdaGZRwzS7qk0pl74x7zex43zqYsfTvL/EQepSTpHOprBIRERERESy\n5t+z1yWdL1hfHvvwu3DUDRinh4OH5nGGYybFvgvJoZ5Za0q55rn5vDR3fVcMeZcWjljJO4mNPK1j\nX3hLCVw9s92P8XjtUOc7zs+B5Nk1bWGF7WLZDrenlZ6dqPfQ1DZvdBe5r17HE12KdrhjaVKXNb6L\nAXg+9O0OHZ5ISxQWiYiIiIhIVtT4Q9z3znIAvC4HLoehT647tvvZTr8DQvUMWfp3HvE8CsBhDrv/\nlMVbuOnVxV0z8F1YKBLBk7Csj46u2eMtALev9X6tcPqSl4v1y2n77KgNZbVYYTt4cTi70Q5iZ/8N\nzn4S8gbE2/aJB0B/dz+IhyCPeB5r8nZXr4EdPUKRZiksEhERERGRrAiG7VDIQYSfuKZgIkFCYSu2\n+9lXW6pT7rnC+b9OHWNP89oXGymzCuIN7izshtYZGo1zaO+2hTzTVmzjqD98zFPTVwHw/+zdd5wV\n5fX48c8zc8tWelNAF1AsYEfF9tVo1NhbNGo0avxp1MT0GEwxGI3GWGI09t6NvaGioqioqIh0pPe6\ntO17y8zz+2PuvTNzyxb2bj/v10t3yjNznwsL7Jx7znkMswM1TC/sDXufDZe4q74RcoNkR5qzONiY\nn/PyktKerTk7IRokwSIhhBBCCCFEXsQspyDqxsCjXMOTvB26llP+OyWVWTSkb2nGNSv0wDadY1fz\n5sy1KMBSpnNg1+PadT5NFizy7ep4hAmz1qGbueLaV8u2OLdLZFcFOlIZWlK/XdztPU7xndpLLc15\n2eEDWlaaJ0RLSLBICCGEEEIIkRdRy6aYOs4PfAjArsYaAALKCRYdv9fgjGsaCxbFLZuycRN47LNl\neZ5t1/CjA4diYhEbuB/8eT3sflJ7T6lp0oJFh297k58/O51PFm3KcUGmTdUR7p28BCAVkOxQZWhe\nf94Af1oLI4+Ha5bB751MqGuCL/jHBdwSvx7FHahZt+h2JFgkhBBCCCGEyIto3Kafqkjtx7XzuHGC\n4SznXhgOZ1zj67eTRU3EKWG7/s15zc466Q6e/mIZR5hzCASCnacEDTKCRckAY0VdrMm3WLmlNrUd\nSJQ6moEOVIbmFSxw+0kV9XF6P3nYe50DF78NV0+HHfdLXNOJfj9FlyPBIiGEEEIIIUReROM2FmZq\nP5lR9Ofgs84BZcLJ//ZdM8ZYQH+28RNzIrupzNXQamNuMOmxz5bnf9KdTNm4CZSNm8Dabc5y6/3Z\n5pwo7GT9bXIEQprT5to7NhksMjpqsCid4c+AMoYdAWWHQc/Bbimh0UGzpES3IMEiIYQQQgghRF5E\n4zYxbfqO7aMWuzuGCWN+Cuc+mzr0f+Zsvi64ir8Hn2BieFxG9lBNxA0WzVq9rXUm3gnNXuNkcJUq\nJ7tG7XV2e06n+QL+FdWW2045ompGtKg2arm3U852qCP2LMrG8P85YcmH7vYu3/d/FaIdSLBICCGE\nEEKILujzxZuYvbqi8YF5FLUsdFpuiIEn+BNzsmHY/SQYn31u0cSKagB1UYvv3/FJav/1mWvzN9lO\nzrKdX9d+gXoAzMJe7Tmd5gv5y9A24sxfNSO3yBssSvYsCoU6SbAoPSpW1NfdHnqQ8+dj6IFtOych\nPCRYJIQQQgghRBd0/sNfcsp/p7Tpa0aiUe4J/cd3zPI+ctRubvQe9TE3WPT458t957SGVZ4+NV7/\n/XARizZUNX2ynVzIdH5df9R7gXMgnLnSXIcW8jdvrtRO8Kg5mUVTl26mLxVMHvYkNx6faJ5udJIy\ntHSH/7a9ZyCEjwSLhBBCCCGEEHmhKlZzoLEQgHigiEpdlFrS3DnY+FLgkbiVcexoYzolOEGiI/71\nEX96dTabqt171UUtbntvIcf++5OMa7uq4rDTz+aMymecA+GSdpzNdjr1vwAssgenGp1/2ozV0B6Z\nsozfBF6ibN27BD683jmYXt7VWaSV5QnR3iRYJIQQQgghhMiLiKcZta2CBLAoUfXugF2PbfQelXXu\nPYpCJoMp59HQbdwTvCt1/NkvV/K92ya7r+sJMJ1896fbOfvOJW7b/gOdceWs/S+E8RVsoZSwihEm\nynNfZTY5z+X8g3diZ7XBf7CzNoXujME+0aVJsEgIIYQQQogurC2Xm49F3MBQIBSmSEV4InSLc+CS\nd2HHfRu9xz/f+S61XRg0KVROBtGR5ix2VatT56rq3aCSt3RtzppKbFszc9U2nvpi+Xa+k44vbqX9\nvhZ0sp5FHhEd5GDjOxYUXMwgGi9VTLKmP80R5hz/QbMTlqGNr4BAuL1nIYSPBIuEEEIIIYTowiJx\nu/FBeRKPusEio2aj/2Sg8cbDcW2wcktNar8wZKYaFwPsayzOdllG6Vp1NM5p93zGX1+f25Rpd0qx\nRCPwVE+ooj7tOJuW6V3iZkUNM9Y3+brTyFJ22Fkzi4ToYCRYJIQQQgghRBfmXTGqtXmDRRnMxjMn\nAsrme7sPSO3rWB2Phm5N7ReRveeRN7MIYP7aytT2ys3ZG2J3Rratucp8nXdCf8RKBIu8wbTOatSQ\n3qnt9NX0GvKqfXjmQdWJehad8h+49P32noUQWUmwSAghhBBCiC6sOT1gWsqKNRAs0lmCVgdfAcUD\nfIcqaqKp7V2/u5fByi1LOrR/rmCR/96vTF+T2t5WF00f3mnFbJtrgv9jD2MVn06e2N7TyRvDlw3U\n9GBRTGfJIjI60SPuARfD0IPaexZCZNWJ/iQJIYQQQgghmuvWiQva7LWsmCeY03uY/2S2pd1PuAUu\n/8h36KVpy1PbZqzad+74bc+jsmTSpAeLxpT1ZoeezupSd01a1ISZdw4xT5+iReu2sLWmiwTCPAEe\nWzsZVI2JWzZBFW90nBBi+0iwSAghhBBCiC5oecH5fBj6bZu+pu3NLAoWudsXvw19hme/KK08LUic\nxz5bBkBMZfY5WlZwAZeZbwFu8+5IpI73Qn/gcGM2AFtro2xOBFI+mL8x4x6dVczTf8rCQAMz7OGs\n1v3ab1L5sH52ajOgLOJNCBbVRCzOMKY4Oxe+Cteuhl/PbvgiIUSTSbBICCGEEEKILmp4ollweuZN\na9HJYNHos2Dsle6JssNyX5S2elUxEa5/cx6zV1eAnT1z5M/BZ9ldrUwFFYxtKxhprOHp0M0AbK6O\ncmFZBcca07b/zXRAyabWABGCrK+oJ0qQlfaABq7qBLYuT22eYHyF1YRgUXU0zqHmPGdn4F5O5lqv\nnVppgkJ0PxIsEkIIIYQQoovb0kblSspKlKEd/RdY8E7TLkoLFl0ecLKGTvnvFCoKhua87N3wOKKJ\nTJtY3A0q7dOzlvLqCH9d/TMeCt1BWd+iXLfodKKeYFEAi9dnriGIRYyuswLYhYEPiNuNN+1et60O\nWyf6GxX2auVZCdH9SLBICCGEEEKILm5DZQONp/PItBKvEyiEwfs18SJ/GdoAtTW1HSWYPtpn8Uan\np1Es6gbDXo/8P8qr3N5JlbXZm2J3RrFYLLUdwOKBj5cSIM7A3iXtOKv8ayyzaMKsdbw/bwOGSowz\nG/4+EUI0nwSLhBBCCCGE6OJWbqlFa807s9f5SpnyzUgGi4IFMObSpl1kBuB3C2HX4wHYVbkrmc1c\nuanBS9+Z45TZ2ZEa3/HNVW5wLFS/qUkNkzuDWMR9X0HllBYGsRjQq2sFixrqWbRycy0/f3Y6D3yy\ntA1nJET3I8EiIYQQQgghujCFzdLyGj78biNXPjOdO95fmGoMncv2BpQCyTK0QCEU9Wn6haUD4YeP\nABDGzZ7ZUlXnG6aHHenbv//jJSzcUIUVrfXfL+quovZDYzLV0a6xalY04v56BEgGi+JgdPLMmiu/\n8O02lFkUtZL9t7pGAFCIjkqCRUIIIYQQQnRhwwuq+c+kRVz6hNPs+b7JSxh27ds5A0KvTF/Nrn9+\nh1Vb/AGYO95fyNfLtzT4WoYdwUZBIFFatv9P4PvXN22i4VIAdjHWMiKRXZQMiCSpnkMyLquJxNEx\n/1x7xjentn8ffJFFG6rTL+uU6uvc93moMRdI/Bp19jKsgXvCUdcCUKmLGswsWlLuZJF5g4pCiPyT\nYJEQQgghhBBdjSdzaBJXZB0ydenmrMc/XljuO//Fks28N3c9d01axNn3f5H1mqSAFXH6DKlE4+FT\n74bDf93c2TMp/AcAzGSwaId9na9ZgiIBw4C0zKIyazn1hFL7Z933ebPn0BHFIu77vCrwBqAJqjh2\nZ88sAjhqHAtHXIKJxaT5GzJO18csysZN4GdPfQNAMW3Th0uI7qpJwSKl1A+UUguUUouVUuMaGHeW\nUkorpcYk9oNKqSeUUrOVUvOVUtfma+JCCCGEEEJ0NfdNXsKNb81r8X20bryMzLI11ZE4H3230Xd8\nQKmTFZRcQe28h6ZyeeIBvTEBO0JUhRsf2AS3BB4kQOJ9XPQmjFsFZihjXNSyMoJFYbuOApz5T7d3\nyct8OoJYxF+WV0odO6ot9Fn6RjvNKM8MkwA2170+N+OUt2k5QJFygkXR425pk6kJ0d00GixSSpnA\nPcAJwJ7AeUqpPbOMKwV+BXzpOXw2ENZa7wUcAPxMKVXW8mkLIYQQQgjR9dzy7nc8PGVZi++zYlNN\no2M08LsXZnDJ41/7Ss4CpvOI0FApUC5OsCgzoLM9fhSY7JahhYqhoEfW3jyRuA1xfxCl2HbLzoro\nOquh2TF/Ns2OymkAblhd5D0agVQ22ZdpmW/p349DEu89VNK3beYmRDfTlMyig4DFWuulWuso8Dxw\nWpZxNwC3gC8fUAPFSqkAUAhEgcqWTVkIIYQQQoiux1sW1lgD6sZMX+F/0DbTev8ARGI2E+c65T6R\nuHs+YDglZJatG13C3GvGqm1sqawi3shy9w3qN9K321tVEdcGGKZzIK0MTWEngkX+IMqu2g24lSh/\nIKkz0zF/UOjfwfvaaSatQ5kBAsoGdEZ/rKXl/r5Tfws84WwsmthGsxOie2lKsGgwsMqzvzpxLEUp\ntT8wVGs9Ie3al4AaYB2wErhNa91wVzwhhBBCCCG6oQ2VbsDjdy/ObNG9ehUGfPujlRM8Gd6/mKcu\nPQiAeWsrUue9samAkcgssmxmrNrW5Nc8/Z7PMLGIY27vtMH2r1p2SWAilvIEiNLK0PpSRSRmQ9wp\nOeOvTpBsCG7Pmx40nmXVWei0DKI9jRXOxr4/bofZ5J9KZI6Z2OzQs9B3LtmgHeDPJ+7BwD0Pd3aG\nf6/N5idEd9LiBtdKKQO4A/hdltMHARawIzAM+J1SaniWe1yulJqmlJpWXl7e0ikJIYQQQgjR6Yx/\nw+3T8sr0NRm9hJriwH98wA1vzaMm4qwUVbPz0QD0U05gqDgUYI8degCwrsINTkU9K6MFTCezKG5r\nIrEsGUnxzGNJJjY1cdXseadYmUvcx73Bot47+85NK7iSeLQWZUWwMMAMsKbH/pi476eHqiOc6F/U\n6cVzNHXe/ydtO49W0qPI6XcVwMLI8aR6/6k7ctmH+9En7pShUXZ4G81OiO6lKcGiNcBQz/6QxLGk\nUmA0MFkptRwYC7yRaHJ9PvCu1jqmtd4IfAaMSX8BrfWDWusxWusx/fv33753IoQQQgghRAemtebz\nJZs48T+fZi0z21rrXwr8kse/bvZrlFdFeGTKMqrqnAwUo5fzY/yeagXF1HHhhn9Rop1Mm6p6NzBz\n0l1TUitQmYkytNlrKrKumHZFA82uA1hYLcksyhJnUgFPNlGWDJp/vPgZyoqmyt+sUAlB/EGn3lRR\nG80MRHU6iQyqWK8R/uNZGn93RgN6FgNO0LE64g9KnjNmCADf77/VObD4fedrID8N1YUQfk0JFn0N\n7KqUGqaUCgHnAql2+1rrCq11P611mda6DJgKnKq1noZTenY0gFKqGCeQ9F2e34MQQgghhBAdyrqK\nOl/T6Okrt/LoZ8s5/6EvmbeukmHXvp2RobNTn6Ks99pQWc8hN09i8cbqrOeTonE3myYZCAr0doJF\nBxeu5tbgA5wT+JiC24dxsvEF785d77v+mS9XAhC26jjV+Iypi9Zz14eLU+cPUvPpQTUfLSjnrkmL\neHTKMj6Y5wSY7ERvIxObeEuKF877H+x3oe9QUczTxUIp+Mkb0HOn1CFDWygrQiyRgWSYQQJYRHSQ\nlbbzQfRoYznVka4QLHKCgNYeaS1ku0rAxHDKJ/c1FhOL+1f0Mw3FNUVvEVg5xX9NFwmUCdHRBBob\noLWOK6V+AUwETOBRrfVcpdTfgWla64bWabwHeEwpNRfnc4LHtNaz8jFxIYQQQgghOqpDbv4QgDd/\ncTjXvzmXaSu2ZozZ7S/vMrhXIZ+Nc0rFVm6pzRgD8N8PF7Ouop5nvlzB304Z5Tv3xsy1DO9XzO6D\nSvnZU25Pl+pEZlEwGIZgEYfHpuJN+Plv6G6m1+/KWvqljiWDTXuufp5LQvdwdVTxpn0oCpsANi+E\nb2CevTMnRm/mjvcXpq47dZ8deWPmWsDJLOrXI3vQq0kG7gmn/Re2Lofln2YfM/xIOPtxeNj5dQup\nOIYdS5WrGcEwQeKYWEQL+kK0nIdDt7Mq9vvtn1dHkehZZISL/cfNrhUsejZ0Ew/ZZ/tO9alaxFX2\ns5D+bWG2oKG6ECKnRoNFAFrrt4G3045dl2PsUZ7tauDsbOOEEEIIIYTo6k7575QGz6/ZVsf3bpvM\nR78/KnXs+lNH8bdE/6Kyce76MT0KMh+Kf/nctwA8cOEBfLTA7f357pz1TkNRZUCoBGKZgaiBaitr\ntRssiiX6FhVHnGyh3qoKgGUFF6TGpBoqeyQDReAEiwrDeQhcXPwWjO+Z+3ywILU5oncAIxbBSjRH\njmqDEHECysbovTNscAob6rP0X+psVCKzyIhWpZ1oQZ+ojsRwI5qFNasAt92tGavKcgFdJ1AmRAfT\n4gbXQgghhBBCiO23bFNNaon6f+wwhYvCk7OOCwVy/+j+s7Q+QjUViV5DdVugJnujbBvF3moJNwYe\nATTxxBysxCOCt0l0U/UvNulVUtj4wOYYeULmsYAbLIpG6jB1DEs55Ug9i4vooZy+TEN33Ts1rj7W\n/PfT0ahkZlHVWv8J3fnfG5DKLALoVb3EdypqZfb54gf/hICUoQnRGiRYJIQQQgghRDsb8ae3Ac2P\nt94Lb/6KV646NGPMrRMX+PazNclOuigw0dn44t6cYwJYvBH+KxcEJlFCHfFEZtG0Fc7KaQZ2RqPo\nhoxUq9glOh+V77IgO5Z5zBMsqq2tJRqpT2UW9S4toqdyMqmCJW7mVH0Dq7h1Fspyfi2MkKfU75Bf\nQJ8ROa7oZDzBIkv7s6WKI1mCngdf0dozEqLbkmCREEIIIYQQHcApxhep7YE9ChoY6YhlybQoIIKB\nzXI9yDlw2K/8A3bcL7V5pDkztR3ASt3Pm1n0PePbJs//vfAfMeyYU/qWD30SJUhGls4ZnqbGYRUj\nRIzyusQBwxOsWjs9tRnpAplFC9Ylel8FPNlbx/+DnOvMdzZB933VK/+fgau33OQfu/vJXaf8TogO\nqIv8rSKEEEIIIUTb01qzYH2OXipZjD9lT3YfVApklpXtoNxl6gsaKDlLilqZwY/vCi7hjuC9bNMl\nzoE9T4OfvucOCJXAaU620RXmm+5h4sRt53479k4uX67ppyozXqOYuoxjPks+bHTuTXLcjc7X3U7M\nPOfpWRQiTogYURJBIu/qWJ7sqwse+ZL56zLfT2dRXhWhoqbe2Rm0V/tOprX0HJLazLmq3oWvwfgK\nOPeZNpqUEN2TBIuEEEIIIYTYTs99tYrj7/yETxaW8+6cdZSNm8DMVdtyjr/4sGH88phdAThm9wG+\nc+eYH6e2+350TWr79OGa94qv44cj/eVdkbSGzYFEydjp5ucMV+ucg8FC2OlgN4CydgZUOv1uQsq9\n/quCn7NDbJVzScDJ5DGwCZFZAnayOdV5L4eW5XyfebH7SXDpB7D/TzLPhUvhjAcBuMh8j5CKE9UB\n91xSsVuGZmJxwn9yrLDWCSzaWOX2kdrn3PadTGsZciDs7bw3beUogbQ7fzmhEJ2BBIuEEEIIIYTY\nTn96dTYAizZWc8XTTsnTafd8lnXsTn2KoHwhA9Z/AjhJLz8YNSh1fhfD07T4m8dZ/sdRLP/nSdxZ\n8jQjrcWMrX7Pd79I3J9ZVErmimeU7uB8TZb3RKuyB1+AX0QeAiCWWDD5EGMuR2cpQ7sl+BA/Mj/i\nb8O+4/I9YpRSy6d9b856zxYbemDuUqP+IwE4ypxJiBj7Dx/oHC/wrKJ2yC9Sm0VEWmeObaQwaGIq\nC1sr36phXYpScMBFzmZar6rPzAOdjRHfa+tZCdEtZSkAFkIIIYQQQjRHLK0krJg6NIpaCrj55OGc\ntauC3sPhpv6MAQZxN5qBlIQbaAb90NFw+WRY+A4AdarYdzoatxmh1lCue1JJCbsoN9hUqmrRgUJU\nslzL9syvoEeD7yXZs+hwc27OMbcEH4KXH+JPwFXhYnrV1LgnSwblvC6veg9Lbe67QxEUJJo+e4NF\nnvdaRD1VeBpDdzJ3vL+QsVjoZKBot5Mg383EO4JEz6n0zKJqXUB5aAj9u2qgTIgORjKLhBBCCCGE\naKH6mMUOPd0+OnMLLmVO+FIAzvtgLKH7DiZ0u7ti1dSCqzmiXy0ap6fOrT/cmwy1m+FOtzdNrXID\nHR/M28BRt01mUvgPzCq4nMOM2bwY/nvqfA9q/EEhK+p87T3Mt5KYV7KMTenMMp/YlV85fWKy6KVq\n/AfOfizruLwr7OUETAaMgnjEDZx45x8owD7DyZgqVvVtM69W8umiTZjYqGTD7/OehXOeaN9JtQbT\neX86LbPItKPYRhcMjgnRQUlmkRBCCCGEEC1UH7NZV+EPRhhKs7zgfPdAxN9c+YIvT+EC4MjgoQzp\n/2yjr2F7Vhl79LNlGLjZQs+E/GVg5wc+gmrPAStRgnXxWznLukZYy515ZwkWmcFwo/MD4Ijfw06H\nNG1sPkSrYWMiA2rw/omDnvdnBjHCTrPvIjp3sAicVet0ttXhupLE+4tF3WBR3LLRVpwt9TCwveYl\nRDcjmUVCCCGEEEI009Slm1lS7kZjqiOZjaCb6jTzcw4Ykli9rHcZnP9i1nG71s9ObQdNI2vz6UaV\nJB61dz8549Rm1QuAsdUfZJwzAk0MFo38QdsuZ77MbQqeyp7a+0fO18N+5XwNOeV7xZ28ZxHAOeZk\nzFh14wM7s0T20PRlG1lX4ay8VxezCBInjpSgCdFWJFgkhBBCCCGEx3frKykbN4Flm2pyjjn3wakc\nc7sbqJi9poVLsj95uvN163IYeRyMODpjyPerXk9tNztYdPp9MGhvt1TriN9mDIlp50G8n7Ux8/pE\nsEjveUbDr9NIP6S867+Huz33VedrIOSUzB2bKMsLOYG4wk5ehgaaHqquvSfR+hLfoyYWh9z8IXPX\nVvDgJ0sJEmdAr9JGLhZC5IsEi4QQQgghhEiwbc0P7nSWV//bG7kbPKebuWpby154xRT//jHXNTj8\ng/kbCJNjafGkwWPc7X3Phys8y8bHM7NsYg11qEg8wKv9Lmj4NcNt/TCvGx+Slllk2024pgP66Ygu\nnlGUlGhgHVROOeRJd03h7g8XE1RxtBlqz5kJ0a1IsEgIIYQQQoiEU+9xgzajduzB18u3sLGqni+W\nbG7bIEOg0LcbI8BnRccAsK3WKbdqNLPovOdyn0uWbHlfI5FZ9F1oVOZ4M1GGZnmCTOc9n3tcWynu\n3/iYkNMYvCiRWRSz7YZGd1j9YmsbH9QVJMrQAvh7ZwWxUueEEK1PgkVCCCGEEEIkzPGUk903eQln\n3/8FB/1jEuc9NJWLHvsKrTV1Ufch9kzjE14IXY+BTS+q+E3gJQ4xGshIOvNh2OlQZ3vH/TPP9xji\nfB2wOxx4Gez7Y7jiMzYb/VI5NMmYVUg1klkUbl5JmEo0zI6qMHXKH6xyl2j39CPa7QR3+9Bfwun3\nQ3HfZr1mi53/grv9m3nZxyTK0M4c1ROAaLxzBouG1ye+r/Y4tX0n0toSDa4zg0VxtCnBIiHaShdv\npS+EEEIIIUTTBOl3LAAAIABJREFUnbbvjrw+I3sGx6eLNjHs2rd9x+4I3Q/A94xv+VngLQ4yFvCr\nhl5g77Ohbgus/ByGjIG10/3nPSuecdJt/lOJcJHWmjBR9lWLG34zDTWl9paoJaRWQdM2K4LD2P3E\nq+G1KxMvrvzz2/U45+vYq2DqvU7j7H3Pa3g+rSFU5PQnanCMU4YWthOZRVbnLEP7QeVLzsZBl7Xv\nRFqbmT2zKEwMJWVoQrQZySwSQgghhBAioSi0fZ+lFlOfO3jTu8z5uuN+iQOJwIvWMHSsf+w+P8p6\nC62UMx6nS88/go/y79B9mQN3OdbdbmhVsnAJ7LCPs73HKUBiWXatMdBojFRGjo/yzL2zMENgBAjb\nTnPozppZlFK6Y3vPoHXlyCwqVBF0sKg9ZiREtySZRUIIIYQQQiSY2/lRapGKECNAKO0BF4BT7oKh\nB6ca96ZKtUoHwsZE6dQZD8Iux0BhnxyvoCCVWQRj1ILMIRdPcIJPt5RBtKrxSf+/SWBbYAZZdvep\nmJuXYdkapS0ngyiRkeOfRvIXKC1Y1FBgqr0pBaFiQtoJFsWsTh4sCnXxgEmuYBERIhIsEqLNSLBI\nCCGEEEKIBGM7gx7F1FGsMlcYc25qQrDA3R91Jtg2jDodln7sHCsdBMX9ct5fo1LdgjQ6+xpg4VIw\nA3DVF7BlaeOTNoOpkp94sJgAFlHLRmmNbeTILEplRXWygEuohJBVC0C0sweLunqT5xxlaEVEiIUl\nWCREW5EyNCGEEEIIIRKaGizaXa2kD24z7D8cuUP2gbudBEMO9B9TyuldZAbh5DudMrCdxma/3itZ\n+qXBzvZjfDKI0GsoDD+yCe/CMyUzSBCLSMxGYaOV4ZSqpSs7HHY7EU641dk/7New6/FOI+6OLFjE\nzitfpS8VnbYMrUonmo4XtXET8baWyCw6zJiLiUVfKthDraBQRQkVZAtgCiFag2QWCSGEEEIIkTBj\n1TYATCwszJzj3g2Po1y7q40V1G/MPvC8Zxt+wX67wI+ebnRe2luGlnPQ9gdBlBnEVBaRuJ1opK2y\nl6EFC+C859z90oHw4xcyx3U0mxcB8E3Blby7+Wj22KF5K8V1BHPsYRjK5mCji3/enwjYHmLO41f6\nZX5sTqKvcsoqQ4USLBKirXTxv2mEEEIIIYRouuI1n7K84HyWFFzICLWmwbH9lZtZxPQnW3lmyl0N\nzbIYYazLHNLQ6meNMMyAk1kUt1A6kVlU0HO779eRXfH0N+09he1iKgtLd6/Ht18GXksFigBKSrvm\n96QQHVH3+ttGCCGEEEKIBlxlvpHafvoHQa4yX+N44ytuDdxPCbXtNi/bsxoa0RxLxffbdbvvr8wg\nASzqk2VoGFDYe7vvJ/LPxCbeQLZbtxAsbO8ZCNFtSBmaEEIIIYQQCcWqPrW9g72Oa4JuidXhxauZ\nVDOM+61Tc99gxDGwZFIrzMzNLFL1lf5Tp90LlWtbdHfDDGFisaUmSr9kZlFXcvp98NqV7T2L7fbi\ntFXsipW9V1V3IsEiIdpMN//bRgghhBBCJC3a0ITl1rs4X+bGx7f4zu0QWcoFgUlMCf8q+8WBAjjk\n5+7+qDPyNi/tLUPTaV2LRp0OR/6hRfffFrUJYvH7F2dioCEZLBowCgbt1aJ7dwj7ns/yYT/y9Znq\nTP7w0qxEZlE3f3wLZumjJYRoFd38bxshhBBCCAEwce56jv33J7w1q2UZKh1ZNG5TNm4CT01dkXOM\n1ZIfjwt6pVZyouwIOPvx7b9XOk8Zmk5vZJ2tEXUzxbVJAIs12+qwbIu4TqwKd9XncMWUFt+/Iygp\nKiJEnN5F+V96fvXWWva/4X2Wllfn/d5JAWzJLJLMIiHaTDf/20YIIYQQQgAsXO9kFc1fV8lH321k\nYRfMMqqqjwHw19fmZD1fG40nVh1rpp0Pc76GS91gUQtWJsvOXQ2N9MyiPBg1tC9BZfHjg4aibZsN\nVdG8v0Z769ezhCAWF47dOe/3/seE+WypifLCtNV5v3fSHsZKDjbmt9r9O4U8BEaFEE0jwSIhhBBC\nCJFcrZovlmzmkse/5rh/f9K+E2oFdTErtV3v2U569suVaL0dwaL+u8ERv4PzngcjUcZmx7d3mln5\nwkPeYNGl7+fl/uGQs5La+m01mNjY2xM06+jMEEHi3PXh4rzf+p056wH46LuNeb+3w/k976nar8l6\nhyCZRUK0GQkWCSGEEEKIlOkrt7X3FFpNXdQNEG2pycycKetbTFhtR0ZN72FwzHXQbxcncAT+3kV5\nkdmz6Mv9boGhB+Xn9omMqCkL16PQ7LZDr/zctyMxggSVhSLfWV+uBa2UkafIfzZZp1TUr71nIES3\nIauhCSGEEEJ0Y799YQavTF/D0D5d/xP7Gk+wqKIuxo69/O/Z0pr9je3IOtGeLKXC3jA+x9L2LaBx\nexalvqo8Zv8kgkUBLAxsAoEuuET7Vw8AMESV5/W25VWRvN4vG0OCRY6SAe09AyG6DcksEkIIIYTo\nxl6ZvgaAVVvq2nkmrW/1VreEZ1ttLON83GreA7ne98eJjdbLVElRnsyiVOAgj8Ei02n6XGDYGGiU\n0QWDRXVbAdhJ5bdUbFtt6/d3+nXg5VZ/jQ7r//4A1yyDq6fnN0AqhGiQBIuEEEIIIbqxknD3STS/\na9Ki1Pb4N+ZmnI/baUGf/S/KeS9LK1TpIGcn/bpWoD3/b83MoiJd7QSLVBd8TDj2BgA26Z55va1K\n+314fcaavN4f4OrAa3m/Z6dx9F+gqA/0HdHeMxGiW+mC/woIIYQQQoimGtgjnPNcW2RMtJVPF5Wz\n39Deqf012zIzqXyZRSN/AKfeBWVHOPt7nwt9d0mdtjGcYwCjzmiVOXtpjIyeRelBihZZ9jEA1wWe\nwlA2yuiCjwm9ywCnpMu281fWlf7b8KvnZ1A2boKvR1ZLrPV8r9qhHnm5Z6ex1zntPQMhuq0u+K+A\nEEIIIYRoiUNH9AXgvIe+bOeZNE5rzUOfLGVDZX3OMTNWbePCR77if9NWUda3CIDzD94pY5wvs+j8\n/zlfL37L6UF05gNw9Tcw+iwgESzqP9I512+XjHvlnbcMLVX2lsdgUb+Rzr1RTn+crliGlnhPBjaz\n1uSvr1TIzP5Itcd17+bl/vPWVqa2je5WhnXWQ+09AyG6LQkWCSGEEEJ0E49OWUbZuAlU1jv9erbU\nRFlSXgPASLWKGeHLGMgW1icCL/PXVea8V3urjsTRWrN6ax3/eHs+lz05Leu4snETOP2ezwAoIMJL\ndZdyYtE8aiKZS9vH4k4Qpm70+blfOOA0xW7rpeV9Da5phTK0sVcBMNXekx3UFgYv64I9chKldQaa\nrVlWw9tetm7d5tOm4fl9LurTqq8lhBBJEiwSQgghhOgmnv1qJQDrK5xg0K0TF6TO/cR8j16qhi8P\n+4Zf9PmGkWpVu8yxKSpqY4z+20TumrSYjxY4zYpnrc7MFKlOCwgNU+vpZ2/mXvtGnvlyZaqcq7I+\nRnUkTrDOWSVLJ8qVskpk9RSq9ijRS2QW2a3Q4DpcCsCxxjeJO3fB1beUk1lkYhPMkQ20PfJY0ZaV\n4Q0WnXF/676YEEIkdJ+OhkIIIYQQ3VzyATmayKDxJqYM7VsCFcA3j3EmcGYYzh70TttPsglqok4Q\n6IkvlnPUyP45xzWWPbJ0Uw0j+pew9/j3KAya3L3PCgBUcb/cF818ttnzzQ+FgkS5XSv0LDJDABxi\nzgOgvngwBfm7e8eQ6MMUIE59bPv6Cf38mel8s2IrU/90TOqYlYgWHVjWm6+Xb00dH96vuAWTdWlv\n5lKvnfNyzw7v0F9C1fr2noUQ3ZpkFgkhhBBCdBPlVREAJs51HsIiMbdHzxEjemeM9z74diTJh/Mt\nNVGO3M0NFqU3FI5ZuVcpCxP1ja+LWWjLCUKpnQ7N53TzQitFbSTGwTdNYn1FrXMwn8GitHut3uvn\n+bt3R7HNyaz7ffBFrO0sHZswe12qTDMpGcwJBfyPVkfs2kDQcXuFivJ/z47ouBukX5EQ7UyCRUII\nIYQQ3YSVaOB894eLAdh3p17cHbyL5QXnY0x/vB1n1jzxHHU/b89e59uPWf5xAdzgUC+qicTtVP8m\ngLdnOqV3ZjCYr6nmkUoVnX0wb0PiUH77JlX028/dCZXm9d4dQrVTZjjWmO9f+a6FkoGnsr7FWY/n\nlZLHNyFE25C/bYQQQgghuokLxrolLIs3VrG+oo5TzKnbdS+tNVc98w0fLyzP1/SaLO7JGPI+9Kc/\nmqdnFg1UbqbUYLWJuqjFDW/OSx0LKCeYFAg0ECzq2wYrn2XlroY2on9x4kh+f5TvMWi4uxMI5/Xe\nHYLh/nr5Vr7bDt7vLcvWFFPHpXWP8e7PD2TZzSfSryRMA4ltzWN7e291s9XQhBDtRoJFQgghhBDd\nRHLVppJwgO/f8Qn3fLSkwfEKm+/WZ18RLRK3eXv2ei569Ku8z7Mx3oyhjYnSOsh8jI4mntYfv+RA\nfjhgHUOUG9jqqWqoicapqncfxIOJzCOV6N+T1RkPtGDm20/jvr9Uv+M8ZxapYGFqOxjqiNlVLeX+\nelkt7Ert/b7RGsYHnmD4wkfYfd3rKKUwDbDz1Pm675oP3Z1gNylDE0K0O2lwLYQQQgjRTSTLt3Yb\nVMo3K5wsm5V2f3YysmcHFRHx9TXyau3lwhvizQq55d3vUttG2segs1ZtA6Bf+ZfcVvk78MQ/Sqml\nLmoRDroXBUgEAMwGAiVDxmz/xFtgS20s1dA6Fk8EtfL9IuEeqc2Sgi7X3hp2OgSAafbInKWMTVVR\nF6NPsRNUtGzN2YFPnBOJ1fJMpfJXhua9T/o3uRBCtBL520YIIYQQopuwEhk53hIaQ2V5oD3yjwD8\nOfA0ATN7SMKbmWHbmjs/WJhqoN3avJlFFx3iltaFTNM3bnyixKy4dmXGPXqoWupiFrv0L0kdS2YW\nYXS8z1NtbaTK0JKr2eU7swjPKnAlhV0wWLSz07h8jLGwyT2LLFvzp1dns6S82nd87ba61LZRs8E9\nkegpZBgqb5lFuh0Ds0KI7kuCRUIIIYQQ3USfmsX8OvASs1ZXANCfrQxRm9wBu58MZz0CvcsAOD/w\nUc5yHe/xuWsrufODRfzyuW9bbe5e3p5FxWE3sJPZh0YzJfxLhn3+p9SRqpCzeloPaojb2hc4SzXA\nbiizqJ1oYLhax7jAc8QTq7blvdlxjyGpzXC4gVK8zkp5y9Cc3/cj/vUhv31hRs5LFqyv4tkvV/Lz\nZ6b7jq/YXJvaDm9d4LngHQBMI3+ZRbYVb3yQEELkmQSLhBBCCCG6iUsWXsWvA69QiLP093XBp/wD\nTrod9vqhr+wlV7mON1gUDDgP4Ztr2iazqLzaeR2l4N7JSzhYzSdInEjcDfxsrYnSmyp/MAxYHXUy\nia4JvkDcsonEbXYz1jCIzW6wyGgkWHTOk3DE7/P3hppAo+ivKrgi8CalNc6qbXnPLCod5G53wOyq\nfIlrg7itqYnEWbWljlemr0mde3PmWo7798eprKCVW5yg0Kottb5MoSmLy3k/sSqdpTzfL0smAYky\ntDxlFn26cGNe7iOEEM0hwSIhhBBCiG7C0E6GgokTVIl521ce+ks3WDBwFOA8VOcqpfFmTYQDTvlX\nfY7+Rvn2i2edDCatYQ+1gv+Fb+DawLO+LKHNNRGGqfUZ10ZNd3lzM1JBJG4zMfQHphZc7QkWNRIo\n2fM0OOavLX8jzeD9XbCsGNAKPYs2zne3u2iwKD5kLF/ZuxO3NN+tr3KPJ753fv2/GSzcUE19oi/U\ni9OcwFxN1KI2ZqXGvz17PZc9OQ0AS2X+WhmGyltfr37FHS/TTQjR9UmwSAghhBCim7BxgjqhRCPn\nGp3oS2ME4Ni/uwN33JdI0SA206NJmUVJK7fU8vCnS/MyV601ZeMmUDZuQsa5fdRilheczwFqAcU4\nvWNOMqdSF3Uf5utjttuDyGPoDm72jIpWE4m7YwLKckq7OmATYe0JDem4EyzKexmaZzW0vN+7gwis\nnsqh5jzqYhZn3fd56vim6ijgfl8nG7v/38j+qTG3TfSUm3lY6WsGfXQTH1Semrfysb7FXTNwJ4To\n2LrmvwJCCCGEECJDtdkTgEONuQDUEnZO9ByaUdIUKxxAtS6kJuI88L4wbRVl4ybw+ow1bK2JcveH\ni1NjvQ14b5ww39dTaHs1tFrVoYbTuPqx0L+wEz/ODlTbuHHCfMrGTUBrzcottQRU5sN67z59sQ+6\nAgAVq6VvlRsAuDrwWuMlaO3EGyxavylRWpfvMrS9zna3u2hmUVJNba1vf1O1v4QymTlXGHSbpj/+\n+fKM+ywpr2ZheZ3/4Me3ANA/sioPMwXLygx6CiFEa5NgkRBCCCFEN7G0cDQARxiz2V8txEgWN510\ne8bYTYGBjDDWcecHiwC45R1nifpfPT+D696Yy7NfruRQYw69qCI9rlNV3/KMiqin/1D6alDlOEGv\nHqqOSwNvZ1y7tTbGVc9Mz5pZpIJFqOH/52zH6zim/En/AKtt+i41V5Fy52VFnOCEas3Moi4eLOqz\ndSaDe7nvNxK3fA3akxlGt76XPZso6ZjbP+bxz7Jn0/WPrc7DTKG6PpqX+wghRHNIsEgIIYQQopuo\nMpJBlhpeCY/nsmSgZciBGWPLNrwPwPo1K1ixuYYCT4bFmzPXEiLGs6GbeDx0C/6OOs0LFj386VKW\nlldz16RFrKtwMzQmzFqX2vY2ri6vilCrw6n9mfaI1PZByum5M3P1NgAKyPKQHSxEBYsAUPFaQvGa\nJs+1PY0xFqa2gyRXQ8vzi3gzlUJFeb55BzF0LACVMZPisEmvIieTLBrXvDFzbWpYMlhUXuUPHhrY\nmGlBSIPsWXCF8aqsx5vrq2Wb83IfIYRoDgkWCSGEEEJ0F9p5yA2kZ9w0kEUSVlGOvHUya7b5S22S\nD8yjjRWk9/GtrI+xcENVxoN2urqoxY0T5nP07R9zx/sL+eVz36Z6FV3z8qzUOG9/pH+9+x1x3MDV\nT088zDNXp5dPRa3z9f7Qnc6JK93eNATCEHKaXJuxOpbUdL4l4oOJ8jrVmj/K9xjcevduT0deA4C2\nokTjNsUh53s/bvtLJy1bZ2S0AXwQ+j0zw5f5jiUbxqcbGl2SjxnnDEYJIURrkmCREEIIIUR3oZ2H\n2n0GFfiPm5l9evQJtwK5H1STJV4BrIwRD3+6lOP+/QlH3z6ZR6csY86aiiZNr7IuzsueZcyTvCuv\nRS2behIBnsLeDCpwH9TrtXN8Y1W9/wbePkSBglS51UdzVrBG92vS3DqSZGaRznfPIq8s3xNdgul8\nj9hWnGjcpiTsBItiaX22yqsj/OGlWRmXDzfWU6L8319GjmBRjcpPdtYuKvPPhBBCtLauXYwshBBC\nCCFcicyiATUL/cezZBap4r6Ap+QpjbcUJ32J8NdmOOU8VfVx/v6W04x6+T9PyriHlXadpTWLN1Zn\njNtYGWHv8e9x8aFlvD5jLUcmP+4MFsPWZalxQRUH7ZQOBbzzNj3vz7acgBHOqnChHO+vI0vOWbVG\nsOjiCVD+Xf7v21Ekv9ftOJG4zcCwk6UWjfu/F+/8YBGfLCxv4EaaZB1grmCR0vlpTB0sKIY4/gw5\nIYRoZZJZJIQQQgjRTahkqU3tptQxGzP7qlqJDIwwsdSh0rAbdPGWsmkNvakkvXeR1zG3T6Y+5n94\nTg8y2Vrz+ZJNpJs4dz3grkalUq+jwXLnN+7YYQBsq41RjCf7w/SUmn12Jxhm4j3ECXneX2fhvrdW\nCBaVHQ4H/r/837ejSASLdCOZRbG4f//+C/b37Rfillimsu9Gnekbo3TLVwUECOooUVUAA0fl5X5C\nCNEUEiwSQgghhOgG5qypYENFZjNnW5lZRpMKsHgzi6oicXYfVArAV+OOTB0PVK7m24IruNx8y3eL\n4f2LU9tLymt4cZp/KXE7bRk1rWHW6syStVsn+lekSgWLtIaI20Q4pJ3AT1V9nBI8PZa8ZWiDx6T2\nTWUTJoZlesryxjetZK49nRP4GIDPlkjj42ZLBAq1HSdi5e5Z5BU0FcePGuQ7dvOJO6W2TZW4dsxP\nne+f8RVECaUy+VoqqKPEjc7XW0sI0blJGZoQQgghRBdUURdjn+vf8x27JZCZ+WMGcvSmyRIsAnju\nsrGs3lqH0lvdoTXOymXHm9N40DoldTw9W6Oizp/FkxYrYtmmpq1MdmvwAWcjXgfTn0gdT2YJvTt3\nPbspT7DIu8T86fekskuCWIRUDCNUBHVpfY46gZpofjJXupVkGVois6g4kVkUjduYhmLkwFLmr6tM\nDS+llveK/o5at6PvNqfvXsKv394IeIKXhht41cogo/P7djrHficv9xFCiOaQzCIhhBBCiC7o3+8v\nzDiWyoDwULEcAZpksEg52RFD1Qb+uvM8eheH2GtIT7DcIJKdyNQJEud7u/XnZ/83nNP33ZHqen+g\nqSoS5+vlW/h8sVNqll6W1lT9VOJhvm6r73iQaGo7Vao1/HtQ0h/2u8DZ7z0s1bzZxCJEHBXsnMvE\n//CAIe09hc4nESxatdnJSBtuL+cY4xuqIxaWrdklsJGTjKmpysyxxjx2iK2Eyf/032eL2yvrzyeM\ndDY8QUkbAyse490561rvvQghRCuSYJEQQgghRBexcnMtJ9/9KZuqI6leLF65GvFmlWgCPUytZ2CP\nMK+E/salG26E2i1Ok+ity1NDtXKzkHoWBrn2xD0oLQhSG/UHgyIxm7Pv/4LzH/4SIHX+yqNGZJ3C\nMLWO/mxr8pRDVm1quzSZWfS9PzlfT7vHKRFSKpUBEsRyspESq6N1Nv1KCxofJPwSwaJkz62ff/cT\nHgndzpNfLAfgtk1Xck/ortTwVGadGaQk7CnZrHGbX4eST1Sekk4bg6q6KFc8PZ3FG53A1Htz13PO\n/V+g85RxJIQQrUmCRUIIIYQQXcRjny9jzppKxtz4AbOyLFffrGBRuASAm4KP8OlVo+mfzOb51zCY\n9Hd45qzUUDsRfAkRx0ikZFTWx4ikNQkOB/w/em6odLJ/DtipNy9dcUjq+LOXHczNJ+3MR+Hf8XXB\nVU2eckHVytR2cbJnUagkc2AiYGBiOQ28O2mwqCCUo9+UyC3xvWpiM1RtSB1esdkJNIa107ha206Q\nyA0WhZjz5/9z76NtrvnBbuy3Uy+G9018/3gyiyK28xoA9THn6+VPfcNXy7fwh5dmUVEb47rX52SU\nZmazSfdkev8ztuPNCiHE9pNgkRBCCCFEF9G7yG2Cm23Zb7M5wSJPkCUU9Zd78dmdvt1kpsQIYx0/\nX3E1AK/PWJtxy/Sl3n+cyDAqCpmMKevDrT/cmxtPH82hI/px3j59s07rih0XZx684GUAesx5ildC\n19GTau5NZoeEswWLnDK0ADZHmHNg/aysr9XRBU0JFjVbMrNIWZxmeJei92f7RBMlkskyTMwgxDx9\nsN76NVfNOINXrzoMUyV7FrmPVhZG6s/b81+vZH2F2xPrpW9Wc9o9U3jyixXcOznL93P6lLF8/ZCE\nEKItSLCoi9tUHeGbFVuaPL6iNsbabXWNDxTt5iePfsXPnprW3tMQQgjRAQ3tk5khs+SmE3ngwgMA\nOGa3fk2/mTfI8srlOYd9Y+/KL5+bntofUTsLbIvfHTsyY+x789antuckMp8uNt+lR3wzTLmTs0eV\ncMHYnZ0BM5/1XfvETw8C4Or445mTKN0RSndE2VH2NxYz1pjvnuuRpa9PImBwjDk981wnohofItKl\nsspsfh98MXU4TIyxxrzU/pzVzs/Pqcyimc/Bggn+e21LZLLpRBA2rWdRMpPv6akrOfLWj3yXLk9k\nMikU49+Yyz0f5Q4aBbDdxtxCCNFGJFjUxZ374FTOuq/ptdHH3/kJh/7zw1aelaisj1E2bgIvpC0h\n3BSfLCxn4twN290UVAghRNcVs7KsdmY4y34v/+dJFCWfN3fYF3bYp+Gbecu3Gsi8sTAw0rIyiEe4\nev8QxdQxTK1LPXAvLXebaZ989xR2UhsYH3yS0c8fBB/8Dd6+xllBauF7TqmbxxG79GPmdcdRXFSc\nOYk+w8F0H6bDeEp7jCw/7iayNMYYiSbgJYMyx3Q0R46DPU6FwQe4xxZPar/5dFaBMAAFnmboAIVE\neD50Y2o/GejxrQb4xtWZ96suh6pEEFRlzyw6YfSgjJLMpKCpePzz5dw6cUHW87atMbHQEiwSQrQx\nCRZ1cYs3VgNurXRj1lf6l42dunQzy5u4jK1oulVbnE+THp2yrJGRuX23vipf0xFCCNFFxLMEi3y0\nDQP3gp99DCN/4BwbdWb2sU0oe5mqR6PQmb2Q4vXwn735dsD1fBT+Hf8IPAJAQdD/o6dKDzLVbYWv\nH4Znz86cjqHoWRRMrdIGOA2rx1dAsMDN8gD6qMqM6/0vrGDEMe7+uc84X/c4teHr2tP3roUfPQWX\neT7UG7hn+82nswqXAp6eVglFRHz7yQCoL/CYzW27wITfOtueBteGEUitPlgYzP1nacKs7KulbauN\nMu7lWdz63gIC2MS0PLYJIdqW/K3TTWypjTY+KItzH5zKUbdNzu9kBNHEp0uGaloC+cbKeuqiFuVV\n7g8yspKGEEKIdHHbH7RR2HDX/jDtUeeAbbmZNgW9nK9lh+W+4UVvNvJ6GkWWoM+/hgEQqnQCOOf0\nnM+eO/SgKOTPjrBIf4jWsDpbqbXn/skH8n675ZxX38aCRQD9dnW3AwVwzTL44aONX9eRDD+qvWfQ\n+QTC2EaIElXPZMvNritU/mBRMivoz0F/OWSDPJlFA3oWcfLogew+qJStDfwcvjTHh7J3f7iY579e\nxX2Tl2BiMW1lZsN6IYRoTU0KFimlfqCUWqCUWqyUGtfAuLOUUlopNcZzbG+l1BdKqblKqdlKKVnj\ns41EPemulz3ReI+bl79ZnfOcBCbyK7nyhWk0HixavLGKg26axB7Xvcsr01dzqvEZhxmzqY7EG71W\nCCFE57cCVmtbAAAgAElEQVS5OkLZuAlMnLu+0bHezKKeVLOs4ALYsgTe+g289xdYNBHWzXQGHHQ5\nnHo3HHBJ7hv2zNLvJ+mCV9CJrjkZZWjpajZiaIstNf6H5oyMJK0hkhnoCROD96+D1d/A6q+cg0V9\n/IMueiu12ZfEPS79IPecYrXu9qDRzv3MYMPvo6MJZinJE43SoRJKqCPkyRoqTMss6qcq+GPguebd\n2PBmFpmETU2PgiAfLXCbzT972cFNupVlJ/9MaQLKRitpcC2EaFuNBouUUiZwD3ACsCdwnlIqI+dV\nKVUK/Ar40nMsADwNXKG1HgUcBY3lcop8sT0BnnnrGv+EbdbqbantDWnlaMOufbtJS3uKpnnmS+eT\nVqMJwaIz73VX6rj5ne+4K3QPz4RupqpegkVCCNEdLN/sZB7cN3lJo2OteIR91WJm/u04vj5wsv/k\n53f7980A7P+ThsvN0oMRBb3gnKfgwMtgl2MY2qcoexlaFidXv5hxLEB6/z0NC97OvNaYCp/9Bx4+\n2j34/fH+QcOOgPP+B8D5o4ucY4NG557Q9CcbnXOH19mCWx2EDhZSSIQiVZ8qa0wvQ7s+8DhXBhrO\nrMvQY7C7bZhgW6yrdMvdfnLIzhw6oh8P/2QMN5zufG/2Lmr49zAZiP3ZUbkz6YQQojU0JbPoIGCx\n1nqp1joKPA+clmXcDcAtgDfKcBwwS2s9E0BrvVlr3e268n6+eBNl4yawYnN+e//MXLWNsnETKBs3\ngbiV+UNac5OBjt3Tbe7obUCZ1JSlPUXTvD9vAwBNiBVRmSMolP7prBBCiK6pINHvJH1hgw2V9Vz3\n+hxfJnGPaf/ltfB1FG6cTigUosUKevj3T74D9jwVTroNgLK+xRywU6/cmUWeJtpXxJ9mtFoKwFOX\nOiubmelBphxNfG8P3Z95cKexmcdCieBW7Wbna6CBhPa9f5T7XGfRxHJ24afMIAFlUUwEigcAUJRW\nhlaqtmN14FCR90VAW6ze6t7nmh/sDsD39xzIhWN3pjQcYGttwx/GJgOqoZAEBoUQbaspwaLBgHfJ\nptWJYylKqf2BoVrrtPUkGQlopdREpdR0pdQ1LZptJ/XSdKe868tlTV/CvilOu+ez1PZXWe5ta80N\ngUdZEL4IgEi84Tid9vygt2B9ZibSAx8v3d6pijR7mStZXnA+o2n81/TIkf1T295Pbv/y2pxWmZsQ\nQoiOJVlKXpcIFn20YCNl4yZw8E2TePKLFYz8yzv8+dXZrKuow9i2AoDQY8dBZfbGuc0SLIQ/rYM/\nr4c/roDRZ/nPKwVaZ/YsSor5H7hHKudnokE9nCBORmbRovdaNt9ksGjlF+78cjk9SwBKdA9miCBx\nilU9lDjBopK0htcZ2XL7XtDwPb9/vX/fMMG22aGHG7AsCfuDoVWJlgJfh6/g7uBd2aea/DMiq6EJ\nIdpYixtcK6UM4A7gd1lOB4DDgR8nvp6hlDomfZBS6nKl1DSl1LTy8vL0051eIJE+4tYet9x3acGc\nbLe2tebCwAeElfOJxROfL2/wni9/s5rjja851/yQ8W/Ooy7a7ZLA2sxJhU6gZ/DaibwwbVWDY719\njQawNbUdNOXTRCGE6A7WVjhJ2ys21xK3bC557OuMMc98uZJDbv6QOXqYe3DRROfr/j+BPT1J4ee/\n0LwJhIqcoFFhrywnnX+LHrpwf/dQ7zI46k9O8+W0YFGcAKcYn9N7kVOSdlkg8TmjmYcsqObex5B1\nXrorwwwSxKJvMJoKFv39+wN8YwLpwaJj/upuH/Qz2Od8d3/sVXDARf7xygBtMbh3IQCTfndkxjx+\ne+xIAPqrSk4xp6aOxy071W7gaGOGc9CSdhBCiLbVlH8l1wBDPftDEseSSoHRwGSl1HJgLPBGosn1\nauATrfUmrXUt8Dbg+WnCobV+UGs9Rms9pn///umnO72FG5zl6699ZXbe7rm52l+C9PmSTRljvAui\nFFPXaJrrazPW8kDo3/wz+DAAe1z3bsaYdRXbkZIrMmyoc364DhPlmpdm8Ytnp+ccG7Ns9lOL6EUV\nvw28lDp+2l4Dcl4jhBCia3ovUcaci02WDxJOvRsGJ9YeGftzGHl8fidlRei73G0uzc6Hw1F/hEAh\nVPg/ENHA3aH/0u+D3wBwpjnFOXHus87cmkrl+BFWsi9EEygzyPG79yVs10Gx8+zRRzurjcV3PNAZ\n4w0WFfSCgp7u/on/gjPuc/fHXgWFvf0vkuhZdM+P9+eWs/ZiRP+SjHkM7BHOOr/fvziT16cv53Bj\nNveEEhlHc15u5rsUQoiWaUqw6GtgV6XUMKVUCDgXeCN5UmtdobXup7Uu01qXAVOBU7XW04CJwF5K\nqaJEs+sjgXl5fxcd3IxVbuNob1+BlkhfReveLE0vdZWbfv5A8A72HtwzY0yjr4NFALdnzjG3f9zs\ne4hMEZxPPpMrb7w1K3epQDQW49Xw33gidEtq1RmAL+csyGu2mhBCiI7vk4UNZ2AHMxpGJ/R3eqUw\nOOMzu5ZRCtbPhq8edI8lM3aWT8kYntGjKHWNCcf/w90fdQbssC/sdU728aPOzH2f5tj9ZBjatNWp\nOpSBo6GwT+PjRHZmEKI1YMdTmUXUbAQgUOT8vLxrf09z94Mub7j/VbYgZaJn0YDSAn504E5ZLysO\nZf9+fW3GWn4TeImnQze7ByPVuV9fCCFaQaPBIq11HPgFTuBnPvCC1nquUurvSqlTG7l2K06J2tfA\nDGB6lr5G3UpdLD+lXcmVzi46ZOecY7Qn9ftwcy6xtMDCys213PzOfGJZmmMnPRi8g5dD41P7tVKa\n1mJxyyaG88PBSGN16niuwM8PV98CwD7GUn4UmJw6rqwI+9/wfutNVAghRIfz/Nf+TJ0bThvF6MFu\nE2ozV7Bo5HFw7WrY64f5ndDiLEvTJ7N+olUZp7xNhG8+cy/3hBF0Ak9/2Qh/2wZnPQr/7wM49Ors\nr5utuTX4g0V7nd3Y7OGcJ+HiTvij6ZWfwR+XtfcsOq/VX8OKRDAzkVmUWh2vci3gtpFwdkJu/6te\nWQI/2ValWzMNlnwI43tCbaK36Fu/dfbH94Rln3Dyq3tynJFZVgowXKV9kLjXWVnHCSFEa2lSsbbW\n+m2t9Uit9Qit9T8Sx67TWr+RZexRiayi5P7TWutRWuvRWutu2eD60L7V3Ba8nyBxXp+xpvELmsC2\nYTDlXP/tYSwvOJ8QsYwV0Wzl/4frl89969u/YcI8Hvh4KYs2VKO1ZkfcUrZgIpvoGPNb9jGW+lNx\nRYv8853vOMH4CoCtujR1/NaJC7KOPzvwSdbjA9hKRV2swWCfEEKIrq1fSTjV9wQayCwCCJfmPpdP\nKnd2z9ghbtnNeR8e4Z5IZmYEws5DuWE4D+ABT5nOyBOcrzvsA2Mubfy1q9Y3PlfDlOXnu7twqT9r\nqDz585jnQ7ySxIrB/+9D5790diMfpq6dDnNfg2mPuMfevRaAY41vmjbPY/7WtHFCCJEn0tmvlWmt\n+U3dPfzQ/IQjjFlc9/rcvNw3bts8E7optb+PWkJtWtaSzuhboInGbR6dsoyYZTN7tVObrRRMW7GV\nx0L/So3sSY3vyp+a70CulU5Ek2mteXjKMo42nWaFJjYHqAUMURu5/+PMUsKG/DLwKgA/fujLvM9T\nCCFEx3K88RVhohnHexQGOXr3gSz/50lAlsyi42/KuKb1JX5eOPe5jDMnly5yd+rdMv2cvYa8D/Fn\nPgj7XQgXvZm7ObX3PsGi7GOE8AoV+79XDv+187X8O/fY3olyyCEHQImnv+pVX8Ihv3BL2XJ5+TJ4\nMa0B9gZnsZMqsn+fZvwc39DKfkII0QokWNSKNldHGHbt25hxJ/BSpjbQtzg/q31YtqbMcJtcKjQ6\nLcEkWaqWdJwxjUemLOPvb83jic+XpzJSYpZNeVWEd+0DU2MHqq2+a/8afIZRakVe5t6dVdT5m4xb\nGLwcvp4p4V9z3kFDs14T09k/of1W7wrAV8u35HeSQgghOoxXv13NvmoxD4Tu5LrAU2lnNf3Dbl/B\nf5wx2lkKPOnP6+GQZjSNzhcrEdTa/UQYX+H817sMACOSWZoGgJkjWBTy9I0p6AGn/dffaDid7fl3\nNthAjxnRvSUbvgOESv3fZ8VZAj+B7I2oGbC702ursUDOkANzntpJ+ZvWV9XLqmdCiI5BgkWt6Lb3\nFgKwv7EYgOuCTzGmrDczV23LCBo0V+GW+b79nqoGKy04ZKelxA5UW9lU7fQKqKqPp4JF0biNaSjm\n2W7/o2xlZ8+HbgCgOhLPONfdWLbmprfn8+q3qxsf7LG5xvkB+hPL6dOgGsnWisZtZnuXQfZYq/s2\n67WFEEJ0LtWROL/530x6KOdDp6Fqo+/85eZbjHxkN6h2jvcuCnFFILEq2fgKZ7n79lBfmXnsVzOd\n7I2aHA26wz2yH2/uewh4x0smhsjhSE9nDMP0Zxa1xp+bgaNynvq+6W8T8d36HAFVIYRoYxIsakXZ\nVj7bWhvjtHs+49wHp7bo3sVb/cGiB4L/zmiQbNv+1/f2NVq2qSY1PmrZmErx1+DTqbFnm5mrnpUq\np2H2AvlHjP9MWsT/Z++8w+Smrj78SpqyzeveK24YV2yKMdX0XoIJxRAIoXcI8OFQgkMJkNASSkJJ\nQjMdAwZjDAZsA8aAccG44Lruvex66xTp+0OakTSjmZ2xt3rP+zz7jHTvlXR3VzMj/XTO7zw/fQW3\nvDUvq+22lZpi0Yjc1QDxdDSAHWXJAuLijSUE8RYWT++3+94Tk+Zv4PZ35vG3TxfTY8xEflplR5KV\nVIYZO2EBJXvpk62xExZwzWsZ+gMIgiDUE9OXbGHgvZMBeND3XwAKAgpdlC3MDV7BZ4HbudNvpXk9\n2gfGNmdo8Rd1P9Fbf4Wb57vbnFEaLhTY7pFy3e80aN3LexNfljfuzdrby5KGJqTCaYSuqBBwnCup\nooj2hFDmlcxa5gU4Tf2OU7Qf4m3h89+q+TkJgiBUg4hFtUj31skXKfNWmmaLizaU8Nhnv2IYu+cD\nFPK5hQJVMZLSzozE6mdGe17+zkwlmzBvfTwSKRZZ1EWxDa4v8X3OGwclX9B1YBuVNVTRrTHjLF2c\nzd/j+enm39QfKk7q21mR7EUR1Y2UYtHhXXM4oX97+nXIXjS6Ztxs3vlpLc9ONedz0Yu279GHc9bx\n0owiXpy+Iuv9NgZemlHEpF8yMD0VBEGoRy7+r32j2FU1v3OGRX/mKu0jWihl9FWTC2Z0nFIPKWfN\nOiRXh0plpB0u827vdUzq/afyJkrHpZPMsvInPpj9tkLTwOlt1W0E+J3pji1q9ljNOsK2Zfb6jXNT\nDt1VGcYwDJ4OPOVq97ftU7NzEgRByAARi2oJwzB4/HMzDc3It59yjdK+ji8/9eUynvpyWdK26fZ5\nwfMz+WLRJkKa+aSttOcp8X5nZFFxeZi3fixybd9acYeFx7SlcNTA8EiHGjH/nqS2ScE/satS0tDm\nrrFNOR9NUcXMiymLNjNMWeLZt2XlfF7/frWrrTKsJ4tFvY83DT93rMTvUwnVQDU057kTW965h6mS\nDRFnBJUgCEJjpKXSQKN7m3Xa/W1rOpKj+6FmWfm8VjW7X2HvwSkW+QIQst5XB19lRhrVBEN/Z3oV\n+XJguaOCWitvewEwI9DDUY8HyakM4AVBEGoREYtqiSpHCppi2JEnI1X304RXvivKaH93fzCfQWM/\n47sV27js5Vl886sZGbFr2NXxMRHry6UqEmXIfZ8xYa7bT+dh/4uecwxF9Pi21dFSKU2KYGqKnDHE\nvijORlQppJTxwbGefTf5xnPn++5Q/spIlICSsP+L3oVIJcx7g/0q5mb8v0tH2JGymB80L0im/prC\nV6IRM+pfM+p7CoIgCHvEaVoDrYDZc6S93GFQ9eNvdTw4cVadEoS6IFF82WDZCjTrAHoNPRQ982m4\nfArsWJnc136g5yYjH53Kiq0eKWuav2bmJAiCkAUiFtUSFaEoI9U5FOWMhnI7vWuL4Q5t3VqanHrk\nJBzVuev9+bw2c7XLWHrJ+m0AqD77y+M5K8Vpw06zEopqRQut7na2576PVOfxTmAs0VAlEWfKmj+V\n14BJojdSU6RVfiBe+KJX24KMtimtitBJSV257HjV9NGJOCKFqhIji466w7XN9WtuYfX2cnqMmUiP\nMRNZvqV0t/4/Tv2vlVWxb/X28qz3IwiCIOw+b/24ml53fhIvQJERZ78IgYTvoX6n1ezEMuH0J+H6\nWXDNDDOiojqcN7/yEEqoa1JF6oTLIb9t7R33lgXm60XjU6ajXf/6nORGrWaqKQuCIGSDiEW1REU4\nyt/8LyS1N1fKuFibTA9lQ7zt5RlFKffzyfwNjEtITQLwY0Yrqb4ga4O9AVi/3XwSMWb8z4BdaUtx\nlPMMEuJSbRIqOo/6n+MgdQlK+VaiIYcwYJW3TYVEFoFatomPgn/mXt/LRPXMLurLqiIUkFqAeTFq\nphRuKLbLHldFom6xKNEXAhik2N5Cxz42jcc/zzwtzovGXO3uh5Xb+fc0D/NUQRCEBs72shB3vDef\nqG5Qkk0acPPOcP2P7rbCzjU7uUzwBaFNH7PqU3VlxMG8+b10ErTZF0b+qfbnJwhOnAbXTg6/Jfn8\nvWh8zR23eRfztVl7aLUPRl4bj0GShiYIQsNAxKJaojwUZbHeNam9v1LEff6Xecz/73hbulS0Vy1D\n6kT8mDf0qi9AzgEXAHDyvs0BmLnCjF6JRRZta2GHut7kG8+9/lc5Tf2Odorpu1NaUUGHNZPsned6\nGPt1GBxfFLEIzloyhoEs41LfZKIZpoGVVkXoGIssumo69Dza1R8T9/ya/basqIoQJExV18NBC0Lf\nk5L2+1Hwbtf6V4vTp48VbfU2GC0PmefUTW+mNl5s6Jz73Hc8PEnSGQRBaHw88bmdluWM9r39hL7m\nQtdDvDf05UBhJxjrKJyQ6ka4vtnnSHtZC5jeQtf/AMHMInQFocaIReq06mm+nvoYtO2XXMkvrw30\nPrZmjnndj0lNyuBzk9qOUn9O3lbEIkEQ6gERi2qJynCUn3TrAu/PO2BsMVUdD6KnanoN7a8s49h+\n7QA4dVDHlPuZ5WHIe/GI7nGxqGWzAoLBHLNDd6e0qZgRLzsMuypJc0yhoFCxI1xemPorWshhmOlP\nKFPb+UAYZfsd1YCfcqOnh25He/XbNCGjbcqqIjwVeNpcyWkBF3/g6m9mRR1FHJFKu8orUBXDvMC+\nZzPkez2BcrOtrCpt/8hHp3q2X/D8zGr33VjY3SqDgiAI9cWrM+2HQxHd4MQBZnGMq4+wIkpTVQzz\n5djLx99vLWQQ2VMfXPKRvSweLEJ9oliCakyEOehyuM7yA6vpa4hDrjVfva7hEsQpPxEUPC60JQ1N\nEIR6QMSiWmLjjl3c4n/PXImVfW0/IN6vKQY3bv0LuX6NXzft4uR/fM2uyjCbd1V67M3anO0U5Yzm\nvjmHMUA1LypVnx/Vb10oRkyxKI9KinJGMzk4BoCD9mlDVafhAFzo+wKAB/z/i+83QIQ5axyV0rYu\nNV877m++blvqKiOqpCp9C1z16iwe+2zP0qAaAyHsi9z2uxZktE1ZlW107lX55ejuZlvMc2jS/A08\nO9nMW/cHcpLGO9FU+8ZgU0l6sQjgZt+7vBe4l0f9/6YoZzSHqfOZt9Z8Kt1LWceS4O/orjTe8vLF\naVI4HvX/m6f9/6jD2QiCIGSHrhu0yA3QrlkQ7UHzwRLrZnkP9ju+HzJJ/6pvgoXma2OYq7D34rPE\nl2YdUvcBFLRP7s+W4++HWxZ6V+dL8BvLIcR2o9A95o+L3XMSBEGoI0QsyoJFG0p46JNFKaMWxk5Y\nwD+/WEpVJMr/vfZ1Ur+vVXfX+pDSr+nsK2bygk0s2lDCFa/M4uAHv2DmCtO8+qvFm13jz9Omxpcv\n81lpY1oAxXraYERD6LrBPgk3+fk5foLrU1dP8RNh+XaHwLDTerpZusk6RtDMrbbIKXVXWVu9zTRY\n/nDuOiYv2MRTXy5Leay9gbKqCBOjw+Pr6/P2y3i7OLGLk3P+C/nmjUC3dR/TQ9lAOGpw74e/cM24\n2bSySiSrWkL48VXTYfQ7ACzTO3HTsX1c3dWZXN/sG88B6lLO0aYD8H++twCzMt5N7eYSUKJc23p2\nRr9XQyJgpfDtKE8tFp2jTW+41YQEQRCASb9soH35Ej4IX2M3Lv0MOg1NHqw5Hz7EBJgGHF151TTz\nu08Q6pNWPeH0f8Ioj3Oxw2A49XE48a9w0Xt7fizNZ3qLeeFzPwwMEI5nD5DbEn73ARSmzkAQBEGo\nTUQsyoJrx83muekrWL4luaTl/LXFvDSjiMc/X8KY9+aTS3J0h5bXMqntAZ6NL8e8hs5/fiY9xkxk\nU4kZZTRYWc5R6jz+6H83eVKaH9VvikXlZWV8vmgTBVS4hijVeBf4iaA7Q9bPfcV8Pe1J17iKfqMA\neO6LBUz91RayTn/6G6Bxe91kyootpSzeuCtuMA6g6Okr2sUoC3kYRw8cBbcvheamv9X4wL18sWgT\nL1teVflYkWaxnPoYHYdA3xNY0vxQVHTahtZS9PCp8e6qSJRsCFgXJmVVEQyrGl4Lw442e+arZfQY\nM5Ff1jk8MUrWw/YVNCis01gq9gmC0Jj56yeL+eOKy+iE46HRBW/BWf9OHuys3DTot9CmLxx8Ze1P\ncndp1dP87suGAy+DY+6pnfkITZcDLoECj8pnigIHXQYjrqt9oWbhh67Vc7Vptr/lua9Ar6M9NhIE\nQagbxC0tQ6Yt2cJKyxj4ohd/YESv1sxbs5MVW8u44OCuHLefHXnz/px19FI8BASP/PyBxpLkcRZj\nxs/nZPV7/hVIkzKjBfCtMb1mfLOep6L7P/lf4G/uMYoK3Q6F1TM8d/HmH4Zy50t2dTb6n2kaZYas\ndLNB5wBQNfh35C5+j3ylko/mbWDkvmZETH5AS5v2szdxzGPTAHjMHyKq5aJFKzAyrIZWUW56ElXs\nexa5iZ1t94XiNbRSSnnIYdCcr1hiUbBZ4hYABHIK6KFupOf3Z8HJtpCzbkcFfdp7b+NFx2Y+2Gaa\nlxfr5uxaRLbG+/8+2UwtvP712Uy93bpwefl0KN0Cf0qu1ldfhCLm/yKVCXtB0P7IMwzDVSlQEASh\nPikI+tJXo9w3ocCB09A6RrP2yZXR9gZOe7y+ZyAItUN39/X5Hf437b5goccGgiAIdYdEFmXIJf/9\nIb68saSS9+esY4UlHr3xwxoSAxnikUXOUOvW7lQhgALKOVydn/K4vZT16Sem+lFCZgRIB2UHEd0g\nT0mIaoqG4Og7U+5C0cNEDetUuHKq3RHIhztWwQkPmOM0M0LJR5RKR+RKwNf0TqMcQuj+PAAUPbNS\n849NMM8hpevByZ3LpsQXNUfUUsz0OjGnPUb3ts3tlX8OoyhnNIeoC7ny1Z8ymlMM1TB/B92AhdtM\nwWV41QwMw4iLpElsWwZVHjcrDYBIigp1YYc7u3hgC4LQkIjqBt1b59X3NARBqEsG/TZ1n6MSsSAI\nQn3Q9O7yd4PiNP4nMSIJJcKCWNs4jKFTlYbtmUYQOlNLjgaKFnazVzQ/HHYTABOiI/jLRx5my7s2\nJpcCdaDqYXyKJVDktXZ35raIl+CN+eaoGFSGbEEjnGHp+L2JU7Uf8Fea3lKG4U75WrppV5KvVVUk\nSr5ipgcGChL+xgnEzx0caWgpIosUp+Hh9uUAXKB9mVLgmbM6uboeQGG5GR20dkc5naJr4u37/OkT\njnZUTyvaVp64aYMkVWSRsxx1qjGCIAj1QdQw2FGWQVrzNTPg0km1PyFBEGofNU2Shyq3aYIg1C/y\nKZQB5eHqI0fKQ1F6Kutpi3kzfoBqpZc5q14lCjb7XwhAIeUcqc7juqO68/5pKrPuPo5mOeaXRx91\nnXub815D6z3SXlcU1IAV4YJB5xZJCU4QKgW/R7uFqodsDx41dSnbmPeRis4XDvPtpu4PM3fVNm58\nYw7rdlbw5JQlHP/EdJ6f7vby2Vkejgs/ak76sOK4sSHVp6F5XWQoaYxN1+2soBUlnn0qOjsrwtzo\n+yDl9s0pha/+Ct8/l3JMQyDVORnUbT+vJn7aCkLWrNtZwe3vzHNF6Ak1h64bmX2fth9gpq4IgtD4\nqcZXVBAEoT4Rz6IMiPmgpOPWd+ZRlHMbAD0qX+dO/xtmR8VOe1BiKpEVdXSz7z18ig7b58L3k6Hb\nZ9x4TB8e/GRR8oH2Ox2Wf+Vqiok4PqIs3rgLEqusdzkIlNRfRko0bKc+pXnCoTnEIoC3flzNnNU7\nObpfW974YY1rrK4bqGrT8IPRMJgwbz0T5tkRYg9NWsxVR/WKr+8oD9HMiizyjDDrc4JZ6QbbbHpI\n1xYMCauwk9RikYcPlo/U5taqojA752rPvlt9b+NTD4mvbzJaJI2Zl3MlTEu5+wZDNEXU0G2+t+PL\nElkkCNlx2MNfAnD2sC6M6JU+QlLInqhhpJb6h11Sl1MRBKGuSHXdffLfvNsFQRDqEIksyoAqSyy6\nUvuIopzR+OKRHwZFOaO5zfcWndkSH3+r44YUxfEnThKLTL8Zn2KJUUsnm6/FawhFdQIkpL8NGW2+\nxkrax7C+aDRFp79SlPwL9Dg8bRoaXz9mRxYllmh3EBOlNEssuuO9+bz54xqXaXCMf01bnvp4jZRY\nallOQqW7mHiWSGXYFm12VUbIj1Wp8/IfuuAtOOVRwIwsOqZ3IR9uOYXflr5uCn2+RAUwdvDkv30/\nZbVrvq7hafS7Y9S5jTraZtlmu0rh018u8xwzQl0YXxatSBB2j9yAPAmvaQzDwDCgTzuP74erv4HT\n0xS6EASh8ZJKLMpp7t0uCIJQh4hYlAFVYZ2rtQnxaKFBykqmBW5mQuBuAK73fchg1U47usGZxuNM\nQ3MuA6gqYcPjovu9yzhw2VO0oNTdfupj5uvmhe52xRZxjlJ/9v4lmneGk//u3bdlEX0VKzIoTRqa\nqonlX/AAACAASURBVMUiiwz272pHnbzw9cr48mXaRI5S58WrZ9UHJZVhvlq82VMs2RNCVupFy9j/\nxSr9myqSZ1NJZXy5IhSlICYWeVW3UNX4+dFV2cIRFVb0WKQCjKhZxtVzUsneRD3VjQBUhpNFrHTV\nvzorW6moCjMlOhSAlYa7XGyfdgUU+fZJuX19c9zj0zhSncel2iS+dKRJxli3s8Il7ElkkSBkzswV\n2+LLmUTbCtkRSz8b3WULPw/7mAd9/2F6dJDZ2WFQ6u8AQRAaN06x6Mxn7OVUDwkFQRDqEBGLMmBT\nSSVjHKUs3w/eS3d1M4NVWyQJJkYBxehxhL2sKHD4LeC3onzClfgVb6Fh+LqXGKo6oiPO+hdY3kRE\nE45lfdH0UtbTXEkQmJwcdLlZdeE3zyd1ne+bai5ogaS++GGsyKJj1DlUhmxfnSAh3gvcS0tKuMc/\njpcDj6SeQx3wjylLufSlH1myKc3fYjcIRXT2VVZzpe9js2HfUwBQFfvG6bj92seXN++yI5AqwlEO\nUJeaKymMzln8CQB/8r/Opdsey2xSu0xhiGPuSegwKLf+R7puEI7qPPDxQq5KrJJ22zLodxoAhUo5\n14/7EZ8lqDjP6b7KGk4Of+4djlPPoktVJEqPMRMBeCXwCPf6X/Ucd9jDX8aj4kDEIkHIlOtfn835\nz8+Mr+8oz8CEWciKWOrseXN/T+HC17nQ9wVHavMBEYkEYa/G6Vk09CJ7ecO8up+LIAhCAiIWZcBf\n3v6m2jFBxUMsGv0O+BLEl+PGQp/jzOX2/dPu87nAE/bK/qPt5YgVsdL3ZPPV+qK5wvcJV8eEDC9U\nFUa9CEPOSz0mcb6uzc3jnOubxqEVX8bbvwneyAHqUuak8MKpa35ea/pE1fQNTUU4yuTgGC71WemC\n/jyiaC4B4rj92tnjrYpxU3/dzBeLNnGx73OzwysNDWBf8/85S++LbmR4g2BVQKPdfjDWLmMfIMKX\nizezsbiSnnd+Qp+7JvHiNyvd2+a1gYK2cP44fup9A2BGjeVZptrONMjPgnfwx4qn6BEtSp7Dkk8z\nm2stMXf1zuoHWWiOKLDGnHInCHXFuO9X8fHPG1xtt70jNzE1jZ4yWEs+qARhryYWWZSYjtb/zLqf\niyAIQgIiFmVAnxbV37gH8RAmWvX0HhxrL+yc3FfYJbnt0oSb8U7DzNezrYpUXpUUghnkOrfsAffu\nNP0QMkB1+BkVlK2NL7dVvKtr1ReaZcyj17AaUF6VEAWWU4ihqC6xyK+pcV+gWKrG7//3IxNmOTyc\nUvlHWWLR5b5JqEqGc49dTOS5zWYv1yZy+7s/s3lXpcdGFm37xRd/Wm0KTQoGuZYnUyyyaNqVvdPP\noWR9+v5apiKc2tA7EZ/jf1XTaYqCsDeieqQ/7aqsvkKokB1Rw+AE9cf6noYgCHVN7Bq+2wjzVbMs\nKzrtXz/zEQRBcCDV0NLw2YKNDOvekjMGtoJq9JT9VQ9D51Tl6o++C/Y5Erod4m6/bAq07gXrZ8Nr\no+z2xFLrZz8PWxbb5neOSmdTo0MYqc2DG+dAVTFEU1zUX/6lKRYpCjTr6D0mEcdNQ75SkWagycL1\nJQR8Cr3bpajkVUvEbm5qWgooDyWIEl0PwWeEuUr7mN7KetYZrRn10WeMCsJbkZG88UM7jutvpqU1\no9zeLpX3RJoUwJQcfZeZ6phwLv2f/22ejZ6VlCFW6PTBOvbP8cUj+7aHXyCHEIPUIgB6q+sZ63uJ\n7q98ln4OeuZiTW2Qyj9l9bZyurbKdfk0dVVtI3qJLBKE6unaMq++p9AkiOoGzzujiWN0GFz3kxEE\noe4I5JsPhdsPMNdvmgdlW9JvIwiCUEdIZFEKqiJRrnz1Jy54fiahivJqxw9VLD+aKxxl7Qs7eQ/W\n/NDrmOT2rgdBXivofRwccq3dnlg2PbeFWxxwRBa1VXZS3GYY5Lc2I5ja9vWeQ5cDzDHgrtiWDsdx\nuivJBsKJnPLPrznu8em1GsGxsbiSdTtN4cowDD6ZvyFuFFrTnjTrdyYIZFaklaoYHK/9xO99tqhy\nnm8qXzhMlnOVDFLiEg3QY4z8U+ptND/0PtazKz+gJf0NztUcde87D4sv9utkGpYPjfkqWTh/p1QY\nbfpUO6Y2GT97nWf7kX//ipdnFKXc7v053tsJgmCTppi7UIOkjIRt0a1uJyIIQt3TfYT9YLiwI3QU\nkVgQhIaBiEUpiEUrLN1cypsz7MpePxUc5Tl+H9UqZ995GLTqBcMu3rPqJU4BJ79d6nFgh6wCA9RV\nRP0p0pxS4ZXG5jkne1yOV9pdCiK1GMJxyENfcNjDXxKK6Pxr2nKuHTeb71duB0zfZcMwWLi+pEaq\n93y5eFNW44cri+LLeVZql3HuK6k30FKIRT0Oz/ygnWwB6Lj+7ZOiZwynWarmqHxnnW+VpJhDGqKZ\n+ivVAp/M38CnCzam7P966daUffd/vJBwVKo6CUI6JAKvbrjnw1+8Oyp21O1EBEEQBEEQLEQsSoFT\nXHCaVw/q3t5ruJsbZ8MZT+3ZBCos095THwN/NeUzNR/0Pyu+2mrD19kdS8lULLJPl5j5cffWed7e\nSw4i0dq/2+h79yT+9umvrjYDM+rklH9+zUn/mL7HxxjcITkdY0ebYR4jTQ7oaGd55mF6Bymp/IrA\nNCD3ormHj1UqrrQj28qqoklRXXqqyjrW/zZiZPaRsEzvxKiqewH4fnl2IlpNcu242Z7tbTA9mKrz\nM6rMwu9IEJoiXpGh/TrUbWpxUyDRRDzOgN/U7UQEQRAEQRAsRCxKQdghcByl/hxf9gdT+BAB9By5\nG0eybt5vSLjpNaybWF+a4zlp3Ws3jm2RaWSRY1yeUsn4wJ+ZVnYWDLkgaWhHtsWXw6nLvNQqqgJf\nLzXzvldsKeOA+z9n+Rbbs+eF6Sv40/j5LN20i753T2L26vRPcLVomb3SYRAAgbwWKceHAi3jy3mK\nGVlENlFfN8yGq6ab3lLZsP+FAHz162bO+fd3rq5oqre8JRb5FPN/VTUw+X/qpJRcopjnQ9GWXdnN\nrw5oo5hiUXVRbZVhiSwSBMMweOarZWzZVeXRZ74+fPYgPr7hcPp1aEa7wmoeYAg1x0GX1/cMBEEQ\nBEFooohYlAJnesrVvo/iy0okTXWpFt2zP9CNs+GYezzEnlgESIZROYf/Mftjxw+VfRraFqMlw9Rl\n5src15OG3uV/Lb5cm5FFHTxuWlqwizPVb4jqBgM721XhtpWF+OvERbz701quHfcTD36yiDd+WM0X\nizcTiuh8NC99VS81YnoWRfPbw+8+NBsT/KTKTngsvqxVmuLTmeo33OWz/h7pIouc9D/LPCc6Dsls\nvBPrPDQSjKe7KZu4sqOHETvEo5oGKCsBCLZOfy6XGTlx4cmvNJzonFgaXSzyrboEuZCkoQkCC9aX\n8PfJv3LTm3OS+mKeRft1LGRg5+aUhSLMqUZYF7LnmqP2MRcOvhIGn2937Ek6uyAIgiAIwh4gYlEK\nqiI6LdhFgDALdceN889vpd4oVJq6LxWtesKRtyW3H3ipmd7V44jM9hMsgE5DzeV+p2U3h4w9i+zT\nJej0LNqVLLKoDpErUs0Nua4bTFm4abeMsMuqkqu9/cP/DP8IPMuihfOSSjx/sXgzt70zj0/m2z43\n42evBWD26p1pj+WLmJFF5Uc/EDcH9+e5K9XlN7MjjS4veZrLX/6RfwSeZT91jdmYqVjk9BPKFqsK\nXwGmuNVD2UAntjI9eAtdtlpl/fqe5N7G+t/e4x9nruc0d/e3dptYPxc9LS4W9WvVcD5GdEvQ9GEK\nWM77rB6tk9MIa9N8XRAaC5pqvlG8IotigaGKYq6Ub9+Y9Lkq7DnRsPU3zW8Hpz5av5MRBEEQBEFA\nxKKUhKsqmJtzFUtyLqG/uiqzjULVV03LmK4Hwx8XQsssopViN76H3ZTdsWIiUC/vqlpxHJ46BUpF\nmoHudKeD/2qaUKeq9vLyd0Vc/sos3ktR1SoVhmGwy0MsaqeYT70n/LCUp75cmtSfyJJNpsg3b83O\nuIdNZTjK2c9+63qCroat/2/AFh0CeQmiit/uK6YZUxZtTtmflvnvZDbOi6oSAG71vU0bipkavJUZ\nOTe6x5z8iHt90cfudadYdPEEuGFWfHVy9ECm60M4ZYjppTT4ew+xs56IiUV+Syxy3tR6nX6iFQkC\n5PrN982WUo80NOtVVRSY9jA/5VxDW9IL60J2rN9ZweRfrO8/Vc082lcQBEEQBKEWEbEoBU9N8jbO\nTesh5AvUzmSyJdNIoRiKAjfOgfNeq2acQywivVh0ujbTtb5uZwWbPZ5aA/zlo4UAFG0t8+xPxaIN\n1XvlZFvJp989n/L9im38unEXs1fv5IpXZrG1tIplm0tpVTQRAMX5f96WkNblC8D5ZlreZ76RyQeo\nLrIoW6HPixIz0utEbRYtlBR/Iy3hXF33k3vdKRb1NCsA3h++CAAFg8IcH6cO6brnc61hYj5KfsUU\niRasL6HHGPP/pnsoQyIWCYL93thZHk7ZpyjANFNkbqGUpi71LmTNoQ9/yeYS62GEotnf4YGC+puU\nIAiCIAhNHhGLHCzbXMqtb88jHNWZsyJFhaerv0m9g5F31s7EMsVn+fdEvEWZtLTq6YqY8cTxtLOv\nml0UEFBt+fqnv1rG/R8vzHh/v6wrznoOmXDe8zNZtd28cN9aGuLAB6Zw3OPTOGzzGwAYFSX24CWT\n3BurfuhzAgBa1MPfqjqx6Kg7dnvecSxRT0MnQIp0kUSx6PpZ7nWPCnxrjLbm7oFmOX5UzSFKfvNk\nXKSqS04f0ol92uTzyh8OBqC5bkY8+Dx+72RhyIj7sQhCU8YppP660S0wx1I1FYcDmIrOtrIQQs3h\nw/p+VH3gC8JpT8I139bvpARBEARBaNKIWOTgtnfm8d7stcxfV0yOkuJCuE1vdCPBcPLAy8zytu36\n1f4k03HcWCjoAO0H1M7+s4xY6qFsoJtii26hqLcRcrtmwfjyf75ZmfH+e7XLpyUlFGJ7RXVXNtK2\nwBRCDOvm5qZj+1D08KlZzf3GN5KNXmMUFDgEn4OvdHdWbAfNTxQNPVxBkkF5dX/DQL5Zae3MZ7Oa\nr4tDrgHgO70//pRiUYInUkFb6Li/vb5wQtpD9Gybj+bcx5R74akDTEUmMdqqFrjq1Vn0GDMRXTdQ\nFPBp5v+6SjHPpTw8vFcS1CIFA90wPavGvPdz0nhBaCo4g4Qe//xXV59hQEtKyNs6L96WS4iDHpxS\nV9NrdGzZVcW6nemjbxNR42KR9R1x4KXZV8IUBEEQBEGoQUQschDzbSivipLrcbMZw3nLGUGF0x6H\n375Uu5PLhO4j4LZfk82JawrVEgdyW6YfZzE1eCvTg7fE11OVKe/YfPfKMIciBnNyrubnHFOwOUad\nzbTgH2lTbooVsYvvW47vu1v7T2SXYaYgKs4L+CHnuwdFzTSOsBrEr1e6jL4z5upvYOiFuzlLTLEw\nvx0nHdCHvm2C3mMSI4sAjr7LXm7d23xts2+8aZXRHoAZen+evmCYO7IIIFwO46+Ep4bBmh92f/4p\nWLyxhOLyMD3GTGTyAlOEXLSxBE1ROGSf1lx3dC+Chvm+fcT/Qny7Uwd3BLzEIrPtj2/P480f11AZ\njrJmezk9xkykx5iJlFQmp+QIwt5I1KEWJfqs6QbMybmaHuPtwgm5ym5ErzYhRjxk+vSl4pd1xfQY\nM5HZq3cwd40ZDanFxCLxKxIEQRAEoYHgq+8JNBRCEZ2ibaZnjoHhnb5zuylCaIp9YV1FoOn8ETUf\n3DQPti6FceeYbT2OgIOvMCuxlW6GNn1h/BWw5NOkzVOVKQ/6du/iuDJiRyq94n+II7X5rv59WufS\np2oxjB0NpzwKdIr3BTQ167Lp/4qcwf/533I/7U3MbbJSAaNqkBxC9g1AXRPIJxCt4I7je8J4j37V\no9pa2OEZ1ftY2P9CVzpaafN9OXTnP2nTuSfN8/xU+j32Mf9t83XbMtOkvQY56cmvkyqa7SwP07Yg\niKoq3H58X/jObG/mMGBXrZJoif9uFZ1jH5sWX+93j/ucHTz2s6wj0gShMeIUi6IJXkT5JUuSxqd7\nmCJApBo/p9OeMtPZz352Rrwt/l2hyjM8QRAEQRAaBnJVgvmU79pxs9lQbHrMLN6wixt87ycPzG+T\n1BSmgZha1xUte7gjl3ocDv3PhBbdoMuBkFMIHYe4NlGsi+BUnkU/FG3fralUOSKVEoUigId/058n\nmlml4D+5jT/63iaAGS0Siuocrs5n+hnlLL97OMuOmEp7ZQd+K51JRedm37s0d6S42b+Q420TcvSf\n8ij0M5++R7RccpUQF2r1lKoRKID579Bm/G+T+0570hT+Etno+Bu2HwD5rV0eS89eOIz1tImn92le\n+4ih1M5HS9E2d8XBnuU/86ftd8PaWVBmR0Qs1m3z7bhBr+4WgC/Uvqj2eE9OWcLLM4r2YMaC0PDx\nMn+PkbdrdVLbRZ3W73ZEqOCNKpFFgiAIgiA0MEQswnzKN2WR7a3z8KeLOVZL7VnjJKQ0MbEI3ClM\nqodgkJDi1DHfPM2qPMSi29+Zl9R24xtzMqq0UxWJUmykNuVu5ldQ9z3Z3q/vAy7RJvPkMbkcrv7C\na4GH6PbZ5WgLxuP78Xm+H/ABr51sRsscpc7jZt94/uJ/Kb69Ek8pc3hWdT7QFMeunGZGWFlPhaNa\nDjlUMdb/SrW/R60QTeG5dcbTpheGFwddYb6e+FfPbitAJ24KreS2YpPRwntfZVsyneke8W7wPkZq\n8+DFY2HqQ/H2fuqa+HLMoHek8b1r27/4X652/09OWcq9ExbU0GwFoWGS+HFbGbajNg0j+XP7mK2v\nUxH29qAT0rMrRXrrmf2symfZVjMVBEEQBEGoJUQs8sCnKukH5LWOL5ZHm+CFnc/hg+PlfZNwsfvC\nhYMB78iid35am9Q2Yd56ykIpjJkdTPt1s6eRcRwjmjSXu/yvc9aM3/BawCGIhK1olWWfM3zKORyk\nLI5HIJn7j1UDsu6onFEzwQK4ajp0cphDA7qWQwvKqDe2/urdnu5GpLAjjC2GEdd5dsc8vbq2NAU6\nnz/IEVX/8N7XZ3dnPNUa46eXXKuxiDbdOu18RvXnlCA0RaK6+7N59qod9kqKqKNKEYt2i88WeFda\nvXPXA3U8E0EQBEEQhPSIWORgpDqXopzRtDG2ZbxNqOk4Ftk4BaLEqloAK6a5VoOKeZOeKg1tuLKI\nopzR/OUIO+VJz8DqZ+KcIvxKmhuW/50MGzKocjXlXtfqO8H74iLUCdpPFOVcSFHOaG7zv2MOyCDF\nSvfl0E7Z6W4846nq51LbbFm825v2ad+Mf5y/P4+cY4p/mqYQIY34tKz6NK/aZGXORZyo/hBPsbmE\nDz3HHbdf+7qcliA0OGJRn2cP7QxAizznQwDvz9jKsB6P2hO88fr7aKkeRm1bZr6WrK/FGQmCIAiC\nIGSOiEUOfqd9DsB+xor0A322V0MID7FkbyfqCKPvfXxy/4qvXKu9X96fP/teIRTxjuy4y/8aAN1L\n58bbwmnUoh1lIZZvKaUVu6qfa8JcMuVwDw+kOBkYkEa0HPqo6+LrRqcDYOjvdmsuNcqKqXu0+Zn7\nd6YwxzznfaqCnu4jZOaze3SstPNQv+FybWK1487QZsRTbHYazQDY0Ntdwe4f5+/PN3cczR0n9Uu5\nn9KqCKVVEpkk7J3EhPyOLSyDfkdeWiwLrXjo1XDqYwB8i+lLJ35e6QlHsxCL4htVpO8XBEEQBEGo\nI0Qs2h2O/XN8saopikWxsuoArXsl95+QHE7/B9+nRCu8xZ3B6koAhq5+iVaUACkzH5i+ZAtD7/+c\nYx+bxu98n2c37ywYpX3j2V5a0COj7atwl6xXBp9rm/7UBc27utfPf8N8Pe2JGjtEjl/j9CGdUg/o\ndkiNHSuRfwSe5W7/uGrHBYjEn+77CbOy8EDKC3s6RhhoqkKXlnl8u2xryv0M+ctn7P+Xz/Z02oLQ\nIJm9agfDlUXk+83PKJdYb6lF5f3Ph4Muh0ABbRXzc3rTLqmKlg6vipsFOSmikYdcYL6mSAMWBEEQ\nBEGoa0QschCrRpIbqEYAGnI+kzpcDUDIaIJikeYzvW3GFnsLIANHeW5WXOr28EkM0W9etpLZOVd7\n9sW46wM74meN0dZ7fnnJVesYW+w9NksKmreufhBQYSR4OYU8qqrVJofd5F7vd4r5N+h8QI0e5qkL\nhqbuzG1Zo8faHVSMeBpakDBRNehKI9TQ4x5lD48alHI/Ud2othy2IDRWvvrqM94K3s/hq8xoQFdk\nkSUWKbGIylApfQ1T4O/XoVndTrQR4PRyqvLwdQpq9udP0cOn2h2BAvMzs6Bdrc5PEARBEAQhU0Qs\nAopyRlOUM5qjNbMy15FK9ZXQFEskaZKeRdVR6B1t8sJXi1zrsRB9Z5nzGKnuy9dst0P0NxitzIWu\nCREsV38D1/1gr9+TOmIka3KaZzSsWbOEm6i6FosOuhzurpuKZDFejJzsWi8prcHfWdcpyhnNzb53\nyaUy/Vi/XSFPRY+fSwFCRNUABm6xKJYW0qVl6sp6Mc5//jvXjbQXq7eVc/SjU9lUUs08BaGB4MdM\nsey43fzcDDsiYpZsNKOIFA+vtohHmlVT57pxs+PLXgKz32f+HZ84z0zlO26/dhTljIYfX4CKHUnj\nBUEQBEEQ6osmLxbNW7Mzqe0sfYprXe92KNww29XWp30hAEN7ijlupgQUt+dLLES/a06yR8P8dcWs\n3VGedn9Bq2IZzRL+B6oP2u5rr3uZcHtx9gts7npS+jEZikVd2yVEIIXS/y41jqKALwA3z4fLv6zV\nQ51e9QBHVD3BQLXI1f7mjKXugetmwxf37dYxDN08d67TPqSvklxBLxVHa/PYr+InIBZZFMBwRMOp\n6HHhF+A3lsFvKmau2E5xhbv0dTiqU+Ioh/3a96tYubWM4X/9gh5jqvdVEoT6JvbQo0AxP4tjgujV\nr/7E7FXbAUdkkYNIJpUImhhfL7UfToQT0tAiUT3uD9W+mekP9eIlB9Xd5ARBEARBELKgyYfFfLpg\no2XVaRNLR4uvDz43yZunVzszcqQwLwfBg32OgpXuqmixcvQx/vzhLwCoHiXNr3hlFpAQpp9A0Hoa\nTr4jHe3gqyDfSkM7+W+Ql0Ha2On/hJJ1MPhcfvxlE6fyaeqxmVb/8SecF+Ey73G1TYtu5k8tMt8w\nPYBuCV3Ldzk3cEnoDl4OPMKw3I3ugS8cbb6O/FPmAp6FYUBM0vkw+Oe0Y9Hd59Pw8mnANfiIois+\n7D2ZaWpOnjhvf75dtpXNabxYyqoitMq30wwv/d+PfJPG70gQGjrdWgSgArSoGQ0Xi4j5dMFGfqOa\nywbulOMW7JLUTA80VYkXkEs0uO5916T4slqd0bUgCIIgCEI90+Qjizq3yE1q05SEC+A13ydvuGSy\n+broo1qY1V7AJROSorGCCWLR+Nnr0IiSG3ZHd/lIXXXqokNs4SOohMyFfIfHwyl/s32Uhl8Fg85J\nP8+xxXDAJXD0nQAcs1+H5DFH3g5DRpvLu2vaHKonsagO2UBrelS+zjTdlF/baSl+53A5REKZC28Q\n9x3yK95lvN2D3WOiqBiGYYrAioaR4FmUyN2n9U+7e2cUESBCkdDoMaz3jL98EwAL15fE+xRLUI0k\nvFVmB6+uNiWzKeJziEBTFpp/zx1lIc597jvXOFVRQNehTD4/BEEQBEFomDR5sahLy2SxKIlKD3Pk\nsrr1g2mUJERjJYpFAMtzksvJL8u52HN320qreG3m6uT95XsYWqfj9hVQ2MWzKzcYSG486Aoosqqj\nBTM0dI0kRKa08qgat5dw8Yju3HFSPy4cbgt58/SecYEniV0b4YG28N0zGR8j4wiGUf8BI0FQMnQM\nw4wYNBQVn6bFuxKjCAHOGNKJu07ZL+UhykPu/Z880ENgBM4e1pm8gObZJwgNCisaTzF0RqnT+fvk\nX+NdqvXwJOG0R1UMvl+xvc6m2JDYsquKHmMm8sn8DUl9mmaLRQ9+sgjDMBh6/+f8sNL9t1IV4PH9\n4O9773eDIAiCIAiNmyYvFnnd0G4yWrgbEsuQg8tEV0jDLQvMNC+SPYtctOmb0JD8f1m7w+1t9FvN\nSnOLp6FlGNaf3xqumg7XzEju8zBxpVl7MxoGoG81nkYxIpa58TH3wKWfwsgxmW3XCLnvzIFcM7IX\nJ1miydBuLQgRAD1ZHARgs2V0Pndcxseo9Kgq5ImWLPYpho4ejyxS2adNgT3cQywCuPjQ7q71ds2C\nXDvSvKl7cKI5/+1lIXTdSCmKdWqeS2U4mrKynyA0FIyo/f56LPBvV18ssqhzggH8Er0zEz3EkqbA\nQQ+avobXjptNcbn7c86nqpynfcWN2ngAJi/YlLT9QGUFB760D5RuTOoTBEEQBEFoKDR5sSgaTb5Z\nzE+stuRVAtxvRSSd+lgtzGovonkXaGdGaXhFFsXpORIO+H18NXYT/93ybfG2igTBYIi6wlzoNgIG\nnwej304/l4snwGlPmMv5raH9gPTj9z0Vzvmvufy78XDM3ZlHMUWsFLlmHaD7iKw9ehojR/Rpy7x7\nT2D8NYdSZWiU79oJ485NMveurLTWNy/MeN83vVl9hUIAfMGkJgWdeWuLzXNK1eI3vwCXH+bt5xT0\nafxw17Hx9YP2acVpg80qf3PX7GRraRXD7v+cnnd+4nkzeP3RvckNaOhGsm+JIDQ0FA/fOIABnQrj\n75eA37I4PP8NAHTFjJr7fGHy+d+UuPOD+a71gKbwiP8F/uh/F4CKcPLf9uPg3XUyN0EQBEEQhD2h\nyYtFRtgtDFUafgqUBLGo/5nJG4atKJeO+9fSzPYirBv4RINrF6oPAnbEh89yCL3ghZnxthKrClUH\nttES21OD/DZw9vPQ94T08+h5FBz4h/RjnObIJ9wPA0eZyx2HmN5FmRKLLPI1LQP05rl+FEUh6GuD\nagAAIABJREFUjI/+xnJYOhn+ORSK7QpmVZXJ1e+qY4ZDNEyLhyi3o7SSUf+agYph+hV9+UC879qj\n9km5q3bN7P+dAvTvVBhfv/rVn5LG/3jXcRzVty1z/3w8t524Lzl+82Y6UeQUhIaGonuLRc1z/Q4T\neCtys98pMOBs/Ib5eXzFK7PYWFzpuX0qpi/Zwq1vz9vd6TYoRvR0F1Hw++zLqmY5PjoUZpDqDtD5\nAOhycE1OTRAEQRAEYY9o8mJRhzXu0tYRzePmvr2H4W2noeZrQbvkPsGNFhOLIvQYM5EVW0q58Y2E\nSJGZz0IgP76qeKShFVeEOUv9hpk5NzAn52q7Q6nBqjIxc+QBZyd5LmVFLGqpZY89nlJj5GjNcSNY\nuhGesKO4whWlWe/P63zwREuOLIr5EsXS0Ch3GMrq6YWce0/3NruetWqHa/3J8/anbbMgL//hYFrk\nmalwAeumcchfPsts7oJQTxgJ74OLDjRTSnXDsN97zhRdfy5BxRb/D3noi6yOd/F/f+C92WuTUrga\nC04vssSvH79m/52CPo2Ibn7+9GybT1qu+BIu/7zG5igIgiAIgrCnNHmxqPm2ua71An1XZhue9BBc\n/U2tlyXfK/CZN89BzNSs0S98z4R569FIuFEP2+lKXuLAXz9ZxKlaQmW6YPOanWvMuLx4zZ7t5/Bb\n4Mqp0OXAPZ3RXsf2nTuqH5QNbfvZyx6RXLHICDOyKMFwOtEMO4FW+ea5q1YjSJ41tHNS2wdz1iW1\n6brRaG+Qhb0XNeF9UFhlehGZxvAxscjxHti5mi7KVtqyZ+/lf09fvkfb1xdH9W0bX64Ku1PZnWKR\nYRhErDTUR0YN5se7jtvjv5kgCIIgCEJd0eTFos1t05RCv/xLOONp7z5fEDoMqp1J7W1YN/DD1cUA\nnDnU9H5xeRhd8SXMeyu+qiaIRTOWb2VHeZi8RD+pQA0bjf/ynvm69sc924+q2dFnTZDnOt6fsk8P\nldXswX77sr3ceVhSd8z/SkNnR3lCus3c1+GbJ+Gzu82f/50C711hLi94H8PjPjmRpQ+e7Nn++0N7\nxJd/XrsTgKe+XMaQ+z5jW2mV5zaCUB8kikUHbf8IMMUiz8iioq8BOEJ1+/Vky8c/r9+j7esL3TDo\n1sr87qmKuMWisqqIa1zY8kXM9Wu0bRa0CzMIgiAIgiA0cJq8WKR7F0My6XIADEsu7S5kiZUadJ5v\nKmA/iY1FGnHy302/hjNtYa6lsosgIVrm+SnaWsboF8yIovxEP6ldNVyN54QHzddTHq3Z/TYxZvhT\ni7BGguF1JqRNQ2u1j/n/ymnhqeo409B0RYVDrrM7pz0CU+6F75+DH16EVd/C/Lfhu2dh0h30aW/6\naB29r3e66WuXDXdFEjgZ4PA4iolOH1k3x1tLQ6l/H0GoY/Kx3pNDRgOwJtAbsESRlrFoPcd7a7iZ\nBlxKhn48KUj13mnoRHU7Fa0q4hbaDuje0jHOIKKbb36fZv79dLnsEgRBEAShkdBkrlp03eClb1ei\n6+6bzsm/2Kki77a/Kb5c0unwOpvbXk+C6fBLM4oAOK6PlUIWq2DV90Qmdb4BgG+CN/Nu/iPsKA9z\n0j+mx7ct0Twq09Uk3YbD2GI4+IraPc5ezrQlW1J31kRk0dXfQldLkPIFzf/XmFXmepeDXEOdaWhb\nyiJm5b1Ezn4ebl9mrx96PVTsZECn5sy553jPNDOA/To2SznFvIAvvhzzLfGp5g1jcUVYoouEBsPD\n/hfMhX2OAGCXZn4264ZBMGbY7IwsGmo+RLl+ZM89Ou7pVoXBxkZU1wn4VAKaSmVCGlprK3UVoKQy\nwsqt5uedTzX/fjoeYYo9jqi9yQqCIAiCIOwmvuqH7B2c+OR0lm4u5ee1xTx+nl3BbPuuSohd2zku\nhgvzazi9qSnjUc4c4O7Nt5oLhn2xHdXtC+lB0UUArovxdWonXFZHf1qL0PDo37GQVNYc+61/f88P\n0GEg/G48VHgc5OIPzXbLVNuZhhaKAn4PE3stYP7EyGkO0Sr4/F5aHv8XzykUPXxq2inm+m1/pFiq\nSiyi6NznvgNg4o2HM6BTDftuCUIWGIZhyxeqeUlgWOJmfrSES3Y+Y/Y5o/asz/TBHfO4cHg3Pv1l\nY1bHzAtolIeicRG1sRHRDTRVQVMVogm/w/5bPogva0Tjwrnfiiwqxq76yQVvQvuBkOeuqCYIgiAI\ngtAQaDKRRUs3mxWY2hXmEInqcR+B2I0kgM/ns32IwtmX9xZSoNqRRf+8wPbxaV5l+VWU2NFdOYHU\n+qWPCBdEJ7gbg6kjO4T645Ob6uBJeSAfmneptl1Bp2ebPFTFoFVBrvdTfC3gjoAbOMp8XT3TNey1\ny4Yz9vT+/Dz2hGqnlx+0xaJZRTv4avFmtiZEE81fW1ztfgShNnEH21qpUlbe5AVlrzq6HGJR7L0S\nDZEf9FEWSvACq4aY6XNiVE5jIaob+CyxKCFYmdNWPRJf9hGNC3E+K+Vu1GCHMLTvydCia8177wmC\nIAiCINQATUYsipEX0Bh63+f0uWsSAJpih6mM6N3eFoksA0+hBlDt0+zQXh5PUB2Cz1EpvGEADlEX\n1ei0hMbDaYM67Pa2GjqDO5vnWN8OheZN7+DzEgYF3DfDLXtAnxNgzfdQbEevHd6nDb8/bB8Kc9yp\nlS50HVbNwLfiS7oqmwB4/PMlXPpSsml6jl9LahOEuiQmDAHQ3Ey3VHUzAu6Uyol2nzMNLRaFF6ki\nP+CjMqwTiWYu/IStaJzKcPpqhA2ViG6gKgqKYgpHqQgQiX+s+FUF1s7i4B7Wd+DRd9fBTAVBEARB\nEHafJicWBX0quxzVSpyRRe19ZRARH5HapE2BR0paHztKw799Scpt44bYQpPD87zJEA2dI3u3AqBP\nByvlS02IYHOmoMWoLAEM+E/1UUQuVn8H/zsZxo3iJf/fsp+wINQhumGw0WjJwg5nQtUuAM7f6lUF\n1BlZZL1fomEClqdRJI1o4iSqG3HD9w/mrEvyEWwMRHUDnxaLLDIorYp4/h4+IvHf1acY8OKxMOl2\ns6HPcXU4Y0EQBEEQhOxpcmLRC1+viC/rukGu88F+qNSMKBDqlnb72culm11dd/vsNAg/jfMpdFNl\nYOWLXBC6iwtDf+LMqvs4P7T7T9LTVkOrhiO1+fxm/47Wjqw3fEF79yCnr1asb42VguZIk8yI8q3m\na7v+dC9IH22RLipBEOoCwzAFVUPR4mJRm+jm9BvF3i9bFsdN2zMVi8KOCKSyUJTxc7J8fzUAolZk\nkaYolFZFGHjvZH733++Txs3JuZotu6p4xv8krR5LiI5UJKpQEARBEISGTZMQi5zh8c6S1aWhCIpT\ngIiG4fxx5vLvHeH3wp6T08K7vXlX97rf7d1wuW9SfLlQqYEqWkKdUUoe3+kD+FYfxDyjNzP1/pxY\n9TAfRg+tmwmc95p53ql+lJiJeiyV5ohb3WM7DDZff/syXPRe8r7euRTmvuF9nFXfwZzX7PWQVYa8\noD2Kkd7LZcbybdX8EoJQu+iGgYpuihdKmksCw/FdGUsd9ueiWWJRNJqZWJQoKm0qqcxqvg2B/Spm\n8+qaE7haf5O5a3YC8O2ybTzz1bKksWu2FnOq9kPyTtL9rQVBEARBEBoAGV2tKIpykqIovyqKskxR\nlDFpxo1SFMVQFOXAhPZuiqKUKopy255OeHeYu2YnfZU1HK/OQnGknf2ytpj+rLQH6hGzCtLYYuhx\neD3MdC9m31Mgrw0s/oTOOSGGB1eb7QPOco9LTA9y0N3yf2HE9bU0SaEmeejsQUltvxrduCm8O/+/\n3YjA2e90OOD3pheRbt3oqtbT/EC+Pa55N9Cs827AWbbJ/fH322MWjIeZz3gf538nwYfXwS/jzZ/V\nZqUzgs1skSqBGWOOAeC92Wv5++TF2f9uglBD6LHIIlVzm7wDIRzrwUL3hgUd4McXaVVRBNg+RNWR\nKCqpikcp+QbOQ6VmlOQVxrus2FIab//75F8JGe6IoRPVZK8yQMQiQRAEQRAaPNVerSiKogHPACcD\n/YELFEXp7zGuGXATkByLDY8Dkzza64TKsM5nwTt4IfA4J6g/xdsf+3wJo9Rp9kA9u4ouQhaompme\n8+YFfDFiPm/FNMd1s93jPP4HVx3ZE4DrfFYlNOdNvNBgueDgbhQ9fKrr54KDuwEwITqCFXrmptXG\n7mZrqT5TKEqMLFIUGPUfc3nUC97bHnYj7H+hvV7dzfC7l5o/s182I+TyWqOk+EyJRWMA/O/bogx+\nEUGoHXTDsNPQEt5oK7Qe9oqakDalKBCp5KxvTcF/7uqd/O3TxdV6EE2cv8Hc3HpwEysp31g5V5vq\nWo/gfuBRSq73hol/T0EQBEEQhAZGJo+2DgaWGYaxwjCMEPAmcKbHuPuBRwBXTLmiKGcBK4EFezjX\n3aYw175466Zs4q3Afbzsf5jh+7RyD2zWsY5n1oRwPLHOCe+w2xMjifRw0qa3nrAv4zs50nxUeSLb\nWPnrbway9MGTiaK6zOWrY7c9i1TNTJ/54j5rR44btIGj4LZl0O2Q9NvHSCUmDzjbfL32e/vnpp8h\nWOBO3XHu1hFNoTXCyAph78HQrUIPipaUBqykU2kdqcV3+sZx+SuzeHbqcv41bXna4935/nzu9I3j\n6+DNgIFfa9yf530Ut+dSBLcIFCaFKCSRRYIgCIIgNHAyuVrpDKxxrK+12uIoijIM6GoYxsSE9gLg\nDuAvezjPPSIctm/yDlCXMlxdzFHazzw71XFRe/YLkt5Um1Q4BKLKEnt51IvucYk35J2GElj7HcO2\nf1J7cxPqDEVR8GsqrfJz0ZQ6MHeOiZGzrCiiSIVzMlDQNrPtIbVYpCjQuje062f/FLS1opqSt7no\nkG6uyCJ9t8OmBGHPMTAji1BV6H0sAOMix7J2R7npZZSK7XaxiCt99lf/3yf/Wu0xr/RNpIuylQ5s\nb/Ri0Ty9l2s95IgsWme0xo/1GXDeODjsJnugiEWCIAiCIDRw9vhqRVEUFTPN7FaP7rHAE4ZhlHr0\nOfdxpaIosxRFmbVly5Y9nVIS0bAd7HSSlsI/YPC5tm+JUPOs+s5e/uVd83XQuVDQzj0ual1YtxsA\nvY+HLUvgpVPs/jZ9zdcjbrPTiIRGR16O3ywlXdsk3pCVZvn5kolYZOjeN36qLykNrejhU3ngrEGu\naCIpiCbUJ7oBaiwNTVHYZjRDR+GfXyy1I/p++3Lyhs07J7el4b/frGT26h2utvv8L9EYtaJ5Ru/4\ncpAw+3e1o6yckUUaOsGYWNSiGxx/n70TEYsEQRAEQWjgZHK1sg5wlqzqYrXFaAYMBKYqilIEHAJM\nsEyuhwN/s9pvBu5UFCUpfMcwjOcNwzjQMIwD27at5kn/bqCHUlVbMagyfMzuekmNH1NIIFZO3Enn\nA5LbYjfXx90LlcUQTqiAplrpbMfeA4POqdk5CnWGoajpoxbS0XNk5mO9fFaywSUWeaeUpROLMHSX\nqX68yzG8Ipxiv4JQB8Q8i2LncMAfQCPKB3PWAwY/FxyeXIgA4MDLsjrOfR8v5OxnZ7ja2ijFjVIs\nLTcC7Ah2ASCohCkI2p8TxYZtnq8RtSOLtIB7JyIWCYIgCILQwMnkauVHoI+iKPsoihIAzgcmxDoN\nwyg2DKONYRg9DMPoAcwEzjAMY5ZhGEc42p8E/moYxtM1/2ukJ2fLPM/2E9VZ+ImyrkSMrWud2I32\n8GvstkBe8rhWppk1+W3iKREuNteb9ZVQk2QtFjnGXvR+5pslemJle4M281nHFLKNLDKFqpg3U8Bn\nj3GmoY3ct+YFckHw4teNu5hnlXqPoes6qmLE/bwUzY8PnVBURzV0jFTvmRHX2X5dDrq0TGHo7MFq\no12jS8OM6gYqOmGf+f0VJESO3xalFxg94ss+dDoUWH8/X4JYJAbXgiAIgiA0cKq9czIMIwJcD0wG\nFgFvG4axQFGU+xRFOaO2J1gTNN/wjWf7b7WpqIrBqp3JpspCDRO7aT/2HrvN7yEWnXA/XPieGXUU\nSpu9KDRiDEXb/ciibAzOlT2MLHKSwqwaw/AWi8rNlJtDVVPg/M8lB8a7nAbXbQqCuz8nQciCE5+c\nzpnPfOtqM2JCviVe5OUG0RSzLRKNYpDiPaMocJYpppYYuYwa1oUT+rcn6FOJVhMuZFiXHvP0XtVW\nT2tohKM6PqJELLEohzD5QftzJmzYAnVLpZQbDreqPkpkkSAIgiAIjYyMrlYMw/jEMIy+hmH0Mgzj\nQavtz4ZhTPAYO9IwjFke7WMNw3h0z6ecPZvbHubZ/rNlTNm8wEO0EGqWy6eYPkMBO0TfUyzyBaHP\nceZyqrQfodGTdRra7kYf7OnT+6EX2ctlW+CbJ5LHGLq3CDXzGQBeCTwCuKOJnMtlVRLZKNQfeswn\nLhZZpPrwWe9NlRRCaAx/LsbAUSgF7XngrIHsKA+xfEsZve78hFLrvC6rinDJf39wb2ed/gEijS4N\nrSqioxFF18wIKh8Rmuf6U45vvnaauSBikSAIgiAIjYwmcbUSsa5Go8HmrvZWilmV6/hBXep8Tk2O\nTvu7o4rArCCVjqhEfO21KKp5I1rbzHsj6bhZ0W2Ee33K2GThSo9mtF+fIyLK5xCLwtHdjLAShBog\nMbJIUX1omG2mwXX6aDxFC9LMFyU3oPFjkW1gPfDeyQA89eUypi2xjeUVdBTDSs0kXG0UUkMjFNFN\nMU0zBSJN0V1ikZL4uWb9rkliUU4LBEEQBEEQGjJNQizSLdEh3G6wq/33vs8A6NCiWZ3PSSC5Eloi\nqTxihEZP1mlouxtZ1KxTQkOWaWhe0W2J6ZGGnpzuBtBpmPvIinPZKRY1rptlYe9Cj5rnuBE7h1Uf\nfodYlNKzKIYvCJGqlN35Afd7I5dQfDmgRGrNs2jqr5uprAXz+FDUjCxC9aMbCgoGc1bbPlAt8hJ8\n0vQEg+uxxeaPP6fG5yYIgiAIglCTNA2xKGJerPlKVnsPiKSqlibUKrnVPFlNNCcW9h4UFdXIXCyK\nC0tH3JbdcY5MGJ9tZFG4PLmtaheUbYNXfwMvHgfLPof1s5PH/cGMrJiefwKAmZaz6GN4/TyIRujY\n3LxZjOgSWSTUH0YsgjOWsqnZkUVmGlo1AqtDLJr5p+SiBO0K3Z5c+djftzf4PiBQtW03Z56aVdvK\n+P3/fuT/3v25xve9oyxkRhapGjoKGjpn+H/gLt9rAIzs28YcOOo/5uvyL83XxMgiQRAEQRCEBk6T\nuBs3dPNJpq94lfeApZ/D4TfX4YyaOCc+VH1UEcAxd5mh/rNfEbPrvQyD7DyL1Ji5dGFipFA1JAqS\n2Rpce6VCrpsNb11Y/ba+ALToRtCKHCqtjMCn10PFDpj9El/ddinnPvedRBYJdU5UN+K+WWHrYYqi\n2pFFPqvcu0qaamgxfEGImmJRq/xkQaS0yh3dk69UuNY7b/sOOCjbXyEtuyrN+S/bXPPfG89PX8Gt\nhFldEqUtKho65668G3ywSO+GzwhDi27Qdl/3hlL9TBAEQRCERkaTiCyKhs0bvtABV6QYITdrdcqI\na2HQOdWPy20JJz0EV0612wb8prZmJdQlanZpaHGxKNtos8Tx+2VZwNG6CWbw+XZbJkJRjGBzBrRW\n6N2ugCP6tDGFIoCJt5Lj1yjM8RMRzyKhjnH6ZD3zxa8AVOmWkKr6KLAEHVWp3rMILWhG54bKCJRv\n5Inzhri6yy2j68Ic872YjztlrTYsi2K/38INJTW2z0hUp2hrGcf3b0+OEqJXxzboqAxVl8XHPB74\nN+qC8YCS/NmzJ5UYBUEQBEEQ6oGmIRZFrOiAg6+EfU9NHhAsrNsJCdnRpo/t8/Dbl+p7NkJNkKXB\ntWpYvh/ZikXOinsnPAgdB6ce60Urs2IifU+E0W+nHje22Ls92IwCKpjyx6NokZccdeHTlLgBvyDU\nFU6x6OslmwEoC1vnYTTEfjm2UfXyLR6pmE581nn9107w+H78plMJNx/XBwBdN/ihaDsA719nViXN\nxx1ZtL0ivVj68KTFfDRvffo5JFAb76ned01i5KNT+XDuenIJEczNQ0fhEHVR8mBF8fYxEwRBEARB\naEQ0iTS0mFjk9/tB9dDHWveq4xkJQhNHUfEpumlcncET9+Fb3jEXshWL8tvAtd9D6Sbodkj28xzw\nG7NqX8fBsPyr5P7+Z8KR/5d6+9UzzNeQxw23YeBTVUlDE+oEw2Ek7TznNCvCT489O1o/h3zMqmUq\nut2eikQvnmmP4G9rVr7seecn8ebOLcxS828H73cN/2rpDs5Ls/t/T1sOwOlDMk9Brc0Kg1MWbSIY\nDFHpzyUvGICQh7m3okramSAIgiAIjZ4mEVmkR03PIkULJD/tO+I2GPmnepiVIDRddkYt09uV0zIa\nP2LzW+bC7tyAtesHPY8yvVWyRVHsaKR9jrTbB54DZ78I574CHQZWv59ty2BjgtmuHsGvKZKGJtQJ\nFY7KYE4xRVMsschwXw60ZhcqBnp1aWiq372+8AP8WvI2AU3FK+U7qdR8DRCKJL+n9lRAGtGzNWD6\nOAWVCIGcAhSvh08A21eIWCQIgiAIQqOnUUYWLd5YQvdW+eQGMrsYi0YcKSyJF3DH3lPDsxMEoTqi\n6+aABrxyZuoULi/qs6KQqkGL7rBzFZz1bHbi0/bl5g2kkx1F+DRV0tCEOmF7mV2y3imcxLzDwoZb\n4Lnf/19UjOqlnMTzGvB5iChq+VYKSY6w81Hz5e13lNu/67+nLWfpplLem70WgNtP3Jfrju6d9T7z\ng+a1QxBz38Hc/PSpZs6+SydlfTxBEARBEIT6ptFFFlWGo5z05Nfc8IZHqeoU6BHrwlHzQ7cR5vJl\nU7K7SRUEocYI9hi+exs6PYjqg5t/Nj83MhWKYlEX7/wevrjP3ff0gXSIrK/VlBlBiLGz3K7spztO\nuVga2qF9rAqVfU8CoJuyGQUDo7rLhJ/fSmry+zy2ebQ3M7v9y1w+9bF4c2Ew9f6zibrbWlrF1tIq\nwlGdW96aF29/eNLiuFAE8NSXSzPep5PcgPlsLccSi9RAbvroId16SNWiG3Q/dLeOKQiCIAiCUJ80\nSrEI4JtlWzPfKBoTiwJw0OVw/U/QtWZL9QqCkDmVB1xlrzzQPvMNO+1f85OpTc4fl7b7ruWjGRn6\nuo4mIzRl3vxxNUU5oynKGc1xT0xj1bYywI4sap6XYw4s7AzAAHUVfiLVp6FVJVQc63UMgaQ0NDM+\nKW+z9ZDHWVQiJqp4EHKIRXqaCDzDMDjwgSkc+MAUXpu5Ku10C3P8afsTWbWtjGKH0JaDtezLMb2J\nAJp3c2/kjIC0/p6CIAiCIAiNjUYoFln+Clk8jFcileaCL8f0IPl/9u47Xo6q/v/4a2brbclNJ400\nkkBCSIAYuoD0IkEEpFhBQRFRrIiFIkURQVBQge9PEEWEr8oX6RCBAKF3ElJIIQHSy82t22Z+f8xs\nmW13b8vdXd7PxwP3zJkzM2fBZO/97Od8ztCup6CLSO/xFKuNd0DC/YXxnX/CB68WvjBY17cT623h\ngZ0OOTuRm5kh0tv++sLqVDsat/jzc6uAdGZRqnj8wemC7bV0dB4sOvSn6fb4g2D5f2ncviTVdcNp\ns/jnuXO814Qa4MQ/AmBbhZehJT/vAR5+Z13BcZGMGkWX/WdR0enWlrh8PengXz/FJ656gk3NTiHr\nsOF++RSoSQ8avpv3okETYPAEOO46p66ZiIiISAWqwGCR84NlrCvRokSUBCb4KrJEk0jVMbJ3QIu3\nQ6QZ/vcsuO1ThS/0h/t2Yr2thOVqBlqGJn3rrNtfzulLFqEeGHL/LCaXVGVk/fhK2Q1t7y/B4IlO\nxq775/OoZ05mGFvZbeQA5u7awN7Lfue9JtTgFJ2H4plFGUGgeJHP/EQX6n6F/F0vPB2NW2xqiXD0\n9J347wVu4MsfdgLdAOEB3gvm3uS8fuJsqB/e5eeJiIiIlIPKCxbFnWCR3YWasGYiQszoWuq5iOw4\nHW0tJG49vPOB2UGmcuev6XRIwq64v4alwvx38YacvlufWQmAlXAze5IFmTMCnD6jhA/a+uFwwetO\nxu57j6e6Xw5/k1ljB8Ivx8KCG73XhBpSzzOxCgZ7igWIvOPyX3/dqTMZM8j7ZzD5RVNrJE5rpHCg\nKtuyDS0MbQimM5UDNRB3so1yMgi1zF1ERESqQMX9lhKJdf1beCMRJW704y5KIlKUtfQxfJsWpzt+\nPRmeviZ1+Oago2ilwrKKAAIF5vyVR1LNRGfLfET6kJ3M7ElmFmUVbT5wcvczY8xCwd1AXWrZmw+r\nYJH3zCBSe7TwcrXsQtjD2Mqq8Bmc1Lic+T841HMuGrdYv72D6Zc8yvRLHi3lbaQ8v3wzxNqdg8zM\notCAwheJiIiIVKiyDBbZts34ix7k+seX5pz7z5sfpdqZRSeL8VkRBYtEypjvv1k7hbVugCevTB0m\nDD/NVFi9IkjXgclWOzg9xNYyNOkflmWzs73WOSiwDfzIQV3YgfAzt3gOTcOA6Z/JHWcYYDo/fviw\nPIWsM2VmDLXHCgeLsjOT9jbdHc9eugXTNHjpJ4fx9A8OAWDqiAZumJfeEW1tU3vB+364zXtu+cbW\ndIAos2ZR5vLYc1WwXkRERKpDWQaLYgnnB7/MH+iSbnt2Zar92KLCBS8ztbW3EUPL0ETKVShSYHfD\n9q2pZhdWnpaPAr+AZwaRao2Oojs9ifSVaMLit8GbnYP2LXnHmHbhIE2O6Sd6Dn2mkb/OWOPOqT8D\nJhZvrN6W93aZQaC2YplFWX9+UkdNHwAwvCHMuCF1zBzbSMyyuevFdLHv/a7+b8H7Lt/QkmqHiLLk\nqwPSmUWZwaI3/55uj9yj4P1EREREKklZBosKfcsIsMvw+lR7YE3nASDLsgkRoylWlm9VRIpJ7pJW\nmaGi9NbaRfo/sod2rWC/SC/xLuvOv2Ss9vXbSr+hPwS7Hp86HD+kFqItueN8gVQg1U8DtCdtAAAg\nAElEQVSC+nBuBt5rq7e6QR3nz/5ji9YXfGxuzSP3vax9w9Mb9BmpTTJK0dyRrml0gf9fhP56PKx7\ny+nIDILte17J9xQRERGpFGUZQcncASXb3jsPSrX97m4uTW0xrnhgUd7r5i/bSIg4UWUWiVSe5JIP\noNAvs2UtX82WT/7Ak1m00tqJB95cuwMnJR83u48ewG6+D3L6I4mMwEnmrmTHXdf9h51yB7YbPPny\n47Pg3f84/d9Y4B3n/hm4KHB33s/uk25ewO0LVvFs6Ntc6L+XN9fkzz6C3Myi2lD+5Z+1QT/rt3fk\nPZfPN+96LdXe13zXaWx3/6xmZhbtc07J9xQRERGpFGUZLIrEvd/8tUTibGjuIJaw2NbawU/8f2W8\nsZbkl/HXPraE255dyd0vr86518KPthMmQri2PueciPSfwyK/7nTM1g+dotdGpWYWJaK5fR1NniLC\npmHx+pqtueNEeklt0M/Zg9709E0fNcAbpLEyagDWNHb/YT4/RsNOuf2hBu9xxp+BiDuP5RtbWLmp\nNX0rEowxNvFt/7+LPjKRlZl37ckzvAMizfCf7zDAbOf9zW0lvIki3rzLec1eXvflB+Hbb/Xs3iIi\nIiJlpCyDRdnfMh5/4zPMuXIek3/yMO8tfoOv+R/iD4Hf8p+3nGLXd77wPgA//7+FOfeaNnIANUaU\noYMH5ZwTkf6zwh6Zar9hTcw7ZtC9J0OkBdsGuxIzixpGpdt1w9LtjMwiPxYNYWU+St+xbZtVwcmp\nYwML0zC8n7WJjGBRocLspfKF8vRlbTKRsRQzOY/DfvM0h177FIvXbQcgQOGt7aNxi7+/tBrLslN1\nDo/ZfSfuPmdffOGMwNRjP4VfjoNX/8xxW+703OPrB08C6HRp2v3nH8CssQO9nYEaOOpqOPEPzvH4\nA2HQuKL3EREREakkZR8s+vfrH7Aq45tA080wCBLn/974KOda2/ZmIETiFjVEvCnjItLv3rjk6FR7\nlZ0nEyHp6tGVm1lkmulfvA+/1Hmdeqyn8LUPi62teTKQRHpJwrIJZgRe/FhYts3lDyxis+0GVsbO\nSV8QK7xDWEny1eoKDXD+f3/wRe4Yg6ZdTmSlNYJo3PJkFB/9W2dHscw5Tx3hzPPI65/mG399lRvn\nLePH/3qbiRc/xKKPnODSyXuPYd+JQyAz02jB78At0u3busIzpQE1zp/NQnUSk3URdx81EF/2klJ/\nGPY7D2adUezfhIiIiEjFKstgUSQjWHThP7yp8yGK/1K1vcP7TWQknqCGCEagC9v/ikifqw2mAyYn\n+hYUGelUK6rIzCJIB4ZG7QmXbINJh4I/nWXhI8HdL6/pp8nJx4FlwwVbrkgdLwt/kV2ii3lqyUZe\ntHajpWES7JSxdCvf8smuyLeDWrAWfvwBHHJRqsv0BwkYCaKJBFN/+kjOJZmZRe2xBNG4xdL1LTz8\nzjp+/+R7qXPfu9f5OSFh2bBpGfzts3mndYTvVc7yPQw4WUi1AefPZjyRPxjd1B5jVfgMzPvOJadm\nWr56ZCIiIiJVpOyDRdnqiABODZMZowfmnJ952WOs2ZLORIrGEkw01xHaurT3Jyoi3eY3DT4duaLz\ngcCsrbm/SFaMZG0Ww5f+BTPUAGf+ExpG4cNi1tge1IgR6YRl5wZD9o69CsBuxvskfFn1d6zCy79K\nkrmkbc8vwPfcz99grSfIYviDBIkX3NQiM7No65ZNfPvu1/OOM7H4a+BKjrx3Ktx2WNGpHWE67/u7\nR0zh6aUbAfjHy2voiCWIFdqJ9a1/wNo3858TERERqVJlGSwqthtareHsZDLRXMeMMU6w6JNThnnG\nHHTNk6l2IuJs2xvc/G5vT1NEesAwDLYP3j3vuT/Hj+Ki2FdZY6X/bNfSw6Ux/SXmBq8zCvoCMPlw\nqB/GoLCZWu4i0hdGR1fm9E1rd4ImrdQQSGQVfY73MLMoGWwaPg3m/h4aRuQdZvqDBIoEiwJGOli0\nh7mch99Zl3fcIJo50OfWLOxoKjq1GM6fw4DPZP6yTQD86pHF7PqzR9jr8sc9Y0c3Zixfz665JCIi\nIlLlyjNYlLAIE8Eg9wfI+oxfGJesa+bCf7zB/KUbqCH/dri2Gyyyg9oNTaTcPP2DQ/P2/yp+Gncn\nPsVB0RtSfYNo3lHT6hutm3L7DB8+w8qb+SHSW/6w/fycvtmmk+1TSwfRYVm7h40/IN2eeXrXH5gM\nFk09tugwnz9EgHhONnHQb/LZvcbwyPn7pPuKFLv2U7xAdaZ4MljkN/GZ3qVkzRHvM4Y1ZBTqjjbD\n7LOc9sn/r+TniYiIiFSqsgwWxdpbWBz+Cj/w35NzrtaIpNpvvr+Rf7/+Iaf5nuTd8FmMMTbkjE+0\nO4UvE8dc23cTFpFeFSWdabPRHtCPM+lF4dxls5h+fChYJP2n3uggUJu1rX1m/aKDf9T1myaXoXWy\nq5oZcIJFVzyYzvy9/SufYOkVx/CbU2dSm3F5Q5HMwrzBoq89CZc2wQ+zsqrMZGaRwSFZWck5b8PK\n+nPpr3HuuXv+mkgiIiIi1aQsg0VWtBWAM31P5Jz7/qz0D4XjDScl/ZeB2wA41nwRgJ0GpOsvxDqc\nzCJ/TZX8wilSZWZ03OY5XmaNxsr4qylOD7fxLhcjpuX2BcKE7EjuL6UiO0gtHdTVF6mZ5evGEslk\nZlEnwSJfIEiABLi7Hc4a28ghU4enB2TUPmowspbKZd7HyLOMLblsrHYwnDs/1e13M5YbFlzDT4c+\nnXPZ+u3pLGVfIitA1dNaTiIiIiIVpOyCRdvaYtz61BIABmb9cDhuSC3DBtaljgfS6jn/xZrncm/o\nLkMjWJd7TkT6XTO13Bg/MXX8urULPzs+HVhJlN9fU13z9WfhqKvznwvUEbIjnp2+RfrMAd/xHBpY\n1BsdECqyTNsfLnyuEMsN8vg6ySzyBzENO5UZ9KldMwJFG96FlelgTn2RzKJAviVqmTWGRs6EC5zi\n2LHwYI40X6bm+d+w80uX51y2z1XzUu09ollFrQ+8sNjbEREREakqZfdb2Jqtbazdsj3vuemjBqSD\nP4CJ99v4MfHV7G6sIOzL+M0r4tY5CWal2YtIWbjm5D3osNO1QRqGjubsAyekjuO2L99llWOnGbDf\nefnPBWoIESGhZWjSR6zMrLXh3uy2GtxC1sW+TAnUFD5XyIxTnNepxxUf5xbSHms4u5LVhTKCSzfv\nC4//PHU42Mj/cwGAL099Q/xZBakHT4TBEzlgwkBuCV6f6q7NU+9wg5tdFM/+YzlgZME5iIiIiFSb\nsgsWAYSIeY4PmTqMv311H649ZWY6+ENusAjggdBPubftrHRH1A0uFfvmVET6zamzxzJseHq3pI21\nuwDw9qVH8s5lR6UK0lalYC0hu0M1i6TPdMQz6vkEvFlCdclsnWIbQPi7ESwaOdOp7TNsSvFxOzm7\nISY/8+uChf+sTzY+TLW/c/hkLp87nQlDnSBXIF/NonxfEPmChGPe3dIWhc/KGTbHzS66qv0Xxecv\nIiIiUsXKrhjIiAHhnF1Pzrbv44BFzfDyJljyUKp/mrmKFxO7sdAax3Tz/VT/MGM7HbEE4YAPM+Yu\nVdNuaCJl65dr92Ke+WNa7BomNR4CQEPYqZWyi/lRP86sjwVq3WVoChZJ32iPJlhrjWRIQ5jGjBpC\nr1u7UGe4WTXFPh/NPvxOyedkFAbdYNGcdy6Hh+6Fk27LGRqqHQBN8KfAdRw16Iuw95c4/v1f8eet\nUZ62ZnoHf/oGqBuS53kBaMuzKyFw4qxRLNvQwsKP8mQwHX89TDm6a+9NREREpMKVXbDINNI/OAIc\nbz7PQatvgtW5Yy8J3EkdHZ5AETgFcn97z5vcdOZe+FLBItUsEilXAxsaeLZ5BjsNCHPbsbv293R2\nnEAtIatDy9Ckz7THEnQQpLV+nCdY1GqH2MNY4Rzky7w9417YsrxvJ+cWz05+5k9cfa/T/6+v5gzd\nf3w9p4fGctRbr8B/XoHdT2Lw4rv4XgDGzjwGMssL7fWl/M/zh6Hpw5zucMDkt6ftyZ6XP5bqS1h2\nOqdxtxOgbmhX352IiIhIRSu7YJFhGJ7Mot8Hf1d0/PcD9+b0baWeB99ey02AP+EWyVZmkUjZeuCC\nA3l99TaOmr5Tf09lx/KHCBDDTuRZRiPSC7a3xzGxMQwfGOllXj5sbgze5Bzk+zJlypF9Pzm/m1lk\nxMmzqtzDSES5+tNT4C2346Efps6dMn2AEyyq3wl2Ox4MI/9NAjXQnJupOLzBWZ63tS39RdWkix9i\nVXLVXrjIbnEiIiIiVarsahaZBgSNWOcDi/Bn1C8IW21EjFCnu7KISP8Z3hAuGChaFZi0g2ezAy38\nNwBjNzzZzxORavX9e9/ExKI1apEZkTEzt5vvrw0g3GVod3xxJlceO6HwuGA9xCNwZbq2GW/elWoa\nd7kFtU+9A477TeH7ZO/sduCFWIaPv311HwCG1AXzXIR+fhAREZGPpbILFhkYOTWLuqrd3VkpGrcI\n2+1EjG4U6BSRsvCL4dd3PqhSbXPW114R+H+0RXv2955IPkvWN2Nik8AEK/1FimcHsf5apu3uWBaw\n45y59abC46ItsOqZnj9v2ePe40Atpp1g7EBnOVxjbaDnzxARERGpEmUXLBpYE2DmyM6DO7HAQG/H\nJ38A318GwDhzPQCReIKQ3UGHGc6+XEQqRNQMc1zkKr4U/VF/T6X3HX4ZAEON7Zx084J+noxUo4Rl\nM9n8kGEdK8FOB4hmm0vTg/orWORmFpGIwOt/zT2/6/Gw+8ml3y/S0smAjLVuh1+WzjR69XYAlm9s\nzbmi1Tcwp09ERETk46DsgkWGAd85ZFzxQSfdRiKQ9cPtmE9A/XCnaaR3OwnZHUQNBYtEKpVhGCy0\nx+fueFQN9jgVgMXWWBava+7nyUg1G9K2AuwCtbGyl2ftKG5mEa/9xdu/yxFw4h/gtL/Byf9T+v3G\nzil97IyTnRpGAA99H565jttPHgPAgos+xd+/ti9LrdGsHTS79HuKiIiIVJHyXIgfjxQ+d8C3YY9T\nSMy7xtvv86aP72a8jw2E7IiCRSIVbP7Sjf09hb5TO5gttRNY3jysv2ciHwdWgWBRqH9rFrHiqXTf\nmf+EyYd3737hAcXPj5kDH7zktM2AN0g27zIO4TJW/bIJgFGNNbQ3BgkN7+SeIiIiIlWq7DKLACcl\nPZ9wIxx2iTMkO23e5y1MeY7/AcAJFkW0DE1EypTp82N2thWUSBdtaokw/qIHMd3aRK+P/yqE8uwK\nOu4ACPTTZ6QvT42gQJ5l6D9c2TvP+/KD3mfne1aGGh+Y+eYoIiIi8jFQfsGirSvhgQvznxs8EUxn\n6187kPVNaFaw6DO+57BtZxlazAz1xUxFRHrMsg1vsWGRXrDoo+0ABNwNI+L+Oph0GMzNKiTdvHZH\nTy3N8HmPg/Uwbv/cceFeqhvkz/g5wfTnX373wSvptpVI/cwhIiIi8nFTfsGi9m35+3c5HOb+PnXo\ni2cVooy6xyfdBsDb1ngA/HachKFvBkWkPEUSpLI/Fn7U1M+zkWqxtS0KkNpddNb4YU5RwD0/7x24\nZcWOnlpazSDv8ZyvOXPM1hcBG18wf0bVbYel23YiN6AlIiIi8jFRfsEit0g1AHPOdV6PvBI+/08Y\nMT11KjF8uve6xp2d1z1OAWCGuQpsMLCwyvBtiogA7NRYl1qGdt/rH/bzbKRabGuLAenMokCwDJdj\nm1mfzaXWTrq0yfmnJ3wB8Hey86oVV2aRiIiIfGyVYRTF/VZxxIz0D2l5vmn0BzN+yLtoNQyZVOBu\nNka+bypFpCKsuOrY/p5CnzJMM7UM7dZneqk2i3zsNXc4waJ9zUVOx6Zl+QdOm7uDZlSCYAnBouSX\nSN01eKLzavoK7wJ3x6edVy1DExERkY+x8tsNzXDjV6F6UoEjcoM9pps+HrV9BAvUM7CxMbCxjDKM\niYlISUzT4IbTZvHyqi39PZW+YfgY02hCFW/6Jjue5dZM/57/Xqex6pn8A99/fsdMqJARu8P6d5y2\nP1h43FmPwYevwuyz0n2n3w1/P81pl1oE+6xHYcO77vMK1DNcOR9sG9o2wbp3SruviIiISJUpvyiK\nkREgOuh7MONU2OsLOcN8wdrO72XbGLZNOb5NESnd3FmjueLEGf09jb5hmIxtVBF+6V2W7USLJplu\nAevWTfkHnvPUDplPQWfem24XqlkIsPM+sN953jpDEw6G3U6Ac56G2sGlPa9+OEw82GlnBovm3gQN\nI9PHV49xXj94qbT7ioiIiFSZ8ouiZGYB1Q2Bz96at45BMOwsQwsaiYK3sm23cKyWoYlIuTJ9BN2/\n9k7ac3T/zkUqWsKymfv7Z9nQ3IEbK0or9AXLwH7+/9yAUXD6P5z2rsd37dpgLXzuThg1q2dzGDzR\nKfyduTNctKVn9xQRERGpcGUYLHLrA2TvkpKtUK0B4M0JX3NbNsnFaCIiZckwwbYYO7iG7N/vRbri\n148u4c0Pmphz5Tzs7GhR5hcxp9yxYyfWmalHOwWrh+6yY58bcANoI4sEm468csfMRURERKTMlF/N\noppGmPsLGH9g8XG+wrUNLCP9tgxsZRaJSPlya8msjXawNNycc3rNlja2d8SYPip/bTaRpN1HDwBg\nUG0gVbMoxQyk27schuBkVX35oeKZSZnZRiIiIiIfI+UXLDJM2PPMzse5wSILo2B6lG3bmKpZJCIV\nIG7ZLPxoe07/Qdc8CcCyK48h4NPfZVLYIvf/P421QWwrzim+p9InD/puuq1NH9LGH1D8vFV4qbuI\niIhINavcnxjdYJHhC+Se82QS2dj6wVhEypyJVfT85J88zPiLHtxBs5FKdPNTywEI+U0mbX2WXwdu\nSZ8M1qXbPhVUz+ug76XbR17hvO5+Uv/MRURERKSfVW4Uxd1i1zALJ0fZttXpL2AiIuXgCv//5PS1\nROI5fQveK7CrlYhrWEOI+sg6b2dmDSNf+SUVl4XDfu7UTrq0Cfb/lvM6dk5/z0pERESkX1RusChZ\nsyhfsMjNLFqztd0p8qnMIhEpVzPPAOAMv7PcLFmY+PXVW7ljwaqc4Wff8coOm5qUhw3bO/jDU8tZ\n29RecMxtz6xItYM+k0Ciwzsg+3PwwoVw4aLenKaIiIiIVJHK/XoxGSyKRwoO+ewfFvB8SMvQRKSM\nZS4Pwtn+3O8z+MzNC/IOb4+phsrHzZyr5gHwq0cWs+qXx+Udc8WD76baCdumseMD74ApR3uPB47p\n1TmKiIiISHWp3ChKMgBk5/7iZKRebQws7YYmIuXr5Vs9h/GcbaxydShgJFn2nzQk1bZsSGR+vO/5\nBS09ExEREZEuqdxgUf0I5zVPoU6bdHDIyPhfEZGy4w97Di07f7DIZ6b/Hvvlw4v7dEpSeRYs35xq\nW5ZNwsgIDoUa+mFGIiIiIlLJKjdY5HeDRKYv95yRfjGxtAxNRMrXKXekmp8xn8mbWXTQ5KE8eMGB\nqeMH3lq7Q6Ym/c/OEzy87vGlXPTPt1LH2ZlmCcvGMjI+G7OWOoqIiIiIdKZy89KtuPfVI/0NvImN\nbSuzSETK1C6HO4X6rTjXB//A1sTlntND64PcefY+gLPUaMHyzWxqibC5JcKQem2BXu1iidxg0Y3z\nlgGwpTXK3FmjeXyRd+ezhG17Nj8jUNuXUxQRERGRKlS5KTeNOzv/nPa3gkOcmkU2i9e37MCJiYh0\ngc8Ph1yUOky4v+UPCDux/Jd/cnjq3O9O3zPV3vuKJ3bQBKU/xRJWwXOPLVrPN+96jfve+CjVN95Y\ny0srN2NZGddtfq8vpygiIiIiVahyM4sCNfCdtwuczKxZZGNVcExMRD4Ghk5JNZeub2ZbW5TtHXEG\n1gQwMgr0Z9YtAmeJkqEC/lWtWLAo2zRjFQ+FLuYXsc/TEY2lT0T1hYmIiIiIdE1VRlEiceeH68eD\nP2CA0c6M0QP7eUYiIkWE039HnXHrixx+3XwAmtpjnmHZwaKH3/EuP5LycN3jSzn6t/N75V7RLgSL\nxhnrAfhZ4K9E4xl1jGoG9cpcREREROTjo3Izi4p4adUW9gXGmRsAGDqgpn8nJCJSzISD83bvPNhb\nayY7WJQdTJLykKwp1BuicW+wqD2aKDASrq25HdzTiYTbGL03HHV1r81HRERERD4eqjKzKODzvq2J\nw+r7aSYiIiUosJTs2lNmwtb3YaWTpWJmjRsxQAWuq0XCstncEsnpzy5wPf2SRwreoy7RlGpH43G2\nMBC+9l8IqsC1iIiIiHRNScEiwzCONgxjiWEY7xmGcVGRcZ81DMM2DGO2e3yEYRivGobxtvv6qd6a\neDE1wayEKaMqY2IiUuVCfhNu2APu+DRYCfxZmUUdsdKXKEl5+81jS9j7iidyAkbZ2WNW7uZoABw6\ndViq/WhiNpFoHBvVsxIRERGR7uk0imIYhg+4CTgGmAacbhjGtDzjGoBvAy9mdG8CPm3b9gzgS8Cd\nvTHpzhw9faesySlYJCLlLTr2AJZYYzx94cjm9MHlg/H/wlt7piNWeEmS9D/bLhDZyePxRU69oc2t\nUU9/Mni0y/DiGbIXH7tbqh0hANgKFomIiIhIt5USRZkDvGfb9grbtqPA3cDcPON+AfwK6Eh22Lb9\num3byT19FwI1hmH0+bqJnQZm1Shq+qCvHyki0jM1jTm/3DdsXZgz7D+fH8NlJ0wHCmeZSHnIXkJW\nTLIeVSLrP+odz78PwKRhdam+ofW5H6N1oXRGrY8EJjaWvigRERERkW4q5SfJ0cCajOMP3L4UwzD2\nAsbatv1gkft8FnjNtu3cogx97e17d/gjRUS6wvAFCBBPHe9srCfc+mHOuBkv/pDDdhsOgKVoUVnr\nyrb3yXpU2cGi+Us3AvDhtvZUX0M4d2+KsN8EwwdAwA0WKbNIRERERLqrx187GoZhAtcB3ysyZjpO\n1tG5Bc6fYxjGK4ZhvLJx48aeTim3WGzN4J7fU0SkDxmmN1g0P3Qhg5/KUyIuUJPKQrG6sMxJdrxb\nn1lR8tjkf9N/vpY/E9bKiDsld0h7+geHpPrCvgTYzrJEHxamYYOCRSIiIiLSTaUEiz4ExmYcj3H7\nkhqA3YGnDMNYBewL3J9R5HoM8G/gi7ZtL8/3ANu2b7Fte7Zt27OHDRuWb0jPHPLj3r+niEhv8gXw\nGyXUIFrxJCOv3wkfiZz6NlJefvvEMib++EHeXbu94Jg1W9qAdBbSn59blTPme/57eGjr8anj9liC\nubNGMW5Iemla2Eon7QaNBIYyi0RERESkB0oJFr0MTDYMY4JhGEHgNOD+5Enbtpts2x5q2/Z427bH\nAy8AJ9i2/YphGI3Ag8BFtm0/1wfzz2/TMu9xgW2pRUTKhbMMrfSC1UFi/PrRJby4YnPng6XfWDb8\n7L538p57Y802DrrmSf7x8mo+2JpeZpa9fO1b/vsAMHD6WyNxZ6e8DGYifX3IdINFqlkkIiIiIt3U\n6U+Stm3HgfOBR4F3gXts215oGMblhmGc0Mnl5wO7AD83DOMN95/hPZ51Z17P2HRt/EEw/TN9/kgR\nkZ4w/EHPMrQcF7zhORxubAPglfe39uW0pBumjxrgOS703+j9za0APPzOOgbVBVL9S9c3A9DUHvOM\nv+y4KQBE4hYhv897s2hbqrk372JiKVgkIiIiIt1W0k+Stm0/ZNv2FNu2J9m2faXb93Pbtu/PM/YQ\n27ZfcdtX2LZdZ9v2rIx/NvTuW8gj8wfkz/8L6ob2+SNFRHrC8AUIU2BZ2b7nweAJnq7Hgj8CoD1a\nejaS7BilJrMu39ACwFNLNrJmSzoz6LgbnwWgJeIEDy3buWHISAcTk5lFZx84gcbaAMTSwSIfFsPZ\nhmoWiYiIiEh3VefXjpM+lW77g/03DxGREhlbVhA2YhxlvpR78tCLndfRs1NdIcPJOmmNFslGkn4R\nT5RWePzV1cWzwlrdYFHyC5AjX/xy6txqt9bRz46fxhs/PxKWz3NOzDwdgAFGm2oWiYiIiEi3VWew\n6JQ7YP8L4NS/9PdMRERKs/YtAI70vcqpezSm+0fvDaEGp/3Z2zyXhIimAwpSNhKWN1g0dnBN3nEn\nzhrtOf7DmXsB8NUDnSyy5H9b061lNah5aWrsY4vWe2/2xGXO6y6HA1BHO5aCRSIiIiLSTdUZLArV\nw5G/gGlz+3smIiKlcbNHRrKZz2+6Md3/lUfS7fBAzyWfMl/nnlfyb7Uu/Sdh23xyyjAOmuwsgW6L\n5F8qGImnC1nffc6+HDNjJAPCfuJusKm1wHXTjFX86oDsXjdAVTsYgDojQnvMyh4kIiIiIlKS6gwW\niYhUGjdYtL9vEXtsyQgQZS6lNf2eS07xPQ3AI++s7fPpSRckYgwPW9x59j6cf+gubG2LYlm5S9OS\nwaIfHb0r+04cAkAo4Ev1OzWLcq97KHQxn3v1DGjZAPGsOleBOiCZWaSPeBERERHpHv0kKSJSDvJV\nRR4wxnucFSzaTi0AX//ra301K+mGW9q/x7VLjwJgcF0Qy4ZtWTubAXTEnMyhrxwwPtUX9JlE4k5/\nWzROiNzrUq6dDFcM8/YF3WCREWH0oNoevAsRERER+Tjzdz5ERET6XL5tzj+XVXctK1j0aOITqfbm\nlghD6kN9MTPpol3s91PtupCzxX0yMJQpmUGU3NkMIBQwaWqL8eU/v0QkZlFHR+cPvMxZesb0kyCY\nDhA1hLXBg4iIiIh0j4JFIiJlIc8OWjWDvMe+gOfQzLhmc2tUwaIyZLgZY62ROCs2tjBxWD0X/uMN\n/v36h3ztoAmE/GZqDMCKja2s2NiaOh5NxHO/AbTkPsR2A1Gj9kwtQwPAVPKwiIiIiHSPfpIUESkH\nh/40t8+XFfzJWqpmYHPtKTMB+GBrW1/NTHrAdP+bnXXHy3zqN0/T3BHj369/CMCtz6xMF7lOxKB5\nfc71YcNbk+jawJ8KP+zte1PL0JyH6/sgEREREekeBYtERMrB1GNy+3x5lhFd2mcJ9FIAACAASURB\nVATnvwLAjafNZM54ZwnS5pZo7ljpd6Yb31uzpR2AGZc+ln/gf74Nv5lCMKtGUU1WZtFQo6nww8bt\nD4GMOkWGr8vzFREREREBBYtERMpDviwQf4GaM259IxMbn8+JRlh2nmVsUjkW3Q/Ak9/Z19NdtMB1\npmG7wZFXOkvP/DVOn6lgkYiIiIh0j4JFIiLlIF+wKDww/9jkcjTbwu+mriSsPpqXdKqpPUZ7NLeA\nNb/cmTfXbCvtJu5/0yE13gBP0Ih7jvcy38t//blPg8/9/1ByKVpWjSsRERERkVIpWCQiUg66kgWS\n3Dlt7Vupv8QTlqJF/WXmZY8x96ZnAaeQdUpHE2cHnyh67b4TB3uOw2aCVb88jpljnEDhnEFuQetg\nffFJ+DPqWyWDidk1r0RERERESqRgkYhIOcgqXl18rPtX9ws3Ef7gOQASlpah9Ye2qBMcWrq+hYRl\nc+6dr3rO7/ziJXzTd1/B60P+ZJDQ/e8fd2oUfWG/8QBc2HqD099ZsChT60bn1a9gkYiIiIh0j4JF\nIiKVxkj/1R3Y9A4AcQWL+sW37no91d7v6nk8+96mnDFn+x/Ke+1UYzV3rD4CNi2DiFu4OuHUKAr6\nsz6ea4ek28ki1oMnFZ/c4geKnxcRERERKUDBIhGRcjNqLzjvxcLnM4pZ+9e/DSizqL88tzwdHNrQ\n7GQFxW3vR+sjiU+k2ruPHpBqz/UtcBq3HJoefP/5AAR9WZlmDSMyDgyoGQRn3NODmYuIiIiIFKZg\nkYhIuRl/AAzftfD5RDTVNDcvc7q0G1q/mDKiIadvCwM8x+OMDQDUBn3c8oXZqf7Uf7Foc3rw6ueB\nPJlFB1+Ubsc7YK8vwtBd8k9q1pnO65xzO52/iIiIiEg+ChaJiJSbcQcUP2+ni1mb694AIJFQsKg/\nnDJ7bKrtc3emM/EWGx9pbAbgu0dMYVRjTarfpnCdqjGDar0dO+8Dh/3cvTABZpGdzk68GS5tgmOv\nKeUtiIiIiIjkULBIRKRcXPwR/GAFTD2m+LisLdFXhc8gntBuaP3BzsjoCrvZQJ5g0YjdaagJAhDw\neT9yTzAX5L/pk1cxZUQDj134SezGcTDRXaZmZOyYZ/p7PnkRERERkQIULBIRKRfBOqgb0vm4QeNz\nusxER+/PRzplZdSKao0mAPAbNkw6DL7yCIyaRchqA9Ib3p3zyYmcf+gu7GxuzH/Tp38FwJTh9Rjb\n3oeaRqffzAgWRbY7r+e/4jxHRERERKQXKVgkIlIFAtFt/T2Fj6V8q/8GBE0YNhXG7QfBBoKJNs/5\ni4/dje8fNRWmHuu98PS7nddkf6sbTEpmFGVmFr1ws/M6dLLzHBERERGRXqRgkYhIJUoWMXb54sos\n6g92VmHxgyYPdWoKGe7Ha6ieoNWOgYVpxbwXD5mUbn/+n87yQ18Qhk5x+jrc7KHJRzqv2z/sg3cg\nIiIiIpJLwSIRkUo09yb4+RY49U4AjDJchvb66q1c/O+3cwIq1cTKem9/OWsOWIn0krFgPSY2V/n/\nhxOfneu9OJkpNGQX2OVwpx2ohVi7004uNQu7u6tFW9PXNo7rxXchIiIiIuKlYJGISCUyDCcgEXB2\nzXr49ZVlF5Q5/dYXuOvF1bRE4v09lT6TXVfcMAw3s8gNBLnFyE/3P0l9u5sZtOJpePJqsNx/L2c/\nnr5BoNZZfvavc2DLCqcv1OC8ZtYs+tRPe/mdiIiIiIikaTsVEZFK5g8BEDaitEYT1IdK+2v9npfX\nsOvIBvYY09iXswOgJRKnIVxkq/cKlp1ZBIBtpQM7RtZ3MokY/OUEpz3nHAg3Qu3g9HlfABb+y2m/\n9Q/nNeRmFmXWLEpkLWkTEREREelFyiwSEalkgRoAQkSJxa1OBjuaO2L88J9vccLvn2PVptbOL+iC\nY254hkvvXwhAxJ1PLF5eGU+9KSeby7adYFEySJQdLErWIQJnWZkv6D2f3DItU3IZmpkRCJxwUPcm\nLCIiIiJSAgWLREQqmT8MQJgYcau0oEybu8U7wMl/XFB07MpNrby7dnvRMZneXbud2xesApy4CYBN\n9QaLspehYbsdySygD1/znv/1xHT7jb9BR9YudltX5T4kmVmU+e+xcecuzlREREREpHQKFomIVDI3\nsyhMlFufWVHSJZnBoi/tN77guIRlc+i1T3HMDc/0aIplVkqpV1m2zY/9f+M7oxfz5f3HO8WtAUz3\n4/Xd+4vfIBHt/CHJYNHIWd2ep4iIiIhIVyhYJCJSyZKZRUaUW+aXFixqzSg47fcV/hj4yb/fTrUj\n8QRt0eKFqqMFlsFVcawI27I41/8g39l8OZeeMB3atzgnkplFbgHyHvG5y8+mzS0+TkRERESklyhY\nJCJSydxgUYjcgse2bfO7ecvY0Nzh6Y/E05lF7dE4zy/fnPfWd7+8JtU+8vr5TPv5o0Wnsqklkre/\n3HZp6y2vrd7KW0//M92RiMNf3IDOeqduE5/8fu890C1mLiIiIiLS1xQsEhGpZG7WiZ/crJ/3NrTw\nm8eX8o2/euvmRGLpDKAb//sep9/6Ar9+dLFnzH8Xr/ccv7+5rdOp/OKBRXn7qzNUBCfdvIDL/X9O\nd9z3Ddjo/nucdKjzuufni99k0mHe42+9ln8cpItf77x/1yYqIiIiItJFChaJiFQyMxksyl0CFg44\nS6FWb2nj0vsX8tG2diC9S1mmm55cDsCLKzZz9UPv8tcXVnd5KvOXbszbX6WJRQDsbGa857fvSbf3\n+JzzGqgrfgO35lTKkEnw9WfhsEvyjz//FTjz3q5PVERERESkC/ydDxERkbJlBgDwk2D2uEGeU/e/\n+REAG5sj3L5gFR9ta+fCI6YwLytrKKkjluBzt7xQ9HG2bWPk294dbxDqygczs4yqOFpUiM/575Iq\ndF1IdrAIYKcZsNr97zBihvfc0Mk9n5uIiIiISCeUWSQiUsnczKKpw8KeXc4Afv3oEs/xY4vWc8wN\nzxTMGnrt/a2dPm5tU0fBc8Mb0jV1bn1mZapdzZlFDyT2SR+49aMKOvGPcGmTty9fsAjAcpcVjtOS\nMxERERHZ8RQsEhGpZKYJhknIZ9Hi7nK2tqmd8Rc92Omlt31xtuf4f55dWWBk2vaO3ELaSWcdOAGA\ncUO8O4BVcayIt62JTsMXTAd43GyvlGRdolB97g0KBZgSUfe+gfznRURERET6kIJFIiKVzgywqamV\n1VvaiCcsfvLvd0q6bI8xA1n1y+P45qGTAJi3eEOn1/zigUWd7m4WT3jPV3NmkZkMhVkJJ1i0z9fh\n/Je9g5KBn2Ce+kVmgdXgfjfjqKaxdyYqIiIiItIFChaJiFQ6X4D2Dmd52O0LVnHktBGe0wdNHppz\nyafNBdRsfhuAbW2Fs4WyPffeZtZtz78UzbZhrvksIzuWefo7Yom84yuZZTlBIiNZWNx236Pph8ET\nvIOTwaKAN+PKuUGBj+HZX4HDL4P9L+iF2YqIiIiIdI2CRSIilS4e4av+hwkSoyboI2Z5U3lCfl+q\n/Y9z9gXgd8Hf03DH4WDbBHxd+yjwFyjanLBtbgjezP/yQ+e5RBlnrOOW+Su6dP9KEHf/Hfuyd6F7\n/vd5BkecV1/Q298wCmaflf8BvgAc+B3wh/KfFxERERHpQwoWiYhUOsvJDFoa/hLD6kO0R53aOfUh\nZ4nT5/fdmdd+dgR3nDWHfSYOYQAt6Wv/ewVHTh+Rc0uA/SYO4YnvfjKnv8BmaFhZ682uD9zM06Hv\n4qf0zKVKkXyvZnZFpnEH5g5OBosyAz8jZ8L33oUhk/pohiIiIiIi3VegWIKIiFQiy7ZTu6K98tPD\n+WhbOxOHOYWVD54yDICxxsb0BatfYP/Dfpb3Xtd/bhY7DcwtwDz7iic4fo+R/P6MvTz9diLuOT7K\n9woAx06tvro7CTez6BPjG+HDjBNfuj93cMNOsPHddM2iH73f+c5pIiIiIiL9SJlFIiJVxLKhPZog\n6DcJB3ypQFGmB76eEeSZfqLn3Jzxgzljn50BGN7gZMJcc/Ieufd4a21On5mIeI5TS7SseM7YSpdc\nhlYXyEqzMn25gz/7P3DSrTBovHNc0wgBBYtEREREpHwps0hEpIqc97fXaAj5CZhuEGPdO85Sp0BN\naoyRLLgMEG0FYOqIBpasb+b/feUT1AR8/OTY3TATHbDkCU4ZN4VfsxU/FmsZUvDZvnhr3v4l67cz\na3sHIwZUT4DEKlSzKJ+6IbDHqX08IxERERGR3qNgkYhIlXjJmgpAc8TN5GnbAn88AHb/LJz8/9ID\n4xnBokgzWBa3n/UJXl+9LVXnqC7kh3vOgkX/hwG87MZ5xnfcVfD5A1rfz9t/x3Mrue65Laz65XHd\nfm/lJplZZBo2+EKQiMC4A/p5ViIiIiIivUPL0EREKt3PNhGvG0mznbU1e6zdeX1/gbc/c7nYa3fA\n5YMY+fI1HDtjpHfcov/r0jT+87oTLNpqe5e+JRdqNbVVT6FrT4Frw4SL18IX7uvnWYmIiIiI9A4F\ni0REKp0vQLxxPPVGe9YJd6eu5rXw3yvS3fGMYFGrW+z62et6PI0gTkZTIuujxXDn0RFP9PgZ5SKe\nuQzN9EGwFvzBfp6ViIiIiEjvULBIRKQamH72MRenDpdfdSysfCZ9fv6vIdbhtDNrFmXbtgZWzof3\n5nV5CkGczCHDyC7y7ARWXn1/a5fvWa4sy2ZPYxmjNjwF0Zb+no6IiIiISK9SzSIRkSoQXuMEhoax\njY004jMNuO/r3kHvPQG7HgcdTflvYtvwv2fBBy8Vfg4ROnB2SbMsG9MtpL2tLUrIzSwaXB/k71/Y\nF+70Xru1rUiQqsLELZt/hy6B/DW9RUREREQqmjKLRESqiJ8iS73+cSZc1giPXOQcf+ZP3vNWomig\nCGBx+CsY7g5gyaVYAB0xi6DhZha1rGe/OyemziVrFk0d0VDamygTTe0x1mxpy3vud08s2cGzERER\nERHZcRQsEhGpAh2HXgJA0Ijx3Bm1cOnA9MmcZWGuXY+DUXulj5//XUnPSm4X//7mdFpNWzSeqllE\nzSDP+GTNoozYUkWYedljHHTNk3nP3f/Gmh08GxERERGRHUfBIhGRKhAeMh5wikyPfukq78kz78l/\nkS8E5zwJo/d2jp+4tKRnPRX6LnsYyzni+vmpvgfeWpuqWZTOJUoeJYNFFRYtctl55p0MmImIiIiI\nVCMFi0REqoHfqSP0tf1HwZBJ3nNZmT4pvoDzWqzgdR5jjE3cH/qZp+/ZZZvSwSLLuxQuGTqq1GDR\nt+9+I6fPVLBIRERERKqYgkUiItXA5wSLTp01Ijc4NGxXOP+V3GsMN4zjD/f48SfPHkMgWS/JinnO\nfcK/DHDqZ1ei+9/8KKdPmUUiIiIiUs0ULBIRqQb+oPMaj0C8w2nPvRm+8jAE62DoZNj3m3DkFbnX\nDhyb/54XLnSuL2BIXTDVTlh2qsB1dqbST2Y4u69VamZRPsosEhEREZFq5u/vCYiISC9wM4t49noI\nD3QCQHue6R1ztFvLyB+GEbun+4+5Bhb+K338pf/A+oUwcIzzTwHRRDpgEo1bhJIFrq24Z5xtOkGl\nSitwXYwyi0RERESkmimzSESkGiTrDy2f5w385DPnazBuv/Rx/TCYc276eOf9Yd9vZIw/J+9tmjvi\n3DJ/OQCReIJGmvOO6xiyG1BZmUXRuDcYtGx9+r0lLBsflfNeRERERES6SsEiEZFqYGT9dd7Uxa3d\nj70GLm1y/vFlJZ1+6mf5rwGuemgxAJGYxWn+p7wn9zsfACvUCOTfVaxctUa82VFXPPhuqh2JJ7zL\n0AK1O2paIiIiIiI7hIJFIiLVIGvpV68KD8gpkJ0w0gGlVZtauf7xxbnXBesAMG1nblYPVm7Zts11\njy9l9ea27t+kC1qygkWL121PtSMxK70M7ZAfwzee2yFzEhERERHZURQsEhGpBltX9e39h072Hmdk\nMh1y7VM00pJ7TaAGgPFPnMOv/Lf0aOHWmi3t3DhvGefcmWdXtz7Q3OENFpnJneNwajX5DDdYNHAM\nDJ64Q+YkIiIiIrKjKFgkIlIN3MBMyl5f7NPH+awoAzICRGGiuYMCdanm5/xPYfUg++mxResAWLwu\nf12k3padWZQZLHIyixLuCe0TISIiIiLVR8EiEZFqkJ3dcsLvev8Zh1zsvM76PABvhdOFr2uNjtzx\niYj3uAfBorrQjg3KtERinuMPt7UTd3d/e2nVlvQyNMO3Q+clIiIiIrIjKFgkIlINhu+Wbl+4sG+e\n8ckfwHfegcHjc07V4QaLTrkddjnCaSe82UZ2ItHtRzfWBLp9bXe8smprTt9NTzo7v33/3jfTBa5N\nfYyKiIiISPXRT7kiItVm4Ji+ua9pQuNY2Lwi51St4WYR1Q2Dz90JR10Nkw7zDupBZlFbNB1o2hG7\nqt381PKcviXr00WulVkkIiIiItVMxRZERKrFrM/nzfrpddHcukGpzKJgnVM/ab/zINbuGWP3JFgU\nSweL4pZNwGcUGd1zX9pvHPc9v5AwUdYzGIB316bf9yDDrddkKlgkIiIiItVHmUUiItXixJucpWJ9\nbeKhOV21qWBRfbozUAPHXps+7maw6K0PtvGz+95JHccTfZ9ZBPBc+Nu8GD4/dbxyU2uqfXfwCqeh\nzCIRERERqUIlBYsMwzjaMIwlhmG8ZxjGRUXGfdYwDNswjNkZfT92r1tiGMZRvTFpERHpR7PPgsnO\nX+fn+e4D4MCdw865YJ13bNMHqea2Fm+mUalO+P1znuO4ZfHw22tZvz1PUe1e0hpNUE/++Yb8GR+d\nyiwSERERkSrUabDIMAwfcBNwDDANON0wjGl5xjUA3wZezOibBpwGTAeOBm527yciIpXKMCDi1O/5\nYeAeAA7YucY5lx0sirakmr97fHGvPL65I843/vYaX/7zy71yv3zaovmzoMZf9CCRuNVnzxURERER\nKQelZBbNAd6zbXuFbdtR4G5gbp5xvwB+BWR+1TsXuNu27Yht2yuB99z7iYhIJVv9vOfQn2hzGoGs\nYNGB3001fUb3dkPbd+Jgz/HzyzcDsLG5DzOLIum5BiiyfG7tm302BxERERGR/lJKsGg0sCbj+AO3\nL8UwjL2AsbZtP9jVa0VEpPL5423gD4Mva9+EgaNpOuZmAAJG1zJyNjR3MP6iB3lhxRZP/7zF6wGo\nCfZdompmZtHSz24uPNAf7rM5iIiIiIj0lx4XuDYMwwSuA77Xg3ucYxjGK4ZhvLJx48aeTklERPra\n/hekmv8bvJQhb/4R4vkzfQbWOUvUPr37sC49InP3sUwPvb0OgKCv7/ZoiHSk34vx4IXsNCAdFDLI\nCHrVDumzOYiIiIiI9JdSftL+EBibcTzG7UtqAHYHnjIMYxWwL3C/W+S6s2sBsG37Ftu2Z9u2PXvY\nsK79MiEiIv0hvSPZbHNp8aGmk21kW11bhuYzjKLn+6p20LqmDj5Yt97T98LFhzFlhLPTWw3R9ImZ\np/fJHERERERE+lMpwaKXgcmGYUwwDCOIU7D6/uRJ27abbNseatv2eNu2xwMvACfYtv2KO+40wzBC\nhmFMACYDL/X6uxARkR3L7sL29clgUaJI7Z98l2V9Ql048QNCGYGaw3Yd3qX7lWrfq+dRQ8Tb2bEd\nvzuhWiPjXPYkRURERESqQKc/5dq2HQfOBx4F3gXusW17oWEYlxuGcUIn1y4E7gEWAY8A37Rtu3sV\nTkVEpHxMPab0sW6wyLC6FizKSF7i9XNH8e2Pfsgl/jtSfUYnmUc94QkIAfzvVwj4nOcN9Mf67Lki\nIiIiIuWgpK9Ebdt+yLbtKbZtT7Jt+0q37+e2bd+fZ+whblZR8vhK97qptm0/3HtTFxGRfjP+QBZN\nu7C0saZTiNruYrAokkgvMxv0/mMAnOF/MtX395dWd+l+pYi6S9vqyKq/9N4T+N0aSQN9XQx6iYiI\niIhUGOXPi4hI9xglfoQkM4vsrgVZYpk1iZY9mnM+ErewrC4shytBU7uTNVRr5BbrTmYWNfjczKK5\nN/Xqs0VEREREyoWCRSIi0j1miVvXu8EiEl1bhRzNyCwqVEi6PdZ7K5sty2b5xhYAxhveAtfUDac2\n6LyPAcllaAPHIiIiIiJSjRQsEhGRbjG6mllkda3WT8wNFj353QNhe85GmgC0RntvSdgN85Zx2i0v\nAHBV4H+8J4dMoj7kBotMt8h2sK7Xni0iIiIiUk78/T0BERGpUEZGZtGZ/wuTjygwzgkqWSXuoHb+\nXa8xtD7EtJEDAJhw884Fx7ZFEtBQ2nQ78+jCdYVPmn7q3GBRvc8NFgVqeufBIiIiIiJlRplFIiLS\nLXbmMrRgfeGBbrBo79b5Jd33gbfWcvuCVZ4C15lM0v29mVm0eF1z4ZOrnqG+zSmo/aOWXzl9gdpe\ne7aIiIiISDlRsEhERLrFsjO2rg8VCxY5L4e0PtLpPdc2tafangLXGR6/YB8uHvsOg9jO6s1tJc21\nN0xe/CcATNwMqcbCGU8iIiIiIpVMy9BERKRb4mQEi4plFm1fW/I9t7Wl6xq1xxKMYAt2oBYjlg4K\nTTLWMWnjVewamMGfXpzAMTNGdmne3WXUDoLtGR2lFvgWEREREakwyiwSEZFuidsZHyGhIoWDulDY\nemtrNNWeP38eL4bP9wSKAGhxdiobZDRz8t5jSr53MWu2pJ/xo6N3hZEzYfJRnjGnRO/rlWeJiIiI\niJQ7BYtERKRbPCWFimUW+YKp5qpNrTS1Fw4ebWyJpNo7RVblH/TaHQC0EcbKv1KtS2zb5qBrngTg\n6wdP4huHTIJ4BPzBnLEn+552GoPG9/zBIiIiIiJlSsEiERHpllhmZpE/VHjglGMAeMx3MIdc+xQn\n3vRcwaHfvvuNVDtBgWVe7/4HgBDRkndYKyaSURsp6DNg/SLYuBj84Zyx1wacukVsXdXj54qIiIiI\nlCsFi0REpFs64hmBGsMoPNA02e4fTJvtZOqs3NSad5idFfhJdPIR9ZY1qdeDRTVBP/xhP+fAF4Ij\nr4DRs3v8DBERERGRSqJgkYiIdMuIxrqSx9qYYBdfM7a9PZ5qHzxlWKfBohZqsHoeKyKaESyqC2Vk\nM/lDsP+34Gvzci/a47SeP1hEREREpEwpWCQiIt0yY8ygksfaho9YrHih63hGAaI7zprDLZ/fK33y\ngjfgpNs848/z30+iF6JFkXgi1TYyM6SKLa37zB97/FwRERERkXKlYJGIiHSP0YWPEMPANIoHdqJu\nxeyrT5rhdCTSO6MxeAKEcotoZy9d647MZWjvrW9On8gozM2XH0q3G3cuvuxORERERKTCKVgkIiLd\nYxYoQJ1HR8LApPgytJhbA6k+vgVaNjg7kmWK5tY66o3MotWb21Ltnx4/LX0is8D1+ANgyOTcfhER\nERGRKqRgkYiIdI9RerAomgATJ7DTWBvIO+aP85cD8OnHDoZrJ0PCDRaFG53XyPaca6xeCBbd+N9l\nAPzgqKkEYhmZRf6gd2ByWZqCRSIiIiJS5RQsEhGR7umkYHWmAbUhfG5mUaFsoLteXM0k48N0R9xd\nhnbe885raEDONUaio+Q5FHLK3mMBmDtrFLRtSZ/44BXvwOSyNAWLRERERKTKKVgkIiLdk1wWNnhS\np0Ntw0wtQ8vMBrJtm8cWruO59zYBcIj5RvqiZGZRqMF5nX5Szn2NhHep2qaWCOMvepCrH3q31HdB\nwi2sXdu0HB79SfrEkoe8A1OZRUUKX4uIiIiIVAF/f09AREQqVLTFeZ1wUKdDw23rGGc4u47FLZuX\nV21hl2H1vLhyC1//66upcevsIemL1r7pvPrc4Ixpwuf+BiuexF74fxhtGzGy6hotWecsI/vT/BVM\nHz2QE2aO6nRuyQLXjf88FZo/Sp+Y8EnvwGRGUaCm03uKiIiIiFQyZRaJiEj3xNzC0MHcXcqy1dht\nTDffB5zgzCl/fJ5T//Q8G1u8wZ4wGTugvfNP59WXUeNot+PhuN8QP+xSAMysZWg3Pfleqv3qqi2U\nIhksMprXek/MOtN7nNyNTZlFIiIiIlLlFCwSEZHuSRaeHjyh5EtWhc/gIv/fAVi2oYWFHzZ5ztca\neWoQ5dmm3gg4WT7t7W2Mv+hBvvLnlwBYsHxzasz0UQNLmlPUDRbRMDLded4LMPM078BkUEw1i0RE\nRESkyilYJCIi3TPrTDj1L7D3WZ0OtQeMJu6vA+Dr/v+k+u9+eY1n3Jd9j5b0aNNdCrbkgw0APLlk\nI7btLZwds0orwB2JWwR9JkbmErTaobkDk5lU5AavRERERESqiYJFIiLSPaYJ0+Y6r50wRu2Jf/C4\nnP5BtQHP8SRzbc6YvPdzM4tWrUsvNZvwY29B6ngi/65r2aJxi6A/6z3UDskduOj/nNfswtciIiIi\nIlVGwSIREel7vgDE2nO6zz4wvYRtJJtzzhdiuJlFISNWcEwsUVpmUTSRoNaXNbZYAMzQR6eIiIiI\nVDfthiYiIn3PDMDWlTnd2zviqbbP3S0NgEubcsZ6uEWmPQWxs8St0jKLNja18ZKVUZ9ov/OLXxDZ\nXtJ9RUREREQqlb4eFRGRvucL5O2+Zf6KVDuAGyza8wud388tMp0vWHTZCdMBiJeYWbTg3dXpgzGf\ngMMuKX7BgDEl3VdEREREpFIpWCQiIn3PLJ7IOmpgmCDukrJdDu/8fr4gAH4SfGk/by2kY2c4u5rF\nSqxZ5Ak4TT0W/MH8A7/1mvN67vyS7isiIiIiUqkULBIRkb6XlVn0qV2HAzBrbCMTh9ax4MeH8ejX\nprljCwRrMrl1g0xsQgGf51TQ55y7Yd4yPtyWWycp28TGjINQQ+GBQyY5y+Pq8hS/FhERERGpIgoW\niYhI38sMAA3bjRNmjgJgU0uEATUBWP0C/OUE5/z2Dzu/nxss8mERytrJzO9Lb21/3WNLO72VPx5J\nH4QGdP5sEREREZEqp2CRiIj0PTMj+yfeTsDN/gm2fMTvt50HT1+TPt+yl7npuwAAEA9JREFUoeT7\nmYYTLLrhtFkATDY+oO7qIXzKdJaM7blzY8FbJPmtjOwju7Q6RyIiIiIi1UzBIhER6XvRtnQ71kHA\nzf45xX6EMbFVsHxe+vyMkzu/n+EEi/wkOPGdbzF3pLN72vWBmwH4f8FrqaeNn973Dpa7K9qqTa3E\n8hS99lsd6YMPX+3CmxIRERERqU4KFomISN/LXFrWso4h294kQBwfeTJ5gnWd38/NLDrCfJUxW56H\nP+xHA228aO2WGrKfuQiAiRc/xLl3vsIh1z7FtJ8/kvu4REZm0ZxzSns/IiIiIiJVTMEiERHpe1bc\neR3mBHP2fvxUbgz8Ln+wyBfq/H5uZtE4Y32q6+3wVzl02PbUsZ9Eqv3oQmdcvh3SUplF570Iw6Z0\n/mwRERERkSqnYJGIiPS9ZOHorStTXcf4XsaXEdBJqR/W+f3cAteTzLWe7olbn0u1TXIDQwDt0fQz\nYwmLMG6B60BN588VEREREfkYULBIRET63nG/gSN+AQNGebr9+YJFpTA7//i6+jPT8vb/d/EGlq1v\nBuD9zW3UJINFpSx/ExERERH5GFCwSERE+l7tYDjgAjj6V57uIPHu3c/wdTqk1p+//5t3vcYR1893\nxgR91BB1TiizSEREREQEULBIRER2pClHwuGXpQ7rjPYig4sw08GiSGhI3iF+w2bqiIait0lYNrWG\nm1nkV7BIRERERAQULBIRkR1t/wtSzRCx7t0jI7OoqXF3GL13+txn/uS8WgluP+sTBW8RiSdojyUI\nEyHuC5e0tE1ERERE5ONAPxmLiMiOZZpsnDAXAKu7H0MZmUVt9WNg7D7pcw07Oa92glg8XeS6IeRd\nlzb7F09w5PXzqSVCwqesIhH5/+3de6wc1X3A8e/vPm1sjJ+Ay8MYMC5UJMRcOVYD/JEQMJACaUoF\nTYUbt6JUQSqkLxBRS9u/kipUaktDSQohVVJISKK4UtuERukjUYEY6mAMGNuUlljG5hVMCvGL0z/m\n7N7Z693r63v37u7d/X6k0cycnRmf0fx8ZvZ3z5yVJEkVJoskSS2XTlkDwAnHDk7uADF6+1q4aAm8\nun30s1nHFfPND3HygtEk0MoTa19Je3NfMV7S7NjPO76CJkmSJFWZLJIktdzx8+cC8K7FURQse18x\nX7VuYgcoJYvmzZ0LP3vF6GeVZNEL/0Hfrid435nFmEa/ceHyuoeazU/tWSRJkiSVmCySJLVeX/FK\nWLz9Oiw+C67/Jty2Ez705xPbP2J0eWBWbZJpeN7o8ts/5if7DgGweO4wv3fpysMOdUX/Y8x9c8dR\nn4IkSZLUrUwWSZJaLyeLePlZeOU56B+E4bk1YxEdUf9wMR+YVZs8qjlG4sDBd/ja0B8x8oXlXL/m\n1ClXXZIkSep2JoskSa3XN3DkbY6kf6iYDwzXlpd+KY3//GvO3reJ8/u2AXDsjn/gorOWTP3fliRJ\nkrqYySJJUus1JVmUB8cemFXM86DZNT2LdnyHz7z1ydH1h9bTX+qEJEmSJOlwTXhalyTpKJWTRVff\nPbljjO1Z9LF/hJTgnYPj/9NRmy3am2Yzb/VHJ1cHSZIkqQvZs0iS1HrlZNGiMyd3jJ+8VMwrPYv6\n+qF/AAZnwcV/3HC3tW98hQ/2bayuD/AODPpraJIkSVKFySJJUuv1l5JFS989tWPVe6Xtgpvhxu/X\n3fya1+/hc0N35rXEMPtHB8uWJEmSZLJIktQGh0qvig0MTfFgqX7xBHosDXCI/kijvZMkSZIkmSyS\nJLXBof1TP8aiFcW8Qa6IwVlww7+Oe4jb35sHyd7y9anXR5IkSeoSJoskSa13aN/UjzF7QTGfs3ic\nf+fAuIdYd+ZPi4U9T0+9PpIkSVKXMFkkSWq9ShJn7omTP8ZHPg8X3AInvmucf6fUg2nhGTUfzT9m\nkL7jVxYrH/zTyddDkiRJ6jImiyRJrbfs54v5NfdN/hgLlsHFd0DfOLeyJWePLo+sr/lo31tvwoG3\ni5WFyydfD0mSJKnLmCySJLXe/FPhjjdGk0bTZc4imHdysbz8Qrj6s9WPnpm1Hj7/gWIl+qe3HpIk\nSdIMYrJIktTdKuMjDc6Bd1/Hvhjme4d+rnabvoHW10uSJEnqUD4dS5K6W2XcoqE5EMHQKas4d1+C\n3aVtxnuVTZIkSeoxJoskSd2tMpj20DEARPRz3KxUu409iyRJkqQq/5QqSepuKy4p5oNFsoi+Pji4\nr3YbxyySJEmSqkwWSZK624f/Bm7eDP2DxXr0w769tdv0D7W+XpIkSVKHMlkkSepug7OKX1+riD54\n5bnabSqJJEmSJEkmiyRJPWb//x1edvzZra+HJEmS1KFMFkmSesuLjxxeNji79fWQJEmSOpTJIklS\n7zrvV+GWp9tdC0mSJKmjTChZFBFrI2JrRGyPiFvrfH5jRGyOiE0R8b2IOCeXD0bE/fmzZyLitmaf\ngCRJk3blX8JxJ7W7FpIkSVJHOWKyKCL6gbuAy4BzgOsqyaCSL6eUzk0pnQd8Grgzl18DDKeUzgXO\nB34zIk5rUt0lSTp61z1YzFffAH12sJUkSZLGGpjANquB7Sml5wEi4gHgKqDabz+lVP4N4jlAqnwE\nzImIAWA2sB8Y83vFkiS10Mq1cMcb7a6FJEmS1LEmkiw6CXixtP4j4L1jN4qIjwOfAIaA9+fihygS\nS7uAY4BbUkqvTaXCkiRJkiRJmj5N63+fUrorpXQG8AfAJ3PxauAQ8DPAcuB3IuL0sftGxA0RsTEi\nNr788svNqpIkSZIkSZKO0kSSRTuBU0rrJ+eyRh4Ars7LvwL8c0rpQEppD/B9YGTsDimle1JKIyml\nkSVLlkys5pIkSZIkSWq6iSSLfgCsiIjlETEEXAtsKG8QEStKq1cA2/Ly/5JfSYuIOcAa4NmpVlqS\nJEmSJEnT44hjFqWUDkbETcC3gH7g3pTSloj4E2BjSmkDcFNEXAwcAF4H1uXd7wLui4gtQAD3pZSe\nnI4TkSRJkiRJ0tRFSunIW7XQyMhI2rhxY7urIUmSJEmS1DUi4vGU0mFDA9XTtAGuJUmSJEmSNPOZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVZkskiRJkiRJUpXJIkmSJEmSJFWZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVZkskiRJkiRJUpXJIkmSJEmSJFWZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVUVKqd11qBERbwJb210PdZzFwCvt\nroQ6krGheowL1WNcqB7jQvUYF6rHuFA9MykulqWUlkxkw4HprskkbE0pjbS7EuosEbHRuFA9xobq\nMS5Uj3GheowL1WNcqB7jQvV0a1z4GpokSZIkSZKqTBZJkiRJkiSpqhOTRfe0uwLqSMaFGjE2VI9x\noXqMC9VjXKge40L1GBeqpyvjouMGuJYkSZIkSVL7dGLPIkmSJEmSJLVJRyWLImJtRGyNiO0RcWu7\n66PpFRGnRMR3I+LpiNgSEb+dy++IiJ0RsSlPl5f2uS3Hx9aIuLRUbux0kYh4ISI25+u/MZctjIiH\nI2Jbni/I5RERf5Gv/ZMRsap0nHV5+20Rsa5d56Opi4iVpTZhU0TsjYibbS96T0TcGxF7IuKpUlnT\n2oeIOD+3P9vzvtHaM9RkNIiLP4uIZ/O1/0ZEzM/lp0XE26V24+7SPnWvf6MYU2drEBdNu29ExPKI\neDSXPxgRQ607O01Wg7h4sBQTL0TEplxue9EjovF30959xkgpdcQE9AM7gNOBIeCHwDntrpfTtF7z\npcCqvHws8BxwDnAH8Lt1tj8nx8UwsDzHS7+x030T8AKweEzZp4Fb8/KtwKfy8uXAPwEBrAEezeUL\ngefzfEFeXtDuc3NqSnz0Ay8By2wvem8CLgJWAU+VyprWPgCP5W0j73tZu8/ZadJxcQkwkJc/VYqL\n08rbjTlO3evfKMacOntqEBdNu28AXwGuzct3A7/V7nN2mlxcjPn8M8Af5mXbix6ZaPzdtGefMTqp\nZ9FqYHtK6fmU0n7gAeCqNtdJ0yiltCul9ERefhN4BjhpnF2uAh5IKe1LKf03sJ0iboyd3nAVcH9e\nvh+4ulT+xVR4BJgfEUuBS4GHU0qvpZReBx4G1ra60poWHwB2pJT+Z5xtbC+6VErp34HXxhQ3pX3I\nn81LKT2Siqe6L5aOpQ5WLy5SSt9OKR3Mq48AJ493jCNc/0Yxpg7WoL1o5KjuG7lHwPuBh/L+xsUM\nMV5c5Ov6y8Dfj3cM24vuM8530559xuikZNFJwIul9R8xfuJAXSQiTgPeAzyai27K3fnuLXXdbBQj\nxk73ScC3I+LxiLghl52QUtqVl18CTsjLxkXvuZbahzjbCzWrfTgpL48t18y3nuKvuBXLI+K/IuLf\nIuLCXDbe9W8UY5qZmnHfWAT8uJSQtL3oDhcCu1NK20plthc9Zsx30559xuikZJF6VETMBb4G3JxS\n2gt8FjgDOA/YRdEVVL3lgpTSKuAy4OMRcVH5w5yN96cce1AeD+JK4Ku5yPZCNWwfNFZE3A4cBL6U\ni3YBp6aU3gN8AvhyRMyb6PGMsRnP+4bGcx21f5Cyvegxdb6bVvXa9eykZNFO4JTS+sm5TF0sIgYp\n/jN+KaX0dYCU0u6U0qGU0jvA5yi6/0LjGDF2ukxKaWee7wG+QREDu3P3zUrX3z15c+Oit1wGPJFS\n2g22F6pqVvuwk9pXlYyPGS4ifg34EPDR/JBPfs3o1bz8OMV4NGcx/vVvFGOaYZp433iV4rWTgTHl\nmqHytfxF4MFKme1Fb6n33ZQefsbopGTRD4AV+VcFhiheM9jQ5jppGuV3gv8WeCaldGepfGlpsw8D\nlV8q2ABcGxHDEbEcWEExSJix00UiYk5EHFtZphig9CmKa1r5NYF1wDfz8gbg+vyLBGuAN3JX0W8B\nl0TEgtzF/JJcppmt5i9+thfKmtI+5M/2RsSafI+6vnQszTARsRb4feDKlNJbpfIlEdGfl0+naB+e\nP8L1bxRjmmGadd/IycfvAr+U9zcuZr6LgWdTStVXhWwvekej76b08jPG0YyGPd0TxYjiz1FkbG9v\nd32cpv16X0DRje9JYFOeLgf+DticyzcAS0v73J7jYyul0eONne6ZKH5t5Id52lK5nhRjA3wH2Ab8\nC7AwlwdwV772m4GR0rHWUwxQuR34WLvPzWnKsTGH4i+5x5XKbC96bKJIFu4CDlC87//rzWwfgBGK\nL487gL8Cot3n7DTpuNhOMW5E5Rnj7rztR/L9ZRPwBPALR7r+jWLMqbOnBnHRtPtGfmZ5LMfaV4Hh\ndp+z0+TiIpd/AbhxzLa2Fz0y0fi7ac8+Y1QCWpIkSZIkSeqo19AkSZIkSZLUZiaLJEmSJEmSVGWy\nSJIkSZIkSVUmiyRJkiRJklRlskiSJEmSJElVJoskSZIkSZJUZbJIkiRJkiRJVSaLJEmSJEmSVPX/\n8lwR3hyQgDYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAJcCAYAAADKNbH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8pGld7/3vr/ZUlkrS6SW9Dsz0\nAMMwM+DA4KBH3BAQX+jxqIjLqHhGz4MePQ963FBxQfE8B1Afz1HhoCAyICoIIioICOLADDPMwmzM\nPt3pTtLpLFVJaq+6zh/3XenqTNKpSqrqruXzfr361cld21WVpPLN77ru32XOOQEAAKC1QkEPAAAA\noB8RsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZaAsz+xMz+9UW3ddxM1szs7D/+b+a\n2Y+34r79+/tHM7upVffXxOP+tpmdN7O5Bq/vzOwK/+OLXl8z+y9mNu+/TvvM7CVm9oj/+Xe26zkE\nwcxeamYzQY+j35nZm8zsLzv0WE+a2bd04rG2eOwfMbPP132+ZmbP3MX9/ICZfaK1o0OvI2Shaf4b\nYs7MVs1sxcxuNbOfNLON7yfn3E86536rwfu65Jurc+6Uc27EOVdpwdif9ovDOfcK59x79nrfTY7j\nuKQ3SLrKOXeo2dvXv75mFpX0Nkkv81+nRUm/KemP/M//rpVj72X9HNA2hwXsjv8z8/ilrmNml/l/\n9ETqbvc+59zL2j9C9BJCFnbrO5xzo5JOSHqLpF+Q9K5WP0j9m1ifOS5p0Tl3rgX3dVBSQtL9dcdO\nbPq8YX38mqPP8b2LbkPIwp4459LOuY9K+j5JN5nZ1ZJkZu82s9/2P54ys4/5Va8lM/s3MwuZ2Xvl\nhY2/90v0/73uL8TXmdkpSZ/e6q9GSZeb2e1mljGzj5jZpP9YT6tU1KplZvZySb8s6fv8x7vHv3xj\n+tEf1xvN7CkzO2dmf2FmKf+y2jhuMrNT/lTfr2z32phZyr/9gn9/b/Tv/1skfVLSYX8c797m9j9v\nZrNmdtbMfmzTZe/2pxuvlPRV//CKmX3azB6T9My61zXuj+Vd/v2d8W9bm379ETP7dzN7u5ktSnqT\nf/zHzOxBM1s2s382sxN1j+/86uUj/tf1f5mZ1V3+n/3brprZA2b2Av/4YTP7W/81ecLM/mvdbV5k\nZnf4X9N5M3vbdq+tf/1f9r8GT5rZD9Qdj5vZ//S/RvPmTa0OmdmwpH+se93X/PHkzGzKv+2vmFnZ\nzMb8z3/LzH7/Uvdb97ivMrO77UJ195q6y540s58zs3vNLG1mf2VmiW2e1+X+13HRf37vM7PxusuP\nmdmH/Ndw0cz+yMyeI+lPJH2t/7xW/OteNLVuT58a+wMzO+2/5nea2ddf6jWvu92EeT/TC/73x8fM\n7Gjd5f/qv3b/7n8PfKL2GvuX/5B5PxOLdomfIf+67/Zf60/69/XZLb4XX29mj0h6xD/2bP/6S2b2\nVTP73rrr7zOzj/rP+XZJl296vPpp+SEze6s/1rSZfd7/mn/Ov/qK/3p/7Rav7Y1m9iX/dl8ysxsb\nfX3QR5xz/ONfU/8kPSnpW7Y4fkrSf/E/frek3/Y//l15vwCi/r+vl2Rb3ZekyyQ5SX8haVjSUN2x\niH+df5V0RtLV/nX+VtJf+pe9VNLMduOVFyD+ctPl/yrpx/2Pf0zSo/JCyoikD0l676axvdMf17WS\nCpKes83r9BeSPiJp1L/tw5Jet904N9325ZLm657jLf5jX7HF63vR67PN6/phSX/q39cBSbdL+gn/\nsh+RVJb005Ii/nN7tf86PMc/9kZJt9bdn5P0MUnj8oLygqSX+5d9j//1eaEkk3SFvMpaSNKdkn5N\nUsx/jR+X9G3+7b4g6Yf8j0ckvXib1+al/njfJiku6RskrUt6ln/52yV9VNKk/9r/vaTfvcT3x+ck\nfbf/8SckPSbpFXWXfVcD9/t8Seck3SApLOkm/2sQr/t63C7psH/7ByX95DbP7wpJ3+o/t/3+GH7f\nvyws6R5/LMPyKphfV/d1/Px239tbXUfSD0ra53+N3yBpTlJiu5+Vutvtk/TdkpL+a/HXkv5u0+M+\nJulKed9P/yrpLf5lV0lak/Qf/Of4Nv/r+bT3lLrv9dW66//Bpufg5P3RMuk/1rCk05J+1H9ez5d0\nXt7UvCR9QNIH/etdLe97dfP91X7O/pc/9iP+a3+jP4bL9PSfuY3X1h/LsqQf8sfw/f7n+3Z6ffjX\nX/+oZKGVzsp7c9msJGla0gnnXMk592/Of6e5hDc559adc7ltLn+vc+4+59y6pF+V9L3mV2b26Ack\nvc0597hzbk3SL0l6jV1cRfsN51zOOXePvF94126+E38sr5H0S865Vefck5LeKu9NtxHfK+nP657j\nm3b7hMzsoKRXSvpZ/zU9J++X9GvqrnbWOff/O+fK/mv+k/ICxIPOubKk35F0XX0FQd4vhRXn3ClJ\nn5F0nX/8xyX9D+fcl5znUefcU/JC137n3G8654rOW/fyzrpxlCRdYWZTzrk159wXd3hqv+qcKzjn\nPivpH+R9D5ikmyX9N+fcknNu1R/7ay5xP5+V9A3+1/gaSX/of57wx/y5Bu73Zkl/6py7zTlXcd4a\nv4KkF9c9zh86584655bkBbTrtAX/9fqk/9wW5IWQb/AvfpG8oPbz/tcy75zb9Tos59xfOucW/a/7\nW+UFiGc1cLtF59zfOuey/mvx5rox1vy5c+5h//vpg7rwfP+TpI855z7nnCvI+/mt7vCQ/1B3/V+R\nV7E7Vnf57/pfl5ykV0l60jn35/7zukveH2Lf4/9cfrekX/Nfv/skbbke07w1pj8m6Wecc2f8r+ut\n/hh28u2SHnHOvdcfw/slPSTpOxp4fdBHCFlopSOSlrY4/v/Jq4p8wsweN7NfbOC+Tjdx+VPyKmSt\nKLcf9u+v/r4j8tY91dSfDZiVV3XZbMof0+b7OtLEODY/x9064Y9l1p/KWpFX1TpQd53Nr/cJSX9Q\nd/0leVWp+vFv9zock/dX+lbjOFy7T/9+f1kXXtvXyfvL/iF/euVVl3hOy374rHlK3mu2X1515c66\nx/gn//h2PiuvwvUCSV+RVxX5BnkB6VHnnUiw0/2ekPSGTc/tmD+mmka+b2RmB83sA+ZN62Yk/aUu\nfG8fk/SUH3z3zJ/CfNCf0lqRlFIDP0dmljSzP/Wn0TLyqm3jm/7Q2e75XvS97X8dF3d4yPrrr8n7\nfjy81eXyvhY3bPpa/ICkQ/K+XhE19rM1Ja9SuNX38k42v4/UHqeRnx/0ERYJoiXM7IXy3kCe9le1\n/5fuG+T9Erpa3jqrLznnPiWv5L6VnSpd9X/FHpdXBTkvb9ooWTeusC7+BbvT/Z6V9yZdf99leVN3\nR7e8xdbO+2M6IemBuvs60+DtZ/X057hbp+VVVaYu8ct58+tyWtKbnXPv2+XjXb7N8Seccye3HIBz\nj0j6fr+C8B8l/Y2Z7dsUpmomzGy47rLjku6T97rnJD3XObfVa73V1/9WedWb75L0WefcA+ad/flK\neQFMDdxv7fV681bPrUm/44/zec65JfNacPxR3eMcN7PIFl/LrZ7bRT8P8oKGJMlff/XfJX2zpPud\nc1UzW5YXpnfyBnmv2Q3OuTkzu07SXQ3edlbeNHRtHEl504+XsvGzYGYj8irmZ+sur3/up+V9Hb91\n85347wdl//4e8g9v97N1XlJe3vfyPZsua/Z9pPY4/7TD7dBnqGRhT8xszK84fEDe+o2vbHGdV5nZ\nFf6US1pSRRemB+blrc1p1g+a2VX+G/RvSvob57V4eFhSwsy+3bzWBm+UNwVSMy/pMqtrN7HJ+yX9\nNzN7hv9m/juS/qrZyoE/lg9KerOZjfrTbP+vvKpEIz4o6UfqnuOvN/P4m8YyK2+t0Vv9r1fIvMXV\nm6d36v2JpF8ys+dKG4v4v6fBh/w/kn7OzL7GPFf4z/92Satm9gv+guKwmV3tB3SZ2Q+a2X7nXFXS\nin9fl5pG+g0zi/lh4VWS/tq/7Tslvd3MDvj3e8TMvs2/zbykfeafzOC/Pll5a8Verwuh6lZ5U6af\n9a+z0/2+U9JPmtkN/nMe9r8HRxt8zeqNyluzlDazI5J+vu6y2+WFlLf4j5Ews5fUPbejZharu/7d\nkv6jX3m6Ql61sP5xyvLW00XM7NckjTUxxpy8hd+Tau77828kvcrMvs4f629q599Fr6y7/m9J+qJz\nbrtq98ckXWne4vqo/++FZvYc/+fyQ5Le5L8mV8lbP/c0/tf8zyS9zbwTJMLmLXCPy3vNqtr+vevj\n/hhea2YRM/s+eWvRPrbD80SfIWRht/7ezFbl/dX4K/LWjfzoNtc9Kelf5P3i+IKk/+2c+4x/2e9K\neqNf1v+5Jh7/vfIWxM7JK+n/V8k721HS/yPvF/0ZeX/J159t+Nf+/4tm9uUt7vfP/Pv+nKQn5P0l\n+9NNjKveT/uP/7i8Ct8t/v3vyDn3j5J+X9Kn5U21fnqXY6j5YXmLzR+QtwD3b+Stk9vu8T8s6fck\nfcCfDrpP0isaeSDn3F/LW6Nzi7wFy38nadL/BfcqeWtPnpBXKfg/8qaoJG+x//1mtiZvcfNrLrEm\nb85/HmclvU/eIvJaZeIX5L1mX/TH/i/y1xn513m/pMf977nalNNn5U2p3l73+agunEW20/3eIek/\ny6s4LfvX+5FGXq8t/Ia8qcu0vLVmH6pd4L+G3yFvcfwped/b3+df/Gl5bTvmzOy8f+ztkoryAth7\n5L1WNf8sr7LysLyprLx2nqav+X15C7bPS/qimqjQOOfulxdob5EXGJd18c/oVm6RF+SWJH2NvAX7\n293/qqSXyVsvd1be98rv6cIfWz8lb2puTt57yJ9f4nF/Tt4U8pf8x/49SSE/mL9Z0r/730f1a+/k\nTzG/Sl7Fb1FexfBVzrnzwkCpneEFAEDXMa/FyYxz7o1BjwVoFpUsAACANiBkAQAAtAHThQAAAG1A\nJQsAAKANuqJP1tTUlLvsssuCHgYAAMCO7rzzzvPOuUs1OZbUJSHrsssu0x133BH0MAAAAHZkZg3t\nwsF0IQAAQBsQsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaANCFgAA\nQBsQsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaANCFgAAQBsQsgAA\nANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaINI0AMAAGztlttONXS9195w\nvM0jAbAbVLIAAADagEoWAHSp937hST21lNVIPKKxRFQjiYhG4xFddXhMJ/YNBz08ADugkgUAXcg5\np0cX1jSWiGpqJK5ipaqnFtd162OL+vBdZ4IeHoAGUMkCgC6UyZdVqjg9//i4vv7k/o3jn35oXv/y\n4DnlihUNxcIBjhDATqhkAUAXms/kJUljQ9GLjtemCU8trXd8TACaQ8gCgC40l/ZDVuLikHVsIqmQ\nSU8tZYMYFoAmELIAoAvN+ZWs1KZKViwS0nRqSE8tErKAbkfIAoAuNO9XskYTT186e3xfUjPLWVWq\nrtPDAtAEQhYAdKG5TF7JWFjR8NPfpk9MJlWqOM2mcwGMDECjCFkA0IXmM/mnrceqqS1+Z8oQ6G6E\nLADoQnOZvMaGtu6ykxqKanwoqqcWOcMQ6GaELADoQnPpwraVLMlbl/XUUlbOsS4L6FaELADoMqVK\nVYvrhaf1yKp3Yt+wVvNlrWRLHRwZgGYQsgCgy5xbLcg5KXWJStaJyaQk6SmakgJdi5AFAF1moxHp\nNmuyJOlQKqF4JMTid6CLEbIAoMtst6VOvZCZjk0mCVlAFyNkAUCX2W5Lnc1OTCY1n8krk2ddFtCN\nCFkA0GXmM3nFIiElY+FLXu/EvmE5SXedWunMwAA0hZAFAF1mLpPXwbG4zOyS1zs2MSSTdOeTS50Z\nGICmELIAoMvMpfM6NJbY8XrxaFjTqYTuPLXcgVEBaBYhCwC6zHwmr4MNhCxJOr5vWHedWlG5Um3z\nqAA0i5AFAF3EOae5TF7TqcZC1onJpLLFih6aW23zyAA0a8eQZWYJM7vdzO4xs/vN7Df8488ws9vM\n7FEz+yszi/nH4/7nj/qXX9bepwAA/SOTKytfqjZcyTqxz2tKegfrsoCu00glqyDpm5xz10q6TtLL\nzezFkn5P0tudc1dIWpb0Ov/6r5O07B9/u389AEAD5vweWYcarGSNJ2OaTiV0x1OsywK6zY4hy3nW\n/E+j/j8n6Zsk/Y1//D2SvtP/+NX+5/Iv/2bb6RQZAICkupDVYCVLkl5wYkJ3n6aNA9BtGlqTZWZh\nM7tb0jlJn5T0mKQV51zZv8qMpCP+x0cknZYk//K0pH1b3OfNZnaHmd2xsLCwt2cBAH1iLp2TpIan\nCyXpmVPDOruSU4nF70BXaShkOecqzrnrJB2V9CJJz97rAzvn3uGcu945d/3+/fv3encA0Bfm0gVJ\nzYWsYxNJVZ10diXXrmEB2IWmzi50zq1I+oykr5U0bma13UuPSjrjf3xG0jFJ8i9PSVpsyWgBoM/N\nZfLaNxxTLNL42/PRySFJ0uklQhbQTRo5u3C/mY37Hw9J+lZJD8oLW//Jv9pNkj7if/xR/3P5l3/a\nOedaOWgA6FfN9MiqOTbhnWE4s8xm0UA3iex8FU1Leo+ZheWFsg865z5mZg9I+oCZ/bakuyS9y7/+\nuyS918welbQk6TVtGDcA9KW5dL7hMwtrplMJhUOm04QsoKvsGLKcc/dKev4Wxx+Xtz5r8/G8pO9p\nyegAYMDMZ/K69th4U7eJhEM6PJ5guhDoMnR8B4AuUShXtLhebKp9Q82xiSSVLKDLELIAoEucy3hn\nFh5KxZu+7dGJISpZQJchZAFAl5j3G5E2u/Bd8ipZ59cKyhUrrR4WgF0iZAFAl2h2S516xyY5wxDo\nNoQsAOgSc+nmt9SpOeb3yppZZsoQ6BaELADoEvOZvOKRkFJD0aZvW+uVxeJ3oHsQsgCgS8xlCjqU\nSsjMmr7t/tG44pGQTi8RsoBuQcgCgC4xn26+23uNmXGGIdBlCFkA0CXmMvldrceqOUqvLKCrNLKt\nDgCgzZxzXsjaxZmFt9x2SpKUL1X02MLaxuf1XnvD8T2PEUBzqGQBQBdYyZZULFd3PV0oSRPJmPKl\nKr2ygC5ByAKALlDrkTW9i0pWzcRwTJK0nC22ZEwA9oaQBQBdYG4P3d5rJpOELKCbELIAoAvMp3ff\n7b1mYtjrr7W8TsgCugEhCwC6wFwmLzPpwGjzm0PXDEXDikdCWsqWWjgyALtFyAKALjCfyWvfcFzR\n8O7fls1ME8kYlSygS9DCAQACsLnNwpefWlEsYlu2X2jGxHBMi2uFPd0HgNagkgUAXSCTL2ks0fye\nhZtNJqNazhblnGvBqADsBSELALpAOlfS2C42ht5sYjimUsVprVBuwagA7AUhCwACVqk6ZYsVjSb2\nvoJjwm/jsMLidyBwhCwACFiu5HVoT0bDe76vWkPSJXplAYEjZAFAwPL+NjhDsVZUsuiVBXQLQhYA\nBCzrV7KGWlDJikfCSsbCdH0HugAhCwACltuoZO09ZEnS5HBMy+usyQKCRsgCgIDlSt6ZgK1YkyV5\ni99ZkwUEj5AFAAGrVbISLapkTSRjSmdLqtIrCwgUIQsAAtbKNVmSt1F0xTllckwZAkEiZAFAwPLF\niuKRkMIha8n9Tfq9spbplQUEipAFAAHLlSotW/QuXeiVRRsHIFiELAAIWLZYadlUoSSND0VloiEp\nEDRCFgAELFdqbciKhEMaTUSoZAEBI2QBQMByxdZOF0relCENSYFgEbIAIGCtrmRJ3uJ3Fr4DwSJk\nAUDAcsWKkm2oZGVyJZWr1ZbeL4DGEbIAIEClSlXlqmt5JSs1FJWTtJort/R+ATSOkAUAAWp1t/ea\n1FBUkrRCQ1IgMIQsAAhQrdt7MhZp6f3WQlaakAUEhpAFAAGqVbJaPV04TsgCAkfIAoAAbYSsFk8X\nxqNhJaIhpXO0cQCCQsgCgADlWrw5dL3UUFRpFr4DgSFkAUCAckUvBLW6hYNUC1lUsoCgELIAIEC5\nUkUmKRZp/dtxaiiqNA1JgcAQsgAgQLlSRYloWCGzlt93aiiq9WJFpQoNSYEgELIAIEDZNnR7r0kN\nxSRJGc4wBAJByAKAAOVLrd8cuoaGpECwCFkAEKBssfWbQ9fQKwsIFiELAAKUK7avkjVGyAICRcgC\ngADlSu2rZMUiISVjYc4wBAJCyAKAgDjn2romS6r1yiJkAUEgZAFAQArlqqquPd3eawhZQHAIWQAQ\nkNq+he1q4SB5IWuFru9AIAhZABCQdu5bWDM+FFW+VNV6gT0MgU4jZAFAQLJ+JWsoFmnbY6SS3hmG\ns+l82x4DwNYIWQAQkE5Usmpd32fTubY9BoCtEbIAICC5jUpWe9dkSdLsCpUsoNMIWQAQkE5UssaG\nIjJJZ6lkAR1HyAKAgOSKFYVDpmjY2vYYkVBII/EIlSwgAIQsAAhIrlRWMhqWWftCluQtfqeSBXQe\nIQsAApIrVpRo43qsmrFElLMLgQAQsgAgINlSRck2rseqSSWjml3JyTnX9scCcAEhCwACki+2d9/C\nmvGhqNaLFWXyNCQFOomQBQAByZYqbT2zsGajjQPrsoCOImQBQEByHapkXQhZrMsCOomQBQABqFSd\nCuVqZytZtHEAOoqQBQAByJfa3+29ZjQRVciYLgQ6jZAFAAHoRLf3mnDIdHAsobNUsoCOImQBQABq\n+xYmO1DJkqTpVIJKFtBhhCwACEAnK1mSND0+xMJ3oMMIWQAQgKxfyepEx3dJOpxK6CwNSYGOImQB\nQABqlaxkLNKRx5tODalQrmo5W+rI4wEgZAFAIGprsjo1XXh4PCFJOrvCuiygUwhZABCAXLGsWCSk\ncMg68njTqSFJNCQFOomQBQAByJU604i0ZtqvZHGGIdA5O4YsMztmZp8xswfM7H4z+xn/+JvM7IyZ\n3e3/e2XdbX7JzB41s6+a2be18wkAQC/KFcsdDVlTw3FFw0avLKCDGllxWZb0Bufcl81sVNKdZvZJ\n/7K3O+f+Z/2VzewqSa+R9FxJhyX9i5ld6ZyrtHLgANDLcqXO7FtYEwqZDqUSmqOSBXTMjpUs59ys\nc+7L/serkh6UdOQSN3m1pA845wrOuSckPSrpRa0YLAD0i2yx0tFKliRNjw3pLGuygI5pak2WmV0m\n6fmSbvMP/ZSZ3Wtmf2ZmE/6xI5JO191sRluEMjO72czuMLM7FhYWmh44APSyfKnSsW7vNdPjdH0H\nOqnhkGVmI5L+VtLPOucykv5Y0uWSrpM0K+mtzTywc+4dzrnrnXPX79+/v5mbAkDPy5UCqGSlhjSX\nzqtapSEp0AkNhSwzi8oLWO9zzn1Ikpxz8865inOuKumdujAleEbSsbqbH/WPAQDkVbFKFdfRNVmS\ndGQ8oVLFaWGt0NHHBQZVI2cXmqR3SXrQOfe2uuPTdVf7Lkn3+R9/VNJrzCxuZs+QdFLS7a0bMgD0\ntkzO67re6ZB18uCoJOmB2UxHHxcYVI2cXfgSST8k6Stmdrd/7Jclfb+ZXSfJSXpS0k9IknPufjP7\noKQH5J2Z+HrOLASAC1ZqIavD04XPO5JSyKR7Tq/oG591oKOPDQyiHUOWc+7zkrZqSfzxS9zmzZLe\nvIdxAUDfSgdUyRqOR3TFgRHdc3qlo48LDCo6vgNAh61kg6lkSdK1R8d170xazrH4HWg3QhYAdFit\nkpWMNbJio7WuPTauxfWiZpZp5QC0GyELADosHdCaLMmrZEnSvTPpjj82MGgIWQDQYelsUSYpHu38\nW/CzDo0qFgnpnhnWZQHtRsgCgA5L50pKRMMK2VbnFLVXLBLSVdNjupvF70DbEbIAoMNWcqWOn1lY\n77pj47rvTFoVOr8DbUXIAoAOS+dKgazHqrn2WErZYkWPnlsLbAzAICBkAUCHrWSDrWRd4y9+p18W\n0F6ELADosEzAlaxn7BvWaCLC4negzQhZANBh6YDXZIVCpmuOpghZQJsRsgCgg5xz3sL3ACtZktcv\n66HZVeVLbC0LtAshCwA6aL1YUaXqlAywkiV567LKVacHZjOBjgPoZ4QsAOiglWxRUjDd3utdd4zF\n70C7EbIAoINqm0MHsW9hvUOphA6OxdleB2gjQhYAdNDSulfJCnq6UPKmDKlkAe1DyAKADlr2pwuT\n8eBD1nXHxvX4+fWNDasBtBYhCwA6aHmjkhXsdKEkXXM0JUn6ClOGQFsQsgCgg5ayJZkFv/Bdkq45\n4i9+p18W0BaELADooJVsUamhqMIhC3ooSiWjeubUMOuygDYhZAFABy2tFzWRjAU9jA10fgfah5AF\nAB20ki1pIhkNehgbrj02rvlMQXPpfNBDAfoOIQsAOqjbKlkvfuY+SdL7bz8V8EiA/kPIAoAOWskW\nNTHcPSHrOdNj+vbnTetPP/cY1SygxQhZANBBS9liV00XStIvvuLZqlal//HPDwU9FKCvELIAoENy\nxYrypWpXVbIk6dhkUj/2dc/Qh758RveyCB5oGUIWAHRIrdv7ZBetyap5/TderqmRmH77Yw/KORf0\ncIC+EHzLYQAYELV9C8eTsY2PO+WW23Ze2P51V+zX3919Rr/y4ft09ZHUttd77Q3HWzk0oG9RyQKA\nDlnJensETnbZdGHN15yY0MGxuP7p/jmVK9WghwP0PEIWAHTIkj9d2G0L32vCIdMrnzetpfWibn1s\nMejhAD2PkAUAHbJSC1ldWsmSpJMHRvWsg6P6zFfPaa1QDno4QE8jZAFAh2ysyRrqzkpWzSuuPqRC\nuaovP7Uc9FCAnkbIAoAOWV4vaiwRUSTc3W+9B8YSOjSW0MPzq0EPBehp3f2TDgB9ZDlb6tpF75td\neXBETy1mVShVgh4K0LMIWQDQIcvZosa7sEfWVq48OKqKc3psYS3ooQA9i5AFAB2ynC32TCXrxL5h\nxSMhfXWekAXsFiELADpkeb2k8S5t37BZOGS6fP+IHp5fpQM8sEuELADokOVssSu31NnOsw6NKp0r\n6dxqIeihAD2JkAUAHZAvVZRXU3CTAAAgAElEQVQtVrq6R9ZmVx4clSR9dY6zDIHdIGQBQAcsb3R7\n752QlRqK0soB2ANCFgB0wPJ6bd/C3liTVUMrB2D3CFkA0AG1SlavtHCooZUDsHuELADogFrI6pUW\nDjW0cgB2j5AFAB2wXNu3sEdaONSEQ6YrDtDKAdgNQhYAdMCSvyarlxa+11x5kFYOwG4QsgCgA5az\nRY3GI4p2+ebQW6GVA7A7vffTDgA9aDlb7KkeWfVo5QDsDiELADpgOVvq2ZAledUsWjkAzSFkAUAH\nLK8XNdFji97rXXlohFYOQJMIWQDQAb22b+FmJyaHFTbT6eVc0EMBegYhCwA6YHm92HONSOuFQ6bR\noYjSuVLQQwF6BiELANqsUK5ovVjpuS11NkslooQsoAmELABos5WsF0x6uZIlSWNDUWUIWUDDCFkA\n0GZL6725pc5mqaGoMvkSnd+BBhGyAKDNavsW9mK393qpoahKFceUIdAgQhYAtNlybUudHl+TNTbk\njX82nQ94JEBvIGQBQJvVKlm93MJBklKJiCRpjpAFNISQBQBttuyvyeqHhe+SNJchZAGNIGQBQJst\nZYsaiUcUi/T2W+5oIioT04VAo3r7Jx4AesBKtqTxHt5SpyYcMo0kIppL0/UdaAQhCwDabGm92PPt\nG2pSQ1EqWUCDCFkA0GYr2WLPt2+oGUtENc+aLKAhhCwAaLOlbFETfTBdKFHJAppByAKANlteL2mi\nT6YLx4aiWs2XtVYoBz0UoOsRsgCgjYrlqtYK5b6ZLkwN0SsLaBQhCwDaaKW2pU4fVbIkQhbQCEIW\nALTRctbfUqdf1mQlaEgKNIqQBQBttLTeH1vq1FyoZNErC9gJIQsA2qjfpguj4ZAmkpxhCDSCkAUA\nbbRUC1l9UsmSpEOpIdZkAQ0gZAFAG13YHLo/1mRJ0nQqwZosoAGELABoo+VsSclYWIloOOihtMzB\nsQSVLKABhCwAaKPl9f7ZUqdmOpXQ4npR+VIl6KEAXY2QBQBttJwtamK4f6YKJelQKiFJOpcpBDwS\noLvtGLLM7JiZfcbMHjCz+83sZ/zjk2b2STN7xP9/wj9uZvaHZvaomd1rZi9o95MAgG61lC31ZSVL\nkmZp4wBcUiOVrLKkNzjnrpL0YkmvN7OrJP2ipE85505K+pT/uSS9QtJJ/9/Nkv645aMGgB6xki1q\nsk/aN9QcGvNCFovfgUvbMWQ552adc1/2P16V9KCkI5JeLek9/tXeI+k7/Y9fLekvnOeLksbNbLrl\nIweAHrDUh2uyatOFLH4HLq2pNVlmdpmk50u6TdJB59ysf9GcpIP+x0ckna672Yx/bPN93Wxmd5jZ\nHQsLC00OGwC6X6lS1Wq+fzaHrhlNRDUSj9CQFNhBwyHLzEYk/a2kn3XOZeovc845Sa6ZB3bOvcM5\nd71z7vr9+/c3c1MA6AkrtX0L+2zhu+RVs6hkAZfWUMgys6i8gPU+59yH/MPztWlA//9z/vEzko7V\n3fyofwwABspyH3Z7r6EhKbCzRs4uNEnvkvSgc+5tdRd9VNJN/sc3SfpI3fEf9s8yfLGkdN20IgAM\njNrm0P0YsmhICuws0sB1XiLphyR9xczu9o/9sqS3SPqgmb1O0lOSvte/7OOSXinpUUlZST/a0hED\nQI84v+b1kdo/Gg94JK03nUro3Gpe5UpVkTAtF4Gt7BiynHOfl2TbXPzNW1zfSXr9HscFAD1vYbV/\nQ9ahVEJVJy2sFTSdGgp6OEBX4s8PAGiThdWCIiHT+FD/LXyfpo0DsCNCFgC0ycJqQVMjcYVC200G\n9K6DY4QsYCeELABok4W1Ql9OFUramCKkVxawvUYWvgMAGnTLbac2Pn54blWjiehFx/rFRDKqWCRE\nGwfgEqhkAUCbrBbKGk3059+yZqbpVIJKFnAJhCwAaIOqc1ovlDXSpyFL8tZlzROygG0RsgCgDbLF\niqpOGo33b8iaTiU0m8kFPQygaxGyAKANVvPevoUjif5r31BzKJXQfLqgarWprWuBgUHIAoA2WMuX\nJfV5JWssoWKlqiV/j0YAFyNkAUAbrBb8kNXHa7IO0ZAUuCRCFgC0wapfyernhe+H/F5ZhCxga4Qs\nAGiDtXxJsUhI8Ug46KG0TW1rnVl6ZQFbImQBQBusFsp9vR5LkqZG4gqHTHNpzjAEtkLIAoA2WM33\nd48sSQqHTAdG45pLF4IeCtCVCFkA0AZr+f6vZEnS5HBMy5xdCGyJkAUAbbBaKPV1j6yayeGYltYJ\nWcBWCFkA0GKlSlX5UrWv2zfUTCSpZAHbIWQBQIutFfq/EWnN5HBMS2uELGArhCwAaLG1AeiRVTM5\nHNNqoaxiuRr0UICuQ8gCgBZb3dhSp//XZE0MxyRJK0wZAk9DyAKAFlst1DaHHoBKVtILWexfCDwd\nIQsAWmxjunAA1mRNDHvVOs4wBJ6OkAUALbZaKCsZCyscsqCH0nb7huOSCFnAVghZANBia/nyQLRv\nkC5UspYJWcDTELIAoMVW86WBWPQueX2yJGlpvRTwSIDuQ8gCgBZbK/T/voU10XBIo4kIDUmBLRCy\nAKCFnHNaHZB9C2vYWgfYGiELAFqoUK6qXHUDU8mSCFnAdgbnXQAAOmCjEWkfh6xbbjt10ee5YkVz\n6fzTjr/2huOdHBbQdahkAUALbTQiHZCF75KUjEWULVaCHgbQdQhZANBCawNQydpsOBbWeqEs51zQ\nQwG6CiELAFrowr6FAxSy4hGVq07FCptEA/UIWQDQQmuFssJmGoqFgx5KxyT955otMGUI1CNkAUAL\nrea9Hllm/b+lTs2wX7VbL5YDHgnQXQhZANBCa4XSQK3HkuoqWSx+By5CyAKAFlrNlzUyQOuxJGk4\n5leyClSygHqELABooUHaHLrmwnQhlSygHiELAFqkUnXevoUD1CNLkuLRkEImZalkARchZAFAiyyu\nF+Q0WD2yJClkpqFYhEoWsAkhCwBaZGG1IEkDtyZL8hqSZjm7ELgIIQsAWqQWsgatkiV5W+us0ycL\nuAghCwBa5ELIGqw1WZI0HA/TJwvYhJAFAC2ysDbI04URFr4DmxCyAKBFFlYLikdCikUG7601GQ8r\nW6yoyibRwIbBeycAgDZZWC0MZBVL8ipZTlK+xLosoIaQBQAtsrBaGMhF75K3Jktik2igHiELAFpk\nYa2gkQFc9C55ZxdKbBIN1CNkAUCLLKwWNDrA04WSaOMA1CFkAUAL5EsVrQ7gvoU1ydp0IZUsYAMh\nCwBaYJC7vUt1lSy21gE2ELIAoAVqPbIGtZIVi4QUDZvW6ZUFbCBkAUALbFSyBnThu+Qtfme6ELiA\nkAUALXAuk5c0uJUsydskmoXvwAWELABogblMXpGQDeyaLElKxqlkAfUIWQDQArPpvA6MxhUyC3oo\ngUnGwix8B+oQsgCgBeYzeR1KJYIeRqCG4xEWvgN1CFkA0AKzaULWcCysQrmqcrUa9FCArkDIAoA9\ncs5pLp3XobGhoIcSqNrWOlmmDAFJhCwA2LPVQlnZYkXTg17J8hf9s0k04CFkAcAezaW99g0HBz1k\nxbytddgkGvAQsgBgj2oha9ArWcl4bZNoQhYgEbIAYM9qIevQ2GCHrFolizVZgIeQBQB7NOuHrANj\n8YBHEqzkxibRVLIAiZAFAHs2l8lr33BM8Ug46KEEKhwyJaIhFr4DPkIWAOzRXDo38D2yaoZjESpZ\ngI+QBQB7NJcpDPyi95pkLEwlC/ARsgBgj+bSOR0c8EXvNcNxKllADSELAPYgX6poOVuikuVLxiKc\nXQj4CFkAsAfzGb8RKZUsSdJwPKz1QlnOuaCHAgSOkAUAezC70Yh0sPctrBmORVSuOhUrbBINELIA\nYA9qlaxDqcHukVWTrDUkZfE7QMgCgL2oVbIOUcmSdGGTaBa/A4QsANiTuXReI/GIRvxwMeiSbK0D\nbNgxZJnZn5nZOTO7r+7Ym8zsjJnd7f97Zd1lv2Rmj5rZV83s29o1cADoBnPpPI1I6wyzSTSwoZFK\n1rslvXyL4293zl3n//u4JJnZVZJeI+m5/m3+t5kN9j4TAPraXCZP+4Y6wxv7F1LJAnYMWc65z0la\navD+Xi3pA865gnPuCUmPSnrRHsYHAF1tLp2nfUOdeDSkkElZKlnAntZk/ZSZ3etPJ074x45IOl13\nnRn/2NOY2c1mdoeZ3bGwsLCHYQBAMMqVqs6tUsmqFzLTUCxCJQvQ7kPWH0u6XNJ1kmYlvbXZO3DO\nvcM5d71z7vr9+/fvchgAEJzza0VVHY1INxuOhZXl7EJgdyHLOTfvnKs456qS3qkLU4JnJB2ru+pR\n/xgA9J3ZdE6SqGRtMhyPaI3pQmB3IcvMpus+/S5JtTMPPyrpNWYWN7NnSDop6fa9DREAuhNb6mxt\nOB7h7EJA0o6NXczs/ZJeKmnKzGYk/bqkl5rZdZKcpCcl/YQkOefuN7MPSnpAUlnS651zTMwD6EsX\nttQhZNUboZIFSGogZDnnvn+Lw++6xPXfLOnNexkUAPSCuUxesXBIk8OxoIfSVUbiEeVLVRXKFcUj\ndPHB4KLjOwDs0lw6r4OpuMws6KF0lVG/IeniWjHgkQDBYh8IAGjALbedetqxe06nFTbb8rJBVuv6\nfn6toMPj7OmIwUUlCwB2KZMvaWwoGvQwus5I4kLIAgYZIQsAdsE5p0yupFSCkLXZyEYli+lCDDZC\nFgDsQq5YUbnqqGRtYSROJQuQCFkAsCvpfEmSCFlbiEVCioVDOr9KJQuDjZAFALuQyXkhK0XI2tJI\nIkIlCwOPkAUAu5DOec02xxKcpL2VkXhEi+uELAw2QhYA7EI6V5JJGmXh+5ZG4hGmCzHwCFkAsAuZ\nfEkjiYjCIRqRbmU4znQhQMgCgF3I5Eqsx7qEkXhES9miypVq0EMBAkPIAoBdSOdKGmOqcFsjiYic\nk5azpaCHAgSGkAUAu0C390ujVxZAyAKAphXKFeVLVaYLL4GQBRCyAKBpGdo37IiQBRCyAKBpaRqR\n7qgWshbZvxADjJAFAE3KsKXOjhJRb2udBSpZGGCELABoUm1LHc4u3J6Zad9IjIakGGiELABoUjpX\n0lA0rFiEt9BLmRqJsyYLA413CABoEo1IGzM1EmP/Qgw0QhYANCmdL2lsiDMLdzI1Eme6EAONkAUA\nTUrnylSyGrBvJK7F9YKcc0EPBQgEIQsAmlCuVLVeKHNmYQOmRmIqVdxGywtg0BCyAKAJq3mvEWmK\nMwt3tH80Lkk6T68sDChCFgA0gUakjZsaqYUsFr9jMBGyAKAJaRqRNmzfSEwSIQuDi5AFAE3IUMlq\n2EYla5WQhcFEyAKAJqRzJcUiIcVpRLqjiWRMIZMW11mThcHEuwQANCGdKymViMrMgh5K1wuHTJPD\ndH3H4CJkAUAT6PbenKmRmBZoSIoBRcgCgCZk8vTIagb7F2KQEbIAoEGVqtMqW+o0hf0LMcgIWQDQ\noLVCWVXHmYXNYP9CDDJCFgA0aKN9A93eG7ZvJK5cqaL1QjnooQAdR8gCgAbVur2zJqtxUzQkxQAj\nZAFAgzJ5GpE2a4r9CzHACFkA0KB0rqRIyJSMhYMeSs/Yz/6FGGCELABoUDpX0tgQjUibwf6FGGSE\nLABoUCZX0hiL3puyb7i2fyHThRg8hCwAaFA6V1KKHllNiUVCSg1F6ZWFgUTIAoAGOOeUyZdZ9L4L\nUyMxpgsxkAhZANCA9WJFlaqjfcMu7KMhKQYUIQsAGrDRiJSQ1bT97F+IAUXIAoAGbDQiZeF705gu\nxKAiZAFAA9JUsnZtaiSuTL6sQrkS9FCAjiJkAUADMvmSQiaNJDi7sFn7/Iaki3R9x4AhZAFAAzK5\nkkYTUYVoRNo09i/EoCJkAUADvB5ZTBXuRm3/QipZGDSELABoQDpXpn3DLtX2L1ygkoUBQ8gCgB04\n55TJlZRiPdausH8hBhUhCwB2kMmXVaxUqWTtUjIWUTIWpiEpBg4hCwB2MJ/JS6J9w15MjcTZvxAD\nh5AFADuYTROy9oqGpBhEhCwA2MFcOidJTBfuwRT7F2IAEbIAYAez6bxM0igL33ft4FhCc/60KzAo\nCFkAsIO5dF7D8YgiId4yd+vIxJDSuZJW86WghwJ0DO8YALCDuUye9Vh7dHRiSJJ0ZiUX8EiAziFk\nAcAO5tJ51mPt0ZFxL2TNLBGyMDgIWQCwg9l0Xqkh1mPtxREqWRhAhCwAuIRsseztW5igkrUX+0fi\nikdChCwMFEIWAFzCnN8ji+nCvTEzHRkf0sxyNuihAB1DyAKASyBktc6RiSGdWaaShcFByAKAS5hj\nS52WOToxpBlCFgYIIQsALqG2pc4Ya7L27OhEUovrReWKlaCHAnQEp8sAwCXMpb0eWbEIf5M265bb\nTl30+VOL65KkP/3cYzowmtg4/tobjnd0XECn8K4BAJdwZiW30eMJezM+FJMkrWTp+o7BQMgCgEs4\nvZTVsUlCVitMDHshaznLRtEYDIQsANiGc04zyzkdnUgGPZS+MJqIKGRUsjA4CFkAsI3F9aJypYqO\nTVDJaoWQmcaTMSpZGBiELADYxuklr3EmlazWGR+KUsnCwCBkAcA2aj2djk0SslplPBnTCpUsDAhC\nFgBs4/RyrZLFdGGrTCSjWs2XVa5Ugx4K0HaELADYxsxyTpPDMQ3HaSnYKuPJmJykdI4pQ/S/HUOW\nmf2ZmZ0zs/vqjk2a2SfN7BH//wn/uJnZH5rZo2Z2r5m9oJ2DB4B2Or2UpYrVYhNJr3P+MuuyMAAa\nqWS9W9LLNx37RUmfcs6dlPQp/3NJeoWkk/6/myX9cWuGCQCdd2Y5p2Msem+p8WStISnrstD/dgxZ\nzrnPSVradPjVkt7jf/weSd9Zd/wvnOeLksbNbLpVgwWATqlW/R5ZNCJtqdRQVCYqWRgMu12TddA5\nN+t/PCfpoP/xEUmn66434x97GjO72czuMLM7FhYWdjkMAGiPhbWCipUq7RtaLBwyjQ1FqWRhIOx5\n4btzzklyu7jdO5xz1zvnrt+/f/9ehwEALVXrkUUj0tYbT0apZGEg7DZkzdemAf3/z/nHz0g6Vne9\no/4xAOgpF9o3UMlqtYlkTCs5Klnof7sNWR+VdJP/8U2SPlJ3/If9swxfLCldN60IAD1jZslrRMrZ\nha03nowqkyupUm16EgToKTs2fzGz90t6qaQpM5uR9OuS3iLpg2b2OklPSfpe/+ofl/RKSY9Kykr6\n0TaMGQDa7vRyVvtH40pEw0EPpe9MJGOqOimTL2nCP9sQ6Ec7hizn3Pdvc9E3b3FdJ+n1ex0UAARt\nZjnHeqw2Gfd7Za1kCVnob3R8B4AtnF7Osh6rTSaGvGC1zBmG6HOELADYpFypanYlr2P0yGqL1EYl\ni5CF/kbIAoBN5jJ5lauOSlabRMMhjcYjtHFA3yNkAcAmM8vemYVsqdM+40kakqL/EbIAYJONRqRM\nF7bNeDKmFSpZ6HOELADY5PRyTmbSdIqQ1S4TyahWciVVHb2y0L8IWQCwycxyVtNjCcUivEW2y3gy\npkrVaS1fDnooQNvwDgIAm8ws5Vj03mYT/hmGtHFAPyNkAcAmM8tZHWU9VluN+01IWZeFfkbIAoA6\nxXJVs5k8law2m9gIWVSy0L8IWQBQZzadk3NiS502i0VCSsbC9MpCXyNkAUCd00tejywqWe03kYxp\nJUclC/2LkAUAdWaW6ZHVKePJqJbXqWShfxGyAKDO6eWswiHTobFE0EPpe7VKVrVKryz0J0IWANSZ\nWc7p8HhCkTBvj+22bySmUsVpNpMPeihAW/AuAgB1Ti9l2bOwQw6MetXCR+ZXAx4J0B6ELACoc3o5\np6OcWdgRB0bjkqRHz60FPBKgPQhZAODLlypaWC1QyeqQ4XhEw7EwIQt9KxL0AAAgaLfcdkqSdG7V\nWxt0aim7cQztdWAsoUcIWehTVLIAwFfb4mVyOBbwSAbH/tG4HplflXOcYYj+Q8gCAN/SutcYs7av\nHtrvwGhcmXxZC6uFoIcCtBwhCwB8K9miwiHTaIKVFJ1SO8OQdVnoR4QsAPAtZUsaH4oqZBb0UAbG\ngTHvDEPWZaEfEbIAwHcuk9fUSDzoYQyU0XhEo4mIHjlHryz0H0IWAEgqlL32DUfokdVRZqaTB0b0\nyDyVLPQfQhYASDq7kpeTaEQagJMHRlmThb5EyAIASTPLWUnSURqRdtzJgyNaXC9unN0J9AtCFgDI\n2xh6fCiqkThnFnbaFQdGJHGGIfoPIQsAJJ1ZybEeKyC1kMXid/QbQhaAgZctlLW0XmSqMCCHU0NK\nxsIsfkffIWQBGHgzKzlJLHoPSihkuuLACNOF6DuELAADr7bo/cg4ISsohCz0I0IWgIE3s5zT1Ehc\niWg46KEMrCsOjGguk1cmXwp6KEDLELIADDTnnM4s55gqDNjJA6OSOMMQ/YWQBWCgzWXyWi2UCVkB\nO1lr48Did/QRQhaAgXbP6bQkmpAG7dhkUrFIiDYO6CuELAAD7d6ZFYVMmk4lgh7KQAuHTM+cGma6\nEH2FkAVgoN07k9ahsYSiYd4Og3by4KgeIWShj/CuAmBgOed078yKjjBV2BVOHhjRzHJO2WI56KEA\nLUHIAjCwnlzMKpNn0Xu3qC1+f+zcesAjAVqDkAVgYN07syKJTu/d4uRB9jBEfyFkARhY95xOKxEN\n6cAoi967wYl9w4qEjMXv6BuELAAD656ZFT33cErhkAU9FEiKhkO6bGqYxe/oG4QsAAOpXKnq/rNp\nXXM0FfRQUOckexiijxCyAAykh+fXlC9Vde3R8aCHgjonD4zoqcV15UuVoIcC7BkhC8BAqi16p5LV\nXU4eHFXVsYch+gMhC8BAumcmrdFERJftGw56KKjz3MNjkqT7z6YDHgmwd5GgBwAAQbjn9IquOZpS\niEXvgbvltlMbH1edUywS0ofvOqNK9cJ1XnvD8QBGBuwNlSwAA+f0UlYPzGb0kiumgh4KNgmZ6XAq\nobMr+aCHAuwZIQvAwPn7e89Kkr7jmsMBjwRbmR4f0mw6p6pzQQ8F2BNCFoCB89G7z+oFx8d1bJI9\nC7vRkdSQShWn86uFoIcC7AkhC8BAeWR+VQ/Nreo7rqWK1a0Oj3vbHJ1N5wIeCbA3hCwAA+Xv751V\nyKRvv2Y66KFgG/tH44qEjHVZ6HmcXQigb9WftSZJzjm974tP6bKpYf3LA+cCGhV2Eg6ZDqUSOrtC\nJQu9jUoWgIFxNp3X4nqRLu894HBqSGfTOTkWv6OHEbIADIx7T68obLbR8BLda3o8oXypquVsKeih\nALtGyAIwEKrO6d4zaZ08OKJkjJUS3e5IbfE7U4boYYQsAAPh1GJW6VxJ1zBV2BMOjiUUMkIWehsh\nC8BAuPfMiqJh03OmR4MeChoQDYd0YDRBGwf0NEIWgL5XqTp95UxGzz40pngkHPRw0KDD4wmdWcmz\n+B09i5AFoO89fn5N64WyrjmaCnooaMJ0akjrhbJW8+WghwLsCiELQN+793Ra8UhIVx5kqrCX0Pkd\nvY6QBaCvlatV3T+b1nMPjyka5i2vlxxOJSSx+B29i3ccAH3tiYV15UtVXX2YqcJeE4+GtW84xvY6\n6FmELAB97YHZjGLhkC4/MBL0ULALh8eHmC5EzyJkAehbVef04GxGJw+OMFXYo46MD2klW9LyejHo\noQBN410HQN86u5JTJl/WVdNso9Orpse9dVkPzGYCHgnQPEIWgL71wNmMQiY96xBnFfaqwynvDMP7\nzqQDHgnQPEIWgL71wGxGl00Ns1dhDxuORzQ+FNV9Z6lkofcQsgD0pSfOr+vcaoGpwj4wPT6k+89S\nyULvIWQB6EuffGBOkvQcQlbPOzye0BPn17VeoPM7egshC0Bf+sT98zqcSmgiGQt6KNijI6khOce6\nLPQeQhaAvrOwWtCdp5b1nMNUsfrB8X1JmUlfeHwx6KEATdlTyDKzJ83sK2Z2t5nd4R+bNLNPmtkj\n/v8TrRkqADTm0w/NyzmxHqtPJGMRXX04pVsfI2Sht7SikvWNzrnrnHPX+5//oqRPOedOSvqU/zkA\ndMwn7p/X0YkhHRpLBD0UtMiNl+/TXaeWlStWgh4K0LB2TBe+WtJ7/I/fI+k72/AYALCl9UJZ//bo\neb3sqkMys6CHgxa58YoplSpOX3pyKeihAA3ba8hykj5hZnea2c3+sYPOuVn/4zlJB7e6oZndbGZ3\nmNkdCwsLexwGAHg+9/CCiuWqXvbcLd960KNeeNmEIiFjyhA9Za8h6+uccy+Q9ApJrzez/1B/oXPO\nyQtiT+Oce4dz7nrn3PX79+/f4zAAwPOJB+Y1kYzq+hMsB+0nyVhEzz8+rlsfOx/0UICG7SlkOefO\n+P+fk/RhSS+SNG9m05Lk/39ur4MEgEaUKlV9+qFz+qZnH1SEDaH7zo2XT+m+M2mls6WghwI0ZNfv\nQmY2bGajtY8lvUzSfZI+Kukm/2o3SfrIXgcJAI24d2ZF6VxJ3/KcA0EPBW1w4+X7VHXSbU8wZYje\nsJc/9Q5K+ryZ3SPpdkn/4Jz7J0lvkfStZvaIpG/xPweAtrv10UWZSS9+5r6gh4I2eP7xCSWiIdZl\noWfsetdU59zjkq7d4viipG/ey6AAYDdufWxRV02PaWKYLu/9KBYJ6YWXTbIuCz2DRQsA+kK+VNGd\np5b1tVSx+tqNl0/p4fk1LawWgh4KsCNCFoC+8OVTyyqWq7rxCkJWP3uJ//WlmoVeQMgC0Be+8Nii\nwiHTCy+bDHooaKPnHk5pLBHRF1iXhR5AyALQF259bFHXHE1pNBENeihoo3DI9OJn7tO/U8lCDyBk\nAeh5a4Wy7jm9wnqsAXHj5ft0eimn00vZoIcCXNKuzy4EgCDdctupjY+/OreqctUpX6pedBz96cYr\npiR5U8THJpMBjwbYHpUsAD3v8fNrCodMx/mFOxBOHhjR1EicKUN0PUIWgJ73+MK6jk0kFYvwljYI\nzEw3Xr5Ptz62KG+LXOJH03cAABSMSURBVKA78Y4EoKflihWdXcnp8v3DQQ8FHfSSK/ZpYbWgxxbW\ngh4KsC3WZAHoaU+cX5OT9Mz9I0EPBW20ea3d8npRkvTWTzysrz+5f+P4a2843tFxAZdCJQtAT3ts\nYV3RsOnY5FDQQ0EHTQzHdGR8SPedSQc9FGBbhCwAPe3x82s6sW9YkRBvZ4PmeUdSOr2c26hqAd2G\ndyUAPWs1X9J8pqDLp1iPNYiuPpKSJN13lmoWuhMhC0DPeuL8uiTWYw2qyeGYjk4M6StMGaJLEbIA\n9KzHFtYVj4R0eJz1WIPqeUdSmlnOaYkpQ3QhQhaAnvX4wpqeMTWscMiCHgoCsjFlSDULXYiQBaAn\nrWSLWlwvMlU44CaSMR1jyhBdipAFoCfdfzYjSbryACFr0D3vSEpnVnJaXCsEPRTgIoQsAD3prtPL\nOjI+pANjiaCHgoDVpgypZqHbELIA9Jyvzq3q7Epezz8+HvRQ0AXGkzEdn0wSstB1CFkAes6H7ppR\nyKRrjhKy4HnekZRm03k9zl6G6CKELAA9pVJ1+ru7zujKg6MaibP9Kjy1KcOPf2U24JEAFxCyAPSU\nWx87r/lMQc8/PhH0UNBFUkNRnZhM6mP3ErLQPQhZAHrKh798RqOJiJ59aDTooaDLPO9oSg/NrerR\nc0wZojsQsgD0jPVCWf9435xedc1hRcO8feFiVx9Oyf5ve3ceHEd55nH8+8yMbusWtiVZlg/AF8bG\nCBsbs5gQCJCYwznKORY2LBBybHYrS+2SSmVDJbvLJqnU1iYEkqw3G4wTIORa45wmDk6IwfcB+HZ8\nSLIObF2WdY1m3v1j2kIYyZYtjVqj+X2qunqmp6fnGT3q1qN+u9/X4Jc6myUjhI5SIpIwfvN6Le3h\nCO+fV+p3KDIC5WSkcM2kAl7YdRznnN/hiKjIEpHE8bPtVUwsyOTqcl2PJX27Y04JB+tb2Vt7yu9Q\nRFRkiUhiqGluZ8OhkyybV4qZxiqUvt12xXiCAeOFncf9DkVERZaIJIZfbD+Oc3D3VWoqlP4Vjklj\n8aVFajKUEUFFloiMeM45fratioryfMoLs/wOR0a4pXNKqGxoZ0dlk9+hSJJTkSUiI96mww0cqG9l\n2bwJfociCeCWWeNIDQVYrSZD8ZmKLBEZ0bYda+SBlVsozk3nvVcW+x2OJICc9BRunHYJv9xVQySq\nJkPxj4osERmxNhw8wcdWbCQ/K5XnH1pIbkaK3yFJglg6p4T6U51sPHzS71AkianIEpER6cXddfzN\nDzZTlp/J859YyIT8TL9DkgRy0/RxZKYGeWGnOiYV/6jIEpERZ/XO4zy0aiszxmfz7IPXMjYn3e+Q\nJMFkpAa5eeY4fv16DV3dUb/DkSSlIktERpSnXz3K3z+7nXnl+ay6fwH5Wal+hyQJ6o45JTS1hfnz\nwRN+hyJJSkWWiIwI0ajjsV/v4Yu/eJ0bp43lqY/PJztd12DJxbv+skvISQ+pY1LxTcjvAEREOsIR\nHn5+J2t21bBgcgE3ThvLz7dX+x2WJKAfbTz2tueXj8tmzWs1zCnL6xlU/CMLJvoRmiQhFVki4qum\nti4eWLmFzUcaeeS26WSnhTRsjgyZKyfkseVoI/tqT3FFaa7f4UiSUXOhiPimsqGNZU9uYGdlM9/6\n8FU8dMNUFVgypKZckkV2WojNRxr8DkWSkIosEfFFRzjC/U9t4cSpTlbdv4Clc0r8DklGoYAZi6YW\ncqC+larGNr/DkSSjIktEfPHYr/awr+4U3/zwVcyfXOB3ODKKLZhSSHpKgJf2vel3KJJkdE2WiAyL\n3hck761tYeUrR7luaiHHmzrecbGyyFBKTwmyaGoR6/bWU9vS4Xc4kkR0JktEhlVLR5ifbK2iODed\n98wa73c4kiQWTSkkNRhg/b56v0ORJKIiS0SGTdQ5frq1inAkyocqyggFdQiS4ZGZFmLB5AJ2VTVz\n5MRpv8ORJKEjnIgMmw2HTnKgvpXbZxczTkPlyDBbfFkRwYDx5EuH/A5FkoSKLBEZFseb2vnt67XM\nKM5h/iRd6C7DLzs9hYpJ+fx0WxXVTe1+hyNJQEWWiMTd8aZ2Vm08SmZakGVXlaovLPHNX112CQDf\nW6+zWRJ/KrJEJK7qT3Xw0RUb6QhHuGfhJLLSdFOz+CcvM5Vl80p5dnMl9ad0p6HEl4osEYmbxtNd\n/PWKTdS1dHDvwkmU5mX4HZIIn1xyKeFIlP9cu59o1PkdjoxiKrJEJC5aOsLc8/1NHD55mhX3VFBe\nmOV3SCIATC7K4p6Fk3hmUyUPPr2V5vaw3yHJKKUiS0SGXFtXN/f972b21rbwnY/NY9GlRX6HJPI2\nX1o6ky++byYv7avnjsdfZk9Ni98hySikiyNEZNB699gedY6nNhzhYH0ry+dPpLa5Uz26y4hjZvzt\n4slcOSGXT/9wG3c/8Wf+/e7ZLJs3we/QZBTRmSwRGVJrd9dxoL6Vu+aWMrs01+9wRM7pmkkFrPns\nYuZMyONzP97J5368Q52VypBRkSUiQ2ZPTQvr97/JNZPyuUaDPkuCGJudzg/vX8Cnlkxlzc4abvzG\nSzz09Fa2HWv0OzRJcGouFJEhcbK1k+e3VlKal8H7rizxOxyRfvXXfD0hP5N/vOVyXjl0kvX73+Q3\nb9RSUZ7PQzdM5aYZY9W/m1wwFVkiMmhd3VF+uPEYhvGR+RNJ0ZiEkqCy01O4ZdZ4bpgW67T0f14+\nzP0rt1BRns/nb5/B1eX5PkcoiURHQhEZFOccq3dWU9fSwYcqysjPSvU7JJFBSwsF+fh1k3np4SU8\ntmw2RxvaeP+TG/jkqq0c1jVbMkA6kyUig/LMpkq2HWviXdPHMm18tt/hiAypUDDAh+dP5I45Jaz4\n02G++8dDrN1dx/L5ZXzs2nKmj8/xO0QZwcw5/3u7raiocFu2bPE7DBG5QK9XN7PsiQ2UF2Zy76JJ\nBHTNioxypzrC/H5PPVuONhB1UJKbzv3XT+HOuSUUjknzOzwZJma21TlXcd71VGSJyMVo6Qiz9Fsv\n09Ud5b7rJmtMQkkqrZ3d7KpqYtuxRo43dRAKGDdOH8v9iyezYEqh3+FJnA20yNJRUUQumHOOR366\ni6rGdp578Fr217X6HZLIsBqTFmLR1CIWTS2itqWD7Ucb2XDwBGt311FemMmSy8dy+bgxPXckfmTB\nRJ8jFj+oyBKRC/b0q0f51Wu1fP626VRMKlCRJUltfE46t80u5qYZ49hytIE/HTjBU68coSQ3nRum\njWVWia7bSlYqskTkgrxW1cy/rtnDu6aP5YHrp/gdjsiIkRoKsGhqEfMnF7Czson1+9/kmU3HKM3L\nYPr4bComqYPeZKMuHERkwFo6wnz6R9soGpPKNz44h0BAF7qLnC0UCHB1eQH/8O7L+eDVEzjVEeYD\n33mFv3tmO1WNbX6HJ8NIZ7JEZEDCkSj/9Pwujje189wnFqo/LJHzCJhx1cR8ZpXk0tDWxXfXH+J3\nb9Ty4F9N4RM3TGWMbhYZ9XQmS0TOa/fxFu769p/5zRu1/POt09XrtcgFSA0F+NzNl7Pu4SXcMms8\n31p3kMVfXcfj6w7Q0hH2OzyJI3XhICL96uqO8vgfDvLEHw6Sl5nCV+68gttmF79jvf7GghORd6ps\naGPd3nr21Z0iPSXAdd5dihmpQd2FmCDUT5aIDMquqiYeWLmFupZOrirL472zi8lU84bIkKlubGfd\nvnr21LSQFgowtyyPz7zrUhZMLiQ1pIamkUxFlohcMOccrxw6yQ82HOHFPXWMSQtx19xSphfrFnSR\neKlpbmf9/jfZU9NCOOLITguxZPpYbp45jusvLdL1jyOQOiMVkQFr6+rmZ9uqWfnKEfbXtVKQlcon\nl0ylIDONjNSg3+GJjGrFuRksv2Yi4UiU0rwM1u6u4/d763hh53EAJuRnMLs0lytKc3vmBSq8EoLO\nZIkkqVWvHuXoyTZ2VDbxWnUTHeHYAX7hlEJmT8glJajmChG/RJ2jsqGNoyfbqG5qp7qpnYbTXT2v\nX5KdxrRx2UwbH5tmFucwbXy29tthojNZIvIOzjkO1Lfyi+3V/GjjMZraw6QEjVkluVw7uYCygsye\nYUBExD8BM8oLsygvzOpZ1t4V4XhzOzVN7dS2dHL4xGle/ctJuqOxkyUpQaM0L4OygkzK8jP57E2X\nMS4nTfu0j+J2JsvMbgX+CwgCK5xz/9HfujqTJXLxIlHHydZOGtvCnO7q5nRnN6c7I7R1ddNwuouq\nxnaqGtu8eTutnd0EA8bUS7KYW5bHjOIc0kJqEhRJRFHnaGjtorq5naqGNo41tHG8uYOIV3gVjUll\nRnEOs0pymVmSw8ziHMoKMrTPD5KvZ7LMLAh8G7gZqAI2m9lq59zueHzeYEWjjnA0SiTq6I46olFH\n1MX+6z8zNzNCASMYNFICAYIBIxgwAob+S4ijqJeTWG6iRKOxg0rEOaLO4RwEA15uAkboAnPjnCMc\ncXR2R+jqjtIVidLeFaGtK0JrZzdtXbGCJRyJetu0nnlqyEhPCZKREiQjNTZPDQWI9MQbm4cjUTrC\nUTrCETrCEdrDETrCUe/37Mx3icUCsZgNMAPD6OqOcLor0hPL6c5uGtu6qGvppK6lgxOtnUTP8b9S\nWihAfmYq+ZkpzJ6Qy9jsNGaV5KojRJFRIGBGUXYaRdlpzJmQB0B3JEpNcweVjW3UNHVwqL6VDQdP\nEul1UiU7PUR+Zipzy/Iozc+gMCuV3IwU8jJTyctMITcjhZRgIHYcxWLHo3McU513PH7rOTicN/de\nh56/r1EXOz6eeU/s1bekBAOkBAOkBgOkhCz2PBAgFDRC3t/hRBhxIl5H2fnAQefcXwDM7FngTsCX\nImtPTQvLntjwtoTj3vpjPdiTeQGL/aE3s55fSIj9Qp4x8n8V4q+/H/PZO2NsWaxIGarcBLxk9GzO\n+8xwxP9rEgcqYLFODVODAbLSQmSnhygryGRWSQ7Z6SlkpgZJC8UKvTRvOlP86R8BkeQRCgZiTYYF\nmT3LuqNR3jzVSW1zB41tXTS2hWls62JHZRO/eq2mp8kxkfT8M42B0fN4+fwyvrR0lt/hAfErskqB\nyl7Pq4AFvVcwsweBB72nrWa2L06xxFsRcMLvIGTIKJ+ji/I5uiifo0tc8vmoN8VZ+UBW8q29wDn3\nPeB7fn3+UDGzLQNpl5XEoHyOLsrn6KJ8ji7JkM943etZDZT1ej7BWyYiIiKSFOJVZG0GLjOzyWaW\nCiwHVsfps0RERERGnLg0Fzrnus3sM8BviXXh8H3n3Bvx+KwRIOGbPOVtlM/RRfkcXZTP0WXU53NE\n9PguIiIiMtqo/30RERGROFCRJSIiIhIHKrL6YWYFZrbWzA548/x+1rvXW+eAmd3ba/m/mVmlmbWe\ntX6amT1nZgfNbKOZTYrvNxEYknxebWaveXn7pnm9e5rZo2ZWbWY7vOn24fpOycjMbjWzfV4eHunj\n9X73LzP7vLd8n5m9Z6DblPiIUy6PePvpDjPTWG3D6GLzaWaFZvYHM2s1s8fPek+fx92EEusKX9PZ\nE/A14BHv8SPAV/tYpwD4izfP9x7ne69dCxQDrWe951PAd7zHy4Hn/P6uyTANQT43eTk14NfAbd7y\nR4GH/f5+yTARu4nmEDAFSAV2AjPPWqfP/QuY6a2fBkz2thMcyDY1JUYuvdeOAEV+f79kmwaZzyxg\nMfAQ8PhZ7+nzuJtIk85k9e9O4Cnv8VPAXX2s8x5grXOuwTnXCKwFbgVwzr3qnKs5z3Z/AtyUkNV5\n4rnofJpZMZDj5dQBK/t5v8RXz3Bdzrku4MxwXb31t3/dCTzrnOt0zh0GDnrbG8g2ZejFI5fin4vO\np3PutHPuZaCj98qj5birIqt/43oVSbXAuD7W6Wv4oNLzbLfnPc65bqAZKBxcqDIAg8lnqff47OVn\nfMbMdpnZ9/trhpQhMZD9rb/961y5vdB9WAYvHrmE2PCkvzOzrd7QbTI8BpPPc23zXMfdhODbsDoj\ngZm9CIzv46Uv9H7inHNmpr4uRjif8vkk8BViB/evAN8A7huibYvIhVnsnKs2s7HAWjPb65z7o99B\nSfJK6iLLOffu/l4zszozK3bO1XinLev7WK0aWNLr+QTgpfN87Jkhh6rMLATkAicvJG7pWxzzWe09\n7r282vvMul6f8d/AmouNX85rIMN19bd/neu9GgJs+MUll865M/N6M/s5sWYsFVnxN5h8nmubfR53\nE4maC/u3Gjhzd9m9wP/1sc5vgVvMLN9rJrrFWzbQ7X4AWOe1N0t8XXQ+vWbGFjO71rsm5J4z7/cK\ntjPuBl6P1xeQAQ3X1d/+tRpY7t3hNBm4jNhFtRoCzB9DnkszyzKzbAAzyyK2/2p/HB6DyWefznXc\nTSh+X3k/UidibcW/Bw4ALwIF3vIKYEWv9e4jduHlQeDjvZZ/jVgbctSbP+otTwee99bfBEzx+7sm\nwzQE+awgdsA+BDzOW6MlPA28BuwidhAp9vu7juYJuB3Y7+XhC96yLwN3eI/73b+INRsfAvbR6y6l\nvrapKfFySezOtp3e9IZymVD5PAI0AK3e38uZ3vI+j7uJNGlYHREREZE4UHOhiIiISByoyBIRERGJ\nAxVZIiIiInGgIktEREQkDlRkiYiIiMSBiiwRGTXM7FEze9jMvmxm7/aWXW9mb5jZDjPLMLOve8+/\n7ne8IjK6JXWP7yIyOjnn/qXX048CjznnVgF4Y9oVOOcivgQnIklD/WSJSEIzsy8Q60m6ntgAtFuB\nK4gNcZRHrGPgZmADkA28l1gHso85557zI2YRSQ46kyUiCcvMriY2hMdcYsezbcSKLACccyvMbDGw\nxjn3E+89rc65uX7EKyLJRUWWiCSy64GfO+faAMxM4w6KyIihC99FRERE4kBFlogksj8Cd3l3DWYD\nS/0OSETkDDUXikjCcs5tM7PngJ3ELnzf7HNIIiI9dHehiIiISByouVBEREQkDlRkiYiIiMSBiiwR\nERGROFCRJSIiIhIHKrJERERE4kBFloiIiEgcqMgSERERiYP/B/Ty4ndfe5dIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 8.5686068097e-06\n", + "MAE : 0.00260148191793\n" + ] + }, + { + "data": { + "text/plain": [ + "count 20817.000000\n", + "mean 0.002528\n", + "std 0.001476\n", + "min -0.010324\n", + "25% 0.001668\n", + "50% 0.002496\n", + "75% 0.003467\n", + "max 0.010337\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "\n", + "# Benchmark\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + "pred = model.predict(testX)\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['actual'] = testY\n", + "predictions = predictions.astype(float)\n", + "\n", + "predictions.plot(figsize=(20,10))\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['actual']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction')\n", + "plt.show()\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + "predictions['diff'].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQkAAAJcCAYAAABQALD4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYXUX9x/H3bN9Nr6STQEKLhGLA\nUJSqIgQRFAFDUZCOCiigggJKFxFQkB+9BpEmVUB6DRB6h0A66XVLts/vj3Nzd2+2J5tsEt6v58mz\n58zMmTPn3Lv84X78TogxIkmSJEmSJEmSJEmSJGn9ldXRC5AkSZIkSZIkSZIkSZK0ehkSkiRJkiRJ\nkiRJkiRJktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmSJGk9Z0hIkiRJkiRJkiRJkiRJ\nWs8ZEpIkSZIkSZIkSZIkSZLWc4aEJEmSJElShwghDA0hxBBCTur8vyGEI1ZiniEhhJIQQnb7r3L9\nknrfw5vpPzaEcHnqOOPzWduFEH4aQnixib5mnyWE8PsQwvWtvM85IYTbV2WtbRVC2DWEMKOZ/ptD\nCOetyTWtjBDCuBDCE+0wzwYhhI9CCPntsS5JkiRJkr4qDAlJkiRJkqQmhRCmhBCWpUI4c1JhhM6r\n414xxu/FGG9p5Zr2rHfdtBhj5xhjzepYV3tJhUtiCOEbbbgm41lXpxBCHnAW8Jc1cb+1SYzxghjj\nzzt6Heu7GOMdMcbvtMM8c4BngGNWfVWSJEmSJH11GBKSJEmSJEkt2TfG2BnYFhhNEiTJEBL+7wxN\nCCEE4HBgYern2mg/4OMY48yOXojWTmtZVak7gGM7ehGSJEmSJK1L/B/vJEmSJElSq6TCI/8FvgYQ\nQng2hHB+COEloAzYKITQLYRwQwhhVghhZgjhvOXbgIUQskMIl4YQ5ocQvgD2qT9/ar6f1zs/OrWl\nUHEI4cMQwrYhhNuAIcBDqepGpzeybdmAEMKDIYSFIYRJIYSj6815Tgjh3yGEW1PzfhBCGN3Y84YQ\n/hlCuHSFtgdCCKemjs9IPWNxCOGTEMIezby+bwL9gV8CB6eq9tSft7XP2mDbqfrVhkII24cQXgkh\nLE59Bv9Y8V7N+B7wXFOdTb3XEEJBqtpU79T5mSGE6hBC19T5n5dvYdbInD+r99xfhBCOrde3awhh\nRgjh1yGEuann+Vm9/l6p9SwNIbwGbNyKZxwXQpiW+g6eWW+ujC3EQgiHhxCmhhAWhBD+0EhFp7zW\nfIdSc10RQpieWucbIYRv1uvbPoQwMdU3J4RwWXOLD8m2aPNT6xnXxJgG266FetvMhRDyU7+H01L3\nvCaEUNjMXC+FEP4WQlgAnJNqPzL1uS0KITweQtiw3jXfSf0+LAkhXB1CeC6kfq9XXFsIYccQwuup\nsa+HEHas1/ds6rvzUuo9P7H8O5byKsl/czZEkiRJkiS1iiEhSZIkSZLUKiGEwcDewFv1mg8j2fKn\nCzAVuBmoBoYD2wDfAZYHf44GxqbaRwM/auZeB5IEEg4HugLfBxbEGA8DppGqbhRjvKSRy/8FzAAG\npO5xQQhh93r930+N6Q48CPyjiWXcCRwUQgipNfVIPc+/QgibAicB28UYuwDfBaY09TzAEcBDwL9T\n5/u207OuqAY4BegN7ADsAZzQiusAtgQ+aaa/0fcaYywHXgd2SY3bheS7sFO986bCR3NJvhNdgZ8B\nfwshbFuvvx/QDRgIHAVclfocAK4CyknCV0em/rVkZ2BTkvfyxxDC5isOCCFsAVwNjEvNvfz+9bX2\nOwTJu9ka6AmMB+4OIRSk+q4ArogxdiUJOf278SmA5F30Tq3lCODa1PewrS4CNkmtaXhqvj82M/4b\nwBfABsD5IYT9gN8DBwB9gBdIfldIhXjuAX4H9CL5Pu3YyJyEEHoCjwBXpsZeBjwSQuhVb9hPSL4X\nfYE84DfLO2KM1cAkYKtWP7kkSZIkSV9xhoQkSZIkSVJL/hNCWAy8SBL2uKBe380xxg9Sf7DvSRIi\nOjnGWBpjnAv8DTg4NfbHwOUxxukxxoXAhc3c8+fAJTHG12NiUoxxaksLTQWZdgLOiDGWxxjfBq4n\nc4uvF2OMj8YYa4DbaDpk8AIQSaoAQRKMeSXG+CVJGCcf2CKEkBtjnBJj/LyJNRUBBwLjY4xVJCGK\n+utZqWdtTIzxjRjjhBhjdYxxCvB/1IV3WtIdKG7iGVp6r88Bu4SkmtMokuDHLqkwzHbA802s95EY\n4+ep534OeIK69w1QBfwpxlgVY3wUKAE2DUl1qh8Cf0x9194HbmnFM54bY1wWY3wHeIfGP/sfAQ/F\nGF+MMVaSBGjiCmNa+x0ixnh7jHFB6jP5K8n3Znm4pwoYHkLoHWMsiTFOaGH9f4gxVqTe1SMkv1Ot\nlgq8HQOcEmNcGGMsJvl9PriZy76MMf49tf5lwHHAhTHGj1K/9xcAW6cq+uwNfBBjvC/VdyUwu4l5\n9wE+izHelpr7TuBj6gXogJtijJ+m7vtvkmBTfcUk31tJkiRJktQKhoQkSZIkSVJLfhBj7B5j3DDG\neELqD/bLTa93vCGQC8wKyXZXi0lCKn1T/QNWGN9cEGYw0GjopgUDgOXhh/r3qV8Jpn5ooQwoSIVb\nMsQYI0m1mENSTT8B7kj1TQJOJqkANDeE8K8QwoAm1rQ/SXWlR1PndwDfCyH0SZ2v7LM2EELYJITw\ncAhhdghhKUmAo3dL16UsIqkI1ZiW3utzwK7AtsB7wP9IwkljgEkxxgVNrPd7IYQJIdnCbDFJyKT+\nehekwibLlQGdSSrY5ND679NyK372nRsZk/E9jTGWASuuv1XfIYAQwm9SW3MtST1jN+qe8SiSqj4f\np7bbGtvM2hfFGEvrnU9NrbUt+gBFwBv1fkcfS7U3ZfoK5xsCV9S7fiEQSL4LK767SFJ9qjEDaPiZ\ntfS7uuLn1QVY3MzaJUmSJElSPYaEJEmSJEnSqqhfYWU6UAH0ToWKuscYu8YYR6b6Z5EEYpYb0sy8\n00m2X2rpniv6EugZQqgfdhkCzGzmmubcCfwoVSXlG8C96UXEOD7GuDNJaCICFzcxxxEk4YZpIYTZ\nwN0kYaqfpPrb8qylJCEPAFIVdeoHPP5JUo1lRGoLq9+TBDha412SwEpjWnqvL5NUx9kfeC7G+GGq\nf2+a2GoshJBP8j4vBTaIMXYnCVK1Zr3zSIJXrf0+tcUsYFC9dRaSbIfVZiGEbwKnk1T86ZF6xiWk\nnjHG+FmM8RCSIN3FwD0hhE5NTNdjhb4hJJ/Lilb8jvSr1zcfWAaMrPc72i3G2FhYarkVv4PTgWPr\nXd89xlgYY3yZhu8u1D9fwZckvzv1tfp3NRXKGk5SEUqSJEmSJLWCISFJkiRJktQuYoyzSLaL+msI\noWsIISuEsHEIYfl2V/8GfhlCGBRC6AH8tpnprgd+E0L4ekgMTwV1AOYAGzWxhukkgZULQwgFIYRR\nJNVabl/JZ3qLJFhxPfB4jHExQAhh0xDC7qmgSzlJ8KJ2xetDCAOBPYCxJFslbU2yNdXF1G3V1ZZn\n/ZSkas0+IYRc4CyS7auW6wIsBUpCCJsBx7fhcR+lia3JWnqvqWo7bwAnUhcKeplka6pGQ0JAXmrt\n84DqEML3gO+0ZqGpbb7uA84JIRSFELYgCWO1h3uAfUMIO4YQ8kiqRbU2aLWiLiRhpnlATgjhj0DX\n5Z0hhENDCH1ijLXUVcRp8D2q59wQQl4qfDSWJHC2oneAkSGErVPbvZ2zvCN1n+uAv4UQ+qbWMDCE\n8N02PNM1wO9CCCNT13cLIRyY6nsE2DKE8INUiOdEoF8T8zwKbBJC+EkIISeEcBCwBfBwK9exPTBl\nZbfmkyRJkiTpq8iQkCRJkiRJak+Hk4Q/PiTZvuoeoH+q7zrgcZIQw5skIY9GxRjvBs4HxgPFwH+A\nnqnuC4GzUtsd/aaRyw8BhpJUKrkfODvG+OQqPNN4YM/Uz+XygYtIAkSzSSrB/K6Raw8D3o4xPhFj\nnL38H3AlMCqE8LW2PGuMcQlwAkmwaCZJ1Zj62zn9hqRCUTHJ+76rDc/5ELBZM9umtfRenyOpkPRa\nvfMuwPONTZbauuyXJOGxRal1P9iG9Z5EUqFpNnAzcFMbrm1SjPED4BckW83NAkqAuSRVstrqcZLt\nvD4l2UqrnMztu/YCPgghlABXAAevsJ1ffbNJ3tOXJFvWHRdj/LiR9X8K/Al4EvgMeHGFIWcAk4AJ\nqS3pniSpAtUqMcb7SUJu/0pd/z7wvVTffOBA4BKSLdq2ACbSyLtLbUE3Fvh1auzpwNjUHK0xjiSw\nJEmSJEmSWikkW4NLkiRJkiTpqy6EcAywRYzx5I5ey9oihNCZpMrPiBjj5I5ez7okhJBFEmIbF2N8\nph3n7UsSQtsmxljeXvNKkiRJkrS+MyQkSZIkSZIk1RNC2Bd4imSbsb8C3wC2jf4PaS1KbV32KskW\nfKeRbDm2UTMVkiRJkiRJ0hridmOSJEmSJElSpv1ItvX6EhhBsg2YAaHW2QH4nGQrvn2BHxgQkiRJ\nkiRp7WAlIUmSJEmSJEmSJEmSJGk9ZyUhSZIkSZIkSZIkSZIkaT2X09ELWJv17t07Dh06tKOXIUmS\nJEmSJEmSJEmSJDXqjTfemB9j7NPSOENCzRg6dCgTJ07s6GVIkiRJkiRJkiRJkiRJjQohTG3NOLcb\nkyRJkiRJkiRJkiRJktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmSJGk9l9PRC1jXVFVV\nMWPGDMrLyzt6Keu8goICBg0aRG5ubkcvRZIkSZIkSZIkSZIkab1mSKiNZsyYQZcuXRg6dCghhI5e\nzjorxsiCBQuYMWMGw4YN6+jlSJIkSZIkSZIkSZIkrdfcbqyNysvL6dWrlwGhVRRCoFevXlZkkiRJ\nkiRJkiRJkiRJWgMMCa0EA0Ltw/coSZIkSZIkSZIkSZK0ZhgSkiRJkiRJkiRJkiRJktZzhoTWA+ec\ncw6XXnppRy9DkiRJkiRJkiRJkiRJaylDQpIkSZIkSZIkSZIkSdJ6zpDQOujWW29l1KhRbLXVVhx2\n2GEZfW+//TZjxoxh1KhR7L///ixatAiAK6+8ki222IJRo0Zx8MEHA1BaWsqRRx7J9ttvzzbbbMMD\nDzywxp9FkiRJkiRJkiRJkiRJq19ORy9gnXbyyfD22+0759Zbw+WXN9n9wQcfcN555/Hyyy/Tu3dv\nFi5cyJVXXpnuP/zww/n73//OLrvswh//+EfOPfdcLr/8ci666CImT55Mfn4+ixcvBuD8889n9913\n58Ybb2Tx4sVsv/327LnnnnTq1Kl9n0mSJEmSJEmSJEmSJEkdykpC65inn36aAw88kN69ewPQs2fP\ndN+SJUtYvHgxu+yyCwBHHHEEzz//PACjRo1i3Lhx3H777eTkJNmwJ554gosuuoitt96aXXfdlfLy\ncqZNm7aGn0iSJEmSJEmSJEmSJEmrm5WEVkUzFX/WNo888gjPP/88Dz30EOeffz7vvfceMUbuvfde\nNt10045eniRJkiRJkiRJkiRJklYjKwmtY3bffXfuvvtuFixYAMDChQvTfd26daNHjx688MILANx2\n223ssssu1NbWMn36dHbbbTcuvvhilixZQklJCd/97nf5+9//TowRgLfeemvNP5AkSZIkSZIkSZIk\nSZJWOysJrWNGjhzJmWeeyS677EJ2djbbbLMNQ4cOTfffcsstHHfccZSVlbHRRhtx0003UVNTw6GH\nHsqSJUuIMfLLX/6S7t2784c//IGTTz6ZUaNGUVtby7Bhw3j44Yc77uEkSZIkSZIkSZIkSZK0WoTl\nVWTU0OjRo+PEiRMz2j766CM233zzDlrR+sf3KUmSJEmSJEmSJEmStPJCCG/EGEe3NM7txiRJkiRJ\nkiRJkiRJkqT1nCEhSZIkSZIkSZIkSZIkaT1nSEiSJEmSJEmSJEmSJElazxkSkiRJkiRJkiRJkiRJ\nktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmStNa580746U87ehXS+sOQkOjcuTMAX375\nJT/60Y+aHXv55ZdTVlbWpvmfffZZxo4du9LrkyRJkiRJkiRJkiR99fzkJ3DLLR29Cmn9YUhoPVVT\nU9PmawYMGMA999zT7JiVCQlJkiRJkiRJkiRJktRaMcLpp9edV1d33Fqk9UlORy9AbTdlyhT22msv\nvv71r/Pmm28ycuRIbr31VrbYYgsOOugg/ve//3H66aez3XbbceKJJzJv3jyKioq47rrr2GyzzZg8\neTI/+clPKCkpYb/99suYd+zYsbz//vvU1NRwxhln8Nhjj5GVlcXRRx9NjJEvv/yS3Xbbjd69e/PM\nM8/wxBNPcPbZZ1NRUcHGG2/MTTfdROfOnXnsscc4+eSTKSoqYuedd+7AtyVJkiRJkiRJkiRJWttN\nX1jGx7OLAZjwbB5/+UuPdN/51yxmx90rOmppDWw7pDu9Oud39DKkNjMktApOPhnefrt959x6a7j8\n8pbHffLJJ9xwww3stNNOHHnkkVx99dUA9OrVizfffBOAPfbYg2uuuYYRI0bw6quvcsIJJ/D000/z\nq1/9iuOPP57DDz+cq666qtH5r732WqZMmcLbb79NTk4OCxcupGfPnlx22WU888wz9O7dm/nz53Pe\neefx5JNP0qlTJy6++GIuu+wyTj/9dI4++miefvpphg8fzkEHHdRu70eSJEmSJEmSJEmStP5ZXFrN\nmSd1Yb8jljBjVm1G3wfvw4jt6kJCC+dmk50T6dazlsrywPzZ2QwYuubKDVXW1LY8SFoLud3YOmrw\n4MHstNNOABx66KG8+OKLAOlATklJCS+//DIHHnggW2+9NcceeyyzZs0C4KWXXuKQQw4B4LDDDmt0\n/ieffJJjjz2WnJwkR9azZ88GYyZMmMCHH37ITjvtxNZbb80tt9zC1KlT+fjjjxk2bBgjRowghMCh\nhx7avg8vSZIkSZIkSZIkSVpnTJgAIcDTTyc/99wzs/+mm+Abm3Xh9WeKOOun/SmftDCjf/DAkozz\nX3x/ICfsPQiAa8/vyWkHD+DCX/RZrc8grQ+sJLQKWlPxZ3UJITR63qlTJwBqa2vp3r07bzdR6mjF\n61dGjJFvf/vb3HnnnRntTd1TkiRJkiRJkiRJkvTVs8MOyc899kh+PvUUVFRAfj5UVsKRRwLU/Q17\n0kNLMq7P/XwGMKDBvOPGDEkfv/96IePGDOG8m2cxbLOqdn6CTDGu1uml1caQ0Dpq2rRpvPLKK+yw\nww6MHz+enXfembfeeivd37VrV4YNG8bdd9/NgQceSIyRd999l6222oqddtqJf/3rXxx66KHccccd\njc7/7W9/m//7v/9jt912y9hurEuXLhQXF9O7d2/GjBnDiSeeyKRJkxg+fDilpaXMnDmTzTbbjClT\npvD555+z8cYbNwgRSZIkSZIkSZIkSZIylVfV8MzHczt6Gats71H9AfjP67PIy0/aepLHQnpljLvz\n2blsMKCGpx/KBzJ3tnm5dDQAt3A4R3Ary2oLWn3/Fx/rxLDNFq/8A0jrMbcbW0dtuummXHXVVWy+\n+eYsWrSI448/vsGYO+64gxtuuIGtttqKkSNH8sADDwBwxRVXcNVVV7Hlllsyc+bMRuf/+c9/zpAh\nQxg1ahRbbbUV48ePB+CYY45hr732YrfddqNPnz7cfPPNHHLIIYwaNYoddtiBjz/+mIKCAq699lr2\n2Wcftt12W/r27bv6XoQkSZIkSZIkSZIkrQdihEVlVev8v+XefCOLvUf1Z+9R/fke/23wvFMnVzJv\naRWXnlkXEKqpF2HIoobv8yAAFcta/x5zc1d/mR8LCWldFaJ1sJo0evToOHHixIy2jz76iM0337yD\nVpSYMmUKY8eO5f333+/QdbSHteF9SpIkSZIkSZIkSVJHW1ZZw/1vNV7kYV2yfAuwrFBLbWy6bslv\nTv+UIRtV8Mvjtky3RQJHcDO3cgQA1WSTQw2D+y7hogfrtiCrv83Yig44aDY/PKVyVR+jWbts2oeB\n3QtX6z2ktgghvBFjHN3SOCsJSZIkSZIkSZIkSZLUweJ6Vp+muYAQwCtPdmbag/PS54dyG6X9BlJI\nXdmgN39zDgDT53bj2Qc7pdt7sJBBTE+fH8X16eOcGXNWdelaA378Y7jvvo5exVePIaF10NChQ9eL\nKkKSJEmSJEmSJEmSpPVIeUWrh7705gAufXT39PmRF1fxwH9e5pf5V7Mxk3hy43HM3GkPducpAK67\noBcAixdksYie7McDvM5o/s2BXMNxvMZ2yRJq89vxgRrnjk0r59JL4eqrobwc7r4bfvjDzP6pU+H+\n+ztmbV8VOR29gHVRjJEQQkcvY53nfzglSZIkSZIkSZIkad3z028NJjsncs51cxi8cVW6vXpGcYvX\nFoRyymNBg/ZZu+wJQPdtezHplRHwOfyr1zl04730mJpqOHGfQQBcxUn8g18wmjcA2I6JbMgUKpc1\nmFqt8P7MJVTW1LZqbIxQUwM5bUycnHZaDwA23WQyMAyAN6ctSvfvv1tXpk3O5tn3FtGla+a1PYry\nGNa7E1o1hoTaqKCggAULFtCrVy+DQqsgxsiCBQsoKGj4H39JkiRJkiRJkiRJ0tqrqjJQVRn47bj+\n3DFhGgDVVfDuC9kNxn6DCbzKGMZ1uoeXSr/OL0c9yKnv/CpjzAg+BZK/HS/r3TfdXpuXz/0ckD6f\n/HFe+nhY/nRIFS5asNmW9Pr4PQpZtkZCQutjPYzP55VQWlHTqrF/Pa03b75QBMDNz08jN6+FCyD1\n0pKQ0J7fHpZu/vqGPfjWPiXse/hSpk1O+v/8xxyOPGNRxuVDehYZEmoHhoTaaNCgQcyYMYN58+a1\nPFjNKigoYNCgQR29DEmSJEmSJEmSJEnSKnrwL7Xc++BWGW178CS1eXlQCQzpzfgf3sf03faCPTKv\nPXqnF4BvA/Du0afS6cvpTDztvAb3OPvn/QDoyQLuP+xy3s49nX6vv8QLF13D4KcfpeiCMirLDZKs\nDqVLA6UlWfQdUJMOCAH89FtD+MtdXzJgw+pmr8+qqmyy7/lHOvP8I53T588+0KlBSCiyHiazOoAh\noTbKzc1l2LBhLQ+UJEmSJEmSJEmSJKmV1pnqNFUNwyA11XDvg0MbtBcNKqR8frIdWX5RZPLYAwHY\nnA/5iC3S45ZsvgUDU8fL+vbn6av+le57bNBP+MuMI3mKPdNtC+nFVtdfxvgJU/nwiBMB+GLfgyi6\nYBqVFV1W9Qm/kup//+69AEJRLgecXLeV3J+O6s2M6YX87b6ZDa499+gN+L8nGrbXF0rLW72Wwuxy\nYoT6mzutM78fa7msjl6AJEmSJEmSJEmSJElaN8yZVNugLevdLxodW5FdyEeVIwDILqirYfJc1m4Z\n40LDXcrSvjvjTh5i34y2LXmXT390eObAECgM5ZRXta5Wyr3Xd2XcmCEsXWRsApJKPcd+ZyDjxgzh\nvgeHcO+/+mf0z5heCMApBwxscG3J0mymTcptdv6apRUN2j5jODMZkD7vx6xkvqoiHrnDsNfq4Ldd\nkiRJkiRJkiRJkiS1yqk/G96g7d2XCxode+IuzzCjNgmVPPTulun2iTfdxClclj7Pymk+ulBIOb/m\n0vT5f3v8iIm//lODcQXZlVRUty4kdN/13QF4dHzbwyjra1WbkqWZaa3yZXWlfPbkfxl9XViacV42\nu2EIqL6apZnbjZ3GJUy+5iLev+6qdNsm3WZwxYCzAZj99PyM8evpK1/jDAlJkiRJkiRJkiRJkqSV\ndsntYxptr/rJHunj47d8JH28aNOvsWW/6enznGaK0Nz/4ATK+vTjUk7jeo7iAb5PYZ/czL2oUgqy\nKyivzmtxveVlddcWdjZ+Ao0Hn47abTAfvpaErmaSWUHoOXbhLn6cPq+dV9Ls/OWLkq3L9uFhSini\nB2fnMW/r7Zm/5dd5g20ZwEx+dcokNv3TtmzOh+SWFq+wPj+n9mBISJIkSZIkSZIkSZIktVkulcx5\nv7zRvpG8T0X3nunzzc8dldFfst3W6eO8oqbvsaxvfx69/TFmbbczR3Ej3+ch3jrpzEbHFmZXUF7d\n/LZXAEsX10UlYq3hE4DKZQ23kQP45L7FlC8LfMQWAEQCkcDcG85lzO6lfJBqryqubnb+8rlJJaGj\nOt3Oo4+/wpTvHZDum3Pzn3nu+7+h4ttjWPC1bSjIquSJqdty54X57fFoqseQkCRJkiRJkiRJkiRJ\narMq8pj2wOyMtkFhBlMLNubWcdcB0IOFydgu3TLGZdXWhUpyujQf7Kns1oNn/n4HVUWdmbnT7szZ\nfudGx+VnV1Fe03IlodKldVGJ8PnsZkY2Lq6Hm19VzljaaHt5eTY1L3ySPh8/YSrjJ0xlwcitefGC\nf/LO2RcAUFVc0+z8y1IhoS9OO4XKbj0y+hZttiWv/f5iYnay3dlbtUmA7OEHNmDRvKRt/XvjHcOQ\nkCRJkiRJkiRJkiRJHWxdC0Ec0/dfAMydnYRybmcc2/MqD+9wKi8/8Rgfn3QqAB+yBW+zVYPrayrr\nnji7a8vVfwDufup9nvvrTU32F+RUUV7TcvWZqk/mp4+XFTczsAnr485XVdMWN9peXpFN9RvJ1nCP\n5oxt0J/TLfnsqkoar0QE8MDNXTnrju8CUDCwmbJRKWPzH0sfz/+kIjlYD995RzAkJEmSJEmSJEmS\nJEmSWjRuzJD08dbbLgFgybwkdhCvOYarTn2MT847l9q8fAgBgFfvu5fp//pbg7l2GvhR3UlhK7eV\nSs3ZlCk1G1IR8ygtbn5czQcz08cPvbp56+69Drj++uQVLVjQ8tjqajjqqGR8CPDz0xuvzjRig7l8\nMr8fAFOuPLdBf063JCRWWdp0SOjf13SnqiYHgILBnVtc2959Xqw7WVgCrJ/VmzqCISFJkiRJkiRJ\nkiRJktSsUF2VcZ49ONky6pEp2wNQtdFgPv3xz6gu6pQxrnTAYJYOHd5gvi8O/Rl/5yQAOvVrXSWh\nlgzvNA2Aj94saHbcP57apV3ut7Y5+ujk59VXJz/nzYP332987GefwY03Nj3XJ4PGAFBLFn9/OakC\nVLhF7wbjQrdCsqihoqzlEE8E+sheAAAgAElEQVQ21RR0y25x3KitlqSPK5Yk29JN+yKbl19u8VK1\nwJCQJEmSJEmSJEmSJElqVvayZenjX23/MPm9MoM9uZ1y2jRfVeeufOvIXGoJdOrZcnCkNQ4f8DAA\nC+c2P9/i0kIARpIkaKqr23afmTNDm69ZkzqnivVsuy1suSVce23DLdLmz294HcDRQ+5jbO5/+eiy\nSwjUUlEGGxbOAiCvoGGFptrCQjpRyi0vjuHK3/ZsOGF1Td26QllLxaAAKNl/T6awIQAVS5Prf7ZP\nb3baCb72tZavV9MMCUmSJEmSJEmSJEmSpGbVLilPH4+6aCuKumX2Z61Ezuf9Y07hzglTV3FldXrn\nL6GQMhZ+Xtlof0V5oHhJFn2KlnAkN/Bzrk/al7UiuZJSXhbYeesiTjihXZa8Wpx6Krz0EsyYkZwf\neyxsvHHmmFmz6o4vu6zueJu/b8shL4ykplMRnSmhpDiHyWUD2SBnXqP3qirqRCdKAXj12YZbiS2o\n91kUZpc36G/Mgq9tw8SrrgGgbGFmuumDD6C26Z3N1AJDQpIkSZIkSZIkSZIkdbC4YqmXtUzl4rrt\nxgqKIp0K175SOtN335vhTGL2Z42/y0t/3YfjvjuI0vJcuuaUUkASWqmqbH1IaFlZMva661Z9ve2t\nX7+644MPzuybPDnzfPbs5OfcudC1a1378u3Aqgs70ZkS7nlrNABzqvs0es+a/AJm0z99vqw0811e\n/ae+6eO8nNZ/Z7L7dQHgw0k9GvSt+CxqPUNCkiRJkiRJkiRJkiSpWdVLkpDQMVs8AsCS7UZzPr/v\nyCU1sOBr2/AZI3j9g/7cdEnDcMmHbxQAUFZbxJys/nUhoYrWh4SevLdL+yx2NVi8sG5rr+VVhJoy\n68tITlYtvR68iYU/Py3dnpefBKyqCwrpQnHLN83KjJ3cc2VhxvlGPeemj6eVD2h5vpTKHr0AeP6T\nEYwbMySj76STWj2NVtC2TQElSZIkSZIkSZIkSdJXTk1Jsm1U39FJ2ZmYnc2yb24DL3TkqjKV9elH\nOUlI5cn7uvCz0xc1OfapsAfbfX02vNFyJaG5X2bzwesF7LZfKf+5qW6ftTufmUuvvmvH3le1tVBe\n2a9B+2MvTeK0Xw3hvYl5nPnXxeyyVxKM+vC5EjaoLSDr50fyEvenx4flryIri0/ZNN0+cdfD+ITz\nW1xHt5lTgLrqQYPzZ0O9eVqrurCoyb7HHqtb5wOvzaGgaM1W4eqcn8OOw3szcyZcfDFcdBEUNb3c\ntYohIUmSJEmSJEmSJEmS1KzqkqSSUE5RXeWYmdMKOmo5jaru1Jn3w0i+Fj9gqx2WNTv2/v3OZ+Ls\n4QAsmJNDp661dOuZGfiproIjvllXxWaH75Rl9E+bVUMsqmJtsGh+w42keocFfHenEZy4RRIM+t/D\neYzceWkyfkkWPUhCVDfzU3qwmEf3OYtFHNPo/B+dd16TW1X9h/14kj25n/1ZsjBzVMWSZIuxb/I8\nV/Y/mw+5pXUPFAIX8lt+x0Xppl15hmfZLWPYb47qzjnXzWndnO2kvDr5nlx9Nfz977DFFnDccWt0\nCSutw7YbCyHcGEKYG0J4v4n+EEK4MoQwKYTwbghh23p9l4QQPgghfJQaE1Ltz4YQPgkhvJ361zfV\nnh9CuCs116shhKFr4hklSZIkSZIkSZIkSVofVJckW1nldK6rRXJy9+s6ajlNGhk/ZDif0bdkarPj\nOneH7E65AFz0q76csPegBmM+ejMzBLWsNLPi0II52au42vazcG7yuZzGJeRRAUC/+CUAz364MQCv\nP1tETBXdKSvNohtLAJhywnG8ecLvWHTW0RlzjuDT9HFWTtPVluIDv2O/q/oyk0E89sW2jBszhHFj\nhlBTDUsX57BBmMMlZ73Gx3dd26Zn2uawrunje/ghT7JngzGfvZffpjnbQ0y9xNpUpmzBgjW+hJXW\nYSEh4GZgr2b6vweMSP07BvgnQAhhR2AnYBTwNWA7YJd6142LMW6d+rd8c7ujgEUxxuHA34CL2/E5\nJEmSJEmSJEmSJElaK9UsKEmHNv56eO7Kz1OWCgl1qgsJff7nMwHYgZdXbZHtrIgyit77OP3cpcVJ\nwKV7qnLO3ziZLtMmk1PYdMintgb+c3PXjLay4iRi0YOFADx1f+fVsfyV8uKjnQA4hDsZyEwANiCp\nsDModQ7w0mPJvlhlZdl0YwnPXnojHx5+Ah8dfny9vcYSxxS2rupP2QYDmPv1HRq0l5cF7pu+C3Pi\nBnwx9sfU5rUt0LP4yAM4f/SNXL7XTezd8wWyqeWH3APAP/87g9y8yOhdylqYpf3VpkJCXVNfj7PO\nqgsMre06LCQUY3weUr85jdsPuDUmJgDdQwj9gQgUAHlAPpALtFQ7aj9I16y6B9hjefUhSZIkSZIk\nSZIkSZLWJ2/9u4x505LjTw9/It3+5qf9V3rOqx8YDUB2l7x027K+/Zmx2fb85bSXVnre9rZgi63I\noZoH+EG67aSxA6mthcX04I+cy8lcwQc/PYmcFXZL+9kug9Jhjw8mFvDxW5kDTj9kAEC6As/AoWvH\nVmPVVfDEPV0A2JCpTGYjAJ6qV3knkDzYLZf15MzD+/HR/MF0yy3hy533aHLeqj49Adi4+6xWrePP\n/S7NOJ/6fEnrH6IRNYVFDP3HnvQ5Zw/e+sXvAbiDccxkAKNevZcN+y6kpnqVbrFSln9HuhTW3fza\nthVJ6jA5LQ/pMAOB6fXOZwADY4yvhBCeAWYBAfhHjPGjeuNuCiHUAPcC58WkzlN6rhhjdQhhCdAL\nmL/iTUMIx5BULmLIkCErdkuSJEmSJEmSJEmS1O5iO82Tt3ABl162DUU5y7juxXnU5GRWD6quhpw2\nJgWKF2fx2eKBAPQekTnfczffs0rrbW+P3/ggb47J/Ft/ZUUWFcuSOiJdKGbONt9g6dDh5BRMazDu\nsB2HcPPz0ygoaro0zBgmUEUuSxd1b/8HaMbsaTn8+fgNOPva2fQdWJNuv/7CnunjnqlqScuNnzCV\nn4zZkHfYilG8R1lxFlOKk6BXbguFfb797bkMuuEwOl9/HMsY3OL6NvrPj7mDaYxLvf/zz9scgEO5\njcwNotpuyvcOAGDHc09hALMYcM7J9GQM2aEHSZ2ZNae6tpaXP1rMF3e9CewOwOQ5Zbw7o3KNrmO5\nrDbUyFmbQ0KNCiEMBzYHlm8I+L8QwjdjjC+QbDU2M4TQhSQkdBhwa1vmjzFeC1wLMHr06Pb677Ak\nSZIkSZIkSZIkSatd7ZJlAJRVFwJw4ZwTM/oXTqmm7/DWRwUWPvwFvzhvVwB26z2RvA36ts9C17Cy\nuUnVn8oRG/LMlccBUJ3VeEpm0vv59Fg0DejXaP8ZXMynbMKS+Ws2JPT8o51YvCCbx+7qyuGnJmGg\nlx4r4oVHk23PxnE7AL2Zx3z68OLg7zOVfwAwgs8azFeS1/z6PzvyOLp8fw5lGwxo0zr/9s1rOOWF\n49Ln80du06brmzLlewew47mnpM9zqSJ7/kKgbetbVaUlgZ22787ygBDAJecUsdVeDerUrBHZbdhD\nrMO2G2uFmZARRRuUatsfmBBjLIkxlgD/BXYAiDHOTP0sBsYD2684VwghB+gGLFgDzyBJkiRJkiRJ\nkiRJ0hpTs7RuC6zKCtgk7wsAjs29DoDyzxa3ab5lH9QFH/oPLG+HFXaMeZ8m76V6kyHU5iaVdHr2\nSiq/HM/VGWPPO2EDfn3mdk3O1YlS+jGb2Z+vuchFdTU8cHM3AB7/d7K12AcT87n6nN7pMf/HsUza\n9yBm049KctloQLIt2n9vfpgCKhrM2aNz859nzM5uc0AIIG7QM+N81KAZbZ6jJW+d+DtyqGZZUbd2\nn7slxUsa/9xnTl776/SszSGhB4HDQ2IMsCTGOAuYBuwSQsgJIeSS1KT6KHXeGyDVPhZ4v95cR6SO\nfwQ8ndqGTJIkSZIkSZIkSZKk9Ub14rrgR/HiLAblzGTrLh+z+fEbAvC7c7dl3pSapi5vON+yum23\n8gvXjT+zH8c/G7RN/ziJRxT2zE639exVRS2BX3Jlm+b/4vAjeZR9mD2viAtOWjOVlYoXZWecL12U\nxecfZlZC6kQZ75xwBtnUkks1y3r1AWDRJiMzxu26/XQO5xZO3O6x1bLWvKK67a9u41C2O7V/u839\n2hkX8Pk+B/LRYceRnQPVsS6Y8+R9nZnxRW4zV7ePZaWZUZsfcxcA82YZEmpSCOFO4BVg0xDCjBDC\nUSGE40IIy2tOPQp8AUwCrgNOSLXfA3wOvAe8A7wTY3wIyAceDyG8C7xNUj3outQ1NwC9QgiTgFOB\n3672B5QkSZIkSZIkSZJWk9pa8P8SL61fVvV3uqYaHri5KxXz6irGVM0vp6Imj/ycKvpt1yndfv2v\nG99mqzHlJXXHeQWrtsY15WpO4CHGciG/5QaOBOCVV3oB0LVfXUwir3gpAejPLAAubGWUYN539kgf\nfzBxzbyUpYsz4x3/u7czL/63KH1+H/sDUNG9rorPRo/emxxkZVE8aENmMoD/sB/PvDaEW/gpoW/X\n1bLWnE51a62467dUduvRbnNP2n8cr/7h0uQ+WTVU1yb3qqmGmy7pyVk/bXyLuPa0rCTzs7go9b1Z\nvCCb0uLAS48Vce/1XZn4fOFqX0tbdViMKcZ4SAv9ETixkfYa4NhG2kuBrzcxVzlw4MqtVJIkSZIk\nSZIkSVq7ZGfDoYfCbbd19EokrS1uHzefJ6YO4b6wd7otVtZQUZNLYU4NNSMGc8uNEzjiyDEMyJkN\n9G56snoqyuodZ619oYfGBGAsjzCWR1hID47iRj6ZkoRneg7JJr0hW0gq3nQNxVTGXHKp5ndc1PL8\nw/ryUM732bf6wdXzAI0oXpQZTLnv+u7p4z+MuI79P/tPanGBxjz3lxsYe8ie7EfdmmsKVs/nmdup\nrupR/sAuq+UeANmhlppUSKhkafKzqrLx529PpcWZn8XykNldV3fnuvN7ZfTtf9QSfnT0ktW+ptZa\nm7cbkyRJkiRJkiRJkrSCI5OiGNx+e8euQ9La5Ymp2wKZ2y/FyhomVm/LWwtHAJCzxQD2yHuO2bMb\nVr8J1VVct/MU/rBH5rZWy8rqYgU7HL/6Ah/tacFmW6aPe7CILOq2V8sbUFdRacp3f8CEMy/hhYv+\nj1yqAYgEaqkLmmzKxwDcxY/TbSE7i07d1mw5t6Xzk59P8O2M9mF8wZ8+OwaAV3+XBJxeO+08AO55\n/J30uNL+gxrMmVVZuTqWmhESyspZfaGdGAIfLh3G0//pRFnJmom/zP0ym7+e1iejrYAKOlPM0hW2\nhAN4+fGiBm0dyZCQJEmSJEmSJEmStA6YPBmKi+Gmmzp6JZI6wu/37cw959edz7hvBktmVBIj/OfM\n0kavueSMAQCU1NQFYzbN/5xJlUMztjcrXRT54qJ3eLb6W3xROpCqSlj0yhxmv7qU8vK6WEHnwetG\nJaEXL7g6fRyAfJIt2LbjNSq7dEv3xexsvtj3IOZu/Q1mj96RF8+7Kn3NcnvzKAB9h0ZmMoBP2ASA\n3l3r3vnrz6z+91LzYVKtZrNUaGm5KnLTx5P3SrYcm/TDwxg/YSqV3eqqDTVWNeiLfX/coK095HRu\nGJZZHR4r3xOAGy7qxdsvrZnv5ikHDGzQVrrBAHqwqNHxgzeuarS9oxgSkiRJkiRJkiRJktYBG20E\nu+7a0auQ1BGyqiqZOq8n9z80BIDc4iWcccmOnHFQf7Je+Yi7n9q80evmlSchkbEFj6fbOg3tRFks\nSm/PBHDFEVmc9fAB6fPi+bWcdMp2/PpXX6N0WR6ds0q44enpq+PRVovSAUMYP2Eq4ydM5al/jKeG\nJLTShWKqOjeshlTZrTtP/+NOvtxxtwZ9Z3I+k9iYIVtEBjCLTfgMgC0nP8P7jATg/dcbVmZqb0uX\n5pBDFQOZSV4q9ARQShIAK+03kNr81q3j3v++yfgJU6no3nO1rDU/p3q1zNuc956r+z7X1rb//DHC\njMk5jfa9ccrZdGdxRtudL0xixJYVlJetnkpKC+Zkc+YR/Vg4t22BrMafQJIkSZIkSZIkSdJaY86c\n5Oebb3bsOiR1jKyqumokh44ZRCQJCxXXdCJ7/uKmLkv78ROb1s1VlMQEXryxgm1+VEj1C5/ywdxd\nM8b/4oCh6eM75oxlSN5MCorW7PZa7aW8Zx8qyQcgp2cBZDVdS6W6qBN3PfMRfd59g2/+6nle4Fvk\ndcth4yVf8OQ+F7DRo/dmjB/Jh/TnS6qruq7WZwAoXbR867RIPhXpZ1pEEvR58J7nWpzjXy98RlZV\nFdVFnRr09euWT3Yz76YtCgYm8xewjIE92qfCz7LKahaWZlbl2bbgXd4sHwXAO2/XVYh6d0IBfzm1\nL5fd8yUbDGqfwNJzD3fiuvN7pc/n04vzOItP2JTKrt3pxpKM8Qd/cwS38CiTNxrTLvdf0dXn9GLK\nJ3k893AnfvTzpa2+zpCQJEmSJEmSJEmStJb7/POOXoGkjlQ/JBRX2DCotKb56jH5lJOdV3fNmLFV\n8CqM//cwbr8ri291arlCUKiuJnMTrnXHsl590scVOUUtjq8pLGLRpiN5jB2ZxHDoUghLoGyDATx6\n22PE7KRyy3tHncyWN1zOAL5k4bweq239y5UtTUJCCzYfRfFHmaGk1047j5iT28SVdWpz86jNzWu0\nb/thveic304Rkk32IJ76azjuOBgxol2mnLagjBcnzc9oe7H8G0xnMJvyaUb7rZcln8fE5wrZZ1xx\nu9z/8w8y31svFvI3TgXgka6P04m67efuJanK1ZWlfPJFD647P5ejz1zYLutY7uO3kt/7vPy2hffc\nbkySJEmSJEmSJElay/3ylx29AkmrXTN/6w9VlU32zZ5XF3z540bXcDGnc3qnywHYiRe58Y//zbzN\n1zYEoDYmcYHnS7/R4tKm1m7Y4pi1VWWXbpwZzgdgcXXDrcYaU9GtB0UsYxTv8cKF1/DpDw+jZMBg\nFo/YnCUbbQJAVafOAAxkJovnrf4AVWlJNt1ZzMvnXplu+y0XMnXbXZn0w8NW+/3b7K9/bbeAUFMK\nKWdj6lK0P+YuAObMSAJT7bkNXH5B3S/oJ2yS0VfZtTuz6J8+P4D7gSQkBPDsQ52J7VSIq7oarju/\nbpu40uK2xX4MCUmSJEmSJEmSJElruQ3X3b/PS2oHtcua3jKpZG5t+njwpbsxaMJJfOfs7lzBLzll\nfIS9v54xvqJ3nxWnSLtjwjT2G/byqi94bZKVxY5d31x+2DohMHmv/anJyWXxiC2YeNp5DS6ePXpH\nAHozn7K57bOlVVNqa+DlmZszO/SnrG9//si5APyJP1JU2fqtptZH2dQyincAuJTfZPS9O6GQV59q\nn+3OunSrAWAQ09mEzzL6Krt24z22BGAw06gq6sz4CVPJr7erW8WywCfv5PHa06u2njuu6MGzD3VO\nny+en92m6w0JSZIkSZIkSZIkSWu573wn+TlsWF1b586Nj5W0/lkxJHTri9P4y+h/AnDL41sB8DXe\no2hAEkCY863d6T3hN1Rs1DBhWJubx/inP23QvtyBdwxs0LbzNjNXeu1rg6rC5D+YhbkVrb7mlbP/\nxl0vTmqyf/EmI7n30TcoZBlVVas3evHCf5O0ybQ4hJqCAs7lHCKBXKrJXrasXe6xtm8mF5pZ4ATG\nsJQu9GN2g74rz+zDuDFDqF7FHFePt5Og2RSGAjB+wtR0X01+QXobwL/ya2pyk0pGRfl12wQunJvN\nn47txxW/78O//9mtzfcvXpzFyfsP4Im7M6thLZ1Z1cQVjTMkJEmSJEmSJEmSJK3llv9xszK141Dn\nzlBSArW1TV8jaf3x9n8z9yrKzoEuJfMAmFnVD4CjTpnb6vliUQFPXXA9A5nRoC9kBa65+MWMtu59\n1+3/2Az/BhzJDfxpm5taf1FzqZSUyq7dyKKWJeVFnPGTfquwwuZlZTezV1WryyOtfx647wX+d809\nFFJOF0rIpekk0BE7D1mle3X++BNyqCKbWqbtuhcAD/37WR649wUIgbOKLgbguzxOVZckBFSbm5e+\nfupndccP3NL2kNBpB/dn3qycBu1vvdWjTfN8db8tkiRJkiRJkiRJ0jpieUiorCz52bVr8rOi9UUx\n1grXXgs/+EFHr0Ja9yx5oGHln35/3g2AIdnTAagc0LdNc87e/TvMZFD6/NxfTEgfd/nWYJ4/+Lfc\nMOIsRuV9wA9/u26HhMqHDeUGfs6gTgvadd6Yk8vk7I0BmPFFHn87o3e7zr/cspIk2vHmtgdktFfn\nF/Dief9YLfdcF5QOGMK8UZnb6X3G8CbHz5nRMGTTWuW1+RRQDsBrv7sIgOIhwygdmISPftP3eiKB\nrhTz3F+uT67JKUpf/48/ZH43amvadv/ixU1vK1Ze1vo6UIaEJEmSJEmSJEmSpLVcVWo3kUWLkp9d\nOyd/sC8v76AFraRjj4UHHoC//GXdCzh9VZ1xBuy2W0ev4qsh0nS1mKrauoBAAcn2UmUDBjGQGSyt\nTbYfyi5sewBiEz4BoH+3JQwfN6CuIwSmn3wCBbcdwxnPdyGvcG3fjKp5WakybDV5eS2MbLuqnIL0\n8cTniqhu2+5PrTJvVg6FlNGjR5IYreyUfOYP3vcCxRtu3P43XJdkZTF/i62ZudMevHz23xjO50QC\nl/MrAA47cjr7Hr4EgN+OW/lqT8Vd+qZDQpXdGlbv6TYl2ZqurE8/lg4bAcDo3p80GPfN7y4FYOG8\npkM/LTnn9+9QShHXcCwAixe2fq6Vj0lJkiRJkiRJkiRJ65B5xRUsLqvs6GWslNmL84D89HmXTycC\n2/PRjBL6VDYeLOhamMsGXQsa7etop58O77wDt9/e0StRSy65JPl51VVw4okdu5avss16zoQvk+O9\nt/sE6EnMzqZLKGZmTKoBZRe1PXTwu2eLeGT8YvYZt7QdV7tyuhXm0rdrfssDV0KXkZsCULDt1ozY\noPMqzzdz0TLKKpNSMEuzMreOKi3OolvP9q28lP3O5/SmF0OfeoiXz/8H9zz1frvOv6574vr7IQS6\nTPsi3fYrruRXXAk3wmEHfwF0o7Ji5evolOZ0IT+rkvEvT2123KJNRqaP9+j+KjMZwMDlv7zA0Y+f\nyAvcxoLZOfTu1/pyQkVdaikrTtZ/0AUHUcQyNiRZy5IFrX8uQ0KSJEmSJEmSJEn6Spi+qIyPZxV3\n9DJWytR5XckICZE8x+uTltCnrPE/Mg7tXbTWhoQA7rgDzjoLNtuso1ey7qiqSraeq66GkhLo33/N\n3fukkwwJdaSFi+t+/wcPrQs7dskug9R2hNlFbf/zf15BZP8jOz4gBNC3az7bDe25eiY//gjYdjM2\n+sY32CiselWk4vI56ZDQkNyZvLJsdLqvPUJCtbXJv5zUR1rzxXx6sm5Xc1qtspKQTFNVlS55YFdu\nZyqdu7Zxj696yqtyKQrLgOarUb3+mz+lj7MrKxjArIz+oUwBoLKi9Z/n7Gk56YAQQB/mAdCP2QAs\naUMlIbcb0/+zd99RUpX3H8ffd/rObGfpVWmiiAVUsHfFEo29xoKxd2Nii5qfGqOxxS6WGI1g11jA\ngooKigUFKVKll92F7Ts7/f7+uLszOzuz7AJb4fM6J4c7z33uvc/U9Zz7yfcrIiIiIiIiIiIiIiIi\nHVw0mnwzsS4kFA43fpMx1rKFLLZaNM292WXL2n4dndlRR4HXC9nZ0KsXrNh0QYut8umnUFLSeueX\nzfN3/58AuHHvt9nr6q7x8WxndXzbk+ds83V1GoYBo0db/7bE6eoFdp6rOJv3OD7+uKRoy9tI1Xnk\npgLO279f/HFhZn/yKOWTZ97c6nM3poVemna34IxxKWOZXWycxStk+RIBu3AI7rioOz9MzWjWeWvC\nTjJsjff4/O6mf1C2w2D8PXrHx6IuK9wXxsGzviuJYMeN1WszvBlt6WZ9m7zGfKwf57qQUNlGhYRE\nREREREREREREREREth3VyTcms7Eqf/w8LYPykvS3/GJm+jZk7aW0NHWssnMWdmoX4TB88UXy2PLl\nLX8d04T16+HII6FLl8S419vy15LNN+LhURjORCAgx5f4bcjI7Fjf+c3VWTMqmVRzPB/wIccA8NCf\nuzZxRNNmfmV94ep+xitrPGR7atiw215bfe7Oqrkhpp+uvZ0JMxIJyjX7HsLGYSNwE8TYkKiaNe9H\nD0vmunnkpua9X/6wh0x7TaP7l554JpMmTkla6PxzLwPAQZSLqp/ATiweEorWNL+qkb8qcc4YBhUD\nBhH2ZlLABgxirFzc/ICg2o2JiIiIiIiIiIiIiIiIdHCGP5j0uK6S0ITH8vh6ko9/vLI+5ZiKQJh5\na8vbZH1NWb7UxhnHZtIwBrBwtZ95a5tXTiHX66J3bvMqPmyL5sxJHbNvfcGSFH//u9UGriG/36pc\n1L9/y19Tms/W4D3PzorABsgyKlP2SduI2e3YolEGsaTFzx0OGrg8JuXBDLIzg00fIHH1g0L73XoF\nboJJ1ffKNiR/YYrW2rnupEQVoGc+Xk1mTqIkX3XEQ09HmrTrJmwcvgevfrWIMw4cEh/77fRz4DWI\nFVdRv43oppgRax37MAMD+Oq+8VT2H8jwF/6FOd7GlHeymr0mhYREREREREREREREREREOrjMRYuA\nROuZupAQwOrf0lcQqKiJMHtVxwgJXXt6L6oqU8tALF4dZPaq5pUT2qHAt12HhAoLU8dmz4uw68iW\nrR4z/lkHjdV0GTAAyvxWqMvjtOF2KJXSFoxIpNF9Pq/1flSaWcDmBRg6ms7a7iqYm0/GxmKGsNh6\nXGPDNFvm+YTqQkKRLLK8oaYP2ApGp63l1LRgTi4eAgRxA1b1rfp/OwM1BovnJAd21ixzMnR3K5gV\nicCc6iHMYQjnsXKzrh1zJZ832suqXPToo4N55azEuUIBg8oKG126pVYYql5UAeTzNidZ680vAKAm\nv9tmrQUUEhIRERERERWDoWEAACAASURBVBERERERERHp8DIWLCGPPSklH0gOCRnpu411KMXrErcl\nz+FljuJjzuW/BKqafw6zg7VPa2vrU4tFceWlDvJ237wb1k0xHT0AV9LY8bzH+/wOgA9/WQfAHv1y\nGdYzu0Wvvb1r7CNuC4dwEOa03lOAXZL21aQJ30kbqPeyT3nqDfpNeZ/dxj8YH6urALQl6n8OQkGD\nUMAgYHrI9LVuSKijM7YidTXriptwv/0+QcMDWOHZ8sJElaBxh/TluvuKk45ZMNsdDwk1rDq0ub76\nxzMceNMlfDL+LezLqtPOueDgvgD8e+oqKits5BVEsdlgxWInH0/vCUAPrD8E4UzrtzfQZfNb23WC\n/2QQERERERERERERERER2b7Nyd6bwbVVKgA8tZUQOouBuyTa5PyDmziHV3ATILa++ZWOYtt3Roh1\n6xLbF1zQetdxulNf6A84Lr4daV53OGlB9lAIO1EcPVNbCu14Ri8ATt1hahuvSupU9tuBeRdezdLj\nT4uPVVdueRQjWJMIw4SCBlUV1rkyMxuvKCWbFvFlEerTk6DpZuk8KwRpLCsiA398zsN/SQ7cvP5U\nbjywVVpshYTuGfL4Fl1/9cFHM2HGCjaMGIXdm/hsvP5UDi/cl8crj+bGxy44uC9X/64377+cjWnC\nLef2jO+zYbJ+5Jh4maqagm6YGHz1wPPNXotCQiIiIiIiIiIiIiIiIiId3IpYPwaxJP54F+bFt2NR\ng8qyjn3br3tv6+Z2LqX0Zi0APqoJV6W2VWlMTJWEyM6GSZPg/vtb7zr5XRPvSXaetf0/ToiPVZSq\nxVhbi/pDBPHgSNNZcIeTuvHStJWcOHHHtl9Yi+vcVZGKdts7vr01IaFwKPE6BPwGVeXWY192rLFD\npBlWh62wze3jegAQ8NsYzQy+Z69GjylcZVXBW7bAChbt1nPFVq/Dk5n4bPzvPzl89k4WkyakVmWb\n+VUGyxcmvvSPcSU/3vA3Pn/i1fhYTW0lIW/RupTjG9Ox/2tBREREREREREREREREZDsXqDFYV53P\njvwWH+vu2pg059Kj+7B+laPhoR3G0u9jZFHBRrrEx5yEMYPNr4yxfUeEoKQECgpg7Fjr3wE7xDBs\nLf+qRCKJgEJpqRMTg+P5gFuyHwIgGLD2b+eZrTb17DXWd7s66km7395xv/rbleVHn8hEzgCgumIr\nQkLVid/Fh27sSnCD1WbMl7N169vendb3s/h2dYXBzKJBfMGhjOLHRo95/Hbrb9Z/HrRafe60evpW\nr8PIcHIPtzQ5b8Q+AW473wo2nTPsc67kCRadcl7SnGCetb6R9/+12ddXSEhERERERERERERERESk\nA/vgv9nETBtDWBQfy8qKUJHdLWnehvXJFV7+92I282a622SNTSksy6KSbGz1oj4OIrAZIaHtvZJQ\naSnkGuXw7rswZAgXrbsHM2bEQzstprgCgF35Jen92qviKyC5FZK0rMY+4VNXDgegxr9tV3EyOtFH\nK91STYeTgSwFoLpqK57MxsrEZpGDULHVXtKdn6aUlDTbnt2WcpbnDQAuPrIvAAfyJQYw7bBL4vNe\n51S6UgTAsgXJf0MHLv12q9cRc7oIkv5v81MnvxjfDtQY7DLKeu8f+/Uka7DBlyTmdG329ZUpFBER\nEREREREREREREelgohH46LUsjjilkneet8pHZFIV35+dG8W7qgK7wyRaW/klFk3cPDRNeP3pXABe\nmbGyDVfetA07787a/Q7F8WyE2GaEhIoqArz785pWXFnHtnR1AX2W/gC//z0APVgOQGWZDXeP5rdt\na4rzt9Ucxc98xNj4WMTtxhesBiBYY9WhMLf72k5tJ1p7Wz9UpXZTHV0epQBUl295SMgs8Sc9njXD\nC7R+SKijh7S2dnkxp4sLA08zgVPjY1d0fRmKYeRn/wGeAeBU3mQfvqM/qX87f7qq6QpATYk6nfQn\nfduy3d96mpdfGMoVV+zO5IlWC7JdmEsu5Vt93ToKCYmIiIiIiIiIiIiIiIh0MF9P8jHhsTwC/kRj\nEC+JG8dmjg/70iBmvcIioWDiFuozd+UnnW/pPBc9B4T542F9Oe2yMk44r6L1Fp9GHiWczmsAfPbk\na2DGcDwbwQw1P/QQjYE/1HJhmM7GXxyKBxAAfNSFdlr2zn4g4kz6rAGUDd4Z39za67V05SJpUk/W\nso5e7LVvOdC1vZcjm1D3HQ1sCG/xOWJVoaTHkz7vB4C7m5vgli9tuxfIL2Ag3ySN7TWyhI9Oe4+j\nL/xd0ng/VqU9x2/HnbbV6wjm5nMe/2EKhzORs5L2OQlzzoX7cm69EOY8hm/yfBNmrMBuA/bu36zr\nq92YiIiIiIiIiIiIiIiIbBc6U7eqQG21lqryxO08H9UUUAxAMCcPSK4eVD8k9PWkTADcnhihgMHt\n43pw3zVWe7LXn8pt3cWnEba58GC1TYl6PMScThxEiEYVOGmuygoHXdgYf1wXEqr7rGwJ04TSDcnH\nl5JHNskhMiMSSVzPv32+Z2++CT/91D7XzrFVcnCXH9jp6kHts4A2si18shZdfz0AgZIwH/w3i2mT\nvZt9jkiDkFAdZzffVq2ts9vaSkdzxl2LZ1Qfoti4/PpVvMnJhL0+SnbejR/+dBcxDGL1PoWn8yo7\nZK8HoIe3hPNsLxHK3vq/nzXdelI8ch8mcDb59X7TAYYzN+0xcy+4ionTlmz1tUEhIRERERERERER\nEREREZEOxzCsRNMnb2bFx3xUs5ChrKBf2huV4VDi5uaeB1iVYIbuHiRce795yVx3K65400IxJ26C\nTHp5MgCmza6QUDPFojDnOw+VNe6kkFBd+7mtqST00J8LuPK4PnzziZfC1Q4iYVhLr3grnG/ueJgf\nr7uT4t32SlQuCtS2G+tEobuWcOqpMHJk21/XWLOBBbGhLAwMbPuLS6OMRhIroR498FJNuDzCxMfz\neOpvBZt97lBZasW0e7iFWF72Zp9LEkyHg/Wj9sWGyRMP9eNk3qaqt1WlqWiPfTCwgmrf/vVBAFyE\niAatanfr/fnYYpEW68kW9ll/27/mAHZkKX4yMDH49dJrAHi9Xku08fyRFUf8DtPRMu3m1G5MRERE\nREREREREREREpIMJpWnpNIglZFFFPqXMz8oBrBuJp/FGo8f8MiODUKh9gzimCSHcuAhRNnhna9Bm\nqw0JqaZBUya/msWEx6zKUekqCTVs/zVvppsefSJ06d50a7afvraqnDxxuxVkGH14NTHs8ZDQ8rEn\nAeAu2cABr70PwDsvZHPAMdVb85Q6NdNssZxAs/inrwT2ZJ+hK4H8pqZ3ao0FbzqTUHYuXvyEq7a8\nNWKwygqmGMQwsTGL3diNX3g965yWWuZ2y2iQblx+1IkA+Lv1iI8tO/YUYk4nztvDRIMxZkyxfif/\nzYUczsoWWYezuhKAnfmVpSQqhK06ZCwF82Zx6tdv8tvYk9lh8tsATOx3c4tcF1RJSERERERERERE\nRERERKRDWbnYyatP5sUf73mAnxUHjyWrtnIMQLC2ktCpvMlvOx0AJLcbi4QT21ce16e1l7xJsaB1\ns9xNMGncYUSJxjp/KKC1rV+dqPuQSxkAcy68OhESqklU9pnwWC5/v6I7V5/Qu1nn7tU/nPR4xhSr\nnVEfVhPOSLRJCuYXsGbcHwAoXO2MV6faXkQiie2KisbntYaaUuv7M/LYtr2ubJlQdo4VEqredEgo\nFoWzR/fj7NH9KCmyJ+0LWPkRruFfAPSrDaZEvNt3u7GWUDxiVHx7wy57ECjoDkA4M7lK0/q9D8BF\niBAuHrvNClH2Z3mLrePXsy9JOx7J8PLVfeMB4gGh9aP2w3S0XP0fhYREREREREREREREREREOpBV\nS5NbimT4TLrN/gF/10Slg/rtxtwOK7FRPyQUjXSc8E3UbwVRNo7ZN2ncTpSYQkJNqv8KhbJzmDht\nKev2OTClktBHr2Xx4SuJG90Bf9Ovbf8h6dM+meeN4s0pc5PGotmJ1neVZfaGh2zT5tZ7Kdaubb3r\nmGl6uPlLrTFPgav1LiwtJpRlhYQm/zwsPhaJwCuP5lK2MRHPWLE48Tvf8De/qsL6fv0ftxPATV5t\nOLBNS1hto4pGjmHitCW8NnUhU556LbHDMHj168VMnP4bAMHcfKJdcgnaM+JTnjv5+RZbx7p9D2Hi\ntCUU1QstAUQ8XrAlx3h6/Di9xa4LCgmJiIiIiIiIiIiIiIiIdChOV3JQwOU2idntVPYZEB8zoonS\nJi7C2Owmb47P5aWHrApE4RD0G9x4uZc0WYRWE/Nba7W7km9wO4wokZhuVzalfi7AyHRjOhxs2G0v\nQjv2BRJhoIbt5mbP8DR57lDQoN+gEA+/tSY+9jSX4OyagWlPDgKFM7MYxQ8AVFXY2vQz1N7uvDPx\nZMvLW+86s342WDo/OQz0l3dPAcDdren3s7PrTBGYxtYa9npZwLCksQdu6MqkCdm8cF+iXdwPXyQq\nddUPeAIUlXrpwgayqMKN9Tv+/Y13t8zCOzGjhT4hpsNJ1OMh5nInjcecrqTfPYfDpCKahS8zwlgm\n0cfRsglB0+Hkm/97lO9uupefrr6Nb+54mHB2ToteI52Wq0kkIiIiIiIiIiIiIiIiIlvNkVxUglB1\nDO+GIpb8/hy6/zwDgHVjDo7vL5j7M9keP2VRHx+/nsUfri8lEjHoHVvNiw9PI5Lh5chLT0k6Zzho\n4PK0TcojVltJyN6gEIrdiBKJdqZYQDup9xLt0mNtbeMhKD7yMHgawhXW6+vLjiUdZmvGSxvxR/GG\n/bgzEp+FbCoIZaXeqA5lZXMff+EwPqe6ovOHuz77tZDCimDTE4EFS7oAVqunD38u5Dejecc1ZfFc\nF99+4uPc60oxDDj7wH5AD16ZUfsuxxLvaX7/7at6U2cVdWekjM35zhqb+ZWXpfNcDNwlRH63RDuy\nQHXylzUUMvDhjz9+beoCop7U80rrcjis7191lQMXIXZ67QV+uu4OAJx2g1NH9W2Bq/SDE8bEH8Xr\n7T31FFx2mbU9eTJn7dOvyTOd0cwrdv5fbxEREREREREREREREZFtiM2eHN4pXGjdTA5lJlpJBXNy\nk+aUBXxJjyMhg25Lf+GQ687Ds7E4Pt6b1QDUNKMVVUuJ1lYScrgbVhKKqZJQMyydl0hX9eidqA5l\nz8nAIEa4wnp96yoJXfDnEutxqOn3OGPBYrqvmEvXokXxsWwqktrZ1Qn7ssjHOnfRWgcmnbuU0OZU\nQnI5EpW7IuGW++7cfVl3Pn49C39Vg3PWhoNsxaUAXDxmKkZzUl/S7kzHpuu03D6uB+EQRNeUJY5Z\nV5o0JxS04bEFmX/OpQBtFhDq6N3M2np9TnsipOcixK9nXlRvLa28mEsvtX6kTBOOPrpFT62/uiIi\nIiIiIiIiIiIiIrKd6ByhBlu9O3iDhgf5fNUIAEqHDo+PR7yZTJixIv74aCYnnSMSsm5qAhxw6+Xx\n8bu5DYCAv+1uE8YCtSGhBu3GMmw1lId86Q6RWqYJyxYkWuIEunSNb0d9XnxUE662bmQHa0NCw/cK\nAM0Ls8SqwngIcPL5h8XHsqhstJJQFzYCMP7uLlvwbDqWzfk1GLhDZXw73HgXv80WrS0m88kbWfzj\nmsR7W7IwQCwGlb9avc1ye3Xw9EYL6eghleZa7BnGNTzS6P6qcjv2hSvjj1cudiWF1kIhOx5bkFlX\n3pz0Oy9ty+5IvClugiyoHxJqjwW1EIWERERERERERERERERERDoI04SS4kRboXse/Y2+tdV/Ihn1\nqkk0uJv+by6Ib6/+zcnalS7cJFoi7cw8wAqAAARq2rKSkJWEsHuSr9nHsY6NwdQwiiSUFCU+C9PY\nj0B+QfxxxGOFhEK1IaFQ0MBui3HWqXsCVku5ptSQQQY1STe8s6kg6nanzA1nZscrCTUmErE+mnfd\n1eSlOxVzfXl826isabnzxqxX/s3xufGWVABXXbAT5+7bj4tvOhgATy+1mupoNhVoGhRYwCNcx3q6\nJ40fwFeAVSjKX20nvzZ0N/nL/nzyRmZ8XjBsx2WPIO3LXq+qn4MINd16xh935kCbQkIiIiIiIiIi\nIiIiIiIiHcT7L2fz7D2JKi19vvokvh3ZRMsZH9Xx7b+cZd3IdBKOj81gNGvolQgJVbfdbcJojRUS\ncriTr+mz1+CPeFr0Wv93STeuObFXi56zPVWUJl6z/fiGYE5e/HHEa4WEArVvfbQsiC9WiQerklC4\nGe3G/PbM+Pw6eZRSvuPQlLnBnFx8+BNrK0+ZwpdfWv/efnuTl253sc3oN5b5/az4thEIbmLm5snN\nbV5Zoh2Py2t6knQ43SniQa4H4Dje5yKeA6wqXzXVBjkkvkQ/fOGNbwcjDjyOMNK+onZnfPunvAOT\n9ikkJCIiIiIiIiIiIiIiIiJb7edpyaGZHT94I74dyfCybq/9WT9q35TjvPXCG3VCuHj1y4VMmLGC\nLKroxbp4SKjG33Z3OGPBukpCybcmvbYaQqaTSAveC18428OG9Y6WO2E7C9RYr9knHAGQ1AYs4vFS\nTFfmL7FCZd5f5uPFn6ggVVLR9PnJINqzgClPTIyPLb3/Tky7PWVuxGtVOnmEawBYtyb1VrM/9WO4\nTSiPZeOsbd8XC0Vb7Lw7lM1t1jxnTmplp22R0ambOKV3Dv+lK0X8hfvi381wGPw1TrKNxHe0uirx\nfQpGnLidbV9JaFt8/bdGMJYICc0v65+0rzO/VgoJiYiIiIiIiIiIiIiIiHQArz+Vw6JfkkNCPX6c\nHt8O+zL54rFX+PzxiQ0PxU6M0cNWJY2V5vYh5k4+X6xfNwCCbRgSigSsdlj2BpWEskwrsBTcjNZn\nrz6Zw23nd2fRL65NztuMIjEdWt1rUxfuCmdmxfdFvD4qyaawNJNQwOCNZQeznp6JIEJJ01VqAqYL\nlyNC1J1BBVlsJJ9odnb6yYbBdzf9g335BoDVK1ODRBs2JLZNE6ZNg+nTU6Z1CJvzGVlm7MhAlloP\nWjAkVEYuADn5EY45q4JTeb3Fzi3tZ8KMFUyYsYIpT7xKN4opojv7Mz3+3YwEoTLgxutJBIFCRYmK\nXsGoE5ej5T5n24q2juUEQ4nAae/Mjclr6bwZIYWERERERERERERERERERDqC//0np9F9U554lYgv\nK2X8f29PY9blfwHgmN3nJ+3zG96U+cHDRgFQsqbtUjTR2pCQLSP51qQry3p80zk9qa5s+o7rlcf3\n4v2Xcli2wM3fLu4BwIM3FnD1Cantxc4Z049fvmvZVmbtIRiwXpe6dnLhzESAJ+LJYDhzALjg4L7x\n8Z+uuwOA1z4c3PT5TTduR4RIhpcsqsinlFBm6uesTigrm52Zj90eY+6sTYeEKivhgANg//0h2iHz\nDs3/DpS5C+hCbUgg3HIVXsrI5Uoeo6zEyYcTcjiEL1rs3J1RZwpeNKeSTNHIMazZ71AAFpwxjqID\nDwKs4OSGYA5dvFX8nrcB8NdrARmIuXC7OuSXZrviMq3g1u78zNNjn2nn1bQchYRERERERERERERE\nREREOrAFZ4yjaOSYtPuqe/Vl1cFjATh32QNJ+wJmIiTz+b9e5qt7nyYz38BOhJqStrsBXV1phUl8\nDQrU2Lpa7atKihzM+iYjPh4Jw9T3fMRql2iasHKJk9LiRFUHw2YFPH762svGQms80iC7cd813fjo\ntcyWfCqtavpHXqa+70saC9a2G8ukCoBIvcpQEa+Po/g4af5JjncpHbJz0tiaZQ7uuKg71ZUG5Rtt\nvPNC4o2oMT24nFEinsTrH95kSCgHH34yHCE+ed/JnDnw00/WvqoqKCxMzJ06NbF90UXW+xhqurhR\nm9mcSkL+sIdcyqzjIi0TsIvFrJBQHqXxsQv4d3z7FOMNnjv1OSb+88MWuZ60j+9uuZ+Fp57PnAuv\nIZZnffeqN5gsDe9AyOHhQW4AYKh3WfyY8mg23oy2bzcmyS7rPpHHuYIfGUV/e3KlPqMzJdoa2HYa\ncoqIiIiIiIiIiIiIiIh0UrFY4/tCmY20f6oV8VjBkQEzpnCM8yMmhY8GIN9dCbXtjNbvc6A1Z/Lb\n+KgmVLn1ISHTtCrdeDI2HZooLbNag+UUmNS/qsebOM7hTGx//HoWEx7L49m/d+HWJwq554ruKefM\nyokRqNem7L//ymXsmZUp815+OJ+jT69q7lNqV0/eWQDAwcdbVYOuOLY3ZRtrA1a1lYRquiZei3CG\nN96GrM5Q11JizkG4CBLCzW+/uvjrBVbVpYuPSFQbGrpbkKG7BYniwOWIEujSNXFeX+PBKtNuracq\n6KFqJYwY0fjzOeGExPa6dfDMM3DZZVaQqFu3xo9rK82N+pgmVEa95FAOQCzaMiGhgN/AxBYPHwF4\nCPI0lzDqkVMZMO53LXKdzsTr2vbiC4EuXZl5w98AKI9YAbz7b7O+i58UjmYHljOWSayJDgRg5WI7\nZeSSmamQUIo2zuXkxUq4gg8AyF84tz2X0qK2vW+ZiIiIiIiIiIiIiIiISCcTS5PZmcsuwKZDGwCR\njERbsbyw1e+pv20ld+3+PAu4M3mu10cmVQSrtj7o8O6/s3lzfC7PfrYKr6/x85WWu3ETwJNjq426\n1HK74pvRSOKWa3VFohlKuoAQgN1hctXvescfT56YzeSJmw5TdRbRCJSX2OMBIbBCQoG8LsRc7vhY\nzOUm06hKSrt4nUGiLhdOwoRwxwNCDdVU2wgFrdfc7YoSrVdJKOJt/PNWF1I6hg+ZxLHNfk65ufDK\nK9Z29+4wbx7svPOmj2ltza0kFA5BBCfZbj8EIbaV2Y3SYjv/vKErY8+sAEgKCQFcYm47bY0k2W47\nrEt6/MaJ/2T1xiPI+rqSqpgPiPH83XkA/ObvzUHtsEZJsAeD8e2Nw3ZL2teJCwkpJCQiIiIiIiIi\nIiIiIiLS3mLR1DuOuzAfANNmT9lXXzgrh6jLjT0UxIsfgHHOF8n0hVPnZlghoVgJQEbK/nT81Uba\nENCb460qRWUb7Hh9jScnFq0toCvFmPVCQQDVjkQYpXhlvTWGm777arNBt54Rlle6Gp0z6iA/RWs6\n3+3QD17JZswRSXEqvPgp7tsgVWMYeJ0hqNfCK8ftJ+Z0sStzmEH6FnUAgRqDcMh6nZ2O5DJWddWC\n0qnstyOrDjqK8778T7NCQhvKw4w9wk5RMfTqA2AFwP75YJRHHttE+aw2EG1mSijgr2355gnWhoS2\nLmD3xjM5rFjk4um/WZWjAnsN56PL3sMeDBAYvivHb9XZpa1sSUgkOyeCgzARnADsnPkb31z1MJ7D\nfqQm5ubLD2wMGlDOkoVebjj+S0ra+NPQ0YMvDpuN7Iy2+00P9+wJc+DHh56j8MDDyXYmrp3lcbbZ\nOlpa5/urKCIiIiIiIiIiIiIiIrKNaazd2Jr9DmXFkU23HVqz36H0+2JyvP1UOGZPqjpTx9+jN5lU\nUVOT06x1LZzl5v8u7c6NDxWx+76BtHM+fzeTc64pS7uvaI2dH5f3AyCUmdwaa8yQFfCptV28JFFK\nqXRFlC7eSjb6sxpdl80OIw/ys3xRakjomds+JvO4YfzrlgKiW99Vrc2tW+EgHEzcrZ/BPhjAtHuf\nTpnbMCQ0pGo2AdfRTGN/7j3pXV5afCRjz6xgn0NrmP6xlyfvsIIpwRojqZIQwMzr7iBr5W9Nrm/V\nwUeT/+UHKeN3/Xs9f72gBy9xLn/gZc68spSPf63kh++t9/+AY6rwZnrxV9koN6r4cE55s1+T9hSo\ntl6nLG8YysFs0G6sptrg9gt7cMolZewyMkhmTuqXORaDD1/JYvThfvK7J38o3f2yKNnZqlLidW06\nECidm+l2kU8JRXTnCh6n208ziFx5M+szB7Cuqivj77bm9WQt3u4uStp3uR1Ovs/FcSN6td0Fn3kM\nXt6bUVefD5sIT3Y2tqaniIiIiIiIiIiIiIiIiEhraizM8uWD/yaY16XJ45cdcwoAvVkDQEXYR9SZ\nGqAJ5OVbrauCzbvhuXS+dY6533sanbOpNl8b1idqFkS8vqR9tiwPr3EaAEXrE2vdOKucff1fkGEP\n0tBeh1iVkorXOvBXpr/Vefzd5wNgt5tJbcw6OqfbCpd8PSmTYMB6bn+7+Gv24XuWH3kCgS5dU47J\niSTHCIb65xBzurAT49ie33Lns4Xsc2gNALldEh+ygN9GxB+rva41tvD0C/nxxrubXOeGXUfGP2d9\nBloJpUHDg+w4LMQXNz/KufwXE4PjzqnEXbKB4btZ4bB1K53kFkRxe2IEazrP+xIstypyeX3W69ew\nNeA7L+SwdoWTR2/pyiVH9SGU+rFl5RInrz6Rx0sP5vHO88kBvSGDOkdYSrZe2JdJD9YDVpu5H2+8\nC4BPqpIbi+VQjrOqMuV4aWMDBsBf/7pNBYRAISERERERERERERERERHZTjSzu1C7iMW2LjQR8Vgh\nHg9WtZ8QLmKu1JBQJMNLJlXNDgk5nNaLVteaqj6nkdrOrCGj9m7k01nXpvSycVZXchpvMJw5zFuQ\nx33XduXJO7qwqHoA3Snks+jBAJSRwyh+AGDQLsF4K64Vi9O3GsujFLCqDUXTtHHrqOrfh/7vv6xW\nbnl2K0Dy61l/THtMeEi/pMd9WE3UbX0W9nji3qR9Nf7EreFAjUGkygr4OBvPf6VV1ac/vfqHeXbE\nXdwxvpB/f7mS258uBCCnfB0Akdo1nHzMSO6dfSYAS+a6WbvciTvD7FQhoXCJlfrxZVuhqvohoY9e\ny+TDV5JDcjO/8qacI1L7/flpWmLfnTf8iImBmZuomNXR2z3J1ikbNAwHVmvGXMooGTYi7bwcyikb\nOLQtlybbEYWERERERERERERERERERNpZNLJ1x4eyrVCJq7b3VAgXEU9qWMF0OPEZfmpCzmad115b\nCGjK21kpISu7mVh0uuopAAG/lXrYMXd96s7aRIQTK2z0y4wMpn9sVRtaQ2/GMAMTgxwqKMeqvnLg\n4zdzyaeXAzB/qXy4tgAAIABJREFUZvp0i4cgvz9mFO5oTUrVl46sfhBr7XLr/ennqQ3deDPTHmPL\nSFRqshPhh9vuI5SVHFrp/dUnnHLYcPr2qIiPBatiRKus192Rsfm3jEPZuZy3+B94fSYud+JzkrGx\nCADDNOn20wwACtiQdKzbY8YrJXUGoRLrO+XNsd4fs95n6uWH81PmO92pacRQMDX9c8eDe1n7spvX\n+k86li3JcwVz8olipQH9+yQCQrfZ70ma18VWQulOu27N8raIMmrbh87z6ysiIiIiIiIiIiIiIiKy\njUpXqWdzlA4dTtThxIvVjsvAxLSlP2eGI0hNKH0VnoY84ar49jljkqvWBMiIb7/6RF7a40PlVpCo\nS+XqlH2LTvkDAGfwasq+hcZOSY9/YC9u4l4uZjxdKU6ZX1ddqE5GSTEDP32bWGAr01dtJBaDaMTg\ntCN+BSAUsN67uuca9qUPCYXciRZuvzIMf49eYEvcAj5rdH8O+vMfcVVXss/S9+PjkdIQ0UrrtXH5\nNv+zF8rOxVnj57jTDmHoay9w1uj+nDW6P/0++wAAeyjI4ZefDsDefB8/7syhU3FndLJ2Y6XW65SR\nZ72usWhqCGiMfQYfHfUXa74/9bmZpcmfz0P5LL4dzmy8XZ9sW6IeD36s8KazR+I7fVb0v0nzzKzU\ngKdIS1FISEREREREREREREREthmLFkF5eXuvQmTzRcKJYME4nuNXdtrE7PS++b9/cQpvci0Pcy83\n4wgE0s7zOoL4I+5mnXPHqe83um8kP8a369qSNVTw8RTr37KVKftiLjcLT7uAgSxNGs+hjI93u5jq\nHr3rjVVwL7dgw2Qsk1PONWzZlyljDiLYyysbXX9HUteOas9PXwQgGLDhdoTZ9+FbAQj7stIeN6x3\nIcfzHnMYzmCWEMjt0ug1+k/5gEUMpitFBCujlKy3runybv4t48I9RwOQvfI3Rj78t/i4d0NRylwb\nJrfuboUgchfOp3ilwQ9TO08I4vsfrGpB+d2tEkKxNLmzEdFZjPj4JSC5rVud7JmzAHj3kFvYOHRX\nPuNwAIp3HUll3x1aY9nSQVVhhYPqQmcAPXeI8gHHxh9PLj+4rZcl2xGFhEREREREREREREREZJsx\ndCiMGNH0PJGOJuKPxbd7s4adWLjZ51h16LFEuubzMNdTwEbsgZq087zOULNDQpAc/olFYfrHXmIx\nsBFjT2YCUNAzfcWeSpdVYchHddr9M6+/k0MG/spw3+L42J3cSc3IXVl84lkAvPPed0SdicpHBrBz\nphUsOoqPuJLHeGjJmaykL2voFZ/nIEKERDuujixsdbTCTaJvW14k0aYr6k7/ftmyPLzHCQxnHgDB\nvNT2V3V6T/+MwSyhmG58Mb03Dz+1CwAOn33zF2w0rxLQhBkrKNthMN7qUgBi2AhGmm51FwrCp29m\nUr6x/W9nT53ZHwBPd6u9XSyWOuc6HiYTq+pWrLAiZX8wYn0Oh37xNvkL5wIQyszm02ffJuL1pcyX\nbVc11vtt7NA9PrbsmFM4lknxx68ccm+br0u2H+3/qyoiIiIiIiIiIiIiItKCVqYWLBHp8KL+cHy7\n7iayv2v3xqY3yrQlAh+h7Ny0c36JDidsOlk8p/GWY2uXO/ju8wzCMSvc4DWsNmYfv5HFk3cUMPU9\nH2Gc5GGFP8x1ZSnnCNQY/PPr4wH48j9vNHqtcHYOw6p/jj/OpIqoy8X8867grUkzqenWg2Bucvhl\nftVAAH5mDx7janKooC+r6cW6+ByHESVsa24Yqn2FaytJeQiQkWEFrnKoVxatkVBOxJOR9DiYY4Wy\nJk5bypf3Pxcff2vyT8y58Oq05zAymg7tNOTv1jNlbO3og4BElaG5F1wFQKBLN/IWzweskNARfGKN\nb6Ll2IWH9OXFB/K5/Ng+PHpr49WR2sLIASvIooJwTi42osSiUFlu4+zRVvu9XqxhKIviQbhwWSjl\nHAHTChh5SFT3evvDH9pg9dJqtrBjXl0lIVd+4ntXU9DNGiPIbsxidMbMrV6eSGMUEhIRERERERER\nERERkW1COJGxwEzf+UikwzBNeO+lbApXWyGcqD+a2Fd79/nj59/b7PNG3VYYYf2ofVlw5ri0c2bU\n7GH9OyW55dOSuS781QYTH8/lxjN68egtXQkGrduJ15oPA1C81lpv8ToHNWTQhY3YiOJYvDrpXL98\n52HcIX0TA7mZja455nSyEwvij7OoxOmvBsMgmF8AwLR7nmDmNX9NOTYpSFNrzb6H8P7rUwl3ySdi\nbkGVnHYQDlrvuZsgNTXWa7ywtuVc6eCdGz+wQXjIdDhr/3Ww5sAj+OXi65n60L8J5nWhfMehAEzg\nzKRjYp7Gw2KNWXnYsSw76kTmnXtZfOzLB17g29sf4vNHX+GbOx5mzrhrAStQVPf+DulayPm8CMDG\n9enfm5+meTBjief13WftW2nHGQuzM/MJ5ubjJEwkYvD4XxPBpbVYbfGKRo7GRxWhqtQ/QBvLre9l\neN/hFO22F5NemkSs9rsq25cY1ufeXZD43i0/6kS+v/FuqsjkR0bRdXb7BMiMZlYIk86tc9TXExER\nERERERERERERaUJNvc5KhYXQo0f7rUWkKZVlNl57Mpep7/l46M11RP2p7bpqum3+h7guJLT0+NPj\ngZGGxnaZxpvFRxGLJm4Ih4Jwx0U9GLhzkKXzE9V3qkPWdgFW66to7TIXznazkJ3Yg5+JYeeF7w9k\n0qlhHnzDquQzf2ZyBZ9oRnLFm/qCuXncwt+5i9sBsBNl2diTkuZsGDGKDSNGUTpkFw6/4oz4+Dn8\nN+V8X983npjThd2+rPOEhOpVEqqvqkcfPnn27cYPbCIROffCa+LbwVyrytAx9doaAXTvEyW1DlQT\nDINv//YvazMWZf3eB2I6HCw75mQAltd7/wr3HM0hk/7ET+xBt4G5LCu2Ep2P3NSVtSuSP6O9BoRZ\nuzz1cxuNgL32zrZpWm3v7G10p9usDOAmSCgrh1zKqPS7mDsr+fP85f3PUlPQncwLqwhWW+/J/17M\nprzEzplXljL+6wMBmH3H3wnlpK/wBQppbE/cBfV+I202lpx0Dnv/8zYAPn/0lXZalWwPVElIRERE\nRERERERERES2CX5/Yrt+YEikTkcqMBWtLRxUuNoKRERqopuY3XzOqgogue1YQ7fv/DwA+d0i8YxJ\nsMa6bVg/IASw0WUFlepCQlPezgJg4SwrjPRqvao061c5WbbAej4VpcnX31RIaNVBR+MhyFtYwRLf\nXcdRMWBQ2rlFI8dQuMdovrQdxOm9PuE27k6ZE3NaFToctihRHB2+sphpwsevWa+rmyB+Mjh94FTW\n0Iuv7h9P1NP4a1f/Uz3r0hs3eZ2w16rmlENFfOw5xhHbxHvTHLOuupX1+xzQ6P6ywcMA2INZGJj0\nMayqUw0DQkBSQOjg31XFt/+wfz/+fX8eZ4/uxzlj+vGH/fsR8LdNoCYaiOImSMzppIANfLlwcNL+\n//AHSofsQsTrI5MqSkpdfPhKFq8/ncvHr2dx/oH9Eudyd472d9L6jMwGlaRqA2K/HXMy1b37pTlC\npGUoJCQiIiIiIiIiIiIiIp1aJAITJ0J1dWIsGGy/9Yg0RziUHHCI1gsJjeLHLT7vhuF7AmCLhBud\ns9PX7wLw6pN5nDOmH999lsHLj+Slnbs+0g2AEOlbUuU5kmvQfPmBFUT58v1Ee7FJtmOINVLVCGDV\nYcdSOmgYJ/EOJgbu7E2XiCnfcTAHxr7i1bVHYdtE9Mtlt17TtgqTbKllC1zx8JWHABkEeCTvNnqx\njmBu/iaP9XfrBcDM6+5g/nlXbHJuoLZ1G8CTB1hVgE7lDSKt3PaqdOhwVhx2HACFe46hu6d5dYv+\neEsJ97y0Lv647jWqs6GwbapEBWMuyPFi2ux0YSMVNcmhquOG/oy/R2/C3kwyqWL6wh2Z8Fjq92kc\nzxF1KSS0rTDYst+VyRzNn/hnSqtAgAnfLGPGXx/c2qWJbJJCQiIiIiIiIiIiIiIi0qntthucdRYM\nqld4JBRqv/WINEc42DAkFAPgQ47hTF7d4vPWhRDsocaTcs5YcoDo0Vu7Mv0jX9q5kxbvQR4l7DF0\nfdr9l+5gBXs+u+4hAAp6RPj150QQIoqNsbHJaW+I1xf2JUJFTQUp7MFAytjc869MGRuatQKAlYvT\nB5w6ivqfBSfWe+Mu3QjQZEho5eHHMfWBF1h46vlNvsb+Hr2Z8sREQlnZHJkznXWj9iebyniLutYU\nrG2xFc3IIKOmPD5+0kVl3PJEIeNu2sixZ1fwpweLGDAkxM4jrfd4wJAwQ3dPfb8Baqra5lb3nOAw\nqg0fps1GlEQw6Sg+YjW9yV84F4Cwz8dsdm/0PH/Puwdsuj2/vTuaj/knf06/02Zr8nvcmjp2nFJa\nin6FRERERERERERERESkU5s/P3VMISHp6EINQ0IBKyS0C/O26rwxlxWIsYVb7ktQSj6OA3fCwFrj\nybwZ33fu7tMA2P/hmwCIhA2+/8wb37+pSj/1/XzVLfHtWBMhobkXXJ0yVtl3h5SxXLfVrqqmg1cS\ncjgTr9Fvh58IQN7SBYS9mU2+FhgGa/c/rNnhk6KR++Iv6E6/zz6kx4/TAZpoZ9ZC6tZX2/stgJtH\n3lnDSeMq2GVkkENPrOasq8rYY78A97y0njv+uYy+n0+i7+eTuP2pQi6/c0PKKWv8ied86dG9ufnc\nHi2+7A3rrVDQN2V7EPb6mM7+8X3v8Ht6szb+OJLh40XOSzp+wkMfc9alxXzK4dh65rb4+kRENtem\na/WJiIiIiIiIiIiIiIh0MP5QhO+XldQb6ZYy59vFpVRlNd5uaVvRPdvDsJ7Z7b0M2QL1243FohCo\nbZfnw9pYs99hW3Te5UeewOB3XqFozzGNzznid3z36d5c038CM1YManRe0np9mZi19QcO5Cue4jLs\nRPFOscbqKuBEIgaVFdZYPhubve6Nw/dkwekXMuTN/+Dv1nOTc6t796MmvysZJcX4C7rh3VBE0R77\nEHG7WXXosfF5PpdVTSng79h1E2K1GaFR/MCIEaUwxXocyNt0FaEtZdodOGv88cdtUUmoLhxUlxlz\nE6Jrz2ijc/e77Qp6f/MFAF///SmcrpNTpgWqre/QisVOKsvsVJbZKV5n561nczj32lJ82c0LqG1K\nJGxdY2jWCqIZXvY1vuEbc18AMrAqHBXtvrc12WbjrIw32ftEF3MvuJpTjxwB18ORw0bQhV8IrWr6\nt7pjx9mkvp16ZNE3f/MDdoFDD8c5fy4HDiloenIbs9n0CdwetFtIyDCMF4DjgCLTNIen2W8A/wKO\nAfzA+aZp/lS7737gWKxKSJ8C15imadY79j1gx7rzGoZxJ/BHoLh2yi2maU5qpacmIiIiIiIiIiIi\nIiKtKBw1WVuWaD8zcOcgS+cnV9tYXxqiS1nj7Za2FU57xw4/SOPqVxIKBgwmfjQMgDxK+fKfz7Pm\ngMO36LzFe+zDhBkrNjnnl4tv4HefHsQ9Ky7mMD5v8pzXOB7DW7iWzzmE4/iAy3gKJxEAynIH4ynd\niAE4CeFZsYpobEcAbuNuANaPbDywVN9P197OrCtvJuZsuj1YRol122/tmEP4/tb7AXj9y0XJc5xW\ncKmyrGN/TyK1gbH7+AuG95j4eDC3S6tc76erb+Owq8+OPzbt9k3MbhkV/QYCUNW3Pz9feTN7PH4v\njupKIr6slLmHX3IK3X75Mf54xDMP8M4VqSGhukpCVeWJ9/fa3/cGoKBHlFMuLk85ZnPVfU+v2Old\n4Pd80v00fOvXJM2Z8vQb8e2I18ewic8xbOJz8bEuv/4CwJyLrtvq9UjHkedzkefbglaGn30KQJ8W\nXo9Ic7VnJaEXgceBlxrZPxYYXPu/fYCngH0Mw9gX2A8YUTtvGnAQMBXAMIyTgKo053vYNM0HWmjt\nIiIiIiIiIiIiIiLSXhoUh4hGUv+f79Gw/t/w0rHVryQ0Y4qX0iqrIoWdWKLqSiupa0k2Aiu8MImx\nHMPkpDnPMY6LeJ4reJx7Cu6jsHwMhzCVajKT5s3543U4q6sYfc+fcRGCqgA1lUH2ZybX8Qjf33g3\ny48+sXkLM4xmBYSSDtlEO7MMlxUSevGBfLr1jrDbmECjc9tTuPb3ykWIaL3nn7/gl1a5XtSdCFUu\nOvncVrlGQ4tOPY+ywcMo2nM0zqpKAI4adyIxh5PMtatw+q3buzG7HVs0ucJQzoqlOIzUqkOB2jZy\n/qrUEFi0kSJFmytaG0jNrS4ESAoI/Xzlzaw47Lik+WFvJhkbi0ln4WkXNHk9Q3+6RKSVtVts1jTN\nr4CSTUw5AXjJtMwAcg3D6In1n/4ewAW4ASdQCGAYRiZwPdTGkkVEREREREREREREZJtj1gsFmCYs\nX5QaKogEYm25JJHNFq5XSei5e5MrxtgioVa9dqy2ckwBGzExGMtHKXP2YzpTOIxHuBaHv5qZ196e\n9lyrDzyS344/nXff/QYnYSIRg6qFFfTGClMsOfnctNViWsqmWpNlZyRCQZMmtN4attbG9db74SaY\n1PqrYVimxa63yx7x7d+OPbVVrpHCZqNoz9EAlA2yqmblLF+CEY3EA0KQ/JzXjjk4vj3ow9fi27sx\nC4D1K616GOkqRaULj24J3+z5APSbPz1l34IzLsLfM7kezIIzL0pqFfjJs28DELPZlAASkQ6hPSsJ\nNaU3sKre49VAb9M0vzUM4wtgHVZbxsdN0/y1ds5dwINY7ckautIwjD8APwI3mKZZmu6ihmFcDFwM\n0K9fvxZ5IiIiIiIiIiIiIiIi0jq++cQb3z756CVUf7SYjxhLNNA6N9dFWkrGgiVA16SxE3mnTa4d\nysppck5P1rETCwFwVJQRzs5h3h8uZ/BbL/PB658T6NItaX7M4aCMPD6YvSs1ERfn8QKFe4xulfUD\nrNtrf3r+MI0Vhx/X+CSHnYDLhydUzZARrRu82hp1IbFiupLhySCYnYu7oozyAYM2eVymx8HoHfK3\n6JoVTz1L5m03M/KIfTCzs7foHIsKq1hZku627KaV7zCY8v4DyVq1jJnX3ckuLz2Jp6QYh9/Pb787\njRHjHwJg6sP/IXv5Eo4+/zgqpiZuG//MHtgw+eTNbM77UxnlJant0uyOlqnGVWW3wmWVu++ass90\npN5qX3LSOSw56Zyksaba/4mItKWOHBJKyzCMQcAwEm36PjUM4wCgEhhomuZ1hmEMaHDYU1gBIpNE\nkOjCdOc3TXM8MB5g1KhRrVvLUURERERERERERERENlv9Tkw11YkKEm9+NJgFDOUjxkIwgvX/NRbp\nmCLVkZSxe7jV2mjlO1Qxt4cJM1awywuPstv4B9POyaYiZWz25X9h9mV/TlsRxXQ4AagJW5W9ciin\ncNS+LbjqZF889kqTc2yRMO6QFWIpXG3dFjVNePaefA44ppphewZbbX2bY6+d1/HD/J7syzf84BnH\nW5/MbtZxTptBt2xP0xPTufQiuGQcXbeius3qspotO9Aw+PDVz+LbhXvtF98GGDH+IfxduwNQMWAQ\nr3/xK8U3/ATf1E5rcLrKMjsOp0mkXpvJeT96gPItW1894dqnuO73J+JDgR8R6fzard1YM6wB+tZ7\n3Kd27PfADNM0q0zTrAImA2Nq/zfKMIzlwDRgiGEYUwFM0yw0TTNqmmYMeBbYu82ehYiIiIiIiIiI\niIiItJq8Aqti0JNcBoADK3gRDSVXElq+0El5SUe+LbJlTP3fnTutUCS1+omPagBiTmebrCHiywSg\nZMjOOElU2vmMQ1k3+qD447c//CFxUCOhkmiDNQ/ML2Te+Ve24Go3X9HuiVuC0z/2ARDwG3z5QSZ3\nX969vZaVYrB9KdmUk0s5Ec8Whn62RHu2vzKMxPXrbwP/e+trPnzl06S5hiu59sXZ/BeAhbNd+NcH\n6R9emrR/6Tw3P32d0eQyfp7uobQ49btYJ1hj/cg6fY3PERHpTDryfw2/B/zBsIwGyk3TXAesBA4y\nDMNhGIYTOAj41TTNp0zT7GWa5gBgf2CRaZoHAxiGUb8Z6e+BuW35REREREREREREREREpOXUz8XE\nYta/Y/gWACdhAObP8lG0NnFT99bzenLreT3aaokiTQqZrpQxH9XMO/cy1u53WJusYfGJZzFn3LV8\nOv5tJnEM1/MgJgaH8gUz/voA88++mLcmzUxpLZaOaU8OCQ05zINpb99gRXWvvilj/uqOd3s0UGOQ\nReVmH9eeGR9ovVpt1b37Ec5ObonnzUiuvPUKVkuv/7ukB/5fS+lKMaNr/w7UWTjbTSS1YFdcJAwP\n3NCNK4/v3eic8lLrc+3KbpvPjaEKeCLSytrtr6BhGBOBb4GhhmGsNgxjnGEYlxqGcWntlEnAb8AS\nrOo/l9eOvwksBeYAs4HZpmm+38Tl7jcMY45hGL8AhwDXtfDTERERERERERERERGRVnDBBdaNcL8/\nMWbWK58Tqy0YVFdBqC4k9Nln3bnupN6cPbofyxdaN3lLix2sXZ5cjUK2Lx2p8lK4ttPVpxweH/Pi\n55dLbmizcE3M7WHOH68j6sngcD7jQf4U3xfo0o1ZV91KML+geedyOLifG+OPQ9m5Lb7ezRXKzAbg\n0N2W0qOv9dvgr+x4IaFyVwGZVAFQ2XdA+y6mgzpy+K+cyDvMZgQAcxge3zezeDDV+PiWffHndY2P\nf/DfbMYd0peq8vTveUm9CkLLFjj533+y8Vcnh3Se/tRqmZeRr78dIrJtaLdfM9M0z2xivwlckWY8\nClzSxLHLIfGXwTTNc7dslSIiIiIiIiIiIiIi0h4WL4YhQxKPX3gBrkzTuSgSsW7o1oWD7ERT5sz7\nMdG+p2itg14DNlFaQqSNRAImNqIcxmf889W1RJ74BM83IUx75wwjmHY7N/IAkxmLkzDr9t6/vZdE\nuDYklO2opqa2gpC/quNVaqkOu8lkAx9MnELEl9Xey2k2ow1LGRl2O+9wUvzxcOYxeugKZizsD8Cc\n2vBQRumGpOMiYYNLjurD8L1ruPnRYsAKCz7+1y7kdkn8vbjtfKsxTdFqByddVE5psZ1BwxMt+MyM\nNmwDJyLSijpeVFZERERERERERERERLZ7H32U/Pi55xJVYOoXg4k2CAl1pTi+74+3bARgwmN58bGZ\nX2e0/GJFNtPa5Q5enb47MewYQK8BEW76+gJs0Wj795ACfrloC5py1K77cw7jY46mpmv3Fl7V5gtl\nWSGhwTM/orzETtlGG8GaxO3RwtUdI5BVE3CQSRVRl7u9l9JhZWwsAiDi9vDJ+LcA+HbhgPj+gnq/\n/enM/T6Dso3We19TbTBjio+PXstOmTf1/UyuPqE3d1zUg+kfefE4ghzOpwRz2qYyVgf4+ovINk4h\nIRERERERERERERER6XAyM5Mfz54NRdY94qSWUfayCgACPXqy4vDjCXTtFt/XvU9qxaDP3+k8VTpk\n23X7uB4EI8744+4/Tm/H1Vjef+1zvrnjYX666lbmnZ/S7GOzVffq1wKr2jqhnDyW/O4MMqgB4Ipj\n+1C6IdFiatpkX3stLUm0KoSPamJOV3svpcPq9e0XADiCATbsOjI+ftXdGzih11dMI1G56gdGxbef\n/3wVLncMgMduKyAShrKNzWvn9+SdBdgiUUbwC6bD2fQBIiKdgEJCIiIiIiIiIiIiIiLS4TQMCQHU\n1CQ/DoegctJi64HXwfS7H2f6XU/E9+d1TbSSGTDEahtz4gXllJfYiKrjmLSjutZXdQ678qx2WklC\nZf+BLB97EgvOvniLAxGBnLymJ7WxORddRz4l8cfj7+4S3w6H0h3R9sxSPx4CxFydKyTUlkVvIp56\nVeDqldvZ94ASnhhwJ/3zNsbHRjGT74+8iDvGr8fjNbnrxfUALPjZw/Wn9uLG03slnXs4cxq9rh8v\nuZS10LMQEWl/HaOGnoiIiIiIiIiIiIiISD2+NAU+qqutf01MFsxyc9el3QGrWknJqH0AiHg8VJDF\nc5e+Tve+u8SPveel9Zy7X1+qK21cfkwfxp5ZwTnXdP4bv2ZS8zXpLPYfW820yT7MBjGLX/54fYte\nJzvDwcCuaRJ3rWTZr8sZ1iuHwC67ske/lm/PtLEqxMoS/2YdE/Zl0pN1afeVbugYt0oDePAQIOL2\ntPdSOqyoO7lVZEXfHchetYzTD96JkmEjqOi3I57SRFBor0+eZ90f/0AVA3DWy7xt/H/27js8qir/\n4/j7Tk9vJPQqoNgLKoKKDV17Lyv2uuracC1rr2vvdf1Z1gK6WBF1FewFEBVBEKR3CAkJ6dPn/v64\nyUyGmQkB0oDP63l4cuecc+89dyYz0dxPvqc4/jVfSi96sAI7VrWhyTc+wKITz2TkkFglrCCqIiQi\nW4+O8ZNPREREREREREREREQEq1rQE0/A9tvH2vLzobwcamrqG0zqA0Ixi0/+K3Yg4nKTRQ2Dey5h\nOTtR2C1EOAinHziQi+1VTHzXWm7sf29lc8jxNRR0CfPMrQUMGVHHsCM2LnwgsqlCQeiTswYq49vn\njLykRc+T4XYwqGt2ix5zgyoq8LhcDEpL2/DYjbSwtGajQ0KhtHR6szJp3w//y+CyO8qS9rWlWlcO\nDiCclt7eU9koRhuWEqru0TvusWmzqnEZpknB7Bms2XMI497/gYzVKzjsijMAOO7U4Xz9+GuUb3do\n0mP+yFB6sTz6uD/zGfLgPxny4D8Z2SiA+WHB2dzU0heUQltWZxKRbZNCQiIiIiIiIiIiIiIi0mGM\nHQs33wx77mk9/ukn8Plg+PBGISGg98AAS+fFluYxPNYtj7DLDcAeT/+LXl99yg97ZTHz3L9jP8VP\nOpXUURjd5/1XcujWO8i0H9KZ9kM6w45Y1voXKIK13JjLCCa0h7eGSjI5Oe09g3g2G/s6f4X1nu50\n6qijfUI5Pq9BwGeQnWdVr/FHnDiyN+W27bYTKZlx2Y1kLV/M1JvuB+DzV8dz2iE7RvsLZs+gtltP\narv1jNuivELNAAAgAElEQVTv4GvPJe/AvwJjEo6ZTVV0u4TCuMdrKKIzJQDcecx4fJzQkpcjItJu\nbBseIiIiIiIiIiIiIiIi0jZCIevr0qXWV/u0n8l851UgFhIygUF7+kjLiET3c3ism+UNIYvM4hV0\n/ek7Bo5/i+6//QiAB1/cuSZPyGDKF7GQgKmVu7Z6Zgd4kWurDGZMTmNeRQ8A/NmNQjVtWZplG1K2\nyx58NXBk9LGJwakZ48jJD7fLfG45pwuXHdmD0tV25vzmxh9243RGNrxjB2O0YUgp7PHw7WP/wVvU\nFYBQegZLDj8u2l/do0/S/fzZOfT9aULSvi4UR7cLWYubQPRxEaXR7c49EgN9IiJbKlUSEhERERER\nERERERFpwvw11ZTXBjY8UFrE8goXkEVZ/QpA9ssuJoNa4HymL6rGNzHEbddk0qm7HbsjFvgw3E4A\nAlmxpZX+OOdy9njuAXIWzQPAjT/hfCsXx6oReWsN0jPbP0QiW7fqSnt0u66wMx+On8qB119Ej+8n\ntuOstm7BjCx2r57O6CnL6DVxPNwGLnuYYNAKuSz8w0VaZoRuvUNtMp/i5dbn1TUndo+21RdBk40w\n6e6n6TPhIwAWHnt6tL2usAvppVYA6L3PZzBs1IUwOXH/TpTxzsTfcdZUc8KJwwAYM2UpmCZn7teH\n/3AuH3EcWaWrWv9i6iknKCKtTSEhEREREREREREREZEmrKr0sXKdt72nsc1YsCx+EQQ7YTKxSghN\nmgx3jsoDYP5sJ7kFYd444SkqP5xLxDEKgLAnLbpvxYBBAAx66yUA8ilnYRPn9tbZSM9sXmWRFYsd\n3PjXbtz7n9X03aH9qkx0gMI4spHCjXIoDZWvvn/g3xjhtgmobMk2NT9hCwbImz+b3hPGYfdbFcWy\nq4oJuaw30O0XdgFg9JTWXXJw5JBeKfuc7i3vzdwRAi1vfzsXWzhMKC1WFW7cBz/iqq4k4nCAYbD4\nlJFJQ0IAwaxYJa/y7Xe2Nuov7Fxe51xeZ2rOva02fxGRtqblxkREREREREREREREmtARlifaltTV\nxt+6cBIki2oAJryTFdfnxsfIcddwBc9h2hP/Lrqy74C4xwbWa3nQcTVJz+33Nv+O92/fW2Gkj9/M\nZvGfzmbvJ/Lyg/kA3M1thOvLx5h2OxGVkmk17qoKAIbdfhW7P3O/1YafULADpFzqOV36WbMpIm4P\nofSMuMSS6XDgzyuIBoBCaRmxPgxu5j4mM4QpNz8IWEGhbx57lS+fGRMd98u1d0a3F5wYW6pORGRL\np5CQiIiIiIiIiIiIiIh0GAFf/E37dOpIpy7p2DVlGRgNIa5GN4iLBw8j7HThLewSbZt+2Q0EscI8\nwzOnJD1eXXXzb5sY9UOnfJHBred1VUUfiXruzgJGDunF/VcVJu1fMMsKA1WTxdqd92zLqW2zApmx\nZQg9lesAKyQUMW0JnzmtyW5P/UERtits2FrCLlfc4/u4lSH8xPJDjoq2rRp6SFxVoXmnnx/bwaZb\n6iKy9dByYyIiIiIiIiIiIiIi0mEE/IkhIRsmO/IHSzJ2oK7WvsFjfNWoGkTI7aF0t71ZcMJIfnt+\nVwB2G/MshxXl8EXJ3nH7vfZoHve8uqZZ8wwGjPUegwrBCMCPn1lVS2ZNTUvaH4lYX2vJYNrVt7bV\ntLZp5TvsQtep38e1ufEDUFnedgGQ7n2DFHYL4fcazPo5/vujJJC/0cfrCMt9bQnCKT6ct+/flZxM\nT8r9fPsMwTlvLsP6F7TW1BK4HAokiUjrUkhIRERERERERERERKQJHaFAzOxf3XjSTfoNCrT3VFpd\nwG+QXxSivMS6hZGLtUyQB1+zAkLrG/vtXDBN7D4vPzCMM3ibo/mEipJcvuDVuLErFm24ksesqW6+\neD+LlUvix777Yi4nX1yJ29MRvmOkvTSnotReB3j55dt0LtnhE/7IOLb1JyUJSw9CLCRUVbHxnyub\nyltrIy3DJDvPSoo9OnYVdkeE20/K4rhBv+JnYJvNpSVsKSGliMvNzwymiJK49i55GRRlpw4J8dNk\nME16bykXKiLSDIoiioiIiIiIiIiIiIh0cPdd0Znbzu+y4YFbgVBVkJyaNZy357fszm/Mvvhq5px5\nMSvpHh1z3SMlZNi93Mo9zTuoYRBxuhjGJJbTCxdB7ISj3W9xBgBHnF69wUPdf1Vnfv4mnVXrhYQ+\nGZ3N5Ud1p6Js4269+H0GbzyeS221bkJvDYLNyPE5bSEGMI/egYWtPh99V1mW/OXEuMffPPoKtnTr\nPXz7BW3z2RoKQulqB6Wr7dw+8EX+PfINuvQK0bmTl0py2a5zWZvMY1sUdrkZzK/0Ynl8R3PeIAoI\nichWRiEhEREREREREREREZEOrDmVSbYm7kXLyK4r5enVZ/Ebe7Lg+DMo3XUwa4jdyO/RN8jMESO5\noftLzT6u6YhfXKFxSOhYxpNBDaHA5t0M9tXZuOLoHnzwSjYT3s1k8Z/ODYZ/vh6XwWf/zeaSET3x\n+3Qzekvn98VuvXXvmzwx5Fy1Bjd+chfNa6tpiWHw+UsfAjDzwqtZNexQwkWJy3v98L/0VvvMXbbA\nBcDc6R4Oevg6Lhl9DjkL59J7wkeAVe1GWkfYnfjcrttuB2wKAInINkjLjYmIiIiIiIiIiIiINKWd\nQzqRWJaFuhqD9MytOzXkCzlJoxJbfUkW02YnlJYeN8Zj1uHw1hH2pLHigBFkL1mw0edpCAmdzttk\nUEctmUyeGOKsayo2+xrefTE37vHoKctSjvXWxkIl49/IZtLn6dz2fAl5heGU+0jHFWgU9AoFkwcQ\nAmEHHnxtNSWpV7bzHoyZsjT62OvMTBjz/F2dyC1Yw877+Fv8/A0hwL9fNAfq841Hjzw82h/eAkNC\nxhZSqyrsjD2370z8nVNH7MqfIy9he4WERGQbpEpCIiIiIiIiIiIiIiIdWCQS2579q6f9JtJGfGEX\naXhJX1sCgGm3E3ancSMPRMecfso+pJcWE3Kn8d3DL/HxO98069gRuz263RASChNrqyhztEoVkUgT\neZ/Gr+8HL+ewZoWTX79LixtTXWljzNO5hIKJ+2/dkbEtT0MQxO2JEPCnCAlFnLhp+RDKtsBowVDH\nikj3pO2BzawolsqHr2QDcO5LZyftT1btRlpG4ypNwawcxkxZyuKjTsamjJCIbIMUEhIRERERERER\nERER6cAikdhdzNrqrf/X+t6Aiwxqo49Nm42Qx8Nd3BFtS8NLwewZZK5evlHHNm1WIGjqDffR3VkM\nwP78EDemeHnTizAUdQ9i2EyyHTVcwr+j7X85o4pr7i9Nuk9NVerXra4msS+yXvLn3Rdz+GR0Nl+P\nS6x8Ih2L32u9XzNzI3FLjzVm1vhx42fSHY+35dRkPTsXLEna7klrnejdrJ+t8F82VUn7t8RKQk67\ngdth6/D/HOlWwDbsdse1t2ToTERkS6HlxkREREREREREREREmmC2c62WxlVoKsrsqQduBUwTllUX\nchiLo21htwdbKISbQLStoQqLZ13Zxh3fZoU21g3ckSHdX+WPJTsyiDn4cvLoWbmM5fRi0oR0Tr4o\n+U18gHBNiBP6/8q/3X/nvZmDo+0FRWFyUywR5vcakJf8eDWVia/pa4/kc/gpNdHHwfqKNP95JJ8R\njdpl47X2uzlQHwzqvm4ecyI7JB1jLynHjR9vQVErz0aacmiv31kxezuGd/2dhfMzGM43fMtBuNwt\n/10SjH18pQwJRZyuFj9vaxvQOYsBnbPaexrN8/DD2I84gpN36dHeMxERaVdb/58ciIiIiIiIiIiI\niIhswRqHhMY+n8ukCentN5lWVldtUBtOo2+jkFDE5aaqdz8AxvBX/o+L2NTaD3+cewX+7FxquvWi\nZI8h7MgcDMBTuY55DATA72361kmk0kv3eT9TOPNXfMSWfztxvz/IKwgl3SdVRRlouspQg9xOTaxX\nJh1Kw3JjXfzLCQZtvPtiDtUV8a+xHzdu/LiqK9tjilIv4nRSFFnDXaN+YRzHcTP/stojG9hxEzQO\neFYec3B0u6pn3+i2syZ1OFFawD/+Abvs0t6zEBFpdwoJiYiIiIiIiIiIiIg0wWzfQkJxy40BPHt7\np3aaSetruJGe3jMtrj2YlYM/O5dT3R9yES9H29futMdGHf+PC67ivQkz8Od3ImKP3bRfve+B0epE\nn4zOjgtmrc9LGunUAVBLBgA3cT8n//UAdlr8ddJ9GpagSqamMvmtmupG7W5P7Jvw0sO7p56ctLtg\nlVUyphNrAfjglRxeuKcgbsxSepNOHT5VEmpXEacLWzBIoaOc4xiPHeuNHw63/BJUDZ9t97ruhPQ0\nVg0ZDsDHY79m6g33AVDdKDDUXFosS0RENpaWGxMRERERERERERER6cBMrz+xzQRjK7w73LD0Vk5G\n4jWH3W7cVRUAfPXkmxhmhNJd9trkc5mNQkK/XXETR/30XfTx2cN6cf1jJew+1Be/jwk+0kjDC0Ck\n/m+xc7Aqwhw66hzg7IRz+XypXyxvWQhwJ7QXL3OQtYsVOAkGYvvXVMUvT2a2d4pN4hVXAD0oILYU\n3prlsdtxKxY7qCKHcRzP0buXt8MEt2wt+bEXcTqxBwMcfvFJADiwKoG1SiWhUut9e1RgHOlrOvP9\n/S/gWbcWDIMFJ46kdLe9qdxu+5Y/sYiIyHoUEhIRERERERERERER6cA8xcXAdnFtE97J5IjTatpn\nQq3I77ciAM4MOxNefA9PWWm0L710TXR77S57EkrP2LyT1aesarr0oKZHn4Tuh0cVcfx5lfToF2To\n4VbloGD9/BpCQtfwBGvpxFU81eSpmqok5F0bv0TZYSdV88X7Waxe5mRAfUjIrKwDcqJjQkFwOJu+\nPGkf4fpKQvnEAkChYOz1f+eFXABqyQQUEmpPpi0+cNdQSSgSavkE5rr6SkJdWU2Xb6cTTkunNq2X\n1WkYCgiJiEib0XJjIiIiIiIiIiIiIiIdWMjhSWh7/bH8dphJ6wvUh3Ds2S7W7jqYFQcfmXRc2J34\nnGyshuXG5p98NiGPtbzZB5wQN2bcf3LilnfzrxcS8qTDk1xDev3jVKor7Cn7qkIZ/JN/YWLw7qfT\nuOzU6bjcEZbOi6WAPnyvKwAXnj1/g8eT9hWotSo72YiVo9l9WOz745dv0wF4YuCDbTsxSdD9+4lx\njxtCQo5161r8XP97KwuAQkr59erbWvz4IiIizaWQkIiIiIiIiIiIiIhIE9p7NadI2Aob7Mgf7TuR\nNhCsX93Llp24/FZjjZcK21Trtt8ZgKre/cBm3S7Jo+lwQEOIad2QfRkzZSlLDzsm2vfHuVfw2+U3\nJd3vxXsLkraHghAyHWRQC8Bu/36Ek/56IDv0K+fP6YlBqCGTX7fmXKHbOx1VoD4PFLbFFvMIh6yQ\nyNSv0kjLsN7Pw7tMb4/pSSO2YDDuccNyY+HI5lcSCvgMfvw8Pfrzo2SlFfqzE2F5ivCjiIhIW9B/\nRYqIiIiIiIiIiIiIdGBmwAoV3MQDfPrse9H2OdPigzTrSu3M+a3pcE1HF6q2lmqy5SYGZJYedmyL\nnmvpYcfy8VtfsPKAEdG2bKqSjr1pZBfmz3JFQ0wud/2d/0YJsuruvfAWdo7brxsro9szf/KwrjQ+\n3OT3WWGEhpBQ/3FvAbB9UTErlzgSAmo7LPgagMpyVRLqqPx14CBIH8+qaFvAb+PNJ/N48uZCsvPC\n7OL4g5x0fzvOUgBqevSOe9xQScgMJRu9cV5/PI/n7ujE/JkuAHr19XEIXwIQzMjc/BOIiIhsIoWE\nRERERERERERERESa0M6FhDBD1gzshMmoWsshJ1QDsHaNnUgYItZ9bW49rwv3XtYZ0wRv7eZXwgiF\nYsduK5FKKzhhy0lL6Jt21S0tezKbjaq+A8CwnqvFR55EF4qTDl2+0MV/Hs4nWGulB1weK7jl8Fup\nobJBu7L46FPxdiriD3ZkFI8C4CcW2nrg6iLuuiQ+ROT3Wrdp0qmLa++3YBJBv43wes9/ESUAVJXr\n9s6mau3KYNU1TvIp56T8Cfyvzzl06xOMhsEA1qxwUhPJIOx0te5EZIOm/vMBfrrp/ujjcKa1FJwZ\n3PwPvlVLrEpSLz+Qz5inc1m22ENXVgMQSm+5kJBhbP5nvYiIbFv0X5EiIiIiIiIiIiIiIh1Y45BQ\n/4/e5pzzlwNQsdbOZUd159qTuxGJQEWZVV3mrP16cdGhPbnyuG78/lNiRZ7mOnf/Xjx+U6cNjouE\n4eUH81i9zLHBsRsSqqqvJJSfntDnKyja7OM3ZfbZl9GZNQAM6rwqob+6wka4xgoJOT3WjXlnbQ0A\ns86/CtNup7pHH3ZkDrdxDwAH8H3cMUpXxz9HgfUqCTUoXDkXgGD98mYOI8TN3Bed38olTspKVE2o\nI6qsdtGJtYSyszl82WiyfOVUlsXfjlsc6UPE1TYhIYVIUvPn5rPwhDOZcvODLDv4SP4892/A5oeE\nKstszJ1hffauWOTik9HZAORSYR2/BZZLFBER2VQKCYmIiIiIiIiIiIiIdGBmyKpaYydMt8nfcOAz\n/wTA77NRU2lnbbGDT8dkJexXXuLgwas3L1gz7fvEsA7AwtkuJk1IJxKBNSsdfPVBFo9cV7hZ5wLw\nVYSxEcbeKSOhz7TbGTNlKWOmLN3s8yQTyMzGhslMdmbSmh15gBvj+svWOKgts16LjAwrRLB6nwMA\nqOw3EIC6zt0AyKWSnxnMGM7kXlJXQPLWJQ8JebAqFAUDBuEQhEwHaXijy6F99FoOVx3XHWj/SlcS\nr7LWQyGlBDKysEUidCqeT8XiQMK4sHvTA3zSshYddwY/3P8CNqcV3gl64btPMohEmn+Meb+7GDmk\nF1cc3Z3Lj+6RdMwMdmuJ6YqIiGyWzY/1i4iIiIiIiIiIiIhsJUaPhs8/h9dfj7WZrb0+0QZEgrGQ\nEEDfiR9hd5iEGuUOgoHmVwuZ+ZOH3gMDZOc17w54OAT2RncTImG4/YIuAFSWrWOXIV4Aipc7mz2H\nVPyVEbKoJpiTs9nH2ljBTCtotTN/AHAjD3Hydj8wYOGPADhdJm+/3hWAggI/dcC8085j6RHH48/N\ntw5ii/1t9mB+BRIDQI1VV1qhhE6sjWtvHBJqeG09+CjbcXeYvTlXKa2tsi6NvpQRzLCWlHLjp6Q6\nO2Gcu6K8rae2VWjNwkhGfYGftz7oR3FJOuEQHHx86vdvY+Nft17jhopuyezBb4x7//uU/SIiIm1B\nlYRERERERERERERERIDSUjjrLHjjDfjll/aeTcwb7w8AwEYs1BMOGYx/Ixakqa1q3q/7A3544Ooi\nHrq2+VV/Av74u/K11bFzrVziJOBruVsNQZ9JGl6C6ZktdszmCqVnsOKAEXFt/RdOIoCTnff2EgwY\nLFpkzSunqP45MYxYQCiFdOqi2z36xVeUqS2xgl+FlMa1R0NCfiOu2tDSEcdu5FVJW/MGnWRQS96C\nPwH4ikOjfWdeuS66XTR9apvPTZoWxgr4FJdYFdReur+g2fumZzUdJn0n+2we5Tpqu/bc9AmKiIi0\nAIWERERERERERERERESAI46Ibf/+e/vNY31TZ1hVe+pIvvQXgN9nBUmeeH8lo6csi7Z37xsLpQQD\nMGNyGgBL5rqaPGfj4knrh4SWL4xVDAoFY0tmWWObPGxKq5Y6mDwxnaDfCsiEPe2zFNPCY09PaHMS\nYtbPaXFt4fzEyjDJBDKy4kJC1RXxVUa8a63Xx9UlnWCa9fp+8+gr0ZBQIGBQU2aNLaQUf24+j3Ft\ndP92LnIlSfhDDjz2AFkrliT07b6DFQY7ng+ZdMfjbTwz2ZC8rE37ADNN+PGz+M/nv90Rqw529rXl\nnFL1Jk5CrVsKSUREpBkUEhIRERERERERERERAX77Lbb96adw0kng9UJ75zAG9LKqjwzrvyDado5r\ndNwYv9dGUfcghd2syjRPfbSSfoP8rFwcCwONeSqPJ26yKgiZZtM3qiPh2Pb6IaFH/hGrQhQOGXhr\nY7ca1hY72BTXn96NZ27rxJdzB+HBR8iTOhDVmgLZuUnbPyOWIBvPMQSymrccWlXv7aLVSQCqK21x\nwR5flfVg6YUX8M7XcxgzZSnFg4dFQ0J+r0FNmTWmkFL8eQWcyjvR/UPB5l2XtB1/2InbEUrad9j9\nl+HDzXucTNlOu7fxzGRDMrOSv24bMmuqJ+4zNTsvzLAj6rj/zdXc/XIxfzm9pqWmKCIistkUEhIR\nERERERERERGRbd60afGP33sPPvgA0tNh/uxNC75sLNOE84f34NMxWXHt85flsTdTmX/Vtbz93TwA\nXgucxV5DYzeea6psuD2x9ElBUZhFc9wALJtvVf5ZMi9WAchubzr6FA7FbngH1wsJ+b2xWwuL57p4\n/IZYaKhxlaFNEQg7+ZNBhN3tU0kokJ08/HMEE6LbA5nX7JCQt7AzFcSCR5GwEfd8+qpM3PiwZ8Se\nt4jbQ/reXQFYs8LBc/+yKkkVUoovN59MYq/79B/T2j/FJnF8YRceR5B5J52V0Nd9xUzcBCjZeyim\nY/PeK9LyTMPGSN4EYLudrKpCwUBTe1gMI/YmHD1lGc//byU7vvUiN53VjQEDqq3jpGcm/Z4QERFp\nawoJiYiIiIiIiIiIiMhWIRKB8nLYY4+NXy7szDNT9115WqfNm1gz1VTZCPhtjH4qL9pWtc76Nf7P\n7IPpcBBxuaN9oy6ZycBdrYozMyan4S0NMnDsq9H+PYZ5AVi31qpk40mP3cgOhw1eeySPkUN6JV2y\nKtyokpDfZ1C8zMGsn90J41YvjQ86PHVzIUvmOeMqEW0K09E2waz1NSz5VdO1R0Lf0JzpAPRlccqK\nQwAfvfsd0y+/EQDTZuM0xrIfk7iSpwB465nYvr4ayKaKkCd+ObPczlaQaN1aO+Vrree48thD8ecV\nxC1f9vVHmRt9jdJ6QiEIm3acHvjtqlv55pFXeMV9SbQ/myqAdgvBbQ0MWnG5LpuNl7mQV++bwKEn\nWmG8daX2DewEofpQ5ZDDaqNtez59HwCHXHUWZw7pjbOuptnhQhERkdakkJCIiIiIiIiIiIiIdFhr\n18L8+cn7fL5YBaBAAOx2KCiA6dNht93g/vvhww+bd57c1JkPIPmyThPfzeTBawoTOzZRspvRZWus\ntue4DNNmbc8eeSkAnfyrOGrvudGxa6syGPzYnfT57AN2e+5Brjz4SwAeuraI7z/NwOWOTwNNeNeq\nWFRRlniroHElobWrHVx3Wjfuv7Jzs67jlnO6cvawXkQi8PnYTEJB+OK9TH77MXkworxkwzfh20pd\n527MO+ksvnvoJeaeel5c36v9b2ImO+MkRCg9I+Uxanr0Zu6p57Hs4COZffZldKWYSQyjDiuA1PC8\nA3hrDXKoJLxeSCgtI0IWVawrbRSW2qUX/px8nMS+GR1OlRHqSBqqRDnS7YQ9aaza/1BOT499CLmx\nqtPk/7mRKUZpE6Zhw02AXpkldF81CwBv3YZvpfq91uv+j5zncFWuI714ZbSvaPrU6HZTnxubqhUj\nUyIispVSSEhEREREREREREREOqyddoKBA+G886zAUINnn4W0NNhrL1i9GtyJRW64+WY48UQwjNi/\nVH76yfr60EPw4IOJ/dMnxYc4wiH4zyP5/D4lLWklnlS+GZ/BikXx1Xe+/CCTkUN6UbIysXpOeYnV\ntjc/Y9qtX+kv+csJAKSVlTDs5XuiY9PqK8wMvfMadnr9OU6+N1Ye6YW7C/DWJr8lsGpJ4rJHptcf\n3S5rFOKJRGJjuveJrcMzgRHcvN+7ccd49aE8Xn8snzsu6sKrD+fzyHVFAPi8Bred35mRQ3oxckgv\n3n4uPqE1vdvBSefZJmw2frnhPioGDOLX6+7ikzETo10Df/2cnfnDetDUNxMQTkvnh/tfoHzH3Zh3\nyjkAnI9V5cnWaKk3b61BNlUE1wsPRJwuqsnm87GxQJHpchH2eOJCAb9+l74pVymtJNAQEspo9J7x\nxD6cGl67iNPVltOSZmr4jN37oVvY85WHAQgFNxzD8dUvwbjXe89yzGkHc8IJQ5OOc/i8LTRTERGR\nTaeQkIiIiIiIiIiIiIh0WCUl1tfXXoPCQjj4YCuf8fe/x8bMmNH84738srW/z5e8//rr4YYb4Omn\nrXM2ePzGQh64upCRQ3rxxy9uLh4RW47KW9e8Wg611Qb/d18BN57ZNdq2bq2NVx7Mj56jwdL5TiIR\n+GSMFRLpwYpoJSFvJ6uiT9raErKoju7zT+6PO192oz6ILV22vqXzkgQWfLFqNVO/jgVRaqtix5i2\npAddO9fx/FXjGcEX3Df51LhDNFTgWDI3/vjP3l7Aojmx4MSPn8UHZHpllCSdZ3uo7DeQMVOWbtYx\nQh7r+RvGJEZlPINhEF2OzVdjhYT8uflx+4Rdia9JQ9u8k87arPlI6wn46kNCWbHgXebqFcynPxMY\nEW2zp/oAagWqNNN8pmF9ZmWtXBat2BUObXg/X/3PgExq8FSuSznOn5OXsk9ERKStKCQkIiIiIiIi\nIiIi0sFFIiahcGSb/Le+b75JfH6OPNL62r//hkv6XHSR9fX5F2Ln+H2mdZ4zzjAJv/AC4See5G+X\nRThzZIRrr40dc+ZPVjWhf/29M35v7NfrlWXNWy4r2bi/H9MjyUi4+eyunHdAT+ZOt5boKqKEiN3a\nv+FG8+DH7oyGhPpmF3Mr9yYc50sOiW4vX+jisOMreXufm+PGjH4q8ca16Q9HtxvmAPFBoyJK+eCC\np9mhV6zEU1ZubL/Crol31yNh6N43ce02T3qEm59dw8RdLiDcwaus/HLtnRs1PuyOPX89M0oJh4xo\ndaaaOgdZVCeEhCJOF0fyafTxE1yNL68TACV77scZvAVAl55J1sGTJpm03hJtgfoCXM70+Ntv/VnI\nCL5g0p1PWA0bqEQl7cMIxz6/YiGh5lcSyqQm5Zg/z7iQBSecmbJfRESkrSTWLhURERERERERERGR\nDg1K7dYAACAASURBVGXummp+W1bR3tNoJ72aPXLBgtjN3Jz8MJXlqcM7o6618erb3mjwB2Dt2hLs\nl10GwJj9TgRgr9OAx5uewzO3deK+14o3OL+6mlhwYPGfTvpsnxjw2OeQOqZ+ZVWeCYdj12PDjIVN\nbLHj5GFVrdi/YDpGldUWTM/EWWfdrB7caynHHVzJR6/lAOD9ZSWnr7yfpzJOZlLtXinnOmF8ftL2\ndaXWc3ofVtDIiERwemuj/dUVsef84zezE/Y/e1jy59JXZ+Mw/2fs6JxDxN7xQkK/XzyKXf/vMQAW\nHXvaRu1rNCpF0j80F4B/31PAzc+UsGRdIYfbVhD27B63T9jl4mOO4c2PZ3HYxafQbfUcPio8BYDq\nnn14i6MxMPnKjK/eJO0rVGO91o605MGSlcMOYdb5V7LskKPbclrSTHkL5kS3N6aSkL/GxE4IN/6k\n/T/c8wzLRhzbInMUERHZXKokJCIiIiIiIiIiIiJbhXP/UQ6Ayx2h76BAtH3vg+oYenhtwvjGASGA\n3l+Oj25nLVsMWAU/jju3ssnzrr+cVire2tiv5G89rytrlif+He91tyxJaHPV33iuK+qa0DeIP/mO\nA7ir6xOsG7AjY6Ys5Z2v/qB4r/0AsAUDBAOxwMKylZkAHJ71XbStU5fEu+DjP+yc9BrKS605N74Z\n7qiNVc94+NXF0e1IeOOqpRw86jwyilcScTg3PLiNzRl5aXQ7lJbexMhEzkbPz8Dwn9bxpnk4e2gv\nghEndY6shH0iThc2THIC5XRbbQUXvJ2K4s6fRTW+OlurVsaRjfPl+9b7y5We/PZbKD2T3y/9BxUD\nBrXltKSZVg09OLrtwvoZEmpGJaH0GXPIpCa6tFsgK5sxU5ZS2ac/yw76iwJCIiLSoSgkJCIiIiIi\nIiIiIiJtqrLcRmV58349vdNgX0Jb5x5BHhm7KqF9+DG13PLsGh7+72r++vd10fYTLqjkwpvKN3iu\ngBkL+zhrq6PbLndiCOP6x0q4/d9W9aDsvHBCfzJ1tfE3mz8fmxgOOe3Qnfju0rvj2o5O/4Klhx5N\nKCMz2jZm8hJKdt8HgMEFc8muKMZbUBjt/+rZt5lz5sV4ykvx18XO+zxWpaSd0+ZF2wL+xJvgJ5+4\nIuk1rFtrVQpquIFuCwTinqtDf36RvQ+qS7pvc2SuWk6XX37c5P1bS9jjwZ9tVWPa2KWiarpb1ZMq\ne29H38D8hP5SW1FCm1lfLSp7WSx0FfZYobZQ/dcsqvHVmPz0rYvDD4e6TX/apQVMeCeTL/9XAIAj\nRUjItDdvaUJpH1V9+ke3GyoJNSckFKgKRpcaGzNlKe9OnAnAJ29/yQ8P/LsVZhqjletERGRjKSQk\nIiIiIiIiIiIiIm0mEobLj+rB5Uf1iG+PwMghvXjjiVwAKstsfPtxBm5PJOlxirqF2OvAWCpi9JRl\nuD0mO+7lp1OXMD36hkjLsPb1eEw86Sajpyxrcm52YmGfIXeP4sDrL4JIhCP/Wk1eoVVtJ68wxI57\n+dh9qI/j/nyBfjmrGbhr8iVm1te4khDAhHcTQ0IAu0wczSmXWMvLuT0R3qg7DX/uest/GQbfPPoK\nxYOHklZWSsHsGYnnKyjE4fcTqIldVx+WAJC5eFG0LVlIyAxHMEh87sc+b70+DTfQBz9+J3s+/a9o\n/x7PPYAzHB/suv2FNfzrjdX87fayuPaH3lrFA6NXA7AzMxPO1dF8/PZXjB/79UbvN/+ks/jqyTcp\n3XUwTm9ikqebpzShbd2AHQFIX5MYhgt5YpWE/AEHN/8tj4kT4ZxzNnpq0oJGP5UX3fbE8nx818oh\nkW1Na4dixo/9mjV7DKFqB+s9aNYlLgu5Pm/AFQ0JiYiIdHQKCYmIiIiIiIiIiIh0cOZWtJrQg9cW\nJm1vWKbns7ezAbj86B68eG8Bq5Y66dY7yHUPx4IUQ4+ow+6AUQ+txbCZFHSOLZflrK6k3/j/AlYg\nCcCdHgu7vPTl8pRz60JxdDt38Xx6fD+Rk/+yB51X/ckz41cxesoynhm/ilueLcHurWOvx+8iq3IN\nkeQ5pgTrh4RSsQcCZGRbBx2xzxIyqKO6R5+EcaGMLNbuvGf0sbuqIq7fl2891/vO+zDa1lAByEts\nqbXGy5E1iIRMnARZwHY8ec0Ehu65Oq6/4TgNpl92Q3S72/dfRrcn9z+RQYMqGbbqY/6y2xyeGrcy\n2nfOQydz8tjruPfOGXzBYQlz6Gj8+Z2o7tVvo/eLuNwU73sA+fP+AOAAYku9HZw1mZt6v5SwT0P1\noYzilQl9YY8HsEJCjb333kZPTVrQAUfFljTMyo99aK848PD2mI5soupe/fjy+f+ydsgQq8EbaHoH\noNrIIpMaJt/+WCvPTkREZPMpJCQiIiIiIiIiIiIibWbW1LSk7XZH8iRU8XInLmcIhzPWf9KFldh9\nPjxlJYz+YAaPvmNVW0krXcO+993AkPtuoN/4/xJuCAmlxfZNy4htX3xLGdc/VsI5o8q5Y+CL3MFd\nCed3V1Vw9MjDyVq6EFvAj6esFLvPx353XQuAjQhmpHmlLepq4scN2MVPZnaYsV/MimvPWBWreGT3\nWZVnivc5IOkxg+mZSbcBfPmdAHhg+UUMYjYABVjVfBqHhMIhIxqoirYFTRyE2I5F7FG4kB+ndeNI\nPiU9ywovuQjw9WP/AWDxkScx+9wr8OVZSy2ZWNf5DqcwZMGHHH7xSRx44yUcddYRFHSOnajzb1Po\nP+4tbrlzdzpTEm3/45zLk17rlm7WBVcB8B3DGT1lGaOnLOPdrhfhzHImjPXnWa/d9m+/nNAXcboI\npmeQTVVC39YUKNySzPnNzdfjrPffw/yDvE6N3lA2GwuPPY0V+3f8IJzE2BzW51g4uOE3lTfgJMPm\nZfFRJ7f2tERERDabo70nICIiIiIiIiIiIiJSWx37m9ZIBHpuF2D5QhcASxaksd1Oa6P9Nhscdvlp\n0SW2xkxeQvqa1Zxw/H7RMUPuu4Fj2Y4POAm3O/lN3oOOjVX+OPDnd/HMS71s2LGnHxLdru7ei6yV\nVpDHRoTIBkoJXXlcNw46tpZwcSWQy6mM5R1OY/5MN3mFIU49bBce52p67umAaWCLRHBVVQL5OLxe\nALydOic9dig9I7q9et8D4/oaKgk5CPMre7GCHuSzDoA9mQbA/nzPDxxAIGDgaRSmigRjS4o5fNYc\nsqimrv51chJk9dCDGTNlaXSf9z/9lTP360Ok/u+TbfXLlTVU0Em21Nb6qnr2ZcblN25w3JZoxfAj\nmHHpP9jt349gC/iJuNw4a2sIZmQmjDXtdiDFc2YYvPPVbKqGPwvrfcuWl0NBQWvMXpoy+klrGT63\nM8Q/go/yhfvtuP6fbnm4PaYlm6EhXOrbwCpipgm/lG5PFyOXhDekiIhIB6RKQiIiIiIiIiIiIiId\nnMnWWR4k4LMqNUTC8PazedH2s4f2wumKv+aLR1jLL3lsPs4c0jsaEAJweOvY46l7E44/hjNZRF/O\n3r83Zw6x/vX7yLp5v37lorS1a1i9zwF89eSbfPjBj03OuyEgBFYQxllZmXJsMADlJQ7efzmH0Fov\nXVnFQXwT7XeWWpV9ruFJTp72aLT99PlPADBq5tUABLJzkh6/IUxS2Xs75px1aVyfLz+WFknDxwAW\nsPCYUwHYnnlEMDiNsdY8/fFVjiIhcGAt47bfPddZ191oeav1lxsDwDCo7dKdMNacKvrvkDDE5vcl\nvQ6AT9/4H18+99+U/VsDf24+AGccOBAjHCZr5bK4oFcqP979VEJblScxDbR6dUKTrK8VPk4z6its\nNVRyCrvdLX8SaVN5OQHyKGf5Ek+T4+bPtMKsxWbyIKeIiEhHo5CQiIiIiIiIiIiIiLSaWT+7KVlp\nT9o3c6p183VdWWL/ojlu3J74Cj1rKGJ1pEvC2MP+dgq9v/wkod2Dn74siWsb8q8bWUMRL36wINqW\n9+dMCub8Tl3nrhTvewB1XXvwzSOvMPH5sRu8PgOTrEULUvbXNaqQVOt1kkMlvYiFjNaRFze+bIdd\nADj066cwMRjK5PoTJV/SzFFnVUMq3ueAhDG+giJ+GXVnXFvx3vsz8YV3qS3qigGkYVUJCqwXErKV\nV0YrCTVovLzVmv0PSjqfskG7RpcbK1jwR0L/GcO3T7qfL6+AigE74i3cum+0rxx2aHR7xKXW0kRh\nd/IQwncPvhjdXnboMQn9l3ePBaoaqgeVlbXELGVjZeVZn1WBkLWAR9ilkNAWz2GnE2tZtiyNd/8v\nJ+VSfssWWCGh0zM+aMPJiYiIbDqFhEREREREREREREQkqdsv6MwdF21eaOP+Kztz7cndk/a98mA+\n4RC8+URe0n6/L/5X2EWUkkti1Z78ebMBWLvTHs2aUxGlHHXX+aSvXkG3H77kyPOsAEbjJb1W7X8o\npXvsy9TrEysUNWYjYq2PlkJdbewavDUG2VRxDLFAUxBX3PjvHvq/Zl1Dg2WHHUNtUVfmnXpu0v55\np53PyqEHRx8XzPmd0t33ZsVBfwHAg1XZZ/1KQvm//xatJNQgk9i6O94+vZKeb9b5V/IsV3Aer/IX\nPks65lXO4zkui2tLtuTW1shbFAu5dZr1GwA1XXsmHbti+BGMmbKUMVOWRitGNRbOjFUgaggH1Wxg\naSRpHRmZ1mfAJfwbSB38ki1HxOEki2pm/5nLBy/nMPXrNEpXW+9DX53BmKdz8fsM0jKs1/7awpfa\nc7oiIiLN5mjvCYiIiIiIiIiIiIhIx1K83PrV8cLZLVcNo7baIC3DxLCZmBErkDJgFz/n7B8Lm/To\nFyArN8KcadYN9h7bBVix0JX0eEnP0bUHnf74jbDDiT83j/S1JSnHdvnlR044cVhcm7egMGHcgpPP\npu9n71M4c1pc+9xTzqW2W09sT0UIeJIvFxUKwVM3d4o+rqxx07M+5PR3nuYZrkzYx1vUlfH//Ypj\nTz8k2jbtyltSXkdd526M+2hKyn4Ad2VFdHtd/0EA1HSzgimpKgkFcSZUEvqW4bFjpicvq1ExcCdy\nerl4ddkFKedzHq8BsHz4EfT89nMAIvZt93aFPejfpP0aB6tycqCyEqqrm9hBWk0kAhlGLc+ZlwMK\nCW0NIg4HbmLvzadutn4+9OofwOEyWTTbTacuIRo+utI9oWSHaXUpisyJiIikpEpCIiIiIiIiIiIi\nIhIVCcN1p3bjulO7xbWFgrB0vpNlC5xUrbN+tVxZbmP5QmfKY4UaZUwuGdGT8W9ks8PusZuuP3+T\nHjf+ynvL4sIqR56RPPFQV9iF5cOPSGj//ZLrAKju1RdvYaxiy/9e+4TZIy9NOc/ofNOSh31qu/RI\naJt2ze38ecaFGJgE3elJ9oKxz+dGl6IBWFLeKbpkV18Wp5xHde/tqOg3EIA5f72IP/960Qbn3hSH\nry66vWqYFT5y1lolZ6KVhALxd5qrC7pht8UHgZ7k6uh29861Kc9nRMJxjz8YP5WJz49lyq0Px7X/\neM/TfPr6p4AV8NpWhTzJv382JJiRyYS8EwAYW78y3ssvt9SsZGOEQwZ5Zjl2rKoy/pzk1dFky2Ha\nHQlBSbCWF1tUH6B97dF81q21qgulpaWuKCciItKRbLvRfBEREREREREREZEthJm8aEurqKlK/NvS\ndWV27r6kM2uLrV8pF3QO8dS4VdxybhfWlTp46K1V2OzQtVd8JYX1Q0DjXs1mt76r2TW7ji47O5kw\nqU+075RLKrj4tkNY3O9lFv4xFIDuv/0AHJ8wn1VDD6Zk932iVWgApl5/L9W9+jLpjsdZs9dQTJvB\nScfsA1jVdn6/9DqKpk+l0x+/pbx2w0x+k/fnG++jtkt3KgbuSMidRnXP3piO+l+v222YJC/l0L1v\n/A1mX8jFe5wCwEm8z7+4mR+JVTOKNFpSqrLvAHIXzaNiwI5g27y/97X7vLFz1M/b7rfCQSkrCZkO\n7A748pHR5C2Yg6d8Lbu/+UK0Pys7RKqYkBGOhYQ++OgnvIWd8RZ2pnT3fSicPpXtPn7HmovLTcXA\nnfjpnw+wIknoa2v1wz3PsP9tfwegZPd9WHDCXzfpOMGMLIYH3+WL2WvYt6e1VN4XX7TYNGUjOErK\ncGJ930+9/l7CaZsW/GoNqjSzaSKO5CGh9X3wcg4A7rQ2/EEtIiKyGRQSEhEREREREREREZEovy/x\njvLqpY5oQAigbI2DkUNiy4Td8NduceNverKEXfb18cxtneLaMcA1ZxEGTgZM+oUJWEGJw0+t5rwD\np5L34p88t3AYvwyv5Zdv0+n76Xs83+kH+q2dEXcYWzDIymGHUj5wJ/Ln/QFYy4IBLDnypIT5B9Mz\niLjcTHj5Q4bcPYp+n76X/OIjyUNCwcxsZlxxU9I+m2FimsnvwtvsiTeNH2UUAH1Yylqs5WtquvQg\ns3gFEUesKpNpswJDjYNDm+qnmx/isCvOsI5Xf46GkFBDJaH1Q0Jh04bDFmbNPvuzZp/9wTTZ4a2X\neKXnjfy8pDe4clKez6hPtX381hd4i7o06jD46dZHoiGhBguP37SQzJZq2YhjGTPi2M0+Tig9A1dN\nFTafl8z6lcf22GOzDyubIO/36TiwlvJr+CySLVvE4cBFoFljM40aImlprTwjERGRlqHlxkRERERE\nREREREQkKhxKDLzcf2XnjTrGlx9mJq1+5Pfa+IED+Ikh3MUdjc4JXX6dBIAB5BVaFTkqyOUC77/Z\n4SA7s869Ijp+9ZADCWbn8Fn9UlXFg4c2OZ+Iyx3dnnL7YynHrRu40wavbX0GJpEUIaFkz+Wlnf/L\n1Bv/FX1cPnAnPh77FbBeWKa+/IeRIri0MUr22o959cGFiNNa/qxkzyEA+PpaYa/1lxsLRew4jEaV\noQwDX34Bpwbe4jmuiFYkSqahklDY7U45RjZf//ffBGD4vtsDsO++UFjYnjPadkUCYZwEKd5rv/ae\nirSQVMuNJZNp1BDMyGzlGYmIiLQMVRISERERERERERERkahwaMNjNmTnvX2kWLkrqoByBg+v45dv\n0wmHDJzVVQDUdOsZt3iXq7Yad2UF3sJYRZqlh8eWIPvv13OIOJ1sivc+/ZVgRib2gB8Mg2Bm9kYf\nw2iiklAkHP/47O4fE3RlkL1kQbTNtNmIuNyM/Wo2IU+sEkVt1x4AmzSnZH4ddRfTL78pukzaiuFH\n8M4XM0l78l1YnFhBKhyx4TDiL8CX14mcRfOsa2siJNTw4kccrhaZuyRn2q3XwBa0qp243eD3t+eM\ntl0BWxrOSBB7oHmVZ6TjC7vczQ4JZUWqKJzxcyvPSEREpGWokpCIiIiIiIiIiIiIRIWSVL/Z6GME\nU67cBcBZvAHACedWALDznrXs+tLjAGSuWk7+3N8BcGAllnIXzmHBiSOTHiuclo7pSB4SGvfe93zx\n7Nsp5+HP70TE7SGYlbPJYRwbkaRVkyD2XP6Tf2Fi8EDPRwilZdD9x69ig+orBoXSM8AW+5X9zAuv\nZtIdj7Ny/0M3aV7rM+12QutVughmZuPJsCbvr4t/3YMRO3Zb/Ivoy++EPWTdNE/1nAMYEbP+nLoF\n0ZrGv/MNAGtGHA2Ax6OQUHsJGE6cBLGFmhcqkU1nbP6PqGYp32GXZi83VkgpOUsXtvKMkjNooydE\nRES2GqokJCIiIiIiIiIiIiJRyZbI2lhvP5vHwcfXRh+ffFYJH75dGD3241wLwB7OmbzwWYTt/5gY\nt/8zM48jnYc4l9cAMA0bpt3O3NPOp3jwsGbPo7Z7L2q790po//OMCynZY9+Nvq5kDEi53FgkbLVf\nx6MAOGtrCKVn8OM9T3P8yQdY+6dIU0VcbpYceVKLzLEpnvrckL8qfh5h047Tvl4lofzYWlbhJqo3\nfffQ/zHwnf/gy+uUtP/nf9yNLdQCJau2caGMTEp32YvMeXPg8cdx267A71f1prYWCsGE4GEATLnt\n0XaejbQU0+GwgpJNBF7zi0KUlzj4lb345do722xuIiIim6PdQkKGYbwCHAOUmKa5c5J+A3gSOAqo\nA84zTXNafd9DwNFYlZAmAlebZuxvNQzD+Ajo13BcwzDygf8CfYAlwGmmaa5rtYsTERERERERERER\n2UL9PsWz2ccIBoy4pbaemXU8X+Z+T8Va61fSWVQDUDhjKhWnDMIIx4dRCijnZS5iyeHHkzFhHK4a\na/yvo+7c7LkBTLvm9hY5DoDNMDFTVHJo+K21Hev6HN46fHkFccGl/LmzWmwum8KdaVX78a0XEgqZ\ndlxGfBUNX34s9NNUJaGynfdg8s57pOyff8q5mzJVScLbqYjCmb/CqFHUFB3MbyW78/3cMppaDW5b\nV1rTsuWWKsvsse1+A1v02NK+nPb4kNBfzqjis7etqnNfcxDH1FgBVz8eVg07pD2mKCIistHa8z8T\n/wM8A7yeov9IYED9v32B54F9DcMYCgwDdq0f9wMwHPgGwDCMk4Ca9Y51E/ClaZoPGIZxU/3jG1vq\nQkRERERERERERES2Fu/8Ozdp+/WPlWCa8Mh1RdG2pz9ayZXHdU86vnFIqMv0KVzw0Doeu8GqROOu\nX8IlvXQNZw7pnXIudUVdAbCFO27VmaaWG3OXlAB5GFgDnHVWJSGAxUecQN/PP2yjWaYW8bjJogpf\ndfxFhCJ2HOstN+Yt7BzdDrvcbTI/aZrD541uf12yOwD/HWsy9PC69prSNsdmT/EBIFs8hy0+wPrg\n9NO4lWqGMQmA1aFCztzhK97882A+z5vUHlMUERHZaO22ILBpmt8B5U0MOR543bRMAXINw+gKmIAH\ncAFuwAmsATAMIxMYBdyb5Fiv1W+/BpzQUtchIiIiIiIiIiIi0tpShVBa06mMxU6IeQzg3v+sZveh\nPvYY6sVhxAI7u03/kOED5gKw/e4+jj+vMtpXuc4ed7xHbyiKe2waBju99mxc2ydvfk7pLntGH9cV\ndmmx62kthmGmXG4sa/liwAoSAThrqgilWSEhe9AKSv3SQtWRNlXE5SabKnzr/eltyLRbS+00sujI\nk6PbNUmWcZO256quTGgLBTd/yUARgTV0jnvc48+p0YAQQFagkkd3eoJMp49QemZbT09ERGSTdOSC\nk92B5Y0erwC6m6Y52TCMr4HVWMs9P2Oa5pz6MfcAj2ItT9ZYZ9M0V9dvF8N6P9UbMQzjEuASgF69\n9D85IiIiIiIiIiIism26hBcZy+kA9N0+QOaKZWz/31f40lzIw46buHS3zzng9qf4iCyO2mEG1xw9\nhf5lvzHF/g/WhIsoXmYtR3Ur90SP+eNRVxCaVczyPofT87sJCees3G57pl1zB0dceDwA/rz8NrjS\nzWMYJmaKkFAEKyjVUEnIXVVJsL6S0LSrbiWYkcmCE85sm4mmEHJ7MDD55tsizmdFrN20J1TRCGbn\nxB4Y7RtEyfI4OHa3bu06hw7h7TfwnXcBnl+mRpva+aXZppStsXPV8cmrqUnrMNrwG3yVaVWzG8EE\nTuJ98lmXMGbge29YgVa98UREZAvRkUNCSRmG0R8YBPSob5poGMYBQDWwnWma1xqG0SfV/qZpmoZh\npPy7G9M0XwReBBg8eLBqRIqIiIiIiIiIyDZh3TrweqGb7rlLvQpiy465qirZ/5bLyZ87i+2BA0Pf\nw69WXzbV/PBnP7jPevwt49iBuZTMqAUK6dEoeJKXE6CbMYMqoz9zTzuf7ce+CsDk2x9j8VFWlZqy\nnXbHl5uPp6KcYIZVmWH+iSNb/Xo3lQ0TkxQhofqbxg2VhABqeljLq9V16c5Ptzzc+hPcgLDbwwp6\nQhhWLnbQva9VKSpkOhIqCQGs3vdAspcsaOtpJtD9+Ho77UTx/76i+MnnY2sspL4FIi3su08yotsP\nbvcYcEr7TSYFI8Xnk2yYDw8Ad3M7Q/gp5Th/bscPtIqIiDRot+XGmmEl0LPR4x71bScCU0zTrDFN\nswb4H7Bf/b/BhmEsAX4ABhqG8U39vmvqlyqj/mtJm1yBiIiIiIiIiIjIFqJPH+iuYggdlknzbvov\nne9k5JBerFjk3KTzRBoVjhnaaEmVA/55KflzZzXrGLlUAOCttAImDmLLkw166yVyli6k57efs+io\n2NJVRjgUd4yI0wVAMD2TMVOW8vON/9q4C2lDtiaWGzPrn0+j0eu3oIMFnsJud3S7ojy2RNzSUI9o\nJaTGvn7yDcaNm9wmc5PmMQwIedLpg7W8nSdtywoJjXstm8dv7NTe09hsTkd4w4Nki1JjWkHVfMqb\nHOdTSEhERLYgHTkk9BFwjmEZAlTWLxm2DBhuGIbDMAwnMByYY5rm86ZpdjNNsw+wPzDPNM2DGh3r\n3Prtc4FxbXkhIiIiIiIiIiIiHV1VVWLbBx/AwoVtPxfZdJMnpgNw45ldqa7Y+F///jjB2v8JrqYb\nq6PtnadNafYxPPgAWLHKurlqJ/mN83U77EJF3wFJ+xqCK6H0jKT9HUvq5caMkBV+alxJqKMJpWfy\nENcDsHa1tfhAKAhBXHy6Zlh7Tk02QsiTxjucCsSH/Tq6yjIbY5/P5Zdv09t7KpvNVlXb3lOQFlZr\npgGQQ2WT47aEpTFFREQatFtIyDCMt4DJwPaGYawwDONCwzD+ZhjG3+qHfAosAhYA/wdcXt/+LrAQ\nmAnMAGaYpjl+A6d7ABhhGMZ84LD6xyIiIiIiIiIiIrKeyfUFQkIhOOkk6N+/fecjG8eMxMIqD40q\n3Oj9X7jLquaRhneT59Cw75Rfi4DkIaEf734KgC9eeJd5p5zD0hHHx/WHXVZIyLR15L9ztdiM1HWe\njKAVEpp6o7UW28dvTWyjWTVfMCOTv/ECAHNnWM97aX1YSLYcYY8nGmT4zyNbTmDh5Qdjc/3+f1t2\nUCiyuukgiWx53tjuH/yN5ymk9P/Zu+/wqMq0j+PfM30y6ZVQghRBUcQuKig2FBXsDXTtBcW6a2dX\nV10LrnVfK5YVBcvaAQUsgAoGpSlFkB5IgPSe6ef948zMyclMKkgmeH+uy8uZ0+aZSeYMOc9vrseW\nZQAAIABJREFU7rvF7byJyXtoRDFINzkhhBDt1Gl/YamqeomqqrmqqlpVVe2pqurrqqq+rKrqy6H1\nqqqqN6mq2k9V1cGqqi4OLQ+oqnq9qqr7q6o6SFXVO2Ice7Oqqgc2ul+mqupJqqruq6rqyaqqtlwX\nUAghhBBCCCGEEEKIP6ljjgFVhYKCzh6J6Ai1UVplnwHeDh/nEt7t8L5WfIb7jduNhW0ZqYWCvCmp\nLP7bwwQcDsP6FVffBkBdbs8Oj2NP0dqNNXOp3a8FpDaPvpBp+Vuo7jNgD46sbXyuJBKoB2D+dK36\nU3GhFhKaeuxDnTYu0T5+RwKBUHu46oroNnHxSFVh+xa9NWI4pNhVjWROZw9B7GZDktbzEjdiihEF\n3TTq3MjtAR+/syeHJYQQQuyS+P8ahhBCCCGEEEIIIYQQYreaMwcURfsPoLTUuL6uDs48U79fWbnn\nxiZ2TV21fsm3rqb9l38HDnFzAt+SRG2Hx9C0qIGZANPyt1DRf/82H2PrSWcwLX8Lvs6sztAOzbUb\nC4e2lDiu9OBzJWJu0g5tZygklJdc3BlDahNFymcY+J0J9GZLZw+jXWZ/kERRo5AQQENd1/25HsDq\nzh6C2M2CFmNVtfVjLo7cXjbhvsjtskFD9tiYhBBCiF0lISEhhBBCCCGEEEIIIf5kxowx3s9q0pUq\nKQl++02/v27dHz8m0TK1uX5WTcwLVYIB2Lja3u7H8fuVqEpALQlX/GlJuN3YV6/8r93j6QpMSpBg\nc4GVcEgojq/E+50JqIrChfv9QFKq9rMq22HBipfMhI6HxcSe5Utw4cRNHzYCUFwU/9WEVixyRC2r\nr4vjN0sMjrKW21CJ3W9PxsiCFmOIbfHfHmLuM28x799v4M7I4oNvVrLqLzcy59WP9uCohBBCiF3T\ntf61JYQQQgghhBBCCCGE2GX336/ffvPN1revqPjjxiJ2H3e9ceq0ZLuFLeuszWwdW8AHNoxtyuZP\nmszcZ95iwcP/4auXjUGflVfeHLldOuhg3ClpAHzHcHr3rAH0kJDfldSusXQVJkVttpJQMLQ8nisJ\noSgoqsq29RZqKs2UF5vxeRWtBZnV0vr+otMpKNR36wFAL5cWWtlR0L73fmdo/L7I6amFE39Z6OCz\n/yZTUdo1pq9yfloQuZ0/8clOHIn4I6gm4+9h0GZn+9EjKBp2EqB9rv1y492olvh/vwkhhBBhXeNf\nWUIIIYQQQgghhBBCiN2mvl6/fdVV+u177zVu9+672v+nTIGgsRuRiBP1dQqrFmsVg954Ih2AfQd7\n2HewB4CC9e2buAx6g5FKQhtGX0hF//0pPG4k248ewZZTxlBy8JH8es3tgBYKUi0WZr05HYDvH3+Z\nzz/RJsyH8wPd06oAKOt/YOT4684eS9HQ4zv6dOOSoqiozdW2CKoodI03z0L/UABW/OQg4NfCYk0n\nyEUcUxQq+u3HPQOnAFBTFf8/O6tdL5F22e1aGvX1xzP44OVUJpzZk+tH9mDm1PgNF05/O4mntl4B\nwMEso6ZH704dj9j9kgs2dvYQhBBCiN0u/v+VKIQQQgghhBBCCCGE2K2qq6OXTZkCt9yi31+0CEaM\n0G5PnQqTJu2Rof1plJfDI49AINC27ZvrNnbfpbk8OiGHilITC2a7ALjz6WImPFwKgKe+fZeAgz41\nEhJaftO9fPnOrKhtVl5zG9PytzDnjc+057L/QUzL30JDdi7+BBeL7nkcAEdNJQDbjj0psu/P9zzG\nvGentGtM8U5BrxjUVFBVUJr96cWXI1kEQFW5Gb9PazsXNMdvJaG4rs7USYJWK9mmYgBefCCzk0fT\nOodTD9A5EqLfJ7XVZqb9J41Na+KzSstHr6VEbn/NyaiW+H2/iI5xlGufpbNf+5Rp+Vs6eTSxyalQ\nCCFEe8m/WIQQQgghhBBCCCGEAIJBlRq3v7OHsUs8HshJt3LvxAB33xu7esk7UxSmvWum6bTSKV/c\nTMIPFpKTn2bSUwEGHqji8QBok7Pz5gcZf0sbEy1tZLOYcNrMu/WY8aiyElJTjcvuuQcmT4aBA+GC\nC9pxrDITN53Rk579vDwxdQcl27VLvKsXOzhmZB0rF1gYe9nRzJgyC7OlO6U72/f6BkIhoaW3TMST\nmt6ufSNj7L8fAPu4tgMHYrZ16DBdhqmlSkIqmLpAJaEltz/Ah8+cTx5bef/FVIafUokNL1krlnT2\n0EQ7qBYL2UppZw+jzdIy9c8UZ0Lz75Mfv3LRZ7/KPTGkdrFaweeBNMrJoBxPqN2i2HvYq7Xfu/rs\n3E4eiRBCCLH7SEhICCGEEEIIIYQQQgig1utn5ortnT2MXVJXowC9eOpJhQPPjP1cJozPi1p26PB6\nct77PxRgysfnUdc9jy+W+TnwjeeA5wCo8LqZuWL3Tj73y3JxVN+M3XrMePPf/8KVV8KXX8Jpp+nL\nJ0/W/r9pU/uON31KMgDbNthYu9weWf7Oc2n0G+Sld3Azrh2FXDRyMNel+Zg+JYVjTqknb19f1LHq\n67RgS4KrUQWPOg9WfJQPPKB9A2vEn6BVNHpp1Zkcy6XkHXgSJfTr8PHinaKoXb6SUPmAAziMbQAo\nJhVzeRU2vGQv/6mTRybaI2ixYgu4OfbUOn5fYW99h84Wetv0HuDF6Wr+fTLrvSTG3hx/ISGzRRuz\nkwYAanru04mjEX8kd0ZWZw9BCCGE2G0kJCSEEEIIIYQQQgghxF4i4NdmXL2etreYOv+6Ss65qhpl\nqHb/9HGn8r+5v5G+ZgWD33ieC5NO4oOaMah/QM4h/qMTu+7NN7X/jxpFzNewsLB9x0tI0qttPHRD\nTuT2USfVU7DOSoapJrKsukK7/HvvZblMzS+IOtZ1J/fEbIG3vt8aWRb0BrHio7r3ge0bWCMBmxZO\nsOPlat7ga+upHT5WV6CgooZCQjVVJhzOINZQ9SS1i1QS8qRqFVCu4E3+G7ySoEfFhpffxl7bySMT\n7aEqCsmbN+DoHcRd3zlNiKZPSeK9F9N458eCVlvCBUOFhB56fQd1Nc1/bp13bdVuHOHuZyZAdV5f\nMLWvvaPomOwkO2cctGcq+9T/50Vs/3uf0w/puUceryOsZmk4JoQQon0kJCSEEEIIIYQQQgghxF7C\n79MnimoqTSSlNh9OGHJ0Azc+WIYr2biNtaEeAGfpTgDerzmLD1D5eW7Cbh/vHxE8ijeZmbGXu1xQ\nVwfPPw/DhrW95VhDbexJaK9Hob7WRD9TdZvHpqoK/iYFhvxBM77MDNyZObF3aoNwSCjyOKa9u6Vc\nuN1YSZGZ287tQfd9fDz5nlbJS1XpEpWE3OlalYz/ciUAG7clk0U5ay6+pjOHJdopZ9kiABzBenxe\nV6eM4b0XtcDZ4nlOjjihocVtAwEFuzOIxQpOl/5ZdMekEp6+S6/cYjLH53tIDQ3ZRJCA3dG5g/kT\nsZhNpDj3UCBrwniYMJ6UPfNoQgghxB4hsWYhhBBCCCGEEEIIIdg7Ait+v377H1dHhzwaP8ezfpzE\ndaf2QlHgwhH7GbYbO7Q3x91zfdT+DXW799vq6t7wordiwADt/6NGGZd3767fvvDC1o8Tfq08HoXk\ntIBhnc0epKHORH2tiWRFryQ089AJAPQ/0BN1vPdf0qc8t22y8PRdmbgbFNyqDZs1ELV9ezSdLA9a\n9u6QkKKoBFG47dweABRttkbWaZWE4v/33JuSRvGQIyL3t1WmY8OLO72ZlFsckNoZzbPjMYRG96Tw\n+cnraf3xg0Ewh04PNrvW6g7g0OENHHZcPZf/tRyg055LW5kJRIUj40lrFZ2EEEII8eciISEhhBBC\nCCGEEEIIIfYSjSdSiwv1oMLWDVaqykwEQiGi0XzORB4BwFZVicXdcrWHO+/bAMC6lR2fBK2tMvHw\n+GyKC/fuwEhTnlA+JxiMvby9vG4TdqfKP17ZAcC+gz306OPD06BVEsqu3hzZ9vSlLzB8VC0VJcbX\n3O+Dz9/SQ0J3X9KdJd8l8N8n03AH7bshJPTnqiSkKFDsix2mUVWlS1QSAlBNJmaht4az4UW1SDOC\nrqBpCMRmDeL3KZ0Sfu07yAtAdUXr7/ugX8FkUunx3Vf0nD+bV2Zv45mPC1EUuGNSKSMvqEUxqfEb\nEgpo50oTwbgOCQkhhBBCNCYhISGEEEIIIYQQQggh9hKNJ1KTUvWgxz3jcrlrbC5er7b+iIw1WNES\nQ+efOqTV4/ZKrwDgiVuzOzy2pT84WbPMwQevpEaWBbtGdmKXhMNAXq9xeUFBB4/XoGB3BBk4xMvU\n/AL+9fTv2PxuAgFw1yskY2w3lu2ooLLUbAgL1NXEviz8/ReJBLBQx661KQrYHRSMOC1yP7iXB00U\npflfZFUFk9J82794krNsEYewLHI/xeXuxNGIXWFTtBNO03aCe8L6lTYAyktaDwkFAmA2qxx/1zUc\nd/d1uJJUsrsbQ4oWa/yGhMx1WntOE0GW3PFAJ49GCCGEEKJtJCQkhBBCCCGEEEIIIcReIlwpyGxW\nScnQJlqDofnW2iozvlD7l2BOesz9v3xrpuH+goeeB6C3a8cujy01UxtIZeneXVWmKXcoZ9E4JLRl\nS/uPowKb1ljZWWjB5tBDKSfcdjmZ61fgrlNQVYUkagz7pVpqCAQU3PX6JHtDXcuXhcsDqS2ub5Wi\n8MPjr+BOywAgaLXt2vHinKnFkFDXqSTUkJFFBmWR+33tWztxNK2TFkrNs6OdcHydEK6prdLO8V9M\nS25120BAwVlb0eI2FouxlWY8Up0OKvcd1NnDEEIIIYRoEwkJCSGEEEIIIYQQQgixlwhXW3C6gpFA\nUG21fgnQF6ok5PTXRu37yfSfcKdnAVCx7yA+mrWMutyeAIwZP5r+Pco4dFh9h8cWDiuFxwAQVFW2\nbIEnnqBT2uLsCbEqCdWEcjwTJrTvWBOvyKVgnQ27XX+xMlctYxN9WL/KAUAitXz66ULmvPIhACmB\ncsAYDGqo034Gvfp5ueZePRQSdtnAb9o3sGYEzVpYYG9vw9M0rJKQ2KhykKpVGekKvn7xfcyNxppn\n3/VwoNizvn3ubQB6/6y9h/3ePyYkVFJk5tVH0qMqFYXPLWGBVsI9SRvXY/O1/LkSz5WEfGhtPVuq\nJiaEEEIIEW8kJCSEEEIIIYQQQgghxF4i4NYm+BMcfnxehZpKE+NH9YysD08Y5/6+JGrfhqwcGrJy\nmD/pNb75v3fxpKbjTs2IrE+qLY20K+uIcDio6aT1+PFwzz2wdGmHDx3XYoWEqqq0/48eDXfcAa42\ndPdyN+r81GfZNxz9wK2YPNrCInpE1rnMbupzukcCXi53JWCsxFEfCgz95Y4KMnKMrX0ArI7Wx9MW\nAUcCAKbO6HnUSfZP30rAqwcGgmp8hhtiqcnrC8CBzrUA9HPFdyUh0bzszSuB6EpCqgpXHt+TVx6O\nXU2urV5/Ip35MxJZs8wYACzbqbUW7NlXO+GVFLXcajDp998xo5+D8r6aHrVNPIeE6kOtGVuqJiaE\nEEIIEW8kJCSEEEIIIYQQQgghBNBFOgK1KHHNGgAyarfh9yn8ttQ4gRueMHbSYFi+8gq9pE3hcafg\nTdHaTdXl6uETm8m3SxO14X29HmMloQQtR8K6dR0+dNyqrobCQu12OCS0YwcMG6bdTt78K8nJUFcH\nvlZyNK8/ryd3tpNLn9mf0nfmh1HbVSVmgaLgTs8EYOCX7wLGcFa4qlBWxSaS3SVRx0hN9kYt64jv\nnniVTaPOpbZH791yvHgVriYCkF2+AV+jl09VVUxK16gkhKKw85ChTGm4mJFJ33Fw8trOHpFop7JB\nQwAwZ2onVneTyj6z3kvC6zHx3cxEFs5JiHmM5QsdjBuax8qfm68AtmKRU7vR5COhrkZbsP+hWjqy\noV5h2yYL8z6PnYT0mWxY0BOMw/4+IaqsnMXSekWiztZl3uNCCCGEEEDLMW4hhBBCCCGEEEIIIUSX\n4VW1sEKiUovPq2BzGCdbw9V87HjwJKdir65k7tP/ZfsxJ8Q8nmqxsuOwo+m25EfsisfQKqy9wvtW\nlpsjyyrqvXhMbsDB8g015K33dPj48eiUg9MjVXt++y26LVXi9WOp++tXQC6zl5SRntl8Uu2nRUmR\n2+vpD8CRk+6P2q5fRjFVaD87AIeqVRtqHPAKtwQ6Y+KllJsyuZ98AP77zSYOOeks1OSRbGvfU42p\nqt9Afnzgmd1wpPhW4tOrsjhpIIiZYABMZlBVBaULJRBzluWTA3yQcTV1th6tbi/iiy8phZLBh+F0\nm6AU6mr074nX1Si881xa5P7bz6RxzMjoVl9P3pENwKTbspmyoOVqUqXbLYB+3t681gZAcppWHeiH\nL13Mej8ZgKNOqsfpMr4XAorFEBICcBVtpa5HXuR+vFYSctfrY3p0/xep49ZOHI0QQgghRNtJSEgI\nIYQQQgghhBBCiL2EF63yQxK1+H2KYWLVbFEjFU4cuFlz8dWsvvwmVLM51qEi5j73NqdeNYaU9UVs\nzhjc4bGFO0553Y3CKt4gfpMXcLCt2M/vhQ189FoKZ11RRUJifAUr3A0KV5/QC4ApPxRgbsOV1fq6\nzBbX78NmLPVFQC7LVvvod0DzFXy65dlZuVj7+daQ3Ox2g/N28EOj+/bQBL7PF11JKJlq6oN6NREn\nDRzECpbax7Q4bmFU6dd/Hla0X3SfT8FuVlFVBVMXCgmFJews6gIVoOIvOBIPslYsoV+oiUTjkNB1\np/QybHfIMGNFubARo2uZNz2RoadEB4iamvxoBkOOaSAtU6ukM+VpLTCXkq7dDweEAHZstdBnP2PJ\nNK9iiwoJWetrAXAVFXDWucOZ2K0Mv2839UDcjfK/1s6dN/ASQ9LWs7CTxyOEEEII0VbSbkwIIYQQ\nQgghhBBCiL2EPzTXml5XhM+rMP1tfYI24Fd46PpugBYcUU2mVgNCoFWkqew/iJJgJgXrbDG3qa9V\nuOqEnsx6P4mvP040rPv+ywQ2/maLBJaaVoRwJGgBCneDwpUjejHjnWRmf5BEvFn0jR6m2bbJ2sKW\n0YbyY8zlidRx4vppAGxZZ6Vos0Vr8/NTdJufbz9LJCEpSKKpln8kP2lY93LCLQC8x0W4M7Mjy2e9\nOR0bWvDI32hu3l2pTeCnUBVZD5CyeT0AAXvzbYZENG+o3dgNvMQJzAVg8xrtvRJU6VKVhBY++CwA\n1oZ6Atb2/Z6L+NGdIiBc6Sda30EeKkpin/9TM7UqQNk92tbja8KZPXl0QjbjhurVf1LSA1Hb1VVr\n01FlO82sXqKdY7zYIuegyj77AnD6ZaMYO7Q3Rzz5dwDSdmwynL/ihdOlnUfP5WNUU+ufpUIIIYQQ\n8UJCQkIIIYQQQgghhBBCAGoXmshvTsCjPYdwNZP1K2OHPWpJZP05l7b5uCUHHUY+RwNQVW6KVCQK\nK9psxdNg4u1n0nhzUjpV5dplR78PXv5nJn+/shtvPaVVmLDZg4Z9LdZQSKhev1Rps8ffzyIhUR93\nSTMT7825kyejlu1EC/Oc+NUzWK1Bdmy18s2nWsBq3nQ9aPXgtTmMG5pHMKBQX2Ni84BjuO7ALw3H\nujTxQwqHjuAiPiBg03/m5fsfhLu3Vj3E79fDWYGdNdjwYMcbqTQEcPiTE7X1NgkJtYcvqP0+XMo7\n1KOFyR66IYef5zqp8iVhUoIt7R5XyvfTq4WFW9aJrmXlFRPoQSGJ1LC9QP8Z9h6gnbj//vJOnAmq\noV0WwGdvJTNuaB714epDzZyGp/0nNWrZqsXGSj8pGdEhodpqLUhz32Xd+NdNOagqNNiTIiGhJbc/\naNi++4/zALT11bGrHnWm+lrtdcple9yHhKTmlhBCCCEak5CQEEIIIYQQQgghhBB7iXBI6F3GGpZf\nz8uG+2Vjz8abEj3R25yg1cbfeQiAG0/vyVN3ZhnW+7zGKcgbT+9JwA/lxdETpxbVWBIiGMpPuOsV\n9hmoTRZ73H/clKbPCx+8lIK7QXuMqjITH01OiYwjlh1bLTx7j/6caytbv6w6flSPyO00Kgw/g30G\nesmmBAATKimBCmZOTWbWe1rlJ6tNn51ft8IY2LG4GwjYHXz6qdbcZv6k10BRsFVXAVAx4ADjQJK0\nyXt/o5+Ru0YlmWoAQyWhjDUrAOJ+wjveeFStapADN9kUR5Y/e28WX5QM61IT9PVZOZHbSqBtlWRE\nfPn9gstRgCxKqGl0rqoqNzFiTC37HezBalfxeoznsQ9e0j4TikMhSH+MH7+qwsypzbc7BDj1gmqc\nlujWibVVJjasskXCQvU1Ct9XHMZqBrHmoqsI2mJXqrPhxR+Iv3fRa49lAFooVzXF3/iEEEIIIZoj\nISEhhBBCCCGEEEIIIfYSQb8WLrmQ9yPLHvv3ag5jiWG7AXkV7TpubY/enMi3kfsrFjmpKjMx9flU\nxg3NY83y6MozfxmWR/43rugxNgnjqEFtcrWhzoTJpI2/psIYUtm81kpt1e65lDn380Q+eyuFq0/o\nRdlOM/f9JZePX09h7S/G51BSZGbc0DwWzknggWtyDOuahqKa8nmhutFzyKSU55Vb+PcHRTz/WSET\nX9xJQ7oeOioNZhj2NzcqVJTX3zjZnrJ5PQG7g/puPZiWv4XC407BtbOIzNXLAfA7nMbBpGiVbbyh\n4JWqwox5fSlFe/zKIQdHjb9iwKAWn58w8gW1n7UDNxf1+gZbo+pMAApdp5KQP0GvYrVh9EWdOJLW\nKZLLiMmdkc32o47DYQ/g9egvks+rRKq02eyqYV1jyxdo55CmrSGBZluUNfZCyaWcdcUpUctrqkz8\n4+pukftP362dg6pIZentD6CaYp/jbXhjjiVe+LGgKjLVJoQQQoiuQ/7lIoQQQgghhBBCCCHEXsLv\n1SaAn7f/lRf6/JMXv9jGQTlbuZI3I9u8wZUE7O1rJ1Vy8BH0Yqth2QsPZPLFNK2ixNzPEmPtxvsv\nGqsVjeMdAkHjJclwaKi+zkQgVC2iqkLb5uuPE1m12M79l+fyr5u09lyqCv97JYWynR2sdtOohc4D\n1+RQWaYdJ2AscMRt52qVgF5+KIPaKuNjNW7dFUvpDj3lc7BrNQeykm2jziI3z09GToAEhx97ZVnM\nfbNy/YY2QIFGXXsm8rC2zO5oups+NmeC4X737m5Aq2oD8MW0pMi6ZRPupeqgwTTlcyVFLRPNC7cb\ns+PBk5rGAZY1hvVdKsyiKPgStHBfXW7PTh6M6Ci/w4kDtyHQ6PUokSplNruKr5mQUFigUTBn/gwX\n33+ZwO+/6p8d/5qynZPPqzHsc+ARDfSbN93QxjDsw1eNnwdrlmnnsZ6mQgBMsUoXEQ4JtTjUTqEo\n2ms5iNUEmoYzhRBCCCHimISEhBBCCCGEEEIIIYTYSwRDISFcNs5PnklqsodBb7+EBT1p0p2idoeE\nAJIbdRjr3ttH6Q49OFO2UwtJDDm6gWc+Kmz2GL3YSlCNHRJqqFUigZhF37h47OYs3pyUzqMTtCo+\nBeu1VjSFmy18+mYKt5zVg5Ki9geFGrfyqijRwzyb1sZudROIEQhqPGE973MX44bmRZaNH9WDv13Y\nPbL+0szPUABTo53slWWYgkGW33g3AFtzDuDAIxu44PpKElMCNNRpr1FVuYnCTdq4Hhj/Iw/zD21M\nLYSEAnbjZLUtVX9elWUmpv0nDYCBrGHriFGYM10czULe50L9+blih75EbH2sWoBOQcXnSqIsmGZY\nb+pClYQAvn7xfdZecAU1eX07eyiig4JWGw7ckQo8qgo+jwmbIxQScgSbrSQEkJwWMLQbe/WRDF7+\nZyZJqfpnSc8+Pi6ZUMmgw9yRZeHQZRp6tbonpm1vcayrcocBzbe3s+GNCnHGgyxKuZ6XUYBfr/9r\nZw9HCCGEEKLNJCQkhBBCCCGEEEIIIcRewh/qTGVyWjH5fAx8/032mfOZYZsB/N5iyKQ5DnuQa3p/\nQnq2n6ItVnZus0Ztc+fTJWT3CHDhDZWG5aMvq+KcA5dgxUdAbRLsCbVIq681EWwUyFn5c+zKDOZG\nu992bg8WzE5g0bdtr+IQbrfT1HsvpMVc3tjEl3YCxjY8kx/VWoVNfS6Nsp1mQ5sxgEOdqwDjBLij\nrASA6l592HDGBaRRyb3Pl3D2ldU4ElQa6kIVlUIT7t17+zgtY0Fkf5PP2IKssaYBsKDVyj08BsDM\nqcmR5b8wBF+Ci0BKMgs5lvNNH0XWeROTEW33RrfbeJnr6cdGfK5ECoJ5hvVb/T06aWQdU7HfYJb8\n9Z+o5g5W6xJ7XNNqVQGbDYfaEAkChasGNdduTFWNAUqrTY3Z4svToE8pWazgcKrc/0JxZNm2jTaq\n8/qSQnVkWc++PkPFocahoqt7fYJq1cKalf33B2DeU2+w4upbI9vEa7uxerMLJw189dIH+OScKYQQ\nQoguREJCQgghhBBCCCGEEEJ0cfW1Cm/9O43qOq1qjOK0YfJ7sTTUR23bh80dCgkF7Hb+sc8rlBdb\nmt0mPFGdnq1Vm7huYhlvLyzg4puqmHjCJ5hDFY2CjQqrZC5ZBEBDjVZJKCs3djUJu0PbqXH7HIAX\nH8jk+fuyYu0Sk8UWOyTUfR+9VMXmtdEBqIturGS/gz0oihqpLlRerIco5nyYxC1nGcMgz35cyAG2\ntYCxlY4zFBJyZ2ThdyViravV17mCNNRrl23Dr9OF4yuxl+vtyewVsVuVAbhT0w33gxYrV/EGAJ4G\n/bWz48Wf4CJg035n/K5EpuVvYVr+FlRL8z9jEa3P1qVcz6sAKGrs3y8h9qSg1YZd1duNhXOFhpCQ\nWz8fNNQp+LwK2T18XH1PGRarHhJqXFEo/xutneG+g43txC7/W3nkti9Ra1f46Ih3uPgmraLQCWP0\nc1xCov4BcGzKMoJm7XzjSctgWv4Wio49iRXX3sG0/C3MfGe2FhJqpcVjZ/CoWrWmyv77dfZQhBBC\nCCHaRUJCQgghhBBCCCGEEEKgVVKIZ99/obW1mvyvdMYNzWPc0Dy+/lhrC3Xtyb2Y82FqusjVAAAg\nAElEQVQS7y46AoBgggOTz4cvSa9u8Pa+dzLxsu8ACNja324sYHdg9ribXX/SOXqliGGj6rj7uWKO\nO6MOU+gKpMnvixkSStq0HtCCTsGAwn6HuHnsbb09zdT8Ai66sRKP24S7QYkKCUXGFztbFEUNxt6/\naLOVz6cks2qxnfsvz415fEXRqmeEO4dVlLZcaeXk1+8h+9fFgN5uLG3tSk64/XIA3OlZ+FyJWOtq\nIr+ATpcaaTc250Ntst1mV3GW6dU6Ao7mKyfV5/Y03A9arWShhZK++UQ73u2Hf0bQZCJgdxC0hNqR\nxfnvfzxTQn3yFt3zOAGbnZUcwK3Kcwznu04e2d4t/mIj8SNgteFUGyLnKneoAlA4bGmzqwQCSuS8\nWVWuncvOu6aKE8+uw2wh0v6xccWhBbNcADx01uecNP7CyO/+Ecc3RLbJWP0LANdvf4LRl2mfC42D\nQTu26iHEkSkLWgwlBuyOUEgovqaygkHwBSw4cBO0RIdKhRBCCCHiWXz9y0oIIYQQQgghhBBCCBHT\nyw9pba3mTU+MLHtzUjruhuip8oAzgdRN67BVV0WWXbru39yw8Z/a+o5UErLZSVu7iusm6lVscnrq\n1Xeucb2DyatVl1AUOOgot6EFjsnXKCQU0Jf7zFpgqaHBjN8PJjPk7evj9idKuP0JLdziStImmOtr\nTM2GhHYW6hPNm9ZYWTw/dpAmVpWgsPdfTOXRCTmxj79NO77PqzB/RmLMbRrL7uHjgJnvRO6bfD6G\n33Utoy4/I7LMnZ6Jz5WIoqqRqk/OhGCk3dj80M/aZldxlhZT0yOP1ZfewMqrbqWxRfc+DsDn/5sf\nNY6A1UYKVYZlR6Sswp+QCIpC0Bp6PeI9JRfHTKGkRfGhQ1l92XgOYDXPqrdho/m2cEL8kYI2G+ag\nn20bbTw6IZvqCm0qKCktiKOshIM/fAmAylA4qDLU2jA1I0Diti2kb98QaV/ZuOJQ2JhHLidn2SKs\ntVoIyJUciNomfe3KyG2nSz+/bNtoY2p+AVPzCzD5/S2GbAIOJza8+EIhoeULHVSUdH4bPH/oc8iB\nWyqvCSGEEKLLkZCQEEIIIYQQQgghhBBx5MNXU5j9gTGEUl/bfM2Mq0/oFbUsYWcRAINff9awvMeC\nb4GOhYRMXi+mgI+DehYCcMMDpTz94XYycrSAxCnvTGTIy09iLy817Ocs3oHJ5yV7+aJGlYT05+MP\nVbJRVYX6WhNmszaZfPjxDRweqk4RrkJRX6fg88R+LUq36xO1E6/I5Zm7s2LmXqa/nQLAMx8V8sCr\nO3ju08I2Pf8Lbqgi5+cfAKiuMPP1x4n846puABw0tCFq+/OvMwZzcn/6nl7fzTEs8ye48CZp47FV\nVwJauzF3fZPLtgo4y4qpz+7O8gn3UpPXx7B6w1mXMC1/C7W99okaR9Bijaq4kuCtxu/U2gZFQkJi\nl/kdDqr6DaQhXWt/Z0F7b9yRNbkzhyX+hAJWG4HQeXbVYgfVFaEQUEI9555xOJ5yLeB5yxitRWJ1\nuXbOSU4PMub843B6qnFs2QbEDgkloJ3zLA11AISL011+2i+G7WxVWrsxZ6NKQo0pfh/BFkI2/lAl\noYp6F3XVCk/ekc2jN2fH3Hb1Ejvjhubx+6+2Zo+3u4Tbt0klISGEEEJ0RRISEkIIIYQQQgghhBAi\njnzyRgpTnk5n2n9SGTc0DyAywdtWPldSi+s70m5s+9EjsFdXcdMNQ1gxchzDR2mVb/72VAkTTp5P\nBuXsP20y551+WGQfxe/nnDFHceaFJ9Bt8cKY7cb8Zn0sngYTphhP1ZGg7XD3Jd15/FZtgvihN3YY\ntnHXR09kh6tnhNVVKww5Wpvczu4RYMBBXjK7Bfj3B0WG7YYc3cDU/AKe/6yQ9Gw/b8zbyjFzJ3PS\nzeMi27w5KT1y+9JbKyK3nS5trEedWB/9RBqpz9ICRg0Z2vNxlhaH9lfx+5TIJHT4uTlLd9KQGXty\nvCXhENDTjy+OLHN5q/ElaG2DIu3GxC4Lht5XznKtAlYd2mucZqnutDHtzRRFGo6FNX0tgnY7GehV\n36ortXPhGZOuA+Bm/hNZV1Fi5vn7tWBbSrp2jrbiwx/QjulxG8+jhw7Xz23WutrI7an5BVwzbAEA\nay66CiDSotJigWvvK+OIE+r552v6uVurJNRSuzE7RXQH4LqRWiC2aHPsUM7kR7Vz8uR/ZTBvuotF\n3+rV5OZ97uIvw3oZPnt2hb9WC1mVDhsO8nsohBBCiC5GQkJCCCGEEEIIIYQQQgDx1mxp5tRkAL7/\nMoG/XqBNkp57tVad5qwrqnhj3lbD9nc+XcyZ/X+mhkQyVy2LLA+azdT03MewrWpq/2XB+iy9Ddeg\nb96P3M7r7+PCE1cbth07tDcA9qpyABK3axUpwiEhtVFnmoDZOOG77xfvkVSw0fjYNdHjTUo1trdx\nN0RvU1tlXHbdyF788qOTtCy/YXlunp+p+QVceWc5Iy+o4a5ntJBHRk6A/3xehN2hkrN4IQDX87Jh\n37OuqKJHH/14z39WyFMfFHHSPVdGjaexGe99DRAJ/jjLikld9xtHvvMkADee0TOy7UN/7U3Sti24\nM7JaPGYs4ZBQ/x56kKnPotmkbNlgWO8PhYZExzUN3+1Ee890s5XG2lyIP4wvIZFr0SpYpWX5qQ61\nFetfkA9AFqVkJVSRt6+Xey/rFtkvKSXI9qOOw4YXt1mrNtY0gHnqBTWR29ZaYwAu3H4sfK7qO+N/\njB3am9PHjeTE08q57bFS+h+oJyBNfj9qC5V4gjY7HqJDrVs36Pt43Aqrltg5bLgWAC3aYmXyvzJ4\n/j69mtzkRzMI+BWKtuye1mDBOi0kZHFKQEgIIYQQXY+EhIToooJBmDHjj2sX73bD77//MccW4s9i\n3Dg4/fTOHoUQQgghhBCiq3v5n5mR230HeZiaX8CFN1Rhd6g8PnV7ZN1BR7l57Ni3SDC7DfvnT/w3\ndTm5hmX13Xq0exwNmXpIyBQIkLJhLYPeeoEhLz5BQsnOqO17zpuFvaLcsKxxu7FxQ/MYNzQPn9k4\nAexoqCF1/W+GZUNPjq7Kk9nNGBJa+oNWNaK4SC9FdNcl3Vn5U/QEs9NdHSln5CosYN8PpwBw8nm1\nXP7XiqjtU39fRc/vvwJgAPoFk3OvqeTCG7Tg1j4DtYnvhESVbnn+SGs3gEX3PG44XtBswR+q9uQO\nVxIq2cHpl51GZq0WqAoHoybyME60n2npAYdEja014UpBvb+bpT9/9PZoQbP2enkTW64+JVrXNCRU\nSSoA/Qp/7ozhiD8xnyuRI/mZww4rx5UcZNp/0gBIRg/1HJmxGk+DQk2lfs7cZ+4MFL8PG178ARPL\nFzr4bqYxQJhs0kNCI68/H8WvBWacxds56vF7ACIt94a8+hQAqRvW4iiPDsuZWmk3hqIwnTFRiz95\nIzly+61/p/HoTTksW+CM2u6bj42tO212/WL61OdT+ey/yU13aRNfXajiUvuL8gkhhBBCdDoJCQnR\nRU2bBqNHwyuv/DHH/9vfYOBAKC7+Y44vxJ62335a9d/t21vfdndQVe19+uWXWqBPCCGEEEIIIdpK\nMTX/jaDGE5wAvfr5mJpfwNT8AkzmcOsWK8tvvBuAzz76ns2jzmXZzfdH9qnrQEAIMLS6qs/M5vRL\nT+XglyZxwJQXGfju61HbH3fP9fT58qPI/bL9BlPdb18Aqsr1SekqUgz7WfBjqzFWp0gt2sgVt5VE\n7r/3+lyaFkP6ea5W9eLlhzIMyx+7JYd5nxsnuZNqihn4/htY6usYfcHxHPHvv0dVxHCUFdNt0feY\nPG5O/4v+DZDGIaGefXyR2w9O3sHrc0PVnZp8q6vgxNNZ8NDzFA09npLBh/H9Y3o1IneaNt4j/v0P\n7XExhrwaT+oXDj+F9qrqo73m+737GkeMqAMgl+1sPW4koLcD8klIqMMW3fMYOw4/FjUUdgiHucK/\n2938hZ02NvHn5HNp4ZgEk5ttG/SWguG6N7Xde5FlKjOciwGGTbyJhOId2PCysyqJJ+/I5ttPjeeG\nlGClcZ/7byJ583pOmjA2ssybkhY1pvB53VZViTMULFVCn1nt1Wc/vRrRlnXa89uxNfo4M6clRdp2\nAgT9euWfL6Yl88HLqe1+bIBAvVY9TkJCQgghhOiKJCQkRBdVEroutmbNH3P8+fO1/xcVxV4/ezZs\n3Rp7nRDxaO1a7f+rVu2Zx9uht1dn9Og985hCCCGEEEKIri/gBzXYfPuSpiGhpkx+H0GrjdV/uZFp\n+Vuo66FNjlbsNziyzaw3Pu/Q2Oqz9WpEQZsdpVEQJnHHtsjtH//+VOT2oKmvAjBz6hxm/3dGpK3M\n3WP1YxV6cshArzCRTbEhsGOvLGf0hSdw7+bbOfm8Gt679lUuuvpEspfmG8a372APALm9jK3EQGs1\ns6NAr1axD5s57LmHOenGizCFKgrZK40VhM494whOvPVSDnr1acPyzEZjtTv118BqA0fovq26yrCP\nLymZLSPPYt6zU/hq8scUHqeHfdQmVTSqMVa2SDfrxwo4HFHPrTW1vfZh/eiLsNVW8+JhT6GioADf\nT9JaEYUrGW09QUrhdtSGs8fy7f9Ni9yf8/qnTMvfgl3Rggy57KFvLAkR4klJByClKvbvXsBmJ8NU\njrs+eorItaMQG15Ka2MHB5ObhIR6zZ/NmRefRHKjNpF+e/S5ylqnVSAafcFxnDP6SABMAT+q2Ry1\nbWM3OPUQ6uHH12MyqzTU6uOuqzY+h39N2c7bCwoAKC40Bodeezy9xcdqzsI5CSyYlRB6PIW/3XEQ\nANb2n5I7h3RFE0IIIUQjEhISootav177/9q1u7/lWHU1rF6t3a6tjb3NaadBXh74fLHXCxFvrKFr\nAm53y9t1xJYt0e+FZ5/Vb+fkIIQQQgghhBBt4vNpM3lWW+w/9v0+hYxVyzn/lMHk/jgvar3J5yVo\nbbkqgyc9s8X1Le338YyfWHv+5SQWxf7m0Mczf2bTGeez/cjhxn1TtaoSv9X1idqnxp9AEnr7mjwK\nsNXWYKmr5ZzTD+e807SqLN0XzefKOysYUr0IgPQ1KyJVlAYOcUdeM4criN0ZjHqcku16GKcHWmWX\njDUrIsv2m/ZqzOc0aKqxjHPjsVqbCW05yvXSzD/+42mttG0bXcK7hvv7BbRvu/icCW0+RlMFJ2vf\nXknetC5qXW3P3nw882fWXHJNh48vYvsy9Xwe5AEKrr26s4eyV5LcQ/NKDzoMAIdZr7hzP49Q2XcA\n78/9jYDdYTiXAcwmVF3M56We5s8359wW3f6rsfVjLiZos0Utt9VUc+z9N2IPhyhVNVT9roV2Y8Cj\naf9i0YgrmZpfwO1PlJKSHqAyVAHpm08SDef2sTdXsM8AH6Zmcke/Le1YqueFf2Ty4oOZ+H2w4bdG\n5YOsLY9dCCGEECIeSUhIiC5o+nR48UXt9qxZ8Oabu/f4KSkQ+hIdVVUtb/vFF7v3sYX4o7hCleV/\n/73l7dpj+3btOu8++0CvXsZ1kybpt/fff/c9phBCCCGEECJ+zJ/hYtzQPDzu3TdV7fdqx7pofCVJ\nqQHMFj2EMj5nGv+4sSenXn0WtppqBk9+JrKux3dfMXZobwZ8/A6OirKYx/7yvzOY88qHuzQ+d2YO\nUX2+Gq8PVaUJT/quPf9yFjz0fGR5hS+6MsXGuh5sRg8PHcAqDnzzP1x40gE4y/UWYyafNtntTdba\nwxz6/CNkrFwKgM2hsn6ljfGjerBto5XElCBT8ws4dHh9ZP/tW1uezB3w8Tstrgf46a5/kYj+jSq7\nXaXHd3MYO7Q3Jo8bVJXBk5/huLuui2zTkJHV6nHnPa1d3Fl5xQTons6Uwx+IrDuIXwH4YursVo/T\nnPps7dsr4ec499kphvXujOx2BZlE2xzpWcADPERdbs/OHor4kwlabQTNFlyKfg58hL9TNmgIAWcC\nAZudZFWv2Db25gpG8lXk/ixGNXtsJw0tPvbiOx8mYIvuw5W2diW9v5kZuT/m3GEkbduMam753Gyy\nmsgx658FFSUW5k9PZMs6K288YawMdPrYmqa7c+mtFZx5aXXU8o54/fF0nrhVb715QP/Yn7dCCCGE\nEPFMYs5CdEH5xmraXH01nHoq9Oix+x/rzjvhjDOaX3/22dC7N9x3H1x3XfPbCdGZNm6EylAl5A0b\n2r7f9F+K8Pqjv30a9sD1mYD2DaSdO+G+50rxeRTmfOSKLAeYNw8+XLytXddbT94/h5SE9vdkF0II\nIYQQQuw5X0zTAi9Fmy302W/3lNr1hzplOX3VvDxLm+ws2W4mPc3DZSPGGbZ1lpeQ9/UMCo89kePv\nar0KTOOWY7si2ExrmPlP6i1hlt18P6rZwvIJ9xJwOCPLL+n1FV/uPJan/lfEwjkJfDQ5Neo4jdt5\nNVbbXWud5k3S23Gdes05TH//W5zmZLweJ14PrPzJSe8BWqCocZ5pR4H+N9b5RIeltg07Wb8To2zz\nz397mKJjTqAfejs1mz3I8XddC0D/z99j+1HHM/j1Zw37VQw8MObzaazomBOZlr8FgJwlCzmFr5ma\nfzW9vv2CpPtqyZ/4JHWh598RntQMw/3qvOiKTmL3s9bXAeBO7ViLIyF2RcDuoJtNO58ecmQN/ARV\nfQeG1tlJrGrU1tFhPOcdx3y+4/jI/dOZyTIOYTvdW63gFLTaDCGhLSedQe9vZpKzZKFhu8TtWpvK\npu0Zo45nsWLyR7eRvO8yvW3lvf/ZyYFHeAzrH3p9B0u+czLqkhpqq0zMeEf77FDVjmcily3QP8+O\nYQGWhJZbpQkhhBBCxCOpJCT2CgMGaGGVrqCuTvsjJPzfrFntP0as9vOzO/5lshYFm89HAJCRobVa\nuv56mDmz5W2F6Cz33qvfLixs+351Hj8ef7DZ/3r2M04CPHZbJv++O4Nff4p+kxYX0+Kxmv4X3N19\nBIUQQgghhBCtUtv57/D07AAAZTvb9j28We8n8Wt+y61ONq7QjnXgp29ElmXlBshe/2vUtq4dhQyb\neBMDPpoSte6PtH3oCAB+eOSFyDK/w0nhsSdG7lf32ZfvnnzNEBACGJa1gprcXnTr5eeYkfWGdamK\nNlGcRoVh+Yezl7PjsKMj930JiYb1oy86kf6LvjQsS0zWLmjc+lgp51ytHXfZAu21f27kG4wi+oKM\nu1Ebtt5zPotaH7RaCVqtpFIZWdZvwQx9XK4kLA11hn3+N+dXPO0MiDRkZOMoKzEsKx+4awGvcPWl\nsKA1usqH+OO093dAtI0Uv9LFeikCNhtJihY2TUnUAjT+0Dk5YHfg9Ovnq6OPKDbsOxTjt1TNBFjO\nwUy+9dPIsvfnreHLt4wXhNePvggA1axPPeUszac2tyc5yxbFHPuv193R0lNDtVgw+fVrcCefZ6wW\ndO39ZVEBIYB+B3i5cLx2/k9MCTJslPZ8CzdbWr3m3ZzGrUBfYnzMtmpCCCGEEPFOKgmJLm/nTli3\nTvsvFrcvQHmdN/bKPayhHvr3MF4cGzUKCitaLtHalA8LoH37rd8+XjZstvH1PD+nndvytxYTbGZS\nE1r/w6V3by34A7B2LWzbBj2bVEVWFO1bFy4XlIWqqt56a8tVh0R8q/P4qWrYPd98jTfp2fp7pqzc\nR1Fl9LePmlKBYCvzA15Py1ejZnI669iX23iOt59J4+ZH2l6CWCJCQgghhBBCxLcn78ji13ztb/zy\n4uhKAn4/XD4sj0OObeC2x0u4fLixCkxalp/zrqmiVz8fWd39pKRrM5ZP3dMNgF5Fv3LO0N7UZ+Xw\n6fSfsDQYAzU1PXsz7+m3OPWqMRzyf4/9EU+xWTuOGs77c38j4EzgwyOOxe9MwOxxt9iGLExVTJE/\neLK763+bHcZi3s64kZ8rB1F48pn0mfVJZJ03JQ1PagZp61YDoKjRs7tJAWMlisQULcBlMsH511bx\nyespFBdqfxemmGO3nen/+XuY/D6Stm4ia8XSqPX1Wd0IWmyY0R8/vXJr5PbRD91BXU53wz6+RlWP\n2sqdnknOUm2Cfvh94wGt6seuUM1mvn3ubU689TLteDKxvUdJSEh0hqDVRoNXO++57KGQkDMBgIDN\nTi+1ILJtbmCbYV8vxnOEgko2JVzz3DmRZQGHk4qBB/Lh7OWcf+rBAFg8bgBDC7Hq3v3YfMoYjnxy\nIgClgw4mc/VyAOa88mGr1daCVmMloYycgGH9iNF1TXeJyebQzt3zpyeSkh5oZevYMnIClBdrzy2Z\nanZY5VwqhBBCiK5HQkKiyytrZc69pMbD9+til6ne0/7v7xkxl8/5tYQYbZqbVVCVCGgXFyZf9xYn\n3nct775t4cybilrcLy89gWH7Zra4zUcf6QGhsF69wOsFjwcSE7VwUPjLlY2rsrSnjZOIP9sqGliy\npaL1Dbug737MBqycwhyW/3YcBw+ycseTJeT137VQlNejkNXdT0lR7I/TJGo4kxncxnP4ffL1NiGE\nEEIIIfYmyxfqXwJ666l0Rl5QG7lfsN7KLwu1qjXLFjjZ+Fv0JGJFiYXXHtOvE1x6awWnXaxXRxjD\n5wAklOyk+4JvOHbiBAAW//Wf9J3+Ad+88C6+pBRWXnULhz7/CABLb76P3t/MZP1Zl+zGZxpbIDTR\n7E1JAyDYxgsbqqJEQj4mMzz/WSEjnriVAxZ+jN+TxACWsyb7Wn697g78jgS2DT8FAE9aOvZK7SKQ\nEoie3H2FGwz3u5WvZ9Bb01h9+U1R2/Za/zMA8ydNJmXzemxVlWT89gs5S/Pp+8VHzY59+9EjsNQb\nJ6Mb9t/XcN+1s8m1mQ6UOvE7XVjcxi+UBewtV6Bqi4aM7MjtoExs71HutNjXBIX4IwVsNo5PXcy/\nuJxTjt4CX+rnEp8rkcMDP/D41O306OPDuUSrJLR8/F0UnHgG3gtWGI6lttBkLPw5AOAs2QlATV5f\nVl02Hou7gRXX3Eb28p8i21QMPJA1Y6/F7G6gdMgRrT6PoMWKyad/CfiEs2p5/8VUMrr5eWLq9ja8\nEppzr6rm20+SWPKdk55923ZNsK5GwZmgf5UvKUX//MmklDXtuagvhBBCCBEnJCQkurzGgRZFgblz\nYcQIfVk8tezJ/yYhcvvtBQXMn+Hitccy+PErF8ef2bZvPABYzfo3J/p+Ox24tk37ba2o5/2fC1rc\n5uLztW82Duc7vuc4ACxWlaEnuln6g5Np+QUsnJMAaGGjptfl7nq6mIFDPCQmx8/r3pTLbuHMg7q3\nvuGfjLoX165ZvUS7AJJILSWl2u05/0ti9RI7+w72Mv6Btlf4aczrVrDZm69PbMdDPzZiVfzk9t47\nqzQJIYQQQgghNA11Ck6X9nfVvZfmGtZNeTot1i4G7zyXxq+L9CBI42o1Rzz5d6yhSkI7DxnK7xdc\nEVm3s1EbrpKDj2LNuOs7NP49xqREvnmUuWIJWYEAaeZqTKjYarQKP6rZzMqrbjXs5klOxV5dRcbK\nZRz1+L1Rh23KtmwtBy+bFDsktO4nvEnJFB43ksLjRgKQs3hBpHpPLL+NvRYUhaDValh+ygPNX5NZ\n9ZcbWx1nLEGbDbPXo39DCwjshlBPbc999ONJJaE9KhyqE2JPClptDLRvZGp+AdlLtUpB3kStupkv\nMRlbbTW9+mnXq5ylWkho6wmjqO21D0cpr/GiehNX3lXOm5PSOZFvDcdedM/jhvu/XPdXhrz6FI1r\nY/9y0z2R2z6X3iYyaLFQcPKZbX8eFgsmrx4SSkoJcu19ZQw52h353G2L5DTtQvbObVYOONzd6vbr\nVtp48JpuXDdRv2649AftvfwJZ5NI3W45NwshhBBC7GkSEhJd3nnnGe/Pn980JLRHh9OijOwApTu0\nt53JDElp2gW/Vx/JYPioOkzR1clj6v79N4D2rcDeX09nSN/t/LIxt+Wd0K4tBdr4euSynd/Yj8GW\n1fh9Jpb+oH1DcuzQvJjbW6wqfp/Ck3/NZsBBbh54tTjmdvEgEE+/FGKP6c1mXOhhvMTkADu3Wdm5\nzdrxkJBHwRWs4zB+ZQmHR60/nMUAWM0+igstbPzNRt/929b+UI2jgKMQQgghhBB/Frvyr/B7xuXy\n7CdFbNtojVqX19/HpjVatYHeA7xcdnsFj4zPidou3L6sKdcOvYxv04o99dn69YDa3Ca9wuOQioIS\nDGDyeRl57bkAFB57onGbGBdIwhPMp15zdszj/spgLh04l1/Xal9qmoE2AW3yegja7PTs62XbRm0y\nN51y/A5jaGPn4ccy492vOfOSkwF4b/5agnYHhz77EPu99zrLbr4fiK7AY6P5v/F+GX9Xs+taEp50\nNnk9kWX+hES6pzrok+nq0DHD6k89HftP+RwzMKdDVY5E+9SdOQbXjM85tr9UEvojOKxtvJj6JxWw\n2SLhGntlOaBVZQPwJqVgra9D8ftRzeZISKghIwuAseb36T4mj+Jzr+P43F/4y+3PGY694Wxjxbod\nRx3HkFefwlof+4uwPldS5PbA//2XJX/9Z5ufR9Bi1Y+rqqAojBjT9i/chvczmyEhKUjAB2mZWmBI\nofkv/21YpX3e/jQ3OuR3Np8B4JEqYUIIIYTogiQkJLq85GRoaFSBubLSuD6eKgll5fop3WHh/he0\nsqvZuXpFoJoqEynpzf9R0phjpzGAc/bGV/iFBwkGaDVoFAzA/15N4bDhDfQ/sPkLWWZTkP2Ca7l4\nzHre+XhAq2O6+MZK3nlO+2bk77/ueglsIXaXTWu0C/Q38DKb2SeyvHSn/hH42zI7+x/iabprq375\n0cn+bGIE8wwhoTsmlXDeXWdhCk0x1PudLPoGFn3j4sRzarjstopWWwzGz5lLCCGEEEII0VTAH72s\ndIeFS4+O/cWailIzZrPKy7O3kZCo/Wv//6YXMmF0j5jbT+aaZh/b7zD+ze1Jy+C979dh8nrxN6rU\nEK8y1qwgobSYi4frbbqstTWGbYLm6IsbiUVbo5a9P28tF40YCMBgVvLULV/zbcmNjPsAACAASURB\nVPAEHrs5hyPQWoo5S3dS1z2P2x8v5c6Lczk9OIN0yqlx9o06XnWfffng29X4HU4wmQBYeuvfWXrL\nRD1QoyisO+dS+CR0N7TvtB83M/bofYwH7GAIJxiq8nPx8dpzW3z7gwQcDpKdVnpn7FpIiJmfg8dD\n7wSpbLNHfP4pAL0lkCU6QdBqp+cPXzPsvvHsOPxYADypWqjFFTqn9vj+K/rM+oRe82cDWiARAIuZ\n7s4SioHuzrIWmo1pGtK1gGZ17+hzK2jV4DrKVl1FxupfOPvMI0goLWbVX27klxvvjtpuxG1/oXv+\nfOa8+hEjrzuPTaeezY//1MJN4fPzuNAVN3eNdh1eafEKnLZu+YLYAV4AdyhUJYQQQgjRlZg6ewB/\nRqqqEgzKf7vrv6OOMv5D/tlnwe02bhMvPG6FIUc38MhN3Rg7tDe3Xqb/0fTjV22/OOOzaBeLfmUw\nAE60lNT1p/WkbGfLKaHVS+18/lYK770Q/YdZVZl+SnAEtWMe2X1ds8dyopU6z+3tY9jp7fz2hog7\ncZSn260mXqF9q9aOx1BJaPMa/dufj4zPoaGuYxfsSsnkTp6M3C8hk6EH7+AYfoy5/befJPHU3+QC\nghBCCCGEEF2Zx92+vx8qSsykZgUiASGAtKwAqZl+snv4OO9a4zeectne7LHUGAGaoNXWJQJCAGnr\nVkctSyg2Pt9YzzFzxdKoZYEmgansZT+R2U2rDnEq2oT3mRedxP5vv8yoTx/ko49+ZDpjUIgOW4X5\nE1yRgBCgBX1Mxkuo3qTkyO36rBxmv/6ZIRD06acL+WLKFzGP3xYBq/FbJZ50bVJ/t8RMzGaQgNCe\noyhSsUnsEbF+zcJtBfO+/QJHpVZF25OqfckzqXALAIc+90gkINT4QEGzBVNAO59a62tbffz63J58\n/cK7/NSkDVlYXY88lt9wJwBVvfu14RnpHOWlACSEqh0dMOVFw/qs5T9z6LMP0T1/PgAjr9NaD/SZ\n/Skmn/FLsrl5Wnu12vLQ88RMMNCu4eAIXYv/8e9PtW/HTqTsnk8QIYQQQuwlpJJQJ1hfXMvPmys6\nexh7Ba8HVvyegw3wol9AufJvlYy+rKb5HTuJ36dgMel/dTjRex//NDeB0y5q/Q8uAJ9Zu5DVA63c\nuClUFrW+xsTCOQmR575htY26GhMHHaU/zmM3a+XMy4qjL7i99JBeHtWK9gdTrw2LgTNaHM/2LVZ6\nlq0B4r+sufjzqK0ycf2p+u/ksSzgZv4Tub+9wNgCYOVPDo44oYG2Cga0bxuN5yVyKGYEcwliIpMy\nLhh5kGHbI/iJnzlSf6yfndTXKoYJgqb21tCWEEIIIYQQewNPgxYaOerYSm489lsun3Rui9tXlJgj\n4ZXGXphRFLn9w5cudm7T/k7JpJTCY06gx8K5kfULH3yW9DUrcKfvfV86SCjegTcxGVttNRA7JDTv\n6Tc590z976olt/0japuDXnuGldfcxnr7QPp4tC89mX1eDnnhMQA2nXZOZNum7cbaw5uoh4QWPPwC\nZQccDMB3j7+Cs7SY+m49qO8Wu0pUW4QrCYW5U7X2QIqETYQQ7aA2Cjju+78p+BISIy0TFzz8f5wz\n+kjKDjiYxB3bovc1mzH5vPSe81nURaoVV98W8/GKDzumxfGs/suNOCrLWX/22PY9D0v0Z4KtqgJv\nihZ4OuWG85vdN2v5T+w8Yljk/omjq5n6QgZ1Jfpnss+nYDdHX4jz+2Kfc8PX4guHndS2JyCEEEII\nEWekkpDokuZ97uLnuU6uPD6PTWuie/ZsWN1KH59OEvBD2o5NMdcdNrzt4QS/+f/ZO+8wqam3Dd+Z\nsjPb2b5Lr1IERURBUEGwYkPF3vVnAXsXFeyK/bNjRxGwCxYQEQRpC1Kld1hge2/TJ98fmUkmOzPb\n2AUWzn1de21OSXIyk2SSc57zvMrLnBHlZWYR2ouOxaq90Iy/JZ1X7ksNuY1Q/UqbVmmz6PwiobT8\nrUH1ktIVX/UneRGA5xjHkIdv0dWx2w7fjishvjg6WDZP3+F7Mv+qwrpQVFc17CexstyAjEQKBQD8\nzTAWMFRXZ9M1twHoBEJ+xoyoXVQni4BjAoFAIBAIBALBYcmmVRY1TNi12e9ww6uXcf4lBbWuU1lu\nJCbeg9FuQ/KEtix4YVKuupxMIbvPGQnA0qdeZ2rmHnafewmr7h9/xLiS/PT7v+qywePGGRevpuUQ\nsdTtyWlMzdyj/m256tagOlVprQGI7p2khn8OJKowT122lhY3uu2u2DhW05dMBugcifYNPZdto25o\n9Hb9xOzbrUs7fCIhgUAgaAjbLtPuR5ElhTpHIFtKGkU9j8NcFXqirddootOsnxg8/l6On/iarixQ\ncNkgDAZW3T+e8o5dG7aayxWUl7w+2F0uFJFFBcTt0vq3zUalX1vepPURup1Bq7FoVhTT3ksI3R6f\nSMgdKVzZBAKBQCAQtEyESEjQIvnkpST+b6w2c87vIpREIa1bV+v6y9b/a8HtPtgtDI05r5CUHesA\n2DvkHNbdej9d2A6A213/Tj6PpHSWGfHww+y1XMaPapmxDn+wEwYrYqTYVt6gspg4Lc8vEoqVtRfF\nh9/I5/G381VbVicRVLRuzzheICZ7LxOGTVbrfj9R69wTCACK843MnBrL/F+jD8r+cvZoF8P3A8ZS\nld6Gib1e5LVOr4asn7evYeZ6m1Yr9524aEfYOjtHjCJr2Aj6o3R+DxiuhTtzOY+Mjn2BQCAQCAQC\ngeBoYs0SKy+MSVPTlXmK4OfOUWtD1j9paLW6HBPv5cqhPTjplSdC1g10Gk2mEEerJKZm7mHXBZc3\nRdMPG8p8g8P2pFS+m7tBzY/K1QZs5QYIofyioeqUdHJPViZR2VIzqEpvw7RFOyjsfYK2jzwtrFlF\nu06NPgZXTCx9WcsAluOIDz2IfCDUdItytGrCcGMCgeCoYe+wERQf0ytsuaNVIpYwgknZZMRcrfRj\nxeTonYZcBzm8pcGtiYRsvvujpVSL1OAxRwSt42fQM/dzwdVnqemT330GgJWO49W8UI5BHz6bHJR3\nt8+h3C8S8kYcnhOVBQKBQCAQCOpCiIQERwQ76AzAg7xJ2/gS8n2D/VvWWHj5njRmTIqrbfWDhmxz\nquKbJc++gz0hka0cA4A7eEJEWDy+SIFGPLgjI7meybzJAwA47cEvNft3aeKHmHilA9NeHVwvwqqJ\nhEqtygtX11V/qnmdezrpM8BO6w6K6moXnbAW5avld2weT7suytSLP749PD5zQf1pToclWYZ7LmrD\nlHcS+OTFpLpXaAJmfaOcg1/O28GoZROwJyYjWyK4q/z1oLqR0V7y9zdMJLR6USQAJyTvCFvHHRlF\nZEEu0xnJrW1/4q5ni3jivbyw9ZuLzZvh4ouhwqf5+/priIiAyEiw1WFi9sMP8PHHzd9GQdMzcSKc\ncELd9QQCgUAgEAgEtVNdKTH+1jTG3ZzGaw/q3Xrvq1bcFaIK83jj+2xd2XXHzmfG/C5axlxl0lDX\nX77hmoEd1L/TH/kfKWuUiQVDRijhtuIopzo1vbkO6ZAy56Mf+W3aXwC4AwaaDV6tT8IfvqshuKJj\nSFuxhCEP3kRUbja2pFRkkwlzpTb5KSpP+Y7WjH6UZU9MaOwh6MKNuaOafiLMliv1bs2OVooQ6Qgx\nkRIIBAcRjyUybJk9ISmsq5pcy0xUd9TBFQlJvhnAyx95gbnvTwPAUloEQGRBHkaXZgW07tb7+en3\nf1n40ocht2WV7UF5rhAioTMvC3ZYep5xnMssPur5HL9P+TOoXCAQCAQCgaClIERCghaFLMOOjcrM\ngKgYL5/M3Ut21xPozC6cmBnLy3Tes4zdWyNw2iUqypVTfOcmCyv+ieSrNxMOaRgsF2ZVJOSxWqlO\nbY0BGRMuPGFiHIfCg+IkZMCLN8KCBNzNewB8/XYCY6/TdyQ+enVrddnpUPZjqw6+/EsKtJe/Sfbr\nALCguaR02zgPo62aQc756vGYHFp5dfsOvDvi83ofx6FChHE6+NhqiNKevKF5O7u3rNFm8rTepHS2\nl3XsisdiIbKogHS02aPnMRNblYGlc6IbJJSyRMokGktIygh25fLjsVpZ9sQrtCGb0Zf/h9EEx/Z3\ncNaoCmLiQocYUGnC0/Shh+CXX2DJEiU9ZQq4XGC3w+LFta97+eVwxx1N1xbBwWP0aFizBqqq6q4r\nEAgEAoFAIFAI9U6w+I9odmywsHOT3jFgD+2JQlHdD7vvOtqkVPLQa1rYsUc33EMGWgix2+TQ6vu2\nC+dw1p2j6PPJm3xgvY8y4pCgweFYWgrO+FaUd+qmptffdHdQnbKA8vrijoomJmcfbZb8TdrqTGzJ\niqArfvd2tU5G5gIA9px5Ifak0OHZ64MrQBjksVhrqdk4ZJOJn39dDkDhsSfgrcUlQyAQCGrDazar\ny4uffVtX5oxrRXSAi9vPv2Sqy7Ih/NCRx3JwHXSsZYprUNaZF1DesStui5XIQmXi6nnXn6uru/7m\nu7EnpbL3jPNCbiuC4NhiP34S7IgfyoU/jnJmMYLBqRso69K9wcchEAgEAoFAcLggREKCFsUXryYw\n/hZFXHD5naVERctYfHGEzbiRgMpq5cVn6V9ReHzuPC6HxFuPpjD7u1huPaMdWdvNoTbfZBTmGhl9\nXhsmva63nPaLhFbfNRaA4h59AOXlxFsVIvhxDZb8GcXuLWY8vkvXiCIy2HT1/zCjxVTL2h6+88hW\npawbykkoMPxRpNHB9ouvRgLy+/RHRuLMh2/klGcf4MoZjwBwIb+q9Yt6HU/rzAVc/O5obuo0E2tU\neOGE4PCkOcVTZUVGXXr31giqq5pPsPfcnZr9/5l3Xa3s85yRauftRnrR3bSNTfRgJuerde8b2Zp1\ny+rXwVuUa6IVpUE28AA7LricqvQ2OONaUdm6PQCW0mJMPpvmbessVJYbcYRw/vLTlN+GP+Sif8Aj\ncPZpiLDughaOLENygCt2Tk74ugKBQCAQCASCujGZg5/Ou/W20569urzB4+6m36laeLFIn4Aomww+\nuPNnbuGLWvfT57O36fXTJOLwuRccJbYxO88PDqfmimm4O7G7hluGLUl5V1t7+0NqXtJmxc3JfYCh\ncgJdKzzNFG7GlpLG1Mw9/PnZdDVPEgHHBAJBA/GLDN0WC3vOGakrC3RFW/7IC9hSM9R0dI0QYzoO\n8u/TqnuexJaQjDM+ASQJW0o6MfuzSF+2UOeENDVzD7LJHLKNFW2U/jmDRd9HCfDP78G/CQ6bRKTB\njhMz2waOoIooDGLiqUAgEAgEgiMEIRI6BIhHycaza4smfjGZlE/SUlaie6F5lUcBMBhlHHblFK85\nEL9/V9OLhCa9nsDCmdF4vXDfyDaUlxiZ80Ms1w5srw7QOyUL1R06sOn6OwGw+zqsDHgp3Rze6sFW\nJXHtwPa8Pz6ZJ2/MUMON5Q4aAkDbhX8FrVNSoH/heefJJOZNj+a/TKXTzF5lCJohGRWjCHue5yn+\nGfUwy8dOoPiYY0lZt1Kt037+H/RgC9VEcg3T1PyygBmOseV5eNyi40qgsfW/4E7Thob3qi+BIfeK\nSFSXqzLaqTOdEihlTfQAerAFgLe5V6mfZ2LCffWbTVpeaqCLdxu2pBQ2Xf0/Xdmyp15nxvQleM0R\neCMseExmen/xLlcMU+LA7/bdy7J3N89nUBP/te7/HxhizFm3PhGA9eubtk2C5mPrVigq0tLl5Yeu\nLQKBQCAQCARHAqaI4J4cryc4r+3COfSarIU38TvzZpDLyZFr1fypmXuYmrmnGVraMnHFxAKwbeQ1\n6iBuYwagJa/erdXvFLThlnv56fd/9fs8QJGQbrJILW4bTc1RohsTCARNiNcnmgl0g1cxaDeVnIFD\ndEVSQ+y2m5nN197Oz7O0/unq1HTa/fMnw+67Ts3bfdZFQetl+45p2uKd7B2qOA5FOcrU8gyUEJQn\nDLbx7lNJPHxlhtp35rRLRBodmHHTNXOW6hwIIHnF5FiBQCAQCAQtGyESErQoBg7XZuTdYJjM+VcN\nJzp3P1XpbdT8NigWqZ9PSFTFApVl+lP9/aeTmqQ9P38ex7tPJbHgt2jm/BDLxOeSePmeYIHBuJsU\n9yOXbNLNQJSNipCnklgWru8Y1lXk96n6GXReGSS8LPbFVo7dtztonbk/6zu8ls2N5rMJ2nF7PBKu\nGuKA+EQPVzGNp3iRSKvSzqxhI0K2KRI7zlilXRVtO7LnzAvVMqujQhVGCQQAH7+gnHvPfJLLDQ8q\nM3z8rlZNzdzp2rmfSIm6XNG+E2krl6ppv1UxgBu9WGfL2rqt3G0V0EouxRkbz5q7Hlfz//j8F31F\nScIbMLP0opGD1eWNK61cO7C9+lddKeF2QU6WqUGhz+rLiBGKeMQeEH69viKht9+uu47g8CBQIASI\n+7FAIBAIBAJBPSkpgdQ4JVx5IKYQ2v5u3auDM4G+H7zCw7wGQEZAmGO/I4M/hBTAnInfh23L329O\nqm+zWzyOhCR++2YuKx96lj8m/cb0n+uIiRyGpI1rdelAIVDN0GIHGr6rrPMxB7S+QCAQNDXhnMY8\n5vCTZQ0B9tJVfpGmD0dcK1265gS5Q4khhC125rjXg/IWTviIX75fgGw0sna0MrG4DC20mAUH/Y0r\ncbsh869ocvaYWbPEyqZVFjautBJtsgVtE4RISCAQCAQCQctHiIQELQp/OKyh/M3pLz2gxpV3Ryod\nePsHD8Mcp/TeOR0GvnhNcRHJ3WtWXXIAZK/izFNRdmCXwA8ftyLzr2hVAAHKoH9NsrYroZWqicZY\no3Nx1T1PqsvOECKh/GwjP3+mj4tc6bRixIPHquzL3ko5zhuZpNaZ/V1s2HYf43NPsVfrj99V5VHt\n0L2+XtCK9p3Cbqcyox0AVemtKe3aQ82PtJcjeyUO1/elw2gizFHD4HMUp6zrp93B9R/fCICnmYQL\nRp/L2L/0V/MWvfA+AJFFBSHXqUQvqnvnyeSQ9QKxVUrEUY4rNk6zMgaKex4XVNdcXakux+Tu4ynL\nBACmvqsPSXjbme248bT2PHxFa/Lzm+5EDTznk5P1TkL33gvFxcHr1OTTT5usOYI6yM2F0aP1Yq6G\nUPP7FCIhgUAgEAgEgrqZNAnefFNZnjFJP1HHaNQ/myelu7n5+p0A2BJTgiYKvMajyEiY0JxtonP2\nUZ2Sji1FC41c2OdENl91K7vPuoiCPv1026jKaHugh9SiKO/YFa85AldsPNWNPHZjjZlQnhpCoOk/\nL2bXuZewdPybjW6nQCAQtDQ8FqX/uLh776Ayyddh4IwO7keuTmutSzviE5jz4XcsePWTZmhlwwh0\nvXdFRfPjzJW6CXp+PNZIKtt1BEA2mSnsfQIxaH10RjxEy1W6PvLXH0rlhTFpZO8xs9eWHroB8mHa\n6S0QCAQCgUBQT4RISNCicDklDJLMPIapefb4BDZffRuOuFasv/ke7GkZHGPeHrSuxw3HDdSr/7ev\nb/zMsXnTo2stf+aTXKZkZqnpu89X3I6+3Hq2rt7ucy9hFMrsQb8IKpAHLm0TlDdl63DcaKKEFQ8/\nDygvNn6qK5XL+wH0nV892MQTvKSro1JUoYmEfGomd1R4C+78fgOxJaaQNex83aw8i1uZUdlcIhBB\n89Cc4qncHcr/zvN+IaZSEeo0V0i6kgIjRqNMP1YBipV/1pkXALD5qltDrmNHL+6zWGv/MGQZqiqM\nJFCiWuNnnzKU9TfdHdL/vTpF36kw1DGnzuMoLDjwz2f3bhg+HP6qEZFwbcAE29xc6BRGC1hWFjpf\n0LyMHw8TJ8J33zVu/cJCfVqIhAQCgUAgEAjq5uab4YUXlOXASUagOPH6eeaTXF7/JodoX7iSlQ8+\nQ3Gv4+vcfnTOXmxJKbo82Whk1f3jWfL8u8z55Ge2X3y1WuaKiau5CUEdrHzgaV06Oj9Hl67OaMvS\nZ/6PXSMuO5jNalJEuDGBQNBQ/K432y65Nqhs5wWX44yJY9ZXM+u1rYITBrD/9LPrrtjMZD75KgBe\no5Hv523EkVj3ZD+ArGHncwk/89zdimPdbXxClLeS0kJjyPpxhO4YE05CAoFAIBAIWjpCJCRoUbic\nEhFmDxIw58PvmJq5h59mr2HvsBH8+Odainr3wxkTywMuzV40EkWw4rAbiIz28sWCLB57Ox+A8pLQ\nLwD1ITB0V02MJplufZQZbPe+qAgiWndUbFD/b7jejsNrMnMhv6rH1xj8AohAkZCf85ilS9uIZC+K\nA9A377cKKrNiV9sFymwMP5Xpymw+W4Ly4lXYux8/z1zB9kuvQzYa2TvkHADMKMfaXCKQA0U4CR18\ndmzXzqPmPj/KioykGAsxEPxFr7p/PFMz9wTlP8ibnNfjP16erHQiH9u/dguX0iIDTpeR9mTh9HXe\nz3/rS/6785GQ9Q01ZrRGEtquOJD6hgGrjXHjYN68uuuVl0N+fnB+oEjojDMOvD2C+hHh068+/njt\n9cIhREICgUAgEAgEDaNnT306tpV+8M/tUt5d7hxfRLc+TiKsMuYK5WHZH4a7sFffWvcRnbs/KORV\nTZaPnaAu+7crqD9brryFqZl7WBPmvUwgEAiORgxupR/OHR08EbSiQxd++GtdUKixQLJPGdpcTWs0\nWcNGALDjoqvrqKmnqOdxSMCjX12AzRzDo7xKJDYKcjTrf5NZ60+cyQjd+r99MxeAvH6nNLLlAoFA\nIBAIBIcHIaKqC5obIVBoPAu/N2J3Kqet372jJtsuvZ6M1X+q6Td5kNFMBKDjun+IsBxLl54OQHPS\n+eCZJHr0tTNspBISyValdABGRof+ssI55AwYXsWyudFYDQ6uGdgBgIj2d/IOH7Jrs2J5enKHXb5g\nXwpekxELSntChFMOy1DjAkCz//ht2l8Yr96qq3MiK2jHXl3eHjoSgaI++Hd+FGNGtOGJ9/No09GN\nHasqXpB94cbckZq4Y+aU2Rgdds4cfQWRJYVINT6Iso5dabdgNiaU/MY6CXnccMOpystpoBuToGVS\nc3KNen64mudmWFZspI0zWAhUGwmmcl47aSJruz1OXIKHUGHcZRn+nhHNoHOqeeluJURAB/bgjB1e\n5/ZtKelYS4uZ9/bXDLvvOqKpUsseeLWA5HQ3T92YjixrO84r8lJSdWBKoZJSE/XVAy9a5uKMYfrv\nZE+2BD7Xsiqbl5Kq2i9qg0EiPjJ8rHtB/Uj1jR3l5NReDwh5juQXGQFNBFtS6aKkqmmvt1irCZNR\naM0FAoFAIBC0fLxe2LxZnxcVXVMkpPzv5ZtMMHz0FaStXgaAyzfoOufjH7n61C5h92MpLyOivLTe\n7fKHhxE0HH9/kfMIdGOSQr2sCgQCQS04WiUCDb8n2pJSSNimhNWE0CKjQ4U7Opbp05dgS65dfBu0\nXmQUAJaA32OpxiRDvzAYIMo3+dhPeceuzPhpEVXpwc7/AoFAIBAIBC0JIRISNDkeN3z1ZgIjrqkg\nrW3DVCL2aolfvowjrZ2bgmwTI28uw2dow4wv4yh3aoIVrzl0qLDSrt1pwxdqOlAk81v+aYz94lnW\nXX83ANUVBlYsiGTxH9Es/iNaFQndeW5bvF6YvFgvsPHjF7DUZMDwarof7+CBN7VwaOlZ63R1DFb9\nZScbTapIyF3DSSh3b8AsBly6EGP3Rk7Exitqujo1nR78olt/Jf3pxjZOZAUr6a/m38//8RiKLWtZ\nsZHHrtZiTPvbIhuVAWZXtPaZu6NjcEfHYEtOJX7PDiylJbr9rb/1Pnp/+b7qFON2S7jdMqY67jTv\njUti6Zxo3p6+n+R0D2uWRNa+gqBFsWiWPjSf//yQKqppDkO70iIjx5ILwM+/ZIasM33GUoY+eBOr\n7h1HdM4+ek96l45zfsFrNmMyvk5Rrv6kLSsyMOZ8xUlr5yYL2buVazGJIrJ69KmzTQte+5T0FYvJ\nHXAaM35cyCmXXaqWte/iJLWNh9e+zWHCvakU+vZ906goHn0rn+NPqd3VqDbyKpKBKDU99ZvlXHPV\nySQZiynyKJ1Edz2+j/cntOWyi8w88GoB/U/XXI7mzYgGFNe0glIXs9bn1bq/aIuRi/uKjpIDxS8S\nOu+82uu5PV5mrc8Nyt+Q1QrQOv+W7SjBkdb48ygU5xybRlKMpUm3KRAIBAKBQHAoqKoKzvO4Jfbv\nUp7L23Ry4yxRhNl9pn2Aa8gJqkBIQXmPl00mZn41kxE3aK4Dy8ZOIGnjWrrOmAZAyrqV9W+YiCvV\naLaPvAaj08nWy2881E1pcsRpIRAIwhHu/rD67rGUd+xKzoDTG7S9pU+/Rbu/Z7Hzwiso69I9ZLiy\nQ0l1I4Q6Jd17B+X9yCh1+aSh1fw7X+lHe7LH53QpL2bu2CnE7t2N3RcytKp1u0a2WCAQCAQCgeDw\n4ZCJhCRJ+hy4AMiXZTno6UySJAl4GxgBVAM3ybK8ylf2KnA+yujyHOA+WZZlSZL+ADJQjmshcJcs\nyx5Jkp4BbgMKfJt/Qpbl+gXaFTSY3L0m/voplr9+iuXrpVkN6sC4dZj+IXvtUivPf5FHeYmB7z7U\nh8aqDPNAXp2aQRd2qOnerFeXRzKd4z96nf2nnklUTDuqKyV2b9HERtcO1It/AtMTpuQQ18pDfFL4\nmMPHt9lHert8+rJWzasZVshj1g+qykbNSaik0EjH7pqd0EOXa+KdlZxIEUkM428AEg0l7A/crjWK\nu3mPk/iXwSxR8414+YobOJaNANyf8hkRBeEti1JRYg51/u17tlx5C7bktKA6pd16kb5yKYYaVkHe\nCAszflqI+dLJALw9Npkta611ugEtnaOISO4b2YYpmVm8+WiKWibLohOsJZK920R0nJf4RK/qzHUv\nb/PbtDlUL9wDH4Bc5QCaXhBWVmQg3ScSsqVmhKxTndaamVM0x7GeUz8mLmsnfT5/h2LeprjQTFG+\nkcQUDx4PLPpDEzr9PUObOdWzYyF7THU751Snt2HnBVcAUNWmPSWXnAM/3lPAdQAAIABJREFUK2Xd\nytZQ1qYPGe3dvD09m4JsI/dfqnR0zJwWe0AiISlAg3Ujk4gxdGJKZhYjrj2biTtG8n/cz+mnFZK5\nJJGV/0Sxb4dZJxLyh1WMpxSXM6rm5lX++imGnD0mCnPMDP8dYsJNLtu7F4qL4fjjG31MRwP1dZXz\nhjEHstv0N83DNfSjQCAQCAQCweFAebny32xWnsMMBpn5v8Yw/1floXZKZhZfTVTeK06e9hZR0/Tv\n+KVdewQs6+OW7TnzQvJPGKCKhP6Z8FGd7Vn+6Iuk/Lei0cfTEkmLszCgc/iQ7o2i/9Mc07RbDMI5\negxyRmsu6tu67spNRIRw8xQIBA3EHR3LlitvafB6joQktl96HQCbr7mtqZt1aKjRybzjwisY9Oti\nljAYgPZlm/mXfgA8XPoc3uhI8k46lbyTTj3oTRUIBAKBQCBoTg6lk9Ak4D3gqzDl5wHdfH8DgA+B\nAZIkDQIGA8f56i0ChgDzgStkWS73CYx+AC4HvvHVe0uW5deb/jAEflb+E0laO5fODWfuTzGceVkl\nAM+PTmXzaiuTl2Qx5e1W/PFtHGdeWsHNj5aE2ySJqR4A/v5FG3E+n99wRcXgjQjtYOCOjiWeMgBS\nIktpbctWy97mPgAsJUVExXipqjAQFeOp1/E9fq3SKfjlwiyOP8XG2qV6cYMXidLneuCO0g+kB4qE\nbucjvBF6BySv0YQVRQTw+kOpYQU1x6E4EiVQTAmJJBjLdSIh2WjEiJdBLMWLxPGs5XEmAKifB8DT\nsa9CAZS37cSvPywAYNMqCy+MUcRA5/M7AHuGn6+0L8LC1Ex96Ka8EwfR45vPKOp5HDWpat2e8h49\nYDNsWavYo3u9YGhAP1aExYvToazgdEhYrE0bJkdE/Gt+HrlK6SQ996py4hIUYd0EHmdW7D8Yzco9\nwtsM4ca8XigvVkRCa8Y8Vu/1dp99Mcd9+pYuL3eviQ3/Wvno+SQuvL4s5HrO5ORGtdPVKkFdPv+W\nC1j40gfsHaZcc1GxmhBx/fJIvB4wGIM2US8C+z4e4C32OV8DwOhw8Div8BivMN2zjHtfKuTGU9uH\nDYfZk01kVQdf7wAuJ3zxaqKafuvTKkZcEjpMWu/TTsOydw8rdxc37oAOY45tHYfV3Mgvqgb33qv8\nrys8qRzmbuao1t9wvfX7mRMIBAKBQCA4KnH6Hl0/+AD69YNrrpXZsll7kN65SXuHj6oxCWjzlbfg\nsQb0DRgMTM3co4Yf91isVLTvHPROXRvbL71OHZQ9WjAaJGIsLdDs/IP3ARD+mgKBQNAyKTy2H9OW\n3k6Hwg18wv/4dPX/1LJWuXso7dL9ELauaRGTcAUCgUAgEARyyN7AZVn+R5KkjrVUuRj4SpZlGciU\nJKmVJEkZKOP7ViACxdPZDOT5tumb/4XJVy60AAcJjxvefDQFs8VLr34ONf+L1xLZvMbC3c8XsXm1\nIhjZvj6C2d8p8eH/+im2VpHQigWK4Gb1Iq3T7afIq/hpZu0W3ftPP4uf/xnJibaVmHEzjLkUk0gS\nysD08HuvpbWxD7aSDjgSQj8h9x1sY83iYJeT3L1mJAnad3Uyd3svUsnHgxEJSNixGYCSbr2Y/8bn\nGNwuBlyqWZZO5E6WWvVCBAwG1UkoHKloIX7SyKOERDqVrAvwSFKoSmtNdF42EvAfmlNHBjn0ZCOP\nM4FWO7cCIAWMGpvM2qVSdspJrH5gChXtOoZtz/7TzuSH2WtwxieELPeLQPw4HRLWyPpdjm4XnDWq\nkt+nKKFybFVNLxISHDz++EYLeRSJHVdMPBEWRUjhdTbt9+r1wPWDFfevFArYetnt9V854E15Aacz\nhH9wOSQW/6Hcg36dHB+0SifjbuyJjRMJua2RbKOrmj7tiTGUdunOzCl/0u/79yAglOC/CyIZMMwW\nYiu1k5tlYvNqrbs6mUKOv+4cZk36DYNTuedIgNFhxxddEI9H+xycdom0ti7kfcX0YDN7Szrrtu9x\nK05FX7yWqMvPKbWxJVcfs93PiXuVwZEt2WUNUw62ALqmxjSZSMhPnSKh+joJeURPkEAgEAgEAkE4\n/C6OUVGKSKimQH/czekA3BQQ1hxg+4VXsur+8SG3aUtKIbKoALmu2NsCACQxcikQCASCg8SWUTfS\n/YcvAfBYLCRYq9k9/AI6zP2dPziXwICiq+8ae2gaKRAIBAKBQNDMHM4jdG2AvQHpfUAbWZaXAn8D\nOb6/2bIsb/JXkiRpNpAPVKC4Cfm5W5Kk/yRJ+lySpNDKBmX92yVJWiFJ0oqCgoJw1QQ1+HWyIgRw\nOQxBDjtL50RTUqidaiYzqrtQfbh2YHu2rVMGunedfTGOpGT9TL0QlHXpzkhm0I59OGPimMuZrPZZ\nhe4++yL2DD+fBE8RK5bGseTPKKLjPIx5tpBnP1VCFKW2cXHfi4Uht52TZcLpkEiw59GVHcRRQQKl\nujrF3Y/FlppBVev2eAb35jNu4ed7PkJCEQfUJFAk5NfurFliVfMyyFGXf+d8vuJ6Ygn+DJ1xrYLy\nAAzIbORYbmCymid5NbeSQJGQt0MaFe071Tm9IJxACMBYox80f1/9O0YddomFM7XQTg5b09+m5LpG\n3o9SDsbH4rFaMUQo55bHFT50H0BVhURRXv1FFyv/0a6tjcbeuKNj671uZKEmxEvxRaa0VdV+7i2K\nGIo9MaXWOuHwRFjoyg66BoRGbLVjC1G5+znx41d1dd95onH7GHt9OuUl2ufXBsVV7bybLsDo0EKY\nnfzKE5gcdoxGmcAIgn98F0vePjP5pOHCzH5HGm8+qoiiFs+O4oZT23P9oPYs+FUfW+zDZ+sWThmd\noZ2GWjTNcP009pq013AS8jSDk5C4iwoEAoFAIDhScPuegf16nk0bQr8HBL6XA9hS08O+N897ZwqL\nnn+vydooEAgEAoGgaXDFahMaPRYrHouF6BzFrz8ZZTzgfcYA+pCiAoFAIBAIBEcSh7NIKCSSJHUF\negJtUYREwyRJOs1fLsvyOUAGitvvMF/2h0AXoC+KsOiNcNuXZfljWZb7y7LcPyWlcQOzRyPWqNqH\nCwuyNZGI2wVul9aR5rAHd6rFxbvoPyTYiaLtgj/x1lSghKA6JV1d3nzVreryllE3suS5d9l54ZW0\n8gl7SgpMVJUbOev4bXTu6WTIhZU8NmYNcVV5fDxnL2/+kM3kJVoIMLtNwumQSN23iVA44uLZcfHV\nanr/oDO4hS844xclzE95x65B6+y64hp1udAnigi0NP+WK9Xlzuzier4OuW85hDPHmtGPBuVVJ6ci\nBYwaB36kUmREUP2GYjTrz4efPgt2YfHjduvTHzydrBM2NEQkIjh82UknddloVs7TeYuUkGQzvlTE\negBV5RL7dpmwVUk8fm0G917chrx6iszKAs6bsSnvN6h91iJNFBqHYkpnq5JY/69e1PfiV9rAQGvb\nHmyNFQlZrCHzR44cBMBuOujyqyoaPrPWH7IPYBbn6sqsZZqDW/qKxZz06pMYTTIet7afTas0F6Kl\nnALAyn+U72n5PH1YxVD0e+tZ4rdvpuOsn4jO3qsr8zsZCWqn5v2xJuFERDV/V73CSUggEAgEBwGP\nR9FLfPLJoW6JQNAw/E5CZnPt9dLJ1aVNttDumaBMXMo668IDbdpRg3haFQgEAsHBwmvSfvA9Vise\ni5XELesAGM2HmHBxAb9hT0jClpx2qJopEAgEAoFA0KwcziKh/UC7gHRbX94lQKYsy5WyLFcCs8A3\neulDlmU7MAMlZBmyLOfJsuyRZdkLfAKcfBDaHxb5CJx/bzBox9S1d/Dgb2WZNnjvdkm4XVpZcb5S\ntnSONujsLnPy4HP7Oe+qcjVvAJmYHHbi92jOG+FwtNJcbgLDZvkdiFzRMapIyM/IkYMwGOH2J4t5\n8MmTGXnhAKJjZdLaujEY4L3f9gEw8dlktq+3sFd3emr8+Od/FPY5UU17IxTRjb/doURCboM2GP/A\npW1wu+DHTxRXoHJi6c7WOo8ZCBJQ7R1yDpWt2+vyck4+jezBw8OGG/NEWDhQzCb9Of7vfO273bjS\nwk2ntyN7t9JWl0PfHbhmiV6U8dHzSQfcHkH9aM57UywV6rI1RtnPlp3Kdfrdh614f3wyHjfcfnY7\nHru6Nf8b3o7ifOUceXBUa7atr1u8Vl6i/KQt73MZ0SkNE5dlD1I0pdtGXqO2dd9O/T7jEz10PMbF\nBdeV88D9WwCwJzXeSag2OpDFy69oAQVXLaxblBOOCBycy+xa63Se+QNGk95xJiZOcXpqy17u5R1d\n/bLi2j/ftgtm0+Pbzzn/unMY9OwDXHzpqRhcmnuQ0XXkiYSa4/qpy3DJG0Yl5CzXWwd563DtEggE\nAoGgKXjmGeX/7Q2I+CoQHA7UdBLy8+hb+bq0XEPKktt/cHM2SyAQCAQCQTPgDfjBd1useCIsGHwd\nYsfzHy4iaM9eZn82HUJMyBUIBAKBQCA4Ejicn3J+AW6QFAYCZbIs5wBZwBBJkkySJJmBIcAmSZJi\nJEnKAJAkyQScD2z2pTMCtnsJsB5Bk+KwaZ1lFfleLjX8xIJXPuGFSYrrhjNACOJ2S1j27lfTfqeY\n98ZpIWqmcC1XDzmGscdNUfNmc06921PWubvWtlaayCR+pzKw74qOZRpXB613zcAOXDW4CwAGr35Q\n1RKpH4zdRreg9Wf8uDAoz2uuIW4IYUfeKaOEEfyuph+/Tjtl/WHFaooKZk7+I2g7Jcf00qVlo5Hq\ntAxdXtLGtXSdMY3IogKS1/4LgLmJRUKmGjMwM9prqrAX70rD5ZR45KrWlBQa1HOjxwl2QlGYa2Lz\nmgNvk+DgEcr9JFAkJEUYiaMMo8Grc0L5+fPwjlPzf4kJW+anrNhIdJyHbtUbGhwGbMfFV/Ht/C2s\neOQFYnzX3OzvYmndwcWA4VVMycziuwkzuGZgB+48N5Nze20AwJ5Yd2itUHgtdZ/Tfdrm0HewDQCj\nqfECFClAvLLhhjFh6xkNXp2TUHKG8kVO4HHu4x3OSVlC285OvF7UEJDhiM3aFZR31WndmM7FPMGL\nGB1HnkioKVi9Wn/9LFoEv/8evn64syLwNxnA6xQiIYFAIBA0P6tWHeoWCASNo6aTUNv2ylNWVKz+\nGWo4cylv14nv5/zHt/O3kDPojIPZzCOaOqKdCwQCgUDQZASKhLzmCNyRoSfm2ZJSD1aTBAKBQCAQ\nCA46h0wkJEnSNGAp0F2SpH2SJN0qSdKdkiTd6asyE9gJbEdx//GPbP4A7ADWAWuBtbIs/wpEA79I\nkvQfsAbIByb61nlVkqR1vrIzgAea/wiPLmZ/F6su24vdxHtLOf2x2zF5FRsEl0MbyvS6ZOLXrcOK\nMvhdlKefrufBwEhmAJC4ZQPX3V/CxykPEk859UU2KMKjirYdcEdpD/pJG9Yo7YmO4Uz+CrmuwaON\n0A4adw/9X3uKwU+OIUqu0tXLQu/QM/+Nz6lqo88D8ETUI3yXJYLfuYCICGXWQs4epXeyNZqYavFz\n77BtpBaWzNEqMWgza0c/ypKn36KgTz8AjA47hb37sWf4BWqdiErtczz7jlGc/NJjmNyaQCdcGKSG\nYAwQCSWnu3G7Q/f43X1BW7avV8QGftcSPxJa+vk7m9bataV5ec2aBXl5h7oV9WfzqmABSQRO/nr/\nGwBko4nRfIgkydiqtXPDZA7/zdRHJFReYiQ+wYu1qKDBIiEkCY/Vimw0Ygg4Q2zVEkYjmCvLOfv2\nywBIW7mUHtM+BRovEnIHXGf/TPiIbZdcG1Tn1CfH8L/RSqhDe3X9e81rmsuY0UR6/93xMDkDTqew\nV181b92t9wEQaSvDXWjDHwkswqJs6Eq+BcCKHZdTYsK9WifJVWOUsGWnnK0IqQafW0VKazdVGW1D\ntu0OPuJlnqCyUIhWarJrF/TrBw8+qM+/4ILQ9QHkGl+22wVzfoghr0DvyCachAQCgUDQXLjd8Oef\nyvIpPn/fvn3D1xcIDkf8Im2zGaisZPkpd/HJNxvoNn+6WmftbQ/Rmw38NfF7XLHxeKwH/t4s0JBE\nwDGBQCA4YMSdtH74xw0Aio49gTVjHmf9zfew4frRunreJugjFwgEAoFAIDhcMdVdpXmQZTnYxkVf\nLgN3hcj3AHeEyM8DTgqzresb2UxBPSkp1E4lmzuCSJ8AaNArjwLfIhWWA8qgvamqkvKEDDqV7GIT\nvfj4hSSiA2boBQ7QR+XncN7oCoYvWAoFSt7KB56usz2Vbdqz48Ir2HTNbVSntlbz/357MqCIhMZx\nPzM5H4AFnB5yOx3n/KIu7xtyDtADgMJefUnaqLgkrR7zOLbUdLIHDw+5Da9ZE0yEEgKAFpLsj+e/\nZNhjt6j5FWjiq+zBw8g+ZSjdpk8FwBkTS02c8QnsPu9SSo45lv5vjGfniFFgMLDt0mvpMPc3AOa9\nPZm43Tvo/9YzAHT95RsK8szAVxzLelzRdYsx6sIUoX2Hp56Yzay5bZHl0LMDF86KBqDj7mWsQJuJ\nGUsF5YR3ljlacDphxAjo0QM2bTrUrakf/8xUzqHjO+WwdlcGXw5/DfeSKPJPVEaOvCYT7cnC7TGy\nYbn2wl1RquhW3/t1P1PebUVpoZFNq+r/Ql5WbCDJWo51TzG2RoYB8/Mqj/Aor1FSYMJuc9LVd90B\nGNwu2v89C6DR+wkU+eWefBr7hp5Lft+TGfz0fWp+/O7tnDznM+BVFs2KZtjIqhBbAq8H/P0bW/+L\n4Nnb01UXNwATyqjHmjsfQTYa1ftgxpK/Sd6whi1X3ETqqmVYVlfz9/x2rBzp4cNZ+/F6lAvWiIeK\nth2YsU8JyZa3T1MBJmcowsaIinLid2whqqQrsrcdhsCYkgHkowj+IrbtxnVch3p/Xi2BMJG/6uSp\nFxy8OM5C30E2IJJ33w2uM215Vr229cKYtJAuT3IziIQae7wCgUAgODIoKoLhw2HtWiU9aRKU+qI5\nr1lzyJp1VLNoWyF7S6oPdTNaJBv+swBpLNiWR/ysifT/9kMGG90Ypi4A7iTC4iV19TKg8eGGBQKB\nQCAQHB6Yq5X+tfU334NsNFLarSel3XoCcOzkDw9l0wQCgUAgEAgOGodzuDFBC8WJRRUJpW9RPOft\nbm1QWXK7cWIhLsAZ6JsPWpGU5uYmvtBtKzp7L+aKMmL37cJtjWRq5h62XHkLdSEbjSx78jXKOx2D\nO0D0UtKjDwDuyGgGsoz5DKGaSE5HHyYsa+i5/PTbcl3e4PH3qstGu01d3nTDaHafe0nYtnjN2rGH\nEwl5fCHJznjsVm57skjN/4obAMgeOASvOUI3g8Fj1TtFBFLWpTtzP/iWvcMVEZQ7UhHiVKW1JnfA\n6Wy98mZd/YHLJvM8T/ErF1KV3ibsduuLKUJTAw36/V0cdkNYJ5R//1acnjrt+VeX70Ifs8zZlNGJ\nWtDgtlMx42Lz5ubfV1MN+i+fp3ynf+3qgxeJM9xzcUdFq+Vek1m9/uf/GnB9FipKl8gYL3c/V8Tt\nT2nXQmqb0KKT9cstrFqkXBflxUZ6blEcwhrr8OPnZLTrf/MaC1JADKh+776oLgeGM2wIpV20kIj+\nz2bPOSOZmrmHX7+dp5ZFe5QwbVvWWtXQjH5mfxfDtQPbc/3g9mxaZWHfLhPP3p4OwIoFUcQlKAKe\nHxgFwI6LrtKtnzPoDNbd9gDO+AQyx73GPtoBiiPTr1/F4vUqjl4SYE8IPs47xhXR4wQ7Pframbj0\nDM6/9mzaLvsb2e3ViYRsCcnk9h+kW7fPay/W3FyLp7GXz4vjFFHPmiWh7+nJ6W5kmbB/gcQnekJu\nQ4QbEwgEAkFTk5ysCYQAbroJ3nhDSy9bdtCbdNTjleVanxnEX/g/f8hdk9eB0a68eEpeLwafu22H\nbk7SVyw+ZN/t0YAINyYQCASCg0VERRkAzpi4oDKPyRyUJxAIBAKBQHAkcsichI5mjrTZ96GOxy8S\n8jtYSMWVapnkcuPyGjGjCW384bWiUGY+FvY+gcqMdnSc8wuXn3UcAAV9Tmy6NhuNuCKjGGL7R837\nbu4GEres58wxV1LRoQv25DTWjHmMvh+8otZZzCDmfPg9pueq2TniMjLHv1nnvrxGZWB/ww1jKD3m\n2NB1AkKStUrSBnn9YdfKO3RR89wWKyaHvUG9aM64VgDk+ZxcAKYu3Y25ohyD10P7v37lqdfHA7Cs\n9wn13m44AsONpaHEycreY6ZLL2fYdRIo0aVrioS2rbdw7IlNqRRqGQRoU1oMQy+qZPEPBpJRRD7t\nFsymvH1ntVw2GolBuSekttEOsKRAuVb8Ya5SMjwkpLipKjdgqwqtaX35XsWZ5rN5eykvkEklHyBs\nPPH68M8rHzPksdvVtKmiUp1lFEjWGechmxr3M+qODnYC8+MK6KTo9fVEQJnF9PGLiYx9p0Db/zbt\nvvHv/CidkMrllLBYZS5PnMnwYkV0VJtLmGzUH8c3HyRw0Y1lGPGQM+B0kGVuSfyWz4uvVOucfr7y\nmXx78pP0WLMFUFyHvB5ZFVXlkkZGSS6sADnA+NpGeJGjQE9DBkzS24W+YSjhxsTIi0AgEAgOHosW\nwYABh7oVRxfeI62j4SDi8b2CD33yDk4o/QOAHt98hgy8wqPcuP7LQ9c4gUAgEAjqicVspGNS4/vD\njhasHZRJclE9ugV9XkUXXkrqz9+y6q9lR9xnmRwT7DwtEAgEAoHg6EWIhAQNwuuFxbOjOOWsavxj\n415fh5oZJy6UQesSEnx5yqC1XKYJgiSXC4fbTGKASMiPX1zkMVtYM+YxSrv2oO+HryplRfmNbvfM\nybNwxCfq8tyR0Zhtmh27OzqG/H4Dmff21+T3U3q0N117ByVdeyIbTZzw3ksM2raU3HbZGO12PJb6\nDXLn9zuFhS99SPagM8LWCXQbsm8uBFLV9NJxb7DnzAvU9K/fL8BSWkRDqGzbgbnvTKHg+P5apiTh\nilPCeQV+Nl5zRM3VG4wpYBMFvjBz429JZ0pmFq07uMjeEzwrIwn9MY1gJr9wsZr2aa3I2mbGYZfo\n1ie84OhI4mCKhJpqWMHtgFaU6vKWPaGJ7bwmM9EoApPifM0dp6TQRITk4rpBHdh91kVUtOvI6uN2\nMHTxRHaXtqW0yECrpNCOKN9+2IoqW4QqSpMNjTfKc8Qr96+vn5nBdc9czMO8zrFffRBUz2Q7sHAO\nMyf/gTMuOKReqFCCAAnJepcYg0n7xhw2Sb1GAH6fogiNktij5tUWS90bQuz0y5e++0NcK6Lyc7ik\neDKfo4iEvn7jT64ZeA4lXXuSsF2Lg2fEg6m8EqdNRqpxRhnRTmYhEqo/LqfEtvURdOjmpLoy/DUA\nUF4S+rxXnISMIcsEAoFAIGgMxxwDW7cqy337BocYe/hheOihg98ugaAxuH1OQrGlubp8CXiU19T0\n9hrOnIKmQ8jZBQKB4MCJjzQzqOuBOWsfFYx/BE7qTY+RI9F1pgFMnQRL76DfGScfkqYJBAKBQCAQ\nHCxEuDFBg1i1MJKJzyYz4wvf4LFdUjvUMshR6/1ovIKinsepIiFdqCiPF5vHQqTBzir0rjVRVLP7\nrIvIHPc61Rlt2XzVrWrZ/DcnNbrdpd16YUtN1+V5rKEHzHMHnKYKZWSjkZxBZ5A74DTW/e9+AI6f\n+BoRFWU4Y4MtSUMhG43sHTai1vBg1uJCdfnVj/vpynadP0o3uG9LTQ/rSFQbeSefGlYkEChSagoi\nrIo4YDCLuJOJujKXK3T3X0d2q8txxgqmcbWuvLpSoijPyNjrM3jmtnSWzWvZIoOtW2HLltBl2dnK\n7GtomU5CmX9FkYt2vXmNRgqOP0lNuyMjVSehFQu0WTkF2SYiZUU81HHOL/T5/B06zP0dya4Iwjb8\nqz9/AydL5+9XRC6JFAOw94zzGt1+t+9abRtdhMsYwTheCFlv+eMvN3ofAKXdelKd1joov+Z16hfX\nWKP0ohuvW7uWHHYJoylY5uW/B899b2qtbZGNJmQkLj1uRVCZtbiA1LX/0ob9at5Fz1wHoBMIKW1V\nnIR25AZ3SnkDRCp2wguWWipyI2bvT5qk/I+JCx0mDKC0yMgz/0vn5iHtuev8tqowNxSBortA3E6Y\nOTU2bNjHxiC3pLiNAoFAIGhyogImVgc6Bo0adfDbIlAQRkKNx+XwhRuj9pevnIFDDkZzBAKBQCAQ\nNCdRUXDZZcECIQCrFc4IP9FXIBAIBAKB4EhBiIQEDaK0SHl4Li024HbDLUPbMfktvWsQwGtnT2b2\nF7+y9IV3AK3TDQAZKj2RWK0eTkA/5XQV/Vjy/LtUtVZsP70WK9XJqWy87k7KO3Zt0mNx1yLaCYUt\nSXHE6fLb9xg8bkoaIdQJR2AoNSsHP6RWU4uEUhNs/MBl/MqFRFNN59RCJIPSa+1yQs9+djr1cDDk\nAkUocjHTGc5c/id9wqVX5DCv9SiisDGNq7jprmwAbJUGKsu1W1ZhTuON0A6Hwe3u3aFHD9i1C1y+\nSycvD0pLldnYp50G+fmweXP4baxZA++8A3b7wWlzfbHZjDpBiDsyWhczyZ6YqnMaiqNMXS6jVdD2\nJnETAF+9maDLdwWYSbl9n2GsqYqpS3fjjWi8ha7HJ9KxFhVg8rh0ZRuv1cKQVae3afQ+6mLNnY+o\ny/tpg9nsDXKJ8QSIRZbOicYY4pLIoj0VbTuQ139wrfvzOwk9dNpMOvXQ34Mkr5ftF1+tu1/HVhQQ\nCiMePBjBWfsAy5bk/rWWH+ls2gQXXgg336ykpRBPY7voyLB+u4LyK0rDP7o57KHLvv2pE1PeSeDH\nT4OdqwQCgUAgaAzeAGO7igptOerIisrQojgc3nFaIqVFBt4bpwjca4bAronfcVTQDAgrIYFAIBAI\nBAKBQCAQCA4aQiQkaBBOu9JzExEhs3mVMgj/94wYQAsrBXBcO0XYYTAr9V1OrcdHliHfnUxiTHCo\nnpcZG5Q3/bd/WXN3cP6BEhhepyo1o8769kTt+Kb/soysgBBgB0oT+aP1AAAgAElEQVRFhy58P+c/\nNX0Sy3mJsWy75Nom20dteE0HHmJMvz0zl/ETCT4hyMC225C9Ev9lWiktNGGOkHlhUh63P1XMrM9/\nZTqXYMTLJ/Lt/Phda07c+ycAV/Etpw9QwkdVVepvV9IR0onYuTOMHq0IhdLT4fTTocCnv+jYMfzk\nFacTTjgB7rsPIg9zUyVXVLQu7bFaiR6gOejUDDVXk9NYCECfgXo1VKAgoqRQESVFxcoHfHK4I5XR\nrQETHg8qWzv6MQByTjr1gPZRFxtvupupSxSBSBr5dGxbga1Kfw14PfrjLMwNngFVSiu8odRDNfCa\nFKFgJHbadtYLo4p69WX52AmUdO3JEx0+ZswzhaE2AWgioQ4/f6fLP++qcl16TOGrdbappdGQYbkx\nY+C337R0Ran+u7s243c6sodji5cFrVtaHD5sWKAgtw//BZV7w0cqEwgEAoGgQQT+pvTvD7f7dNR+\nJ6FTm/dRSRAC4STUOPyOpADJ6J9zi3odr0vbUvTuxAKBQCAQCAQCgUAgEAgELREhEhI0CL/YJ8Iq\nM+mNRF1ZOYpDwbvcjdvnxGG0KIOZzoCBS68H7LKVqEjFBmMK19AmoYQSWhE3vGNzH4LK7nMuAaAy\nvS2zJs+qs77fSQjAlpLW5O1xxWoOD8sZwFgmYHA6a1mj6WhqJ6FAARZArFOZkfnK/akA/JcZSbu5\nvwNg8NnBlHbqFnJbV90wCABblYGSAm1w/EAGuw91B7o/hFjbtsr/DRug2qeZW7dOq2ezwWCfAUw/\nfRQ6VUgUyFtv1R3iYcYMOPdcfd7tt8NJJ0F1ddN9MBcxQ13OHP9GULkrOYmxUUp+PqlUEKOWTZ+x\nlIq2HdS0BJxoXUtFDSedwNBJ+3cpQreo+ANXj3kCXIjK23cGYO+Qc/jtm7nIJhO/T53DwgkTw63e\ndBgMLHj1UwAijXYcdok1S6xcO7A9f/4Qw+LZevHVT5/qXZiOYQvP8rQaPrE2ZJ/FssHtYuFM7bt4\nlvGsHa24Grkjo7gn5Stuz3lFLd828hpAuT/O/myGEm4MA060fUqSrIYgFCjU1LGZI7TP5+Wvc3hs\nxF8ARBD8G+AX64bCEfBbG01VUHlUtPgeBAKBQKAnOxteeaXhz8der/LcuXSpIlqfOFEJl3vBBTBk\nSOjoDYLm5VC/47RUAp/Llr/yLr9P+VNNb7niZnV55f3jqWjf6WA27ahCElZCAoFAIBAIBAKBQCAQ\nHDSESEjQIPxinwiLTO+TFFePmFjFdSLJN+vuRFaqoX4MEUr9P7f0Vrdhtys9xtYIRSlxDdNYnzCQ\nVpRRFkYo0hxsu+wGtoy6kXnvTcVZD9twr0/41JwsfOlDXdrkODhxpOQmtuWRa4qEHMVBdU57cgwd\nZk/H4IsTVV7ju/f6RhYsvvBrLqfEaw+mavtowY4Ypb5IW48+qgykOBzKXyieegqG9soj2qyvkJ+v\nr3fXXfDgg/Djj/qQD++9pziWfOg7tUaOhNmz9fv75BNYsQL2Zx34T4J/cOIEVvPbtDmsvmsseScO\nCqpnT0phv00R3lURQwxVvHzMO7xoGkd1Wmt+/eEfVt43Tq3f2b6Fojz9eaULY+jDktD4MHR+HAlJ\nqlAosjCfHRdewcJXPlZDHpZ1PgZ3dOwB76c+VPrEUiaviy1rrOo18OXriWHX+eH6d5i6aCdb6MEQ\n/qnXfvxuQ62X/E3/vsq9/Oaef/KE9XVkn8tQVF426SsWc/xHr6vrFffoA8D+QcMoOrYvBrx4MOpE\nQrIsYTgKBgobMjAXeMt9ZJydzj21C9JkktUbXIQn+DfA4wl/vw4U5MohBlrsNjH4IhAIBAI9t98O\njz+uiH0agtcLBgMMHKj8lyRF3O7/jVuwoOnbKqgdoRFqHG6XctLO4lycsfGUdenOigeeIfOJV1RH\n1OJjerHlqlsPZTMFAoFAIBAIBAKBQCAQCJqMAx9NFRxVOAIcDCKjlUHMygplAPk5xtOLjZxCJpv3\nHwuAZFZGhl1e7VSzO3ziD4uHXedeQqc/fqbVzq2AEoboYOGxWln58HMNWmffqWdSndp8FuN7h41g\n/hufM/ShWwDYOurGZttXIObqSgCyBw5pku15IhSBQGmX7riiYnDsD+2INPjp+8h8Ugk75KwhupCN\nJvB4MPi6u3/+LF5X7pX1IewaonPyyjB7Q66azs4y4rBLdDrGXf+NHAD7dhuBFPZVl1Jit1JcYeTP\n/0qA1KC6Owr3Y9y4CbulFa9/2YkIC3Tv42LlvxFAIglJHkqKjHzwgbbOLfdV8r+HKrFVS9xzj+Z6\nZe1YAL6wgLfcX0m/UxxYo2QgGYB33jBzx9PKQE9j8SoGYbjj4ynvdAzlnY4JWc+emMxl8g98xQ1q\n3v8iJhEdt4+fuQ0AZ5zmjJNIMdUBEateuT+Fjt2Dz6ukdDe5QbkNRJLIO/EUWi+dj7m6Erfl0MVz\ns7dSxECrdrattd5p51WycJbiAHTc5HfJGqA5n+WdeErdO/J96SnrVpJJGs9/kMXl877Du09zGYvO\nz9GtsnPEKHJPPpXq5FT2nHMxoIUbCxQJAURGKb8Xp5xdxdI/lcEWo60ajy+029FGoElcbraBWx4r\n4rFrlLCXBiNIPqs0E8H3JE8ttymnXeKUs6v4rGAUK1Yns4yBuvImDTcmRiIFAoHgiGD/fuX/jTfC\ntm31X88vEgpi/XoWLFAmiGRmKiIiwcFBFlZCjcIvEoqlgirfRJWtVyoOQq2XzAP07yWC5uFICScu\nEAgEAoFAIBAIBAJBS0CIhA4BLbnvLmLrbuA4ts2z0667F9CEG4aUGIYWKFNGJY+iFJDNwadYRaUy\n6GyIMrP0mf+j0x8/q2Vu6+E9YPzP6581+z5c0XHqckHfk5p9fwC2JEWcknvS4CbZnsfqE1XIMq7o\nGDzFNl35OjRnqU4zfwTAFRunq+M1mTA6w9jrAN992IrvPtQ6a1/8MoeO3V31bmNRpdPfRG4Z0R6A\nKZlZ9V7/QNizT3GpkSOceDDjdBrJLwk98m+1lmHAS7EjlkduSgLgw1n7WL5E+YxLioItWiqqZAor\nnOzZpg8jd8sITTgydWIMUyfG6MoXzY5i24YMXv8uB0kK7qjduSmCr95M4Il388OGj1JFCNbaQ9jZ\nk1K4iF+Z1+M6em+eDYClpAiPRQv1FRhyLIpq1SXF7VZC1v2XGSzeMaU2jcNP9sChtF46HwCD7352\nKKjL5exWPuUOPiKz7VMsRBHqGPBiqq7CFRnFjouvZtX94xu0TyNeRi2fQITHgccUOlSZ12BQw8hN\n/+3fgHU9uIigGL3T0dmXV+CwS1xwXTlpezfy76YMLjv3BL5bsKVBbTuckRugmlm0SFv2eKBtZxeR\n0V5sVQaMJhnJ96BgkoOFcKWF4W2ZPG6J+AQPiYWlXM8fXM/XpJFLPopY0FuLC5FAIBAIDj0bs8vr\nrtTEZHSIZM0aM1l7ZTZmV9S9gg+7M5oKh5eN2dpzfuTypXS65Fz8StLFq6uJa39wRPgCsLkO3TNr\nS6SyzMDeHWb27VTeWyJwUmnSv8OYq5TJNEIk1PyIp1SBQCAQCAQCgUAgEAgOHkIkJKg3741LYulK\nRUyxdns67VP1g7tmjzaY6TUrnWuy0chFzOAX3+A1wLzFbQDYZOtC5xr7cFsPnWPH4UJVWsZB32dJ\njz78Nm0O5R2bJtybX+wleTyUdunO2MyX+YC7APiN8+nNBrVu2uplALhiajgJNTA+0bJ5UXTsXtbg\ntv7x7cEJGxXI83cqA/bRcV5MZnC7JVyu0N2iidYq1tGHXLTzYvR5tbvKRFi9/PN7NB+/kNTgtuXt\nMzP2+nT27Yhg8pIs3Qzxr95MYNs6C7u3mklI9mC2yLRKUlRBOzZG0KmHE3e1MjgRk7ev1v3YEhXB\n0hmbp6h5sfuzVOccgMLjT2L+659jslUTNa4Eh8OALENFSehzQ0ZiZeLTDT7mUGy94ib6v/UMABHl\nJU2yzcYg+2Yzf8FN3MwkAB5+I5/XH1KEfb3/n73zDo+iavvwvX03PZBA6L1jQYpg74BYUVGxiwVf\n1NeKvffeu/iKBXsDBPwEkd4RFZAqkNBDets+3x+zO7OT3U0joYTnvq5cmTnnzJkzu9P2nN/5Payk\nP0vBtBBC91kPDqzuCqzuCvx1dOrp/fGbbDx7hHYvB1h15X/o9YlqWTX1s19ibrfmihvgU7iBD7S0\n868twmaH4aPUgU+T1YwfK1aPG4u7QhcVHkKcey789JO6POQcVdxosaoDqhYLmtrOpkQLH99+NIO3\nH4UhFxdzxe2FhrxAIORE5NcHZCPdiOrVSUgQBEGod1bkFFZfqJ5JbhEE0ujc21Or/bt9LgorvIZt\nTnzxeUOZ9TsqaJFTVl9NFYR65cbBxt9UdrwEQ2GzzSZIdFhxmdX3M1+r1iQ7pfusIXHaDoH4xIIg\nCIIgCIIgCIJwgCC9HEJMPn0ljX4nVdCjj+7ksuDXRGOhonLDqsOtDgBXNMnk71G3AaobTALGAfZW\n6YVsz03ivAGr8KE7hWw79hR2DDqpHo/i4KQis+HCmVVFvLBQdSEs9jIpCiVtOtKTbcx75FU2Dx3O\nsIFTYm7jTTQ6CUVOJXyPG7iR9wE48pgK/lrkNDhiJCQF8VTULUbWohm6iGLeLwm8/UgGNz+xh0Gn\nl1exVf1gsYDJpJC73cpLd2VG5ac1DWD2esglOi/MuJk5vPdEUxb/ph9HMGCqk0AozNaNqnvMFce0\n5ZYn9zDwtHKCQVj/t+ryEwyauG24KvY76rhyhl9XxMPXZtHjKDcmjyoWfJr7eZf4A03upvoxlbRu\nT/LWzQA4C/MN5bYfdyrJ2ZtI4BeCQTMBPxRUclKZwlDanpoKM9QwZvWCycSKm8Zy5DvPYy+t+az6\nhmIkEzSR0GFHu8ls4Sd3hxUbqojEGXBzS/8p/LkkkR78g+nhWwFqJRJaedUYeo9/S1vvNOlrQ74z\nL1dbLuoQW1CYVxi9v9QmlWa1W83sQr3PHfHuC6y4aSxdvx3P2otHoVgP4teSaoyEIsMi9uunioR8\nPlifG+CP7JA4CDCZFTJWLgfAqsR3X5j2VUqUSCgYMGGxKJhFJCQIgiDUkPAjY/UyJy/cmcndL+VW\nvUGIYMCE2Wx8+LWa95thfcNKO8cMLuNgfrwLhw52vAQt6sma6LBy9hEtoedoCBbR6fbb6ZSYWE0N\ngiAIgiAIgiAIgiAIBwfSXSdE4ferg4/TvkoxhF9q0dbHjmzdVSJ51Wqgj7auVKiD1ctvewh/ohrG\nSLFYmcGphvpLS9SR0KSWNgqA5bfcT/tffmTOs+8RtMUObbM3NE9x0K9dk+oLHkD4jz8B3znnMeyw\n+nUVys4v5+9ttXfbqS1hZxBTMEhez8MB6DDtBzYPHY7PlYCtIlqAEykaAfjzxrvo/6IaJulyPtNE\nQoEiN2aTg2BIRXTpzQVM+yoZT0XdDMrLinVx0duPqAKTNx/KYNDpDR96rGvWLtZ2dTBnCuTuUG/H\nxw4pY940tQP6P4/tweJ18y0XMtN0Cpsuv4pJn6oh/rr3cdO5lxenS+G/T+8BVMv8Gwe35ufPdcHV\n+/+XQ1AxMXpw1e5D8XjjwQwGnpbN6qV6GLDI6FvL5yaQ86963f6z3Mkpp5eyehXM4FTW813cektb\n6O0py2qpiYRiUZHRDBdqKAuP20RFufG7TqCcrO3bAXCn110cVZn1wy/nsMlfkPz0E/V+LdaEORty\nKa7ws+3YU7RBtw7dPVit+vmSjCpgchTs4eqB8zhqydOGOgIOZ43399dNY/GmpHLUG0/HzP/n8hvp\n9PM36krlWHQhVi6J3l/z1kahS3lALVOOi+5fjsNeXETHKd9i9vlYP/wKfCnqOZ64PQeLx01xHEHS\nwUTv3rBqFUyeDMOG6QOylgi9W0JSkKJ8C8GgCVu56rrQZPuGuHUmJEUrfsJOQuZAHJFQpXBjORtt\nfPV2Grc+tSduCMF4HMSRUwVBEIQIAhFulivmufC4TThq8ExQFLCXFZO4LRtMUNayLbuPHECzFYu1\nMjN+SGb9SgfPfLqzQdouNG7KS00U5VtosY9C1tnxRgvWbTZ48MF9sn9BEARBEARBEARBEIR9hYiE\nhCjcZbEdWSoPSHqx04PV/ENPAErbdoAtUNClh1YmaLHiw2bYrqTMjpkA1kzVcWLNZTey5rIb6/MQ\nDFgtZlITbNUXPJCYPQsrUN9BeFyl+8bC25OaDkDOiYMp7NqLHf2Pw1peCoDF6425zZ7euuBs/Xkj\nyT71LE0kFBaIAPRaNY31nIc/9Ok4nAoOp4LHXTeRUGlx3RyI9gaHM8jN7pcZMfRuNn+xDUjX8gad\nrouEevXzYFnj4Sx+4iz7Lzx/2kWaSOjul3NxuowDOFZ79IBOYooCKHTq6WHjakdUfpizryyiXRcf\nbz4U24nH49Y/p8r3iNzt+qPE7zPRkm30Zynr4+4Ngg4n+d1602TtSrKWzmfCwi2MHNguZll/QqIm\nhikvMeMpN+7fip/EndvUtjWJ77pUW3zJqfg2biJpP1nfW0JCnFkvjOOS4zuz6OI7WHPTbYYyXUKf\ncsqWjRR26RlVh9njiUqrijWX3UjTf/6m3fRJUXlhsc6uPgPjbr9np/G1YvQjezjsaLexzW3y+eUv\nGMNb/I9rsZWqLnRHvvsCR777AhMWbgHg3OHHAWjrBzoKsGgRHHEEOJ2wcye0aAHjxqkCIYCzzlIH\nVf3+sJOYug7qNT3vlwSaZAawF6sOQWGBT1rTAIV5xvPw6FONYktFCTsJxQ83lr9br2Ptn3Yev1F1\ndFq/yk6vvh4UBfJzLTRtFmDFfCcv3KGGtfvo9xx8HhNJqWJFJAiC0Njw+43v0Ov/ttO7f/XvD8Eg\ntJ81hXNnXQ/AD5MWU94sWlSdvb7+J4EIhwav3pvJqqVOPpmbjaWOPVcPXJXF5rV2PluQjckEG1fZ\nSUwOsmRW9C9tNdzYQdZvIAiCIAiCIAiCIAiCUAdEJLQfUA7g+fc7sq0EA7HzfBGzTF02LwVp7XHk\n6h3IPca058eu8ynPaqWlKRYLr3IbVzNeSyuqcJFGIb60tPo/AOGAwN00k0lf/05ZC/Vc8CUm4crb\nDcEg5oCf1ZfdSPZpZ1HWvCUZK5dT0rYj5VmtmPjtbCweNyWt2xF0OPlh4kIyVv7B8fffxIlHbWF3\nrot3c0bzJZdq+7LZFRwupc5OQq06+Cgu2LcikEDApIWJOufqM7iHlVpen+njgbu5g5cYdvE7JO3Y\nCkDQaqN9Nx9dDvNQlG8m2VfIRSerLk1/3nAnq669FZst/r3luDPL2LjawaDTy7TQgS99vZ2iAjOP\n35hF9yM9WK3G7Vu09dG6kw9FgZfH6uKbV+6NH9Jr/doEMtnK0jsfq/ZzsLgrqi0TplVmKeTC1C9T\n+OXrZEOeDR/Ogjygfp2EIK5hzj5B27fZjLtJBk1LthEet3huwg7yx05m4NaFAGQtW4ASY1CjLuG7\nIgVCwUojMt//vBRfYnLlTTRufz6XV0Lnyj2v7ubwge6oMhlN1OfGx1zDm9yMORDnoRPC7PM2iMtc\nfZO9xcTAgXDttaowaPVqNX3UqOiyfr86MR30d4Lmrf0MH1VM6sa12nWvCXxMxmszPdOPUkmvE352\nmy0KZr9PS7egf75/LXSxeZ2N9l19mkAIoKTAwor5TgrzLHzwVFMeeX+nJhACGHtJC/bstBrcBQVB\nEITGQeXH8DO3NGf8nGyq00rYCwsxoz+Mzj13IOZQXMsHeJKn0N1XIkNuCkJNWbNCneBQXGAhPbPq\n98V4bF6rvkOWFZtZPNPFuGfj/1Zw4iZo2T+TAwRBEARBEARBEARBEPYl+95CQzjg2LjKTsEeM34/\n3DWipWFgMMwHTzcxzAL1B83MyO3PdlqSjOoCodhtBoEQgC8pmSv5hCx2cCFqmJoSXwJNyMebmo7Q\neClp20Eb2PclJpP27zqa/bEIgKDdTn6Pw/E0yWDbCWdQ3L4zAKWt21HUqRvBUIikimYtKGnTHoDH\nL5rGe6O/IzV0voXp1MtLSaGZ5XMT6tTOf5bHDseUu6PhOogDfn3w324zdnh3n/oFAcy8yF2kbtnI\nzv6qm0pezyMAGPvKbp76ZCdN1unCoiPefwmA1otnxt1nOMxQhn8Xv4x9mzcmbiOrrZ9uR3j57Zbn\nuWLV07TtogoLrrorn1e/34bDqRDwQYTeAAAlGH+UJy/PTlPy8LkSq/0cLCGXm1nPfwDA9Le+ZNr/\noh1sAFKaq/8rC4QATXAFuotVY8AUMZrmbpKJMy+Xfi88yMiB7Th10Ts8u/UGIr+JFotmA7B94Ims\nvehq/vjPvWw8e8RetWHSN78b1t1NMwk444cw63eCLvxS4mjW7BGbL6E/rebNiCrjyt2lLTvzcmvW\n2P1MkWr+w/Ll4HbDa69Fl+nWDaZMgeeeU8tw//04/15hKNMxFNJt63GnafeJhETjh2k2qw4OkYQH\neRMLd5O6ZaOW7sUosHrgymiXhzcezOCFO5rxwVPqwNm//xi3iXSICgbgsoFtGXGuzLQXBEFoDPh9\n0e91y2bXwM/UHzCIhMwRD6YneYhfPviBkbcUANRZzC8c2qSkqy83hXl167aaM0X/PbJ9i5UNK6Nd\nVZ/8eIe2nExJTNG9IAiCIAiCIAiCIAhCY0NEQgIPj8rirhEt8XvVztvcHdHOE79PTNKWhzEZX0At\ns5vm7KAFJSTFnHXnS0zGBOygJc9wn5aeTgGeFHES2tfsrxm8/kT1/DltzCUAdPtyXM23DYlNbBXl\nJOTuBMCLjWtPWUynnh5atvORv7v2bimv3pvBxE9S4uZv/dfGy2Mz2Lqpfg3XgkFQFBNW/Kz4zz0E\ns4yzWa34MaNo4o81l44ir8fhmiNMQpJCQqKCqdK07+Tsfzn5jqsNafe+tpv0tStx5O/BWZwPQPeZ\n33LG82No0kzf/uQ37uGwca/Rds9Kvp22gvOOXUNr5y4sNoXlcxNY91fsMGU3P7EnKs3rtdCUPJQa\nzMJd8OirbB94ItuPORmA3X0Hkd/j8JhlXZVEEkOYqi1HioQw1+9jzcSBMajlSU2n1fyZdP3uUwD6\nvvZE3LILHn6ZZXc+xj9X3oQvObXW+1px01gAfv78/yhr2abW2/fsq7oHxRMJ+dq11JZP5ndmcAom\nFH7mTC09a/EcbTl184Zat2F/8Ee2qhL6808FlwsmTowuk1/k55FnIxy0nnmGjmeeQpvfppDx5xJa\nzf6VHhNU0dzKUf/VRELJaQGuuL1A20wVCRnPzbAQsOd3HwHgSUmjqF0nNtI5qh2XDWxb5bGYLdC2\nS+zQkItnqoLM2b9b8PliFhEEQRAOIgL+6HedBdOrF3sHMWsioeyThkTlnzZ6BK5ENb8iTjhrQaiK\n1HT1/CnKr/3kjT/mOXn3cf131mM3ZDFrcpKhzPFnltKhu+rUCuDAQ7AOLpyCIAiCIAiCIAiCIAgH\nG9JbJwDgLjez6LfqnVju5RkGsNiQlkg5SZQRjDXrzmTi3zMvUBcjwqwtYQABZw1mqAqNAl+isUPW\nFC+mXQwCdtXRwuz10vfVxwGw4WfUCQt4/KNdREZD8npi1RCbJb8n8NXbulDthS+3A/qM1X+WO1k2\nO4GPnmtS80prQO52tcEKJiqaZJKcYByIP4y/DevlzVoQtFox+f2GdEehKvrxudTr9uwRJxvyTzy7\nlGObr2ToVcO44My+vDauN4NHlPAgTwKQsGt7lIrjzCuGcualp3Pe+cdy/tkD2L1NbevTN6s2PjeY\n3jeUT2vi5/xRRQB0O0IPK/UT59ZIJJR7ZH9+f/WTGs3YdSXpbR101E6mciZpqKIJg0ioEWGOUPW1\niBDNVMad3pR5T7yhrQdtezcDevVVY5iwcAtFnbrVafuwAC21SezrXGluFIi+xn8BOIufuYdnARj0\nxJ38xsk8wqOcfNuVdWrHvsYXclBQlPjCstydVlb/YRTdmYJBjr//Js648UJOHHudlu5JTScYek1L\nSgky4KRSLc9sUaJCg4Z1g/aAei3u7nM0v735RZ2OxV1upqwk9iui2axfi2VldapeEARBOIDw+6Bp\nlp//zdJDSi6ZWf3vwkiRUKRD7M6+gwAwB/w4E9RnRkXZgSG6Fg4uktLUl5uSwtqLhF68M9oduTKj\nH1Z/T731n4kooakB4fdoCY8nCIIgCIIgCIIgCEJjRkRCgsb7TzaNSqvsBJFOgWFA/i8O08vGEQVU\nZGYBRpGQmiA9b4cKthJjiLDi9l1qvG04ZNnRz95rSDdHxMAadplav6ei9re05LQA16R+yYXjbuLz\nhdk89K4a5kgbzIjjhlJXxj2rio7mcDzujGYEXS5+aH8DR3TbzUdcE+VbU56ZRdBqw+z3M3JgO0YO\nbAeAMyQSslWUG8ovoR9pCRWMGF1oCNPkws24beeRQgkAJ91xNSMHtWf44CMN27sKVHcgcyBAYuFu\nQ16Cybivx8a05PtxaXw/cTHv/TlYSx/DWyjm+g3XZknShS9dm6nf0RCmAdCUPAC+mf539IZ7yf68\nTdVk13+MuY9JX83EnaaL2WIKNvchV92Zz5jH99Che2zxls1hvKic6AKz57lHO8dP5Tce5xHKSNDS\nDmRqeq6UlxrvU2suGcX68y+PKlfWsg25Kepx95z7LaPP7aDlxQo3FnYSCrsPFbftiFKNs9a433Ji\nOoJtXGUnb6eVpFSjEklRoLRYr7NyGwRBEIS6o8Sz4GtgPG4zTlcQuwPe+2VrjbcLKhEioQjnwkgX\nwrCTUFmpdDsItcduV68JX2xzwxphsVZ/XSXt0M97X2J0aGNBEARBEARBEARBEITGhvTWHeJU1xe9\nernR8WAPGdoAJEAzdBGBYoltzV2Roc7iixQJDU2YUdumCvXA/tI7ZP611LA+/e0va7xtPFeUwz54\nhVNuHskJd1/HicvU8DruitofYUmhhcyiLbT/VY0NZLWGO8VErnsAACAASURBVKNDde3Fh+b3Q3mp\nieICMx63ifzdFnZuVa8TJ24qmmbid7o4yTKbl8ZM5xo+jqoj4ErAXlJM8z8WamlHP3EXfV95LOY+\n+7GMH574kk47lmnh3cK0mvebtpy2ca3ajqIC4hEe+AnzcFDfZ2fWYw5d0y3nzyQfXaRyLR+xu8+A\nuPXWhUCCPqP9/GkPA/A+N7CY/qx79CGmfjwZX1L88HEHI5GikxlvfK4tT/l0mrbsbpKBLyWV0lZ6\n+ChlP4dJSEhSOOaM8rj59koioW8YUWV9uwk9Q/wHtmNUrFtFj6PcMVJVmqOGTyzo2gt3k4yYZfq0\n2gLAFcqnWNEFO6YY4cbCTkJW/Gw75mT+ufxGglYr3fknqt5bn8rl84XZOBMUBp1ezms/buONidv4\nfKHqIrF0lnq9lRYZxX4BP3g90SKhbdtgt1FTKAiCIBwkuMtNOFzqszkptebqzwBmKpplkXPiYP4Z\neT1znnqb9edfzpK7VdfKjWddpNX36HVZ9d9wodFjCf0M9Hrq/oMsVji9yhhcbmUikyAIgiAIgiAI\ngiAIhwAiEjrECVQT9cldZjYIifrwByXos+uCvXV3h+I2HYjFrr7HsKdXH7YedoyW1jFpe90aXAek\nm2//M/+x17Tlid/Oxl+LGZq+hKSY6Ym7tpO1dB5NV62g3Zr5QM2dhHZvNw58fx0SKSRv2UjHmT8B\nMGeKut+adCzH46ahrbn+tDbcNLQ1912exS3ntCJvpyrg6MMfuJuoIqG0jWtJ3bQ+avvS0Ezs9A3G\nQf5OP3+jLc9/5JWo7WzlZQy+7rw6tztMZfevNAqZh3odv81/tPSjn72XYfysrbdP2IG7afUW/7XB\nn5CoLfcIiR6SKaU/S9nTqw8F3Q+Lt+lesT/vH5FjFPk9DteWC7v00Jb9LjVsY1lWa81NaH87CVVH\n81Z+Tr+whJSU+KKf+QzSlsMiIVtZabziBywPvq0rZ7LYQddORdq6Ejq7ghYLyTn/xty+ZUs3CiaO\nyTLeA2KHG1PrK+rWg1kvf4w3NR3FbCZAtKuXJoIMkZEV0MLERXL8mcbPvLzUbJjNHxYJtW4NzZvH\nPARBEAThAKYo38xfC12a0ySoDp1WW/XuK0HM+NLTmPPc+3iaZJBz6jCW3PMUQbsDd3pTMv9aRst2\n+rN+PxklCQcxNlulyRu1ICFJF7w9/4Xe9/DGxG1RZcNOWOUZ9fv7RRAEQRAEQRAEQRAE4UBFREKH\nOP5qOtzKy0wEdOMgRvC1Ib/FyiXasi8llVgUdezK/437kdVnXamlZQdb16G1wsFKcYcuTFi4hQkL\nt1DaupZhg8xm/j3zAm11wzlGd5x/LrueRMoAyN1RsxBXebuMTiubUQVug0edx9FvGh166tIpDeD3\nQXmJfovdtdUo3HiEx/CkNcEcUur1e+XRqDq2nnCG2r4zzlHXjz89qszmocO1z3bqx5MB6Pviw1r+\n1I8ns/T26LprRIRKxWXxYAKOYQELHniB05luKGrHh4KJnX0GEcxMq9v+qsDv0p2EWmIUGcYLdXiw\nY4qQKIVDH2w491JDGS0kgtnM99P+YMLCLQf8DGiLFa6+q4An39wUMz+AmWOZr60/yYMAWN0V+6R9\ndaaaj30ZfQ3nbjD0CqZYrHHDGpaE7peVw4bFDDcWelZbrHpDFIs1pkjIVMO3vwGnGB2hls5yGe6J\nlYXGMgAsCIJwcHHHhS0BWLE6A1Popm62KDW6nwcxYzbFLugsyCMl+1+SnR76nag+SyJ/UwpCdWSv\nt2mhwvy+2r/bht9RWrT10aqDn88XZvP5wuyoUKoAZp8qZpv5+udReYIgCIIgCIIgCIIgCI0REQnt\nBw6kQbSAO7aV0AAWAVBRZsbvVRv8HGPJHnIuezr3rtO+lIgR1KObr61THcKhyT+X3agtVw5r50lt\nQhKq28WLd9Zs9qe5Uj/zBjoBYC8txoLxmujdP364oKooLqhauLLpwpEoFgubzzjXkL547FPq9m06\nsPxWVRyx4OFX+HrGSorbddLKfTdlGV/M3WDYNmhXwwNGhhAr6H4Y60ZcXW17Zz/7HnOffMvQjrCT\n0P2v76Q84NTyBj41Vt1fjBCDSdu2UJFZ/5YiQZtdWzY1T+XrGav0vAZ0zjHtR8FNZrKD1uku9a9J\nAnP+3sr2Z1+hdbpLK5PUq7te5gD4y0p1VHFERiypzpjp1krX4GTO5jjmYCmPH8LsQCBxa3bM9GvP\nWsH9PEVLduD0lkTlBy2WKGHX7GffU/Mc6ueZe0R/Q745Zrgxdd0UKRIyW2KKhMxVvP09/tFObbny\npdWqvd8gLh4xwtj0PXvglFNg2bL49deWJ5+E+++vv/oEQRAEHXe5/kBoFwq9G0uIGonHbWLlYgdB\nzNWKTu1FBXQ93APsXcgo4dBiw0o7913RQnN29dXh3DlikPob7pnPdhjSbXbo0cfNbc/mMnJgO0YO\nbMdxD44BwO+I/W4qCIIgCIIgCIIgCILQ2Ige4RUOKV68K1pU8QPnMZSpOPFQUWqGcnVmnQ0fpa3a\n4t+ojho+yQPMfu59ypq3xJeUUu2+OrbRw6xc0eQH5nJmPR2FUFP2p+Bhbwha9VtV0GYctfYnJJBm\nK4b4kYuiqChXP4dHP9zJI9e1MOSlURhzm42r7KRlBmgaIyRPLMpLqx418aSmA+Ct5MDlTUnT/4dG\n8hWrFb81mb9uuIOen72rbt8kI6rOQISQxoDJxIZzLqHzxC8NyTknnEGb2f+nFgkGyD51GHNC50jO\nyUPZ8XwWAElKtLABYPo7X3HGDarLU8Bqw+L3kbh7B7uPGljlsdeFsqxW5NGEEpIp6NITf6Iehi7y\n/GhM9G4V250NgIULYfZsBpzab981qAaUuH1M+nNH9QUBZ0rN70fzOI7CndOxxI5qqWFxV9DvpYf5\nc/Td9R7yrjrS16wEjo5KHze5j7bsDOiiw/C9RrFYopyCwve5sBCv8qBV6taNWOxNjduEbk3miFtk\n0GrRHIsiqepR0KaTlyOPqeDimwopKTZu6w+AN0IkNHeucdtmoY/8lFOgqIhqURRVWJSZGb/MQw+p\n/595Rk8LBg94wyxBEISDil85jR6fbWfzkPMxW0AJxr7J/vZjIuOe1Z8/awracGoV9dpLS7A7QiGj\nPCZIOoBmywgHLHm7jAJnbw2dXYMB9d3CYlX/t+rgpfLPI5MJHnxnd8ztA46ai90FQRAEQRAEQRAE\nQRAOZsRJ6BBn3eqEqDQfNhx4seOhotRE0Kt6w9vxUty2I13S1HApPVnNrj4DKeh+WI1CSJnMJhTU\nv7Zz/q9+D0Ro1JS00ZUBK6+5xZDndyaQ4Kx5/ILVyxy8cIc6ku1KUPAlJBryrQRQMPH5wmwcrqA2\nk/rhUVncO7JF5eriUlpc9e01EHL98UWIXQD2HHYU688byYJHXo7aJmh3sPT2R5n/6Ksx6wza44iE\nAE+6OqCz8qox5HftRc6Jg5nz7Hv8MHER/555AduPORVMJnJOHUbOqcPAbCYQ0pG2mfQ9ABVNjSP5\npa3asv78y9jV52g2DR2upRd27FblsdeFsuYtaUIB7cjGnW4UR1R2l6pPDlgdwtFHw9137+9W7BUO\nZ9UDhaefYRzAsfy9udo6e3z+Pp0mfc3h7720N02rE4EYr1QdpnxnWLcrukioP2q4zlgiIcVs0fIi\n/4dxlhVhLzQKGsNOQmabXlc8JyGTOf5nb3fA3S/n0rZLtPLy6THNmfpF9aLg4uJqiwDwzTeqsMhk\nMv5Nnw4ffRRfCLQ79tieIAiCUEuaZvm5MGs6pzGD8maqONwUCiEWy00oUiAEMH9Hzyrr7/nJO9ht\n6nu6OAkJNabSqVLTcGM3nNGaK49rC6jh7ar8iRDD3jngdMUoKAiCIAiCIAiCIAiC0PgQkZAQhQ/V\nhiCZEpZNt6K41Y5dGz58icmc1WExi+nP+fxocPOoHr1zb3el0CmCUCVmMxMWbmHCwi140ptSltVK\ny/KkN8Vl10VC/mochSZ9qg9wu1x+bOVlMctZKsoxmxWUoNrJDNW7A0WSv1sdmH/w7V0cO1jfx2sf\nr0PBRCDkDFJZJOR3ulhy7zOUtO0Ys951F1/D5iHnx8zzV9GxbS9WbT0qMrOY9skU5jz3PpjNVDTL\nYuHDLxNwRtvrv2e6AYCLpj8MwOrLRxvyvcmpLLnnaWa88zVbTx6ipeecPDRuO+qKP0H/nNrOnGrI\na6xOQo2dSAHIuVcVccr5JQy5WFeXOJs7OOV83cUqZcGSaus8/ANVXGeudCMw+7x72drq8QejxTiD\nHr/DsO4I6iKhD7kOUEVuSqV4LYWduqt5IbFQ5ZB6FgJRg7eBsJNQRLgxVewXI9xYDcdp23et2+c2\nfHj1ZQDmzYudfvrpMGpU/O22bq19mwRBEIRofB4TdpcqlkjI3YWtuIhASJBRVrL3XQUdp3xLp3lT\n1H3V0A1GECq/p/z6bTKb1kSHF/b74Y95Tl67P4PSIjMVZeo5u2aFg2DAhNVaSQikKDgK87G4K2g1\nd0ZUfQEJNyYIgiAIgiAIgiAIwiGCiIQOcXr3jo4HkkkuAHlksH1nIjdc1huAXDLxpqaRtGsb/VkK\nRLsbVIUzP1db3nDeyL1ptlBHGkvX/MRvZ1HaojUA+d16k5n3r5bnqaj6KLdt1juYT33xv3HLtZr3\nG66yQhw7drAjp3YilFmTE3nrYTUcWEYLP8lpeoiyREsFoDsJeZONIaUqiwFqQ2RdK68aw4SFW7T1\n8OdV1KFzjeu7QfkABRMOVKFAYZceWt768y8naNct+QNW3cXIHSMU2t4SKaYq7KwKKHb1UcOaVQ5B\nV59ISKOG5fgzSzn36iJG3FTEqHsKuOy/ujuO2QKj7ingoXd3AVDhq3kICFOEgqbD5G+45PguJOxo\nWGWJN1D9fcIZVK//i/iaBNTlYCUnoQkLt1ARcnNAUY+j8rPWQoBAsFKIshhOQqA/01/hNi3NVMO3\nv8Rkhc8XZvPR7zlVlps9G3ZERJnbtq1m9fes2oBC45JL1An/M2eq6zV1KhIEQTiYiGFs0uB43Cac\nJlXAmr5+NRedcThzf1ZF599/GB321O6IYS9UDS1nTwdg+5aGe18TDly+eieVT15OZ94vCTU+x2O9\npzx4dQvD9rnbLTx6XXNevLMZi39L4MbBrbW8J0Y3Z8V8F+ZKXRX9n7ufC4b04eKTutPtyw+j9rE3\nv8MEQRAEQRAEQRAEQRAOJkQkdIgTDBjXr+ATTmN6zLL9Ds9lT68+JG3LrtO+Irezl0SLkwShpihW\nG798NJEpn04Fsxk7uttFpAgoFnk79YH8nvN+AGDzGefy7S9/smnweawPCdjazJxCPk35aXY3tm+q\nXYfx+0/qoRiSU4OGmdgt16huKGFhiy85lfxuqhCvsEOXWrpzVSJCaLDt+NMMWWtGXs/0t79id99j\n6lz9rn7Hast/jjaGurKXqtd0WVarvTuGOPgSk7Xlma+MB2Dek28y/a0vDWKl+sYkKqEGZfTD+YwY\nrT8PzGawhGZ9t+6ougE5XeqAZIW7elHqnt592E4LvHbdVWvA8w8AkLplY721Oxbbi9OqzN/VZyBb\n3c2i0hWLNa4azRyyBwpWipcR00nIp35ulUVCUxnKB1zHbbzGCe1XA7UXvzmcCmdfEfu5/cEHcPzx\nkJUFX38NiYmwaBG8956xnKLAnj3GtNxcqsXhgA9D43gpISM4EQkJgiDsPYoCXreJBMoN6a4C9eZc\nURb9sDhuqNGB843TP6h2P9Y09T1t4fToMNdC4yZ7g42J41P55etk3n4kg8sHta3ZhnHeUyLPyduG\nt2LTmqp/A1isCkMvG8x5Zx8NQJcfJ2h5WcsWxNivXr+p0UyvEQRBEARBEARBEARBiEZEQoc4gUqh\nma7nA0zAnl59DOm9WEnKeT3AbMbdNLNO+zIp+ojmv2eNqFMdghDGk96Uwi6qDUVFZnMt3eupWYfu\nSczUlgs7d8ebmsaCx14j+7SzALBW6AMm839N1JYnvJHG+r9115zqcLgU5kzRRTOnPDVGrb9cr3/p\nnY+Rc+Jglt/2SI3rjcekr35j1VVjyOt5pCFdsVrZfdTAva5/xuufs/iep/GmGgUR2449lbUXXsXU\n8T/v9T5iEXBEuBa51EEmd9NMdvcd1CD7E/YfH8/K4Z2pWznmDPUacSao4pcP91wMQKs50+k5/q2Y\n2+b602nFdl7/4xwtLexClbR1S8xt6oOls1w8OenMuPmFHbpQntWSNSXtAFhGXy3P7PMZnIQiCYdN\nU6yxREL6vW5njpVFv6ohMkx24z2wNdu4jnEA3D/oO44dXMbhAytqemgal4wpYvzcbE46u5Te/fXt\n+/XTy1x0kSoWAhhtjE7Iu+9CZqY6/rZwofr/oYfUvBUr4u/3++9V4RGISEgQBKE+8XlBUUwkKEaR\nkD2gOgv5fdHv1IpiTDuh/ZqYdf/6ztcsuetx1g2/nHODqig/s6Wf335MZNns+OFxhcbFrq3RLovb\nN1fvvBjwx06v6e+8MLaAh/SNa0jI3Ym1rIR/z7wgqsyUT6fVqk5BEARBEARBEARBEITGgIiEDnH8\nXqPntw0fv4z7iUX3P0cKumtAImWa84kpUMl+qIZsH3Syvt+ExCpKCkLt2HjOJVzFxwB43fFva5HO\nG98zXFv2RZyPYZt5155dWtqSmfrM558/T+GDp5vUuG2u/FycLv2aCbseWTxuLW3P4f2Y89z77Dz6\n+BrXG4+Sdp3486axBlehvaUiPYPtg04CYNeA49hw/mVRZYIOJ8vuehxvanq97deAOPocFNSH85LZ\nAinp+sXavLU6UrTQfRQmv58T7x7Fke88j8WtX0PJ2ZtwFObz0LY7AJi6W3fM8jvVwcj+Lz60122L\nxx/zqh7wXDPyesqyWvEKtwPwL520PHtJUdz4X+HnrVIpXsY2U2tW5Hbih49SuGxgW+68qCVTv1Gv\nPbM1/rXfypnLfx7Lw1ZznaMBqxWufyCfLofr7m0JlYwhlqrRSOnRA95+G0pK4I034D//0csMqqTt\nO+II1dFCUeCdd+DFF/X1MyO0VyISEgRBqD98IcFFYrDUkH516J06tUn0bz5FgcQUPV2J89zP7XM0\n6y+8Cn9CEna3KkKaOD6Vcc825eWxmUz7Khmvpz6Oomq2b7Zy2cC2FOyRbo/9QawQc9W5vgIkpRrt\nEnsdoZ6jAb9+vmW1UYXU14zN59yrY7sdZq1eqi0n52zGmb8nqkxhlx6sG345ZVmtqm2XIAiCIAiC\nIAiCIAhCY0F6yw5xHNnbDOt2vARsNvxOF4XoTiEuKvRwJyFHoBlvfF6rfRV26gbAzn51D3ckCLHw\nO1zcxYuAOsP0ymPbcNnAtoZwesvnOrniGNXifvSwRaRTqOWlbPlXWw6LhJqsWx13f9s2xR9hVxQ9\nXFJHNjJ8WD8urRiv5Ye7tstatqnZwR0ATH/vG35/ZXz1BQWhATCZYETTn2nBDi49ThfXWMvVAaM2\nv03h7BEnccGQPnxXMgyAMr9TK7fO1xErPtbTucHa6KtmZnvA6aK0ZRvOYSJmAnzP+VqeO71p3O1M\nflUgFbRYmPLpNH7mTH7mTNYo3QH49v3oEGdme/y2mH2+uHm14fxr9ME4VyV9VFqa6ib0zz8wZowq\n7Ln11vh1vf22cX30aLjzzthlk0NRB2++WT0v6qhZFgRBEABPSFifoBhDiD3Ik4AaajIKBewOPT2e\nE14YX0IilhhqoE9fSefHj1Jr2+Rac/clLQF46JqsBt+XEE1JgX5+/PdpNYyd1RbjvKqEOeJVpgvr\nOO3YHCDaYWjQGWWcNryUYwbr5/C707biSlT7KxwB3flw6NVn0XLhLG09aLEwYaHqMrl07FP89OP8\nGh6VIAiCIAiCIAiCIAjCwY+IhA5xvBjFDna8KFYbAaeLyGFGE4omnvAlqVP5w+s1xmxm8he/MuuF\ncXvT5FojBiQ6jfWzCDidWFF7jUuLzQQC6oG+85g++P7SXc205Wa7Nxi2T966WVuubrCjOlYtdRDw\nm+h/bDG/cYraDm4ylPG5Esg+ddhe7Wdf4ncmVF9oH/DLuJ+Y9r9J+2x/jfV6ORhxWb2UooYN20R7\nxnMltrJSBj16G8ffr19fA8xLAOhi04V/F+R/QgArExjZYO2LYwSk4Xe42Dz4PExAACuDM+azacj5\nLHzgeXb3HUTS9uyY25nDTkJWK4rFwplM5UymVt0We/wwHuHwZXuLJWIXlUVCADt3Vl9H+/aqqPKm\nm6otquF0GtenT49fNi8P/HHClQiCIAjgdYechAKl7BhwPNPf+pLFY5/CBLgox++PFW6s0vtRNe/N\nYffYSzrMiMrLz7VEpTUUBblWysvkxW5fE3b+ueP5XJq18hvSqiIYoSMyE8TpKVG3Dejb+n0mrKGJ\nGa07+Hnqkx18PDub5LQgCcmqSCj8+zAW4XC0giAIgiAIgiAIgiAIhyLVB4QXGjVe7FzFx4znakAN\nN+Z3urTwLGF+52SCVnUQc8nYpyjs3J3cI/rXen/FHbrudZsFoTJ+V4LWCbx6mUNL37w2tuNPSo8U\nWKKvz3viDW3ZWRBtQw/QvquXzevU+sJOQZEU7DHzzXtp5G5Xb6vubeW0Q71mHHgNZfN6HnFQKVAC\nDmf1hfYBeb2O3Kf7O3i+ocZP8TEDKPtBHWjsyCYA3lozm3Om/WAo11rJYTH9KfDr7gTJJnVgyU3D\nncdmc9Wz4v1OF0G7fm/yJaWw4NFXtfUWi2bH3M4UCDsJWQ0CxlVJR9GrdHnsbWzxB2zb//IjJa3b\ns+G8S0neuoWOk79RR3wrkZyzidLW7VAi1E8Vmc1Ze/G1UfeuWCKh6ti8GVq0qP12lW+bQ4bEbD4e\nD2RkqCHO3nqr9vsRBEE4FPBo4cZKCDic7O47iN19BzHg+QdUd1l/9POkskhIqUYlG352fbTpLL6k\nwpA3Z0oSox/O38ujiE9l15mSAgsJiaIe3Zf4/WrYur4nVJCzUZ1gVPl7iYUSEW1sLd1x+GeFttVP\nvkDAKFpu31UXQicmBclD7dso6NyD9A3/RO3Dl5Bcu4MRBEEQBEEQBEEQBEFoRIhI6BDHY3bhCOoW\n8Ha8VGQ0Q7FEnxqlrdsD4G6ayd/X37GvmigI1eJ36iKhRTMStfQjBqmDEZGd0Xe+kMsxBWsA+PGH\neZS3aG2oK69nbCHKXXevo9SWyr1Xt6FFO70TOm+3hd9/SmL5XBeb19rperhb3c+wmRBncDpr2YLa\nHeA+ol3TBLpl6R3mwZQUzMXFnDSgE1gPvceFiIQOHCyZiXhw8gY3a2lluarLjhebJsQbrEwDoDiQ\nBKgjTF3NG/g70JtnuY/Pie3Ys7dUZaRQkZ5Baet2hrSCrj0N64vvfpIBLzzIjDcnGOuNdBIy644L\nLay747fFFv/MdRbk0f/Fh7C6y3Hl7qL7Vx/hryQCNAUCWEKOQ+G8cFrOyUMpb97SUD4hhtGYyRRb\nvAPx02vKo4+qfwAOR+wyW9ToIXz0kYiEBEEQ4uENiYTS83OiBOF2vPh90SpQRQFM8MH36zh3+LHk\nmG+och/h92oXbk46u5TfJxndW4IBMDeQoZC7wvg8LC0y07x1nMJCgxDwm7TwYuH/fl8NnISCxjK2\ngNpfEekQ6PeZ4oYui3QS8iUkGvLmPf46xz58K/7ExFibCoIgCIIgCIIgCIIgHBIceqO+BwB7O0BW\nFdkbbJQUmenV11Nt2QlvpLErmII9wuXk9/e+xBHhdrCIATzGI4zt+x3b2j7aEE0W9iGmRip78CUm\nYSGgrXfq5WHjKgdTv0xh6pcpPPj2LgDOu6aIo46vwPZVOaCHQIjEk96UCQu3YCspgtP19KuuH8iu\ns4cxYeDH/LXQRXGBmZT0IF+9nca8aXo9zgT1Am+ZaJwZ3Yqt9CB6FuuBhNNmISMpYtS9qAiAjP3U\nHuHgo6HuMD6vWvOt6K5fitvH/7ia23lFS/uFIQCUKQlAKQABpeEjq8YbpCpp1ZZJ383R1hc8/DKD\nHr+DjWddbCi34YIr2HDBFVHb53ftBUBhh64GJyG7VR8l692/gn/+cGqz681242irNzEZe1mJIc1e\nXIS1opzyjGb8OHmJIa/VnOmcePco/A4HX89aq6bN/j9OHHs9joI8TST098YK0uyumKZold9zLr4Y\nvvoK+vSJLltbMiJuSPHq27FD/e92q39Opxp+LBiEzMy9b4MgCEJjIPzccHmKCVp0kfimwedh/TUY\nV8xhNkFKqo9M9pBTjZNQXu8+rLlkFB0nfc31D+RzzT35/Pe8lhTuUbshfp6QzNlXlFRZR10Jvzuk\npAcoLrBQUiSR1vc1fp9Jc2AN/48Vxq4ykU5CAPagOgnjlbGZvPbjdq3ueO9fYTfZL7mUL/4yhpvd\n01t9edh2zClVtuEgMn0VBEEQBEEQBEEQBEGoNdJT1ohYu8LBfZe34OkxzWskRPr58xQANtBZS7Mm\nGE+JASzhZ86ifVpuvbZVEOoTX2KS5iQE8Pi4XZhM+kWwdLY6E7p3fzdtp0+m3yuPArFFQmEiXTu+\n/mkJSZTR5repNGmmipG++zCVgB88lWYpe9zqujOoCpEWPPgiFU0z2UobfuUM1l14JV/9vnYvjlYQ\nDj2OOq4iKq3z++9yLf+jiDQtzRYSvZaRSO8PX2XkwHbgD0RtW98ceazevh6s1panfjLFUG7T0OFM\n/mI6uwYcV6N6Nw27kMlfzmDXgOMMIiEs+v3pvjdyueK2Am3dVMlJqCKjWVS9pmAQi9djCIEWJhAj\nzZPWBIBTbr2Mvi89AkBaukLrOI4MqanG9TffVIVDy2NHSKsV27frywUFscu43fpyu5CJU0YGNIv+\nKARBEA5ZgoGQeIMATdau1NIViwW7yRtTzBEMmrC6yxhxam8A7EVxbsQRBOwOLF51AovVCm9N3s7l\n/1W3S04NVrXpXuELOSWdeLYqGi4rlq6PfY3fr5uRXeKxpQAAIABJREFUhv/XJNyYc9cOw7rdrz7Y\n9+zU57hF1l0Zd7nxu/72lxXMe/x1fvxxPmUt2zLp65n8Nfrumh2EIAiCIAiCIAiCIAhCI0R6yhoJ\nigKPj26uredssGnLwYDRmjtcPsw0hmrLCfpYK/Mf0d0ZKlvQC8KBhC8xGXMotFBymioI+GxBjpa/\nZrl6/qakBzjuwTFaetBmj1unEjEIn771XwD8LheXjikEYPp3yYx7rgnr/jIOqK9doe6r77gXAMg+\n7Wz29D5Ky1965+MEnAfm9SQzZoUDlc69vXy2wBgqrIxokZ8P9Zr24qD7h28CEKCB4phEEHntrKYX\nL3M7X3MR/sTkqILFHbrUquLi9qqQN/KeFLkMcNoFpdpyYqJxwHXm65+xeOxTxnoVVSRUOdQYRD7v\n9YPK73E4qy8fjTc5lawlc6tt9qxZ8PTTUFwM+flG95+95aqr9OW1a6G8HDZuhM8/V9NKSmDsWL3M\n7t1qmiAIglAJtxpa0kIAW5n+HFHMZuz48PuiN3Hk5+Eq2KOtZy2bX+1uAg4nFp9XtXML0XuAKvpw\nJTacSCgcTi0s8BcnoX1PZLix2jgJZc2bbVi3+L1RZapyErrrpd305m+KSWbNJaPwpqaz5YxzKc9q\nBUBJ245R71KCIAiCIAiCIAiCIAiHEtJT1kjwVeo3C0QYJzw5phlXHdfWmB8hGrqPp3mROxnKFLDp\n4qLNQ87Xy9vjiykEYX/jT0jQREIduusXw5uTtwKweZ16/qZl1NxRRDGbmcUJ/Hj8vSTtUAVH3pQ0\nkiJmPM+alERxQewO5oQC1X0r4HQSDE1zDVqsosQRhDpS+dLZSKcqyxeRygY64WXfPb/eYTQAt/Mq\nF/FtvdYd6W4WuQzqZ3P6MVsASEs3juqWN2/JhuGXG8srChaPO7aTkCOcpg+8BW12Vtx8H7lHDMBR\nmE+LhbOwrovviHbEEXDffZCcDOnpNTq8+GzeDFOnan9dy/4wZOfkQOfOcPnl6rvP44/DX38Zq0hJ\n0ZcbMuSrIAjC3rDPb09e9QehhQCL73tGTzeZcATKtXBkkWQtnoMp8vlgqT56edihLuwmBGCzq3V4\nvQ33XhwON5beVH3/LyuRro99jd+vhxsLC3pinVeVCVQKY+etZCgZDIAS1OsO02zZAhwFefQ51s2y\npONIppRVV9+8F0cgCIIgCIIgCIIgCILQOKm+V084KKgoq9SR5tbXw84mG1ba6dxbFVD4IjpkH+MR\nbPi5k5f5xvq3XknEiGyXHyew5N6IzmPhoKSx6lP8zgQy2cM0BpPz1IdaekKSseM4Mbnmwy+K2cIJ\nzIE5c/i7y60AlLTpUKf2tZvxMwDmmvjr70ca6ekhNFIe49Eq88/g/1hBH0OaojTsffAo6iGeVhwi\nw40FY8x+v/PyJUya35W5tv9VW5cpGMTi8cQMLRYrLYzf6cRZmM/Jt12Jt0kGK1asr2Hr6063ocNw\nrdFDuClmM0cPLGXRQjWM5BvjKgB12WqFVm0CEHKPsjsUzUkizNJNhTRNttIxM6nB2y4IgnBAExIJ\nrR05Cucxp2jJnSZ9jZ2xmPKLozZRMGnCfIgWrcZCEwl5PASc6v3a5lDfyX2ehhcJOVwKFqvC5jV2\nNq2x0aF7DIskoUHw+8AamoMU1pOFHaqCAcjbZSGzZfQkjmCEC2RPVuEpM54nPp+6HhabgSoQOm3M\nJQBMWLiF4rYd8aakaiFTBUEQBEEQBEEQBEEQBB0RCe0HlAaYJ1pZJDT1q2S6HekxpEU6noRtvl/l\nv6y9ejS9P1bDsgStjc8xyCTSh0ZPODzOYP6PL5x+lFDHssNpvNbMEZZbCx94vso6Iy3o0zasAaDN\nrF8YObAdl+37ud6CINSSygIhUF30rLYYhQ8CgqGGl4VCZfzFYcx4fQKQCoA16MOBF6UGrg7pa1fS\n/I9F7Ox3bFSe36UO4BZ16BqVFx7cBbDn72H19ugB5Pqm267d5Jw4mNVX3ETrOb/Sa/xb3H3v38xe\n1YHXH8hk2x4vYZEQwLYc/d597+u7ePzGLEN9q3JKaJ/lEJGQIAiHPEpIJGSyRQt9EimjpDha3B7E\nbHASUszV/84Khhxpm6z5m51HHw+oIk4wTlypb8IiUZtdwWZXWD43geVzE/h8YXY1Wwr1RaAKJ6EH\nrs4ie72d0y8s4ao7CwwibsWnCodmchIDWMyS2f2By7R8r1st3GLNMkYOPB1fQhJrL9LjkY4c2A5v\ncgq5h/dvyMMTBEEQBEEQBEEQBEE4aBHP7UZCUZ6xc3fJzISoMh633vPmD3XIOnEbXAPCYZHCzHnq\nbUpateWn7+fUZ3MFoV7xJyaR37UXYBQCRXLN3fnYiwoAcKem8++wi6quNKKnus3s/6tRO17+dnuN\nyh2omBqr1ZQghPBXBKsvVAf2RQgrb2oaS+56gtnPvc+OQSdxGCvp6dqg5ZtCcUYrP8fDrL7sBm25\n+R+LAFgXMaAWpqxFG5b99yEWPPJyVF5YkBmm009fcMxDt3DMQ7fQ7YsPo8pXR+L2HHp99DoE438v\ntvJSSlq3I693H4rbdgTAGvTicIVC1VThQtGyffQA94r5TjzuWjdVEASh8eENObg4op8baRRS6o52\nlvO5kgwiIbOveleevB6HA5C4c6uWFnaAaUiRULhuu0PRREnCvsVTFKDTH9MZPvQo+nzwAqBOVtq+\n2Ur2elU89uu3yTw1phm7t1n4fWIiANaSUgCasZsEKjiR2Yzkc0ANsz53qlpu5oymgPqu0Hv8W4Z9\n20uK474TCYIgCIIgCIIgCIIgHOqISKiR8NLYjKi0qV8k8/ukRFLS1Q7gNx/K0Mbhwv25DjyaOwEY\n3VMAck4dxqTv5lDWsm3DNFwQ6omw6MficdN86Txazf4Vk99H+65eLFaFs07cyMm3qQPiy+58DMx1\nv/21sW4D4N7XdhvSIy3vK5pksvSORwFY+OALdd6XIBxMNLTO7Pbnc0P7UTCZFNp389K8tY8LbyjU\nylx3X17c7f0VDRvyz9TALmPrL7ySgm692RYKCxMWBgGYQ/E7gnGskjaeO9Kwnn3SELaeODi6oMnE\n2kuvoziGk9CuvoMM673/9wat5s2g5YLf6f2/12t1LAD9n3+AI95/iZ6fvE3b6ZOj/tr9OhGrx40/\nUXX9CdrUYzP7fNqAr9cd/6RzuoJ8vjCbzxdmc8Xt+QC8dn8mQ45sxh9/1Lq5giAIjYuQW4vJFi2k\nSKWIMne0w6w3IckQbmz57Y9Uu5vi9l0AaLJmJS3nziBxWzY2W8OLhEqK1Hd9m13R3Gxg3wh7BRVv\nrps0CnEW5HHY+DexmfwE/HD3JS0N5f5Z7uSha7P44OmmBPwQVNTzIvJcG8BitU63CYdLTb+ZN6vc\nf7x3IkEQBEEQBEEQBEEQhEMdmVrVSFACam/ny9zOHbwCwGevpQOQ1lQfRJw7NZEThpVBsTqN3o6X\nTpO+0isSJxHhICXscJH67zpOvVkdDJ/z9Dvc/+YwLDYYfvIArawvce/CzHzX4SbmPPUuWW39XHhD\nId++nwZAYorekb1m5HWsG3ENAJuGDGfgk3fv1T73BXL1Cwc6/U6oiBsm5Pxr9dBXJhN88HRTjh1S\nxrxpiVp68CB2EjLsz6IOfEaKhMLLlcW+YUraduCLuRu5+MSuFLfrxNxn36v1fnf1O5YJC7fQ7YsP\n6fvaE9jKSsg5aQjelDQ6Tfyy1vVVNG0GwJHvVi2kLGumDiaGB/vMPp8WTjLSSeio48pZPld3Uowc\nG6z8sSxbBn2iI9IJgiAcMoTDjSkxnIQy2EN+aQLBQBHmiPtnUDGBxQyhx09+yCWoKgJO9R29xcLf\n6fLDZwBMWLgFi0XBF7qHb91kZcNKB+27emnfrXp3ouooyjfz7mPqJBqTEjCIkQIBEIOZfUOx20k6\nBdq6TfGglHpili0tUk80d7mJsowWgFEk5ETtv/B6TWzbrD7gh/FzlfuP904kCIIgCIIgCIIgCIJw\nqCPdY42Ek4/exoLfkridVykhmUd4XMsrydNHLyeOT+GEYWXsWK+mOXFjCgai6hOEg42AQw2JkLZx\njZaWuCOHxJTo0XtvUkqt65/8xa+cdenpALRNyiWrrTqwcv61xVSUmVn0k4lrTmqLw34FXq8Zn6uL\ntq1ykIxEiEZQaCycdE4Zxw4pw2aH/zyax2UDVTe8oKdhn3cN7SQURrGo95SwMOjkWy+nxWI1LGhV\ns+YVq5UfJi+JChtWW4I21V3CWlZK0GojaLVh9tfepamknRo+bOrHk7V7eGUUi42SNu0N+zX7fdgc\n0SKha+/NZ/lZukgo8p4W6SIB0Lx5rZsrCILQuAiFGzPZo99TO/IvHr+NrZtstO1cSbRj1kVCNWXz\nGefQ/v8mausjB7ZjlNPHT+NT+Wl8qqHsjQ/lqZNa9oL/nNlaW77rqnY84XQDqmAk6DeBVeyEGppg\nEEq9LtLQ3R5t+Ah6owXbGVl+9uxUz8NxzzXhlHRVJGSJONHCIqG7RrTEXa6KpQNHduaHJybRbPkC\njn3kv9Ft2AsnIflZJAiCIAiCIAiCIAhCY0bCjTUS3OWQguqiYKnUaxvAygdcB0Cv/m5WzHfy/FOd\nAUiilDnPvMukr3/n13e/2beNFoR6JDzA3P/Fh7W0hNxdAJgiBq/XXHwteb2OrHX9ZS3a8v1k1ebe\n7Pdq6c2Wzee1ouvILVWFRwOG+rma8WwKhT8TBGH/YIuIknL9MbOABhQJKft2KEkJhUs0h0S+YYEQ\nQLAaUaInvSn+hMQqy1RHwB4S6wSDBO12glYrJn/tnR/C9+bCzj0o7tA15l9J2w6a2id8bBafVw83\nFiESSs8IctGN6mDkzU/sMezLcnBoNQVBEPYZpvIKAAJJxmfCr+98TSAkqLn/yixDnqKYwFz7Z97G\nsy6OSnOavDFKwntPNK11/ZFEzn/pySosSpCyCl0sEpD5MfsEd7mJIGaDk5AdLwGPgs0RZMjFugNk\n5HeyaEYiz/x4GqA6CfmdLtYNvxwHnlC9ehdWUe/DqMhsTs5JQ1h6+6PMfu591l14Jf7Q78Lq3okE\nQRAEQRAEQRAEQRAOVUQk1Ejwlikkos64vIU3ovKbs4vmzdxUlJr59x995DSJUoo6qoNwuUcOiNpO\naFw0ZqeYoFU/r7NPHkpxmw50/3Icnb/7lNRN6wBYcdNYlt/+CEotZ5X+e+YFBJxO3BnN2Xr86WT+\nvRyLWx1Y6ffiw3SarAvsrBVlKCZTlCvG6stu4PcXP6rr4QmCsBd0aKYOUPk9DRNuLMy+dhKylpUC\nUJ6pD+IGbXWfNV9TghEKrIDNTtBmxxwMGsKf1QRzNSHSoverhxsLi4SK8ozbnndNMZ8tyGbQ6eWG\ndIvF+N2MH1+rpgqCIDQ4yj6OXWlyq+LOYJLLkF7auj0d+VdtU9BEYZ7eZRBUTJhMCkGLleyTh9Z4\nX/ndD4tKK/PYY5SsPYoC37yXyvbN6rOxKF9/Liwm+vetmOjuG7aHQoIFMbP68tHMffItbPjwuhV8\nHjNJqUHGz83mlPNLCPhN2OzR5385CezpfRQFXXtHTYQqMSVp7wVBh5N1F1/D1hMHs/SuJ/Amq+5U\nIhISBEEQBEEQBEEQBEGIjYiEGgmeCpMmEkqmJCo/hWISHR4qykz4vLpSZN0t/621YEIQDkTMPn02\n8txn3qWga08ABrzwIC0WqC4iOwaeWKe6Fz78srYc7nTuGBIGOYoKDWUdhQVqKJ9KiqwVtzzA9uNO\nrdP+9xUmMdYX9pID9RyyhMYhg+59NzK4acj5DVa3M283AEc/fQ8ApS30sCp7G0qsJkSKIIN2hzYI\nV1s3IVPAT9BiqbGCNSwGjRQJbVwdHaYsVnWVnYS++65WTRUEQWh0BIPqfdRkMXYJBOwOzmaStl4c\nIboJKGasBPhy3kbmPvNujfflS44O9esL1o+Ao6TQzI//S+XZ25oBsGW9+tv2mUeXk0h5VPlA4MB8\nV2lsLJ+ris82NjmCFTffR8DuwI6X8hL1fHO6FKxWsFrB7zfRumO0s1R31pCyZQMBh4NC0rT0l77I\nIUkpiyuM9oVCS0s/hyAIgiAIgiAIgiAIQmxEJLQfaIhJovYN2ZpIKFa3ZwrFZOSsYfncBCaOT9XS\nHQnSSSo0DkxB1SEkPKt5/mOva3kpWzYC4G6SWet6AzbjLOc/br4PgP4vPkSPT94haDfmt1g8B2vI\nZehgozE7TQmHNmZrKFyVt2FcGio/17+Y9y8LIsSF9U3YycdepoqCnYX5Wt6+EAnZysv0/dnsmkjI\nHBHasSaYAgHNFakm6E5CXuxOoytU/5OiB4IjqewkdPfdNd6tIAjCQcPubRZWLY0WT8Yi7KhjslYS\nCTmcht+Ti35L0NyE/IoFi7kOgluTiS/mbuDLOetjZjdp5ufVH7YBkJZRu2dJ6CcAeTvV50lJoSpq\napZQHLO8hBvbN7Tvqop+RjSdAqgCYxs+SkvV78nhUr84q00h4McwkQngN07GQhBbWSkBu0Nza7zw\nhkJatQiFyrPGdqPyJSUD4iQkCIIgCIIgCIIgCIIQDxEJVYOiKPX+1xCUkaiJhGKRTAl2omfnOZJE\nFXAoYToEVCDhwXPFamXxPU8D0Oln1fXHk5Zeq7p+GfcTE7+bY0gLOPWQDH3efpbEndv2prmCIOwD\nTCGREP6GHRkMD2ApFguYG+4VK+yKVp7ZnNNGX0RK9r9a3r4QCbly/5+9+w6TosoaOPyrzpNzgCFK\nRkAUVIKCggmzLIKAWfHDnBOGNa55dV3XhFnBjBkjIqI4ChIEREDSECfn6dz1/VEdp7snB4Y57/Pw\nWHXrVvXt6XGq+tapc/L9yx6TKZDhp5FBQjqXU8sk1EC+TG7H3HQxcdZAFresbk6ue7iozn1rxyJZ\nO2YspxBC1On6f+Twr6uyqCyr/xykev9k64yh3w/c3gD428doKdc+fjWJJ27WAu09qg6D0rRzqWow\n4jGa+OaFD0La5363kyc/3ENGFzcnTq3EYdfhsCkNLgtWO7ikqlx770lGLZB238ixnMcb/u0eySTU\nJnwZm/TeZD6+TEK+ICFLrHbNpDeouJxK2OeYiZY1UW+34TGZuYDXufnIjzjtvAp0Lm1eI1omIWOl\nFiAWU1TQsm9KCCGEEEIIIYQQ4gAhj1bVoaTawdu/7WzvYTRIpT6JOPcmlv3zSfoteIuStSnsI5vB\nbAC0TEI/cXTYfqZ4BVtbD1aIVrBr/AlsPnMGa2dd728rHDrCv+yyxPgDiBqq+ODhYW1uU8OezhZC\n7Ed8WRJaKUiodcJ/6+AN+IwtzCc2KGAHwNMGpTU2Tr2IQ154HAjNJGQuL2H4M/9i+W0PaYFS9dA1\nMpOQLSXVvzz47ReJTXiamkodblf9N3wVXeBTMhpVqqrkJrEQ4sBVWqgnIdlTZx9fBh5FX+vvoU6H\n22jiyPQNIccDbyYh6j5ufYoOOZzVV9zK3mezef6qT4mNz/ZvM5k91FTquOiY7gw5wsqEM6sYdqSN\nmLjwM+13C+LZ9peJrj0DpS7v+79MNq7RgmUTdVqQ0K7xJ/DGigvoPiWHf30wUTIJtRFf3LDepF2D\neYwmjDiprNa+j1litM/UYAC3S8FhD/097IeWdUrnduM2mTDi4tFfJzPfuANdldN7zMjXPEneLLLZ\nv/7Ysm9KCCGEEEIIIYQQ4gAhQUIHiCp9IoZ4E9snTcZtMnP02itCMgc5BvSCjYH+153xE6s/cWKI\nl18BcWDwmMwsv+2hkDZrRuCmg97eMuFwqqStF6LDUfTeG1Su1g3nUdo+XCjCIFo/+MUVF+9f9hhN\n/r+Lp0091r995XV313scxe1qVCkQZ3xiYMXj4eJbSnjmrnSK9tV/jKycQJajhCQP1dUNz2AkhBAd\nja4Bf+L85caM4VmH3GYLSWogY1t1hdbHreoxKI3LGhdJyYChDCefMUN3UkTgev3zeYG/8+t+i2Hd\nb1oGz3m5eSH726wKrz6aSm2+ACEAo9MOQI33+4DZrmXd9TQgsFQ0ny+A1xcL7Dab2Uw/qitiAXB6\nY7v0Bu3ayW4L/B7+dtMDmB4PBH/VLuWs8+7siVJubOOUCxjwweusvvK2Jo+/EyTgFUIIIYQQQggh\nRCcm5cYOEDa3GYtBmyyzpWUCEEeNf/v2mefzufkMAGZP+IknPzmaxUzAHRPb9oNtYzLB13k5kpL9\nyyWDhrX66727eEP9nfZj8v+KOFD5b4A6Wyl9QFBskKcRmXEOBCkb1+GMjQ9pS93wR4P2VdzuBmUc\nCuwQ+COl6vXEJTY8m0VO78BN7ZR0D1VVDX9ZIYToaJzhVabD+DMJGcIvAN0mM0meUv/6oUdpQRpu\nVYde17xMQhDIAKOvNdDeAyMP3GYNHWN1Zf3TGL4HBHylKo0eLWioo2USstUorPml9UuJtjSnNzOQ\nL47HbTJTTeB6oUdfbe7C4A0SqvF+poMOs6Gogd+xwqGH4YyNCzm2zvt7Ey3Q+Peb7uPtn7aw9fRz\nWuCdCCGEEEIIIYQQQhx4JEjoAOFQDRgN2oynNS0jbLs9JZUJcb+wrctwnvs+UHbMbYlpszGK9qdX\nFIz6zvXPZ8kL70Vsb46q7G4h6x4pRSbE/sngDURppXJjPgoq3z3/Xqu+hk/R4PByiO0haftmdo07\nPqTNXF4a1u+Ih25jxqieZP/6IzNG9SR27y76fTyfmOLCRr3ejw+/AIAtNZ3+w+wR+5hLiph4+TQy\nf/8lpP3QsdpN7vgEVYKEhBAHNJez/mtdfyYhQ/iUgCs2jmRHsX9d56va2QLlxgDcJi1yROcIDQq6\n58V8evYPDxT6e11oxhhrVd3TGEOOsGLwBwlp2Yn6famdn93ujhUV/8GLSTx6fSZb/mxc2eT2tmKJ\nNs8Qb9E+z9olm7v0cJG0dRM9v/rY3zbpnArufLYAPFrg0KL/zuOHJ18n//CjKO/ZB1tKGgDJW7QU\nyXVlcJTsr0IIIYQQQgghhBDRyczJAcLhMWLQHsjEmp7pb/+DodiwUJj8AKpeT6+9a0L2q/1Unjiw\nZSdZOHtk9/YeRtt64QXQ65l8VH9/k83pZsHK3U0+5Kqrbqeqaw/2jDmWaccM9Lc3KiPGfkihY900\nEfuf/TUbla/cmOpq/o3N+lhTwwN1W4Oq3z/ivJfd+zQec2iGg6Ttf5O0dRPlB/Wn+/cLOfyROVi8\ngUMTrj0PgDPPGtuk19sz+hgADNYaLDGRbw6mbN5A1qpcsq48h9+vvYtNUy9C1eu57uFC7FaFufdn\nYo8cXySEEAeEhgQJlVRp3wONMUpY2I8zLh5TTSCa0uHNClPsSqFP7C6ga7PG5zFqAS+1MwnpDXDZ\nHcXccUGXkHa3q3YmoejvL7u7k1ufKkT/SWgmIZM3k5Cng2US2r1d+5JfWbZ/nPcbat1yLUhIH6dN\nOfmyRwHc89I+krZu4pQZx/M0X/nbU0rzgEQU74dUMnCov9TonrET6LfgLQCOfOhWANLWrWLrqVNb\n/b0IIYQQQgghhBBCHGgkSOgA4PGACyN677xbcAmxoawDYEFKasQABmdcfFibEAeUyy4LazIbdEwc\nlBmhcwM9eDcA/YH8citZSdok+MRBmTiHHoLr4IObd/x2Em+WU4I4QPnKjbVSkJAaFKviNrdNRrGM\ntStD1osGD0fvaPvIl+quWuDp6stvYfhzj/rbT5lxPN8+9x5Hz7m8RV/PYzLj0esx1FQDMPGsStKy\nQu/4GoJubI/4z/0UHHokpQOHYjCCwahiMKpYK1t0WEIIsV9x1hMkVF2h8NbvYwDQGXQRg4RiivL9\n63argt2msNPZlQn635o9vtqZhPQ2K3q7DVdMLL0GwP++2MUd53ehRz8Hf+TGhAUJ1XgzCd387wIW\nfxLP1Q8WccFRPQAwmVV0OjBWa3/oXd6SmAa0spMNCaDan/iCmtb9ZmH4GFv7DqYOeZuNZOa4sMSG\nBvA6E7UgLdUQCBI6uHsBp5yoZSGcyyx6kgfAc1+P4fN716F4a+GpusD8hdtoQud0YCovxZaajqW0\nmL/Pmtmq70kIIYQQQgghhBDiQCV3hA8Abm2+E11M4OOcn7uD5E3rOfn8kwGwJ6eit9aE7SvlkURn\npCgKWYmW+js2lDdCIAvgj9UYASnkJ8T+QzG2Xbkxt6lxf1sSYwx0SWr+36Pdb7yDKz2DAc0+UtP8\necGV/HnBlcwY1dPfdvzldT/d//43f/hvHjaYouCKicPovaa5+Nbw0mbG6tBaYgabNXTdAI7wajZC\nCNGhFewOBFS4HPUECVUGZaWJUG7MbTKTtTKXe1/ax8PXZmK36bj5HC27j0M1hvVvLN+50pdJyJeZ\ns7TPQL6c9zXJaR7+98Vu9uYZuGlqDNbqwPtRVfj9R+2hmOxuLq5/pAiAgwbb2fqnGaf3vad7g2ld\nMdpVeQzauaBwr4G+Q5p3Enjj3ykMH2Nl2KjWD9op3Kt9x//ynUTOva6s1V+vKTauNnPf7CwA5uXm\nsWeHNuYZzPOXe/Po9eSwi910Y8qJh/j37cFOvuYEDmENiWiBXYrqCxIK/G56TGZ0bjdTTgyUWy0d\nMKR135gQQgghhBBCCCHEAUqChA4Avqch9ebQyWBbmlbyxJGQiGow+kt9hNhfa8MIIYQQLcVXbszZ\nOpmE4vO2A9o5t7GZhNLjzYzomdr4Fy0vh6++grFjYccODhnRtuFBv8z7ghI1/DLSlpQS+XoD+HPm\n/6Hq9ShuN8UHD298gJCXqaqCAe+9SlVODzZOuzhkW8bq3xj9wE0hbXp76E1cg1GVICEhxAHnrouy\n/cvbNxk57Ghr1L52WyD4Ijhbi09NllZObJT6C4NHnEjhHgPF+7S/+X/V9ObUZo7VbdGChEbfdwOj\n77vB356y5S+OvP8mfr3rcQBi47XzdnWVjn07Ddx4dmiZs9iEwHl90jmV/O9uM3vzjP6AVXtikv+h\nGAUtqP+Zu9IZfXxe08fugq/fS+Dr9xKYl9so/IbRAAAgAElEQVT04zSUxxP4vu6ww/74jE/h3tDf\noZunaZ9TEuX+cm8eg5H1HMzvF98Cr4Tuf0Tv7SRvKwAgcdsmfyYhlKAgIYNMXQkhhBBCCCGEEEK0\nlHYrbK8oyiuKohQoirIuynZFUZSnFUX5W1GUPxRFOSxo26OKoqxXFGWDt4/ibf9KUZQ13m3PK4qi\n97anKoryraIom73/TWmbd9k2XN7064ZaD3Xak1JRFQVbclpI+55R4/nqlU/55a4n2mqIQgghRLtx\npGpBOBmvv4+pvOWfwj9o4QeAdgOysRn6mhyqm5gIU6dCTg6MGdPUozRZ+bDDKO87MKz9m5c+Dllf\n/NQbfLLgJ1ZfcSurr7qdNVfcyuqr57BzwsnNHsOIJ+8Naxv52F3+5bWXXAuA3h5ahk2ChIQQ+yO1\n/i51GnV8IGtsfc+B2K1BmXl04VMCBm+2thNmTUZvAKdDISFZy8aXaqpo5kjBZYmec7PPF+/7l+O8\nQUCvP54aFiAEoUFCiSnh2QKtGYHAqT5s8S/bapr+oMyeHc3PpNQYB48MBLr6yqwF83gCmYXbS3CJ\nsZmjeviXc9gdVG7MQBIVZChFYfu7zYGMiqdOP57hzz6i7aMPvF9DrazIv972cMsMXgghhBBCCCGE\nEKITarcgIeA14KQ6tk8C+nn/XQY8B6AoyhhgLDAMGAIcDoz37jNVVdVDvO0ZwNne9tuARaqq9gMW\nedfbhKrC5rUmXzWiVuG2aZOjemPoZKdqMGBPTsWeHJqhYPktD1Ay+BC2nTKl9QYlhBBC7CfKDNp5\n8FJeZuSdN9TTu/HcwVkYGpmhT6frmBn9or3Nqu69yL3zMQCW3fMUe0eNp7prd/48/4pWy14Yv2sH\n6Wt/J33NcuLy9/jbd44/EQC9w07ypvVYirUsBUYjOJ2tMhQhhGg3ej3ExHkwmT1Yq+v+mr97eyDQ\nRdWHZxJad9FV/uXSfIW9eUYqy7R+Ol3zv9i6zQ0rzGswgqJEfz1fcpnY/D2kpmuRMgf3DQShLLvn\nP/7l7uziOp4EqPfnU5fgAKPW/I4PYLcpVJYFxvrqo6lsWGXm8RszmDmqB+XFOh67IYPzj+pB3t9G\nZo7qwfoVbZ9qKDjoLFgZyTjiveXGvE80mcuKw/rpopyU1aBMQrVLiW45c3qTxiqEEEIIIYQQQggh\n2jFISFXVH4GSOrqcAbyhanKBZEVRuqA9ZGkBTIAZMAL53mP6Hms0eLerQcd63bv8OnBmC76VOq36\nKYZ7ZmWz+JO4VnsNd402Iao3hW+r7NaTqq7dAZifu4P5uTuo7tojvOMBrGPefhVCCNFSBo8IpI2Z\n8dfjLX58nUs7DytNyANxIJ6jtp46lfm5O9h+0lmtcvyFbyz0L3f/fiGnTxnHCbMmc8L/TcFUFchw\n4YqNB7QbkieffzKTTzkckExCQogDk61GISbOQ2y8SnVl3V/zX3xAyzR7BL+GlHTyqejd37+8e1to\n5hyd0vzSnWqE0lG7jj4egKLBw0P7qnWfKZO2buLMM0Zz7G9zmfO/fOae+D8Avn75E8r6DQrpeyir\nAHDYm372DQ6IKc4PD7BqisoyHaWFocfK+9vIxcd05/cfY/1tK5bE8sDlWaz6WQuyuuKUbvyRqy3f\nfm4XAL5bkNAiY2oMmzXy79td3I8jQQsSQlHw6PUYqyoB+PPc2f5+OpeT6qzwTFHBWa4MNdUA5N7x\nKPNzd7TU0IUQQgghhBBCCCE6pfbMJFSfHGBn0PouIEdV1V+AxcBe77+vVVXd4OukKMrXQAFQCXzg\nbc5SVXWvd3kfkBXtRRVFuUxRlBWKoqyoLKsrhqlhSou0yb6/17feE30LXksGIK8y/G39+MhcVtx0\nX6u9thBCCLG/C05g81dlDyZePo0pE4eQtGVjixzfYLMCUBZ0U7UpY+tI2nPYZf0PprJbL0oGDCFt\n/Sp/+5ZTzw7p57Jo5UsOf/xuf1vfj+bRe8EbOGzhZWmEEKKjqizXseTzeKwFDjKL/8ZarfDDp3E8\nd29anfvlMipiubFgpprKkHV9C2QSiuTn+5+htN9gdK7oqd6e+mg3D76xN6Qtbq82ZdDllx84eIQd\ni6qV5yrrMyBs/1i0klV2W9PPYjZb4Oe1eW3zv+OXFumYfVI3rjoth21/aQFZW9ab/EE/jWU0tnJ6\nIyB/l4Ga6sDPcMnn4Q9E3XLWDyRSiSsmsE3VGzB5g4RKBg7l0/eXsO3EM9E7HehqRe8u++eTEPS7\n6TZrP2tbSnqLvpfoOugFmhBCCCGEEEIIIUQD7M9BQhEpitIXGAR0QwskmqAoytG+7aqqngh0Qcsy\nNKH2/qqqqhD9UX9VVV9UVXWkqqojE2qV6WoKo0l7qSWfxTf7WNE4tXuTDO+1K2ybPTUdZ0JSq722\nEEII0RE887l2jjyLj8halYupupJ+H74RsW+vLxeQvPnPBh/bd2OrKqdno8eldNQooXZWdPBwjEFZ\ngwAqevQJWbelZbLtxNDkkT2++wyLrRyHvdWHKIQQbWb2id0AsBKLESeq08Pcf6Xx05fhwRueoBhJ\nVaeLGq26evbNADiplUmohYOEljw6l4VvfonbYqGiR2/0dhsD588ldm/4d9uMLm569Xfyf3cVc98r\n+7T34M2ElLR1EwCm6krcBiNus8W/3w+Pv0LRkEOJQfvi7GhGkFBwJqFn7mp+wMrvSwKZgu68UAsM\nuvuS7CYfL7Obq9ljqs8NU7oya2J3/+/SFu8DUcNGWTl5hnZuHp69DQBXTKC0nMdgwFitBQm5LDFU\nde+F22RG53RitFaHvMbeI8eFrK++8jZWXH8Pe8aGTfEIIYQQQgghhBBCiEban4OEdgPdg9a7edvO\nAnJVVa1SVbUK+BIYHbyjqqo24BO0MmMA+d5SZXj/W9DKY/ez1WiTiLHxzU/LHs3uPG1S7oj+4ROp\nQgghhICUdA8Hs46lHM0KRrCLHHDWyiajqiRt2ciee3/Cct6jDT62zqllPfCYG59RoKOGCLV3cJMj\nIYmE3XkYrDX+NlVf67JWUVh19Rz/qtuo1WW1YMPu0uNpvUszIYRoEx/MTWLmqEAp6Qe4Az1uPK5A\nIE/toEibN8jl5pEfouqil8vafdRxAPQgL6TdoGuZTGzLb7qfvGMnsXvcCZT1G+xtVUjasYXDnn6A\nM88ay5EP3uzvP+2KMv/yuFOqGWFcw6A3niNz1a8AeExmLEX59H//dRSPOyT4ac9RE8mbcIo/k1Bz\nyo3VV8qtsWLi6j8ZjT6hmi49tWuNrj2jZ1qCwPxDWyjYY0D1/qoNHmHj1qcKmXlNGW/+nEef+D0A\nuM21goQqtSAiX/CQx2hEb7f5szL6OBKTQ9ZdcQlsmnZRx03BKIQQQgghhBBCCLEfMbT3AOrwKXCV\noijvAEcC5aqq7lUUJQ+YpSjKQ2j31sYDTymKEg8kePsYgFOApUHHugB42PvfT9rqTRTs1n7ENVWt\nF4/l9s4TqiZTq72GEEII0dH9TV/sWDicFQBc+9e7HBG0fcC8uRQ9s5yz+RqAebVujEZT2a0nbATz\nkYczvHty/TsESU+Qc3dTOBK1LIn9F7wVaFTCr7XsQVkh3SYzKAoJaFkMqqshIaF1xymEEK3po5dD\nM8bewb9YwGRcQYFBt0zvylML9vjXfaW2YnT28ODKIK4YLcPN15xIj6Aq4LGGlknFtnnK+Wyecn5I\nW89Fn4es9/nsPeBdAIYcbgvZdvJ5J4Wse/R6Jp96BNF4jMYWCRKqLAv9mXk8IVWxGs3lCh1LpCxH\nOb2cTL+yjMK9BuKT3Lz0rzTiEjysXhYT1jc405G/zabgdkNsXMtmgVq9LIbMHG0y4sgJgaBdnR4M\nNm3dZQkKEtIbMVdowV6+MmQeowlTZXnIcefn7mjRcQohhBBCCCGEEEKIUO2WSUhRlLeBX4ABiqLs\nUhTlEkVRZiuKMtvbZSGwFfgbmAtc4W3/ANgCrAXWAGtUVf0MiAM+VRTlD2A1Wrag5737PAwcryjK\nZuA473qb+PKdRP9y4d7oT2o2R0K8g2P5HrcECQkhhGhH+/vD3XYsIeu/bO6F4g5kRNj0zBZO8gYI\n+ehtNqaO70/Pb6LHF5cMGAJAlxPGMbhrYqP+ZSZYoh53f9beH7UrNryEjqoPv85SDUY+/GoVG6Zf\niqm6kuwVy0hEy2JQURHWXQghOhSzJTwLjR43q38P+g66J/S5IKc3QMais0cMrvRxe4M7urOL4Smb\n/O1XD1zQrDE3VXxS4HxtqKkO2560Y0ud+3sMQUFCzSg35nYq6PUqM68pBZqfucflDN1/xY+BoJpB\nh9p4fcqzPP/VkaRluhg43E633i7umZvPGRdqgTWz7y7mPx/v9u9jqwn9TL/7MJ6Lj+nOrIndaQnB\n5erefDKFJ27KBCCrVpkzg1XLDOQOChKKKS0itlArE2dNz9KOZzCiqC0bvCSEEEIIIYQQQggh6tZu\nQUKqqk5XVbWLqqpGVVW7qar6sqqqz6uq+rx3u6qq6pWqqvZRVXWoqqorvO1uVVX/T1XVQaqqDlZV\n9QZve76qqoerqjpMVdUhqqperaqqy7utWFXViaqq9lNV9ThVVUsaO96C3XpmjurB2l+bfjPvurNy\nmrxvXaw1ehKpwGNsfJkTIYQQorP6jSMhv9S/PoO3w/okbt+MwW5n7N3XELtvd9h2AFXKVrW5SCVy\n1CipHOzJqSE3KX2ZhCRISAixP2lKnERwjM9ho7S/bQZcUXprHHZtpz65X4aVeAoWnAEmJU7rN1M3\nj6T01gvo+OKtr6NuS0gKnGwtxYWNPrbHYCAG7X3s3Gps/OC8XC4Fg1El3jueyrLmPQjkqlU97M/f\nA/MN1mod539wJWl5mzBWhZ60+g9z8NSC3Rw1qZr0bDfnXOkNWgrKJLTtLyOvPhbIqPfU7em46v71\nqNeHLyVFbM/MCT2wuawEe2JSxABeAFtqOgB6eyBD1LaTzuKLed80b4BCCCGEEEIIIYQQol7tFiTU\n0axbrk3W/fJtbIP3KS5oncxBtW3bmYgFGx5j0yc7hRBCiM7I+OzndW6P27vLvzzi3/fU2VfRtXd+\nnbbT7lmjIkRmqXVkxPAYAtdIvkxClZUtPywhhGhLvnhJo9nDbfdsBbRMQnXxlxsjeoAQhGaAiddp\nGXgyPfk441uvTmN534FRA4UssYHgpJh6goS+e/bdsDaPwUgaxQAseKlxpUGDuZwKeiNkddOie/bs\naF4F99qZhBZ/Eu9fLi8NnNdS/1obtm9GV7f/fHzaeZUMOtTmL3Nuq1G488IuIf2XL47lgqN6NCkg\nzeezNxLD2g4ZbWXYviWYS4r8bTElhdhS0qMeRzVoP7cBH7zubyvtN5jyPgOaPjghhBBCCCGEEEII\n0SDNm9HqRKortcm2n76K47I7G5aIaM2y1i8hsmOzdtPrXc5htue1Vn89IYQQ4kByd+653OldHqpf\nx1r3EP+2uO1bsZSV8AdD6c7OqDdGFbx329o9cqbz0EVIhRAtWwEQEkjtyyT03sJqyLC3/OBEixrY\nJYFEiwTCCxFJUqqbmkodx/+jCoPTATQkk5B2rvKV3opG1etxmc0Y7HZMHi3bSwaF6ByOFhh5dOV9\nB7L0X89x9JzLAYinkioSQk6xluKCkH0+f/tbTp1+PADbTjyTgsNGhR3XYzCSQhkQCPBpqNIiHd9/\nHM9ZF1fgcoLBoJKerQVjLV0Yx6FjbfUcITqXK/q1g680HMDEq2cyP3dHnceKT/awe5v29zJ/d/Sp\nHrtVCQm6aiiPG9zu8PFecelfTLxkBrvHHMuSf78GaNmebGkZ9R5z68lTOGjhBwAUDz6k0WNqLXJJ\nJ4QQQgghhBBCiAOZBAk1kLVaCxJy1zGJV1vRXu3He9EtJbz6aCp6ffSJuJ+/isUSqzJiXN1PdNY2\n5zzt6cDZPIcjPqtR+wohhBCd3ZbqbsA+ALrrd4cECZWf8wpj+60kg3UALI+7OuIx/E/kd6I7Su39\nVo1VgTRA1pR0Pv78Nw5+/Rl/2ztLNob0D84kFJephwJ44t44DptU3PqDFc3SMy1WgoSEiKJ7Hyd7\ndxiZdnkZY67RzlH1ZRLyBZ7Ul0kI4KPPl3PCpWfhqtFOdOkUoXO2frbcnRNO5r3v/yQhbyubLuzP\n19c8RbclFYy79TKqs7oSl78HgAVfLEdVdNhT0/nz3NkMfut5iFJ60uPNXHMGH7PSfHKjxnPVqd0A\nOOwoK267m/iyfIZ//RpwB78uioMHm34ucXtjutKyXBTnB6ZnDju6hjMuqIBLG36shGQ3VeVaCfKC\nXdGneirKdFhi6/49ieS7BYEsR8eeUeXPepRj3w5A9opl/u0xxYUUDxoW8Tjv/hA4Ry+/5QEOWvgB\n5T37UHjokY0ekxBCCCGEEEIIIYRoPCk31kBfzNPSaqdnhz+Z6XZB4Z7AZKnLBU4HeDxgMHi49e/r\nOOGsMmLiw0tj+Dx7Tzr/viUDa3XT7rr9l6spGjaySfsKIYQQLUGh4wXJOFSTf1lH6Hm6iHTsm0v9\n6w++P4GINTp8iYQ6Ubmx9masDgQJlfUdiKrXk7R1s7/NYw7N5hicSahnWuAz9US/NBNCiP2e2wU9\n+jowGCFr1a9AIEjIaPbQq78jLGuOoxFBQs6EJOxJKXTVacG0RhqXgac5XLFx2NIy6cI+Lnz6HMbd\nehmAP0AIwJaSjj1VK2llT0oBQImQaQ5A8ZapTKaMmurI0yD5uwzs2hY9uMbtUtCVVWFWbRz56sON\nf1MRuJwKOr3KUx8F3te9L+3jxseK6DukVtamCNcgOT9+Q98FbwFgNqs47ApfzEvgl+8CZdLPuKA8\nZJ+SgqY9K1ZeEpjzmH5l4FyaWJYPgN5hZ8JVMxj64hMk7NoeNZOQ22IJWo5h8VNvsOjZd5o0JiGE\nEEIIIYQQQgjReBIk1EBJqdpka2V5+I/s7f8lc93kHMqKtW33XJrFheN68NmbSaTpSxmw4E1++8ZM\nVbme6srwG4grl8b4ly+d2N3/NGFDdO3pZGDMVsoGD23kOxJCCCE6l9o3yWrTK6ERIzfyb7bTy7+e\nyygmXnkOA959JXKwUCfS3gFh6y+6xr+serND/HHZjVH7u41m/7IvmwRAdYVcCgshOi63S0Fv0M5H\nld16AVBMGgBOu47ufR1hmXDttoYHCQF4TCb+lX8Fc3iQabyLPzK2DTiilPn0C8oaZE9KBrRAlUiK\nhhwGQBLlWKsi/+2/YUpXbp3elZU/WSgt0qGq8OuiwHf16kodao0DEw5M1qrGvBU2rzWxZb0prN3l\n1D5DnQ6OOa2KCWdWhgQHlffq61/uvvhLRt13A1krfmbg/Lkk7NjC+FtmccSjd6BzOtDpwVajY/5/\nU7QMR152u8K83Dye/HA3APvymhYkZDIHPvu4RJXXfszjxW93ElOU72/PXvEzQ195GgBramiQ0Iob\n7iF3ziNhx907ajy2tMwmjUkIIYQQQgghhBBCNJ6UG2ug7O5a+m+7VUdlmY6EZA/ffxzHoMPsrP5Z\nmzi88pRuYfulmCrBDmXVWp+VS2M5+uTqkD4vPZQasv7r97GMOaGmQeNyOhSGGdZhT05pytvqHCSx\ngxBCCGDq5eV01+3kmVcDJcViDYGbpLWDhAD20NW/fCyLyVqZS9bKXGoystk5wVuuxBswJJmE2o41\nI4u1l1zH0JefwqPXLmcre/Rm99iJ5Py8KHyHoI/GYzByV9dnuH/PVfz8dRwnTasM7y+EEB2A2w06\nb3KX6uyuOGNj2b0pB4BzrixlX54Bd1BVqe2bjDz7Ty3zTgKVVHUJ//5am6+E1IPcCYDShkGywVng\n6lM8eDgAO447LeJ2a2YX/rjsBpJeLMdareDxBGKMXC4o3heYGnnipsgBK3vzjFRWGjGhBQidNLWC\n7z5KQFVDy3DeeHYXho+x8o9Z5cTGaz+ve2ZlA3DwSBtzninwv64vYzHArDtKAgdRVRS3G2dcIFDq\n6DmXA3DQwg8BOOzpB/zbxt55Fe/lvBlx3L5AsbgE7TrHWtO0ANmC3drP6O7n94KqYjQpGE0qMcWF\nEfvXziS0aepFTXpdIYQQQgghhBBCCNGy5PHpBvIETa4u+iiegt16Xn44jdtmdmFvXvTJS4M+9Iaj\n78nNYOaY0D5rf7WE9YnGZlVIcpVgT05r8D5CCCFEZ6UkBDIC6HExyfUF5jLtppyihN/4nMr7gX2D\nsiccPedyUv5aq634bpgqEiTUllwx2mepC0rBuOTxl5m/bFtY35oM7ebs2ouvwWMw0lW/F4A3n5Qg\nayFEx+V2KRgMKtm/LiV7xTJi8/diQ/suec7nN9Pv6w9CMgmtWRY4B6Yby/h0wU+Nf9E2DBJS9dGf\naSoYfkTIennfgby7eAN5x0cOEgJwmS0kUoGqKtisgZ/LtWd25YYpXaPu5/Pmkyms2NLdv56UaMfl\nVHAFVWHbt9PAvp1Gvno3kVnHdae8WBeSuWf9isB3/Z+/CmT7qW30Pdcx/ag+pK9fVe+4ALov+ZpB\n818MaRs5voaTzqngrIu1TIpGbyagppY4/+GzeAD+OTuHId5sQQCWooKI/R0JSU16HSGEEEIIIYQQ\nQgjRuiRIqIHcblB02qTa+y8kc/0/tCc0Xc66J9jWlR0EwNV93gWgJkJq88wc7eaWb/Luxy/imTmq\nBzNH9aCmngk8W41CsrUARQ3PfiCEEEKIUP2OC9ycO5RV1BBLvw/eAECvq/tcOp+ZeIJS0ky68FSO\nePAWVF9bZwoS2g/eqsui3exWXEF1WhUlpPyMz97Rx7D4yddZd8l1qAYD/4j7AoDufRxhfYUQoqNw\nu0BvgAnXnguApbwUB1pJqy47/sDsqArJJBRcOluNj2nSeastMwnVHt+n7y9hyaMv8cudj7PksZfC\nurtjYus8nNtsIRYtY68z6OGdsqK6Eyxf82Boppy1DAOg2x8/A7D8B+11Swv13Hh2aLDR3p1Gbpwa\nOQBp4duBLEGnTJtAvw9eB1Xl8Efm0Pvrj+scUyTzmBmybolVOe+6MpJStesbo7fa2Ydzk/nzd7M/\n3sth17IaNZQOlWFz/+1f75r7Q8R+HlN4eTUhhBBCCCGEEEII0f4kSKiB3G6FmLimT4g+Vjgbo9lD\nVXn4jzwx2UNiipt/zCoP2zb7xOgp4D1ucDp0xFNF7y8XNHlsQgghRGeRlukmLtHNjKtLUVH4kpPJ\nfuktAIzu+gNGkixWFg04z7/e97N3SVu/GpAYobbm9gYJxRRHzmAQQlHYO/oYVL0ej8GIwe2k/zAb\niSkSZC2E6Lg2rrFgK7D71798/QvsmAGIpQYjTqor9Oz1ZrIJ/i5aldOjbQfbTLl3PkZV917sHnc8\n2049G2cTstS4TWZ/kJDd3vAz2ZAjbCHrr3EBAF1/+xGA/92tlXB74YHQMuIA98/OCmt78tZ09u00\nsGuLFkTzLlNJ2rGFwx+/G2NlBf0+mhfSf8fEUxo0zjEsC1l31wr8Cb5OefDKLM4d3YNn70njovE9\nuG1Gl3qP32ewHZM5cN40VpajuN3EFBdSNHg42084A7chkGU5f8ToBo1bCCGEEEIIIYQQQrQtCRJq\nII8bYmPd9Xes5cTEJQCYK8qIiVGx1mgzc9dN7srt52WjqrDsmzhUjxpSLsNn5PiaqMe2eZ9+jKOa\nVVfd3uixCSGEEJ3Ri9/s5pSZlfzOSACyKCCmYC8eS/Qn3nV6LVC4ymbmuI1v8NSCXf5tiTu95a06\nU5TQ/sCbAiF566ZG7eYxGFBcTvQGQjJsCCFER+Lxxmps3RkIlintfzButICgWGowoH2/vGW6FgDi\ndATOUxtmzGrQ62ycelHIet6xk5o85ubYcdzpzT5GcCYhuzUwFZKQHHoyeOTtPby6JA9Fp3LyjAri\nElRe/ymP137Mw4GRC9AyEH7IP/z7fP9xHGt/jaEhViyJDck4FFzaVO+0h/Vfd/G17Bx3ApU5Pfhz\n5mVRjzuXWbx63qucNK0CAJer/usSX8mzukqo+5jMKn37VvnX43fnkbH6VwB2HH8ay+57mhU33w/A\ne9//iccomYSEEEIIIYQQQggh9kcSJNRA+soquuRvaNQ+Z15YxoKKwCRqRZme7z/SUooX7jGQt9nE\nR68kAlBZbmD8TReHHSOnV/S832VFegAyKGTDubMbNTYhhBCipXXkGJnJpx/J+pr+Ube/snhnyPr1\nk3PIO+qEkLaO/P47IoPN2qT9PAYjeqcTvV7F3YAbqEII0RZUGpe11uF9YCSLfQBsP+H0kBNRDFb0\naMEvHrfW7vb+9yiWYk8Kz3oTye833IMjTvsOu3HKBRQdcnijxtlS3BZL/Z3qO4bZQhzVADx9RzpP\n35HGnRdmhWRYmpebR7feLkxmeGvZTmZeUwaAwaCV6zJ6A6/Wn3c5d+gf8u/38sNpTRrTcb3WhKzH\n7d3tX949diJv/7yV8j4DWProXD77cCmrr76Dt3/6m9WX3wLAov8Gsg7FUcOw5C0MPFQLNIrwDFKd\nXM66tzudCkZDIKDq4Nf/x3FXTgdg3xFHA7DljOnMz92BKzaucS8uhBBCCCGEEEIIIdqMBAk1kLvc\nTgaFUbcPHxO4UTX2pGqe/WIXlx73G7GE38BSg+Z/g28ods1dwvsvfsuhYwP7OOpIg75nh/a0X9ZB\nDXkHQgghhAh22NGh2fr+cAyO2jfSw/A3b7kBJwZUX/GtThQlZNLrMBva95/B+/PeOvncRu2HyYji\nckkmISFEh2a3an8D70LL3JKycT0ABTkDWMZourAPN/qQfXyZhBZyMq6Y2Aa/li0tAwCPqWNnhnGb\nLRjRImH2bDfy66I4tv1lRlUVTp5RwX8+3l3PEaCk/2AcCYnY0jM52f0Fk84MnSMYcoSVyZeElxGP\nxlPrPJTgy04IuGJiUfV6alMNRjZOu4TFT71B/sixLH7qDf82g92K3qBNOLic2uc96I3n6P/eq0Dd\nmYp/+iqO8uLoU0Quh0JS6V7/eo/FX+bzZZMAACAASURBVPqXq7Nzou7XEXWeKzohhBBCCCGEEEJ0\nRob2HsD+rHCPgfeeS+KY06vYVtWVUfwQta/RrE3E9R5o54p7igFI+e3PiH2Db0jFJ2p54q/kGQCm\nXHYCzp+2MOMoLfKnriChknxtwjDx4CSKG/aWhBBCCOF18vRKVi4N3CTNYh/5ZAOQlOrm/+4qJjXT\nTf6uyJdL7+09kdWs427uA0DRdZ5bSmP6prf3EGDQjeAp46B77+Wg+PgG71bVJR1TdYVkEuog1MYl\nVxGi07B7MwnFo5V/+u659wAwmlRGkwuAq9bXfXuNwiG99pCwvQq3ueGZeexJKQA44xOaPe725DZb\n6MvfEbf1H2onPTty5KilKJ/0davYdcxJOBKSKIuJw5qWCcD5k9bx5cfH+vvGxKn0OTi8ZFjUMblD\nz0M9v/20YftZLOwdNR6AvUeOY+0l1zH05afQW60kp2lzDF2qt5O6YQuHPvswAJumXkRyWvTo2LkP\nppGa6eK/n+6JuN3phIy88DmOneNOwBXX8POwEEIIIYQQQgghhGhfkkmoDlUVOj55PYnr/6E9Ffc2\nM6L2ze6mPZE489oyf1tMcQEAK6+eA8ComN8BWLMsxt+nvEQL9HmQO/xtmatymXnWZgA2rDRHfc3q\nSu3ji0mWG1x1UeQ5QCGEEBF0O8iJOcbDzDM2AfgDhAAemb+XQ0bb6N7HycjxWoa/+ETtxtqQIwIZ\n/zYxIHDATpRJaL8QGwtPPAGNCBAC8KSlYar0BglJJiEhRAdls2rfBeOoZvUVt2JP1YI3VYPR3yc4\nSEhVYcMqC+VV2vdLtyn698za3N4MQrbkppXUao6d409k26TJLXKsqpweHMS2iNuSM6KfEE666HTG\n3fZ/6Bx2FI8HVafHmq4FCWVW7gjpu2uLkeFjbDz/9a6w41x1f1FYW+0goZxli/3LBmv0rD8hFIW1\ns67HkZCIwWbloEEObr5oOW+vHcNJF53m75awYwsmxQHAIaMD1zJnXBDIfFRSYKCyXEdxfngGI6dD\nwYItrH3pIy82bJxCCCGEEEIIIYQQYr8gmYQa6cVec/jhtJuZ/1/tacpxp1Qx45oyYmI9DBhuZ9Ch\ngacGLcWFuCwx/DXjMjJXL+fqLa+Qax3Bv2/J8Pf56JUkQJvc3TdyDNkrljHx6plMBOahsnNL9JTu\n1jIPsVRDQsNTxQshhBBCk5Ds4ZXFu8j/xcq8T0K3xcR7wvr/5+M9uN0Ql6BitylcfEx3APLJ0jpI\nkFCHoCYkAmDAhdvVsUvnCCE6r+oKLUgomTKquvbwt3sM2ld8t9GEyxn4un/uaK3P9iIt0KcxmYR8\ngUf25NTmDboJWjIApSarK2W9+3FGzWI+yT82ZFtdGXZiC/cBYKypRnG78ZhM/vJavb/7FLjQ33dv\nnvazSkjyMOQIK5YYleseLkJRoLoi/DpBR/TXrerSraFvDQCXJRaDtRqAScM2kEJZyPbTpk3gJx5m\nIbcSmxC4zjl+ShUlhXqWLtSCbm+e1oXKMj3zcvNC9lcrbJixU3ZQf4oHH0Kfz9/HozfI9Y8QQggh\nhBBCCCFEByOZhOrQtZeWHSg10wVAGUlM5X0mnVPp73PZnSUM/v0zjrv5fA4dqz1VN/y/D3LO2D4M\nevslrGkZoCh0W/ot2Xs2RHydGMWGATfbTp4Scfs9s7IittvKPCRThjNWUnsLIYRofx31FpHNmw0g\nmCFCGLUlViUuQat9ZLaozOy6EIAb+TfQucqNdWSeBK1cjhEHHskkJITooCrKtK/yiUku8iae4m9X\nvCnSKnochJvwbDCDsnYD4DY3PJNQdVZXAFyWmHp67v9csfFclPZBWHtympuRj9/F0LlPcuLFp5P+\nx4qwPobqKnQeN6pOT012Dm6TGZ3TwfFTAvMDp51XxoSrptP1p0Xc/nQh1z9S5I+hGf/incQbrSHH\nvG3Am9RkZLNh+qUh7Yuemc+ay29p1HuzJ6VgLivV3s/myHMPJrRMQpYYlWGjtLEkpbmZfXcJ/YfZ\n6HaQg8oy7fem9jnSbfNgxo6pspzltzzIjw89z2fvLUYIIYQQQgghhBBCdCySSagOOm8IVUWpnu7G\nPSQ5K7CVGdAFzbVayks4es4VAAx7/jGGvPZMyDFsqYGsQWP5GYBBh9rYsCrw5KZVtWBLSmH7CWcw\n+r4b/O0vczGX8Aqb15opzteTlhU6S2etULUgoTgJEhJCCCGaKvgm2Kw5xZQUht9UjSR5z9bQBokR\n6hB8mYRMqhOXSz40IUTH5LBrf7+cfbqHZHJJ3bQegJQtf1GZ3hVqVbj6xjEBaFy5sXUXX4MjIZH8\nEaObOer254yNY4wtN6zdaIL+H7zhXx/5xD9Ze+n19Psw0Ja8dZO33Jg2UVA8aBiW0mIufLCUSedU\n8slriUyflkf2qcvIXJnLO8sCpc1yfvyG/h+8wdmM51Uu5qJbSjhuchUD/7kVt8nE6itvY9DbLwHw\n2bvfU9mzT6Pfmz05FUtZMQCmqoqIfXajZUBKTHFz6e0lIdtMFpVNfwQy7JUW60nLdOOwQ+EeAyXO\nJL7jOGwpz+Ixmdl17KRGj1EIIYQQQgghhBBCtD8JEqqDb67V5VSIM9cAYC4vJW7PTkBL137U7Zf7\n+9cOEAKwpab7l804iIlx+TMTBbOUl6LWSlvQjV3+5U9eS+TiW0tDti/LzQAycCT81qj3JYQQQoiA\nXgOczP5nEYcfo5UFaSidSYf3gXwAFCm30SF4UrVyOTGVxXjc4VmkhBCiI3j+Xu17pskUOSXajomn\ncuquH3m76LSQ9pzSTUDjyo3VZOew+uo7mjjS/YsrNo6YkkJueqKAqnI9z9+XFrFf6sZ1jL/5kpC2\nXl99RPyu7diGjgC0oJyEnVogUFY3F5fdWcKg194CQOfxEFOwF2tmFwDG3zILgJe4lEFvn0RObxeo\nKjk/f481LcNf0s2j1zcpQAjAnpRMTOE+4vbsJG7froh9XuViIFCuLti630IzRX33YTyfvp4U0raZ\n/qy87u4mja8jkWs6IYQQQgghhBBCHMik3FgddPrAjUKzagdAUVXOmHwUe0eMQUUha1X4U4jBUjau\nD1k3Gty4qsKDhCIZReDYiz5KoLQo/OOyYMWenNqg4wkhhBAinKLA0ZNqGhUgBFDdu3f4gcR+z9Wt\nOwBVqwopLTSwb6fEzO/PVBr3/6UQHZXaiF/14L7mKEFCf1x2A+PTV5KhL/a3rR37j0DSO13nnApw\nxsVjqK7m0LE2jj65mntf2sedz+bT47vP692356LPMVeU4/EG9NiTUjCXBx7kyVi9nOHPP+ZfP+v0\nUaCqGCvL/W06VAYYtwAw+M3nMFVVkLRDW5+fu4N3fq6VpbARXJZY4vbt5ozJR9Hrm0/97b/d/ADz\nc3fw7XPvsYl+pCZamXFNWdj+514X+lBS7QAhgKUcRcFho5o8RiGEEEIIIYQQQgjR/uSuSB2C5023\nO7uHbMv+/ZcGHSOmKB+A7//zFhOuPRejzo3Dqm17jJuoGjuCa36+0t//w69WkbHqV8bdPptEKvn1\nsjkc+eK/AJj3nxSuuj8wyRtntnOp/QVsKSOb8vaEEEKIFqUoCimxxvYeRpupGj0aNgbWFZ0ECXUE\nbm+Q0GK0kjsfv5rIrDkl6OWqWAjRQVhrAucbsynyAyhuswWP3sCTGf/k3H1axtsEW0nEvp2JKzYO\nY02Vf73vEAdnnno4sUUFUfcpGTCE1I3r/OuORC14RtXpiCkupNviL9l17CSStvwVtu+M0b3C2kze\noKHhzz7S1LcRkcdkwmC3hbebtdJyzrh4+vE3W9KHs9DybVi/Xv0dYW219SCPvOYPVQghhBBCCCGE\nEEK0I7kdUo//u6uYF+5P49XkK6kxZBFbmN+o/fMPHwtAdZduAJgUJ3abNqmbRjEzPC+SSikL3/wK\n0FKW7zp2Er/c9QSj77+RPj8tBLQgIYe91s1Hj4qCKpmEhBBC7Bf0OoVJQ7u09zDazLJutRoMclnV\nIXhvlvosXRjPto0mHpm3r50GJIQQjbPyx0BZqITywoh93CYzqsHAsH1L/G1d/lwOgK0Tf390xsZj\nqKkOaasrQAjg2xc+ZOjcfzN43gtYUzPYOFUr2ZW0bTMA426fzfxftpMcIUgoEl8mopZmsFlD1v8+\n/RzKe/dj20mTAXDGJQCQvHUTB7/6X9ZfcGXIk1FOR3iw8+ARNs69rpQ552nXd9HK2wkhhBBCCCGE\nEEKIjkPuZtVj3CnVjDulmpNO+ZrqjJxGBwmtvuI2IDARa3bbcNhjATDgousvP2BLTqWs36CQ/bad\nMoXR999I2p9r/G0GY2gOelXVnl50xcY1+n0JIYQQonmMnSdp0gHnx4eeZ/ztP7CEYwDYtcXUvgMS\nQohGeO7edP9y1+VLI/Zxm82oOj1u9P42nUfLOtSZHzJxxsahdznp8ssPlPfqS012Tsj2ooMPZdEz\n81ENBo67fCqrL78Ft8XC6qvnsPrqOSF9M9cs9y9nrFlO/wVvNWgMPRZ9TvcfvvSvr7jx3ma8owB9\nrSAha0Y2G6df6l8Pnjc45IXHMZeVsOW0aSTs3Ma+I45mwHAtSOi6hwoZeYyV4nw96dlaUFDvgXa2\n/WWm5ujDW2SsQgghhBBCCCGEEKL9SJBQA+kddmoys+HPyNvticmYK8r861++9jmlA4f6150JiQDE\nVxZQnnSQdky0CTe3JYaGMFtCg4RQvanDFSlvIoQQQrS1klpVW+R03HHsOnYSL3aZwoC9v/nbHHYw\nmevYSQgh2pmqauea7n0c7PQGN7qNkYMc3WYLOqeDHkHFoTwmM9jtbD15SpuMd38U6y0Hfuz1FwDw\n+dvfhWz/5uWPA8svfUxdqjO7EFewF4DjZ5/tb197ybUMffk/Ufcb8toz/uX1F1zJprMvbNjg61E8\neDg9FgeCj1xmS8h2V615h4HvvsLAd1/xr8/P3cG83MDviy9ACOD2/xYw4JzZYG7Y3IUQQgghhBBC\nCCGE2H/p6u8iUFUMNdVU5fSI2sUXIFQ8+BA+/HJlSIAQ4L9zGEsN1hrtaU4D2pOctSfrfP4+YzoA\nr3M+AD36OmsNS0W1yJPvQgghRHvYurW9RyCaI8lYFbJeVa6P0lMIIdrfj1/Ece7oHpQX68ju4fK3\nL7s3NBjFmpoBgKo3oHfYSaWUJ7iBYaOs2BOT2TNqPBvOm92mY9+fqIRG9J46/bgmH+vTBT+x5rIb\nQ9r2HjmO6lrZieribMGswBtmXsan7y9h19HHA1qgWLDa62FUNeqmuASVw1mOJ0pQmhBCCCGEEEII\nIYToOCRIqA7xu3cw8vG76PbDV+jcbu3JyyiqM7sAkHvn49hT0iL2KeszgAwKKS3XJtZ8mYSMVRUR\n+zsSkgA4nU+1hloZClSPluFICCGEEG3P4Qhdd7sj9xP7J5M+9AOzWSUVlBBi//X1uwkA7NtpxB70\n98qRmBTa79VPWfLoS6Ao6JzaieoGnuTdnleRsDtP+/7YiVPfRSvVvfbia/jsvcWNOpZqMLBnzLEh\nbdVZXdk17kTyDz0yrL81JT2sTdW3YICqTkdV915aBmRAQQ3bXpdDnn+MxG2boh/e6YiauUoIIYQQ\nQgghhBBCdBwSJFQHg9VK/w/eYNzt2pOWg956gcpuPcP6ffna5/z84P/YOf5EKnr2iXq8bSdNJpMC\n3G7tx25EywwUW1QQsf+W06YCQZN7QXN8hppqVBTM1ZEDjERAJ54DF0II0Yqs1tB1u8TtdiyG0Kq7\nN0/r2k4DEUKI+m3fpAVnOB1QUaoFlrzDNJxxCSH9arK6snuclklGH3Ri8pWVylqZ2xbD3W9tnHZR\nxPZd406gssdBjT6e78Een94LP8SRlMyiZ98l/9BR/vaCQw5n5Q3/DD+AJ3r2nqZyxsYD2pxBbbuO\nip456eDX/8fEq2ZE3a53OPAYjc0foBBCCCGEEEIIIYRoVxIkVIfqrNCbRX/NmMVnH/zI/GXb/G3v\nLN1M6cChFA0dwdJHXqzzSUBzWQmZBAKC0imK+Do+lT378NFnv/mDhBK3bAzZrqKEPx0ohBBCiDZx\n++2h6xIk1DH4Yoc9ej239Zgbss0j2aCEEPshd6C6GNYaHeUlOk4Zvp5pvIczLj7qfr5MQsHUTv4E\nhS0tM2J7vaW4onDGJ4asbz1tmragKCx67l3m5+5gfu4OvnvhA5wx4VmMFNXTpNetiy9bUqQgIbdZ\ny468bdLkiPvGFBdGPa7O6agzu7IQQgghhBBCCCGE6BgkSKgOvoAfZ2w8NRlZrJl9s7YhKE23pxHp\ntu1JKSFBQlvvuIXP31nEpx8ujbqPLSXNHwhkLi4KGpyKikJB0NOJQgghhGg7J50EpaXQu7e2brO1\n73hE46h6A9d0eYvnv9rlb3vm7sglY4UQoj2VlwQeRLFZFWqqdAxc/SUAzijlsyByaep3lm5u+QF2\nMGv+76awNldMbJOO5YwPzeS08po7GtwXwJaW0aTXrUtVTg8A7MkpYdtUvZZFz5oaeN13lmxk7cXX\n+NePn3UWEy+fFrKf4najc7s7Tbmxzh1KJ4QQQgghhBBCiAOdof4unZcvSMhYU0Vp34HNrlv195kz\nKHn2E/96Qoqbil596x6DwRCULSj49bUgIXQyfSWEEEK0l+Rk+PhjuOkmGDGivUcjGsNjMKC4XSQk\nB7I4/LooDh4sbsdRidpUSZopBGXFgSCh5+9NByCeKgBcEbLT+OgdETIJGaRc1J/nXc4hLzwe0uZI\nTG7SsVS9nkVPz8OWnklM4T7cdQQbFQ4/wr9cPHAoe8Ycy9aTpzTpdeuy4/jTUXV6dh5zUtg2vV2L\naA4OTvKYLay99HqGvvI0BcNGkvnHirD9Ujf8AYC5vLTFxyuEEEIIIYQQQggh2pYECdVBDcoY5Kr1\nhGbuHY+iuBuXGtxtNtOTHf71mDgITwAezhck5NEFJocVbyahTp4tXgghhGh3w4bBN9+09yhEY6l6\nPYpbqy82+dIyFryUzPCx1nYelRBChLPVhH/pS6ASALclpsHHKe0zsMXG1JGpBgMbz76QAe+/5m9r\naiYhgPwjjgKg/KD+9fZd+OZXDH3pSXLvejysVFmLURTyjjs14qb4PTsBsKWm89ut/wpkBtLpKO03\nOCRAyFJcwISrZxJTlI+5ohyAAe+/xu833ts64xZCCCGEEEIIIYQQbULKjdXBl4obwicNt542jS1n\nTm/U8TwmMxfxauD4Rn0dvQMqumt1TJzmoDF4g4QkD7YQQgghRON59AZ0LhcAZ11cAUB2d2d7DkkI\nIdi42swTN6WHZNHyRHg2xZdJyJf9NpIN0y8NWf9y3tctMsYDwe833sv83B1UZ+ewb8ToZmcNbqiy\nfoNY+siLrRcgVI+UzX8C4DEY+fusmWw79eywbT6TTzmc5K2b/AFCAFtOORshhBBCCCGEEEII0bFJ\nkFAdVJ2O6uwcoOnpx0MoCoopEHjkaWCq99x7ngTAbQzqr4KKgk4nNRiEEEIIIRpL1evRubUgIV/y\nyPXLLe04IiGEgPtmZ7Hyp1j+Xmfyt6me8ACW36m/xuXf/zivRcd2IPrk42V8/8zb7T2MNleTmd2k\n/Zbf+mALj0QIIYQQQgghhBBCtDUJEqrH0oee59fbH2btJde2yPHcJrN/2ZGQ1LCdvHeuVDUwOayV\nG9NJIqEGkJ+REEIIIWqL27ebtD/XoHPY/W07t5jq2CNUZbmODSvN9XcUQogmePCqTP+yL5PQPXP3\n+dvu4v4GHWfl1XNadFwHpE5Uw/ujz35j1VW3UzRsZNi21VfcWu/+HmPDz5NCCCGEEEIIIYQQYv8k\nQUL1KBk0jC1nTMea2aVFjucLEhrMeuzJqQ3aR/F9SkFJg1Rf/vnOM58phBBCCNFikrb/DUD62pVN\n2v/aM7vywBVZLPk8riWHJYToxPJ3BbLOOu2Br+q+r34Z637niff3kNf3cLqzq0HHlKAOEcyakcWG\nc2dH3KZ6JxesKen+tnUXXc07P24KdOpEAVVCCCGEEEIIIYQQBypD/V1ES/KYTGxgIBnGUr6O/a1B\n+6je+WE1uLKYW3ucVObohBBCCCGaTudyhqyXFOhJzXTXu5/dql2gvfhAGksXxrFhpVaq7Nb/FDDs\nSFvLD1QIccC7YUpX//LI8TX+ZY9b+9J3xH/+yd+T5xNjcjX4mPkjx7bcAMV+bUhOIhkJTc9wZzjn\nDHj2Yao++QzHzz+RdPvNpD32IOMNBmouuAjzVws5dmBGC454/2XSy/N0QgghhBBCCCGEOHBJkFAb\nc5vMDGQj1SldGhzho/jSBQVFCakeySQkhBBCCNFcE649j2X3PEVc4lVUV+jZvc1Yb5DQuuWBm7CH\nHVXDyp9i/euPXJvJaz/mIck7WoZafxchDki+EmPBy3rcmMvL+H/27jtMqur+4/j7Tt/eWHoTxIIK\nKEZRVESNit3ECvauiVFjEI2J+anRKIklRk1iw4a9oMSCDREL0myoSFFYOmyv0+/vjzs7s3dntsE2\n5PN6Hp6595xzz5xZdvaZ2f3M96QVb2r1PBVDdmnnlUl3lZfuoU9O2tZPcPAYME0K64+v/wPxesqP\nPwZA+9RXFhERERERERGRrqSPR3Wy+u3GWrvVGIDhsJJA9Rmh9atd+Gus/zpVEhIRERFpvfrXTu/f\nNz3eNubWa5l81xYA/LWpX1ytX+ViwWzrj68zHsuJtzcMCNWbPzu5TUR+nh5+GJYvhxUrtn6OYBDS\nPM74+ZDhAcKhxM8iM2K9EXQQxV1TRVrJljbN/8r/5vPaK3O3foEiIiIiIiIiIiLys6FKQp0slJEJ\nQCCvoNXX1G83hgmhIEw+vS8QK0WvkJCIiIhIm9X2Tmzr44hEyMi2SnUEg6lfXN14bm+Cgdbl6x/8\nSw/GHlW07YsUkW5tv/1gwYLEeTS6dR/iWL8+cXzYSVWs/dFNJJyYyFFVDfSMVRIqwxEJUzZsOIuu\nvqlV8/t79Gr7okRERERERERERORnSZWEOll9BSF/WyoJGYlKQhceNqBRX/utTURERGRHEU7LsJ17\nXNYWY6EmQkItBYSmzSni6c8SwaCvP/dt4wpFpDuLRu0BIQC/f+vmqqhIHGfmRHG6IBxOtLlqagDi\nISGAlSeczubRB2zdHYqIiIiIiIiIiMgOSyGhTuaPVRBqSyWh+pAQJgwYGmrU125LExEREdlhhNLt\nIaHM2mIAwk2EhFJxOs34scdrf11251U9qSjVS22Rn6vS0uS2QGDr5jr55MRx38EhXG7Ttt2Ys8oK\nCTmI4omFhMJeBRFFRERERERERESk7fSXi84W++tRIDu39dc4YpWEMNhtlP3jqQoJiYiIiLRdOLYF\nbL1fnT0eaLqS0K4jk0uE3Pf6OvoPCfL7qVvibUN2T6QEaiodRKPtsVoR6W6efDK5rXFI6KGH4Oij\nm5/n7bfhp58S5z16RXC5sG035qxOVBIac/sUAKIe71atW36+9LsBERERERERERFpDYWEOlnGxnUA\nBHLyWn9Rg0pCwcZ/uNIvAkVERES2yqxHXmXNIUcC4MMKASW91orxpiWqBu07rpa7X1pPbkGUO5/Z\nyOhD6uJ9v7u9OH48+Yy+PP73PAWFRH6GPvwwua3xdmOXXgqzZlnHK1ZYb+uefz7RHw7DhAn2a3zp\nUZwu07bdmBm0ThwkfphEFBISERERERERERGRreDq6gV0Zzlpbo7dq0+7zun821/xn3cuq488odXX\nmIaBQRTThFDA/oerRUUDGduuKxQRERHZMZTsuQ+f3vxPTh+/O16sEiBNVRKqfw02+e7NjDowuapQ\nvcI+EX57azH3/7kHAO+/msX7r2YxfV5RO69eRLrSMcfAzJn2tqa2G7v/frjySuv4jDPgtNOswJDb\nnTw2N7iFhXOs96CfzEpn7FG1mFHr54+TSHxcxKftxkRERERERERERKTtVEmoGU6HQU66u13/ZY4b\ny7K5Cwll5bR+IQYYmJimSShokFeY+Fjp8L4bO+CRi4iIiOwYImnpQKI446uP5hCNQiQMX33mIxyG\nD2Zk8P0X1h/kmwsI1XO5zaS2VT+kSAOIyHarvtLPcccl2poKCb3+uv28pqbpeU+95Ij48YzHrPeM\nZtT6mdKwkpARjiDSkKH9xkREREREREREpBUUEuoCRpv3CDOI4mT297sQrjPpX7I03nPxuE/bd3E/\nQ/plqYiIiDSnpqe9cmRlmYPbr+zJ1Gt6cu5BA3n0joI2zef2JIeEbjy3fatTiuwI3n4bPB4oL+/q\nlSQLhazbo45KtDXebqw+QDRggL199WqorbW33fPPKMP2ClDIFkwMBudtpv9Q604isTzQkkuujo8P\np6Vt60MQERERERERERGRHZBCQl2grZkVM3bB6pICFn6SSVq0hp34cesmExERERGbdx551XZumhD0\nJ7/GOvG8ilbN53Ilh4Rk65imvpY7sr//3QrjzJ/f1StJVl9JqEePRFt5ORQ12FnQFdvcu7jYfu2e\ne8LIkfa2iy8xefHAP8U/TtKvbBnVFdbbdTNWQGjjQYdRPnRXADbtq02nRUREREREREREpO0UEtoe\nNAoCzWd/FjGajfRSSEhERERkG9U1qiQUDhnse2idrc3tMTn10kRIyFtWwl4P3w3RKI25PB2zTpEd\njSf2XAqHmx/XHoqL23Y/9ZWEMjMTbUceCYMGJSof1Y/56afk61essG5/9zuYNAkcDhj5338k5s/O\n5rtF1jaHZv3OYi4Hb05/h2fmrdb7QBEREREREREREdkqCgltp/Iopxeb9cthERERkXYWCRtEI4lz\nwzA5aEKN7WXXryfsw16P/pN977op6fqKEvtL7FMuKY/N2yHLFfnZqn/OpcjitatgEAoL4YorWn/N\nypWQng4jRiT3rVpl3daHhL75xrp96im45BL72GuugaefTp5jfqU1cXWFI15Ry3DpvZ80Td8dIiIi\nIiIiIiLSGgoJdYE253oMg/OYNLmabAAAIABJREFUFj/9D5fGj02FhERERES22fcTL+YOpgBWNZFI\nJPEayzQNnM7EtldDZzwbP85b9h0AE8cMYuKYQaRvWMvoQxJViP7y0EbcHuvaUFCv20TawhF7t9rR\nIaHqaus2VVinKY89BrW1MHAgzJ1r7yspsW6DQXv74MHgdifOTz3VagOsfQ5j/Ln57N/D+tlSUeog\nGvt5ZDj19l1ERERERERERES2jX7L2AWMNn7GzzQMpnEBr13xIN/vdxyX8lBirkikmStFREREpDVq\ne/VlF5YB1nZj0UZVf5yuxPHI/0yNH68ZP4EJZ0+In5908lhcLpNzry3l0OOr2WVEMH6tKgmJtE19\nSMjv79j7qYvl+lobRnrxRft579728y1brNv6SkL1CgvtbePHJ47N8jIAisZPIOL1cf7gmQAEAwZm\nbF2qJCQiIiIiIiIiIiLbSiGhLtD24j/WBb2yK8mNltt6enz7RfssSkRERGQH0FRYO5iVgxvrr/eB\nOoPXnsix9fvqKkjftN6ao0GSYOAHb5C3/Dvb2NwVSzny1GouvrEUAKfLqhASDusP/CJtUf++qaND\nQjU11m2DYj7NOu006/a556zbHj3s/fWViRpXEtp5Z/j3vxPnmZmJY6O4GIC1hxxJ1O0mA2tR/joH\n0UhsYaokJM1QkWEREREREREREWkN/ZZxexD7bZ9hmjhC9t80rzl0QqorRERERKQNAjm5eLBeZ5Vu\ndiX17zTzRU468QAA3NWV8fYeS5ID2/3mvms7d8VCQtGI/oLbVq0NbcjPU33o4dxz4Z13Ou5+amut\n22AQpk5tfmxDQ4datzn2TGG8WlAoBEceCWeeCcXF4HRa1ZH23tvqt4eErPJDgdx8oi436ViLCvoN\nQmEnAC6ffoaIiIiIiIiIiIjItkn+C4h0uLZ+ws+sH2+aOENBanr2IWPzBgA27n9w+y7uZ0ifqBQR\nEZGWRDzeeEiorib5xcODXME9/J6JYwa1ONfIh+5i5EN3AfDJLffhcE6Mz5uWaeBLU/JFpDXc7sTx\nUUfB+edDr14wcyYsWZI83h+KsKUq0OycdbVW5aAehYm2lesdgA+AKVPg6F/Vkpff3CzpAKSVfA3G\nSIpfnAGcGO/dXB5kTWmYmjofTm+UO+8PUgvUlsYGOLyAk9qonzWlVmUy1+r19AH8eQVE3R4yolYl\nodXLPWRFnDiI4HA7aOWOaCIiIiIiIiIiIiIpKSTUBZra5qLpC6zx+029EYC1B/8yHhISERERkW0X\ndXvwxbYbq6myim1ecXMxD/7F2kfoQw5t8tqNow9g/vV34K6pYsJ5x9n6hsx8AecxZwIw+Yy+AEyf\nV9Teyxf5Waqrs59Pm5Y4Xr0aBjXK7JXUBJm7vLjZOe+Z0oOFc9J56tMiHLG6unM/z6A+JARwy9Qg\nv7qwMuX10Sg4nAPIK4xQ9dHbAFQ+MR2X+wT6Dg5RtNzD8o01zF1eRVVtH8r9QeYuL7HNURvuCTj5\nflMFxnIr1DR06Wr6UF9JyEWOaW0z/c6LmRzfx4GXAKbT2exjExEREREREREREWmJQkLbBXuoKOp0\n8vFfH8BX1vwvwEVERESkdaJuT7yS0HMP5AGQlZuo2XEA85KuWTf2MGp79mXhtTdjulK/rO6z4GM8\nR9al7BOR5q1ZA3vsYYWFfvzR3jdpEnz8sb0tGm25StfCOVYVoLpqg6hp4PaYfPRGhm3Myw/ncsK5\nlaR6Wn/waibRiEHJRleiZKkJ0+asIRgwuHD8ACJhqzkcMnC5k9fkjM0bCSfe53nLrTJDgdwCoi43\nY754DniW0YfUEVrqxEsADO0WLk1r84eRRERERERERERkh6TfMnaBtm9/Zf/F8sAP36boiONYdup5\n7bUkERERkR1axOPBHaskVC8aaf6aJedfyYIptzUZEKq3x4uP2M79dfpDrkhrrFsHhxwChx6a3PfJ\nJ9s2d9EKD5cd1Z8Lxw/gu0VWFaF7Xl4X7/9gRmbK6zavT36+OyJhHETjgaBw2MBfa1C80cWyr71J\n44+dZFUpGjgsGG/LKvqJsC+NiM9HdX+rRNLArM3UVDqoC3rIpBrTobfvIiIiIiIiIiIism26rJKQ\nYRiPAccBm03T3DNFvwH8EzgGqAXOM01zcaxvKnAsVsjpXeAqIA14ERgKRICZpmleHxt/HvB3oP63\nvvebpmn/a00nyklzM7hHeqvHu0ke25brd3QFGZ6uXoKIiIh0c1F3ckio7yDr3OuL4vfm4asoi/dV\n9R9MyZ77JM3z9UXXMOKRe2xtvZZ9aTsv3uCi/xD7fYlIsro6SE+HzZtT91dWQnZ24txsuZBQ3F+v\n6JXU1rNfIhlYVZ46kJNXaI257KYSiFqBv53efhVXbQ0f3fkwANGIwTfzreDRprXupDlGHei3bTuY\nvmk9Q994kbr8QgA++/Nd9J/zDnnOCqoqssgMWSEhjIykuUTqtf3DSCIiIiIiIiIisiPqyu3GHgfu\nB55son8CMCz2b3/g38D+hmEcCIwFRsTGfQyMA+YD/zBNc7ZhGB7gfcMwJpim+VZs3POmaf62Qx5J\nG/XK9tEr29f6C4b2sGrpr18Pb74J993HgVlZHbdAERERkR1MxOMhiD1YnJkT5cE31tL/y4/w3ZgI\nCK096Ag+vu2BlPMsueB3SSEhs9EWMGtWuhUSEmmFcBhcLhg5El5+OdG+226wdCksWwb77ptoj7Yl\nJdTI7U9tAODvz61n8hl9qSxzphxXW209n8ceXsmYcZPj7QM+egfDAIfTJBKG2a9ZlYh2GeFv8b7H\n/sl6m/rDGRdYDQ4HVf0Hkr6xhs/mp7HSNZzd+A5QSEhERERERERERES2TZfVKzdN8yOgtJkhJwJP\nmpZ5QK5hGH2w9t7yAR7AC7iBTaZp1pqmOTs2dxBYDPTvyMfQqcaOhVNPhWnTQAEhERERkXYVdXvx\nYf9j/uFTzqPAV8HxN06Kt31412N89I9HiXqbCHw7HHx+/R22pnJybeeP3pGvLcdEWiEcBrcb/vhH\n+PJL6/aMM+DJ2MdM1q+3j28pIhSNJrdNn1fE9HlFDBpmBff6Dg5T0DtM0J/6OfrOi9Z7sYzK4pT9\nTpdJTbWDdT9ZFYRunPRR84syTQq/WQTA5r33jzf78wv5rHIUAHVhL1+wd/PziIiIiIiIiIiIiLRC\nl4WEWqEfsKbB+Vqgn2manwGzgQ2xf7NM0/y+4YWGYeQCxwPvN2j+tWEYXxuG8ZJhGAOaulPDMC4x\nDGOhYRgLt2zZ0l6PRURERES6sYjHw+4sZQqJgM+gRbM58eSD4ufBzGzWjz28xbmibvv2QqXk287r\nahxcOH4AwcA2LlrkZywatf65ogGcTqua0G23wbPPQp8+1piNGxtd00IlIX9trArQ0TUU9Apz57Pr\nU47zeExCwdQhoeoKq8KQt7wkZb/TCe+9nEXxRqto7wlTTgPACIfIW/oNRtheRcxdUxU/DmUkPgwS\nyCsgy6hCREREREREREREpD115XZjW8UwjJ2B3UlUCXrXMIyDTdOcG+t3Ac8C95mm+WNszEzgWdM0\nA4ZhXAo8ARyWan7TNB8CHgLYd999t75evYiIiIh0O0YTBXyibmursTu4gY+PuILP30vHgYm3sjw+\nZtHVN7XqPhqHhM7hSa7l7qRx548byANvrCW3IEV5E5F2tqGijip/uKuX0WrBIEAWrttvYdmVU2xP\n3qBp9S1ZHmDZpmC8vbiq+eRdTZX1GZnho/1c8X+pQz4A7mZCQgB77V9HjyVfJHeYJv5a++dwMqgB\n4MyDdo63PTNvdfzYW5YorhvISVQdq8vvwVfuvRkSXAHAIt/+LOXFJtckovp0IiIiIiIiIiLSGt05\nJLQOaFjxp3+s7Sxgnmma1QCGYbwFHADMjY17CFhumua99ReaptnwN8CPAFM7cN0iIiIisp2JeDzx\n4yuvK+L+/o/A41A2bDjesmICuQX8dOwprZor6rKHhHrQdBjhlkt7cfdLG7ZqzSJt8eOWGlaX1Hb1\nMlot4DeALNyE+Oqb1YSyc2z9Xl8GP24IsHBVeeoJUqgPCWVkNR/Mc3tMggErcvH9F17mzMzg0j+X\nsmmN9fZ5+OgAjkYVgQCcgeSQkpswTr8/qR1g4phB8eNvz7kCf0HP+Lk/vwfDgyt5/v1vGfHQ3Qz5\n3/csbeHxiYiIiIiIiIiIiLSkO2839jpwjmEZA1SYprkBKALGGYbhMgzDDYwDvgcwDOOvQA5wdcOJ\nDMPo0+D0hPrxIiIiIiIApjORnXdFw3hC1h/1fcWbcfn9bBp9QNNliBoJZWTGj5efPIkl518ZPx8w\nNMg/XkhscbRprT1QJCKWSMS6dRHGXVud1O9wJsYAFC1303i3se8WeZk0ZiCvPJoNJEJC6S2EhFb9\n4OHreWm8+N8c/np5L+a+mcm0qXn84QzrbWVGVhRXTfKahr38ZMr5Cr+abzvPWfkD2T8tt7WtGT/B\ndh7I6wGAr7QERzhE1NWdP98jIiIiIiIiIiIi24suCwkZhvEs8Bmwq2EYaw3DuNAwjMsMw7gsNuRN\n4EdgBfAwcEWs/SVgJfAN8BXwlWmaMw3D6A/cCAwHFhuG8aVhGBfFrvmdYRjfGobxFfA74LxOeIgi\nIiIisr1oEAByhEI4g1ZFkLSyYjzVlUR8aa2eqnjPfeLHi675C6bDyaNcAMDVdxTTZ2CYaR+uiY9p\nHGwQ6Qjb2/dZJGw9J90kno8NOZ1mfMzXn/u44ew+fDAjk5rKxHP5tt/0AuDlh3M5f1x/bo+dp6ok\nlLZ5Y/yLFIlYc8yYlqhe9P6rWZhRI369u6aaiMfLTxN+FR+zz79us825mL0B6P/RO7b2YycdydCZ\nz9va/Ln59vP8+pDQFhzBINEG1c5EUtJ+YyIiIiIiIiIi0gpd9nFE0zTPbKHfBH6Toj0CXJqifS1N\n/FrMNM0bgBu2bqUiIiIisiOYd+NUxtx2HUY4hDNg3x4o3IaQUDgjk2fmrY6fR51OLmAaaR/fiBnb\niszjM8krDFO2xUVttUFG1naW4BDpYNGwdesinPR8BHC6EpWE7rzK2qbrsTvzeezOfKbPK2LdT/a3\nusFA4vMxjUNCmWtWccKp4/jiiuv5/pzLGX9iNbNfy6QpOQUR3DVVhNIzCGTn2vouOWMJDz23J06X\nyUjzG4jALi8/lTTH7s88bDsP5BXYzv2xc19ZCc5ggKhbISERERERERERERHZdt15uzERERERkU4T\njQV4jrjidHZ+/TlbXzgtfavnNWPbBBkN90YCTjq/EoBgQOUfRBqrr+ZjhYSSKwlVlDr54NUsopGk\nLiaNGch1Z/Ztcu70THtIKGPDWgD6fD4HgItuKGXcccnbidXbbVQAd001ocwsanr3s/Udc/BPAIw5\nvBZHJMXiGpn5wmxmPfpaUrUyf34hAL7SYpyhIBGFhERERERERERERKQdKCQkIiIiIkIizJMZCwys\nG3tYvG/NoUdv9bxRpxMgKTDg8VrVg0IKCckOqrbaIMVOYkCiSpCbEEdddBITxwwifeO6pHEVpc42\n32+TlbsabDs4/qSmQ0KGgRUSSs9g+SnnsGWv0fG+MY/cxl3PFnHxjSUpr119xPHx45XHn0bVwCGU\n7DEqaZw/z9p+zFdWgqu2hnBG05WNRERERERERERERFpLISERERERESDqtG9P9P3Ei+PHtY2qhbSF\nGZvXV7IFb1kiOOD2WEGFYFAhIel4Jt1vS7uLjxjAdWekrvjz6awMAJwkwnVHXH4aOSuWklX0Y7xt\nQ5H1/Kp/PrXkiv8rTmozzORrh+0ZZPq8IqbPK2Ly3Zvj7RdeX4K3rISeX84nlJFF1O3hm4uujvf3\n+uJzdg98Q6rCP19fdA2f/PX++PmPx57a5DpNl5tAdi49F3+Gp7qSYGZ2qx6f7LiM1Luvi4iIiIiI\niIiI2CgkJCIiIiICRBv9VT+YldMu85oO6yX3CaeO49cT9om3q5JQy1JkN+Rn4r1XrMo4WzbYw3lV\nFQ5ME174Ty4AG+gT78vcsJZjzzqK408bz/X/tII7t/2mFwB5hWHbPFPuTQR7ps8rIjvPChulZSR/\nUzlCwWbXOupAf/x4yPAgv56wD57qynhbxOO1jfdWlKWcZ+mZF9nOI15fs/frrSyn96LP6LHkC4JZ\nCgmJiIiIiIiIiIjItlNISEREREQEiLrsYYWo290u87prUm9bVB8SCvr1klw6XncLXE2bmp/U9s6L\nmVx2VH/OOmBgvO233J80DqCfucZ23vB5dPtTGxgxxm/rryyztiUb9eKDjL/qbFtf308/aPW6PQ0q\nFq05dAKQHPZxhEJJ160+4vikLcMah4uak7/0m1aPlR2TobypiIiIiIiIiIi0gqvlISIiIiIiP3+N\ntxur3GkX5kx9hMrBO2/TvDk/LbedZ61eSdWgobjrQ0KqJCQ7uGjUCjg8cZc9OHRN2v2k19WlvGZw\n+XfA6Pi5y209n66ZuoVBw5JDOvWC81fTh48gGmWvR/9JMCubXV55GoDeCz/llCP24qX3kgM5hsPE\njBrx5y0Q/9nQOOzjiCSqGpXuuidrDj2alcefljRnW0JCWeuKWj1WREREREREREREpCkKCYmIiIiI\nAHnLv01qW3fIL7d53ojHvo3Zno/dx2c3/xOXywobRCLbfBci25Wg3x6M27LeRW6P5CfCXoEv+O6s\ny+j38XvkrFph6xuy9CMgURHo3GvLWPmdh33Gpg4V1TuWNwDoO+9D9nr03qR+T3UljoCfaKPqQF6f\nib/WsFUSqu3ZG4CavgOoGDSUnNUrATDCVkgo7PWxcd+xfHv+lba5ok4njkgkqQLRyXv3s50HH38S\nz3nnABB44aWkfpGGvC5VpRMRERERERERkZYpJCQiIiIiAhSP2Dd+XFvYq93mdQaDtvOdZs1gwXV/\nxeW2qqaEQ6okJDuWkP0pgb/OiAeH8nuGKd1svU3NiFYRyB6Kq7YmaY5hrz8HPBw/79EnzD4HNx8Q\nAiigBICxN/6myTFpxZup6TfQ1rbPQXV8+k6GrZJQba++AITTM3jj+Q/IWr2S408/LF5JyIhEMJ3O\npPmjLlcsJGSvJJTmaTT23LOtf0Draw6JiIiIiIiIiIiINE0fNRMRERERAYr3Gs2M1z7jxXe/5o1n\n3m23ef15BUltpx2+JyeeewQADXYmEukwZstDOk0kYgWCevS2vvkDdQaBWEjo1xdVxMf58RH1eOJh\nnBkzPuWNZ95l+cmTcNdWc8t/18XHen2te4ROrIpF7rrapL4Ff7gFgBN/fTBpmzfa+i75Uwl3Prue\n9EyTqv6D2LjvgYTTM2xjzNiWhY5YJSEjmjokVDFkVwCi7kSVMUNZQREREREREREREekECgmJiIiI\niMTU9upLKCuHUFZOu8351eVTUrZ7sMqpqJKQ7Gjqt9jbdWQAgECdg9LNVpjG4zO57p7NABzBe0Rd\nLj6a+jBz/v4otb37UTFkF8p22QOAtNqy+JzetGjS/Rw7qZJL/mRVDjr9inI83ihNPdtmvPoJm0Yf\nGD8fOvN5W7/bA/13CpO9agVZa1dT1yO52ljUZYWEjHCIXgs/wRGN4koRRvrw7seZM/WRpJCRiIiI\niIiIiIiISEdTSEhEREREdhhdEceJ+Hzx4x9OPS9+7CYEQDiskJB0PNPsPrWEolHrez4t0wr2BPwG\nN1/SG4CSjU5GHuDnlZkL6MsGTKeLQF4B6w4+In59fUAno6o43uZJUUlo4pXljDvO2qrshHMqef65\neUljlp1yDu/fN53aPv2p7j8o3j7i4btTrr3PZx8CsHnv/ZMfVywk1HvBJxz+24kA7Pbco0njAnkF\nrDvkl7Y2/RQQERERERERERGRzqCQkIiIiIhIBysZPhKAVUedxDPzVrPw2ptVSUh2WNHYFnvpsZDQ\nh69nxvuG7GE9L4ywFaKrD940VFtohYSiGyvjbR5vyyEod21NUtvCP9zKpv0OsuZze3j19c8BqOnZ\nJ+UcnuoqAH487rSkvvrtxga/+3qLaxERERERERERERHpCgoJiYiIiIh0sFmPvsazH6+kZM+9AVh2\nyrn4+/cDIBLuypVtX/x+OP10WLasq1ci2yISsYJx6RlWSOiLT9IAuORPJewx2tqCzBG2nhhRlzvp\nen9BTwBGZyyJt51z0CAy165u9n7dtdXx4+/PvIhnP/kxaUxdz95EXG5WH3li6jmqKwlmZGE6nUl9\nqQJNVf0HN7umeoaygiIiIiIiIiIiItIJFBISEREREelohoHZMEBgGAQGWCGhJ+7KZ83K5CCEgIm9\nOsyiRfDCC3DeeV2zHmkf0Yh1m5Zp//8dOjwYP3bE0nOpwjjh2BZ+7lDA1p63bInt3FeymTG3/B6n\n32+Nr7FCQkvO/Q1f/ub6lHMDRLw+HLFKRn0++5A9H7k33rfb84/hqalK/bhSBJrefHpWyrEiIiIi\nIiIiIiIiXUEhIRERERGRLlC9y7D48VP35HXY/ZgmvPNi5s8iiPT999ZtWNWX2qzlzbg6T7ySUGy7\nsXq9+ofix0a8klBydZ76bb2MSJjz/lDCPPYHIGPDOtu4A/7vGoa8+TIDZr8JgCtWSajoiOMxUwR6\n6kXdbhwhK7A0/ppzGfHIPfT+fG6LjytV6CgSCzS1xEClhERERERERERERKTjKSQkIiIiItIFnL7E\nS/GODL18OiudJ+7K5/pJfZg0ZiBmd0qLpGCaMPn0Psx6ITOp7+qrrdsmCsDIdiISqyTk9pjc/MjG\neLvbkxhTX0koVXWeaOwbwBXwM+GYzezPfAD2+ddtGOFE0KjPgo8T84WC8UpCoYyMZtdnOp1kbFyP\nUb9Q4LCrzrKdp9J4rat+eUKz40VEREREREREREQ6m0JCIiIiIiJdwZtIRKz9seOq/Py01GM7ryjd\n9rcAZcUOln3taXngVqirNVi/2s2Td+cn9TliS9977w6565+3bhQOi8YqCTmdsPOewZRjHOGmtxur\nrwI04qG749WB6p150M5J43/x9z9zxsHDGHPbdQCE05MDaA2llWyh3yfvc+bYIbZ2b3kpAAuvvTn1\nhQ77c+vTW//V7P3YqJCQiIiIiIiIiIiIdILk2u0iIiIiItLhIp5EyKam0klZsYO8HtFmrtg6WXn2\nOctLnOQWbP39lBU7+O1x/QH454x19OjdfHWVNs+/2QqFOF3JqZaqKus22v5fJulE0di3zO4vPUpv\nzwD23O9XDNndHhaqrwiUqpKQ2SCM466tSeo//eBhtm2+3I2CRKH05isJNWWvR+4FoK6gZ4tjQ2np\nW3UfIiIiIiIiIiIiIh1JlYRERERERLpA1O3hF7FtkgDu/3OPDrmfmkrrJf8pl5QDUF2+9W8BTJN4\nQAjAX2vNFQlDbU37lEIpK7ZCQrkFTYePFBLavtXv2jXw8/c57KqzuOG+LZx+eYVtzC4vPQlA1JXi\ncy1G4ntt+JMPJnU7Q0E8VZVN3n/U492KVcOwV58GoK5H0yGhz266G4Dann3aNLcKCYmIiIiIiIiI\niEhnUEhIRERERKQLRDxe5rN//Nzjbd1+UKWbnbz2eHargzI1VQ5yCyKMOrAOAL/feguwfpWL4o3J\nWzk1pbbG4O7r7EGmYMCKNvz3rwVcfPiAVs/VnEVzrAosOfkRzEZfkmHDrFuFhLZP/jqDe2/owS2X\n9gbARThpjKeiHKffz+B3Xwegtle/Zucc+r8X232dxXvY97MLZmbbzpsLCVX3HWhdk53T7usSERER\nERERERER2VYKCYmIiIjIjqMbleuINKpmkpHduuTLM/fn8sJ/cvluYeuqodRUOUjPiuJLtxI3gTrr\nizD5jL5cdVI/fviydfNMPr0Pi+fat1AK+K25Pnnb2r6pPcI777yUBUB2fvJkgQDtdj87GpPWhdA6\n0p1XFbJgduJ7qD4k5KqxtgPrM28Opxw1kgGz34yPqe4/KOVc7/77ha1aw8e33t/imHcencEPp5wL\nwIzXPmPOPx6z9fvzmw4JhTIyAdj4i4PatC7D6EY/nERERERERERERORnSyEhEREREZEu0HjLo8rS\n1lX18cYqDm1a5wasikDT78ttMjhTWeogOy+C12dd9+BfejBpzMB4/y2X9Uq6dvHcNCaNGUhdbAux\n8hIH5cXJ2z4F/fZgQzjUqofQKm5PcqhFIaHtV02VwbKvfbY2J9a+Y666Gpx+P+OvPgeAA2++BoAv\nL7+uyfkqdxpmOzebCdmsOvLE+HFdYe9WrfeLq/7Em0+9RW2vvmwZua+tL+LzNXEVlA/bnbce/x/f\nXHRNq+5HREREREREREREpDMpJCQiIiIi0gUiHg8At181lx69w1SUtfzSfMrE3nw406pU8tid+Uwa\nM5DJZ/TlzWey2bA6EeJZ9YObFUs81FQZVJY5yS2I4E1rOlnz6N/ybed3TS4E4KLYFmILP0xPugYS\nVYnqrVnpafExNKdh+MdscHzppfDyywoJbYvGW7d1tnAwOcTTcLuxtC0bk/rLdt2z6fl89u/J9/79\nIouv/GP8vLpvYvu7T2+5L37szy9o1Xqjbg/lw4ZbJw0CSO898GyL15btthc42vZWW3WERERERERE\nREREpDMkfxxYREREREQ6XP12Y/sNW8uIMXUsnJM6iFMvGIC1PzYdwrnuzL5JbQOGBvHXGfjSTdLS\nm06JuNyJvosO72/rW/mth2l/t0JE519XyrSpiUBRZbm9+tFNF/Rm+ryiZh9HcyKJzEjs61FDbS08\n9JD1Ly3N6lNIaPsTCjUdEnKEwziDVgLsmwuvZq9H77WuiW3dlUrEa6/EVTZsN7aM+gVLJ10KgLuy\nglOPHJF0XTAze+seQMzm0Qdu0/UiIiIiIiIiIiIiXUmVhEREREREukDUbQV+nMEAPfpEqCxzxrf3\naugvF/Vi0piBrFjiTepryZqVHupqHPjSoziccNsTG/i/hxMVWx79YA0A772SRSC2dVhdjf0twutP\nJkIV/Qbb9xObNjWfuyZrY2OEAAAgAElEQVT3aPO6mhKJJD/+iorEsSoJbb9SVRIq3WsUEAsJBfwA\nlOyeCPb4c5up+mMYzL39wcT8aRm27qjbnfKyUGZWq9fcmZrZLU1ERERERERERESk3SgkJCIiIiLS\nBeq3G3MEg+QWRAB47YnkKif14aDbftMr5Ty3P7Wh2fvx1zriVYQG7xpi2F5Bps8rYvq8InwNqgvd\neE5vyksc5BVa1V3Ov64UwFbhaLe9A0nzL55rr4D02uPZbFq7dQVLG1YSAqirhcrKxHl9OEghobbr\n6u3GUlUSIs0K8jhCwXgloYjHyytvLODdf79A9YDBzc7pqqtLnDTa3st0pf4ejHraHrYTERERERER\nERER+blQSEhEREREpAvUhxWcwQDlxda2XTOfzLGNCYeSLosbNbaOf72+jrSMlhMzaz4oJ/un5c2O\n2VDk5jfH9qdsi4tfjK/l4GNqksa0ptrJC//J5d4btq66UCRsv4PHH3bbQkL1Xn11q6aXLpTqe9nw\nWkEeRzjMLy87FbCeF/6CnmzZe/8W5yz8emGTfVFX6kpCW+vtx17nw7sea9c5G1IlIRERERERERER\nEekMCgmJiIiIiHSB+kpChV/O58Scd1OOKd3sbPL6yXdtIb9nhJ59I/G2fQ6u5Y/3b+KJuUX8fuqW\nePuzqw7nuDOPoPDLBU3ON2JMoirLsq+8eH0mBxyZCAqde21pyw8qxrGVgYdIxH5eVkbKkFAwuHXz\nS9cJxbYbO/O3ZYlGrxXkyVv+XbzJU1lGa608/vSmOxulbhZf+UeKxk9o9dyNlQ4fyfqxh2/19SIi\nIiIiIiIiIiLdwdbtAyAiIiIiItskEqsktMsrT7MLT/PSoUuZtXCYbUzAb2X6L/5jCaMPqePTd9J5\n8u78pLme/qyI+bPT2PtAPx6fta/UPgcnQj87sxKAX152Cs/MW51yPV/PS4sfV5Ra4SRfWmKPqlFj\nrfkeencNhgHfLfZxz3WFKefKKYikbG9J40pCCxdBRZUf8CWNXVzU+jCJQHUg3PKgDlS/3diQ3RMJ\nr9ws69hXkgi0Vfcf3Oo5qxptR5ad5mJIj0z7mCOOZtSAXLh+CtXAqLYtu9O4nSolJCIiIiIiIiIi\nIh1PISERERERkS4QdXtt55llG4mEG4WE6qzgQG6PCFm5UY46rZq9x9aR39MewjEM2P+wuqQ2gONy\n3oeKRLsjFCTq9sTPp88r4uIj+lNbnSgy+p9ZawFY+kVijfUVizKyrODQvofUsdNuAX5aan8cAG6P\nyQ9febjl0t5MOKOSs64ub/oL0UB9SGgKd3An1/PFPA9fzLP6/vHCega+NYPbph3IV4xi6YaqVs0p\n3UMkFhJye0wev/Vt8v/8AL6sgQDs/cDfAPj8+r9RMWSXVs/Z8PsYIMPrYnjf7ERDSQlZmZkM93gQ\nEREREREREREREW03JiIiIiLSJSJee7jG568i3KiSTiBgnXu8iYo+PftFcLlbdx9PfVrE34+cbmvz\nlidX4Bl9SG38+LCTqsjKiQJw/DnWXl8XXl+Scv4b/rU5fpydlwguLZyTzi2X9gbgreeyiUZbt95I\nrNhNNsl7jGXmRNnVvZITeQ0A00waIt1Y/XZjLrdJv/wKjud/SVuCrf7l8W2aM5yewfKTz2L2vU+m\nHpCfDwoIiYiIiIiIiIiIiMQpJCQiIiIi0gUiXvsWWg6fk0jY4Pen9GHSmIGEgrDsKytI5PUlEjFO\nv59eCz9pVUrG4QBfRSkA5UN3BcBdXZE0btzxNQCMOrCOC6YkQkTjjqvhkffXcNhJNfG2vB+WkP/d\nVxQsWUxGlsltT2wA4Kjx65pcx7z30ltcK0AkYoVGMqlO6ktLj1L45QJ8+AEIBWHB7DSWfplcyUi6\nn3DIunV7wIhYgbKS3fYikJ2TGJOR1eZ5F0y5jQ1jxrXLGkVERERERERERER+7rTdmIiIiIhIV2hU\nRcUbtII4m9ZaZYLOO2RgvM/tSQSCdn/6P4x45B7eeehlikfs2+LdeCrLKR4+im/Pv5Jxky/E5fcn\njdltVIALry9h7NG1jZdFWkbivtM3rmPCucfGz5/9eAWDd4Wv0vdlp1d+4EVSbwGWkx9J2d5Y0G/d\neQ7JQSaXG/rMn4uP0QCcPy7x9Xn8oyLcKhjTrcUrCblMHLGSUXWFvZjx2jxOH787P5x2/jbfh9Hy\nEBEREREREREREZEdmioJiYiIiIh0kWc/XslrL8+lYtBQ0vzJW2zVG7BzKH6cv/QbAHxlqbcAa8xd\nU0UoM4twWhoATn8dABPHDGLimEHkrFiKYcBhJ9XYKhalMvD9N2znrthcI2oX4SHY5HWt3Rrspgut\nLcp6sanJMfWVhBr6xx8KW3cH0mXCoVhIyGPGKwmZTheRtHRefvsLFl/1565cnoiIiIiIiIiIiMgO\nQSEhEREREdlhGN2s1ojpclHTbyB1hb1Jq0uunlOvYXUf0+kEYLdnH2HimEGM+tftzdyBSeE3i8nY\nuI6wzwoJ/fLy05g4ZlB8yE5vv9rq9e7zr9ts5666uvixt5mQUH1ApLX6sKHJvlQhoSXz09o0v3S+\n+kpCbneiklA09r0cyM2Pf1+LiIiIiIiIiIiISMdRSEhEREREpIvVFRSSt/GnpPYjflXF9HlF8fP+\nc2aRuXY1AD2/nA/A8On/peeiz1LO6662qhNlF/1IxJs6SNNr8Wc4QvaAT/qGtRx69Tk4/X5yViwl\nfeM6ei76NOna+qpE9e5+cqXtfLe9rUBPa0JCwUDiOIcKlh5yMqdfUW4bE3U6MWhlWSLpVuq/B9yO\nEH0/fh+wKgmJiIiIiIiIiIiISOfRb2VFRERERLpY1rrVfM2xSe3jT6qOH6dt3sAhUy5Jef2hvz+P\nF2Z/b5UcMgwwTVy1NThCiW3K6gp7pby24Luv6LXwUzYccGi87aSTxwJw3GmHkrG56ao+Ln+t7fz0\nBy/k93wYPz/10gpuvczXqpDQW89lx4/7sY4twcGccE4l+42vxemMYoTDOCIRSslvcS7pftxrNgB5\nnHj+kRRuXAGg6kEiIiIiIiIiIiIinUwhIRERERGRLrb+gPG8s+TIpPbBuyRCPp7qqpTXfnvub9jj\niQeYeOBOSX1fXjEFgHk3TiWQm88LH3zHaYcNTxrnbmLu5gJCAAf+39Xkrvwhft533hxbf05+BIAG\nWaUmVZYmipy6CdN33hzSN62n94C+TBwziNWHHwdAf9YmXTtgaNNbnUn7iYRh3So3A3duxX9oAz98\n5WHaK9b3XcHGRLWpqCoJiYiIiIiIiIiIiHQqbTcmIiIiItLFvjvncqZyXfz8ohtKuPeVdQCMueVa\nJo4ZxLETf2m7ZvlJE/n23N9QsdOwJuctWPIFABGPF4BwegYvv7WYDfsfwuc33MHHt94PwEF//i3e\n8lIARj5wR5PzrT3oCNt5w4BQvaGsINNVwy9PqcLjtbYGe/u5bJYs8DY5L0AwYFUb2oMl8bacn5Zj\nRKyg0aD3/wfAqbzIjONvjY/JzovgcmsLss5w2297csNZfdhY1LZwz2uP58SPHQ22i1MlIRERERER\nEREREZHOpZCQiIiIiEgXi7o9HHB4YmuxUQf6KewbAdNkyJsvJY2v6j+IBdf/ja8uv45gVnZSf70B\nH70DJEJCAIG8Amb/8ylWnngmm/Y9MN6+93230W/ue+zx1L+bnO+jqQ+3+FhWMIz5p17NlENmsv+/\nbwFg1Q8e/nZl6u3O6n0wIwuANzkm3mYaBp7Kcts4AxiWvS5+7nCaRCItb2cm2+6HL30ALPgwrU3X\nVZSkDgNFXaokJCIiIiIiIiIiItKZFBISEREREekGTKeTJ/Ov4OgzKskrtKrnuGprUo7NWrs6fly6\n24gW5454fSnbw75E2KPnl58zbvKF8fNP/3JP8gWO1r19MKJRDv/dJPZ7+6FWjW9oIGts597ykqQx\nzlBie7Fe/cNEI22+G9kGzz2Yx+K5rQ8KbVybOgykSkIiIiIiIiIiIiIinUshIRERERGRbiDqcnOy\nZyZnX52onJNWsiXl2GWnnBM/9hcU8sy81aw44Yx4W3mjLchCGZkp52kYHspcnwjnLD95Eqsm/Iqo\nMxHuqC3sHT8Oe5vfOmy35x9L2R4ONXsZu/Qvtp2bhgNveVnSuF1fmMZlN5Vw8gUV5BZEVEmoC9w1\nubDVYzOzowD0ZZ2t3XQoJCQiIiIiIiIiIiLSmVTfXURERESkG4g6XTgiYVubr9QKCS34wy1s3O9g\nclcsJX3LRpb9+pyk6xdOvpW6wt5kr17JZ3+5m8x1RRx3xuEAlOy5T+o7baIykBGxSvOsOfRoBr3/\nP3445Vy+Pf9KAP733PsEs3JwBvyc+KuDWnxccziE6w5/i8/fz6Cu1kFWTjT5sUfBMEwOGLYK1sKX\nl01m1H/+TtTtxlNdlXLeg4+xqiw9cFOBKgl1Y8UbnRRvtN52rqO/ra9hCK09GIbCYiIiIiIiIiIi\nIiLNUUhIRERERKQbMF0uHMEAuz77CJU7DWPDmHH4YpWENo/an6qBQ6gaOKTJ66NuD99cfE38vHLw\nznx16R9Yd9DhzW7rtGbcUQyYM8vWtvPrzzH/j3fy+R/voK6wF19ddh0Rny8+bz1/bj6+8lIASnYf\nQcH3XyfNfwhz2XvfSiskVG2QlZO8hmDAwDQNMpx11rw9egLwy8tPo2j8hPi4ikFDyVm90nat02US\nVSWhDvfpO+lbdV1ZcdPfe9puTERERERERERERKRzabsxEREREdlhdOdCI1GnC19FGaP/eSvjrz4H\nV20NQ958CbC2FNsa355/JeXDhjc7Zu6dD7H0jAttbfP+9HcAwhlZLL76pnhAqLH3/v1C/HjLyF80\neR99sioAuObX/Zjzv4yk/kCd9R+TFba2WgulJ8YMnP1W/PiN595PutbhhIgqCXW4/9xckNR2wfj+\nVFc0/5YyFLA/6YIZWfFjs50rCYmIiIiIiIiIiIhI8xQSEhERERHpBkyXPTBx2mHD6ffJBwAEcvI6\n9L4XX30Tz8xbHf/343Gnteq6yp2G8elf7gGgrJkwkiMcih8/9NcCgn57cKSm0npbMuLDZwEIp2cm\nzfH8h0vBMFh+8lnU5SdCU06nKgl1hkiKr3GgzsGtV/Rs9rpFc9Ns5zNf/oi6vB4ARF0KCYmIiIiI\niIiIiIh0JoWERERERES6gdzl3zXd6ei+L9tXHX0ybzw9i6LDj0vqW3nsqQCM3HmTrf3lRxJ7jj3z\nr1wmn9EXgF5Y48Jee+WiqNNFJNYW8XhwBgPxPoeje1QSqixz8PS9uYSCXb2SjtGzXyhle16P5r/4\nSxbY/y9Nw8Gsaa/z5lNvJQXjRERERERERERERKRjdd+/NoiIiIiI7EB6L/qsq5ewdQyDip13S7kl\n2fqxhwHgCgds7SWbnQB8MiudN6Znx9t7shkAR8geSAlmZcf3iot4vHiqKzn+lHHsf9tkdn9lGtFu\nEBKaek0hbz2XzcI56V29lA5R2CfCriP9PPDGWn51YUW8ffjoQDNXwUFH1wAw9VirSpTpdFDbu1+L\n2+CJiIiIiIiIiIiISPtTSEhEREREpJvaPGJfVhx/elcvo9W+P/Oi+HHJ8JEEM60AUN6K723jdh1h\nBUse/EsPW3t9JaHS3faytTfclsp0WgGjrLWrGDrzBVyEoa7ry/f8tNQLwP1/7tHCyO1TKAguN+QW\nRHF5TFt7c8IhK9w1brD1PWAaegsqIiIiIiIiIiIi0lX0G1oRERERkW6gbOhuSW0f/Gs682+c2gWr\n2TpfXPVnwAo3zXrsdaIeKzgz5q+TWchozvtDKQDRKJhm8vUFlLD8pImEsnOY9ciMeHt68eb4sae6\n0naNizCRqNHeD2WbLJnv7eoltLu6Gge+9CgATmfiP++VR3JZtczd5HUvPZQLgJswAGY33jpPRERE\nRERERERE5OdOv6EVEREREekGZj0+M378+ksf8fpLHxH1Jm/h1d298sYCZt83HYBwgy3IRrOYA4+y\ntp6KRgyWfe1JurZsz5EsuvZmAEr23JuZL3yYNMZbXmY7dxIhEu3atzXRqP3820Xb3/9bc8JhWLPS\nQ22V9XWOFXOKu/GcPtTWJAe1tqxPDDRM64vUkSGh7hUVExEREREREREREel+XC0PERERERGRjhZ1\nJ0Iz1f0HdeFKto2/oGf8uHzn3W199eGSSAQ+fisj6dqS4aNsX4eqgTvx/n3TiXgTlXm85aW2a1yE\nidAotdLJ6mIBmT6DQmxY7ab3gHCXrqe9ffO5FXr6/gvr1uFMLgNVW+UgPSNia7v6V/0SJ/VJKlUS\nEhEREREREREREeky+g2tiIiIiEg3seL40/nyiildvYx2Y7rsn0moD5dEowYfzMhKGu/PzU9q27Tf\nQRSP/EX8/KvLr6Ns2PD4uYswUZxJ1Xw6U32FnV8cWgvYt+P6OfjHtVbw68Z/rCGr6CeMFO8iX/xv\nbpPXnzCxlNwflwFgOro20CUiIiIiIiIiIiKyI1NISERERESkm5h/41S+O+eKrl5Gh4i43IlKQg0K\n7dz32rr4cTgtvcV5SvYYxVtPvZVo8FmVh7oiJOSvM5gysTeP/M0KN+X1sCrpBAM/r42v+g4OAXDR\nqxdx/GmHEqi2QlBHn1HJhdeXAKkrQ9W7adPvGfzOawCYjfcqExEREREREREREZFOo5CQiIiIiIh0\nmBff+4Zvz74cZzjEWQdZ26hFIwbDR/vpPzRIQa8Il1y+ilkcScSX1ub56zxWRaKKks4Pn8x4LJu1\nP3pYssBadyIklHibFY3Ae69kEgp2+vLaTZ+BIQYOCzL4k3cA8BdbDyYrJ8qev/CnvCYaAcNhcsK5\nFQz/4s1OW6uIiIiIiIiIiIiINE0hIRERERER6TChzGwCuXkAGICTMNFQhEgYsnOt8j/HjV/NkbxL\neCtCQndW/g6AG87u3W5rbq1Q0F4xKDcWEqqpSrR/ODODaVPzmfVC8vZq24tgwMDtSWyhVldslYLK\nyIrSs1+E3fa2gkKTxgzk5kt6UlNlcPbYgZhRgw2r3TjCoS5Zt4iIiIiIiIiIiIjYKSQkIiIiIiId\nKmttUfzYRZiMH38iFEwET5yBOoA2hYQW/+5PLLrmL/RzbwRg+OhAO664dTw+03aeU2CFhF55JDfe\ntn6VGwDTPnS7EgoaeBqEhI7K+BCAvfazwkE/fOWN9y372kdlWaKq04Cdg3gryztnoSIiIiIiIiIi\nIiLSrC4LCRmG8ZhhGJsNw1jSRL9hGMZ9hmGsMAzja8Mw9mnQN9UwjG8Nw/g+NsYwDCPdMIw3DMNY\nGuu7o8F4r2EYz8fm+twwjMEd/whFRERERARg7cFHxI9dhDGDEYINQkKuuloAImnprZ5z6cSL+eH0\nCzirx2sA5BdG2nHFTXv/1UwmjRnIpDEDef2JHFtfRlY0afyyr60ATU5+ct/2IhQwcHsTIaFr3jiH\npz9dTe+BVkUhM5qonHTkqVUE6hLnJ59f2XkLFREREREREREREZFmdWUloceBo5vpnwAMi/27BPg3\ngGEYBwJjgRHAnsAvgHGxa/5hmuZuwN7AWMMwJsTaLwTKTNPcGbgHuLNdH4mIiIiIiDRpw4Hj48cu\nwoRxEgoY5JSvY+KYQRx5ya+BtlUSqndV36cA8KV1TgjnibvybOcFvcPx47QMe7mgH7/3sPI7KyTk\ncGy/pYSCAYPeP31tazvm3GPix784tDZ+HAoa1NVYbzP/+MAmctau7JxFioiIiIiIiIiIiEiLuiwk\nZJrmR0BpM0NOBJ40LfOAXMMw+gAm4AM8gBdwA5tM06w1TXN2bO4gsBjo32CuJ2LHLwGHG4aR+Hir\niIiIiOwQ9AKw67kIE3T4KC9xsuuyD219WxMSMt0ufIafcLhz/ncjje6nZKMrfuxwwJgjaugzKATA\nulWJvkhk+/vui0Zg7lvpBPwG+Zt+tPXlLf8ufnz1HcU8/VkRhX3DBAOJkFBaukmvhZ/Gx731xBud\ns3ARERERERERERERScnV8pAu0w9Y0+B8LdDPNM3PDMOYDWzA+jvP/aZpft/wQsMwcoHjgX82nss0\nzbBhGBVAAVDc+E4Nw7gEq3IRAwcObNcHJCIiIiKyo3MRprzKS6DOwWDfT7a+UEZWm+cznU5cRphI\n5+w2ltJRp1XRs6CWnos+xe05jg2r3VSWOfjPzT3iYyLhZibohkwTzh6beD/kSzeh1j6m7yfvs/7A\nw8AwMAxwe0xCQYNgwApEeXxRHNHEf0zZrnt26Jr1MRARERERERERERGR5nXldmNbxTCMnYHdsaoE\n9QMOMwzj4Ab9LuBZ4D7TNH9MPUvTTNN8yDTNfU3T3LewsLC9li0iIiIiskMr2X0EYIWE1pVkA9Cr\noM42pq6wV5vnjTpduAknVfjpKN4G25pdMKWUxz8q4pzfl3H7krM54jdnsnaptY7LJ/S3XRcObV8J\nlrpa+3oLa9cmjTn02gsYMPvN+LnHYxIMGISCRvzc6Mr0loiIiIiIiIiIiIjYdOeQ0DpgQIPz/rG2\nk4F5pmlWm6ZZDbwFHNBg3EPActM07001VyxElAOUdODaRURERESkgVnTZjLj1U9wEWZzReb/t3ff\ncXKV9R7HP8/OzPb0QiAkhF4EpASIcBEMFxVF9IIVLAhX7OWq2Pvl2huIelWqBVEUu4CKIKIGQQzd\nS09Ir7tJdne2zDz3j3N2ZmdLCrvZls/79cprzzlPmd+Z+M/iN78HgIOW/6U0vnn2XApP57ixTIZc\n6By2Tj2TppZDLyee1kKuOrne88+/B6Dq8ZX9rrvu25PpyI+doFDz+kzF/Tye7Hde7YZyc9aa+iL5\n1nInoVxN5OivfgqApn0O2DmFSpIkSZIkSZK222gOCf0SeG1ILACaY4wrgaXASSGEbAghB5wEPAQQ\nQriIJAD0rn72el16/VLgjzHGOBwvIUmSJCkRszmydNHSXgNAAy2lsdqNTy/DHzNZshSGrZNQT9W1\nya8UmXx+wDmX35KcoNy6uYrf/7RxWOoaCk29QkJzsiv6nVfsTkkBk6YW2bQhU9FJqNtfP3lxn7WS\nJEmSJEmSpOGVHakPDiH8EDgZmB5CWAZ8HMgBxBj/F/gt8ALgUaAVeH269CfAQuA+IAI3xhh/FULY\nE/gw8C/g7hACwKUxxsuAy4HvhRAeBTYArxyOd5QkSZJUVsxmydJFVzEJoNTTWhrLtbYMtGzre2Yy\n5Oika5hCQu1tff+dRfXm5tL1ZiZUjGVz5aBMW+to/jcaiTXLMzROKnLLzysDTTO7VrL05OeTnzqd\n6s2bmPf7XyYDPf7txaSpBR64q4bO9uQ+Vw0rFpzEHov+RNO+Bw3XK0iSJEmSJEmSBjBiIaEY46u2\nMR6Bt/bzvAC8sZ/ny4B+/5+BGGMeeNnTq1SSJEnSUOgOCXWro41bv3wlJ7/79Sw55fSntWfSSWj4\njhtrzwdOe+UmXv2uJoiR2g1rqV9TPmLs15zOsdxZus/0aMjT1jK6jxsrdMF/nTW74tn/XL2S+69c\nw/xb7yJza5FrFi3hiK99ujSea9lSup40tUDLpgytLUkYKlcTyU+dTn7yVKga/QEpSZIkSZIkSRrv\nRiwkJEmSJGnXUszmyNBeul+98BRWHL+Qa/76xNMOkRQzGarp3CnHjb31hbOpri3ylZ8mIaAYob0t\nUFOXdM859IpLOPw7Xy7Nv++8d3DMFZfw8n9/iB//4WDO/M8mQo+y1q0c3b9+bVhTecTYjD26mHdg\nJyctvI3MrUXaps4AoFhdPmIs11oZEgJYvSxLTW2REGCf3/50GCqXJEmSJEmSJG0P/zmnJEmSpGFR\nzOW4l2eW7rOTa5KLQXSZqSp0UV1oI9O0abDlVVixJEvT+gxrludoWp/U19EeiLEcEjrguqsq1rRN\n3w2AA3dfA8Cee3dWjPcO4Yw273vV7hX3tXVFAA780ZUA/PHSa4Dk77HbYZdfzPEfezsAk6Ym8++7\no47GyUXO+I8TdnrNkiRJkiRJkqTtZ0hIkiRJ0rCImcpOOnFS46D33O3uRTQxmUfur9725B1w4Sv2\nKF0vfzIJxbS3JW2BamqTMMzq+ZUhmO6Q0MkHPszHv72KYxe2UbtuNR895WcAPP5QzZDWONQ62it/\nPWzekISapj/wTwA2z54LJB2hepr3u19CsUh9Y/K9tG6pYuLkAo0rlwGwcb+Dd2rd3UL/p09LkiRJ\nkiRJklKGhCRJkrTLCMEQwYjq8f3fx6G0T5w86C3rV69gCfNY3zV10HsNZEtT8mtTd0iokS1MfPJR\nQldlp6C2GUlIqD7fzAGHdxACHPm1T/Opm88szSkWdlqZg9LrVQA48QUtFffFmloA6lct7zO3bv1a\nDnxm+Si5uoZYur7nLe8boiolSZIkSZIkSYNhSEiSJEnSsGughY4Jkwa9T4hx25Oehtl7d7DfoUno\nZdPGDDHCu86cDcBJX34vp7/yFObeemPFmvZJUwBYcNGFpWdT/3UfAP9xyiMAFIs7pdxBWfZElraW\n5FfDZ53aQv2EIu//6hpe8eYmAFYftYA1Rxxbmp9pT76XRR/5And88LPJuk+8k6oep6k9+I/a0vWW\nPebu7FeQJEmSJEmSJG0HQ0KSJEmShl0jW+gYgk5ChWyOj/MJoBzAeeqxHPm2p981qliANctz7HNw\nB6EqctUXp/LqZ5WDLg2UO+xsmrN3uZaa2op9Jix9gklLHgNgWsOWdO/R1c1q9bIs73/VHnzg1bMA\nOPiodr7z+2UcviBP9+lwmXyertq60ppMRxISKlTXQBrSmvWPv1Xsexj3ArBiwUlsmrffzn4NSZIk\nSZIkSdJ2MCQkSZIkadglIaHBdxL63eU/p5Y8kByZ1ZEPfOCc3fn6x6Y97T0/fO4sOjsCs+Z0Eot9\nQz2t1Jeuqzc1la6L2WzFvHk3/bx0nSsm53kVRtlxYyuXJjU3rUt+1tSWWx3lNjdz4LWXk21r6T8k\nlKvmiRecVXp+wrRMfcIAACAASURBVEfexsnPWcchuy3nnxwJQPvknXcMnCRJkiRJkiRpxxgSkiRJ\nkjTs6sgPyXFjzfscUAoJdXYE2lqTUM/df67f2rIBbW6qYukj1QCEAZr+7Mtjpeva5o2l686GCaXr\nCUufYLe7/lK6zxY7gKRL0WiypbnyV8Ka2vLxbcd+7sMc/dVPMfmJRyjUlb/PB1/zJtonTmbNUQso\nVteUnu/1h1/x+aO/yTf/6zdkKKZz37yT30CSJEmSJEmStL0MCUmSJEkaNlNCufNOx4SJg94vVmUq\nQ0JbBvcrzk3XlYM+Rz+7jbf99zoOPjJPbX2Rs9++kQ1M4Sj+WZrTlR4xtuaZxxCzWVYfeRwAL3r5\nycy8587SvFx3SKifzkQjKd/WKyRUVw4JNax4qnTds5PQ+kOP4qe/u4eOSVP67JdtaysdQQbQvO+B\nQ1muJEmSJEmSJGkQstueIkmSJElDY/Huz6ZmxWoAuuqeXrefnmJVFTUkx19d/aWp/P2P5T2LBajK\n7Nh+DY1JB5wXnrOJabsVeNaprTzr1NbS+JSvlUNON132czbufzC5li101Tcm448+1O+++914HbBw\n1B031t5WGVrauC79wmJk+oOLS88LaRhqW7L5NnJtyfd1y1euHpoiJUmSJEmSJElDwpCQJEmSpGEz\ntbiRRtYAQxMSIgRqQjtEKgJCAJubq5g0tbiD+yU/Xnxuc7/DxUyGqjTps/7QIwFo7xGgqd68qd91\nWbqS9YVR1kmotbKT0PyTkoBPrmVzxfP2iZMH3OOmy35ONt/KSe85j0y+lUwaEtp4wCFDXK0kSZIk\nSZIkaTA8bkySJEnSsGlctax0HbO5IdkzM0C3oN5dcrZH95qaukjNhnXUr15RMR7Djv0K9c+3fjCp\nkSRYNNo6CV1/+aTS9Yte00zDhOSosNr1ayvmtU+eOuAe6w89ktXzT6Crti7tJNQCQFftEITAJEmS\nJEmSJElDxpCQJEmSpDFtWthQcT9n3w4AOjt2LCS04sks130r6ZiTzcKLz/w3XvLiZ5XGqzo7yHR1\nArD6yAXbtedDr3lTsl/aSSjuYGOj4fKDRUt55VvL3ZOmPXRvxfjWQkLdCrV1ZPJ5sm1tpfvhFEZX\nkyZJkiRJkiRJGnUMCUmSJEka0/bNPlG63mOvTs48Pwm7dHZuf2qkIx+49GPTS/dnL9iLbD4Ju+Q2\nJftlW5NjtO694N3ccsn3trln7JFaKXcSGn1JlkOPbevzLLel8rix/JRp29wn6STUSibfSldNLXGg\nFk+SJEmSJEmSpBFhSEiSJEnSsPvjxd8fsr2ymfIZXue+bwPVtcmRWV1b6SS0cW2Gxx6oLt2//uQ5\nLHm4ut+5E59KQkjZ9Bit1um7Ucz1P/eX1/2JfNp1544PfrZcY9pJaHuPGztnwVzOWTCX6y+fyOam\nnfNrWzGt5YDDks5LoVDgyEsuomHFU8y4586KudvbSWjGvf8g19pKV51HjUmSJEmSJEnSaGNISJIk\nSdKwW3XciUO2V+OW9aXrmppIrjoJCXV3Err79lq6uirXvPcVu/Ox82cB0LS+8teil17QVHFft241\nAMd+7kMAdNU3DljLljnzuOmKX7D8hIUsOfUMAO4/922lkFBxBzsJ/fQ7k3nT8/fcoTXbq601qaW+\nMTkDbfIjD3LwNd/hxWf+G9Wbmyvmtm9HJ6HQ1UUxkyWbNyQkSZIkSZIkSaORISFJkiRJY1qOztL1\nHvM6yeaSkNCN107gqi9O4Uvvnck1l0ypWJNvTX4VihGWPZYrPZ81p5P/OG8Tm+bszeqjFgBQt3Y1\n0x5YzB5/uxWArvqtB2Ba9pjLn750JYU0KHPvmy6kef+DgHL3nq25747aPs862re9bke1bkm+g7o0\nJJRpz5fG9lj0J5Yf/xweOvsNyedPmLTN/VYfcwI1zRvItrYYEpIkSZIkSZKkUSg70gVIkiRJw6U6\nW8XsKXUjXYZgu/4e1m1up72ruM15dbSVrqfmV3HEG9/Mp7iLu/5UDqo8dHdNv2sfe6CaZU+UQ0Ih\nbfRTvWUTa45awG53L+KYL360Yk3nVjoJDeSRzIEA/PMvdcw7sJPFf63lC++eyfkfWM/Cl7RUzP3S\nhTMAeMb8PA/clQSGOvJVVNds+7vYEW3dIaGGZN/apg0V460zd+efb/8wi9/yfmIms8398lOmkWtr\npaZ5I111DUNaqyRJkiRJkiRp8AwJSZIkaZfRWJPlpANmjHQZu7aHH4aWlu36e/jDg6tZs3nbLXRa\n95zDPcsO5+af3Mikxx8hT99OPF2d5WO+Cj2OHvv4f86qmJdvC8y74XpqN66nfeLkfj/v6XTJ6cxU\nA7B2RfIr2BfePROAyz87jY1rs5z1hvLxXp0dSa0TJhd4/fs2cOXnp/Y5Lm0otLYkIaH6hgjFIsd8\n9kMV420zZ0EIxGyuv+V9dDROBGDm4r+zav7xQ1usJEmSJEmSJGnQPG5MkiRJ0vDZf3844ojtmhrC\ntucArDz2RA6YsoLd9kySNCfwlz5zuoM3AJ2dA28cCgWO/+R/JfMmTOx3Tqzadled3k6ddy8ABx+d\n58F/VHY1uv7ySbz1hbMBaNlcrm323uWj07q2UvPT1daS7FnfWKR24zrqNq6rGF9+wik7tN/kx/5V\nuu6q9bgxSZIkSZIkSRptDAlJkiRJGtOK1TVUdXQAkOloJwDf2vejvOnj5dDL2pXZUiimsJWuPI0b\nVpWuu2rqWHP4/D5zWmfO6vNsWzK57s8O/M9bd+sz3rQ+Q7EAN/ywHEw647WbyGZ3XkioNT1urKG2\nnWxra5/xjQceukP7LT3l9NJ1iHFwxT0NQ/8NSZIkSZIkSdL44nFjkiRJksa0YjZHpjMJCZ383vMA\nOGPKLTSe9gYKnev5zqenAXDF56by1k+t32rgJkdn6XrVcSfy8CteDzFuf1ujAYTaJJBT6Bx4Tns+\n8LMrJpXus7nkD7BTjhtbuTTZ/FXnLGB3VlWMXfeH+3Z4vzVHHle6Xvqc0wZXnCRJkiRJkiRpyNlJ\nSJIkSdKYVqiuJtPRTv2q5aVns+5Kjhw7+YyW0rPlTyahmHv+VlexPoRy15tQXw3A4jddyKZ5+3VP\nGHSNVbnukFCx9Oz7f1vKBy9ZXbpfsSRXur78j08B7NTjxn52eRJImkRz6dnt/30pv/vO9XQ29n/U\n2lZVlX+9fGrhCwZdnyRJkiRJkiRpaNlJSJIkSdKotL3ZnGIuCfac9tqtB1M2rs0AydFe3Q49po23\nXbSezRuruPCVe/DqvW5i86a5PHju255e0QPI1Caf2b4pCf284i1NhACHHttemvOx85JjzE5+0RZq\n65N53SGhwk4ICXWro610nZ82g3WHHf2091p24qkAdNU3DLouSZIkSZIkSdLQMiQkSZIkaUzrqqsH\noGZTU8XzUCgQMxne+em1XPyhGRz97CQMU1WVBG8uu/kp6hqS60n1eX70x4c44aM/IjQVGWpVNUlI\nqHl90m2ncWKhNPbCczbxmx+UO/fsMa98Jlk2m9T3sfOTANEPFi0d0rpmN64jbCnfd3+XT9dtX7hs\nkBVJkiRJkiRJknYWjxuTJEmSNKa1T5pScb/4Le8HoHb9WgCOXdjGlBldxPRUsaZ1GWpqi6VuPQCn\nvOWVvHzhIcz+y800rlw25DWGNCS0aUPSEahhYjmI9OLXNVfMrakt15XJVQzR2jJ0HYVy1ZHT9rij\n4lmhumbI9pckSZIkSZIkjS6GhCRJkiSNSoHtC8S0T5lWun7wnDfSMms2ALnWcouc2rpIe1uy3w3X\nTqQ9X8XRX/1kMm/LJmbc94+hKrtfpU5CG5Jmrg0TyiGh+gmxYm51beTsBXtx9oK9qCm0Voy1NA/N\nr3BdXdDZEWiMmyueh+LQd1GSJEmSJEmSJI0OhoQkSZIkjWn5yVNL10+cdiZdtcmRWZl8W+l5TV0k\n31rF8ifKJy4f9KMrANjrpl9U7LczuunE6moydLF5UxIWmpZfwUnveT3VzU2EUHmMWG1dOajzgred\nVbHPf79lN5Y93qu9ENCyObD4r7XbXU93YGruI5WdhJr2O2i795AkSZIkSZIkjS3ZbU+RJEmSpNGr\nvUdIqGWPOdRuWAfAjHvuIptvo2X3Pamtm0m+LXDLLxr7rJ/y6EMV992diIZSIVdNNR00NycBnxdf\n+DJm8xgvfd4zuf7Xf6eYq+EZ82fywF21TK4qHz9WTUfFPutXZbn8s1PIZKG6JvK+r6xlySM5PvSa\n3UtzLv31MqZM33pHoHxb8u9FGtlSORCG7jgzSZIkSZIkSdLoYkhIkiRJ0pjWPrl83FhXfQOFujoA\n5n/lE6XnX9jvUZbGOdxw7UQAttBQGsu0t1fst/awo4e8xmKumkk0s6o5CfNMohwEOvP0YwFY8uPl\n/PzKSZx15+dLY7GfI9cevreyY1DPgBDA1V+cyrs+u26r9bS3Jvt2h4SuWbRke19FkiRJkiRJkjRG\nedyYJEmSpDGtUFsZmumqreszZ3LLKpY9Vl26b6A1uSgWqeqs7NZz5/suGvIai7kcqyiHeXqGhLrt\nPreLD7zmbxz20+8A8Ksf30LngkN2+LN227Nrm3OWP5F0NMrRyQOvefMOf8aoZBMkSZIkSZIkSdoq\nQ0KSJEmSRqcdCH385ZMX89vv3QhAZ8OEPuMzVj7S77psvo1MR7mT0IYDD6VYU9vv3MEoVFdX3FfT\n2e+8Q773zdL15rn7kDl8Dnlq+P5tj/Pd25fygrM3Vcy/7DNTe2/Br7+fdEt68v9yLHkk1+/n/PaH\nyXf0OPvQPmVav3MkSZIkSZIkSeOLISFJkiRJY96S572Epv0PBqB15iw2HPAM7n3Du0vjy5nd77rD\nv/0l5vzpptJ9Z0PjTqmvmM1xErdufVKMNKx4qnJdrpoaOsgWO8lk4YDDKo9Gu+UX/dd795/r+PDr\ndu9zFFm345+bdFJ6Nd+nq65++15CkiRJkiRJkjSmGRKSJEmSNK7EbI4bv/tb7j//naVnq9mtdH3Q\nM7aUr6+9vGJtobpmp9RUrK7hB5xTuu+qqeWaRUu4/b8vLT2r6mhn5j13AvDkc89I1mWzyVh6JNph\nC/IccHiewxe09fmM//nuytL1ly6csdV6urqSNk11tJGf3LcbkSRJkiRJkiRp/DEkJEmSJGlU2oHT\nxgb00xv/SWddPVUUS88u+tR9A84v5qoHHBuMQq6aPVhRut9w0GEALD31RTzx/P8A4JUnHQjAk6ee\nwaKPfimtJzkurKqrC4DausjHv72GWXt2Vez/kW+sZt4B/R9h1q1lcyDfmnyrXUnmiFryHjcmSZIk\nSZIkSbsIQ0KSJEmSxq32yVO55ZLv00JD6dnEtSsGnN8dyhlqxVyuIvS0ad5+pesVJyysmLvqmBNK\nYaViNvlZ1VkZAGrPV0aoJk0rbLOGC06dw/kL5wDQ0ZGsr6GddjsJSZIkSZIkSdIuwZCQJEmSpHFt\n3aFHcRJ/AuDDX1/NsZ95f585bVOmA0nHn52hO/RTX93BK7iWtmnl48Ca9j6gYm7HpCnldelxY88/\n93R2u+svpecve2Mz9Y3l7khTpm89JNS6pTJU1NkRyFYVqCKSt5OQJEmSJEmSJO0SDAlJkiRJGt9C\n4OLq9/DbMz7KIUe30zZjVmloySmnc82iJdxy8XcBWP5v/75TSugOCf3ttR/gWl5F27SZpbHWmbtX\nzO1onNhjXdLZqG7DWk5529ml51NmFHjDh9aX7usaIgAXXbWSF5y9qc/nb1iTrbjv6gjUZDooZjJ0\nTJj0dF9LkiRJkiRJkjSGGBKSJEmSNO5lawP71CwDYPOcvSnkqvnRLQ/x109eDEDTAc/gxzffz9JT\nX7RTPr9QnYSEGlYmNeR7dBLqnDiJX/z0z6X7jgl9Q0LlB+XuQVVp7qcqE0vP9j6ok3Pe0dTn8596\nrHKf9vZAQ+cmqgoFqBofvxYGwrYnSZIkSZIkSdIubHz812BJkiRJ404IQxf6KNTUkulop7p5I/v/\n7PtkOjso1NUTs+UOO10NE4bs8/r7fIDGFUuBypAQQMvsuaXrzp6dhLKV4Z7ajeXuQaufSmovFgJn\nL9iLKf+6rzT27s+vBWD23h0UC3DpR6dX7NPWUsVE+nYckiRJkiRJkiSNX4aEJEmSJI17heoaMu15\n5n/xYyP2+QCNy5OQUM/jxnrr2EpIaOE7ziGTb2Ov3/+Sdfdsrhg77dzTOeS73wDg6Ge3seDfWygW\nA5ubKn/ty7cG/va7Bh5l/6f/QpIkSZIkSZKkMceQkCRJkqRxr1BTS6Y9T2dD48gUUFVFV20dDWtW\nApCfOr3PlAfPuQCArh41TlzyWMWcyY/9HwdcdzUnfPTtvPy2T/bZ44hvfI7Zf/5D90dSLEBnZ2VH\npvMXzhncu0iSJEmSJEmSxiRDQpIkSZJGpaE7bCwJCc295Qb2//k1APzw9se2sWLoZfNtSS25agq1\ndX3GF7/tQ/zw9seImUzpWeeEiX3mHfn1zwBwHlewz74t3MjzKsYbly8BoCoDxWKgq6P/b/JyzmPx\nm9/39F5GkiRJkiRJkjTmGBKSJEmSNO4VampL160zZhGz2RGrpaqrs/+BEPrU9fgLX8a/Xnk+P7lp\nMfed947K6cDXPnE7z+N3Fc9rmjYAMOXJ/yO05vt0Eup2HldWHG0mSZIkSZIkSRrfDAlJkiRJGvcK\nuerS9fpDnjmClUCIcQcmB+5+18fomDSF+y54T5/hvf7wqz7PDvjJd6nZsI6ZD91NtqmZgTJJ0H+n\nIkmSJEmSJEnS+GRISJIkSdK4t/udt5eu73/920ekhnsvePeg97jpsp9X3D/j6q/3mVO9ZRML3/ka\nsnRRIENnj+PG5u7fAcAZCx8HoLNxwqBrkiRJkiRJkiSNDYaEJEmSJO1SNh502Ih87sNnvXbQe6w/\n9EiuWbSE9Qcf3mfsmkVLStfVm5vJUEhCQj2OG7voylV8+ScruHzVWQAUqmsGXZMkSZIkSZIkaWww\nJCRJkiRpVAph23PGks6GxiHbq6qrq+L+19feXHHfsGp5KSRUSENCr3vPBjJZ2G3PLqY/uDiZuCNH\nn0mSJEmSJEmSxjRDQpIkSZJ2Gbd8+aoR++yYzbH4Le/nt9+7cdB7ZVu3lK47Giawad5+feYsYgEb\nmcrqZVkADjyivTT22OkvA2DNkQsGXctoMd5CZZIkSZIkSZI01AwJSZIkSRr37n3Du+lomMDK458z\nonU8+Nq30LT/wYPe5/7z3lm67pgwqXS9/PjnsOJZJwNwJ8cCcNUXpwIws7iabGtLaU1nXT0xmx10\nLZIkSZIkSZKkscGQkCRJkqRRKTB0rWHuP/+d/OTm+4dsv5H2xAtfyvITFgLQuGpZ6fmfvnwVt37l\nagA+wGcq1rz2dcfw8oWHAJDp7KCYqx6maiVJkiRJkiRJo4EhIUmSJEkag6b+674Bx67/zZ2cMfPW\nimc5ukrXVR0dFKoNCUmSJEmSJEnSrsSQkCRJkiSNQX//wGcB2LjvQX3G8tNmsveczVy/75v51BWr\nuOLi2yvGq7o67SQkSZIkSZIkSbsYQ0KSJEmSNAZ11dUB0DFxcr/jsSrDv9X/nX0P6WDPmlUVY5mO\nDgrVNTu9RkmSJEmSJEnS6GFISJIkSdKoFMJIVzC65adMB2DF8c/pdzxmMlQVCgDkWjZXjGXbWinU\nGBKSJEmSJEmSpF1JdqQLkCRJkiTtuOZ9D+RXP76VzXPm9TseM1lCKSS0pfT8yEsuYvZfbqazvmE4\nypQkSZIkSZIkjRKGhCRJkiRpjNo8d+8Bx4rZNCQUI4dd9tXS84Ov+Q4AudaWnV7fcLLxlCRJkiRJ\nkiRt3YgdNxZCuCKEsCaEcP8A4yGEcEkI4dEQwr0hhKN6jH0+hPBACOGhdE5In/9PCOGpEMKWXnud\nG0JYG0JYnP75z537dpIkSZIGy9DH4IRikYlLHmPKww8wcenjfcYffPWbRqAqSZIkSZIkSdJIGbGQ\nEHAV8PytjJ8G7J/+uQD4JkAI4XjgBOBw4FDgGOCkdM2vgGMH2O9HMcYj0j+XDbp6SZIkSRrF9vzz\n78l0drDnbb/vd3zxW94/zBVJkiRJkiRJkkbSiB03FmO8LYQwbytTXgx8N8YYgUUhhMkhhN2BCNQC\n1ST/uDgHrE73XASQNhaSJEmSpF3eYZeXjxq747u/oKqrk7ZZs5k2sXYEqxp6jbWepi1JkiRJkiRJ\nWzOa/yvqbOCpHvfLgNkxxr+FEG4BVpKEhC6NMT60HfudFUJ4NvAw8F8xxqf6mxRCuICkcxFz584d\nTP2SJEmSNGIKuWoynR3lB4sWcdxxx41cQZIkSZIkSZKkETWaQ0L9CiHsBxwM7Jk++n0I4cQY45+3\nsuxXwA9jjO0hhDcCVwML+5sYY/w28G2A+fPnx6GrXJIkSdKOmD9vKkftNWWkyxizuu68i8wRhwMQ\njz6aYEBIkiRJkiRJknZpozkktByY0+N+z/TZq4FFMcYtACGEG4BnAQOGhGKM63vcXgZ8fsirlSRJ\nkjSkqrNVI13C2PbMwyAm/+7BA5klSZIkSZIkSaP5v7r/EnhtSCwAmmOMK4GlwEkhhGwIIQecBGz1\nuLEQwu49bs/Y1nxJkiRJkiRJkiRJkiRpPBmxTkIhhB8CJwPTQwjLgI8DOYAY4/8CvwVeADwKtAKv\nT5f+hOSosPuACNwYY/xVuufngbOB+nTPy2KMnwDeEUI4A+gCNgDn7vw3lCRJkiRJkiRJkiRJkkaH\nENP28+pr/vz58a677hrpMiRJkiRJkiRJkiRJkqR+hRD+EWOcv615o/m4MUmSJEmSJEmSJEmSJElD\nwJCQJEmSJEmSJEmSJEmSNM4ZEpIkSZIkSZIkSZIkSZLGOUNCkiRJkiRJkiRJkiRJ0jhnSEiSJEmS\nJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmS\nJI1zhoQkSZIkSZIkSZIkSZKkcc6QkCRJkiRJkiRJkiRJkjTOGRKSJEmSJEmSJEmSJEmSxjlDQpIk\nSZIkSZIkSZIkSdI4Z0hIkiRJkiRJkiRJkiRJGucMCUmSJEmSJEmSJEmSJEnjnCEhSZIkSZIkSZIk\nSZIkaZwzJCRJkiRJkiRJkiRJkiSNc4aEJEmSJEmSJEmSJEmSpHHOkJAkSZIkSZIkSZIkSZI0zhkS\nkiRJkiRJkiRJkiRJksY5Q0KSJEmSJEmSJEmSJEnSOBdijCNdw6gVQigCYaTrkCRJkiRJkiRJkiRJ\nkgYQY4zbbBRkJ6GtMyAkSZIkSZIkSZIkSZKk0Wy78i2GhCRJkiRJkiRJkiRJkqRxzpCQJEmSJEmS\nJEmSJEmSNM5lR7qAUW4dMBWI6X0YxdejpQ7rHt3Xo6WOXfEdRksd1j26r0dLHbtK3ePhHUZLHdY9\nuq9HSx27St3j4R1GSx3WPbqvR0sdu0rd4+EdRksd1j26r0dLHbtK3ePhHUZLHdY9uq9HSx27St3j\n4R1GSx3WPbqvR0sdu0rd4+EdRksd1j26r0dLHbtK3ePhHXreb2Q7hBjjtmdJkiRJkiRJkiRJkiRJ\nGrM8bkySJEmSJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSePcVkNCIYR3hxBirz/L0rHTez0vhhBO\nCCFc3Ov5qh77PTed13P86n4+9+5ec9amzzf2ev7cAeou9JpXCCE8I4RwRa/njwywvmuAd36kn+/j\nlF5rj+jnHVemY4v6Wf/Nfj6/95yHB1jfFkLI9Fr77X4+f1UIYXo/+7aka7b0M9a+tf9tSJIkSZIk\nSZIkSZIkaezYViehzcBfga8Dx6fPZocQPgVcn96vA1rS6xuBv6drCv3sdwMQgMeA2cArgG/1nBBC\naACOTG8/lv6cnn7mjene23IpcDTJ+xXSn7cCJwKrgXYgAvMGWP8AcG96fQTld54N5IGNJO8cgV/2\nWtsKbEnHuv/MCiH8O3BMuu7etAbSmnrrTH8W03r3DyHUpe/UCfwY6AJqgSt6rd2U/myi/PeyGVif\n3ucpf+f1IYQzgZuBXwEfTOeSfq4kSZIkSZIkSZIkSZLGgRBj3P7JIXRPvgE4Lb1+OTAZ+DZAjDGk\nc/NADbA6xjgrhPAc4I/pmqo4wAeHEH6b7h1jjFUhhC1APbA+xjijVx3PizH+biv1BpIwTg5Ymz7+\nJPAZoJEkwHN4jPGBfta+FLguxhhCCAXgJuB5JIGjtwNfTq+rYoxVvdZuTPfvGVK6ATidJPhzDHAL\nMLH7++m1vntNK7CBJJx0IfBFkrDPs0nCWA3AXTHGY3qsfRjYC7gHODitow3YG3gUWAk8DnR3Yfoj\nSRBqPXAysJwkyLUkxjhvoO9WkiRJkiRJkiRJkiRJY8e2OgmVhBA+3OP2I90XMcbrgMu2Y4vze1x3\nH4fVEUI4qNe8A0iCNN3ddJrSn43bW2tab3O6Ty59dDzwSK86qkgCMlvb583pvI8Aa9LHl6T7ZpIp\n4a3p+3TXXN89lq4tAlNIQklVwJ0kASGATSGEq9MjwppCCFWU/17qgT1JAjz7pM8mkXQ6akjv7+5d\ncvrnEMrfWV26Tx7YnyTs1D13Esl3PA94Kn0WSYJfkiRJkiRJkiRJkiRJGge2KyQUQpgPXJTe3hFj\nrAimDNQVqJe6HtdXkByXlQMWbU8NOyrGOAn4P5JOPkXgNyRdjyakf0I61rWNrb4B3AEsJgn+QBLa\nKa2LMX49xhhijLkQwhEknXs2pMMZkhBO99oOki4/3epjjK+LMVbFGCeTHO3Wln5mW/o500m6CZHu\n1dZj/b696u0+Jqz7++4+8mw28FXg/vR5IAlidaT3bcC/eq2RJEmSJEmSJEmSJEnSOLDNkFAIYQZJ\n5xuAVTHGBb3GXxZCeMN2fNZvui9ijOcDt6W3E9MuPDE9Rmz3tK7uDkDdHW22bKXG2ONPe/rsjyRd\ncr5OEnjZBO94vgAABM5JREFUL8a4PMa4P7A5fRaA2wfYtrsLT/c7TyAJ6wBMoxz66e1ZJB2ApqX7\nA8wAZqb3WeDAHvNre60/MX12LEnQJ9tjD0iOT6uiHOKZ12t9dzcgSEJQ3Z2FFpJ0F+qe391lqZbk\nO15DcjwZ6f7rB3g/SZIkSZIkSZIkSZIkjTFbDQmFEALlzjRtMcbdewx3H631DeArJKGVloH2ijFe\n0WPfDwMnpLetaReeEGMMlDvmhBDCB0mO1QrAt7ayd8/1tSGE24AFJKGYl6fv2RZC2CuE0H1MVwA6\nYozLB3jvy9K9d09/NgNPknQIKgKt6Ttv6LX8h5RDVQWSTj1F4NUkXYC2AM2Uu/Us7rX+ROD96dpW\nyh2LzgeWpc+v7TH/Nip9i3IA6uH0WStwM/A4Sejon5RDRs8lOb6smN4X0z/X9/5eJEmSJEmSJEmS\nJEmSNDZtq5PQ7yh3panr0a3nZuAV6fPpJEEegBeGEM5LOwLVpM92S9ccBfwgfXZROh6B5/X8wBhj\nE+XjuD6d/lwfY/xICKEp3bvbTd2dg3rIkARt6kgCPLPS588GvkYS0pmQPqvttV+3rnQfer3zemBq\nOtYdXvpTCOGt6ZxO4PXA8T1qqU6v24A8MJGkW1IgCeP8OoRwdQihGEJoIunm8zmSME99+vMJksDP\nJGAu8DrKx4VdH0JYnK5/mCTI1N09qLszUCdJZ6SPkHQOOjKtrQM4Ln2XA0n+91BFcuzYZ/v5XiRJ\nkiRJkiRJkiRJkjQGhRj7y8hIkiRJkiRJkiRJkiRJGi+21UlIkiRJkiRJkiRJkiRJ0hhnSEiSJEmS\nJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmS\nJI1zhoQkSZIkSZI0pEIInwghvHcr4y8JIRwynDVJkiRJkiTt6gwJSZIkSZIkabi9BDAkJEmSJEmS\nNIxCjHGka5AkSZIkSdIYF0L4MPA6YA3wFPAPoBm4AKgGHgVeAxwB/DodawbOSrf4OjADaAXeEGP8\n13DWL0mSJEmSNN4ZEpIkSZIkSdKghBCOBq4CjgOywN3A/wJXxhjXp3MuAlbHGL8WQrgK+HWM8Sfp\n2M3Am2KMj4QQjgM+E2NcOPxvIkmSJEmSNH5lR7oASZIkSZIkjXknAj+LMbYChBB+mT4/NA0HTQYa\ngZt6LwwhNALHA9eFELof1+z0iiVJkiRJknYxhoQkSZIkSZK0s1wFvCTGeE8I4Vzg5H7mVAFNMcYj\nhrEuSZIkSZKkXU7VSBcgSZIkSZKkMe824CUhhLoQwgTgRenzCcDKEEIOOKfH/M3pGDHGTcATIYSX\nAYTEM4evdEmSJEmSpF2DISFJkiRJkiQNSozxbuBHwD3ADcCd6dBHgTuAvwD/6rHkWuDCEMI/Qwj7\nkgSIzg8h3AM8ALx4uGqXJEmSJEnaVYQY40jXIEmSJEmSJEmSJEmSJGknspOQJEmSJEmSJEmSJEmS\nNM4ZEpIkSZIkSZIkSZIkSZLGOUNCkiRJkiRJkiRJkiRJ0jhnSEiSJEmSJEmSJEmSJEka5wwJSZIk\nSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmSJI1z/w+m2leULXkXFAAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJcCAYAAABTzWhBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmcZHdd7//3p2vvvXv2LQuZBAlh\nNSYs94oPUTbRcK+KCGJAlJ/3ct1ABQQvCKLwu1cQrtcFBVkkYESUiLJEIiBCQhIggSTADCGZ6Znp\nmZ7p7uqlqrq27/3jfKunZqZ7equqc07V6/l49GO6T5069a3q7pp3f5fP15xzAgAAQPj6wm4AAAAA\nAgQzAACAiCCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghlCZWZ/bma/26JrXWJmC2aW8F9/zsx+\nsRXX9tf7pJnd2KrrbeBxf9/MTpvZ5DrPd2Z20H9+zutrZv/NzE7612mbmT3VzA75r5/XrucQBjP7\nITObCLsd3c7M3mhmf9Ohx3rIzH6kE4+1wmO/xMy+2PT1gpk9YhPXeZGZfaa1rUM3IZihbfybaNHM\n5s1s1sy+ZGa/bGbLP3fOuV92zr15nde66Buyc+6Ic27QOVdrQdsv+M/GOfds59z7t3rtDbbjEkmv\nknS1c273Ru/f/PqaWUrS2yU9w79OZyS9SdKf+K//sZVtj7NuDnXnBwxsjv+defBi55jZZf4PpWTT\n/T7knHtG+1uIuCKYod1+3Dk3JOlSSW+V9GpJ72n1gzS/8XWZSySdcc6dasG1dknKSrqv6dil5329\nbl38mqPL8bOLKCOYoSOcc3nn3C2SfkbSjWZ2jSSZ2fvM7Pf959vN7BO+d23azP7dzPrM7IMKAso/\n+eGD3276S/RlZnZE0m0r/XUq6Qoz+4qZzZnZx81s3D/WBT0ijV45M3uWpN+R9DP+8e7xty8Pjfp2\nvd7MHjazU2b2ATMb8bc12nGjmR3xw5CvW+21MbMRf/8pf73X++v/iKRbJe317XjfKvf/LTM7YWbH\nzewXzrvtfX4o9CpJ3/aHZ83sNjP7rqRHNL2uGd+W9/jrHfP3bQwNv8TM/sPM3mFmZyS90R//BTN7\nwMxmzOzTZnZp0+M730t6yH9f/6+ZWdPtv+TvO29m95vZE/3xvWb29/41+Z6Z/WrTfa4zs7v89/Sk\nmb19tdfWn/87/nvwkJm9qOl4xsz+t/8enbRg2DdnZgOSPtn0ui/49hTNbLu/7+vMrGpmw/7rN5vZ\nH1/suk2P+1wz+7qd7UV+bNNtD5nZb5rZvWaWN7O/NbPsKs/rCv99POOf34fMbLTp9gNm9jH/Gp4x\nsz8xs0dJ+nNJT/bPa9afe86wv104bPdOMzvqX/O7zew/X+w1b7rfmAW/01P+5+MTZra/6fbP+dfu\nP/zPwGcar7G//cUW/E6csYv8Dvlz3+df61v9tT6/ws/iK8zskKRD/tj3+fOnzezbZvb8pvO3mdkt\n/jl/RdIV5z1e85SBnJn9kW9r3sy+6L/nX/Cnz/rX+8krvLZPMbM7/f3uNLOnrPf1QZdyzvHBR1s+\nJD0k6UdWOH5E0n/zn79P0u/7z/9QwX8aKf/xnyXZSteSdJkkJ+kDkgYk5ZqOJf05n5N0TNI1/py/\nl/Q3/rYfkjSxWnsVhI6/Oe/2z0n6Rf/5L0g6rCDYDEr6mKQPnte2v/TtepykJUmPWuV1+oCkj0sa\n8vf9jqSXrdbO8+77LEknm57jTf6xD67w+p7z+qzyuv6DpL/w19op6SuS/j9/20skVSX9iqSkf243\n+NfhUf7Y6yV9qel6TtInJI0qCNdTkp7lb/tp//35AUkm6aCCHrw+SXdL+p+S0v41flDSM/39vizp\nxf7zQUlPWuW1+SHf3rdLykh6mqRFSY/0t79D0i2Sxv1r/0+S/vAiPx9fkPST/vPPSPqupGc33fZf\n1nHdJ0g6Jel6SQlJN/rvQabp+/EVSXv9/R+Q9MurPL+Dkn7UP7cdvg1/7G9LSLrHt2VAQU/pf2r6\nPn5xtZ/tlc6R9HOStvnv8askTUrKrva70nS/bZJ+UlK/fy3+TtI/nve435V0lYKfp89Jequ/7WpJ\nC5J+0D/Ht/vv5wXvKU0/6/NN57/zvOfgFPyhM+4fa0DSUUkv9c/rCZJOK5g2IEkfkXSzP+8aBT+r\n51+v8Xv2f33b9/nX/im+DZfpwt+55dfWt2VG0ot9G37Wf71trdeHj+79oMcMYTiu4A3pfBVJeyRd\n6pyrOOf+3fl3p4t4o3Nu0TlXXOX2DzrnvumcW5T0u5Keb74HaIteJOntzrkHnXMLkl4r6QV2bm/d\n7znnis65exT8J/m48y/i2/ICSa91zs075x6S9EcK3qjX4/mS/rrpOb5xs0/IzHZJeo6kX/ev6SkF\n/7G/oOm04865/+Ocq/rX/JcVhI4HnHNVSX8g6fHNPRUK/iOZdc4dkfRvkh7vj/+ipP/fOXenCxx2\nzj2sIKjtcM69yTlXdsE8nr9sakdF0kEz2+6cW3DO3b7GU/td59ySc+7zkv5Zwc+ASXq5pN9wzk07\n5+Z9219wket8XtLT/Pf4sZLe5b/O+jZ/YR3Xfbmkv3DO3eGcq7lgzuKSpCc1Pc67nHPHnXPTCkLd\n47UC/3rd6p/blILg8jR/83UKwt1v+e9lyTm36Xllzrm/cc6d8d/3P1IQOh65jvudcc79vXOu4F+L\ntzS1seGvnXPf8T9PN+vs8/0pSZ9wzn3BObek4Pe3vsZD/nPT+a9T0DN4oOn2P/Tfl6Kk50p6yDn3\n1/55fU3BH28/7X8vf1LS//Sv3zclrTi/1II5s78g6decc8f89/VLvg1r+TFJh5xzH/Rt+LCkb0n6\n8XW8PuhSBDOEYZ+k6RWO/y8FvS+fMbMHzew167jW0Q3c/rCCnrhWDAXs9ddrvnZSwTyuhuZVlAUF\nvTvn2+7bdP619m2gHec/x8261LflhB9mm1XQe7az6ZzzX+9LJb2z6fxpBb1fze1f7XU4oKA3YKV2\n7G1c01/3d3T2tX2Zgh6Eb/mhn+de5DnN+MDa8LCC12yHgl6cu5se41P++Go+r6An7YmSvqGg9+Vp\nCkLVYRcspljrupdKetV5z+2Ab1PDen5uZGa7zOwjFgw5z0n6G5392T4g6WEflrfMD68+4IfbZiWN\naB2/R2bWb2Z/4Yf45hT06o2e98fRas/3nJ9t/308s8ZDNp+/oODnce9Ktyv4Xlx/3vfiRZJ2K/h+\nJbW+363tCnokV/pZXsv57yONx1nP7w+6FBMg0VFm9gMK3nQu+Ovd/0X9KgX/cV2jYN7Ync65zyoY\nDljJWj1qzX8tX6Kgt+W0giGt/qZ2JXTuf8prXfe4gjf25mtXFQwr7l/xHis77dt0qaT7m651bJ33\nP6ELn+NmHVXQe7P9Iv+hn/+6HJX0Fufchzb5eFescvx7zrkrV2yAc4ck/azvqfivkj5qZtvOC2AN\nY2Y20HTbJZK+qeB1L0p6tHNupdd6pe//lxT0Ev0XSZ93zt1vwarZ5ygIbVrHdRuv11tWem4b9Ae+\nnY9xzk1bUO7kT5oe5xIzS67wvVzpuZ3z+6AgnEiS/Hyy35b0dEn3OefqZjajIICv5VUKXrPrnXOT\nZvZ4SV9b531PKBgib7SjX8HQ6MUs/y6Y2aCCnvnjTbc3P/ejCr6PP3r+Rfz7QdVf71v+8Gq/W6cl\nlRT8LN9z3m0bfR9pPM6n1rgfuhg9ZugIMxv2PRsfUTAf5RsrnPNcMzvoh4Pykmo6O3RxUsFco436\nOTO72r+pv0nSR11QTuM7krJm9mMWlJF4vYLhmYaTki6zptIe5/mwpN8ws8v9fwB/IOlvN9pD4dty\ns6S3mNmQHwJ8pYLej/W4WdJLmp7jGzby+Oe15YSCuVN/5L9ffRZMMD9/6KnZn0t6rZk9WlpeyPDT\n63zIv5L0m2b2/RY46J//VyTNm9mr/aTqhJld40O9zOznzGyHc64uadZf62JDXL9nZmkfMJ4r6e/8\nff9S0jvMbKe/7j4ze6a/z0lJ28wv6PCvT0HB3LdX6GwQ+5KC4dzP+3PWuu5fSvplM7veP+cB/zM4\ntM7XrNmQgjlYeTPbJ+m3mm77ioJg81b/GFkze2rTc9tvZumm878u6b/6Hq6DCnolmx+nqmB+YNLM\n/qek4Q20sahg8vu4Nvbz+VFJzzWz/+Tb+iat/X/Wc5rOf7Ok251zq/Wqf0LSVRYsMEj5jx8ws0f5\n38uPSXqjf02uVjAf8AL+e/5eSW+3YJFIwoJJ/hkFr1ldq793/YtvwwvNLGlmP6Ngbt0n1nie6GIE\nM7TbP5nZvIK/Tl+nYB7MS1c590pJ/6rgP5svS/pT59y/+dv+UNLr/ZDDb27g8T+oYFLwpILhhl+V\nglWikv67gnBwTEGPQfMqzb/z/54xs6+ucN33+mt/QdL3FPzF/CsbaFezX/GP/6CCnsSb/PXX5Jz7\npKQ/lnSbgmHg2zbZhoafVzDh/n4Fk5A/qmDe32qP/w+S3ibpI36o6puSnr2eB3LO/Z2COUc3KZi0\n/Y+Sxv1/is9VMJfmewp6JP5KwfCZFCx4uM/MFhRM8H7BReYYTvrncVzShxRMpG/0gLxawWt2u2/7\nv8rPm/LnfFjSg/5nrjEc9nkFw71fafp6SGdX36113bsk/ZKCnq0Zf95L1vN6reD3FAyr5hXMnftY\n4wb/Gv64ggUCRxT8bP+Mv/k2BSVSJs3stD/2DkllBaHt/Qpeq4ZPK+jB+Y6CYbaS1p5C0PDHCiat\nn5Z0uzbQE+Scu09BCL5JQcic0bm/oyu5SUH4m5b0/QoWLax2/XlJz1Aw/++4gp+Vt+nsH2j/Q8Gw\n4aSC95C/vsjj/qaC4e07/WO/TVKfD/NvkfQf/ueoeS6h/PD3cxX0LJ5R0DP5XOfcaaFnNVa8AQAQ\nWxaUk5lwzr0+7LYAW0GPGQAAQEQQzAAAACKCoUwAAICIoMcMAAAgItasY2Zm71WwauSUc66xv+H/\nUrDip6ygqN5LnXONPddeq2CpdU3SrzrnPu2PP0vBCqqEpL9yzr3VH79cQQmFbQqWor/YOVdeq13b\nt293l1122YaeLAAAQBjuvvvu0865ixWxlrSOoUwz+0EF5Qs+0BTMniHpNudc1czeJknOuVf7Wi8f\n1tntQP5VQYVuKVhq/aMKljvfKelnfYHGmyV9zDn3ETP7c0n3OOf+bK2GX3vtte6uu+5a6zQAAIDQ\nmdndzrlr1zpvzaFM59wXdN72Oc65zzQV0rxdZyud3yDpI37vtu8pqNFznf847IJ9BcsKeshu8IVE\nf1hBrSQpqJ/zvDWfHQAAQBdqxRyzX5D0Sf/5Pp1beHDCH1vt+DZJs00hr3F8RWb2cjO7y8zumpqa\nakHTAQAAomNLwczMXqdgq47N7JO3Yc65dzvnrnXOXbtjx5rDtAAAALGy6U3MzewlChYFPN2dnah2\nTOduqLxfZzdjXun4GUmjTRvtNp8PAADQUzbVY+ZXWP62pJ/we4E13CLpBWaW8astr1Swp9ydkq70\nGz6nFexNdosPdP8m6af8/W+U9PHNPRUAAIB4WzOYmdmHFWwo/UgzmzCzlynYgHdI0q1m9nW/mrKx\n6ezNCjZA/pSkVzjnar437H8o2Az3AUk3+3OlYMPfV5rZYQVzzt7T0mcIAAAQE7Gt/E+5DAAAEBct\nK5cBAACAziCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghkAAEBEEMwAAAAigmAGAAAQEQQzAACA\niCCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghkAAEBEEMwAAAAigmAGAAAQEQQzAACAiEiG3QAA\nQGvc/fC0XvLeO5VLJzTan9JILvjYNpjRY/aNqM9MkvTC6y8JuaUAVkMwA4AucffDM5pfqmrfWE7z\npaqOzRS1WK5JkrLJPj1y93DILQSwFoIZAHSJyfyS0ok+vfhJl8p871ipUtPv//P9euhMgWAGxABz\nzACgS5ycK2k4l1wOZZKUTSW0dzSnh88shtgyAOtFMAOALjE5V9JwNnXB8UvH+zUxU1S1Xg+hVQA2\ngmAGAF1iMl/ScG6FYLZtQNW604nZUgitArARBDMA6AL1utOp+ZV7zC7Z1i9JDGcCMUAwA4AuMF0o\nq1JzGs5duKZrOJvSWH9KD08XQmgZgI0gmAFAF5jMB8OUK/WYScFw5pEzBTnnOtksABtEMAOALnBy\nLghmIyvMMZOkS8b7Nb9U1Uyh0slmAdggghkAdIFJH8xWmvwvSZcyzwyIBYIZAHSBk/mS+kwazKxc\nN3zXcFaZZB/zzICII5gBQBeYnCtpx1BGiT5b8fY+M10y3q8jZwhmQJQRzACgC0zOLWn3cPai51yy\nrV8n50rKF5lnBkQVwQwAusDJfEm71ghml44PyEn62pGZzjQKwIYRzACgC0zOlbR75OLB7MB4Tibp\nqw8TzICoIpgBQMyVKjXli5U1e8wyyYT2jGR1F8EMiCyCGQDEXKO47FpzzCTpkm0D+vrRWVVrbGgO\nRBHBDABirlHDbK2hTCmoZ1Yo1/Styfl2NwvAJhDMACDmGlX/1xrKlKRLx4NCs3c9NN3WNgHYHIIZ\nAMTc8lDmOnrMRvvTzDMDIoxgBgAxNzlX0mAmuWrV//N9/6VjrMwEIopgBgAxd3KupF3DmXWff+2l\nYzqeL+n4bLGNrQKwGQQzAIi5yfzaNcyaff+l45Kkr1JoFogcghkAxNzJuaV1TfxvOLhzUJL0vanF\ndjUJwCYRzAAgxup1p5NzpXXVMGvIpRPaPpjR0Rk2NAeihmAGADF2ZrGsat1taChTCrZnOjrNHDMg\naghmABBjG6lh1uzAWD89ZkAEEcwAIMY2sh1TswPjOZ3Il9iaCYgYghkAxNhGtmNqdmCsX7W60wkf\n7ABEA8EMAGLs5FxJiT7T9sH11zGTpAN+ayaGM4FoIZgBQIxN5kvaMZhRos82dL8DY0Ewm2ABABAp\nBDMAiLHJuZJ2bXAYU5L2jGbVZ/SYAVFDMAOAGAtqmG1sGFOSUok+7RnJ6eg0wQyIEoIZAMTYZH5j\nxWWbHRjP6egMQ5lAlBDMACCmiuWa5krVTQ1lSr6WGT1mQKQQzAAgppZLZWy6x6xfp+aXVKrUWtks\nAFtAMAOAmNpscdmGA+M5SdIEw5lAZBDMACCmlrdj2sJQpsTKTCBKkmE3AACwOZsdyrzpjiOSpHyx\nIkn6h68e04nZC3cAeOH1l2yxhQA2ih4zAIipyXxJQ5mkBjKb+xt7KJtUss80s1huccsAbBbBDABi\n6uQmi8s29JlptD+l6QLBDIgKghkAxNTk3OZrmDWM9ac1QzADIoNgBgAxdTJf0q6tBrOBtGYWKy1q\nEYCtYvI/AMRAY8J+Q905Tc6VdGZh6YLbNmK8P61ipaZSpaZsKrHVZgLYInrMACCGFpeqqjtpOJfa\n0nXGBtKSpGkWAACRQDADgBiaK1YlScPZLQaz/uD+zDMDooFgBgAxNFcK5oUN57Y2I2W8P+gxo2QG\nEA0EMwCIoUZx2K0OZebSCWWSfZousAAAiAKCGQDE0HypKpM0uMnisg1mFpTMoMcMiASCGQDEULFS\nVTaVUJ/Zlq81NkAtMyAqCGYAEEPFck25dGvKW4z3pzRTKMs515LrAdg8ghkAxFCxUlOuRXXHxgbS\nqtScFsu1llwPwOYRzAAghorlmvpb1GM2xspMIDIIZgAQQ8UWVupvBDM2MwfCRzADgBhqaY/ZgC8y\nS48ZEDqCGQDEjHOupXPMMsmE+tMJVmYCEUAwA4CYKVfrqju1bFWmJI0PpDWzSJFZIGwEMwCImUIl\nWD3Zqh4zKZhnxhwzIHwEMwCImaIva9HKHrOx/rTyhYrq1DIDQkUwA4CYKbajx2wgpZpzmisynAmE\niWAGADHTjh6zcUpmAJFAMAOAmGlPj1mjyCw9ZkCYCGYAEDPt6DEb7U/JJEpmACFbM5iZ2XvN7JSZ\nfbPp2LiZ3Wpmh/y/Y/64mdm7zOywmd1rZk9sus+N/vxDZnZj0/HvN7Nv+Pu8y8ys1U8SALpJsVJT\nwkzpROv+tk729Wkwk1SeOWZAqNbzW/0+Sc8679hrJH3WOXelpM/6ryXp2ZKu9B8vl/RnUhDkJL1B\n0vWSrpP0hkaY8+f8UtP9zn8sAECTYrmmbDqhVv8dO9KfIpgBIVszmDnnviBp+rzDN0h6v//8/ZKe\n13T8Ay5wu6RRM9sj6ZmSbnXOTTvnZiTdKulZ/rZh59ztzjkn6QNN1wIArKBQqam/hfPLGkZyKeUL\nBDMgTJvtB9/lnDvhP5+UtMt/vk/S0abzJvyxix2fWOH4iszs5WZ2l5ndNTU1tcmmA0C8lcq1ls4v\naxjJBT1mjlpmQGi2PEHB93R15LfYOfdu59y1zrlrd+zY0YmHBIDIaeU+mc1GcimVa3WVKvWWXxvA\n+mw2mJ30w5Dy/57yx49JOtB03n5/7GLH969wHACwikK52rYeM0nMMwNCtNlgdoukxsrKGyV9vOn4\nz/vVmU+SlPdDnp+W9AwzG/OT/p8h6dP+tjkze5JfjfnzTdcCAKygnT1mkpQvUjIDCEtyrRPM7MOS\nfkjSdjObULC68q2Sbjazl0l6WNLz/en/Iuk5kg5LKkh6qSQ556bN7M2S7vTnvck511hQ8N8VrPzM\nSfqk/wAArKDunJYq9bb2mM3SYwaEZs1g5pz72VVuevoK5zpJr1jlOu+V9N4Vjt8l6Zq12gEAkEqV\nmpxaW/W/YSgbFJllKBMID5X/ASBG2lH1vyHRZxqmZAYQKoIZAMRIO/bJbDaSSylfIpgBYSGYAUCM\nNHrM+tvQYyZRZBYIG8EMAGKk0WOWbWePGUVmgdAQzAAgRgod6DGr1t3y4wDoLIIZAMRIqQNzzCRW\nZgJhIZgBQIwUyzWlEqZkoj1v3wQzIFwEMwCIkUKbqv43jPQTzIAwEcwAIEaK5Vpbapg1DGaSSpgR\nzICQEMwAIEbatU9mQ5+ZhnNJghkQEoIZAMRI0GO25m56WzKcS2mWWmZAKAhmABAj7e4xkxq1zMpt\nfQwAKyOYAUCMFMu1ttUwaxjNpTRXqqpep8gs0GkEMwCIiVrdqVyrt63qf8NILqVa3enMIr1mQKcR\nzAAgJpY3MG9zj9lILi1JOpEvtvVxAFyIYAYAMVEoVyVJ/e3uMfO1zI7Pltr6OAAuRDADgJgolTvV\nYxYEM3rMgM4jmAFATBTavE9mw0A6oWSf6USeHjOg0whmABATxQ71mJmZhnMpghkQAoIZAMREsUM9\nZlIwnHlilqFMoNMIZgAQE40es3aXy5CCWmb0mAGdRzADgJgoVmrKJPuU6LO2P9ZILqXJuZJqFJkF\nOopgBgAxEeyT2f7eMikomVGrO03NL3Xk8QAECGYAEBPFSq3tNcwaRrKUzADCQDADgJgolmvKdrDH\nTBLzzIAOI5gBQEwUKrWOrMiUzhaZPc7KTKCjCGYAEBOlck39Heoxy6USyqUS9JgBHUYwA4AYcM6p\n2MEeMzPTntEsc8yADiOYAUAMVGpO1brrWDCTpL0jOXrMgA4jmAFADCxX/U8nO/aYu0eyOjFLMAM6\niWAGADFwNph1sscsq1PzJVVr9Y49JtDrCGYAEAPLG5h3cChzz2hOdSedpMgs0DEEMwCIgeVg1sEe\nsz0jWUliM3OggwhmABADxUpVUmd7zPaO5iRJx1kAAHQMwQwAYqDRY9apOmbS2R6zSUpmAB1DMAOA\nGChWajJJ6WTn3raHsikNZZI6zspMoGMIZgAQA4VyTdlUQn1mHX3cy3cM6NCp+Y4+JtDLCGYAEAPF\nSue2Y2r2mH0juvdoXvW66/hjA72IYAYAMVCq1Dq6IrPhcQdGNb9U1ffOLHb8sYFeRDADgBgolDu3\nT2azx+0flSTdOzHb8ccGehHBDABioFgOp8fs4M5B9acTuudovuOPDfQighkAxECxEk6PWaLPdM3e\nEd1DjxnQEQQzAIg451wwxyyEYCZJj90/ovuPz6nCnplA2xHMACDiFpaqqrvObsfU7HEHRrVUrevb\nk5TNANqNYAYAETdbqEjq7HZMzc4uAGCeGdBuBDMAiLh8MQhmYdQxk6QD4zmN9adYmQl0AMEMACJu\nzgezbEjBzMz0mP2j+vpRghnQbgQzAIi42WK4Q5mS9Lj9Izp0amF5M3UA7UEwA4CIOzuUmQytDY/d\nP6pa3em+48wzA9qJYAYAERf25H8p6DGTpHtYAAC0FcEMACIuX6woYaZUwkJrw87hrPaMZFkAALQZ\nwQwAIi5frCibTsgsvGAmBYVm72EBANBWBDMAiLjZQjm0UhnNHrt/VA+dKSjvh1YBtB7BDAAibnqx\nrIEIBLPlQrPH6DUD2oVgBgARN1uohLois+ExfgEAOwAA7UMwA4CIm4nIUOZILqVHbB9gnhnQRgQz\nAIgw55wPZuH3mEl+AQArM4G2IZgBQIQtlmuq1JwGMuH3mEnBAoCTc0s6OVcKuylAVyKYAUCEzSyW\nJYW3gfn5HnfAF5plOBNoC4IZAETYTKERzKIxlHn1nhEl+owFAECbEMwAIMKmI9Zjlksn9MhdQ/r3\nw6flnAu7OUDXIZgBQIQ19skciEiPmSS96EmX6J6js/r0fSfDbgrQdQhmABBhUesxk6SfufaArto1\nqD/85AMqV+thNwfoKgQzAIiw2UJZZlI2QsEsmejT637saj18pqAPfPmhsJsDdBWCGQBE2HShrNFc\nSn0hb2B+vqddtUNPu2qH3vXZQ8srRwFsXXQmLQAALjBTqGisPx3KY990x5GL3v74A6P64uHTeudn\nD+mNP/HoDrUK6G70mAFAhM0sljU2EE4wW8uu4ax+9roD+uDtD+vwqYWwmwN0BYIZAERY0GOWCrsZ\nq/r1H7lK/amE3vrJB8JuCtAVGMoEgAibLZR1zd7hsJuxqs/cd1JPPbhdn7pvUm/6p/t1cOfgiue9\n8PpLOtwyIJ7oMQOACJuO8FBmw5Ov2Kax/pQ+c/9k2E0BYo9gBgARVSzXtFSthzb5f71SiT5df/k2\nTcwUlS9Wwm4OEGsEMwCIqGm/T2aU55g1XLV7SJL0nZPzIbcEiDeCGQBEVKM+WNSHMiVp11BGI7kU\nwQzYIoIZAETUzHKPWfSDmZmiystFAAAgAElEQVTpql2DOnxqQbU6m5sDm0UwA4CImvEbmMdhKFOS\nrto1pKVqXQ9PL4bdFCC2CGYAEFFxGsqUpCt2DKrPpO9MUmwW2CyCGQBEVGMoczQXjx6zbCqhS7cN\nMM8M2AKCGQBE1MxiWcPZpJKJ+LxVP3LXkCbnSpTNADYpPr/tANBjZgqV2AxjNly1KyibcYheM2BT\nCGYAEFEzhXIsVmQ22zWc0XA2qW8TzIBNIZgBQEQFwSwe88sagrIZQ5TNADZpS8HMzH7DzO4zs2+a\n2YfNLGtml5vZHWZ22Mz+1szS/tyM//qwv/2ypuu81h//tpk9c2tPCQC6w8xi/IYypbNlM45MF8Ju\nChA7mw5mZrZP0q9KutY5d42khKQXSHqbpHc45w5KmpH0Mn+Xl0ma8cff4c+TmV3t7/doSc+S9Kdm\nlthsuwCgW8RxKFOSDu70ZTMYzgQ2bKtDmUlJOTNLSuqXdELSD0v6qL/9/ZKe5z+/wX8tf/vTzcz8\n8Y8455acc9+TdFjSdVtsFwDEWqlSU6Fc03gMe8womwFs3qaDmXPumKT/LemIgkCWl3S3pFnnXNWf\nNiFpn/98n6Sj/r5Vf/625uMr3OccZvZyM7vLzO6amprabNMBIPJmfdX/0ZjNMWu4ateQTuRLmqNs\nBrAhWxnKHFPQ23W5pL2SBhQMRbaNc+7dzrlrnXPX7tixo50PBQChahSXHY/hUKYkXbVrUJJ06BS9\nZsBGbGUo80ckfc85N+Wcq0j6mKSnShr1Q5uStF/SMf/5MUkHJMnfPiLpTPPxFe4DAD2psR3TaEyD\n2e7hrC+bwfZMwEZsJZgdkfQkM+v3c8WeLul+Sf8m6af8OTdK+rj//Bb/tfzttznnnD/+Ar9q83JJ\nV0r6yhbaBQCxt7yB+UA8hzLPls2YV/BWD2A9tjLH7A4Fk/i/Kukb/lrvlvRqSa80s8MK5pC9x9/l\nPZK2+eOvlPQaf537JN2sINR9StIrnHO1zbYLALrBdMyHMiVp90hWpUpdhTJv6cB6Jdc+ZXXOuTdI\nesN5hx/UCqsqnXMlST+9ynXeIuktW2kLAHST2ZgPZUrScDbo7WPfTGD9qPwPABE0XShrMJNUOhnf\nt+mRXBDMWJkJrF98f+MBoIvNFiqxLZXRMOyDWb5EMAPWi2AGABE0vViOZXHZZoOZpEz0mAEbQTAD\ngAiaLZRjPb9MkhJ9pqFsUvlide2TAUgimAFAJE0XyhqP+VCmFMwzm2MoE1g3ghkARNDsYiX2PWZS\nMM+MVZnA+hHMACBiKrW65peqsZ9jJgXBjDlmwPoRzAAgYhr7ZI51w1BmNqWlal3zDGcC60IwA4CI\nmfXbMXXLUKYknZwrhdwSIB4IZgAQMdO+6n83DGU2isyeyBPMgPUgmAFAxMwWGtsxdcFQpg9mkwQz\nYF0IZgAQMdOLwVBmN/SYDWWDLZkJZsD6EMwAIGLOTv6PfzBLJfrUn07oBHPMgHUhmAFAxMwslpVL\nJZRNJcJuSkuM5FI6SY8ZsC4EMwCImJlCpStKZTQMZ1NM/gfWiWAGABEzUyhrrAvmlzWM5FKaZCgT\nWBeCGQBEzEyh3BXzyxqGc0lNL5ZVqtTCbgoQeQQzAIiYmcXu6zGTpFNzSyG3BIg+ghkAREzXzTFr\n1DJjOBNYE8EMACKkWqsrX6x011BmtlH9vxhyS4DoI5gBQITki0Fx2W7qMaP6P7B+BDMAiJAZv4F5\nN80xy6YSGswkGcoE1oFgBgAR0k1V/5vtGs7QYwasA8EMACJkZrE7g9mekRxFZoF1IJgBQIQs95gN\ndM8cM0naPZLVSYYygTURzAAgQpbnmHVZj9nu4axOzS+pWquH3RQg0ghmABAhM4tlpZN96k93xwbm\nDbtHsqrVnU4vlMNuChBpBDMAiJBgO6aUzCzsprTU7uGsJIrMAmshmAFAhEwvdldx2YbdIz6YUWQW\nuCiCGQBEyEyhrPEuqmHWsMcHM1ZmAhdHMAOACJmaX9KOoUzYzWi58YG00ok+hjKBNRDMACAinHNB\nMBvsvmBmZto1QpFZYC0EMwCIiMVyTcVKrSt7zCRpzzBFZoG1EMwAICKm5pckqWuD2S6KzAJrIpgB\nQER0ezDbM5LViXxJzrmwmwJEVjLsBgBAL7vpjiPLn3/jWF6SdOf3ZnR0uvvKSuwezqpcrWumUOnK\nladAK9BjBgARMV8KtmMazHbn38xna5kxnAmshmAGABGxsFRVn6nrtmNqWA5mc93XGwi0CsEMACJi\noVTVQCapvi7bjqlheVum/FLILQGii2AGABExX6pqKNOdw5hSsKihz9iWCbgYghkARMTCUrVr55dJ\nUirRpx1DGWqZARdBMAOAiJgvVTSUSYXdjLbaPZxlWybgIghmABABdee6vsdMChYAsCoTWB3BDAAi\noFiuqe6koS4PZntGcgQz4CIIZgAQAfNLVUnSYBdP/pekXcNZzS9VteCfL4BzEcwAIAIWSkFQGcp2\n9xyzXcPBdlOnmGcGrIhgBgAR0Kj6383lMiRpzG/FNFOohNwSIJoIZgAQAY2hvW6f/D/e74PZYjnk\nlgDRRDADgAiYL1WVSpgyye5+W25sXj5dIJgBK+nudwAAiImFpaoGM0lZl27H1LAczOgxA1ZEMAOA\nCFgoVbt+RaYUbNCeTvYxlAmsgmAGABEwv1Tp+hWZkmRmGu9P02MGrIJgBgARMF/q/qr/DWMDac0w\nxwxYEcEMAEJWqzsVyrWuL5XRMD6QoscMWAXBDABC1iulMhrG+tPUMQNWQTADgJAtV/3PdP8cMylY\nmUmPGbAyghkAhGx+yVf975Ees/GBtPLFiqq1ethNASKHYAYAIWv0mPXKUOY42zIBqyKYAUDI5htz\nzHpk8v9YY1smVmYCF+iNdwEAiLD5UlXZVJ9Sie79W/mmO44sf3741IIk6ea7juoR2wfPOe+F11/S\n0XYBUdO97wIAEBMLS9WemfgvSQOZhCSpsFQLuSVA9BDMACBkC6VKz8wvk6T+dPBcF8vVkFsCRA/B\nDABCNt8j+2Q29Kd9j1mZHjPgfAQzAAjZwlK1Z0plSFIq0ad0sk+FJXrMgPMRzAAgROVqXUvVes9s\nx9QwkE5okR4z4AIEMwAI0dntmHpn8r8kDWSSKjDHDLgAwQwAQjRf6q2q/w396YQWWZUJXIBgBgAh\nmi/1VnHZhoF0klWZwAoIZgAQosZQZi/2mFHHDLgQwQwAQjRfqsoUzLnqJQOZpMq1uipsZA6cg2AG\nACFaWKpoIJNUn1nYTemoRpFZapkB5yKYAUCI5ku9VcOsoVFkdpFaZsA5CGYAEKKFpd6q+t/QGLql\nxww4F8EMAEK00KM9ZgONHjNWZgLnIJgBQEicc5rv0R6zfv+cGcoEzkUwA4CQzBWrqtVdz1X9l6Rc\nKiETQ5nA+QhmABCSqYWSJPXcPpmSlOgzZVMJesyA8xDMACAkp+aXJEmDPTjHTJIGMgl6zIDzEMwA\nICRTPpj1Yo+ZFNQyY/I/cC6CGQCEZDmY9eAcMylYmcm2TMC5CGYAEJKphSU/16o334r7M0kV6DED\nztGb7wYAEAFT80sayiRlPbYdU8NAOqnFck3OubCbAkTGloKZmY2a2UfN7Ftm9oCZPdnMxs3sVjM7\n5P8d8+eamb3LzA6b2b1m9sSm69zozz9kZjdu9UkBQBxMzS/17MR/KZj8X6s7latsZA40bLXH7J2S\nPuWc+z5Jj5P0gKTXSPqsc+5KSZ/1X0vSsyVd6T9eLunPJMnMxiW9QdL1kq6T9IZGmAOAbnZ6odyz\nE/+lsxuZL7IyE1i26WBmZiOSflDSeyTJOVd2zs1KukHS+/1p75f0PP/5DZI+4AK3Sxo1sz2Sninp\nVufctHNuRtKtkp612XYBQFycmiv1ZHHZhgE2MgcusJUes8slTUn6azP7mpn9lZkNSNrlnDvhz5mU\ntMt/vk/S0ab7T/hjqx2/gJm93MzuMrO7pqamttB0AAjXUrWmM4tljeR6uMdseSNzghnQsJVglpT0\nREl/5px7gqRFnR22lCS5YEZny2Z1Oufe7Zy71jl37Y4dO1p1WQDouFNzQamMkRw9ZgxlAmdtJZhN\nSJpwzt3hv/6ogqB20g9Ryv97yt9+TNKBpvvv98dWOw4AXetEPtiOabiHhzIbc8wKDGUCyzYdzJxz\nk5KOmtkj/aGnS7pf0i2SGisrb5T0cf/5LZJ+3q/OfJKkvB/y/LSkZ5jZmJ/0/wx/DAC61uScD2Y9\n3GOWTfWpz+gxA5ptdXLDr0j6kJmlJT0o6aUKwt7NZvYySQ9Ler4/918kPUfSYUkFf66cc9Nm9mZJ\nd/rz3uScm95iuwAg0ibzRUm9PZRpZhpIU2QWaLalYOac+7qka1e46ekrnOskvWKV67xX0nu30hYA\niJPJ/JIG0gllkr1d57s/k9Ai2zIBy3r7HQEAQjI5V9SukWzPVv1vYCNz4FwEMwAIwWS+pD0j2bCb\nETo2MgfORTADgBBM5kvaNUww68/QYwY0I5gBQIfV6k4n55foMVPQY1Ys11RnI3NAEsEMADruzMKS\nanWn3fSYqT+dlJNUomQGIIlgBgAd1yguu3skF3JLwjeQofo/0IxgBgAd1iguS4+ZNJBmv0ygGcEM\nADpscrnHjGDW2MicWmZAgGAGAB02OVdSKmHaNpAOuymha2xkTo8ZECCYAUCHTeZL2jmUVV9fbxeX\nlc5uZL7IRuaAJIIZAHTcZL7EMKaXTvYplTAm/wMewQwAOmxyjmDWrJ+NzIFlBDMA6CDnXNBjxorM\nZQNpNjIHGghmANBBc8WqipUaVf+b9GfoMQMaCGYA0EHLNcwIZssG0gnmmAEewQwAOuhEviiJ4rLN\n6DEDziKYAUAHnaTH7AID6YRKlbpqdTYyBwhmANBBjX0ydw4RzBqWa5nRawYQzACgk07OlbR9MKN0\nkrffhgG/LVOBlZkAwQwAOulEvqTdI5mwmxEp/X5bJnrMAIIZAHRUUMMsF3YzImXQ95gtsC0TQDAD\ngE4Kqv7TY9ZsOZiVCGYAwQwAOqRUqWm2UNGeEXrMmuXSCfUZG5kDEsEMADpm0q/I3EUNs3P0mWkg\nk2QoE5CUDLsBANCtbrrjyDlfPzi1IEm6//icbqoeWekuPWuQYAZIoscMADpmrlSRJA3n+Jv4fAQz\nIEAwA4AOyReD4DGSTYXckuhhKBMIEMwAoEPmihVlkn3KpBJhNyVyBjNJLS5V5RzbMqG3EcwAoEPy\nxYpGcvSWrWQwk1Sl5rRYpvo/ehvBDAA6ZK5U0TDBbEWNWman55dCbgkQLoIZAHTIXLHC/LJVDGaD\nYHZmkWCG3kYwA4AOqNWd5ktVVmSuotFjNjVfDrklQLgIZgDQAQtLVTmJocxVDDSGMhfoMUNvI5gB\nQAfMFYMaZgxlrmwgE6xUPbNAjxl6G8EMADogX2wUlyWYrSTZ16dcKkGPGXoewQwAOqBR9Z9yGasb\nzCQJZuh5BDMA6IB8saJkn6k/TXHZ1QxmkwxloucRzACgA/LFoIaZmYXdlMgaoMcMIJgBQCfMFasa\nzlIq42IYygQIZgDQEVT9X9tgJqm5UlVLVbZlQu8imAFAmznnqPq/Do0is8wzQy8jmAFAmxXKNVXr\njh6zNRDMAIIZALQdpTLWp7FfJvPM0MsIZgDQZhSXXZ/l/TIJZuhhBDMAaLNGMKPH7OIYygQIZgDQ\ndnPFikxngwdWlk6yLRNAMAOANpsrVjWUTSrRR3HZtWwfSusMwQw9jGAGAG2Wp4bZum0fzOg0Q5no\nYQQzAGizfLHC/LJ12jaQYSgTPY1gBgBtNlekx2y9dgyl6TFDTyOYAUAblSo1LVXrVP1fp+2DGU0v\nLqlWd2E3BQgFwQwA2miOGmYbsm0grbqTZgr0mqE3EcwAoI3yVP3fkO1DGUnUMkPvIpgBQBvNUVx2\nQ7YPBsGMBQDoVQQzAGijfLEqSRrKUlx2PbYPpiURzNC7CGYA0EZzxYr60wmlErzdrsfZHjOGMtGb\neKcAgDaihtnGDGdTSvYZPWboWQQzAGijuRLBbCP6+kzbBtmWCb2LYAYAbZSnuOyGsS0TehnBDADa\npFKrq1CuaZjishuybZBtmdC7CGYA0CaUytic7YNp6pihZxHMAKBN5kpBqQyC2cbsGMxoamFJzrEt\nE3oPwQwA2iS/vB0TNcw2YttgWuVqXfNL1bCbAnQcwQwA2mR5KJM5ZhvSqGXGcCZ6EcEMANokX6wo\nk+xTJpUIuymxwrZM6GUEMwBoE2qYbc42vy0TtczQiwhmANAmVP3fnB2+x2yKoUz0IIIZALTJXLFC\nDbNNGBvwG5nP02OG3kMwA4A2qNbqmi9Vqfq/CalEn8b6UzqzSDBD7yGYAUAbTC0syYkaZpu1fTCj\n0/MMZaL3EMwAoA1O5EuSpBFqmG3KtsE0qzLRkwhmANAGkz6YMZS5OdsHMzqzSI8Zeg/BDADaYLnH\njMn/mxIMZdJjht5DMAOANjg5V1Kyz5RLU1x2M7YPpjW/VFWpUgu7KUBHEcwAoA1O5EsayaVkZmE3\nJZaWt2ViOBM9hmAGAG0wmS8yv2wLlrdlYjgTPYZgBgBtMDlXolTGFixvy0QtM/QYghkAtFi97nQy\nv0TV/y3YMRT0mJ2cI5ihtxDMAKDFpgtllWt1aphtwe7hrBJ9puOzxbCbAnQUwQwAWowaZluXTPRp\n93BWEzMEM/QWghkAtNjkctV/gtlW7BvN6RjBDD1my8HMzBJm9jUz+4T/+nIzu8PMDpvZ35pZ2h/P\n+K8P+9sva7rGa/3xb5vZM7faJgAI04k5esxaYf9YTscYykSPaUWP2a9JeqDp67dJeodz7qCkGUkv\n88dfJmnGH3+HP09mdrWkF0h6tKRnSfpTM6MiI4DYmswXlewzDWaYY7YV+8ZyOpEvqlKrh90UoGO2\nFMzMbL+kH5P0V/5rk/TDkj7qT3m/pOf5z2/wX8vf/nR//g2SPuKcW3LOfU/SYUnXbaVdABCmE/mS\ndg5l1Edx2S3ZN5pT3Z0dGgZ6wVZ7zP5Y0m9Lavw5s03SrHOu6r+ekLTPf75P0lFJ8rfn/fnLx1e4\nzznM7OVmdpeZ3TU1NbXFpgNAe5ycK2n3SDbsZsTe/rF+SWI4Ez1l08HMzJ4r6ZRz7u4WtueinHPv\nds5d65y7dseOHZ16WADYkBP5kvaM5MJuRuztGwteQ1ZmopdspcfsqZJ+wswekvQRBUOY75Q0amaN\niRX7JR3znx+TdECS/O0jks40H1/hPgAQK845TebpMWuFPf41ZGUmesmmZ6Y6514r6bWSZGY/JOk3\nnXMvMrO/k/RTCsLajZI+7u9yi//6y/7225xzzsxukXSTmb1d0l5JV0r6ymbbBQBhmitVVSjXtHuY\nYLYZN91x5Jyvh7JJfeHQ1PJOAJL0wusv6XSzgI5pRx2zV0t6pZkdVjCH7D3++HskbfPHXynpNZLk\nnLtP0s2S7pf0KUmvcM7V2tAuAGi7RqX6PaMEs1YYzaU0UyiH3QygY1qylts59zlJn/OfP6gVVlU6\n50qSfnqV+79F0lta0RYACFNjPtSBsX7dV5wLuTXxN9qfZvI/egqV/wGghY5OFyQFxVGxdWP9aeUL\nFdWdC7spQEcQzACghSZmiupPJzQ+kA67KV1htD+lmnOaL1XXPhnoAgQzAGihiZmC9o/lZBSXbYmx\n/mBbq1nmmaFHEMwAoIWOzhR1wBdGxdaN9gc9j7OFSsgtATqDYAYALdToMUNrjPlgxspM9AqCGQC0\nSL5Y0XypuryVELYunexTfzpBjxl6BsEMAFqksSLzwDg9Zq001p/WbJEeM/QGghkAtEijhhk9Zq01\n2p/SzCI9ZugNBDMAaJGJGWqYtcNoLqXZYlmOWmboAQQzAGiRiZmihjJJjeRSYTelq4wNpFWpOS2W\n2a0P3Y9gBgAtMjFT0D5qmLXcaK5RMoN5Zuh+BDMAaJGj00UdGGd+WauN+iKzM6zMRA8gmAFACzjn\nqGHWJmP99JihdxDMAKAFZgsVLZZrrMhsg1w6oUyyjx4z9ASCGQC0wFG/IvMAPWZtMdafpscMPYFg\nBgAtQA2z9hrtT1H9Hz2BYAYALdCo+r+fqv9tMdqfZr9M9ASCGQC0wMRMUSO5lIaz1DBrh7H+lJaq\ndRWpZYYuRzADgBZgRWZ7jTZWZrJnJrocwQwAWuDoTFEHmF/WNmONWmbsmYkuRzADgC2ihln70WOG\nXkEwA4AtOrNYVqlSJ5i10UA6oVTCWJmJrkcwA4AtaqzIZDum9jEzjeZYmYnuRzADgC2ihllnjA1Q\nywzdj2AGAFvUqPrPUGZ70WOGXkAwA4AtmpgpanwgrYFMMuymdLXR/pQK5ZoK5WrYTQHahmAGAFs0\nMVOkt6wDxvzKzGN+6BjoRgQzANiiiekCNcw6YNTXMpuYJZihexHMAGAL6nWniVl6zDphlB4z9ACC\nGQBswdTCkspVaph1wlA2qWSf6eEzi2E3BWgbghkAbMFEY0UmNczars9MO4YyOnxqIeymAG1DMAOA\nLWjUMDtAj1lH7BjK6BDBDF2MYAYAW9Co+r9vlB6zTtg5lNHETJGSGehaFN0BgA266Y4jy59/7ttT\nGswk9Q9fOxZii3rHzqGsJOnBqUVds28k5NYArUePGQBswWyhojFfxgHtt3MoI0k6dGo+5JYA7UEw\nA4AtmC6Ul8s4oP22DWaU7DMdOsk8M3QnghkAbFLdOeULFY0PEMw6JdFnumz7ACsz0bUIZgCwSXPF\nimrOLVekR2dcuXOQYIauRTADgE2aXixLksYZyuyogzsH9dCZRS1Va2E3BWg5ghkAbNIxv2fjnlFq\nmHXSwZ2DqjvpodOFsJsCtBzBDAA26dhsUaO5lAYzVB7qpIM7ByWxMhPdiWAGAJs0MVPUPir+d9wV\nOwZlJlZmoisRzABgEwrlqqYXy9rPMGbHZVMJXTLer8NTBDN0H4IZAGzCMb9H5r4xtmIKw8EdgzpM\njxm6EMEMADZhwk/830ePWSgO7hrUg6cXVK3Vw24K0FIEMwDYhGMzRW0bSCuXToTdlJ505c4hVWpO\nR6ZZmYnuQjADgE2YmCloPxP/Q3N2ZSbDmeguBDMA2KC5UkVzpar2M78sNI1gxg4A6DYEMwDYoMbE\nf3rMwjOYSWrPSJZghq5DMAOADZqYKcok7RkhmIXp4M5Bisyi6xDMAGCDjs0WtGs4q3SSt9AwXblz\nSIdPLahed2E3BWgZ3lUAYAOcc1T8j4iDOwdVqtSX9ywFugHBDAA2YGKmqEK5xvyyCLhyFwsA0H0I\nZgCwAfdO5CVRWDYKDu5gM3N0H4IZAGzAvROzSvSZdo9kw25KzxsbSGv7YJoeM3QVghkAbMA9E7Pa\nM5JVso+3zygIVmYSzNA9eGcBgHWq152+eWyOYcwIObgz2MzcOVZmojsQzABgnR48vaiFpSoT/yPk\nyp1Dml+q6tT8UthNAVqCYAYA63TvxKwkaR9bMUXGlY09M08ynInuQDADgHW6dyKv/nRCO4cyYTcF\n3tnNzFmZie5AMAOAdbpnYlbX7B1Rn1nYTYG3Yyij4WySBQDoGgQzAFiHSq2u+4/P6TH7R8JuCpqY\nmR61Z1j3H58LuylASxDMAGAdvnNyXkvVuh5LMIucR+8d0QMn5lSt1cNuCrBlybAbAABxcMeD05Kk\nJxwY0xcPnw65Nb3tpjuOnPP1fKmipWpd/+e2w9o1fLbw7wuvv6TTTQO2jB4zAFiHT9x7XN+3e0iX\nbGNFZtTs8XXljrOZOboAwQwA1nB0uqCvHpnVTzx+b9hNwQp2DGaU7DOCGboCwQwA1vDP3zghSfrx\nxxLMoqixd+nxfCnspgBbRjADgDX80z3H9fgDozowzjBmVO0dzen4bFF1tmZCzBHMAOAivju1oPuO\nz+nHH0dvWZTtHclpqVrXzGI57KYAW8KqTABocv6Kv88+cFImqVytX3AbomPvaLAa83i+pG2D7MyA\n+KLHDABW4ZzTvRN5XbZ9QCO5VNjNwUXsGs6qz1iZifgjmAHAKibnSppaWKKobAykEn3aOZTViTzB\nDPFGMAOAVdw7kVefSdfsJZjFwd7RrI7NluRYAIAYI5gBwAqCYcxZHdw5qIEM03HjYO9oTotLVc2X\nqmE3Bdg0ghkArODoTFEzhYoeu2807KZgnfaMsAMA4o9gBgAruHdiVsk+09V7h8NuCtZp70hjZSbB\nDPFFMAOA89Sd0zeO5XXVriFlU4mwm4N1yqQS2jaQ1vFZdgBAfBHMAOA8D51e1HypymrMGNo7mqPH\nDLFGMAOA83zjWF6phOn7djOMGTd7R3OaLVRUWGIBAOKJYAYATZxzeuDEnK7cOaR0krfIuGneAQCI\nI951AKDJsdmi5kpVJv3H1F5WZiLmNh3MzOyAmf2bmd1vZveZ2a/54+NmdquZHfL/jvnjZmbvMrPD\nZnavmT2x6Vo3+vMPmdmNW39aALA595+YU59J37drKOymYBMGMkmN5FLMM0NsbaXHrCrpVc65qyU9\nSdIrzOxqSa+R9Fnn3JWSPuu/lqRnS7rSf7xc0p9JQZCT9AZJ10u6TtIbGmEOADrt/uNzunTbgPop\nKhtbe0eyrMxEbG06mDnnTjjnvuo/n5f0gKR9km6Q9H5/2vslPc9/foOkD7jA7ZJGzWyPpGdKutU5\nN+2cm5F0q6RnbbZdALBZD51e1Kn5JV29h2HMONs7mtOZhSUtsgAAMdSSOWZmdpmkJ0i6Q9Iu59wJ\nf9OkpF3+832SjjbdbcIfW+34So/zcjO7y8zumpqaakXTAWDZrfeflCSCWcztHc3JSXrgxFzYTQE2\nbMvBzMwGJf29pF93zp3zW+CCnWRbtpusc+7dzrlrnXPX7tixo1WXBQBJ0mfun9SekazGBtJhNwVb\nsHc0WABw33GCGeJnS8HMzFIKQtmHnHMf84dP+iFK+X9P+ePHJB1ouvt+f2y14wDQMacXlnTXwzN6\nFL1lsTecTWogndB9x2n9kCoAABjDSURBVPNhNwXYsK2syjRJ75H0gHPu7U033SKpsbLyRkkfbzr+\n83515pMk5f2Q56clPcPMxvyk/2f4YwDQMbc9cErOMYzZDcxM+8ZyuvvhmbCbAmzYVpYdPVXSiyV9\nw8y+7o/9jqS3SrrZzF4m6WFJz/e3/Yuk50g6LKkg6aWS5JybNrM3S7rTn/cm59z0FtoFABv2mfsn\ntW80pz1+I2zE2yO2D+pT903q1FxJO4f5niI+Nh3MnHNflGSr3Pz0Fc53kl6xyrXeK+m9m20LAGxF\noVzVvx86rRdef4mCwQDE3RU7B6X7pC9994ye94QV15MBkUTlfwA97wvfOa2lal0/evWutU9GLOwZ\nyWokl9KXvns67KYAG0IwA9DzPnP/pEZyKV132XjYTUGL9JnpSY8Y15e+eybspgAbQjAD0NOqtbpu\n+9YpPf1RO5VM8JbYTZ5yxXZNzBR1dLoQdlOAdeNdCEBPu/OhGc0WKnrG1bvDbgpa7ClXbJMkhjMR\nKwQzAD3t1vtPKpPs0w9etT3spqDFDu4c1I6hDMOZiBWCGYCe9h+HT+u6y8fVn2bT8m5jZnrKFdv0\npe+eUVAYAIg+ghmAnnVmYUnfPjmvJ/shL3Sfp1yxTVPzSzp8aiHspgDrQjAD0LNufzCoZf3kRxDM\nutVTrgiGqBnORFwQzAD0rC9997QGM0k9Zt9I2E1BmxwY79f+sRwLABAbBDMAPevLD57RdZePUyaj\nyz3lim26/cFp1erMM0P08W4EoCednCvpwalFhjF7wFOu2K58saIHTsyF3RRgTQQzAD3py37OERP/\nux/1zBAnrA8H0BNuuuPIOV9/7KsTyqX+X3t3Hh1Xfd5//P3MjPZ9s6zFi+QF49gyYMcmDksgCQmJ\nCSlNgZA0QJpD0zb0dEmTtPSXLr/8DrQ07Una01LqhCRNISQQmpilBFIWBxsvGFtmkxfZWJJlS7YW\na19mvr8/5soWHAlMGM29mvm8jufozp17r577zPjOo/u99/sNs7ulh8bWXp+ikmSYU5jN4jn5bDl4\nklsuWeR3OCJvSWfMRCQtHezsp648j5CZ36FIEqxfVMb2Q12MRWN+hyLyllSYiUja6R4cpXtwjPqK\nPL9DkSRZv6iMwdEoe1p6/A5F5C2pKVNE0k5z5wAA9RX5PkciM2ly8/Xg6DgG3PXMQS4/fqaz2RvW\nzfchMpHp6YyZiKSd5s5+8jLDVBZk+R2KJEluZoSq4mwOekW5SFCpMBORtOKco/nEAHUV+ZiuL0sr\nS+YU8PrJAQZHxv0ORWRaKsxEJK2cHBild2iMRbq+LO2srCki5uBl9WcmAabCTETSyunry8p1fVm6\nqSrKpjQvk5fa1D2KBJcKMxFJK80n+inIjlCen+l3KJJkZsbKmiIOdvYzoOZMCSgVZiKSNpxzNHcO\nUF+ep+vL0tREc+Yras6UgFJhJiJpo6NvhP6RcRapm4y0NdGcuVfNmRJQKsxEJG00d8b7r1L/Zelr\nojmzWc2ZElAqzEQkbRzsHKA4J4OS3Ay/QxEfnW7OPKrmTAkeFWYikhaGRqPsO97HsqpCXV+W5qqK\nsinLy2TvUTVnSvCoMBORtPDS0V7GY47z5xX7HYr4zMxY4TVndg2M+h2OyBuoMBORtPDikR7K87Oo\nLcnxOxQJgInmzMdfPuZ3KCJvoMJMRFJeS9cgh08OcP78YjVjCnCmOfORxna/QxF5AxVmIpLyfra7\nDYDzatWMKXETzZlbm09ysn/E73BETlNhJiIpzTnHT3e1sbAsj5I89fYvZ6ysKSIaczz+8nG/QxE5\nTYWZiKS0Pa29NJ+IN2OKTFZVlM3Cslwe3avmTAkOFWYiktIe2tVKZiTEypoiv0ORgDEzPt5Qxdbm\nk5xQc6YEhAozEUlZY9EYmxrb+fDySrIzwn6HIwG0oaGaaMzx2Eu6O1OCQYWZiKSsZ5o66RoY5Zrz\na/wORQJq2dwCFs/JZ9Oeo36HIgKoMBORFPbQi22U5WVyydIKv0ORgDIzrmqoZsfhLtp7h/wOR0SF\nmYikpt6hMZ549ThXraomI6xDnUxvw6oqnEN9mkkg6GglIinp0b3tjI7HuOYCNWPKW1tUkc97qgvZ\npMJMAkCFmYiknKHRKD98/nUWVeTpbkw5K1etqmZPSw9HTg76HYqkORVmIpJS+obHuPG723m1/RR/\n/OGlGoJJzsrHV1YB8PBe3QQg/lJhJiIpo3tglM9s3MauI918+9Pns6Gh2u+QZJaYV5rLBfOL2bRH\nzZniLxVmIpISOk4Nc93dW3ntWB93f261ijJ5x65aVc2r7ac40NHndyiSxlSYicis19o9yLX/vpXW\n7iG+d9N7uXxZpd8hySz08ZVVmKGzZuIrFWYiMqs1Hevj2ru20jUwyg+/sI71i8v9DklmqTmF2VxY\nV8amxqM45/wOR9JUxO8ARER+Xc8dOMEX//MFcjLD/OiW97G8utDvkGSWuXfbkTc8ryzMZmvzSb75\ni31UF+ecnn/DuvnJDk3SlAozEZmVHnyhla8+2Eh9RR6fPK+G3S097G7p8TssmeXeU13Iz/e00dja\n+4bCTCRZ1JQpIrOKc45vPbmfP/3JHtbVl/LA762nODfT77AkReRlRVg8J5/Gth41Z4ovVJiJyKwR\nizm++mAj//TkPn7zglruuWkthdkZfoclKea8ecX0DI6x73i/36FIGlJhJiKzxn9sbubHO1u59fLF\n/MNvNZAZ0SFMEm9FTRFFORk83dShs2aSdDqqicissLe1lzsfb+LKFXP5E/XoLzMoEgpxyZJyXu8a\n5NDJAb/DkTSji/9FJLAm7pgbHY/xL0/tJy8rwuoFJdy3vcXnyCTVrVlYylNNnTzd1El9eb7f4Uga\n0RkzEQm8hxuPcrJ/lN9aXUtupv6elJmXEQ5x0eJyDnT009qtgc0leVSYiUigvdTWy87Xu7lkaQX1\nFTpzIcmztq6U7IwQTzd1+h2KpBEVZiISWD2Dozz0Yhs1xTl88Nw5focjaSY7I8z6ReW80n6KpmMa\nP1OSQ4WZiARSNOb4yQutRGOO6947j0hIhytJvvX1ZWSGQ/zr0wf8DkXShI50IhI4zjn+8r/3cujE\nAFetqqI8P8vvkCRN5WZFWFdXyqY9Rzl8QndoysxTYSYigeKc4xuPvMp921v4wNIKVi8o9TskSXPv\nX1JOJBzirmcO+h2KpAEVZiISKP/05H6+86tD3LR+IR9eXul3OCIUZmdw3Zp5PLirVeOxyoxTYSYi\ngXHXMwf59i/3c+2aWr6+Ybk6kZXA+IPLFjOnIJtr79rKvduOaEQAmTEqzEQkEP5z62HueOw1NjRU\ncfs1DYRCKsokOOYWZbPp1otYV1/KXzy0l6880MjwWNTvsCQFqadGEUm6iR79J+xt6+W+7UdYNreA\ndXVl3L9DPftL8JTmZfK9m9fyrSf38e3/PcAr7ae467OrmVea63dokkJ0xkxEfNXRN8yDu1qZV5LD\np9fOJ6wzZRJg4ZDxJ1ecw3duXENL1yAb/vlXbNzcTP/IuN+hSYpQYSYivhkZj3LvtiNEQsYN6xaQ\nEdYhSWaHD55bycO3Xsy5VQV845FXed/tv+SOx17j+Klhv0OTWU5NmSLiC+ccD73YRmffCDe/v46i\nnAy/QxKZ1pub3yd8YlUN588rYfOBE9z97EG+86tmPnleDX9w2WIWluclOUpJBSrMRMQXzx/qorG1\nlyuWV7J4jsbAlNlrXmkuN6ydz/sXl/HdXx3i/p0t/PfuNj574QL+8PIllORl+h2izCJqNxCRpDvS\nNcijje0sm1vAJUsr/A5HJCEWlOXxN1ev4NmvXManVs/j+1sOc+mdT/EfzzYzMq47OOXs2Gzti2XN\nmjVu586dfochIu/Qyf4RLv/mM4QMvnTZEnIyw36HJDIjjp0a5n9eamff8X5KcjO4ZGkFDTXF/M7F\ndX6HJj4wsxecc2vebjk1ZYpI0sRijj+6fzcDI+N88dJFKsokpc0tzOam9XXs7+jj8ZeO8bPdR3mk\nsZ1dLd186oJaLvaGehKZTIWZiCTNvz1zkM37T3D1edVUF+f4HY5IUiyZU8Diy/Jp6xli15Eethw4\nwSON7ZTnZ3Htmlpufn8dFQVZfocpAaGmTBFJih2Hu7j+7ue5csVc3ldfpuGWJG2Nx2LsO9bHC0d6\neK39FOGQsXpBCZcsqXjDjQI3rJvvY5SSaGrKFJHA6BoY5dZ7X2ReSQ63X7OSTXva/Q5JxDeRUIjl\n1UUsry7iRN8Iz+7vZOfhbnYc7qKhtphLl1ZQWZjtd5jiExVmIjKjYjHHn/54N10Do/z099dTkK3+\nykQmlBdkcc0FtXzw3EqeO3CC7Ye62NPSw9q6Uj66Yi6l6moj7eiqQxGZUXdvbuappk7+z4ZzWVFT\n5Hc4IoFUlJPBx1ZW8ZWPnMOF9WXsONzFB+58inueO8RYNOZ3eJJEKsxEZMZsOXiCOx9v4mMr5/LZ\nCxf4HY5I4OVmRbhqVTW3Xr6EVfOK+ZtNr3DltzbzVFMHs/WacHlnVJiJSMINj0W547HX+OzGbcwv\nzeWO32zQxf4i70BlYTY/+PxaNn5uDePRGDffs4Nr/m2LCrQ0oGvMRCShdh3p5s9+soeDnQNct2Ye\nt204l0JdVybyjt23vQWAz19Uxwuvd/NMUyc337OD2pIcLl82h3MqC/iMzkSnHBVmIpIQw2NRvvmL\nJjZuPkRhTgY3rV/I0soCHtYdmCLvSiQUYl1dGasXlPDi6z08va+DH2x9naqibPpGxrlieSX1FRpv\nNlWoHzMReVc6+oa5b1sLP9z2Op19I6xdGL+bLDtDvfqLzIRozPHikW6eP3SSoz3DACyZk88V76nk\nQ+dWsqKmiAyNKBA4Z9uPmQozEfm17G7p4ftbDvNw41HGoo4PnFPBFy9dRHPngN+hiaSNS8+p4ImX\nj/GLV46z7VAX0ZgjMxLi3KpCVtYU0lBTzIqaIhbPySczomLNTyrMRCSh7t12hL7hMRpbe9nd0kNb\nzxBZkRAXLCjhfXVllGtIGRFfDY6Oc6Cjn7buIVp7hjjaM8TIeLyrjUjIqK/IY2llAcvmFnDO3EIa\naovUkW0Sqed/EUmIgZFxnnjlON/bcogDHf3EHFQXZbOhoYoL5peoyVIkIHIzIzTUFtNQWwxAzDm6\n+kdp6x3ieO8wx04N89yBEzzceOa6z+KcDOaV5jK/NJcvXFzH8upCsiL6P+2nwBRmZvZR4FtAGNjo\nnLvD55BEUpJzjr6RcTr7RhgYGad/ZJzBkSgDo/Hp9p5hWroHae0eorV7kOOnRgAozs3g4iUVnDev\nWH9li8wCITPKC7LiZ7Nrz8wfHoty/NQwrd1DHOkapKVrkL1tvTyyt51IyFg8J5/l1YUsryrkPdXx\nZtDy/Ex1eZMkgWjKNLMwsA/4MNAK7AA+7Zx7Zbp1/GzKdM4xHnNEY97PqCPmJh7x1x0QDhkZoRDh\nsBEJxR/hkOnDPYMmvzcT708sFn9vos4Ri0HI4u9NJBQiEo6/J+GQETYjFHr79yYac4yOxxgZjzI6\nHmN4LMbg2DgDI+MMjEQZHB1ncDSKWfzAOLHtcMjIzgiTkxkmJyN8etq8bcbjjjEec4yMxRgeizI0\nFmXYmx6Nxrx9gahz8c+ZAzMwM0IGhhFzjsHReCwDI+MMjEbpGx6jo2+EjlPDHD81wtBYdNr9C1m8\nF/KS3ExKcjMpzsugvjyfBWW5hPTZFUlJp4bGONI1yNGeIY72DtHeO0zf8Pjp1zPCRnFOJiV5Gbx3\nYSlzC7MpzsukOCeD4twMinMyycsKEzI7feyDM8enySbqjsnlh3PgcN7PM9+jzvtejbn4Md25M+vF\nl4gLmZEZCZERDpERNjLDISLedEY4FIjv39nWlLkWOOCcawYwsx8BVwPTFmYz7Uv37uKXr3YQ8z4c\neB+amIt/ib5bZwqB+JfphInPjL7+4qbK9Jv/A0+8N1GvaHm3Jt4bs0m/35uIegeH2SIzHCIzEiIr\nEqIgO4PCnAxqS3IpyI5QkB0hOxImMxI6/ciKhMnPihA+iwJVRFJHYU4GK2qK3jBsWt/wGO29w5zo\nH6FncIzuwVF6Bsd4dG873YNjPkb764uELF40xv/FC0eMzV+9jPL8YFwnG5TCrAZomfS8FVj35oXM\n7BbgFu9pv5k1zXBc5cCJGf4d6UT5TDzlNPGU08RSPhNPOU2wim8kJadn1RtwUAqzs+Kcuxu4O1m/\nz8x2ns1pRzk7ymfiKaeJp5wmlvKZeMpp4gUpp0Hp1KQNmDfpea03T0RERCRtBKUw2wEsMbM6M8sE\nrgd+7nNMIiIiIkkViKZM59y4mX0JeJx4dxnfdc697HNYkMRm0zShfCaecpp4ymliKZ+Jp5wmXmBy\nGojuMkREREQkOE2ZIiIiImlPhZmIiIhIQKRFYWZmpWb2hJnt936WTLPcjd4y+83sxknzV5vZXjM7\nYGbfNq/r4Om2a2ZXm1mjme02s51mdlFy9jR5fMjpZ7yc7jWzLWa2Kjl7mhw+5HOZmW01sxEz+3Jy\n9jI5zOyjZtbk5eJrU7yeZWb3e69vM7OFk177c29+k5l95O226d2wtM2bf79381LKSXJOv+TNc2ZW\nPtP75ock5/O/vPkvmdl3zSxjpvfPD0nO6XfMbI/3nfSAmeUndGfc6aFdUvcB/D3wNW/6a8DfTbFM\nKdDs/Szxpku817YDFxLvKPgx4Mq32i6Qz5nr9xqA1/zOQQrkdP2kda8Etvmdg1mezznAe4H/B3zZ\n7/1PYB7DwEGgHsgE9gDL37TM7wN3edPXA/d708u95bOAOm874bfaJvBj4Hpv+i7g9/zOQQrk9Hxg\nIXAYKPd7/1Mgnx/zjgsG3KfPaEJyWjhpu/+Id4xN1CMtzpgRH97p+97094FPTrHMR4AnnHNdzrlu\n4Ango2ZWRfxNeN7F34UfTFp/yu065/q9ZQHymHpkodku2Tnd4m0D4HneMCRvSkh2PjucczuA2Tmu\nyvROD+/mnBsFJoZ3m2xyTh4APuidYbwa+JFzbsQ5dwg44G1vym1661zubQOmf99mu6TlFMA596Jz\n7vBM75SPkp3PR52H+B9wqXbshOTn9BSAt34OCf6OT5fCrNI51+5NHwMqp1hmqmGharxH6xTz33K7\nZvYbZvYa8Ajw+Xe9B8GT9JxO8jvEzwqlEj/zmUqmy9GUyzjnxoFeoOwt1p1ufhnQ421jut+VCpKZ\n03TgSz69JszfBv7nXe9B8CQ9p2Z2D/Fj6jLgnxOxExMC0Y9ZIpjZk8DcKV66bfIT55wzs4SfwXrz\ndp1zDwEPmdklwP8FPpTo3znTgpZTL6bLiBdms+66vSDmU0TSxr8CzzrnNvsdSCpwzt1sZmHiRdl1\nwD2J2nbKFGbOuWkLHzM7bmZVzrl2r9mnY4rF2oAPTHpeCzztza990/yJ4aLedrvOuWfNrN7Myp1z\ns2rQ2aDl1MwagI3Er586+Wvskq+Cls8UdTbDu00s02pmEaAIOPk26041/yRQbGYR7y/wVB1KLpk5\nTQdJz6eZ/RVQAfxuAuIPIl8+o865qJn9CPgKCSzM0qUp8+fAxB1sNwI/m2KZx4ErzKzE4neuXQE8\n7jUDnTKzC7325M9NWn/K7ZrZYm9ZzOwC4hcVzrpC4m0kO6fzgZ8Cv+2c2zcTO+SzpOYzhZ3N8G6T\nc/Ip4H+9629+Dlzv3b1VBywhfk3OlNv01nnK2wakbn6TltMk7EsQJDWfZvYF4tenfto5F5vhffNL\n0nJqcYvh9DVmnwBeS+jeJOIOgqA/iLcj/xLYDzwJlHrz1wAbJy33eeIX/h0Abp40fw3wEvE7NP6F\nM3dcTrfdrwIvA7uBrcBFfucgBXK6Eej2crob2Ol3DmZ5PucSv2biFNDjTRcmY1+TkMuPAfu8XNzm\nzftb4BPedDbwEy+H24H6Seve5q3XhHdn63Tb9ObXe9s44G0zy+/9T4Gc/qH3eRwHjk7+/KfKI8n5\nHPfmTRw7v+73/s/mnBI/ofUcsJf4Mfe/En3s1JBMIiIiIgGRLk2ZIiIiIoGnwkxEREQkIFSYiYiI\niASECjMRERGRgFBhJiIiIhIQKsxEJK2Z2V+b2ZfN7G/N7EPevIvN7GUz221mOWZ2p/f8Tr/jFZHU\nljI9/4uIvBvOua9PevoZ4Hbn3A8BzOwW4n3ARX0JTkTShvoxE5G0Y2a3Ee8FvIP4QMUvACuAh4Fi\n4O+JD3K8BSgAPk68Q8nbnXP3+xGziKQHnTETkbRiZquJD69yHvFj4C7ihRkAzrmNZnYR8LBz7gFv\nnX7n3Hl+xCsi6UWFmYikm4uBh5xzgwBmli5jNIrILKCL/0VEREQCQoWZiKSbZ4FPendbFgBX+R2Q\niMgENWWKSFpxzu0ys/uBPcQv/t/hc0giIqfprkwRERGRgFBTpoiIiEhAqDATERERCQgVZiIiIiIB\nocJMREREJCBUmImIiIgEhAozERERkYBQYSYiIiISEP8f4TVwJfqINXMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAGoCAYAAABv1G0ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4XOWZ/vHvoy6rWpKL3HvBjeKO\nAQNOQjMOCb0FQgkBAkk2QAgp7Aay2SRks0CAXyghDqEnhG4nENtgwAZTjG1sg3uTLctFxbLqvL8/\nZuSMZZWRNDNnNLo/1zWXpXPOnHlGAt3zlvMec84hIiIinUeC1wWIiIhI2yi8RUREOhmFt4iISCej\n8BYREelkFN4iIiKdjMJbRESkk1F4i4iIdDIKbxERkU5G4S0iItLJJHldQJRoGTkRiRfmdQHiPbW8\nRUREOpmu0vIWiSs+n+O6Jz5k7a5ykhMTSE40zhxXyPUzh5GQoIaZSLxTy1ukE3px+Xb+8dkuctOT\nyctIwTn4zT8+5ztPf0xVbb3X5YlIhKnlLdLJVNXW85v5nzO4IINbTxtFghnOOV5dUcSTS7ewbW8l\nD39jIj2z0rwuVUQiRC1vkU7miSWb2b7/IBdNHkCC+bvIzYyzxvfhe18awZqd5Xzz8Q+orfd5XKmI\nRIrCW6QTKT1Yy33/Wsf4fjmM65tzxP5Jg/L49syhrNxexh/e2uBBhSISDQpvkU7kwYXrKTtYy0WT\nBzR7zJTB+Uwdksfv3vicz3eVR7E6EYkWhbdIJ1FRXcfj725k+rACBuVntHjsldMHk56cyA+eW06d\nus9F4o7CW6ST+MeqnVTV+vjyUb1aPTY7PZkrpg/m022lPPz2xihUJyLRpPAW6SRe/GQHPbJSGd4z\nM6Tjpw7JY9Kg7tz75hcUlR6McHUiEk0Kb5FOYE9FNYu/KGHakHzMQluExcy4bOpA6nw+fvn6mghX\nKCLRpPAW6QReW1FEvXNMH5rfpuf1yErjrPF9ePGTHSzbtDdC1YlItCm8RTqBv3+yg/7d0xmQ163N\nzz17Qh/yM1L42Uur8Pl0jx6ReKDwFolx2/ZV8uHmfUwfWhByl3mwtORELpo8gFU7ynh22dYIVCgi\n0abwFolxLy8vAmBaG7vMg00fms+o3ln87KVVvLl6V7hKExGPKLxFYtxLy7czvGcmvbLbv1a5mfG9\nL42gX/d0rp37IX//eHsYKxSRaFN4i8SwVTtKWV1UzvShBR0+V3ZaMneccRSjCrP43jOf8Ls3Pqe4\nrCoMVYpItJlzXWICS5d4kxJ/fvriSp56fwsPXHwcmWnhuQlgTZ2P3y9cx/sb92LA1CH5XDi5P2dP\n6NOuMXWJOv2SROEtEquqauuZdPcbjO+bw42nDA/7+bfvO8h7G0p4b/0edpRWccrIHvzy6+Pp2YHu\neYkKhbeo21wkVr2+sojyqjpOGdUzIufv2z2dc4/rz6/Pm8A3pg1k8bo9fOl/3+L1FUUReT0RCR+F\nt0iMemrpVnpnpzG6MDuir5NgxmljC/nvr42jIDOF7zz1MZtKDkT0NUWkYxTeIjFow+4K3t+0l5kj\ne0RtHLpPbjo/+PJIkhKNX76+OiqvKSLto/AWiUHPLNtKgsFJI3pE9XVzu6Uwe3wf5q3axQdaTlUk\nZim8RWJMdV09zy/bxrEDupPbLSXqr3/m+ELyMlK465XPtJyqSIxSeIvEmL99tJ09B2r4Ugj37Y6E\n1KREzp/Yj+XbSnn50x2e1CAiLVN4i8SQunofDyxcx9AeGYzrm+NZHScM68Gg/G78et5a6up9ntUh\nIk1TeIvEkFc+LWLr3oN89ei+ni6YkpBgfO2Yfmzbf5B/rSn2rA4RaZrCWyRG+HyO+xeso39eOscO\n7O51ORwzMJe8jBSeXLrF61JEpBGFt0iM+MdnO1lXXMGcCX1JiIFlSpMSEpg5sgeLPt/N1r2VXpcj\nIkEU3iIxwDnHff9aR2FOGtOGtP/Wn+F2ysiemMFT76v1LRJLFN4iMWD+qp2s2lHG2RP6kJDgfau7\nQX5mKsf0784zH2ylpk4T10RihcJbxGM1dT7++/U19O+ezgnDo7soSyhOHd2TPQdq+Odnu7wuRUQC\nFN4iHvvL0s1s3lPJxVMGkBhDre4GE/rl0iMrlb8s3ex1KSISoPAW8VDpwVp+98YXjOubw4R+uV6X\n06SEBOOUkT15d/0e1u4s97ocEUHhLeKpBxaso+xgLRdPGeDpdd2tOXV0T1KTEnj47Q1elyIiKLxF\nPLN1byWPvbORE0f0YFB+htfltCgrLZmTRvTg7x9vZ2dpldfliHR5Cm8Rj/xq/loSzDjvuH5elxKS\nM8YV4nOOx9/d5HUpIl2ewlvEAx9t2cfLy3dwxrhC8jNTvS4nJL2y05g0KI+/LN1MRXWd1+WIdGkK\nb5Eoc85x1yufkdstmbMn9PG6nDaZPaEP5VV1PK1FW0Q8pfAWibLXVuzkoy37Oe+4/qQlJ3pdTpsM\n7ZHJUYVZPLp4I9V19V6XI9JlKbxFoqi6rp5fzlvNgLxuzBwRewuyhOKrx/SjqLSKBxas97oUkS5L\n4S0SRb9fsJ6tew9yyZQBMbUMaluM65vD8UPzeWDhOtYV67pvES8ovEWiZHVRGQ8sWMeMYQWMj9EF\nWUJ12bRBpCYlcvvfVuDzOa/LEelyFN4iUVBX7+OW55eTkZrE5dMGel1Oh+WkJ3PxlAF8sGkfzy7b\n6nU5Il2OwlskCh5ZvJGV28u4YvogstKSvS4nLGaO6MFRhdn84rXVut+3SJQpvEUibPnW/fzvPz9n\n0qDuTBmc53U5YWNmXHPCEOqd45uPf0B5Va3XJYl0GQpvkQhasmEPFz+yhJz0ZK48fnBMr1/eHr1z\n0vjuqSNYv7uCm576mPoYHf++7rrr+PnPfx6Wc23ZsoXMzEzq6/2Xys2cOZNHHnkkLOduTmZmJhs2\nRHddeTNLN7OXzazUzJ6L6ot7xMweN7O7wni+183sG+E6XzCFt0iELFhTzDcee5/cbin8bPYYundL\n8bqkiBjbN4crjx/MgrW7+cVrq6P++oMGDSI9PZ2srCxyc3OZPn06Dz30ED6f79AxDz30ED/5yU9C\nOtcbb7zR4jEDBgygoqKCxMSOX6N/5513cumllx62rakPAxUVFQwZMqTDr9dG5wK9gHzn3HnRfvF4\n4Jw73Tn3p0icOykSJxXpyg5U1/HQovU8uHA9A/K6cdvpo8iOk3Hu5swa3Yvt+w/y6OKN5GWkcMPJ\nw6L6+i+//DKzZs2itLSURYsWcfPNN7N06VL++Mc/hvV16urqSErqMn82BwKfO+c6vBaumSU1Pk9T\n29p6jlhl/i42c875Wj24ndTyFgmTep/jmQ+2MPPXC7nvX+uYMjiPO84cHffB3eCyKQM5YVgBv56/\nlt8vWOdJDTk5OZx99tk888wz/OlPf2LlypUAXHHFFfz4xz8GoKSkhLPOOovc3Fzy8vI44YQT8Pl8\nXHbZZWzZsoXZs2eTmZnJr371KzZt2oSZ8eijjzJgwABOOeWUQ9vq6v6dI+vXr2fy5MlkZ2czZ84c\n9u7dC8DChQvp1+/wG880tO7nzZvHL37xC5555hkyMzOZMGECd9xxB2+//TY33ngjmZmZ3HjjjYB/\nfsG6desavs4xs7lmttvMNpvZj80sIbDvCjNbbGa/MbN9ZrbRzE5v7udlZqPNbKGZ7TezVWZ2dmD7\nfwI/BS4wswozu6qJ5yaY2Q/NbL2Z7TGzZ80sL7BvkJk5M7vKzLYA/2pqW+DYswOvvT9Qy+ig19hk\nZreZ2afAATM74pOTmf2fmW01szIz+9DMTgjad2egrrlmVh54nYlB+48xs48C+54B0lr4WV1hZu+Y\n2f2BoYQ1ZnZq0P6FZna3mb0DVAJDAtuuDjrmGjNbHXi9z8zs2MD2Pmb218DvdKOZ3dRcHQ26zEdI\nkUhataOUH/1tBcu3lTKiVyY3nTqMYT2zvC4rqhISjOtOGooDfj1/LUDUW+ANJk+eTL9+/Xj77bcZ\nO3bsYfvuuece+vXrx+7duwFYsmQJZsaf//xn3n77bR555BFmzZoFwKZNmwBYtGgRq1evJiEhgV27\ndh3xenPnzmX+/PkMHjyYyy+/nJtuuoknnniixRpPO+00fvSjH7Fu3brDjn3nnXe49NJLufrqq5t7\n6n1ADjAEyAf+ARQBjwb2TwH+BBQA1wKPmllf59xhExLMLBl4GXgM+DIwA3jRzCY6535mZg4Y5pw7\nvF//374DfBU4CdgN3Av8Hrgo6JiTgNGAD38X/GHbzGwE8FTgPAuB7wEvm9lRzrmawPEXAWcCJc20\nvD8A/gsoBW4GnjOzQc65hnvXng18DbgSuAu4H5hqZinA34HfBbbNCdTyP828X/D/bJ/H/7P9GvA3\nMxvsnNsb2H8ZcDqwFjhsgouZnQfcGXivy4ChQG3gg9fLwIuB99oPeMPM1jrn5jdXiFreIh1QWVPH\n3a9+xtn3vcOmPZXccPIw7pw9pssFd4OEBOPbJw3l+EAL/Pa/fUpVrTdroPfp0+dQCzhYcnIyRUVF\nbN68meTkZE444YRWJxLeeeedZGRkkJ6e3uT+yy67jLFjx5KRkcHPf/5znn322UMT2sIpcM4Lgdud\nc+XOuU3APfhDo8Fm59zDzrl6/CFeyL+DM9hUIBP4pXOuxjn3L+AVDg/fllwH3OGc2+acq8YfTOc2\nah3f6Zw74Jw72My2C4BXnXP/dM7VAr8B0oHpQcff65zb2ugchzjnnnDO7XHO1Tnn7gFSgZFBhyx2\nzr0W+Hn8GZgQ9P6Tgd8552qdc8/j/yDQkuKg45/BH9JnBu1/3Dm3KlBL48svrgZ+5Zz7wPmtc85t\nBiYBPZxz/xX4PWwAHsb/e26WwlukndYVlzPn/nd4+O2NzBzZg9+cN4EZwwribkZ5WyUkGNefNJQ5\nR/fhqfe3Muf+d1i/uyLqdWzfvp28vCMvzbvlllsYNmwYX/7ylxkyZAi//OUvWz1X//79Q94/cOBA\namtrKSkpaXvRrQicMxnYHLR5M9A36PudDV845xouwM9s4nR9gK2NxmUbn6slA4EXAt3d+4HVQD2H\nf1BoagWf4G19CHovgVq2NqqhxVWAzOwHga7o0kAdOfhbxg12Bn1dCaQFPmD0AbY36pEI/rk2panj\ng28N2FKt/YGmbggwEOjT8HMMvIcf0fQHrkMU3iLt8OIn25l9/zvsKq/i9tNHcfUJQ8hM1ShUg4QE\n48JJA7jttFEUlR7krPsW8/BbG6ipi9j8ncN88MEHbN++nRkzZhyxLysri3vuuYcNGzbw0ksv8dvf\n/pY333wToNkPXq19INu69d9/s7ds2UJycjIFBQVkZGRQWfnvBWzq6+sPddc3d96WXqugoACgFv8f\n/AYDgO0tFti0HUD/hvHydpxrK3C6cy436JHmnAt+flPXDgZv20HQewlM9OrfqIZmrz8MjG/fCpwP\ndHfO5eLvPg/lE3QR0NcO/4EPaOU5TR2/I5Ra8f+8hjazfWOjn2OWc+6MlgpReIu0wbricr7152Xc\n/PQnDMzrxn+fM77Tr1MeSUf3z+UX54xjVO8s7n5tNV/53VssWFMcsdcrKyvjlVde4cILL+TSSy9l\n3LhxRxzzyiuvsG7dOpxz5OTkkJiYSEKC/09hr1692nU99RNPPMFnn31GZWUlP/3pTzn33HNJTExk\nxIgRVFVV8eqrr1JbW8tdd91FdXX1oef16tWLTZs2HXZZW0s1BC5Pexa428yyzGwg8H2g5QH2pi3F\n3xK91cySzWwmMBt4OsTnPxSoYyCAmfUwszltrOFZ4EwzOzUwBv8fQDXwbojPzwLq8I+5J5nZT4Hs\nEJ/7XuC5NwXe/9eAya08p2fQ8efhH7t/LcTXewT4gZkdZ37DAj+794HywMS8dDNLNLOxZjappZMp\nvEVase9ADe+uK+HW55fz5f99i7c+L+H8if2548zR5GXE57Xb4ZSfmcqtXxnFrV8ZSXVtPVc+/gHf\neOx9Pt8VvjuSzZ49m6ysLPr378/dd9/N97///WYvE/viiy+YNWsWmZmZTJs2jeuvv56TTz4ZgNtv\nv5277rqL3NxcfvOb34T8+pdddhlXXHEFvXv3pqqqinvvvRfwz35/4IEHuPrqq+nbty8ZGRmHzT4/\n7zz/5dP5+fkce+yxANx88808//zzdO/enZtuanLS8XeAA8AGYDHwJP5JZ20SmBA2G/8EqxLgAeBy\n59yaEE/xf8BLwD/MrBxYgn9CV1tqWAtcin8SXkmgntlBk9VaMx+YB3yOvwu7ila62YNeuwb/pLMr\ngL34x9//1srTlgLDA7XeDZzrnNsT4us9F3jOk0A5/slyeYGx+LOAo4GNgXM/gr/7v1nWaAJivOoS\nb1I6xjnH+t0H+HjLPr4oruDzXeWsKSpnZ5l/0mpSgvHlo3ox5+i+ZKd3jcu/wq2u3sf8Vbt44eNt\nVNX6uGhKf7514lD653XzurTOpGtPqvCImV0BXO2cO3IsxgMKb+my6n2ODbsrWL6tlPc37uHtL0oo\nKvUHdXKi0Sc3nX7duzEwrxsD87sxuCAjbm4q4rWyqlr++uE23li9C+dg5sgeXDxlIJMH55GjD0at\nUXh7QOHtjS7xJqVl1XX1LN9aypINe1iyYQ8fb93PwRr/5TwZqYmM6ZPDuL45jC7Mpnd2GokJ+hsZ\naSUV1SxYU8yCtcXsq/RfWZOfkcLgHhn0zk6jIDOVHlmp9MxKpTAnnd45qeRnpJKdntyVfz9d9o17\nSeHtjS7xJuXf6n2OnWVVbN1bycdb9vPu+hI+2LSXqlofBgwqyGBEryyG9shgSEEmhTlpJHTdMPBc\nnc/Hyu1lbN1bSVHpQYpKq9h/sJayg7VU1hx5vbQBWelJ5Gf4w71HZio9s1Ppk5NO75w0euek0TPL\nv69bStxdBaD/UKVrhfe64goqa/69QI9z/h3OuSbT3fBftuH/t2Fb5/r/pvE7a3jP/q+PfN/B7/nQ\nNjv8uT7ncM7/b73P/3XDcYb/MiF/DhoNr+Y/3v+aPndkXcH11fscPueoq3fU+XzU1vu/9zmHz+f/\nQ19T56Om3lFRVcf+gzWUVtayt7KGkopq9lbUUFxeTV3QHa7656UzpjCHo/pkM7p3NplpcfcHPW7V\n1PnYV1nD3gP+R1lVLRXVdVRU1VFWVUvpwdpDv/+q2iMvRUtLTiArLZmstCSyUpNIS04kPSWRtKRE\n0pITSEtOPLStW8O+5ETSA9uTE43kpASSExJITLDAA4IzNPj/kab9e0dTx5jZof9/Gv/NAeiZ5f9A\n0nB4yD88iVtdKrzPffBdlm3e53UtEmYZqYlkpSWTk5ZMTrdkctOT6ZGVSmFOGoU5aQzpkalZ4V2A\nc46K6jqKy/0f4PYcqGHPgWrKDtb5w766jsqaeqpr66mu81FV56O2zv91dZ2PgzX1h33giyU3njyM\nH3zl0KJhCm/pGuGdX1Dg+g/wrwOwp6SE/IKCVp4R+/Q+Yk+8vJd4eR8QP+8l+H307tmDefPmeVyR\nJ/ShJUiX6DvsP2AgbyxeCsCsGVMOfd2Z6X3Ennh5L/HyPiB+3kvw+zjtxKkeVyOxQIu0iIiIdDIK\nbxERkU6my4X35d9s9h65nYreR+yJl/cSL+8D4ue9xMv7kPDpEhPWjj72OBcP414SO+rratlfXERt\nTXVL1weJtI8ZySmp5PYsJDHp8BXnTjtxKsuWLfOoME9pwlqQLjFhTSTc9hcXkZudTfe8vC5//24J\nP+cc+/buYX9xEfl9WrtLpXRFXa7bXCQcamuqFdwSMWZG97x8f8+OSBMU3iLt4ZyCWyLKzJockllX\nXOFBNRJrFN4i0qk45/jed29i9MjhHHvMBD7+6KMmj5t1ysmMOWoUE487honHHUNxcTEAc//0OH16\n9zy0/bFHH4lm+Yd89OGHHHP0eEaPHM73vnsToc4/0hQLAY15i0iQuro6kpLC/2ehvr6exMTEsJxr\n3uuvs+6LdXy25nPeX7qUG2+4nnfeW9LksXPnPsFxEycesf2888/n/+69Pyz1tNeNN1zPQw/9gclT\npnD2WWcyf948Tjv99Faf19x9AaRrUctbpBPatGkTY8eM5vLLLmXc2KO44PzzqKysBPwtulNPnsmU\nyRM58/TTKCoqAuDRRx5m2tTJHHfs0Zx/3rmHjr/qm1dyw/XXcfy0qdx+2628tWjRoVbppInHUl5e\njnOOH956C0dPGMcxR4/n2WefAWDRwoXMOuVkLjj/vEP1NLQghw8dzO0/vI3Jk47j+eefC9t7f/nl\nF7nkssswM6ZMncr+0v2H3mNHTTzumCa3Dx86mB/edivHHD2e6VOnsG7dug69TlFREWXlZUyZOhUz\n45LLLuOll/7eoXNK16LwFumkPl+7luuu+zYrVn5GdnYWDz34ALW1tXz35pt4+tnnWPr+Mr5x5ZX8\n9Cd3APDVc77Ge0ve58OPPmHUqFH88bFHD51r+7btvLX4HX59z2/57W/v4d5772fZhx+zYOFbpKen\n88ILf2P58uV8+NEnzJv/T26/7dZDgfnJJx9zz2//l09XrGLjhg28+847h86bn5/P+x98yAUXXHhY\n7U8++ZdDHxCCHxecf16r73vH9h3079f/0Pf9+vZjx/btTR579dXfZOJxx3D3XT8/rFv6hb/9jWOP\nmcAF55/H1q1bD21f9uHHzb5uTk4OH3/yKd++4QZ+8P3vHbF/4YIFTb6nE2cc38R72E6/vv0avYcd\nLb/xAHWbC6jbXKTT6t+/P9OP9wfDxRdfyv3338eXv3Iaq1at5PTTvgz4u6sLexcCsGrlSn7205+w\nv3Q/Byoq+NKXv3zoXF8799xD3drTp0/nlh/8BxddfDFfPedr9OvXj3cXL+aCCy8kMTGRXr16ccKJ\nJ7Fs2QdkZ2UzadJk+vXzB9GEoyewafMmjp8xA4Dzzr+gydovvvgSLr74ksj8YAL+9Ocn6Nu3L+Xl\n5Vxw3rk88cSfueyyyznzrNlccOFFpKam8vAf/h9XXXkF/3jjzVbPd8GFFwFw4YUXcct/fP+I/TNP\nPrnF8A8Xn9JbUHiLdFqNZ7ubGc45jjpqDG+/8+4Rx1991ZU899cXmDBhAnP/9DiLFi06tC8jI+PQ\n17fe9kNOP+NM5r3+GjNPnMErr7V8B6vU1NRDXycmJlJfV9fkeYM9+eRf+O09vzli+9Chw3jm2cO7\n2B984Pc8GphU9tLLr9Knbx+2bvt3a3nb9m306dv3iHP1DWzLysriwosuYtkH73PZZZeTn59/6Jhv\nXnU1t//wthbfX4Pgn3dTVxosXLCAH/zgyFDvlt6Ntxa/c9i2Pn37sm37tkbvoU9IdSi7BdRtLtJp\nbdmyhSXvvQfA008/yfHHH8/IkSMpKdl9aHttbS2rVq0CoLy8nMLCQmpra3nqySebPe/69esZN24c\nt9x6G8dNnMTatWs4/oQTeO7ZZ6mvr2f37t0sfvstJk2a3O7aL774EpZ9+PERj8bBDfDt6284tL9P\nnz6cddbZ/OXPf8Y5x9IlS8jJzqGwsPCw59TV1VFSUnLoZ/Dqq68yZsxYgMPGx19++SVGjRp96Pux\nY0bTnOcC4/zPPvsMU6ZOO2J/Q8u78aNxcAMUFhaSnZXN0iVLcM7xlz//mdmz57T0IzvE51zIM9Ml\nfqnlLdJJjRg5kgcffIBrrrmK0aOP4lvXfZuUlBSeeuY5vv/dmyktK6Wuro6bbrqZMWPGcOd//hcz\npk+loKAHk6dMpry86euF77v3dyxcuJCEhASOOmoMp512OikpKSx97z2OO/ZozIxf/PJ/6N27N2vX\nrInyu4bTzziDefNeY/TI4aR368Yjjzx2aN/E445h2YcfU11dzZlnnEZtbS319fWceuqpXHX1NQDc\nf9+9vPLKyyQlJZHXPY9HHvsjACUlJS2G4r59+zj2mAmkpqby5yea//ATqvvu/z1XXXUlVQcP8pXT\nTgtppjmAA8qr68hOS271WIlfWttcpB12bvyckaOab6VF2qZNm/jqnNl8snyFZzXEm1dfeYWNGzdw\n43duOmLf8KGDeW/pBxQUFES1prVrVtN78IjDtvUdOpq1Kz5hUEHTQxJxTKsiBVHLW0QEOPOss7wu\nIWQb9xzoiuEtQTTmLdIJDRo0SK3uKPpi/caot7pbsl5LpHZ5Cm8RkU4k0YzPdpR5XYZ4TOEt0h6B\ny7JEIsU5B01ckpaeksiCtcXU1fs8qEpihcJbpB2SU1LZt3ePAlwiouF+3skpqUfsy0hNYl9lLR9s\n2udBZRIrNGFNpB1yexayv7iI3SUlWjVDws+M5JRUcnsWHrGrW3IivsQE/vbRNqYNzW/iydIVKLxF\n2iExKZn8PgOO2L5iV/UR28b1OrL1JNJeZnDq6J789aNtXHPiEEb0yvK6JPGAus1FwmDFruomgzt4\nX3P7RdrqnGP6kp6cyC9fj/4iORIbFN4iHdSWUFaISzhkpSVz9oQ+/GtNMa98GtrdyCS+KLxFOqC9\nQawQl446fVwhI3pl8oNnl7Nye6nX5UiUKbxF2ikc4asQl/ZKTkzge7NGkJmWxDVzl7G7XP8ddSUK\nb5F2CHfgKsClPXK7pfD9L41k74EaLn90KcXlVV6XJFGi8BZpo0gFrQJc2mNwQQbf/9IINpQc4NwH\n32Pr3kqvS5IoUHiLhNnKXVXNPlqjAJf2GN8vlzvOGM3eAzV87cF3Wbuz3OuSJMIU3iJhEkpAh3KM\nAlzaY3ivLH561lHU+xxff/Bd/vnZLq9LkghSeIu0QXPBGkqruvHxLT1HAS7t0T+vG/959hh6Zady\nzdxl3POPtdT7tAJgPFJ4i3RQW4O78XObe74CXNqjIDOVn541hpNH9uC+f63jyj++z/7KGq/LkjBT\neIvEgI58ABBpLCUpgWtPHMrVJwzm3fV7OPPexXy8RTcyiScKb5EOaC10VxVXH/Zo67nU+paOOHVU\nL+48ewy19T7Oe+g9Hnl7g+6EFycU3iIhakuQNhfWrQW5AlzCbWiPTO4+ZxxH98/lrldXc83cZepG\njwMKb5Ewa62FHXxcU8eqC13CLTM1ie9/aQSXTxvIwrW7OevexazaoSVVOzOFt0g7hStkQwlwtb6l\no8yM08cW8tOzjqKytp6vP/AqahZpAAAgAElEQVQuL3y8zeuypJ0U3iJhFGqruz3PU4BLOAzvlcXd\nXx3L4B4ZfO+Z5dz50ipq631elyVtpPAWiRGNA1zd5xIpud1S+NEZozljbG8ef3cTV/9pGZU1dV6X\nJW2g8BYJk1Bb3SuLmw/l1gJcrW8Jl6SEBC6bNohrThjC21/s5pKHl2oiWyei8BaJgpXFVYceTX0f\nrL1d7yLtccqonnz31BGs3FHKuQ+9R1HpQa9LkhAovEU81lSIBwe4Wt8SaZMG5/HD00axfd9BLnl4\nKaWVtV6XJK1QeItEWEvd5O05TiQSjuqTwy1fGcmWvZV8+y8fahJbjItYeJvZY2ZWbGYrm9lvZnav\nma0zs0/N7Nigfb8ys1VmtjpwjAW2LzSztWb2SeDRM1L1i3ghOMDV+pZoG12YzdUnDOHd9Xv46Yur\ntBpbDItky/tx4LQW9p8ODA88rgUeBDCz6cDxwHhgLDAJOCnoeZc4544OPIojULdIzGgpwEUi4aQR\nPZhzdB+een8L81ft9LocaUbEwts59xawt4VD5gBznd8SINfMCgEHpAEpQCqQDOjGtNJlhNp9rta3\nRMp5x/Wnf/d07n51NdV19V6XI03wcsy7L7A16PttQF/n3HvAAqAo8JjvnFsddNwfA13mP2noTm+K\nmV1rZsvMbNmekpJI1C8SMaF2n0vXMPexh5k1YwqzZkxh/949EX+9xATjkikD2brvIHPf3Rzx15O2\ni7kJa2Y2DBgN9MMf8KeY2QmB3Zc458YBJwQelzV3HufcH5xzE51zE/MLCiJdtki7FBUVUVRU1O7n\nq/XdNVz+zWt4Y/FS3li8lNy8/Ki85oT+uUzol8ODi9ZT79PYd6zxMry3A/2Dvu8X2HYOsMQ5V+Gc\nqwBeB6YBOOe2B/4tB54EJke1YpEWjOmZ2qbjg0O7qRDX5DXx2okjerD3QA2fbNW9wGONl+H9EnB5\nYNb5VKDUOVcEbAFOMrMkM0vGP1ltdeD7AoDA9rOAJmeyi0TCuF6Hh/PYXmkhPW9szyOPa6613ZFW\nuEi4TeiXS2KC8eZqzQ2ONZG8VOwp4D1gpJltM7OrzOw6M7sucMhrwAZgHfAwcH1g+/PAemAFsBxY\n7px7Gf/ktflm9inwCf5W+sORql8kFqj1LV7KSE1ieM9M3lsf+XF2aZukSJ3YOXdRK/sdcEMT2+uB\nbzWx/QBwXNgKFImAMT1TO7y8aVFREYWFhWGqSKRjemWnsWZnmddlSCMxN2FNpDNpquu8qbHvprrO\nQ6XWt3gpLyOFkvIa6rTiWkxReIvEoPaOfSvAJdxyuyVT7xz7tN55TFF4i7RB40lrzWnrzPPWNNf6\nFom0lER/TGixltii8BbpoFBnnbdVKK3vphZtUetbwin5UHir2zyWKLxFIqSl1nd7JqS1pfWtAJdw\nSUnyx8TBGrW8Y4nCW6SNmuo6D6X13Z5Ja+1tfYMCXMIjI9V/UVLZQY15xxKFt0gERXLs+7DtWvNc\nIiQjJRGAUoV3TFF4i7RDe1vf7dFc6zuUiWtqfUtHZacnA1Bcrv+WYonCWySMIhXgwUK9ZWgDBbh0\nRG56Mt1SElm/u8LrUiSIwlukndpz2Vh7F2sJpfWtrnOJBDOjX/d0Pt9V7nUpEkThLRJmoba+O7IE\naltb3yId0b97Nz4rKsOnW4PGDIW3SAeE2voOh460vtV1Lh0xvFcmZQfr1HUeQxTeIhHQuPUd7lnn\nItE0slc2AB9s0n29Y4XCW6SD2tr67shNSoJb36HesKSBWt/SXr2yU8lOT+LjLQrvWKHwFomQaMw8\nF4kGM2NQfgYrd5R6XYoEKLxFwqC9Y9/tmbTWXOtbJJIG5Wfwxa4KarTGeUxQeIvECV02JpHUJzed\nOp9jx/6DXpciKLxFwqa1Vdeam7TW0da3SDSkJBoAdT61vGOBwlvEAx2ZtNaYus4lGhISGsJb13rH\nAoW3SBhF87rv9tCMc2mvymr/LUFTkxI9rkRA4S0SVZHuOte4t0TK2l3l5HZLZlB+N69LERTeImHX\nuPXd3CVj6jqXzmTtzjImDcrDzLwuRVB4i8SMjqx1LhJJ64or2FlWzYxhBV6XIgEKb5EICHXsu6Ot\n79a6zkXC4cVPtpOTnszXj+vndSkSoPAWiYJQLhmD8Le+Ne4tHbVtXyXLNu/jG9MHkZma5HU5EqDw\nFvFYuMa+Ne4tkfDk+1vISE3kiumDvC5Fgii8RSKkpa7zcLa+tWCLRMpHm/fx8Zb9fG/WCPIyUrwu\nR4IovEWipKUblYRz5jlo3Fs6rqbOx9wlmxjaI4NvqNUdcxTeIh6JxNh3U13nGveW9pi/aie7yqr5\nz7PHkpyoqIg1+o2IRFCo13xD6K3vqi0rj9imrnMJp4rqOl5cvp2ZI3owY7guD4tFCm8RD7W19d0Q\n3E0FeKi0RKq05qVPtlNZXc9tp4/yuhRphsJbJMJaa30HB3hbxr6bC/CGrnONe0t71Pl8LFi7mzPG\nFzK6MNvrcqQZCm+RTiw4wFvqOte4t4RqTVE5FdV1zB7fx+tSpAUKb5EoiFTrWyTclm3eR2pSAieO\n0Fh3LFN4i8SwUGadN9X6bq3rXOPe0pzt+w8yqncW3VK0mlosU3iLRInXrW91nUsoUhKN2nrndRnS\nCoW3iIdaunSsLToy+1wkWHJiAlV19V6XIa1QeItEUWt3G2vp0rFQhdp1LtKUHlmpbNlTSUmF/ruJ\nZQpvEY951frWuLc0ZeaIntT5HM9/uM3rUqQFCm+RKGuq9d3ULUMbxr3bs1Rq49Z3A417S2v6dk9n\nVO8snly6hXqfxr5jlcJbJI401/pW17m0xWlje7NlbyVz39vkdSnSDIW3iAdaa32HqnrrinCUI3KY\nyYPymNA/h1/NX8v2/Qe9LkeaoPAWiUFtmbjWOMAbWt/NdZ0H07i3NMXMuOr4wfh8jp+8sALn1H0e\naxTeIh5pbeY5hH69dygt8Iauc417Syh6ZKVx3nH9+dfa3cxftdPrcqQRhbdIDGmu67ypSWuNA1td\n6BJup43tzcC8btz50mccqK7zuhwJovAW8VAore9gaQPGhnRca13nwa1vdZ1LcxITjG/OGMzOsiru\nffMLr8uRIApvkRgVjgVbGtOsc2mrEb2ymDYkn6c/2Epdvc/rciRA4S3isdbWPG9u3Du1/7gjtrW3\n61ytb2nJlCF5lB6s5YNN+7wuRQIU3iJxqnHXuUh7TeiXS3Ki8c/PdnldigQovEViQChj3+1ZaS2Y\nVluT9kpLTiQ7LZl9lTVelyIBCm+RGNTQdd7UuHeok9aao3Fvaauq2nr2HKhhaI8Mr0uRAIW3SCfQ\nlnHv9tK4tzSnYZW1oT0yPa5EGii8RWJEWy8ba6AAl0ibv3InKYkJHDuwu9elSIDCWyTGBXedN4x7\nN9d13lyQNzdpTePe0poNuyt4e10JV50wmF7Z4bl9rXScwlskRrXlRiWp/ceF1AJvmLTW0ri3Wt/S\nwDnHE0s3k5eRwvUzh3pdjgRReIt0EqGucx4OCnAB+OfqXawuKueWr4wkKy3Z63IkiMJbJIa05ZKx\njs46b6Cuc2nKztIqnly6hROHF3DhpP5elyONKLxFOoFILJXaGrW+uy7nHP/vrfWkJiXwq3MnYGZe\nlySNRCy8zewxMys2s5XN7Dczu9fM1pnZp2Z2bNC+X5nZKjNbHTjGGj33pebOKxJPWlsqtSOt7+Bx\n7+Za3yt2VSvEu6CVO8pYs7Oc204fRe8cTVKLRZFseT8OnNbC/tOB4YHHtcCDAGY2HTgeGA+MBSYB\nJzU8ycy+BlREpGKRTqIjq601XmlNpLFXP91BQWYK5x7Xz+tSpBkRC2/n3FvA3hYOmQPMdX5LgFwz\nKwQckAakAKlAMrALwMwyge8Dd0WqbpHOJhpj32p9dx3b9lWyfFspVx4/mNSkRK/LkWZ4OebdF9ga\n9P02oK9z7j1gAVAUeMx3zq0OHPNz4B6gsrWTm9m1ZrbMzJbtKSkJb+UinVBT13q3ZalUBbh35j72\nMLNmTGHWjCns37snoq9VUuH/PU8ZnBfR15GOibkJa2Y2DBgN9MMf8KeY2QlmdjQw1Dn3Qijncc79\nwTk30Tk3Mb+gIIIVi0RHw6S1hnHv4K7zaM08V4B74/JvXsMbi5fyxuKl5OblR/S1MlKSACirqo3o\n60jHeBne24Hg6w/6BbadAyxxzlU45yqA14FpgcdEM9sELAZGmNnCqFYsEsPaEuDB496NW98K8K4t\nM9Uf3sVl+j3HMi/D+yXg8sCs86lAqXOuCNgCnGRmSWaWjH+y2mrn3IPOuT7OuUHADOBz59xMr4oX\niYSOBqOu/ZaO6pGdSu/sNP7vzS8orVTrO1ZF8lKxp4D3gJFmts3MrjKz68zsusAhrwEbgHXAw8D1\nge3PA+uBFcByYLlz7uVI1SkSbxoCvKkgb26N86bGvjWBrWtKSkjgxlOGUVxezR1/X4FzzuuSpAlJ\nkTqxc+6iVvY74IYmttcD32rluZvwX0Ym0qUVFhY2G8itWVlc1eqSqyt3VbVpjXWJD0N7ZPL1Y/vx\n7LKtjOmTw3UnDdFCLTEm5iasiXRV4WzNtqf7vLmZ5y0t4CLxa86EPkwenMf/zFvDd576mAPVdV6X\nJEEU3iIxLBJjz8Et9cYLtrTl0jGJbwkJxs2nDufCSf15bUURc37/Dut3a32sWKHwFokBTbViGwd3\npII1lABX67trSjBjztF9+eHpoykuq+Ls+xfz5NIt+HwaB/eawltEjtDWCWwS38b1zeHuc8YxIK8b\nP3phBV9/8F1W7Sj1uqwuTeEt4rG2trqDW8rtnazW+Hla71xaU5CZyk/OPIpvnzSU9SUVzL5vMf/1\n8mdUaCzcEwpvkRgTKy3cULvp1XXedZgZJ47owT3nHc3JI3vyx3c2cspvFvLS8h26pCzKFN4iMa65\nVndLqraspGpLy3fNDaX13dbV16RryExN4uoThvBfc8aQkZrETU99zIV/WMLqojKvS+syFN4iHmrc\nam3LJLWmuswbh3ZrAS7SEcN6ZnHXnLFcPWMwnxWVcea9b/OzF1dqZbYoUHiLxKgjWr2tjHU3F9Rt\nCXCNfUtbJSQYp47uxW/PO5pZo3vx5yWbmfmbBbz4yXZ1pUeQwlskRgS3usMV3OGgrnMJRWZaElce\nP5hfnDOO/MxUbn76E66eu4ydpfrvJRIU3iIeCXWiV0vBHcrYdkua+iDQnta3Jq1Jg4H5Gfzn7DFc\nOmUgb39ewpf+dxHPfrBVrfAwU3iLxJhQLwvTeLbEqoQE48zxhfzy6+Po1z2dW//6KVc9/gGlBzUW\nHi4Kb5EY0FRXtIJbOrvCnHR+fOZRfGPaQBZ9UcKc+xezrrjc67LigsJbJIY0NbtcwS2dWYIZp40t\n5MdnjGZfZS1zfv8O//xsl9dldXot3hLUzF4Gmh2ocM6dHfaKRKTZcefGwV29dcURx6T2Hxfy6xQW\nFratMJF2GlWYzd1fHctv//k518xdxn+ePYZvTB/kdVmdVmv38/5N4N+vAb2BJwLfXwToo5NIO4U6\nwauh1R1KaAfva0uAi0RLfmYqP5s9hvv+9QU/e2kVKUkJXDR5gNdldUotdps75xY55xYBxzvnLnDO\nvRx4XAycEJ0SRbqm5tYtbym423KMiBdSkhK46dThHN0/lx/9bQUvfLzN65I6pVDHvDPMbEjDN2Y2\nGMiITEkiXVvjLvPgVnd7Q7mpcXJ1mYtXkhMT+N6sEYzpm81/PLucBWuLvS6p0wk1vL8HLDSzhWa2\nCFgAfDdyZYl0HaEuetI4uKu2fXbEo6XjQzW2Z1q7nifSFilJCfzHl0YyIK8b3336E7btq/S6pE4l\npPB2zs0DhgM3AzcBI51z8yNZmIj8u8UcHMRNBXXwPpHOIi05kZtPHUFtvY8b/vIRNXU+r0vqNEIK\nbzPrBtwC3OicWw4MMLOzIlqZiLRLKAHeXJd5R1rdWmVN2qN3ThrfOnEoy7eVcs8/1npdTqcRarf5\nH4EaYFrg++3AXRGpSESa1daWtSauSWcweXAep4zqySNvb9RtRUMUangPdc79CqgFcM5VAhaxqkS6\nuOCZ5q1dFtbwCNae7vPmWt1jeqa2+VwibXXRpAFkpCZyxwsr8Pm0DnprQg3vGjNLJ7Bgi5kNBdRH\nJhJFrU1IUytbOrPMtCQunjKQj7bs5++fbPe6nJgXanjfCcwD+pvZX4A3gdsiVZRIV9faZVzNBbVm\nmEtnduLwAgbmdePBhet1F7JWhDrb/B/4V1m7AngKmOicWxDBukS6jLG9IhOcmnkunY2Z/25kXxRX\nsHDtbq/LiWmhzjZ/0zm3xzn3qnPuFedciZm9GeniRKTjWmuNt9Tqbut4t2acS0dNG5pPQWYKj72z\n0etSYlqL4W1maWaWBxSYWXczyws8BgF9o1GgSFcXrnXKdTcy6QySEhKYPDifpRv2UlVb73U5Mau1\nlve3gA+BUYF/Gx4vAvdHtjSRrqm5lnBav6OiXImIN8YUZlNT7+OjLfu8LiVmtXZjkv9zzg0GfuCc\nG+KcGxx4THDOKbxFIixtwNg2P8frWefqOpeOGlWYhQHLNim8mxPqbHOfmeU2fBPoQr8+QjWJxL1x\nvTp27XRLXem6Hah0dt1SkkhKNCpr1G3enFDD+xrn3P6Gb5xz+4BrIlOSiMDhl4s1BHJw17lCWuKZ\nc5CgpcCaFWp4J5rZoR+jmSUCKZEpSaTrauvs7nAEeONbkAZbVdx0F3hrd0JT17l0RG29j3qfI1Hp\n3axQw3se8IyZnWpmp+K/1nte5MoS6VoaX+sdPGmtYdy7qdZ3w/bgh0hnt3J7KQ44dkB3r0uJWaGG\n92347+H97cDjTeDWSBUlIn7NrbTW0ZnnwWuni8Sa9zfuJTM1ienD8r0uJWaFusKazzn3oHPu3MDj\n/znnNJNAJAKa6jpv3PqG8F461lLXeXup61zao+xgLR9s3sus0T1JTUr0upyY1doiLc8G/l1hZp82\nfkSnRJGuobmu88at71ADPFzh3ty4t0i4Oed49J2N1NT5+PbMYV6XE9OSWtl/c+DfsyJdiEhXM65X\naptap2kDxh5aJS21/7hD13N7tXjLyl1VEVuXXbqmd9fv4f2Ne7nttFGM7J3ldTkxrbVFWooC/25u\n6hGdEkW6noau88at7+BFW0KdnBbqceo6Fy99saucx97ZyDH9c7n2xCFelxPzWus2LzezsuYe0SpS\nJFo6Q9g0DvBwzjCPRICLtGZ1URn//fpqCjJTuf+SY3WJWAhaa3lnOeeygf8Dfoj/ZiT98M8+/13k\nyxOJnobg9jLAg7uhm2t9w5HLpjZ1qVg4g13j3hIpK7aX8st5ayjMTee566bRNzfd65I6hVAvFTvb\nOfeAc67cOVfmnHsQmBPJwkSiqXFgRyvAQ10mtbkAb2rt81BDu7nLxdT6lmhwzvH6yiJ+NW8NQwoy\nePZb0+iVrTkUoQo1vA+Y2SVmlmhmCWZ2CXAgkoWJeM2rFnhTre9gjWefh3rzkvbc5CQcOsNQhERX\neVUt9/zzc+a+t5mZI3vwzLXTKMjs2Hr/XU2o4X0xcD6wK/A4L7BNJK7FUvAEr7pWWFjYZCu8uYBu\na3Cr9S2RsmZnGbf/bQXLt+7np2cdxcOXTySnW7LXZXU6rV0qBoBzbhPqJheJmrG90g6tHz6mZ+qh\nMeexPdMOC9bCwsIjur+9amGLtKSqtp7nPtzGvJVF9M/rxuNXTmZcvxyvy+q0Qmp5m9kIM3vTzFYG\nvh9vZj+ObGkiXUMo497B3efBLXA4shUuEmtWbC/ltr9+ymsrirhw8gBe+c4MBXcHhdpt/jBwO1AL\n4Jz7FLgwUkWJRFtH768dCY0XQGkc4OEIca1xLpFUUV3HQ4vW84vXVtMtJZGnr53KL84ZR1aausk7\nKtTw7uace7/RtrpwFyMSi2Jp3LuxxgEO4WuJNx731uViEirnHEs27OGW55az+IsSvj1zKPO+eyJT\nh+hGI+ES0pg3UGJmQwEHYGbnAvrILhImzS2VGjz2Df9ufQcHaUOANw7bhgBX61qiaU9FNX98dxMf\nbt7HmD7Z/M/XxzO2r7rIwy3U8L4B+AMwysy2AxuBSyJWlYgc0jjA4fBJbIeOayHEWwrwoqKiiI6Z\nx+KQhISfzzneXL2Lp97finOOO84YzZXHDyIpMdQOXmmLVsPbzBKAic65WWaWASQ458ojX5pIdLX1\nRiHRfP3mAhyO7M5uPCMdWg/w9tBNSaTB/soaHly0nk+3lXL8sHz++5zxDMjv5nVZca3Vj0TOOR9w\na+DrAwpuEW80F5ZNLeTS3Fi4SLit3F7K7S+sYO3Ocu766lieuGqKgjsKQu3PeMPMfmBm/c0sr+ER\n0cpEPOB1F297X7+jAR6pcXGvf54SOfU+x7PLtvKL11aTl5HCizcez6VTB2Kmm4pEQ6jhfQFwPbAI\nWBb0EIk7sRw4Y3ulqQUunqv3OX6/cB0vfLydc4/rxyvfmcGo3tlel9WlhBreRwG/B5YDnwD3AWMi\nVZRILIl2mIfyem0J8FCFu/Udyx+CpP18PsdDi9bz3vo93H76KH593gS6pYQ691nCJdTw/hMwGrgX\nf3AfFdgmEpc6Q/CEGuBNtb5F2sPnHH94ewOL15Vwy1dG8q2ThnpdUpcV6selsc65o4K+X2Bmn0Wi\nIJFY0VkCvPEsdGj6UrJo6gw/O2m7N1bvYtHnu7n51OHccPIwr8vp0kJteX9kZlMbvjGzKWjMWyRi\n2hJ+oVyy1dRSqpGi4I5PlTV1/PXDbUwdnMd3Zw33upwuL9TwPg5418w2mdkm4D1gkpmtMLNPm3qC\nmT1mZsUNNzNpYr+Z2b1mts7MPjWzY4P2/crMVpnZ6sAxFtg+z8yWB/Y9ZGaJbXq3Ip1IRwO8PePf\nLY17h3I+BXf8evGTHZRV1XHHmUdpRnkMCLXb/LR2nPtx4H5gbjP7TweGBx5TgAeBKWY2HTgeGB84\nbjFwErAQON85VxYI8+fx31f86XbUJtIptGXhmOa60EU6qqbOx7xVO5lzdB/dDSxGhHo/781tPbFz\n7i0zG9TCIXOAuc45Bywxs1wzK8S/fnoakAIYkAzsCpyzLKjulMCxIhKCplZeEwnFuuJyaup8zB7f\nx+tSJMDLRWf7AluDvt8G9HXOvQcswH/jkyJgvnNudcNBZjYfKAbK8be+m2Rm15rZMjNbtqekJBL1\ni0RFR7rPO3LpWFupyzxy5j72MLNmTGHWjCns37sn6q//WVEZCQaTBmttrlgRcyvGm9kw/Jel9cMf\n8KeY2QkN+51zXwEKgVTglObO45z7g3NuonNuYn5BQYSrFomsWAtGrWseXZd/8xreWLyUNxYvJTcv\n+rfVXLOznNGF2eSk6z7cscLL8N4O9A/6vl9g2znAEudchXOuAngdmBb8ROdcFfAi/q53ERGJEOcc\nm0oOMKF/rtelSBAvw/sl4PLArPOpQKlzrgjYApxkZklmlox/stpqM8sMjIljZknAmcAar4oXibZQ\nW9+hdp1rmVQJxa6yag7U1DNO9+SOKRFb087MngJmAgVmtg34Gf7JZzjnHgJeA84A1gGVwJWBpz6P\nvzt8Bf4JafOccy+bWS/gJTNLxf+hYwHwUKTqF4lHjSetReJWoRJfVu4oBWBCP7W8Y0nEwts5d1Er\n+x1wQxPb64FvNbF9FzApbAWKdEKRvue4WuMSzDnHv9YUM7JXFqMLs7wuR4LE3IQ1EWlZR25c0hQF\ntjRn/e4DbCw5wKXTdKvPWKPwFukCgse9m7tNqEJcgtX7HH9ZupmM1ES+erSu7441Cm+RTijWLh2T\n+PPch1tZs7Ocu786jqw0XSIWaxTeIl2QbhMqLflk6z5e/GQHF03uz1eP6et1OdIEhbdIJ9Va69vL\n1dak81pdVMa9b37BqN5Z/Gz2GK/LkWYovEW6qNZa321tnUdyFrxEx8rtpfzPvDUU5qYz95uTSUvW\njRtjlcJbpBPraOs71IBWqz3+fbptP7+ev5aB+d145tpp9MzW0EosU3iLdHEa/5YPNu7l1/PXMrRH\nBk9fO40eWfqwFusU3iKdXDjHvsf2TDv0aA91nXc+iz4v5ndvfs74fjk8fe008jJSvC5JQhCxFdZE\nJHaN6ZnKquJ/B61a313TvJVF/Om9zRw/LJ8/XDaRjFRFQmehlrdIHGhr6zuS1PruHN7+Yjd/em8z\nXxnTi8eumKTg7mQU3iJxoq0Lt4Q6CU2T1eLPZ0Vl/OGtDUwbks99Fx1LapJmlXc2Cm+RLqKp1nek\ngnnFrmq1wGNU0f6D/O8/P2dAfjceuvQ4UpIUA52RfmsicaQ93ectBXhHw10BHnsefWcjiQnG41dM\nJqeblj3trBTeInEm3AHeUWqFx46V20tZtaOM784azoD8bl6XIx2g8BaJQ+25ccmYnqmHhXi4A10B\n7i3nHM98sIXCnDQunjLA63KkgxTeIl1QS7PPG4d4OCnAvbNt30HW7T7At2cO1QS1OKDwFolTsXT5\nWDAFuDfWFVcAcPywAo8rkXBQeIvEMd33Wxqs311BdloSg/MzvC5FwkDhLRLnWgpwtb67ju37DzKy\ndxYJCeZ1KRIGCm+RLs6rAJfoqq7zkZWmS8PihcJbpAuIxe5ztb6jq7q2nvQUTVSLFwpvEVHruwuo\nqfeRplnmcUPhLdJFxOrsc4mOep8jJUnj3fFC4S0inlHXefTU+RxJCfqTHy/0mxSRQ9T6jl+19T5S\ndROSuKHfpIhInKur91FV6yMnXbPN44XCW0QkzlVU1wGQq7uIxQ2Ft4gcRl3n8ae8qiG8UzyuRMJF\n4S0ibbZyV5XXJUgb7KusAaBnVuxd7y/to/AWEYlz+ytrAeiZrV6VeKHwFhGJc2VV/vDOz1S3ebxQ\neIvIYdQlHn8qa+oxIDMlyetSJEwU3iLimVhccz0eVdbUk5mWpDuKxRGFt0gXodXMuq66eh8pifpz\nH0/02xSRQ6LZZa5Wd1YDIUUAAA4fSURBVPQkJSZQW+/zugwJI4W3iESdgju6khON6jqFdzxReIsI\nEL1Wt4I7+tKSE6mu86n1HUcU3iISNQpub2Sn+ZdF3XegxuNKJFwU3iKiy8PiXMMNSXZXaNJivFB4\ni3QBsTDTXK1u72Sm+a/vLg2stCadn8JbRCJOwe2ttMB9vCtr6j2uRMJF4S0iEudSkxMBOFBT53El\nEi4KbxGJKLW6vefzOQDMtMJavFB4i3RxmqwW/0oP+se6e2Tqg1S8UHiLSMSo1R0b9jeEt+7nHTcU\n3iIicW7LngMkJRh9c9O9LkXCROEtIhLnVhWVccyAXNJTEr0uRcJE4S0iEscOVNexqeQA04cWeF2K\nhJHCW6SLG9srLSLP0Xh3bPhoyz58Dk4c0cPrUiSMFN4iInHsnfUl9MtN59gBuV6XImGk8BYRiVOl\nB2tZsa2UOcf00TXecUbhLSJt0p5udvHG0o178DmYPaGP16VImCm8RUTi1JINexjWM5NRvbO9LkXC\nTOEtIiG1psf2SlOruxPZe6CGNUXlzB6vVnc8SvK6ABGJrFBvBzq2V9oRS6UqrDuvFdv344Avj+nl\ndSkSAQpvETlEYR0/PttRRm63ZEb2yvK6FIkAdZuLiMShNTvLmTo4n4QEzTKPRwpvEQk7LdDircqa\nOorLqxnfP8frUiRCIhbeZvaYmRWb2cpm9puZ3Wtm68zsUzM7Nmjfr8xslZmtDhxjZtbNzF41szWB\nfb+MVO0iIp3ZrjL/PIdB+RkeVyKREsmW9+PAaS3sPx0YHnhcCzwIYGbTgeOB8cBYYBJwUuA5v3HO\njQKOAY43s9MjUrmISCdWXOafeDgwv5vHlUikRCy8nXNvAXtbOGQOMNf5LQFyzawQcEAakAKkAsnA\nLudcpXNuQeDcNcBHQL9I1S8i0lmVBu7f3TNLExDjlZdj3n2BrUHfbwP6OufeAxYARYHHfOfc6uAn\nmlkuMBt4s7mTm9m1ZrbMzJbtKSkJe/EiItEy97GHmTVjCrNmTGH/3j2tHl9ZWw9AVpouKIpXMTdh\nzcyGAaPxt6r7AqeY2QlB+5OAp4B7nXMbmjuPc+4PzrmJzrmJ+QW6FZ5ItGiyWvhd/s1reGPxUt5Y\nvJTcvPxWjz9YU09SgpGaFHN/4iVMvPzNbgf6B33fL7DtHGCJc67COVcBvA5MCzruD8AXzrnfRa1S\nEZFOpLbeR2pygm5GEse8DO+XgMsDM8mnAqXOuSJgC3CSmSWZWTL+yWqrAczsLiAH+K5XRYtI89Tq\njg0+B4m6vjuuRWxAxMyeAmYCBWa2DfgZ/slnOOceAl4DzgDWAZXAlYGnPg+cAqzAP3ltnnPuZTPr\nB9wBrAE+CnyivN8590ik3oOISGdU73MkqtUd1yIW3s65i1rZ74AbmtheD3yrie3bAP3XKBKj1OqO\nHfU+R1KixrvjmX67IiJxpt7nI1nd5nFN4S0iHaZWd2xRyzv+6bcrIh2i4I49B2vryUzVNd7xTOEt\nIu2m4I5NFdV1dM9I9roMiSCFt4hInKmoriM3PcXrMiSCFN4i0i5qdcemep9jd3k1fbune12KRJDC\nW0TaTMEdu4rLqqitdwzvmel1KRJBCm8RkTiydd9BAIb3yvK4EokkhbdInAt3K1mt7ti2akcpaUkJ\njOqt8I5nCm8RkTjy6bb9TB+aT1pyotelSAQpvEUkZGp1x7Yd+w+ys6yamaN6el2KRJjCW0QkTixc\nW0yiGV8Z09vrUiTCFN4iXYBazPGvrt7Hoi92c+ronvTKTvO6HIkwhbeISBxYunEvZQfruHjKAK9L\nkShQeIt0ER1tfav1Hrucc/z/9u49Rq6yjOP496E3WtrSlkILVKC1BgQFlEoMFgJIwsVoMYZIQgwB\njRcw/kUUQ4IEY4hA/EONIaZKMBIBMRhFMQETg+FSQSgUItBKQdoClQJtKgK9PP5xXtPpZrcs3WHP\nvDPfTzLpmTPnvPM8zB5+e2bePfP7xzewaO5+nPKBA9suR+PA8Jakyj36r9d5ftMbXHLaYvbxq0AH\nguEtDZC9PXv2rLt3ZSa/XbmeBbOmsuz4Q9ouR+PE8JYGzLsNYoO7t61av5nVG7fy1VPfzyS/w3tg\n+EpLA2i0gWxw97bM5DePrGP+zH05b8mCtsvRODK8pQG1p2D+8LwpBncFntywhWde3sqlpy9mykSv\nqDZIJrZdgKT2GNB1u/PxDcydPpnzTvCse9B45i1JFXp+0394bN1mLvrEQq9jPoAMb0mq0F1PvMTU\nyRO4wIuyDCTDW5Iq8+a2HaxYu4llxx3CrGmT2y5HLTC8JakyK9a+ypvbdvI5P+seWIa3JFXmvjWv\ncNicaSw5fHbbpaglhrckVSQT/vHiFs48Zh4RXgp1UPmnYpJUkf9u20HsTJb6BSQDzTNvSarIm9t2\nMGlCcOIRc9ouRS0yvCWpIm9t38mR82cwdbJ/2z3IDG9JqsjbO3bywfkz2y5DLTO8JakiO3YmR86f\n0XYZapnhLUmVWTB7WtslqGWGtyRVZt5Mv1Bm0BneklSZg2bu23YJapnhLUmVmTV1UtslqGWGtyRV\nZpp/JjbwDG9Jqsg+EV4WVYa3JNVkH3NbGN6SVBXPugWGtyRVxegWGN6SVBVPvAWGtyRJ1TG8Jaki\nnngLDG9JqozxLcNbkupidgvDW5Kk6hjeklSRg/f3S0lkeEtSVaZPmdh2CeoBhrckSZUxvCVJqozh\nLUlSZQxvSZIqY3hLklQZw1uSpMoY3pIkVSYys+0a3nMR8W/g+XJ3LvBKi+V0i330nn7ppV/6gP7p\npbOPwzPzwDaLUfsGIrw7RcTDmbmk7TrGyj56T7/00i99QP/00i99qHt821ySpMoY3pIkVWYQw/un\nbRfQJfbRe/qll37pA/qnl37pQ10ycJ95S5JUu0E885YkqWqGtyRJlak2vCNiTkTcHRGry7+zR9ju\nwrLN6oi4sGP9CRGxKiLWRMQPIyL2NG5ELIuIxyNiZUQ8HBFLK+7lgtLLqoi4PyKOq7SPoyLigYh4\nKyIu60L9Z0XE0+X5Lx/m8SkRcWt5fEVEHNHx2LfL+qcj4sx3GjMiFpYx1pQxJ4+1/pb6+HpZlxEx\nt1s9tNTLzWX9ExHx84iYVGkfP4uIx8oxfntETO9WH+ohmVnlDbgWuLwsXw58f5ht5gDPln9nl+XZ\n5bG/AR8HArgLOHtP4wLT2TVH4FjgqYp7Oalj37OBFZX2cRDwMeB7wGVjrH0C8E9gETAZeAw4esg2\nlwA3lOXzgVvL8tFl+ynAwjLOhD2NCdwGnF+WbwC+1qXXYLz7+AhwBPAcMLfLx/h493JO+dkL4FcV\nvyYzO8b9AeXY8dZft2rPvIFlwE1l+Sbg3GG2ORO4OzNfzczXgLuBsyLiYJof8Aez+Qn/Rcf+w46b\nmVvLtgD7Ad2c6TfevdxfxgB4EFhQaR8bM/MhYFsXaj8RWJOZz2bm28At5XlH6u924JPl3YFlwC2Z\n+VZmrgXWlPGGHbPsc3oZY7eeauoDIDMfzcznulR72738MQuaXyS7dVyMdx9bAMr+U+nu/6vUI2oO\n73mZ+WJZfgmYN8w2hwIvdNxfV9YdWpaHrt/juBHx2Yh4CvgDcPGYO9hl3Hvp8EWas9xuaLOPsRqp\nrmG3ycztwGbggD3sO9L6A4DXyxgjPdfeGs8+3mut9FLeLv8C8KcxdzCkxpGeky73ERE30hwrRwE/\n6kYT6i0T2y5gTyLiHmD+MA9d0XknMzMiuv7b5dBxM/MO4I6IOAX4LnDGaMfqtV5KTafRhPeoP7/v\nxT6kLvsJcG9m/rXtQvZWZl4UERNogvvzwI0tl6Qu6+nwzswRwzEiXo6IgzPzxfKW68ZhNlsPnNpx\nfwHwl7J+wZD168vyO46bmfdGxKKImJuZo/rSg17rJSKOBZbTfK68aTQ99GIfXbQeeN8Izz90m3UR\nMRHYH9j0DvsOt34TMCsiJpazrOGeq4Y+3mvj3ktEfAc4EPhKF+ofWuOwzzlkm669Jpm5IyJuAb6J\n4d1/2v7QfW9vwHXsPonp2mG2mQOspZkYNbsszymPDZ0cdc6exgUWs2vC2kdpDpSotJfDaD47O6nm\n16RjzKsY+4S1iTST5xayawLQMUO2uZTdJxXdVpaPYfdJRc/STCgacUzg1+w+Ye2SLr0G49pHx5jP\n0f0Ja+P9mnwJuB+YWmsfNMfO4rJvANcD13ezH2+9cWu9gL0uvPk86M/AauAedgXAEmB5x3YX0wTV\nGuCijvVLgCdoZmz+mF3BPNK43wKeBFYCDwBLK+5lOfBa6WUl8HClfcyn+axvC/B6WZ45hvrPAZ4p\nz39FWXc18JmyvC9N6K6h+UVjUce+V5T9nqbMkh9pzLJ+URljTRlzShd/nsazj2+U/+7bgQ2dr3OF\nvWwv6/5/XFxZWx8085juA1bRHEs3j+WY8Na7Ny+PKklSZWqebS5J0kAyvCVJqozhLUlSZQxvSZIq\nY3hLklQZw1vaSxFxVURcFhFXR8QZZd3JEfFkNN8+NzUiriv3r2u7Xkn9o6evsCbVIDOv7Lh7AXBN\nZv4SICK+TPN36TtaKU5SX/LvvKV3ISKuAC6kuUTrC8DfgQ8BdwKzaL6+dDPNlbpmAJ+iuWDGNZl5\naxs1S+o/nnlLoxQRJ9BcuvJ4mmPnEZrwBiAzl0fEUuDOzLy97LM1M49vo15J/cvwlkbvZOCOzHwD\nICJ+13I9kgaUE9YkSaqM4S2N3r3AuWUW+Qzg020XJGkw+ba5NEqZ+UhE3Erz9YsbgYdaLknSgHK2\nuSRJlfFtc0mSKmN4S5JUGcNbkqTKGN6SJFXG8JYkqTKGtyRJlTG8JUmqzP8AH2BBxmjpd+QAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 6.42847482193e-09\n", + "MAE : 7.12554587774e-05\n" + ] + }, + { + "data": { + "text/plain": [ + "count 20817.000000\n", + "mean 0.000069\n", + "std 0.000040\n", + "min -0.000283\n", + "25% 0.000046\n", + "50% 0.000068\n", + "75% 0.000095\n", + "max 0.000283\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(testX)\n", + "pred = y_scaler.inverse_transform(pred)\n", + "close = y_scaler.inverse_transform(np.reshape(testY, (testY.shape[0], 1)))\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['close'] = pd.Series(np.reshape(close, (close.shape[0])))\n", + "\n", + "p = df[-pred.shape[0]:].copy()\n", + "predictions.index = p.index\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low', 'high']], right_index=True, left_index=True)\n", + "\n", + "ax = predictions.plot(x=predictions.index, y='close', c='red', figsize=(40,10))\n", + "ax = predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=ax)\n", + "index = [str(item) for item in predictions.index]\n", + "plt.fill_between(x=index, y1='low', y2='high', data=p, alpha=0.4)\n", + "plt.title('Prediction vs Actual (low and high as blue region)')\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['close']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction ')\n", + "plt.show()\n", + "\n", + "g = sns.jointplot(\"diff\", \"predicted\", data=predictions, kind=\"kde\", space=0)\n", + "plt.title('Distributtion of error and price')\n", + "plt.show()\n", + "\n", + "# predictions['correct'] = (predictions['predicted'] <= predictions['high']) & (predictions['predicted'] >= predictions['low'])\n", + "# sns.factorplot(data=predictions, x='correct', kind='count')\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['close'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['close'].values))\n", + "predictions['diff'].describe()\n" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/bm_kaggle.weights.best.hdf5 b/capstone_project/bm_kaggle.weights.best.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..08deef4099e77d1ce6157f16736bb13aae745720 GIT binary patch literal 137168 zcmeEv1z1&E)9?XAQIHS=R6@W)KtM#`?3n{fDT)GOBhsLhgkaMup@>Kc2#Addio#xl zi5*zjh27op9|Uf__kQ>5_j~@={XCvoF>CFaS!-6z4BJKa*0$~2b!{hTd}L$8orpnH^0fS-Rv zxVSJRG$J4yr83aj!*Lm^9XmJ z;S&}f5E3jdR~5gYQIi_~HN8tloN7r61k#O}rlKG9astcd{$zgi=jq`!%_rFVZ~OV7 zxXt}EisDzg+W+XMNgiGy!M*{0jj#MWx)v(^N>`(bw&-i<^TyT!fqxSa)BNXp{h{?Q z2tN{kr`Mr+P58|$G&lYU{#7LKN4>UhX1u6n9yR9!!y|&+%>{xV(8#bE8VS6^LPA3# zBisl47SG67;O!F}?&ChN8JafhV3R&JqPFPultv{MKQYbklM_TY>!F-@hN}nyJ!Xp6 zj$n@%?V7i9!H@MrTr^wDE6^i6{DJtDmP-2;L{#d9It-y^iKYGQC? zV4$9+v7w%(k*S*)$va}^j|wd@-5wDGj2rt3^NENI3w96xL7$gT_^(~I)I@khH1_7} z5g6Y1CchB(#>F|xBh0%IxurO~5zRL;@Ha(~!C@hRzbyy|3JvrL5{tnjLcB|eF~yW= zMFs~%Gy&}WH#O>UFU+*ub!96^{FDN9yyAdx^JmozD zJbuH2cv}h2=?-E@e-p1`!)9T%K**R3Ky3)@^56& zNMPfBBF<>}dIYYpTyZ|kr-hM! zo1&3n5&j{5A;Eu`Ewi=!!~_2eEr0C2k@de}b%IY=Ncis={6SdbAh?UE_VbDOa|wp| z_(cYa<rit|%cK)>b2R(mU^J5qTB4)b(X>IeMiN`=JSTVy9%_97r0ROD^#|!_g zqIs1R_ha~D6n`Cu-_=BV5$qijxn%>Fai!oM0bx4F&cEx}*eZGPCH z#rB#O*kbQ#F~6xb8-!+S{c1`7jUN2o$YbU0@#EV68-&0{gM(Nn3=NG;O$QA!G8HQmJPH|5Q)HbKiKAlQ1RDba#=u{r)^zt$4B z)dHKwyML3-*`kFzaf9ZHUp)gYD9sg(Cdl97|H6mjFR9-qBm}LSV)B{=A<-P*Eg{)d z(9&vDbE7}zrNk>>Bc_t3#t(i40!={|89|r%&G^z{?i=eRC7U{IjOA;5q$Dny{74AI z;jzDYIyA3@jcvM3SDf%`r0Z{x{s)s1Vrm=T-7@c5#&>J~rk9>JYJz{auBSH#Lbmkt zKS=V=uKy28;E(INSu>3&Cg+_-Ow4{l}lCb-ghvyy;ok zJa1dt{c#@uV-G(|8YR#qM=60}vp60M{kP@PBJXH}e;co5J-BH9Z{z*{Qu}e+NW79Y zk~++@M#+PdaZlYVVa3hPUtJSN-r7rqo1pHl<1MkUtMM^3CyeN;LMq+ZI#3ce4C8)|9?WmbOgMrcHje z=n|Air5K*v#RaFdSKu%Lz?A3fVOP*p)IRpu{3D}v%cocJC<$4vXQ0i>=AcqG}*kg|=Ds+62AxSRm8iC|BMMxCxFf|5!lSKwuzo@BK{EXc|4PyZudYbt)s|j^r}{hjdjqv7 z`Jg)GtJ<@a*BNLj)dzR85x9P5Z`jadJ&h~y$iThZC1vTD!F6I_pm_SMR5d*IwVap-8BjPb7B z@Qu|D9P2xXw>_jp*6vC8;nW`VerUk%d267@y7qY3bP-w>O2M>~DIkzu4Hg!C*_oa* zuzR}zto^o_^$*g4ueWS)&9IH=?%auN=XJ%;g%?m1>Wa>6Ijb?>C`99A*85I7Dr$EQ zcIR1Q=-E5`mHAra*ZV504ByAbXqa*n&&A_~$Qf8#ZHQnkq$gh%;Y+tday&jA?{?pe zw^EkD(rf*3Wo0D0XT@RRNhMM(Y=zgx>*M{1m9%826S%5vgJ-V`*l^KQG}FEYH+v#R zYrJD`;u44)X40Xam$;8_9mzmEP939-P+ghhs^wKlvv&q*QYu?#(i>Nt?oH*)fmWT~ z2(}y2X|awe9UG=f@-wXQnqo5g#Mh$F(y!2=j{)Y$Z=!-@iMVuMJl8+rG&_@>z)NmD zfzQTha?u`AuLPsl`{R&E zFO;->&&J?f3fA(+b03$nB;_M4W*A_!<0>>CJQ{Pg_0ZytK26iHXDh4iQE{;lRy_o6 z)#F~Q&(H{p5AH%6tIW}D))=tub(cGP#})U?>IQNV-+0~A<1x(yaFs?Ne2$XGTcdSp z%PyYn%HNG|t4mS2&I4b3-NttMI>Fe7hd+=BnQ;(0N;vPac^_^75V|_-zf{F)7do z%h!D8+`6Q}bag9=d_IoXky;8zQl^qw+%CAYVl=zfswe79*pAPvjj>bCCuVncA-)=w zhhFO^bz$L}2`pwzT~7CZ>BXj-I+4 zVgt)esQS8;csyUgjS3*CoKlRx*acrb+7IE%Z}~nxdT{q_A9~q#1(TbW2BLQ5%s`+? zw;#609fM<0a>yo#?A4C+IxIkIEp%Z~MZ_K5i%UXDv|Nm5FW(PW}lKsP6TfmL0Pv%@O!+@88Y5Zq)3LOP;(o?7-sK02Hk(!V&k~Q8zso$0*$p4sa=?9Utdn zTI_sGzJ7xl){h|TRv)?Hai78Qoj(iOBuNLJsZ!?Qk-#bTVW0Py(DsSl$;Pyp9_yE} zDcx4!f;Q*i{LtPwTjW4`b3RDQw=4i_|XanpPxt>o5#S_9aC}EzAgCN=^d=zCxozKCz`u! z5iU5d0GCdVWuqo|KnJhEK-g!`b`! zLnz@yEQXFP$JgB*xM}M)L}e#xTcJ$J(+kaIye~52uOBRq9FoL)y)r-; zw1}n%6R@50X{O|si?u$xgq7|B>hn1a551eidg^_K85b7QmDC~ZPTC@T(XBJ7SBzt2 z@_N*HLmYUT9)kK92|l@13YGYllH{wgIDJ|*pB7z=AJ2EAj1e`ETCog7UOr_0y)9D> z$VHdXEwtNJ36vit~G@lk(>7GW2L(q=m&44CzpOXxP4ChWIm@_T3C zD~@L(6wMtq(L2hta(kH!))e?9sH>Simso3{S6A!v z8w@6r_KO6*%@zxEow@=R`Rek<%igf_?)j)Px|q3G8KB$tjwG}j1(uR|Fnz{w9L97g zwVMWOTUXD=R=#Gnwo=r6i3b_Ydc##u+k)r3=HRs+$Dz&328<~$!q0EFVc)Yc=$@31 ziHjMA?zCm!vSV=03x;PlhU59vIw+|hfx>lNX+wh&rdvy+S?dHGctjTKUQU71=+WGj zA(o`z$Y5OeIQWpF2c3J($Bj3pklZji)^>j`=lk|4bo(rU4?7K}v>n=HlT?UZrAJfF zr(x*Rp$#3_KMRYqQdn_JDvs2YBMUiG_Hs@~uDiSmUD!Gs2l_TJ?RQdG``nWaGV9C7 z346hc7t(OiN|x>4u@P&JjK#!xU%8`$TG7%Mm-z-e->UivvZ(4^3wNxZ@&)(LL&k?mQa=HpdL`(qK0X^3bxlqN$X2e!eQ5_4|F#thtUABb8@h0slC z45K`cFqZ=ZaP5F1xV*w1UEN;8&FUfes5FJ`AMJ>B!VRn@z#jv;w<4X2#Z2u*f7bc_ zS{ymq3nw{g;_4y}H-7jA3i(;sW@kOPy;Y@g?{jhakYr36wws%GI*qNgya}hrFF=R! zjFsxO$G}6|*h|%`pq4WVp6o~f|5hdJh_XJ9L4CnlQHpwvZOd6q@uQihdDv;nN(yPKVb09)O3X0Ao&{Vl#F3v!g?%pvL}6*gI_j&c2<8le~Ih|H-!GeLw-j%$@Mi z?O}N4SSofJqKezsyaRczl>c~vhg**nXw7ANEZi?o$7c4ynG^lddZ{S}tokGCKMl21h0fPe4ot+ga8LraPo=xCi!Xnke|z9tW>6z#*b4a0t$T(><%%+fkZ0c49Z$DeQ@( zN9+QHew&1M_BrGB;SX6NwZq%n%i!DS`z%&z3BT1!k@fkk46)xg!6M1Ys9he6k2_|8 z@5^e|)4m+i?WO6GL^2j_X^*mB9a;Rlm7H~D8*<$$hqlHJ=(ooUWo$Q~ip-e2^Bm=gCzJcA1tyuM0gDq6jB8yB%ZrUo2UGb1%BT61KJP?Ub3olih zot+G|V>fV$nvw86Jf`|dyacYh;)ZQ*q~X?-3OIATisN=^(e3gXsQ+aEu4N5j+m|8YA6mMx(Th4^twRM1 z>a?7CYZS9&-&%fCS~l)=vL^qVySd%2Cip_vfJ!1HL70~WJ)dvlmd~=rQ)-u4LrOd= zuDZs2$M+|neGXuEehc-UH3MN39cN9z_6OHN5XEy9?jtZ~ z_*snWE`SA{tZ?d}&3t)W3EO*O6{|mCLeb~XLc;w#7O{QUv!5TbIvbj`Y6M=2F~hVq+H_7k9hR7+ zAWIsKj`Ln~YI5lqt*b)DB{$$fN>X)h=hvL{^<>)q8GdmQP3pU-ts&TFLpwIqibBHl>#iTT?}z;qVV7DXRqInm#q`nySqZz zK79d(-15Vzo!gMyQt{aTjen`d`P1TG`eXjT;9qL#veC`<%k$6oFa6Qq)?^WG@dLIH z-2(p${0B5KZP{Y_|B?Mi{-b}9%|9dYmvI!${@*>#ME#w=?L*UNL4NUj{4;p@`Obfy z1per6Q*0(>O7lEwq3nm3T>Rad7Nz*Fx?x)U!+(rh`1kn#yNZcw(fby^e+z7;^REH` zj12q#qo=T?O^dIvh36*NB9Y&h{u9^d<_M7=VGzF%^^fb5|1Wj_8;QU2|6iQm^!BYI zo8TYkTZ@19baQ1 zdGn)8Y&TvGCb*wX_19rBF8bK_USEXR@k~W$AzYHW4Er<+QS0Ub?wqbx)lpG0z8<~Z z;$jCEj2yQHx^3&qdgQBdZMyVfS$Z?L`jHdiSm;&rj5Sli|I$9#(5{wSu29KYPmW^t zr?W|QvI2H7(4r2XPC-a!YgR8BK)ExI2 z=CyZh)tT{Be7=IeWpI}(J5*eqg}$ucTXQ;Kr-N0!Q|Z!fMS4;^i)>kU>U|-FRNbU7 zEyN%5V~h2*!0ZLR^6 zDc9fto1(j)E`J-y7MDxGr2CWDmd(e&3hMd8k&{WvNe`9xYV)ts1u$r#ITu;ciIZ4v z$eqbL2(qnaLqe!7rC!Pb=~2m?a_c_u48Fpis+-YN_TlmeZx}(k0k$Z)l>*@3SYM&$~c~c+Vw}!xV*)6<*Lnm72 zDWD#*CwQ~mI8K;rO$wO~Y%CiFcW?}GJB6U0-=1#XjNo3}UCMUN>kWJAL)l{aSFqaK zmdtL8kZ+?6J!2lTsSmO_{=_ye)Nv)7tdb5h4jp70)bFy+g~WGvdFIv5UP(;rP)JtP|Lk7+CA+_Ur>=wm@I_FC6P2FSf1iL>|zCN`oW_S+H_Sv zgG%ciX;O>=HDswVRn6B`1x}ZF!MCSEySPg7oim(<-d{$u+^R{+@eC`|*uY9O2C?MH zqu8=-CDft5GwG;iFn{|^@Xf0q26rs4UVBe`*Dy2VvoCAY%$jx-;5Gu%B2Kcjd%mpj zy*~3bTuCOfCqZI~ELx8AAUkEX-O+FI7&8imhOs+X=7PaAY@-1^zF|lm_g`jU-kv30 zTfy91EV<&FF{JX~3^zA8mRX;Qq|V<8VC%8~YPJ0gotrq7AK%Q&M42A@Xq>)m#; z_1A`zg7X)U_1lGhQy6SF>B-7!N09#GFWjl2-Du&CxiDy{3UgW3h1GXl%71lz#dfrs z4`)^#VNuUNF=1!}MNQ}EiNsJAwY4uZ(CfyQM>wwikD*)rRN7^sKME=tC$QW03-WtCgADrA!Ka zZv{@3!IYWl$iK2#2ZN<|h}XbwB-;I&jjgaov$s3o!l4e}SG1L9waJj(TLZ7%FT!)n zK7my1U{E!1MAa-;e)#h^SRZDI)qw$Ecvh8ymrKy~V`rF*mnBU4(vC8vU$8LG9Z;s- znyHon-cs?Sb&uck@7q6Q*{XN=qaQbd+Zi346tWc}I+lY>fh<32#~fibE8|rjZG&A? zy5hB^UD3YyGgl|)iowQFu;PY3w^D4MJO6YM_n|}t5prwkOZ`F!yJLgNX7?d6`T`7% z8wp{(3@v7WdDIY zSI@<{4FP=lc6Gc^tj5w8nXyiFY0&1yJV-6I#MXOW^4~0uLsSySzV9<(300Edt?owQ ziiLdmjRbUYYXk56s-U`cTPTW^rc?Kavc&a?I8tv0af%yg*}-DAE}#HpC-~vY(hx|q z^`aHQz(!XtQc)bS<(mO}bH+5um zN}N3v*I>;q9p+s6ihtC8yYSkiEIO{bjLT_X1py&qKZW@#i(bM4Zl>BQHsO{A zn*SL!kZ%mny$o%}Cvf&X!Ni8KA&C{oYQ`#9&{df-g%Xrf8ty|!eR2sfX zD(Cg}6IsCEO7=L>9*5q2#az}sW~=qWx!2RLRabRh1dASgWHB+b`EjWyIgRnMn61|b zjz2ImUsZnxNJa{`BpLH3b|~W4*hg$oS5LfaTm~8$2B`ROIZhRH28(`CP}FWar_ec& z>1M8jL!#rr*Z1fA;xAV(5!+TL#Ghe>`YTyl>NYT!?hD|5h)Q04PkvgO-CQOT425E0Lq1Bg*knueS)myiso)gF5&S*KfBi{y3j!PkX zi52`MgLTZftOs`Msm?ry%Q4AxKlU(4ime?w2);V+VGe^PvQ-T-RP*uyTwn*$WM?{4 zv%SE(zU+^S%l#=Jvp21=F=Lzb1T>cQWS3;#!TehfndK9CYFJprtVMxjp3n{rPsy`7 z>P6$l(p!A~`W$v0x@4nc;r-j{dby*RcHc+3vGOMlXHUBz0yLkVyZRx zF7GbHjTyl{yv=21&JV;P4xQ<+0>kk=<*N@RpAxo8&1UJ7H&_f*?2B_!(?DZvGV?vC zQq2@hpd7^O?$E1nVoM+>JRf*SIUT8=HhDk0NF|n~{UWPB{EzJv>;Z#ZsKBm{LJ1>c-B84hx6zDnZ}a zVSyA(KNWy=wlUnsD^8&1WK~_&C5s)sqmA7Ym!jVt21k9>u)ReLrd)r*bg!o1#tu?k zdi_=Q+$^5un=HeyC9P<1WF92c-l#q=JCxtQvm+i!^93zA9c;L~n%{Ok7T|OzoaNgO zpAEYX-2*4$=Dz#+@aUE7iEbn;oT7<4ojT$Y>;0T%Z3s=D*p^Cd1k`>}5BR)T2kSe% zV?$)RaAx=W;6({7Z2x#J_N(m060XXyo9+AYZs|Qh$3+)wQzB3^A&Iw?oQ|S(5~%lX z9f&T~gH=Im^yKz)nK26>XOueX?A?T2K6S*x(iNy&ycEwY3&lqVHF3v*EWGLJQ*Cq3 z4kg^}#6Cg=)_v_#FzjoLY72_lsE5@c<+z4T%~=D3)P^&S`x8M;`Vg!QnS=W8#>18E za#R-*2gjVpvrR)Y@WGn<_)Q#Bc(YJ^cI342^7_T>>c}$wd(W*^TkghCcWV!tmUtHC zYnV`Kc8SGX6MZ`DUB`+_74hNhG7=r!%NAWNYx zA@uFQ9tVktOMJ}Fiz()}?(0v^9wU)|q{tp$k)!o%btz+T4ILYeNEXYOu}LPg8BNte zr3qDX*QGeGk+Mi#eW`!%8uspeDJZ+tu=8G@!F@rJ#p^^TvWi~D(zmZ;S}MWtdGju| z$HflzOfaJa#aJ44bnc-0Rw=LuiePNl+l215NNwP2Nk!M5w z%X^EXX+Z80gn!L#;I8<*q!t(e-Mzdfs*Z$@vB_zIX!GIyzEi zs{xdLM3s^xd3aN$LVJvFb5ROaFz-tO&3py4a$!H5*6tb`{cMtWZ@SBFbm@hqqe8HD zV==F=iD%3-f%tpbAQuY<6<+2mW!^$`k_QGEePQd~o#Bd2mOz2q2+Yzj zXFHcqC653#R!^y*e(NRpKCHzt)@k6M5r;0DgQ<^XEm?*nu&YbDvWEumS+#8(f4Hs_ ze%xjW;U$+Ld-p6#lONCPpRj_dkNSZ1vt{sH<`|bhc@FdnIm)gIGBCEa0$VO+kKzvo zv;MtJpsf5QR9{LI&c7^0T~65Xz0H@Rd@u)lx&-kx$7003myHng=s1);SO?hs6WhHy ziCa5t0=_J3OE+Y-a8rIRuE>yQJ%-OQe2+ zM^#bLUKqYTfK%@{mfQUGDIOZPfON`d;^Xa6T%ctrZa&i&&%G*ydGiOLkmU z;z>eW{`@^0Ef8{j;y;6B??=p9b{yqINkV|o6@)vp*p#j#&^9!RTeCiew>-3tIn*kX zxl0uvFIfhPon*y64NrcLUa|1{+k>oDr2|Ts4Q3xoFY*`T4RNPJ0~DC;pd$x#a6*9< zc?l*WTQGp;uhqtK4|}RJ8H4BAR>0VxRyff_9Z#fn!|C!4cyO9BPHle-)L$6lrFs>V z-&2ZPy;LymO*~FLags&Wc4m7&WWZAc@jarukfhf5(3dcty_>XFSm(5qA11S%+m=6< za)J-CH&!!1V!Jf$EZ)F;hdyJ6EW1V4-@Et(>uwEX#J#thlbYMKp)iJf4BN3E8k$O_rW3Aw*aC zLPGv`mj7T4sqC9a*$Y?F)N#4&P;CTPUY1KerH-;U+hnOa*%JC?yyN3~R)Cdp7Re+} zWzRdg(j}=BmT-L*REiEUn@=T7t#vkg`dJT0JT0w$Ya>B&j$KH!M-vM_c4dbr%wz+$ zYmj#*6KLo>lZ{DBh1bJRz&T!vuIA~`ye?(n(!CHCJ-iGvcf`WM-QqLH!*q6Hhb0^7 zUBR9Xddf8N6)8*XpMEX7jgBYqY+Kc3I-NX`rW6#Bu(Jg1iY{RXf)Bx-g%VuxGfg^k z=^8ut>>bN@-9Wk5sxWTDeONy!6;DNrW4c?lBbC_&!gvW0$*pcp-KBQ$`kv+7fNnAH zK_P;@Q?W&htnWORb)L;q$NX+Zb0leF!QOvXb7H)K~Bh9dPqCK_k zh`X!8Kat+do=1FQFZ9>om#eMV=UeTtjk_}Hcm^^FSwEOjy_oO2vgV5i= z2NRPsDSd4O9+9($(64J)+(bpZcVr_QC8#k!p|J>;m&M`kYo*n7A7b%YvKI9pG!&m7 z_Q&X4X}o`R5lSXITA0|(#KS{7ir0I0cE7hTdDmpZtT8M33rW7hQSrKXyU%6FER4mt zCu$(q!;{Otq7TjwbYS8C-vRz~Hp-ls^CFJHs3Uf0>oHODyrqNkA1xfm*)3@|yq4EMT5Ls3mzwDGQkTeXkj*7GxP zIAa621es&ZJ$Z~;Vu>B*6u|w@y7Yz6#2$s zs_9xTb$Ne&_zP3GljwrS)dNT-WiM~%>A}{W%4F`{qsWD82f0@MOybNyHmq|vo9ufQ zy6slQp{q;TXB8(3iwPwsQ9dXAcmgVWmq0HgJs9I*jyL!1WkT0N?s@oE=27oQG7IdO znwkN@i*B?w>MZo=IgJdS4QB(EYq1AQcJV!9x4@FP?v$76NHTUk_$w1KpqqpdIO`vR zw5Su%DNTwE*|UJY2B}a(Pf+Z()I8qsGR5gS$`ftr2iVBcdhY}O>8!r^PV zs1b?mq|r3U(5?or#Ga&fKa<}gwX3>l?-<(k>N58!-WRqOPr`E?&s0Bzard)kv8V-g zY-Ps^*ml+(FX2}B(7G)Z4;sMEY(0Ef)2ntnlmhRp5I39sm7gFmC&}n7L*q zvhyQtu=7_b(wicp8|7JiLYW-@@WE2n&UGEscm2jx6%^R9$P(`SG+i>e^@=?j{($Wm zN~~t1DSLY^gG_GE1ntNLe07vQ`j$G;xm!lO%i`{MH~&5FYqySKOOx0D{UJ2pY74V{ zw~<};zRWg`sALao>sX4dCdF{Z%Z`aG)PkGw{Q-E6d?~SpqJ& zr@`i%cIF-BCqwq0=@3xa4u`cG$YlCBu~eh8Y=HRwe{YjGem~uq+8E8G*}}Hy`0yJH zmwY1J?Vv}>b>jQGe6#w$o!KuvKPvE=aIDw;eIx$eH|CzUB6MWwSc7 zBHCp=9f#-{u_s?GFnIa1_Mohva)jYhi>;{|c-x+I1y@x%TkJ$6eW>~p>2;MeW zj^242xM3^CU{96f;<40WCHHT^Si1&zc+?Y=g+ZtiBwgE_}_- zX798WnZ_eiER$XX*S|{On2f1#L~%0RUlb2-1g~Lj`X|VVdCstWKb*Kh=-?$i`wQxpk zGYH;n&Gz*w=G29baMo=dM%QqtT)7HY++7FS0mEpZQZYAq-(*z3e^D4x`jk&toCtOC z?J>J`1vjsUC0AX37_7f^MRUJW(7rnx>_&w_b^K1awa)^x&t8KaS4Z*wO3D$)|bp|43`RdB_Fz)wVEH+ZH9} zpN7Q5KByEm1V03es_(VB0I!#vgIIQhdnUG5`g%NsyKm$a5}>rcgS5*deK?6Wku z*&u-ts+*wXh9zfmezn*qp$|SPpSh>rli)TygK0N-?&EGX2)n2RPZD_;B>#e|H_?Xy z*G0f8Vntpb;zYOi#EVjjqD5gn7mIepMTqp5CWv(0;zj^F(=p zGepi3iK57xWR%xA5nu_WsEA`aYDYx)^W@ zJvzZ5H4pA{`Y>)mrx2J?b{3@H4u(}iHLOhPfc3K{fvS!;Ht_3y;HwNRb~y}S1zr!p z^U!Q?Jfs4imi7FQu^lj1Mjp@NX>hgGfE(YG*%J{Dv1g00;mSuiI%g&1IV^*G>Vb}{ zgFqvPhoZ!pENWS}C~E6$kw9X)=vZ2k=<(J0qIYd(igqoF6v^J0C)#E_TcmPrj!3!G z2c~2m=7*W~;0|91;gx1vvxZ73_C8}N_v(QMm#ZZY`SHZ@be$iqpnvioFXLw#ANP8fTOZFpAgA&%@^qAR{RI`Zs)vQ6gJ@poL zs5wtVh%@buC$bW`qw6-I&YFd2cjq=?#A7Y4TZS;ZIi@gH~@1@xjNglz6;5%r<+- zLb?@j2fLZlTBT!@>#HLgIp+cHJM2pNa^D~;KuYA{c#KagkPwYLbe&dATuU*Zb>R7# z7^XM8l5$--!C09EbbClPJ~J81Z=OC5`L%D^0I3)p(YuhdnzV;pCQ6ZmeGX}rYyjh& z2%0u(AGqlXYi=B^q+_=ilg`p|uFH}a)T5{evhY^)bVMJr4_4vKLk_@|4sC0`eHO5o zs~1W0`FG6rev3EiEGgAdAGUUt$9?u=aQ^o|dRNy0gNsk$o6%-Wb=+mJQ(8)%HT!UO z^)oClSdA4&RG~a950tX)==7JjOq!IK@S;DRmAZ(|SM)`lGDm^pgjV?Jz4&io1U{&I zUsCLk6=J9FTQO|lNjQ1F11|93sBl37-Prh^>W-{L1L?MOwzvnZ3Vq48zcQ{-J0FGN zJ(tk7VN+Pw4q|&&t0DARsdLQ>gQraTh6*d{ISLErxMNgNExbA;zE|B$5hXP&7lk}Z z5IN4v6wSYPm2K$I9ad~K;!7tRu~Od>T-$pa%5*KjG|yG|qS%LaZi?c=3l@{@-4Gh{ zJQnkEhF0sXSbzhQvM?$n0N?oM^GlAUpjt#A#wle}{YnLpev?V-6+P(5Ne5gPa-Q#h zdmP%^4nYmNP;tU#!>N^OH_C4D{!o6rFG7vYxbdmj>8rW95sD;c}&N|fge7W4+!>H`XdD7opF+x zX6rmN?p#}oF_)Ch|1NILGO{UBLZu~O;wSuH=Y{)@(It4wR+|NnNpc1yhL zAHTo#-xKd@^q29jMt>RaYSjNf7VrA!-*=MP(j@&p+nV5C#aa3{e_t%73GHuxZ+6n7 zti`^p;agXFXi*0>z7xPBMTLfp%EXy-+{iGiKW>sz#J1vd;Gw8dRM+4HyPgKK(g{?( zd8!xf6KT?ZUv)gAHyh`D9FD4a8u;{LU%Z~E!777{QDb*crahjc5X)g;ZElT+4dN9tdx(wgqi|E{uRXB%li@Ld`Y?((NcEP$7&%cU; zb?>K;>7(9oyOjk+9v2F2$a z*sJ%ep=#C*mV3394Glv~ZJ5qZn2K=IwOAGrI1oh%w_%w2O<1IN7urm=ff;^p;N#OU z%$~lCUE6z?dnf)I}bubH`#j24G^rKYCwJc|m5lc7gile8jV~+|< zF+-*rj0Wd%hwEB{vtS-xR#L-RY9q0_qZ*dWe_*33WO4RWIoy505MK@r5#I+g*^8|L z{BCiPRk=Dto2)HtOT8lhVSEyH+A*G`y)|QFT;ut|7v?mwPKqLRli=h78$9}%1r zqL8AnYK?ej92L0`PJfc-gS$?k{!Q$MwYZQ*UTE@*fozL`N&V>hEZZq=<3(2mv2RXei zPO zmquyJ!MT3(IIUM*KHE@bBf@po@#(U&_xT;Zh6EJW-(Z@qaFJHK}pEDO8`g#}B< z!S)P$aqDbVrJFaN`}~&ascm3mUp`=5ay)rSd*D0Y(bYERTcdl$BKo@LJAu|hOtM1U2uWrmo ze21RYX(t=?HeLKZ6&rNAsRed^IS>#uff;J|;@Ff|yz0evH3|<3=*7UTH17Np=H)qt z=6d&}lkXPLG_%?GGD&~~H7cR~uB_^;Nz1`y=w!Tj{WZN`{*@g+Eufv3Z1HiXDVCJU zV#(noT;aEjlM}~R3~Xh@I&3$i_dV=L;dV6MtI;Ky;?3;ptFBcs6Y^-7mJtn7R>$4y z{U9-CG20ijkL&1{Na?&P`>gMTRc$V?d8MW-@aRdVJ@g)1IdvdKthOQXpCOZ6MI5`; zYY@!8QUh(@uBT&0(Qv6;0*xwqq57RRG=AX|c$DS6?Kzolj~|GtrHEc^j}wx z4`@T06O*X-=7o^4^eI1Sp*49+zF^b#eSp{f-KlQU;sGtAGm7w%h_hSra5X}JSq|Bt;l zkIV7v`i7GVO-e-?D4Gl2GtU zC-wuOwd)m<+UJHIy*E;A-5I!9X+d(H3+Y?xx$?GAG4xs`1D0H#%AWMvEV{DV9D9GU zq)`d4U_|)`+k>CwMD_0%(AsxJH0;FPa?T>1WPi@2z2<<^-gahVtF5@2H-m7dZg)|B z=~EWe_LLnKI5VOixq^L_0>#UwgK3UP&|mBE+uIMI^JoHd+wlV$pE|=7Gbg;{YmDBv zzr%pyZuB`bQQ*2#M}@WLS+un~X~ie8FWXaCU%}RX!N7pskJv!RwL)=Enl3)9Pb8JG zv)D*YKWKLc>ihH{-fp&KPAhWhX5W)kGI@4d2K#PHKQ-Cp9Q67kp0Mbj4+- zU76H`$J9x5h-BQ8TEbb?&RT#$#k6+|wJ?_PGJ8v-G;R`WzSU-mWMHyuE|(FqX#`5X$n2=*1?y; zDcq>*S7466HyQ}I*tCi7Vf8dAyni&E6;_q9jq99Xo7H6&BitcthC2!}w;-eMqhR!l zWpHNtGiYoDYL_*^q800K?&9edB%O*|TqbM$?kUr~IP( z(I7IdWf!Nc#gmt}(^9=jG+$(oFa|G?m=z_z> zT42@B1Zz%CaGVT;tL&$H*~NsGY?|y#B6NcD~q!lyzt=! z5q;0D2I&iPxsxhN0uR^}ZsfggI4m)UGq87s^B=Y7XT)dTc~5Wp`6C)jX7$I;G1e3x z*ctovbi|U}p(urUn7Lk;VsljK=TLJDynC9WPK^+W?A&2Z_+>t~-UTlld=9TK+Twzz zuUXL%JA4=ipvFftoc|0)84{ECj;FlAUbH1xL>%u$+sZnVFQk;`n*y0nv!E9bl_^I& z2*VpCX>G5mIBHK1926YR+FMoV{e4MX-Yc_&)O``9rUtmJDSR8g~IvbW(4x#S_zKGy3 zSmzy1_xiNJy<92Q$DYU#|24e*-vnd{Qx#oz;R{R~Srl%SfE%NgvFArAP{2 z_p#6q=CmhOl{7MCalErRWNH}G$SbG$1?k-}BJ(p8_{_uaS7K1>6vuy3ibaj>U$}zd zBN=l(3#WhdM45X7urXX0mu2v5>fN_|vByX5Mtu^(r!a2Wkh!>^a1V^=Y)l#&r`hm{ z!*M`}Gzts`bi{EusoY(P^%G+0Zgp=QWEev46}Ch0x?t2vieU%m)o?2$o7e-h8K9Kj zAn-dT&{x%Zr01tF&^!gYK0nT>&v}Bf>a5%!VxcIpKc2c7Pqxk@`A;7QQ*<8LC-{eidwXpIi!q3RYzASP#nP)PCU$pBs2bL@>={JzJPPvT_A7`jlpe$D_P2c z&CF*=4suUIG4P zfL+2WWhg7$fwQG0#Dh93Vo;9+X1-7pa?>4PqDB>n-V>eLo=j;Ws2T&!dXsUIRoJ`mA;MhLw998jM46cY9YewrOk5Xi8JglE7 z;7Ce6DM@D&wJdH%4`I(2oD_z6M-AAEAMs?d#e=*1P@h*h7|s@Jb!Cm~d*Qc!f*(=e z8E|~A4?P~X2O9ZxcwIsZwNy7z($+rw#SxB}IK_%I*WQ5O87DBeE{r15%OG2ODz6l4 zObxH^u(8ReIOTN$H~h4S{Osj%ztv}0ZeooaF4)kL@@Mc|-UP{S0`}h{!j|uoXitw@ zAh$AyAG*2+7WChW3+&q2RdZ9^qi~4y%wu^&*MX#b{sBz9?M#o?)xkS6KPqU{rmwnH zu%=aqFM5g;Z&D63<))BTcnkL-XagC|+k?GtoWolux}$#gLy*3r8g6^rqsil|h@^ZtT>yRzwE=)PqJA_Ugzb%5m~zPh zq9fC(VE_?yq3wg)5>d zoF0z46@qh)Zo(Dzn@R152K0FM4D8PCM8le4qECw#q3q_d%*J;lo|@1ZS5Myxwvi%i zbe;pgqDYk5Z-nMsPr-tKW){H)(V4@QFwy2Vn5b-^O~rCpFsB@Jucngyy${UF*PM6I z-pt1LGexEL{^T@-!Mp+C+?NXjFpfiv37f$D8p22w9bm=Uu^87of~CDNqoR>H)a#Bf zWjl_>pW|)0Z#DBtU0oOF`2B>k5RSI-k}RuK3gd<%MI3UYVV|5SEW#070{i2JaZ#k& z;7eV@%`jMAz&@PT#{0V;z=w($v}wr$ORoo9`PUD8`p!0J_Kl^MmP0s5O@vdXRf-QO z=u*!LJCbSwdNKbK-!kMlbUETfuOzpy3k73wbK`Kd>aIlzZ&P8b!3O%d{4MI;XyGQ> ziD`7LJf1Eu<2$|GLAuXEur7K9cG9^FT_^aEcTPF4GgPuPxCefg2S9y55oihi`mf9M!0llg z3uua=0?EyQI~&W>C*NV`P3zcW@mB7f!$y%u&nVh3&W(;1^dgN@txO{%gfgXWvUP8l zl0x-mmYA4J(M?P7W@LYsGkOB%np#me#UG5>e+P1Oqt*mpPz`i|Wsc>nutANsKZv1O zrA6%U%*UXUaUZ@9n}&9iG)UgGJ9N6*AA_Y0;PMh_rdSaMuP0Q3lvFH>yLq3Lox8?& z7S>C}tzWseQaSJ#Py@b>)2Oh)g0*+O4Td*W(O~jhHgQY@m@Ml{iH4B`TfgzQ?&;!( zof8oZDg``S9*%pW%WOPcQ11E=ay)5H0WrR8=k3Fs)TUV4`ooi59hQJChrFn+>81E8 zKaT8OYWdyUDkxU17H-~2pdjD*v|yY8nAf>bNWEYe+V-9g@{|O#^M$nESsr)y%LQ`* zM-sXB8$0t^upcxHAjPxYxHZ`exlIx-Z0}=RI`v}*>-{o<+i+?pnj5WTuQqzH!?#wT z#0)z!YjefQ*5#P?Ky$-9yg#Hn+v~)$ z6E!orZJp!rS+F)p&FYJzYOPRn)G_9L*@@o0aKIafKEeidE3De3igUQ3baz8E@k$o> zAw-%r{2YPDB=89P=5E3?w!lHXO>o$SlHr)-6V z8(nGM*`EA5Ty)pFe zQ#QU)&Ba5B=J@@d9ql+!#xBPhf$ztr@-g2Hxxva(q?Qni5_xY~dHZG-I`uiorW|2S zX~Mb3JB*@7FQ!Uv6T59a#db)QKP$Ok#dW$P53dpgJ(!mYmaWxnby_a$H!5YB6I3BJ z<_smO9AWyVPq^^N(()U{L&&1$KD(`N!1~H>W1iO}Y23oTc*i}KTl%6Hz9|gEodTXS z8jy;b7vR63W+pQpFG=f)+jAgNBW5DPTu+G)v7)`yy6c0(`%I?y-hhb0I zz+!cNlEP(y57P(O!rN;-slJB;j(pSz$yJF=QXz_s zBr)i1bi{OvK-~Vmh~2&E%`ftP4+du^V9?s}?5D3TtUveA&V-`U zmGFyWJlS53_&NZGHuPB0-xa{7JndsiOiWz+`Cp*e8ilz2cBTF`>o`}(wfjb zb{rO4wy}hEZ?F>-X3*eT79z|)#bz7&ei~T(p`|S6#AyDDatqsDHkWH@j^<2$#DeVy zA55C<$865af~uSx7tSq5x6nm2Svdk;=g)=rCC8b`foAw=eh_BHWYWCV>KJ1?9k-?C zgG7uDy^_7ozPUW*`f7Y<<{?hYULTt9}|%!?Ve4#A@rvf#-GGg7oLr-E^jFw$@w z-8*7TLsq6iQAII}TRNS&ztyHd+4G>V?Fdt!Ey;}K3)zV=SHa_=6b;b!<#W&ZFqO+) zAkSwSO`iFI-7Svbtd7K>@rRyl!&6z>_dJfJ%&6v$uXLlL*bthcIe_lgcjb;ao6z?m zCOH3=1J3om#Vj+UINjRs+=0~F?87spMH8+Fa z%9U`Yej!P^oMzojdJ25uemIGL!uQ?mM;@bgv1w_(tX1z7`~5I1g7(?uHv}ciHf^bL{Dufz0#AeI{qRhdn+fi*N4rqwUMblUeCO z5?`?-k4e@1%sj#FGd6==ntGkPDa_j{ufg4#3YuQ2rk#nirD0UoI|vhBXF zZB*h1U`okBxMNoX^4(P-GI=U$yzwD^p%Wg??Zf*RBBkF}LW|)X%^Yn=4T{mU(D@xK z8M=^7@yTNcZfqiz)C@E`p33@%c(P*UT8Q0Zf|?%>u&tr}p{s)z=EXE}X*Dz8!?+Oc zT}vgqxWN-#XHBH_&NtcnovPG(mLk5e=|zcpdIFcO8VkzrgDS=0qN~$3qEx4C9Lwk~ z00iG~@9&<1ZXH{H01<7gor|lyhGMs?f$)C)0~Rm%w9_0{(k`BkUYA4Z(Dz7sv;QVM z+!M+t1=R9s14G4;)gv%wXd1J#8%`Ss4P_J8mtcOxFqEB_4%1xK(CM`*jpq}vZf?K zoKVHHx&VUDZDw|s**y2$3p9sD@`)PDn8nvje#%!_$SBXo=7%oKqQ?RD?x8kFA6&}B zcgL{$o$nweG9MOA8i~?*FCmX(tkZms9X-OCcl~r2cqQIpFXoS8 zx1T+R`WtdwqD3A=T@zFCX${!+Tnh*3_Qxr%CH!}jg?#@YDb&i;p}t0Gpm9i-ttpeo zm8REPa0stbV$a zP3e4`Wv)NXBKl9E)82g`%D)%wP>iH00v_m2Tsw2}zYBVG*Gey|c4N7#G|2z{09M?$ z3(C%2$gOeT4uqy!9$*FsZePZl>p4^~bR za1s&y`Cba^SlA{N8aZJPn-KqseOg_>F3c-o-@ml-BQ`gS?B6H~7*#vE_d=6?3j5EX z15qUZ@`-?rk)eFo?`+0MV=~fs%|{)KVl#fId^=k#;7a!%Y-Dzl0qkewT`uEwUwYnaIy(@m z$v&To#+<{iZF}^J;N7LY*)@LyI)1hSzCFsoZhCS!a;_`(upstc%L5L3>e5@6?)X)9 zC*SRo9*qCAmv26?k3aP)47z6;QJlX9Dya-%qxO_i#!n3v|5={5uD{5lcXbvYd%lPN zes(I2T-%S%eAQrQ?fjVM%62fNF3db-8p~NVlw>9h5boaVAhSZB?uy3J7u&g%zl)>f z!WeF_&0;QQ#$)znQz+Jq-NLpdNkUclLpWrVLuN5kD0NLMch@Rj*iUrE2k)YA#ViZ) zKIs6#|Nbtw|4uaZZqPxaJBL|-<`ua1FcMCO&lc8TH4LoL5yJ%)lDf85d~(+%d}P(m zzRkCzS4Z1`Gn0W;K9XR5$qqv&D`VxeIOde|oWB&?gAH#OhW3RKRLSGa7`g{=9ew4CZ*xd^*)Xl<^qkfWPWEPj&$Nex z{Vl6E6mBd`NK1{e9m){UBL(9>Jr~CL1pc|V0~=`Bl_btj$DdV30zX1G46rPP73m}Jt?<8b zZdWGB^XEisHyYEU5tX1)5ev&L$Fc`k(xIR%hHD6|<+F=xxE?E)pi^IU+0en3y;Qa?Bv6gPm@bn#z^2};tT2;h zUAxQDRoZyVhz}4jJx3&WVg@xt^`h%1&v9>ZG~ums6q~pplkQaw!j#i_T-Up6(d_L9 z_GZ2%9ooGRTN6g&vgy9iDD@m3C_I7MX(=SrXwT4%L7;`eX{_Q&>kI|lkzF~w6u6LM zjtRJsd*Lj89MYQ6KLEZpka&ItC*S2FKPn`M3$U(Z(jt4978OUbk_lwv+?l{3m|ON} zCS~<-U^iY2!0G11x>)z7Z{HsC{>zqt+FecdDD6FWG(&}{=nlZanGZPHyM;FjzRahe z31k(5jdclM29DK6pq87B*VZ<|wetoneqv7=Y>{Id^=2T+L>#4L$0nw|^d_7-=t~~f z#gI0q6ecLev7D4mOrGai=b|)>w5?^LlRB7_pT#Yk9LvsU>|s(9dkb-vGSN>l7H=tS zf;+7{Si!biqRzejASFwMd{q0RQ^7{s*;ADsy85#G88fNC>5gz#FhmdTI=^D)1O8ja zO)#6eipFUlV2jhG_!;V5V9f{@)Ddh&c0JCDJk*zhq48su8>)~k0z-x0lO?FTu^oDdA|bKSsyZ88+Jz2w$?sNns6 zl)|w+=h#u>EatH+nrqlEC)}4lfVT}-SiS3hHtGFD0qgq(Os;0It%@=H`H#avub(M< z`J-8M?4bflXpA8PVT{kSm**#I_r@awBq+81I;dFqfX@8RwBQ^^@kgG+j-t_&H=tVJ zFdByE1${hF#L-VpEjr$43CdB5RNn2cOWh3me$1M0;aiLqq0DF5zo`Xw{wtuS6xbHqV7K7D&;hikY@EzO--` z7T6Qs-B-H2b07BHOpS7eg~GRhrBpuiBE@xT9lX@9#UaFLjUT72bBY(HjUU0!`s&Zv2t{^sRuP}>(GyZP9Ai6fY+@g#FQk*| z!W?v6%$UYCc2nUzZ?*9|M7=ElbCo)NYVrua;L%Cw9gqTNkL-l&Q5&%9-mbW}-CMYG z_{oh}zY^f$D1LU%1Z)_;kmXhOrx-;)__)l3EbiJf*|kczW43$ ze%onU&=-D5yeG}H`^1lbUC+8!4iJCa`4YU2$z!PdQ08EBl<&FvD{T1|#oC1NZ@6G3 zy%hL!9`tvo(%p^xaRCylq<4pLJ(tnuDW1G-_j@ew{&?H8fh+i#0X^u=v(rq}Yqt002hQ?XC76_KfR__H(cH6(V0)M&o@cA@GpCHNmW;*I zmp+L`e8`7)20hWq@hIDQT?vcqa`{*7N}v_f8*;7$!?aT}{H@;lOhZ2(NFs=xJKu$- z^j4$w12pjvCfk0_`p%{1U*dBf-C+H0k75zt@_4{an`EVwa7^ASK7Eoodm}xLbS7_L z$)EbbE^7;(Z4&$;gP!vTA3Woi_mjf*%cgjw*IqOe_JDeGFLB{t9dy^X z6p9iC^RU&}3diie#BLpa0Av;k8e@VOHTH*n5_%BWqYuPNNs89kgy2AJ;mTdG-L9NR z?E7*R)b;HrHtk!;iX`1B=JG~d%lG0xN$rQpvv0AYJ&j;lR|9H2UBTg*B3b0CQE;FP zRuo=_1>3_R`CD&vzvV}s7v$LeflJHMt}lgADpKgx7g<+5!3Uyd0ZV%w&IXkEaT%7OaiE`L zYalu5I!k`O558866(8D_-h~4(GsJ-$MUA}2 ziphe{qAVL!v6h~w+oRH%i{h)2L*XXQ#MfCv(Diu+zq^kqf8oL**y1lk`yrAg|CE3a z(b4Q#$s*|5`6^p_q8~mkTF=d2eFnaEv4jH=rSxIZ40a~r9fY+`2h)`*RGVXjvx^ep zr0t=7Ch)#3>GHG z#U8u$(ZOsxjQOF5VM{AOVT=}zu-?PT_OljZGWEjVMTIaXz!P^sDrT;9VR9vD%=YO} zbV-}SkN?|9iZQKy@&$Ph6;tjlZA2&AsjuNjE=>XjfqG@~|E56tEM%Z(%3mzGE zjp;<5;#()UQQ^2KR=&@fk9Z)>+9pbJ9@+2N`)Pa0$*qn(x_BQPs)vd-!=`|iLLJ-t zKoYY?-(w1$n|Le5$spsA%7*1H5HNrj*@^jE#ajDoVU4>T#lEg$Wdh##%RxsP^${u0 z{t0Xkl7Y>|odvENHLC7y$8VReg6F`Ymc1(FODkZ@>}}kc6BFs~1mXvMS3WFh8+RTCzAJE2?IQHWnt%h#9Yur5=RY5K*H+>Y5d z;GX0zSl2g{*}I+NW#+8}h5h01Nd7Y?=X0McvX`RCYa~f?$X5QiOcwZRj>E1Ig3X~( zgk_bsXgqeC=xUiFrkTa_(ekbAjlDH=xv-hFm7QRHyO^{6+Ci+#r9o`#_|1exi)oi% z7`?=5mb-T}o43ytzBUW-9rU-dQAf0BrO8$}Z&bs(dk*IIh{oa8ECV)juRDF&ro~<@ zk7E~K^`?i*TDZn2DNOO1Om+e0)YQHaSAQRhW4%IHL9-t0u^K2+a(E5qZhJ_lMG|rb z$B1GCuClW8!X9Ng$Jr-UF?!pdb#Ffn()zEUzPT3c-4Ecd<@Uh)cSb|nLR$6H;d+BC zS&bjbt~9GsS-u)dKi*Fb&tz=zF|to@H;{|vMo^o#2M!KD$I^@^vM4;R{YIEgN6oJus1giS$pUiczK3n zp9-(@XPlB)`|C1x>xUA(@(2R&6BY3N#|Cr?$zWS%TQZkBPq{wp*9!53n%KT=0v4iq zAw|#G3Y}~WNT=x_Tc@r_-#ev(b(9T%V%>6fSlplX6v{(l(qX>FQiu`QXDj#j@Sl5s z<4rp7Xnz+_^3MwYtt9Y&inlZR-Rq9{C>{BKJU)nN;jc%A$^UDC{#Wzw|GoM0q~KR; zJ8+r*y6yk`{NG;!e~xSLSJ1uC?a{y2(GCgxd&gb)Gfvw-_}7~{aN2*y4|cTUpXnbZ z@MoNMWz`?c|D5a4i|t4LT=K_!$9j-o`N!}7yXI`KO(M5fO7uQQ@PR&4Nj0yh(^AWE z$j=ctn;qi?zrk&6{0M>nCD)d$Z%U!9hap^N`P3AAnOiRSc&nLtvQjpeP09MkjdaVQ zJ$qK7wr&jd2wx&@yJ?Bf*QVi?UWwE_^D;choWduhE6|$Y0A}*KfRdfMknx_$bhFDv z7IW2@woe_(=1%HGs&n?TKHeGZh`<3Ix;RJRbuz}~N0Zr0%NRO)a|wRPHfQDU)mcKY zE~E%?KlgtU;<-OdL)RD&zQP-+5GG-4q&9CU#5kO9vJ36HH#0f88m4~x2sK|i2A%5W zkkn=~8n^m2w<^ht2<7SX^V8h@oT=o{D~uKO<>6G5u;=Z4f|l8hF0V|>qN?cyBrcxE z51&v3CpHWvXOkQ@;+j2uoUooM6qN92Ry`?innp)z&%&5~-gtS<3)o<$40mq(p_efa ztDM4VzPvBac%gQCZV*OBs^N4uV}a-O7U?J4;Hpf6Xuw8i?p;v>+gqzc zrppq^SGdOrwh*5E&#V3ksWKTyxiCtt`e1V=Wjw0y=BdM+RFeyBGE?!|~$INq2a<}B8$;&27=n!Ght>Vc5?Xs5Iyk zI4k!C56fI^>2(nEl;%R!=R=ryxm5I{r7z9eHU*7NyC-7vxXXBQsZt)kp>VR6~_EF}nOibAyM3y1m_@(P!Ar9_t-pB@M^zxmQ zyv>4FcvNlAq5J&|UMBJrevf z4y8=vpGp)%XmkzDue;1{-PlG~t1GFhriO;^-%Wij&vIqaEkN1zRNieluDzFvz8`wf z=Js(E+UE=F^r9AiEZap@h5IO}Z8knAx<`kX$W%Prp;1xcF&(bj6~OeX!dXABjbA;w z2l5*pQJ0K5YL|3?I|6=Be{(ccy6+|LMPs0JhQOsd>nNG32V&i~(`LUXW@Q6`#O!3H6h-5G-(W3N8Z=p!;Ff#GQo)79&+mqumB^6jJ~_<457nZ5wHRrIyh?<7i=&z{%CAFTJ^01WkG?@tfHJ zmZ{*1o=APv6${Em5(Zw%o7xH>nUj+vDRc zCZ0KuJ_RlnxWXsmyYu_mQ{M!v=zf)7JVqKH-nzzlOC^KYV==S1vx9SZw}}oMI*c=) zUWM%YLn~Ie6yxfsBpO(Inbw&gj*k4orYzb5$;*;(>_s~?zY##0!PR7Prj#bl96)VZ zju#^!truc2@Xy%!o zPUDpuSd`)!X5Xtbre*ul@E1QFh8bbNdyF-ZUQ$?e8Z-?a@ zj?mQ5aQ66nHM@33Orghj&hUofa3k%prEz|&aG0X)v+_s`K%9GrnzF%Wx>B(!I942-jC(&Z@A=5doVD^lTK93 z#qd-9nBX4^!SlcIM}o%F@`eOFf32@*_z{10z|oPv5?wmI@=Iy4X)H~Yse*!QvFxGeB-H3Snym~U zOpZq%u;~YrKIJMKSCyTQtVjQ88@Y(D)7jAw zF|F~DqMN0CAmCIUo;-FGRp%XJu`7=={V^BOudW@^);iOxxIc+hJBMQ4 z_he9WE=E6t)v)%;HZr>_=!2n75cTLS=zH3-V|ihyIU<$f*JhDgng@o8U9j4?k~3d^ zh3UJGqm3V=P;Ha8=vI#;mb|`#vJX8epONB(o1&J`{_9cb|KuL$xSz)fIlGW1erI26 zPlBb=0yK0Ik%@pKwfBiYe~%2-P5TXen|qnvmQ2Sl@)7hty$HV*E*5Pcf0#**m#4Wl z&amNi5NY4=!igp+aR2rh=zQ55+ed`a#3XB~dhbQ!*GuBHO~H6?^9o2=Ux5!LrI~c> zbTTSw6ECUvqvLlJQQNi#D{Ibz_dfa} z!up@=h9YBY8Y$JzyguK8O<{i2{o_cCU;+jy^pU810brVPzp|!rWz0en==PLcDjJkV z&(0{*O9y$%Ngjws4avNQB7@k@HZ56Y>_dm z(6Gj(QNfnKKn=u$LqXAslXEaAoz>TTyqJt zln>!#pU*gU;73+C?-WENKgLlu)o@~D3RfvT0KJQgVY*EjRrbF{<6b>x?d?<1GvGec z`09n}3#G|@rY6{KRmCZW<6%SSM=;)?OZO`UY~$n{X5Zs7e#y!*&HRmkN=#xzSRBkgR+W>kpau8|ASW=-lj7@USp;XI}IKuCtIKJuvn=2K> z8tn@~^LiLJ6+G$Yl}nH~DVml$9j7NpeVE0~Fqm5*iCQ5?snp^lj5@M}MZb@rgROmt z4sRv6kWA)H(NJ+On8N#;lJCBFoHFD%%^bD|KLuoQZcF_!{=^tzee23Tc$?DA5sjc{ z#pCMjvUb)7T6pQ492ld%meko|d_S`ldS^;f#YQ#!dv+_?-v_S_JJp}_|G3>M|J<)f z510AZXS@GuyVc*ycE4jw50@AwCo$~j??AmB^ZRcb(h+g> zk0t*WuULNFuX>fgtN%Sa`0$2b6+7hi`_KNF{11`9pXX1n(7*u>zMVJ^*L^o_OMTDW}XOVoG=~($5%!tcwHFxqTdKPU({WsTFKRs2=NXzuRVK zat?eJa4N&b_Jp*wQFvBIncmNop#@L+(Ce5Tn6%xKbgnwm-7m%5gW+eup=ug_Ts8=f zZ?R*!Q7=HFdl!s7Rto2it;2++-Een_A8)-koYz$h!GecM81m>QCZ*lLmf~!f`algI zPwk1beaz|*X)o$Fcr%NiGAF}O3dXlu_0e)5NTxyO;0QU*Lm?HQeCx*X;ACF4d zX@PI*k*2K3VT}#dtD3+i_r5fFZxS6^2%`M#2KGH=5MH|LjOW^m>5)w%m4BH5$6~&- z)gw1zbIVpdU@)HlD0x%-rMCn$9K1y@_U~ik!5@D%8gK`Ly3@w)A-v@IM5=$j0Iic2 zF=O{gbejB-_nEwjTXnV^&Q9$o#8J@1uC}e1oT{Ei?^@@>lM8xC15Yv~Qwx#*=8G(--iajV zUxg8!?5TYbL5lrG8nk{ST`b>+ws+%TT2l(N?sy6|+F^7j!US(meaC%$RV&uIcM$K! z6mqvxhh{Iv%f}@tD_|D&4lNUS z;0BXL{RwvKT`(JX_!H234lb}P!H%_$_K8NKT>mX}GMnS+qXZ?TmWV7<6v$$>4DB)s zWAEhG(PZ_3?DV*Y%%b@PEa+;$I*CeHwwfB(_ewFwPfOq*|Lj87s``M~aW1)T@aCOE z_EW!nJ-Vq;%6!jWVCB|p=zC&+sym?!Gdqc)Y?6?V+X7yGhuQHF(@09im1ZpoW~=Tt z!sR}raQ<*H{R~fKBaIb_@=}=k6rK%kKFh{VxW(!V%~-(7EKF)|0?om1S=|e5ayVK< zRSI21ib;LBEX}X{nfp`7Sz;Ui@aJK0xK&3J*5{PxWa-eB@h&t_<`#XLmB?Ni6^qZ5 zt|qq`xxD2%clIpW7_mH*rF~o}dU@WD!dC`z5iX5TxH%F#Hy*;>OGDYEiMfK^Js)Lu zsqp7@?dYTNbuLkXq7Nxt_6p^uxMRQqfae(VK zi?s*C3NJ<;D@^iDFG}~AX5oZp#o3dhElx9?qWtB0C!QN_EtZ($W_D_8OOb!x^b&73 z{i4cax@NQVZWRTUY%Fdv?pZW3HqgRbb8E>Wy9`U;nL0&U9#to#v>c1ieLX*{j*Tdp zC|y#NQk89)arj{2ox&x>Mooqml_^7u(>ARtS)6NHtkc|9m~h0Tr0!USmHeC)mZIxP zR$9w4OB)Z@mMZ?-R3v>P-eTyBA4Nxvc#BO<6RZa-hL^mHnPg*P6IW`e!CBniFG-O+$=_&Hk{i_~O`oC9=-0 zCCn<@(&e*T(Sh^5in2y~7JUyfDH`{6VzFtL&XzY`>lJ4?!)xwc4_1 z*lGxn-g{N)Fh>-w3NP4r!5HRo`&wUJbWrT%1XtK7qv zEl$MjvD_8jY^5>rT=8Fa3L)Jt7vuDU#rnYxf4xfYxfZNtZ;Gtr4R%@mr99_-s@2uG zNmiSzElU5AKbSnEv_QqAv|}HwRQ;E4B_vFL?>qi|c!16RO&(ygf0GB;?EjJnSmxKB z==TAmlZ4S<`_W1A*B2f3ijIBNpY#9t`Mv%3`8`bXuP^-l>u=BR{{Oo8Km7AwSdstI z^IujA35kyX@4>6TUVZM`uk`PoOQNs;s@L(HU%7w&{+}X&Kc7qfx~K@9fAV|$bjaa9 z+CL}k_qgq_AN+Y7ceLZ5=^rKVXaAggH~(1v=Ums{Uo5%u=aN6>JJy4`8-M)%ziaMq z?ZJQ4FMqK${pF`azx+A>kL#D9#lN2XFGv2rX8-H;%b)e_uMyEiEBylrakyo@1N_-FFE{A`~BzjMd!BwO7Hzq5`W&$cg)w0{kQcW ztN-2HpZ)D!e~;Ua=lyvc|J?`v53TS^j*|a!uHW18zZXQuJRjclzpwW{t@Lm8%OCfz z|9<+U{kJ~(qn`U;?7a(EP2aod-(979sU($jSE)6}7;}{nQW2FTN|Id4J$*wGqI44~ zmqL;xxpi4{j4_u>BuOQN+!B&ol6wf@tnb0uKi}Wkd;g!`KKpY1`>f~b8S`z9HOD*O z_0I8m*E`<1=HK(=zh?Xz`SgcpWc+lHe~mAV&wq6M<#+$x{OZ5^`TmtJzr0@mryu>Y z&yP3|{U48CZ$0`kLidv&?f;qh75ycCMSqi<{&j}G&g@6~_w$R@|J?B_AN^~7`NhA# z%Kv!$s<`Bb2EXg|_w!A}?+X7rOaEN_Dtz{1;3+@njel)^(SPxy|Nom`{+&Ot|DuQg z>-=K!Q_q;6{_{)ifA9EJxU_-p(c`ttYvf0h2%b>9BhJ^#Js zzvs*E@#`z94{|GDwg*?ttF|IW`JXZ`1U<^JdUe^~p^8x{{X?$(DSIaVkQIM4QW23qHavgIu5W*A zr2LXKekfA=Q?BjvL;iV+KacwVn*S^d{Nh;UPk+(>*-GX8{J{R56#JFum3sYS0F$47 zt0JW+^XC=*XT9`4m*-XcbHDTt{RaHh?^ioFdUn)|=(&p*{V`qO><};`YVM4%1+%9k z;OrpvPZIo1LcdAuZ<6pg$?0z;*5NnF@i$2__&<%uGQUZ`>B9b|3;UZc>~FfTzv;sM zri<`5U4*~sBK%Dk;cvPKf73EiU8 zE>3^y^5^THoB#g0?)PIx`Q^3$IA;w1KXT^R4EfUm|C5^^@r>O6%Evi;{FfE7`nlUx z<(I|&_x*)G|Lv>#FZc8O*)LS>U+(w6ALYN!fB!z7`C+MF-1!YmL8;ZzBG7_rLo#8Y@k0QAIVHvYv{XRCk}q?2K3AAX{Tx*P@d>OWSZppovF=utBNtOz1@y|Cg@UyA(6Op z<~Jt2-yr^;#}u^0Z5|dpY!&VHeMp+){Qx&vQUD*EO%jZ(QPq1dGVY2gjk*y4j>;C0 ztaZBls&kJ?zK1%uFwvKS!r82b^=lX!HJk19uoE-vbnyarJG_LHg7Mc=h||4s@M&2c zs}!!rua){Jd|727Hu4DJBQ3@N{fAH3c1IPlRQ~+3-B&L`j}}d&yKx5?6_ZCfZ6oMz zXHHu$on*$PULbGhxbQBq&*+NjRwzQGPf{)$kqiCr;G}tdam#yos@K08+A|BtvhQuQ zyCt4JeVdA>S;&$R1}sz<)q}%!*8uCDel%;A#D2BgMY(61xWbi|WX01rAZ<|>d3DMX z77ohBrUkCxZM_|Rp{NUX_}Y;72juvEb@#DDU4M`_>>*YT)1g=1F2r3_26P44@B#NG zBQ`l2HwbQvCh9#Q$7cG1i6&k2rC~N{m~M?49KA`thAFk)*Rnhd-MAn3U~O z;#4yyQ~PVP*aaIp;9$W__KU2o_~E2!;zXSYEc|j1q^#LUE;WvUy$4@lL(XXMvzp%t z8{JIBe8P0z%8&(zQaf0goxR2J^8!Jv*G1TvtBNwlX9KU&om4xhKTJNM1e#&`|VH0=g94(yLFUy-JL9^8j1-r+=la4U_hh^I4iv+&cGa>SE!f(x#E z$9>H%f^Sz1XiTs%6dk)SdNAYxmuEYO++Y3?^lAP`+I(#wxU>a-9xxJ^ov@`*k@~>b z!ItdWBG23JeuS$o837xwSGc%FhngIY!nTie!S)0jzPD2_Dhy7---g~7Et~X=jQ{Kp z?4N$5y)|=)N#h{oJ28N$#0;Q%LSJyvE{|wg>GBVyJ4nPPJOWkRz{UGvO(UEY`Q;mAj~&1p&5hsFvq>`5dPROUVd07O|LdZuSY2n z`Qz$DQ@;s2n+(Jmfzs4=+coIeIGd;xw9@JvNzJ!@7H(crizmL?$P7Ckg%dxNGLZ|6 zsMeb$xaZ;`uCK`;0lt40SEgQJh5!{Zan2T|V#O$2a)H4MUrW(evmjB@JS}3MS4>Cu z+KOB43(B+3?8e=DYe{SGPA)Dtjk$AEmfvjX2m6_O<2yP1MXGUy|Z~f#9L1- zo7e4xyOmB8+4uzek+qU`V6CI3;n>2H8SM5yfc(r{0+B-)r0m^2DHt@1QsOk z5q0gj%MA*!B5vE?1Df`MJoT`K4rjJw>gom#h1*f5Fg<_+ZAp-`Jg?SyUosyVff)tu zc?<9kLx{=pVJfau+Humd=Lam!^N3a9 zL2VN`eR~|d?Q?-$udmMMmA(_kA2bo4j|<_8m1Y8sLmlkE552`w6NiARdzYZpK2_u= z$N@dfPTKo{F>IY+O1oEzm?wL#l1th{`3Wi=bpIVQ6yL5vQorhv!1No~u*eYa+Ad3n zEqMZ;E6yP%IuGcH(Q7Gdl8TR1c5}&{XGMKnS#D&cyl76fGST|7opFCyTiy`iC8*BL z;o6^C3e-ikoSyN1>XrXU5 z4qo|A6fr5;@plw6qHEw(cvlHhiII(CuD$ zVwp(bFd-4;C2CWtm>l-t7kxf_swMT8O~$o+GFlzJk-k26j`@ULnA>+UfP-tbgYbSh zk@>#gLH?;7p}yvfSJ6i7+kJxEcbrbFRIYR zsF6EeFpJp6Ymn|Ho(WtbLze7!h7aq$;mx`AV7JJCW|SJkl=Ztslhf{U0}ZUm%Zu+p zQ|kwkrC5!`*;zh8^8CT@Se3w_p!?uW03Cj4EK}iL#HZ4VyRL^ zU=m=%TlNY<5$9LnWrOdDjFq1dEHe?bC4Hnz@v1L%a06F@>k9=Z3X z4{sdzlyr+!xXcTFbbZ4dHrV+ktUDFK&fj4xu1lFF4*eq@Yo(Tg#j7_GjjnO9e(VMI z(s*@VM{;A_{s=1SbXS82j_Q$c?gmbaGsFWDWU0vV2{fpkLpC@+pvNb! zr6Z1{;rc`7Wc}3!Fy*Nt$t%kT-#+QnHwI=ff3%46EobqpI$g5v@gq?G;uM)*pbo8O zRAZ?wKhYu&OX|ucmG3EEM?QUiNjIou;rO}d9IxunAeP-)H11m-_HMcZB+(A9al{CD z4w#40et+)Nvr6(#X(IT>U84<8Mv$s+HYjcmV_Gkiw^*8u33d>-1%!*GDjWrmhv`D2H-W@8*#n+FdX;V4AkQBt{wU1K z7$I(a;l)oen+l(#oMMA-NQtAzm{6l)GwA9qgC4DZDOfg2Ox-s<1M#md=~ZiWur#Zc zoL*wZH+S5kgCC4WBfguF=Am-LZi+mq3_FVFR7g|5Bv~}Spn_;!Y@%;e9`Y0!9~;L`5E5~(QwBL`20>g z?$P-g@_d#n$QoQqw?_^lXZx5SnH!sMT);Kr`hFwO^4LbauiT>^PNk$WI}~qQc$l`y zIkT~QZbOfQ#%#buE%C*(ta#w^^(0zL9vZF5B++vmVEe2F7Hi1xMRQ7pjr&S?%U6T= zoL4~*C0=85N8RCDottsb6Mgu0@fs-QQ#aVeIfO3XA_EUp-X$8Fx&#?QH5z-nA8!$K zp2p?Lp=HtxR?NufHfj?Lf=cn`t^y)8rMRrUXamWwEu?9hbE&DTF}WwY7Z{!Wqbw@AWYlLRl^A>r?834i_nhQIm}{whiMtM-$>{UrQF68^?Z_?sZ%???%M zeI@+eC*iO1PyVV)_kpk?`jEu{r=>y+0?SR68?UX@K;~L-|Z6qT1fcYB;oHV z34hb(3rWx5^&oxBSKMN<4t(S7sgZmv{C>6%RyqELi#fRyzwWsS;wLu{!Bii(Lb(;U zo=4cs571F1*-XGZLfo!)(ca@!iK34?C$)DPxu)$-7kx>`czz-`e20Md`3}&?aXr|g z%846Ou#7;F8z^|xMB{H@thZ|s8ZD^BH(cdu)RYiB1`Fx9@rt}4={RAK2H6>OjvjxB z*rn$0;f3k_+1GJ4;wgL9isPt=^j_ErlBzbr#!75oyq~tS z!^qJ-HEf7RJHK!CC5jp{z?w^a(UQ69WXFM%bn(t`pweGRQNa}8n>LWD8TIGI$Dh&y zzlErOww&ZglDKO<$+yoDRp0a>UAIF?=9Tl<)n$-ibMA2dTZt30eddjCm@VYm+WXMbjv?Sl z$ptzyFM(JLP5=uO+OgHQ@zi1c6K=<`ZKSq};mbx%qOCdB+)JN!+SXOb2Av*)lG7qs zzGH$o>Op~6-@Bb_J?jIbONUW5&Jf;Af51+wapy;V*Kx8pA0gK0*~$-o;*YeX)rCt2 z3&cBm9YUW|t3aHa7V=wl26*g0OUG?AfTLedpi}l!MymM}dAx2K-*U4zzmt0b0}4!t z$k>1!ky%E(4n*LlllC-78KDCbe$*u?^To%H(#XYDpm9lWjFx@F>)#UY$RB+{zOE~C z(rX}G6sd)yc0LmgJaL)Jlbr;j0;CA&e-kLM7qMx1E%08Kg5UPP!*s>PG8(y2M9!|B z5sbSe2s?cb6Tc^9^}X9%U12}ab$%a-Np6A~j&V4yz(BO&WIi6qTxD{-9ck#!2JTI6 z4+zXC17pk8v2wmEv_BjSUd9Cxqq{=JArE4c6IaO2^I9m<{5u%Ox}pC17ir>#leAE0 z3&BxUOkDPLuC9C^kfKtoRrr1qWwe&va4DO%&0BzN?`xrNg{o+Hr7zXKGJh6xF0CW z=!H!eYLUXtdCbg(eaV1G8-g0YV?n_gL3d9EC$>xw-H^#+E>!~T7NP>z@7ClTcD^b* zEVF})n&k=VPCmhoGP}UT@(fw~!<3k!zX&eLv)^c!UlOs-B zAxDf}_XeJmy>Nt?F%X5l!&lE5(1Y)Gll7g+(DOtqr(tkFP`~T~?&weh=LX*9qAP2e zrm0t%b+?j9*@{!xSD~Ie`N)PuNL>e$vQ@~-_QPN{>Pu^mO6HR}?c647R~)2gN>tNc zfGo$eBxAh}%uqRjD<|fNo)5L4t_!Qn%Lc9|x$oXld~P?6-=5<5Y2JKN$!XJ)rb29T z<1M(5YsQO0tkKKhEx7z_Am_65BJnAl3U)obO)o7NM}}%abj{5KziL*X?dK}MAL^IM zvPnvO*QR5nHZuX=nt6=cMEbCOKPaKgM3+4}hY_!_oGWgr-iTEb3}N@@81mwpH$|9AMuf0#Yo|0~+#Kinbz zjRXF@KmU7O->%btd|v8)Y6MNtcPl2iVcyvqy&5-P9|ZM*DA>h`%%v!hZtnwaBDs#Ex?KOE4s&)2Ype|q`b z3ySpW;!DhJR+~Sgn?ypA1CU8%IW8DKgepvq2F|XsR6E_3A9=-qrakw@-u=hZq=Uy< z^r8f8Us=L_zB*lePAfyaa7O|uc77$;Ic_YOGhZ5@xJveHaUY(aWZ<;m%NTJ<|HZuK z=)JFB>-9c||jcA^e0ZjUmhiAC-#)Yj~Ok@aU#z%WI zR(f){X}>DcU8oCO=Jnx*9l6Erbvg@!0}C7vI3EKwQzs(byc1;T_md*Eil)+@MN;sA z@DGvI6?-&t_%#r*rkudF>L}e(0S=H(1I2x_nPK0wk(%FSaQU7u_atu>$ayk_dY-Cq zyxWsWZ}$3#%yWZSE7PIawP^g{!l#Qt(7wZ>K>w>$<=6}~+&qylSv{K`4z)t!ZCjy8 zqc?ADEyo@kpF-63xL{ZL3+0_TQTVOa325f3jnCirhm#!_a~a>0@kH$|_{=m7Hl^;t zj|YSSY_^N>1ii7JM-gM|eTLDhQ6q-K!)@Z z##$Dy9;XjlDsw&r{vq%e>Na#7W&x8W&1ae*RHw%WnR8Lts8 zc(Gro2vXs4sTeNtt1lFJviP~fC%$>46Kg+m(6NrHFyTX^jjY2nMR+OCRD8Lwqp+t{ z6BXvI1IixewDbFEyt66-d1YYSoa2Mu>c+A1*DTng?l5}H=`|=Fq6q7k z9S5Z$m%!FQOSDw*gxoRx0w;(J*tUQw6t!kKoNn$9Qohw=i^_PgDaHUFFFOF+(+$Xy zq6BW;NONY_-kU&r**F|9K^~<%8%{)DZ!=cLa#&A@NZ!~>oL0CssR4hWfmy!5eVqk1 z$exY!>yN_A#eG0`Q#?1~Z7|AI$fsh}qukgnL4qP{f5;RV;~M-FJ=XMrEgovbp~w)$ zBr9`L_OgTTO&&)^CQL_bY?WbMR~u)xs2>niD^Z<<9vpu;6mE+(VlRE=*xoi;#B|IS zF87$EKuUWR-d0n{*ZG>W$8#R>&hD0|e&RcLL2euoSI(tI;R{&U)kVUdhLRT{x53_B zdD>f) z6|;{x-i;tRjfyCBy9Vjp_?%PRH4jg07I4Cr4Wi~JE!^Aa`y|D(0Yr%uaA$B&nM;3) z%LY&`UMsiKuL)m~mZLW= zM{xtQ@8d_4-q6y1lDY}c6?mt5eEHavOj3EmKw!+r(>}{*&~TVe2%7u@T2E5X=@@z_1Do{NXKaoHSgF6il0 zVjR1iwj|lpJFZ?N)R+NpMn~e1UL(N3!a=yywH|ERDhrY?Zgtd{F3UJhY-U1xG;zt0 zRM`1(Ev|XBoGJ4-CMr~&4W^Av5M44}hy_Z?AP%lCZ@yT=t?LOF9K2tRzdeuz*ADs+ z@wM~JDQ{`o)9-*F?Ss1@a&jzFx}}X%eo_qm_iqEU(&HJGvB|`ws#I{`x+<`k;!M`s z?!(cFGqLB6+oDxdN5K)v50Tc+Camn(pDmNSixp&aQN$W&(Yx%W+=1zp3^y8Jtw&$! zH@pxDUXJDm=Y+B8ZZnBW(KYZesSQ;v4Tl=32Sf?2y-8KlMo{a10@v0P7~y{(m-n@V zQzH9t{wp%@!;B?RO!@++go7mJ>Jp~>P6a4Ya%2iesDOu(d5$^Mfsa2o!e-~!18HJH zavgMV_T4A=ma-O9)=S1MZwi^GS6%7b7*|-gSsUBDGUejyeMq?G1VBTM6H$c^Jac>| z_RClYcC8oEbyk?kN)03{x(xY|tHk)o-0@6b%^sX6>qrw1OvYPZrh)go7hj+`7a2V~ zguiu!ixTQoXke}*I9999TjcB^!&62h1s!El?PX0JzG%SgCFNvg^I-l_@lz6WsFss! z8%*hHE4O!;ZB{<{)7I3ypq;**s1m4%=CxYEj(8Q|_3HR?Aj zfFGFEi=QJJhn&atCY#qtlk-YVShL|UH&$Mi&X83=Kw|^hV<5{XbY;>YldITmoe5NE z+K)fr4M6SX1CdUJ6Ploo$d&7}fPA?RlShZZqH&|~x+OcHj=nd!CL9YQk8oV=dlt1k zEMdyWro+!d9dt7I9`>7$pzD(h+Z#$Xf9{jMfWt?|)6g>}+&tsWq{YIB zS4ew;P2Tx&Ix|Da0x37z@N70VJS+tUOqj%f3L1)1j$FZ;?q-ORRh6kyNiWc~O_}%k zmOxxw=b_xq6vwR=(6~F-!TzpCBv~Es(l*jGa=-@crLu)4OCMkpAE-fQLJB)*-88X+ z=4P?NLqF0vFq^sIJdX?*!GbS+n^*zVdmWe@m?ii}tegrrL+SANQA$-3Rn*5~xW0C)^7x?1}DPnfK z8t*Y$kI5cA8e(?~Lit+aQPGQEP+UZZ%ZwxQ+APVXXKmnhVkV9?S})MKIBp z0~tmYFIRw^Q%{InxR6gcrc6!E6L3xyrX!>FuxA@>VKa$lO~`Dq&aG|YV$lS`k1Ast za^r}s(Gsx9;Q?z9X~*v$W#Y75WtKSKYy%&EXDDvFqb}^fX`nbFWFN_QnaV6`F+pzX z0Hg*q(Yx=T0VCO|)FVC%=-nGkJDlh9DO+^;7j2VJ=TQaX^UjI1oagYY$u&6K#G0y) zl1HJ38p(4>onEcWQL1y!h~x)N6=|*ZAr3b08Q*ns_<=z#%yp^*84u(zSzIQ_zqudm zZ9B!8`W=E*qe4jav(rpOxC0)bqEDyAXy72mn$-51iLSp&0mG}zaOZU`GJg1aSnRb+ zVAypE7#^@gdj@&YyKj2oj+%1ExHndC!Ib@+&KPMHPtpL$qyT;mABIj9ZX)9f^Ff?% zA5wmO2@0`FfNxgE;`aMJ$O~`3#J`IWj+hou{C~VU7IGC^$Nj5Pp@&_ zDo^;(n_8@3RXj_c^%D0?@}(L(Mv-b^Z(22aID5piKaITRKo(i{MxOFHB=(L1x?^TQ z)TC|6_}ma66}_9}f2jhY!@e*PD>$qh@)flCUnj~lbfK&Ld>mBxNKy}$z-)echve?ojm1<^um{l^o-oa*mf77a-hPkSUCu9Rz*8Itl~_jNzw!kxZ6PCNeoI z%f;jwAHy;Wgq6Ee*c5#cK4)Pie*08GD3r>9wXes({$`2v%bQeqdH7@$Z1Do@J+ug6 zi%#scDgiw?7QhBt_hsAfrIY+vQ$SQPEVMkzq(t`z!?K2;BT@}yVAVhrd_jhtKfe`K zWShf**D|=KhrD3XSOxrQgbhdcG#!S7Yxh zy>OzMFUX5cBZ-aKjBD&}(Y|FI?lX-F9G2W?T+g?Z=O`8l7V9N)8{9;oe1{Bhq#440E!#Gc2F)Pbzc+fa}MhqO!@Yf*J4Z!DO`y zjH}rK$#{CS>+w#|yilHIP98!1UT&hrAt$-Bjtoj+1Ka*jmU*EyBtUJWWe5~j0Wz@j2f5_9Mz4t`TIn|EU zu^dP`xs5B$NkI)$13-aaI?=I@fZbdf=dp1V0J{44LykI%6Zu1n6_DFn)e9D~h%R!- z#BYyS(hsq>QSIStXzQ(H?%^tR?n%XbW@nEqesAH%AI{!}az|S5_A_mWNa`e%o(N&& z6<^xh{4=Uu;!P&C>5~Jo%3#bwJyO*D8TBIfmO}i- z)s%K-=W`i3LXl&|7p~8vSmgVdoG{Ml(~L zj@!K%pE3=Hl~X6+n~wJ6(QC>yFV`nK_X_F!rL|bzzlgIw;Yw4}(G+Mm%8Dn7E~S5F*9yB`Yikx*6ErMMsO zurQLugPELuO@9~>d#il&+zL`$PZ-_H-Xv$lA;vIZDA6AuOx><(Q`fr5aQ0ti_i7vi9IV&Sac2TKJ4yXRhK&b5)RxhP07oxCKR4udgRsug{!ZP$+L5k8yRGN!sh&z}7y}LcdoYyy_=sCr`9ooPTZ$uQsrSXbiO%`ne1f$4$_um1ds= zZ&in)_l4EW$?7+hkLd(khep$ni5CF497w;>R6hFzj#@5WCgj}Y>8e9L)6R*1f?PeZ}}D}dJa{YYQ#WXF1VGE{~PT-yWi7Ax_r$^B$*>5g!&WA`Me zQ!xxH-2H!|yCfW@j}-kXksA>>K@x)JO4H#$N_C zv|Yq{*HU4{_3fNl-#>u1-6izBbrPDKmPyLy$itN@T;LO(9biD65Jz7S!Iw?or6oi9CyJB9v&L3 z{bdL)HQETw!FQ9iabuh`%=bl_mz^>|nWR;5|chdPX zmsmZQUaXRVYK^j3yh&VA-=Il0oU#(^+ht8O(ecSv%-y=12u+XShwb0RFYY{mGX^{?^L%cBCsot(FwgtQ z=cPU^3o#MC>pzl*ehX;h=u+;Ztv*}O&x)_D@E}JyPu!$q1hY&HnB%h>h|M}h1|1qq z)}F6qTo#QXX}#vrVvT`R>#P$LB|YGPiV34>YKgaR1DsNc6mi&b09@8?!!^D2>9Xq6 zq~2^dzPITjh|!!xh711ynysna&MqHhaC{um8rjKAD9~qSrA&hl)$DMf$1zx0Fp<1@ zKLprVZNSs~gVFM@o4AP0OJKIDJ?rqOA1u2c#rdq-3r#pp_qXQL$^6lNpLh=0r7epZ30tPQ>TQI5!HpF?ljKViq*NyvKjHhgKD zI?A#PXV>*;vl<>lB(;GCFhZMoSbx zruJHzZ>h_TF~#K7eGk4&Z4jwFeU4iekw6qnm(cv?iFlmPX1w6#dOmo#q<*RN5uQF{ zj7Y1uJ&iw9%LuhC`PCuWBu*y@O?#n7dU9q^O|c5J<8|p-7|uTnMzpwoKYrr2pLPs+ z%HEs#2FTqz%eJMbiB(*%xTRt~xl5-op1pUFxHIicIBI9>CRp-QpAU7CnG+{ornH-n z)awMT?||@xuDiIqEt7a!9m6|kx+5v8Y(}@>8QmP14NkePpdEdmfTvy4=>A=4e83hV z@4h+!naijWyHmQPWad|_+_wPFIL6ZZ2jx-hxKG6H_8>mk;wJrIvxYP(G?Bi(XXx4( zSz4J`kI(P*1WAwTv8mKY+Nx^JrtUoi;$7|O7s>lNa)!X{PiLXoq>)s03=dVDvXP0T z)~8^EGih3$7|@0q%z zriCedWv@-l>Itg+AB&sl6g3x~>?OpReTuc`A++qnL@c#p1fNuP44vpo2CFaLBOP^} zbe^sha+7X^=deBP>XP{9q)F%t(vZ}ltwUp`M5FIlOn9qt*Fl3Q6Q&J64wCEjz{}&u zIK}rZOi@lAw2v<&dDr7XN?NYy{n$oOr8)r*%Ug!kP6tDsk6Us22qCc=mWWl425<&* z3%H(7|z; z8=XUx8wz2&%yFFb%7Mfz&?1MzRsfg68MwW7GKA@dWVmx8y(Ddll~Q&gsa=XhtZ&Nh zT&TfDhRUH8dv?&(uVv}1umZTOlfvjBcKp*>u6+AfOA=MIgE}seqb?_l(1E5S0L^+J zVa*P>an*I0heY6vcP1!mtReALIn2(4E6{fOJaWA)6-@Mg%%!i~1p5ZXV6;60w>usH ze*KzptKmHikIcvB>sTDyZ$8mDR|P$Nq|v~Lo9MW=3c9kX7?{qItgSR(1MBS-*=_EC z7cZ#cY%+(T$2DJ}PNF@DIr)NwnuH(+g)>BBNda{>+)7exw~&!{EpSKGew38Ypks6k zyD8ZS9UWMJr+6$Ebeg%5VLE-;c#%1u@W!9`UNS*MIvwfD947C(Q)rX+74+fFL$ZHS z8tq#)gsOX;Cp861f36jvTU&-ucHT<P<6`2J^9fHK|+RKDNvt6y)`?V(oW)KsP)lvKrMV zVg1pI;HhN1db^ci1PNdxK3`1A?4HORxc=Z!6t+kVzppq97MHBWZ}%EwWql`Tcvh3%I^>I6bq9)K zlw@IseKzJg9^jIq*D&imOAPM^kxlCBaq)v(yzHeZzNJm!CAbkDmtBjZ0*hh1eu1cW zS*j?0)dfalW*XC~V@q3lb%|mwY-A2{yCE+;jUR5jPR98^gEou($Y!%KWTqrv<~wT) znD=29j=s?Zzr<=&4U=lBmHCFe`z*&+DsRN!QqtI~cPiQU2WBAK^&FMzzDlZ|+ryx@ z7=HI(#peZm;cY)j^0dni(L)i(NbIOwcDt8647t1nwK_K?k~minjtc357Ti+Ma7z)UoRDLpu{_1k(uu>Q9{MdKnYcYZ1{$AyDMx3%0;?-g z)J$@Z$hzG-z}4?rL~86EVgg&h;mL1doK^^(wTOkje&?W}y#xGqbt?21S%Fx|_qJtc z`@z26S!i!_Ivl?dAkL7ZwKGnhkk3GzI=Nx*# zK@LSUeh~SM_aT#p*wRm@`orkd@i1PYo>*3f!jz|5V0*_tkUvBdH5*pI{kJpdeH|${ zDB%xyP$3>19I%ZEcNvS*t8#I{l7-~k?kU(q?GyJ{F%V0+92yKz^1Bhs}v0o(UzvYpo!u(^}$fK|a#dgru19K-h_iPPqSMso|k{h21eXs{** z8_r+@%>&qQiZdHpb65}&mI$v^$-*7!Ct$Gddu~Wh2h)Ew2cqnJv2RZzw@zD$+{i!5 z^&efqy-HSs{o3Z@^a>Ar+~)+ymwzaLRizl+uqPT%KY}Z-HOZ0XZqV=kGa~o$6t!)Z zruPD`;|{gOVC^RXX4c)IL%WRF0r%s<(%fFOK=}b_ne7Je@2Y{7RzvC2{nL`US0!Ue=Q_tCb=_{WVeDgY08egX3SSy`bzUGq>RFL~ZAIs{qIz#(GrJe0$ z{lhrwu2%$w(ILp7teDQ4b_W)-Gm*vtgg6gF7&lWD&UnhxjYFN0XMQZJF+>|Rm>G$E z^Iu|p@gA{%*=li!jt!6Qm#{UqEc-59otDVS(o0E6LPNEMLI+P9v_okk`&Mf`nrF3- zuN-z8bN%#r=u}V5cH8qi&5OxK{u91=n?e5XTSXP;1bp0CF~Xlcfx+j4Rs&n!Us6x*V$NHH3bUJZ~o`+?Mw9*Ate_oDcgM?-usm z6({WPsm1C97xR<1*z$?5TcQ5yd9b8BSsX1`AfDMFO9wG5|2m+R6o4IUj8zRl+qKw_ zCmK+?jUAhh_Q5#|4uKNY{#4U&1kibA$JQJ#q^>jn5Ul=K4ZrrejCyJsiQla6R8YU6-$;hf5sa;7f&4#;@mlrQ^zBPy zc3!C-Fpo5+Ez9nc!FElv^EE`Z_%Cg9ZROjdr@8%fK=Ec1(b_F~P|HA>4?C*Ot``g8sL3jHl4cAYx@tG{Po9q)Jup=}QSt{lFVd%Wb3_<+}Xaa>71{=hz- zo&20-*>ojpRJM^=)?^A@DkFv0rYWI;Dr4DgMv_~2yt4Rs>7}^ZPM43EaDy%(PW)Vt zL&Rd-b!^&VfhJ5AU`N^E{Cr0qNzILBj;r4w_{?Kkb@e?|>~#~y+!#bBo>oE6?s}n! zPpU|6X&Ra+ScV428uRX>K9hNs7wEK{@1#uX7#59M1^Q2@z)nhU>4eqhY-3^xGj5|9 zeH`(eyr{K<7j14so$I4$>vS<3c6lqBd?yoD#;<{DD?Na~IET8GS-q9e%Cx}9 z6-X`UD8Fs517o2ofAL;lcJ3$^_J5#ES4!^RT{~qTJQN>|ghWJ}9^HiIy75SU1wyYD z7s9&p>QI-~P?^VG=wNjMdrj5`}zM7{IQRkUMRI&xaR z3iS;$I- z3?>fKK>N=1vX4U5<0% zk@`Z?{c;!$DSS!pK1-tM@`+?=UmISzW*K{HUL4B3c@UWlHUbL8lVEP}7kEm(1H}xy z$?x}6rc!Uuk%%EiL_9Qz{oL9ciY4b*yW=Z}Z#@GP^3!0St^VNa@OQ*Ob2YBhHlQgQ zAHlAqT0ADzop|{~k;cw3%(9O&LFDYwQ0;Ut@*$!V(1;|sAZZ$OUGs)}y>L2gUIXB; z8)3+=E)WEStpuaS>Vus+=J3@;B{poCI-i5rgQ?Y)2#kFXGr~1Vg;hKe&A$Q7R_!FC z2WQha!W=U8q#~gY4{`40k*Id;RcM$ui8T%T3R>+-1Vy#Uf=1m-T>Ra^Y*c^@zuBl4 zsgTt`ZM7@W_UoBsd)NSaT>TJA^EpYJ*RP=dDgCHu!Ub}W;r%0q@WU4SAj3_Q;KRA8;+}i5;)3ai$-wvH z_+jCm^t1X|TDkN(Gw$V6^mY$HHCqOz3&LEVE?SjL-9!E8<8>ER`anM~qrn9IQZZdwtEnTq`r=0EuLrtp$_m-~{be@qcxCiEwS%b2Gp?tQ$vEVe* z?k~iV$%~oHuJIsgL@tAQq&X4gx-5OL5oYX67Uvfn8qNz~F7^Xi@n*?8|*8 zGw(bm?^CzXTQxH|o7V->6(`2r+cR6!Gx4kmYP zqNDqy;5_?Xq=r=_os!=~m{Pg|C~of(X{Ttw!$UP4kBm+r&9NWB;0zn4t8O}{zo-{6 zIg(dCWki`su}hCD6{G-X^#=@kxs^LotO!_pL+tb7JQw951&ysQ!GzNr;A;7Ej55>C zCEVE09H|)qdrNhY+LU_iF#Q4OyI~!Wc`T2+ToZA0$#6KfXAcg$n1z)moZxOQQ^NUb zhedZEy1-k_&%wZ=NvI<;2a2*s0y+5;W!`hDK`)=laOark#6@ERcF4X9Zp}1>MeAL# zjdLIJ*~$f8N+`jLKJ$3ke#y7>ZjL#J1GwC+{?KK+Braa~2c5sWjI@*z7`kE=*}ilY zGFqjyAMKBZ%XjHg*+Zv5gqaCb+*3_F;}ZF^pMpti#sm@+=nVak6|4QJkUNx6 z2iM02Kts<0SncQtt7h&J^?QGv^bfquKk(R7`d))xLzxxsYgZqJ3>L$2(emZdP8Uc=I%@d^Nrjf4R za>VV`G8%ARpY)lwpQ)U(uJru)Vc_}rPvqSTMWhoq7)*PqK$?cekU;lrFyQVgI9Gg; z66h4w|VrJ~ez&diw4+qXu_I(p~Ew;ly#iz-W27LeBc~-<7S{=G9SP z@+o`T(Vcks>le7A9OHR#$)2@!;wYw0zBs38AG>}s0kw`DTFNV^khY@G=f{vKj1uMQMph_!e zw5|R;T;`z(n_o23wQ2~hzwOT!>CHh>)4BP+jl-CRl3V#5<4)!u=^Dc?8CuE4nJ#79 z9*v}xiWvTbt+_IEsZEzAy#-lsufrWXHZo({U1+6^guj4AOKpc=J3=-TxWsQ36Y zX!C=^2>qDCA6#w)YfhM;&37Z9k=s*HveyvzP+tskM~l!yn@H+tkc`6_5i}Sz3wGhY zq_&3^8QKyE6S_N-*0sNgci29XkX_zh4d8>8rI8qm1lBT8N~|KZWGZWU7CfY=eD(}pc?zWqXGB8Qw-;)EUCp~} zDB*QXwdkS(6~10CnP#QWW_LB!gCU_Q=+&u_iUo;5TDvS@0sj+Bo%n>zUbhm&-#&x% z-^r-qg-9$Jbr;O9UxGOALqs0&60g|O3nsnDAe}oe5xYD}n$E5#tkyHK=hqG-*Q&w4 zIV-(tlHs5X_Uhiho+T;iLA-KWG@(00DZ#_7Moky>9UW8qDb}_U} zg`5<8BiGOLgojgG6yKEDBr8G>Cgrb&MfJlW%{dC6pACj;Mvz_^`vzJi-$3^)d!Wec zJz;+4R=i2&I(Smjj@}tcc^K=h02%6u;JqH`V&^WBTyT+$=spd}50sO%_t3!EWp{G@o3axeY6^dvhUXpKu#EHuGef7wL3DuZ28vw(^Xb9GtY|`8C|A+IFX%q zR~=sbWXM(zdw_0z8OP3k!ofyc0Sulnfo|yS4m@kE*j3M}sQpa|u6UROn>2r*Yx@S$ zz?qlHP$OgX#c41tzrK`S1c*);zk()6_bF`oBiS?UYBYV_8(RHi5ViHGz*la%gID8J zh~**!{;ujQcF_a@=$kyB2KeexhwJm8%l3EB-C#Za`1%bz5~&Cs@8aO8@WXJ4Xc2gM zn$TWfCQ*wIC-{wuW3r|HCuUL0LiyJ)L-^j(jQ7l%z`hP!3f~n&YB=CH&8R4W#UsLy zu3rP)@I@18eNIF+aZX4tu>#(%9u2L%KhiH>$D#VRaJE@vKH9L;K0hJ6Kh%GIFTeQR z@%-fJHv9+YC#==|^=!2-iY}7x`2~GH zEuw=Tv#4XNFG`(ei0TWnQPZ_VBucj8RilHUq-8tGG|z(R+sA<5^G~>D&vY>ND~Hrd z>S#<7=I-LJ@PzVl7#m-Sm#Ku2po#6!`|u{BWi^BPSWF{X*(PMl-~{dqKONmXbsOrh zX4xxFRWRGl5Fd68mBz|banh42RDR|ry{D>4ejd07O-#k8=!QMHXkb89M|z``@(7X= zV?yidK9d3cwi9l78eY9M01e%Ag4}S@;Uy~`k#F4^*$nqElKRF?);K~So2q#Og;j3l zE3S6qGtz&+s4wNfwrFyGh?8D^qt-D}QL4(j8r>pBaXncjA0O#(%_4MS@nLkN{0kZy z>;>Hd%@zK!@5smJlR-`Y9<1-Xom8UVA`k4J1|NJsg2wBm677yyGHCh>xOv_sGU=l> zU15+%4)3w0Gk%VxF3GiM*7+Q`yE+a%Sn(W2^pS(T6=Se@TsdgVs6vmgXz({Cbi;Nx zTj7GWwJ@JICYFkOQED>+z3@6tuH|{thyA0-Azx#1QezO_U%mweE&Kt~>ld@@_jX6U zdgn5Qcjicy4At<-uZ_r6LzRzPR*bKN+=o}Q-B9h9!(?xTA(fOSp@;XblD-vl>1_K^ z^mF+{BDeT~hy6H)eBeEDew8g>wMdgXZ_t)~t35~_UJj8ZEU}k0p4VZ6m;}BwbvXZa zk2%u3_YoG9ugdS2G$H@fVQu>Ttp$JD!H4#3o6M@-j|Ty}+mWYpHd;mdv2G)dz}0;o zfxH}jI(o4?_;O?jD_oF5eWN|NbS?_YpO&DR;652z7(;$#_eLJ)e-NW6F*WGbN=#B6 z>1=H~TA|mCt$n`?UY#OB2BNd@qoo+kbydZ=u46!mK8xnv3Zx|(1zd9X8BluN1s2ew zII`t2uJ79l?;un1Vp|2d+Leb3-rd4seRH|-PdXv{_%Li7`2j8cS`HoZobcJB-_1aR z310NH6FPyu4PHvpZ^h%5`@z`2 z#Sq0=`4Z=0m=@#9$?3Ax?2B$Uf&l?y%*=g#F0B;e%E=v zDe67HYil|gJn|%U5XO)Ld>?k^a0q4|T!+>)7$c?N0Aw4y5e}L?6G(?t5V(1;>`9hf*hd_qE@Aa!auSfC*cUtZAw7?2 zaKW-d=p~JTS*BIY%=O!FeXBnnc%q2Rop6TB_gui;4Kg9cY@(TMxE9X0f_T-+r_g=i zeQuM^D==(`9;mIh!Q^roSJCzuY@4JwpBEj00TW|kziT5&C3ut@b?!P2bvR6Y8wQgV zYsP_h-!+ME`Fl=(fkNNQNhWwh8m!Cz&UK!^z}_Mn$V`8NtVsx~4k2J)$$FA;YArEu zRN(#@#VPKHRuhfDH+1NS>FhE$3#gQC0CclX!{PE{+(wHqIL)RUTI>qp8;uqboyQa( z=hlK^nH?KKepCF(IDc-DS(TJ5|CG1QP}FlAT4rcZb6yMtx9j|&^}g{icW0qI)bc7$%1MR2yzk*UhiYPNBVs%s zcOy!^Hlm2z*J1AuTjA>g=aA{LMxgb+9SfWWNezPR$@KoJNWKBkD?9h$f@~)k*840J ze4m1?-=>p=&6a4GdpF`RB%R2N1~T4!IO(*?2 z9I$db8dg;UXQ)Yt)Wlf2aM)fl%yI#p?f;%!>Cs276e;4|Kp{v7HN>8tFG=3C9!RGl z89NRb%;av_2=Yl^&Y_sadYQq{wIqhDdHIf%A1Nlj=BMOtqa#SP?PRn@<1CwjqG0g? zmh9164p`d&(Ag&y48NI6t0lMjsMD)S_4+>K+lte0C2(TroYDsm5^g|SrCcah%Ys|h zt%dI;p-j+yUot=I13psfN@jMuggrvB{LRzdxN~A2wzk^Bxvy6y32!FAZ&ME8;K%P7 z;}x#JAb28p6fuv;R=k7j8!iJ^qn^YlJ`}E+VXUxQZo&@}q~uk%5}LX{4Os-t!TDR& zXoi(H@%?@Zgex$Yf>IMC4ou}(i02Dpl zu5c;p$ZI}eL}oOy{AQUSs_l9Sye_;X6Q1i*txg8kT#aRF4%w13U&q3iQ>CaTXDIs8 zwH}t3aEz*%5iQPqj=`&DwC#~85omnit6wFN0O9)ly*{&fjsBrjyE2R&*GH3WDQG11 zi8B1HO(?^=74|*f`DShRyRk~9KIlh1Vuz1%20u+a=!#qso#1wfdcAoKJhkWG;vv=Y z{u9Myw&N(?KHCo!t`Xwn2{lBrtAKW%q)-IrUhV+`9%i@EoWL*U->yjACHolKW<)_Ei3 zPSqm~ds47^%xkVG{hbuF6-#|KpTO|aR`_VM6Vp^Wgc%q<0ZZ?lS6D`ceE$sjl zo<0G3C2j+wg{IurGv-WGT|PFjn1^+~MU#}?N3cO0gB`AC<{o#x#C@awSbISjY`m?& zwaGD+E}nf4e>pWD%y+N{7muFAb>kd?Q)@WLjp$E8ef(MxR7GZQ$~bw{=K zqrv&o$+URA2WMhIX!X)~IKpAtzAxO^SWJy#+RW zJ_mbhno)dHh+`fE5>L}7xTA5RB9?F*zE`4yN4ez#d$-q8oollR|5XG>rmSNQ-e1hb zD*Q&4h8zT;9lp${%6u;BXaG2)9tfH^0vgA@<{CaGfo2OKiOCItq4%uNw=ubJUvUUn zA~VNqtqb$<>{#?keu&O7-OBB5?E~GmyFrOc6V@{sNVc^pqqnVy^y%}84Coj@5~gP1 zSxYqVPGfbn)956e^|A%EtuBTc3uCxtrtK1o6Q}WzU*!L@*BDMal9CPT%1jct3J?>_)}zEk6_k2?Kx)T zDzcgC%CbeQWzQ826GoR@`<5e`L@B8r0MNrdgr>3E=ron>i1K` z5nVrofSm=Zwo61(MUMlN3Apt>pM<%N;S#3>q8WZ;Y4wcja@WnxZA5@Yr9)gJJf)u9xb7b z7at+ZK4Q75xd!ciDV>gz{aHg1AOqqSLel{9#2K_}n(W+#{=*pYwY`mp?W+L!2_ z_8n~R+nVeuO%-YxTgVlyoh|#W{DY0J*a6LbdazAfi=gAGwN%GFi&-V&s3VA?&YOQx z2QLFM^L1aWH?{=cK6(bfm+A5rfj-F6!-{)kae-6^XH(_8qp-Fm9CkG|lLrxnuypev zWW-;98+DeWq>d3NmYa17lFEy%TVdJLo}sqDfhZG z96DJpgGr+@@Y*9|30-j%9{XrSn4_xHp+T1&zsb zho9lE$Q>8E8>8}f>&WJ-)zp4l05L6zV?EOEaQ9XYkooD>u>-D#qf24Kd7V$^=u0CE zFP4g+=In2L&bt!+$)gZrzvMEl9&(*z47-Nh;%_ryVqYYW9gnON($Mg}{h(y&EU>oZ z2&o-b$*j1Qiw<;{(A-ro{x%|wx*C=D-0xYci)nR zyH&)aXBhHcG@4wSUrH7n9Hp?|q;d8k=0NakIyhCe0?&2JfdT3T@|p!;Yx=O33cl1~mMN0Xe__DG+oF$U6}^ z0jis2!!l6?ENi=&XVG+?N!9p;vm{$V>eyK5%AF$KCwxHW!z$3bC;~KltK%72V?k)p zE)x6E71nA`Mr-#e!9>dkRHwoUe^s8&Z_|k8J+ECQvzEmn_w`F4cytCI^)e$(9~QC~ z2D-DX_6T@;pBfs@7X$m1J^6~JX}Iip6X|Q7Pg=r$kr~!$cujO2=b3#7WW1aL7SD4b zsY89CUao)>op`}q63ii|N1p}dcOQcId-i1hiSyv={aTRqtvB?xtdKug;tIF!{YV~J z9aO~5`NQW0s<2;y7UKlexWa;bW>@P4IHRJD*wv2Xj2=7y>Y4E%FZm(Y?d)V6WjqGj zxJO{mxGu~;xxx83>Ef47{kcj_D>$RzAz+FYAiEGVsK46`8+i;c>o(d09Im|zm+z`3 zT(uUbUU&;g)(D}d`#AjVxdHK;mZqT1!DTO>r+u*Ws1oVtLkN3OH#X-6Xe7c2FQXW%Js$nyS$c zPX5{gax-@_F{Qof!F93Z@NyM?P3=zdVp$4PUuz^++h79t?wRz;g=jQAih#|9$z+73 z8VxBO2$w}ag5zBndi>B5SfHwcT!(P5NNp0#PTvbEu1ukm6hSm;i=Ltru8A<{QZ}zE zeGQz}OY+kd{#P#=W9XKnEUSC06jgd%Bg@ixyl-(o*~@O#?B=`sVRLyEDp_$BHn`-{ zWjV{ZMbpA*5^gyt+AI^x;vqy75gM}VRP>m-l=gPpt6AK`o z&y$%B-+)uENT_4B2B!H*!0fNOzr1Ss}+8l zk5AiBlMU&Zly<{LDVA{0<4~^V?Q$wUR0oH?+Q=Ary~Uycb-GeXA2uAX0tUurMA~Nz z{P21+3?B-i^VtkayIy1lTlT8Z%Z|J0ry-}|z7O{3NAfA^ySf4npXiR( z6ih;6OO2uFzz#5t<>>m3JMfB*Guv0#0nd~e=C{s{gW96h{09@<@&{Y@=eb{5?3u)I zY^>WPIx(u42wMDP@3-5^+Ma8nF{L(a$?0v#bND>ot-}Owu~FqKr(LCvs>b|`fyc>} z303&hFC$c1gK%$eb3XMvMIx(iKuLk87-sv7dM*E&C^2; zPgWx&TaCuze*8Bp3QxvfLbwdWTh_(E*s*|_dPEUJ2_b9yeKxOd(#Wj;uo~IgjYXP5 zClcp%mxO<`L^UywiN9uygGbx_*YE_8S85rCQpQ zmxzZyTFT0UC-Fz7Eg(I)>1eLfIaHv3kL()gOGWmrC}oE#ZRnptl|vUR{13X(A9mVA zPxKMZN#==LSty@r2@km==(5KZZLHWyK##$Yu&Y+jm$d+Tf1I?RMwojrgVY9 zh9T_X!JP`s)=uX22z~UuU^r_gHl<@aR4Dj47yXD4P`{c8YQM*d)=n>=15{$@>c!Jp znotCXFsZ2hcoRIrh62lFld-AdY~AtYCORxrvaT_XY>W=D;y0Qn8)lq8kSo|%ITt&Xw!TP0*IpD7S*bOxJTrhQPj@0wk?--v#`H!U0 zc_KfwP?Of}QkQwGNhSk~LuD39i)0yMHTIHv4F7G+U|v6F6tW+b27Sh@%^xsmdVYA1 zZnRJ!;Y)Zk%1v0xF0=Oq4-d2<+cG&yyx5=J7H|yidXxdSoF78HuIPfhcL%e!J_)q! z6X0$ar^1j$h3NX;YeaH2my{4~)Kb+!l5UKqF5RAxRTVDOFl-J@wNhoDZITkF3Ii(g znn$cc8o4V)K}@^h0vx}01GO@VLhAM18PDg5#MIn@xGo6=74Amx!i(diFmNcmK3fF^ zo%#ye9zO%Fecc(I!^(7(aVU|7zNL+M`^dq0rA)?!q4JBm4A`t4Oo>+@T6rKIth?@~ zuwyrp>e)SDNLvYfVltMlKVku+tLxxhyF|FVP=QPSbSb#JPDI-RU7)SDocqvJTJG&zO1%-ai}s8M*`YY99ysT(p#ehB#q5md8SO#7Pl;@@qaL=C6bV{B6d zG;N;Yx`jjeZnmy$eTF~SI&&*^UDS^{YFk0mS^7w789>Fy+F`H0mr;XVJj`d$!)Z!B zz-Q_mYL~T~Mvfx9&D&X2b2|r=hWJVz`fYB!H+9<>!{qifH`z|X6@^LlRC=v7w^>rCQNXYZByulmiTzhocs z3%{1+yLm0;FPHvcZIBm^bnc=iUfVBQR zj(r?1Ff~za_`xkF{OxoA=_I-erPqLDtzC(OdMeX^S=#hK+clD|xTxLMe-@P++~>As zUgAeIKSM`b&#=?HYx#l&J!N%op0KSL<*!{<%$JW)fH9lsAq!CtV!i4nq+R~Ns_#># z;K+EKhwaJIEh+?e*fOK42a>Y-gWSlCS8$z9A>4g)KSQ8I->QM7{mr2j^;ZP@eJr(#a#vV&L_`KKs zSnaL%*s{D*{+j|OH|d3rEMISNe$%if-ety`d^OSoX@Ls79=w4|LN|fiuDOh4w=oW6 z?8)u*FR{VtTg;DdkXT39;Wq0zc=N{)xW}g_C{Dl0#ANNjuFs?Jq6$;I$3g{M8m&!M zd_ITOo26v1_c!=)nl9*U+REhOi)761WW~2*J}KQ{49(w;p!HLR;JslM{Hk6tXkdjB zoAT3$pSV7e4ZrNpY8^hp%Pk!F75lI8J`YaA?Hk;1X82KP9aqITzF!9FS}VDyPdQxg zHWT}OO<``&`iYeb%yHR*HZFDAVpu%wlVnMY3Wz^3kUTAt-~iK;xT!snTQhnSDe~%0 z!1$9mQ=wxPYuo^R6n<2j4yqB4kU~avXK$<*TMMolog~YG*JAPE61a*o(C+ z$3U*OAr{vTTZ3D*s_`Pf1#sVLCm<=7OSe!<+%fD3?yKR0uUoZn8(UQIhUb^KcP}=O zi+m%rIz5OiyE{f6vFk1|xg#geS8fp1>^P#Trc8AXZN_=dmb~w43pC~109MJwgTGlB z!A81_XInBZ@e|Li;lG{;>c(QvJ8K>}jsJ9oRC+^`e z<)AvOyt9%{3{|5M{{E0$u*U~055Y}ZWqA`UW5AIQS~!B-!>%3|u&b>Pm;18?4~tof zXU6_yl!v?mhPRgEqzD(_XSj&;b6yOZr=?)$?|OLgWM9%I?MqA@2ZMtxYw)D2Tj2Ev zL!jxT;~;oxID8zY4j0YN1B*9QFmDQz@xkJ&ES`FXCVD*Mqs~$`bB|K~?W525r&DLh zP-g`D(0`=tYS(joYr;mLJ;R#ukpH<{HS6*n-H18d!H#AMXBK4}4I) z2btiR0Z-dHf?^w9`sv4GY_)b4*-_b!m#uqk)~jhW@fi|><7~DQX}B_~kJBe26phO_ ze{ZpIqUh|7^RNypld)GF`>$?IE+}xhbwdzOmLY%k)p$0j5vw(|^ox&Ly zE8@Khe3&5{ESa2*xy-j~wTzedPR4ulL22@^xj^$YWnNvEaTn8v;`LH9EW31=!3z_Z z#gt{19>JXMTNfNQW;G}-94*yV?}pYiR}=MuWK#EwBMn!V(lHa=DOTW2-yWC%pItnT zS{n$MF~foDmlMV5l=w4t8-Ga?+K-xD+v&%6_*%DbOKiN$0`xgzGW z&r+hx-2}^e_oaK5F2ZLf?&qIwIf5Ln1+Wn|z4;FhF0q$V(^#xs$LDTy=S{=f`CpEU zpuN^8oHacGE}G0SQKDDU_*Vg3lUE%sm>Ynr2M05$Sk8U_0C;8aB#`cMhDI5}FIUf8aP$N9Mu^c~m=Ya&!pf^7vX z&d8FIG9g0pa7Nkp7Hb*wL}3%Z#J6VDvyCZz^GWMV-d$&g>`>Ybc55k=*|zkfle09T z>QPEYOv=O|yDd4(S87210m4N+KZ9G|ALLV3)Pw3o73sm^Fs$i60~T#l0yTF&$uC;p z;$HmtfQ>AcW9!1+O#i@Cd?aiL-q6vPtT}%kmggqoJCnxXTj%4+yW>a6(H*Nv8Kb~$ z(0ETIKO(s+Vo&~CrQ+K;WIkJGurbmVaGjDT=M5lpxbmIDfWAqm)g@-S~0L4 zOlWxw?iZH>YW<1v_SA>rch7-K7SDi9paWqCF9va%vzYL91vb|#9r*OV!e<hhZQODdtgwhd)FP8~Z^J&9i9L*ceZnDjVm}m-|d){j)x~bWT4t(575nchr?%{!^Q9RazCzbhO+7~Qa^qT zgSpRyX?X=bu8TprQxv85V-Oy>2C0V_(7ritv{LqyM(r*JIx|zb)R>oGXvi|@<8>~e zeobax+XZ*dGVi0A#Hcqob!!?fzhTMECvq^k#+7*GY{q(NCGxc9<N zESI)#Ch&jqhMBi`94wB0NID&!0-M-&X6p$#JUgWbrUiz>UL6~-+V&pEPsf)rkVdmA z`f|D{(TCqxm&`ty^pGFsa+;s5-cuGhB#J#ZOGPF>R6+D#U~qEsLGo?cM(o`c%#}DD zXKLaUF@AQZ!G=5uH?Nojx;eub-IM{KbzePp+as5|S(-D^gA$k#8HvC}SxbSF&^zza z;OW3(_Hm}0XEe}Mo=0xon+O&@kOJq?#?WGeIs7{8B`BMSl+k6~&sK)Tm+5*{|#oFwhUlHsqi|_d3T^$hB(v4{7-jv@Pm?&*~8O>zN zlfl=SX5eH(uKauIW}x*$hw0jE1f`lU6gJe|*mcn)rgBOGsJnRp&MZ@gMqDaa-!d19 zw-tl_-H*e!6RfFEGXp23l!0kIMS8O(w_qBfXbHz~1}HvQvG=^3MxC z@!AD#?BnC(^M4lV=NDyo$oBmDuK2d>l+`=+q{1IVVBs58x=dkj-ZaaA)4R9~>>3^e zH;9Z|Q$cF+c^ggYNwgf}+=aZA~Axgxq9LeSF2= z4;9FMMybm{)582EsDW>Abj(*>ppT4Px)bM`CvZrEfL{O>ssU!p5J6V2j2&i{HFk;ll!?~Ss2)MP8U31JQgmF zC?Qv)jsbc9_l&D;27LZ83s&^r0dIc}#}%KI(6UiSnA_iWvSI#*sonFHe2ilt`vaWk z8(v58c6i-2NeDTwM@dNHV|_?5nQ!0;okY@ z18LSO=AZGr{~nKB^B?f4|FQnB<5w$f|Bdhcw>0j*`}t@5ez*TtOz8P`bEf@A?)XK& zd-dr38#Vs_WfXr#C+YLobbqoCSoZyEx{yEpZ2W7wKV<)|w|SnbJ{m;$+zd!$1 z{80Tpfarht3Cu93PDtjE(FPhSZGbhE0&+Y z30?bPzpq2#5P=ai8mmUGF`uBx@M&O5$|7_uq=a~nQ(Sld2WI-u0vf+$548)NjWYOb zG;vsWHnMd&X}P%+IPTq|z^5L<9C+q|KXv9aS8X={bjca)3GrmgN8SgSE(<~V5p!^3 z?+H@V^j_|N{t8$8rU2xQ-wr0uGXy!uCSnD|20Z(%C)8Ko1#eqR>90YT@Wa?LuFbGJ zN|TmAXOam=j!`C79!t0SXg+`53tv!l>y z-Uay@D_t-)w?CO;-HJPcy71gxRnk_yP=XV>lV^3-M7r@l^a|<^JmTL1+2ss^i}#as zUw3jb%M!L3ifCE$D!h#|qG^wuU>vs}`F`I;`~1j8f(a*)L65=o#D*&rEFR1^{W=N9 zI3+94wo_oQ5s$f?L+3zDvl8CCwFs|Rd>>2l%H=MGBS`(?cx;#+4GLc#B9)SUjLq?3 zOzA>3s3NHVqf>IgxBE8W>^%)wW84NBk1mE0Zy;@Y*2oC_oWPL!ZYam77_OyX;gwGf z@b*J}wCG(Q`26)i7HOTL{K+hueoPFLhi&Ia1u?wS!!S1C*A%vSLM(fDc`}i_JO}nZ zDkDpsmoh7_b9q;mMF8dUUm!h67hXS@4g6~ zTlZ~vW^xei;WG&Jd{7T>Dr{yB-G8FY!n3IV(jlodCs0 zzRF!kj)&e6H-O)z(eM&a$l0@goX=2W>?TZrb6YpS>62H%_0<))(OVrIjMxqmQs*Fx zP(to^w2?I~%g~uVSE%FWXqtX00!i2LXpFWxJ9lR^DKp;(48Hr3tM>j(Q;(U7+`h)( zZQ>=cCG-V=d&K>nFOi6r!Gi4@(8Fg5%#2g9(g3$6?le1viEw+z?bsK{d5=9O z^$Fa=>Fd{XNtu0sT}LqEle`C{^w>z&7R1Ztv3;=qumZ5~tsl6i>j%;_4sd?147{@B z2Dm343PU&M6QfWG=5B=Jnp2^0nCb$UStNjMgN(?wW(^c`N(K(^WzgsPEE3Vh5WkD- z(AMKQ)ajf8t87^>B-~37(dy3%LW9Wq_+4P2>pqgcNy>~&55^7K?lW7Wqd|7OA5gLw zm0O_k4eSY80e&o7E+-%NgIP*i%*tag8Q*v1xt9CSNhEiBNCV7dz`lJ0b|9+whyM@G zcGE&o_}&-nj&lUV*Ink4R+n&i${cW2_b?p#-kjuqS<2`%6=BO&#hlKYLwLuE8|0md zH5_#AAk4M<0Xt)zNb#9jRJ`2ME<_|>aA5`d= z3J$(1*ubc48UbESuYlV|ZA7AOGhxtfg)cds0>jSiWuM#kMcoE2KtB(4!2!b)_=blk zkjVx$cFnGM`s21Os(RHAPg$SK81!6?=5L-wn}2GOQT_Y~XtE<;9>&qWvz^EQMf^z3 z`Y7UYxtI&+uMFq*jRu|{yrAyNgUr>YTsT?(11w9P4L7J6qD5i=UEE7xWppNZrH5F7 ztUsFVz6ZJKt%EmR4)I&n^-ea4WrY&*ZDtM1tXfDOe`RRPBtH z{9$hA9(;S~EnLudIlRAiI23Ml0(q|}kOeFS*RKab8c@$zmwXF0}ZZ3fS~Q9lJy>CkVd)p8Z5fW6Uey@ZvE1xn&k`I^3OYG7eJsf(}5pyHx>D zw15uZIZS>#WhVTgxdT>yY=rdLJmOb03?GnJ!iXL#Nqg2IPWrWw8~(La?nN5Nup!qN zvuokZvt%vM7PyBNr^Vuq4acD8T@|=>s|HB+oebM^)1au-2JRf?MK?Kwk$!Wn=`>}b z0#jL$!FSMcy0p6qe{7QpEos^=`)>b;E_FE1@AI@n`>UL2aEl9CnREyC8hDe=opb>4 z)w;;Zz6_NYXTgOWl2zneu(R~jS<$w;$lX%y{O&dG?8x>dvi8nkV)W@IQvcC`KfhH& zo2!qqkH7e#eX|SU$*BG4nbsP~JH$l#k8Mq#*r??DlGF z1!k~${??<@VaYy97j>M$6TbGL#aqMpKYC@t?*rYU&3||7{&URx&oblpQ`wfkrpy0L zSF`o6>B@f7HEsKAy8j%&zv;vOuDbV8(!1zpY`_tHC^X#IwQZorc?jjEc5?sy8rcP{(XM^uimpiZ^7K( zL;lD5{|7ny{hs}2iq8M1hkxFO{(IlE|7vBb7aE)Y2hF~)hzMINbxK1R`9)IuJEe&JaO32cEKd)P*ENBl72X|OI$zMT)5q0fob{z zZHY=ir0K8JXh|=l1L7I&Jtdhpwun3TMM|>!h6o?-ca}I<8%Tps#7QF84i+{gRf?7O z4`gy|bR~B0tVf34Kl5j6h*tO!AWNk;b z^sc?06m|;5bNcibEiNw-dtCJu-3g5q8Y$A-Uq1g@T&SEYJ~ZQj+4u@;vlh)LQRRY_ z!UZZngc;VRqU4z-!XBx0lGezRqCMSe1mDgo2~RG0E4nZwN^s!*Ik9Dszi9l;EaB3J zSmbpsP7+l%PpEorv{>isYqL8m48#*Bz7*`2OcORV+KQicz7?cM0!6`7HcOrNZWD)I z5DPa}*_!rt?;$znA7(n@QG`U^93+mNsxF~R+{NSiACO#(^%3d}agYqs9w-$)iIQ}@ z>?a(3^rpD3dtWASYi~*T>}<1H&WC|8#sktPhGKQpCVFsvh2(qP9wB4=RqA*1l2rGc zKH7Exfw0H5(gW33B}c-$fq@H6fq9Tby0Ctx*l?tlL@+E$c&NtE%qqu2nAg=HxuBFI ztoWWH8NVe%Ix@YVbZ4fqc;CC;BJDl-;_fP5qQstugp=cilCYjn#hIO1VvF&2%x(ot zFS(Kl3B(IJoXSVbqE$o zjj{0C!U9o|Z?a_3a#!Ky_a@>mj;&^_k)il(_*;Sbc6;H~UUS7KBH9J5_MxKi3NPut zhr7fJCYcN8$Q(^yhiOZ0Uyd|AdNW#b-0pz*)$HDq895%};Tt0*56VJ>`dQ8rmt+H} zXRmn4uiJx#d3JZix^D(Dv8Qw;EgLv9c}hI!Y3>buYy{%fMn6Rsy*5hLy7~(zD=Rb3 z1trp&@59j9Ar>Gk?4?wh+?Cu~pbj<;kb<-g=F+6@_To%69Z3(>1Yy6~#%2fUPT`S< z?<83@oY2GTn8bKOj?~^?Pa2;j6!(18U(}LYB#zPb6V1LDE9_ty$tJ5N@oB?cv3Ax2 zv-iDh%nYPaqN|zfg!3v?MZY2>qSFx);ibTrlG`gYMW^mP7aZB#UHI9#U8LJTRxoK2 z5oeDJ7Af5PgwA~mL{9^gC5}H_gfowsh%eTDFk5qcq`14rTfvv0xk3RuPuxqlUC>KE zR8(8(B@LDD5}R$73Fm+Xrsq<$CBGsgO%EhQOU6$>ATIjYQ?k2ai?}E}QgZlGu+ZMp zS+aAUf%N>zI7$7&!9p3S6dyP|ka=OQE4ke&H#@K}9<+D&hOeqj#gaGQMTw8yC2e~C z!nJ*r86}NUDXAKUTq`Dm#yu~kS0_|TZcI}LSMtn2Xm4}r@^kaV##ehwIxofv)%qKo zeK+4Jyw~+klIh9``3=V;-!*cilUC|UhZu>(K5ukIrFVV zxYIGF-9%J4=B}4uk>+T@(5c%6-HZ2#qYoJfkDl5tl$jis^vg04#orh$m~=`c{Cvhp z)JU(GI>yWps`_e}g`|BFn#v7@8ehaFGn#C~^0%=j&&RW3+ppT9V;`rATyJWLYM1X5 zFN~tXxZMXuHxEbIashbX}a`Uiok4WyBzrH*fZvXp;Ra6g`{}52IH)z!en`UHY?wiC@Rj`BeLzb zN{}2ADtNZgvZO;nM+R(R)uifGedu_!oNBrJA+F0nPu5cNCvRFF1C zRXAYVM^Ry1v>>;H6IV|T5|sz#3NtU{i~4CLN#rXQ3AI)mi$jmRH~W5RxOhWVlid zy(Eu5#Rwac#+vD3FX8tm&5{OHx$q21lk{J6R@$aAP};x=#KUj&6QxWl6u(LG5pA3k zBedUVCg~maO8oj*j@ZSr+AOZy471?!aFNaa+s2D`2ARZ-?=W6B@0#&BtRmc6e9XjW z(JSKx_uGw{VL6egKm9j9+v8KNP&_bJb` z;ccSvz@Sei**%V%`XtXaK0ixtBGo(~Dtj4WDhRr6(t$3F%{+QvpwrUbXo@sb0OR9L z?|Fy>e%-L?&#xZ^uRbg^RaPD)SX>H3$7UG`Uq^{5H-@YMaNs%X4+=Fam7V((zR^SHZd!`;Qv~3|Kttv{5VfhbDvPjHFtkW z_=W9anM^}4ynKkD?paThxi5MP9UrTh6vpZc--M(acjy`lbjM+l%@;LM!T6P?E^R$c ztYmGbFZT#coJ)@x8;w6C*cIDfIJs|g)AXuyC=eQ03r9k$YLR0L{Q+-LpZWXCzlR$nLyotaXy);H!ng;jfLw zYgAgy3d@I!D^=H5K2#`pdEZk{J94H^gy`?}8Y z+B>B*iV#gAluVf#giyu?jT&i?B4wxyMJS~~2}J`6nP-tyLLzeS=e|GR^?ZMR>$je@ zo_jsd{rhY0W9>h#_jO*^xnJjb9LISan`w-1DC+yj2ZrC=nA!K`@cs!&jBMCGTxt`K z+&(GbDK~1SKS#DO8T@DA zTLiY5#t3Zs0k5j8#YuO=!Cmt|R8pjYUOS*?`s=s_|4Y;hx~T6ap7~meKRk^1dru1J zI&~M+e?V1t1|?Bu z#tgY@`2b;pD$JO=gD!EV=+2oqIJo0GGyFCO->Uk~(99E9-FQFxzCjOXjF&)~>?PbV z6{CB*l<+~X=~P2&9EoW6h89jsuz5x_XS{^q;-ghWTdJ7vuI(had}kT{e%KG$I@pn! zcRzr1b`O`^5KHIhai%f_m-$k&5;?IQOQ`ba)%lrj$G`LX2fR|@!pX@C^}Jx ztgNX7bB5mF`+Flng*d`{k}uN-`<3a-Ex%!O&Mi<}l8TaKs^I_|4;(+P!WVZpVe$O6 z=&RBU3moOhseOwP0^s_!VoJ`#iF=_N7-D@ zNl04z0l2s68+c-^2+P}Iah;qQ?7VsmzAe5((rf(@-xq_Rf@J9AE{b9v=l~{y2dBTH z^jiHdSe=zv{5T8G*$n#dP5a^#n8QsQLRr6B!}H&DfBW0;cl1dq5y0`C?1*y4~m zn5sR5rvBJN@143uj%~OA&D4^?vbeb@^n4`DDz*pxGbUi!jY;@t=0ubue}?3qktZ*f z??&oE{^|(%+wl*7p^(3m{*Avz{{?@gh5SwXhrg4B{2l!df31Z4{VwG1dm(>4{^4(e zkiRB>@%QzA!QXTte{Tx;+x-uJ7yQLvb0L3q{^4)LU;MrCZ~UDsxw@&lZDy#+)cc#oS+DfAti4IV!o1C)8Q zkl<}IyX2<>>iVJ$yOSrw`#UY*TDuxN^VuS(@uM70^O2>nHWPJ(SpuD+T=?)3L>2=U zp!Jpwv_7|*PASktnFg-#S5`Sw|1=C|Xx(ID_U^)SmqjAGCk%eKt`%-wauN?H7Q@i6 z0hHc_Df}Zvo*o_x&+PQZ$HuMYPMqRlZ~qix6S0SX-;Xb7pJsv=FIL!($p@^$nn z&|K7wQ&#K&HM@0isAn!^#lDkw;?JOhTRhlk7K^-3*1@dtvEZ%VN*wNR67wadqhsoK z$?uySSu&J`%-uL3$Jatr9|vAfG(dZ@HsVE`WWU6QpdB@z zLBOFH=(TGK%sLZ+clOgw|k8!M+2(PZt2l_Fiz_FGz zaM?W=-Ra?hXVI@f;^&iCB~=mL`=iNP$*llZmCf*`T{q)DWDfkcjU(G{M8eUXzgX}7 z>AVi*L5O;tc&}nb(2{4SaCt*KeE54l{5d-ijoY3N#XMw?-}C_-yCMc1Wu?IfZY`>) z`Anj#yW#Mya4d7$j*I4v;{P;jhmljCfw0CX^y2nXc9L5U84lb?LMm?Yf6r#PR|{ll zMcRG5=k#;>^ujo9fY(aO>l0yOYY|-Ot_i0dzJUt#3|RL~c?gqK*6N228qoA1A$`So zl}0J3yOYW;OxOaOwz>e1w@vI~9W7*K8i1-od|=(N1Ncq>OWB$R4@K zvLn4rv1l~t>2UmpwNbMawj{>t_lK*|dil{l*k*HZp5_?vMiFR|$ zrWtaw9ZH&s(6xeyBoctLIAw|bd@h83hPQ4P&lh8X6m~%Tr$9?-q zy~ZSyHLMG?m)Qr)ic3IJT@~_Ltj&f;C8HD1qu9puiO9mnlI$-#jJGd508VK{v7ygg z;b52*kkBe&x6f5TRUgKn5%HCAWSnu{0I#tPo>Yo1MVR#KhUq8E1tpl(SLDbt9br zNFGi2RFA9Vrl2eJW3bB?S2}6F2@x+_2kW%`aOI{Xt|Zw4KMcD;#(_(G6$MX0(dj_E zl^=?RU(F#KmV5{E?(F5>)TGcO##W|f3D@~r`_eh+;z#-6oB2Bqr1K}X&Ew|G>_l#B z)p6R19dMWSByuC*8u;x!fLAE(1@7MFc>clbG)PvHF5pX{sY(yP7OR6u#PtTeZnF;< zIt62cpB-4wb1QmvRFtmnav^IU)uR6=|EbzP4#j`@Pye?6H~gph|9GCY{@rK!f7*Zg zpU2}r#mQBk;~@g39&{W2q~p;Krp` zeBU&QrtZ@xLAFQ1`-_iJUSuwpcqSQ+JlsHAV*c=bWwQiz&yJzDul2wak9xfMV+`Z> zahT2?cn^lCF(Y zz-=W;tU_3jll=hK`ABif$^NwDz6o-&jsmiupP(r7BIv#}33#!GuraR?-<;Hnd~Qvq z8$1pZKV5Hh$TN#sCMyO5$SYndQfE|FTtG|r<)U%6?|3T@sPo#Rjai8XY7*lY2Qn75 zv4i%W?2Ie#nEePKg{K^Ieuxj>noYn=!hUw^iALTED^2kAz-HusbPl^Cw;iNqVY2W+ zHS&HnhJ8NWo#%`rzzoGClixe8Aa?iyQ14>Vx`QlyVf+?Kt>=SBLKPvGm*Z6#Rxqo! zk6ASE3mV=%jxSBqgLQ?v*eGTax2tv%e^sc^C;h>cz38O?eRjI@8f+5C>I375&e$V- zI|Wag;&lP{^+ltjj_P!@r!L+8=pY{7TgKkna16!_Jp<)GQc&yF9!A~eHrnW^$@Z3u z;mNU(+~zgo8A|aGTHa&EEI$d4SthWZdn7=g#eS%E=s7%e`UPBU2C;*4Gs^K5fi!j$ z*#DS8d-vzDyBuxU?XpXW+@46>TT%|9rUfzUZyZJF&vGV5_db-{a2K3{yP!&qFG%`k zLHc)^z`YV)DDFZ6?Qv~I+v9D4Q5c7w%9f+xYs#SSX(KF(5aGsjXk*u_*C9UvF>6Jo zh{8B0rYk|2T#{%>djh=o4Mc#eW0_;6|$5uGH%u9FDorfTk>s~4Uzy&gyejV8TZ)-?-y zNzlYE(|^Qw_#V#%-ta;%LNjoX|7GYQ8$8L&K zNI5VPh};tu#&ADCgQ^;!ef|NSGQoh%{P`Mnt`4Nf*ek?2NftMa(gK@44uJlmN#Oh{ z6ZUCO0nWM~g9kQ$<27Et&Af>`55iWaFfaD|qRmcKfImNj_1i87H&o3x+OWna zN&c4AL|`FN0!nY@0PQ8=P=7vPzX{LMJA0m_+mcoZWZW37iM9=s7ehzLfM_@WTz3d%)O)t7y9TS88-P5lV?4BFRyTe5bZZen9GK zBwD~{^B&E|`Rk>4iaSDRTa_(7uy~KaW%g?>_h$*Mp3f&T?oHegzl+?#Gr?4m2;gK} z3pDFa3D~YP7PqFgGCtFn;#oM7)t42)hwbF(=NB<#;`?^c`Dryf@G$|d%}58UeS_GR zPlu4R@@cd+e+X7YSrN1K<@oLWQux`)m(^S6!ji%>EXz}3M|b>TH@f@=7eo}8)xk%Y zYoi<3rkhil+Nm8-Yny=O406~z$4`RA#Sv(?iyE7Fb~{L#GY<^2KN*oFPZ`xi%UN~W z0@Rmzvq^CX7O$I#HyT~SQDLr3fP)ls<7y6jN+8K7I?LeYnmf=uBf8w!I<)pBE&PH=XZ@L(Xa{x!@(s%ijQ8Osavu z>j!2zF{bx9L+ZNLntQ!r8n@%&ChR1bhE8s|Omsr5an$(<=;XX-VC;cEFn)st*djLx zNj7)@F{ATvi={3I6&->ze`F%DZM!J`28Wfpt%x-RLLpN-!ZDuPKjBAL%(1bOKuFr{Jg zXt1mqy!vtlm`ra0NVF5ns3igtOVRP#$yC-O7CE$(u`hN$1;Wl6$n*&d#)zMSG4F~f z-?{9YB3N9t4d4C|L`7#9 z5E=1maC><&S{5A3O*kciq`r#KDfylJs}d=KDaDa!;YLd^_gEQL9*}3B4A0^WGcxE& zIXBZ#(MuT#lkSz)asnJs*8-ZR=+{{SY4Y2*2F5ITtK%Ngd(3$)lsz&WaXTJ+T@z{L0y0(U%p70U99Fqf= zt=d=jmFu@3)&6VbalVnp)#6r{Rg1s?HErn1XjNZ0PIP;7Vw zZu?llt#14b-ES#UX=a%3^E^QS{k^bMvkDMjJ)Ph?lUeDg<=p;@3+emZFk!D*QNb_G zb6jHpOLMF;`Lh-m@LTG|N0Eo^Jz!sx zDY|^vlU|vB2n802fr|D3b6mIw*t3cy5P?zl2#CQ;A&^%$Qz@ zH(1po1Fd);gbQ3K(m5$b;`^V9qE4aFlUOW(Gn(s2gzwG3SI04^m|KS(U@Uy>xQO%&1%bz?;8|hmYgAZ5_DsPz`EsGNUVxWs%3Zg~+Gi18e#46P$ih1YA0^m`z{|$uc!l z{PtBGD3CqH^lS=6s&>bii#x@ULwT7n55)!scNPF^Z*j7~dNe#RX#%pO?lfz04jNoH z9#lnsfn%yd(VxjSAYuJs=pS89O-3I@zd#bay<`hhS6PF<(I`eF@FQ-~twCAe7T|>e zYthi5Aw1l!jZ7AL;s);oy8f#*i4ymLyIyX<>H256yA5hc)?bD$S@@mbHh#ZA(#{26 zI-Ci747}6!ctS zB^Emx3&&scCJ!Z3L3GU|GV#L_aBWIH&Po^OmMwFq@5b98OPOSF@#7ohBwhv6+N;62 z&4)0I`GO@JPa%ayLLbcDOJ*Lth4$V|0U~dWp~m?+Y-gW1>(#m+|2or&HLeMLtXD@d z3hW_}zp9w$D|H%L?vjAM&wAP3x)fmVsfxCan6hh(^iXq~I=Ri%2-iSvtm~^c@c8U{ z^k920b20D&%nQ6m5>H(~PU-HT%O;Q~QS<=fKSz0A?Q`*?h8wW@krIBy457_P1UX_$ zxLZ9GzjEP-j)4X`P#g{NT@;DawBO|8H(TKIR*%S>Yv9IS`^8^eycb=QImJE@`GWSY z;WPaGb#!3Se)?-mKfmeMA1>H>1I?~#!zbhJQ6mpYE>iCT(d{;e^>#Z^QRge5u=F@q zG&BV=4Bm=0&zK`HfBH-m^mHuaw-7L9>V~W%JHYGK@`CY!bAZCS8KBt57RzOudvo{q;Fb-In%|m)8>{(O8K;DYL z$G|x~nYZlT42aZjgL^rH==dg6cs4u_{3Hk2rNc7t-0ya@eK;3xnA*TpigQT)Fe1xm zHG?~==3{FW9$n=7ok;I)1lsFvvsPEb;V99A%=V=Tc)o@y`824;b=4LU+tHix%jiAG zvb~dRSRP00&|d5$k_xsRyTq1x8L%#zrJ!?VCLSB}-te0e-im-8;4?dtH@4_D zs;rv{Q(S`43(XnG*6A|PNJwD=zPO{Oj>&k2+GO~!J&d^!qzdPY%pnD5Y~btjR=7WA z0_W1ckpD1r9IM~-l>O{~3Ea?jV_Kb~NZM#+YFfUOzrFkn;c47MMfY^ztUe_w%?I7_9HYm>ADs{;ZmSLZz=WLCt>P#`@VfN*Gh! zD|U-l|2>eg6n_ako^It0a!stR(gUnl>jCdQjI55jxL-A#VY6h(0*-eATb zJ{;vN1sczeL6P2D*oo*ke6%|b2bxSl>&D$+)cWP&ddFNcUcaBILq-_-3{mx#1KjyB zzJNFd@%#%~VTi6cFSs<6{8Dqpm(TCyJN~#%v)kvBgZ?o{N+ybS-HxK{^bfdWl{h$a z+!=O@ORzHi^HKcAFh<y85SH)GM3>itaU(yN*9C37 zn#2;A-s%Nk%6|oY7+|G{6R68y29(cJ0fWp~bg8k2-IV3adS8qt&z+9r(Pqg&f8KUx zk9|HGY;j~HzfDBV2NdAon=tt7{#DRb?n%TVD}m#~Bs62wQR=v-1Kry#3r2i-sC>d> zWX|V+!7(ZHp+TFQcG3|Kw`4;}c{8R(U4ksLo5E-ZOd+B6BPi(OW&9yM2?fSElFrWC zaG~{8Y<}lCP23qrdQE+x_uPZH^OHEgDds!8G%1M=7f%;#i|ZD|d#%6|% zb=fvh{qYg|6BU8>715|;Uq4e_DvI6_F>*RDAIKLotT6Kq4xb-{JDlILcD1swVS6e` z(qmDj!VC8J9#!UqWE7NWdByVxRl_Ii8sJaQ+33wKTeKo#75W+$4N`AI{Op@L`5pHi zw$FXYmgH~2rxZ_;)HAo?gow{LRIi$=>AJt-Ya6pJ_89RT<4Eh& z%>&$9Xgx6=I3A2*e#oO`aZ$|u&rgl&OLl{fl8r_sZtkr98&!7oIbU{@ zgd>V>vUfJ{XL8oQjD_1JGv&c^|yBfa%djaBlr+Ugj8i5P3t9=-cGLZIU@` z^v@*Yo(Fx4IODGe(by#UC>|6R?q~f z|3-?I=I654)X!i^70fB5m2&(sbD?IKId4PJ6vS(}Vw|fxpJ;hW;{1(g_}?6jxgW6) zNY%AYG<9Mt{j~88mAko;Y!}FYuy0xL?8`@N%Y{g^eL2fW87)VR=Z%@BFJj1W0wCod zvM{RG0Be3KGH*}b0_#JsvaUOqFrTv;p;EE}O5lG2E5_}@&+FRJ!`e>Z(ff#9_G&yl zwEHz1Z~?OemTDxWIS8A-n#nHe*ugBE)dRzt)-slnVyJ6v0|?k`3a*Vl3Z@7%QLW_P zvHPOj(J0f2v@_lZwN9PRdVZYAhMY-6>K-NR(8`PO?fN{rPv3w)0Dt65p$Gb6wT)DaA)HZ zW61jWi@4wT2pH{ml)0~X1Oxo+bE{@?7vT zJs8Wlm4Lvabwu@$7;AhZl#9j*^rFUH)Aa7Sf{frFT-pk4swDG*Z^3-w4~y*JnzF|s z*S2P?oYx8)j~pgv4dQ_E=tLs!4gFnlNAUmJm z!XhAIWUsX@nQfHC%hjA5u|8K&WE#XT+iS^HXgdf>4T1zwZ9IN>@EL4g*@yS8n1v*R zC8)H_Vc3>ePY!%o0=Y6ZGJSn6w|CN4y58*pn)3A&vC)V|(qH6T zngq>{RuyPlyYh#H^GM;a4|i{A9Su@bqY=Ay;pnz9T9I^yAot}|EMzsbVs^l{wkfD8 zGagR7yp9?@>Le03grN_w-=I!UoNA>;VtwcPP{&w_+?=-$hdIlTCBf%$3q6GPj4~tr zS3IcI$b1l>>kC7&rD1j4XZFRET;5Rw4h;PmfeSw`LC^Cg!7KGNkggF5Z_CEAwGY0t zU7aZ?b=q?9AaN=3eC`2u9iPZHPyf!WAE<|a#y$sYR1TpP-`(KnYo%z~izeO-**Fxf ztAj;WCZPbeME1ZbAFyKMdw7;dKw?<}TAaBHmt@`nkE%*wQgIf{Q5VL;4jO_>8Um!Q zYXx1$t|Bd-&%ve3iky|D0%>iorzN2QoUXYyc9rhNW!jPW*y?N~Hn#xnA%HXLPNn?8 zgD~q+4j#Chjz=9ngLjS7gin5dM3)cEL08)2@S)l3!J&6C;E&@AFq|(3xjDOZQ^JF+BYd7v3A3NIg38)@mK_*@GbS42DQ+HEU8IS) z`WT}1BLdhzAj7uuhQK5*by^_ZL~T7P;p5ehp_1V!a_fBqGW8I^6=MB(t(G?ick)P@ zoCm(4sVY2=HvxUrNhM3C4&klJ+FX{XF7o&&kHc;nvJpKx`1?#*x-;M-jSt%o-|75> zpBFwPg`!JwS&1{Ay5j6_7-22oF2hF=c|g->EE8Cx z0t>VCP&p@#O&_&`h|Sxfumb~94j&KhozREUn+owmc}u7hZiHJ~T0zj+7Pd65j6KoX zhK~D5qNd8jSbU@vZd*1JM@k78wZ?JSr=t&Fc=`;bq@g#3N5M$HAFgwq zN>2Vf2%9HHpj2N;#3Wn;C)qsEZli-=uWCV|Dq2LTcRX5Ea*iwPj-y1F8yA^9lmEnH zD>j@YOWr6b;tH8=6#9#gs-xxj)yf0h;rj(>+AA?~@A-Eex@|4BeG>saw~Ld!8hhN( zy@s5LQiNgBWx{U&l+(?kTsWE$|ASC3*`t!R(giYO$y$(f`3Z>pUW)N%U8JBr8tpB*kFy68kb|rmepB}d z-A9)}^;tRO9@>GQm-Fz<76Yy!BM(+in8#Tf&cIu$o%x%(<@s!U7`+-+L>Dc!r28U0 ziKvJ_33eCfFMedmnG|TLV67=0*JE!@-6vF2FT- z652E-8*F+#mo&@tg-{2F9c5_8~--}=p zn1ipMSxp`*Zer?S}t z8t~gnKHBi~H0o4wh2neT$&gDBu@aP!QQ-&37g0ZC6dj9N+tkp+<;Ex|Vm<6xGMOZ< zy-QTpdqB;+H7NY!VdRHE9B9ER{e_ z`x`;vhH6IfzAt+z`v8P5;y~-icR*9T5L%u;2Z}Qffrrnw0-ZIJfmq1^h^#mTr%DZ@ z)#5uy3{gQd*8K*@?w@7Gd@Tdh0^&(_!wh=7LK4Q_NQC~@hjD4OC2F%4#yX$h!uB(J zklxl=#JJ!bdSI~z^o>u4KFdu=!>BD-H|`vbGY~;r1Q+YSS9QPgpV zgn{Rm>)^=lMI`B5J9@Wn4(_i_BFl&&ZXf>zM~^DRf+;32+$9|?9!MrT#g)jO{Wmz9 z-3L)_xFg?Db`=dcZYW4S(Z|2MPo67njpUMlJfxuh30XVPMbxHs^Nr8=@I$L3$hkbk z)!M|;71Mp_PNxi9>77q4EfPp=ksa+|!Xf|YeE2Oi3Z1G+h12Bp=+n6eiS3zNAaF`Q zU>d5)oZW7?nvB48I$}htB@o}ZaS!Kb`QirEP_(CMEYYgLRNK-RySp4ArCu_qPe~b$ ze=EaQ<&=XN4IN~wV+J+Z6$>NkkH81FAL4rh8E8R{8eG6rECtT+4Toq)H?OiQ6r>BE4jJ*qN`tFe) zi)0!;7yyZEE?l60ANOyLN3|JxaBIsAT<$s^XYbxY&bO=KJ8x=%v++x)N){5dx)@u3 zd`&}rMNzMaBtDZqz(}5w#XR?NGSYOECKnmP`Y#P|b9W92=+_ncy{2H^;tVpOWhG8u zs3-gnlO?0Zr9<7mE_BuO3Mu+*Ni^lP`Hry#D5GZ`f6*^YFC?uLl-NlN-aTE(4Og{u zBj+(UZVy9;u^V+)9VIxrcpg9T>}8U%H;KD3U4+~CRfBFz6D5&f-q8hJXz5>McK00EuuL0HSC*mj@Au(M32{_$PKNlb&BF`b<;dp2 zGW=UT2WkIsCe4P+=z^R{*!591Fp`o)`AYfs{zeNZc0b1vo|Qg)->nX3f9STVtk%utSZ?+usQX2BU>;n4%N z0kn-M3F2Na;ENSsBYoAGoJE5omsc`}YQNJU&iX&;aN0%U!+6tqWjo*pyS*^~R2|9= zIsk9}+)SI4rRkk_A+WZQK!rWB^ux6*{9vUx%GuM4v#;dfg8@>cDE%5X{+5c;zsx4@ zdlyo-)(ZHwt`2pbFM=1oG=Zu+BfN1DufY4Bv3SCjaNLs|2ygGKg%4ClBhp(BW@Q`% zN57uMyWbc=>EU?9ljETs0%1*tEfV1H>YYf$S`*dV?ZsCY<_Yss!f;Z_G)5`T6%X&Z zMPBrDViz$dIPxwE=BZpm$u8?4^C}uU(plu5Mk;)uHvm7HOu^Orcf!{@1n@%0Q=~8{ z0d4)6N>gQ~ z92qcLbl7+@Jt(e8uWIi?a!WPH*V}SfKK7Zg9j5}^H17fUw9ix6xG)xedMHAQCY{1g z_Fk~KWD#_ArnuMo3Or7K z6T5)R{teJpZZB)EWDZ@b)M&egFFo>pIV9&lz$=4!c+0)%=v41sX!6V%y2K2i1mH$2 z5}mQ8c^FuJa|!&)NfV}QD#o&hC>FR>B%FJk+n2~#!w?EOIUPR743;n zCJzsa;pf^jQRcdH_;d~*Ur<*enOzRVn~8t{SB|3@w-d>hmPlOT+|P|@q@i6sR($C- zqsjVSXF=bI-Tc9wh^s5>_h98X-sK1U2 z{xa1OE)AN77ygOCJ->hA4Zm(+Yx_(j^AZ#D%i8q&U zTK5KQe}4mhS}cxVx`(5hQ*+P+^Fzeeb1(AzRtQt(EyHehQ*iQlV{#{_4t#j)fO7P2 z!O*EcVQbYaHceB5onRpX0<(6q$;#j1=85qR7j`&6cx^gv7>_P$<@bZWKRz7Il z(i%1+_%?Ve<^aRECG61l2C(t$BV^$=3tUVcjYewkvh?R@HseSk^Reb5Z2me6M$A$a zp7pN=j=Cl2^v(v}Mz`6hfY{>CJLjVITaOvh}=0A_Wr7B z_)ByK=yFnKFV1`p`A!P3^yLO5C(;B~^hGj3yH2wAo$b+8vpukER4eAa(gCf5zd_#h z8WY7j1~Rjp(4GCOaqzJO#`d~8*iy0^9rJku+#GD7MN1iq*fAX*S+0ay8ZN?`7c%VE zOUD3KE%_LN7L@Fbpkgrsd=O6KoYhphLPnFEWn;<9M~|@6BMHnq+JoYy zz&b~2~m1zoKRfF8GBF~f)Sp!v)RRLuM~-L237ui3qa{+7DLYw>j?YPt$O4%8*d zo_=_GQ!Vkk>w}j~cm;M0%OiWUBc!_W4_+#6#4Y(b1GPm=$0yf_uvcsr;VDXTG&>A79 zGn={UsTSP2ojYksl?Jg?p2%rGP@pl=XKBpoO4x9;4%WI!;c-P>u>EueO(~d4EtAi{ z3iEYPe6lN@(DDeUhzrokeqoI2)&Rcg??&GCC=y%#N2L8Hi~MXkN%hxnfeWs;qJ?)| zAXH8SyHnzLhisjI_s#t%(!~;64;n(F)lM)}TM5~w+5v}KsxWl19=11xFz1UFF7HbL z52Uofim$oss6R#Mk!>OL(r(5PBermCN(+*96=5236OgasS>*k7GTzmE50qV%fJ%q+ zP??|^JQj#z(Qoy*#Xk<3Ur$7PU!H-|-n~Gvu?(D=ErC0iE=6Ou#uJ0F0%WPZms6S` zP47QE#;soYiCeT#k>ncgCKqm{<9SkFk$cHlJb861H+UY z@pahl*o!q)74TkrN^**>gN@`7U>xP(L1S$=H*W!ss)|8R*C|1}2M@s3;}~nrX@+-& zd4K-B_Sk90Ap9erhLk@9!`rTr@cq=IXz`TC*h|hFnm#{=wpWe<16L=o(^Xnbg2yYf z-Lv)Z?SVQxP`;Pd_iSRDj8u_#+G*f@>jYDzCW|`l=0n$AC(z7&PLNsC&n#It%$810 zMnQ5PVf#;gQV?JaxHc^)_xXp(Hfn!~ah3!_Rris-ggXQyi{a^| zPtXjjgK&<|JhZo1fCLK*SZJdLmu87$gC>d$6zpkr+%aHfv5$J?s9gMVgPOV^b&o_xGJu#-ABvl7pTz+l;aR*E@+Z)&qR{C)^KJUo>JEdqQ&yb|i?b+McEr=a~c?QqmS zQ}mP@gciFxLEdmAnyr(GT@B08hJ_BK#X%nFzk3PlE^cLZY36`md%Z~CbX9tJ!ygdf zbP3Mx495QV24SIqg?YQ$@tojuXp4(EQG4!>+%0ATt;DhL$u3zEVLSojcKbz#;*u_k@k zb6glltX~Q1)((+hbElE?Io04*nE`Z4I7AEvb#QvfCwOv=G?_ci3cp@ZjqQZz?yY}B zpm?VrcvhnpZO!w-4ZDT)CyviRWm5jI#7%`wV~wHM2%zBoeR_9v73{bE44X?Pl1sIX z$mO&dyfa&am~GvR8+5OcZjV(sU0WJ@T+u|`hZq^64EMur2AX@z5zBb$vrE5t zVcU{XbX@j#+M5vr|C}6!iVMDw@#p-ofk6a5BK4UV1f0byo^K}aEZj+SQ3s4|HNnR} ztI{>1+sQ63Z@$Z=0d#9>HNRrZeEO67O&p z1-rjx@MV5TQCxnXD-U(xdP`aQCYnd;HXCtjt%`K_>~plzzY2yn)WQleP5f|m4=m59 zqE+K;=(3+j;lr`P(7$^g-QDvLJ8UvXT{9OGS(~3&;Jbj7w91it4?ZA<O35x$|K*X9ygpDZ+@YSXCmp@bKi<>!X%j?u=R}GOo{+b+`o5_D{o6q^1OeW^O z`kd9%Y^pm(l4LGlgMPPH+9C*NPG2VEx5~|uQ7w*+E@u@92D8yNoY`3>W z9Uu7MyPFccv$zvmn`+{HNByY$%PLrBH-ONu04B#{2xZT|j$fFGQJ>$2AT~J-zFe$A zUTdsD1$#AdTGm!_Fa90!x68o+;XLfnD+5=w0`$P&jx6@|z)P1}aj8%S`LEI7J6>oe zdE?sno?R#SljE}J_(dX|=8AQ+tv8Xps8~W~e?7#%ZY;&;^^GEJ={Kp%4>h{Wb{9#= zlfmJK^=Z`Z$t1l?hJH?-1Wg$+xcSt46nx4J+AS02nFov~Va{PdI^_(Aj}IiXf?lKc zqDC0q@dT%oO~4)AF?f^cO;kLBkbhSrJ~Z-~h*iCX0{3ZHJ!Lv%6&8S-4|N${rJ%_9+;#52sp-OpvdWk;B7q*TzNbltITK+?h%c#y7p<%ee?!v-DL{y_Nm}! zWnM^XZ34Lzy$0?v`h%KSh7q%Sj7HrkM^ckUu;`vZ_Rs(5?#;uo?ApG66qz$cQpu3w zJl4L}I*#)!8KTgj5{aUcP)X51gXRnwGfzoHqomAqks*>wp%99aMp0=VH2lu@z3R8! z*K_^0`}b`3`##%qzwckiv8?4hjO)ckvd7uT?9}*lni~MLP0_m zFDcBxZ7RJme(!n2rp$-CPqqu$Fj4r&4OMo5$6i?5X~)T@AE41O*SUd{YQnmR@if*d zo`&9>K*uN?CVi_3Niu5X-kOJT=XV*BwLYh)TbnXnmNt{N4vxW}rs~t=lL2J)c1ucS zCE%-tHh7iALxq7G)E`_;s-EA+^5Z@*TeZ!RVbp9QStEv@%)A2!Gs4Lhy#-kGOcWNm zDGz}GI*@Pr3Gy zayW;VpbKVoXtJ#nSvNHaW!c<>+UsAzhq{7D#CA{#0{v9i^)aoAZf!)mgjO8u01WJ$8D8a;`5Y^_EYCX+?UX_LnGOg+6d|}UXExK#*${& z^=y?JkGr*113wPRpi|)%b+j*|9+S^Pq(wNHf8GciFD=3EYfq!ot9p>p{U7M)awmAO zyN0|fBINx88+0{U0ro{c$CWYepmz5zWLn7*YiCn9yfPX(?r7rBjyvdldLQK1U&qZ| z*J1qbnM6fN6zxuIXAX_uYG8Wl1d|rv4qZBgCj4=6K7nb?0limUa?C|YEUa=YfjZK)}|E~<%aKbunByJa+E zb{(ocDFeD|;z+om7GAn%7#!Ki!=o2W!`|l`u%;A`ym&blHs6%S36o;U>uCn$BQoYP znjgZJm|*sZ=m3~cVfg8#rks~SH0xc|&8o<)WIy=|XnR;H9cvN5btsKuFD2y>G1JrR z*%T92PUR9_b#x+;-E*7jNBI%I#%fYh8_6u)ev7dc#z?@M&5VzaJM}MDrAM@`qrnlU zP}=Aol4t6Iw)8F+7XEzK90HlF?-AWC?2aycX_jmEnzxT!k9Q zax^CXs)2vYTcj;NfQ}o>;`dJ#k!OPo*v>pDWO`Kd-k)EJoYmvV@}f92=EOr#%~pZ@ zS<)yjPlpNh1N`wuKeVV$C62a>piR_7m`C^8!2Q%%!k5@e(a(<~qC;pYcrsSE4%Q;p3$ z+(?u2O1RV0HStcTCfu^36vh>g!a;dfNbI^4m&p&~mO3lqA*tQad$N=42r8hvbWb4B zl;_wZ?i#iW2qrI!`%nlYtm^wi7kMv=fE?8!*rYHOec5=7X*}==b=E#WUx&U!i`;L) zYXeU*rU1boQlijc*o+#7S~I+hx8Q-32eHSq!C+Z9_TTXp`7lNhd`pp+&>8}@t+8}g z=Q+CESP>eXsM`Qrp_bT-TCG!?xlcCj9$Ui|EsSDE*@co0g+bQOr_u#wvPw7CP3z09cA!0?L zNSypclFR^1+`1JMG7Q*&?}60$<4`EscvSekIhcO0yn+uF6~gz`fFUOnS2fHf<8
      ({ zQd@HwHpJy4MWbn?Aj}yrh)N)h!6x{!gc(YDrUhqelE|JN3Z%|Li}lfRgjA&?*gIkd zPgZ*a4)VQ1uBE-F`LA-&l2j2$U3r_Fo8W;D-4-FMiyn~`W7Duwj0thfWypyReb99# zINVp9&N2!nDD^1uH_{xnrjG^ zoe5OnYDgbwG^5En=}5wNB8{Hefrnjaf@k}zi1DT-TqLVYTH?QAsk{o99UDecwx!a6 z^qEX@&H?nzTbI!XYqb53ozoabV{>%tHx|=rf`p9hNcnHZF{l?oqVOZUVE%BNW9v^Mbcq7BEdxjf`Qu4eB56$czpZF!N8PA=@c| z=+5M|M9%vZn(zCN*a+jnR^OONi`E5EjVCwpigl{Q=4~Q&8<-7eQ%B&Y>jw0@g*8pO zorB)QyvL#m4Opk561!R+KqaMO*re+y61Zf5(Xn72`*kYM$aX$+$+wADf6xQ4^+I?x zdmS^@ZYdMq^aP!33}w1BhA?t7y3m^;VGN$s$XqVC&bWR)#^^j8gC;6Y2Pd5>NL#B( z)_N_3r^-B3)?Z*S^rr&qFS5Zshdjtsv1usRR~pVO8;g%?D4|EQQ;?J`TcWZ$yjS5xuOhex7EUpX-mn7I3;ZS-~qnS zSbz(wUNN&JHo*eHb`qy>2zSUFVSTI!bR`>eh0#T1m*!}GUP>v~8vKlgZVqIZxm405 zVLa@TGZn;fLnHU`o1t| z$dk=*30Wht#PM{9Qxdr~{~cpHs+Q4_xk#iE`1sb#FytkSNojLhgolLG;tOBb;Adzx zER~fcvx?NHY0C{%qFf0Uod?jH95LZpo*vK8L>tu%MnjM45#+&|F>Q<+a(~vve3en> zU6D#d1%iFJPo#|J_|6gKpV35G;sWNweqCN>Y%|)iGY9oQzYc{C^HFxKkYhSV(I961 z6-Za#EqvZn6yGV#b%~#bPAjx9)&AMMgA2;=HSsV!a-9xy2Sqa9wftaK{1?Wx;5hGA zVmG=dY6QENgyM>Et*F1gh|I8Hh(5$i^d-D`gYw)k+kQu?xx3nmMr;)~G7`<~Q= zzm4s46`sxid;|w;waKM*8uZGFG=^`{DbzRwu(AFpm~ZE!x8r7@7ea{J$fL=~`eP)J zV+W9nhZHk1y@{D;BizfCwMWc4wbN4#-T zwklLBd*dw?7nzX*z!XI;Wxk3T;gYv;kT*jZ=XtCYU9679C$?QR_^^8=ZaA?F4=>Xt z1s%P-OZF3yjJ!AYe;J}8A@+h9X{#^BL~jSV+--s`2Ax9o=QW`Ca}SywydR5a4a2*=S1_}g z8s?y`KQ{fW0ajzJ;X=<4lINZeLuer^Y|dp|rrDszU>?4!xq%Ff8i37HSCT{IJbHG? z5qa)EZ*U=KIC7peoF;BbrUqt3s64J3Eed&x8%IXMWi?5Zw><>+m+E5`op9pSWsbdO z-(cSDD?wQe4kXPv8)vvYq^rYjqa$Woc&J3TL3`eC?BF$mrZyDNins_Q;dvR=T^0IL z0uNWd6UPEBjCf7ii4FS*StrXUZ#B!&qWG84zW*i}IbDVb9%yoz(=NcVfD1uua%vT-&Yxv2!!dKS$up449v8CUtDpk5pzH@GLRQ~#nB=Amkr$${vavS!tXsu%x)jU26BF`@ zmxaRok}i_j_lbF5a2tKS8KLje_y}G1{fq^7;>cwAr#!PqFB!A_Nm$xK8JNx&sAKmI zJay0(f}|(mlSN~(!=NNHo}Z1hPnTfvg4duc@spPC3PdeO!`T8y39=^Fk4x+q;baT+ zso0u!x_p@iEnlNZDrQKL^=n6Q;o=r-$IS!STGEeBOKc{h_Y{cEoBdFcb%i`{$iWXL zY$6BjBADVgrv+%!gI}AY1kx1m7W}u2e*cFp-@X{-q~kI&~%A7x_N>QD|dSc zSl@Jmr{4mJt%3|bkQ|NlBlF1-VL+u=>m*wGE)UD!rf7MB47eN=r@W0*2=8MEtMs`6 zTXslA9OSyQ)+HQut7wu$jrLH;-hO3()% zZA-jp?qY~~JYHC*B96|L?D`+POY~g`^|{;2lA4B_@TUGN**RUsn z5Zxc-vf3C{>|-`Ln1ahSxvIgA_De#>qe~FYT!|25H%fhk{mt1i}sI8q<+1p;b4axi9RXL z?$8pY`gQa8SuSmO#$ciVEFgi#FoaVnfzOY_(@35w8Ju@da3MU$25)Ntb5Gw4p6FyKk| z2EKzB+F5oIPn+R`w6&Ik&SzP==(r2H?itH|A8dijUPUs;Ac5z2S%Qpmedm&GP;3mYe^*fnU+u|9)uUG@1?TevPhr)QEt|& z33&Q7j=%BMP%Bf1kUQw3^9a z=QEAWaZ-fFznDT|t{lcPHVqWbtU+_M`@lY>&tSOad+2W!GF1}~(!=r-k>xRFA#md2C$rfk4Zk-G_;aSe`JvLk-r)EA z|6}`Kw@1@ZvH$tm<`Vxn$^UM9{I2`9_}6-=O8<59k1zQT_nyDH6<+`Iaoc`%j~n>s z<3fLRlQ;i-+&{d+zvb=U{pzp#&ToJEef`({NI~XLKT7|L9sce||K6P5-|I@@*DU^H z`(L+D?l1f7{nJdpKL79b@%)SZ{;L~*_m4k4;rG7tyE^1=d;G`tzitmA|H}}6Sz!O& z_V}-|cY5n1(p|rVt=n9J&DP$B7m05f=|`L3#pJ!L`DH8a-t)=$9d9n~P~A^WvlbG~ zgaO!5V?@sy-63zJ6omhGjo2!l0$!7lUZ~+$Ggjc$qpjJ=LH7tZC6!bRkz#)aDbZlRQffE)BHeakBUUrcCACl2 zvFlB2*xVcu!7INqva1&6CG_!Cbi@^w;V_=yU=Y-hVU7q$9? zpzoEG;GFUiHj;DTfBSKbQ|Ie&h7F3WkzSRsrh*%*7cIg?t{sC@2DPxk(hzb*TL(+O zSL5PB3fV8^`gl!mH-yj4WH0TRMzaRj;OpVLXv?G7w81l-hL^6Va)m~uOInomFC4F~58B|MFkf=0NEyhLeuj#}>p)w26g)c` zgNt74Bb_))G)h>{#>+SgK8!yF1`4v+WTXmymU0PLI*1)}8wi_WibEC+MQW#14;f~Ju6mY>ny&}F%iD_i6lPvqJ!IgBbI+{ zXdoGk+W^^G+T_~nAhfsQ9_lO(0K=FuxYAA;U$`lPBR<>WUCCikZvPA|J#LE^j(*PE zuN{GuGgR=hoRLs^cVd@6kkPY-56!@hlF`P?9E_ezPV z-0~z_`Y#f#xJ>x4Pm;U#DwsAuJkNfOO`~_CEx97SYWB1LS}xT`pOY0$=GJ)15YL>& zFe0D{FVitcCQt4PYe4RX>x<67GYctPcmFZyKb6Hp`~+acgn`mme{7Jdi}s!zhdyTb z;WPx-@cPbH=tZtZ_kf8 zz$tQy?$_xLKPmpM*Fp47&3^8T%^%z&MxP&?|DA^Kf5T;ueuhidH=|8U`jO@kGiKhF zK=jCZC)$!=i*76EgXAGkG*H%xPJe#H6d$z!4VxI;^wJo)XN*Am$!4s0)mX@~lEN2c zG;p8nGVE|83*4d;g*-xCa(2&Y_{Ls>pZgb(4kr<89XE)t_;{05O-Urfpd9vmtfoEv zVnnv=6PDPqiz+=&pwZu2asJnvlsw-Bgja@DPd#St4Lyb4jgfWzO7u&dl-l}9K!I=kmE-U0F5}-e9?2THZ{nlsXmaazD0oOpO>*DBNEl)Q!%;tkjRNWb+AFY;y-L zH|oGri%@3F%q>Wz$%%Js{BYi*mUm3A%>pKRTs9M!Xva)k@t)C-ui&+7u0)MNV_=n# z(NXa%MOa5p0!~aAix&H*qnK5ds3FTlSZ7L{(Yd*h+=+Pw+d6z{sor$F_)r`fnq5VB zd|}F+ZWoc?JcO2n9)b_Eo-#{nl2J^$4$r(%fys*tXAbW3WG?80pk4dp8UM3}NOO$` z&vFI<1@Eo+fSVFpc<>3+r=f!{j-C#KyUxQE*Sp~3C69eo+(EG@5xctDk=(hZVAvZ0 zCqLSgug0#JUHcwS|AUgV<5Gx@bp$-?xWHP;DpKuRDs1QtTdHKJ#1$)Rv#GbFxf8>5 zxxCfWxZ7>Z$P&+Z_-=9;7cm+rLKsid=o<(c5m8WZUKLN@o)2$bWN}%DuomM4HQ>4X zK-&I5#?4nB*%<|(`*WhuSgoNbEMYx*Y?gwOo!<d_xJ} z)5eMvWXQqYOnJO~{aeOlQVn{ae;nm#o5O<6m5{kW0S+2%2H(kVk(9Oq%GkUWNQMoQ zX%NV)Tqpw?FEUW<&SVs{sSRDf{~A53K99b$x8S{I6`pxU$jA%*j8@;w#T8A;xF*XS zOQr_mu3&kR9ep2-%^u4|UXQ00Pr|vRfkSkLZyeW9>d6@#`N)t5kGJ+8V*(W%kj|<{DChe`kmGV7Ibs6Hy-I|-J0U2>eJ(P+X%8M2`xrCNIZUju zK4$Andu01y6r_Hc04C*&z|rggYHAq{?fdLuZO>EYsj%jjm-`@i==q`va{EDbYBwkw zeE_M&hA3%7JE`3J4e3RUCJJl~_EtVCj3K*(?ItcKccxm=PG?hEcyJOHy-7tc;^=Hu+VXm@#9-3`U;QEFyc=5u?*!cZUT)3?o$4Quw8eKKew+-Z$uX{sx z9gydz={=+!!H>ClI(N8CNjHA?ve8_}oyq(Tr3U;Yz7l0mV6dWrBvO-2MpcuI)sS%Fx0YA;@3c2PsB7W816}xOVy;I1ch~dH-~LR_O-}|2&i| z8+o71S!RXj`$*xw+qVh&pg?+?TuJnvQsS^kpLTSQ6>52-`NwAlvm@pn;2$YWWlx`t zwdi zwQw?CVNy>5K5r7TW}L{G+$Cgs^;DW7)ehRHbNQ{8Msb1(LN3iYP0nYww&11xNWn(i zV}j>Krb4E}UO}(wU2^PUJ~Wz)Bd^B|A|;7c5cet{Y*MG;S6ZgH+;jw<^v)0Oe{umB zWn=JobPzL!UMQzB7Tvd(iVLT38>y0a`^I(nWBBZSC z1Lpa2n6q=MnfT#~V7v7IGQ1jzyj;X!M)fOX@!=janDG`~+uy_{Zx;b?hc;|q-GC=P z(8kjoJ#lB{8QeKempoFGf%rGp+{%HgwE5OeZpN5%boZKEt_dIGh~q?l^7OB4f{0Ln z)Hs8aYGYBG)JS~!aV2BgwGz3lPerSr3qV}i8Y1rMf}Zwj2z`AKEgCHjm$w1VUl74G z#Dp^iFP{ND9E+AFI=~XwLy$ka1y(JZ1N#P3u;z^kBs3nE$rqwsz8AKA7al|s1f%#cc^arf)DReMV0eok)O38 zTo@h?ZueioS8^ZZ1{HAC83*t_9*d%`_k;D!I-aAUBcr#~0KPP@KwCVMP;=dRlCk;K*t^j&ua zto1HOx4t>S(`oid<&q}g4XbeMrISo($7N=(yArl*x`t$goHAdw0%qxp;m3FU!7AVn zykd|$R-1Mh9P}a|br8Pua~J{MUb5muDfzLp5_*cC(15w&!eAK>k}I{6%1*yc zRj&q;DcW1MK6#PZ9YPBs{4p>j0g*CM9 zh0rHGS-}V!_O@dj)-Y!vL2eapRS9KoPM?K%Q4;XTNE~cU>tLYN21e*-18+hinrw3! zsVJ%9rPfhQ^ZYxEn(rNu+i@7BzjuUEvn0qIQ43>JO~7Eh@HdK;2$>KT0Hvq*gQJxy znSAvL-1t<4mweYH3ryX}@+n(k>aKJ2deu0>>p73F`pD4*vMIE0jyEaSRHfQdPOQh{ zk?f(qLwHW|I?#Bz7kdPEF!PNsqGmr^h;q^dk8%l|n0*L3)Y?H(_?;{7 zTZf4*iem1s*a(h~Y8k_y&FG??CDg|*g!j%D(Yq?Zb0+P>!#uTMo8}UrcMGxIu3psm zW(FpY<%!6Rp+tNDLvNiM?X`8oB|&-gYm*e+AN7KKa5tf=^HXSy^Annp&_*?!!*Qm+ z3GCI9!@V}ejPJ=XRPKvGA0?p`<4fSWR}yR!i3G9I!^pHt6g2#%3V-8dGWEw=n0PBG z934@L22O8>730r=edSk(Ik_C>y*Z5UykbdJaVcCK$bm^6*2K0-1vhffalyHj#~tkns5%g8+_KD$I;U} zm_2P-C@R7TK6Ds?S=C$UTzniZZxqMkJ!(RB!6X#8*bYqNzVMP&JeaO@E71O&&$zp# zqfB9a)uFPZ;SCB$Tie9&r?Ix!^_c?9oh1Ty+l4HyC*vXDj3IuI--ZjbALD|Q@2F1w z0R2)o6|>8q67FLSiJmfq>df{fa}G(;yG@mJWNbZ^yD5cjoQ|Vi8joQ2#dK!D8V58_ z`X*W>n}w314Z*x`A*9FiL0T~wCD}{jXE(->`FqB}@Wfd7__hMad|8R>_PXOELME8B zS2_+g2*Fh?ONr4RHna@da8T3*EZRMT7Dwh0N!m>cB}UQNMMvog^8@&Hh@8M?_%UvQ zNv1$lGKAZ4IY1yWY@Z-pMRZcWcMAW;$$EikZvd_E(Z`#IrI8vu69nsr;n$AZ*aAAR z-^Dh3?sWBMIMj-OSv*{t4*rZj@)^M8Akec=VHm|sXM{2k%6XCT%tvB%w0c90Vj^s)2oV|cq;COPMI4x3ciq3xc+c&ET@ zR6h0z-FHb;SnD)_*sebZFK(N&1Mj^s?d>JSQV)rUrwDQ1l84j0<*>TPPU0&5P*|t5 zlhF^-!GU9p;H2j{+VX82jND*Hf>TxSSRG|bTGjB}g(dbCxdEn`0VTg=A7R>@TyLLpElYwqplr=G+)Du9SR^~>mrpHC(Z{ZE*J?H3ic5zk=dxJClo(4--RVCi)h#7 zTZCpBQ6sT@Iw$8Y`P9FFm}q&Ec1vaIlbw&JeQ9R`SIJ`$EiZ6L+)MvRR|V&Z8f4|M z+4#sOJ$mbD8eH9zg|Cze@WE*h$$fDfiX|m&+45R-~Dnmfz2Qyl+p>{A}dwE}}GbgD)q$={$`z z|3XhTiO~K%F4Q68AZshE64+Skgk7xkS4OJbtg zgju@$n^uEtkJB)Ae~2j^b}ordZxiSKuEYFQr~9qH{J#D#=q_r%^xnTn9e>wd{(E)0 z-}-OLFLfyN-Cty)zr6eZXk`BCPI>>&$6ffO|4Bdl@76p2y3YRh%|G|o{C}_5KRxB&ZJqsR{p0s)`E8%y?SI`r zs{WJq`Sngv_+uw)gl@U;Jik!g>Zm zZr6mKHIs(j4Ce=C?Ggk{o+i*d8^^*^33jWVfbEp4=AJJO%SX7|)!PRl^^BPFc|KHC2D~%VC03RuTe#Kg~(& h%%aega>YsO+lNnTBX*O=bTsqcEeW11-)lVi{{dw8hsOW_ literal 0 HcmV?d00001 diff --git a/capstone_project/chromedriver.exe b/capstone_project/chromedriver.exe new file mode 100644 index 0000000000000000000000000000000000000000..4bfff1efbc1e63dc547a947f1a891e1548962aa6 GIT binary patch literal 8510976 zcmeFa30zdw-#S(#~BF(8Wz3JQoD;yxqlATHnn{@$N+@2rygeZJ5C|2)6v_weF9_ujL9KJRnR z=bU@ax%Unpoh9>@$z%%P#toTlBaZYJ#eZ-86D60)T6g@twQPO!qQH&vK}CVXr%g}Q zB&X=7raV7OGwJ!HB>im7#3`DTIZ2x7Nt)=Pahh5B$y2(vYSlt3B^_A**ZWi6E8c2H z%#}Tb@wkq;QdW4FA4>~|<9Mxm`>j)P+cSl2g~&Q|8Ua`Ms4;o8+p(kt&hPpGGE2m_Xse z9+OQgg+~p-l;e2ZK@|^8;ku?wet!1zGTG+KokWi6ar~XQa{fhuxUOO_nbHeN7cY>> zmcjpL99{mRWU}n8DXA%w;Kn%tH?keL=z*ilUlgU6GG(S70f{3SxRO=i=!2unAHwx= zx%?k>YK+z@jKj4mrdAtYtAT28P%^a_Qx8y^hG|%QaUzR2Skj-VTbPEa+2V6IZrp&& zp^`*q%LcZxHfkJp=bF|(NW|PxdX+b&cle*ugDB=B3X+D4Vyj^4UK-Qz7Mi+!1~YPo zZ1l5_sZ}iuW(}Qli4iWkMGafLUzAr0MUs>Ep$faaw@ts2(yw$$zmgKD^hjR{1)sy@ zefXc#2U%7BpaUWvJaUsFH9Wi}mFcXh{HgG$45=#FDky)z;^csJjFP#PB@*I#9ke!02KggCXC%K#Mh;pL z#+4SjwB(xR%A~4&XYzRHS?MB=D>+EK(nFq`Vj_$yO>}9O$Gv`w{P1dRv*4lzK@aW| zYdoEzz-{$Rtw3#8Tkl7Ut5&&|Hw6(}gcLY}b8+xIU0%5bpXAT;LgJj+pZ}RzDK$j7 ziDPo3WDeEmW|?L`NPIV`9}(oxuhOYsADH!|KhTkB_>ul0xR3xF-v7{_Y0hN>Et`2a>%qE%gdfMvdc9!n?_wj1gb z*rLx+au=As9WY*vpF|CQl0xw_Hwr%sV@-1t43-3IUn=1i&Jt#A+QYjYYcqjjjaRca zQz>SmhPBaC?4(fE<|RsDZWL>i7HdjNz&TIN@zZtPRka}l{hMWeVQq7RC!|{`3LHQOm|io zt5qYeAK(uJz;OLRLt9gqM5YhX;%6_};o$9P|FQFWmzE<52sY>S5G#9DWQhuz>6O>t*DGg(<*U)B-leM9+H9@RRM^JNn z+W!CK%fS*gDv2Za+SSxR(tJ#@iC6}ciHwMV_QB{7?$-$0t*xl`v~;xQtSl!lpoCLn zu*hMncmiU9P*K!Sp~P3-d1*LuN1DzK)L9-@1IWkt!DymEvT#}&M<6FYO0J}6`)(Q~ z@B3GaE9;-ii|Y0$v2Mp2>Y;Hej44&}+f?mMJ`fjGdl0JjAXM!^V%1J$J=$IK#&4$v zZ?TCml$gCf>HSdIdvwZ`nP%`XMY7)fTHc2aMRM`VOT6+*WNFb_G~x(Z4g`7(mxHuX zbh#~&B^RTLCRd~z>V4Rv$I;A?Nu#}8A>@3mMkov3PR+_-@v*k1;`SKNBv&CZeY94C zgse!-R*aML={UhyGWkjrwLM%^0T?fd1E(5X)bk>t8X)YWQyM9|j)g3?%dlkX)=b?O z6{du#hv06f0=ACl1}8+&Llb)!naCOo0j??tLT?z#)QRZus&Pu)wF?g{{vz*D@P$Ui z4-HGH zha=Wx>UMAz1vfIdv0?|b0lCU}`y8&-V$2t0C!(EX3~qV9>^VrJ20c$q0nHjcQ34e% zj*}@H9H&vIgyT%Q7NWJu=#plmN}^Sf4*Id$ghZBT#z2#gVKAs$v>s9HjZ17)Ruv+< zjvuK4-X*4xra~((1r-POP(pCz4c6`pi*ajjPp-p(#BXQ9>ly0T|6M0|55EEHn z5%!_tV}Kc7jAJ6wwpHLH38~nsa56UvCl;IxiN#3`Z*Dd+Q!pXqf}uY*1L(qWHJQp& zGzAz7z+pDGNC#mE=;lf6qHi(?m8g2W%~OKeES{22G_!c5$tx356{{1{2xz$73kDszTlskVZj_`;QMsqUGP}8Z>v8wv z9)yq1V?9D$@eBp_Xjqdr8wzGlEDOa2s}lY#pu6WusbHG`3hKW8c6 zDLHt8;R8$O?BFIX&^=! zzJ@XfBnzCTK>ec;Kg_KfXUF-O24_tgW9}OZlRR5A$#egc?J+E|?!Y$;w6M4LU|;d z1*-HQZt%1J*FF!TuI)d`J`X?h|FL~;a$*6N;|}ceD2v0eiett9n0-F)Ooqmij=8UY z-9GI{VVLcHZ{Kv14UdRO&B?YwyNK_n;ldw3R#h8c%mE-I(@#c*zoa;S~ zTeGHXDfDWjYOoVRx{o(42aZu&-z(jO2H{r8c7SH%f*K4KjrBu{;5z=Y7>_%`$Dbfx zgGxmqC(!r?Q8l<##bie)zv0cY%)oF8g@G#97say|o)}V!H@y7jl_K%Gb5U6sD;87+ z$Fl}Yl(oZ6@=|aB<0x_dl*W0B+Y|Rr3`5cE$ z&B?P(uNurk9WInx=Hil{dReB}PZbv0Gr(PymZA1jwI$kqs;~1Yjyh+Iu&`;9f z3b(UqByof+4?l;tB(ju?awGw-{fR8~ssfzed_vU>vuQl0zPLYI{0G_}qD%_)Na@a! z!5p2w*fr)I<*nv~3j-3Y_n@4_^0>ej#;Wawau|AUYRM@Q3uT+!LhD0B-Zn4G8vCij z(#L+Pw7h0NRa+jlpK2_$mxM=)vfN`oO}C84DW^Zw`VQERlBCC`%ih^1@Q-<0X_ORSwGDnnC464}vnV>!8c_Y#<)X9M+Lo~gIJr_HCXiU$+ zahi!QYa*Xd#-73`ee#r~)YO?>^(j-ImhF)Kg!x*(FyF8Vim;)|uy~d6H(H)C&FgTZL3nk>QIf<{9;d{RMhwC>48I$iY+)Oso28qpl)4~Ti%9uhy7T5; z{LDHd3v?{i_mC8T+Ig$E`6A&NhyyGWL-f$7zg%ql_aG zsJ~7wRI=nVt=Pgswy>IWzoCY0D8({FE7U(~bJuu{HCxo?qo|UzpQ2`HKB;EO7nRM= zOAgn~C;idDn%6o5I6dp(=?Hm^Ei7h9W~5CCT{j<5vxOHNzDU?5sQILl618Vi4;fg} zR+p%qsnNiHBGR)9=5KFGXkN|Fn=ue1ujV;OjBP;kYJR@?eku)?bc7|HW)n}K3R1me zOV^Q|(GN$%!;s!~gXs&I{tTO3!6sj42llfAS3$~8Q2Qr#J)2!W&TP5Nc8VqMhg;)M z%vQ*3XV8Z++exP1!}N75<${u>)B(HwSxULT6kZCkkLeqjzCF{wga9Q#nG(f>I0#$k zZycA6Q4zD9FbwhA=k(W1|kPsRgOYoA*v6Dycy>sf+ZwMnFes}=^{n$N(U-#~vNErOx zcP9yF=FWYe@cOoGeFz;FE&7lkY~30~xVm7$QiAR3)w>BlKlfZUVMR>LR>HNKnwEr~ z-+zCG@JngwRKkQ$KW!lN`SHioga=ly{+kf@`R8?n<0&cc5I)Gx9z&S(+iy99BMl7! zgs0wm>j%Q12OoTaFtb~?(S(K1JkyhKsjkk8VA!!^C}CQ7_*lZTUwmN1q}TRaZYq81m3V(+O!m|6D{k zJ!j6xgtpC_-$%ILVEBkIDkNk!A^hHZyArzHci$s~gGot06V{I&eU30@&6;b3&xZ}W zOql!RlYqd>T5Ek#+HGuF(aq$d7p3T;UF!bARPY}*tyVj1dq<8N;!ux{9658idx5tIEok37f}{KT2rVvgQ4R?++Z9OE^$f^(0~P zV~>p_%HgBoTVAU27w3 znK8VN%SJ-ksZ);;jD>~02}w^p@f>0QtXaPiFn*Av!`9C?*+;o?PK!miV&I}^4|nerpy;w!JLAjJIe zgO#9GD*Xxi-+wP7)XbZ=j4+^cXFXwT*RCmqh=2esA^yuR&l6JDuP-3Ho1gzIVY|ih z0O6BEhvpM3vuCd+Jl(NlAmN>X0}m0N|MSm-gjPo55(0bewZ(+0E{HLGpMR@Vo zU$+o;Bqn}K$m-Xxg5cxr-HcFo`Ldi4(7JV7LeBHge@1xW@y90+eu$61LYTg3Q!%0a zk|l2t-ZPs=5qjKz|3id_KKf`AVc(G>5rpdc`nw1ZuUhpBp;MbSVT9e&r~g6tX5YSK zg71nI0wHYW%C88IeDJ{rLS%;yod|a?UHT?rtJSI@EZw=YKjGUEBW@64gM#J}zBqjN z6@vHj<*yT-`{a{)LUTb#C*0erReQpezyID(*n9G%j*!`_S3aS5+O&;?MLm1w5`y1* zZyjOuBagg9=)hPT!mI1nZ6|y^eE4<3tUvxJCxogb?=^Zg$ksbAG*`o0w_Kj^U3x^qO(;pLwQt^PjQYg*6u z9%1W-|IzM$_5a`U|9`pu)4U*N_W7fuv}~dVG(Z%P4$xd7ZTI}AKl^$xZdw9_D#IDA z;dr)bLPqehx&s-R9fn>?*yx10ocOn&(eHYTB4G@#5W)%X3?_(MjzvNg>i_| zI8tSqS?vrf_z2?_!Vsk}QYCIz!hHDc?w|j~`AXMW!Y1b{4|`5EI_4`eZ9%gy*Inir zoj0A5BcJs1Ou=!(DW%{#XUcCgZ#`#fzoF!_ltt1Uq>|Td_}5nk|?Q<@1>S zx}3lH9OW*d(QNZIDVhg2cBV;6aS~8hBl;GIz5%k}#*AYw-i5jgVt~V9fROtT;Dk$n z?Pjx5cS&c~S#8h~;qULitx0v27qi3t!r+5D^Y%0!~7->@fcFl#Vh+C7P zit9GDE6wNqJM+0J%;z?5Vm{aBw)45(j;Yor=5w9%vY5|RViwmC_!`XyFTCKK)vb4W zIc9{Bq8jtJj_Vt+CX`OnHgG4-DIb-lZV|>Yq0954#S%VqD^BI^r~Jt3G_N&R`8PLH zF|eegEXnFRo122J3(LJse;w1d$1!btT$<2L&c=l8@t;^qEoNOW1ABnInDpgSx8kI3 zO061xz#d?)+RYE!yAXIc_OY_HBoG0&NlN+STW+}n#%w}WB`yg`zCYfnY*dCcrQvXv7F{CI+ zatUHzLTs*K%6W)z$*H$A3GI?JpNKvW%`d5GB3dGWPet=NX_|_5%5PnU=Sl7J&;Q?rx{GIf#C?6RYC6sMN2^QmQLugHTVwmrC`ClrH=v)#@vkOxO>9^BcMF{_HX z=pxKId%N^`_Q_~8U(8a=so}a$pE}pBf-oa(`kuxr|1?@K%}RH*e#nknKUq@?n{cFV z-ab&kB^Jga!&y3Pg-_DW>3{M@oSY6r>cKEV-mWTsc#4GDg;q zD5Jpwc2M6uSdcl^G$rdNL&FspK26`t@WiS+mATISBhOy^DweRY=ae|Yz3o5GCG>b` z{5ymvznih0(DB1Q=Lu`Cj{1%;@R;{o1WoAG5rpsO&bmxkwqx!agiBt7IunMT*n6Fj z*Jb-&!h?@TrxSji_}S}(%AZE}Cv^V(zNv&hr(3TgjBCt3Ldbn|ju#nb4|{Guq4Y1qBZN`21NRX6S4|Hltk_x@O_-A- zyg<0P;^ldS_eMQEgYeL%7Y`BsIx=(vp=R0l?Fm~oYZD0zcJ^3Lm~?o6KjFl^xK)9lOcqJjZ-?UML*ZVZwLs(fkb17litM$JT zzDwQn03l_d*HOZ;j<3fP5=VU3h46EAkT2oUUvs<(OY&ZQpRnf%f2l!jS1lKOs!nf3b+*)9kM@LP_|-Wpse8sm5MC}kcYyH8{1!2U`MsExP@mahE5Uxh)jWNPf$-SF zXZsO4v`Jn|m^nIS2%(|%jcWw9IASE>sUONZ5V}3m{UJgNwr?_F+So4x2_K9ZUP91z z>)L~$YBBXE!duvqO;~^Ko!x}{K6v9JLV9-IP{Q*EHJ=hjzcg?(dAukDs4J*sD9Z zjnHe-Vm0BecRNK9GV|ML2#W`37Z7&;@l-wGhbxb@Aru6EGK+BkM~@C99Q---0-@EC zVP^<0nU56{9{#1>Ou{$Go8BX|S=sL@A;vnn6XEOY%eN5L)I4)9VdR343PPu_EE{2I z{~-m0eGw&Q!t!mOHWF5qw(Lgu@>0ew!WXYp1`+oEw&Fp;GvELHIU%IShsO!A^WJPl zcwxeh4+z5-_MJ$$Y`QClkX5nKLg?DPZaiU8?vIxUACF7_i!isr56){&NP5oyBH_&YzsU)Pq3?f9IQe$c6vDSR zPA((_Zr-IN*zUHRB>aBrgMEYn`ffW3r$269N(f#zznq}^{O2DDU7mSBN67zTWhmkC zPZP5VvxjVcf^dD&wl4`)S;gxJVP93;O*pSuHGt6b%>Ft;T2X9kLi;x^KT4Q8xZFhO zZCf{(u;bgo!wJXVQ5+_GRPyUF!k`zH-A6EoblgbjJLTCl!iVEeD+u!CkB=iyOMUnZm$Jn=UnuCC}bVM4>VV+eqTb?FFXv0GYIiE#MAhf$bH-)hIXlE56D6+qiaHG}RJqg{v zmcK|)s(z^?RIER~nlO2!Ig9Y>_RQxAWshx0CiI&*b~d4SV|*{du;wq6g?9TQ;_s-> zKFYYT_uBkp-4}iE=#8b}D|$z7skCk%{_4udzRY>xsdIzgZrSTMu`TGHq46($B~47&m3Zn=_O9#WtMXw152FedE6}eVCb5@tth><~=Ry zj*n`#@s~b6#UUMD-}VgiGXMCexBRZxX7qTYP0yiI51xLvcGu3D^(Rx`Sv$MasqY_O zeDul_mVh~jlVZ-_`{Mn|h(OhX|JDD0%m4r7`u`uDKQ8$f=8u>C3-iYZ@o1TSuDPlCV=nI?>}$M& zMria%^!L)egFGG?Co7lFaE$?Vmp~^^>sXNfr)Om=p26Q%>4P*#Yf5IcTE6W zM6WzFt=DeGzAwYcY{6psP=+ThgxbzG5E3)8^m~+kyYFXAeW7#4TtC6Bp;Lk{4F`-aS%T1D7(;54pquJ2YHhe!kN>d}3w1(1uU0cql?_+a0-A~jr|kF1 z+HkBVWkOP>_htI2O1JvPY(C7EsDzLqmaI}|Eh7e4nlDS6sU|aikm8rt2D09 z%dwY)z5FFx!P~pnvCI~TPwn7yD~d&Cie$n*@p(x|6e^T+>G4Q@5Vd$~1Twbs%iljI zuGeuc{m70|HIGI;8;iyO6(|j+Z;iK#V1ATuYi4PTrRkNZV{8$%!eJqwWOoVV+FqM#FK6*|A&CW1U7N4r90a1r zJJ3>t;HUjp8;~SATRb0PyUIiD&LuHk*v{okk1~g3yrGJ1%SA8e{F&5$VpFPCQ%5i3 zyumU*re3B%Jbw%4QWy1o`*O#;R?-@hdr4N~%QESq;htFc5n_VEV*G@d5JQ2#)x?GEM-L}MSlZeC z55o3U8^`+@hxi*u20(pb0tELL;sYQ!9_d7%Z;THx`uFNfD9~63a?L}j zw}9rP1b-}xce5T3G+7?TVuQ>4u;o5n8|qQ-P`I*Osk#RkSJdFrq%z?bW@?4h&Y3Y@ zA-18`!bpX&uhKYPC7D80p9v~)Gk_sqZLq1kH?qalV9;^`JeT7FzySKX0=4*9PM#@1 zd|W2@oZF)I1=0JENhLlR18>)b;9Q;Ku^vD1u^ycnL0lGtX{EQ;s8{GJu-aNk>&+#) zVp?&opoQo{p;}ig_})4b&n(5(7{AP<5FZoL?GHZZvT#r9y){O?5=*{j-5y$P z&e7$HOTG|pk6_j1V!S1$QDlE!6_WQBo zk0+HXbo{nOfOT`vveNBA5SP*-!p|G^YN%g`1%K>6 z*sj|~I}mb6y8VJhw+$msECOM`ehhU|m(8oM{rS0h5#9ck$L8#h&+QQR!{9#PUS!tYS$iN_Me^CB33z z7wcK+HkLF>!AcLZq-jc4dX6O}s95QBwh(Kvcyb!iQcE<5>PJy2sT6;Ty|AA`^cWpr z$kDKi6|A%fDX3X#8T^#ouXGn&{8;G;xTr)IWHt>FU4n~RblCxy09JYkE`FlRPMrFS zr`vHFV2aYvmBFfHnL4OeXT}No68a8z?gH97h@9R0YXA36Fv9R0bYKRE_C90Ryx zfKU!*Ok;3|pka##kuHO@8p9D^wwNrZ^>_TZYtf(7V40tghleu#xi&0wG52%V34TzD zWlraQ?yA8Ly0Of`+|OM@_(4Un=sXpLA2by^z$Wz-YM$fm#=f5HTK{7yvnJ}l>+`x| z&F7WFvt}G|)C`yLwoCm$-JmBDiOq}?yvAkHv+&^Z2(JoruaV@`4 z3hz>W{Q2`FFLp7T$}3HVW^9U5vc-5c3WoB|_KQKV`2Oy(7=0cSOJ)kCtXvcyddX}0-DzIz1YH3AqtFyJX{CzJ(BTCPiLiZhzf&rPiGYkn&Z`;&T8Wj zKV!U~r!ya~#`}9Z`x}P@V7Th(9AL=j)gO%jEnsnXvGQxE@@Ez{sncMgCCmJtyqZvL zurLq>_B!{)^pS^#@I@(v zJa6)KE6ca#|Ylv0+MK$W@@{D7k|$ zyfNP<9pMhr;XTD|(&2XcHetA(zEv2^?rU)$x)HMyu)MbP#gYe=lz}j z9@@hnEj`%j??D3m(bk(g{XMvVKU%vLW%rMiShvI1UZ8yN)f#W;YRL@k;EtXM7tq1b znqNVDlGs2mS3{RdS1M*`q#7^;qLDO)%lrz0P~L`f{0b!j)4~iV`4#9F1_m%gC9bHK zl!&L--}72WT_nB8-6%;?j&Nvko!kW4DLS@tlPh0ztjEDA-e02QG45!Wa)andsi3!) zg#AHuB(BigNix&K;6~&kvwlMEt@+RcoZx8;aDi;V0kntiNC-M3CUnK106My8m+Pt> zz37Nif>tqfIz)j4anXZcP`bEygkMndxX|zm$^{p9@e9ff7e4%g^5g>~ZoeJ(-gGh& z11nWL-9L_q(;YDS=(ZZ$>(164mFHp<=GUgg*xpbk6a0;R6}kg(H5+}}lwoLP*dyat z6s8Pe_Q-^OG~cA#3gK zlmsr7_DdhSQrWLuL>r|t_Ek%=^;NkEhZG^J(k?4f#HGr9$rVxCuUr*T8~b9GR8&Om zrU)`{)dU&fQe{_6)LL!7k3iVXSQ$o5H`h`0s~-ATEJziT%!DuvP2Xp>DbQ?a}9Uc-gL2@Z4UsuQ(OXNq>6s1Z9;w7XJc#lw~! ztndahGysX*R1BnuGa0*j)Lfm(*j>5x6N_vl^_ha+Va!|^pjPXQY}ZxfMeV^BwRmBI z7Qt^SN>Ocl1iOOVc8Ntfl3S*s4$I_PmZDmI9;HTBNzjL2!SSYIG=yoMcd#uY;#=j`Q2<-j3C1e1zY}GGpv+gI+3=J7z(`V4x46fuBtmMSb~c?-|)pP zOP=m@#!=dflu=8+bPJO$R0Uf)%WCk%;!)G&W-_Bf+x-k%O8cv<9r5F~eqj1sOChB& z*llyev51?bGGaecH*8i>VE2L&+ZI&VghiWu{7e%Xusg}$b+XieQS(Mb$BIWi#-OwV zMTG&rTDM!bl_fpIlDe{_aWZ!C4AYk}eI7edz%Jt3Xzb!4R$9T51}j)nU#!^d#!|{2 zO;6|h!Y*!M7mHYFF)PJ0YB>}wX^;s^DToujLX5C*?D7DLW$G{QzK<>6NW#j!=%~EwYL-&u?9k5 zwm1jk;x*#87dUD5YAs1!TFC`B4U=R4+={12+n20b+_=;HG*NGwLGLI-?rq^Q+LW6d+?}d+AZs8rF%-Z`bCL&&s;mtxr-`cSWxbGWAy=Bh8aofP=PLmRW!-jNOS^Y6QBiy4^+}YbVH#J$3=K_fRF& z*PQ~f8evb#X~QwOv;IO~PO(KKz!cKkZ0Y!u83*j0r50H4#n)-W*Ue0m=FSKt!4B^fT zu>x+OxSbm!2BpVoSqI{c^H(UKnov(HkW@Tt0SDdL?)%`wGW#Hy#0&O%*mX69$RG&R zv)7JdnfwqY`-vM=K_Qo|psy1PW%AwTvmNF8se42Xq3Xej@gBZhWAq`DiW8zmq{Q^x z4J6A60WsFI*n{d;AIT&k9R-XkqGLDMZukD@zUa4Qg5ur&#^`tOdT}{3;r$CY3>C7# z{JLVHAuzA`Irs2J#YckTV>AWLKxVR0VNTZi^BDwwZ$4O`G<&Lk)|8Z&HG}8OoIO2x z=JZL=&z`PN;xDQFk1n!1dW)M+(&frl%%@pvFBLva>FujX_if31S}5ermCd|Vty_6B zk3U&*m(i;%Kj$dtbsCmc_4_v2;Q6`*q4Gf)I~vwq|0%sl_H^v_*N=SgQ}m@Seo3z! z{zCS^(W`ft`ggPK>)Oh^qwYzW_QjU@Z@qG~=+RZ1M_7LwFAF}>B5GOn^Z^en`mS)& zCpof$KlSZr?Jl18wO8INe}8+o?1eujd@=j@uB(qf+_NOB!wR{Vw~XHJ+q^|fCB668 z^_=|d?)GpL#(qwI-ZHrty&<@zvUv;pn}c25?Cy3q*RbSwXdvI3txr2bxY96RLy<7H=O(M$4ze-I%X`G zKUle{OY#_xKUua*j% z_g?vH+~`e>_sgcAHXQu5+k}@oe0cG@oSs3lnB$*~yLVILmA~#E{rRydUzwrXuNPm+ z>Dl4KpzlskKR7{F7Q49PwxRF8H)w0XlDKkj*?{XCzB)UmP2r;Oh5F8K?UR*n?YJ$# zyKG79(Dw$tzc|kF>cOGS-qC%!)bAI~3s=S$$-dgRuu$J-!}T$p7lprdc7QC*@1cp$ z&h4|aVZU|l#~Y2Z3By||#>BFF`wVH*q33|RWmB3ZoHQI;vhw^J7gO55)K*r$D%eYt9-dB(RR9(!7Kk2s-u1}SD@!-c`nEuJfAm{y zK_;2@BB-o<3uWrr-0kCeBHj zstJml{d^MMAw5|$B5C^EDJiMbXTKcm`Q0v$ZC;N4$D2NYre9EupE)(Sf9BsoFfO9q zU2xh7jKIlZeEIP}KEABc1ux8&QQ$uG+Hbu4J*7lp$iaDp%xwBFo5!-{Sd(!g+IIw< zLaz+(6G~x@(ht20`~;k4Md1Xmsn-u`nN9AeaXKOvKiZabN$(`bJLD-7B+fITcg07@ z4)Tws)BEMg{YWT2%7tJ^m5V#8N)#7@k<1hbpT*Q4Mi9IOKSGAroa;~F;t*XRtR5dX zA#ubEDOfRG92Awc?Gsl=5pGHXe)=SnC)5z5P^N=gM&S~AKpL#6f0%#?Z#M$tvPmKV zxkDyO7OyY2i-x@Py^9U!LwR&4gQTFa{(I`HaGnFbP0L%ZLAPKv!YK=WldAADutpLj zLPl?ACmJ8X5t--*svTbR$pwc$eU3p4fLx@qa1Rh=4-nf#0A2z;*jW_?;+%`s1Ja1q zgX>2Tiy_2KeD5b8gtdV@;=BpIz2FPJ??JDGFq0A_A?VYl`rgU-X+thleK^}W^gVmj zUr_1;&$pv6>cO$XG!BO}tm9jTqA1`}zZjdF=!pq>{XPGn3>=rYqV2SlAU?d9b}x$H zscZycOJAYiOnU#(M%veE>49MVSSIZ+w{%5<*3*#B(SDG5U!~=wm~{l(+^C?y z^u0ZNC4l8CEthd>p+z~%89F0 z^?yVal_tD+CFkuMjh#L&qUY@!-n{a0gF;`$pj3FUgSbFYZmD>~kj#}-)ocaulfHM4 zvk@f1HrL#9;Bc3exxTlW&d?BTIimi^SI?iup;Dmo6K&ZSqDB!i2&abx{KV!wvA&O> zS@0WCWBPRsN(HBsEA$p^8#N?+Iy6Ft&u`$%p>!tc8zF;Q`jHyRlRg2WA0K*ifGD>B zu{Q@ua0`&^2*4|hYZEeo za9(42WIetGY}sWoXbeu zXkq4KCT{u)Opolk2njku0{);}H$8m;cI{0d&XZf;{tQprnn z1%bOvs~cwWzKD9Oj66YOL_dr=3jEj!_SdNm;9wME_wJn^0=#S=+`cJ z1UT}LzumXNB@c}wkBU|4(_Qk=I`a6jF52jlN01|rpT=O%vr~@{M;?Fe9V@ux5$edJ zQ=6#;G4I7qbX*&mzt*+DptL(mjielb=-ZERxjjc@$pTb4tuZ>z>ESq9cJ~9ue+& zl>0uBE9Rkc&tqw;vWsFK8uvWT`i<@*<`M3mM>FfOZ^S&5?s?RIX1gxt5#XN3J}>=L zF^^F9JYE~r#dI@Qy1hDT9=*C>y&=LTZz4ax-tx~VzwjpV`=pI>2<4}4BELlo zx9Hl`H(?_>fGQFxbTbOI54c;C%<}9^XVK~N^z64KP zD3~p}o$@u+qb#*HlG#)hgAohIb^_jlm&2AlBc@E@5zU@~Jtp#zqKUCuBaU@7DzNK* zehBt2L~lYm_dME>T&cwxws0GN;AEkhEi7W&G4S8Yitwx}9s$D>Vt9D`QJ3)&?ew81 zM=$~ipz)4yf-^bZw4pP&%Q&OKT^C+!YdE8pZxb@LbSbRV2GL=yHUx)^+;lKu+N{l@ z!&+??hC0T$Ww>hu#-y8%Dwg4Uj&ZA)o-iYerNyL^DlDxd(_h0F^-opZX+_<$WkvO&X{$qx}2pA z&Eln(HdRfpM@$=mBuWuymQsx4ZHy~~EQMk|GqPFrE{L>B6lsD#(__#y7)k6woGJJ$ z5Xq)6##KPJ3NfEa#jH9XvaOM1)6n}6)A}F@E}Op?ry_nC88dkj%vaOS3!}G(}ARCh4vIU88e2sA+2Yc^0Zx4vH zZIncd5NSgST(nRziqaSdJ$w60w5dhfvL(@?MB0!97cD}J)7%&bnE{^742?)zp(I*A zkv1g3MT-*Sv@pg&fPoPbZJ{D<#gc5XB5g>5%hpef)6y7+#CrFWXp0hQtB_v`qZOp z!#C78N@5)sPa{uC4$bXC9c(0}ty3P|)MJ_8gt`rr4KpVE&(`!N| zW~(K!wy1{uLz4f3Y?vJ(dbTKTFCGzf8@Xz@Tz>y4a@BIVRJWH4wE0o_-(I})Ts*~p zig-0#ygMk>JCN(Yq&PtvHJ3XO@4uu}??A5qlHvqysyn02y;NZ`xWR$Ra4{fcIAD=d z&nw7^r0!L~48edXFc%MNaa|1)6iJPao1E)pu%xDXo-MozqcX&srPipJ4Hk2+26n+H z8b2Zr3B7n($zH^3j;k+Vq?3I4KDPbI<$QpG4;RxnOQk_etV$TAWND$s&-t)LdWpXK zdN1|#c>au!fSxl6$1s(QIUCHrB<~)ApQAK2jw#L5TFjc#Y;5YDXA)WB8Jt|hTxm6? z`VLG-XugU-^OA*#RKa87hZap}4zx#f4yF@(L~p~4dXMOX_&jw5zL1X4$B@neq?3A` zCSL6;3svx;&-vCg6O%}-q0BKmnp)Fc@~Wpu6qDxWDWV>cQi~}ZCM;E2ioX^nHovpJJU=( zQG@G3Npn*AzlXw*4NA#ezc0z}A87oG?MavgqbH~}cHK^)`rCEGQB=-QjfX0li9Q|R zIu~s5`Q8ZGC0xD$&8cLPD?zKCCgm$lbK%w_x)vPuh`!28{1CoLK1`iusK!_7TcUgA ziy|I(B98feDj*`$R+Z&R3T-eGd1aUiyD`Fm;^-{Vg)-a=0Ylyvbf@2o|Uji^dY<_ zMMG39Ww<$#YNV*}&H5q-XqpdYks!4unsWa~_5N9-Tj=3b;U8Mg;sb2)TCz~;wqUx0 zRQ`Mg)L!S4k5a4pZ`InR%FplnobS(Jty|H~52de9GX*|iNNaMge>onN(&I7_hB`-{ z>D|{$>ATHmxnf8&b?e=1Wvh`Y|K|IZt6Pk3sR=lG|K}YOI|SW#`rftvN%w@dt-Wh~ zo4M+UyRZ6fZnv;~RK%k0Tb}gk(eIhpp577J`l;A%Z$44_c)RdXy7xm5KGq>DLHlXv z;}1Rf;Is$6?Q}-dH88o$&ktV=?iMufk>5kEcYXTN^yFSIDpK=Pmc2A!u4?wqIav#b zrTHx=pTFwm(enacseE;Ae%TfClRczVsbD&@4Yln9nYJD(v z@0;bNrR~Z_6~A9{a8HNb33;DxIiCMu!L*!jbI+K&W+!j|dE3RpZd>Q=_`T@*uBUgV zztJm8@n-&8%ibCAuIlZbE3-Zx_L1M}@()+78vS0t2bJ%yF-=^qU2*dDuU~t?7$Tfo zw$6~UC_Mdg#>UK77Dp~^T$25b*VobCF8QwThZa8$`hLaQ;;-6%IsEf?zNlDp?iEUpuXzyy45=EI)VoW#&&mtgHFsvEOHJ+_0&BbB{mg|NR%Odb<2+0>q1`2=SOe z%eeSUPZp1BW{St`e&VrexOkKu5s#V%@ffvFJSOCc$MiSE;~JBA%>G6^R{a{&uV-Ap ze`9kL*?(^D$C(}%zs&O+mI$$@72Dx+_)7~jyCW|=&qY~cciO`^UPEDFbWG zJH2%KO>0|m?=s=MaGJc$@Mr3|6Ih1d@RD5JCAmc?0{=pQ7NnY1 zdlSht5|md9WnuULx2^%d+Q1_GMwDdh8sz7MLnshbbOlAo4CN89EtC=p!(yYZ48K8v zhwvL&lCLY1+fdQAd!ha*DZ=`vc?7IXQc7W%-_;f2HzY7GEK*xipevG}7A~Q-;SG{1 z3ctBM4?i4Rfo;O2FpTANdH4<09m21oBu8#V-4hxR6t!G!TG`^0>U~MH;E8k^!Z7U# zg$HTF5eXHw#4N8yT@=bFIKr5g-@}7rh7|k|CmQHGRvW=tQkCS&EyPU`1xFar!-Hen zH0U8pw9po>0puj9OS0wXh?+wb9AQ8X503q%AcqJEg0A5d2lcunUv48_s1<@74VdAf z@hCQ!$sjz@iHYFEfD)=Y{+yT)4`L#m z#6(KOC^#_zoS0A#Vj}It_-Q3xl$;k0=Ox^Y7eB3&7KKEMiqoRywBV)nZuLdsq(v#w zqUN*&aatlhXi++8QAxD;aauwUNul*%Mdf5gEmaqPPD?1KMd3k<+DVI_L`wjtC7jcu z^q|GhP74~4#EXXW62W;K}tdJIj6_Mq^A}?8W)BhzEHQp5#SJY2 zr6le&oVy6loyv_ngz+RVKq8L}9o}us$y0lf7vM>rMj|f=tH4$H=aqk(eE=10aGCX83P5D&u^0mH^aqh(5l zO#!WGoIoRlP!Gcv3B$&N^8pkM5R_1th6&U{F@SOzAOvV(?|EQx_(bCa6}R_VP7#Jr zZsP+53_cGo4xVUypysp$@tTFfliL76>7<2*PGq_KI4vQFL_;UH@qx<8%AF3JBwFrt z;KYO9`M^mc=1vDr5;1o;aN?oweBi``-}%6a2OosKLmW}wZs5d&V+$r46;+tq4V-vz zyagQ1iE7M04xF5|<#vN6XGOW~fJv$)avSz=B%rIC?7cwdJxAf)N9jFIG{*LLa5DOBjc@?FoaiZ8G3Iwm@zf#Alu8c|(``?eAl7%Z&NF1@uGDGw26v z@G~M5KXancu>EMy2=WUMPG+1b#?3M|A@E(0$@pEaO@|9kR`Oj3=A+nFnYLNG299z( z$$&M|bvQNTMG2d=**L>ig)MYgsV$_#dhHGzTwXM9#QW$gF`d^Z8$W}K@iPLG;rekk zG`)uj)(F{7`YA`!^R)?dTA9ciu`{_5Gm(whP@ksICbFw=5I1XHg)??lYlI@W?$u$_ zb8^+Wz;jl5`JK!A8TlQxkeA429)a2yyd$+bOx`zML*!^}6ox|bI!vfmDgqCYyRAx& zn`~d4)ar_aMsM8Q;QXYn0wWp3z>B=)rvqs=c#Ez=e$~7SA@vt^5Hz)3g;b9VW!|{K z!3O5?jyi1AL>zs+{CptxNW!hSgS^DN4NTm%dy-RnpIFH-tk_K7yF*h)#?>KyrnK#~+?PWnPOOl=6L zjmd}4Q9ZWk%2C_p6(~M6vZM-A0pap^)wSX2fHYW0c^xmeGrW>FqQxTQc2rt)#Q1D8 zHB>zoEz)p9b6Qu4)+~q4C|MMhzYc8|v|;Lj%1M`p7A!}TsooADG5+LCMF~5pK33}* zd1HlD;eu+A3krGW5nVav7N{Q5V+U!owNdgK&i;CBI!q752V-c0@GpfL7;6goTzoy& zB_Y0AZqx0A=p;5u333OK0ZA$CfccYxX7XCyAxY-yQizNpB&0%-2<0TRRhQ4L4ori* z1VV=*8!QCPJPiv`B$^SdL%~qR$}ezzL?s&0pb(NOQ#g!5C6`}c&E-e$F0l?NE_gxa z2r>sLWgR&0#I_`E^&v=$Q6L0DF>tOWig`nqU-ec|9fBR3c>&FxNXF#}6*HSLu04xD#lo7WMtqYxH%LWqiD;519* z^5!ZpfVfnRV3lTGN2?`%{||fb0$*iy=KCj*K*WTV)=<+K=)^W?bWEF6sMJcEv0|wg zh!+qQG(mxci#sHsjvd%&WKOrcOqtI7&*{wc%!kvlXF6?Xj%Q9g$LZ;G5+LCwkU#(x zm2f8pNdN;0us8qjZ>@LVLV$>|&^CO?`|kI)*0Y{xJ-4;i^DHipP|dxN4NUXpS}X6v ztJO=|+Q2vtkHt05=n#^Z4(WopvSR=sv->GOcYMZTTzICV2-?;*fJGqsKtCV`-UU*1 zl#10y!0{%@DgahTf~)4%UB?|Ks8Knr1q(h{vCRZTITzKH4dbI!rMg%M4M|RejJZI z9c|kgsHY>Tb*MbZq(0yH8Lw?)u6x(E2xz+kAw5Hw6*+c5^N2P`Et-YXW}6k*4)a=m z2&*vzhpXdRS#}*aEaQ5ztSGP%PL_i8?Uj-V?-I8n&7Ax}EtaK@x7>Pt3k1*o;RoPLJwQdlx_!6=~GPnobA?bu%qcbv6 z5l##EA7mYdW`odArg2`2!HJT(z^YT}qx6B1yf zVrn8H0ORxo0+6{H%S#Br?t0=KKxUjdUPGW9QgS_=;K?RvciIBSsBu6Hi`}R`5)u3W zk>-h`sJN$AMuFpnd~##ZnbcqTnKh}+OJ0ziGs3}?Gr?t3YZ=9TnX;*KWK$PlmRqwr z;7YI{lmNRnf|i=_gqF3st#)HbRBAZ9Mt#KT13p6bNn&M71-vRg~yx9pEr>V7^DhfmDER_gr{oU>Ugt=o-Kvxg%aFW4kN^4_DRgO{HCT$%ShaVn) zG1SG-X6vvB>n*Za@+F5)ZtJ-?1AmJ$t&3{o2fg{=fBr{Szt^34wyp~omBYA94)^77 zm{h>wye?{87xqL2N9UsQBkH2^JL019^O9WDx>LBQ9PVr2FsYftwD#3|{xqq6^`7}j zn^x~BPufn=xTvf5lqS7f*A+fkcQo8q*AhO-ZDxZva>B|h+{T#+B|Orrz)Lj#()?^E zQ@pG9&Nt0zxGA^i*42hj^D16Q;Rf?cO={h`s+}ovR_fktYnCjoTi15X{H$hhp-M)Q zIJcCixTWTmv#D}X>ef{@;jSg0GCw;zxDcqS&ZO798SzI8*O*tfq}J799n`(qdcZlP z$&GbgXgKq;ErSc|DD9y0NDEJySJtJfZaF590joiB*!)ah=<2=YrX|ffB@ipT8i;T@ z3LDKUJ1M{F?G*VYb&YK;(lK?lEH?bv&cPNH%(+`vl!v&YYN#9%VA_U@mb}I`a8upU zs!)1eW5fw{?E}ol&(t-xwmB~}`BdFeG@fnfJCt_FxuISgsaie=aN~wbbK3URuijf~ zj->@Q!ksygOPI7Sh;3_E)jKKjON3}OwXUmewQX+5HjiNo1XM0haX{5j`JMoUi%%nM z1Gm?;RE5*))j>U>YHsX$=K*(KjIM$grI zA2FxX?BGHHJxv`DU(;*yQARIBQlVQdt~=Vc(W9zbnPcfXil=y;YOkg1QMva~vexac zI-5>M^xRF4o-NoDb+xTs&fkQdyKxUJW{W+t*0!B;4yV^(Ah1;JlEW#ouHO46W_y}L zC_UJ@nOxS=0_$d~15@PQy4~SjqA$;^pXrgeMO{{nje454C#&O%%rOF6(o#_?cAX=t zd`wYQt%QEo&veu)+%D=Szp;AnpPF51LKliAQ##J_-_f@9RO$Jdz;+l$YF2|G;L(_) zX(8XOt|_*cA0(Q3y%TMYuNl}TXr&3&98o6XXi_W$3~X}rC=82U$s3$hsB3B44!}9m zh?cKf+O|@M=VT231G^#6Ec_`z; z16$n*%;Rl3%*$Z&fZZK&H7VD+noiI~aO~JwLJE&Ff@d!GQ-|kj^5GhZRuA(?OMth& zrUf2(DS!~C@-{uF-;BDO4)ZcZJXjH%fQqk4xz^Wo5-fsU$Dk5?pg1#vVy=%+iRWwb z|@3_az+SP5sn7#fi)2`7MXHs#9*>Hs9h)ui88wG(w| z@HHjokYRLl%7g^+WxURBy-kpB9Zf+mPt)u8*413S_nT&8n#30^Dv;-*_Hf-v^`5s$ zsm|4u__NJyw-U`dGc<4%N@0h8PRIBGe66G~ZE(~&2UGI8=vM8pBL^ohtf>u&<7lW$f~Nxl_E=#_=M z_oSPK2pr|C?oA{gM8n;bZ1V^w*=C0b9G#rQNpq~P=?IfZlQ_92^5KE1IfykU_pHMS zpdD7^sp}n+$SaIcDz`2s@H9N&h-Q^-BIW3W_?vZzy9m+bY|8C)gmNAy?Xk{gH>Sef zj1zSo*f~LHJx<{C1ff+J5`>=1ss2?LCkSI2!wN#{b)KU!BnUm1(_zOF^yE~u%z{+JB=gez(j6*go5v|&s}w<~bw;}()N?|;P8-9cbwSU;BTlGw0Gu+F`7c-AlkHa1 z0gH7=6VXcL*01tAYg!>f$>@x63SyDh!<_CwUV$M`=j_ly72%Axo_O(e(vY0baZ{woGR zu>jrU0UjLxCxtoF=lY(Ule3_*^yw<{+|Bz4%dNXb@4x=KjlW@`qgLs%$ZL3DZ^Zj< zA;yM~bLM=tXu2~nDwkzfDJ=3zV|7^ivSC`S9UQ{u?k8(mjGbhb-j5#}d>~DiTByx3 z?xYuXb0~UYFAKRduX@v76|)z;U9kN_He5cr$}aI<`X$z>-`F`;(GRA29U)CEgnhaE zxZ0teG&p80+Z31$#b(`uX8rvSu;E(piLBtnY~3Foe?KQkqV0)!x_@*0{es{VqkF}o`_*fTmOYjGHZ3cQt^{A4P6OGGl(k>!Jji6#ZE$jA4fx{WJj~|Na31B5PqtC3 z%WKyS1%boaKQzn&v69+#sn>01y;)Y_dN?3QGev^}waLe8*Ikvol^3DP8jM05;xRpVRV`4TYW6b>#SYA-v$|-_@F>-z7eWz`GxS8@E3; zd!BEg{xV7loYeB}H)~r5GE7w%W^{SeCkFl?cLnd(whaM{KMOP#p7ekv?Sls{t?5f} zJ?K2Bk3BcP-Yk7YQ2#vlDToVlw6k31z(E5aPZ_v4Z6F)83<^A+5?GuTU=uhj1>Ueb zBnE$#TgC?iCua`4D{J86*#p_KWpZZVuB^c0*?|eem%U=kd*OX`88$^tGcRsoQ&bWz zrMm!|jOFqFy76w@{QvjA@bVphdFQS3H=nNg#gBIWqUEublfQiQ6GtC;<;AakZ`B- z_dmIQ(5xG8%vw6+|K2d>xCKhj`yYq? z^N07${DU7?1n*h-5BJYq^XWt1Ys?+=H`|wv9{NGWirJZ;s(t0tX>)J=%)QT!zu_0Z zdUe$QNgw{@yMOY=go*2a@Yr$R=gW?~_}vA*Cx7%@)^lrLN*l1|JEzY6dU@;I;#W@o zL)WiGp6>DodGp25U-~E#Co%qlKE49ZdfM*&_qY<0%kEHU1wtgoR?mp7TsXyo+~F8HO4+FwvQg-(Ujm5Y};65Ho)^w0mW3y z^;xy+#r4^R>*=(X$y2WrbeWdxhZml7Tz?v_57hHw3S7@r08D=Mb#=@B`Wkh;!lTTp z!Svf?s3&h^KUThXu00o30A91X-|h1gtVU zUAyV(>kd(_x-+whoydda2AOop?H1m2S1#aDZk~jagE!5>n{^Jn!>yFcjsYwli3d2v z131kU415%Pa}3}V3vgyPfQ2zZ%(C+c#A3V{#HuXs5g-r*MB^judg&{6ED7`VeNxFo1bz^{gW1TF(a5pX3RV&JkG#)Egb3Wgp6 z7b7l$Upffzrkn$Bx`j6_2CrmJJiJ*RezP6Gz(>Ki#{i~>;9{NwZ<>Xdv5W}3l4J4k zW_s`@bl{>Gz`gFk$i{ehd+fk>#^CL32bR2zhquQLJU#|*uRE}Wcs#&8cHnzs0Qb5B zOEbhE?zsaOM*!}92bQvlhqtE={7?+sUUy(Auo$>Kci<@za5Yrf%ML817!Plc9e8RC z;NEs%DO$mcaLkQJH99fI%#;Aj-+H!vkjc*QxzjUz)ZMM&Lwlr3Vh!wVhnKQf`=~fC zPHF?z)WC7LjZ}(6!M!URY}4Svu0jmHPr&-Q4vz7R6m9n8yM=@11IHyuco`fXK5mZS z1115ioD1P2&%tr8hY#rk3kS^yj!V%9vU)s(6hsgLQ;AL&LdeYy5Y{YNgh+o_KoAfB zaw!@_rk972Q4S+wLec3$2q|!IJmeun`o_Y6Kmm?R&^WUGJba9a-~*-wA2(kJAEO)` zQ!GBLezIU7egNZAG?Xk*4;{BhItW?{d=y*=A7dOGm^ao_kUj$tX*A%t6pbb;*uzIr z1Rn?m@Gm9b=|77Q1RQ`|f(Dc&?&0Ik2tJ$u8FL|g6gfC@dln#~vT!My`N8;h*-UvRN04cfM@|GEPJldg zA$&}Aa1`|{KrX=ok*n_Ee z@gol(m(>E%7?y{Q%W8pW9L>YWWwk&wmgnK)vRWV-PxSC{SuGHaX?pm$ycUQCRy~AV zUJFE{yB=!49>>y@!iFvOYfi?2DEO2oI5QAUAMY!ZZjAWLU}ZbZjNZ)80xBJIxSRA*YW3jiOgLkzCNwe#Abq#Ae%FK)5U3N{!+@98Sxb*?v`U023(XQM{u`74d zDA2AiSezA{kR4=wL8JoavzSa*818>)@kom{IgI6FB|L60e-jlf_ppNHo+x1EUom8B zDB&snAZXP$BT2u=I^ml~z-G8vSA-e*7Upo(!jDA+9umT!OM-a`7vS1vm0%5m4Yw06pKhRK_-n?1_w1DVsyT*aHeJ2G9VCdz*n>LDm$B-b~$Gq#HSPdP>;hVO_>KpAsJ}su!n>E+3MHx&^k*Qem zUzYfL9PugE*J*1dMaXStcRcY=rvx-_+!O6-WE|}`gM-X?;-^Q5-|2`?M?8o4a6>oZ zlkG1`dk069_F|o$X|Kg{9`RoX3+eI1PwRpBqbxq6#24w}i9Z}%F!|&bQh;(xdqk(D zy^0->I3MG8Iocz7&Y^wZGk#NV82`>h z+KY7Yw7)Rp?>GjL*W4h|HfFA$^STi(gn&q;;2OY53&Xvk_ItVqvKfPuxXReXOx5 zPRdEM$0>EE&uzn;8uyf#)7}*56t`^wJmnUlNn?3>+OcX>J$s7EX=QKq;CYmBL=VRx zjOpNr`V|^h#VK5;Y-1pLIyTnklz0#$N;RIZVu(#prV%9aJ#BXSnl?L?8G|q@qAAdj z7Ku(dS_lhbNE{x4P+E}kBK$~`(Md5JM)aNQ@)n6wa~=|%cC$##j#)GbN{s@oK8ryZ z>(U;CDKQ*6#bt5G_Mnj_d%7xyLpoACh)y}h_0JfDiApI_;790)MKK(v#~{Rvywr~9 zv_xNaM5h4yvLhx4_XrX{LPso)A+c{dqLa3L*b$u|?Zb|kC?t_xC55Lw@3MzD0o#{P z~sL6Gk0f@hMEhMMW>XUxVxC9L>~Y@s8$@ zSnPoOOGOJswh8z!E+$cM&c)Q$^W8!amV5C-M8pl|Z=&Mk9#(vu^*0qCXZ=kD#BEl* z+73d4XCx`4Y!@+W^D>DjTbM&s{323e$j{`6kI51L(ni$9{7V}?nG#T{1M6ZcI{K9B zpJ*GUh8WBvZ|yqOtdacS&LF~L@hP2+okD2h2SWpde6yNev4y0U@bpk!7k(x8t*EEC z?N{UK5Vlu5CX-98f~X)lo1qd2}Em82D<(kSGwOrfAzA1){NP$0w|hMJ^1& zqXUHU0RpZi@yH#XpOsB=i5=Hi81S?d#Oz#43qn^#_@#&h;XS;F2rANDYv~bqm^7o4 zNNEodL`DNrA`lJ}wq6erxSO`-h`v+J77COe<%JJ9SJQ$~i{%&*JE}Jd1!)PwgaAoK zrrTI^M+zw9$PjZdDMu}jdY87UsB5WOXs1j}+YfRSkGeZX_!I^Fo{kEpc*3XW(y2B_ zDvYOlRy^JDEaM0d_9{BhAv|i-Ha9|eL|8oGM-h$d(H*UtNcZ7A(;eyn-Rn`plSm^< zc*4TZB|M7Pf)FJ<>Nk<_!(DSRf-K#;Vsy_wFWqgmQM$W|BRaY#x}&Wv6j8dPvsG=B z?%7-|bh>eP9Nn$@7W;X0M}Jd}=pOMbxs2EtXmC|xyElHNrF(%Gd{2z-SrP!9=Vkbo z@Q$7ce_@92I*0D4e%ss#-TQ{&Tf$Az=3kWIF%~QcQM#vfr+YeLlh#HV{#1gQ=86K;{qkNR%i^Sl2V}ys{%T3q$7@mwOJ<z6@zGHZ-qC~oj;i)!C_iU~f7FfDpGQ(pj zd1SZ#q-FS+KRL8h{v^V~DtcQJDn6>z5H_Al@sxU0pGR~#Wk)Pgo>S9LA{V0kxT5Oc7ykecF83!${Ch%P424$SD83(PWB`tETkq+~*?zo-=@9U21iR8ZSxZQ;C$M3J=NhbQMb)@wt*nKXpsht~r{Zjv(KmSAd z^|Aa9gU_4)!Df3%F)xj}PRSqGRd|ri@{nwN6VlkGj~o)lH#zgFM&o-t+xTYY7~j)* zY}#62e2d4B31WaUMZ89`hw8({c0WF4FJ_Bil$$aMXKUs(PZMPYrmazlQpd1Es@*l9 zdQI9d+3hb$Tj|Bci<_s{1_zs`Pm?u*H|#!p)4PoCb<#SUs>Y#qPS)%^Y^pxE*7#Pb z#PMX!WqfQlziqf_ z+G~96WP~(W_hORE%FRk z*QJ@Jca^WY;BK?@3uI29K{Utw7Bs@`^N`Svwwhn&K%;p2(AFs=er6kK`bdYxQq|Eh zrfHS&?cyd_0nJATleO2r!j*3$Z)Ip_>Z%h1Nserqe&rJ0wr%3UO}bn{C3;eI;wFbo z9tnr0>3p=mLI@wh*>(~Be5l!arJyFOw>>@nT$eWHQRz`WE*78IIHT9qd zURXtX58F$`TVxPJnuu#GmC11jdp4S;L8fT}3^X~@G$C%95I0STnEq<@$-(Kcl^BL=N&)q_!o~^mYZ^89Ycas%!`$$t%#i(*`+)&qex`@ZrMY*H7^|2 zLK4Olm#GHUjF44*OcLuaeA9HdkvkJv3DES0Zflc*N0)GW2Dg0d`^~T)&vxsXHVl}) zoZF=MAsso-o+#kidwTXZ&t|XS_Cjv?4)bhQ5zok2J|<~D&njQ#_9AZiv<82ywi0~Vf4Vym>&t7LB)?;q73Tl0^gdCE z-nR2X`)~Wm`|Ja2x0wbeiT$6|FYTkP9O6}5Ky?%AI_&P+P08FjK4zwAYvM-}kCc+U z>bQPz$9K@(@Uc**s)=PQO)I%cJF2!`!{OLK9`DuFP5e;d$Ml0czDH@f?)WC5&0goj z)yDVyl6aNEy@rTdktq968m0Hz1Qvl=E}}~4^xMT3Fvsh_`RzD3v!gI>?HNY4=Soz2 z=v}Aw9FQ;;Dz7K@PS1st2T8j{U_3u-&z0(|7mOg*|G*M3dw@TPb(?upM4nBTy3Ont zmC3;(u)izQ215ufdQMFCPg*U1`&<}N$L+*y%MSPp6OpbWFt9p~Dd|XsM z%#S7!SA`$f5AOJ;7q~mVX_=178^PZ4IP3vb)0UZdeItwevbi>DDyQ=LX zvp5_nTD47N{y=2z(3PmG!avXt?)bbLz8Tn};$@Kd{E8^@w3ATNo+$p#OJtZV9)H>K z_aA{6U%9Osi=8e1U$R6pcfohiI(*JJ36rfE-SU#`KG-9U`qre?mXh zQ?%s@H+-z1#4_YV@%MXNY!{6?L}PY@sM;=)s_+i|&>j($bU5Ad&BM_Uk!k7kuf|~y zpqg5v7(6eP;jwrOrX^w!9y%|Tv%6#P{8VP%&LcC63?%K+AjVe&TZxck$HfAb&AUMqKK$`kc&<(8bsxjqH?>g zL|hU7q<(P6x60k{v6oC$gQ$Ffo5#7>Au68`mDlJ>#8u%Z^n*LT=Mf*e!&U%}%FW!X zi9;UGn?8sl@H|vLucPaoRz`T$7Loa=$V}I;=C}4y!eMuJe5h~T@UfFh)fSPtor^jy8b#)Ik-1Sb?qd3 z2G2>{Vc_Jr@j;btV-ojdg6%hSdp*>E5=-J5m~$~ITqd>o?Kl{(NVS{SL(m&eX+me0e1H74JwT4%*Hs2FY&F)*(5;m$?{{FOxvN;{BL&2fwRI zz%w=}gWnF%3EsrT@O-(1@)hq%^e~I?tqL%WWymao!*skwe{n=#7Rh|YTk}0l#yIRI zn9>(V@8uE7SG*bhK)aj3*F27$XYAGN;zcGFnE-pSVIMP!)9>{r6utcR-u@Qa-GY@2 zW}R7I{9xSv7TVn+;l8)Og?6_{xbN+6q1`PK?vwHU&fvuH!H4fnyk8uA;-TQgDZz)Q zCf+XzKJip=Vp;Ivxrz5Hf=?_6PJAx-@Snxse_@TL_^J<&5B$pR@41YijDOGMR^Y_( zA1zyOeG*X|dF*X*Gh5=eTou?+``%ULk329m&`^7DDEX0FQVEZHFST%O?SYiSt+fYJ zbT38sQgkm>_fiYnZ8S&$<&0vj%@~&N-p-CVMb}Kty_4h!r#?p=pQDa}FXh%y^))}p zUCl{P*jgjFC?$FAC$<7d4&Rd$_!FmzU(jl5?{*ru(^;mM!@XRAIY3|z5SS?f(}LuI z$-QBP+#6QdUfVK^IGy)~odc#VPvLifnZ-6tK$&vY(W?YyHc$@#9HHf(W2wLH2?P(C zmnVV7v}Nrc*=ibgKu&J>nu%q$40JzBxfSYXLYmo3Y zNPrA3+}e1s@OWcOVQ1re+&DO>aBE?wR|9)@6{<1jx;$PMo6Pnw~xv|5=30XPBMWBX@SY31fnj#eZXX@Akl51%by$@m>+{-5HoLCNTN-7gh_@7v9%u2)8%O zr`%c!Z*P{XW8qcHKl?9vJG2qT#u;s&)5aBF_{x2Uwa>(_b_QP1wh&`}G5)yrarksY z>c45HnpD60%>I_m=iGxMRS;f6yK+zxGv()4l=U`PY3Dl;(fW&(CgCR(@aL zTgQ|}|9}72Pklvc??-=f%}AxG|Lg0^H!H3Dmb;Jsz0$hx9XWA~(yISr+joM>YChu! zKYLb5#TO3v<42U$yL#XMd|Fwxn@<19e<-WRZtMb>b zJN9jBmZ&8Un!}s@5O=5N@`p2^w1$nDtqP&TkcX)*X!3^ zKUGOp-@j?~qsnQz>;L?J|6M6X-+l6b1(nnD$N&25?aHZn;9uVVhH_edW%P?#$|?EO zz@zsnr(<%#9luge#lQS-oefH9Sn%tI1}URp_5*F(mC`TspJq%_O1+zM=0B{IcCR)5 zzb`7K+}egMuPLS5gFpR~`;}7dZ(9Fimol3Dc>Le(Rzk5SA6-|cj9wdF{*%4Rs8zN1 z$!C?(>K|VF*X_zEb>?5&rYWOS$rrBux-u$N{;F|rZT|Sd%DqY~^Mlgs-`n)n8`ckAS##Z**Z#cmGp)@Vw=a6@z2_RA zKH{IasN;t9{V_{QlY>)-8H+$iHNC{W|6QU;D%#eq;DGqpzO-hc7Kk`CP}d zJM;c3cTLf^e!BjPzxwsMVMBiX_qX4hk@?;-FwsG8E1ZQqyLe^ zr?%hrQ{RRsuATCYyT9}4JLhWeEgOr?-doy(i~Vm#7k=@h?0@s&R$^-XWns-%*m=vm z^e(Gn?Cx7rmgQ@At&`)Bq*@^PNlqunrLbBu$-I=xMaw!~MaSfzV{%_O{1Ug~L;}jJ z7-jYlL61||g=%WN9N<|A&z|C08PDe0wUq3yh5b=|D4C}fJYB%k=Xm;OEuW?2)_8tJ zl56{^z)QK`*XcXCD>%J2aaCs9cIDc3jd9gx z_SCLX(Ry8-!__YESfKhGZO&;PWLMh<-(!}31Z2$P&Edy_vlL=Xau2xwkx6aLc#G1j;f4<8uNPxq;$>z;k2h z11V584GN_Llil|2g*tWH7i!gMU#M4?rQC-ocgihuQf|2??Ut(aTOQ21v~wwC0j2!eEpvw7a!=kZRX5-A;HX=^ zb^Ef%iUMWBgE!{}#^+&4siA?2n*+t80?*wZ$XixaRNYc!mj3mbvu9h@#I=#;(YZ3! zN7dKVaV@ues0LAja>=AoLOLZVNV?a};M?JBnrOLSt^SUa0P5-|C`-J1dtpuCmX}jL z|8mx-WzQrRG<^Hc!n2U{J(e-Quv$XOC-s9(4r^HewMq06O$gdkyU0@ z5{C_wIBfk1hn>uego_w4t~jU%Z9F(t#OP+lNj=r9iGLiI{`(k=^G_<_Fs*`;9?j&} zj2aH}8aOO$=CG)pDVFDQmbp&N*F97ft0lgIB)+~+B~HrWFs*>Yj3pfAE$6Us1&2ki zF8jA7V9c$dY?08n{(vTRc*!@3mweM+ zvIQ##)#sa0#9>}BhlM2^7FB?j67KmmW#QM5x?h97eho_cHDc!1V2l@(*5o5ER%#})vfO06TUY*el7 zl<_97%;84kod+5911vpW4(qp^A2#jHa1XM z4{coH%5lx3=2-KzszaZizja>205L{D>g=ga%e`{GRTOCx700)!;$m&`i(FpA8YoQ^ zgr=@>fY4LpR`8xBU@18Ew)a55VpqUL z3COom0-m3CKHK|k^QbvSK>xQ?zdCqA-)w!8weruRJOJ!5S|HA_{nT=i{m3$$Pa?u6 z5fK(Qhb2_P5-MRURDf-|mT{co3@^`S`NwS5XZhC7G;_tOECHBH51I!z&)bD~oVkR< z(={AE#oywhWzS>+T{CZfy@nskhytJpGu!@4hX*!fq><3H=e(*H`Oe;LO9 zDwY&=sIg(&*l@J5)m_-ecY_g-cs+klgNnA*{Fn*O+BWJ=0YA_zZSO351}gZ;bLv-~ zQ@`?@`kyFR=69y&KVgBl++uOtBl2bB6~6y+%FQoleSXWQwkdvOem}| zKU`X~;I6`&BJ;yQ!#^b@ElFB1uzGVczmf*%SBie6=vUfn{90muI98`;u6d0HaAiMA zTA~*Q1UjF1Y*i%QXi}iL`fy71K0Bzpf7y&0#t(wy)0VC?FWm+{?hjUE2FGUwzZxVX z?&P#(w|{rp@ZhqnmmdjMqz8+#m)4lSxQ5prc<|xL_Xoce{95o2gP*MKN~eqdSp zH&4_iFG#CyNiM8;Ic4aH+5roOR<{f&+%hwmHMF)l^Qs2(bj_nvPSmF8eu{Z|)KJ#% z<(Ss`6SZjzGHm?gpnp%J9j&=1YBTMx1%IFbN#7tsKGRx`cky{z6OCXA}fT&vt^>~r=i-=2IUzHQqvuGxfVP{%40-b>wH1*=WlPSdu} zl)h=osdphLgk=4zy`{%Y`5xB)SpY^S0FaRYz%U2E!gc`Y zBrUQD?*YRe03Vq7?X(c|+-lmkSWvdAVU=4vP*NRs)>}~4n(!eg#J2)vqr=W-;~!Gp zl2%=xP2_L&s@H<9botz{#g2H&W}9)#AA3AUq6r5 zk~WLeT7$hg)yu4}n!DSFA7CFI@a)46@JxEJ4_UE$eVl!0f0I50ep5CMLJ?&j9&q;I zo2Kk2F+}cu1NZkj`>;M@A2wOD5c}|uH5A(z9f;9(mw1XeU%%huV58j z#`F~n-bt+k%S?#sD|->sSBFi>Zd2A0r>|C<(!Hjf#cd%|dc^9hbwmf**C^{9Q_^C} z$hy*QN@~SzC7Z3jYV6ln{azLxTGY$>*!5K(@z1C@{vorHE@S+2gfuJ0_a)dR%0KqP zjZe(P-V2+O^XnW!=) zTQz=Bg3elJ=5K|6;Gupk)IUn$Mk#(L_=iy+6iH9~Bm3>Hc>dXKO4gdPX3IZEO*yKj z&6J)o<%cc*)LZ_ctj(5xHjv)O^3Ps7CiuSNAAF{M{^{qRkAr{OwZ4Y&^d+(J^kK{$ z^kO{y$hqU`nWlOv!{8b}h>okGm%1+O4$=t}ie%ad8;i9%NVBx887~Hpl*2FoFkb^*}Q|nXN;kKlw3% zsUS_GRw+?O)w>+Z6q>Kx4kgU+mT8)nnKAcxrykdH71m=Wn#+_ur#bRiDY(j*wyrv@ z$1Hs)W5TPA*(qNG*K4@m!Ea{BN)GaSGrwE;&0Ja;bNhbHIr}x|?4PlM!@O5{4g{qe zW-?;WZ|1v|5~?F(IfK@mM|hOZY=W7|6ZPEZ1g2g(7I;d>5BBIL_& zu-}9!Q!5$5A^ylu!zez7CJu9mx%1rz9Kua0)7#~mrar`RbW2zqaDu;yvN@x<^OTl*e zUVeA-$NL?rD?DU)=dm^JI^UgrBbr^q?PU6l2I{1QFeNbT&%ri*H8AhwZy)8qN%?|G z@&63}Q%eMHrpCk6Xi*644s`;44#@OPTfzZUm4deNJ^Uu(%K|vs18k&s&TxQrL;xJ- z0jSkW;Ti25C?QM12kE1C+D6f3qHwxW;g9rf#NeF z<1PL21J3T3AN}$JR_m7^eIh>&_HMqTrbqi@l4pNJru4BZ+{6dw!~o2R+`sS?dFyIT z=wp#!aQK=r67-sj;ahM$w-BJdGoBGKGqd%Y=udt;&B77i;sV~lYA8XKl#$y{DS%4Q zVpjhnf=e+m$`QOu=~c>FAFEsu_$4T#G6cAEeF++)ER0}(pX&y$`KF9=l$)l6Z_6-0 zwBWP^y)84umXEE$EDDDm9QrMaev5)WawS+4MTr*02G63XJdZ_D6lYP)Tz*B^6W%P2 z=Z{#=;|$`Vb$6UUV!f0za9->Fh(Gc=(%|}@{1Ig<)|#{l&L43cZPUrwuixM!i4*6K)N>K>M_BS^eGvI0hxjeu z1o@i+-Qp<0|h%I0CL?cq9-=4s421)%A;mVK*AD2DR z*Ydzkw0ZI%OY%S?hporrtSaKJvTlUtBrz;JpjU1BJ0@gxSgih3<%7 z(d(MZNRS7}hf;XH96Q3w1N6ML0mSo+_?ICotUSP1u<}5*gJgx|0ltCu7qRj{@pMWcK=QsbZay@(!` z2eHCCx)!`6wbOn+(w=-Hk{(nHQLPCdJU8;jcfgCG=@^~x(J=SXMdM{+YZ?{p(oFQ8 zCa|hFGlAt|U5Ijdkn3Ko7w)IO3mWUE|4TnQKmWhn6aSA9|Mw=&;xmbH7RIvk#~5Sr zTg%jTiI|xBEsv@Hz8h07PGIWz`RL!UJn!YY{{(p+UH6YXzg__V8X)fDMgPCGq_;7Q zeJjsDB0sy~J{LEYxDFkDj$elkKSNITSd7L@_3;|?-&&&fEkA!mdY*q>H1v#L7Y#i> z-Zjzv^tAE&A16KI*XhRS`7y20{e7foWc^oj%zr8-5cNF%(`e;GN%Wssd-ekURR4O> zp4N-TuMO?U$i$h_noxJvm{0t|&5qQ>=l(S9@ME8Nb@GV|2F?hIu9QepO>^A)=NbKJOWOM_uG+)Prl}I9_8Qt$iLs0^=iKlJ<3j8N}@gINwh!e=DwbdlW1N(sP5~Z zek1zy_inw@??dmi3u*dNpMF$%_B*{^=J%mT^|3trsQu}8dc8$|f5PJWaQgA`^{3y0 z`TG9;bm9Kg!+gP1Yrj929vq(;yfyelO7P*dWuyKgl27uvEH9s=#xjZ@e&9iyP?B_# z!LJ$LACt`0EZk=nlIW_5#0Mt_D{0Tp{Wk5@&RUxZA#~7$+DvGT32j#T5fYDt_L&f= zv)YxhF;rth>&*U<<27-*Ki{2Fi|kc~J%vV2(N!qlp62gMHuLuDpy{pBFZS3J(XN)h4vj%&IZ7)|pU~ z3B6-xZ85WUnh;=x0BhDhGwXd*LJkSS=1Cp~PC8BLYE%9J+pcGtDzZ=dwko%gpxnX! z&0HU5X)G&a&Gc1f`T;Y28*}oN*OBIx~o9X9fn>9-@i? z)oTV+cO_R2{`O!^2QGi)@y8y0Vv5EvY`R7AF47M-Cg!e6*bksve$%-5=>GoL-yg4} z{+Qo8`8cRwK7L&Calr|*;H;IB2TTch-rAIRQBo3hLiS&q$Cs3j(`(Ia5?Y-y)3=-1 zVTrXHt+ac>ibaynXG=8R6(<^VTBb-eBETf@u8F)&P9NVcEA$8!N9bAMxXKDWQq3k; z4m67g_bBkrBnrGCUa~$;k@1dx{d*&ZKMWxXjO@3}Rc)hio}ufvqKD4jSBTn%St@*Uj{1GkdM4Pj6)x z7sTAGOg5FcxIT4nORTme=+j&2$O--H*8cuwz1-gkf7X*+RZS?5cyd zf000OlkH!KwnJw6YBT$Atba|Ue|>}g(a_){Eelj6=!4(2Y=Y&-XJp`eqUEK0B;sv%Y;gotAat>KTD6~(wJ zwl&1}A>vfD9zuCFLN)vm$F_gu5_%EmeD9oE;jS~>IW%&Gy$B9mAH}S~^C$b1B)t%4tQ% z2=9KrJBNq8YTpZwbZ5p{$SSjsLwJPuB;R|oS5NkHm;(mpfPpUR>Y`lV=N&dJCZh-p zfz8mynGC$}2VO#a72>N|B$b*)Y+y*RhXng9FgXiMmMAK4H-Efku}UOiDW#NuKz!q_ z0UX}up#AQYPr$Z_JOfp4>SkQ9az*C^ZoJM8Rzw+1hkCP#V5|u1Cg4mbv~fC!m`#ZC zTne8{P~_bAG%Qnea*bhDd?777NN+g!gnsyPl-AAe-}8j_@A0v&umG#kyrdOG)%9LJ ztCm;rI_&UHPUW!Z`_*f5sI;!SC8zZo)nH3vyoZ~3GWa!Vm1d^dK3LhvTj+CDZ{XT6 z=ra@FM!RMxPfXPt95fi@27WZ;(=veJpQY;-4ET1>9?%eZK>yPDVb-to^HV=RNka7V zQx8L^m%vXOdpBP7Kl}C5Z;^glK+ekrSPWKAp<_$XLduS%ELv7i$uc1FHIf%onYy%# zqV$hXyE~#UH71r>dAFx(hQ+Izhfx*>{RK+<71K9%zc@eZE7&g%rSnLF(%FolmlC-) z`i0Xt=u!ESR+%K~oD}Jin9h+-eS-zj3#4OuRwmQBDU%+?)B5eRs9m-PlSX#h@1}i5 z>y#}{85``{ULw0oG2+VG=|^Z@9Z=8zT=kN3HI3y z&OT%0C2F5>%d^kkj@oD3^X#*?#XAfZeysLczdrdLw9lgYM0|zBD1mE~9Z4Rh*i$7uf#4lHUit{*SGsOgy&#OGn6lT223F z%=X;=KT-Yv8|weQSpT>CPk%%G-`C6jKas^r6k^BX7~AdM{~6uwnRr$${+LGktQEMh=J6*U@#4h%|Ew$@(^f^}DdOPYbqVnQ zRPZOW-}d?8|5Wgql;GD~JfraqFutMe;{@CxO#kNOl-)Ik8xVW`%ZsFa|?QT`v zyY7iy2^Xq0p{=&PJIwrs0ia@lnYB{wB}adx$!6*I*u&d4o26-5R94BgYkF&fKN#2k z?U&I0A4cd$25tQ1h4|YQXOkEMj}XzLAYH!dlR-v|eS^p=wa%r%9kSeAlh}YC4g8@> zcEU=Kmmlzs%_tRusX{pJk>Px(%oFWkF$-6nhHIk&oCs}EQ1#DC*Dd^;7`@GRzeU4E z@#QZ6LtJ}@lcwXt_SZuZdS9r$j^cvmTH1t$@eQTX+L>XeYxpN)w|x(&?T_ow%pZ26 zMSx~FECMvK5gC_{%oyxsRKktiGZJp6J|ZLaArKN`wB4eLkwH2Lhb8r}{MR!YjPm{4_hwT1+Zj@HgkwH_F1ISX0vk#o6xZJ`=moL zihaf`SZAt^7Kl1K@8-3K`Qknn3s357of%|#^4F1S-{fy{+J}NC0g$_y#hjh3MY({I zZL6y~RuHMj_--@4N2y|scBiXitx?qnz{8aLaZ|Oefc}(eT33s1?3Tqcq^hI5u_e>K z+*Dv%X;SMXAfC}|wvBZ-8R0rhMziZI?v(n5y&C3Do3%uGeq#!qCB;hLtuPl?TliyZ z_W5+v*0rYfy$Bk8%+<57SgEntr&WuRj{{`A)^b-h0OT=%JZ)N;+9mnGVF#p^N%8Vl z0eQ%@ve4N-?U30vI-YPL56Dypj9HDr(%w zb=59|CO~GAyR5ysGxJ$4WrbFSb^lAPOpE)TL3`M1=@})2mL9D-g@UZw$)OcR(2Aze zl(#L;w;QWs zpNB?!XQ~Y`rE8T90+lO(2;qkzQ#owc;W)|+u?jfosMaHBBoriG9u#-;|P^7SkFd0zQyQGY)93R(v8cNKr1k_P7t z+M?TYps+QmU{mBWPi<3Tg2rvBiRjZLMAa_H69VtTQwW?3JAMf0pA7*mDxT%XPJD%( zkj(AgHK`#+`Wu!*`*jr5<ffUTk(n1 z7nEI8Bhgh|diO03_RF_kFwN7fLjv4&gHr7M#2(NEu6u7>a@10X~-1RW;OvxJK zM>2BQ#=+W0)P)G=utf*$qJORlT9s zoKkBT`Dk6q-A(*KXV)4#psp`>+SWAij+RmQr}1msXs;nUZA@ zy4I)xA>gvSw?hq4`|LJeh{xTSe9FlT$jlI0q1Ta zUt4}f1b&>n|D)>|uzvlJpdW8dz6qFo z_XiW!Lj{Q%8}%2#;lW_m%fYWbg8yrLx5(USTW1#TM0^r#bii&py<65#8EeFF29KN2 zUK2WPLU#2b_C@G~V#Q?qykSCT6)U!X^mrIT@nZHgw#c4R?I|>Rimr$k(`o(zJZOT& zLSxDsE0v{whTrnCJYHBKTt zZN?$v`>Mtb@HfrQliHj>E6uSeu&F}zjKD^s$hMo%u1FNw0al0gSqxdeH6WrfWagzR z`eF5&YeuiJ=}HZM0=~b`fy71zKB25-=F*Yvqm%f zIzI9W=+DFZF~c7|hR${44=Hcy!+g=3 zIJ(O(Z~N_mE5Tp$`sas_!J~h=sJgfqyo=fc?u*{U;q~{=e)*}KG+zJw@G*R@e^NGpB++WLL`=^dlpxs-uuZP7;npu0cTox}OB+UxLWceasy43rV*H_Ur7)_Y<@01xtH z4j7oj8HAIxMcagHz*eKO8n})u zh>r#XZs#5g#G}E0&_qF&S4b$}_zxEf7|eTMtzW^j=i!!;{&=r&XC7AmOOX8Z*Tas zFYM2L{r0=oHGLD&kqx!9%e|}H+ z2Y>COg_WAf^RR1sp`q4r+yYo-4LpOWJKOZrK z^JC^8jYpcc6L#-{lY@f`(})HOF3S9OMkkVj?-R5%ImP%=2uVsG5PUo>IGM$oSzHY# z?vdD}dQ*15#wKktWk+ln4ci% ze~&Tq_Zri-(zI0?QcJg8~|CM-Ep8PV+p4KF#oS1i!DT6TrLI^Y=895x!?~I4myUz(Au? z`T3~LM=cj! zx_t_W*!KX{?t7GK_q`~bbACC~oxhjk&VO5A&ljt*2V@jguhiP_@n)&QQ*1a&Vmz(* zLmPXrsmGINWBic)zrMYmsd~l>P|jYQMV{*)dYP_SkqT0<+D4 zpBr;`+RwGHANHcA2Qs+i)-rM0G<73}XBtqmth_-a$SO`U~p zvGa_n%u!i+l=XOl@y#4VF$LV2K8C|duPn+j2Px}_DLtx9J+#%w+ot?=Q%a)eH?1%c zY6vj(6S!6Hh?WDAdbJGXrrY`fT zTJx!`=2QF4r%sw12b&v-fV^>5j=Aw!*wCXbB&lQ+oZv32ny1I!}? zQszz0F?k^Jkq2_jBaarCPd1xRwwU}HlfTa7?=$)Dn@=7ypFC~yx0w8$CjW%VKWpZ! zHgh(bIor*gT^5y^l~ycfJSrF3aJO^g9i$(kvT5eIERZOlX2JvfZAJ#w@W-5QX#-Od z{4OPWtek5&fCJtBu`T8??$fO~(3cA{QF_vpA5`FN=>}6ydi}7O z-fm{|=q$g5|}^gU+wDQy5TeS?{O z-1v4V<}^ew#{tvTXu628-l)vL+I(oW>Dp|%$U==SJ7l^#2_Pjj`s4uPzsdNY2R@j% z)|4JF<@L&U%~u^GYnZY&9jWe=vDRLVwx{sOq)7_;NVTWReOE))t4%n=-5u@j?&j`+ ztIeEdGiQ_WPe)AM4Wj1JibX(=&ZcE`CUny3WwsQcZsKQGt34ef8*FVE?v(n5tJ|I| z7Vo2kJ;t}*lpZwYM8`BKoV;UXv-`@Oh8?n3W9=yn?!$Z)ZZP36+Zs7Y9l#cTpbZam zcgH&T_W=Jv;NPvF760@x#{U4c++cjC?S>m6g|ri@+>z1l>T#zLo%Sl)^+_t;8IS^u~%l=#2^G3qO<}9^vlhyIQfQD=~N@y^%ho z-k3&j)cOkZtPN6%*cUFID6$@51$`9@5lhY|OU@@t&L>MwF}I~i;_}`6COFfsnPCLc zS6Rg2`C<-tmvDHr0x3Od1&4XBa)~Kf%HkF!$yI8N(hdC9R|HH>XFbtu*6L`z%k*vh zRvMrC_|m5@{flZ;Py?6DliQS_dY83DHk}*qYpu*&jOlq8(}HL&I%1y6rd*{F?OM+t z^ARDUf|W$uH;EE`^C;1;TKwY#ABt}-D}(0ou1w^)`}xf`Hio;6?_TGR`n#yN>k#)@ z>!grV8(K}fy1+&k3RKCpLm2U0z%u_h*qeWpgMXUZaG%;h+DD~-ETt@^epHGgmD4dc z2PWV=+B=UdaM!8s93H#EUWZ4!GolCOdw@fDr1vD%d$LbYnmNn?w{x1QSWBOfyVNvo z1&908UT~pp=Iy#IsA&Ug4|s6#x{o#q4;^ER92_IP^XOs^E_e1XqD21;l?e8f7Nr#G z*uEi3gSC#aC0+^Md02(J&T!|jN(ifjFnuHpEu(GqTISlSW`&2Xu-}F=+_`d(+PYh9 z1+Q}meD^^&xi_WIr+fpy5A*jXP>fvS)#{z|m%Hl`?i{A=w(fa?W}2Xh;5Aa0#jENH z=X+3$@SxZ)DE0~pdcmAlYFt>u!LIY7AJ}wM>R0qdo5$1k!3J*F$m4OsplbB39n(8_u6Lp9^bP#xeXYlv z3(e=jAA(~peRZD77XQ#s)Tg_S(;p~9YxsQQ)B*)X`&Em7A+-pX$|^cf{U6?%OWE`I zM*T>^*dh2jMEzaV+XWBUHGkr{5P#wuxsddI1)hiKEnUD88e3!OKwcPoMvK5R`#Jb; z<8O8muY**vVJStI(?!&&)O|Zf<~R}#^UfIs?s~L4la=3IvqaCHk<5^34~KAu_hhv9 zWVfEk{hb4<=Rh*-9S&BGse4*MWYZ!EMRaT}HMBW^AghIoZzPh0mW~LkWE6Su6?<^G zvwsF9`YjVS^93Eg6k;j4s~Aqgv14S3`y#_Tr&hS@e0L73gs@5oujCKXM%(JO%(Yd` z3a7qmzhw!dJ)>J`tNeZ2Ss|T&dIg6&GN~Ja+IjVH_XC>&RH*)$g4>reS%9 zD;q3WC?sCOiv(8$!;xAohE*#&Be-wIdhqP!CaMc~z`z{3r2p<>4v!YN2-?Bk08%8s zL?qtzx7VKUYGXjfjM0>2cZ|pH7j@$C&L)&ALRaReFYr-yHmM%ipTiXrccj@+6v}~I@Wn4Q| zZAQObf<4xS$m+s&386IXz$yY82GN4^c36Odr9Dt^UDPQhWfQBQ0G+m8NY!p%m}&e9 zp&UafJ1xM5(>S#2(4pe;z2f#zOas@$k|wM8{UbBoIW@F=ex(a)uTRZi8udBTqc&EnqT2eDj={w$Z(#XF_6)24X^FHhIe;eo3iLM{(JAv7c;8Sl+j~9br6AN)9;Yg06X<4Iz~v z{C1(X?8ZJSTTr>ORSQYTxI{tEMN!Vhk70>b%FxoNDyjgb^WNO^dzu7i-ZJ&u`1uY$*O543MB*YjkAl*jklQ_rx%&Lg;WY%rffA+-ZfL&%_Ae+hwIJM?dFkT z#VX~Ij0$@iy+o%e>&=v7Chw4$y2^sxX{)F;Q;&FH-FQa{RaBT8pD&<}oEKIufesMh zALC82D1u$@&U3x{{Ahkzg_yj*U7^!&4YD27H~yr?Lj5tL{3p$}mS3*0r|ES2OtAhv zu`%4=N7h@+2m#%tn^)O=KYC+ zmjA~5sm)JiD=0AA?#MLTG_Ntan0dPjvkm^+=Ej$?{7ZM+Njiq{7e^wjQs;_J7>&o2&@W*NEJ9eJ+4Io+W3biMVBCj;zjV8R+oZ4?r zkyMN6#kWj&lL_xI@bsx&#y5JczR<1hl$TC<>A0dM{4PE&S9{aVob?RJV52z6si}rH zO!%M)*PBz6!X(RBR|L1#FbBv-%@nc2gm>A(Y!S?XFw4VE-N2331u@%9IWq{gX8L+F zdnMML-3yXAI%V^OHg;CmPJ*rUCJT>i_70{PfpH)Ut+ zq}XOtzJ~0*&!%Y^2J0~fnX1MdQorT|A5IBAn;yN(vJT7Tk@0XF?>C7I=q#MM2yZ=e z)>NL%l#QmT^xdYk73O-)_T~H|7TR|x#VL?RiRpH4H|hVT_r zgN>$=yt|dVla)r84=eX1!yL(){|diuPO%L$lVW4v5STLU-m!cPcQuPU!T`NH!{S|E zYV8A8&;;&aHALm!43-=P$7QjvrP!=vSbVF)+o;+YUuv^0{HO`9H>Zv<&T7K#6r07E z8%)rJ6JlnEHB0g2I&&t&QgiV-vv@;oOQr~yGBdz>nLzp=Z&6Xt{&7V32A#xxYNn{h zVL}dR7w;0$Ye z9r@llHPc;ZxU(Inr&{aZ;fF<*?J!T^-W%(khZVT%5$+tuO$y^9h8y_9HE~{_oLaXg zD2E?H#kSA#H=8SjGmCxJ@wbKA@Yu?m7?;}(G7!) zsfYH2afeRfzn+r6sCK@^J$%eCzTheR(o-699$jK#wfFH;k=v?;gB?V~14MRn*vnxK zKA;^@w?3wPU^~nT6k!~)FrM!zmCQH3v0kaVzlP8Esf=co${S(owN}hC z%Bd8VaU{#ZnjJZ(=GnALp1a*RVwcJO^CdD2vj5!L2ibpKF%#j;PCceIc7AAb7|P(tUaL}!}-|c znX|xnk~b{BFb*I@mNHhtpt{3bez83xP+fjrL@GbPg!oy>j5|`jH;1`5!}LZCll#6z zz2b3tW95m+*GemZXymrKkWeMYfoP}R=8q2V8@9w&IQ=-kLF`;Q`8+Y!F+Mzy!4LXL z7z!XJIULNmU@x(<66~+zkEV8Hc(9K3U}e;+@&seyn#NIAI7RcP3!>4>U9%5l@#P6< z#NV0GE9}j>cVWi5P00ze(yb9ZH$SsCe*UAJ|DU|Kfs3+A|Hf}*z)45%(FUWUqQauo z!m!lH0(H{`#jJ8|NQxUxL?nGUFTfqI@h`0&Kam7NDvArtaKZy zurAW)ynw=*3dsqjH4{o}I+WHr64fi}ptRol%avBzS&J0c$#5=H+GrlkcS;+bKB^@X zTT&1p(vYD6e@I4qZYqQ*l*cKl5TP?Tsh|aMJ<3y~6c@~WgSVjl5J&RVZyVoT#3#y| zK@RD6>JdLHoE_@C2J}uOgaC42Yt^n!^%Rug&oS6YxkMNfB61VOf??rrQ;&Q@AI|(% zo!5ndgRk&q@rM{o>M8sd0zUtN^wHA0EAeF=zHGpkjYyG$4zL6&_$;X4i=fv*&u10< zHeChBM);lNd55GUL-57e%mAU*Do zXf*$bI==y%UsNK%SVt5=le!L(&VK5odJ2{5CqdxReh4yrgshsblWJEL`auWrg*qS9 zK#E~2Yvg;>nWxlwXiOmhQ%}rk<85gXyhQ90{aS*a$^bI(4q9>$5VpN zR{tq|hf<-As9h&y?I{JSQN`A`2%7`!Hh^tH(?P~6^1wl(0clSG8WN#mBq%)k9O3|= zPNyO2BMGU|5}po%i;rvwlz=P{_VkXYIoe6rn{R z(;V>FE!|dMaT4*%teuDg(~lO+YF8cga^t#E46UV!D9M?m0ox-Hi*(ucpiwTTDIV*A z5f>P0WO4m}WQYZZ7P9RAe=wvvLWk5qjDmq=6!Vb6UDLo{Fr*|1eMsS>F91RxQaT78 zQnQb!vtb0dFpM%VjNnY8cq0#^Ibhf>k{&QIpu(Sm2t=u267VrH)E9jTP=^2*z5uBH zsO6&1QMaS&e55(f*#dAFK2{8$yD@y~Ntkstk#IT%Xb^`{5)>XaV(92~gslL<4WI<7 zc$kt8;W8gp#aOpu6cuh#XCGB(f2DT5t#N+^x=NSM5O6q0X!! zVNU$LOPvRS+sOWOv+8xEN>=xQMjP(WrwN1%V6 zWoP2EYoNbe4cmmGA(ZAa^Bbsc&@~tS2%rm(<>2t%^EiA1#bRMKJv&Ix_R+IuJS(N7 zlu}N6Dr~~loVJ$V!b`5l8vql=4_ixQ0bvHlU2ZB4MKf?a1y`7baSM%v^dwHOfnvt- zG#CfR2Ak0}I1kg${o>{QMe12H$Vd|2_t(oa(VPsZE()J@ zaoCYVhFs6T%6=$*L-qr=oXUa|xZj|FbKhOGmSOU9P#lT?^#=}QAa^g9E&09VuFsQp8_jNF~nphVwFh+@SY zN~h7s`{@B9=hzWx0gqC%c;6@*E@Y~LWsU_z&6p&e4yp1ySe{EMDG_TBP?~CjVMCq< z+VhTgoC9@^McL#RWAt;s8S-8iJzWH$iy*MS2Lqy%as^A7fp-87S~U|4NMe{%=D@(m zq892f^>a*_ybp*Rq7G4o#Tkp7?s^79&a=A6p_Wrw2=y*d(q0XGf0A8>w$e{@RmA9TUuUC5JTF=bA3o-D8lz|o1CcVbeaDV=_t z)eijR0h<9wik$=qD8(5rL;;LoUT#EOOaci!3FmG%Ai8Qs~uBhaex!z^;y?C0cT zK#B{}|0>aENW9gPMNV?MAN_XBN$7vj>k+q>>jdGnm;$E-!tllS*nnsuyuxr=+_sQo z0&nwzB={{3@o(F_C-V-Ep;ZTwNQGP&_1<=18_d|?*7)&jBuLc}YGgL@DW;Jtf?UH7 zDd`aji1cfFSlNVCL>;u&7b%Z`gg_dttwLZAzL6Gn9&Bt1++pPpver;tq&^~mcZ7`Z zAK^(ss$(lP8an(;czEzVmSnxB&Vw;g!x1_7R($HLgKS6>AZjzV5~dIx)~VsQd?~6o zYme%H^^Uw4Slrbxo{cb~W2Jv;LYN`#KRt-YOu_M2**`&B`hVOZfsUY{%>U{RxcAE_ zEZ~XKJL29$xI2uyCUy2PbvB$;x*bTwhXjesF`Q_w6MiaS%cSyo1QDZ$@D48-qxO zd45QwHU)=<92~^+I8@TJJ@o7=diEJTW7|d7rdv!{q%A@H0<)_LB{Acj+<||nYMfUH zErS!;4)<#V#qk1Sm-I)f)k#bflvu}`;zInw+@qPA!0<1A6(yksQ_N)1;0nBk1BJyf z>~XjaSDfFDN#Z2zh?79YDV0zbXnBRqhGa_=BA;?8DIX3(fHELuWq5VT*SH_16j0?3 zN15e0CZ5l{N&qw4kA#B2V%FuA0hk|HLqjWhRRUER$|A2G!aPNAd4Cz2PfF+|DM_W2 zBMEVaZ=t~QPuo%Bp(julAt&g8ay;jNIP>T;G>fw>Q3oW&wzY6^6eozQiFwA{vl!zn~$s&2bDqIDARpe2#x~Gy`Bz#W6|DcC%6S*=STJh|>wBt`pyOLfs&Bcm`O` zPOOL;&OrCuQR}dzT-0PH@Q}}f5@9)c7PTjJbQUl=0B2!KCJsC4&`yVsgK7#z$yhB3 zRa0*2R#S%3`w%sS)fP)YP3fthv_a;D=qGghD&;)t;qNJ0QIeLP+PBEoH+@FmqJ`%) zx^7YLiKe8YMNMYjwSaaC2xb>iQW5DOG&5oggVM>E9Ve3`ISK!xTHb&TLZ9D*_{=>B z%-n;(3_#7q1_yw)=#UN(8yd*{2U54HGm++V04gh9e}UK7Hi7m(P&us;`v*K;iOQk^ zJWZ-Qkk$FFp4sU``e(mXbQVgzhlJF2^4_V3@wN*8$ME(f(oJ>kqHQ~HYQTx(1jJ2xoPbl3 z@%y?`|4dbje^*9@i=V3G)Bmvhim@jG1^J5qwt>Mt*u{N@{->b9h)Xwi9pD?5Fo*D?sKq*3ur!!0!Vy84^ z<<27Qhqek~r}SEHxIGi_N7LTwA@YK5L+lx~+|7jlWj4(n#0>MW<{!cYqliSn)%(?} zE7d_eX|s#OIyJFDO>9(aDiyWnogB61{pZ!11Ag8|0|MqMur{`cz@8eZ__txp2xPlX zU)XXj^r3*66Hud}(^DQKy!H?^%{s1T!o|N;3G7#Yqh9@vI`2Cg`bbtJne!#eLGE0A zT)p~znC7^H1iIRcpiToBcB<2me!ZI$viDGzTHaP;{-q|CfJ!jPsOeY1 zHUOb08~a~s{wX!Tm8o}-@~kaCaQgOP)gsgweDbMUa{@`&p8-piTC)q6J8((B5UIXu zq`r9wxMIQ#HSw5Qa|9($pu|C$$NkB->QxYD*n_DjDl+=oZi zf|F`Ni&{{n4*XOdxJMmUqYlII19jMbb^Z=@{=4eHW9q;Tb=YBbmEJJzh0g8HRZ(@e5w}gRtvsW3uzq zilBezm&(H@!BN<#E7OcaZafY}NjS_+#o-uwo%%bxWqV^fUQ0mnpGj5ArCL##j&RI;hwaa2wtI-y+!N{=0&0t=wGcmq@ms?Oc85s((we{SP~) zpBbGv7djdE14^U~#$Z=&rJ^{I%*$C_wR5=h-0oBcS_I!es zt*IFJ*;%=HIod)aZRfbcl&ejQ(`;s}H}R}Vh{J2ox`bFdZB3xP^|Y;gr@qyH$V7{0 zw`W(?sY{0My=rg7M<|eh0_w{TC82HjDv^rYW3};*;^CSY1v-Dko)5k_XQ$h5UY@G0 zVtDQ&M$adnlOKFtVRlzWl%4XsqHFNWJ(Uq>ec_QGYHJw5HXuhxYK7Nz4z9-}$n`8i;_IdByHSdD+M<&Wfq0gE2N zedtb&M^OF<${#`bBPd@wJ|PyzNePKKPE8nvk=@MLSkHhHl< zp^h&&JQ_yJsYJQVp>)h$LdT+IbWEScw7i&UX=hsg7t?Yf)AAao^M$MScc=13A8aOE;c4K%8ShjLSAf5=#UrN6KI!F^ai-Gn0up` zd!v|pqnLZcRf~Q45cYDxmFPmR&aT2gLS!E|;D1-uA@e!APQ34RCd6u+d7!J?cd4ri z0oFSr^MkK3fQRB5KmNUZzPrT?VL+o>E3c%S+Lyg;|MAgG;C*Y=x1!aT%UFV};sIWD z$PiJbjrWoa>GvO&A?jPKp!X0Zmp1$drHH1Jv8LDFuUj66Smyphm!rSX<>)VTd2yi2 ze_5A}PsqQjZLi?|S`4av@O4BL`b_UJUktyv126thcjOzDsgTw*5B%TMi+?~bde%7m*e+4RhetL=Pc!PP-riCzDYAUkmLRy>|ENab2{o;@FT0689~_^I^y zL|okoGSx;+!qswqX2aDQzM6`wjkpp^0n%NaFuiDJ{WI~MZzzA7^zfUCY}GRfbbnX( zeIni4y6=b5eSY_S65UVhz8^vNQ@ig+(fy3zy?t%VV~X%C&sGW;q22a1?hgd-UtRw? z2>o_;wqoD#4c=4*-$HYt#0KCs4?t|D$nrT_Ypx&L&mI-m zO^$*W*R)!xNH^g33g>FdTu-`Dt0^knVN$4Ao?W?nEGoHttm1c>w38w=GYVH`?_{%x z!N-1Ataq|Se9ccS-pR4z!nABftHma(J1h)A0#HgMfTO~nApvBX#XfwcWmr~6RHR$9 zG=qDlLGh%=GIq0$ea7pVI^y5sJIxBj7U0wr&jhnr*NwGdYX2~-dG_uv3s3*@4vATd z@Jxu+YTcJAA@yyTF`iK#6$xC`IKrAqSp6;w5T~2P>kt-P%~-vfl|lNnO**Zb{=cAZ zR{C^8dip%IQ+}ZLn#S&b)z&_|;W!<4bpq-~EBV{6Oi4%MInnU3;|N4p6THbt8V6G-{L< z;kPBEARD8cWNZ2RYWah7KCt}S6<6udM+5rk0Q5)+-8nx9c|Sw`Kr8IzYP#X#aNjoy15F*@Fh$HBf|j}3wB6#zD{&Q#(%PiqqsrfL zMri~5Q;gIZcWQ?VcY+MQKY`?0j+qJUy)DB1E3;BN!J?wBHNBP9y~YyxvA%c6UM0WHQ{rJ%`XT)luR?qTXb>|Xyfz|0}Qo&qqU*d8$#KnU!Yi6Ovpu_w7V zGghq3j#5@tqW z$;II08f&Mb?MA(U)oxxz!?RPIgQRu9J+5UKb4B@W#LC7ZqL73UCteN0xDcNPV3_Pl zI)FZ*0LGsNAYLpB0=N_-DgXeZi|f(kmi1U13g*XK!|IXih!xibpmrP zB#8NEhtZ_Ncrp~m_Y=b?0ilwm?IYGRy5os^JbnB*#(?~Q*g`j}FDo`k8ub-A8U5zq z+YD2dH_c%4rWslCyo;nYcePp42qg4cJ8j~rUJ>Ac&Md9o69JYGV=Z7w$qmGiz5#@L zw|M&(o zTxL|1QH7mSI{uy-!J;-)I$nW6bQz1E9o_ zg!jIPJmF6S&ovYjl)vvhzufOswOvDYua2%T3{Q6-iEtg8uI)f)i`OPWSs@{jtrZ#} z_D-$@-}+0J=4lfw*&b`BSQCpXv_W%<@McD2i6iI1MFsBhEVXEDxt{4}apGZ&No%LO zI=04eG3FQZqW+GERGWXK=)kAo4bRAcyoPQfUc6j6Bf^3J!VAL@t^h*y%?xukW6WZd zhV^GdS$-yzw**jTX*tGi)VyqMKiYb`c}SHfqcdg4BBwUa;=O4=p7yTC+94hT%8({^ z4wB8d->j8%cr#2MtI@MqS1VZjb;5e%bp^};3a(>RxhI>RJ~sAR#Ok&> zD1>g+F_LbmR7s~93{8Z)-<-Q>gmxiF^43~(Vu>-bOLJLBtIZRCr6<--a8He4q+-h! zuMoh(c3306czoeK?Th>Igc)yS59*o~aqFd$xVZ0Hj0rEwo`@n-MUmN4WP#-u>nV!EDc)0*P*IfVDH>W)lr-9EbjF}Yx#D7?Z~-boIy35F zPhI;2_vS&gK&unc7wPQ9mI^n_07G{J+^uoXY_PnkB)^Tx0h&s# zyERrjs@2=vGtG*7CZyU!16d*VTAP8~CMuz0U;t~oZNdh0-i&7P8{k8?X*HfqBQzFI zrU?S8HhSHG*Olb=io`2-fE1`G8?qo6gagRxUuf_riB$km8{Gtoag~@n=qIwr$Qbja z8MLa}h>3s{B)IYPhcs#C<-#cLjmd!LSNHPaCdD-XR>n=RGR{fa?Tiu&rR|Ywa4%0X zDNxrdCK#j{$h{p-i5#JMsLtbvAG~X3Ywb9N*{DxwnB#cGq*(HY!;8rWSnEru$nK(+u0QJ~OtsOC-~jQ46)-Z5f$|4nL3%R{A|2&x zqt}nvs1)r4#JpUQcsm5milIt@^Bn(@q2gG4lv0rF_pBH?dPM>~N)VsZBhQM2(JSKU zL7dntAHd|(>A!axrU;wkySpzTI;=8Q$lZ#AGZ29P0Y zEU$DLHM3Udi0}_2DTg7HQfPEuo|`8|g2QO6{@{o%(AvI#);+_lOxMRJqE|)Q&fowA zr)Cn&enj{w=wHYrS7c3eL^p%8>8Bk{IpMrSJa7RZ_x40<6AT{sStc0aV@a;`^!DI> zf|13eKCEfvzz7^`0DKIdlr)2@kJc+Cnk2KY*L9WjV`5~@K|I{7xDrU1c8aUgKvvxL zd*&|4($qiE(GyK?euXz$bijavYKA}{SXL{stk#o3r4jN<*N5DofJ>3%z7xO}_yjBm#t zj^uBD7xI=l&mwY34(}H0HfAcvt;Psv?_9BvN`;UYBP5z7UK1oU6{?MPg4?O6HKZt8 z2p|~%*G88KNXSo4D<5;_^5Q%M(gWy^!ub|JPr4R8XP5z`4Iu@(-&1v74tXODmhShp z(eW5TRBCNVDZB@9!C$={5#mdX>mCL^-ZPQ=Qx{wfQ@OAu3!eu|g}uL)-w*Hcer2l( z!!%R`8{Km@D%r$-9_uDpmLBV7EgGz1PDwYYtLD(4wrh~8E*u;~3c9`xwzSHRJtA98iI>zyx2B(qacv4QpoDWD&RJTTovk%{P9({kb4btbw zfG}~lPVD9$k}AXwUaPQ)DQ?LUO}_!3WC*c)Lnge9X2p4p*Sbv>xlk|i28w`d8pNVg zGEVU$Z3};3w|man$n=PiHArBrs<8Q_GgS8FET7ppU+Rq`dqHpr_WjI6A@aU@p^sqehQpWJxm8j-@-5QMdy(gl4%rA zU4g1+8tGOn!8JLc4Z6Rd%9B0bUp)K{&7tTk1(H7ij^q!tKlDF_>;62O_jZ$ZuR;9z z<|uFi`F9tLq3-Jt?KnH)Mbu=V>L`FVJ<{H=03MfxHM#JZ!PN#Y%}Bc6a#Jzo?y(tSj4caC~OuZn9^`e z)q{yJ@&^r}!PP8E&n2Fz7fW$QwLny&>1PR;v`S1=9cN!WhQTeSqgTN@$?u6LY|J>& zi=hB$k>d(FZGiKdqbyodG1Mf?j*p`X+D(hcLiJyuLcpClh=pYb?! zrB(xBca=8IoCPyl+XuZ^GkTIdeW+*xilShowm8ne*n&ZqV+8qhYmoXm@_Ldou=HUQ z!fn{y|9DQSw$!5|yctG>Gw>FALO}tMAA{E@noeM*l8R1N7J=J30&HV7!ZF!N#S36V zbqW=*cyW&4y88=yQ|DhY;iUE zqI*CE=-CbL#Me4Jyjs~>1`W8Ido^n;*p6mObMgVwr5viKoVL2i_xxcLPL~$8+w2Js zgP*O;x65J3@O+uEPJH(|4U}f_t{LtxMh;E=9^x=KP_xF7_qH(3{}NR( zFUy18SvOVehn3(hzX^|Qdg)&kQ$4)n>C5N65twZ0ttd+dnsRzt%f;gn$dk?Wa-$(} zbTH*32%3m*f#~Gx+VUhkX<9KBaLZ}tt}Q3}v{mo}dWYv!E1Q@th~DuM6e?&Fqfo&t zua{o)?1k|Qo-yJP!N{_S7rw$Y_7SM`7OMu<*1Xr(fN=1OymuFkPBs-^oP*0Zs3D5e zRbHPJ7BgI%Db<(k;UQbOGX)OlWOD-cd& zgt0VprZGZ-!U*X?bifq~ghU=OoDnjS`!o`fxu@o%r(_R`4d_6^n*SONgE)moPnDt%_Ovk<#DcQY5us20CYu=jC2GAo$W~TiU(fUY zQ?rR&aa4OZHKe4Ik#^Ex90sIrn!8a8vp2&m;_x7#0<3Ip1hnpf!9EU8Mw7h)k3Eps zYbK(W9B_*9W;BY&|8YLNanS28gVLyVKoiF9eKJEm`H@Q$D*p0Mtc&s;l0oO{^ZJn)B=yS*%zrR%`2e_NMyk07d zhhiee53n(=_X4<_w>!o#`{apjg9#CY`0@mIMsqLup~LSe$P+)FCs9phRI`Appy0T* zxtDW}EG1gck5YX3m}#GY_l1N9^nyxneuTITGcKY8MmQICLlr_mxO4SR$pVeH2Bt8Q z_qh&>xQKl}6yJ-d-pVxS_W9k{qW*J@Fv?B2q734dlv|=aqJKt_jDZQEAM|D2~!U?0}@%1MTc@xOb2i zy}vrV;>c}~QnvgZ7v|MMnl+Q(KjAW^R4tBbSv~@m=-)F;tR@a!c~XIRT$JEVyF8_8 z$>%mP9v(dy8Td4+IJe=si|pqJ;Ek<(OgC+gz@bWS$Q^b3NBd8f~cWqp#^)R=9_gN8x8F`C@m%;mN}(v=@p=p zS*Oq?80ecWah`bX!Y#LJK?l3Hha(7(5#MrVYYN`UwBTI~gPqLtUuA}~w8cUkN zq2#OMtGHtzF|;<_{gvdt56#+(Rt@kkH0S#7HBS+5L#jjj==MKam<*zb?GJ9@2p#~E4CXROxtx{{;JjvK7j>{BO?|X7 z<@*B1T(7}uMgOQTSE4$28PC@RxT)yn8>*L{$)!lw6r|W#w|lMI5snx`4;n#DEjK$yL84!F6b113PTma$bGhtnWvQFW13HnNqb z#A!L(w6UiFZztgJ4rf$)TwBFqD3oMl)w6kJAra$8inyz;!djj3sq+Frrh1tO(ds&& zB0MRdR+wVd@r7Hwu6lO~mZ*$#)%%97j$T!{Vu<=?owjpGEm#rqr+UbK)YlP_Ej}at zCq1HUl%i(VXl-RTmm*8Vx=qVyM^CtyB`C|!Esb_Bi&vKP)fUDhbHy;^C`l;ndXHFQ zFd=2>7zGBpb2QwzFnud!Py*E43iC*-gS9T{kw>+(`R^ri`iB#>@!nmXM1M!*6C7O{6=_GFkf>Ov;cRV8(iwdgQUj>R@5 zOG12^!W%i;2#FbZoY~-&V*k)M z7W>lV9YtEGG5LU}uoF^$?C6VKH|IHGg@xRHZ17zK$&oF_A!-O!rcRuI;$nl?ehuew zn16SAqNkHi3H7{A# z8Mfe~S_Gud8W4AG}@&cU1x0yvP>wq+3Q=O|D2R^57D`LkX{Slg*)Ii(fZ^Wa<3ep&*k5lWj3S z!qDD_683z0G!2j3)rkO928-5doLif2x@IT>u)Qg9&jhzJo%;nXZ|=NFJw>0E6YsHZ z_2g7b0T}Bk+?FdvU$35`Z=7W?(Pj*h!*vmao|Jbtvb?)7Ox|hZq?oDHW!QF`7}(4* zY&&GwN=Tfu$gq$hOn;?0qmfp zDwUFIjFeQ{bxB3KmJx>JnPt^>$SNxFTgW()R)wdF9RM+!c%n3ko06BRGU%XkOhOa&(KzH@=@xv{>oR?EJAYm9m@tYVe8mcQ2 z3U_O1CL|Kt#N}{!vfheH#zDZI2XPpyzT6vzkWI87_WLJLg3hY4J=n z6z+UxEkZCr3ANOa>u)HKb1Py#Hu@8`PMIvDgEdnUEo`el0wMuyI}IMyKHXeixuOq6 zyxxd{3g72Gj()v22HG9P#Wvw#0SDUrON`=i-1(Q7#lw8Ih}Ag5y5h!QVVHIjVQ+0D znsiGxcCvNE7NmUdjLDh~+YG5kO5}-@?_J+(C7pNyn`KDv$4;DtLuaJ8=NKDl-Lb1X z;Q}MYo9buj&e^#^jF%Wtp;}>ko5MyvjsrL|Sc;55}0O z#%hFtf`lVuwn+LE%jgiwlFlkb+`Nk-^!&~tA5Eb_h)Ed6kMvXlw<#R=)u-VmxWJz) zlHsQh#Y``1tR|pF9kNB+!4S-#8O^RKD=bT|aIdf+nExpnaxpa`&z9|3VHR^1>(Ej# z_1x(Ln{Yb-Gf(t7Kx+YiX(J>q6X8k-!9~tzAj%f^!*9*?4r1bJ17V)H@{<52j-$Gw zx6$0TQ%j4*{2b{`i_`4~cp%(O=Xugh+O6ix>zpHKs&c{Q-{FX`9j`LDt~y@T%c+X- zP+bwAv2Owp-(})@{kD>B&y_wz5wAa7%OXLDn=t>uru;J;H)Os9_$9~WG1G8EPx9m7 zVRc&A@(C&rBZh)yPoeM0H5lSdl<@rbV(=QpinG06O&u->~0O2e~Et)n89$jfaG!7Neo!~GO#}c>?rm{nBmgi>PSU!4MBgphD?uz z+@(Ix&J#n(%%(_AlD0GXJwDZhULtKzPWYC{v2fTikeSy|ty z1563xyCf)H*1A_W{3b$q4CGJV@vp`qJLXmX-lZrIT3%DMH|;tHsiz0U3h1c-YK`-j z9Mr7)+$C)=c3RbOB?lRrA;Irz^e=>2(2fuMt_ER|QA_eA6hSSZ4**9a6(i%I4SkOV z0hE131^>kzYu^Nld?e z2tmTiCHh^AsPNCy@3uB7&-8miMrxpO6aBuq;SBT}AIg7mG{ks(+3a?32@GxRB#ozM zO+21RM+zBF2c$1GWIV0bQT&4O6p!%>V-Z7mp&U}K@56@FbrNNdA#4wz91$48=LK8U zQ(q647v1<4NPJP@_;&O?lgQ{mAs)g(e1Ewv5DUwImRDV2tvfNn zqNGCmzeIgGCr(SoyjTa>MZBJ+z3b0~FQvMr6Qfz1aGL(_ZS2&Kdmclm>1K$7=7nk(YmLgNToierC**h?y zTj9O}!w(J$Qjk$UnC}}{$i>2kfYz8`n0s=}zG$rOfY^o>sVm6rDIoitoHB#(34zgE z)$$`4=f8rY`>TL)ZWgyO)Fe_n`;vgH0ez)WJ_-Iyn!A{Lcz&X^di7<*w!~lJp`meZ zOmKbz{iWev2@SxMd|*fy(&p6(9f;6ggbzJd6TXeMi3RwyB03#2%eaDql+Ro(lq$rU zOAr)a0A4q~KVSOa#y20I{z80yI7%^JW_}DhoM}Gg`7#i(L;XVMOS9-Z2lUeCOOw?9 z(%1>0JKj>=2A#J9lTja5spNDrA?60v6z7M&bCb0t1@&a_IO)URV@6mv=1CnoBfX{U`k5$PP=9G@5Lq?}toL4Ny zLL#Fw1nw?;ycCs$Lg_QZ6jdncYBSvKmv;%u5G&(#+&#hQ@nNjUhtu zVOW}mP$ah>8W&J&)8dogA8p2Br?e!^T>k!w^Ks!fYPZH~1H5A+JP}~BieB&<`}$}D zc(D1WKmp^dN?P=R)IwM}_r}A_xmbI-8p101z&MYKTxI7VI->2Qusy6C-#Lz6RMORX zCrH5AGb`izBU7lCv%mX`A2BL>=ZR$KpamR%#plS^x}5IO8r|sm5orHG`rQF%#k3)3vtR z@~OD}EAl7o>k;qKc31H3;GREB#ADANCh^h6$K`Y^DXaLy0$hll$PZdosg@syp=^JW zKNWx1pM6fxwyh&@;tBoPHhPx-2tRv3f3}gHHOO*{@yubK4v?!T>C0Q54=lBOq!LhC zSJiUM;5)*4rrqL?l%!HOdYJ``1W~_POEtsu?&ap8^k$5&RYU>=xCX9#gBp#%tWxoZ z`8Y4>T~khH1jJW~8=S*8bOD!`1RNAnZ0Uy!^%Vx`;iJ7>*7ogDoGx(}@YGs2 z(?hPHbql;^TsuQp?Yz_&svx((%QQy-oSxc5ft!0OW7X)v%}c$C zAjo-IPMNoy-lu%5j^m56QP(=Jm(K{AeHzf(#KpCw@t7nmo7lQf0y{=IXE|jOUdqSv zvjCvw5&mnPLm5CfJe&AUO&F+oI;iIX%5IT#E(96Tflf56hJVW?LN;tOy$2W6TDOp0 zAs$6&Gdua6G^|`ex?2`ZL#@76nSmOk=A%p2W4>R7b!^sk$mAvmtQfzVydrU4FY&oe zq%-bKqVZeVoGYjft0ZyvgLcH}zXc+Vxj=oT(q>=Q^e4rB7j?x&a7ck9W&A4-imSJM z4W44(`EnXPqss|{Gevd{SDRQ_)|>eF6J)|jE>>*ztpx8qc(EuUW|epv)$#SUx6;#B z=qVzx1AW=(hJSraQ@t=@zaJ!y^sx_xe%LY&*&;-MS|uO1SPlnuR1uH;9{h#0!&pgs z|4TID!F}9v|4TD)=YNUDhv@S!>X2AbyPk%YX7*2sZ=qaK+1BkKxfsrMYxxd<9cE9- z7WnrIH&+xsS!><85kjEWx@`-ewpa71avz_noB34N!KeCE5VqFZFp*FDNGQ}=8)xw8 zAQ8RR+O&pG&BV&JRQAz-r`C=`Gl|*podxB! zom!(lh@x;SnMZ7FrOTm2z?%nxaL7>96rJDWHRLkBfv zaSlHwza}M?rifO4XW@5xpocV!XisnNWP>-|;3+WMJOvi>`~%k^!I$n#?;ntV zMOEH~OvZ3smnKA-_cP3Z4UNse#7;S#M!)SYxO6^Ch*Y$6yL+x(k!cZ`cJU`df@R0u zF>8FkvUMZ6A#AF1Kf4Sik&HwF3kl1xn#@>uSH6&MW68PZDR<(=TTTTbGwN(&>~198 zAlTKO6G<|~jE9udOnbPr2w>2>RMwlbjy=yNI1cJWGhR|k&d1r2{OvaW7Is2dS-5ae zcAH-I1--fGWK@VdH?08b7KLv z6yPul1nEB5dvN$Pd-`baQV3|QL2Q1NL?i0`4pw!js54R+_lS=up`5gxTKqyO;rL4y zotwp{0v*9CayXg$5{wZt8Un51@qr}6aQ@DKBWkOAPBju#gR3^o@Owe9TkE77ZL3nN zJh}Q$B;!dR5^vYj9Ob$$khgxmeIvb<3yCOg;5$mqL$1JXo1>qY2-2c<^7v@f>S2`I3+Nm%7~&9k@VKG z3+3#Us05kxQve1ePeTNG@ns+Z2dHCcp9N~^uPpGA+r$$GdD*?+d%GR{Fk14%Lx9DU zy&Ki>Ewk6@5Gf%5RlUL9pg%YQe0VT8K!I!RCM}EtZRiS6z~(R`OcqG*ztb_?-UtYu zLYdzGu3m^!)wnO4#RZ6MQ!781Os%aKefWN>=!J7g-;N`emjHQ?Nbnc0_)b<{Cmj|1RWL5jIR@S0I@_w9A%I9pU=6i6~aH%z^m;Mq@9iLa-X)M8{&cULHi<#~R3c zU)AmB4sa;qVY>Af0rklgk;XoENM$%oOmd|nt@;$7!UD&VBy3Z0n-L?Vdlwm$xdQg5 zK@o-<`;s)l+RbR3#0m=bQMtehJhIsp8=0yMaSb54=O#iCuT38c|1E7#6WAbz#|`Bp z42GLT${Bq#h=s>^Gl)68X(H~i8N?QP$g>O8A76iUN#N_t;gg;0HwC-iHoC z3~>ZL36kEoVk|I25I?*N&yCJ^urkp{ z0hK<|dO=vVW6_({NPAF-_n?>3N5r=J-a=S8sZF5Tn6);k^91XZl_&m5KI3W&XI7QS;Z{wF za1HRB@9T%hxJfg*B0U90tOL=$Z+Qe{(m*CG?d<~)qqN)5cBH6WpR&-1m5W%Ul`D?B zR4%ipCe;){g;Nc@MR_S{}fi4rD$T zxNkU;Z#*uun198&*h$2kO_QBXz8Zw|7XqKrnay%OGS4?I*Jow$!(@>O`q#&>hLBdv zmUK8(FVa#_$-c70U@biiNK~#v@kQpz#uh=pLt}mCOEic+XCwS9CQ{ptB(jV}cTT4{ zlXt}XNxF^t1$0{mZ^qBjZK_`8taMA}0ztYZ5ALR0tbFxTbc1?@D%=;K+Z!uSquU3v z#81-g_A}Fs5>C%dH*LU{2+2!}40)J}u?t5|d)bP9$jk0vHzvp3MgS6Aiw; zI-88gZI!qLwu?c#0jo=v80j--J8($|KDiF z8UPPzMhR~Jd(HUlOwAZ`d3Q4|J7Y5<|1-^aJ2k8sFXQ&V*NicgRM4|GmR#1|j5`7P z^xjBD4#8P_V{d?|`s8_XIv~QrMsZ!mEQAtJC-P8C#Ksr>y#r-c!1CrZ(9^ zqXV|M`6iHqw(RP~TXx-45ArqA_E})f31;sIN(@Ev*v(jWlw1jOb*{&7F)d>0FkFfq2vk0m(mKae@Fp zV$6oIG2t!rWLwHe=LP!6cHB%e;*#q4VV}1#`Ls%9ThRz^G-Or($*Av~EUxcntPjrPe z+RxHD=^rjJ`})%km6yDN-mQ(*xBdHuO+qF)ys^x9FhgnEQ){Q!dLEG!i?%7=BpoC$ z57V&trE_$e(bqa4Ia!K4S=~jtz4NrMoM*a4e1HmKO}!UeD(PPOLZIeRKwxPj zCMZA-H6P`@lkdW!`-)3E(-S=thE`0E^-PCpHojtdl4p9pXTr3K=@Toa&k!%ez2}|0 zT>RJiNTuTG^_b|quWZ24^YoKA!lQCA7GH?hp1fGW<}a^MWZ3icCi&*+&3v~7$C?Ld zDO`l->23U|9>>}T8gL|^Ud7Yf=_vzxM7@vz{k9!Xu)_K2R-9ieOW3I7dmd=xvInVb zff?zuu)r(M@6MsMQ!%j$Ax6*B^kWm=-_ma3wGYJODA7HTd! zj-IEd(&Jfp?0sbhE(0yw{O3Wa5LS3SV8>G$bUWb|N;Bd{@t_LuUd7d>#WMo(W7Vc5 zh)9Ja?^zhPe(flPj8QC*0S{8C43wiC@Ju`UOW0VN3y@`yi1nun$u@uDuTuVFOP_@DnLMBpWJxwz-T0XW|!jJv?i znG;17eUzCbUgdMF_y^9k%hYo?yQ@qs&*0qhFs7z}GgA8hA)r78J)&jQLL*wuBf&F4 zR}gh%hB4)+Ge(PWU#e*RJ<*7C8!7bF^diD7!GhhvtU(sJG0~5G^JugErH^U*U_#+>{L6$Zeo}!F-=19V!MnK>Wq>OV@OCN7hWr@!n@5N zRu71#$&;cLW2kOW0C!#EPxFX;!|Cg6@iPtZU$fK1s5JP%bj~7z-r{wxGg?~tQSlPN2?a59) z;E2F6ltFr&|4;2Dc*>=+$R3Ck+Q@PXy7yLsDS-J z^uh@T(SICwGDyTUQ@QU;RZz*D?yBW210Ri~jr82D3%i}QB>R!W=gC;-%~;PtN7q_U z;d)Qulfu^LLi`So$GRR-8>A^HiH~rw2J0aev29Bf0uJq5rcps zagJl4oeKMUJNnsg!i5+KR-v2)WDwYd0dXAU2B25H)(r>|t{30IDXe8|pts&z6NT@n z0W7jv?BsK^n6?{(Ne_3J?31V()=g`hu#0{&UVKf=L35)OWi4*o73{EwvN z>ENU6({IVPT1)<=-LPRFK_8%f| zGlV$1@hc}poImrqS=$)^HC#q4@Y3HnUUzZ#+imhK_BB+*@A<8>82Kt-5+ZLD&6kc?dm~C=kFHwl#)fyh zYZ())(>kvT2mQ~)&L~JlI6jK4>p6hR*NT6CifTkPVKRtqC zW}CzZ_d;L+vTMETS!&OlmcRdrW_QVhp<54QzJ??khmMi0N7BZ|EN=zRMz7u5573&m zB=MVf`F+Y3dhYDwUXd83meV!Y8{3z;)^fnK=g=GTSEhRcjg~;a&>%ysY9wbAe+1?JMHnH~^?k8D(>2 zY&Y{9*Kb5X{tU3s2oL%GNR$i&y|b~08Fk0)P|uO}Nt5vTs7i3YbHhJLLO*OelK7W( zi+osOUhCSR(qDo!9M>98Nrk6yt*G3@^|`@eu~(uZKn5uvh{0n|lzT#}Q_W;(7Tci( zwp?Kfu-j%yMXWhN&DIJpBmu}(5VfQ5&C^UP}gz`_`(8jl*Y^R~PIUL1E9fhi+*hCtyj-rqK;F(dxhoblfSx*7U z5AH`R4v@9k-HLr*%T{dWbF;99pfKBckXtvze-%!sH_+4|p;n)UVp%wfdvz4I>L@;^ zxVzqpbL~7ltQ!{Y4@YrFD2gjjLlF~>qQ8#f%NA-4_CE_j(bsN%nERsP`*0K|(9~cn zswsC_*B>OIUOW;;s23RYX5rRR#D$=Uw8u#lJvnM!D2kbBUPtjNqRVK_ zssrk(&R!(K+m+WFj*w22Z?ne(qo-tpr*IQo0?fWw29fDH(KSFAnC;eqt2a`5WLTp< z60-OI#^+`+0T{V!Cd4|w~5Gv(qpw4#%`W$24BY z^e=>+C8i`te>;utGh)i_iRq5hF`W~Rsh5uFldmK%ECwb=fA55eXasap>n8hnyPW#K*5}92&>*fI{8gyH-+~Oz5K;NuVM(Tyd`A8gn&OD|PPhx*o%HEgg=Kz#i$mwP z2ZLyI)_N4EdJN3*;kd@=xMFl%f2-1m%LC-(azww*YA$%WBEZXG12nED#>-E~`2N>n zt$Vjww(d`SZWcEMFw$qrZ;h zFK-3dfc#C4KCjzoXo3wk1zHov1~ENb6&J+F(*fxNl-U=;L^C*DBgcF&?xe<~d zz(g-hJoe^5YcO+%qBHbF*EfhR$Pll68AiN+GMddo)6pdWo!_+<)~87HP~PB1tz=Wm zGL!Qzt*`={KUT1onK-+jlBX#t)^+Nt=g_O#QY>eEl3y)9Oz@wC(U*;lGBLNsz_us5 z&Uqzg*-oVE(!sDmN;UzyyEe|l2wZ>ETx$sJLlZJ(Qt={ATwW)p)1c{IdHVjzDQvI+ z1H9XtAkpp9pkH7M=SK+h8jzRF(D(#t_hfHJR|BO9D19)1o9&&To=s$gl^%vHZ^(8r zm`iUICRBok&lkko)-}GB;pUOFkK%jSM@?b&QDKwFeUdGsWT-%+9%L1WJzp%L&~suc zh>aS_?BwUUxy|B_uftHgUdw30wooZ)Cf7Oee=I-)eU;)k7N~fCOa5(bfF}Y0n&>HF z3S=au?T)`xH|nHaxw%79i4DmG-4&%+9Ww37Nt*mVe0SI#wl&t1vrene_GFnoSr*ZE z3sq{1O<22n!9yBP#M=hq!TisMa9eMm1YaXoEk4YgjNcWAwI|_;*nxV31DeGTPcQ(q zie_7M#iM%5>RzL+ST8F1yhYpxqPt7hDZV-6RrxLX&c#jC+17Q*2S(>xoHt_Tu#so8 zr%8Dsx{3TG96oVZ8W@w9jBQJ)0y6-gNHU!Bw6}->z%#mV9qs4|$I?0x!BUuhFM>_* zl_w;rLc5sB7S_LJuQjB9O*Rkux8^auf6rq1Izf_P|L)@2G>aXtqJQJjzv2Ye>S(H` zxAe~M5f6absNVNo64sT6j-RD|somYm_IaIqP8}uBQ}Ph}1dXzGK|g_HLS5KWa{PzX z4*~WYqF3*7s@{ApqYjHnkp(>@%~;hDg{1UMR_D>7d7!(TnVeSbK3KemsUe@7xg`$7DkT8_i#BpSG5?k|whK zIrIK@2Yt3-G$D2V?DTmFqzKZdFJo&K zk%VQ|>GZLlkv>~l0yxLhNbqVLGipC1tNYq3r<3J%Cd+*ng^}e@dpKFHvD+a`Ldjy{ zit1#U1)>sJ?f`ru%M_dgWC^l3(`Q5||Cp02yTz9Y+c-8;o#p&OK@M>e>*+wQWQW=A zWH%4?SU#xNf;KUKfV#n|SK?o20#)L}mw|jF1z`X!i?$!&UVGs1(qpV-x7d6*aV&^wt*Hw0`=GH5>0iHPQ-l|=rkdc+#E!#69xEBU*CfvxW+wa4T~rW z8`(tpIwr_S9y?G$r5p{Z#dUfu*t1-L))G&YZH3wRDK*7UD#Kc_qKuXttZUhfX9UVU zrvv*}qvS2m$$289o@7eMkjc^}VjToyS64lY&sejeAF%i$Unh^6OaksGnST&VV0o9tKA1T)=M`*w&$o6uGVX5c9M zRy+}@pbKW;_2RyD)OYKpe|-u%iXPs^HP|Y~>NUDiuhDgUUMtQAa^LFi{&TlZ3zZM( zylNH@tTcE^HjBE4x${Ojt{}6Eg|vMd&(p`b|Eg*Fi-cD#t*dm3p9(to}R zUmy(82lT|wh2jww%Id0D{Y$w8pkE}wP(@^dNVRznJQ#t&Ax}Q z+8;GQeK_ucA74PdYLy;HSIBXBo#P^D;mMz0ux|kxv4zMJ5ERi8tmyg&+Hfs2WyD4R zJ_|cpJaU|Sqvd=&l`U(KEu#Pnwd_^M&*THdSkdtI(Tb-t7JK*+rmD%2U~d9|7K;wg zQ@91cYm6;?u?>`UUC+ zqOOs8Bde&O;3hT8!z#9@SfQeVr4|({C|b~PF+@oLEh<*3sA)Yhv_(Y(MfdlfInQo( z1KP{y_51JpN3y%mb1rk{%$YN1X3k7~a3xp#R%LDQ_~MGc_S#E>DN`<8b*hl1ZNE){ zKiDOgQ+Y%;ORL@O~HkXin$Ij4t3mPHdlu+grWvW;6069{GuMa*O~@RDeNXu0PoA+{>O?+e_x&n2 zx#8))GGS+OUrFwH2kb8;$vj(unHzR9kO~vKR}pxYD=)Y#UKGqOe>bD`q~WgE-~Y%m z_s5@Ri#bF6sSpbS4HBw7a(KA5aFJNiJoa~|%A>=(7-GxsRA3sO0#`PpXIt7r>+a8O z?ODmqNWy4|L95n$8CRIUe?NLm5Cu2bDCe5JbSv1~^%UHoURC&WcrZuIQxzuId_>YL z6${RZ|6(K}+0yXh5BW7FwakDsdO-wLj6Z_+D0 zzK4yWO^>rOdyKk0Ugq|=dug)AUeaS{i8h|mN!ZKTRj_n*+s>{#u(P8wJL~Rt_Rq~$ z7jk#1Gl}Yoi{A7_v^;_1b%0K^YpdV+20Ua8tlfcqJ&Utm8Y-XEKIWUd+`f)X^(Ee8 z72yIq3_1}n1hiJk)L8en?dt)I8WxE0h5f&l37Q7pH71%2EYMqjKuzRa*`7NQ*MDFO&U9~Mi`Q8mW zrA<|}EOLSiQRhS!N@pjYt@6f3)3KXS@*K1K9Re4L+_6sA{naKZcZjM5(`ZuF61Yo; zXqUnBhuUS({G>3EW#+NN8`*il%1gn`v!!{GSzF}rM9c)Im~04EYNy%+2ENc2dV*H z<-l?2(_DLxa)Ps2v5TzgCbNf!(tG$BsTf|b{WKcU?sKN@CVF`cAmK)yt0P5tj6HXmuTh&LNYqH$ zknnc5nwVZhx>&-L z=vH_G6Tj>*_jeVPHJar-Pdndz`8P{(;a;>S@BKQesX<7ml#hgaPR3c+%y z6~`uAYs3d~PrV9wk)%WK^?AqA)gaA|Bazh7p9j~srR!tTS4IUFGwi{p+CG|Rog=<+0u?Tm(n#_16LWogi z=;d@RSX=rSTj!_nnM(Ys+r%@QFUu0`?ey&=UkNtIZn{l()0M=#B7vV1TqW7ON>-8% z$n=ix&AaJz+*_o_v_l7-nP40olu`cWa42D5@smA9-ZV$b_7>Qx?^LDe=YnBZGM@?qgSS#SI)2M&hc|LAtZxyQmT3s|F}vfx`TyzW~w^{&ny%y%+9b7#PBynWv-V# zTK+0@0XLe^K}ImgG;)zWZNx7Kl_@}SIAuUk=??%FlZ(UO|Yi_<`sp;ehp}y z?*gcIAupeGYrCEeRKm5k9s`IT)S>d+GLlG;7OU+?n+qUmvO`bGhV$`xCJI z1^@HwoK4wvJ@;0yY?g;imTk4kTE`RkWAQ|^;`YBgPL#C+83M@zgqutKB@+tn? za>YLedZW{Kd#Y}AgGyHxh+Rjb{Ot~z3tyGWM8g%2E}Nf9-o}D;noMTB+6P6?-uVv_ z{u4x^8JKB@v}8V?B4q^|!v*RnzGO-Yl-K1Y|E`RB7q z{6>>D5B!rhuj7A_Hjk@M6$IaP&Lf`gS!K?6%{uZ8Sx3eL>L0O^XMb1x4OvGbnssET zuV)9Fb>wWb7f=A?vTK7md0fw#5bK(~hG03@1_OEWg=jd?w~a*PPOzJs&zH*0=bMtA zn@@!LmVOedPjmBiOy=fmr@8qqxmS@xZoZsxoRB<{pYKv)#C%_VJ~1Il)T@B`ob@mF z`ba@ih$vAb6jQ-U5#XOcD~b_<2@6%_}C#oX3CuNX`9PXb5pH<0)!yM z`AQ-MRlNm&k}FiK?|PLjbSZ-Jj} z`q*+&qIyXnFZY^Q2TM(Ik&iqh4yot%6~BGc@p$(4d|Q$(zV068Jf+$7B7~m_jYu46 zB4F1&ly-xBU-7WqTY3^@n``XO2k@<9xSGxdb?jlp&0hGAQL+OU)#>f@4dXSBN;11i z$b5r`6`37Jx?MhQ)HbORZ*94j~fZ#}QG2acq-_Q{eh;U$VA zfk+eG#d@cO+#-C4UQg%NHPtH2KpivJv` z5;}9HcnSP;3lZb?JMH?7@kZLmrg~etkaNx(JFg`>b_XHl`sGEAR+{uW^(_I1teP!c zl6Gu7tUXR=gjK5gB6p?=9ZKR;O0`c5n?e7Dan_r$?g}fM`o3}VXZvQ>n602NIDn!W)01$9hgIFS(F3(aw%f| zbc)~8a)EaEqx24sluBLQ{%Fzm5gF@tT1r{QfeZtk-0UqL?)7Wp<@#YcS@5M10dpza zknp84^OOVa$Zhx>?%uOrk!Zcc<+8hb-``3KZo|@3I`F3gpVKuB_N)}>Qy(Fs&^-|N z!3cKk{sRcMq4<9z*g4eue+2tq5^SW$|4y)vEcgL}&8Ojm5p1PY`o9qDn``YZS!VXv z{vQZ-+DYF_up8zl36|)ER&sXsA?aS9gXBg$p1o#AMOQ>Jen=EM9!R2kbHuk|640a% zcE>#!z5l3y$b*>-dRyQBjoueh@Bh*Je@X8(C;ad9{>-m`fZlu2@WJT)HmP(Vy;rz= z^x_|2(88WyMiR8_x$7_f57d57;rCMeyAMI_bH0Z?5Bcf<_I&c${~Nh}cGmwR*Z*3c zc>B2jom@Thet=x3)9}H_b>oBoCvx>;rW5&}EXn8t{%2|8gJZv!Tu%W&C07YB#pw!F zMyVVg&?XGcRrl8poB_U|bBW%eCqHCWJ^SSqe|^gs92lI}du}fN?3R+61kz)D%W%$( zgPd`>&YGSZvNvU~jRo^GcvN<%wB<+%4D^q`>oEa&=s4mr5A9h`WT|YlHv_Xd`0YYo zs@W5HhnP}w##z@h;%j-b=uKS2F%?Mc8`9bIik0@LEzOG!91<%XP+QtNHt=#%#Fvh# zEgc>!ow#A(B>zcR+XjZuALRGcmQI$GnG*hF?Q9P6gg<#nKl98V_>}M`Px2|}g%V$M zXTT{9#0TN;b?hxg64@D*%8Um@X}7;Sq9+HQPUwANCA&}+>>{RJ$n<}~&3WP`P(rGc zpf(w*5Q0$3X;C6@k#MTPsn={hqVySn@2ZVlFw_!c7QsR4O<3 zN~%95GTM;&-4*uKtKN^ZK5vIstTK-6P>xl=l z!IN`8wt_KUn-{>$yrI3PR))An;1&;ZQu?^jmD78J)oYS zdxbdG2PAa*%-!w88ijIghG-5?LOa#GfY;nsb)C*8TVQf|=nnVupW_H^ZN)lN8~Prb zJYI{ouwIhaoC)St3X7ekvPXFC!65%)RvP3N?9xdv1A)AyTYOj;f?dvn-^yWy=@eDw ziM$fPKhQxon(qAWw_qAbs_K?lA)jtGhV3Xb;e*L56zA2a5tMl0wi1+tndAg6k>CTm z@-z<%smcdW&WhddF%#J_23v3c*r$g8S!!TRGpK_fMz0G=BvzcI=&6S?m;7R76J7F)s zaeH{pMY)F_Dm`Hz)v?Je21GWIe2t#nDcLD$CdB{P6wzeMZIqVzp!6-2j%fxcQ4x>f z(qS&m$lMQ;bC14>PwDN%F9E;Nx{j4#Ow`36?ge+$FTU2IZW?l<#hDP2;*B7ACo_ql zOI_4Ao6`Ya%uL;YTZq-w{oc1OMXb@Cy;>=i5Pn6k$@Q6mE(6Swxh9y=)>Lk#3Kk(L zhRjRL1ZmqsW>TS;AGc$E>>1n^-LW^iw;*yFIgq!R+w$BUsQ_zbBC=JiMCQum!!A(y zCNrl6>=wd6n!@?YyjL<~qNz|{frk|QCUakn40)TeAx2Vb?)9~H7;LN2^E_3@5OTL? zhe~eiWQT~x_WW(y5{^I}P#lZOSh)Sa%bP$J9!Z_>8{}g#QHheU0?qhO-V`=db!t(f zM zJA(H&k<*Xdv~C_bGhJ}A%lTTgfm6K`V!dr(OhJ{Km7%nvJK&_UGF&L|h-hWAGT?ev znl&qHAk1Q4&(}5aVu>iEk0p900!qmI_)3UXva~QbWHlL5%LO_l5?{*0q}_#=|NlkU zch+Dj)Cl`d-^hjKCTmt#!LiW#u5z2{z!@Bf5y>c+bC6j3Z0sOgio3D)G0gubvG!{| zfjrV;?Q67u2_--C8-$-bZy|$vZW(}?HGc<7t>IMvaWg(8bSME;cS+btQvp7cfmFx0 z38cFF7Ny`=A6d7_K&nq;9TVd#^f%h4=8Q7uUAi7Yl5|wO#cOZ6(HWc@@87M0yhy>l z=KM?ut_1?tSM2tHGkq`m;288VMFMv!W$uqAd^a6IIt11=TMt2Chh?!pUTXnq=~xyr zBYDoePl#pXBB?+Hh?bfGlu&V7psF%}ngSGxmMo1j`*!5uK&9vzxB@O*IRaOfh3n6D zFbdah*lH$RBqy1PT}_acl;>;+)4$1rJy;0Sw!uj~Oy&;-Cp~vgDmdw34B>l%laBeD ztdvx6QW4D{IGD7YK?*X0lYZr~!AS+)%Fbjf9q!HEWWFYhpa1y=314^(U-{@J(kzQr zIT~u*EtpMw2 zMDc4^CZU!m)|A_?IQ)3 z`VGQGd}h~+Ty=2GY^}i{2RZHZ?VAUE+kTXNyZoSUdtGS5Og@nIR+83o+$c))yCZP( z)vX7wcqq%M&weL)MvLe4EvoDJM)BI%=>1359gn$F)st%ezrKUJ)#hsTO^`xY5~X^7 zTI=oC(zUh8dT-yK4lBMRaMMF-AQJMKxpNMankEC36xh6Ka-AVB7QX>*Noo2b{Z5?BaVBv)fEPnfMYv5GmvMa~mxA3OQEL%7{MRTIAAFCgc$`69)>d7?T> zNKJDcXEl)npP4S7Gt6)K42xmL3|YynX;Q8W#c$=sm7is}tYqv?VR~tK6V@$FlcjXzNc!4(=|SNo=qetlGlt+RA4>9 z6$Vd4?Wd3b229BmoF_Zoi1&J^nDyqFt9YXafXGK_MLIZH6yZqKWU4uYq{(uxLP_pf z9~ol+ng-?Mx*;z@ih(D#`r4%XQxZ?DL7imWDe|ea*Oqv2XC-OvxG^T~*+;y1G@(p) zCm(JNnW}8-=7Kc;{1b%HG0#2gPUlwBe7ih2`CE?t7D92%DQpEWBZekaCO$7BZbE6U zPJ%dg58H!b>m?0`wBZkP&#T98^gJWBPIL4)IU}})`Ws;1X_Uuvs?*+G%{%qhzE#M#r*}2ih!&#H+n;5G(ldt|4f`aE>v6>LS z(08$<^J6uA^+#{cI;;EhHKtZXv+o03*zA$g9xB{eDQ}XmbSNOrnylx(iD^vV#y?hmq51>mEf{dbz$MDs& zavq0(7nkxcrm1p^8;;x){rfl3`t}amJs}rYDIu44;sdi{nrSsDrfT%p(or(u`vs3o zs@uhve-Xf%%k$P#IzEZt^Dc?C_!_4tT(4c25)Ss$r$ zbnY!q9CbpMgtq?YhuI^ySp#e#R5Q$UMSNIqytpTVBvMv}+zH+!dZ4&GG%ve^`6aTU z%=LrJxtx$3O?R2BdBtcb!B&V%g`g5b0nIcI6hU%DU)r+yke#>?ri=YhMR{U{CEGPP zks@{$XG3EyJUe>GAs6q`xr8`w1*xZkw8JFoNG}LTUJKHIOprETk^<>#$lL`fj@~7@ zdJGVF{MApepb{(OhhCX+^tnym99=BOa`cWNb6aCKj|+4i>d#<7sN7j0izu#l&qDqe zEa>;0lLq>%z4Sx+VF7)H=%y@kZV*Tah%v+k{elk_n^%!Ew(J2L<~RtWIRc!8hx{6* z7N3D^YAR;RwXnI)E;Iew3&77%UwEqSvCoc>h(5Tg@o9k~t@YRec>3#AYj!^3A8QkZ zQLm?Rh1H_Lkry{OdwawLg1bxavHa{-2ce%`rsOjX3O}lC)N+D>$ z|2`aTdag$SR&5q{RYM!Q<8Lo z`Rro_l8JVb3?$fFL^_+6c2@9ASZ!Xd;?O*~SlrXAPP6G*g62n{MpEB#`QE0sjcHn0Gx{&c2OCYPHkeFzt6E~#$uwFB`K!gn z8I*NGP2Lk>tfh;+jbknj3Q2NP?OPOCu0r!4+l2&|nN45{2$Rf)d!|0w5nK0T^9W}h z{K4T8!hFy~KF=%(dzHN9&70^mH9DJR+8yHqmkUu$1vEE}uRCBpBUt@$a_oisXlZ6E z^gkb*27UiQF7)TOLVubIeL$i2*PKT$E+GU9EjTU|f&Uze0RRwP-%GHvnIT4nXIl!B zFLA4Z&fhH*R%rZHmXO?-I;XOrT)AxK&LOPZ3_^;>t60CWn)Upbow+PlQ^(h$_t=;% z>8L|lu$SGX=kabSY^5WIUfvT$`+m z)hv>NHB0pWQvS#F39~1jwaXzF0VY&YYHu5oRz)d~9O*)ccvdSxjJI!@bu+O>Mz1el zfC}Sr>A>87qadQue2$t~VEI%&b)4pyC%s(o%1tdk^SKl)Fz?+2&gz>B&uU87i!0AiW@iGka#n3W%qC{9V9I>Tp>AID|7ocfnub59r+?#wuS8? zC`v95J`BR+HA4AJnU1Mb=MLa_Fz6XOHo6xFk=0jaxk<^w*Xs})QB>T4K7Vuk#$=rd3K3+`6N z@5-#A_w3-x%zK^ev`c!;c#W*;CS*o1dL4J9icA4>Ep(U~lSF~Vv4enWx2P0v zKH_al8zn&0Z-D?IJ7gL#1pwnBc-{$?XpWUp*!B1&y*3B-r?qRYK&jTU+|kj+m4ihW z%e<>lbmcmPq7}lQqIJV92V#j8a26LzNt29p-Z@U5o<=G^2NV>vC}RUh$SxLNW?V zD#yN%B9-GIAhxP2k&;f0TPbNMQc^?PrRp_5nabMJW|5UjugH*L}0r&)*|K`r)Rf>FksM`ntSjcc0Ln1->)S z%1t~-B`#X{Q;`-9CP7^@S~g3;>wyxKbZ@e=+X0EN_?APWi{%rx zxn_d`Ef-22`bzhYn9`UGVh;~vy0DX+?~!Vk^Yw-Ez1bF>!*B!g-hIk~nXm zMPqmU+_TQtiombT%iuq;LN=`EVj%=5Tt4JRRLx|*h#ln|X5Uf_D+_{A8m+NRWL0;W zf8`oKffR&2dIab8(HUDsRU!?xijNj|PF!#`AWKJQ5mKz<_TLp?Q9Ad}@J>_9a9|l-apF#7D=6-O9A%D*Ppi> zcddL{j{DVPmgA;2%2%X)Hp)L-%SO2lIn~~h+X5Aea1poYxmIU7FWcSLEu-3^vl3=D z>{x_d>4ihzn*xfmtG)`WqV=CVJphL)LDalPcy2+4s-T)beCRZ`3pojd z%tN0_*BtnO{a(a!7xp_9hz2tex&U@L=vCHQ7A6P1^XS_Za)b`ebyGytXn=Xm9hbqp z8qT$=ZXur*qSQf84ysG^pr=g~N05L9n4OOa1Cw`h&>JaS=^j<?1$7g>r|%4^D?JmhCIUX9VkLZpn%Bc031Y^M-yFi$j$v6{X51C7^i z{ZgQ+&sfbae#Hk*LWiA0wb%lm3}@kZQTuUO5&=0f(A)#_5kIDhNonlx@Ja-UyWh^24J#nfjQmw1p^CAhgsU2p1^e$+V_r(7RAchPs>VLN+QRC#{+A7c_a<{H z&^pRaP>KzU>9^wVh)Ju6S=sAB@o}<`UkvlZ_WxP5-v532FhOXlfB9ki|7m9bm%9Bw zb!A%rgWdk$k35#d`H#XoTXC+jd-7<=iOX!GX<@y|c_d_(?~|>IH7Sz5;_sY#MrdWr z;dCN{9Uz_QTszM#WcL#ln;^C22-U0kUX>d1z#P^^6ln6*wpLsp*&dJD*ipZtSQ5NL z!d}!e>8IpdL8wCENDpT5146JyYkJCGh&=@rUIoIkpfT8D(`dSRVL~|iaHB)?QS&hl3At=q;-)K zD|>`zNDG~83$SNSL=#@OYp{a)%}Zbx$?<&5XwjP7^R!R)hZK!Gv)+PslJvLHT(7Sg z$S>|o5()?9#B(cwIPsiBy{7Vvkhz<0;+%x#>OodLGZ_%u7dyncn5LUglGpBpkOLxZ zHZBK@G~%e8nXk&oK8jTH$PuuvPc0Ygb{uU@|T&*?n#*e=SFH z7^bs9K%HT()kc<^4>91lYj@AR(uI=5dk+aoG@5n1O|yi&`kS*I|h8$A=BB4BW8SHyVx0aW4ekw zg=^YfRlF|pWzV=!JKKwkC(TLoqmeI&Eq!IWpJb*W_QT@VegwUji0bcY&|muULLKdT9c_b{*krWJ-O)<>8Kcz>Rhy~< zwhW#2ga-6+$Q--f4m;N>t0pTU_TS--JaE9s^$CmjD+G%l9(l624;UJQmjz<`@M<5O zu{Fxzbe0UYR;Ozvk?U6iyys!DZs4ALTXmd|7zhoQLtGducYPadyYL$1iMm zmD4V|)}4trgl=>vd*ka+tlVoZ7I;i2#*NepA7s~PEN?HG@FMiFTMkBkof&M3{3gC? z7yp>?>}kF-*4Rnwd17M<-9<~nq>Fj!&gW;u?jtmjxmsT}ngV%+_Nap2X=`ol!)a@6 zcBW2KlQdhOFXV*ynV=GX;TI_<2lA*$LAIBMl)a%?zv;yydc3Pp!-i zFQq;B2J0^tk=UnZ$9Tb%#Q0&OI9u>i(%Aeu{&)0<>BgrScRi{=S8D8JE{Tb=)zrD`3UqSof9a7XzLO=G0S=%J@(UXi)BXb0o zS9&Xb?4OMQs=>bBSW8#aw|lEjuPk714jbyH@qN=>dvaOMWbLWROuC#opY6t9W1dCW zbb7~CTU?H5-^|+tBbV9zY=98JTrkasjYJt)S{0}~+}%yWIghY6+$S9OP+rP@oy~;A z73X0O!+||MfOo)HCoYqPFMR0OlHHa0=;EN*a1W{jv$=_rM2apO)(SS7Or4m>S4%aH zTm#YmCRWG~tT_VA%{_UF4ud#11da>tP+!wW9y~fZ{-mfPVcHH452rIdv!r?& z@AgzqPvSayR4&*5XXB`fmnu$0+st1W6r~jr=6osCWKMPq@50g41y7V^X`sEaHHSm% zNG4zQh3NEUftVirK=S+~T`qO$vZg=9*f@nW>-7gHTd|(SC$TGQ3gxZ2@_jHNEJk>b z`Rxx!odnxSZ&zv{ldFyQ}8$8pfgcCT^ z#ng#*C}e)Q*eB6Ay0Et00BcS}7S?j&C%Q%M#g!G#Q(RxwHz~h#3)f0hX=b2#g019+ z_s=>D#NWpP#9#}=Zg-HD_QLb2A2RRsmH~@{uerHeL;~Ry@tW-l+AX7H{7R7vXvlq> zgzAH-KY`ppN-EkB$W@&>&PPP~5>xq%gDf6^oh1F+kx1is)() zmIKzFOn^jfQ*B_5jY>Dr8?PCn5dHXZG2_U0P$qhqJMkfA)76(3_7w{8S6|Ds=;C|} zc8*Y$j5D^PfUos6@_?v^yX|l(N`q40IQ?z)b*yUTKUy@pTB-%$KmaCn@d%-`qv9W) zBz(8xfjku^g+EuFi;RIuS~)4aw-p&T%0wo~WW&oA8Lw3E5Z3a7e8#1p=1uG;wrQDv z6g}^WX2a4B3|W?o8Cs%I3~Rn(7{WV=ii9($>3xeHqx{t(pL3K#r;Tb`sy}biT!4j7MYSPBJh=lr)rT3x5#N)B$O;7;FX3) zYLPSDA~{;*)MODER%y6Ei*$2~H1|w9*2#8gk97+5te+w9D%(yD|3p>S>GHUv+#>L1 zKAWFs*wNK;#)7JJJWQT`VtN6ZCVrsnE}Ab1|Q3g4~?@(ge9>P*298i8~4#noW};%6eJPDe3y&xolXP)rpAF)L1~FKH}Z zMM*i#N`QOoN-CV7aRj6!XJy%w<>s0OX%0CZ6H0p7>Nmifd4lecx%EpS1UxzB8JTD? z2>gNelz~`fM9()VAyJyRd?e?5Fpw~}P8a;lGagHZrcastZZy}?yQAaF(vC8Qrw|Xc zfEPFT?}7;>W?&cfSAQ#AQr%B=>Dt1o8t65`R&5lxX{(h?e=0tpYGnXOurXo?W<1eLVOwA$=?l! zlttirXgK%SMZgW;UH&y$q*jP@jSt-a)w@T&c6>wgX&XCv#6P-?&uZYsWqlXvewk7& zaO{SYk@4LX+hZkjTvY;N>G?XdI)_XbA@k&mZH0!O;e2$OuF!CS&W0<@KOzGV{TCoN z?}y4{OLsPI@C+9v=m0PA_#imEN`o*5SJrnT+eOxgJIjm4KM4vmM7SQ|F>O?+ZyNZ(^f%-exyRs`xZmB%R>e{g}q%!@+w^Q7YyN@b@Q!xuj;aX zf0P_!RVR?g;p18{1PR*~Lr^#8IeFvkt@Lp_#M#@@t|$@xqnP-lw9l-dw6kk08VGjV z5z-$X22qJkiDxr<-In7hG$&Q)P;QwyndpgGuLMHTP6l5=RgD0 z-GdO8@ENQxE!rc_gVr5WTnN>dP=d8=d$JqnMjg9#qI|0Y6XrI0dQS!51qj>_Rb~H> z`CyCe7DQ7Y$s_1?cgW;R^gWJ27ypS#P~SXK*61^JGwA7a2r{LZJ#wvFbpW*+rJ@Ex zy>60FDS_TuG6*2K_OhnF8UjX}4}(jgMjrE6Hy6b-rcU-$O+=KZ|LB_DrF487BZNps zI10SI1bRW9DPVV~u5)x^s<>Y>@#s4{M5hKkRmY`WrDzJDiRKpl^Ow3!ges41jx!bJ z7Q7(Bm+*@AkK{HEuo2zQ1SYqd89rqWTr)$hh!nXMRyGc6gSQ@=CXWiKEy=P0660|# zy=RQq)BKJQiUQ~im{i<8uw}K!A79Hu-T2-l{3%#!3VYP_`V96R_b%)D0DzkH=tO0a zt%8c!PMSZGiY2?ui+3GO1H0IwlBUy}uArp7_ZwQ?YAmMgNZvrSr(4{WO7$jgc|@lU zZ|AR;>s<*2Po5u3QCqCI;ik8QFd&IDLMDt=2$C?976@0Ck{cl(*Nm&eb7F;3i}@V0 zgHXyAe`l35U=B%x2{-ri8Kt}Uh1W%?!{EgdXeExfp0&gM(}gnJW#$*p0s4DYIc2UF z>!TZ0;h$6PdIC?8-`2}j)}}d)tP-xvdeZv;=G~S>aFC;f^_~uyL9c`81-R%jn17n#TsT=eOQ%!vAkLh3sV%$6iJ$M@p6XGEcs0C4^m79NgD~ zkL852pA8glg#P;Aa*uiL0-@*SR@2n!8KI@+CW}U83GW*wjnDD4oTYpBx~C9mKari3 z5r#uL9&TH{1T~$mK~0DG%6$PlU&D)d-0rk z;Mc8@Fo|I{;j)&)BxZ1ZP(q&N$c@rxQD-M_eG8IVw#9ek-g2V0>%32cN6V$m*d2i~ z^CZg-RBBw!+nst1tC>?D^vQL|3bPw+wZ!VQ7sy9TO!R%u#ew42{db8i(;1cvYv{R# zkh^!^#czUl2IAh+3EJswh)oaN)ZXbB!x1{3FEOCw-ZP5V-TWhjn(Q^jTW-lI{>v>S zI&bOF^Dm^8dcS9hk2eFegTB&Gc74b!dk8|IXwb*y>YR{SxSZehJ=cZcNZIQsVP9si zBYq37xb^95xU40Y>!Aw0vsv(5Zi+#L8*H>Jn7m~zCXIdZlD!osagrSS_In~7E4`OF zU$o?NHs$_2K|@FO?P~@gCzx;vYICo!r(W8>Nzx+MXcJQ6hcU)bWTUGtF!AnCI9jpi?Yf7okReewGV z$t(ObcP^JXl1S9tFNF{`blAlL=FU8{ctm(F-$^o&^OzVgWLq?sU*z=^y*X&lTJxKs2he2wO_i}BK-v%J;_1f`TJs1NS< zIG-gV`RTC@2+wC8g%aI5`EHl_a)(!Htnt+jXR*UZ}Z5!vh0 zZtX3XC%b)mlJu1aooaUsK^LgtBw)@hB(|W0X2`W5?@Cp>MXTi}tL52hxsD7*YCc_s z-WaEoQ?oD2tXEqfgnX=B^)pAhModmtP zq}zfD#~rAP+RDl1=-c6RdMqns+7w$bfmGatobZ+#g~axoz_*;yID>J$z1%EBAI|C# zq=|~7w49c<-u551{D79uG_z7IotlXBNWuhs1u4q1SCqqZT;L|AH<^7vlli7k zs>vg%nrt#Byv%K2e0l?GA;Qej6_`D@CP#O4l0kqcVG!W~H&_f+?oY$e9S5{gX#S9D zgVcwXGHJt7W={A9x0y@Ro9S~vGri5Vsb&rUWuee9;1sk{j!s=xxWH7|p%#e7Ago zEe|8f)AG3v9R#Q%e5A7$&C{a7CPu>y3rYz-EZ6!Va%U^mT04-Y*l?tm-Wi?b*-j)7 zgLaamb+}bn;xjW3_jue60GiG-Ieu@0+8!y+!Ye>XnYQ$l=xx3enRtCcYg54CHWk9J z5uEtU0~t*fz!Pkl_&~O+TzvQk`n23HwVZ8BL%tGhI~2bt$4mp*^7v4%+_yy3<>65B zTga*&n$OUE!10EKBZ{~%Uc_8NZ|^t1yOtH~E;)LYnx;2xQAJc80fL0YvJ!8OO_pJ* zwNU(`eB(>?sr?lygp0M8+{|7ExAszQnm2c44t<0#>y2i$O zk>m3C8{=y^Mk8Y7@Y7$M73mf`yyXxc^JAcou;ODSPPg+#vs`#_2)}@c(3vLsIu~jH z?y9qjZ}3GrOC;WM^919NGMgo6wtN}j<(oW`@a_K`LhQ(q8btdDDWHM0(+fE_cw2fA zP2FwnWy*hlYvtb#~5K?L4$vQZ-w`(nQO0p6^Z zA_)*bCwiy^h1Z@UG)*(qsj0iQV;K_t-j-KQ58&4srjo}MIPKoT>V-ThZkYu-UpOp9 zF}ctT(PAtaqeh%xWz)fS6^_(k&g#I4x&h|(nnE*for=%wc9*j^#xKq_h2vmnn+c5d z`}HLffM1AvfV{gX4-XFB5eRdRyb`hd;$CL=<+k2%p%SS#C0Q>o+RszfF>$)7mRD38 zo2u5=9P=1QO}gvJyZFTc^Ayc!^)r*z1Ig-#h8Y^wkEEyqRFHhL_iA?Qi@f8T1O2#& zfXI3W5n?(eZuXhOPZZhvBCi=O?NYgfPqxz5C^0Jz&ytmAmQHDnA)~G5nHqfRko^CM z+`A{}%c|;FZhj%9R2K2NiFT5Wbrtsb0`ohr`KJ^bx6aMOlktAJz90C#@1N24$A0g7 zu|AG#&idZ>Pw4v(Z_4a{=FYaJL*m-!MX%h7PMow@DJ3<=L{~$NYFZ>3*@)CS6E9gG zGV^=Ev!`$MM2-|)i|I0s^y4Akn9_W!X82_vg2EVP$D9TPqOCrJ*P=r`>Bm{JQPx$u zSEJFg^XOI~$!Z%&SeJ6^%@dUbzZY#8RSdR`v={=2#OOS63TcYSzhN zL={rWi-oaqd;QN3kWd%I2*Iy{-FGSKJ@@wSo&};_go1D>h!cLqeZ24y(R4JKcMv-1 z#%$)Z`D8h?Xxnm8{08b2C9LvmgI=y!cuKlzNSG1gqb zvbMKxVhb+ku{8+9OSZ>@>x=dr8`*hmWLL<1eTtNl_sq*~^P?kV%%W+G2e*gJul50= z{$z^{gvyg{oB#Nl0u+A$Zz@_e8_(jmT7^xNN7i&_FMK;$GF#Sq8se-d8nr!KTer9V zLta-MDYRoAK)@2}m_~E(B5O5yg;^J#)S9G<^)Yj&_|#|EPf+@41l(9~iR@azMTjmj z)LTQnC_Zvy!IkmgN^-cZicOzyE*y`4a)J5d^)7>h-uh(0-S9}OYiTdxRO_PCS8}3{ zoLB*2aCwCrPI+eaufdK4d?BA(7_Gn0xo4{UDU|jEwX{>m~irFMyHM=FYfP zWJC^JKbTovh`D;2jCI4WC`yc_xt2`02GIRSw7HD*G&Z^KDtJGZa3{DVK6=$CvKW=i zDQ=PE%#wUrh4GSA<_~E2xnCyjy#s@l#I%pdBXD@uUplcxtS>H#%yP!nG3OX_{^=!{ zL*Ha@!^Id`QTdRx$b!UuUSJ{(itHXqf_VCdHUy#ckjbyqTQ%Tbh09McEPCYHrrwRi)C%;NT1EXPeluf! z^|1WJEzyJOMfAsW%qQPTB{+lVnm;8p@L0JK@tbihT?Kv)%AgIN5DgK{*Ic8un#|fW zMWBRv%cl2 z#aU9#Rl|E*S7r&u25DjipRzJ#`G;RjtxVtJvTMw%IoQfP_b9tEZ(B~)2J^E&NK4gb z#C={OltdQURVkSJ^ZhR7=Hk^Mn0s=b%yhMx1JXp#KW{88Bv)kq&oky!b((wQ@{ zDCg-U&Yu;`MS{++4Q{A~&kzwqw9?MzSa6{eEQo>3;Ht8aOzC5I3OkWiBWBUQDCGYEiY0cf*WqoHQnq^ z2CmkxFxC;fWP@1<>%tO}Wk%#cpcnPfJz{Cd%q|uK^=_xHP*@@YOiM!M>SheBG(=2| zU>#5Ai$xSu6eg(m|H%aCwNATpSBJOh9OPEZ9Gof6Yy0Hu^rgxmmzw8~WEy0Hk@Mq9 zNtt;KOFcS$iN0TA9+3CK-`^}v!}9ajx>#0zw;U=?M=>F3d=SDc^z5}Yhw@DVj^xW3 zFs9C)pqG4YJ7P6n-o+N|N9;2#-7x>{jjfg+H3^$?n|L;*wKa!Ph}#Uo-QYehtziJQ zRpa`OkvF+^vrt^GW!CHetdKiTYTG3w#IIl&i4{4tP;Msw13Ya_5^6lSHJqn-+Ig4Y zsfXa{jVR=0?ZSPzRo8EUKr4cce7YAj&P7@grc-_@g4auAE5;<+d$Qi+^jEK-dFNj7 zcR)Md)y({RAA;Gp_g70~^2(mNcbWM?rV?3mYS`g$93RQ(D?MRJA7$Tf?*rENGD2dd z&b`*!@+1deVufHhKFk*$pm3kmP8cIDP44H9-OqnzfjmX36WM`TFB`L-h6|CN#Ej?k z6SJOZ*NI<21e4jls1TRN#p5L1-y|bYukD_Z?_=bE$0W?d5cF|r7U+|^BxW!TMHlDN z5Nlzcc^?#VrW{?_&X^I_PoQ^YyYSBBNbT688@;CaY+2Uxus8URwU>}XrU%2&a0&iu zwqK@2z&D%w;wB)9sd$a_gIFpW29^DRr9FEnymOwp^L&{vmFlk78*uYXNTKmpW6k$C z7pwKRoUb$PJe;gsn}JDe37mob)ob~Y^fNmlJQ8Hr4?8?74KL;^20G);BRr8wv=qNz z`q99QXS#hh!6F!WvHSC!0vQxxDywwje!@h7F{dFJA2D%508az%_4X9fYBb-7RBWMt z77DgYT`d3Z!-c=psA==eyz^28Yo#Dcy-qRs%XIMLMW3DVf zJo@9&3PsE#$>}c6=Q0H0+VVn9Hxa!pMnj2F5U67DP&=Xl?$59`JgKU;`+LkWI>M&# zTpi&^=1ys1UdUv-fSm|nEoa7u6@Uq3d#6RFmjlzWL~5`%V*h%tJFGS5%CPdls(F^7 zx_vw$Uy=52W|CzDiO6=-^O$5u<_6|jW^blU<;D5d*tN?#=AZ&74X;wrp7prM$D3Oc zVVbLe3z}&(k96kE9YX@~p}lX)c82y&+&qBCIKtTiINwu1=^o6Us=zdv5cV;tJX}7l z{pwu4!V~htE>9QM;x?x)CL#IxcCB zPyE*t-zj14YB>hebYw?JZ z3DG+m72z|!{Z84`RQEHapL^C7NE8ptl0Gnd&lHvv5SG*!{rF#I9~Myw^g%4SkwON| z{FZ@#sGkr%=m&elX1ubB5qYWz3@iSP=IG8aBXP|oEUH~FN<~lJ<5Jeu?5!?kRm`yq z<{p}Kl$p4!i{P|!XCk&r zX15X!%fFZ|Tka0sV|PdZzV_w9GYtOGa#8N=9+{Z|*?f zEi^ZV#g-Yiju+ACc`5_snP0L6OQ=xm^(W4*gtqHeTuFNp$1pPa%7t!JE>vgL47LAb7IJ%=@v( z?0K9UE-^VAjl)g61Xl}l+jEBGM&SBbUlZL=bDPX6jKgWYM*Diu#^Nx<&L8q3=P)GX z9AY}=nVFZU9X{k(>UyCdEUAdpfG^)hye)|&EuBJVR= zz=1*&P6t}Ego7VNrVd$gxPtY_cGHUQHt+xTZ{9a2-_x{pS3sXCR|NO>?GQOCyo|II z;X`Git>T-@k)A)5Ghf{Rd#gry)S0~@$Dpsi1H!yl98_aAmvB<=nw(&r-yA?RtMTGe zgOW@P+u%h3)B964kKU3FHw5QmP)Q@MW)AwnjJ{tsC#(L*Ry{DIuk<74m|q`9QMS-> z^XZRUdtuNvCv6-?aj=xL;&wwOLK4|_L}-X!?e!EBo3PwDy_BW7Kq_tGz_e@p1e=e_ zt7$b@P=`2O5r;c!n4ge${5q#w@f(rsWm)T-wK&~)`uQSX#{y^6S&K182JNRcMXd-R zZ89Lfy`ht&ulcW2)c%Hg|1SgLf0+R>x?I!3{ZA=spE_CV&N^s{+EZxwU@7IMN~Hrc zApYkmYCmN`%PJ}}oqq)F{I4l$XFVryq`}^rqV}yGfUYTOGctbO_e~e{i!iml=AR!Q z!ZD8@VrTr`jGwrA$X;Mxffc|M#hmI(IhJf^6IRoWCNn6tEMSc~%|ZI(y<{YKQPu_w zdM^_Fj&tybzr!0Vb`5UoE>}u5so}h9?uUgPKR7RbyVohpar%hkc@7@v`-?v#OpzwEWKb&iTcCumkjokMNRG<~m~M zF-T`4nS!RBkS{*!-5HXY>iUY|&;<#lir9U{D%i3UMwkZOSM2)&-3W#5bf6OxXaBXu zUsV;l(0x^PL>hFz0y{w0pYZw3QfqnufI21m0L_l)TcP=9p+ZxOTyY>Yf^xD~i=}gi zTfhSMSJ`DGnfPZos$rT(pom_Xg9{Qy8qz!jb2fDFE)q@GW!<}5M<`ADZQjK+p@);R z&Alitgn?UTm}e`P~n7L72l9kH9(Ii2+R^jL~qCG z&BNor75}3hdgS45dwfKW`Te(64j-Ej35@VX>kEo+%!$;glkU-XSy=(cqoO}uW_~f& z3Jbp0o!jn!z#H8;q!k`S5o^^(IKlrlxEQW2#=^^JmxaA%udO66&^S5;od?4FQx7kol!-j;;R`Js6K{RzVmu%@IJ7gX$J*n;^(e!n?gLma80IF^XJ%3)(qTR_CQT-CkJc0YvM4cW zOCG-tPJ^=roBQaTn4}kXJr%|6*en9tcgOAj!XF6k_n+3`=98SE`R96|!zu08?8t8E z#4$K=%#?Q7b)x$}wGV{0$@=WNMsik<^DeFqSgR%K*ie`ECVFDAz$C93vrDX5E z%70zm7yiH3;Yskhe~kCl0ie|xn17Z3(uRY*;yJ~~H+mi&+;R)sev_Oam&bG=976lu^k^f7BB>}^^Pd@o%=c-X<74b1y&ZaUmr-x0}Q%OpgD><2GX6rGNX(KI5Po?G9 zD1RlR%`e| z?$4(Wi9-_E2J}juq=QlK;nEQHd=aI&?t~V81vHUJ=SO|dM0p`MbC;PYyavHCKuJ0F zpN!(HxjzdhJWZE6(U#TWsH!Ti$pksMYrCo^Ea#|v&pFAaLZ(c#ZdS`Rc!n(cWu{P@ zk38B}Ygcu*)yvB&%n8G!VxW05dnqa?ZC0LNI8+;Keu3w%-D%%Tc^(_u_kiv%!Fj}v zgfxSwm)!2x-)XyF42ww{-3UrFm(j4B!XTNF(dzNO=&aieXZjcn3b{NnrLVoGm(Upa z_To`xHazVRh6OBR1jRPe{k`x9(FRO?v_yt8r7u4+s)=^{ZNSN_HpZI4m_#J|vdFC%jb@J*y z<_km}YOmA91`o0KnPP*7yMz(Yy3(pyb+oHC)bX3oT(nsm;namCI`Mo=)(Oj6s9(w6^!BeC80|H!2ce3Nsth2F# zWB2+*q^{fy|gR;7Os15`Ol?k!%QAmt@Bym^zr7Rno(i2=siY=>NqvRjKF0Z zJd2)48M;kmuZ~dC+AifW;1M_}IRJtuJuY*a9KgQY>;OJP#%mdh8tLAP08NuN9p#j0 zcji}}#4gkTn~F4;ioe5xtan()n4e9>Cx+tt1|f~fu6ft3(q5B!R3z%w0e=)a$bgyO zqz9;VQp*!vvr6f|gN8&>6F<;&{Io5P*rere{hspCroA(FissT{b$zV5P#7dO%6Lv8 zoL+7j=f;K<1~5^A;T*menBP4QKN(V(6Dm(s73T9TjK!n#NtTn0EWF%YH(gglH(p&X z_wf%q5x#+%&*M}T7Vt3N%~Dj^al!`AR>+6^jpjQpdLl)iS4nsc9z`b=UhavHEF4)s zq;RBX!;r#>LSUu?ghC5LXcqFiOt3k!aEKX&h}(QBJ@BqDl>=$N+w|kM=}t85T};TQ z$0?PUDpklM*9n4{3kpOI*Tj19xcO!lY;;;-Ue@%S%HzVr<&n5cGVXxGWBTqT-Eg` z%S;JD422ZC002ZU46X$7Q*y(@Zg24E-rql*VkWqYT7`-H@o;UnsGqSZUYrWMNaStn~11 zX`JZ#n}u^UnyZoNTgZf}?ZZdQIA*RWki~~)nfy;G@~1dyY-H;Q6#j|n@Tbdjx@E{l zAzOy&{hmm54M=tCV9^Ikb#wkEQeBz|_KchnBI})^q(C?30}<$cjsI<$K==Bt41w<9 zt_+Yd{YpOAIAV%#(WffDD%-7$K15}IOks(^U+1jdCW()el9ep?8ump{%OD`=i@)5 zrybjp@J|uf-~-?v@NpaXCtx7cBQkj}&J3Ta3!_ydkN`j#olMz6Jw=EY05;NV{+Tu) z0=QtNl2vhrel9d)Kgbx+wHLI`hD%@n;dlb6@jOlh%>&1C13tMK^KtJvZRVr)goVt< zZMhlq@#H_!z;80Qcd_#^ML!psU%#IL{?g&;;M?`_AHpAcCpjM<1HpmtFJmQUz`q&) z@Z@})6wYZgAJ>E5gU-jhcmSkMaE<0kgk71B$MkcddF`(m1A1>*`hZv;Gk4a)Dbtrc zYBKzkFB5AU}Y5WjEuu`rHr4qu8D1id8jVfcNph7{^I3sx{ynA@I zjz>ee*1|a!3cm4~)zmY4ZjhzDy!jCzQ4AnN(?wEgW3QSM*GRNCi4_73{H1H5%U@=g ziB-y9NR~cBELt6og1wADk_--EuqsI&C)d}3cq^#!4=!oq!q7$(2(dw4llK=8bbvTH zsIMzd7F{o}%`k`EB%cJZMHH0GX(WQDoh=^)ToG zKhedLX^#(4>2d%R&82w^e=Jm2wpz?n%8}A~i{lC}#m%KSoXPQRnH=A)C+vsortZ3D zyY7ni_|{-{ivrF1(>CdpE;C2^1YHg0P0(kLZ!$bRzR5i5@l6L(s&%!~Zv)BWoBlil zFM<@1=EYwM+ix&Y>A*T9KfxoJ3RfqwS7zP1asOBR|If+wTGZ`e>(v8i$XKt(oXr5z z_v7$K%Kw2ro&PtdEzc&?rK2UEZ2g4)3-z_a-oF)gp`rf<{vB^7;hzEo2lAT%FoF#D zC!Ey=e&0U?{tGz;q``li$$)=E2MhmT{ak1&*)`MPpEfv!`~MdHf)xDE0l|Ur&)D7u z{zuMi1OLj?7Xm-Y+tcBH>5~ljo%R;~sD3UqPqNFT!M|!yTli=0+}(yhV$anhG5H{R z0fA+VEMbIi9C+|ZPsYv+@O6V{a@ygi(I{I?g&yr5u9CM_IW3W2VuDunZ{h6q0Um+E za^CT>#y2C-ivP4S+{*Uh*;IrN)h;Na7mn8wlvpN*bX0Tol{i=@TPEPhY0`3y6xMBA zln;p&3UY7;jyy6Ff@Gs##6v+ky@F1K&t0mYGtB<$l6+@|@SVpnCO6{)M7-nh{3Ix6 zSWuGkH4wcBnklj9U=S^kDX5V;Z6VTJvnilvqp?(=W)OCkZsT#8cykwym;&gF*%r`e z^>c8EB=RlT3Yi6~1e)ch_cc(4_A)fp zXz{L_eqY&{W*6krI~r~Fp#^z-jV*wSGl?=^(uqd7dzO~mD0gKv-&C2!{$(R^vT+fH zvoS3Z2+^&Ga7_F=JciBlkF!$jEdGv7#6dq5sk6ShxSwB=xYydnpk{6 za&89SO_QIZJO4v@d&kDq{s;aJ+&>1q%|xW1rziXbFw^&MqS`WH7y2^xkJ~;>Vn7Wf zBk-G)*&nQ*?0@W9Y2%pIKVuxae_x(1T#Nk^)x{zatep{}3H;FD|yj`d`Ph zG;=(U3-XfV**D3K=QG4SJD%S^+IBqt*6~z9I0%x-@f^`Q9?2}$c0A**lE#;qXl=%L z-a033JQ?~9^ffD)BGEOu_P6!sNQGx5GCAfobQ>(7I}j0Ff&61omL`zLSXIr>fKKNk zbxdYvZ5B?_H14U)t;~wSi@CaX5-HF`sx4WnZrKU03kK`Bqfu_|z6m`Vx_jXY15Y~~ z__&tMlSVWPmC#NwBEA-krRq7 z5V%|PM$+E%EHo2tEeN8Nt;Nt*coIQts#sEX_T%?GeZV1opW5+rD}D5w!o zLKBsbB%l!3@DV@>U{zeBZK)=rH6XZ&X1T1QqM{8-TWqOPjS7ki8a_+{A_AhKq#A3~ zp+OCb7&Nl~_dRp>-n+ZO_V@RBWGA~b=RN1l*O@bCX3)*(ZVU1U_0hF#f(`05D3|m; zhd^0U*i+fYb~46m%${P%RBCMEm>duzGAQR~ylTU2%+I{+E^*+lKK0pKJ@+q1sq&<3 zu`WD*9{n`kxz~Bs`(+rOaU&t`d*+RV4eBc3YyP#!hG@hP?Ld48kky_@cbIM;xbPY!O1i1gY+OC!(SM>S9_Ta+?)nW1 zilN-X16JyF{2i=3AEoN#U-*xqPuLOE=O*C@rxN(LDn~0pH#^;=Dw({h4+%?#mcK08 zL_)4I6SyQv%_kpCi#AEEdn)r-Z8%l%(wmqmM8_B^^I;BRLmg+B_95IcHE_l_z}KhYr&pICX6kS_;1j^*@hmu271!_);sXB4@c@P{L~q*L3Kbi zBh9+fs=<2wID9PTR82A1goApTzV25@Le90EGlj^(UtxEo1rES}#(=(|I^3TwTp`P}6k>_hYXClg2OKymv`!qATHe_D{I(u1v1GF;)J*I@lh)DI~eydxANKBr%AY8uRcG8O{MA#qe}~-qIap9 zAC8Ac8;MWiinP|*2#mS9ca7GE(5lGQ?P+YlfzY4KxN1b8)~njf1Koj_D!IMgU=MZYE7D!TI-0 z`)I%qo6(M}qXB{JBJ~1#n01ypNdE~HQ;l!2v3onBz-Yqm`Cg-9)K2)2kwxV`kQ&aAq%&YtV1{SR z3<;z1!WrB_p&%!^J!*-W;bcr^gxFahH;5TVN_-k9+{g^|vnBQ$K~7-xxeK)}$ZAWi z#VSUivZT?0E}=^}n%BG9;V{L4Z;&_#B(N;g)Lr0@_v3h!M^k2lLFFz!l!@WZ*1kkB zZVTUIogN6kXo(pzBOniP@RYMYS(lfFmzCu7307VKnS*AFz5)vx>TrRlu}iO0>s{$< zEaBDtaGk(xy&!D1ruqip*T4dKy`&bkMH3I3$UW34S91z%KG=t2Eu$Jt_iJW+&D z#0W3RB{76^ZNfJ=32(Ye6Mhx@(*En$f^fy61Ez3NineDaIlT1dDw|91hGgi9 z%YH7sxADte>TPTh1%n_RQjZa*TQ8O?bFb;ys7~#F`Nr?k3Zdo z$w!x7j@6bM%IrIG%tmQZ`V{bNCNnSAHRO5dH zdp)}kYZ)D}%DS8c

      0k!zwVvdM{{JZ-*2^(Wb>Chqhtrg({+38A z*UFhSA2xluUp~lzHXlYy4uJzBe<$$3uk!ipzzmSX_Uz?sta%-m-8n(fRX_~$Uq8kb zKB<1ZD>9U2Q@_a?;zAX=vtP8u9Z1hm7izeZfk-zb+u%pF--GMb!&%)P#_GSo zB)BNvzGFht!~ZX&aIX$a#&=D|C(<&mP0MH+qTZxDRhCfXsq@ovnReBOV1^07Y)M+O z@IUC6T2EVv^s~~^N#>4&%eK?8Met*S(9pV&t?5Xety$gb(kjG%3E6rT8b6wK9YUT3 zuQ(U|x@0280TR&$^0vALEm4G@`H)s}*9$-KFgNW%qt5}`a|K~qx%`Dq38V2xBRPKP zKo0mSDBNb*=`dh|Z}V5f#GoffG}b=4+Gt!+;H|ld;IEpYNXym27e%VOoI<7-J@mn} zCtcZaw`MNU^ehu|#%X$_)AR=Z+MDG}Nz>;e3N%eWrJG)yYPu%b^fCKEPpIt3#A!x{ z*rQhe7~P%iYCjTunF^w~WU5>1*_$3~yz-*8mDjd%xVVd}9l*WxW6t<>`=pE4adiz|o{ma4rlIh_8+YG)sl8dQ zEiDh!tkL=Tcd%_|>fj^d2gytB?Zht-J>mRw4uPreQ1CzEotH9AGu1ow;xCerT^Q&9 zJ^RNdBd0fdgFDoHLuF4a_eWonn*vZk*)G_Ax`SvDcvS0)?3G?pLk`y+f~nY+##BW7 z>&TR%gpreds&CO(@z7l6Im>g_WOwJc2q-kGYliqFUN3hp0p=vCoHz?QW30{|9x7Sj z29U)gdshMv^&oHIj8}G#Ejzek0A`z&T}vH3#x*T$dFrQH-=sI~{%A2@>82-+CX3x5 zIOkToVJfX{g+Aa_utxh1!5RfIwk?^}YI@L5JOSkx_9SZ4VuU_NZ0ULbd0 z&e~T)Zo=BbDKX-P-W8xtC^Vx}K^ar8!$-Z5^GW>S+YkZZS~*|D&%ykM`?`WkAi)@b zfI8#rCNPBLA)=7&Z|&$`Mf8dpe%%yMvcWA~PF)gqgCGnthFF7O5i}K0fBT+ZWm$+= zgPeZ`+$4#2+~#B^hM1PB+%7Av_B@KF`^MfbXm!LpcHKh$`qn%`#waQ|Vk1-klHm0&OJ}ikhR7MVooLjV*0R`j~Pw9}>U2t8-`*4T89z9Z!49y5i{63td$Q+f(}&N5TD0MSTd z3bzICN>1TUJ%#01aEM|s*Hi(ssU?3&et6oHK!X#u!J*WhnM=lOWh%kZ#tSno++W=T z2x&vPw~vBbBIY6H>XFJcV*G0O6#IL!`L=A6S@}Hfo3zu;;D{bG-}RTRVEeklL&ai_ z{TR)6*{|?Wc@Jl~kc9%sui2F4Tm-T{&&z6yQx4>u4H}r>+P*>Hi8>tuzt@cs`nz~k zU5J1nIbK1#@DF-cc?Q(0)Rd47IO}g*l8X{z{Yz!Ch7q5*44l3kmw^G*(*j+)U4@^K ztsrqcM#d_Zvoai`>z_cB7rR}CuXf6fE@xlE!LfG;hFI(ET!53i9rtJG12XvDu;knb zDg@K8^AaQR@Xw5I7EBy*+tbT>gq73+^bM$nt2xa()Cg=?a5vQ?h=|!uK^IJaQ$~I3 zae9T`*XsMCU&OKHeQ6KbGJTDY@(1K-CXwW(i~l?B`P-d)-c(|()3<#?kd0%l)4;A_ zp?(*Tr#@ySGS+F3uw(GO0u-;Ka+il@fXw#PNiq?J$gKc ze?VcJ#0zd1pOMRk_6oev@E|`W&7}h5I_gs&btGe`y{Z4jg0MWDoMD+kZdMFF_ zL{tOZJB5&+7kyz5J;@B?rb})5y4gyD^wwY_`InlFM2BQ+skL{*j{lvSBqI=M@?14^ zjAle}ImsRD7#a+(Rx76)L3OTBWWWCi<+_Boj@nO(VnV4?|}jlLwvHP#|Jo>5tM68wpYXqN$h+#DDEL%<%4Fb($l zoNmD0xA~jE&i4ebV{isV&eLFTy3D~HF?{HnaL~6OP{>cIPM(>s4%`x z*h&&nRb7YHk2d^mtVNDGs|y!p2Mf@w=n{_~l?RKruO76*UHpe7ojaJR-Trm?vO}Se@9Oxm9*Io8wOO8K>i)hA)jEfVh1`oz>qvmS`fqQkt6-N1OImapp~A zZ|zg;W@4AHQ|Gj;6`WCsgoFZq?CFIhGlpMHWDF2bNgoa3nnCN~L+l7%H--$URcUCI z6I0u<32kK7Rd+*(n)GhTv2=bnw0h-7$2IgQkzJV6sbpQ-c2k=kq+H0U+E_cQLC$4E ztDI5w^;`)^tVx|-L;j*KT6t`4!_54MUu|oDN`WL{)GPNJiQL$?R= zMe-3X@L5C)YxnAxTzD4xB@Y3El(?0!k8^Q83X*KxVeN!)B$42#mpQNVdN z@oZDTxnQUPQg`y##>{6==oWLO750e3k`~SU}GaaqKDigRNDgi zt=S8a^Fn#*YfcN|tooO@)i(9Zak19PGgZG_Qjvp6tPvv{xv_eu-vyp)))>G8TH zl5h{$Vm$(gB(`|qpMoul@XP>C=gIDE*eA=ALfN!wg?NVXa|4ZeNO)1c#*^J_o!h;# zT{7Z0aE%NK{hh@tWrueh;zp>^SGf8o7a-%gTku$&JBC8+AFYRkz&-Sy^^joj26?Fe z2_|}*>-n9?=&uQ724aoUY5@MkLmKxXfVygo$(P@$jC%nhF-cF&4Q|~w%RwFR)Ngo3 zUy_w^g-^Bh5=DQke`;=wJwVM8F5Un%k_7J^5L+i_7$aJK#W&08CCitOWw~OT1r`Wj z{VUDoV{pGQEY_GKof4ex)sJAy>pqePM{}_Xq@l4DBrDf16G_qsdjQIv)Mo3@U@kAf^`=>S9e=%WC)BO`L8=G9N5xqV=%~Q`w?5t<@A#P3@rCm1LJB=UpSpZy zZ_07CUvmn#l|hu>l+m0~!pt2m*j_b5$`+-nvz_XqR2O~8EpvsJfOUe?X}0DzxSG)U zekxX-_G%9AcjPZtPOtSV7)tWi=6UgIDf1fp~17E*zldpVBTUTWdh6|R6v{LinN zW6V^_y^(Nrf(qzn$s~B@e^hW&?Bt4li+v*QHiWFU{OZk8aUJdNyeaz9E?r-FXts(- zefBo?-%c6^iwndz3+Rlk6Ob!xwuAA_0#xIh1;)lV3&x5%miCI)=LpvLGXmkP|xlUwpm0t+>? z%hcL^i!0pdCl9Dmn}zfnp!RI!PvYY5Q=l(?hfdKTr2ZuV9l(zN;+YORd~3GL7vTo@ z)@L;Ik101@$O zH#Rog2fP;k580G5RI%pL6w{3AfZ+H)3gB)ssO{zj`dXT|UsBEjmFc_@+`Nnah|EPC-T`ey)FQXvzV@~Q$ ztqWHabZg%tZX5gi6PO2K-_Sql9RHcTar6rGS9(<}R4!e6`CI6DRZY zPGX3F!RPCY-s-(9j)1hS{{TWVu(qN%=BaEsnnp3DS1qC{Yi}0=RrS`-ajQp7GB;O0 z%{xm!#i?tVQl3D?0=BfU8Gr0Z(qK@4n(4btMN3g+;ca8@sZzs(7#KgwUn7lqt%I{WI+ zbavI$L07alMPNNH=S1CIoX-70o5V=(!>2k!yBO_RDy~uA{GRM#FRqU59af#6K;-Ic zj7U}h-BaPo+aUIk+zT%(?Vy%4&TiElh|DDK-_4#_D?Td|Vy&5;E;kDkfU z|E>~M%j%9yuUVF~s3ibw(gE$&RV$Cgt!$&YWp-aG)V-SVOn(;#9X_!~(ommx{WGsz zE2150_M^}bT0C#`K;5y4ZX^ti0LY|-T$8{1MN1S))2B7Brk6PyqDDMI1)#9h&{xc0 zQC{1QPX_6w>Elx?q>pI=a@pFkvH{rZ9~M{5d{E}BuVkrY7lyQ~#wTkOadBvkQEXl>yxmA)Uq^`g} zIsK=0dtIFau~qTvLESTOpb%}Em-yc){@$Tp#n<;P4td52pdL{;!^Z@hz(00;M4S#( zt9Eum=htx+A<&N%>Mz}CmiqF=C=%M*LP`)rElWpjY=0Fze z@hiOX#h5Ay-s;_{>c5eZp!G0SCa@kn7i@i&Q&)6l7ak#tKI+*S8GV@{D5hoG7!d8b%S(0r%vSb7QeYzS7aSk5e$MvT{Bd1vLdm-uv;a7 zS`T(-%X12rqjr$f8qbU`>ZwsvxW0-$D=$8>6h*}zd$QlodAi`Lr+aLS>2jVfFFv%m zlN)HO1KDMr9TTKwe!C{GIA^U67%+^Pogq7Ukw@LdV#SHex}88F0c4VC3=a&!Wp;5f z^9GsB>|#0WkIQWeDiBa8o8VYcybe75jXo|Xoaxs16?q*mkRr_!bfy~I>0P4C*xL&x z%2|NHb{dUmjc&pfv^Bb^gfx>)S4{`+at0ubj4A_0t*#pS3}g0z&o3$k0gvjS>O31Jk=_DNsALopInD5Ia@ed<$v z30@9I&$R2@o&7 zKNy$|p1^KK)fMeSKl*I)7a5k^kD{HPr=gCc$e;2R_xnDkoKvXT)ub&K)2q7#%)x0e%XF*{AG<6MxQvSzafc#`oMu8${?!vCruSNHpD{2^ z>h^Ddtt4BNKt1_dwHX!ryu^qYn(>Fnww8t`^ln%Vsb-}}6Ig=a+ZwQ4qSgOPyi&$* zRr%9ZwOZ4|-pGFK&98iQjdq}>b#T!k&r@&aaStBfUEiiBuVV7h$R7gq6M8{F;T*TD zZPLw8aw#Mia{4-rxjkk>;N*>TAdq zY5qN_Gu1pp$W?=q6&$0&KH;#bW3DJ&B!+O$F?EbouMIolG%RxJSpHRCsvk3sQ^(p9 z*Rjc|qxrW4Sx)q0&~fURc;Y&CI(59$=1KMAwalaEW4=0aT4F3;(?0_uh5h zpzCupH#Z?7P4?-#$JAG-ex9uFcslj@PBq_7ucqjjYI4;L$!d&>Ws< zKG$mx%=aYA?TF}(r<`AEWLzBvo8`vuL##I@=~d1lN7rcL`?cD8$|fM$oRchngx>j= zjao-H3OS_K9MdSK1yWtIF*?ENcl7!T1=$$DZNSM$DA*sHVNUN1oJ=+Jqf9|(PSu&y ztON>`_I;Po)i28@vrJ^3-B11?TA?MUapMs{YTLF?*EW=i*2#`J!r8RTjO*nB!9laE zHrMc3`n16m6A`@d+C{6V8)gdn_Gs@-*b;E@3L)7wUtR;M?>4A0M3kWLlF85iECb&%D#2`ZokQRAretH)hJo9C!a{1rqgouO&a2_)z;x9ap6{b5~sYC9ri z)!9fFEydSLxO6JLP52EawT4s;SQDlZDJzFq$%KG(L-0j-B6`T0yCE^nw@%yV_C-I6QI}P6{4#Cu5o;_>bNKs*0A8 zHdZMz&QMX_m2KTI1k9TN9~$|?cUwl}tZ0j0LfSlvX|8zn5vL5IVDmdMr0DoHznGMB z@HiB0_1CD?POfL2Tv?KD5pEVb#JQuXiv6c*biVLKG{jD0U#jsV`VgwSr$#82u_iSK zatBsLB&Vi+`9N1>3JrEnMHj9{<(dptzz!+S?bR+iek*&5i^D_;#D_nG>jAGOBEBjB z#;J%SBUOd_V3yvQg+ndbMK5t_F?3YkR)Qv=I(v{#(=xCEGGYNDG$i)lqsr#s>Ue$NFOq&=hNrNsb z*E2>fh>85HQBUW~>Ic*LEZ!I>mvDrnhXMl3=_o)Qq`KyQ``u7Z9fueCqRXn?hdY3k z2Me<9#|{Kf+eb1Y1B$1(BiU_baopeYbTxkFTT?9CM3Z))7broa5dKDTYDcf zS5W*shudqnhjJvoR>8L7{l0Y~4bN(WZbRu#Eq(J-yqQUWt$pf(H}=PGtnALQyJu$Y zKpC2q@Tw6a>Tdnf-zg$mey-&w9w)QfZfwb!nbjVUOf2eu z=v-XJ`(!@4YE;fOJ@Jm)WJTKxTBV;jQ(SVnUDkEu5i}nIfr3NT>QV}k8E7GV0o5wG zS&I)bCaiJ_diTpEAj%FH@|BaZ`}U%Rm_C#yA3Q>9$e3w`5Jn7l(x-e;0|NwjMr zdYzH&d`U*;Pi`wUXSQ+BNC*#M1K{kT+*9mdane}-ivHE=$owo0pH|G2a0UsHCAVyu ze=MQFa;s~i|Hz4|9Qzae2lgQrXYnjgggD^_{S#!5onYG5Ti)Ci34)f@XS(foC8Ej1 zayai@#YJJG0m_bj675|Y2Pil@sIwSiYGkFr0sJl!50psrvhjAPU9cEn{;*x6H{`Qs z`1V`N#X(8ny5&jp@@P0DhQA&nmeg~P?vTC_Q z-c|pM6Sf1r+9_PU#5Q%SOc@n`;g(TCI86yyr6Y@4i2nAdRXUDc*lkMXV_r@g`>_GcK~Rd_c|d=vz-z3**s z*2u9%|M9fwKi+Np5eC~C);zZw|2|CX?AUbZIFE%Rt-5?Lq?u~1bQ5?weW6t`!K$0o zR5#hGn|i%f7qIGPTXomWY^#``fy=Gy+be<@E_LY8XYrXcXU3*4QY+5uiPyw#Z(+Z; zS1j`8JxXBXBcI79QF~NB;GI1=W}YWJT$s#iH+uv}`*3*KEmvr<06BkXM|2mLFf#}KQ@gUIR+RgcG>*VOYAy|JuofmM;Oz6%!sAtk>0 zpXOy51j(uLQUMhF8ZY1{DhhW7cAp9iqeZ;D4oUTqz~|VWMcWT|(J&qTd+pihXyCHLk5h9_78r@?4e&;OSmie zX6^7h|GXdqeKNoML~@uVq#DOVUj2$ObjHX5}-aXozfOz z22cnDhhPrJK~#J{YA$NI*0!klYORKcBua{?Sfi#jD%PD2UO^FqM&|pkea<8Uf{%N@ z-~B#+l9@SYKi6J+?X}la>n>Q#j5eLCf`#Rn_q)`mQkJEB8@Vujc9ST0F%63Nu$C7! zBayYjS`u#QF~ZNk)J~19r@oXlO@ziG*tTWx6=Xk)|3a zsa4P?;2AC%rfQi88#-K)r@s6WNp-&qW#GYym>K3AWud1i{BO7%($^|(uAqmO zrfN*kG)GTeVs$<%^sE3$juQ%vJjW#Hav=|H{Ns$&arq*arl0or>ZO@D!GoXHot)~wVN?Fw2BuWSVP$|qk-W~0Z& z2f1XHYX1U&mWWNXJxoEujj%14%D_`yz$xd3&`Muh;hEvOV$P87vY6AG3Sxx3K$G@q zO-VxGuju&l>~G~d!_7=+icz)uU?SokubI^gO;dI^y$@20vFo;ehStbKdD=^@AHmbD z>OGiK|F?clsRiochmb6s82ZaYl!>A*f=n$?k3EQ1MZccG>+n-TCFv#a+3@dxM+I zDulVy)g~|SFxS$7`e;Hg2k7$49s6*cG=)UPp!1+`im}P{QlAc|4#T|e0R}hTqx!yv zj%U0}-P*Y?I?blGO-XrA|K1^cP$&3aDVtj5NrjRbYEKDi@fMGhHJLX~ef$?RTS6m- zd@jp5O!Mwy8uH{e3zzPx%+o`0MbA@ra9605CPBxhWZ7r3+U06wFIm@d>K}WgjZ}4X z8a5WR@wfY3|d;Gc*$YR$un{m0O{5yS&bgn-||LT zxwwLM_~BcgJRViIg=k1vnTMnGV5Bqi*)&WxYsMuTa=d5NHF_}Q9!_@)58}~b< zqv)XDPW@gVIS`LD^^j0q{68z={6Bj$G8-AQYJR^nPk%1X=ac=hqEkqcff0s1an#jh8gET zn7EalO!nt?_2-jeRcpnceoGH8aI)-l>yiW)np@LP*dJ7-1D_&RKsp-v}{ z!MwnK6o8#|k96OqHhc;x%+HW5g`JA59a6Lmi<#oc{OApvnd+jt&);8V+4T&mC-KT_ z7vvB%ZcDz8OFa@TQ|PkVw}h~KTh%p}I5fG7+l(>B`jyT-vAimhfT2s2YrW*`M_TVw zTZQT|x-w0uwbsCDqqH=1y~j}=I0x1N!yBECFIDH`>ol+9Za0V6$wWA?B&?Qf?TWqp`0^3+ zkIp5YGtoCshmOgz33I_5B)ygmIoQzud_Bg7;-uvByVcj&bO;|haTjrlmt=9hoaa{g zAdh%=o<&>O$vM=&7r09LEBd@o6#F#~EgyC9NjoCxTThFHf#^ zo%ooe`aaI=>idrsTZ}APQn$UqUTe%l&g1P|n;LKk-*r{B}U*PmJ>v75it}C8H*tE=U80}j1}R0kh@FHunPcY#fi9U z+{0pu*s4QwLYKMBMAKPsk`bv>od~cghzEHRwi9X+m?tu)z&KWo&i0xMeCCu%+A3wt za7GP^i__!q*NpyyHtE32oh$Nk>M=76?p41Z0(`1SNbfNbK4B9C8RjY*y`W6F@q1&U zN5uvk!=Avv@a=k3V_mspQ%LH=xUr$#3hNyc5$UT^XjfeRYkebObejoyTHG2M>T&zH;2YicB?nEd|LC^>Ul)pMw5#6nPPXm%!|!s*uz@j)UH-EqNgQAIEBA^Gs$02c-sl`K+|qn?^X zIFx+S6#q`zz&H1c{ZOh{0_;@1X@G&P*d%sCmsumzs&Z{8bb-0V895o~)s55%00&gp zb0H{K)1mJ=R5?jMQ<2L3!^-eNu9r?t=u<^o4~^dbFO;PdonqyZf_$?^pN(qHnVn+P zCl-fdI0ps4T+Wwc$!p5E^b@u(QAQK}>6Pwr8_aF)XB&NFH4yy+VWoxW{_zu=vT2(_xB{2qJ@I4pcSC>lab3+NKsFbfn`yU(!99@*ulE4RqW`99e*GpBT5 zz9e|p zqm#r`t3MX6i~V>zSL!@eSI9x6OWe3kmUOpTQT}ywWTWtH0!gN6iErdWeD24>Wu$B= z_(cNT;*iiaDPoL`2huiG0cuM|J{{Fvv=OK7-V;SiYYQ`E-)8PZx-03BM7oQp?_Ber zX78j;CeGqy;5(niR0+Y;fK6@olHl3xyJVVF10@2Q>wIn|+H5rlB(;H#NLxS6d{ z-%!5S=g&}+FUy09Ll#C$vvj~QXpEmCu`2SX!s1ZL`$?0xZF{Sbl({qD@!9}FyH7p; z51}I-zKe{}sZLrcXHvVG`{BOmie%Vw%Yk=tmo;;zqdfeC79J4Z>R2@s5ii-9PiIev zsCb*Yd`~yyDcqgKQCbY8=RKR8sjMgZp^LzhF9mwx^CziP-D!$Cz>X122a9m@zfq*7 zxi^Z`G{}}mPX}IJjH~fUX0v&tK9!yI?q~BxKz_9D+vFuJvKHMARlc4j3SF}fa)AMy zNR7cr=z|*=tjA-T9ZB5hNIxNpxxaHe{E1iiDwxfuXFKuZOB6r8R&@fc+fIG!)lvKa zG?LCn&cspQSm3dFfgjcDaq+#r{HX3#j%IT^CKi`h2n&^F1>w6dei*l36gQ0J{D>RI zpT4$+VdWx4WEga@M^5#_6m6DVp-2w^hJm(1Y=AT zcZKf|aG^iMl2-SBHO^7VqW6Oix7MSYJUD=|zt40lhO)81snQ1{xs=8rvzo*73%%-BmlDs$LLY>bDgMDz=ZezwMQOqmVBW@tqx%8 z9qQ&kSRG`GLeFlW=4;}bfBq(lXzeFR`^WW}{+?2Q)Jr{Pu`2RB~DhrGT<;1*03J+i@o%41WH zk9|FcGMTTyl$4hGO3O>D9k9@(ERG(N{l>lM1)7C%EIz$c2eX#Y;=-7!Hiuj-1fswB zxCf%!tx*X_t1f(8n3EQD`=2e-^1DeDNNdq!QfO9iy*uLg29P9nF2-P_;d4+vSm<&U z(YgGCg}Q#cw`bXhkQOTzZyXMo5po~dv)z(uyuPz%bnz>5|Lyt;?Dq!IT{8_(v%){OaKJ_sSmM>h=rTTO5hKnCpmvXY`Ori~= zxm|KjpNDVO)p|C>+xQupW$kdq_rGN7NmZ*sTuN{IO!AnguaQdO;)g|HIdMlP7hpAi z1c#6}O}d9>rqjI|%C$zP98|e*64uq#CGvpKj0qf+tGPCh#@{gabGc%q`P7XIC5URa zoR{8p>J$QM5JiY;?rOOu%jnaOa~4rGfKR{#$ZM~C?-}4D6lc{sV7ESkZ2J|)c=whIYs z^0v&@OcXNScYNwkYx{|N3ir0~_z^z;0QKNxix1Bm8|gp*S_4-zAk`FxfIBQ_J3v|wClW)Um7 z1DB1r@pTrXupR1|GyBRjQ+(=%XDQ#T@*DUNqGots2z%E_^0VN2qxd;8qUnP$D7qK_T|YAua>qE`<32ao zE>)h;Hwo^$ymApCJ>+d5)1Av2E8X5bycLVm*UCv6PT)IOh0qdNup(%npSgFcqyMh& zFIkWuTm^SqVrmgt>A_oQp}v}})`wVV;S`5abGLih<#HU=1t9M}m26FP zI9dnmR4cyO@UE(hy6YsdcteJer+o#`=d;VLlL|q_6XZFCI`b{{Y>PP83UQ7=(d3wt zI#53$&TIe1qlHuM3Z50tCsU9owBIxLWIO(-!+#DQ)IQbkUD4u;D__v*Pl}N5szIc^ zIOSIQkFCC+mLYa=F5_yzQ<@mk{qto#v~b!J(8ByF2hl>&-JaiOpMv94I0avc&Yhx8 z#7@|(xjRzakYy3&^O$1K^xnAKI)~{XYlJnw^)kPH_WY!hJ-_A_Xm+C7J(N?#46ZI$ zA42MvH9jv#C&*s6h)=h7KZm0#)@+K0tJiTTbC$^=d?Am_;$#2Ho^dOBW zo^Y<;D1~YnqeU0u_aH;t$tJg`=>u>)> zuds0GhOVY_IbQLdUUx$;jN)CQsJxh7#aBsaRB&Rs>i?Q8fhw=Y2QDUn8o_#~qyKCP zpk~n#u6D~r0A>EuPJN_HB)p)hGpy2G9T!ps)~8Eha2QkSSQfXI#tYg=WL$1G9D!ml za`zHhqAqndN*1%ANLWJ%4YoE|S5J^jZOO3cyhYJ@3y{@#;`vfd@2lfCFG7SJvW20` z=ml|Ut{@e_0x;qs(&-+pmw-(>93e{cpeDIyB1jFCH?+yx!dqrW3oEQWTj5jRPPCAk zuhY-80R3?lHZ*w8Mk7cC@|CbXcZ-A8o0 z~?-RhIWtig6k zs|KyEk2nBDI7!4Aa zp;7((e74u_hFw+{X%+rHepf~HU_s1zAIij1*T_5UVVlc|2+HBmue`b)gzs1hl0@^z z@WE*^NURHW~?v?{~?{sEh<;9C5q&Yv!%ZrEtuEYFbU5U#xd9y4YtnAZ9fc_%%*wQ5~s0jFuV$qx-0OvZ1O%g_+yk2G(om+ZL=8h2#W1Cw}!oI zL2)#8l0V@&{=r~4x3ax^Bd~;YmtuZeN(MNICbL~-vGXKx>{Je_2zJ9;)oVaT!2Ra% zI9~4nLGrlV#klQZ)?F1cRfFmJ1mgMNwpbP-_gC7|j*o8voUB&@HerD$>rv z%B#rWh8L_7Cv=zCDJ5Q!67q@_lf^1yv1FgnWaFVtc1eZ1rGmVo$<2p0=@D$2Cne-n zT$8z91g?i23I>GJ2`p%6<~5n0WDk~E8<6mjizZkbkgxwd&BE!S(%{qN&=or8O<5!L z%=rjQ+s!3Yed?F)_${swp@^K6ux!ewCT?Lf0jXf8?$gN-rZ%)3I^sO(VDtMH#>(4n zATZG2@P_S&R+u6cZnrDQ+gJs;WmvQazW0s(@dMi(qdj|rISo6k7X9&;xf^lwjooWM zBLB1;EwiPgKMO3SM&yEqR;%Jc7vf9fDn4dcyjdzPm5NeBZ)t78d-2PiF?J~CL;&l< z`2cA$=gu}421GrPcF@T84r<~&Lf0zyJ9phG*dmc(yO)jTTSK0(K2iVGSFnyF%FFbj z>{Cx)CXLm3K@NTv(URPbIh>eP3~n+LKuYPT`#JIyoMr+ z@#tx{s=M9BQ!NnXNxOH^?iwkqXR6zsB<;T6P;Ir4R_^cRca~T0meTM1!&+*27hAb* zJA{UDR*mPn=hAU$Y%UY*J_k!Hr%InvII^N)f>mc(cb%uZ>!jIrX6X5o9(Rot?kMBD zZ1C|7NivW-r{}1@L09!VfL$8_#{>mEkW^p_W+&po;wD4Z=H|}A*8j-rV2Z)wz_t(gVc(UDk(vFtC2K_G= z5D}}JhZNaZ376_tKYE{~`Qe|y3q?Q!dAo9rCe)>`;*J8W_7wHk) z|D6&1zNf9D?6!tUTRY#SEh)|j9{SD*f<3j~KFJ!lPip;9YDw{)5&V)7h?*5a5P<<7 z0{UVpbeb4r&p<=0MVlr1QfFS8UZJvHkPFB3X&pa|qDwCI^nmS&$L*gl1%5VFQZruGa~ciI=u)MV=jgLbQ4E zDmqVO*yXrZusTa}M7Wm51K|mAl0pd5nQo=8whi%irNrG8xW2#MunPph?z3SxpAx@} zlZ~i31Bk6syT}tgCwOeAv-iAn!;|-h8uwrBC!+36WEhR`G&yMg{Sv`z>AzpmAtQ!)3TA2WQ3xj4?Rf;7@}l)$ONpJSvCJ;B4=o!y`~A1;>L)7 z@->^0qgJJ(o%6_z6umbdSjDXdlI7x5ANLru7^!kiqZU9tuKoniS&0~nT`7`KZh_qP zd_rrZ!It`Ben~_(ZkZ-G6m$2|18s1c0dAL=DXCNEaB&kwK|)Ll>1|n&cUrx7M>M!Y z-AhSW*NziF7OfGUkFaTn5qwS*G_Q+p*SjM(*w3ZYL*!~&F|iZHzZ(B4W{TpFM!I9J9gSvbx;Zu_cg)~< zr{Zb!HAa3CkxZ2kpbV2Cx8Im%P2^|S!M+F0;^(X`UodKrDZblGak;we@P#kUP#%K2 zaV0>q+217GThv2}h6PysGEA|aS&yE$S*{Vl4e=j5=w+`^KiJG}6IbEITrNz+eW(ky z_Fp#<+6LF&rg}ZZ<)TO5TksEyNNE{4XXR9jFRuI6|#xP&z zD`=R&M^sHc__eh{aVD^2t>$i)M7{DGxzDtz$b$z#W`sQkTN6H|r|T8olzQ)TS{hdc zY#v8k$e>)weJqq9-a-D+G#WaDB%^ z-4&#u`nEU1CyMk_)l#Bkseb*O)gBG&=G3!@XDBqpEZ!`)OVuJPUHrJu-%H&*ONRHH z`k;}k5QI*1D7G}74BziJnFuqg;Km3v$$xRDFj43qi3)b$UlDB7yL%5yF)$i z)&@K3xj~XaaEBVZMQ+68IzA)MQCst-BRImU(Z9RKO?Hjtb`6hRV*xcREEi3|)_3$c zZM6sZU0Mni74i1`v-CA^XnAygw#bpivbo=V2%tDWUNZ`b*wAGZW+@NK?`hL*l`8e2 zzKD6kV^V#2IvO^DD)raD3MsHcNyLj2MZOFMSII$FI4!-rH>XIzSRdyFo(p z+Bbc$lPzpZOnYP}j*f+Xo^Ha* zY)^o2?Heqo`~!~>5Mp{pc%n;vvUwj|q012*1mgEHC&t(>WEN%Yfss$L*^WQ#t8!kM zvyl)fGmRL<7_O`F$DuI!CQ7i2-wNe0o_(0VqT?9Ji|%`?hU-va0&5rlg3Gy3k?`W# zCV@0r8f+TpS{cC59Ib5R9q^y=2BAA2U1$STThOXD9s5YWYo@?aJ%R=Bsb|uOY?{(H z4z7=Dxc-{>#QJdbnZ0#VjV^TsQegpaXrpLeY$OTo%IhH)!r4zw7fF^Sxh=0b z4%Ox2rPdLfl_p23&GA_`lFGLZqKrlHQzbkDC%q1q=Q66$7B;HC(yAOeK0wQWegV0W zkyNOfjiR#I>{IjqhLOkkarCR@z@a5+iDqjcnNLS>dgz+nP}t2nrgw3>PX%t4TJ2oD zVDDseynwWGuv&?QgV^cKx{Kr2`$BI1(7;emvrywu_p_I#l|q7*8U<+;cI^CPg#;`0 z5~l&3B-mY%5#!*l`gC_C+p@c>Q|+!2y1O!~8Uv@hpB z&1xA>R&45KbzXkcS`(Yi2=uIpSnt9sRj4^jkZZ3L8$xrrZ7j%D2)8i9d$St40q>9Z z^d6PllZba)In-{}fk2L795PhdBlv=(8B#9Y)zg)`mv<~SuR(;#ywFr z2SW|WnT{{g>wJP)PIA@Bqyn)L{C62+9*J_(w0{w($PSDbI488-WH7u}XK;70L zQN)*6gUDloH8-p2>qJAbR#np=^SMg6^$5{Hy*e@C4E_A-Zx8B$_mZAqj8C3| zYVTC|lct+<@gR?W_0K{3PTigR)x6WN{*?g}SEZSQw|PTHV$z1(CU;?H?t!_Oo^Dlt zeIZ#$JIsQn>uJ^@bIU{Es%pTVB3d{pv}95ugyj~|Wh)czup^T{{=T?isb5?P>TwQD z=cKlgSk53C9`kxMT3?7^hVrTNI-!@q5mPZ^;%siF=Jw$eXBdTnL4{WjpI?n_?x2cU zW?=?_l(|3Rk2-DmCigP3Ryl@maWCs*e>T&<{9dL%1LOE!Cw@i^om#5lt{cyf9*N9- zSt45z{i(zfgThs>6@}4T=$h6@jgI4`ZkJuxeNf%$-E}wGb(^K`JyKU{bo_%cG&nTU zxa;2JM^C?}cGq2Q*WD>~tE8^f=xC6-PP^`12i5(Aa2VE@FSF}9PN41(sVg-i)eSCP zF&HPCd$POIF?OYNskEz^N>UoxT#8jGPBvH5U8z0Af=;$ndR8h)X)X34Ls7E|{Gl`2 z;Q3Aiqq`gUt=+&BXbZjO}FbF zysqQB>;BQM+bDJGq^{Jk)^)I5_uzGPch{X`*WD>~FO|AdgLNIME5@(uyXVCwdXZfz zMa&*jrIM6pU58nf;@0(%?n*AZQkGPDAN|xCDXrI4YiREOJ?lE+I}Kdj-9S@c3q&)d zfd^?o)>SINgUY&IK?7#thz%-fZ9*_TdwOZ$I2}^!vt9ap4fcUL%W0=Wte3$uSS+N- z53#GUyhB${gOC!%AsKvt01-kG?~5*9_`1>Rs#mSk?PZK}ILqQFEg}_Iz!=9zokXin zo;ugAbL;ojfy7nUGA`nD%y@;PrM0r|y}5>1PxmdtnMGP~$? z;~;KdKFhFm)S&RQLKflr`p5hZ-fiSve? z4^CwM?q!*f+K#U|?KK(Bme{zvAn7Eu`W)NlMvO(cxr7%MMSGJ2N?%<#0L43Y?m~#P5+ZJA*d?sR`w6G}@*yr!37EKk#W3PIhR>?AuKVp70ZqMezahl()LOsT) zIvx9cVr`M1rLA$r`kD)|c+vev4-F}+9$LCRv}Mv5y|z_<5gS{zH84L0qznx6lIXEE zE_EMTupxV@g~O5n_(l`U+F6M$Fkn>3k~|*)BTP6^W2=YvkU_~B!)|LFDUVwqLOOld zv$l=uG!mOGpeGqQb-#iJ@E1C1G#; z7*mi8sIx&&xVedp3NToL%3FTj8zpn9IZEQ%0Lx<-L8j$+FL_^2$eo{x4IE3>7neq} zBtzZ#CHO_ewl}2oO;2;R)Di?B(XdJ%WxjbWI%GKF|n5-Tv_iYVsGbMR^mm5pF8T7;yd(AQa!9Tl`QNp_KqveF4#x9t!lWt@$@j?Ko*AuGplxuaa@~1*OdKLdj{n znuM7cW*O+tdO@>f^0W-<^S4JkVe3)KEPL+?c+V0K4fRqN>>tE5 zVpmT!@>c+N8x|^pr@PeiK+A@$1T~PLN7LDI^6FyD_rk@i)lDr)mSejW>Vg>H-P#Vb zH#TvB%X11c#3&I3z|TIDYaoGwtF^FwR+%|1LsT4>(@i%&Pngn6xl!(x>-bq~SUQ(M zl&emuQRq~yy?Z$b_AHlINT0;fA!T^cVlGn00$IaDws*|C`Qy?)^l<7f3E}r3G6*SL zu1c3!F?Ve3hjuBFJKzBwZ1Bt|G3B?ak037QB~tO4?uuzvMf0m#!Z8Nk23MsCW=o`Q zd( zwRwS#eZB2T_Ab7+68l<$T+^SH=}4S;SMJ6+!-sE_Ye?=E_t@RBTrb#xhn)kEKEcC{ z#hj46ucN!EQO2IA@T=lhBpVCblMx(|Kc+xpjT)`#Xg$9}vU6krYsUoY`mlPZ0icB?1oo14em|NxwI?c}` zC+IQEvBqFr%s>r7qVrdx^>>*G)`)!0NPps$G7hKVVNfKI&UX^%VZ~)BEAmt7$71)` zRX;wZc3}!EnAn?|iMb1$?q%EgTDv4A0rKgt+a%BX=kCXBu|x+s4IaB?OiF_JYWbFe z6o;xAgl8oogeG^%wA^(|rFa5?NE2WP#sI&RgupEOOYj&oq0|m`N**HhJJ<#4t|&;U zAA>I`jS^kExT{=>sG&3*xl{*8Jtn@xIZ~;=-5)JleFQ7)PA5{9dEj6Vp3HONF6^$$ z07teIrX+;NdsNxe)>bN0$&0l5Kx83f1V1^@oke0Hh?EYsnD*{<#pWXY#1DNriYv2! z+{i^2Vh#Ltd=et7G=7Oym1x>ftL47qUiK)k$(`;J(=<$*U2Jt7fWR!2@JonE%JD!q zYS1g}B5bAvf|z%yrQh4FX7Md|%iI|zw%x~>8^bA24&M-Vt|O0Ps2w4ycW-Ifc_ZOK zzZ?h4#}V5O&GB=%UwutqG5bb_AdKzx-#DwleEFy`qg~rBtVtkv~Ok;>EH?#)FUlfl4D=G>V#lXqdPhQIK_vOYB{_ zth*c?)p&A*auVDRG;RvzB+5sebik7LQXfB|6hSh=OKM+UX*2dr0#`uDQX#e41C!Oj zr-*2*gLUQ`2}j@4q((6E0Etgw{fpx;?G>-c{v4GXCyIL+>%)i-u!kvdEd^pulOM_J zR+yT93iLTV30@*Mal%x*g5ufq?ly~e5e^kmIX@j=)pXJB+2(;#P|Pg}o6r3t8wY{V zRB;&FU0{`_SQ4Rjch6}xYq$nVsE5}GqP!V@O9Z+&Os3G5s+dI`i3+*PxLCb)Z=K)PRPm)rUXB;6SnXYQLaa)l~HfgSg0w>F7m04v1c_w!d{X1 z`qOki6@wVR;%8ooqq!JIOZF=8?CA37sOWqrsTdYqsm~egKxHKMsmiHnw~}?(RxUiW z75HK~tqyI)4$AcyZ^H$+@=Q!oQ{=d^BLZ@)l4iwepRHq9{8THwkv`S6(RjI?K&N9K zqS%S#Wl1wCJwBr{RlUs7cMBtl zGIWci3X-TEXn1uSZIqBSMuvC0kQcelK#s(UHCs1=e*x{Bt_Cr1y`nAdx?ck)ZTesd z!hPVcC2><<)-pXzG_Od}i9*|RTQMYCNWYutH_00NcF6^T@wTm(ZPjCE7-A=c^nJtI z_Shc?ZA#0nY7f2yU}X-YRx^Ud8KmtdZFPp^tX`MUF`uDm?6i?0h7uUk3wJwoY4owj z9_u^*6!^Kc3bimm%;MM5gquqSACj8aB^V`8L0KRr6iXPHZUp;oTbqeguG`A0Q0MBl zvJT(YXlaXvNX8Zzf!T_a5PQ#dfn8(?O7>?7#-ltNrA`hChNppSG9EU>G>a}(x88Xl zGQYLstPw#Dg=)WrDn|5wyM?ihfI)g!Xm&|ra^n5DLFgKcokMy^fsZTgnNAhB|3Bsc_eZkH;WA+F#lrIIeYzI9@Zs+__=sJcI4?9(Jj7dS)ilpr1;D8E-a9687^B_`vS0v>IU4gzOk&lKm z(k+oB42-5-G2M>xt69h6aub8cz-j9Lx#L0PHUAhn7QJUG8nW1nJbBSyPC}v#+ji3B znT@!j+NqjOy^48kC)EuU{8*Fx02xTCqa!g0lbYScZeyX-BimHv4t~!E7p?6O>zsa|E=87)#Iq9!p{o(X8g8= zzh%TNwZa3>yYlm>A&sz?@s=*WI{jnU@Ih~Y1_rAgnF!I2nE$Knse10 zhPk|!;+C6~p~n(luH^$161sE=Wx~s4)ZBRGLv?afFqg}4!nf$5-K4)Sm+wCHsD7&l zb(8!xm+PV3B!A82?ff-vlE3D18K!ZQ{OtzSLF;jXi}%R@UPLaco?q3wDXc@4p1`Qs zM*3BFrSz<>nNE)4m3oBh`vNvgKy?>PVYsAP-6G5(L^L0l%?{)R76q^g`Uj6uNK%qb zOjB?1Jx0(0;L=??*fc!^7hDcK;-EgMF`a@JobGjdWzOQiTen-j;aegmSt&-{E`Ek} zzDyy~KI5-lJTRUX2&%SrQBXdu8`)Z3p~6l8ff~|Xx1Syf-`}^s&P5OI8>{%ub~G_S z5WUw31OxXn1@Mm)woE)>&pJ`$mD)-8=6xEx)vIVuUG*e#Ld$nZs*yNACj}*+mHC8T zy<6KEjj5A{4u91M?_@ycYlF5Jb&7A{I{EEWpWaC;7u6r8-zU?%`%Sg`T`&Dcp6KpZ zsvXqtF6r@Bbx^-;-Tlg4He4saiEk_YV!y_vIILmeQ`d^Um|lu48o~(;H_NaZgQ7la zm985RjiNr1$I+){5#YkoX((*vj6F-paz7to$hWGekg?g1XCpHroQj!2k|=ndMHi(~ zTh>|-@b_WxN~4UScbuuw!dR~Nh?Qkk@094%f=xE|&ZAQFX+bI*v$0a;fuI#p#PuEo zHyjG5dxzB^w3}?x{LK8DwM?X(mX|~qxkA1BjCJa2TeGFRr0aOh#>SZQbf*MrHiB)) z+uGHMG+$YXx>6@koXjuu(RH6v5ff6`c3jmn2!VN~1mdL>Ikj{R(A0yJtW^%-Ur&Rs zX2740BG~2IW{~(|?V%UNGOF*K+2Hk4cUyR!2lQX(sg2jen5lX;v@cq{mnA6|>`psb zu>05&@i4;(dUPsd!{t(b$0a<}6<5}Q=3>&ovJ;?2byShS+uNSdu&QUNGiXk|^`CmF z8Dqg?>7I*0&Ew?@$V_zTnGt^p)H8xDK1Mlt2NCSlHL^pJ#nx4i zcwscSJ#dM=gZ;7DUzhLhGmmEP74(N=hEKJk9SHq%1o7&A?Ol<^(ML;ZX4-pV+-oxIbBM}FH zbsCv|m1EEUID6^N{-s_zSI&ca-Q0S!zOIo=cqPn~ z5bp0FoE1&Prd@xo-xKX2QL(F-4mlzwY=Zyy3c=*a(|q?C!me#oh;z_vAd!6G9ZNd9 zvYl>4+^Pu~i818fV5Nviuo(jN_i6zeMs~y^2qv=#+apQH_Y9Gr+4pkUk-`IS{VE!@ ztCg!ae_^o^_C3)obw1}AFd#w74&Ru&Wlq1ab0jx9J^1Qj50hkP%meV(T4V_lL;aAj zhOTuwa@~P}<>q;i3>~M|+y<%JJ#D&dY!H-9y&s!y1dg+vCfB`VS*0SUaT#G+q7$8J znjA1%NHu+$u%;HDO=8jToP-sLW7+cihyUH&AY#>N+=&t{2X+EMiS2p^S}E2(R*6=S zHaI8*t($i47L1C;8u<+fRgXRb7D-LSC11Z0`0ssvy+l%-u6*M~oP4f&!Q+ zPa$*jrcyi6@PHvZ0fzfUZ>synV$X(lSHBH>Nr`=N=`VVKT83Le$NTE1o}YrZM6cR! zxWc%f@w!6?lKg`uL}R_z?S5w5`6-x*{>_T*KYT;PRS-Jhob#$IG|~8-nAQmOZ7N6= zWA`n|4s{0iFK!V7{0=SAx=g2J6s&>N=&oxo+81~cs+wHYF_A^F;cP|xyO`g|1avul z=g!<0&3f7=X9zwBj!I-ueHlRVoQ}-KNN>}rUr8({ixP*_se$v0P>u(N%b!!^&++=V zTfUMqwrUgfAuE#VKQGeh&x!Q)XGfC#7eo^M=le7L8U9jrMcfDktE93TOqUZ^|7)&NZfaQ0m|AdlKi_wlZUyCpM0%RrfjSPg3_vMUmxLNk1<^ ziQ69zUEBc-uRgb+=|JBp;g<>nWM%LMC6D&HIVY{NZkpH}{=68-!-sA=JM3 zgQl4_;Dso$TiAN!uT%Y4DprwO=N*mKprJ_2DKe}_)&a7Kt*MAhx-==;bCU1~>_b;* zOPa{A-ekt2Bw^06%od{l(`ha4K7b}}rCjAyn6LD1JU9#*X*?(vlE#A>`fry0D?vP( zmQUcXplJPr*?dzUojcHBEY~)F--MS>l7eD4CRxkG5R!nF2z&Ys-(bOQ1cQ%eJ+J;i zEduSbINVyXME?c+PrkFzE|}Xn=Uqg?0QTZb5+L6&5xNI9XMdk6y%6c#qtc_JaynD9 z`3dXrxJjN<4*!-jDOVYOR)&PW)=Hx)30u?9Ic43g`tq8m`I22Vu`;)Hj-tQgZ+3A{ z)D!FX8`ka?4Vi7<0whS^7Cyzv=!%Yi?7zg4Zeck5^&;Ws%hD)fKyyIg;JaTm2wAzSfT-o1`in$?;s_>k}%$g>E; zV^p;m!R_GKy1jHw6cf&p0|#y>$VwhMz#FA}Pbfe&TH5WUVBx{lw4mAT)LY8V{Ay$V;K3)GSotPIWy!+*p0MCNE?boC6@ zSM@@WB-0T6o#>oXlv_?~Z8RaeS6p(mtJm`yZGr=26A`^pefq^@LZ zudfX4hX%C4gye`JK86+|g#-|<0i!_9fX4UmhqiXPGsSI4`&W3@b`$MJTesSH%<5wR4LmhFdY z43bp0OSxDyTBbKe>n9l`7kx;42EGE2XG#xO(gVq@1+d4$KY<@g-FXf0_jVQ_Yj1;X zp?Gl@XW%aLtKn4&yfA{E+}7YwvBYEX3Fb2eK9xhuT6}CGEYQ5I5`gP0C5tQKNh!|-rsANS$=tsa| z5y4-32U7nSdw0+Y0IVU^at^?v6LzOctVuMXBLvq38Kztw`a|JS5PuGwD=V!a(I5I* z7BPR-Ebve;(MHWf{G(uFut*g7b1a|@SApm=G6AEim3x5f)2h7^@e3uACgFi!;Ic!I zAo8g+yS`; z=u-*$(wN3fq_022X!gwL^54Z>AK4uTU2Ozhg!YlR#zcI*39xX9vjHcee&Ez(Mlgb4 zl8EBDyx_Ul?o;;)39R&|SI-*EIlWC~!_!M@iY1q9_$--w%20n^>?VIDA`lMSwGXb5 zf|oJM(5Af5X9>YJ{|VJMTh+7l*mtT)jD7mLgew@oc+K4LX!mk(a_+Gp*bRq^z|AG| ziJ9ig)2C+_W)rt9+OJtDy)Y{KVlYU9Ju})}O;gM>EWpco4ctB5<$9o8370kJ9ZTh} z4LpSEl&jZk_iMY5Kypt1MTt)&tk@94N0Jsu5p*vSKC4{aL`+T@=dT>+FjLCJq}>`M`ec&dY_c2UfF^_qT_O4w}PioQ=?^^nk|yJ|tJ_+{1B z{W1=}$EceCO2HXVHy)V8H=}N<{N9qYI8`(){tL^Z^Wg0BSIOPPQ!Yj;Bg1u9Q>Hro z-xA~bt&8=o#cXB;XTL-IvK3r^KcALxMb=|UYYvAT4&(6Q2RGhOaE5WuI+x6D6hVyUHesj&nqogl%c6}c$ibO&W_PE ztXJ*Dk2tgeIsunZ7Txb2prbbltRB~3L;mmt-8?&r?!@cY>f)wXSc;Obxx7035 z#KqQA79J~8Yf)bcyEwT`3J#$l?jI6I@@WAb)b|)nND7_7ewLm8vM35YDWStZh4v@9 zm)**f(EcR%vU>Sa)9#Uz{{b;1kj{)c(c^{dL`UEYYx@G@fh_BXyfGe-H~w>c#slNz z=N;0mx}TGUvDZIv6~A)y8}~A~B-`zmNz*z|z78kZ#tk~`ICMpdy3INnT2YRE5ICW% zdWKX2a;xTcMYq(+7;(&w29vGv8dVr2ZZ@i#v#ZhqCtKiykCQkz1ENn0hDwT=6}Nyp zHI3#49T|)xXBsYzL;2FfE0 zmEHHX2iWYaU6jBY9~~YOEn|&$ssY0EPv-pFn_JxGzUfH;<<}nLfg%|V5}pTSSW?lb z^T{KihFlFexGKzdy6Yr=vBZPk zsrvC0dpd#ZV^`soGL_CxwIH8vLH-zUm888k_*>Lnl@!aAhu8y7iS#4t=>8 zf_1rmeQMp@IDIU&eoPapuamFClO3Qez#SN~3V2sZ-WgKF9M&q}pz81d#NPU^gX`aW zg!-b@K}El!cYX4T!i4&QgcXH}^#zG53X|#!l4dfTnRLl#GM~w2Az@TqI=|&5tksIb zv~Wp!eL>oa!sF`;jt>{6`xHK~JRe5fv-*NzD+hwdk5QUBvuRA4Bf%(5 zH%bQ^r9=5SEFq!3^em%vgi)GdlxEE|O0&0&xsW2GjnX`$bXS6X$&-0o|sCJxhn5t^kpCi;?*oXj3 zHS6Cg(>iYCL1rTjWhZl)H@AmgO{`s<<8Y7LZf*=UldbtezHc;}L$7#h7boz&*?c|p z>fqYNiF|)u%H-89##)p@a*;1LuNzTeUY`*e5JkR@Yvx{kvbY83z6wS}v?VwV+b`%S zJVS!W*<~VV>`$`P^od{}I{Jl^^$8uXqZd(uUG{9)bX&nMX2w=c7neY(ny0I#$5j>H z7e9LQ{JXjQj=@h6QCslRKg+Mo#@+5GNUloYW2Y*+mu;;BD!7`G*FyY>&$!RfwWyTl zcT_t@l{(aFRE3oh*X63;lKotsCA*q7ATW=T7MYu!5;1g|{O$<~%LJeTvh$-4di34E z6=%Jq?V+IhSORzYUD_6yiwwq;mXstW1a*YxJB{Al6Gb+M0Y&f{SasCc*2b4r&{kjj z)qSsjLr&P#o{}G(N4%GVN>`2bSeYDEDN;2} zSG9_2Wd-*hE%7BXv|lDn&N!pDYQYUoZf)DtUYywklk0z%s8!##I2%WZ5o+b#u|*`- zx<_(4OTdzp>Q#4_GUzT<^Z{0stgEPs)bTQYug(OfMN#GcY*pOdz)2bqRs$k&uWq#4 zcu7vASQ~FGIkb(zs?U+z7<`X4jwj>Wxb@IBWK~28izVYWwSF=1cjP8dlU-_~gQRS5 zA(=}t&m+()1#&XvwIy7oszk9K1#eEq_Txw>k9{)dFxP5VQm5LGh=hS~Fk6BjYs9fO z?_uh^(o-k=W9#e$S?qo)f4I&u;UbSZ?a@T|EE(Au-8DY>{*kTf>E(-rA32+vo;ol6 za2-9eKaCU5UKv@qyGGB*fFUldTyqkW$^ICFBHH;#GD-Gle1VZY z1ztI*fS|q)QLD-VKPrE@Eqz+j23@oJ#S01a_RDRWU60lx3H_U1-t*1GBh|^R~TyvtGBRmDVkPJBkgsqkZuoWVj`0^GrEW5xBu>z@j zX)NmO3pLWCb&6~`xIif;FmqO8dkj(SBVjL7A&wZiSxw_8F_RR%+(IhUnZ%BQOBL0CT|+v$Wha~Ndpo-BI~}Rs(?v?? z5>q<6ef7!7_R*q+5n6F&o@f4DWV_8`J|7%fVdmys@0r_+pdJxV?F~2zB|o|v^+@=j*&O| z7&l7R{zjz}jc^+Ornn*}OSCs)aisAsAvnM|K5~?(aNN0LTzHyPYLneBI&PPiKo|Tx z`qD(Ud71Xf2%Mig+l2^vw?vcrcZXHxHSwd6!g)@j%*N*_w7#}J9{_3LzrJr;o38k2K)RjsM+TDH>gz`UskAZ% zq!({E1V}}<4ej&4z1_+`{=R8F$cp|HO!_tDj|`-L!<6&(M*yj=A_k;;u0I4w*UX%m z{J#yP^Q?g%fz)2livAQJT}t^Q1L@_Dek_odmdAh;Sa1lCMrLLv{ci&)#Txh#fHY~! zPXp3W${!g>4}JJ!fmDNr-6Gr*=f?qQ=@RGPxuLj2iQFw=ch!e@b4TFO^}$P;vmHrCc(lX%s+aF@a<}QK5WaVl^)?l`8)o6b)C$dakEg@P z1eoXw^&eJ&QsmZB9jQwR3IxK#=jH~EMt-fMWYk!N&J=B}-4It0?Oxog+z;!HA-zof zC2{vhj4=px6`dhPXVBuw`Ils1VYxY5ibKn&@yI~D_lJP^n>&Ov{vjYx`fhk$sOE*Fo9`)=(4;`P?sBLi`YRUi(COaALSK+LoX{U8vh9|?%XhXZBD?er zp8^E0C$~3oG_=TJD6ac)H7qJdI%T0^VSCylTu10&zE&nAY-rD%@yZjagO$n03Zwen zInVmPKj&Sy{FFH_-}Mvb{NiEf{E@SJv;3$zKk$El&YdfN%A9YD{De7wcGx-p$C2jD zalbABM~tdYGq)ZI(|k+9bjgaU6!QR<+edRG%8~1P?wjbo))N{JG)4#-=+QE!(LAFL z5-2B#PXaBubx#4hAxslL`JqVU`_^JH<(j!jA-0)R*3=Ll9R|U%L+z%Z=a9fJ zJ9r|i-i;vV;Zhn8?Q;Y{9;w$u*FC*ThFHkvQ8C04()sdXNsWvdnje8HzzoKte(_|F zMgf_+tvdM7Qtw;#nqo0y?jcr(S>jYJpMNXHdnXg@0ACLESL-LnLfe!F?uS=8+}OGV zQQjO>{{kZP)ndv=k)trzaI3lekkDjtW$|5{Oe@#rAskeXEx=dpb9Van0<&R#^m>`Q9*1)}4n;Y%JbzN1j-BHy%`!x|1nfpmt z(xn0lr*H`=6zlP}<$AT_dK`zd-Azv-et~kf0!a&`JbZDRa6AG>vnU;a8WYojZ0Op- zu&npW#{E$v`23SYM&LQ@2zniE1f#!a1XZ&Ce$)tNA3B1Sb%%pN=!wI?;Lm?MG7L!O zbmS3W`Jy+zD09Wa9E?0pHiu80@(-%nPESlgoAu#~GEm*lR#wjhEq4-ftAqY~%>khy4m>T6Roe%G!P={YHpTr>Dpfa1og1lRZm+C+ zBXCwUNJ#R*GPd)~;&k^jeb9cUnXg(Y6GY{#P8ZQqtesdhk4rPTcGn`hp}O{E`DT1v zuXbrHgJ?sg9BHJleF=?>^$;6r3=ro2a&|GMO+WWILO)M+sNU!9i4t@sji58>76H`M zLYt#QE6P<`3oBHRZsezjt{Uv{r>WZmHi!s~5?&z0rpe(NLJFcH=Og@w#SZx|hsvK} zM*irg{5#u>^ys6ukMG3Y>rdYaOE?MFg4!p3qF@;t<$+)5D9WnpJ~I0*-05|K$3D zDN$ljtJ!_EH%ho9z|ab283nU_s+Nu=D|*f;Zfw-TE7#GevHT(Z_hJ2at^O6@sp`W@a1$>?ppZ?oSceLPXWUm@?es%!1{FYsOrB(?53U3}Ae z)@~~5?(pLDitzY!<>R|qm_FUe&o(z%ftz$$VCyp9QRm5P1c~F*%hhS}y&$frMv0}n z9-`+SX8}1+-Z36nB+6ITpl*TwLPpC~5;)9TYkG$ob+h%uafVJiy}~=yoIIl5d!Ol@ zZFpCk-T;B=Sz@zzSW~{Ukt3}s-?e*ye5CB)SLmvt4kKUeIgETUbpr<_K3P5+EX&Bx zFumDEewOJSEmQL5fo$QrYU!_rP&viRjLG#)No~4O=T58bPW_SM09&`@dlHQC!;G>K z>azQ^cV3@bqUbFU^y&o=APnHPzCqPMz4#sux%kVdOT{k5 zJL#Uwec@0Vk9_J9o&es^Fn$@K5%SCkW#}JS{0)cl`0G#fHHEVI!lWJQ!;@sbLu+fM zU{a+X8>oXL*g4EcZ6y9dP$jG%00jjT`efb*D$;#6Unk-l;+U`sL~cc?G{^ZnC@$u3<-r zXfPloR3Ddn#8Em~8H>cqaH#r-Ks}sUC0Xjy$wV=lIoh(;)%-rzUvL`!enjaiSIJJ6 z(VK!V-0l^n5;NP5L*2MTPM|d5;J5jzB^0?jilopI%=jx>l>5!9k=ig$#-T~M_FPNW zA->>j(jhDUbR?al)P^&(<#xAsH;1IzUGBq6C^t-(yXX7LtsP4_k(`cF*L`2PUwbJ> zI48zFD z0U@I2sk1~lNMx;7Z%CBz!*OrUvEQtdH{t7?V)Ohk-=%akV^36ITQC^kC8xv#4VPT4 z)}mPmm&{OkljM_lg3$wfj!>^tnndqC#_49s(6}G8H-UD+ucf<$jnIZjneS;CuXUp>%nMZh@B$CotVlkF>a7H=d9T-e}Vto z@HA&rvK*t~#jd6#eUSFn=O~tooTF+Ds;$uC83Y3qzN@$C&`zN->wF#CC`0q*MxIqL z_%1DlSIPmRTo>}}MF*785f~DFP#+)?1k0*%DpD%@ZBQ`|bEQyJ8Eb{|;_6ba_Or7q z)iWu2fA=m^Cl26uc%>$_NtKY=<+_HB3NRe5pLasB)g6e6!z+cLt2G-X4uYHj>eea1 zX{8K8kxQ4adW_fTulnd)G+(O8L99l;Ce`GeR6#C7S3ln2BE_GG$qTgX-!GO6={!m!9qDWNam7-b!NHxi=b`E z=$;mYH2txZDL||qC4w8|Yg)&9^EJXr?P6E%o&cec&n8rf|`EseGC z=deL;TZE0oPLL?K7)BE1mPUpW{Z_4EL|85B%bjF@H_8EP3xZ_&s$cPTAW;c+az~k4)_YZkI z$nKsqXJ*cO-ZS%__vQ7T8f`YxKjK0BvNo!^z6V4`(o`F0 z7#TfPh(d%TyCdkXTd|9+y(}~_&G?Fa|9ruv@(vo3ECJ#9-(%&OG0DV}l42T9s=`ac z0fM6Uf{-{xd4yfudkrL~eAW|*Ki|cTX=-tU3>YDvgu$=J2ZBthDeByMDP2c!pfM;V zQI3}$wc!cYPYES-Z{tCqdhlP?gWIG!WC7A+hK6UTBR^%m)eUT>+#K})4H$Dbhy1EM zaa^D#<;!Oz<}jPh0(rxfHjXd?!pqjlN>*@LaY3{L--xJ_+A=|;7 z(d|G&N!7-F(d|HA7<3KlI0OBv zdHc|Ug~PD&GA(5b-sFg_UvVJhzR{=}`>X+c~j8r$syWdkdgOS zYwWfGle~T4luUV1mh%+S#@RX~+hObqb`lVnA@=&A z#(h5asX$YLKULq{Tuzc=DB@8+ds@p;_342oJ2`~o5J=_bQaGmm@7Y_56`F8bw zCN<~`2b%YY-iS^;`HD&k|^Te6ZWJTyTN*~<8w5Goymyv+DJD`E7s+> z`o2bzJe{I1bPOClMB#+`?q=cXcS0BIUZ?VSb$K_!ZR&5P*#~9s*4+TUqyJNKKJyJ{ z!Y$TcRo|s>U{QK#jM6FDMsoV=9a<#M5X-GpH*RyuWfoaH$u+7(QiJGw2VS~C-ay^$ z(K9!4QplNN4qLjc*?|UclzyVAkc7XfLHBxg6q#2#?Qb65B~lGf-I*uC7NLjRB@X*n4d^^$b3JZ4E+Q=)$Gyk3&J z(0g_1R#}qP*S~^_cg_CpETn-q<-Bh5UnsOt#>brQ=B{VI1@>2Nh-H4gNn0vmlnBv-=E6Eq1?5_>&-%z8sv(+q$bfp}bT+LD7-7XU|X@ z_tRTHy?-untHklU*9ZO2@v*$dy?oFE`pmd4IG4VhT_f^HmJpUB_S=1AMv-#!IaQqp zOY(SA*nhc@jPON?1S(iYCFGSHtK`RWbA!rK8PJvX0$aoN1KCQi9+2ntb!X(4>5*6B zbm(5j$oo6Iz6=ve{W&HBOkg1w?)fL}N}BN9#OHP_6^+1ADio-qxj&Vd!YZ}9H|rvh zq1Ntp?#;vW?v^1lgk<-34%DJ+milD924%d2H6G(prSuXQB9hw#(rv-6Jg=qMvpC9~ zt+OT&xs@K1Cuc#!K*l3F-JO!uM`VDa=%>FRT#QEtU2KK zs-;ArDlJ&KmoJ9yDqd659qN-|PF5h+(Xip)K6p-1-dU4oa*r`0+)C9jfI z*;p&L5L&`l$zmO7ND&m(Lk}P26uUz?nN=osb2YohfJvkM-$z07)=fxx0?iSw=!Y(_ zqQAQ4T2o776paq%#hg(FOd9JSU!J0t@`M?}-78eNnFc}n+Do`L&$5DNsp_i}L0%() z6_h5hKTiVttuv3DUQ+{~9t*r7&k=YOUMpYJ>aH@qiu&oiOvHm%F6Zj}H$`1&3$9(y zkKo!}{594JnSzh3MC=k-sAIF=7I47*B$QtMC%?xM^R<5R8y@PJ8m2Y0viB-#>bg*(8zad`o!Vnz| zuhpzq;6!y-xs*G>%7^ve$N6hg%IHY5RdO*Te?6g)lv9PbaI(~o1hyujk|F0(xMHk~ zW5sB4iOV=5c>Uu@N3HVvn9uN9A%PK+4usbVwba26CBKQ;C$qP5^YA9S4_uF3flrUB z7g>W3Z;Hnbrkf3X`n5{G4zPel4(QBjNv989-!+v^mXj$IQ0uqpJCm(Ds*FTnNYLhEGq!S= zu9O-Wm9QRRwI7xaJhPi?HlxTR`&)SJPALKVKgVY|_@W*=4NDQ#;cX^VNUlf6Ir$a6 zHe_!ZJfGC|-mDJ57Y?gk9FkhpyW=btPG0y9{WIrX;2B{E_FG42k!-HThOXV%WpyOj zDg3JJ2;qth!bAIn7Kv5>n_pPmThhX>&f*@!D=)%pXkJ(}h-)pB9mWq$*?j#4%8t}u zoZ(kRpKZRONdVdw78bEBT+zp<+{X{*SKt}>LJzXaz^)0e-NrADvfI@=vK^adKfTC> zDsD2G%FxiOe@*x3P+ENQ#v3rWp3~7=Mo0*vf9rii zgu2>XM2*lKuB$`6OxexC+`RXP3_Itp%;R^a{8wUkrbj-3ET^(FF~VA#wYgvZ+j zjRg)VHF$2XvY=K&2P&zfI`ftOdX)S3OmtM`jjE8YN=B!< z*l~<*#*HcS|7dbS*T8GDc-70+{gN3^LL~umhtOgrZ#!FDO({f)xujNSJG zf0U>5{TZs@1-mUScUpPE*a5lI=5*5a?XTt)fv7=vUC+1q^Tz7*>b}es>!Lij7aFS< zMrxkZm&3^qZ%lq=i^!@Su4xi;gqvk4eZlf=+j&%;ZCT9$(Oq$vRSEiY1)?uUd1wO!AkWEi#GRLpdS> zNv0)`JkFboK;j{F8TvAjM%*gsCnIHp+#=C251>^(-_$C<7gZzlV=YkkARe+?TY6=E z>B#pEhnHNy45;o92Rx8KM+-`?U;a#$KRx)9T=^!0A#%kzjQRd2`9WTD8$#l>-gUHV zTEGS7Xmg@iBoQ$#^mzA0TVKdyY8$PGLi+0hTBWwMOw8a-NY%xZ3OGh#=Drc4g z#<Lxx$73hD=U5%yn164+8ZC7E?Sek5Y{PPH>fX5VJjG&r)T z2`~MAjOHboYJdbYg|R}Zi>0S@?onAqq;vPlx`Lc6sx)Eu+*v?m(b&))+JmhFJ{9ah zoDVfnRg^}g!ceM?V*1+TC1FL?fS0} z*l1F(o`XKc5Y>9I^1lJu4LLO$jm2s{zY-clfrV7V;miCrbPo9#*6SNXeI8Y3eVvAZ z*!nsJKmn`lO&&F#tLSY7p$mPUcm01?5*5cE^+3&kG1`S^PTsJYpPb#iQ^a;yVP1Y& zUO_JUL4i#F&W7w5~x0xrs=)exV9M{7!>wZr$}fO_$>&X|MJc)e%%Cg>yPa)}~>tyjC6lDN2!uZojooO5E*ubIxcY z#*xB<4Zd{VQ4R;9>JiOAYwgYmDRA}j8%W=}L(Qj2s{cpnFxwZ&;}X4pg(reCUurwQ z z?#SlsP=lm35@neBM$yDB5SI6-#YLi4wXPQzuUO6^E-wW&B;P{EatBK7v0_f^a-*r# zmJ(X2jc#$23kM@NPx66Ng}Q9-&2cWMxlzf_i2*qb-wQubu?`wIA@F zdi)%~&cZqQ<+xD6KJ^BABY10xmApw5z<(VBkJGO(9 ztq!KNQFBs>dZAf&aQ<8u8_^=^wTIx??P}<6HE)hIYwR9dqtB}GEg6^NUOBNu-4w0S zH=ulUc|En&EMuByir$~hab2_${H&ZrtpxAL?Mtx4)^{nvR)D+44s{WNte8CVZc474 ziiFcTYBp7Sdo!azjn9VlLmT?AikbYs!(@K7vbXq~`%+|@tDF3?k(13?HgQC;hSb-V z@d}lD*4@vCu`SvCmPb8(fOFhkU@Iwg`(M$UY|x5(ST=d#4yZy~&i+q|uT%0uk=f|w zg?KA56D!4GfS-lK^hgxGBqNbr`AhTatG{kxqfs(ddWnv))*$r;dhG})hFhckh@IDpzYtN&!Rl{7C6#>`Cd;kAO(xFkT}6aafunIA!C~8;{7Mx|tJqh{ zRIL^n>Tfs+pES7IY$(a20-{mg+^0N#qISIzQvK;;St^yf`>)5ME|iv4B*SoLnzJ68 zoMg#uEMZGGUVWU&ukx=z{^E@H*iwFtDwSm{KMmC!pn{V21ic(bq~2Ge!N4Eb51uUj zPq%b&KVBfZIPmSatGOtw5Q@i`@6(e^c9HqC8M-Y#SM@saZOY@vqjf&0)xEsV{JDJ? z(+8QKY$NpyWKYZi`|p+CW7YnA1Os6HX`|HmOK4Fud$;LvhSo+FG2^~i?ZkbubfDu=2 z7h_aW3a6&Y_-z>rWEJG#WGs+H5$IXd#M{8`%kkq*o5(r`trN1>0map>J?7SXX_koR zO|d!&r|O4c5@F87ob6+p`(bMF5B~~-f-FUTmo_}Z?iR0Hcdx0pEoT9h*b>mW?9WW~`5VN0(dNq&mcEfEA?e{K<>0P30?S_DV2v`>#KMuW3gTVJQ!@MFXhrP^`0c$+XeS<%tZoH! zvfpLHP=Cpbbd3IJ;e&~GZcM9Vq*Z1hYv(qHea(@3W?1x1|NiHgH!ax5(1}v|{gQYsM=iyr)O<&$*=R?T z_~Uh>b!tt=7eQ;1fAC2Z4rL?gqRhFiBV^NxX4nZ}YuD_r_&Cp+* zrV1MtXkUA+KG`G7L^@k*mQ|zHdt0^Y2d#>==G&@UE5GNzX{Q~V?_wh_9U+jTdmthP zKDnJuu_&F>dX~t0?>h8rnp4JQz9Q#=77i=V^7*+UtC zIGRo&Omi~KtY+;Ji4RX;Hu0;(2S(;aNqHwyQ4pXuPQK%$@Uwun|9f{sdNu9_mbTr2 z&1pgXyit+Qj%wUH(xZ|&W+6-g_N-x7(}`&g_U0jXQ=n?HU{m(=h&0)V zQWhmW-ww^`s6Pw)$||Ncdr|+Rh&LneLB5>>;<)iWTxHmLuuu9%mxbo}23+79(Z5&3 zukiq@WvmxR(^a#=B9jiLKQEy4L4ka5u)zKd3p z)D$@zMN4v6$R*CHoMh;vsb&ps0*X}aDbj94=X-Zc?dKg|yIoc2+U;T&GHXAo4xW8D zjD@^$v?>)S5Y*J4qV5-7P`_ty(LO!PpbgDO+is%mE7^tQ<<9v6R zf!frMJs=eiheA`lRF}TUYl_@H z*1y*h5gXL%Kg*Whpi2LQh^RGVk$y!cwC-OYM8)!W`0x@sI8KZ8vM#k2>-U4AoxO+E z$H#O;ApNl^*gud-Ntuz!!TYlK+B45iPgm43^WjL&Th}t{r^u|wH|dYI+)cgN>KtU+ zGN(S%SS`HQoc;TFdo?~sPLF9%O9hZx*f=%4Dct`_A)9Z!Nwn@U(p8EnUA>eD$?k$= zyVYgy!D52G$ywZ?`Y@NdT8y$ANcLvsr<_Hg-Ri+zLZIF1s`rIJItZyXg*1Ko3w`1k zzz#gC>GM>SKHwk7nO|+`A;+HNh2nfCBz#Z^qe*BLSY;L1%kb;7(IBrxlW9HDTjPxF zef1L%L{q8fBB5sAY!e62}OsQ|fN=vhlzl@*)$-D-6Fd!wThsVWF*KA&sWcE8m21_m%09eLW6%+x*9 z7Fr}P8%Vc_N-5Br&?mdiVszgGbI4L+4_37npEoB!P~r1h<=??DxodUKR%fV458XQ$ zA2^m2HLD33EL!5hD@8wIu;g?8&Jza>#m0|#YMi+X72_-%8jLd{^ZpZ*>hObn{roO- zJGkLumY^85od^$XS6Omal|{6PoV(*f<9wwh>iLzH5pggoY9--rgEliU=dv+nfJ92t z^$a}6MX!c0L_u?SdYVVg3hEQVMIwsMAO=Uy-!=Z-f$EeTf0O@rku;8U6^YaE9}Epm zLpsM{6CeFzshx%dX*NqlcJszG6?{vWo1ilU`bNQr5j*I4B$UT1@x^W1TK4BARr?on zf7a?pabhOYNGuT!aa2Q;M(lEEcc!i>vTQ{>gB!A9r6~d!W&ak}(mE2`>@5}-)I|Cq z*;xs0%L@8;L!}b@R71I$A}n8btyW$Tt-dc%O&dG4kLrU9XEh3Sl9}iSzvF6pOZ9Ec~ooe${L<`PQ z??DL)!kgNY>a`gWAK1O23ZEzegnkBkFmZUr`E|)Z#l}GjJqU~t{}Z#Fz^pztKlVep zu0HNA^OfTG#vV$RekyhGrHG>X+BEg0Qy(r(k?F4khv`#>R*-SD!O+IpvKRKc@buAG z3+y;%p?<(+J9oM;qGbgxu@ zgHe)SElL$1$!%q7%cbVgBUG@ewa$AQPItzLSan}=%@e~Vvd$z%qm%RKp%GUv{oXHt{=@+o*%nnx4FKw@_U{v zcJ+I%G}VJrz$jSB$?ncR`0b2xi5kq8LaOTJ?Dykh`r40|QPZ|#tti;1GLJPz&vbX> znAFxP&xjmX7W$(I6F9}=nPC%~9gqnKzD{Lf6cA;~Knj&-YHj(C4i z?jLgRD-Dvu>25n=p6hhPA4xaG#=0q2jv_nM1X&9C{WpHgD-ZY@^_YKM*uTc~)X*M$ z#sn^`FEcu;t3D86b-g&#ohNR2vvKHH9U9S32PdyjXNkjIFo9LMdAe#8+PoZ9lpy^%*!T0as~f3$Eiv$FmA ziK1YoEH!RS3uh(Vm=d0mYRqtjKQIq_I@Op2gOrsDWZ>IBL{EY?uSvarHSe@r@-cR< zN!ZCbA~+NLYy^5_@5h2YKs;{-Y2Vlu8j=}2H*{kk;~K<6(umB+P|dg5wRZw}f=dA& z4;+j4pM@wTB1Hb=;MjCkaY2lI)ih?A0^PBF5Q+!F{?4+s;AB6NqS;lIhbJW$HMSM; zfR`)lfio~U-Dcn+|2_hj87#iyIdj5@LB%v~tdzsh`Ydy{$X!#JjwVF*na*yf?<_f3 z+*5)SQIO(MajO!5(1+mgX<*|(VBD8O<^o65*`#HO7YF+JZ%UM?O^kAb_J7JZIk<)% z6e~%I`sp~)l_xK(k;%@EOBN9f8Tt0)g==-m9qJ>{J4Dy|48Kdur>mT+%#-%n!X6U+ zU!rEpYHuF$F{~pZv&I7S$fkpJ(J#MTHSU8u@5d}8U=(%B(E0i}67RnV-_L{ie&{pj@7|F0oI@bh;=sORD?hPJnXaA=^~E-RyPXs36L?J% zJ?%vM2;?jwuYlM`kRR@UlSiV4k%3G>axbmQ>W$9obVN1!i8vVVJ1OQZ=lt0xnf0HQ>8fs(PPTfMax_OPvET zC6ba5oD+*kfqbb0auA7OzH;kcxYXd50vlQv(7yX1HWwok4f1}~ zBr-7HuhM+bIHG~_|AN$RvGq4qap#2*3Jf{DDqL!r^g`1p++ey1d{Zy_wtf*;xlO(I zPK1iDwW{RL-}Y6&AbdMQ=ZaQUd~0gB)T=F3^!t`owDBsxkyn95OVxksW9bp|Dy-(E z#+87#qW{X(X%@ic2Zvu00TD)#aI_T>DK0CVo=^$sc&qCVt&c0cJB6ILYGn z6{tp8{!9|!`Y%yLy^!v2Vr? z7%QVR%U<7kKrg>Nczu0BaGrz9ss3Ji7TR%lcj0kaQ*Spm8st_Wm&IYD6Z%XZb@=aX zDRefDf|N?6RK8j45XA;N>TeR;dqOZir^Mm68(-9)r~5F&>_hN+IvN~8G6#pS4hrx% zvqv5~iR*^i>4!b&qEjBp_keL!FCx>Kfo02Ox$@Q)|U-^AF7U>KRJ*o$j0^*(0YJ!B-`xs`qK~3^n$(0MFcpQ+;asH0R zVCd(J^G&n903aGyY^8^=8Skj(X2!12u_V{Ic(9Y&;wVS=OQndqn~Lj)>jt~WHdrGM zb+y`~Mzalnnbl|!WqA*T7x?5ZyKKrjm1cFGGcGhDMJ?k5Br9c!8n5)0B}NIIHWk6c zo-Y;#!7Kq|OExghp60tqJF#8gbDvNprsr`j9seF3tY0eZN|qOqd+>$9yKL3{q9)V2 zkQ-i=(=tDdMuaNS7dnXlXL1VEOUsG7EpER;UcNQAU-S6saeMf&@3{SxxxJ2a`ss3e zSBcMPkJ}9@Zj0ML6r=nZaQnIDrjE$^*%@&AzXI)Ydw)9E2DiT!Y~l9eHK)t%Q{?4a zbNg^&YffivKTBeAzFXT*ZEZiyVt%^Zo-Uw%?Q#1PRNNM~*Q0|xZEkm|wDqj*$e$(Z z-cQbe+r#tQ<@OutU>n@NjorXn+i!X4bh-U8dHL4dKK|#Y$L+m&?mKQjMM=hS@9A^< zl~^d-<@Oinwax8clO?$gZXaif9K|P*WH@k+aH-#LxR(QGiF)wkGvN1R`qz#u^Fz8= z|G){dOx({!%dTaanJ=`#@8^9RS!U%Q!M1G8?>~9)^!PoS=f30jQ{?y5Ij7I>LoiIW z%kOW_Zkyk`$U~GVjf5o7*pthfbf{(_Ut6M^{*) zUjFb5xILTRwZrZ6u>7~d?RzDV!(7`RTXnkJ-bG%%HMc()JUwnN)<;9aNB z?NbFTsXcE0)ZaF@Um*{jKDXzuj&S?iADjWVyXjp!+`jam5pHioiFmK{zBRkj_bbFUZHHi4ickV5I)y3NG;IFDbzVqxoVbRKiawYR4~G zGFPGr@%1QMJkJ%{pb-{d_J9n8f&L9Xxr0^k{0@i13-@60EKHw&B(5y^l^Tz6R+wm$ zh}ZeM=S2*KoG~!Qq6x)(?=-IPsHtFO4ak~EoQSsCilMFy*y5`(9+1iI95N$#)DIJ@>v1qo!f!W;b$$b&-^y?p`#ZFlPEnUn%x{gFATpjEPm^e_l5(U4Bw_jVD z+19tpEcvH|VcHQyyLv&Pt=qOaqq#T##ZmWvm3wpQ?I)wq3ozxWP-vboal7>X?@x7G z--<#n#hVnu`{Y}tky(Lfg_S5Nl1AnME}eQBnPCv$GX3c!Tsn=+L}K(X`ROz=*HA4} z>06|ck-mTU2g!glm*jQg=iU^P8|ez;0?CcksBI69v&j+upz3Tk4*#>lyjqAexEHVa! z{h5+q16;!7S1>ht40n3+E8>Ne2L7HT+(?l>q}+gH;VkugAgPQa zj!=c8ro&SF>xlOwQSSC&ui!+xO8H#}Te+ZsKXI1nozoF#p2Kkhk7aBMRip&-@U=0E z_WLVdWJych&c%X&8=RD`y%Aa>_r)lk6zo9ujZm%~2skgBQEqxLFFghUS9T-#DhbF# zarRNmq)jh>n ze;aX>)*IaW!pKnv;n>1CIMpp=zrQ?$NQ;GPtl&pt?A z5GaRr_b`h7gJ#K`BmUP{s5W}iPkQo{!|aI^ke-mtw~U^wXlUbs>GHts)&o*NKj3dF zl?NKzcwn78aGmvl6cA#$`tInv9iMg{GTryv@K+2p^oz=MOee-eW`EGXEijMZmW4-< zVgj>LTr=VgTM15Sb>3#0@~HRb=m0n_h@VBm(*K47x9-Ca%3%y(lDT(+lIGqU1mOhQ z?#?;lyAGnxzgx%%>Gsy2t8N>TC`(pC*u78aJ=y#jH&h&*e{{D{bvLfckhB^w-(r<1 z<`Mr+GRwq3fQZL3vA>3U+nWLbB0)Ie>CQ6ma{>=?2X}x6@$WOXmw8=%pw9$-rKHT8 z&M%%VuuANe5?N9rhbt0;SoeNoc)W_=#dHntoTHA)Q@o7pS$vJo?;ngjmuwGB~U&tS1W^ zc0qP_u&>k`Le5Yoi;H^l4td@C)uZz1zTXq7l*PKhMxLR zq>1@N4^7Ou)Y!l1t8k!yobOJ)XX@|i{#*H;&Uf~=bKky}sEC4nD(y#*N1RUxkr5op z=l|QN!*W9f&$afA_iVy9J`acX=SJa{BrqR@i9E;g?#NT7)A_4Agoh;OO3SDmbef}L zkH$vIvd7wb8X_AEf-9#EZ zjv(KoO=O1&Z|S)5sg@H(95I~o>g0g-D{TV97O@TR{Ymb*4x@#s`**Coqk zxA5m}sD$gY;%$)^)3d%U*QH8nt+kGA&dk%(u?^$7?{sXZsAIcyG6%ZTbkr;PGh^4D zj&0|pwsma1T`f8`Rv&hZUw=WLTWQV?u?w?% zpP)I5=-Pav6K$c2L10N4+clKbn@@C*OkNUxZ-y>JW^Ad-m$LH)k+E%%n(?ngY&do@ zwhe15W83)@mAzxcpi=ehmlVy7DQd-7sDEYfW`M9aO|8j85f#27ROC{h4`kOY%1}L} zhG;L?%hgE0!NrZWiE`#6Mm%f(LAvX9$oWe3mPyJ(vfpSCK(ukPD*tpM;ya4GMmZ*Y z&_IXetYQ|Ct@Z$#LLp%zg>iMCN~ROg;0U+^@r9@bL5z$jDb?G$Y%Bd5fw*RkdijXN zb{VtnK((nnX)age;|#TP$-Ypt4JR4 zPoXP*!Ki3ct>9T%TTO=8D9T!5fsKiFQZqax1mLLAL_9?IVH|1Z*@HQz%x=bN>f@j zAQA|;Cz)>5@17cw9;JNyL^|7S>st_M!UYi`ZET1kQj12s3#t>9OUMi1c3=p)Be{?} z21mHikpKU^Mh!1J8POghHtSTB<2O^jeWLxfRJZjFL^Ic>hwDvZp~zxi3(U6L{O4H* zo@^2M9jcc&hPxg6yF)-!&!}KT3C)syp_%?$J$jW`?~)gO#G=om##Y%n_P@q27VPgC z!-;2fkptH%wZ2<}!&vl!=uIsEzF=EYZugN@Aiq9FOd-^ zBjV*F^oIToM08lCzKMwYIJP4e#t`uz9iv2i%e>n@5m%T6Vu(0>>Ip=gV;1^GA{KCt zZ04kHJvi&0_MVTCs=ncy^zE!^YlCWl;@;r#5QVarhCl%dUK zXghMP4NFapL1jmXTh&xa$m#FDP_rsEG1giiaLCwd%N+s7$ z?^TAO(>#H}ijrbSrBBEo3;zDN-fOeqLy7eM^v!|;aBpBL=>tyNWFXgtiC5Qg;6!4{wFjylff`5sXQJIQ%d#lRrnX(p9+oJZaj0;R z%3!mKfbC&Fxf6Jt<^gv)e3)?^DwF=!-`e+zjmHu&GA$5?iVJ)A!d_9v#3i`>PEdIPBMpsmyedJSHWl6PZ8fR0Zc3I>F_4bStTPP(D!T~b4CkeKB zY9SE-Bn3?($h9j0(7dP__go#ku?6)7K~nSq`2LVaUh<}fW~PuyUb0vGUUDhEpkTn(0mXME^7{lW{$n^ zdSm;AWKDnbuVy2YBNtxK7XUfAaQ3v|P_F>c28T{pA3uBy%)Sx*&=7YF4aIbP+jLM( zh7u22mm}0uf8Yas%qEl`TK|h`HO4ahHsfACMO%jNe?Dp%7A-@oa)qpKyu77({kPLT(p1mO-)b!I$ZA5U3$;DC6kdIox7k4l9*UV zH8c^+y&l&D8CKOF4z0fsKvhEmYdywrm%497qQ=Lzv1XxgZFCUWU`3O@oR5(_h!?coo&#w#-;QxWD?oS=aeM~yuj^Vrd zsduo}kCQae6WD1b3Ga0MSeja@KU0*A$0KQeBl&%WNj03JxyqQya=-UZV|c2On;M%e z_wbF#Jz803TFqLr(~iKdAgf5<159G^FpDvs^HuWCu46HaT$TK@tN5+kBkya9${57U zZdd>J@u3zA`^RWYVl3>CTNbeel%U|j8`zPp#I&!pS?~s4n1Wkl3WnM&_;0cJZ&$yL zDL5sjp!C`7r?OLJq|w1KMYt^n9TwdA8y50fHs4hcgK-aR9E-t9+jx-Xuwj{&H4JaV zNod1HD#adU>xij#%UY@xJTCeye1nLl>rIK)JI<`v z^j73RCALeCTFRb?9|O>9zR@L1CgAv@w!9T5!oxrg1U>m#^|wQ!2~T91203Vpx)^-` z+x7X}dZzU)mQZQ??zv=!sdfmO+e_ocS7MaQ8Vap94m3=Q(u$=PK-7a6vV+*C-6=uF z!o62UKIq>kaO&O6{C&S)1Dwz9aY0=)8#~^b!wKj5Myr|eTyG@jqDMJWfnF@r|KxY6 z{ogC&WGTo2Hl&U`rot8?YYO&yyu#4x zYXCXK^p>T z(O84}>LctT?oX@TpNa*zL0)Fb|0UWI&{XY8z-sT_Ww>`HNMe_rxRWHfo955`RG3j5 zRCY@RRXLI{wpLY_LK~^w|BN9W*=tPLtd3lx_mo{1CxN7?+wh> z{xdygG4W1gx_Z>lC4qgxdM+UFdDNz9W-^^dRlZtgFqqk|OQIVF-pqCL>&e=gr6N^3 zx`@Au_Hi-H%diDk7E-gi+q$w#9$h9^ZnLiJlrpR2${6d4@RfIsTp7xhiHrsQF5}fT zC_%*nq*u%Z4fElX*s(}4{WuPg_EyB^P{G3`WPA_$m*Z&^obVhOWR=JfhWp{1+_dC{ z*D*w)=^mJQ-baT_jMPL_YvN-^mROBLxOIR&rrc_DX=X-=r^^<9&k_OpD)H($x2vvY z&PfR)u0*CB{teWqxm@bYt_l?_EeD)s;O%e>q1c(+>67>?7g*xw~_G%LHw5evRxXv}J$1s#$!?lGPcoJjxPUzgMTBT|CO8zLYa_!7{_WI490m9H{az`tFtL7rQlC(etb{^7T#;_CKe_ z*6Fj|^(*Wq0V94)D`iDJ{E10DxuW>38ScmT599q;INEr6o%OWbi+Dk; zaJCeTGSP!pLAe(lBL7N8sSb*3^j>p!Gq#4@3nT00!rm4q>9Kluwv5$6biIa|p58JL@ z{QzP`r=3y592RxKZZc3nhR3?Vm0*so%+4IMPdjwBbutK)*cEE zod^W@cpoV(^`$?&D&vo!raG#~YPoHjh5p{8$lx5t*-{IzmV|Y=$j!K!{tzt>@XnIB!HA$= z^~Fj4Mtf+4UCo%;%~tL1EOM)zPXuh~OK1K!(w{9mz+VRMN!$#jE20u2!IzmEHQ0$4 zO4l80l$=)6=mEkV?rv%OC-Ys-E9Lcpjm@eYpAhq`Dh`qW91G5GGdRCj$guL^t(Vp>}d=5`p7ZhNV7HE#wj}48-b=7*|R0xzeLF|4n_?@w-bxPc4R`CF)Yh z8_FHa@{hengMQzI&Vnj5t|MpGPkx@nS#`7x%&mf^5;X%s8*;wS!?Dho3mW9CsND~; z_sEKZ%6_|GOMdo#46_+qy*nsoE`Msv#o$skG3TJ^2NAZ`qE)}8H{n0;l$vCMh{~< zgorZqW;qGT3x7#bW0nV)+at*f7w{vL>%b|pNgdsCC|nHZ8+-ZbP!0T)Ua`7ul&@U6 z^c}g>48rxzhr>1YjQNqZ!aJI!!@zHFpGVo75p{8U;ko_tb#Ak$5tw_w`M*Zg2sHEw z)frdg-CRkR3_55vvl7vx~-chMgGnEP#Df zIY<3pV2$jXRPNZ=l;A;=I@Y8bj^2nX&Pll7Bz0$MbZ0^81!be%odxteRgL*RWRfD={X? zfNxi8w=v*o9=>G2^BjFUSOb2Iy3MSCBV-3Wr-FG7md7YQ=998RpA10rt#2yu`8O5l zB%4YbO~AM!=^c-5d9xI6?KGR0e|k={$vpR+)9fia%^vK>!giWYv%P-D*tO?0`ztDL zD=>ZkZ+YlUoMz*}IgrU;qGmsG22Qg_vw88h@hx-dqKOIB2E)E5ZWyf@_EGogG3-R1 z`;K8xkzt2kdHM|d(`Qe@u>U01zAc9BFAtpw!`_29A{$MKdgte7z_2&czjhe*k>8wz zVF!!zRcnU*Y{=;`?DIVL9mAd?!~XmSr_ZqKSDu7n2T*Za47*4kIunNdqAtR)=Po@1 zhW*9m?J{iL(@7 z-2#1z3-p0YPoLj=K6Mg)f1HZj;&+W+bm9VCWSB_oc_)KK#nq%l{cOn@aCyAEZrg%y z!IN3eE)i3Q&8S(b#7k?)3LOoqD{jaHnd0>lDJB9x?0s z=5VK$z$Ft|=zkly)bA2Tv)#a@Im;N(Q@|7&N%{6`tNosC>l=asByi~-I~q|PxK#1_ zHw6d0CK`p4`L#Q9&BTfy!C7du+X)W%+-;WnCcpL#x?HSZd-9$H(KPGefaT`h_Wj!L zH4DV}wLg9hYi{e{fFGKLzR|D!P4ORUD>wjc!tTsu9tV={l9=ytsO zLm^wlul+VEZ^Ic}JLpH8Yb_P1>DM0h%KcjkFB|J7+mpIZ>L%ML2K{CDRUfmzUY9p0Z*zC^i?~?pg~sq8|B?v;%~JT<8IXX zT2)>%6+Y66b^%>V4d0c?c&fy1%_MgPH_4^mJ-eAymuBoS_A2_h-^Xl`j&HP2*nceu z8nS`4D699;5i=##$bdO^$J=|&j8ko>nV)HS^epqy*ey(c9};dXvq& z^UsB1@t^*j7(wx8cNrang)YMu%uT_m=`hBrQuVUjbYqax>#u3P*+>R(D|~!=FV+P? z0>C)dF-Q_A@Of}%Ix&pA9Qe7-W<0>TtQRK8np1z&sttb!O6jf+)hk}d5(@+)rPE=?jx@gY@*|Tg=qb6z4+TWYm z)=I&%GJB#!Lu!)7{{96sMZI2o52z4CitI1Nn_@N~>;Af!`&S%yzqlm3N`{27@9$3W zcabz`j=;U?@h`{Cj9;?5ywBnZDQeqW<`|z7uE-F`GcAZ99jdh~+B}*3$|l^;L(Yv@ zl8q~ZZXz#JJf&*6$Owqb{$`=u9>4ZhV&vgG0gbid?!*zo`WLv{ZcBc+ss&aII;yEW zP~SZ;uaC{w-N?-_w&O1{-J$j&CIsfC$Itj|;wIz0QO1qVnjzxHgEL>)C0re7$Piw` zPvt{`Zvx8ZD+;JMUkCYfR{f}OMLL_HCp02WUBE78j9^3?jEYp_-n7WLGN^sGlbRY2 zn4UH4%c{%1!*C{UA-5$Z*)VNKs>o1#r8l$F0STz23xU~m_FnA%4Y+Dobs1$d4u(c# zdDJyOP7-HP_HoJ3^>F1-@g9+_7(4t+zcu{<&i$R`50EwZaM*i{+Po?7pm!L5j4Yit z`7jQ!cn8W;d+?}@dILN@Q+oq6DEsO|5pS0kYqFR%x3hzK?D&y%HRS_|2@>bN7I2Y3 z!$49JvmP8M8wJk_IFtP+xz5C2kj+$0gHB#L!6%Nz~QOb56uL)|X#UKG0o$@()i4OR+{kU$Usk4x1>Vv3N% zDwI^|REf{Z`)qA3z7e{0`?}F%#&j16uJ2np)iXMW>{mu|WPAIp1Pr71^X8cnF;)6t zxPoJx#&o;k5=W6>4?G|9!JWI&9xk%0vb)(YC6zHz6!<@g!-IDE<(gjiv-gw)F90nD zV|h)UL&g~;h5Fua4uwlfNi2v88?MPqb*4ST=^!}CtJM|SM<-O6s=DmOs~N9} zLp(s(K-AqUaJ|jv;J~oshJ)d8mdg&kh22Pbo8D~{@jPFde9;`7OOy}ClRO7wW>b}q zFor##uk?AlXPs@3&DJ;1=?Pzh&nP2jG^$0kW;r{`x+0{44wZ-RmOPA?8%6fG3a7AT zszfg=xYsFF%;~W1StwqgTzS}^SiWp*eNx~yhb_BGCR*$nqtH>4tLYHfZ}TMw_Q&~q ziDxrnPq@AVUj)gLRMWoBfq9O2|IYe^@*`s-RWM17Laz{^R88w5BEQ2n2W)Kee1<(4 z;;}|#d^|h2d4=^tt)Wk)>hd>O&0A`b69LPtKFc%(!eJkg)2RZhO%UUDg`fh%NT-Eg z%fC{T(9UWcTuRHq5m&3%n|ni7ue>-DJN@hbhQ)hYUgVc)^lK_<54Up^Ni<)^pXc>3 zBr^46GA0r~!3-b6)x459NkxPc-kav~MNTmNLno<)blqh!&L zQQ5x*Yn-Zc zEtC>fMT$O~mrqt*T31F*E~&|dg3qZdTWLS4rz{n5FPNl9TmuYR6|G2Pc+44)U%Ekl zkaQX!PMHB$do%c5lbFt5A$d)r{MJ;z1Mp+|dL17!O{7GrTEugDa!55Ttfa|+H!O?S zWS6Ep%WNrH@l6xW_{OQhyi_)PErknca?4T*Z{Wiyt5_qOg9#O;UK4g{(bu#njoIrG z|JP_&Vew{cS81Gg->E5$&!K$#wf&#j*0)d^CsNW>8V`BK+~B`G_=WnxiTci6Tsu8| z=S?iEC%`PI&9VB<3My|y-#IuL%C@ENWC>^mXMPRO!>K31Enpjv&FpzjELzPe?ya&j z)Jf;$plk{xz8i4##qaasXZ2Xx{t(OFmG0a*@Pob7qNGTD!u;^NrN?%+pwG>HLce4=aHj=X3J9LhgUA`dJR*+z1oQgvGBq7`%TknQxAo=WNe&bMfty{n zz|AQ(HRyJdr}_JZit^QOKLEne-#=I}GH@);pY5#@iv8{7p(tM+vVM;)30I(WPc2pN zaV8&!RJ~h1*)$PQiZ}#b#f!fXEuTSoSLBf=tw)||d1P}AkFaQaWn_YR9yL=xnkr3Q zTSA`@kf{MrYZ}c0wY~-2mN*IGXsilHn-wA$?MdfK+9@6$bhOIW+ zET4T5nL`gqU)2)%S~yF?&xZ=9t9$fsubQDhC#!P(Iad9MPor>jOp}G4=#Rj>d~I#W zSG_LPvHDr67u~7pU_wPqnz;W$ATMHf?{?*f0W=hm>|S~)Mt+FU=21;gqOh8Y!s=<{ z>w|Y6IXJFLW0~RdeNuv4H2MuC&Z(I=r&cBBMM??{C|NiwQY!)n`LSuWyVSwLb$@7K1QKOe`>=|EQO($ zF?{rd{bPTSq$zLFPiuKv(J+lyCWSlaAR*!{RvRV}>!L)IV6oVu4%J^5b>!TqsaR)G zQOcbgQ>8<>ta6a?9~K!;EL4Al6?x9vBYOwmPl|Vf-lHJ&rlayS! z2T?U#F;cyskR+eT=l-4QS$^bHbIK2ur6!MT4CN7XzbjPXC@uC7%S9-=dnf;QV|D{@ zfp2?DJZeRg=xMS-MP4qf_Na1x6M7V#je^tu6zVObV0ZLlser>#zi5kjE~e`8Xw|v8 z>OP^O=@i)voKRa;4?DhUBQIa#zTKNk1GlcT1#aDDGX`Y_-BlV+-@T5iw(-BpYCVh3 zO#b)bKLKKSsA=-jVtQ2TQPXIaEAp~n4)C)1p`uw_SnpAD#Rc#9m;J*GdD+_N%Np+W zrMeHbhI_TunYA?dq+Ge7o%b5M@KMA&A; zST0m~R5rg)prrRsq2#XEH>(QVy2~8U&9tU#7TyRAP33!}H8}K6>a&^(6T=$V+=l=o z;a^3#m9*3fW`D2xdirr33I;$65yz{`UpS72ntsOt6EN4{JhM+aUJte11;aH76Ot=8 zYZ5Z$CK2XjO}Q%7j~_YJ;~=2s+nq*-aY6rPV+TRor6{I^lXn;$_zJMWwosnD@y@`l zwZae5lJ&-VBDKfLLUNPK)C%66Uorsu30;Jh2~5+R{4zgJq{=_;IAH+R$518p`4*}e zgFUU*BhG{6^|FlH&C6}ktF){iFhI>*nj!Pj&O#)UCRCvxOes ztSAL^J9RQX#(dsdcIeIQb+;JPi3P7Kk1OUSjO&X-#DpJOcuYpU7AZn7J0&Iw3M{wIVi?~43qjm%lz{NwsHQu;MQ?}*Z=$!&CM z@;7v<=kcAo*6LJ=)v0`|Q$r{FmrIXwVtUlmd(&|}dJQ@nh8EV2qm(U%QdSd5jG^MoArz!O`x7Y!gHb82K?M(gsw~=W>6eHradS7#FumVjQ{4*|w7V?Zr4soUu#Y&GePRrRss3bzKo9@p18emxe2dVO5`s{CtBv zIH={pG3JAo@5Wy&{XO%Rkor<%h6BfqA^g!Oun9px!cBy>xEzn&pBS8OukXs09GBl7 z%&JcaPIm-*1ZSAoZKCeh{vSG!`po=4&N@y151#wZ|Kn8sKSYCay8a(C^|MQIor?!M zt8<-k03tC3N~;Gs+%=VKg0%0U;4i4$=M(}r1Xce++A{nFLHqdJQ1yKTqc(R5H}%0|zTgU$UM z&igJ=HZ8m47`v$xg|~fm+=NY6nyE@@&eTpxK8R4EvnFYl>>jxewfE9)D5siw{BCRhco_4~)saRn{p*h^b^2~-UAe$a_LTj41mj)-?uSV0dNfQhSOF>3bS2EJb%_}?$M5u|i*2p%F~L;`+ONUiv)rb>@4yG5+RknNKTy+4@n~|5XS*;l zWCpd7#?}OD1k7c?JckeU9tn_w$q4Qpva1F)CU1-j);gz65Beu_+Ef1Rm|XXIe&aES8!PexZ1eD$fufZ(+-Tqm>o z4m22e%Z_JbPOZNVM=TA8TB7;`^uY8tPe020*)ffVD#((^>e!M8R5(bDJjMZxP7)Gf zAdgN?>wC?{WAPfE^#-3;z*)tC+~uNEtkbgalZpvX~?*tf`0@1WMcd5(nIP;ngaW_Dw{ zV3dS%!@X;B-kEt(dBWJ7oykLXZrmTwwS4CT5G>M4Kq63w(M^^|*zR0}M0dA|EwIe{UugdGBVu^VZVsP$&!D3~Y^8BYz4^ zCW{g%KXOTJy939C=pxi>xt^M)X+fjXvYH2OVU-`@4BXcjIvgqeibeirv0CP|FXShI`eH;1-#%`8%`2 zp^5gIgvHX~!qgbAx0ITsk-Se$f``9BpqtUP&lPGYpTQhURU4L>>tPqY^xYx*J0?y1 zOtktoGFQ=9hYHixR|^k?%QMsx>ls)0F7YoA#IQfh4%vjxw@mHoLMID^+)0|;F7dZO zdz>oTW9hT;VfGdYlW~P+gN6)*t8}|2VX6G>@VF)c7I9~AsFUmv!4WCA!30O71xKU@ zM`Q#?^nqsT)g{79kT0DSI^v(EmT0^{N!)F<8kkEePH&qp>s8L>le+{bW$Oo0y!B0Vu`q^G#22erGX+$XpyTm zw1~4@Kz81Vr(BI4aFIq6T*SVyDPF)uj*ihHIeVi8++|@+m{Wz6=rQjBTCKp$GE`|e z#E2$66E+Zm-~r(d924ofdh-tehT&13AZ&v#;*&s1Nm*eTDI1xrsxrVV6`{dde|d7fPco%NXnw0AkwW3)<^(1|kNA=NWea40ez zLx0IvV^TUE0!0})ACghxfYDi{QarH9p7S^V7gQOzH&c31k*SvUgj%7ZboC>6nyRIK zhq{*1RO+E7YKdW&nhvrpnv1XAjA`hl-pk zO@iHbsAo|PTD1tzV#rO*GThIC>SX>|AcZXiIpRA`{omFvocdp zWZlMhmS5HcHwvARCQv%c8(tgJ@g6Z%nG`bVqBh|*7isUnV^K0_e+}g49WnRcYvcZw znENlaaldEG`#jXfeet7>w0~zC_p4*>7suSE`?wDRc3z%p%*^OJGaZpc*(i`5mQ66# z_!G{oM?NaG+@aJ;QH?jUlpkTm-ukQ7q&(0N`7sFa)ScAKQ^UTz%GKuy- ziC?i6yFn8avBdZ==fA%3rFW$n388`OLj9K3%aXrc9fLhYTt4D&tj{51&ro})-$Nn$ z0ubQ3O?;=Xu za>v-nS50K-&zk5JQ4LR?`yMtqD&iEyaEctG!lJc@?XnLGR4X8D>@~(FE$_>Qe08}) zjj$d~)wfIS##U~3sc*H9r096&ccStCv3K_IO;&fqPiZItA_-8iYSE&I zXi+O5v=+5klGbSRnp6~BmSJKv(`+m0P`8%5=e`JLbUk9e+bqbMuZm%x0B zNm|#3EWr6i!$NJNUz77+uCB!hFjgQ;OWYlSrt;cpk63HyQ^d><_c<3Jv>m0h&X@+fnLmieC+Q}^6lJrN8h``+-lTwNu zhgI||FK}V02>>t`M$}7GKLAiH%YEwjLPGh8-~e{Wn_23M)Ho2QS3=w{*zcM9Y0e?K z*h!EprWq_Q=L_kY$K1+9<(iqKubC8Pzl8OxUCQPR(DRr5)pbJu8SBr9D_1?_#$#zD zGM*XqlSCG7+Bu0+629IkMuqyOSuAxY*~^jgyE_5XI--IvU}b8TrP~N!h(Sns{fCQO z#^j9XZ9>QR)W*jlVHOe*v&5n9xS6YdhiX`2vKyooVeNf-vhuo-*Dw%oDr8F7^J-NV zTc*LRJ%!kR6FSVmjftznsn2eSqf4Paj5-a=eb7=8pUL@QB|^guZ&vvFEGFaT-Y12Y zU_^C)2R<+*9a7KSFGlz!o7HKv+KG)!d<4^5oEe{+Vffss#p&_4x}vNkJP|H4>dP<| zr5p3?0Lc{f{xVLa^P>3MvaiWANO>aEhp%fVN+avYkqy|?^NUy~yfw5R0*ln&)K_Ns z;#08K2X+prRf`E*XzUGSskiO~ShaW2d4AgkQ*8dHF2bE*hZ;a5;p@{S>S4gGrh<%{BQ~I|b34@PxJw6z7Ix zd__#qxprdVESCxaW-oz)W~$~kCYMmpH=}c|=tvu?cbr)FJBQES%k%2#H65$)?)D}U+tW_=o7AL1~; ztR1od$%+1TLf47Pc_;V?jpOF3H(@f?jzbyVhmGJlBC z&lk17z`uKa%1aDDaCr8&MpXwFRjgn^u73S%^Yt0Lrfs8N_GT#nlVcC-%B9L_z9Pp> zYBQcuShI7230E*yT_AmXxTG}4t+M&4af`VzdOwJrX}r(<=O9t7Q%w-XDF`%D?dE7o zY|O}YZ9a7gjCUYQU~lH_dhNxbZLB{_KyIfAa=#1FRmmY)e^x$g;iaOk5{L^AwG{w$ zfTA2`3+^21O=(xF>NmKdEku`|Fb%QNTTC`B646 zy;!q(U1LZt*N$m!C<3^2E!q`PM}<+2A|*Qh&L~j|P2Ta@&PLdkaQ^hVv$gcxaL%CVx`jFka1W%5R#NVKgf;nkUp0FtI3wgQ_Gcu*_)W6{ajkxIw#ybC-#|0 z6D%ntl6=XgG{MTIG?%*|c4Kx5C?hcE-fE)4W0KIm{MbD^XY>e8*EyBW?T5Kqim|7n zOci=eiCz2b!*e)DBDA|G`ZIudl0EfJb)-LXS28PAm}!+R5c-SMB08;7nXf_(qM;

      BRyJ6bfJNbn(dL-hzE zdJxYeQa#2Osm@g|57nxJhU&|slcz5C1U;`14M9Ks7V3A08^v=OxRN&nGhVA=HkX%ouKK<5}dkcKx@5zm|2MRx*T_ z=8}d{y&{iqmx7%LJ9@h`rl!(P^mg6JS8sA3-YVUiMClNxu-v!H;MCyH#Jy*l8ZO1j znA7iM?lj~RmmnPyE#rEUk&rKX#{RG8eH{n2uymY*@A>j??<*3Iq~$kDE0L=6j|5Lq z-#8gzFVaKlTwD+=9497ch3?cq0!2i_%Uky_o=)k!DVir}dW|z7e97(Qs#{4Rabk%^ zN3hp{^y$sEX&{lvG`srL4fI`iCsfxepE{o(QO})%+!t|#l_gk(8$=}dfDAq8?aKwh1TOIy`Y`E;W+agCHh%rwi zokIBfTp{du1wBrc0Hor0wURwGqdtfN0T`>?heQp>1!%=n7}r+s94)pGOw&E1i|CJG z4136s2FO^(f;ePN6$=$RQ!gQ_rMIBDz)qM8o0`t#1(4^+4lwf*_+;ji4(InP60DSiSRSnxZ7;Ha7Dy?-c6aD(u;pe7S-8 zvHkK$V(7;{kw;L^v3KRsLP6f-98ueV_Sj~5^r?J%A#mi%@Hg>bnqa2ToyM!W|Hm$! zV%xyKm-*Mszg_(MfPXFg`!D`!fScR7*;=`S^2t>o$t{uy56zzcRb z5A?2{`zO=G>JCAZxIN9D?3@$1O=C-p&l~M%UnY!U8*!sO_54Hefc_fASm>^5u@@Psc3eeC9v9`pXGw|Gl(>iW;481M z{3JyZ67tJp4AQ?IbcI=+e=nat_0aEx?7`9ACvL*{5{ z6d2ZQjbaD450tZ~dS6*R(*-N|&c8Qj`nNuFY9ys6n?S!3uvhp%=AFnemKX$`@q~)z1IW%bV~gJEnzOtw7G$EUtS`C2L8NsSoYqUkDsD^pdoYLCPpl`65^ zM@E`8M|G>Yxl7G5tES^@YMv!ErHZ&Fmgv~||Cj~YV92UOo{_&@u0KPrKaCAV%UHp= zB!`ual~~esB??)IBw9Ol{f06559@7@Q!G>HG^5~-_6p=OkH*N^DP?PE^U9)d!TLhB%1b)H0&v2#xO?i zkis9mHil8yXH`6}k9l=`%(GZJ7nKT@F*8P?;`nYK0g};Z*yGs)*92lX3Fqv;M%CG4ADp*%8|6qZC zW~t?6>p#Q;ec1iGg+Os&c%_{}*Wa%h9jP71ATUsUG5A=#_GO_YZNb6Tx`xN6q=W?NgJf(mw`@V@Y4-x-iEE%+(mWvp0-6A7 zw#{X5T-{=SsnKNgRt)91;JD;R+U0(10lWO+39t!PImhBNTz5B;FlEoLOyq$SK;!T( z)*PC+7OLTWj6_lWs?=Ij1lbp9_Qn0t`)c8`kt#-rmQkpfLZgIYE({@VjgO6yd1QCPPjSWG8V zP_yx7ILj8EX}77n96BRZukabR@C}mo!%@0o!kh;0h!qpKg&MqPiqF294Offhz({pA zUnCpNC{DRZ#Q`R{^Te;XWJIs>tWy1M5;Tk0{La3a*f z8?70pY4&HV`gEKrF_`TEy_FDIrC(|j5`)Uj-D39A$uF6iU^YjW3$EfrZjhvW;Qm{HRV_CBfqcN% zFipz`-sM&oS&bGKpC)SBPWgZ!1xvs28qHd^LL(L5 zC)5m0K&nV}Oj{^@5@f|E*^z_5zCiy=RJcfgZDcepyI<4M9(c=kO%`Eo*WJciLX{Xo-inKF$ji1#$Zi@ZOl^CRc=XGAzaO5j4I@nI)P#G zOML`oX^>E8|Latl^(bK?xQCIzR0d?r zMIhx+S26_XLgb7NLV@h8(2P_&$%Y`54@oQ#ono8_k|sl@@0xc>0gfa6ial!OH6$|n zFgQ@;g|a4FC`Sj+AY>f%Ap*+YTEOjK9@R5eY}OdY(TSb)eZ+iKe{MvRF`CX=>TA#x zSu=spQBKc06!^~Zq_#+BTGAC?NcSrAJz>ZRLt zDPpRmGwKYz3?kknub$hPAW%ex|NO2bMROfrBQG}6XRO#7UYX7k6@E!1A~xgv@o(LS zO(?Nho|Omjcf&7@lo#?qzQ_YHjM5L}OZ;772{e(D!l{t6niTFQ?suoTGGcn?i1o@l z89frp(}m6u;e|T7Zn91+Z*4M~u$h?qXs%o5Upfe2!0ofif1D|s96C<&2kBit7y602 z_>Pfjo$@-pQx7xK&Yco*gh-bJoKv^dJRm zI}H8b8PAzq>V!mnf+o!>PSrnA<*!l&iUcwM@~10ZlICB{2C7jP34_=I@Z!2tQl~~e z^Cj)Js2XXvW|IvovYIWnP#<}>{jXmVD@DFt{_>aN1%Fz!{#sVr7Z0tZPCV40aRgd_2wKxK|B*JS+81R*yjO}c`t&vHBqiy0zrp{b!?kfj_Yb@XE44qx^N-mhELM&5i)fucp#Vc$gh>N7R;f4zO%q4miaNk=_KpFG zwRC8q-ZQyj%rLBG=P(2d?D0W!KuD%-x%<890+`i#Bv~j~A)J`lb!z^*fSj}*M-;U`$rl5NJJC&En*&@V|K zn>`NzmNxY|bdpFF-@pu1AMwu@i$l*o^qJd@k}c7i4N&^q!&`{4v&J|yx{=!Iw^p5d zbR8Ilr=L)R0S2*%SB>j+sKT4 z>Q9D(B>eA*<%uXR0q3eY4e zdiMQ=gA6*qY2onT#o=~G@T73lSNM#bvtZPvfAU?dtiyITVbyEf20{(^(i2S)1n3xCYkv|&Om z*GaiOP=I$SgIv8LgmT#H zdhQZF_VJNQv_L+<2d#YcBpf0iScgKe;6%%)?5pH-h^LXhBGcxXSEQgfMj2w1Rhwlk zZh2w|K}h7=!A<=o3<;-c_}Df=H0x1RXFU8#eI_@#8>e=@gfy7~~7bUAtoeh$by$GHzr+Ht%#oO%~5-6l@=d9lC1U@4or zez-LSSKS|28vpSO!oQ6R5(jAiAwGR-U4tnDE7|8$m-AiSKi4G;DsYN}g-;E80?T_~ zRz3c-8=jUKLiiV9r5kQf3!WKn&kSaU+k-*Zg{x^hbaHbqE&dwZ+)M6?Sik08BB76^ zHTM!EU9Rqa(oLt+U?eIlBdOZl;B-0^bBA8#>QmlY76s;fS&>7s-@mz5j-33$f~?Q= zX}~>!`q=1qcp>NJSR*`1qjgHY&s18tMQeSDlwCxewk#6<6H_QoUq*q>BG{ zs`#9~DA%@Y`qxv7bpJe}@&H_}x<0yGgBq)6aHl#)K0OT$RcI@OT9yzHj&TypNBx~) z0CQ4HWX7WJxYRFT`2fZ4{E61_S zqVpT7TGW(Ln!cB8rqiv~elM+U?Vlgo9eSPSr2FDb&{gpj`Nh+MMC*ls>doQZt45<; zl({^|Eaj+u3ngkT{N*poX-eLq58Y_qp$=2&ErOg*v?hd<zZJNh4RDA)$J27XhRC7;af`=_%*7#h*#B zhMn>kYbiB>e8rqjjNLl3+ai)~9YVCE(fF1F6{*?~so5B*+N3_Y&ZVQmjm66MdV}zY zTU7Wh0o5&$s=Yqs3J+V62v}kD#p#Sj#b6=y42E$aS#=AVFPUP2aS)47o^gDK-ytBl zUEO$&08Iv##lJIZHZncHjMLiK32N3kegzoOO=5$6ji9NRO2$)H zuo_0~H2y~L4{HqNc# ztbkpG+Mz#HCb~s^e1k8KYOJ>I$(HYfI>v~gzm#19>uc1}o$|R_9pqDBeYJq(nue-} z`PhV(|Ink-S-G06yAa;`)pY{lH)JOvT-0;XXr{o@-+(36-zO0MMzmfYNpn`njN|m7 z&=4-UY-BZ-=-yYVP1m|?0oM!=uYg3fzL=Vk&_16)#3$C0yXu~kTAq~_JZ!*4)|W(U zVtp&D{F&0CXT9uxv|i*a7&*~Qi&~x7x!GnDB2rk-v74L#De~L%OfKx9Z6Z7<1`-aY4#2M zxl;8WEmyu?u0KB4^<;hHPo6B{cf=%}F1VL-E@>C%J0Tbm`*(0xD-8aCL+cJKEnQyY zWKheXs9pDXzO&@PP3n{eiLY@KAZoWr%nB3>3^iF1=8?)C)r$&0@mtiGod>K1Yk71rUhR8(>RAN=|moOEGLQ>2T z`6Na~p`CHqBW?!eqli6niG9V-oGS{Q4VO3>eZytW+9l2uSN$g(K%>XMoD^{TCf5Jo zjG1uwJYDz4VSDpyLa_dtXXb6+qJ~`{)Z!LlcUFiXs@+{F(e9y+TeQl#i@q5tm78j!iry|- z=)I*{4PB<(mBIT6g`5^B*{4YS`!^ppcD<)l?2O>o8MKxgf*5) zru|@&?>%*qE%u~d>#I7~T10iQa^*%&MWkxo{*f}%5j|@!!c>(TNQPhT>hD>vu4iB} zQ5F2+J3-Rnn)N+gbq8e4YSyQ^>OR-s^sE9YGA(UPU`~#?sTtQ$Qn*rA-Cv~Wb!%+3 z`8Lyd(yo5PHb1v?3b2iH~%d4Rf8e4PnNMD zyxV=H7T)n)R$CUiHus#+N%Dhd74o1!qS`G@kRE5tf_^eg7IK~8SyO;yaCYN>Xr@EP zQom5I9r1rCfI#9LDg0-?%LVzkRH|Ah68!DzLHQwZ05bCD+FkW;AhLK$&WcGky?J%= zszj@pQEf_9dm~bPVu=}dl>5`Co?TANQ#8-QV46V;Fr@m>Kl#*iY)DB;*G8(^jd78x zj_B<|KdV(YXeIp+|NIguu~-F(myT3asmOX)2CsH^Z*pXzJ&hK6S-J&t~@ zcmh&FXR=StHUk~cedzMMPjf|d`#O!}ADtITDD^B>+|)ba$~8K+6s1pS0nA>nXo?N5 zEa#p1EAMF>_qZ)|^(EnN9HDpO}Kg3^7sbe+V!jJ z`3Zrm?Ho3%AykH7Zqvu^dlBZ)mu{4;HQtP_);pQEO19Wl{~iq)z4{gr;b*&iCGec} z<|X-=+P9E5f97j^K4~T5qt(f6X2pki2Hgk0iZJVp+QXcZy<*o&9DaU)X0kn-!tH&Q zEuP(mfKz3M8dF32@;%#@rg%Hy4l%^9aIa^ICx(wLT2|seGbR96`^-HIWWxdJDU{o- z_|aJ!G<$}RjbC=Mf6Ps~_;>$7L!TtyoUu$~e5A-s9+P!5lE)<6TF?z6aqvV`g6aTA zxvm^}q-qZ|IFg4*)oyiNtA+IH9%J6-q2CGY@9Bzl6E;5Tu5?WYGp(iY%h1w|s%M5U zmlAppW6$>Eg}1AO6VfbHB?Pwl;uCqH1w=O?-7s{73N-Gygle&?BkW&zizDxZ;0fWp z6e1Q39h*jM#kqF%k?gD#b|4dYE!Z2K!ajB37be+#RhGu(D>iGc^`WZdN|*%ZIOA41 zeEGM^#iKbce}#3PcYtg30Lxbt^=%*;vo2%YF6FbEIHzTtBGg^N0BFyFz2Dri(2sRotQ>N0>y!V5SsUw__r)ieGE+Io;4QfxfrObrU?^ zzw=gU<>AUrRx9hSkvRBIrI_`(giPm*9J%*B?XjSo`Z!n zw6ACCW-&2ysIMDRM0V{^k1n#X|6(_E1qOB5xCL&`N^Os&lEJb*zU<}Y-#W$;IN|s} z7KyCXCaI`yOx7AG-Xom#wopUzTr<6|Ss}RtuunTn^cI=&ryqYpr^2^vE$E9ZSbyo0 z_|iM^#bJtx!>wbwKs`F}sa(UM^!me#`h}0B&F^j4pIrqqjrH8PlMi2M-CHm0{dt#?j zrVlr||8iYse{q*Gt&^n;sxx8lpShqHtcvMZf6tiuwL$S0+I>+?v&8I=HQ& zHHVzi2f5UgZ*(E5)E|`v$TwTpb;2$$d1A*8NVBcj^GFU>z6i=IQB8&h22%WXHeKC3 z=?KT*QF#{+?c-{FKlg~3h@Ab%7#>+AbETxuEGdt}7p1uFZgM^MnmEy~qk>FkSEfFS z`XCPKI-3#NABd&Gsjj9&Wjxi6%}Evj@^eJJK$5YeOkMNHxA8KyQ|<&1OTRFlxvz}k z0@zPJ3NH6_V;koAnc>$Q!?+DIToX&ujb7yYbrU;9T*msv3?W%{_LTJG9N%mTh z8Two`rc@%Fx7QM@Bh&}7xnQd&Jtbu4FHjz36ZK{x527FS z2n?4Uw4Ptzu8$mCEPQ<(xMbxh0<^27$VEu>|+Ob}t zwfR^%nytx*Z3X6te`Pj^Ff|jQ%<1SHHKrOWMKGjB>e{zLopLq3vRHj(2tKn$EhZbG zwA!V;ab)hY0wO_SfGfOx8$72`rI$2BOTwXe2J&E#EKbl>rhbb^ZmZ|`6dINlIv&Gg zRxOQH%L)yytr=(wrPtP+h6B1fZ+$zNe0tW1yaEhUyR?rjG>AK?b}?2Xj@p{zsTMn( zw)Ln%Pv)q9KC{cH??WtO?MyIVwqf3<-)R8Q17wJLSVPNH8p|Ye9V`Q9UonwKW?)y9 zW&`{jpa<%d4J$)wFDoYMyT6|xRA-C&Sby$O*?$7~62_C6+6>G;Gdu-AkZcLZjYr@T z8fHwDkUsHH)>e;`H<^aO9D#!bS}s9ai-|QVXGv8D>as3!QLe8wH}?nOL*TR1GL|Wd4@% zT4}kC+^;s3fqk@j;~9F|ru!qA(5zf7%-Qd*mu2cu+KN75=a`@0&CZde1(IVSOa4$5 zw{Oe_(HG0gIZ{iU@u?=6PA8yzDbS?{)5h>QCI-)@sd09uxrcJrYg@bCH1NLe=}{$>|J0? zIfygWNDCtfcg1kD73xBJq?d%3+acmfg*bvN7G2Jt)??HIGrGxkW9_JYICukN?Xa_NRdNbP3>}A za3j^jBHHCvJ+NA*xCqFHj=z+M>mXRtlDS4FjZj1128$3(<$K8=1K&$ZQp) zw4SX=)*pLV04@8vm*Yp#)~+_SnA;C;CD3Jr;9Oq~m6sN=z9=N+aPKu<=mf-#w8Mp=;JhrnU+u z2Gk;LlUf|*Sxbk8$8u~ za*}v@oNw0FR-FAP+I{n%ZF2|>JS|E|jmZTf!Utm4H7Bgkx* z*d-AFYA_meyHiPdcR=A?~zMGpjwkPVHYmouESAyE?ck&`J z1ijy6#?jZJo0jB~8^=mOF+@u;OCt~?Fk=$$2Kdy`1edqAvuNEI28|CQ^_R-SD@n^5#Pc$luqxiF0k?evR z^~Il+#!ZVE^tjsn*U9dfIz6BIvsT$RDt|@N@a1niz#majV5uoQjh$hb<4S>S(O3JV zpprz@(U&z4=#GVIN{Ts}N;HS`eS1kchkBi&6EZYypf)o?Xlk*vHZFDG-ZsmFUBt%Zb`U6XFz)03UYL3W?t^QW$ePinQpke+Gb$t07{yiOED)s)qj_+TLi>@BlaErE3RF|&$ z<$}x2SmM3$9+Oz*!8z6!IK`CGF2ThI4AynKXw16AMZbfFe@w^s(I6`QP{((b)#(-g zOOj**mK@%~`sWmEVpZNK`hR4+Re$RHtq=xloeF zOGwH@&|Ez}r_evr2@ExyC2VY0zK=Lka?rJD{G^H9>k2cgx%ATVz<4#-li*TMqEp=# z2+--@_khWnzQ&D}^uT*$q%2r6LQm(l{&_IXR<-||iPp7_OcZ832P{mRzBo)c>Ee;s zIl@_p!aHn{eq!sR1Y9%{z^fxCl8a%Z3-OBjY!aFT)mtVrL$>iCWSb0N8Pz0io@}O&__5wX z_4Ru4oA{*q!^^%}>^kzXJUFK`)fWC|O6V(7h@O-oJofnGeg0p|5bEv+$bM3Wu-*Ny z$q*i({7<)*VfOXEAw#&CknN@nq50e{GKBCFyDfAg$3)J^XgESn$%~qnb?g_rWg>&> z6znzb{FG1@G5Zad`eKVPSgyK{G}b~mD@b#{XzNI#dc!pC+JVYR%W_5`a=f3Kcqq3j~=nCLnG0GunNQ0V={QO`#q#nsJjo#{fv(%ZwDp{>DWo;DHvz(mesTJnrU)KDWBX*Lu z^@a?Dp~3wERf3>f9J?G5hsBj>@x@Oju)WBra*Mv$I2IfbA1$-_^X8-|rjJD1?5iH; z$&UzPwi#%{k3>RP2?s|Rsrk7GQdvM&z|APN^QaDiY>ozjN=hu3Gp$BUlC?wG>83jj zB_`1P4@5DI>X*bika_%+C`QwTr;6g)9QQY`{+LAOv*}%AB&IzV<11Ig!SG;Ha%wE~ zkzLejG_xhBtc*RN?_J+wp>Q4?1X^(rxXcPjx!3IAcsckZAJ;siXs$N10w}I}%9OrE zb@k`zjJldUL>4|E%rLeb#DhPoE*8Wt_w@xp<&*`1}Dl2L2trh``8PBG#SyTA3>zfO3VTt;Hr71>l5?JpDUt^a`TTaZAdPWi^ zPhYn<{$>EA0FT^Pl<}!OoGFx6764fjFy*=}7n(K`_zmimy>2q(ZljVS0@)ATvJ=#M zx%%zP@M?uKNymBvQ49xAAzJ8!TYz^1(*H)&E z2s*|a1nXT`x-s>v6Y#8%H9?R#v+s)#;Jyj7T*(c(X9l$RO&tnMWffugYPD>6|mG7Yd7nWK3>9 z_OVm^B>~w28Cv!=j~!oRn$}6il|l|7c`RXN!%8TC2Zq@V)gE|GODf>gpBH`2Cn3c^7ug@xZF4| zaUZ^2B=_ObeBHG~>TArqt(M^gy=CR%G8@sq)R%957uOpkUbJgjPh;VnXth6fqOl|D zwL;5=uXbXl=2k7knA!q6p%y-!F+F;Rz=f(k3!;Il8MK4n{r-Ib6=9|gZze~%XAEdKQZ*39B{^`51x`EsG{ zP@7kD#*6=*l+uK+RytS(tGrt9cVCx+3x2d9(~}l&>Qb=eM+(}*c@lNtJT--}C4_^+ zx)ikNDY{qn3^Gw9rE3vQ`5aU)cX|J}yl$hHXguotNf^DfX)EQ|uSG5bB|o~6kcvLe zbUVQzLL;y`V3j>fM8YB-_+mF`C#pgAkch?44AfruRnvKzK#Q6HE_wtJC#Z zw&Aes*#|^B)m5(pXJWYm=H8=S(u(?sk;)e1jX#Y}t`J#97#RlueJo80n^2H`z;B|bwfbvxH<&fmd-R4VSlT@zx^5o>p4)f&+^715J z;%aIRvDuaZ+|wvdl{VGJD@HC@d>m5$#m6MHm+?lkZJ1d|P_(-L?_?XvQkl7I3OK0` zE4i9foveqk(4D_9Jvherq?9|M#emx0p%!0{$px~zlo7(r?o+Mr2;ttM&i@W7g3oiMz~|fJ;%6P#~#0IZe*OgcK$bUpI>~R(5kBSZwR(eS1DQaGcH<2E+M;i zJZ%H7MhN-aC(@69H`ybjME}s$J6iJxoL%7&iGRP4o3T6lApAq;``Z8EedI^qhg;LR z2+z;O%%P(GaA=@^#M(7BRrZ~nfXaw|F46m252u|F%&yS?y>dA#SWzCBrrw}Q3~Rz$ z@Mvj6$Q>aa#U4Qk9QoAvMQ0I53jPD>HC6mAmjVyUM&o3>uA3#44Wj@241U zxzlnWL=A@+3!s%o2xzg*qANAd0fwN{%`hl?ELK%TLnkG!+77k z#AjpWXI|pb%jR0Q_$s}x4t3_q?CboQVlcO4mQUSR-8IVHp%-l4&8MBz%%XVOiyj%z zB9A_dk;&+az$`fU&R`$Th0^Xn#@O~B4&kRev&u% zNWAt%O?m_`f24pHw3nM`FQjyjG@5J?(XH}Xjc$-e&#)Smx>lntgN|5??ho|?t(gKJ z6Df@1t`kDe`__UGc_SFBMIhu%jU|1r>`6e#W1JCeLo|dav?@SSWGd#9ErwCc0c4S( zVnu@{8~BEr3uX>KDsODD3S-F}eM{mbz?CR>qn+@tDbdO45^W0kf`~3|aM;w5*W?Oy zYjt9C3!oyIaN(ziWP**x%C}R0;b5-qY6(xE?eYrjp+^!~E)wF7qlm`@dHm^{Lwq{a z3&_Os-8&iD7y!7xj={B&! z5Ie6Da_WTAOrKwosYEBBu0YYxDyTaX!Me3bzpJ=FpLcjjLd!>s(@Udd?IZ1*S$8D$ zC-Sctkmd1PTC9_$#X4g8?o?lhoLyYnyR=CELMej17N&zv|A9?Be9~!h46EJ9Zj9ZM zoI@ydwd+*v-=0cxH!P6MF!lQ6=tSN z_066=DK_=x`#o)la@qr#!lRBF1&+{J14sMY&YWuV&%AXee;y>H=$q=n6GUFq!G<>% zxohvAVpEr$$Z5lugDB8N86sXHzI=sROF1nanyEfLFVSAH-=?KZW>cq9BwCm&?msLt z^!Oo~oJj$aMrZNQE(}&XJ*fh$L)nJt2=3^QY4y0T?@P)~M z{J3f+`-iHTN0U{rHmh2CnRn<(8i9~B^)gQa5C3PrSC8KJ@9AY`Q}6%lW&TCIjPEwK z>)-Ufy14^^%Opn^#YPvs%#m9WH(pvxKAO-VbS){y>*b`hwJDEO`k`K?($dS6{*QW@ z6TUKmxJ+J8}6#60~>G0)7Wv}CGNDZ?Rf z$i<$*%^R7J(L5m&S(mMW1!>w0MIfmf1Fq`G$Z2(U5lA8<{h-AHMALn$2){xnj0c|+;=&BW{3 zA3S(Kcz&@U`8i*slZw^V`g4S;)SnJj%BOJqxwl*-XH^29UZh`<=k9#I=*x+ad;VI6 ztzOSIDfqsinv3K>w}IFXBO*xTzrtM%^d`*2@x8?{)eP-L$Tcx$NOzcz#MKLX5P3Ag zDpfC!yd&h%KYK~3-~uqM{Crba3f=(Hm7k5~&uLL_vHWZ@3ttN1EI)s5zP%vooh3gX zHQ#1~C^7fJ6)hA?3&nHAS}@okc8tAW(`SypdnV++KJQB{WOhWI?(A9r99OGi+1KRK9TJwhE z-lo4f`hL)N8!)6_Z=Lr!jbJcmRJBP+%98e!aoMPRV7=OrHAPaMO2MJlyk}*B^khi# zK|&5-L+5#qUcw@TL|m7Q7Fk;6=Qv5Qo+GV?;u2Q6GHz>$Y^aGy`)g^p%&X8ettI8c6U)LZZu)*~ur<#RIWC&_jKS@sU}mSVCG^Er$q@JDRrk(cg1EMv?bxd*YB*P z3O8DpJ*on;t@RO zkwa8fXC+DnKcG}z)uG@!l<}$l{nDTfJ3>25r=u2iWWICL^BhWjm4qo1_7PNAtk^3eQ`^;F zIA7ZI|1x11Dwz0rJrWz18}$|t6#_3((>q{<4uCA?M&V+jC(lfycHs8yxN4*+r5NC4+XasXW z5&M{U#}`OtQYvVUt_zmc?HOtJPLW+3!fS~!=oV+6!Q$s5C}A|Ml&f1fHDp^KP7YPj znqAPE-SDD2?B2rwvxlyT9Nk?x(P2?vsZFd`x&HQN`6k@sb$rqDA7N}0oM(;P9Co=+ zM*a8IvP5nPAo?RE094A{M>Fhd@&>_LUluEGo?T;~{(?4oXq0i2J!RCH^X#U!7_evk zTosMN$zJaoNM}S0PE*c=!k5@1QkHG%hM$9qrXn+fMa5Y263kMQdyyQ6Q;$Q|W zwkE|N!^wV~g+%CZ(pDB<4V`c}4p2ChLks4GSc&YrKgCs@f-< zY)QK7xklRm4*v3hL)7x0h@)NN`ZCd9_?RQq3qFaUi>Hr%&Dh$sFLm@=sheF-G=PGtKM}-pmN1|^&B`Umx zy@10Q+%3_e5E7DHK4~~C0hqg&AabXakc-slO(u@|anFCNgN-k5)s$3Jt`4$0a8%l| z4{}93{U~xEceGxfLn3WDz~=bW3w*Mu$o8xk>v&*(_uHxBQ}^f+&dw6Ic9wAJ5+NQ0 zGSudwEGp8dkt{i;s?j-gq+TpMsO@N?dOYg$a}HV-KeEotTQ{;{nr<#r-e30Df+~_s zb*MakfG>z(vvt8Zf6fIW5D=v(=;H*veuSI~p6m-u_D_>{(PHWA^@9kP%&*J7IusY- zrE2?y*=oD`kZ-B&W$^6!YZ+d2+js=Hq;Ab`28^odsaE$S7Yj5Tf!+jI&7MlT_B6Az zr$O{29oRTv)j}{K6%c!YZATSO?0(YY7(E7m8or@6}Nh5u8!hI5Usl#O&8_P zwV{AhWm8(5+uF)xZHDmcC)VaW^S&@gJhAJDpKMF6&9z^$Hf8GF8)d-lYBQg7lG-jS z(`5c&9_#t`->l7DU3>C&?P+3XPe)m%GIe9J&1?BqS(&|+g_tH^L1b?A@GpO4_Tkp< ze%V~RLaP1H`IvBg=AGrLdrc0%8D#)FR*5sfHtr@p>s4-BASdeCV*b45O6e~{LYCbl z7n2luWe%g^Nxg6!Qg$z8xA@dpT~;9Am-0*vLfax3?P~v{y6Sd{@z|9tRxFh_@pL=> zxRut#f}`~BE6q+q$n&Xlx%F!>*;uIJZ%61wd?MVASoIZqgwA;5GtIGD4#~&K@k)?w zGod#`IxqGxKK0;qnc)l!1q5;-M3(BV^&Ag#+305<&bH>*qMx)&;+K7NCn(xg_oh5t zIv1JiPMYAD8aD9w5o&!*ym0>u7*s5~(hIqW#Eyq)qS4LX!MB;g4yvQ9zduF;oub1 z2;}b1NNYT*F~PPb)#~`OQeXXUce2Q<6fr!jWj&vl zuO+K;PjJ<*=j(*xh-Wn!s#u{75lMpg1mYjzgC2lFTcxgj_G^h21_pU-o#u~-SJ?Q; zf%two7P2jMkm?UiO&)+tt;Z{=R7VD@&Nt_pZ|WuDI4@V?5YYK@fV@nL*2@C>qGlQ8 z>3sjC0D(PPFJ2pF_xD3{$}?Qn$R zR$;jhdIG8V@R?l+5lOx&#h7-e`1|8gIyDIw_5{OuHm+8+IRmdlj!$btWx|5QKczNq42Hy#I znv{X)goP8gm;XfDln8)S-Zl2o#g8T6Z;ggO9ik^5+6%bJmGS_ItyoTt(yjfGXY0yj z6*X4Bk!reJ&%|7&^8{qUC1=)9H|x^eT?F&yok8$K&jv#@MjQ3rb}33Tjrxa5TPFCc ztLF$dV7>n1y8ftdtf#lnmX6)h)Mr3VxdknW*Kb^(+}$m_PQ29@E=`@QeQ5NtS<7qd z>J;ebhTT0SSy%23X0VF`Dp)57eyeqvX6cXtlGH$|A43GQYob@006=;ZE5ywwo}*Zb5|)P5F1c;iQ2qfbk` z7W`xq2B3IrRhRjbjYoNHgc?QFd#FL&{?|l2>qJaaW<_UE$NkZSnBXLn#95&*auRONNS=glk|Y?4pC;G}|6tAJTuEE-cnmfbZs+7cT4f*& z!=Re&U#+c-hFXmFuh#M`8rqITrKaVpwbe4vjURL+iM~0$OaI*nM)8Lb85;*NJsKkX zSLqaW2o_M^$F90}S#OifGq(B&c#zx(x%B1s5)uv~ZEWWoli=GcRMYzuGH;LDr8p$a zZnJo=MDgGvUEP0;hSyL)%E-aq?NgskwmJ)5p?^=b%6K)#AImSXjsp41SBce8S&1cG zNlVu-9h2Dx9+iS(X1uJws^7hTKw=t6m}4Yn5(VU=!O6ubAALA4I<5;0>rq&bQW48asePsFz1Rw2d5xU5ox9GVPEAZeOB@K-U=gMM zhgl3MAX*8Hz%K}-$?qkJ-)CtmM;_gicyzq~_g1aC#3SSk679xhjYSql-xw&Vldfhl z^S5d-&sk_eMf!3v?^F+Y!O)y4Re!5c9u(gub+`%|$kNI)v2x6xh79Z!z*Vk6cF_+h z%3)NY2J})#tf!dzbTESZt=FP1IbKGv2XzV3S*M6)a)^9<5hgbafEZ_dtWQ<2KEx{$ zYk@GX3Vl!)U-Kjq3kmUs+808{sg|c9!rAH|lr4!LJ4CJnXhbrMEzPz}hKrRLxZbAj zYos$Irn#MR=x}Q{i#fNc!(!3JXl|cs>u=6P;-rmaCJeL@`MWzMpn*<_v7C}5{T#utH-S=DMk~k3W)Wzdj2&K+vJQWdb3KmFH)JV z*6JrYQEyJ-$zA$MFXi&l6SHxw;4ythP(ZZU4HWn8Aca#yQt)Sn_q;_xm-dz7wDp$9p3lQJTU-I2xV zs-J#p?3IjFOCMcrP@HNbO28Bd8+z<=4N66);DB%@w}P8(iTT z*5F;V!ZV`5yV&rIjCgM`JUJ0PJgpiUX)%EiLd%`3spzbxYy+5RdFZ~ABgiV>B) z-|WVmyjvV2g8AVlng%xD3i}NLv^;HnJ%>nQMR=`r0YJ8Gm%+h&m1Z|g~-I0rG^oJ48 zDkc&sSs9H^<35AyT&*T$K>F#QstG$@SP)-e_{($Hk#gln7++aQvgccd1&;cg83=OI zhv7=plY0-v!;KFAD!p?9|0vShLMsW8F7V*T6gb1Se<0c`Bb1SQa z?_~4CX?}Z`<|kXtZ_v$e_=7Z0?j%wk#U32p7;vGmt85?)swPJbEgHsg9hp1uaJ&Fn zz06Mo8cXU^FSW34n#5`0CSIjHxFG>gydz~r>aGKlM65hHuABBJragjjz13x0&wpr6 zd!HUxra3PAG@`I2YYR?>!&bAx+6=WY*;QJ%u0HJ2 z)#X-Kj`4Cfo?fe$z+rXeh}~sqmYDet4_~(hN^G0$`}5v_j_|KC?+pQWEZst&UFftx z)^u46_%z@E>vdCPdU$gdLCHS*gtZay`1_j&NC)heM+aa!<cOATD8UdFCbJMuRZ>rBS^PuoMz@0pb#l$BM166)=U8G~Y7{Jf47*6?+=0R_R}T zVTi+9MzAkal8g2JKhOeCZzm=|pM#-V`Ng!tFA0<)!L~#ot6g_{?($i?80Bl!^BW%hMkc3cRch$dqs1cv zV#H>^N*xKpy&s65@JgY=dP!1;`*+CU-LCGEPxHjxCP)gKM$9$jAivf(d5|@&=8oP} zJT1>FS!%~d7w6;^$+wH6l^J=3^6ey?Q1d3Fll_#f=mR7cJfY5`|1aHqe4We|)x zYN4j92(e%iR;Jyv0SYd#kx{NVC%hO`wu=V)*IsZ=sDFSQnNqKyz{IpC3eKY#=_13z zk6xc{QyX6e29kyV;ns{!l=H}T`h`$~yLq{huN=}xcJdjmQN;IMtJSPZaPhXa*RPHA zh~AX4B4q+-=VjV!^XzBfZk_+4|^q@Ihv9mZBsoGb2F;U-Ymo6qyIV{K0+NF!2 zWg%?;uuR)Y#iE5{Bmjuem+8-c#Q|#(gGs?(CPMl1c0njXl6CBhPMByGj6IhuxLIgF zjd>zw!TY%4MMLbANRY>&n+rN(w}zM5djxAmrf7u-Uf)}f-Ly>MCMv{LD|7<*JiLg2 zcA$Bu>Zu19Dj4-)Y&?dSJwjvIIyZJcBsY}zpD)!D7!qFUwuO!-_j8WESmf61rxt$B zs2fAD+@dGf{0**w@9V3BaI^DsFj**9tD2;g4gxeeyaWI$>I}Cmfs}JA;1zZR;)OWJ zF;5KC?N~|-Lv)Ijc7Acef`Qq^1q3@S5bp3DT_X4~veg?XG9NX7J{MNBvP={GynS^5p0(xw?!J{v|s zV*hQ^$@KcNDI`5tU%h?+iy|(w>5^Y>yZVgZ?7|AqHZoQZcbL0i23eEk2``yu)4b*t z8bFs68`~??Y(gD#YM?o`BedX$x+*TzyFl}9s?JAN)` zmf+Pq8CyHP-?^d3O)YF+1i z50em26J|neL?+C#Y^RJ;%X%sQ-FXCia1+bLG)c(C4l(=P{I^|~d?1L2$@az}I%+?! z0&)N2Snoj-iSC)a$Laxy*X0YRCQ=bHND+H87wXmIrgE&{=*HTK=GixVuVVLpp zB>0R75;VcMnPN1l0eX4soosqH$f6W(dKfO4#}`4oB-hxzTP{vCbR{d*W2?xg_$`TF zjIVS8m`03iT(|y~@`wW+#<9RTKJ~KBk+)i8BP$~{5Bo@Q9w|XY_EePjVIF-fdQXF_E;&hF*%Uuh5NY%H-hDxoW66<^Z@TGZdRY7CIb=6cuTLTxfUizn6Bh^F`p~YKmhP=&BR&%TA3>PHAel8*SJ}?fNHY;nfAbFo7-U zi1k6&-{iWaiR&EG2)9qI{ENmT#sZ=9dy*sdP01&n`KtjS)!k86dMWZ;l3cmauPdIZPtH#K;U1+C=*s})_(fXGqRd;wVG58Kp=`;Z{@6B5Vb zy0%J&qZakqmc;H0);qmN=jKaJ$g@n*oSMFT0Fo47@Puv?(thz)tP~a_oMj8ow3|`Z zC?|xLn;EEU%~1#+I2oG$GKtIjvtvZNpOC#1QAhZT9#aI({PAYN5U|Kplcgo(8Gqc7 zVtdu*K)ir6p)rkmg>urHtmOB41!6@whx^pF`2KdfMfwUFE0^ZiahhlzicNaJJbJ%K zqEXGtZr9%8ik}m5O|HEqk5752tz*J(2p`!lm#{YaJ=J|_^=IqTrMv%JM z7e9X@X+YxV7w}hIOU@un&@hiXN`&9TP4?g!;hOZ6;7~4?{5R*9(IV}Ux4lf-oSAGh z_T=HF9>k--@sOo*=6eni+9Bl3Zi{6fZc33r6&p{xvygiIOma+u)t)NS8k;>w5%byB1Zawml*bld97SgY8n zJo<02?hesK@%=XF0Bm|N+tN1Mqm=_Znw~{NQ z!#7PBV-}h4Y6pXLMD=e3E$8uDL$O%Z=?HCYsuGkZaT*d4XAXh^@+UcJ`hpBrcpMG( z{;?ARDWHr0s?q4eWg-dvs!!bOOc<5{tk9o}iAvXzx7ZOpE`eMp*xj-6>^zX_a(arp zf~DmCDDwfhYU5!Ck>J3cFdC}lSrdKk5%l@3#+{*#@-j2R<=b?9FqcUR7HLSwt?f5p25MCuTSTB%my z>aTyOUNMtKQG@C==EF4DRVSeZEcg?ACqu;^1471A=db(i{fH8V-=l8^FdLQ}@W_$^ z&DO}Lm!+T_n%s*RohdFsNxsdQX=h$8l1>;!MhQBIdRUj{HdyNyfl;#F3{+ zk{Qo_hQVwlIdY2JZc@2biHz5wo@>`Q0}wVXN0+xs(4bCO6}~r-0M|hR+%1s@MOyXM z6M>;gqS#;i8O*y#gEVD4PZkS+LK3J=O6H9*^Vh%h(t&uxgQ84Z@$IM&8y>uwZ{eB^ zw$MPG)&4lE_)#w@?U9q|x(hCrtoE+DJisfelcIoi>*!0;M9wI|18yqUK#Nh+68;7X zwt0nZWX|~B3#Qh^UG;KxjXumtPmPaxHj5!rgtD>%luVMjpC7c?uFwE)_?XibZKNK} z(q`<{s5j+#L?_$!Kf%Mm1!fDvIAEUFjN%oJSgt5;nz3~sn$~yvY?bUKGshnO?Ur~1 za?bo~7=cgK;?4!$!;>I1{n+MMMeR$nAhytH;hIA|77pohFnwzLA0{Fj*|}AxUrLFc zRr``GnJsiGWqU5n>{iyT%Wm0PFGW%aRMw(Ouxj0ZKi7%XM}wAIH9RP(WemNG!JBGL zSys?r`;t7i1*@%2g5{Fze8P+2_LCR(UfwhZbycKfOZezS`L)yhWu8ZKDk*}&B`$Vlt!wTJph7-=(87mDLEVeC&Fco=92W-h;Y0!+^>pDe$4_98x=;ePRE zubufVi@hUK1XDHpJ-tY;r@p5bIs7NMd@aH}Rsd!IZIpIy?P1Ew>$ULC1B z@X80^u-BCgFYz3efr3e>lr8RxvT`-H8c*TrLW{_iv+V-&%F#YsKN!q=)chX@^ER88 z7|i4!4(2ZDy>l=|YS+O$Hlyoc@~y!nFSDfX>qXk_uKRk7CtbBt%Ud@vYfD{1ARI(T zkyFIcNJ85jS_y5eCv)O?5-ph~d`ItHL`OGuV_r$a=;ym+_>e+NS7R@9sp0LwtdC1q~+~l{A zFzYs(!EbqF^igpf1Pmm0$CqpA5pMBZoNzLK_+~_6u$$1q1pSb<{c4MKYkLCN{7$n7@kqpJex>aPqJt0j4564nYLJ;C0@dMEU-mbi2( zx9-o7duto=m#)b>i6+=j|@(q+dQ4!wfN5p)#lt02eZo zOa)dN+ek*a&u!Af$rY+UIjn2QlQ$^PTYnfSA|g^aO)W+2!24Jl8ac}ocH?+Yh7A>mSdM0IygOHD-^!c+EjtyU;RlsD5uDs2nQD-UcW9}g_>k} zxM~GLu_W3u0cW?os^!7!Ipei#s#?N1De&m+#~Rx5seQPPXtFaqDw{WII%uy<`_pl{ZeCns z2&BM`EFr=b*iS>9G0y&ueb5X@igZ=>%roU%dfAg}aky%UjMfEK)gmjnq~$@Tm2cH1 zkc8y@*J_jZbFQpDL+53Gt=FCr$ZEv6PF98JTkz`=l0+;kQ++A+QXoeCnKI2df@KlE zEu5N{7RV?YRZ$*JRYHl$N=Ox9r(U2ZfjPe*ow= zU{4(m=-||LlqxD` zJa36tXTWAIa$J~o`B9$5b!q(G!(i@KPy^;L1v{nbs-Px z=y|CwhpdQYVqqsSCuJ+0+>K1W<32dvKXs$|V^v5gatf5}3);71_6**;dQ)eFUh43jCbg*#2> z=jOv!?N6{8bcX05^E&~(tac(GtXV}IaKnYw0xynv^3XFK=Ys+$c_}_mU+1Yo`nrPy zundH;<@)wB>RvUVPRkTTC;0AD^3e{Jsxu!@Cxn6pKpM4bEB~N@k%W+J%tr@`k2%)x z9fxikuuIWIg7UQ}xU)aGGJ1w?^%%FBfUpIf9BS#537(OM1k~$ItyYr&=60E7%?Jn> zP#=pzKq&P5a;Cx6T(gW{igqc;6PGPL4;@SpU+Nv{k6!vJa_-}>bdejA!e=b#Gy(uP zHsAv}xjtMWCj@h%|SVcvK`C}+mLQ; z4%Z54C$uNA$IkMtpkMxM-)b(A$O?d2Enh>}fyR7fJxCPvn~VO4iHA^bO_)zX+NRcL zp}V%dN5%@-RZT+~oGtW=Sc#N{^(34C@`s;M8R%$zEVx$vedv!5%#(jh7?`FNGBAP5 z%41h&Jo&1TdPSyElDe5ff#-g5gs5$4^t8!5IAU^)1yzWgPxN*RCat#L{&Wclq}`q4 z%@#dWn+NTUexhM8VZH}7>KP9gZpj@!J8%}_PqD5TK9$vWK%M?P;6@mN0|n93W#VJ^ zO^Mxin@mOuox_?+3`x(6hHQtrR z66mBox>R#&{+q9I)Do!?{jq7JI{XTlL076;^sTf=eWGt0<@Q5vCHl-&bWB#N`N!Ny zZx=F`4rZ_UJOQ)Y=?w|#w~?`dH9Q{chj%&l%M;ct{^NVBheV z3|l`{FVS^Bm3eA1JkF>%j}w>o)zjkkr9~C+YFXi0v2j9BEj&+Hds4uT!TMBN$B4ou znAlfMZC-U`EU=D!8Tb__ZZ6#Fp}eNT)h>UAubv$0XH+kHfk^DGzeKhGh;bKmJB5JU zpI;@c10v*db?srn?EM5&Kk++*e8c*BK-I`~zD%I`>TdJZ0pAkch@lrs2mqqgVXtg| zakE`QvHnt~#e8|C^W}2=WvBKpZ?nHV-TtyWSK}3@8`{P>J`{1lw_1PrUjKNN7uX-} zTW%V?o2xZn01>Dcoe15$4s4{qUa!Bl+Q0r>f5rKy_Se6ZYvB^MAb18gw0Witu{UK# z#6lcQ#4ai=*`dptIoIr2vYqC%yy#K`X^-Ac?+6Q>v^9g_#aI9-6eW0Wp>3E zat&?N`$pi}$b4B$rp>8NkN4?%KDr>@<16h?zrd_h@WrQGt@*O(#KlSkFs6i0y6Zbm zl+`8tqP>K#^p^+Ja=V0Oa%Fp$Znf&n%jTGF(c*XP%#Y|yJFo(|`we?C+H~Hb?FIkR z&U>@I?oh@0I!|4%uS?W5Ts77*{MxJoW}mT-k2*}#6BmOVV-NWk%&G|2rpt-|`qN9p zwOM9$aF;1}SdsTB3)g0FuO?mujMon37FU0z+0%AP=Lu@pQ?qS8{nY?1gtjpghQLN* zyjo2+nRcj`$Yj$hjoxxJrS^zgjOJF`p67EKT` z#>K13O!5Ksm?RsjL}cq>-4QGqI`&Jb#fk;eDQ_eqeN=~75YptUbkh&0OZ9cNI$vLR zsI%m1dgtM`EcT{Mv>x3pkJ#;xy(v?!E+?I)9#F3TRa=Z(p4uALW6Wp2*NU|z>bFAk zH8vM67QBg-X?@|mA$ld@wl2dMdsCpw8O7_IR+OvP_)s@sZmm6j2Xw!9w?o~{yVx38 zkPa}EVLPuErS8qHF9kFRSIoexT13cR4i(-rg|Bw)hf+yXY2)e-l2}_>jCwZ zT+L7&(6?Gq_A$5dnV0d8Jbco$A0Y?Rp>w}G&$Qe;1x+({sMmQNs#=^OxG%Vf2}a=q z3LR(CSE~j||C59P$uJI$u{VXD@)YPn){t_E$$LQkRF{Q&G*Z+zWd;8@yp*d;>z&!@ zDP5xXUG#N_N|LK-=8@k>(h~KhzRpwskgGmMPVLpV8q(h9HUZ7_-0z?nhZ?Z?H{W39 z2&$m?uOnQ8VnQbMgzOf>yFTi#5|kD1t{>vrj&tz*|B+|Yw4pBnyKRb$TW#=Ly{3gE zy3pbZD+zLXEN80;5mvY#l1#!LfmN`sD%s}+87{6zj9GHH9%=MW^*TTrdrOEaAcyS* zV>O+Z{7nBdxX#Madb3z0GH7o@a>}B4Ltl5O-|6dW^*mRGOX4nzg~O+xnBhv`uFQCe z1a@bIKVx!&5l#hGII0l#!SC_A)GrCoK4F6At@=!M2C+AK_bqVnS4qLY8(oea(m6pg zAA0*m`XC0$n%WToRj@!90GumaqL;Ple>LK6QNeTA#ZJ|Ay4J?`@u&G_Q4h+3*)sRI zA7P0Xj>gyeShCoAUT` znrz$x>olUYwAnRYF-q8@*I{xfs8wEer91{l01)`NkJ-FppWbU2;U;r|m^eG`tTeTBpOIg&M)U}2LD z+aeOWIuRKVfw@kzO?9$;hwEg+fJelGTYA`Bw~RbUyRqhfRIqk~W^|rJQpSCwystC& zx9Fn8Q6;YEKCzZ?M#6lE z&jZ#UvUs;x$Al{?>mXuKos3E6W^={oy^l06X5-ZS#Ja2w_7dRo`A#6}=?s}fL% zx=y|u>U`%E9=NF7-~|@72)xu8lI?Vpt$w}$c1tlojB&ncggC*fL+_I7tN&+r(J72F zknOqxw^Qb5a;t5UZL5N@#S=AN5XQt5WN}8i8%0!)JAnL_v*Je$GN=@>9FBK4UatGFGWZOMo2~SnAuazK@#L{h5BdTbyN9;*@TQ{U6@2a2F=6P#)zPB`X zUoLsI`Jp#9wtw!VHj4EWenO$6$R|hbTBYgTKD6HH))aaum(U2Fk?)UHW0_DZ*viIu z5ED5oRa!7QCl|pMeqb@LJHe)*of_5q$)wnYdp>+7e&_}KL380@0bH0=H&7{IE};o! zbW8SW34Hrof*)mtAqgdHr1Lg1uB}{->KJr{5TBwU8Mm*zd@LFtrcJ^)C6zNA+!J!1 z#m70$qK|AEJ~~OxAz)x>&koa`QY@K8wTVNB6y8O^EHdu+SSURBLoX#f%ld*sRNMdFD?e66h`J+v4;;(2lnS(lm8=2v=F5 z4{?wU%^4aCqza5^*Iso!xCP-yt>8aGmfGqwSv>Ici%Vk<=0HZ3RVeY7kbEn-5+WN0 z2d~>IRxC~&J8V&T4q#<#y)h1fW7!cdT&VpTFftJ8dLg0iykavj-UW{kT&xy8dpPFn z|I`aqonk2O%zK3K%8HCTAdIrL)l)Ez&G7J8)dTBJ2$t2VcqYJsr>~fA?tx8{cV_}H zLZ|oC*8{4HzQX@-#hc2ZNJe~U*1vs@`RoourK9v@;e(-tB86M5j|aUMDXcFK7d8?# zpCwtcHH^PXaJ`HqL(#C0p}-%sNT#Q7VWeOrY0ZU?3EW|Nhv!qcgcH{H;lB$Om=S73 zLP%h)!7#KEq08T|vK*V9vo~QcUb07W6F2<6KGrTf#0KYs2qulk+W=?o@!}D`PhEX8 zWL9uJ1IveZ|5tj^0Q^+eH;+91F^Oyt9(j6wc=YKDg*ksw@L*n3bK(2aC>%h}ZVcVA z%yj{77%PP@!t10U7klCz>f&b(bEL^`0k{7CZz@|hkw5gvNE~MdLj{K(8O5D=nfZ^7 z*G91De@X{6<`#^G7VwO0jRjY$Qrmt~-OYhTpgyY`Gw6;~&13F`d-c02te%moWfhS} zMq(Hj3$FBM_+8~-%&n1vp&$xOxyxBjMjv<@{Kh_1u(9B7<$oH3DJ2HpaF_~oMdo(`5qs3m`KXE8Y0~@;3XIixnRpo@s5XP&2XRfG88)L=RI|=(7{*+GU4hH8EFm zmuk0B z#H@5cLd!$jQ`Gujo5nw;8-E^+7h^N9ZW=80jFjX)b^jS^Jt?0z~w^)~BN5Y4nRpC?VH?-j=cZyc6)zoXF!%~G!{F(b0|pE8{u z+VsQI$=26CFnUJS%WXe2p?3ivLxS$W{S3xsZIv#ZgW`j+>p#GDxq22E%BiqjDNPd)&1;=I)iZA%Evh*opdJ`gb0SHuBWg}` zlIu@uP9)3q-kK8z{56=LaLc=lniB%`dFTq`yJEu&a0{-e=U|M$^OfI&+x z&m05%6VE&m^wgZ_Dc_!3b0SNw*VmjlUzf3rGBnJ#2`E$-MV^;5e^Q+1P?f0h6`{~0Y359kL#=K`8%&|hE{26i(T zll`x?kIC~LYnM6r`(iUDkLd;!(SZLEwGlhJ!yLTMG@3E#GN>`yStB)jXhIL=xUdnE zA?jePAT%CSHD)Nc4r(0qoa6V>_>#Z z=WhqHg+8%s6o;^~llEsn6LR|-+0k~WYq>@TSRRbmt(mAai-%f0z2+!Ke`e2!K}T1VHnSjSR=5 z{D5q5E@9y_OtY3g#^eE1ffjdKO+tpjXbM@K>c0(w;z8U>??S9a(;)W63+?O>LG&P@B+vEG zf!i7LG&S*$4B*eCi-X?tmNE+m=m}vW+r;8aRd3b0UJ-$wHqQiA+Ik3@R7RxafKXLB zpG>AjbXj~8%hhQ6o9&EE$b7SiZ{l?4wyk;~1X6_I`j~xC0#R6xqzuSYkD>>)TFVKv zg?H=IJ(C#PEIF0gjXBgkH+?5oa$x*}FK7g`Y#+XWfWY2lDC{_2LT zPGTov`FIc!eP}v2_11WP!&bHYhUW2WZLYUw$Q9>Lt6tyO;>6l!15N1yH_fTiOOCPr z5wiy=qB&K%q5dt(vj(Y0eXVb$h3eQDom>%ZZ=qVgk_@^>zemO<77#g%i378Yo!CEc z0#m#F!1UT_R%D^-Wh z-05hBW>N|dsI9*{q|NlbtQ_TKE{!=4rurX!`Bkjud!gS5B2ko{1jn9YZH`W(Oy6TN zdfv^(Hl`Q0m?(V)NePQFRCd%p`-S=67YpuzNfvs&GvkSTCT^-%@;;GWuC!V^n(Eo; zHNI?~de_W&KLLK`AaoHiTJR7{0b)#F(%?ezdH^a@raGZElu9lz87?5XIQ$A;Dag(3IoqQJK zMBCPdoLDtlAGURtWY7n0C1!%$jt|Bsh8)YMfyE8XRpCnjE28os}}!Xyz@ zWq~#_8K*4Og8}lrxCo2I=N^tX=R8B+M@5O-ZFu7A%~A#hG;R}DCI5l zpI4Y37*K9qBYRyQnoMt~k?6^YZ1JN~|78XS%ldGko1DRqD)l(nvQrcSAmLkNM;If( z9m`P_$78W+&723HmR8 zww$(j`9mUl>foYHK?D)tu%96R+vE_4ySs5LYYE4uyssUb4y*ZG+gA39fD|z_ASHczHemkw(_y6mKrKJK!q&jYMRc_2OJt5%!^3M z=CJ^Ux?L8@B!V%di?_lzd3yrAtUZWt4?IKtghl;^`X}KRXP>_%ac?$uGLC?ZeuhvV zc~$9wGh)~9QKn#Vj>IiW;nPsFJ9=QUmbx=lrA>v$!7_k%hTY;nG7Pj>#IB?hGys4m zT#2<+${j!?gl_hzm9&LUBn7+W6{G}HIkqb)nl6WT;aoIN8!(imSU0&j(`MXZhPWc{ zkf%b6M07i zJsH^Yr_F2}6=*>95WPH--l`8ElDxR}F^;-`yc6W#r7n{E&F;Jtn?%Jd;s?!a04Kp*kqzD5;D5A}rRRk?%z_z$zWro(K?!UQxjqCLuK%`J;{ zYXqEv>A`<#dwzTQrqi@^IVD>*uK@zgOu9NKcq?r(eFP>d!}u#`%q`B~hvd|^DWXL# z$_^J1;4=qRN^{XDt!5#NLDA@NkvCj)i~6s3I|FZYL%l3xWWvGypGsIn34DH@i~$zI z)J@Im_O91~E=Q{})>CB6VD(c-e@+}!U%gD^i7_dn=}_l)CAeOXN;z5R3~r^b#z&?0 z&(67ysM*53b>?+r$Q+MW2W!Cz&4(EKk0b>9%oI?p+QBWmDAkDdaxva5>C+G`PZRW9 zjGIa3g5s?DqO1kQXVw>;xuE#0`l7QI6rWvRboPScKK1CLiu=hijm7;rrZG~Sowqg6 zT>w}k{C|!=&au>3iqe(APtuj*(e$oEma}Nbg5vS@MdPjF+rmY+S;dV16svfu1Y&Ix z-we&!loAzC^kH=DT-~ugU1&ARu}U*2-FXa+Nk^71?Ur-V!g4AnYO<{Q%0A6S{TNUe zM|5g|DiJAQ1ZQw&T+wKJ!Vs~7q3SEgqqPcG-lmRiW@<1to+4T-4%jN1s@`*7=ZcHT z^v0m~N9|}7xp{PKrq`?LfvW{Y>Gj3qB^YG!ZSl4{933=<;pjHSlGSVXVNe$5>Mr72 z3CLk{b+46vpTO0bSakmWI{1+|K@sghifU6n3Xu@htvsSK)C}UezT>=$Gl;u>b6kp& zCCNU^o^D+OO+C1b2v$)!;d;U^sM$uv#co`%+-xvjAY}Ocdb5K$NCT~hi`~Qr(Xb{w zCV3Lr%)Y{A_F|1{HuK-d|81g&NXBx1|H`M2o~U$kH{aJMO>$r8GY$G!$AKCnuq~gidfG602+Jv4&^8W=qTc1J&nm!34A-$Oy=pUa}JiZ;|fXzhtcJ z3Fa+Y_vxwKU7;6590`Y<&t+P3XsA57)RkR? zFDCM(%TjP6i0Jd z_aFW=vz>LX+85I1FvG609!v8x9|2{J%$Vs#C z9i*fp(6H@_aObkNBE#6K77isWo{>d~U$E5{DT4j!e-F5->aZ)=-zwP}8E(5K-2YQM zmJbrB_iqD6k&X6*$_>T5fnhbVb@VfEHTpm+tmo~$K(<&B2!GXA+hCU*sPGgJYsY_u zZ!I8SratQ@ddtjchX^I4Zqcdl>QoVWs#moJIv)AsAkZd#v@IZI!!8kboHPW~X<&X$ zqn4IO-jMZ$JS?&xgzsrH8#(eH4g#p@)WijC+fq9ZsFpt70VmIg42;7ZzSCtTO$Y~GGCUq zH!@$AH3H0c{wBEVI8x@zsaQxg>TV}JtU4*bS^o-Vk)uB^6y`Nnt6$S5VcRxYc^cp#eGsEdX1grYg1?WbVTH z3r4hywgUkQyM#7mkl@nM+9Y6QWK6CB44iZ(O!+3}*QhyCvP^9wdY(5@vR*y&p?Kjg zQ~!cwms$K=u7!)kRr?sKMa_kaWNf)z5)LjV7(zYb1T7zo)UA*%!{qezM(PCPNhWRu zzjGq01lvRCj`;z@_Z1oksq8|8aqV*VZGX@ZA_H1;u#M8%rF%j>=m_Q|>%)`Q)}m(r z1L^+DH@pwjm8*>r6dYRVe3wKrPmu;$Crx#-Xp)rgD8^YYOKV+zA=7&a&(Ib^+}Q&fBhnxXRn7Yq zqp978JD77z{Zy{@qhSG;bhCH56MHd^NFJ}NYNTAa3}c5X>%~~Ds`>wrXkI$D$RuI< z1xa`!b@kNdEmi;gjm%hRgY5YPdNl8w3)8F5*I=0r)L|jg!mNYf{VZ6(dYo%JzhB|J9jnqcni!{Df&l8akc5fQ? ziRu^JhbyN*CQ@c|(NxVwSHhY3!j&_^m4R^OtZ?P*@X~6M!%L;zYAyPeNQ1N?yi^*f z#(aD%7G5eXVb7T;e6po2yJ>lvS1lU&4M!qtmsPslS^1}dBXo7@717k_A<-$TFk>_0 zrXLsb7#RZ=p8=AAJ3aPuxn@?jv~mNC{5VHlE(OIo>L1THqC-A-I5CkvRIva--SK+F z3>mO<;D7}M?)oD4f`TsfMO_vYbgeJy8Yw_c`GvqtLAS^wgX@dB(ZB@->GehF3kq`T zi*gneTv<_Hbfx+f+jThgEb9b3@90Q@7vpGxvGdj{@I@Z4mO(7`Sq1uVl>#|j#VVK; zE}mr-$gwK1RgytvfW%{~Wb7l4>lwJ1=Sau^&EpzqHsc}@TP3q$%$n8fID*tPYd~2g zzZyi4EXG#JJVms_vKj|RE_8y;ddiq$2ODb3^vwU1Z({vx|8;Sh%TF{_U*^*c-P(dHS_H_26l|JU#9_`Q)j_d78yj z^g*4iUT*K!w~OU=ioRVgx8wBfTDiSZ-)@!L>-Fs(xgD%;mE2yUZ`RXhMT|M{Pnl5a{mT@>-oEi zzkL42@Hc_Ksr>z%zlZs&Q>&+_*&f7WncsIAM~-l4YCsvfnCv$}@bQsxkKwR6A? zpTZQ(Z9~`^8bu?R^c*=5L8CUq=JBCX-dXk#V#`6 zWD)dM_@X}t1gCob*6b?X`L2|m_i*(p++m&q7lQEBhbUwp)h;J zE;NNg&(Ys83Wq|bR}m5|&TR}W1j3|hy3n3$yPfM!C)Xl77cC52;gt1~ool${f(zMn zq02SHHO%GeN9_Z78MZ`NE2R@2&NJ^x9-MFQvcDA#oE#yyWzI~~y%n5p{1BU9)e1-j zPD9n-tk*O0`J<-o@AA&GMgl-@`3D4rOsY_n@(QC~hKMrGhty%u*v)(O@-^Q>IV@6F z@Xjh(p+{-zwcp1$o^H$Rur$w2=X>e;EkOtBz0ZXc4BV|5HL+JIS(zvuSr1r|e7n<` z(RRabq%*M~AvENRt?H_|%y28aX1O};X2EntS-hSWE*PzD@?)TJsneK`hJ25Q$YjU_ z?PE6w*b&Ca4NxX|=1YsLlE$N(gz^lWq0uBWd5vy_XP%%PJ2}M_xX@{n+isJ@d}neZ z!=WpB%}fs827!c# z4$cSG2Q}MV{dk<)mB$aPce=Y+>eX|*@$`-^zgiN}PLp>N9`z}%Av1mPy4|Epd}#ITBS(>N&yW{w zR&js;-P%*(Mg4k~{d%_ZI>KwuTTtKHhiB9N)KQ#@UUmcAp56|TyU%-x8p_l>Fo-o@ zFhF}%Ia20)8BU=?d(Z-FyKci7IzdJdFi3bGdsse@KIG|cg1}67w-3;7k+eG9*ezMt z=&WmGM2J}5qfGUhiSO?kj0ED{eT;mFbfX^+I%3aF044C_hxtTp{1oZs+)){kn+M;I z9&xZ$Jks==0Q;i0Z>^^DYl=s=mv$Yc$(#lHh2~D>JFk4_6*0XYM*F+9d}kH=I`-`X zKDA-&EYF(x0!Pz2=13xkEuAJJ_12isv2qGpTB$0-&Thiyj_=0ncR;b2Ct?0%9a9Y# zpXQ3(?88&0$mg6jcltz#xw>kq^F}loqza03xYFIZoQYZO2=1#ldth<$+8(x+A}=>ZX| z>uCxv)io`Za+`HcY#4|wR?6>EVbdnpFO`Z6i5qEd#&-yP4L&VJoK3@dciGqnq3ntj zW_z28&UC52&S#W^1BEL7n%mH{T<{2)Q1c88P0J??M?HM6P{7&R=8OpX5ak)6el9B& zt&^t9|4H{Iv{T8tnS@7jtI7GPqBv7io@0Zzg;#uzyNN5%CH7#xdQE>hMx1(V3A8li zZ5l!+)Eivc{1?zIN7UO}O0ugmY$4-9k?QdE?UBX~EltSe|91R4+QB0h?2mVX-=%J? zlP>qep~oC93XhKlLD~sMM6%Q0)*?&940i?;@&>uQwwM@}H>G&A3BE4b(mx#2+2+ zABi158)Mr9EMqT=1+!@*o%gCQYjxkPUGzqrF2q0qy-OBjpjILF5ZVddN{`TqPKejG zss<(qi5(}Tg7w*-OZuy`X>x){&@rjE)M8#hKUFAdw>QsB_Mqw&=h5=Zx-{T!GJaV6ln@(`QbV z$No`7r8?BU7@oy-VA>u;1_&4lTwOgU3zDpQ&Y7;@B|v}DDFv3R+kb+=s*a8MMPN>9FqgXCWj}rR)psC?*v6Db6L&ssjHSS6Yt~y!D-MB z4z17>SO8HcFQhNv8n(9JD+lCLZv{$I`IA~UEVzN(eFZFk5Q7bKKBSig?c#E>{ zkrs(F;aedCWIBZH$?_i|YD%qr)-ivU`pYvkS?dGO@p%{C=JLJ&moXy4I~{OCN|AGQ znTz8>MI%^_Da>TvGWv+7?%l7C=#I?H7oOmJ5hcZ2e+Fx40&D?tudT6Y-$-#zDAyIp z&v4ib6A+c&|^PIC$JSC}_PB9HA>7OKDUSPn`? zPM88`pf?zoE_|pyg@s;)d&m*R$3>CwNklWFjyS)Bda_FO;f5JPxWKf>as=Ri1He-Y zct^vxBND?zS?n5vA0U+F^uyvzj{nKBH%Qr_4yH?4a$27|&{fK5q@3tI1Cp3Af7a8J zAsbpTo~k+V$}6vQ4NN31y;rTgM+|5xu%BsDwPOh@ej-a`hO~cAdGhxRa+=gOMvR%t z!#8Kzhgyt0z)LY;%3uPqZ-Z*P{NSOIsnkumw<%AsoCq8{WOt*&7q!z?>=#tqX|k9=&cmI_H7 zY0$)k-u%nV-mi`zdyg~-0if37&L3%5PF?B^Zo^C0QdW5B4*A_6o_O_3*XuXC_3s}2 zyHEe_=XY9o=>h$q^zT9a+p2%Xr!~B^P5&O}H?mZeK8Ucls|TqcWqw@>FT!Q}D zzmbM1{9?^{3>kZXTi(p#!bbeToWr7-X_ze;w%8BV^03B!m?saf@DOQujN7KVdVbM^ z+{rd(4ZBTFa*G9f`BYzY)S*e71=KbntY6dj!UIRr&I}Cn>VLkBgG3wgk5|WUV+sm6 z53D~&#f7U>bKyZr!sJW4V}LW$a~>9)sVh|3*LCI|qf0GqcilQdkSF&-Jzphr%$D0# zU)$7GG)j1|v6I?y7knv)Ge(AIhNc`Re22(HBl%fP`MX`AFOq^^)R)508QDyhfT#gZ z>zpalv%OBwes>!^+cP1oU!w=3*+-J;T7~}S8%+Dl=-PR@Yb*)6b}&5YU~^%sB;ivM zE>s3cRS#*a7Qq4}d+(Bi0Rt0P;P!aj+45Us1j8Gd;Dbp+{0M%dB1}cnHzdGyL-EQctan43sR}dfSXyNFonMELo;r zb?Dm8s1*d^l(KS!^gvhD6%`ryT2>ER?$k#ZL{`rZxr%Q3v(vtfHK+7{4H2AgJaFq< z|1U!W@8>))9J|CYk?$VE@2!2SzM&ApNTLu1W(~1Dzw{-ixTygTDjI1@jg~vJ`{B*eG(;>?v3jIL!B9hk7avje)X{F zOpL2_O{8$YZ*zxkps2%RSbDI_8|y9Y?M!>yyYc8qYK;@EGDXIAuL;s1awz@}qr8xsuoF{Jt*N$|Pf&20&O^w^%bP zdnbv3GP~s9jdsbw;cCWceNf#5 zm2ZRb(aTg9JuETDWIR8XqyT4=LGM$cKUpoHq-dQs$VBZK@uxDNb)S+gN&TE8d&E5R zW(avC?OS}2OLOK2`zL5n={ARAMdpkS&E?>{nXy${;A@N>%f3X>=;&&QF>O_)rJ#lT zILuRR?2GKlnW(MO_CC%ial#O1{&ko07Sv(X^EB}^Jpdn$XHw*tvB$0gBaxal4y3Xf zyXmaZ_Zgl?1JYa_m&_T&|5rIt6+8*$iF%dhvZ=)D)WDH7M1x&0!>Jo*l9qwYD!_LK zwZ#GCl6&<`if8*@t2gK+77X}(YS`nT9M+vMksm#fO1xaFxh%3&=Edq3PG)Z0rED45 z5Z+di1P4&nFeg>e|CK{=Q_AtJrt9ixgDHg|&Z2T|{TI30tmJSWC8PG;uC}4}<++G+ z7U^0qz7a6gq$uaT8n&;O4Yf%&)bj0gU#1PjE{70&*GCIllBF>=(E@=sC0;)+Thh@-mZ^yn73T$UI1V- zF=;ppCCyC!F4dh40hcSL-&wD{RQ-cGB4F3trLsDM9QIJY31eRqcw?xYzH?chIGr7s9 zKiJBb)|jE*P)oIP{RT0j)3Pq=%b>;^cXMnk9hl0Jr5PMz)kZTKIq6h_T7(PNhpVujt#)0YHKuGa=d-`45xO<1LM-6c3ckV$(W&HJ46Gh+^ZgaKFK99#Sf^PN+DCQ zW-H*z$v1@TYGg6%`0drK51W^R$zjtNRxL*uiv-4|itia~Q^k@1WP~RfvbaqD^DSnN z6|(sA(o@J{Nit-y{~p+-raB??lGK^~plUYAL_oYe$L0-~Cu3g>S@@W|+^!zj@qMg% zgYYg0pe6>ourLK^qUgffxKHPvFqm(C8=GK%;wI8H8yewmu)nU$cV79f339m|G_ z2sYlyfov*Q&y!AmT!G!D-OKr<^s;qASf>c>zxzn)nSo0T?Z0u4bh4aY62DJORy2jY zCmh^^u~&E;6S5mRD{|97|2^tWdS|VY)(8o(PTJyCzgtaPK_2-ja#(QN+078h&({ly z-WVK=@5fbQ)q;S*-_@%w6Z*m0QtpSd{nIwE@RoF6%9pSwi|XXyuRbrxcgQ$I&slmm zt;X65H(04LY)N(XmW(qKm~Mq+K*L%)AGYMaCgukP2YWOZq-66r=t#?#`t6h8>;}1H*Neo9|zKw?Ul|6FiI*3EJH!@C*HRu+*rm!V! zrA%%}I7>v5-Rve>M_HY^*(t%kmSykS=`>9@>_e8E-Qs8(H$9{&CA(GY%?TWqjaQM@ zUcH2|Mcvg77eBw*h6_m%xHu?qF`&!<#=65yOql@2KgI|(*I&m7Z53P?Yz>b)PWFjt zYZx|>va003xudkUS$;7--KE}v2;_+6UFsO%8qM%0b6Z?WS9ht1j(Qp?Ij9Qk#@bu0 z*^F2RnKGj8NS!b)UaMzp>|pH}QW0NVBWCHb?u^%r7RxqrAox)}l(|LI&1@X=qDrWA zc9zUC>l{TtWm{=y9;XvYR5Oo~B)sFnMBdT+wc#BBOAJ=f(m}o1XNsP4*g?9Oi2P=h(036DNP?Mu zL;^NiST{@hF33+IVQ%kyl?DJk`_hw^KJ=u@P1m|rn7%#1n>Y{s>j&*gDsU#rqbEtm zXR>w@b_n=hnnKII8Am#%Zu;4bUy!4t-ANmychT|I&fp|73`1sQ1-n3KZD5f{^VL<* z^6jj-TV3i@d6QK6p74YYbMA7O^B6cd^m09o5V~1UR#ze}smGWrGlnZhw~t{v1hI(r zFjgHF(WRs9MI8m?;z`z9kSQZZwQduK8kt`ky($UKcl%g-MH zBC(ZYE^rXR@n3FgM-7G!G@!9hK;z@~eR14PHfTr!Ce*=$T3S@D|M_;%DS?cg*e!}Dbcs^>z6KJ&!Z=q0&T_1NMJ zy{t6l2ydavks3 zQg!1;tcooeVg%F5tH_#ae(CC-`|U+Mh82ZdmbR2odp?jI%~LDdSu>ohV8i$VyG%CV zw(WFiXJic9uhCYW;IkbFTgkdia>!Hs2le<~}EEQgBq>_Sqxn5{C#v5}}$Hs8xnrY69+rE#5pOXa;eok-Y#d<4`UV|5(RV|_ztVu%qlXB<3$2~~8 zI31 zb@7jFq}3axS!|7jcU;s+n|kt8uiL6Rm&m>@%eS{Q2>ouH-jmiWPH0W`OB@ZcxY%xu zq@3EC)lO?X|8r{qB-0!jBD*=iVSG$;<`>7C6JM~h(X>);;zpAu4U&yU5}b{uEHJ>P zGnP9$&77h{m}aLbJVdQMdcY0=MgRH=m08Z;W)kG*c zt1UW`tV5i3T^!OfbywhAN6L1(X@pwbQzQ&?J+qN8$SzL-|J5(POUt4>t?<;Hxev5m zBXiM_wp%!oX%fYNBnfSIAd$9P(Q0VBE+b`@9F@l;QF%y`;q9O}3~tKd;#pL9+*SrW z3@h-Up*oz2Vk1l?cP_xxxBfDEZ0fgb%YcIrPeB3^%c_m7`k`z)t+N%;@8e>MDn>OMf>Qcqs!R6n!5 z`o!+9Jh=f!huhtklz0O!bNH^^U)kNi_v8j>e5jc(j_s2E_tE_?avE@C_z(1d^~u%G za;leMa0v1jSuazul83UcHmmBM$?k!JZI z^{l28p%S*Md;KS^AGf`DDxB3*xXD=wNO~UX#u554Y(8bo(vlyTbl9XZj_RL9&VHe?;9aZBf zBq_3P-nu>!@f+Gqi;IM3_D_%8G!SmRD^)jzjMV6}?jZbC)w}`U-F259gk)<@N?Ak; zIZ%s4LhI=RJ{o@#t)b8YUGvRcpUmaWmNqAdxE5SblV$Uj1Vc{3m10_FQz1id6vHGRbW+Q6}+{pGi%$8<_mkJU?P~q$j`283`#ie&3 zs4)78Xy5v!g7SDo`{Ih?36RoFZqm5P=0;Hb71z_X%0Z1b-DTBiNl%RscY_+6YNUQw zQ;im(H4oS2ILi%72I!9&Ck?^;>+B(r1Q~)3LcTV%X~NC8u1nkqwC-DyoQ)t0K}5H@ zKK#;Bx3s{B{DNm|JDnGv*HW->gXGhaI?3w4SGM<*^aP>cf;;W$MJO1llUWsQd2yr6 zt3)om>bg_r6-W%w@(wtB)i4_pCFRsb+(+hBVDZvn|6vgelW?#48_gp|o(RwUUB>&f zIhJx$(|kS3%mx7u)Y4(J3DrTI4mKeuDxAGfy*Ukoigq%^YOZaBaxfBUd&``~h8|$( zpdMXAHY^rUnV!hE-%k;&N~2PDx2x2hm4E*Rf?Q~~!%OvmU$sn&NChaYtprG`(?ZhW zs9J0xsrOUl=gk_h1WzaG4@*lu6^+w8y)c31An_XgC01uOB4MQ6!(=D|8N)`;>a%l2JbnN* zE!woY!@OGV4xG2VQ=lg;7Tmd3w2>`GxNFuZT6z)f=}%kUX}p|JTDZv&C%Kig16d1n zj{Yf_IvC|rVXr?8wWS5RQ!EF~r<#sw=^6QA z*fx;>1oRlvpb?3k!F;$pIoSP(Za!=*Q~|D`!7C$L3uk$tZ~Hj7X2TSuwQ1qL5NN2t zcB#+*#@P%u?nw@hNimujww3z2eGEoIyz{XSYHfkNb7`&LkPX5(V!ffQ9K!mE${b@{ zqT*~=OCcf;n1cS7MI<0&D79c(s6mE1LsV~Esj9>70-l;Gcq&2a^0y&2o|1%9q%QMp zJT-nu;_jlQE|O$8|H!&(s-oW){LBVD5sz9;43~&Ujp(~FdZr^*?!qga90dOsm;+G3 zzrP>S5e2aoN|Ygj@TP?B{6eI8*^(* zE-%H_1q2g|e#K3U;fel(8zSksqJNdN0?dk|A99n2vNF0&UZtY;j5cy}zeteR$g8ta zhDBfFCI`3R=!^2I+dsK`M(*}X;zDk=q5+N0msd-^1gIYdPPixHdaUJM?j_+}dAQvq ze9D&JGS1vrW7pDxOhspUN*;!qgw1T!Eje~VHj?a?3rxb-j9beYc0!;F4_!?{lYDW4 zo>JX0gbXcTn|qGKjJ5oOdua#eSh1Fm?T2dE>y{lRR~h5cA_1Do)E6U{meqEqf!HRu z{MIC#gRH;hSv%ovd1x>Rg$T4-9<>wxE)PMI0L|lSk%LMo_VOqtO|ml`kq58+(20p^ zDX&V~$%gOu|z#pec63qcVv2j_d9cVTRYQQULkQ8n;j~Bw3XlI3mt0$GY-r;Wte}Ccc6aEx` zhxq%Rzm&={R}cQq;O{*C2JknSzv29q@OLYJ)A+lezq$Nb{4M71MgHF4?@#=_$KPN0 z`;@=0`1_u}w8>?zO#b@ucNu>}_$%UXEPs{!-Ob-D{%ZMqlE0<=y~^Jj{3L2x;KC`o~BE>v6$*jucr7GhsFc@(yA28m*de zq?)0t&A_&cq=axjaB`bcoHj{HT&U?#q5YjE%^sYH+d7DB;}XCdDs9YGB$#b8nC%?@ z(MsAUyS$K(t%KXq7uX!!HAIU91AA+a%=(CoSCBFK7d?Q6VD!1B$t3ws^G|x9WyMK~?4iKqC zw*Iuhm2q+**vpV5+Nh)`1vKl5_7nHr9@HcB%Q~T7qTP8C)vX~a1PZ>m3Me>Pc&pii z^(T#w?<#wIBq2UN4s6aAc3Aj>{a2m@o9!HuVQ!N>wGt4qdc$7@B?ZooGeSMBIw2Ec zD_eQ5MwDWk_?EnYY zv*rGEzKB=Z9clJkBD+%Ksg92kQWz#n*e)5LZCA?p7$!@gM+jP`xx!|WpSvYh)a<9( zGZH+5GESE=PJbvJRT=e7#-1qZC_7E;52C7J-1TQuMEIA|$J+OT{o+!{Vq}h;v?Lbt z>{?1ha^#BU=KgXIIRlwPeko|jf7y8d08MzZ!21mOr9cEkqtl;yukMdby=}~7{JZRS zccR^*^9yFs#J^C!({5of1w%mJYdVaU`UAq9egE&{7-R@B$b_^58**>4=v5z~nd4Id zytwhy;C3q|!FJ08pb`x(dgs^}SW-kxpbaht7>neM{gLlzgNueM1fm>+3#=`Id&sO! zE+nkIy7?(V6Gkoon&<~^FjgR;{(>g*C)kKk>t%LXH)KZE$pBWw9>|tKPSGKw(`}-! zMZ52MA|Wv!)*5v$Vevz=ou^x{%nViYq#Zd@N|7XD-xu?am-q9W_XoYs``aRxm$z0@ z=sekeQ@v`U2TNltn%6Ho7V~$WfIrl_DdhO(C3$&41s^^Y;2BS!bjy;4j+Iu9HusT& zfuJ}S>9jYCL}}s!>BI^WzpCBp>?`=5;3tGZlu&Ii`4dcgM794SBP}4@uG)X%awb8< zzmjBRH3??nqeRHYs_uGuhgGfhXe8Oxw3baFnEDH?*MeOU!V7oH`DX~>Beb)6gIGYi z0$tld2XA1SAxq;-Qlj@6_CY$EW3~B{7TnyWzTtUNfY57l#Cx{ze(ii7$RyMh@8RA0 z$119d7 zhF=Z6E$he?>4>E>*PtYLGya#9}55Lk65_1>J{B?qHl#l%#q&RlSs>M78Z}bP* ziaF!xIOdtma5cs?KtY$+e7pil_EZWDKoK0mM_8G&HGd2-)Jv za!66+Cc{Xp)&jj@_B6JRH)W{5=@)_7mOi^ZHX~bI0KOM~`6tGvh&4E{de$&k@S=!S zO;PH+aT;dbmL;GA*zPQMq=+BChP27#`u>)abCrQ=jnR^qY+-#HUL}1v5<1LpMzGK~ zJ`*P)T6KeI)!_D4Mbb^H&a=yZ_LTBj)#}*m2y+UENxM?;fO_d%rY|I;&1o3bt-L}V zECvI?!7?IZjjBEwVULJY_y5x`0;k3FG%=c&BU)+^Cs8XTtrb~=1o{XLFs-9V(c%QM z?O6==^>^m0Hz8}A^#_{7C`h3#t`?aLKYrxumy%qNa+bUd^CQL!z1U2v*X^MWSKvM? z8NrJ;lZnW&R!MI{XL8}++(h%9DA7=a0fLa@$M8aiR0kXXIw;dM@*%b{YPp2Iv*saFq2sgn22>mCpDg~7v zRNhP4>2sTIWfR>&YdT0cKghN>QAvrjF>x)4$UHO~Gm4gWuueoZr!=zUAPm6;bVj|MO|ue(oS}opIOhG61~69|CK7c?IAs8H?E!p);6W!D z$4F9q0Q;XbfX~qyJ%BT006+Nlqyg-tvOpGQ06o%DVP@NzE(UP-$pg6XVtW83<sUA@8#X52P4dXe2o zNsvYgsZ`-up>2FoHV$D{e|nJ&r$Z|x7^fP%Vd;pkHibQ^8)|Gz(1|sCmI*3r4WAtj zNtiur_>6GKt#1P1P&zjYhIgqCJx>P~48O8I^d2`6y%pl%qIco)77Ax&1ToYqp}BbyB)4)YZazU3S@#(4Ok614N}=tviTRG>LogfX zz(IBiOy#$1;nA@n|JnDrYXT2>2D{ss-O&*hVl_!(XADin$PG6^TR#;0?e~HpL@^ib zW#cISIph6ji%=h5TOp<1zfhwLKwT)QiMOAEG1kf)B`}c17uokkxr9uM*KCu~{;6-t!ri*%v=mD}w+C|mS zP+x(ZqrZ2YUS2jz1@UzWJVWXSq}mLL_ARAi;bT;f(O6bi3&|K4r+(%9fMm~PKxe|O-ms?9f$rGXj)V<0&Z_3-(Lu0d*NiUcb? zpz_cADpuiBSPz)2#%Dt{b-4T`^h6TW$Aa&(CGs0gCEJt{IN zIdX|ZL@{yKFT=yfTl#%?_-)RcDbAazI)bGZ5BzhEW z4-k1nxI!32D&EvA($Ge5gsQY#ATWF^hmz0u-?w+VmU+E zt=zgYR^C6kt+LmDTg}#olkM*BAiua@lYi8y`Lh%A$D5rd&5lhO9C};u5FArT4lYXZ zcOJiakbQpLtai91mSMV9kA#B@TUL?Zc(T=l*4sQh>J!0g5bU6t!)Avwa=mKS^d!Mz zRk(@5$SjkO@PYwm@qCde%gLL#mskFQ^62Go;YI4V-34qHsR%Y&e4J}l?H|-QplV-f zXwxm09K;dMN|wWl z3(#H|-x<9x6ihTLLT#}#e|pYWL`#i+0?m+w=VH})jK5au4cfarCD4nwde%-GFX)I7 z(UG9Xd>fnR8Z6n4YeUHT=|*SHZ;>5LBg;X1MdA`iDifYVSsKyS1W?0g8fy6TEo?G+ zhcMDH2heQ?Uk4(B$wc>qah#GV5Xqs`HMw*z)Hd~gPo!oygtOcN zf%k<<)P6UrUye4|y0^XUn_w4d`^3#lg6)#?GZjjywRN7mDMC|8awYZS|0Jf02M~;v^ za4s#|>AW?Tz>)duS**m6W}@_|U{kF5!oi?|FWj%5@0b}kv-q}AVH@qv{589d{=}H> z)<3sbKIb?t&?6p@Th&GH!0;5O2u{FGC*79vul>13g+qY8d3=+V9qCQx#2S% z-YsEoy`ro_M16S&IXcAgR+u4gK8qfYB;zFX+z3sC>^1V3{Dd0agYpZU$EK8 zc4TEpTqJ-AG{mcgAnLt(=(Ofl^b^R6#iBmQjRwFqAd1SRsZKb~B;|e+>b5X_hz_IWzbsrQt+z#{*3L4qA{-^A4+$ZfMQNt~ zjuD3z2-)#fY7Pp1OT=V&wa2ZHJ{y?;07N~)DE!MFGPUYGC&kd7>g~Np(Z+k`?J~)) zoRs_w$rxy4AjuOf^E;Dko|8-9Yfxio7E$tQBcvJEQ$!12UM2j#XWlINAS6-~Fbo<3 zME@yQy%+8DMp9^3{-Vd;v8V|d&?&%E=b8vDa~Q<#4$M^fZcRJdwcIQXKvBcXtA z#*MIrLn(3q>bTXx`>kQF2XqLJe&R*v%OByv%f~lb7V{nAbb_uXGpzFXsnN%n5T?SVr^2e*Bf=BeFcUUQ5t3>}iJUw2B|3Jq zajNR*F%1uUdF69`t7$y-UXB5h6+rS)EuA6^B73ShB|M*D+H)4|ar-%6z?aTf>KVFE zH(rob-ThSpTa18AUm)lC%=WKR{hj%0pnNse{z_8KR|0$bt52z~h(t(!R^hYqg5+rNBzC}UcR)9|PkYs-!As=J7Di7REU7=#;C}62nFcrN`s}YH^#>aK z3&c&&_t#%~YO8rjY;da-&`BCBIa(@7_6JK$| zVEb35!QXa?Jgb?8$3%2D8+B)1-l_= znKNgBsSH*Mma~;s zPwsBR^sG^`wlX3CiKL#aXQA#=rf0jP)U!@0N&QOCe02}8dsknlOS1m?(F2fDK`-f{ z8qd4k5n*uj#9zyAYhUlt>OeMWvpXJJ;|m^0;#kx2_%E8@9OTJ8Pr6n{Sz#0 zWKfcNvO$HrOPN94ETvv>N=fQT2K5NLdi6YA(pO){kJLfcNCg=(D9O?KU6S>nsxoGj zw76a&HFlTV!6GGsMy#!| zc3I`9FUb2b{TBd8@>jcd(ds3p5z5fBvdYO)=C@86N&9NYMyy_L$_y@ZsH?KdN-5@{ zThf#yC%fg`+eI!~y`pDBE2TuC(~zX~XeeJ37rwe*gF>ulMZ97MYpj<=!V*$<&DJX8 zj^l();y7XJ>YthFyBsG}xx{b6=MQMV3H*S4tBV=O360Y9jT-pbYowfAv`KiTtZzdc z8f}3l>%pP4)qg{zX!XjI*8Gdqn!oMTyi00Mb841yPR*}fa5&K_CSb#j&QfHP)jaq? z8I4uFwLhftj@Y!FkpYf!HBP)6(mc^eGD0eA)Jq03-i{# z`f(Z|gb}lTX}R$jVFup0+!;7dDVH>uaUYW2eNTftdyN!ydY41*RzG1z*|V1CQ)(%6 zYRNiAEoVEmNGUoe(0iZToz+j9TC&QkW>wva7aGa?ZZY`t6>d*ft{{eD?DB*!|9jqIfGnNDL;%4zIR=hN6Gr?I~?8mF=AB>!}2 zOcGm#Fk1b}$r=l$H1_U7GqN`6=`$LL*=wYf)7Wj&SfiC(!2Q%iDM-;lhEr4>nVkdREPoVf@4As9)D7%rQb zA|Cc133`Oh2+!o!?Ru_6@Th^St;!Dk$*IAk598rPoUKTTIK|Ws-q0)Q(6>EStR1M~ zB?(bKU+w13$9PG)^P{79TW=IUZsWNY>o)V%T8c-HERySYaSa~{)VywPo-Rd_!j#*~ z&SCwH7^oRMQJUIgij$&dpgq>hL)}dk)4Qm4>zYb?8b0%_H>S3@Tx&iW#6f7KS-O3cjW8tl(~ihE7s>q^ zqRvAh^~YT}BHg5J-zLmkWNF^v!@70c;hLVwfV4Wc@$^J6^TSB%#n1t-6A7dJz{`)E zmzVRhtAArm|I)45ZmU@OX8NMFioV(%_0j&LiH4xmU8fbYwUN5%wCU?BgxA4+5#Ic# zb$~IwriY>x5T9k90i`RpOoRa_oBUMd1M20x6d>ho)Mc-&`+*pKXTinD#v&2W>E+|YHTJZ zjJ99U(#wJA8&T1{NPCc^b59|TmAkFT^*C;;D=HLc+F^Ett--4kuk-35tpw~&EqR5}=QI{O{CbTs59yD?? z&d1&e6XWO5FS+Bj+EI{~IBXt!nHKVOqFa#+6)ab3O9d>(!3-ClNxizM9*M}HeHop- zO?(mJ$yr+^eN7SS7cV6Ku2O&h0~%=QQc61RblOVQ8b?AYy!Qm%W=X74|=3OipZ**HC&@A29t{$dB1_PLh+q_v_yPU`~)m*!Hs$5E8Rz6+y9VCv4Bj-e0YV-tQV7P03@z$Ci?dzV2?GIG;;UWBkf|&WMlH;M!UOE3q{R zCoG%=Qfieno1ACAGtZgQunwHrTb;ek0TzDmz3Qb|UC<)NW|#1~w_JwY%-Tu0Of&Lp zoZE9u$r38a4A}+#5RdB1Cur31aGiv;d@~-oO)1C<;gMeFR`btJ* ztxc2Ay_MVAJ@$Pgp0p=TM%5yw=`ytrqZJ91B-^?nx`)ryz53R#=-)UGUdL^meR-le zaw)5C9eyGyle|`~?4FpGE7}E>Aseyuy{B`Hk~FeTD_QDp0@yV@N5IE_)?H(8?7<~1gs zZ~Si&BW&V6+mW+21ox>=MnK<8(guTeaFcebw|9!ZmmDIFIU^Z5h%BLV{+cEdSUln{ zIPKF!^SJri>)yL*5OvMkh30YpJwLaCI}DVqqMdrsflU#w2vj2(HTTVTh5wEC(&j#t zPS83vilaY0s+QnZ*S_l*@f(hVKTcy&klBR-^ly(ta{GBkCn{7mTiv`vG>&$u=Z1<$ z*?p>*ZqPQZ5=i}K-P8@}njOwD(G)I*DrgT=dtv&EXqq;3200+{*7US!roIEk!r= z(v3;UE4VWd+~KRc02JhCTl(s=`N2)m7S#`0 zgfqw$=stsfKEyeLPUj5b%3b2fe)bfUllI`rdi~{@LQdhV0^j<^pWXcP^r>`<@kROU z6{a#T8cUpM&pZNRXVKV`MqB3i?>kjRsgM`=YqZPL9QTb@UslcVFJ#@ss<)~ZmX3Cr z$8ORq^?_k@?AEFaUKeM@Sjwi8@-+Vx(IQO1*xDo@eoUw;H1mqXF~}T@ini zp2rXNpf>h%s-&Dw(Ro<}4PKk3?=B7D?vJ$FbB#tWEnTY{jofO?c($o4%NKW*IA9n8%0gT zSWfr2ZXKQManB?Da?UQf(}IFD;yb6n$db-t6ng?PI}?O(~tDs@$`dNQ=OT&;&wL8 zQK56pVQSl6p<4ndVj+Uwt)=V9WcXZ(h;{FST($91MFnQvk(%$(3H7 zw|iV|Vw;RJzc#T+zAvdwh~73KiIPTBK{T$6N*_Ub%y90>#_Ss_><>U+KCy;s-vvwY z)K1!UE#4SE+cwVo2`CfEGWADftK^bjT!3rFSU0Vk^fm_*xVX?7=;;j=3FQaP3gftl z>WGJyFje@*Z!~>l)JAzOGKgRsmQTH409Mb9fJDpj)qR&~DOJ}%$~m1%?(qT6uJ_dq zVvvrj5?}pmG(RPO2FKukam!Q*y$Pj5z&#)S+8(q9HJg{Mv0K9c5 z*o@t zf*V^sdbD?)>BKZDt$c|q59bgbPnwFj4Z?pzBmDQbX@tK~4xYM=g7bBzn==k2WYFLI zGgiTu(-g=x+J;l9qtVwj-qiukzW_94_S_LOPA+>n zNCXZMJ6KeAWYI9@B9S1x%>AXrbzYWd&dB~8kS~N`+;`E_-SxY}{p6r@kC8}iLO;*; zBD1%biOQOKRF0A@s%;M03*8*we&ZxBz04ES4*9ygG)^tGEhBFDLAh3D~Nm(3Rp)IgRK^};yrb2{U8i*z4oNaGPRuYCd|(r$uK_- zKas+GI8nw7J7FO{yM{n-+}xT|Krk}?z1Y2DXXv)8HS04uMnn$bP0LGzFJ-Rk*s9fWRFVgSFy3GyeVVQMIN znsKNlTuOuKP6u%G!-03MdV%c#iL0|2;KEtC;lXsswL@p%%q}I+ket?dVYo7<&fm)y z?G%_-WR1Z^i^Q`V=eB%-rpUn9bT?|ZS^Qt`Aq0uA(O!P~0%?&!u`}ZXc+HOjPb57y z-Gf^>>!9|;%G6lc4ECdnQP#Dd8qs?EPT($2q@UF;VU3Q)hzv`f?agDnY4R|}&6A5K zB>Ac!0k9`aA;K+?p}F9MOx9iQ_=rGmvbI6w|N7c&(^kzq0%F#E4-i>+*f$Mw*@k`? z0+UP@UzU1=g;)8+iZw1Z`kb*YSx(DXFhvaaz&oBZWUv8Dy5uXA#t!-5tN zl8V-!@Wxan-ryQ_K0Fl=bg&55Pn~M#mA%*vo#>+Z)xVq6Osf#jS2R{$GjD(^GKmJ` zldYnTa#d?Gl*sm>IFYU@ehxCJ?hFLNrxMi4oM_UQ2EWL2aPVWjw>GT|Sz?D3Xg~*guDfOd z9lUyRh1WWcZ}(GaN5=8~3xk}^8TU%B3h7ld?H48y^b2XHyiEc_9A;o%6INfO;<4%iTX0vr39W7vEL+A!?qjC)~YC+=RXO24K8`N_4 zmkcA9av}#5#At@1k&)MWkEn8LOf(&|5y-47#K4uxVjk(R)38?EEUU^^*Ij6ij8bn+K8KxOKGVB`B%_rWp#PD@hU`sD5f_9-dinRfbr#5m-77@zK z+buYCL~XhkQ|7CAG-OZ7RFBH=w-f22W&V|VjnI~r5i&v5)I-9Y&S$kRw_WU2n_s7g#S#iI z>365tovg3*r!1F&GrH3R+e){JJb?q@(=^+ZD)Kp3+BX5~$)%3dDyyhBh=@sOtZ$rw z0<$KpMG&du49%rOf;(Ow4lsqVHhe+y(=?~VKTI-S&;ydwX++~AscRrTQojcORJ7hr zdY8(vl;DrGVxbF>i|BLY~p`A9cWpfNGRv%Sz^>_{RY zgMbKP2r|@kE!h=v1PunieIE+xAu~&ly(+RYzlsfFS@f4nGFd_*;GQQ#ndGiY*KAm{ zsZy=^bU&g{w>{fKZ_28AwP=sYU_C9UcUuGHAf)_kH%r06abA2KrpbuM?Za#z8Z zO+o8O&HWrEf2JD_qibad1+rF(WW>g}`H=9tV?2T}btg)MP7~6p4+O}F{GdN_zIsEl z_i@ge__=b<^j5EuG_+=aj*RA-I3n0dG2`s{Bt7i z*j4fL*aEC(^0Ol6=rOvj=D6ST;l<7kc@IfO3x}mDD+DVQ%|fo69m*JuTis| z`kXOjP8soD|28zq6%7VKB*Ue8E640MEYV{OsEe1mOIO{+646STYzKH333l2eN~+&w zqNH-C>R0Qt5V~`S%0Vgg8&Of=bzpcr>N(j|g60fELlReUp5YtI9x1QNopI#2byQ+L zZ-Rvx-scg1wp$ZC@>I!d38dJv$8U%&iNkV%$YB7X~4I^~JWK~$ycB{I>8_%{-l2e!>Q_x8iN=?BY7)hu4? zYKZKt9@crXA+O>>6y1Ixw>157HO|RWrif@p9a-#EjcHi27vE-rrh-k7LR5PK)n4P{ zx(wPU+MFA0$&JVLMWukIM8FSiD!?(^TocftSF8_1rbIk(uQoZca0Em7K*SsQ)WB7n zltHV<2g=aqb3*%BuJoFs(?gN}9 z1X!LiQr+_(93DZ8qn-vnv4xNGsgBGMLH2ssD)neSF8^049_^)v_>8S;RGuR}Ja&fzh(Y8{WpQKj*6q<%k>hL&!X9QU6iG2_MN#a=2#8Zj+K zqMY?ZA#L-bueqpmaOB%2zr4>fkEFWc5VN9BNkwwd6URC<5iU;Gtcf?c(~+PzUzha0 zw_0}=lGdftUFn*YR*s^D9<&Y*@;yLgmZ^-DJsU9ahAG( z@2Xxi?HQT&jh$1(H=!qyr+Tl(r4Jr*;<*3RdoZ~polvK;ec49rUWS^UfNC*XBz;QM zTaQ!JVIbr*5a*j^)=_o*$o>RdIAl-BQlIf`t}BfCh2*i029AftI|HOJTv(~hL7|uI zUiGWXuo=@Ksjb4S*o3Ubh1m@gvKJSg-7w*7t1u@vA;&5l8k;cGDjXJ@FwDZS>4Xu< z>Ql+pteTAcX|GfHVA!j-sfvvuaCLIN4eH!tC`c*;oQ*IP^nYpASdUXCmL z%@^;WLRy)Bg>FTp%5=KB`c@IHC+_khZ)1=ll^ub#gAhv@;?5WMB!{@GN7)m*aTVQ= z!S!Wu@pAj_%H*}>>@W5s7QlzGb3^$({X0BTS4`(}KX^hwz?$gUxf2`s0F=e)z4{ws zyqdpA&{OzMxgkRxL{uP>HsWfpEU$K0PM`GWUZF3WTV>5@yYS$?7i)luiJ*uY6eA=PT_OtATBgc*)i>_r(>;20`Nl(<!HI}Yz6Pl@qq{L&_-vz2FD-VI-XO0ttfMs$V+tZfkHBOBMm&bxD zVwkBCwm9*EETBYaysQ*o{fCk(xDJ0YLbR}Rm*;H`nLMZ#l{6HsQ!DxbMk1T|CI3@; zIctewMEBJ;M!r-0YSGRN!GfGZZtyI+#+^eag;8yOC?sj?? zdAckXd^#3DDc}TcW@7G`*2pP?zbS+L5ukBYXX5`Op{I-x>?npcfMh z)@jMi1+;G$J*^5J{*)W8E`1?tTyy?-kl&Lt!Yz^wzS zGStJTp{dwfNF(Ct#a}tOqQ$xkNuBf}p{Q*!4t`psILHZA_g|Y#7q1^(! zC9w+rmMcrQ

      hjh1BZzQ`-8rZc7XnP}CY0e}X=4?TP`co)Bn@(wSa5T3~rjEmR&y zw<{1_;d^MK+V?(Z!tQ60chpmf6#eA%rprsdAJh6oUzyBb0$ZCb6o%>_8HutR_LPF$N~?TG9vqK zUf51<9GS@C4J_QjXCzZC$bm6~G)04`Q~ez2s@x7Fua2SGQN!-nqP=J01J~sUGE2(r zyR#7)cdC|S2j#xLv6C-EhcL?swk;9bhTP(Jqf>oO4yn&5PfM4Y7mC?ln(3L4tg06O zj&+St=S13WxQkbI;m{B|J;J)mcW=I}L7~L+!l2rPSUfBgc84!vb$I_cwICCKm<1bn z;#XM>cYJLv|6_To*Nl>~s^vbSvm3sm1@4G6v@G{!*#N?f9E5YVU<5Fa!InbUP(6Kl z(c?cs{=!+l1bo9y$2VAS15F0u(m6>3wZ|Vs29F-f@t?@|d6K(^t4gzUar!Qk*4+if zq;OK(RTEjd#lq^3=nWWvLNqv%U|G!q?qFwHb%sc2;=b;+mc=SWn8m~^qL?P)_!*OK zpQ(G*JzvqbyHYSGwTVx(W}@8P)hfV?l_^<*w(O zR&fr9F>$v)+LT>VDuVeBKI2p>S`JHc!=Mb1@Ho`NHi~-u_5<)!8`Hub+2f}@0x#f` z)gas;)2qHbJ;ODVNzv|57N2VNI%~bhQWdhyS#T#A02jT>aoBAJA;dj>{;uisa(`E! z&og}v8E$Dwd&MSM$P&Mlb(DZ~H zVMx}FW`)`XBh4{$)$5<(o#qwxlpH)0V7xU6ZxUNWaz5>!0C` zD?G~d8#%;p*3j?59IHWh+W2wP;sNb!JVcq^!fA)pRdjU*zN?ZJ9?EB`C1y%jwYr1F zP6xLE5vPNC{gYifs4=KjFf#9*GK2g8r^{L^gaoY1AiID`E5IpPNFD3Vob9kS=oWh{ z!a-zq#%Z>ly-);ZX3T6?xK0dB#yDvr>|iMvR7S#_k$90Y!w~ta_EG4Z48keK$KA{A zVjFX9p%W*^04QRZRQSI+l-Pg21Jx(R9&8^uEotRF%lM_%pMs&H9cTF#{hI0tcvAHS z;UBiB>uBHVXcg1)7M+h(!!Z|sgS3G>$N$O$u?-XP_v}eS)d&CH35wjJHt~kvR)^Zc zo7NjB&fC9$^Wwjg^ix2k@n7<=kXx|$DtYxy?ndJ)co-=Umb}_8PqjSY$vn{-(dc)J z`VkncRcKifo|NaCoP@*jV~R<*kfvJ4ISEtb$7TGe{3*SceqOtpH3q}Z?PcrPPOhW! z!*7cJmi^M|b`lQo!|EvSD!fRBw1}E2WgSX&#~#dz;q%(cEm^bK)6xuMkcEdNdXzs3I_`TvanWBm8tNIVe!v-m%k|Ka>!&i{D+L;P3p ze;faE_+Q5VO8%eb|4sfsYrXC-H!%xP*&iVX$44KyB78 z>L?L)T{(`7H)$e74q6VJ?){N?eh>m-#vD%*(nK{;4=IXN)THZR4U*WmG z#FP@MNe;SGx_=IBsOS{LD5s)%D~F&^SEE)5xe+~GC%#+KTi#<=aXz@ zuv9KXU0ZTRE;L<{j${L!bF2(@8$QA-*8pmD^`m;%y$rf;6(-gimpqAi6CQ(`{{cH; zFRXdP&>a;o4gIV7!G2^4`*BA)z63U*wh+^Ks&2vB?UI>~97%-mF=hJ5jrkKT!6$O= zE)prk(;;;ym-ljwRP=O7<)d^!cK$C{%5nL$>TExV=W)3h$V=qshtIH1N0BAwN3`JF zX!cT7(9~8&?Yt2}D9p~WCXLi`I8jr0|Gz{q7w)(IHG#trhEC_l46C|j`tYVe)9e`n zDu4s1N~?0!u0A4o-h^Jy=J46wa)g%PGvq-~rTsIipDaJBt^WS@22f&A^b#Tq7o%JE zCk!SRO@P)BG$@@K_N0b)&C5c4yCQvSUY7kqun*A$9$NVX&$D7tNmOfo0s5}QdyL54D4BlE8cUvUJXGAl_GjxVyt<=91Q6SGHJFU#CoYlUc6V_qNR z3K7^LhqX8UZ@pk&*Q(gczH(ZW(ijX$W^+_nnY7kg(7P<9b%KtQgj0m|+|6&msu23_ zKuCR(D-tJtR9gPn!|k%N#<*iT(3+toL}F#IOD0e78@6VZgri7O{Uu%1tE9xvce5zF@@N)V6R(Lu`GOYK&q433xNrtCTbckTJrn-f2{@|_?xE0H1+5=RYFLethtX$16x!bwn=TJTd z(`tQ>jbP9GM})ybgX@}+>c~T)EEw+fY}(?DN&dLDNqFb{B9Er>5_h{%urBhbv!@)@ zh8W445%VqBu1R>!ujK#3UNJ=w+9W$eLRhi*^I`07enU3$$D*yExt9(5yK=RbzFbf4Gd zU3|7ZVQ2`MH^OiyT75sWtnEdDD?)-Mb7^{@HTf~GdRqu=9z?15!#-jo5>AiJ%#>H6 z6{f}wAibyqNMx1R%Z5oO@(_8NSH0CL0^p%Y3@!=2#?7)5B}9&5w9T}H$bsW%K~clf z7HQyW!StY?3cTg@h%_C6%}9g?X`2Q|B*VV@K2hZivkq_kn5<6vk`%}+l2g=10cuJP zy6#i$X&q=EOpP`TMMD=A;QZr)!*@Cx?w1q>DRi$zNyH+%73P_TtgOX znIxCJrez+ZrsvpGuD8o>_60vn-_|_-s!?g`=p;zNNT)sJru1#ySqmd%(WxV_ zx-*~#Dm>!WTJ(uK)w~N3%q2n9Sn@?;rnOP46Kf%Uv@NHbQUO*qua5vAuJGk>Ob_Yn zSGCe>D3+mR+`?IN;qv!})Pdb{7Z(yNbN{I09EN+<^5*@BP7L3;Gd%@C6G&1JCOgvz zbHW*pY)ADa7RhwxZ9jAZ9Gz?pX3b$#4wS1KIp5byY?DBTZ`rTtm#^*xK5G*{=Uq6b zHnCE^ht(z?IT*T)nPWWB|j;|Cuo3az03bJPL45=oy}&K1(yQi&XS(^gsRG zdqaG)re>gD*wp*QLRHqe8b_6A6WL4UtXDt0M%Fg^m7VHipviLRSz6;)jl=9Iohm^< zM#;TQCbxM}8#SbT=k8_TE+$+nEkFBT2t%EKQp@D%i2hPOQ_w=C$PJ~RnvE$E z%@+q@XeQ0C;bPzc=dW&Rhswl@g{By){~IqB&SpsZAkYJvJW(J7yfh9hFNG2OiGXVz zZBd}xQG)|?>Q8bW&6lBK6L@@G!h~ z%Er^hA^TqSR^xumi)G=?gz`pJpM{HFRA~Y=a7S!;r+7Cf3j}GoAZA98_yNb3Ly^Q|A@U z_V>!79chtEEwowhPSg1DTW}k26(cQCr$9I3Ds?S`qdZGS*Y^5;&OgoRHV60U zxflw3in}?^EZ`cb@)~AIMCEGc7X_}@T#)G^=I&RTmf*93 zNa6#j7VE4%a4b*%P2gvw*l%o1z*;-?V*v>p`irHL5#}39rg!^@|@G8N(gcjA6Dtlr0J~d>N&* zutB}FnYCQB*XpROd-xYPWE#blWJyRpUZ>$!ITX1=sXf6{IYtX05)V28h@7WH0MV|0 zhSVnKd$0bkO26^&#$MrprnTtDU#eTT98Ajl_o>@nV}U(zV|+BEoIuZzFAxH**vygY z==JP(hQ7TtwnzY~#tG@QOY9x`%Lbd0t^WSeL9u5LgXd{jmIC6W9?^_r$%UyG%vTS< z7w^&s;B0*Wo_`fJ_dEdgQ9eSBawPY=<7Y(I%K_-Zu}=Dp@xJ2Dz=PUh<{C*AmwKhz_u2~e#g&Of^4NTt#neOU#rDD^1w*3{CyhD|+vI2n zzTGd)VO7~0=DMf0EtiSwUMuVY1?SX6Vg zPI@O`wxTi>(KYfZVmq`IPrVn}S9Fa`0*8Yzd1d8>DR-&w&^O!OMfK_}thd<*!pErn zlj*&AeUUsCsb=lD#--+7+!aJom?7i->chVsOhnh*EW_gnp@HV8paFIz7G07a%FXJ}>~Pba zlb`=$Fl8OpEQMuwmExO4J1YnegL&j|Yyh^a`v87v4{oI4?+iq{dIEBO*}5a>DzaPc6ze;|FL?Hff%v<)JD4t- z=18x5oaa^Se=13(5416oU+jy-wuqsr@jGZHMN1!I)uV;Y=n6VMr7m3iS<*vFZIcjj z6|Jj3IOzCm61jCn>jTbjnSZ$^(bvPV*B)n@4C#gxfww~Vbo~x>X%0i$k?uWlO|Txg zEU#@6ePI^u9;AiHQkwZTYbTjLN~dpg(w|CA7wL1Yh-{>U(DAwpvNEzcxCS^ZO$63p z29*DdE>P(uN&S=;5)kY4@{oPsP&`VF;+Tz%8>z<3=NfZTj{U6MvzOT~A7W^7da8o4 z%>KBMd7BSw-aRMmZtyh>bgnydShjtdqwfKiw3sCV@Dk3tN9C+bPBr%N*{Xm+bWN!o zX!Z*tJzxb32ge~xln%AUJoe{N>~0v)g<=ZW;?kO}W88v#xye-b{a9PI`sI0SR6n~< zaH4{@4yG-Zfi);zQrKkT4{~U2LJTnGegj0ETdq!hW`E-L?YT&Eb-wgXYtv%I*uV*B zRn92PApo$taWs=>=+IZ>&AF9gHl6)rZH$xs*o^A6n967ja=Q-70pgUsma$FlUR^;S{&}nfcid4#$Ve zPuhHeCHjB{Qc{{e>7X*|`&&fLjANQ?t>Uc>$_&e*elZccIf!|#Nz#f6>L&6>XJw1o z>c-X?&+iv67`Pa+3bF%Zvm*nis>4KzV;!Why5xwq`Na=W(IMgu+GDdZN4E?3Y`2Tr zwSZ_i12ppB)<4(v6&XSgxkmKf?6j9EmjA-Fejc{~zTgJAjX`Btt6%-+R*~iJEeTbM zu5+1+fXC3E6RG)Y&uO(It65@dr5#L?a8!@!v)^hm)<8`iy`mk%7TiAOk?3Fhq;Du| z>PQFWW?~oA(ezPz)8BiEVV(QTkexYXYN`5fS<)4#Wn|j!At7ty@Rrh$dRJaz7S+z{ z;YUKlgPj;-H}X>IL9ISrG6_{5ePhhb8F8++GfS9)QYF`nbXGfjp&6)~ z^)itW0xa+FgH6YKMUVHI|81-Jk>MN4t&X=7@iSS9Q!Mw(F$`<4b}uV0Rm<4oT(8t8 z?*CZ0Gg)aY0kOg?ha$Qp@TY2bESEOHN29FM1And_7`qB1%dP}gm=Rux@x2DHclbsC z{7BjG4R3b{SnZKfyPz|K`IAhPU4|a4pH+e0%RmN{@0s5(;F-@ARN%vVKB11l+p{yR zjQn2n`v-c>?-SkN4!nKO0rFd4SRcl!42Rggh zMphr9FEkc8FK{$GLpL(e>ID|+ha0mE;@~0!(9=N77r%t^x?hnYQt^jW+#mJ4^w>c1 z{qRX+V>{%-HUxiM=keDG57DSBY|V{_X-$~MSO>w(r|Y{CKBwsK`&WM z2dl7bs`{>8hM8ScPW3?+X_nQGEa;L3y~8&!i=islR3)fM8xG6bz=1&1aL(?%ozV`@ z{A?B!kRv>nSy3e{a_r1|7LdKmI?v26@>ie9h#1b>9aiSTz!}y3Vwp>=O&G+^|2rNw zV(z7m^%>c{){)^DsGUX&LJz6?b*0|ur*2?uHJc7pf8?w`u~M$c6p&flWKRv>-gLBA z^k|N6=|UN4wcoX1R;k=NVfIiYY;w@gG8DjWdi$u=q`Q>933+a;$UnRVe+PRzhht*- zQD-Ub2b!vJaf(Zf2k8TH>$n$$*{SN~7v7JyQB$(L`&ZEDg419K)tv}xnfcvjpW zJ<6h%H*Qim(g41L+W|Mt09FAx6C~q3Ul%iWj3tYMKJ)?gy^=|7(W&09vw;$vbm!kp zSYu{l!7z;GG?E{R26G=w3}X{K(W}ytXa+L_9S9)FzTG%LZ}UP%&KZF%ql|94rs^Ee z6?)>t@@M-@>g5J(3f4J}rH)-VETpyq$|PN#_YO@Bij`!x6l96QPD6=%R;(b~YKoQQ z#7c(ZQZrUEB368NwnS+EPk*0oggSe zCjMwEH|||0uWSpkk!S1ZTo$=VHMp_}pDd$Wf*#N)Y!FtsqHC#kJq^Jqcu{-5DYZ`9 z1BY2wl|G~Xok%uxf*aHI$|Z8aZSDI!VeOC$Zk>mQqOBOVL|fCs{rHG@t9s3d_aPtw z;)}zW2ftN@bc$WFdT%#JYhochBh`(jIx1Tuslw4R(eSjoE35aNSYnfu=;xG>)DucD z$f!cHD3^WsZcIZ9M5PJgS^?pz>$I_I_>s2lImP!vL3U_r;u7`ddm<;RY@>2n$5#-# zUMj-#07M%giMFML zSZ{&pbz(^ zcjb~MZN7>4E$+7pGvV<1PLwxKaRI=@et4~ES?fp04@~7 zkq=Texdqz|txY~|azUs#xDkTK&|A_C0nQ4i@(z27N8NT4yR0Y^4Trw5DZ_+x(}vX` zjOV`r%3{ls4R0_LD5OT~%wCfj=Kzk|4A6^Hbw0V|)ZSGl^4$TFy*NkYF0o0&G}k6O z$;sRFq#0woxIpY(`=>aaiDT+E62@ZkqvY=fJQ%?y8KQozS9TS7P*~U}P zC@F{og-Ix-Kp*zT3r~Eo_85R;6XW|PS10*`$E^>o%e0H0EzF3{)5pTxSlkmH!Gq5k z$pQ)bCbXt?Jg$;neLfc0&I8JLW$Nw`foKI1xB!#5OXrQt!cm%4>a{MBeUAWY^oGC@ zZWO{C<(Khv7AE()5jO8>U_02I(Sak8Rw;#xrpvjRyBuAhy72<24tyq-tDpS7zo8o}rG#Q;k$)Ftr#Xk^m84-UI9mEa}18uK0!(B?$MlHYXv^tOi z{t%VY*aCMfU``3MZc+-$)vGC$A?Sz^NvTmMl+vzLPFm`CN?RA6tdvZs_Vu-~xXt~4 z+t=5CtNxL%uW8TzbH2X5Nq)Uw#Xo~Q^zaPao-@B;_ zf(sl^qCzQa*H4%5?q73Lb(74wK`PyDstzAW6PF<@D%o~B1xan;)MCG+xT$)8i`%Z% z=&UUV%~<(3*@{CWA~W-=6_ihITlSl?KmVF?m}=bJ#gX3T`;;(@^M*Ja=?&(mS2)sH zmTOiZO~Re_;7RdJAxAlfPN65@pMOfee}2C*wFa!u?sGD0PG2yU-pn|q!n+E01G!q~ zl*jFs;9L)9xJUJdtYT2<#?+qlI!d=NWIL78lV_O+7IL-KNNM zx(;i5l_xgS8=L7zMWTgkdFC zsBIJCPItHyUDI%bSRfG(}>igke^zgl< ze#dyLM(CvboFq*FE)}_n`U4Hx#S`HSvAHYGZAsHT`!RhLIqAU-LLz4B%Ti9J8Lb7^ zA2Uukv$Sxb9nMM%7Y^BD-ANIHvI}@_LzJxpfUFQamo#*dRVau&#=q#%aYi*9Yt{ z)zGQWs|?PozjI(-CKHcMDFTQivLlM1F5&gnXE>0doVYLlDSD{1wo4r@6_R6GO>X3SNE zsexbpsFBH=GFmO;jXh-~Zrh&X$((*{W(3^A&PdKJa)L%W19LOO*@-#B%xjOD#A`S< zljkvZk{~AW(8X$2h877-7#SWw&&^9&qYg&XgeKdARVvtlb*vVWtN|vj#MBG?Vm~Fx zrV`moW85Ll#-aoC8Y?h`XzLc!>k0G{gq@q5srazc0{`fJxT=J^90!}5D>^}!1qw&Z z&%2)udMHph?4Ap({^ECxy#8`=<%2b25CD@K= zvq>Kk5gZsNBJDC~;+2gPX^@52Cg^s;95C34Crmns>F$w~lqF{0n=6F=%WOvMsn6ss z8gRm>neJ{rVBsUBdzu?el&2_YOqb=6Hrj z+6Gs&#|Jvm#tw;dNqReBBKtyiMQ|S~zW&cJ&)6QSZPMs&Ueql*${qZ($liUdK)bu) zSs+%KN!KbzfNd*p;sdGM^?+ulHFsi21rKxahKO^@MD(7;9jD5BL#`(FsTu7T6xf z`x0RY73z|S3+B3KAkvv>!FL5SCFWzMe)PzrM?d;`EMjkD(m7G17MEZgbUMF$`t_V; z>Pso@vhGQChIpzw(Pf=b{1DmW!5F)66;whv@LLXqv*iX9cf!WLRcx*R}#iAG9@#U%vz-`s{OqF$*OM015H1`5gSEt zusEQ=RWIAfITZ{yWR3;QBE?;CT4W?*$;icws}De~5^AyWMOJ5*XTBUuCaE)4gwSA{ z60HX+2;jo+@4y;>HyP|<_9LRTv0%Mmj``RCe=J!iCdUxvT4P0a{DtHpIlR29v1(qcA0;wx(mDwMbgWXcpq|wlROa}gm^$LBFA}!S=J1%2$)81 z6l~a;KQanNYZgQp6?E1SzDN)uWc1G`Yed+`x*7^6{%2`t0sx5W*R^q{H=80( zN=0hmc0mAvjPTi93~s}+E9eQIl0VH89)NR{kev1EDd>MXs1cPG385{buS$+I9q(O# zc)_)ZCGy_M=Z41Z8^6PPU*8+P-GTdnroFwZa^yynzN>+sX{rSq8b8PxW0m0ucUyAO z+o200p8CW0w_t$4jph&-?!3)aIpz6h!JYZWZz@rLJm3_ahl29V8KRop?TXN9DzEZP zkLI}SdG3Qxc9AL3wh<}nQ}6?OT7r9)Lm!FT!M!k-*gM!o9{dOHj8*JXYZ)ao5~)g5 z^eSfSlS&w8Jl_|yI9S&NBDl2KZ?(=bZ<#9_8rt+^ch@xjrn zToLhH&U}|?MPn*K+A$#7JQM=pBZ)Cnu@R;54q=ppN@Ql4JZ2yr;-69q$(WFW4&-`p zlZX`oiZ(0517mPgjzDKKgDlTKhmLbC#xyWcMvsdg0Psdg-N%@xPtQLme1?I^*2l!M15Fvl^Q!t(3b>8GlB6@9imj@hK|An)NEZN+C8RQWEkt+mTyY4pRgHL9zW1r2 ze9PgE%p>m)H>z9zm=w-qxK`rMPxFo6uu**HiJcHDFsT(&m2CJd~cI%lm=Ru4k@5?TrE z@q~J9mmzASZ7C|d2qwIFn}xmw)uPGatgMEjefg8zb7orUi`{(yLfO0@jlTN+IgH=O zotEgN%5)Ea2Dj3EuX#t=6VlR~0^{6sOG|i^?TBFF$!qm3kJ+5N# zcLeTp-?N(4D7Ps}Y zbSUqzV-$Tu9*A{2Ig&+oq8 zH+~n57FK0mpWflLSKUTyf%bcTZ&i2HZMKRIMKUPfzy-)O&jh-ezKt$)_w7)igV?OT zABUMFt4LYX_63UeMm%-9wVR5w2*ujJrusPAu2d55pVv4l_$5m<+Ssd`k%+d1Qnt-B zkM)*TE(7(WQjTY(?j7y;RT{p%WU6djKkLH;!o%ay=i85fCFJ!@KiQ8G;2~dKJwPhO zimXIff1HVBt@xXzlPO zly3q%W?yQ%-?niZ7E(VVw4UBwL%8Q-i^^4>8YJ!sgRg)rV;RplNB1MOZ;w|dDMB;M1pyOlZSvR`lezN@5 z$r9-+Sq?_p;(IuJ-q+j63zE&-%;_FL9@zmN$Q;~w9!Dy%rZ|_7{-E(xy85UCN}t%T zN#q}Yygzb&!ddw9Gv=T$gPLR4Sv4_bDHeJ28ix}mp($4M3S>yK^7V)rMD{-q3@HK> z+1fO=K5sWi{2@7|U+i!e$hEX#7d6r|JQ6mlx1nzW?U6ivC`CAp8hzs;`_xOk4&fH5 zQQ;*WjlB1dJ5rZMk&B#u-!VK{&5$+pV~F0QwbV@Y#@4QRtZiFy!r_x?+np>Tt)ioe zD1Yp^242Ko6?^MgeGQ)tkBSLh!=qwy-0!~r2Sv}Qc~$y?8Qtp?#X}fBLQcKsiSV`E{J;!!EXX^T;RI8}VCF_5~)K7<9YDHK5)itjQa2ecRNwDkh;D>>C zvXL<&>+Blhe9}XzpS(NW@(h1FuQ9M;Dl5CmwpZw+$|;z-n+aBt5dKj0do_f|=&N2j z?;>2>tEh1$Y-P9^SXiYzZ zk1Si34L3~n(nS!Q0bD~LyIvL>K3eGkMCNX%&Bpn%I3!6$=`yEd68(AJN?p4^C1u;8 z9fWthU=31BxqL7_3WbQmhdC;ij_<;3cBDV1UCD_d!W|4YR#6wLXu#K{s@xvrGHan%W{kiZadpp_Kl)< zvY319Q*qY0b9m8?KvRj}*Bv3X{?+8(DM4?T29pbUF82oA3;7mFQ3br~+N)f$?5KhELVCh_dK@1 zs)S`O7^82p7p*&37iQpVP0Of6U_N}}z+WfwjKNs_4c=@OlPFU#W%GZv;KHtgcbYD@ z>T$_9T_ zKp1;8#Am~!x9jJd^ryHjRTZnH(u(7d@k9a=k2NUZPAavX?+#6?+;gwjyPDPFjmrzv4n!wfYVG zo=Fpj{Ra|psJl8fr|$v1J?pux5GQw;(T|D0tZ|<1zpA80_?z>ii8NoGR+vuo^3{C` zKo>aNL4L0#QLmdOj8 z_Vtt3MtA73nY7^O(Rn>c@rPo^PG{`K@lKe+yVtw@$^Z*Hf zCvebLUn0+md6S}vUJD9YY4;ZhJ`sr7_1EzkQpFzdi7h)(=n4IjWu&KHE`w~@lZ$oR z4QZ`zs>|Em`XvoQ@7LT*nDhbBrd#ys*2n6LIPaR9;D1DVs;|>^j#H!e&cl}LmV45z zf?KR>!s(kN-_5D{c-9_YGAdey4qcz?`L*%aN`k197K$e674mVBe0)PbPM421w645T#lKH$!kJ{i=vK+0Uf(UR9j87 zP(g+wmDU=}9;s#mdd!G#Wvij5EIK`izq-|i;7jqWfRd41XiHQ)MVu9C%oOcyQ7!Rf z-|K1JH9&{Eqa~xUy=sE->?7Q5WoY?LaY||6Snj<;F6cxknW;X{#4Kd5&g9=6B z*bSO&QN)1eLq-eeM6`jflUy9S=mj8R@PMcgiHC&!L7}EFQ+G%QS0(;wt~&M#C_%?R z9je>v-5tx7 zc@zC2J#X2X=cW}hlpuA)LXpcpZKbHybJzFG$VF}$R(Zl`Z?|Uq)%N!eL7Pp=QqA(9 z+tQjK>Y;K40>{l!Ip(zM;7qs>C^tF;-jMnMo0wA?l^<(MsB$sqfO=($m`8cl zAYh$(N07HU`c{G~0pE%yq5(|vA}I=NicI27q%S{(>qayX^b8MrAIaM=d_%P3micY7 zd_SD#<)g^M&HmZT*>b)c-|^kJ**9#%LErR^zKfgY^yOiT@8Y-SzAiG16kRBJlr>sT zfWfUVp)Q3^b$|3bJd=?F8Gm+kbMY=`%8?r}w-ZGyty5nDpWA~Q;p8x+}96R4X702!h8=(D*x6Hr!K2!a5x6B_c z={RW|yL+Y3S8ti|+@|B$mHdM^cGyLr{&x1p;|W=orRui3HJK^I%0C~;u7Li1%{}v< zW*teym)6`{=?dcmdkm}HvvF}jrO{TIcLEpFpt+ckI{!V9upw0**HH0{T5$_1c|}U) z4q@+Q@D#nZ-9<2+wFEmm_1A;m;<2HGBQFFCp{#bb=9*4%G(OP^t_=j&g~vef?o{zl zP-_kD@rP{ z>&vrY>$_MuImWQV>*LT(mb?CGFq=8nrg@svh=c8M)m-6<_^h!WP5D66c$?F3iJGKC zH1%YU-WDJjv0-bp^Y zFbA#29PI}`g?=hi1Cclgrfo-EeO3!G9bKwXkdaZ!HPuL*JnwMvC>VkK`0x)#_Upb} zP`x0u|IgMf7l1^W%ad8R4Ae>ggmudYFrd`+KU=rRF`{iVE__M-Uys9nxAz~}X1s{| z&wnNkdyM>IlCk}ywi&%mTmK8&3<(}=Y%|t9{?FQG+zQ!rqHRVA@BV+Z&A0&;z1ucJ zTu7b7He&|!&!+im2yw8ZYzeWHaAPTP8kQ0R@cY|W9U?FZMi(a-OK?r(XXklou#|6) zy8X>#!i5H!!fQlj&(nfCE(CL+`MY2er*}2A!K{qQ}bZ7nnx=Tz^a@1bj2PbLrXb;B# zZmqS?XM55yz(Co-NqzljTeurpYcy@h?^tAItooVg{kTM_`y;R{Q+xRo5$l`s3+-v~ zmlVCv-7j*rm5%BKs)TD%v&pdwbG82Xf6}A6Mlh@|ctkB6jB*?4fyiDk+*$}})lPV3 zE3(q6eg;x|9T#2a(k(frwm^zM9a3>dEr`29UwC5ObD=J}7`b<3XLB_#&Rd){U64YoH|-GSe0WN*L= zs~f!{Ej$PUer#r>U-XKMNS{#!IbmEq2s)R5$k*$D$nRHjvVLtqWX@r9z<)?HlD$lQ zbeo|Log<;AcGkOyaUJcfGxATOofY}(v7Wk!vQ)*D!4SDb7=FCW_F`KMQOu$kkQgn2 zO2uP=a!@dRhIu`krGI;|SJ<=kf$CPt4N@rfPJ~6th|co5;u&@U%xIUYE)=(#SB(c$ zQ7YG(;6qW%pg65OMTe7YcC>B0YzKSVPQjUS>yZwTjc#`iH|?MK2I09%Je*k*yw+Uq zHunYEeRZOG&zipd!(8a|^dX7dSVf!6>^DalDeowqo^|PFt2#>*)p7IVN8c8fsWH7t z^$L``XZj|zaK#V9bAfeZ78+1f-M;5HLpo5B=zK+o5@>;;)A={6qOESTul~PyEz>D6eWYGT#^oi4BJ85s>cf=R;*TSizR*QAcVzfNIqJ=rOqI^Eyc`S`rBeo*i$Ig{D!}uHGYoen{Fzp= zH(F@eg|^i>Fm_z%MMj@-J>mL_xXZwo=Vu!(QO;Q=th`<@ z(Bu{F3H1iP8&i|&D^psgiZ#yKpZ-s5Ire;&UfJiRcOGMYrvfAHsZrr55<`z&jq7_zo=wXZoOXe4{F*9#`JtuZi zXQ2{XsGWv~ZbH^@V?$1IYQSvxv7FfX73LC)Lp9^lyx#?c$l~)7YOvHU&bRUv#JWm! zR}|CYp0+ptoB5}k=xt2XwxL_{x7?EDY~kF(rl={sxGn$4JY;TfnOkU^#T88_xlum? zJCqPjAtfLAMDiQalsARi%#p@#V_W&gzKR7!5GkSJp%xq_LFfu0SjJ_!{<|b$K+{l=@&gkmM zm}+PAg2DeRCyFaQ#Y9XI%$2XQYebL#|R#}#lN=>eL(x!k#M z>bnp6f_G9b5c^ATmC9d?1eWV{-nF0W&E9ny*E_xI46coLof-QJ@y09jW~Nl1m^ag3 zeO%s5l5FSA%&6|2H#4(ZX%8@7rI+joxDlEBJn)puj!6h~nU65(m&K|x%yX|Jj=jjB zp7kLbnr4$>n1PJN(oLkm_-5yc4Mz~U0a(}^l^LHf!OogH2KvA-uyxtK=DS4AK!LR8 z9t1`0jfD0F%AF%s-6D(HV`V7>-ADG?DsLcrVi8cgk!KlfFsaHgTP`D07)$ipnXGw3gTIp+*tjdv?fyyzz-8{$M9oHCsp+zR{+lTGY&Y1=|OsK4Ex8PhOAV+ zGKEc?;g94S$?)Q>Zxj`|sb$T}hA0%xH}gi@P2PXRYxzJgL+vD6#Oy8BGRmnNp|7Jc z$km^-I{pmM)rtDkM}JbPQd{~~btlsP$!Fd-~4=IZsHxBSaF1*tS zp7}&t_(-g}N91DjB$aqSmiN~{^tjp-gy>o3#m9jhD?}dvsjO^Z5~8OCYtD6L=g)oF z3;iy(t&*LOihfUajs`ZZR3RwPWcVGRUfJD91tUV|k0OimW{#MD9=?~RKctboGIPwH zI(%EUHx|!LG9NI@(TS7IAxHwf445Wf=FOZs{{&E?B6I7lVpzCuf6ZGD#fDo85;if* zSzZw-X>jfs9xWz`q4cp6?>9>(6YBFV(<@sI-A{y9GxJ<2+pW5Gi}`pld5Fsml&3YM z!-BHO#JJPR_YJ>JNkh$TH~T`VHH(^jp@B}gnw~hnPz3M%Q3DtD#tW}BEACU?K`r-r z!ljn&8DCl&zIKR@6Fq$GFi02F+Y0bA3KdB^2w02mjLPmkYH%o-2;9WswmT6!n0+;i z=MppTf`(@0_B4M5CLq!GVv(lsL3!Jt$Wn>>D6+An&1oCDcnH?=h3x|>hYg*O9Vyv6 zplC2sH4NpWRv>+t=Wm<=%FL{>c5 z>A^@z%N?m0HdB*krzz8dnc7WX_AfpP5O|7;2v@fTByewiGzmJjJ->Kz=oA^_&#;ON z%YeNde>FUP>627vr;8}Ko&CpDmm#{hMux>1zzZ5QV$g~G;#x+*O)K26jORJ*h+BEu z8oY-#f^FdNV0JGK0F(KuyHP29h)X&Y?*N(A_H za@MzKa_04*=u_-#7Xf-(SkiWZN@%>K`W5C=dKp>dU)lg0qHb$Gs}XV$F(yPlgl*

      ;aeAdlkdcRZecRcTd8rDn@DmNB&Mel4!MU!ux!LjC_+mE)8w zPa7*0tJOE6jir}9X<``>zgZGZ#ubet%+C?${98ri+_5gQl#xdVvdpAs5=(gSie@dY zX`GwlDH|=t%(r7X0=3u_#3iV52YO1yc2B9;uEVbgTWD9ZshR(u)Qb0L3rZ*SJ+&f$ zfYylAbnq8PQ!7fET9|=UB_&?q#O!WjK;uEzL}5#gi4Dpz(nf7FgU`Siu`w9_GAZ=M z%(!U9E0)oM*C^0>Iz^g-loGf7xs{x%_afN$L7Br}=M}j*W8g2}Rq3LXV9Si5sa3%T zrhP*=>$XdObmshS)sxC9qEnNcZDr;v)Maq%ZB@YvbK6uRbC$FPB^22!u6>)ii#FKq zcpGVsjqF>%%N&;#m-43*5uHVycW4TH?Mf%Eycob0caF!K;9?x@0ocMu;I>f$E zge)WilI?bQFujird%Jnyqp^Gz4kfcGc?6q3GCl(;2>S%+;>_rnEc9PDrv%JLOCK`51-9V(iR=}vA#Q+N;bkHRsL>S;HZ zFQ-*+prXDjdeVkKuD9toqJ>$J)dP79jw5GhHdpENClIYu;M@Au zX?j(^dN4mtg&8|8oJ=0)EOT`=hBBMe>Q^g(Z*--?`kIfwlb}pOh+W4#4G8^VAn(4sk%4|rSvdHQzej;@P`D^+uh3ty1 zlvv1g=NbShHzyyFgn_f!AGKM6bSyL#X6^oLnudaYw~$ExmrV9!#+t!3mJ|Vky1thq zm3pSxKr`BI9!qXH$);2R-J@A70br*9reIc?}ltsOa( ziOR-GjA0zk1f`ldrrf;y3UbH^BtcX7{#alk*SWFCVm;{L1{_awCS;VG_ZUNXg8(EM zkNgc=xTvV=MpwRAw2?sWdNWu(tpsVUb7P4929#CDg& z`9iCsg*1N-s}-%Lxz1L#V3@pDWd-1-=xLP|G@H?G+q%5iUTUwHVfIp6%6xcgKVQv; zwOqpCL|1BOnftC`$4wY%Hu6pfUEE?Pjfa~*cQN)*)B${iL-HjN>)JafAhuzt_einir9Q&&6b;z z2xHw@1{kDc4=cJiR{2G&`2~8Hx7tsY^rd%m?U|U~K8P8r(?rJ2SuZ`ipD#EBa5Dc% z(@xtoI(-?PUU0Ndk8(Q=krm9PX*X{=$$QxoXTI2-?d`NF+wWl+K*BEWG4tq);+W5a zPxHDkkS-7(N_B3kr0-kIhtuf}g(gs_g9eX0L~pDJA6qhF89JrIqoYPTS7e4i3u2#j z=kE{2Hq~4j0LS>eD9W~6UvP0LrHr9KOZPP@;4w?~eLwd+utolnSi~wGzMnlu`ES0F zy>Hcb^zTCrx#S-7w5NQ8P)&|x3K94*pb@7Kyd-i}81lURJK~L_ zoE;}Bj`qo=`XmG4n>TcP^JyM-eDg;4n+YVO86q3*!Zv-noKJ^0%jC%)S?PV6j<{ck z5d@ic1AmdAgSfDfZV|pjmx6gAH$?l-|8*#qhv>aWxw+sq!Z2Dkz_UEDM8sklhdD{T zp}s0Jt1l|6Fo8i5Y7;e~2|cW{iQvyHaI`X8Qnlfo?~;j$D2Y@)u0v!W>s>Sqrnds| zkV$t7rGlvd}wzK9`o$Fo4Baxx^jC5SCyQ?tPjvhr1@nVDLyZDuRz->K6~B8ccN zs{cxDchZ}JGfl}~p}bL)d6OMoIaMcSe6`J#T}NUy8+2OvLdW2!Iw30@`!0Q~xWKBj z!9q0~bo}x)mMD(4v-zkrzm5eMZvmVuhTtjf?67!kR1P~rq?koK(PwqKRb?Z&bAIG)hBt@`@Kv8ub)9hYm&{7EPUpq<`f24QL|>(fRPni-A3A!>NyOC3Tbx-v zo>@!h0owpA$&P#(x?%o|7)!*t$-YTPV`j8YG=u0iOR`I)fACq%joHs_X3!#7zF2ZK zr1CZ+>gao{l;xdWaPUJ6HiFuNdN7t)qjL)~4bI6nyEm>v8!q*D9{cD$dKaYE7 zy}Hd*grCp_QYeDDNZ6$KsG-xKyD_|vwVa6Or1;rVj*^x>&RwGE_>?qFNQM-*=pjfs zee7g4imp%SC~#jKaSAw?++PW9ec@jT_4v$}{B>5UDQ3_n?{rgQtFT~N>8KZHbgk6V z-PEcHpxh%BD058B2A$)i4<)2!S)LNdxb32(q>EV{LMpG>Xz{?tx=)xSEI)+&e=?Ph zY%xF9&o;Id4EmrR3^dbRmC!{Zp(K^ZGSnC*C@;Ia=-k|fMw@pyX-=e8nT1IyY;-%aeIfO4E_ER@!61Z6N61mS}~3{OcYgJ4&VLV_L?+ zVsf^b$;@Wr6cSk5JGy?jj6*ugx(AwODImS3qKvVY@a^VC6rg(0SSxgv6yBIs^&@lX z8SNaLFS`h?pZf~ZU9WCElUD+8w|>>n&2+B?9@MsqjG!a1D3J5+@JsNl%dWW0DG(Bgj^&}w zkMLM-&5NXC1G8hH^heE!CQAiO>TV`0tQwK9X2P+>BVo-)yy17$FtIM^xR3M6u?tkP z+cvIgWHBw17zt||)LTZ-{O$%&l~RPE9_9O6{!7Slw|Qc+wX<^#3O@T;BGCh}{AY*iF zT%x6=H@OA0RSvPvp0J&jw5zge|5xT;>NRA&D9G{=WcvDDl0#G%uj@jBp6 zc9Np^Y70+d2Wpk#XP{%d00s1#IuRBpgCc-PG*^(7+4e!p^4j36r!n40U$%jp;M7c_ zWLN=#dG010JsPTq0sF6xr1@xRQrx@#&FC^ci9`$Z+)4=orsrcY@w<*kb`kx4aj&3# zUh0-NfBPlHHy^e5(OQ3+;*3{P560~ARSK}~_4bT8K*yNj(8pneyl7y+Y`zjfeL28N zAI*Ah!1ir8Vj?xZL}MEEgE8qzAQH{di)Ecdb0m4$Kwwhh@AYW36Q@n0W>=NK&p@Q# z!*9*2S~p+yk6q=!J!TdU`R2uVygFMva>pNu+V4(GatiQG)u-IqUD2bMj-g1@>!F7L z5DI9 zr1qe&w26nmCE@#lz4kU(w7H-X` zAsqt8LG@)e5b6%%pklrvR|CF4@X;x4@fo*Ik;ID%+lyi&;Boy+*Kl}_w6(WTn=Mc6 z1JtHW=X$wqQd9ULQbHrH%wQt5ZI`Sdk6N`GwMO|{+_?Q#czF379e`e+$)_az{cB$V zlxB~r?uMfx&Kgpkp?p(kg=cyXjo%%w1}ojE9utVz3)6SImaWhq9DKZ@+e~{ws6)I^ zplXg;ak2V$mo{6w22^MAdb6t)m$u>HVrUAQua5Slax$*sf zb2JIfU-CR2ZFgk)rp=6>N*za1W%W4#|2PG{8=n~syRwS#5P%#Ue3-~gVe+L83Qz`f zxme5bRlYKF+61-=_Dxq&h!>djc0@g`ZPh;PoN&+Tb(knlXIz$3FtDY2_>EZajge(O zx*lCFG#y#y*EoxZgUce;0XDKMMQ>dv`si{2O4G6o9?fcz(9f3VM}_#&3x3k{V-`T{ z$h#)0+tR98(TQ1R%RrqodSHG>{4WR|!F_QTDIG-6a)ER}99bqsV(SG=mbi9q<)x&R zHZAQyHKB;scMHkbcM@3IcfO8y5?F_NBrRr$z2jRt;8IelGSH1`fl9D~1Ag!wu zZCwdHv{E!pxhF;YY@K_gPm~mG|B0Guy)}hDiA&MKb*>aGy{a{KD`K&R*FJdhtavN+virjwSMXg8xLYQCSRSv@RNA40Ep#_9uS#FsL=5?SqZRcs) z;yC=p`h*>5DQPiWajivX?lLJ%Z0<5NBo&t{cbOC@%Cp!-^6N3G2U8wCcmCf(6`YpOApB;-A#p*H?uL#Cmrv`lWji_CX)hrV2MV_{kl7Gq|lZ}LVoDmUV=tqZFv^HeKh ziZL;9E{0dVyo^Ym`pAAhg4op@uaA5~teE|f`}#<+e`pW)BNv@bNoOWxLoxNWB8a!@P}6J~)6x_38#LS{7$z#cB~G1kAI7ivI})(7Lpg(WmK=Hg zu+5;_&*pXKsZ}Hzp2n?c+|$j~fGLhucuuCz{PR+Jz*rE)xjEVrok3ZA%&8S6tp~<= ztJD^mFy9;pO`5bO?I}B@lrd*=jh!5)?q43r>1WOqj@n|@Ygk^U9v#-!=TnpT7N?!KnfJ6R*E`jm*E z%Rdz+=$|cN916!*!Kv-K3a!IC4^k=K36X{wDFes?lVt=d%1X`aPj{Ev3tGC@OYeaz zn>RCyN>cm>eiZ{ts62gYAZYdz-~mdbkU&_?#TJdrEaUc};x_k~ydp)HFWed&-dm;^ zBTqs(`T?j%Mszt?v+W6vwJ%QN1&=!k#@O5p?8mm69WVt z)eYDP;v&6q$nLCauc&Y4kAY6i0rt%0hx&4|$UcA!MG0QVxL)6T5x8lSP`)YZD4*_? z=NxmtX5PI}#k8skp56bN1FTvj3GHM&y0w>GXYDKt7S>uKvBvMa)EMa1ur)y}nJawt zUXDj=SFF%@7>jhvOInyk?nwOTQ`ofubKlc(?-DmY86(zwVUKb}mKj;bmhUuS#GWnN z{Btq$Ywg(vVbl<}XN!A;uZg&Z8UbLx!%*W!+tW@%4K?#fM>Ac`;xbkTSe15jF?Puv z4V-t!|x}$`egyg5Hl>B=xP|f(}sHbBv?57i894NjMI|^ z7fY}#7o(0uS1Uyy$vF!E>P&RC0CZq|fI1RgZ5DBRv_x0mbFKG8M~bw~5aNUL;_GSy zjmTFYGG$Sc5iR#msxU#g2au8iKX&HBy5YYO%fLY=8%=7#A!+|WD#;&2E>alh_{ofL_0W1%=g=DSRXS>KTK_f z^pdgvAbZqv5^eu^LqZ$K?dC{Mu~SvluO zb#FqMz5>%RJgKDz49l}zQp!REX~jC%@y|s1B%(VZi9%@-W#;FFP7#>DSyn;TJLTz7 zoEPLMEVsWiq0{O0Npc$GTYP6Sjl;E+5TZ#boqCiZh;46q-JHh|RL`at^UM>wBy<9Y zlJq7cV2-gZ#G$n_r_;yQHmrjj&ES(Dz-jj)rXoBPd3cK0@a}%`sAex+(mkBU@l;2P z!5&@GB|Z7}(bFYCu5``(OxS~=WUn6`J1B&E457nrO(7fQNN7s&PM{Tg##vdA8-_}D zHws{iGGhjMzh@zliv0B=4JM@J#+p)BaaqBmtTag5Ub9dN$lWc;y~s3eGesVwc!tU* z(n?d&5YQZF>aa*rPNZmfq-aE>Xrwtzt`5Rd=Dsl}G9gGFgrb`w6Xr%HEQm~47+qOI z1#`j^NWhEJqASJ0MC$J0FJr0d6{)+Q%lg%;_}f&shQFXkpLtbFTAk&;CCG@b+@rfk{sud|ax8rvG%X`qoH=M3rb;iK zF9IjJav_f+b<^!%aZmMiv+Z@z{=LaQnQO1B`8y|4XQfb^UpO3Vs=JdX{HKt&E5&C; ztUXU;<^5d4-9_qF*^7)w-5UG$1^zbGy~N*iYSph?tJif6_WBiDqCro_rAbVY6SbB~ z&R(gOVN1)SE8pX-8N;dj+A}OrUgb@pR%OzEINrO<%+n_0CUJu5rcpPumbnG@Wm7PtulwdJZrlq0 zNg0yBnWh^^R8wv)=9UE3!Mm5ZwQk{_k3}c*x51h03*OD2sw}l$+CQD5gX7Gt&GDt| zVZsqMG5|zHWwUgjoXQeobY>6xa5(l4IW|nm)bm_NRLKk|WA5*Kb*cAC&)qE^-{B(^ zdC-NbMc2t*O#%UPj9=SDuxXymgB!4*ZEpHXmkagu)#soX>a-mofj~g%%mTKC+ADDu zJC9J4?v^vNZ5wtYmhV){c85-|Pqk&^RUYR$y0RhR$*Vu*G^*1scfWHdlgM}0@&Jxc z)3XE2;Ng^AzXYdDn46%dnNVPUu>@2!VWg#D)@?#Uwm92IPQUrtCj0Asv1#GOS@t%| z^wVvWEIP+cXCACUf*Bb!q9;LqjSV+daRLC>3PI7iW6Q|7@nN<s4}<3De)))%IhhyWx}xLK zn)m;)yQ`SoK@snisk#6ek%z@h#ZzaplyF z)$(E8_aF%9cLuP6;SDZ5fO#B3|=b6yg#&z`0y#e&N+JQ$-IHbhvgTfUo7(@5=>E zTCQxSwl4fVS~3GY>!x_FZGD090g;e3a0eso$y8zxVs7})XNF^Z zQFx3R5hw0%wj@kACU;vN@K-u_!* zL3?WVfpns)e3X!EdEhgGL4qUMx#U0Qo5DF)*xyVuieCv+7iYP6uX-=YDYAH=LnOS# z+3vGhdgjs&k;Q|N65^NJPnA(|EDbu z3d7A=$(Z>Qs>f!hD{OUVDTNLTewqqfYd8P{k*^ zZFzfVpWmd<0^gZxxzG>VsDFY+D}qnaaZ4l-M5rS8LSLbUOX}@LN6JNGq?a-0%!Q@2 z-vdZ3YBE=}2u?9aFT}?2hDokSb8uC+;4?G`g*8}!ck`t#w%K8u{Yww9O$V;A1!e)O zRY$IA>DO2{m(e73LY(wAX5CNvfbmHvZLQ&5hr9CV&1v$1y#PbHc60d@#e|+wc1kOP2O(YD-BW1r5YA9fG1JEBV>lxRnMF%> zl5D+>SvZs4xLCN_pSN1rH+05pLu7Wp-CTYu@VdpUG5ZOYLL{W^<{X{`c(mvH?g8`!#VThCCsI}3Eo*Zd0#h1*g>86NuYQ}y#}nit!L zeTX$u(n<^g1e!ZRqNNxTBDFNRxWTwv^_b4-48Ij?E>^YJPt%wFl$OJ>yQ*&v$L_5j z6plSqoq;ARwhB{exCBbI{J6>ff?0em*E)r*&X&`;jMaXk*EGl(W%%c<^r@Q1IZzkAK0;A`pSUTfa~L1zYB2$}^1jp3Px(1r+#hUUXw z1qZS+u%kM>hS|%uV1WgzCEW#9n*8JUp?aGezx|oLy*7UPQ*McRDtaHhXdC`?B-^d9 z6;X;dJ?iXT&?s7ROWp;lE;8@p2O;PgQU-Bjv7x5K`B>RZ%`ra)IzcEMIflZmS0zfo z<+!Vj_AjQS=CyVz`l@@qgorKHEKDc=_q<1R`c$80?mdTQ$w#Gh7^aa)4hY{}gxS1g z%vVB~j(B918bHtc3cqII-`Rg)xD4<9Yxf>sqkE?|&!f?3;g-mZ&ET8Okr`Xi$J$y~ z>=w11mN#R|d{P7<5#DTeP19i>SuQp%_h3=pBh%HR;_z#F&@FVCS2I~$0N*?J(UCwr zFrHP84@zcva5{@%h7dLv@!(^6ho#4s*m|`h2bAsRvq21PyK(r57B19*9yh2ki#G9&in{u}2&3MH& zmSXO~&jUq6-!g9mOEiLM-py}6?dwZlzjN9gyv9ey6%Qu_@8`2#z-X&__)jJtOhj~^ z{yPrR7f>Q-`j6)zTB8Nqg>}XPVEd5_Gv_yeV@|x{5)FHCy&U z=-A+p$JhGId*`BY+Bq#^UxlyVYHGkN%AuJprsza|tYI99iODoGV|OG(3MLaF`V7Q`?Ii}qtcrDOzfy!% zzW$t}KPT%?I)6e}%CT<@<7q+lwB20FzHS+;t9jT>ww%btCL{(e{q(3O^a&9~a0Eo` zItWs9 z0rMlS&9gUf_EZjmddlBfJp*s0q9M#-e-1Hso5tq)E2>7DmERHy>1+jGip@s=?MIx| z7e*&xH(zYJAJ%U6o2w@hL1gi;$f5%T=s^n|U7XY0mzlANo}6*W$kK*x3Pe**h@Lc_8K9ra+B-VmxHwU=hjeRoi9mjIO7Yzw79h;u!$gZ?O9dSiI)FSyeKA9V37F2+eurCgqJ=xOhHrMP;cUBxhs?K2I@fSD*XHy8 zU=542W48`wwY(kp3`ZU?!<-(Z`^DK&YbwF}@~Q&U&_?%XmwQDo{*aB+$0up%0FXwjJ?%|8wzc(HjY&Y7Ab?5yZuCq4*AU$WHl^dwV6HQ=y~zqSV8+F{P=8MV?(9Njx8IpVcb3QAhJO4qRIZX zgfue~d3B+hG?(vz4Pex!8q2cq=4^)uKy%CO+(nBE0;M>AphnwF;$YG=j)Mlofi9}= znESumPnX;gj%p$*M0B~Oy-S_mDlb772nLNm$@c2a&c8F^6K}GnRfI{Z2jzeB4_E8k za3-j~q{gnxn`EI>aR1)q)^!>?G{B$FPC)*(txLPEz4Jb&!1%f0>*gj{$~t2f^d7S? zed%u~>&#o=PK9&F!hkvNPHSMt)DGPS9v{#YDOnmRtXCM&N5{ISTLsqnw%O4%*w)0uM9deA&(DiOZ z+|bg2N8OhE>~Qne3|dm9mKSui+%Xm#p8nq0$l-#O93*q`x?3dLSBhIiYU{ACA2&r*8SYq$|XG=$OXvE7VD9=~+8| ztS_5Z_K|z4JKSdBH_XB{&RdPv13Jn48d0On8fX6sSGZ)ZN{N3MxGGwBHxP1XAojea zfDZiCQa~hri8}gdEOa*s5c(9(f2t{J*qq&<4(3o9Pj-6@!M)Bd^hMul9C zs$QaMt#d;=X0!opx3EZ6_=1XwoAYp?3kQ4MV6LVZ19amitA=6 z6HQ7&y||&jO{2HRyfN4ksX#fr!*6FPjb5k0ON5{~GM(NGKTt-I2D~VK&rB%O9>$k@ zPo*x_EQa5uA6!#?yc62;l7Z+WNa0m`U-H%4tBHHvy&w;=zO(E$NU*o7l^`PVUb?Bo zd+~>z_rL?@c@(jdm>KvDCQ8G$ZgpzKdHkF5L%No?f}BLtqm4*j1!*K-E!mlOzn~#~ zX)}L`bM=z;eDvlN3B7)H;TN$vPI1;8YYMkB+%On&jd+N?_J50vRsl-Cq>x730;j7(7W6?d&^Dz{R1Eu+Dz=%Qc+~UhBK+&qLD-f)^hM^IyiP% zvBt2Ux+w+c4dPj7m$PVh5t_zb=5J5XG^rbZ<%D)RR#B)W?d;0IcPttZ9vI*dz7f(T z{l&E2k&@l=Yi~Ny6?^^zmQ-xWHRig?IL1nxF}oinPZS*@mp;he?Gkt_{Uwf)l_Nun zN^}WJ5Sw2BZNKVq2>&hi%%qA)Cw!`sV^R|qHYy^smBtsZVeY0J4Wm5DPi{IGCf7J zkZKgqa*AeGM2csd)rQl-m8NJmko2$=p_793l7#+u=eD+T&s)xhrtM()?V~S;aaPap z%Pf5DYt%1J^IH2Ot(DD*5c=|!`v#z=OkdwHCo(a!XK|)ipcNbDjk_~*i!)F6`R4l0 z?|9K{PZVOU4NzLlNb%rxBp&V*SV{cJG*@`)oU)7BV^zup|MhTk57doip5?{)#3^Kh z(c_PJT(jXjW`gH%vMD+8Ry0laal0PF2iI)mDXj2z^E;l$b?e?D+x?K>e+s6QIY)-F z2oiE-ZM5Xc$c&db|Cox~O4fkeL<_DZ8OjH4ua2cxjMns4?>Nj6Bx+k+b&b0%(p;5O0y2utnr?ST z4y*D#dL4YS=%HxvwzF>Uwyd$e7VAf*NYW820wVEni0v| zR*f`QR*Ygtz98gy2@c70)%oi;e;e?QbF(s!pZ4~o;N2{{Ne7`!3k28dI$78HYPmVI z9KGZg0z|w8*P^}?(g(1)yXM0>ptj1NIzGa^^5oV5|?>(!jlJilD>Yq zp?Vy!?)bn1EYdcEA9(v&!rSwB>rTvCUOLO=qE(etIdoI?nL`_^v-v-Z|1ULzuTO^S`=hY0UF+dcRK{yz0WHMX2*Y^o?3fn4GAUB>!irv_m%b4?G<3=f zd}I>2y(kpk)U7!GNa%TI(cM_?x_QZzmMp$(pK8MhxBmyUThB{e+HDM9`U3#$(QZ;| zn?9$bu55Kb4-HouY~wm$Zuk-+ZW_r8z29m2O;B~(x}Tf@QTNR?&8s!i?PeQ4P>5;X z91dp=r$z6|)*i9uOUygMl?_rS0@EY7HTdA2$lIw^b` zCd!%N+p>M3zFkmbHdP5?D1Bbd;-IfOw`PM|_*v*TCc<|S)j|r{ykDnRRq$3n%87IWu@@a5BRDtD>w5Lwg?RY zLM=37kKqAlRRq_s5|-X$&OBaQR}F-p&|e>Xk4#QheFyje88(dUq{%K=aL94WD^>=d z4V&ZAmx>FM40z5t!j9?7ghBK03tINEUM$M&p1$nAxw7WR0Z9rTMNlubfXYZMP>#U7IjVM8Ji=fpvKKk0mf98Ty-X2k z+tTkX?9DF+P|tU)%`w-mY%qY5`5+`wxZzSlWd1`dnAUPB?V!QE`=_=IByv_0iWYRI zze5Y^3jPRa&wx}tKVZJyk&q3VvNd<3C3Sgtc8uf;Zn)V4)sZCeq zlS*IY7s_?EBD6Co~nge@El(qOq#dB57c56xR zW`3QjJXd>6x8v-4RK~mGwJSSouW@T{ZA!XHbw{Nj*cDp5(W|{V(<7rI`6xLmuQAD! zTyRR{F0B22IMEfv9Xv!`Rkj&2v2)O~cQfd{GP1`2(e`>zU>tl>nJTMWl z6B*#pweUYP7`o`@ZzhRwt)AeWAhFN^dx%(8IQ$S3qr{JeTc`1KtFx6H@ml4c;qq7EGLT3EbFd0+G;+sr0$+bu6fVWl^tZ`aitxbr_0u5C&6uc%pM0W{GQ}F zkPsuZqrPXylFM;BP6jcja#5g*6Sx?m3n+_VjxKuO%{Z6~Em;bW!4AkAi_;lz>Dmab@Te4}=LNRX-L9G7 zG2er&Cx8^UZ?-?x3FJ6VMG#k(c{R8G968;wO5=>MZ_-r~DuvJVHNQpc%-YLWxwF=n zUViyAxXcvfF`Jj}k?k08WM_!Krn0Y|Dy>a@)`9J2ad_Mw92#%&gX zM^9c`UWL|VGrcfNb{~#K*5An`GU*e=LEm*ZH(ewm=awS9+-@?!Hm>i8hc?3-+nNu< ze8}HE*$q5%UYR*#woCF3MrbvU3}bk0Y^(A;{q)mj7g68I172QcKE)Ij#)0!I*`_53 zx7t*j*4i3Bc!lOFXt{$k=Bz;Qv$!Q5im~8MDe6oapP+ic^oz&@psL%{mI+SXJ@k8M zo$Y;L#{9J4JOnPmFR0zpfI3vqnJe?nB9_Yzq^Ak+5SG}4mV(~t@rwC z0~uDO%xp=AAv**^_BFxVlL^00l!DC2A`uwme?G9T))EI01&e$l3J@=}M;$F(peol~ z{h><=j6I*}aI}UfnaIV4Gotezch2(#D%n)HcO8aZ=J>tIQnT&le~jZle*=gi%UFrD z!?Nuu9B56*GM)Z`QeY=G2?Y}I29X{sGh4>R);6!w=C*h}%L*WXC-5tzm^`EQl?f74 zVF+9k9z`rvoT-CP93lb2Kx_M~DNQ(X1&<PG zM3-57Lz3(1kmf7TJy`SdTn2_8X;rt%mJ@4Uwn8T*{wc_NR?I?G_p8&#zV7UObgHW$ zQsB`ZRjCkn!!jW5hNC?aai_O&;;wSjqm#LXMSvbu`R-LIluuLn6tBDrSR0WSMgBt( zT0>zQS}(j|7LSOUUF9>^V+GrCM;V4oVlOJH(_`}q8<=HY`B;0jr8gE!+hch}8R>;> zuCX#3b@nH`+bP=#&zP|4i(~~Ra|5;wW_QcFuH_;Y;SI!Hg(dBXVfsi*j;rc6GniOP zDo}MHM4^puE~<|C)ym+P$5M;}ro8-|HFoLUcqs|Xq4EfzsUqD85t&uqJhVl$Y=($N zBJMG{d^pXyLMgEniFMY9F7#sp--UcUBe8YYKeCJbJhSWjqqZLp26)K1HG>qf^ZO4C z`LU^oK@t@;jDd&0NKz`UxCeY|HjC)gNdS>=gVlu4kT!3p=fFPl?1l&W>WVZBrtSU? zVby)S&t?0l#C7)x(@N%4<|BbfUpkTdnnS(j z^^~+#r$?DP&AD%M%(J>EjhI6O7?9&%(_fqs%RjNY&nVKlkviuVlxdF@Fcgvla9xcnCAOFu)TXe&wS>fa<0Q&9`R*{M#enVmMlzRy$#=KKbF3wmn>V{6_;liT@KcTD2Y{>sVJc`eS(BrO9mXL4;_lEbHYitIBsd5Y|gQ-`Gjr{hOsKK%A`s8Ns~7>uxwTbvy&$;y7N z$eo^sSVWQ>MWU&2Fw`kGA0GZ3B-oK(O;oCau{lSq)8kpOTmAGFNpH-#ToosGR9x#; zbiT3fuYU!AJT#>ilxfayj@w4$75kN2yM6^SI4ysBH391}Su~H&iN(&kHKh`8oGJY= zWC9#vroBwaZII#RHXyJtp8GagJ9=lgy#8j`VR{(^+?+h;U`1MvsGm3}|JuY56d0u{ z1vI9}D1T?Vu)82QM5-GzLs-X+3xRILdIM975*=Ilb^j$y-4UenL@mdxA&&wcY{bE_&~mh0r7qgn0Fh1)KI&!wH=3jmN+yV zBAo3!utMB{D5pfa>ag}gwprmN;j^ct$si;n5a|z9iQ(6k1QUp%t%j@z?J;F(304*^ zrM%Bvt}WV@e_8c0kjV1THx;jXj`rQ0%fwYGRXe6GkB)#`B^nIKS)%Acf3Wurd()ro z#i`ocT(vJ2drZ$ZO)?h@!bVuUDhNWGF+a8XBqt+(Tc{V3$LeG9rueJ-R3%L!dj*90 zwRDd!SnkO6@aSaWEoPLyb`c5gFa;PMS+omf=ZLB6LPOk0?;qz|em;Ha`J4qog;F7~ z?iMp+DB!rWd7w^>ZRV>N8RUfF;pU)IP=L%aI%*(i8Y08umVGSl?&y>~a>fcM9?KbS zyUXM4z71dp--)-|opzh0wsdP%l-qhK&;rYTrKg8u!@nB`kuTOh>qJGS3@s@R$5L+j z7iY!zY?qZC?JOSdI)-qFTpe5>reI=k7$Z_Q?KLNC&48~e@&|)F513#7x2wOY3OHg4-+R*9?_2MYQ~Sh2cI~*t6>pqebp%O7^A$QhrArE-M$Y{1Dq0jElL2*) zITEvg9ajcleyNo^u+q)TnKc#%AJV~+pc%p8-|dyh@w%@m{9-fm`67V%h_Gp@kKY9_Tb5(8wQ>e_YcT4N=W z85>VVVxBc4-R>PlW8ifw-lysDJ^?)2%{MO`txpqw(5K@m`xa%m6Xg7cB6 zxzT{ajsEbF>|5S$K|w_vfOwlWntDO*8-GxfqjKZh?o7-Z&8`tl&ECj`dPU;4>b_OJ zV8eZI=tI#6qF5u=)FkuBN#2%B3|;f>DG0zg&r597nhgBRh=oNOMFQ5ip>MK95@3Hf zght|tG0RaK-C#edj~y-e%({nhVJ3FWN|u;4bW^H*VZYT8`USJOfi|FvV!haKF0mY> z5goaKjvCD6>|qGY{(UePf^i7h#p9iH1VteEi50=$-yk#F_>|}!1x?ADS?0+25s~pD zpDqpVKx&G-DoTLN@dc6bWBC~u8Gn^|lDL8F#-=e-QL^}=WBiR{ru(AfXJKXfGNd*~ zg0qwt;N-~jHC!kcPWV~^mz}fk^H`Mv=e+rw!!SHysS#21k_1|t`z=$>IAG^C(LHOt z9bKssO{waYne!%6o|S6Yv_l|9C(JTi_#A||8IT0LG^IX6G3!D8R$Z3}WS|7NIrB7= z7xx)%)gnlq}BwCD-il zeP1h8SX?S8&cOW_9X0Fw{6NiZ(|tD3es%ZQq^y=+u}OrFGGp%SE&1v9TVOl_mfz3B zvIz4k@4V%>)=|9=eG@Ozhjh>Bhler8Z}|uj$VDSb8dT&*lt-Y9v{(2|?^l%3RFu8u zkA2ukgK<@8K$u1ZjQXM+OZ@Vg+C}~YtXXw`F22!4A1=Prg=Z?}ecP35%5^(uph6~v zl-llUr)XS$(N)!Bg=E_-lFhPqMoy8$?^~hZizZ7QGT|y%lw_DSr>NkHXxbJlbU21! zs!Tz*Eea|bT4&>91~e)E0w`?%;?rr@w<_EGc({ASNaOMAKS`IMJ#Nt()Wd9SFuAru z|5x7c)GD3VBHP~%^_Bs~P!?Eyz~+C_2(rP}Qq%$Qx@~TO4Cc{1rUDAP0z&NQjg>cu zfB+=%EvNU@+3Gzu)q#O@?Gl1JB;KFRy%p+ow7|qG8K_jhB-DhHQ1ZPjSD)teh|V10 zHgx)m-k52p5GN^@Ef;+i>VFC{0;0pD7w$*7o_}S^l0FN2;A5TNZJxJYOsFuUSL=6tBHrTdI}}81E|R_o;trL*Xy`$`6Cy9bRS}AP#gz|AGYOJTmDFI zK`{ug&_5IbLrMF965UV9?aMa_h!TH_J4-nrg`&KSJS zD8J%0ri8DB7OT@yRhm}r-0aW)>ekeue{o)~B$Z~$(8gpg+&LZCNv3%oe4?Av+|WP4 z0)~cCR;s%>BwaV3_1}vmIn(c2&c)_qZv`a%=y&eE%{^F^d`)SSZ!)!tB2!b?%2mE5 z-*j#xa}kpY=+3s(inEzwv-G^9RPg<^9i`4qC>88dYHmVX{)AH1T}mxXDD~-C_KS2B zWv}0PFMSMg340Of$?`a6>iP^zaOYhE1b1o%e|&)@88z?W)~TIyWG4p=w`f^&{O35t zuthHCS6c5g`Na;nQ8VPm)lF4cBL9lwEXf5o08i24;b^ykxEDNKcfi?>uG@V3(LU@0 zH;0O%#bXgBTh;qNd8P|dwPWAsxaAYe4tyRf3)V0`J)PH$FbTwJo(<(V3r{T`ee%wi zv6ji0crD$!)|T1(HBysBTQc}0o~o$uWj{vZO&%wF>vq27srjMzrRcY%zTk8EY+rt@ zt{m4*oaLuHuUVXwys@$H`RVrgl;hcj<`m~m8mH0s$_QQj39gApKi+DSSjE0&s4NJ|+jP!dqMN3{V$I%H* zYaf1BYyv=B#qork4)6e>mq%~uHpl4}e!bfq5X0B(vyE?mOD-&bCFY|^cvSdfH>18d z5cy7n^v>h*;N1JCi9q8F`faAArIFW3yT<{aVFuvwZiyo|Mp$so6QYY%xYjM~lqe9P zEiBqQlNh(sag`nC)r)859BA5xiN+VfjrD0}Jldl)E5VG`nU>mq08G(AZP(ZjbW+>p zRm02+9c^?C_1N%~ORf)1Y~b>)4S-KXaK3EGj*du;iqRO4(CC%;udXHNY+|AB*^5Y- zL_KJ8@u+XRi}*O91GHQZH!}A zfVr0Pjn7d~ zKCKyO75JUed;_mLj%14$6V48u8CnR{zyujDm)&xwO6>|NAd_a8%lYkZYwut zY?im3Q1*(}Be49n^e#Fv(+10Owi9f5_iZCl)}Al!nNgqmul=!d^TJuIBXOFE@oB&0 zbp`$&=U}CN*`VG1xUy3{d@Etj!RGduM$7cHlT4UqV(;|hqofN z&6<{G8JpQBnm2HTTt4G$)F5@qj!C116*0wOs2Wp0OJFKXyG5t}WrAc}9Z zV37O9%W&oP_$u`{{414}5$%zgXzCm5Y>Q@5fpU;1FhznFMX~COzQZU2=8Wc_4H>0K zyY4^UTjjO0ayspy&_xqK>QAj8dY%+>aIEDqj)!ckIv6m2y0^8ZFc$g-DTU*JnCl$H(6x%$d99mCbd>v!m<~_5DJBMtPD*Pm9!n6)tvF+s{YkbPxXBGR&$qg#x7}{%-M%HP(F`AnV{boLX&tp{o2w9P`+)=Tt;r)|Lw|!5gHB)4E4F zsKsw)Ts_JPJGT>6+^l@#OOE21Etxeh+l42qMQsC>T9OGP29QgN$NIVUC(wnmKe^R! z9AQ`thz81QiQ?|wNHTMmVTH0<+lJ~^_&@^|KCyJj3_vQV2fdkM%Ls8O0mSyb&Z`b% zh`0W$o4V-jAoqR8%YM}M@{f0s#OlE0K-z7FA@z08%p&VgJU_3;hE~ur<5T_aHX#*@ zpQF>xOqk13nrS!xNK-Rt9Q>U@f<~#1)iA_2Uqb&oj6X~goL-myhg*kO4y4eOV-d%J z8h8eaquPx^)aIXWbr=l6s|`5^ixg{tWY0f3q0Vg4ui{O8{1_ey7X^p2)q^?hYkf|R z4K?%RWir*uRF&xETrO%;I6jmmSN;Vtxh#ub1hu;-AoCe+B{c;{d;^ph+n=+)o@g+I z?}^#=ka}VJj*Kf{kSq>tEZmVar>Sr!d8S9uTb*QLFiXt~Cmoh3b*qQY#BG+E#}2w= zLgAJ`)ll12tdWC3x{OtYB0kBctOr|)3m9lKAl@~4RvujUY@8aL*Gns)3^^Utpci@E z?39VCWUpS>@pYuX3-0Ksc>^_NlC8?3I~xnrEQM*w&m~BqepvUj_*c*QcXh{fsY}4| z91}Vf&^bB@x?{adK}s3XL4tnQQ=>{GL9@;I|8pCGf0kP^_PE40UOq}2pAY&U`?1&S zN1wztLO*C@p!s!28(m4^jF;SjZ0X*uGidqnt_=wHa7O&LpBJ=zzJivMEta6<67h#J z%(v-^ESE?btHPpqg?N`!|cf<`;e4KsoY7U@Ve% z?&guxw-TbF2O19<5V>@jTJZY%IYpu?^(iwIBV?ye-EhgAcM1_~N8MPZMGT3A*ece( z2d$0`y-U0CTx}~ge3LCBX~?q=hT15V!nv|RNR9Nsfe*nQL19tRkwX~m@QNZGaP`I6 zD~bly7Y|xdbZUL^snH^iyk4?0?@XCt$C70>%j|fY`SDLW#p73;@_o8ab{{Y~DmXTw zVD?c84mP*YqHI5gGN3rAc<|)TCS4>htOGr%T#E5RZzmSg`BQ62w}xtviI|+&%_*$* zrTI3)Fd8ZMp!CiJmAC0$v?M3d*A7as<9nU&&p7IPo2AxHEjhW?XyWgpcQvnVT++jGuUd7WVQ~rnKaM`40{x#nFMm z*=}Up?q=B$#mD#)`j7DV?lruJA|WCeVK)w#Ybpt_LbbBo?!M+m-sK)F%UdrHPha*V zx3Tr2TcVF>lf>3*_z+ZAJ}y~q`cjS9xvPzbLwh^R+xZZhY$D~x>c$BeczrfgU*qk`_0}|23$1W-Jwiu>a98wzk*zWGoZ$c$) zLs?bDf-kWwjN~>t)iD9oi{-X7d(hy@}MSF7GoOS`q$YW@R;|Oy*fV|318R@R7((?_Nt&%9Xif(85$zoOgol zrskgfa?>^U+st3j2UDHk*q+GnE61s`n5JmBIq6(0bL~*z+VvdUNxuuxM@wF@V#2$x zJ_ud%3hB2RryYpZ7Y(w3=leN@uS8Ov!Uizyio(s{Rw0E7bLoce;M;7dGR!}}zQz?^ zP5>dizf)7Y$85B}ub3NdBmYjSv-AV2A*-yAP%!!zNp@jN$^rqCaot!^ zpPaRLOG4z?t_I9+h^hdY7u9qz(~oxaHp->5Omp{qQj<^pRg>S+WP(JoeSk|`dk_V( zbx)V@uY`}p5qBIiLQ7_-2n!CG>&~_^01JQC%EHm%_CTK9I7>1X`tvOK&P#PxYeNzB zO(w`IY0|MLuOO7rzYWh%_CeuB77?ATx)+h^C#JZOoMfYK&suX`LoyvtD`lNMEch#E zSX5cjDWE|N04Cv_5Wr~{t9vsNb+97*&h8;X8^;$2?KE@3gY3(rZE(&xs~Ae$PXKJ} z=1j3PvC<4NGabmng;%{7Ka@$16TJ9jApVsls%0R~e009I@4j;h?oNIQej@?c|1g~# zu^zWtPMm@%yDa;S7Rw*KB?%Gzif*GhBM48kXXsy;f?bg*y94GgXIp3I@$eUs89TKD zA~SXo?_sx@@%J{M0T?+G-ym#nhBk(G?+&+Rhx%0cYnz0%$;nLo&gDYs!jQxtHM=Zq z>@kn*vgS3etohRuT*&AYX1L?;(tpq*%1Fg2q=$6us+{h22MG3Ik7>8bH`|4O$%tI| z=j6BWkLtsWPfvvZ(H8!Dsp}=XBmR~Gc*XGby9qLCmBN;tT0jtP05uFVd?^T%%HHxL_*MOmE`1nx1{^3ImeIzO*2dgbq2?8`(LR)^HvA z>ZQ31iAQOAq}QRZT7G!}X6BZ0cuCzL#o>t!M;g2bcwi+y5S8m}3!g!HycF;;0gO4^ zewerI9)d(^SGalGHiHx0ylvBYF5W!V`myM!7F)5C2^XKTR|M*%!dYTxtr-_N8uUeF z*TH3|oeYa*DOdB7~q4(hH znujuc&3~q!_QX~31SDiVL@gCmW-57A!4mh1jtiPJD3X?uW!~{up<(t7*f?1GggV?) zQDHE{i&J{dKh`S4(YV?GfB|zcJrkv1eI9>tT>PM+2a;)H+MJWWm*5HrT*a28ugXBU z2(IhvT!dk?k*|TM1zxs%-L=kz@j4$cDvRyX?Uc2U=yS6C6oLijK zXPu~)v=RS!8msrj!_qx31fw`mb?|Tf^brfz3H%6ADUi}D!BIHd*K(Qpyn^gNY%jiy zX$R^rd-l7g6Q;k$jjwRR32?ynq~HHT*_pscRhHBDwPUvZRLGS#ky3*1ZaXv0hP8`sl}G+ zNeBByq!KhT-~T!1&SV1GB|o@xm$N))d(N{TmcSVl-6sZQa9aJImJ)3!C6kDGVopx{ z(n$IO8I%^H*K$H49bjoShw2opYgRnKn-nI28Xw~m%V`O@rKwUR?fYF)`!4e(wJ(uh z9dUAAGAf}wG5HBGEDE;6Y%zP=WQ%EPU&Rn|rs1=i{c$#x&NqvbWRHiAnN4L%55FRN z{Kh>@S^eiKXDEk<>e;8G*Lt}&?OtLYnnjpr}`l4dqA z8wC?2iAx=~z$|N8$Y~d6S*xWl)cY3_x%BPGniqMn);%Y$S|0?Ht{FoXYh4akHT*mH zSj&JO)$b1I>p`w9>kjFACD+x5xgz*N(bmnKdb?MTHKur4ZeyTP8`)({LF)R?=;1Yz zH-3c6ZPM5^Qhwj`H;|~q-v)*?0#5QLff|=JfmfQPo}e`{i7uxH%me}l5g2orJ~7rF zVx^Ir?RK{k0~lwi=!79$L4z40TuS>I8U^*6(-{MeWn?n)XNpsoC(Xz8k|w_1>?Uc6 zSjW&pLJ7f?^josz47-Fzr#{ub+rT=hW7>NI9oV9S-62 z$vnPm`#NBCBD1D-l!3@AH;GlMK1(y88ebKYarW0Y#JIC^lX~*EuqzqXRU$AOsD5;_ z_L$eol$p#lXGt@!Y^_qIvLUu!y8-n(!duVX?sV?pbF`Y>ml%e#?3B5&`I*Th#`8EF zoN2k~FDL8X;W}%s$*PU(8<%Fgf@d*24a4hunWt*_o5JboF2|1Xm?>3~<_+woC+6B{ ztV0`n;u>qpx0{^48$>ZEw7zBzl}R2ir~ZJcpD;XT28A#e@~BSCLqlk`=oyKI z{6$wAZX2h|J@Ivn{B(#@~7TG@pY~O)W+*5WOJcUyI);R(~i$_oyPYU*Y9z^~uI-Bb94a z4KM8UP8TzsW#X)bOH6MTxG;FsWr~tc9l=MR+E2I73b)n662zv>kES#2uR2%a;@q!Z zyN@a1h#G2`VoZX5vo(G`Nn%RSIRv|RzVbnx z>iY^PcaA`#Y*4}6uCIJ@BtEca`0xjoJ|u@s^um-NArkvR$oO|O9g-fM({&KcZ{}P0 ze*`iuISQV}UaKUSR}?qHt%4sKzC^eFaTGX$5bkH|DJhnb)vVQMF7GPzyU=iMXPet0 z^_!tiNFxF}-GjSHY{(}EQ0IsG9euYmFhljg*cDk;Ri0fulJo6EEENhQX4y4*mRYN1 z5<_UW!S0rg26LMijWX$*mX5g>xPybZ`2jZ}0e30WAbL4B4fJ62;>1iiEj|-Me-tXN zvWFe!y-8+=dFQ-@0v$k;Hpa~zW@8l89#GYrh2!!haa=z{P>n!%i3NE6XV}JBskk}tTl-tDq_v=UKgD81t@nP56NfM7{Y;yU4>93YP&vI5AWlYx|OO#pe|9e}(` zrn8iP7ND~3pX&?eWtH`r;7#{p24K`U}&`a`(rLvdcFHeNLDE z>Ad5yuGN5#T)jTCXd|6UOxgW;^f-o?j=)DOFn7XAaHO8hMtFRD#rQcG?#K$L$$w%% z$~n%@D^0vhP)4mp0Y0ePdY4Q;o-lf}@6klkggYh7`9XWXy7C{g01l}=uYM4l>qJP{ zqZ-9fTVvB3)Ig8Hre;2CdvdCZ+#`*M@6aDc=(T%lR-s!GUjuz}q$fa&)Ex)NgQQ!Q0VJ=kOvm{~e<71(=om6E443Gg}sQO>9Mbq5iu(}(W*JD?4Q0(lhPAS(hy*k zuT?VAq)mqt^Zqq8reABC4vTAh-zF_~9Ie}5kLIK_{xwCyW(hZG{YnDzTXVdjQ7qs= z+BpD=|B!qdKXOwRL6M87Np19I~emyA1k8T9eYCu^hB!O-0Gvkevr>> zhw86v1gVr$4Di2T;E#i@0nc*)zx$8@d=-p5E6K6 zxsR|rR@p-J3wjuDI%~CrQi!Zx%e6LOEzeT#z6W8pTIMa*U{fw49=<+!jfbtL%Y*oA z@vwTFJUnI|{_k>m*kB%B%THs3yx|>r|)R3yCcZt#3~2R8RwKrEsI>ooNPLH_$hupuG_Eb(`%znT4j zO5!+73s2(@MvkDp(bSjZXaU%+#=mf?2CUme_A|PiC0B0iqdF6i5^jQ~COt}@Bt1%S zo}@?V%cMu?>ZC{M|HLC>rUV<<`utC)@2YM|e7CFW6Zi83$d{*%*FLfB!8u*`v1*tG z^`gsEb7RGtT^lMw&Yg6g+8|wVl4Qu7^b>9m2Gq@$3y*eCT{;3@R zSN+JpZvbtd^CPo_b|Sc2h`WZ`v*QC}UFg}!7ZZQ>R7?Dw0aZCfWY1_s52@|jjVa#? z{MwZ)Gc+QpY9DOytgau^DdC%TFne}zK)?p1=vB8wW^A^%%5d20WEAk3ww6B!UbicE zU^!Fb%`NdDM+XDl6uzmAoNYuw-u)8@j!;`H^dez&39ejMqmV~p%8F~}`XHio$A9Pa z1}{x{0y0!R*&`5UJ}zIyf2U5)-KyMCW-os(Q3+Aye}pTAX0digDtD^i<4g$xGJ@5s zkt{lW+jMw3`#^G+;z2*M#%dP!05Zj&B__9CtNCf3Bh3;CGhjU`KWY)6BRCZ$-Tmx^ zqQ!(xX-Ms(ROaG21H^dL*b$v&{u4TjhY&qowdB#X2>DJ<_t5{CbVRD^l6YZXG+;)W zJZP2ARq&|B@vHtxYaAi--k>(bbrZmOYB(Z_EA6t^kPcWa{lI$Vr@A^f;hryyG)qeD zpm%bz(HkA8(&lzWsHgBzNt$tY6ZafpMv-Vs(W-U&4{B4SIlI)kOdaW%txKiCyv|}1 zWYhGL>6rIBVy(pO+o zl6&=t1<~IW7wA+O6ZeN-l18{f`Sw+gdN}qgJ=PJipi$oEMWwwbRy!_YUR?E}&($z! zZr3Vmj;9p$w))F+?4%KyHjxKJ^*t@}fV|g{1H8-=jxmpx*}8XW$*zZ|VOrQ-s(pha z%_1sipTxbl7+WH|)V0x=bWDu{Ris%;3*gGyFnDexqN{xJ1w;}ksLyF*p_;ky+V|wu zA(hUnq(gctJ}cHUp5W4%06uFwlKjEu#w8p9Z$LEb7xpch)UTzZ)z$wr3r@c3 zNM>+i(~Oy#kip2h-h!Z8a|LJR%xbM`IAqDk1;;W z)QI>+if{=_P*cO9Ar`_6>pW|&TTL?g_cVB{d7R_zv*u-XBHU}dPTlr4JBsL`9nMXw ziqNK_62WY%GkvE3-FPkWVYGlaI>|_E9|l&sn%SA0cBfry?B=etht%i+$`eRsX^3S6Dg}$&{}M}AHL5&wyE;l72^+mGluri<;`U*`>|t~36Por5XRAlZBAV=5a$+i{Ku+(b zFOdVxoeCXa>dlYkmU@V$nECLmW5+o&q`6HZ&ieNU{q|%zk}7o%vmJ)FIKfgHE*s1@Rb{<6U$z zxI|{K8V|12iuB)Bp~q)GJ)r)U`v2JD4r=UwP&U>57@ymvS-GW|4Oz1uK6c!uD74Gh;(#s?mPAE8Xg&%eQoGp!_*jzoc+`A6M?U_NkFiA)O}>VK^EzF= zvq76n-RiEN(a6aa>g8c9#lxtu?Hzxbv-e1b&(CG(#2gPnOfTFZeIoL2rF21wIfD|QoS)TKTF^Trm90c_&k zPL$$G+!E24(cVKoo5`bjXgs@bP+OU6B6HCqS6R87E+8qNX90ve+(jX8=>Hi_Hq=cn z9!GLYV)w5;6lu(vu`8jxMEZAYiO{Ri>!L6;T4v%weTbhn`jNsaPf#poZC@C&b!fQE z?T*gO9nyY$fK}PkguQ+2y5Q8B$gC85H{`|@kFumvP(-`y)W`oPlN0MW8wPf0c$CY^ zT#eB@5p1+OMAs6J2v>=0Rfh_D0gKm!O{6jEZ&&xmv~0Y=t1kN|ZPYf@qoLIEp>8}j zzGL2L_8^%tPE0J71ti9(*f_n*%A|c-*#>_8P1H^FIMgdL24w}2s+oixXeleUz*8V8 zFjQHf)+(E>uK%l6$i%Us=x>QzFkRlt*(NYHZne5Ejo_=QnWkK|j`!ge0kQg798ec5 z#_A_hHBr3|+7Wu#0){RrAK0{45Y6DUuKyLHjo+i-jl@uDRxTYYiM>gvrB;%}RVi9- z>N@JewRS$53*SbiCQ(0n9Fi6R!f8FIc%O( z4dqIMTKzuyDtIYpK~9I^r*RUj(XI+WS}q6(i@D4BZKyq(`MHr!Uza{ysOIatlj2=_poO z5dH?Xh)H$awvHpi-UtnDytCNFX_Gr+(d^{UA)kB*o`(Et+y`vC6uIpb`!C~9qeHoV zs4k^Hl7qQ&BEd8X<~lvGW%m;w?xLUJ31zEY5db3-R_D=0jEc2ly0xOfS}}f}VaAQ5 zAlnH!*Cv9wej(=;Zj$XVOIGg}2@R-8qz#uiWh^_TjIpMSQ_Xt_kG$MdwA^drB>zmK zs=RP#UNow?Y@wa1#ama0^wQS+Objt`5pyHM#2F%Gxi3m&zCG#?bCLYvjyyqlA83L? zmlDTfW$wZ;;mjsS&1ZrOG~~r`mY#Zg z2i=Vk6(RWqE7yXSm$+kBsk452LRt*IF~Wxgjwe{xakb__NRcvRf_P?rkNYGlirLHH z7$p1WbD=9l++xC;s6Fy*OnL-$NRNC7I}Z5rQdfcexg*6zEFZ$35X*-TJG z8r@)@B@q1V;XVi+aNERe7`q^T6I(*ttj665+((t4XwTZ^S)L zq95Z25#so6HGAI?Z6{Skgo$PKZP+G8BI5v0edFaLn7{B`D`)NHbqQa-%`#!W%D>Jz zmmJsflzx^|x-(X-qgZ}Uyl0|q7!FnPK}q7^!a5uLO4M<^9~ zi7jD3IUG>mmhC(#=n48DF>*|4NYV7zTTobgG=(J;ITP05&_wA}3z4&&IWdxOtkJ=> z;L4wiinqg4bS(6txCo?jf_9?pu8><#OQS-#s%VKj_$6e(LO#{1!N}XS#l3nO-xL-T z-Eg*`i6!pPp9INIbz2^X_2JRViym=Sg|qEHF5T|;6hRqjt7vRJ(Mn|n)P27ZHM|fB zjfE~ki-ZPtq@+YMib_18R8+9x5_cYNd6Y=2lnI%c;O?%97KT@h^|5+!ywnGBF^G2A z7_m2UPUh;iU(*M3IUU*^P$TIm2l8!+#%ue5@ZtXF8^9;r4}SF4A(DQ`nsc}M-|}t@ zKYLA=^t{cgmB}*nI}&=rD-oOz@y-t2uSW(7dsVbAfd3|#eBpox{!+4`cmLG{K`0N+ zvI~lq63_BE8NSfkNO@KOi$tIB*y;l!@`&GGowDPVZTL2o^*c>NBB#n(8o1d8RI~m} ztd7d3fej1!r$t61kt@PG-1Y%cv_4XQ%helM^Y$z~km8#AWdVD)8g2=QkEpM221MLo zzp8%^scHImm%5%`AZCLQh?}crNJIDAbMChNYndhb>kGo(qZ4fG5NdI1w#P|k+|*Tk{uoUX4^qMiW-eS$IB<0Jl^ zhTs1XM(}D~%uXg+Xf&G;Vu*a)O@zf82Z=2s5dMWUZ^ndGN1C^t5?Oy{R z?$i^ZCIGtL-z$LbEGl$U-VS!>RDJc=aOIdGxT@(JQ%l8}sM}L8@YpG0i+4htDWEXab zODSxVD*0D=pCbfAUtT7HNb=uO<9?5v9oAv88>3|Mqa>eam3r*$B3_c1-O@SYztHCo z{dXUT%?Uw*&uq3Td7nA``98DR$BnD$P}Z>K^(sBJ>XqHXn)Uh2#)-cFmUX>jO&{x8 z^q4HNFJxW6@~vdnwY?NEoR0V}tm`FX9ePjt9VJmF177hbJ}z zQp%?~PRIT!?=tGz>?H*YGR`FA+ngT4(_u`0p}qVl5tJn?Zfeh&f7BuvPv`>+sV*@3 zJ=jKdM2YGTHB8T3@n?}qB<<$Ab}?DbrPWL%!`BhRtf0=meLR_Tv01PP;6*pI&_Cp; z*zFhr9#3Kc6UYZm4{j`;Vq!?p{}L?ABfH6_1B3<_bmQca@sCSM)JPD5a0I(m9(Rd6 zsZ1!H#}wY&w)AwyC}0m#!!GLK$P}vt(-db1%7pW-tqb2-fx9LH4Rbs`x3s{XEIc^J z9fp6P-xUboy$4Sei5{3acpHMN(7;&f#At&(L_Pnd9x=*Wq)n20iW$g2WbzbspfwfM zt{FUhTy_h;d8HU!T_7(e{tH5tgm>JP6QBZw?v8|~L>RX$y; zVO%wvyQoJP^>gIg5cS$$&q7PKVi31&+!8gov?6JQq`&GKve-|5_!pK5aH7NHI3T)B zeQh)VXv0%0+{voq?qr(KdP|l&_s)0AMlnu|67!7St2ue_X=ybsgf+Cz9 z#S;%@DtsACIeZzq^AfM!-kEYYXvLA-X{L+l&owwWl(}=$WD9(eM#3j{rf(u$tu@@5 z<+f&d)CXSyS;se1jV`i?LP`?#9%pZLrrpBr$p-bbU*z1RHs7TsZSVF&7<^OzM~!iL z`1+*JyX+EAZi$cJd?TteWyMRQIE;k|t!B!bDMlmSdbrN+v5(lPOb`j;cUu}~bPSN7 zJS)z!OMR)OZp=xAZ}6xm@azyuw)5eXQlgp68(NcTwi_9&`n+$~y6Ur!#v?e~yi;~W zV)goT^oJ}H{egI545P#!OKgf+8i_g^>g-ZyQyi zk@o!g3(JUaq{C(U4?t`$8)@SyW#p)*6J>l}(Bgv*DBovZCyFUNr5NI$CW<*F6r0Q0 z)7K=I@z0Ka%@HaVtn^(diX^Ea>g0@P&?ib13A#8D6v9a@^h>|gnVQK=PRTx`GPh{C z%WzF5L7CviuVqeoIyM8UaZOoC%D)r8i2~0ejm*4wvR3*K6l9DGVDs3xR=i_y!@v&A zVNC$FUMx+8&5H+6D}F8z51=+*ZVB$P#;qMJKwXk39zbnIJF8S&gaj%z5({8Lw_sIt zz0@JrK(EkO5;3ivUlVv!%f4!oqo!RUX^e5|B|3Spx{qJnKH^c+&g@I!aZ)VgmpTQt zjWTVdI%=M&zh|ldzjOO)q>H3yQY^$xLM)Vsb1Lz1$S$-(Qcogb66SbTg#R=iRn$A|Cm+nZ+-r^z6Vq*z#rrte3 zM>{kZ(T!wJfhw!{4H=-eI5|WNaVWSmO#}5qDXFSJ(>I7aV&EB%8YqVuu5fF`fLkpY zpkqcG{3`8|{F&;96vZsJs5Oo|Z<4w-Tn<5CQY)Er@iZmLY3z~;yLw8W2{`Hd=&5_j zbrLu;r;KW3PsYl?Ptrje-=~OZ2I*Qf+AARER&D96wUma#0fPQMRkJ7yDdE#RIttLrI<6xm0;Fm3jER;90SYR-~N zZW~xQFMH7ix%09k_^Z$RkS&-h6glp1sYUI&N@#@VeYu@t+$} zm5DwL0AFuEaen(J=i9r9@Mv#4)8CuFJ0D9z!YhIudevt=AH@c53l0Jz)}9b0%;`O% zNKd!samtV{d=n=Fl~-7GQykdiK+nBlo+tw2=OV>PLK%O3Sg)3kHMiYpDiyf4d0{%N&o``-;~)ilRLFNXTW3=Q#9YNe+6TCD}Rv z24ZnliY=xH=VX7yDx9+`B&38z*e%nkqL?JiG{|5Qz3Wg^hG<0LRNHW5E@7UbnxMQo z9=^DwVtBQ*(1sQZo=%-mR8B#9H6$n|JwJ0ekB;#y4Ea``PivRCi#isaWwFCo`Y5B? z>7uTURNOE|y}REaXNhq6!Py@}vO#HDAq>9syvzINbi~s~7Y>=^5;o_iMjg^hERf?9 zv07nnE+}8HCvgy%equmht*+y>F{Q4*hq~$ygQV(5o&(FLaz3J4c4T9tHJ@&jywIiB z$xa#Sg&vduiuaBYY_mw9i!06yzpTgaVNFXM5u)f+l1LwF8MGI%d>F*ZGKg)me4bb- z%STMvoH2Y?BoXm3gf4;B*P#n!1e@B-2>uMT4nYhzGnx={?0fZy-tl84Nh zZZ(bMasrxOV2q%~f$DCWBR0Y9;3&FPHROQ$;_8})Gsh*!uaU7!L6Tzxj`6i<% z`L5#~0BfWK0~85&a1W9yx=_+3zRSmOJRZViGd?8v{O{IAty)QznXLURP9aW04*rEQ zlX;kZ_mOzX0m=UI68#}mWpY3=4o5A^ROR1ibLyiDE4`6PZuJO9lYP8D;aFZv?A7w$ z#|gFz>H}+MyXp_RW{5EIE-6~ptj``~RrzceX0-`&>s4JZf-Jr33*F~R6mtr(m7Ow! z3DK+Ef?VQsUyDS43$1B z7l|Gi2w!wgQPqJ#9C{;ouS8dkRE;5I4J1X5Dt%EFN!3_&8XJ&S?z69X)ZNf)W&`)Q zFz28|yIr`Q&XO!GE-i5rlndM?YP>wzx-hVM;^!<<39z~{2aF(`mO!G~Kq*o|p(Lvs zqh6;*yDFz|VF{t}2ypcg8bhS^&a|;)cL*5VT?Ghr1q!?PhxlG0zpNK()WOr@^u@bx zCea{#m-iYfDOU4;NeP_%;!7USzrO!x!Wm108&_t#fcs3coMfdx&<1oS?skM`Su9cf5QucwTObjug1NHw25(j5a8;c;}TF$ zh+Bt|5kzoINs>0{_G$x(s+{nGWH=&aW5NZlxxtYLy?WKhzZR4LtrJty`5#>hf&1qJ5a-OC-tpm~HB28RG zCXem(dmaM`sCRDHzSxe<#xoDFIt>~p3>R|j(=63qM@&`Osa1VhVKj5hc+LZ&C} zx*a9ij@vEcg|tpUW=NNhka=~n^eFSJU3?UFt4TB>zbzW7vsdI0Bd39JV0$SBT_VUF ztNaEq*yPz zGW%d+vp4h8#7lu^J#N2)IpdsemGL^Y{##;n?7}!P+QGE5%9B=(5Tip1L%kBMr&sO& zm{r3pOetKFmC?M8We0A4a&I5iaP}JTc{fr;2n47G2I=T#`h(D&-DyHK^r%ahI#ff? zG(B;v)jYlJLwXtRPC{d+2|*>ESNj{Ln)$j(&(|K@J5YZ@D~w~>X<9+4GuedgP!F`i z*BO*wMI_jAxxf^iW-np3C<92ho-Lb~=-JXu-7J`v@6$cd%%W#!$<$XQ)66|gn7f{n z38U06*!h?+!q|EuQ^%-1ycf~f>CGSCp3c;~R#ZswE#J`8g3BQK3Ht7Xi5rCBKz>_7 zcxlF~IzGDws?VU_!yRKpnmw{sR?(x+CKlHEL1tln!mED%j*xJMK7ckzCJh8#_21t$ zaqwGB9Q2P5Yq;11{qWC|>4%JGG->fU5tsD(@Cm|#C6T@r21Po2>R5ICV%^IkO-3L& z`aZKJ#ks7S3R#fiW9c|c=Flo(OQx_-N*A*LeA30Y@P2SdqK6O2lt?~SmipnA>0xQY zZ5}n_ez1ez>j?YUW{oYzpHtZz9D7_HU;wdR+>}gR#ZCh(5>3X3sjL?x!#41ik+b+pIILQ9oNUuCHrY%%LM+)v zK6>=JR$R_b;NT^s30^M2N5<1pXv!4j|oaNP?V!L z`;eNKjj6WE$Jk|KQOH~6V?}_&fMkh%KzSZpuve|~Vao3x8UE&YSNNO7@W2HIJR_!+ zbjTsdSVS& zT8(KSxZN6JlZF@MiI^_DV4PtDbi+@|^aC=<(h>0!qNuSPjUu_o!m2bwpzZXmYl+mP z0$=?kCb4IQS*;V-xfNb@^p{6s)(V{GtQA>(OF6#W?_CHMD9f_Sv+S~wR=Gae-C6FM znnCKHr;*Zo7kqJr zT61>dJtXeUUH2G!7j2oc`!x>q!^bhaRBu<9O10_pl6GJz0TgWkbzl^ofLL{xI+Oav z3}P_9g>!ZiTmTO!&ShSl-s#^dt_BSw)q^_?QNTjni8LWcmg;^n8|kpl(^ezr8OV)5 zR=WN(TBUAItcBM^hF<2TVFRS7& z#bAw>1MFk6f8LzW5KvfAXp22rycjbgWvmx4PIatW3=VjNZ8rs?TU?7}3aosuu=2x+ z%$h8R5vi=UTi{%=+}gYmEEUl-`K+P2tQXWxtdtTte_2mpq=IC~t~#}HAT|g zk^+%&mlU(rSu?stqBV@|#t5d�e8;NsB8q$*ZObazLqrFD2+g_DpXedVXv%>N1{r zQo>4LPz-(&Z$aK5U%wS%7Mk>oSowJ8-2gR*cV-!%Y@*{yXHP&qn>IH%5R(icES<#y z&Iqq`;8`TnWwlLelS3@e)bId=7qe(nT_CnZ@9G+?}gm>tTj%LP~YyGPWH z%O?ia!E*7#V+8z4M!$wj4vLWo ze1H6(qp|h7cz!_^0mYn6F*SAdyCnSwTMYp6-2k9)Zd$+BROqBUDk--+Ddm$+xwx2= z(HZOanY2m3mG=SnGXnYva9QV3L}R-FPIA~Y4%(H6j{VV^(Gz~%b?hx?4qqBby+_FlT)(s`H_MgWvsl_&O{ugdBaLw?BnNgElEHYvC*G=hS)A5=|! zy%aO&B?FOswx@b?s|svP9d-g#a+j=M#pm$htp4p{TGiAa2AQh6oUxK*N$si%|05-% z`LEJ2z+?Va`t;208Bqmr$}Tt4wp&lzqw8D9&9GRNhh^^d^+5e4X714iucn$VaE+kW z^}07lJ}&v-PGl_SZlI}m^W49wIgPST@Kkzg;Ach?o&M6~#`^oo1<{Q2wM>CJnF4k7K`D2()8UdLsjKqe&iyE3 zRkff4`fSx93gjjj)IBH`@as1lIKSMtCIc5sztpfKw{Wnw%=(=psi9R5#>mGdgQzHW z!UsN1w>+&2z`l{vC`8YKy80f;Quo5q*yHlO>oTe8iBqcj+n9J&6;4(4lJ9({D#_qf zb>JsdwaKaKJ(|&1)%}v?@UN*#zU$cC>mNI%syh-@{VBz?$}Rbx*8Mi}amnCRb*ogh z!4$BvubOd^yjiM|Z_%%>f9RAt&PvpAyHm$wGByFH4$0uuak|v;h$&!1UmbfT`6#JF zzDayeaZ_I`j+)E^$JnLm@ME;Uj}~DC)Y#`XlELz?6}rRmI`IN%UG4pG=L1aTa17I z9ut$jyNj+0-pc-@2@O$!t1MAwRIY8^53yJssTzlRgP5C`*~c*V1q=D_hRe;&e`VF% zq|SJty##rW`h}?H{A*?X_`)mlTp@yt-%a%SEh*6fm%m*bY1Z)rsPz#bh<+KKb4yB5 zxhHhG?2oeJt2c-m+mK2f_8ws|1Qh6&I?9#Z*PkU;%)%Rt6yBinev^XaY8_rwz}6xz zi_y)T@e4S&6GK;?%b|TEl@F;pH&}hDM0N1Mueq_)@;Na!4m3mM#;t1W+lw{Ll7(I> zMaXAZpNp45j!IA>%SV8`3b$N5jx$Y&*y}5tVnn_D{k@Yq7XFLaTTNV5bwHT+|AlyFj4UECw;oL(9HVa#AM6@`4ELy$;T zUeabKCi|Ev*Xpg*Tc=`U=)A#=w*%Ec`%Vu+yHZc%Ql8xQ@#tyx46l8Mr|8X4P~awN z4Pt;LZt-v$P&gCwc>FG-gA30Kxvgul7+c}tbyny+-A00YMtwHH?_oaMZ6pMg`LTT( zqfAy$Xk{YN88+ugbVdh~s=_4uC&@}Y(b-nD+fKCx6xDb_Zu>~|91X*51_tX|0JSC{ zlJH$US$b-K zwt3&nZR1LB3WC0j=I!!+NYU|7kRxWboZ>7kqjkWW5{aBl;u>}HV$Ffc zWGrzr4^f1;D>P347+$=Gb+9j|V5un?_-G~#ACd%nN&@sN0WrD;Vxw@DXXP0}fm&Id zhpN0gtwE0^=-a;99;pSuM*aL)GUZZto$&Cg8p z6EHs&=4ZVA5gtTDVIRt(A&M+7!wWnvl@B@+F(ruTiv6-Z>{i*laztc=Y6b&{%#7pg z$ii#!A9wOg;8^@UiQ0S_&Ob;Ea1TE%eh9c>dX!j+#PuQf{<@DxcJwW#SoK6ws+*Hi ztrw7-4uRmn)?2Rt48@OWsfy5TAeh$IqKGrx71A~5gw?Q65i$b2rC{}7U?h0bCBICG zp2bUcij18XGIL|sa9J5TV@ry?cqCj;+tqKuy|BfJU1^VzuObeMV_Dc2k18jN81opj zagmDE)2@%)T&xgvqMX1$x`_6{NybZ z`%%n#E&pER`^bO%yCf9!04uK{eHLov(7wp>%^y96OB>2zly_$O?CprI zu~yiJ)zzkI4niCD$i5%C>}y)M7KS#51|9Qnav==~eyh1HquG{j3++>@;1r}!XG%r> z&Ea=BVnu3de#P={w*8yf5`U(1opvERZ0wiVMQwstytpv54^!^YzStjVj#N+O97(qi z`NO6_ZH=j%QT`HXPz?}6=EN}(T2$`kD2xT1jElSfJ)fb+mm;DU#fBXaU@LdAsSU7F zt~q`QfDXB)SANpBE}`=YX7+=*G+q^-fw6-KCyejN_n2WK3}T9+V$W||P?!?BY(Zhk zfKV=1cj!W{X`%DEdP2jwo)$Wjt2cD|uU#yS1%=f^LUOu|$4Q6Efz-@<@LgI zwDS7Zb+WU1wdOjZavt_$UW(jM=a!|kmUR^=L#&1o94j)Q{&pM>1CEe~0KhI2wK}7Y z-dnXwR#B#Fj*JwnMCM3pj4jbbuEiBO4+#6&O=)F;na`xBGYta9}%m%tYJZ#Rq-3#zY? z+jP{I;op#3ZJwajo9GaJDRXL;mfYR)86hbVCV+{=YS`FNK~tuQu1aenUzd*U(DoO7 zCKY1iR^d6ee?;2_?eaDbPl&VDJ)=BP9J@Vgi3E-F>yXs>Z47lV73A&AgYdW99PLO) zq}$Rf;$xEBLMackoC>Bq3VMbFg?_Th2H%B|6om<1pK}xnTs#udlnK%0=y)Sjp}b%N zt>Fe&pb!LCpeK|wyuBH#-lWG1W)){Nzsikxmc^E27R;K!fi9?kRV@*>kl@L=0madw zPG3p%O<19Z0W%2=a708;!=D%sByMhR_~2)Vq^Nw5ZVzzxJdr}g*GdzyTaSGGS}Ibn zJk6*A(YdiDh_<@X$P2A$e?*U2Lm{$LQV1Qk-(G&$-czH*?JLGHC?MCgv(tzHZ&xY| zQ_iPjwfln8RMd4I9WxI~Ga2g%y2cCI@n4?*mt(PT=g@G+(Er4L`Ep5J<{qm3mxspv zmoxZF@?S=oMtphVFbu6z-}&|j;=eppx~QAh;J^G241o}D#6vOk_h0TE2)mo`XZh;! zPn}QXHcQx!=q+LS;f&^H>0!<16={wWKM=l!m+$q_1PPM%V%+J{ze|Y8UE$@5Pn=Kh-zSXS zAzrG1xSgW-mXha?8^yOABozxCjhJd@^RlQrqq#^v&S@;1)15J4PPa9u(bnL1X%}gI zKGA|g|KZRwTlYXAI)di2{(ESatWQ8AxXJc6Mk=2u^s|6WHA-0Oxw6f#QcwKz z7^l3(LXAcg5Ku#oLy<>hI>=hq@&T}HimhjhW{CHx8$$5928tO4QqGI2f>*NfZ#Nsi z^;EH=PJxPw`WjNB#~V^_h;Ada*>Q;{_~+=e8jWY#?fI{0))nJlUuwY3gcsCW*;{nv zHVM=gqcbF)8)hNdqo(3|A;-x=&ZM_s$Wkv~)l-dBJp*^<*0dIX28Z6Vl$&nqY2zEB z?BF+=mh1bB<_)}wlnp4_mT}j^+#)sc+3)1e@r1VzXpUv9YT_MkQ{i@^&h)~yELqYj z#Z{#&c!(+5e$caE@J_z7pqt){UFUM8<`o@T#MXuz%P&3MM2k;*DRT%5X-D!azh>Gt;M5Y!H*dYSHK2b_@3E#kd z1@~Z%sgbgC^mBoEzAjQWQa{(5=SyX`k@Q*S`TUG$#e5m_0~G)2&Chfp_ZRYiP+zvG! zw?-SJQ9HOc&EVno?aqse0j=-0{^t2^X3qjh7~XG z^sidgnG39xQ6*!n>ah!~k}SJj*t|&9LX~zKi>hj-I&rJ~delma73=>$^%fb+*DTfj z2c{0M6ua)OcG2%MeEu%*h2<0(|1BuwEJGS}k* zfmi#a5ha-|L#>jrR`r;cYINfht?J^I>O8Atw%u-3&upo#u&U=<)i+wz^;Y#QR`o)w zI%ridwW^m{_v%*PE3LNf7365$E1RNj-WqwUcB4{`R4r8<`u7&KRsYUc&*3F zQ@#2*OC9A`ntPaEjV+cY?_i?ob%;RtDr?TZYSg}!=wvxA?0{Nw81bCC^~*vx35tJD zusC7K*Z?Ybb-gA}2x{`I8GDP45MqF5t()EUl{6PdQGfcTJ_MOQ^%lqL?vh4aQ_G=D>iD9?&kMEsjMI>01)AUP4#=CwLeo}4f61bP{hXkjAJ zsKR+OGn$9%L={5syiE#$ehja=Qslk=v4Gla@)acVjUl1|x@dAZDr(V6|JcbpNU}|x z-}Os|AmV>0pe{Grj}s0H6i*v3{JiY*o$Q)Go_b3(q(d_dHhEwA*LicCylbS&sY|1U z5r0cStz|Ii+onX`{LiabkqVeNcU0yKDFW&|3`s>ze&{0r8D~P$(*^NGZve?;;q?ku3Ci)huPHeh@KT+t=0D^V|*ISw$a#tmZLHn?c;E$BI4zSuOA7gI(^)O*hEuD%FxG zFdb_r5T`k))8R@%xEaq@j+7Ym>hA}S(N2$w_7sWyXU;aQ2@(d4m%V&+SXq(4vhdkU zKKcDI7Jg{R0=xW-1x00N=l~*c%$Rd*uU2U*#mjY;6CQ*HD~?f=^rP8C?A;B+>NjcO z6p~Eg@&**cVhSL|mqMf(EWW@lIYZjPE-|t;098zD z5F+mis1JWf#@#B5`lLm}`?Y9J*M+<%-<+`dz(`g5#$U>d&Zb#1%;`4xCLnQ>C4ntew<{{f)XlDGy8_K@~-g+Xp9Osf>X*R0Oe zDb#P3W{VP~G{^R5Tcu-ce~wi;Has~m)>%4^&RD5_z0q)bL+Urd586A`i|;wSUSx8C zn#PG*c4$oGP7Y_AJO!?1qZ)d@wyl%ro z4p=q5ESe5);6vX`rH1CVn!1KZ?6>A+_=dh7PNEJJ;oQ7iL1!7vj6TTh$DJAJN<=KJZm zPXA$7E_SY^QxHzNLSM2cXGLc0v=@!B?;L9ylA33Q4xYKxO%iMQA!|{db>}#wl5}N? zDCzSjYqQwHur@HpgTF~_^hl`3t|?$kLz`F|yUoj~sS?Y2H{87P+$~MoukrwSeGj5; zq@QO(o(E*^L?0H$`f+)Uw_q&e{`QP#UXf}htU})}Z&qOo>54JUOEZf~N3I;N0dBMJ z%(EAbGXU$+swLu#wm8#4ps*{Zz0reZW$e=@boG-?|D3i(J z7E|lx-Le!y-Ku@MKI~<$`trR;VlotTZN{o)Y?)EFfMmo4g3URTCV4JE!gAmWV3C5`I~Gh#>(!t4Q5_AR(79L zPofso;TX+QP0`+9M(#H13?J+bOjFBFs#MOcPpWi@Q|WUH5|w`Tcv7W^T5=Hs`f)Gh z9K&{kJRqWG&giYRx|;1GywdFoo#Ut@u0lS^w)EZA-Lfrp{YKVoI)Wb`yO9?a=ouK) zmiaQm_sRSS;fx<$hLmR*xv=36`#k3l>E)s$aQ6y8>Y z3oCq!&LD%N6a}8WC-{6InrF9@deJpb>h}hVIMr8_4)PgXM2;Lp$w@f|qCbkJ1`M?A z%^F&-}l4Eb1WFee`mQ0M>F||cJ%|R9A(nzb^XP0GK z<(d5~Ys<2&^6W@i4o5X1>WY*F@UsXgm%d-d{W7&h?pHs=2nHhe$d6jD--uL?H}a$I z(Qjl|;f?&L68+||c_TmSQvJrmk|B-!sB`rj+0A$(KWeakQ*7SIk2=n}j;t1W7-{53 zy|3RaHE-lc{Z79T?btlnkb$dCG^;0MQRK+n=%z7!-1fzrqt z-7i1oMd#{$G{17vL{bTG*1G*Xzr2e%VQrPZYFT$sUlrHR)!kgDmrj~!tvkw{wN?7A zWu5pew5)TJy>qpf>!fMZr(5fMQruSQ%a(On`kKwPbG5K+HD#rB*1ECWaVDGoHcns1 zbM0I`k!z_=QNf+HRrSf$ll~zte^1z+7RYs&`U5mboIj&j`=rD(?_wrCvSuw?0w~sq(s|-uax&!)ph^w-& z=btAUAH$yL3Ei14$DT%}GJ*T1GMyfEfLC;34DxKd){z%p6j8LtOL>+^wN$=-Go}Tb|2|I@K@aiRHiT+Uk-S(OTP1|K$!sY>;(^gmwpEhTQZhzj zLTC^WG<2p&ALv-6L@cEY-pK5+Cy>|MI>FaM#F+`16w*2&i*ownNr=2oLYYot2s+c- zB+sdM;EMpnD8qoJB}JVnlKo!;^)xA3Cx|tN0f8>Bds&a4nfQ9h)ntG%(?p_G=y_%4 zpP8p-KAU-O)`zuK){?bVmYB6-nabsN9*cHv*C_6&gaLGh^Q9Ijlq#?K6~DZq+Z?~p zk)3IJsIr$y#CxyG;y0e)B>qF_@t-Eq()ZRTneyA4+CBVqUC8Qh zYL}(eb&kH3b=Z}mZ)M?kxw&O_HXW9yKDwudh_d$a24Zm?RJkimMAPdF=3N=`*Ago5 zTnec#&Sq6a#Ii+Q{4Fe6Fh%Ot@`~!Hu!qP@J@q$|CZLw*o3N`h^e=+&xrB8M4l$X- zfBj4yZ#WWjl&*)=XLB^^5-A_8Y3XZ!R2R{{@IU;+Bp?OXCiSGOV4_7e3_yYsIw-=qKQ1${PA-@? zCR9d${=N@XkqD@_zL^Ya%E_R9*#UJRzjo*#hZ&?wpj_!u$u2$mQ${4wqfgF;5}i7d z0Bq{qPcTL7Gf;S!iIZSd{#Ey0VsL&feZV=T-lZA-fTSwZokZQZ?*pY zobLT6!;^sc_zlv%2!0Gdb+rLgkaE-Ef7`ux-kIp$EZx1GeW2>@y<6nt(=*f)V<$(DBitdMFz20lC|9~$uwL>W`0|Zy&vuj zi-khJH*|SH$&?_XOpZ^26naXu-y-ojTuSKD_XR{@y<4}FLDa!?RrJz=lKS99L`gOY z!|eg=SD@$uYEUA>W{hH-3XlP8~rKWH|EkOEyWkJdK;3e^Lt_8FNumN>byrlGG7^BZ#-sXVT+9U+U z_SU9X&5v9EluY4Gws|9D0#8Cu@FT>F?%MWc>Tapag*wxt=9FsR6k&1@<2AJlChxk1 z@60AcNn<6zHc=zJShY-xAjAskZ=|a;RF$0~9}!K+``?=PQcS=1zcTLykM?^n{vebi zL{z``&E~zJ>7@6eTS+TOI{Dok-U$v*em9ACLg*yFyP}RgDfvYXiG<)we&^$z5I%`_ z5dFzfZRnQp;qiS4%sDkHeA7-gIy@h-Y9urv=w4l^Wz``+7SEV(iYF>>^%hXYfyQti zyXw2yk7334iBMT{<-Z>5^0u%^qyzkpNVgJQrsfl-f?~HHS9bGSa|B>{2`!HBcz46j0Nuq$1Vuw$6L7cul-v16#$h{ z#nH{>G_XX&xhq`oaw-HNLc ztswYC^L_C?(Lfn4;Pwg@JEDM0@WM* zMz7-_(Uj2TtUEIQ?%jS1&rZrbTW8*-9@Uu-McWZq=YP!kRZJDfUh$24HTV#Zf;74g zVcXx-E{LmZ1wI2b2`tF&q=re1BclUx=*+o%cj(L-eXHrr3VkaWvFjRB0J%Dvgp*9M zntJ$gG%IXfbGqgmQj`kjbWP{p=$Z3hDXnX`v2*p^q@Ky!mtDoe8wz!I9{;U1o8-Fg z39d7()jQ;2^-ivarL|TckT*jtJdLZor~w)ue8@$BAFC?Usu~GTSe8{hd5Wv9vn=~G z5-RcDA<&0f!9(LUH3we8#?xz9M3`nif-Gf^0Yl`!{j#{{iMWQyW8zrx)Y@Vmrv=o{ z^i3?3V~*F1g|gLy@oy1s=2;qk!MoW)ed}J4&5mBlI!296C|A1I{ zC;oVse%zxU<%kEibYlxNYu=IARw>DPb_(Ei+$CIkTv()4WB(e|u3P&+Jwn!GP(PUc z`JnF8OL9USw&+6wYJU9jfPTz571aNmn*cRWgF5bHP^Gg=vQjV}E7}ktM~u6 zCuRr)Ve-^u<}15BM+>wz9ij*sbcYwOMI@!Q7)BOlr_>^6H&Uqhy&(e3d$aMId$ZY_ zd$Y-#d$YNld$XzQ`>AZ^=B3%h&Ar*Y<=(ihCo_*me-%EQ*M}d$Ia;i#!vS3zDM#PI z)_D4uG!7_45YJg>^4!a_Xcdd@#5w|2?ltxJmqhWhSA9Dm$c7Z01)D&}Pecr&Gy0*% z+p}EwMVH`Vd@JrB9(8UPVR@jo1T;FX@pjCClD|KICbr*quPaiL6-t%xB2E#vIZ2#; zm*|auoeB~jE6zXpe%U?5Q`+rne7=PNW0^KS-==R;H>aT4k^y6=MRg@Y%!TMg^3+Z1 zJ|UlvgNQJ}kE@eC&WT=cVGGuGqL-0<$dF?(8qAg*CijFGnufpRYH(TZtJKf>(!Vbn zXDUoA12K@{xQ^8>x65@+4`?D|^$P&Uvi;L{%vxB?@hipk&s{7`v|h7^X0d}mBN^oQ zl>i?aV4(S_mv{BcxT~$dn`=Og&2bj+eDx8l;@tRS#{;rRhQuGA)sL|YoWxJ?*l$^X z?}j6>29L_Oj2hCXZOAz+Z8Som3OO~Zjn;>6^17@vOg0Gaj{_-Kp_ zHENC=e2hf9lBgacKog2XOOO78E_wCaU(hA5&-{#Bl4o!Ef-c!w_aApjTD+B4 zzb9RCY?RXnk9}XdM8zNP)sJt*AHT&c_+#Wg>5|{YA6Mwdj`-tudFrAvMhf1IfwAB#Uu;;~*xt~Zwx9Ie`~@ns!mHB0$6PmlN&e@IB$g zdWgMp<}jiat#DgK{nW82lF_3~#0x>X98c}D%`x}hr?7n{@nUfHJ$}vX2O3DdZAeP`PMxkhP-6!Pj|!D7hxM?JAFTy$9bd>w2$>W%bhc z*;sM-PiS3|3^p+)ZT~p?b-Oahs#Nx?!r69CaL@eKCRgVK&lLEK&I#V}@{@9-Tua<; z<~=Svmj4h5ygZN~N8SO;ou5WTwnKI$7U^b8YSm*Cg#MA{1`*=UKlL*3Y_E=>wLdBrticXL%so+3|Wk#Ggqh772yFEc?NpNT&d z4G|t4(j4knEDv_ec_NtW9K`wF#^`4khaRSINJC^sk8R87Y4agBTq4SDh?)w;=gU?!sNoK(Kft{Qy z!{5#@)y1}GY%=FijT&?Z6)Zm*{^>#yBt`DIgCFb1L9QKlE#;b`E_xb#a*u?GQX{#| zf4k$ZpU4O6#~b*ue*A>KZsOW-<4o(voAu+<`udz)?`qTcJGk2S=$7E|cGph*a+kjD z*VhC3dQe{v$#rF(V+*)9|CQz#EAX!Qv_`b~ciqShB7uyF(j3+MK$`105o#4`z=H#y zD;tP}OX7S~<&&_|*LjzlA=G|H`=GRBJJ77&IOjYpn15>suApZ&waehC`+uTk_>L=v zJ*0(T&#we?Fv1?}r1<(qk@<@gZpKxPdFc>UcQNqEhN*+*+EU`#_?HLM!|$HJ(o24V zY3zsie8P@v1v>%FBtpO(8TBjG`x7Ap^?P-72_0IY1N8NdGhzdA%4pmw+XEVSy*-ub z?Fspy-k8et#>AQ2Yh+)ca>v(HB!d%ZR%DHgn5vzPCV!0{&`uPBku@^r>P3Ak^F@{3 zjtFIqpk{T}t3}-EJ~{qFrZTBzdDN+Vz(XS=OHXkUvfRs>RwK;4APbdY?ga~}RC6!r zO&u%N=>>19DEE;yg8tQe8>Cvn{^3H`ykL6lGPR!vbXoFMq51+Sx#dtjZj0si>2%5C zmfKI!+M{n|FX0J~ROmZw7^e7E)jz+O+;#=eMWpWc7q8?;|$p`(Mi29;!M=~X;wi2_;a)>INWY8k^ z9dhm&ksZ^mG$Cn-ObSU;=4mbWwv>5W%TI49JH54>i8mxt?&~M<`{%(6wQjD;WVnh(r)?#@x^7fsO4%N~wr4}Z<=5^@V?B4ct%v2m(Q>cIMjcz~2n9XUdg?VV#08jr>mgf zv$tzZ(lebPcKY;eXPOXj5`Vl{O4AEccaqqrJm1@A&p)dFXF5ju$Oa&fBcp$6Brr(Es{3>*ndPi+HR%dL9ieu6jlp$2j-_!3!UFwZPh^d( zF?8McG0FVhoTU~T*|eOUDYi0nroAR!%p>E{TwS;GcCi0wFkd>GAbbre5EvJt7q0Av zR!JpPi~lGmg#@bm@_i`zO324q=?N1FaoTI#D&&_dba8m=Bl;%0uPMc=+MxICl#B=b zy;yOIcfVJB&~#W&^42w+m}jq%^?Jb`HGmpyz3_SXXTChhYUe@e2U+4gysaOkIXvvv z4}u_gXx9&dMlO(8_D}JsDf1+|Vl2-iGY-_&O*1>4bhkUQMK(9lfxRF*Vf--c-|vA! zm~miLo2~a(dzX;=p@X?+k67ZS+n9xV$CZf~mQ7dYVpwmx%+np=Y*%%?NlP{27)}Om4U2&=_xpPL3LPA=MYb;)(sa$&0OF}U%}J28Fl{w6L!=uAvUBPmItj9~ zfef= zToq13hqS#W@~|LdJGIu%E9wrOQx{p`;Xv{!lv}61HGsKr<*Zpn`5}da>1#K1ExuY? znK^sh?M%N!003de`c_+Tf`rT~Tb zq2->6jEOzk%2#4(t7|V44VM%6gJpuM*`tn(N;aSn97&8>urA?>i#`c{#U8Tww21q8 z{BG|JM2EvaM%+#EAOyva5aQcIV|T<=ob=#8bFhsGi01 z?bSl-*lUE=$=J}IlGT+|PU3 z|1ls^5=-r9e#L$*!{1$WB4fgdIyLhmtqpYcjbt%5@vD0yTV*e0GMxLW_Boq^Xyz{n zghVzq294e2gOKTOhW&M<|L>LHt$^Hr7gI5yCVNHP&`+B5yHdz482=gG=oJQ)YFC;} z4)EJ4k->25`TcFDEpg*;EHS=*|GfAV6}_2w@n*6xL4u`-zI>gYv9GBii-F*#<9cgNHlG6aYgkTlqvqa9 zK^|*O0S{(`abvJnkC$)ZYtbaE9>cA@T2rd4^Yp!@S67dd9IJ&^nrA&YmWO!Q6-G+@ zzCVP=nAW$4xFc%>b7*0WOwzADLdBS)8&uu+yvETrq2YwUdRWkOD8r#Qcl`DSQsY~SO7TsP4E;=@CGlorx6z=dS1A2Krp9q ztFYd#;OXH)4>BIacm?98*6!g@;dj^vqyP+~j_K)#6i6H{u1yKfY~Asa2=g z%jA(9K>h6Pqtq)rCd+HvH5w}hFG)$kFVqN@a)HhFDk@W^gu^0#NbMOG0Yv!rN&WB0 zF4WiayM@=wtE@R)o3!jARS1ZxQ^V^;JdqaaRqkq~(5Z#Gym!gx+=bWY z^02#?Kxz!omeXD67YidAWM=g;!~4CNTHF$`Wy5)=ZGc3w4;b=N-8~1;9h+&LXphAx z!DWxlwxA)3AWR91(i%{Yz`8?ZVrQd8DK{Wk45)MV>U3y^qeYmqz-`a=7-35K&|YXe zD-u09k)A{+n=a2UHr-8|dwHV3pYrtzV?)xat$8FxLcC>1Kr>mTXWGPM^zZG}7$}YY zk2A4G;3TVx&zHAuqn-}E2;TbN%FSNnXENqUb*p_q{Q~p=ZQVto#yoP!>jdGL7lGa#H=M0pqG@6Jez(qp{Im0?vb26qn4hA*8z!Pg;(DZG2RdLM= zV+1O2PvsMD5^FD$D2PG{1w0}c`JK>iwk1?-_~XOQe3~He%BI<97xnZ2@SP(@2PH)A zYM_cLE#z#xPoIr9ayBl}XXDiHD{`2n&kfjj3F)WDPb*LuSHLIumdGJDr(nLg0{OIb zU{3$IxB#rRR_f3PdLjZ*ryG0E%Se$>*;->e5k3OGL?pU45zccZ00|lP4*5Qun`?K2 z|3H+k&-?o^H*IB+$QiK7lmE3fG%%)8O5bj|XGAlkyQ?Ox%Z^wMk9Cz)(hF)x29X3r44b3E|zt3lj5lZ3WbF{U4cyDgPK0<`?V$^t- z;3vcDV_PxQULyP7x1>t2z$tT1w3i4T@GTM1?R-pD+j??Q4uY%CV|6!E(Jut0{YDar z8<~^3G;Jg+b1?s%QbOPDQ7?&2G1+_eRHja>gd%k4-EJ5CJqDYEUA5?DaR1Hbzo0iqCO6F|~5z_6?)TEq@6r$32=XWXew_;(p zWGFz7DCPw-h;srs^@-VURl-@Z%OLD}C|V2T4273gLk zG|hHy>JB!w6#UkvK80E{BxU6h?(Jqhg!VnCDXJyHOxoIGj=TxNAKG`xBSTr0=SA+S zV?xy4TjY?+wWsv619|rB0rsmsnnGtdFSqlOTLMWe;p9{VnNAzxcykZMvF&H9N{r*jPvzg5HnBt(gz>Dm^6QTiDWYZlB%Zj#oB z`b+)p25lAIRGTNuI4muc6@EbzRw8$lO`|?#y9;5Y{o94B*Vw!&r{-m;LOub(g1zAa zCBg0wBo$|Al?I37z}MJL_-b1GX8=irlYy)xFf-jv1}qIZdLi^aR@c&{I8isg=9O&O zS0TUIvAQ*&Vu+lm94ea%UMo#L$+SS&UaN_Zj}M!5bddYG{p9HCgab1tPI5BlO?ttG ziBCX5&C8lrsydtV&knnn0-qg^km0hMr*623Y3kQZlxUL+{3a`(W;e>kF=@St& zEN|e(bS4&AQ^YG|N~TK^x?>>*=dm?%1fXZ#9$O>GKUV6Ft=KIIOzoQ+SNzk^HI#@$Ragr&a6u6JgUUX^dxWhnk&r-1 z@qk91hfF6;%@||mzz+}JO!plgd;qJhZW#1gtZfg_%oxr+T{3YnD&a|zb zIV2MkP)qf1oI%&M2a`%pe7*O8p-|%QKLar4#J><5RU-Y)vhUR}@McvHJ8h!?nZJd;xS^Oivwk;$#i`lTQNO*7_pqQf3`&kE@2idboIW-QbyJlc=p z(N;_RXKgIseO8fk`c9OWe;uu-_ZNWmxRbHP{vLzXFSeQ&5ndGV!hDcPNol)^BF>^R z|0w$tlP}Vrr1KTrOq_{p=Fid1yXJJGJr81<=x-7tzo77N zxYwO2JheGVhJdVUI2b|N5-}x>SNz-n-9w*FO#uJ(r|Z>`GC%3Vc6KJE_y#>GI=^o6 ze8*A9xX$xN5HhN&IAt;T+Xs!alIG{z^LuM2E^_Ao80%f|T4DFlkjlY?*lZ}-!;A%I zGo|r){Fn*Tupg*AAu_&0eUW1p`C?2_qXWZ>#`Rxxx)GOP5;HQd$H)PYWQ#@c6V0%e z$uG48ke1gmzCIZ&I>&GfKoDY~=4C_Y3Tgf;X=Jgc-?el2{LDFRwst4?EndKy z&f8U?z5ot&^uUptY=1ooWFtRJU79*VlkM9l5>#!E%3yq*a5AhDPD-&dWp7{6xibx+ zGR%C-9G8~GF(kFPrB}SKA*p$xom*+1{g0pbNT^+`23)&U*`%+#I!S6EJx}+RScb-&G0?UNa0QT z&R)^ozIV+Rh(FGc-@X+To4meGsZFsi zDN_q}bxKZkmma*3qs@`^pB7xfCz94$<+Fy)s4s8p0@^b>$;2s2+Ew1QV>0efUAzuX z#4KCSdtc<*In`thHR`=<#?gxiy#6Qam*WV=uSZb;2rjG~8(e+%G0wBOEDP(gtjL^a z=dl)LN3F$A^3mQBIA#MG;#JG%Oz6>5Q^RU?!gXrrlK%+HSK!(gBMWDo=95J99y-*o z6W)688r&l<@~{LKs;=iMA?czU^-*LdWYP4aCPeVhWRg?(w8Lh|iyeZmR_r~rRI^{W zR<{(sTN8(!Cqehv92XxO6bs}MwJJ_K#qm{R$Mm)zXB&o0&vyz?l{m7r!5u!>cwkRo zZEPDtw^t4bwg8b#(2;~fA1tAn*h_|+iN(J*=t@j%iVzBg=O<0<9S1sTCH!Ud`|}1k zqyU5fr+^}CzF?8Fv7T+)C%EZIS;KXO4+|OKt$$nIRZI#uW!lIAGooD!GckGCfJ{I1 zxv#ORf91rW`&h8>9oEZ1zulwDB1^wLr~CHiB{Cuw0Ye79*||MtUvm^R=<`1LeDm5pBa4N!7U$hq>7*l$ zIatDfa?I(IAxZg3vl>TM@2+|IFLWm*bW=ssV!29HXWTpjhN2aTXS1uH=XZ~$1cE92 zjYupf#yyF{jTAaNMS7TB8=J$hs(R`v7V56AI=MGs?loH{ZDM8L&aE>XL)AD!4^R8n zU;$Wx&qmR}s_Ll_4G^)ZEiU+`+d>-n$uebw@}dmHYj<{jO_2ZwnV zixQaK_=L~w#@VJR{b6a2Szv$u!Nr%{_KZw>fy^1zpv4qu&F zE;(w6WTK79B&bnX7{jGuv1=g^N(-g+ILH4aL7zZOvP*0oVJvPJ{p zHr2~{D7+j?|Mk%TEqbWpA5=H7QkD zwlRnac_B`0+j;uBd3rHV)mtA(zJfevzDH$xgMZ5uYDY=Xu&K$vC6&AdJxN-Ca~n_9 z!pDf8>EFaEpNQrFPd9n^9Uj(HZ%L^-r{;2{4gTtCW$N@K3Y!TbHP_rd#GT$qcJZqS$>p z>63JHehwWoBzP^wlj)cn6Xp8oju`~~+iXp}6-qZUdK9}DBod3+H0W+SE$3ico- z`r6P`eRKu_mah4{j_9)b}j7=rpsYZnG@jOqe1 zd>C=CGwc9@?@UB*Nd$|=|005%-uA&w+G59q*L1kdtG=r_$+u2I3?kL!OJ#(K-$hz% zzPI37d-jz4!;P^t-1AS7nyME%F4;(-UZcc)@xwW7o!Jj`Ab{8qEa=sB<3vIb{aD&F z+J9q+B=VO9_$L(XGNc}1yjTHil}PoiRifFnR`uhr`hpc2x=NU=$jhRhYFI2fR(rem zo(Tk)0Rh!HMy6~gd<}`EW1yYg9^n{q@<%<<;Z7pREG1J9^jv} zZY)&?UlGF$Qm$|iTV2)rd4G=~@NZYY=$`oMAinB!;38}-WT3A>RK;__buzbxK9KK= zL{@Bgu?b+5RA^c(x2fu<5G9qls(OMM?@8iivf0o8>W^;JiSbeUlD_{8GDi96BtEKb zBuuhZdy}z>FxA7kDeC@^h{fHV+LdH^qDXWdD*6z4=0v3EMd%ebX-VTqN;YZfb%qfs zKB;M`1#O*V@+e27n06*2#UX_cYx|7u%tW>0&)XQ%b}oUeM;!1j;`4-| zNU55oBh46*Rq=S%WtEH*oGq4M#aM!2&*mHBBF)~A=pZ(Dh3a4>?XDPv@$_%TQtT|? zutE*r%~VVU5qU&!|06`FG*S?HappBLpzi=Fda*N;mea_GHvm|gzGO}NVQoQTvg-;% z*`aG#Qy*ebSV;oHZ>HG(P+^v!*Vve?UF<32R!gVQMm+q>JUT^dLqo$Z$7_ zc1dY_f$tgOh;^w0E3LHKZ*L`ur5{{o#5uG}CYa1UV?aM!^Klq;Wu2Jr=!T`sWpFWCy$cf?Lc2YBbCfc zP)C|x-(%ZC<1}eM9jym~amJclA8JC<<+MG?dvdysn!=IU8gLGvCG0&N)P0YHLWYzL zOEaq)F**{a}xGcZhF|YY4JUL0-mH*Z;klzB~sdJ)N=s5Y>%V&LptXj`{D0b z9RnZbmc|2GGo`UEiOp~p8cUhpO{{zZA8}4iZ+i-oSszk@Zi?-uipEw#rv=pDlRqO@ zcSmG`8;1oFX9OmS{*vTa7gwm_4~3e_(a~Osk@+3*z3Wha$pVlKiq+>R3uo1CV1UlK z%6&tv5ab34;yJI8pDt@2O>a8`*rPY1jS>4mpz+RENcgi0oWqP=I*A9?b9@{H=QbzH zVwhmI%|#xz%N?pxACc;bm$c|@6md$J;Hb|g5UP0MiNz}B+?cErdJ!)??7zk4``F%j z+f)v%88SgDL|uIRug~h1`wm?tz9eWZx2r3E4_G*d&A7Q(3_Pz@8e?+p?ZJ{slgAQ# zgife5Q}cwf;IG(Jz=)t>r>rhGPJOsWH%^gzO_3i`q*MN5gq>BLRYr`udbE0)Dh0bn zF*h03Dlr5~yuNz$AQdq!c5hy+jf9x{MSHmhw!3F z=PXKmVtg6=$L~5z2$2MeFjODV19~x9XCc=X-C#~wo=ZRltxXA(TKDdtlC^jzf7R2R zM5Xa1{3WCVl%R;m~=_eHG`x5Tv z37&9#Tn2IF93Mm34|WH3B!_x`7UKjwB<%PU)F|Z@!CSS_Yx$oYcKoXAgdHCfzx8oz zPw#*oFCf!mCqpg`s#mfRH*3{z=yY4~Kh|OWICj#BFZa3h){`D;?^S&uO4u+=5b&W5 zsByeth@1$=9OVUn;&mvOfzlLXr8%0FioHyW`Jwi{)d#S5u&Vo6ppU;dBR$g0v9>+gn$itdrj@UBE;-w&SCO!&!3ezvO zLI-+b{x3=6I#fSMAB@hJ7t9=G4btuFfJIv`L$B~Gu1m`U6D38Wzg_KGWtyIR0RN4W zz24EU+ZWTESic#g!6Qs9Y|+=tEU7WHPwahsbvOJE?A4apCa*sk~t#pcoY{=E`%; zyqyoq3MC99#>%{voMh%LR~tq=vs)J;}YBGIX^$dVdG?D7|hbB=|gok26>F~V6%GZEE3PhjoD5-qWUZj?I*TCK$-B3 ziHV~J@M+LUpnr!D=nugK1yfkz5(|>TuJgLD+khslO%g*nTlf=P8+q?t(u-$v+=X4e zVM(4;dG5>Nr%DZl(jJ>{_iU3t#4c7w^`g0o>T(q zvL*DGu4nDn4d!!gugH)l^ivwoRsAN;IKimz*^n~!;`6S*MJ^mRW2O(CFZ z2s7jyfV#z)7ebsMnMC$#k6juJ(6)MxHuSKy2yLBKlP=_i8MxQKnX#h4yHt0S(1h_0 z-*|-#HaC7diCf$TzSyXRZu)CKXHC|vpebQUos%U_3F`zCzSi`~3?&QVPp*yh~(N=5#9@ zmF*2b%O!Jv$Ju7?uVwDZVjG|POxeld6Vck~77#Jdqm9x)FcaBCY;F!S9GjaR%+`{M zZ7mMGq!F|*pk9gJ?jQCA0U$K5+k&(hAkobZ%LG9|?8C?5lIEl1<*VSG%l|77?zCcsjE7G1icLU!n6W zJ!;hDj-;&MwYUYLz=xCC*)5)0zhu42RK?aVDI`1c?^c;oMKbrEY?riDrh3=DM*fi9 zY`6zDchSH_Wj~oub_dk%$#k`3caro|_gmOr!v%NRz2>yZ=@GY0-=T%PZhMK0GIEyy zL2Rw&d3MYrgllcZx87Ge|0QX2P5{$IPAd z0Y2AT_d0&hx>Q5*zcKumil*>}aw z@|wvHE&xXD4w^LLG@#@6ZV!9M*^F=aK-%$}r-sQ5MIJ)3ZTq+0pSnamx_aJM$KUXh z1_Rr73T(^ptNNra*`VKV((gB$_gm$ClGxn`^cfktKH>nmB>W&$f*}Yv(${i=u#F~^ zN9u=)6AMDIEfA(!3x6Y6iFboKhw%$29G!V9QXi1Q+XALmKpnu+i`KrYTMMn}%Iq^gVB|92+n;Uq!cU~meFSJZiArsuQghy&O6sIL#MC5%DK?MRVC zkS&I*<#t;W6t@UJBy>VUiH5K$oGSKmxFl9MOXL8F>X zXLdnRZVNn8Rqz1fF3DJoxQlYvX*-P8a86NRb<1{FDN3xbjM!HCLbnR~_&NLRg zeZ|N_#phK_M1Kk}@-->`&mu$c9V`c`5eOAl}d9U`UUrs{+mJ+!-OER6Qm54q` z*p{tkp>`&FRWoko_vl0&nx42&RN$dP)(XT3u>1qHwTd?_eFp zD{=oeuUB^YOax%b;dA>?gRKF+MS+nih+s-(ku1GKl4;S7xLY9+{(+|;R(J)j9$D(a zOAOTY{=Lkoy~X#wcjW7mmu(;YjHcPmf@rIM)z$h2%P74u zsq_R&W1GA|7e6s_rAsZ!(W4kdt^DJCua*|<4lyD0O8qodW9o|@L;Zql#*xq&HI2wj zI2Ql{0zbmGAhzURCk!}K2`*>h9a^u! zzeoM~tG#S^A@o$kgP+5gPzp-(f`fZwc5i#*mn~pe01>@@M-#_Uc2Z(>`|!_y*zw4HB|g_x2Zm;+|))iL-n&wb%^$WTH{o2k?KpOx>OO7 zddW@!xiMLAp(VQsRCihxvLv`_|L%f6vhHdXP}7N_z_N0hpuP;KxdVhIB8P_?4ZFku zJBi=|<+SxQbkkrRR6`%60Eb5oJJ2Fvv7SOOk>L9oqS!f3WWnNLI;LMF9@FrT;BjCq z;sibP{E;d5XC(zad|DTXNADXysWW)s!r{rm15u14=SRd^=@Rx?t!f}4T{&QK_Ka*= z!zk}!-{AMF`q)+Pqn(pWFQ?-?mycwnmvJi@a5G8A)-84^&ZkqCAC{@2O%*)cO^o17 zU?a|@p-I`+JWNxjMnD%_r1ykL`4(+u=N#Rk6aH5n+I&}Mhu;0hbf^cObaGH0yF*vb z(V-uX>=27Z@In#w>d1w+w|vDYGbM5%-l5%O<5+AQ1{V;hr|eJSzI(Q;&19 z15^_IaL`e;j8CdeM5SohNz8y4vC9$`rX{k-#lnCv>`SLkMNs4$+){PEUDcx3rlsl( z3259?mZ#iZ)s>f_{m~O;usWq)bhy0k3LQgG%o~L+8Ey|}?K~JOmmFgG9#|%`)gjCG z%R@3-9qN%w`Tf>xnRPPLLJvDQL*&QV>PcjR0gb5s{C{{Mbdn%n~u+>rN9x?W+j4K)p+Rv)!1gwM%km520G5 z%=V@tayM{6K1_mzaD{84n)J=rvFJFd6zU@dnnoN|2>LTRfE1NZYyBvH{MH^>qQ6zM zz?0&w)3DGLy`lafiV(Mz&H0waHqBPK%vJEQdmc?u6LN~Q^Wbr_X0B(}sND7k8SMW% zSu=YNla=~+vu3Vd0bB6zX3ado^!EP;Su-VNCYw!T#Q8#c;Ef*7nmJfvjA#0o1u#Le zq!`5wG0RDrS(%HqRVYiHj9CIzAh5ojJkyX_k~{N}-L!J-+?nFKbHYbr(iOMpEZOgg8T8I#k~A%g@R=wpN`5Fq>1C+Ewmd4z{KL$Y#K3j=`f zWFY9tNBjg4^&J5bzdPE4(-NgrW77y16ulg)22UK(+=_qMTQ_B9tNOGm9&1VW3lBr{)nrXovEuOI(!fq59 zx^qd=O@?kY#HQ2Ro5MlmQnM(m-d!$+innrG@LKrM+5D!2A6+3oq(Uxi5W#fB-y`7t zS)+gl^lP{=&9d7m5U~&NH=u6rh9N31q?kZ-#LhzMrzY??Vh@$ejf)XBlw}pXRjN5Qf{@PXg?*jg^M$bsW`Y$LXrY|a+juyN&F)%ThQUsMXF*Y{~ z6Jv_1x#G33(5~i#n{8#g$Tg~PBMF}2C z8}!=D84dQwJhmn6xG@_ODm^1W7zk)K^~TvqUS;PEQ4f7&L=-}{QAQ0vi&vTYRju<% zo;PR6az&QO@SBUxqLH$lMQdIxeU|uw>O7_;vMg6-=pWrB&SJJ)*4)C>E|c7_szpET zV3t*-ek$vt`U5%Pm-R|jp8!|BY=Jyoi+m3AOy)rSErOtCe4hFS^%l94)bF4iB^@J{ z*fHWi#$y`-Va*wtbW;nZvEa?Df3vDPQ0&WO&Z8%zx7RLl-8m(EBVD1i-=!`kVWyU@ z$L%W-PAs?zr3=BM>NhMn$vz{J)l@jmU3E(MZ*Ej}KinTan1=jro0<=QR}nocGSU;h z$nF}RwG9$#^fot2CZH{7SCd73>q(b*2RI(woH^f=U|Ma`v^>=SL;=A%m z{q5s_clNixYo`jU2EwpX;m|QOI`GCx0HCvCyrV2C8y*95Olm`byCTASM)C*kTM!BWx*xh zVIZln>3|xY)YipGuZ6#z2wYIV!Y*0>@n>>^69G&BQcPK|m!oyF+PR$Lc(EXd0_{|g z5nC+#-0q5)BV8RXl?&M2TtMBG)5(QH09{%2jD+eQ$%~s z8WrB`y=}vO@5dV&)fu08r?~!5^w^^*H+!e?tS4FJe?u7}8MEdj_KoeMnt&uG+4CLa|*w_Ack!J4WGI}ngMEz@oEGs!g7%qZ~h$~2K<7!5% za-}k4{ZQ6cSX8+_@sO6+zNQ;BE4WQvoM`l+f7R#~5Uw=z5e>x~eZdHU!KK= z!yjhiGBw6MLl!3)K!Gn73ZN3P6=w(-V3qU>0rgpDnXw{6?n1Y8|Htc3dF%VK_VBWj z#m!}Z7|kFqM|h)KsB`-omjuT81v8LZ^RgTTDOH1ME$wD4JU`DK1r&SgW6W9gp>Q+i zb}n;tfi>?H1h83kTZUa<@1u%P)G-p%r>8}Q)lWuMv`LLV?W2N+bo2pu8xQX6uxN>O+}$qA}}laBh`Bu z`<}q#{0n!Ju?-~ncx757w09=a>2<&?WF6D?Axdv@hd)gXwE<|x^Rcd9QNmy{n9yk2 zjm`c?IK9P6D>B7x`5(i8e7_K3*644ZhDi~+g%m@hzgex`g(e##Eyubq{J{1JKp@@G4Q8fbUQ94s827M1uS?Yf8k<`$Ko!$ET*``~9 zuuvi_JY58ii_R*G%s{Zl0B7k>Zgl&uSorBR(e9j~95|2gkoatNt)^`PY1Z9x!M&^? zbDLq;KFL*nZ4T?gWBJLim328r8Ch2m{WxYGgbJy!*XtVVrG`B>Gk=XHcCcJ~nPWM< z36maQ^W4jVtrv*9iIC4kh~M8|3-3W#X9j{7^TFVCkPwdQ{^Rz2G3WBZ&-TUa+cWJg z_8RjMX*++7d`iuv`TWD_P8e(Hl-XMnBS!dzX-lY7_wg z#7}b{eWTuHdx`Yb-k!fidYisPX3n=n=ux}t91mhVazvHK0+XVv_)93A&ZFX6qY(56 zNVF#q*<0DpC~}TB3Ro*fp+4dG`Zt;`NHo15-gG0tdCUo#Vh+g;GrfYh53p$+yj>Wt z{$pLe3gX&r7Gpx5+G@%LB3x(23r;l!SBRB^nS%rd)oYp*ze05N<#=rFb40hnaRO8& zdvr|N)BXzUI6f;f88L2YWlzxnFUfj=E|TG&L_g&c-LMWX%gt=!G$)37f_LMy$(`>8s zS0x?Y)}^%skxtoI^MZU!w7RZhctV@%f+|nn?9W<;DhTkKHFFW};WqX%J0d&iLv; zqdm}0ISHrik(BKcusSDB^0={?faDQ?)@!6$31Mt8tFBNXngvoWwU@~*!QZKwebUu; z(EF1O(SE*{g#()3N5jEl!&o)qK&QQ)T!%LZ?_%b+wow>}wywBB#;24uTwX`(xS3|g zZkUA6Sn_>9FW)}XvWyo)^LWd>%~M&9fI8iIT19BNxKdH?vJQhQ);c>ZT~=qKInro8hI)lC07+P9tSe$^qNayw z_ycKpW>UkKI1S5G34_MK<3VeQrL#|Lg%7FWDaL-LM7I7m^$f>7-x!WHO;G~DYJ0*< zqWfaODHm$_g_!cr;xeFq@|~uiE}b; z^}fm1L;!6GVar{cyNS#+hL?FY8@u@2E;0S@W{qsF9JWGrXf; z?cDMX$X*@?S-mdErjl$N!Z+>KN=s+b9_G-3o8{Yfi^`d#skV~~b`4!6h{5|a!m!@J zMM_obsQO*rx=gS`1@z^-EOa?)@+u*p<@u)+aT;8$X~vM(+zQeg3KE+PB2--;6>#*{ zH6}`*iaZRUv=+DW6?GR`N<=$Gh}TGi2Ee6d8nRIVv`SN1;a^C>lrg@q=iC)ti2CsT zZ}!DrspG7U+p3E1uyc3|8?N3{`y?20ML>;Q13bk&jCLEVD_x}NZ~J1ErxomSkT?!^ z62?Kom`r0i4GJ$SMUWWB;J?7)RVJX6*_#O}*U>uu+($21=UNEP&|oP3ccKB3hF-3r z_XLa)8?5c>p0NBdJzdqA7JAq&>X$sR76%1linGG&L@+}vhaQZH;^TNJ^LL1cWx*?p zD~8A+hw$(>4HCxny6;LlbsUbCwy3UOrKi;Gs`3P(%jK*l6=6(jU}mjrEYvkFOsetr z!Oj|KQUmi}U1O+I<0@U_P%!b0M-w#=t!-0Zuo>kWg-(rZUE}qn8b3(X5bF!I$*FO@ zQ{&?$GL98VHHPaN*XV&@qp(fgO%U_5xoMn(*{4g-< zTf0|`%(QmH#7KKsq-xqi+gc)*hAe?Pu6BhNWr`?{HLU*&l}KhUtYxm3ua@jZE;P9v z?lL_x(v9FlY|jtqTass8iM9#>tEi9zxtPXDwV6__9mht11=|pVnXU!7i(d2|F(J|@ zpMx;WK6&P=ecGJ+YMg{3kpb)s@Nk4q=)GdE7Dx+kNmal4>%N!{R#yMT3np6G>w=L7 zvcs?&jr~?oGWj3%uh=D=Xc`NDbXeW-3AC{gDp=Pv&_#sa^Rs$Ah)IW`I6f+ z`OqOWNn}C}xg;-;^GnKTRJ-ydj;QtagluFOeMDt91}_meW{cV~*w_RUG0$O!k4ncb z`|l{5cW803d0)lI5u17IEa#&BZZ4Ror3cMCO^e)B!xQy4_9atjrcDkjNs)Y;>`y&q zdiGRk&oL+MF^&x;?e*W7NqbfQj+&8d&T;j}%-Mu2wepv2|DIe`rmG>Z3WyUjJJ2s~ z2_6TzqmMN$3Fokq4D&mMPy#f_GB$&YR(nf@K5AT>=xm42NAyxowK17<(`=v5=dF91 z;h}lYA46_|CxKI4x3%w>ob;02Qho8$JnY5s2fr-mgZet4Plqwi?NcTCc4*vQ_1s`T z#+z)fnu9rUf&lh)qR;PO1sfeG(dKl+oQ!Ja)fvQVWDJNO`U+?`vMn)=g(=sZOPm*8 zaB`7888y*&WOy+xIzts(|JwYLIbAPLDZ&hSG?=tzow1?UVRb?8m8S*kj_U09-%IXn zQDNm`vOf2EAb!P;QoX&Xb zzF-C7vv+DRcvOe}#4G_24*QVk(0O#IZ9P?S)!iM@q@v)i_u0S_y@I{v@1ZXd;p|p6 zq$cn?$PTq=OIi_LwHo17d70WYP2@|vRrqhR>2~NEQ+181H+1WoUZwSgiPk?cm%8i) zl%0W#huG-GTaNLiD_vzO=(K%qQrq7sjaj#g073jff88rSg$BYkd?)c&a&kh{S40*Y za{8|y7($)!*l=F5khwt*s3{rhe!=`Cpf167?R%SrywDymn8dgnigtdRnj~z-<_ZQt zVhb@eU%}i)wJUdy>E{g9#p$OOjUUYq&(EWkj{sUZ#hCu4ZqPJBF?;oBLwU!_M8I-$xZ^7K9k@D z27+GIc^|?Hw88+C2bT*+Fhq`@$23Dw`%8x*IKQtj1atIlKyC9&Tvtq(^nIK`(2ebF zh4^zIB|q3sE6I?u5QwlR5P3*5=n3+!`7I!Y*+UM3$&n+0OY3PsH9nPk0+`Q#XZ*xz zl&Ic`@$XNJU&8b_^r{*EpBVqbV~_vI`1t$i@#|a0PvlKKetm!B_?gW3_%95uK6?B+ zk2C%^JI61!H%0=PmU-;)i@bs}KGX{_g<(I$DDfrmd9)Woj29t9py%CUJc*UuV9oBv zkF%}h{Jcu`W0qZ-g&lBYr0dJ~`@VVhj?!2;R>m3|@SNxsn)9jh6l`c(tS^hA3mg`x z%2S!%v{-XPQ=&HtSH_mX?|?vZHPw3&9UrRdvUGZT6nD4-ste}mQssAz_-c;xf z`^qdGXmp_z(eM#B6BP-7CK2P-$M zjn~Y7~ zdI_@x+FoA6Z=s(QElasz0KfW&89+V*7?A)o%?JPHJbH}IJ&hd8m;ZyI3YYG^2ay!7$MV}V(Cn?Q3gOAd&(qI9$UJ1x4}f-PCNdVpA{ zhX$zeOU1SqYru^Liw)~xuvi{`9AapoQeM?&2386l309F?EOb&+1@nkYni{|6@3Hr$ zA3`zdKjghAW8S%Tan9u_Q2%qgG`6NkyIszSb;jJZ^bJCRz1x;9VAsY($Ax0Lk#7G< zBR?^Xv?MiROp)Absp+bta21YI69!-EAX;aFby2u{M2GAlQlmmmGv)2WHH%J2srpcx zzGwnQP_|LUY(hgUMiu4i0#i6Hjl^Af9in=#6wQCt*EFX`#5D+IynY|dLv^bj{Cv1$ zvxbxyQ@p~Is$BX+sFArY#JfYv#XChSS3ccIWV$aypBN@hPcC7o{&}5oZy#L;>{Re( zVb6u#pSkN=#Y2@?z!;+aU>fw%$hjUY$Z&Q+~@?cg90up!9)z@Nv zS%IPN**om*rR6H`lXUQcM@M#YD-kBpgvgmS_khyhBeX6?sM^+XaA8Si=psZBPt7_^ z-glttN7R?jQ_FHkb8VU0Lsp4L0Phs~N&`NBX6O^g=*u9@xP?t}$4;SRXOE#{M0?q; z?*7G23nIl3cj#k^-Vs+$(~Z|^B)Q! z;1p{G21`U;pl~KWA4Yy@HWPi2>Bow4Kp`DHSCzxF~+-k_LniZ8bb326ryP{ z%=3jZN!-n#2PO?k`_|y%V3iP>$y1?vQP1vC^FzSAi+#I0dJ6t`H4C_7HGq=I9{Wdb z-&>(7*(pFL#-kXjkvt}?aEdF`#aiHs_8yrf8<^wVR`o z2MxPYo_%3=$E=R3?$8~bg-#Ot{${v_MtiI&_Bq8yxTDt+kJC=K(tKrZf-rp+?W6lJ z$MnIvf{qH6&0ow{K~t%wM*#PUvZb==R3@DYh^;HR)R$i6Svtzo07X9eP{Y-pn%g}@ zs{c@CD$Tb5ui+hB*4*Jq#jM#|zfqo_=sOsy!r4VzxAxYSt*@6i6?=#faV>VLc)?6Q zB*XI7*GlnJ%vMtoUX5V>h?{h)a}he(PMzqO#-`Y>tFzw30(QK6X|bnagooBrDM$Cq zrHFc%hND;N51yR-!N0#jr4ya+(W3cAXoB<6F_dK-qVYK>cGhEE-g=>ko5pxFsxDL3 zOPnp3UJ!0#gh+g#D_vv7Lddb3Gyv-~C+#P9xtk34#H1cegnQHBNpvi_LN@!q^f`MO z-L?5#+~>?x6VJi$@RWtul7lfa)1Cii_#f`Z!|7nzoc*BXYj-gaFI#)xjH>hP(c9ge zRHL_h!n3wxorM*1*CI-Kn$=*+39x5tEOS1ajy*aLi8>FXeZg(o>~Dfw-D#c)-==Yp zFnM~f;)_yI|K@^0$mQQ$l*ND|KVXLzW>lRls(;^C3lGp##Pf#6Wx%WKEd8-F)W-mT zpeQUPkRUD+aL^O$d?Ajj{uf{P;}KuTIp!Da5m`%XB2kfD$ceS zdF*l*p;kT3WODR-3bU55v0jB=8@&XBF|zW?%KOp@luwilPxM0>qT7r#Q=fr)o{U%! zoGbn~hYB+mo)!#1uLVbPxCgJ}%Au$G?ARxc+J^qo;mC&MsMQ{MH&%!TW{x!`heXBUn_1s6xk+h?!SLW&?dftc;?g0|cLT-0MfXM; z@r689XFwce<{vJPcrH~Z!7Ok}?ArvT)0E9y$porPhxaB$IA*ehRV?SYiL0}bVi;9+ zX_L4k$(geon?aX)btWKLf6rf$29{o+gxhg_1l_xb~TR%|?N&9x7yCvFX}73#uFBn3DA2nsm}~e(_=$R8Wxqf7*+o zxZDl-QaC6wmUS*OgJ)jCrq4Tt-g=vUgsY$dh<&`PXblfy# z=nr7$2)>T?Wx#w4wHBR5H>W1cTo|&{a1q9b;P{gm`d5?qi*EnUB-S{k{?#N-(dCjS zajiQsiI1$QiKm+>z%Yj%e9_Wp16DE!Ml&PDEbR=QQHPGcoYXQ59f{t)cu|^h@Y`JeAk*FdYABba@qIU z29}|7zug1)I_NhE z?=fqR%ri^Ss|SVaz;dNZH0c$YkPGz%k<@l&m%|bs0_BLfntF&JivGB(JyT+12;Df- z?X6!d+iGKeS00HxXt=lT_dF>=U(>F3uKWro`AQcz2h=@i&Dl02$HusmwIlUjH_P+m zQs4g2NhXocy(0h;QpaubM9-FmzEsu86V@oyQ51144oERv-*4k7$s`bIi@LqNT~cr1$v?62V7gV(QH$kJ?2M|?vdC0Y&s3DDd9S4*;=>7;kjFVF z-lc9kinwyva!-?emCG8}1mk!Jo(h-U(~Fp8;ViQ&a7*7xT_fj*=u_^?%xvH)U*Zk!>o}(Yuc=aX_KrU*H8x@W!l1q zX}2~!P{*D1K!g5!r~WItKI?&d^k30jS`R$L->3LTtyA%*#ZlIp>WM5Bdn)^&ys%%@ zFJ_uI+W1nFZ0ezFQ3ub@!-UUqr#tPHuVXk3%^w(l(B7V!BK~y(E;EN(Gly9-i>xuD zt(jvhz1GZYr&wdIYnVCCnptIySzt|fH_V)+esBigEpaFLpcpSa<7T9Vc5(Nw_5GM1 zLR+CXTKVgQ`xmgJ1B7+DiH$y&a)WibP*OSCLJ1}6r>=Mg(8vWZu?925O)N4#H;jO? zE8)Ly5WGO-mqn?E$zwxSUzr%S0r-hM|A<_E`69I<%VZkkb;e1ZWiq{qVMNB?s#dOr z2N^#}{Y?K3QxW|;P+g>dvsE>}@~sfRx)-xlrG7O|-5{^Vk4>~^j~|`5iHskr{`R~y zK2W_42O?f(pKA%_jJ7;hNp`1}|L*f0t~wngx}G>3A`7%Q8e{W4?19*PK>uyAwNJ1w z^ns=D?Sn@aC{7O3^<4(%6tsKR{78$^M!IoMOVbqJsRRjm)egAzo6qsj>MQYYLOraW zcBxB0{8R)lPz`B3Y81{`BC}NW6-Q3k0fLotyO5ESY*A zw^#=C7C&*{t5hkK7*V)!==8R+t$PiYF46%3#2O0GV8O0n*{I?%fbR4IkT&YAr8)%F zDRxO-r6>6GAWpm=u?UrCPib4o`jUErIIMwS*`!I>b4n!EO=^zaMFJ|47<7kk%bd*L z*Id>ugo9BjUg^)(z^gUAU7e%{ zP(|RzcHPQe^%ph*JUMwQ1HnM)gkmX27E8<*l{I~*HN8ds$?B4_6l*GB)q|r-C&koO zdD2oB^VUf|oI0#G)%e2odNvW(QxC z>GKJMmTXW(&tj6|*L~iJ1w?RE*{Dfs7T>|fhn~_PHa@7gv~sHjS|`4?s<4YRwn(E5$UcUb$@Hp{fvfejod-j zVnyPy-@_MbYWcjJTVmO_v}dRL(hHD|qqus;NQS-)eHJaekiBY7+D5rWiT2fgKe&AYjLB67%x ze}DyTw>4m`tYRlv&&`&3SkEEoK(^E)oDw*q)5OYdz;>&%_-BDKbS%uZRO&HUD6P#&!cQ0IKn?-w6#*M zt(61xUy;LGD+lYpL-pTb{8i2Mf*!r~UkKAC^`%50c(s2@nR?23_rARI55T>+EZ}^= z_TR&8K)p3gP-doxGX95Bk@^KvT^B~wXc~)!?om%A%KgZ+hLLmZIVlZV1iRZstj3Cn z{~_3!6`=ZnT95UzF~`!QQ7z1Zq+()E%NcZ! zS+@hL1&y|=QW|etm!apYtc%z*FrIcyx>l$sA<6YrVM$N-BU2c=GXpE-+FE%nf9)En z1jt7G_fU1YwemWi!f9hZ5~-JRf}N#bs(B2LbTew#mUK{YyLyXXy^2LrDc-u=1Ot;t zmRT!DbE#^7tjFQ0%nCk6_uEpXzq0nTq*idk$SWsVE9Kf+8Idc7~yJ!-Zg0D)!vhfo{9iP`(uy%oa)Syc)sq%3V7<9>ys*@`(2<|XT@B`SH z%KmMa)31q=!O%W{Pax?#rV33pm*&(*w_(wA2HWQVujyt$6@O3LT~VM^3j9o>B2T^t z&BW5ZbjbR#{7s_h$ZU8U#44S(8{`#?Hba*=#hUp!nPzf=bHK{Xrf|5mJ%QBqW#KOiF#zilT@-xMDye?jmH?uKv&xy~iA zCsm%zjv2;gImI~Q+_Bl2xa{sx9(fn4BRwRhU1E;t4p(<%l6o@0@E~+HLEkj{H)9f? z;vFUFp&O<@Yo*!#11L?k^&%77yRvU^uuv1*)sLkcgRg0m)VAU3RvOwmk$N<~H3+7? zT7voShRJkBzK4;8t2fK{q}a1gF+#i9P)wc0UZPkevQXw~>;!-zG$2whcV&UHGM(>{ z&PEo;f%LR@_OdpS#j*zkx=-L9_63QJtQhe#u})M^OT>*$gXw)Q)-+&xzv*duf5|mb zBDgsneC-Y(K!2IE2tA?vW2HGZVu3)L5X<@nQS9nK2~1*ubz4puDd;NWpPWb%1vpe@ zM{cFRkaxH8C3UTQ=Y(r85G9PkH=odyGr9&w7b$sGt@@Q9uC3}`{fqubehskfAr3{` zr%W$rU3na4g90?_-Woc)P2J89sEw=H%$x1613MC??`KKh$#uRn#QDyJ&UgAJzO#_; z*!q-Zt8@`m3~}T@j}S;?#V8q2$#G)IJGF_L0>kRQMbs-9fI!^55xbEmc*!&SIoV3( zPK|@;w(R18zGB%{xxoh6RwxCeV7$?HDDv_qAl#b%bhCf80Aa)Qha%%smu3_*s|V>> z{=VW!$wPLH&=~1Wq$Gx#Ee}c^9xE9ag~IE0^ExxqAYGk9*nIhot(H1$f`?RBDF#p# z7ZI|2b^w?XsCwuKs1n=NWT;xpeKJ%%!M!S<8HcK#38=bFrsfioJw2qFP_0ETfv|Yd zV8=3fb$0YD0Aqo9GD4o@MKi%w*O@05$&<6LiA013P)jh5i$wC|av_%qgRGZk9chsD z)L(~dJ>fuMX}=YE(Vi~J)2egDzoA8>4xmP`BH8+yyN((=Zi2c5z?bcU(Yf0CCPT}; zMNk}~((L%-=XlIvaHZ_~zO1^4aJC1_{iOgnx8X(Cl9rt*D;_7iZi$qhJOXNKyZU>z zysmOy&yv?cc|BrWU_7t4@fr&5D{v;Ddtvydoh;@~i7_6h*VJ_j(znMyo##7gA`G+Ov`4etbVp zs6KXTWb)=xNrAfE94n(nl@Th3&NGRd3ck?fBEgId!N^W|i&u6@PI%+M+QwGE)3>FH z1i@Qlb6v3lb?)3RVq(0KUUhwbdS&+1`@bZe+72tUBVdJgS}asLKJRuxw7;xSxjOj` zmaY0^b24qFBq6x1$;`=Dm|cp(8iSp;bzV*wOE_5d)SqPlJJhepR2;6((UyKWYSs+~ zu#BDGq>l_(mTvTGWZ=;4)jPean z*T;Dy=kK$RQ3CsS~m<>3XHSPc`J;EKp{9;^V^+{H+okk?Q z(;D1~A?UpXjs9nSZFBpNh~xNN6uJipccBg)wA$hax$)!y5YlJLgO(v zjZByX)v0cM99#*0op39{8Z|@TWkn_+`OZ`U?w|=G69!^o0<5clcaW-ABgN^Og82e*=oPO9*Bg(G!EG# zQt3Z^{|kx?qsTC|Ll>FE^(3`PU*F30t!f?DOP7d`ho5$VN@#^o7WB9bi9Fg-p>E;1d%Kaq?4;E9A>L>~>Jfg#EWE|iGNQrcwC z)VwT%mHX7TN4QY8A%KCE?pm4Fww(Le^DOp`MO^1M^?jEZ_V8`$#B+2UT~WZ5y|h1uYu{Yh*FhWN2`5op{ZKoEYH8`-VF}b= zHzIq$?P)K$_@Si&-k{eKcdSVgt-`Tg)c~?=C=*n4%(x&JTwMmMC zE}O9u&)B zco@pa;-U9{S-pd_*{uIncJWYzs_D(3^w(hF#7F&kE=b@&`UZ#)mP=hDTT-MhA)?(5 zbLvB7q*w14VU=tpvC<1ix739IcGLP)p1LK?8 zRj@1C-%vZc#HmT`6w;1evbkLS3jKy4-QDW9bY$s90YUAJU&fY5=&H+!g^so|KLZ^t z`8?)bYG*`y)D9itFB?;ZuZGJvA~V#^pQ_X8jYQK_?=4SD3Es)}$A!&2`JC@3j;ABM zJ#%HZ0;qWvwZ2mSRqQj!oz|+;YJFwgB4_9mJS42!Hr4H6sO0`__cEE~fJMJ9tz04D zF`{utXj-N&l1)swEpNS`Ifidl??e+I5{)fZb&GP((R5{h60XWIE$jUAIiE?UMk%je zsx_zf;fI7_Xf@pk1!Xd~1cIe-xM~G005QFgq-PiCuHCjui2Rw+5g7JK=Frd%k!_OJ ztd;rT>{U;>F*U4ise%MGpS&>XlYeA(u#L`c=RKmuyx~PK8ScqkD*9QC|zTV}`UYC9ZR6RjX#}nMUW* z3c!i0@@?AFbE`FdtFt2LTz05=x?HGR<(a`eMiDKRMVro|iRet!GA*hsUSwc!oD@0R z_UFb$L3zMH3k*3~RJ0JNw<83CDtm_+6{+r@S=pDB<}#C{F3DVGuI4iLB)H6vp!Ujx zQb(3%^MgXdFElo)rU@$oBoBX?RrL9+j=(=boc$ESDPBI5p($Q8mQ+fTXdvG-X3_ z22|?9`;MD3_GGLN5-DR{`?%$Z{p~7E!3Y*Ibh2qsXQ54(CVxW#3<)B~%0gRyM3cX3 zH%(r9RFn3^v2wPI7)wA=Y$NQ~Q88pDJ}3D?5OhZToYSP2hddSmC@2mI`KZsojPYJj zpm|SNOervGkYHpAoJE0S;yZ)v#98Im@EyQKGjP!rltEj3D2OHTdHd3eJ1BQ=#QDyeD^w$v^P{iloIj1Fh zN1PBHKd?zt$tez1Yq-~)hI{?)EQoH6;5@42dxBG;zHeP<5bCe*6HZ33UzQqZUQSXI zoR`ZxU*@P@@{-M4;JmBiUFX@fcBcX5oRp?onH%kIMyM_>Wi@LxUH+;3;EPeX25PsDw^ZsG%$7On7B_^s1Wbk5WP-&6>H@ z!duL;JOtA$DDi`z?Tw{AEUbb+WB5MJcYs*YBKlTyTBnKEQRk9B$(3f?wAQg^q>| zd1k44=iP6F`b)Dfg@&4G4TKFO#$2tO?e^Vrt`j`?Nq&5_Pyavcy$f`d)xG~cNd_1o zl0l}F!rC#c-Jt(4B zyac5Q3I(-Vu~N%9(spBF83y|MkA_TJL(-g2{8)dq4a7yI=TK z^i!u{y}f_Yy9ep*t@*bFfr6Zi;?oN(!SfO%WwfVY@|-@?_GCfstB7%qaE*_iP>>GAdy1p-5za$f&<9O4C_Puz)BL2zn8U;IM3$FN-EfMjOzIghMN? zfCMHbl^KP(4whxo+mshB^EFlA##?|*KfbT!`TARE&0lS*yUcodZatMyP5u4vYHANu zbCd=?%jYWmO2jnIA8+Wy1m?i|C%k^@W->yK$IUu}W<-GXvvqrQ%z98mNh=$hYYAv* zP5W%vdGofGcE^O9^TBY(b2Z{!&HK<~l4;XgwOR6%CMe~BYn%DarvI*)HP5@vyph?=#b0S=pt(8K z%t>@2*_$8>6JE1zn(fNzKk21>oo-jYc(PkptWk46I%%@k?oCYFGl}NxP~8(ZKiJk! zQ5Wj@a>ft8*#)V5E(y;fKs)2Rb!W`KjVuCkG9ci*VjwW4v!pf$u+w z?N0N-8mD*sM}gMtz$s7oh~T9t^V4hT=-bqfxhX5d%3N>mq^h(9$h2}1-uL90vzdZ& zlp&9*1rRln$>utJqH_vC|0|tJM3Y4XXjo*tqd5;s>^T`ic_jx;Jf=fi|%;&ErKXx$`biA^&+I&}Y%a$zf zRGf$L{!nYL((`~gb5L($pBx{b%X9&>%r%$g!FzU^RlHyvny}a~8!p05R>0g(;~Fs; zr-O;JnJ<1eo4YZAOZCSaxOi$sRgu^V>-jE9kO}z7o+JdCyZbN5(Z0?t}J)rM(kS%Ixwe1lk4t&X^(ZRRq!Tn|QS z*8pAIjHakW05pkJc2vx0Eczh7P0@$>HOD4fwy8EW;D%PeT3##srqr6J90%AORVYYd zzws9)CgadLr6lxuld?|fq*!#b+FW()Ayme3#~K~RqRNqNPJUc!WIM22?wg{D{%h`Y z+X^^#w0yl;i9vG^iZbI$>tkhIhsi4Pk@cd!kj_PcD&I%0>r`HfNz!hod^9sY+v;}5 zVn@5n+2WMX2u+AxzQa`fq9-SAcPm!$B=S+7rnMSpYgC(1tAQSWs-{#?ELy5J4r)ezNfym7&KmS%2EW!W$RRVf zugRIIca=r4elhYuZZna|Ik?p@*=uL>B81VQ&9!X)aNNO!p2wm}7#@qxv%ib@jXR4~ z()TRzi!O8JX`K;(QvwXx*LmsnBHg0d2H9x}mk)@8WHMa3x{6;VxzqU2Hn@buvs{#Q< z`OLU85EUmWf%`s5AADS^^M3xuq5=CGw7>cGx4`}u+TS96Co$W z(ROqwm$<0za!PSheluP!F(oEgLhDxAMfA#YtVS+E5+Yfwqal-DL3Jy)rZw7N`*?XN z(Z~?^m^G-6oHwJJ0?t+^JNhjjgRR_*cx<<;689EeOP_84^+@_Au~t)|;F?&PUdWZB z`*@k(L!srnp-AF(7xBf?*z&v7D=A^2Ny4GxYP$F-1S0@mL>)Fda?&-=O!(Z&r&d17 zL{u6xY(FM73Ts+dEL$Bj0YgxvaHr~B*@6A|jbzs!Ll?eSOjFH76^_20z$fJ|^$f3^ zJYiaG87oebv0|lh$|uL7uA%W2vFMAuG!ujj?H9cKNls-^dYDe-EPK-*`SOt&qOVW1 zZIExzvicl1anX=O4K8Ew%;mXF6@K&n!w9(-bK{>Z2-r2%`69%h>GJ zUeOJYapeY+mblNX86ta@4cH)K3#|v&>j4=X^uU(*wjLx~nA;1oZOH3weMvm#s3{wk zx-MAasD=7KiBrelx}lK+Oyb~NPP;CCOki1iF;UJ7WAY=u=;}rKK*PorOpLkr_r!Kv zNxq0=yxpOZ{;|q^O_jT$q{DB5ygdsYlXW{(HAx}}z3I!0tUeY3nh!m^%EpNe5TLE> z9Cdq(X>cF;BiU`)SWt)yo{1wzOeqNWBr6pq-;=u3L)tDCwynn(%|_$&a6LCq(bm6M}yR z7i}1z_Uq1EJ*j(*t*SBItD$$v8tf5sFLYWc9-jp5ZidXobdn4PSRE6?Id_zU zy`FeR#CDtzjJ`C3Vfg0sj=ppS7c*~~;aqrynt{C5ZVa0oj#yTBmKqvIL*9;58RvX7 zC3>G&_aJo>>sD$;N;X`~1GSo1rzQdWr$g?#!(_8MjfK4G+bE%R-eO^w=t~`x^F?OX z&O3J@9ckCyE#D?SCVa0t zyLyc~YQ0OYp7*7B=P%4{u%CHwNtW-HGgr^-UjIeaztXF(cggyz!*0Qh88#|=u2)vC zRW`9sV`O^0UGmSKKy%lAb3qr|*AgY>KLGbmRCERz@vNouu!n{5YV+RY;&F7baA}lRt{(*8f?ubw`qwYoc;mp?M@rZKbPFR;O zz4ir{V|6+6Hg>9|5R-UmJcuK1DaYiKsXTF41BLGhg}D@-H{xGP@;B zBd4inGv^-69V8o?YKE@2h+85X^ticB9_^q=H-DDj0=XvZdRChWetJYAwmD$%=*3dY zpAYK$h#fTD3U(6r@0Hgr+!n1k!Dx~EiI1Uf4>O6FKvqa$nE}222Cw5OwDvC*ob|63 zys}%tw3qQ)A1Tsdz-)XLUNFg}q&$=tHfP(n4}I<1A73g)Bw!l9_N@YC>g{#Ow`m;qcgq&o21IUR$)arx-9fhRn{W zKz|gH2PXO;Q9%~HVyTZhG#Tc@Z?n*&@*SHUV+yAHu$}}TY7t=E4s`u}F?i=WIK-~1 zXnS$qbBq4MW{%`eak}txIDk3DXOBp%a`YMS(ir68LKFzeaFM(hciO}C-3?zzg_^Rq zh_=s4(_si8w9{ejhc79j;W|G7cPp`vyUU!?34mCxX%=OD7nHRhP@@_o!-<&~;i-!OPa~dmfvn0{!1uh!G~tz3 zbm6NTf*te&f;$f3o*bVuJK*FbimmbW>z~3IS#iLw0U!alLj8NSQ>Ulq%sr?z=2i$Q zIlf*0??3}(eY`Zfu-I3B(L`rDB8!RUcAf)43!El(JZrgV3}=z(g=EN0(5O{_4NLd>rA&S3X2SxgtfMU~h zCC&?(Ev_MBNqv_@S#I#rkom8@+6V5C+<4Ad@^vH0r-3FGab{gr?fii07lh((^l^$q z)#h6(t;E=MW7(G{>&9n8HKwokcs9B*^9R2w=rT0X?0C@iI3b+$2W=zZu1x)hoJWh2 zhSg0c9!7gVXhO%}W+%rAf9>neLQMBi<%Uq-t)Hxgj z&=#w+j8K21&W7kSh|?8MThz7 zj%TfQnRR#XmGSH@v%!!in7{e=@Bri|e@gvrVpTEA-W49({|RyM?;e2o&yC-?LQ@pp z$=)@KFA)pB%e+rp>7*ZZ=S6y_5>164bi0b1f|5;rQb(_B!jFj)B$|adx52ZAskhtB zBFJ1efNMxuwb`AP|=Y*-;TZG!NXnv)^L3TfYTBJdiq*&(-?%tH@j6=d&#-TwTP zE4@7?ez)e=**rmQnA-uzPN&45s9ClrLYG?4_Si5rEgYLzB7QF!IMbaY0XSYuv zG^B)Q;Z_0+<=XbXdeHoUuey2(0?6yTRW%HMlp_v;p6cV9Ia6&tWQ5iw^%&nrLa)R< z?)R74@1HnNH0%c+c`sHK^8T?BfcXy}fxO51G(Tp`I74Xv9NYdDm`&&0MXIv~;T{x@cFxSZXJg)Tud|cQpYEW=az%6k{#k5-;j=*PhYJO2nRrwQ zMLx2iY%_2D{BW7Dg%CLAVl=4v-6%f*sUC7IG)+c=*5M@}+3oLss>HCt*xk*VWrC+K z*~EqU$+uwFr#Q<8>ZxSee74v6pK)H=#tRwPCv_*&3ZgpNn1Y6E`Q~I3Te)C6oVMuY z0bKc#!TPVD5ksGl#qikt^`{V|n-fVOpWgnK-mwDwy%-yr>p22oS`tNyy_R6SE8Y`4 zE9%d!#G<>-VK{{06^o5z6gz#0#zf64V-X_MpBH|RKbjI@9<%p&A%8?~bti_xxopoG zkIi`PN6`K*$1!&vy=w^&Q2My=dMbyH$SAkvR%GfQbaNmZO?k}9$d~vNo8>{5BT2NW zzbko^3I13QufI?hdxs=8sFS3$i7hCI?#ZgF)z5f-@){pu`XIsR>3QMx-+F=}D0*vG z$efiqgj49+M6chz^bpqF#<@i*O&e|FwB6s<)umtC-iOC!Ov&*X?X6*`UenjO?Lh)! z8XqWGP*B%9+KF-dC4ke^@LJ0XU^qBMz0E17x#53NGI3%TE%5tVD+*}ZS67Z>4S?Qv zF@jU^CiNkJjy97WTjeayY(FkpqmVi3bodv{^g7JtKc*{{9cDgYoQU2CvXh3bOepc) zd-HAhYPO!XhD)@~Gmp=+ho*OYsYHa3XYuj#%+Kz%$0p#|^k5?3rn~UNY0yE4HN45M z)1b2uYk0?AYj?*QcGzoe@L0o6e&Y>m_)TS=aQCCrpmT#|!chJo=zh(Kc?W66OumjeYBuruH)x>T<#3m-61dO?ggEj-8xBHWY2+)BW05ePIQd%C z=y<5`E!?EK`Q^2hV|+4d?6T6rriy}Pqh>W#U~?Qm+ul-fyjnMF+Ox>D(Nu9leB97j zZEk$jq^Y4;?Eupk*-~PT4%7;b&Fgx@dP$=vU2=ADeXo{^!mLW8rx@EsiQq1W|jhE$iJAv%KX#2eM{91Kz5Y7>LOgM38Q%~r0 zB2ZlqM~Hl|-%qigepzZRkX~IVzC?rqUAv3_i}A)0Wn|tOV`0<^LOkFkBW2S&j?gf< zww9}^_AkNzS7eBCDi@o#0R3Vw_YZ>cCMf3oJ7_b|THX{qTd=QOw@v(~+0G9=1=5Q6 za@&FMAv$EThlv7RVQTIG>ZLh{l1J0?V8@I1lCq|c984&m#ZORk(fTSu!@R}!^9zY5 zh}(Qtwa@87lEzjYvL6@1E_3jEDcB2Y9FFEgG%(~IwEfMFdLJ+(116glU?eO|C5qVx z%^NbW5t+|%?x1~m>5zH&Wfws21W-HCBEEqxir}#^N7o>+KIH!$(1A62?v$430G?$< zw<|{%y88NDH$cVJyq_X+&&mM2xZ^=^Lv{RVaUnW(>wbB$8 zja_CwN?^^R^;`K8VgQwyaa+3ld6Z{^Za=44bQa#Eo!*uLTbU+waGbY1K3Cdc-BA%X z)KZExLxQB{z^IqjhS^962diugXVkAHw7EBhgbNK$Ii;3ro*rwXg@BBSUAxT?daYVdqo&qip z+9@LbwPn^BA=QT6FWvL=L8@u{*L~kvKA2Y7#5m;;LzCFCtlOn{+tv4GaIe5Ow4ImC zMRr;^pKaiAY?f2&xQ@f>CQC;lWL=Ui^E3Qfdx#}jS@e+IxT0%u54S?5`18d=lqt`? z9yj$m=Yu`Z&>yQlzVkuen!8^BNU$wgbcai3W_lr&%7L1Ztd`OskS7S=1-uHHA02OZ ze0yv8zM^sLc!3=xO!gf29&PtK5+~77V;=YRyLA_gHfaNQnKu50|IAmt{k}7NMXC1t z?|;L_z7t-{-S5wCQ1N!tzI<<@=>bjPS~Sm@F*3WWVuKboSnca{>sf9CwYvNs<}*cR z!vijl)EA(Ap!ieN2J8wQ7s1wQ^YopH3Zfkq@lS2_ZNA_U8~1B|^{0uv=PL>nM2B~+ zzBli31A^sGAY|Ku!Ys6cdCxVcUO&d(Y%TTYGQTFP3TKe|{AA5d(3rf+*Q>vV^h#lD zY@_SlTK)BE1GR)JG0&Mg&DsN6>#eR;>Fy6x_pJjn_FzmkpqJc!0<2b%9z(&@~Q0w4YabnEqlvb%oqkjjdVG($3a&#SF&7g22aOo7+MVoM{YafPnL zKQ0k4u{zk7yXjzin8CzPn6l{Q-K?@yu0722__D(b>0God(c>(wW3{>FsxJ~=db@!F z3C_|~o3C_h({FaD2~Utpn|^b(9@ukKZU{!zvedTg?a|iqj%Lt1e&E)DDxz#m0tw}_9_63sv-YfZUA$1;7b!SdcRwD}uT=3~{EiVn$8ni7& zGU>{$6Ix^C9Rv{#nLo_?3}uu3a+ZX_#5Q|z=NE~pN%Xvj%}r@0uylm;H&;o>w8cCL zf}>YK$I+5%(@r#tR`>CyEQJolZ%5lFb*Go!H`NUs)}$)gxHI&`T}Tr)o7;NYiCQd% zlJDH*KHbsR6O#7+JKH=RIHkIa|u`zd2;4ZrKlN1Mxp)UVD3g0uG6QW%JEvkLbzwV%jpz z=9!N#z|hN5Q_*&8bBv<&L@4e~$wc$ri74~<+HtmmG5z_Q63@N6GKH!d+QoXLr-+c` zknHcr{$28B=t|~z7juln&t~_YDY+*?5;V8b`AAF~UuCAW(*CVd8iiTDU~%cTXY1T-u%MwJX<@hH^14|mfrjXul80ZxLLKgn3;367lr`Yc~=?KQ3DxUJgaH2jDfPEYLoz;Stv*#M5! z_v%nL%8sAob4uDU;9=S~3w~_1H}3m~RMaVEf-j|y2jkY25GKTE8B@EbZ-a3PKSWkqJk zR8)2g#CEb)J-6OVu%}f2RzLg=ElpBOKkwF(ie|QSUbmK_kId9WqqFBvlC&@;_2AWURi-Rj4_ zp{twK)s8ze2d$!ZHP*;xE%x!qU7?`U6=xa`{^4p z#mnoCpk6CKs(X=s_Kixo))+KQT0a<2`cXh@co{(Dl;bE+<|3= zGkRd((SwOxm1RDK6pKDGRueTPGBP}wuEpacxOHPRy7Q=eq{qxvyiwP}Dnq_>CsOxq zqa&Dt+Lnf@=oC)pgSI7^fwVRbqvDiN|wQ z`h@Uqnr(GWQ5aB5qaORrzNzY(Ekc9$dJXEH1}{*9tno348z)(14Kw!>^wol#TN3L8 zMa9Y7v;g)jx)?|*HO?8>3;B6r+7PaWWhdj^f4mLBs{5*RJ^*`z6|}7t7lFf1Kg){C zET2%w*3j+jztC@)zTLf>i{jJeOnL5hfpGlfbsl3L^bo^8JxWMhJjdbgM3oZqn9$J55^Dh_v_-}BdK~A%pvJIXP-Ndy^Q;5QNBV^{+QO6pR_O(`|b#<%n;G-z^Gf5iz-Rz9-{)8BW zhzi2Z`tA?xNrI&5d`NYjwd?r`7QN1f7r6+Tf! zSt2Gk)}83g4#q3@nZ%di>hgUpOJqu)H9V>^^&i!+VmJKLZW*pBaaK=Jfm$)v3nDBg zge-AojTv)QPhZ2uis@39+ix#TrUMp*5fyF$~uzy4IKqz|3}@eG#mg*!E*`N+`HU%q~<9ACz{8ak`P^QAcSQVtl;kENLr9? z7MT9oO`j!dJ;lAd)$A|*cY8l=&xiEf>O+!#KF#;^kyN01AHt%Gs^RRKtVXw+9M+D1 z^(^(MxgN)GmnOwBjGa^ZN4s;lVe4!sXrGoaAjQ<9aZ8mxqla->mVkhSGe0DrONMU7TMx@}>68vyqEku$ADrdt&tJX9 z?W7`r^p0RC8lH^bi*cBEnPKX!;BurFgimB*q>c7pQUD*%@`qNFf{RmK28{@(lfJM} z#qw*IBU_PQwaL2-X3fj76K%Krn&_~qDwwTe^bja_Tb7E2&vF*MBd8{c!cyDgrCyKO z+|DL<7C$FcupH715r#dv!qewxbJRPlpiVu8?S?H9=mlYZCA2tWuFJ69$zKAvF$v+P zk`lG>2>2e4SNq`;naoe(7;$ILf+TmA+#fcTD>5LP5j_5~AKARCKOO5VDd5I4-9`1b z-FzQ~6oxX{YqGRU0BSCaCwW{1Ma^dO*O72{-S;2B&KWaT5jqy>oYa`6%g)0JGp5&e6VLy$h?75Nu4NglraIk0_BV2)$UvlUvE_j3X#u$f9T6Yn*J#Xr*;erp zpEEBrGsf=;9S|Q`%5q63ZYub8B;Q;{eXsIhRX*>f99tO$SKR7`q;WHcb^vS6bMCZ` zSAV?%z6g`EWg{myEtOjjut&i*U~B?rybVy0R7`qZroXPf+~nQ#-<#aH2Z!?AJVnK9 z*ic~yol(Pvhq~&2;IRkRJu=$xHxa%i@hFxQc{C`@cjz>&~d0~RZ=qY0f=Xq@t z74%IEITx9J$Sz=~B0~UeHCAS~lp3jEaBtk{qC{&CrSYJ+MAQ{IG#$3`3?^v^0m^@W zA_fWZ<#N+C``#l8$^1ZSVs2sz5v=n{nEjOKqjzx0fnj!!sJGZMV2)}PwhWkAJkVD4 ze2@l2Z^gwRZ?PaYa%@TUR-7iOUUXw2vF3*A+y!**Jel6@{~_H&^4$GLoqO(%rBN#= zIV;x+O1=aUyMmI%(!Lg3B>X9!8lIr!JzR3qf|9!~;=sp|_4!bOdMay8L(<7L*W@r@ z3k7?lP~T?4QWCIBYEv^Xn*th>#ZTUTcpDC#!ey}U$??j3!FeA@Qe*N@g5#G6Wz0M? z1@COR%T;!|4r*o&ir!`A`SA@BUPK>~me3ckFL1rf&%k1269#wL$g{pb}ZiPpk zLa(lKp}AKsq;eszoL(i%33qHWe`V~FAEwm!sROQwwfMzZE*vfp5O(Xlx}uLO-%gd) z1?8)%Ru6SQei*(BL8U+`x%lqSZ@BobfE72-EphRk>U|BqyYAmI@g40Ke{K66Z)dc> z&}-iyh&0t+`>OXf?f2@|em9FKRtoql-Jav)kZSxGVANG4Pkjv$@5de{dA}u;I`${- zO&bHRh%Wju>8QG+r+vj2iK-3?eEq#~*dbadI zE~cX%Oz!p71Kl|l`p4%0^dHj9-4S*7mfmX5u=eaOYYMY^aJohh>STpisK)ob8hU$p zjRENzZjiBosxi>3p|^+EC_21`Up4mM?)FM=53f;pc#WO%N8IGq(A&%!SiN-QZOoEV zrB{`4UPDJC;VR4S{5Y3$99^wnAMU;`2#o(&D9h<1_hY9lH+m)Mrh8gXH_#qL*Bj;> z1pr8;w*?$GY!szTfL^E)uNA-w3AE;!d#75n0c&?~4Y7fU|90Tdyf`6oYNu(KQ0NAthz$|_#+3}o`%%&T(bJk26k>nvlltk z_A})L^3qy+Jvb(#2V)}x&88(D64oIn9ONypTQ~7$Az|ycWs&ffw_J#t0;m_tOC1Y4 zTg2Ri;D&u=HHMyr#jn3_x2sH3AHT(pE9sw$Y3gY5KG^b^@c5l;t&Hg;nNed(*Q80v zT5e70Ji}PmlrCS=IQf%nKK^tolfTW(!(fgEZ9YN<>MR!-33kj|^zsg_e052eJQOEO z^iHmIOZ3X?Mhd2}7aH1CB17H?NT5+*!jKP$ZRk|w54(46A9$fL2p3jH(vhz(;MloZ ztN38C&JSMBQZxs`?EvGD=}{!QHEFnH3*1?=7wT}&V|>n3EVfF|j$x}L{jWFs%Xekv zEp~W?l;S+^D*)JV#bIB$fUf{o^r3-pP9d}MWPJ#Ns{F^FBqG^U_rI21*EjBV=|sMm zl!1OLJeKmA^vkct0I^&ZV%CI6e*r&Bj&xo|e6ooQX$?BIE*r+-+@%>nD>Zvtw@Mdt z=Rgm0AmGQQw|P2F639}cq`7%1W#GpLIL*|rsOnL1BD zNINyo3lH;0vIR3@7oiVa*#c@=0Y}!lpK%Z<@FjbyPAAzdYOM;9i$2r$k8F=lK2vXr z#Bl-BJ_`~b6}NXVz1`}Y?3(jn4`ko4r9Qj)@LfxT0?3#O+d+DA{rnp9yK}z~IPSAv zVv;>p7)1>F+tn!?30F?uvx%A+7Od?_v;ID8Amz)R()NCOhHkvdouMIOUN8iBMAXM- z^XXC2FQC`CEY}>hO~)}K^!ExLVD&fMY9`M773#ms1F{SJUNC;=Y%K;djZ2Wh2SSAR z-TBfNiPdvmsM*axex8Vi6Hs-C|5E`AI8z4loAEh?33VM(Tsx}G)nA#n4L5zmylJf} zl75ZuVx5F3sYS1{U?p@XAV<0_Gh_#3KIVz~m~&aa*%8zf3~4SY^Upc*CVxrRoZOPK z0dsoY)T^Yd=oXl(GzY~3*`$}C#ESf;yTw(yOl4CjSaP>qm+FsZi?g*?EYhls%QvHk z0P==9OZ3v((TLEqMQNhSX%aLre;aG3Jb@HHT{~$5$Ixn=i?H(l_C%-FZ{yw!;KUN3 zLUC`14l}4{MEOobIOz5qVd)@3n`28#h?stHe*-yaAr|dLfI;Vq`r{l;_dDm)80p1+ zKx6Ft&uFX{VMZX`JfszCSj2?6VrGna?(31nI1=uO0Y@0~PBOZL`Qd}?j7khrgBS~K zj8*wlOnH&AdzRv>PdZ*6b35vtXjkBkVefdkSN=A}e72 z>;6v(m1vY`$HXp230HOHXGr$ScS(Bk&&@z8Yo$26eD}hB^XNn8@bXI9NQX$#%&-!F`eC=-ow%I!(o&#kXXswokz!${ z)1OCJWaEz50$AgipG~wlF^|VWU&ZEOrf|v>_dWApnM-0;!XV8F+(anS;aLQve8bu3 zz7`H5pujsqK}dgM*`~Zv<||Fi9;q&|k&D#^BL`x&`LWsp?B6h!n;xqj7^@xJR9hTd zFw`7>8&THB%``{qujLb)R*5AvSv;5+U*67j)2e2EW2-jX->vpnEKY2d&OmIH5N2$Z zjPqlwcG=(E{5GwUhSHpKEpFhtAUW-dx=uZ}BDSHiRA- z9x4+5fSFmM(YO!JbsuQJ?t=k(;7+7Djmhx1@$-rNpo#yk{X5K@VgCk`K8o*d<```= zPevh$WDAvnOLfWKVz|af=ac?rW%D7~Jc?8H6s=1%m$=d-Og*Lz&N$h+$Q5zYv7n4? z=F@!093Ux036Wy{?E{M~U6XRG_igQH=YjeG(FKEj7BKU4T+saX1S>EJ==ue&Eqb$P zSNj?obXe4!TKC=2B0|&T=u!5*HxKIzBKd8{M2>1ZGSa`TUnJPpCz1zQdIYwiJto^- zow6Lqa6D-?F6l=71>KFtUu1J4D`lEb358!^u$hazY%EjluI|O-xO`bVx#Z;f6J6W! z-yBxl8I!Uf@8?#Fessw6pyr~NwUK;vC)%A9-q5{bbW64wPhF3ivb$+J`^)MYTCTQ+ z=S=p1Tu61P9bR4Msvl06DS=9+SDh@fp}J;VS&eKOd8OU=traqc$MWY}DU(1_&oKh$wAwegQ^K>Es>X>2eCnfShgmnKo zGAu&m6WEZ&l)1+Tudd(rlksH098WiGlVA~ZQnD>ormZfoEzdikiniR2(qh9#Y3ym~ zHm{{OuVN~vx~AtY8Im^TKWHJsu%#9jcq{l?_Z2iNE;}3?^keTVdq8!5BNKmkycXL+ zmNSa9=c8lebEBPo^OjbzG>HL?A55+$!pd_i4J=_NdxBjwNqf z`IYwOX12HEu=Xm_?S1h*+t1}No|feQN<-hxY-s0U4ShK}HQ;C5hGxL7?CAq=Qr`;H z>X!`oE3Li{4oMC7qr+PLWxCZX+*XBP_B=~NYITZke))B+0;STeetcM~Rq0lHx~*Qx zB<`v8TAjf>?x{+(8cHwucQRYudswSqj7rVG8fG=RFxOX?&u?yBKfA}GDA*hCXBRZt zeW!dt9&lJxUG3Y({~i24sixXDkpDOG|2O<^<$sXvcOw6<<^Rq6w}<_kfJtwTj=Aro zOki^31ppI^z{SHeeLolRu4HdJ z+uGIx;|?qmMdkBl`|#jj-V3-0My>0`pxO5sgKlWw%)KS@MbCAo6Ct->(4rjm-;*Y*F90b(DqraAUR3Qk9C|DWZ(WeYpYj3u)mJ zElV&nywI+VC;2~W7;7^gG+!@j33}c219eA7GV`AWSa3MMu z7FeGIiT?8W{nkhDQU0pe$I|OsIQ-spBtVh2Ua5{w_ZU(V-?>Z^U6@YVs!p@^NTIEL z@lgX^RMSzs;|fr-)l_&|!asoq;dSYA{7ylXQ26JxZu$m?;UC&_ac&-eIvV#cIO4u6>-W_E9#PLq7^f2Q9{ndg zx$X=3Ysp&=ce6E_h$Ex77Wg8$lOuue=as)2E6a7AsyOb%#@?H_WuTcu_Q5G^!zS7G zc9}K(-~=jiVFb0ux)YHWNDN2|vmmeLvwS=8Ky2+L;($$W>M%}0E9f^*AplZ*_Jd;Xk=3UoqCqtN(EfPmG99>`nGHdP*O6u9;T*; zbzFf%!lg>oe+`b&WM*pd`96DOIz9-MftIW+%=@*Lhta=I84&Ji9Tx;aTh*cr={B2F zIbB3w%5@sVlsK`S{N}VAbpZxTT|Q89fY~VZ@Ydh12Vr2aG!#YjXhITcWo^lG=;C%U3 zv9JTTu+3y*kke5~RJ1CrOChH|a;-}w*3TNxZHdE5Wb){ZDg+pjPxgJrL2^&IjXYA&D zQ~onqz-+-Abz+f(MI#4@lOH+IG$D|ofycA*FyqCK2)~tm%6_%&+rV9Y5hIeniG|s0 z7Cp`%rQBKkGfgG2sn|Z)p|nKBmD9C_ot7ioa}R6U$!x|1*5m-=Hkh6SvAGdw;?(ejy z*3FmDYvqCDQP5VDdqUw4T@0(eKiP*E$GRuD0v_ulup1PDZNA0(_nh*noE1o>zR&z4 z(GQrj&2(S~D)VSLDZKc;wd2?EHyci)G1s3!%%{F5B)-?&FEbbHOZrDGN9CEARN$D9 zx#jJCf0l+gFqQ-_S)xgV`x+{=^f+iKlUY0BqQgmWhmGzm5f>eORKFfG{oX%drs+uZ z(S3Tz0IowctbuHT)e?|%VFll(_k6sudBHLFWi1h;h*!)E^}k!d!aT&!R|nCcCfo)x z>jSWDeYdWTeB5W(EU4=iK!J|G4u5(EG+&bb0Y#66cM6$5b+D!82d30WFvimo%--~O z9~LRdgY#&L4HGc`*%$OAQJ(riE7A7R-9Uyk(KU&i2ZziH)4cE)o`Cs24u>%5HIK+j zgChtoJ_SZjNGGrHM!mI$+FL_r)F^})w+%-0HKjT}eyI8DG3|+KoeJ`gZ3UK(H7B2A zPqDdz>g21T>rzds$ zVv@*=&E{eKRZ_kUZF}XLu`;<4!-ecir`Y;tEX08WSRoUknM=8xzsdS$Y%-^ugq$*7 zx!%Mv;Bg4hzW5M%V)wItN0UBmtySIkhCtP;UvsXt91~Qu1sLJRm&m`NJ7V*ek&GvI zuOu39HT6UTLO8nBzBDIMt>k5`D^iYT)hjx@p5Oey*7HkdX1~8@1Qww0P&o0N_Ck$$ z@3;=8%@fC*(!Bxm1+~43YpBR}SH#LozqC2*t>vHV4!HtK(vy9dz5O$({MWz3%uQoK zyQs`}Y{V3EeU3{>cAD2GXo)+_Uf{G;JES=adSbVJ6RjL3zFb2z|9JfX5=r&BZ)@8z zjfq?PD1yQ5=-1l_-oDKo-I;QpPnw$w{w3GPX6HmQm6RwY*GE#0%=IZL`Re+t8?N;U zU~iLLAYtN+T3R3<6%SjW`P8%X(-pibJwI;|$Aisoq}Tf(D<~AO-Mm6u(j^bUS*wpu zSH(f*j@S}9t%QJrPbj$0+4dEv`yF&zDYmvdL1!VI$FznRA_D!S2+Vw(m$?mI9mF;m z7xWm4_>#N$Bwm$vq+OVl75H9oo-2BOTZOa`t!)El&4u>cc^J2 z{Fk=Xqaql|=_=~cZ0rf;z(!rNOV92WC1`%}c@JNcrD40#lk^{QHC~qQ24nx0aV7YC zZP5Y(Jms3ZKTafsB4QOoRnhLJIzYu?z`bV3{#fGxPBW(%RnLbpYttROU)J6wa|+mN z#X6qP(v>9sgjO)WJ1@Q0#_~Y0;4-#R$(+Hg@Mu+$*OXUfC1M6`w0o%KZ8ZDnqc2Uq zDm`z>Pj6>Dm#)_is*P^(o9VWmUl7DT`sfR@lg;ATzLpdxxAybtnj>t@fH}?945+4k z^w9xQOz}m6wVxQCrEacISGt4k65SFs9p|c>K>;2;GP9|Xm;)KP26yMu&%ra1qtc;& z=F*Dm*sjn&pAIIixJ0(1Nagh%qyiUf%-?1o5aO+P;hkfNs2tB{g5yd)`6RHp@0DA@kLK`0@1AM`Te?IOd+nHzXx8@i}@Hj$Jr+_K?P~+Ze z+Rns!GiaQd98arK`!`thR@V^$tJ>K8C~Ff=RUr27eqEI1y52gija}^5^~31T{XSj{ zf9<9t=L8x)_fhATK-|`E>ltrUrBK`!4w;W2o}ezaC5p{iP&;ke&TH}KI~j<8QE=0N z1hS`WIwCXD+=-ZpZZ=yVa?4?CDrtiG_%$WKKr1=en@sLgU8$3o!}WZq9{Bc1ZQM#=J9-DNM&oIQm)_ z{ihI18vl#hE*t2PeX=VeHrrz~Oq@6K_-`cfAUy@SLkg3mVRg9p`f5_VMU;X;`7Q22 zTuJa@8~r#H_Rn>k@G+%NjAd;@CtCA0$DG-VP&FLSs=R>bLy|N z#K^|S6>+$FmO>t(kB-#_P&B$~MOUe4UR+NowQ(WyW-XW)W2VjgjjdA8-6*{Z*Ew$|d~kPoK(ErQe`N zrUl~GdP;MT5CdJa^}aPrS+_-`n0M`!U_1$w*Y1#GbzkXhs2I~f;MxhJ)=%0B=Z4IY zKk0O(Zz$FYP9bSLO7b@Sm0~4(mnGb<=X8d{;w4K*rfh{dP}D#+is_Zvuzk`+~m_;aloL z;z)OHJ&A{<1k}seEZg1LZY+qXM-e>E@lyt)TX+T#K87X00&{*kY@5{ zbk+=uX7*4x*Xv=i)@o{I5ABopSv`&}G;tnrJ`fbW4$-scH?#>SdtX*mXR>vq4TshL zrnVq{!UZ{NPPM12MCREipSI1m>c18En>jDslPfJ zf7@vn(eixuXcT!1i4^QftVq41v0`rK(WuO`3)x{_kj8L~ma(_fKRz-PN=%SNktpFbKHt25 z0*8J7r9p>(e>mTl%4U8)3)kqtx77hOT^ex@om)2?pDSu+yx4zRjX7$FI#yIb{s3&m zo{e1(0Q?%aw>5hae?lyE`l#mSWUlZJ zPR?B6C5U#l!hhFat#FSI>llvl;xvgpuUiZPTcuM+kNn6nQ;+a={yX`ar`U%u!F zVAF#)!q6?V2j0cWP2~)yJ=9_!`Aly-yxHJZ_a8FCRlo6y1$i*+-8uTvt41A9J z8}?t9XinNqA8ApyB(S7APGpRmVj}-HE>*Wg(4g)3#>CuwL4rTEr=h|zdw~jnURIu% z-ef=Tyq1h>l{Q70LNeNrSt8Z^q5tzxOeULk|YG8fdkH~|m@BOw+lha{70j{UMR|*`; zV1Bi3L(G-~0*;tHH#1W)OE#FdlFuv^=1NMRX%oLI$apxvi_4zHY|9=HoNTdJ&1cSr zh6d9KJ4JcyVyBMo*y%V1gePf+U*1)>Wn!m0k^Krg9nfE4r+zyy&$`}4_YZqJ9^~{M zHl^t4L?*n5S#BCR-P*@PPJgLT7$Ehp8#eOz@7+9iku%!XeUa>Cb_{NLwkXH9q#&=+ zuK8AER;1jn8yLwB3;lSgKn$UI^9;U?ne}>l7Bc64+6HfuwCA=3UOAKSD^`3HI6wta zK%JTqcoExp??e{!Vg029=n>pZ_>ngsRtUN9V$Da;{7rw$A(0OK0nytN$!>((y(!rl zGMjEpP08b$9jGtpS>zAb_V$3l+hB`5tALjlhPAVMo=m_~3Tfvx-oq~tVivrPRsZJ2 z8hPUNz560gI;2ip!cCeRI(`4GnVo(Ek-j>8PO{UNsnb@PU?EpVr}NUC-p6Ihv|P8( z&jj2)?|Gk2z`z4ac5yc14`|keVc*1KEDbmwJC2h<%J(GTNIC<|<#-T?1nXTu_(Qf^ zyUi9f;j+0{e7ifqWaG|0XG_S;pte%ivz4DR+}5 z2e%dYFgvv($7-CZ6?vzZ9o=qIs;{|ta?vfI%^!G|%779U%BMJB

      r+9#*5eV4&9R(3Wmwb5hB16A(EjLpG} zm)!OFp*qxYS9jUTM#81}7+#>s&ILrLY%XRFvC@JjJm4q+<7rl+z0%AFHS=fMIqNi4 zATvAjA2VGTOpw1VN6Hd)ng6xNmllUM!+wx#?!k(&me!Y`~8(QyQpcja%uH znKK^7IzC#U=A~zV<#TeqyB#0&!+(IFlWU^Q;gIQxtjpeR?y;D*aNP|i)?G?9H;Uw4 zXDPP2VJ>eN3UnI=%?5F@$_B-kQQqfaP;MD8`mPyLSEukUHJGDPxQ%) zN-E<_D=3ASK!6b&>38ymZ>;YZo8rf|y@3Cd18paZo2<*_Hg9-VegD{TZAb8!o3cQC zPHalRq1I=6eyWx*ohSBVADS5Ed@r!*R_dKQe0HF|k3*EIYBLG)Q)RZdl;&pXqSVio zsxet+Wf56%$Es5O@hU)?-tL7E0=5kvUYu-g7UjRWHS>ghOU7TAxT~3Rrx)nhevk-x zfmi`%%=yrl1?DdS0La64Jw&RTi!ZiJNfp7d4@MXI>4;}Ve!d*&17-s!gvxtZb;Q?}BMBtEJ;Lp+5=;Ob2)r;+p%8=WJ0|)h$MljVSWhj~(Ho!1(vZMGPCzH2 z>GCdggp1}L;j2H(8L|vMyL0jWy51$TgU7#p=+(BK!)FKce)1}%7QbERclfST8c^xF z_nZSnyX5J2hnLhB@pZynOvKN?0_{1Hmb%|>DfMTyeMf?Z$+bM>0~MeTm1fF%DfD|+ z+ZIzU!3W(frg&0zV7u(}cfRM>RMjhBt>Y^x3*Owrxh&A;ciwV(>qT9=^QtG?b5q$X zL+q<;1|~4y>Bj`#bOiDwIbgJu`F(9?#4GcN1zH6iR29AoJ`Q+C`cHx{rzcIFb_sba zZGhM|w`1)?jEK;+t?XuBJQQ?#PjGrGq+j$ZKl{NF(+_Lh)P!ia3sCMjRX;<#E<5Aht!R=gPoSv zieg32X{s%Z)e;RDXNM6fw?>&nIXy!OU^O)JG0aM&fUS6*Sp`i2uuJNK$h^|pbEdlE z<)Qog9VAt@DOd>4EbmO-tGfn%ju)lto`euq<0l717X!=Icvp+=Mq~tDHv_?uF z8n3PEg^$$=?vrLj-;lURhGd?UP)t-x(AdQHb(Fqe=?NNn>vk~Nb&zdJ*f>X?NqJ=d%pz`MCiDH?vFRq%llENlgUHT%O(UeMyzE69bz$`rYONT79^Ge7836l* zeOQI)0=*2yDfElZgBBwnPU=qDH;A{11 zaYzU%i&5r0R*^C7X>-w}!8cNKH)1mp=SPi*UN-_V7N3Nyy6f~aIdY&D*E-+XE-gP4 zT7DJX4$tKiuHY%UCCg+LT0N&I`Zc@=nXCUQir(357I*#~MO0SZnO!sQjxGZMZp9bL*s}E9``5)sKc7eFqXJ;FyxK%pb^|D6qZG+!Gulr>1UN5`$ z-spl6*rMVC)AqxONYIB3`M}8=89l?=YRpg9?U&CX-gHBS$18L)5Ul_rWs?8-%8l+WJydOyngUZS2wArU;RkOR`v> z)+^bQ?ru$g(0*_5#Ket!1_re@)RzDxorLQkr1}SYK4Y<}YhKy$8ItMkX|3X*H(oY8 ziciUkkIP!tvqGB2L7XG(mlQhuor;{6oYz9;Zlp{|sOP^!o@9J_s^k8X!>SiDE!+ab z`*7*$nTBO(Ukaar)EbjzO(>hf9bjJ*SFY-X5FAzYe%v#GmoY zcS!`w%Tt{4jzI`y67}t+`~=PY<=FjA37N}jpN+USOKi!G7HKwjnK$jPfnIe%M8^QlN_;NX|OC=on>tFQ})%CFQ~TGt4Fx@8!`3ZKsGX2&~X*DRLUUCRH|`hpjwT2^BL%*zLo^&;oKHzJJuQLk|uuVAYPo8=Q=+M z4F7$7o%-$E?1zq><98r;vP&lW>wCoJ`rG=F@xmXws4XY90RO*|g8Gx}82uz%2s(LA zD@4Xd2NIWY?|1q@K~ObNzc5wkNSI)Pb0ys1qsF?NP|z)(=9Pe)wZSIu#PxO_K6u-^*P#GPjBRoVpqH>+-zcL8miRpn9XJ_0ZNIp5Y@R*_493tG#f9Nn*0 z5px9%w_RpGcy#6mpHQWK-uGzH{YL#1@1s?eWgP5w_Q@^&;iLU|jbff#&=RwWG55Lw zqap3YiDrb)LJz_3G6~QDm;TX2*kGdoAZ@C7v_oFQ`ch`+UtFbrWb|F0^={XD(Z#mq z+OVYU5`2a@J{U5whdDm=7<_k{qU|z<;6^+S53J7Mc;LT~&tdpBGp%4+tC~7^P-_2g zv1Tva&lG$kYnFA?{~Bxd){*~RYnAS|{sq?Tx+9aUS=ZVB&$DK)RRNFwW!7xkum8Wv zn!OZa7QTTsYlWG#p!jgsEX{3A!bbUD;kG^&)#q_rXAAJ8S;P!(OK#a{`v@k2*d&TO z8w4W>g6j8L3kndA*$+tgA9=C0-FdO_B0gv;%0TOHPHB9*Zg8T0013l!rB9sgR2J%| zfS)%K#cT)t$Y0#jhKKQKuC+FT!JcB9Dgq|)rk`-fb=ZXj^bS_&d;k~Bae@CelEkVMHv^(TaV zm!fW8O9#S1t~^=N-n_JJn*>&}ZM*(R#Ka5yXz0hP%Cp_8$hK_*wLIH4x6+qpn5`sB zv)~a_vIcSK@5r!iiLGP}+uTZDm>gRvNTnUQRI>8x%t`@MWh+^mHn-9Nv#r0nmrtdA zs$>n}GAjj5p{-V+40ATVZ^CBmlIst) zr5I*Q^^!WE6WJXcp!q`>Gw!3CF;*k>7TdLc=tMWL+1BkRImHD+OeI85%ZjH_2pafakEYIEm9DTniw8szd zY=j9ymb(1D%gDIwzI&~%bwGPUt)v(oSFW29A7}y1eXu#*1aXYKYbAcHD&5OS3YHc2o; zx{?+wkm<(?7P2n0{>Pc`ab~#!X0TGv zAej2XZ4VPc{k9%x}n>vO)U{7?d^9cK?Kfd^WaDhYD$OLfV2tEhd{W!LTzPf_wt%yR7Bo=tk2Tw#>4Ko6X1lepx4U5kya4I)N zuW9xrW{=<#@v3~p)`>Zj@}4Uz66;^Nc|s`f`BBAWw_Se}E;Zw&kpk`Wf=PS-P#XrJ zmfE6tWnJbgc4*1eG z8!K-%4Ycc&H@^^}O~u>DQ)mr%mQll6N+)Mw(lTn8^S(Y-gc9iex*oXylz%9zfS-1L znW$CbQi(}GWDCPQx_oQ+sdC8~&ibX*XvN2m2$?tjOG1&YrY~RB7Rb@p zS?kx(=S(%_!@I4uA_ZxMF#v>wFX>r72r?-$G#sK?b8UhanEEU%0fVgw=$Q>e$VJ6E zlO5rpp7F}Qs3r=g+;`w$3~Tzz_K-OnjX6yrpz1eh<9!F_V_#KwuJc9CcIU0=t@**5 zvJt&wRCrl1QV`4E5gWV1Kho(pIY*y&%Magi)7xa)9rA%JPAo?>akm5D5z)2%ml4<_o+Jw*vzz@Z zd0BOC+|OD+G0|(5D+C{XiTvtX2(}>~3`vk|uXrRT#If2L<}IWplHi@i92T+$`lNZ& z3cK=c5D|<36V4Y{WmUTO+qiE-23G*c9co@!O-_&O=}@2+(^;vX1dGyMF5qOBxyg_&`l3+#IX?8mUoGUMiG#ztj` zc%_5c&P3)Kc_<(->oH`1Mcc^`o`mFTntlcEW77(%l{^{2$9D56$PDh+cCn}9=5+!~ z*gmEfhYPKblF|ZZ%p=t0c{-=Da=)v+go${iI zxEFJ7$_KD8gXJb$J`guqEsaxNTtnPK&S`DXX-Tir5RU2^s3unFg)f+d{YVX6&4!&x z7sOkcXyy6txi9vykoOEtFXZjG&RTo?>BF49u^iiP3*!~zR4cjDyv>1t6It!_1xPFE zARfOK6UEC0D`lCoVr|9m)=U}z(dYuGDnTe4g^kej5~hsL2UyB#4=B9b+yIg4RK63v zHR!9m#3|pID6WzrJVFp@9250#nsY%EY@gF2gTlrg;d`G`C&#JWH8BZ`{!Dy_J-vXc zPWjO2HA9K|_Kup^rTrJnPSkHTKb360W6xh%&CK1@eLoF$_fv6lKi$BGw4dbu{6Fre z!2~hWDJ%zfv7d(7{R9^{)ZI_TiTZ)CgbC>~3zMT`yV*_FE{Z9+$%oUuY)(* zWDrkmvWMm0TtC>`WP?q+?knA6=jB54HrY_uHbDkA6RlnBE=9bQN167oyHJJZ$#1nM z%(vTYGAtqKbC_%`%gd)gHk23Ajh!KOUlfkt+XT__zbPDl^-IW9yiUGWIDRn=f1PkVu1fzW!tp0K8Ln{rd&FreBhP)lC3P$oK z$I9}X`p3!!$EpT4RTad_E{#={HdPhJ%FxVAZmJp`tC|t3ni;DK6VFr45}R{gQ`Iah zSy-<2TYK7X=8ljHmfy{nZDl{R%v8D%n_f8wMG0q+Rfvl|sYIW5gq_M(`SVD@4(CUEv*7TlM;m=Q8-K#|c+1(rXz zw5b^Qbu`cHLS7t8=auhQYG%K=pT{=+rU%=i?U#0=Y6!>c2S0#Ul}b7Xz$_YpjZb7_aw7vh1dw)Z`VwSx>(Y>#=p-m|NrF%aP^6QI|X*+K@ zA07*(tIB$`jug><>tzjRP7;5vrTXLXuIuQ7=%GgqpTF~_*Vn?%2|+C9Nn5s%#fzqa zp-z{oRbk?5&1-Utw_z{Xi`u&^qYSGwujQgTy;wB7C4+^Qf(C2M2EQh(3yVvM7UDW@V#j|NrD zj1=5A9g(QIf$_xdZ2M}+2fVrO00P6h66Xu2VrEV&ESS4z0&ZuWQpjXW#hCB9?Txgp zO}Q`U;DLj1jjuaM2D5VD8sS$1=KdPxN8D|)nKcq|d#1Qiz1(Jall3WWOx!U}3LOYw@s;OxMfyAJ!>PSKDeFqNJl8EP) zJmSDSfo0^JKGXKx%lXjJFz?>*dBV!t+;v_c))FDG^=`xJ!dPpXv+}*6xmscu?9Wj`gXCFA<=z!k}=<%bLB+21Xp~kNDe$TiR(e$1z|hb(h`G z&qvpql%fA+WB(AavLnNxro6C;J@)-xE!jw#4p z&a18o2X7tc3(r_GgP*4`M&4rntDj_Nx$u0|PF8$Oer#mWEJr(l0AqS=WI-*4Pam-V zCYn7eSRNp|FAb**p0JO@f~d<`;sZ5Z_$G$?c}srBoIX>o#d*_Qto>z%fLJhj|9nqt?`{C6kEg?0+9mIA|H{(v5+70#Gypn z2$tl70WR-;0zfX8nBaYg(|C(NdJUfAw*<^)5Qw)HxI;v*3HTx`h#Am+2(vI*#T?I- z9qd>A6A-VkbN5Dy*`B7(`^<@grOrF2;6wg@@%Ap@QB~I;=!6Vmgn=0(V$_JSO*INi zG^oU&Cc*?10}~<>C=jp+PE%S@X9O#c#7RgF#{;O~tD;z?+SXPS5qzLQXaYh36%~Xk zw$$!)um(j4nlktITl>sp0#W2n`#+~f{swV4k55m zn0hlRpp%s5I<8mX-eqmR46!5s=wX&c;>h0`K;Lk<55b7Y1!wl!eh zkzQ`5n0I@r@C5A%aDsEy!g&ZA0RH(_QIP6prh=Ie?W&6Y?sTxwBp=w-J-iwUi+a0{JzK}oaak1&)Oonz!0e5k+h zSG+=jHsSs`0xL74sI^h!zgrKcYE!r3*BqXSNTRbb#)GSHF>}RJlK2}M4b~UzJ^B)G z2msCDkTqo?uz@i=TW^zGu`ppo3C2w>`-Y~J{eaR`$f z3Zk9Zlrrc#)NsQ_eWRD#K_EKYw;%G@Y7b!8uB$oz2S=GzA~zFV$jWE!<}dQi~fsp*fjk;cKs znsg*AEwzd_bKE@U1v_Yq7jl^0WyW%>5HS_FLZXcm{vNa>{b*b)4p=-jTkz~zTMRAA z2YMXmhUKYwnH2uC775E7nTB|d-==zM;hzGUdj-WfEx*azIw&+a%s02;+E{x&%13!Yz=QQr70NVVLg%Y)P_-d z)q26tQ}aF%mlk1-5f&S3^nSRqo`?mS6BojuJ249{4vMr~4;Q~xyA6>1YTXDrW8AEM zb2E+!))c^10|%j5zfGl1aEsseM&f%ewuYk)`EvN9K4qd!>Ctn(D}gBqz<<_2i|}ZB zBxuc}%@B*iM-Bs3b|2(WI^AA=ELo)v{R86=4Rg?e9+zPsX&k191O`Nb3>HuA$J~Qv zxvW}(F=fI4W6mM-YRmVqUtNQ?fnj*89QG&=t6i&U^dv>zxSB zqaz3Md$645{3%yka0g;--Uq!<{(f~FguNDm38i|Cje)4pKs%2Dur~7w@K>)XL%5F0 zVdD$F3Y}I84nicKqeo&#z1jLGHZ@xF!yCRo5@W;xKNPL&SnVYL}xRw@zrG~ zXZI(vN5T9gi=K7pEIU0>B$w`I=}QvXpG(T#nX4PhhP+)e5XlvT9n&Crziu=YV;u* z?V*nR`ZiU_r2r%sJc6au{~^dvt)wa1Kjv7k-mMmPsfYQC3lTtQzyoqqt@stZNa>wQ zwzW(kfMq-by+#%nK3`RN|^B0K-bmz@{aY2&%q` zO3X~Igw7+?*aMb1SoCTA=zD2B=Ty;CGlf^OCg%IFKV?sWd)p1z3gG>I&DcYt^!AX_`F|Y`z z|2R0{#90Z~0>GQ7ew2WBuFO7+F)eSTG$`0$gXx+K=9v@01P8MYyJ^b%-BECCNUfj@ z69`S}9MYoih2;HAR}ES`?U4GM1c~ehHSBvK<=T+`o(ySA4Eu72M#@tEJw0Bvei-%f zMwb@y+c5r?45PLq3^YDO^D+@Hfh(dlt+D*v3ePg#*QJoB26zh1<|WJXGIlRtrvAy` ztMnL%WJt3>8;`~L9`Tj3o=xK<7#|XE{+U#=}_fsbpZvb^#&bNs_}{%mH;VXEO|? zHf8Hk%s@nxE>iOqiYcrZ@0t^^;_?L5Pf&ZP5cK?C41cIU-%%czX=HIRbVTD^cH!nye@5Q1S8o^tUw3cWiW*`9!f+%5zfTjXm zQr(j3}{I?;MYnnUx(-UKUV!gW)-2g4hnY9IE`MHuo_|S5#_6dVF$0 zWdDRh$b6A{HLP z<{1>rjT{V8As|=1|7b4WM)V29 zE{|ajUZMU`afE$@eS5OK`(XX9KFIcKCsVmukIjs%oPn;u(P%jh>9G!Ep`dJ|HYgpG zZdfyMV=N2taTygJn^N4vp&Gow;E;^OwVws?+snc`*Oq-Fno>hS7A0#mrY{Ip&*EnOrHhJ8MtL4k_8*gmJ zooe_w4za#r*5fUBqKl8eKMWrSqH&11v|t>FN?9ZpO~jqLAE_7CQe(Zee!*-KobX-o zO3u~KqntVNNS4-uD#?{%bT>qEGJcd6sK)h9loEQf7qvqMmX^LU0=dmyR?+t*_et^) zBFaV9KZnv&>lf6Zj1W#(Y;;rrNAethxq2&)M1z;??@PBtyS$KM)~-T&MBl7mREr$O zf_hx@mlH_XRkJ1RT$KVjPec8Jdx`U+CAh*zu73G&Bd+SM<1MlL$JyTD3r_5(GcUFKDb&kcOpXF<<`*%kRg$B6zt8jS zF!h&*Fcd}0RStdEW3ZFVU5AO7j)@3{k?8C%u3}Yxfzqte>8gAz=H!ma70s_szS369 zSEKRG?1jz5Q|kvYuf@4SPF}_@5X$xi2y(>gF!h z3tu8v!!1Abzn{hU8DFuH!kqG81i7upSE1RP(ztM7*sG_H#UgL)#H+OMxz-z;ny`8t zAzlnK&2BUZZeTRy9csnd5WO$r2+NBNN1+~_ttVZXl;aq!J3_7eFKVrO@4zJXvJAD! z@|I&&-H2Or5l1J0K!d&<%D;;^WRo6QO5#z^0hPWIK_B#_zvn%4hYTN;_aKhrvaYBZ z@|HD-o5O#e32pI3T%y#UkD%18>X|38r0K=(%G(LAg*`P;ZX0;}&`*xWCgZeKF`@Yn zIHB+mFjkDyleXqwa-!&}-mb+uoTPmZ_GO0pVj@~_yV^eK$^@J84?Wx2lmIAv&J1)Z za&K2FlM+^Uns7haCWvI5lyF?93BUQ4Lr0Y*B^=mE!gTmH5{MTjB}_|7sF~~;E2XRPEm0fzVQT2QL`P@(K!J z80^8Y5Xmg}myx|D8k!&`1L|rht41~zS|tP2*E_j3j8MOSpjRSf&s#5v>y{H$Gr>0! z?M%dbnUp0Oni(j7Dw$?2H)+}JeY+9A1Wkj8>;J@HWk?f2AEocZt>A3Q9)dR-O#sKp;5}$2+BI0X zgH1g^-6Ovv)a4y(@ES%RYp_Z}1##+%#&kDCCYy*ua7S?t$8Y=hX+Q8CYxMW#pVjGi zv9RfdQWSbJHmUi^Q?79&u;@@eI5C>kuRfTLzHe`JQBbB?|FcbXT&26C1qVMNq{iiD zoh;XdZo~H+R_XK1wImbZE(_Pl!HgT#*Z)AVFAwQTH$cy+17~rE%NqOyNeEBvw}51= zZNL?4#{9k#uDJ(pACTM74GB`f=x*H>_ln+sJGOpnG{Vh;D8o$bk13nZDSO!HYh9n1 zvhN^?5pb$=bgHiPlb(w@8-35En2Uudg9yuyNk6##aRe|dH5W^TcAfhKe^GA9vnI|) zo1qO4M|s>M)D?HYiT6OWjy3Ii5o(5!0v5Wo1a6;&BL-+wgWy6lAiZDp+=#WVZlK%w1!!>?3Bt60BDD@sUg7R?@R?Ppfg$lcrMS|RrS8aQ+u|07ZnXr#E z@8!8STwpGiCa)tY11w0iRBy-zFyQjEUp-oZ)Gg-LfEqXkXh2e2@-+NfDZk#0p3+c; z#-VU$20c_qI<^{zxdcoN?GM<_G_+4klc9Cd&?Z2pk4EhZB@_y5Ya8tGF~S`hsyEY^ zKT|icdhF*I0x#E*RHF*-;WBjm-Ctw-fcvZ+WHDZr!+OGm-?Cu&G3A z4lfH%TJjqZTvU`wQj*I3E2sTq>er}e-j+8W#>QFGK!F!C2UN*2AOfk^jIGgF^L-f4 zvG8No6QniJQ3X_<_pLyqd)C%vutmwu52$ayj>4@n=aJ)8QoN<5>-5&+8TOW6zEZAn z-y2vWWvpSxLL2sge#Y2UmGm2oV`9hV8v+gMMDravk2tMD`}O(_q!>Vc5@Hy6ohTF}5syb!|ZHm`#VJ8L$=BQD_VhfQWuu)xT{aY+jWbr7pw zlNvQem>8qb5e7e@If#d<*MvF`x0ohpptYJk6)0n;4lyGvHh?Pf5xa5tZO__BQe$mD zjK-zp3_|rZ`8IjMO+>sNQtj&0=ft7l zCXDX}9BDRRjRgwYZtK**uh3eiv!sb^Kd?xw|KPzza}*Do(<*$4Vm~sFV+FXDe6bNCokM= z#rn2K{ptTQbYOz?wQZRk@#@e+Ae*-XR)e}xU~X1Fc?2wu_71){O?R*m-ehQ6izMfd z9){p)yPAk{&DQGJZ8#($?A#)DN_l|xc7tf5$#DTiR4SGRCG%=#M!vz1py1bdob3|s zo!2lp!fy5W;0CS>Ad)YkVTLO_FGskJ=vIWxKcW{Wy{drDQ4=r~;hOO^E@|Z7-&I`!+^+NKI*q9Ka7M;Sgt^8Xis}@S?(DIgD6P zwI5T+TFs<(K7Jel2VuTeRFdk9tyLdmgsDBRbd}Kr4L|8Ke~^42HR3@KBjC9%|2IMv zUEL)-Avy*~qF)>M^+Au2sl|5bGu;s2{f;_-7kZ z3%jKvv1(7vFeI;z@s#bUA+y~sX{0WxXS^w#@Ko$u7~!EGP`y>Jv8^$GD;G4ARkX0A z2Y3UQAXL#sz@e7HExYe)({K+*{NijEY37$>*&Eac&G-fK#le4!6!rV?A`f%HWtlh@ zI{f*s6{5Yvr&+7_;ZX&Di@+!tWAA~j7VTrL<_4)ge^$SI11~kbWbdOe*LPJuHm=zK zP`%)Ab&B3-kBr91JFGzH%5t!`rRzieiP?2M(0Ygk7(OS_!|cIqtP>vaDYvTI;aVr! z3$1a9hI$H-ZixQGGKDxuF_(-(g(E9?#ij(VX+tQ@uTnf1&2cAJqLW#Da0!yMuaJ?I zl=*9Szg2I_au_-@wiQz)R*Q2#Q0+kG81n46c-pPrB{))NgVQqy5ro582kh?8mC z{BtJTs>UKOqWu{b^&?QHUU)Y};Dt`Z`%-JIA4t*vMV}UG}F%LYKKJzaH280g$Aqde|Nec^U_6q5b`}Sf{tDx81C; zwy?$HRYRfFx>;TR%4MKfkPFP^52+V}kZ{&a)MYw2%WBs6qp>$+pWNQ=(~6#>-ZpBV zL!!LBl%7ZC9`+j6Qal5WXK2ZO%*)N-7~+NBSiS^5hBb%R<V!zSMVo!Z&l$M*+Pv6(dDonlebUH^>w*! zlIu2Hbvpo+ReZIa^n|f|gh|CFa;#(LMl-FoB*CFxzF&o4JI+RA^Q~j|T7$Y-b;32Z>d2-7)ySnCWC`t+p>c2% z6i>Cn1$V5y&`9vd)~;Yq-~QNI;Ycl(*{eR<1fz`IwR^*-G}i6JAW4Z{5cw8-aI;Rf zcu8gETA~u;S3ms|Qp-5@#{xIlRXSXwwHb0z4|8Ml(?AG|eo+g@uBYY`4#y4@t`K;d z!VSa$uPFm=RtwwU-JL=fUmwpTHS0*wBHL~x^{aioW&4qg0p%I4Hy?{1jatrBn3G|* z)`0I4z@g&Eo3izVE{d&Tf!11XUX69KFPYo*)Z~JphQg4~6fmG>Z6F_E$!{*jNy~nI z8_yW|kyGrm&sO!2+=ko>>uLbEzK%Xz zeP74iD33#kM+EK@2!E$fe03xdVr$7lh^^&rVI$^O|K?FdWx|R+vT1PhUjRehjF!O; zGs-?gksfH0hROwd->9W_mnA0<0O59wDaCjAVW;4StpH8JPkGEr*N@RNuzHC?kMjK; zomRUaX^b^o12K81;iJ~$y(x-7&vps*wi9RkBk{8Rpq0v($>&5*4Jdqjbp*KC1UF<7 zMzgFHIIq;M!>jnL5~Vye8+QwPZrSt4ZbMl~{ts>VJ2rx9^RW$w=;A@we+vYnmAX(Y z+13vh`+x1afl}-+T`ZPl-He}oipFWDGBbiP zY-{C*P&nVN4xu@t<8TAnpd&h(d;V1zPf;Ikp2qPxIs`XE!FP$~@!L$^U4WZP=F8%% z8s7EA&2@;W9_`6jmoj5&Z;0flKgrCH{utuLOSq z{4K}d6#V@he|O+-4*oznn<6XH^>Cp`kb{;MIgwJHDP%JEvz6833U-2+d^hYJQ-2>P ztr`G#4xk#+#;6OhmnMvg2DFm{@UM8ReV7g7Lh7kuy#m(a7Pg*mzvFM15hc5=IuZ+H zX_V};7IT)t;z-XxVQYbx1@_>6>~j13%JVVjMHcR@wW|OIi-Yjp)s=JviwN4;`*|GM z&&7RO9wRZ=vSM4+^Kfd*9m9$56)4Oq$^=Acb$8Wk2K+tlPwa1?K-*;@gB1tUaN8h|B&zU^+LYl+XwFS6&J6kg&z9u}g6p7m3adk-1A9bpG)e%2^7YS|-{@ zJ^Bgu%7?gbm~ZP{p?Zr0)2(XVvrfG9412pYph6d=!nY|l4rzp?s+#ac6vkF4)ClQL zX4P#>!f4~!$AH#_QvCZ8L{In=b(m;s9$cza$KId65Znl~6xLmP{897pSjhyw}v zoSzbTa|Iv6csK(Nw?$DLGnbAD>bPmb7-!UzJGE6#MxYWlm4V<)h$Ga#|9r^}>M4E` zo1C>AM~Er(Ku3vGz}))C^qj;RkY^+ZDC z2OyzSb4^D1iPL>zfx`)ANY{z@3d2&rdWhX23mmB!(ci2^~B`^425F;T-u?2 zR(vF3hgyBG3T@Rs9H3QT`06nV4PVVdUq-#}frY+IYQ)z2?uWh-BqUXq?_P{ew_n{q z>OW8|-l5i9-wl)SUUam0GTwL55$eB|)MLDuZHU7%4~K`%YITIM!*{5cpaqN1n?QRx z3Q=ps8FvE(HUIat8(6BA{<;@fYi3D}oqfk#$sV$^hm*1=haNAqvyVmgs<{t1-W&(M zAXv?Q{FqH((UDLNBxUyNvT?R_s8nRGntMNpamnNv)=Kr=oTStfb!u!3u%~+#{G(D6 z>t2<5;Bsi6vs&MND%IN7l#+e=A7G>4l+9L_@-XZts1b+tM1;r$iw|N< zv;|-RTk;>Uqz*%eL{0rWj=r47zXwEkxr?_|P-DPTq$(p&x{#ISE@9z<(V=!xP$#@0 zYo09F&&ybgTaSKx){*MZ$fr_|VAZ!*WvMUJYXY?2f+dy4PnR0UGG1(k z6f27}bY(Bwk2!%EjOZkNf;lUn1{ZKG^blIc8}fyLOb#ANJ0sM;%rF05bAc^i7N{Jj zjF-Q~jD`dcUM%Rq*a){6W808?0!!MVrr`)qFU4oBZ8<5rmEend!Zx-;(+JB=$J0!1 zOuIeVkcsrk9T2ZtR(p#|dy4oUma=Qfeg?zxV>B3iCT@q+QI)h}fdxkm2M|qn#5u?` z&go4*%{es48H7CI)u%)6Zrf(QGsaxVgB_>-fQ=k)?C%$#yx5^ean!s(O>4U9iZOA` ziHW89P8mr2elx!>pr9r4J6`Gkr1QR&@#L=97_^Y8dIKpPweKG7+Wth_ZINLazSlvL z?1tRXm;}iLS-Zi|zV!|h2di*{TD10Su~a-=bJk{KXLf@KQd6fhMsN6h9H2@zL*E4f zVaKJAnW4u04ogW%1NgM~4h{_7N7LZLtlqbYVjBo6H>>+1V6Y%|yXkwqGG)BSw*iNR zIv%Uk5ic4t&WyjOMP_lFL`mAk?QJY_yng2^kYrKbL;Gy zC_Hlfkvad09Di(H*U0f>;lG)6L%hII$6IR25qvr`{1Q*zh~J-HTy-9 ze`e!^@T$hTMM#noeFg)g`rtZrOZ!H^YFO6IK#q&OGA_m5ou*%u(gxy&s`c~n(c!5X zgMKN4rz{CJV=NaFlMxq!GOZnl1Wj_Cl64t;EmecKW>K+0(%UsVrOO7=-JrRJ?0t~&ebRKS(oUq@&%W0 z*UHq2=uMT*ib~IT15HD#^ldm*!(vL?O3|wRf|l-NqMmOG-$sb&zWP-v0y9XGfh(PBe!%c!d|-` zXQGWF>xnU1 zNgvxRSNh>s3>V7d)CtSOwn})Igm_mUx{?3v`^Hz#QdGY+v zH>3Xlz#sVDKmJ{2*ebMM`wYXu>aqhE7Tms;z$XuOx6}0QHfR-hx4Z`IZ%km+?!?-` z4X!}%Z*LC5{#MTY?f1`r3)UBzE!gF>m6Wk&7aooE!WCO4TouXBMSiPF1E0=pL1Zln zrgaUO#;+Ek9HJx?%s+vLjFJ1L&+$%{^@r-o^g?5*bSbbAB~@2_;ws4Qm@M2;bFGMuYMJju$09Zuv(l}k6MxWI0g8lX<=4E zu^O_b!)hopw?+bF)u?wKg=9^0n41TI915tZU!`crj_-5Kf`;6C5mqaaE+wC2fIE-8 zT1J44A1Vk<60+SPTB=&U_~K$l3tL(WV`3cHy^wiU&cHkEj{$(q&S zjT-&1bQKY6ei0zFfSk*ozf_B<&BJ7d3um@=mEfO&jD??4%ILQQZ@vKD)N=N#XMS(v zEqdF)d&6IeH=opbf;V?!I7`rYFFOhEEW!I*Sfbc??`IX(GnaG&Z`4B%3Eo7g`5WvB zc@6myit{|RWAT(9*$1$m+COm;)jlg&rz0C~V*aLDFMc?t5RM2#$>JAI5WdC_w=uYd z>}HQ9KC=10*~V({Nlj*rYzp9xo2B_5J*gUAsm7r8YMdd}ASEEx;Eme(pj3kxHs=9x zt9FGT>&C~OBFO#RlqTj2;6^gUuZBHqH!&ZHTZQ1pC$*8cwKqz-52p%lkDr8_LvVW- zYPEI~&n24cnM-ivjT)qJBSOuLi)qz9EV#MwF-y9?RO7}Mz|GGe_3Se?ZhRzeZ*66} z@kyO8xZNP>3N&sjPr|JQM>sH?p(ktO_9@X^&s>5VZ`8xfq}_;+N_iK8jY6y)dYLS3 z61(p#nP6u9Hee1K!nQ0)v1*qfk6{%O30n_i;X;lAzTqfv$`?B{;7f0FrS#ea9%^&= zZPsQ4aTw2v)ed8F^~;}0ONUOX4b@j+&)i;{K2jUzlG^Y_y}eXwL(Ehj_7qc);kp4| zzToB-Vd^MP;CW>Ub{O@+Zn|@Mim&sw!7T(A*aue_t8 zH66EO1*(@WbfDCwxZ|$ThF?yGcx%it*cwd1*5FtC48bFU%sTBk!AJJ(XIt1Bd{QIX zFtvjv-Q=63H71|b8at&mvf2`T+m#Kop1Gtoc%xo_Kw5*CHd9SFui*{qrsWs8!046un#kgjc_%YZL*~flE*O$+ zu^5;@OVkp8FiVyk+0Z2f!kn*FPiB=}w|$Gnz-nb{aA38WGZCGNIuA2U^hhW*R_HW* z_v%+SLtY^}uvJ^d4C;bWCeVu zDbk>ng?C)z8>B&Ze3NL&H4;;hpP%S|kNucC6x z_-3*kZ8Ae-j;JgJUNb>XB&r(B+tMg9EI2T3gT)s7m?4tTGD^f^{-jFJmP!w*<2X{d zmwMacvjI%2wlv!H<|FI9yovSZljgEZJJ@*nXferKauAmbH^f_pIb_ur<}DeVTMQCZ9^|i8R+8IeSzgY##J4 z-nup+W)Uevxn@epK1ya{<<}FMpTZ2x+nX=88sST|oe}6UXeRKSxS;tPtTd1}aOd)? z8y`W#&@*r7R_!7@dduKR-tYy`e-I4>II6MkO6aBTpk6BCeE;c}y&UzE`k+MUoAyab zl+nj72Q19k7QLd$84K}}MM1O;<#ZEo!DBK(Evi3bp#~Qw9?l9Be+TY9IIG~J!e}}S zuQGGNe8L%BJ#Z0u6`|Q6fPNVjyGYvd{2WL1>ZVq#&g!+b$6_!ETKN}xSOM3fXIZ&= z*nWUZ>+Ncfwv)Utt_V-9+F!@DYR!^;{Xe8u?UotZ?gp;m#39^%b=z;F@IjsEvKK$m zXG$J%*kL3K6i;Wi989~8;)&DOMx~wdpu)NU=A|W;AmyNl>%U-MU|yf=50bo-NoPBc zy7W&Rs(3Z;=Y!dniMxcjGIkDFA#-c z_)(Nr4ztjvVkh0zSfg?x)8Q?vm?pd8&H?dSGQjb#FV0-(%c?Ivd!aA8DeY+_MUGbd z7!~gN;(n3oS&qo`Y==7VMH@B}cn8^v>k{hEd8 zbhxoN1i8+FD%8ygXZh8?Cj2*M&dsnE)!+?!vs~5ZgW<7=T5sz4Lt?9GEei5!?p5GA zga=rn@TzXbQ{;C!=s?JDj_SrixU0;B=e&U0IumT7Nw7(Ems#d8yjOqXB8eC? zbF+a;c9YNLNGrzWuY@|zKc0J+nANz{%p*enLld|48=yfW3%Q!M^`;j05`{LiLjJ~sl51B zl(tw zcytmLz_J~srr|OMn!5SXuaGcp+ZJhdHje;+IFAKWBVn(@M6}oO?zuYQ;4}F<~k&WIOZ3 zybhYKlibxCmN-Gyzz-hR)PUM?mYCB1+_v}o=F+2Z&O#TRl#2iL5*&%NXYld#3?7;G zx`U3*$0HCX=@3LaDQSR1!pkGmUV?bt@U62?_LwpC>dtA@dpe*7FDKjYF|`H)sVL^u z4i%~(Te*#@gcP3N@{!*C;{GMHtJihpcf+F?*8QO~Ip!LN-khQy>_c(BfvQ=fLh6%W zaJaeDpa%5*NH88tp;0+SQjAij&{fzC;5aeE1 zqkCQ+el}bLu`rEhY*vn#g8S9BiDC#&K#&ER5K~$rRDdypRmYh%6u+ESnEz!~9czxb z9d50!RM`c=i$J=%tXZPY@@XOV0#V6A1KUx3po($kZ{TzF?vB`?c#R5+9Ue!bflq1w z?~riXNK8B#iP%~$ie@kMyU%bGKoBSBcMZXn?Sd9UboL}iJ(@qp1AZYuP-jVP_F-hkYa=7buMTB!E%VeoFKL&kzr)^L%<)Q= zsGgq#P={XOmkvFX6|b4}%qJIiQZwI@c(-(3EqJg%weqiy_st2_Y8)PNv{%h3Ra>Io zCYl(>W5D8)>Sx(?{|7X>Y$eDqfg8;jE@m3|6K>G!-mUMqlaOKnYZlLLDxM9h#=(Fy zXET^`F9w}CA3GbIhR344$KdWme2;d+O*#|Ko1JRz40Vls6GOP0w?s66UFO8tN7#Rl z)Y0m#s%iLa{2-i-wOBU9A4esS@SOo`E$1)hI;89GJ*O8hE+9}Qoh=Kc)@cTk?}e2)yrzO8)=w5WfL*UGRz1~E!8H@z!QR?~JRS|W1r zhW1sJ`wF=J66_{&%N&RGgse7ORmtDz(l68pQnZqWp~j@w)y6+^mb@O#!W#enY1Ff( zSCD-|iK2V9=P;@YM$H6lZ7((XUMlP=q|7>alMv%aH!NqY#Zt8(%_mf38uylUYWFKG z65@`QnQ8{ORkq}_K~2U3R8<)v7Qv3(l~-4&!&ygTmGkIb&vytds@F!LG^XPGUf>f6IS(o9a((YPW9C$_g! z)m{A@puu%Z&2@ts*sgy4Pw;bgpa4W|N%xmqzD<6`wS^WpVMO|g&ca`SazsNK?yL!(KVUXo1fbf%~M>P5-) z5;Ec8!=Yb7&0+V^y=U!>Y;=wv|KvfVi~oCShpY{Be`Q(Bk)kF zPv8)|;z6mg)Sl6XX}cif>~f+ZrarE}f-Mu27OkSs1s2V#Wp(FC9-_`AYG569)S+%` z?2<9ovK#T1wpoVd#~n}SS!OL?7SxWzReL56e1$R!I%*+aj0~v`+(y3@y&GbXo_?Q zT2583yadV*mMH5S_?@0#oOyfq>G{3}π}fQ;x8?qBuFW+w5}%;lT)q!qy4o{0zW z!GvlukRpznU(Gr!T;%O{Qb}Ecs908U!7*&g{q86OYi*Ea%iIYq}`IBIRr0NLs@phOQ0+Se0ZI=3} z!kmn3D1?@3kfgPz_F0r-Hzr)b*$p}L?;O(m)mh-0X>`<|V5!RbxbO0J*#nHtcFmCZq?@qAl(c}Q>!}3o7L3h+jx#jRtci+UAW=oX1iM}3%`E=8b zXo_|M{Il)xi9{Q<-pmTrs=(N?Q9IQ}?U#5JT^>K};QVt}CdL&M zv5jWY4Dd9%nVXwezK?b($^&h$uG(Z z_sTEI4#QQ_buP8zjc;P@`r8G?+2H|ZaTc)rNn`OeM`YbjjL(5MFT5(p`Kb5 zLyi6z_G71MKMDsbyCivMp8$e*BZR8T1RZfc6LB5U!2&^wy7m} zkU?Qwfjt?DcRRMput@4N;BV{SHT{J8ciYH7NvGOuyV_l{j^Vy4x}WsM@yOPAP=Kkb z@9sn+5Ae+m&|ij_VMKc9-1-v4C_N1QlX{HR5gA>1*zB$HAPXxBkbCN=l zSp=rxDw_6UcfQyx&Bkap@1dd(34(hj;>NGmXJJo9D7<~5oRh@?zj%=*&!8~0Ypb3S z0vwzm92H}CW`kd&rr;QbNl5xjK^dT37lX5c?ZcBGxRra#)nz(qcbeqAf`v5-D-^Zr zAV%ztdY?<(CwC@X-STE+dcBVfQtD+uhptWi?F=j%^sb#_t|hnD+!}d?zm9VCXD+Db zCaq3r5HiU}IPd}H2q6)fp6LMaIIm??78z1WFT_0>IunJ%%jKwafhP>X z_Q`J7uQY&B4`wc?B|k0*GrokHa&k*I{+3+|i=)D%@dmnPT!qk2Q5K0Z;m@ zDRy_IZ5A17hEI8FA4SnMdp)&006>VM`^n9I;(Tufmu7Iq%{+~4SEZk`3DYr$dSSLA zm>Oc8sSChd(#n;75R0R&vFq}mpkN^UV{AvOl>t7SDipmI^O+ z#UJNC94|l9sK{jbSw;nE0efjPDrV3R*o5Y<;5~@*F>)}sKfgFT^rL*SwZOWGDizyJ zTg;{%YRl#d2w~5^$%etr4L}g5{}gj~*aMT)(Ao4aG8jWN+6QCG62n)7WW-*{lN2^~ z&2;!?lit~6u1ots$_BRo`miROA`{La2iorQTsy%)d7EqTF%*Z4z+U-wt=2E#HEkmmTf`!rgf zvklOB(guk3Vmwo9sbD&Pb^ui^ft^R2YSg#pZnc|tqfpmY)D^p68&2P?syA!OT@d~= zxi5ZBR*Em3fmdX|;W8}y4QGZ6qO|q_9e47KLX{Zj7tb`SI0ryg_r#Dz${$rU?|BE? zSZhl7^vJv{D92(5b==^!6`v2$4x6gUeRFmDH4iWBQ3H>IuXsI6VF+f&mONoa%y#^{rKaW=8nKa4N*v&eV)V5F$8 zAnrx0a`V{?$g--+oXu(PBxJxcCG$6seG-}b!D+I36(Wgesc*OXV}$N$cNfgdLa3-N zQBT#IJEb3-m52reCtl^d$T{F@LB09EHYAb3a0%O9s>nO+QwLZWB?l_c4Ay|WHz!Xq zhEG8h(0bniwHFNlK~iOkU)}SQ!+?u)pm)y)4rX6->(M==y~lVX-$p~3k#8RiosMuy zHvs`i1IB}YVhzs`-*vf(#p^1KPrSLdnb*x|KL6eJD6yQMvYJ)hJ>3x=Y2J}#jSMyp zot~mD-FqlD24{!1pts-CApbu&ARc2aaTwzdE=Fgo`%202Yg3<5HDhEJ=b|$*HRy;; zok5Y2EpmsBg0LhR6m+}#=pzl+Wy76k!!-w?S^dF9gqtsLU1|~FY7cmAh{bz&#i`}6 z3mih%I?%2k3?-Ko+OaV1t_0E6GT5@4shI~~G8BQSWq-j!0{smL!oe5&>(dZhVkNqa z2*cIRz935t4njW!XX4^lXTir772I}6;FyD|;E#BQW9-l=JYuZ-6;xO3UEV%M<8gOj#b#1le1TN~9ed z*(@8`dj2v9&JzWqcC$5svaQYxFLsLhytZQA2v#A1a#y0v5IDE}q1^xp-46PM63%in z!<_9jtG8iMEBGYrG!fM{V7|Z@CNQPmTCgM3)ASbf4xJv^;4Ih?{yNg&gel@@u$`SO zB0=-5=-2jKVGsehyE~gJ|EX`61k~rNQ>b0GrxKrg3;4ZqL~)o*(YO?QQxt znCz%zd_qxYD_CiCZtc8Ylvu8%bnRg|5APKfm^H`0!in7r-(!6OvaycIj9i@(Ix}*0 zR;YL6>Oy=P?N&M6Mb*akm5X6Q{g9-_(d~nVF94r~4r(*1?waNZd#%!-*`>#|&d|Xz zY8wt>t5WRk1t+XHsbNI83&D}Q5fM2VVxQyG1r;S@5-qYJiD5kBNDZ0+$~);4<6~neQf6=h)PMaow%~MskS@v8J0+aI8S1>>VmctUI)JL_NTENY)mGUFx*`GW zJhm!0kkAfo7`6fR0Viu=VP;}^!E?GfdDh!6let<1oD^3H61AgyNUj8|Tcr{Yu|;r-eCa>j6EZYb1Cy{)7sl%n$LaSAI^s0Y#_7q`?Y_K- zlPpuvm2;^fpq07al)r@DvPWwB*K5AgU-Of`V(FkS>~2_2UPL>@7l*z~A`77q7fGr9 zkd&%r^$DpE7rFuEo7;oq%0S5Y(em*q0IHM=HkMYIXV@U)DgFD`JAzd(bxouk7f+eD z1!iN1G2V+Pt1UPbzW!A{<;7>jrI_49h=a{^e~1}{>263i+51{q5rH z5{vwVFC6h5%j_u-^>;(Q^M%≷+}j&W?Ho^EvL?+0{rF^UV4Y#IfFhdj1#D*oM!X zATm>1B;~3UV;19^U=dQUA3c^F827GIz;hexwnk+kVkoqau64rS3g2<_lTAqtphuQb zSxv=cEFcab9`QBaedhLZ^_dT1DFiugRa4$N5=+H2(Y>pAG>GqjW4da*u$3eJ90biY zM?2M8{RpA%cG=_b$@Y-15#@qv=f47)J^x)nNnE&R>~hniTJV5sBdS0mEw+7%&LMR! zb`^N%oSN^Q(> zLyX}=lD=w}=b+L`snhW+`hfbXjmD@U$WPxMht%ur!0AKiq(!@(&r%1&SV^#vAHXjs z?ZFJdF-i^^V_U6jGjZ&)t{p<}+eNrnRuS%7KrHk4pwfv&TwY?g4zMa1J|x_)TwQ~( zhFrm|;h?)lWvb2V00(Uiq?5huo#g2r5ho>UvW7^iiiUOgAE%@nl4{;aVTrDfiS*Fe1Cxz@ALgSPRQ0M?QrAhHMJ`Ai;GlYKvU-itAn|dTx^#(~u2TY+Qkh@xgCZ*zF z>QD|#ry6$!9EvxkEkzBe&xs~Y=x_2J^)vm?pRhh1QghIh@kQ>Ej-NrGp>1&l$t^e< zI=#$#gs22SYA!qtDt(O^1xLe&5N^&MA`5-4dia51Mcqap~u@fJ{$)0>Lj=#fb{hRNC>`vK1aoJ{83@P`~wQy#-cg{YCk zospqV2L86&NcQ^b`ObcGT2efbE?7ozQc#be3u1_Zwj1pL$HS%vq)snmyc64R2L8sm zqUX>>PRNZ%PeDq!w{b?aCtl;B$Q4dC#)HEM#!oX%bb0FbJI(F@G1$D`RdpBgT~;vD z748mC(7bZ_9MKD%xMMb`PpS{@hLf@zm??ZF6Eqf`kjR|rj1DNsjYIn# z(tkI!AL+8H;N#U(GnG@e8)$qf5YgvcMh2QC-4T3x=~E81=h3Te7x;8y8@U@q^O;(9 z70Ux{k1c#XmlgP}Jq@j9_P`+Hy!WCx&W$vXDWLv%nbx$R>tJLxw_;Men_tBf8sj{O z&LbPV<*L?B^^%<`mFZ@Jnb=H0i3UYR?<7eVx|HicNgMrf-1aI?HQ}~$9!9RwU(>P3 zGB|sBdDZNmVA7z#=nZB`Yq{#D6O=M!9kPQ#@l9W>sB_y23POFbI$FbF!E$VnoM|s$ zygC~YBpL)2>KXtOE45r#oiP!5g*YRX>`GSB>K$5K-xZLxmt^R9j>vT6`SlyAAQ)|W1R=@}nQ8u5uAC#zz==kDt;r#I z2e1T=JZx`l-ig|yS&-Zs6;x+$1!CKk=MoGHgzDgq(GRxCNp!CqiqYQSZh&yu<7c4m z+TE~moae!MYQ&DXVzyb(yZ|rDd2$%}5ZYomT-rmpa#(#hM;Jg}DD$;) z;8DNI92_mfXLOl*0}YqArKSPX4_@03M;bDX5^rQfF06`I$!>lj7E4eZW}&~JXh;~^ z;w@?+@?Zus8}q2qPs@QPpWk|+@Pc`BJhgO8WTqAjbwc6*&(K&#pq5Sk4NeO`zY_MJ zzW7was)!*-4UO$;;1b{t^^H+PUu}30PmR$J(Q+p$ry|@pxOd0=>JlN13$6&kiyKbO z#hC7`=tZ&P>Sg(6f-;${79vsf=Tw^`vt7rUGHSUci>s}fe%0qi2oDGVn)EMTgi)Xs zQHjOuv8P}t!&4Tt@1faBuL`e0?!-?wVmL8}Zy<7LMt+gJa;Z!Cs${16?=sd%v&LUU zCzG6-$^Di}9~k%M25@8PCOjkni(`&sUq6983yXTchW4JdZr<&Ro^B3x$r|r8kHN}qtlRvxtKhwGh<)e! zvbw_a6NyeWN4t=!D^iWn$-YLiB3E=GLgkpLMwfyz7x>FxM$Z%+Zr3;%R|8SwS`Zg5 zD34*Rm?;_~#JukXiUW8!4KI*_ly9ihxYoJwdiTPi?)q!pz`lN@yXtOtil@ya~;)Z^EaUDWx{K0+)o!dxzv*SnRGZf-^w?ErJ}fEx;to0^sO%LgJj3 zT;N{BbTWI{yCCTMTQkkJ@ev3t@1&Dx&&ic0wF)Ex!g$wqIerQx!#RHm(vpuM0eT5e3H%yxF* z4JeE3z^QkDr##OEd3CUm8Gf0Rftl7YM`!O1`Wn8k2aptlhzlU0>VgB>6#IOn4UMUkkhixSw8fjO z%HV#X^q`BFPAs>p?zUOQRnL#`f*%+b9D-fAx*b z$HA-zq&+*-uR*dz?`-Ur61^?>Iv~bo72=^1t_#R$5r`N0gRdk(d=3z?Tm-ivH8$IP zPGP%*Qj`Ft1;I*NnST2bL`|ZcavuDKnw!;gd6Y-F)PrCP>%Gp2U^D2|aO$NE8|5G$ zKX}`}=;Fx10UV@PwSjME?!geX9XOUw1D(}6-jELwLFI&(Eugh_F!=QkgU zjnCVH`%?Mm56I6ObENT9puBP%D8cCfvsrEQ<43fVeFxxQ*_gZA2=Ak>H{UMnj$C-v zZ&ORiIELR`^0YxyAimOgGEcBhfcj=ATS&(#(Qi{PBc)ZcOQlU?Jw+)eKFG~dcjP9w z!|^*^VKbo&L{A4{jl53}Om_JcEiXDE|b8SgX0*pu5RY!w)IB6Jvv6T3KSW z*jPNwp_U)|77B=1dp3QEwMWOSa`IMICNm{+uA>6u60RCP_#^fs>U}8V2_Y0YKdKKN zKq)w@=QRWnGp{XwXjbU1e2~>=26thgS6*(fDw$kDrp!pHzr6Vvi^IZH5Q>+YBe@P- z4ZSdXsMTJI&Fqdsn4m(D58(-y@xPT_!Ix8$qCsl=ON{ z!AZx9uaPNUM`U)o7k0glMl8i6b0br8ps!tvsc<)dbdTLZnsOlL%v2}n;%$+sgP|ia z#Gx|2Y>Qz^V?4gb3I5eedi%>cnD2;;EbK5cBIK69Y4dGV=<<+q?hEg5r8qUj#?X_g zmKT%<{Yxfd4|Rjv`sF=5r)1**gK(b+=&oh1nI=AG7{hVGhvbka5*YkDjNv)@u$RRi z4Fva}T_#Wtsps0Ej5-NQG5G`p)Q^D3!nX6ru{fk=Nd8=6!TbX>7CFQM%HhbLl@w^+ ztp>*d4bX_R1Nt!l@h}D#0A7g2`HQfM>C;WbnJvzc!qZR8^F_7J6L+)#;W?7}G8Q`E zd;rF7#aW=6jN)v`Eu!Z@Fl)8n5zMNLORo13#8@B?PC-I!-34_f8rLFox_S#8mt4L; zn390-=nq49A_jIDo6oMn2@u8s0;T8QkH&xBhKd$}NJY%C8IUlf5XB-mtVl40CNzz*tqB!mLUB?A~cgdQ;K|<@qF=2^K~XB&ayMHJD91{dJymLt_O?Ai5DS} zx04a1#L-4D(=IE^E-RY|Qc1~+qhLU#aS2C+j*%{~mI928x3o&$Og4tP&5c^I!_L9O zV?fR62Q%Tupmlf9+z7@!w&*xF7PPT-olBL>Xp3nsm}U_LDhH^e50Mxhj~RV_yh*{S zNi-?vXt3dB4#hTgHW@_lat`V`pzfT{ft~R3Q5vYsQh!JQJ6DD(`Uk+!GXkc?2J;lW z`X#^&JPAy;nwkKE_S4-3FuJ=0Qr23H(C2TR(hljL^G-x)h&m$y>AP#^w}CC7t!}(_ z51#~Vu-f)uys2_!716cJ!79>m2@w?c+fZjFL%sGSs9EaH1k}#j%)3t4^o<5s4#koC zcJ7Ha%~S&uVEUoOW&EMd1eHP?#>L5~tUU=vj*2deSFkfwX4+uRN(M8t6EIIFz?_82 z3LD00$uI_V0%OW|!)UN!^qHF0-uY_IiA|EFG7~U5I<0B30aQN+$}--j&zuAxN9|o2 zZ;z8I;(bN;%Oa372^dp5f$`9H!^pK^T>rDAik#C4jIsob&ich~gYhM!vit51?IF64 zaF}6LOaW_3JpzIzwKdY{9bfPjtPa3qogga$B|GNj;2A+ZtT6eK8PHD>+0xAnO(vM zQ3BdI%=Gi^6nCDOue*9HilBK7=_ltpOBdx&$^!jF_@m}~z0NYCKn(Oprsrh`i0};F zr}N^~eCrrk6>wF%DZ_L{vS5(g<}iAN;2s8CwKlbA0X9M%@Piwe>C4uzxaI)FcLK}o z3|LX;z_P$M6a>E)VpeAmzoA z(Y-85l38@y+mmP(-2+Gh7Tu?dxbpLyn#7{p11nIj^)`zx^|53Yog8zZES!9nz+j?W z?S7C=zzngEq~k!+fbwgnXCzHSJWYn3hLmUrI!u!N8T+Py%CwW=Y}I+8JL4(8r_cmq z@j@}q0BryW*iMKVLEz~)o&&zSF8_+BiGw8pZ)1`C!EC{%2rAU@w{8`s`-um}&Tr$*pt}+Bbe$L;iIBlg^h`Wayj~p=5$cK1 z^zcbQqZ@c=5EW(NFFT(2u{hN4E1E%7q$^J-x?^RmqV^JORPK#u)B`DjN{5O)8c(F5 zOOL|06Sh|y%JO)Ect3Thxt-{dc%nFtZnSp19GChMpX1{vp#FmGpRA1*2;OW3n9ug0 zjy%;0gF_Wui^s99=}pikaX`8>!fRgdG)6#CM>9ZF#mOLUgh^042vLrKfcUEYpMDDM zm^Kg`=A?{5uv#ocC0lgS>tGcxgl6%pQ zd1aQ?kC8@#2GON?d8zFhM0CaS|Ca{Q4S)Z>x-BjLzqQoONdMg}wf|H3`U5ScTj-%X ze@KJqVLjr%TZ8E5z5f>tqM>%GAJQN?OVTB45Dk2=U4!VqUeRm$ZVjS+Izf^K(Yh~j zis-08v{onjK@FnidhhBQ+OPq_ab3P>4h^EDz1uR;9D+~Ag48>pgo7L)`=eVcGpG-huG~dJ)PN8hS|=T#ubl2T|kt^#f7|QR5m5ut5HQQsaU|;+Q%; zSL#NK*weuvbiRo7-5l*6QLs6j7P-akh^ATapEMlqKJ0x0>l-reQT>^*%x$KEcnDZS zc0%OUgK|hws-(K(NE--51RBUt`V6t5K#hwILP2?Ckm!hBW2RaqnU=Ga+ALE+d)PWc zSu<5!h5ujw_dhzcs{1A4tCUAm0ZL7twHK4LSR02WRc;V9* zvGTTbJ;|CRP>Il1cG?VBmb=ZvW^YJnpr6xMeb_s#Jwx20>SU! z(;4`5<@_%2Pkxk?Ar3xJ=~nOF6R+x7Fi|U8cm~R$i(qmqn-YyZW-gCz`Y;xVe}cXj%K5$<&q3s-o~6~C*`WeA15`5ZSWI-v=d7j6z{gdIo;f@LN9Gs z!{2wpexfPO6@b{c1pbo;Hx&QAoR3X$~ z=Apc_ymwI}STvKI8h*1ie6~?O(I^jArWxfkCNvGFm<#KZQ64h9R-xDMA2$50hQBS+ zoD%-rT1!oK!0Sto;y-%#NUYpiyr0!bQ(sdwK}i_bOFZk0E=Xf7_5wP@ zq;;*5hQyswN7H?y&M8-yTp93FEpVnGDcl*$s}QdBb+hGu4nJ=^74qJ2wzc>%JP~BQ ze51b*qi%^@m&)~FTrFP@h*#^^(*LHbsqSgKx*26dItLffP(pL4^XCJ5KmP zC=;;Ud{yVg)o`&pM;tarv>GGYB2jc_CH9{|*4ml)8c>g)Mtegy8XS+@Uw3?ZEXMes z60?{gKdIX2`an$RYOxW21f)B+mA2c(e&k7i=V{{oFk386}T~dIY!;nxKa1- z=n56k#Vx%531!;D)0=!b-evF_?#mSGSYHkpDll=q@pAAJfr^;Kib90Cw2!ug&Ag>W zoPd=D2cQl7Y6uFIq^-!>;*UMVqQ+x^`}0O%gXU)=OXIVhg_}#+RW2bal8ZmWV}FY~G^JTVYdcEn32dr=bZDuof-leGqbNaF=%d3;?y|4;B&&!~a!WulFyWFwkp!)m>1bOj89*hF zI7whQ4xr-wUXfC@3Pk}6LLxK?5&@C6C={bj>y8s8XoR5A`JQL(b7m%~_Ivw&|9QR+8xMr;& zhEmlbSjVoQ`GQ(ZGm!0q+V-gds2U9ikHMWl!G$@>c8_Nj-dQvY{M!6G)&1Wg=WRI0 z7ew;mZV*4#sjbUV)ud_aCe{PD;(l;}g@1@(=p2o&a|D6crVapV7J`H2QKMjVXTsDP z&@dC!vTosJDLZz#i%vahDwqtY1e8uX$SV z|KR~rZVc`g+oR(k3Q#+)1Gt3cvUnmc8HGRtf7vC7X(L&Ii&H!c-Sbin`JrzG`ueJh zu;s7lRNZqEu;mYrWwc-zFiEw2QLS+l#xt&q03G0s4Wa(9??+pqYt+^ONj8f))+TXz zc>o7=KUh5t7j$1q{|aX&;AD{y1)Jx@L$Uy^f|&$DDRIKUF?$Wv9ii-XC&xQL2&19d z&lPtaQq{z;Jj0644YcMDE9woedWrKt>P-aV3aq0Y*?O-Uf?tqg8Fl{TS@~*MW+YmZ z{aO-OePnxi&8Dp!bJqv|@trD!6{;Bxxl!feM`_7xwm>ffRk_H;@A%*pjtBv^dp}kw zoLg6$eS|ipd5GIQe!y4+rI{MNI`aUWJVVnDc@c3v-8&_J+4MTKA0bnW+%@p$_Aq#9 z1ER(pA0g3}hesFO7#@GaR0Nv0qmJm+c&gv@W9zI_k63SZ9csO~S-&ZHTYlKA(-EJ)%h0#!n)!x zmD}K%;GWmT=<4YjKn9Z|>JMF!1stp7yAjmHtG+v3TkP-g`XRS&P$@TZUK`c>o(K)? zk9fmI11eWHfFg2;5?4A^k5R*n1Tcj|mR&8oUPd{D*Z19Kj&d+xnpJQm^1cmWO=Q*ds)D77gK7zp#PDY44;u-5K zc0pncIgB{qya1lX6amS81OULScgeq*^-dcDVLi=yEyQMi3j%A!#Kw2Awhjbv6bu_1 zV<*0F#OA`uxfnMtft`>$Z)0|hAo=a?l29zreOa&tznZSZ2jh1~A0n?8-be-;rp1Pv zfd;474?HWByTA7&NS*CrgS;uuG1&*b>gun)7n{y+9ylJYIN-W}3p%;PfgnKly^1TG z(rJzZt9hv08RM8{0Kr@9&{6|J8}0JWf;0P$uQ0(eGukbFf?Usqiq0EVQCih zX2_s=h73aBW&p3MKPnP*Tr<4O=d-X}*aOpV#NZI$sM*)WLbARIz`0)KS;2_~?;-Jx zwy9Y+<9A7et#~vy$Ds?M(2F2DNh|k=-{~8Mml8tds^P;WKo#6^e9wU!QQsmoEq7A| zILO%UsS5~(&#vEgp4UnP%J#@@%1!B1IaBgaJCC`iK2i6&QX0ZCOJ5D)>X?X;<1KC;666^va4S2`--WLhg z75;SJjoeDPjY#}%P7_l-r@`(S7zhLMKcx;i^%UI<<~cS+FBT_Ekywae>+e;UVKoGG z&X=uEH!tk_@K#biqLfR1B3Lg4Vo;6piuBCEJBl+$(Ucg5LzOHi24gNXT0|Brg(rRU zS=gz>2YBiFefCa{-?r|TGgwVa01h?t7N8zR57C3z4J7=LCKae|<4B-%|%W-OUDEJD7T?8oZ2!8W`v3f0XqCt2(HiMiF(v9L$#8$_OT zgh^6sJC-O=UyotW+SFx5al>?(s#gFl#ddyE?-x}hzN|`^~iuA~gR#ai^5MVMz zxotkeZAgal6u&*sXT$bTpZ-E8D&R9FDkxwGyOKuRl3@@Q?HQB5EWcR&)hl}sJKNVd ziim3EBieh$;OWlmgJCsXR+D*3Z;0d=C9PSD7rJg(ybyU9Y=NA3Ju9qw4w?0g?^w^D zS#wlYjqCsgACJC>$;&0rWm1;R!>P zoz_38Hv8an_ZL8z4@iTZy9AwMD6WI}gM-1GzY;mamAZvtsorMOh0=73+L+%Gt%xq} z3f{Kc&p34Gz}<$yBPTt@NlpXco1S_D2UlUn_j}bAL^3r3`)5)*Ih_$eFULOALOoCfUIjIo2p{$YTG5Qyc85$_(M($5u0hqg&FT{LB%J%Y$|KDH3zFN0csy{! z$viM-idsbGnKo*~5@McQ)|`PpiiVK6L~wXOgmaCHjlL-SDA6)N{7YhZr)Lro)t8~M$J4*HuvYtTO zRCU#MOp-{ju=Lxoc3Aq^=F&H>4|D0iha8EqL$b%=H3C5k{uq6b*&PWC-{Vi=uNi+p zHJ2d9e{k0TToWk%NT9gRMtE#f&rAc>q<}Y_;@z)rPqD#Md6lwr-LVT-5;{WJ^$5jh zWW&FC|MG0;Uk+m9_D`zGu1kuFSaDhQV__uj5$@pa7YIH_FcydUheAwJ?7EpVsTVq; z`u+;XM^@jsgH8$QYNQWBkCjWi z{7*%W8&}$i22KRdLavf6L;<^QLPlKJI)~(mG0_LdEX1UrlHuA^MPN+30pixNK2x-l z0eT#x8XliQ4Hk7pkjzb2SUd=*>pj>4q#5?XNVE_%#xG)4wIc{A?*5J(mw~oDdFf1||rGLUh5%o(aGS93+>8b)UHx6N4iaA})OQI`mYy z1kVe`EO(dcjgn*-_JCn{=X?rxV>G_{&IB4?*6hU$#U~RqpJcV-7T|Ys{t$&>i`+RI z*#8zV3?@LY=N4I(l|WtPPAWD{_!&xY5u>7dU?ruvo;KHtH!xm5gHKNMbz3MXYa0FKL`W|IZKgU)iDp_zjRtSsoYx%BMx6Aiasz|=eRRO=X@8u1+ zjN~KV+Z;?ptxU)MN0?|xE(ap%l{k8ax}W^W8+wa{)Zq+@Z{7Mqc!j19RT#QT`VJ>p z@e);2^RR-}aqj9n^h(H)1GyEz95Kyk8(RuLLfUpomy?HZIs&i6n5Pte;B}T1qJvv0c|ybj$_=9%DIiAjpy)=03-feANwNzH zcb*7-hTF{h;J2Bw=c@H`a>YC74)(B|NBG8zW8vyy@Ti=5qF>-(zW{vE_A_}?gQvQ9 zxDlu~O6ol8%kg~CSxX$AEv2}c?+jKg4CjK1oU@YnzCrCfKy%>+PmmP__JOc?0ta2? ztMDr<5ryE?*1&|-*G+<`ucSfW^b9M$m07#?_%>k0jZ*T}k0%8k`0DkL6Q9uqY3hr< z_zqH|0Vp8%=Rd=@=BC&tuE}nMOY3E^UEH-m{ow{Ft40pOU1>d7V`qOV=3~h_Ov~?I z`;lqs{fda>4bCq{O5zdZq^rmTh1L(IKrC=mVH>CqSQ5&;@ucRI<)hemhs8pbyfgMxp2D zR85={9-Ag!b?Fs|m-}1HS1|gWt6Yx7(TE1aVDz}F9L7oJYsE`~(Wi><2}YkR4ls^a zeSYvJcr4unkELVhMWO|2BEW8@H#)DFIOx_b@EsL?il_=y8C27&HatawND2+P-FqLC zBDR?nu|;*iodVVD^*Dq3yZTdb{zmpoWV2y)hfp0ddesWm1G**MSQpy*7)FMxHKD*O ztg|+IO%)VQkOuV8I4XO6*koX9@s66)M%1xhy#eipbt>xX^L5%9f4Nk)2BSbP+JktL zpwf&2-H#@;XBqpfDA3>nPeXtnbh32{0CbNEWBf5V9}6(jU?v9@3c10wL7a5TI0}L9 zup)P$x289qt}%KujQBM@Gw#mK8+7MhePv5DYk?0WY9UF~$d0ej`}vb0+WQ$HA@xh& zsUo~&jQ3^Db>cnA5PwbQ_w4E=dCyLfue5$CUh+F@MaRl*q~5z3s{#RZPoFIV5Z<>4se{QlV{v8`4#pr1Td7(bHr^dLN3Z!zECd{Y2XVazT#>+E$ep!- z0B~=^`vqD7dj4L%ax8k{xjl1$M&2UeI0=IuQv0%tz(G7UL-Z+kUt!doBwy9&dkpV- z)x3R}H|Sh*8*yCUr*@j}zcyUcEpyZCIa%uGR#;bY&Qv-{3ZTWM$c7biB31-MVi^(yIDo!j;2HVbc*ad6F$aR!2!`gnh&&xiEa2aRM zulHGt0Nqa-I%G1X(vzJSmf5L=SQAwBFzvcp5WOolzaL_fuvc8=@9|=X>`rk7kHu7*^=53BA7lOU7Pum1lFd&@+sQB9`E-3VzzyMUC9Z6lnnst6OpKz`n=> z9i~*2j48T)4MJYX!5dOnvO?pa*4-Z@xiv}SRHU+DQC4-LB zJWZPs94I5xkaQyRa877;12JBB z16(mH$925-V8T81=-Yf3;=p$9+4nkjlcPU4C`Ju*KfhCX=x1q36w!Kyn$29BP$gnK z^!2%+di4FZb8U82DYXfWka=(@x$|%1OTYQI zjzDnX@r@95YO~J{?Jnr~%?UmEd#9fKI^L81=m}c6;0zq-zGDXPUK2^%Rd{;K6oh7Q zho9wwll(1i02q|C*vMbDFf7-0+%URhKKuDk7O`UsK``)Y#co&m$5?2iSAKMgz3H#G zr2IgPp46kSQ;*&n-b`LNv~&?Z!3aK-%Q3g15`?)^gLOSR0W(6XOhr5k4R{8Oo(M$b zi&Q^UCAmVnhI8x)_njW2f!xKl+0874Smbj_j%R=zH+t2xUAT*zxr2$rAUYd{7_c~K zmf7PeU3ln5xG85iG8Cra6MCNjTG>JLv$X8td+4o^*CkRTJOD zJI_e3yDI|~K!ke}3O;QW)JGz`ej)BIweITIqnkJ~*CrX0SM`Dp#z-b}BtgCRsLPJV zMvsV~=E(nY6Lb&p!GdjtlPlHB#;gv6mO~R+iG=DIR_HG7t!eC&@uj)}YpiY_5T~=e zLDYB@%ZC$8O^!Rska=Z-XcuYV8Pr}jlK3%I3_^J!R7`L?rylXspaux+D@CwD3%&oT zV_QUUUtJtS@6!A{HdTw3EcK>&ILct>3mBTSW*Lsr)9G2Xtcx+prwTWt(VRPBe{=Fs z@2U%J8I|BUMu6sSVLn5Rm1@n?hlY|c~N)XnnqDf~1J<*A>@FE>EiK+&9?+xN>{dg}4GIX&e;qNq?6RPQd;Y^(4og>*m2)a)lvp z4RY}kho*&d)6_kOxyM@6NT|Od5I4`?zdnMDLSzEPdjaO(VlYD0c0LY^CiYEV+#c?qE6$J!)(e1sWn|RBY;rDhDX6&c1{vn z3TB`U2PaAuqdjx{<}~sBi=j-H1T&Z}@spnTA>l=46TO&V^}>p*Ec&^8My#4M@N%u zDs~%tT-hz2?_FcQFHjrCh{b}*`RmHA{ohu$xkF{pZ=1=3gy-H&K^%tiL=d(wu+&Hm zbj_@4+Jl=@jTsBIHXG}uaNs}!2`G)Qc3P`WNa$%7wfbqE8B{7}H$th1SON`ZE#<6w z24>L#`~Vs}7+NdFQ_OC$C@vW#VU8DdH$@kY@JcOPCHt;k{8URlzwuy8T$lJD~g*pdxfQp~8ou1$3`7#uPb68@ct?N7#egU~Xxvc7sk)(zvbP4rjrzkjsM9`m77=D0ExzWWl#vV8`_?bKSMbh0ggjBCK zN($b{gya(i;StA;M@vx-Cl6!%LI~IL)m~^+p^FVqhSIcM8CW9PtYL>?{8NS#m9$H6 z*EZG2k~j&(CZp4M2bklPLDr)cv2ww(CfK-K8CQG_<G3^Z8XrXGXf@uc`K5soY)0z5ZH&k?l~A_U&R@(I7^ z>etJv<*511Nz6nx!d!|B09O#L1XZ%DJczM@sc==S=3HevM`AUW%)boV$?2O5p3bY@ zUZ9oP=7!pha%x&5HIc8!qw`d)rfVK+YWm|GJDVD3A1NzJ#EHe>1CF-qpwMW1u1b439s-` zs)?N1E#y?inQ;6=6VusOqX**PkhGbn5o0AkA0PPkdu^V&#b@|a@*pqWr{4Bp!G0&l zm4q!=*8CjmiqDRi+a|2E)NLbtM}7`Gd1acZZu?a$l)5ps+I0O|Jq8K2+FxfATBxK;^3DBVjZH<* zkhfqNgST*Cf=!F>HNdl41dRbtK&dD|DfRa-cBJ<1gnU1xzL4*7^)G&Fh1+3VM)Je< zD{4jMMip2nS!>&nB}(p@IybNSO^TjvQNdXgE;_JBKgNV>OZ-o#~evx5-UQ$57{$pqUKAgbCqfnaNb?1PnGlN_Nj zYX&!<=W2R`2HBT}V*0v^k?hi!ppV#bKWc>?IHvT{D>(o-Q{9+Zl?NW)lxM>dpj8NW zBP<7-DGXCZUkM$86s(nJXi{=W!G__45to9!M|mmmO%@uIz2w~^Qm_@)8u&^fBQ~XA zX|O>xrC_IciMTkFf+2L}cb`!T)~J30dM3g#ORsh2&teIXP0`ji3|2!{2Ffu$&w8s%F@_UnL%Vqbz#4)gnGg%+3CYKz`ePjoCex_Ey zAz5xbfm6(|+3h&QRbBEDbQYZ|z2aQJ+TpQ9g^;Jsidme$3@wBT)o=~gF@f}AS{hZAe<*6jsJ73sE7 z#=VevAZyh+yuSotuzkUW1Cjz={+P7jv01s@||O5JQA%$AIH-V@OZRJnFHWU=r1x z5Z)8B^}$`B8CnM3G*KfNfi}_QTAJ7XSpV8eO8N00jbGV@;Z3^HtL!&3WPO{u6?DSl z`7l|*wq6U)iT1CkUy2aVRkL?)feSq}saxP7&M%_c**jPL5l?rSf1B|AmU+!@>)LwW z`J3hW$NS_lbep+ovv`?q(|^$n2DlnEdndBYw)&GJEq;5X*`E?o{?tgLzi*_$e_rH> z|Ki9Yzaw(c-z~D=e}1Iie@Udye_>>oe?X)Ps;AjIUFX{_LXDT=@2B`1ioap_8-c%3 z_#2163HZAKe_s4e!`}@2-H5+A_`3yvKK$K@KlU@%QFe;6P&};c6ep#4P}wP(dK71r zogzn7oR(Qtc8U{J+!X@GhcS5^firR%Mv#i0cky?_xU3=fSTG7hE(jIa{FmUizkB4A z-yQkd-z#$5pAq>S?=|_)jQrEzBl5A|75TgW(#Qw?ev!ZUe-e4me?jD3fB(pC8Ra>s z;XM5P1b-Ld?^66-j=v%Jy9$59@pldW#^5gpf7j!068_MSPDyzg1Ul;(5~#rFtY=#J zou$DjDKHpj3xmP_02({m_YUnr&}<~8QKukoCAbE=3t$RcQ#&EX)|53jpiUecMe|w% z@|U%lVkTDwPgTG_S(}UTv$&7%AVuj9#3fA`#C-RkiQT+Y^H_4DdphimU?mv}K-JQ$ zDFVpBv#b+|GH|w26s)RTWDCSu-J%GT{6hwC(FT(u0BL&F4yY3-VY!%MZ=%p^{wx$> zwbcoqGW8-b8|ea@Sd$`r%1h|YNfFxAnv+5i8k8G^C9aOlqqK_2?k z1MQxV<{{Fxv9J2$F5$Gt2ELPAM@h%W?Rit8gViEBUS#(HrWp8bXjo**{OeJ4uMtR# zm)1qEQh6*2jc9FkLzjVjyd(+;ggqE1I{Px{#H@;t6}>%qU&sO4k9spq@tkm+@g5p^ zu?|jW2Q!Rr=u~uY*bZZJ`v+e21ci0+eqBF*jL{7^E-h?-FM5?OvVcXVx1-X5@8jr= zt8QWYempzn%~LQ4uIhQe4r_W$44w2XowLTfGLv$2- zlrVe!(Pu(T=LwPiVFB8(0B1@E2U{K753k|>K?k2`>D0mNe!PRPewENcf43sN!brxU z%BAb+R@arDQy2!?)ZKWgv?SeDoQsHOR)IEMz|8^^;*7aqVk0GFHe|=pf17IAr3w3`^2rYSW%SVh5jb}Lq7yj&2{oYVQJ zRrm0R_DcsZ9iV$KwqhZi?p5zU!8L41L}B;qMS#n=O+AZB6S~rVt+WS0u1%H8qu3m- z(QiTLYE!?!qXM9skQ3W*T+xgefKm4m)%NMQH5g-6>Va^gJSa}2eT%!jVde7C4j-EnQg^pbvc=r48= zKrk&IHsI(fIS!a?KK37H`5ZJ*pawkDah7+!^dDzg$Z;Y(U0{x6QIfz@{Zw^1Oj$MH z4E|gO)Ljqg6n2>b6LrW+GT+69nx!7QCN?A)&!G7H>-}^vzW}`5Ar*Y|b1-TRUbXK* z;$}pyZI}raG);exK+HPFwRwiySO`^90~pg^0d5fBr2*@KXcn?bzW6-{h35&I#M&d6 z>R*4LA!Un=QY3iNuB8+NTCO8VfcSzj`w+H4US8-5qaL>LwMpajejpyl%fD^X>lE7u zZ;yQBIxhdB46>}Rmr8S*HGE1S(XM$7FOt+7G4gE!9N8yCeo+ea;hRjD4!bHKV6$b-cDu@-07s35(2muV zOf1~dL+tVNomyM@N};GS3$NGqpc1A0MZ6sjzrs3yTLL*dGNmPjALeh0+QB(33Rf&b zyTqnm(`S3hrwF0TpY&F#U|D$Z-=eODm<#7Hfc)}9swbpz2sU?3xMG654b$Sk9>ZBc zk3to#KZ(7uUY!rCbhG&)Hm{w+!|1r=BQ+n5i$A)HkJf`J2$mq_V#QiqQ3xw8yxfn^ ze+p?;DkN1i=-vefURU{jC#LG2$B5p(}aF^@VPZPSiSh4o-* z-ry?GGvc9L38D-o-<%p?dOnSbJUW0zS;GQ(50o0NA32p4|mGHO6_~;Ci|$ zGVy6lo)dnU?@b9m%za8*IPV~{s$IKT6>qD{;iW+WE7F*(tA!B38bIhz$LK@_JH&Pu z-dCn&^l!o6SsB23+7r|fV&-#yDyR*OSHvnuJ>E!nFo&m-@=$CCM4~{b6aFx7-9U$R zdgr!-J|kO^crnuU1;UuQ!!3a^41QluX!dqAYlcDUgZBL0u;U(lCtIo8kGta!O_pCWR1+k1&beOJ`gjdVU-x-&;tD+{y5|C`y=bL zKDZ8>u47bFsG1t8V;WR%iqH3|mzq$j#MvV-%rejG>zj5nC}?(@3&q8Q>GD%r83*q- zdbOxy^?DNShCnQG4&DY^6zJ-E9?u{K{SI0X6g^qeLNv7Z_m2Tp5#n$bdh ze#p{lLq!IuITD(EumEOomh;BVAgSiE3gpj9ikrdl2F>99hNad~vcM0WtZk$5&FFA; z2E3QuaAAc_#&j2<)8JH@IL-$xsaGxA z1DPUS-L4qf%rt?n@-I=jxw#z}PSYoBtSC)vSPs(d&D>jD<%94iz1rGauwB2aV~eUQ znltO#2FQwTY9J1WJM}7@`quJ?&6o@?wui;Y*=tm;!!2O$QCXGkcy?C|Ci?kSp}UDN zaW2-LJm_Apzbi(h9z_mUZj4*M225NLmG|jYs)93VgSFqXBb^DeRvo54BO0iS22f%e zU6pb()Y?G_xa^lhG`Ng2kpTE5?TiqI7qJupLwyLrX^+5M#4=*c>a?k@h#mu-9i?T< zvZ-Ffy!iHGn~O2qp~2c_k9&vv2zzJpzuUxZDsrmdI{wS1@EJ0G1*$rQ{c(-=Y5 zi6H^xUmb{;Ds)T@O0X3(=1TA(Iu62%kzY_8tb7P17TGJR=1umWg{9~T&eqy_>AoZA zQ{pVYj@jfaBMOPA!2`SX&WnEaSv2@U6&Eo00&BKKu0gzl;jB0?)Y!Tow*Vf-lLv7D z#sFuG>?6@tYe3L>j2dMhxDRncbC2}iNqgs?Lh=zKBCUh<#CO2HCOshn5v&UxZ9xJW z^Ty#$beB86OPF!FGt!o@GiUFzb|y>-+eQI{(U!A=wWO(1Zu40th1{7m+fk`+YjyH0 z>@;y9hYZB4{&Bt(y-E!{U)VcpE0LP+-zr>+S2XSGKudUN5cqFI$KvoW_>%m5_7Nh?L)4(pZUB;l z!+e6*TS0s~^dUX`N&B&=#2$ld1#b{>KJ)!CZqnN92HS%%deWdV%=AV?4m^OEp+!Ed|bCn;OgZcKjg+a7`W<^()i-4@+SdI)rXxxa_nR|dff zHmffkVEX^Ar_ki&yf@u)kp({9N;kng{x@Un883r_~z16!USOxwt+z`4k5e4GDPP`uY^ z`SVGC9R!6>83YAR7;Z69B^by42|RDXlv?;C0iB!~M<+b(skx^T(23mn0?US-?%IsN zcF^zTBYA?bLv8Cd_!5uRRgp zeIJLSLG0kZwuBDKom|3|#OuUF|8j>cRl08z>cj6LXxm3hf$NK;A4k;pi(vCX1i zFvK%cX3;!=9KkHYHFFf344+JxLAleNOSVn@QWytIFIa*r?dy7w!?<35 z|2m;da%UF06bm48F8~6_>DqXh89EJ^>%`4TmjO)TfEDIiNr)I(tBd}`wQ5uM_QX-> z1k9hZu+PiiM$fj`GI;oD&B}JqzsmO*ke#jvlJA~_5*A}uLO)Y5b*8`dpSUji+$0@P z7b1HaH7U91NIzJlWd&NPY=tLqtGXG#A^gI`UIOPgx(73|jd)_ht@*j%!tmfAL=mW{ z1%J@$HUsLQG{rR)yTD0LAZ9t0h8ug3J}Pzi3={Tr2%!mo(d)I8hY9OIEk8W^)@;bP zC0MDm6YQa}^9Lpj_b&;JB?2Ac74Lwj@8%gjcYe1aRgtcq(Z!Lk*C**>(tjReI`K<% zgsTI)6xasI0r;g|q3o(q$?FLR&5SrUv=h|7{4&lj@do*&UvZwZUq=M0!H){=sR9&0 z6qUUNjyQ)kzm&bjI(NT?Zm3C{3D;ZH3*EuDmekn-aLfuulS;Dvy;V18{Ba_MD*no1 zF{^F#?Gjpk{O8)N7AJ4b|G%YKg6OAU6JR8E65mY);C~8K|AXLBZXjzUVwrF*w(u@S zH92~KkXC237}>i#gDrM!uxGFwSc|*H*|A|AM^1JufWhOOMt0052iCuBGug4y%T0ES z02~g>R24wBCtmRuJGKk3JJLL`>M2q`A7H^Q4y+?Pwy5&aoLN_Q$_aDpI7OF;SZ0v4 zpSB9zP3|^ftDIhca=x0y$;)kQItEtEYImC)lyxXAw!6)%A{QsLJE2p%M~}zaeF(q| z_NhQ!P?>NXJ$gY$_K5f!oKX_9ggLXa9j-ATE9yB=Uh^;kBSF(4uC;V~3zh}aWtzik z3fAVWspL(>Rcn@rn16Tcu2QXY z5TCcEu!x37oCM4gzg>PP*XNC$REO=mNEEuFi|l@S%NKBebE_z_5?gyPGN8^0Q%(N^^WbP*BkJl)StjVw}YRv z>JMT^nDq;{JUFp_x$|lZx3yVq3Cp+P$YgZblndL@(;o}yJ2J73 z(oS`BkJnLk3|ktZv?uk`r}*lR?cU@)YRzLY(r33l@5XV3){9Z&_;~-2Sv=Pi=;R0m zz6tdFdg3g7u3Z2N*p+01wQyz(S-K_y_q17WmR35KuvL*eoL53OF!^ z0ya+#SgmasWoV^Mqevt09RqHs`dYM@(pBZk*VCrT^ zZ^pN2@(nDe;dx(p9#R|cBSOu$GrNmjLGY>bVOZwj)zfA-U6CQ7_Jhrf;`|3I$%H@M zM0+SxZNC8cYob$a;y1jKcKw#x%!z4g;0rzE#v$AY=az@&EmD68+7T7|{_xgPG*z3u z>Wr6ry%P?Uzlg{5FUxxsoP|N5lR5#3aqLKcY2RzeHF2#(G{u9D6`OeXJEGU@7@N4K z@Qc6;@$kf^XR8BVbnve=yzts}M(>&nTXyvcybgpb0crw!cO~4pFM$^{?atUkH^6nqfi zxb!U=%Wd`KwgvuLI4c@xR*`=k199X0SooSlWZozTQ)4nkCUNeL`|%=-*moiMqbVBr zkL9=hm*qG7m*rpjFU$XVVf%m8{{{bL{dfMC(`r5M&|dlvwb!w+J(`C> z1y+Bg%ToDT;qA~}Jc8hRDmEC95=5{FOepI*XC+O%VBtkOZag5X+HbWZ4Q1n+`cDmWb}qM+KIT1NXV^dV4c%!W(N zLAqqGrodmxiCP%f76{wl<)Mk;PV#(|Qfak|I_D)Gnp)JaAfL8k+)-%#;9ojq8c9?EUWDp8A5lPB1530tjZ zC@xpwP5H#;!<5SeA;or5#t19AJqRmN309Oc1Y{T7t45*M z@!%0d@QXk);8siCwG;U_Hq?`O*ieU0RSsy<90Y{FMkUo)-6d{)VC1mMFy^ZGN-l9M z^2|Uh@=R}uJmaZcjWUaRA>!wXRk)hZ$R?OZErP`EFcVD})yVx)K$oyBq%4Rg0PzFQ zMfE!YzAZ*qFsKLxnc`VY4K9wy?Vj~42tA@ia9#m7YL|8(bUcq7AE)@qW{8)cy*k0 z(6uBE1qq=k_On9e7hewNPwl+tsVSagYD3s1oRS*TtuBrC`gY(r80n97^!S=3dJ|6h z0B*0^9xH`IdbM?EH2wNEU>?lN+Zu66JA_tK4#HL_+e1rz-!bJN?bgx1a-xc zV^J_1;mHm-n}Waa=7p!X!RID=MS;4Zo;Y7lGXR94m$#u0ZR(@L2I$&Qo_+x=~l% z)FrtZQQ5~ML*_g<-S1Iz0o5^fn@6fsk@M7X=u$Hg2+aQ-Vs^EwG5_FxYg6|?&28)x zxa*DG$y?Qpuz|~M1KNH^&EjK7jD^b@#o*EHvP?UwxEVZ|#WV196z+0S_C@EXsa~~c z9qgWD>@)V|t0_;TT8I{KRu7qP1>TEf7?PE%|EZGs2_+nr(r< zk+sqx+2+!dc%RCLIy(`{$!ImZ<>=@{0PbY4%1m0u_z5_^O=P;r&{&7M=`mOigUhTbL${e?Q6*HiDNyK*bAwFEY8E@U*I6gXKFTSWM@-q`*9S2sipxNzETD zf{9gwd$ily%V5o zF4ndXV_OUPp=Ey4H7;e54!`vGW6`M;WM<6bJol6qaPr&?B<**^8*;eHzrd^JFv~xJ zNb@LugDe*oj|x?+N8?%IavShidfdx><4|X!;l{V`$IWB>NmJDuo46xk{|}K`(@Inq zt)w(S^br*|0>F>~;aj_{^sQoCBMJ!kEPb0&yJG2ZU#v2TFfDFa<;_xMeFT6k8D&mv z!$z(P$sA$zJuZ+0h}0d1D-`C8d0c^?qHLpYwN$s~9?HB3d8{#oHM-4CJ`br^(??hy zV{{r!7V&NhO)tQ2Jcu)CMJtvcR*menDtVO0){1fZ7KgU>+ylb^nZOg+@1C|A zZ-)7%iarDj*~7+BS9uCHixGSdpRhT)#uyB1PQQCbNMJZTHqGnL2+vPf?Y+U#8Y~4N zCD!>&4dgWyhtXP+E*iWM9i`DgG`?Q*2 z6~4<42gd7JsrN0skvk}~5WD0P^bT^l(w^=dk+&|`de^0(2ZlH}N!-@ zX?b5@J-m_jEyTlPi-2d_Jl7Qa^$^12-9U3E0e!O5rwRu{Y1abEhwCFX6dpydTm)WP-AjANiYg4uOEaQ3!LCLFgTpdZ zwHBd540-6OVBd>>8J^&-t*FCgng{NivLG0wO}*=c1~AMAdEp5TRSGr=aDJr`X3fEB z^QH9IOW+S}>amV5O_Y}c-88h@B3(_eH#_sM8Ck#?0@uaEtbw)2z#{Wan5_rBPK4P@ z5qpX&v-Mp}$Ug{zK?Vt_mC@h=Q!0rh@LJeRB_T);P$GybT(J)Q_p046AHhA&0lo;Q zUiEzip$G8FB1%CEXuQEEX8TFBHk;B4zVOA@ao09;nY^x}DupYy;9iY<5~r{POtV>k z^bKw~_25hxdA-3>`Zi1>5HSg5SQJKhy3{Y%{auf+}ZN{gqxJb`)r)f0R8B1Y*k0-3ys|w0Fiw@I07_PwvYoG5|xrS6qZq;cSKevOIRJgmis}g+Iv}T z)L4S7gic$i#8DBAWhG?AsBl|=6`D$n#c_T{&W6kX0!*wOP_F%(sl;%4+G1G=%{mq) z*0H2h9XatjzWwX5X!WO1Vl14RjFgL|Xt^$GMwyc%Vkh@Y3allYBvWoRM9!s@78!7F zf|)xetq)DWH~kvI8RVWk8TiE5*n+8$Kzfn>IMG6a5V_D;2m=TTK?muVdhw+)z63kF z8dN%nnKr>uJSLI5?!GI5O6oi*e}0Czrcq7atQbr`PYFwCdBN*iN?M$DRNc;CH&#+)!yj*TU4r6el9=6H|F4t!~EFW$gsQ-MU1lm>mfIiBO^&9J{*NRQHC|3 zz=JXhTzAs(e!xjKsF=ihQwo&8SFy7r0 zN_h81{jPDcbV(0e@j)CQEiFyQS}y5a%K15(UjF=qmn}Pz7bG{$a*g`@m#6 zV8L{XAkn7&_@~dJQ;nAV=sbHgQ-$W8BqkBV?}B`F{(~oZj%7Ch!oh27#r=#N2b{Q^ ztRv40%irJWImRg>6+|$UgURFEh?4Ypf%^046ZA7X{Wil@RCpWQYwqeAtV&~rzBSBV zG~n1sTRjnQDt4xVegpv>v6T4WrXA&Ao^&jSRX}VZexLxFM9LI~DS^1exW^71_Sjl) zbV&3HRdl{c0ikZ|g;=2}Oz+@8o;#EnUmeqfQ7+V3jP9j(V_8#- zdmWLpjj@i>h4^KM;NvvJ6gKX0c-{{bbKxON2_%OW*cpkWOV$i~AO);-q2VXtgmx7yBB; zMmr)mhVtx2a;S@Esv}@GzKonJeYi{aA#@Eo8XDu^CulUBxRZ2`y!J>>z!Lgl54q7P zFN)YhW9-YXcP=06TsFpu-Y=WzEWOu>po$+619$N(w7bgppPaV9Sv8}bNya<*H91b`foCAxGH~Pcb`Hx`QO4p)r3+!ai=bARKW9?$o#sUV z`OWicu=i1c&3H!*eHX?WlN`%)oXbWddNe8>4V7SfK8vUg1>YcLf;4z$VuR6oywuZd z4>jsG0zWewog#I2q2T%y#4Vl)c2~t{VySQ#`OO^#NPMLe}LHNv>%4pT)y=05DQZ#*(Q_!FA)30^_p%>RUg0c{{XHx zp?5z5uCMF{xUM3&!ixk1hr9yB&hMRojywRqq)q*~oMJ8phixHGMpcGa^}$)72*y_2 zB_=mDfcdc8$g!K74vfJBtw4)S-N7Q{drr+e5Bagu>cT_Y;FmGe_y&iUaZNZmm^rdW zn>n&hCFaPwAYOnKXQJY;eJ}kyTZ+$;ELuq&OQ7L<9gM>32u*Z=RcHzmA&qqkl4nfk z&}>CT-E63tTGemwqnT`*(V`y1m8WK2J{mBRjp?mnXI^9qdXZVXlrQmuKwe~|J{vXh%eZdYA_8LXBOio?GFBQ3rR6$2O)+W}^v z7Y`XcART~80S;_9jZ|3-li6Z{x<3ojvHhO2io1bzxXp7tkDg~q_d;&7e#Tuu?@$}G zGG9C*T&*Vu1k=dLKxErdZYZ+7YA=rEc+cb<()n=H01e<+EeSvxfY+QKKATz1%qm$Pl3)O8 zF-yO}=i!p(7ZG37z7Teu^Igc`)Bm~$?F&wu-E`z@ns?ff&0@rdO=8V9QKs+j`@`QG-CO;;rVhy*v%#rFK;SX#twyHC_z`?NR})#?)VKXpc?} z8>@ML<0{^{1FA!?f;+)AJIOWIrpi!q^iamqsCNa6s{<%#RPr4#2gqABeF0LRnAVB^ z%FaT{^G39(pJnN19Gm)01u)AB8FUfVl#}|X{dWVLCZ#8cPY|VZ3?A0z$b144nl_D+ z%-g{xdlO`DF&A|1avXD}VyGvw9ZAf=lK1sUcvIHMmLxRrz6^v*!vcd73gAKM_6AgF zEAFM9g#kTK1U7eJ(_YAPjTJJ4-4KGO7DP93n&Gh#^*Z$fWb9bW0%jJrY4e%5Yb{IJ zaHQ9xDTsQ3lHw*x=uhdJTq4-f756TEldE7W&d2FGynzer&w#bS`lLuscmt;hz`MGR zX1B%21*cYGN;0)VzBp65;Wp$`F z-XF6w#XXEN%7=^x2q-)AW38Vhtp`#wt1=H1?nG1FbyF#@v%{`9VBEJJy*3_v9iJR# zLVW}_;{gI&LVY#098E%fTcK`8*W>lkTGDuMo79KdDr@G1ijI|$e32(vKxeVkQ`~h( zRZ|Iy4tth!>MDN(pIOfm_+1st@dz456!eOa~E(a<#{UwfM0%s*Omv@=deTr zyUWuNQ2T{Y6BA>E`AuQL8VFHfrc5!LuRk`m?>T%xH9|jiA8c)Dt&R6`VTYVGyG;kC z><+;uK9P6zC&HE#noK?$}C)p}L8Fy72OJX8EZ zq1lrn59~sbTbn^#8^rFq^(0<22g9hFMR9?QPzM4`16HHnv<@(e_aX7uB<)mq^XquIX6a}6gh5Ma zDKVT1;qA=B0yC4i3-%aggh7Pj##5t=kjSzGXEhsTJCr1JAyBuJB#f~n0aaz{lF3FP za!NV*1nTtHrXpeYQi5=JGGj;sn}H;AH6lo{Nu|Z)G|GQDy;un@s+#tglvck5Kyj)+ z#2nEqfJOnp3GUJzO=z6~wmAb{vNkFo+Dwyi>EvO|`GoX9Qm|ennfDNs5^_@RV%5J4 z;&T&wIl`0L)j8-=hnUzyAjQ;((8K|(OthrIwS;98KR^B(rmdRfuBnv16{4Rh6va77 zSVgD7u#?Uvpp*LAvR$Z!>WNq}%D-a>##&DR#VN=zekqZ$!;|}{YYqbEw}hYN zZbnWm)qgmo^+;U-MsKWLWrNOU?hY@oSHNk(H4dB}OvKenOp~mpmMoKLyX#KyP5aai zjD@!0U@m~5-H{%_wkVbgPwpTuZgS%2c&G7z7wb44J>LZ;fl5c3$nbWOE!1>nDMhq_ z(*XwrU1xNzLmh>5IWn+xyI^z>j!L2)5$cA8cBm&21q^gOB%wkeydkhV5P`_T?wj5g z>^_3&pw@HH3E+y1z<@tvFB&~lJ%ooCJ5ju`uc)xekw-JGrk+3o3FIYapD6Z=VxKtR zErt@b>=XNQA&klCqP0MM-D;LLpvy^-duZN6kBHY8}W~xPluP@O6n^=4X2153@M$5k; zKO{36+fp(M`%y0_o z@2aGgh($uAz@+VPd4%|xyN-}ijnGyMYIVK+XRh&Y8}9=r_ekzF zHhi7kb0~0vVUK51n#UX&!G`u=n>}!P^a>L<_n3Gh+El?=bgFMY1DlAKVO`%2bCWxf zyVs}#IoXSl34+KQuE*9zMSG1i2EJY0)&>4Dm^ZvJp0-P=(V@!>`*I)wL$aG1qa4XR z`+Fd-g+)6hXQ`0sCZ{bMP1)jfhgpkN!@yDd(Pf`FqvS?cYk4Q%?B(s0;AXQk(633IIhIX(LovEYrdV2pnQmOx+#4 zIIg_V1P)p0F94ZLUzUG>z=7HL8Sj3g>Yix=G~Z2&H6!OlbbW*;sjm>_INZW?ACdI2ZsOLToH#^TNQ zBVzLhB*bahhC8Ht$Ug=~40&OTB?Ilxc_8farXlx&2C-oYV zUyRz7f_&qY+7Fz{SYPAq#w0uBGbcajz59YX1TLKn5w6)|`;yvx}gEr1}7_PH_J>Mhj3&C?w_XZQ%%i(uzu?nbeYLp!$k7pli&t(+}J9N7Dl z2vmF3q5Z&t)*FT9D`fHMnFeZ7;H^#OVNJm#0w@e(2DS8a1QUgrx;D8T$PFj!KDXid zQRrdC1QGU!X=*N(Rgm<=H1FNs~8n#k4g@Q!#lzjxbtTgQA!Y-4; zc5RTXl|DMl*81bfc1U@`#zKrc6r3TSH_9g|T_|{qeEQ_`PWhaR&t<`4e5#pH^+OzH zkk?Y9_Cno^AA(&n@ndDzdW?;20Z=X3bHEo7|0*D~XG_zWBC@Hur^a4o)6 zEpV@SMtAd!USO=?0BTcZZgOO9$ik_AOyF6Yuc`|;Rh6tB%ZB6n+S|$UNm5FE<6+(i zuaM3?g3g6kNT&_C9LL=S_h(I#v&g!Ze%BJz|5-0-#8X6t06E#iFl5$;dY$9FHR`hg!PEq|H~`4;T1Te zwX4~CXw42!;C6LWU&^A9s{prRXDwN-|DwM)L(qh^$Hbw(BN93>G~VAP%wJgzmqhy8 z$A|uoOejkD>D1p%ct!gAhj(KA-Oxw(_q4?RlAf2oS%nF<6`x=FCJ~gac#vSu@P>o< zA@ZZ5^+|=1bR$IUhRx*+-fg!Pr_OF_7?*-Dq8)Y+>dO!RhR`)=lbl2{aCtGvw;)oU zuQPXZ?|rz^%3jyuI0<=A6&kToel!guHXfLP&z+iHRvZWt-I#tQrdyM^+`#Es~V?CoB-BneZ!%|G|0yt(me!Zp^^i81jly zN)89Bmlj;;v@LMol^R^=uq}WxHp9jQafLKZNo2=0{{+)_;Eh5AlvAm1i2Taoe`-ck z6m8z>d%KG448)KLV1iX%a;hI5xV&m0T9EcFyP~zNa3CyEL*N zN}|K8?R;45;$eOru8@Bd;sk75uw-p>PLLB@L8=fcX;+b@w11?X4f!B!rY(@-h>fTN zOpxY5%r>UNnq=sHkU-erI6|}C>Ww;VuiO^(cc4B*)`DLTnEgrVYTYgt;&EK}JK4Aw zNAi}CbW6QPoQaZ6HWYPel zt4pN=a`_P;F}Q=63rK$%t7U*OWKt$$-Lk$#7;B-<=T~BpnzIJ7Td~G3KSG#^m`I-iC+}u!x)t(Iwt@OPoua#A|;xoF5m|FeoTwo@1 zNxC5e=3WK)98O*BVt9DYQLQ4RBo1?<99S<(y^2!{oB9I4afbUjOhW{R2!0@;qjDIl zd#d7uE5z8H`RZDfF@;!KK0f%{_y*g4pPU#ey#l7RH3|m7wa6!Sa&tM{~4wGoC;EI`R_0;|(st`{j z-gy-xi(uO{Lxj4&RcJSnJy>$})6y6?0^V+E!CcAN3>1no3|(b(E_^pM2y_Jq;28`a zzpWy$HmeIjw7}VG4EHa9zFwg?CDjWg`z6jlAtZ0RFyj55A;L9Qm@HzZ@*>?aI)1kA z|FCxE@ljQ0jK3EmsYH7R>cHp5|pwiRV@0JR@$C8X$>Vx(8&D0&pCH8LqPlf@zW2Pd+*uL zdCqg5^Qo0ktp#s#@@^=QP)RFnTj!#5sj6eGEUX;oV4OhlsTmC zl%>(Ga$v#M`8C6SAOK^<8TRMFmTmi#dTKW|@)z7{=_9Re2QTrHhJc;YMG+<@krttM zJ*q}G=}9#Cx%vuVifG&xx*`QvKaJAU$9fmdRbzG0+-hJ>Q>B|I=ig1{*g833Kyt6t zCjp(1eMyb0_bG0dY@nnNc;+H|_1l`DVZ0YyY|9#?J}qmoRbi6$Y!W;OyJf^)Y#yt+ z^Un-s>nRT0k=*9uXOCU^el*^D?!?t;ZVn}!%WR{c*j(B3KY-O#Sgb2dY^l53?h`kWt+`kF)?tvp;-cW^oo`uoa*GOgA zH(G9}JwgZ4%GFuF7m8!Q`h1zzOEa1<7k+4X{Vaj_i4cwETJ3o&rP|dTlIwnI+e@?{ z>Qi0QTS7wTr)s&%`vh$cX&0NFut3{qL}7uRbgi&ZorJ={z^F@t=yaEef+ijj_v4I9 z5RKY;zs54{hHUQliGAp43HO!A3WOehiC^myJV5w6DWYf2-v}o3sbBn?sS!zt?S$-A z5mDE4YBqkSI$xv<$Ko6fUqh%VX$rOf_@HORUSUCd8$}#ewIN)yCG2g*-`}XG8yPhF zaDia)Hg3I)e+_=ay77RQ|Fj?|EdK?l{D0%wUfVq|c+}^=?zu^WY2=gOrk?_8vET-4 zu@sF3*QjR^m6>BzF2k00O?b=<%ex^wraJWYQo1U;wq5Fv9$mk{?SnL7!>y_R8+8Kp zBMw$KAJ9IAF9>+lZ{M?J3I3EquxhJXebN`gL2ZO_E-k2sFC?P&^Kw&7K@FYpXnZC< z<&(xEcrZt|r}3a^?`yRT@YS9PPxs#;xaDB)Qcm@c6+M{Hlscq-LaE4lA^Sw{{WKg) z5ZU7GAHu552%RHWVC{1B;dV|QZ!1a);RSMvslvX9LG;Xt9}so_MSbuI(n|JBtE+7m zIgEP{i5jWj#yhea}X(RP}R8khuez>W`7Wr)x5?t4&UbqHW(=4}fp^Z|f0GCsU zkh6M^HCJ7*T$W8A33{xru=skcQc&F^%`?VxWQ-_Lo&}<}S|FMYI{6fsle>)8(u#8v zZJCh1y_66prC`2*Uy@9S{VB)cFE-FK!yrnQXGpNEsZNOwgYlTn_bi#B`jA<3JoWCD zlPRJ@uZx*Un!4{Jq`oPyu4J!yB05sLPfZAb9V&gQkYCypi(@$OvDh%RZ!f`KbS}Sx zGWes=SzPff?)7{tzDZ1DrG($5Gj;v+vsfTo73~ngg^;vgR`)Nn1Ik~1fPnHS=$R&z z|6@XRY29049_aw3O>*nX+uYQZ9_ku0_x8eNp}%FOZz|&*rC!3^TV1%GYx-xpsKPo< z@kO%EoKmW4nK+Cf$PjUy>9aQHwUpvLTs|V2>)>5{34_t2KY z8>dA*d=`OJsk%^q^Jwl8-3qm5%kf)KgAZL5ndTC6u?@QN4mKT04;@LHbD7n=EN@e})wK(c4Rg1cHpx-Ch&U0tP- zku8xi(r>j4^%CK^&2>W7;}V(B!e}cO;Wh;)LH4wsg!5v%=fO_PSW z9JH6s?4N9g$7hzpB}%b}XZ{UE;9?I|TYs^dnR?Oh{^;H!WLKqSW?_RvM7UdOznoq0 zHItK$Nlm$fVIz2ErTc|T9aP8q6;yd%tk>SXlTRor;ANMQSeGybJzU_Xx5!N&Wc(6=@z}!3rSy# z1k9v+R3x2_-WpOwc<830V4-xQ8Er>eu$MJmmK6a#gONq0w$GhX7b8o+IJF6I;0`4P zHTqIVIGqNB%|SuZ#4tzzo4r=-XT!!|}2UBb@AH>=?$R<hjF_zS)MowqS|a( zPI5H-hXKEcqlF2O!P;XzMcPRXI}XXd9(RZyA#%qQZO&Hgv-ryT@-@D@^p3I)gCWZ_QtkU29A(C`O|KL{1=syd6!4(?f@I-HYIz>Ns(8r2h}mV#Fb&6SKw_P1SZLX8>zI@r(Vit##Z z7df39tIzNSD*Z$igHq79-K?b$Gv;yYGNE$BkktLT-0)GHcZC`qKJ|1AZu59YkuG$0mdB*O`tcO{D~BN!V;ES|9msXB%K}YxrT@7y z@14-6nP3*j29BHev7hM7EhkaZCll(&#zeSl#FwwkJ3UWz-%pg2^(XzNd5aqIV1W4+O}@ZG$FWeW?l z-=jVEx<*v+$ZOA-_QEx2j}g5FTqhgiUa%^#OENb!NcHG^HPC`ZtcYnvKB7 znPQbV^9JC@rs=D+h+|3K7_DhKuiY^6MAB!yTaLS0LOT|r;_e^Kss(Z|d3VNYt$eMX^PJspx9J2QW3DmS(@8?f-%{mt~VXt#~!L_X!?)rBaiREY=8+PpA zqcyG-)U?ClUjGi$J97_$e)OM)xhmv3(NV50ryhWML}UJ$?s~Z(Sj8QM)-JGL-iJ+J zrH8&stuDaw2GU8W8uz*}4ur6Ityl)VzYp{;b6}~6iHSa6@!T}LI#K5@3HQ6r60i}_!?2VyXx%ima9QssR6b-y|qZ7 z3O5EQ2Qm97d zR1c=W6P(u7j_?GRbv3qaX!RNwbYjiJ9s={)1*Z8kMMP>Ja44F)z}B&081Ya_ zY;=vR;b(V=U0hAKl_dswc~*57VLf>|3%gl?BUfyeldH_L3=>k#N9KZ&UBSOeS&2JF z(yDI`qk819@~tZhEt% zNr|?z9HI{2)5|q7v-f9P*SOB^ig2Pr>I?(vSXqZnM-Lyjqumv{qhotI3hh(lp=14G zmsqWI?ao~3T9@wH{fl(hu03wom`V1zfT@b6VK&**(@&(QS|(#PahSWLQ_~#KFO!9& z0yT6Yg05h>!gC$r0vkhV{}^Ju=ORKECgY;JJxnWo@wfv?02UGKL8rQP0~c(u?bFKB z$!A}tX zzgR_JX22<718M{Q$fQDb_DZ<$lSZjqgtss$SDmEak(#HYyUxK0*Dq!^n3a;BTHPPK z+1CPoUX4T&|i}&PaKdwP%W2D36mzS{)_o5gr*% zdULu6?xn?f?L#>^6RbLl$CZv(<=^M2&Nhg5pnr`%$q5Y-Q~$F#!4#Gc!gBla7jlqu zUvf6>bEG$gy{igZ-E~4fgqlEg%V8A6hR5#dj@{E0y9Wo*FRM4M#nCEfTdlDBc>jiX zUO!_UW5HEn?=z9fc;p3ur2FTh9wwdX(KqTA=~3}B z;o>K(G3=0stuZ5+g|K(2cqI`_Mm3L{n^nBL2#-(nFfs-=tgGDhQ)Ig1ESB0P!(u^U zA5I5g0fda1{aGxW!8C?)Q$jbfo*CQ}WG=};*gC6Ke>bC|n;4SPFngo-1E*d?C zpVV{fPouGqs=5!lJ>G8j1sSt`XcgsLCWaLE_JR6~o^Tl*IrHAM^hPmY{P)vPM)==i zvBZ=?gSlR6PC%>NS^u8f`;PTd-k%GqoHP4`4mHg*4f^pYJnnX{-nlC?-y?yqS=9y?2>L>%)WO-?|4EXX*r3l83Q5!XrU z-MsBh|41WS35LEA$H~4as)9_6)Q7z7G87Sm-9og!&NIcLh1O(;b&w)t?vJf-p42$m zL4H~R@uxSToeM(L$?C*-RsTbAYLXd#0JSAgz=6LI9NMUE`pj2+OQhZyH}hrwcc}lk z5EIJ2D{*XiciT37Ps`g>&^)tW#Bm`+uhv-d4|!%Kp~_#vUk6!*U-1zK7J7`iY?;{( z+*W|uFD{D|iINHW7e9xB=ji&U*;<>;#*B& z*vJj)TGLOYq5E&lpXSgb;JldSP?y>xnC4{nnjL73@xTj8A0s-|#hvO8uVX%qVS>_c z3IYIT@>cm_)!EwcJ)F1}$;8J<=r%_R&IAXQS;GbJO4P@*jPsQ31(yV)1o{A#SY2qE3!m-E=ee?z$UsHRi85snOCdrb99k25sWWDQk6`PEMtD=OPe%71LU~f=6up$MX z4dhP|7>$`O@-!DYQhhDBxL{V*AD`+H?E-UUVPm$P2p5~>lG&I3`QYco-V+<*8fT?= zLHTO#q`dwGO>?hYIL(0=r*3Z`wbJcvN-ct1vnII;(dV4pl)j1P3R>p&&1(f)rtb(( zBDE05dCvSI*W7fDkOs^tuh#X|Tv?DY_lkIJSRNf+Ro>2UnX}--n!b4-N>#hUWiI6M z{irTp72^>CJg#IH_z8l&AD(xBVacvFhur~nEu(G8X!z+%DI;S3A&fn|(Z^qP>+g*q z;S{;w6NXh>t8zTbtxmln6iS!1NHUu2h%+$D5_>D5tZj{Qb30TMDjl?tLkl`dd%!U* zni>*i?OdE+qbQRkE0jm+GuY~Fuu!;N!X8P0p35)Cx=Y#kS0m zc=Q}EeTe>;$TYaudrq(S++OdlUhmG9)J~a=rp@NT5XOwJ$39q+#Xi`R)OFHB?K!|7 zo*P^uJy$Jf;U}-%10im83Vncw9}Uf&K7heWFTwc`2EwhXH5cU6s+N*n(?8QU1I7 zq^wW_UPO&*Il#1{T|WwL((A4D!YOxjp-1oTBNgl)fkVWMkynXIww|TLAJM1wP)YoY zybs|$X`YhH%XIy9{W0*M9!P?hrsQ;PKW%Gf^y#Tz;45;E#JfPJG77mZO4k6W7 zoN)zxWUlbYeVI&D^`LT{^^eR)s4E&gu}C=9yP{_Y9<7L;LE%%mh*K9`2#1z4{O}tx zvuYTfv1u)Pr%3Q2+4^Mr?J?SS2cN;?hH3|`;0YJ$fs zV)!ZD$~(*t9^~W_v(1_(&0D{a1X(NEV+yOnJNb;-N}&5s(l09y=kl0OJzKz?2u#E&-z%Y{;yX6k*Exx|R3 zXlS_)gqmdyFdMQI#d;&&Bm7f#WYRG8?vofQX*I+4EUJk6oz6*VNnO2fr9n6HAlToW zgF^ks;)V~ICCY(!>$rWww`Mws>fwLQ^tb;@rd>y83cy7!9MKpHj^?H{ihm>VsmjmL zSa3)zI5-x}#esL6AuVT-fbV!FIJ9M=UTIwc#W{w8qlBQ73gqQGYcL{3Q^UM=Q5HSw z79#Q+{7h*PpykaCdmmir9o$ea5lAiXkZ}D-{V+7FJy==Zk>UDL`pYQexdir+x6pb& zTw2QBY7t0pI0e}~R9AzXixewY}Z+E9YwXt*9L1pHUe(0{A>t4a`q=T|wazvo`R z;6(? z(W9PTC3(j+>1IY#wbr71X;GJ`Po)LV(b^ig%Dn|>#j(&NO~Ro%0>9@5t_6+fu%d0TX9-SwN~GR=G8m;ZtM6t32i$QTC{>BB1jgfC)&9JTRPk;975l&nbc z5;f?KkzD4stJ6reI?!`J7#OJ@Cy$tj<;2!XH=t(L%CyJU-oT$Sl~*8cRjkc;tg$x) zE%vv2umpIJ9-MB!*9yGVEb%Z~h}~eSVkTQbRYd#QsCRj=-uCA|#2W~tAm@!k~Isvpr6zewNJ<#wqtv9+=#jO07~ zq!zKS6(|coDGis#)(+#RtR$k%dE!GnbUIC^UkCJ?f#S611-W8)8}K84dT8G_VQ)je zuAtf-TPqc*YT$KL*QDq>=mI4S|Kzq z9aS|fn7MGXfN|RD)Yy6sE3S|Wy14xNV)uC>8}r~`}i7qOHe{;V&Bwi;JE9W#1_k}G{7-| z>?{x6bJw3E)OA&Zy5&u+V16-cwDY%Sjn0g%l{Erpl0jL3X4+qgUV1%LyEi3Vs>J|hPE7j)lKwA@WmirWVhaJzh~O- z_fwAE7TX=e)-~nPlxfTi4Mu zX6r3UOR2sywpJdrqDW=*#>CJ+{MrmX*Q~d0`~TRghL2wJv0qF9u;$sXta}8ASE~@e zAY>P6F(ai1x1pFHGI0xJugat<5yn@B-jWJYI*e)8UaC$$$`u8!;D|q7uNDHeaVAp< zf+IAx%T(P%wuRdLJOEIdr;4t88Pw4zbLR8(ok#xnx`h2WQPh|_)JViPVz4okUoI?m zdk{#WA*n%-$Z}NID>Z$Q`1b5^zP)&yZ?BkdLYIHI?h8P)TB}8IK;88@0S-qwtNVmT zd4f@_|&JI^N)I!{sh#A;(ml64X72Rsd*bkOe|N8WKG1_wyv>~fw^T-44 z8==(M0kD$-*<8V)8T}Jw1u{Arg9rw+mJ6D?$}xjI;@uzU<5M?tte|UFykEoylkb8m z80_~`O1|{u-+i~qk0f?D`Ik+BQ-vV+l>>5iK=SNY15L>#y-PlBmmE!81P-}nhzX{^ z`wS*Z?!8kEn=I6MCJpJ~G@lG#l09Gy`WfSh_kiB;$%qY#9QFYKdtDd}@wZ$JDIOVS zi6>l=rSACgXKc)@$fO}CF?7Zj77xalV{5~tiEgi#=@}<)Jm!RpCI|^#DT*L9kSY z=E5N672dGCYB^14?oj=0sCrqxNo6rAi{E#@#a{dZFk+l@HQ;%nTV#;j@wt!*9uaPQ zJpI6PN2mAjkM{rF@Q-#TWw6WtB&qzXNy+9uon6&-(C#D55Ikw9GJO3B-VzigLvZn~ zhd_OZiHI-g?ZT?WcL73bWM?L}7t%nVwO%Gut*(I<$N<%{|Fz3HbaDmlzJ;Vj;%=ru zqZy0s_{7-1asj=ng5_toPhm?rL|Vn2#Squ@mG+z>d+-^k8md)T`2&EEYf zs)2P2pg3@*Sa9x#!r10h(^nl7K5wg<_jftGw$ZaKsDaAHdXwM!FN60W;shiDLdLWU zl(3w%M6|9+Va;1MbTF@dR5E zvLG-pT)dC<@jLTiGtik)yk@O7VxSwDM|B=3;vC^w_H zX77zlGdktewpv58vpmygrU_g%;tducWTi?0In;bE`U)3NaseWS)56=#%>A5Sboq(l zRNUx z3@{sq_l5@zyaW7g!Nm!DO}en(u0pgV^oyn*B;JZ3CJ!i4%C~#`VsQ#nQ2k)VWxy$v zOCu&lC@M^aAQC6SspYYIh9Jq3x~92e_c&wsIDks{&Zq_y4fU17l_lsiL^W8k^?Il? z^h3s3H9=~6b%%Il&l`RL*Fcz|gJ?adc``RigWr1Ooox41K zgW=$XF2uhTJ<~%JUYqhmDqGq?4%J8EGMj-&Ba&Sol$<*TAW}oZcE_1F^N{ZLL1=2_ecDXiAb9Me^HZGDlCqy15VI)%^bpm5q9TauSNKULs#l-Wi>RIt)qN}t zU53cnP|$&kGzHBpBD%8Ig=CStb>5jz%cywK6pE=1hm&1%WmMxP*=G)-$$O;BFi zmz=OOwVS|*cLc0Od{H4=7>~EnJos34TJ>h>M(V@KfU%1DSpc$?b z8s=mOJUIpAuI7tPDTG$K^c?61+Y`7pRMd)kxbu`6Tl8P3x)i)Yo5<0pOZaHFgpa;> z3V3QTixw4U!55GzIzT?XA)mBk10JlMp|4`q{X-k2I!AC-G(B+SI%|_AF=UiNb)tZ< zK=6Bu_O%MPEoEWhFzD0~fjR2MUvbpztgL^p`WE{z&~8={IE9|qpsdeO!eglXwOske z_@AM;s_rRue$2!x)yGimz8TiH6>ol9Zj8wH7YiI3_pJ$NwARa4!=4b2zh-Y~n*yI& zHuLyo@pB=3Vwepk9057+tXP=$sXGbEwS zC)e~?-AxIaF`lZeX*JO}om41mAsSP@gJ|5LCSTNxTDuD|om?6gOfy8|1N_FRwNXb? zYyH){@rGJMTTV!$l>&MC%59?x{Uh@s`}sm!9%{{#?NHx1`xK(9%{?L1mHvP`;Hubc zg=G!f&Syz+ag?Y*&!@-lWbuU_d1UFg(<7o;^WF4F00#p9ogQI_S*cYhR7fvq-=#cI4==#=_#m$N*g?mo*kfj3+WSD|E9bC3JHZqP$Oh0JUKvFeh?g z3lH#ssX!E_<*sWr8E#}rIvh-H* zHi#yegdz-vFRUH{_gpD_z7bpNW4H{y);;ckI-jmUraAe6Ok2&>G!}fhOr3yyN+K|G z-Po^QzE0R$t0LXHCKiCkaQn^h)p2)V3grGRv$Ixp<5r6aM3RC;xL#U zO#2e%Q1nWftv--(*q1EzfeQ`2NVcWrr66NNEG{{USRD9M0pE5tdv`j>u}@YKamgg*U7 zeWKs>+OAPMc|jky#k(}6R48EY(r^&%-1(xE>{IOls9?+=7LDQ+-~Uey6QugoNdBtk ze|`m(c`ZN{erkgLJ5m4j@mI}x7hVR8mgXB9p7Qfy#2>>?-Jz2upz5^i)hfVPmU@_3 zYCv8yl~F`z7ZS=5Q(n484^H661sEK1}@bCG;!_T(LL_*hElK z@4Exzm77ElbJ-(rV#Wn5$`um!>lJOC`erz3sQRE&ZaG|M1hn*ZM&$LPpfUep`65^^ z*W50u1))xIFdAD?5%w=!(q5d}a|!aIIki*S8bU=`i)6Q>L)DU@@lcUNBce>fLsD0{ zs&<10=1VSm$=za(6CNDQ_Lib-eJ^Oj&r3_DAU13JjrL7uT3hur!&cUiV>X_8hhr(S zNPtMK-rvcifScO)cdQ#039Kdh9$6$17{BN|_q1Ge1XR^+Ka(mv^7zeE(0+U;)33>Y zk29g^5JQ8bZJwI6B^RyQmd&G~LKuW``~^t&2v^ z+L*%83q$)P|Bz>&Nl~Mx66dF*GOSZD%JjB>nQ=<>k9_*SH&z4RrDcH%wT75v?DEi- z!EEYqutP*sQ@hD697N~!)&l8l_-XkY>dL%tYHV=*&0{M>8NQ?+JFp{KBwYTzJV*b- z!+ne@+9sdUDG~h(4`;Y|_&`3rC{NpX5Pz0Y)W&zHIqZh$>wzQFw3qCB-A-_!99p}t zH8&-#uj)vdzU1FyDpC&fFP-LH{5zR{XY%hy{JW5U0GxzlvhPLGVYxP{IT1s0%Dre% z)ZB}RQ7juQ`C>HY2`)x@JKJuAM{=WqgnTCAHs z+hsE$k*Y=Rvz6Axx8eO$5`ZPkgVrb2B#1C0WQx>J1am+}zqNs1UwG{re$;JiWqhKk z2G{==0-VCy@mq%2+L@P&qvx)xJOT{LO zQ6E$<2zIZR9C)SF=fsQyP#>nugOV6&lnVP$VW3Z?)p77y`^()VTDpst?ys5jg|%`@ zf}OI>0VA_E0foG3XJCFs+qnRS$@jX0rI?;S;X-%)ZaoyeMDF?)UP7@as z#TLV~iT$ejgi!3~?)n!=44l*Bt;)Y2poBC7e~28sn|p=G!HLze^1y$z1YtiuHWo7->Vp$`)3at- zicHNR>1S#lL?QW9$PNHC6b zfA(2S{qvNrSVR3rk}E}}A;;v2trn`KT)oqi*>C2Qc zxx}D+-UPcBx(M6TPZ^z137ZM5Ka|g8kxcW{M*#AhB_Xz>u|5Hm-5n?&|6(RrEZiJ za@UIr+KLIir*Z8PvdHQ@%x`#DVs&P=m}zW~abFcW5L+o_S)#-=ruz@XMrl}c*Ih5Q z`;Mu-)~>y-SM6DL?fazmD6=YSFU1qJKYJTr%?RA}D}c)t*Xrus^?&812fWtKwwsvK ztBF?$dn4fGxQiwlXkw+5ZsNRTY*b$nIMcsI*IO5^lAEom zw@%HYUbHT$^hb83byT|jDk>GT=e2_D2qb2YeNteEf45W<5k=4NlXLjn;;q${J*jm+ zhf950qn#>0i0Xdo%+xx&cdhgE@gvbr-StlkK%MDN;bz7$r)w9j))uX6ZyJ!VYA566 zeB_Y^f_4M)%7HOR8mM1Gm-T^BE2zHb(6EPapEd9%S-KG!noyv|+#D24_7ZH0BRBaLwTcSlWnjl*& zq)BY`P15_-H}F@8;q}56@u`uVzarEKo@Fi8nI98Ms72o*g!C<&VqN7D)3hPexXp-D zFT@$g4jP5F6t!tyV$fB8`PM-%Sdthtyvkz-EqwLk58By#(0}{WQG*uY1mhO1g+bN= zGkCeQhZ-l~H~j-*O<$C(oN%hiW8oZvHN6GJ27SYSjg0kQ&hDF-1(5*R1J`%Th94Un zC%KRQ_12#ID7P8WcM5GB!WBCRWzhu(a>r~ z^Z0S8k@>PxID1hAWHga^a4s^&5zNdV<8(jVSlC;haIAbLS)V6Y1?ZfS&%CeK9etkj zKaA`1pg-fTn@`7VRUP5?d3&rFQ0Vz*5x7$v(--fzvm`60Y$es2j4I7{3um^g-<{S= zIJ4_s5C|OH&&J8`HuX1t8RvMMg6Zz`^;ZZEf;jaesMF#g(d((u-7%6RlO{Bq%-e&Wo{BmMkdK98NEUp z@gM(tSC*dIYi8EZG&8dEN;5;P{Kmyr$0!-SGxR7WqxRak*oythW)*SoAd&R;mp_hx zGny7~R8(yaq(u*l2gf+0#Qvp_hV3cS4Ln==`ip#PIFZuko)zlqL%5K}uMl?KcV^(k zXn$*-0JTKRpzgjR_mcOvi$AgDUh(=`{R#feTANoRO-efYIkSOyk%!gS^vJ`mvZmtS zOq6rdB3EaXqe9%;9G=N6Q{%*S(9W;8JR7`QuuCq_ zdpLO2{d^YBrtiLH-<;>Q$hpM*nU5C+#Dhn-4wHBYuo1S6fhU=N_y6emX9LV@lEaQb zk62_nO_ayKZRykj!C4@kp@Iz7fN(0h2^mw=zru&(sc`9F^5<#)I?GUC&A#yvZ8|OZ zZS7W5xTZ5Nec2(+h&z%R>{oD&Bbd?bjip9i{7oV9KwW{N`in2V*w<l^CI({(TdaE>u@UM8{m~OeBgx6@3cm7!+dgKf4q zKq_)cAGZoY8uZAkdW&b>@ijc;;X-puHa15y>GSO+9!ZRgbPV(0=gXv#^UIL1leyAinT61Mylt!EwI#>V6`TiXy*DH>upqW^y~WX3uDFC09X_O2^jkh@UBod+x18!daZ+rg zG*bO>W#V5H3tB-Y?z`t(Wa4y7ol2~<0P?YCgs@+AA6?cOK)GVzfN=V12NKXQUh}9Z zZK-q?_grH=^!L3fV*GL*#retP$LQ&?1Wt6LGFbo-gxo1EFQlWk9NYsp97bRu1F16F z%<7#JWD=-FhMXg_utPn=a78<>v9HLjvRX15=!u2qkg%(4V%$3lmS@Ad{6s?Qomr3H5qR`1ef z7&(cG=1{e48h-SNtRQ*-MZ=&mi-wp<(>@>)x_^7#5h@yEg3no67SF62)7(9AU;A7#vHE~ASql5xkSVtyvaS|rnwVEab2!l3%< z_e_NrASaTnMZ&;OdQTFa4T<-63;m+MGS+XZV7E?kOl!Na?rW{@Dw@dy#Q(q()Gm9s zG{^=?XdIjEqYiT1^yvRd4x7~1`ZB=rzmn1i{Fn3t)kl}t`Yt1wQ)x?ELR=DcgD6k^ zEjSK4>;8hd?sEj&B~p6T<_jC6T|$|d|0tu&ukpp{Cr{g(#9Qf|E|H++TWEyT4+k58ybDKp7nBB10r^q!709;1=e2$ zO5nixwAf6>)9w+B8G2iK3NNlN>4Cv&;k^cPdCW!=j^~mMokk&Uz1})Wp&-v7;4}?(OJIqe}SuFk-pn9=EwqJRujW!4?p6_V``UC z)>|xh&KTN|(0k6vdVx~W;6D6G?+Wk_s=oImboa&LVb2*h6c2)v1+u9V%7x3TwAw^%ttxteo!c+!tuL2+Scq+s+=5slQwR}e8MDwMy$cgZ2B@EPk+%~QGGU!SqHyh;v zB)MJ9$Eit+)+Q1B79Fk}Oukv-5iyf5X>RpyN79mSXusLrl2=e-SZg&Vath3CS5MrG zhP5U#k5XBcp(fh=HkH*rFyyt$>T3FGR91g0T@;no93Fa9R;9Y*sjO;1 z>e63z#AH=H;d1f6hu%|SJyULrujkzpSWj&MVW7!+Ob!ci9XTAsbwOGP#Bg15;D9JRIZGb1^(5qk*UOoNpn9ZH@wI$IA(v0btERo3 z?4eGH?Xo@aBRkcnB6x`7b+>x`;)Ddxu#fPZB)eBccZbamHYHeA*~>$~DQ5n3$P;jg z+0Z}zbMO7wdqZm-U-mRRyG*2ydSjbiy;ut?)em~tVf9zxRR$ru%Tx(A`obJ^yp|e0 z#SHkuy`kB|pz%t(VG<1rIT_Q^iF+JN_sWyX(sJjt`E-G1%q)88=juMU7Nj6^dB9yi zkAB6s=(k}9-S=edu&asF`Y8ceY?tOdFO!jq2c@*i=zvmn1nh`iQ}l=+u!KX$TWIPN52J=3;>hpYuWjtWGX&BZPfyU zAmiub&D?V3i^i9QN0HXf5skoC7>M_NjEFsdfdF##<@nHSRQEg!C~3&n;XmL;W%Gp; zA{nTi;AZBZLu8M7@_o6AVt&Xs%e!Y(Zgon?Nk3c$f=}bukmVvqe+h7 z9s-Jx#HQnBr*0)Kj8ysKMge2Fz+SH|zT0qZjyCo)A`pC`zhA)AB6`N5+*3&aV+@N>BwV(W`-tlOGVS(L|*FRjW zUQa37eD-NY4ipl+?N_e21)RkB(ij|3YD+MS(NREQ0of%^5x0~R&SL7zMz*4a4jhUY zOk^ukkSmRx;%yVbJ5)c3%SPvEMOhoA2{^th{N%xIFS+*M9;y9fWN-1>54~h+&jzEZ z?IH%Fb}5M}o78Se?OqqmEqC4f3|&7gHV@U;$XmVWw5*s-5s9K2B`H3Z;7)06cT#I% zyR|ja+D){!Qp&ZxMxhneb`38i*MKc&xCYa|p8k%vYiN)f&X5|UT(o+{3|%~US5M=O zQglmFQI}oxCMo(U;;5BUCYrzE4pX#e4T2k_=$lDJcfDw4X`~cgB}Ju-pbIlgw_bAq zO>ymFS$0X{zxe(cGS#LZajH15;uu=>u9X@aRQHY3s?q+q+$=-E^W6@)3**V&+=h#t z>f#h}y;l80tu!c(+qFC3BPVOujm1u1;5v2qn?q~?;=QBPAx=+^>Q70Db~PaEz*#@- zVFzB$R!P|Ed3tz(v3qQDJ?@K!37D|gQ|vT|i~pOw-dy~2^ytI)!H=@$|1m#uOSbLx z*oDIHy9+fz?S0MWH?jX7yeWy__qN}Vvfsw-${wE1`OW zxm?kY<8x~+X}Y-H;|Vjr&n6$2EqKx8f=GldXkXxy*@EkQ$5E?44=IB1>06l99=0Hj z>C?M7OI>~h=2+0h(hnwvRD9ht2AXxx@&&F}soiGX%k26mGY~Or)LfZy3;;0Nlw>`a znBOblM@w7&VLz=%@ejMF0=-jaMSVO;dYTI}0kvFarP=EuCEMZ;w_U-SiLmiGQUiPd z!0023P>v|BUPHVOHJcfd3a-H@98xO~EL@1l7$Pg9 z?xgBZmZ-`u4gMu%fg!4CI=Earzk&rvhfp!YN(=UijFb-fXUvt}ck8eausXh^!ZLLw z0|BvX>R&hFD$!20#$eGs#^n>-?>${w%F-X9e8-^K_4r{~#t;O^-auDG9N0YooaTyZ!4F7+r^+?v6nz2g2Zl?5kuPCtnZ z*wrw#8;z>k*(at1hg)YZWKBBizN|hWzru6sdq*}!GYTp^?q6;qSKWK!BK4&{{msB_&$&RP|(E}_evxqmo>pt z;Jz3Cj}%}Y(M=?1HSV*U$7t88BAwJcHcJ1VAw5vAX;$jC5nBs3xyKvt@PbFgd*0f#+UiqJbw*;Q`B`yih1l3#>WNU z=EG%T;9-5_Q)9n6B!>i0JnUQfaPO*|QHBpU>JW$oK3w{>44>`D^-o9|?G+I|oTbUk zknrI`E9IsI9vd7E$=$srq;GmWsWk&6s7d5C;T-sU;ZUyZh3!1Zy;j{?3+;uGi&e`T z`^WI#LMvzUN`rGG&&}7!0*;EjQO8>x1c`iQoj#e3A0FTsUGRk@lX5`s^{vP@kMk*#wCzA-?c-bLTf ztc9wTMi$A^snBb9nAc0J9s$H7S|48BslV1rhEMN490PzVe)=+_p4N6AP$ev~MKTub zn3!0#>kB%tNG3ovUoADuRH=6#U}kzT=&VIDdx@*NvFKG-aYgtp2Hk>nHbe33d_!Dt z%mW@WFQ?M!IKQpw=A-##lI}}NUy+oqp(~lZhq52BH~(n?aChDB_$%tkI7UT((kMzr z*2@+UUng5EGyu4?e2tBU)~Ok$T_uzckSiRHrXtK_Fmv zSi7H`7QX{r_>&%vK063x0Gc80p!6R9@ZK)DXUavm15IzAx|18KV7g@D$;@ww;AhUp za`ic7xx`k$iO}i6MJ*QtJh8}e67mK7a`c~#4G zLkPhH^J?Z`E@r~KlB5Lls$gah^J?dU<1?>TgPnSqSErprHLYsDo1gDsUe!_8w==K4 zlWnC3`R#10w86)+t^7$01{pPasp`spP9SoRD&W^Jh60DKPw=y%-)9H?@KLT&sA2Tw zPq06^qv;eaQ@fY*9Vvk3TLnKL1nr0~3%nbuFAa=qULfa9s=ECKbEj~#V~W?v&G#TC zt5{4nTZ;udhZh`;qhV4Mct5VbU21ql*YG2|1`jf2nwBb7_f(;|y$j@T0?k{CGf!^j4x++}rGC!+*YX2jLg&g5Iq9qHy6?LE}5e$mMC{_0>IB=U8s(-(R z#HBU|Zh261;6RmDh8Qy7R55bp=drdcIjn5F5F8MDRmOtNb%|PxMhSkOgj>_Y*C8Kt zxPZ*lg7%sh2oaTPr4yz{!kJZH3YL@Gg*NT*#a63(+>R&{_9pRYQcJU z!H6JQ18U_fkOfcc1CJW1ZjjVfgghD-0Uq@$spVqww%Lc>z2v7@3rCabNnD_q++Pu> z=30kUTcv?OG0FKs6tC9eVEwiLw$nQr)Fh3u5U^4{d%Q%U4gCof~P}1Z{zl( zes5=KNqOekczT%h*!tDXgDyOX!V_jf_v*qqE=hdQPHaiJsV60klz=YMk}{jGErkwF za{Oj1)lbR@jVcwkq&#R+Jtp;?Ua8AXD)%TU`!cDz)@?1R8zg0n<7AWaOHwq$wTJg+ zp9f|+<+NO{&ztS)>=QV}s$2yb)qS}CaE4{bV<5dEia%%aEv}_Xb-zwk#?HgxfXiK9%r{}}X-6R)Exw;i7yH_gVBt=mw= zK9w#6Fg=4}qF&;p7;kq3;{^=R@vy0%nOB&J__O?q?Bu`)pT}ApgNxY|dZYVyvfdU% z;m1C;_8!^l9=5uAd?t@IUE0@emnuI2ca>u3w%NntdWQ#z;n6}|8;iFeBOQ2&E-dLo(Q8+RfjR=*y?lo#27 zKYI`ijUw-@YLiaz45F!hTTo0&^|?4qr+J^+aW&CbpvCT403@}lf8*>8Pyv`KO{|cp zW)$Eym^@1m`I$Sy!aWeVE;aFTT3u(bQkg2iAr^5`G8xa05wGioBZPskObvrpl>B#) zf7eN^YgV}Pl*Ks#|>GZoAiTvn4CTPJu>eIJfjrL{=DtG#U$_vYk}3Vz=NxEBVM-EN`4^yOy*=FkJ)ZWu-0 z?p1gb5A8b=iAbVU@Y^3~G?QPG9nAIT%0`(&4WZUFlSNl0`MzY1q`deQ(1lesB?Dy) zVb4EdF1)LrW}e|x-VmzEN)46;Wa>*v5$>vJLghqWTf!i~C4vJO1DEsHxkJOfh**N< zVcu{h;~FUr9d(duTyCNj@Bx_!G}QJydHhT1oci4q;bC_hmviZnYi5_lURzEo_$oX0 z+A68*HKD6$6c)Bbhbfe$D~3U57=})@3POU&K0DO;BUsIj$l{&kk9c!@s&bK_;#^;# zNi`fFcN3#Qa{K>5JjAS>W*qav^9|h=ry-N?T$$76+BMG*2zW`RQwn2TgI(XJ2I?t zx#x8Qjy{QlcNh#JH?v5M0)cRBSw9yn75QBqf1icV2nR1R(;2DRaPZmSxgwfkaX0vY z5_1t2XHD;_{RkNYNCuVa12iD~9c`uINfa2~Tc)K8a(g}vak*e|E{Yp``U;JDiF$#e zuZim{sIQlgg0fZWC;LTpRElR<`Uaa6p_56$)(SR}O7F}4_`9RS3GY&r z^w$21u2QBj(m&WOCZcH zbrKeoP_3+)G4X(%pz(T_DAZm13L;&TFZz+>;{{)~&9G(*e+soi^hvJcn~RRBBf+Zp2R*84E2BDFYt;jS=6nsG0W9IvM9rDl z4LdSdMMWY`%w=t`9ezqt&UoB5P6-*jaWSKQJ^J%l_$j$O!^YQI1HvCSlZ8FMlWo_M z;em~&Ru`L#!|BW+6gm3SyYc^7>=O0QR&|%GzxHJr){a2zsgF;nAcRTTOmrW`ajKb_ ztDe-%RV%&(ebl9P%9nIrgPZmZ$JvI5jb~$ErO0Ao%BZ_2DXx9Ci;#b^OU=B1fSr>O zSuz%D$Bon4itVZ=;rvMVeG6O~I3nwPAO?wDX>6dhiNsaSYZ%)pr)9-Q6xAPz|Wn+U% zE+&FtyuncWNSQ&^pXA!N(^y3!0W>cV8G34)oP7G28#oJgi)fp*cy~&cX7BD)Hih=h zCr9Ffc0P`1#2+wv7m@KI1MZsMvOua!l~Wb2YG>{O!;hNY;{BM9$_Zl>npxPJ2p zL$2qI6moqVmks}5;mLaU`LE>{{k!R!ME9wWmg2NuB+ww8%@DtB7c=DxdiV3UWBMMk!!V%bw3R*)uSz~IA=ZGDZST@%B{BrkTmlf;_B&p zwVw(AEN}a1Ed`tB40xbVL2=itzC>MTS6$9jK|2c=^bAVip$>SEMkDJ52{0|?+ksx= zKGL|JG??Q4ujz1EY+&vCkHZJ)vGx10_WvP!J5oPdZtl4e`;$4QUP$g(D6 z>ombehae#}x+9FHFpVZS^Clo^bu}GMD`=hO9@`}7R44`R{3s6Ku-~Une~4fsrukN4?0fq221XG5Jp>0M(1B4`txhL1&YUT@ z@Cxl-10_f{C27xt*Ck50lT!)YH5T+OFr>k?kQOKdaZ8=#ZdB(=v#3Fg)6H+w-%O3c z%nKXa#C%#fnLp6Udr01qapuoj+tMfwWkgYW-) zxz6>RXz$kR@145JX7hcK(NF7CpUOF9#y}Nj7?P$$%wSCwP0nKnH$)GPjrAzVUN=`f zTF;}pO@3|Fx8LZd^i*CM7$y^V(2VEbGI<@pH4__vlf7U4(sT=jQZuy^6WuyyYKIC+ zJA#{Avxx1=LofISpMfAcGaRvDYBqDlJ^*$y#K6p58=h{Q!i5`&nu$KK#yY64L3?i z_v>_1$Rv%*gzICeAzmfT4 z>%+D3ue3ANGW`sCxgNCmnQKNwbdhFk6@RQ&5%dd+GQ#5kpiEqo+zTR*_coG5^7#|q zae>{OnwkX5Iq~Jbja;%?^W;~ra))ZsP3l#iEj#LIT~n}w>xPHCW$HQ8rwMeH^I3zj z+N7JW9vMgjtA1i$eu&G^?P{laIaR;NPGvYJ>X&u;MK{!6f50og^!brSeMt0R?w<1q zv6__zbw1W1<~lk^y1_!IcjE#d5BMH&e=lj_0XEqL=HM2H5_7@T4vFqlwYemAApkY} z#}a!Q&vo!@^bWVzRLsOGD@Ug4Z*WFkBFht!J;GI->uNX9TZSncok&kB@x?AwQ}0G( zvn4xzuo@%o)DGB!7b>7{EKF4uEFX}u_b^Q!Yk|zyq0600>o0zpL^goW2`vlu%S!sdPg`zpr;Kcjz%?xaH zYP{$!xjYukbj&h28D`(IFxkR09O@FC6OzDOz{=H44YRGCSMqAD-ZW z8V)r(!xOS#4EK>sXl5SBBWe-+N? znPQVv?c&v4kQy8iJ|%i0pLrSM45o)GokZWZ4z@icHQ@^tm;QaJVw82Yv-W3{yQpA> z(9B#t%T(jz*q4%LM{}VoRUQf*JV`OIh;n)k$D$LZQ1DdA&^)GBCa$H?p#{U@we4|# zS8dmtwrVkWcGu}$CQGIp@nG1qlTSuzhXw=Szkoj`Ysf|Y(qnW-^^;2HSEQksns*7Qb&2mby>aFk{ ztV3a~b9cU#S}-ce6)OuLW1>anQ@21CChJfY3PbkQN$60)DKGNSkeixywb;gHQCTTh z{qE?dz)+z`v($@Uwb^HIco{xo}y86()sKYv9U93C# z7YS%00H|RE7WiaG_)PWsD$pJ`uvhhOmU=<|4pl4k??|;w{}wjfI9e^@vEjxEk;%S> z8z-t-{ZjDs>6og9f^fE^WY5;3Ai?kUO_z@j^O3_S>7%RH#}bLWE0&lD zP+$c;1pf){P(ivzRi`uF8c$?KHYS-q%rV(IXsMn5XV@LET{X>VkWx!ZR1E^Ew@!hPuO@9DUEh*ji=@A{>dFL^WOcY77uxeBT z&BziLZxcPe3~?o#$xc+il;%a#1p(_GBH(e>$qDuivm#W=Z%78h{#7b3%k_)9?h_Jm zC@6$asV?3~@oj3EF7B>t(Pg{TXV2MG0HTNqcER|<) zhsL~fl-C{ni6I-58VI9Lp4D5!q4??4kGT%v<{_6+Q%hI43d&}n*l3tNu|0Yw%JnVY zJwtjjAjIhuN>(!Tvv%m(yo1e1H;>RKPW?F=<#E}T=>~Uxq0fBilHD?mW5^|B!S(X1 zZ)3aF3RXzY+b8HbxRg2WY|g-G)3b>~oXtm}jb<`WmJ^&HsNPOQahY=%C;ia?bptZ^ zcJ(_cI2U<5E-mJ?Eg9&E(>*VWiYLLEwtMx4qTF1=Oi zS^3p_>|+%*>s?phvudggxcj^QTzwD0xIMCvnaEb2IeHEHN@s{EOaRL+r5-Xh0v1Y5qXUWM`B+Wj{g~y!Di8Y*r~1<{>Ggi~x%}F6_eHug zy+vQ64B}o1MP)&bm5)Ohg{=muHmEeCk5BRc%dYN;Oly zU)@KKh2jhXMRH-ejrZhX0u^6sNR+*zWr}SV*yyRVOzqL7tG_SneV%>}o(zF8q7jDQ ziPp)rqtjA?uEK(*nP0%IkhO*~KcuT0CjzD{Ap86X(V%`UjKV_5S69E;#u6iF5M@2)I3fCbN_ITN_W@oBRw+S zMW^V-oJ+I>=hc=D9LZX^nkyhQ;e~Wy3 zUGJTJYP@b|BJJ#Bp4DbS#_`qj#M@aeB^KE2@zNE!BSDfb1|LL?#81Y2)$wQmu3!3%-VC7R{1s8w67mtw^ht9?sfZ&)=Z zKnW=2qO@Y6HCC(>7Zn8|2xb4@-<;hf*!KPW|NqbD&F3>Y&z>`9&NDO5JTvpmb2)QS zNowq|mQmO#$?e=^?%2F&zf2RYilAHfsVi-O-B@Hi-$F)vDONO8l7X1`(?a3^D=5spdR+bdzfGFa(W}I9>B-Vf67giFB9pO zTibuN=Ovu6Us#TT4JXkB2O|Tg)X)n$mBCfc!RQ`rEp$X(>Km4W#~1_(7nyOiA?=u^px0D3^0<2|Fx&jhrBSCjY5ohnxa%YD9$R0j2gIVicruOXp1$+2N zo&CrJpLI*aM@E@#9MSU;9E)p55TD>nFMerCYtbT_!CeuXYX7we9ZGYF>JcmU=2?{# zE0w^$Tyhb62;6NEsRLE{({bgd5ML1D^A*(jBgaU$qG<-D5r(2PH?}q})|!|6*gDg* zyEeo-Wx;}J{z(5WF^{4`t@0(?>3dfW>zCi=vO_q)i(vTUGgr`*$sY{MVpHk*Pr@ft zbnk-0a;X%#I#G&0gFiEUyY7=Z%yXYYpojBBpHTR=itK}Q$C*NkU=Gnk71+9$GtlUU z<0u$ARS30EW?P!*+bPIBR}i%>n(b06x^u2&ae1aK&5T#RlAQYlh^fLERUUZR17CP6 zY(-89?@6?H4I|H};pPi_9b!JQ*F5uqz5302 zTxCGAiK`uNF8BAFQ%~1qgZ%dqcbO>}=q~f)p?2yRSlb4(q+88m`F}u+pYKTyRfdVY zMiXIRaVJdduXY0JVAEf4Vq#P8&NVZUpN!Zp1)9DvCyW>{5#ZQ#kC-*n z)uX2g6JtK(%Cr@#Eu?6DJE(8h`Qn2aCcRPWz!gXnvYpoCC7K;ZS;Uzdc=e7mELJ1k z`LF`X$O=o(l036{H|7Di>{bwr4^N*l)efhQ$)D8Ts+!#AG9$@2>NG1b9#-vl_OyJSU16FKy98dI5FEBPyF**{z2;Gl$f-G|&}W3RrpG?&6*+!U zWr|oh+apH@UVi7@wuV*Fql$P`@b;{)Mr=Sr(g}DJ89>M0QQ|x{{dUS0_1n{<5%qG2k46kD9)V_yCHQ&jU zdv@5{S-_A?0UJ(s3+Po_tJZx3qpJ4Td5v{d&&-Q`!@e1bNkiIy$21xCn$PgQXAzwk z4pJZ$g3cD6Dxz3!ru;;eTpn`CbC2!Dz{2IcsVe`TT-v-yQHxxONyFP`sL-C~kxZd| z!})w{Z2NfK&oPTL_eX~dJF&kJM|rmT{nFU?sjUb5_Ct^=gUvo#KLEFgQi=%oG858; z1RCBGnbke-d9xlMdO@u2MQ^YC}~a#FxB9*kd=_WOCq zDSI(?KmqFy&2#s-aoc#b@)Q;+p zXne}t(Vq4tDzk*|y}m^U9xKc#_LF6s&A}?TC8bQdHZK1mn?vS0`W8bdlgEqNKLzd8 z7$4VUe%NPb;5lZ|wAZRG-W<()Q|G{NBz2H^y}!rPd)^&v=1xUlGVt=MQ0-zy(G;_T zxE$gDZ`ZD&_U1ZJV-bdv1ncuGcy6bKlvCszmW9(bW>43R-sUZz4tuMhWwxBPC3|PD zDk$*zR7mp+R{F(rC_t0w@<=*^pTmhCi>PSp4T;rpLO?W zPuC=#cjP2~$H$$Mc;1ndIF9g+n8f*pto{btH9*+c(vhu2z-ae3 z$a!2^!{}cY03euI0L1SC!OjH$2zFlpytnf|E&wXRe$$iFP1klA^n(tbv;0o))|}1% zgFgNwZ@dEUq1Y>n3A*ZYsUPTfyR8$rmMsbY!|gYe}zSsCAh%Cr^P{f*FcA@ zCFVu?Tbbff#9QA{fFG^mkJGE+Y|RIyNQy)XCBAk!es7IeQ_tknZl<>Gncm7|>T65NX}=p{3HQ3%&AKa-wHj1^p2<3(3)LS}$M%q3 zficLx%+xdaOE;7Eu5>%8q*IQ}l#^WGX7Xn;sWJbl z06?m-#ZXOoZclCa+J7f@WYKF*f4Q|}7mwIltWUoaXt=vG)BPFrROs?dp>7L#+N(PA zJ>ETE{gL^y+RyLIx4e74=||@4(T>SP8o9hoWz^imGx@qT_io6c{X-a;TbcY!e&OlK z!y8Y$>1ocjoI7Fyt z9s;AOEYc=9qsLqloroB(V4^o#C?UW}k%BSDM0(E~6}u#R-tgpb0-dp#FZc%6ns*4l zgKX1|WydstU0%UtA5NCAN4eZvFxeaFvFP1Jf1%XgOzVftPhUKs;Nn`%b(lr`ICAlm z5l!54g68)QQ@+GyM&X`X6MTK5T_D=CPpK(I_v!A-O&D_E>W>$8%7Ibn~0;_rzL~{Y~!{o9`(5E=(O;U8{W7wak|ga`|G-A1F-dD!IJ` zk}_AB4P&qqh!tX;2ZlHUKRZ3k9%&S&SK%5N$X6x{T1rS zFslq_Gr!0?oz2E-{7b^1b(ZxVx2#zz%TA>D>czpYQLr`Jf)O?+2uO$&u{T$(=1Rue z!aYLfYJR(#HY03?4l1M!`chjso6wb=8Tw-ll_d&qGk4`#>=EvPWpV&J8F}RJnF(SG z+RLRq__|vYHh_Cg^CI=HtM8)5Jx?`Yy@Mz=WEySrMJgASr79M#k4&%#a;Wg~v6(@) z&HUZ1ekh6MND?8Wk z>m~~Abbaoy{h?tchd6pH?m#t}`&mQ+J(-nj|? zL3jp%5GTi3?PeiEl&r}$>ZzzKH?qak?7SwoAvOO`>CHbSiyZuFB3w|f-JY&=F4h>g$x_dPq%I?5(Vb_ls9}&4NsZe_IG2?v#a<`KeTp z4sU@#9<3O*YDo!q}Wi}QNc!VugOb)D0&Pd zmUz0EpS_&u-h#i)!ZlB@;Nb08Vw%tYl4eA>+A$wye)Nj9`U(!t`hc=AKmUNXqB9Gs zgSVF=+kGvQYbbU8@63-=5rXDA*-pTz^g;&3$R54%zVUJ|MbUS>JZm*e2*oj^&@w+e zxk`efChkT+Vrny`3W2MMASk{ksm!2CYm#f@`T&d9vt2XVrU?#WACBgA^1k78+|K$18-ZPkKr?6>|Gk z@mzYOAzP;p@LfMrA^cvzIe#nE?YHm*gJ4XHM~>T zL~H{pK+?!DL{SQgrjA=Wuym?)4i;>yyD%}fPHWGE|8SzH1GDy1-cQqL)?~+fIPU$M zGybqQKK^fByIL&hn7fe@3p%35?rX`4_IJi_?67$@9#Wn}m27aJF$BMKa)g2z5M6^o zvimZ4NuJY#Or6?#aN1Sc+TxDaOk`a0PG-qLx3s{9V{IL=j^Nx=+#&d_;b#q$%oFa5 z=>bihCC{=WZ%i~;H!4x8%B$wNz!=frE|I4HMa7*iO)*p9`?&b*+=k4R+gxoyvfnG^a|H9VGY|7n`gBTa}sqshpnre zid$c^sV}@@lR35x#VJ_SS{t39>O@!5+BH$q^x^Cu#)L4CI$MPu;#+EhhDx9%XRX^L zbswTO)yctZl?jRlyBW5r*=|&hO%uj?+a3vh>yn2Rx&D}A@?#vB3 zTTtRW+9?WVuj=|~=U`34p{eG3G*IR|CUasn$vb8eCsqs$C&&^kel#am-sJRQ{m?2$ zyKVu9q%Mt2E>Bc(Tm>87-kd(K@>ZJ1-%|Sk>g^f7Z$iCn*()|6X`QizDrnH zNe#o2rkw(vKUbzl!ZEr!8|ln`_-C{~*774KyR~3*#8-cDel+{Cq;cluLgOhZ?&df( z!R*yMj4nF9{$M`gr~c+XILRpuChp4OSx2P2{?dFll`U&M`N`5m@tb3ho72Z>DXL$c z-Eve>yYto;;H{=mWjA_OgJG}g@}k)z^*fc9_?X|^#cpPBn$5~^%#kn_het9bo9h_n9 zaY~wgDn1hIrlPcr~sdUMy${ER;8j#7q`dZHbcmLuL}F15k;3Z|*GW zhx*R&M8kCVJ7imXedoiedYF^8Xi4WWzwCN`0nbyj54jmqv)Ok(-i72q9xm!P#r)8& zW4vmfg|vJs`a0TCOu!)`v!r7}#nyHZx>SKx5AAuzczBU)pDJASJR43KUE2%FS&0cVQA!JD}$@{x6KvXj}5qz{@R}e3?QwU)NddYsj9O z?Q;vVhAiEhd_`+>ned}2(vva42Js9y8m>z= zWR4l4l@j~qGZt&Fk=XCx2Rdg+-m+*~ki!VEzB9!7PUvKPd6xC{zhHavR7xgx78BE; za8|OXE*?X?-_)XQ?AW(QPos<@&oq2pA8XXdmhdrDEG+|-??=sXMzRvnu{UG8CbCo3 z-6l4RWRP6s1wb94Vwui-gmiZ(Bb@#8O|S}niBIsX%Kdejp8S#zi;Ow7-o6YWSgLh9t0eiMTS8Agcfky6ZV{tdOp z$3c&|sYA;u%LldhPDO{9tGaGE++vO?YYqpdtK~}C8ml*GD^()aXnx|CawO9Qy5H0+ zA)5}DTfT$H%W}&Iay4bx>1G&|$?&_*4E^*_WA4CP?a;bL+Z^`gs>zvuVqEg%WUh-= zC-W{Y8)CJRaUnRAGIK*Fyg@C@uy)V!CiZs+H3Kz$43=NvYF})YrweJtguN{tJ#->= zI-iqxx${J9LFPmZz&#O5mvL6QjK%*_#^2Z5GSIn@GQ3{Xx*9PMZ=%_nYx(r^-|c2_ zh|zF2gF}f^I&FB#()3Awe?zAk?A`(JbEY2JOdH*R7%VywZkD$Q1g!jj7?YM%$G+GVh!+N~0!nss;*lCVIh z#VF>i2%)ISEMDv>!$Q!ARr3~Vhfam)ESBj~rm{)0Ybq(ess1 zGjD$vWEsMLN4Q=;j|iymm)Gi0-nI_|rgo=oqG!%XHxXt9mjjze0vb~sI9+IkE+aI3uJD*E2~CSiM@(aWMN zd}f;`D(MOO9HE6hkGP?n6RQ!aig@+z31UPzXt_&S3R-6mVI^|hbYK+C46o=cY?NKjm-<}=0zOlPE&vmxjtXA?Ow8Wr?#Wg^wGjW3&uZL7qA zj|y`m-hL3DM@}#sD4`v|deE{ompqIF~B zpORV;f@oSxR$57M$ub=9K6b!%S76~`-b|D&HlJW2oG5$9d|MgON@ z^}N#+kTcH>$k~w-z0o}ND?9$r(xs<);g^hI>sEtNdU>pFWspyYJuGvVO+odA^g3dV z7ei*i6TKnIJSgl`!n<}r?#MCrY-Y7v@;I4f^w^@E(2EeL)Q&)jyhkw?EH%DIu|Tk@ zNXyKro3y89;bv7eZt!=qc*`2UjNRz-ShB7#drK|(TFJWCQ-MMFm!VJvY}x#!^NIA= zVj7QZH)~e2qOLG=CO`}g%~kL-6;`u)iaDyXFD~VDM{Lq{)F7EOUhk0L?h zi^~ZZhd8L4ZFS~k%eA7k>a{wEeCsxydLU1cg7^=hr5dOc!HYemHrGzz45Z8D4s$e< zfqbN$HHil-IdqzFfy((&XE_=Za)U-Wf5&`?a~ckume}P!I=Cyctiy5`?6(jp>MS6f zXLdqUM;y1pnr$FW9BGh2 zyL#fkw3V>4lc#kUPROpX2QlSuE=%{3{lq!8#M8P;OoNnon=R4Tz4cY1YdgytXSh+! z^z@Ccsz?-iz5RyN?bNdFH(IXh#5xV~jidfO*49KepAfV;^`#0%IJA(vJ~V_#DVtEg@3+*$g8|H|N`ObSeq*50gER4GAHuS3fKLGM=e@^ouh z!3Y-&zB&>hynlM2#GTwg^;Kb0&@%sq$TdCx%wUOi^qW(a8q#q8+tcxGQ>ZA)3Z?8# z9ta1MUx)LPU#=t0^k zbTer&>HDOsNtL84NfXn*$8)`ubTP@Yz(L(-F)Jj8$_Jl}kMB+49<3AXS!eB7D6z4Z zIqL29RQn7N>UlaF=!$Wt@jq~H4{iiru5W%1A5}vd?$|or({ybgR1v@6IJD{7qGvqq z9}6m^jP~t8EUJ%qM=vhIJ2>Q98Wr7|S^r9d~&>BGt1nm$s zN6;=oKM>@Z3v`{JJV8~0h6tK0XtbabK@$ZP2)ahl`GRVN{TYI0>fVWh77H36XsMvy zg4PI1p{vkj1br>&kf5ZXU>(qhf`$ruPf($tKMJ}^&}u=of?gFgSI}<--7n}FLCXX^ zCTOLg2Lx>vbg!VDg6ahA6?D5G-#nn31q~52Lr|fhX@aH;xv|A9Wp|rsQAOg{V zsURFlgQ+0mV$t@3n8RoTL4-)7WI-bYEfsX8pce%V7PLmtKtXMS`U>h0lqG1;kAU_w zaGMGReJ1EuK_3ZPDCm7bO9gEbv{KL?1Z@@cnxI31ekUkD1|)YgO%nw@A!w$c2L;_P zC@yHZp!tH<2#N~YA?OxCy9Iqu(4d7tm4XTdl?l2^P_dwE1&t9@FX%i$j|)0Y&`Lok z2-+a%XhAy#^%8VQ&_Ce^O@kVM_6Qm)s9n&Nf<6#*jUaj7X__nOZ9xwSY7w+d&?|!0 z2*T9~^$>(@DpYq5(4&I zNuv)ucqJEdsy)um_C=F^uEwqY-O+MQuKpIx&$6N~$xHg@yVE`UNMDc) z=|j?ANbiz1kp4hwBE3RdL3)<-3({kx2T1pl>PWYfZYIqjO(R`FDk6;{okKd6bQ~!_ z>Pb5I&UDY0q)$kHCA~{pPkNK|66rb8Q>34g5~LXEPSOuaH;}F-O(9JnjU$a9okINFS57leUmrNpFx|AU#X^Iq6}NLs~$ZL;3;fI#LyBGO2`A zKsujv2I)l708(#KYU6az*Q6xrL(+SsKay6HUM2mO^bF}S(gUP>Np+;#NjH;bkfxEY zAQh2Dkj+d1LUlAm^6lT9_cjFaf}^LR*!6N&zvp)7k|Bcy|?t~>p!YrAb52D0sj|Y=qxjL;4#PM z9d~@^@Bb^{gh40%UlqM&%SnUtPd??;A*Y>w#?b%eBWIp9Y|ECj&pG$J;pbm4V#~-2 zFB&y^%b1G`#*Vw>(!!$4ipQ6fPMCQ4cdodyY|`Y=l&R%cO{=J!UX?EIyH{W1Le(`h zuKi!W@&EhL_r8DK^*7wO<)+%3!?)b}ga7*Be=2C^ZL@BVL}$;rbETTQEXwuJ@+Gwz3iD^ z{%ZNNzkcrd-~9J)SN!gOUieSn`2TkQ#g|@wW#y~Cf9>@*n%-<~S+#o2AJ(?6TmRPE z8~(U))8>D(GnU#MLM@cK{(!(cR6CLlW`!Ajkz8p@*~^sw-pVtbwIlvmV}7#Vowz7y zL7h+1i21z%$?9HAM5@L-&r@eA|G2w!Azp{ml@G-ur-cY3EV-;0 z+8U4I?>G?er=t}l4D!o~K5SxAkb|p56MT&bB`5T5EbYB$LZ8OcK8q&wZ7l7(XoA17 z)K3_%kU933`%;T048oCfW9gtp6HaU_J#o>5lNw7;N=(Qn0>=uJhB9JTygzduMo!#l zW0y@pcylW#BDXpfbjanJ5a*jQ<1z1>6g2O(5t6YVzW)OaeaC;DN~@+Jr$zeJk5iuY zxM=>Wm>7gL_`>Ok*Z3N1{5QsH1~t}5n}<&rzsmQ;C*|{8YL2Bt%#PyGo=%mFB) z|)mh2@oI_NY!PG(LB-rGms(==CyDH@3>NVfL2C)=D^}cJbxn?R? zRfR)T{J-LDyoej}K^Bb9@SBnRXq=Jfw8m%T$7c+Q&lrlLPo}70v;qMHCk>C6(nLez zr9+K3T^e;Z9arm1!_984osH!+AKKe~^M3c+`R4u$WNz(`jq%h(dZo@cn@~@4EA}O# z=7KM=1I!XNxQA*!sS-X<7FEp^Xd-x%?%#-gV@Ay#!;+uElZSrCyE$FYT#g zt{jd7AH9zQfC1(dUHs;`CH6RAO@iZq-O?9L6c<`QG8HC@MiHkANGq+2)YFAJLR;w% zHeZWN8}>lxI2}L=CW?pikVD>v|5nd*ojS#K&7|Lk=+qML zcF}%_pK@4Od#1Oa$;HZ)(L*?ax8%X+yND3w!N}+sXWQl^Bv!lk~!U1d^s^$D- zb*l4^^^qH5bwfOn8L^g$SnN&-nIv{|wz%=A;l-Lm;I=$ut~f7!_gsYZ`6%9S7_SpP z^CYzbCO!iSQ>u!IqKy$-lMk^5lYLur*jID#NPAELr)-EFFmw7^1T1_Du&k-C8!k1Q zb*357D-@swvt?jJvOyb~(=fj|>7q0el3)Ko8o=tJd4np=^BJW7F}ie!YXX=kJw0UR zX6|pqTZYat@WkH3*{gHz9J$sc0IE(%K7IRZ4yE3_&@DdllyX*@56|g|F;dm>%~gk+ zJ5LpH!>e>Y71aT*^^&py46gD;;M0^b9HaEh$Nf%97G-i>IQij&OQ&^!ycSLy%zd zTAk}XqqjKZc*4HDTQ=LJUd}aknwPPA#Polpv9k5^RS2h~JP8kvHBZNi#(kdaK0n%i z1jNnHtmQ!FOvY`+ncW4X3OgVr#yqL-p={Bb13`G4JMx{vA@QVl5I!iQ~b*Ob6w0 z*;3ByAv4&jSZEZEmDZGWyp*>Oglz|B^r+Y+JtFz7IgANUGLIk8KDY(QiPde$ie@|2 z8(MQTe@G?24vnu{#A8=?s#^SYw>xnms7`)rsmS^PFWDWtp@Z$+A^KqXa~gpiX_vbn z{VMZak=9td1EeX*&|0#4F}px>&MJ91k9?T2At_TBq?FOr<-g{;N1las67E$f4e6NR zi;wiB9i}%%npOu6U82dTwK72Dh_F;_fm=g(%&pJp7y5XIh`{`r9_FJsW57Lng{Vt7 z?J!ODzI|QH1@AOv&zoo3i34Ia(8$CYpqaYbRtgRrGWVdXWmO3J>Ie{QS6os^oDN3#^uHFB{WKUuA@8n3S74E?|UM_fediTng3Hm0{1? zQoqMMdp=bgU6P9SgjFRk9+8?*Y2ulC$HSlFmtaxU!9cOh@wf}pEFs)uMy0tmld(OH zmknd4^I_MFG5Nkre(FKIvZ@EymZWqto>CAMSIL0x`M`FSkRCl!&H#dX!B5RtQgu?) z*&M$r%M%}}Rd$(IbWK}j{?lzCQIy0jI;eez$D$}T@}*a08hMwgw^<{9vXlmM4Vll@ zrqwVm64}YC-!Aipn`?-oLc4dKbMN#=+mZ|wxD$KS{iw#wXmsVanv*|K6}QUbuflA6 zDLtqn)Ml3{1|7Fiq)4^ZocoH^2<+-M2F&xSUK1(+8WG!cl`u=ne(cu4jrQ^)Zq;*`~wY!#%Du| zZMcJHobo6R}yt4!iM=&_$!tyVq= zuh?u1JobGQl%m!hX+i`FY!d7oL%P0DQc%(yu8(X;FeinCqk(ZHG`C$Nrxs%^K6!r+$?a$b!G+MvWqBQ z-RCyFTH;n1QzdIyahaXw5?j8M`PP~F?#rXqFXA$%a$u|bPf-vQwK-9WYroRra?E!R zYk3cF3IikLS9 zieqWvF)wQ**uL9|BV@P8GWqj_(Ysm|wuI9C@hL&k;KP*TqOXNiCksXwd8gD=%yB%o1isVG)JtsZ1QtHxwtI)! zI7#j9w@NCs`z1m&)9ydDnIqSz-SM`;R0nOW+b(+9Z64N(>MU5Sb)7Imc2cd)Zh=FR_Ac=C2gf#R_(sKk~bKHyj!EqK*)0RazmkE|y{_ z`%5-K3Yek=LF#2KZOvr7iZUb7X6oD#^-bD_cp`f$ou-`tRKR(;4IpIVoH)`rA(Y+5 zQZh1yf>zX&x{Z!dw{@tLTdgJ?p+{kxu5y-*fDoON*3PnDL|dEH;p?>03N!08^#3bN z;3+Xm)_W3DeDRM?F-2^bY()Lomjz?1z2)YLz4THYo&jhQ47G7f_!AJdKc#Cr+nF$= z!kLpVqsHBl8=xWSd?hG6t&7OYX>5m`#k8A?6tD{^H~aRaXUlwd`Zlj0PTwFT4t@bg zq(2co5z?}IoO{V&H|~d`kD=K$!|H%$9)@`cF75P!tM6;OposNYkvEjO&2KjS$+o}U z?wj6hkXv)^XXeoUI~_NGSJ|Drw@nT?GA2$}e>4`ug3kRkx}x3M-+IaN$8hQ%xs_M~ zxZBu=N#-2{5D3Q0wqoCXmE-+gV%mnONG%8|;1v2|H*8?}yjcoM;m2&V(5|P)ZrH|p zV_P`i(&ro`NY~oG(hbVwg9zDff9+mG@|+Xcjy;27ot0Z zdXc?z`-{5sYXAJ+^_Z8&ukgi-{SEs93k!L3Os~Mg(Ohpt0K+csEI>LLC?Dw6#ZsEQ zg^e0JuyHk5xNioBX|FfD6IdAJc{rykQMYW*b57YhdN_|5qIusfSQVJCN;Xu>@a=;I z2ld}ql83eS8fSE1;WJQ0>~L1#p2r1n#57`k`e?~HtivT7e2hzYSHzkRQB?x7m8?TO z@9M;~ol~7@uTQ~nWClBFhGDFuN8~(NF_o>08T9>{V_#%NH|ZmDSFp0*8M|Q}tN9ew zHTV1yVP14ya(L`I9PLlgy_G@R6uwZhXKkgYSAA;Wc;fzO@~9$n`w05Li7p416Gt?o zo*3>?8Sar96-o^ZZT=Z+q)1Lh`!B%Xne0y#F%uUJ$G>7~;Fa#fWAzR%9QjW4cA+GH zU$ei9uP!iVi83YZN%q@UvL;LZAJ(w1ZLX+nTks;Ka{6)mfiI=UTxPr3hXFVUg&g)q@AXB;8%GAKZbQuwvWCvVo17`V{Qni+} zx%#XdJjTz~)NRt}K(&!=olv~k=Qc~yt5P-jjeVwF9$1bgve0;nP4=5|MEjx4nbGq9 z{@*QCuNvekCgC9lrP{rc#1*122ah|18z>|sVtIIk+SUA*?|G)wX4Om4cK2p}piYPG zaBAl8)Xb6LUbR^$QW4I`HZV4BYI}SEtj5S;OitjQzv%ZoFN)tNVF&JcT|Xy#o#Q}g zbKqs~fTnefj*Gp=@J^uNUY=eS`^Fdj7_;D5NAEc!Fmvq4ip+|2WY7KqI<>QVGL1y9 zL$bLVmy@%vai;i359;9>p%oILV%C?*iLs8pmV%w_DqkQJ!0RD zV@4M9rATFA!KzuilgINIM5_EPpY}javTtl`3>Kh&*2!jD(TKHe0U@(lR@IvF(Ed!KT}f_ z65$Yr)<6(2tQ?{cByOY?bP~wh)O}q`4o7Kcj+1s22mBAg6 zXUlc$9u2X591p{cuSO3)d%ERaYT41WJm~ zhmICwI85ax`elTCk!9b`_{KvZt*O#nsU2xm*jI&Mu5Je=f}2=MvC!V3P}YKRf}wSd z%Zh*VK{q6B?S_PF=9x>x#FE#UtYyU=$8|dEW?aRsgHF>eCxe@vutm+R(f+c5jn~N3 z^`gd;+O5|O*W%DAdtDZX2$NXM#Y>pgQN`ZPXpj;;@}>5pVE|*Q*F=YnsR>3;w@mh- z5!Jm7jE=j!FY*6?e zXC0OE(dxD}nwj&Sw}LZTex_R;FXnQmCF&lsICn!I+(F&mg_B2#kA5{?8*nX?jb^M^ z&6cGQNy$ohE#@PEzcGJ{bY9b46bjM?f`|Uv*EZm-$mkNwOJYt`QilZ{NIo=oW>%c&P z|MrYe^CdBC(%ufUx<@~k@wR63zu^CY*1l%pc11Yv;Hl$X31beK=iN*a2~D-qsL{i* zKAeWonT5QccaCvbP8{;YgUp|U%x}*k?9Q}9$zBU4dh7W<8G2!s@d&r|$v5F_X(pg$ z61-y<;g9?kO`G9wshPK?X4b-*ud-Y+QWd)aDFpIuiigYkV616|yBi-s-5G9&7;b7N zHb4G~BRDO!(T2n4939URDpSqP%iug+vWg)`3=+nb=9t(GZ8kmzLPePonbIF;)<`G2 z#;@$TUfb?tl!Q3y_<77#7HNC3o%Np`i8bcb9i1J^^2g`Ay#SS?9v)}){`V_RSReba z2SJbC@}8FO$?`g@1LL=xR!BEGU&S`EE-2(q$yazUSf76yO_-$&8=KUcdZ}=T`-byY z-;JjQQOFI9e{0`rU!?#3)gBMd;(QC%OG`J|qwhwirSIAWAJwP4eQIEGuFYmf@0%^c zi0v!wf(lC7J^#+g4_2O$-Mb#}lEA_T`PhQPS^SQiz2NXETmuVFU`#JKe42%2Q@h~s z>4F=U0*4=--Y!ky@c!h!1&4>~z3K&r&)2p8g2P&?MCV$q>2}R@;ro)CS4v;GeFMK% z_Ri|7&rXP3vf!|0etpt=E!T5FfoCcrn`?B8)wZ@OM^+))svKDjXsdE$Rj!kB7aR`g zr62NLUEgNDpTQo~^9CIcBOgn!;v3Sd%`3sd^kOcmedy?4dnyzRdIdnp+&D|Ypkc8m zd%xjCp;A9_;(LV3`v=c{o(dms&!&tK&B>lt%e(V1aLN>p?3`Y%WzQ9r=Eq;UUoXTF zk=MFX3WbR2jeUk3g6)9%ky6y|XV!vJUrWf7Ti+a4l1Cm7lj=$jph&SZw{}cKA$4x4KFX;xg^-r@nH4Nb= z!l{F2S%0RnH}u;RJ$k_v-g-LhP3gS1*CNpmkF2RkG(5tZ9peY{WRO_lFX0~vq@K@YTGzbo*UeXuM`v<|w zKE=j`)qVpx%*N9|>X|&Av!usDFrEkk&%V`pL-$ya;C;!P9g5rVlIH2tdusL`>DZr% zgb;~6vz$+R$f94Z4GOF(G~)@GT;SxHDVKNpIkw~pvDN;9OJ*&1Y(EoTt2M_iAf(JfUyL6RIcWPRW#;E{`LuAE|Up z=(Or!Ho8ClTAO>#)j6>%yoJeIG+E#1z5r?ZBG=Zxp%LMUR>s~CVR#~w(*3z2Yl_>$ z3qIlgd>6qqdSS$Kb_Ap`0~^Ldw`xiSH~p0&Z!j`pMDrAv@Zy&6;te9Y|8GV9k|N6! ziEDV##Qr9SmM^Ip&C3MmsK0v<^HQKe+f=HBtEk6-5)I0%EqrSXzXdjXXXV_wbw|Oi zCvwLBwQkW9D59Ry-CZ3ve-vHibl9LT8Jtc5C&$Kz#bna<$NoYFi6<-4-*$uFeds>Y zWcwC!8kfX-v-O?-Razv|EB!45TpLm^iJzHaXmO?^(3;D(5v!WPuz_km2m6V=QAie_ zCEv4w0>w5|ZQ_j`WQaFxvxkfKMVujlcGo%~O{v5@~G znq$wj={fJJC{a2eA*Y^(682`R{gKNfIGK7T>`e`vYso%(bf&RpQqT5A^2FX~RDqFW zQZETGl{~;7>V{N`24E7xomSfyY1)hzdm-Pp54g%dUAo^t#hnfr?ErDN6Cr=>o2)vC z`Ho@X=#0N#8w&HAQ{ZfFw#MQ?6#OjT#n35a^53>SmmHQM{rr^W*{PQ_B&L|t5tY%Z z+6P&($-<3mBB6#g`-nU2P9SLta_O>e2L_kNe2YNlLJSZHGjcCR$aGr7u?*i`Byao~ zb7Xq5iTE>YPWyCMit`K&!_>LX+%U;{DwO|M37}qi$F8;9t-55NX=jDRX~QGPkc_iJ zBx{LDh32D&pqfc%o00#+u$VN&JUw9_zkTK|c$8uV`0__<%Wre%nU~1T8qfQ1d#5aJ z)21V2aU8(kR#@rWIUa9r=WD4~>@6q_MhAB}5K7Iar$(6DKOZYm5_Qd0pRUcrRmqpUl}jzON-Lt7O*jTZu=``^VN_?5XRIge-YCQ1qzFCc2Nbm;YRw zI`h%ZUr2!07D`-^Z@#X>mpXfoOI4S$wt_2$L{>Xj`zk7Lxif!=6B(SBJhKbgIDRP5 zcaj&Et(3s|@UJezslE1tgN1Ws@Sx}xi*IcAI7`aab_!cS{u=alC4EgeMAAf0f0 zy&r>S`mOGZFH!{+gJ$)e)3cy7Z+6B@fQ0fiw;YO}o%Vt-f`QD~7d1Zj?`f>H7Dba4%iP>fdn4AwDUXc9YrIk5x5y2k2j~+UL*vwI^9xJMjTj z#xJcc)Ma$-XkGGahwE}&xM%H90l{!~ZSBY8?iKD=o5!7hDb~zW>q?o+ZfyJ@MV?_T zM}9nVn!bFj{`E#EWDz(n?5$nse&ndyh=5+?_4Y;og22BPJOb=r zR~63!`;`Jt26$0GuW;|$(7&z5D-ZsgPnN6j66;0g|ILTThL5goRz*etEERB8*jM|a zfM7USyI4RkYWcBQ-&wKD;!`H)4HJa%kY? z(yZ8rgIhlI^<4+tBb=S=oxT_DVegVX3t>(VLMGMq#ASBUo4qdH2g}*CmXtqM){&~e zlj^ZeC$z}<)^#m@kIs{GL1Zn5lGaZJ+8-uAgZBW}RD3V$U2tSOR*}nfqz}8;{x0$@ zY8lctwmyneSRSOI<6-t5E385AxjNfZx4V^aRjj7uhg z0muxZNgXLq;Dhe55C>9e26luIr>{aYcF4>_A=R>`JN_UC2Apy2tZjo3%#df>Rb)@p z%93Z+ZsV4CRX=+-IlZc?{3}rM zmV8IZcOEXy1Jhe`_6og8qgzY8dM93!7cWI+)EBQo@p5EiO}_cw6u&37WGN3*i6zf- zi7i>CAF(CNbuo{Q-k&N@ERn?5{Bs2Y8RUvqiPPS4KVWupAmYAl-oIu))75BmF6HXX zJG?~GnXjh(djRgdW!|7uGABnTuRmh8lE?*xx1a_zfeNwSmEjPVe)dAeQZEZXvzapR z+2ei{{|PmG)}mC?p7TGS>r0l;>x3?i{m(%%{qloHzI;kGFP9)N?^x=q@-VA(;0Kor z8jTq(#G>7rHwA7oewE7Qk` z%5Ul7jpiZEZ*V9M6<|T~lb8yz){{b42RUpFtt$Z36uZ?B4Yjv)7JHWh!axd+EZ;C|WWRySWy{I*qpS)o?jN906EfV@0%qp(k8a=x^Lfsl&EiRO>ckfx7 z`(wiJ-Gq~G*YI5-Ui0WX8i-CQ3+<=2vR3=0{lrc)!~Fy!L=5q%R=3LC$WiooBthXC zYMQ#jR~d2+OikQ79WH=A^k@brtH>FQH$G93xUZQmGUlrT8UW62^L5--ChZ}1l=~%j zNG@nm-s<*$96FHF_aJ|WCVtOS?#A!YxMR%0F16Ki6cjIzxW|5ViaGyPeU8DOSklZ> z^E5^5-&UhY;&KE+N#^XqS-S!=rZqkDe6jc<3S5L#!%c7?2o;?ixKX{1PJ6VpduG@^jpt7tPLV^3+$ zUda`zDQk1~njc-|M+&mh#9pv{#{PIc`<6^nczBwY?BV1T}J@rr6-Jbc*gSZ}&+;TYgLgv4#({jt3 zzd$W?eWEBUiF3DY%d?0YMYYl|o%ZnOsrE)Jp5r*`F9b!SA| zSV-Kaa3f<*isEdx+`Rdlu?X7k@bX(2@BgKX@fl$JUulf51PgQc0j3(7ve_bh-8KJ4 z=9{FsSqJt=yE<`ovX5YHihjs|3QB)~Ayi6xx{Np6C!A&S?(Jk7?g1JT6^lAHTRY&= ze~s*60I2d0-D3xs#_{{ByRoh#KE>%3I?Hx07_nWaS(V|y4Ed|7ljFS3gDnb2YprAl zN1LI7VKI|30>oZ z(Og~;x87cfJ7t;avXFT?Oie~?Z!KA>GkTW#!Hb_^UAMTgCfNAI?KF1$iCgu*`tio< z#ip26iB~UdEooHl#wQ{?iq$O*;&RHdE@f$}#qow~xs6+=c*FGoi3a6D;G(-+R9wh3 zO}5(I=hqHRE`!>Y#jNIBhTZEJ>%7W+tI`xR0n;yQ8-z?&@_|JbpiNj^FQY3iyIEba zwltW9zeBeiPlGu5V$-qk2u?l*S`=Zr9%k6Cv(kYE!okqm;-JU$e(Xy%^+0Ii&kiwe9;qQ0Wo z0dMrH7qaY7v7NQNr5i$F+*Xn`= zqauA%qnvf_poc)wVxV zh2jUehG1P$ZQTYqz&Q~frZ=XBo5dIkfdYbMse#MW7gloe< z%9Z!@VLAA*r|HH~)Zj?ShQTd2Pd$J@E$zvB!fg5t1qn_|J2VCR*P7cHjNM##7r52q z5K1n*F(&KgSA0Z|bP!xA8tB0Kz=-YT@728>Pcb~wEXCU~PSv2yE4n?NxZf0t0K^axFWJ9B+V za^c~Q#v$ccff?wz{jw9R&H23w+Nu2ZD zAux#dI8uf)GvEj&p2JMOnHAAA+_n-kBRvj8;vXQK})t$2cuuP;?Yd# z#W!x3aMXV_MKUAL_+NrAvWjlK?$gx!)ra;3f+dFn=jF^k!zmp!j&n=T?LAxC5Lt~A zm$AUZ$*z zDms^Axuf3H+GZPQxJ&suW-(vLaSXa!q`|aD!RL7hPz}tVw#EbrBjRZoZA(F+Znmm zDfc^9c*pox5wLswDz768*Xb~NRe4d=&M&ZmIyb7 zls`QuRoHhTOjgPFoVvXQha)yH*68?5Z?Z33oR87%6BWm!Yau}|s{a%7yiTAXD>`ya zSulDYbs0ci!t8C#N*3^lA>^|(?n~x7vL-l03?TIxfu*#~Dkup?KY=3T@zj-?Sciqo z720GTV2ZVKW?aYYm3hvlQ#Vh=+6Rv=s_bO1CYmx^5)(}qX4vv-f}p7mu;I`|G_8Xj z%&LNEhwu{ZDJ>{D6lDrIByO~6YRH@m#xr2uojgKSQ-8s5{LW0T6AZXmfRZQu4amPBv8t5FtG+eAzO8p{AbL?ZP&LK0OD>f92k3Qft z$!py=)NZHE-PS1CS-X^0!RhZGJ6AUa8$Xvmb*~C@=z1tEai2QZd`!0{?o+RtMVcn> zQ`bVwJVb@8A;94G5JbUJwVst=J6jQd7FQ>2jZV|wpq%@s#xD&b2S=6_@mQZubDj% zvTE&hCC!+bd?Z4$)G!z4*xJ0TIpqr?1i9?DHAg*2tF||Mqn+F-PN@{Yk@wa3VXT|X zdsLD8*-Tt~%= z2a#PB!9IBC^WW?C+-|&__bU=Fh)1!gkIqOG4<|~^v7At|gj&Ul zy`g!2V6L}e{q4PiD(KUTE8>@pu12FI~e`I!x=b&4biVVED zby7b_4R;oJVD<&dHgevUlb(_7UZQ?pe}Yfc!qDJbza7h=m|S(t_x1F&w6S8oP=gwN zytee{EGw0?`Fn?lm>+g#o=WChnummp?}*G)i~dAqf6h6$EbVb}l_xv|$E@FWy^2N( zu33G_o#EPKTX=YKhmLO!=T~{Qk^V~BNlKEwBJCr6LvqVLbHO0cw!*V(Qnz`{-hq;C ztPbbv$0zO&(E+)c9%3y%^T2e-cwI(jkddru@~K3!=Ab_@tv9sWu^=@w%j>y)EOND< zBO8;9a%i|m?Vs7%rFp0otvx*tmVsz(IYWu+UoI)7cxwA_#=lcKarBcHf?(vv1*2EL zmE97}XEE@5Y0^0@r?DDI6|9OLRq$5yS{U`!NYs)TrkLUB&z;5R{`RfUjZA;;p`Yn< zk51I*P)pypx<~t)e8>Gtpg}4h3y3hwhXM`qYYisO#6c{`FX0255MZi4`oQPk`oOz& zZhc;~9~kX^z{dxC?KPB>@Fr$*!Og;t#6JVCw8$)3)0cdsT&TUpq>0k=Uc7*N&Nxx( zO6HpR&QCxP4nu(K=~vx;54x`gc{P|E!>hM;d)0jF)tTv6-9G$NsjZTiSG}?dvs6`0H+LD8 z)V|K_1b3QnXcW5kOPZ;eX)J_DmuQlS{ZjwC%{BE+TBdlg!P;ov9&7s^e(H@~oA23o zkDYFHG!Y~Z`oGY66?5&bgQHk9U1`dXqS%e*Rn{I(>DjRx&qls1E`9Df@LzX5W9l`n z+Qm*y`$I!_>%?@yuDKM~wSr-4=cMP$u*aOj51%IeJXjJ!DkJaj$LWEP6WVVIZL-K513l7UMMBPhqc0 z8NI$qgAPNKmbkr{)?qWHTRBGyLti{)OO<$$7mz-ofYh)OFwr19L*{n48N*|s~ABV=Y%!x1R#lW#$~qZ-Vd}mhD;>A7CwGxsKhZEZ8Mx z+tpm!?CVU=SAkA#Nn1R+xqhWxWMV9|CeYBIfjs7R6drp6BuZ9<%sEt~+`JdugNLk% z4>K8*yl&3?W)$WNZIaI5Gv)B9i|lB)Y@)NUQP{^zwzinTRBOId_j;mad#HjSsvQ0~ zZ-q=P@qL|X8<h_>{G$DPxvbMyuty4oZ9(GNf zB!1XO?H*`YNZ&DrhAweO?zq_9_DJ*u*p;G}rP(jsGi8R{iC{(i_ZnJ(K*hxxOd(UR z>xky6LLJ6zUT)1TZGP|FtlG-j2s|Dyq*2VT@HAxcl3B^olvrt^_fU`ap1@Aoh6Lev zkZWYcqs`_ri(YgFx7n|3HSaK1KyyLjU(x*Tx6rJ+;|MfAyv#-OeS1xx8EszPqx~wr zTKfpqHv^V4>oWEfe`c$*PO-**5$;JZ?nw4T8W`nx%UvQN?Kz(b6uUuey@+YjYzl98 zn^8eRGPs_uac%K#HpjbouO}dn7-RS5z42Rk|6$G%c%PZZ`(zhyuRZJ9j8k~{mTlf= z=#K8qJF(U_FQ;+w5jv0ii5*`98q~szH264nE8D>W`31X^x)5K|PRZ7Uqdi%?WV3Z$ zA&*V7u+?@-){!@kJsGq37E~blmAHJ6sT7eGPfQj1Qn6h6lr;}SZYyikj~`+maSX<( zr#@(D@rsEQ9$)x?h6AD65>B&P`bIH51I611_ZHcKP*FEj7-l_BOKrzwm zvceZ|2D+vq+$UtJzMvBYXN64rKdj`Y+^qQpYyap9r}{;U{>qT~(Pou`6azLhY-1eD z(6Y@Ztd5sJT2$=%d)ZL1OPo0%kR@=>07-%^zkSbXb>-eXl zyS;9HyHiOf)>p5sH7g)7yD`- zw;k~NOEpZ`OKzXCt6NwGo4EkW)VGS$-@2P`aejHK?wyyucN6yra=YE4eSU zt8+JQvreD=d8+p;bZwv?I)`}*-#+dJ`p=HLfxZM* zVddG=5Gu5Khn$Nl1(fg_b^Ey~n~F@`MYpL_QKw_&vKE8^Dsw2PIGH;&s6`NpR`UNo=e)VJ zl>PpEJ~YYup7WghbDsNSKl*w6kyTm|t3Y8;5t{FEG&w^vT{NxG@Km4#6>29C;-d_?U_3Dux)+0Tv-n>?iRH-W<|Fldw7WU9fVSXV5xafoy z_ytsiEe5gK53_gD;6GI1J!bC=!D(txym6Z<9C?Q!S6`tkq;DK88z(Nm(PZNVW^?&> zQ9zyfCG^0!3Jy>uzJ6YH?0y~k!WJ}~PPibE_kGgT%dzCInp_HE`lT#RVxYIZ&%!t0 zhHEQw?Xvjb_MPn6CoVLMhVl204O>T0p_clP>A`IWDNkLJc6h_kRGW- zufPG47?0shm?&H~KK@n*(qQMhRay;GEXiQ9lgZ6Ko6Iw$2663;z4OH8FiPk$c+83F z?@$WDlO`vG{xjRt+X@cHgkJ8V@<9w1ZrW#MVc8>hq#Q2Rjf8Ms4p;1Dxsyr}_7;Il{hkZK5ZpzjtGI&D*6l=|g;@^C5w!?9{~c@Oz^yodV=W0>E`aEIsecE_~gKr#Q~S?*TYH+%nsZnquL{* zYB#+T=vS&o5q>2hj+OzG?dw~%H`wQ#GVz*b+8qATJ+zURY~zHG(2|v5Z56|>%~bTyO0+6MpQFb#xx(DYbv-uTdL{FR{S`stSQ=@cY?T+%yfnVq z^3=vA>xJkAaC^yv%%?S>;+E!F{>DTL8uqHA3&>ri;qUL8Sok`|=rFQ=jRHN?q;xE~{MyaR1{yz#E%{XRocj ze|{+tApl7hI{22QZu&FJ8p*)8J$?2WICecipX&kW7k#=fsSUKe3sAxICjfm?fNtsm z=r2wN^x)6w>75n0fYQ^ug`%Bh6|FkD2>S?gc&Y(uuURL@6ig&B5@x9IW15`V7+Qdw zxWA2;z;5G*ww-cdq(g+WR;JNk=hdqBUNRTWX<|w+5BERP@nIhH1doM<%+$sN8lSn; z!AWe5GSpQGlx8gzw6u|n*(&i8 zprJXzan=UIeP790haBbvO!hyhsobBq%^|mcFAVCRqpo$}%lkXD^Q&=$b(Gb?B@nFl~-VStOIHM`cw9t?iy9D-0-=Mcvq1IaIoC zAXzudu3M3;J4))h{MXubw=!9=wIXrUb%!PEZiRJ~cHPOkoxh^4+dtE;dp~t`pWV9d zmu-nY-*4C5iN&Yg=Vqzf$3MreTSMI%|3dw1zbfOGUG8DZ)fw%g`utjSI!r-Wz##Tm z%BP%Ry`GzXVb(LAE^q02t!-L+l`z2i1j^D#y6AyIR6Q@pP$Ov}jLI|FN}D{y_U8jO?~}yCP?#VXTk*#N=9r}BD)Tv-cpyfJ9!sPw+^AY%ZTAG zU-sgt9PF7PY-^*j*ov~(j81Px4ya(%^w+YNeMnydx2h)-P`%iVZCCew;lv!fg8r^( zm?i*gBa?=zl6hZa@+5Rv4J^Z98ru;rt-x>}0hU^TXi4NLL*e@FW{9b*ZPRQ+x!=pq zz`vjX5;88GdJgH-^hiWAwX^-7$D%%3P;WAlE3^XQDnOr|0y@$S^tm=@BZ$67K%)`R zl9}gzn;v~avRc2ca`nXSSJ&2jk!pKf`*6x`>k@lSqp#4S!5NLW^VivUi;g&4xt~Kn z15Y=_%%FMIIcFNMCl=y>t?pA}9>(aZ-oK0YklE)n>Mf3I#v|XCZ`l9xxoppMji*VZ zpvEk0+6b29DOxl*`@v?y%*-C_h<>i4{^--N_95Lrb8`?l?_C7TV=5xAiHt-9w>e_T zwyc)hX-cQ{#`?BF*tsm*5*+VSXPrxlc7$gg>hL)rcySTw#G77jh6P8otV5zu{)6SW zYAS$*iOJPD73oqMgwW|iwj#1v~u(oDD zi?vLL`W&tm+{exIRGm65U2g~MdX*d6hY0)60>Ea2X5E z-?8Xypv!<-XT~TScf(|TB@GI_CTHCdJe51^it|k9CSL!DuD&2isrQ(zy@;JmmSI~1 ztnqk?E0J8eM9w(I7SFhqX*=B#FCc8pgp!^Nmi}1ip}FKohOn<;NpX|CM#R6{)yUg= zIcohca%Wk))$1RRM9RK|{$QRFEQmW&H0J?xyZQ-oyi}%g1hSJrmd#WS2mRrRL~r}o zP_|?#V3h-t%=+k=OPW4*1P53TiMZ}OVpWZ+2tV?`9KG1;d`$-ISCglLpW`B&pZ%=M z2JU(V%Q!1t#>8NWjy>B{YrQNKN&Z1=N5+@xU!0}l_C?|Vd4qp9BQxBV%!n>#3j)7z zbf^C=^)G4vI$ijZw=JkOA=RvV1h7rYTbF2JK2BM#u9E;dCamBL_0fZ-&zgJf;5 zKwPzMBKkf-f)^mZ2+@Q;hX=O!V*d3S3F6`NQNAF+Zc%4`a3gLN>c)={cM^dz&R#D) z&%Yc)pR;sY%Tam_FJ9%9EW@E47t37uTo{6t#`TQP{5q)#b@Y9< z7|$8Cd9`0&SxpB-MWe$D?oiL5S72h=o@Z|qHq)dK#y{sF!v9>6Y<{|s_F4;L%o{)k z`P6Cwf-<1;FjIftPxNGuudtN?3=HG*9Fh@xeg2^`F?&B4Dbm4ElX3)Qu4`4*fz)oD zftwl-qvVS2@K2N)Pg4U~8~d@+lhA$Hx;H(WWQl(MfS$w3!|_F1R)x52Wu?U0q336C zaGYFU+0t_}c6E!4eM;`iO7F5QSm>1H7&amYzikqvtT;;-B#*>jr68q1t2uz^HL5a} zI=zo;IM_OWh$dx8lh@IBSGWmbeQx1fg|Vxn^VL8mtm}&0rXiMjS8iQVDU$wW-)A#3 zQ$=Mt*~`Qo+vlGn1AqQ~(L3f^t@VYm`W0u%0j!d@YN!UVwQUf;7~smyz-c>;A4tiA z-bkgl@W}Titb~@nWgOX%PP&wTA${{Y!c#n=!||%NfNXY8{gDk?2A8Ylthwqf9&?lK zQxE>4BgVvK)v3SABXa}3C|@x;+^8j&IgVLth6)Nf#q-y74$Hk_P2Rk9j^d?A*&K^9 zqO%*8Trrpjj$o~IN)BJv`!h^3(U&cf-#Nn{?U#nf#2hS|ab;{7h2lRl)zgtfj)mH1=Kv`5|{ohTvxiA)8SS4mB5glbawNXN!QNHNPdT z)D4aB6&8_owYH#OB@{d)K|<`@0nj9O2TKs=#SsnSzei9y(Lz^qfXa5;>bRy|>VLI$ z=f2|50qGOTI3(srS3|9lKVb3;o7)a){NPe+Ki0I?WG;xQbK(SYnqLy#+61zT!D7i~ z2;|o_fxQ0w6asmdQQzufWz&gFc5JH7%xUzb(UnF|dRF#YOJc)T!|7O?Yg7=iw8c<% zqb~h0+_W2(U=Llz{eigk4pA>)0gq=4Mq^pkYN=l~6uMsZ_KWZ>;>Yt9F^WH@xv`DLu%$x_PY9oAG=@#w)N!3*jpz)|f180>n`(q|cUlnjLvZUB(9_By9X$G3`U zJ}B3n=0no_Bf3rVSM_F^_vvZ={$RP^Y-V8>*|<^T>S_Lf)d+kYJq5teLM4J1T!AAq z+QhF1$}KV`S3J-cs%Nu%IqG=XhjIh48?HmpJ|`j= zk%l~)Cjljmg$ZP#%7pWfA(gm`wa5LUAxqZDhIbIXW?dd%`Yi4pH}5%xOZ&cN-l@i1 z1caKTTQ5A*^tQDKiHyDl<;?W9pI*_+wxmm2nnQsFeOmP=XL50>Oi1$)DQ+r|)(O?5 zi=$ps8+ln82)Mb3C)0-hqQ>wAmj`s=#PLz@@)P0nd)7T7dI(qUV-{zxLS|%bu%@6v z-i;-kvv_yoqJDJB&};9 ztB);CNXug{ONVWd`CAi^=;rnSZu8*;IGl zn7Ly02)>Tef3XGHVScOaSmA?FL_hcuR5Pdy1B+O2r+VtAqaA%WG+d`uhcgH_!~Pdh z^znQ2?w5@>z3mZ<75D-zn6!tQJKB~g*|O8rsQX+-+W85!SlQ-q(=L0XHM&B1ChM}s zkrzEHCQ!SgUqXj$!#^ozau5Xj8~-wRKF5j&{?l&n=3l(AhIWH|*r{MmZO{^%hYEF{e=mbnV|R^o_&fO4-B@M9mvZ&wMowa^^80Q2;?c$` zqc_>cDrYQVKVj-I{dJA|uq*q=A5tzJj8(S5KFGzhQ_FT_hNlp!stWaFWM!es@p-17&6^l)W~T(E_EQ z2Pl`G1j<>dP?~KhN3i20bg8kyu|QXK>Pfj#$~M=BMX?8o>hm7#a+z@h|S z&9l`ea&h5YE4RYhoow9cE-|cdsjV~EvPFZ$>58by9WP+lEnwzRMtII2^4UPzDG95J z+iy}CZSX&grgp{MuG*%E{XdbOk57#bCRjBneDCd_^9c1ol@s;A7NftfQ&$%0W1Hf} zF*b#Yd=uXuAxFbgnwR`pD+7yy=81hUZ{IbJ*v%^{-wthXQi2M_-z@y6 z72E_%x_k-qZjmJC-w2p#Fw)c+S=>2+$n$u}j#Q5|$X&fB7;UTNppm(v@CZG@4y)*r z;3;J9yM$oQ7t>bs{MuLnA>za?asqd*T+t<@-w8GC(%i=`b*(_M%C?o$7`?HkG>2O0 z&9>r03tz~tYi=#u2B{dEojm~3Ik-F0v@f(Z_LKy~--UyG;SuPyi7&N7citdUjn|1e z;f_q%o$*g?Ar|fvzS_Bb5Bk=Ya1)A@UDgND%VUl2@3r3G?`}1Fz*npbL^|zfmwk}2 zBi7h!FaLKdM;{#^pijJ_SU&E;qp~~{%UKu+WQ3>hTE6GH`6GxIaVat2t+5eduQl;L zWixZdB+__h>Xh9w-JY`O1v0OZ3{FCD6J=#~Q>J!Iyd1V7;x#1Zv7JlfXGDZr>|||u z{M)o(rt!x5t%uu2+r~rGv}l*AG~7|edVA&$7|L>7@`oDCOgKY`^QwvAh6?q{BIb!p3MD10lG9me4(ykP>SZ_#A zNU@@zeU3uYWI;n(=!oId1WZN3<3CfisP~fC)b!?eWHh*cQr-gE`0kO`t6m*e>z|e%h4VNF21;{@=XE zAr?vucwJks)4ZoIM59P2MPn13d8a6e2smNevoPa;6#_EFYN|3eu-H! zyRFg5lP#`VM1RNe(eCXTg9FXu%;koeP$A+`PwaLWGaJv|hbE1Cm9RM3 zso#Nr{LWSJJ4ei1;#Mh5d)2sj zPkOLQ$)_jMjT8%o-gF{xBhvn>h~8LVU)E@+0P|%`Q8xrknuMwoLfFOuV)rDBCv6x`cQa zaar^LfjK+@GdaxOC%}r^^k9$CsE27TMynl~{z}z%RI2^W>m`7#NPyK{1h!B83H|BG zX7A_S!1e{~iz8FP-UL|D$OQV@m-1o=NB`7BJIU@}^IzH-)~%iXv@@|wJKtVK_iyb1 z>>+jX?*H@7uCw9->{laFyZ>teyRZkakNg*~OS*ye0`{>kU?%~V&G3TIpmlYD{@{t5 ziy>C(wEy%p^VQ4KYQ75niuu@l)Ru6zW1e8ICybGIlACW}E7y$5e+a7rLLW6&_#f<{ zzX$$v@@d$4#|dZPj~KNY4HoqC4z=$x_&{vIAdxc`f@Ipmq&T5l6+`+~3?=apYM9U~ z!eTkHm;F@qo6S9R;RpYv3za8!A)hYj(|vtZpYF1~9Pe#C!0rEE;C^-c2}67P3g8Z4 zP<@kw8up{n!tm~Z2oOH^;P74!I8Q0G6NH7`Jr>wgcJ}40qZ0zfy*Vlb=@&&o-#9n_#dM&uF=F{YCs2<>E{1>?Y znRCKy{0$>ie`gPHUi)|V{@Ix6)Z|i$X`nGfTLhQ@Aym{_jPaSB>RPtS?ggXa+i}e@ z*NwJ7v$>4vap*mnxs{yQ&9i~u#fHwC1bc!Fog)d{*tjJO=sx+OnE>Kb#SQ2-6*B>O z325s?5C~F2d-Ur5#0(hIHX97O2*C7oE6x{KLldwJm^-?IVIHxN+sYs<$Uw1YBd^f& zwnC%a8gxskYnHX+=n-G6MymnO1*%oKN&QTwcKU9y?;AxMbimB(Dm|x36Th^0gDG<> zZC0zg6DRg>m#0|yJ;@37PfYEaA1WtlIUmDbOtWe+xfZS^CM%ZU8FCkEF1EV8$Ih z9B`={^v`zrc_83bHTtKLpZf!+suj(IP-1uFK>N|j6<8R zn(6_kx?BJ}E&!SYKpEkpB^Zd2CUg-`h(7@Dk=|p=P;Z9`arIs*B2AkaB9_+jw-$)$ z#-PT5p|HG3f92A`!aJ9KUC7_;i5tRNbw)5~!#x2ntgTiP+!XOa4_bE*p(ew{O+8&~ zkb;B|)9c%+-^eP+DyrOzS-;&#s<*;A_TAi=uj64IUX>uHwuUPS8GCpjhD2o@>X`_V zw2myDsUS}m-J*-`AYDPMfYn$_{!EAPMHC^8aX<&Ezi?&j+zxepC zu%TV-FJ1(U;o)sl5W7PUH^(~!*G|IR?cF=%|GzqPbD~2#d-u?xsk%dxyLE^Js#s3c z)ZAN)8WFvQoCZ zwHu}2F#R?+^bxH4gumM6T^(vgtJ5L&SzC>H76+_WeSe$NVfg=?+fh53!?e*><~KT# zpBam2w~c#X&|N;&cM~mP=!~1u(bq+g#JSh`cV;IWgQzu%LcUUjKJZ? zr#5U1e5umJd2md@oh%e+84{d zH~wWzEenqjZjGRW@Q4^#5(KJEn0OILHg#eXXYk0m6BuZ`+~1_!W{c>2c-@4W4zq^s zG9QQ4H`fRjA*A#aWdx2^nn=fJZA(xKw=UE#_hA_zh9&WrnMV(atWx~?R0NTG^a@>U zcQ+Uxk`G^4NWD}jY__qe z9jV*cC3cy#Rf09VHp@B&%)#uH3M9bD?A`lO%IwKTRnLAZv)74&qQ=SsjS$^ShAv*C zMP=^A`3rj$Rl4R41`$0?03+Gt#_pkYydJ_P&{Bc=ADWFmSf~EPLo9CP(RK2uuNli1 zx6p$`@3r|^eD7-6?=TboiY@C$;;bdtJf9IoQ{hsDG>deqFs81RCW++}$E&=&19REr zzP?A=Nn%;qWeCW%tj_GIYtR^SKnY#90++Ynp=?F`+&6HT(Va%dm*}4GYEj^YSIg!L zua?bjlvGAxHEQ)GJPDq8&T1iX)c&CmjS(G+N9{wT^g^2dxhYTK{wOV`ss68V*Wd@o zL8}s!KKlZ(*JCzlPwasQTEcvT6=?La5Ax>bh zH}J$EG1xnRA)&e+)1Wx0vqOIs_>SOd;F;LG3iZS;G5Zutf^^_eF;?Q$)xC~jR%?k+ ze$qXH{Rm>3lh<03Cy!L`cLbkiFOxhy24+SutK}Y1`KHxH?r)Yd&0mQLvhnkDsDILu z)c6H8ve)W?5K0KyXS#AaOor_h+9j0T;0$~f?HeCdZ_vmN^-DRIJJh@HMSyy9O(t79teTbo+(a9NKPskc-s@!{fM8)6&`fw$yUV+Al!461{@joFa1(H#$0 zJ}uLDo8lgV>Ag?+%4?YP>ta{0Bp`J&w?9uR{%^Ytlwlj(Qc} zWF5`P4h0w(tG3UM@6EGy6g?;dRBm$L`J4Yo8t+tha47XAm6&+7^n*TXVoa;Yu*5%C z0<2B)sy$--xnlG2C|oQ2cXtCd3{Z4I+v@Hb z@uZ{9-=Tqq1tC-;wy?QX$J>7V2lb9> zI5rFG+Qaq~wUntep9#m^Qr0eC{Y?LCBJ`y(kO#1C5I=GgC>#W}W+I)_!M#;xrFfGo zpWjLhV7ZUF{+vf-4*o-wAF5&>^87(rl@`6u_-kxazduJN_eFKncUic|t+L#!^rJ`A zPxR+973PyYv{F~X=%V2|b&u@#_)fZ)HBIg$wzZfWKRTH1jv@@Y;CHAqHXE)z?p{&1MLgHnxzxJzF^JEIPsWp5SO+OrbBRYm2 z4zPQ8Aw9e?wTEZfJ$zmFaPha&L$l(In6>HtW$A6RUriForav!k*OMs8)~>n9OrB;$ z<$MdBu47^zgutHO_WTWYOw29^UxI5^dgb^_oO+N(lZ)8Kj%uHO79C-r{#$j2p4lmD zjiy(d23k8TNK=xCGx&r z(>H?3xEFL-REd5|fik-%jmA|#Lb8;eIR%pxB`N#>pI>?hY} z5EFNDpii`z7lZT*$EA1n){qO|n!b^zy%&B+aYxe~y9vgQ#j8|y{7bjK#2tNaa$r`q zPZiKdk&&eS)2+H9rCuNYhrU>~hZxV&6`=(|l6$Oq&gejEd!)Sc=(_{AoVQu+5{tdL z&ZQey&_c#;BItgkO?Y)J5#z`(ANmak0sP-CcXpQJXez!J1J>?w%VC-2i0HWGkvnK?g+l+qy%JNF;GX}pI991 z3@S;RBb_WzbEM6ytgDF3?v9O&OmM=3{%svWff3V4X!f^<>d@?y{!BV)BobXiv&$0` zi~WFEHy%JTogSJ=u9Ollp0AD;u9D`QP+MB?Q$07;0k`^OhG8u*s*Yii@5Y#6vmz`G z21;VRAy8d5Uf@=I#V*apH6_P(Eg7G30(jxxnMvrsaJfs>J$Y2vCpa&ckTAp?7khBf z7w`48Yl1OU3$I87Z0HKE7D97YIa@P_g6`DIzk*HO5-A_7=?Ljl)zC1~FUe(8K3u(5 zj`$%`HCn9!X#$Y`+LV^qsl;QBJ|~b?O9`>4A+o3|bTc`SNF}4T$kWsaqnf=vM!McC zX&-CWaW42N!didt`$#(Hxr3iaW{fH-Br&VCtww!H`(m4^N^koz7AW%1p^pD?{z!O} z13q;*p^dm1g#;aR7hmB6glp|oOP7H&Ba=p}`O<-{s{c3uP4cKelzNl$SCRsP4yQJ?c;NW z7IG<9gUx=W97uMPPKShY&+3vS2XcAdJrEuWru0{=(|2nv_8+@Fvo1dz<)H;eKqHXBfTqHB<>|2 zP>5rEbkD#&=iz>K*vG7GHRUfi<#TwlU7iq;ajr81J8qf^Zo~j%Iz*Fg*{|at#|37@ z^3{>h@eX1Q2XOUhPaWMkH9eD~uw6aQjmQ?x(x)sc*=PQSh>82JQ8K2K>m|2+m9`Bv z_g&tnPjgXUax_V-$Zev7t-Lx+Opcpe_=Lm!^u~g#Q+fYF<|y`{_FhWPrY%1nntB~0 zHJDDON-=WWiz!m&z8Z1!K?-u+>9UM_3GE&ZN@!b>RT4OQ5_gbzJX{OGyQFD1adQyP zL@)9Sx>TQBXU>1W*u3Ewzt^d|2sbAp?_FVH=o6f&02iM)xp@QILk?FLi!j+AbqKGC ze*`SU&z(;EBiYxNXE2%gokIsC@JT!XQhbcm4;_H8c3}V|mQNBUTRz)Cdx&<#&aJm# z8GWd!M0qia_H^G~vb$t&v9WHpHx~6%H`cF+-^s@6|8Kpqvh0mT`H=)aJ7I4T6@RPx zp{er0eqE)X;P9>LqS{^#_SDwvW*`-leszgSL;u*JLgy_Gup0XIso+<9+GM`ym$>T@ z4VmK`=uJvB4lD`l%+mA`O!GI^L7eMdDMw3BnVzpyZ$%xy27vF@`CkF)7_xlm5hX-} z;GAdnd@1w+zN3=|K@yG`>{EZh%#5pWj1ymid%qHL$B}{Tzt;cy*H1e9Px40vVSlYL z1=bEMq0QsX09OtA@z9jVd*$&sc`OE8COlTrG_z3*VrQpXUY6IF`R28=52GZcWe1jhvRWabcnd-Y!KI+ zW>my4v00&cJb32hWh{0U;|9U463qyg55?aSutU4}&2aG3N(+`ZFY2Yfs~1yaP$3*b zi>@UGZls(TO-!ePUxOhg5dm4x5N;ElDx4OY?SkiYI^xz?C?FzNJCD9M@U8Q9hSm?3 z5btT>bpHFC;r{Wv3(z{!{TbFcCzgFyos%&B#9NR!{u*&)kL{4klcaJM|K~fyMZzPe zB4cx2y6(5HGZXs_$>;bygaQ{eB%=<={uF6m;_6geq(abDJkMqJ=cyKXDgGo>SDBly zVV4L7KM#0Wd^p{V4LKpzVNUQ3tR5JRW`6s&>B8a(ix;?7;jD#VvRAjW{o5%jxy^ z4|(zlj_TOaTG{}z#J0AFvmP#DNlcY`9@+YA-PntHNOX7pipQr49PkbQ! z=!`Bjn&01Kd-{U^^wHk%x# zPRt-T+ClXI^~L|UGAE@yj(&NLRZ7#$oD8=-FST_^>tJe6?y+`Ru2jhpD0v#nU>nMi z)IL10xZdISB?dC`|7#%E3o=X@$a4Z@P6Ei6m& zaIZ{X0W)^BGjxM9(QhLS)oiZm`Mb%Uuaus1?M=w3Ri75oX1Q}lcucOf(FnSA{|$%C zvNC9@$}zFWeE_Lmy!P);tgRzAs0Z`_XFea^(%K|yjv|D{B_LeVKj>k z`yCmdqi*T?w7NEst4{MldTFJ~34&|Sff-tGT?12-5L`bxQig5>*D{s0fl=zsNpTqG z#5XO%Z?kxAzvqvF&N|gqNG1|sYEJ-DpjIZpoX{1Y4db#@7^j{9BUhE59L5|Q#*kDP z+Y!rl9nKJyesUPk*)X1)mNF$PPk=E>t*eSp$q8fGX~Q5lZ*o4$dw_9Q0!B~M+HQl{ zk_sk<+_C#`3KL*X=t|zRW@-MG3gfjCU=*k?D&xcHsVgNmnAcOmG@bxvi27{;%n4nY zX~Wn&>v(cj3VMJs>*O$&*f5r*!Z+XG!azxH2^YW>sj2)pm7SA; z1QC=n#ZDsy9V_KlcP(d?~$f>+4wiTxAAiT>o#{r#oLPV9DVD(KU!bziv|E(1*9CIa=i@+iJL}2Y;0a{Hc7ILw$#c@rxmuX$x3H{!>Sc<6hHskm3ZG8KpU zOqq&cvP8fx@fM%yp`fPzg#z162$s$NdvG76Se4;$@TGbv@GzHjp#cp@w7Z-7RV(%ENq*EA*9zukQAN@x}!D!q& zYZ0tVDNl$Cq?5^W3{;9Zc`f}<7DF&k{}abI zwU|KpzG++^RpDyn*#hz)2p7^WO1ahIXD<}AA?byt4{+*<@~T>Y+1nw>C~MqA!6Pvw zCv@}%>k?719c{e8R1K&@*Sskaj@xPTnC6o6%`<+j9LpgIH3hRt4kLr znl5TR;3r8v;Ih}U9NqPRfB99i%UeCV%l%-lPwcWhN$LUVA_AgrIhpSg?#tF~UdOmk z&~2i;NvIfb?;YpF=<p#lCjEelp)hf~i;$c@B1m638!eUl-V%snIlV7HO^upqI=MKz& z*E(cPKfL~v3}Oq{sHs#ET;n`D+N&`$;(RYWE}0ory|LnGOvH{xADfaS`WqQ&*Cf$v zM7@(@OH|!slIWa#bU5Wsr%4i>&O%&hsQM-P?ia#J)n3i?bV&BKt1u3LLa{F4I3N9>df*Xj z*LepmEn_Up3HQ<0eXWIBZ<9`nnI21%!?Hs)9uzGHXk3)HTG=8b3mbueLQ_$3sY9i4 z)Q|nLXAB8GD?8B?_eSVx;@<1q(~H|UbVsK?OVdsl_Q=}EUXozn(2Zhz- z4KI?6?nP%d_NhiuwBUP3W6|>h>Gk2tc6K`v=Bj-yWe3t)$_}St!_%4OP&4j5h=KEa9WMP4ei8y9;fB=fCV9+`|cP$$YLCwam~sa>ZY;*nfE zU&t$4v(2I$6RGAiLwJW-+7ow5|LDCf7idqs`r1HPF~F6Vhu2NxVjUnu|Bk@K>sXIv*afr zlXkCcW3~MoFjFFx=DIa(54k+Y(HVQwn?qnvhDUveHz_s)uQAC&AH0K>`v1>nAS}yb zBwOH-(1E<9Dw@mX5)}FY4*@3CBUi*R*RVie|6#O(C>@EmX{V!=4JGMavALX}EV*qNRr`L|7ed%OL1r~D4JIompz1G!*O+M>d_ z=4)1dyE=65$V5iY9i!#EBxXq$^r~}A!8cM0{<>R1c3*5B=T08Wq3n0Q>?-w8qDq~* zQ&-W4*j75yiyXCouIokO9NXq;5DevX(!D6%%qaKyUwaNlTYCE)k_e=bV)_qqHRi`S~SEd$2 zb`zljfI3SSU^9O)h!z2R@0Lqh`W^DS?y}>dD71V>M{Du zItw~N=dx@l>?U*$yn;;a(C~n)~>G9-1qGO^! zChSb@!UN~lq2nWNpKK;dGH7x@iJv;_oXP`2Aya|iJFR6Z?|)_VWeTGdJ+Z122Nl|6 zl3UB%4`9_%5<9eu5h&?blQYn!YyPSkZa3zuFUpf<=`{4Jr-r8+~96iwFcUz zU8{k$0hRL%!Q^H+;zlX-AI>2Mdz3y!APp@FH})tP>kIX_U9E+QPmDZnk7C9xqzjfA z(mi3MW~%3>3YFbiTt2IDK%|2C&A}i}t9sjZ$QQ$=#+U)*u&08 zXfVBP&Bzq9&o1@b{tx)y_V_*t|1u4~^rY}V`9JFS*Y(r7)lb6jr{8}xqHF(?@B8Za z>reXLrQfeP>HA*#{nGC5wSAP8c2Wzem@hYhkz~FPj27li z)z@-ja;B`Y$D9_-px){#`%LXv?9uzaYMP4WXrI^u{kw9PdbkAU2ljhFjaAwac7AP@ z;=%Yh-zSEgKt^+P?7-oY4V1fYn>=2G@bDfb1 zo&1>5S5Chx4y`q~8&IK}4q(Dcv~3qtOI08E@bO3L9U#7)?F~4_JB4{r{{aDEI!a{n z$&o3C1*IyY1rH;Y4o5jM#*O2JwhjXiRjWS`{olHi3Ekvh3`y&6hk5Zkp;morUlsUq zQy#8H&*Fk5b+PmNMv$hY&_l!n)6$_@HCAm`f65iCx=a1z&bD|mJ*><0e(8EY&Wzt* zSJBTN@2@w+1IfN8xxdmsjo)8Yx{U*BE}gIub1E_cXV9L+G%b8fP;CMB-1D9J$Jwd& z#Lr>kzh>f3W1^YmpJDqagy3A)nBotEQ9-vbg$P6w_naKQdU2?g@j^Vh)IYzXb6n8o zMv(Tnx^VhTIX>F9P-IZ{$%$Vcrhg)!lXJoSN3>xf9ZtOe(6*TSZzd)66)3lzV!aE@ z{dZXIKe8Rj47&B**KXf^QjojvOmY9R@4h^r`XND=rT6ZE=I(RyDR&2kmd&iPNLc?=cR%GtpIv&&4wR9QsXn`J$hwoi)a!92KL^)$CBCCc?!IcF*l9f_do+YE{R3rG5 z(M)5Ah?6_2BNZiTiZrf$s*9_}HfGBrjrXWs`jU@c8oFseXUP@1NeL$*CyRs{QpN0X3UOD@NN1z z05mp;L<-ntYO;efhZ(0H(D|{?afT^(`FDaYh_nBO@o%aMihmOU6eVRLi3p@3i3`;Q z>7OULuaVcaNk-J(_#DK}$>emg(+wXsQ#O;47RLo=$-H12#+$yKCJVk3oNn@hSv(dB zB~vT7wnTl z6&+)T?pK!`<`GUq7xT$@B@*Es?4-oKYLh$CK4KgAHle4(Ww}JchbT-C-O=$n%}*|4 zifhAQFw~8oaDWR!dH6aLiXKcQ_0+{olHgad;jCpZ+t%PY%FBxe+@y0fex^MPSvB!K zekj`?i~!P6Zj|VzY>K)qSN+1C5?~ZjaP>dW4=!1 zKv^QRCHIZxQolaqkj#ozK3p8g!&So>{psWmsFAy-Q=*NCNyu~jtfx$*!BZn>WYG`{ zv0Y_Holpzq1;POB#ZaB_Ao{xU`iN;QoYw*VgI+HA1J%uWY=bcnzsIVfpq7WF?fpqX zNRk2g#fNNbVyq|Mar?HG?e+W~w53YPcP35jHQ*1tpS-k?$yI)=FD>;;j#O-j0D zdY-CxsK|D_2_=a|m9RA7DF?X5_wIaxH^W#LE^cNYko<zx+V@34T{{XP1xi;ljC> z=g;q@t+@s4F~2xV9Z)?Hf54{L!z!IiscE zkDoyt+4y6K;Ez)~KVzQvp^g!ZxF6w#Mj)d!so`%i2;>y-Y$^hgnu0+7{q1K-1ahRd zE!H~DE8K5%CJL9I=OQv2=juBS1x|2Mt(yPSFJheX>$k*WtC&6A>Am4PcW6{vuwZg* zo~s7+fZ8x@Gy$V$QSg<^Mmt^w*y7^17iTVX6|cX;NnEtIsYfN*mPkj$5pVs)20f*0 ze>tx*Q5@LNBHXkGlH-pP8k_4<%~4Ix$*&RWJNr4H<+wp%f86D4B;1Z`YVns^dl4;Y zo-&(LB}U!h%$9PfX}r|~x#}T#tuNc5b^hltGxa}!Sq}vEJIuRWTob&lV>~+_WGn4D z_48Qx&YZ#{GvrR@il|Zjc~q-H0)q%Q2*X8kzvPMnjw1%s;;+GT1o=k-Y1ieqG>)&x z-`F@fe`D|mYerFoBR&akl+9`}A*dFa;Wol7PsKr?vJRCeIp@-){R%>OcxjI7!1`8wsgL48DJVAAJps`-y z&}b#ne`NT87B(639Y@|QMxfak!_F%gSHI@vFEQ-58}|DVmK7pS?l(x6yerZm7js!A zWInkG^cod2@ig$ez^;Vl(uFgjb8ORa(0t;b>{lT^Zy%~&$>Bnr>_cMF9|4hVT*&(* zefo1s^hlo$gPP=E^dz4t=`Np{_AW=OXZcKUw;rC5VIrT|$_xmN>h~BLbta!e)y3sA zg^zb7Q)i*3iIb^u65H;-h~32jM#L5Wr7Z&u?E3=`$yolDrK-x>-OX$nt7 zxWY{_Tz6U2+b0mB8~!Osb#R;z&Cy-G8Npi9<2G-Pc-pVbiyDb!}-$%98hgLQ4o81iJZzw?z-4KWH@pyr%G|gX(`UU zA*yznOpG82$xUQ344Pp=hEI}V=KThoutQ7AKtk=%$YNWfWri|l?##y-v&3nKqs!sS z;u+)%om78$OfIs+IQZ=B_qiQ>=2INjB+`oB_MVjOW#}i57KC;@@N_+szyzRKxbN?v zYd96trnrv@!LQqt4yh--w29`RleUdk#Km~FKvd|Gu|07XZ~~pMSwH){iGB`;5Lja4 z6Y|2bV|oLeNv`+ipMfQZu+3+Mg&gjlJuXH4iAw@;1Z#DFkGR(!_*CStqV%EYCr zktoGBp%H1}b1{qPh&7gpK=%@EALTxUTA&M@O0t)am+8siaWy1}TP913wr#ZGhWrzb z*UG3iB5$d`&HZ^S`auGn*z3(IBW*9J(lN*Kq5evo1Mz!2Vk6bcj-sG9d-;3JQhrPJ zvY+r-5mIT5*YGEM`NJ&8nz8zdAXYj*@Swj`BCpg+W*X~OC<6ITSb%}#(&j?c1ooa=c+&%Vv>55c% ztrAal?Dm}4&V*`37XvI!eoE`dwQn2yf^(7Lnsi?L+`{3 zbQ_QTe$9#RQ{i9H1N_wY4gbgc>reLHthVyU-_tv!A!2?8kA8^@R0Eo~Dx5;{$KFKv z0C8JyTdsAgCAt7sB!(%Way15v)I6G%s2O_`;h3n%YNW8%#dJ{s$b5)3hjy%xrl>$l z#aLsujl42##))gC`X!f?*u|N9WTT#gk&q?B zYpfXzlZm=J6EX?1{7~>qvH8jhIM;Wi`$&f2->pXnQJ#enR(PE2x*6KmAatdpaS(2= z`I&an5$cLWQ9BZZ4k0LkGng}(_CeMp7n7X7HGkv!W9c*?RK8fu&8=7}cimOl_bg$Y zlFIgrO-InKxsdSn4?sqD)~FBviJV60Qn$ETp8Y?V55nc~zm{HJ{8t>?mv|0zvPR;>u3!4mF3* zLdl_!!0RRm)<<`A4T4n}sAvId!eW?^qjmNxUsX7*mlaXrD`*s7Ub5nZrKHqe5w<0TrtTA6!q(SpR2#F!7jBah!S8@|g z-zb?{#cW|n`0Q|lGu+?`H@L$Mo^XRV+>jG)$PG8-sqa2<1WL3*J#dE0Q4^_})>?io zk?lygJyq>Mj7cbvnd;}gH8Q$Ryu!s=;uC(0VbcY4U)%m%c8hKFG*f-eJHV))(pBI# zw4Im#jijBj-eiG1MR(+7PrM_KteL3CqGOlbRqJRxUG(UTj){sPib#uH8uR5vhlK8O zIu>Rxb}hY}8CX2GSDLZV{a#m0AheXydIv8;N!9c&)<{;*=ZFL}N_v`%J z>-LG5RLphMBO4BBp1L0rH!e<|a&aPQC=!vDYlVok2w?0}cRppxee!`8qZ+x)cXQb^ z@m=3V8qe}b50)&dL&7l|Dz7HeFa&vtgEfX|9;|bHpS@&JEkNsrd3_bp;(&) z7PRw=2m1L_#-RIuoX*<)-@D%QtBQWbE1cqAk{q0k*3z_p-kq4RtDiJwU!trY03G)4(xsl)rQFdH zq}x8fI`lO3euw&QvYkKMi?X0gJ2DIQ!u-&*BN+0%Crmq)l$B&VI!pQk>FNH!;q1^Vo!U6DJ|FgnB9Y-Re@@R$f0_UFIDtw(x=oiIQb zeIwh77{3ID+0A1t)b{#B-}3Um4rwWA<7GrWv4XqvTSEKxg*x(r=SRj32@r3(5wpghQdgaS4j;?`$iv;=pMcGC6l@cC5N6F-~1~}uidz^bjn68 zc@p9H4wVBua&ptB;X;n?U}vlQ9@A}9$)RWz>$S0kZxz)#7Z)#d7M*_QW!yiRLYfed z;0&uOhxlCOx%peerw`mfG%&&<5fX{g3o{q@rF7QH_rj<1T&H!neV0f?w5YGuvMMdD zf3@?wx94fWk}SK#Ay|}Yp4-$*=)lCJss-{yE}etwBG3w$vIWFz5w3S%@w=kE+b6XB zC7hMv2ajQ-nCA!%W64{}r=+Ru)p|&MtkzW-nFDH_(SEivc9%u2c7n~6d&0F|YmvvQ z@)lhg%rB~P1~0J6^HycF(n#8XH{sUAow{sa=sicc)?Hkl7d%xUN8Mtlu*em97o`N7 z5Gr;qA1@-`)e2;vI{i@&F1Ts4I+J-Nvkk%4h_mL>TPRFAs}l6dyTeoVMy^Rq?3rEp zZ?ZY|hNtY4C@|yLH6l+u^}Q6FHsy@?(P8RDB4;q^(#1n0cx-T#S>I7+Ezgs+41R|N z|BCLg+I{)@wf-8E#BYMeo=a=X=L1e1JZd6fz@wc`o?puEk#NV0T?^k1HMKkD{#~r? zSO3PSWOiFk9Tv_8EZ)Kk7n1_4@f>m!zL{U922MF3=jts-@$T&9+n}V1rns_~Zxqt8 zHix6tklS}-a12r}`YIs+c94UbC<3b5bj)K-Q5GTS&k#cIbP3kALzVMN+N+FMA{4JJ&W1~!===cnWm&wriwFzWdJQMcLuM3T* zPgvLsiuca3ddHEfjU5-<=Tj>v2ldEi`~5F_*lc_CX4^-mm*i%Pj_U%$-nBD-5#O~p z{{I4Ezv^8}ZoA!r@PBfl*|pPzP>w5bS9{~gD9#ki!B6tLHorI-lMzji8MF{uUs1fd z5h*Wm^~Gbb=Cflu5D8pB8pw|;B3$ZSQ94x+48lH*BQn2+{KSMNd)d28n%v+u*~{+Z zE7=C-^rsiQk*AfsQjcu~du+NfN9g_PaZVcUWkxTE1acY19P~uwY3FjIV7Q@fpf*ZB zS7b`(qo#Wr8wKnL16EEsv4-FUTx!A}^qKxlzQ4=0EXe_|X<6Qka!caM?}BEZ-CACk zmex{Ui>Qn7`MfwVS({gd%ZCsPqBJdBI~1(GO4?eK8zu;kMxfjkQ=z87L1LfTNX~lq ziUtI88US^3!nL{4_t+a-elI=9UUoBAF+Z=R6R6huW#3!NgW`?ZcUQ>^bYZ%RR38ej znDEU4J3%V$6(U6o={s>`f(-mg$OHuq&M^gsBX+e5;AKXEIq?FMSY#knP(Y;II8(s4 zJF3+ry8sdF)2Bv<8Zh3gpfOE5l6u{zzDp@0EFaxnKd`wzv@au?!HU>~0+*NwE(gh< z0rDs774NDiu(^0e!0;h$@*#cG`ZeK}?Qm*XkP&UkWleJCZ@}G2J2*|!4o-{b%@dS+ z>W%}(?RJ3flip4F-%s^!ay)p*_HK#{Kg(*#ALsN195ANp zE-D$8GwKrWrnA7ewuIN^PzP#^cN13(>JKrgQ14vd8>0-#_#^>oHK)lp zsuB)@k`T3`{cUU%59@MgekM~%>4goZbmKJhFg8Lz{&ae8=?iKxP@9s*YT^Y8&7Fk4 zM(VGkHB)e)xYAW(ozSW7+XcPLXZwu+hg&*D7u_!qBqKqBmh&fR3f2oI1aGD$w~AFs zwLMmQO`udV^#+Le(fR#8j(T+EG5x9b{)|vsn{q-OrHzunqc)IUr^d&7SRN_+EwYhT z#vs$v$dDeUx4-qNiSZ)m1xg}iuk!F=pE^D*K7>>1RG!Qpb<$r*Te&fTF6U%xbZPL~ z5JrPpC37-mrrpA=5Rzs-CdV5UGg=%p=R2c0peEkOM)=hKCYriD)Z#+)vcJn@O7~JH z6WL>@Dt+5b<`Xx_ti&htA!$bkl}gO!wB&5EmDwdv!nb;HMZJY?t}OGcD0{7??9b`y zj^DcE96jk%FRYeXWRDTe{IL9u&x=s3UsQ=$LwmI4BX)UFN~y8SvDR;w9uWJz1_J>iv^i?=THditn)l$Z zft4B^UAG3~K2{@6OYb`+u^zH(*x&z|+J^-hZ80?UQWapEM7V6V*G1eTL^5+03Kq_H ztWd;4kDV7E-I+0DVp$n2C`H1FhqkAPU^-1Ir$k;l{Yz{kFgwKZLL?(t5*wY;RK;0=$zVMHePfo>BblRmnwgvbOidFsjp7>=7K9#F#V-)RGwv_4(i zAaJGBsx1elvk3rnmc+E^q_fweBqM$T-#tjBPof@aCUiZIT~F)W-uO0IPdodwokhkW0*(Ta_W0#;5z(Cq4j|$W z(YxDkWiIsFc!L6D5xwKZ4=c%XKp$@p7FP;ybCL%7k@qrs+im2sKa#Uz&TgYU_X(jn&GPvi} z4muF`hk4UwEDp6#h@qG)L_6mY7qDFXO)E9I~%q6$iSeYa@A`1%0R){kCsV<|N zQKYKd)gI20_N5f!*yUJRdTw`lJV-209mt~7AiTa1t3y`7(rfiJ(<_QSYkR9>V*jU! z9PE_fo9gC23+d%CuL6B$piX-n7s~lgRjJ>2%IpOc2f(l8UwmhyAcBIS8d7kQh- zazM+xjoe!+s&5pHD+*df>{Ua2dUn+}ve=M{4}1Zs*fLmT*||C@Yc>yLf_XQfRAK{k zs#|%K^v@Z!S}`0AgKoYK|x zz$}E5IoA;c`M7a~#{UD8XK!NbAoLxqzNVPjI{9*{Y@-3Uow}*6s9|v9K>8f`c2vVT z!7M#v(O!Ba>K&L9Ko|+_>~O<5Mq;au0#cd-mBwb~B-Y+OKkOuEOPN}cyfvubey7*WMK3VGQich)-VWb;`e}~MU zEb&Dl&0QiJ2==i~M_Yt$HCk+u%>6~;J%c2C{+U1fCB)!Xtsd9f8;GR+0}ktb zgT-s{7O{MNQ5EXX{VJbN?p!v47{T6_sjuAlKFnTQI#^6VYpgSgxa+O67O;dQE~_M7 z?sksWHYbs;%Wm=3k88-HLRBV^67#&4YVW)mOs; z5NZaSAFsOOhQk<1x-rxt3iM)U%ecX50!UvXDFfnZP|DsJFB{BHDK^>^BMi4gRY|dliDJ$`?`S%FV%HnSoToZHpkV=za;BLz=%*Kt zMaWDn0&3gOX0ixouSI3k$!Z8! zyk@Gg=Qs;{j=q6Dfi(Y2`mUyZqw}IXA#cTu66hS#1nc?kpVH(G@!(x`5GlwCER#x| zOXi>A2o_j_R)VzKmmMLq&QwqKqZ^``#e6=pfkMmP;>bAADVDgTaHBXMSuM!nc`>Z` zlHeeSsyaA-vA85@(NEJlV#KxrL%Lc>^o( z`j%2>+&)ojtGeiI03~W%ZGU{M7Q^GnBzJ4pLIxZj=Tal@?u(yRqnOwKdnI4X$MRK> zkjj1bfM{e$y0uqU^u4D9_3T%#Y~u5NakCDumMFpMmtP6S_C#Ku3K|Hn=1xR?-+Iqj zJ|&gGiq#@y4X>_{zxVj$Z5cG)YFr@seXaZz{hnS&s!{z^rliW<&=%&4+-c}oh;X4Jd%9L$?IiqWzNaCENR9pn&JB&!&Sk&(FsfqzckT`&$==4c|1K5a`Ol&E{Q(}gyaHL!k>>q3C zlXN1a9F1p-45nAWId%F*Vi~Jn64AYI3!Pe9hR<_H9$-v zbOzF+r`1GHMN?}UxtWsn^)=j4yZI(3VC{M)cabZt z_AIw_05fNfA{kgQd6=fes)=4W?Huk(%0&h4Mz+N*92;4>)Lkv@08H4P7b?28d zhPh)WJv-b?fz+m_Y%m}(qiuaW+)r84wAdIqh% z+`MY@B0}6|k2tjJ>W3@`L(h$#c4zQ|R_*0DR4tfamAF1IdKY6q%}$haUfgHr+D5Ab z>kr0i=-jxrHn_|1m8@R#hYf$0p9N`Asd z%EZ&&=qwY0?`y3b)HJkKz=?DpQmc*#WE*4a^vV}_ph=v=vKyeiR(WMt=LHH2FDiXX zRW4MzMl=3}&s-|4lulkEcOLe2km>sOqnDN&9Y-`JF?j8==^YgQtf~U?-mknr@$%|x z%1}NfL%)eX7-5S)@I5#@bkP!H$w=&%w*8%`3CD0R!U#N+SSD39x{wCT7DW1Ob$QSL;oXj2Gt0uh$P$cPgcf`-hhs}Cmy7FZxy74tG6 zmoi6O`F2yw3doae9p^x5C#BJ^;M=cj=4@|@-_e57x zS$;mTNVPLZoV(Q+j_tzL42xV?rmz14-uXmQHRigs+1$>n9-G@Bi72Xp!qjQPmRz4> zhn8Jxz^PeDF>jfb8Ieo|m{aEPW_g6Brx_!UXQE?nP;wZgyD6%6^K=@*%FU*(zujtm z=kF{7+e{gCigTqOtY#gGYlqJ#X_l_*7(s+i_S_7DlC5fo2-C7|uoMqpbIkH}iI=rd zNcnQO1QqB!#8KIS`!_UVUpFe^T%IUd6*6CWp$DKO_{7aGXqUFi1lRTOIWYmrxm;K< z7B6GGpe9T<=e!0Z?tTe~sKhqRHbrk)=G;{+zjf3Oxds!0SF>LD?~7b2;%OJA<^~O% zSS**U_{<+hK$7fo7W<{z>aJ={{72GFJgL_ZvlesuF89=|YdHEw6KNE`s86EaeEbqEe_{0DB*5w0RUL4fEMAfM zDA2g=G(WzQh*9f?JXXT1Xnz-kBDlE_+_T(Fctm)qH#aC*MqB)nCT6fDlNm?S<0)|v z+9Y5$U#cV3TH%fc+(gJ*Y|PWNN=mk%C{;Jb`ltfqL#BBGS@Dln;z>yO z+(yYdCFqP#D2Pw!)137RNH4u0!kG#EV-p4@V-p4^8z&5CoG@(jm?0T)%kIV(&tSac zi^KMMGuOo8*}8AIfvc%~|0AsF7Dsd+gj$-%FTBzoZc)wzTGRhZH!hTw#JLrkg`E;S zNdhnPLn5`dWOET?S+ih>PkXFkX3{4xDhv8sK}mn(k6JNGKl|9vd={~ClfsTwusLh> z4J&-sj8p)X{bN=xsMdW1hEf_F444TR&#c z7RI}QgH3&jyK~g*MfScy_r&DUSG&7QapLX*VHe8*;RUH9}Pd~((u5!zWe?<#rH4%x&edz{GQ-%3in6(oyo8Mtbc=zuhZ2uj6f#G zS&ee0&NY1t;M!B3*{-~M!4PbsVsri3kqe-DIs)L425Yo%2Br$UiESuI&W29qRLwA3 zW7u#YCfa6TLwtOX&Ft@+3eC^P{`(eYmM3TegG`?v9A!0#`Z1H(=#1!p5=$kDUc#A) zZ=!q%=6IPp$)^T24SL%$Agb&@%@yo&{gLiwDa4BnVp~^pE!(zEQZ34>-FFuw*cmyk z8GgK8gcbaW+atD7!<$$Y8gv}y?E3b79gpj6+t3nk!){N8e&%Sxno|tND9#x-*m4f_ z^C>CT8bf|)_1SDWR0=GnLXpkIS1@Wb~cWr z-%wqTs{QV-;v=WF%C~^GvGpRFzCfKi=VW1-5*pyVN9?8tMP!`@v7yE9%|8dr#& zwimTH8+*SVvaxCwTY7s-Pb5yrK;!F`HvX9MB|`(5?`-$)8daQ z)AgR&Jx#1xKom9hbyfc%3?FQij|i8Vd6&Z?rX-k_qI?6(g--l*Dc;s7t?t=GajfYV z#*SuSnmcy@m|B%IO5Aq3HVYCAZyqrKsT14vgR*{b*HRqV$=NaB_$S049mXWAnKuAF z@CG=kMEzi%QOE8+gJVs~{8KQszjGX95zhtOFMc{+x1)$7)O80%g_0A8VVKuI7J>_z zH?BVlahjol?HXlZGdZJ`Po?g=QfEstG`_Bhk}?BzL9!>8+|L*#?D@A6k43RnVrBrD zP@;YSIYVZl{}}vY>jqL+xNQq19J>89-H6u@bbP*I^o?Od{l5K)gD#)I&I zgK_Ie>zmoZs^VDqCF)1oTOnTz@E)Y?&maf-EP zM9-~xRV4rmTXdv*;+i4m8_ZZHZjVY8p!eoi#N+VFTKe8c$=1hcPck%_B1a3@fYSeH-w4!IQh>So+eebEW!wSI&7%fnI5l3=y3w>i zeII?HbOA)gE_sMS3ni{8G(*b~%G>uHyn!>S5E6DC{CKYM^se2Wn`-1;vH z5c!PGtqKf!V{%nbH&%!nH-ue4_=az-kc~CcG4uLwS^uxWfWuRroI43!GSy=Kclj7;U%Bhi^lBltR_SR_N-Btx$2WE_YO< zr$g^sdw4>+>&=t<+?7cbU93VL2$IrgV+7=!;ZCj1V+LesdTlcp5ZWaKuivjyq$T3y zY%L(8e$VHZ!mLA?bEIZr4s-b(5x=o$GZ1Cf>=9c79X}c8&W8_)U6G0E`Zldt$auC_ zvsNigmqI?hGlSB%n`fAlvi=X$iG9Pu1mVN+&_9T#a42!NCSu6EzvKing}2u8cF3=a zWz-^xH*)7mZ^3fH!oR9tw)bXdn24wTerMC9@N9Uq@KP?$K#i|?2+t2Vb>*w}bE|lD ztignCe}t$P3L)^zcTz%uPNwpfLJAPy2zh|O^ij(oad!Ked&fb|Z!fgI!nVPigGr>0 zhaP8(V+v`yj@+f`2qZ-=|Mn^K1jU_V2_XKY6O?4tOzp@_KHs74>@(-k4p!;n{Smea z8Gz|mnk29u+J4!l+0i9L{V<@W2J)=4r=%}>j_7iU1~K?BKgZ1_l*tF(UUt5#+`gMv zos`=+XD9*s>fevG{#7Xz@)EnoNgERBE}MfXluS5Il(a6F{}knPQjK`^AEJw>$kB!R zW99j%h`x*TXzq9)2Ft;mhlh^Iixvzm&ySwQcT>+dp~SfH=B!*;52*&1Xq!rHcei)q zDCnOgSDrpOKdn!mE_nVgeKI@}{-!!&8hR=J%^svq?bR63TH?+TsHt_?h=Zwh&|3~I zJZ(f%w!rSlU9Os{yo=8PMddCepJQWJu~ z*AqiS1ai$YBCN-qjqzes3Y_QiC4?=J0e(4gB;((E?nozfI=v?HCd z`q1-8gW4{Y{krbfVum=0$g>|*(|4i$oJuYm)CAeN$d?bsRe zjd5A-j*BdQ7?+JdcgLmA(_a{u>px7dBjqT$pZtJFE6wR^4d%j+e+-e{Wn3vUN@+aPvXewKKb9?fTG>v~|5f(# zv>3BavKNRLa}7#nHUcn9rD`C8NE7I=xpNjAV=x~<9!mq|#TyJC3Ff+fKfm$yhwQc8 zUXSZ~M_&AneDm>ABjHFNGR4;ya5d+%)VLb_d{?8WZ(b!2^37SSWRQlg#`hR%P+OsS z^(m%N&5A2Ywx*3P!s z?vK=SbFcbLcix0Prn@8h`CsX^*zW&9uL%N#jvO~_KUxJ!7QG7(JntD;fFJa5%~&SD zAbsD=iAtp2Zd%^>2$Q zi_RvxL_u1G7zT@zc;#yIXm_?dIq}6BK5cXwG<>88nLl=u#5%EFJyr^hg-xNch%K}_ z*egBEDY~UcS~XS?O1>ZrR_w7x+8#2q2onlYr?y1iD%ltqxiX`ys4726|QEhX|@XeHRfN-iMKbBqI7H$Ch?*|_>B$^ACx1U!oer(bdnY&hLxNb6Ml`kpCa*n z3oe&sa3Z*xrWW2(qE@fOvp@!6>f*{2yBsz*%@H=NG%qy^4>=e^3aGtiJmsjVqg7tY zFJ{r-J7`*(T0B5F9`qAgg-;?&ZO{~rH`Li{qrKk6RbpHiFN^gqQBi8s=M9)xaR2WV z(SiHA^XBuGPV@Pmzn(mw!S{~!R?e!{S500u-k2efN&JL!DE9jBTT45w?Jar-U|6R$ zGxmTTzQTlUHm~7wcRua9I7YiSH>l|fOCW$0Kj{KO)?N$uSU9-C#qzN4vy`9s>Ax4V zSP03*HpV@SOXu?DV+?HuYrzm4?D?$jv89|X>KQk<$CjF+tr8%)j^#G7H7XHn>K@z) zeYWCtEZ<)g{l1Tn{ZvG?fH}!|0T8J^rIyyW9XELaWpsVYj?E>LntV{ zAa2iEBEEXTGw4!#q&mk1vi!eu1+%qF=Mz0Zj zl)FJ?yPW3|B}*(;m8R=5ty^l3If_-Gko_>cq>J9NpSnwNqB0<@=ow-J2HP ze5fULYJIEioQ&^)*Fs7LOpZ^d4Q3?sGBIB-H|ufGV8)-!pMg89vWi#!BT7BloK*8K zQL7%13Te}G2DM*jsU|jpDOY;iLYrRQwCPuUDZSc{JvEB-pTF0^=#80vz_X~v#i9G4 zCWN9RP=m>F-#Jq@$r^bgy5}VCeO$8##dv$Unb_};7r*O;<%-l~)ek2{@ABl28eDUU zMhCE05lqtqrb}Nu`)KGzbcVB7! z^kL2hZF$zJj>JPMx~SM$ZHt}bM?;9r1=^5#6xpp=GF z*1wumR=c@YWd=8es>X-I%b#Tl-W7g`-;lZNpqK_Wn!~?(KsOyChQN22iHQdHfXlQvWj5-;1Cv7ZAt z8C%v@-{%sZ8R(w%EJIn7mWgy6X* zBhj4VXl~>yQVGrstj`L(*c3{hsi@OgWB3qlv%483wZ>B{(DvYn4I=FF-YPyA86LX{ zE1iuMi3J&h-Y9A=K1M)()`|<9T@;wD0<|{gsm!i-W;bSyVVaK}ft_mc#^_&Ed@7Xa z><*4cJ8A-at|6!36Ax};dlnC_y>o1VNEX%*=d%t$#4er5erdm~8)c5ji+*~M=1Fx7 zMsQ0q+LU=@b8ySILim|YxIqkOUU73|9q$vf;i0w+Ad$XZ;(m((~NUUJHjs|jg7%AtuHW!bO)!xhnj;AEfYYzm05T3e7f+RbB2U>apWxg7MqGq^?Wi_ztQ`jJ9{ z=$fHZ^Dw3B9^QJ-Bii#Per^j>LkDugN?{qN`c1suA}f78yCdNYB`n!gl@ne|N6aK1 zhgPnQWqvJumm2N}#>=Wb{_};ZIuYBM z3TJ_T=z^RG{&YEPKV>|M#lK}@?9qsoMOSP{b`jgg!HAQ~5@QMfc=a8MWF=zg6}`4VU2z>`drG#GL5Ys}6^yOAEJy(=27-r7OgEy!vmC z@tB9TGlBOAgdqO~*iTa=!2)Q}!8_{CU2om;zxsvp$969NE?a(Os{GzxD*s7Q>Hk)K z?Y=ddeS-*UlG_6zbYvX1oRKvjiO@v)6PbKQx}L;%M$63o1)XTh3E%(E<#g#UvtSga zjFMmgV-1_&`^)fjBg7gAD&e)3EXafPQ8-XBC|MD|0*gyvX@30z+{uL83bTS60a?Dh zdGQ4t{b(a8jA4h%eZM#nQ5FnHEEvp?#>a4e^s65w!#hN(c3di$_l#$0LX?`>_K`y^ ziO(9!{*Es`8&NxiS-4}_pv!KvJcP?Wnx6N1JQG?K7Vaxw6w{Pr&a}Vn=1Qs|mx3Bo zmNg`ecFw;2o{sD+EIu#$F7*ob(?@o@r~(7mtpSbFgu$`teS9XLZ?Od_+p34Jwfn!6 z$J(8G1TJQ=g-?!Y;8*CH1D+-Z(_?EyP`hsv-4fSgbr*rfFVIcmWw7FZOO95T#ujk8 zK^E6!^ukcpwH6n{g&+#Lt5S2Z@o@2zTn`spZ>Iod3e>A)OyMT|!QDg=ol_oD&8N5? zQ-lS}ml}8YMTe5%hu(YDXJ$P3sl}HnS2H+U@S?9~bHoD7Qwlz|1k#6GNXM-cTWunx z;u0Bxk%A^2H@|pZfIDQGUlukT*BWq|lgT+L^yq5@Gn;@Bd+_*_;S<5aXfG9{ts5=t zMJW^gN}m;*&nh7>pmz&xW8tR zqCWkO*+?6y_?%ExwL6Ow!-V~BE~Sy~?ZU@sC*hvP6cjfH#<$~JT7d^p<``GB@LRkv zG8Po5rz9BDC;Al<#AfDuyZ03(8gsnF3nu3zm4KIG7q z@F%I}+mVv48}aq3y&5hnzP<+w+K!Fr1o#W9>wal1UDLYd;>XF$!`9dxG%wq^dLYt- zLJ?YES{%%+#$%vzBP&a4r))BRri$2A;-N7zKavS-V)!yfGBZcoe5$!>>Eu9=F&W7L zCksz?M&`$EOkwNcZ-cEV1%(!VX-n_u4OPYtb_@jC(}r$WI>zk!WIg_Cmr+!evx*#q=y2#WQ?R(7mQ2Vw5)0-c`uKJYNJUbLNd7d|3ejHucDi82QN0nE^=Joe2 z7z%Eh+n93HoWLRX8h>%~M2JU)b8&J`za;*&Ol>Tex0rh&NXi;%Zu7^k86Xjax006n z(RL3l&55AS%OUbb7f#-6D=q33pVVH9o<6xS@@@E|#CI~v%*Ts5V&r7iS_V)7rrXQ! z?ADme1UzmfrY68SyD+FQojUn@?|5xsy%4tMNG?2IbH*yBrL$osnqt^6z^qOy_E+V` z!vra1=VK#MnQy&)!Wvb7sI4u@YWEp{deU}s&>PnH)y7xY9q$>RK%BfBX9(JqVr+d{ zTFaqV@^wP+EO9%*{hc>GQM-ifinkQpb!Wy%hT%w2$*$6gVz!qhOtQB6P?E}SyAfIA zbI-aA%w>w_9ov$TNE85>@c3V%JgD4l);y>wx)(O4G~Azekc1n>$1t&{>(^SkzD8lO z4^FsQm22@sSX(`&x!WNCBcN%$6F#=tUtHZnM8-h*s95AHP6Ol*sV=o4&uNxc?bp zWk=vU+U=OT8H=EkI6ANXogz@6ptg-%Sl(mOI?%!qu_?9Izyg?r|4qo zXH`~P_o}XK#8AffEfb$fm%6O$1%j5ZPr_pN-CVrk_U}b1VjKR*&0t07pB3pFGvfkv z{}h^->_FXad($&epWvqI$mCWTWvyLEds_d%-9;aAiS)7o{(IPK*OowiKW&}P&+y(V?c(7VshGbE|E7NW z44(CTOPv3g}ud! zc;$XD2+Q~6*y6*1x-1|WSo~8`$4+D}n2X06#(-VS=TEtlw~XC~<#GH^!L%kuP=h&o zFKD^nv~C~fOAZXb!o)H^tLesIbGllKoo3fmY6ipE9NN|j4>2tDSo!0&r1Lj#qhiZi zfB#3xsuOKx+J{|RVHSGTUR)7=n7sTj(qm z`oLtDfNn&X2MC-E7f@i5*)yEqyvPVMn4U|N@#cos0;2i#MUV-UKv`=IBwL^b3qel0 zfmI|M$`{+7t^J2k?(log>upc4)nTenX?yq!`~VmV+^Y)BBO5x@AMZ>=&~$P@nW}Er zyD??rll|t*2qq4xcrwkt`+=ff`*_VkJh3Z%k)eSX#%6{j>ryP5$Grr9n?r)^3)HIg zw^e*&!^M`uXI|rbY@r`B|LY@#5)diA+ND@>rV3iR0!bb)PCp zcc_+Nj)K>)cV8C9XY6T6STcG^`FcH+n|CmR)n>KO+_*8@XQnOa<|8s&_-1{4Qdjc; zDd38y+T4y^zYyUbes^w8?GZJ9L1xu)g$k3s{%k+-NNoX%fhpvQ5eF?{Z2!OG53P=re}otXaV@V{yIJldc$d$EVS5P zbU3y-bHm47irWKY51_I-n+Wnmz2Mv>8B~VMI`WK4V7mU-=)VTNFD+J(O-^1>@Q{rQ zj|VrzZP`TIc9^a4EL2Y}cVRRDliYkN>5SY@-R-VYBP?#`eh1th)HG!T@eG3d@$d|I zGjGW~a6I^-&=B*`GU=4=+?d+mt3p{S5e4uoO()!?-||?4J~vlf;Kdw^cCE^q+;)D2 z`EI{%xS32DE=6ZWVDtg=2`>~RE}9wJ=9dAbM{9FMi>>GPWZhZvI7D~-bt&Ki&?7m` zz8N&Va$~daA^XeAX5W&I+s2ODnvUDK9k;VPZo~GLad!Dk>tfHQ&D=Ft+!MQ2slo9Q zx{<@i#`N*Dxg;kjkZai_?SwY(g+GMJ(^=Jdk-X&WLS9QZRhx~MH=+Nujq5f}Z@!O- zm~e`a0~7pO?FO1VfTVqvf}SPVI`J~}=y9?oCPI`p)e9h@U4cDTQ#x6VLg0r?4lrUr zWy-Pj5)ipV!=FlZx?eM>Bh`v?KkJmrJruy%K!=b%AE#tzsvpKsvE;=%w1ZG581DE2 zf4tb^6m28^S4K{>PG{UY6BGR}W(2Ylausdk=z;n-7F-D9Q2|T1;o+j!ogHr-P52)i zI%H060(btFWYO!HEo@ldtbb$SU#&>dvZMRlBlw)n*d`Tab8><`!QlANX$0AA5Ii?Z zK-pzDEx9sK_Y!YLgyO;drZ1{}m^VKUhs+024RW5dL*fSnrIW0n^rsUM9-it-GyjkZIJXVqVJ>{?AN7X8jkb?S_!~k>hB)t4-omUTq5UY9_m`Vv>#$rHNWUnnJHwh8 z8|(MCoy$J(n&VDJnfokLV{`9U@FK@=i~0wm3YJmK^@-d@keYyHcDT(=8J-+gBjg+* zSK@ZRH7Xrw5K+lMce~@W2e=3)?)XH(Q#d&!g)5R7K}lrxWWFWfOv)`T_eXj;*~MLM z?V+0Th)m*ZQ+PYlIUF=^ex`DfJ|nBKVN24barWrNLVAJY7J@`xL_z{~Z^{GQiQESA zOm!P>r5l@olQdMIT!m1ACcg4jRAtGWV)-XuTfC$+Wr zTdSoB1rMRz^uFOfLvXRev0Pk=I8gpw6ATF?NSvYTH}< z=FXcSq&jAyIm^Q1Mks8#`Fx+P?-$gUm@qEJQ6$;Pi%kz2mY6WwtnGF=uk)HS1PgPU zrs@Pg+lwrFKtf(~R{O}bo96+bS$u%7ycrk*b;w;$Q?-`Loa~+{`L%6~ExI>Fr>shf z)-h0D&f%sv2SA}z%8X7a-OsXT>856GGpC@;OC{X3_RB?j<+XJx@3)q?x%$sXG`xnuXL{iwHjtvWqCqw5MpsYEf^+G%@g&RmGv2V-kU zd(UruD)mfAwM_fXW0|a=mu2pnLafqOHlpNU=ZA4w$?AB?ns~|DM9FFv5=T;n{CIT}g+zBy zNVSA2!A)K%lPN{|pcY{@)OHUdyWplW@9RJL3Ju(29zJ-wF9REnlGWgr&Q%57SKsqI}i8D`~=nm&HTXVEQ4dhMrE6(;RUwQbIqsx8a zNY7Mu(E8*ZlG4zG>R~el$-6-Sy|c7(^2NwB!Q<3u402+qL>N?R*rd8rq#> zb}?y0wNkrE(juGyIDiAogY`l^bV43E#@tX?bURU%Ol2`~48W)5Fz4l7GpwvWMXhwe zJdQP1q67svO=p<`6UX zkN(NqV+hGZQ&p zLTWTe{dnM8U}iOnnQX${x`9V>41#tO9QYGiv80`2^A!SF%>;V34cFwER-A|= zGn-DzG$=eFCJjd4G_*2rVUPJ;hgRm!QLNW11^OSVq@k1YZoTOCu0w;lw|-Szn3=;{ ze%bbwaF@Ax%4vU`GL=-fXWyEwR5na-M?h@1BlAWB#H~Xyei}8x88xDKRPL=kV&5B~ z^Iv}eIbbDb8f3-_DVY-wb4wF6`gi)kAw_fYsSUrVulm}`<=6!upqZ3AF*R`4{pn-Q z%oWhLm~SvH3{-%DA`~R0Jj&>|H6^9J;s}L8s_DW4SeaX9))E7la;L=4sqnA^5@>gi%{qRBxvfjM(Rim(?%zY`p}-C%gCzU;P6@?h^CSM)^g>@6 z^d8H!-|_V9h2YF$Qb)LBl?ln^|X$bU{COn^+*-9=9HVmKXjLz z)GXpSt(#`f%(A@O>&2UI?UC?bf(3vrBHSPE2y@f2Vyh+<%Tc^N(vzeG<)#UkU3j~H zDiE3`XI9jFu=4r#R`JegliucWEA?wW=XS~3np3v`shi&Y9`Y-WkvjE1kAu2c^JZJe zaZsB2%J9DrYf4)D_`+dL)J)rRi?i5{b|1>t<5UiDh@4WDF)?HjHJ_@|OjdZ{ z56gYw5mgn!Fjnp*56fs54L*E1+WwOdcY5SZg1*Q!)CGg9q zig5n%Q8~^=1;KPV?((WW=GVVX3EfVPN4#g0D{lM41IIhWZ9{1W@RhzvjI*3Zew5DN z*L524jYiS2&HNg9r}jMm)oJ8_K8i}J6l8z>%-7PzeA#}N0wws{3uM!Rzu$Nzq*@|{ z*EVw@+GD0uDv}5sXgYuhZ883O8wG@uoRCLa1K)w>HNehdWm^JMC~!+dQDJU;1tPRq z_G!&o`&cTPtpPS$D4*$`hgrfehv+`Bcr-t;Uk=kl?3W|#_lC@4D6tcd&F87HLH@ys z#hbXs8|Lbo+1OBHpBnA;F0M1<4NL69L-xAVULUvD<@UPLURT-cYI|K{uWRk~6?<*s zYPMaD{^ zdFbXE3$SuxdI4K(fjXo?jf|Wf&UyM-U-%S&9qz-OXAJNrvI-0VR(6;NjH^{cDf}<6 zvR)hgw9#w&!!+IPm|1LZ1$DFMGC;Ce(4hleO-U8H;0BEi)RhcYvCtOeX8IKXUaIAmO+l`M(sC(5!f+NJ5hAApS zsj2*JyYLsRpHHDf9$roX(Qi1n3iZa(2Z&4kv>5a|R8Ea${?KVJc6wYh&=f zHvi_}eHos2#{K4Zm-g`0RNu#@Ahtp=;e2gjirF2$gMHHpuwn3t>T0?j8^Q#xiE^Hh$nqpnh%cnd}eWb>4|r z@9H?ErRc3h%nyV)YLBCyaCPC7mEAgn^}g4RCWj6T)V~hMShqI^Kk%71zIHTOGk3Z# zGQ=Tb0Z?xZnH@dv(0pvoU^6w!Vfmct$nY#>=q2=vfTHMqv;J+U+ZL`79#kJ-}QLEJXJ}_?sbiT$*U$_vLjKN z;pxXz&6~EGlAWsHG_Qg`&9;288@Q|hjJLDFvp4Fm_d_5biLlF>E|wh7=*(KM1q(xEE%fcb_opxQXjmf`G@rZhgk@K?h+8OnCG&;Ko3@7&0?t)$96< zUyZ>skkN)1`?V}d|7Fm9E6biWvN*}YiV04@PCKV#uZenK0HCe5cOVwb*uMB8+pXY! zuT$k`)5#Z=)-vV{YPB^oQH1#&R*iBVmk7xQeui@u-yA(;UO|t5^>Nybp3UQa zxzM{4?V-{yg5>X8JA$7p9V?T1If;iDaAX+1IcBAP8uW!ueTuC zYo@XOdRvH2@@?Ru@&7*{a9y7-KtO>A?Z_&CAIP;kMO*F9(*mz?nix7C5u} zTi~or11Ho0oWUE@z&T5BN(1N5l74FnUd7sD%`u3XW`5F6hqO56pc*LHf#$`clI!E2 zf}MWBr;4%HTK0QAsAb>%82hC~*N)ZBV`jW@V{6|YZ*Vb}C~=yO?uysBwbp+ny=rz< zP3Q+86QgLia+%-6+pg(~DT)?l*$DV1`THwoJ~xv;_zPUSu#LA>O0M z=xD@Bn;UeWVFsTsW@J3A55UtVS6i!nv+@s|FU8Jlo4G8XeopYqCbTxJK99+d*WS#H z-C1<>!7k7~mbK2S20JWkotn$OdRzQeEp+kvn{|CO!qvQZ9;?LUVbQ+fCFC@-e`#fg zfx3-6RUOAHwZ$BG;Apb-d7hmGgJYkBwPKy4B_mKjM=yzYM;XqDfo^alc#xvR*unOs zILw`YKMCf2fZH}W&X4Hvt;9=^Qc_5Bb)1Wr)XM{9-tZ~1}69e7Lr%(>p-1M zT@wkPn)-=j@c_LwC2vl=*|L#U3(i#BwUa@rLa%^yW=+27@Ovk%PAUJ?^c4K2 zW2bZvJD&;Eks(v8iezXQq~%oiTYPNTv7h5(Z+5rxskZ93Q~$i?SfeKf`+(C@+4}yl zFGSe*U+o{^6`BSXdYO#|N{dr;|BX(qWz?In>axJGgu|&3+4%4MYY@n3L|XZ7jZ$!uBkKNQnm|B%)#k3Wa*(=sGI8m~R@VG}l zwNA~K!tsAc84G9~da>h4HOYNYO?dti!YAH51%q%4>{> z&{tE5pjW4p2>X_B9Z8siN;S}?igazP+@h_;7Ph0CR(1iFd;a64xNjy932v&}C;)9W zbv)KoZ}CM(*1YDff2SoDY4OAFWzyH()h~L1woF6&D9+3X7Dzo6@x)$Xgir)`nJ8yX z0q4{SQwyH_0-RZoydC4~EcdbXntEt6AO=qphDQFE|NgBNkewVKza*#3s=P)H1}yZr zZ)jgKJa?qaua8Dx&-^)s9e2&#-W>9J$@{LFd$0NRO?-MkP%ndAxf5h{!EJis00qGd z)GZOVPsmjOEm?{x?kko;3r*wR{hVy-(WD^58G=dr~q=cf3E;{K7v7~7cLHcYDSPG{WB+jPcmoT<_E z`en1Rcp$W(4XWLfu-X~nyH+A4zwzg8P;GryVC*s?YKu_nRNOP3aOtE)FCz}3a0$K#W7ira z4Uf=TAbYjU_`-%cLU&fHJLf-yh`K#)6SRHJ89vudSlBt?E+stjGdH0U$kdj=&-=~J zmp?}8u{~LirKTr-itQWsg?S|lMRXm%ScA>@=T_8P)SI|v*0M{xnv%VEOx>(FFP*l8 z1)z*G2dSzeH0%yXRzC^&5o&G2f*yYf^m2*_Q2nkyXpx zCXHw1);4J^{;q4&Z14H&#NY0=+ayBsUu)Uk9p;+5R2=btzH14dyFonsi_|m}KM3C* zv6y&C)6|U@-9tSJ$)6S7A6q|+>6jV$S961I_~2_hEw+Ayeff5CgKqS4b%y0FMKVD+ ziu8gt;;2Zhsj~`@HUn)Nh0z&N&~+_&q*=gE$K3qVK?zt>;gFQSvh_-YiWYM_g}au3 z_ij-KyY|EvX-U9Tc2Nz#keRc~oL|i6mh(MPdZS5l@I#1Tc8dir0{QKxGKZ|&%>+CE z`MHagjh~wkSm_&@!H&Y^!ls)^*rQh{7*{LO(_7QH9zMV9+ zE}c(nnO!h19SvS~qt{@4qzUySAU|sJ6>gKm$H8N@_)J+MTE$%}xAyU7PF2 zaaFST10lV&MWCU16mztim+dYjQ18$gV*T+wWPY{Dm0UP$c?nHIW)zRTqTb$jIzzD^ zXZL#T3LHnM1dn&FMJKq5Gu&79G1io)xRuue1S(6S_|gKAa?s0)y?lePK2UeIO5y

      L+vCTt8h+9W23#y^TMr*F4CiHDrRf zunlumLn78hX~-NZLgn69&Q&yh*O8#zjSL)rRfU<$e)(PFh&QTgcXAI8h=+UFBofMx6bidoC*Uj z7|;_bf_%^*2$(uTb;&u0#jLY`vJsCZKK_m#gg}8Nu|9pfF{utjJrk>zP)$zFyhyjODydxK!R8Nx^MQ*2_V5?uQ0 zaD`n3-3oWPT6>FRsZL1~k1Zi{+ie)MuwIpsob}FJ!*7ZWx%=TX8&bPZfb2{)pl*hf zk%`0d@^w$H@)0J~*-!Whw~@{kg=Gou5gAJhKa1WhEfaFpGg$7pTIMf5-Q?{^!f0`s z7||zs0k_H5u^^0g>}nCSEDQ%Y9Ig?kC)h}ggWrn8 z%NC8dn-$OtNhf}%oLkI1f_zm4rf@jJpts{CO#lHQ`73zsmrlf>c+#Q9Nyyh;S<9%J zi!QM7ng^uh7tDjMK{gGQn*f%$j;+G`86_IEt>#h0W7vg)Y8ahZ7UvZTYM~$)o918> z{1H3qezwT-P>8qSF#h6?g#eVaS0z1b$G^ptQIZDd8h)n%C41z;;-95~^k4NZ<_W?^ zb;8o!X#}9C@P3P>!U1zHpzk!~=Y2DUrMsutArEWFe-qGg})&1c+ptr}Qd?2X4UN#N8SN(|B$N9#|qippT0OVd_ld!LtvhyLi%ZG%hD#daF%~ zg$A*8LIZ~XUap60Q#cr?|0&O9&g6lh>Kzq{^&SR1N$oH;Gog9a`z=xRxYE)=Z#M@w zEd@4gWEp#*fF1vqvna@1)YlHyS38gYD0?gzqa|cF7kOj9Y_dCI5A!?idOD;KRl6T> zyW=r5mLEaA&Sn6i@N}(O*v5Eg`5_v11?Of-6>CyTLM~>{4X;{&Fc>3`pUp#g$$Iz+ zE{ti8Ba(ebPsQ!%X&H|vh_b^IvNX$_*t7aXF|CQ=NhVv?7{rN5-`XQ4eQThO&?P?S zIlaNM$$42Xi7)pGtU%Qz?$%@*1h98A6mQvGFeBPb4Z`|Cmg!Z#s_r3k!TYew_5nZp zHE&y+h;ZSvOebftc3FL%R6gmZ5FCx0!znR{EW!N|gyJgET3dv`?ZN}d45OQ-g zw$Da_44F~Ss2mJa_L>VTOmf*0%A*-SI;k0tz1OK37kSN?u4edY#*@m^HgwtjZq}1~ z@V(AiKYh#XL5;G$kszz`&<(E#4Y$%5yQTm=Sq~}tOQcxvX!c2JfW<#Nu}_P&t6+P% zP}oSg0^W?U%4QQj`}3rJ95~?eJS@Qb9jf_ z^(N)sb{Dyot)uJCEuSQpJ?@r-XuCXIv;QauVTFy-KNi;@}p># z1X#(;c-e9{_sQ`8U{|N1yVYw%&MFGMnnnnNl+A;GmKw40%Z=!#^k;dE(DyGjV(!JX zq8jS7Y*nZ1Bd!W)A3a{#-)nUHpzj^oTd!80)oz}XTYh2ZmapCJf^UY3y4!JEu54b* z$IqtaYdTf!fv-;Kr+HQDdq>rWWBH(kuaIr!HcrpF zRR6;V0=?p9??9lnUqXRba1(O-uu}zZxf2vnHV~-E&E0`OtG|?cjd{V#?fVtE6Uwb@ z9SHR89|M#pMQnVrCq-%yJ!8==smtSXhflG2v3-RescIxqkC-e<0(JjT`seh9t-tfK zUSbjbqTRJfh615#@7+A;bBr+n4oWHYVP>ooLPhVrQ;aD;erbE_!l0)tB zc4}`vpO!X9+0!`x}lYa zA|r@in$o=0J!DNWFH+5Kbv=r7ZEKk`dw>bv>RP985Hp=BbwY!kZBAC~-(lC9Vz&z= z7<?HHLy215@Lz@!wGwvezOwatEGs?s z$m(A@9}p_TNr|emipTgP^UKYPKeHXU)nh4-W>`Cw9++vCn`uNZB?PUwa&zo!hqS3m zN7rIEWHH$u7K$nP&JKJ=C}>SUcEZ!3ND)$-%wM>6Cfg=3`=9EgcGAoDB-gSM;i<;o zsgtS3^K0>$lR#ApZi_na-nE$7Hsi>bwPSAjNjdR*YQUhhc7u&9a3AMwWU)W3-5@(Q zEURyk@G-|c$givAp+5V4y#4-|_x-lc-%s8M!$#Xvm2!qYChj7d9Y42qwnbk?b{j~| zRIdD|Bs5>Zu^sWso$<o}+_iX~b@}il2hoTV4I7lHxcH zWtmLKcv{TsZf*%q<(}f`jzIm75Mab^+T)9#t1c{=<&uf|@!H}jx#u+k9?7*u%iOwn zYQDq+ZEp^GqpiIIpYT?A?P^(!SMH0P!tglz@kQv?r|IFWZ~xGjM@qtTF<3Z3c4Ar~)^Ri!-l} zGbf)&B+jTj_KvWuRmt#H_6Rn!%f7O{nwoMeqH%U%V4CAp?+@3pq_Oa{JJCbo`*mLt zUd~T=U@P+1ub#33{Q;C??x@aDEO)G~~ zc!-23u$-D#cpYyLH}|xtVKl(pTXL_pfzXMj_-4H}qk!RQ5CLL2cvTY34#HLRW<22v z4fP&lS4+Ci{yFA+ug+JKBU8NAy>vPa>7a%75H#%WL=0V#>8lb)dX{%ZM?B$Z{8b53 z6IPO$SZ^15h@jE_KFfW!JuakiUGKL5kt?~g*fYmNw3nE)6+)Jyn z^j4F{10enVpDk4j{fW-F(&OiP0FM-x`K< z=7H2&?0f}NI>U~ytvo;DxfmqsB#!v z*Pyd=v~_uyXyRUa0y|u5{*xmS_2_5tKD9Dz2uL7dZ97Byun2));<>p(k1Ohvk?%m{ zAkChwSxdZ9GQ~|qm{D7Cklv&n^K+v~j!)utSS{q<$ULfB%xKyv`PJ$_Nk_wRvs=Xb zY&C!5xpgFit5*HuKSyv?dCsm?qo;_-6Ac3WcLXxG&a9G)$VQ2CQEo6l1OuS z;}upUcekiY&k*6LCXRP56G67?M@yj#+f8b(iSJ;v5Phhv);RDw?#=Ql#mJ9o8FaQL ztXSH)9DNrvjuX=+icbn?FJ_ z+p4TevdOtJwz6=rR>;hK)>E2jQzKs7idDdZ zK%FF381Jn?CaB^u-m_XvR(6imLfR{1&sW?r%U&)%InP^G2hY;@Y%)vrtCj3I1R)#{ z)Rih+E#}P-a%nM_hs^C*5tCKR@eKriid8pREoPHBYY_BREN1$(80V57E#ntYLQcDM22(-7E(hj`PYVW~Pv)G@*wM|0zgALlXNu-sl(=@S-e zHl-}o7O%ALl_iD$p9b>KrbAZ`d>ZKG?`N9t`z&eSu@01$HfFhR=aB<^Ago}#JlDE` zSV0y?Nn}pSBkT%}52uynm&fy*PX}S#HYpDYNZ(JL4TDPZ2L*HcZm2>!pF4Se4j}>d z--?Z)=aeCLV%93NKB$!s#F&WN362xySE&~xt#_IG)=OLm;y5M5Ez5UsdqV5qD}IZg zyuHdNnrJFtYH88>;>~m&6K`t^r4se>YP-^VftDng(<7LxxJ7wAf_NxlVs+)0Tkzs2 zjoyE6!NJj9S5htTY6nOgOb%O-u0w(a(Th3q#Xd%|YN`o>cOH@H6D0-a&JotP=Q|yZr3NPILCFkTO=j52BOeLIAkt@szQ;@R;-xw9(p-sj-B<2vG6Y*~6xGgwkoh%}1|fp{xY|XAV9_c$ zCC536H=nZ$KW#IC$BA&cEoKx0Ux6~H#q{|gU^YmNmTDzLFy`>H9=uGS-~hHdYqSKriBgOdKF2-%BxV#QZ8{O zkzqqSTc}5-+BflnpbUyNst^H}o52usR5leT)DOotr&BKf(>MlI?Tm~?J`>!) zA}`;4&rQ%S;{}7>w)~p2ARhu$lnoPn?T(s-{e6k6GBCnHQ2Y&<+awm`m_`;ZDx~Vm zS@)jks_hHqQ7P`*V28i;_lyd|JT_+>6v?GW*S>WmIWzF1vHpXB51V)uY~Nkd{+CK) zmVN|)$K-?N@9-7Qpo1f-PHMBNzh#T*vrv7tIDMi?in7@kuA}%fvb> z_-Cg(J^40H+mJ;ICW~3FEU7%-xvH@5RsB4RmA2c;q?{mRJiUgd7co78$9r?6IWi!? z4iXJ{h(5lFr?fbn;w{$B>DV06sv!heUQp;v$WM$cL|9Y6Ld+zTa`SlcIRE@J7oJu; zr0o>oQ#`KU{B8@o7SAnoeN(4hpIQ%`s|%nnEZ3HOY?u6@t-CxR%z4YTtnQ#&UUwwr zPDuyp3#}H`uLaSBcoPsPwVSOEe&&uRo<4=X*mPnx^m58`ikJ}-a(m-*pp`;(yOWKo zYlzzh6LuhaR&orhFOYb~!d@}hm_%c8+vb2$^-T->;}ni{Onz!&*Uatj!^m`m|6!(- z^1ZUoiVguHc;-wx{)M5lo$5|w+0WFhM_iOf!m~4lgf0fk{G0F$t~q^b*u1X(fw5OV ztxL|}+(XF}5Vh10=!?K4$jiDhMMZfP0w)K1s4MlzCmuV+RDSn}sOdm&wI~la-6V%Z zxn;gF4GMsVBjH?FYV$F6n~=}=q{1s(N@Y(+DG%>SXS$zEtSRKPzMKUt0~D99Ls%5W z)?g^)(l{F#&Cw#x$2iP>BYK~!{ITy6K4v7SmkaqS&9z6f+i=cZbeObv7z>`6J8y?~ zvEkHC_Uzp8rwLSb+{m0F?N2$)_9X4uX?-&9OBcWzNHdRP6p;o@c=b%zE%Tht#T1-e zjCF$G7`+^G9MN25>n)V%`FyevXs>|Vyg5WKfGRF51)v&_h0aX5f8`yk)8QEp{3b%=g(^K zA)}hrt^^X%`p*g_^3R=EW-jIh9@ZpD_|FXy>!rCYWbC$*k!4BFFFG753LZytrT{uT z)6()xB{~d!jBOe*t&Qa|Uo1?S*=t|rS&FMw2URqgI(E#Ay4Jt=t23B6oRiG8n6RgH z3O-n#c+ocQdBx|Vhk-i7+p@%CHA?&F&0Nbd6VSu+5w7Ni99FS&hu)DbIf^EC0Aev@P}@I)u*o7?S>x>>Ifnov2{%x$x< z&fNfVy!01(Hu~Vk-DbIU-p6*Q#Uh8}EG}l7aP5c?-G-XOUw0KnLkvp`SaP4I;tL;U{ ziVkXndma(y~(QAYrHv1b%*)&WTEZc_Vafy>!Yq+=K!UN4L|e1b;L+OL8W zwL+_kvQVbl4|}(or8Qya4@F>!+jc%@PLZUX=oN?Do`@XH22nbsigSG zoC|TDwor(kRbi9xTHIZ2vuZ0oa_iqP{wPtw&flEP)>`m*@w;oX2izu*!PCiVl*v=KV zR|gY=qZIC&wavC~i#yyQ_By35Kq46vW?5P~Yr9RcF_gK*>;gx$u$(B~KYu-y6z`Ar z{d_}4^qg56l*momRdCMSn2AM>0^JY{ndJcr$huikW}c=}W>JS;4#cD+Q|%V*LV;6a z4-Rw<`*F9|u11>7-Ae!=2$h8?oJDtr%%}!+=1!%qxC_3Oy*mCm}AT0AH zbvdN3#x2sD&ubWjv|#JTIcXx3+L8>7=2Z{pSd{$4n5067?Rx9jEQ@WK7<1$ba30*w zWU_cr-EN*zsRs#1GXMA2lQ;eTZrpAletZoiAcnLZsiqz~cJ^X?9)<=9G!U!(1wxDa;DP{8bNH-a2BV zpuN?e*#gkOlXyv<1>@l(W!lEI7d1b8xEjilSG=K`*gWkO22l*rTaLGhBpf#q1QDFf z+3b#5vkDg23l}cpvfy;OW;pvGsozs=XA0W#G%7vx=0EMCM!6lB0A`&u{OJg-r`Wt` zH|-{|gRXUA!o(GI9Bjd$*>#k)GesyxBv-K5Wgg2s$m^2`rNlJ26TmMH9g`CQ{y8v~ zn@C(c#xJ~XyQwJ4woK3swhx~wp51}c>fiw)(1^QQf$KAXC*YvsyqE_+V%L$FP)Ml2 zSxfMyfu(m($S#nIK*%$*KkRHj%e$td13Cw)x(H*_ys0Z=Qdkom%TP5Seubj2-S|W6 z4jIYQf`Uy8IesV3=J0(aB{=`mvM1N;nFsrf$H_tMr6& zZ?-4vv5AAp?`rmwL~cXRy>gktt66^@Ucbw0wjP8^n`&dF?Vx80s}@^OC{W*4XeQ!= z%^3L28!D6%ZlMGxqj`jsQ@+^remzHCHjY;t(*l$KUvL_&vcCxPZ}ReFm|M*0CEorTm$5PT{eaQ;MntWikZ=B}^=q5C z=jF?MsTdhQR4T7YC-wOY?tQMlyOUdnT?NpT*foH8u$yrTnXdsdIbCB#JP)UBOmZdN z`vK`B<6UdhWOk&f@Y1j&AB%z{XO{+myh##%Ygd$jeb$D%M)_0*^+aqL6FxbEHQcS} zR0@#>pgX^vPUp!5`?W$#Sj<1hrDOl|dzMW0KULcQxSy>)Jbk|58vrW(#Z5qd)cY|c zGtqCd<)HfmIj5#A07GM67Pwm>XKX)3HOe41wx9;wQWzdDSi!t|X*9lHj7J_Q|e_xPar9DjUH z4ywMtCdT^Xj}9aW_DjD+(vh-OR$z$wKD=iMV%MR&_^Smo>4L8K-RU_tkiqXO`Mx&65PrWV;v;JsTTl;&h8(mm*O;$ z7!10ZZypm=M(`z7PPd&5>Hfs4`fMrg!4>!rkidNM;$_l8Qc0cpo;84$?GGB8F)IPM z)cs3Mk*$1#CtuviPI@ zxbmP>gFfeGu--ne%vk9V_RNm7UTTUTn4po?lPSNJk+$Fri<9jbX=g6Ozn8{@%q94y zu&^uVnYhCYeO{GCdL`{|BB3Yq9z&}U`>-#4cSrG>w;8d|Be`tih0NwflB7A(?O}I< zInV1`+a^&DqG?z+`W;|!X(MJ&hj3GX(~~Mpu76rBLYsrTGiEji5j>bKA6roIQRv%8 zohmtQ>hv4j8LGO@b_U_Dhq*tfvE86Q&+Qk8Q}PyPWKK~=iXB=fUWhol|K|LF4YzfL z5Vdv7e7zVc@Kr(L|9R2g?1@Z- zXXXZ&hFQ4I@zePxC$-dnKEG(8zyAGOFJPmx zloe-sxrGk;R!*}n6m?i??p%zvVp5BPdi!WjyaceXq3|_|fF8Vm6oWv%xx;L}^@6{% z9mcwlYGXI;#_5l`wmQMW9>IRi!9C(rqo;8Mz+Lp0b^ZvgYLzoYnR>lj-8kEPj5w{N z(DaLmBw6(Wp^9hTRO~}YozR(1X6SrD;IjX8K;V#GFRJ@*5O{z(1cB$-9wdSY`Gp1* zMr;FAaI4vOuG`Ni5`1^ta0JM6oI1<8%l<$1&OJP;>T39t zWJpFB$$$|eqDDof1{DknI9|Y*1jWFFNCGMWFQwCg_C?8XsYJjb$niLeR$H}dwO-%W zDppZ!Q4>HCF9k%bpjK(6W#dE}6d`Epe808#nM)wSOP}Zc{^|2DVdk8DU3=}d*KM!$ z20pa@MTn@b1v8O3Bv5%1+IoJk%XU53tX*?!dj{fXtmP~G+X7kCp2155nCsOOOi+{r z;x*$D9~E$zG@tEICiV%&5cTF+X5i}+1D_{V)@cIsl5}3Bwq8lvqjThYd{S=x9L|E^ zlT)F$(xWHWZP0bU3i%>xsfd|KDB|^7>Tb$jMSG;Mrx%nihF69Lndca}BGVAr>V8HO#8QT- zcD&SdBZv!cQZK>V-X{GzO$dJ{eO%~P{~PY+f^iaR>F|E?pPrJw673b+GwG^hj91KR z>dV=>LWgh_Z_v`t%(>l?O?0SVtLuxrOnqSk5xt@mrdwLk5kfnZH~nE{Pb_{;j&ROTJrYk(S}914v{RoOJ7$NAn_%3Ri|}w&cAPX_s`j=(5;9*(9hX za4+_#w=5mLK<#sEAtZbc2Dgzu?gn zNn_bkGlr%7uO$xS{JCn18H3g}ys%LSgJcg+sur$f=jpv1Y00Y$5zC@jr_>d|v2abU z%Q++@MaVWBOrzxKQ~k)CNL~sqSlHz)g^dw4IMS9sYkFiJ&UTF~1j(T!@tYxK0rlz; zI%96_MMQFo%pK&5j?TX}%O0H%g(Ff;qSQl9sR20JKpilxwy1Gu$V9|c>yx?-SbNXr zkp#PttM2C0%b@obJBM8}U)eN+1&Tc9lDb#*x%^;OC56T8N zR&%jc6KE>EL{5bim4lcOzZ0{s=r0E1fg#O^7Gt2g&*Es4An?!p4%uPsAhik&k`ywp z>n{^ph;k!J_bGa({*Xp5uh3It&XOjJk7GrX1iL7UKXd+p6S?pt^0_>ojK$!Iu* zMB9rt7%cA&CedF`@a5JYPr0VD06G`f&c1xN%LYO(@!}fHH_+W4H;~@w z$r|OACjno4&OkNs+CDJ6ZQ6&q*26UGUuN`D_AQR`!U}icC|}lRK&|jyc)JXHBe_H9 zF}Ge~fzTbwd)Ln2$%Gd`pUW<>$^u*s=Xc1frcW{});BtCknAOP(jjvHr{x~p!*%W; zR;N1wamTuK)?qPzPY`z}JEtN(=WN16;9KS)q94gFXo6veT&ksgCqY5s&o4nw%>Yb9db1!Fj| zKJq+#hy%M=4qs$z6>iNERdj5M@%!B!KzBdx0(BcK0s|qndq(&eqJ0*wYbv`KT?qzL zry`XKx9mKOEr5bOw_dy>Rz3#_jg2a5AX8EXYJ`!jO6(9i2PCoq-pjr9Or-Q!Z{QE{ z_~}-F1rEe=Nj3q(m**F*k$BmOjDz_})mXhJL}loNcMFEIY4zNOh}jDW)7rb5GElrE?if-rWVRXPy*g7)Ytc_0Ks;-%HB z2@S^*1YH?wQsYLhcV~u%2QPT;VZ6UXyW~x%z7GtckG#kH$XOyky!8z=%-k3bAW}%e z?Q=8aeVoE}=|Ci4Fhbm-_`zLMc8ol>Mw42V-;)1K_d4u(r%ElWk~t;`8d)~R$`e-BVMV*mIgk}4tE4ni()Pfum!gCr*r%ik zX(Rd{iOHI>H`8{&s&T7doZ{TT!q4ETa}ess`qZ#jB*zCNy+BP{NYgkrjh$hY2Guxs zHha^$e;M;ruTF3V5p*$Mw&n^O*^l@oRUcdz`ar3`EYVL34Epe_rJP>=t z5-(q@`-LS7c#S?FVFsjgLvqLze~oqI%dF4IZLzb zGLJ>f_cE_l%wgb@M2uy5R&gEy>#X8@yR5%e-2bMsf=JVV>ZQd6>X(B|FuN(!tm3mx zqXEB9u(jT9Yq z0a%ZgWOZgsLcb95i+UjhAHJJ}z61?r_ro05&J|BdQ8XfM|LP_c4+fu+5Cw0jXNTx` zY==c272E_x1u?-9SL~eNOsC8;Q>GVpU@VQo#5$D{M+WCQC4Op3bT`$7Vo2M6?JHdB zcJ(&@!=*|DgMREQ(fEsuQ5C%g%^v!;wP(R)u2(Pmh1rxW#bS38%OI+Gu^_ao&nO`z zCSkk+6xGohUz5guIp~lE^0{;sDS*kFVc#M=U8+{()Vl`U9M!mmd5f^#@UW?3-&Zr^MtpUDFKlGVbRg8 z(rt8t(uphv+FN)z26YZjm=fussZfV%;Q+t5O8xk&9Rx)z%?E7Ltg@@sZ~6eTy|iSe zC^T0+chhH_WEtV?rS}WnsF8m5oyXu%Vyw}T|$+Dp_JIPRQL;?=p$NmdUUymy_T!M4S(66m{hU`B8ic+ax`{1{N_tiase zhGN*7l8_rvEw~o)tbf^~F87a`8t$0_1~-}{4&iGMN~W)GzP&s?F?o>fLMQhRsTK%HbmREN?1#Le3Rd=?N>moc~a{U3?N(HpT{{ zrNV>Sy#moCLd^6#5H1kP6n!xOMaN{fs^a0INZzdG)o}BM)mbN~e~cNQpguqbtlV3b zm66>dh)r}#XUSMRA;8tz8&-=d{DevTm+<{j`TqUMTAV^S>XH4*tQ3K z&x)evv}K4H65iqsbx|IADO_N;r$8ByD>`ozONOn=*auP~Ip*mV$?eLRfg?9Aud;8E z(FN21hGV{~-h5?7XPc8F@~9MWX#dF@lLtuTQ8`AO=e^~5Y82e!)tgzk^rD7@zj}wj zlEVL0h1~k!mjg1`s;SR*9UQ(VYZvNv;KbVdB_=lRu(XNY9!O5ClRk1%edGf{0Hgc( zEue|Kw4AQpFj(D#1?HW)U4Yu-z`hqI`+lo;THk%r`%cpn0A7*Aqf55XgMe4C5%T_z zO0f!+yb-*E`3BS#XnipY2w|O1vznGH@nX|Ou=5396 z^-6=$XJZf6M^|MyiTR94@8gz(_K`M^L1{SfD3A!D%-Me)cO?7R z;Y*vx$?1KhuQl2TvsZr!CDnV?rT1#&=Hy~=L)u2RI z9^F-bs;eUDN^ILH4AErarM?Ns^-AyRlJu_9?BfUQ(8tqOX9lpxmT*8HmnQr8eQp}$ zS}#tU&H;UNOJTsav_3qtzM4gW8WA-yh^oaE>mjG+iGg5?DXET<*}5@h>Fr>zXG{Tf z41G9<4hijr8oH85*)M%alhcQk4&lVcZO|KcIvZ4)RD%M}#$8Cqxc+6e zCaO&@hcgLv!XnA?wpN|BSI*!Ld<-o8p>kxr$GYwO1%-2;*CGl?ES${)-1fK?Mn%q> zwEFP-r_Fm`__TY~`oSIeGh|PkQrA!zYpLR-7|_eo+z<;%kW3j|;E; z7rrEXm8zjMy9_eL3bmUDs^Au4?;yeGzBU#qT80>d$zKJg}o=i+orMc3)e^XH%hGTp+TtvPg8)`#Qt7 zOBdu8mv0ZyM1^{k!~?oS?f9yZvBA25AEe3DOU!%Vle?HL?4qe9FY$ljy3r_~@TPHu z>@yK|w6uNeCp(}(Z>WtP6() zY3s`)-^4ZGcckr*aF56fLI+*7J!3l~ZQgJesTw$T_Jw**Todw6bVR6gzF-L#3_WKz z|J9v%inub1uC<$FbIcE)vQqMbPF}O}5%b@p=D&yZf2Ztm3Y*lAwLMopW?nyN{`-yo zPYYOStcSKuO2C_aT$!x#Sv7gl8%2MHXC>mhJ+5HHq|x(%lcSa?+=cdda+~0&Uu$F{ zU+G0Agu)p~#Y|83l0bipaM+VEWA3IDRqXYG4*_*ej#-`CvRR$U-o@{cM++geEn{{+ z%%MJeJ+_0M3+H>{r-ct0Ek?p2XMKT$XKbPQpgV0zdLr?op>#mSKNfu4u13;eYz0Bqgora|uObQ~;_e2q#hs zdU$hhJd)Lm52&AU+ojII1{dYp`2~LUSNS^3I1+zyC&uJLUF()Bb(ZUL^JV3B=ae>_q1jj{R8J%2r}AAl}C=citQ; z#l~S}s28QMnV1eE|1tg+ph2q|NvKT;6m;|zX10VY%41o@g0MW;z`jyf_oNMkO+8N~ zS46gSP?9_ts|;nTV+R;GI`CDG z$3B*%9VS`F#fR8O#NSiQL7nQ;8i|d$QP-7QZOJ8vf0L z+#7$-ccYy%443eZIv}>hI;&R4(2-nwGqF1)wexcWzZCOyxb)>bvIxmVrVS2D+cx3}?glpUHS!r%~CiYBF{7-JD=EcoRE% z8ey>M>~OQcuQ|``Z{x0Lcw}JkDH~U>+6Y;zljToe`O}R*;U7@o z3V@_nt6O3fo*}So%u&@IMwjbKM`t9s`J)-forWi2mfd7!)a-U$-Ys8?DLUj;c; zWi7X**79~&`dapzX1ydPiYO0;qsfPhe?cF=#L@Ww! z%+KLp?R7COL(rMAsnv0y^U^F4cuBxd3Z-M~JycJwQ^wheb<#4MNZcai^|zPEQBh+I zA1UfN4bg{vm{EJY{E>)uW(yw8`jF8?)<@34VRRAmnlZ@UOWSvd7^&v^CYn1gqO!ts zM`-&_c&4GkwLu!SOrwF=VOYot%MyY~&jc*~%!wMCLQ>L{d}72CEu2WsNrD)RA&rp6 z@K=F4ens`KF36t$VtvE4FIc4`t+5wGUeYu<+#@8>%l^z|h=f|WmoxaJ4X8sn?=(~< ze0BnrMa~ewoXMZu#kTWHtns<^^Y~@J!g1=_8R93Ce3;4_v#*lh>6rc1t|UTgK3#%o z;#=NKM5Tb*&TSA))q6=F2JI`P7}{KM7cd+>CLjBBEnErSt2uu&IJmNXNBo6?Hy`GT z{n`}42a$9fNx}^_13Sv+4o=jq3@+!`R;SNlGi-?an`(2LmS{dsW+LKtW$;-!?V&L} zDdTSnUt1Ym={#wlt)EP-3^q7VJ~mIrRtDEPPqvsRgDZn?I8WA@Cr4KXH#<+B)lX`V zGhM?Dxnh0Hcg}5z$*G3~JY*axNUK-jl+!oCox;H+4xRSliA~VqV37ahTU0;T$+8IS036=}O?!RfVw&Y2A_S6d!wyZ!pSNZTFP_l>mu zqPAzG?Jn|$wcTAiJd_tZGt@11dMG<~Dw(q2Rqnn1_(mJI9W!s;lAjzs(_|g_!2f0M`U@QMGyRnA9D4lZlzrJLTFy8 zE~aUtp|f6+bpj>ue7I(X7_PLf%X&!`OSF;I>X&m!Y}a7DBxE_^oS_w@mbNmdsVuec zg{5_xX;1O4$)7mIQ5yc)cy83F%riCSCvJur3^JQwmy)1z8i^X{Q*|SmUgS~HUZHTq z@2fW%s*;G~6~r0PKY=*f5mbBBR*}$Ss$4$f0PBg8n{+~K)Sbf0;?GnW@(~wCy>+@D zr%>4vz3s8SNMoibTi=|8E*4*K`}K{}kgl;J~74l+_#=FpC z1Km87+vubgT`uBsesr8K5WJjut0n71pTvzpL56CK8Lf?u@v62XIw;0}R%9r!@nW9mCU~4DoO_O#>cjo)MS}FP z-j@C!UnQ;25x&CN&cu=6`oKQ*PjTa!6W~5IqN`j6xNQ$;OhP7cp>1nND#4czG+QmUVdc) z_uY(|n_JJJPlo`liGIx5M*y3t6Ze@48H*34uvpumR7cMx|MQ*lo zuTV@iRKLnC`P%-#K2s{yzK%DJE|X&qMq3Oq*lV8|>zk;MW!iGvU&j>f=_(&FD2c*R zW92(uX^^x3eAp-atIJ_`*RQ_Au(y7y+xj-c29APNTh*6utN8H*Galo%E4}s*TyG_E z+1ac8dus>SwX5CsnSASK&n9g=z=U}HLhT^_R`_iH-tbPTRp;{$!{2)tcMd+Xkthfj z@jA=DYahvKUsszX-#LIAzHX#D!?+rOB68`3089kcQ1b?w0)r{wiv3k!s<~f+YlYlo zP;6IsL`e5dV9PDX*W}|pMPBD2{-N(OrrLL9bbQSv3EynDpTG`h@iY8+`k2NsCi)VL ztdSw%0JX1w7h}=`I;O*bw&_Ktc1Z5jNDPTKl_dk(620EdfFzgZFs`c9wfl!|A$wKr z7CojdwZ{N2yO#{B%2S)e%kbwI*notY=y~!wM}njdR>Oa^H*TM2p9dVh#Mvt+iL|=w zCK+~{4EwP*8Frg`@A$8@J6T6i8i2`0Yh*?9*cbxb8W}B@bvM4WJASabUfGZ}ZhCw+t=8(j9edQ9SXOr*a@9Eni+!27k#^bc zlk;(0c5`l9#cn&7>pnfLNp3sG%I7oD6FX+1WKZ|P!@>l5(^=O$>*2Eu2TaGyF3>;qG=TUgqlb#ekYJ8`h2VX2_S3ZoY{gmY5yt zXZ!YGnv+W5eo|oFsQn6&nlv`ZKRD6aMU?NlwRI8Q*TT78?haff#5M9On0(}jT2uO{yt7H=jb5%q~iXqvIoRfEA?f}F)4~Ivvd%z}%jN}7%j+JbS+*Lj9 z4?-!8UWcmo>p~58{t;XRb567`^h6qc)vEnzQ%VfOQYuTz&BPd>FOr(3Aed^iE?0Xx z9pPZfR#56p_G-AjS`Mb?%v)k@dT@0M=T$G9%ds_v4lx6l6LIHGQ=mcu;!z!vcg@e? zIUy;2c+qlSw2U)srYZCT3MCq1qf1k@-M9)A%i>y{dKu?AUK>VvIkOss- z;?CC*h$~H@Zv^7cx&q>RLah!2BL4gK*5w&hq)}|M{Y#;Ra}0BG9wsjPYYb5m@kx;3 zf1m2^+M{n6V8dr=g*~~GXVigt;p~WIB^VAuT(uF-D=g;F)9oz(@GwCbK~-APSLirA ze~x?t7Z%pu)$aA4u{jYMmt(LM5=NLDYjZIKt>l_(5F#{1L0dwW%@r4 zoJuv%zTZ@GKKZ1pb5o3%y5kB=t>L)lvcqE4v z{JY`ewfGL>tZz1w1Qny+Z}oxeC3I}~m}p5ZXT0$7s3C)MQ3S|lI|h+cHd_xY$|%Mf z*Nt+cG7*N_@T(n~yX+gA>;7Gu`+5`TO`x}~M@}#Fq)r>{3z(EtR~>yWWh|~;=Pt9 zjrB8N(GeM{D-o=!ki+P97&(xMpGqu|KHK;2b*O-TvH|@D1A3K@8Y^JvFAg1S1n{KG z?nDYA%FZTYkc+IGZDm9n-I0$o!n_$;66#gZ$I;-*HOf)wVnX+sn z6>|%B+3udYUYY;P@aI$P#zf@N5{@12QL)=3LaX?#^wq+iQpA!05u|wma~^D{j-eeT zkS(_qVf)TU1I^bBA~QC4Fo1c~1tePoY9h#K;@m~ep)VtQb*#A-!SGwu?0#UMp8(7K zYa;We#@YM8I`_^`j#ICwL8P=gSMTE1O~(-)ml~n26Wj(ZRYQ(7I+tVZ^8WbH#D^dT zOH{xiatW3L%&Xq2z;e9*)%~F8)z$6-gnJ#|_EfvPK;rXJ-854HE!hm%BLyOCSlxj* zZS6^KiwNds_2q^@wasNvxrNQVEj;n9qvgKUpO?e-GL4YOn&P#l_^c^;P1pq%o~Mq; z1ZoJ+`f4m|3p;4C{n8?C1EEIKEc(pNO2chH5#&9rb@HVO$9XZLledh0R)>yKo09mRk{7SU{E z2heoMAa)|5hvvg=oT*NH7Zpb;Y>WiiOO<;H$G}ifm-`xne4-p>l&FM4BlW9~oL3U% zO!blHKK=alwCB;W1Ju>PDmu2m+IIy<0(Xilu#HhAIyRWNq@@_Uy!rgm?xHqt8(D`R&0b0f zZD<}E&gd3F+J-y^Mr7F(WChe9mA% z#~*q)2p;FMO|n4`Y7u*dX-Z0?3Y@CmM$Ii}7~cti>NKvN!eZw%c{KdDnXW2$xI1R2 zC)7XQ?~XmrLs&u7ojS7H=fb4RRW!AX)i;?T_}oq+lyjlDH?-wQF@T$qL$)IGYh&1cxnu#%!|SDY@)pl@w6h z#Jj;J>c*9TJI18Q8|iIYD4R&GYQ@6^st9Y7#5Vc*NT?WbiKggjkPaYET`6wquuc8b zysu3BycWWwLt5qPRU0(@Eky8RCwK~XMb>3m6IA1;nZ(Yo&Mia#@s(AF`(+C$yt#XF?n}%^gye;H9B{+1axAUsIaOJXS?yGTJ724xG40M-{`y5ueM71Vvh)kgDHld zFtP^SSL;Xs<6js4qdh_4K~uM#Tq+HPdl`ic;mh2zR(k9$+M6~t2C7jUC7a3z;ZLQ> z|84);Nm6NyL_slbs$u=i$>&@PCVP;!N~A}qVe#Zp(Q(>}B-sODm~~zUT%?Afmb;3$ z`PPJ1GOZ9l6Ttylk2w4jh+%+Aj64D*tqc0h?>3^!H;bP>yDCp$!|mb;t;E+mI{wW2 zjAK#b7FnKW^C9NEMivlXF>YJC{saBbmM|`LDuYNV+XOWj7CV8pr+bX| ziyHL^9;GElfQQ~%VbHImdyN_IB>Z7c70&?iq{dKGGi4)9mPZNO`U6LF zM(_0U3b^(9qMHRB2S*x5OT2%y*A>dW-9f}&qPk_B4M}(yax6&K4$_f(Cb^_ZS}I=* zJ=OF`tPuO4MMbX`eon+~hYn11=a%h)5DbNND~gLEJwbCcJ>4lXK}l=$G6)KhK)msV zj{}}E|JUJnBBHd4l8VzOga};ZvjI zf+`P!7adotPT_ypp>Z?SmwU+A^}KMC66E%+(=&L^aq$t4ndX$5onLZ8!oahCC9;=f zcH`)2vzx7w7ML?3<>gAVXywuC2Fg+)VMDr>%7G#zrCOc!cObI3fgh8?Ftp&uhi|oj zSVASn;Jhv;*ttY-0$btNR@t-%+1`~#w)YvbjmHK1>P{_uw?Vfd^=)jcos!jUJmZw6 z|G~(UXaU?8wKOx3)K=FvX}In$&_0odoGM4w0V`?qL&XgtH1bhdfDJc*kpGsKoNl4-09ION_)%6Su zUx}1rI1tlGP&!$Z)`^UXPNu5YaOI+8S|^uEF{hKObtm#x-G*b4GndGbndQ!QMJd*6YvlofB>d!*_LSeHjV|3U-YTCI=v|*xJ|uQ zCx?RI$|`&EcDrtyY-`AYr*JP3Sqy9NmBF!o#A6z!));OrIcjQ5-tPa3QIpY!y3FEl zy#?X6saoO;nsY_Zg6lI_SE}u~Goq7(VnK@auKk6?#^kJ$ZM(sqiA_nQoAo9F`6I`npdTKi!a5-p<27-RDRw72tOU2~Cg?Uq&2Ir->6ud5c6`l5k$TZE}RI zXT85js}pW&Mp!12ETWS|pL{?Tt zp|R|Sk7No76yKIyJ>qsERjcr;TBf#K7W8?fXIc{mtBf^O<}Fgz1m4?ykh;nH*Hf(M z{PE~}bRwp!-~3UJhDbMdH)r9X5VRm#(Gpi)5Q;!zJtYp6M@)IXYyV#FDUW}~;Vgp$e4 zzRq3fZ;WRuyGaUpbeaJYrRbQ*rQEB)g-A5}9?Zq>^+;|Tqp=Y!K3b0vBp(#2;l^9S ze%(H^N|+!`IDWp38%}$}I}BRs75&CKt3T{e2Q;#?#cn!Vh;cS}$RC${A)ct4JDbS@ zcXd%fEWtT287`22q&xB>x67Yf+q=ph0x?sMOQrSxVd2)ADQgZ|^4IAl1vkawClOVy z7i)4xc<6|79}(0ysEbZ^7?Ddq1sCa=?P+;p1-1aCova#y>_^s$a+4H~zVHs=I?(GI zoxXN$A(tBJTsCT(y)U2+eGaX}gtnqR_G|h)bVY(TZ=J+2C(Ivpo9MGy6Lu=nC%NVrI^~N}oYnP)*3T<2N#^_E`F? ze!xN3^{o2-X!kd**U$rIrGYA#isgUM2+-mrl_3Xt5`T^rv)hZ|&tUwp55YCam2+0Y zANGZ}3yKX+Lm+K%B_g#*B<0>}RZl&;$HIAH$hEKY;Dl7{(Pmv%G1gs-7eDj(-wM|X z(P9_l@PGwjLc5(gVxl|T4UeQ)j}b?Q-PXCWEQ?HfnIrPUM{5G-#)02QJfNl+@yl#{ zA?RTbUR@bd)e~NjEY#cPaF@$Ajd&{RVqZ{flqYt%RpI8;&-7P%!fyMsSU)|6Yt0y} za~Y_0KF$}C2voS23^O8f6803*lh2@h3@RZ08P@skn=bO+RP0@PzL(K29phbiofp6L z4+T=0e$K+h8~M6$fj0veo80;}^1P>iU$_=|RC{Ff(cT!ZRjn)ax>V>&+y=C+L&lq1 zzetK_;A%m_Xk);prVtkxD%ox%5YirjKy7)9E}xt7%i~{?!~qsjB&qHpT9ZAEY;076&H`{bSLF%$^bsD61NsiczfbJG5jx5C(8T<#7A9SOKFx&ZfmQIjY) zH%5@roNUyQw9Fm51$fG=2 z=odCl!WvJ2Yj0ELK<3915z>8=oUkTym@yZrVSfTR@Ht}xkt=Yez5-|L9xsB15>8RK zXJ{N@Qg8`;c#ZZrD3CBHcbV_F<)F727f`)VBZz3jT*=-`UUWF61Mf3v38ue#`m+|J zIWHxGL{Wo@Novf?l4D0=|KeR6P|J>Wxke1G$-R>cFs_r(xbnEh5{m1#|!Z7wB$ zQYJX0el-=|NF;3{f=Iw>pMm)|9z+lQm_&_3MS4fLa(yI$#%eRw=l&dzY2I zzcceW0&Q_+dH`0;T=^6??4vY`ahSZJfWl257)_d#?$NxiQ%CG05>*0;_Qa?8p9#;X zzsZX4?}{zj5$#uc^!(P0|7*X}cPBxpy7VhOZo_wTnfz=$gZSc{{u)XCLRn(|NirL1Ja)<-!+gfG<|&wAYF_d$pERXB@IZ67PyZ+?l^pJ zGtpPzNTSAy;s}-bmj44cWxM)dka~;wM&HFv`60@84XI;HU*7;J1EIgf41|zj*lajV z5OzA{d^-%s4JiIh0L2E~c`SfK{NRofX0R&6@Z+#{2P)Nk2%gZ0+{OQZW{GRm2BO_~ zbtZYdZ+`&KOF@#KR3;0GAxa9OI;=DfxcBfxHzzv1lbwRKXV6=e46`LZHLZuZ4*DuJ zSvn+9K>Lrv{N`0^C){!L8w=2ToBF3*h8E>-C4!r@LB8IPe+09NV1w)Mh}u5lhFhs# zN|YN&IeA%%#?Ca?(GmB@#??R^adFAlj<_4hQP9B=x8|}b!tZ~BBklzbK)dv2zNB7` zuy68aKGiAptOLxhyqU9gxpYU|e%%F@#+z9!)_h9Wj<`*xK$;`&L(>3bM@QV>m_py^ zh5uy?J$Rl8b3o>rLTs;884)Dc&Sv@M3!bD3TS75&NY&y6VkB=Pai+e85 zzMn7dTl>vMyA>avnhjdjzukc82jycPJ0{JoIF6C1%c)HEiHo#70@nb>m2iG9D*m+1;f= zUA}-v)N4&3Z9F*JDvf7!r=!P;%5%6zUm^N6dtc+%nRatwZsWd8<`VfjBizGZ<_>4C zD~V^sy!_Sq3H~i8I?hvRPjMH%PEr4^+$B+-6&|xvnE1x8G7H!ETXS#xE6<|tB5?^Q zX;p9jns7%bfcddo-S)HyPi=VHdTlHeYyq!&uy~(neizooU6r-DTi?B7mr;;_-Dy#Tbrl1>Twy63#t-mI z)oT^w6o5=sEqEH2;1HqezBtQe{9g00ov#lBh>~^KX9Sk__J72M__2o?B0*{i0|BL4 zE=wQxB=+cWS|UQc5uu1Z@D%ukr)Sa*0&YjAxSMiD0yeBD69(e(NLyth!UURf0z7WY znkX>6hP9Yvd+@Kd#%cfRWLm7~9AC=uw4#1@ygE8A-^y0&Kf=X={h-!?d5-UFC+?;B zh&92*>yh`e!zFd@Z)j2CT6VCm1hGuP|$s z7hfOViJy)@Aj9p<=(kQEr0uKC(DswVyHkBOKWI69iKN#P(0nWyMy*Y+ov(W zIN(}=D7c^eO~8GwW2mbcFUJrLCN(=Pj2blwDIKsY$uY`HiNEr&Fr<|EVWJF!TGa9e zLr?i}UpaGhLp<1C94ZTJW|$Lc2u3)r>|Wu1A-IO|-2e1|RKx70;_oXE@Wlr4 zT-YOAqSBvJFN5m`u!}rRz-zdjgZ^T4(4IJ>aBE~uR$~l*#u>R~@8TtQl^lxuEbWQG zmd=fi3I-}14~z$%>W)iz`5h`pJVLbN2)o(GL4vQ!na_&{)g9`2F1b17pWth$xFmia ze$LiDDz=%I8BSvG`f6Efsyab{+|)H8v`z(=jC$HxC)totXWZMOWBRKn|JD*OGD?tQ zlpuB!3w;U+Grx;T{=ye`1JR(Vo`A+R^#!VkOk_)oj%9$H(LKNZzv$cP~GHwiprCO|MG=% zRmM{goM;|hsY_O{!ltcF%Vm*e0IG?vcD>9h(u7lm{zf>@`tx`hdE^P6Q&RqmJhEJV zsGV+R)@tjiTPx&^RsSr1vB*ZH8Gm!`;@+%7ltrB9s}5K%uHvaWiQ&tsom;r~N=M~;v|g;uC|Xx&_+L1e3wFGWuMo6}*4OekzCz}Ko?67Q zDca*&&*6pH0!x{>`qw067X6jU`=bJt-1@!zwKbeDa%)78z^ji5gvR7sx=?hkk2zLb zFUlZNR6(p{(du9tdU`b|W>8A}Hq)YDWfd~pJRU$*K*&GqKADxRS2r46%=ZfWE4!I&;%eAm zTjG@XCcP6LUOSIq&^CN~y=xPF@bJ)Jc>I&IA?+>ymWYN`-iL9PpAX`%l*##0V*X?6Om&;ymZfnzp7>(2j|rgd^|MOp@@N`X-d-#!uB#H`q)uq1tjg-TaW4FqxgP?G#xzmcS+Nz7{CO1&j z)?r`pfxASFy!n%Oa5RTL5ZnA~G6r%@L3==Lw1%r^Zqz|jxEJRq>_&NeZv9C>9)>hp zvN52-C6WMK0MLW<<_?jTBLLtq^+=;PpsuYFRf(L{4j1IGl#-ZH6tkfMdx}>Tqdzi? z>#@PWvddk;jW^W@4;0x11`#u*snj=8(B}Gl;bL_zon~Iy)$pHqkyqH5o8Jgs9lV@* z1Ot7s0A$$bdv$!_7Q2Y_%H2#V#McAyD!J67Zo(tf88E@~4OglB4|m}? z&QtK~+GS}qWWy<6rH+22gBy>O32CpTVTiBEQf;Q+6t_(=Liae1OM~|FI#N^9dst=a zI=)MrnNyNy@6gJr`?Z4a(lhDp)OKiRQ@;sbRD?Fb89rB3V6NWupS&dIm~6@WSi zbq6Z>rUK$K(^(6`aA<+4qc_G4QoN&m`m{^FpM837C3yT_`}B9SPrpABb@li3#>jpS z<#box7!exo%s&0*3Mw6FpT5+wPme!{eVS8WWfM2d*_D;*$_GWq(*FG%GX8!ZGw<9X z;}pgii*|vryV?)H*t&}Ehp{Ep`!B|RNB^Od&;9-wd&x5g!Pqy?=^SH^kxB<*?Bx!| zUUCqOSdj{SZ(dmHusi?iPm zXJ`ArKh8d|{2(}c6b*MqWv5G}19A4-djVaEpeP(erTX`;{sV-qJF82CZGH-bJX#em(v^7p4;LMgs1Nka>EPIL9Lkptjvel-Z05(ulB3uMO9 zJmb#?v&H{P1jGL$TYQ`pKwZzR?DyXdQhh1kb!$I2eSHI@41_LvBWa7r*T1tUSa*qf z^QyN?BI+HQ<}VGfOV zVrd;Dip;Kz#+_SQ{bFggzpm|7DRzrvQWNPRnr80ydOM#-^TAE6RRZg@Ih-n{)*UHbUt=yqS(T8NTS;Z?;nzAhHfa`+9x52X8i#L5S2QFBwBa{P{YH% z#G4FBw9()M`k4bm5@DNo>|JAiF67*+?z0`;#uQsqQy9ve*QO~gPk;%W4fSvY5mzTemAnY^=%`=OMr4&|%Ht!QA{CZRmzvNI7Pt#R(?98Xh@ zbi;*9C+^L!ek>ttFytj3JScGV zl`OXIo67*L`{v8v$qTu5Y}GA`z9y>FHICSM;f!N$x9n|X8N_(Ik)UJD=H?T`d4!o?~v`j#V(4kn937tMUcPo z71Bra79H_m!<7>8AUww|Sr)xs;xJVQQ~~%T`t9%)JjKZf#dpcgs=M>F_Bgxz=4kyT zv_aW2p|SdhJ$kOXZi*P2aA7K0hRv1xP)U=350gOeXub50+EZqyhWrxER>@Lx0dlFo zUdEhTAKKU z;jJlx^@{`QEFQ{(9XxQlJN}Q@IHLkGmCsi;$4zUDU8f415xb7JqxWy(eyD6o4|d@> zzADvC`>-&@i@2;Qk4MeGwiA^rmPGuJ`FDf;_Eq>>K6fZGID zEY#)8I#ciIy<${%79%t_0;k>9L2tL;J-`F55(bhLPcaq0@haf~O;pu%*HoZNeQbug zUlU0s+D`-z4tA&R)-DPNkUG(kJtW0DN^d?Xkl;UW+pr)1*)m*QY6zQ9J)RU2xW6RXIEFuA zThSi)2P?eI3U9Z<%J>9m^S6h{7&y1pZ7ci`zZfgrEUqy`g$cirTeigtZ?wXjtuSBS z$0l8ln>mrNaFks1I1Hcv{HgQ15h5uzz@E@jc-sTQ1D3QNxkwDLus!}!m(M?JK{tQJ z#A~q;Zq~QqABkdsY;u?4AM*?`!|XAh=qz`Y`t1f_f#rTeb0{m#cAu}GZ4S9RJR9Sw zQnB?ohm~(u&*5MpL7JY_|8G-|^1ow;EF7>B0{Hb6r3He1{lNqOHa(V;wPH{J7 zN_*pJmY$k2r9TVdXw^^YGTr-8%RhCVZ1699GO;-p&b!)Gd#G(KV+bM4)RK)%p8k*k zcjl=)J6qdl6Yx*^%gIc{Uv4>Sm$U(LGwr85NxzxaF5@}iW*P#0(WdH`GhP|t$$cq1 z_ocBJ(;JS-YUE4i-o4XTA5*kR|Hw-J;ZFb2E&WG!`j4FSAD-loy?c?=xUy)j#wE3l z|NGnDcK^S=9`&aIkku}=jam16HyzqrcXL#9+1fbM*Ei_UMBCUCiQMSYzFui`X%!XV za%Xp1{v`VoRoW}E^>XlelUTuC;sNv~L|LgXH*z~K#Q(f1Hs9aM{cuvJjPm)jX4T2V ziV$Qw_Cq^sM5%A~Am?()D_hWzAT9S8G1@n)Hx;C$+%C5_)V>gi4YnI8J?k8&^prDT zVoH4eoZ1|_ho2e)pxtRTObqw{zKHmGA8JM`fv@r4AbP33cao<1O22o4S4HC=GGt03 z!%3*ReM<>1Fv_iO$ed~y-Gn&Sws=qNAtPq``fd7pbu8OI)0cbuYDz8MM96Yt&y)UL zhb(x<#4F!adzyblxPacZUww$IM_!^P2}_rzCpty+L@&Ri^+bdxG^GJqj`75QUH!C6 z6_;ih#i_Y!-dAy8l1He3(Y|XB#REmcbx0WQ*h$gyTw>{yz^J_<=z8vVc;Df0NN@(p z?~^u;gox=7qdp6{BT$|fka#-ybp?F(A>+x)Ljd8(m2Q?;Uuu0*rh->?B0~>UAlRHB z!jeS>M{c`UZYuGrWP&sHWj-I_+}5chY>)5sCVZO0g|~#8r)2o7DAcg5R;E0NB+M?+8j&9 zA$87aa%8osf1eJ9NzL#&nnU$fjbclJ+>V7j6MVMVJ@>HR;{7d-!wEM{C@UcM@2Vxl z0<$H=P&T9V5J66{x6*7KsbIAd`AKjz*aRIFK15Sm^GD8y;nXur!PFChXaAUXLYyWQ z6B@3x%6xT}@B`34!H;C5mF9JIC{Mk#j+N3XFwycgmFan*2=heec$;zroFw5b)6m3^ zU8j3`yYJ`d!)iKezY_k*>Z?=saTOaS1s%uJdoD-(%lbe?31p2)t1q0xoT!<`F&7LVG;U1VZ}j2?({?dv9G zd8F;C*+ku3wC^6=197=7#=%Swo(QPu%>pnC=!({>NelrGHjlan&=@`>IbI^OIRlj8 z$#zlOe~+gf4*%TEHBHFF^PU7_w4NmibSgwzE=ei>goqHZj@{|04vqwn!3$ns-?2}> zM0th+D2mNy!``i=>N@h(=}t_`U9T50x# zQLp8xY3QgTb!&CZUgDdrRo9C?uKZc`uleHR*PNmvu)>c1Pd0?s|FNL5c*b{awrIN` zN>%E->kp%>*epRDRORUIwY0j^?CvavhUatSJGBHz)`YpoRTs1+zZ_4{cBdQ$Jd zT7mDV75Kd0_ty#>wd^2TfqQ7UGbNU~wNtIYw|7B!TGUt|ai#j%b^n20;L9Vr)C-g_ zMB{=W>SKtpTpy7jqxjL5zWJ%Y&TAq-=H)&|63!!jr9Ew<3o?s|TiN2!V&`zE!a!5d zkl-Uu4Yu~a3>VqA#|rtM`WWOF@&m_sh&9%Si~iU=_HqwWYq#b$W@z?;K*Q=TDJQIn zab2F6qR#pzwgg(O^F)s4Wao-u-4iPRamtsu3v=!c<<;!{+6q7ZE&zF1&QB!<22h`vHwF^rJ zw_F<3MHCEmn}jb#o%;L{dGe+lQ3%>2a?d2v)=InXiD=34rjq3g>4e+7tEAaEZM%@( zQG=|qE^c+p;7XQT7wqDIRO&YB+vU%ehVmw6HAjB3O3YF+qq@gsCgsm^G4lp7@#r(D z7YS=D6SmnSjIHh2{s;$&62sLew#1^VHiy zOV_KmLsQq!Hour+txUnl^*$H(duRKUZ)poTi?1i28b7@%Lw*W#I*_r_%+qPjME7eZ zE{`oN)pchGS%>sUeLr{HU~b7TEqf5l?scVk8FbM=El1y#U@l-@DCu$GN&AjsfSz*?syZ7!3Wr#7*Zd0M!9q~%L)d`K+@}n5MX8%NJ%%5j{ zCM>VxF3)|%!i*|N9mK095mSjFdL^dPU4n9mB&yhDE-Xu|KDJAB$a|ShEXk(A?7R1V zg-}VDYT|X5dh~BDz!6v9zh(BMMPE&rFyZjr8-F1yz@~Wh9J$L)@|zMC^Th1pbNQG6wNP#PM-e_#l+?VJlWMiY9)A;vHd#Eomz$b<6+=y}qvR+fx@$ArX?vM*%RUJEk zAJi^$w@ZviEd(Y8&;N`cC<+X0Gaza(dn1B>n<{Y zkwkVVCDqrpa*Uc2G_iz$f_;)I>ChnwGBW{*41R)`^eFl~+*tFBCuUqA{w9Pxi3U=C z0_X)10T`jYNmiNHs`jlb%R{^FF3g06aW&rFQc13Gt_y6clpa?kxl(5P?COCvBRQ)5?Dh5D;cpG{!u z(dZD@m9)byQ=i6yQ-5$7jkc>h0cDayo=y9#Tq2M)=o+2iV+FnAbD!s;9{Av;8@;+V z%8Su%v#5r33VUK+w7KimNT?T?qd}bTzno-nvIw#UW8EXhdWh@?YWM`Bdqqm!?%2e_ zo+e(%B1Dq-d9~vzqmwf1_0^T?gUg&_!dTk(+k9*b;~|O+N(l?)w|CmU_xRwnNfTQdR|hZi6RrnB*L+(zCs2Qu5F2A zXriBzLvMAJIWI|q) zRB6>gIilvwu;$FP=G0nq=2~;+ThA|q*jvvFi()-5Vun3#>i9}+*|HDy&3y^d6+Q|- zo*tp@+}GP8JH1H)mD);%VW** zTC;rCtURu?3LJ|2TeAwRSp!1+KTu8ogCVP0@7t^{_yyc~t375Q?^4vmo;8qb!l6w2 zTy@ySPb6r3yqc4l{5DS3bh;D_%7%_-$8jD5fACc#0)4qJ@z$EvU9}#l$HQMS786xoNHLW;(?GS&=zy(EffSf_ zj$e++Hc36-4ru|xhRyhQGl{@Ao~PIF_^V4i61 z%jK!&D5jO?(FtwF7C&Zc5iW<&HLQQ&HoDG-kCgMaEj3-}X8oRU4l}fdW5^+Kt0V`S zi&zklY>uH5SAD7rT{P zb_{u{JeD7->aqLK8V9!=cKS5ZlvhsR3#U?Bc!`_Qr7{o)X#{}f-q49Mcp1XS41x6p z^7Ke?7J)Zj&70_%Q=!_yiEiCl)zZA8cwwn8ly|q5(`(08Mr&ri&^G5KmwJq?B<_7W zwL%-Ae(vX#5=lj)R6yyRtr|?Se04ID(!8={WB#^lpLgiIbQ+&ML!HPHFTDP8M3vej zC`(b)4)lvRXR}>8W8~glR@DsIsj>wlE&a7e9_m2xBiKsq^DiKihremTVe{Sow`Lt`zl&0s ztTW^RsZ->KC>)hGm}qInUI5!}e`b2{hdtrnfWxTX*EuUgR`yX>oAY6kJ{+nmoUJoA zI(8;-FP$&Q|H3F8GgTi4JoeaQYstnCBi^aus$@yot>Vlr9Hd@vZcW?hPsmztFVpiY zA?lR-27BT_`*k~u<(%GdRnex<)syz_A~Hx@>{zp2du5l7b{Bd~M5o*;WPzo3x5f+G zO6%hb-ZOsbq}Z$_+cJjd?tG!j2uFAeB>KBGyu0= zGnR~lU9VY*Z!awUT+wAWpa0h1X@yqHcdHwHyNSxMu35sZdk`4mE4ni@dvy(_@f2c5 zB*U59fvy8xBQn(rn*cJcgs{(BS!JJJV3oAm=MRwU^JmbaDPnt9%Jz#i=Btkwq>Q~) z#{T0^^w`;$%dnPmV#vVT^uQ(jNMSKZ-f`e#(gxlt18-C7b7kO%9(3So^eECYG{yPq zfLRcz2F!U0W5%h$3;u|g0s(QDoVI2RMG_PXgCx9CM?BSvJRPj144Zc^Mh$EjH*HbZ zUL)VOs}TQ_KDs9y$0jW=sbT2WLChM_5#0NvVTH9fkDdL$>_8IjRjI6XMyfwtG&DWo zH^>kks8VmdV!SxAo$V!5%#c74^a5(SuI~k$LaKOh4Z`<>gE^Lq_LLT3eF_h*3Y`vh zUt2Bkp1d1f0N*j+d>YgIU9k2~oY=2CCI@N%hoqvM22AXRn?H>|I8@H}{n|Jp)y8j~ zHtvu%7CCK59i7~!S)EH8X~x<}%V>r#oHcQLw}xCeWB-of@Wl*EbWivU zmimM>e7c7=^~yjq2X&LoVNhp1)TQ-ssMAA0df5I*at>0_>7k)R z53TAdr-vodgW1~{ylnT%=*;}++ycx#8F+CRA0xJ&SDj7;+QMq3LLlD}r$K<$s|Rs8 zhi;R;>+Yh}MXzD7J94#EzOBM4*>0~TPM)1Zoz2nmZBSf9i}Mkq(X0ORBrL1V>TR*| zY*3RW$_G9CY8?lNttsjR?2fkgwxUg_rZ3!RUpR2QJtSV0(3BW?r{cjprYBMlXxlHz zmd+PU+4i6ydEP@(f_UN02=rC)@jm-T-MV{u+~s^7x?J-L8{hmSK52@m?In5$iV=rx zmy?k@6-$IAE?gp&wN@f`vCUUoKY-qeA^e9J9D9t)3!m`da9OQ}@cDw%!I9_Z!o3Ec zm4z9@pdOO9vEv^++Y}ORI$7v_DRiO~lD9%3^-0e7y)WpL%S=Fzq%1iUe_QSiVaQ72 zNXGF+2gq`UmbcPA-`C^(yzp@k=9>=BmJUN#Go-r&PAeavH+dB+c(A`IA&@jB)=G(A zNC|n>#driJ_v+B1e0_ciV)oW!zTj zOwHTYQbABS=%mqeoyXjCDa3TsO@1O$LE8sA;S8KsnT4&NQki3J)`bL!cQZ?$`|oR(L#W#x0R1i$b867_=?&!h#M-Syh&|1hulLcvxJSkq-XzIv)b8(Inl9_V!__>W~}fn|7s-Ot+AY}E&i>!=j&u#mCAFuR?En~Na|&l zqa+^Z7AKutf4Qf&ukaz_1w|AkD>FLY?cWgo7pgEKP!pvJT}hi-adcV|KJ~#4qpv}Q zRrnjDKj^`cHRmq~774XXDn-3HCqgLwW$QPUirk3I-mnVhveYa3W$SvMb-jR3AXG;R zP0IFH8~-0~?;ajibv^t~GD8?)U`CA?C2G{DXi%d;B@AdLVFCyV6D|pe0j!lyHZkYQNT2t+v{hT8r0e0+>WWh)5L+wNX*`bW#l%C2C~e&)Vlq5~$zj z{k{ME@;o_nF8jXMUVH6z{k2szj0g6^_YVLsMhC%PbJX=)zf4Bg=ElnN3tHi?O{j{l zov0Q?HH;1&eGBV70v;X|5mg^&2Vp5&#}r|ZAo7L+%Z$w?!up~o{%BL@+@;~T!|wbW z@`4iKS=ixb#Adrv!5Au4{gRK9D`;kH_QVw|CFZ^=S~5Z1DRqalVz<$t*zA>oz@vdj zAAK}hQWPzj9xa&}EtwN7K`6Z-TCylwa&@$1d2`8kqa{H#>7@feKu5_+@qeoMDH;-( zbw;h=)e3XWnlYzL4claM*buJ3RssC9NP}T3%|!wgmzTyXKoat5=EtIcRoqq%B%NM90G5xXfB6aB>h!@HChYIBTM0Foc zj+MLAMb}aOT0+Dlu63$!;;?DtFcAL{iv>-7X39kG|L+=nHlSE=!Eb*BWLaXhA^pB` zz*oLDf9qEqk7@0{n$*`}yM^X&3&Vy{z?CgCB>L7xl2VVb6%df)X1;pr4(a8@lz!l? zlp0x^t2>*knsX8&s?O1mIqDX9jFo4n5?@GS(+jKRs!Zw}s&MCnLlqv;I^90nb|fEc ztwUGiQ1>f_*eq)Qhi2Owk1ERC;gu-+rx;V$3{PTyms#BPL+RgyRFm%~N31+I^?0Lx z%t<}U*CYEddU&Zroe=DZ&r~P$LHIPmtEwJ`&SE%`>M5siyoO0dm_zt}x9lR0pD^pp z!H1{S@INU`ellwUrXheTnwsD}_=TzzKl*w@64Uf=iUYbHkxuU(IKDJ#xgTpzMm^J(9D5oI+Uo2OgFLMt*E=k#bzGWmm%X{`K;~ zY~zap8hO1_yx`6PvzZ+i{-<_7Z6w=5eVbF6M6`)i*X-w47*yx1fX7XmluYjmTw zT?7wN-1`axE$UZd*Na+1w7!?0UUuU?Q)PiYp--Jd8H18DAZ&flZf02T!5#hq*_hC) zja)u5d|7agOn`p?e!<(L2ZYRK{!b5RX1p~y6J>H9y`Gtf>D#Mrq=D5=BcmfjN{T33 z=-P-%3(b>DiCiv}OO9NQ=i+YqiB!(~T?G#&QP7b=I6zy%BX2%{f08)8BSVlrkDlXr zJWf8WAx#2qKbBQwGWH|_O?%hOF=k}LuyQ|B;qq3v!ez#coOy(vP)+0DIAy6@?w`V( zN(Vf~+??diu&+ARw13F%DvmAZ=BlM%iAQd*H+J=rualv%jDfr9Vmg?x*Bo9FUFK-o z8@~3}GxapGONI-8obT$x16+yxw9k^pRsap%p?~O|BDkB;Q{VrY=B*%hd{}ZCbsktr z#yX?|r)}lLgNUcdk+%bW-S`eD75ICJ?@8s?|9Z|~J(Gsl(`l1>&_bo6bFGScr6Su< zMUqulv`<&GY0L16dZeOWG2kxa%zpo^nn$xmbNDpQSl`pl5Ln>Qqc`080Syrj?7;?s zq6eVZe9SPQc!pdSP>4T4b=UU=DDj z!Sd~9zD>2G8~gJmaWNp0ch$T@cjlZI-X&$C9spWQW&r3$0O35NEKUu0 zMS}ow1mHb$n2o>$yp#5rfOn_BL+{;#fG0VPx-8*~t;?o)ZNuTASKy%!G?Dnuucr@I zaRkgQ&{dc)_t&@0Iv$rg?i{K^vg$gzbRES<)X^_>AeQLYFn9JE_)95qiH13o@Po0_ zyp`TEXTMw&e_rOSJQpE`tWxgO1^hO(u7#F%ff;P^dnE;$Ek({1?w6cx?>SdM1-dsC zrL7pzk~Kmoo#6Gk>PPC~Ok7uk;`Yy`u*PLGbGx4@pWqWz@Hk4|5ZYTX+?;5* zqa)d*FpJo!x^M^z`j|o%$#6WDi^oc)ig{%E=I^v@4?a_J2|5S%D0P94Y|9E-mq2mr zo@su$=n{B3X6RO{-h0iGjv@a|x>9K8x(UNgF|MXg;0_5FZ0HokWoUrwGbV$OHN5qk z@CNVXQsDuV^`+nqmS?ZgixN0^9zsl(wj2%_WX%|JH#gGA@CXK(B``NPp!V$%wT@i% zI=>9?XqqbhC}>So^SUxwmu=KdR9F1W!>M$KI+I2(Wj$I0I>nefQN8~0u!ZQTIh1%r z-hRScmY}2N=ZSmd`CXpfn_3U;8Q*%AtiWZ~Ab~?QP&-1bMIdoDA)0rsxDSe)wIUd<2^_Y~i}jkph)O0tS2*w2tmtY-(f&z=%%36Jh19H9o}3qBTF^+UaF(Hcksg~ z9@Sha<=dKjD{carIB9PA(ao*D-E8iKH21l?&E|TH^3?9N?#-dL{`xcBR#_KAZQWjJ z+&mH5Wi+#PO(GqqP+{S>ATPH_OukRBzWcuIyD=*Z@@jd0iXt_9IfDFnm8D;;FnqZJ zT9KZqTG!7gS(I0@0ApMZ=MW=MA}YF{{$bDIex~0jS>P>M1Q*n$5Xl1y{rPo401pf^Wd7yWtPbBP!d5HjS1TQJ%QzajeW;SYx zv6B2~eRlwH1QMw`-jkyGZ8iDsd;Li@g$A>23JS>8lHm&UEk?l|_xGP3?yrK&L2ZSy z4xz$&6C(gAXBkyMui0@zmF__p1 zO-qLaF>QSvAP#!vR5=?JSEpw6}%R{;CF^Gh%ouI^K>zJR8Jsgh02 z=xMPr1(Y9pkru*<44}h6SIb0(ss&C5&6$l{*U!ZwxQQiV$jV)k+2lF%3!{=1|>t5Hb=e z?9deN4jvEoFsFErOfkwJeOfvLM11x;J;j2h-j+c2;+G7(3m-oNZPh_;OOu9jQw?KK zol#G(RwZp%`(0az*qlqZ7&tc=z9N^o|KwX_lrPFFUw|llDRB&b+6s~awOIVf=YM3P zKVi6iaT-FQUVUiQD@AM{Bk$?0#q`y_qr;X1d4dmi*~Zk_KGF}SJeHJ$$tIY|P(-q+ zWKk*^JmpTc;#IIYB7Q5ftHyWI9wzMkVU79zU}I#Na2i&*SWt1l6{AF3cN!L$MGmo{ zSD#M*4>0TZ3|4M4D@UiprZ!0B|8)eXK2beAAS|ZP1fy~RNs^N`uoS2W!iWiDc_l-5 zY9p?Sa4cKc{q*@?)DQLe318rV$`s5Zfndv`+ggqkt z#Q!DzQ2Wj?N*5(p3Y8c9C!0IUC!ma@nwJ1TqMVFv~-*dnTj!P8L95+lp0wnI)^_(aEETHkXggF9T_ z52wnM>{k(EA$%7YQ?Sfh7mmc5tM^CNWimkb5TW&Nw^J-egCnE<29#i<{zk#0F@FO- z>tEeFVOihmJO;r-c6W(?|Kx0E zD65zUc_%O2FFBk(d#AUouXay#VY5+oPpnwThjEh^`@+ZSN?{t7|Lm(|ynw2js~_cb^`AWyshfwXA#z7BRwI^0~n-SB1Q`7&#=mi^)oJ5i&U^R)2=A=&p_vvVpcJ1ch z8r9z1L?rICC>42)}1#gU%e)Rsfo$oTn;F&eqoTKEDm zoQI4F`m3;oEZPY96cb55BoeQk>Xw^(k{tw^^nsx3L^vdNy8~)7uZ3Y3oJN7NaW6Pk zaQ=Y$T`dTk9j@N9{;(_))BI!oVL7{oZi*cKdFcGe;rm0iO<%Yh_sfixEb^`)zQZeW zzfEnzlvI3s{)$Io7ThS|1K1FcWkZzln4KS-LXGOV)2MECks8^?z?97NmdtTCw(2}R zqH5s=F(wM3boR^B1{Bm1d35_&tF(=>&DMLQo!gYeJLb>~|8ZY{$1!p^$w!-%qc0*0 zHW_!*YpgrLUc5o8UL$;$ZT(?6zlJj!ZUgHhC~`)YW99#@RYjRp!8>O%F)8&*FXf>= ze9n-Ogl!omELi*~VWH9G?6CcuzUsp627!plhq0K0!2r~3ZWSj1um+1<4g=iwp@$Yw znL>q{RJM|>SRV>FC-reCIFYFueom4I7-G1>PCtK-5N?DzRBN;F+2NMzn%=$zE;>7hRTcQ43G%#R3!I(O?-2x2Ydr zXS_hQ%j$AgiTLVrXqAG!fYJz~6rr-Qg^@fD zM-qI4JAkH|#G5*aL?p2rOLLQ}v*8ycS7*gsqlbb`9n~Mx;^!UFftF?V`ya@ZMtHJuN&q$s+@MooAZtaEKrl;~ z$o6%xRQ3q_S*I`xB=a3)X2lBo7;PdfDNX`2uu+QDlGvuJZ&=xy0ZENfwj@X>lP@Qh z`EZf(5#-%&KAdik{yoRYX%P$`2&v#>l;f;b;qv;Y0Vojc8k>aiNGe@r_Q|$ z1uBVZb1yZUXl4*HO{frfOX+|hl=&ZB9j$r#j}Q=80ic$UrPb*pD*yt7tuBb!A#q8h zXTmUALC6xcyQ}w9U0=!(wX_JOcJqjemZEh&6`Ux0kowQl{q#&IgzlhXMgpqrk6NV> zdOu*IFi;BCGcZ z?YARZxoAEo3!92U<%zQ4H#3je)-L~{-qtMHPfEHuahP=T^kIdHHQb<{%9zXb&cB2O z2ZmVo?V2hKFRS^0X)%ptd#MBZC_|kZF==x*(skG<(9VapKs&=1Bf&P6@c|6V(WrXy z4TgO3W~XWtTP3?7fpwx?m?5~2Nb1ChDe~uQS$X2zSf*8 zcfaB;Xv67`Jp443`?=K3#?(z6H!Dz&CD{s8WH|;0)U~`bW@qNj#s~f?UH!4VN$qM_ zP(*IgV$Yi$YP=oksxWPE)y2W!n)TM?K|KiFmnB2O8bU1E~+A7KQTS}-ZAoKi<&DONckb|6aRGFauf64d~$OEllvJEw{DW@z60 zs@Niq==0Sm$B_Bv$SEHuuP^I&36S+thJAul zd&N}s(8L9_fNcEBxfB}9Arv2FkC(MX9SGjUCx9ZmdYcpE^N*|+{Mh{zRMhzdzS zy*w>}HK{lw?pJFH(b*oc`1-?{k*!WCVvn@x>(3sAn@~C5)E-+mF~P148#k*+ALei# zyaY+tAcI6zTdk5c*vd%4)Jmy@vAps|3b`Ri^mm}{*h5bgYun1?rDn+C((lhcKSGwMYH?uyuPpEj04t*7#!#84IvrZ$WZJw0=L5+HhaZ$i--Bvv;2!NM8Jg zDl!qE4{s$H|Eu4LArq^EVTbQlzaOL+`4WeGoPIjoC2z+ZD`D$-yFz(J?+PPbR-XHr zwzF(dpsf69HhesXCPX%;d*5QE!n4(7B*Xip4FCR03Sn>gp#%+cwd@fTIP&)&vlp}= zz!EELUanoy$iL6*7j|ID{QjzMl8Lfd**^6Zcd{+jTqK+G z*AzUo14m-vAyq)2LeAfie??@xZ!Hdo^PuR6ZA161$1-D!j{iR;7Lr4*$+`~z#&3GG( zG2U2<+y92CC$5Y6(%hwO#YU(1&Du|m>h1#KTW(Xw&G|T4xYo0JlTpgav&Av8+21{N zUEK({(uwh{D#O)^_$Z*77XByM;_o)Lq zc*b2c&nVjyA3?#O#FO~Z>o$7`bGG;(6~oS{uF%C(k6V4-)J*=zh0dOu9r8>)HGFc+ z=R#T@gW6`q^?kLd@hnc90SKNd7*ZlKR$V3|x)1J`2S$WY_TLe ze+yALxO3qzBO5&7RG;vgUwBUMc3uLG$yRUi3zpTZbNx}_qFL;k-2?ZpdOzaO$YBS% zDTh6wGJI>?SZ!M2oR4pf>w^K-Uo19>=~khcJ;_Q~gu!Os1=OD7IEaW(jrEPn^r?YP zl1{kf${xXv<11;JQj?^`z1%@uKKh8doOTUcB6rNMq;vT=N$3K^8eDaAm`UkO74nGe~c5@iRIi}SXGmI^NUo?NOKs^Y87p_*LDSWUCW zYL1N6%o#n&D%dK2k$l<_$z(lf4RT2jqfH}N^5 z=K}!xe0VX;vm7B`dxU|JCjyEF)Qdc+FR&hpY@J|E{(J4_##_zm0pBxbHDZ*6R4PR6GvQvyU_#H4B z2GCoDc5S04Qc*ufou}RO6*|I>sMjJJHFR-|VxcC+0m9ISQv07Ji)AvLc6BiLA)AX;PZ{)x0BL>m!yv@qB4yL`TNv5=tIN3Jwr$ zbcVB~)YUx0)lxd9dB&KQ(y`4m#uCy8>iI3Yi@z3B+2lL~Y~aYn=M?!-G>yisz;349 zH#Q?m01sbg)Rz_YWgBg}DrS{NNZ=W1o9Lp_IQ8xm!;vOEj9imt8|_X(Nc0|v+vB7lH6uru2C`}>YHGcOpN*_8i?L~`9{g4 zsBe<7W8S>zxM-zA&4ELP4f@Vli8G*Hf4MIiE14|ko9~1bz-vXHPjNf6e-?A3Ijxq` z#2F6UAO+MvS-~y1R-HS!c?QiarI|Cv8TiGSk!22bOKDE?jGUIz)0=0U-cou-^NcfE zO3!Sbab`Ub>~>mefqbIpfTq6XKA+ zCDP`J@0fo$Nv>G=Wc4zj0)kl@_x<@}%Y%=sK8pMsUsC$cH{UF5mSGD`%!5z?@%kL0 zkrnFI^EpBkyh;bhqH^Vkmgh&yCz%I%&dwAj%Iv?RdVUe&bI=W_AByo1t3cEpMOUG} z-JcX6o+zn;nO+oTnDDN1h8T0g0&=>a!9l93rY!d}bCGmc$Z2f~WeMLF&XGxtFLYJb zj96+EXN#6m!K;z(9ACq&V{C5!4sq9gCB9PZ#g>^-b$lBgrO)n7evf-oS!T@D>3+$d zWyf8Nqq#_zhe`Xe%~zTMxrTJN53C3Z4ygEx!mZT$J9*e?RjCQr>(i;6O_yF`vgbPV z-uqCk-T_R!U>)F(BH+$gPlJ-D)#X6I;r+kl+>e2Oq2Ed!F<1X^@@?K$AC@LjUINzw5c-^7nDvgUov+X6SGIn?`3->NvW;H71KG(A{ zU2Fn4Yh}okoCo^RAfPvsN_9^w(qulfKY3Q5iiNysF(WbrC7Nf4kuM`e{RP5sQGUT; z*uEVPYKEU~T!|z1F*XF!c;t>2L6&N^pV27+R(UVlHOIqSH?=fp37wPL>@9A?pR!vRM%4CYA$s(tQ%uX7P$R~HPD+$D(M?O z62+mZnAEX~Ex8rtYqpOml@>P>Ani`$#Jtx4VBGlUZAL{w6r9TX@gX*EJ@A^mqV85v zM}FmmA;&O3M3zc3wsBU?>uh^39iQSc*AFX{^KrlcVU@`+YOzM z2j^kq^WHH&Bd$T)N9kCC&sT3grkN5k$Ek@Cp^TX0evr!G2Cw`?4A-*$;oA**siPsk zSTZ?6Y2esvhRf)Pe9r?zNnk@uEeiI+!J^v}Jw1q@Hu1}jQ6dt1B%62QOR^EaJvOOa zhbT+ADwbww3A=Vxypdw@)rVj_pqgLOEkGD9a&-H!7A(K(0enkJ3#7{HXo95EG?@6#e_OIzczk^W6NB(is=;^|rb1_&%HpcjJdN^0|e+S<~g! zEj+jz&*3^P;F~UAIkQijUp|Z5W94n7f1WKgZd%#=K#9BYHprrBKEH3eyXmjY#22Nx zc6ZYg+=0sd_Y{`qx_|fpPqC$$k=xL2*oJn)Xv38jEkl^iY-YDsp9)_jIe%ml)@L7i8?0orsTAiwYf2qdt zYxwWM=9i{EBRMZPXG*(f0dWCfm1galxYVV z9(wEv+&8QD;#M=>_Iz72*6C_-F@2#lW4rn}zx3eo2OpLWU!%X?sn&|_FUlc+%Swk~ zMzU*q6MA3}SdxETLlcHW%v$nN(r$oK3YLE9;h5{O+EKP&Lq*wsLC}YE{rlC4Ry*AM z3T|Wb7he*A8}xpH1#xn9F2Emrkzxa?|82b?30DCX6Jw{q7=;GZ<5qE<7kr$I!`XyO zlKDbD`trc+({O|~kC53y2q4aPZzHj8+SBfD8=|YNvTmm=W-9Uf^XHY!njSh&bD0`X z1KQ3XusHy{M;MUv?Z>BadyKrbef?Qlya&L-`pfBVnqoG?lBb6u8wBslSg@A5rDdbUj52$z%9Y zt+`Kl)ht%=z%BUToAXUL+r+Qr{R?cf$H|=x--oA9b!i<+H}~<(x|=g!mY4`o-Hk=E zuIA12U+HdqlAcVPRWcv#iu2^{g5uc$cjKSnr%fyIO`jL?Oe>o;eZISK3?Jh{ESeoD z;Z6jZoh(9nlj^?AV_6q7VIEohl4N0lzQ@I;!Nh8@Y1=lrie z`y@SdOhkFyO~RmM931W@aXUV&|7;ZbaXXVNTYQD+;T9x?Cd79q+ps#wV8g8&QFG>^ z#1$-rO17l}9B4+qwAU89H&v!b;&zy!X>IR2M|Zh5W$+tmw~y}fzE*oCUY$e7*$>Xh zdoA2mbJn7z!h&bz$N?xHXPWREdTP!{d`!jI+p%@ZIa&Q~9Kk9w@bN^*1R{8(8yOs8 zy%{L9pP3k0I5RhNLd_XV+1J_Q)I|^J9olG5oE&K#oKaY5e7o1QJt}Br7E0@k)1}P{#8-?n{7hCM1F*Rop8FY~`3I`;p zT-Oteql%bL^VME7fN;aHH*`{DEmf9El~{ti4aZ$k$4`pk=zc6Z=qWL74ZH$jZmC}} zvsPPboYp&I=v~9KFG4S2n2=E&FJ}#k9vXGtFR%;3Zqv1=E zNa)Lu?9a+n6=P*F?N>jA76;}KG3{BA!n>4bHCi|~1T7k==0Ed!GBHxk;m6&%Sez0P zWD^w|`mwzYyNSWM5E&qDlnytng?>FM>SU(MrM8-hLe7UyHL>y`ptVIL2MJZZ zk-_26i>rkUsC;hl0*3{tMb8T* zsv1b=&c)sXt3<;1ODc3fW6wKaeg~JWj9L!Gr=a$p3~z@!2kMj^ zqmhr|g}nB8FlT+I(W?cy^5!C1Oc8%cQ$K%7IEgQ+A9R15Y}vw`o7?Ss-!-S*QcVa9 zbm@`()t!%xz}D?9v8i!3Q&kFqt%_9W0Y zz~KS6I4I|dR*f2Oma-Xbl_4dROEV2yVTo%hV8gbokJdW4N^q? z8&RyONe`$;b+MY{+&9vM>*vWejHvkfTCPo1IQju z31+oovs=vuADqCQ#nyc(Ut9_oAxcg$dZ!k!u&O;qf%h_ZV~cc-HYvD*PPGKTjN!D(b@t^pfzp^G>|qeABxUc;B|osn60 zGFg0C-WeW=gsk?W>Sv`P7l(=rZ+d8)Q9y`bBk_9B-!WrA$t z4z7wrkixYW{J+KLDj@y;UfQ3Y)nETF@wv>nTr0|~xLjyZZcMAJBFH+&hA)kq9U9L~ zlYr(DyZo@R4P{edEMEX=^2MH$TMxG;jsZ=2)G569me}mCP|hK=PMNQKVpW}P@}H}8 zs4CH6y^hHcP;#2F!V?#Z_lM(d{7NL#6l(=cZ{^rT3A_=uHfUlX@v`K}Z!dDB6fHFC z(==!D;*KOS-pnf~e7%`HgZ5vFzVd3P^eXf(p~%_otTp4o<_~1(Ep=)Rx{7Ex$BiJ> zhz@H(m9~Wx?Ldszkn^Xh3()!@AfoXVZ9(gy?PCWH!o!(SC!~o9c|xw34Z|QJ&3H%s zd@NaR6VEV`+AFEx%MvqTCQ{lAQF2UVAY>&H#8BIG)&uHl$y(}UPi5bB%oJxEsVbdj zZB}2*GrkU}^oIqUqfCyFdVzIr@p?#so^14TBo3;DB=ED=I@w!H*Cr43vY|JN|6g2X z6tt3<80F=;!Y73NSL%wCd$5_zWZA643ySHdT>XwmN*B(9@D694gP=)btpBOtE0c4X zt5BwdbD6a?KCtAFY%^M-7u>_~C)g`TtJ2&+u#cPM>P*h(LC4E-i+`qImfSIqCm#C9 z6yVKX(#sjqnR*-uV?3q4{6fCso{))?-?;Vs9>2!YY-4p+;u1*0VD8-yQ!efgoWcB5 z73#~Yq{K}+3yA;sy2QtLjI?`D2Kg-fN^r8(il0b%B6HQF|6%gVJkHLuPd%kJ!}tT;5_= z-B{TTq`7s{{Pc}!De_BJsL5sGER!=@kLgta29@IAS%Q>L=IGLZtEEs0A(=(n#OX~7 ziRFxXDF{x%QIUjrLgxe?b}!cZA|Bzyu$gQkmV@XUV0|Nfcm-XoWkZ~7Y8EvstRr!g z>7WzBQ{<_iCkrj8C9(oo?zOAFYzp%W{O%hav!r`hbKPC`%morhLCmLh;j+0crz zKJ}Wh$IoxUeUDMuaFOyTqTJT`*3;OnYl|PP;R@pxqT8 zMIofAJGXWO=~tbBVlj1)A-ZsXv`iV>$QXz&>`@m>mHXH^MPt6c+pxF2=dib-L&x9& zew~t~tXJwa4o2Q08dzUpczMYwl-EDZkt-YhuwGFFMx-Wx`ou&S?lz6xg&S*s^OL_SO^Fr zY_Y|dxVQ>uJHy!+)#^6)5l;`juZ2AUl}lUVl~Tq53wX<8_4|gvcH#bTE;NA5X*O#0 zcG2TKewO{!==9fUekMPz_=%Fe%mv8SoektJ+`sBHS(kj3_1yy`$^-$nx1pyPkEg(P zdkSpJGA+pM6rd{fZx5ePSk@IjUV!mfIf(ll@xPFZm$fGV!~X57$I_-~7}U`pKOX=_ zrQ%agD`+FZL1Ca^R=&nha3gy~EaoAF`t+=xWUxr@9bJeOdO6qxr|UpxSE$Lhx&@>tNixCm;G!Z zy&*$8{S9~;=&fN`sq*UNSjRqV7wZ*h z8VvP}c5hi`?SJYrQG}@dC^1Hg(ruZ;cMFC!?Iq^P2q|Wvz{*mh;ODC)UW8F<)L1H^S%e!Yo-{HW3yO83L`d*KIRudGP~5-Gz22|7dD8xr5qtEpvg@&ng*s)x3c`&`O_7$~ zM+B>i`AebCQ8%vEQFv^fr_krB9St;AI9H>lEk_`W?i;o}jwI;x;6BF^z-RY>+9x%Q z)qA35J;9a4yVy1Ci)C2)%<`x^f!8B8J=3D9;Wk;)KVrm;*&asFJ3BKhJOEM5HEwev z=wrX>b`&m{?5I=V1D0au*@G0da@n5%~}R%9q~n$ zU+;>AdvIoIw23>@9=Y^A3eKc#0F7_MUQ2y%f=M8gq*rbhyzo50mwz+gqWC=!|3o?q z^vrjGnqj&a7kR&`n+kCDuDaBFo1^w3XqkfAyuu1s?b%F@&$$|01gh(Wl%YOq71ZQ| za6lj&e^g2<5J+F;D8%;SqS~o-qYQ81EmHLAd`hXyV;Fr-eCaH~t6kl4SwzlNiv_)h zdnl075G;dNtNRmGG@$Ns+ETD;vNWK?Y`|0`wDrA$v8lNPH$Y~-ei>oC`}9C)044Fo zjGc^an<@u(w zze@hU5u$fft4W9o>H=H1H0ts>Ywa7;uR(W0 zL&sLx0q}q?TpPM}RA?s49lDw+LkSKZ2}cOq1+e=G)gUCTD5KXiE&5VTqDM^BB!Rje z>TL7rYy|w?QdixnwIhv@9NSl&V9aoNOC7ai=CO{20;k2E1G4jLigozdG%HF zHkbEiN9ghtRYgU1<2F&?Xa@(+jk!E|ZOjQFb-Q~5MhEXI?3)oYiUkH_Atn?n9pTOF zK`C8f4K3N6+A?*KV5Oc|I8ecZ{?x&%h8Ba*`ifHlJd-hZviV=SbpGXA6T z+U)7N@&3$;WWM^OL0XwuhE zwF_P<#9?SQ5q{Jk$>H6y>WcY6%u`Y{qSmC{HXgETC$s$>Bx{YW&-X*{J=e_zTF^cH zwTghs{zxdcy^Bkr*s2GHYvKOt6gc3N{x6tZi5t~&t43epGRLZ^^Meksi$#v=s+Om! zI;0`~TdMl=heAnO^`s9nfiI&Tw1Re;D_UJZc9Y1Gxf64IFvr8XOudb6r;DuJZ7K<} z6$%1|$3c+@h6mh@;(jRxIe4Yhd!;K>Xw-6;+y{6I`G2u&IYQDG!3OX<3;p|76&kN8 z8{LyE#V`h3;nxk~0_r1MzPWI(rlxzT$=e^U@E#18!8n*Lxy!oicC)Mb_pN%JT8t_7 zFQSe^(K&}4lpB6t4#$6`@Q2y45>G-;m>Y;m9mt8P1$r&H#7dKbZqMxX9$I~tTAKxg?a1r&cGePcrY)XsZ}WDzXY_jyufia2n_6k^E;9bY zr93*XE5#N>e+?Zr zBti}8h!@7Oq@o@uMyx2g;J=)j7*tlV(|faP^%y~GZ+SP@I`TFr((Qs??82+jTb;%l zC`&qH6*AAPAPIgr(2+;_JPCxkC^LXczfW6cEKfthWjnH8uXZ{BA+mmK12E=J3hA2h~+=ziHg)8 zD9$YSVY6V!!#)f}adLo&#NPuUzXhEwQLT%s4FU?dEb&ODG4Q zD4gRt#BV!P=a^R|+aop-g8L<0jiut2gjWY+%qKj!Yn-EX zvjK{Oiu51}t4?Pi*eI3V>WZk{pR!5H2b-$N-Y?&wh+NB@qpY^+$U#p*HQ^ZM@ z9Q|c?m7oV`S))-tq-SrA+e$}pqf|RIez&CRIYZY|lX^4`$_Okusv2wfSBhyTb}&SpGxFsq_Z?!roy?8hediLWMqsLo zVX0K7|4XJbplZ;4i=%U4Lsk}4`csDW=~@;_yw&>TXp>xtcg{H(Kw< zp~aLqPu@SG-!HV@@3h2C?YX1j$bs=bk+4fE>Kx$?4yvX^M%&F0E&(qj zDAK+ilTaYy*A-KAe3{~xCM8keHL?yi#*T~uCIR^tUWMV1pwdH>1a-?XY?Y=GeMg!k zfbc^R@jJX8?!rPkz^3^Q`*BMD{($cY{d+AVQHyD>ob-e-u|tlcxJc@!D$chOlR@0! zr4%*H3=_-@r@`eVkIoT!@9+_s@TKU`nF?A9eI6LzzRVCJ6Kku+;6x)cHeAwKvI*gC zm=YcrK1oJ%Kp3eO(e}htp|bPJJ>yF=tr$S#H+%irx96_ow3JnQ3TLmM>9bdKsRyO1 z9fUy$jldyzf>3Fq*Id0hOWc=jH>I!$Bs|7#nUQO8V}LMB9N5`$uXS7IG9o-KU6Nex z5Ci~$GI;)hxD$+94EA+#E|A6-gMBlNVr`sKEXFAktIU^U5UUJRl;R0uic&mLOi_xp zDN6AqF-0k!9Q92$il;_>Q;p)HsISNXIZ@vnqc{-t1&rbaQQrci zcu^ETcEwjmeODXB%cH*KM)7x}zV8~v!Kg226yFf_-Cz{2jQUm@#i6J#WE8K7`qmi5 zw?}=q8ygy!r09CN8XFq*y@&m#eYiK7B7& zV}q#IMAysJ*zl0Pm#eYi5q&RLW5eV6UarQ5C-uEtjSU<1yU+5w8~XIUTxHi4Q!1f8I3EKXKn7p|OaKr-1E2sL z00ck))6d*9@yt3?&U`c3%rw)?95cbpE>p|AGO5fc)5%;ik+++Z7hT_|D{j`;JN5N0 zeZ5Ct@6%UvVjj}>kLc^;`ue24Zq(PO^;HHsy51bu!BDhp$`T z%V0&<%P>XP%K$~!%g{vEn}Z^2`$z*9w$PLk-0LBS4ng;}Y=5F>beE9woOs*Cobk;o zIR2VK;`Ke!qgYIIvZ4Fa)$UTo;lvedk~h#tlmH1tAvy_r7-#KWUidZP%v72m>NHtL zrum~zlbuTQ9o-UPZpCh(VD<+wQsD8;ElaXZ;X^% z6Dvpy>8?FG-KsU;lFp;NRyrI~Wx6*VgR4*v;kWR+C1tmDKwTeI_WunXX@F$-3tBaf zqgNev&t^#A*+fmr>L?KbqOBRpUP(^0BsYqwT*<^}Nq!Uyxsu7zlBvX4QMW(%IeM6} z+m=V?F95dZFIo|ue|7WxrTDcGVzcB1!Pq5hg#0YIy}e{*TJ-J)nf<#peBQ0$^KOAp zgHSDZ3&P1-J$!P-q-Dvbli%^@vHpwvy-B`V^YZl|TDlq&NSVe*14k_DI zpOl@={G%_j-@nZ;ruO@^DM#%000yU5wdr<;Z1~y3!)~Y?XmYgPc|Y9C&ibAK`X!D& zM6F+T=qlsD`~XaQoD^^EFTH0sUBEz{4%v~$sNciEOvo3$5*E(mjR5a(|E z4JQkh7xH%>4hisV>1}rx_dYA^E{t<#^m06gKN49p{hYNI;#cnkQ3KP#;*Wy|Ed_`I zglK8(oR3=&RY$?{b~bN05MvL~P46_POAnyC@ghkNYQf+-vr~r~K=%+|+nI?`f`40| zOLDByLc;@A4N1-zG(+03?&QMifz?Beh=D|;I?->Sx>mGNlVPP+QiN6AX1@NqIQ6I`bDH4NDAOB zY**ru5bpCa?S6NfH#|^lZ?1L&3Wr4q@$wy)*d|xI-Hn-4E{WeGF|vNltNnc@D=`nc z$=^5rO4o?PbQ%?l;}MjqO^~1*{Fw`H+v*F5w8A=A)0RG!If$&{8d{2o*DL zr9M)5%X(}7ZYK2_W&5kt#JJSgH!r}n9)6Xq>1}%2PZ-RbQL4RcNaK#BwQ;dP3I*9x z-h|mG?9VGBW&P=~n8@mokpI{TOEMpi!?1JS%Iir&7Ip0y8|<0i44)JC#?=<-SVwFy~I1 zlKvN%dE$3SYw8F9j&80VEn?*#t>#SjPu4agA@~Ds@gFrrgigk#EgDcLA}4X1!e_O- zPJ;>_X)Kz0D9^1rj~1|=%ke`}f6pxDKT?eLgYc|X434%0;)aT`+%AgD4jV~ys@(T% zKKxq4`{^y4U1_4V=-#x)y=gN(Qn8pA8&HSnYiqY-)Rx69olHu@tB%OpY!bcUp5CRS zQcdCN3{P)(%}EI^_a;(pMrAQ_>kVnhQ{9`|cr;Hla@aHVq<40-Q7t*TgH;X?v&P`7M3GEA$O{Yl*`+v zr0s;M##3aDd5ANY*S)R7*{mszW%o;Ar?~wXh#XD}eOFY+mx=d}t0IRpLJK2@ouL4L zR&$aGX!(HGb4;`bFH4{KCWqw(BnJ?K|FgpauG@-+ynxIRU|I+?!Z*g3C-etGLF6#M zhyEDUFSc4ln3-FqpGAY#iC|mBNrJ%iJ9^6@ro0}k`M1mviYm)&)oGE-lcAGo+D-6i zhBxg^`|$8cx)EI?L<7U6ergs=G+ftABJQTzk+KO9V1I{i%+@h_taY`%$ZeptnFdneO=f}a z#)tHCFyp8~Z=z5PfpNaQaytD9W>K!DX5BB9jt%C@lLp0LAeUR(9GoOI$9&G<)w&4} zZMT}x_O5X9ev*28C12Qa8&Z#(^y8}3<74{qyQ#+}@(xA9(!KqV*-z=Oo6>c2&}GCu zrnkmQ&;SztrmEY4yB86VIa|vdJ@dS7Mg{5D9jTN zQP`kpNgJ4@a2~5$qdaJ&Opsljn}Z9RHVEk?YE1~nTVvIEF?DVo>VU=}w^OI~dsL)* z(EX|fzfrFm27@~3HB1&fXoBggnX{ zJH8ZK#wSRy{!1ye^M3yp;yV^kg_Suu|B`;95aJV$`< z5>9kszw$G{3;+=2iTFMEM)gp9_%U`Fl)aW}KZGfKA-skZhL%8mY|+?ag-#cTPbbJ_ zWJ^X|`q=Jwjf`KzLS`JUa%s*}jc59BB!%5$mu)F&;**JgE0T_u0TBOfo z&CNCP!C`f(K=?XN1?3Kmj*>TLCT|9bOs_9$(26BnCZ!$T*6>04s6DM8*wqFO$lw&t z_>RM!qxOhydA|Av9odF$-G@6lX)GSKrP=R_KSPrxe}~^Gf(ghVih&Ty8P(Oi(5<{? zF%qZlM(r){8hu?DQI60|dUe&YL%q8H$X-RZrK=?aX2+ZwGF#haeXy~F&ay~`*#K`M z3uPBr!3j^h-TG7;#ip>#qn-yG z2PJn$P?d}L!rUG|v`w$jZ-&u<>wAP*q_qhOS_{4qdE>j$>K=yqZ1;n$VsIm-OAlV} z;I!Ba2`9@EBYrtVh)1*~9<%$hD_qZHTQtX1*<+V|ZT3BLi%ja)SETPUrC549gde06 zUCGSHzhva0BaFAA3pt6S@rGPgd@Q^x?|o>r7&~#*G}GH9KC|8T;Fp}R&gwdj1+wyP zl2jSUAl!H4a*G_|oZsPSTQ^txxA;BwsDhFIz!{Du?4!-M9o6P1zDgv6_w7U> zcC|w=%1qsMr*1o(oO9onefi6+(v=!>cQ}_SQ$yn+mwFHtV5#j2v$jI3HbL2uqiUN* zZBol}UCVFGVom(Ni`-VRl(k%0KU1qsirnwEQ9bTqP zXcz+K5$f- zms@4F>M|cT%PgYIqWGI69V+t;G}Wa0!l9(hkH(nYpU9B@=BP6N-EVe(pDuH*F7t&3 z@-^;tM_Wj&iIAb9@w=~!{)t(%LD4UXbdX)v-S~!n8GQVxI(|qULEF|RZ1IOlFjQ89 zdAJs2SE9>dV01ZAvz$L3RnFy7PB!HvmV%yGdSIwWYxItAZ!7C|ysD|N{B3yRN$R#V9 zPa?0Ow4dnGpedxZy_EL+QKj7_r7e=yVk)Y>Lvl$eU>!Ot?Sm*0G*w&_DMHAGb zG37D4ZORM-?#aG zfprhUi}Z*tmuTabIP&aRf5)aaL7LmD#3?}8dGO0{nBI$OMP-%RjY(0>7*Vr`d>@=v zra)vTvjs-Zv8k6r_d}!7mtc8tVv!6*)DDl@ z#N@(xufW$7x*BcWcJ~vT=W`hB&%wX(KMLNA^cQiw;5O0(E=q&NIUv`)fw~@muU=naBH4AxE#OJ@2*g@{E3$eg(njR6>H->oeya zAI>5urG9lguOeGh0Xr=S@4IF6^B+!0Spg ztBkbSB3;B)nkO{VndF@(p)bS4DH>3jW<623*(g1y0zaA@Q=z^@W}7KZ5*r2OU{xit z^nfBisM($R?I*w>F2TG9>qgd&F7yx7W*F63Mt!#NcB()bQuF8>=^xFpF}LZC}03=)wrcYeNqv0FJ6aL%N;Q1L_7EiYge4 za>j@C9fmComtjB;cOSaU$yK?@Rj^8?Cj;m{hmIp;Ae@q`1IDq*c{%ZWn2y-mMTWcS zRd=JDVx&5>c+--rvWZyMu(moa?24?tAq_K9`EtF~0xv^qk=p*(dWy|@Ft(C<8rCkg zg-#&w#{!k{qXT&0t8Om6y1lg8hMFhA4BXN31z5<{$mGyXF;o| zZVuS}nO57f&FPy7?7EPqV*o1x^=D77?~H886-D`N^4vz8c0rmce zXo`#mmL-_TdvA)dV5^uiVa~QSplEwQMaklq+Vt>W1^buDVii61AN(GaRTGPk3gPJ4vI6cZ?#8SM+|Brc>tIk z7J+tsnxz+G%PcfT){Qe6$kJjAwv0$3E&Sm! zOnm>b9}1In`2)N{N4<_EVyJQ&|>!QRF}x(Y_pIysX2L@;`(Bk_t5oCa4ewaw2#hL^PZWS@x+(7-Yhd52&Y}6T%?HC(=xUsRt6t zjrPQ-mbOHOx!h9|e+0tLA!&cmyDjC@5s_FXrYvQ`lFj&cwn|_>L}bXC1nDiDM^MdqSfaneYfsMXQKkZXqVU zg_|P@SR-04*jvOvw#A*m;M}4}zhmuZ4BrpoW2R`kFKEf|p=?-+)Apezg^4`Hgj|x-DX;Qxu1N^S(8pPmdYK!#^%v&p^8$N z?rZ-;gFc6MlxonZqvrC<9|P-xa1+%tZeF3zOfu*LH&mFeo&2WE^Pszt3EXeZls~+Ue)E`?uN^V;cdQ+80}8oD%${lyPs&|A>_R^i}%3tLD_; zi@cBDsxk8;hW~NGTp$JtXHOGpXZVE3_nfxK_guEfT>Lc5$Rydi#MsnJeAz~4WH!`) zU=u%3NDGKbsQXu>o9=GRCOs%+FW$=#oNmJljhbY($W?Q8aG%s{BT2)wgW~onbPYBE zb2*f!vDFloJzHBLcCt^ezB1~65gDhBRTv05IvFs65SEE~*8X4?j{&vjpF(73@j`o6 zM8yr4cL8-Zs==bSvIpJH_=D^taO~d5Tlh3AH6#2iV&RhrD}p`z!mh}|eJJFmL1PD? z2lmD0=FU^IaOcuOhr-(h(Zm^-$aUK}B)A*J*emA$pxyt0jc%z5J(})DG50f#yOQCJ z>dHkj#_q=dkl5;>!B$`PV${DoTGknwi_h5)ej&EjUB@rnUAS;xZARVY5I0lwdngW)Vt)4P>Bf&JZ|0Tkj zsvw6KI$o;-!Az_f9}Lp8_*tZ{IV)Hs_a||$X*8jjpm-|-s1R6W@99-C zP@z+yD|OHtbN9l@7zcMWAEId(CssI2#dVF}*oSeo1%6Yv=`ju;UvpB>1~kb+iZa(n zyLvb>rWf^hYYGD&<46)OOO=rq?0MBJ!*7-`*YJ1Od}lFk|4P~<(z3X9YpDC4~=o($>vyD(lKFrK=Vki zaJi2wDp08U@xu^E#5OS*a@U#T-8cdeL!x6k6a(H#%HfFEr9Mi~o)3n-PUhdeq%Y~k*CLIdXtC^wO9 z{aWXfXq~LS2CRJryidW}m*EE|78C3MN$?|3nBGrR(Z`nTAe*)X)FXekHr28-ksWZl z!eD&BG#Hnx>hyR*T1roCaq;bLHUw-KP^a^bdPdO$X-q(T8tzsXJSuiWmH^(``5H($ zgrnIAteKX1dq}PQpI#xx&#pNk_-wm5*Nd4NlitrKt4Z&Jh(%9C{Q1ry2eP(!zC6eL z&&beR$|%WjY~`I%_Dstg4exim8~;dlLI3sR8(&>>n!a27MO#sLan13;9x99flH@II zxvf)M!|zF$o{l+!F7_e9N`{}QQg6f1pdnIlx6E={Y~j9n$-o48@vdMNviyZCI^Jx< zR}Y0B6P1p~pOt}nF;z&F5DI1?!Yh(OUZjwTQpi)fkQdc+WQi~40g-*Af28}4B@8x) z<-ISWD_^#e;x-1VSmSw2GiAjVZqyJkDSo;x;4Zb&agaoJQD>Dp7k-je;nh}!cTwTg zxab!Ofj@eOG_YGI{sC+)EAeD2aW{#J5)-6z#p(-E%6L?%jq=&-$2nF?8I0-D5Am@f ziz@veV0Gc@5tCPEnhua#nZD+=biRR1GZWX#wkO5DjD?q#;(aT{Bczyv8)#6=5@M8I(4#aN@Nxq;nGXo0xf?q{ zd;+1MNl}`7a9nETbHKbnms$yT?qXK`KK1u2VL$BRgRr)YwA2SY-{Ar$@f;t7#7}&m z8=5vO#eVh0o{y4=pYws~uq8g^rciD!=VprBT*A%NBl0}1{(LR^HOrZLutk@(8fG)5 z^oG>JI<(r*8W)bs~-Sh{Ih@C3-qKSxipg}q;0E_#C)O5@@_El6w_H%wjmHc`~ z^oCrA(X+m%pAjGGQRLBn))$zw(h#$`FQb3$<2e@F&vg)!t`%InF8uu!69>5_2J{deb8JCdKC~6zrzIkdnG+kmjzt?AI{zfuFCR! z{6D}^j(YSQlQl{+DpnM>D6GKaHvDtYO7s8%T7tHfJEOK4o&&Z-p##Xn(=lCt-I~=t z)!J%XTTN}1fjXcxwQ^<4EnBW`I&4v~qGFxj`?{a!0G9iFUf-WDInTfQxu5&bbzk@O z|2i+S{(46^r!D#d_nMvyO*5MhN^M?W#oW;8)S@8}U0>MU*(@zh>X}6?R{7j^yMgI-zOm&ZquJ{)x&7d-?Pjg>$pwd%Y9*al{!dCjK9pcuCiEog2szI z50uIJQ&eRU5K!hW;L1pr)CTIe3(+cH45#4kN@aK*vD1ZynMpaOOcLFa456B=fv<2U zo+{7w->LVj!#Y-N!oXB?)Nz}3dc=D9=QLV3NPU2FT`6BZ0)Vtd{4yv{n zGm{$rosC2JCpEnkp3v~gw`#{gusy)bF%K|yYST-hldCg=?RIT5tlAXK zg_r!O!xfV5Rj8+|54-vBF^cv`1aUssHBVTgfpq7cCgEU1qlocJ09B)~Ky_V>@Lg2o zg>%E6hWhx3#$PG|cT%jV=nFB(_IPIMOlSD(T8Nn?AKAKz7FK7Jsx=F2B=nVFmW}nw z{;ZMEC}a7Q$CB(26*g_wz+1xzfJRxuDFRkRi*8pfKLI3GUoT1F!TATM*$V2fghW)zyV4E|swABBV%2`F#Fsv#R&XR3DteUqr$2m9?wk&NCvRN9+cY9t zcDu$f-p7+7^_v_a3?w#1i#93m6e4Coi}axmmQlI$r`AG2&M#5Qf8|LaS#}876fk&Z zMoQH)iJ2It-uEJdgnGYPGaw`ka_Ph`JFS9as+#?U3W`e4{ z7RAoyAhiHG>qLO8D+=rKq3t7#)3Df$m7;;wGLsGR_16$pXBQ1jE*sQg8^s<+OhdIf4u&YDZMy3sDbUp6g$-}5 zZ+n@jbZvXvV<`=9rnc=qs9NVa+d4jPZ+Z?!pQejdWs%!6mvA+RgBsrY*6))%+xE8Y zez7O=W=gvn_0r#SpKJJ(WzG89)%G%WnCc7<&WJEDYQt*Gh2bN@LMzTT*3@N=^gO?U0tf?`aY10y--hVbtf=_@7LU z>!*d~1+P7Z=`Mu%JSkP_g=39xF~`B?5{(AQX^|T~nJ6vNtZS{8g)i&l6nU-|CpeGuB1-?q$E$v7K$f&G)*^(An`0qX}mdZi{1Es zyYYPzIZd6S$24@E^;PSWDSl!h^-n75jXcyqm5#_m(rkyJ8)oQM(L9nJ(o33$Ji{y_ zuGkT)Rfp8~XjPkk(&z21{z)^4OmOpeX@sl+3p}f51T%o&o;#6{B$g;11EPnD-jsoL z?eutUj^;1(wUt8nERb1&jXO^{n4lPicuDY21Y=4aH_r*$n;cvr`1}x5rN&-U!15ET zeZjT%`>!2sK8do0-}j6L2bWE?+2t*_e#7UwYdxV zD*NW0x9WZK89u5x-ZTVwXH@3|_dyW|EM3D#EizY}i4%>sma9hm8Yk!`RH&1IX&OCJ z$dJkVES<@GD>@G_In63E2Ez6+AwXZ3{tQ{aieVK~?iLO2(G-|_a_Rk01nev2r&4~z z(CB^SoWf0uT>Va787Y+g_p2l2>R0|;NSfp1>c?I~u0EQ`^T(+JVq+h3B4V{bQIDYZh;qF_dkHjv-)827Xd?Du2Cb08K5cAxWD zFY1O@tT|}Xmb|arH?q&Vz>32$!BGF8G7+vQu)H?05~Nh^RKyccC&(K1z1?U1PW zUQr8)dK;1-cCqUE4W9uZH8_e zr0!c2MPHGfxLocOeZ`c-<)3(JS=5HkjYf4Be#X4Urc}dL4Fug<-aa|tL)Gm5SO;jv zMpEd3x-v2>`UeyEgJC5g&kjLs*%LcHb(+t=*puDiJ6MZ0!$rPR=R_Y!XSQVi5f@BI zWEmFGRPh}5N?QR|tmS&*emE#WtM;A+@^ttLGpa<)XgL~MW2MeJgGXZaNVE^KND%~+ zupq{KZz9YPt`8MDzX0mPF;}HJ&YF`>ur*u@uW&*bLdGP zA*2)GT}a8oECD}VV8 zSm^4}VI4^=`-_bD#Vi!skB;xxDC5 z=K&NX?Z!dZjh9F=sxdt6u$(n6Cxo`!xZJIN@{@lf@6TYx_&**_{Dxot8IH)+PKUgX zDiy;}+!>RG0@uUfYoEAyd4&)t5^v{%<$A5wWdr~@E8pY`Q`uR`fMvxW5FjlhWaZj1 z4C?xm(7H~r-RC9#u*^F3Bc8TL+qz-L{79o6Ru;)Ne|qbz@mL?=bKFLXzgcN*ei9&l zMVgi&f)k;D*qFLT7rcNklgp17c40t?)i*UpH;Q|$QMe}eb-HB~t`&dImIk@ERS>hW zRS1->7U6I*^tBjxsJWG}k>T{{#sPh=PkuLwSWbNf0cPvg3@EAS#x?wQwPf+je^#fl zbs8teR?(;$Tc_(^5!M-7XX@Vq{X3W6u9o@yChN)<=(_>^yIB7&(Z3=SG`6nLzt`yB zp#Hs{-<3woDh_H9`i1C5k@&T46+=8Vuv{9R#)ND=%(byqyy#SXGK)y7%hTAg8LbR8 zxr!c;t@^XSlki;9l8xntJhOUb4d(L!k~wUYhNuH^B#axSm8$zR>41z(+8-VPEz9Vj z{~K*4$?hV9e>a2AlvMQ`m}3VMN@ug_^!GW~XduW4vz7>U3(a{MV6MYiS%A)zf=9$^ zO8^}FE|Fk>2Le%~Yv=?L+{(pAnO`(lcC3jhpulwT7YnCtDX~-W5s5lwhJ=$aJB@NT z+WLg+s6O%`I;>J@Y{GxEBc4ApU!!SA-)Mr^6X zLE$nMo(H-K@|=RX7$n;Nh%A`K>^2((yf_GaY4ZiBgN^MnG#%!hdpM5U#ZYcka_7!o zeydT}Lu{55s~;rIa5U^(#ETdjc^=r6l+w;pOhPjM8Y8tC&DjAC#~o6v`Vm;f}yi%TayeGFy&u0=?r_CURzT zXFHcbQwkBywn}Z2DhHciU+>vbFh0ex*6AC-NM`^fvQb97dh8NkcPaKUsA66|x}|~{ zJK%s*?`C+;SdXiLYP&6^=Bo_$igz{qsINYn7#2j{3{Qq5vI1l~pBx2}VqggJX))bu z*eQ$I5uPXncNzl%X*-I%C$UmfVJ zdHATV#M2}gk6Dv6L)l%PCZX4b2riYM)A{i>f+aqL%Brb*t`@ zR@K8;cBj-IB_d0>e^U5ZK;oO>`@B#$2ca2arfl9ZVH=AMm8Wi!oDrlt=vXp-GQ6-c4n)cq6@Y&CQ}6DK)q3;81Sd%4!by6*#zSFe3pNP9@jo6cN(;F;*mEHPHOj5ThR zdozMBrsGKUH34qy<6djTV`qd==VeMw!i@c1W#qjHc<{oKsFL{ilHme@g zaO8bN2F?l$kYIwLFC*p|;)byzY9LGiD+Lk;YIPSxOlDvdyn|#|Wrz5gEgP|`aOnK!I zG`~PVe6?Hc!9l>BgL(47lsRrv06rntmHT{^hcVm{ps(K}AXYZ$3phO+)^dmV>^Ytd zHJlN+K`iEyG24I+FK}LV)?U-u+OXzSho?DP-Ys&Klt(%;)n_PbnUkiI|LaSUHPan+ zqa$l_9JP7JR|~0K;B4#^Lcpp&(w-A2SKqtwc>WI1KK{Mo=A7aPmDn^}--t4JLl!+f z)NmubgSI29T4@%L$JpNZ-WqFp>*>uIhwPTu|e8t&h9lf z=%(H(s4TjD88^%0+vQetgDm0rc3o~_bh&1PKz60^5+wPM04z+XgDP`F1LYzGE0Q9C zYaHgSOtE*upYD}(lds=fM&b_$19a>Rz7kB7bzzqIgR_~&*9 zZQ;8hVoj!K!w4!Dv<|uQuWw@FpKSK2ov&Mb^67;9UFZy_!!COQq>6@hlN~faG(KUk zqZUYG%~lH#PW5cBn6T1!+bZUvcKk|1pO{IgFo~MKUp+((a;)Q>&UvRM*kx@{4Z4JG zKrJ=JY|&8MBG5~)&K7}FUyHC2p`{Hwwc%=MMRcp&E{*P#vP^(wlIx|5C86;a3!qL$ zO+^55P2LN2N-}EHQD%yGFldqQ@~Z$|!YZ@JLhETG65=6&Q?cESXlenH453a3y~9?Y zF{qx&*1bA|SuPh!nMGbUsOkY0(|;^i)Hg1Z%qXE`ljsKE)nh4zZbEvN2h>u^_$qrt zVYA$uQjT}#|Aw(nI|0Tp-K{$7dibk>g1F&QRqG?X zcLjP0m)@{#Zv*XFp{~2wrr1Jc_fua(6ehAv@yy=?i)gRNxlmZ@+}*hI)`|07{L)~~ ze$mkyQ4yxGuRrttdkMGVNHnU8kNp$=gR6N_1S+!1$j>6=XZ9-ZHO#PQ znlS73O!uqX2q=G|nP!fe>DcQ3W!^&bPV`WAOt&MP&1Qgy2N@>=s@N-QQ|Js_In+Oy zjNz+W!F{+2&x!c^k|JgO=q0>p(2I_#Pl*5n5O|u!nA5^i$IUf#|0mEZn3lC7$dt*M zk-t0?zF4HqETEAyw4nn>ur=UN<|z0W$AEgrlo<-BH}o-qQ1t|TkNFhl5rvA|T;ggg z@QRoaAr8(LjAOt0D&xrKE;84zGB1sttbJAcg}*#IA9S*2vID*d8C>}7n1`O3RW8<6 zTcOl~dj?cAVf+X4fV^$<#~1VCF7`Y-e~O$<7ETh5ZIBY{={`^~v_ldfs!cP#HFM)N z1+u{BYx)%B3`hoBih5UaC^PbqutLZO1VSPY&6EqZA1&c9%1BR$j!~9sS_|xH&M7d^ zn$4L@1f>BLaLaUAP9){(9u^#1AE<&3u>HM3C&ky}3Mi{YDYXD0V&p0P?b@$2Jhf21 z3t&eCqZtuFbcv#Rk@e9>^%qD>K|paF%=<&qz;&2K0t@0Nw8% z=l6!tQo6M?>Hk?A!gCZn5?~e6wU=%GIAP6lZbU zDpK#OkSPelzr!Yhle?!$HfrH)ua%!GG<$m=x6DWbzp$a@6(#Y8TjUNPb5nu2daleC zpCkK*&ag&O1&YA-#FU1r^kH*DfoJR(!w6_MfMzay4C z{L1a}%38LHAxdI`wLp?_ijeOo^jC0{4U|QV?jlsjge^&hfr)sNHOkFM!4k;QWe(G@ z$(wAT~=EBU_RB}!Od(r7cJ`~Z;nhe2WdsP!% z20@!$<2u4e;w0&YY^u#r*HVte4$d&)t>EDM&4|#|Qde!JdD&VsT?+$*eS&sqlLb-C zDl^-pR6Hj-8{}2$9Z6B*=qhazLcY+|p^_g?3Z47C!gLXLJ=y-|F+^WjBhT*M;XMa} z2o_{WfgRASqws1cdS+8Tp^H!SPrd|Yv zQ3oyAKSW{lsS9bCP#CX|7(1fh_eP6E3;|IIodG#HR*IGN_Bi<_v3ITEOi2vq^9f>+ z_#MwmvyxY*SC4|6fB}Q6{28|OagD3sOiu82r$3$~HO$HwH!CxY%V7L}`$qVh6I79y z&-vJCIl{9g!H#fQ{pz%fLF^m!0&OR8?;?a|%FMA>ismQvPNZ8)`FOdTA(GfBg;3jv zXGi?~LihFw<%7+|fJzcKL*cKEdYV6kNw)gys6EfTOLi#IjeV7n_|S%ur|wqSohI!v zHpq?@ot|BVt5RwA1?VsdN795YdDRa#>qAc@Hm%KRiqzhar#$IHTv;& zlpc?LG~EbrjFOY>s+2pzC*5C&f<7JMEwH zc#8EnFlP=MkM(#=^(a2y&GhD-c7!tet3(A2UN~pb!qyhqm{qp*o$(gAXVE2KcInAN zN~v+y^VH6k42mb&PZlo-sQ0apj5fB;=ZW=z`z7kI^?+AIikWz&Wbq=kbLffCd-jvX zmlgTdDb^DSKcuyFstqR7s&f_v)F+E{hsReZ+s}mwwVp31oOOkIE%7|Xet!ATb9ymf z%^mu(=t`2T-txZX4q|h{Rl}^XfKO-R!%|j=W(`&iT#5Rzv5Av}UPs_fHhWtQ)bOMX zlOvR2>4VC1KPt=@#gk_qf}v4Mi1;$Q6S`AkrfZp%)_wq+nm;#o3fVKPgsZT5_$S{O z#R46EBfd>&h4?m2QEY4AT%C3Kzlo)V=>YosXp7zvD3oq1SVZuToyw%xLhFH?X zx)ndIJ8swZo2QUxOrAeWqcOrb!s$AnvxeI2nM~$G&=_Hx{ z_dS?B6-o4ZEK*0))Pqn8B%p;SPAIUMk;pe$ZIB|Cc%9#yE+;admOzZx)o0On;;&T>e(3S~2R#>zu000|{2QVtUOkFP7qKzl zU~o@got)Ax60D{@|6%Q`QOsgOhoi|=%=+?yBTyG3;+FVVYs1 zZM)59e6h_wtIg=N?PNApyM?eyW#}EqfeM@vB6#>bl34db8J}V`#(KltPm=jq)pCJ- z$T2s@B7@xO7&R>%>&48b9bX*5&0puJT7&FUT7ZFULJ`Ud`MWVh=){V zbpl&8(sIF04d&N*L)pPcAsB+<%M$G7%#Qcg@H>kk32JKM+O;DY5-|->?>!DfBDRf# z6*86!xhIWTm?4c>lxU1r%-L3LvPNJquzaYH&*SV$vI8L!9Hin%ZNyFm+4?2Y0T2dC!N-2C4Uopt0p9Qr#$L1@P(t0V zpYd7G+>ec%m>5}+8pzVWju4z%<|)|t!QJ>?UVjDp-`#b7WOK$Ii<~{DI=TANpnF(U zzUjAChm|%W`}d6_Iy}jirq=_KF(S7HjN-+^aE0(%{14N~*RGjRG`_}Yfx&Mg?Zp&s zV>d%e{o+pbZ&1gBum5!*Lj>MI9w_V;VS65?IzBGEP zRHZ)pI+1kttG21{2pPS+s^=;`B#V`gius4Up?>ivjF+U?a-4V)xZhrq)T;+3@7_OA zG<2@%kvv<%?|5PBU1~L&05n#&cQm!P-YP{$j`y*X0FXkF93x$0I8f(OaImLE7lsAfpkM5KEb?$KV>^&|ds0zp*A` z%8Md?3$7V48Mxu=<=@AAnYso(N~k`pypgI?`QcRDvY#KP+dXJK>{ZDXqwu$4I0f z88SCpmL+Nw1Sm{3`F07hiwM0!qOgCGUzy3$BaS%3fC#c4ZCYQeA8Tpkj4~P*P&j-Z zr9xi=CJXFg$dpAm_^34u4>K|Wb#>hk4kT)z6p*NaN`{IWyfXHeA#fsrU zXeiiaPAGTC?WioaW4Y}qMN=mEGl;x| zNW;{5X%Qu&?>|tk{HzP9;xH2vsn2489Y(G+8rSzw8oA~CSrUob^L#%fxmqhaAc=B= z(|D!>3>BJ8ip%iH(pa;;Uj`K+=K=K_w!B!Xb;r^0tSn(9xH5WIVY^NZyya>7C3ofC zJnl))JxyPe>H3`DfK%jzN{aYl_2rG!>Cr^uy0J=;I{4LuqyAF%sKBgF}te$(AP zD+WtIR=T>0Z^WvYqixUHfW#bq=eRj?sz3h9_Cj_X6cCykmPta@(Dn8^aS8sqNLWUo z2i?;FHC>n$&3QrPsL$3&L$e&1eulHuv8&$2Wo<~roMqeXg)?*#Hg9aMIgYv3qD`hP zG$V4Y7o!3%=1%+K;Y{_*ZdAtr-hSe8RXdjGxLnm>I6?Ywnq|yXN|@-JuA1!)^#olS z!)e&g%1mR>NM28KtnZ7}Ad9-%(b=MhU#%6e*LhgDP`d5k$K7r6p_Z`6t%~$fQe9zzeEd=!JvsmW2PRwH&@Hxv3={K)&hJt8r7x0 z^9Vb`mFBzxiE+NS3tVbN0B?Y)L7al;q;)$UxY=$jtUOcTUw0$=Y9j_ zgjaopvH+az#pquzU15R`F)NXJubv05T6QJ#VDEQsN5hkXu^i!38=e%Dg}ss4s8OrV zml94PM=dFg7%VYEI#at6gvaxNJ+z9Imt4hT(uavBw0n1McrKk_7|(bLpI zVRO4|D$(dP>dDrdCzJaoxAf$8e4e6y@e88kY`ay)i@7Ziu3>V~r|69?c#m8JckmnB zrzgGl25Zuf=_4yAt47So|D3oyMPGI%E`RveI|&sYI9eJZIC?I?G;+@iEvi0Ww@3Z) z3EI9iGLW=(nyFiBy;L0!zLRLPpxO@~(i;JSFYk{j+;sb9VGFwd^-2T2|y;6y*I z?(z>1)|HLmm_yY;)XV;UtU9Tr`U=^wh{SkIQ>j%wkFxp!4kCEv@06{sHVfF;4~Am~ zzQ*Z42K1DjD$uibuG3+as{0EY;!eFG9$c>XP9Pj$5D?E|3t^QGbI2bbp4=WeicRwZ zn;X+mb2`OHJkPeR{2C*i_th=07&6w6jr`PEu>50D{V=)3yy?r-t_=ZC&zD z@V9Pfn(iMc7!@qwt6S@JSaNrBa}!m_iV#1JMuQ8xujup%1LP}nho+u5Iaj2^8`G9h!%tW05=bNbOpWDkb$^{kjjhWA#`49+@+HRd zWyZV}W|y(tYb=+jZPJ{sBzc1m_H3j0arsx?Q*Sf;^1bYYefHeQ@EriBl%Cq7Vt~4aMuv9DW zS47uM2cMkWHwR=F_QEJ(A!B^s*L1|A5&3%P< zkEuTYVC{%>8^boxVmPmu086Z?J9$eJZ@pYMriR#9&N|)_Wmw`30p%Oq(OKU34XjoH zWjw@rfdFnYb^CY@-&lGR>tKM%aafWnPvsZ(8TPKvMjM%=ir%(M8i$DVunHU0ThL2yV38Tf5qv zw<6Ne&M+iJHtD_GT;#=eA$u<(gUOv{-3oTn#!lfhU|S&qR+W%NNMuLatqI7?UbKX5 zbn?7qx@>=Arx5z=v83gpc=&E`0jp>D4LBr;sOa|5h)IAmjd05{sY^2!EivXT(_WN{ zx1)=)0!F2hv_V;a{wQI4rsX^$1%QnQHqanr{EEt((Lz2%Rz&PxM`T5W^uXOUUQqvi zMBY;^p42v26%)D3aofRo)!lP5jfQU^TMzy$}oU{Z>JtQ4^XU95A;&0=i1+yaS37t9eJQOfun}=24pb|4S!EgV? zz|+Q9k=~qAvqKc62uXl!2qV7>_b=>!OjmrBm`oT&i2t0(B$#t``OEom3;-rsuKk0Y zt#YeN^gYC>DFc`~WO0=u4{a2 z^eJ!Y52!a1cPD*{VNC8vfHE3WOs!E4m(SEhZaH!YimH54j zH;%nG=>_Uy=994TneCp4WkYgG5_3DL*y$^F>Ik7pSl7*RB}Ize+Wkkn=h!rwY^=HM z6*3EqAU;B#jk4J80lmQj(OAu;N5If_EtUkGixtjrNsbO2iePW+m~va zcXY#vfP8P?8;k2${ub!wjG#ib{8IEk2UPplM2p~Q61ob~=6Cj`@P;_EZQ@ew9X-um z+`!ny+`m{oz)d+luvl&3R8^PD+-1>Vf(sV(h>qbMU9_Z|M1 z)q>OTzM%vJ{}QXjA1NWGNS!2a5E^##>dbq$(;R>)1c0@EIZ&{FP&FJKw&&J<^WbE3$nEW*vs$tOJ^2 zwnhlSvPEHt<;%h2X6*AtdrW$<*qTM)|bXQd4l%CRrs5&4Fk z$CrAVLkwF**C_e8c#0SoU(Z?Bs8#&(FUhz##F>ijg-+}dNu1!MB4%C>gf>Cc`M!0( z^w{ zrWw#J;!Yy5@-!)amrSx`7S`6QW?4pgN6Y?#v>zIG({bwZ-QtmcWJ93`@4}0hj{rg+g}8((-YrCPHVN12FgDG6$cV9%zxM* zXc>G&dgMkY5vIwot_ZTFIR&;?o&Majeb(rJ2M>kd)8IHO=SQ$x&|UD5+_-QktNeGq zBb*FK#{K7aU_ciqF7L*)DWLp`%Nx7iUikFS9iUHKQ97K!p% zqqFCm{w!nm0?jEY1CvHHPejCbBxRLjGBN^v)HIvV$>|l zuW^M&2?|OwW*6X!QZtt+&lDz)HYClGwLNiGra~$_%#X?*aonczKISn+Sah?ouriNe zi(wQUowP8`w{VK*W)F*|Zj7%m-P7Xalzr|i2uihp;%+K}Uo8&Kd`b4WEQU>`--Yc= z?Uei~x7i)9P5?B5>ZzcUSIFB~5zLU2T32xX1waYOweXa^ zT825G3iJ^W>3K;&2~O5b78s|4=(gVf)=Jt z_8%pmbuh@cNotJ*RboIAXv`=&j9Dx+4I$+bG6-dZ4{1sDx8i}2$QiD}ViuJN1GEtA zW^YD!cI(Z^;vpSh^`QS5gZ{;6V;Z75g5Q29i3GGbMW~) z1G1ooc!R3lsuKnee@pvSV4|`2DBsd-H+DL?uj7^0hYs3o6W9`+WSzGqpgVaO#eYTWLtw19aHwC z!+K9TlCTE1?7(HuX8(4p2NwuyogsA3MET^rJlyH)W{Tu;x1g_zndYKA-zznjz$z6D z)Lvk&U(g))H2p(*f2sQC^ZEFpUD^I2zG&{3aov8sD<6ARgq`Kio({@XPunSwUanrg z-xhOuZjrDsh_@c#P#%qD$P)O`(fx5gAOW*+u=w%6n`+}|d3ge)`;5~9$ z=L+uNXf1*{Rn{W#=_8Ba*a2At(-M~%edljMwG``(^6Yf@Su$ z*w8LW?i-2A8@L?CYPzPKx5eTk6vYsK!p931_f<{NU0#>2yF5;PK&VV(od~9E^a3uh z<4>@gsV%GE`RNVBt~XllDydL&8G4a4bP5IGmF;9ikPFcVKzEo`&Qd~XFj!zh9p~cV z@t^Yasz3Fn{RbT(E*si!0_{m`rvtpruDZy9dfgcLS6CJrKW~jux0brih7ci$j13R-sI8@&N2DxMRZnVW>ZY^BFb;PcRb<`xX12Bi z^8)lf>rQ(PmV4~x1>k4~nDD{3K1NlN-K8`T-!9df^VY`e){p>2-SII4KX2_QX+h_P zG{6k|M=uBC-gJIj@13I0#fD3o*4iy^v#8OD-zxS->VZp~j{Ad0o}t0>rBIh~uNb-6 z5F$9@iHYF0EX;5(QBPw)z;0M2$`_rybqt%l+FBq}fvRc_*0DT^Zj_oy4ldYp9rc^q z)D9{*mE5mVIJz*sOGoHg^1VkLst4s2u^zNRSJ&tzkNgJR^@t5rpp<41Jb6f-`@5ZA zl;<|=ypNutDq_TlJi)1e^k*N%;|)7yR2(6BVs4b7ktc8R1lX}`XygghxXXG`{q?`T zwL9^aG-wp#;=5A@3kikG_GCx9SH%uJvIDf=oV8ZWnBipLL=EAjcj2D@*C3dCeiw%F&55toi{wQxaI&YS1WC!NuYvVOm;oW?* zVaGoJ3r8r^ip1b+6o^JbIKc|g;L~<~37R58kWiHQ=*wOXo&c zSZImiGIt6MX$_jWRTh-G#Zrf5B?kR8YsAgsEJ&H`SIJ;h=9+|`MTz=0B{60YF}@y% zis(+6HDnsspgc>wpJTnRFm{aFr_+FVux-zr}?)@H1{y%0FrBO-qxRUGc-AG>;G^Jr?MEEM?vN2+n#1g z0cSn(G}m#?6aj(MGjEVmdeoN9A)DdQYiJBWt&(StAbrzzqK}PqUyf z-7?6U9Ngq_g(Wu*$;$<~4yt`KS)|g1W>Ez9L@3RMcGi8?hPHtGn6^eQId~?03_dI? zJ<~)hA3Vlsye>l&%)OijR707)mz~=sq{|J7%Tu|uLscR3n#On32e%*@BOPaKEWBJw z(xQx^2Kl5x)_x+mN9_{vv>x`k4LfDd9N}{tc0Qy}GUD3=&Sl|jlM$>=W%bmqi3b*U zwnzzVWd&}tE%O;2fn##ZA?~2o->-hnCOLBTYJI@)LJf_vS0*%#-zA#vt`^x9WSto; zGOWU8&ZVN$X`;q3osA-IOzN4y4MA(bC;q6zte42s+4dUN!%k1Od(+vX-x<05LpG}L zG>a}yQrerMC;W@(lEMEujGlmRM>1rQ({h=_}cRgjXKUyfu zcuA)!WGq0svimTjXG0~4wCIrdroaYk;nHj^T!JMQzn;-p5^Hy!G|SXo?*d;OFIm=* zTooc^Fn0>F+CrY97Qt7(T{Yo4r|+|xA2#e1yyXawmNcQ^71^H|x+D=LbwRls!k$|f z0y`uy<>|UoNfR6rZyQT=VeMyXEM8d5>k*CO!UZud~C+C@{fs;vo<~YYZ~^D5nxJet+DSB8*7nh*zl+wiaIy^f<6M=I-B=$ z8YXW22Mq1^FTQ?rL6UcYI)#3-y$AIB)XE^DhCpv%!$!MK0U1iQR#n=F7uZOMJ~3(| z2t{wp(mw0`V`2a!0z0a+9HC`VL)2_pNnK$oL>Z|w3fy3edG}+ zTFG)~cuG?TW}o>f-bSX72kH*)`(D*KusX3*=8@Sst}8q-&o9m0s}?e%J#SMpbAwUpt{~7g+-NAa!#G5uYKEdi&vhqhWG^9g7zA8s7Nh8abuJ9~a!D&AW;p zH1|IEAbwe}+DRJeS38zYG^HFGM1G4WngZQoMOws`*YMQ+TsguB9|!XNz2R?ZcbrsO z_5`L44fUTpLYFqw_c=mmH#{Y1#Idp~A~-ThD1nHi&(lm>_++#o8!D z`>~rE^!{KQ6@A`hX+JVpCjs@HMY1`tAtKj*?xPMY$^OF^?4obA;3lqftvn^O=?Hy` zy0?y~yZZ}u|J<&7pWb*2WaWzfOipZ-Mc49|g zD#6|S0|3lrrgmkGMueiRFtvMcw1~*n^?m9x9GJ~X(fV{yT_1AN0O{D%$A>&~LPR?D0t}B>)JEmO3M1Uz>OYiEM)hy-fqX_Si0n&vQE`%$m__!C zq{*&(eZ-oPO?uQ`ERq=!+mhIBOQjfI)pcQoBu5l8f~KmAo`~usu(_ZUW+uz(7E$b?-M=0|6mNI0YQEDVMtTsB5MB} zzV)r@c!@UIms~VW=l>Hfn7}@V;lYy#JmEh!u_}#Bkqdg`(XzA>Sf)VyLbVciGTE3r zF;$gyC@`0%#^wTZLtD(Jk6T-e=HUU!#twmJ%E5*+0KyPG$e7srhQ?l@kHEOO&*|t1 z7?0$c_j4SmVCPYRJywNBKZ`tvpz~@fW#R9`vBtHu!o-99A9@5dAH10 zQ*xpOuE@Jd;g5J?&RLt+D&#m8q_m^B7|f`yrqTv`p;rQNe?U?tAS*~j%w=tm)uP-d z8!V8uAa3dv0&VEg2`a_;oj0SOWL?sy@9i&to%vpBF^{MB{1z3W<-EXG*s<@a`UG%xrl}j3w+roxdS#lWuIrk6C#HGVlY9u@a<+L zUd8}bez-S0wm~LFTYl!YH`GsJ`{}bVfv5Q@)*vk^((M4+G&b-w&9!cS4o2_E<2#V$B3-td9{6e%xA?Ce!Ip#~_w* z1E3fnBgx+5Ft*T}9K@ci$)dw1g5M)%iV&J*=_7W%WB=E#R{@OM$QvgSnbBi1qpIgz zX(`;6|JaCK@Ha$d(F4vdNDBD>w_WhU_7 z2<#&t)20j-)yhWM=GO#^XIozdurnZCTQp>QenJZLBQD!a_dLCb44t0f90^LQ}3LV@)6e8X@;E zRsFJK)JZr-kxp3c6z~$Cs6NXligha{#lucO0owyeLIxcW7oc0@4X9E4e{7!~b5;;3 z!!;u%4X0R=g={I$I_ofnye2|gT3wy4Ivz!S1Ah1ly5abRRLM`by7Mo6fUNA+ zdO}0>^$R(AEa|HcF6bVK=4Dv^?z$ z{Ek5ti?A5-suC<@E&ZyV4{5fjC(sw8?CnbGrUDUf*uqInwTh2*d|L$vhhNlSB>a@`eWoLcaJ%LNV>F}>p)dEVYx%YwBTcSX_7v2{L^UqxjeVfU z_io%0+`^JesKtc6<-|vZ<#WRCG8M-?fB#osem-Nw`!D_<&wn@KIn@uz=ff^7pvU&V z9;ahfbE~z5oR50)>|pwzhfHv8{E_WIP{6%_`s-X|+@hF#7 zJS)}|zK_=lF?6b3?*-I*-pG2-IKJNIM7x*F2h>6?l__skKafY-4gbl9E#F8QJYRoeDk6&fAhyT5m7!>t5O&>pfxfu zzV3VE2`fHl8F_zR0a|zO*kK*It;1pK&}$tWuj(RR>yT+3rdx-Z)*)aWR#=CSb;vOF zd#(Cv(>rG`bNq|HfAcrUUkYCz%il!)()l}`zq9!}pTFt+`S_d7p9Vaa8VAmwk1Oh^ zd#G;dO3x3vJy$*Vp{Hv6eO!O&S=RBPXIi@kOR)yPP9yA{nNsVTIV$9wIVSAI&U5!n zXJ}yNs9Gl@-1k^g0?{xU5D`S+&^Iig689pRgma=2V$LN5iLc?av9(0Os-87+GR|IO zO~&p(aB*TTnrGW^_0VGS#vYd*Ps2bm;9^B}(WnmV+gb6Ik%3WlW5FRS4VN@cnoGw4 z3ad*HAK({k7D0@nIK?CvBT`95q(y=EAOv6o;2b=GYYYM)k*JA92yxyA)$JnFDRf8H zqF!X@Q)cu1_=M6pI+{y5y9=+nn|?O!nXl0Xj%i@ne$-ZO?7@T-9E{ zTn99xc%I50Xwl?qRrCHvlp>x2zR;yK~uk9)2qDkI8ge&Kog@z?rw z!Dos3aIrqFJ`9eXj<#8@*ibw2-qPW!4m)JeGRg<9&~f{=#+g7p_Nr;X36D z*Um3oy98jgm|n*9UfN$Rb`-fBps?h{xL{nDZmuwv7NtZ0g`1l3Ns(m}QGv(XN- z+-)8{s|t^6I2iLn-}JwPPBlY+As(fidZ1Zqomk|DW^ft)5ME*^Q2&^e0TG+AovQR3 zh|>=|--IoxH0w)&`o*A3P2H_&7Q>3te^h1;=^^xEhbS?`3PEcxU(ocfrMqfVOu4kQXJw{rj@AV`LY$Lw?2#7n2ZF~P%pLywTqV< zzNLQBgr~pQ@!C2Zbq!;X+g@D|zzHzGz7Ue%TI0DaW-ks8+ywTp{7MW$8S`pBL~ z__B=<1o#>GE!;`aBaJ^lp5BoAl<68RwMv4x6(b4=loW%Z1W*v>5U5mONn*w5_>g3` zQ<`y!7+k zfFNO#F=QhTpqs`S4M z?-Kh{8}#sstl=_5Q;FeycX)X9CSA1ZM8o^58TRm&J}SfeQ+=t2_v^Nq_t$Fh$U37u zy2_nb>Y z4^Pzock}J`-}Z>K|8;$-+ds>0|FwWsY`We4@OiW!A4dU^8#gKqyt6gg7iV zN?mj+$9XtRxrT!#*prT@#n9ZyE&3;kS5bnc5kfZ0EYOZ%c46yzWA7fBzj7=R-vU)709xnZ7mzkkWk-PRhjFt7E3Dj*UOCL`B!IKmzK+ zJi0w1W9rt{3et(G|D>1*K{j)o$;q%v^$uBSe zvC>g7tbP2KGQXc)DwleGFRDgA`E-$#QFI|>n%E#sEtJmAbD=qz zc5~)Ru*~o`H3MLwVcq<_PIYFYQO9B8^_SRFk)@lpN?+opE@DbOGM_OrHWC#~ISd~f zOAc)hR>%#uhr53=0#$|ue;LR_6Y%lW7vLj$-HG7i-HYu;-S!K;{`IAXkING4pH{_Y zwgudhK9o)2y6$vy?uB08+zZpf7ks{Z#$RgQWl^#s%>_AL--4VpNVmB;E@H$X-^Rc- zJQgz;Ef$l&ys`d~@MGbB-LoP5kM?N@|J(VYAf^-eK;v_fP)Rm*2^x;fm_I9a$Od_L zXurIY0a>$t7@{E&>s3;I%zM!r276-;exTC~uex5P!91Z@5tajxMl^skPJvL@u?q(Y1HWFuJX6G*r>>Ee9JAfWO>{p0CcOcJu-GZHL=N z&)6NxZ&-)5{Dnj;G7rFc(VfKR^a(qyjpCX41m0IgX&TA5P91_)`X+O!{xawPAwbl3 ze)Rt%K-6zVDLWh>iVurne?_&^4&&7SFF1=4VVthNkqs7GFe{AHSGH?LV2C(3C#IC8 zm76y>Cxz2}H#o7AbowUZ8T)+P{6N?VtdJ!io#lQp3vhO0gpC~ua9wK$aIndIb~mx> z9$#ZUT|MHdnKW*ebA;WsIWgP%=w$s-G{=0jHj#WP&BW8F3@-WjuM_BXsoUILzNNyv z(UrT){5bc6><=U{=HQx(o-CN{ajbXx-mfK{2Kq;J{{y&9?h2nA2+EVv3YGB_v0V;6 z3ZjgCgXPuSzV?DACG@C%E7N-Gx}mq^32(i-MZfigyp>v75qz2xVI^xu^#WWlB*S|e zn_{tZceO)*5ML1FmCNqWC$Iu?#12W^wcEs2&zhM=ab9b2mN9FwQ5HDj~r&09A&@M|R0^%1GW zHc!|0BpgudW)X>tG#2}6gsgUQDsw{B@P#F-O;-bT!W6kxA4jpSR2*eT*eDfYUCAh^ z7q27<`bPPh>eQ#wAoUcd=0<7laIMjeN9EDwx|DQK-JwsV_o_{w%Fw9w`m{k#Lvp%s zjSfNhmJ)t;$NvXR3*TTW3i#rj-Uw^5(W99pJX=-+aRCqsr ztv_yU->r<_uzubw!`Dar;7UosbC4aZ>}jL&=@N<7!&cUgOZFahBZ^5p*2SjqL#9)l zq4ye<-MHZ3nreiPR5ZWjX%Y~NeCqVvykCm265n;2dFWTMCnk7XV_b5#c{coxhZSnf zUFdxKqRndX=Kt6$(AW%W(AiRwI~d9BQ_oaii0<8 zb1C)N_23zP=Obwj3GR^`u8xNfN`@R1(*d;w)Dfv4@N&V(c;;}=dI$5w-BMLL`kqro zQGMDHz(;>Dpx$h!vYrnZt>F(`tUn-1LjPgaSHX<<4-;%4yf?qHwXQS&XVT!homP1U z23w4yY76z4;UkcAN6q?n^JUZjboKynU{vm-7V++o88IpknGz>Ed~M_tXU%$Zbfm{A zA~F9C>S3gP-8I#LQZa{&`X3|l&jeAxAB+|~CPwf%^eiQOD4=?$;d6m*#0`fn{V9?r zhL7;+l<@+TnZEbMsBK9upH{7?}QUh6I!73IX!vRg!P} zlC@gG)wWv#!p!CVkhDh(`$45*R!0m+LvmgiWJ#Fg%uXSoqqyr{{Ty3=ZtQCaFZPwI z)s1h*)$4zfxGJ(-4j`KV=t)@ta}nuG_pNq@UrG32i@Y$>yLJS?BK2S^Dk9k3 zvDfn-#_(rqg^6iDnRRfNKWO;7Nuom#5a788#rYm=`qcI3d>HRp3dppj%vmJhET&nI z7lwZmL+@!4PclwIHFDKl$dy@kSb$snG9z)f=jMy#-W*rtJtEvY&D_Xtw|PMxCFmcZ^!uMei7pZ>&8-irY3k)(*YEd>@R1x;9!EJcuF+0D--qZ~5=@GIx5+_me zAx_Mc$a|>qj$$%m`0r*ABfIG(O}vNgJe$ax5+u_s>dxNZ@kxrWJ9H*KYEgd^)~g79 za7rWDlA0dnt3^%fup}N1lazw2Yq~r*cePn|C_k+eEm>K6{^CwjhaC!~7Wg`9-id@l`&p$gd1 z=|7l+|I->Qh4!cg(w3sZHvhrg7ogEp@{flgDAGG^W94#dT$7+%7o6i%9tmDm5kuGnF>$+WticH?mPYNZc zE2Dko9(G)6i&r$u0EHcM+Q#a?2aTHeHHE#p%oN9#Ag85*r4d~>+XxFQcl6B=Q>bok0av|i~$$P#)29*cb& zJNwWii3E|1jRomFXE_OH;)*THp1{J!JhTy0&iLseB;HH0&Lu3*hbtsKE`Cg|3bn=0 z0Pt=fRx|`Sad+ZhW-MSeV{=cO4oPbGJzi(Qu~Amw1vUTb!T9p464XG`i%)?UtoFPGckrm(U90pcF2PtaLeaZ`9sm zmf*@vj2HASlW8NK*RfNs9B8eKn{cHI&f#TZx%R6!z9(be?>o5q9P@x!?G~zi)~)Pa zXa;-((fI?D+f!aWt0RT&hb^tY&5y+H^Ty8`7@FGD-1Z&`cu=CoZlp^xlhL9hD0}+V zt724>Agxf~CB#AHy^9QM81Gm(HzCCCJQvy=ktM(<&qg6c!ILx?n-{k-yx@7b*o zN*((&Zlx4v1~6+>rS{jw)KZM&-X>_gtOCBi${B9VtBi*xOB@TWbfErQhwIm7iWD7g z?Nx1Jll*xsg=3`FZvEY7N7~y=%%2 z52aS9B^sD^TQUVC#ht`?u_Qm1$VlL|It?L%X;&%siqv)VRJK6Efru7yqLEaEZRqF{ zRgS&8tyPQkt{L9)Fp%x?w+^rbg`|lV-ELIg(ptGmT{Xx$0B`$S1s`$Sf4ArwQXyw$ zi1I2og+2L|kA+dm-@+@#=vcBbm2&DPUd*q&MKtTTM2l`wf4vj(3qPMuy_dAM4ece7 z-X$ZN!E({M$M6&MB8q=JRQ_Y?O&E{JO=(_pH(L1=k#V)pAv@@lfZDqUur18YC5>t5 zlKs^Dy3cB(kW2C!zcvpWXg>#iBc=2 zRMldDy*(KJz-98jD=0WmJ6+o^U4Jz4xid{M1Ked zfGX~w3eWZw_``r&1usL~Gk!^UevM~))nZDJ`czGk&g>;&Fey)N{s)iEH;np&M&;rB z%A>U_HQ_C-`4gpz4njwH!6@e3Zmisocv>`D7bQwmXH`XV=tRW#WVkriDm99LkFp zW|xTc9?*Y3HX9$@JkI{93HKHzTSOt1)Qsgo~o!tzvJA)EFPgty= zmsts@IT(a$0}pFPHrVfXU(SqV$BKd(Qc8;F=;Ap@CgEOUAf&^A;Eqh0ScZ`2dHVT} z^mD);@|g`J&#vx9sqVDpJ+i-9`$a@#g`(+%7Eagl4D{z@NIkSBo@f4Nz z&9~!ZI4x%;817GWbEjZfi*B}Dy}FbQcPJ!2ilOYJj)9bXgmj+9dKYa!y>4t}&;6VT zN>Cp>XYuDOaNbwXASJM)hcxzH0~if2Q`4U(tj}}__*w5o;BdE5*{Xi+c9MqMGLN$* zHx=s7W98;T$qq0qZ80Z^If|FE{#yhZ(#-n1C1#m_Q*L{69Dcvc-z}uJXYRq)$|oco zNV6z&BqB)J-9~eO^Zd$;&^1y2J%G&=wPq?jXVkxsi!^nebpg}8>bCbaFcduzQ1$0q zkhF8Y9QUbh`go7}4aZ1*w>MhEclLPZaNrYB`JDA3tWnKw+aQQ-!%Gb4O>{Wwza7kG z6x|+;E~YHpyu3mqFfw~CN-TE&G>w8pZXtZ#W(H8Rbf?QneO40I?8)lA?^=TRb5WPn z2G;;{(da$!F6yHaOSt`j2E(gP69Q0DNvD|p)`ydOZl)3u{jtUSkLr$N@>|)@hPMgV zG-+7nk$5<#wQ^tl4E{nAT9rfa$?pWv>EU z7=F|K+!m>m&z+zP>*SGu%JE&$J^!|@ZMcoGTQ!+GLYM;O0V>Hb$y8CFneR`lJqbx* z-V~P1pBMpR!KBr^kL^`tAnu6>;7O+9B0vgwXgswy&IWx<1+VOlSF;thg8+`H$6-vw zU`UwSboC%tHn5fotRj>^q6Ms$8h(TZJIE#J-vi2#rE64n2h_MWS-qPO7#RLNrXP~0 zTUMBw#McCph3`JsLLxU{O)5f;)wc-X9aC3x{TQMP+ja5hjTYdsEyU=ypiH7+S5#*# zuTYcWJ*qK6->*uAD=BiRS70xzy;tFt@JfDF8idZt9V)#wdFaaQ=uqC)*-6LUaJA0H zM%F4nx^;dEw)ZZ=$}yh%t(ydUOv9E+hbn{UwW5_F6SbaR!dPbyRHSt3OBzvzo(&H(-q^oxF2VkF%292kI?XyPunyN-hg+<}W7gr2br`e`nQ!X%=30kqtV5G^ zc-T60TZcaDkp6f5LV`8%Dzv-vxpzv=wV=I=880{m6*SH<78{9VuAYW{ru{fNIt{xtArj@$?dnu#er z#vUsDtMIBtN62?akV~gJG;g%}qU*1M)-A zSDB6K)ZihIje4Bo)n_cxDHyO}?az$|g5~}a)bOH`H|ht~Gkg!)LImg4X9SPPOY7vN zGndC|L>!8AFn?TVW%fApRXFr)e}Bg($sGg9z7B(|!=5`jc=w{F=Lo=!mC`OVx8rDX zN?&}sOD#UoANS!tLbh+$Qp)k>Y~K6-IC~fPD2waydqbA6NMIL@ih?yNRTQ+5YcNq0 zLlRU18;}GP0$Rm2wn}9eP`Ly*V3x-PY_Y|bTCHeNX~l|wZN&sIiGqNLib@qL=){dS z2ttsQ{eREQvzGv^zxU%(Ad?#yZ+?+9s@S9%&cRDqH31FrGnSHAJ! zGb_wpFUPHhG@@ofC?@d zLp3l|Cd=oxe+Y481Y0u$ZqaaSidh8iUrwPRY!p9?0=LcrTGEDkSN(WaGO;v|Xa^yo z#B>rMe2rWK*enn|*Mtk#c+1uG>rwBv2pJysPawDGQCbC-qVmdoIW$%}>8V}-EmM2+ zr+SqUpM=0n0=477{E?KYT9r4}yxonZGkuC<*zkE-lR)g#lLNpHw<;K^H zUN5~8&_arsR9=;!#Zn=~guJEDEX9d&@6}1fbCGEm>Yz=Xx!v~%|=|uW@c}d%%xvW6IV(Jt(2~QbthXc=FM26zBlI> zT)T}B-=r6MY?BH%3}h>Jsrh``Ic4=?!h#+ZZH5br%anfkx#vvpoS*Yn;GmfJ+gADn zZc5A=h2g=nGq4gKguKX|?7{yXB_8*#<#!*+N}c8m&LP9Y9CS!ZeLh8G7RI2|B0Zm+ z2XDvolgQ?X9&hkgU@udD=bPNQZc~>L5j9+#G9a2$;Bw=~IQvlGIp2hYl4O%K$W(~VmQ8}qx$S@_dku?t%);|-CH7JOsJK$V7t3oV9+M42B1Xgr1ahxR0dhq`Wg!^ebvoYA z^qvqkIB-{sRjDY|ta{|0w5sf@+|`nXU8~m`?-10WP}rlUv5ZW_-dA}`7+pMWZ4~{H zQU*oK_{N^5ItR#=5R=HvA*};C;F1j>M(sQ1V<=RN6FL-XKIe-%--jo|308sM~#zf z|Jt~SICqAb2EFR_ePX%V=%r`POEx) zvWQ$rYU?d?&yXxy(+IS22$Oe?o5jw^X+sMSq4gtt-D$ykS56>3@ES)jh`9M>k!0J{ z^#Bt~$ZXWwN&JkJq3_lhr8woV&tA>|xiy4t{`u1{qUGw3|3OoSM zKRpRqN%X3(VL3jeYs_tLa8!-qo-5BOHvHj2MEaHoz}yTlw^{AIS8&kC*Bp-fU~c&) zjk(MLwe~*j6|bLd=B^=4^}Xr~b6?91ra&v0{aTjZa5AQJcI$bpLzyUS2_87xDqtb?YKV)I%{Jbx|i=c0a^F* zj#$(4E8s9T1bbO#F$h}HPX)n6HUtGg01Accj_x5q?NeFusH9PyO}jGBxC+aO{Vsoe zq9wr)NkR+7gCM3@yX!qH1KAT|UNpEPpcM1SMZP$HwTT;tTKX1e`ticz^zL`6BDcPo zROCbh{z_eD+ck7*2SkN8O}9T@_6?@sBJVyAqGIyyt@kG6U3pzz>7ztXc?z(nm9YWb z3452@7Ll1c1veZL=nY1QT+*lpq_L26q-pzPKp^3x!Pj*$?I1G=``Fg{hXr>M5`#EX zhjzTfnH0t!UMJ|qq@z{MzF6~TdAL}HfMY9vRdWYW1K-UrXEHgCs*4#U2M)IT-w4(# zLft0`g0UcccMe>Dj8l^E$vIEu9G_LD4ou*JKb6)R<@0@s=Eoh zAaR#^_HK~OvVOZ#_(!_6Sf-l*^4rxsaE%7s2FFT~$*!*wGBF{tC1}{p^9Jl3+C6ag z(9%9^Go`%)r)8J+^LNZHy&NwwlT#>h+%f0NB*}}-1&<^}TEfZdvNPMFWWPiDA_hvh z7!GkLT-;0eL|QOgdwl|vSM6Y{GVKW~%Oxhc@fB4J4KAb(SE=FE;nHL)ehF7Hmpy{r@*>CqG7!)4y!K#>nwb^ zY*=pmXRDT;f+@B8Czm<@ec`NKAahxcfD zvN;vM^j<=Yu1aRSh%Na9f)Qpk{4We^n;K5gT{a(&8KGRKR5WdXPuT%SM;r-UrJf?h z7Zi9I#XaWh`Fy>EuL#{_xKLfp*Uk+^BbHM)(n-F6w&?T`y!|s1-afuxoVC&)CnpL9 zpVjCV*17malT0i;#}mAkT#p1ZM@c+AL%GD>u{G-N9-NZFi9iC?a=0dV1lvse0m}G3 zKcsKaudLdjDbC+V;^*ajrEkT$0M%aezI$wFct=_(m!S7js~cbv<#u}d-(||g8S*dsBDW2uHEc_%sFPE{ys^18 zc&6`Q^FY0y%VAW4@35zYY5@eOHtt8R-I3K; zpkx(F_UV4i)HV8NpkuHx8tDZQlTnwH+}1WLj~&YvWhF$U&-UjOz>)mKU~zd2T^OVa-Dy1(*;6?iUkTWH!X8WFidpBmdF`U9)FFG3~5A}wI4@iwFObjwUlK-REX(lTQ;61=lNU( zY>RWLu9vgzx|BXh$1qt*^gsK_!XZQ-M{$f6Xl{voL2OFpa}SSbFqGF(rCqP0{75@eAm&Tc~K5l|K_N4r`u-J{32PdD_9EsE@k7MM~5ZmO$$LZXhG zCBvHx&k-x_&9uMja!V+rn(EB^=1$LL59@!8@`YGRonT z809v#id6<=^$XshCI)m$@jNle)%zHvi26b!1MS1wfs#`@9A#||-HCdwhgJ$Ztea&(l%-I+}oz%F}+6U*+3b8C;++6E@V zEdI|u&uQ256C8U_=oyD(F+n+MJuIAmVbvE-EmK^lITxBsd;lb~Q(=1F_v^mzFglu5 zrdpQgO4KgUF9__(qL7{OvcIBYgTWzr*RNu@W4RRJss`56t#2JSO`Hj?tJ2ADhu33Q ziNz6lt;zP`eB2^K4aW(GmA(u#F!oZgU~M0*(nLTiau(PvVEDWNLhP|ZFf!@f+KS_~ z+SM}M7SFBx-kYo{S(BS$^7`eQ7FIoz{GcBXWNF(ato+PPR^H4_TS>pm@Ez{?zk(2m z`)zffzY`HTKg%i|xXF5`ig(s8W&OtAWLu@Vyb%`*>z9w{H~Nr3(h{H$h9DcgY$XH& zNl_(FMzKoWC$dI;{Q@0-m2zf5To!FC6=i-jBG&k(cWCyo{Y%UzptP)EbKd zB@0@oY3M}wG?ve4|_=67Px402M!lzel|9(FT5lpl6 zr}hGkG0xKdktq7)d`424DJ!_Nw80@ZyPO^g+LeOiTpJTpG;O5;E9qmDSmI&uPK2JsU z#OX_bd-_w|o&PsP@6q)pSZB~nwKco>r^aw4Du26QUW>!5bZuWkw-$dy*~r zGro4VuShihNV~>uEfC`3kN$7~o=&Klj44*?l$;{ZeO*}hcH|hzc^W+Pd(Ns}&lJ+g zp$4+L;2;~k&FL6jHYIeLEcLs7M+;m@5*^M}pXZFlwkJg`Ne-+!K@;pn*oXwP6TWuY z00J(4+>mzr7Z6O5v-g*f<)TbZNDW1y?{ zt^BQdqD_ByP%-p`lfS|BLKi7xIGookaOuY${WnAZ?V!R*FwTCWRw}%>nBTvauecOl=RERJ&z%?T7_Cr%7`ybCkc0Ckm$~6*lq^JrJ@jaFtI(DDQ!dus#TiJ7t7UBk(if53kJm0Y4!){WM(L8Ka=WcElQq?Mj9w0TD7G#SR ze9L+}pdK1_G+K4_7~T6Ig6DMz`~<3AVVe1Ft8V5z8$4?px&PJ*XpxRS;Y{jDRP1^| z+xvFxgZ6{XnTg9+4wu;Og45v(8JAdh?nQRp=WBsA;2FemAKo22o>qD5xXSGDB*uWb z>YIv-pcuJs*n`d~rl-t=wnPw3G7!=ICEdq~gIHN*PsrC~koVOpcv8teok{-k^J%My zXk5cHs$MnZ(p93<=*;rjcD}c}O@{;CRxd$k=4=!joz~Am{7LlInJ^IugOG--#Sv(E zDw5#~=cgO4S6Z4t3LA$AvmA@d!%ql<7R&Pu!nLCVFcOIlQA7UPDu`hwFSfe$bz5Vc zJV-wwk0cgBvWB_q5*H4 zed**K317tNtP3+!Cr(h+Y<)2z{)o`9{~mk$3S?Ji4tUeo@2eLaH8=y8aLv6h<{CL& zW@KbWY@Xy)Md31@$zYDRg-XQSTm;u@PZ8gq7<8cglb7+lT((hIF z@_Fej@@Qgi<(sSz_#1KC^5QI|pTO+zMn`H2I?M4jg`Nm9yoZge7sSAGdyDtTf|DFo zi8l4{)03wDdUB&38ZBcG!D_(Ua>#I~A{)Xa$~JABh(1H#=OpNRMG}3N^!h*0w{@;w zP|)`~(mtjHK>4Ms*2I=W@ z08FxT>PvzK$m)Nwo)+$rBR{gPi&Ng|B9%TQ1dU`AdPr8TCYlO$rVU*3+zFV_3sOun ze?k&ZnI{ZDq_vaaH}rIVVt!po^zpL>u#U^5p3P>zQ1A0EUoGTpv|ekCq*c zX$fS;CgVI`9|n~?8NC@;B-@UC>aGqkcjBc!BB-1MW$!4PqI-TdPf?iY?aEIBUUds$ zX+&%L1Jiiv*|dJW*(MBoa|G66NSHDmRSm&=*#3s=_HN&dzThvsk&t#Z^F-K(+f?X?3fo_aodCD!wfr1`j9p!%Wp ze0N4{K3*z4nc{x1zg%I$w!HP4OzjW#ckB$^U;kQmq-#&=QTOLbYz{C)a*K{3GDNHJ zxv9g;t(hZ?1+pYDAaS^}@B5qxdVbnYTJmDfDe}MGbPc}W^_tPO-*Qhqz6%rh#925# zzJCg;erS9>&G;DIt#*$lVywt5q8m_ug#XE~7Rd?Fc$zPIP)pbP(t>dyv13(JU)YkO zHjx>T3%M3aJA`Z|CuatgxKf!{m(4L{ViU1&#g~txHmopQvP<28E{*H9hQhWqXc;EN zJv^Sd`@fM>_aW>YLc`%syLf@If!0f?LGv*&Bw4QmnG@SbYmppj#HMq~8*>v-&FFR}^%TT{kf{@lyFg}H z_$4i)i*cbWLe}NtXSJ-223>^hZOGVZ$k=!XA_nSdj?D)+H|`e6lX)0yoiv%T;M|4< z(ydjPhnjqs5KAr>51|gCi@GBZRkXgYm|HB9A{vxT`oMR4|gf1r^LSrh#zDN_FF#-$xe~X4e$1MmCR0<}j+<`og^_Dh~xT@n!bm zcx&j#kV&_o&~F}mlwbfHv0Gz=a!8<5Lw_U0(gv}#3b7ngV@ou#tW>@JAV<7(6##$) zv{&2E3Jqy^=QWF2khv<<=^f*c4M&oA@FxjL;=P0<(Z=yn%{|vh5?i$-v2S0pB%ur3 z(~HZbk0W>38Yz%*WszVLEz~NR-jQF+qFFWIV;L{Lo3WMA^C7)5#)Nt#4_A%+wLR2{ z_E0OKOD1@gy7CDbsz)uPdGXbd!D(Fd9ox!jQRMLsVQG#yV^#OSc?0CjIfAu^nf03K-=#p(B4!Fa@e(4}_2cU*W&EIDymrB6*64qMT-{}*Tk zKxIVhvSWq#s{SJOh;3>!v;b2%tc}Sc&xkP}GZQfV4u3STs(Rd^Q$*t`nDJ=t( z$Kq|sxi;2Dx^J&NlmW>@$vmlnKI*1;11ACDdC{PwcXAthu4so2fXGyycpL43XjxXO zM{z-N1HU_=0SPQ0&BEAI?_{{^5k1q(SlD~K(Xr{Ueu>@U5;X=)A=FJ2b~;(XPE3=T zUVC1ssGIS?R>)JstyGLWVSiZ9+AXEqEoIm(;ii(IYD`OJW`IODlwrf;(VssE&9HXR z=w$}OXPIf@$`a<#jV%^RVmP`dS$Yz>ntKm7j=kdBD9G;m|P0)&aQHT^}7}$EbN&R2IY$46obG7ZeEF z)P=XUM928@SY+Dep&@PZ8P7`*uUh%Y7g3*th4i_;MtCf2_T}>FRgAf0eih(H1lXmHiviH1>)#_MWPmxxq1syT5aZ z=&8el`fj36_50kf=`!PKd9BY9)AP6^e5#tC?Fv^(;i-0Ed20#}lfpG87G5od3+%%3 zRu^7d1!koDBPW*ME9K9y%gb9+UM57!FFCQi=Nrm@o?{@Fx2C*Ios?gCV)NHxIA8n zm7M$_h)VfGIB0K9_ti+FS6m}N_j+1tS&QXvT+S_vwfRg5T#vk=jq1Y-zm7ijuqyA^xP@C#Bu@uQu&UEoC*NHj}^ReoG|a*!`7=-*Vm6M>)1525eI=FG&OrU7UxQrA34GhdJs~FMfX{ z?d$vxNyU@jOV9E?ul;-aRg1CCjNMONkn~#GH)oSh*gBNM@sgc|P5+XZh{&ZSE)`uo zkfYgW*A8{WOHn`Z{&aeo*i?7o`{t~6=U;t|O+ZG1yp$77beB5scZvhkA@oZ60>G9|#Q=%?7taYU70jGAQG4)9g=)vNBQM`d3G!U!3 z+SF!(S&!eD+PT!$R@u#uwQ!iZvA25e-%LzVN^7Ae7;^y4woKZpO<MvkM130y%3dj$Nz-g2*c^*5$-65#&s3ZUPn9^Pa6+L6jn!g`kM4K}0% z-(fLHqxZc`Xyu&y{w%{Zb{U~8YjcBRhk=&MGlzNwb8-!35l~vwdW_GR*2`TjE8Ln* z&wIUU_v0!$J~~*2+Th4CRlCZ2R7#CpT&X{{LHF0~2Kv*1K6uAoIZ|`O-b20gp=_7Cg7u!9slD9ur^|LZdpFUI5P3>V@y_1b zkg`_*$#mL5m_W$x_k(peGUGO0H%_pfKtJ9|&!uR*M!~ zkwCIEi1_2}%hMoYKTSB{e@nv{KvX0(6>Cp6=Mut^qI4m*W?_rC9TYY*QR>$?YKR@$ z@@0xI`1Gk?fn9>9&2Gk#X8icb>0-ir&KES^sH!o63^w%0ITrXzPm@fN_WcA~%?WIE zkul=MNBZO;DwG0NOVWjVs6Rcz-e>QM?Z-<93N;}&G2mry(?lx+h78lqlnU*8OfPav ztls-ZCNqqY7H7Ue{SqX;uGlfXr%SnLI zJq`vaFX85MpM}YfS3S4wxDF}1fuJwEVU|}2Wcf}>h{G(0zBTmnFNX}i&Ds>oF#$d= zxaNe(W`;C8N%08c@JRB_LXUy!+9aqR+!{j;ed{%^ol(8&x~1_o-#ZSOUI_V4y%3s1LvxZ+*@*ZC;?nzQV5r>0G&s*jnfGh`MnxM!&Kiu1*5y{wj5EK_sD8UCXV$miy#(zSkw^8Ry4%g zfpxR#PcN8f^h!L%g83iwvDcoDJ?h1w3FJg@>@&nlKQ@(M**UF6)5vcL%@RXOx?xJ# zBRSL^FrzS6pc|0GrJisl98lH$cD>t@>zReF>s@ZwTR=SyBUFX_`ZcW3Qnw+$zsb;& z$?kcmC(dI|rhk_)tFq}oJ2A5E$s(@6-S6 zCrw;Ix|stAW2V7@Uc=o1l$TxOFRPOfbm%M1txdPRqth}8nVjgi!1T-5+Y@* zjv7OW*9@q;%=k1omY`&7o1Sq~dpB|Eys9QqyVBHVV7E)%e5cffrwp=dFQRt4$$cAA zj8ATipCs9Du&9#f_q)M~(OelHje7%!(iqUal7PMkcN3nQS?Cp=)`R3ji{nFm?c&5x zlXhHH!-|)oes+x6UsvFaH?0XZ&xsbA^Fvb8`dp4*wDw!lV$W@+Y4DI|@F3I=9xk_= zUO?0BCwMcIn~Vs}J^m+uO|0in2PLr5vmt4Y&J;9`wc(IkkLFQ@(Dx! z1~XI;7GKZL+4X*D>M@>2q*lIDYB8RPcD=RKYd5doL3TF1YJQxX1mev47>Mooak4=0 z%9riCiZ0!&f=fg&K)QN>FNO@nyakh{aGVO(^=6w3 z7|97nJR*s!&t-)RR(50cX@sIH(FO(fG^9*0SP))}gz>?@07+QZq|g97>u*stT3dzCZ%iZLvGC(VGkEqdq%f9`1$e+Apdfn2*Q$C+6dwP5*m7 zx+kMNJvt3f-8ohq<&!VeCHbM*Sfi?V4Ys-RjdOK!Z za9`(nb25KJL(|R*&gpaeG!J%#gs@n&T1X%pUR$+c2VWijt7L_U>wX(I2Y4g5E-DE zH~;T*;>|M;;x-m*a0Kwqo9V2gbinQVCm#T(N~ssQ60qgk(DSQU7o*yD@d>5X5W9;< z5?$yKNI%IPorIXx@n-K)?GSTVn%%qEAZE}B&Dz+}{JCBG*;p2X?j4WWz{>eVA5F@1 z>mI&qv`3}&hji<0>VqCOUhE6k35oq())OY7q1mhE;^6kc1735Yojhj{RA8Gvajb`$*X*{+nV)PVUAnLyu`3__? zG3%=htoDpwj#Gk$*Ub38q{$_^$u_nBEW62MTO}bX&7b^9^DjG@%lgpj6l^`s{ctUf zxYt%yKf_f@@A-Z{Vn#N7e0~1Sc3`YdwYBN%hxS7l*p_2CYt1sg^3I#jD60sgjqdGLb4(f8R=PgekhW102ze>vp~}pd}0_Ts6_r#> z*A+KM-U!~YhgGz-GKRXnqN=Gc-0D!(;0R}2L0#Xa26bCO-HrpG?yO*g({jga5mvnx)QLy3XpRs#u*zvdnZnLY-A!)jL*am9BG8 z>ik;QS=BUxI@X{y38K+-_TB|CI+Hg-G*5Pm(^;Q%p|kagDw@vz7_TC4q{{9@mG8QI z9rd-)FZSXG_y7)-3Is@L#`0d9CRzmDzV>yl#C_ zzZhTF+!vVJu~X^$#j}%WLg5E*N8EdZTRBiS7Wt-3cGDJ; zd=2^sotmxlNA}jaTE^1?OnU1S;Y}BUG&jQxI~xY6y|}3*;==MB7{r(W^3Im?bqn` zU6H|n7p$dfTjnxdRm@XGX3aoP`Ki?N@LfwxpGiHhu9u;naohW6j~HRw^j-C;5hA+! z{!Mv&s#H2v5*`ut`TbH7+FN_SH7ZmhpKR(=J|!;Wn&ZiMvE13i{8i@zwF~%=M-TbP6yH}k9xN*MvpG#tV)l5iCUW#AC z^+OBUr7!~nSFyXp(zT~~6&_2B1`~8FgOiIksnk|78 zW`knM=%73rW|z97YeJ;6DW^TWv6(!neOoZ0{cGB{zhBy4z1~b=$N$m(3Hp2SU5xd1 zO*9LM&8wawHMD#|ci|iNtKT`iDu1K|-#07ad+Di2_q132F5R3b2R1REqA#pa_g|ct zgCE3K=5O@6V?6hK+zwx#OD}uZnehywmzW6L4qs6nTp_Wdez3pQ%VYf=|EOJmN2R~1 zc7Jbl`7izbVEeYjBlF+B{U&MOW4C`ttbJ`HS!(4EC-dnDa;BxFV>3?UqOfI# z^TTf<1940Gpl@T(cU9h{Lml6`Z>}W*^tOZU?uBjY3Z5KvdrI2m@j-V*BachkJ}gAY zkmW13E(8cmlIE=s2hG!j0&-d*yi;qC`Pv+}*Xu0es%Ke>f4K`XNL|%RHiY zNT(3t6ogW4QKNcmN=ZzgtS?N6xbqSYp5Mc^1#+p6AP(Wxo3ZmrCIHIo!k%z`M!c{q zAMPoIu{}yI%=c54zb4lBDa)S{o_k|ePJoBSBwO@#%yZ2G*$Pa|s@bj-KZbPaDfu(u zGAa49WJB|{i6n5Qd#HBfFs4gK=N;Gjl@Zqa18Rd`TwC{5+JHCRFSKNrr2Eef9?x_a zG!Cc>9?#>mv-5+_BR+6O&T0Sn$c_t~9~^n-0$yo@CuA@6OD05yE*{z1uBv`Y8>=;g zy}Wbq&K{27oxL2Ta8_0R5fgi7rXAfbL(FA~?;^@f{E(dG*i5OJ(+T-pmTv97s6z6v zk#OM3oPi(t&$av?IjzC+)lGDv>CPN1tFGc_;2`!`xSDs44k3xjfH_BmP0*&guDOGF z^QiCB5W?i{%Jw5SyS+Ahqlv9TAzrEWUQl_1vZvh5w^DYuvX&iT|xR zL2-t4RP5j|qn+W@kyNtOA*2AlZnqq^^%~}4auO+YNmL13)(us1| zQM4^CN5g_fzDY{5kj^w1EcU4_(&9H#PMj_Sw(2P}TU4 zYu`iF8;nSY)*mSOwWFi=cobU08qL#W%V584|gg zushv?dyliuS>m&xmaTyy#?bW9k7C<1ory3lQnHp4HMOaWd&-Jx%UK{OufT38FCANg zT3IkAeu4FpKtV0Wq`~;&Em<@!R=h5rDaGx=cyCaU5d1Gm+yIUNVw5xPTpbWVzUG{H zlt2^27^sF)E6~#6^4H3Ng^UGln0b=pBGI>vpLxxDnXLq+vQ9LM@?fSePQ`mkT_wtY z>$vve?$p1wse}{t-M{`B5OlWm@)_z)zptC*UfL@L8a$6^EPK_xf5OIpypSxwxrN-e zVMgMvM0vPZwa`qHXh-D7>r6SXZpH@xNc1c1%{PF6E7N>4Sry@MCUw>EuO##1UhU1t zQ?Hu*irC=GvFeg9NqU$UA@$6jm1IYGidOAPA2xp#ZF-d7mDy_kxy+UJ8@V9Z+(W?H z>Xqz?<1^H%U2=uJ*V>Uu+HgKlFMGQ`|24Ejms1Q z;T;(n$l68bFtH5^U!SfHSGUk8O`&`glG#H%{={mK6+7b7{n3S+;=~m0Wr!)}v(|JA zD>8|oA+d=~5A%#KvIIgzA`(X~Srd)waT0{JUj&-|ll=K0D~=Zglp^tgb(Dzmc{%HZ zoz2LODIN=aJwR=;;<0Eit6@~k`K)`~x%JUc_7j@T8`2FZ*XtURbU8Z_MGwCeqQAt} z$l9J}ScWlIIt*VHZ*z&Da1(!_n-|-Jzygd#e)WaiPF~U0qeA!dcix|7J-U)_WW?GT zIBn>>-Haj7VRec&M`jJG`J29oemJoWX|Ax%{gbrmmsmx;u0{*wnAWjwZ)&8o*dm`l ztpo88=&RfJY~R~dABaRYGHu9@WqGAm4-90kg}axj?{^yJZm&g>2B63-a1M3&GuiZJ zI<09=%zFoyVO#<=V93;!NO`c~FKzJ=jI))yLTE`tdCnm59&_CO)61+YC9iCaUK}|? z0xcDj^e9+|41_>@s3&t$0t1JZcnGPmU9F{HrC?~>QJ|(h<}~DrWLlc*gi6w7L}xP; z*~U4`e`)X2W{=ia5__PBqJHThB`DW%4>KdU!SQtHVOf9W_w=9+MW~H{5@uaNsvB z^4vuyix*hc{eBZ@xErw@m@2P2pMJ@jU=PML*UdENs$4#f7KzlgO{JWwMME-dWuF7H z=}#Qs-n6<)TnVBt5ya4MODA~=o-Zl~&i;li%=WEs=^g z_L2~DyCo&SUWpL@z#WnjV6VE5Ph#xLH87bNuA~BDh^gIM*WM?!XJCT`qk8vr!Tmn9 zj~<$q2!&0QyJNA;ptnQX2DDbn7n}00^^o$lY7ONj=DF0pM`Y`GRs@|Dm8149d1_M0 z$HI?m<42QyjmCeIX#6Xn0GJ{TOsy)XacTI~522 z4_lX{93a;RUs;C{e|We@MOb|t1rLLTe;?!lT3v71klpidgWJjP#kcA_1m?!&^D~kbMs9+x#LjUAdPt2jU%?*qW0Flw!#1y7vWcJ2J}g9Hqi$X1ax~q9e3+D2Vkt&SlF4D^ z3j`fbB$oIW&>Di(wDBIsq}&xsUuV--IF?po=j3?ehVRo)=y)yf?2gAs$L|V9GASg^ zmrm^z5Rsa8@UrMMBe4fDhVkx;m=+0le^xW@3%#~}_O_TIo#&SxWd3t;{=QXcn`2S@> zL$6E#w&y*-NZvc9>RnSyXBbY@;+q zGSYBibuda+YioPoZKaV8l~Im)aH$Orl&%-n&xhM_oaKCzJ8-XjNMOJ3?;cQgw+8LI+rsnuB!BSf1Bd z@)Vy`(Ph+pYE@n(%;S6P`GT``T2ta+Fy^g#LUJjqC*&jEGn(*>6y+6p8giKb5%Qi4 z^;#YzlMB0>A*}hD>PS;`Ehc)&C2WFXX1<*u1m&JTRb)p^nS>*JEZx|Dbp-|)#~rw9 z$N|_JUfcrG)#^7zAHJ`?__P$Y@f|_Ha`iX))Cg5i&?b_=LOtQeXui2ye4zxJZ%?ce z(I|-Xd1lEWk-NH;i+lF*XR&2?n2v1IgfV56?prF)^wmPb1Rv722};I{Ya-EwxclKY zs@GR5c-g8id$#aWwo|AZ5#ZiCB9ieyj-lNCukNX@5C}2-to{b;UZeiALk7YAr$3jg zul46vwVzLP*cdf7Fb;KbVifb5#my@*5W~OALOR{8nu4tl*%HSagjfY4_WT`hhUm1| z68|&5PCX-&ZyD%lIyb&NgjnBU|BDlANYAQzE&hxc+?4sV-Xqt@bZvNsrQg9fnINhB zI?5PW2>Vq3mq6Jy;rSB&6V4wN;$TCT+rdYu0eY(0_*IpB*Lu(8Ue&tjU<`LiC;oE< zcfEvRJ^Ve5ZCBHva9L#k*lrNGMt`nRtMun`wL*VZtL5@(X#P>YCXYN$t+>TNs!K%= zdou5XREuwhtTcXwU_TM!H}rOeykL&(L_bwfuPu9OQICVZ09o_HtTLuZ%SQxuUz1CYLney@PtTC5&=^JSsJPdedi9 zor;fQMEQ8`IS!XMrdzESJ=h~$;Iy(NwdfDW&7!}DP*+(zA+dOp`_DV14xLmyQ))M^4nvuU+(pb{_!mxV~kIZ4+3bkQ3GTp@zW5MUqaya*^U zgcMHM;#HEJxe6&d&>7KGV)aMPlB7Q2QJLQ8mFm*BxI)p-$*P zQ7Lu0cUhMLqaGX?*+tS7Dn2dL&AP!E8tD{jen}V}x(KaAs?1QQr?H52Oo?tjhg`mF zQ+K?SD*0CrYaE-BTH~ti0=eTTW7a~cN}J6VV?l9ax;pSO>ce89GlvR#SS0Bw=%s!R zm7xdPuDoALB74c$YE%X^E6q71l=YY~v`22bZJ{59DoDFqbSz3pneCOX(4=&7ONJ(8 zkXO`Eb*<_`BibF#9-fxsCD5iII9!xTjN42#o1Ma_O0=S-v^01}tAmL0n1|c?pxKmW zCV=W~@He0~JR{S~AuyE2{Hot>f=JS&0l}it)u0GJ;PsmKgMp5;x)cGUp$-;zVG`2A zY1N|{ifeb0YYeBwAFM$E^g1R8h|9DXzK)YN12=p}L!$RR?0l>=jeUIiyz0TfO2}VN z_(6}gNumZo+&0|k;RVgshgumHN|kk1NQ75yr$bOM*alY$SbkmU#q>V(3zup}sU|w8 z2Qi9h5z`3LU7{oli2q}}b-|0iC5)s07qZBT`UI!+aS)>*hWxV1F6cP#=bgNO+=SYM zoFL(JozB{$b6IDE&?y!62<3a^o-PBWl5X9Utdp^5jaR0+6kJHa(c1mofQZhE-||j% zDu&7=-tAy@>@~d#bUq#RCfL)>3Mi$A96nVJF%{!vJeO^@LMRN>i!IezlYTw zOQxLbG6UVBzwktVkuLF(_xvT*1bAnLN?bVy{AXGz!3!ikL>iiMm)NDQwO5o)G5YT2 zK+X~W`ReiOkYqbSF9dpmOvq(b=LD8jLh_z^r)2<>V#TT&+SWqWfgfs z#CIdXM{x#z`GkZ(OB^ch6+<&fjZcJ&^pCN1aL`GR@uEJ~s6J*+LL>XcdI~msHC4zJ z?-^Esi#*fi3>l1j14Xhq{D=XwT&AVtpNJj}J~+*(o=1%jxvWOWdy4au)rCD&$cHOF zE)+O>BU==>)N}cSd+V(}{xi&A8sa7n+xS;UX^S?d=r%@rR5~M*SX>WMTJwcC&q7*Y zJ0sMcTu-U*|G)$V+H$5j$%is6le?4Yo}6i!f!t!Ay3H#&Y#j>9>)a zq)Cx9i>S3|6uIx(qFQBw&|HpD(}97Z8e^xJs@cUg!CurT>73T>HD6;SQU(#?4%}!8_|lm+C}~MDF_yAwdPvzA!$NijLRjv z2qnQxhiDcfrB;zsLa(Hf3Sj!6=nQ~piO%qNl_=OOHza1qu4#qra`iN$)@O~FwKph&ck*Q!;-i>@u)ms z34x?ZGg1=;B%9~}p+HIdQ&`TL;2ael93nH1nmRzI9E+T1!rYXrNj#uL>gorNf z*EK^vhdU!(8yuff1xG9h@gxTxfDSg#Ogb%T|FjzIAN7d(e7yKaErWFUBJ?|Z8Ml*p znO2rWkCby(xPqmn-Vz$$5-MD#Bny;$TWYvm$ue%MLxoGklWIBV8I-QXUa(4RgYUoa z!<=ZgqWOI2Afh(S5ilMnNULOt)*3F9GVH$(tu}^ak&SYo*~$f^e6CR+>(AxtT|NcG z!8ubi-H+9Zo^O({#EFksfg1F`Xw9`tmS6Jh=4%gj7Vkeq1(xg@waZ8iTaCtSEepPufk%8EvX;A z)+-}!YtpqIG=UAH2tWwAK3T|~P+1SI+KEO+KB-v8?GxUoSfxlM0auPUGjQI2$*%i0 zQxq8xzQLmikQlWH(VYiN-pe$H@aQbr<5j=^HIt0I%Q^PEKbnKRp>dn)`A^yCGtEZ-KQAU5h4E~&FD7LMWang`*ZXt@XVNsUI)h!xh#)6i z?TP4M-|l%4;^cB~%_~B9Sd($vl|Cut0`FR&mb0PkP9SkILG+({(wBSaSQoqHJJUL)?#vnM zy6-#rb2F!pDeil)9Q>lTPM!a)dz|x)ycJJ7rnqm$Xs@DMB#jCer0%55Mr-3KO4Yi5 zQaAnM(X6vsA8W$>Ig3HlrEecRNexxm+O|#5hY=H#QAvcG2?tS#jzsoxs)?U{#pEZ& zwzNecN>aiURoVZdkT%P)lSMS7IcP$M_6N7|_%`xT;@4Ci&5j%E@Ln%MP!PZWZ2vmg zd{crwLRi7ME_{P5Rv>xq5}2~2ZD_vBe^w%fpOFRS zG9z+V-xRo0<*>&qjvPnizk1WAO{xByb7v&DH$K55Z!({KXhoVE@ zp&@BgchD5Fwztd>znD=#w!zKW68^4~c5Kds{XJjE} zGafq&?3_09WD5Q`;ZfOBh<9fd4Ga|z3>Rf%06&hgYx&7OX<>Z=W(T0y@r34NsD&Ef zbfSZX?)QZ5&rtX4rX*e{O%;JJLU#_tbHu9-mP^j%9_kk#pqkJ;sFyiuW~&Mw(S#cF zH?{$ehd1)6$w(;3Y6#wmO~>2}&wU**Z9$PRF}>d5$T{f$S=BYS1TI~emOIhkJ@-QY zL=kZoZ;wQa$j8&f`w{N7=ruU9%d^Nu6uioR9t8*HP6%|QkiV~8;AXqhKY4a`)iqbK zTcCX}N+H(T6>wV?8=1*#V^ZY2=4$3W!O$eQy7p^$GN29NM0MGy`fw`|o24WctFF1wJ%2G@imdnLSv6l5cB?viq5q7kqZ0z1i{#Q z^6+Lpk#a*5HzQZCX(()z`zvqRXad@*{-TnQL?iC%z7%6T^dByHIkhmoh(Uz{s~QTI zRF$T1!%-cYSQDD~NPXeU{nW4rTBMq_yJ<1!5S$K~jdSE;A+T!v_?(08>M9;rU6bRU z|2BQ`zGw{Dw^ym}M8_U0Gl4R4hmvHw1{qxKzbH4;e|~Ofe^2*@TCywO09Vr22;R3L z6w46@MF1wkp&`Mn5 zOV@L-Pc45;iLcnz;ld@HP}NTaJUvzOB}BJeWQ?+J^lsQCcBkBb>EBz`5I!-pY^GRn zc9j%$S6{*p-}h43YwLEyoN{7%< z0c7sp(8;TsJ%+#ExLz~&p@l2m4`0m7y9-wu7VlnH8{*-HPE)M0D{W5iUYtsig`HyD zeuq`Kym(4z?8==FDV{)svOsS#QZVa+B{koPu(LWv7`g~1>fvwWhpISB z$13Z5*<17U-a6H7aDR!_>FUQHfBc*om)_lYTIEm1h1~89XZ78f(>S9?IDZFwsoszS zTV%USGdt;|iiN0(MOsI5a0-?Szl}^`6hHQ-dLv_tq|e)QpP$-&-Xwc9bIXqLc_do9 z*I7ggn=_=`RqhSlO4T~MT)%j^vnV%yVaXXC8f#E$X!Y>BZwl`Qs>fv96F0H3w*peI z`DY1cD@>B}b!g&Jj2yk}xvN8Cm*u<_xFGmb52xnJjtvDF!h3weZ|hSXYB@-4+QB+2 zE8pPZSwrDIc^{swB+u>Mn!+8T#a&??5O($}%7y3ThGwr61KP@dB1~QlRGNn(g8%bT z6%Eea?XfaMP4qB=$cDrH!nBdcM`QI^AoB zbyQw8k4M2T-257(py3^As+1{QQveTJlhfdyen!VBrtggIT-g|jpd7*qOlB#oC zJmFD$tPk&VTIXQKTHJiua0uO3cJd9R9ku1J`y~R# zdS4sTFA~Ykx=S7eXK(dT4$Fk~m|%I;A1Np?CpOBha^afrT&G6Zrod{D6)COk=*y)& z8Q4rpS~J=rm*vc8!-hS@H~F#O=@*lD5gjZ;SRQ$r&dN+@66R(|U?&B$npWt7gQbPQ zYUEF(&`@AC#FrCT#;tDQ-X^U(ow$@%M5QzGmjcxe)eoppyNSw0JiLDXO`J1u&V#=X z?e0Gt3u4W6oVlF?;rQ~c3M9jq!8uz{_mBYqAe&pz@B8OT#-ubHUTRC;pNl5LA zbY@#9bh)p?K+wp1qGA!ZBF!^GfKhp`sEZT-iPE?(zvC6*S&?n+J zSryUb>pNqkNH8Z{xn4ug$J%#SL)tKzhmp=u2Q~V)q#q?L>{8}k`F4H<2PY^hP6fys zE@d4>kQLp(cF!@TOl_6>E{876W2DU`Pp2_)6&bM!{RAT4bd0!=tzgtNK(sb67 zsd4`o%JWEkY$i74^E`f#vs;w*DyPz77imQpO&Rjy-F?5)W+)XFY3{GQ{JWTS@z$;V zYhx!t(}1*}!fD54{etW+y@($ux}J^Ke{a+R<~%9^Ezh>Dmk;9TQ#k7Fb7Z%qIu=p3 z9Y_Y=iA{c#Zqh^S_ai6#USa=6OC_Pwt?T+&qx)fWFkokU55V~QENk?@Q@p2r#A|#e z66*3?P%r*0+7DRpdF=TFKIM1U7ZSe(KHReMTu3G-AvX#BH@HKsEc4Wi2M zPFw9qZ~GS|DLm{gOK3bq5T6nc+d}YlAyWj5r}-;l-ppU8V(lqiknk(67TK*j>UvlX$$J5Ll{JGbXJbT}EWoY$jR9^t7)Bzp zTGZpKU}BSe;eUw#Zvo5E7Vb*0AmL+MjF^prf-wbtQEhXiz5SHW{4h^b; zr1Ezy0A;#7G>UF=6Oasev(i1TA+7d15)Y2-Q(x3OB{VWORFqdUvR`QAO`)Q3H6w>L z6ivwDeQ4z5(8$|EBYmNfKMReVIwiEI8Z6Z;TEO4Xq7Z-4>ny0^(~(Ed1IY;u=+X(q zJk|6OyKLP+q43C`#eP1@&)1*S>~dIW&II+v^B|Gof5K(r@V0;O?Ayc z?K`H-giN+jyix+L8m)%LUkYU{rU@KZUzscHpPf}mWIFw55|Qb8^~?C4rP*|Mx>XD3 zi`L(zF4~{aG=W7pWH)a^-Y|h(b&9<+v}Ds0aI02C^%#HtY+n+8W}f2uOKC&&m$gX+ zcpppkErIR{>M*ooW?*FHfDJp2yuh_&?nYeC#&cmdt9ND8_YT)^Wp=Xfht@z>q><}$ zOvH&V=fsk~xU1(2?!!8j+|Sp36^+bP%jB$BVj+dpRdTJ@s4ise z7{Xj-jhu|$S^TLotLCJ4u5{j9nK8~iY)93s{;rh38Hb1UPZu|5O8NVXRgX8L<_RH= z$XS&rC)KhHzILf!AWfx_EKoz(3i;+_5`iYlwXKoU5!tUNr;Ss#=(FiXlXCJjWo ztFdZ$WZgJfI_brk^(MUVe$i;W@cLnaw*kO?f+2gHftL+3TE7=$d^8(m45%HSCw!6- z$11 z-bkb8uAXXtnZJ`S@u_;WHhHT4O~Xu8E=yQ_@K*z!LqnG<(3y0N-AsYt=f~A1rW1)~ zj?Bn*QCD=3)%_MIozG2}ghjGOOQH#xCWW=M8d4a{DX z5W$qt!@_bR(;JFsqHS?R{B)X+-F4*d?8WlNKLQ-xOwa5nA7}qTDBYixJt;lVm*;nZ zJIJ^*l|{=H8N#!>c~Sic_O%#!UJNH;#mAe>wwqj`oBX|Qva-W1HZf>E@?#oBO}t&L!GA<+BhAHo z68k#!KxWy!nt?o;)a%9Uz^jO}xU(mz)ejp+#Roe||G|lTFea4YIX-HMC3ZXgRbNN$)Gjme|sd#bruazA) zHfK5|iOs4==c@aA zJN!11WDl2pMqXT4MNCo2AUst)`$;zm@a2*3AKm_qcnCA66`-|ZQ`M`&>%|r_1wS+g z{61Nx1?$=p1|z!<#T*BgC&p|K;?#9Wd*_v_vbXm~)n_{VC3@#Tm&y+C^>jdvc&%xZ z!zBo*rQrgdORg_Pb-;#c;^oW3;A9jxjWIt065pHyu{;Aoh|1q;;L<|t{kPZjP>Xp= zW9qus;|c1GJQ=L(M{;#;yKQ+uYsfIfQ*R-u!;ktCs>?ax&1dM24X!>YOe;mY3=Q{8 zqIpM+D_k(leqer!S)cK^mhsmOo7fb#+i%*!Rd7Q55P4RcTw^DMGP_NcnLbO!aAk{H z3d;e40t|1si7x2j?_Akc9l*;ck|jXNe#^nR%!Wx_EdD=5>Fm2m3cXY0aMzvtXaYES z?Yo_m;zcpxhl@OHu?g8BL(jWYL`^N%aay+CkrU$$lcNM-V@LPM4Z9hHhF{`KSqH`l z{J(C~5D&$G48q$5KLvhlncB49@j-#OexAnQLd=n`pRA$uMh95ksSzEGf37xTj>Ad& zX4T5BDat!KDzDlg!mOiyfvohDKvytzDQCQz1@d?yHgY2;*Pw-v!0ZBdce0jCZC=zxxL4De?1>9+bX6Ta&Ak9)1rD@Bi+t|+Z9pJ1 z!x0>Wg8B(!SMvo=;~;;uE(Y=lKo<9i7|5A`Of~n~8#PP4UGtG@4em_80r#Fm23(*1 z&D!byg)rK2TJX}cgywHwya2Qvno3|HrRwKbMx&tDz@#qZm)3j-X2wA(ZU@rENg#!v z`-)p;4Ns}>Nk9QU-+B$w{%JO^U$h_pB=x@j$)zv0F>p4g0m&Jc1;+?TDNTPvaJQ$G ziT4Nel)jQYrGG<&HWK(K@N;<*FpeZ(PU5s>cK;)E|6WyO|IRh=xC}h5rpo{THCbVN z@HfQ!>qCEolKNY+(rhEnqr%F+yHCbj=`js?nm*GjKhX7XLHc2Tr^+r(pYkAyVaL~- z7&FeRVu(XKOm|j#BHb5W=gRHG6~SqKXQdlIuMTRP>;G}~F7Q!R*W&+7W(WfeB-p4y zP(e|#K}Ca-7}W4cfAseesDtLUfuu;66$JU@ENMOD$UTCWMQ-^OA(eYttRxtCEYDCI}CTJ9B7k z=0w)9CK4=HweL&jNO*}&Q*^`jAE6(z|I?D1yLIha#zj`u>yRGhq~vmok~N9W>dd=+jYa6t`Go8jt>wF)c`rsmC5u z9dxus^%MTs8kSBuqF3UYYF#_ki|M^6t=&IJuiZZ)!uXFyq-Q(S^FW{vVM~r5ZJd>V zrge>QQm0xVek<*2`7+tng$C%onVgEN9h>3O<6h})*aiGTT*T;Cl;79rVf8wju zUD}zyL)~I+O!xjCa;OD~-W?Krdb8oDUI)Sg`~oM2c+36NTfjcaIjnN>y>_Q>_^HPc zIwgELSP~c{r;O`fYnqoG5XJ7->uglL7f~wK~n3&2#b7;`>oRk-5!AgC>&?xHl7wHF^Q@0eBFY;*%mxKRv&Oy_Nuu#vf9g7 z?SPu)KH3@#wNPF!H;@TGy5kvJ&Zty>kgp|%>Ljz=j~;B849Z!FBUN+=D_r`;@S#v+ zHPuM)e(6+de=fKBbBfiUNmhS^*-Kd*J4FMiiCJv^`1pY0{SkTYYpcY$7EGPiT{c83 zzWnXAFV&5)yVBZd%HmImwA9z|ynYlMU|#LlgwvaX)V#OonS{C+Ruku2!#-0=! zb;Vwbd(up(N7FEzpPJT6rG2SapYdDO4PnHxumC+BotnTS;Eo1LkjSiBY_4gbK4Wqr zW|xa(N5MgR!E>u6{NY?)@Fb_()$ZEY@bVqpLJK@0(UrMZb7Bj zGuQRLjJr zttdk4a$$;Q;pB&yHSbf8%B-Q@nny7U%^I|x;YUBR(Cm8qcdq`OQhRh;Qu+7^vmnm- zCD(!S;U6w{_>8(0>Mf8S8dfPw(QQFj>$qXc;qIZ!>PcFEXyz(3fw$jQ-%=DUGu6d&AQC+ zHcD`05~iPscGfB2Rr5{@VTXty)~+u4 zO&==^G@VM?oIy18;p^S}^Ef09E*|gJmY&!1grlK8Q_izr>QPy;0NTHq2{{IS4%jc7%xdgJ_P>(g5Fc$UvF0oBusCN>ihSzAZd)*{Y6KBu0wodYhcw`w^ z#CWZ(BCkGTSw#lR5bd`jk{1KrxV_`>4yn@$Z4-W*uy@D+#NM$d2lRng(%@cryA>S^{JhIz>rq-jJ#jOBXSAP z$<$6@wcOcyEspJ_oGQkwEuLNhDS}n^2mIRkSz@6hxSt&4E3$p@8Ob8Rj!o zPL>0{7aJNw70-_)poB>9ni=%6nxbZ*4+mvi#wjew6TUXrAjYU(Cu&{nafO*qm-=)) z-H>4qoTN29%H_5}v0pYTrW^h!jdca@J3cB=7&wL#G3a8z7w2DVvPC#$n>4JW}o^Y zg#>VBEAb5zvCJR)@2pKAU*Q%wWF;k0(aV z^9VD|Rh9*ST|`=DNyv*m1KOxPyVEG`!r8EDCb|EGjG0by(Tka?wWtSWu3M0x^augz zrQHOiuPg0oDieUqTjdaoh?R)X#v+{vlGkSO*l_bue8?UXzZ(AUFO&2*cewa)nbB?# zx?JQ9Kra46;wOq(KE0mK;b~Y7X&4e)iYpx$F-A@0nLXbPAf!}zwNyzYPYNc_NSSWj zz0DSkmPI=SR!yb*jnaLjR%l{QO7|G0dkOTYuD~tI2(|Nb(4HkO_wjE(@n`Mo2nfOC z%Zhs%W{-T#rRWnw`^i)AXWGw=HQZL@2%frb$~0ajk>YN_#oMMe+?MAE7UsUTm5Lhj zrcVvHGm6^HDTU`iwr(HPPHN8#tg6Ick%Q$26j?_e(9&m4v?nW?!BbKf(5NgnallZI zqv0`E?j+x~#KQzfN6>Yu55;_CmLuVqMcZ9P%|0_9zA1gJW**y#mw85&3>3gUqcRzb zpxX%3q6)V2MNNAORnW9n48BkSK{7}I9N*QD;cUooH`M1j*7Xm%y(63YH`FtJo=Yy! z%r+O^>nvm*c>@FI8iUN@X*g`Tq(E?JZ0SVx?rGA`(rm*ScHzg!@x48gO;Eiij<4-1 z3keofZ7cE|y^2u^wJ`@Z9*=Re^pxDUB8?96l^zRu3KxRZQt^4;NNeWo5%Yp+u{7O| zE1cGkcAu9ToN3esMJUX4r4_Vfl(div0K%6o8HH_16d0=Bg;ff%FYOFyUQP_7rakHE zD`BD%)ddoIR3nhLk?@+6K7WtkQ-6nhfL z;1y($wtQ+fxW#UfYe5FRTp%@9@zierHoN_)-)=u8F&}ecFM_>V)=ymp7NQ?CR_+me zkE6e!y5{@I@$7l2&lm8VQ&19k{vw`fXno`mYVdqHcz&M7^M9g9 z5**(J#vVkA_yKPMjyOiU)hG%#+>X48HV1O7)Wy11rM~9t=qy6rsz{C# z!j(Ljo3W)BZm5Vvm8mF($0?aJ5>oWYTyAFeB~R6xV+jwS#4=Cl4ZBjw4lb4dmP*-w zdQvu@NdW*EPWQ8#k62_Vb_Xy#z#(Q96q5hJlt>f|B#~A;ugj!d_;{zJBPEJaWP2nE(*7} z;7w8G<{giJjvJf^+;K&e{i{h1*=pdbhs6X++@xAd3Eav&Dgy;q13`JU>?1-))XrB$ zFz>Bo{jTy)SYf6fwHpOdO8Gnf*YdP3p|S5%7|BhVzq5Do((foP`vdH`z5Abroj_Mm z-n#aWXiPWzjyha&Hvu`WAXC45BDDbzgd0}He22PhTi38{IBJ0{JERLHvaf}7ayD~ zu4jE*QZ8Fp1kcYFVVqr+5ke%}-&C_lNY_MXD8034FPh;1T7`_~-kzH=^-W{;Ub8y$ zdEr1gWtrxyIb~k+%be2v1+QmJZprDgZ2gdi{$}aEoOekPJ)AYW4smyXQ|YIxo9ida z2C9z~K0Dl33a7A7{S}fvvglJ`7im8ulRD*(25bK$)O^)z!Py00nyncnufoa*VoM)b z!}ej1l+)hGd)TKui!(Cii957o4iOWjSFNrRc70)Lr%GMjS;VebbL8Vd znka&s(3FWPb3%T-J9r5>_ow)`qe`$XN9#;famz)OBHB}aed^F`Oa1nV{?(o}c-D#K zSv>206cOXIy2P%vq_N(M+~Zt|6I-AtrDpMtyFe=MqEc9i)IWwDjZdx9^+J?$+e9yW zo4!qTk4mQrvntaZ;^N>G)Kga)9>eEu#Y^0%_ZanF0#;$)7AXdo`Gm^ht(Ewa>Fty} zLAo7`I$}TFo*Ql+nNTwEPAi}Ws>k6j;bvdrO<<&&`X?rQ&s_APgRAj#!%gPvub!yG z{Qj2ogY#}^j?Yd{e0Cb2$yal~dScY%?6%1xaBFciP4@IH<5L~aLq5>1eoumrNiHMI zYTvJ6W~m;=RBySn6O|jnNu$i&mc9v~ss5j#qpc+`jav3L3{7;w#>fsQdP5X86w<;i2}aM{LVcAw|~9=XPU9v9g=%r4|%* zb`k;W)Z)0-?59%e8flXe5i2-R1}AAZuB3P3UB9uDVA*u{-$m!fplAVn#Thv(HT_fn z3gwc5Nd!-P_w6)Mn4o)U;V_UK4Q2?VRCs_^spq#+lji&>Jl<+r4F?J0`mwv@yYJGk z-LcowuPsjbfb!wau@XUCy4MPEP~kzuHx^}&b~cFsy_fyp5uZBy3uv~88#Qo0+@yu= zSyIC{VBIt$9O$(2?up3xQ-1IuX9{0E)1KI_y|Mikph?spotNIbdr4BE4ch zffMQKPmKRsv(&kBt=jXXcEJW}wT0P{R;`H|C2YH>lO8t}bw%_!7SwxSqptTryx!mS zsrP`M7OP&nx7kP;1nVF{iplZ&K!L30dh{~i&mb%59$uHI$rhXL)~JEpxt=0+SM4l- zqe-R3KBrn88^|jRWv7zGjflxtgBMqsi-Gw;(au@Itp(>B=SUq#kZ_H~S*mjsWRUOs zhu*BUK*l+V)7@%iyfeFV1zg=2VCv=xz`9g_t2g^q|734$Wr>)kF{SBwK%ACH*;d+f?4#jF8(U=kR)qgPQcd9PTvzK{S6iKHo2#f>le=vq@5u(;kd<%YqnIu6 zzALl>ZsdKV5CrQJ%O2W$JtW_Z)b>nCZG*SLQ_{3LU7D3xmBq*rz0|->JRmX>D(I9S zZ>^-E1MA|RXI3M$&pTqkAPeW2cS)V*;A~Pa9H3sW zDG?{^zmA(5gpxJf3PUIkd_S3J+Vd}%pq4`<(R3kwF*oR*%sx1i-f0t(2p$Fwrsi5r zUmudc(f=^@Z&k)~F8tSnXNQ$LG{f8?Wg!-`)C&k5ByF=iBeB#?j9!@X_5t4Fw{|)@ zW`0JH;VqkAvb<&a(CV;b_Ia$C1l`4Sl%5u%fFMJNCut%(;gE(~+1`?EjJ$2$%T5xur(f=}N@_OWqyPFWA%(Z6x={{2h_Y?I<1b&xm>UuK{C>^}EX``qVIUAQHyrsIK+<0k}h ztG4Z7X|}6}W+sGDdqW8MdBV+x5~TvH*~L-U@tv`(<3>T)3aQ}er{W2uZB=>`fcO}x zE#%0yDtF5#Zr9h6fbFZ$;nd`7+E(axgieDT2_c#Q4zZ#qbP7fGbo`mB&Hkc(M5gr? zjKkN&RZyIn5f)cZid0rbS0J*VEDEDZnFX#TE9GGYZb7@FH=3^e;!M#pXBweQb=51J z0!GHdLHW}%mz+ca`Lf~G!F(Eg-WMHbw(#{5BA)fv?+up@WES)%sBusMB}S9UFr`Gl zs(>Tv@>#t#qPn-yY(9|uUb`y;h^Ld!|2k%$x`WL!!C6K7>a7+(lJNZFF&Y4mY2cQ@ z2sZI^@}lQON;4q*XzzL|{J9VqmY-MhmfSA@K{@6zJl45=7VVS??Zh?S&CzjI%9$bT z0nBcMweTdjH+n6>z25uk$b#BsgpM?xm_2*;$-z<%y+!jlIQJ`DE~|aQS_WbvUwA^& zUxhrCu5T!gBQjbWY?R;ohU0LGj)b>o7eYxx-K23$qvSlxCPPGB_mQux(+)8t{^=$T zGb_#V-PBg-g(mwl%>gsb0R|3V;UBn}I3!n(`UX!(MglHn>2TloNK^Y&9Wi=xWRF`L z7}U>5qGqInIN>jxp@Weng`=)Cca5rdtFey5u{x}!+iK^DURmXYWlv?#$Jx=66EBn*zA;l9(9d;1|Ku>`N_7W*BVv*l z>@AeEx6D2#{yw*@sir3~zD+Q0mqb>(R)XP#m&*Z9-9E{7U0$fxX&`skA?H|I9WCC8 zz{LKN1f#c!i{1zS8^I0>Sv{9(|1r8G9c{sE@`LKTi^=zv%u*RaMonz&GBZe5{F{M zC1WKK1b}`5w@pRl{$Vh3FnXnu)H6T{4ZzAHCa2{T#hOY_uzmOD*Lp(zd3=of%UeQX z%~*o6Q;x!1XqI+Sff&W8VFX5LUgk8cjKQ)G;6K+|wBIQ}E!xZ2Neo-GFNz?&kB;nR zd&~?qtUO_T>XlEe?<9G2>UZ@b)1ZwH(G>Yu>jk90yG}3eeg$&`n*A9kk+yMYwyH;D zEFvc&=VT&LW0Q!CZ;f!Pr!wz0YbqtXYbOwAGF7t(dPSW~B-khtxN==9O4HYT zSV#3<*2<^a3yp_KXZoV?Iv;A;*G=#40*;SlRva| z3NhMpK-#f}+Xp*Bqa@OiWAIp^=4Dc%T0LQXZ=PtVAM6NzoWwhwKsVs!Xtf-dBrf2z zB$2ne)zk$@T3yx5)+bZpKspHcp)!m*B~zh}Vg<4uRmdu+>8N`=&kF-QGalUu zt%1~F>l)spKj<2~iFf+!Yxn^HBl#dT^WuR~m;4+Dxnj3FI!DsCvg7H#f`V5CeU;TZ ziP+)_A?)N`cUP;6ZxE137x5W|k9*fB55-dwhyCPlpqwNQ%ap`n|2mIwnt58K1ZhA0 zi#Tc5F5N-}-KK-2G+1&vzKFH;Z-PaUi@98K3nb#9@kp?z-qI(L>&ye&8}pwCon5(a z&1K)+-#Epn;-oY4OJjoEayDaEMoYS+&w6<(bsE)fquOIsdyQ(2f$Le8>(3KuTe~&W z`0PK%-I`DH1&ZUbc;)PsY^{|0wnMSTmF$>fj-})Mi*#A9e>}fFm7Q9+BwqNWWZ|}- zvgg8gXacJmnEBLiS+wF2Qig$~`U2KmsU9!(;uRNiXE~c#?g{o-CvFlwQ0`H!2{JAb z7Ek{9Yh=Xl8mCIi1Z%`;@`eoT%lPXxmSqYUsrDSZ+BmjahothtD=)~3Ho7}k&^UY( zN7bh5Nhp&pVZ9Uj!UxYXJsQtt#tPjz#hF2lvZwp3T-jDWXOKX0NG&O8bds;QLo6JX zQtA-^7uR<@@_Uhb6REOMIMj4p4|CyD>+oD52KJ(s46kq(^SHAvlhe(jr$g#+?x_%s zCwAxb3LgqZybu7UBtOBp^pQ=x;E>L6Gw?m6xnorTRe?JCJDO(uG8iumv%N~)LbJ7G zk*M8f3e5r&CuQ1~43TU4)YvJz7NPsXRjXeSY+8LZ6h|Ne{^6}E>klaibO!#Q(-^TD zvP=+2Uv66t0>L#>@F&y8pM6iJlsz+E_N}FfvTG>|@4>LRhz$<1G#sLvIP>@Oz~ESG zQOqfwAi+C7-FhQC?rcrSador&mcs2ZmIG3SGlY)oKV?&G2|MTx|N2{5MzV;`KugMdNjN{d?>RUNnv; zD;Oi%)MN!zDtW`41!*ft%3QOJ3T9R)b+V{6pj^tiS zrhHM8Qiq7shzqCPeMne);^4%hY{|@+C4Vw;lAn#3Y4ypgI+n|si}=kY_ekAX zg?6?5Z8g9_cWK+GKr5%kea$v>Pk5(Dm}l z$Xq8*8pc_y)HlGTpY`tNxCH&6ea z$lpk~kiVSSvXi7^5mRUF*!duWKxibr;uWV-m^=07LH$?UqK)th{kK8?6@m1(m28rX z@V)xM{rd02`tM`vQU7h$f4B3uDcsIqwf;^Rdx7H>?+G-? zXN8f^P7fEP1+)DR1Mk3XkeV4Fgu3VEL-E6mdx&U?r&GubQkt~C2>AZ-)W9JEi>uT% z&{GyBR1{XZB3{MlTN14Dy(QRKX7N4c@X^6cF6la|Q;V&P7yFEs?N0oLVi2osTJ*HD zcVcYNm~k%S5GLdtr;quzr2sYx&FEtD*2q|cr~8An>2IVtzl_(e_JzfIY$?Oary&;F zy=O9Y>t$Zlu?_TMy-bz5V>}0Rt)C{B4?ZB;QJHP^_fg>1nz3A3y05usbuiWIHHvH* z1BBKKCaFcbgdm~{N|l%b?&EEoQVM^)5|3GSSnJODI>8U`dN|1sMZY5a@&ueB&M$9H zc`wAU$m47j3<%#P7!c=_`mrEG_%1<)_+u^bgH7$6+MGO7tH1oA)^gbUXTp9t%c3zZ_Sn`U#|PlfAY{gR?o) z;UMH&v(#nDzt$bh?d|>eYXApLb&;_PXErjEamqJ) zmRDANt=&c=NaUOr7fOB=U<w)(8PXF}%K&-%1iEt)lj>Lm0t}?)TrZKxDp;IYt|xnC*cp z{4;o>cG5Ad$U9ZPB2K2u@K5BS+&*JHKd3&NisS2pdfYqIv+HdpGfz(E{UA0Wq7N4% zI^zr7jP1pD#eYe%OpI*4fJ>n8d{~C|j9QBjE}G!m_3uu#O#j}mexiR#{wTlJp<&l? zIWKx`bwr;*XdNXeGc9wR^QJGNkD4=14j$x zTr7CzQD3f>C>4!f;YT#R?zr2M8U?%RQT+)nFJ&Gr+)@?Hzh>m+)(OZfJ#yTG`ifj; z;VaYD?Fp5b>otWfUu>?|M7BH_$I{cxHL~yv*5vUwc!sHe!^?Xd=ndCw;+avh9CM?- zSh4O^*`H{vuZldSTi>PLzQbHh-;L*Pq8q-hj1U&!F7_{grg%p|#B6@8vs$kOb28a#Bae zu%bSXVG9768JJI-kOCk;!10+x+x77?HM{>1SBzd z)T-GJ#IZg6ye6)=qi?e=9dbzoHlrofC^$IW?Fyp1OAorpGD5Bq>nmrnKtH);TCg;U zB1b&us(j{Q;F-xn?M;u_t1f)U2B|l`PTm0yDug~l9PM8JnY~W5A&hFnonw;3j>#4! zIBF+^rYh}nd7#>-e)Ufd7z!Pb1NP{J&hLJ(Q0I3SUtM+6jHqOPqh|+6l)T{XZ)|7& z7Yv;hPJcgR=;M+PUVp#FXJxbfxYjxXQ!tzXbH@KENIN0D5@Hd-vKKQW#W-5Ie+ul2YHb(wcY%skf8AIG$A698c*4T zd(5;7^L6rOiP||%6B;`Y@@aAkbV5qW33R|*E47h0r6zE?|A^yB7)Bp2q=GsKIc#vZ z&o9lZccFNZEjEc+4CmFXvNp~tiFL=*VWowxKR}-Ec#sCb!q5;&7<4MlWI3O7MDNjp zK(N2c#3f6@@0@EzYK#=^^r?ZbBF35?V}p=6HpRwTA#>(h8=pg0Mm7j(l=_AUZmJb{ z<#k-9iyvT6ASe&=YYt?r8pT6Wwuxr(z7b!?I)-u|NUtqu4V~#9Pe1%l)LFK$HbMl^ zAwNtAq6aLAO+Q}yBVjX$E}`;xKb)bAHr*vRu~;9wIE?`@477O36`R4Z-q_r)7gJw2xZ z!U@4UCMyy2Q-tBMe%-&w@?)I*815dhWP<+)buh91JGFAF;QqLB;&h+?M=3R5a#KQd z{|D377;_Zje?P&WohHS5{CDW$J-<#V9!M$v6&LYfI#9ry!BXlV)1H*izgG!P5!2SlJWPGFIJ08A1{- zVBwtaFBEW%r&l%-YE6x?K(uw12iG$lCm?lkk285K9%siGdc#T&Tj)@K4y?xl&*tB& zs#u}n?wFO@E&Q_V7M<0B^t#YlL|aRT(Y|;s(n1+h>4m%9p>#tF#^IMWB?+DGzYgZ) zpVqri;=1lkhfa&@0w;1fGgiOM)4(|-P8EvC!XfY=erB~g z|5~AlI}!LTinyJDCpuGWb;jB}>=d!tDc$+ma-oPjm2VCd@p_qwE7L;Wzh7O--IugI)uk(gxDMmS7Uz#6|jz#AF%-nP}CkN-Cj_% zU5*;x_eriCH9jaXCiersn?*@vr7{-scdW}E{nd_+0p2ATVTBtE#7Gn&VJC;gvm z(f{~p-xbOf7jPFdADaFrwn}=m8<*MiznZNQo(;`Y0t@b&d+d0@w$MO1i9Mh0MQi2i zBCgnx8V?ExR-BoCM*Xz{nNvu+`$7JLf=Gk}gqzb0jlKvc9IUx!xqu68;~G(5AVe5z z9@ZDx)y5i;qSX%(0TMLqf{hjp%W_DSvI;_50_Xateb->im>ywv@xgZBDUcX!xbZs& z`}?JOupJ{=dkHEjnj%P$X0(342zwFD6RK4C#13RWucn@C9e>nlVw8>?lZ>fz++T)V+x{$^n7f0Op(!`fQc zR|RqzeGLCriaH{?hTc#*zd%FD0+8gujMsGK`~-l$V#NM^GL5=|HvLzY4yPS-T%JA?Ww^0{UjsA%W1D}@&C=!oZ3{?cj@sHToz{y4y^LPy zm{dm9^l)}$zMe*{J+yG4g$7XFY36WAt<0sq{0GyT_n;_GL&N+H!oOZk`7pnRVSJ!@ zD4IoG;5iED)m7T#znAY(2S5-{QYouzTS^UW)L@rfLCLuO$Y!yal_9z}th6WRc9|Tc z2O(dP+1)dRl4t89jUsCV%kYRZ5pz98EJpb4Vh(cF`DN5yXF^G^5h4%hgTOoMx)UPsz&fJF2F;8ZCDC05<-f;N|`-8DCtN_Sw(l z;t=VRq&K$UQOHtM2ddU(Uu79j9*~3ASdR?KQqVZ~FPKd8A>iAWkI_^)_Q6Upl z)YaBsgbi6+X^5&8S&xeukMt?MeqLg#5HqAFBJOyo$cE<{(Tw^er4Iq@T}ssn<;qy~ zH1$MY9?!ez3UQfIzDPpmCLcd46n4}zBxFpYb?*}tH~ow52>Iv!1mDATar>Q$5~qP#`60U5#$ z%(RxMV(A9k=@HAqidR52nGoHA7b319Ginig5-_!=E>EUz_O+>E_JRp27MB_2wa)*` z#8|jqN&+Y1Sq0-q;!$ex6Q*)9&PYU8zlOs3FN?U#%#C$H->3BcSOE9tTnlh4 zGF_;GLh&V{rR&g0|1`>0s~^7c1z`@K-xtTlNj`ru^+nI{2le|B{l4QdZGmIu)46HA z+f(C{o$C;!X|@=3ygimAs`)NUP-h*e?SNU&L7gnm5Ab}3I;oF#(h&@d!Wwt54#|r+ zOg2E>aV4s5wWkJQ_-U23cZB9wMjpn?()Y3SD3IDJqD z*Z3g#)V+U|4|>#7Vr#(d`#mwr>II3P{L+3hNVmCHV=I1TyVbCGS1n3H9`_<8)OA}Y z9@o6T7l&)9=Pn`RrALIslG;@AyJ#fjP>62f-@hLmmx1H9a9f|jZqc&iMJ8qW#6%sL zL@)o7PNR*gN&VQ;fAsoZf4k;|!+dK6e}p?H_Ld4n>xC?eaH@W`iZDdcdhBjMvQi0$RSP%BDB4Yj2(5Q-Q)lnXg|lu~!}&#cEf0)JIwn61R#>VDaZLVw8Dd&o z2JHk0nhEumK{J0WwI5U;%|PPbLYrpENLnNOx=S`d11I?xn5f&Oh*zkV0#yh*c_XDm|W z_gOn?izJD|1NlWXOHcu9vI+Xp3YV~HlD6vIRVDO8Ulz}S_$-oYEaJ09_NLIE!i!T_ zNn4-t70L4Hlur`EaY6`lEJFBNpF%TcrxL<>m!NO3SU>zkx+0`-YjvEOVYIuKUin|| zU5ijN7Zs(3V1+3Z$X4T5Tju2qae`!`Q_Cl_61ChzEqM=#90Gu}IR9LqkN;Mg%BbUjt)pE27GV={z;5YX zP5}EjMNMZsU8#3eQgesbOC?NsJ13~*1poPf<-=Wj} ziw06ivZ19ElF1oNIa~O#iv3HilVW-{j4je6{P;YvE1VVX?kCeM&EL_tCb!yFAvI}T zj_%PEstLa$lbRN)N2T6{d13LC8i#pAAodRg5r~yoe9`E37UgO8H0(_9y#WEH76aVP z@+-8d5vD`8ywrpS~S7- zKLdeM=dA2xU?U!ta^^2}L)v7R^A}@w_wXIK%ER(2aHZUNeP_%(d7o7OR_L;L^)sdR z>r-p*;?!&?w|}qH-nN25d#K;gCC&Asde70uNmCDVxE?;~(Iu^7X_xuBPu)O6kL>@> zVRW~r3}da`P?t1ROG7dYDQEstEBMzxDQz(fCBx`Mu#sW(liCmP)hmUQGXzq@WGLjA z@w?$>>Xciho~%dZ3lmSe*mKR)5}TR%$U&<|iO;j;^M5S2K9`r)=VEQ(b6fCE+B_fl zi7h7DR@07mZc8m9gR=&vPx7n_0k6Ir65i}+WJtdbqwWvcOgma`lf7I5R# zDt_&c=L^uY5vT;)hD6+rBuGP-r7t9WK%d_wb$s8h?cE1nE)nIH95srjraS2w9FIPnt!88=Yt z+(g-?OMWr4#B1W%Nsh9v;28^Bvs?tao<X0N zKS($jDc-Ekday6zt}I@ea~JN)3U_2lwBOl>IrSp`g%y&l_gNHAI1r1`S596$lOAQ} zoT!R;C#WGzCe-$0e!{I;;@qY%h)YW;u5VYuJ9@jm0eG^iL16m-cfo9L z=yR(q9><5(5Hv&!%e;8jd0a!(V~l~lwOQt!R?r?w58vct+qv0b~u4M*RZbcHK;)pCWiJy#<)dms+$T#?&6O->xl#c@pn z6?avur?4}iN}?i3(>I01Ac1KuNqhFX_z^W9H1&^=wF#W%bG%KB8n1dAYRqw8lH{+% zt8QGR*9{RJndTg-^m0hy-OWuU+W*(yomlt;j$;oY4__d?Y1p+!c7%A=IY*2+-Nu}r z@F8dDGkPFLJ`o@<*^EwQ+E_V7#ptT_QBdO4bdR)M=Em7KvGv&oiXK)C%nt^SaO;Bb z=b50yGs60kAu$$AAnNN}P3brdN2Y+6Q~u7`E4Sf)L&X`bxQ;W%T}bHq#NU{$>prDw=x38eq8~Tuu zHxeB#Ica{};|yUM=xXinQ29KIQ@jL#pQB#!x)xm4q{Na?8L2q8sl4>yX}aTq61&%W zZ~wQeQ+lnR+%N}y!9|nF=YhJkrT)D<-%fbmJ8o5HBWkt z*LH!2QI&eu6?HZdBP5C5eCodsV#5p(7$Y<2TqJ=ulG;s@>hw^|cJk8FG&D^o6f)l{ z=nl@US~_B3ENfv`maD*(s}Eb;$@fAMj)lIA<}aM?)-MOSa*4bD9+LJh^+fUm3AfIr zyz7K6dROvIZJmy))k2u9oHe z%jb$#jzCmx!R|ON%oxcEm&S?lN-BV{U0*t-1O4XEVnJ7ZuK(WD!dImhz9L>YD_Qt8 zFpLm3)q<%NA7PfLSd>D9wTKoW3%^Jd3@v{r$ja?=0dbtO<;9)6uqCBTht8Y11Mgk! zwk??bp89?XQFzncX17bW{6fGZ6|u9wEI790tbl6{CmK)gZuvYdGAZV2UHzK5BcrH` z6N@LGs8;*XpTE#i7D2s1g{k{SNGUwv2NJREdxP@QavC^IYE;gOidI2Cwy zPr=7a&eAT?3)`|>PT#_9@>hLC_wcm^kU8HNdC}6PMUeljg|BACE=zv&y#5F-=*f|F zxv)9QmF}~uiCwII9j^i&-Q(JAcxt1Nv=Owd-F&v0L(Qw*1=o0PNzb{)W43HFC%bbd zdt5D+>TYLZ(SsX=dUb&r_TrgqFP`xbB((`*mRR!o$+^rHfd=I7@9$K@Fh^@u)e;dh zj+#psi}OF;)vJ%*I>AO9+ck2^KjMgUhA(hkY8zQ4f;_tN*FZ*%Jl!DA1RHtm3er+5 zs7bBhZ8~XJ&_o5{8xKlu>hO(I{2CAwG!!1J? zg!{I5a1`}OEE>p<6klMyVqQhBB6f`Yq8{R2(XOW3RPCToJ>884br_D|E}?clSnm~V zq^IOI7u32lrtXWBICEo~;B^<&do6`43x6X*tB*?<@;v-S1Vl-bfxmIK?|=2jO9b^gQ>C>v0s7KT4-k>SK?*Py+egTb)pJo3;d-w?ep8Tz^fL;DH_p&j4zl_4gd)F7{ z^s#RN^amJj;{e^Q0on`q~mu8KI zE{9Nm!a!4@D-ux1Q;d9wGas2CuRIiEIUqnpO1xmPuR^RML^51lt+JspNHL;*WfS;^ zJITHg>Q-|oF*j~2LPUM9I^e1^NiJC&(_&&*!Lg<1s3#^ves<-w7qs7!ZML^`q`6u+ z^tq(F;KUM6>)4^#?hF00#K2yH`KOWrt(Rav^uqsF!Th0b)$zs!x{f}AxfTai1X$~I zrV_v@@h#Z=B$*e3U3i5^Hf-~yqqxcmKg%SFur#~ic!&k$F_ybKMf>17BOlB-DTCRJffnkN_L)RmlEHlg4QKf(CdYJvKAH{$#Q+q z`TPP+GJPm*p1m%;qm+igf3sI*|M3c63c^gmfbM4XNSc~NY$(Sv_ww_#X zG7hVDkS#6@PP#cM42nHfo>Qk)T=G?qO!+`F*4T%~VXUH_m+yr#!tF@pO@1ZITAH$t z8NWxSJ08Mg$LQIcqLJ37h^WS01fK^ShI@i?C%^wkd{@Lin()OY**4MEGD$Ndwlc%} z-y-~$+nbvo#y2-5oO-31b+h4Q?_f+KKf2eDy+Vqhz6~@%P{053xS+0n1Jw=R#QA3g zPV5Cfz(B3HpJ`Fv7V!;A_L4v)m`Ds@WuAgEZ*YDku}MovQ(?NBEbj6F&=!%Pv?u3d zoq@ely~HCQgK@R_)cKF0Hj~|v*Y%D1BQFZ}aroOV%>|+ZcvGo{N)5XD&~N6QU(ZQw z7P-;RLUP^T)BJR6<5YS>bn{~O7HT(mdK1{ap&+9nvS=rF?Poe5zplAzK9D!ai$s2d- zr5pc)3^mdmprt5lc=!3#Q>={?3F?}qlg$AlLowXgWel26*2^cewfyup0mfVnh`8_M z9WYQg$IJf@;uFYiGY7M^y5&Hcum>~me`XI?fHg_>uzsCIG4m<$f3t@>CjRg2VR4c@ zSTuSeo$o`VN7ya4O^DNInbvf(ijeU;Ba_`wwmLXiA37uWej`tFo7*O3N%k|AN)rnw zoAn|PAlOjomRXz~8Ig%KMYLONwaKoQ^ZHu{%v~9hQQWC+zXbQGT1mQA@ZPf1B)O=0 zf*gWZk_Rql2j9PSz%%voShOIJSw|++{Q9h0`Y|E+NL6J2q23 zTL(^X@LV@%$B^!z;Nx4qFCm*JQ6T5z=t=9gc^m8z{o&%j#ag2M&0WW~HSjicFyN_F zhxDqkl@1kZMn6*4X)sk*v3EX9W(aDNKK<#BU&J&NT8&!Cvzp$No#?xk>IA5{ud#AH zfefQ8Gg6y9$0*Kf8e&Y(G^S)V4Km8c8D-;*vOEr`HcJYP;zF}zs!=@ED4S-K&0rQz zHA}`B#pBG9@ka4@vn01HZ8`(& zaHE#86Xm?{co1RkTSi4D2W6A&r)j7$X{>OviZM+U*~X-CqF0$To^6>iDNp>_CQUS3 zjEX{|VyaOw&8V1RCo-$57L(I)0mZNGl^t?cWEpu{WRtv(`|3#fIQ0b1iB*yEJoOtc zWF`M_8j&J}Bss_~4F7Nj*HeYmNp5L?6)DSBFI~ik5?;+OkH{eUaBzwvjQ`R3 zx#P0=H`3K3o4$^z54jCDXBoxW>MglsvlA&B8E$44kPI!efSPgjzwFg%+X>1Fm2&|r z_NE1nt&U6c6E3O!k>XGKYndHdlvb<1^Dt^{-&~UZ7 zw%LNVr8}}#E*q;J*5YdXk=umB*Jp|I$R-dNKv%B}bqNVLmQJ zsy-s7k6&Oj1#axGBuP=H*W4N2<&@a^*kZ3bd4WjE+f_u`xN$!c^mfUXNVuU-efeA9 z6xs=Hgm2u#qdnmp_i_kO=%Cui8>41l!AHT1LBI<{)IL*Kb-Ox;dT6Pjjevgq*e18< z9G@P;Z{_bN5b!&0W5B>CbSnCzB3Aeqr|@%IA6HS(U9 z#Z%dClr63{my1d`-5grYd8g1K*#K)VQ`=Abx}<4b2p-^#ls;)eSSa69>`2j* zM$x87(I)2cF?{J{9?OY=e+)$uomlLNUZOvFEK&}tJjPd>$X%ejvZ@+CDhEU`S`tyY4dNSW#@eCv|nw^p(7fCx%VL~;(&>`r*;M6VZzM0-}|$1^CWY=NNzHw#*pk{G1p4QeL% zaZ#k+T}hEhWCcZym#nH~^~l_2Q(XL;{)l?e`a)Gpjl0#!>>6Uv%GXvA*d-AA44A?Ks!SYWYIHTaYYxx_`TnCkZdM z;kXs)M0H<+0?p0g-fkgJ@+kc2H|iFk3n^#+8t)8*yktC`5gH?$V#6aO+k8n{b!4oT zZS>J?nZZHmq{5$mp{9=c8wAfI_dCO%9#iAF@6+!>^?M3Q8&aiI9w%P9_mWFW?z5QY(vS~=8NH+m{*hj2}u ziG^{RQ8go)ZfZo}braRsu|~9u!mb4=D+Gqec{#@;k{17?G}uaYwz>Q4Ju|D6cM7<| zIRfQ!lA_uU*9E~7dnM5qNkOsqOku{)M$Xzz$o{*Ntx}>UFL$d$zc~W=wR6S^5w=N& zw<2~k@g+x8ckK!4J;LfDqnWUSLig2YvzQZ18NIbo>f>w$>0LS5;m)qhHpjmwmnH6e z_j?egsqc}71?9*k(q9?L(6% z^fr+aWzUG8VRlALg%4X>E$ri@Cc>-TfR6 zV8tUi#is;5m}Qt^BQi{}2Ha$rd-RRyn+9Uz!=gkGiMUa!wlrXaBH`#h^23S47N_^7f*} zW3qm%1Q&V(fOCs;rSd?y5<0{l6O)CcUb)Qf2{CQSuedxk*e2A zU)6t{%~Yt)=@`^b8MusX2lXe_e+4!O*ult@~Cnd)*7x*}6mYwOp-9qx{4 ze4~|PmVPXuPn+|jC$00}YLW^!g!aUHsYmo}n|r^PEl3O^9@p31mGXKgF9Qx@WZAN!`5Y(1cmY!L#x9aBk02Kw3}pMS>(7LfdXW!Wiw-(e zrOaFT@(7uJ1LMW%0={-oJv<5(gg3PY6R%f0+U0GKEg=f`4t*EfasCfRF_yD1P1QWl%ACnq8_5*(W+!-a9ED{w6J0YPA{8=lEDT6)`$d-rj}88@(iO zs^6PVUy0hDoq*`+8T;?!(!kT?1f{Xza$QYhxkvLCX9m3% zqU+*=bB`v`zW9+Y%MBUM(&-d`r}%le0I6Us**tSLlks82`ra>ePHXg?qT<(Cgp) z843r`2s_S`r_)K;6jXQ^LG_KJ6ZVkSCWN)(yK6uHOy&Q>e0{8!~(U{Fj@78oS47qdzmYhpTZ$3YN>;ErV*?}~EuW>&dW(gc(Lq$;gm3O` zY!Nm><^%P335OGE_d7F$clLIR5U3m|0Dv0CqDWGqNN6W+XoM1tBWLo;X6W;I8#Im~ zeX1k3l44+vAeiO_eeqK~=6^OqJm;TLEAz=b7++T}&9&B*Et}@0B9o|nHLEa++LI{L zc%`6M#;WTWaO0JNR2i#$*7dX*<-zk4VGw~V|DE8ktoE8C5(x1i(AE@tRL4vkh=6D~CeGg>dCcM}CVPU9s|Wdh=Wwd0x1olP}>IHO2|I2LMWx+0B_fylnt&9h=p2}_SX zC8CL`xlol_10d=B>Smdx(CKFRih#39{jnSZ+pgYgIcB{KUMQ~x<0brnF8Iug)s0^s zltlokMSyOPRcQ`$<#4F{e5w&DwZPmWvtDTyui(&T9{K`l=G9p$a}d=RFE?tJC!ejA zXSA+AsI_id*Pc#sC(o$NFO^dG&tDv4mUc$3w6XE*5rPW1#-2=Y^l}TH0Mq72KvtE= zyb2>6OLr60bK_~6AL*42krsYrd1>#c?lt3!k~5x|?ohk2^09_j1k(l8gVo8|2csLd zid+E(+(W&AVTt+nk4~&SneEMhN*2QGgOxJ_)0ipgS`chd$B~~q$e_!fCoA`ZN>x4( z*yt=aO%I7&NM?%q9DgCT`Q5_Wn3NgZkact<;;^Pm?AcA{%)t3D{^*m1EH*=zSMUA( zUjk;7DV%;-s%LprJIh)6asNzNj!m*=r7LnY@u-(hfC0^vj}$c6 zq!elHTV$6Gj8y+xDhn@T^@r3YZKbaN$r?Fxj}}+aTx|0JX>Qt_$lAxa5JbAz!cBCc zi*+kPa^5*jx?1q|vbcK1l0RDsC^it*cRkQmiNcL48|2;>!|qn} zqy=h^JP@tGi9AwAYr0_$!K^(gXv__2GU1ff|4up`8e&dbY|LGpe0oiP=_aI0J{e`* zw62wU`Fe^Pz(DQh6U+CQv}%S~Dm(wUo0Q>0Bb6vBygf`+{<+`t1w zG>5vbshbS#M!20D;}<*S(P5u#R}ds5I(kr>bD{|QbKTK?>>$aKZ*Ff5%S7OkY))B0 zg&A93c#&I~2B4L>{U+ig_bXBrMpoOkt$j=yN8#Boh-6M+sm6aD4hlmLO7?i9ZnuV1mY)D<&y zfB=OamBQxJQY+|Wz91F*)MvMfTq&BJoLwA`YnC1u-bOAdojvExaYQk!+#eWN+wg)0 zV8-ePWc0t#JJq)ctTP3TbU?Nz{K6`(9ida;_4m#1j#*Pi8;%Zf+%leS;IDaUC!N5C za|*KK2zZ71tf-UryXG4Djrl#IMrV%9cup&4CrSIH`y6Laj;6E1{8S(c>zl4wU*P*T z=bM@ZKbcMIm#^uL$9z36Kx^STGgD zsy-!X7ug`(TBNRB6Kxso#ojU+s+e{yr0tDpZHavAxe`Rw3&xVuASmih$iLZ*268M= zl4h83|1&HL^J1U6;7|g1)f#p?mFIiFZj`B!6nfzneFb6PJ1h{e-Eye?I=96^_2Ef^ z_cp5@$;z`fJ#lq{&d1Q%Yd5d4`Ea%R`FNM3@v6!xvwe};9)Wpi22f`Ua%p@UeX@TA zeN5TO4rWfZ}ZBX=5U03kjcwHm>8sGY&I-#H8_xHh=QW-P**hVY21X5sCzH$iLKi1XV~a2tb;=gei4l6z+VG}yjO*~jqMC5O z`qniH8%ezvnKXHCHj2V7^zuj&D78q-p=1F53JWSFN2lxJpHx-9gr%8iA?s2d$AA8*u+ zG3v%P)s0hybzkrdDPfUOH_ND-W7J(|)Xg{Q7E~H_es$KxhhmkH^2KTx7lEOmS7ceR zO8w*GFNGZ$56QelHV9f6Iw57XYQ`|92L2P+my(SZE}OIZiGAAX6f;8AZ- zmv~qJKW#MR>_UJj`4%?FT&W9wz$`o@v%rcT$xUoomU-y`CLs1MiyIH?t$*adC*;4_ z&0}~N>d{Zk9g+HM{aD>sOC9TVb?dp@djF+cIMz_6+gKw=5Uw95C$TLZr!ILNO|3qp zp4+kNY`LXxEMN(jIc|Yb-3_`0&We-=)%71S3O!`CfU(M>o)35gkdBO#`$ei#|N7&8 zkyqS}Q_k&kq`hTx)T^&ad$-Thx3kpKavLf4skZH;V=N!9KCY3k$LiN()#j5Va;$tz zyspC=8CUt}`0Xe9cBJ|#Ew=TSL0WDo%s&epbV-ZJNe$@;QKXc=K`Kio^|wd>VIJQ; zHgO&GCKopAKcO#{Hbh_CP|{1EOkL`Y6n*jayT$TZ1q{ih%9DvYs0-egRokOZy-*@!Zy^yJ9y(T{m*4 zb?G5a7CIO`DR%OHp7_)&G=ofuTaS2ws0&wq5zD3B<(E=4_S9B}8hc7M0P@o0CCGKE zdD{ZSr9pvyb0Z=36=z!=jI2~qS72i;9WZxPn}uUzi;?!%qgmidojGl6c>Y*1N3d3g zx9TZa01c{AH-l4Bb8apWwynC|#ag=1Zg>?!De&6X!|O3iWO&&=l32!0*262;!yA(r zUOy;SG$TH?Pk}IFGt0+TM(X^rT=VL2v70%0iG1wRv(ys|zr2%mSu%E>Ic;2c{y4j< zi~mel#dIQ!UpqHhn*YauM{)+@7MRF&vW8}V!K~_(+-Ty7oEC_M`UN)5i7w@^W1i{G zZ<5()4&Gq(G%kjn>0dMeu@hrK(l#<-AcB~sDE;X1q^>jUK|nxJiX%&AW9;(%1-VXy04pW1Q0wXDlo)}<=?4xO{Ik6-b9D6aN1VRqs!B)a}E^_#hzRQ!^k znpj9*{T9wBMy5K|JtbwL8ap?BC#a+cNlg%L->G==w9TjJ#yV;OIVT{#t zD5whV%yr~HAeSqr2S)mpaL2w`hyR?OSaFMfpImW6MI?_%QS+2z?;)(S@=RT8G#Ihg z{@kdw_IHDs2h{l%y!6`V1XI2C3C%xwJ5wP0&071Cvc}TO+7Y1m1!|3 zvl|wrn@?~lJ&o1E3*bSDK}n5&6hhXT0PD@H2cegC;+)Q27%5;4mmY|j?-@mVgaN?j z!p(U`XeW#`tQtryUai5|<`6LEiZ2S53xnJ~jW|6!1Ee;LVchd1J7E zS6}`NNYh4)W0se7um_kjc5b!i^r8JGdEGa!q7@y`#DRNgJd3tlGC+@B?xE#&(R~y} zJhU>{o1wk3Fo0ZsNW*dhUkNNXYp%apxW2lVR{)jm`5quTI0d39Odk!|j%v;E??-tp zu)INdLu)kOp6kCcu;9r)HS_J1xm?V*(f1KE)I70KPaj(qZW*iQ+)wJrcFnakb|1R3 z*EIB|hHxwdR72AqW+Bt&4{!cMcBtKkrqhshj6Fvxgc$r%k0x|72~Qk>jYwSO^Z`2G zA=RRRFg4wd_RoDy0<4etOkFd=hv4&K3!jewQmbaN9g|pJ%TYEq+cbXq9Cg>P6UaPY z{lde(h}6yKlYDOh0klP+bHGuhc8g5i8qGE}+o{qR=~I%`#nhb#8#NRTUeOB*kI~)K zH7>3P_~OeN4}v%rK#XVcP>-qYf7ig^1bZ7CWYHwu^^s^!94ZY#i?D;GJF2S#8&y8- z3shbZs5~pg+5&`}@TgDB5IojoLgUpKbx_){P!j13IbD1AaW1ChC6a}2VPm(2jThUc zu3?&Fvr=Hy9@G6bpB0WM$i(z)mJYN=FH1$E!9F$UO$&{xE%d4E&sRvRnxltX#;L4d z^~Ry!O-zBFtX5)~2Ui7r;g+EC?fNnnEhgt^5N2}qo-YO4&ynr8)&`+2KIJUU-SG(w zl&K+nEj#TS&Jz5-Z>CRO4N60%XYeB~g|-SP-UR3Q2GwV8q%`sO-QRBF=~0O$%GDEm zEloHQP5d34p@}hxCgSQJ@fSk3Wi~YfC#36s>LYTw@}xFAhNI5N1^78J^XO9I1(3bM zohepftsjUK?LnfpgzBxDSX;YrohUDO0QYmK_N~?w_|yjaPgwZAx%taxL2Jur8Ovr_ zg8k$_AuU&u%WBzm29D^zBos12dbwAAT=Fi8{w6C(*I1llT{ceE`+hKmqPIz%!#j#@9(Rx4VyS}(0y zD|jgozyyQ>Dz#XsMWwpqq#7hbxRm*RYo9Zd3DCZM-|u<8zdm>}bLO1A_t}@V*IxI< z(`0!%O+S6ydOFE`I*?j{KCy@W;jg6XpUz|TV#jCbauYaYmQI?_MZM?q{SI?JDTn;{ zrs#qh(FND5#%?CPn<#s==NOZ(56*$v)SS*GuM4L$2WAt&-c3ZF40eeL{{|svswmzFn0rm+9H2exzH| z@+!_-NeTJbX`RTD{K?)>sY7*b7Euy1E4$#SIIXcA@R}YeufHSL7C6r*3J&$rIFsn; zR}GZ)Wr$)HkKk&Q>W_#hGNQ_q&2h)8-uP)GN?s5PTsi=knlbBUiM&qcF7?+UV-93h zsaL$FAYzDE)?GrIBznfEb_usd+ncI=dV(EUJy;BJz0P$Aa1kwW>fY-RKSPCJzHGa$ z&9l$O$xj$sZ}eT{V;nK0p}iR*PbS2NXP%s7SaU_PSy|7%D}?b0oLdq+-f!v4egZgi zBwc2ezT7O0vB?@K+;ia9=fwblZ2|@`u|5{VyqUOM79H>^KQukMt{P!Re#xzP?mr6| z=?gKHiQ<;RJ_(-tljx6Hlg8kejRG9-Db^%Xz(E#@Utr%F>7%X^PiR&OSzvm2@~vw2 zaAb&R;l}ZY>@Ew9WVY3Eld&{lspa zPq&Qi*sWq5FQ)MM3rEqb2QY=ES1W*R=~X_W*YhDzUm0t`N+q!J#;w98uzihz?A`Zj zQ*qE~0Av^dLc5h`G2Gt0uLv%7oS}UfMpyYIZZn}}=%3B&A28-1rytbuPJKqy#^H6u z7T}fRQo99dnSda0hFT@5EXM8QspPbbm;dS=f$#5|ncH-P6W$>!==CKdr{Qoxq9O8w zSIxtyEkEF>%X=an0TYs`thl`vF;yt-gd$ewU1*wYNf{l$E8u|kUtPnRYM}tYuUYDZ zetq!iiT$en*ZoTRH~q>ub-!|@Uw4l(`z2)(`ZY75U#&&CNgJX`;f9Se0|3Nz^ZV62_{}CVnMoN~(!mmufi;EuB(rD^Fw%*d5$7!A0GU zEun0Wwxqj6deMT5`n2bNqqPhajmtOXp2#;J9}NWc$V#J^W`FVrTlCT_`DC-@FM-Vh z$gSj;(Mw0^$2r#Hp}ikh`8xYmVT|mr77`6n>CX{i8dKf45R#U%)#K!Lx{=JY5Pr~C z<4=&T`qyJICAyV#S+*+Q>_H_~WdtL9$o20Jn&){Z;gvvJb1 za;MRka@t;nfUig!~n_8EhTf+{Rw3x`#PwH zOY&f72Y15%uIsu66R$Rge@I7&YI95FFf;1?){*vH6n`j9MHTpnH zL{i`_q_?M;y^XNnQH$Y5SSb-cz^FF#1LB!dbK@*w=@%Jenn5Dn%TaG&-aGWYW}4!t=eM;%q@j#W{k(CT4^tW`-taq3OmSCsd4s zQf8c7WmwdC~C@S8Gv+*>y z5B(xqtwsy!&HmiLuFTRTgGN-MpPhnMd8bTWpaC+F%!0G>K>u4p^WCBO>FSQZ@6$J@ zctf|jL${@?A96$bK4np;)F*u}y;b^NI#;?}S_}2=^{OdlvW+s^N*6gZpSFcoh+-bD z_Uu)1s5i9jkS!9(s`Pd9UhmWVLwC}4=U#3j6d{SyK0cFF>Qn?7{3JIkyAe!Y(0`8#wd9$?q*l{|B26PTdF{{3Dc@{093DZ73TrQKpam<(GIw;rByDLaN}gQNOYT+N<`*Mn%<+TPV&eB(Mw1ej;P%7qh}j*%RxjN2_4j}&MS^yw zZ;wF3xjmI7oc0>(Td~fiy1J6Of?L4*+q@G03QhX7i^Z)qQMW86E`)vHsifglhe=S0 zFO3t^BX|r6r-v3^d83zvrgo|ievx8}mSkwUO;cW)ib{?q5m%AdP)c14K7)?!Sz^n! zz)a~RoHPZiy#!@lHjOE%R(ITO4QiP01sRlBF!@Xn*P~G1^nkd&@qJ+48Wu7-b65=* z0kGxdPSy}E-l=k+YCbL4G0i;Sh>S;AH)6sWR~8(vy%rp-zL%~!A&!IYXjulKHF~;T zt)pH{B)i)LTpRNuE}qKn8IL&KbI7==V2M5O7KggDS8RtaIz6}qld3*OE_e8uHhNwA zFIoENH5r&G7({)lfjWLzyZtws4W_Z1~Jht$VMG2=EZ?s z;Js8{J7)9pbw;Y|!Iq*B2mUtQ5$Gj+?V{f68M-mGD_oS}t(5rQAwmszhP-wd>~Q(B zYT%NCqNQ<4TE%U*K`n_06xyT3`kHu%;7g z;lnC}ob~27YjF@;mV-E<)cx(^Om)dH4w>z05%w`)86efATJQOa4Z1~j@(2OLDt>bC z6wG%7Bw~$)>w_Kcgmya#K!H>AVloTm&=iO=yE^v1rtY9x`#>|!PliBCBjr>x%=C0B2(25n1J6L&#T)`D}5;;fY7%#`Acg5vC@XBb65)fU5s{9a8ulQy;}X4w{V z0Zjz0-on4CYQIZPy;+gbcr&MzWTcd26_jKzb>`P(Ec*ec#b}5U(e>#Jc`ALdtld7f z^m7Oy!kgigw3m4%18bL;$OPiC@_UBBguIMIRSvzq9D3(UpcSz==l&qcQ+l~*q?1 z2DBbIMkN|t>2{(fPVEj1l^%W6Y_8maz+XnMix0&xgF`U6eRULXFmpHe z-Vu_KeVlP6GhE&kosyv@oEDpn?P}xcHV|{<6)lEK ze0(3_Ztz#aGiV~*!pnY}?+ABTTQzD{Tu^5otR`mk)eAMMCA&fylin%Et3JRMGd{VJ z*~*$+Ef)X$OPO4K`6%-oKLL6>49J;XZ7k+cd`on*d)U#qUW7b5QNSa@nYk`hw=v|| zN)XoNgIQ@~<{mt@ax}q$BM&=dia}zk4s{7S5}-RgwL`mN%x3#@JB65{gtzkSN+HFB zWC!1wLKGDbVJLQ_c)E*uhqC>UG)dzK=KZ?Cn`Z72C!Hfr0(HDJaDU@&VibXty6~gleh$AZeQT$_MQV4swMyUGVU>DSZau}V8o_6h*yZ67 zrk=xLdpsAZYE#h!*}I@)HZP!}543c!(i=xnAk}q7Yx6i>b<8m*F@Ob_YOes*!rZIp z!LjI8j69@PM4S!WNlf(${6FG&w<;dE8E^BamXm=)X3WWEt24-~6ISSC;?ht2>g z>6MbLkzJZf7Ql-|@(K|6wM#N?r{&Ld2C^f4_(Hw0i<$L3B~p6xpv#k;`c8y{E}nBq zZVA;q0T3gtE8c-!O`fROV$^jDPVOk^bS>Y-tMoqZ3@*yD)n0300&!aohu|?tSMX83 zoXxJ~2+4_75KV&KINd1kRD(0A1_{}%`f^p!y=;I{*U4c`)4Yb0wob#_pYIe9Q3mfq zM)(l5%NVpygX0AG_})BW0DT#NKbdep$zqnP$8_gE*cBKj5S~7Cr8=)`Uo>(V*kD|J zT~tyXrAsqwdp8r@VpnUw5b|H=z|qZIMKjHw7`3m-b*S%XNtwEofg)DjrY=M2BlG|~ z8n@u1Es8k{J3PklVKvDYI@B!-J|`g|a$Kicjdh|CP=a=VH~XwMoA;Mb+6Wq~8r~&q zp)TcC_fg6$(q?<=Y4iDacpjafWz{@`nq~8z*EJ7ql_#083bU=-d-d&%*zHB!ZZk8w zskil`?AW8b%tsu{Huao-loNaOxcLak!{1LoDw9WTw$(g9a8zgq)7n%mkAh1?sM-&* zgKbQzyuj!1K@&M-L&#f*Cg0*(E`g;G`qpryv#+n064sE~Y~7GyG$(HoVFeVcQ=O%o z1;#GprCW?+YC9wnc@S$3aT>DYn)))Ebs{9!N$cDII8DHl*wpA9Uql6_oYDE_I0-6~ zV?KuzvZ?i3#QX}O!?)%FZ^icMMqWX;_|kd0@zuu!R#OMLa0dvX`@9A=(j3d@n2iW6 zizhqzB`YfM`ojU!*=8GWwhdKiQ{&pCZ4A2Gek5%>VF$Z}dEyON0PHs)ySGJO(t4%m ze{Z(z477_u3We&NV%^G!tj6j0q=dHr(nPm);?V7_Nvx9EXK8u z-#IN(fh^M`fZ!{mKZXDzaZRa1D?i5?b90z7_D>WD5(dN|OcCmBy-4;*dXz}(+Z0k% znT|udhLMIkr3Nj#-n7AvbTfQkeo+?TnK~mwU?_tvaFY)4%qg@JTh0vd?-1Xq!_x(= z#?(i^VwG`;=Hv-9W&eNxEAQ2wbFJb0fUrg_0BP-45ce{s>r_(*lY-_+-pft(Yko(* z)O4Pv?iN!{guW_E5AT?;KAgFcORD^fROob5QQRLy`d89c(oZy6dQK41d)57L9%7@# zOtjW$3B84Dkg#cUrgYGac>8S&C991Wh!bo^c+Fhdah^<~Fomj!c`AWUAqc^@MsXP+ zNp>g+tcvd5iA8PjNOAzvuMG94F*+Hc+vfvS;xv4Ph%~e1F!oPZ1<#2{)2;434wjuN z(=qyqEK}=hM(?okPCPK@QdbRgnJQN)U`)&~+(kMV4v?O1Ttj3i9l8bXU(dK7G`VWR?C6S!0U&Rfndc@*Ij`e1o5cK?~(&pMQg7` zMvnONSV1XD5`7X&H2zvhMx+B0#hk*D0-V^1;sjux##r`|vZPv{#+*fgwc<=i;`2`R zIX7qFP8S!6#Kex)s?rZcK*;n#NuGL>biXVx%(quK%Q_HZBK0C=Bj`~)L;`8*m&_H+mDtD07WtrxEu!T^F~Okqtx1v9?0(L_ z+uWES>xt>cln{x8>bH?Qg);jVA} z`tMM`rRiQ_8UBE<7M#gTjD;E1UghKTkT>Ex!s_=}e`*cW_S}Mw686lhl+GVaq81mE+ zCV?H|qy+&4^{xAGyRv6*jrG^JL(b=1$WF5LjnbTq)Z0o_Bodm7OBafx&_-OE1i-(s z#p6vn338QRlpPqDk0RHZU*ry?3EE61%Znf~2q2?s+Nrq85wajdao>=AC-MQKBrByP z6PZMvgQP-ZAiyq$n|Hu_P@s*25N@_Cr%JVgC1I&GSNfNwX8kr{O40nF$e`XqdFuc{ z7UPWp%VAcNYEz=Kv!k=Kq)Qt8a*$6d7X$)|ni;+(Lp}Jk;E-eL3uL&`jFiL`11;u$ zB54$8DWW5Mx4;2WkE*gb2K<$wl5Cax%-4|qG2v%VowKEmzp|%FhVV)ynW~XD#ZC(l z1IRDIMoY9R;e~l-0BQ+?{bs#Do;TbmGH;f3V1)b!UQnyi7Q92pqfV2j$G}cr^+%q@ zO1@m(!L@n+X|74A2NOs!pZDHJZ2tKg$Ec%!Lw(`Pg{7<#*R?z@yz0Z}#C45;@z(cd z>-!1)ZMLE+0PVO0=jlPF1czC}c}i~-b&)W^XJrbe-yIn2%X#`Ko4V@*b zPu8+2@w^I&q1ql}l`uHLXH5S39!m)_%viCP+t?wIQ#tA#8|fG9P73sq>pUULx2rxv zry%1MOpP21$1j!pL2qOr%6e7_`awdaLR>h_szab+A_IfVAV2#HZ9;1uFb$@*tOws= zGoq!MMqO5Li5m)7JeIM@ODWArDa|B&tt5qi3s{SOWmab99>kQAEO1^i~FRWGXmt(G72&j^PEoK@(Tlm_&p zELfBvhn?(5K{I}+O1OV=XG0;>lk^ljRY`5oEs|e66D7ACauy=hh!{BH6yz;@=WZk$ zVqjbN{=OI%&9pQ?z(+$zPA`xLy;q7L;6o^QMO}1ocoHF!EmYw>C6Y zI&c7IG4d|=VmUN-iR^fUFGnNZ9`bWH!L4B_kOvcg969>}yQ+s@Y=4J$Qh3Zd$hEDpDlcpr7(1-qAmIbKv*4n*SXnOnu#_w!mOOVxNG-+sBxZEou&j zAH9o5EDV=7slGELGx%zC+e+5dvsH|6#nujxLV~;2D86z)OtNC_Cx0Z^a!lRd ziFj1ssS?g^Ke7-Ng{kpRHL_b%3W7C{e~sM(Q;!=IFfv1e zz*-?7AzFH=|ICaR#7Gr%{39Zci3$%twgPkkXBc#mbaczb6ii& z$Zl#*&gPsJ_|0ZY&V^}Lu z+9e{V7qMiTEYK{arHnON&`Zlwgcm`Q3)M%E4%xX^)ykSU3WN)Ilu7bkdBT)b?&={V z^AgT3Q%Oou##OowOw{PMpuC2`6n z#-m7D4pVCmk(;16AIX4FoNE^3?LS++L2)iOL!X}DEc z6z7f9PfQZt$E+(9=jv5QVhg4DRn`IbM`MHZk-U6ncRs?)VZQM)S!0+i>*YC2uBztc5=TJ7lgka6?e~EPHbDMdJ6)b3 zwZ`_YCDS~didMRBv)(_|Bh-_F<~JBT0jVGqXx{@r7i=#0s2<~TzgY9)WddJ^7UB|` z#k(-jErF4JKmu1+NWs1V-yDYgh9T)`nG+^}-X14tfTJ={)-ZCZ^hNn8K z^r@6|ohI!t$8v`n_R6BbIDSfHq(E#dKR+89bV~S;Y^DxwTxf9 zW6V0BXb30kKS3F>5pGv*bA)5o(U!~8O7{f8H~~*X!yPt)9`7z;wX?5#G4kjY-Y_)(C|H5+@s-(d>e8yf3CCk zY^k%wL~U2dB#Rx%*3ew?{IUqQ0B=H${(!31MC+qQ%U`r{*m*)fA*>bS9#t{^D=b5= zx2WTvKVZVoS4yAYgm0EzsxG-jz~3QhxGkf^IIRE=YYHlIOue?)d(47>MI=?&0ydTj zMQU6p@<5SCvD!ColWE5!)gcT~x$}B802ucjjnh*ezg0-j8 zGm})Y1oUoZ1KA_IRzQLpp$0)Jk2I7VI{vGn$W3v)_BVtU+@^;8&BPsC&iRL22EM4- zU?hRg#CD-9l!Ukn&!kZpOZ;}Vwj>SNLdX>g9dp`nB1pnMI!P=|u?x6|=f>$k5Jq1E zV3y>=p?L~1v=%nuna|NMQn*Sz{JLqCYSA2~&&7w;#_{@Pn8SZNik>SUwNYL!VnqrbQ*px0R9 zh@62bk2d|c8;8mEIn`<0?kIRaP%D#wB_VzyB;x>|CFf7G2l}7{jr7kS9X$glH}y9;qLK?1*60PN=$_@KRhPGay2$c@gzJ{k^+5=BIeJTRC}v+0fJ7du)JVwL}whi1!tGZ zj^+|)Q<0O_2&f9ba;!>BLR9i2dLRrQks>s8} z0((K3-PM>2jI@?Ilfo0z)z8ph$Zn`q&97-zo~?sJ2q4W_YA+KfCGcxGeiDLS;Fis? z$a@mI-jCiH0}^_k6z}*{IvBZEP&pi-z&A<6ofu3QZg1#xWC>;V(6zV=MKQ2?L*x+p zb+c+hjyS9Q5_8xigr&fk_aNT#*i4}ZX9&EPj}PhWO-6ZPD15!X<3-mpHl#y-upQe{ zGvOOZvf-pDuN4EN!X2teSLgg*j8O1z%MyyJ1lw1V;pK>#d&wyAeIUIcz7M1%#P^{j z&+z0(azW21@op<*iX;x2Cs%$=Fn@(7m&N?es@2=C?n4%ULHU=W4)aVHv$=U@S*T>G z;hEHQcRhV+(zz0v9uqJL-ML&o@0OD^boT@L^I<+K!goK)m-_N!4uHEKmrLi;!_not zYnS+LfM1SvPI*3JEzSYoY%Wz_?cwb-i&67mK zT3vY6(>B+H7LEXM}=>@mR-AGagW3yXS4IU3S%PZdMPZw?=g8ajH4Kkded!}x_v zJrvBHDQTDfss6ZT9~@6oEsEK#Y8^j}U(BXxcugTq z_)m|LJ6i3#heH|S>25FgOizx+({YHnQ+|t2MA!_$pnJlR8~oMdJiu1#Dfv=EE|s(M z9I)jd!yG*t0Mx6@oZta0Y{dfTr$?DDpm~z^l4wg4*ifBf>99(7L}CiQe>b)7k$0*) zc|CW2bQc813Tv?V?pNG?6m`ozdOeP@9^rfRDwWB*?vZutIhn)v$ZE!7>)nusSHV59 z%CS2~2T5AL+3LkVh{=DMdYbRx9T3(8_M4y%PdXxj{R;KZLUmkziiF?}O0}i!8}l>* z22;K!L=k7;dCY0dKL3*L%i`{)n%)ZabZusI_B1)TENR`=tw!vj$lPaNFJ}zx1((^K z0kXg6-zilC`B=e}*i{vzfwq?u-%V66dhpNhZI4CV@8^Im>sVePyp#-pHsGlLYkA{I3-GSvc((eqra=iCFRVm4+{_ep8P_?>`>4rVNXg3|tMv=d?*I`V_i)Q(vE zyvW=q3QzUMU8j2EPIbQZ#&z<><6p<$C~d^vxY2mieB*Dj65hB^-l*7k!k&56eSapd zKy!^)z8)6&d{CwnrD(T$_9Ng)2OZAD2n7=}FJ=QVU1+!ZkjExT2?z+1jV^44O(b!L|s|y9w`l-AuS{E7b^7-Fye&y-Hx%7ywjfqwD8OD`qm0 zph#$En`9 zRqY>ZzA;OnW>aVUjnYQ!jc>)EW>MlB_XyPNCB7a|gZIh|@}T(yajBtQm$6N{B^1C- z#{3CbSG_5iN`(-j8jt9e+kxI_%;v^}p(go>=Y;FE&0@XrvYa}u*BV4}6MgwEKE3>E zknig2!bP)TyvpQlm1@LC$rzR%Gjw7r<9@*gAw#2+_YmP>#Vd*?<9Bk$l=F17c{(~j z7x@p6JF}BSoLfMpsn{HV;U$EaH-l>fV?rd*F#(ONEZ{1nGKt{LBRhDw|H9g6cG&;d znPMRN3OsS-`&?|pB|TCjAUDmy)%9H5$gm?5<*CQ`)3yHY&wiu=(#y?!4b9C3iffxh10@rsMHxh&ez^;6PX7Eg)8n!tVY1o|(2U`8&j4 z5}oSDUpjwh@i&UUOZmHwzpMBw<4;2?rbjQElOtSLS6h)CnW#(-aUi<%JfTrjpKLbg zNOGv_IhqSw$Q*qoBIURtlPGZs{Jy^d!8#*)U_Se?9N*$08_g_Wv~vSE8bJ-RTGa9g$@_k@<-KkgAqTCF z)b%LizssxMO$B9aQV+cS4dw1?-lcLmN~lQ}hqkT|*h~T&Ndy9QFKr=<3(56zx!&y) z6vAVUB%5;W=fqn*i5M7vsu^asIbp>M4@i5CWO(e}dQB*EJplJ&eJxzj4HJvu= zjs=h2=V}zO*%LWzb8J*Rj$Y_#X2PL{Y;I$vb*OF3HIc!j48g~jl2(Bw*!HU0O zx(t&7eM~463OJ!ZA!E95fZe~T9lR4{w8f!s^1=gED;ItbKHMo)Tzgq zaE$hhai`i#{%hvir^mP|5+9?q5*y=Nu`z!C%oD~KKfD>h4$yNQfl?QtX$rVT|^JfF>^-`1<=#= zt?Jywt{?k?*Y6UlLpKoX`m3?7zmOqa-x6P)I1xaKi0xFx5l%0LQPy+5u3kn5BRBNw ze_2Ing&=A|K5~ZYL{73p402m1NupAiHk{7DY4vO6zO8mp{n`e7(bw8Uku)x3YZGof z!Of(h;~4jPcDE1+%EPwOTUsIuEbO-S^m6sVcymu5dd1w+ns`PM6ZS0kh8xrAwpSfV zhSoJh_`TlpjYuNDWoTj;!1_)vGD6=~Y2L%pNSQg<;4`vhICY5BmPWxFv}@Px9+kKd zoo35b>Q9#;R4TED!}2iHn8By&MBf)~baKf^0R!-CqeFh_PjlNhx~2Rdq!4)`HWD8j z#>4FGK(SE3$1tqRxIAHL)EjP)sC^)VEGRbwWnED1UiHocI3 zVf>`R;Y_Nkwew-5tZ6|+WbzH+Jxrl~4ko#!HVviqM)l0gR6@7DQoh5|MRi~&gE2dn zA>%4vu9^$Pfi9LTdBc}+v?HWm2ZZ-w(w8;;ih*+$GX+8%d9By}mXw`7C3M3l5$f#_ znfp1>RdPmz?-9&g!MG~IrDX;VENE=hsC~&C0>o?8L|tfw92TsgC3vhdR+-0|7APWR zw2&%p29UOcHkjv`#I%W>`3{CVLdI0ysY=arEzt&+gK~ehiPTH%bQ8Lae#VgcpUQv{ zIul-_x3nviMpqEGZdbM=g4T&2Y@Vi|Jw!H)fL`3So?f`ZcgpBAT3?VS_fd9-OA4b4 zKK zb z$@NDO3Au-Bi8D8vqbU0i-kM!~a>Q5TIuIKgE_=Pu~p*!5WKUv7CV>4lX_kN!J z-#oA7IWr&}_Zm4|ZM7L{GvumqxBP;cBVV2*Ge>c4@zGLRn~v;PZA8N}-Pgug?6)Ym zh5i0D2qb)`#ZNj^-VRI(MQVTLIsXLK9qJ)&n0ohK{G+*kc0GU29{VtD#F^mgbv2!cY4E{8vWvrOM23=}F?wm2>8H2T*95%!Ccy*w>iOuUF-l2}YmAMptn%5g9tcs>iKQzHQvQrL6}5sDJFifL3=EOpIn;w)2Sn#% zTG113#Ms}KDxFc&SnlxTTU8-OfZ@p#)PgQ3di2oj>cQ%B87_$T)18Ej%uWQMW5xwCnvYt?#)bW~zQlvH2v zXx51WEVDoLlJWzwL}U{2k8)(}MT{LI*^-RVWK8eVkvF(87Pd8UNNrPBGS8;q>@=B6 z<{-cVVV!5zz2kPojO1alwsh{+e-8*(@IVIGMb@B6{08=Tj|ML zwZd60uNy9V{g`^5Tc(;&1C>8{mftyY35)MUU2ju6KQ&KT9SO5G`zw9SVwIMzT8d*Z zA<>(wqw~|nfJW2=dJ_`D!lXCerkTJX{{@n*WXD3x`kJP-zs$X)(mcGEOVh&(GsFkW zp??1BeVDRL%P-BFPjnim=H`r&biC-?Hx#UAwg%Ma_o>a&m*ZS(QUQ5~Z`%Ej0PUal z)9Q7ve^lf`)L~}f#Ywi>v9Z!6NxFE(Q%_R-)mZV1q*IgVl)TR>e+(;}x!&LOj2 zYbwX56Ji&}SG` z4D|F$m49`o?55yiZCl>gC>fj5Qtf5pWKLhi=Lq;<{{tT35?QAOdYzoJ%;5Sp>XChk zbRwtz#YshDjiRvyMLB`tDB{Pwr{UFW!Yc}rytX2zP+$>z@H^s6U`>lgN_gxrVZxK= z&&mn(3(d-FE7e%USU7&5qZ^u4TplS{G04UOOFU(-@Y^+kIGHF(xQJNR*?&E4a zBn3`{C|Bc)ayt$+$*_ly^tuBaWuE{?w^lz79Nh|96w1+mVf%`N8m=|hqy!JA1YB07 z*GlY3rQ;*%!NW;`)L`lOlt|y;VS6BhOBa91%$Shk0%BUA5`R~U3F2-+=(gCqE{+V3 z6-e9yd(&cDK&E67=7|E+f81ok^wR~U;{y-1mgXkugj&lqtc)|kTh4^Yj{)TBF;Rd` zaDM)>93mi;WO&t^7-vGE%?vFYTWQqfjI047)!M&VYbYU4$7HdF-GE}X`VEQ1P6Wlu z7$}~TegY^~#z65#loenpjw_(=5)FMh`9)&`!vHjy7_8T{{>*}KthXb5=cn<|+?W>p zS<)~31}zL2>`rs7kmP}+1mC@Xrp?#SI){EgAAGt^T_UQ*?)JwhAwefrC+_O?q3?bEuHztbi6Dwbi&r!df_c`0m-gX=th6Q$9!6*Hun4 ztC%!a4^12^9HWQp7jqI0ir+lSN z%yV)y^C@%K4{IBXeAWH+5W`}by|t(iM`awjoB&#d0n0AwTtuUsc%afg9zjshZt`(? zx@`w$+F)4)G0i1@lSO8UKi1{v0rtqP-B`X<2nC1ts_B5@hF6^Wb~|?SytK41Nu=0v z!fKLP<`W~#sl*BmUrX-BYwXbErfHMz#>wlEcjEYClgawIPgu|NQ>^FMUiD9Izc)?W zTvXVr{C_+j7o2;_`Cz_fK0F&wH6MC1NPGzwEn$QFwzd=>$Syn)YSrFW?2yf``fboe zFrE$*-Jyxu#Fx{D=fw1;iK9Xjb3+ryHcccE-}unPLa15wXee0->hMIL+KZ)|Xz+u= z;)+RUBKi8JmK5}+VBc@IC|C)O2|{d3mF_49r(IZU-&NfYg@pB~-?a+~J3*Z%$gg)8 zxO8=RrO>t72XBE}T`@z`wN6#UKpnFN3{(LbGb#Iww?q5YqN1gUMjE84rB|V|5Vp=W^dxnPqKv z+u>DrUwc?iF$Cenc_{(!_`2nBcszYjGoGW<=HGN?S>~tT6#uQf+=@FrLSu z43m5}(=E35Jf^ot%(Z8?CSPJYYe0&Ht0$(oroRh=a{#XD@ME&t{`1kLuKoeUf;976 zRyC36b}HL?i0*#Xx>)}ootoyR@z#=2q`0Kz!UTbrM5K)q;2LnTfv;)*XG@F#$0Z(W z`;Y751o*pyOalA@ikJjAeTPNXTY;0f*r8A2CD~X}Eg9=~)Qp@jXK(SY1o~-J2H@9S z4VR}z=LtD(2Ndo-3eK9@Z7c#|X{{1-jJWF;zol#%onV4-#h>pMi%tCHM6~rQx|OJG zv(8d7@(>d;ax2-o9-T%6TS&{cV7Fs|-QN`X3d?;awnoTIruDDCfYMqvHn?o8V}9SZ z5{E!YBsUiKrM`g7zOL7blY;7o+SAEujES`MAryB%|BA?ArZs8II%t77nVr)EnBNG@QRMJ8+h^Q0d_8)Xv`Lykrv3b&o>m~8Nh`)jOH+TfcL0q9y0}sgCZ!p&PEQ?bxqX}l%`UJWQLqw0c zb2;^T!P|u|GDnlghfQ4)49GwPs)ZUB;jO*V*90qvOMIr2qd;NS8fGr8&eY^!05VU{ zf&hgakTM16G7{()`+rZr#LHXsi&XiS^ozBREqPx3VlWBxOKf+aOuzJgeiHrCAeg7; zNEQ5K$>%PL(=VrkbF2gAe!oe>v_V?NXc$cxSRXR}7(J8sKc{DQ2yPI1hL9M&=^6i7 zCP<%}o@sn5c7Esere`2vPMH5w&@1uzx9FAlZ=qLCtbZcCa^mw7>6Me-mq@?;>+#;6 zdCKux^vZ*8o@%^$@qC3zHI~TE^@flpy+n4e_oG=;WS5gDva9lsQcdrH3UsLZ;h6Kc zddyJw68^#GPLVc`X13IfeurQEvtc$|B1pnBn3V0rvgc2$A%&5+irgjWW?mkno| zF$+nau_3OO*I1LazG6o0yM6v&M}6-%67~JRjQW1vJr*Rx>gTZhEB9xom_p9i^T|?I$ zUl(!WW+GuI)g$TJw-3^84Gc4xGb7}KS0Nih3kx2DoUv$RiV8~RET6>k@&8E8r?*s$HcGgWq8=-ywiHripgTxAH`MtKBiu z@HFU8uVR6>@g54U%kiog04NqCI6Ft%(!E}W{;vHEa6UaHicJp*Lm^or0@srV0=t)c zQi<10dcfV77MaQ4)fqy~NR;?(ULxh~@~W944G8SYo4JSl#ST@v%_L^hw66muI2(+~ zm>_3^fzPW@)8%R8EN&q|JM_0<(QkDJw?soza3lu~lCZuH5gbM0@ zF@e3GwHG>6OYV)HyhTUwalneBmb^u1hUk!)w`c>m#p%P$Th!38mm!}xSUmD^PKDh) zEM$`eBvsG6%03S4#bY7EHx2mmkN4FJ{}9e%Zq@K#^f*q+4RM_O`AR{uyD)FX{U0l$ z5D8-gdv#dj9VFBEJ{BmRU6>Tl!bZF1MlmGbrxxC)S%fivRDS??%u$)Es?SeHxJ+2@ zbgWU$xFOna$ONcV>7a(DjNqaiwuM-J^<~On@3|7uW{(T5I1p)SsB?#{1}RbrRP-Py}s2Ir-d zyiYn=M|6FO-X|Z7``>w=JVw3$?|t$=^gaoGi=**>>3#Cz!|a8B<$ZDi4WG*UWRX-l z+52RQvXs3zD}Ir`GEr_&Xy8(iY&*VyqE~j(*Kx_!ZD|)w6XsmEdR$&Q5{+T zd$2tHr~d{l@2BBYf#t^!o)RplTVPr7@4ym?q+4A^)DFRVm1=&&{{?^^81XLw^h&xI zxm%x5!ea}YNPyO5c4$w$<=RqrZ~}x%oN9W1;W4;3HndFQ{gL2qS)nkCI#7lLFfq#p zh6b1A*#qgfl#ESJ5n^?g1RmL><>My^E!}E{G)nC5C{be)2q1bxSJYD+1~Gzd|Jyy3 z9nY%b&D+f8Q}}8t$rIUysn@YY7J0!r2>FmrZ(U*7eMJO7|;~2HGBAA8u9a+-6M0uN1sQ!F0b;@@_XQA&9llI`v zTak9`Ac7NT=cYE#Ca<#wTRLJd*FltYc@Apv&`uGxSvKuE5pZ1fq8#tLR3}VBj|6jQ zTUKb`KpSLMPdXdk`$vzrZ9ckAk0O@z^l(44!<*! zj6=nS6D*)G7Lj-*aRG+FgHS^I)j7~a+7RBD?8L42TR%J!)omliFVg)`HcE(MuR@Z0 z7zc<^ykHcJtt7co=QkV?)6Z`=mq(jhM&*w0yKuPcwGFrI>Q^7hP5!W?AmE%wsA+do z#!E@sYz>7`lc2>*w{uQMxa`lIGcYHPP{6 z0xeUmdH%yb^#A#$@mvvW|KNFARH*>wD2K|yqYV~H~L#Hh~C_&H9yx=(R?ZEM!fMs23tu9o%o2(#} z%`*wO66k>OKMNz+A$|vdIep}&)qwMB&B~pk?HAY6#?_Z+_Vb7Ode{u~E*{t91 zdG>St>?^6ogULM)8uSBUQ{=&=u?MxchCPzVP;O?$ZxS}_YwKqJ_|2L_<{*Yk5Mo#*Le3Xi85#6e)gZ$_HSSTHmdJ#4nZxOz zANvrNT0<3d9`+ohFY@4yo(HS+gG1JXIXw?V|8EMerAB$r17W?w9${VO!PwY?+PPuR z5$ooN_{|&5v397*tO8@1sK@Hjpf+5OHGd8f%U|CC134$yJ$hbBu;tM?DJ^qk(}^!e zUr=|?By`Cnbf0n(JjZ3zlk4bJCR#F_xR&2TPwVTBW4I!H#=E9VJ$1Xxk-3N7WWMOq znNlRsA52FK#RVy4NUP-1v5@?C($Cv;m8h$F9iZ4T$2FLYGWAp?R4&0VXaEfD;r!}w zJ$1N<}_m_1F%J?V(F>?6fjY2*$3^JTU-Tpb-EK4V9=i82FTT zHyoB-wXiQxEgMRX# zb^O9i(0myd$_od(UaKz|j1)Dy@p8WEj}BjuH+tQTGdI*99TDkrt?GNQB_(inmH#Ga zik6x~2WuMN3!G-OynZk9erP{G`qUpiE3&2jXy(FAbfop(WLin%uX|7p#%i`?{_78h z#2(hC1}@@uF%oY}-34i;a+pAl7^56_@vLx3HUa(Rj%aS(F(U(NQ#Cv}TfGkzDI%3E zd<$u1W(t#hu=l>zLttshAKOc?!txWZt`7Yjn$aI?6G{#MG0z$YSZ)PYKX-f~-Us`9 zvk4sPRmJ}lEI^>v^U=V2e<9AGF5B$*c>djfo)!(nG9KMBKYt!@O z|AQ$~(h4cPo@VxC(O+AdYaGH*UE>sDR|P^QZFEYMvD)D%v7deHNzp#PNRw6JDcKb` zj;J%tGQwqA%FkwxBYTANaXm%mb$#r5o$8aFq<;{&wPzwUF+_%s0On{m_4HpQuKON! z;h%L<-1EUbd**~vn>~A*N|KvBs;MNU+0)Sk(c|fCD(TZq7KoBm4wdp_0trn3plrjq zNLhq$NR{_N^PxRed-QjP+Nr;@)K>jHs%ch^I<)vmG_+E5US@i`(8_1I#)i{1EwthV zE}K@0L3L>5I{93&QQvt<-`S+ExALi$&|p)IBYaPXzPCp|->X0O=}*O{_QwpZWN+f4 zBBoWLm3BUxRyz1pOLVy`dAMq}ewfWCqSloX%`~)fl>W@spAw0!X{8XYp_StP5L#KN zKPTwVGCt>oR!-7C#B@Eh@_PL#cFj#IXUMhA?0D5rOIiXW5?X`tFx$)&tmm39MqcT4Bgczr1&P?zXS8C}eJpFZG_$H2*S>26GhXw%6i$5*1jvX;Wr6gwXNo!oS+3dOCJr$gl%myW z$tCfMZg)e9%o<68-+|Ng`DE1|e$B+1{o%P^=CC%p!F^HKIpW3@cDh>9bgvNeVjCi% zP6XdAv=fBr>wz|$WR(jKEwEL&QgaSrc2w;k3Q#}X;v*!Rb@NmFBho7+q}G&-aA}se zLL!`Br}nW03ETvEHQcAbxmag>_G8W=$jR+^4)L8?rZ zG@pIY3%1A>o@Ib2Grgv#tm-s$a6a*1J9h(@b(sWBCNp@rJX3u#frQpq+Nhf?b?=d* z<8_E0O;wdngLW$G(v(V|pRbG(?SAI4GOS(3cn3~Q4Ug&8d4E6Otx}?l65v)HEYMBmPOqAfP`ODei<-uAb95~~7db+Bh3q(QSbIo%)pt3Sb!xbN zzNe)8ZYCafM)i@G!Jhx~Eb04>R?l8}13b=y0V;U0r1}OL0Q%+p@QTg6zEvlX6~l5= zHBT&zH@Z$5y;B@XV`xWH=Q)p!F!sJ5;UY-csFs;5``qybN21NE^U%#Sy)S2rN2 z(Q2SSBejNQ8%zUsX<&t5P_q;1uvdB%7n^O|$SjHsgr~C1f=kq4K$_D^mN{AI_{3%Y zE51Ck%>8`X()`oNMRjz-!S!p!MN}S4kOz11AU^U@v5rebT&C`7A{Op7?P%nsg3{Es z^~o?uqV-ZA2|=Cs(t~nCzjTqbohxmx5M*zT>9hIPn8e4Q=0}HD2<~iMA!h*dvO>@& zU+MCtUajo`vxlX*j~QdUs~cl&xhPCqBbgt;$*n8oWYCi=?yg;L>E3EsT_=q^n%KxW zusV8@-(f~fP`O68A*YD7P{B3Hv4z?v4cwU6z?CgL6j&2ycC!IFb6QuF_cV~RHr{|E zod$*`HgFaF(+!lx8NBuI@Hjt`Z?RQG|M~l0#{~nE}WXPOAikC|5o zzA2i8+6g(U5!UX9%=V_6b+$=+|c9k^Yo<4Z%DFkT^DRg4z5q;LEr;pOQbBges*cFb#}v%*~4wNc@HxVT+&4^0u3vG zt=GGjxH1F|%~iMGElD72NvqNvb0T-xhHVaRPJ&_>SQ1>96+E8o`mqGf00909pY@?d zK#zH^dhP1b4CNiyYxV(`+g$+%!#FLl|COX!%^06qQX?o*qRg+AQH?o>Zh1RK8}%43 zTr0zWw>jhTp-nTR*j@y(;lFLQLz}0`*sOc*;5r$bJPGW?tga7PgfBaYaQCzgsA^t!-MyrBE|?eILx2Y3A4XC;V3`jhgMa0iWzzl8nN!ptgft5Ab1-dgJ2@W{pz*-Uq{7sl3s9_ zV(K$a4L%HhkEwKqztBtKfEPKDrUll;MuxXxGGn=$XZ(~n)>bM5V{-;70ju1YuI7PXrjPW zM~BpENOS2}i)_QjgRbRo3rrZocNsz9!N|{5-qBt!cQY#0Y-!GKqp?c$e)kFO1g<9< zW~~n^o-^;oxMJop*^UAgB*31CBV6+6GlOYD*4DiWk_AoeI` zQ7M&FCx$7Vc&ryluFOtX<3d&sQAFsn$Uwe==Mzv5c}{f51V%!D2XMs`()G5;AZEm` zL)mjLEcX%)T47eR1Au_?SD+Lmv*^94;af zFQSkZ#>ajefnkW*L~Xh*G`H5-aG1hb0mS_^sN`yN@%zl;=NhT{eYKfJs(w@LV0o82 z;5;M;K}t_08J5TKYi@RG%}QUQ#M$a4O0W#f^;%I%aBoWC2G=T`U z<7)C_E_DB-Um6&vF)ooO7oOa~xYzw-=M%CrHj*=X7u3PcGaQ-CzOUDBr*g?Rzt3;)5a{-+8j=;fey`0RL@wTfZlBqw%YrTjAFaDx5^F?FTaW3S|zmo5XW7Qg(LgDiu8PcrO z#eZeV%tM|fugCO5n6sJ?*bH4<=D|W)+_2zN}GLNL01i zW&@R~kw-m*Spzu`qtQDS4ujGSwu}Xkw3up{{4P7B?aY}}ZE_|s8@$R^ zdrp;xF7<#c0rCIHAAm*+@#3XiQ6R9FCM~6&e4~a;*h&Fk>_HnCUGQ$?QLl&)ysbv4mM;0*VU{!UM-%ixi(EOWPi)SP$ zF$HHAUQdIe;@K?tr0S|Fe=4`8>037$ZDi^w_N}$KiR^|qq1yTs%ML^ne!sd(JqmDg zWZB2;M&WtmO`0TAPY7ff8zg2FSjA$bM6b$tjcq!NeM+ehp@v+-?2@es`*0D-vWqb70jAH3%>me_m`^CdmAn2YzJ7Efd@ zgyWNy63?D9#8-KWedPL)??5G)Y(>GY1=AYnXY?x93JFwD$v9pp?cpqbFdZEkA{QnM z3_4P@dlg~lofR5X6IhH2>S`8al&~1d=~!xwF8FZ4nUo*-As=|c*;Ort*xI2|dt^xM z;A(D#$Ns!ZjpOygSuGTkPQh3Xn;Jp-9id=I7bs#OZG~xR{{$>V86bK~lhF{?hXfnt z&f3Aoz>pi_Bqe&a9qK#SVvi^d^`iY^!Uy3bNA5M&@d*5@{gqiPyd>?Fx#yA4*Y9+< zd}1$yCg{HdrMA1}69*ToJn1c;xcl!gT0#RwWh;Pc8at8yb+V&LD|sHd@e87JWMOkx zlO3wb3Dt};-EG(k)jc|tq9<7J@Z>DCfNJVsh9M5Agt-}|e)pL9MD^qLESjxpcg*-g zHU%xjm@`LK!l~RKH7r^LYY;>g?a9=Yd8-655HABetdxbfh#X{&7!9gnU~yv?!N04k zjQKZ-ojKv1U}~MJ1n6Ni^l9?+k6g%nyVjOS>>k2`Q0=dRRp3m^-CkceSQ_=oSznGu zc+l$UFF7mR{Al*{uMuQS_z>;VPA^txWx>mR3jFt+voyo@@P-=q{!JvT#1cP^a8P2w zvgT?yQ!*Krq`EwvD)0-AukJCsr=t}ain|0wNl;Dx&fSn-+trKMtO>R@4zR2#QHXnj zF2Ey$EUMSqcx||GA1@FwM=_3`fMA=xvEdziOIxGjk?8EzAO0b7Uw5dnlRJj)ld)}1 zsIfyjrz=$AgZwse9h!HU8+OHT7C>}7x86WDZln~Jlf(~Kn#Zk1q75CQj1&g|BvDvR zk;-yr2iuU~97*AJP%4lbwJ$r+zK$o2QP=X-d~4Ogvyw;qbWDh* z3wJ!>jck~0)vZLilAM(F=*o825Gdl~`yF8naN1=_L&_s?I(&=;u_qtqb z>gTdzWL=#LOWN{-ZhN8j&vq>RTU4yNlJci^EnVYJR+$avnS8!K*?*hwCF)qg2)}i! z$@4zUEw5@C2hYp0=qy%b(8`SBo#Fl=4DUAeB&wshpv%FecZAWIpZ_9}fXR45$ENOU z`M6JbY$N4_m>qd2Wn0KGW;5oLg>JaX&c1*c8`Kz7`2JotY2a8H-{t%IPI$$On@a8K zY$%aQt0h}8>C_z~yZJd`b@~$zLsyw0QpZ;MMlf3G=-CCRPt7j0Z z;h}icP^pR^4GtCLg!HP*-o_398C02$^sR<%het-uhSY<-vy_aijAzLU$+nl0+J`W3 z*_+jVQe4#NL)*2sRZJ<&T%rM2i8c(IQ_#8WV{z4;Bdol2Y>Tm%v7_aS5dg*V_gu^O zGa)ym{A}Fzx_sIKWbCg3Q@1KBsc|akd*fh06r~+ESrcb2efpj zAP>VjvH2#B-*=jBjy8PEd4T25HNnl@1TyF<*s?Tr-Tz_l-Q%08@5ld^h7ur(9 z1(hiZ(@t@|YtdC@P?3@E^YuO_X^P_K`~Cg>(+5p*&ilO2`|^6f?w12Lx$`lS0C%nk zzIk+#=(xYjJQA91&lLB(w}CACv2AO2t;u)3{V}}sp|_ncZLM^kvuiG{f9Jg8+;poP z9NKfdFVSeMj=v zq)7E!yMT3aq|jxY@et64Ie8qsj0vY+iMjj5KQ)|^4HejV--Oe4fz$WzjU|7SCy9>2 ztZCGOGw<9ia4Pk3GuuR+vt80Y9x&Z5mkXHgR=fY$Cm}{qjl`_Cy~fwUrc}dT;C!wv z>8)UPLXAT(&oNs~Cqdk}_iFtHu97Uca4_E*W$DJeTXix?Hl51aDpg+Fd2T~pO8tM? z>7CA153}Q?>WscoFnmZLKsN^E3T!+8ghE$#{H94CQVbl&Pk%{!&-9b_nA0D19n=5d z9_yGo9+!tH(#8bI*y~YuHTN7-mLxR0OHS%Rb{MzQ>Q30Bo@8^SY9(|9*=UvUi|~3M z3w;FIQm-VM7Oc|8#ow{$|82n|88u&EnVDi@*v-w|eaR0~SX$|si(1b}aaY>s8k;pz z-5{``H(aBj=Fe@x&cwjSMos|=#NZa2w2$k?-BlwA3@nDlELbR7Fj;3jly(}+^!i@* z73XVL!x1@q&f6scG%nP^ju8#t?j!Am^R_Kqk%Q&D{S~=akOFy`?wIU+t~oRx-*BFC z@A98h1G_OIAyD%3X4xg{^2$l!TNBzNkp~Wc8!Es#!mj=UQJ2qlI8tM}%kZWoZF9d_ z*Ee%l$m^0DCvi%lrzLog^R|S}E1(jGZZWCE`S?^l#JXC9LWF*Gef;E<9?!#t42_rEN<2Vt04Vrj}&1al$&r zr}#*VXBi#lG5N~l^KtB81%1EMFt#C4N;-DCs9U%jp3FJ9cz+p=FjSkqg4h_lDxW3J zZu?b3dAyt6mitUrO_QDyqkmQt$8hZ~;heg~hGH)yuNZjWNDR+UbUwEwsoNc}*9^ut zsxr~}(%Y1l*wvYYqmJ5_ERNhK z_(<4x9zDBDCyVofL0(*HVvuoQkoSQM3xnv2q8qM~Fqr*VSW0}mU}QXM*eJmw9<}LR zJ}tHrc8TZA0;(PV%ca97KaK3D91;_bHkzSM`FxDr&2jjt-k||$pQ^R z=d?{d^cj6=4Wo5Jtiy3LnV)!4D34=9aKr{nw|$07<|z{L?;A1HOM-dly_hw38-unA zANfWgU9yS$awj=KOuiyvnf`Da9OE{O=^@?5z=>venOQgaYIY=hiMb<_IeRO5sP_nH zE4EIRLy(_u5&cBZV6}$C`!Y=M_{lrw=PLc%s$#64B^ZAYP-X7VHBM`Pu9(LD1omY` zC;*0;aSw~kG#BU84REd!7jErUY^E3(eOGkvAU+)$TgG`XYi=~_5S|9c&aiDg2KWQ= z;Z^CBRxc0?y#F_ku_RfC3SQHzamfPM%u{f3@cPn49=dC_>0uy^#KQo|6d!}%{7#lJ z+HkBiyw++ccg%)e((uXnhK17br&dF`V>Ub}4WEf`I8Pc5wHnGDvthS1T+h$S#S1F0 zA&A);X_YkhvVr0YA@|MZ`=t4c@%^rmh8J25<&N2~T^eqPZ}^xrv{?=1j@fX(G~5{9 zaDz15YmHRym<<&TIbh}%g@I+^UkwtX7}Y5a5n*PQ4K=D$0 zc{6dRrMQaPX^T1m^j>z_Nd^C}c3S)Q`Z$Ia9%W#>otF1nX5IH8PL!KMy;xu~V@?rr zXOrX7-3KmgqRl9EHntu?WKk zE)Gq1t(krjTC~>WXE-hrhWmS%RU&Cf@>p=sh{D@s($H2+F>|TE6RHp>`p(t?+;%rk5(qen0 zDn%{hTcpZW=4-khu-pAU%7U#f_X>yqYFJ;`Zge~4u(=+2pxBX9=n71Qp*EH{)Me6b zRZ3tS=EgGLK6(5;9!Cc*jsG*AH$mvFj+X z>q+ohK05;phs9%AeOPYFM%`ROC3y~*RJa+~rM;GPq?@%~i6X7|Xl1uCb(Bine*`;{ zB|~VXv$+GBjdW-~KNxvQPPELS&X%!NxdNvE3doaG&vof5DcY(!o8h^w;a$M+&Nyy( zm-iap@6NV{7eBO7@k3kuN!-vZU$bqju!*VnhANans=cL!hq3UY)Vgo8^VNTy<@{w+ z<1T08M_lsyie&TlyeCRzW5y`2SDpNslzhhr_87r*fd+RN{^P6dvqj5Z2A zMs5+uD{ywie`hNHY(AfKX3!a60C5l%)4f1l=M6+L$2Dt|W{Y|?TQ-np1+2~)XgN*C zpFY0FgfyC)mo1w&yv*FZ$Moi{9xi0iiQOj_!5=#!Ju00Q7}5V zun@MIk0SXn%E`0n$jN)e=0Dq*_eiRH4+TJWswupk6DL0)_qG_30ocx`P z*6LYnVbzTeynIcSLP?2*uA){jq^V4izw=(UX$KN#qhy?~Oi_JTNl`q9aBB-9{+Dg? zuX7SLCW&5Pox-BwLL*RgTWZu#Wrcg1!@rb!fA}Y>Q{{3marm#Lr`H-|Jq`7G0dAGe zLDssd*Wf0_vIv}atJ4MxM(Q>YoW1H*;LyulGXPtWmF0U9JQ50pL0+-S9b;R#ku38O zAxnDbdizKuCghpY?1|@_+Izl3dqyeqH_|0Y5$8?eJ%@`Cb4F#^(Dbx+R&TXqKY$l?>N1UnJ9=YVZ%tH{pBp4IYS#fHcKx z<9%RAk2oNH9G9@5;-aeN{Yi9&lyd-dc;kM+h`pN*3OA;WLPG0b*{$yUkZ{#EE1l}X z@0h`~QT4B6@pwXD2+uWtgc7|v4KKTYaEY5`>Obm;q(Gm@kL(6%>0H&!Jyi%QgHx@F zsM~o6SLCWRb!+tTRgcKyJJroxh!m!ENQiE@Fil;ho1%a($C!#SRD^?Rqp~7pzFduV zt`#MIZMQ2NVCc@t{MD9@GSMK9-VO>ewvs^3qnb8r6{=S~SSMA&_EDp)7O8}Y#w(wZ zLMiDnwefCKZH)0_w?|#}Gf^88|2buUJY)VVz$7MA>4SYr&%wS7k1g;ukoC;x8H9S|HJP386YqsGu<7f6d04$%onskZN)=MJ$DRubIc) ze}j;R?W_{8hCJ2SA)8V28rg0SsE_`knHF#l*}94k2wStmy5yu=;Nzx!1V~BDJVaJn zR6EpDwBT!~Iz^2}FtxfL4(*aaT$oKdSF30gs&)x!-X;$P_${kbog$4UIzo)knDtt! zvDrLoecdIFz&U6wjpdF|O)ypEMIUg<1Er&xP--aeRUBd*C2Alr3>5`WKa0p{Oq08| zvQXYD=>WI{3o&>#6&xg!{E*}!u*wBgmM$VOnkP;}$?)U|l@noMOc`s8c6a$xa^~C7 zIpQe59WkxfMpKCMIQ&qHnwvYozEE`-Bci#>LRCeE0eA0F15Fzegrmf%^V&SE%o zaHkUW+Lp@nD-AOD+WLg@hV0j7gt0YWZmAr5{MACPYBsu^S8DCQ_Re4r;cZ#-?W$rg z9VWa)rGpfk?RWOyHvXTD0Xe4^Qu*CMs5mD zCeBy?c^39P=Px%me&B3u{cg>jSy4wv{4?9 zy2ZSz)PJ$}fh*+rkfTK(pGuwM!J*(ClOPeUXCsl zg3}8YNC-{mtqPa~Q>i&02%zqk<5GK2P2-n7CaBmQAa-MxVRLWx4{+xhsm@gf54&d> zseueYI?u52FIC#f0g+#8(__ClE^EhjR=76@&P8b^jd_W@uj7654ZR-g93w9XTts39 z>66jPU^eNdoNDV0x=)G195;w_Cw3h5AWaCSTlKGHr z->&`!cCyy=3kZ|7mSVP)4Y?O27Co$-Rq5eO*#x%e6h1r4nmf)S8%RGBYfOcW^`a;f zHdbVi5|-LxV(x&Moy; zCWV(_r6uwS3v9PB1;9J1e*PvCU1}2p*r)U7W;JQ~RZ8@2A-xZEVk-Nt8Fpo;{6Hu* zoNEhyo*4KhG-tGyW=$=fX$XUE7gN&x$~^+bcB9&*X2@5v5Vq>+IU9c|pwnXgSj7+V zlc-wN?QFb=AFH~Yjps=VD07+mD{!Mhxe(1Wmk=;sFfS=}DVJmkU(qav=|3+^`$y|{ z8{NtfreZ0wyW9MO<>u!1^thlD| zR3ubJVZ>ESc`{VxvM{wE>dx`**#`rc&<0rBO-zHDsoSJ&YF=;Ry7ZM(km8>xMY!0yf)oMF zYu?fiJ_?=DSn-^e*V$T^yESmT~*LnYd`sGMtHu3Totd7^oZ1Ia9VN4QFRgsX)Sc%Z=qaGZ*#;EtE z9FBDMRjmS}+RIG~b_AKfFHU?$=~&3D*oMfV)D4Q8T9#924`h?j9Lu(Tqm-d`GayUW z+l6FTd{CXQuTWK@ou(ku{Z zf=SlOI47bmwQ65v=lq8#m>L!HAQuWK4%stmR98=Ldm1oHVzv#m)|xay*bwUHGZ zi@S)==CXM!)78-c3;Dyj$m@S*<|2Rkb;P7-F7n0-y26Q4mQ4>DxM)+y@CD$^_GRF- zBsUdid(xiFjyhYC(faRGb&X$iZNeA>PLa{-HI5#PeTBq&c!_ouN6CV;1oiKq@e)>C zTpX9c!O8yM6j|q*&{A-ELhZ@MV098gCvPO)cz(zG&`(S*ZR$N(W4%w}uIbWjiHi;M z7z5Q?kZ18)51b;Bg%Tch>R&}2b;;h2yMcPztII1n2=d@|^;7XN;!p?X*RM!TKtWkd zzHZ#r^MzKp!c*-k{1&)E+9J;z-D(ki7}IQ&Hb|q238w_>L`YH_>BdWJ;A;5$Y51w8 z;nnO>17MIA5EE7GQWq3j@9J+1tV~vq9T2VNWErevlyIp_XJTOy*NLc7n$&p=z##)D zq;{j2>x178a6a6WYw1A*!*I-{&R`90WTEi}0s!v7t2Z*r%fN{VVM0Z_BF^GBLu5c) zEtEAkG$m#2>PtaaYo?%GZ=EuXuZdKjTr=g2m?IlU2*WnEDDfKjDS7CBO%4eIa)|s& z28Qtui_jhQQzD_7S)W#&b+?%A9Irmfd*1ojy?KH2Q6d+jSg{^OlRvql<5XEf&dOB1 zNEo?He+X+%S~z4R)}>j2R?sO2eRLBXu}=Uj@(oM!4)5HYq(Xo9M$9-Xr@&2Z^F2 zs%^4X8Mxa%Ta*j{LtL+k^cq_?k(29~t8^4#RmqP+{y=n=}QalCufoaD!V!jM#b(@Al9k9BxcG^U2CpiDD zArpJ9!`&P>xrDa{Thc0VZ2UJoY-M8S&|vp~z}XN`eZ#Bv$mKr#k~ZJKuF&gb#?-U+ zgGAfe#@5ONp8_Fx)DslRCXx{i zz(L|~($$t!VG_x)CXUc5{ZbuBEqEA@h0C-;_o#Y;Ph&hJ(DyN~@nwT2d>i=VQHBAJ zM2PlI5^jrR{WSbkPvY$iQSqA#r;%`fkiK3heb{FSUm;cP0w>3?&-Nx0`*dc83+?Li zztIBvRFxt}dknvN^O-lcxd z<($9EB;>Ma{>2qroZ+<{fjps;2L|>l{=WXi9gnR z)ZukK_`}G;$+37J$*b_fQ2)4{OlHW+;;Ob^JvJ6rpkfcYh}xzEJe|!~Z`7~8=to|? zOuxFxeDz1$<6m8K!dGA2>(%G->R|1*1iv3o0A>udZIkyJ{nd*wyeFFUf3KBEi>aPT zU(@T&eNOmhWyDYV=`4BkF5b*Lck@o(?jhy9VOKx-kv9kRn|GOS?nHL$S?)EzI?;09 z*z3(>c(dfixoM-w7TeUd`m;$b(4QMr8J{pxk~3_snpI^Qjy1a*mxb42d`bRazhW40 zxt;T63~ZS^EI~CL6rX$JESimFsij)zQ}i@l#&-211F90 zL!;I00Bz^s)=3%YQl4m?G-}4#R4gw(su|PSH$^q5+RPgJ!*Xzx!xK}e>j0NP9bWYb zT!Q9)xL0B{6U182lLo@^7=>7r{)zXfTaod=e>a2}AvcM@3WHExFe zsIyq=JNVrp*_eDIWMY@Tb_wUIsb%tMV5-#n0HHY=TW(V~;!P{q z5>63h_^&7$eNkP@jV$C0I|Y??QEcuFoM0(jSiBEV$|-cL98kaF4B-7L*|Gc=C6?dI zS2LDhwAsOHUc^`j#C8j1j=tecc|*APMfI^<<*`7Ttq7452IC%kwjpZOc9;?aRil2}Yk%DadyF-Akd zJ<8E2i9v zNpF)1=2ZmMeZnjV^B^Qjsxfmiy{Z5>XKBQ!vXvRa+28XclB$|&N~(z$fl>lbn$+Q5 z2H@df-4D-tJSH=JxjgEltMqX)wi$%4?&2f~k$dgJ{Sn_|Jl#@oT7r6L1MGsp!{;xV zNcdwuK{}?l&PSC|tfSFxb=)~YTzy}|cBo>V^3qE<|92*M=loK@8y#O@{{rxb^R53z zf-UyozY_yrUGlaJzVCuHv$tm*3gvGF$U=p-#v80+m%M+p6t$~zaq%Vp4Fnl2h zccV`>^Wt$!AGwFrcl!VqPKVyro`coYQ7>ny*Xf$i73L8hd(23dBQ`yD#3Z;xM9bob zJnDX}9kdbT_K^C^#~d)GeXCq6en{=w5%CXMZLn`@8d}B4zkjH<;)Hz;B zk^C3+3KTavSN%M8uEdu=So@+rSicMBuQ6($^r$!Pia%J-0JCzi)~k|6Iaphb;wCv* zqG_`Z)-dy6-PMx6T_3Eiv4ho(pJ}*wyBw^o{Nv<|VjB8jZImN&BU;^X@kaHoeCBT; zW!|S9kyhJ?Wh{nywCpeta1cDx{ZO7QULmOLnn8sEUGi?4-9A+qa!om!rII>3IcY+x> z=xaQx^N!w_;ThB1x?ZD=wtT@1JJe_A3uaiyOBqQv0}#wm6MZ{ZG4=8{>g7o+VnrNg zcu`}99qKpqqA`P7{i4PS4`~#!>jjjBoaUo*gI`LCq9%TemY%fs7Mj?wIEp4D+O{`6 z)p#P0A%!Z|tBdH@NSYHPt+OGJI&*GcW@%EyjcVTeoE)f+EfUzMZu}@p5qGHBawC5S zm?N-H4x_k)tu3}=x|kR|mf{RI02D^x#c=+UMlE~)d^rAG^bnk!hR-9b-d?SH=L{1$&j|INqFH4CmP}>VEbf@qzUk9l2$jM7fFL`zrZUs=x!6xJ%}n@ zc;tE0GUVmXRv^Y6W;Et0AQ5#R@ARd+H(&_|sx9XF(RlP4N_;B%)Djy1| z$rteA6L?Y6Vc}0m#ZGxT4pyJ|tp%&~^95F46j6>KhSmOR*Bd9MV#DUf!K(PN3Kjd$dBEzuJgq)>Uc>4Rm9buyaHC4+GX|PxEQ*3A zkQvoFq{^=JXoOH2l64gKY0IFj6);}%l8~@LYd2`1RX2&WiJ6_fK2MEVsPQYcxRB+X zO-;R2^zH>NDPu=9uKbk9X!XY+wK~ic-HbrJH;N2Kv+avpb8#;c$52=B?5N^LG&0{d zth8<4vBTjE_5r$aAXF{DRfKw)dr9}NQu$YI?>tL8QaSkPbSDOe zgobqv;xa!b+Nte3$1bI*zv;L~CQXF1$7T$mi)_m6)h{P7^HO(}9S5l{QNzFV3Zpw= zO~qpuQ9q_g9txb+lIuvMqzzTaY=jT;OZQ!6>m21C9qp}+_9yP`3iDn6OHDzL?PHrelilSmY}B-B ze47%A2{6&Qc4_T@Pf94Z;H<@si`-)ZXNfl`(UX{*g>krEw05}W+Cz3-K5?X!PkiwP z$|rIk^PO`EN;e)LsS3%4$y&*@^h1npWb2*5rjyu4 zR5wS}Q5T1F%>tKB5N+wvB`=&oE(`F&QIE3M zb-hBm7DHG+&LC+(w1yH7?ATmC`zPQs1O2!^xlG~m)_c;y18L&UN59^(5)qURCir!+ zpo6+DBKwYU(e!E6I>|rg2`M?MhU5cw%kXsFUpdovfX(%#-6WLYTVkFp>ha++nuuAz zp-S$+XcbN_$2L7SO?v3{k4Qa9bsRa;~Q2fM!w_)#=zT62n~GjDoZ3LFV4<GP7BDaOKBei^hor43PO~;la~5 zBI5UJo;i7347ZcZVVJbxmTXxrNt=Vabbt!dk9c55j;cPevN5Y|+vVVg9;>bHpw9_9 z*tOO)`!=JVjCBw`u7eUYAC7t*r6YtkJUxv;v?h-NF_E864bJVrlPP@18i0fvD4~L} zL@yK5PHMdo6sijqliUyAyl{I5X; z)6+2MS|nWu(geju2h~hfckK}*hi!SpA2d}pr(#Y})iZ`ziYs-EG!53x(ofD(d%aLW zsq69`iYa-;Oj$a5`YA(UNL(_prNXG& zT99t13*S~va#mNFBnJ%I7k_rI^1a98qvS@vG)>qd65;4KQ}!0tPyK54c&SF0-#taf za8{{MHTPvgvbu$UN0z2|)$heZ*=2lWCHb+aaJDc4`1l-E1AnSP*y}qkCFl%2xZ<=so`Jjj=r*&hSjGs{Ze>eRf3ijcS$v z4+gtx=4BNf|12FJO}8Egc@J{+ILLbq&$}NQo7Z=D+;EsXQ5Xrn$MmQiJ)<%P%A$R_ zJ2oOSa7AL`a%GVw=7|J0u@Jegbz-_CG7L>DvhsNKTDF9qp-I6ZSvK-*{ov3fLX2gL zW*59&FWv)jqxG%V!@P#5E8)pFAp2ne&BdGCGgO`Wuh$?}%#5v1bnhM%UFZ*;OqK+{ z6cLGiqG|(;GGFT~p`>=+++=60fX?W&F{q4N@GTr1x}L;Vk0U#z9JC&cx>@m zNo-6GYhn7GU`&Ef+SHSJJtTlWiZ^`s>Y>c;8Om;)bIkR~>KTsZ`u{^G@@fWgJkm(c z>3t$^M$PzRNaI~;FDG(GbZFLz%(hM>C<1?Lg14eb<03}sRd>IA9MX`)-Otz4SRBoa zSA-Oyv%W=0keNP;x17Fn!TgX5J$Z~!!$z~zA_#bb&9l_Qzd9DjN59} zoc|7F-!`>K@72rE1;Gc|XOq=Xf2`Dtt8wQ@kiNNDtKVWNdbt0iGZ?icJDXy#aOef; z)Lt9xylo7iAwh#bvs4gItw9Yj6tdyhGlc3^&)=7+G4xkI2%( z$kIG1eOkiRj_a5|zx9n=We{!FQO*^4DoAe~A_?*%I@rik)Zzq}cFd6L1+#*SXIV?h z1Jik7aIrn1bCNtELue%ov-5y4y*&7HTVmi7M8S`ArC3jP=et~0mz|CC&kkd?a7G?v z$T^*_lNT6XO(ITTz^I@l{hRCOCp7S{m4E->Unl?m!@t2S>~Q{F#J>XmE#%*g{A=Xj zmHfMdf7W3p=&q8SAY{u?L!6CLq5(fCXQP<2^%rpkllr^M7Y!E*#{**gd(|B>EPd-blLUSxGJ;c~Ip{^-*mVEODBTd$|T9LMS}Kk>94 z@Zxol@PZ<2I-*o6NBeO)S?0uSyd< zKLjr{(MK{@kd6qrp^4R!!S#6T-oGe@-P0`We!h(R2Plpdzk=+=<>Cwisb1f}C=Vt? zr(R=^>lVj|&gbwfCi0m2w;16`m2pIHTWd~JIp2IMSSg15;@E}jr^N;rWmIn$3%DL! z*4vZlw?E1sW3y;~yuJW179}|$Z@O>&>?govA6*k0%Y4S-Rn0qM6^B(oWS=vbdOfXYv1Q#hNX)? zSRhLBG-_~2dJFRYK*7We`Anv%b^ogqPH(5`1`}ev7>;_3^t>}BM3$xEVf67u2?^O1 zcK-ll$^>+tiQtcz0(~F58Y4Ua08Ele;9a<;=^6bHk^S$~?-SYIjL~$!1b#Sk2bPo{ zBeFMNg1TL^0k>-4*wnKp`+X@IIHoU>E={&vNU;eWncMZQSgd)RvWl;aSOd6SJ&bZ+ zAmw}awMLKX7_hWzDhDH6mqvP1ySkh4Yl7v{`u5~t9s6ecvpARRmHW-ym!iHD-a%Jf zrmo^Q>6RR7O7JKOH-~zR3zlw=VZ<}zfPI2`oe1t9VaA^-j6raep?gzo%s+U%dNJcQ zJqy?6tI_Z^6i;Z2l@n8{xo+RQ5rbw+VHJ0PGQa=&X(xC+3+(kh$4imHdl<mVmXpok)Q&BYIE7Typg3v2#XN~}T=FZI77TXz(?|x|Tf~*-l znR^+$U)}oqA07O>g6|E!21kVdm%;xhe(($R;3fZ*HTcV7gMX;C_uzYpDZBGyEd9#L`&*K+=mR|gc3u24k1SvNm=d704;-?9v{1M1Wu^^}L zchOn=AlRSXGyW*pPZB%n58|O82K$8QCJIWZ(t~d#l*EFZq}brE{%dUTsR<;kF`Bg# zG;&9GpCx^p+Xr-B6zp~^8PME5@WKQni_Wux-9whxgH1=8+Z~-JRi@2xH#-Zq5r#lo z>y9Dsv|F5k&M5I#wK40h8o46QS!y;5YEtM~Jzh?%mL}4;(;!6EK0}pR%yOZMeMaqi z+=tgx>>#5u`lmG&`%Cd-@OgeA0*~)`nTrFz0qQ<|@d>#9MU{^lE;3Hq%+qc1qHXqj zRQmz5&2ZY_!Xe~)2-WK+OElznX*Ew6wa;wYz$yh>tBt|olEk%%6LCHKHuKFAdc-+l zb$|MnQ2!SRlg{}3cMRdv^?Et6loMrZb-%fvsGrws&y?qjsI}N)3%1%Dj=64rCZXo{ zVpM;O7SiE5-O_UI*vo#$7yyiuMswDovPy}JTM#avRc35cK90Kcxuo!1TT&N7*OXu+ zt>!b)EbF*t6X>*RjD=og%xkGJYFesG%an(+Z)_vhZs40FCv56G4J2$7wNx8Q=tS4tFx1cj}iafX zGuKdf7k@WNl8peNZ(Ag`V#EsV_TQPC6L8ejl^Gu?$!khrWZ5)`IdVmHjI;^rRI^K|*&if)lxjzz>r`7Btf`t1eM8oxqcnDbCp=O-R z>j^Sl#xP7>fO#V03aki+UD>BRl&|m|C7dY#fG9tWT?mq0d=cX(IoT=Djf@y+&EG96 z(we^yFyW(JRL-sW`(1pj@((5Xw^1~7|2tm}Yz~rn_efXm=PaBQsQzrCUN(7qv}m3I zLDAeOL0K#Lt}9vEB6*u^nkTeHidJLO=}Act%xkVr49;q<(cT?|UpLhA)=)#E{GC`G znphKRSf{VZK7<-Xp&n`wW=!5%`kFwO(M%p|4c-@nve>J%Ig~jED8f~?(3Q6EEp~x~ zIpL~m072q7U1*I+#u^$Di|LvT+>jUoWQXoDPw<_CfM-BczeQH_HR&+tOr5axQUdMD zUYA$9cP<@-pzl@Fs>#c8CZ!f|0MBgpgl%I4kS~?1bvCe^Bx0Cbu_bu!ZhW>AI*RVV zu2J^N4t}Vc{zPG+E`*Sgl7IU$X+Q?Z(>cN)UdH-%OH%&6R58OE6bb3umN8#E7`AwQ zRk8$M$sk&m>2uSXyyeZL=GFpslcc3)=%f&|6Q)vo43L#nYIE;r!;VX(#wv@e1>R&x z&o|q`bL`&M#PvL2Z1<|ig~+lxN5#@I?FGmiR`7z+9_4%jC!^`vs&OZ#{-(9~{M6+> zZCY`3-nF_SiCdRw`|Dc^s!Y?=yfv%q+1EAqH^|@BxANDrI-U6pni;s$VhLPSWe*WZ zgdO|-vl0@pa@G0iDO$MA46S6cqH==|afwI90Y*#Y8A<8X!4aCz70-?F3l2qeG0^pk z#mgiG&6iD#XCqU=5#rlT^&6E$*1Cs<*P{H`aZ)L%QL{^SAbD5z5g zA;;!-Qx5J5nL|Hw4mfU&1<`dTg=$G0u^$?cRC|EqRQW3$+}ez^Y_(9n1&9Dqk+IpC zXO^lp&vK#SAZwG~oeQF67R-V29nRaw@vgP`xFH5|7CrzJJ1Z z+?A@+R3%T8`s{udA!n^bq*X4p7Wx1S&EC^GJvxLs8$)P%p4XXsvFvX&(VHBtB!5&k zYQ;R79X<9*gv8N>;gv@zNEFIHNSW~QYW!=wIR799p}?p3s;($15B?k5dj3JFYUGHF z=fU^rf+n=sAD))2CTFnZZE6A^GTA}TL1d@d)kUE81@l{z76HtfeF419gVy8vwEb1s zQi=H7Ih^f{)wTch6pmDDa@UZja32w4rMmol%+=y8+81XQppimCenJlCWAn+J?@;O7 z=4O&nXA1`ta8DA>?{A?ak-2h=KmH1Bff#Nd7}=o}Epl{qvHBZGcOs0@wrnJcsIn_| zSCl1k_o?XJq^3ZfWAL>w4C*22$T`VO#^Dh&+Em-18ITZb$9ME$}SS z{)fli=W!A;;iL-YtsEru^nEfyw|xbj2)`!hQ1i_Pp5Q-q^LC9KF?LXXrIL6oScaXz~ik^*eTG>>~TSg;lfGe)0rs?N5~(PjN%9`icn><@)G9Wy9xg zF+ze=NYT4WP3w~o6AEMfEjdwtSN87jYpXv!QUDD_*p z60pA_c(yW)T(m}R1_H~BW=^eoZJgvo6NvVoDd+W@^DMkJ8N3F9EJj;C8RMD!2&eto zn3fxwoQqkYe@S>+uKFA><`N7ykkYNv&ja?0DF%ko<3X?=Y>v^D^)`-ahntyomH*sm zk&mxe>k=N^Ru|t%AG@5-y~`LIHYcQOHPHq1YD{!xlB%ySDW~M^@)8*JZgDr>_)F6} znvkngjLEsdpXEw2j{dkf=PEB_vXUM3sNGm5swm*JcPQs&*#N&pYi0R-U}v>~P+FP) z01+})6hiX5N;$H>XMc1Zo&IRojw-3KP7u4P+7|E(-#nVyOltGFF#w1jJ~L0g6cSXA zZ)WZH%#ku0w7s9U`j|?d0e~XokKnX?`^rM@-D2L8Q)()bCf|uE<^tWzBzgg(w;{u* zna8!`Eu|{7R>I!&d;6?U)S2nEX;Shqa*oQvb&~Gqfx8(@n~}FJn~s2YN~KT*g=5T^ zPG$9JvQ(Pv4Efh(tGca6$S)#Xm#N7jtz(a@BFamt3*bA*;YCml5wf+RQ9Psp!7#J1MIXVAUmZWm<|Ej}^+_p~i$I2RyZwJqTzsZiG#%-NCtIm;2B8=4q!MEMmay+p2ZPdWt4zN$c^iCTRau|Va zx@rO=!hdl*;qatt+D$>lah}K+<4v#n?_K(>ryb63XGm3nDFz9um|;S$N3Gyq=Quj5 zOrqM)K6RMccN}7v(v9?iC+?($-)^ElZ*v6 z*qk;YTLBKK2;XMwrQ^1{>4T z>uZKluuoDvTqU`m_M_9K>Yd%AUS9V_#K=M*5GBOvjL3aB;LeH!w`6d2GTEWpNe+F1 zm7ppxJY3wac7^mN3`NUzVZ$-Opexg&8@_=L{B>W^8V ztd@cyrUPlifjvM-&)Oi0l>(ETg|e&&8K@+f^CJLSLPJE@Ih-#7YL$%2XmhTT5Hs~1 z^i7{M6E$(n^p0n-MIQAIc)cg3d%Iq~FEwAYwfAFXzIm`>`pIk7u`yKHqQQw^X30HawxYj(ccfGKBW%~Qxb^}z>~F|g7MSH%oGfGkutsb$p=3n^NW!rX<^J)E|LyEJktV> z=qpD>U%AqH7e51vR6fA74SujIpDm>B;mE=9)t= zWtDv*tL&4eEz-2Oz0An7cV*@cBfuPd{rPWX9qj6l=FQLqyZn04`c-4seA1(TfvXAZ z5h?r?NIRL%BKdnnlnJy4kL5XUUjiIRY@oAoJ%>e05`l9;!plQ?WBD^ZwFV7M41Gs z8)+=bkR2&9AE4IwKC;(H4xgRs5BiBTC8ikxIgOYaFE(M$CZ&AvYb52Q|K#lXL;Qo) z!#InD=G(|Nxn}-Ju%_G>j5_2LV4aMmiygvKVc(zpEOLmH4u#2cS#@_~{OXpp7)m>i z|K*0pX(s=>`va5zhA3Wq%$gd-fbuzDq7IDl=!-#)R1MJ}|cgWV`hZ^=tsC~8*3x2g;rOfYg9XF@#S zlpEjhXEc1Lk$nF@3WoF#?d+$&NU4;gY75>2!evRKfK_{!ixN_lj6@u7z!g*#BOIC{ zf*ymcwGpET=wi|gHg#A(ueuW)>$&k%**r^BVEGl+@PtF8w>#Tu+6ml81 zsd4x*TRhJHn4s|XZLueV69hmXG_SwPb)#rQwvo3fmt25YmNGpKqud^v?FiUNRlLmN zOERKN_zf#GUm|t%o?>buHSBRd_aW-2hAj!{2?;_t)jQJpE<$@7#g=FkZTca;T<2GN z)1!XAMh5F_oMAOpzlTH9Or(kTVlpC|6a%69)4m5nfxeZ8%RA2(IqGWeT5u%p9JrPD z7^zChf(y3ZCd+P_PFZx-+!q<5DR8RTUGETXzsK`2?TS8>g|>>KiiSuIQ)F1r07RQ3 z^79yrNCrr>K%kbeoswLtbC^8P#slV<#&QGLvms6QaLStN*20ES^r#3+vn)}jDCcH- zU`lv~T@6P5k(bs6SO;#l0fR$eeu{e6_k$<#SbG-lD@3RmV84p@UY*#;(r}EZk zh@i&$+VI`5tMlbzZlRop-n^Sxkl|Zc667)eqeX!wl%E-sVTxfV2fs_Abd2+*H%gGl zhT=kQbisZ}*;JX(%v8PheGLjXldCPt1FVJ6LdVqG=p~@oYxk(-pVDwIxl!;p$$PXY z#Cvo{Xd0@JyXMHn7@DlOAWE8L;8if}MvrjLoHbGr;|yV8;xRg1T9l_Zd?!M~%G0?r zL9P&&+q97EXl-!2`SuRcMP@bSOu3#~zA#iX=9LhKN62Q!Q*x-5DvoNFl)8IAmQeNoFSACy89iyCm9RDj9T^OkQ<} zu;Fd$Ue?gPCGZb#X|Q!3^46p0;P?rM5gS!tqO>6r;%2l`(p{v7emu>1%LLC!^?FA7 zZaXugB52gvMYa@As4Ig^8r^@PokC`X4r4Q=%w+dvz2yE+to!;lUQgC-S!0LX%C!k_ z#H3U*?N-|}v)v!n{mfnAs1p``p1KNpq&ZWe4Wx@}@~g~`Hi+rSy$ANSXphnA{?1vn zC7hNm=J+233#G1W5Kl4wP6gu6_VS&0!nP z(|iUOt;;5|DE1>GA-L#KKk0V=2OXvm@G-ctg{Qf~jysJ+%+Smfo%3xNy-D*aN-Gev zQS^u)6ujiRO(Jo&d%3-iOtjOW`kn8oaX6KT)*f@dqg4G1<#=a_yTo2cK;QYa&XP(B1J2A3Uk#U-rNuoa_GEMaDSP!N92vho@!&C zC<5$qESP6b1FJ+0l%n++bwf+!%1F7gGvZ&L;Z;xZewpPcgbxc>ni7awnPRP=xn1)+ zjN6ZhD)Kmu4J!M5Q)81nB2HuT#<-})=94_WQC~JN*tk>Ben_i&jIY2RrVi%}d~>3i zgtkZwr>}u#;X7q<)pswW>6?+JR@X}c!<_Q8z=dAf-+!L0M~BQh7CuafIITFA^J&L7 z(Od6F_dmbowtBirTwvu2-o+0=7_}%lq#p8Dp+HwK(#Lt*bA5OveAYmohg@d}9;Xa! zvom}*cL?!c6XMgTO_Actb$oTMsnL&&R$g-`sCk7iEyX;r06#2J7ww{eZ#J< zS}FUgRf&O#9u1fx2@Z-%f-2=}r7a_Ah@~F2e51CEVD!ONHPI-yCB1J< zPB}Ni85ksv9p2F76qS6@rxIOjRg;k()ra4xNac|ZDQCyQGck2$6jP7U~`&;02dh7?f9}60J{U($_ ztWucoMr-FpZVk(>5D(pLDn-ytemi>9%D$=`M@u$^AEl~@?=%XuF@dwO8Xv&EH1> z_gB)mP1SQ--_)vy?dqg^1r{9cUCukPKuDRdUja z%z{f#q?=vGvDLqn)Js^)FWNa*k*pXF3@COsHuDuo?s$dIq$96zo>u}=)4$~n$%8G_ zKHnzgRsH}W?)VOtst4XJzq+{ku81vKjxV}}ZAftEI|7#p2}D#kmb%n9uI5yw&ktl6 zNwA?MqPYP~>>l;jRJ6n7@Y{cQ?`eCFZBY+?{0a7is27c-9(@0-C=UwlLypmb=$VM( zCZ!(^oZ#N8BTo41P+tU?Sk&9VOg^U_Lxk~aUXG!)ngp8nHc9z5k#neS%|*l)lJqGD zmSBD6MB$M22B|eCa(=L%q^XsxkVv_lczis#GPmQhhqY^>=6@lL3)1}qg;LI=KchS? zvMfV_&o~dh>*c(xzh2jWFd5}@r48zi5$bg7+XOX)Z;`5OU%j-xmDbLeH0><)_}0m# zn{)?hnn^H&bc8vBT$hGwkE#Kr>}2Ry;Z!E<#MWwFpcyswivDV{SxrxCri#oSzX5j~`O{`j2aJ)(KGXR*43Y98^E2+&OPt_L8Pw_za*b6EuBu0A)j608QETyyqLru$T1Wom@+|)93VDD z)9EcH8Jk~#0Om_pS=EHYh2(?q-^8!da7gniw>*z2v%=0YWOxm6$rIaU!c_Eyb3FLk zn~oyt$a>Rud1q1wN=TCXPH}ngin#{ynBo+{YoiLDtEu%l$Cv_ik<%(vVVAg`IddgV zglGY63oP3&I9aDgbiZ3W0>bWouSSe$8Mp&weocwOE@x3o<`IroQEMm>&fRGVy$3Vj z1(iS4BwkCJWfUJH<14qZNJf(r|At+i(sI{Y^Gw=0Lp3Ha4g zwt_MVHES~J#>j=$av_fIKx`hSQDxvHtc~D=OYm0aG~_cSsQX!k~hSqo&H~x$5b5;q5h?>y@dmO_3ZZ zQnF9Tfb_eNDe59VLSF-ebPjN-Q~0>Bmz1}*t1SVhAY7(smNfIkBrY-WJ^^Yo zp0I5b0z;@==oZFcRMQ1*&H&Cmy!7{E8^Z&dp`B6^Bq9U zVQ0}Xe87a6$tRi=cic@rsp=st}V^`)btTUOD9hsZmEzY7YW3nS@Gg;B`;>@+P z{OV3(M|di18*eS8DX*6r%|>ymmQN%Q^Jq>EDm7uAsHiH->s6~+#Lg9>#8@I(jF= zgMuWItgKdBpOyoDR6QF}to(7xF%^)&qizIzztm!wVs?0DI6sAwzq{e6z!jC%+<6D@ zurN%gk6y$jP7qSc_v2MWLZ+M?C6r_>vjQnhtVb26X3AO?mW8XcLCSwhw$SSoS)dkJ zcCFCM;MOnATS=fT=|Ch^3)W?UHty65#6Fs%5Ghbfx~MOp`g9|~YjDb!<-$S8jJ2E> zKMt6HWj{p>Bmo6YJxB;kWkFl!ONp1BY0Pr+ERuLHNvP9r>Z)K z+8(`W3N7K=#IcIN(natX`3J>~F>eh=rta2AVRWhd-AAYOnl?4O= z2M;+UkufJ`3*Qe4ifOIXohdM(+0z*`*Mwx?VUo9qv1CVQf9q?YIkGfeZN+jyxl}BT zq2jJ^ahICFd%@uMHg!HO=MPE;0ZUUuWiqvPDOc!68IY!ITyW#+*RMr8u_hvYM8Ed% zgghRS0s?;7o+&0~pwOA{$;h)X{fH{ln|AjZUhQu8`w2HHH36 za#Nia$PoJZ7?xy~5$nFVK)x^J8du4Ua~>%S0(7 zmWg>$`&pWpA|^*WUtyXeN>%rh_zh750PXJLpP&%JV~T<@!r4D_gA|k@d#zPa293!y zDX^gK;YPHejHTg?ZV($I%RHYJ6yV93w;{tn%-F)E%zQ^;-X_1wlV`asi*J!%7Dm-x z#RH^m3of6BCveWhdC@Q^nV=v-lwL=HOi>YKCI<$ZipIL65L;GY%UsSycXwTX6liT~ zl$3a=a6yWTh3He{nik2KRj$ri@nj^S?QE7ev z+AAEQM_qVXj3rpEo`2kA2_8HwEJ2#s%X-IkO_1=r7*{aH>=dpb4X$7lL`%4W#0={uh4W;bX@yPK+P8)x32Ae&AnkoPZzr2VzkVKX7683HgCO z>RPQJw)lZ0wODda#Q1@5gD_mAY^NSk@&=3w3A!TD-HWwB#le^OC$bt& z*!ZQqygz%Lm~2YkpcQEh36WF~Y!K?@TDu2YK&(jhe;!Zplo2f==}**?u*m>trF|}} z_gOThMegMUe$yCQ;VDzA%@%;u&&}K05R1*ex-Xy$n*1!%I$i=!i>L={H**y4kmo}tf@GO{44gQ7&)3S|hKM_)2Z2D|A+ zd8fWFfkxbarHLyTfb+hR6_(Q_i(+zkz7f1$M4I)th%*gE&|TJ&#c5YK-^2h>%q59L z=CB98u`*`$vN=xt*^;%(5Of^PRry;`@>AqI*>N5MsY*=EJ%cqxH#eg&&c#M3f(`^~ zGm^DCSTSRsBPto9>$a(Zbhc`*Sz%erRoD4&=tzuJ{wT$xk@4i|@r;a)r_mNSo^89V z@ho#Np7>|w$%Xn!$z8}odDIm>Pwr87$dkzJ`5TOtX&&|LSW%Ffg^0{TB2D4qCK8aV zdo!ZNA4rl9ue(v^FlPaC*WMoY4~k7*R$8(XYR^_uA*#D|Q)@%)YDUk!J}S_2FL)sD z#}+MB9%IR<1M>b(bH$zjT=a_NT>C>SR;}m#AD+|mo|zQ4V)xU9-oYPSv3vECuSK6s z?Rj#KnkP@nifz;@R+Dx7ifs)SZw=*dQ&*3Su2^i9svNOZ5}+_zV1(@0JxO3X)JKv} zj`lR`(l|Wm%J3B_tL&#$5JV1LPYVyKl2EN(t@=3(Clqx7**mD}^9BRiul^8MRTULxB;8msWRWdGd5Vj5` zd{0)BH~fncodb+3?3n|SnuD7i?so%Un*)|Znw{Vu6dA3E-AtGhY)Tg$m!6Ea`(-tW z+9qpn<}r7`;hfTqQg|{-kzmC2i}7noQyfX!>F!!)b8lOcfpNLL3lD_g7HD?hThC0d zDxajq_N0KLGkI;on&bj`*8Nf78(|~l{OT07wGLvlC=d*tyl=iOfw~{Yo^$4>QW=Rf z8e`mJKk%Ps_&=~wu#T@zlvYcr4QTiOgr9+Lu-UrD`};@6mwAZ1z{9~2T3~PO zcaR=Jb6lZ0DQa#r4suE1DI?}cNm56sygO8WG}w_CAPCkKUbZkarARWTEGP^u@Pww! z@`e_as~bkc_$7y?_~4Y*EbxaHRL==bxgO^urZc5V4PJ^UGNYnAVHN9{!U9Sk;=GonHu|`@C*)h z=D$@W8kmdB&B~dfWM-Uz)@%J2j1!@TZd+@z%vE*aM`28_!XNWbFpiSQT5H6D2jaXW znP%{sg9%;_J4Colez$l!h_N$&e+k#H+_xKTE&2Ns)T8t+vfjAuV2SCo#8yBJ5A#(X zV`{m&m$eB^@ z_YRjNfKr$Xl32V)-TwhwKBHVJhNv_C&Qk<&XHh6`x`RrrebrVO@i_N4fiGovzb1)P z7_aA#@$Bk!Fs|^FBJ{;%^{QMJo>8qbWIg$8TPOQfE@n$`{!Jeq0wCsx7Ze70XuC?^ zgyj4siShv+m4`cPYd;C8G2z*YFp(_)WY1>Nqwz9d*~HICRvLc|ZU%2GObnb&EXI3#kCG$HRVv-Jr>~jTj<&3&w+^!`bnC?HKGCT5s z=EX;9R1wq7{e6ru;y7P;D(h4ROCW;tNe95x6)7=2px^~<_--S@_XV?`5oJ;`1e{5U0G?{QMujm8CvN*&l;(TTcSxX2tM@fJqL4^ZIJZdZ}XAtUOq9CZF zASlF=Tt{c7F3Ek4PdHw+xsT~XkrH{iUVw62S!rZhm0E+cSln!4*f3^~0C$iNVVN`7 zlyu!L{9p#yGHnB-X;fauj9IeKn7T+Ok<(DsW7Gitc-|=S8B?#1-8YbdOGZTLk1d}5 zU>GyD853tgiVx>ZETrI~$>fmpQHv&yhR{yUKqtiyeWn)zJx zv6N`Hg!c}~tR$~isIGj0b&$^6dx!!pBz`IGhTZKd;jTIb(-d}I&;n%JB9m0NLPMff z@H!aa0UK@rpgUfdMPmY^P`T3X-s!wmVy)42uR7#hBh@*z9@*I_O1$uF zSE$xC)9WE_$qX+eo^+e47MwLO zX=lSf1>iGLZXZRPGNUE4D+v_j@=%y6Dam_ssf|OhnQdh4YfrE%|hAkZYEse ztIWfAkrT3t&>%ZZYVeBe_iEuN=^m?lz^YV8f5$x^$kJDNB<&P9-j0iK8FycrfNBL9`)Y~&FH~t)t<^4b>6)u25>37M*uRHO8!it9TWti zUgKG;DIO-1sHWqu!hI0Jerds59x&fBu&lC1e&+F$mCy8_D*BMs@@$)`=0hrii~uh6 z9^{B&uT6DD985rr=w5YOy_oh;>gzq%=tJ+gc6ZZY?JWy_hgZ@d7M3l?=V*;ogwR0X zT%$c+3aiwXC(y{@haou(G4$Q}jx0vXcyZC#CaZ=yesa=vdmKp=Zp203mYGyvn+g`j z@z}k&_7}#~D&wQfJxL#ys@3#FbFQdU`HF~p#{Z%1-Q%0C?*H+$NlSo8f<%p4v|`oH zqE?I0F6byFr3i)8+SX1B>O^Bf<&tm_3T0`9@FvO>oosB-sS_ugOr7G!w56;qmrp5* zt_o^5tDc&wMLI0ABfsbKoOdn-ocsRq^YOqYd7aDa++OE(URRK)Zw?o0=;l8BQfU-F z!gQ2Z_ICN%bOi)Ajj2Rqh0d1Z zLEKoeT{~ayPujoSjZcwXd#n7FyO!yk8?csrq)jyUI))Kr*Ur#) zZ706s=pPUxPg(}-+HYa81d%4RQAR+pncv`rb{RJ-f9}iZ5kHpH9sdPN|KB*FyWZYSM>- zhT4OWJ;>=MCkg-7>EPsaP7?eLnMWq&bwat~n;6Ws;E_g)Sa@Ge!x7)_DOf~t#FzJh z<6;`P{ovwYqWLTX>+BaT^&f{rNa2Dz7|dPSp^qajF-1s=1Y3~(MMZc8K**D8(spYH znhm|1pN7G%3Dai~SH9GRfg`2C{^o>R&`Wc!Ne0V3AlkMu+*oJ8DegrFJUp<=puxyi z>?U4O;oO2KW2RrZ`eOyw%4AojVkL3XPE#fxOOHwpmx#rWDspw_$CMm`VZj0`5usi|_E=BE#xG+wMI1rz|pfK zxBqz>HoGF&cvUllD`^kd5AwE$64L{FGBK^E~n8r<%K-baf9%y|7)91pn8ei_9A8G#Gl3$FE@i%b1 z`+yt9d%Ea$!4=U3SSpSO)sQ>zcGpF>ar)KCWK6gQD^z2;$aW}Nh=^>5$Q4Y1uX$_@ zbdl{qe4MI@Q|A9%iHw~8W#T>^nPQ2|fZcFBf=Msd2*Vm&xeW8a9A5^^KPOYFbb25CA(0~(JJ3iB2`AUN>pRWTmC49aGQ&iH2x6CeQNk5_j8SHBAgkz{iO2bl-rC?cm2yN9G zWMUBtw@Sq?b|@jzXdGrSTmNz~aL(GZF@rLM3-=b41~SF)KT}3uUJf!ytF(v+$ld@q z1z4ifHpP22Z0h89UsATq!CXcNsALz*&??HnEY-ZxSz=p0bY&6@;}*b@r=syXB`*S- z6s>5-^y=-fT_i1tG<4m-hE@(;&W0ApH&mpgXW11NFQgU-a4U@v#5=FT(3g|rO?(+N zmZq6&90+C|5p{h>wRgdN{;jF0y`pOMRkf& zW&o|g4VO-N%w+XbFAAj+a?_hI&;NgC)w*N)F&dX?2bgGtAEF7fn1E($`6LnOW8QH?;E&Je%-)rZdNP ziP{t3td(R++{KrZ8M{JHvXx6A)eNK<0f&HQ*(p+SO+@2p0l$#!g16}py;+Gg^!P3& z{{c5Ibr$fsqBu~09!p*t!vSe>!k{IDTqcO$BwOn}AX`fUjv*7qG*)8z5lJL`)uaZR z?{|t&Vb?eaTO=^qEXKe58F4tbR2x^!b3NuN-L&Z<6qt$1k!TDYOu||hQq0J$1$Re; zm6J3_LU6pvWnk0g+P)jI)@5IlYhUYftjRrxrKDtm^%*|_4L~k3paBSd-z%$3oaMh1 z4zWm^B#N=YBS}~NKgmYy97m%tbU3oSuLHenvG9*7Rm;n&Ydz=T!fB*ue`s&@+Zy=B7^i- zG(-4NI-)~TOb5y>Z6B&vOkyCb@o>@!KEe*g!{{#f2(b}Q@$yNW75p`O_QT3@pYRZ8 zrne1FA1!Ww_2cj?Ja1>-*0mlJfQi8!h6~7f6l9p*Lm*Pglyek`<;TGP>ViI$=o3bs`c_d=eH#J7;Z zrQ&6Q;8B!!hF^wQ-9RDi-tfzGe+g6}+K!w_*gHU~d;rOn=iFO78-el?-u!t;+?#^| z^`&|lzhg7XZ`2MX_*s!X4}YAksWw$}VjRjlo0cEcG#1iicaZRJG&TgP>LJw|@h%d( zYE^xK!nR6tK(@rq>^l_n?Fh)`@O%tZwFIl4Di64J1YGNp+BHzJGf=YO*t5ZxIq$sE zlfd5~&ADWRpvi@XeKKBqQ7=~Yer6^v`go=P3lmaeE-&{#ga953_*j6jrN8v%NO0z6p{f%_rBMGtKyX0( z4lw#a`Yt-|>Phfkinjb#+uGhhNt;N!z8gfj-QS1D@MylD`yAGvUWyN>j0ftdkNzEAbz|o33!byq zn(*tY6{ZXC|F+*+OF;$f<&(S?>#KR`uyXGD7k*&^!B0NKK&p^QdW4Oa2jU;t#M{g^+4D1HUh0F&aozB0KyxNvl^>J@}i#76`NTQ*w%_)4&< z6Hygi`;085zwDUpq%oA--13C_OI0+jSIh$k46gpx>eK)bOlP_=PRHe#nSlX}}lE z8;u~d5Z7t0orv?6s!ae^M~tqPqK#-AtvJvM$;oiG(RHcb#$>dC;6lN|4dTL!a8?U< zRwn$o*|niP_pG05lU@h$dM2wrJKxmoddl_Szk98&T>;l7SezyMTN3dJHg*usj}N%E zh{a1?w+TdziD!~wM*jRM4drmU~H53?I#47A5 zY-8VW&`p1n#W~Mpt!3P@kR9#4qh$=X%>5xG>heJQnv;j!e#;@ zfV(lydn#wUJv~Hd3kLZ#fua1mby?tBICLiIiz!JGZh7ffyC~ z(H!9NfKQLHs=d-M!gr|hZt$%8#lh~ec*t>o;)7PW+Z`^pX%(*^{uA;U=lh$})oQ~E z-MVft_C@ezUYWRup1MlzD!M`if6$HKlI{2%;U0LRAgTPn_prmk`1Wv-^W`F^aixt@ zLU-3~09qLM)Cq2nm*ZLY5pd;?p|N#ODcCiDJww<$!uVt8g1YqzHUh9ogxx|If5f}+ z)pc?|(kuV>d$9UO%(@EiD`&n)&U`0vzkUmwIqn;qUmBl^eB8Ctj2C<@63wJbGhR<0 zd-*lDT@Ug~1Z2&iYh9Nn+j-`U?R=FPYiFh2PRa_jQyOcBHG{62P`-BkrZYD3ySPSv zs5f$m$PAA)!kWR_<+zt|d2JJ)W&cnz2yeE04uLyPZq3Dt$Ta0mGKh4TyCV7GXJe%T zqa5)f88yTr0{9*DSBdQY)upI!gi{C8R=qP*9&_)IrW*Arbk>}fbW)a9vEd4GgxnA! zfHMvvGgSZj5Fk=_OE!Qpf)0r1foMMV(ekgsV#X17e3Tpm1t#E~5g*!y`G#w5b9rUL zOu34?(L+H-lXrGTleP9d()E$Ia@r32vh*b^u0&vE-!*dPi?M*oSEvQdT!uOO09kUi zb}pc-rWK|_sE>!8hCq^i892E;7eWNxi#Y6EFL7Z<-hPJ09kIrrN7`*%Z=T!Pcy+9C zRy)0M!N$AcFB!U38+pqaT7Ki|DB3ghmQ8H=@>t8Pc6!SlY`K%>1E94nO`nH79bAfs zKT#58JogxzKF-3jOqA2>LaL#(iZrb?nCDQr)B<_g(Bxg=@9U9XjN2jQf{KRv@vl&$ zRNTcj;aic_Ma@?rE9-d1Nox&{{0uPt-UsnNYprzV9C^1I;`OvJgTQ!qDVOGbSB0Y7j|7Zm+mCl|LX(52?$+O z*RJ3W9bQfNJA@O!ixr9i+c)olJj3{~dSyB=u+~u3Pds2N0-urV_`l?Wu9Nt+PRRDG zweRDL-sYrLXmb_YB(Mt++zoZzda;*d#g?V|V6yr6LY(6H7F9B!PD)wJS;tfZ;!=b@IVW$}Zo?&^~ zDc=6|0Pg&qkLCTK_Uf28W*k~emmSYnZr>_1PJJ)Z763oD`1l~v;%ikH6#K*M8+N@1)+}EuY~e-p77@kEk9fWy@r3BzEpCIkE07|dKdDo*w~jhA;`t;J zq{;w|um5Vm%=`t?L;cN+m&rziO@(hdBU{A@nM-#7ua)jfIO2SEkz6cbc;yZ(MKzAP zTbzaa8rKSb97ZF9<<^zSl!h!ABp!px1#uOBhd+F-_fRZ?7_(Tja;wW{mg1Af@cgu3 zt|>epdx6Ok&{Fi4#r+ED6RNV}%L>S_7?mece=lTf(UR(3MtNB9n6vh9db1(2nrF)R zhDM=HgBrdxI+vKNlNq+;a@w1ZL$hL*Y7>Mi0cMi@aDJWun-pi0?*lXgja1fK8Hko~ zYr_fSEa!VOt&?_1!FQAikoSM4eA1O6Bv|l|6n1D!uo`$q$;-11p1&ec(H5xc3{)Kw zX$+Mz79NjuN0WXU+j zeq4PQ_J!a;c}VlMvDSlAsK_=)eqzTO-!>X@GgNdZxVo7q<$bNBbHw`yD5aqVUvB~e zuE6W6s%Lmb4I=9{&I2oxmnSEhW~=`XE9{NBD_f| z&_#OP0QLEOA1Yp4&NQ%q^`llq9hR{OxVVkG*mXsh8`$#rRN0V*MVo>G7C04AhS308 z4xK=~!|1X^#bR-2(!>B1x3n_Jvz!`zB@~hdsz3Y<Sh+3hRs9;p>SgaiMzUx)g!lcTcTSM8fkgMK#qkQDhv>GZ^Tp^<+ zb@iqqjZfn84rHxN$ImdsMo8UN!_ZbqZViPyj$f60T zo}eX@eTqA|GwTfM1Wv^Xe2OP0T9P7M=r{#9g8t{IE-(aE zQ#BCTl8TK=i)U$&YLGAAqgWT$5fOm(TDh~&ca9`N*2sh-z5>?>4xM09z^~9$dCo`a zIGu{Y%P%OxRTH#0g!eqW&!f!D}oaRYc9)v4ri#jsMUx=0!Z*7pWc1uwEqPV9@gz9X7tRHrI_V-0 z(7@Cf#e>b5S>F*HcHhMSTh!?6erLbW3Yj^4OV(_X(hAAXesMu}Sn;z)pcp4@PSR0i z&V=~?BtH_BM?7G_xO@z655I@RJ>ek9T}bIo8{3 z5&>>u0^q;L1nS60z&WL~CXK`fw${uBy+r&8hfa!(@So9-MJFSP)9HPpGI z{fv!BM`S-cQ)E9NClHTJ)jR57N26jLv2vW?qWwSd9mNC}ch?nsM=z!Ey?io44QCU3 z*$En}4~LcGWETqt^b(a_fXQ@=(pRw4d})D;)H@Y#2%MW$-Km&S|Ljf~(HV|W0%_5} zcJos0m1e2dntqg!*VU(#XKaByW9B4L(2Jv)2^*@Q>nZpj_G5JAmG!3?M&IuLQKdgmZ{VRZ9l%)Za0~4mN&ZHGq2C%w zJJbQr3F0%c`59P+vizv)kiHrtqnNy^Me{K@7?LmK0;BbAcz(m`UcB_Jnsv7+;{aIn z3*Qa6AS>?)__iZF?%B&t&enx+9p4%#*#@a%prkhp1NW*OWug;zXgSEMwFU}5+`RDh z+<~Cpf$_=WV)Tol0adX7h}b;A-;jFw?&25r5zD5ctR&z(SMc2Br z7|IeDo*R%onZg&b7xyN?p_}RsMN3VJmAaj!cCi$}p|raF(NY)1O4(Uz6H5^+bqQuI zlkpOsV~l<51L#JYR<{Eg!`jBK_pr1`#AJOn7x(kv@U`N1U|w)PbArcSa-E^;RTSXu zO<`0q?(emLgL~L*IYl0|4ZX$5qvle8Ub_!y5CF-`b_I_}UY;U+HsJ(7^0HOIBa)X1 zgu4hQ;8e*=^$N(NlK-nbYKLrZfIO<7Z64*+5UAu)JN05OV>)y}Q|3w(+sk4EDtXi^ zda*cp)NZ!+G>Z}V9rCE%vR+gkwS`ST$T|dIR$3H1GAr$b&mf!t%u2n2M`p!C_%(zR zaO$jt5Y((yeEk`?y|2DU9z{EN*M2FLiW5nd)yuUfk22`Zm`G~adL>jDw*ew4{hE)7 zr0R!BkyOqIsZW3x(E;%-_Q=}y&=CKdl>PQwH#CCb5aZSjxXW`6Dt1FfM03Foz5+G~ zl@9H8Kiu&WD(vEcR&@^z1{1k`*q73gNUKVvoae_^!%h>gSgR1j5rKeq=MJ!!V6wM- zjk9Nk%ZLn&K%P@cQSQM>1MieXj^C*bDrS7B>)+s$P%BJ1o@-9e?O;BjcX^|o4x}Vpw|1z-cV)A}b*zxZ(W~!Z_N;vGes2BD53p%=;a-h|fQGS0mYBB_ z6NJaw@^MhQU%*ppMmcQ9VK6RhHei0jT@1$`rauXs_qdV&j&X+<(xGA_b~AW*X#@ZZ zfEj0Z;~qq;o)z<@$?^eS#3eSk+bBLJFeEV11Q&;5h^zR%<8!aec*Kf06TGu2>zmXL!6cZQ zT@G!C@g}o2(KKQrOuGA)kB6ugvdNZ3SrituXvZ>!XcNsD4bDcyp(`!A8T;qw*ag@Z zXXE1$#3aEe)Fg+Nu;rJ=K#GWtj#b_5T+Jt|_x2!?emB9<4<>QFBTD*m5`0r~icG#q z;rSM98*x1v;StDa1)-SMf{_@TFc5bU31csMfh`s~^ge3zVRUBUMh|E{3B80iq4z+h zzOK4wA8gyPrF^!H*e%9<$B5FDRSkT9!yw@`E9ciH!!TYgU%;1Rhi!!WylAUmGJDC_iZutf*S&3Q82`*V)t+I1>zbGCVI5JT*&j30~QV zOOT+@#5%hwF+N&iD@&MJf}l`pokf+P?}lpQ4wm?I7fKMsixi1FcvIZ0qKKRckrdSk z5iufwLV~B4jnuIbf`CY>DnUe43Hwr%SjiFu0TG8PK}1xEHnvg05(NEkh@`7Vh=`1A z;<2s#}RDFA@3vl8JR2I?a3 zt8*yv(5=Pvj4Af4qi{FCrU(F+lcM0@awL2^;r9_v0Jt2xf`iMEa1Y^A2q!>CrIc#O zDtK=}4f!xO9QR3u(92bD{u~C<<7ke>QY&46# z!(s$>J;v5j^a86jYJXrc0z(fFi>VTe%eY(btIL#i$ndGDV6!V&o&Ze67zK|^ z#ZJO!5>5c7Vzh!srs8(OZzP<6xT%nAh!l}3$xIVNNnmXTaOL;abttDLpfj{`NU`S` zx-5P5CYmDv=yWPL(2?-ngdZTB0HAY3!GVs1*AV_9;RNXDl*yH`!FWfm%a>S}=}?Gz zGx0xbtz4IG*-T_zWK;IVXzFe@MW9-j9=(`a7g=lqi`~Ft1gdordNH*wvX~%Z=du`q zSQlV1Rbp`&jim3Z>yvf3F0%Y4Hv8!tC{F+;qF=!y6VXC=6X674B6<}(G7)nL|1IGJ z#7zX(g>pijfDDkZj!|ch64paJZTWvjef|guYqo+>!rDjJm4xv}NLVu!j1tyugbgE% zKT^Vqdqmv-%;(|wUX@y0r=KQOo7BQw2_26og(T;5=uw^~2-L!?N|0Kp660B-g(V0A zwJ@j>q!y|~pBz6+5TuVkj()D{-o`@%1AnOd%7TS8(5g}2C&VYc2@t~Km!hDb7Y9YQ z&tGq)k6g!JXcSoT5G?= zkE^P7(zx7O`w#i0o+jqjT1th%tr|~gU~o&IwrhjICm#QlJGi#tdapFYP(1LbTgW*3 zHU)i~0#&aB|9U&V(ndU3D*+{20#Dq^5*1sS{~T)Sj(xc6@d0+?c(Uk5V&bCz!^&!^&06js! z2$`@CLJRP3{ef!(evV{&Lf|hHaMM9czvks@tOy(x9wCfG;TFF=i28h>fC;2UMLCSM|IzRLzQ2jhE(1xm2u!;lL1_-9Y`fl=u#Kf59Lg z)&&9ARyu51AgJDkxQT_^X);hon*q%7pg*!DY1?qcb}GfTN>hTXS1E;FSuNkZuq}81 zJsxi_zn~t57^B+7iYhSJu5FX?D57@h_Yo@uw0N0pQCcCq^P=A3D{gV5TD6!YTf`43 zXc1-zuZZi|R$~9uha745>Faf~g%6w}e9weH{|}jc_Dk3Itnm zF~9dG%f~l-)%fiZ)RBEix88#dstYLdwK$RqukJ@)9XZ#{B$NYCfMlViy9&ngPlDG zoFqMz`Op!jkMP>@(;u6r2DUIF$eZBLv9`co3bhQqdyq441XaM<1jAY)BF*AS z0p%l=?b9B%A!4KVF0@j;c!A?l z(a1-|Pm`pe68^xUZ8)m6dse_H-GXd21$cL%NZ2RBz77=JgQ-RVXM@*NnHZ|Bt_s7^ zqt9AfgGsL40}sa%+sb9gj~u{DZqg$*C+xd@PB-9VMZAN%UPF5vYO6bN%fmJd zROBF%cl37^62bceicXoEN2Ssi!Q}; z^B5kSAm0PtoD?5X(p`kbWoy$e*I${|;D4|))JxM^^Ed925`hP&v7}#f^^8F1fx_;b zT$A)CY;#)$WAIy%qz(AY#FnS4DL15vzTr|7-sv-Yus3Iqd# z9Pa*)DPe&~0ok4l4?(&Tn22p;Ntl>IU&A4Rn-JAa-${Cgk5qVZA`b?Lcut|khnOVl z9c<@27%2d8ciP2k&+`SWwK%8SyfXvSZA=jS_Ym&!WNkVuEQG%+73wlF7x`FGglC5I zrWctEr13=u?s+Xg#orD)kPb2`?jpt8G`l*bH(Yrlxv5mC1-}$M0$)`CU2jw`cZ@d+ zrLf(szp9@pZHeS7UwNsTMcqPq^dj!1O4a?I_D%K5vkdTxU1Y|QgLV&wU93?i=Bx7B zN#&bLRu~o+bR}K(( zoBSoTeSi7VFT?bdqXhUIZZw|-5x0DuSXeHAlFZ4wiovWbrHBcPYGq;>>S;r(m%_I< zNn2(Porg>S)l2Zrq@6&l!V-)2klFdR&&z=!B7n~rSZspfm6n)utI3xXSYiqd&AG^D z3fzbcN=SX4nB(wW#ImU06tZbnghVnSJAhgCa9kS#Jrt^%eJi7d&emqYK0cI$QU$8m zzfdgK9J)PFWP;C0qO;hHBn4lGE|54ZP&fo`1fqe72!UgU{TI%$mY^_ln-BvIVGJBV z$_Aw14VZ^bXSY$Zz&_$kCDI76hBtckN=pKg&{=C6`TH>E z37=Pkh1F8zgE+S-7p~rW5rNHO5O>(%lMOOi($8U8YkBEt32@O)Ks<|F%%3H}J6HdJ z3qGNUe&T4rpzRfFYvJuZ-Mls*4#hC_K%;O0h8rV`h(TyLG(~oJPJD+YtTasT4=t)b zd^7Y;C(E`IsdhWTsEh?BYc11hHBGi8aQ_vHqw}Pp6N!B;^UXlZY$}j`%jnz^Fmr#H zBV%Cu@hH!?Vz|TNFh;U=9pRld@O6I*`>NDqxPPL-Q-AIZY87BDbjz>E4`)SXFx(m=^d*(c7}baO^9d?F|aQs-n1WVw3rH=0`@NJfDFm~D>VzH9`{q_dKV3w z*e>-OIJhin(-H#t4va83JvES@B2pKCI5F;?ij3&#xjj#>`Y@`}r2zhR(;*3VG`TE* zpb;RCcErz3=$+OMphE<-YUwnVF+ zC99`HC@rg}sg6^%L{yedIB-1y6HFCQ5gtwh@kmn*)khoJ{Yy0hy`ks`&=5y}R?vjF zD^gz{M@O`NjjW#u=Y$)QOEmKP^%h zhk{Fy!umj&7b3U9&m!|E9sNr^TcUlx{y)_paZ3IAX#J(K{(r;$^GIEN>SMUyAnT?^ zaOVLa-rPc`?wm4Dhu-B0ksPZw1E(mu`#2+k$u{u;*IJT{$pwrCpz9Tjpael#MKgHn zNh*GcwUm^`A>Kr@xXnomQZUz~YI4_|v0iheo?Wbt)q~35zt+QY^ox;T3xO%fjQ>t# zZoSiP5Esn>h5a9@ZpB?8t2)GR_8M0O+YaLc@m!m@CK-YMv1$ExK_iuK5}!ULi$()a zAe=3t^)Sn*EjZN#E3&__05F=0I5a0nZ}UyF0(lm#k(|bVr?-fliMvALlr6rPD@i72 zPM&u#+1f!o^f0A~YC&+7Cal55n``pli73IiJ#eQc1SZ<>OJJg1gE6lj-NFH;R>n%; zf+X`qaY*u=VM7?=7`axfrPt$Hfh?*uPQ`j-OX(~9Z)h{I)406YadMf{VyBWg%d^22 z&Umx*iyqm6+8_gK%F+Ipnm>?Cx2&1^9X0I{tmPibh*hu*tPoue5N$O~xsM0QO$GX4 z6W=_E6;uO6z{CjI;Q;lig**U!>roAfMooca(Htw!L?r{s6c}-E=#1_}wWB3q#7g9u z{G)il%HSf8MwTIDj#?Vk8+lFNlbb+qz~w+igdo96v3jueqQ`IGasQw>#+v& zs$-7HjjV`{u3ck?com>SGdr}!Iy5U3C#K4dqFe10s)-#631z?dK%NK5W~IlIqB9W8 zNEH#Qk~y$SCGs}C0Et=;LO^;i!kLxZTTeUXvCSgi&@aZpU>!!1$02Vm6*C{_MmLk< zQZ-OiTA3yui?)IALh6Xb5_xzs^=2~Sn>p{aX6A{h(Ppj!n-)O@s{DAG!a;f5dXs0z zH@O>*N&_*QAo_k6865)5DH;XLPHS(T-d;j{d*0L9OBY+C?VV|)>-A=g@y%RyS~HpA z&S*0jomyz1rHG~+;C8*G6RS%l4x0JR!)FwL|-{gt)r;apLTor8+uEn;^wanT zcAVBgf#}})KaDX{N9h0J+w+{Ey-m^f5G+vLURcEF<)=2P-q_Cg#x6WVV>A9A8hbIm zvDQaVohr9Tj5hY)cfF3>=J@tjoYvk1@zQgVnfs3Ix?XSTXYnnKIjtqP@O)oO+x3>J z;#>OskpW}mD-(&1+!p6v2K|_43g#wc?LoX}SBrBm5;W*(7*GtMvLLI07%W^qr#0K( z&|++usd* zm(*BYl#P8sU5Bb`mvv9A#=0pej$%3y=N@(lwK>Zt?~SuOsENsAQ&^M+yr_O@(RP-qb;h8xZd%O~%} zP~Y1!PL>8O<3ti{a-nHhhClwMY(RYiZv&}RE`(+w7Zz~2NSpw-wqR~5{$=Bz+f7wm zMO@2Lqy|};oB6iB$?t^VjJEpxAs@A2vmeZ-s?aQ^%UUV^s(!;vhM9oOtY5sxhg{^o zBG2vWFQb#v@6i$lhPbjCBvRQ_CMFo)G*;958R}Gw}ZArGimf_5x;zfegnXaU;D*6e$~+e*M#N4d|*_V6OQCB zd7q)aUCtF^WdZ{YPYj4qVN-?x1xH;GJP^l8e(qBfB5|?nladm{he>U)QgQeU9f(i= z(=mKhhg6ed$Pdfr)#N`E?baq9IIUZ*LyBCBV18Px>-CWR`*)|sb-kW_#inAF`U-0} z%uJtH5Qhn8=34BL@O*d|n;|&YrliZ3b=#%^;4{JyavfD^Ko*`4C&kRT+6?uL6aiXZ zCf;OP7Cdyhl;Vj=a$l4dQA&A;8^aPv4CdL~+!NAy7@UvPKHHpy7DOa01K$g!Hlo5a zH3)w5eW~wq`8;H((bm}rHA;sk<9={b;AFY65Rn3cw=l%NbEaFevFgTQ;_Y{EV!#DY zw-h*A5Nhcjiy@Q@3J2a9e5h1ugMEyM;_fklQT`cHj}y}dvKx0UzLJ4zyuJAK;9(S6RycCXv&+C;Qz_( zhUUCGtYG^~oARa^#P$17BRQzmd*IJx=8x0_i_aOO`c{)3`kF z_TWcp)$xV&XuNIZ$K~-Q!?U8iwoJUpi1mOsS*YBOg#SlMejj z3ot)gvpcAD68euuWU1K~_zTS(#IGIHg{C66b2exT!u)#fz-tVH<26`U&m6cAx1 z4?uA2HKtxV)oP7+-lS57ADj+*WXwQtdbYUw9*6;2XLg-)^jd=aD-d&aaCnhJJhcLO z;0gJ*M~5H@BOocFa1?!g0QpA*k}4soA}a!EjzH2SBwd^zf&5-U5H$@-2XUPZ!iBM- zy%M_vQEOFZbM|5ubGPt}+=vu`DDeIz=u$6$V6!M-7gJe)Xk3B`k)tyE5e#?`93L`Y z#EH|ZZjP&JkyS0iCfi}{7jmVdb(`3!*Bu(E8(ExYmSEkRA`r9e*DQXo>Y8SDtwd!EwoLA(ptKrj zPUh)?HttVj5Tp2E?mlc#xP0ZOavMC%y{UeA(+>g;XZixj&WXgNBFV9j zT)~UaSg@H&=~i(;T*2d;Vxv}ibkb>1=}*yUWNHq^72;I@^=VQzY#KprX|q@&jVQ0A z5oJ}~Hf02PFAW+zwku#Hmf-1ML;e2~us9<$R8Y5F6`B}dC@p|On^}m^(4}=-RiTmb zg$}W$hggWvi0#_-L?&YXEAKdLY2@988{;Ug=8X;5ht5XtFlT$!H2*X5D@^CK4R34# zAY{#|ce~x9sBJhcm9#e8HZae>0Qa36cj(O`B?!u1Bg+!*vKbrkm2FBTX?$uRIf0lU ze|I*f(6bCAA@~UOcH;SKj)udJ@T%~?!T%dp4EH}^O7P`EVcZH^d3SbbEQ}uDMsnW) zN#6C-(@bNC!WMBQew7slM=M|YY{^2O8j@ zFbFw|!)}=IA9CjQ`qH89rOO9?fjh@p#c*;7x5^oX;?#9WGr)!?ShzlvM5Ct~`i4w= z4zbiQh)*v7nL&xd_FR8GjEUHd|AcY*hMdj3NUb#=6VKHoJI$``cYKU&W3(IDxrWu+ zU|kV@jTj@!p|+Y8;3OEFyaXmcUO4X{k5QmvQ+V;*CfAOH@L~_F_5!}0Vj=ow7*Tl2 z(Y)*x{M(Ly^@#ioXCKMN?lh2}-U)j>@zz%SR@F{&1iXKAA*r5gTcBzis%&X?Z82oe z0#2^ofr@9`Vtfx9Fb5>^_)$a7rY)X}0{DNLPlLVMAoc9s)FUUa2MlAgA>M+RTVo~Ge#c`<8lO>au+;aVUy7+7J!T6z4xnh z1C^5g?(tAY;Etn@vVI=VM=f4ER$R@I^y>~XU)4xercD^Vwwk9D@x{IKa^B!U@OktT z`6O}&VuzP|?uoUwF9W9=F80Vzd^r2%gsp;8$p3VrWGF_$u&4Bj!eji<;Y~HhiN|KxfkO?#c!?zN%#wgZt!MRo`i)R zc+byTIR=_cdYGeLe2hX2ESnAFD^HfersNjHqv?8-Q-gH3epV+5af?si1UqdGOr6J+ z8B@Ld=wZT)ytz9P@ZUWF80TZc{eQs!Y3?g#*CPqa1abM3(lrRD8$3r&_+=jT;M65W z;e}ov{e|0Qf@!1rtXMTz}- ziN|9lJbH;X{M8nwB1NNzAy*VN*eIW3p&^TwOnzP! z+N6^vY^xut2bUW)@Zb{wh*yt&8E&rm%XWO`{zXAE+6dJAWsCgwMmj!{1(2TgJF>z# z%Wn6L(ljSWoGCPlh0R3O^FU z2_?t(J{(yqx(==%IKCL1DR(gb?}WEX_|Lu*-Xh`iPl3ngXM)5}zB$ZHqi)gObM|@5 zOBbcg31`pg$u>HTS+D|Z6@z!zy4S_v`qunpYFA?F0dJv31EFr7k zBr6WdL{_~F313_qe60;Xc$VOFqr**?9u0ezs?Y238Jy2o5ZMN2*u_d*q|!McNt;Z5 zq!HvPg@AhikazqnM|klhZC`lt1o79|u!1MI(1Jj|4{!ny`{B`g^yC(gAWjl*ouj)T zUOONjLv*B>{+2K@nnHgqAGrSRG|+jt)l9XE#Gmxyw(EiMZ4qLJxhKvtXuEw6V06uJ zR6%?2DS<~rACkR;W$wn+x5YZkfFS&{J9*F9aEogD)g6jku}D11Kr_6ij(FCXBG*(V z4z^nid!E-+s=HKt;QDts#vz364oYStP|=G+iq3iwBW+91OlF_&Mo-_uSoM^i`q0y5 zv7R=Z($h0rBRwr-PlHIu(Spti#bVye%>~z3Fo+LfO%#I|c$ln<`1%quc3`oAl2}R) zrB*Q+;UvjAw%*yx6}gC?TX4hTa}tbyp}yP$E{rVL>p%H7JgXz>e$5D&q%)}np`4hAurmlj^v*#_@y26<4~mffP{Gc1%!vy3fR1P2A$*1pca z%udl}=?XWS(t4s(kp`lzWzyDOYlg2j5H1D_4$uRA!YMJ)_w*l27p zGII)L!L-hQPZZn+87E}XeMUy&`sTw6j|YpwmwxU1X5pwx(WmP9Q! zcaD6L;viyq;qHa$#`&6XbSCci9`TE(*m*B@xSg+1_(S0ANnfo6-0icw!AtM~;Q#}Q zOtAn72KdXDug!jjf^#F&k(dFu7XR+iR5x%zEn*ZfDF-9jFBwUPxM?A`hl51xVty=i zh}HOu5`B7!^jL}iEKnt8<0rm7T^*if(d}fHXZWUPqdRHkZ&?~P6SCbtaSi^4d=Rd4 z=iZNm&#OG1Hw{Q3tiEG8MA#w-9xLoIM*(G;yhg-ab;6eI> z_cfxxt6T0>?|8L?w_U(ZK?)alX=AT})W!H)s_n3(QNe*OEP$i{VgiT=MCs2#y^x?` zw#7iz;{oVGTt`5##!;=qNjBpmcq2f$nI3)ZN}Lt;DsK)+Pt4k+RZF6TRz;cy+2ncG z(-!n0JSiL*kd+Z?nDE%};@gG&A?Z{A!}modBf_ork9gmIe{X{CAKK~~RNOcV(LhJM zJusT9^ta=X{0-BJwAM&8YLS^It^J6?fZI%#2W8QU=4n&B(frGCWq?1`Z+y)j#nmRs zTD}SUxqc=tBY1;>RYGW1Aa5yxSSRc@fqTc(yi7ZoRSz?tN~8ZbB%X%gpUEK~d*PlJ zeuqS+4=s7&g%@rO{+TQ_KFw<6xx&rXw3?S?f~bx3#d|NS9$j6>d+&kB&odNd#oae$ zG%vs0$)J!kEdF~faKVaX(t*bt(Fgy4El5G2R%G(08mOQRl=M44S~yB-v*$Et8x!CJ z#{Y}!c!ju9Kvgro4P=K37r8Kc`+lK1E9LD|lJPNhz%N zlP*gsMdw_S`gSo5KgCHYzTnTQ#4f$Wl_;T0Dc%LwrKA*_q?E$CIZDDOZDD(DqF>h9 zFM9D8OCzvI(Kpz^hvTFav6Om!@@DC~WAZFyQMcR-BLcg;I3*KQ(#~Naoh(S0 zTU;fZH;X6umzD(EjPizYMKQAgGu|-5E#|>6S-)XQh-uV#;q0-vVdTvs<2Lxa?bYC) zN`3QrQQ)e(4+!A}$!i>J*oz*ePPvdED%Fu^2dlBTQWU0OA8x2H&U$c4+7MA}Q>=#4lx_2{hTm zwT%XC@+6xp6U0iC40#!m25bu092>hsU*NTVwu7Ce(&H=qk>a!NLP$DXEJg;B#c0N( zkJlYCb?hk2TqTyrwOy&VdHeufbuJM!i+71j8JG2mh^+1NJ0WYsR24e3 z)r2%no`O+RDgvC{UDLq7=}+3`s8Yz6&HJcr-hfLBl`i4WuSb49^_se}0K-SR+2c8z zR+BmK6;_%>UNsqK#AgHRJT#De58MgX_+!>V^?Q*LaaAxFNc(j<WUf-@jOUhLIc zVr<{6Am}iz5g;OG1CuLJ*%kRVW8Od&Gp%N_5MG{Gn-VifhYfjV`#Kq9gwTxwlAsfhB=-iEtr z2ddNus@m`XNRblgtvxqO&fn66GXh{6bz1nlwaHb_zlbNX8~Vd{*aeJ_c1z}Xx3F{M z{wnCRz$@<*N$Tq>^6M+&_zLw_=$0>mUUAXAB$IR}7su`)-Rc#$;U^G$Axrd#e*Wz0 zVTpsXM32Zp3Herd$`iz%R%C4_cAZ;X1Q!yWq87sg36FWCFcxO^g3#p#{0%*Xz+~1} z8~r^AK@+Jmc*?~o!ZCzbG{#;mG>AEHU_&zy-w%+Jc!!sl2RHNh;=)*JkI;|(l_%XI zX6t6vL*^EPf~(L~aKh#U;b=W`NpXy3k6qcX*G-vl{TCWCZ02 zh@cF<(721tWEo?};hmw4E~8R+DC{wv zEojvjsRt^FNV9f4iFU&qvlZ-ZI8*eS!OTjl5zJ%{rW&*sF%$rj_u$gs#jOPlN^FXj z4}onM3T1_1i5RF#fyb?~2DgbrhzFTdWv3BS#d2)SoGJ%*twYRE-%<$4<7fHymr>y4 z{WpHV^>>fL1lGXd0{Yc`|*U*q&Si*n#GUcSDNt`C6xTaEnM&nEWmzK=M>h_va5r?jT_hjah4od zySNMJhF_)VA(#(?ibY=BycC-(nx{;DuX>ozUYmcmO$tg{m7t_p3`0c8m^5m`61lk8 zHI$n?%x_Wt{wQ}XNS<_%0;0A*(_%=HI#`W1S0 zHy3&OYr)stKOcMze-DkXyIq0DDzM{WfTt78-$NtoZc*U#6u5)6uOXPflj}wpK|W!# z_DC#pFz+mT}PXxA8gv_5hUmOrCiYX)jlr0On>mQVN8-L0C}k-M9{x6MQI z{2j=76j(=YJ;8q@n7;$LI}}()E}P)T2j^#{mQf1Q2(8d0x=|;q}I2Jl5XMQ>q4`Ku^EbFU1l+OE`jCi1M zo(DuuG%T0nL4>|RmC41PyQwOkL`(>PbjhUPh|nkD>j+OHoB&9d`qfwvp-;lc6K*1$ zfVh#&yls{)R0Zn9BF?I5e%%DsN-SF5Bp&gd51<`_FsqYPiCDC}J6PfuEI|-vb-XGO ziQR=PD)Hiy^ulYaUIK1wNcECrgN#F!h)Vj<`tCB|5n)5kKeZi~X>lpWG@Kky(3V|hlEIAw>lvIIdG%O+LglpV5-B?!{T zg3w#~P;g6Vk3{yzA$@;T4!W&+$@K`Al65#Vfm_3yjQ^W_W1y46wV^6x9hRGB2n3KD z8vTt)p>wO3qK;X9&kL!){zfCC-V9u|2kR_qZ*Zi85uq@_bA+p(Oe_h)NNuVFN2*E~ z9zlst7}-2c5JqZNB{))5;uW^BizNusM@r&;Tg1Ni^huvzH%(0#QNcb0DqFbt%h(J- zK*g;}5EWITo+Zjzf*_z$ph^%GRic_D#<2uJr*9zM&EbdFV7j4648xUv8LnO2&q-Ro zE(u4>7VzZ|w9}MQM$3s8>#GeEo|mE_9@{*JzaE}J2k};pm>m!fL$UdG<#m+e4kM>k z3`~B3aL8w+R}#+qbObbvl{g*#vwZI9rxXX?PRaKyU0@jVWn8=!QIspkibxZc72N~lp85DkA-g03lSK) zRJ*=j6-tQ|N@byI^g;w;YbtrXc>>-D z&kneep<*;rVuRQ0Y9x5z?^FMd-(MgK2gEsVGX70|66L_u229PK#ya;jEZQ(_k zU@^Z4!HIY|i=@LM6s?azCnyOHHdamyg2hD$es#nk0)W?$LuA1MICR4q01v^kEQG{d zsz#cuBx@Xk`X@A00mN@U1XH}Zg9x_^&twKuMBxpS7G z1ONK)&x9$t0{;r}?;iYHiGNSwANPpV$K}syqH&2^{AC<0MWH#IVGd4)Qn??|!%F&Y zhNI)PW#XhX$bh`455t0z66Q&8FuM;mbX~skZNO2ZSI{)^R~IxdRLz(@y_=tgyyn{{ zzvS6hRuFE_omgV=AA@?g-&_Jqm#9)Rdw`IH$~I6kn0z5nWuW4amfQrc5sE!X6CfLd zB=5%T3cEK)7oMbup)h3C9-%xG-Ia+CUi<=YiMBFCUQ~7l_#hhKrvqqU#gfnpihkQ* z4UYzlA5~Y`4duQ;&Wd*Hw2F4sOtIL=HVO|RPFG2L#xDQtc7t=Tbvi9aS6tv$ts;o# z1ha7$>`|Y^%LDevlqt4h^EzTZvqXbiOwv1_xkRf#mf{w-81)1U+@L^$ysr)Kzx7zj zxaW~?Ki@_^h`{&b|H8IZnYZ7C5klYt>{nyM($Fy~@HuwBdi~gFU-4d9rEwMlm<990 zWV9~raelMtGLim6oW$0Q7H13SOG`snqOrl*Y@OWaJh>1`?0w=xcxhlaDT4||qcEeH z+q8sW>5@RcC%9C`JjrLMuR#7hEf;~8yxO4PN)w)HH=F#S1m98S=zN%OyzF1E!~cC# zXwTC3LBktTeEhMid$Zn9G%r5q;vPNyDv_76Ht&dM!E8nKk%`!=e z<|8t@zhOr~n1)+!G(>U`utDTlia3Ihj#NG+rSnJ#=Xrpeuli&Ug%aYOoB0MdCt6pV z@d_g=WnG8#6CjS(HOKLna_3x$N^r6rmuCT0)_Winy94wnJu)68kQNU^0tll*W2>`e z#RN>_^}q+nKnG!`46)(o>ODLk?E?Cr{}2VcxEUxQ*91h6J7LSqWD{Mlp#&13kqPu& zle2j}XYdN0iq6fJ$`gqGQ>Zzh^v5O|=z`PUm4kZKD+>(X^Yltqz0x>Y$(wlHVdy6d z`_@$Sio;N!ARw}@zveI^_t8?ZU!1!Kk}}Aw3j0I~u+n_}{(a%DU!waQpUvy6w1_V} z*jyEM66PVrn1Y$l)4LG9F0B6d7DkDLa-^TRR4B_Vg~JdI1C!6$*|SaDjc#d@!9JE0 zQE-8PN%%|oMr0lTgT=wTAx0qtZIEZIc~VW>gKFY-_jBSL;(S!YiWtx!3H;S?bh@$X^ZZE`1I+!(t}yapk30D)axjvNQ< zfKf#15L0x?(VT{O$-y@d6axYPU>DqqhX{tB0O=q4%sLJ|P^PuU!+rzMFchY!^vn=i_0-3A-924(eM_Y4 zIjZY=cKvUh#jN8owUDkS^8Jv<@ugByk=Sw6T5%jxu@^T=01hdSBRJcrQOA(0F_Lc+ zeCH`eR6r`KfIGYoTRy`M0Of_Bh<=o8dlAnzRhaHk?8m6@)a=wQlIVx4SG;$M@k&%?51sA0{sf?i650F&4C%xZD9u87G_Adg~@Z9 zYMk=i+gvH2B!pI{ZI&TYe(DMS;!*P z$$j;^)wnXKOFANZ#MMRJczctpT~`{l!DfZxZZm$i;2(vzy$ECeXEvFd<2%F`>LGFD zZp>?r?+Cvg5v}T*o!=nx{1l4;`D?G#3E731#%(EOoPXs<5X;L7rG&OeFVPe$@k_mg z5hbLAw#9Q4dr4`H+N6Y5tcc1!N5VNs(tla2NBkfDcD=;emdc>(z^%n8gXaFb2Qu54 zph=Y3LfL!#X9Gz2b$yDIuSP3Tne8dt|L9-ixBnMY)p$zSKTqD=kLAhR3Y00SZHdP_ zGlus$FxZU=LEkz@$!v#!>(OPlkrXy$@L-ihK@47kIgaJV;!q+U<=_}fV10_gMHDQL zo{-cQ3Km4Ta-0u*Jl^ z&=lrW*tnuL@#S4yZE$FV5Jj7xbu48#FL+Q5kRT^3L{8DK{A0b+YaDQUd?boZ#}zgg z0-H1HR|+?>LR7zU_)YHk-Qq@2aBv$RVP#L%ujp)qw5CRp6 z&nZTxxS3&F8mNGZN2J=J;(5+LK*fXWHlpIW0-eQFJP1r3Q}YOr0jPPN+abw7OwBXn zpHj^uppqs58ldLsG|ZQ3p3WxM5vAtwbtpAYg+-kF6I+T?^Q^rCbK$S*ka~;`v5a5i z)I3iY@PtVsvV z_n6p&vN-E-PK6m!F&eeEyFSA@K_&F9b}anrEtLG-bOrK9Gfw!Q0nvXu_j0`bs1&u< zJcD1e-oj%nP{Knf9$5S(uKy!)`{v<=@yqK_v_;fp;?I+}qQR_sZ7;%e>q*(yxH^O7 z32PH_5xnF?#=fGP>A&?vnx0aT)*MjhpS_2hqEmE?!q8pqPS+7{x_`-dTd*K~fl(_+ z4;1d#CS*$oD4KrkNBoUf^?)c>vi`?UW5YCACi_oXtUtXBqz3Utc43wa`)LXA{w(=0 zY@E|feH)Dfx4Sv;-=mh+r2Reg4j00c`m)>LncyeSz<|d7Nm$(1}s3?sk zjH^<*mht`87=u$8Ba!hu%SsV6QS`F8_#mAsieVv`C+HLBo3!CM^GpjyE;i-Z7M$nA z$6g)s$e4$a_ysoYCJPcm##FQBta==MOV*x@V^9LYDZ^P|u}<#6 zYEH$bEAyW;Ey&Uk7_vV&{x#?O*b4t%c&YZT|DXN-1{1=Rod{s#eB1EPL~Spn81JLb zu@|rkvqFf;o*OU*Z$mm?U$3sIf(5rtYapq~Xlm#)`TNpW+&5ukvHzcg;2dNRrX>D< zoSh4NRK*qWH)IJ5EbO8|qeKmgiVdyNAch8QFl@j_U_&4el>}R*+h`Rb3s?vQm)Kmc ztJrF#Ep17~mR72?Dn4r41ZWa91*F!3(iRnE;zkXUN|2QO{%7WH5-5EAexEg?>v)O!K~RJqEY8N*)mz>61m4cY+qp#AmMQV7N$FpJfZ>~R!#&{- zjl%>Stf@s~i2(66`)j#ZS9{}E|oME&LkD8+C$)}p2A_hPvFx|$*n&flEoJa>|F zB6#(eEWWs69Vf#${}~M<0769KgcqjZq^A0Hmt!iQuD~^`?1p&1fGn(H??4TZr+&ZT_ zT7v>!;J}kXJX5I~VF1JA5Jyzimx#|aE|4B2ny>6In)i1=;!Z2=Xud;y`p={+#1t6f zld?74y6jjih6k}35>QqGI!yK0$0MKk$x6P1+~c*UE264n6mfu>$xEH&MJI2nC$bH@ zUnsO50l2P|WobGl8zYLu!a2>H<7qnPjvO1X>;}S%WNx)v-#AJ*nrrN)rv2_@aFoIF zN0dKW(*fUK+;(+bA1r=S%<@=Q($g7&9Oc+YoolqhfFyHntoBskmdY_C{s&-PT0ihSgcw2M3PB#sXmNMe{w z_Ty&rdTB2EAfLsADDA$Rxg`9%-M+|9TM^Zx4fAFZwbr&htV55Gq=i0w>#fB z-t?h6IqVgGuU_>oa}r&S_zHWd?%2iAg3gklgfaStX05Wc&W68KqGlz2((kT`Vef*s za*r(>!%E6cB&34QUrGEJ6lwA29$WA)>a_pGjU9EV0F&ik_*F2|lgO1`Qml@_cG7cw zcJ8ri%;a~fM_C6HXO1bbfH37~I(1PI+xepFG4Y8m?WEmpiE`<*yCw1CTyTh$s3Sk$ zB=yAnkx%^-=Xe*ifq0hK2ld!bO>A0HBji`JKXxSuVgL_c zAT>8vb2PT9&sa`Wi(;Q-KESWoaM473TfT1-j~lthLXhu3^)NfVgF=q1oNBbYw)>q8$!^k}Np2PHQlUSy1#`3g zotcF_k#{@USN*w7HN!cwO4auTmuh-qUe;`ns*_*L>JDm3w723>8eKk;^Hc}@lIJ)L zcp6LK=zwKI+A6hBam998?qRj<^Tq=VgecbCsq5CRc_5Hx>T6vq!WH&`d zyP78ta+%XgUl=eM_o&%l6Y3o2im75K8M&j!)snn~ON#jPhsT-E>3AkLA8w;x{*8=g zYV^jCl|MeaaWstA{2VKPl9iul%|g%v&XVo0L^ zE*yk|#neRZNOLtuL|MYs5)sZR1fR>&hFRCT`UST-t-IMBj7GXiB21wDxzO7v#j2Ip zLjTi3k5rq2or1KY!oT`d-=3|M=7<~8!YDc>KYN%x595!1#))`jWFokHflg`;lt7gq znZyLuHCX$;aC{4T)H$?+@6%r2f^yH**C=DKACdOWXydH&YL1W$s1o=aMM3QKp`?&J zLVgmV`AGP~sLstf@YJoJ#iO?LNmL|yk9_Ohz#E?diCr&s({b3#EIBWl+eD>qiH6Wc(UpM zQ1_{-Xq6QJ?o0nzr}L>KL~|>!-6$zhcZ&7acI>Lc7lpu+S_uQI9_jt)7go|T&kB!7 zMHgy2cun;E-Y3`Za$g{fize|1%lUOQIyHom2xEyED8|G31qoe)~drHJ% zPtl{Yn6~5gHmKgUjei>@?YubEaiimTLdx0;=OTu&mm+e#JKW!iPPcfsVLR_`Z>8CW z+fUO@JL@FT&V5ch-tW;)u&*5{tJ~S5+eta0ola>7!E9&j8x6Ofrjb?s8cB5;X_U^y z3VJ&uWpyLFbR!Mb{X3(i5kY0W4C*p*)$_R?)apt-pjYSt6}!lWyQqiJoR6;3m7$D= zL9UPz3DK?6r)Bxfkz|NXZN0bp^dPwv!a-ze>UYB06Bix& zM1A@S;RSotSyysgz99Q7cel`Ad4`s8T81|A2mgJTesIRf5&RFVQG^HKi9RgbJl5qM zfzSE`Ar2J&gckuQEQ!tB3E>4H91rt?u_OiAQst~60M6tbyJ(UeAAEwk9U3t12&&Iv z6Wz|*1vxi9qLEVo{TWmj2l!CfSHmI@&^U0Al^;7(a&tIFGF*|lZq$1v--@&Z9OBJD zPNL~r^oSdBOh~5t)iwI6-9;e96_>H4EgLv7;8}b@Zei+*bA{#QUwEcX$hAVKAWyP* zJc#_&g$e?UfC-#kFUxB;?eCVg<4U?J>{-l4dJh8g3sk5*Kt31nuCt#P{HReOZ0 z3#1N(dq+1?=|-CF#t74mR9J$z%3nb)bS0XmasY7t4bfk%`Qjh58DgG5D=X6Mt7BIq z+t=N>TL!kUXJVm$#b`Pz-SI9yJGU@x#Tn9_)P+NB(E|&r`)5M8NFV+T_=!`WDG)+Z zutYQJP@c*DrqD(`xdmwzVd0o2ug*JLrj1Z{lVNUo^r>G2App(F?3uBTjWshDzapqU zdDwJ0!1UAZJt0|ft?KI!3SZj60NSm6$sjCR40wuwu*&(;7vjdy;nF&EE*usHH4Cqy z&lH#u8A@GerPFDx%oo8$kO-+zJ;RMj?dnQbbD&EC5~|OK2<6lzQfe_7g6d1rF7P0m z4yYTh61hgV_OsP3Y7!rDHMAcV8Y4QpNA!LmcmW@(MT9i5uL$X2MnNw*iL(g zoe|K7=HvI!Pms)z#up;)V*Tk;1{MV?*N6ZY z!2O(uV8Ft=!k-A)bWb6ehHvta>beBoqx>|Tc~az#ebCPP(T_x{kRibLsg4!8$4L4Q z1l2;9s45+h*rAhghnH$iPL*oY!fke`+gW`bcDU1qH8dc1YqigwMwGy&cRk5RBX7B4 zAG1M-ho^O^fI~l*=2#0S845Z{X{bx~&dzJtJ0&HS*RafF_-Z0U#`npvQ!+?O?1F}Bli{31hE}QJX~`fd zvio9y6MxplmVw@>oD411#Ttam1cb#6t4syA>s@^P14*vZ&=P5+O6rirSV2R*$&=SF z&w9yIAbBJ)c40%U$s?MuSB6YILCJHWpkcus<$qabG=7h`z5&scZG%w zNSx^2$8hJc)|~X%W1n}cIoc^RU=DfZP}m^UeXDw;LN1QnjIgxl`bH>dQF$;GofnCv+`krcz1iH0k<@@naBa28A80=u7%`7zh zf88R0q(fs6(l_XpP0*Y!9Hh|Ui9-qPhM&&mP=Z~(IIa48_FQ|X-gVj274k!g;mZM# zs;;Z(!7YG3R>Ehp`I;KIH_r&E9e5FeIXaOe*Xd86Q$6-i2tes^!rmbJ1I?pw?je%S z$(5(WBE$jwr6;(8X;`6N@K?v!9SW-V;iB5h-M%f;2Q?k^3_WV@iJDjz<9)ely_Xha z>y%rTkZD0-f9~XyIa~AqpL`r|sO&wCt5a4N`s=6Z)7XjMCSl#+wYuWb@5OmEedHOs zi`WjmO0EE>ZM5w{L#HC*9-R`KC&4(rxur5_vKmTQ`FMyk*glDUx($E**WSp z--fM8*5YY=sqrK?W_FKy+nRopwLEB5%)-54@3FeFV?E92W2|;*88Lz%8YruFQf~fD zzWeXzeX-Zh&&kc7=6j%;U(rB47cWS~zX*kq9oM^|c=4U9cOvb|_ja@B|7(LxlXZ&k zA!mbABFf%!HQR|KupOnF^u%_Q`Y`D~kaS64J4!X_iS6hWDZfb4CE@>TgB)XOOh8mE zEsl{IB>{-Wn)C!j8zkK=>5>3M874ge(G*EPFoASQINb(`(SMW(#a z5yHMPtv+zfz5;3E4VlaR*}Gvbq(UgnER8e{fP@6S%JaaGZqyKt?3O@2*6desFM*1} zk-q~F>*7UqHZ~LX1TbiI;Fu5>TbO%@i_Cn;sy!$m;L8Nu7?nQ@q|I(Dl`BUFE^5Uu zMnI|iDGj%&W>58X_UukO++h(pKHQl*yJzt=3kK$fTNh3shISG9=eWfXQoobb$Zi+e zRM}K0<=I^#f~naPZi_+ZBH=`kWt7xO;dX#eNBDKX=8&ITOmbFbq5 zGD;lyntkM(dStKCBl{z|YhN{ux-f=XDjP{Zwt!o>5O-ul9AFbAd158@RX3TuGfv7o zPV!E4@=BiAm+Y&in7kLAly{GGWtfv!@(3n?nuVSAS-wq8LyDRd{$s^PDzK&{u(lIT z9APb6HS36;aWoFuu$F(Q5tkHo*l$^j$LJ|q3lQ^{!5|fke zxi^+24px2TL;*;;Bm9m>1ub@{;c_M1p#`}p4aq5`58a}ZX_Em`k)}<;UWfX?_fITc z-_lmz1_rak`PE$l+fMZ&qPETGN|;m6Smf#Z+kCC4=3Eku_Pt#&9#iO~N*yZ!I{(tl zmT+~$bAlR;;oC}`t3q+;Cg?kLB#X^K(qdB@UNl**?aNXvS>BW^k`^1?u-Rl8)t6XmYjUMcrUu3?SR;H%+DG$@3jHRqL=T#vmxq^QX9SY>W|dok=utMEm2<6^TB?GkV< z6jaB}Qo5zfvz2H5Kp+6;M`<7o`_7uJ+K1^@wx8U}bEj%$v-)6>X~p#eT6yKl-d3di zsaiPzHx$jicKmJ7msd`1Wz(rz*{D`Ht*n>6l=QVC=ei8!o)ZT$ zOE=zja^o9L)%bcfz-fH0baC$$y@r)nIv{9V@UUG3Xte248ixs`RNYGtij7d8XA zMp{|e*NT)sRV!`ir(3gIW4GDET2F4`(Ni_CMon~@$dV@feN9ODQ#G+YikGU{jY0L? zNID(p-1|}Aojw6P5YB$gRfy{ zx?tge5 zQ9D6$2B25q2HkJxyNRBbK~+oK*d20zm>}k`oLHPI;#iW4>OnJTas+Yr5{|1@e>;jI zh&sbUyKHKjT`B%wXL#-LP05YIJ4;_^JMH5Z3Klh86X*2kl3sf%8b;mrlzLPCEK`_T)aPANz8VQ<>)|$+LVh$)yD2A9p6Vu!`MYuS-8@a|-h~H|$Ru|+3 zdgO41l?aCqTKq1sO8kw8p9XSmf@2_r_w%ovyhQ^xLu{&gW-{vZAO(#icprzJB9jSV>ei+n3< zJf!;;51G?Gp1NcRR4i1p`Lw+hm%8EN+PbPVXNf^=&}y3incV7WGnqi2++F0_;Fvr)>+cbB01i(;O& z&~2T`l?1bP6!fecJ=*cV!xD%)(T#B(o}N%KGPG5X+Np`mmeeLXHcF{%U+77 zOC4#}RDneKH5l-Dt*K?=K2G910tK29Xn3R|XvUX>+e%T5F#!cQ($(|4YRwX>AV;)~ z3MT31wIaAE*O`dUC-u2Uys^?Q0XC6)_Rz@j^aZ%pbk0 zT_O(m*QcOJ1MeHn!2<8Pj*L8Jz?mqf>ag%NVn-ItQ*bIz3@W3==L^8zTtPh z(cO}tih}`HusPYKCdBd6j5OhOw!9VJJ|_4qK``}7E#dIl^W}sJ`bDAOnp<6=UBBV* z*`d-#n!!O!c(66y&$t$(_UfVEB8ljsI~v!aT3S;N_15&iB7VD`HoEO^f$zO_4sz;b zooV{Mq-w6p?XB|k0k$)o%3AwZ_A=un06LY4|2-1}IS~sv)%h*zQ}_v(-5U^@IM5O` znc1fh`WK=uCsHOsBCTv?4RP|PYdE!QKM>Pd7N!+cn01wDrYl7lZ0$l=>Q_Py%y$frhGd(3+e^XROH>;UZUI z4AQL0W9+7uBn9!)GTC#_eHjZ{CVTIwzWa`r$$k&>E{K@jXfjZmqLed*PL;i7aw_sB zM|Uc{&%TA82ri>Y4lZM!sbks-!Sx}IdrL%r<{#q0mmOfCAB9hJs?@&^VhRN*-{NW$ z;PTwVsW_TH7JWomv^%N>SGKqsNkM~CM09Fo2T0MXhVu{^+#;1IzRwiLy(Y!;oZ=^z z-7CwsRqf^>Wxq;Uk;!f|ekvyko^pCQ(pckvTB3+*(t(YqImM-NzS|RTDHtQYx0{;_ z#u=(fZiUmwt9JS#d(yi+B~Y979UXC2HklndDN8jwNt73DDbd_{Rz6Kn?KkTZZ#6nS zkBFr*cHh@U$0}Pt{VKw>x@=I8m5 z+(8RQYJvs%h54pQtb$adNz_M4uIxyK@|MUvshF?sL}ytYgIg>oM&Wh@qmV}G^`sbf zrmbO|CaHUdG3*d;W6`)74yhe_@JIN%jdnmcsfFD{0B`h!CjC^z6??Y62Tw5{E#P*M zZy z)g22+HKR>6GpMGzUo~S+s%FUv)%>GLx?bg>8jo+)AO_eOq1%ogjJF>FS{rx4I|s^L zC8&1dEZ?5$$({4!;+q%ZVn(USZ%IEe>t?u~cI)~7Mx*JFwC9U> z?CVUxnxToIN(x;Lr++J%qZpz4kjU@hkidpk3*zm- zX13VoBm#(TSKoFa!I9IWpMDr*xuegP#}xLa^sY}WWYh7imSR9Kr#SR@5SVFs3+%uqM+{ebm#StYh>VkyotDVmyH>;r;Z%z8tqX zIbP*yFXqyrLgMB^FQU*Z>txwHjasgwN%Vf6)YqeaOm1^y(Vm5YcV)*oiuFH^#y}cs z>MHvk)^dgw*ep>|t?*iF&Kh+y4j)F(K^odNdd~i!x_7#;D4$aoy+>0u`$4NVrYbu7 zDPMkJ+svqYG9Tm>zeF4!0a$R6nyxc^bxpL18i=3ci3CR7mmfF~Y19M1UJ@vDAbWRa zQ|>M+P(P~iB0Q+Cf-%g%tqQ6(C{aBzxWZCn2OB)Y<5lQk)`PQ+$n{H&>pCc>7CQ;v zve;chLH^*HggRH9*oyZ7}(7ktUCeg5sv}uCcyf`Nnky8xDTvGASx*hwQ0aU{eu9;ar^$H zc4R;M_0OPsQ9sQNRXsEs)zHlay48VA_MEkLcwO#7cQ}VV>dZg6YKc0ke)qf2WN!^8 zw`IqRxs*N{EqpK@UZdQ*wRX&gczC_?{6o;sAIlLY=?~u_AzHXe&rxm7CKq<@HJf9J z`o7+;zEa751maqzGOf^lIXqe<|L>mefBp`9w%23_2Ji? zoA&3)U&MP=I}__i$j(AI3!=17CMnj@*|60Lw_1U=y2iz~F7T{8?wW9S(qfG3c40ARtvdq71J^F{i!2-eh~K18 z>ko5hx2+hoEG;+Cy5LMqO15Lt`8WWIK3A?QjPLKrOlz8sk@OI1G`?tz+5lCJt!3a% zbEc%qnewJu!gXEWnD&TYmAa$Sq0~}gVO1sL>SKV~&DEm396wT}#a6{wb(8iC-!5K* zXtr2AtCJ&lhzo`<*bNnnc9nW-X%GJIxa$3KoP$&~k}5!f z>{sbgW|ME#C-g+i3cjOd1sKM-8m81Flj*}b7a+ux@BhH0m0aPz4e+@v;D zm9}+Zc>W~hJboSfIYX{$2vQv)rP+*jX>n-2bZz5V z2!iB0&X8xBpxy`g#olU4>>La3tkxouqcsfw`t$XS&#)bAWuJ=`>sv5NCJPHQE!RHzfH2 zuUUm1u!i47;}`5KDpon5Cmlw#*}jtbrQ0n9VUgN(Rs*`zaV4NXgV5j!`A)~@ znq;Tre#k_%Mv~<_9WOJ*=%+*p+wO+kP{VN%piFd+N*(AmjeU~xUrp(+#X7oW8d3}JI-~i{r z6BYVI&kIe#-KIL#0say|iVbQ`N#ZW<7>_#ywB8@rQrn5!KAR<1I`(~ic9wOCY~_;mw-+HppZ-A(RGm$1V)#96BlXAgg5#?bX+0ki8l z0kcY90(`4}!DbbWN;WMONZAiA*H}oF45B(PP29qOOrbV46+UB7b}zbkv)( z2?hPQOvyNq`=n6NBDz&aZqphb#iG3b-Ey-@HUf&OU`c4ri~UbXS-X%EZ@m*a`HXxf zsaKa|muy=ihHRJHXhYU%T8j2-={%>UPHCwtwYMcHt6N&@w6yWM{w=jiOCpMFf0?c} zj6F?D7xioDS>k0gRG|l@rPX~cNm<>}8mFaePiV=gNg4ISU5&0U%{H0QC+4f0*3At1n7dUqQR7eJ2e!Ogc?VIsIB{Ej3-OmzI8Z zX78X%S=~~t(^ByXE%mAb#X=3^Pt(jBoY&X|X)L+TX=aQxlhfCXl$BY0fd-k#UL zPraHzI>h#0jh8hk21 z4wy>B+c$(5fUK2fqEd+@0f;g=1Q3&>QF7cVIV1@{_M036h{-Wua$GMtBs0}y)up&qI1JHx04<6n>MV4~jC$u~~9Rk^_Z! zs0WI=_;O$NtCQ>AsYG^H21@-K0-mW zjJSF+d*0BrT4*IJyh~LD&9(5ol9&l*el>>kc2Y88ouXnml-!7Jk(=5su8A=CT*;G> zO&{OXEsWgi!KLb_=uwu(5E)6B}+2$+3y2)5NNi zns}tIiDsG*=HPO2JGv4^kX_}u**^3V^sW!@E{puRZ!8>?yc=&W3;r#CZiWpp&v$p@ zVc&<1P3nTrd}Z!G=b`B`&v$d{VPD1YSPBJ3C+{ZDR(tCyay9xcZ(8)uOeo@xLq|oU z=G$NHi5rcX1D`$RQolNWmC=|H#>Ju2G)40jDTjS!1D8Cx0VSI=#f}3N9e_^A{zb%$ zT26`DbGfJ{8?M;rBJma+#tU)~=J%8l;5QDkFsb&DAM6OK8_Y)|CoJ@4N+e-_WREM- zp2c6>n*5AbL};VY?nIGZWJ#)@APfrzAby{HU}jNJt^YB1L6KE@aSW9G7kjo+$4B%# z9X*jHZhtjKcyqQ1(@Sl>6$YZIJi8ID^#FuD1{BQp8ncoKow!^7HoP**gt8#`1+VX@ z;XEeScE^*66fok>NXJ;>wic_yg)B?h_>%k5LQZ%Y7Wb9!#BkQ+eO9|c;!g)WcM0?Q z?}{s2tF`5#bX5e$G&ad;tb3W$m^oeNw4a$jLKF~Ic032!g8;Z{fZT&t!t<1yz~xl~ zs?H0op>Q;M6XU1q|Ecv*McOl0Usyic=rBQt{{DlwFlBG4hUcmC-nAcmHezz@6Z`fa zn1IDbAR45Kgg{iTCg<+dca$m?)#Wflq@TiYer%hX|GE$@J*&3~i>TV)I}`uK5T|a= zB`+5sX~HU8XU$pP;+kd}Lcj$lrVTAAyhB#uXtoU|%m%gaM%nf@s2DpIBYPep7<+tm zUx&CR2W+pUyp@-)-qS8uHv(njNup-e;iszDb5;dqU)-RwX2s%>?lfQBd#v1*HLJ32 zUGPg^-QV<&`cdCLMt!aPkgRpgrd{)3bm}n)OaEPo5@!e2FOXocj z9~d4L53f@%bM28i$4kqDYP$Sr->%a=;X%(PwG*w?MQ;n&iIDlO^?FQkAOQ4?Y4cz7 zn9_~s$W~rnOg%T~ls0%FT$Ua?#Dz$l0uXFlLu1m|PHmG`jq3?a3 zG7NkJ>o}ZUkv~%rr=Z+MfO{IBMDhMQ1is60#DyKMAuGdxm%2erhs`Lx`=$5~% zQSCuh!L7|XR1T=ntN8zHr9znY`#KYCB!zx^QXBi8=T@}bnz5Ze1KDYK=x0$2A1U7kM+!CGpBap8mvMhcWf4Ao^@o4hu0zjV!5`B z{}k`18^zP{MjEP04{Zk<)i01<88+9gRq?9J^+&T}BCjVawTGGLl-5G~$sG?P|9uXx z<7Xa~Igm-|)F_?(gqf6~&hsMYdFj6IZ0r^{#1=4Y4rB|4z1l73C4`5KH z=MF&Ma=JTrn!jcMme2!;n$%(+$0Wqm^h>D}k59UVAIXovgPaO>mX)K<1q@j^XYfS0 z;7R1`z0zJkq#w%Q1GA(Qrfv>*6zvHVZ<#H5S_!S*6Pp3q@u#(CKjlJ?tfjzw9gZ?a zQNpDx>ZRlupLY5jnXeUzm$%V77@TH@>;}VVmR2t~WvgSW{Go9Tn_RI$RcD0Kc%h9G z0N9~+%UC-E(8>-Gi1gnGAW%5+pySi5!g>@r0;?k5^t&P}QiYuHfyT)6kd~D}x;_f} zKB~5S@P<6!*xC47kzwB>mbCiwCt zj>~iE=*=ICx>Z|=`uo4%6ZI7qKoQM9XMF1fwzF@jhW}`io&2zB|MuE@!m9NO{Xwfd zRr&u!0|jWw%}7_@vIn}N53FM3g3*WNp-Sb;!yUXvACSL^Qg0(Px3#i;^kENkY<<_w z-{=GKPPKlid5h!`A*5`lfN%&1s(h7^;iB?oRis+W)9NeS>Y4{>;vwDImAqO%?V%l< zJpEDZ|LcFMTh*2>)*pq4v3@E?S7rTAr6~g5P;c}hc~^5@r6&(bel=6S>N=C9dQ{Ag zNl&J`E7~WJCi{1d|8h!|ghxR1hSGAM#Mb^jCXOH`Bz>8r>cPBxg_rP^lBF#5*Dh6U zvW#X`v4bRsQYjai=XW^^Tom3GGDESEIs=rlBu3_?a??hP-?!>cI(|7X>N@pSlxo$9 z4ira*Xf4~XTXk}-ac*#ejJ4{z^pA0J&9>^g`JtZR57*cORyNYyF<=+87ixsWKlzPd z&H+`>O2g0V+I5NA`>djKhP!D z7`emPQE4fb0YX3pntBdjsHlV{{TzKtv2yKJk20KcAQMSU$kdD0eXK`$fAf2y z1H=B+Cc8tMvpb05lFqlHM|KF5;kYf_`IMQNO_T|ht@$xS)TYkeuaR$DZB3R-T-1(- zTcAt+b@PWb$PQ;~EdPpA_#O&Nxo`4hJ4oncZcOgo5F#CUeH**k0va{qXab|kSB~{L zN9tFKbZGmwP>AgU_vrP3HuX%4bW%1Z`U5TgW9ej@I`-%H;N#>M>+6=xON(pnV?TCb zWkF`6xC0_`ckI&LZX{UCTu9Jiw`&GcI(BFyi$hCjM)_eLi>`~M)9gTFZeY9bu}0q( z%G~}gcjYbLq9n7n2OUR>l2do zk>0F>2!TtK8Lgq~K;30>i=M3tOYU#<%bnaVYRvuWc7bY%K2DX~SM|$1u>I^4b9+s0 zxt*zVB=?|xxl`KPLG6BZr<>dtNbcAtTH}ky!H{jZi=SjYqa^gEf16SPvRYJ{AYW7;^J}PYa%NqxvHFlBr%jZ`0L)eFSDWAGzMIwt1?PLsZUVyD9c9Rk~G_YUD@{ z($VKd)kNjBaBHwznSryI{iOL>b}(yVaQwn#D>&Y|A}Y3Ta!D$wnxeifb)e%k5{`n` zep8%;;)K6d{lQo+G|EX?=(SSxY>t2`KSLjrCccH(=S7x}OA7lCF^O`1Qg&neHt?5^ zuIeE#ZUI%>pXE1KE_-?oXJ#r&)o3?~f)sbUIjOSa=}(wr<5D(x;aHp-WbdwBp69AQ zH}|g#eXCc7n3S)&zgq1E9bJ>JBh!NYlp^|>_JtzKo1(NyPW~D-&7x>zTs$ z#fl{@Y5An2={eRAp~ugcKWECH^I8hVaj|o05Mv`E^TxSigZaj$3_ z7MX(`B((=a+cr@mrbeZ_cHM1#@klhlCs&c^Zn^q{&PU~wm7H_x*w%IYg_ zwkmElWrkfk?$ zmYQGsNnG@8Kv9n@58Q8aOl7~5Q(0C$DyQ=1>V-L#<<)o3vntE#D{pR@s>i*)a$HGt zaS&Zf;uZZ1P}PaC7m5o+r}u9`Yd z6u}dtk}B0bLUqOmkoaCbq*kIKUP66#x4I-Z78feLB1e?P6T0;>ioh*?m+V8U3(8>n z4snL6zF=JKaxM@fn+tAE;`)?QyS&_0E$VNqkLy|Zk?u>vDUo@%;$Z_IQHd8!>WJA7L+}FNFReG^%`@KlV7=6mCkr0A% zdPq!7KZ7RQEm0uB>u=ubicXybJrd~7=ek>8S*E6cH3s_&c0$MgwoXX^m?_#_Mv% zTU&o3IKpq0C??@@9veQfy^fEZ^2U##*Sq2)r~Or4f)^vZ6 zESEofM|hBGlM>=k-p2NO62hGLOt*s#eT&=RCkH2Ei{`lA?9?ISINq@X0e@xdo1bb= z%OE~Ffzsna#8$m^=yX4*NE24k6l?M{s+*~v{K`Zy)#DhCuI$*(;5ae*M6|UAzBVcg zK*k{VuqNbyhxh7bFJwi<7mL27+Qr@#jE}sXnSy})j+rwGbOhB9-Qh0N;qWl@^+7E4 zJLV`>h*Y8g4y;H%u0Sc|PCY5n=p;59Rk%&Imo5>VJ*sEvnW*q!p{(A2{h(aa41d*R z&Vqf`+I?n3nQE*Kilac#>!9-&?WTD z*guw3rK^>P5+uZbMYi&H7_#9=|HFQ;2B|;UkfyHbtpiz|KS4HlLwO&W3X1wy(5k`e ztw2nh|I?X(!7*)~OF=N|8p$d_yG~`=TH4Y@V_lM-#6Ct6F z@oGVD9fT`ROLQec{xmw(%UiRR*Kye+pY*|z`CoOUsmk6uPMqB=2Z%azD>8x4K6>kf!4S_I zRoJLfgWG z7_bF}sAvOPwm>=Rn&g#Fmyw+uekaGT`*Qru$uWo=a++}>o~tQRztMO8RHvt^gFGwx zTGT_3qs|ey7=pp64)HyZ2uay;VXILgx* z4PXD!cvq*Vs=YiDqhaW=9JwD5Zh=!r9EU<)%5zTpGvw?&+02Wf-#BE+Py(|!S)W|s z0`W(57@MV(G3GzIfX?5~21xWEjPb2Umlai;X}aC*YCo|Hr2QPKV8{@!s`CZY6Y3iM zs=);gXFkqSuC%kF*SYN*(m6gk3bzO2ZwcXf9p|UmcSfmF7@IAa@l>c?%(zn<+k+NR zc_SToXqWz{;(JC3f2|ZZH*bl=L6{Gk<%wZ^iTd7UXj3$gjV>K)ZS7mh2ItxR!xetaAA{D%2yy>N?;KJ;$5F zVVnQ*Ni4TdUjg$H788*U@fLJcyKEDBE6^zxuL^q8-pR6CV1DMh`7tE$jN{Od+% z>UV}9v#?6v&M3>;WcSI(5K7a|`>R44h|mE|(8SzAcBThQ)EZ5(vNd$7w{{Xr8h{g2u zZPo&=%%h~sbwJxAKg+&9r~Tgcs}S5dlYBz@W}RN7(u8KPHwV=o*#;n5bItK{&gM4E9`g77y)iv zAAoUELldUO)WF6r$l!4??Cp1ti=DIqGHgXfwfBuDiqSaCQuQ613&~bFafzgYKSnt_ zMd?l0W7OBXqD-w)UW9V+Pz3vtn7UQYrR*9!U9?6ght;kak9i`y*pm{;BrqNcO0h<@ zeCA1Zx5YdK$$YS|qr~?79Xm~?r&O)DSg;zX-W=wt<-${zU z6f8vy(SyjlW31h#51VVLAa+UQjy6{`yq#kmTS>bIJ0G#};kRVdksIH-h=yKQL6A>s zUo7qRiMw9Hcui)<>#DtP91}YpBkn_N7GiwN{`xHqi{5Id^U4kErrke+eWW``|JXm} z$|&w@egvdk)aqL3}zF;ZZ-n8(n2ijBay|&~{?EYJQOH$G!RGhB-ft zQW>W#CG{5y<&(It3M%iw0!gEC|C?#=d6DTyik{+FwT4Z1EKJj+z z@Dmv4PT>GbSAu>4pJD``q<4ar9z-p|G{Q}ZTu$ToRf9UflC`i$&sv#ICm@;(y0h!{ zlQM!EvZ*(!#x|*^(bU7q{s!7Y%*Q;Sm9zb~OsZrXEY&fa&2q$l{Gpjk$2?lVxsPgu z3De8Rl8t|oK*t@84O&N^`|I3nHw4zs%C z)aqSbK^U@t@2svSLOt}YF6mcdY3;#Fx3jdCn5EUBm)2L0i|S(ri{W2gdRjQB;A8YV zs2m2?O?`q{<|6x5Irq^qWwo@S@)DYRV1o~L}Da6o17WLj2l)AGLAADDSzUmcC2+B|D=irv&a*`0_)Myx|EWI2?4 zjM%1}EbWg&71}A0?h(H4KFDi)OkLHdm9E;{3w(7y;CH_9Y~DVf_u5?BSGUr96#iZN zE&8L!S9h2BDC5^&!29atG3U3W$dOZD;LdLsWj87kI-p(LHt;UY>h@9QU52jRXWpT6 zUG2%{T@D-VIfeW}F}BC}^Lc^W9Uj_}B4Si+n(W(>oIlShzy&+Z8CQD?e|%epz9B*L)_2n`-wUs09!=gm&sv@`uMP!W zdQ?lP+Ij9{rlD9h&3eKFpc4m9v3U}tm^hTh>bZ2}t9zL4x_7Dv>c}Gu>jfq zl3g^ZVpsQOuj`k6k7WNe_6}LmiKL6-A1*djzW%2rg_wS>+<*D*zm4rUa_!*d>9xz< zt}p^Tzm*mnQiVP$yP@AY2lXwvP&vnv*R^Kz$Ca)>^Y3l`eagQ9pH#Yr^Y2{#UBbUB z`FAb~bieF= zrck&3AumqrA13k>_~ek90gBnvWnY#Uro&Y+4TzrMbnmp>R$*j&@iq{hEaE4i)|(YE zhbZ_B3f?*0n?p&8{qlboBl08kxyZNZ09Ths3!zq$k=bjZ^db=fY z6>qij=l=ISh-$Tl*y@yeG{iis3zF)mCao?QP(O8msP;}pXUvn(?Ao`MonuA@&Y}|f zV6X9oo0<{+L^yl0ch9p%)E5n?@|B5iw4${7A~bBrL&_Cp)fZ)m+7_ZAOmS2?Xn#uQA`ZnD0W;U4l|6<)YJXSG(>NNz^R$ypU6P3lqK5==5=_TtCzFcM;TF z&u@)&l*&-KI@O~@TQwm9I{ptXUwva9={Rw3=BCMsDsd*>q7Yd78ep{xllRVoj2zCg zP>~RH-&V)e1yv8m8m5 zHGg*b>cmJC*DBN0Ym!UCv;Qs82E}sH)Xau6< zgT6H5w*`Cg=7ONQE>VA;ykF389&7~`wk&RAtPa=aLAk|Y02oGwz}hfaY>#d8Zs(`HgAeLF z2v3tEJ^@S_&QEq0Bk>cC#a{LGUw7gE9Wh%nWYwV~{~Yysv?zYjXSqifURae}mfP*S zuDj`z0ny3v{#dw&?M*ja+cF75qMLK5nQ6s`Hc(pV; zK5@E#(cO`F(t>Xg0TbCe=#^5tEGIrJJhR`2NjXEp*KrUvO$)-;Iv||CFQ4(g5dE77 za>GIq9dTI}ns{$hzyFz_!*l9c{XC$alIM)1skzJj3%*yRx8;$`4+!a@c|QC0Y19x3 z72OdeMQL0?ym(uVWWedE@r!%me=WQO#yukN7747J6tuUQr}~R96$0XnBJ-G)6DwYH zBS@5LZ`H~134Iwi=!`uykhu-)lJt~dqB^4Ptx8mcYoeayotCEpZ^l%d;WFOG{_oIT zsG$?ANDAJ$P5!E{Cn_|M6)p-0WOr`OiBIUubj^uS-Px!yO;-a<7bL1U4NQsq4Tw^e zp<;Wka%F!m{L-P2hIdrKxah{K_Hh}^ozZ;Go!>6Teknt3C1ZlEdi+~t>x^fM`k1|= z#We|9GohDuosDBMt(CXK$`K=>X(myKG4<~UM3zE)YNCfbw~I0T5ln~0Mrf=4MkgZ6 z{mH)jACfJr7tbP%$;61}CrCFuvnhMGxB=T=JgPBT>7IE}6E+q55VPVoG4wQ%e7F0# zcb{P=zjRm*bai`ft9ETSsP=2FThPp3?sqS^vajyiCCM4#l;)`el49vP?W_~hz8p@O z*D^IJDXDhF09W;e7(|F>qu}*ypWyWjk9vBg;P3(U={ok)!6ou(u{uEA9w<@3ng6Q7+om1tV%{jvJP*eXe6@GR?g*P}A z{(F7D3c2X)Ev-tf6uZ=dxNLwIb><#fbg`QDBs=4d%+}o21!;C`Q~QAArrZ|a)b8Bl z3-R6jy1Iaao(*u@X)74?KPtGQuYyCRc)^j)|JrD!pY0$1&FeqnXdv>;FKv*hzVX;<$ycP;K_1dZ@ZFxHN`N zL_J9aq6i)%)6?Vi1sUq+&meGse;jEV)BYrFvx!7H#`i4~h+yqKH|&{M<_{0IDtb*w z&X3&}1pg$^;GAwX^I_l?S9-l>4z4|{P$kmUfHpUO8P+8 zJZvE)IjomJvnf2x$^QEbKZrA>rfklr4}>c>K3XTUf`x||cF?i-^Ac7^oqri> z&2le}O0{aoQPb0rv=sY=&{cK|ThO4|oXhPxY0_6G&R^_5NbcP3@CDemR=^8(bpJy^ zHo^My)k4Ov{Ub7Fwp68Ab>ccU(x`69-L`O~Xza1IVGdBL)*`KM-$u63EXn}}5}CR8 zFvg|?=E#k^C^MoeB~&IEn4wt$SXE@jIPnL*Alb$#_~Nm!C2-6ulcNj%@W`=gk?sMD z@*^!-(fP-bZaf!S^@AV7yAD!0ry+``hDL+!CH#y7>OVrwb1I+5Gx?bK5_r|t6K8r2 z@WMF=&EE@CLJc`xEiX8={QYr_Ub1I?xI`*G&@S;bGV5g2P8<;5{V}5ggU&A#e6B8-!OUtr=M{krjSd zcyv`#_B(pk`r{XBLTB`-!bD$gd5=*??<*a>C#8omhd?fNHYUnwnCDZ%$0 z^>Ql*+JHt~IGJg2-EN8suSFNVkfI#aPz=5KARovms87M(HjZMBYxW*gYnubFUml(P zdUN2luT=RfC)RY&6w|Hf?AMZ;fIsmYsnR2nkK_F0qm-Tfnq-@q+(g04<@4;(H%MO5(N2aV|V zLI@6xA=k(C#x(DtTIzGY?d2P!t@XfK-59N|*DtiXLBC{J4{Vf|W(zNAV#u|bzrr6# zm%c|Il5&JIt{wzAd;eBI(zUC#-xugYY7I|;ZVFHeg^h3>j=>hGNhJy@molA-K{lT}Vj( zht^9S0dFF{5n|GA2_N}dP#t)>J>F1nRP596wpVp~ap*az=2)}Qua`7!C9p+$j6!~* zvqD7adt^hcDK1`LhE@$>Auf>$zSL?ekW^iPC)WI0Hp3x4!vqI|nGM z(r+>DyPAki!j^Bh+Rd3Qykx(V+Y~;pUW8Pl35RqHS(T0wf!P3i0KQZzMS-A~KUOOI zG$in_)1vOHWn(L58IyB(q&Z!fY3&j=YYsleW8Huu7jgC}e{8q}4*4nFjkKgYIX@O! zR97rC;~}U`7)KKeJk@@|^QPEko0@ zSPj*rf!$q|UaEdu_g?(Y!fv_4aT9^7wnI(Vv(yuW%a6=PRk6pi^4MESAytk8xuaH3 zG?AZ-FwsN|mu;RsU|t`e?WP4_S1+IKq#UxKqSq08B9-&*5HL77#ohlt<^|g(Yck9% zq6QE$fOr9E%#`3XcD^Z+LH&FcJ`!L!{1t#&QpBQMOZRDKo}Dx=cL2U$U zIGUkb!XIF$`2atu$5Rjc`2 zX%)LGVwYW0%T8ExHfhmmjdrrSha@W>%X_QX8=aLhtg4k^9_9a;`$JiJ&c<(c((~g&+$Y1a@b~ zt|h1jeQ}HtOplR1hVLGZFu}({K|J6HNLH5 zMTLcB0Fx~-h_HR;(_O%V?EaqK7XhY?4T~MP8`~uHTQMyPjAa+GvSQCW`!4+j$s!r9 z2;lZ1DcVkv4liU3eW03g;FZ=$`L+4YM(2fWW<(>mVVQ^VZa28TIms$Qt5gR$fP_ix z=O?*!`t`5OI9$v)T;z;{HqiX-qh=h|>v1@%QpVv#XHGx+!9fCYnibXuzqsHMPglB0 zJ%1;-k@{-C_RjC$-sBV7`$ffnw|6=1C3<59%30Clz)^GV>dzVILO^Immv|@Ej9WP9 z%EtEJ3kKDAE?Qp53eeWbi51{6D2qL;EA zqdjtwy>OgG(P>__xBD2|JIIl0WiHZrn~I$^{2(85>* z5#kBWl09RQClumI*xFm2lWD^a?pdlM@$)f$CJY!fM%}{xIPYd=Ggke>=Az@3^DyD1ZvUiYFw)^rcGoNcGzgRqn-@Ths8UnS1pHYX)5 zN3F%7*EL0m^M*?>vUIy5Uw9S?v62IItJZLe0~mgd$_NaTq!IxoKp17fIT9)h(6uxw*2;6naE7h zd<*twD8kc2j|d|r{3JE`d@t~Ohwg}IJoK?`p$Snbv2T#BU+2l~r0X|G*Uw>g?4Zv(SzIe!j z%T|8jLe*fw=y^@;L+4%Zd*M~PscHYv%w6`@$iH0n-_>b7~-aDDqQ#E-svR1vxFsJg)99PKi?s&+Bs82kwKoPi)2T>1R)>G17P0?#gsEEhZ*h@v5=igItE zS0f9`W!$(6{|{$x1K(tIHvXqgD1inNq+)<>R;{jDHam;j8gwmvRcxD5+QO6;onj2S zVM%BaT8p93a4*U>H+3?{o~dJ#Z91JV( zK5ozd^W*a=xnIsX_j$R_b*}fzlfP5=wC~e21J)Kr&~Sh(!_uiLf=>7Igz0ywHj2pN z${x|ISo;k2fnP(v1jYLY?vK2XV+7(>wl`fQ2?HlX@&HMVB!jlZ;aiU-%l%jd`=?%Q zrG@{sd)9Wk5(%BHOK%%oyIkt12}MI(%R%Q}abiJSp)^4_EbHF$ za=Tk+j{wS6jB`J}FW$BG;{+#o+mv=mDq*v2ZyW!ld^LV8>Pw76#qwn-VbU@EEqu=X z_^!zIOyijQ!T!i_j=OAs;jzeYiP0Zrl{$yrWqW)twRzhezM;00>=5;R?#ExCp1OH2 z^E0&crT9`zsKZZij_-IU)BdUZ@%^ol)f|>JuJFW-Z*2U7`|<7g+6L2EFbR}@956Dm zuHOA%4O@6JRJ(KI(8h!A$9J+yQkD_FGzxIK6gp0G6-DpF`-eaC9{(e8m;=GcQnSQC zVf0C)q08y71=IAC_R*SD(3r5x>Fd`EGKJNqkc15PQ!JW9d{T+$2MZ4xiyGo*6<*k;to3`3e?_nwxq*3^&FSo80?0=0h>qmqKk<+LTGNqLQ6ymbSFif11lmNLgj#~ELst*81YMqF6tcxdQi`Iy8N(f(Jw}c zI5b-i#wkKseKzWOTRS)#Ze5d#Ce!+^QI>72_QIpMABQ$&!iNy}*9@vhMWF>wDTGui zu5`5Jw>ye2X)|e{1NzJphi>&tLwq@gn`6~ZRsTEj9MA##j&4m0p`Xx2ei%c6SDRP3 z-CkQTwQ{zvVz~YCHivKjib`Yga4e=J$UUU_(n|DR=GS`mB+o>ze&?qjCHhKc5EFq` ztTuMF^#REH+qN@`jq|eH&z4Q=K9=T(s_Lyt5MKo`Hpj(~`>`^if-UlcyVLw?>xV+= zprR+ni)mAufD?j`fwdlub$P}5c{e6^nTyG}+ufN+3)>TwB|LoT6P60pNRU0%I3Cp| zc}Y=7{*K47>OA%4(`J^b-So~{FdZNuGB^wT0Cf(EDl3SsAmiyuF%O~NteI+h94e^N z6RSCFuXGXqu2SwhU&qaN;7$Reii0p=65Oa7L5btiGxi&fUc70A@G6qT7RN#hBCE@7 zp;=tz(Y?smoMC|1QG6a4Y+kvJ;f1-}V5A@05RzaZd0qi2$7XzMB|weoIwyi8d7i|C z8Dw7`QD1{^B2O`0qGMH&ijlOYNaL`L{sEgq>b}R0Cw!gCt#wV-NcC~Hc2Lpd25g$W z069b>*a%hyA%}Vi89RKCpv%27e$`4Nv6?;V&$XYBs_Ss9V$W$L@TfUV5FfP7l4+-6 z@U+DTnYPmwA0n@pQfKiz+W9($ChLB}XJSD3jdh%5-K~DmYqACzKY!n0ELG?Cc5QJClAz(-~wj0sQ9C1JWIM3>bwEwlww10usen_`}kF>vN zGr zc4XBYmZjOfK_F`Fs-j0RfN*cvD6=R_1z#*GcT9oKamq3ck1o>_kIFLbRRuMlpa44p zBf3|o^&vE!`u>NqP$Xm+id=h$^*AINGL~vkt>#U%^DqWbXNnxIkIJ!mY26*uZSL|H zj8`Ma)7m|J#$2-D_$H_hI%^J)RFNe%_nkU5B!f?m?>0|2O`%F(qrXU2R@KN91`YJ z>-S!dTzgmsF{B>jO|lP{@98y8vS7K{K^8q%ES%^lnhV6!Af{(n;=Chyb9GFWgBnL9G zRqYkcGkVI$>4IMw7{g=tE6pB^Y|rzv*=n-bYB+SmGe~^R%jlcVYf7JVh!t(kqS52U z(mr|P3*zTSE^&sxM9-w5&+i;&sVj;9j+a`b&xxhpi=$mi@|6(I*rB35z-O&>dZ>xr zUVgWUb@JVhS53aVxM@!NX>H?*D~ndlVEezvX0yc4g7@ zra668)05|j#;zw$Mi(YIvSY7jA@m9`Q4uUUL+4=#=~W-rf5KX=Bsg1QWr6x5I8T@h zd9w>*G=lekq-i#`OnJ8O0itJsCJ>pKX1;TCGUw)o&S*9+%ZXf_V~bp!Ys;@KsF%7E z#Qo|3FETI74gamR`{tRV7ppDln>*7sU;Xi0oF`*AyAu{~A6`DvUr8gLgqXF1q8DT( zOtJ_ZgsF(Ha<=EE@QDioHgGEd+Z^y{Bzr-P#l#067FqF^lDAiIYsMjPuah3dV!EmOSfT;Zl;w8` z05+>L(wVxha*W31C@uH50iRZ^VUpNs#El!B5J1ov#G`dbjmJL9QyLa4;DZbOi>0@qZFml$;p<9(`7crq;7?b2eMFnN4s$6*Ys$h60)tzWB~l1=^fAMiS1iBKQ8 z#bFD1kOs6nnR~TlnO0Xs+Z}1GNJuor?7+!YH8H@wCWyty1A?N_EpG9IkBWI!+zVq_ zSDgI>rbtCF1+%eNHXG_8y=-f7i$i~cR17N}>Jz4g4@X;^kmneA1)SGEXj2>RB?CZU zDUV(eUUsq3ge1sw z844f!^VMhUp?ij_SA7!!apaqxG%@yap{A39wHSaw5!Sk-KuxlMw)}6|mB8#@_B92Y zA>&F=aJG*pPRC&Yg|@3tBPta}ja@FeIfE>Xj>w!RY~d_mfO$~=9RLDqHOuXIk_%23 z!}X+k_#Y^aEAbpniXUFm$E-2eW1s87)UkIP)N74X*(x|6Q@SpI6;XYDpL^Z=%smz| z?sbxdSzknwPb91*PeP^g-+02Ooko%Fi~kvV24ZF1?|4g;K8|)Xs#lUH@UXw--}_RYeAad6Inf^pnzT@s2=_RQa-5CA5sLomf16X|nax%+}Mbq9vax+7!RvZ0n6* zng*_?ezrjB%S{sqZ#*O#Us+^Ao}D-?R_qGtqZqp~GrFAFdc?TFs&3OZV%H+$UW`=U2zMQ_fD-kjSSo$D0>I6DO) z5U_I4@}Cd_DTyt35^@0YKnMa}ke40`fzARhM#NRXkNCl+-1CCbU2NEb?}k%ZFa0)5A{yvjHuWi?cC!R z2BYG@)c54W+b#NcuiP9^XVU~Y01ityH)Q04lGIeGi;uDa4~ZfikBr1}qz4C8y)JtY zz7PF|NX?&5gQ`c(NO&}ty%g?nH(|pmY@o$*Rb=w5rVy}C{h4L8n z$eW*1vFF3ENc}K}AImsu5`5hd;A+$i8TEYOD3&PmSOS=1F)KexyE92+d?Y-P9LShF z$C&5Qwurc&YA(9?Az0C+M#H{r#MQxq3AV3kev4 zuyYnyyV@W5{aN$zlg4-8h~TN4livuJeNOx9toFM{+wYAL z1Gy%L^wGb359V~FDzYn0nD~Kv1^*L$3kei(iG5wQOY$@Dz}p(F&S4H)qSd+j^vq7_ z)0kAF-f3Lw(s~OE_d_wh1pEtPSfp9(LK+^9&SlUeK}U41oa4S7pNAj>J&dZ<^m&A>tDhZD3E2;T1Vx4m(C*#MYi1GLGn4X8aXqg$dY}o^gc)C%|0hj z6Z`zA-skLX_WA32pC8uy{D?k=$tVBEw>+4l2~oADndU(Kr5?mvmMq`d{XjQfVp!opO*fsDr1EeqZ#W`B( zpEEU_i>$5*b4j+upJZkBs5j_J_bsqYtk1Bq(_WQ>7~XhcYF%#R7B4g=0F)c8$%|Iy zMC)>KsJw;naoP4}7W}c-|K1ewgF{1PZ&p4ufw0N%g^@;XeW75Jme{ZwbxPEdazlrvosRS#mM{;r0 zM525EV<9psU9t9@CiP3+b0mFEiB@q376H}&&moL<+v+jB7eqni3qh4 z79+Q~*Gc+e#zS6a!JAPl?3dt7=sf4=5rFCt{wXHP?3o}GOrSnv7cx6UTe6u|`4T~W z_eLuV^dB=Jxx!Qam4D-?w{>nLK zs-sPp4;&T@Mw;x(S^4{C?h+_@KL7cdJBi67VC+*y#afcw--^al0 zsQMo7+|AGNg4B1Oile-p^tyh#aEB_t-}=g+M?OUV#6(RD(D)`NP1EJEMx~87>g(Cj z+8S-XHRf?=lWwRoC)RjK>Kvv?;o|q!%lbgevp#wCdVywH)mWyN@~DI8cz3oPk{yDF zm=Q}kWtZmi!MtegENctr=}-=7y`|~@Znv2yS2rPwG(!-Y&{vjb8~8O-)V(^*7Cu=P zPXs17py%=`ZQu@>Jq%A+^n)74f_7P5HY^+ndloR6JzqfSQnrz?A}6xjX{^p=u^SEp8qbLM{B<~Py_L&7Z7 zxQG?0ieEvSprr@F9JS!bfRv6m?PC(5`VNA1WD1B)nJ$xy2zH-t0|(dT7-u4(az93s z675;7`4e-v2hRaXFW(Y%>Sk&6Q$!`kfklK7KMT@Rsyse{TAW2$iJKgWuVT?|HsBiD zfK^||X7g&#vv(UB8pL3FiSU!Su(dd%P0q;8H>5R)DzRlsuLSdEgGm_w{>pL`9Jq8v zTdJcimq%Ot4bjSle5Qfm&_s7twX=>V8UmFNA@FMVZlP@S-uw8!_g;|$s{2pk1tI)J zJdIo>RvGZC|Nc6hBA-`JQ5R?QmVxnqP5Sb4didTAoou8@@bAewbUeYD_9>(oroV$0 z?CRiJQ{)VO=b%<1tCN_UWRxj%^=o&C$O^_3JNd6F7fM@QMTh6T`c%wmEeZVE!2^^V z>#Z{?r9O<9(%thN`EZpZQiKGihwGwy*Ybb3GngN!{)KklI?>6k?iyV3(p3RIGLSo7KCW$MFt5Z0y5CWxR5t zV20+OIVZ!ILOxz}IP5kvT)-Xy@1$D=aW^2WaFS_e?Sw$@(>^C@rp{-Kq$F+a7Wq(x zYsy*yJ8NBaZ8dY$>ZD%i1$B~(qWg^@bt}qMdta=%#FtLoArOF(?k;=2wIyHd7Izt? z)xOfp*$m>7iuC~jxwTWv(&)W1!rqn;66clCdxa~G-urENbniO3Zdt;MYt)PRO#Zzx z0nvM9^yXeb`Uw@VcJLriMj=ilAjS?@f>{!dB8N58jDS-epo>uYVy7taa^MPbW5O8Z zn2dr55kXrL&d><6&T1Yi=~yt-(rT!Api@rt5eFTj;l0SfA1C(td{`R8>nD`^(+DFJA+~sf$cAX{=j|I zmZtrIN2MKc#gq)deX|AH{pzp!7mi|j{@dsk_9t&U9(YSzQxK!ZG^Wrk*W55>LwsFt z2)vA~K#PArfRI?7^h5T)?2_}aNFCV2!UxkDm=*7cR_}dLmv^uGH7|Jju&(phyQwp< znMW{MsAWQ&0&=iMWB6p(s;)$)zwU>ZPVfg0&Fmql`DmH;f)vJ9dAQ?~0(t$fz52eAvg zwvYuVlnj#@MvruLD|qb{6kM^GF8wBpIMBzv+De6eVxbA-%1^@ zM$d76({M={Z(f4Soss(od1#9~@emMf3w=GNTfkSv%iKzNF0onBV@4XpB=R})HWrhr zepSc+k>AVuve}S?NNy``Vlnw&eVzZb8muYN?uzvs;T9w9eZpY4$aKYR6SR$?t0Xt4 z`sp4430?L-cjzuuiln7Ju|v;DFU<~xrkv237xf$Ys7>C;MJy(tQN{Gg&`@doR)%H4 zS1_%~DzL4d0(ETL)2}}+O7cn$w(qPqLG3G%n1GMNTtpz@>Letn+m@OzP@p01{Q`l3 z4>bTd21J`N3d(#+{otBZ+vlIywlmfCb*Z+`v)W#w+rD#5+r%c5wyUTm8>n7ypo9hz za|6~3{M4}V5L+>*MEe@|V;k1W+O>E1m2HI(T^K>GV36BxHV0X14$_nA$nsQ2ets?3 z?zg*{0?zToZ?|(1ut5+I9YuEv+;+ho@q{^UovK#vuUoHsN77GT#}vzyt8-b*_#)%` zf)$J&4Z7(j28dj@0FfS~eHDjF-8CU^3Mz7Aw`=MK%H}*c!Q^UvS|`|}E})LC9tN$b zW=9Hvxc*+i1{buUzIFy+NVA0XUy-Ytra=n{x|1k9s^IB>unV*4 zJ3`EQ4J=KTKX8bHLe&GU{#X^sN4di!{wo4J%w_8qF(Ut2^48BSR(Eo6cMgd#c7)?% zO62gTW(0knD=&}&fr~7iv{!V4W&Kl!xvT|6i*v*Ik(!Zovp5~ymF%cG@Qtw;?0o&j z4=YB}#fC{nrJiNwp~jbgkJAGg+q4F8I}znpwn=qlJkOX8k?VO-Evx0SF%O}_L@d#w za~%T`XD+|OtEYipQb`aSA|&Q#10cvuXaeO@u^Sj>T=}08EMu<3Eu_;SXJ18bnr}E{ z?_HeBydk(PzDuxJ=uCR_*YBD=S|@~r?vR!(I@JiMWkAdxn#J^z5V@+EK7x!ieIPb} zDH=g#@8(p=QQxI47){1^4l*h@7;N5-qFTn>fX0!c$apdOw!ZKjU$Dm9UPIHJ!zdoc zj60NxC7DE)4*VQ1LENr99_b5YvB9|6U}=y;>@O7WGe zERR+>`>I^Fjg_9>s!8fC#?9eGeuk4oF6f9{myMZ52Mlyaq-hOw@ETJNxlvQey;YM< z73{w`$>%^mjh^J9E7mkN5|Q;=_)wVttVt92iqoN+3Gu6&>6D}|bU#+*;n*l|Ql3-w zaz(2aw6vO&v7M60QVO>l$H0`JpX)<(an0ua5ri;>lyL~qS;IIIl<1!>)@C)vW| zx{sxYCTuLr>eYvwfqu6DB;*@H)iWSGh**{!LsAk<@2$vGPp+`g`aQhr?#v`|oo0QJ zpT^|Vkv%djT44yo6tS?nBfntBr*?Hu3x-(F+}_O#VQbyb%sV-70|TlLe4GCfwHysR z$^`~SyY(>tnrGql#6{w^x<7f_@k2rL+mp9%=(i6iZ(rtCP<^_fddSD*lzbV05wo)} zMwv&6VApdR9kyiCg>=cVlkIqeaBHw8(G9||Z7g&3ZV;YL6`1llY%>4C z$P4LoWp}bGvOphS`A#B`3w_eW`UDCzp|VK#hQl@eZkhGV^erjZEhJV#H?0@oORR)$+5>5*JJU#KLN}T7b0MF9HTijKpf5O7m`+e#2&R=C z7PWNnEDI8x2Gr6nM<~ZEuNDGQ@u`xb%MfR3kw{fS3DsUBQ?+VF>KM_Ml!8oex-xOo zLVB*ITuYabg%euTw6oOKo@jXRBy*~Pbx4d>7Rlw^%iz;1OF*-hIi`41hy<#(C_K(r zIVW^dw6>_8lE|~w4WBLSjF87{YNRNGfC@#ou*POc9q1i>VMQt>}s!13#%Ix4b_yW(Gp zth&J#IyF`2K}ct zkn6g}(}pg*4fhP=JutHSzI|dT*QB9wYEY9eCib)TteL7u%d;`a5}L|b?a24Z2+GRD z2n{c69uf>?1u;yOcOeojl00I*?<9|et#vqQ3}~8;N@#)|!}j6|=Suh5PAB{D)b@#s z2kzoRl=*7<{-J~!$H5F-dn$s%WZ>FXrkLG3XFL15&nuxe6tssXYdHOpL)Ei45Lqp2 zcaf_K@vr?tD6GBoM8%Klsx{IAKwoD?roAp1nYIdjS`w-eU^j~++~ZOQWqK8x7R4@l z5eXYAdY-B*LjreLu5(C3#lf&wic5TVr-Z9Q3vY^nMWbHnQ5&8G^GN&*J)fVW@{)}x zaWSM-wu=?g6`_)ZdVOm?P}Q<);4P*}bmJH}GcPXVRcO{lO)ImPCA`aqymp_xFg}qP zn!(3phCT|v7cX8m&!Jyt+6xf@PvubFr;a_7Dj>}iQs4fmuKKspH>A6>rbMs4`g7C& zV<^sB)5nJ5gyv;xJ~uFBGW4TYM|G6{)w|kABo&l075dR@g?`k9_Ub}nuA~D}F5B*v zn4|sj4rcCG$tKX5{F`u;NDDM+ioGMM?xVgv?sazvs36G4;-Nyv43T3REqFy%^Ri=J z`z5|ASKA`Y)mxoy^8qP)6>flEpW5syZp>=`3I^+kR^(w_)R^UK9Bv=qmg%b)LCZ}O zjl*YGd8RjK*$+)=%sRVbWIE4tS07iJr{z ziCLs`-KU;oB7sO0=ixWC*@^}x%Me@uLT4_)T(k^K^tELsCK5NR^8;Hrnk?7i$|m#d z4C&MA!JO3Dd74$={DokUESzUNScxL0xQF91?UE@NngZPF_fJEuj(UON{r!_0Fjz#? z>V+W5#ve{QVIM_ROq{|szE9gHF&(>Bj5i=7vhhcLKe{-(DRGlmIJxET!c6n~6MhL% zLzovVc|`<^TvaJNb2x4Azmd4~c@$v*)kO9H+8=6Rv5zY&A`^C zX2kbV`+C0mxAtxejhUv%IxKGGvOX^e+^>FF_wPeJHUKm*YF4Pnhkjy)dc1-fsZfuQ z=AR##@mCH1IWl7#BcNM?xbWL!;=+Z(mzR6r&RkHD~9pQ!u)5)z-0^;M-gY{`{DH8 zq;1@3tw$CVAiU_ZE+=~_)=D&W7@@1NJk}Yt!|#12PGqZ&DJf~TwX9#{G_jaChjS*S ztMnL%k%(V9o}XVG`hrAj@sNW-7eV#cak~^i*eF%}>Tz9ww6Mts5AXoSJ9&GjzRgMA z2J~%i@^+QJ%}d^1#;wQ=bpS;XxiuscEa%WpYPnxkP^@HF00n?`I{y!g8qUul$`BQp@7jC1#)al?(M( zijsYe&y>E-8U4y%cyPk3o=z4Gk3;m|Z+eF-#iX?e&66^oJ(>$6$$%xJw>yQpF48S4lZL;>0Psyak> zvAjagU3U4i3pd?kd(zK;a!mc%U5?3~Lw*eSYZf? ztWB*c7p7AEQa)D8iHL8@4!8!w(#>Klg79{D77wf%8NL3?CrmbTc#Y}*F17Dx{(Vj5 zZJ8Xel_hNu|1Ah-v=6~&)qEfkD++%!e7GsP`1M$wN9EBJs<@ubOcmJS0_3AYl3xS& z^b;Nhj_9*ctH3S-p&LWQbe6y|-v_<;16g`>$XlF&A{nip|1i&-F2|%_tL31h;J!%ODmt|PfnG*L4ymeFc_P=CMr3Sff|APG znQOJ|#H0bcyQ*zr@~6`+x__!9_+?TtqZ^m-=f>^WDaveh9kbbzGb9sv9rrTPgG)xG zNJ21TpkA>RWoX&u-5pp=bdaGZE84j&+W1f?$Nl*73}h_(?E9zg#0c*Nh0_-DboV;i zf(qJd%v%s^yiZ)cIh~|15toHD?W;IqGt#i=bD&nAFA^c>?$|sK2J7+=6v;M%HEku> z0H22G`les~VF1-Qf}3c?Hlws7TJaFB&VHGXIn3#fKOJQO4$AUW9C>mHz)SRHBBS%) zLw+1S1J&n>vh5fGcgZJAc+q?2GNtoK#=aN((5=!=fjEh-<8izw(zykBO`^;n|8nmRn}^*G@M+Oo?DWuq9=CF2@@-` z!p?lxni49@tia*#!D^Z)lpb7^?6^pE2zyTrJ(L!d1n!y|}M6odNFp}ivd3d9nP zdqrZMHoutx8R0!LriV%y(Q+cRlnl~c^%piTMJLdY7G`uwUdyiT zRSRw534Nst(*|ZxQYaU(VN1tM2WxVSmFB{{VD^);$2M8y4~@STw>wu>3d{A!9dD*5 zW~bX{6Cb$VzEdc=*+GfQJ*>X}^bkQ&h1B9<={rIZ;*E~U5HydPi6pj6sO;ahlJw~1 zq&JoJz@QtW@wp!Sm5$G~Wc7&%w-FOSfRW&F#Si6C20Q#sv!tw-gh!>3;exhz*d37^ zo7fR){tRAu*-KvEZ@iRR@s@FGHou1JAxdF%wlPQFJ&fU5{3V%&3St^n^NbKj9(IJx zfPC=$Zxf-i6qS_2_ip&o-^pF!_96Gf6EPh5YS5vgH?vUMl!^Q_0qSFy^kG!jqLMdg z3mk4*VpGqfZCMm2r*diQKR{G+l8o^|(a@MJ1muUi#)rhD;WfG-j>S9Tgh}gp%_1Q2 z(<3^8*g}>#o{{0;Z2>!j`CoC9E4-$-(i3hsDo5C%Hxfgn@VROzOpXU*IRDs7|FR#$ zvczya={w-A+({%99Mc5(AH0hJAX^Y=3ex;ahcD}iwo}^4vfi`3!;P)^*RiQ1RRK-K zCjs}9pe18fh+2nyJ67C}`vjyT^e4_GaH{kqat!y%8$p{!jWQ~Zlp+^_2BzP>7u>gs zL{glFHQRwjw0Mae)h2+fgV@s%wkdviuQ5sHSzE!Rp$_mw&Xjv?+M0^Ph0vj_?7RZR zj-ea5F0E*&3e^Se%7a`?PKk4ac4X|Em?VoEI^|Nazi^72rh}(`wQ8y*d^x@6Ga;8o zF2j{}dwf=~TK&AkR2qE|wDto$q~cR~c!%{+lCXXtZc~SdG?yX{<+vJ)S-?ZWc;*7V z*`U%KaHt@T{)#Qz=|_LXeO@Z4ys0|}CCvzRw*qnuue^gkwcb+l$%EG7ZKjS`>% zXeLg_U4`5I&Hg6v&zAm*%{es3TG_Eo(>v{ z)oc?i-m`{ljmSAde|QqT0ipixG^uq&9iKz#ie9T|#kZ5?+9+q#Y{j+ID)=%5&HkyE z)-f|l)H_l3Nm4cPC_Ti~?%yq84U(_q5}p!xeRK&IRDEU%ADdz=VQb_wOIXZm>m@8# zZ?7C(!pHGKV+qUEOV&eK!ks)EyM!m?1tIxM_a*lWhHq%{3wGP4Q~Elwf8DKCkl0>) zkndW`sD<=+z&50b)|zc7kUN-KP(rXdplC}>7A|hU%#&~Llw-lPnC9eEVgkZ~l zdmI5{|M;A3Y>3;hgoukiE}j$7A1~nlrTrTg@?*2BN^EUnx3hA14ga{CANBT4Bcv+v zsyjH+(D^LlnQ^;R^~?9Zk~fk}e`H2mx=mj7XUKQhz#_?3&1ciXZPKPXw@ohP^J=D8 z^>B(UMmk{m;U#|Zc7O%BPSld)hz=9sLDC< zp40;)o$=ZLm3(W(SS+a~?0)ioYH*9nu=`0FEfiQNW8+#$%k~-kyu-VAz{42^q8rHK zSJ+;4uWX-MFZrS;@Mzs@p{aacBs>zjmP;!J12Td>-DaBEs8m%Fm1Uonjc{Oliq`*> zuXCXIjZ}~Id6FZxyT&nd zvHSG;rm6R_ni9L_&{<8!g#I=`nB+99l<){w-(d?01+>o!{Y@9j zQ_^E%@{Epuqn7I)>qS{r<0*Wt=*I$Pq2l040q-yMM4YJe^%XPhs?VK~2I zaC%@CmE${N8)PR%iD47N-;B({$F;Cumzfr*mNGxmi~Blu%!%-!z6}D{DAfB++}Xpn@?`i<7%o z!-G*#1nnr6-LFQ|-H%12Y~avq6E(n^23bH-bjU9@~`IBr4kO&e>2^ zL?*BsFZ4xZX8a}0|!VBv?& z-A_qlwrF^FXfZ71TaD&Pa{=9o#T;x}gshha_5!ZzosxGFS{t~TJHMKjX&p63*J#_C z!Vg9Nyj$!8U!+B|w%R!t`#?-gZN^htpZbU>Q`L>TjwkH>Q(u|SlI`)U&gb4q{KRE$ z3D7q-t@`o9(?lwCSPto>#7~v;B3ARXnxn5xx}cemL$XnBIA4zCJ?a{MaV^k>_Nhr` z>Qa*&Ok;vYvB4Z4Uv|PAr)Cy=-@QAJCo*@EzL)v7Cc5VandsSiqGzj`cbRCDJ<+xS zzBUt93iPCJTr10~6*#c*R+7WLtKUO;Q6TD_RFXqZB%Q`^Y+l0bTaG4l0<3#RE2Q!g zg7`#bjEDszTx@M>oXfTs*ol|!SEtG>SGYu8=`6voO~jSuI5bJg@T*A;jhUeEAZ;wG zbrpaYNKjaIGY+i(M_xly5w%(BwVU+_5w9knEK3A;QyB+2m7q5ngt z1@w{5O#WB-^aG}aEvyr*rF2>amQG6-%Fuw3wDY$Um#J|yLnM)w}cx;ZO z?u)-6p(U92P@Pfh_0?jZ9yPavy(TNNJxB6{;Ev{%Tpns)1~K_HGI6S%`dSjxgIrj% zDfCVd%FM3{LfIQHjdbCYDvDBHr6*KmR`Vz$Sq%()OR_oImL~Qw1Ys}^Vb>{59pD#C zA&2FG{J$QOxGkeD3`cCtiO0wlVBL4e0LE>U96)#qAixP;6 zvx-~r@~7gNV=JnQ##XG+6-T3~UCvfef12}7LbI}h`BK@!3bamY`uYD}C-prBHmZ}# z-eBsa`e)M}9S>Ir5ya_unu$FL4c0pg3VH!J)=DrnD3na_Iis3t!8%gmS0 zI8fZ^T$!9xp-BP1_B+_@n)S1%<3e}3|?5`H-`f( z(g6H0xyTX@muSHC1pLx!b?t#G2T5~N&<4-c4S$@E;s{CYK=%_Gd`r3cZ;Ygx^o_ z3=2at|FouF9)ll$5*WpgvY680v3Wcft<2u>&N#{AIgUJ@qU>KsZCMCW_WR5IALw6Y08+G5AVjqhCW|A-rJf?2R|qb#c?{h-x1 z$xdY7m~7TH=!(p6U;iF=p2cF~#7CmaaiBd(R4Kpe8yYpH@aLFBmAtkRRqBEl>4GU7 zD%H(ImGTzLfEme#{tXso0oD#?ImXh13Sc2+#U;2^-(Rw?&tU>BjwLV}7;!Z7rR> z)1a;s%7;8>-O;`bw%&h4(V*7&c$|3~#s)n>f1&0UJG+8l72e z>$C;aom19K$6Ugde3x;lexBx;vL-Dney+B=@v8a-SVE$BtvNg@fVdRYByo9TaGVYGTL1DAg zc)(~viuii8ad))hX#|+-9+Y{)fA3@21K4ml+_$##sNLyvBYl*YtxjW?eY{Zzd3}gD z2vtnaVfO~pX7hF8+f*EKM$2Ly#GYyOw0+Yc)ItUF(U8oj#E8uYXKBCR20>q7DieJPEddfUYPJiD>o95# z8I8NoZuLyB%Sv1P`jnc(XD>cDz2-n{ZW^gR#cl-M{cd05)9!V@kfpDAeZUJ0!l(F< zX30@i%PF-Yu;5p6yot?~n#&mgkB3mRA&|x6M0-}E-4n>=k`$Pqz9B}5d(_^mB|2R+ zdHZ{At(d$|m~Ldct&9se@lb+rhzDl|x@lsJc1Zo;968qaihjsce4(H@qTa&xG+tvY z-fML3iBD&hjL8CTV~t&wKo%ONvCH3*)71RA)AWLBK;|HuL-QDazSg83G{Q%3%K0D= z<434rEYA|}Idr7Pj|IO2D8q)v@zKt~XqfoW$i z906FSxNj90Fm56wGF-(ffMv+&pGu7L3TJyAHWrOTE2{I~o7w5Ke|73Ahp+P};4y{h zDZU}VgXJBTII%;axGia{e&dcz_F{83GII3@A{@^HaFx*N%>%+iP3>lOxFp& z*a3x!nkrry5(H%!y+zM+?sad`QV;HyqVTY`f0L`Y3GBB{7Up9M-5HZL!uyN;SkG(V zuoj1rF>l9P&t^?=Z?V<60HS&fq)O~RR zL5Sa~MzcAz%*Mdv(ktK5_EV5wGIbaI1|biPi`XMqJ*z8|r^i&Jnk$vmSxq$7YaE`u!_C(N2Gs3bo_h;x@ zmAaNuTQaKWkvQ0su0+HETd}fH*jK9c6X-O>iJBLY0mp!o){>8bPockl47euw)6-f{ zpuZwJsuvF&#YDj@3aP?Z#~GDHEG%8Dri((+SffP^Z_%V6bz1IzMo&Wc3zRjBq^Whf zN_b+go**ovW@Fz)qxrtuWa`@g3A#$FEfS&~q=Jzad9+CSR9h|aR#cd-#0k2qt^bn2 zZi($8pS9$vfl+xPXj5cxtN^;B$SrehVYK{(FUM=K>)Yaw&GV}DVpKO|ydY{HwTc_G z=qPK@GOu(bF3?7_>I?59|EZf3Yuu*&JsiBJ%Ezi%p7$AlP6+~AmY9fFSTFrg?|+Xz zuCY}`rb+lDV#uYH%`wVmqc%K8%uQ6f*#~Se7~ltDZMG5{0%!8`|72m~XB+U8yncn( z%$G5wYwj@%8}nvcg%iz5*iOoSlTmVmh0i< z7T0_q4>yIRvDN zES(M5>+$nGvb2cpfl2Tjo2t2r39FsmqCp77x+5icA3I;m|IPXdeNb^96tOI1v|pqAJS!)Jopbl4QWg!u?s1 zYn_6tQM~R`Ut`jYeTaoVdUfV=XY3&=Z?*aa%YpbQLBR*=U9Krh^4=VqBJKgpCVM9X zodcTLQ#i2&&X{S` z>0T{YF0PuI5s4mDXGRBE+=J?*+Xh87aTf8ql zY2RQFQnnq!HkxmgD8b3 zE%lY1w8&lYE?tR+pH^#Vm-bNxwQ+UPq0n3*av=yV3=9FXv5F`7+|z#b{_`J-#*cI0 zi+%zLcz>Ou=60V0(3*tZDh}{SUpj%l(ki9X*GqpG@>TqbR4;DF4^4|%u28?aGQ~zP zeE=)xPK+3?V(^AfjK|-fv4D>#zfGK{v}A~IM0rsOL{varBK3t+q3uLcm?H?zfA}xZvFZ=EXqCpr9Nb;2?xCHcuYZrl^ zO>C#}9p6>mWAOJ?^4^kO?u}ekU<+ob`B0KViia;TYYNw?xxD) z8S~Y5VMTQW?s0gE>d3_Vc*45s69y6*?@CbyA8ZC-bflcj{`AWkVDx4OjlGOKd%jVU zW%Nq03t?HDM&0aam0(5-5JciF1!RCyz=7l*9Ik?M{AxqSy9r~O2&%AGATtwj*c*ok z>|^&p3QgTXQv`56d75}83DaxgO8JpxL{wDmz_*8(*5B2iuXO|`t5!C>mM)y2U(*Vy zW_&`9MHe5$G35L;2OqSluU3iDj+MY&uLJX{2hlcsyc!b;$LP~8jJ!hEPZUZ zR9*e1=|=DHC#JzBff9a)HLFDJ3yOWT$ZF%~1ZSyvO{q0K=vQ;u8+uLaa!1$n8TN~C z*MSELK)n`g^fa&_XP0Idnu4>~JhsuM0FRFvli-mz+SCe~5}*o6%<4zENn&pat%5$m z1V~_5ZJQ$}+$cN(%M%2ap(g<5R5hqtQOk}^iR+5=xkQ%uf2G7-&J>Um*QHb9x{@hz z8yg!>9+MLHCx`xpVK~92T+Qm<$vP#j7%FK;B~s$fq78`t&rgXfD*VxuxEp_Hx+9qq z%K60E94nqwFMQ)u69JkND&rE*p@mE{{?*X4P9hYylVx$taYpW$v8o-@XpY3NIvkB0 zx2BS&8JiHg31@uSh%px`(7wMldf7;_CGl9X3X1=C7bs9m)g>bo@p3i6e^m9$;-+;G zB|Ek1#18V6Izw0$-6V_PGMYwwAGc36YL9XT*q^uelMZ=Y{-2{wfQ*Fz#LrI)5&6|~ z*rcxR6+d>DMzkgw`Vtc(nLOFFPG7ovZn|GVi6`Qx5_?t)F-u46eZ{52D<=8QGoE+P zJ+Dcf&wD){_OX!eJ7jH_dd!V036WD-Y0uYLXk z(jJ~97T~TcmQ}crp^QyR>-tYgX}_kE((;k_`3Nk8I!8VtIceXQoV0voY);zM=0{k} z6LZoEwR?>0w#J28!20&NA|`j~#I{ne?Q-*OnJD?zb6-l8B#_WJ`p{7()=$vccGj~8iv)YUXng*8D3>R2C0K?P~wUVaB z?1F%PNlK6J$=C3Hnue54*#B*(9$d=C3&19FA4I z?pGK57!r-hHyXeH1$8jl#l^|g>YLZ>n-DAwO+haxda?g}7#BIi#p>)wn+C!5#x5D+ zu{IWs40g31i8fd1B-~$brE4Rc!eVD{!rkb_uRVo}h){@eVo=eMP!c(GF=M?m*G z)nE&!uZ|=q17{z0s7m@IhQJ^H*#V8_OwwpOrKA;P%rvjO1eG5OkibjGB(Nr`cSNpo zkWe1_CEa*l$b3@*&@e%dH2XA0WpDvd4d)0keZzj#^A60j9!}J>aBiDIwlXvx3Wyv`E#@p=cW$1qO zb$r}nl^qfj>gN;==5RRdS5I-NSE+_2JnAm1A^P@ybsB>YW(KxF-EcQmrh=~*$~UmG zMh7G&FQNLe=cpM|gP?65wM?e0DgY|(P@8f54s4+VYICi5T%RPneox{8O;L(iQBG~9 z6uNs1sZ{IOSUIV+rMJ{e)O*uklr<*mwN9^y^R>CR0{%@`!sww5S9hRNfIXDx(>Snz zfwMQ-dMgopdgXUIVdDrX$~LRa)d<`4g=-4tDLWlAt&mScc+^)x^mw4QO*kga{O<$7NDSJ~I)cdiKOZ zPYe9}&C6E5`xa3!=jDYB*B5_p^l`F5gZ zInlDbXxXf2SwXaHcC@Uhw~UzC{%F~PXxYMO*_B)^QEL&P!|2WnsCKR}8IP@A&MHOA zZV1|he~dlV&B_Bo3waH>{m32MMkDLw;l5}@;Ig4NB6~6#*~I_KhQb*dxWB?<``!|! zkQi%6KN6%S+rx#ur(2)6k}wf4KAlyF)wtBhv@X{2r&GJt*k#J~G*&Y;oe(2iz720n zbgt{NY?14{#65D6#j)MfKYkB0Vp1lu?{AY1_Gid6DF>|?dheJ*#|i|zmX6E#W3|iGxBm7oego<{eSeK=rxnfVbJ| zEO{I0^5|QSIz?_xixt60S*i?q4KuR&o&sA^P}eb!J*B}}Bwyw~p`O?dUj`bI#p=fv zGvA{b>d%nDgD}-`W+z$p%rRxfOcPgDqov4*3^7cjIxkkbIWl}rn|JLo;WO4uTYF3l zxVoHcj}@?$!x`jvB+DZzv4C&`ksSfmLDUggG~P(^N29XjjLLEhc2Tq$(xxg}Iaz~?A*L>!`2PMQpv&ocz**LUAPueVHk|#HA&cnb_^XkohWeZaKxMyaBgU5YQyy z%yL9xk@P2G!o=#6matAu78@tUvW?ms)T(VCngrbF{DUKCNz%Jq!ttxOtk@GfpTgXo z*q20v0TP|I>d5ef_BDyzp8O3y|e)C_hk13eEkhfeDX8iLxWgypCC;T0eQcYw1>1d zvABI<=u1!i2q-bCvYD|=YT=TWPr&u6h3LNk{0?Jz?!a9gC!=nmvFq-% zs=O)9vw*X+7-a*@zk28$DvNk#8YPNKPY*vxi+s~IFp<@!<~_zPV?P!BQ<@j3VzW0J zs2y#;(nM)L-2={vwl5iwBt6CLryXvx=R0kEH-|4;7@x#uk8z^M1 z@Xl6NxK2zY#gT~W_8UI+ z34&FB6MC!WG2mm#6x3^M|45f}ys;;=Jo3yYx?~Go*Yn(}JdhxL)X<`FVPuP7M6qrk zr*_-k=HQaTai7su)DXPp3S)!3HcImD{^Nc=-NkzurJk>PQnX~}kOmm-m$>2~6e z89U5Vkq{flj33KMZIor@mwEANIuq~*u;`l2XvoTM@TT@clYhSP)rLfqt0le|V{@Zh zj`r@394OrGXXV-!%A_V(3)y1)BIEXTT;abTxr$@?Dvsq+r@5)jH-5^FqeS8+58Kye zM5PHe`I2LBWwOaE-oGcYYDVy$g^WWQ#;wt51_+LyW%S2$joWnR`$;cbFr{fWUrSr% zwM()MCpAQ_Rk+<8DlKZ3vzdHfYUu_RxyfS;`)>B&Y%VIAZ`_ExPE*k$BJN$bT!-8X zv7$7>>T@)@V(YuP@I%*nB)1&FR76rot3-#8gH+5lYCZJ!9ILD9JLQ=q(#u+N65XfY znP$HSc1U~u1A;*e-S1{Pu3lSDkLcN6epv+;M3_bg#-G%(^6o zZqJCUa@tnjsJy;opqubDl1V;8dYDKmG;%pWI}@y-#Iw3iG7F~pvkG6fMr!OF z9iLv?I!8=GQFvC23yv&|mo(J}wt^TD45B{t$*2O}+Kz<#x^h10`Bvh*dt~$t^so!S4(clFYgU0L?xFC2 zxGfd8=B}A!97z?u+IDyOA`Z5zk@uzyWuYzCJ%??~BttCHd?)zoevvkeozVFcc zevO<@rCD}~3qu|tA-wA42q(772qcyJ+t+dmggLzANXNU%wzeb7W^>rw-+qOgWCx#; z4)#lr_N(toG{LHp%&KyC&%N>pbMlg`eCQ}=Xkp+Q;HZIEfnOg({PZL@K;QZ z)a523b;N(DE615f9e8~(IrZ@=sq*Sc9z!4XR#nS>*Pf~RSd9#pjLJKN_9ZHh-Xwj| z#d{)MS;%Hy@5iQ$q4qA`+eThANes7NqDxim){+l&i`uaxXP;&d>QC_ckrs@;|5XjM z>}0ip7j?ChOnKN|b^ft81OxUxf-TAsb-mq`hF!%k5{-?J1R~M+uM(yPoNbgs-{nD? zMhJ75;oC!?G>NpSnFZu?KbD(?ASTDglGBm+lo&e^B$uDjCw_>Y;+qz%$%JgG_m2i` zNb+X#D+gCFN5w8Sd7Vt8S{ed)#U2I_iUV{aK*nFQ1;ZYR4qyP*b zl6}}}>=42=SODp&HqK$XwfpxuI9LIV>LC<8tRcRjd)_s%7+_oW2OxA0t3fl!{9Yic zz#$bq2ES8rSUiX%JOj~rb&@F%0pE+2W}CqCKWYC;6t#N8YZBqT5;9=1dmIj)M$JKE zSl#yr2gCw7{z5J6Ht?i<&7~v{?5{Ym{Pv%U5AdG;ii4m_D85&JZR)y0c{0uYwh;S~ zNfzQkdj0VXq-A!$dbv=%QAs%xcA+x6O}6(|iUbSP7GH9t=LX#i{ecdln0540%ny1O zA5r0S0223fhPz<*AXbaUo`qwF`@>;#xWv_v=#&yV|FHTgDru5svrvPF1lq$@!O4N_ zV*G7C8yIz(**sj&5;Rw`h@w{e2K8~fbko@f1br=jeL$!`;xSJR^rm`f34EoO`_ptU zX=eJEX0pv@CO-938S$^Ah3!_Qpfj-9YRC-rA4|3HXAEDH9r;Uw&G}kr{8Rr$3-NCm zbwy2UcSu*%e|>}!Yr>-9+F8i>s*3tc0!|*sbJupw;(#ZP0S}|qf%sG&q{)McW+|bJ zXeRNnw6b=`QU1rfM=f6^5oZo>b(pb8uI9UiufcGLPA~QW0YH&%TDaf`0-Q-Lp~>AA zZs!1mvlUz6F9Z%Reb5&81|J&B(tc~gXIa{RW{L#JnW^(X`b1Y4tG!bF;O>9Y5mX=I z)PsdwU1id0~7W=RZUO)#acm zUX|5#vau=)Ms{&0bYh}Q=rNfyIsHRp+om7as8ea1Ude!?Jv9fSD~i-J%RvBTH^dqb%!kYt z!AqVoBnc${1m)c<2|~5(eDg^-M650XqbzEQ)y-DEH{VDsHSpu9d6byLm#fex=v->< z5>pa&Q!Q>^iSTBPYgYaI??N%fYMxMjDT9`xEKBk&JRxMHEp%-#TmAJy6J1XZ*h&Dc zJ?dVjL+hI#5&Bg`l{@cbP04XON{pUL#rsngk76xE#cQpK{&;%gf|wyxuG(N$?Jv_L zec~bcuI}0lMkrc#_quC@Fe!6koT1xCmSHDbQI*xYyNQ;cYGSgSN$-+hR z!N!|qEs~uezndRLRp!oU&DLn+me2yE!8P}(>%R!Z&LbN5ea!JzNk?F^ZVd&;SkwEA zAysv%l<+jEanfGRR>;2amb>%!7&~Zb=6jia(eRe=ZwQ?uF`gy^&6VbN`zjtu>#O(; z9L(lX4o34XcWB;))qMnL_ziz|@VA-2ZGJ_Z1r`|IWg8G?@h*Yq1S|QY zkN=%;`N3TE-udQQyFrunOjM!Ft3IAV6%z}e!``cu8FezF{Z`RQ2yn@0tTu(sImNEf zqaObLKSi1`zDdoa=|xz3yrABdT{P4Rl_>jr6GC@&4?SQNYK{QXbwldKkKYi$SLL}( zk;Jsoq{;Xq6CIHSvh;@jl04ud=`-r$8yAY}ySCp6&5EE>g7fQw^UGnw8r7b{?e<#d z)Jm+T+9$Ums_lTQZcn<`>)mW3I4}~CC9n<5-({K*OYY|m`R@h{e%_yM8vGDwI_M1? z6})a51Agof5`+k=&cN$D^{XrQTLwR!ZyZS^#UNV1_qPl}1-l;pspxD1IS&ha&5)sB2*gELtRJGIoQA zefk?yG1fjP85?75?cis=)O6yPo_s*)i_wOz&4X%|iGH-O6c!M=e!^XufnXq0>mEjp8e0hJRsV~g1A&#x&FwX5h zo<_K>;)08K?7nLaQOqE|^me=&~y9`#!=Y-CnEX8tC#SZ;R z)5db-sprjN@U&l(80$bsAV4dA)v-mi&n`iCIE_>HAYdZOPjV?>XMP#xy@%AdsV&em z=OYb0)<*1_odO{DV->EZ$nZqB4)%>4KXLC8ThI|$P8XP8Io!uitlA_>|GxOD;P}86 zio{=oJd*ClUk*+TbjZbXJXt3f+k>va6LRr5?QN2aUj;J)cge;5!AXIwaUG!!v6x@doDU*lic*eXE(_d4cn)oNpjDerf;*8x992GoaC)t-{vN7v$!=X z$Z-?^J|esG5(Vm!Ir91Bj%%Es+Hny+E7&e6avOskph#GH0eQb#3|v6J{_uI(x~wi| z(UmCGHKG;#@ZY0}WS6YeBgupcIm{3>Gb>`1?prC4V6I9NrzMm{OF*sqqdhlhN?L74Imhru1 zh1Kpbnw=zKT;=f{h<>%zJ$EPRk?nnvt6U=4HFkiLOk2v+Y_a7Alcb=nVNUOa9X~npp6l&|yL2RdN-TtBbkPZu+&^ z>Yq#iAdV0&oaf#5+^*r z%Hi8dE+`IM8E1V~TDv2%DhmZN%6*1|P}@#JmT`h9_LUI5m0o*gmY(ky>5}`gN+K44 zHGWHn!5UpZT>`N;=x@RtRlSeqW#H$$NIgmWD^Dc-Q0mEF-{48l*e7*=XACP-1=`={ z_PW%q@g}zmQ@8QM+`{TwUwq&%++LKryPgH_YGo zpDwXYjHA>VdDaArH6|jjx z4UZ%g4QxOXKnbYmFGg)CWCJ3R#0^O<*G;rqAJu}jK4`U7DgqY81ZWZkd014e{A{$8 z4hCz`RDwqL|2;EzcN4_^{(QK5Z|=;U=b1C-oH-Af&`1>t!J9cW$W20F_lRhc*a^7G zEI;SuWP7lDdan@G?fYlSJTNJ0B5O}p;+XgKWc-~}CgZZF7N8-J*gx9E>t#arkjUE~ zM&I_4NqL#Kys?UXX6{Pbc=_Z>FW>nGFB{DFanbJ+WWrWZB$&w=+6gjCx9}>K>qZ*Y zj)qsPinC?1Cii?3$Dv>QC4Ae4=~{Uco3Zj3(fzWh9lX`GaM=S+>oCC^Q-Y5o4W$K1k(TvdA7=m=oxk#u+sHhfKD|itKWI^hE zE-O1NRMV*6wwbr7>lVmcyZPpp8Xy^wfL_xel2E;5R6`S(G#znK3CApzb!B|6_3O&0 zT-yDUG>%b**m0p*KHPbF#5hD$kd!ZZoJ+)a=IkM>a6#GdC8rskk<1|&ad;;-p?VZI z1EiAmm+o+L%@Jup1g8X#j?_j##JetR$>~s+iDGqUAF_a1#0n)3zF7y9)&~)RwMd;0 zI2py^S%;IGorB|;!Y4%5lpOpDXvXU|g6H=0M{Upc6H>j499Rh@Jw*W$(HD^_P6ox- zA)rJl9Zwqh7HT$~EE>q6*MBW_2@8z=`B&kxsrJrMy9>l6p2B|eNfHw%Ml<#YP}kO) ze0U{nvw_T43 zYcz-QK(spUIbacu@Nw(73xE}Efq2lHP2sj~1f0AoqjIxgW8O511;LUmd zU!KWIVVA18JqlL&{1GdY7QN!MXtUFz`}oq7@d!`4ZKlqlJ&O_gJX(y_1Fn2c79zez zg(_*dS2D9(FJ2&428s3ooZ)kOFSN8Q>pgq-k{^c0JxPV(agXz>&Y>m=wfTLiQGY9X z*z&z={_$}8$ndzwbmoU8bH~dv%%V@+6?u}JE&RbWM~IK3W3?_0=Mh$Zr~MW3Y)t6I zcTdG$3?gt17RE2;L4r-y%?qm=E|Aeml|#-V9s!1|oUXE4LsNX}VI1?>9U1e&fr~)3 zEjdST`v9@AENvMA_0%Jd%-F~JXwC`8L3MtC%(MNh%wl)h0J|Sh1zlJcFUzM;4K_qN z!fDLfq>{j+cEw(7!=>uq1;l>Iqkh9(I+$|+a!`(Ia}G-IG;7`=tAh2|p@vbjur76J z06COmCHMKoFU0AC8AE$%n@lCU9U^+Qjk`#fWLAoJp)m)NRI2GVSd!RkD28Iat3Je7 zx^k|Q&}m$z>ABPeWHRT2DhG9^cH~xe-SD1NG);UhySX;K;%GK6B4yU zLNvcv5|ytB26mNQhf@23!pyY~@W+x1!sB)TEv$v`xJCh+mp9SiO_C<-<5l_Vq#O_N z4lS!P^*9f~2FV&OZm!jZU#o+371}>4!aTk#0Zm?u;KeAS$dkk_$K$c+LYg&U&VP7m zwlN7$FvTsKV+;X-f3%aqL8Um!E>OuId?>7HEDz~2G7|`o2S4)+jv94xPkU2czHEr6 zDt~k1xm$bsXWZXI5Cg(6hi7nRpJq%EgniO>9hD=*u47E&92EJ{ zqqK+ygDRzC*dm&Z9-NBI{2n4SBV^gYXw58?I9CXkWIcYp9Q&TSoPn9eiRCvSS9&zT z$d$$;SDI2X`%h81(i5NI@}peKmAdFmNis=(6@EonH>`B@9r4`b7oFt3ba^KVFu93w zqH%zMIv#X(kK$SN_qOUC_G>w;xs086HD@QQa|TxaBd!kpaa@YxSLFiUU!dP7)@g29 zUJi0zA`X%=gvl;-bN0(ZDZW5^uZ^5$o8Hn*r^CuiZzT$vN4<#bOJuoaIaL+feObBm zcwWyQzi{kuxTKnHI^ABUdps!8(~UnAckAD5kpbu>R;&A*ks>@YC%!&_Lq^%du=mh} z6;)0={^(H=^H~N)dV);!bicZYeyq;-tUgc*?dhq*M9$vLpeV5)jgCcRfa08&&RFQz zjK#-NA7kMtYtK7U3zr3~n)pVpa@kDJL^~d4Aqico_z48lV7Yph{)@0yECA7#$8eY! zFmEjWWa(R+v9urJbI?7CX6i-FvgtDv{A>B*a}(qHMF=Z)YkWKzi$(`V#T^igf+*{q zN67HdtZoRoE@Qb3?U@H*Abo7aeRE}W~lZ>K2&gM&9_#pSh-Ie%4 zTy$?MaH0y%UcyTBuj4e`6TIdbf8LDhVnQ7f2lSO`x&; zIY#&Q3>VI*nHMLo#WI8Wl zod!%g9KpA>=2K6lHNWb#|5I!JUTM8(I-I06j}t#6JI*?Jt#>Bvrz3Qg8(n$Uo*Hqs zP&$dBJF~|$Hcv{ALl^#LYf=WKTG;PzH;7%67Q$gn%T_;KFACsp739N+)4>>SmnQ*g zAbJ<|Ms%*%p98kkRScFH8$t8zq6Uy)$*!o{upb1fk(SuxVes!%D z6tSS&XotU~iS?+0(wh7>b)fIRa2i@-3famAf23FsHTXO=J|`(IcdVT|mOyyr zBT8ofmoKa3%QU`(^vr=DI`HJ4C#B~y2y}-HVc>mHC(t8G7X6o^GNq{Z=#K24Ir~|f zNEL)ot{RTFkMcAbsh{Jl3dcn}W}%+)z;^Y++tOXgq(_O|p96XV5<3{yuPzthXjPAJ z7%t+u-}C8_?KBDf0*q(X((_2>ge*Hz?5Bv|kbkJB@zmWMPnsTS!cj972ZeO>t6Lfz z+HnZcIuBw5STjHr7#3uY~3$uLpSm2ny7v#f8f_e1LIR`q->uUhfJhw z84s1|)Q4sBMZAktw%=5i$ndEXdrf6Cs7%P_srtS_P1N_t)Mea>=>v-7>s>8zoB#A% zSIY!Ggn`_nF6eC0ygVq}Xl3obFtpCcpGF*YP0IDcFsXh>% zvS~HvW{A)rGS1{D4=6z3bwX0~JpKnT6B@gj^LPlt<_Tiu%*0M3wkJtZp-V5f1}*&_ zW{rs1$HgH+RHCdZ2wvMa;P=3!s@q9w>38U#&qDn5YJC)cz1ahQ9YZh@!CzWH@)Ohn zJbJrbNHgE~v+KE@wEr5kBU44`XV#gFHLTV^R_=Z4fV?jDS%K>OHozVC`l_e^ zjdI{JJHdhWJp|_%`g>Vg2)tZsAlhcKv=$zeV+3E;AT{LoF1RP6?)5#&W7$~+2F#xX zP5^VCfcYL(jpJpJ4Q{ux#=HqXt;)_aQ2uTBK-AT<{Sv@I%%2mBwB#s>js)89ET^n9 zVtx6`Gm*X&>Lp5}N7EP@ErJ%+kJ>}|$!acMFCn3?Adf*RZQ;N{zeISL&q+hJt z8K#6GQbN+3rrWo_FNaD87(xPLG7fg9obg}aH-k3Ne9a=)LpDJV8NGjJm-+f)`MT#Q z{1n)CCc30f>e+C*>6BiwKceV1Waf4&vqTgvqNnsYZ|^xsNm?p_KfhHAfV0plKfh>9 z0xqlMUHKQpoxhg6YR^$L=5F+$L?dSYr7rc4?!y@M`P7SL z2m|a^Y1?mZ`Ak#|Y{jl&1rO+7*+Hye8^1-?i-)+Wn{Pwk0q1)`HybSD6d%rZuO`@_ zJ(|Dkf*yWX=cLvJ`|}|F$byOb&FH$IkB8uI)A)6@1V?i7^3)tmk{2p&2*EV$Y@VBg z8T!pFx1xXelJ2kF$QyO^R;hWU6_l+Vm1MyW*lUNjwDC7n9+E)-(+k}tpdRS>RO<_t zWMBCdyWnlJw9UJ0EtA}!e;w*Wl|Jf*U|=AYKZaeZd6y=StbqmZ8H_)hJIAui{`q^x zZ<#v$H-V8vR3{+9r=lC^L)X-0>FQs8Ao*E*R9+*K61q;>QxLa0ZUUJ5L`c6K^#*e$ z306qD<`3B-T~QZYsBOz5`el~_`?8&m6vHx14w+N+b9x!7m%geI&p^4=>p^+t0Bx+# zmbZ`Jh#;t5ra`S8-pN}TS@kFx>>6jXaF2HIfi5vjlu1@A^~W-;5u-!b1z0fG$b2)k z8?%)%Va}D<~NAR;WrwEaN_bv_hOi3dTi-iyZ*r8`)_QXCQ3z1XEq&TdqrYeF)~- zr?DN%yg1fDNz@fvrb3I?$Y45pXlcy)fX#(;?TFUe)@e>N(WG(obj)a5Yhq)bb-#?c z9%E}wY^2llYdsa#n%)xGj;f8X2`rA z!6QC&KwEOc{p!%(Xj}SJFMVPN*qrs6OA&wL3~cd{XGA5Y>m1tM*|Dx5EVYrgm?Z`z-gFYe@tFLa*v zR$fR%y7qe|=^J^fDLr1yiGnt#bZK+S{@zv7X;IXi^5%QreQkm3Bd()dakTktt}$FW zT+_I&gz|)R zX~PWR$fwAk>;}o>4;PAGTa~;Y6cle~kNlya32*fleuL`fvdo~m#k)$MiEfgVLUm{t z8V4eBmNU^%txOL-Xg0}=tG9OY)sDm?zapvfHQ7vD$l7b=L%;f842?y4HkX>|Yp6Dx z^w3(p8prt6l)ZACi*y;^5e(ON@YRTle?+)5I(bt782pQIhbLIuVbQiIJ*?6u??UW^W8j6cKhlDHS+(UT6I!{q(i|i#u zp%(?Ya5^aLqtqu`hhLrlIxWt@J==a>?}gXYin{<2Mxwi6nO3f4$n#LVZ#2pwO+$Z~Me?8F7n~ z57I+QFF;@RDqlfZQz?9U=4(uvIFGPpIw2bP?XiXFw-8M9M?+93D4pdm>8xL6{1t4G z->tPPe>d3RL}+hlG-9{)2PFx6C(b8&3g@A9Lsc?&F|G)D>OLtyvr3krH)mTcDMHWN zRna{IbE?t331-`JkT1bc#Q5y&uU?BJt{rVPx@kHFKRd=DF3` zQ%=K^4lTH@*H)a$o2gEQVuWiz{FqWPlGHrUc>@f@p}sAczg0C%jVS8Y%VwtfmVUw> z$x#x1cH%ix=~Z@$-qRdTSokxBtSnLW2WfyBM4;MZ_!wz-&lw^=T~gm8Gp598=z(#Z zDG@Hk?grCh{A?nF>t7&r%)Oj=MCh1E8PUn?2_G4~#YaYd^2f%? zKV|x44H~+jQ>KrPrGKmbL>ZBi)EE7(lEz&kE*4$2ejRdxk%D)1;={muH|Hdhl4SQG zS;sxVaZ8etxs1u9;aDLJ-m?+TV<~Z!+lp5!DMsYASK*{(i9F}J=i~51oPsz969wY( z#phwYf2R<;;~gW!77{-y#Qx={lok_W!_NAcNN?9+0mZ(Y6c`3CIUYd`@`R-DERS(x zh2#cLEnp!>k#N(iT_U4$*udxLQH;K%0)1p|Y5svP(Z<$H1bn*TK5%b?%ivcQ!h(dP zeK?cywBP1LnLo}s6$}xV%JK4)FLMK&Zgd;>Z)l7lr*!}9Y35XC% zFEAZYOMb;3sOL`2Wx%7|{$J)M3NiQ`)*n|j)zNhVD@ze2;(Wm=W!odsQj(;UVQX&`6u12kGgmD=|@gBpQ3c+=Brgp)NO`4VXk zxXzjb)N$B@dY5p36!AI)S8PUc4&KVe1upZsX7Jnaz{uGOQmVLj#@ z`FZ>}SJcE)=FAz{(f2d)dem`Pw<$LIuT;zEPfxNo$r@Fqdf1Y!O|n+ib@G>)(qn8# zfD@6j*QLh)Ui)_HgqDOU|M}S{1l0?^3DpREu`G2$C^yBge(Dj+p>DfF4Qi)NsBezr zsNAsXQk$mQ0trxU(C;pXd)ItpjAewX^;X|QvM3N&$j^NF86odi3Ee8ZoTwNgaMDP~ zFnj7Wz_@)uVQ8(iszlgO*3{PzeHxbhf8d=MqutS0)XA>Y>>1xZ*ioobZ%+`R(UjrPJf#Dx(afKoT8gJcaM;OG!nct&IYM z3BC9}If};#A})Axx*ficLxE8T4c~{R!y4%c2hN)RQ^mhznF32M9$`ciVmzFGY1-5`BU~s zzv}x6a4Na>3sZz#+nmE5z|NU`!Z5Y@)klk??2!g2zhRF)xnBmnO-)n+%8#igf>4UB z8rm0mDTRJ@sQoLU5M+Hl57nWEYN-s>7aWR6M8d};BH=B3#mG)wE~j>nu`+yw(UBeM zo*lA7wW_!%N*>Z3=T#U!_YueV1O9PX2aFlX>FcZXykswQm1FBRc=zG37`i?1 zPfnrLl7}OzI5F4w-FpthN#GCKInaSw=;wVP%FgWqE1A(6^FCwq!%)2@pFXbdmZ3UV zhV9Snz|mm?nS64CPV4hxTrplUx7&Im5LLosB_L>l$Lcwxp( zMGBvuD2q=uRS3!8sjJnG0_M$2;GJ1 zm)6@`{^ap+XlW8Y1G-e&KlP@6&SAR$y44^%3+LwPp`|{OyH#J4{Egg11wr(N{Nj4m z@hZ@*#*oxLBy+m2jEElMUw@CCfYwbYzeBBKPa5+&Qlp&wPTI!FTo*gg5U^HDj^{BD zX+flzE_L*ftf~%`#71GXdwX;6j7LF%(ZmLkhB2Moqf+tsEQ$cbEzbj66a z#TFI9eAJM;)R({))A~6Lwd*CbwN-xUSVDnHtq{?$Xf0!;)1^nq+Nw)2-WR&nK)%xy z00yLtjz`U}{Gvxs^?auXZ#rtIw;bhrcL9`Zr(G*k5`0E}L0ITebCf=vrf`ti25B79 z0zLK26HIA-2Pb2l1z<77#pb*n{y zln>LzG+SMVGb}j_g~Xn429Fh8;@~jQrM`KN#UpsIl#NIHH(x?=8k@&}7r>@JteD_k z?!JLxp&F!zNWwT~{pZKxB^;%YY2E59UTUNx>i`_t)U9NfGR4SzNBmv<3q21_u$7Gp zHY2!%OT7If4YoJyu6*0o#Tt?$JB(Rny`d@AK937=#j)A#<&cUAfuYX2K8<;2EsG}F zJZ%c5mpcqA*3=%g-hx2uB23TsW;(|@6?3#>0Ii4RvuZSbwwyMArQ6T8YXlI2Ps^`E zNFQ4+;L?JdVi7|~3&la|n8sKu=|7aBfQntjK3>i7G4gO&cLMxtqx@RG%h0~jArFnn&*I#KWBS0XiVPjR7H36LSs_4 z{G)w{OM`cM`XOj#{H`i2;s{f{6#4opO(ckuZZ;PeA$Ix@1|3cKkUlajD!o$mxd*=n zA^}KN(?2{Mwzdc=W5Bf1ckkfUraro9-?xiQwzZdE%jYQJYEa{t8c$uLjyHW1zv_#- z#t{V?4T(oaZL<&T`zqxAI}Yv=)$1FM8&ys(?V_ep+k-8h_zt@H`Km8gzIm-?0W@7I zAyIu<`H5v`LXR8+_L_XbMxUHt@-pxVDh-BM=8XJ3eMD~0blcyI%4!P7TNNGFtgg(N z9`CAOFyNzxHhmdig~%*?p11lSFNl0bV>*;~*KyojmwNc4Q*C$w4r&%QHDXL+53mxu z?5XYo>*_Alg%fA`vjSZKZ+MA2JVq_~3#cBmkr4umW7IvQ&&=u&5lH{P~!@h-Uf4g$<|XWrq#J*ST8^i&YN zg!Z|kGMmEgDuyKNEh`M=$#`@s@3AjsJbe6tmzU=m52TF;n*QYu?(oEmy^KCR4s;h1 zlbiTHY8Ldj^bX}&QD>j2K7wG3?i}i#EXVJ+C~Ys?s8y6SlVK)q3WDvKqNS?hj|%48 ztIm%bw@65z5CkCE+p1&`;^u2;UF!|}dRGa#%R86>h+Z)H&&Vxh{el`|W@_jCC-UA~J&G}xze{yK z@2XXllaZ4cIG-(}B}Xk_oY*-!FpCiC8}HLjjb&KMARVJvVn}4kI^B^-Jy%N4&UMNf zK-u5OF$)xwwifRwD4D$+jW@L<<7*@tNqkdsFC(VLH60Hhd7SwxIl!Ms{wz-$cN@eI**u$b z<8{mS9MOQLq~Y7m^TBT#+yAC}IhM&2d_zz1y_M@$IpmNLnJ;&7`p4uxrEApCYwPZI za`>kUy{Wxj0_$9&GeaZr;WE>_zlw0|&1;1f*{}X0ceF$WK9%|(lViQ`N9N5e^JcB2 zrkaw0-d#c~xIpq!Y=86mK55U_Dl%IUU1CI}5?rrHeMAzYm{j7^E6Jz&zII$xUK?pQ znbbC&?yVO0M62g{Nk0*Ym2LdBowNm*h}at zpz(A}BnYG6Yw9B8%BAY*XSKzN=)dH9n%dliix>=qfY!|)xd^sF(R{2%HUccuR;X0& z!Kb?zTM^HTF^RmrmA4`kx{*6T2Nm{OH#v&beH{e4)8h9tQR^sFkNm(WweMEX(1VC4 zw5U0Q8o^gg?wRb%!SBntbbrlK92IQPg8dl$M7n`}4cnuQ(SQKp&khSzw<$~Ru;lV? zj~QrL#D^(ZUOh>&!O0w_hSlIXGEJgc1PHj)U9!aVGH&y$ccCF!@7pRX!nidRvLmMx zp8dC!WKh|}6`I-oqycl8TE*sv`zea{hJv&>f5I>toWuXu2Sw)$t zB6D^A!0Ok_&XziISLmE-e6*Tjq}nx|{2eJ%S`_e96I2yc0(NUtZ~il~UJMEAcmzqM zb%Nn$kSr+dY3}rXHlN)fpIs;K^K9)SwOu6f%j)~^^af4{XwqvY{UfhOB zN4wHVpK9s&4RUDo{wEQr%`SQT;{~pg$B!=%{oi443rm}bTi9tnIcv!!&RH_rViJ2m z+fm@)*e8FditHO*I+5hCvkC2=xBHR~8itJq@|C)Q!WZWYhAim$VZ7t|FmR35M- z3`quA)vqbgS~FgVm)vA)O}2c#W-`B}+18pV`md|?ub)-42?*e|+ zOPGz7G*V|Mw*+67PxGe`T{`FnhtmDweuo5aamNJ)3LmTk|iw1%dQR1JTiFm%x#TaUbp;FrVS7agK1VPnE zOJ&>$6L`A_!t14X>df6;aP+#*zoXA)q|^^|C9~B9+;xex!L6QqopXtpZ~jy@Uhvj# zyZO-lB*0=Z(rPY`#u?e zyGq92``osqrmm#Sg6mesbM`tT*fd+U(q^G)MB0Jhu=mtiQVu=$60$**UY{7vDWBFK z?(HhfUV;Oh?o#v(-vaK~yLm3qlLxxSHzA&;QZ)bnSCS{WgEtcJM33hKt&9t0B^0UI zw=uMaiq>tQPcX)DnwSvPAO46BB)kxJy5jVA|5B4%e zgG000X3i+hw&RLsmiEz;*M`7&+dkw9-(=%=Q5xLNc8>v|-CrGf=WB6^#w6ZfDwAkq z;b?RRs{kM&lw;Ub^Y6i1i}jrY&Q#}$ z7?P>>RyUG_bH+zz_=zEk^(^5;+4QjBxZ5LpYqET{HuBjtExpvq_pa!|I0!#Zf)sxF zEO~F*OAAB>zsu+@;c9l5|6dDWARd5!#_tcIh>)PqU~Ggc`?K7|iNU`A!8@5K0hT-f z$|-5(M}%0f_|-#wM2H1N!WnJ62(b=mNIRf1f2D<3htwH=z&vMY@TXv~K|-O3LpHiE zfy*5On#muV!DB@RkM>j+gAT`BRIJc<7XfNW(vxuGSFx)qEJNbG=WSW#XXxT)0F~ZV zJ9rVwYrNc*N^-+S{`wv?UF98prvzKOv(dNX&H3~8n=!za)sL0!^RIp#&YX9EFb6sN zo78#2!&Q*2bR}zG;(HKMt!na}INO|}K0i!5yJQ&`ho+^g(eFAlRV-`oeL)9!#RCNp z!vZmX5q2IsTM`6E15!^+1Bp)eNrYLWA)p@rFl@~qY0V#P%}=kJKh~O`Va*?J&Ci}h zVK^z=OITUsjPq^C&alXpcLi^1C34gOm%r?Gt-QFy*TvjvmRhvawLDUy+V`HyqxiFMMdgv}<76riy2{EiB51#r@oLH0QTau$$|$W{ zVnIt~8fsE>Wd~KYu8g)kdXui~&Qn!3KUUdfU0Iukn>H0ECkIi`xKPE`72pAJAe$g` z;jd5>>b=~weN8m|w>n)zlo9cRZSp&;dHlyMKv$?%wl=>ScL|d0Ku7!cZ12f?Y=*|~ z1%5Hk7O`Kj*_{>W47?-a1veNohQfnKsY0lU=G;MXnR=i1R{w(XGuH@C_1;s%uc}5z zM}X@N{s6Sj_L@IS`BUWIb;X0!)LnRM#u*H2|(e8hF z<{NbN-joUMQaV?gyI%Rd!@eJmy6Tlz~Y)OeHs&&%X=u0uUZEBS_v2A4tloA5@V9Ksugwqb6b z+W&R9{bnkPHy@_=sHo%Z-W6RGt7wJ#D~U9$z^N!JTG6TN8MW(cQIiY!GKv!eXW9Ll zG2#{~axfc|cDQf`eHXvh-Kt~fVFIa195o|7F`K`{9vDo3b2V32j9^ez-vL0(^Dr*M zf}h55*z;)|fnO`y`;@K#C}%^UrI2IQ`*(OOJ-O`!AKa~WC8Auc|Cab8H9~z1c~Gd2 z3pF&LuUfBZE6fOHs!=13I>5ueDh&a4DC0#224>?wdjJ0kqxTnvkQM^gE*>t*Ic`US?{8C5M| z&@Lj!_!CVh21t;Zrtkm)TUB(ZZdQSPz|fE!a+SuJk0_eg#DN1Hwz011)b#eI}+Y^iImcgh>~gVKkrH&){ybVE zBnHRl`A;D+M%APRYtCZT@R7#M282ay?brgLt7r`6S(o_pX7>}0I(3?uf@1rZqJ@bN z-hwYPi#=rtnkZ~vP-KvxSLL+GUM0tAl)%YQA_ong(s<>D*kR~!Z!)}9z}k!B9DFO= zEq1;11qYS&(i?nKwx1^aCGKlH)@;s~aN;~gG`ob5)xpoCA>hX|O4a2V)s#ABYQ^MvU%Kzk~mnCxP+sm%GHR&S?f{ zzMBR4hGe>ck{jyUhG_j@elO0WkaCWx*GQHowyX!+3*BQJDyp57{UDYABpeGL5zJ}-SV+YrT$stYQ$RSt+-Rqmge8hbFL(7oz7 z`^LIH-fApFSji4Uc6lRzdGFc8FTj;`&@e?P&S>s-$2r8N$Z17BxZRr9Dw}0!3QIsc z!^WzGV;j}D-2m4P!`)J;y<2lgV1gZxvybmM9IpCCYAJJ<#N^GdSvk^`d%Mv|46 z5*S{!a*;4?fwME`uUOH)YUK*iE?Nw68{33^qny$B6Hqikk|C)ky`vak3{-5zW_uc@oAVRTGdcoAX6Qp1ZcbOy`k!DeQRt__deI6rCxVkw=$XIUy(uohStq#YU_)%#IKHFNk;8F7pXfRjX0+3 zDZPm3ABa5Go|J7}l`YWZSHBSG=OssEW@%NN9=w(A-@pJDW9hb2&qn)9FzDF-xB#3Y z3%4++r(ZRa6Af$9com>-yP3Zq34U~5{5JXr@q&yy8&yo2LS?}lvt9G4j(HlctJ|rb z|2Nx>_9w$I2=xF(>xxK}@)%2G=D33K-lO9b%}QM9S@o9p?jJ}(MKZurcOH*p8tuQw z|7~bfu*oPed5EVy1PL4>ap3v}yZQuh=5<7LMlrXwG{IzP5`&(e ziLut9cMKjFSR`Ba^Jh5bT5E)Y^Rp@KycF%_K#H|h=)llcq4?M+nqOmG;aSwsjW=7l z#ANoV_geJ^+3$9}K~4y7)ZgSJ_onrU*DO>5VjxaoMPtWM?T?v{&%Raovt;F#8g{EE z*r0`o4-6OW(1^hwL;7x!tkFH{9?7T4+jfs=(Zmy-3wU*W8ZpG0+rH~(jC7yCE%t*# zfZN-O>@OkazbABf*}%-ZSjU;UD=OmhLhb=G?F0IK(^mt;Ro_=DFJTUcAukuisb-=< zEQ^Ifwu+ZoxhvY;!D-8&QP9XWIi`aJ(OPvjX>lWU0z&Z5E*HN28w9pPYh_rf5QlhO zqxM-1(xR-PST1|>x1$>zXZx&&ghVfkh)+XR($1zM0}A7b#L(T;H6YZWvAD3gu+N@{ zq)lZ-sC$S%$@$_rAbLi!FR_j#_+nPU>pHJ_GA1&QXj$lHn*u zAIYR@E20#kk_vm2;CD)h#*lW-aZZXIon-jg(iGM5S1`Ul$vhXWhDhvaA4svp_hmk~ zr&}#Np;wGK@tLkGh`GX&bEV*SmyzA)dR@jWkQ$qaDP!PCWkj8!M50co%cMs_PWw*f z3uQ_RL`F2^bPsnb>5QND!_~8hQ@T^>+p7reErpFJ=1xT-$qK&f=}x6r2CUz{l|lTi za0ac_64X=Qks<1k<)jSgF^WT$z27Vlu#Y)p@e9cwLrP0@$TF%;Ce!04Qxa8+oph}FahH8zK1hyzApT&o<8-O9j7Qm@Pj07l zs6#R`CVEO}!PRR&>yc07f&a~4%=h*==$l1&{S6TxEBMlg_=^!r(O6(&%oTCH(zzB7 zN7-&Lf=j($Yh0gMtlD*kvIOqHqY)GbGx7sFJ4ibOQ4hL1koK5YkU> zjP=E{Nozg87rB(z=}XBkk=CCf9l4tGLORmlbY$(x9cg$g+7X9r5R}1D?VEdIE$%NZ zhBRh@<`86sHsjD}#~t1lmo7b9m)<_8#dQ=p0mF(I&85alRie3o3Sdu)#3}#w9_9aT zL8N@ZKu;0gvJRNCbhi`|BQrJHk=6t4vCwgE>ZEAsxI;v(q6IQ<>Q5w9RwScM#PW?4 z+h&SI3W2+r%2PD)|7$*<-yIvB_W6_&@lw=tzAhl}jWb^lY>mxV&(_ahWngdf{Q`T^ z3#Lr>Aqsm(rI9^7@*D(~9N3d_b;k3Y9xa+9Ei&_!pIE3;`ycH&dfjFO1R_+!w?}~T z7;3b1gs|)p9}Arkvn=r+Rb=lQ(^%SXj{W85&)VDOJAZqkf9o;q<>XJKRrIb?g|bz6 z1_)$Bi4VB-t2YTlFQ^Nk{@JVW=bD@3kOZCV271w|ZmX9e+NJidmiq=3`UUDc6f zNxMa2ngmxSd2nBofR6m>3-Z6PN-{{wvAgYkS2_;U~zPzsr3 z_2WZv1th2lNy^=yLU|zx;8gCymt^Bjg2)rMLAh+cDO&p>)gr(;4uW!1ZJhe#rr9~8 zt=y5TbJFW_N834Lt=#n0IT>}iV^`;luge{`Iw!j>_fowvkJlTsmf#(;6QVUspbV+n zwFMGTVrWqJA2v`oZfL1Hj}ud$okt6Z&`k?c>^xeKYUj~{G&_$Lj9i^JTI$YAm%8)D zO5J(mr0%>+b=`(6qqkD@6BHdg^RLZ^@DOz=4?0rM{tmv%h`>fU#`4*g*&TbNv@oLYsr#5Aw6qidSKjU zHs6)OusblI@{X}cKUl#1>^oB9@9+h`aR>TUE+6X(^rM3Ki9U(l-8XZ&Z^fUX95(~n z@E>@g;~(GwOJ<%h>Xr}~iRxLi&1rrvn$wT^vXc?IpIoa>ohzZ2+?AZEI(Jcz+_Hss z#g`402-kxp!gc>(S3fz)pSK-Pv-KV* zaauGt#`Gy_dn=gY)HLwp{SE#4&6Lk$^y^hG^jZUj@R*g+B8F>fyre_Tk>k9^=gEq9 zc!>J`qFn`xniQpjZ9ej*D&{mu%8IEZb+g&_ffnTRlj(uPe+BTX>H- z_K3Ro`{nD=4M6Cf|80)ddzRFz_fHl;gmCCV>ZsXwP;Uitppgs#{+S!EmSg(oH#(a< z)JsnSb2&|5Z8?;XUSQGv6?)oj_^{VzKjFt z!ceG9ZNx#^jrRw)M@5Dh^Xw|)l@FU;8 z^&=Jb7Bz-K^73Zy&{cKZ)hm~%u(hg^N0Sg*Rl>9N%W8i8>ReLoR;(&kE#q$yIE5r@ zfwgJ{w@^sG)dlftk$xq=_NseKt}=NAWgygmAB%`2Q;Etw9nW$()sdzZQH^eWJp&ZV zug0^0%xEVAb;!HQ2c)Zol48c>^>oGr66CxNIY8K;exg5mOikbpNx|kKM`@FRTn8`d z$tolu)<36z8D5>67@9t^E-!I)?x4E7L4@oaOuWv)xcL^}^0`S?UefB^w;8#p-)J*lo1jyQo#YrfB#pF~;7 z*8H=37WGBxNkti*>XGV?1#}FZ>K_rgn$ECnu=Zg%ljRs7K@d(Jn%cBG(JJy-MLv60 z3az)6CR;_2LrB@lkZRHC>1kFGgphfYE-w5ttm$K|qVYlkX?Nd|vJsG_&@GA&MdDV5sNZwlB+swnoU(rpIih?}TMb=b`#9-ldr6+^Ww7j#3WfuXytVs_Lnt2kw5 z=>V%Z)hbT2ibq<-qt!t$#!UHFIv_M{k-8A5wbs1AGJI_VsKZ*bfyeXLwDOA)dmzbL zvzbRQnziN?9;`Ku`ge!^6$@x<&3^rRK>r@pzis;W5Wi~7U&iW!QY;;Li0#CB@Ter$ zbja_6qN}Y2lgZL5;MRlP@_LPigEfMuT53Fktz4B?w$vm#PoH^xePR{O)_tUPq)^j@Km=Zm0xR38o!c1N&h9nKx@rte(Tnx>*oypJ6`{0 z>t8v>t8+AZMYd}+d2jBi%4_R}vsh|M$Y9r)4lK}_7s_wVZT!})S;VjU^8n=SY_R%d zz)0G(tQF_~K+}Y5nQ%fwLAOuPJi`Pi_9VMX8ZHEUm6ARIQ&oBlbJJE=Nz3bUN7_}o z!MW*nm9$ylt4en#H^Z*dJtBxzm7cKNY`aR&S?*-JN>5wv6uU~#T<+C&RhzB?msK)< zR_--+m54R1+}U=Obdadbc9rzV%3Zj+Y7P%|xh1$S7Kur!mAgp5x=hP)A=wP%+S8Ia zNpYNLw)9)EK^!QvPEU?j3jJ_M*qiXBepNR}Y`Fa;2Z8(|l{!~U%KfTq&WE7;vv6Yy ziwxFPFIB?=mnR|=FFB-henAe&`94O0e)TB`0X{KYo)j+km2~MG`*jXhk7w)0WZ6ZQ zIp{o;_%=&T8zZUj-b&b2^+!^%;Y}kAU+4tADH*M^HAJ#)e^m;pVM#@{F%lol3%FfM3yUgBIQcV`37vxTs z@CCV3#1J6&>LQ{SD34R{jZBqa#p!~R!{yh6%kiq93qCws#)IDe?Oj}gs}G2IUU^rE zYx4`F&UyJce!Y`h3raTV%rEQAezo3w6xH`w+Zf%XPM$N^I<|eRbH#eWk2c}n3LkIzFX%rZJ;62>XVyc@3OV45YlS&Dy5Y*dX>_z8of%H z_}j1P0I*XzQyFYh2kN9inhb#cUP{&lNFQ|pB7o4jB0G*_MtUN+(gz3q9JJr(USF*s zSw>z4{Us*!E-^uHrM1u>(mh$B&H(&^a)BM6T+cR*A8yo)wti%d<<4;4A zBG{B|Vpqh;haoJ(C!Gjy za`CH1ovsG~!AHVo*_zvL!5Fo(q!C*m#9XKRq$?@*NeL?a?U%~1?dtB<4%$0V6-|Yu@vOGRfW0#TPUk|KWEUz+wFk#@6kO;Y zIx8`2@6vvYJy|;!yX~E5@C~*K-R@Jz)UcIn+VtbtU{erB`m1UD{Q4xrrQ} z&fs4X`2<}%=d1FC;qnE3b(QA%yZFqikr`u-ts0rY%B>m}%g#hCF_P42l8#hTd}yoA zo-i=a9hk-d+7pxPxjr#XpO`#wVoKR%lq3_k3k+qQ#Y@3a6E%*?=?HI>Aq;Pn;q$8? ziP*lF5t z%F0h#>|NS7YnE@ZXVfg;u>7RZ8j)gZnm0Shq!H;@6%EXo~=+~IWf!Vo=jVAs()lgYs#*UQ%cX7FjDt#CRa zlob@76y2T|tdX~I!3XtQyGCwVH7WcqOVs3V^=yOp?x*Q9Vuu21-QOVi8x zBntzj1lIBhHdd=9jY?2+Sdoxzo~g&G5n@=j&>EqKZJozsRi+kNaA?(MdIZEI#kQ=?T!eRKz0iKJ1-*2X?$`__-b$T-AY zSou2<60DL(Khg)-CN%I-0qq&0{{45vzrLiY{@VzwVPx8lnyeI z@bw8m+W9mzv6JtI04+ypLfq>DO$7y&6-l^LDIz@Eu{mYqDz$!-D=<29ny)NfxZPmF?_6zDprV?BL09^r-9$Yrw z<*i-Kr;GbnEz4Mu!dA7?9#r|!tFGTv^8@O$v{t`hKV4UI&1~slJ6f~ozOt0%&p4yY zg8gZy9(`{Rz3VjOopua-;kAr>LKDY%2b!oIkG@1-B(h_EjGH3iZPA zZ#ewLxUMM4!6{mB!VID^AvP&Ra*~c3`kxIIG@;Oh&j5iWF%d8sOUwQdLL}-wF zgdvhM0{d85a#6|EGp@OY$+PsN_fH{rAoLA;G7GtU)-JEXh0-m0V(S z^gUG$AxA1N|5W%Nsbu2B8Q4dvznvMWL`YC7;r)+zzs0yZw?Vn%(kVo>;vjll0Ex|Cv0}0Aj$)3q?V*BZ_H^C{Ma7(th3RyXCo7QB5 zWb%Z6?j~$&? z(4DE8ws%Aep2(-d_j^KDrDGF=;*ijB0Tq&PQirgndWz5nKt%hv(4=%A55SQ#JT04O z>4)2?SxJ1U_rAdS6yp@Yrvb&+=wSxh1fb{v)#HK*>Z5toq-24+ZNny|(9FfRFGc3k zm6g+7exrSyk3x6)LX%SUSGf10n^t}seWoRcI8(Ip)l;LcN**>d1%Smu`Ob97nKjex zy<5bZOQpLtAMu3G**mpcFuTiX#1S!dFoSEDoM+LqHT!nH7zELzkUQfP7dsJY2h`qZ$gz`#?~W6Gq1cnxq0%$f>7d~5*XY;R2)Pt-v{ zy0+yYI$iIP782O#y6kc{10roEs$)O}=435SvKPAp*GRKQ%4GE!HWiQne1V8=2O=(t zPMNGB8lZQs{en_;OQerEW&u=mwcAV!hK5kMIh~maf$4UR%7ly0b0#23Pk?=z_qosF z_We7ndGSR{`)1BcD*wJI+LE{-2h6A)xg2PqI;!rAQrw#H zXVuCp=~}I15)d_IQ&O!I-##*)Bmbo-LqT_(j_DGpsM*qm4%FG1-X%(NNy$?UqIjMA>Sc3JSKy! zhK)ZG7a_F!g6rq)ib`fBi<-iC2V0V}Dqs?BqM5;pj&NX5RfTS{w^|7Co}$&VOYHhK z-o+1E1Op)ZWsPJR+P6&p6vEzLpq55zEOY-UuKiXc$(2dOY-cELibdl4-BMjdzgU+d z6F#a%(;Zqg-HB*gU4O-?#l2b5j(MKdvxf4ejg7k_`aNnyzgGPL=|z60Rj&odJ$Q`v zcs^RaO{}6Fpwnaq6DZ9+agF+kkS4VwnGJcdNs9&ce+T%f4=(QrL&G)*4U1TsN6pZ! zKH$B$wfsU+rwj~7GHl4&`IO9}SlVCqW#5uMm%Jaz@4Z+vF6HNtH^QF$s8{Z#`1?hX z>tee>q!mTsmjhgxZ-WzyUsExphsY9c{z>#Jw^s^3EDG9lHfS|CMCNVBRI z%7Z@ULT_zUb6K`walf=0F9GlCPnpDYt178js(RMisS2D_jhT`ZO_{t}VD zLDv(~kTi%HD=5ILe)$Zhr@!sw(Pei))|hOm_LtU+BIAWJx3>`U5)D&z`L@C4%x3lT1_`<4G7T9G zseeY5P7nwPJ|thdj!4GJl?zy5 zlqQl5G^JQMY4&F`)rHTEWjFHPEeAA9`)B5)dGD5k8`!w2?UJ+9HD_p(rHiu~ba4$* zLHm3Gb8HQ<00a>c2yeffA|>HjRnExe6e-1YUG~9E((5|4QNKu(u^H|0(`LQsii0@cZIk10Sa5piKr(lcbT`ghQBJeR!I%s>i1=q za<7x4Q5cErMR7rYnY@VeFB`IKMdjAJO|}h^tzLIYw_wy8R=#Igizwx39t{mUk6(S9 zDl&QzWJfx0n%fkCa2Y=5q~Zosakx_NAxL6I*VRay%=wCd%s`qEX;I}?;0~60FgPPL zEkgiPaF5fzvIR!WEnm&D>jht!;j*_%jrN1m9Pg8@aq+JsK1_i+-M3f{9rk#iYmM7? z#L```>ILgmZM&L{+tObI-wj*3fcEPu?*dN8pdFbD7Bo^_GaM@J>4 z$&n-eivRV*SXcX*;f>M)Gtc3T(hgN3AmeDM=y9qS3~B4-pII;2m!7fMlc^EG66Al9 z$I|Z&;y4*PG?LN-ZHCs)MZIU4oqHRGa7M96;6b1}$5$w~WA=VdqXBa$HNcz$T)>>u z+lh(l2DZcCP2H}SA1`wQ*EmD&vIPUo9kD{&pqXoYso@# zFZ>(D|A+!)KUwx0IW5qgGg9&%7XP}vCOYq!MmC~EPKD9$M%`*&mpYGy!%SS-U$gfk zN+wMzoQ+FIwDl*c#|C#IIG^^ZL`wu1`r|k!#~U}P-ObGl{M6{}XZMO4=;Eq}JO27y(ZCNEnoy(L*|HKnjg$N_8ZNcnw8 zBT7v~S`9)$SP#jHw;EFU)g)X5J?&Q4KD~<3 z3mFp@l=g9`1@V_}#&*4A4X>AvRmqyMQTig9E)-CBy&yC-rAK;Z>7 zy(9~@pr_^}YGKzdp%>OMaL%%dUoPV%pl#O+&N^vSR(&(>mAbJA+n z8xYV7KvNr0dO_Ih6Ipo>3_^Dpf*}ur;T`^}d`(6Mf*}ni#m>_NLm-K`50DJk4w+rX zDIy5KF!u|4AMAqt!bb`fDrX$bX~3V(S$%5tsO)RkRH%OI+(FmC=f${OxFa+ z*`=JN>E4#jixIjr>;^qCwSrshO}YsWN$VZ@qoW7?vD=|PbT6!i(R>ly7PfTu;5%VU zf8Bm<#{31)9(&XqK!B~Wm>CbX>et^vd))dfO?&9?4SEf0tf>02cRGkrkBi-)F=?%! zip&OStfoD58nlNQJN^E<#u4`{R^Bq4vsig6thIW3SSw(t5o&}20H0#A@PCsZ|4>Bt zG`JD*cj4pgI2^#v>V^REEls$*m2%4yHaD_S2o-`?WKH%G$Lx#<71C=RMX3<#hx)au zbSjLzM$!Mj^v3h-kI)6pu2aw(qmgi<_IUXJq&I%L^jq}CUqA+w`%_cy@RFXSK_B&2 zUn#kolE0hYIP2Sm-e?LvD^h4r(!i}MbfFhVn(L4TZbKUEEdLg1;GwjWNCQnEM8;FV z21diu%&{Xmz`oAzW5prMu_wAk($pj(#V8Q~PckN4nrL02!uPZI=Ot=aGUDdqvHk5> z))X-$M?c4n9oqe($tFK_ina_4b{{g?7G2Q`v|y*P~_cLTu+EHHl%smH&>h6 z!{+vixy|13tfU<GnVahs{avcLWt-blUs>TuZs`;<|@x9oO?*8@b-&YUBDB*T1>`!`02z31r7#e!XisR~=Ua*MnU0 z{@2`}$ySWB%4dF`W8o~8LEd+>%&oM3R*9QW2pq@@P+%;_-X&O#njDEb$2M|cZ|Q3Q-JuXT8h2KM(fYcL zLjmPk|B*J*bkw>oc?`9#sE?4IP1P;E|KX3&X-JH;x8bJSmYp=j%MFz4P>6C+-bAPCFO85LG>^e^jfUIaX!gYU8I5^=ji^M#}KS z+L-?TNIMt!sH$t>&oDz6U|m@-Qa#*F z9^{J2A`k0iUNZTVP8KASKhnt*gf;2pq~zDtI$4}dMs)JZWU`!ObZhCrRQ&4asi}Am zxc-uXGj5(u49a@BQ+Jj zBnzrA$^PG^lc}lrzD}m5BCM0CsaQtR3>GJsC(l}*ht~+KBmwnTKN}c7o%^!!-#d8x zy7CmDTH`-|@c1VT8o$nRsm_v`f!B4G)C^cXJZ?x2Q&aE@@}x~cR3}qYuudmaQ*f(J zrlw#C$uCa9f9eL3Q}E1&)D*k}xPQqMOkFo<3eM1#r>4N_e3`C0wO#+3J7^B9JZI@V zsY!U5JZanYM>?4r{?j^{f`G?#GBx~&PNs%`mrkaJ-=dSL%}_~l5cEIyL~7`N2E4yy z=#}3aH1xBnDGmCqVU>3dLZzRbH+blU>Ol=csd2xlGYl+#p<1RhBo}7fK<}mx>K$r+ zPn`xO9q}wcONi5HX_h(KsPv;1AMHk$C{t7tM3ig081>4)UKVz}k~njOncNvxrME0Yzkmi84>bWz6-U5@R0i)iIkf zUd0*z2&yPHul2Mq!{h5^fkhsCD<2Z4XkY)+A#to=?(Q!2Vu0pG0Kya34{jDf{j%;* zB0fV3Mb4BA-DM|aG8ehy1%bk3Z5`zQ`?Wc(w%V6^5l;LY_}v_a=9+GhD{&8VBAQtu zp{h6)`PO6W9(AZEBa^f(mgqV^>8z{oM7d+6`Kft_TU=j9uF_G5aDQ^#+|fJ+>H(jE zH-2EpHj57r@kX7(3yL9&cAJ-@+Ofo=y=MQGdX5ZjrZS{eu(eXyq$B>iv$6svB!%HICmDiUE zw2IFxqmU|+Y@AlA(2A^Pz-)2H32G))$til9Ra*wbN$cs`V#dwfXwX}Aa3jPM)oQR= z;QNnFM}6;as;)MM#pb(-aB##o$Nk&V#~#%Rr4MiaIltIG{egekx$0ZHiSRyGIqre0 zcM+l%8Sk!;QQ^UEI%Md0XyG4yhA}rjPFr$}3W5V#Z#y#I5M04|`Kt3r(h;hV@4i&YA7b$%Uk$H{Wlna9gSQMgjdt4niio5g+K zc?TBzykv4GNxS5RdVFB)Ru9Qwlm4Cc1ZaoqIO!-9j}q$J^i0q9}<`Akg8*~zUQ^Kjr;^BL+J zOakJh(-{2eAOQ9z<}b!9x7hW{G6(}Mk&>#tmXT{#(&2Sh^EvhA=Oqp9C8wF?StZ#U zn{m#tOT~N+M@68`z4(LqCaUMC(L@Q)C*IK&mg0?BJT-8MdQhS;f52t1K#YU{P==%0 zC?zOOA0{gusB3G1%S^wT!B}{!x*s9tBgIkQRqtP|3o>Fg_Z04`1;K2=w`^TWb!OyL zxmGQtalsH6mwE$b-sT~fzOrUBL4y!E;zYSvW~rpqyjc|?1? zn%_|LyBn42fS^y>L$D`G(cF%VF`dsja&YgPz`eO|S{LqWC7IekF8~*8zwib?F)Uy# zF(8`qRLQ09*-$(&6z%}9Z9tyJEU0-kmV|wehTp|!3H-)l`qPkFAayEUS`d!pPxa6~ zYN-2+EHFK>);^*&W_X9X%LODiWue6u>@V6^gNEiJuY^c$TFV%!Ji50o_iyS^55g?> zQ&}*FxyX}$hexkNO=2?lZ;2K(!9403DO208%b<0czlUr0DX*LC+1h^da>7Z7X9&=F zt_Xi{e883A+`^8EthMZ*MzopRx`J1DjN(&WTTJGx7F0YAOWI0YLz&ksqGIO zigd>_U}lg@#oZPh_N*#cn$)17F^Q@<-ro9pQ(%=O{w z^tsN+PMhodSO$Sr0pcD_nd@+VcEtV0i@ZsM(?P<+<%lYkBmiW2~HP z1?&dx-GH&_Fm{1lNZ=u0h29A(NZ>-36;VL61TiXNLbO)3x;17`JX4|f)KX9Wa!=rx zZ_06Kv%qolb>EaXh|I9rIn^`vI&c1w3v05C>(D9n1U`%4ydKL8^#cqaIzEZqOO@#1 z;(h)sl#%8)*nsIq4<#`%aR>Jt9`(uHm;?h2z=2@6RR`xV*fb=Ei;*1jO^$}#H27`G zGk$q9Ghwvet=tzUXX@fm<6IkKtQTvt{8{PKRC26h{*_nWPE`}936D#Ya;U$mDgH;=f`0GopfPKPuR2;Se~^L=wRbp|4&N1Y)33Hp0}JcotY3#rf;a#&et8p5>gi!La!5Sf zKZDl=>@VxW**!mZJh%Rbk2#cZQep8&WT# zS|8n7%nR|ke+$g9INN!AisfwQKlSfJ>R$bOK*jiNtnYn8sJ88{Z8A`#;#Kz>!F2(w zn7)Z21WHK(494#I1&{x5q`#jk#M}KcOzEf@T$da#gZl_$4{M|kh13ffVEF&Hk;))9 z>Om^e_Sibf9^^_mU>W2lC`Y_Gsg3&gncmZ+2Z7jB&ei*&*=p~1U14fC89UW$t#(Op z-Qu&js;jzx$!U!f!u?bZ;GD`J1V4R4Fd~P4&_4X}VvvvRoKOOpf#AC4vsW$8^k2Y* zI4(CljU zr~yjbrcvyl1jVuj<_`8($mqC*Y=(~Rs%FRx_7%O753IV(-7Z~`QPn3o=-qL&)oHynG%x3=rpn#LEXx7>4_cuHi(ZP=xJyPX8Dmb(isp7Y z$^s)6f6OHpk;!Ay^S}sSbe9a8Qk#6Mf5Bt)%1%dQa@dgr5&ZO>(qOwZc&dIQO+NdK z;P-Z`$(PJ~r5?%~-nHg-eoIjB{{9L-d znmVlM&hK&lT4&yEO?>nf+Fk8zU1wO6sAo{(r8UZ4s9I<0eF}A3jo=c~qa6g3-vZ29 z`#APXk+d0FS{l19M^usYgd<-wI`q1-jam=H#M(=-dmj(M2&?Uf*tcH-*&Y$N^*{wLlch zM*4>SeI|Y_c^ae=BLBw`vWL*bkCvjDZOdnw6~x<+h#?7Fi<>i6eb zb&sRY#`(RsqO7Km4p9RbI6A=WmURajQ=pMxX4(OQAF6q4K}@Rqg5>D|$tg+!_5mU; zoYV)E=?6&S6zc%dpT2!9pU%U_gb{hDgy05uRZ%uJ-;<(D@b+;&uRvhYTOW3qlL#@k zo+I&!@H2Ym9%gjwLuwIsy?_-EJ3bU1b3*eAX+9Ry&E?RX8GOiOC(r0YMgOthr+`hX zv5+SpAMNXXtN&YG?N2 z$6SXltjNwsuh6Vr8?8ZOuIe%8kU(&K1Zltq`g0Gc5At>zS%JTf3fX{>hsv2aNG9Jm zx62+0u8kHu@G;bc93)YsKBPz*07sWu0PL5uNsgk!fVl;jHQ{VH>{xJv=47ttIiwny zRCb+kGFyR`4e++Yzx*Yjp{940p1CZ+9QH1F+T6_$*9Cu}P^XmLu$y*5%A}Q=FK&h4 z)1mNIy@(q^;n(!TFLdks^**?_cc69l!Nqp#->_O&x9Q(!)O>y$=g;Xqo$1h=-Sq>I zE1ca4eBJaMgRmj+tNR08zSZBRn|1ZEMSfiU##%QV#c*r`Bw6qov-U|>Hy#Ad;0t3h z(R$4cZW7ZY7`^b_dY*O~k*!JYZ>v$eO*(E=?Xh{lyO9+zXEJkxc|b$=`hfb$6*7nW z)erZ>q|le(TfUA6BS4BIo{)tje7(h5EFIHSHGrmI#G?zcl5Rqu;`>~S)O&_uSd6={ z{xE^$G~FAy=MHiu)j!wLyqeHBr14sNTWT8D6|}bHTFnWDeX=bF>24n>e_x`k`UpAH zOlQio<{H@>wWrw>s~RPyAd!@$dzSDBtgLQhB=P^KgTT`iF|s&J{!6{lt^}GkXzE=1 z%@nQ5LEd~BMJ@$n%Ax)h^YVJcl(AL_yhM?RDlG$eb(&pfJ_oR5#1~Ushj`kd`ha{( z<-6q3>MAcUZeHNSnD%JCgTLy_}4Xb^G!y6@Q2EE}AYJv1g z!i(t^ka<=59d^c`bd}dD^of#8pIqyEf z4Tn>TdLk=RnNBfhdB`=CT$NU~zml!Y6Tiu*cC&4U1Zvo9=8^cBx)0bWN*|1?>8NOW z^A}MYILm4EC`4FG$XNQ}HvDu7d%3A@WD9Gq^{$!f?VKW#n9l3G?aRFcNP1glYDi!y zzK{0s*uK*1Bt)REV~e~W9r!fTY|hkz{>W)sUcbGryWHzg(U*|T&%|$LzYNRQp${S_ z!gyz7IKoVMXujQkKwjvqwgvtUEEj)Nc>bv>L4-FXJF=BXELYXQkWMQ3#9>22q1_jmngp|EhjD=gY)CA3DX2 zZ#?c#G}A0M%vv)^k3s5B@AA5B(t28tMXY9Z_-$<2;`i4zx*NTXsN$=yXE-4)cB!o) znBR=`oK(nplX}CJHn!zYU+kCUvwE4FNqyw_f1Fewx&5lYiZT4gOEx)N&pF3BT)toz zyH(oEq0P0=4$*CfbelWB*e0hkJFO=}KB=#!wYU7s+grbr_FRM7lQ9|uL6R|!uaPkx zvfCTzkHhYdbI|wX;Q3AVM~bS^jUH0q{Qt5qy!r2*u|suz7Ezy?fuy0h*eGk zIc!t;XT8T!zD|AjuZWG=2-=6>8H@DcZONL`s==BQ=Y7=SQR}3Rs&#ATWT|?q=o)?Q z|M45CqLvzbbb;RyU6AQe^W;|DlG|Hj!0@6@{bd+FdgZNlegYCg_RpQqSRpVxs`OI3 zjP~1_L}u9XLr^{ljMl|wWvTB7LgQ+}u0ymdb-(~br>Mo^mq!F#9ny{%#3N7TQ0b4& z%&Hd2{nxGb1%&l|ka!AE9XHV|eh;}~=y7K401mshSP$BsNM>BagnViqR;L!-K4|Lc zrw5`|?jTzI`N!*G-pT4A;R1H4A3F&`)?Likh@!_b!;)Jv#z)sNs$Y^X+EWBs$ookuBuw@WW)zvxx1v?(|j7s#acnB{~vOo#1Sob z7skJupV3(Oz}#c7Lw#4(*47Sft|Kr|54-cpj}jVQ^||;*nSpW-WSvWH zH6xzNh1-hp!s;5WR)R70g$@C`oFEnuIJUS3re|f@W>-&{-{EJslx1B-zAd*rQXmNS zRR4>=5too==GsTrwf@Et_$G2QN1H3|o&U&M(l~hqdDOos-|AJFtWfkSNhBhFRNW9u z^^Zz6r55rfz9YF1;uU(L)PEB1&9tW47;lUi5VK|6G(b3z_nr{=NUtE#Pp0xLV)$jL zqdZ&CsYzkWg{r!UCWzzk?MV=~4O^mJ?%w@WNCWnFB&X~e{D3X+S|>T+NTe=okl!R$ z;M}?;*$WfJ3l9~$0saJSyky~ZZvAnjt0-`|c`SH+m-@;;2C1fq z@~-2$=-7cT1ky_GM1e|~jN$aeXd%R&O|Dqf%Hg;KEpEq{u%s=s<>S;>A!goG6N_;G zb{#<*Tym9n?2qFrLXJ5A+fTAtGnYR?wIfsaU8*Ny}E%4 zZSscs92BOWy=;Z62uXZ`t+SO51kn0gv?s^adN9!DUxITawE}qxcRmf7@sb2w#LR5u zN~dtoD3M0DV*lW~XlaZMGz>E0hWUcBA@e4o5&CLy1RMU@CI`u3xa z7u)U6E%IhHZ{%~MB-Zlf#ZLS49C@?OE-hXi!}r^Xt0nP}otP+zhwVhJBp$O9r%PhJ zoftu)CVc-DkIP8@hWIDEfiL0p){BF@s0qKo8@|4+6FaTMD>|{Q|55q!Tb+2z`m#|c z`mDqgI?-<>B-n0Ec%AR3QU7bmX&DKi2^GzPbY4&`WDiO zQtQi9ow(jgT&@%Qt*S57iQE6EJDRN%8?6d_I&o96?!ge9*kpbAEAoDp_YGY}>BKEo z)%$c}o0V;sPOSexkEcr~_E?E$bmD-O__0nrV}=NwztzsKb>e`Pcv2@Gw#qz8LNpF;)aS6= zsRgry4Kl0U(HsE16}GZJ@OIO=aGr_6g+0YCXK3LT`Kvw>?^?lZDChjojpBIKk|3vj z=EBXziOUBvZP%IlsW^WNq{_lg#jcEyRSiCoHYBUa0w1|{8=eNPfvGZwgBFyu1xGeh zyd_gS%{lsHo#K{bwQ>I(*NFVGynHUNw>zg~_I{Vc*CHc?+$dkzT?|)sN{|nCa*eL}@OH8C zgy8w}4h4=anVX6C8JpS{MYe94w#SHtSNl3Kn{IbJCSWyd(wdx{zUk@-Yj zxUttnRwRc)nJ1q>!i5bF96R2?F|@?Ds?{T;T+4`gy`$`tLCyZLMSjt7qb$enot_DX z7i;qLxC(@{-KDChLySP#FDG#FZuM{#BJ8KdzKBn!%jw^iYi^m}U7qJ`=#FZ$I!z>; zK&#;m9C9tI6F>T8InYB4EjF{XCqvp$cS)TyJq^9r(^MKWlj3L8@91@slNtZjLF9C_ z%QLUHnS%D&+e@F2)}ho9zg9+akMvbtSP8|{HzaZ<)Ul32S4hJIU_qJCfngEu4R$l0 zpXsuZt;O0hlEO1f)rEA97@{&kbXu*^S)}@gE$zQKL<*(5WTlm9m7c+u_?r@`>nNS0 za+pKMCwm*t+;m)f)@*-HPgdkq=C*s4JUh+lg#vf@OY;kzCC!cFy)~MKE!5R*nQW>Z zR7t0{Br7?s{kg5=By5I$l~4TVbmg6@hOXZ-y3 zmFGGl=hxK$X>wE1v1#c!`G-0_X*;dXwIx)eVoULp!d1v8E58|cIa_jJH9!<8+Kbww z2f>7%xTk%EGm#S+TG_E_C5j{cSmJZh$999o3-tsKwckew$>7I&`PaWDafrOpzC`4b zSWrnW9D6^(HWbVFY_sYh!#mZiRgCZzG4}Kuek6CuXop<7Nj9p?uZW805jf$HX4r6A zHzLH967fGGhm3h2t97p?+wiSkFVnY|$r{nVA|o*>;)=~l;5;;o`@xT!&wz{Wk8y{( zOO=SyZd<0G@OYP-^RwDlj>rE^$G(-g|@FKN{otKhc-`^FSx_ib(N!(3;KJiVXd*B7d753gBAdObL|X(meA9iWX8MTWYV9mP{;xksI6J^G&A1ZGnYlM4)OF}}LoJ?Z6sJ@_+RJo>x%t;UAV zGN6Nj^`sS!*@gE|)hd*j6DtFIP^d9Zla_zNN1827Z%^GQB}4~Euc_|AX7-8I^96MM ziosp*s=vtRR0-)(tX9O^9y5dB3TS&JF0EH*vfvkHG><|&-1JU z$kGMLAuoE}~cg0VF(&*hw`7nRMMc^6W5eX?IR z+BS7b_?<-ZqC+cp4(Ajv+7!P?08ds}j*t3yS>CC^mbXZEh=G zvL$k{dL~DeIYt1S&INwobUPjUW~tS&Yw6hK=^ZojxrT)2-{eV53~!`!HQ{Z#i|_u` z?&96Ii8|?P$z&@@JtbTotaswh!BR@ChL!+{U#3~g{NI~L(Q(XY2DkX89Ez2>>u_Pl zJ)^o)bj7sz(b?j5P7M5UzHi;8G@M{-;*Q}ojrfzZ8#vOmfHC~$8fy&YjN!WUG5q$T z6UI=FrgkhCs#yp&(-LbT}aiejMF2L`XIqk8qTz ze@DD9cdmu0wA@A4BXmWqEmPcu#AXtk!wMruRcOh@$3(AjEYTn;Jp9mWh2Ec zPY$$XGnTd+xSZ%zps)NbzSZm4LAU|)tzK7pUu7-fB`o2&;iWref9MOq zAs31-1vp~-H}MwLq@yOwh<5eu2y~n#+>e>&PC8pA|0TLwsyF zTYkJ@kNgY`9|E!^_b{DXliZvJsKLVkbZN-t@bUf1Vb;5ey^y~r`oWOE_9b~-E#z;{ zNB#eBpi3^Oe899&nR50oayGdyY{@K%cv`+b zS<1qVViQBrAiLsVFHOhFDGykJmky(aGlXr7{;xZ#Q1KUvM$hd%$%h}=lY9g7`-3a3 z`7Mf8^*gPpWv0V=rqvHGV2+o#WsdhVA0g#9B6Eyl2WJe}sH*>yE@$(7(LWs*nX0ue zcd{<=C^Ic~4c`#8rM*4nVq5R%Z3H0f4?FdTj(w3!e7`!|tj`Smz9pMUcy)G7jG1&I ztGQir?y6TYIr~n5UbvwGf@?T+p{#<>v-Al-hC=SyoD$Kmam-H1jDFSaQ14LEhHP0c z!H@OaQ{^vrH;*w#*W0t5?Og7@uq~5=SY~^)%yt2@?Xu>0U}sSFQ*(4o&Lg?VmT*zh zO~P2}k$#_{r8d$@Ap8q}eQsa?uyewp-=zTi!t+yrox@vH5DwXZyHerqEG3szqH$byxF8dj3XQ*X#R;EMAxz5*m*?vkh}?w}BZk%gSe zW?iO)&)_~1KBvqb5F}*OdOBWd9%th9ik0p+$0TM8smaOgtaM*Eldzm-S4l(Wl94^b z1k&O;e3W~ZE2$Q|XRj-U768z&lk6azgKFr|*VeMe-1VK=rCjTsk;%zpDKfzvJzK!T zgOG2uIl4xCY?Aak3E`*VM(RJm$EkbZijL)a=7k`yla)JC;)LGf5Lf#)kc8s(b6px!gF{H4Dnkn|v~q+pI^a^3P>_ zEuI0C8#`!iqv!QDvQh5$2BF+x3^d*jdAUpdRq*Pzo(gRdM7MhX9lWH!R8!vE*6~s# zsIgeR2IZUZu58}u$^Si`I!D*&S2wc-opaq6HfWT%1jdlsWXqJ|I$eYLEqWVOcr+gF zN{8f=;9)L;Hq)|=M>VJqO@aDV0Mbc7eP|k}`#$~`LH)e4e+=qFZBYLaQu}De=QgMh z1=Ml;{ZE4W|0(@aP=D+MNH__pE$2oztN%)XH9p?Ge1ufY77*1<5=IvBj+jq-Bfd^lAX8UX#*7{I`lvc{M8N%0mC zgTHALN3M_?4CMqHM+y8a?crj zn0%|(+6Dh*?}Gi}!Y&qz>HK)Hb2ILEO*JvvMb`Fvc7dqgc2hCXUhmeBofR)Y^2a9m z{?&5W_&R>f=TEk1uXP8a@BU5g;oh0Mp)NHPyg%AHD9oz;z30*?eycI7w!5f9wpJWR zyt~x5>DItum17-NvdJJt*!PyL)rt`8kk+`+bm$k3t@U}466?e=&kSryomrWK&#dg! znI+8>_BeGfMsebOvInj?y59-UeZuL5r*t{JK4SFgd;Wyes}X(4lWghq)9Y;X?f#|H zE5uE3iq;agPhX7=W?GV`*HdD?FzED}MDzdL>7}k5*wPRbFgW0NsFVpMWtow2G1hwc zCsVx6I-sk0Xd*Nx?n;ENXFi9jpQn{X5dz17l&n*y0!YHQvDiQ1G070=&7|#Hyh3|u zHaObniJV(9ByzU20Nv9fFg(yow8HJ7rEzHP>=JUcz6OF+-)Dx1!=kREb{5ITx>n!m zIAjqacOY~nCiy0JT}VKZaPnN|Zd0EH21c9K=XAve7l)>L=NJ`eA$WK?K6m>-nItn=i3Y*k#eGK3FFa#(>NoB1d>H9acA=IT(j+ zIbh*1iy#(_t6I%Jt}t`!-Ul?eDE71?25e zFO^7^X16gp9-+o$Nu^7su+$Aw!w#VV80-{JKJHGNG6UV_NH|j%%Q_$djSlb=Ar=<9 zFKo(`k```~Mvl^m#!Vvy)r9~V2x%KPrDFrM{sb~+*J(VOj!i5W5fE8MFOs0Iu?OlP zw#cJ^JCc)N54eF8?K|<{zlc3fVJQCyd$?_aU@I!G(TskZAaFwve8QW54txBxcwj%J zcAy0Q&^vI9-ho8ml`U9oZ^4$dB57MNo29n5;FCNi=kD)qL9yxATQJH)YNUFmGg33X znQ1)9OlPFc^qXh^|4Vp!{p5c<(;4 zp&85o+h?rls}r~_m2b!tzRDg=P0WC7;8U=#pxfs2qE`^K$Y%E{S)76-o)!3g`EpL| zGfzAouLKqCR>O47NyMvH2xZvQ?RJZ-?wpSFL3c-l4lVCmRQ0r?O(*G+C9Z&gu*DT? z+i4(8VgVmYO>0;4mTvyDLW>pBAH*}FJC|zogsu1p(|-~GN#BZlv9b7<0OVVjrL6;# zb+UszxfK`E*x;=wZ~i#|Ifr(V0P+vEV%Xk_2PX{_`Nvxkv}c_}8nf2N@Ywfhw9g$G zSK^ACKD%E192Zi^%SI zp+Kz{iurCBU9r^qorgOqEAw*)Pk+K8B@8sA(3=Wwi&Z;~su$Kc%Wzx!DSA`++o|jY zqiPf3iPfe#M-$IgW<9~R+Y4b-CwhXLMgWyY)mDn7%DkY ztc#(4pSn4>FJb81@k!=Y4_T!y;+9fMJ!6%+MM@PVODRfSq)SO|AtooQHpfA#$7-q$ zO+EX@a@9dW3Im{_h1EqbjjwvR(KiQsAS1Xb7JPyQd>C6Tqw2NJDpuu%&Z-SDZ3D?A z>RXk18TVhWe-2oSs+x7`plH-^&$?Fsd@PDh7%Yo!kGd~$ED^89q$Jw9*AJ9b14CQU zU&T2J{$*Yh&GDV6Z(KF;PYLzAiE?d9#4dskbi1)Zz|q0BMC4(L(X)p_R$tVrKeMvm z*6XH?yyW9!AvNsfI4CNz&i8~K^$=CR720}l=6!%Hy7SM}UcR=N!Cqpu;E#JNbjdaJ+Cme%x?q&O+rtmUIDXE{a>Y4%l z4AJjxU*>j1L>*&{2C>*39;+E!sba9cN8?}Ta3wnMu4vPsq|_&x-;X08wpCUv42V82 z5?wBH)zu4#YJ(p=-wf{Q%ROedm{ow>y$hA2ZpQ2BUB5=n@4n=88<9C7Sr zUl2^ub!_i>T}cN(>7IWU5dU1lnTw#hOA)klrA8B?pDuc`_=wQAt$Tg3@6sOfh9^tGN6I3i)@`YTKfPd5fy{VP74-grFvr*r1$;^U6(p@P%V7r2PE zmAf2I*Pn;FdJJd$J0lNK_PxOYi)0zN0V(>#+*bYowM5@J=hgR3pKCJ>&hMDCssXsO zS4@QIC^ofnW5W70Kr!^I&Rb}N>fl=ld)B6kG6Q3I1U&Ke6!%g>7zNh;P_fsj#h?OeASI3Mp zPuKn-LWl!n?_wkY7Pt9ZeIcm9pTqhM)Iw;b`K-nqJfr*bH=9TEj|IAYGY&!3Hqb2> zPBi*aa+@LN(hepw|4k~`rKZUG_ec+8-XZ1|dFc9dsB81{2|h5-`CZa}(WYX6HMluM zI4*Z*NWF<~E_#vKD<)$mTJ@M*0 z=B{I}y!ws~s5^9c=EnHYW3PhHUoY!4m>XZY}+8L}n z(V`uZ33v~)Tyd%I%b2P>Pdbg62*|vI%%+sXn3)|9)~nxo;HG6awR&1c5IwE0Mes;| zej6^Y)Ca?lCIWp+fFg95$tZP-;8*q?W_>YA7|O0du7U3wt0KWg>ms1`f8; z9A*wiSq>Umgs~!8l~Gn`luha^D>lkXjk0M*S*1}n!yqO#0jbO87-csbWw%(mTdV~7 zpH*2Bz{HE4nrJRb026|lV5^0R8)1BS&vhDsO|ppJV@%05X=zH1Nn=xTP1>766)}vQ?WQvxKZLXy3zpZfB5a34=C zxa(cmRf#^anv|@HO{n#VQ)f+OJ(wdDb(Scp zWX5Jzs$EdVFxlg1Z&2J<{5ImTv9mHOei=wJD@MRnd-Jl(LTUmVSYFR$(`Bla2$R4Q zWD2Q=#b`$SSjmyAqsgs0c!1oZ2*bK$Tj%*y4+?m#A3JdaHPt(&BC~yEF-}4J;xBJ% zrcsfN{bxmv7;sjgM(8*2_E1sKd>ShesF=2RG#Yrp%s@ry613xr9d^KSoCj*W)s&lP z%26Aa!g1J6e^QNEG!1vjFUs39I}oYmeIHXP8YosMhjalvBrI z8v_tTZ+1KKU&qFD+-?acf1RI5t#q6~uc%>*=K+5^vw(uj)@%Z$qG5@>F}7>85b>ia zQXmeZ7A0GVgpfz>LEb1=Di@-_ac6ivTQC+A(UE#%sAVf3dPTUtEB7FVM9zYa8sx!x z#GGf7$tf$=p(}eHOvh?bwP~sn(Cfw`%r%e-pxjOUjY5aq* zwZ^{*vaFsa>h7BG;e2S=q6(#vnOW0aT@70j5CvuUdvr(K(XVVdas0 zsBG;5S}stZIY{l!-zHaq7o!8BZS2k!`wv2K@h#A^_`~>F>Q#B{LuIVoQ}l|f2ik3k z+oP$Hu^>7Z0Q&Ci?h5+$U<0$1Cc!tC+WO+#aSTJzPLbtko z*=$Gi1?F@&Tm|fnusGX%H@@V%5vFF&sP&+dqrQf1FgR8H@nJo|{s$kJd(E3D?O6KK zY-r)Vgk@k8J7?vMsVHb)S;IEVj4UXbpB4FPNkw+#CP6VE>=+(id9sGRNGTHgWUrMGsK+j?j6O@XoN*6hh;m)?ZLTLcM&J;HszZ<$x&U6XIFQw`pW*x#HVXPF<&ADv};t9 ziqFT2VzVOGsJPOs$}xkvuI-JEvEBKzJmJzQKF7EUFR^e&bp2@renl2vLCKa=mO|qQz25 z)W{{a0(^VxC5~n!G|gVKqS)1C&bo5!cFa>Miu2`p+;($*p4n31+i;XX%&vKUA{qw{ zw`34XeJ{bA_reaqEFoy*}yglOVvo1HDVYKBK4Y^cnzA7i3hcHU;sdBck*}V8z zz*vgS)IE4ZJ(jkiyy};eCb7NzRbIx=wZM(c4bxE2^?*=B7FAiD>NutVAQ_y!lzF8= z?B03d*DnYkhgHr=84N=hj4L&dAq5O+wnKx0U&0H+pQ}hbiWD3UMnnOBN?J=soMs->iC*ncMx$P06we%@FK-)0*R{y7* z(N$T`%d!dOwu2~Tn|2yI4~F3NaRJU!WiGGVprC;w%pFElWC} zU~V4SO(AYBEwVK}LE~+sm??#TH5Pg0HY;zoh(^?0TtP|Jt=W3#4L**femUnQRI+7~ z%=y!UV@Sr@gV548gmp z#kSZa5&gqrslC-BrrPG4&5KNQM5LE;6Pz8&j7WQ&)6GR{<4Lmyj>A#!$hrmPK`FME^twtKV(JCZ+d0WG4^8pB(U6i zhIK!g3WsUIuXtY4S*^glVP`aSyF>Vj$R$=>M(GLFyOf?M7IOf(wToHuU0_G{@lvl0jD0NTeQNC;^g2V> z&t2ANM;syC{Q6fOCGNT%g}C|Df${3Eg@^g-k$iiJiY^lHYR*Y_F1#Ra#AQm`P)OD2 zftxA~C)#4A+MIriMQ1`?zQ5@NG5R*4KZWYF4oSZEY6ttj69@a2nBAsCZ31+F0o3!u zDOh92%{`3i6$gc{<3Z4=uqT}8pM2-2+~u4fo?c&AB++Ac6F>K+?;pkfXY|s47|-s9 z9y^}hNSO<0SvI)bZ9Z((dLFe-EVODBj?As=eYWMxqS;+{VwEGTDys&nyfjs%TRnB3 zboJj(Ql&c;JGXDx3BAm;s{9NI0%Mn6UY4rTqZ)LT{*zScv8z0$9zU_lORXw@oUF2H z`pk*Rf&0}+UFENrd~x7@yULH$>=Ua5?_SSbUY}MaPI_g9qB{`K+$#fbJV})~c9n0d zM20=^Q|#q&cIzY6uK6Yc5p{x@P}LYA&^Feo;N1ta(`XUEc)dh-2|5 ztm@7W&kW7Bt6R0BosY_^Yy3?lJr?o&)%%v|Sj0Ezs)$8QRf4{p*4E$*0e;c`#K_w> z3mT^EmJ|6q3tuFIf=`tFE669$+Ly(GrnB@jfidh8S_qK;MDdzk7@uwB%L~+IEj~j+ zjAkx51s{SmMX(jOIOwbN#=nA0^Bx&Qv%jP&izD^zRjrwOFs)tudNOAkB?NlXB0D~T zmHsZjnS~r>fl+>QXZhFERc;}1G+tvo;DR)sbFc5leHPDomh67t|GWejuov2R=xbn@ zgcw&$5##f-0_mJyVP)}|D08a`_`_+GerG;wHOs&2L!$D!RqR=^J z)}&}fF+W!p&-z;AmXi57k@;|tksCB>tror(dO@sf&6ezRzBWhr+T0XhyT3V&uPueI zofA_3{iAfgwhDYj`z%gvjv2`{=EGX%8ueL5OLoaDPo%A6mN&8tMwU<$#;i$3JuFc% zS&dm&!eVLew$!MYR#H(gz}<%6ZYzbmEzsQU--hq~FU{SmT;T@Q#JmCScGk<9yPbI< zUpPmpw<2U#z~fe$6$M7c430JqxG&*u*X2{PC6tc|WB;0pn}xIeJ#l|KgBJj;C*f>w zp%0p~y^#lKB%6J$lCEusdF}et6K&15+0{@}s*u za%FUjGx|C%=PjlcucO&xampOY)vW7iSl1E4y7HQL=B!e)ewsS>f^-Jft7fAIEu1Mq z?j_!R>p;BwW9QMyS%pTe7v48e>s`DER$|-YMst3t*)lDEn=z|!T&&iG0yo@2D!6lj^&G79Q> zerZ#N)d!m|7BVeIm=x=>L*Lm38VXu2C39O|Q@-j+GQAV*j-7<*%`@r>gz3#Q8Vde3 zrgzhXzr*x?Da&iqht>ZaKRm!71F&$+xXAwE-CG)KoPPZ_$0)nWZcTH>UrXnVznY%7 z*-qFvu-qM+d8Ov}V8Rf$!AfQJWMsX{O<=jdyBzO$XMT%NH-Z8E;uV72)@SuizxW9p zxIVM#PnCXucKED;`!o5z>flar^?)V|ct%)h9K4#rJS=WGKB3g-9SBr-n}!h-;%Rah z&(CbGL|z>mVo8)QLXlah?{G7njKwCw;;Qfb1uxmilCR_yBBNiWiL9Tqv$TEmULwAs z&TR3=DlV&oj64)l&sVb>@WeOkN-n95X_p<6DVTQI$FXuq>@28siz3&V6OjU&tyuS! z4>;PpvCxQa&1*mmJzCxVd#9*EAL|uG>nBBN0|lNN)xvYAA3)Aa@*7Ngtol@Qx<`9) zIN`u#e#~lQBbXCLhK=`+$K@xUVK2iEsG%MH@jZHQQrhIzqO1XN-QI@Q{IDmTy<*6P z0#&RPwYdHDu~uB^_F>}fkIlTSXdlj7W96qB^WK`xo6dPVt9gOiP)Ia}e(f6=JColv zTVy)4QqYZOTk~Nt-ZEY}wcZR&^=O|d)phm4rpK0_TCdK*mP9nsuDep@7RY>m?{SA? zZX@?u@{W)lqI9Z;>rZR>gjb3AvKAxN{=L>(#D50En||eDwHGM!>&8yeO_g1SD%&jG z)RPF!ZO+)D(aCRVSJEdv32X9!dLdfkU9Iu*s#>QVQ&YEqX9_0H)fPuSwE2O%3gRZWnKy(x%C`9Y)h(2Yj2zEh}_xUc9|oRCBB(@9PP{%&JoTBJFA~V zD#veXC-MlO+&nQ*Ubtkem216~>k4wk_jWVmA(5?knXvY@%N@;Ucb8x0h-U}N3zocZ z6*yoOz%0WN|8aNu+(zIXw^2;muyO zDvDlN&{KAq(-A1kUW~M^AW)XoG~^e~&gw~aCb!;{j8E4)(h^K5;-U?@(oP$Ht&FhQ z9$8w`@yUYUXS!uDY9nJq&vcAAGcOj(nvE-Wb7G>-6W7yb?&@*eWc7Kp^f^LfdT4|2 z!{GDKzSm1`AEw|Nx*zsBr1e8d=!e-*!bwO+OGjNV&0n9O2=MUgc}Mu&sdn(2I_d5JPzBMZ>yt7+=%)<8rba$kd2tU_ zu-^KAh5V4D6RKsiAb5TSndO*{B#ILGVOBcSc6Z*Lne@ z3cI%x=%qEoJ&xP0`5nvr0_yrFc~U=hTC)FXt9l9zSZgm0KpjpN-(>nQ#G}u=-iv-= z-5(2;i0*FA|AJ7Kj+ASKQniR*1}s`ONEnxP-z6I04%H#7qY#(c<(PKMri)2->2{dk zf_an@)2#*@dP{j202XV1!oHi%d5N3-@`3u2X$|1^NPnYy7P&}7 ztuwW#bt*NXl$(Of^$d&+og)MIo&}deIM9K1yD-vKkGk_qirpl|PEcT?{r2aq#tWD# zZWNZ-kh|JyP;cII1#-PYyx>bsg=iy5w#aypj;v~@Uz9h>RwTbz({Qr!l~RxTH;f_D z$9KqTZoG_7C~&4<+Ol~P?#Qp-%K@*Mv%`ZVc0qptt%iz0q`Zn!#UGB@iN1ev}wDMd367K z;xr0VPW(k_m6`GHq7u@A2YT7_T1QV-qHL)oxC*IRL$Ka5_Zq+aMVEU)*M5)h+3gEP zcHOu|e=Z#OY-RO5+im3;+2wn72al<&x(>TOt5~sB>*nbGmC3xmXLso`zGru*m(@9~ zUZmIHd$#Aq#*!7#ziRiIAyc>*wbU2|S)uk?<`!$+`{c%$Xa z{LhRAZEa$-VW?>vpckT?I8ihrV-<<~H_+;sE#;Lxh<_qF_IN@k4q!W3EHx>cQFuSnh%{x+9EAW;=0an zz&)2XFDTm7neNRyr8%0D(sZ@2jLQgq=H-5mW6@7^lotE4E(u})m8cqe)E=e)(!$l9 zVeJ-i^3(0K9h+KQ+ST~*v3+Rgu!o~M^8MGRtt9=-S{YqWedomgYe$!g@j5I^UKQQH%u zJ|Lv}O#VbZ6wI_sDU^!Quz}p33KfJ20RW=j4)rEPQNtJVJzMVAmbu>euO$%mE=>fI}&D&4fCXDOJ+GLN53$IVn%O{*>)2(Y9xht<+ z**uTFKQBt6Ro*pw+TU3z!{fr_+25PPal4^`&WpBOKBe~JWvtbU8Y1D`EfB?0Q$Gn< zjz_F#?(VGc8}mIq#6Mxgakm%^fP(7OkD>q4AolO~<>D{z3#z0i?Mt>Z*%txmFYn8D z2KNQyuX<;Yf=AzSGN`6F(@nt6u?aXVARLu4PD#c1`0YGO0J z>LAkN__Fjjx9|pF3-*-fxMgxTh}FwHmu7oU<)zHHn0w?|m_8;vwH7a>S8|lG!_okg zIh1t7-?D2<&vPT&gFG+t34n9NHws-Quy9!2N1>vZ^1Ced9e+(uITwqN1JBGUjT4WP zT@pD(y*fj02E7GD>;DvB!0sXSs6WwwrfKBdfxmA+07#5;OOfSl4rfA%s~Cec8Vb$s z1xCZ9&W6jO)5tBM!E5JS0z1&q+wi;n681qj+2%rcP-o;KJU3=xCsecI&oHHz4VgPP za*8;KHFseeI~uPFh7X^*u%bh-U};}Qx#8{0E*}!Hbz)?knm6;BGYieG{2t+S;8>e| zqO%WMn4{|HRs0%Zcq0WY2Izt#EX!!i7XCJ#i~6b5uGa6}pRiF}EqcQ#d>5t5Nv&Vq zb(qjoq~3ANG-zr_!xnQ_JcIg&M8-(Zll?|-dS(`!AmTAiSg_gbuA+zCSw4wRPLB6t zsp}}HiP(R;q&zZmsiMDehEbB}Wm!krV?4dH)8uEIdEv*f$Piz&?*V5sbHCZi;riRtZp56lwSVQS`<)r9Us>jlO&td1 z9_`CsvQ4(gFm^%8!GJ~%zGpEE^F15!oOehbjfsIn4cbHoS*c&UU|hvUwhs()!0379 zwc%7@{Xw&}0)JYUntrZ2_#{Ku)PUgm9qJwYZ#7=yd-l-Wz+vCF+WFYLIC}i-mg}O& z{Y~Jw(M!&W9{2e=HuA;xQ&!XHV|Z(5pw|ULvEPb)&bN6-eDc3oc?Eey-}lAeiyl9x zIWtziKiYS8OB2~;_M`8g6W__R#xOstvEMeH6MrmvymWC@^myBnD;ihMAr||DCD*Jv zew-pp#;!UphI)}pqPL;$73y6=bMlCtMnL~FJa=N<07l~g!HaE|a-`5Z1~ z6=SgwFV&A;wXRzVcokCL`XL~Qk~7y9gxN(kdE|*+GiA=Qkk8lGqFQ)Itbwnf}UP&r)3@gtn3yPF!wAUU=R?cq1 z*9aJb-7sxQxQMfEaO>Ji0AbIt#nZ(V9qP(ww12vyX}an1J^RuE(_7W~&aWK{P}M`~ zgDSJ{*~9Gj$#h7(Ktj8?j2fKP5RmE*IP|4~R!{sXV10)=n-;)s51Ov0a;RDT+Zd#M z+|}qisUOlcblE}lG!;^X zwBh?z}Tgd4r+Msef(`16gKlK*S*r=;wu^4u7I{5K99l`sgJ#W_y0$Z68|miV^}Pvhx& zuA*Ic_TI~MJiiILl%^`5b6`h9Qw7gCP=>L}`5Uuz=I4G+PNOh>8^zDC-pEwO>!sl{ zX;{Yd9Mk8BPiq79 z`*Vx%Tw-VZwKAv0bP4=ac?jr~X*#uUQ6mEbU)Zuz$zdN)pio5fNZLX8jalLLH-7F2 zKg=KE8(|!Vur*e7Fr`sJJ|zuYGpZW zAE%6Owb=5qL9k1x3)QO?plWJllbs7cINnvKCXNRlRLB2_IG<+TX1Tev>b;9%99Cx} zig1e$8$1_ZbVG@o93QGLM$~u)V2(84i)A=>lro%Xz|ovlPY~eSWN>oCji3#=v3JG4 z&r=M9z*QWTsQ0e=5P!qGBLU^h`TElwI*fo~SiSm`g`BH9Gn>wcdC-=mLTU71aV)s4 zrmpc8Yns-}G(jI;#N_CS+KcNH46M{yl$5Xm>UruYg2Giuun$)|Wo&e8dg5~Zb$_y_ zRNJR73iWGWD47vC05)+9qR-XET^)qTa404Tsy6?621(>8X{2_Rlh$ba5oT@f+=ex} z!`+b!xVhL2T(&90$@r0Sh5lFwg6kKJ%Z4hL5KA5+qxAS?YqxUUf ziADf9+}@~(e=E{N$xslL91ZYnMg~sDo5v+4tDc{*)~C&d=Ne*+VD^TERQuJ8e*ORe zuR8b|ows2)`^Al{OT7)m_nbZe#Fz4{guV#>7Yn4a+XaN@CSkWuz1PNE2-J$@0O0pv zzkpu~_J$PgQ|oDY0Py;*vH`E54#3+cy%N9+h4<0}-uSN_!sLeUm)6!jaR4BZDfJ>qPu=@vIkg#C4 zi_8|lJ|ej#bld>I-kyH1Axuhtv?LVk+&$<}Y4M+a`9&O~IRnlN34Do^L@C$)8zfKw*py}TZmKaDvd zb%?tRYYNW8MDZ$h8^+`9K3V{KkoCsvq) z{9%^^I8-ki=EAzhX7%BxbVdhsgR`R zbWAn{>+4NSL`iT%25_{EPFYH$wuh5Z>tR4ZB0>s+Q^eK;(JB#w;n6i}R9s8Sh&3WI zB!sNSQoPZ0BD8=0A@dxwUSiPXzlu3KA-0Yz2|!?DYt!-{Ld@qrcOU`a;))wQ73r^0 zw?DmK_N06(U)hT*a+?mFI*r@7f||hLCF5d~oLCQB$_p_A5~0rdJfl_+_mKitNyXen z)B=xfQ_aNe9d07bB@4~`w` zWtoNu5!z9z&kCtbu9da<^@A8do9K!7*=_n1Qa1(J$ehp@)v0QEl;GoM*EP~ZNc0@= z@sF>O<0+E}HOKayx$pQELf-7N_G)i2y}{9tjx&Zbi#2{td(byr3TO`*5^PXYtK7O` zyU!8O9G(W`hwqk6$!V}}jE#v<1zX9plF)NVD)Wbh#16}=mVs!QaIEAGsrwn1CeR-v z)7yHY20r#O1|`akXEA_GaBL_^G8j^sgAivMw%r? zA845gFwU-1UuW_}KA@G9lf+WvEUVXH-Rr|@LbBJ8F)#V)wS=AnIz<5Hr%_+WYF1GF zhDPxA`o?!eg4Ns%T1R_`(>bX#lo@KwQ2pRHutHrU&KLVt_!mM%Ooj8dt1HaxQz zr15rZWGn2EUB_rNdBb{q;SOAZLV0vM-AK7H9{;|BXaSD^c^FM{f9 z;Fk1n)6&S)7blA(sY1E2BlKi=-#5_hZ5o-84R=9z7-})1g@Gdfqn@PJFGpDAkztR<-gX+Pd0dw662r zCHHhjYp3}J{Q|USp|NeY-faf&cXew!N1Q##t66SPoU7{oHNkbqHyOXYU24zibWapd zI33alt8PwGppA9U*g^dFskBe{N7|YA&`~3 zN`wFrqC~}p+UQaxUDORB35tOYkzJw&sULM4wME$FqY@N1(Ja@swiQ3x+FHM=)hexu z*s4v4O+b(j@v*T|8W4V14?3p7;H~)i&(hxpU{^%$YN1&N*{V zL*e4GXqX0~)wi4B+oBaMp6Vv!#_RaX4ZLrF>W|`pd?;G(jLvnLdREADns$6k&CQRN z=h+XLdUA$x3!~))k}DH4lsh$AUL?5!RjXF1p(I*9EeVQQoM0?kb?L_dE;$v`$YpPn z03pInoX;!S-wJI#txGknW*I}vIGr8-oUEH{`3!x5;8ZaTz52wHDYP6G6rTxi#4m(V%JnsP@$;vyzP}&t3pXAO zg#q;p>T|t#Lnoq#h*cE|>vUf_Q?^!p|LU`|--mG$f-F_o>AYW6U&R)FiFT5*jw;hD zKD|QOzp>Y$^OJSwvAr=r4DQw=sG-+-u`*trU|;tEltLBvs-jDm&Ir2*IG5@%BL)!D^CI z62w%Ukt%bPyhfNajskM_;pKO3)_lKDJ%}Ivp|ejiHj)UH+;|b;@*4jaeX4qcv!4Lx z@87|tU;3mH%|H}96h;~ca6+lzBfZ1<$P=(OXBsr$;m2uRM@0h4hdr7PP!zMjZDMix z^$DYnZboP#nM zFuwWHk1R}2g_26?RCRPsL{BoTUB#Wa%!v|7s(Qfl`ilAM5QZeKH*UUzv5GEc*Ax38 zemSDu7p`g`pvL}63(J9&NZS7qMk|6o^o&|#la0vY^>QJE&_9kzD9__no~{*NLsx|Q zklj7pug>OmaXrG}5nOw(rTkaZ<)KLO$v6Rx)D=)i^DgF?EF$N$H#4F~te+0^mHw~i zs7#nh#ZM=$n7j4SM;}$| zN+9&vm(aCwDlF+r3C5V4Y!vF%j`Zb9XoL74p>c6rGpmRq*>mvoRo|XCFW=<{77LMb`o8S{`={%vvO z(y6xS_X;o3gOdXWq<36mMV|Tvp4R;81<0;nZ6M9;SwaUX#Liv1wkUjR>DsB`Q~YWl zrGy_X3TgpUYxm=}h7d7iJ2A2a2FhlQT%cIr&VAJADo3KSF#ch~G_{_p<S9TX9$m32*gix%X^F3GD^O-Qjc=q3hR z( zt#f}8&y2d|%dhdJyS4d~Iy_e<*Q{U%q&f6;(ALbh6CwU?VYfQ->eeM>IV^k6M1{DH zm8&_2Uy=t^jb;nTUKW&1P8)Zzot}BF@CCs+6ji&V+<*u^t_n&uc&JoU_mE>d{!(p*5I*DFLSWYqNi8_AZZcS7=ys1e;tcl&49BT69 zfQIIr7}X;Y0*>@lI}!NeEy0O_Sba)Q3czFsppPzdkuxBOHoy4|bHJGW8LpLCIishG zgsQF_5U-x7hl1N1@~l}E&3s98u`@mvvxYF6FxTR&SE0W}aM@_KcnwhvQj$J7HfO&rW>f;2Tw*-7EJao;VJWdIrK{z4YOjE^Da}kSrUhMGH13 z4e$hUbPO^gSb}>(hE?njt2XM(Si}~H$b!3{p#XBQis_A$dddOKyyWKCLErqwS_|Zn(kphlWF6tnX+mpe^Tkn437j+M{|me8{oY5*LsHf`%Gz!*BK#jq>m>8 zSmycFPMx2m=yKC5fc)=U8qlE&&GVd|InK~g?pE}4-sWw%T#YYqCn7r&Rpy(`+syME zM#W!^iqAZA9E2X}jGxiy0NqL=JsGPe;B)tw;@z?7EoOG94gk)p{$qv{!xyh_#NTuH{7Oa=urBEUlypB z!@t!bJ-3)&jl{C^d=@$##?h~S@n1=VI}wqKwWyC0xyu=93b&qELu7*y1Wu7#iA=L5 z8DLDLcQz8wIgaLSEOuMz1ucU_2*a(G&Y5cEu$}A>fY8*<~NL{*ZAea96_gcNDgYN7x{(ut5@N)(C0?FC*x0zjA(UNK(#o9 z0>JkfO+TfaShDgJg;RM$nQP`U9vl+Kekeb4M^kAM@zdttpx5XV&$!K$7uji$3 zZe$x$mcgDVqiC=#aJS}G4%Xnh`tJrNu0T0fm+-o*>ZBoOk|tY0BkVoI8B!JHTw|P z>@b=?6BZ==9FyT!g{{D+(JA}>Ni3;ExXaJ1;DX$x9yuwAXjq|LkBu_k&2e1ntW~|J z)9WxgykaYOoUcyfh;CMFMRA#;zY!$OvLA4WP*)Yvfbct@JbsX~L5RRNn~R2=X3Bkp?@q7|G9!TXTikX~ci?(E;^C>gGPyiGnutSa#?< z_ZxohwyLM;lwVEcUly;m5c0t3fKRPXRn=rCL!ThkF19hN&#pc0#qqmo&nkLYJKtZ2}$o<8`!Ac)gC*@1Ma^}4tS+SP(>lOr zsb>(l;VKv|ArFYt4--7eQ-2{Mo>nX;>B3Z&HbSYj`O(IG@S5Vt?)X(u7;n$V;GrPp@kec&TuFRtjfMdz~bO=Z_>POPPs{wRb1|1NFv4MQCCsa>m}(W1|iS~ASM&5L5r z33kk2h)-Ztba`Hz*y^3q#mngQ&4jayTr-eC7sAgY9bL{b}pTnYPLWB8Y&lCnk z7#-L(q|-1wc4>zm#HMfd*F@R)s&Amh>VDW@_77aNv_%`c36!vN$`*Q&+lGvRz$w-J zFd?^!>OFR$LvHpi;*!4$cX3@%HuKNLU1mq|791?F7n^Uw#mUaoZ_XMp7YxcVr?J;O zBT@v1NQh;$dgnSKMU!pOa`q;dS+62RcGel2-9VIK_ftpY@`!LLZ1DR<@;QA>WQ&XV z0aAj^9+R>T?M%F)d(B;X)P$AmgYLJPjr%;EjfG}?SIl{1@t=!7DjqN$xzUVB(P_3A zt$vUZ{(ui^)hZ0O1WT6ks~tmIF6;!?v^{_zTN_Sx1$j=ie$6g5k(A(+s9-MwdjTbN ztwbuWac_>`o(iTOOZ}*9YULR914yToSe=a*k~hshKOGoMF55BCq#WheAF&dlI~9kd z)vx>`iL#bxZC&pTOyqFA5khlRM-tgZriH}-D&ag)pEiplM{yZ zEVQkZqYCW&C$@}GMw!^}NE4_-BCBwT>vDfmiFW)<$cbJsVrYr>#b2mQ?SeD(dAK8=`l(#3sQ*C5BA$Ia?fl%omE`0~b zP|u8zQ}CerGdr4SS3?(5{F{-^%ykJN;cMOm*0O7z)0^70Jghj*+TzdRr$qJBw|!5h z2uO&cV-Q%ph-IL)I}#PWw0_XIy*;4*iM?SR>ZOacIsgLV*QTyW3wjx)2(1_*aZ*_y zb#=1IgpMk$c80P_=Q+c6*_FU~u(;xSLN9=d3!l%IvZqj?Mg?(5k$< z%q@GBxpU-**!6>Z-;Ts_$9673Uy!Or- z#yh&(kG!eorhuDJ%1FVB-l|!T_ud+@wW{Rv}v2}9An9_RrO!8&u9dm^H zm0EKW?w3jfj-Rt0s{)y8_XB^vzrsPwbCTt?Vw<`gNn}4frlOr0EzGl0F*6B@yLdK4c5Ug88?wGRnz5so2=TZIPsJ&QllQ$!VOq`qv;%JKxca`-1F#~*E~#n*0|{Fb$+KPa9le9~U|@ zP3LCb?TI=!S9v}|OrlX6%-7{=5l5)^Fe|Q$PfCtKUCac-d``n$FgXo3N=w>;peBjm zdy_|&aA~O?M|eW=>)P5{^_$!@Ttyh4vOO@G3V1r#vJ;6vEtieFmX(Nw;?{a8ZI+2! z@on>YnE~@2Sx)nt6RXZgh*eLk<^}E!yz1`+Zk*yiStBhw`#tgIO zNA+i(4O01~$YO1^V&7^tW`Vh!v;B!o0RO&B8=_FBl?yLidQcjM%Snt9dZm_@erz99A?X z`zFgPNy*R%s*i6?QL@9lVAs$>x&d`)3{P;{-I(%dlg%wc`i&BS>6LqwUdW)YkVKZ*N|Ct%`n+Ybqu-)3)**0+i!eQ(=4 znXz*3y2Cb>cH>C(-EN@XA3vHvEcjm0Nk?z)r2q{!)V{a(877@mMBdzVY zx)t1CIAB%MkZDwRL>o7neF$H1A;tNnzBjt?Da3L}38Rgh;j@u1a-fS=Jhn&zbm~Yh zja{W{ZX0a;iU`|8KAjCK>3MDKv1a`aGsARjJh(gRc(T&-(V7oUscv_?P=l;Mtp%o7 zkL>WNxokH{!1VzX-p48)GY@D>I^a5O==C1`x}UE&a#+%!M_x>?ak>A3bbybA-Lqb= zA9{T|ug!2jriI2$-`w z#SW>0My*=T8mi^^RDUSZXVr4JJ>7<|9Efk3m_AR%{xwgT2rYJ@{)mRV?>>m3#=_R- zS5}>bkMh^~)TQ2I4c5)$KiHOT=N{R1 z!rk#uw6QnZxPPe2KKwi*N3xjQRl1R88Zj5{7t`F{S@S@?m~##%(P(wAXZM;v5@||6 z@|cE4d8&obSwn!7>BN96UF!*OxGh$TdOr0T52FrY8DI{x+~`x7=dCK|Eyz^(MRg)u zn_r#BVO`k8&e#?AiuhB^mDSo^X}TgI_c)aRfP)Z%Vzt;{hzLXBiQu1YL7OPK%Y>3V zx;{loek5RclU2>7Gg;VJ?7DpFQJ4cE;j4;y<5PFS-(v$qMyOgZYnKd%+O7VU3YF1@ z9qK_j#89NUmE(fNDEewK>RJAnHtHEeH!Q%)7~|Ybamkqgq9jKrqvC+F$@6gS8XZ6n z#K>G2x<*S%mphH-UrVPe@*=HyKC~q+<%8r(ca5kFhc)2BDhjnxLx!a|>P4aJl9t6h zixK3@g#)qM%Bw}yZiyc0G8!TwTOw*fDtskXS$&#|2+bL)I?b zCJ|lbD{Z_rU7yiAE{Ts1wxvs5C8dh3QkbTsgxGqRF1;DJKdFtDsEb58$S!bn@E>%< zn!8|6R7h8a3x>~VzLqrRXtj`OYw%0R5NB8zU43_v}W^-~KL-N;^)++^U>si&XJw?QpEq^9e2ULOl& zKqW*tj2h^mplSvI=e%*;uiI()8|R@$ffkH=uHp4Uee}1e9~A)#Lbt zobRTa6ekBXK$C;&mQ<6^4K+DPlY^Qw)g1X>m>r5r2g9_zx+dE|NZh7$<--!K>-4g&Rx3 zE6c})dif@egM^c;4X9sZzhWW&8KoG)klHpIqJ2y1+H-yST2qjbJP;e z9||S1vuly9p8GRJSe0P1NbRi_H70-4YHJuKvv{PE*;=|yKlRa&%5&5sP%{l5j)syU zd84iF4IK?dMCEC8hUEG|Kz&2^jh=)w1&CkHMAAE!BDV1vq>4N0>Q-IoX*cG#LxL!n z=L5DIfsr-nKyke@KANnjl9(8(m@5le6{I?YNH~x8&1nKr)cnTvcfp`6z6i^%U^c73 z(&t{KMG;GzlcY2LSB~bQ1j-Ni5eNPj5cyR;|Du(ZJ5^rRsUL;5sA~}eniiJEQ8vrt z2E88&jPpU*JeE|BQfM^X+n}kIn9r{&UKg;-g{PzdD~~zXfH1Gk58%mS%`!Q!T~oT; z5e@=3R7P7sG=Z@;khlWg#2+i0>PuWJUt*42!Uc!z*NMsw#R+D15y2mA{G`p3e$-@P zPCKOoqAx|lg1iB$@T~_dsYD!b<=50Qh#Xb)h^B<8?lFwy-2XhaJkoN3svl4yk+a$0bMQJCE&ZHW4OGBNQLtAW| zM$;)$v+M_`c+?!SlMGoF`Jjjo^4hDug{VwmZZsdy-T?Pe&LXQxW`;fzCH3J9MrJf+ z@V+6l4ySv8(&}EL`E|YUVLk@cmcb;-qRx_1B8cx-KhjDrO+kJrbrUUkd7*ypSKrf*(v%22r2CoD`9+a|v5nab zVIY1tCkR;Bla40qKtn1xx+9YBb6n3*~{G~RdqAjsI zxdB|GTNw~6ASUihzp`(L_ESI}PF1fs?NN*cKH={@r4rp%KxM1V2afTW^w zr~YO@-HAj8V24HpCsAY1EBr%QnTK~7zSUcON~svsLn)KGaJVSGf|8RO(aj8M33fOa zv#aPlN6#8vf1g?ktEnfmUYF{NpD5h{zIsNlW8EY>be8pA*An`jE}~S4o>yoS8gczz zSA3#_P7d= z(+8-2HB`&}8YYA4Y9wg_Dq`%Qs~c2PQxu_T9VN_)-r|b>_!zaus$2T}Z7Y9HZJ@c8 z<*9eo>)#YSnmbgzsI!yZ7gRoN=*?I38$D!ME#rpXxbz!r#bE`N+WW5Vn9+1B2-1@P zX2F#d=($xk$ShJ8qAb(9#y4PO08h`$yllu6#88{{TxyhgM#G@LA;Tw&LoJ6YSvc@B zDQ+PWbLUrWFyhIXi|`6(6^#->`+D6+*-VyFETFu9wkimHH~5ouN50dujE+Lza#e*a z1hJBU7j~*q3tmXCjC{@|CFrpY$_;Hj${Sl@lq5vzDaf} z7+3YfS4d#u`&E6TPR-@uLf!Lp-LCk34HpiFO3~WnUOHsVA?Gcm&-BZ$KGLK>Hg(+8 z;fF(n4t~FS<23<-Q+r;q^aeFGVtJQ}{ua&>Yce;75_l(3e?{KUSarNU0be5058xEWyxt+K@&Moz5w3M0&x<)c z;IZ1opxK-12uczfMGUM^7DI@SrMqf`ys|D~|C(j62!B&rs(#$oB2*;gX;&lEA)Vq$CcLu#rGa78%Gi zZtmxs=54EBp%UbBaP33qS}_noc{rk0#U+pKVKm7uh8UF__^g#dwP=q_-&RpUBRM@x zC4A%=xW3lYb^Ux+61K@TYVqT#KFTWR7>Xu=Nv=v~x9jivq|XDzUA4sn0a$g{&=A@l z;xu?3)rn<5jT)W)&@!pe*?x8K*H$y3l`Pc%wyqcNlRoy#E{yTX$I)?UYmQ9E|8iEs#Xm zhCG#(hb@A+70bSH4d(_I{Z)?GV(C5Sx+HG52aqNm(k6^%TW6UN5!)r&YC*I*v_R-< zew^GvRX?Nynu>;s1mi73-0`y6Ju5q1z`t2GKYwb+OBp9tbA1cfm`jn2at}EpF@2-3 zlD4+LXVuw<^p$XHiA3l`er$=5(Wdf^O*gdCUjmiYx3?)*`q5S2{)jDsUm*%%5SuKN zQ{SFUYu-)Zbpr$?(mJB9P1$vxuo5{+q?X+Cl_6?bl_d#u38~3JDk>aq9?r({#Tt5~ z02K`;Cefmu_2Tvj-cx5;nj*5-9lC!sE*i5M?2GE#*BvT@Zmw}OIN~3!JG2jAlFo|% zZQY^UtaNt#^>v4^50U(w_{-}K3CSgWRJ^UBU{S-Eb%&U9+l5B;7Tv?(jyG{-F#JMh z&BGcwhQF1*%g8qTQeFWbh6a&H>MAD(W7IfYU3vcMB<2IWazK zJCp@UInmNm&xvg9_CjPD3NI|i=+A}Go@c(ph;64vF@rOj+DLKd2yU+U&AOP=j)LPV6NTjtwiOXp zAHURjyrp-$S-Ou0Gs3`B;}jRWg*Cq!%)n3{I4vAt@Z%Q*)TB z6?4Qq&Vr`nH$<$dcDB7Ud5;R&qmJJ+f3o%@x*ePOo8moC{duPI8)n-cmD_H)x?ubZ%sOcR4E? zzeU%d6#HHV1~;dsdRa8wGS;(e&Bt7u6Vn^)FxOj-KkN(-wt*3yvZR~s~^=kc{b67 zh~7($z{9B)Dq8DfJ9>^3`u9;-h6(JW4;m z8+;R%D87OXuW@8dYj1pUbbcqm_PJlFo5e=9_ifLo;bP+WvZo}TUM0;x&3e@UxZYCj zB}#ChL+#bF|C}s6NEW;$RnUKA!RsE>3tn42+s*Sg4;s(3dA5c}#vF~*pNL~9e2#1{ zS`m%sv!k$(xLLMP&D?it6`ssm5**=eFatVsNH6rlvzGieeV>n+kvRnOm|&OrCme#6 zRysoy%=s9;gdFB)n(@Kf{v)%?m>qV;N0nANLq#AeHxyb!6O-3IPN7|WDAJOE3*|=0 z0?R0mg=);Ja-c%o0338z{{ogi!w2%PTHB-lBlUTxt+QNXUVKad!=(R8=RYD#+gctP z9kpSO-mx&m6%5iYcaOuy#m5Pf%RXZDJE|eWuO{=1EWI-xtkq6|g|!n9Q*_nK@+y9` zT+KR~n*uq@bBoyx%y#Mj3^UvP3Rz?2D$*&=8M6r0_NiRm*j`#NVp*@`-G&YM%-e8z z%t|}gvnOolRD^+La-&Sq`4l~WSf8COSp@EfoaP>Zyo?M{8yvS`w~iq64D*~s32gbSfSArX&E0KpWwLG957|G2 zs?1jiXJU+jtw{KQEbSqJV`k6A=ZZHv0%8oQ&PJx+3sdrneE&-5 zxy}(xg)QNA#D4?IaJ^BGhASA@8gi}aMDrL-j?6PS1FaexbKX?^nmK)xS?c*LJUY@N zmMe1aLclVyHPW3qC*DsTkzRNl2~du2Q$mO`5-j~c#3da@Ea8FGlY^saG1$k3*>Jf& z)m*+Twa;y#E0B&H6yV+ml0XSk8T#&X%rPj*Q5#kdhQ2EnetiH)#uOD!-^mbZ2_y%( z^RO45xJ^{B6|S-j+OHUlkHUg>;*8NREN+q}F2Rijm)e2@_-j$& zOu1dRxo|BmCsPa5n3}aa_X%5PmgG7BhH-ROkrdDn93Ci1Vy?3*V@&t}iaGoCQ|i0T4*LPBh+NZ!0lqXBMw_`0uz&g> z|53_p?2cbbW73pvXQ7Glld_s>>vq`T{}B|tDoPC9YW+TGwNZh4vp4j*9X~RicSId` zMx8&J75UV`6~M-B>dL5B#fNFSv0IuBzrb?;E>)aTaYS9!QWsv`Dij{_zOw%OtX{Kz z-}=1l2G{8@Hx>Ks6{~OqU&7Xq+Q^YxDLC9_9+ z%RIZ50jvRVNB1FVNSRWg;kSl4&UbIqdyje3(qRMbwZ@G^&uq6>&Om`XX5P%mA;Y*? zRA0+RMh3c#n+=kY7i4q{Z$@<9%+Q#0?_P;Kq+hUW`JLtqK>JI;! zUN8e^|Lc&e2fWs3xmMK{%QIwxoSExqpY19+|7@?!Qx)BxCCmI>@Jmndzu=d?@dJXf zOmfVd^+LMST1a?(wO4^w17is3CunsaGn+)KJ4r_VV4)Rd<_lU?u`a4)T||DFLaU!^ zoT~4q{|H7bbdqbF7CPmupY2JZlgB%c<)jxH=){`O$G9JvRPzafPN}LF!fz#UiIoK| z;Wx~wXU*8g+Vk`+`_}ITYhv@4m>po!0Tx=c!kSlKZH?~U!anG!h$e!9NZb;G_Eit) zO4yv&wMi~@MP4j2wn2jCJB$0MP9`M$9QP9C0t2dc3~lLP^MSP=E(Hs zGTQY{*ZSF$ncm5Iddqn=OLj?_UJdJincn{a`PiQ%A1XyYP8cE|M_=q_TR*bjp^ol{Y*0iOfG7y@fU4BzW5~c!Y8U~5LKsaEIwo}E>LI$({e^Uc zr7hk4Q<8EN@4~1DayDuh+2C5ozatxuC)=*xSA*B0VI8KIOv)Mmo}6rr<&6+Ra=K$w zOJ>RJv%OWCjP(BBAR~7Vkr7P){+DEA4qFl!!J+}JpdK00J&$)***r}#^+m+&94YL0zgV-O8+etVOH%zKTdZXEnu7ME!WgTX7!7xN0Pnb%2>`LA-zzC$tArg_H`nl=Gl! zr)9_sYbAOJm`7)g+RCLO$YuH#N?P4fFeC(mhZ4D_@X0yBRSW>n9MMLlZo-f<`g5VV zmT8q=-^lOf%H&?IXvs-I2dOJ(XDi2WFe2L{KLP@ux`TfsFP2~&h-W{!qJoLrwldDL z+ssHv-gSSL+opNO@s_9z4{zER$v7g3&Xc@q7-I= z1q|P&HLU}hxsZo`DX1>{u?YMGJJ6Vh#;SYQAQ7q9-)Z0Yh}TAl%3pbH@jSJzgDI6< z@6UAZ&%GSF(?_{`9!euZFrRr8LHyKDMaGbn!ynoGXKgl|FKG!TXClsyhgQh>MlhiC zR&+JCWw|Rqh`it;Wn208NMpWD?uv_!!moZJd$=|de3{dyJ|K#-hT7lT3Sq+!8?*iz zd8ZG@g$Phy7~lom&;C#?dxTLdci}Gm3q7??=r`q1zp+&&NGD@AvG(x(S)m|WzQi5! zwW;5r4B;DN>$&!}RN?p>jy~1mDP z&-P_6%Q>||j^tQIDLJNc;EkNdUV9N(IsIQNtmq}cuGLSgTHN*ZN|${q=TCw#0Lg;W zat5d2WHgCSX4X^2O#;x!9Rgs{2vy6xi5&ADaY}=$Y&*bdRq7_&`@I83jg>u zjh^mTAl2g-1?IEG1H`(tzqHk6C6h!XV{f?I*G5 zzwf?uT__|SB;rPi_UBTQ>i!%5HPrp_LQkdtUCI9ECi{O8nS2mXC+nVwlKb~`Ch|+G zCpSw^QgHmq{lnlmV~AEm-Agp4YY>X=G`SF9_8LLrQN;TPLtC7=c^VEJ^$K)BRjbhvfzGc-CHsev#sqdM&;fa z9TA-`Zj&tuc|~EQmp!@2W^5AAI!4o(5S-X5Y{Q)9pCDP$#v)@=ri4!1YHXU7!Qgd* zoP3>dz_1yc&SR^vN{Awn=WMp2wztS)!)bfVl`9(EM$FI*i@OF>`mne3Pd`{XTx__5BQKA zsvqVFwj!J4;HntBl3*z@x^5AMI=khfQ=azE2hHgu(qoq7c&vQ$8w*2yHM5H}O zwoze97Y-QB^Pp6CW;7d%I09-{C89bKZ7yCz?S1an`EuC7>!s}9BUUa-6g_{{*Dtlr zGd9sxj*o*@$~7{T%1Nfu8FI!<7fPlm1V}6KSTc|+A`PyM_W>;C@@8>&WJ$EWm)}yA)e^|= z5r?j^r5UJ3!@VGkvFXAzN_-*GfK}%Kl$_iy&;-oNN}~#{h5NOX&8e|Pi$kk(G`fIk zWuQx`vFX|rx&WE7Vdx@{8eJqo1ge}|?#O^EWg1uTaapEurA_kjD1Z~6Fnh^IsO&7L zxvPsby0}4KMtTIg$RZRV%*9hc-{t9!k^_#aevt+JI#gqf!i#&2&yBbh>&%B&WDc9KK9?T4pd zYHQ(dEq@{YuHo-8{_6Of&);OaIF3JqzY+X7_#2#lsjZ*CUjEQ<)NncxLY`ydzaEDQ z&Ng*itYE9OcbquNi8*$&^o*wWN3b@k9PV~Z26np-K;+xrF0k(=m?|YlMY_*v>p3R! z);Xp#=Cwazb32>88BcJV3py+B-kTsf38D-^d5E2_m%wYk4BznBvUs6w2y4L?Rrhe(rm@d#LNkU`zO3`b?LizsyG-e7kW_;<; znC*TYP^|R+3*G2BMnLh_IS_y^hQ<)lcyGf0XS#8|dyjjIxpK~zOE;=6u%O}l7ig$a zvRt~)`ERM{5H!AsgeGb1|CEYeY(Znumkf=|EodzH0%!n=f48UnduV)qLjiyO`#pta zQgyZ9M(|69M#zH3(*Hd){`5dbeLA%XZcO|DE|aQ)5C-G|O#K&V{AaiOA`2RYUotcbENJ9^0W|)z+kKvF z_pUD)8cquuIsbcT{9oJd&*V(csamju)3p1ep|fnmIhQ04_ftCI!=~)|0v4S&N1p7b zbP8jUI@nuJDUOuF?@zeoNX8?1u7`f&xVWvY2kFysgp#Tz3}J@Z-WJ!-?RZg3X~c%h zoRI-L|3fn8y%-jYpc$F-R!Pz{SI(a&`Ja|KC*?K9rWr9G;x8>+MqGCx!K5t#GY{uw zi!e;2Um`{(ttDSwBoGw-&Su-OL!`>D17Jk;otCJ6Kt%OjCeG@QaqpV)k_e)XaTC&cW+YzyMPHA&<&x|MZtU2y>OM2ghn9V)#`2yzN6AgkUx4q|F_jVsC z5lOeVy+_Ynxx3fBBiECjMbc;F?wxYz_ulL$Y{bVkJF)cbp3wF|X6^u@BvS8X#z(hx zPu%l?l`(P8d%3%(9GbER0~O34%!7O0H#<+X*;;MpYwO-dMmWOUMeT3dy73j%x#vAz zxonYkM=mM|(%H7Q_wsVLuKT-<4z=|hWzO8-C7f>V%$RpT0%C)bC$>@xC$ikWw)eAh zXFlycXubc0_gFu@w&y)+x@(PCv^6OVy_i4o+ieo>a zFGu0~Lf>r+O;I0hMOvS&;`~S?r%Fc%lTmIf=r}x&P)8~b4~s%n)T~8Or>Fp`d(H9!^c&PNrF2eyXi`w_^#=RsZo`!|4HMM6H>nB4 zj%-%MzAy5m7KlI?+p+L5`hKoeLz%DVDJjZb7Mzl7yi5Gs=sWat5Z zCn%Pm$&LVw32Gu^>G>P5pjz!XC&!P*Jik`ma=*Yw_v~I?%ltKRy&pAfzr6!%93U zCFCEu#XfHodi4q}IE$wuY%kJayqh$ZS~LNYiZNEd`pL*7G7|*j`E*euer>?7u~raN zU7e#T0`-juwoxely7Uy&6XMx+zNk?`zx$)SE1{DTo$v4t3xtGZ5*3y;m6yl!aRbNsV==;kgrd@f+z!pxJJ8Z`im>%i|{!|qFu0i9v4M6 z%0-d$cS|^x&4o7&yC{;pFv3Lr_y)uB_)5vi+R*9J;q4m5j6&`PARG(7Mhc&JlYz zyDv^IN@ORUUMi`ciMja8$AP}XFz z#`uqM^0P_igbM{g(^Jc}m6d#PrW&s+W;+R;q?^Kp%$aJRU0RcU;)LM&>1wX+@d-hf z{m^RO=sAZBR#dGz>Ibq`2Gv9OgTYcuD70KRw91vs7|)w|@0vF^XtB&=EsS#^s^Xuht4%19Snr&PlL#)ojHcJ$$O7MV@URoy zt++LTfSsX!#t`&Q9y*F>VO+z-`kKmZ`j#Xv8N_2w9Wfbg;SmA#>Cfl`)(7HnOYUVR zA?pLOeISHJ%(T^?EPStZiBTu5`{_C7VvQ|h|Vnu;EZwIp?`?IM& zeC>fRf;Tg8p~25-LMT|jrv#FiFn5PQ$2nBjXWOaEuMB#Z4E{1K!bE_1X%w}+M1lDW zPE;76R3|qIC(2x4mJ2x(%=-u1gS=b49}A~pRS0(eoZbmH=2Ug0u-((~I@$X-w52?o zYhnf7H*F`@HCGKSS|zsw#f^MMX=eC%G1oiO(;=K%o~J}2eB^VbXMqZ?5X8xgPY8aT zrqT@>8UF@zs!<`?9|?pbPEvBz>)6xP)%T3YdU1G5x}kB{zTj~D=Q?JR;8tUoOz?V7W~d-2?uRUTY4xQp)tCBqA{|Kpx%&16HENY~#G=Fc zE+j^OGT6`c;oES~(uWDb#OJEbOjT=jVOXdi0k`-)wYH`)j5_HrU(iE>OoFCRJH5+j z7z{z@bPGC%ccr0|gHKkUi_5tagRiE0Flzy;U>%H?hOxfX?DS+a_O5ghYwY!@GTMip z=6PJ)XnBS2z5sGLEcD@!o1FSuT&TN%+4buL8dl&;S;b(9&67d94}PxQzv;-q>`}6? zOUp`h6hYYzhfmbwpZjRz&_`BtRl}MS3l6AezTBP-9m@p*ob|s#R6hv{N$sAk^y1ib z|I0NNUXrRXK8uFg9tA~4geP!E+2P3)hoS}k1tJQmN%-=hfXwp5bQKl=3sO}i5m}p7 zCYX%6bmz+hOh*6Llampz@HcqX`kg6~Gd_4px}+vvFIgqyW6cqMj-|nyKm-;xVW6`3 zC=~|E;y#W57jgySV&t$_TU}e1YEouLtY0ml&AL%9%H-l2wk}43lEc3*8~%O4@G5>4 zkt%S#lH40L7_Ut;h>aZkTJ;u?l3Lq?V;Ci4-zE%hN%0v{@$74k6je)h`a|Tydz<(3JZV zHAFtbv0XUx_-v~ghEN1J^5jMf-6>R$eM=xMR=BONcay3Q~2n*lpOcL>}uEfJn774wbN6**}+YovEmDe(+=5#NTLUXG`4 z`RJh7R$A>{5x=##&-2;xql0_Xc~|zVg!!UQb73LX`eKf;K3Uk-2)SN@2XH!1y++d_ z3UV}ymc;L|W~xBiSoQY6)!x|p$MYV?@85%qd zY;j-u(_oyHDFaP}ix{djVok#Ekv=9P{XKor@=)#Lgd;%_ykWrD>Zwt<XE>&V>!12hM)T^G+C2_cj!Hlt*17q0+A#Kr&xZBuNlVe|)=UJGy{Dk0G zAz>Qy6?)3{d`(ulEVSeTl^ZSiwXvv>Y%Dr_c#`rH>ui%PMb`uohNZ2bL1`+JYkH+a z$s!79{vdQ>LGf-}G8kf!=gup#dd=fFcAB4Yhg?u0Spp^@vB z*f)L42p zzHZb$_8UHfdv`@Am0srxl_ZwC)PW8W2Z*=u@RXo9+p>mQ7Ck!vQk0}d(sO`U5;z%g zEw^H`qigdHdh=`yJX8`0u$w)lcQZlX!r;T{YOabuQ+hTq{B=5KS^SsyH>%G!%kmzv zfezs-7&C4>SJdMPFEk}GU=K|snkP9cqtUe&)BV|z)%ct_J8`YEHa^YD8mqHhWN|)4 zC^weNAK)9uLIOd7hD#+M!NyddI?QzpUWt?xIAwq0&AS0ndAPvLmc_wlRG=4~(UdP# za5Ps2*Di{#U4rASbG^}dm#49OArc9>65)y(=IIA3^K2Y;LdVyLXn8@xU#KftEutEs z%TW^Eo_10PXX$A(S2#i^l%BUJG~N=@Y8-2*0m3_{X1tLs?~n|*;Q?n4PQ}u z-jdJ~W7EZBuLKN)3%$MqXEr1!#byQV9dkJUvLHO|;gg{`Ui^`H+QFGM?-n1xlZwIY zub(|Ci1Ugv&(1ad(KF+x2mb)T5d=Rg%TRaW3go^U(@)n)ht9G(#HO1SH5f+99gmQB z0GC96!R9dM{S;4Bqmj`(`(Tv?83gH8VfK+gp~j!Yo>igyr_up8EuTKpM0U#Y`A-b;Dibx{YM94l|j4| zI^-scCPMaI$+NpeB^?wQYaX|JYHQG2=axh|h7OP5W#HRO#?je!X#Omauc>!n52Wfru*Nq#?MDDZGE zx-0@A^Fd>N0(JZHNR6jQc1)%+ zA8&Ui`}VsYx~tj>*+T1t92LV+0ZQb2n4b2}fi;X`y>wYb61QP}8aLocU@N2n=+mwKNB3 z`L2u-+8hISW$(}p5u{ewL~_QY*wCA-z$^N37MH;t-Km_={*|S(M#C9 z#cwM?16R*X4A%I!J zOL2l4EDX}zerYb(YVHEwr9Ev~3Y27f@wc5LZl+|7nDQkSUkh0plos>1cyGU8>{o?kUU$C{Q@egN& z#s*t|Mca=_+fO{5VcY!E8(!e9b+8+d1oK2_ez)XKCskM1e#D1`k5Xi_e7Hi2OubQm z=zW;neED#R?zfS?KZk!hv-0`(-VT}20#Zvz4e$0*>flA9Zn$R zd;4{se4$9C+FNoJ?R86g9Z%}<-O_wyd$;qbwU?d3CvmNr^Z@#=h@caU39;^=*;Tl-#lH*0I7RN%9sX8 zwd$0Onr|R=zk>usgnyS<4JGxbLGRVHw^iEv`)~F5oRk^fULMbUD%tmgIA9Q|0^MRh zsczj)ffO1gZ5NU%)Tts;UR`b~siju4!Hv@14ry2g6*U8JZsc$>7>CGFku8x7B^c{#kj5YMzH+4t%8mXh-7 zdRCFTSJ%CUl-1r1q^$OuB&Ex>kkajOTIKG)FtM@5?ni~y%6Zh{%w!*htF<=NSmO>! zJSw;L)io?aHYpaf@cd-KP!My6u2{_NI7AU9EHO9PeM)Q&baohj-THH^431!Ig>Q{j zQp52BqBTT0oUaoOpE5`^O!uoUJn++ES}LdApU5|{D!x00Qd*V!HTgPLMGbO-)>#Fy zN(Wig)tky1$yruTYr_Kla)@duX|P2KC2F-#mHtE%LhD@Kd;ZXkeuNd;(}_M6Ry-A3 z?ub=vMlkdou5!PJJ0)xU--wkLk#SwBK^VWyR+&uVL|bLXa%gyp8~W*wL?uHQi<4p8 z#IJz%a4_q#^yU0@yO$8BOR(CFrJn8N1FAP{E;Bg}jRCI(c(rQadcDGpvVTT#sDm*JyVV_muS-Qeb*SdssY}sF= z((8)w|9V{dvy!0-1FAlqJwED|`T?F#{hFye*i|>NweDb-U`~3H?)heVl2|xk63ns2 zqGPRkhKqh+;Zo8;XTyw(xO34l`|SK1Dm@2QoB}~6diT*FYrYk_`^mdBtQs=Naesm< zisR6dFbTzPhK{aHmx@`X)>pY=E4hE}TVHi_OI6MKs$*KJ7Obxt(^6HtzACS!>VoxE z$F@{0TwgV|A)}?rzrJdmKhRPYP}@YHf8`>!1Cf(?smwGuzldfY6UCgC(JkCwCgp0W z%#{1y^X%euwykBJL*7{pl!oYs)HEq)_;G8AgiaItje$vgGtR?TPX{oTtupnR6F$13IHT&(ERg z(n!L)ynwLLkpb^=E!~fm=gWDh^#^WS#&wJ0t7J0TkgtS}k+V+n?R~rj{!Ga7d|WNx z+QdSrb`>AWKLki`a2Qe_^v^Ad77U85Wm9irCbhiCH+ul)(lV~23%V%zW z^twegs@$r6@kLOA)cJ*h{htwKy>3$al|+UpP%!Q8@_1H%cbo9Vb14U)u-k>=v~3y-zR(jj~~%{ z|3)_Ilm@ahdk1?g>tNqs9=CN==47!37Gbv3QR$k6ErxI3<2IE;pqFT6erILDc3rk` zzb;!u*{PT7veQaBD@#h=pzOXbDLcKha)ww)bXLyn)n&aoot3kf>aueRJ1fs$`e({+ z)Mb60l^2NCud{Mdzb<<*^)6YX%U)j4SsC2=I%OrGSG4kKmZq?XK^cN7g~)4@mPqf_ z!*?-Mvv}=zisL_#A|H0Y!Sd%^99{STKDnwNgDJUP*bY2bX?Z@WDae%PlPQ*T0H!eZQx-B)#3*>H`<0cafm#l8_hL_y$3!7V#y8 zW9xb!W2TOPALPy%ZC=D)C`M`vdCkuD!$&hXYlV$i#lD6@pPI)b?nXy7(jzYXp`wpl!-i) zFGbhApno`JE&Hm)b;y?+QeRpT1qesFDfw}zG5H}986P}m25xxGcB87T?cJ<^`Mkg* zhQml-fKc@p@Sv`JQoaL(zq$3k$FfxQ_aQHaL%lM#k(=-FZogjt-oH zr)#|Bi^>a(j}$VuNImff&AMt!L2RRbniPIN$lO^K25$vUwNx2P zRoU|(Ie5bnclZUKfshfrB~`egu{Qn}EsW-t}_$XdLOf*dGbS$Af z1d0X0dr}1&%5=w1PPGy*1IBP1mDxzyf3_X~RAVP1o0q6D^J9+j1XUoLJh&fTMss3L zj|>uB9>kKMF)3-*y57w)2HE2ov$_J~WRc#9-n3@}@@~_QgKI2WHek_Gx;W3+ASNw& z!E#8BhN;+z*m@RIk^lroQ>9Mi7)@vCgfsLEh6_)sbwTJ4R)u2nd_n5dhO(ZMC`GWJ zSmRwnQ}pphrBkn_Q(A_o-#(VkYf7b_moOXYhl__l%t<}OD(=FHK9E?Emso*(|GW)? zdFaWErm^%!&BRs~n>7}o@~OwQ6}=`?hnN60*?Ng`;8mac!O+Wnyu{zztB@VVU#m|Y zxIJC1D0zmxe2kZ?(l76`UP_$jRv((Po!?0=1fxmhIY)l?`=Rf|`kj}pVqO=kXu_Vl2bz$8N#8hY{OMMHNf_1gg zB$~{C`VPh{m=1>r>PqYLmgiX(96_jV@MbFLp+O3rQm)C1(ezUu)m01^Er=|`AkRK^ zFBzgvb6CGn40Y%-9h|gZ?fQRcd-wRJtNZc4Z2|-vOn|CYDpZS#D=Hd>)S?DTT2KqE zT~n$SoI}j2Zd?*BjutRQ8{TH>ZXey;<~H5j=00nf%EK2ucpDM2E z6isyT^n65^EuHl zN4#@ZK;%Sbd$aw3%K$UP9^~>>r7pQmBE8+xwNp`AV{grnN zF61wkaLOymU4G1})aT7_gK8=dtcX}ZHDK@5PB|eFU*@-{0h6fbPWGR3Jc75WRB)fcC}T%*50f1H*2 zGF5*86^}@Lk+2WKgrm(vku7pT z)Y_rMbRC}3qo&|~-NXk?qCbE;ZIDS%1$PrWQ)3-_aoJE}EymbZIn{$3(q(p&qKE5L z21hbG36sKFSJNM$aG8x9Jt21W(qoU+0g4KVYFsw<$mu{P*=2(tM?Sv5Ca$Qlt}4RHT}`djOgOY zRq8p8D8$83(AsX|Qp;}Q!YT`|jsIRI2io56UWy@u+QARXU5{&!N6t^sLPGXg-0G#L z+zyTM{0LWMv;usO<1CshHupt%pW>mr;aTYZQR>zAKpmaN3an#Xa}Px7p5a0n&6yFM zlU3ZcYEqz#{sta7jr)v=oZOByaw6q=qfLV0JTZ?@H>U^6(|K1U_C@DpQo*RejeJb} z!KmJbtqqY!?!nLfoQUsf+v|~r$4vFqr_^r_3y6u`)6Wdw6Gr*7g)uoz&*ECX&1-8n z`Jq1v%hlsqea(=sg|WhRTU)y~nF&j83~E`A!}o8{E5e=hcfICLbv0Fj$_w9uN<;w? zR)a}}E=zZHc6>4!lA&k(HBiSlaW6N4a1pnjb7|i=VN^d$b4F(&5r4FkaqS_z;W5fc z|Eg^5(AF=(r9L-Zcmlxaj+VbvxSJqB(+CnIe#tw0a(ibtKC33t7sL0oZ~(0P|Mltn zf4FA~`WHqg*TN#S=Dc>7uRNC(!)lsPB3NGcqH|ER$j+V359peUvsOs9;7GkT@t0_Z z?regxts&}Y`2A6M_Ec9Pc!8bBwt%YPj17%yo>VrUM`6J<^vQyEvR+@J&cwOMZ^9>& zp@~GXi^&QPgj-IcfO~mhZMw-7iP_TMFR&t&Zt6!604!MS zR~vpHb1&v@^m;=oOZ{x=^~+f4G39YF)}zN5Oppt zU{POJg}V8WtQNR7SX<8}r7JK9R|=r%f|o;-CBAS&<$&6v^9g)S2TKm>va8c&^M%0D z-?ko1)#vQ+asOo|Mp93tj{6wRZG4liL2w4^z^K$bpb4m+8a4TEDX1wCX8=12cNLcB z+IDYTaWZp06EGH+99!(;aV}p{{MJgMO2PtAbmnvzGKHPnlC-mbAb*tSQ2X4gk}s7k zmZRcdkAaky5F2mEcf2!vGJDn8^$Uk@$4$_qOdeR^4%yVv(tolO&#wQ1nP;`8C+gC9 z=4j@4dtt}24qHZMSlQrjM@zB-(t`>$XQSRcg>Oflp7zlqr!gMC*a?7uNE&!xp2cs8g=a$jw~$zDe&2 zPc9^`L#`_Q9(zFRCymuc{pOfv$2C1;*07m7dlCdyQxVxLZAM4tLm2x6CM*x_C{Msu-%^4k}>g&o!Qt`i-4vd%ZzaHwl)YgP-X* zq{xn+le@FUy~|)q^OMiXRH%Kg%l6RJSsqpSEwN&idi_y3!<^wANdkoS<9BsZEIz5A z)6hejANjWQ7KPV&B+Se1gf9#>lX>L+nk?>L6?AQ#K9K-My_wMptN4eL3ik9LG0XtRTu&oje7)tf9XW(_&bCQJhNafkq@Ty3W`W&NW2PFyuhf>7?n^|+c zAGUEBVB1tFyUsOqGF)l%ghX|1y7IP zlH+LF7d&m_@nq;MZ*lv|e_*+Ic73BR6bMr!aTB%_dOt2pEDR5v#$e>L`RR_tEH4Ho zAvcG*aL>)JD-sui%v^pXWwKYkx!N2bTVa|E>#X{_%zSt10et{c(Rje5Oe#fR7|0Jz z3bdwc6r&xx`a>#b{2!zUk~=-HGo7a~aga?0h*Z_o<4QXhGl0zNmv}m2iAnWY{fF2j zo+QVj2|)2ltX@H9|A9qZ+>3ix&kFBEUX$b6n&Y@G_TeN8GIkamG-AL4{#J4ej^TU8 zm+R$lWt#RAK#Q1167#P*H(GYIf1jr#yMx9wOccb*3fk~{@HaY_a2EE<1WgJ^)LcFA z0CrgBVkS;nV^7HWhZ<*&-`1fgZE@(7NgE2atT`)O5+pu23>C|oLGx5LhorVtSZk9n z0`XlB5Y-wkY(!v$+9Mk{U)rc|h_9vo PW__IeFrqplB7` ztdHqj(JHuEa&N0rkAon%M6AT{nv1PCKf+mhs4sLD_MVf2V*{V0C!`_XPKgS286&~| z!=z<}actdG;_$6>GzD|{ds*RL7@!4Qn9RwzRl@)aEMP(EfQAEg#RuSZ@%$n*(kuxb zQ*8KqdOS!_51DBKeqe&CA24Lpp;xWfqDg!}|Cp;lLVAX5G8FFi*$ z6HMb72tvd6lxuERr0#KJ5mA2gB6UxQq0F_By1e8{y9#Y&jziDR3wMv=@}Vx}_G?r> zEm4n+9VP+RZInOLlo`A#FfvV^-jg`D{$y=&EQH7Tyu`MKt%0PBK(MB!Ze;`+<_HM; zT#tS7h}jG24J1|Zfa`%jlbN1`Te56z^8N?jH?A*AzQp}_e7cbhiEV`^7S^DRz~w~w zzbOm5O&0c=fUrSKl&V>5-#)JA*l5^Rqu$~c8udMZTGKv#(?ycVCKM6Xm}|}Rg8LAA z_*wV__q{9IL@w5^Y)&?w!8nO#QMavdrvyB*m6&I^4@u=VvYbkjW*KkIJSTK|v@BWN z)iA1LNL%;0#p{$qRWp<3Zk{c#w^3^?VWhA$x+GoIT)9~-HLDT_ z5n|wJ;sh;M{??$(OD-%!^(~mOwcImO3EuO2Ap=i!w}QGhu5NpJn)qOy2;R79)Dez`#~X%2rasgSJi!ku;LNWnSA{Uf>Ek*<+4Es z)oRlC6{hB$Jc=C=VnxDy^-1=dC@$Q0VJd_h@@=6JSoS0q)~Jb$!laY0HK{A(|S`4VuVce)Zt>!Xb+Dx3;#p&K<O^B|^(^_oj zXf3w0wGJElZZ&AKHJ2?yudTVP79BUyZo3JMH_>jpS+$%cN=vt7nA&Z(QQ2^%rQGJB z03BM{tu!m8-zKUhMCmXU-?Wk&3T-2s7nmAuI#nykp%y19XNSI*S)sVNtb<)`%Ha?<*7xuPEjhx-<-AD8=|^yBhGKko5*(UrR8-}U2k z>b<10T|_@F5B<0jIxwUwm0E;1zbctNtsi%m+g^ zb-%9F*)g)~2P4oOKu2oSU)Ik+SMaPimrwJeCskB?dO!1Yd3H+@RjILOEDGSY=4THc zTZ*RC6AO>O+);X$P>d-gIE(}lY{*$6Q&^!Q>^Sr3O0-hwQpA)CBIeJ$YnyR0~|0|gy*Ld~(S5gyM zGR5eJep@?7uVwvAQ4t-=_pq67OUXsiRa2TvZrxIHVROkBx0GDaTyoo%lF7{_U)oYq z&|I=~OUe1oCAV)WIgi~@vTRF9zQ3xuaau+KT9>@y@!vp!j zxjJl_aJzrbX_0i@hxkDIx^%v10=W(vmw_c`$MD|1ImNl?OE!>ShhtvN$FLY`)vtDR;a-x?V%T=KsCpMId11CtsN* z5OCE$7d{CDY`F3CN+95Yz=-bw0lz#Do&*G({paqRfdE;?Pwk?U-v73X^3%I$vh1RK zo7BeUn-J-e8+{JJ372m^v?25z5lvrzuw`UrZ<>(`j|_dhdR77^*-~? zI(Oc4Ws!N_$h^6cdGjLkZiqDRVct77zQ*5a{AYPB=G$T3hVBA-BW@OEy}1`FIm=`( z>Q8LPzw>Usup=*|sQD7;;t^Fc6a!A#m+yH_*_SVDBpaJ^x$!&c4pCBTJ;~;rk)_2S zt)5c&deD8N-kKBd)YC_DeP%_K(XZazr~yPiEUzuxg&;!bJ8B}UEhXOQs*2{)4aW6e zqhzk@=@{6)kr$2(^PN+mLBG4rcT}v`|0dt4nkxrIiC5J@&Nr8S?Ke|+;j1dw@Aqse zDQzxYx22@4xpeK8l6lRgYmDpX86`JJ3vwJSSe<@%iwgFFkW^~sXhkVIx7i;wO6D0= zH>eZWNDHf^1^u4T?<=>IEC5}UuGmtt5Oh(xTz#?u=px=c1Us?=1YyFXF~YKJ#B@Zd zdcYfs8+j*;o#KY-3&(YkD>-91^W4$Z9FfQ5k>BG+EB&MkC!`|_28~vt-9H_Zjv8&v z3;yMLdXFRap@XrVY+jrcPBR$d$;8e7e^owmr39KxDXCfe!Lj|NPuLHFPS_8{KikpN zfox82iq~B@@U4^V2SF|DhmU5QyQIULrxA=dfA78T|Ej|~S>qY+lu378Q`q61s?m*i z+MR!xeWJrVU1J^Z%ys8Aj_>f!66Eur_JfznP3?#D$zI<$gp>4QX_h@Il+!LKBmQJQcea#KwTI^+*nYD=n@OQTO2AgN2 zVHjCq_oi&=VF_|zb=$6%UIq)aA_n)jX4oWwE^!93494U{H94Vcl>3_mqOGZSFLC)A zatYLmgyG?I=Ah2p|DlyRaj{@3qQsA(TkziwVJ<-Z&QzG zC=Fpcab3ZsQm<`f^IeeMa42Pkks#=od}IvzVG91r;rjCoUv)6uqp#{7-Ja@E`~!yR z+FIr)@=b>KkV#+6Vcwp2T?di2x*6RZq$cQ(TRmXb9P>5#oOA&EI_^GDZ)j@jt2Bz5 z_1EMoGX?N?#L&azsZQ=sX0|G10%qyj#`K-%PN62~4Oeu+Qd@1lN$vV0G6PCTlKTB7 znJ(c$T^N`^r{krR{EWK4uRD>G_%TzOmZ*-nG>zXk^&poYHorix*l0&L(vaw@MrAB; zE|_q4Br0=2C_lf5W}@r$%Ty+Rnz<6NpB<6tTK#!C5&|Bg&Y4I~Ck6hPo`2Il(R<2* z2yN3}RGtf8yDgpPj>JK3uo-ALbfmw1HPL?RdNffzx-&~;J@TWQMMOc>T$-7kWNL9-O$d}kHZvuaT_z#MH0Ep5vsz7t=dTl)xvd zL+_^`;a(bK*+oTWSvu1?5LJhZ~{PQXp ze=TeVlNvR~i1EH$bHt>}@l+-#IatgY!d}WzHCx`4-G-UCm*vGH(b)P-$wu?4NN*4~ z2%QzoicH(~&;)Nr;%-XkJWEo_Bx8E2>Ia5r?kJTc5#DbX|Yj zAW-T~T%tmMG+Vs&oiCLlA-RHJObntUv7q=;Sre`sISc~h7iE7PXtvzPB z(@u?7!?$=>P`80bHT=n&3ExliWJ29DJelylji+aRX~Os8lJg1q^AvyZGQi)BqfOb3C2QN?bKO>q@f9{OP;`=`d%hln=7;q)1{sWd*#$Cr8MF z>4YVV^?EI^rKk>by*l1Gb-e^{r@Rfhao{A=Cg$Ccy)%>>#RHmVQ`8|25}i8H^8FEK zlxDM>eZ6~{53aPz8;`%}bn%p4Zwlqt5#ZUpJV); zh2NcvMRQ*QYQ^X!Xn=k3NC z0-LLuWo99qAlD6)aCN!J`VjnBN8%P1eoc*fRIAi$`s$~Y_3S(98^{b!EUL1HxcDaQ zhRw)8*l5@{FJ+LfUrQ|X!J-;xaBNYHWZ6NMQHG;`Z(__TA5N)&aTdgCSePoTBL~zS zXrY^8g&8mx_o11Hyt6M-fq-PNzpIF->~pPV?5@q1GEG(L&ydVUZ~t4h6OI-jhG5@SrSH#k@R8E~{%H2GuR*L!YWLAC$VzeCScL<-zDxMf}2f6{5F913_P;(HUv9tEAW>$mgm0Gl%gY zhM-n2QxF4Q9Z-SvNA2hU#mDW*$XaJ&dDV?pQ&OHa$*xJ}f0#~%yd-IHmQD=H2>WxQb>bDR|BlpyseKG}f#PTVLMCyid< z50zNdld(F6pgp=Fr(TDuaj4f`5bD6KozEqwi5-zcweSt%h0hBj_UBlIbhaaE z-v+Bm$lVr4m~dApsF&v^mk&l~4~iCc^Y4es%_clV<9f21mFB8Dhb3l`cB`ZpS=x z9yr;!6yK?hv%&***Mq|Ev-FXL{=m2K=$1FxGJW`lVHMnnpOGL(?ax%GUVUkp5{DQ5 zsUokFLVlyYu&shZa#AGDlMfw*?G@&h1+nF;|0N$)f2!U`%zA-b!9|I}&nPJOmEpC= zWo9K`IbE9(KIsVE70uZcwf}}Gs37jah(Ad~EQs7_D%H_fC=S!nIYW9!hX#nAhAu^p zs{EJC`BW-FLw|SS&e%Iyq9L$^p4d8UZI#pjAI`q1LfuxS>Hqj_lA<~A|FT#Rjk5t_ z^5i)DL+y(W18I@~T4WOS0%PdTWk3ANOstTMJ;b0p9;sHvCpKh>9R&Cpg$!`Fqwt{3 zms5DWss;lG&V4ypD%71))~8_EM04nnba#i<+21m2wpJa{1%6cH6l$@tpT)MKJg0&+ zXswW%sHRe_(&NpGXET4I>qm2ywwO5Ax%Wm`DAhFJq!O5v4f){{?uH3ukU6u(WY*|R zg_@|j06B?b2o+~>+xoG^9lzNE6*t$sHy?iaTv)kD%B^t zFy2#U78tnq8P< zv@tYrJi3Vkdy``AV0WQv7qwrBaY6WmBQz0Pm`S32IJDN`R(;)xk7F~-M3xGR9sl3t zfa>N4kB_g3K8z1P+sMJ}3})kjJQf5e`KK{_d|(?^bv+62Ag3_$w-- zInUongibZOPjEr6(Hp+~2r&)Ax94Pt;~6Lj;7yTj+l`=&0rk!&COT-hYm8uo^1}lT z*ZsedjXZgC{!6z3tgw1|HJqYiGV&$Cpgn+2O!y#rKYtCXD}Jw(I3?>L76?`mxyk4z zZ`A&Bh58d;JA6lg*^I>XbVb(<3UK<>FG%`y-8)asa{p)6xq`1^af~`|(jHnSJayOR zPFe^z8Ma3VfbBC*#6HN1+V6vhcqKf>c_0J8I^n8^ksqD)1LD)@97BtBp+*-V zI?%-c2w5=0IKCzB09}XfkfuUklx9LV>yosCt5Lup)x@{KnTav=UK*6WG-IL06+;b# zNavUU^1?0oK)2Jjn+MsRm8zCBNSVYM<3!Z?7Coo-b1Eyy)yDu*E!=5t+{AdTCvLT~ zYk_WuVq^wTXnUy5B1-68@D?k>dBeJCWCGF>T!5oAUFA%+x9mc{TE0~}!ugdOZa4za z0o{33C=4)#7i`l>7yEJ(rwaw@GqYy;@bv_FAt-`9{d-ahNs)8#6}PQ3h=FgfUB5+7f^@Kn7#j9As1BXm#IaY zBc2`je!8jI($sxsQ;9F@?TljEq31PeDjmLrF&B4*CP23~p2_WmUX0whAai44-27*3 z`??(?6WOk{n+nujWm~cfzmk2xvvQ zArxE5`RZmjXwFSEXLPhS3A&P)jNzr<8O(?_+6jHJ`A}nCa+)U2bhO5wKO+zZtJ58^ z|1jL)h|WH_xup@RVK7>fOwI_m+pn*h=hs;qfAwZkGKn+sL9%Xc+3*(9HR$0Qtm@T< z-wEzwy}_0_YV2>{6!6F)VHpWf1w-U)Wn~q_o7?D+le=s03Bf?)EZC_9QPkGP^I3Gk z7TDtJ!+snGK;i>ANYA2DD%M{|aqiNc_{Xe<@KLIw_8(MeBkb>Exh535o~}lRnUHX- z8(#%o@dNgCj{4!VdKV@}S)2!<0Q+O_XNh-lbV+dbjW&XSS0VCkAAGQ)%w; z>om4t?u4vi%R(9DlaDE|aSDSIaFN5SgmVB9=BOpi2-Gai)I_Im^Ru4k(u0eI&FlrU z)I^<+_$w>bOtRq;h+!?Z?ZGp$9IwUZ;o8dK+B$T&E;)s3fH`4tqhk$7*&7#j*e2;q z2Ex%fOl4rv+mZ#xN76N1NK{y|bHyaa#f&PIJ=a9lGj!|{1ice$30si%Vh`00593+Xi@}S1>Yuk; z8_L!6Dm|{kA&hZS9J;98s9*|11#9~AdFsThgoC*Q8Y{&1U%@6Z-VV2*i{9tjI&aX( zAOtQ4wfbCvrOX;!z_p(xxU+Lag{@pws)H9=TPJvV>hv5`=aO9m2=E-ti`aiqLdC>9 zq}uQa`^qO+6~eOQlUkvEPCsgs(_dDP^H2su#=i0+O#hd%2WdwI*`rjfCY~pl&N3x= zHSo0f+p>{lhL8gc*f8cM@vA5BbIdYxK-s(r)(sODT#K7*JuwT`jO!U@nI+@|k zU^U^wX_e89%onKBuAI!AMskU%c#+U*vbEuX^HyiqFEKS@Z%@1tK6&1n?D~ND-k9hB zL{f;h8bq6`ogRHsW1J|u$sQ`I&s4WCEDO_7?2*x;zFS35sUMAcd){%+ye;6=Oz0#9s5`Brq3)8!Mgs^}b769&u~H>#x- zjBy}ZmI+<I}#gN1!F&m48Pls0@fMr=(h! zb;jP!<%7Xyj0cu&JUM_V(4 zp~4;1OBB%ZUL-G_A$&|J*UPQ0m$$oq-AP@|&XHbjf;Jyu&UyAYye(lPif8}6y~k`A z@%B-4!{@o%#}~8QjHP(b>amu2mCWDV_={XfF-$yOf(sg<6%+4kd(Fh#I(Si{tG+Su zTK!6Mwow^(smr-w%E5X_d|$1*4M-!l*ddp%J?;2Dg#d&^=$Xn9iAp1g)pHc|<0#$# zzIq!;s_=a9F(3;BEiz!+a64i52uN_q^>q=&hi}i-7Kx3QNn8-v7CE0X-wMBz*?*wG z`9IkQ<`loa{!I{`w#s6P#afxYm(z@DNq5$4o8Zjio$G%U_ex{cRCIFxaSa9{+4s5U z6?7WhqLj8Sj9!;C4GdfR4`4N@TZxo+ozl3W)3Qhle{AbN5Gg-=ifv+aP7-6V{saB{ z$RQ?W2MVaZyT1#TPj@Cbp}$L_TQksK%W_L6Bfi%FT+cqwQ7C>)dpPShKv_UmMV%dy z>fAe9h*jMyCeD4>&&cqM(FNt*1->Jmkjm~f#uZc_&fXjL<)U4l>?Z{Iq}bml73?xX z1B^l@%CP^wz}J=C3d@ku`ufP+LVS$g(s0afHc8bqQT)mJ#|2Kg7x)~uhS&5wLUQyJ z?{qy-3kdPKBC-f)2TEk0wW1Q0a-UGGm)TKVV|OjAv14|#ukk!UfPrCYaP$7ZGTTvS zGc0ZUGZ={3b{2oU{$o5@E|G{k{UaVicFMoZ;FzN$M2?y@W~F6r%we=V zHg^ai;YNg`vP!HCU^ooa8oOfe*ot?r9vNLTD)x6wFoR;_CbXX|sZ7c3rJqhRN;SWX?YNJ2dz4h86Kx9nz`b7y;lr=V#VVL7Lyh}-&5Qs78 zz#@rn7m^^KKTcIG5#L0kc*!VDT#{|!~h&lJE{{QOK^6x_N>XTwv|Md|5>>XAfG71UA>ZNMi1lFLz8D6$D1HnVb z7%8mh49SBhykRLpG}H^^iIg&1!4H#bmR6{%c^7mOa!C!Vd6VL`iC2d$upEFS)>?^v z^%_;zNc*2iuK`1jrD`12oY%M%E12BS>1zBra*$w# z%C&Aym6|}J1Pl&xL~|jBMO-MY>S3I%eeapeW0U1=dqq!ALi}h)7B3YuA8Ud!Q_-Ub zg^5^=NEJ)fcWLRo#Y<~z)YP*@M6yL%mIHx+J+e*BF4NzzHaA4V$F;6TRY%PU3QjU3 z$Z6kxUwt)H@gHOmUI4_|^JcIPXT6B3P3+ zH5ycR^1#G#jEhw7Js?ZSWLJ~iyvzy4wg;! zSCHcQKq}Yv@o4Ppda5|V2)2HWl@MIbnBr zr^;O;qYZi_U1~JydaKl%>D2smQQ}w$;%QAMrNk3{l{gb@42f5AmaH8nt7*DB+%q$L z`yN>*(fQ0N?hkP}5p!65IhnpiI^m9sg9DCc2MXkVL#n_FK~Mx3YJY^+_z{L&rHXYD zDK>xNuLvv~a*cU79Dx=+j0Bwqnh$;IG4r8UeUk^cSP@?rO_$2SQ4$EpG*BH;lh2i=Ueh~z zzFZPxc9K0Apw6*6=xVxIAFnxP&-+wnI$;h8;xL}&rZYm%f16L%-nk&12+s!| zToxSCoZ z66Jyp|!1I)J;E39nGwL8gc+=g4}hm&})QbgmJM zDv^*Cw1#J{p{wbgf9YYQ_G7_G?MtP=@XtzP|3 zieW?2k_*%Dn24QgJ=;A;wJh_a`2Ucq5146!gapGdea`T1PNToyCwYOmDrz08-saWx zm+y@e(=tQt(&?mWZh?bOf(WClWFz_6NUy1j^^pVXoBgdnb*VG?#8vThH9G1Q}um=8zPA@gBC?c;&%BnK1t@N*OjHyq9g&R`|GWNo^w z-HQiJJxC3Cr{Wq{(^2=(M@4e1Wrtpbz~U);l!83 zBT^01CXMt7QhHM#9D24f3l({v?&4*DknZIW2nFw!b7kwl@fF!Ey-_#P6=R_PZK$u>{sa}z>O zhI=N1`GsGHo8ZctNZsK`UAKy&Laa}KvGgjkXl7)QxE+aqPh_p5M8;z+Z7*aC_t$Z1 z9StxSP-Co8kZhcWzvNq$8Y_P}wnodZkQy20L!at*Sxeg^g$ku^u>HamwpXf&bEUQx z7NmgTPtGE0oK)1vpVX_8QGwMm!<~n43=QF#mf-PtjXtfd~xSB3B zeJJgxIxWClDm7AC7Z-l+TG!_51n@Ws36-Eb6`wC3Hr$%wYLc#LjDV;#-K#n(VqT?V zbU=g0DwpdX;S;e*@ASDHeCIBdisaz!z3rtX9! zq&hA3<5uSohQy;BI8vpa&0*OJ)7jXfpd|GYOc-l?F5RHJ$~@6~hPC=n#wuvnoWfz% zp`v58+E<^&k@qWIn}(Q}l_c}4{6nn>u?4tO-JrnPuvRcxw<;6#AtIf+tE{yOu9oJx z)>=y+Tqa|!w=u;%YG$g@pbnLzceq9yewCN5;Pc{5Wl(A`XDm3`gc=wJ*3r;g#BF?^ zXZsuzbbRo#4ntKtWp8&YgI~jUm@8JAa1~y;?C5lio|EIP{X92XI+MQ4#3gy^)8*09 z8~AiXh3ZOunkX?jxqcv;Onu5WN^gyn-3k_vh%6R+Q7&`RhN^}-kebyE`hmJi^aC|q z#RL7e*q(Cxte=IDR!UusSs*gT#=tLGXWU3X$DP0{C4A&>r7IGk zk&2jJI#!|1NL3SDYm7AJB@KjG{&PI3H3s&BX#mmP=otbezY;ST#5GRoSinpka2Xq(+?_EkHA%{HIA1MqA?S zz()ERm?k{TuLxK2d(VN`L^L?WkV=6Q44+`5*|kt^QE6Uqd~`u>r9f+?>eRHdGhrKI z1#q+g*-mB|Co&ukplvnXDsNIIPs+lLgtUPnr7uHxgpwO52g(#WNCEReSud+trEcO| zm1w8%$$>TuFkEEKS{o4y#;F zB@;5PA(1_On0faP6_G2kUKZ%S8q zu^=`ReGZK(I9}jaZHHbpfeX0mu2Kg_35*<3S8(Zputm22zSMqBu=CxsX6>kXgCLh=5DJv3VWWHVo*v_I{{C2(59Et4U82h_nU zS>@=wQL(s<{M@>u_R+4nF>jGiTpLV72}#SuC9R4~jq^>wBPD$Ts0 z$0<^yVthh*S^kPL#6%v@*B56hIdFUh7==MCiYh2A3I$AB*x}s*1+-l38x&Hm;QTz#YNDKviBmQVMC$w`px3QMhx9 z8Zj=kWa=j}>%p_@7n$?-)f(on((G+q%pFWTfQRmT%=XbYuQRi*N$eLuP}j~NCAxN0 z>>qk*8c-Oz)-|`oD-0f{+w=lo9$`zOai;#t(tjYDuiNf3EnF1ecaa6+1I7UJzpmF3_*||$i0S)4%VoK%+#!g3bmGk*&nfDaH*T0(QD*a-?USM?5_`bfT?YbR8Cbes%#xdVLL%- zdVLUwiJ&X-tnGwR*H?T3==~pgf5NY>lZx;>+$EKLpBJNzC@Cpvfq4dVIdjq}eI>K$ z2QKi(&C1h9uSFABLHa%liHSA-h^ci^EX_*SAbLC+2 z3W7%G3a)VKH#NxFXjb+&jXwK~>fYJmR@9)8Y$B%Wrka(%H;}-UO|F8N7)S;)aZh-d z1sPO#Otv-%9)(BQQ!8N;Bzf1b^g_fX<_%XvP1Y2qE(byv$#Cz{O%58Pswykf!KhtL zVtm3e9F8N)V}myX?+94Kt%K2=Eix)5#@;Lg`w}JTM-nr1i2n*1msDFI<*UJVeTJ*b zz%&Q0l|D(Wu}dCN@X;8NW2?uoZ<0LfADnFFWOVCfnT+}24`niF7x8nGRGTGDpG~{E z%!}zVnhhY$I*nbFkXGaA@&MJuO4-;Ii1H?<00s+bkf;XLyQgvs3_OJtY9$mL0| z5MWa$7E?0BUOhkN_=06t_S{crzf=QAs8?NN^(mMqohfG+ZbXcI#htEuzXIyEbPCxP zRcb_r;Buwv_+@qV#y=0>JkxMK110LJRIh?ANhz(x|LTVoN|gwZ`;J%w56)+?V{E{I zl<^juYmB;2YU&j-J9snALrPdo5r-cmYHUX#fx>Q^U^63&6Hf3Tsgl+ks_-6 zZq5EWz(qTG5`8pccHyLe)>*`G4+dM}*Kvi@wfQfy?Ie_fP@gyH6N;6HNXP|@JJgt8 zkZhgUhp7qr&pff8)q9BpzsB|L7U%|LXB>F=BoBx8fcm2OFsK&sKzG=5vcfk?bGDkI z<&#~T&j;?zyFpcIZCy>5n;FdSa@G#Pse~dbT6L?dX#xc;_9PIX4i;F*9}d+}ib)Ip z5azm`LRZrp=`?gM2cQ$X3)5*Yk_NMF-ekcz($P7nrw zc@W+iXYz*+^h1q5G%7gF?4w+3!1AJ6salwZ_}-I1Q+BjuW{puf8N*_qAfBq^K5Gs{ z{>0F9F>`{p=*iP~Kq$piMtBR7TGdn7R7ET7I1UJ=v)`52T`5%&UO|)QFqjFiK&fX_rA`mXyjny-;z#TZ zkPo9}8%|gSEdZ3~m`vUpb@w2h0bc*auh3Xr$i}A&-zgaOG_z;JFJv5O4i2;l0f|8u zXeK6L{W`h3y$yLu-4GjVq0EYk$su0+%pB-Uy3`-iIja5j>s6JP^|e$UZ%yY!<}zg*Rm zxja|>P{42i6DwDf(8sKt;R0>4LLg@lHep3I$n6q%RJSZAx8*S$WiPAet~dhwtCfluYZrIOZ4wybpgK^XPn~9n6BZ=D6=>V?=TlZo0(uxuX`}k z?1AVjqdTpo{ajkyH&&{p$D}4mL`y#-+;f9IBeaj^mm;CpG&zXZX6QnUx{gFbhdCZ1 zp*@ihw}ov*p}f#|^&;H{p3vZy1$rC`M1S@2NaH6%%&pPLjZNvKN~Z3C;Fb=BFrh1j7d&1oiKeU;4g-Up!=- zls(qaUE~{Z-6tY?qqVRt;%gzk1V7Jms>|;y#SO2nvL`(Wm`-l>$0^{vtM`n;mC%U# zkvAnSx;me_R@&=FBtE`cOgVY9qoO-d%7ZQOR(K$1!oF~8mf>qb)hm)CNOvRl@PYC*iO_CB6Rs1K#UG360x5x9i1s19aZc*Y&3McN_~gR!fj08VLDyRyx#jo z;D=YCfVyIT&8kvAFD5^#AA8uFq0<7g*W>SUu8Ov}pqh^+n(Df5L_#fSEJv#GzZ+aE zGuEIAQTKW_l7kl@!{wb1BHG{0UYjaZ$9M0dU)8VFM$mC}HT^`+a2Hf@(%0>2nNKAQ zsmRy85~Z@1aEINCpJtgx-?J;9(Pn~s@HV^$FRcFblFyA-QHfN2EmezjT`Im#DsHE! zAQsUZ5<8S*Ms=rArwaEL9*9(TB6cbEy=shFH6l6vDp``3lGD_~UrrIKBE$>ND$ZQJ z%ortGV44!#X41qZ1JFogkw-k9T8GK|gIsFmonh~&Y z3x={%$k$zBIGLXL47a#z<)4kZZgar&5G2vUuwC~qW=Zts+oQ3eLtW0Mx0vT0w<}=hZhCX>UoPrLOG1OZL$|Tp0P)kt=D3t?V;1XKCniB#T?ZYCg zngik$0>s){i}Getx9dJlX=k`zw&&{Y=4#p`1?yfCMM1EWYi`|3#lEiKRGK|knw3^J z>sG;)uBMot`);H9FcA-ZUFhSY8ewGZJ;9DUhuOiqEpubu4eUn-N?Y6YKGA5KBYE3SLzGGF0Drp!d-D0q=Bommv>3g)N!^*6l?&P2AZ z_ZN4X4F~f(eA}3u45BYx%&(=NE2Kd3hbAJHL*-k2f@)t=mr#ii_A_S+*d0;R_+|3+ z!UQkCt{w{g5Ld%qQEnbjB4N}{to)cPxPnz#e5f_*_K+pdXy{?joSvNiJN3e{WKv%Q zKCV)4Ur820>aX)a5T0SY2W?P}9-wf6^fCL8znpr@+_Nr_gc-r(Tu1PqUVCC6oB9;5aDynmu?B%_6KC zGpp1eH2tdqaE#fHFp?U<40vGt6wf3x`dG3ew9y$MU0v&9j`5J zUjvt_kBkR^EGr{6D$J$w*9cD!dSy_3UW2OcSCiBNoT0IyliaMZ3B_MxFwmzY45$_7 z%U8L$UCa4iv=;yQ{{YNTeo9`cemTG@LdVWfKawX<;V2J3y=Aq;;Yw5o#-^t+keC&i zm434&E)B?TkBhggz!mbeOr9q3lsK%N%OpAiBBQsUq6S6J94v6?UzPeiZPgMUM=VIV z@$x1eog`mt#br;3*a!rR`-pd;I40gM+u?{h$pnhT8+!Vkbj>AF^9zsZnuVUWxS7I2 zGvkO|iQZ{sB&cEJVs3}}-f22Y@f;HFQqdA7|yAt8)MW6O10_0~Gbo=pfSN_QaeT^)J1sRI`?Zuj`&~Zdtd0gS{_6R)I*%HLu?_zXR*7#M$bZRF*>c@3MI`={KDu#PwIbrukswyR`Ks-AIR>7>Emf}J-s)RY25pv zC+0aW#92cRHA5+3?29tO_Hc(cQYT0w_U@zzlwtKC^*$-bE;aAZ#40~~=iU#|vF?A% z_4Ghy_CY$}*|+x}o8G6h@8GP%v&YjRiu@5F? z$Mz=ZQ~z7w9kaM;yFZY9Lag^aA7RDn!M2}HU_UQ)>7EWo?{VwOK8`jhV?lm&wbxkO z8RWDpiPoHF{>|U#Frkc{MG;{rRZELYW_u@XSUr4o7g`1=7Q5FJvY1c;N$X*v?r`I>7!9LHS!>LSF4!jno&$TNXKO~ z55g+f#e|6vdH5xHdn5AbHu(`Pu67G}dlJ)e>7~pYnBs|DZienFt4_xy6 zMm`aO>Va>9291sjCTYXOdEw4(uWR!LzHLfA`skx)uXhKgLMm(9p33+tzKgm5(P1nM zRQfkTh`H()J>WZi7mdq-0kc8QDD_p6K}1QP#zkjS9N}6JyG^c7n38`_<9nUY}i-5{)fE zt5g+iRDXhv#5I-%t{Q4U;6~rv+#Fjk|4TF1a0F#K8E z@nv+uUQhJ^*=?_9ciF0?_-Rsrd+h?wr@XQXQcLx##v7jf zOzs=DYGr%fwRO3!r8Rq~78&xe5uNhN`baHE06+44!c=}@3%zRVcWqs(YuPnssFs0K zYdPgLSE6V+xhWgRJjczs9k88nZC#{m>5zGeG<5#oCOCq;7%Qb#PdgF1PI_8xK3pZb zwqBnZYhh-9n-bvBkxgwSz@l3}*u!ljWSzOPI=TLMP84uDo{W_5u{HGAj>E)>bpQ)< z0Bm4Rmz|@5no8yfKyy=~teog<6;@`@*x}h(u-miKMiskUTc^dg4+oJ`W)PSkJ~K=x zs4WueGCub77kuRT*e1})h+^$*gA%#`MC!dIpTgBgj5l0cCwTT2 zye`Ws+l5^rOUSMK|2B)#hq^xF0APC1bHG-2#P&94`pH;ZcEJgb{*$(bKHD*4C!n9b zJJRrUK}W$3pz@7Pu}9b4dy}pF6`Tj{HX1tV^rjB^l>Is;XRQTo*)f~1*ESIA7*X&> z_TEjcI(zki?I7`#Vr`?%5BLCY%idMcUa*@w+ic~7w!JjfItE+0>Zh}J$mi&NWZ0R2W9?%K+UbC_ zbFbM>i}5-w?V=%O+4r=V14zbh>iv`0cu zXYVpzmqu;nuh|aJSeq^Sdp($j&g}gKRP>b5YEEYXBV{IEwe`l@M-;rCz1LQ~M*#Jy zSO;_Xqr`!)F#R3$aHmoCbiuCd&P{FRIQoosPlxS5tZj^^&E|W>h8G%7TddXQX&oV@ zY*>s^iU7oh|N4;X%p4~<){b|tFh4{G5MXsHjV!CX3i*4`ls(L=FDm_)FR&^v* z)lN@as;ZZ4d!t{MTB$JlJ9#j7a%U_y+K5HUpYpUBbx(O(H?>Kc)pxzlR^2vVmks;t zSi8%!%hR5!_BE@AHs2mwm$m$)??|P;YTF%)WkbG$Hu^TT>tVG+O2%4TnP(bjMygwg zbH$|jp2ed@^)_L`acL}d7`|t0Z5T@;Liatxg~A}}pgZCh@heB>=0gM857dyE)o}YT zPFx&NLEfl|E9GjFGR4w)L`0r_VOX7#1)Z7Yc6AB4pc>M3q{~bFA4nCa z)?ubw_K$YBj%_**q=_q9dJ75@?h1ALBT`HhBvbZ=;@#S>9+2*m^EAn+?tPRuohLmw z9<2IJVUaGiA!uDBgIs^z6s2bbSfDih{;cw+jBmDC+R~A5hHvka5ck~XYt-p~Mc%1` z?{bmvLhE}_eOVrRYdDG*vaN)wTnlw))lt7BmnmnyZSMF{BR>RCE-yy?&LuE~pbO3tv8z|0e`q9;N zKc%!w%&`ow{P1kqTs6fN+s zb{VDfHqLV3_tLIjz z1(~LZpwx>PERwg0g5C;Mp^NBn*)V1us`q@ZJ~iqxY9@}kk2%IV+hUA_8@(ApY+t>} z)$=OU$&8`;2HWkKxb|~WXC#x>@F$_~O=OIe&gGsZZ-Yr0ed#>4?;P!E-2Q)p@4CS^I(zfUM!3lDWlVT*bvIGfYUfs?gbJ;UU8cUKVI#3z;4u zmd9Ze!!legjcV!Sn}No3>g@O?N#(W!BstXIwxl3=o#D%uNbuL{*k_l?aM!i?@fhsg0w!CQi(E+B!O zHT|uVsQrDH&tl>F4StzwfI`rjaDfGlNnaSg$Pm>JHMY}t;2-fhxyD|lwxS{-K(uyj z;4*48=XFIqL^`IX_GsC(=t2oTw+aB(cmQtm^mN9#@f*kp|HHGLSf%}Yw1R3+(LzV) zY_@Af;M!Eqz`ZO*rFMox!j;5Q93Y;~{|?Hu(Pg;k2!Bh-o%kuuPR9WVck@|?EG*;F zO6=^jh3??RMGJF+lW8J2sc2zt@SLKBdBHP^7Ul=h(bVgFT+2z_u%y=zmwk;rxkd~f z@JR|IRo||WehE}htD6stL=??{mf*$d5*(Y@_|N;qDiL&1L$4Z_5Kb#yJuR?| zuEvE!E1v0sXX-u+!gi?9y3>L%y}X(#r)uXrQWG;z(Uns44;1b2^)Y!FiQIs!r#bVY z3jqAH5dbH@Dxxyerf=5}@yg_vsdfuK4E8ybCxs20TY~EXMN!rSwntD!N@Sd_|U?zGoT2?JX158umh@RP*Z zm&@xdn*=(T$;LccSzbyLlF_c$6ll~LR zvGqX`Q^nFG9OX};zy3xp06d*9UBCLpL;siZpM2v#l$YV1_3(e`-wl-f%>G&Q@$zr} z*L10W;kW)v{oe2Vhw`V4zk^(Q{0v+WIj+3fbAnV*5fwjXz4-hnEnZ_^bw>TD+Jczp zP+?~YYr22`yG=PGLs_0fi;0%HL_;4P7wc<8726YIS%Ufu71 z5|?kCg3L8nm*D644{#$V&x%|wG^8#K`<3qK*?CgWvoL_i(3@p+XPFsx26q{BUHG)R zN(oMo0t&Hr(jNn#^>Om>k88|+37X*?0@&Vrt0hs9yzvA4l<`%qj@LN+9_12&9@!li!y2vj3yzQJM~Fv`qn zcA3+Bp*4lBCXwo-XV#Ve{2M-RDR*s&O`bGslB?;*yrTAu#^?ywR{Ume@ny6B#^RmI zwY9T8Ymu#!q=v*g*VbObp^0zO;Q2>m`N4D9v-q~nA&UlSA`I53@0yfX;zqXW4dIja zHD!=wPP1d}<}?G|SHR-jbbKT4D=&&V{|UDuX|(P~lMoM{*Jasu74KN-qJ8O7v@|P{ zRhf7~4w)1L;Q5lJlgaR76hZybP@l^uVbuh@MGscre1qbDzS!pu;c@{NC!BD&oy<%D zSjrkBCBgu1&@e{!hLqxGis@Yw29E>?fo^`|fjd(y3S<`y`> z(k4Vm1wkpgg9%LSXg&r+VOhTa_SEn7Bjw}whkXPv=`zOXc>VBM__|PLx;VOb+u~!bXIQVV14{ z#o5>soz5m8)9HTo0UhI&MF>#noU7MPiz(&4FCoiOvvh>rLEp;Y2Q4SSULPer+ zfJ#v*sKr7hpI-JU|F-Nhm~5-LEM_~yoNW9F9~&9GBz!CwJa5x6y-MRe`?jsU?AIBa zjy=b@;_|iDwQZYs>8~lUZOL-k@j$v?%^FJKh9Wd_fcR5>)ge6w!{*(&U`7mIFS;RxTZ{_TH7A;Az7iH1t$C&zuNUMNT);r!q? zhI%C9xa@vC+3M6WC}~5yFoti=SoJB$4Scyw-9IBzTps+YE~Q_7%v7H=Wq3Ht-ojwI zGLtOVg0nUjLJR9^BeLK(3NjXN(8!46uiJ1`UZyx}78;P;6Tdk05G70q zB9-y{$LYSW&8pIu!g5fZ>=>%Jj*17?>xx+*_tV>@G2bq~D$SCau#3xyU-KtXc0GAAf-VV$xkuJA)F-_brX@Qi zCf*uT>J|gBq2wYzaQEm|#;9ad^0fgCrw1ySz1N}jc*S% zDQNulx+EIWtq;L%Mku9&S~4_5!^X!RoIGlkHE55z)Ots%);nUp$NlQ3ZW)-z8JJfV zB?o|kX|o509J@c4jAvll%)of{z+A3zJv1<64p0dLlS2R2r-slkHWQbKKJzppK8k)E zv*#IK+Geh5^zRDW$QVL@yMfD~AF3`CT`&xubJa0?a$xs|qPUVxSie!+EUj(KOXC6X zZ7c$Rc%k|=Zh2(0e2dZZVqEG$0q#-sbWXEt4eQP^M<|+ zz4S1Bf^Tp}%672XiFI|Yw_#rCn``2A3OPMiDq#zb+n%4uaqJyzC`2AjLK+y15r8YquK94g(>DmWW&vU-)jG{MolvH}dpR^``sLSXLQe?^XA$K{BX-W^RIRljcg0#dwnyy8*_#JYsp%+v? z3!K2qOK(Bs280J@;L2HmE;_?RXlCIiXGbEPP###|rI|?kAQPKQS9Md>3=}uHtqJmu&WEtzbQ7M{`K|aT>EEXcrB1q^1E82MwfWIM z;hp4pgHb#0lZi~((XGrR4(o$C>Ql5}W(abxbus7_9_p9sa)}<`#VdJ`>2mHx@sCLt zt@K()Spw(^9C6+^-8mZgjFO2XqQ_xhwXbN+#Ds^K6Ps-+kb7Gm2X#}3Q)$B~%=Tw6)>JigAwbaTA-B)kj4E2~2s{|kKq#LSphs=+Bn#BB;--h_K zSQYKgpr8fFXP=UIvJz*K{bWC>uCH-(l{&J4MrzS#U~eT#{{UKgA-z{ zp13eMgf50vQ=!(uQZRQIimr1>TEwhk!{QikTR zIP9SQFH^sfK)`9!MsEU$YwFgoU`j_$A^nGL*HY$GICt4(YT5tm)H(X4=|QEHDOUw? zv3xoiRm>cgBPAmRWomWVBCc&TxF8nGk5;(T_H!D`9>0 zc#{HbUN4h-7lNbq(APMC6@IeT8=TWn_`Dkb%uGisr#Ff4#OC(UHTQ$SKKB2mNifPd zDFbQx-R%X*$ZH};U6G6BYxYshE+DtAbXRaKa=7R1a}cbWo*a-?*A|2a%)XPUalF6uEVz}f1WOA03Sf}xKUEKU{F z8o}A>9g}5fTfyyJ3a)*?1ur{Wbq&vz(gu$INc9$)tRZETtrN>GV7>NUCk7g1!UkBe_GUBFP-EV6&y8g80+w~+(?K`Q6gF3j;#ya z&DtiOzI@g{NN72m13+0=K4qSVjd`IF}@J%khGx&ZmJ|=SEfpzotr1R0#>f;&n z_62^PWJXV@PSLhrZ=U7{DFW##5Z_TepHbq+oIRt1r-)SWsGi;NQLRhI6u*Adm%yL^ zPRjBlHf*gP)9Oy=dnI%HAln*BlXCshq=sc+d+Sm>AuqsCYamvQg788;QuYEFZcPVo zq@!8&a{Mx=zVv535Sri)(ObDR1TW3X0rg7+^`KDq#7O1#hAz?q-RJ$QFQ+QcOxq-A zPcmk3u%J};;AVkb?@{&Y=@e1UXF=k_zx4UFSrFz{beYQa+0y6N{GG12j#dd_AMUJ7 zuw{=?4f{(*rL(@Y(z&J_siL%F-PMg8LBg1Zir`9}r2}iztpOfJRz=`aQ|R1iCcCQP zp;?3!H;i=V(MoB_hMN8QEjnaziS;GT`>|=Dlw#dSxku}b&SltFcFtvME{~2oT9IXl z3m1{uat!_EtXB`8IksBbiy?`;_(TtDW(py=ocidByYRiO&a9bfqkAeMe@hF0u*|dX zu+i=VqOhLFLZeV`k>2bXoq6*?{3oFO5_FFpC&ALTV6 zQ?0vPFouqJW^u>Aba96vZEk6;d(At`>_Y)bja5QB)Y{W}`izJcQSA_w2H9+DZq+Tc z1sT1Px9@~&5$m7>#A(YF3>h}MJagIQu#kG_k2B%FP)q=i7snuXB*`&*Ivrw|U5#aI zb|cG6JJ$T&h69OFCS(eG-*_`&3A+|KmcCg1>@h5Oj!|76#BG5&&DiR5mE9P2?g97u zdYQW{KlFZCY3QA@8KJ+;Y_};mkCVAeN8>@3ZkA?+N1*kKW?J_#CqtPMMrV1S@NRr? z;|E_d%c4-4^vIXojwmsslQ6U(OqjYl*L*0pDXtkPCoF9O%hO;R1k?+kTv~v@8HFxJtsgEeilm<}HuX{)>%*f74CzZh6y5cyI%6EpZ z)A^g9xg`H0!&hplj;mwzzjm=(X_UTZigaD! zwHC>-Cm-%8L%W{Wo4pQ^G%tcl5qG5W_~(EjJ?!HVZb}U6^MCVw(qUF)tlcnp2y$8F;Jt6mc>Jt7LLfrGPv2cYZMDF5AEshHB zI>Y|~M^$uff8=mZF zJXlB)ME>tHp-|D0y?J~_K1}npyg)9iA}2DCAD-OiFuB8{RqM5Bj^1C8rkbxJq$k-x zTKM`@mXT^XS>m3yG`oyPeSw_PFjAZ&{xx+ApYfG=ISpSstkjiKsv=ctq&hQ|h$8h@ z`7=izrfm^z>aY^;u}fUi&Iz(gJ6>sLqIrAmwq{xTP@T8K(IpOij8cHi7jp=4cmc7%6Q;ZxjBg~ec(b~?*Oiph+ zJ?Lr(jxT;`$+`CmpN&qaoA}m>)#K`q+KA4DP^k0< z$%s!VE99>;o>exLzv=PJvhr|daKs&z@h8jf2>%~}uVOCE0$}`Tq`DhJ->EzvTYVxC zsqW$bNw{?FAhnM>I5-wLy*1N@DX**u*h)6#*s!|Gt_!)!J{5A7Ee|^@E8?%finaPY z;sWG7nVuI$c$&XP0RG|&WrZRC)Y>!8$WrGV>NIlU7Tp2l!Z6RE3`iVW$2Fz56aOPx`9Rgh30?30)ma?d6{f1;om{Hnh+v?c zN}3XFU~tXv+!wN{PfTmwpu;Du>Yiz>-_+qAywFW+ZPekDxL8=p zIF4Ic+S*Kv_8ZFu|M+On{zi!aZPMDnmEkLxe{#N0YUr}Sc9wYWpO}@n5CML!xYnx1 zjh@2rsN$C@=k`7VT?GrDfIYzbh2{?ig9&*g6g6glq--@7=FbHx*Q1-d$(+{ka&%5txIker%LoV7KR$@2u$$*;ES zQ#mG6__50PUjv_{qQI$191or%H#&K*@}is82gdOkfd#4L$4TZ(peE0-oA{VGh48^eYgwcMP($pS7SGGE)D z;Jt|!X6Y7U&Pc*x8u=5sS`r(s!I;(k^d=55-2TOwJTKP&)CGMAh&3(BWHR2*1%ZWs zH+Z7c0P0x^Y1S_ZMwwgMJS$K@;nrtQ{X4tx(pi45o z4&WcHghqm1Njykm)kvD4WFbPE$5GGH~+YU$SxuhP`OwH%oQ>lsFq&IdzlM+K6KL47OT{(8PN6FC>a0m~HU0 z^*Elb=+^RijdDn-rS66ZS4CVXd2>W-8!cv))&a0AhMa(ZM3Od%^;K`2!+qK8KP~OI zzb6h`O1SjLU0y~j_ zumc>vER=(u99#WMRgpX0{gFGpskUq^i>e^k`Yc}1M2T!4v14PUEoaU9m(zhTC=Wf4 zQ_Jc#mBemJgG`(wsFl}p?v*sQ)qFiO5z;L>IeB8V`;-~r&wok z9f30x>l})-@N-N&5sJ~?4D>!htzf<`I73Ax2dcKS;oRWDfCh=3X`DJI56jI_*eyU#UdAzHM&TA&(r2OX^eiOll$8{%-HxbTmcx|SAz#p$6`!WkstX| zzCn}pgpQPJwegM29V#i7eGZ3_O?1YcFBXEk@ToO(>M@qt3n1ZwD zBXH)YRZfpz5%^guvjO$1waM`Y)YSWaR%L;3+RP}F#RZ8yyD4Q9UzG*CsLDM=v>>e# zD;kz%kP7rb9ehF~%JspXEdcO2bU0|v2c;`kWj-D7M&>xeWBls+zfsT1{ExmRC{;+; zMZv=HOjW_klGVY`wBQ|qFEU>PqGhOqbJ_g`Nb%?(zWH87R}ndqAHO`B9g z<8YGd()4PqkS_7sml<>+W{or}k>cK%b2bf&LsahL{KalKG`ILArZ8SLL=}ZA1m}$% z%DJ`i9sp_O{=D->QX;23>^k0LEHNU^cuQYd^TKk*$V^kI_WUb=#@I~qtI>aw3wgou zL^Ry=801$gYg6aY^hq3toweo_SdB6jtT|RjBO^MiM)geup*IQf4_{4s$sRet3%g48 zoaApPn+?qqdBB|>9u;{Y*QGD22=-If%N%5dJk$Uj6PSNi;~uI%+xTsGynKD6BG%3Z zW|>WOs`8)YF8>F)!BsAMy0j82cj!u z)u$1gxTs?JPRs7T;hGHpHMK#~~YV2xG$yJhN|-%D8oF$1lNFEF!4TNNv;@(^uv{wKso z8#ozj0qH;9t}17Qt{01s%Q$3}oe~aSeFgjR225bnmn7B|VJTx<7BPF=iMko6OowBz ze-4?Sl>KWZx>sq0cR#<*>2O2uS&)xW!`aO;$cWRTo->+?5)NLPWo(e{8#kn(>WlKB z58@A<(&HEYhP8PYafO}swOppQp5@`O@jDpWlD6%nhQC&)zK_yTNcRdIE0u;O2IS^P zz^tfxR#b;yuc-KnI#uc;yS1nw+N9f;nsk}ZCK|U>miZAc56%px*Qt(Ar8xr2Qx$!c zHwPvKS4hggNy@flihiy_TDe2Fl0T%nwQrlRP^aV|#TW=+2OxCGs#+0g(^^a!hVowQ z>$L%Zx|iiC1ShsQZEIQuBI0@0OHSdlJZ`^q9su&RgPtm_f0inRMSPanOA4S?@%15| zbB_MvTlQi%cl?Ual2Tb0DEQ9LSfP7|5;sd7RRxjuqF}zM|B$g7XYSmKC48S zq;H^UNOq)h&f{AY!(V;dz!sWmD4xqynfIq8<>BJ9V4yy+T~Hw8BLv6EIzo#iAo|rx zsX~@^@|aqC0M~2wMH!~o8%mbtg^L4^q(-tO{dc)|w7JoSK(-e%a0zq#*tP69sb%)q?S{=hU zV^?Q+Irwm>h1IZwy<7RUw?l1jV%x_!OXp(G&ZH5Jq`Y))dH4gM6FZsM-1+`k#eBbd z=~tS?AGV_24*&tb*{3=0d;1Fczqs&|9a`I3&LaRPW9Obze9XlXg;UCqZZex|14n? z8X}v@9HHy=4lV7e?WI&F`?Y-4C+f<~mg-5xsh?o0E0)2ZKU-PU7_Q`Cs`z!k`t%=} zc9k=lHq8)jpy8V%=0#S{z%&R<6p5br@_Ax75f#SsCzRsFA%9(9+n@g1p>~r+H}#b_u4607<2t#R8Re+& zAU7uV2|88dM2F*URVJMOarQ)@@Mjd{|f@9w}$$l_&O{ zk%CvgMbGw$n5ptlOLc=19Iu0Y5*)3ALhIG!7bHWD1kbQG6Z_gEL$3}Vkl-5x>r{_k zx6|zdDWP6)<5L5Ia!q3cPmxy$;O(E&*x{k$C8X8V1@fh8sSi7)*R`F}l~PEexvo8@ zlP!xoK$)1-BA{xNv|>5XSy{x;^C#Z{MeVGdm7gbn<~VTD+gZ7Q!j8_(t^7K+quTzl zEF&>bj^^stqnibRG6Ev82J*|XN4t|BwUs_cEAtG|)b>)9$Qb@IJzAng*Rp<{;-aut z*_n+;RrHAXyn(f{LdH<7X7t(|C(ic3wZqNQhWcdYIG|_Nkqx`8rF1@uktGGKbCG}My7u$PKqIn0y!u;LPDQ>p?lsxZ+skE!ewvamch)zAve2 zJG~lK#+q9cU07rys$JTKCRV}G^z|wRN1BxG;CLb!ZK$6!hAHDMA``32)V<^Ba7?+m#@vcY#I@v_5`sox0x;dO1H` z4uOTR*Dp3Kpda$CK94cK^^lMrEZp8o>v+pu-_()LP(WRdYK2=)OX2}1W^4IS{%|f# zLgLqZ$ga|FvU!Fd$S0I{nC>y6rJ12SJ^C{xmzh*9K$YuWC8>ohPfNe9E=HA1!lDL4 z9~y-|Z2JQf8gg*CXjazcDv$n~ujUHTS~o}CgT@T+66)v;@?ECB0B#fe8U@npPRTOX z6l6KOTwYm@rc+OAklNq48PXebF%0~dC zt3lpJA4$D+>Ij9BSD&O;JletN$VPah&F_V;XABJbt;S|1wbd$1S0*N6+(%MAPfGl9 ziEb5+Kb5If=`ZiHsEy%T*VzYU2-CvXT64)Q1A>Agj}lgNHLXxN@tX0s8bd^|OLEgZ zpJ7W40oKg{aAyOGF?RSmB#UdUEhnV5_RthARlEWeEUL7`eu-4OkGNT~h(FP^IA#=H zDm2yFR8eq1wd4L_wcV*|PyaqutwgHY|4X$ZQX1uhFiAaF)C!8tS2=`CUs<@%M6^x%lwJ@XIs^0trM zZJwyL2{a+3Zh_oFjkIU>%G{v8csz-;UyKZlUjIO%pvCuD6i#E}>w@n18fzVQXTFSH zMxd2ru{-P3mr|b@aaP=H`*VJse(lJwikan+Bd+*tYh7-gDmKaCmoVV9b3PZ}$3feK z;Hdaz!Lhiz$%>B-dXRPHNO6QHOty~!gy$FB<+z%^pXC3|{6EU~v;6-Q;hFrO&Ho$u zZx|wYzDPSneIJ~e&7i|L=fbv<0xtaly&{j1jGz^H76?VHJOA0??h0f&pKbgBNJ$T2 zv-d_Jb)_UCZKw2UJ+o!Q1mj~Y%^Sh~Fyr+^1xdKgYZQj(MHT-GMBb1^8D5)0O3+Y7 z8R7q!IedguCMClF(ei74omxB`n6;Q)6*RU9q>hbmLX?KJW3L&*Ndk<>%$I5$^;FaA zO>>*6Jn6%=R zA~iicNIbKx(AqLUD1&1o^>wCkRC7*-2@(O_Bu6zbV{Pe^LhYgHiT(YAu<+9*qzk5m z-nh0%T6FVHeyx#p(aeNj4j0S|hiqe=mE{0H;Yx^IblDPXiENmF-tQ{-wn~tn!(X|i#7ftr<`_)hc!BN z68C6|yCQG7io1A+LGS=E)U3xRa0JdW^_U*<&ttmgk-N<%;A^;}zb{CZKn}tgA6}OS7M& zKFZ&Xsz`BnLIi|k-9@FzA~sjaE7BD!Fu(j1Ck9Tyh4H5uhBRFuuPyPMIUp22LTGI<$3@zFNEV@KR29w1p~ld7rxM0jSi<(q}_o zY)jiDy27r|ZRPU&`L+!Edv4ohUpFap4m# zNc5Ob4t^az;J!dR{S0s}V8%|K)?v#|?x@(oqkLv}ud7ETHQ={0m}wmtgcP4;4e;*c zI$p~i@a!*Jjk~4ilJ#?SkyDDa7wp!(c-0$R^D3CIRq!0{Xb&yM!$rNdKBTgdu`oLn?xz#_3W>5dG;^QEXEk9(87U$Ju5x5enx28O(Hd~Dbhy)>q>5tnGwpm$wBq& zuDD5N%=#S7V#Tk#?td@JIvYAielne+ocLz&hxxhEo{w}xpFC)t{21=xoNW@CmKM4` zazAfL+;7jz{?H`mWq&Bgo|pZh(e}LT57)wtG*SjLUv4IPA_Ezr(NCG_{C?<9sMYw? z7$|)|bRse^f=@HK-w*v3%RWBM41YhgkGV0jO%{dtce`HQn^Ys_$2c~?becJ-=e8Gb zI{=xg%IG3J6EDAG8Bxp z%kdmn(6CE(gvXk*c5SpSH-O#PTvP%M3nEFHiHucbiMXFWEMcgc%zsi%0#Wg!)wraZ zr-vm7KU*X#n>qfZV1xw_DtOYMwIejCLcVjJG>Gg7jegSLuw(cUJKoTQTUV!!8nkik z*XN%3dK_`*H#qbWWz0xk-0dWFt60P9^Fb*PJtkYT%V;JR3r%AYdz$|&gS?Tadb#Q9 zY55^v;zIBRiIwLri&FlYyUp5}d|l!U$Ou3>s7X8jtQ zAR9iOHT4m*M~%|$5Axtn*t_O6VGCxfR!DL5X1O{tvR*xLHAK$V_&KA?a@2Fb6^IAX zm&qPq9Uahr-A5lk#Segz;5Xm5*?g-Y_8 zAHbT+RpM==9}0Br|0KcqTHq(3fBP&J4>P}%tmn<4OCZ0pY zO$y#X#-?I_!#7rUYS&(HB?FQze#7K8LGQ1V{d+j*jQM&@$(NI{p5`!XO4n9|_#)_O zxl6~$5J?QwKYXPgu}OReGXe!yK7r6v|6Msqk>R~uL-_t-yL2U`d(-$4_blBs*W*_! zhMLRNl@r&IEFiCZNlvvK{OR$*U8%$X{V(>I{&-rRATH37!q|2Y*n5mPMqMU13!~7g zYqeF)LuhtTT?HujD~0h&3AkiIii*Mob5!};Hsua zE2q;nuGRV7kq3(41#y+N9$#fF6052RajPiuz%22fwSJb`sUv3*IcsaxoYu-Yv8oa| z>Z~l`#OL2))(#mDKm3JE6H%~JR9 zm!n2v>F*F0|Az>J#VhoqBg3$G9XcFCImR0dUdy2!^a?OQNy?_APwpH2qlF9mui4-5 zRe{l|;gN7_^Z%ln^ZeQPzN}3efw_Bl!)@1bu=52%ZP%9{Dsqlgv zc`DLSllOp36UYBkl$^jnAxdcJ=iBL%T&NK%E%nT=gepsDmc$!W9Hlq9|GPPpFx@&R zMaM}NeGMlpY>4V-wOSk%I*Dh6zkgBee_ibTKTNvX;Za1Kcpu>KN|PjZwKCo%rg;qurBJ7f6V;&{()Nv6nSG?dZcVArG%?X!O#%Ble zQ9_7x6EQb1{ssTbLNOf<^c+*)-YXPQgMqFg2?O)w!=-Oq47g5UdQSg={Ge*b|GT z`+v|#$2Gm548-y0OdDnHZLoi7Sz-*V|B_Qoq{2^ zSxry}zT+Vg!G|3Wg0iJ8g#fIVg}l9`b? zo(CRh>#gz?R-164;9sqRRn#Mf!0#=7J@9C96{N;2rW+Iz8qMwfgdP`RfpgR+e<@%y z7$pG?r0ogwQ&3&}I(5+nfKazeX|_XQJL{rTR1WRQv&Wsif6yZj^V{>Z6p1eoLlVsm zzxW@fVo&oR4~PERvtVmw{1c}rSbMS@<4dlKQ}2v0g+Zb`U69{9kM zEYV%~YBR-4!ZRcqF^T9Se)TC64Hqu!pW5zAKnstscYGVpk*J-1^&1lV_>}HY#8~;zRDY z_ZqWBExmH7N!y1^hm#IwVhf?ALj5&g#DEVGCS_Uwl4af0R|a;6kGLz^64KK!FWRy~ z2MTJUEvt2C2E4F0+Hwycv6dP9vONLiS4PSA5y1AVJ9JoF*!$J3gzJi5S2wiDxe*&h zwB=4+RFauNFOtsN2ZCug(=*nhiRH7UX)B1_!)uGsqznz9%~6mwD$I=`{q~w0R;9OyhrD_1ir~B_--W; zE-vw3Qp4~HzB|-}T!k(DFX{feEA1X8QTBT#z3FHsndoS$i?u`L<9aH7q>DEUr9Y?B zKhnkVL+QUHJ=U^8cd_N0=8udZw2|iRUW!48r88LZLwW4%j&AVxO(iHZG=3RnEGbg^BY#{{vm*DUZtU5ES8UZa&GBMCZyp9Rv zfnYiF|DX)GE}}M(H;J+}I&9!yDRpqF46Ajx_;*lFwLfT9gWk6CWY5C?f%O?Rhe@U< z6tbZh)_eA~z6{1a`*w)j@7cHg1b-}j+QqHVbKTa%+bF@gEEk3{AY*;$?~34tY$4Tv6|6oW-I zF_ZJghw)&k8bBMjIoWS+MvlCxUft*hp-+mAIhc=r(Ym!DR^jyr^J5i7{@~ca>ftqo z_o^SE&W{|K9zPf?T0*Z4=^FhnslgKJ0{5pac{S@;&pk-t)@vc0Oi>&_$xyqjjky@} zmUe}2PK1lBPU!oKDiNMu$bDRVJLJQKaqiFosTZf4ZZ#erPlFx0!Sdx6c4qXbW~r!) z(v+p-uyPotQsnIqbrG@DIMkEj%RyU#~`u0byup{fXa5y0CXf4d{ZqZI?FnlT1G)O}6)+^HPXB^2ZxA zFR=u1rtVHJeT@gV8)!3ND0*)*nKKUYjzm>Ked~6a$%I;W$joLyw)zHJn`B-qc?Jb9 zWdrIlcs{DcI+I&At5P*p#BYN0#fkSLL}`K$9#x~R(hTCKInQa`EZydw^^av$lp_K8 zlVt-B0)v(be|(kRTX5H&k|XppsHtsMl&ZjKcL+k2P=9{1gDub5d)i+EKQsUHHm)ez7JWroSSms@52;Yo@^FR{7q{ZpHUJ9UaF5~Y@D zZ#k>Ym(#Fcx0c)!%CMHKWo_ z{oCb;7AgPbQ!U+|W+CvMzJ7E=tg(JH=qxi4hR+D`&GFYKCdjBM)~8tU$f-li83H;{ zkaUMgx4K~ zQlMU6|4a5GJcxl9F46WkNgq7F>|YtxA-u+f2P-ui+#=eR_In;Y&ju;FjOAKu6I>qH zE==BhJ+ZHvV)r0$oJi%J%;3uXygXpQxe74&J_bX4CI;DZd27=DGAGyR>h!BTy2fs* z&^R$Q9=uXk&UB9NgbR?}HF?t01U~F1aX3?4SEH_tXd63Ri*W5IGc=h4nFYJ)LuA0a zw!Q|cK3i>}j3G0X!CW;OwVGakAsn@MqnteDiVIg-rV`-KI+!@W0xKlw^Ea(Eygd*>pXXoM%1ySyxGIY&A*}TtGS*dw;|(Q zbVWZ@RD4$bRI)*eKCu$h4)y|_u+M$@?UwgL%ea>1 z2;sU|mMTO}eYl$y&LYfF7j($8A3vVFNl=e$!B!ET9{4_J92z#!T25k^I2_OMn^AM+ zabh$}`Z>!uEtV-0c!OekjQdEIT21EHuV5g>tI1dO=-@-%7Ddes3bXRhYEwxr$?5By zK2eTRy)9kl%cN+#^FCD9;XIGeM^A*j`L)oAnczLRy~GBaX{iecbB6xYonQrva!PSB z1uxCuo#o<{&o#BE_j%A`ZIR8Uc(eRQPGQg_0Sl{loY7USXsukq+sP{!gmKX2yU|DA z?N>X$t(gW4)UZs`c+KX`E_q@yR_XPtCOdhHY{b#c@@r`;HEJpFtG6(Fw~f3&b2enR zZt6(&L)nthK9mAd~ zjzhgK)6~+YazG%_-4gw}L__Ge^zh}6ZPtI(ecxhp(^zIvCJ~)(5PjC?O~=x2G`4f2 ztu4EBlk#hAd0dC(*V?j2hvnDWB8s`_X8EOG5>r(k#m@DCa;_gH)|bbsxMEYu6`Kp& z^&n9>76z5vn%OdkZUOD({+PD71HJ*uBP^PnTXlxk&63U9BEoBQv;10H%5_+Ntu6C) zSbi^^IBE98*&;U7w33_H|9L{31U(@YNvx2K&@5|<#78&FFTLkcKVxP`+O>)O$2CN2 zbeS%~n$(PwIl@yhDlF%q*uUr626>w$J5xFGkW5-em%B+dg=4wD_${0^ z>3q>Wy7o`U))$l>MIVr5Jtz^TnRsrrNh-6p>R*%6B@> zo?=P&@s_+Zx#n!*1_c-DCTh)k_4lJ}8;F*h_3HBR%B)^nO5|nF{;sElNw&6Zqj?rD z_F-$r^EgXXU;XUV2DFVgj^af?t9+J;GD>Y`AhsP zTD?xkAx-JA840|DuMaK314e>6e&JYIw6QE&=9t|&3| z*c-FyahX+pdTTkShbv;yMj@nTT?lqMH}3?T3jV9XAD>MijNCqiu6f2hVS-aehrxmG zL*7@%Zcho2D9@SB2rDqBWn1UYnNzVMJkVVwqqi6)0&sSDLyjT|mR z>ubksLgI9ws$Q-vawAi$Mh*&96OTr|K7{gzWJF3|T|XMHmL2-}riq0eSG-z$j6oQ? z-c_QYrHx0_)Xi7~AAQ@ouU#DAm4!7LJ!GBD&(Iu%VAdqUd zZ6+&TVDpyfy4H`gG$u;BJXKw$di#9YCbA{#7x1{(`UPqq=!>pjAV(}1!-ScC+F`tA zfZ%^@ah4~Ms$65L+{`uu>yHH=8P8dIVFn$yXLsZC_A-$2+!}XDy?f2|>qqdq=(2($O*0MhhER?AIXajcm3~afp%A_6 ztP5f*@S~p^iL$p#a+db2y9^$E{q%Zuzt)71Gu*@5eD?LydbOB_Z48Oh5LjhFnitd} zecJP2G_0)3JQNPJ!jg33o;xb8+Px6uGwKWt%8C!%`E}tG2UPn}x}we#%|uU`9*J~^ z$#R)S1Q%wpP1ane*fKpS^WK^}%i|-_~0z2e( z*jGt{59F;Nbz3ewof14D z!C&iOs|4SHX-n)AWiS+Rph)&%C zl+BNeq`wo_YbYWbxIEO@Lo@L!%@r=INemSktFcy-P*y@2ydQ11OWg|!&Nhien~yd< zDs40ACPeNx&yu+Pst+k2IZEEF>iv9mv6y$Q1m5Cf+`KH=9+-^(I8UTKr{X3jt*+@4 z{(n_R&In1+0zdg9eg5HORGv9y66}$22YQ~c$Mr%k%Kx8$BmLY~sCuzl2PlyvPG(AZ zVzE2O)xwysO^l1>jh%d+>eerSBk+Vu(M#$R?*q7i;Np2X64~BFc#k$;Ig%Hj9FTzt z+%tvkc#x3Zj$K|ot8m4TA{pQLLW*QS|B`QxW%5F1W_V2F2CT9#*&HA#UiA*Ut)|gp z-{4lu9%FXl<2a1xDwp~cC*(ugsxq9|NJTsn5iZhp(@B%PtMt2GeNut@JEDKTifVYz zo_Fh5k)@TcaJR^6zXO%%gXkRsluO+Yw)BF<$WK)Hrh|VcBog0r^g){4;Qpq_iarA< zzEi=NGtn(xCB?HJmFXArpchbv*~;|;sa1}G@y`rrR47lx4XSBl>6oy=-XKS9gX((w zJ3NNHaI~uVK1%v7fE>O`7nET`kQN?MQjx>x&YusoHm=&C54(S8+`?Yyi z_g1a+7H6a1?I^f#@mS+q&e2`gq1J~)7am`NUO{B^C^lsM*p%#IT&plU1bMlMB8fw# z01mZ`Ef)&%i9?(f%M|P=&yFYb1JCm-;U) z_R5ef(`wzie|C^>0olilRDk9#Ogei5cFZSi5E0)bVI&%xZ@PQ`AU8+JBhWZELy?S zHf1Fn@|e1BGY|CC4OWP0>T0(=Z+rLCRWZR8)<;AW=Ti|?9$IzXo!}r;je-vQa?#R7 zB)zii=`>LjEXc?0)XHeyg2-XK(ldF?_ZJtW14;Y~L_L)zwzYPA&VtCH^!N;2+&L7j zi^reQxn;11=N?w;7pN7$D$63}`RP@q7d#KvvnD}za+?-9*^Zt*=Sgq=6ONK`p|QLU zt;YD~w?wOs?SL+RwE@DH3dP^;q+PL8o#!AMe7Ri^@#fb$V z75M8HtIexyraLsA1MkX6r#Et8^_qhz{ZhwYoQZwAsa5@&h1U>QNq#F>px*f@6AY>- zry%+D!BGv?hadbBwD+i97-jki*vZ9WmHwk^0E@^In<|8VEGD+i1k2D zowXVtBhit@rKVU|JA%B|UZvgp-C%v}d8o)HOe?PuM(HwONvz8kk#h}%8=4%g!u6S6 ze53HI6|Kr=PRMOB0f3=q(MoHuV^gJ_d+r5LF0DN)`yZ7Y;xGP>_=UW&Q4a$?RbH&2 z+38$ZOf?#%6;wX%x9a7c zuX-3)Sx{3WYDBm!u|5Ze^fsG@&K7R*Poo8xg82Lz5zEQ#SwOqvts7rVP5W64x^WPA}D!GUy& zDJ5gH!Nm!%`tCN0$_0_02K1PW(?mhiRM?=B+_h7+_q5?-v=W_>-ob5ktGw7Ao&>x$ zN{eLYsaGQntnt@iBGSSyCf2!C&-VmZE{g{yUxnD2p6;&?6iwsghxEgwi?NzmM+s%Y zpzOW(gx3(#|1dzY8{~o~XaZfX5uAu0${%Iv;UmwLoNkx+2EyYDJ4qRo$@|=oZM>iY zew|~ArQAd6)Aode>OIoXt9Y7=nBb^w##@VW3t!-%yq-}+5wp=~0l-K}Z!c?M2$^QS zFO~(9LgoV8CiCQuWg`zE!*1M!;V) z5;AUUIhXf5d?V0%n#c27{LI-f>?(Ctm<)8+5HSkwQ$n@E%% z@@)AFCFouz7QDYmAt0p5Thng^67#5f%?ijo4~bSW(wACntE0s(w(f*w5np2O2`^0-4d15zG!#Zee~ zdC5Vb7-uf|=)SG(J;74f1wyZY$@ug@I#@Ba-QByNL{KHhwrvDupPauEh7*5%%u3B* znOSG{Q`rt958xzps_NXVw{7O{xByS6AV__hCx5i2Qnsf#xGTkaNK8}_ZsamW0%Pi_ zdYO9bpzEX54a{$HvX!{iiDu#G8p=`r+5$MTXkZlB4Ge${^MLj?)+y9eXVB&;0h!JC ztJcqJfAwRj8Iqc7QvJhHwF$Od%F5t1(fd=l6~CaFs*Z0xqx4;2-Ihp6kxe|mu1)u` z2ElgIrLNm7GURatIsLGFB~)EMEN^6f4%VOqF4ahN$wP%e8XxM1lrXX^Hj_G2KxSl} z`pXXP){Lt=x>-IQN(`6iE!EYjS%ftz=hVQxTNm%BSE7=FmurZ`)57m1_PM0$cd0=R zW22kpGrC!H1yNny9m@`@$8N!$Gp1V%Eo*y*63 zfgvx)LDtI%>YCKuEb3~!w)40YFLzG%tLCuTg_jOs3~p8TmD6mg&$Z@Z8F}YqhZ6l6 zI5l@B>QtVH{QaQLaMK6{D5ZYcz&l+-ZV}E_W_gX%>UX|JyK*h6ab?!K%$yp`xK!!G zph=4_#ZL>7t5KIzsfm%LIt8l$?mvBfrXx_a{Vr}$IMfP?7(V4qM9({9=<3uH&gS&p=(`tA(4I+z2f~DL4 zmDwg-$SqS{@ltlYYO(Ja<=I!6B{MTkla<+eFvchL>jk+Cah_|-4bd&~DFbt~G7HGK z0)pp+tD(3J(Z@9CzQJXh&rPawoBB@Ehar6)n>>g02Sn76nSiNZox12wB)0lqZ@l}! zK*25U@>bvLI1DW-=oi-m;A3gTcM@Ps%vyM8L;&+i(|7T0 zr^SqAtokn1CBysffci^s>CuEiZB!KZb5yKnI*TkSx zOL8eauyu0^St+?teQUK8hG+yrEJth*2scegd=x1 zwpLCN6Bee1Nb}H_roKED-O%)9-=cSp9@4Mmk)D*sdh)5 z)R&8|=SOakPFveroqxlL=ofC-9XaZZT%5krJ)Xl)?hCDta!ViiI!M2S*pax7>1$&Paz|{Y|)iCiz4cHlv^gH#4`6jkw`p%`vK3cqj+ge=ZpgE zIPi1O9eKr}J}0$TcY}7%?)N4_t~)MHgfq*oqmltt0KU>7;bAqdcA)8~l#>&#R~^xC zSEQZmaXr&a!`Aaw_>^b&`H3{&k(kI6UcS@WuR^v=p=j-yX!uCvWk;-PtY7`i6iSyu zJ)YgKQ7FCRf-ZD2R+W?evfa|sK0gcrrJ~_>^;HVNuTbQ;b;z@8V5Bbi*O5~2e01Z1 z?8Da56FlkDbT|p+D~{;Wwn#fJ#%G!aoz`=51i5q&9i{Y^u4Z&t&v90h{R(&V9O)U) zM^Sy&4n$sZ(0i-)bjB-I_++H^j6*||9;xkjG|3J~sLvs21f9pNj!3QB!8&vd7WT*+ zc^qBhav=jA#k0F(QpW(sn_ZH8u@KdKMzxB5&WUM&DS&Ko#d4r5f-K$9Z-^U2fpEFb(5;(|*5nsplh2KRTOufn5QgSmU8KJ&ME`*BUsAbkgQ?A*RV^zPK z%*Af4%g9y!R-TZy%VaN?PrtftcnOn7s#15`g}4W9N|*-BQIZBM*?|02vxmcV(HsK= zuTR0%M-10+FNG_8I9$)#W$v=!dTMxyVQ~FUMo8mmhbcjR!Pr)lUodtFU>v<@gqe34 z!Iq>#f=zZv)Vrx++M`9Qdnka?Ep@vX3uiV0EQ9^(&l4a5`+TS9$*Hu|;dsIDy})HQ zfv3r-xs<>oY&dxRN8zQ(bB=5}#lJh(qu%~ZibOZ{JxZfYQqek!9d@+(xPDZ&o0s0A z)hDb4+)e4R7I>r8Cpl4zR-dvKVxd4Z^tU%BiYfV zdsn@g9o@Kl)yBt(+qKHKjjuB`OFmCa!Y&D&l2Dt3PD-dtLOl}dmr%Ea4oK)YA$`9q z`$Ny}u1Ou|CrQ$o?DNrZD_nqq&9~k19f`c?pn+(0Bf_TjKFt778bMllACPpgOM*%V z`z3fv2M zL?(+K!9CWq$?;?W_hj>BhI5DgrAISvE!~sRBZ+1>4`lQR8lM$}651u9(-P{E&`AmP zOX!4z_DbkDA>FWU!Lxf{qU`6S4rIR&U25|V`VJuz1P%h=7`+~QHr?As>mMdt-)TO~ zRN8Gm%#_q{=@HX#=@HX#?KR^`dyh*%E&yd$KP^f3$*FdxqU3 zY@7l7hQLCj0K$#AE*lVyaNYcY)Np9j>*jZ-2Ig@IX+U;L$VLSr4ahc$ z6F_8mt=jF3)TEBYB#GD|Bh_YR(glbVqtx^^^J>sWTp^r5`xW6vS?Xb4d$~;WG-=U| zjd}qb(Ri~b&^AWxeXG_Cp^PUVW(aqi4>Jk%cxue`2?Tl#XuLiySl9FH5xp2BwOKC! zLY+_)jlzi?=k*-x7yNZSDbyn4e5BUv$apQfbi1Bq?FNYl>@m~`(@4|^v)ckC8i^WV zcB{no1Rc`uwqSM&khXX#O3zvXF<}Wj*B2N`+4gFn-e_>VpymGCf0#jGufhI z8yNqlw*;+)9cZzx_^w=@P>M^ zNusca`p$7ib*s)CT?n7JN0_-?Iz74&EyxbOJMCm11wSLnUd`(*^a>xR*NCZZfVq*e zaUlBj94jVkM3*Y;dPdr^e2vr2MHl8y>$Ixdq>k;;g?T!IRozwCRrm&G%(oXr7v?9K zK3#`I@E{^@BuLm+vkwcixuiN^ARgw3U#M}I8e-UWK#0}oLc0iZ4($4){v<-iEQMrt{2 zQYu_BE2tZMp0?+;-T`~EU$JwZb8UyX)OSmExZkkYR+ zifr>Tbt7%CDINFh?wKe;2JUY1btkf4j&3|+Emg@7<&us9%sh5Ek;7Fvw31q&lAXz9W&Lwd#*EOu`=1CFDFMW)Z8L(!@swbph6Ibf($vL&Bv?fHHo$foiQ=u{ zoU&ZAGyLnbc1Vj8>hEX+Y?j}z{-D2vYyJ7KvYPFFhNR(wL^By08iG!&n1m?~>(756 zMr^UGlx#|_yI(3s;Mo7;?0QWKD8z^>>@rC)V$ARo!`Su7b|E~AfgH_#3t%VtfQ$YZ zxBl)K>9~=1l-NB8Tti~S&rPvQ#fYbM8C$%G*kzJp#MO$l3!m}l~T z46r&IFu$5g4kJTcPKe=>579>#lZD%KNyC~*-#2ZJUi0J|oWhp-Varcww!BB!^6*K` zkRP!ba^G&4Ac#%Oc?%qN%y~uBC(I6HCK^7#I*Qir5x#us$!uOOi*DQz^*z4IcjW3- z;REpNk7(X}_tnvGAH-voujgv^10fr{YJcY3y^m|6(Kb%PuxFa#CJ5UngoWr>&MiWO z+*XI=5e^+9BJtQf92Ewi${@6-g~y*Y>fAdq_br;2>lRL&?4(gUtUjDSVZ-(dPpDbu z!E=U{6n0(67W#x;EL^>3?6eM_d&gP|_kLXXm_7~Qam}0Sw)BJ?h{ z%M#utl2SE{rf`?BoGajY)5O6^U-o;5TSkQu-MC%0`@co2x1nZ&VEayM7FJ1Bf6y!} z!7d2`F2QyQ?vY?;_8(GgtIB>2_Q3KT7x1Cak3yG$G3M6N4><29Nq zX|wD$X&Fb6pBTs_ho_m8!b4Y7Z)1*)s~*gF!_T2Q^W z3l@oqa|#v-)Etno#@9&+oghvTIGp{ysG!o5d#Du1J{PUtF4OMANbR5_?FX7rUXYjC=GG zbVBw_-;Rvxwc(`@F|xn!_ssJ=y8+r?@BjC&pOSsf%$zxM&Y3eW=giFdyc4jO?)9%_ zJ6_gC)V6e%{ml9I?PngWDtf?0>?c<5MC@MwdNwyC4mw(3LNQSkYucL~`~PQC3fDNT zseAn!+1&S*3Kh23|Cv=aPSCEJ3qP@?39$@fB01Ll->oXPppT%!!`YlZONE_qR^*)o zR<;llgMo#0)nmo~-oU!ozll4!hC1G+1?|A*MBaWA?LRybUY0^Iws~i8eH+bf&i{+K1@9bh zv#G%>X(|l=KU?n(zx+JI+f|fdc;P3>T_*FO^QgxXdD6WTT|*o@FoZao`D+({?dC6>k;PB1lHVL-9Pr5z-pSty{Cun_57uJG z(!X%Ofxsg;ihvxQv2fQ*fMs8PR4#6U6=!M}wqXCjte3wNLmW)aDan2LQO;z;3RgBF z)MoRxrq-8`?o}AIpAPpQlID~C;twLPU^kP+tt+ONPKt+ zGxWilnF+n4llt=S!005`GViG-xEMbyV1|CYGzbZf=%oJqJ0Ln~00Lr~+WI6u%wq=Z z!sIZaS9H=q{_P)~G$`@m;OHzj>@NWzFPDEo-r!~4j$TdCSss(TJfpIMNqwV}^7+>t zom7BZhJ?IJiTn}+TkJ>xd6)7p$SYjd+|=e2>cAc4j7}QLzd6xKMbTM9V1k$JAaTk3 z{zq5>WDPTR%mrN_YEHDeI67%~bk+zZ6h1-@lZyrCODZ$_;$E=5hm<;nxk6X{k#~LV|{_r8902zGhl#?L&ji41|!`)0$gyoS-Kvw3p zg4xWxO)}>rGZ)zn@)>Vf^D$A}E-2*pc_{9=5XFJ(NrGAaCLF=^sR2@6exFx<=!NC~ zGqZfFl-~=G1X#%Dc_`k%O*wXxbt`6OqIl*Lk`NV;{64SzcP}hID6@QVH_J~Kko-Qc zd=<(I%X%*zhAWBH^8B!iX-=b`$h zMkQ1{*0iX1=amwVWvY~>;!)6+ocPpD=M}wM7yT`ZSmiII;IAmm{Tba+s#F_A_)&Is zwL7*K{N(9;c~SeSA`Ft&!Qip!PKz)-Mw3bGWkr0!XzW^`Z!Z2b{S++~k*3l7LeIfA zWR*WY6`Mf4-os|kw9&XtU^Ko?!OX{}EQ;(}gezZsh<1EW00=2%go_%d5k+=RkIx=m z5ntqk{H_MN3S13$3DR(CnsG1#te<{0h?OxUW~>fDdt&JShVUJ&nS}3v0)TK*>yOXG zn_*K)+|U_{_e9 zG~A7E^|%K1MM#xo>r(e>h%-KOpkym!w!s>h9iQnI;2i{BtATyuGY3oAs7j*0qf$qF zW`Sh8j@b?ah)65}EFyqcmub?53UE4s8#NHr6$>y#ATPkhkZvF<2zwKK{g`XS;=I%~ z)^ID+7bE@h-DouSK4+;PG4~NP*xmSg?^&FxDOGKwl}3B_Nf{1*h#_li(ZFtnGX^Bd zZZvP%Q^PdSYP7di-J&5@izWI}o&L0EqsO!Cy8v2^=J_Y()I}i=-RP?c{Jkz}HQKvD z{TUFxlw-EIiY+d0#HOyiSBwxcC^f>>M!@%dKQQpv!A6Eluek(qXeMYjc6%h=Ha@L4 z9?$^BYUJBYd83WJf?0w9N8(nhhgi(JGMF`+nAYX(2xj4qUpj8p3@ZsW1Q9j8y|wg^^ygMKX+mb$ z@Nkz2>{i#?Kw+nbYg&fdNhDm5w5r}|AP6UL^G&Ek{SA{8>=VSN6@c(2^&)0fA|v(> zkq%@U^X98RO1^xPZgwZqjcxi0^>ZsJ6^`as9@9jxvVqb_6W*knw3EmrflG(~$6&L8>{Pl58&n&Bsm(NKXuH0&TGA@i zE~HqzLcFT9I97Q?{Zi2ITbPtv3I9FM`F+QN1ETrFEYejLTS=+Snom-sRejlplTQR{ z4ZYoln|zWaY4_N4l4g}8NxKW|B(h52((X@l*=`~DZjlm`!W-0IZ8-UK1UI&)!i{P_ zpcX?8Sqza9-Rec8kw~f!99LHRVwKy}YC$F-s!nd@HdfNA>e6tnI)v+1KBSX$R$&a2 zq?I%5Qe=!2ktU9_;U;4wNm_YnI!QA|2-u)f9=4u@kt^HGR<;9bwQ{S~N-5E*UPT%y z(XCuz(HpB=u6`rP1f*NJ+$Q3h)r~^LYSTR54KyYl_mPevRw}5@T}2R)>{Hok zI3^Mnyj!&oB;Bh?H-V&^^~cIr=gBb?qkL0LQcSwN^_fKTcqn7#V{smFP*0pPhm|{k z3Up`NbT`Z5h7UbgX4AX|&^rkezozO-BN=vY{H<4d^%x z4I|Wxi9RF(T5Lk$=w$I$fcgRCI1-;W*q3+0v6fWEq?WwRq}`}#ifztEVI$nZI2lhC zytVGeqXmgi3SygiNH(_i2wV2ulV;1VLuRzhLHuoc4(M%BKgpqDw3vz!r9e{HwDhi5 zF)JlycH#9*+NYjK!?l$Xc(XBoT4L655$=|BR*l^lz$$t|_RJmz5#yEkG zC;a09ly?g^>DNQpIH!=G*BmQvF=~!!27u`Jv`bAk_=FEQvI{oIkcX2WL1PPN2JvK z;bfiU7gqGK;U?=ONw|^hZ_>-&qKk;3emxBb_awiV#oq&tJ$Q0&r{-P`xrf6Vr!4O6 zj87}>!95SS5L??x?ll|-_q1g+&T5+lA2oV6bO{^LiNE(%)lzdO8yh0~&N5M{$!Rb- zufh9NNg6E7M($W`8~iRf=AKTX&gNFO*$n(gKen26kl}=5d~UOWCc`DaFz}D*B+YP1 z5(fUkpCj zokqz#T?94FslloFzQ1WS)sr&rrE63iuS5bWJ;R5 z-9~L|mHJIONpn}q3%9;&Cy~1X7gjxM!%YTDl5p$6bdqMUBnh`}vy;eR!ojWUY@o?q zT%sa#wjv}L=s2D8~_E2;s6`~M=X*v!~iHe{c%Hh`b$wy=6>3s&4( zh->d)D+U4=@A?z!Lx7NKVeQG@Y{kYNtpG)>X|QgBNz_ij5#oCxQ9uyhK$m;>{sT8Z>U6+yCFkV3W96MrhDzH%=HC9p7I_|r`z5YZ&;^TtE`vtK$dxo*6 zJAQ&8ZxuO$ z;Vav_0-A`0lPW|$BTgfRz2F9#G3q}8eF_4WhKXpx>T|kRWfj(pcnL# z#FTWV!fT4os)I;ybOvFi9I_zQwQZ+Jvcp?(6VJxn+HI;4xr{gm8P>&N2D{Iw39$pkOok4I;{Q+9RLzGpS=Cgd5`K z51}rL)KQ%Rc~|$(%G*wL(yv}+hp}R(y~wRSqWU1W5$814kSVQu{c%$GenH7DP2mAY zLm~23= zB}BKD{l(%eyHTKGS0|{Za^-!J%?lC1+GA>#)a?P3b#wM)*G;ZM7- z=%%`*)`~7pHI6m-@UMyxA0tfVT`sC)bAbp=HynKf%`WLI`UH%q4^L#XP2%ZOhG02?=!f33#p zHc)Rxr`L#1`!q$Oy5UyZr429%U&y4hkupFevKnR5xlQOiY1C}Z+s?j)6Z}GNZf&Gj8^Jv?cCRV}g5275M(qm6ISL#Dfx8hifi}wB*pI=WnL_~rz*};?QB2dk>+i{< zhe=ph-pKLwHSFEUQp*N!zsgN}rwJ?p)#AnmY}M2D}#UExJ1aJE-H)=ien6k;v43!#Dq!BpbC zf|6z_U39?V-QdrwL||i16}F?*7o-3?8D%7<`K(a`{2X*-fP=I!Jna)5%0X^hbjztj zE1*NCKaozru`S#v)#TN#!N#>1Uq$142ssR~U#!K)+RSmy97ETMqIO9oKSgF#!p^^>bu2Wb=!4ZI!wx4AemMY`-3^*6~vH zXOO$XY-qau0@VH7Cg3gsinR@IBULy+tZrsyYuQHjy!-K&BZLcoIX30sZ+3W-IX2a6 za~nQ_u7@_+=2q{3vCFHEJ|^vK9%*OW&f`=1(`F z3eaIDjhnQ&rl}M4PKA$<+SNu)eeU-AEK)&M<~T%pVrvhPF@NeJV+u(a2;`i|CQ#4b zG6~#(%%=LM!ge3~mWFDwqa<)22z*9EwXAKjAJ$Oa7`ur+K*{hX-58Q*Hf9?dvw1eD zs_Dqxo{t}YmW81Vau@$!Z3qn$17ZO6z$H&K2doc zPC9t9a=mSi{TD16wJDXAq8>T8C%#|UX*vmH`YX%CSX^{g7LY(C&CbjzJxYcq5)&)m zqnADngp-sGoDRwLHX*Lckf!L4BPVyUT*3(XF-9-ZzCAE?v4$gPS;<~Q=IAV+FYUmI zt6V&M{iUv-0+EQY=4u(6rMVN&GSg#vkRz{!J? z$2hPqAs4Z@l-0;Vv&Nivz+75;R~k4-wWlB^nJGO{aYT$L;}jW6b#brX%bGDP;F1X1 zAn7GVuRFATsac&@iIeJF-o1jO`9@{Efs2ARftZ-&Hd}@$XT26`M(ujufb5%$wbU)4 zp|U>KAg0y3hl>pE2DCw)NCM+m&Ypx^yn9%$qBx_ z#m1Q||ap$b{DzaqCOtuc7VQvpr`VHb*S4;dL_YdJ1TUEIG2W)XcS(YHw_0&d*p z_*M*ex+F{k=c|aVWgo!QRT(EJ|NDg_XL>BUA?czwu;V2zN#i(zg(RENrGtjtjpqs~ z5~%`pn_!@J8nT)YJ(BGO#IM(xbE!3u=PqL{?V{es$P?7mTAn$pLu4D2lAoA?j*(}t zjpIYMvjZ7j?)5c|upHQBd9Q#qzHuBhm#-{oE`mnx(wM$tVp^#&@spUsb;j{vYKRQ~ zMwecFa$$kp99eb|U6kmwO_5bzj|Qx^YylgPNjiH7Nnfoi2OxphJi!uNiB}!;KN_6+}fm=$Jsl{xKxnWc*W7@=40E zSZzK@VL#EN91|2RM4^Y1i_&3H-~p1Foq0!MwYUrJaDgEMpJ2!*26m_+c#Qj>5|Kk9 zPQ_|-NW?QBSrc(ePOQNqLX_W zyHFTMP8`u04qdo0F(A=3AUeb8ZVcDup)2X@GJq7PjOr5a_UfNVoXd+&?ww9*O!P4} zi;{QsiO%RlJkb0-eJvuW@$N?N%0Y>D`zE>uVH(crS4SuJmFlw(bVYILhLmayug(QU z{SxPLjc|RUt6y{m-jaYDANcTq>*@raUP0MS(aHU#tTWN&jLsOKvowY`<)d&;;#|HV ze(^+CPILy&+GxE83S6wW$?-BUh{i`J4-_OI3Qxo~MQ04ct{HOmu?VO7;`Ej~@ot~Q zId}g=bh6uk0)if#x=Zv*boGkjkgEBKSkQ3C;6zvd=!{(K3M9@AHp0+q;KL<#9f@}x zB)la$d9c(8QQ)Qb7GNJ3odI^{N1UCPad!hfW$E06uAyz3Ql%XoIn9_;xjsVs1)v#pahFBdhbUL zOMo~n^)7A#>>NbV4~kAMHuf9MKnua)nd%wCkeMRu>SyeZ&KQnqT<+Y&C%JQ?lkGz` zkq%GkL5Uy#J@2z+9JsM#*(=byx_A37bB;f#MrB8x<0emh{h1H&+*?gonQ^XUm+?B> z%5}G7g+iq-$BV~L!YkY;Tzmhr{L=b^p}UsdhyZK%OFLeN_qp5s5{_t}!ZEH$m;2eA zgMaCDIC|+WXK7Zl1ZU$)2tNMIl?VS~G+%WhdSl&9W3xhob~(ppmC4oV&wP}0;wyX7 zl*q?@maNA0L^u>RE%ISD?nrSrJPj={FE7RwoRN-DWJ8=90R?j|n;K1`}>2n9m ze#4j(>)gRJ{Ibp+EJCC>Uxh~SISio>vGIs%zXt$@?|Tnb;n2a)8i8wfe6Do};ir3a zEdPH3ZpQL|-TLWQF{DZu{7pIxzM~yOfIdC3w4)A3E;0^K;MN(5(4Q5bG8$v9PwfPr zVE_06AMP+W&YgTAzIe2L3^4Ak2PNO#j!EDq+%JbupB$3d_-l~vt!Mnb2NeUxpJ!f> zpUBdP`~OggdHLZ}&!T`dtq~7rOf!=zD%2wykqEV*@HeeBkOhj0US7k@ z2x9J>(pT?Q4=Y;=_Mr%zTkzq)!{f-zBMzbS_TsV-RF94UfPjcdO z7ggY-noEsED)f=%BfCfA%nPJc4470xWm1Fi#Y1hN4EG2NGQ87hA~TQAxOjX9MKoNbtl_d;<>0vP02#42pp2AsUZ7-&eG+JbAeani*?wX|bYzf9e-TIq>zKGg+O zZY=9g<4_L-2NLf?Me%98zZM5=?&JqAou!gY-RM(W@z`A&aKxuJ|B(Q#LVk4 z8f2_cQ5M-^}!G{shnbyap{k`NHlgqhUv~;){L8YXt6|!j~5C zy(oCg$ronF8d^c#vaVeXN&L;i$;Z-zbszM_q0wc9%l02k#>-rF?`0dW9DJ|;TIQG> zl|PZQ&iO}6o8sHAMk9^aN)MiVVRC%?-S~*D(je9qTSZ8G`!o0#-#g;l$&*;aF(AU@ zqV6pxOFQG!HqK0ZG{WzTH?Sbiifv%`o`%CF4J_?buLz)lNWj8v_%Z|oBKyIBMH(HR zN1xxQc@S^t0Dh?BU`${12XHONu@u0rMC7>sKtEjnDL-oQ7Gxz_L+H0NF+TVb^Zw;>--aQ^Zb)(Gq)bITd}mG30fkfSXF%L=Y6VdAM$p^ zr(WxBe502SclP5uc~?3Gjo9!3%qBsdSJaE_=!x)k7jB8i(Uc$YfO{Q8WCLoQKpMG{v*Sy5<%dLD_m zkJ$|Ii(-qf_G|EYh7q^0PrZmXjqw6FyJ&~FC|r>yyi(3Gh>nw-tc~FjM@$Tx)DkJQ zNrL0dee?}QJAf|cU8f$f5{Fc-lSL8BcBvTvbBDw0%7w?FX#~!`nssnL4s|#spIOHq zHB|CrojThj13SYzDlodMEU5q~@L@>pLY!)Uk1a95dizyccmVKh!Vz?2(u4R{4HRm+ zBTa6c+Ja)U#oXxBEf!L6=h{y7ACeovb8-}h6L}PjG!^*NZDuL9!3+^aiDT+MDRE3w zPhw2!x2nljN^a#=sVsY$a`tc=^vC)73@%AHDtLjkry!|0_tAv<}oaGfEmU)f;m#Et@{LumKl z#770bSh!Q&ZW74`f@cUNwRpB%-6Pl#$xZo@shR`gxm7nK(I{UI_Z~M6=7FJzmO-FP z`SQG7M%aqqG-FO&*xZgZUCM|ciQ+_rAx;f)DwV+?hHr}N-Bh4M>dkk_r9+wk?sk&^ z2xo=*15(B?Wk}@;i&wheJ#UrCMT#aGdawQiVBG1(u$~nN=^gLlenvX%e|j4HY6g3~_%B;ei2D)Kx0g zM*2|*V2ghAFa;jV!_ddoZJ-DYmC z#@5m^$&F}gz-73p*Qf5-oo*WHf(B&62ABe9RkNku)(hIE)EAL5#@h-9~(XcBt zoDEa9={Ta?LZ)1dq(J6gY$xXJ;uXZJr_1w+Fz3QfmASSL9y~_$`fp;an#0X$gxnW!=-XLBq9M)kfsQ76hw+8^?6u=pj;x z1E*Cgi6L7FoG%-TkVpC=o_=do^L5=cfkF?R#&a}GtCaY`Ho<2$9Z*cp9k_cpJG?V@ zJI4{_+6kf7bmNWF@E++o)m74WD{x+~UKOB7wznS2mv=VO)Y}(B5Y%BzP^wE)Rrb(O zA?1+2P5rf%`P*<;CIrs7QZWw|ezi|0z`C3j^tiMSQLk74Y*N2A%Wz;`9ck+CQyW+V zItxZ*sf5|gUfrUelk6>Nvs#h219k6Hk0Jr{G@};bKSs?yvu>1aEP6}bfkZ&G7jX@} zh|#>a)D0S{`6OOM+I*s*L8CyYHNX-_w;F~-hR2|ZNTxt^=S4H2TezUni~`Dtrfn`DTAqS} z2N17#y!9qfXxrMUuZljeZ|lg9P13i2fy{QRYyiNRky5;@Ij_AVtBN5^XU5YsU~=i zPtkKsOo)v%!gaZ|D=g3PYyde5{u9qJ+_fuB&+#_6d%YVne7&*>%FTPJhN^%>FtnPrM%M|wDo z=`8lHi|O!QOb}_Z;Ww^XK~%@gCTztuiH_auls)~$-bOf!YZN`jr!ZXR*3==o!10bb zJ20KZ8*z1$`kyzbBD5XG_FM694<|7@wJ05&#IV3J=;BBz+i1FnIU!ODfTKhb^|m+N z!xV#KH=V+5oQzqnp{@$$l^WRx4GGWB^bOanF}r@3H5lR^Nk%5ZG2DVXymKq}nXW$_ ziW!rzCUxR4yUK@-?cSwaKJ}&MEB#E?-Y4EOX!xT3+QEUXK;4fjPp(lNl~iIDE;|n2zDB z+y}qx0ZinLwW2-ZcMf9nLo`ihN~XgLZoOs(m6{GacRt!OWJRikfxAe~7-> z6-16mzf*MmBJe~avOg|x;E{_)`t{+wR>TS?Ki(_Qp6gTCu+AX7d=pW&5@iQb>a_vg zy&ZJ-;?nE1ySHW|?$%X5JVcek?DBj^ZHE;`PGSZ2ET}WvRGmkBl-I z3bK+;QSrZWbj9e2A(z;BkFCUA$waXpF4!#e9}r)&ra<~0^j3VZ;f*+^4i_m5gUS}_ z+De)+?S!)JGM%+u8vkl)IjU$Qek@o8GkvWH$G07=FTGAusg1^3-SH99V7a23%+aVz zJh|*M=19vSwsN(`yI%0N8OMcQupowx0vGOsf?2B}Vj1l&(vs!?^cPA`EyOgREY|+u zCgZp${E*u91_JHD1X*!W^T`6tu&nm8itHprSeYU?ExXN#W*>n zcAp`RU`7+sesLA|isfO1qje|TlyS~Ram_kCmDF1CR0>dhjh*y&QiUylWluc3j84Kn zwdZy@U6#w~vZO{6l_1$kkLS7}vZVm0DPx!Q^kmALG3VM*YO8Mn1 z55s;@pRKOGW`(BU5GgnW3cTXt^eF%dx~|};r>3>y;0X)Cv_iU;cZsy z@kWAytNkwU)*>V-uM4)?uJhE8a2?#V*qcM7Zp}(~Y3XFOJhZr@egoguqBl>Q-Fmpz z=***c4Pjv}V{de7FS)Hoe0eh+#tvgIFbu$sVjg{XGo1#)0pZ4j!qbiCq8snc#94T2 z+lI`Sc5fbg8n?DN2m9}-T15&Eop1AbPN^$=m%FrE)2at80{ZMBv z-LNz9nodjNY_0(#PDD<6V&9C;=?{}HxEmAVi=8>ZEQzZmU(crlc4kiEY`)y$N6TN+ ziMEI%wnZGVXe%xaM73}*zV3!2Hac^V-hg5QcOq+_#93Sw1x@zVNZw~_V!!^b>ro+N*MNe&`F^izSy1OixvN@@OrS+&l`URic|Jj zbZS9#W*)q;bMg&n4r)OJDg<~I=`LaCC1`Rb>@>);#R#YD1!BaNg(&HW&MY+c!r3Wb zBF5;4iZkg(nFX)G5N>jf-hrM;9xuNMP2j08`uiRTgy<2r*_m;hpcl*BnQRMyX z(sNaC4guGRZ(`#BuUtZ|0BrK9cLBfyd$^bE<>2UhjQWABwxoU_bHwTg=Hn0Ce-mGs zf2{On_ym{3C%6gln{4=p0^gL4G@bD{0J^+GV}lEElTP}8G{hyI5`TmUwQ(iAB*Z5K z`P2_H06MFBU>)*EQOT!f;TzZXrz_G#k#tllhU_!fHy;&ugat&&PV^WH+ z!DH<9vBZbu6CTI>VVX{p^yhv+5Nk#HcBJ!xNUQPLHuG#GTDEq}w|tw$Ss_3+1Jn-z z1|qoP+_B4m+izAO@*DRb0!Yj6GXQ7;{|=qvFXr>9Y9hz4)Mjd>ItquN_-C%uKJCK2 z7#Xb_0X^7_$x-#w@ksZP>V~(&MS%yP;(@Itzsd?O_66PQj<1s>K779rKF)7Ej@PNvm)~-v0)$kvWc5j*H^5HdbCaIH` zT5u1ufX7J4aVyf4*prY%MY^jAE>YKNwxpN)(j>w7NSZVOW)H$)3 zcm>>DzX4aW#=XZt2ZXg8DbzhYrVenV_E@&N;T!lhp;oyYmf#2b8{-g=cdW+3%nu5V zQ^q^ek9@`%wGB$65v>MG&F+O4q*?IHIjO#(DSTD%{a};QeT^FRu?)Hd`zc4 z2bzLe$^Xzu1_Z+b4$e=0sJ=24cC?fB=}9oU%CF|ag6Nh!3;<9Z1=SN2slo(EPZU19Jx+-7zH_ znp;SJ34$u+l;TD-*Wt{;xH$V^W!QHFa>68Z;z#d2RnnqLhEmqZIs zBJQF>1t#Is*p(a-yelnTs>}Rmd#XJw!7M*^NAb|JA8$Y5V6ul}7m~n5&8-SZL6MFNXSKjQI)PrL6}3 zT2EH(h`_I`t{JGKRA{^QE-}eWPDWS|Oe>bXo>Zw%eF8zzy7-j88=4Ig^Fd-Ua1*be zT!?*;Uau;I6kRc;8Wj5 zif}W07;%}HM>o728o-==$|CLA;eX)bWwxVMtEO2W$-RdtL0>69X7giNR(;c=QQ=_( z+(ba6D|;cxcc}^ds#}zuRofe5T1|6llROX}>7ae{o7QdhS?L$0r>SdiLK?IXqHDiI zitfrg0FL0~tGi(B4-3KInv6Ne^9>PT&NE37AO0GCY$`z~-`8bJ`3TF zNaM8i{>5fjOHXAyv;->j@c`6Y-EcZw9P|fHK`OzAe8D31d0haVpgjg`Rcc(zr|5|o zTU>;N0K*vaWdMOCQho~a0`;5znENn5=N$~OAPoHlgW1sFBO31{bowH77!kDS&+WOy z3KFo%0S^zNT`!kHu!P|O!LR5N4=49ksmJzziUTMhu_^4tQ1oIIa$|eUkDH`e3+yl8 zPbOdWtDoEivoX7GBI&45`FU9BdAq6B;bFlgnH1a&3b1uXBDCZ>5%>1iA#>ab4+`+< zHeKM>T72h3D=MXIt;bT({`P{Ona+lOO>!ky5`5%_1~QTODN$Quji zz-SHhV?yUrkK)h;xUv*ll6rPwZeW#Njko<>0At}(6)I;iQsJ674%=R(K719Ur@Hku zupUp8?ev&dZr{FrG<3E3SrtLgy>4$!e&iF+!Xd$hfzek(fMGCtxO)64Q{>69Fu^0k zr~Sc^>Qfjt5qD^4a3p$_U%mc!teN23gt+E8qqAKwAZ8ROps9II^)!l9*EFNf%>Pvw zt+QrDj&(+MIxCIGoUyNravB{=JNBSW>0Jce@qK%aF~wz6cw%~E`1XABI+xpvwZp-< zeN-%d2U&OfbusOVneH?ejMW!1ySJ3N^v-!q!UEzsV<+xeFe1=I)@8JHDYh9Q&(fy$ zB~Ysgw-+uLq-XPz=aJ-Fk;Nl(LW2S%PnUZtxog6d!UcT;ZvvEjgA*G*f@&-tZA=** zd7jP;4BfXR{@!Pr_K3yAtHXT%iF{)!t`3&Pc?G9W<(|4Wt4iPM2Z+9{B3S10sdr8Q zp=_oi6jPtSbL`MZ=Cqq*;^74)#&+2(uDE*Htpm4?bACbRn;h+%5@*IFeH1V9aoK#F zzL^cOBG2DP;-+bWCLVS_H=pd2t7d}PAcV{4)Pm9amOk^Mxw}D%KPAVd;u2LQ8Mx|6 zEf}AY+rrF}KJ^8#Q2WCW_{jAvMxi14=ogms^H9X`8t!KQ{@+BM-COR2&KPn>g5$Na zSbxSgm%chj8NZjsxbfb-)SZj!OQd6VT3I5C^Pwv_#_ffEV}Xm8Jxv)&C&!f0hTmCb zEXKp)n-Go^tK1qY4$$J8f)r)1!!l14Ao;L+%T(8dDWf25E_ZdNhmvn1TUKg8aopQ9 zE4AS2RCrqz9zeYlq9o74Tag4$Hul=p7>pUjf&Siz+!$sC5%+X(p>N=7piI7iK4P`< z`QO>C+**&$*L=~2F723(xq7;-x=)~;Iox1llx=N`F(p6Nu#W+?Q;LJGSi>IqIjS0$ zdg2!*jd%GGc#oSIM?$sgJI%FQ11+#meFXWY78J(iGqss$d@6ntg1jBZ>gve5ZghCh z>=M2g!4iQGXvL_59O(JR;*lB*9bmOSbr*{+z`h+bLvcugPu&El;|wN@#%uo!;}DI} zrp2f5u11!L$EQZ)1DiL%ra>6#&=T3hk?Z+Y}w3w%_)6Vc{GydK+BK^vB>(yOId0b7PHmWX)D$~>2y{W=f$)5 z7%Jvqu+TpB+)0^u`qYP@(|~dFz{uW;O*q<`RAN=0&!>*)&qd~)M^Vdn4`wgzIsx@ znO$;d;1#>#N2TI#EHD+{suFw0@yVEh4#(sOfijLA)f0CtaB@Z%&(E6JGXEcUDF>3u zsvSE@U!J(bJvkwBMesqr_Bp-A3k5it(whKZ!Vzjs^Yz^G!BlmnMV=-YkmoFj=F~c< zdYV(ewh7jpIt**&S2v@oi*O3Z68dp5Dbx3<(6U;uNPoTQOzf1re=XVh5jnE z7iVx{xK+GC7ImOI6`F%(XBP;^cGnq{(3&=GLQPlr8f=8+p$u1_>cs3{&6~imTs&k5y`43D-F1HO(k<3W;c?k=1jGBgUsN zZG0+%j(aE6>!-iM#)!QuN;*YCm4RKcDD-^X2r9pFm2zbdd^ zVD}yTe%4Fd@H1Z9DWK<{e?C=kKcGgq1A-{og;nlNH)e(Uq;5#%-&h^l<>aZA4jiei zQe89w*xoDe=8>V&O=2N;0&b_y%@G)NjZ?RZUd5~NKR__aBVb9SN z=7ZA4@POUDDSONavYJx`$3RHw%RiwCM7mP$m5JCurZxjnh5w~P`01C&LvTb4TM1AO z_!m+O9MfajrEgCd;&-oXR(@KyIYu+6QKNr8E{jB1MY%boi%PMwShinXA^AlN++a;7Wx#36Z;TipDD!?B%h!gpz=HUt$xR^YAll?i(FZuYamwlmgz3X zevAcPqQPrx<*w9xY+B#uN{u5NrYI+M7gh@}U7l&`HLhgau9* z*WsuxHpMw{SE!^awZN&WSv}cM%&&g@Dm{(GhkMHu7h^qgrp8>!VSyj?tg;wYVmT^< zcwvRwK>WroEXjmqFfTGvtGt{Ff>eixuTVe1HbJZpG_*)I^2`=gpari!X0_mYY@@3P zGGezZ>8`-XR(_Dc;nOD8<}5)sr@=$QW+doEzZ|d&aLtl|^C=r=o9G>;8Dzdca%Gn4 z19~yVP(y(Nor;cz0sQVdjk;oe{pw{L{UY=;kX5)ia5Rk?Bj6x4%*O3Nr?AfV(Q$=2 z(r3v0s>uFS z;Z5dhYN}KWrxZYrv0LjfCSnZ-&7t!ZfBcE;W!aPJo5CNLyf*7DnLk+ViPXBxN;wr} z!yZFjSfy9Tr)E#wwV+sQj;hREYPZXTH1u(xX_L6UUw5rL7%dT-kkZTbYG+rK>?{p@MNI^JxY(5aN`1;GB4>H z$~EqEI^38i%~HK_&JW448|mLP`$Z1LIbo`6zD&=)8lUdK8h%Ld0h623q9!bYb$6aw zWh6=u1|8LBjvHNx4|?Ic)%IQ!_k^6mKr$DeKd17WK9ul~;8!zoJY(bN2QLFojxTXR zO|3Rip`MIS9qUuUv()pZ(4+CG*ZKT`HYlL_Envj`rDn`R;D)$I{^qE=U`z z2aH+QH5?4x1BF004-KAhEf(2$Y9K4Hnr*2~-Vs^k$-)NOUK_SJIUd{Ik&jcMyoTu> zB(>N{^OM-g#`KpHZeQvk)>>HJ?68v`f?o7d8{k|Ly#Na{x1TsP(&YFJ2WJ}`95{x# z>zCqJuuv7itz#gn9UGgW1y#X5a%$ah#QGRhoKOy93LH_M$YNL4TsQz0xRkmZqM72V zhNmjBI46t19QC>Ya{$aS92NeQ&qbU3?3EbZ{HlbMZn4S50ZEYiG2B#oS%Wbg3&k#* zX3%R|wW|ya2cZE*8K>w@f2yUL3Rl{W!F*wkD#2gB>Z4tOT6tkR2A0;RFU`elP2Nv8qq&J>Y$mA?gE#3=dYYAHC2~kJ$YZUSI`&m zd=6dzVG)#OLB3xtqlLvTNJgI(bCnb6D8uAvo(n+)6XrNW?g?{Tq5c!*Woj%(p8R%P!~ zIQeS4{Pj#&k{?=v`kqDz45ice1FIGMy231Wv#Q^sy)~g(INFPWjoBCGpbcsiTnaEz zz;Ofo3!6X1?jE?^7v43~ne_R5O1+=P?g%mQtEjOO4X1uhgfU91o=|D z;s*}D=k3Q^~!NuvOhrrBbchNO?bkF#?9Tpt-N48?<}3Da}*l3Yx%jf+31Pv&gjz{c4;r!fu3be%qR48%&it`|5g3gFo4+-Jdu2|P#O zIX=Z1q~sTs=8DXc?*;hj9a{W5?)ShpUTdT0oa8|ZJk-XXnwO)>EwH0Z7JF$6k--mo z$%Qc!vXG+=(wSQ#U zn}ym8-2ofvQ-8Gzgyw3MuY7|&2&#E!h6!r43r~Pn)4$Y&Em+Am8dlZ`cX124%b260 zbSNzPx)lm->+7Y#%0QH6ncJUz)Ppq_*G~jKi2=ewd*qvFHKQcm^>t_qP0(8%AP#a} zpq{vlV;RPcT7-ZFE;ospSE0JF0ijv_Wv-??>c3e=#*m-NFDwHmUup6$bPIxp9=A%5 z!+Vq1(x_7XK8wMOR^j{aXba>iOI{s(P}8r6mG$=t{n!hY5^s#+@HcCu@R;g(FNF$u z>ML+kPrB3?)Q+W$aU}JGOXcDNK%-Oj#V@*=E7UhZ2L@}DMGGC!t?6fu6g44KCsRL! zJ!;DlDg@_|bIF$Gq-M)qAljq;2YjQ}933XqV04i&^S{hY9x&LYnvQ~HGG^Yaw-iJ+ zx@~*z<(@+Qh;ylAk=WhLhQEMBzj{t^W7Ar9M6=hQufNZOAGm%5JLeM17TKSzzJwTF zaa6nOX|cFdC;RGq1ulxalJKz{`jCduH7g~wB*W4UwV?rRX|+0E@;BY)rVzG^{^vvZ zhhzw?J49)5ZkuUv591|Y4IKr0-vqnt{F9YW6!;9(-d5nDfvq4cQ-{~xbDj=M`^CQc z+aVEKZkAC@rx$}XDsn%yvYLK0?C7g67jv)rk#}gjbkTJF4&W1;)5GLwe*0&KzX>aj7}C=f)DDXY8y%pyK z?EI|m5y<~vwQmc0#YNL23}LbCSmlSN0NnL2m_j$FQxnrE^lWF?vCmj3p~b;|oKEc& zJ2uRg<%7ZAeA8NV=M)w$TEa6ktl3c;I^MKqCs0~=bS3v!=V7A~ld8r2G6&xz6wcO# zOM~|YvOaGcv+vF}6(K#;iparVxUj1J&>`DNL&@UnJLUHY1rCEw`m=J>xBet-hI)Qg zyjdqd(Asf76W=#KDli$Zf?)fqSNd}*B#|xJ2ozPRCNr0w5ubev#EPJ=3oh1_>aP8_ zD)!#75+qodEIbzNr*W3w*&q znzj!jf72eQN@dIcHmZzi;Y=X$&q;r_`BxVNSjJSt+3)^`gbpi{7@ZD=fXh zl)4qG6|EOHXH39$*-%>zFb50u$y9@5P(ND@h6ZS>GBqLY&(s7h|FoQc{<>A|BO>Pk z?`t_%Q_ko9sz2_a4PVgLS{I4!{)?HWrCa=_CEYIsergk-Wtam3{OZo>tf(+qC{d`H zGVZ7}2^80?Wth_PG3PH2-+?Orh5d@n{@3ZRP5US5GX24N@wYV854*CseQHwyevuQW zj%iMeA}2oJN2F^coopU;3}3Pmn+DG}B#3R+NrCa~iMsg%t>y_<91;gY2wgcTdg=%k~Zn7(gf`INVmK|WV(I9k(ii9nnwB{JM)+7 zv-w&$esm*OCb(}#CL@2O<11)*lx%WQlP@>BxY33KfWv8Lp>fr zUOvu$>z0&dg>!>XOUb}<5LEjCQ(F3f%cWQznqurRm8eU@&znm8^*yUanNx}VHZ&lE zgel&=78)#9(~Gnp+nFa4%5erZVz~|dY;Yu?m`W_Si;I98A#Yp2L$%{5L&lZZTDefh z!Lr%u&H?#t8O)JZ;QgwU4M`P;D|L;{xoK82try{x+dTS(FY-?1QA0yCRWy=p;(jSr!BWw4QQ4{T-k4`Nl( zUk$QowE|BVL2?PlT`m=tu&3(?l98|3^u(t+Aw)!s{EEReL_R)_Kq~>Qu|S`VPtDPw zm<7^tCDYqQ52})RTu-A|BJ!_XO&(N6Qsy_|E{(;O}qX^<<0O^(&BI@pz314K1;Fyv%}pMK+Yc z^+gus9@&ZjeM>4&4Ngsr9JCheO{fdGcT+Y%NsA}(TuB{ z3S?=uY2Ry$U=R}6MA4J%eQ204`V1xD?Hu4e70L}T5JfjI*#04Y+p2b}Nus-+3U901 zH8z+rp|;9hVuKmC6rbwRm8S5aE9E39J~dy1u~BM*BLXheVA@XM)4cf9Vhuuwhz8Z@ zVF`VJ({Ra!jVgQw|18>#7{mQYNM7bw2PcRK;WRk}h;CdUiIdIA&jj$OqzPeEl~dJ~ z3vd0Z=@t}92cU6X?o!-P<3b1KCx{!`Tcs=tTPe?pA$%d+3+pJNYCxKaTYbA{I!}Hu59ZND*bBrwdUiT9&BfQJShDBnfn!+Y z1d(>UZ0R58<+dzWV3P%UiXP7>%fcmo{PU3?q|^--|&S zhS6U0X+1^<=UeRThqF)8FEk&=-$5&~_=~JwmfWTp5tjj0^PW^iKEg0~ilY}IHx8az z;DSdfe$xuNfjx-bsqlzQ`^A?yjT^D~-cA?mz1s4lDH#5-A*+54qKy_b#pn-@HGGxH zBAhJo$9fsp&Qkp_oTc1V>ITt8?CtzZjUh!Bg|ds{l+f3JUXXLoa>t3HV4OG z)lGn+DYOhYqay^*!dyr~BqAfxt-FEOQ-wLuchG9%2zfF9+#SeGz=vvzp#JY z*>7TE;Rs(cAE##)T#A_3iF+1$4zy3)7Jzq*3}$a54{af!BG;7*P>#ykF~g98wAG!+}1F6`+;vYH>W zxay;;dv`+hg5y2>6pmI@uwrh>g@TAIMA#g7KcEVGS3fo})w(7;>00;&kpgdRK~5>z1=Z!tKzc{~M+7U$$ z=`qEQHAJaJ2ncFeE6?-2H>!h=7>tL6lBCS`oN< zEJn(CKAfVsa=JNaC9i-D7`+ruH5}f!DzMDX7G}0AE8D$RVEFRodZL{QkA*aGyo+p{ z;4NI>34GHo`v^{3CSaYeDFh29ct^rND$87{|7*#2BemlP0QNn*z~jkRam)VNRX_(% zef%ZzJle2Q=*Ou-ECddZrtOjq>#u^=-~c=lg5)aorK?Pv>aNGiEfwq)mvSgFJ)JTU zDHW;BWKNYDn}%Nwc)Xz=V2o#6Z>TG6Y<-dDSD$ASAjI$$buTe6G7AUQHj~>JPVgTN zn#ew;5QaS%tCo1fY9dW-rr>Z*VLH=B0qlZ08AqrKqm56_oUAr>K(|lgQX~;zNmuB8 z>?dM1B!UHPt*|8DNF#X+NDRqJ8z||9)aVdR@u@@GASTHG@x;qps~iasL*-GwMG{qC znq9J+4R_#QO|T&fhHt+rOjp;9-s0HK7DYbEUU;`IT6)mo9ew6x$y=fPiue>Tuwe}{ z_|%&T!Czs1Ux@e*#kMGaVk5pV+pE}V1f86FK7(vVd=b#Y7{(^Fe-+<)$uIq-31Z3Y zFD}GpRG0^H$_p_%m?v<`M^;4^W4NfzF%RjKkJfj*#pJdQeS;THVSEgHW?zAfhpV%< zTAk$vfBZ%2raz|NpHD$uFm8@QZ0$Rg597I6HE$x-+Ib&xG=PoaE_^ zZmz3&B>9>?P?H*~KF*guQ;h!6-_G#0fV^`|z6nu5=D|9(~c0&g9b< z*Fi}t)UPkGg_MtM4!Mu1A||JH)JZmleP^Oy{RvK$Y7}@?{+fq!;&K)UnuF;HH0KJe zS;U7MzBF(n8r1$vYMdOS!n@@G zN4;mFx}M zu{}!@(da|z+cA^H$tR2){R7n`voFZBvdfLEFf}Y-?DDCpSbZ8&9M;R&PAZd2^t;(2 z3v{$kF1LljV=2LbJUNM%Ek0|r_P5l3DXWRAg2yVDPX0cU<8tSbkmy&J2}bEUOITFW z;@3@#rQ6|GH)4mE#$kHuOiQADL_&?Ye9xIT8-(3x+0$&$Q)=x9)i6 zznpq!sfXd{!SQDFYfN*~fjOM=9tRpZQDFDiV79tJ^6$M^{=|j(v()>N{|6V#|DPAj ze;B?4T(xnr{JbpX0($;i@`o;#|Jn=lXDPqXbL++OXJ0J;cO-xQ#qx7ebsjxg>Jp)6 z*v0by=)(Nj>V24MpZXgN<^}wJ;$r!?NdD&$zi>hRNml-?0ZbN}x2}+Xx5~e5@~`V! z!pF+Lv*q79`FDf-+rodL6+Fcmx{}9-1N*Ubnc&S24GG??&E3;t9@pPuTGblFu-3XT zUHHI_?mEHi2^9w?>zv$@9j>0Xa<+GXIz+4i>tJ9-oSkt*#kLQ?20GXt^X98lZ*Y#q zVdFI7D9be#Y-$Zx*J~v0jJolw>pbbH-J6gORyX=wMo#?eGy*>LE$n}Cm@G&97!J#3 zFRL8oUfC4=FWL*AV{i03w5yKtoYJQHgRv)_Zg0YeiJgPzYCxA?U5OgRn1xCR8L6j- zIQfBKgnn?S$z&$v<`m*>wp)BH1FO{2{{UMszvOC{D~lf8jq}6w{Pe9s=|=2;Ax7}Z zVd>NVa(-G5%g*^}C2P%`pN{*?zd1jx1G6*7TQCVzP(3r1Gea?%f+2R@Z#;o{DCbv( z_c}ed(G$|)fwf>?pbOffC#2uG+0=%1CpLVb5TkK72*);e;3sy@urE0s6VIwyisK%n z!-?mhzy>?RBgrcwwIlKFQQ#Lg?1|)H%s2amh6T9l(^Wn$dUctuvz?}{sv_7=PY~mJ z3dQM{U)5kq3XeJ`A$LnIdt%4t`qjxiQyYkOe}gi~#BMjHbIm0(t*bW9VwLly z3uknj)1`524_AYg?AA;=Z%)U$d@Ae3i_PgcNmhUTjX9^|bo0VF9rMVX?$&gL4X7|Z zr>ilf)%KhY6FQ8KgUv}DeGt92N)5X z7CCYItATkPuCagClNA~fa6l}ko{7+}!E^@1;Y{^Jq{P3Wmv>*|OaT))++&Kl+@L@| zyVOI;J$kw($8JSoA4zVG)D~0AWZEULaPmi(q4fi7s9p5&WPItzqQrdzBLPhwnuRcz zO+GA~zK5a!lq0;UN^KYb`Z$%k1@|+%x7<;h zDs$kD)QuB67xWK|2kv(4LSk+6RakbTa$_~Zrm+FgKX5aXN|97@q9nX^X3~Lw{Zw@x z0^SC>!r-94nJNx96O8Isr1;_>MdcqfDGBwLyP(?P3Pn%e5F3lh04KE~pr@9k1qAtU zJ&fhBUwzPDXwH6;BKBZ+DefN~!?ST7>@Z0%03?e1YBUTIu4ID*E*Op2i$Po33Nn8e zOr1~dx>)|&i{;-V`S)KefBD7oua^AZXuinkILykwb^JJvg7?e6QTcZx{{?-sWazt! zgVf`D%%QIsf$^dydg%MvcuNPl)Zm^Drj_k3uuG4Ab9H7t`aNT3-iyrGtQ)BcfER-d z2Rvg7Mn7&z^MZ=gEs%Z}M?V}b3O=f_$mn;YjfDLk3Rv0?W5*Av{1xg6xH9Z<4$rY- zoQo}SVmRw|Bpf@S3b}evgF6nTFk69XD3w92LT#~>HS`(oz=iQ**jXDih?|0+qFpk$ zVc+d$bce{pPDC?Tr*F1d+OY;?WDF>Hr_FC(EL<+G#hBd8ymU9o1)=8c#^uFT`eI`B zYmBu<&B#bsesJuZ;OJ`it;b{f;^w{4npj+JYsJxOU$i``>R-k1hucwtH~7@&U{Q4{ zc3gjk@zCrCL(prO2exeyIF09{tR}hZIqYMSt5Z^PQ$Aj1OQ-)C>DYwuM(x5M=GgtY z35i%7@Uj65^}clKk69FZhs*7vj&vgBCUoEDQww44ZMu(JrX=)G51JQPWkcmDS(RiW z_S=bL&2^5nRNu1TQwGcp)d-u+7M%~E8g$#_APe9V0F0(-2IfDl%>cRpHQJauDzbGQ zh|UUsMvdDGyD@WAY$*X5DScsvDOAMJO~+PxHS!o;j@o=9#*7nd^XK1XWIJ|G+&zB= zu4WhpEV2z<2~`6Yy>)CvnK$lrRr#>l?8wHb{k;~`q=ib5O=o~v%BJ1HX^ih6f8YqZ zYtV}!!J~#=Z+1uS#hK(|27=>33rDIAujop{pTz|+$*YW+BaPi9*>+VmgIN_gwZx62 z>}+G|$O+@;zln-WWN-)wH_&Nt*vRYI%@dbdvJ zhwpFV+Z-XN7igb`j|ZGg(5FMN#EMTdy^k}0V+t*dU1r!@yp`p|fxmfZc?Du-<8yO- zpbqt+$FnjBXlKr{D0ktS+VMzbcGL~n={f>D;gb57!^05H*o@|5-Tn*t8@z<`)&IlS zy9Y*D9gp9+0TCh_Au3ibL879dBEdooY9b`T3%Vh)AtGoMF7;Kw>jb4a>8L8YOn!hUMAWf#!#K z3T*5mkVaT%$QsF>Rob<%AS^MZY#Te}(?UMA zR%LMyb;Snr@8KRIzE3ikX^;eB95CK*vd;Y)MlBD8+k{HRa>vVXUh0C*6o`8RH8yU| zWfeCM{vw0JiGijOQom$7uvN14dXz|MH71H3w6)?-_QOdu;PSoasKiDkrR?n+JVINm z$#6rd@@79-A_cZq?6S#M`^ob)`DL4Yk)K>ga$u9jvXUr>)U@_#mtF%+a=4a{Qdfih z*x2)Ng#9Qr-eW(`>-m_atx;R1bQNl8?f}=4(|pqThWFG3ZFTwhf?;l)(I73K(TOiQ?--DBfYTD+_^&s zL#T5NABpLL`cEMlj+WGofAKXyN8TKg!6cFS#TqcC^zV-vb+8i43_s zJ}DzG^_3R<$+26qZv&W+InRftjCQiWiX3w}=iqd9IC%1k5zwXWf@#1BQ=HE(;L?DXikU!@>UmL zC$B2ftdrt)A7(8GDq&1jqH7!L6Ww9mmHkh(jZmp4q+k6)^5u!O(jtZL>VakQz1f6L zO~h=|_>!HkQSoY&go$2)J@gtDM+__FSQsV%gXD{oPrU%74eE~{;H1z2QNghpyn#G* zb+U%sM)CM9g&Bb+kvvr-S^GR6ol6T#G8aT^NMY7HB$48r>D1+n>CjwDBv&@p_s-~m z5R$_MtE_HfF-)L~Sl4_$rLR*}RNJslB#ke4v`?R!GmP{}PcIC1stTdd*nptf1}~0Z zSD3*$dKQ=5$>Py(8;5ZeVq9=-%WXL!NT|5!Lw1fBP zFo;D6rw`$(Q^$p8dMqL`mBkTenKwqqN}Z2tw@?^^wm%?>FPxXUMW};u8frYYQwNQx z0K>xKt<)RoFP*BDiRgF>>N!LlBr$e*-HT3+oDs>we3(mtiC!rcO_gF+YQe(P@8Zh~ zGZ?jwm(ami%FgQ2!<;OzW4GBSQP71Gx?vObJl_F^Mu@~+o zkV!vkopWo=YeUGi`ZnPY&R&E;czj^v?rQWqq77K1^2Ng}4NPs3+C}rhVdB;)`N43m za5M8WCbVUb``a=QKXhyAr z2a^}#uPSP3`5lR^73+iM&rqw=uXXx8kpf0|eRZurzBhTA3R%vtdfuJc(aWV+t!WkZ zAj5p24D;N>T9hE5LG$Ye4r}pc5>vN^#XF_<03I5x1DHI5i4mUG^U>1Ee*0A+9rJ?H zioYMa`Un1gNZoAIP4>q{&7I391~yeiN;?9Vic4W2lwN#;%*&C$L-$2{5Ieg5l*N(E z#W&Q)Z;52Y`qh|c3+Rr9`Eh+K+$~mTgLrP`2n&{jlhhM3r$SN;L{cI^&~gD+%9kOa z7OD;^T*hEUEJrxOLJx5!$B-9y85vp8R9PM>=N)%PbDfegZNl3^<{{W{_I8OsS-L&2 zVjpR(d6RH4S;2lQg8|KDHjF;n-4F$u@QTWi9bMx(9vF&q(1IRAaH4EwytT68m@#WD zcknsun=kx7I4i32d^iYQgs6jTYE;+wt8LO83R({HS9EF8U?7lnfVi|X^J*H_35LEV zp?XFrF)PYLqNRZ(c?d3%-&srfZD>(UngclN!yY-eBvA@1y6iUb^OL-}OxO>XBft-I z21T-7`afGIAViK1nOZbuIvbYPQF(mbt$dXx8`>maR_q8_WG;GLNT#wVlBK001iyLv zP3ZlSqQJ&GBwt`-LIf8i3s0;FnLEiLXIcxr9VR}GdPa=n$IKn4p@|Z4lNo5rr33n~ zpOo4i6$8ebA%meKrpHjWt+Fu~z@G%F5-&t-p5`|%0wwm7q47gm;#1XCYYHW6-I&j# zGvl9RM(^iGNR1CA`hhhvkz6NDenOLXdk?GZ1NzV{Jh@btx<0UxCL>w3W*-~^YEK~! z9zpym-fbnSmRx5!9!|n#k0{Aq)Temg6i#oyU0-r( zBz7#P2%E+0GGs)_4r>Xld6-v87O%^OTf)Z#nnv;D@n;djoCevRQQwHphCAW%h0$X$ zKIKt4*s?9^+MEu_d^g`6alL$(v z6+a-=-Q(9O(JFM!oI&HMR^}c;tgM7bFtj@|GU0FTX-buM{JFBYsJ>)wBsQSdY{L6o z3M_3{9xjNEk`6%L(tz%yeBgwr{&fP4OfTMDjzk@ao#a&BFex`SqBc`(9Hge#t80lMXL<@QRP#1?=! z>r1W#;*ja%LOjb^BWr5>{mj^4DDYTRKSFftNh=u=Jx?j>7($Hij$MJvQaa zhA)T2rb?C3r-Zxe>M`B!auj1>S@rD*i%L`=|Abwa;3s5`^C3_DFM`IDzf2}L3nBOAwP2eNfd?clnV*<8 zpV`~;Hf2lS3#<@Ryi0tsQQS$uuCA_lH#B;TWY>voCvjOcr<}URycgIM%4dZ<(f=OU z)N&7CI+fF$2H_QBwwCT$)YsWVc$o`I-*L7Fs@RUOuVRfrVk?GD#a%YP`H#z|BR5dh zU|BB{GKK3i@6f8IcbEPtdTM9olFV4qn0KP=5%f_6c*kFkHB4qw= zfc&n^)1ggo*h_V0_K_+Kq&Emg%)eQ@XfD0sUHP_olWs)Q8$Ob^C%m@<@^-)XCKJKz zeZ|cwQ^maEy{(hCYoA4~o4}Z*7ZsUHC?@~s@<0Cagm`^XMlaZ<4?<7Xs>Q4^kL){y zku-33JDXTtM$MD3^cu6~@N{B8-bH#bH4Z6R))l?3WLbCgYQn3~sF^B&>M`s~HGvKG zy+1#bN(RtZC?l~_dJah+5i+|rLXasA7Ir0;btP6x*D%o}mT}2)LihbuZP_%GSXfj~ zRJghEW!)K341L{Z?`{glmv!lDm)R|^Y{|Xhmm}rnlW3!_Q$EirBa#lij1-ym(w@d1 zJKml{$RCdAh&d_Wm|;4$;zkcSr^i8jqE4`=Kr{<%LcpE|fL>i!{J-nE@7r~8zk~>Q zS_@dRwa`$=`K&h4SN!J9lSGHACr|70{D%6G?Fa?KS6Ae6-jS$i5%Iby-W6QbFES%p%tyRkZWYHfllc?&6Wnd9 zW|=_<&kvEDjo#ASsUkEEEL>vW(mGu(Ccg)NPxHF{KsN1L6aBLKRXOL8kGfH;xvsO! zKmwP|m#sm0@@25YQb1d%?4+4WE)<|E-!pEAmDs?M#MN7YF0?NBh-SXeoPU6idi8fk zT}$P#SO{?Bs;YbBu!*U#kl1?@xxTHlte`B~zu}URg*z&T<)*Sn&mBh6kZ2A`nQbZ= zl~k--FwV=dx^iUEp}hRmP!jsNyUU7ot1lS|$u+$H#i3nAx&61cRE|tcObv-#U^`;> zIOiU3xzNe%F1tk!C4QJYuk^QOM0>xso2_Pd{MxPz(Bhuas{9(%U_l|~Tc)#B_+)4K z$joS;z{c`n+(RK`&{>Xd@T#~vFqogp=$PwJ8!7P$kTuP0(WXYWs6Qj4Y73aj3 z$|EA&ZPpvqh##2No01Dey7@1cY685($Q{BRlZlEqOC|=IJK(zh255C4aew3wSOYLGtPQN&@W8cjhYNgRk{ucDQ9Ubmux-0Z`F zj*VAhhi+e8HL|5*Ur}L81-F{-iWU++eVCL_0UudnY4W;LO=Ywj)RAUWOFv)m zxoEo4xjPjv2diha&O9&!*j@-$i+Rob;bS5F(K3rubeb^h0D}I3vnH{jSSCl}wz46U zp831~d2^J+whhr}+<{Hy!>Nv?V5LYEaExdU+^bs%i_xx+FCU(P0EeolEfW^LIeiEj zzGCa#?X~7bntMt3dVT56#eM6Y%HgTw0-G)wUTw0aDzr|0>N#J~M+#mE3a2Y%yucZk+wXBc!vVdP5yS7rd7bR8RWtnhxgLN&hb|ZvG`aN?6fA zQyEXN-918Oui1SGHUmW6z{U_%_AG3mrQ)sih0!5_jh74?^9GmaMn}(pga~PMHS96P zb+vnuwF+j~BW{q^?^_v%nR5Q7v*N8R>~_PV#|qKm*I<5-VaFnNd{U^4K@qk}>-zN$ zN>WUUaA9>eDB9CmIWjXbeQ)#vnF;{9%Z&HB5j{G5Jm#p^4Cl#=v@TJAhis& z1W8HrU0XHPQe$ECXz3ncLyyCu$6*Jil)fYMh*9WWS{e&L(3-SY&Fc$tW*8(2p(=m4 zUWs#piXy3t(6Qw6NpeHCH)$VA=8WaESZpk{P|$3$sT(p020QsMpjB`iaEv?iePaIE z<(8O73o*w_GGe*1^wuZJhtJuT zO*B_imcX+}S@!rF*+pn5D~h)VgXUbgqf=j7Xfmq}^0vf36~p%fh8Yy;#wB z(O^YmYG24?Q>!prEL-ou-BQxtARP?}zkCZ)%xnQi$gM4Z`E@YOAmQTWs_A|d0Ao^&8b@wnHXv15sD8Azg8L*+@ zkNnP9`DMAS3Ys{H`4u!Ta6r2bmU9DebTf^NQbiZ;|31M@~Bg<^3V z%|!auu`yYGbaDI6${eU6gX56IxlGK>|%m=&v}7B-TdtcZvQk z)!zpFZQ{4#k)QC}MWDNtckxi4SgC4}9akpSwrHkXHFfRn{A*b&+DRylRf%N^<#X_= z85!v_&5`#rx^*II)rKH~GPb!nD2UP?Y+ zoK3j=PR$`O+k^`wA-z#LWQJ2=U2(c~jdpd5c5;h!(h&ETrUVbR)WJuzlpx6%o)cRX zUt0uU>5YO%^M)qNV`7V-G`&$!ZGNlC@|f5X)a0p>{7X%i$HW#HnDoZUl63_O0_Wtfh-OT_lnflfHF&S2aro+mn8^iC7oscGJNLy8cEBxss4QMprO#X5ywC zbMKY3)(?~4B>OoNuaPd({xB7aEv!dW@?CbslBLg!hWf`W{cp z#ZE_~1S6IF!EoLLe8G-G8_!)ra99ZdZ`XnNfh&3>Xcy>*s-1}tPdb<<268rg*|U=3 z`x9Z){}60y0To*?Z(gnHn9e;#>}1;I(^o)@)G3Zn7*lV{6;#ezERuEfVkuoq^lza) z-Y5HJ&GkWZ&aJLw5}Oz)7NzS$|D;8iJzuNLLiKtz6KS7J#v#i7a^BP!Qa}aq) z#&=*N{nO9+&dB^l{4F- zyNh>MSGR~a`0EKB`PM~wa$(BHoWK6oO`QRO9oXhlL2HE@yW<^)m`OqA!OUJ3VO=q*{wAvm3F?U>CO=p7knq|UV=vUN884H)$MI`8|9 zIBR`Msx2=jL;c?1eIKt2aB`s~AI~5%#W~mE;@z&m;;M8}^B2wYEVq~nRsw6DrIOSc z%0BWn;=uB=#hy1zQ--FjtyHwDu4OLvJ*41Jx^^ha8$oN7TdaSfz-Oe+$4>(SUY?WX z?24UrB8AfD@RJ`qrSbhVR)@y_=3@clnEh@a2VzauKD;0$@s{1rEic^ibzJH{_R?6z zglOkA*H3LO$wIkemLz z-zF-KZnxD(NaPaF4s&_)0JIa`#7zzIgigM6N1*wa)F7JjbM#{eAAj>xStq)s#G^b4 zWABU}g)+8-TU@Wx4HUxYjTR~=)GP(v@r?YkFBi*? zb}0SK9#ZKbVEOya1+ z6ysdjb}SbE*x9z0osCk(c>YqS+2&k-wbXIWlzHh*IxZp!iSMP;@x|Yc@2rd;%8Z>D zp6iWFL_+E3n=kr^5=L$JHD<&|f{;Sdu6s5FBr7;n>1U|cGUFpNoPk^pvpdRmZ}~xC zu!ID$iUJUr=X_>H0un5Hh(zh(J``0M!1RVMRm5({Bzvw9nFws8zlQk6?F4di1o=TO z*cwBKUE~U+3`XJj@L2+Gk9pz(pk>O9Z%_5%Aj^hKu>z=`LYTUGJN*;SF`486BA!52 zaKy6YUHtD{DbpoC#tuGL6#;+8AagTIGkIf9)ik0#$J_H+IDWE7^jGXxqjN*%YL;@z zQIlRo!=s68*q|)5<;%TP#bLK{kmPH1* z&Cl|}NeeD?!(>H}X=(;j6WJun#g|V*c)$s0(KPcP-myQ*QHn&P6&z2xLRYb>Q_Do1fM4 zC7&e<3)P=`+lUi%V6f=(MX=^ z#jLaI-YlI^5(`;mT9{1hZL(=d#}1gC$k&LQfe3Ch$bZxT*`?k@#7R>5W~&+Ax?rMz zm35ZesN4wf5itII9_SPx3M>%c6Ckbzh~y&p6Mmcr#WM(i#TTd>J^guq#))Ac9H?YY zcWjV5>+vFVo1U*-yA#WSjKfK`(mbj3ro(zB-U98J+OgDROB`jbw}t5z&2aM#2Bz+j zb5My}gY3LoyC<{aW?k_0`6_z_r(!Iy@7; z^$q$e$zV~10&C1XEy6y*xBkWt6oDL_FaKkMlLa_nDLZOWDlD-q`7eGCN07L}A~Vie z?jcAPR39y$_{kywXzyxn12yMlQ2XK^Yti#10V4eYpV3kj^Xg!NV6~M;=yzWj&t?LUdPbr3~q!W>xq zt3K0#6WL`N$&y%WF8f^iDX!OYk{r@&y=^JbaYpDM&S4b>dX$NpnA7c4&hrT6V6aC0 z$Aw1C5)_RHG;j+n3c6N@%))oIspJlTvs4rwH|!cuJo}FW@hNSwZ=~i#i;R#>aiytk zWU&h!u6ppadt2>5T_#ZUNDxDW8I;+QHEz-I>|TTEP11{6^ZQq&9^xd$`bEx2eh=ik z8%vq!g1WjX_(>HVM!dp8mVNCF$NGIb9N%CE5q)j|YLDNpG=2|n6FnInZaluKfNK@x$98(u9 z2w%gyC2@%YnVbyf<@m}jNbaRid^&s$#5)zQa=|AiE2Li5Fpj^Ntfk(JZXttrDha#V z`!~B}5oo%RFLw1IJ?qC_fm%1&T;~8Op?(9arfSkb&`!>AKk{;(rpdDWko+@0`4~-p zm)L7m5Ft2m6=ncb;9Z!nJ`6o zE0vU`=F7R{GZBO$c-ma_p=7~O6&oaLY^^E7B0-tt^B~T7rh#9rYTasaH!XAGlA^0T z^*bcWy&CSLG$q>vtjJvggSpt6+S0Lu=B)=|=oQ!<+M%hR`GfK?qop);*O$O^M)GXF z6#ucL_KHXj>Vj9Ar{x8jyBIj`84EOj$^$l8YO1YglahL0P*~4iW7VJeBFeFkVMzMz zb^qIn&3vmhCqBzuk9CFQ9M+{P-987J?&G6#=`@7US|Qew@*HU9aUVQUL?^F+W=ekD z#v|XJ_P;$Z-^%z_U2C2Oiz;Od3vcu?M6ONZ=a_aewn55=Y7@_hP-eync&PnbpAq>x zh*v}Pb+RW2G%c3x4dlrs8<3~vh}V!N!XiG3w)l_HG72X9QSi_;vPKOM*xvA(4u2xB zJ)~6~psKHHTp?&gc(0#F)C^)Al&d3QP03eyR~me-MR^=i58flQUTX}BI7k4NE+J-= zXr!HlNW*WKQLl~KQMxrckxxg3|KZpDDs`m-;iRAN2NHCgpX}1sBBPVHVZ(6(wdv{t z=^H^Nqes9DMB+_N=wG!$-yYkgw{eFeu5 z_J^K0>nRZ7^P-VJkN6K=N-u7m{;Y85Z!u^TtG7~X!?Ne{q8GUXzV2Qf@aWj^O4x#J z&{yi#(V%tOZThp@_vD4tpv+Y?C1uG{UN!cHIUtNvG_CJAaUn&*P&(7{64Se!X&BD& zmN8Dn3-H0ttvP|FM=2~_myBGumtC1=`}ZQZ`s2f!yz1pv*nD$yC;ba1KPJ_2<^i)qq|LZI z*uCSg)=(0bvpy@(B*AQ~#0tb0x)2AN>PTjiaD@3%&CqST^hDIQ8EBg1LaRNU?3Wu! zvf~KLlT{9rKUUuETC*tR&Zl$2uY0hDKc{;F?koRMPWD~-@VNg~obHrTpODX^lgILf zxP|-~!yaEyPi1d85<&gJvO}cFC$3#~o$}DBEVLfMu572|;@e~X1l&7P3TAveWj>7Z8a=xL5N(C#=9uy)?7LrT5Eef3R z%(0;}TJZpe{02F3&-&;9Dyd$j_If!iYrM4npbGbE*8_(a?qPD zf5@kJdl^MZeOYzO;+oNPsx%<$>Nply{dkNn4JbAOO-Fhk^SzJ%Z5DLtN0EiJ>K190 zvb5qo(#GpOIYsmo(NRZQ+ILp@wLH!@8PE#cg}Tzuh^Pp15c=Ip_j-@D=JLNYYTV%2 zVO~;^w2%;A7l%(^<|&>d3k1oRqF;#=r*5!S5q^56rBlvQP&(Y@kIGgWmIA}2z?kG} zg%Q}UrTcZNBF5wa6ISj~$5qA^`XL`AH zryoj<&{3MTLPsh3^Y9q|yX+@*Zrmm{Di{Cl9<7mzRw%a|tE{q9*PcwLG!_83qomlt zS;-C=C=SWJDaYfiE+Z$Bo%*}nFYqQL_7)S!9k%UcmBbqJ5#p#_U7wcXqPggBD&A$g zVFwCs);Ztf4%cZh!x)mh&QF#lP?O?#v@j_G&F8uq%}q81ueM*xa(T$&v@TiUO9T@C z7d{s2E?GP+dOl{m#nV(nb?l#&JX)ti2PYE_t%Ok9s+*ero{SA4gF6WxelB|kJMdFe zCC(1vsf0gb;-ZIaZItCV*xI;D{|WD|xk)OO?Z@%qX@1f2;(fBmI1c?4A5&4v!bT%# zT_@8IbK~n07##Lo&deznk&>G3X|VL}Kbk$i^BiM2#*;b&36NOMxvsiQw0?K}4X}0; zcM^|ynu~|XKzICRlO2QAO=Ll-F*kLx9scKEgIrJY0PRr~-Pj?Z_TIp&PP22R=swDv zbFr)9f{>d>$IDVgQJ##q2aCk{>G`8;({Cu_8f{6oPFi@#Bf-dWrN4k*J*v2y^CEqz zOBU@}sZVOnb?v|i2FJRFx8}<;GW?^Sv16QmkyB9prGsTwhWKsrCdN8suCc|UkJp;> zUIurm4fcM8s+9+jU-FAhK83Ra=A2B3t41+s$`M8 zmg4DWmVjXMDO?v{NjCEbhbrUcr+2Mg7p;5Rzb1^SX%EVOCJ ze;`m-rTRy5c|MZoD>X95hYgGe9$BgW%77(P8QKYT+#WdITD6rUjWbwPh^UmKldn6TK|G_vM7q8*nD}5SNDEf zU3!DmWlyr`()j>7GM7%IMZaXbU-A)>(bnz{Uxn^CXm0E&aH|%O!|gx&n~UqE%9Zbt z!o9FFT~k-AaDmnftq+GgivCR$+wWgu=T3Bv6ye5iuVP!pc~Wt$`PEiSS!aMg^TgLTd?r;{&IrIqaC58uG&jQGRz62*hzp3lMb zGa{LX(r*zY*tP+4IVt?HU#ZMi*>^tpPZs;pqSpVzu5>yn8SGv;y+MR!^Og*hRY16L z$d6X75tkCNFTza zM9pR8GPCdpu+iqJe5EoRD099+FfG_NXg&F7vq0y2!7Mt(?VyL2UB15RdMzWpw`GVj&2z}?Pkk-eDdU9@ z>QbA@S29)sx|mYLeijNN%9<8N zd`zD_$X<|CI@2tE70KW8rE@F$JLL{`ki4At`F(hpT#h4~DJL#lB;2Xq+|eu=mGNA{ z5uZg;;{2S}yCucRoY8u>K+Hes^$bKuRL8j1YXLPkowY*+$K-ShdaV_?a5agd(JCep zIrkQRSY=PE%>6s0(8 zDpF0;HLCKDzjy_ZW(1lfGVMsh8q<=@34FATS_-iZ2Tk7|MQ6JAtg^Ky{PG|0G30UsZxX!%Z*be*u4M&!+PWV##cl#*5Q+RhCgga>^v{+-nyBRzR&! zF{5n6)-7ivYRnhyOhN8e!O=js_wk!C#fM$x)*Gg{QDpm3JI~br?gE{5&^Os#7>OTjsQe(TR{Z^A1iIFKFK&l$YK`E;Gz8}km>lkkGxsjZ_< z^%sA8TtAW-$(PV24L^YZs)}0Y4kFrv7^`2BF4mg&)(iTFz+oh=g=i;SK9C&?pquyf z@}pm8CVtnv^$R)9sYfX5qJjF7Y`Hl%tIyYmAlm+cO#|u)44dU_#Q{|~kJUI|RJ^aV zK@gQ6BdAAN4ii1^aZ6FrlgLsst1OmVa*ymrqQ}^rIk6)F?L};tLU*wvI5qz09(nP% z;pWfWWp0U5HcRQndFHIg$bri0IPPfLQ8}TI{kVDB&ozQfA@e&ht;`R1<#Z$m!5z3V zW~n<73#@Dt(i=tLWzJ>)Ep6Mag7_JgrA8338dDK2B$?5p#D(O;i1idAgth!22EP-ob`jD)JfBR-0sJ)Fl1b$L6M526VMqea$MQxAK|uXAwn(7qZJ=ze z7>ulifhy$I6lmH;GKR3h@%C){X@XzE>h;L|3gWe5O_agbib3j@@7b!O7$oM zu4-3PWowU~Cp*88+1jo=H#IigN?*CKUgTAaQD4~`{=ljU@I%qu;8wj?-Jq)8X=^v$ zfjGS+#YM)Mo6A|@Il1w#3IeN+AR%3J|Foy(vCCTD4H}%T)WWKt1h0#@GZ)62t+(LlEU0V=3V%B>bD_tJpzB~H{4euhaDadnE+bl z)Ps1*{Eh!V=Psfo|L+W$GOVDf)gf~T%X?}C-VwYf7b`6f#cL>egFe275mwEGA#)IW zKr$rMO>4pD86ub;YtH$=F$fTd7BZX|vv0yU70B2z@gL)0BECE#`=>^@@FH5K2GVDG znUq^zkXlOS=0=Z-WQH@*zQYSn$0!furlYaK`10I>K=W4EG5n^Gk4N!Q9MkgfSDDS3 zfSsu?Ztwf#yo>_=hVoa$-&p=GAxfBtKDY1FOkT>qnJ6y4*!mHC1AMntGnCu(ezXVNpoPQ2!h-C) zdz#G3$vXZf7%WIl^90I4u|oK^XNQ#jhDAz1^G;KO!050qs+MFR`9_Dx#|-r5Tzlz$ z)Zpi+w(`vDf});~$YQ>(*k$*(K^&M~M`JA-4-?5`zs7}LUKFfA)9-=OxkT)D$LdZ` z*1y8ofcVX28EycZ;(dWlt7OfB3Q$^YKpwC|d%F~svsG64%eUkB<_ate`RFT~&vpS0 zG+jY5z8C{=F|&5oRH2KrszD1*#5)^KBJ|e0`3*xC%uY)m|Gj)o?~{w$J`G5 zhD>~dHJh1!#rM033__WoD4Q)s%?V5=Zg7z2TJyVzzHJ)$ZkHDqt+-RRKVr(TR*%_I zkFIYQX_^=h+Ja_)pFDwNqNP2lV-XuHjn|qWszC&jj^t^4MTe+d$f zI1|0Uh6dFu0FY_$3vaqd^gT9!m9{@2&?L*Pz|aS~o(IE?J`8KTq}e3FGCRC?z-$3b zT7Sq(vS3ayf1M@RQ7|W%OI;>((1HlPxHZRHHv zA5?VLNaAi1QKj26K_7Khxe-o+w}?1uL;Q~V(0-9ZfPSELqp^s!U$)6|ORc_;)A;!~LWdznX2 zuGj_o&{tQt+U-?PyQd_%%d_25*Oo5sD0)JPU2_HNMZmVRR+=;gZ? z?$MZGs0a}@!a1|b(c?#>=bE~bFVZS-siO!UIPZS$${FW$dfab zgl9sDvhsNG7yXr|mpYjlzW;g;rTJ1UWR85rc3tAYYDIYp{7&zD($t~;W-fl|40~N44*w9+B4vqioP!vz$4*)Z0a+JJT#&IP(E%_8_(#AU36MP>IWjV@SBv-}L zWeYy$Y&jAhxsPaT5PCf!b!_R*SiiQ1cuC3inX&8IcFBi=x@yq1E@%dMy@};Srl&6D zK$MM&{eq2h8#Fu5SO4`fYD3^emlXOdlh9HX;qe4+c)~9LN7G^>BB4~@$h1^eq}a|H zyM2BDI{?#0;fMZd*WK|-n3BTdeH?LeBt-PLA+ahbkv02JgXpz+XlRp%!bL^lqv2m# zbyyZn9n5lSw_CFto<+u_WoMXil(oUTWV-hprTb9rbdZX7q-j1-ip)};gEubQB!_!UWt+6YIS&-=C2CR7 zd~lgJKwH`$L_3WV&mf`y zz(uaL>y=vwlm8WErOtBvn)i=P%sGgEhbrcOKhL(^^s8)vWpT9Z*Q##Br5KLc}E5j=}409BOWBKr|V!L zk*q6;A4Ei>T3S8SGAF>l^(}MK!5tNc#+x&CyIb8rQwMbCEbE#yClF|QO~_MGzMjqE zPx!Jvmn#eS-&*lC6|hV^#S&&AksW`-vaiWluNm5HhO7My)@P+XXpXtnz%VJ)D=^BPn)~ z(Qc)q%X+#bwmG~#nqW6kCb#d)hWuG)`U2fm(=Vv>m zTqos!i`)P+e9igXSs|q1`am<8eq$+x^HD=A6E6sNczsZdeA1{8=FU;K!aJx?pgOl? zPJV23SnPmy2-B&*S^Q9dJc0DU)w5JktT+hY!Uon9M|oz75KzB{_*R&awSEn4&R6A3x5%g4`=OS0vpKr z5&=MX&41{V<%uL;v>%uv$e`47|CoapF73M_XJBT#$Q;n-GKE64TVCn@Ju;4o;M+T*LKt`L~ zK{eNBt@aTw85BQO${Q7yU_X`^7YGJEe2sDBRCbLSsPGh`fn&R5gElflh79BlUnb1feI0kQe&)`=gF;} zq<7u(nI$#ktb)r#dTPd>gTwFE8bqKD*`A7awo&=|4)XG zJpfbrCsXW>AkZY@T*ICu8jry(+kS@s5D zArM@Y<4_Wsebq~}Ebk{vY~|D4Mxw`w;H2@MafF8;=SwlVnmS8gzbCJ$lf%MJzcE`r zebtVgY^H`h;f|gc4BEzrltJTAcSTvsSJ2GxGPf~@5e8f1S$)3=d zsmXSGbK2GV3wNot1jJbKCoRj3{b;9qXW zD7%La!OkUKo(p9qQG@($FV95hr&68sO6yITt24_n1par-YhS zphx621Q8UWy?Sr&6OjIsG2h(CX@5aJC*i%ms!lUsP^3q;oDsHnTeT-0^n|F*7uqol zG(D!NaxMTt>J~rwPE8gTLvn$e9KA(fzq(wTjNK$Ped4~%n^Z9%R;Q%6&nAf~0b2co zyqzNoyTxZ~Lf>iHHG-f`De7~8;inPu&AP~fgy=1Y*@LM;4Y!H9AS-zuDA2U|Ok&;c z_UPW_Nybx7?mK0!lCUgxT4$q{jTYJQESzI2kLKI=eD__HgC5%aNcag`fw&akpX%Q+o4kZWr7n)`M^s#-!fqkcb(Vl8JzYEY;1g4d)p}PQ*;{gIg&DV z)Q^-ZP7_LjbKG^Tu0hI{DmVI% zbXsP_yef;CXqCLZR%<7VrTupM7A*{)09=-Dc_U!H*y-Vf;KDw@sr$mm`+0q6e@|Y8 zQ}65WNmm~%{o6vfT^h@{se@-?#e+7f;W9gh5J-yZ}{#7p|FPz(2PW_zO;z~Ns zs$raxIWnzbjrhD~fhkANSEHSu6xg^@5Sv)y7UAsbZT-Y(8>cHd+BdgB~;2n1oRNs1&)N*H!T)OWrcGMgKz9^C${}p<6 z=eq^uY>1-iaf@J>Q&}a{(0{E|KhQhe^|2?E+tN}r~@+L zg&{MrcW)Pnf%^bW!a?F~ACZBBo+2$Yq1v-+m257ov~Y%*rn|O+)GM_HZGBoT%*e^| zkZ<1N0p^h6f~XELc9ppUa=*Nr&3u)SybbqO`xtwRqs|0e!Dp8y7(=W8>_58Lf7~u; zP!}UCqAD6D;S_Q+m>Z(H?XDC;L$Onw`AMJaRk^JV=OoCpGn6 z!8WA-6M zKdu^zvY|zIjVwlf5%ODpDn42v^UA}$I5iIkc?y zDKBLbdBw;&VzOE~HUr-ed3e zz$%Pg9btCmnLMxQOFUo-y_CuRqIaa1bV_>TIx6BrdZSdy`tL)eJpU#c`CjXP&z9AP zM<~GVU@YGs+t8-;zU)-tGFM`7_%@gM;05V7J9&4aTAjm+QWuf`z}4wu9kCcj5LYGk zf%kQ{u9g?s4AJLR@o?zUU)6DDtnm(^c6^Jq&7Vpg zp!3%7N*^!Ta4zv_f9?5R;%oAK(T`qQ)Y>S%y=;PnaYHjSyd5aDPC}@t5>@uq$zSv6 z^E!F(#z*uakcrFs?GP=pw6dQWr_+3%M=J-t6r_gzmPFt8l8|9U^+6}=FLBGsJx%Ei z0-?Q2MAhs83fMj?1)TvwNtaiBgAG~u9P9~2_CAzD{#4X{c;BsXlOG))G(TKyt2#Lx zjLCA6XNG&gxeMk%_x*n?nA9iyia8EKELX_AP)9?Be7XI{Dz;n^)y*G@P7tOu&W0n* zkDe4VW|0L$Im^oz{QuO^dqBMYs6Iny-sF$JmvUv#_2d#UHJ5g^}2rx)R#N!*q&Cs_9X4qCv z&n=mj6YYx~zB2VuVwC`3@8G@JuQ-}|IDAddn>Mp&)8QP^pT9$U@mIx%cz9Xe{EY8< z_>fJY`rDo*{lG9ESn-@DeMHY6^RxYew2(Q<_SK%9t2K$R+oi-Dj96~3y6M%O^y)F* zC7KXUA@5WwYXj%J?Bzw)Fv5;pN%i`$Su^Bwk&>Rv=hLdQEP&A|Tv44{GKJd~HRo+o z8Z!8cGbg_ipPAGhi3b!>LlFVPtG|Jo=Qe%=HNE%)1{YlqrF4d6Za=idoqd7ZHm<{V zRX)~BL51luw;V5NlCx5(=pp8pT}@cj+Y4RfWmQ716XhvASmSdwOTWJUL^X>NkSvdV zm3j_*W5$wS_mBCgv~E>QBw z^pK0WW#*+g@uz&)jm3!`v1j$x^}*GLymw!(7Oh4!fY1c!Y=;>TDq%wgyl(!dzny=W zvr_!yJIlBzt#4;pepWQ8#sAVz_OPlo>4hH#O*Bh(vtAQ9O*r{w!k*|>wA>r6u$RL2 z)E%yWc}YV_k}d2;FM$ge^Nfy}1T%6y{|?9Rk1Z4Vzhbu`EF-L@Ia3vz(U~Fh-zgTc zh;e*K@#Z2{9tE+g1<4CZ!)wk|Z>bny9wj83wl`|=~F zO4pB8?gRRUSygx+?_H_&2|?3gY}ba;?O6|}iJM?fQ?E>f@o$j3@H1I|L(yW8hHBt?abor8e8F&Of62GnNA)JMBxeu5RiULP zZ~s!Ja|jKbVxymOu^w!E!Fe<#F2%iK7qb-?m}g|B7j9k z3$7n?Yr|E8G;z6+)XjdXJx6Wej(daVK|lEyWVRl!Ie|?NWYMi?sGgf+3)7qAJQ!kZ zdXxB+VqBRb=u~Ix8z^LxO*Slt<6@d8p+)K_9%x<*eFy;fl;8v)-W_-g5}9SnJkOu~ zf=Ff!vA;ckcFcBv*B01ry63^Hv+o{K1x=pO+2B}snGgT_w8P9msx2HWv$`bKO*p10 z@HR^jawJyUHz6uxT_}5^zi@zG`sp8=cNFe%TD`xNfqgh5~H3E>5US&9w&Ts zZB~dsMXHO~=DDdxznjG{l=vf(6=kOs&8SNOT5mRI=cjw-DbinRneQs_JpW)jaT?sz z=wcZhoiso2lIEdz@u+yH7^1&?(8C$ySg1gX(uA$8+^N1QAL7U5lxvpjS|?YgjtOky z<`x<9|9GmZLGc|~rC-GUF7VtX{qG5W*IQcG^^qIS;8=Ebu98JTnABg#y5qu*j%DKI zb1ct1QNC@mFR>vk<$W#|L~5R+uvJLBkl03lX(Bu?JaC-Q|%1jJQT$1BtaRu7> zas?VuIr=9q%<+QnA_8hO-wesmRXzI>!-+>N(R`;8Dl;}_T@8Wye-#6Ge}?v9zW-MhXECqF958sCU7cX3L{|00G`7W(vtS9wTpP)XiqG`~B?n}pv_$JT4P zU%2I>ob?nZ0^80xUh0(AX3?T@P*y+saABd5OAqn4wcky|uR7mqxACcImH|njE><mQ22iu+?Y^(5y%OsN!m!=PQp-J7#4c>1v{oEvgJCm8RdB4=k}nd}#7;Iq+ou%hGW zPbKHyS?o(=-3#8wGe_s^6}I>@nR7YcAw1&B)!S_pqf!r|$W)nR$6IJpZz(e#qDPxt zC3Ag=9vq4lh+d&h%=Q^eRgSnHwjeA?7*O+M3rTEv_?Z4~Un5gR8MO5=?I)`HACN!( zXg8#ZaigX_u_}WE!kWgH;vU0<$*CoRd3^hj#;-PzXTd+ z*E&!g$tJeVecB;HIF?j&$NHR=59eoefo*`>ljsS&im3kO*|y&3QIY`TY4rNqFMJ6N zrS1-yqpu|oQ@VL2Xs$I!eQjlbs=Gj^7B_um?}%^B%HGx5n85_Io-bEyk+B%_S^Q9+ z1%2Y5aRe@8|MN95^UPq2BEsVq4Vr1H!K(l>c%lZVv!@R=Se!#|;GI)|=( z^icZy+lK@;H7sG+g5g((ahHn(`o>$YxV`5nov_&A-6dG$RbX?cx=@tB(^AI>IVp1+=H(ixG?-&^abc=R zGo2GG-9yf};LeKN@$|!t;77^#7FKZ1BXKS{uG#{31@T5+HCVY~ zEp^T{ceyPbM^LO=L7KNl+fCLR$~>%%D>}-f65$f6Hwbwb+0*@xD<;bTg&=nDBuoejft7^bA~5bThYF;RA@<2;!iG zjaiDbyTyM@%*pF5Jq*znc|TLb&BuocO!75t_x4~ONf)YvW5%&63P@NQ9{hCFos0G z)LA?G$+)LZ3s?IkAM#4(Q?iGtq_!|ucIy2Z{*Fon%9**c!9IW9OGD^Xr2lNEMNYKh zo@6ZNb~&0Wb%<=N0E{Mch$fiV5xc9=RZtr8ycqW zjfk--C=kjA5)hkoU82`)STK`7)6Hd8ltWRSW+}+yT$qxf#^mS=ST#h-;amDS$zf*y z3O{|V&L-^4D5P2QYKc;BQiauKY+lG^?>zl=I&xgAzJ(`48!YJ?D1gO;SN?^JIZQ zMNu1Seq){u#5S7r^mFpn%Bi;4{SW1zDuF?{cD!#!T}iYCk6o#fB_s4TT2Ksx8f-6xO}3O8F?BdQXZx~z&w>RDhqKYOD;P)JCp*)-T64;|RU)5Tt@7$ij*1?Mpi{al29J{^ zM^*xvN!8V^-*F92Gjz$Uhb{U+0T-T=-n4{iA(L_(RjbT0GJG9_YiG*WU`kd#vsTFj z!FD$(RG!?*f6gF;wv1(-vbInpBfexPnjvTYP^YXAJUF+BLzS~?D!&XQ5r?_TwXnvV zs37Qmq;%`TK-(n9b!SBvxg?vcT0<*|QBeAMwA|Sq*fe~zGV0Q|qhp92v-Ng6=F#J! zAZ{w3+0|N5UHVEiufB9h^enaorP~l07z-2z9kH$9TMz4t(){sWXWWCOaDe&*G1|&f zp9t^aYzMI4(E>PfN3oM=62S5k({i|dGb3NRTPDC`%p<#?ZqaEFSG=olbkI5XfJN*7 zy*Zl>rTQrFR9LT061syfXk97DQYLvPM2Tf;qqtSkj)-+m-}n+XZsO*0 zrlU?6BGdJe8EYd{vQVP>72K&&+Em~w5y@S^bM`kpR9JqNub4` z$@oge0TJ|MUtXKuD59ikD1=waEwXHT{^}vsZhKzAw7}ekI^(87; zJ$q$A-WO=Pjl#~d4Qhd{HE*2m5(Jil`>5$3-aEVRXGxM%ve%--be6U0f*uXkx~Z3v zYLljF0PFE_M%4yAPNOyDN!Q=ea zm=kL4A;lfDuY^+NKuP(2pVP^t<+|Ff^(D72fuN!Rc2?zfUv)tA+Yn45_xoFi^pUT2 z*S#$F=qLwm;RCriZNYGLvSzs+^H2!W^zT?n5Qvb6jt{>CmU>+gb<+R2Vf8}PS@@1JCDqBoRB6jghIPF%DCK`< z61~bd_WCU4Wy#1#F&E2aXCN1%h+_FTZc~@rZ`qKD2&-EMy$&&JJR5;I+X^JwOf_Ow zUgYSyFMt-oL~9vG)A|W>2brVtO8Vck`{aB9E1( zn^}#hs0aMGeQ>Mlkv%Nai}-;8MzqFx8?m(mrxJ7NC*6Pug#E_vOOBQ)95Rihr5EO! zy4g%5JteDOzoOw<^TpL)i>F|h`Gg0FePOoziz;?8IbiYVC8p~&cTbQRtxTZlK^|l_ zi$4S*0-#EXJ~rYScka6GUE@>Bh&B@OzWi$Td-){kxl**}tYYZXS@@-sa2TKke7@?MrF zi0I~EbEJ?1)zF%3Vx|EY=jxEH2HNwU>zERe^3-|pWd(&X^mqAyL4ZC?1J7e3wh#|i zh}pnAmekVEWTw6oegI^KrSy(|<0ChS4rk%dl%7K7r8DTx|AOw-SL>bfyxu;&kzuoX zzY6?_0M6SWw#$5%ZaQ6Xa3KtFvkKLkFlj;HX21NWu-C8o#X9Y3 z_qOHq3>KrN^P#9`iIZiswLFJu^ls41W1X^Bx`fOK)QRwAyV%^_F8uiy?*A_D*dfmR7#Rpy7c}{5ZGguKuhf*m zHzE;Bp8h-#+8+gsm{Z?6m5JSxt8x?r4F>woP5xwoTVTAT&E0N@u*M!>z=;&tu6GWS z4?V}-QiBKx@dLAZx($46R`TgRF(saD{Be#Py;)sRQ0x3R5!=vG@qD0p72|K%`NJyA zNi>G*$cV5g<->c0gl+V~4ixgBXncF}H)L;E_IyU$l1WczY?;qbU}}db=Vg_xDv0ES zP^iBF(_(rvQ~w|_Fi_WLS3Dc!o1Dh1F~9LY|H_%Z!KqlEUGZchGlgku0|Ue|f7Sm- z+xq}URb7eynam^^!oUm?B|?<&$4VR2NKg|dXc96>L=q-OCZrgsE#h>ne}EbOSQ3Jh zXkMOU-L7`KU1@D=cimmOYAZ@xwFyuXkV5=Z#J{D5>WdR=kO)C2^ZT6pW+nl(yWjo( zzDnl3cmJMy@44rmd+xdCPzjkIl8OjWxD$HnR}WE}H{jgXBDH$D^!@l=cSPp7yaC4& zFz^}UdFZ3pc&JrG8KM7JG_lm5|DtHU> zdD_@Hh2EAS_zKYo09(H$(}M4MK_n%mkl-cX6qFb0a~+F6F|P{`gBqJYQ3Z90q zO9|OnfOq&JYi$_93$WZ6hna~C0J2E+`5K>46MSMW6SP)}5ke^D`r}VYOJvrtKdz6VF9{Ie+1=1ML7Eok9tx+fv8s(R5KNfM2 zGi||?G7*9NrFu`nEBdYzz?nsG-p7dZpT3RZUh9Zdy1*Gy{+Ms%&RhI0nE=Lj`IKp; zcG?pEhZR!AY*JwU!)w?l(^@m9i=<}d7y73q$0}V`m5VszVW^@DM%HvqqNWm6(+ob< z*_D`jp`vV6^JAbE$5DLWOvQTjqv4(Ty63T9S~QCay#f>$Yc3r-%p<7UKP35G;ZC4M z^}3ZQbAw)JJ>x#JI>-Me2xXERkJ_1SVsod^2&Fx=)r8i`-1~@C-~!z$>xEuo%iCq` zMh83Hl(&DIBYCH6!bvwqQq&s()h&+jj;uOk@S+h>b;d$7N<5^3r}42}Fp_R&DIpJ2 z8it7NgSurNdC|_S@ap@G-?BGit(P4bN+m8vLf>y1iO-IpCXU7UHHDbFL;Mf9%Tm*2 zdXff}zLx9{4%nIa2-c0iAV1fert6`cNadIWu^3OF8a}R$Q%Ec%sX70N6Q_g({ve}6 zaAc}rxsW||STKsic>mi)f-!T*pvnnupli_RIOsLLlnnFBw<_U=cnQHp%$;17EXH=v z%!+E4h^j?EOJ%<$sTq!n!4Rvs$^QwD9imI@#`z^mK+CFPzf_XuBHcKyvVJPyiT{9T>|r{%7;Yrq!MS{<HSp|c<(8mYsX5+^tSn^m zt}iwX7R5_79v@;LU~;Z56~dJh&!8?p)CZ>cXVXdgwUHkdGebHm3Q^o{-}Ef+3?fpY zL(Bn?k-G1a0RM(LPr@tzSRKI%v(rEcizz{T;Qnv}*~qgcna8d2JgoBEk<4=mHzWfW z_#b1I5uYaH9L{J>GFRdpT}dKoTO8C${)1)?pk2CwddibI%zAQFJ!xmxljGkOuP12M zGd7v)3+kEdAB@*?apXl|5ZO7r!HAgMun>^z{l!#OXZ)a8##XwaC@|Td74L=@Pn&su zmdrCr<+)kqS&__hZuN3BQd=1QG=EKwe=M;24GN62Aa`)yK>cc0yh$#Z1hW0#CtCA5 zboCu~QCw?WVb+=ymjHa)m>qB~VE)ude)7xIbyhz(CwR&|9FWgm? zfk)29JyHxf-ls-J780XIl{zzyJK_GbsD&vK{vvAe4_M(~bt!^EupJPN#!Gi>lTM0M zbvn!8WSH?#jXLAgPlSVc5-v>{-xyY?NSx=}dXvOM<_&w>60{GtQ542!XrEk-1(nR6 zAF27NOdzxFJvp4HMKww7o#LKN{*&sHGNMiWuTktsqA1OjEANhat&LL~49M!9Y~Blb z$4olEsAZWl;`(~y>1DF`!00<$qeD2uCAW_@c9ZT*wNtFI>977b&!`ylbGD+x`dHkyrPMkrxo^wjrhaH z49eGs>b0hJF_+p`l zBA%Ama|&DN?+4&G)e3_#zu;^2#&=iJ0n4BndW0+WbT?s|AmE2n1Z~Lab$SC5;JkQ4&#d z*sx+xas*gIL}`LSv>R#JG8=`^A~<#tA>xv24kaX4iDfX(57nZWU~*cL*LPt&Z-`qz zcH;$#YCw}O%G?;5OG7rUK|Axb@l(1!`kv5c0KXK;LI{cF>F}+mQ?&Hx1Zo}!B&VVO zzc>Ymcxm0~u%t`I02%piNN{6_5r@%6cAtyThs?pcmGjy8R_C*2sa=1vkM3a|;N7C$ zozI$K1f*-#nEsfb5f3j*OT5?;FNiea6rQ4&+?_^#O6sz_xa#Mhx#Qt^TN8~Vzs_jDN( zEtNB-y`)#p&u3rZt_`79G)=XIpzP$QC-iX&2~wTC18KS)ZnNlhCT1Sj)?HY?#Y) z2TF7D9MBJFp+j9COjf1O*SAmm^hEEpGt+uTpM)3E*0X6Cnzm=!J}MGNoz=#)o>B4~ z(rU0oH8^e0CM?y*tn{f~ePr4}iREojtC^`+4MpiFk7X z)b!Cq+9El**z~?tntzW?KhV{e)%Dl0U4M3rep!F1>rdxx`g5!^W~Gf@w3@o2_S?JD z=&b7oIHR#|I?O3|ini3H)i|_@tjNX%w{K6=Dzb0y;y35^9sI%_Y8BJ9iWyqPOsyhc ztC+1}lOyB^?{fW&{}O9=EeALv1yD#>aNI;g@$2{1fNODHWtDpee*T=5jJKURc(G0| z4Co81I&9;uFU@N&FDi7uyXqtIbJWf8M`e|@H}9af$ORU=LK6cn6NxK@Y!b-*`L$J1 ztHhsjt(vGG3%@tuyRqK5G#PI_5I*cwN*K-#+Xe0A*A$9c#h|vV3V`F}1sm(b6I^%= zlc#fOjRv+$>%(VU&U+_7oH2gjwdv~|G8~<*@EtBh9S8L;b0qpETINmHx64rUbbXLz zqM^Raa>EQclCpLka*WoYm=2H3Nx!#sgoaF9h?ve3Ry>!NjTkK>kojLx~6Sq*r zc*62eOp&135){waLwKWc;uaU}8qgORdfAKpgGljXm)qfDa&cgkMjI=RP%2E6e|Nd|FwL0j$1@c{y#nbIU%;o!!+pQLldO z_FZYy_Hd)q+NI5#4r;8vhvlUirJLheQiz2Pssop0pP0p8(1SjMrL9CZ&aT_SJf7?LN)W~X_gEuqBc(;p^G*(4Se&?TdxmgZE8AwXYkfUq0()z zSS?gqgg(iah!gde5pbP>X(#rC=X44i3#aFVqRai^p^R0zfsD^2-%oPAk@cTu_ZJ*5 z3LOdB^b^sU;UU|qOT}^OImQ1-(uW2~&*a_o9&|IMf?d}+sn$!XrU8MYn>M+E6T@dL z=ni{^E`iNUVOM8KS)0D;eVX%;{C>psp+hObOX*NW97--3aK@Z-?@muk31-aorrT3O z<76p)j|``xqg2M<5)f`OQiAqP`=qJSbfV#yo%Nk7oZ~%jpOAGIm#GE2ot9p`2Z4O` z+j>{QE8#=wqLkqv_50L*_>Zx7uiN$>X{Ys|IFl}m0W8oC?W%|Ge^F+~iI_I`Azn90 z8k=_hqrCgKu&Z%;cKr1Fd>AY5on>Cn4$koTC8=>eNdt3y#u3FLiaca&iPx_ZUrv-9 zDkkV}QcxBUjay^GuReqcx5e^}h0A8izEq(h#^sbcd!4tSv*W^+Q_cQ|jK@=)4|iI- zkSkK6$xcq8gF$cNLt{_$PO*T=JW6d*I|vO{m)a7wMm!voh=PyQxrSbaC66P#Fr-H9 zVL9I8&@E8nf1b7m?ug!w78~O%8QvS6U|_jwh+Q%?8ycR-2%(d$u8Ds*2BuVUU!f|X zv=sPag{sEUL8(i4U(qu)-W^L)J`~S8A#j6P*&236R-*$c4H#r>yxFr{g9;NnCRmaCY)QD#ht%PS<@FQ1r7UW34$ z&zDr}I!nq1Ti{Dk1P8F~1pm7P(}d)!ap+aWu;Y58^TfgE1SAluqe2SyeawI_g8jqe ziCxJxs=OL08o1?hmI|0VT$lN31kb7K%8_+_ePmtc5jDLPuo-_HC!5nA)T_`3fuRUb zNztn4&ysVmb1HoaI5+MVfC>T&#L%JFWa%YYdWse|qL4iOR_Ccw-nuMN1i3rQm@PGp zC{-vY0u$2s^b$KPLuecZ1~MocI;+ZyE<_Huo)EUe4MiENCj^@P`EC$xIsKPzJcxjU z{)^_Y=dv^6;Hik<0x8C{bU`4*NJ`u;T%X$ciXd(nKBT|;$j z4y6HrxlXigU-y3xEHxV_2$F96d~F;-6yPSj_4+!|*$^d@tK?_8{Cr8dCpEL)sks`~n|e0>EkYU=AJ@|EKkk*^8BT?&AsYvQm+nYP+BB}|GmJXfS8#8qH%|bs;D@Z5E;LF9GCe@ zbx*1J1$jIRzqn0U5@Nv;EaP9eGj|wGjbAC!C3Ig18#kG+G;0@HrE34LP`nGxQWd<8 zB9AM0zKDc_T-jIZGsgISQ^p{LYZ)@65hXa<@p7N_cpOSI z{7t=AQ*rJS&Uw$1C0~%C;rB)=mB2XTlBd#x^zO!aFg; zksX?f8})$_t*u2dzgbJQw#U?4cEGN+J*r-(FViBeylI=)$#2`^^1F4f{JyZ0Uu8co zV&h1|IGid}!YB#edD+)wnwJT&NefR)iM}0adyTYQhrO3s7szi2xR!OdJwebzQ*KR( ztn_xb3IClt_12V;Wk;`1)>`tD(SwIVSAG4l8=qpHK!d&l-z1m&5qOUGW^Qk9 zdxM_EyG!<}RBTI$l(Ea@n>A8T)ul(DT_ z_${s1RBpq^G~nv-w-%PognrbZ+)fV>3LJhf}8g2w%V zw0G4cT|w!5c6Z0i$6uj&3cQY#sa=5GI#-6JGN!@;DN7(<_hKc3ZvX6Xof{_8Pk%wC z1(oWLNLT1Db+nF=oKv^k%g1afb?;yGS94fOH8nc!h>VN#zD=ZwrklADloN(7OB!cW zv8}CqB!WIJmlanQtz|9GTqFn`n1?*-818)K19UR8PVt}@DhCpY02cu)Hd1bEYs-id zze0(6L`V@Rq!MtPF%P|vcu856&;Wf$atD9)FO#%TnEVp-Jf>XC;+(9?x(nUaI{n=a2DP`{Gr68yRuNm~uVk6aJ6N!* z;N8*4j|$#pvAV&1)H$z<^DPe=t-(C34%FXhh?q?@?W-q~-}!8MLC>_8PrNeiO?}bn z${Kgm;HtN%^TeyH5YA^`y1uJ#@`*R5b>$5}t(Ps)@`W!IrYs>xHwA-s{iVD;`VJC< z|FaO4P38us{t}4^nzaW|GP`E&IMcIaB(nkAA^ZUn&T20QI^_XYSB}LOq8Z} z@L}yJ%V;mPb(E#Im!@HLK*gkYl-b%#Gdjvfx0l*G$}-zaN9kpD6_wdhM%K|CWzP0e z${gEXIz}&ZsHm|WWsdezXGhui_EJ|z*?H}yyA@;`6-)oOILP# z&1t@%vGD+!;%cw?+i(iiBQ-#GsKD5-z^*e7Gn@FBEb=gc^u1W zcLjE>w}2)^Md*r6!s2h@0^}+LE!mZby|Hb|21akpt*_HHNy@SOBBjeR-G3{H=uatz zDeWNww$Nq#)9uM!f!e8)-OOgRdXb}Y2gZ?&u{F;xDgsrjm?%`&Y4f^+uQ57ca+Oma2Vb`50!BlmU-6p8*Bn)sXY!Lw`{W`^RPQ? za-hGY6meUxm>uzwX%E=B4Z=h;m5YEY7D%h}%d`@s9+NLL-NI&-^j$*~ofa2{bLbN9 ztt*3<8z0uvTd5q!V2fh)WN{8ke$=^0qzoV<0Qv5Drfk4cA=*K4=|s*jdjzMPs)X$z zop8RvEb}s-bg5`dujm^iFs0T7&KKVr_iEK+IPq|(TJ z2A!mGAg}>Ng5Nw7^Z6f*{uH4Hmpi;hokesD`@R0zw3{n4enFx9fGwKqFB-1w3jbkB zQzguz1b6^^UL^_d3qMa1UYWvd&3n-Vz}Uld#2c~j`{2eCWDj?z8K*FKYVD5ey@*t* zG{y*yg*>&`T$a$3DtFhaPy9b7wE{X|Dj>Y5pi=5OYC|Mwp#%>8cs(ZaL47lgf2Iaj z?C529bmG+)S(j#PWet%H-~~zaj$LWEGH6J5T7z{+e4{52MEEQeA}Bt$9(I-;V-Ch- z-WMfF5#9EC4L2WjfE+EapmRl>tHOWw9?KE6;1f&*E1nJWV9DS@f;lfzn5_DvC?zzW z+aiO%5=H7ukZcM%M@Jb~V0svJ*+C?9sIAQ~H5%1aKam)PEw{-*Yxb^`3N;peM;I&I z_niJ!NvSGjO|Jh>iB9x?H<4>iBG(1c9#QQ{UWHzaZ%QRs3yqaq!eP!Kt$hztrWm@; zF=r>(vFUshS&TQ1pNZumpv~3_XpV``xIEWeRJ#gOLg_6{Llc5N4r8Pabsw$Esu#J(wTrgwsyL4xnLNBF9+qM@b-bRF&e{BT)VWh z=*nQVaSiyGoa@)B9-3;pHc~Ljy&1Xk(<`l%QfBp`e5(+z&iD&j+e#|>W%8v2Kd3Vn zeL|nkl?JZ4#y>p?Zo8Dy=Om+lQZi85AVr4~MHlo5<6CFAD5On#y&*LFOpAz_cyHMz zFS%>J?7u8o!dvkY3KAt`_OZW zud`UVybT-T8EQu=7%iwX9+C*OQT|aqSv%^DI;G;|ik=T7yA%mbiSFsPrU3x%zJ^8L zOjFU6&K2Svu@$(x*IXnj>D}%f5K1vbYYyKFiX)j{u7BZ1M8!6eb)VG1ZA`DclJtS}sS)BLX zFa2V4#H(B{PD2JF3)2D3WinUTt*@IO&|Ul2X>kq zGUir!IVdafiZ6`*$UF-KK>Ub(d|b96qItAUUvvZkef408wqQbfNA*zq=qL&zA`2T( zqt#zWz1z+7$>pZz-;&D>%|cHXUW)T$#Y-`NVW-9$d#@j!Y5~h)=e(hoCf5X5?hr;= z*Es5opU@at5-c_P4b$sIFc@#dYUq&S;8l zs`?5NMJiOQFr75GLIuv}xD#V!Uc!KYXrt?mqgR^nzM()8QL_T+*nv2_!OntCAV6l7 zl2GkNWkK&{&CK2j*;Y|B+4{c0u{o8L_&6oZM1iD-!@ zY?YN>Lbw9C-5e-q>tVt$bv2kYE5gw&imI>8f@gk=W$9;OcSP$ixXnsstOV@wdLXX!P|8k77 z8npZ5l9jGYSol}+o)S9G^vwH_+Z;~ODiu=GB1@dMX#u~-m5bOCXRECJ`aiak*(^f8 zSG058o8&iCE1EI)Nv@)MC0D3~$$z0Y_N)LD`-N0y_+C^pNhr^>J>?G4@Y z9I~hf$Hw7@syP;$hN4C|=e`*O0;XDCEw)kQD)xxMt)!rqrWewKPNsRKgRhj5KH2{0 z9u%4l-LsPg&*a<<4t3v3%(p1un&t=zz91R=T0Gb|88zo?>vk1FqW9w=ZDMFAFhjii zK8_<_Wh1aRFjMnvk)Wq=P!m9HhD$yNaX5}17rX$~(N&8tqjaQVY zz}YG^r={skinI0CstDPy^rEf(Mxx{cDwv?uL?d?+LRp;a{U$yeN&;5^XrPGg`Wkb{ zkC8?VdG3-ku|7euz%9cwUB#pm6PQ)kCq{)#JFUuM7YjZcozNInc{^U}c;+IPf8uAC*+8>_@Gi%|asCgCwD7wFYca{PXUSOG_aR_Q>T z5zWI1?>AXy0#)Y#cE?xE$>}q`U#KSMNYg|pt#UtHtr2IVTpFuD^ad>Ah(@W=4Wpol zN$_eh(j=tX%^g282;~3?_? z_R2hxGnShIPI;7@<ITOo&X@noO^0Dl!XoeMzb&qEYZ#XV@Pff zpynVA+rwp8v!!UFn^m=TB!cFd0X?vTs__LZ&VDazfY12xowdD&sSz{&cQ&ve7s5e$LsmzW-{)sp@f^2@S#aXmS&p#1ri-**)S))~J& zgPeZ_H}*{XrYqb7&ih45QD@wrh*^29ta%c1?;c`Is(P^CtpFDmUTbfBP5Hfl2qj`6 ztw$oBKS0vCxdBNJt5OvW$mV$=4GI-419@AyP|g%H%LAbY612|7(`2CyJBFZCr!F(r2RLU|F0{_>3%Ba%5g# z;WLW5P4YC|Bu`LF5Ia77AD5dG1#dOXYwZk-MRfiKB^uun9u`mG#eR{Nn4>G#+c8|q zq+}&zhRgs8e`hi}$u7QCC%ucJ_)^*D%F+I9-%oCH)gI9_`(L788*%`OgCf|hMCa(0 z#d_6r7|OEP-81TAFDu@4hRHMj=1MA)8)^!cK(ktuS0-u_q33!>Af3`ODQ$7|uRh~+ z+*rh)e8yfB`(%6%5I>su=tJ?{8uvba5>GZAPb}+67DkaWTh^rvevs^35U|H{EskcY zHAmo$n~RF?c;j4OFvs+A_FFw8U|~BM^Oh)Ld)Ce`7~lE1CaB3NJHHdtOz_Ux`JL>E zk9>URCoN0t{7h+qUf?tGk&m&NeWVjnK4@e28dqN<#~pU6E{F+tuC9aG)pfAM<*pe> zJe<#AZzI0%7rq|J)oK%t%zzDsmcC9|MmZFLnUlx=CJ2Fad5PNXnA_XPkG8=UbrVQJ$~j{Nn`A zmwd(x^4#Gwu0wJY{f*D~0jL)JrOyxnU-Un*b0XhA^%;?mc>W9bjf$2!g5v@fzXe0N zjOG2%cbXkWLnTXJ>HschTO%-lT?%k~8J=)XPALV>1^nH_-_86j=kHtm1^L^+Un_qP z@b@r(kMj38e_Qxd8?-_-=7Cgp+_9$)GNaZ0Y4vOobjs}^5iH0}I;QRb)@qRvDl5?a z$}ReUY*mG&F#dDDfXcLXwtk(|nI+P`mjOuY z;is0IZ+ndmy~zcBw95LLS>oUJB}yD5v8v?IA3;FsX!|oEN?&%csQq!?*Q9Ie8Ms_l zrXDV?c~~K0>;?8#a@?&ibs;ReOOF z9LFg)AJ<5G%gy#4@ftsjLl+#YL<|)sWQ?rZK6hTm)Rz;7=zQtob}#u*cN_{oCU2+2 zh;m83CFs#hikairB7*l}Ji6eOwoW+iA*W{#2Zf2Pcu>lkNLeOHOVX@M7n(Fn29ZKA z95YZ%_Xxtr72px8iEI=#Z)Br(y~kJ~i*Dx_Q}|`-cp@?{nW4AL1T6GSOX7k~m4cIP z`bN}G+eJ*tq_XK@|@jK&E?eiHv4 zRI#~c4AwHdMt34I7z$t#<2T7%|CNlmSzRqmlokM9HKl^(y5}kGi&Q^j#iXIby?u>M z|2Xd`%98QBh@Qtq0sOB!SZAuAA&Yh2JT|Y@&n$J*ntNHOxPQs*L}`Q92wlcxfJg+- z58UD32{RwaVL6#>h#xO-7%DL#aJ?BJO1P7aQD%h5cjM;cANhymiWWDQ%we)9=5nyi zF%zn`#&>24@FHW*4iv%#Cu5odmnO z44d=W7Nhh@&djG1L16ejCs*>#pm7A5(sJ-bv;^ECSJPx!AXYeEv|TKRW5%ZQ*e1aW zWK>oVyWzbh$#X)LN53FaW_5d98*y7@?^uwEBFD+&_ZuZoA}cBAxG6PN^p9H1?`d5h zrF9u;U-`}u0CoP!_LX*dK`x)VryUbH;q+AOQn4M3BXp46!$^eA26}Vx(3^6!wnL{_ zt30_{#Nb71JHoGfp}l#6j;J2HJo{re+H@7Ct2jh+ZT+N40kp^?rzOwkA^Ck|fZy)6 zL5ZWrqQWU;N1st&sma0gIjj``c} zVJaoVKT_ey2%T+0t;3PGNgs=}9h6edRN7|w@EKRnks>5%>s=)Er(6rDWudkQBJcih ziafBCBLAHt{lz0;{5qslH6RWl1_e~#p;BFR4vb0Y_N|vZxzSrh0X?4j4_}!2=`|4g zf^#~cdignppVI+tcS#k~I}XN2HSZewA|hjMoY-hEW0FR9-i{^<9Cdf$;gT}8Q=g9a^Rt_VlgvSB%8Ny+z`aV=Oyne= z@!)KQobvj+3;s9~Ij_@`$Z68$W?NfqBj@lg?(d*N5uK!8Z4KGE1hrRIm>;ZrhvnQ@ z*K(MJ2D2F^qrnPNudhER+Kwz$}ctwb@M_95J} z@ezBN*j1;w8J4(=VvidWGcR3Xi;+TilZw&`-YROaH81+HB-dR);+C_iXg+2dqz`a~ z1VprEmhlg36)^jgz>G&XQQ+BbcQ4{f^y$z`(J>GK%*p}K^#GJGCTHFvkduUwbbz*q z4YM3A(#wv6GjQR+w8%mEK*jtuo^qZlHa?fgy!hEVCR|+kKK!#DqEomA5svKTjp;93 zN8}L+zA^I1xA^E*rW0B~*BiaH-Ad*oE1I$HHX2@IV=%)fW5Kji>sZbZc9)__nb+0U z+3fO0Y}k2HR|Je`+lNfJehTew6Iq9pCWc84@g9k=r$^J>P_b|GtBOB(CB<)*CPmsL z0aH=pumHsgxiU5q+bXacW$eFTT_TaM5gpqq?KL7CaKyGs7lb3N5*%rh*gCOnW7a00 zGAVdyFSJOKt%vwE{+SQ#U+7T#k3xAcxt&TGexzBgzQO?S_; zH;>lGqi^TcUxFV{D=Jv>`e`W^vKO3c!o@N!Z8PB|!3W=zd6(Vy50s-;TEc#k%#`!_ zncA4F(cO_Y89FhIRl(NNtmO+bjB6mn_th#%@-nmhWZBYnzIx%j4EJghrWu~Q1u8Hs z&Pm>Ie{#;l{-3iT<$#FXXVKbvp%$_fwe_f%>2+WsZ&+mnGtC8rp_e!nF4$?ZKb?eW zn`I4<(dN;uegz-AwKsw~1j(Xg%)M2?h5kDs?VI0Fzi;x(osF3wW!vuNOGLFGy%bIx z4?^tn=@(JA_)(iAW+(ZhHc4N!)Yd#9(zcUV>AQk0TL_%vL5m~cp!6<1%Y^%UUd5(JoP83|6ty7tMg=%GUwtm1M z7b>VtDP7@asleHmLz+nBZr+VIF6XsPUgd&Py>SP~M-z%R%c|vkP>ieSTcuYcZNgb{ z145X}IO_;*sTcvx& z72$C{Ys+`5$PIsyC<{?$?G^3;bZ-?1(Y838uGMOKo0dgSv?SM*#=cf`&ggxgzS6EA z5d3R9jtv%PdGDrALBW!y@zz%&wrkzJ8$Qx4H{ygUIm1lU+0-wmI>UqIoRQXY?av^j zH$w}wHZQ*{(yT}5?Xeyqh151L=9PwXqRXJkuUc**%8g66^3~TunT(6wIZo1-lf?Mr z1wuSr;ik7!gX#QQL#e-HEs*TStW|O1C8r4&4!5q>7jPI~YsyD(CGve&q&miZRTt8^ zr!N|eMN_#@iIEFSQOLDs3O8T?G&cJw_(!|-CF9JzcVO*smA4}snaHZcOA?YkRp{u? zEA+`{J~j(oWY`R@3fm`l%!SrKlsUlANFkDG%m3XMDBMu{b4 zjv2Axtcb?GuTp}d9&aWP`KVswaM#$I#^^p9n&Oxmx6O}E3Rv`g#(3B@A*#BMTlhN=1EtZM z-CmJRLc>F{mgek~U=3CO7rPd!o>v#}8^6DY33#vp+3D19bCyd#vno};mIZpv*CI7J z#y<<;t!GOA3g$!~iqtIEEn3kM5ICJ1#*juSd&e97C~wlE+a2b?!!UFYB8~c7=7p>y?O$ZBbpac_ZHc1?~9TP2quu9vd8 zL)5%nn_RSbc`%P5o48)wZuEc}7$C=7!g7P-ZnOn(wKSQL5n-fpHxdiEf|FQQm9Fhk zX?FL&zRzu$EJhbxp&H}8X<*li>Y;5&%78*@@yayGi-Fmt< z*2I*3Mg{qo(wPZNY3%ciQ{54t8#}Ii2dBfdI{y7jzGs{E*#(^(KYb_0#mG2HLmN{d zX$(;Zq*~%P3k(vAsOPBh4J)k}3KMfF9kGTl=unO#Jo_L#WA%!h*qU59Ai3vym`)r= z$T05+&&`Ftr-VGdK(;Z75|!VUpi9tm7&pZ{wZ8AylC+?6!1;70O+1f-m$6iJog2A} z;Syk${#a7%5WK0^mwqi$u^hwOkRu<~<*#wRA8W97pLnZb(p$^IhpU!acPx>%hx`2` zH~N_$>@_l_fvxl=#?1?2Ma_$w&M#`7(c~&>&TrzR1QQn*vz3gNMykJW%b>GpN%K6ac^(s`75YhQ8qk`se%ND(D;dF#^QOoQ_Sh9+RrDg< zUp&m*sFR6;PH_X_=_#zt4&t_arx%1VR!#-Y&_ltwg7L`oKf&qDi;fTAWOuM#^m&fp zpi3t65<$hXN$loUj*DPn_Aw49WaK(PZ>;N2Xdmat%q4|$-?uY88(%Lk8pt@75=78{! zR&9ux!+qMKo!X+kVwZ7IzqV-5kozLiF()U3@M03ou+YnA^-yhX%X-$hsgcsz^uUnU z*jn@fxQ1o(A>%DM?3Zm!oNY{S0B~U_DwCFj`4nc!<6{p?p-C!@2(xxJENP*Jd=B$f zXHqv@7GBRv*#*K{T8dpuLKh8xTeq`Wj5UTb%ff$6HFHSeG84WGEW^-(PO1ZMG;+;Z zaD6>9_PW({v$*C8en}<;j3AXAH0;3iC<$mlJSvB%*I`(Q0@G!oJBd7V+2Rdj^vZI* z{-(U%`8Rr_6T%z4+^wp@D_o^Fud>`)xjC3$}A8-`Hs)XBAz0WMzWUxg^~5gewwySQfBB=R6D|S3hMu z308T1a60>uD8{KIrrhv!*BKlIBtynU?1O+xrj-b(q_W+;{X8EwHY1IY$pWnswts5S zoGfZR{DRg?)03?(B!A!U=_DyEkB>y_YvkbJ+lc+^TmK!mxJ=_y5 zO45}Jg&IXy9;PAD+Xc)jMN%H#<=J8}enBlv0_l-g?*6+yviah8kBF|z=k~~G1}okp z2N(pY>bd=9kKlo0WRJK6ui<-Ck8mSCm3FPx zh0Or1)KRp`70e9Z1I~R6%FQBHh1>NmwJ~AhVuWrDdlr{5u7owB0{g4>r8~r)fSlwj z@^Rc(r!VBv$#uk6x{B_W64z1U043&&NylXzYa|#Bl}q#i^rkFvnBuE5ZWOc^fqCdk zHct9j>&wye5xQL%Hs%B;gpDb|^OS=(N2zCRxTr$nzt%B=4TED^XW z?ZyvRa`sT^LL20-tlbR_fkxITjX>h_D($GOcV|E`QcOQ0s&}yF)$hP+ZQJgR8MsS& zmRLOnkZf-^|~jszpgh8YGpQDUs_+S;PB_Guy>=}`!`Gx(~CJ2 zmgD|7Xe*r;{Wq#m2=9%)_(okuLoV=$ zid4sr$fADzrFPFt_4+Zbx--(mI=!=KnXNhhMz)~ajBaxPk-3L5Iyy-gwaW$7Z*_QH z(iiQl(5pMc+v&5NQ7a*(;ch#HgiqQwJWnNa^rq({zF6BU%@=Iiu(=;GV9MGrb(C-J zZ?{dJ=YDg;2l|4o2A2Zdy&FfjJ2JZZ>{agVO`pK~DvN}02G4M1Rl9N-6j_nuf4ox> zACr$8>HcRCIxS-NmxU?FrrUsCAdPQMmeNw8hg;iB>{Mb}%>{ z=bP8i-}<6Qv3>Gfk7*>rHj8BK3uakxpGvxU;V$}^&s)|TdH_2h+$^9?G-g!_Rw6NJ(((js5AM6&>di8+ml*`bt#p0Eeg%laCj&rjHbj=W=9LzT92 zK|-#Wu)N8I(P8cd2{Z&0#F0i8Szkv}zM!*ZPJSqt!)QxzVn>;!cyVxa@wyv}o*r<4GP}yJ8bnfue&`jLQWgJu4spHrr9|PjWZ@(1f6z#gL;BDWJW_C6 zN96mWVG@iN9Jj&hOoTgz8c}PD1CylFS25CdLPEj7Va0af5 zr-GpuBU=A?m0Hb;tuYeth%r1<69iRiQ077_2zVq4ge3_)mY(A#sWj59tFEf%I z9&Gk1DZI{2?xw+xgLN!kdjqOFIu1fAKf)+HHDlGe$*k;2B7pQ~`~BlYs{GZS0#0BgzZa zCbSB31=AuqcRQc6Vr`dApzQoIE5kcdm0F=OtX4>oVjVGr(rfeRmf|aO*QS-adp3N+ zWn8EJGNh__)|_Bw8K(}P%n}dIvf{q1*)?_i@Da6+EWoiMTwD_`VNiT}Q-Xx~;zbO8 zei7k*MNOIo)c8(sP__aB=k(H_q49O=&I5RSZSDoKViD%>YF{6#+@ zHq{66Fi}6~J^{aX>kyKL)3K->n{FY@QJ>}tKCD@!A{Wqdgt_kRc8k4N^Tjm9>Qw9}j#R8TfNm+ixFk5b#(i|-C-NG) zP7G%5ViO3C=XE7-E8oT4dT#&Muz$=UxO&Jcz7?@;5x>p+2L)Yjbh-k>Ja$Y}o>gCG zz8X)eRIa5)M*C6wVvsg{Sy?IVs(j%2Iwhc9~wpiYB zwth>6J0j~X;adk%B8vt@Bo}c^&g(|4iE%TIvAK_zA(tEQy@6eG>wfH4Ru8xln6-X| z&`9+Y#w&n~=osC>cm1>W)( zb0g_&{f!D6&c7i;+93phCEVI=X?nuC-_rDyrD>a`sngQbV`=JT{R-cDFeQBJp%lDZ z;3B82cOU<2Y}hpR^RVF)j)%^|hVRID#j)WAyb7`w#78ouM*Xwcuv~?I1{=Pe z#D*^omr*EbKZ6aT&m)b_2l+=}L)RZaiw)n#(H5H9XJNxXC(=3FWPe~{!yQ<$H+KZT z9ElC&-zCQ~|9@e_4Ir>!L#<%L0)-6~U<2AF)MOPHz=YWf6DEQQW_a|^Be0!B@TxwG%KpmJX>qTAv@Y; zvhNTQ;BxnbGPH}eW?OW1UYGtypO=M4jtorpL)7e8EnSv$;naOL>jh%&tT&j&20%X< z9TUe;^fzR|c!{-jGWpqDUl+{49_NNnqGQ-&=M9O=nC98~N%tRFQCG|Wt!K)LdP-}a z3FQ*;g()umziZf~pWm=hvSATh6^<*Az?oF$|Ey)X!Zn18tKv-?{6A_Mr_3^JSuCXp z?5h={r`5nk%+P!et;VJKvb36P&6lIq3NcM7#z9X;O99I0pE>`kg8P-h8wfeP{Rt7#nXWXZPQ=qxf z>byT9%7MAOr6C4MVo&2**2ZM zd8^|RUt8zKG?w7#WPKESxq3KTTyfYV#aFfzPsk5tD`r-iAE-Vp^6FKM=FT8eJT7m) zwI_Had@^mLhihrOn=iJW=*YQ%;fnCJ`JqW=Y>nW( z@z>5#sR{0mo8#cl9+$T-0dAQBcT!~bTIX{YN9LJ;UM7H2fWT^;1M55Xb71|E!1@DY zK^#_PHWak=VQS0NEU_EK2yK|}a+oeBIxiv!Rtla$yPjTRt*}Ki6Vyd)1jSS3D7_L_ zQfEiZk)BiTl(WnIxBpSOx1C+CkjFh7VpiGQdqNmx!y%QH&pdc>T6+bK|oWl ze;UcLyLZTHZ|`vAx15|79M^L4x=>nM%vm*5;@+{LkHgnqOyc2;>Xmg4#OZl&FqIeM znM4>^+>pU^Wa)3V#nz3DEVSsaC!*68f15AV*W<#b%qaKE!BO!oQ#2kKzX0$*19{Uq zAWsHlHX0RSfjN8@%*Ow7m}^BYj~7bWXk17G!?`J{JJ@HKZ+#C6xMEzBjX_KCxFv|5 zvMf<6gTsat6Rsk8pyQ{}3d}+0v5|VN2xR5$5hmBARoS8wL^hX>*O&?$USnkAV*<2nSY7PDgyb4!!-m?e?AP+=1k)1HfMIdj6)oU zobyz03Y5i0O)q1kmaUiNuwB#3*skU3W%$yYjuSLI>gi=Oh4(LG)0VH7;a6|AUdA@A zP%kTH|Itxa5?)b`o#&G9J>~d%imfU){=l*oSD-=4(-Q+jwQ-y_X|;B(G>gM0tu#lg z&DKh%Yqhyr=}fJ5hE_UTtIgL+i}fz8wy?dnM5`@Fk!NLjT%`l`SX4UZ-Xtm=!iq_| zl=@B+I%?^1m7V65s^(D-%_~*Sqc)mXs+vcgG_O=OkD6&-scIhe)4WpEJfNU?rK)+Q zs(Ga)(zNw7%@JE!j!15Z-9R*hm;JI?NU8~`L4FxQV1}OBw^L@;d@LrZ>Aydirl*!z zyNd2{AR{WXbKc{8@G+8gSr`*Rdi1d`Yvaz8?hCh9bL!BSj)1D z?wO7S2!x+gL!&WdnG%}FSVfmGRMxWGqI+f{;X9MIF_S@yR!B?<17|IpQFPC2$(Fuh zMm!sXn~$`jY__#5zv!M~1kYzOLM~MznG2&BA9=?WSvumfskTmRCdv$3#I^UAS=uv^)y%g+$K=3Q zsk_JuyBawd`;m}Kv@Wj;j*`c;Aa~P61{hvn91CXXrN!3L!W~qcfsvb7Y)9XJ0#Bdu zAwPFweW7nHh|;%?CADt>D`wxz2r2tE%7J?}OjzH0{3sdX)3BN91 zNqw#0+<6Qz4luyE-L)8OyRAG0mtYCRt0~82)6_tf(L|i+TnU4KHi?F80xgYBt)g5V zpDu0etECJok_%)yrdQ#FQ4$rRT|E?OIMY#XiM4Z&?NkVQ?r>MTg16C4NXk*O!12{h za&l>lR8Okq3^r1or8Q-V=p1W>u+y-U`EbN8Qt11TD;HY4#%42zz7IBeS9ykI7Lhzt zuQI~KL^G)<9ZLetk6||XzXfe7%m$aRgR7WuziwfOR}^KHu3iq5r2^%bKOf4%FNX3& zood(TK=}?apAV(1!)Pyy@n2c$#4gL7BFq!n1(r)Xy~b6qnY&reLBxfYW{EBk0V@a0 zhh#^sY+%HKS43>r&=_VZ-B}c!B>A&d{!d;t^P^^o(w#-K%Q21;DN1#$t7;4QIdH5H zIM_L_##eg0jA0n6;xPR42pICthG7DE=W+Z0e^$Sed^#hg>Rx;U*z#*RGhI=1Q&sBP z`SP%>o!7yK^VyG&-)CNpFX&iM#Z~>T;j8k0RafP|r>@HX+4hx(5?AG4Zb#l8&KP-B zUK$rZwQ;Qr2Di>Q`dd1wq3-}y;>aAi)!NGl$6V7?^zgEv+O>}^Rvi-(CdF5Pah;-5Z4$naG%^04#qE8NMi!X7ueU~Q;iC8qj z(&-TQlOr!C2+Cc0^$`$dxFNRS%vwtHNQsp&sYckaB4T}@RSNM8)z{XQP{1T5PtA(1 z3|vCu?0EJ2<**C07WUz9TRzrw7k(H!?uprh^P)MF$o)o zDR+3>H+*||%(ttGMCtXKNPvJ%660b%#4uqa2!`;FgKn?ubARu8DrKI(kndKv8{9orLoZN+Re8#9Y9 zkNb$@u2pWFQgY0jX_*xo*HNCCT6}BJR_wtRs+F_P_$>=L<*yd`=lt+cB71n~k`R73 z6s65s5#BIAbruFipDUkl3lH6jE3Tn)%BW>N$)yw_l`@yNm&u)jtd4`M#>Uf1%ADP? zBOxmna7!IkZaJFOYi-dq-kLM2&=hrsL+J3j{} zv)|@Q{8hS@rCC-omLbSs-tW~)#*y?Da536~4`aUAH5}^NjVb1cL!zQ)l^G=_#g)zL3qET|XLIi(?dcUI-gA&p@Oa zvy>Ru{yod%a7T$wKR0ysiu@Js%KXs97?QWVBYKr+GH~(@fX7nQ_qmq`!~G*P!|1w5 z^`lafQFByuTpxw4mF3Y8mjd+mmw8aAEs%nt3!tk;n+4;h6+ZvXkNiuD7V0tnl{RA` z>QS$Z6L$IcdW}Cs-;P1K#xfU0-F{1^^vz4b@{*guPI&F@bGU;`XE53P2N0Okc&W<`UyhV>G9% z3}8`XZ!>oocUpp(WHqLdC(8GbOO=9RwC6~BcKlmD&=RDn%DVD1tnd$P6ZKqjVke>N zr=sPjOXdm_G@2i=-65xpD~g(2p^uB2vO?1!v*JC@QMAq$ zJS5@4Hzj9``T z%1}6BETFsvopGY0HTHm^i9zukF-FHkmDkz!k<7^&XxNN!m(AKm4|$D$$r7De@z|Dw zryFga4WI33`lA?|jyAhWayz~FtFOT~MrxDV$$M)3Duhm6Ae~$@1AWISG9EYNfYsW( z>~Ql;*D72|WyjXcsFlH(PP)j_{DRIEMb_YLN_D(K>baW1%i#tq{8Wz^?^uA2jJqr7 z3CxjPk6d&(CQ37+`)MqG6xy<=hidTk?IJ_<+ge#JQQ*VgT5bMx1@CX{g2;P~w=#Hw z>L|#6U_cQlt%o2Jw-rYGf2@5Ad{ou7{v;Wa0Y)Z3#Gnx(Mva0s8dSni4MGSifeDcW zL>{)tO;f6fGk{7SbTYun@g&?kY0v+=q!z zwIBP_t}(-tg5MwSXc;pBN7;^DV@5dYYBL?4`Yk|3SW(~EFN)nByyk+bqEh9PI%X%( zFa{mB#ms5@feym`6i!-u{M6K+5a zVq=|Qxe>}%J%TE#9F_Gy`z0z_r;gQOD2@fcjCdXl(Vr{c0y*#!s;z;1l`~c{9acHb zgwz^6mQ~5&i%{w+j_Hjk&!myXx}m$qLsf{!BK1Bs67F@X+|zxW0iS+w7#2h>e{ZX# zKKTAgwYvu`ik$pj6@32-^}KxB=0~K4Z!>!S1W}Zi)?$@h1)sGpb|^WZh;q*b$fjDb9EfB<2)Ii0_IQ z?Rr4IPWj=N2L^j1)c>||=GLn|fR0T{mEU#hODE?Bdt5CJ15=J-WE%sK`@MMNbVgoU zVb7EQf*6TYCoc}$NAQP%kPkuptpM2o#J@wUWwwuwVtybd^*Y+NYuxZ8poh7b`Q!A= zA2-4QLkH|m6Gy0dsFc==t59H^0;*6iAtzdwU4a?hChxE|FNT5_^34395Jp{zpQY`a zu&&}u5rT9Jw|dfN4umYS8jIGdA3TC740$QHLLi5Nk1>TgPuUZ^Ao#PT?1C=@Jxts*;0jjpG!4lohgQeKW5t$d8TyqwMv`Bo_aT>rn5The0LrI2r4x z$3&Rd!Ot=V;WkuEP;S95_v9%@xp~2ktf<}+lYh?`1l>^wgJ$EQTR4!j_voE?2yM#2B{;vFRWmU*hKcDTde6aBmhn^bs~Xo9FoSwdi(3&XLU=Drrk z{Of=3Xeo5!px>dM-idU$LSC$hmhn`-cD%#iUxo(;PvwgID%ul!VXe54->Zlga>0iiSIQ`S~$OGlAtYM6++w2=&jChxy%!>JfvPV=w~g z&Zy=V;KZm=jf~`H-5b>mLpsbh8r8_?c576VCW&mL8i2gC{k2Z>EwMWX!O_5hJx{{O zI31K$+`3Z@#3+Rq>OKyiD}CIvDy^~--5Wm0el+*{OQSuhE=30bc?{#6QUgVVf?4vQ z`UD*syB)QpRV6_t3_0!JFc!FcMooH!n1i`gD^iA2%hi5F#k+pobqQS$hOG?VI0~+( z4@}q$mf$|lxChK34BjHa!6Wd3X*R?XQve)*U|meG z{kHh}013uxpvlE$0DYtv_?)$Uf)m{lV}Mcal0)b+bC$aTn$E@8BQfJKIj0Bj*o2eu zmtYnOiNMeuEk)}JF-_#Qk2TQsD|)h}XpQ*i0Gnsbcv4kBJ_?Wp9G1 z*DSEwYgM2CmOmwH)Dz!P7{-=VR0Au06ieNsaqj6DQdvuZQ3*@@-)jOrH~pJUco0Ui zU)h8|j?hhb=kl*_!XLc}O-L6pWd-C~`yiss-_~#d>M%wCySm#NHE6|@(?)fNcRvWM z>Jo~|vI^?Hs9V5mZ;>GEsr%w0&xV6lNz*-JUq#x{-hE3BQ`R)&7IzD=s|1;m|jR3zMb;LbpjEP3ln2TTyKRhtAmMOZ-jhDLc-_5Fcq}Udn0l7(T7ye>v#iryBtXnb)EJC zvInXnM9^{J5slXVMFTcE@9wq%8$aySfD6BI18R}7a|0-vLc8q-WXBpX;9oZY`(-!q zKawy2Uj_fk4?4mBE09*v0hp9H0K@eF*u9?=1%7C>_y3NJ0RBA4yGihld;uGPbblV+ zx^(}%GrB(~5&dDp&`ii?!UYXl)rW!aCex3Q+Dj0Nj&kK!A5H=)!htpJ?;Gc&M=pv1 z-n}+qNq?J?ujb%=UCE(%$urtsM(Vcf0gPSQNdNJO(q*jQ`zZ>Z>4tw+ zy!fwy#wM>3g>$;CTC7KYrymeuU3EIHwOE_fCYE$H&Xg~ZYpCSH5i;3k`1L~(^gRpL zfOs=P3QsH4F7HR=ohf`}@K1LXFAgkW^}#S3$p-FY5%ieLy&&$v&OBf|MCV(UIOx)j zw?c2#Tx8-P#(AA~J_Sz?*M1Zk=lyg^*p$R@l&xE4v03Gl;U|s`yNro$b?Z>UVYb(* zTXTVfbIgz=gX>77#x4TySa?x?#U#ZButJ&xFLn%ju=$-xg9LD=5o)s6HL*cm+Ma<% zb?)qFU*obsaqAavBz#s8D)_9Dc1OMX;ZBN}AL$BJE%3U_frmWA%@yjOmq`o4ups2c z(4GAF^%g=Cl4!eq_gz9ymea#$=|SzUTNK?SeOJdI-!u&3Beky}F9CW^lXUIM1|A$K zIe{cP^cr3OFrIMuDDQ9K38L&UelW6la%71}F(vTDDS_JsIfkJGr^KOSB+j(!Vf4IY zZbuN4V*up)GknW5`A7hV)5U;`Eh(!Ad##Yv3+IL%NQD8$Q@xBykL3sFi^va2ia={8 z!N9`rnIwDRQr(5g(oxL#($;q{#R#tY176WX4K@Qeba!o^Y&tV`Wkf*2LeixNa z0Q7233S_@?onV@r(PIuAYsF{M6FKm1QuZRB#*CvJ7_Q&nV7TG%y-fAE`7a^|JDY-s z$p|ci4PTkscN0q8nJ$^l%-|ggz#qfkXZY*D9oD>Gp&eF+pu*bcwiJELVO!{e(2gje zOckF*+jeF_pj54J3V5s*s%riWe0Tz9LuswAnF=pD@Yoi93M)&SSH@PwXII6#4Ld;e z8Ub>hnH6Q_kv!$@i>}-at%&mgVgA8_iSEFa1rsv@!wSl?YA-36m=hRcRAe@6Hzs8n z6)t0v+o(u4CS@2E*~X-t6;sX=lVzTd6ijsb`{4v+k6NA&qddOU;01d-?ar-Y9)rO) zDsnfJoL%^Fs{g`V&n`NTvSUPL`T!rU&{1xpZ%@M^>b*^jj6~rCJhS@FvmcXz3K|1IJc#kS2}>vyoz@3 zc|M%+q|>rX0EbT`;0U~0lSbfVYT}5}$owqzUy!Lauy1qXf(9}mQrSK0&d z54?QMKwOBbyBUbLDFNzkAiU^>?g!#oSe5*n191|zFqnehY9P)>ySf>O3ZUk$12Gto zbsY#8u)= zGp28Oa9@Ou7CiMEiOu-3LcjPcDTKe34=*2=GcxonBCA}Llmk$de$%2WxhwMG79KWl zc@bmMww!6wMD!WH48H#|?ZoFt69+1*#)U7a>QPB~XLuu|0hBSZyw4Zf&3)Cede&z;W#s9FXWM#*UEDDOZl@82dji*IVc3f5N4ta))YRR%+Umf78SImK>03XVxCbx9EMy*`6#0# zU2XdlraD|WR;QOi^TDMytcpZZF!0#o_<2&8kX+!0>yQNgaU^t5j5W!nx0S$EI} zEGw=)L{PuVvLetgI5!h!FIm`bZ1a}|x>PT!M#U*DWddkXy1EzjP&%+P698lePo>~` zLAX|scvXXO$Fd2-JS}}Zd@M}rh!!l;DcFltchK~7=)35_4w(M2R8=OxB^Yn~e{~)- z!4f-fKV&-zo%h8v>FxvHf>?uMBl}?!6_b=qr2g zI9J@a?!9vbxX!(Y4iIvnTn_$k!l;M}ocGHB4w5p4ehMwkshP(7ENE%Y#=wuqz|Y3O zkB8k;Ww}+HB*W75Yr+cS9ho-4+mZ0btO#^CT88dG0n?zu%L43h@0ZmVSl=PXXSJRrnPEqi?B?SUrgJ z7KCKZ>qJ7f_E|8Mm_w;zc>W>J!4uU6tIuU}s7@?`dRwQYVV$&XClE^8X&`oB^r-4x zN?G`BTidRut!fv(i7If=q>})s(S>su0G+r=+lr`sV zsh$i~iw1XQ{citv>rQ3g(;HfGzxlZ^-w=h=-P4Oc7vH}W(hulJoc7@=FE?n^lEHBJ zOvM@8+KfTS#12)6h2(8nvQAerG-W0ZRO9y4=vns}5H?{N3BMu`)}RthXF`|+2xmD{ z4zb7`)wj#2xQplFob{$4V1xkISqycJBn@Z2)_e87d`}-nP*#6c3}76Yx#3dfHF(ex zfN$sw@Qx)<={kod&4eO+3}6V!;&eRrd|SUqbcD-%*zDEhSJ_E$OyR$m`nUdI$CrWc zz`MkLwLTXOf$m(YImVfiQsKibQqY_GSr*nzG3_RYrh@B$&dg2lwt;KbKZDlrk3Qyp znr`l|8mSiQ>`*UAZ5Vt0XOPB<;A0ko#{|Dfh0`5~PFY0E^lmN17MicU>XH}*|F4_y zFeIMcH{p{@x@*FSuWQ18e-v-Rb2@w1Cagm6ziz@^7sr|)w16Aw zaHkV1xi8H`|At9#jG%i&EQesEM@>%Mb#nrP>uQp24-BlUN%jZ&*VUxl9yqJ6#yK*o zTYR9wo$uKKQ`H$Flw@I`?Qo}=-&J>NR3HWNJxr#281mqLvWo$?_uVCXY1M)m>T?@? zakEIck!XPAN+%FEIw$&6TCCLWLA(qmb#nqaRku%_TQDv;aNgWtjnf~=BUIk2L{L$8TYfZtwy2l#;oH+rV-o{PL`0hp)VzMx0lsrwef3D(w80~e)> zUaAkAGNx;aFWhUz3{Tyuivqo&f4EOQc@fY@-}1>?0nepw18c_F4v$1rI)FD&!;;kv zB_3Q_(eMTp-jZQpg{8C)%BLT7m8=TF_=M4uGCETPYaCV9}L&)KBU*`yn!NjSK~uF+7ZTg9eKMXQiL(2ED6`*YB! z{=g}sBttUk=d#gbhMXRa3cV#AOa2qOsp!{+H`%Bp;1_AsL&%vZE(S8sKL`YqQBdlv z9avE2tcBi;_Kbl($`%{G^zdR#v@CMsf?ANYW`LQL0zbV~$zYFhO<$&TD$aUr^nikD zt`LNjg9^<+HX@K1XelLfk23{AL$wEa5E{ivFfNH!S5*i^)_x%YU7Hj;+xiAzLU+0g zm@v(=fi!!H3H7brL3))ydLL>`gp{`!0a(d);nxFueJ5bMYJ09iX7B}C+jGYO*|g%! z0R4eKUx!72YuOh7HP4`ltsZ$>&$BJ+-{!v{Z)jTqUbpR{XwajYAehlM9cPXpcJ=Jyth^tH14+I{zi=)4J#Wkc9tq^bdf&}r3f3PoDRIe~bnL0(2d2@F$ISdmK1Y&aBb&ZRKKnuMQ) z8R{=cHw0pn%;2^>5P(q1%L6NgESc&Qu9=XC5jp}t3$s)zIJn@>u@tfC3Gpq#yzBh0 z19SCPfawBl{1srX?iS2BvcV^S$@8ufF*c_lE1kymv(ysJz%mJ z9wCiNM{)xJG{bY; zu*6oq?1LjNvpJKET(V$Erl!k8mE6#xH4K)5aOA? zk;viZU0p;DFJyEla<~q-ASQBn6L}Iu4)FenC6fh}-`(IkvoJd8#?5YHjLWz=!x)42 zEa(mzH$z^r&KQ$zE*x7yS;tfqLae{Ps(0l9Y_OcaDQd{M=*pt>mN8Cv`EZzpV|nlI z7kCXWc1Aq)(?kiQ#x7K34I2`uNC)M|~PU^IQmE7(vofRT(T za4EbfQ{4&eNNdap#+3)R0TC_AQq^)^Fublh%K>#ZsKP?y%+ZSBf#%VFKsl$OC@U^L z{r5WkeJBT=+3CN{{5G9_{Ucx5>2pv}x1F9XJ5xfZzYkpW)tw%~+(4(Vf}-2M==7HT z-=fot&OWo#&%$mO+}XL)O|A)aIu&`kbb7WHm0Bf7&Xksxf`95HFIDf#s>$psEB%JK z2METG=l(|P`F>bHb`l}}4W|NUh!AnPtALiPWr#h|(1ZnDO5-HpL@>4y|6M$7#d6E= z!vYFCxB4BIC~ji2`Pn$fJ(9$<(*@JgVcDZ*ErN>7X(X>jauCVFV3(?blkDzv?tD?s zdbci2c7&N>7%^tT(`@iYczB8vGKm1)*%hGkzY3rN9*=Ky-(ZbC0;eLg775S)cOZr+ zJd@Rnd(VL9<*$QB$fh{ooPlKx&xLtv&k5*S7M%l;D-6#ea7E{cF$7(aL3esw4i8(9 z7Dxl~*HWx|obqI-CJb?Q(K$Rmk;uHN>vdG7qNcJ$kyt^#5mmSoiMg`WG?^F^h7_G+ zQ!L#8H0Iv}Xl1n4GXV-jqs|2A)~*0y+as*s=s@9F$sD~%=iB5=7RoK2^BXOYTeo&u zAiK}v0)YhuWbC$po!2qq>NdSN+L0k~aZqTOE@W&5$XNQCN+aP4UsIr6Yhe1HNk3EL zvW*&;`_so1sM*TH*x^9Zj_HrJGsO*Z7T$auB&T3P@2TgB1!-QmJ-BaJ%6)KtkW22d zrFt&5IkP;Y!JXXDyrQII*af3zEV`oZ)DS;pSfl(G)t$P|pIvuqw*S1kQ}_D^)SX&F z4=dHQ4DZ0nqw^e0^?qeodZ%Gis9nk6XbE!j)54v$Ecq|GZJgpp-9zDXY1}Y~ULc5v z|0#@~H8HOgC%4v3c{sz%R4>UHUjI(cj{bkTVnn}gyQ2Q9y5jq~EA)DP7wdV(qRWHm ziCoAF{1*n%6N7^22{^R9AIHMz2~Q9`fhE63ojyCUA6l`c0tI#Iho`@JKRCMShi@}! zpBE}EK54)CLNU86ly5ZMfA~_D>Ha1Nt1i?1VgbpX?*BxFgy~LZh`Ryg4c;+M@d|zw zG}z$pDVGL-=_$J?hX$J6=2HzcGn#_S_dF^4MmqZj&Kl=krVZmiK7BiF7P1;FE~zvn|Cz%deoIye;{9vpvC$OB9Lj<%97pehz2m)b4 zniK%>n>F-PNCP1nF>oZ~3}@Gk@?Plg#bQ16Cs7Y#;I4YU(|{N}3n@E$d>;=JCNN?D z$xfu2;wB%>iy(i&^+3;l2+T~Bx(P#z(M*U^pAZc20-JDl$;=6JZE5>jbP~qOHf^|? zWus*e`A{6VipjWIuFzQuM||b#UQAPr98k0x{sY{H7n+JRFi|u0ReVJ|&CqNKX*EN0 zn7zbp;KG_vr34-@<(^@q=ruDmUqTL z!_)X7hK`gO8LF6LFzl7^P@p~m zyC-)~=U{yeZB4;FU9k8!COX>;F5^HBst<0@B~e!)t@%(NK*P)k_v(m(RT21pjTdo?6al9hadwbb zg`3qm929rMtU@(uBWxz#@;i4G7ba07@it5$c{^A4Q;tDe~z& z%h`wenou8ctNXEZ8cNdZj^i?e9M6W`DZ3z}!wQ6^S|FobwXNXlr3&3-bUbiUDyNQr zfUE>uMDl>ac+za`;DI(nk)L_d=$KBEmVqFB0&V(+tQC_fJT!N+ngo zA$4r~!FJT;s@)#|l@s}5KY~J25)f&RC>RM=EmY?KGU2uG*cD^Pk~4OYEaV_$kdjL? zuY^P?Wfv|d9SA?}u+Z3p&c^LY^Uu;f-L4ag4SZDaNMQi?TDXeFSX_Yu!A}hubp>4g z-{w!7=sj6|ESwoSu{a~l1Hr)%Il&)4%7fqBnvbX3o8FAJWU#a%c0G!H9WPMZhW&HV zXdiOmploNd{OP7c+EeG)~p561@7W5wfBtI{y8QoYaiO+EbbP7 zckk^4zY2Dj*OMLW$XH5eOP;i&qFNSWfG*uPFyiKhCeurrc}_j@{58xPD8b>$lO) zs1^d*WcD>7{P2UL>};&FbeLWb9QapRbF>VE6(bgL8sKE_Ja4Qxy}z zumT)|Eqak#c@P}jSs3JXDbC>BEMRr&ULp-NJI4SgE=pHn3=($*2?jR_86jnZuSu|o z0)yM&Bmh!DN&z=Zut))e+i=?w1cDR80x6LRkzwd2@RomBTr%1#0ZWdTr)-Dq$X(I{@W^AI%CAb(N7|<3$26E4e2V(<4(lP_U~N1^ zm2&GLD$-9bE%U`y$>VzG>NGYvDn%oWR*aW>eSz6+t?{v^K8%DdxJVTUjti1cZ^JU- zVmR~iY??#>(`1-53@@TZ)Vhhz0+<4zDziDP6)eb-j(02>>t;}Gycohxj={;+I)%EJNR1}88Ih?0rVi~Ejt&(3w2$rlUXGA9@ z`uJ*9X1#EM91I>v4j(}>2`E1 zlVFx(hDEjZ)j*DN8i)vUeZDYQ7J+6{BJxqA5XRF39$SUq6_2gP(|GK0Jk`B;zdn;e7Ozqazbw`7qFKL*vkd%zwSKVp6m+lAl7c8l z+e|!Lgb7VWDbINsnjAHkCdEG1%;`GdD9U1!}@p zVj(YraxZGPO5jfAqOI>?R+HaUSI$d?iOQi1Bwt{kDZ^Q2344krpaA$;QIGPNPJmMx zsN9C8C*gp{l$TWahpB+;R4;r36>#d%4R<(6ra5lWhJ}AiDkrw;4Q~}zBPXHSfJ{~+ z=e8=wOs47oLl9O74e9GN*<6@t-Y-1$d(mV#JA4?a;5TWd=$?W%lT{wa$>Gn&ZlW|dd|d#m1ZVI zd~R`{xtw9Tuh>=F9J;HVj=j-;nkbQ`e<}877V3oz)QY&!kfh`g6^s$v|43E!)sT z=b2mOYKaYe;{LL<&!I>23@7)#fK)gI;fi%xH|Bw2-La{<{jfN)A({Rml^3b$% zw@v$U8^PqgV5KLDT*;V=elN^XPMeSxd;w0S`NPzdFL7Udzu?~s!5a_$0Zf0wxcUxE z2GS?Zn(j}-l^1uUI;J60I759|nd)GKKdoF{!eD5?f(2n6iT`B$j;qfeaKuudnxj)k z;h|rQ!29vi-smR288k?=w&xS#Q9NkR#VRNVZ!vJTUOqSHf5zi?oB-B5F?FxAy!Ok$sUY&8JG*a;;$!cjZkT*mo{DRAA=FOpH3f5_4=h(QBA z>$Y%y<2JFSUvTCH&ad0TN$&7xR63wtrx!Gioc60P-ov8SyNDZI!~Vy{0ZQq3=q-gwvq8RIr89*ndgE7H&p0g8_@#$RP5gWv2Ui_1u&sN3mC;mmJ0R z*J)JCE1yJR7_nTIj;`rdj!9q80ihy1LTSgjl`C|T9(Iy}WC{eu32T9?*IU)xXW(2J z9&|Bj!Buex&DFBL-U?i1HgdN_humn5K3$OMzZ(6L5}~ERes%keNx;+_zK6<#JDjE$ z>#;2&D^oR}p9a!lnjz(cU+}4Ur>}6}lZBa$h3uYKADhzW#_BGi(xtllaanU8)Hm=V z);EsznOoS8h75`w`$Z08b0xM>c4|Eg3H5LW8LJtWSUd5Iv07%=Zhvpp3YB7G83WPZ zly(pyl$nRlzzNVW?9ZFMdjy+Pfe&s>pKCfx!#yA^!qwkgP_o`ggr7Pw4mhS~L$UM3 z0ic*GEr^%s;sp%v70U}OQUS?~?c#NgWM_E=Heg7m z{vcy?!aq3N7mOwP=L(Q~5E*3>*ImcK&?E-$bpSjrO#Sdb0MpX;4y=w&+gT>AO)Vh- zl|ffwp-k+<1zt~65=N^4s`H^u$gmVFH$Gg(#^x9~sJ zAxyj^MXKhvgj@()g{{`uoQ^kRa|YA+aiIt2Y)?$U?207V9aOS-K>;hjkD;{7I{ahI zn9aIy7E}fg`)N83T3Qib2Gm;jbE#U|bt>&8aKoj^zxESEVm!qaWgZsaeYmu&jpl z45|GRN}JF-PvXO{9>=pF-_t}_89uAz0rgL;?{dCmPLr)_sJULUSxgV6h#AalD%7SK z1dCCypDrKPwi$gzGPhPTe;+`|%RxB6#TAYrCM@&k*!iU}Gp|DZZF-UeJ^-Ygx3h90 z=oHr(2!e+v`(cL=B@SttqpyQW(Dw{k|;{{3rNV*egOhkZ@|V!Q3s zzgtkM%qcWJp?^Oo3vn?2}( zVJWT#k1KdAHa+zIO{696?6P3i7QEh3dpFh`T-7I6I!N6oyHFi0)$O~hZxQNbk2r=k zTLH(I1V|4xe?jyxvkQ6<*x+_Q4%iptrDH2V`KJ*qkXy1dXGUjktp7^QrPAPSxKx{_ z>QheRxCBx*ed2Z3=U7Z=AV@W~3jK}NKpFg0@H$8Bb)DKV65dCp9pYste1VMGentId zAklvK%mABUmwS$s3#tE%?U|Z;86QVckawJdL~SE?54mo-9fMg`u#wxZCv*rObz4cB zgI?Q%Ck`=jZMDx@E*yC#(j>=(ppgRiTv;e&5PS{@C ztwv@axh)yceldNTg;XoO?oloB@IX0+-XO9(@57 z9s_xDf@w2=i9qY8;&$F^anV`zCWo0?3q$)&rB!{a;F3S$n`%f)!k|F$nGPxpesf{E z4fJC!XB%T~iQf5C*24~SDM>v1kcQilFr)Q&&?S9Ks%B{6^*=hE{puD6a6JX41zPq` zP#s}jPtkl2C`^4l#ooP}hQUKXLV>0sEDdha2G=zkIy4D!tk!IXmj4PnO;2)WF5Fjh zp}9gf`rZD4vV8<6oReHBt3Om%|uiBaD2tT-FL(rMm99?OLfU;+B=-MASH1tItd(+eg6+lYEV z4II;aTwtd-T15OvNFK~X;p^eg({SEnN>ycc)fkK{^FZj}y>qK(O`C{|o6nnD;JzpD z58SqGImgT`a0OfwgDN?6qW06!iF-He%y1yIo{+}NaF?2Uac-VuS*H=M2C;8Kd}U8n zSKvz`!Z&nRz+|>A(`<#;JCxzFtWg*h^(J$L_{uU0qzs8rXfB!^&g1aNNVkaSMNj3T zI+bxZb1t!SM#@<`ztr!LGhyRcf9%Y$;+V;JWn+%S$BS|}vl&>-1s~5s_#A=!w4irQ zMrmoOIKae!tlp67X!{OF%bx6>`V*K_kU6jT7{6>~y0^n)y~huW1yo_MW$`dBBi4rk z?3;jlt~sR+`U!J!jTQ#><>pg8AVz5&ZB@TyNdDld!kW>gYD!t&-2McA{QVNSt^=#b^xd5`2;#}TN?)r~Z2Z{m7x|XB5 zWjzWiddb`2PpeQH(;I#pH2~=S?@n?!7CXDcU6Rq}Ko=8KK$m*yHXwgC^_3+$JAQ}FYM|3*kSOsvE}n2T(IOlgjcv6)Yx zN93qekF!ucy(S?^LSxE5){Svt!4m7M--8@#qqH!J80=rPkHUIE$Z2{O7dvBYQ2%i6 z3hWne!!Lyer{t;FE&ontKgx-bk~j|U;oxGTdwx{JGtM;>k@QYX0tZr0FajMAx(F@A zT5(j$ylG#N*DZNPiN$fdWV7AxuIfA(w(FG&LsW7gRA8}H;|#6gDzSNAYDk_U( zzG$P1cG9-sKPe#rqQ;hMU9Cf+=f=G7yBiys5qZEX)SXg7cyK1QG0e z$08BvA$mO_xf>yx(pOqJ%q}4$C5UjjBN7-G#l3L|&~(O1l_~%!e2SDZjp*7CiLbgJ zwRkqRma3N_f~G|1GV@VC@{B=}GBrbDxB1i>9Sffl5^G97RuxY5sos-8R0yr-;ZB~U zC(dXJTK5|wDBvby0F9Xsv0yFy9=hEJyGFEf9Moe?**NWp=0cy$(h*Q3gx%d#U$nV~ zh-uVHtXG;3=U~Z1mQk<+NDF;sl1weov4Ov82u(>)Xy|m#5C#*%uiv`UAcEl912yES z{|GPU{(?r9wWOaZ5yq$$qrDPR^RX^O4;3as^km^7Gzq5~g}0vki)Ur?$v1kpLT9Sk z>G{dFlZSf4LiQ71v}3+w>wG04+I$5gJQ%RIB(tZi$%S)`TX*8bBJi;WS@)Zk3VG^F z0aNE**vw8eHj`pd^`|+7>&8Qz<0cf-m}Y3}=u$0YfGF^Y9YGpCl(MqxH}g z8j{e5gC40G<6@7VdW(#{z!e8KG!5XLIcN1`7~1RuBh7jNb@O|vDIzC>Uw94t&nA5p z@Z*R7E8sbR+??88V|VRS3XQfUgrhKJp&bKQm$56LizMR0G9P7yf4m+gOKdS(4(&>L zw}prMfNjM8E_j|hg-U|J^$s1x-4*+4oHmht^~Y!ej$Qap>`?oWa2l6j^Gr3Ck*Tq< z`BJPeT~4u->+M+b44ms~R6hriHZsyjEcYP*{jP3iuIM@XElTeI>10-xwvz{mZ(*{3 z!7vybta-|^@&Henn*KW!6XH8z+x`d2-f>OUKK1f*C>QL4`KeB-YSuF4Fr+jd<{(DSR*S2=3z@3G__`jp#~9psasA0sHZbC`LoKr+_eh=cB;Xi>Q=$_mL(xq8c? zPvKhaq=V4Q=LR=3HhD?kh9vt4X0%hEzm%)l$GG-l?f+1>UqpsW+jn+qKl!!bui4>_ zpd5aHF>A#~RRnaPrU9#xS{z4s8n~|n=dU`P5wZCLWH`KgLNPNGI%&;-sKv@A1I#a5Fbx^LTIzxim+hu%hxcU|uyG z%F&<&gk7w#W&8kt?=-BLRoP>R9PWhyu|@jkG8Pmi3zoLmcj|394`7eu zj595NTN_#2;8t>mV2()<>h9IuIGf#gD*;)~GIjfU)MHEase?Cj-fx z3#)3jx(5jeecv+l4_tk;st>TgYF3v5UYD_v)rR|F+V#QAKCcgiP-;ALu|s>I6mvOK z#HP_%f9*7lzDdI4Vel<{Lh~bUcr=ws1Ft%U}v~Jo?!wrlsip}@W3P*ip98WEj2jN z6$!)8y+EMxOp>3J?JyDotBaJh>l}qraEey->PVv&RowGXSJ?<(y`!NcJ3y;A*6YM z`xDQwW&&`>U2HeOQB9S6BI5$u>X2bI{s!9IBvmYXfNt2C{Xd*SwW(m1EL#WSgeDt(b_;E%GO@ECP9E?yvejp~EE(~LnzjdRyHSCR=wr8p8K z`y{*!6)q_Z#!>ZI`3J2Pj$@I?4X^$MX%3owdhpBhTyyW2jXsh=FH`i9pi}DQlwjj9-P-x+_qw{R`snxS;2m!8HBer(<(6x~T(Avr4JwKbHT{8lU1qx33dvx<;IE}{ z`Z^4Q9 zabw0N>`$JipCjAclVhAmB7tJF(H8v;#~CZ`6-l7TFb_Wk08pV9PVLk8vEInskt$G* z8zD!aJEyJat?>B74eAhyg6ENwH)Q+)bs-mwEB1{Cy#&FiEfhZ+LUCNqqgJ6<^omX1 z#U}lRcl4xpC5Y;zm1tjsOor|RCy7#`|rSV zhnN+YlliZ;(LyW5Qn)_I<$a_2Y;y;OVrWaDucBOCfE~}epBI?#j|5R@=to4j=OrQz zNGMv6fvGp^@VT%8`5fTeo89o;UWgO3621MUr|1GmtMP6Oo5oY`7S7}o_u z?vgx}=LvIhADspJB@9E0$XAp)NfH=~ga;D+F*dg75r@r_AASbN@sed7O_#p{a;%0m4J@)`OWns=`eT2zuNKUVFL6!t;nWWrMRkFjQ*u7B&^g33)Srp_*A0E>wP+Rav|7%R2|Z71^fXc{Jf2(fv7J5btbGJ}K>qsUWHe~ER!cL~KHxB1 z(KBSYYmZVpn-2*d;ku?+6ef)>1!YM}CZm1;Am{?(uyE7y*jBX29lc#g;$xY#eZ0;T zY)=P8Rs`G-Ecq+~$2@dJ#_>TpEk(zuClaOdpz;XhcFa7cM$Z)t!GluS62LB9!?U^;I-JlGt6_SV3S@RnVfA7kdyO%Ga-GQ zrO#o}+QiatNGSbkDIME*W?8)GUMw2?nuo<=JZbQWqO+n!PnWWz`a77CIIhOtU(*8= zTKFbzN7ylLUj#xJ*AL6hd*_LMFrw}K8N}?J<6NJ5KG+uS0SLyyu>j@N0AY`A-QTcc zX=5y>$nh1AmgsAC<8{PZgO?C*2MSBwzJbf;lQ&@R@ITDz;%LaI>drbY2aI7+R+ zmg|a4&Vfc39QXMzj#8|c4ZZ6)TiuSgXLQu`LD9x6r!mW=E3j2PX3c!Ns6&(v;$4RJ z1>3cUF?T^~jq{C{-_{eU)*Drw5$7{Pj#SJ(H%vx zC{G67rOrlrOt%s@w1(8^+c{D=xJ5i}P7-%iq%!h%kH#g3X|M@2TwxEYb6bs^0;($c z^9c8t_(=XRkZHZ^ zA_w67t^;+#Jo68nQMi_f%A%wtg^hvo*zwrNV;#BFcTuX0FlPWzm`ldKQV%*miCijS zSb3&KZ729?S?=PR2mBMdg@5vcvHfak`w;*Y-?D&GY#9aY{#Ac$upqdm8KG>nr}h$@ zE9T%u%|ss4Vpus<*3{)tH?pIqVS9<;?H;ej@HSPKsp;;-mS;_L(<}|vzc;vj;PF5+ zt-BHY!G{lnfYUk)Y!TWFX&bLUnCMPO)!ZqS2xVV9P(Ba##^xy)6g-aCGHa5vCG9no z8N9%u!q9{TQ7$poq)`YeQ?GXl^Gnzc3G0QFd9U2%u$tDOmFga-|CdYF%GtkXC}pDR zQiS3xYLh;~X*z;1V>#Up7|VG<6ihI(@e}+tl(`r-8$V_XLg(N`csn5$hyrkAF})>q z9zeAka}XcHQ7-#0tY@lxXuWi@gDl~-P6l-CS~biPrh!4r55*7$J) zU}T|R-AZ{-ux6Bej#4-4Pp5o3)hMy`08A?fVeW9!b9mLu@K<6ras<`u1+0$4ttv5_ ztwtH=W`wdShp(2Vpf~Iu*u)+{#E4U=o!AC3eSp#dWM8f_Zw1t2!F)Mzytg9Uh+P|TRg%O`V!QYIj+!KT<8gX zBJbn9#p6Ap59HnFE%tdrZ_4{rZ}C)5XrH{#_7>0fgtp6jrMI}!6WSo}^S#CMJ)!@W z_r>1g#h%b=zAvjoe|wkn35m9ZKrDk0K0TrPBm_#m2;tKcs+5q2C4^5;s9ZvhNC=;v z&{zpk62hk^bd`i0lMp^Vp==51kPtpSAqb8D5An5kIiH@;X(vNm62hk^^fw7fmk>Uo zq9!2}{d&ce#1q;jA(WnYm-Fcft&@=162hk^^eYLeln_2Wp_LLs`rf;oPfw^uLKaI1 zpPtY>gyg?v?lJ2d^B7#;#2-)S7KDRANDF*08HTi&`D!BCA_Rk{{#r!hreWC3(oyHt z@rXeZkqL`fdg{!INA!@0Y#6`NBWFrHq8+3^ZX1p)%84w@QS1x5j#nijFS2M@WZ^LN zN<88Pi5L-CG(56!xT5zzJI50eQ5ab?Dzb2tdMqBXLL$aT7LAQ89IKYaBkqz2nB-1~ zES#Wz6ptvEh^di9w?r1+qSzO99p9CR*^x!JMHb$syzz(}iKxUS!I6b?)R1^YZ;6;6 zSu`)QaGvTJkN5=r99g(HvdGV+e+t(vy&8jsypK;Dv-ijPUPXUamadHb4m}2 z-<7;am}?`^T4aMDx2xiL&yy5fB9Vm>!3RAl36Nx`T3?|2GOJ*b6CEV9ul?|iBi@f3GUD3@Ghqg&qj zRCD7gCP}Cd0g;V7uZe8nQ}HOwhV*ht!6m8HJtG^a^r?o#Q}mV;T%wVUv~`PY;8Qu` zDcS^nF4@S&Ig)};^$s%HwX{eIF5$?=d6I%p^-?^=Qwb^jl7dh5i+GA4QWUJtKtNzf z!DI4!kF}h81;$vmj2S-_1Fspd)Ss?X_@TJKeazd$XJCxEESq1;`3zjWHVKCzSAv1K z++5D`A{!VU8UC=jOg@J{tjBq?xB|4QyMp4Jba-wVVxDaNAT=f68al%j{J3zExzBRu z`_z@KT!a4Jp-63;xQ2@Wp!DVNF=AFvd87iY0zy={X6jqahw+{zF=iY@0dXvOPd$hdr5bA@3bj0Oa93}Q% z13pWz_d3&f5haO28)f5fjL;`a=-H+1&tS?Wa3JKM=zjf_@#t)D_vqB+ORz?a&{TX` z%Lf8M8KK+w9%4LnA47D>jH5hgyg(B|XY#>HU(_<-olL?lW>@E(2Dv4w8|vdmzA~$N zAFsIL%qr$BXSf^;Hj)z&j;+%wPRG`XAh%C>B`6bqud!(&2u4%65|nKfXJflWP!^oz zBPh7D&??U5cDXPIp*e7#j+4B|!aVxGUN{Uv!+c84Ul)$Bibr67M9^@bdP7nnZy|O@ z1dZ~kT?mrm#zz+7|5${M^{KUz5btoDJpn%xV23P0Q?25u*a{JJ3*5j-&}^%CHa0;7 z-3C+VXmOR1h4?=Qp>urdc1bwjDxQzM4?*+LehFG^6)(oFhaf-N&mh_FtmSnWe{6Y( zSmIMd>_UZbi)@fxPxd<;dU4x>_gu-!&CU{9PH%RI=AH)yzSAt3JDs&$_PY(-=@2bH zYCEEXJM*k%tC*sRPoKK~yBM<#M;Nl4Prbt-&tZJ{RHGEh?af*)o7@I&Z-|y3b(chQ zZ?l%m4!41O8=~b$`6QYfo3)(J$Odj~h?XC9r2tfD35^%oAlr&;C`iG5#iu+{0Cy8h zjPmtvf@p3kK1FvNkqz9iETJ6rhJ|SETTp+}h5V?MQUJFqYq@M#8@N>=T7J~sh&GpTCx$qI=qIv)TQuVBA4d7qO;S&K*lj$< z0OK*nn#;I9>rC9Wk;(pHIOcym69bIL7;7%$maQ{!BS$9thv7bT1a=}oU#y7%#$$}t zyC4o5WH*Dtne1ogGHy|t&yH;12ByA;N4TFMo2Bs>H#g%kCbE`szl7O0f7EwPtoLQd zBsNor^Fv+b1>>4FZRxH&bkWilK0n2sEw*Qs8@5M}uz;(?;}2xIKv8b(3jO(y3Ah`3 zk%$rt%PJ~20YRz3xxm6RPE-5DW8Dlz@mBSH98H@YIH$&mDh@$=wL|6~3G`}7rHUQI zkjXf^f`}Flo49{2ZD;Sr(V`q7Xbt^}N{)kdw;LXl-mip!4mZm}j7w4Gjg@;@`xBSg zrvwn#P^TZlrdG9_^^5%qEH!ZA%4)-Vkki~(1ED+ZQo=6*H)n(aIxZI1S7zVPtlJ+K zT1o#mA4&G9roW`(ScyY`c6#d9qrfs^?k@_2jPNu*fe=k?sMmhe6Z?B36C2LwHRVx| zwaGsQ#!>~VIc7DNLuP9_H>K?G>1flvDP@oPDY;^Z(RUPzt5lf_Oa7Gq7L1XFR(UK8 z3)989u`J;22WSgnNb|%(7$)kAw!!E(`1hoH57|@ZzhQt4D`0}7J6+DfqWc^AUwczJ z2PHvF40)OqHDiZQ4P#MoGDg`Ah7!l9&grQ0Y}Pq~ZVbxMkEqhgbhrSeyEwH~;xf96 z+pFWUx{F(@<8r!-dr-#>>n?7wjvL-x+-*8;RCjTOI&N%taXC6}LU(a49d}E2aqU~A z?YDIocR}ns#4z1O->9PnWp^{P zFVoT7s=CYFTSs#r>@K?fC22SJ!S15}S4VT7>Mr_sI-2`nchOBcnwwyE(eoKS3!=2? zu%O~}p;1i_0 zvT!?0H?uC-;!s8OjB@}&+XYDty>7t$?WczRd9qLSq#KTDGxf<0Hp5faB)2MD4run{ zSoTGbQ$O5x(X5nR;%p***jPKPoM(pCJ#h0%zNcKh3i}n9g<{{U^@vEn+{jlKcSz~_ z({EW+E_(s8K;wtE~d)lR2fUnGxeFXvqd;sQ#^bY@qI8jPY%>l{Esz!g#|N7hk^RZd9*2n`jf?Jr@v_N?Y1j!(1fHl+W42JC)HDRd8CBiP_ z+Ln}P_dJ4z#JcBKn_}Gq9z6^G4k`-rYs-1g39lALnwtIu_-y#XHj)9+H3iq!jHFN1 zcT(VpGm9E(@WLlXjAkzo8>!$+;bVDR5}XO{C`2~zwM*XAwG+B1AHKAmJWj$`;N);h z2I?2rUz773s9WdgtpnQ$Tu7*7z#7l5%z0_5gKN{W*VV9`!&l5<=C&;Mkv>Q%`rk*_G>QA z9_`m*MkvF6&4ZT@`*pYxa@()a6i&BaM;Rff{aR>*T=wf&BgD%!2^kE&$dvMR0<7Td zS060k>{qmHC(>HurW&CK?XcU7(0u!KHZHac`SD?mo5R-?@>MkDzcqmg8Y(MUGYXcX?Rk=&ml z5>2C#tbw(KT$v%<12o|qxlbC6BtVQtpFBxz7^1dnh9) zC1aC43g)rLdE0`mN!$*eM8Q>XV+yMtRt-etm;gkiKD-J5Sk!F*VHDMplja#IZF>Q^ z1{F=K1J|j}IiKig8(*)&mTy^=e7yt=FJyM?RG-*8N7fTswGwdJuX|q9do;&@p0mCk z^!qTXR*2O``?wK(d?GX+a3}e%=&oUXx@lPODK-?Y)F0%zZr}m6@KtoAU5ux`1m#;r z|Jzd3s)uZ6{c`?y}L=3v7(>`6?gBOsH(d!z$WY zSZDtO9W7tjAR6w)U{I&hC@8DhpVk>rj)sbm)L*vKdf=-7uzR;&00eNEz2CF(Ub#7=W zk#wN1wX_h6IM`N4g_wm*63@J1CzJF+{uSHs=2PWeiXaL^5u*#2HWMeZhC7W^LEM(}Ai320>NRCJ4; zq|sRglWWc^U)2>pnU)5d@!-fda*y4WX5PKQTtO#*MKt ztmbO7m=20`mA60(!>6u(!A6lw5FAU%^TAk3;LKJg0wF`pM2tuWWY`G`S(Hx&U~eSR zV-w4G9R13)+-`%LnKaq+fQb(qs|`AN8irAyVWS{%95By12ArCIa4UZ>Vx!Ds=B|eH zk$r)p4+2H|l17#iMQ=+EHYe8~1d2Wg6n!xGa#HAEP0wJ9%k;q2!Cq6SGEkTP3quD3 zgUyEslR3%Rki4RPBDYPx-{8c@mH5!0*nOwIzkwtr`-hz3diID4O55x$1kDNcz^v09 zZ>P8%xu)4g*tsjzM;*{!>wu>PlmQwx5;&(o3idP|K@U`=fr?^1;Z#$8QE*cWB4V{y zW@B_B>q&5`pKOvLGLPw4W4$zq9#>VzX?X4_SM!m=?1*R1L*@!~D?{x}zRD2@vx@3* zjrWy<(F+#o9h@Tg)W%EE>XLd@Isnz^<&G;gBwjTPqgx-kuPk1VR>GqnJZFsJs~I8` z7&xq?p%Nf%)!lCc-rvsSin@Y3vFvd)GRc2d)ksS#`Mh~PCz5#e+d7^TvaHiKfTfmk zRF+S48K^Qhd7yM-8EG7A8R?obrCv2fe>=w@|4IzeOSs^btDS8OiX*&?IL@3EwT_r;z;zic#)Y> zBu-0nBiHK4pXm}wCNJhB39Z7@l6R0ziHpXrjHwCnKL=y4Q^&h$+%kv7dYy(+={T*J|wPCZ@&vXyD%4= zsT>-!gqIP7O)Wgg&KfwIN61LPwj%z&B|hCO+G&;SKW!P+wVmx?c|MNE!_fqnQ z*h?SakHS5T;P0ck&`PA2ybfR_HM3Jj?qpaS>qE=*ZS9Y1f+OYGNH)YE?M(* zR!+YQI9G&4)yKx{MLX5)QU(`Lr)j7wsMi%(TgcDGt06y&X6=`&QDvPEmI@di*+BRs z`pCILCF|m=E+R)I8lZH2K*6Yb=ptaDs-%QXVC#dimD{Ux(<19DF@fO30#Egk)Qg+F zc1reGhhqJ{`ZhOg3NJ9SQGg@sDa5Ey>pSOL$KjJPWVJr^bL8!miy{uVH^)=mr?X05 znj#ZHgClv7YvC3pp6YBVAwAxx=xWgwTqDs5V9l1Sx8bP<#w)nQ6hVwsV2XGK6|GN5 z`@6#gR9Dk!&~!EXB|4#+sZz}?tmcoxV`X;Nj)YVt2^B~$b#BL28+@g1)hS7w&?<_WBI{SMQnG($3a*%mqCCM{ zv4T27zqV^Z^-@qB3;LlvY^Lp)ri zqNc>Cgo?s%vgz63%cJNm#}wHaYhaUDLqhVGBzZaoGmR^-=hszdfGMis?q8JxFPpOllnr~}c^t;_(~5vQoV$kz#bjD{lvQ5>)F3h<# zUFV|EGP0h6Ow|VNlI?IJ3+0uO^^{?%gTi!53mHRcWn?`im}*l(1_~-8>nXfcPe_Km z?$Gz2!KB-ww{w2OR}llc@mg2C7xH-uj&`c=HiLh##eIi+QV{ke2d88|rb<-L3@m-AlKMGvPzCI zV66J+e5Awy1_Z~8@m7#0ZfJ&p5$2H++;%KMs2buT3&~e-;(j&dtyD)Pg#sCkag zH{+z;AE!~H)}E1jK2lc4PFi@3(kDS~N^3JC)!YT!BeBww0U?=|I3O-?HuUWU*Qu~? z!>9;QJnJjS^E9o-V35^>(P^+F#S?18x9uYJ97~*T(KGqvbW@z56jB14RYW!i^8BVn`O>MafLn(lltBk1jxiHwM>$c>gXy_rX66rI14hdPwms8 z{%9pS?IsBg{IGM{U+J_{Y`O0e)M<;er~FAgO!cTrhU?f9!E6)_rBNoZOzIZ-{AsET zJrwS#X6QoF^G}Sk2f9BaGVG63_G3y*8tf$;GubWw;EdlDPN_I|b~lTm~_O`m~a$J6w=6XTp}iI+F+$viiIcY(*#^d2JM6LOVN zvc_kWJY3pVj{rGa46Gs;^-jP=UkNh4vpK$7-W3ahP?3~LN5#1D!V~%{peZPNIIy^C z1oY{6G`xmVs;po(;U2uqa19RpdljVB;;4})q-Mz`cq0uq z`&9=Sb$mqvYb;|8qSOK?mZ3Sw>S;O-K3z`Vu_pH%k~Il?*9Udu+(?CEZM2)*JY6Rq za3Bf584w9PXiizH{jTTtt*T$edy%R>=tOf*i(@hS@J6>@BY#J7mY2VK zZh~)}F<6X!{L`ykQz5acd>k2kRk*1GdIRb`lnB-EQB|oD_h4e&|LC~vs-6986D5LtoygzZ!ICG9NLPGtjJQli-p%{KR zxx4TSAP0`YP!z=+wo62xIt4p34(r)SxwM%}n~IVbM0(iX$DkU}tKizixwW);C;Gfx zUEC&f$1qZ0(okq!%W^?G^!XanqOZ<)c66pVuC$aE$BOQdly$U?B z&Pl~eTPI+kxJ|)3)`Er#JPG&QW$H&RJr+n%X5BbS{S@CA5M1u$Y5EEK;U~XzLZd_4 zg?hcsf&Madk-(}l<m6>FTpUsN0{K#aZ`r(L=NEJ7w z!L}E(VV$7W$9<)3Uv|c+d6=H?u7G%PfmDQZqx^#f{XI=T0``~g^VHMo5AMXUBcppk z!HlTNRPNJyv@^i$1C0vyLtngeRAaC*c;|aqJ#iT_dU2}zu&3#KmPhP&@c&WvF7Q!R z*W&*q8NxsUGhooDQBXl?K}7;e2v!ghKuMSonSk$7TWZ*7Ye1RrPyXoi=7=(Sj^LbbZ%P#YC7C}sZNwfC810_wl@Ba?IX*^jl?eyzQp zUz(BwjUlV7k$;iYrOewGjh9U0suN|6-Kx*~EDn*KZUqd%;tym+g*UVh<6RbD6sTm$ zwaJnTC2sbr2VXVIIlPCZ97-&%QFb!rB@IKV3j_PZR#o>kty5=ta)mbj-34N@pwFz( zK5iv`fRbKZCiU!NneMlXoieV?wQ7B|igKk!@!H-i5kiAuN7yT;eP_c)bOP8ewab~%5e?0^4RTmHs1 zQbw3<|3N#;q)hNXgKdKmP1T3&{Hp|Dv(@Sy zR<36V2rvvPCh`9ulG2K8fe282@amRoJ#!IRYndBj{dDz zW!9!jaf9irj7;|)u*!U{^9?8twK(uqo(1*2qQqAQeU47(Wzdw#dw)-LZV8?_mrR1Q zUHnzQ<@ip~+y=Yii4(AD{D}OsR2t2}Dng_BWUEVJ!@W04UCQ#sa`i147;czYo1P`N zP2nThyGzSqcc^OiAy^v34fzKaF`7R_R*B!8^vvgazT48`F;=(VqDX!6sl-r09H?iJuriAv^@a{j>in{y=lurhF&C-reQ+lQ3x2dG^QJ zLCRe1HKp?^B>d>1j?+5DY?1A0;ZK~qra-@0FX6gI9Hro3+oLuT@}W9oE@E(~S2lpI z0<82;oD~6x{_ZrXM5A7bnqg1BDjI?p#On(XT#MHd7lK?3LC`=zVHb#p3=sdVf#@?! z15urx1Y;rU(V`4}yWZPBkq-ii^OAJnTKA({r?@n;cU7pZOhXqWW03_`h}@8|(5gLV zzvBY*(jKZY5j$^U?TD)N$9C;8=OL*+5}(LDXSSsOlXL^AI#>=NuW<(bIF66idDod5 zMs(G%OI`VKFVTS(8#RUy2Wm|A3M+iLFzoX;ZkC;`)>l5_xU;}pod-Y*9Q?!L;&x94 zQ)II?W&Vd457Zv+C6Hhr*ASBti4}FyEm7SdKh9PkAwQ9lTS-&*N!hlE%+Sb9_~-qr ztn~0gLwI)zAwP9`W?3#`;8H=UWb?S#=i142}huxII9Bg2c0f2I=yA3V5xb9 z{I;xoRX@wGU{}l=w1=LP*OOkvvwhmbXAO5uH)C0u80cwdj@m2BB}|#U0A9H<%SyqowQ2?sG{c`4XWh<98LDQ& zZ=#IMyJGW|n8??>hJ`3M$_^Y3uTy;3(8{LeU$s_d!!GqSK0G3wef>@1U*3I}8@n)~ zd2Qyi_!2`mT-wk&wD=XnK;Lnu0av-2^{L!MomE~s5>h|S5*u3KLdJA7DFB3@V)8an z17zaQS|?`gD_3Xea>RsJ3n?S(`*&ihnik$;a;rafP_c&C)}4=MX~+#Ec9Vp&Dz_&N z;ebTXofozE*CIpl9#&Wz1!bz}UOAu8$(Gtd#PT8awE+Z&;*iGZGRHC+gt~o; zg!Tt?s^G8Oa$e+*t-YnAkZBo3X73|XUACwcCDuum>XV0cileg!RUF-AQ?FCIr@FUQ zvNOMRE?UAeH&HZq1dqBS)#(dc28<7cbJ6w-w3MZd52l5)Gj?ah(Di%2hdQ=w1d$uI zK-Ax_yXH9is06w&R&?KRzE#GG(9%%n-1?S8>U@iDPRZR!wgkF+(1}AHCTY$Ve(g?m z^cM0}Uo0CvA1NW-wYMhL$#=Dgw5qLgt~m!x{%u|PeI~!uCi&&N8bz9|QSB6MEf+$# zLj4JU3Q%<-Vb6)2hb-*po|=n%kBqFkAz453ct2EkeeGW;ChG*>4fqu+A+%Yry04nfiXf%F z_MilVDA^flohTm$s8M`~JkbIC;&QkW6A~%gBniQ4Tn`^Iv0~+*4C;AC zs;-Q^Gd#mB;^@e-Zcg!Vs1{(%BN%XVpI4nB$} zNsnxq=mJqU)?H#|LvpMstXuW#L+lvZJb}94@iq!-@0CQ|Q7gmUS>})g&sGKbYm_~& zwdsse_M9n?X5V3H$j}><4SY;c7Hir`ikwS!lirt`_VDiL)be1}Jei)Av8LCh@6esp z#opsMQb-MkpJyJsYf(3%%xxNeqlJbY6Fd0XI6#|4RkGFHJk%tz+Ikz~Hi#DL6H>sG z{U809;ykyDXZn){b3N0}^QtcrcEC`)vpc0z)P;{=+EM6e^JnEJv3i(u*A|9SrOV4G zM_cBo&tQO5UqUuPv67e3WRsWu@{&(BI;M8X%NQs!d5Ox)Sjx!DT6wvYGV=0kdAW=- zoKEV0q7v{CPRbEC=fxJ}8%Y|f2aFWFlvadfz3ztmXF`2VR`xDGd`Yuu6%5i z_YdX$UyLk;<^3YGZYe!ph zzm{A}we$)1Z7W)vCQ%mR1sj%8QXfc0{oEW#{n0%a3n5WI?`D?zo6e)X=AyN2#eHy0 z`4n-mOYYV|umSN&&M6II`$zQ9p1t9@I|Zgqz;t>y2|2f0wS9k&y2IZ5Bk{`T9{7*S z^g=EhzhuK2=|bNwBd4oeBd1MYVdNB^3ggF~{}e(o7%6LQ;mu?*_LZMclo$x-bKK}? zC&NkOP=lQnUSqR(cF=KQspsH;T3BXlU=&GzCkGKM5J2Z{m3YZ;$8OmKe8wmz%Ii^LqnHTf*ybxyp@4+^4 z88+nahjCu=fLdbOX_VjrXb#xkbya9Zuyu@Np8T5wUE?c`9M4;}IX=NIT3f%2V>3Kj zT#>G6n=*>f9J__1sCqHGVK*UeobFX(axC~c{60Ha(Hf}dy3+)z$p)yuZ8XTa5#%h8 zO)CGD>(txJlAYHbpVr-R?w6WLlUcvK4}Q(cNAIs_p1(mnsEC@!#(l1u$Af>Tu~IMN zw1H6RE(Es#!PH11W7*#0n<-TPW!mz#g@SO2@$@6pq+DZJc`!7RWWBE;s_FX7hN#@J zGPbHR>T#+2$f48#4&AhRW|Dq8_5nTW2&r8;vd6cEM^yJQWc78$U^k@N|JDoF zue(*eQ;xD1RTCHx8k(#A+g*GAiaQKm4Qma))IJ1`C&!WK;xnbgOHHz*gpKu^ugMN4 zLUX5tH?{bmx{SWf{9F8@2|trF@hc-aG}FH37kNc4loH8-I3@YpnoF_O?PF!eioHVg z64R@64A-4qGJcE4phxhl-*G;Q`(OhMgZfRyj6VQ%bFxqpNfMDG^F0pun07a1Jp8VB zgcjA!?B#|tl*umOUPH~@^BYRxUWk?8yC1){s4IoCQ!xAurO+Rdz(U*=+hQw32b&g2 z7*Oof9b|aEq3~8tTELUp{mmI4mW)_@0~+Su#o5WmNH(6TDQ>W##InLMHY~aCGCcUB z&3~s?4}Y`-h@@P(_7G`nM_&2+Ee-sL%{A5HOa2D=nI%7$$WM;^Oy(yXvS%9S+woKE zsRD`kEM0<^f6izwuEoCinCgjY+uKRT@DgDsck&v4*WMg|$DXSDpi9R4g14#Sq#UF4 z`M!dMIW=chFIG->*&NFD`#&!4>Go!;IHzD?pypE4UVh}}2skil6HAz)sun#xlPiGt zzvTgT&puj$-9SgJ1%c~?TO=%?6lMgE;JpmSLOR&1xuV=DK2~9m`{6qWqzp`+x1rev zHN@o=PTc=+3q3u5WD?O!PJVz}hLy}AJnk3U?7lVoxy13YH{G7ca zne#VpPM1GLK2;%;HaXa4QbDYEKz7%fft?2zt6+If*c++L@u;B`v6klm@LaZ~-70Gz zRg~rkPsdci@L({2rq=!Ov)B#xv;CXzrGAw^fzN~o zF;i8EI0_g|VU~cDOD-63nIF!6{s5^Ju7K^=OI%kJZC~Sx;%9G}8FPU(%DLSuOwzZZ z_|LXKhqoa*pABtNopDAH&PLpmAP?Og28;ZhZ^6)e2Yfi$gNbmU1~3^KHtYO2W&9A1 zs_apk8)~?)p6ja9Z9U%?MpQ;kADP`VM#RGX2(=@Me>#pxz%C6~FUg9w7Wk|M2qK*W$JkbL?Q>}+5Sk> zC*I7qz4_5XcbXXwW$}+>>KnFKTV0Ebjq>2Ui_w6XIX5T`*$;bCpwzD3T>op%#;MQ1*ptmq=&wd zKDS?Cdk}SLqbwb`k6jGyq~$o0SMN|&Nd0x6%zktucc=;!iMr^rR;c zLw1?&Bh&3@8F|3<{oVVQ*_x8OjO>&blBas2$su!I1qA{&e^-uK$E%*P-J6q%RzQ4% z8C*9np^SSlFnno})=bFNhDRkmx;d66!DZSH|G5_)UgTqYJC7PZM1HRpzELxhK%zSH z7bA{}*upO_Mx0UVwLcm0@j_Ck^!G~AXZEHOk08@k7Z``Slc&N@c~0`r$z;za&R^tE zpnxd>0T3UnBjHrca%OkHh?>QSabCSFz!DgP_ye^a1idE^4i7k88bf7CX$e6%QvTa8 zD#f2vwxjzkC%w}fQ z<*eQ@=XI^#po**o5cK8c;2mPGQVf118YqK#Q>He|V0}1KeN>P(*UF4%il2~TuOUPX z5eupz4^vcjBjwB->eluRycOi{Mv18 zIOhvmO6h&G#(}dk#B+59W{vWIh40mJ)ykF$ zvO@GYT2{{1ndR5kK}jr)kCTX4fmBZ-wf~P$7mV9$@|V5+k37a9}II={cs;?35BSg3IkzQfi7S*WAfg>OoYFc)5E z>p4L91-cY2Ytc9yukjh4+@i5EUSlXc)?lX#H&dpwjO1pW*Rn$JF<#>)OaMEXA%z+{ zUmL(q;FpV$Oam2QXp{SE{@(8WHDy0E`PDO=mC2laQgbHjlhvZup5E=H{M}c-p}ttA zUV`_W*`5EHZ_ck*l!a55BovWv%C9a=fp>07P7N-hREc8@S$3BAq3H4k#Omn{RtLG1 zRzIYk-CvC^$IhKy{=+->m~&P84{t)PYyq^AUYcmPfZ}Ad&7`vamAa8Cqz8G^jYrcI4JR~k-_=Wo`y z@x?p=dJ+F9azg;QQ&9j8oKIZ?c_&$2l*JmOGUuws_PkGHPhTf!6Cq*nu@?h>lBVQ)(nuf?;-dj79{Mn%tY{Zc^5l}up-7}Fvs2} z>3ZrcFf(&h`@cx>>5Qw;x{mhKksEw^c_LbFc(FZpGxD! zsVyXK%}(43T876j?wL&5nE06*Pm{6LHSjP&O{7VJ*V(Zy`NADHq@YXqQ%oMYfd+(2 z3T-bJ8^Jv8NwZIk-l)%aoM!49D-k3lzgco_d`woA6bwjcNxcem{W?F_S=k{{KaxZ5 ze?ryvn9{OQdWzE|?;(4gmwE@ICrQGWEj~Y^ zJ2fL+sy0C@x#SBO#2+DiH&@-gxYAQKkDHi!uOFzc;%V;OWc&2XjJg`n6-f5#l$f1* zd`>!_0)~3sZTC(Dhq{MQhx+aaPLb2hA%#RDF>9oIVj;AD2ROP9tPXXD76vYH>F4Vh>!aJ@O1y}PsOk=ja6^+0tvE!|U9MJLt8u-xe>wf5ui{RJcTnBaSJ zWSIQX4v-^y^?Yvdn#}X9Utz4tjibvxH@}*UAs^9W=UXs z2LayC?k6Cq_qln+eQE})4nVt3{qKEOkHO{^?Y_s4B(dCszZNs?uXpJ_vKt7t zWPP~gQ$Ujo4To;$&efyOZcI?QD_HC9u-S2s1D36{Mf(p8XgP0>*jEa z3ir0M+OOh$Tv5Q^^jq1yb@*g1lRA2`ij5QprlJ@pYVe{8vx2|qzSysVnZU~?kn(A^ zZYO-xm3)bO(JTCJThq^J82MaUO)ioYOear6Znu0!xWfLpEx$#Oh=g z`)tG?9QXt6&F!y16XV=6eJ&^V5WB-D_G#59OQWLF(mFS)qfYN$FfK$K{XI%my-v5) zDStAk8wl!Tv{@j3*vmEkNE}hW-GI8pG!&lH}*ZGyA`Ub8Z0=10HlUE zh!%N+vfC>*7b z%HT8oni}Z5X-3^g-F81k)^C!MW8Ix}m|8OxDru|~u<~7)cKFient2Yq-7MEsJtxSg*-P42Wp7FE+2Bmhl-b{RtxhVMU?_^T=8=qzBKPN*CmMpDt z!Y{k0 zT5C?KO{_3{3YhdCa2HIz7_ilkB1hUK0Jzlh&33J2Bi&zCcaVuBX+%1~)XzNiR~n!{$gDr!l`_3~MXyVo!-E_}J{;LBTj%mk?G`u>TlFvzt|9}sXjk3)8hG#Q#gQ5_oCz)V= zgRm7Z0vQkl#&|e<>I@#uZk>Oms!zpvHToMzinqmaW`QI-R*;t~vZU=*yBc z%@D#qit;*Pjv#`n0{w6DR4tx!wMWhTZ+*HvCTCNm_Lv7Bq{H-K7VoERnS&}FP8iNr zB!W@T|ENE52tK6nPzo~ZE{T*JOE|L+8v#S7+$RVKepmv6;}$u>ja4`&vRgPMht>bP z978FQ6m*k`nm!eGY(0pJq~^TiLUMP~{FX&SNhYr$l%ztN!{ z6xf^q-y=`RucwT5MV;+#(b0=+)M<59RUN#kqL<8IpJPgJ-`Yu6tO2GS8ScbywHFO)35 z{~reUE&SEMOLK*qVJ(ddC|^}x<3o7$Nqk_orKTZA6#astY|-T!jmrf8`l&s9WVW>xq-?@ls3g+-a^D;+|-%T(#J=FoKb7#~Lel54)f26V_Ovg!$I5 zOr4HO`CLnrxogr~Jtd_4L~vJYph6tY$4A686a9N-jr|iqs^bmqe=!sk-!-0a!p|GVSk@Cg7(_ zw(rsqw`1on-N+~!;Vr+_U(pK6E$tImvsiRPmj&t4 zq&dxHi#7|y>&WMnR;l0dw{3;o(WL?TWb4odrW4)AhI5y|r-qTw?a=^wWIC+kXL7P4 zow^NAtFg4<^j=p~O89iaSa&V4O!=srsb9WWB=xsdsY=e}xn0^vbL7pvkL&rw#I`>! z{9K#EiRoE|dgAZKufhcq9;d04Ol2jEkLst6tI9m@ym>CYTWPWX5~cGPfoZ_i&J7B4|s;U&3I zhpNP3BD1GiTHykq|29 zo-_blMq$$D3NO5AI15CAAvF!r4?{FYiS}hVV@LpNO+qCQeum$ITVk))HrTZAUi$?_o{ut@q;6EC4naSTMUg^-K&giN2|GZ*jr*nFUqy4 zT-uQ=F;A}SE$g3U!+*_MEvwzufY`^QA9ypC&M1ytk?C(7BoLUd-Oc+Or;`i_{zgGx z<9>hBkNE4-`4y^$s~xj>yeZhU*WWa$>$9~^n$q{4U%yA28>RF18)D(t!YX_wtv$jY zyQnpC-~eu+{7ohLpD*LFgy`dAd7LJ!y0efyz2TFNTg@-Nrn9otr?C z`jq)@H%aTvx2oi&g!|WE;6QC<_A_ZNG^W2(XV|+kw%Jp*W*4^kXS6ws(+bzgIQZ{; zjb&ngVlb;7pjx@b-6z#|3$K1rYA9JzNUw0~-L0-ga0g}{#I=TQq+MvhV6h6Y1tz=q z*9RrB(tnYr2p>MOWy&4*wSSK!Q%n2z-<+KZ>EAti!(>!x_IV1TDXJT%p zRl=0IhBui=9vz*n^WiFfIQzm}aSG3$EshFZM?IOfYB^s?9lKhcv zR)TLl46gyhE#2q@Y4m4v_~NX};TPVA?q7{KSTeq_Yk~HPcHz70zlMj3cK?P-}V_C6NJ;v?^*SgR83$C0P}{k#J&Y% z^Rd2zFgFBP|N6zg48paUHZ%m?{mOtnAU(4j-LC=o!7vlRS}pZOzQEU2E_2p2m{=z$ zQhQ&ZEBoB}7)2QAI5$dqpC`ekBlALiypL3t^Pkp|b#vFnbmvv(s*@{(TEn3+J=ff9 z^d|$Mh_iVERQ_NWoA2@3+blc#CYt1Wy)_ zyQ1_|o24$?!wvykG;mD*?pF7$5k`fSP#t^{SWgF5*Q9SW;L8myh8@cSb*c+>_eHgv zo{-}w2dzmo2DGZ(rTTQ-t-k+;mK2`Fw4CY_VKe8gJ1r4uaqMwn?89X(CME~wR1bJI z+z2JDH8;6B*dGVg=Rc6~EADZ1K&O8;w}-1pOpOY8mCwCBaCw+TM`5;_JDny`A|Nk!&7X_L=1Ktu;y}07DAm|-A##bi@dLBeB@RAwg$fyX~%Wy9ds2fIncf%%PZ3wdDZ0;vg2xt33p$3K#= zH{9UG@9N1hs^{duV&YXooiSiw%{3NBT(0dj?Vm_A3~ROGD{;#Bl~J+Q$-JT7evwjN zB2t>2XqP2g&NXU(L8-68UsCGRUPok#9VTnTCcO`AlylCiebHKdh(z{kN0^^7(?krh z2C(uIkzEN}H)n6oXq_C11?+oeX-6h(%JMf&CX3@eO_GfbKi6@8lQ>?@__I!2-ATof z@v^o^w5NIf>w`Yqu!kmkM?^<3x4i>wN80aVO3p$QW$O)}z4_Y_ZN<&X6Ju?*Xo24x zrMze?ZB;X&0phvlo9#%Vdt9sg;S<_>ASs%gnI?sA`0uReFTPys#fKyc8e2`M(UQiK z{ks-!U5*X$GFhUZXyU;4v;ZbuvV&|hvZnm&r}@|-Goq#sBlgUq8^`znjTqC6IKi>% zrMYjCt{%|qQEFB9@K|Y=v=%-nBk8~Mr~Go#uhT7^gdzhJV1E^+`1Ei|@GDyg$ ze-B<*x5b}w9|lhQ4`5Z8M6t|8e3yObt|CJW>8et#>0C9>k6ks-4ykYGQ>MN_hfRHj z)R&)#W!}ffDj9XFc7qE3*4!KVaJpY7Bibnnox6yCFaVjf;ZaG;Id03QH|+x{CR-qY ze1$#CPN}@x9!6fd;#Bm5uX2(-%wPT&0E|7%rDRCnx;9I)tH+aaL!&)?_Y&+Xhdjyr zKXvne<$cZ|P>uPdyZ-NgbAG{*8UW&w_2++Wel|b3?Vuw8oPv)OFCnh>#c-nz?cyu- zyX>w^okVbm;e(!7-raz8mR!klf<_Yg8xGZjU$#5k3yY4E)>IhFJj9tRA#984gKFa` z=;jt>y9up9^^_!F+S`gyF$7PvUYq!0n9-9P>*{j|FCv97=JqRxNo}Aa1i=RtUf?RV zjml!i;LLaw^GK`13^&RHZ2UW*go*sCKcQegLvpqW=UfN_nO|$KG>cE`Im=@DQGe0o z6EmhRpXNQ`5J5Xoh)ZGJuW;yEmd;o(}dC{Ldt9p$3$FIy5bGjvE! zQ)^I?an*9Vx=8;bhvY_?Yn2>JF4kM6i$XP`Sn7q4>Q7K!q7LIWwSUvz8kax>nbVv0 zE*)sU=3JR(73H?1U&&qj=!n_5P1{J_jdW8|)5LJ(=!g>P@1T>`>`r7DA#P~S>_fAx z`G>9AL+It<2ToSHCgfawv6S&o*<JUdnbz`a& zYfl}0+>AM*h^?w|4Ew)!28&%7%q-5h_p2C#&GA8o-eXnu(aF0>HYQ!}lwxOH6ws66 z020}hO{l2Lsk-&xa4y8KdnBZ#+$F^sb%lM$5RRO|tml6_HtHu#lhDf^wj3xGsPl?o zRdCiHDm#Yxwd3+FiEdgqEvn1p0Z&w%dUjaQ%%3c!1Vz z6joB?i6KjNd8=D={MYt^>b#XHGHv_4B^M(H`)(MCmcuegl3i58TJm5 z>1oU%UejMs>_WYC;eHl1Lsa)|z{kcDgU2M2-eG}a;J{U>znu}n+%pkeBr6X=BpAic z$#r)*dcs%l-yEDN`=gCNurBIPpN~EF&s1S1tDdRbgC6k7mN`e(o-3&c2L$Q@S^chX z2Mv$(nzJj^w3}eNb9kK+Lb`*VsWsKBE|9djTpOo)5i+J*nOvf}H(%N_ryKh(`(&4- zMs_8;-|hTbV`YQmTb@{&jzTh-hIB9>F+?va#16z7YjQ0k*P1kIY(0Oq5XT(0gYY66F&%6imY?V_JPVKP*3Qb;Oiz^N?l-Rki5qQZc`v3zwWk8J)6 zO%M|{cd<>*u83vMDQ6@X*7nB5SFu-puuMPr)Mq?EWnpq&oNbi`s(g%_Jt+qRZ+`7* zL3`p13+vj_JZr%aRriSK>xn&gUxDV;>FG%5?afZ)drcwO9)l zSr0AZK|Ru<6K|L2QykhW&8|@I{<62HVDR!jvEoHJ*I@2+o?SYW{TTuSy)|M)R3vW8 zQJ>tHE}43hX$qOd@TO4CxtRBau zs9Z^QSq~kcatZ#1M~$$r`JwlCRi_iBG6h1>zO_G=O}s>if3DLj1O>ugU$IO-0LWUG+8ZjNvpzIE z?*nscJ)e{G_U4BS{r@%e{8Mwue?4QH%>UDG%CE+!l=9oY;``2Db=Uu!li9#gXG8Fui&x zWP&J{>$(sOLHm&gQ&TSf#Dn5j{bCy1MmO94@k{k?yvgMgzI6h`ffO~{JWF%ct#!h8 zgbv_W;KlJpZo5Rrt^9m4j(;lrP2#~OWL)g2(bHk1O6UslOMsL|bluD+p~y9JLn}h6 zd(l}vQq-D8r(9ja2c;cbw@F?uH@`Yf&>p@D=R7Z}ewS(?$mQJ`7@-^lFBIzHi-o&+j4zUkR!Cwu7Q6s1 zqv3C?VdhAN8+0k*6RDcnY&S;BaHgat)#Ws5w$GB1^_0w_WcxG^HfYo`*t>+p_IF{k70JxC= zmrU3y(4I*GYD#{8qi~5rcfYqbb1Ig5uy zRc@s9i%91cw~etkMLP%MH+w{~g=x~{bJP+!nh_q9wJAIx`DK}Wd6+LDn5EKB8m%0p z5ouZ!biOE={)CS_ zP6|(Bht~6OxBBfsz0xlwMJ6=ZdfKE64Z&NGD~twDU^6*PN##JtYqM%|yN9Si@k9 zs9QwwvF1O;u4B~_BPS#aQX)a!POqLjj{m=kN`mB^uN}wjQg1R1t>P*xbfYmZX8_EO zdN$?a*NS(!QhbWC2>&-vf05yOL@32?K_5BARiX|ppPyUAIBEN18K=_?gDRHMN>=IN zqxUmN+gS>F_q4xA-%-qI+QHxCLL;c)Q?cH1(Z$=vY!*u zLBpFYJ_L`t^X2MBcmmN*-!K8N=1eq>H0`=iU6YcIy`k=-oP>AHltzF#EnD`UIlQ6E zCec9DND#w5lulT!W&Nttr7f(r!S@=sS_NHA)An|VdO>u_hQdw$rY(Yvq7Bib0k$5b z5#b@vy-sfoQjnc)cz`#5QItllG_Agj+70b7!PclB_m>8U$Fafx)aJZsr;F}Mz4rdB zt@!t=$l4Ud562qXRlk8ojE|HNL@kJqzUUW&(McnY+Pc2*-u5MwffZ^_JpWJRrsX)Vi(Y?oE~o$1 zNRH$UqrJ=jTa?uNjpNC(!PrX7HR6A(X$!zvO^y7T?8peG@xq_2=1;SHa(w(kC;eA% zPy0HVDpzyFPa(}-m(B02kVp<74yD_Ut__Zoqbui+WDJIgWGa|YpK(0Vt(zg84Z$s& zi^=Lr<=?taZr+jOgX?A_s}xe*-cg-^R?yY6I}5tiXWS$sor#+BOh&DyV5s<>Rn{F& z_CoEW6QW(DsRG?G_4!hvoCFE#?fYbt-Xf2$=|=%xZPkw&xlfCV_H8pM zj8_wG2YL2UM9xAeYk{*|NM`|}eBf+JP5wtR+3qm16D1*6jiU>FSzsb(!#eFHJnxzI z=KDu%5{`R?-I;&n)r6h%e0<2QzQW@*m)Y;cGxU7YEsbo? zoZn*2;E}uU)VsA1RnxscE0tl;$9=_5;eN=q2KP#ys>kqDTjhC5Cb-Uc_JzGuCbE#4 z*wr{%TrL!;2)G?bYf`B%mPnoQtlqg@>uP?_Sx_a%9r`{At@*C!uAFm4FIHowrCvwb zsOylc8|s!GLTP%Ccvh1yyRZp!&;47p4Tf%^R<{s-)GhLew9QG_a&OncU#A~+C#nXq zN|U=w?Qk=ZG&c>sqN42lZLoeuK#Ke9oHl!toN7gZWv7R;|=IGr>@m7`IuIa;(c&CwoLR=2^@^##T|F_PO^3|pb++-2n1y0#A!--NHe+A zADtA&TIOXeZxd7PQyo%maNYHW6GgeYxwgcLs7Nf%QH!o6W67}!EH8vlVmCB1uf#&{sv<3a^!55N8o*-NuOf6e42c!b3o6F%TV7ilaQ*GGny+f4=# zsfv!M8z_s8P};JKgy~}Mz*kDNJy0e(R2=+JO@Z`f14Gs64ewrY1xMU&wgM<8&vl~U zqfdQ2IItW_atL;96&)%#U5|=boX}`?!*L;7!UF{zh8vB|=j}dkQ`T00lWfC`#r@(q zgyZ0ty|rN*Nxg8aAw9E7I<47l0)eC5LGBuo8P-)Wc;Z1Tct*e`@qoI9FXg19duD*UTGNhR48g$Y2@Fb-`zUTAhab zH>`=9=O@$;2*d~k7kY-v)^P}fQ~%1_p!=R@w0b3mHeL2iB^;yxQ9i2E%gfdC3|hh2 z{#E54b7O49`;wKht#1QSwiiD zsKK6@Yp2=XhGBI~z4kPdB3`{GdF^=(#~R+1blggYJKKlQ6ynnSBiP)9Bt+&Yfdm^` zVS{u-a;1hOeyRX)sR7_X24aj`{59vb(VL!6npFl@83 zWJ|X<#piV;UF36Z9<)WioO%ArJt$hkUKP3cVs%X4^)ew1s^8rhO_YV&L~tx#&rM)~1>`5X=~DN8yUcF1f)Ps#v3 znm6B1Sa7HGi+W zu(Lh>!JZ3Pee!SPA1Xb=*Hn6n__v>bAMo!8|N1;#>B-~YCH$Mrziat7i2P7FLcj>O zl9od3KEf2~taw@WV3>n!f!o=CjNY(bPlxlyf zt39$gW667VxHIyuFS5fE{++!^xC5PoBegkc;XW0!)Q{me#QQS6d7i|)>Dv3~r+Ybw zuz7TA?UBxrs?A=i`M`CGiHl&dTrD}*-S425FMn)=$Fn5;nY5P8DU!T~4~Jw}lbPX}jfyB`Ud?LL3G9^C&cu1Gy z(4zjQ{+t^<+PC3-&jG)u;b1E#DIc>wj((9F`QVDI&-H~ysM0d($weesB-EikIoC5Y z%I%*U@tiMoKhs~NJpRW&&Wj%KaVq3xZOvH&2H?a|eSeOGtc=fOPk`aPx?gzxb98Z3oOx$`cGg9c~C%Dv0dE8WLd6kGiF>E5m z#^)#-*t(f!=5*&_0O zMH2#*LZ@_|O8*Cp66_KxB(VAbBv%Y<0#MPkfQHD{`U%iP3Bq@qqyS!tf^$+Y0eD!Y znQq9{ajzJsj3iMVq;p-jvvwyf@!VEp)A3k3$4WGe>Tci zbj!eKyM9!eF!z^mbDF=IP?)kL8V(ITk&9Gr!#q+P{nmqT@vBd^XHc<078Ve&-nmgA zTq}>S>&H3FV6}}$`xzmxAtu%duf}RRAoN2-h;9E}i>aZ)v4y-2s=shwwXbRO+Syzy zS*zCSV`TmOFP7t_;F(9zW!%%;)SqV-HQQ-(lb`42rhfb~3!5ajwYrmEG>ClXtUkn3 z9Hu2l;w8)RcyvRl&;$4J8_0abUN zE7bWvN@qLwH`dXwHjVQ%x5Rcz*q!Zr1u7K91JR=#K%MO`@Xop9ZxYuDJrQtFBS1sz zZ`vdXKy;mgfO~{@*o}ZA;d7kwT)VG*a{$sY`VrKwhb^?>Bk7cX{j!Gi_!UVkoSM@2 zQYbsrt;=)cL%7F~H{4sF!-#*WF5SL85d9}azpl$%lCte|YVFhu`FezsJp~^b^W?1<2UY3EoC~x_pf%7w(Z__IW zIQ4Qp6*!6ON7k2QHkeL8aDM*InF%nWlk^0|8aQR{)=aV=ltp6iiXQCC?QDDWU}o0t zEVK0VY{g1}O0Dc%oOwQ|myu4kret|-y>plaD1r`g(qrrGfSE44LZRLjYUkT}8MMDA z7dXA=#60lSJ+aA)^5C|_FFzr1q9hJKA@O=iJmrMMW)e}sHZ0P|2BmVg?4luZdoDR9 z2CW1feSo2rD?9EAtJBKWTd>CD(v((UO-mP#SM&3T~J)<5!&}pr;E%FQ8?f9 zL7pp|2DK601vw!xJu1l?5ew?XCrLy?Hnbkj;BH(vDzf~Wc&h1ib8m`m)Rw`L3ImRdVEhqlW$uB z@H0BwIhHxc>8B5B(z9&X`1$AE>K)x0pYnp>sT{{LCAlijDGDZBk}-bHSHcZJk!uRE z^q!-{nlzUV&C~V(43qJHa5mQ}QRo{IQvVAbGZ%Sp!~3n^Df&KIVOe9MS=U6p@CSGi z;yLX~VW6bgK8Owir=QfvwL^29g;&Jkcn)J2QjJonsntWZUt6VSl1VM7y@1VFrieDg z)3`lASU$u6g)!vnG18v7DAr{$K_bzSGJ@meBVX`)$GJ=QBL#*seOsp5^u_t4SiNG+|nmhzhxxYG7a|zkip^E+tK9DLH~0mp>YFj%N7;&o`%dLNJtA zlB2f3{}n}q;&IN*Jn3`Q9Wc^o=BYh*GM~X0mVMd1hEpV{ssIFkZRz=tjjyX$7JM7~ z2P(!+$RkWVP4*EbmJ<-}m^-hH+W743!r3|ENPGTf^i3<8_AVa+S#FmEkhOXJg=yi_ z>?wY4;UsUke=(+1g`X@_vND8=61daQC&W;btSg0 z#FQ}{`=&Wke82y$FyN@H?;M4qx=~tYn<~S^QoAeOZmi*^`yB7p!E*TC1V3?V$fef5 zLDr1|s!6C&5x^sauBFYH3ocupXX|d6&oR&AaDmmA%hNsW+AG0EX&!?7!Flo*BR8qa zY7z*nje-u&qPw18D5{UowVXwg$q_2w-Y8j6UdWD8S`+?RQ;vIWU1mW|S)@twreA3{ z33{UK{b58{tEG{`J+n>u>R#h$EAm{a!HTl@Q; z`b&EBVE-(P_I0`=*|WArzf6x~Tq!TY^vG=3?Wq^orDw$!$CNhAx5hdrzsDAwMym+ zMup32tazCmQPxAEgJM0jfuRr;Yb{&Qr>oEe$d5S#MKLGxYuODsByy~kjXcGAPrDW= z7#iX$@8(t4yz=Kf*|FHl`}ixBcL^&*5kd@f0-%k}n%h4WLwHrFS775no3J}pr$-)@ zsytSMl((K1O53{sPJYq%md2*$S`E^~oQ0KE!y`P{(FL&vq1vRewuZNOO4E#bmm4x% z6uk4dVG}kdQW{7&%ZFGDRjFvT$1DRzI0AqJP;8B{-cp^qqh9zk$6zJ< zSBaWI;rxKV@i88_$a}(Bc=*B*X5+nrloI%UBciW%Lg4IHAFZNCsIpbGT1ETvTbqkI z#7mV``xe2U#A!&E{@_%fQ*x{fTi<ywj}WJZ%9l%KHoQWVUIHXxc)UEp?)#UP~}SN*l*K zCg}E9FKB#c_&|;fZbXIx^nvk+AR2yCEFxndC}O&3L<^Qx^%lB4+s8~as`U0x4hU){ zVo~5tKIh5|)#+kOd}U713I)`VJ*<;b;TIa^dRM3Z#eD1;O2NT1@}SlKlhz%E^808r z?2_K1weQT#K~tIPH|39y|kMaR%mc$`mB}m(6Zt^eycsr zE9I}6DQ(QeFRv<+r*5xT3?#M%lZ2|X2CxJxi6$lfr?RF0_?xoIf=R0rnLJwQf6i{1 z07<2PRQ!ER-mcxLE88VKvVFB}fGL>6t%R5=%hax0AURme&wnOsI%h%q(>z3$`aCsw zmSl{(wh$@?=4XL?6$26O2Ud|wtAr>N$*1TXOnx{_pX%$M5?$5vg zmLP+OFLohu!Qs9*nD^<3uJY1Ju)(_i;tvo{Re1md^9$}B8B73&RC){U^GP=Vv!km` zE4w3u+<()__5=mEB1qaBEIs*qEK_!8ReFDSuJY7e-6(e3dvbku&TpmWG~Z#%t0uBY zY@cSS`O_P_EwhjEoa#SIR^VU4-SxeB@^`0nh;kOokh}FgmQvquPR_4>xT(87>*VhO zUoly_>MKvFZ|=$YW0}*W7Z?4!yVm^FTqoh@Uq9>4*(Wup!4Jo*)c5CBl`bE!Gq@feR{XmWh-|BCN-M7zH)J^8zf)e^oWYbj63Wg1~uf~d}9mkz{-G1&`C zeao1+W%xGTW$eDQ?U0ub;sDXxH=%<~o^V~&_fWWZbBcYG^0Dt@?Y3M8tkmR=7DRBjF7zz# z%R#3y5Z%Xb3{~kJ_^fJXX4og@)%`=T)WtLCy$GyCONf1(s{Kqf9QCkUZ@-X&qtR=H z_F>a6%`LZP`jky7dw99EBwN+->=e&K#G9jPcJ}f#KP-)iah%a+;T#l0g1WJ?%|+_Q za7_$VFXU{U4TUDO36EFth*Zzs{pd6dz(e959sfT|WS<${9nrprGKj(qd(dB=x;m{~=&wF0LJ>0o{0~oiy*V*X(tE!;g3P1NZF5<5} z*%x`@0Lh#u6LVfATxoODK3)@{kr4fR!e{cH-l>P*;)%8zMYie<3#f@ z7$1>v+;&F+pM0e@x3al&m%|>_(67@#TC>JVLDh+@C7t{ zrasm2v(E+H~Emrug;4G`QQ!Nq#7H)URftTehvx$j#K%HBOYv|f7gt=6w@o2YceRu;# zMDxJ$Ff8&X3CJGP3dD-S_}0*fG|H?R=!kPzaO7xfY8c`&jGd&!nuMV&h14)qT=8SZ zD|i&;StNkc5%niJFQDnN@YDyaN%v?V9Y=Co8+8@8-5_d{8owQXfRDaWsxT_f?cbqk zJDPO7p(Ch_Ph6zKHR`J@`>$Mpm4Wp_m;OTcX=m)C*#mN|zjIzNLO+B7rXeqs$~b zR>;48vi5@oyBVb-Y3^3|OLv}bY|g#Syr(~j?uC_qLZ)tyu)*S`((l$81xeMS8j z{~PsFal@ft&w~t+Mp3S;7U{C(Y>_3n`bGI|TFb9YAqFk0@QZNo{MPnEz2M2?fnN?U z2JOt2%<&oFMbJajPV%~@ZOgx1xVxqg zpNFVGz;KaI&_!x!}=`|lLT4bD#nvui{;vzAQ3$w*;r8Ovg60nK~sCtR^)RLk}K)9Me^ zH$Sn1a`nfqSaNpsZ<){wm05fI&o)V7r6jE1i%w-UJwDX=iEKiV&a;-BLpRP!){_(Y z+h9tOHEWLx1fB!_H49H00ubgHRj5qkPZD{O?o(o&^kf!NB{c#y1~EVr#tlHJRtP{HTQjhLc(mmUe0W6Ht$!$xovvu1o*%|fi_05j%;L$5gmL=b5nUay_ zt#596fdU}nq88oR)XvM7?#}DF(&Htjd^Z}-H?2UG5eyx?J;Y_t7s3!Mnr@0 zUez?0aJ>CF$z(KbT~DNSLNHmimx$3yjT3S}fWt+ny(gYgef-+U7svfg17%=W%S;x9 zrYn60N_HWac&Z6w{~$C>5u*9TIvGM!vC&FNtdly4;UF^xFIehqvL$DcEY-wfpVKrF z?k~8JdJrDo;nGS{#MNyXwpM5*-Od?2#&5-aq);&>qFvpi(L++_iH)95wv!r_oHQ!+ z1l7O(t4E{qP2Kg3G^*Q)@My0VfDDqvA+RvLk~oA}tv~jppKj4Pq?ZK&zg87D`7=H? zizMSs80u!n5-FMK{ai^}S((&{8ET!H$MSWzjz213EmF zY-NaLl33xLR>>ZMTvQYn_s{>Uka^u3DL@ z5p9$O?xpXMC-(8{seq5&w1uawG+!a6QPMB96CYJ44*+x-9}^XX@LBA&HY#4A%=neU z>gSY!y5be|OO-C%Y7q*bn#dCLb0qisV;7Mnxgn?cRRaLj9hO57vDQYZ0s|<1+eM0w zwqMdl<;~9wfu$Lc4Tr?1S&Gz4F02ymQ4Wz@jtmZxG1AO~BjtDXDEVy~F2Cz?`Q?<) zD%_(Flq;zSM=yJqF7mJMea^a}d_8B~5PmBQ348Q1C`9Y`!Eq#v*kL(&{KdpqK6AXb zVzkX;vAtT-BdzIJJ@epS?@hW#o&S%vcY%+px)!)6$s`#< zUfH3}#y8nl#%5(g1TCP5`IA&?a_?nfR-fS5MVftcw6;KtJYR*X{9aq z7Bwnp0^B5sYp=bY*+t=q zRAH6`sa9d^3-8o*97wK%s9RzeE-7^j%zA1JTaDX(v7!5B79YGgq?4tV7`m74&x5<& z$DM2PWDMaF#&<0#s_|64-~D;uQVimFqOHqeB6`(zCIxY|*(R%);{i`1*;1V>LnjN2 zGMQ&!tnqRUN%|~q2#>) z5oXC^mJBi*){2bSmwQgoULtk_KtY5$F^KTYs|>UL zgp#2YAc#=XuqdPyJbWO{)Q3g^1~b39Kye?c-}?l`?GRPW_qYYctzmtd)9B-n*u&nV{*HdG zIedl&h)84}FEG~mfDe&Id0>nrDb&!bV!1s zNz;}ivmxG2cU;mOY91W*7*ieUG#!k(U$udyqPduXq3)zpwsdDlNBUiJqQek*ny;>C zk({SHLd~vdpEl9QuwlI^46q%a*4TFQdyn6z{1m^x@ayLH4}P>yh;P&dP@(Iv*_Jxt zq`!+Ul7Z%(-5b5jGyz^dqF`^+B+BLS2z2fAc2V3ToBk}q)P*V4GzVgVFNuUUwHFWgWw03gd9{S_3NX}Zr$w5S{J024mi*cJM zCVgsyABBM$bhh8+e1eg|Ro|V?;$2A|yQKXzo9&WCW~PgK%cQ#E@QW(hp-RrTXv&mj;|6ZL9vJBRhU*P< zotBK@OnI&QM17X2$A<>iWlZtWR8G00WkejqHG?|(NAvhg7;~v!H!AOf>NG$4f1b~u zTw>1WldI_Dc~h$AGe>hEj1wHfnY`fr=(*ACdo*uE97HzELl-dO8QOSwef3bE)3YmF zjr!E_H>ZNDU_n>+G#{^&ZYNKUCP_$g1uS=B>XdXGRCd>tU^u*Kaf%fTP* zUa*Arh#36hBvJQvR4&~BMsRU;*-Z;`nS5Pn1Sd8 zQPJwuE_TJ9HLPPWiuR4LV46Y21$%|qZaiY_c0Pg8&alwV9bkSNHlvWmxa|}K)cH6G z8J%oQU14Ju%0_t*Gqjntqvj#Q*Y443pCO@FEpAPrNZ8I2ZKGPUH3xHlB<(f5s6Dre z+x2?Wjt;!#S@JkT&ysBYBkA3;6*unX%9)1iC_Zw60-<@+M*WriYDvsfdXy zX%udEp#&tUf3jD-D|S75TxKrpkdjiSCZ#OG@ALU7Gm}zgCZ#O)s)x@{nU<6?Eh(kP ztLB&~Pw6)Iwh>*(L>o)IYOI;6(!VI;d5X46=k;iM)t~N1kOh8{*Sbr05XYY6=cOeo z_L2*dP4lYZBs04m+B2<1*^^p{(MqEJ>0b38sE9E}7nB*npXPa0W2^KwDdT01Y*Fb+ zWs1Awcq8F+&;QCYtCn6+CgHMIkn)16cU{<>JH4u07dTbG_1aZC+ZiHTARDd)H|j7B zPKhF&&_E0Q$wZ1STj4V&Nziby>E_=|&S_XOm0hH_F620p1R`9&UG$&YMW%85!aDAk zI@tfdud@GoecZqM>aID!Yx4RcFpjn$MASh{4oG%TEpj++!cT0Gs}@?|0b17FG>9M{ z{KhpmbAzJAnz8(aTtUZI3+(E%pyJnDDj(7My+l41*()o{!%s9zQTkjReyN@Nw#FS? zWs`&Z#9gdB&q#v=HnsCZ-RaJaqETu*p__C&z8f^hv#oI}iA4avzVRS;gk|LlpMxu$ zH?H}OQhb``0)!izxNmFR&Q(yshRIqw7q}mG4zFPUFpv@s;L@%9eMv+sNCUaT28rmJ zDmiP3xd4D76}4&qHX@DVy|j!Y77Ulz;?eQ=wGqwr8EzJ>7O*Ks?=s6otV0G=_I2G- zYu5YmTEDWgFIOQ2c-6J>D&$dp@C4MFHAfAX6z-JX*I#GoJ{zaQX@(vHVpm2YGIYHI zs0J@bZFPTIp%bj9jK)3-aLIwxuB$d94pOn3Uy~V8$V#EziKjM zAhp7tr`asgYk5nLc}F8ASaF@PQwASPb&gipuUj)LQ^m4dJUbo1HiF{D<_A9n<~Dem zw+sl_js4L+TT&xsyPU;kZ-3cUo;j<;H>Qx85&L9Rfih^@v2ypH+?mP%;icG^$XL5SsT*uGZs9KftS@ah4ZRWvp^TF8 zcY@jSx);*b&p8W=O+cLXT)-Bq#de|3;>R_ibv%w+7E*m(zfki*f1fIM`z6hjqJ#Wd zn5}&-0MLbgLRFRXjkp^V5g>^Z*D<1Ao{M~B=y*?dK*$b=`xk*R5t*PGk*W!g-Yr+^ zDz_U`vfWc04Hzn;@aZt7xbmlDr%mBL+l;$skt*fbuAVVA)&ei?87?&HeYrwTtdkc8 zo=IoDW$*lgF{9SV443)`ZKT?Mar1}Hj|C`*QlO=14jrN(&**4s=C$+X-?|Sj9bjm$ z7?J5IVO@A3;P+Zi(M%$P*J|^yQ|=^{P`{Zvr0|l?bTnjkTW>S%K5!pNtvjzpt&EWO6eH? zhwUfAvrgEf{bYa-R50TMXQU#7w4A9JhZsYkxsQ8F4soPzcg2j<*g}VKyB#T^^OYMW zi|JKs_#xMowjP@N@hx)H4G!kZgAt<-z6mjRN;`og?eOg`twtFqCF@-%Hb4+Xy`X4O zFhtExP62AmH2D7Q;pv2%&A%=Ni-V+-FR2<#gvO zLqlz;;d&0o!9EaO=_4w0qkk}VCADId`%GYDh4YnR#%}BFhxC7d*{;Zp)Ry08p(>m9 z+quTB1y-O+i$;|88Rdisj8x?r1wQxZ&NVMe`yb5RV801q!#>=U(w=GqO5CTg+Q-CE{#36^GB=GE?e*@Mi7 zr&sp&ZI6_sMz4yjo~R4DbonqihL^-k7#R9g3%oEMgNtd`#(&$tyk~wppT4HBTaDZ#+YTwY(97FO5r4TAj{5lZ)j`VM=gF2)nKUmSQRA zqF=XnHj|@Vjo1uc01)J09K_|NC@ppB5rR(d&RibE)yKS(HJrI!6}T4i)e6r?ef($6 zNM+f0GO=E(uk$7f8ZuL`ctAiB#yCthq1uRY2qr0V)WZdLA2?VL-xn#Z>My~g$?zy16^ z;@8Emn_njVxq}~LDJQ8U+nERKYCU36;XRg&j~}=IS&_|`2oJ)mUi+zbuYIZmwN!~8 zx?XGNs@I4JL55`3jD|pgKT)XQ%yvRg)cZ78xco99_Pz(AgCpxi*9Gfb=Q{1CbE7;O zmAHcfvF4bZ4R?FcxmqjdivYe;yl~JSJ-gWm0|tad`F-_IWH4foC(&iH%$4WILY4He z`N6%>GaIdzY6l{hHX3qTV)oFVGVxF#EUoEwpK8Y>R#a(;8iB(j0xZactI3^sjA14& z7ynXa-QF-P)BQ?FQkjy*yBX@}8gs%D8riX-=>KJjT7{-Z!|Ph~V8_~#o-#2lkc zf&S>_1S<~WA*dp@%&v;*y_{?JtNrZDgxby&1Zg2|W?NwBpYwaNjhpcO*~enuEf!8s z@6g2IV|CYY%Iu}DWpMDtt${?sS>*7QzM+cZMBdWRI-#DU8Q`NnKJ_EwWmZWjufQ?m zjyTb~UOOtVh}VeS=k*~W$Q9CcsXb6^S>N=~c?{&W8B-ZjFYDfNa`1&Jekz#P^Z9EmWQ|Y>wNmYk6DJ?C(8IQEa=Rn=aupPZK*cBAs6a~vK7Qq0#_I6 zYJ!}}r6SOlG014EZ0Q~*z6oa5YTdA0XrT;TA;Rfm5=~FA%Rew_AB|(TzbpDUCtNP#)n8Hj#P~-cU5knXr@a2p@kkL zzFnN1HH)?9WAU*(SS9IFhF4t-P>BZ9P0&Py&kE1URZqkJF_$TI2Xm6v=Rhk$QC9Dw z)~eoG_cYX%#BY<*4uO6&3i07|wBQun!18d}c8G(@3a@cnZg@6MZMUk6C$ginY`2Sn zoY;#QWlgY<#=Ju#a6TH`#vVFUe2*fK7xNGFDdw7}&a(~G_H6grz!GC${((b;_oykn zDR4KYvQXZ!;C3DT*0ZDBDBI$#u*h#DYCh^#n{Lhg3TM+B%9>BL3v^cIwDzEw&rxBq&!>vqXOIZw)ti`Z%-~Uj8EDf)EI$nZaHT$s( z1xC*kS_KE24G}W|?J2ZE{T}>dS_#yiQiK`S!LF2j>|48fUA2y@fb?r%Q5<#)Oie?+wqN6)u?*ou8XHK@r(VJv zyhiJ?x5-X8eOBRgZ$M1VGR#2mp_*B2AKv5_US7;gelZUd5ZC<9*CwUwO;=DGMP;}% zgEGSIQhRVJBj7G|1Si$7Vrtx_*})qlr7*3hyVQ<%&v7gWToqgHjV<%4oDt%CNvn}B zpA}m+OQpqMi1`IUzXi)`^PAOOkI~O0#40+3!V}!Nm}ycc2O^hAtqOI2;aqb7APRM# zb*_0$-}E@wd|TiA!?~uPzB%Vy^J5CbWvc1>N?Vy$sG-AowngQOl~)*!c1L#Kx$aH8r&T~fn- zK1CwZl<3p{i-N7D#|wTeQLxk)eZik5V=;lTh-R7h#oRLk_mEHzspK^Kcr!UL>xG`(=KJ#fhdC0=cn_(d@##v@9s zq$oTTyLz4dQ*aURFk_a5N-g#V>*X?u(uH?buS=YU8>O>M;jSnwJugJs3|VCtCc>+b z)FFvD?ZKRuCmHo|j~$h1Gkat9*=@CO4lNW6d=2a0%&souHi1R1{;i2cEGssmi#Q5P z?7_jI<}A$Ov}o)`_5G939aZ5BV+f>2fA&woA@&Uf8X??fjl&kIu?tDuYYAtZ`Lh26 zXj56XR~j?s$k|cUA%}9We*V!pBt&ew1K46sQ*?7>Bf3aIsrIp_=?coPr-J=RF!qR< zB$^+(+d&|djKpW*nJbo}6oSJlFj?7j=E^oR6>0tt9%~Il9HT4X(JjxxZ#D>&9%} z=eQA<=C$4oTzR%*&NJMLpm~Q($cFMnFZNl8z$ zKX<&IPo2eTKtQ{d;tLKJim4FB(mBoP zLRtFTq0SO;vhf;$lbOur)>v?hy72%#FWassnaNg@*CggS%PQpK@iNa%=gsqvXC&&9 z%}(lig=F!T{?GHgnW;7B`6}^V?`it-Jd2MSX=ALC$tSU($ZI6Ap5CV9>CJB^MY*IW znPi#CyjycSZhz9;uI`$~RP+)KAU2FUptaCR?BY*MQ{%X~x+;Q&cpcgX^ z?zV_kcEJq{Nxc{I&UB-}9?hZOIbu|u)bCuQWR`3v2n3=7znw#@Ar%XvFg1kqf)vGQL$}iT%G3+Og->;Snf1*OHA+Xr z5jo(4oQKhRINZ`}Gk&xm4!1*XxD(>zZ*T&Q{>aKhXU+zlp)X>=EV$q5>+B2BfuS>B z1TU9&m&&`5ykk-6QTixvq`FG-|BC#f7i0)=wY(Q|FS%pY=@`z9hZ`;x9qiyx%S#7) zFk0Oo>W0X@`jq8pZL?3kOOfX3~7>)mWE`L8*9=2iz9664}Se>oSE1)pOMTpUp> z^YT&`!a&Ma>b1Two|yYc^0&NP*6x0c3A8#ZSrVO{C7qSgys)#nWdIpF*~P4ILq|18^!3uh z>9Yc8&PglMG{EQ{*MFVf!W%c=w4`Ziu3Lj&{g8M~=Ax0AI!JCbX1S`ne$cS<(`qftvA^<_|Xx7Xn~WCtnSdN7@hL%27A9gqVN*+buS*j8b^6S#t>VWE1j zY?K84pdKpw6RB;dqQr(W}W(#tUL8Q z!MnjG;^9UD9Q_Ml+zff;8px=Olud5S%}YX3$?oZX|>x; zDuw_ugO8kxxpxQCBi~7lR_O>KzkyN{661KJCKfJaEAg&?0x zwCPqH$YpoxMj}+!6j`29sm=gN{s}^1JB!beTysZJ7n#Mf$vxzMv2S{|n$_o=7llm4J(0%j}3 z>NUzlmHS6ShrUD-{O3?R^3J|(nHb&KI^PyTS?9}d38_?XWO6E}gLn{zSSe=}f^}or zi1@V4*2P4t=ymMd7Sw+NlH=Qk4%IUz-A24td%=YO*vXW!aj@ve(SwE;v$T z=tG{NkD~c4zNxe$Mbi^<#D9=h7}Mu4ds|V5p}KI%JoN~f;|y1;F%R;J$upPO!>#7* zS%GE5(@XM}Ejsl``c8zOS;a^*i|7eF#a*a=9zMQ4lBtV4&9gG5F>Cl!kHNGEH$K9v zh#4v+(kS2C^uyC2S#M=Uc;|Xvg?BzC8RygqzL5;!#>ctJWGtjyP60_%dh9*s?YMZ& zHxC2qx4b}?$k-QIk!mzbN%=Z^xN#--@rkM7=&h-LO*C_yo6QTb;3}hRjYULgmwTzk zA?s0_M5Y=i^j-jC0gqM2Gtw@z$e9HMG_EvWlF<+sFtUxk!Dx%!)V~2EHAY#p;n`!I zO%91Wzf|+6lHq(4znSSXea24R!m=Is{@)+55A&)zT|jUSnO7M>8n#!c8%a&()*54W zv*kbQu<0If_MWs|#uG9PX>H+DNlxLoUr(1c{e$ZT!D?Ll7`OQ!M~917GQ!mLept?} zSwLuCEPQjs3_jC1Q?Rt2%`5Ma?nO%gC+k2Nyjq;vB=3;;UD0hI6fnk_;Z*g=L+~F4 zSugja!R7*K;J~~W*aq)O0=7_>HyP5hLw7gfklFGY1aAwn&9i+DM-2;c3Eqmgf#H#v z!FF|q!+oOe*7Mty-%5YQEpfpg1gma~c$%P8HJVd)Na#>qldYjII3=wl`U@n68KEm| z*o4X;RkH$F8)6YD8_=TN@dhV|`qv2kN<4Bg>}<$dnT|^L@-!o5xBtwX-2?%MQBL74 zJ6QjL8!DRQZ=}j)0H)4YP;>kDg(9PhA)h-J3)tPQb*aYj(ujShq=PFPe0Q#J31zbZ zX$pyw+^;DPY|UokE)UJX_is#($30oywV5G4e z1yYb^zOj6N4@v5;=5>pHEelXq^*&w~>O{_sZwl4BU%d zPwHnliW|-6wfY%Wqd2Jb<8IG_4GBEjTv%^kd1ZsWaN@FIY?K_;+1j(Q?$t-IW%k&O zYUJD3+xqSb;3Zv6&?TJ4dfb)1X29d9ilSXkVHc$v{RQ+pZWe@%_yNS$brFz(H(y<4&=(_ zEJqN1+TK%47xh_2M+`%4atEI()hCP;?w@}Ls)3kb$D?Y9|vRGc#!<%z>nyhiDH$n38dRXd*2+5kqgNB!s#eK5M!y)1XM zCc{@S6rpe0En-inCjo8HJOQ@aB0Fu-r$sf6Jn}`(U7bIaJx=!wPO9T0kE`?Fd1KZ5 z&qn&rB8Fqe9BW)|^#0$5Bc{8o2Lx8H9uhbp{o;+KsS*Ly8V}C?W-AiS_fUC6AAi*t zqRxM$`;mak`*)bT-bj%%g}N3c1EmB475UGJaP`yvn=xDTJf}XW65!yp;aszT&A|i^ zS;WZz@>6)x!iOwPhL9o$=a(U}!ft7n&&^)-$j2aGbc%ipV{xAxJaA>kB90$jd)Yp9 zdvy5SaNTBQGc!{o%t9T=@UL%5aj>ekp~~0h*(yZ5e+69VJ8Rr}^r@eGWcD)0KU%-a z_Fpf5osA=DPm#NN^UC#x=Q)s+Rl!ynS6zy;QPe$(On#1MJ4v09CILWCli6_Ep_?3i z1ME5*?t5>m-&%fsQll$hXPVo?vtd}$=rkFuLAyeoV;H4S2i@5gy~1knLZAAt56uR< ztOh&G1_zhx#y(2z)P-0>PHMC~Ec zqkG66-38t3?r=sV&bIErwRFHgQ45R)$c7H!)H|jYNr}-NGCBz4WhYZxu3#q>`$T`L zc?N5>JRG}X9w1#fH1(3|OS zd6;0mL{oxQ9*g$XqAR?R37()lswVP;DF^naNVC-PonXOmN&o0fe_FgLB0N)BW>YR| z%lN{|oye;Db9rxi5xfy5K{p*s3e+EB(fvmC)6&y7E|*R5LS{bWaw!@O`zqCGa9d5N z`|4o7N-=Pd{pN4bXo;2mc$2xZP4`@KDo4j7PE^Oa3Z+b9;Obt|-?>IR_n$sT-MJf( z>OjwEAk?Hu#^77VQXC`B1*B|Ysm(M}KZH(Z?^ok=0lK|&8- z6T#YqlhmObu>tqEekOvaz#n0Mo{a^j$+rVu^%CEVj?=r%Z}Md<`6YL0K}XA3R}Ia& z#VRLkmSY^?nIM5Wr*LE*1t{ysA;+piH?$+*xIf!VNB)@)L1TC45T*g`PoK(x zJs?is(|8ddxjs(;%AJ1)N)S+YM)@lwyygvwQh$Fuqgim$*t~KgWWkw~B{$I)?aN@g zS0Dg}dp0K~V}OvYv6=Wq6v0d`uLSfHucH~bAtkxilA{u>Od#BPR1L_FQ#8zC$UC1` z8P%P2Jc+hca>_ok)7-$iaG7=7W<3WcNlg_#O*g-T5EK#D2Szt`|7OX5Y8K)-n8OQA zOuwg}195!;cx7Y7Xi8W1mB$yLYINxCY@1Aqwr^S?&F&e?(xwOS+4r4>_y~HEZMuZ8=HyKb?4+D4%srCgUr5ztDQ15%oLSP%kW$ z-Fs-MXt>l3;dQ-zF=t1uJ8&=PTaeqQm-b4v z;03w%OBW%awA^otE_(xPn1Spvqo$ z!5w(t@0Lh&?_DYDxyRUT9`wKSYZEcL#AnqRaq<@!UAWx7Y*+=_LV2Rv)t^k0KSXM! z?!SmGmbjPOmwYxCC+Q9E@QA`RAc2l*OQjDT&4N>r71Pk83|tmEmm0VzbS@27zr(Cj z&K{9cM(I*QZT8T)jFs<5c&X{Ns)6~9OrNBd^Ow;(ke4ocxuUjgmachmKBJ`AT~zFB ze2hWaP!hPgDBx@qL--2y?tkdcKO~w;(}Xy41IclB|5YAXZpkylk{lG>OHTPCQ=#`>;`BK4r_(-kB;uK@4_Q zsk^>-$vbh)A#J~`H5Q0ZWpW`-pnF)U)cvAN0omqpw0RtH-4Pe_-}_dyszjsY3${A5 z4P(x)wL;ZU>z6a^C4+9qL4O9lufhwRX#d_STaGww4&8bVQ{V=BEHET=>p!g9zM)%t zf|c?%=*8&Q(^FV--?Dp*>9wGMbR&DUbkj&d#cCv8G)2XVXl;M`AYQ!$c#XIBcB)5( zb`oW{OYU2;BYIf{=f2m!GVNuOmbPK)%KUc{FjAW8Y@ETgTi(s|@M+5rTuFO+*y24E zSc+AuZ67grC=m|}-xOYM4=-o4uD{fn@N4kU04jVI(7xDwW`B{f-9AHXT55{vQ94lbM(Jl*Q*4swZ}7&6v{FmW1p^2wOKNEJWO z8SC7p)1k?rsZrDwd)EN6^hI3eWDr z!liIQ@v;I~jkB2rd<>UPGVD(YV-{th*qHK}>MS52%I-``>7*j#EwZ>56fZd-DyKba z6__QVBQhslTE>vj$D`N)ggqaIXCGDb85R-f{)Sf)d!(3n44y7*Rc5Pj@MO5`7|>X6 z%$NiNpzJskoo?9I=@tZ!#)2Q}cBu8gx*pab3OYSlU%Fofoq^rzy7SvF`667`;r_y? zJKoS2=~nyFbYpgh(c+%18gf>qyFFb?`w{1n`ugsoJ{V%2lSbJw;P|AwWyyExciAzc z?j6KZIPGw^Ed3_!5aPlp-ei|H7z7RhLf_E~#=c2jxn03qjM?wFz4qWZa~;X+{bKUe zM=kyjYdn}rJx}P@v@g%%n!e@m^R^{vMs_tZLQ$55LjSiL~ zZCE-Z&+HCkTv_;3sQcI{T9X~7F*}!lDkm>iBfnkF#5#$-xc5_(sz+%ubT4m=e z3Pe*x)1G%S`V@6BMOmdtEMlR|gfi{N=BWz-4j9(HMha=ujpE08b{9089I$NGXEKo_ zZUKdbEzz7!9S(?!cGLZenubC7SDl4|;(B}nRAJ}^JNVSrB#f<4#KCHom2uh|x zWrCVPmE#Rvrn^z9ufNvRBe1fmF3K^#hxK-3lJ7_C;FKriqwz!!vw>!zRva)MD(*Z*XTFM|TBzIMjC{iPRS&^xzRs9p z?(%lo<(my1zrJv)-MLXBp5eVZa+0EPBO7|YcYKU7@jBzVO&TG2%$zSz30N)lnq$YH z9X3gb|8~$`k;3(${vQVIu0)H_^>v0*WKeWhBN3TG^LgrOB+VqP+MBKwCcE9&%T!gX+8wmUZp^CD6@sRAhVY}2M6(DW7?3?7pf zVSR~+?x>qv;TOLC&96f(3nMKkYEGJf@8x&ZJB&8SK`}#S{cNIczi9jcUYO zOBbolJ)(i)*?~>{F)aG!AhaMQx)Cl$g2A=Lm{c70Y=&g`hJgZC-4-c8jyupg;Am(a zqBai@#fDvd2|2{N-HsUTYgl*^>BY0v-MVr_gWdh!l1qqJdYpo_Xd)xjmJ)i`9&Ni{g5r@SX#U9)ZVca{SrA4Wt$c|jAoz@VUBCnu6O9j%GZg6 zl@SiSJ}o-IxMPtz`D;{pn#DpGMfU!3jF76%z9>hKW&OE_=cT?k0H&e)To6}2O&qtv z#m2P6q(**fHbkE0eFRK36{)`2o)@gHf+?n_x{t9Xgwc15T z{ZFQARy|}|je;X*=q<5fm|?%71uoUa#{6m4!Q#gRn5a+(Fs7*r*H4RnM=0LD?ze)O zSYKc+c$tvBiRaX4f1!N`^1Z)&Pot4{160xC(5+{Km+_jC=UF9B)g=?|N=lv=9TB?q zi(no}a*g>5tt40KBs0w<3pGuwPSqgH3Xg zz3HQBNm_Q&>3d642YvL@=g#VOi_j!a-FlDU+BA~HiOcG@r9>6``Ss{4;q$?XE3Ct8 z^!P%N{rF`37{#FnI?-NmI67U7ZgFK&gK6R9O_1P~1l=~ifRz-;KeZcAN>EefoLff! zMA*9y$U(d%R;o*RtT_~A1wg}p5&WHO{w>Mpv`Ps;;~zPqZKpd(Fo!svZGAo2 z!9n9adHyl;oyD!U*Mw6D1{irDm8}%O&Lu%h;3lMM<+$eG40v<+>v8@H_HJ(e8C_(i z^W`@u$?17^PEB}Xs5Le8=M)0Q&CUrn(=Lih7uFIii^zki`7QqI?mX08Q#iosITLl( z7*6LaLu$hPYr9Qtdj`}FcZ_x4!A5SL{a9A>-LUVJ5JcnWTbp(x9`VUy&9XP*pS zD?zMN2qlg(;@15s&aG#$#y)h0cZXtAB*OS7q#`}}bbfi&&-krz;PeNfL$=fJLqfg_ zT51WDMl+mS-%2@j#@J;R7&wmHbRcrm!+~sKFSk&FP-6XsTKnMi5h4)0XFL4~x!d!9 zYkYpmfxaiiz`aGFqLoPF>K5>lXz6M)<+105ju!d{I=X<7?Cqv$?jI=`-BvPk6f+nu z8Qxklia&X(MkZ9^{n^F7N5o?nrc!r33gZzQaeo>Cc!u?`+mB?lONM(T|G+jehstRy z5t*F`B#c&;Ny)cFDNpy}KIfC8_FE3K6S32DoGI$a+zumeWNyEOkqqWsGl4mVq-$heY|QtY#iZUGJP~$ttPau z%+%|b_K1VP-ifiMMW04oz2gE>F%OeRd_~4h;bF1Gc`^jc^YBOWMyhQC5$gB2WCX%D z1^dYuIJPWi&YGixwk!^4*W+1RR{3LdoOnjuo!F?3J(n~nwTo}L$5#6ouHaMw`Z=+2 zPjPEOZPB;K2>fV15r~COK$bLIM5`)kiA+CzT1rD`MW{xPg1Mz6jH(+DcYqfgFme_U zj9%w^Gq(5pZg-n=dbfLG{iU&GBMB(uQ`aL21AWGAq0_??fnSa8b%A(hC3o+*0IL|j zyfb7Oj*J_@W*s~%*chlDV(AFyGv3{2K4@w#VU)4bwsqfgpf zp)-T(GPk94exJ;MmZr$V&j_`y9);+sh-e~OX!5sfR|*sG#>f$vyqa*|$eG$CzJ>ei zVTVIYxHMAsh^n|S>*JF3>?365t55QI9+6Bgov9(KP*>SNupvqCO|n~c%;9!}%$imj z`q~eZChdPW9tR1l^M4wTtbaBh^&IEU8;?cOsjH+@=6DcbENMK(!3U3zN702@7faTt zVU9X^!H?|2M*HfcPVBlf+6*1^u@^XDvREy=L~c-OKA9$7ll zKS+YGXK^xE23q#V{HFl%e;;#gd&T3T1f2r2_z_uw2mdrqsD^E~aa*1S)xH9%8K))#)8^F<-MpJ$T8iLjk{K!a z9><1ahr>R`!lLpLcI;&PiY#|ZUB-suls+OcvA(YE5?)&JvVjA2qC))(k<0{9S6P@^ zYr$8j5U;Bs*j$K(p@K%U!q_uFO^tI{6yxVOoRPm#9>_htnMsU)==^|}cn-8}F%Exvx>$uht&--njcSew1Tp=D@U)`Y&uqr~`1M6|) zr*)Uq2i*byqI9J4MO;15dbpm4Sny!%rIqsOH*5xkBQw(tI|IR)P2paj+HQW(3RK}| z=8={y`JhSzma0B_#>;cn`05U}LSFXWN&jhJqr8qcd_jepXi}1T6sjzo&F7MZ6_Q92 ztEnXUNZ(3i3B6$Jf1m+WrVa&^O5=e%#t5CPwC-@-$xv)ieV>Bng2SC6zhsmvgp}=O zdZ7Bsy7BRSQ~quaRD+C(Mr;0V=gY<8VeGxtThywsptt~#ZTcFH6~$6?M&pRC-w zVZLL-?vbkkS*H)3J{)RE;XRcFuVq5<<^^+33^)3(IkF-*{Mmj3_Ck>0T@Y+a+GKmEJ4?F_oGVI;m4T^(y{;4W7ZW3h78JhC#xpu%&x57X z(H%H8m79$__0DZ3G>)rpOD=NX!{2CDx%xKWVOSm)I!epY3cjBhN*bUR(gx39!n*J#;vx-L8at>_^1Xz?TPKrD@dHl03Wyp_M7NRM$@;^aIGmb`Z7 zG_N*}cC3VYr45IkNrRbYoZmJX8SyjIVd6rnvLG+II}>{m`{DkO*yIYRi^p3)#=(wYEA z3!T$t$(#B}=|ON{ahw3dt5k^B zTAVTPM_WK`#4UPmD}UE}jz#m@JV)=nzlM17{{9iq(b{di$Km1EjzRwA@WMaZtKPw) zS0dyF(pqiT)5)XKL$%-~=7Ya|nLXVOnUb;|tIY+!(Fkb1%KbO9pL#R}SU3xcuZ!E* z3$xvq#VM=`_4Z2^g=KnD83lb6zD%H1&L2|IUkRH4O?s*%Cj~D*nJ%0+$bf3+7g~=$ z)RoseG_>=WaUy=ac~BskH@f97P!KF?Xmen}YOgvVOSr5@w_4_B;giYj2002@ZVVAy zHO>!0miujUoW%!aciRP5Ep%5eku78#n`$6q)j~%@)V^w}W0ic4Z;4v|Bo30U#6eQe zgnRHt5*>l_yJ((2J$gnIY6tn#qR0LAXqP`Vsw&kEJS10P9&_cu9(bD?684hqH~bFs zdzar4exLCB%(|ET7#D{g2WkaLbu*S$^v-fN7*@$Oe2x>wKN8BCY0mVj^nV#+tJ;>5 zaK)wl&D46K#QiRn1CZAC?0gXlh%4O_R7Q-__}52zztZzi z{bHNheD>>Qi`CqhG`%vvbJJ$rdM4-V`Uj;FlQfh3GF7@_y#M1TiXg|tCHPztnAKX| z$h5yS>m2G+RqwMV0f}~rN6qpySY-2yda2J54hW=GhyTn%YPdBE6}pzVVGM$<>%!+7be(2cb)S{GZWvX2T zta;TXsCXs{lN$M~Q>nLKlrQG}vL6UrV5C)@x`)R~br)9xosfrZ-rVB7-_`iQq?YdM z?F>^Vm`t;Ks-Fh4X~(6X&|x3$siC&p#PkA?^gJhM?=z&?BZ6pF1p5@CP zrWm8_IiF!)?G;;c&kpV&VqkVq6cAP8L_us=PHJ(H$K0c7~ zC(q%1PyAagkU(aE>nIMz)C`d_-O7is=kbPnkc76!X0qKrZXCxy!ho1)$+^b_M;l^w zy~W+ykSn3kJzHe?R;cIbgWgO=iBNEB*#7GhObCUO-63nqvl$CM3rEoZw|}SHO7+uC=uey~3~sG*PXBwsk-}jOxA|A9 zpPmw!Jr%qdxE;tE-Yycl=hQU8fgRCHu}Zs$F9Yz6Oq<&)Re|{d-8f>T90?9Eo4}Z5 zR;sm95%HnTjeM@U>9Hihm~|dt2mnONn)q$yw+&$UY=8`N4!d$NRJRSB5ZtP@pFGVB zt=IW`s2=qN$9`Fmrh3lmuIFf4Z@1-$DrZ3RB%DO%!tpF4vxslT{=l`O!0KS1*<)8msI@&;+xoYsN@6U|k=g{&Ce~J-^PujzeCML~vLFwti+bq=UwbX;ZHvyI_ zGN=zmBCd>J^I;?1mnN3U{sEVJI8ygFn!%969?V4iX`G9ui_S<>TANjPVQ@?E zCzdVY06|iWn`KLwYb3@EY=`?tEW$g4u=*t@BKm`Xr>}>NQ2ZTKNQf>^?sW`RX~dHY zvthrl!aKe?Cz#3Wd_fH#oCUVBs(clNWsbT&ydA^asFQ*?L5G^hppA*>h|F?+{RN5n zLV7;>Lc7M`z2}u(h_ukeLtOkQpM8u+uU6iE^-yp5*;2kEUVe5``I2ACFVp2`|FiP1 z=d<277hYIPPH!!)^J;N@MJ<2Q`=YD279w&uUwNwn*Ot^Xmqxq$v@)6Oiz8&jD2u(&+yr~Hde=$yI(UJtGj7$*K|<7hl20hIe1`+5 z5)bIgRe!zl!gwxCwy=3fS>3e?XzSgxLNADAcHDAQdkD02k|Wwg+iNN&t2EYaq*2mB zNR{_P==EOxYfLNfKbx0b*i`G~*6Ix@l&>DW|x*r|n4wGVy=BD*dh8FX&A^3>#TCi7dppYF+I6_hn$WTI0 z#Yy18CrqTvCga(Tg}plUV`=tiqg`yB>#_2T5K85yMO z9=C&n@7+j#vP$y_hGJs=%C)-v7N@4nRd86=Sa?X`0L@-(0K??(3e1uiL}TQVWd@-N z4~c%G9M$c`LSgNZUO$uy=`#2@w?FFP63&QDEcd6F33f<=DxIK95_EHkepEiw{JLGf zy5(!XliV7E71wZonM<5$$Jc-!$vinC=4l>_bK?&Hb0edIeG(^C8*nm}vgSz834f_s ze1xDfiXwEnX5PT}@EpURNqQ56MqIBdl}!z%wO*^)jIpfSJiTViKdSDMd|j4W!#(F< z1_fQ}b@o!;mvsTSMj5JgRsEzu7Nw*(2JBwQr9u*3#6$iTFh&Aj%uMV zWr@D<0Ap-CC%*q(PoDXQ*%QF}|CgSik%6l4n(M#~CKub(FN{;68XFpP4^rGDu;p|K zz~%S^k59BU_%FcYKS7Teyjdp5`PY<+Hl-ZTZ}F-<3$X%bFuQ$f!X+7~>M_8o3e{$a zz`{CLT~?bopR*Zl(OjZo23-|u-CcUwir=P?P^X2QrQEOkoYRl1 zKN~^^9pg&xTZOT=yS5i;jAP7xB-A%ZBkuoLP8+oCjM!ZXln*ry7{@t{x?3SN#5Bu0 zT;6Tyh|L^+^KLD?*IqugkiYim9QavIReU*|#9QRtL(#!3b?#&=_PjjC7na3=VH{R> ziT~{LkyW-YUeMVQDYnY^VSNv{s4|YJHi8r3GMGLIm__HtCmCR`y8c-Pp<4`@?_;Qh zlcl^2Dcw(a^@J6WAqU{jMdUytgSnRFP^JzyQKI!LF+LWPT@!1#b=PNospB0!3bcrW z7HijE@tQ!3bB&zw+2h1>vfbSs45FjADx!T>Nl2R=y=MLdaU7;;fr$35ArSZ-U6Dk` zGv7f)WU7m!Sm{qxgZM+a6nQzRU?IFI+xA3y)NotvLCst~S}h#}L|t(!c<~Srwr?tu z{p9eUq1m+0fJtUI-P%)w^ARyci}q9h!FNgbb4jPI=%q<_7`uhNP_8C3>W$4+&SLFx zp(^w@TVNy#Wr2aBRd(g`f_%f53igfWJ}-zie5uB?eV^AD^-{sEmfe1Jm}asMn43WP zDsvM{Fyl;qSEwsVosVNdK}^Gf@rmCVu5MC)9tNjWAKkC~Bh7_dgXi+VRWc_~+HEO9 zh)HK&=Broqs)K)+C1Di?}@2idS%4-&<7NihKE+TK#Sls-? zjWgrN>{9HS(wvWq`x4XGR=YrGv*|O~zv25&u)zr78tEn#90_T6ZLy+)y=~eDo9L1I z)55uyU48#MXNK|jAuS9)u}7{1B~d|;0XB8lVMC{j2|4hIgL35oHP`%-?`-^)unk|p zVovBy`GXfiDS(aErj`$6^0YSxfotc+hlLd~#MoaEn>oki#G2CB+PfYUKUFe%>Zw#l zEhD1cD3qI@Md>u=^%~kUTsXqkh=(^x>|ArPl&D<>7*7a+9p(`AW!FBE7C~V|kgd^@ zzbn+8>f9*YT#PN$MreHh&Dzsg<335CUC5a=PqJDjRfcuH)Q|f7_wA#6T>x>g$Rss2 z2Bp*|G&tzvLpb%zjg;nWSUEe3CCwL|9{FQ7eXONsr7lKs9z_)%ak3Co zDGOM3dgZ9Evn;__8?4jK_=gf3L+Gv*HcknNEdne6>J+&UN@*jElKa^6E;gpGa8D1^ z4UFBe9(*4IXT?fZMDTkou`@+rlF0scf){IfOE>xn2A9BT9^IfaGC$!_-||H9+8a;LV!v5Jk;yQ0n$9=Ba5lO0lR z)E|%Q7iJPUvV_OUUaFSxk-aTE&ipQ?9dTx;DMv9D5ETKZ`$XVknw80RFcKOkd=tA@ zAFU+N#HKC89s>sJ6j~R?{bdc);2`FNt8?UBz}W*PswR#*HiK?GIYu3JX$=IOa{1H~ zGJ&2PhzguciT$C_Uc6XPcv(Q4Ii`j)w5HQ8%iY^ips#n|vIuPP6XmE>Hwu#!dL`Tl z*DKa=wJ#D8Kv(kxfFts*lKlX0%G_C>*kc7EOhRGQio^z{BT1fU%dmUcm8WN;b%2~W zG9}yFTH-)Xxbji+N1n!U8}gJgrDu=Px#s6`g)S9dfGvA>l}ziMyj4afg9FJ5`;Vm)rHW+eOZ1H zPW%ARJI5zH_-i?(aDV{kpGXFJAeAfGVS9UEwvC~5(Z2sT&7)b@s57)fcvZrW{c`i< zNU>kNaZ{pgT8u1%(tLi!_#gPE~EjI7le(gDZ{qR zF_I>oG$ujkq;D@=k-_k0^8vJQ3T6ndAW#Fi2obsFNQ;8Po52L2VL6}DT?`;hwi8l~ zNNVB9E-+7ca*ol`mU4stS6cOe0RpNlxXT3Y+A`(=f+B|gCbC368;{DwnzPo6KqSF} zBU;1Tn4Z&?A?2O_^<_>mtX)eu?LO^XGn&1~KQB`1&_TmgDwZeyp^?%>JTCI8zhg-t zUsv+D60;p1ImoX&O644q%vQwVctfdueTjWTX~z1Jj18sf>r2u%lxD6k$=t9`;CsD> za$}u2jdC^C$z+E0l=imL0$F3D26g;KB!QN(uA3Z@jl*ekc&*$U?`~Mv!{7Wv>(|O( zW1WOf3a^!`u}=I5gxAW|Sm)69ay8b88DDsb9No zeSiLe4VmlL6v{)Xyf@(~8TrT07dbermqmvg(dr(F+2!J}e*^eXc)t%{MqvbJ^Ymal z;#Es|6h6yIxHH%fd%DDW_@T_g>K@VFoiA$V7)T~+kts94PXYyMA#)hl3JATA%*0yL zz1xwFSA+t9M7NBmtV&K9FHcE%WtU|n$}31t)mxyMUWJm%>yw-^UY=ecEtmI}_gTk( z(>`gcM^;dTaMzosDGv0XhW`_R@f_ez%^I)lcf19wNh^t)$ z)S~jr3x5gC|aZLh&1(mDNMJL5H_js_+i!*leKq$Jp&6T94=Z08#3JL_caQ9TA!qw81qkVMynU~?|_ zX(%W-Fk)KMM7sRluiEBamA)dAQ?T(tw9n}deRKK=MlgLS=r-(CA5GSx**@@r_)9m5oR0#V$p+%H+y+Lje(ONtY>H%)DHorfm)R zpn$8RS!5UyMd|y&OJvb^Ta`<~A=HbE4u8YB7LzgCR`b}e7T#lfpWpbq?y(vCHuL*F zzhCle;C@(A?H9{*tMG1Px=7Xz&TJbtqqH><-`g zNciH&O#AwIDT^kBx`(d(Yq-ijH;E@#Su1E3jMV;)DdW{DNg>R|O_d~#KZu2HtKB~A z4O?x13!Fza0oMcwk|4${DSmD=(_CYYc(ZA=baNH{41;}r>h1z_+%H;HpKim(kp=0a z3o;cMHEkv7DbTt}cr}jUs6W)DT?xaXgdO4Bn8#8v_n^pZR1M87ud>2OnHibQVi@2# ziKkPG`yTU(xHmFmWtykwwR;Gi=pQ;?IQQ(LappY??*X2!Q@c{&5lSd4TdOSvx2_}j zYdiGkP>X$1=&vckPcCHZ=Obv=wuYmFC#&$oeV}dK+ho=Sl&(mLtbOE`D{bCz=^Pc1 z@g;0{MQr(;*kjM}B-Hgc;TF*NvaVM}+k`f?N`w3p;%i;l@Dkc1Tsn_6QWf@1;*UQ& z?30IZTo##}=`3r(n>JIVl~BtgtHo;? zY)<4Et7S^~BZ2bxBOy$^G%7u?>jOO9%XpiEEvxF`KZpWqo-|P#O!pAj5gFfM?m_qMYH%bW|p*NZ+Bh?uZ*b2R| z!+iKVe^!~b2RxxSgj`Dv06YK`HJNx+qNspK@uCkl6@iYYOKZo(Q(3bzuf4OG?7a1K z`Qmw)DPh={*ohMNF@t-3V&B~@JwbL)nPpvGnOK1VbHxeB4k$yYMV&YzleHZLE}^c{ zS_(bgfkLaviNk?Uw*?`#FOH${y7Ca4sARnv41JX(I2pZMr;A=CH=%PZ z!zAG=$RW%B(W7+6LfCP=&`_5P_5ldQxiM9GRXPg>r%^f*d!CH~^X!UvwV#}6EEv8i zf1f{d{^@g()m7|pl_jrZ}e^M0sv@Hw@j8oGETY zu}fkkKenC(X}gi4RHGr`RnM}KU^N=On~QOP&`I*$IEaZUR>6_m&${1VS!(Rc-<{?; zxe1$0wnn~qjyE3mXH-R|WIAu#l}}JxO-y6`a8Z8sNfMAS?R_`YY_+4F=yH=vq8Wzg zxYQV4K8>oE=T%mQOLNo+Di4?DMoMDj5QH%)Tsn%QR~$v4S-^05Tr!dH-bD!>fu;b< zNp)Yg2^J@D!WRonz_c~=#&O!7A{qzAP;tiQ&z|eIqshktG@&rX>nz?^4&<3`Rbn%z zb-pXzt0WpC+F8)Xtq8s1=@=OgVb>q#qfJvfTM)w5k#+}z(XQ$y+O?3wWz=ZKgSY{d2ubzAKY zj@1=I#sF}}P;Mrh0e@OFkADj^?1$Kyqy;rG778aCJwU$%E>gY1;GXK^Q1zGl%IG zOCwc|v{)-9$?L&s!+ z(<4WB@r-M7RicZv?=Bq;r%hic(S6wrGT%dF*2k36Nf?EvP0HYd6rzB}G+ddn6o8|>-d ziJppBy)cL-7fy%e_VmCH(U$FKVUbq7*(DN|Y>}*tg#TvD5J!Pt_B{lc9+#TFk(%mU zc>TWA3>jPygT?0%Ha?oQ14WZg+Z$4+aiHLo`sIHi*iaE9Dzcb_Y@dH6bnCt(`bl_m zk;&QAuP(cY_G!hoDlLSbT{LQ>t9NcDu7 zDzK2AA2EmjVe1tdaaNvf17()|IPp^79YMeC-0b8gdacyMhWVOcVeCPZj{B$#d_C(V*;YQ}F!dF=kQ$^M$neaS<+mROM zS|N$yWfV?yZv3r`A*)jxMnT_5?|G<1Hj4Bm=9K_p~RO1oSnyJLb%&_8d$4eL^I|$ldvEXbd+zF0DRkRQE_9_vw9A zeK4FZ4#KUlsKgM$4>jEk=ZtQNi=>_CxpaS){U1knCR?q4&{m{K^sf z&Sf&@%j;!8V8Cm&o5W!JG+IMAl65>gH_l|}q}g9RFjrc&UN|s!{nL7f>A5~{P}=f$ z%b+~g`A3!s;*(DC-UAQ`5wQB)t8l_r4vDNS#gxuJS?DnWt$#7x`Akdn3SUzbUkmo; zw{G%JMqn3NJC#&?-Q;|>CDfUEI<{bS>rR$M#6CGKp{dH2icXR7K70KDpK3ggcdeTm zP%w5FfsjMX(&HyKT9EAyivPLR&fN@n!QoJQYzhW6><6mc7n(YjiZhZP$zZjw#a*ykUlmNCx=CSp%&svelfe&={>V05cl zl-_24oLpSO|HU88V$+j~g)Y9S!k?-}NTG=;2F0sbBTYUodRnp}cZwBl=-fc(nsNFD zWAo6t!Olmo=1C6zx^G_DzUkytLJu8KCjp<%etb?08RG>zR!07eG;)%RuRNguHU@|w zgqYoEjaEx332=byjeGEp7FAfYZ+vV``ZUf>QoR(T=1?JeWDeuw>F!`p-G@ojSFrd0 zVeMVOqpYsQ?+KYC0|X{W5KyXM@ft5kP>JypE&;4WCIk|q2)4Bt2U}5RytGM3IvL3D zGC+I8sz=nGYU}^hp3*8pRWJdXfLcM@(}Rk)*4jNCszEITMdtghwcnW}fXDy$d|#d? z@4WB6@3q(7d+oK>UJE;LvtGwoOxjMB>i)nrsxw7fJkPc8z+m(<`{=ZJ8EYoWZwg;i zQj zf#9j}^1U2NB&hC5$oGJm^{$jqXiHdnTBLilKQdi1&d=E^iH%@70zX_L`J<;0VT-a& z2yih^HC5a)aVBpD@8eQ!xP5bE}!9gUUAdIH(js#TCd$?lcU%n1r_gXt=Nm~eGZ&& z8mQ_e>QRLc(Xj|rV!$J;0JNS;MmLLa+V~=^@hdG|6`cqQy-rxt97j}9?CsxlX6wftr_+^nxJxgyE zIh&}eDE*)RGBlJEd<4(n% zQ}Y%P4vG{Zm^}}kWO8`vi;eH#i}J1HK)Lnp>l6+Tsv63veEDUVO2 zB!E?QqNyH6qKbmIMoNw*a$x4_WCe$u3(fZk5gUhqr+{xv-U}DTvJEl~wC(BF)1FL> zeNlM&BAv@s|0*@=x}4-l4kDsXo)zHJ^Je>$D~(hpZEr2TmP!{l(4oaEM+qLUzD;BF@0TJ|orSuu&zEc@a%#ozLLQI0wr zRhiNs$@0o}+bp8>flqhuoO>jz@C>`Sxr6FQ1 zQ94D5(v%zNYk4Q6O)8`oOaEmpX9A|m~jz5GL3Lj3b z5&1$Yyw4e4ymMm3zF7JD{_-7Av2b})KW-vU2*|F;k(}_wLVV4)WekqIAQ1304tExg zN}iAkzn>}Z3CV-Nv@3gC;_JW@`~Daqojy9dJyFP~qtgk$ox%nco+cMI!d%i2xe5xb z2({aaI#7Gx6<-3^xJz_<=W?qQOX0XRT$07E9SiS^bo;`!rJuyBk?8!ncxP;`uVnQ@ z(wuB(;aSl)?;f;xTV7=Aq3qp>hZu^I)iQp>%_@LnYrD2af{M5-sEqQm>}`v8=Vj0J zC2k=-h7m5022*UGoLzW8 zw>YvVcD;D+l`&1+B?L`)AJpF5PhFOO{2I!gM+lpF9CcYXvt`|MK4aN{L($f=aXZW>9%0_7{*;E9 zLdl$Agf<1zjL^)gt@CdLlzg3Rw9f11ZXdA3qUb)e6N_EK6p+>WDJypQRKQW=0%Bw9KL1RdTKFO+J9PexqK zhl>7;Iiby{1C=& z9TVK#@-)hNT-y+BfgL7)kEjI~xBW~GCn)D&U!IML^~-ZTeo%um%;hBK?lsgj)+AU% zzJ3TjyFAf|B3sHCB>BK;n!;IpG@PA<3s_7wxJQv9a=Ij=$P8-gi!q5D&y0h6PHH>S z=C;?}cWca5|7PvMOp;$3I{F%`+5hh}ZG|eyU8-t;EOB+V%DS4JH9PB z*~x-Ez=0ovaDWxF5L%>kZZB;ZAGS?UEA4NUJZ@aUB}6NcSg}nhpL~}lqx{Oud7`=| z5X{3G+3bHZ^M}jLeK;jd@zm`3VnD&^S~?X1yG*>@ToRvlMC=a~Ber9GSva4~h8-gn zxIry5j6#KIT|19wc5(N});=WDU)jcXVT=jbqYa^UpW6>_kl-rMT;Kfy&UTKNP*KqhVXAhBs zs=RWWP12e7K9RW_k8g($V}{U5*}#N(#6ecVXq=m&$~^m#ZQ}Vf(YEIIpqjL1BfoBI zcEFXPHJ91eIJ@ZQ5PLz$!B#j-sUHb?=5bwi9&He4F@bAfEytsu@)6r0&p>anr5^U( z4$L_*$5Wz7mYy4r&u3|QwvcI$R^Ek|ddG)HOcVNTzffnU90D9+!Y;Ff7q^3Vo*<%C z1;t`sorB4-o!RW=>G%V3zre;td`be%AtC&>RYj|98JYyfs zg~>Wc-kD7`4mT_VCG)rV8ndgCc_mY~V4Xp4v>jq`bQzSIA8l&%@%Eed2&WXefOs+* zG@&_-XGT)q#=9daU#L2g8p2&_tU{`;RS>P$vOo~6EAvaqW!10BwDRIHKvnW*O?YH;?vt&Z;LxD>> zoi1@OB?@dw%x-fzf4HOB%O=P4H#YS*^^wnp*FT%mPfHb9mY$kv3=T&*+$3LYU!)~sh>c0M9RB;k+#uLK8`PPC>3@b&IaYiso2-tAq=zTc6mnHZlJ}s z>C)0@8Pfz-_*Pe`BeT@&3ov)Gu20=C$_>^rz`#2JPE$$tU3JdOYD-);`P}@t!k5>q1>Qg?U@(P^n>bF=Ol?|`@6c6A5Ms7*o zlRY{6&qZ?!Zr&<(DA!k4?e4Aw|40JJp z`f+ktX;xhiE)Q1qq31}iFVWCa-jN3(Thd9BJFvg$&^trl>|)&fF{K|vpXkocAD8< z+QBl*l9Tv%Ir)BB!$$wVZdmTo4IBNX4I6#jhB+^}P0Kakq-ly>)%Y4oWNAZ3iwv~D zc^6>Ks0ro@&N|ul*pk-#vubjn{2Zv19;8l3TdHM9xgn}Nzi-xg5h)nOCwBsvjW-J| zgQ_$h&$ulFIb-F|V((n^<4i)B4U{w&dl3a+6E$*Y=2K!B^)*yY{}?%v2X{!vT!$~+ z^r9X1EZw((+x%y}PN6SS{~l7Nwbhl%nlGZ?>t$LZ;vS=|5@spKpG>Rn6gq5>RdJtJ z(N&Z91x<7A7zJ9emM97z(z95OE-6L$F(}aF7IFCcw|B{5+tgVmkjd`!pY;YELA`PQ zo*qyR5r{}&8kTaz&%l!Kd0WY_P1g_;f|LK&^~W?8n;tZhhRJW*4IT672#W|y|CD(; zvkD2hmPVyb>Oc$&S2y3|Kh-mSYF?t@ZY@VCeLkzza2-5 zfmQVz{ENQ0*OP;#0w0HF&%l9Mx%~$SXVBFEuQ{FyI79^IK%o_yx5&;Z8z&;(SIlaJ z$By2fA+kQDZyi%FxiM>D>w>&R8C7vh#lQsmk<5F{fK68R{D7E#cT5t`2C7Dh`-E1N zf2P0Z`kFq=x5$8b}XzPUyd?lr^%bLWW~`y#LP-gkW|W-g|S44FL|1zQReIjc~kZ* z7aM)12~kFE67d=SVTS^jUqKy1iy^^V^CPNz%l-d%ejn%m*Zgnfzn%Y`{2TuN$bUMW z{K}qMUI34=WW-X@U=@AIf#kVNZk2t%u*kd8NQh^Y(tAY!ft$*lu+R1j-^}LCQ3{Gz&%;W4RYFe z&6l)MqA_DU+FZIz+NhuLs1zA6Q`|O2b4e7BucT`=xJ8MI>^xvPI5DJaoF?tp1m@;5*O&_z$cYO332iD1?6{iGs0@Ty9z6j0xS(mGCsg~pJw&f4xO7PP zB*=ghRs^yxt;`A!jx=eZe_*oAS3mnosz zJjo{(88}<#L`wUGPm6qA3`a=mHD*oUq|G)dN)P_k4Ggps7i6K->Ui^LzGKn5`HnZs zExTB>o_909T1w9kRN*Du%(5TxxFo}b_w8cp0mQdR_p z`{t7@P*=bt3B(i<<~QGvoD7EMOl=VGn1=|&oL@}Kk**+Zl?eJjN;>6=SGl#P2{8#F z6`~65X7Dr)?96V0K29tLl^K;=h(>(spQ~NqaE7wS&5_L#oEyHu86fxOkxfqa&JZEx zEN8M$U#2;e3-sl33m>OnOeKgbCVTBFN5WXMOeJS>eoTcgK5mhT6Vrl5E0bmL*z1lG$6EQC+8;oB=zF3)G;@YL)dNtj z66g~H$`lg`<~U*ACchJDJWJVdsL4pF$?N2VpBp5BO)GEX0zqH0l#Nj3P%aAqnLsNU zkS_;wlcyXNnYt4@e?M+<iGDal)=a#o?0TrKi`#@2QU*8QySmXnL7~h7t_o?@JO()rWa57Rk1|_cN>I6Y2e{jQ5q=hn0f_%mDIs` zZ`r({VTO%6$PrV*C%A0f&K%*b$sY#QsY9~}3A5nr~3;NPi3bYJ}80toa)v4A(eY&XH!TzN^p%u8Y>94)%G*s{H(h%I|ppWXUI z0K%#_`CGgl!Z~RusIRZ);5+!&g9yR6x73uuG>T@X3;t;U>P8K z*7LrDK|Pq@HYcahw2FICe3dlXT(=SJ^HtJN6W|pqzOR_)3!#3I1Pgt)g6cEE02d;! zn@4e^+LUXO8`^0=&hR$goPDd2-49cxp= zpyC`%P-;S+X~iiDt7L6$b4nJ?`n~QPc(h4@NV9yTUI zrEjoT(bg<%xQb=T-~K_avn%_PYO{y}k{7eEa&Ze~x;Ume%AdCj%iK0It}_>g@Fr3d zQ6uT!dC^+x7(z^DAHHUMhN<4XZwa{Bhs=PRL{r3`SAH!1B;+^SR4n>5FR`@`$#dN% zp8nO_0g)3cBfD&P8y+PPo>9wlGT)Jman0Y+T+R*$Ce*wYzDox}QtyPMo{@Fw)hh|TG;r9+Z^!_mr}xHPBA%-qYfvhuBUB5h#!RO+JFEfFxi zDf~@MXy%Yk4s0bDDT-~7yvgB?TJEwU&%{Bg%Pm@J=MK%|m>o`e#%z$za<4g<)e+q$ zA*sNP2s(I+MepZn&Vr1zO)lQqyj74dw)Qb1{2Q^76JO8UA}}GXRyx@yMz78$l@j}- zd8u?>G^q(#6^=`dV)j{&LW|JkDvKUyyi9~dL?FnKhNm{j7^JjWsSVPC>Pkn4smA=< zIZPbw7Ru;aNbpRt@fE(=$uy~NV;pVZq*(l33POKxoHXWk8slahZLfOC(ahQ)Lv(0H zv$Z>#BU#h5S%KoeSAmn9=sd$4_A3fkGiZxEOy|q9=QSwWmlG0qM4N_r^x#w(F8M(oQ#6<*T zb_9(dH7c>B&;BHq(J#Kh(x*q0pF&SH@B0&o-7`@lkDtphh|}Z!R#QXftlcRC*xh9D zk4gf}-3a|ZFW?H;gjh7w#Nx0(d6hs^;ij-q1FXMT7u zGtc;u1>2g9_aJafOU!ON-*%#BwX*bJdROh)&!8yncA|T8dToMv@>ravFvC~ck zQ+s9Abvw32L)$`wv8^e}L_e3MTbz&fUM$`6r2eC}YpGv?GZ$HAdO3osC?~|K^y6We2(fWY9LsXle z&!Vk3g(A^;Ke3>biN@9rk&OR87QDP!EWYW*{NkU{AI@fnQq(KaqP zZ=B-AVL*Ci?lt|V_(VwAFfyQnV&qssVB#L#E$}`4uGUJ z=F?@DZ^x=wgD`$|`vhG%)&xfgXK2caLqoitRYfgUz)mU=!Z1 z8J~{syxWJBZ*S?Y&}h0piuV!R^e;>o&{I8Hiwwih*Xl5&P3`}xsP9CquJZ{&vEMxL zBbR!wh9)|LTbCL87$VaYoGsA97tYH#h{-tgUhk&(0DW8-Y}HW6_b{l~A}a5`oO$dC z_og+bYBNk&{V`?eELR3h)m*2Sq+j`^;hq=*Aa%-iq>} z&@E-6l~HlH%FLFCu0)|MG!?Y-XuK)yZYYG=#JEcv`)7ZW{dwYj7DVn9By);@k$aJq zv!gC?qCD7x)xvUs5KyS1IxbXztk=Tn)NAm1Rv{BNm%%pI&21PV z&MMi)Svc~PCXmAxSC{M#XO`n&L97S;MEOSCdX_qL#rCiMgO|*@hjI6o0r^h`}FMY*IHhyo?(a z!pueVqgEJX=ecaL8z`{a{LH3|MWsrZNrTWML7U6b?^N4@&KeV(oZ!(d^hpVl35z%jqvc|$uUM<>7NXS>q#ztp zQm$~C6W8%+shgZN3=vwgQR%CxdxEK`gj>#TH(c6n0vav|fK1)razCZgEcmLgj<`OAy{O>6SnG1IZXygRG2wwaKT$79XrF)hhTd)#ktyDRi`@ zb6js8mNYPvf5AzHQLDh%>4b{nLTHRfd7 zYMTqvU{JNWXq*g+WMmMTS4$z-*HO5%y^gkrPK;|&c3{lMYrF`v`}D>V9j1iF+tKdn zk{fl(ar>o!5B{8fjY{{+P5(x@+c_D7Oy}ey-8rvx?#j6MF8EK7LUiiuv0W>@jI^;> zArpq>s!(CD9`1!V1S zHD1vY=qzuMgNJ$USvg{~n7l3a_viAh8O^TM&_Qu+;dXtM;?3`PO}qdO0_CN*R+|#~ zC@{W7w4xWL0U)^1h2-mKKvtVK2t5`z6ozL!4h&1(-eYG$EnMQVhLP1vImwlF@RD=W z)l{3iKtLvuttZ`eONFYh2s_Qrj5zEwcPa*EKdmK!#Oyhr^M}Hh$$1Ll3 zuLRh*S2Zq8tNng#dY==DODLFXb0H;T4`9m*b~=FylnqYto?#X1X7yzK2#e+I3?-|q z6=B9ncGQ>fX(V#J8*6$91qwak<}`^gQ2afi>{}pn+fu_E)vO{?2*OPXEv0Yr#dHE> z5NzBPB>kj=V@ zBhD_d5oB}MYwj*`KToWiyFg6D0Jo9V&Rt@V`5n|2Ys|ATR;452%qp>9VY<7}hYPDs z_K9G6hZhU!aFggk;=dSB1&9diSnw$_lP=%{y3I@M0O^G zw@18|ZgqG|e%hNHe%Wc3MYM+o-82q9sI({t;U) zO;(&6DKV!8%;PXPYLyb+WuTH$$$=8Vs;nA z5=m<=twz+9((l23y+5+$0|`^c7jl~9fXjNS@V(o@Ip*Xag9ji^z?}X(1I~n9rW^u& z%E;wI)p5pf=?#wTsWt0qrsaV_HJxMQB>ZV8-Psl{N3)@gl+)@eR8UrYDYOL=9&fBxfG zsjUrnSw3^ERwx&#&Ir9z;|TRRokhU>nlw_~$3+eK0PV0@PJQAQEqxsjLfrSeCb|rJ z;EsV5x1y;PV&(d6cr+Kpu8dS1PN~4D_)W?!xxTRRat98UV#|qe?ihg5Z3u04IeQRx zKodi-mKRKqw3VUSQ`%5i|0gKs0kE}jw&N{MdPQBz6?GKKREX@W>qTkK&F4lQkdhkF ziWZMx<&Vw7yO%RQR3=CDa*g{9xv?B@RPj>{7De_4fj-=^O$3ruMeI%Z&B%<@HtM!dZ)8*#&}~E)ba&2CPZGB`!NRf#BCf; zf?0A-c#;#&lL2!Y+dlcHCB9FoTFJfT&lSI!OcuY{)Gz`W27Vu(aIQp`nsd$Vzs;o) zM-M0!jg<3!f2xv^G;^M3u?I!7rzc-U9^zczhLfO0+ymmsv8}yZjvVFNg>fVV`ti#1 z$7d7MQU09g*jx=~RZ3GHI?b&tStjo2u5ZI7#M9I{U=rD~s4ux)dJ|e4YqP>p4@K`%iA)I~7mV z_&0W$_jq4aiVo-#T*Rt)deZd7TaYDERp@H`Y?e+8pD%5DR+2@!&ljf;kIKF3^=2j_ zTJ;w_NLn(T%!$XzDydhJT7m!OmD>F9TTKn45TG{GuBL|3p3o0S9o@O~TdDAqjJKJe zPXEC-nMyL@2I9E&`fRrPJ#5Txio?%|{*Bk9kBaSf+@|>$?Ng+}lWhUqHTH{sRUkEc zgdOr1adV0T(HR}(58<@G5Ip2VI9BCWaWoo+^T!J=5WjpZIEckb*dDId{zWo7kjGmEuNrg8bEMid1%Iq%Tn z>CW8sk@hk&mNty2e;pKLT0XgWTQ+-kfjRI-DwU1f(tZcumKJtJwT0!R>joXR&m?4vFJoTJENEJ zv`p@`qGuaZi~Xh7kMPI4s6;%b zL7K>BEqCcSH&wb(d!^1yqfSUSs#7~egQ1q|rSbQ*09ozN6j@RAP5Qg?YsA7#!RKnh z@P?b5b))%4*Ar#&dBQeBX|~^%KXFRFG(VR?505}&HZPo@Yp{^Q10tzG;hbP@AUT-) zSzJ=`mv_p*!kRewbvD(_0)0=&pV}~1%MG4rvI)=LAj6=e9+#mo2P1t3{>Vr>@T2U) zo}cE!ptBwB#;0W3B}1C)GaYR8RrxnoGFM)cHSP`T53?43E}t^{5A)xRe@Q5eA7Z41 zjugF3jzE>UgU`4Z581P~%EEe=mveyg%5^Sx#+`E0;g=l_l^h*71Ll^w?`!TFaiY`F zdjpv6M}@f-BHiDz`@J-%4Lml(^9j7VG#?J0X;io{_9!_jYD`+_81+rray{)LfI zc6$nIF^{v6BbHcO$B*L(u@hUnMibvH&&?s8rHA}2kITeRF-#YGbRPJD0A_HH0OlH3 z0Ml`d0OotPSjo(Vq}T?j309@D#O%3U0Qu@x8f{PU$X}L_M&vK@%XLPp(s}J3K`H4x z{Eg3HBQu^al1(Hrza}oWK^p6*d>h@x$R^QtVBIZQ@1a}uchqfSfifE!*l5(N=@o8$ zu9VVdbeberP7^r-X6Hzb5xdcrqTJ;0PHmntJMN=)hHI@vU?_56Oi#FpMFeMBI9<{l zXx=90Jmugjr=T~ISpMMv&VItoyZU684pU|co|%=%@VA6%wX^nVYJ#Rd0o{#CRGe z;6R0Wu?1ErTd+O&)`m))wVQ~Br?Xbjg`O+^SWHQdvB_K!&dDxr^$v{g^tY}BtflR4 zJBB-Yp{J-FQITMqaO9Q%Csf7sq+f~oM1m{P2jT|}FP^MozyJBMLW0{5^Vw)Rt9=3Pnl~DvG`*oMSk`@xz{ir z8z4$qG+$x~qj`?v00|YZH1Sb*wWFa}vK}1aW}W6{{hFhxr%g(3kG{5am_=z2)swg% zBHW@&Ob0u8tFu8M?7Wg5P}l(HazoEDe^8IYha(5ATiAd4hRPw$4ebkyxN?y|ubG@d z(UKI#xKO>eJJS+>hPtvGI!C#tW+Kg33T%=c?YJ&|VhLJS6R87==k#MiNEQEqXjV}> z*Ge!W%2q}wD}C~>TrLA`mz%Vb!h1E)USjoOS8zbga&eb-q>$@}Zx0S+skz;Le8*k0 z;5u0TXvaLfz}aQ#t#waG>8nK^%SA+G*PpL&?eFqB0 zgPz#%n8!c89owsk_ZbeY(W5nT^WQc!G?;?+;>j=wYr8f%Bsjpl!WVYU8Ktx1k<|(h96*75?8dPxawEBCk#qSWC850wGo)Vus z%$n)3qY*ltCa87`jZ%5>okOi=i?b`zb|XZYxs_I=CAmGdPM}=3PP;F|jA^CKHPirk z-c_X*t?JaGRke#SpUq8Mw7NQ=7OgZI9l7^15##ZE$i3`z#EwkF$bj0jN=N)U9TDp1 zylv+L(DR$ED2Zo23(QlQPj{Tn^5nVOcqyu?&s&NbuxOgtIBUB=Z3FG)M;*( zlO4_#+BE46X5$Ktg+n*oRA6SZ0H%vr^mWbRVA0pjvO!7?`vv7b0NaZXB*e5dpV9x3 zUpx$K;umC6tp)_kBo~ANleB(n&|g#dhkh)%Gl(|*c}-)I%`rw-c9iVZuCQR>qa>8P zGST?WADgVONzJdw{kpLqZztYbCn?S3)_rVSCK=3^l2sz%$aNNdgZnqercW2|9qXuX z%!#eh-;$lV{~u1aZCwU%VzM{`p$W;kZsX6-^uywv`N<%N+8t&IRkLxb;t0&cTe!?0 zmEKBu(g|#2+v3t)66-?~TBA?d`hRM0@RGn?hQ<6RugQ^=_$Gq2|KXzAUb`yDB1?woflYE( z&p)-xu6QhvepC7fc4XX8>@pYf<|1SkISSmRVJW&bvR{|J6DngT8uL3L)OML%@YS8I zF9pn-o6=tas6Odg8Z2pB)8@ukD1P1DM1iqB>4hjXSiOHaF}Izn3c}zGC|^<=x?gs$>fzZi|fK^QzEt`!A|qE-XLGPgJsBZf^A<`_nQ}E)56^0%}vX#PWPjuj=h{ zUN0_HcusW>AD$cAD=O&$&NB;P;g`hApNBhZ-n)nGqpyl~2yI%k_zv)q8_B2}3%}Am z8P?xP=oGG8Bkl`Pv30}>fv=j_TnMFPbx?s4z$-4NQ!E)bUgg~3b)rkiQq)y?u<=r> z#9egIsYKPRakR6wQ#*nh2lop%OP{X6YRiG8AJ|OUowH+8yyz5IMel!w^#o`yX&)Kb z>);O;lVQR0h3YaaiajDqhH23>XT7fWBf`(R4SPadIHu~dfbkRv*|Q^Z=*(~q&Q9*# zhI8i;kwf1N=XETX>{*dRcgVZwD8e8)Y|Dnzc(}BqzO9F=*}QKQDUKd3L_2aP1P)^? z-p$K_Dctp0_daj2s0VEGN58|?f%PW;YK-1;u|9~Lr6W3!s4UfyEk1w~wLN?;imB(k zSaby7;bW8xzy>cdHNjFQ&83_!V^KrNa_<;5r>niT9N2QIKj5BFr*Jcu`vc?-)Ktav zQj3{$n{|>Yp;eeK{BV?brIlKxtdo#eX?pYdJt9++2AIvrh>~9~gJ`o+LKp|L(kb0U z9~Gs`F%NQ-ibeMcEM8ghM-XLn%WMAV7mRob8@SgQd1R||l}JpCg#V53V7|F%iJZUo z6z^m@4~Pwnag4dzhbk((A%DxeOuNc0KInyb!~HnIDt{CLMDFN3&L$>pfBZ2srx{ey zTRHLa`vXq%cFN73G%66EbRz#=?(yW4(0q)cZ^t%nvy6(Pa0Tb$QHie!#P0B!@sFS; zg@U&=oIM23(C?tyNPg#&SoE+AxfW|)eU;kQNdU4M zt?z(Zbk7Pc^=~PM{_tS0iW>%3^6*E6RTM0EVaAeQdlooR!6C=*G>L#F?rnv5eS0;_ z;!-qK#mvClP3ZI3)`u1a2fWbwWx1Z{lgs8vPLLy&j&71>>oFo+;W8Y*;VAw(F^*y))$RTpx8+r? zOTQpD&bz4h6$DptE}g%xzFgh==){=E`{uv399lrHFl038Z0|)FY^F>=R|B53)7_Wr zaE;toE!t5T_f8L(E6?VbT3gh)@YQbWSM4`t(uxM)v8+2JET@ZJ|D|A=gCHQvl^@~$ z7ZkTOqYBGf|C6?|?5^bRU2SbGuX&$r(7hMtQC4TpX*kQ-AJgLtJYW_laE00Hl;dH1 zJMXd0T|E7(-#~#}F{tNuE+Aie{nRhHTnTj$-EBzWzmwtdgtG(oYmouHcH)=`7lRt=CKJ!VK0T^ z-Gov}F182UO8)LvBEM83{fHboBYff_3_`%u_z1mOJ3SNc^XhoxcS8;ovkeRv^P>Wf z$f470ogrVqeE)IUEFLD;JWr==d3a)vYC_r69;OtC0W(f^z&P*AG5f`e-P6^D+KYqRDWXLE&zkgFb1 zsGF-HYnJVAnl*Y#WRr*P=G71DT@+mUJ1It10Sup7N=3|^+!fg@BgTDAmaHLZ$O*eN zl4v6JPPY&ppvu&eaj7NeCeI^nVehof?J{+blYB;M$y5gD0uBhyW&urP`-sG;as>&e zeW7&Smr>r}-sK&qq|vD*qbTWba&p)#$Rj2FH_Y*4+tNnsk5j_L)RGCw@0P};8R0wA zbzg8yzuU`>lliRFlCg<;2&!YN6KEeNM_FpgWi)sK4W_BVeu;(buLxO!17LFs7A=ZJ zMNlPX;NmL1>XBguWGY@U7BH!UXHRIT3!NTDHZ``{v4NTrc-S&fm#Z>ua+KLVB5nmS z-wUEj^*A)UqAFIRqOE*byo6!H(l@azkO*s-v#CBoRHxy+1S3b^LAJoq? zKX{aG^m9HC8 zOXeqYQ%mNhmdqi`csGkT(O|P=H{=BeBu4UK*LDl)nqZ#! z_fx--`=qJgwD6prxC6wH%I&aArAtyvZb=T;CJaoiZ<4f2>ZKKTrD<2IdwabcPgCpVu5e8vMQm!l=+URv-^(+(&(^P!O^c9GF_nDr5NMj<=Lh+$tR8i zjNN0*&j<%NZ>`}o%iPxE&!R*98=_z|-_*MaG!?_gJOkwFFY=Oc9vc=d!;M(qEB`57%TXD`; zR~*g@`V-HR3v)Q4lpE{n1-&GhR9MI88n# zr(F%C_xXu8J<^1)`J;Py>6xwC|Kk$P|2XCUrjLka=-+^aiFum+RO~n^-6SxUwmx>eQu=l-H{qAO3SaSJM6U0B zb*>ymD6wxJO&tT$^S?TOUg7}|G7Zu%@VfC8IM_c?rx`3rU;gS0gA$i$2Co9*-@iJ; zz=W{FBHcOus1QuRVbND-@+V$Z)EeWD?m7kzXMA;jpIRRjIGjy|{~Gm`a2SyMHk*>B z?)>W1gOe9Uy1f`JKFk#A&IzASC2PJqTY((ez$|C8oDJ-TiV}_)_RKpRcXb^b^KCZM z1v0b2ocdGk`kY$-E2SV3`UKHUTZAv>2@P{M zAdGJijqoM9LSuzf#_=}2JqrFfH?$kRcnNuqb-xY;X$+6Oh zfhsWDO7NQ;2T%e|{6(-+PgV8`9adxdU53<3_&9Ly$mw6bg)}vgXuq;uK(^L&KRtL{ z*b8ZR*zE=aR*!Bqu&?Hm#u6r&2VW&%K?m549b~Q`mYWi5Wn;mWK}@M36a-E#Su4ec zOQJhrUCG-;6NiK@O#Bw8Mn20Ak8z2&@Q6%;!lrw&U>Z4Vg=k8iWV1PQe&iMBLIXmJ zBA*QmeG^bEVj)|aruklMe=j$?RY5*Zur4%GLEbl7fu5${Z4L$dPMp8%(%3S|8)B6d z;+G2WJdhQh=hm-1lUDryRjaL$9{F2FQy;zZw+!cnHu$51d8teYS55K1#*&FudiWeE zBP??-0@K_d-2o(18+Pywx_tOeE&`ch+*5*+;BR?Spu9ynEB=;8_<(hLp7LwX6`tG( z<;jUH8H}sE*0&ormauBO=`lTks3$VQ4 zyqLlOhCN#Uk|IRFu|ODOPk(xzM^xy?isiDcuiWIBx9cX)!~9Qv?IzE+`LF!rO`h}q zbdzT#|4;J&b-sVW|LWIo^1Q?UIiwx-#!a4_H*fOP693xXn_!vu8z%@GBXC^wrQ1*xlHTp3@ z*lpYg(~pVp|G6Bk@6hpkd5LYoChyC(`ueTPQLVP1&Vj_4ox_SAA81tz>lXsPZq{4I+MVc5Z$x)Bb56PNn&G{NZ< z+eW;LVEQUjI9ga-F9>DW9Ju8WCJS<7QkwJUGbC%JXPAhLsbf&)mEY+HQ(KDSlC)UL zRLP^L-HF5c0b7(ggegkxs#>EI=Fo+1GVDi2pCqsIDv1lWD1*p*qMLY_qjAb6dbcCm zNjltLx5niK2Qxf--9dC^2xUI!V!6(^hjVhZvq6Um>IiJYn3L3GlH9XlKH>XqgMNQp zXw^|pvbDmm+brQgQh9b+xygTX;xbOb>}wq^XFtKK9R&+B-F8K?Ss9sL69ghk(qBZIBT{2YZd4^n4>Qz?D;LeXlALWDH=39}?5}OsSMaIfYNnFsf@oHGNtqp2LqKu2_ z1X)B+-RU!TG>RA|cp^*1?|)6iw8O}jLW5LeAsge&a%4kt(RH4uHX%nsJNU>+J;4)Q ztdEn=j)iJDqdjJI$XQ! zd(MSHe{NX-g)c?CT_%BIpGBEcow%XX558^li1(dygPz`rpU))Lb3X;sV2m(Z4Iw*z z;R+`|x*pjHMkq*t{OmHFN*iQ~GX1g@$>lEfD{@wq$>>In%S5ewN}_bar_n*WnasD? z;>M(L9?R#Uvr4x%o(Fz6Dps8o=^os83dr3E1LTCzz~l*7CEd*y}2uT{+!+I6tKo^DyA$&pMj z8z4-90(hdr1K`y=J9VMlK^0J&M-jNll)#A1rv%9kQBc^8_H9SdYH{VMhNJ9V0H|Sio`3wsrvcC0? zT$x+%OTj)B3%bdpouB>&%gKP2&ijFy@)aMmc>`?b*Na*=htaK7=T-3vEbWamTw1LG_? zGLnj-EP8zOOf+#R39s*I0j4PAVGdhMFI5|p{#8p!jebq?wls==-`&ET-6}w_+ufyJ ze|WmuRNk*6=vJ=nTW=HD;{OQyWs!k4el#qyxOZqW7 zn;y1%|C1hU5R^=0Nvk*RWkDAbK_~}HC^)MQ0}+`2I1RVl@bT%bWk`Hd88%lkNt0*C zf73?d=5|RK+n_Pp^I$)xYhH=24F0Gi5Ecd`87pUJ)*T;jW3Dn_l6CEBvPlhbvuVFuSMB0WvH6(Wj(JEfqZu8H&`BvxE)Z^d(Kn{gQ?V zRigUb%NQv2;p8GaJINLqtvFN0`c6O%3oBNcg*ra&mk6z4(CGdu< zt8s9kFrS&(U1&O@J(xI!eaKOwq6owMSk2zO_`m=$0oI)y(^wdv@ddlg;i1R>t3#%}VPtvX%U^yRC*0V64ZM!}LbHB7*IY*UM z2dDd(vc8uo>%aPx)obWl<%hPc7TZ<2AuzV$qg_C_u{U5@J=mH6XDazJGdR3|QQeU9>gvBte-b9cS2jEor?OT(WoeUD8(V zOb^~|EK->wd-u`~o?Bv7Z%){8SCY#zC7#-+#NOzb(hjcqdMwVJHKsc(@5=u?{T5?o!nsLvH z<%QWDma$Q~)xY`?iOq5u1}WuXfMjqCRB1-or?PUnoCBSRAXp`?s+6NAPQ=Wcau!vR zu0$6wf6HVk)I~GPJK!jx2M*=_SeQ?Dyqoo8uS`PhgI(PF_|C~*5M568pCUZz9mUDs zjavCSQSkpt4}~gmujFsphe#%p8tHHOtG=8Rx=7qGjcObgNu3t{niPWV-6pSl<@HgFGr-wRUyt7Nw&m?k^sIULulSmH|0d6UAK;JT!<#(2%}t*7 z_?LJ2Pw-xv==n~E-1pmk^e^ifBX+y{uI(qAZ-(2W2o;x z_}$FE;a|%AS{Lc}-{iUKBg%CD-~}IRUvIzY0|qRQ-5S(0DXamgX}KlSVLQgv^lD8d z_6;E>t$n>e5Fs!S1B(mHf4^lx&|6nhs-(Vnv)sFsTfU}E@|63;cnT3P2hVJI6a7TkwA-#-RQeen zAy>SfyZ}=W-C^%jS=fd#|9D>SPlirHfePzfFsM{(i^#I9cwKyZNnq7Pwd5_y)Opg3L_Pt3NIZe zS$MoZ?BsTqcUg^_Ta*)s$jw?`>B6U9KCD65!f4r4beU^{N4R2v&_V5T0C?E<7zMnb z%Gp!h{?~q0rWI?zTwtS~VX~8%#-ZnXQkR(N1fxz9y9C2M*NMu~LU+W}%8lCQos;?^ z6<bvz$*C)#2%K>Hp3?~S(eM$1LTn(lS4@C;Xm;jU$vK~vwRQF*fM#> zmrF>%JSz4_mp{Rx7h9&!ho9tq#q#w$TbIdm#q!_iyF6Dc|E<2ubH(zf^j)5@ho9!@ z=q&}932Dp4(yo$6qyeGRgJtHDNz}Ec7G-CDYNLcgZG4k3`unDBr=x8EU}r3D!#K@# zm_uH?N}7d%8fjN$YNPyM-85hBniV*!rQTjO%BQO1%7S+CJa_+jV07JjHAWdQ zzd8l2?j76{jp;(bJ%WLqc?G0TJj;Wv=052MibNrhjQQnni4smN0W(p{>nZA6Qq&%b z0`TAF29{b%g3?RP4ykV0rgTjhsZI=s45Ti6m z04EK?Mos~iVLfIXw7D4TxQ$=ze2JOP^x#-C>d;4O)`|?wqt0BRG125+6r1KXzxggk zmc=V!fi*=Wqh|+;;m%bL_gq=pB4dMrtHErb-zP_ndFu)oim7J=P0ap7ygREDDSC3* zp*1Ii`R+ss$<)!wWNzkF%$L`)EZPN}WfLT__OU%*d?A$S9NZ95Z>i3w@H9IsnRPNG zW+4OuX~y-Pi&xpuliYddw&4ZZK-xZbv86s|e`oHvJ0OL>e@2ccZ52CPdZr-hZH`v$ z%Yx(o!`_)r`TFI(Qc@loO|p36QhhX330?$jOTU;VJ}Q8`3xxS+8E@-H5PNhs#8N zBG+>YL6LrU+c)vQd*CkUfr@;myXc4x+7P)MkhZR={^6VV38Z^#!22SPZvp_g0K~H? zrcl<)p>sd|hLYe_u9H2sX`uNklvUS)35NOFa zgxV`+2pdymvsSlME-+x>L*n8U*mnI0Zw1HNWevUy-2AKV1^*XCSIwjCcJA|WKOdnJ zB8tb{oM_r2ORgt$3wnW=KRFF-44A99rY1b{t1K!5lq;K4D#AalIVCqP!sL@B*%Kbp zoYI>Yr!;Mmbs3!&S2nM!eWjH7&NwpgP*6D!pOm?|W)5yCC#^mBpX$tsg_;^#l~pbd}7&$5B;e&_a-G_zO%zkdI}TtBy0Ys zU;U63S*=Pmt(fF(Rf>s%aE3JOO;XFs%-pw)?7OiS*f3|u!hERsKvgXKP<*v42xj&=rcSl_ z_Q#lWt*#RbyI8_|!d&r|c3o`<`&VzII(or=d?8?B)0!=%8>SHNr%E)|YPbDWBYpvacXoIKE; z6~gq<^X8FDnbD;Fqa`;NVt)}bhE+bzm{DjGU!>hkjQFY>+CYxYhU{hAXPNoNck@13sC&keqnh35#1-j&*6P?= zF_GoW^2XMU70iwco~9S@k?F-i*C1UCYN`_5>|(`lW)|yT(BKk1EBIUfo%h-9iqn1( z-BPQw=$1h)M@2(O&O)(uKB;M4zCK6kQzk@goirt;^KxFv!vYBZs(PBw6=iE->pq$0 zCG!h>Ay`(@P+L_hRN&>`XL2|r#-fEplZ4K3C4LH++p z43j$I(tTZ)u^pe4+2VZ|R@BPPY6uP2=opvoN03?+i{&?M*T8(V3Z916kZ)5uLpiBS zqwOW-)C2^v_>Z1l=vpRg9O-C7@h^lmu56)*LBPZWY0#If!|}BO$Jz0@&$9*KT70yv zz|mXK&RXfb^M*4s%PVWWt+ww*8PnB=H9t_99;)|fp%WiXR>&LM2J;|O1#sByDzjI~ z2(f<24%BW{i-{WVkDe)E8Dw*GiuhYLGclc2GMcH7&s)XACohgp8R2sT zp%+k`jIJVKY@MKVM^q}zGF3QWb60(Er+_fQ9r;DAK_FqN+F!2(CTfJvVysi(X0l@} z=ws1TP^d&}XdGzk2L{QJX;hHDI8(E{*>=~Nj>Q2DQXF9xOtPlzEOyvw;9r@7h_L{` zGUqYKmmV>VNNo^25DH{$W+Q5PsrS~eYZB{EWZwwA#Ol1x*$!6^2Kz^%5Or4MJNeK^ zIBDbVeR7suE`H>$3%IsZ8~;YX(yM(97cFkjcevzUemGK(2iWlGWRDfHJmWl0OORM+ z?%~+f0X}&Xzpn$l)f72BP(wZDoq;(FM)+~p+Ufst$C=yB?2pofoeW^+_OkNBSS;1u zeN8nagZaS$xBP4gvM%w(~`WYAZ{5TS-&Ww?|Gg%3ETJo0r^uqIT((nJfO)vWo zJGsxa^h!_hdb51Lxnmy;u2u6%)R{Yn-PIKTNEa{0l+)U>vw)YJ8y3Zuoy)5cQK5Sp z77!_;M~a{!wiLJuF%ti|VDhDT*4W;ah)H9OQ?bdbV zhbtijx}I+_K7>t|RZ?}&cYKxf*Svw8()PwIUPEi)OuUf%B1MO-fnx}|>R7{J^Cp3K z?^RA<=wzs(xeNC&5a2q;U$kP0b{!&Pq^Fe%M-^?CjNG3O6h+V%a@`BLB9^B1~gu>Y< zUt-I1kMoKn?wJ?--@473>`>Tup7umu5MZQ2<0CK3(U-F`EKZjL6)%696(YV|!Bu7M zL}|yuH*G~H&8l)LHpSGijwwX;A4qK!xXF=?^+kM0q~SZA!=+HK?_B_tTvI*C-}fdG zwf|Fl`Y*>J3KC4Pr3MU!k~0M!5Z)FAu8{(@1=Z&2YSw)%e1Tcjr*P(bb=?vfsQsq3 z$fA()d*&YQ#qVj}_axxxX#!JD=HKhqY$uZ~zIln9(2HuFr=*`C#pW9c!06cHxA2Q@ zcpX2c{}QD`BrQkRc=^|Q z?>rCF7Ur=NFsiTC5-Wq*e1FDwEINlIGAp;n*3RR#z5CR7`Cf=02@j-(o%`y848uMu zmq2L=fny1bJf~ytZz-m$k>_;$otOMAC-CWdpA0`5D}N}aRE-mnSr$`+OVSUDTol_N zv=~ONiHX}((#d@RbG`r=3ApoA8buK_D2mcMkklU@fp510@$EJ%E1aL*k$nWuZXfh^ zmVAl}97>ER@;PcUHDErWY>_wKKvyg@I@M#fES;6r)i5#U(<&Nw13%{Kc@TMOmDB|< zdoQim*1Ac}53Um*6q3sfCwW}y4^zgRl!2PaZ}L31jPiZe0W+RCm^?WRGA$g(3v^uA z69P?8FD=I_*p{X@KuX7K{dP)i-R-V{?O$zzPX+cOrP>(>GYe) zZ2g$mdCgJtOS5s?t0sUeXG6g2a88KsVHc=M4GX>YAPOVlg{fgP{>Wf=e?L5@xGlh+ zo6uT->XRG}f%jtkW&c$cBlX(rbd#sriAm8lC=PJ8NO3ErR~63x6z`1R-fxl9FS50t zc#r#6(Vt)aY&P_wcEgM*7BrV$ly-|_r=Jnc|&HLj{Nh zQH_NW&>3XL3Y!NF_^Mte1Wxj{{ zFy0`GQ&qTZx#vCh?i%$U2dCpxGiaB5SMy$AX1px#PFLNZ07JE~tuH1dvi&lw*oY&d zb6}B((5w2;=Ik;5I$fCz?CV2uL||R{ zjHJYsRD^#q^TG~cM&z4~`deUrt-qg|U+^p9vK|*zY3kC_cNGQBByVgIVq$9!j?Dx( zI$6#o=rD*;f$B2r&%@G#edO84*?(jONN;F&UMB0r^QJ&L?e0HEmiFvFgI`E*Zn^>p z^SAd3Anr4Lkv6Z$6!PJ9$Soxf3NHm>>jaHEvt?bgw&Kj6&Y~)%R%E4lze==-{4Jv7 z28m}aywQ?g7Uj%;kmFcx>WYfC1MNf5+uE5NaGZZz8oE+-BU@n~{~|>{Mv}VZYLn zx5ziCsl78RKlE#L(IP}=`<4kzxSDDXb)B9$M412nh*Y?nezSJs*X9uyzNV(CZponU zdg_`6f7fHCe5T0vvpGaTPhV8$`SccO%XbK_Yx-K9Cv}m;nEmqoDBr`yY!r2N2IRC_Gk15Yr$%g4TP3Ip@!sHCG z!(=gh!dqsBD$_Jin5JBUSbDniQoJ&2Mb;!Bf2in11h)b6HcU|QKSIj!othHa5^_MK zjXv4Dg=$9#npb63kWwW2uyvQpYw>~Pb-zO z=QKHMddwp%`;^Z4)OP8u1wL~oy<*OiwQ*2#c?yx}J)|P$r}F_$+0Wz|>AtZ(-{eB> zMNXG*hT(9X3{UJXuUY&dZOKe|pT`cPbCtK}l(DTdtB?^)+&9K6=u-274lU;t8P+5J zq*2qna*D`K&G6Qklcd0fow<@lP9isuOV?uary<7Wsxk=XDvBn(E+8^N2*#yc3xZm?D!ERQL!R4l}tC9TXqHglO8C`RO&R zL@ycEVOhyv9)SJ{1LS9pne)d2M033qwqPO0Xk}I$T~~3sE~!Rt(c8MN`d{k$9h_R~ zx}kSnTfZ)K?LW1rt_%R!cYSas94d6qCq7DHIZzHn!tug0%Cw##WX&Obyu*Gkhlrv zXeLxJwg-sEbmC${=FXibmsgRxVROfgd|}q|vl~2WiB!ip4bvBP49mg;mgU3>8A1|7 zc4R#{Zm*K(&OKqlqSr-Iz(rR6U4tSY^r1tL0jG02Z`EbbWGa~hOs z8sxV1o`3xI$mW|B)h*htR&3ERP)!voF{ zIspzSvJPOJi2z}ivDooCzIT)d_96p+3enbYS(f;r0t66G!kUB=o=O9;5@hr@IB2>7HJS zx~O27JEoVz$Vc*=H0o~J<7^8v-71Hj`9(M3c6a{Pjv?(8*;ih{h58?|ZkB$-ta~F= z*}PsaoNa&~TY7hvRH$Z463)BDC#9TM@1>kC-ytG#648C&PsNvu-_lcc@7)u?7cLsmDWFA&*?gA^FqXr6YUF2&e{cLNy4aO{o&9L3hTU);F<~xGk1>a%XsF8u?qdlK+L* z|G%<`9_tHl|9@l&E_~s@|4;G@Z2w9_{25KBaID5QrgyQ=eq$!XeyyWLy4hYj>`}qc z4o3Vxvg&>mh~GK3TK)1ZCZ~^(Kz03k64k20E5&vqdZndtVM*V{epFMju zh*jh&Oh3-|t@!P+Lvj+MIMNx#;o;8oa929x_)*F@2A3Yy!+#^g^rJ@b|IUC$0-ctL zN_ILb7|qv)B07f99sWnsVkgal98(og_hqqv`01e+K)It>fCMkyFN#moHT<1BcXHh$ zzSefgLyUXFHQlaeN>GoCA&ONwm>uYDK}Po3+oE{?j;m`p35}2$aq zdgBmdBb@8Zoa&A`FQ%qXLF%`j5|<+Y*v*+#)Eyj1bYa6a>H?>xq0}@YiS}r8h$Uw= zm8u)Tk=o~%+dFoYUFn*~#nY^xIjQSMd$$8&F2G0N`ua68@m6S))woVw{{|aUt-VhN zR;&D1_>|Ju+kLg_6uvlA1vXx;SLA|Tbvd5n2&=8{m2dUM76G3M2~kIO>Ey^n)YkXu z*!PLmQ6Cajet2K4I2~;FKdnk%kbUqn{#L8W{I&g?!rRY9=8kQ;$z#jH!SB@HpD}A-UKd$ zAX@#XNbC8y+xCmeX}JhFJQK(Jq$D<#4jd&qA1#pm_&|=4ml0s(268w!!M;!Oq@iWB=i z^zvRQ_n?|1p)4UyFBkTOk&oQ;EtwA~g;61y$RT!T1!Q+m)?d?*OUxLj0AJ!}px!^v zTv#PwH*n)o4EK)H7cc*1Mrb-?^=mZwD&r?=d|~Fr@e;51kbld zO=4q)bM#0vJz9=H5}Iz{v(U58n=3gl_WQU*VHQg zmJLU=O}~kB>fN%=Dvxyda~I5SZxLA>yGwUM-wvF4z46konAa!tsU7}>IG1#(H7AKo zHtb7vhFs#3^L>oZK_ktB6p|KMt;Ox2nwl)F09d!SNO`J?;_BZ9-%&jyoVlxJoV}+4 z-F*z@I$=i%oII`auqrH@2qP%Akk&q>w-H0$3-<&Dwo>j^Id+%a^JE#(2Guo{;%Ljx zZkO~XyvFq9Z817UaAh_Ew(W~)Po#1^qrOwE8)oW~4U64Q6*-j|A#X68+8QpTOK5VW ztT+&vS*&j6T__XI@&GJi##Wr=#v-Y;jsFT7EGp{Ylo5y@!@WAK{I%&9tb;N6^mumeTTp9m2j(>;|TM zv#-=L08&%rdAu7zJ}Xw$QX)p5c|@My%VLng%S_-UIrTn| zoPKSWS6S7hmDk5iT6w+Sq?MBIHEHE_nY_*@S3&*s%#Ys8i&;yCr`mX==u3PVbjKFd zG-O4dZzfaz9~WrUJ}*4Az!e-4pH!fP|Aby@n(E~x{7qNvOdWTs*%L~922{Ny1z4h7 z==7$LB~yl*>1SaDLoX4f8B;k!Z}xLvt5Ea8H+n!_dZqxB&Rm5i)Yr=*`0H>}GPh#J~c*iB%(S7r)ycJR4*bvYV`sxv=jQSe|RGkcR;e`|+cJ zgagWR+D|1cHjFLeJNc4VK7om=d^GWuARn%I*i&*;kcfB}f6lmHv{p!56)lh_;gzgR zIeL;EmOFr6Ay;#oOstU0c~4m($uzwwtLUSYRWz`_>uuE;K~0jw5AP;M50R`h>=m+> zi|&=bq0!Ee=}}d$V~PUYde4QONlL#dQ_5re6>3=GWVve?13$2v33LMG=Sg#RtFw3{ z5(ZKdCR#YqJ}9ZBUt5oQ(yT2qy3L!m1LrQZp#g#L7Cpw=t-?EOI838RT2!9JXgZX{ zWP8QOK+tPjGXHhapWK{*JWx`=!1M?Fss0HHSLc)({WLL8PU|P<$c~LThU9hVAU~o2 zs&G6e9FzYOZ2pRV8~M=$Q+?P3k~b&6M=dj%kCNwMz>@XV+7mm9a4^hamLeaBZkhP;SHjdlM7bOfcBGHAX&rNQE<1u9 zk!ncKb`Ve}=@6+5#=H*k=n$zfqE)j4>T_1RQ`rKPdz~u&BznFHve(up46@7=9oG>C zL?`TiC*;J&T>nSBT5^^eWgfn=>`ggh{|s@Ng*Z0U$b=URrdHj=Qj~=@*7&8JoC-x=hd_&*_xpfN ztyQVyUiP{b+L3qQpI-O|n`5 zQD-^1!EFRv4h7UFq~%TrIWN-=y&cO8?}W2KUFz}`2-S*Q45i4`Xklw-LwpY2&SD=n zWMM#J5C$ah;Y$w$@YIG-hLG-Z#C84q>bu}mlxp`zPtYZNRHcJoBRCGdq*wiJn^c=E zT-ZabYHYxt$aam3oxbQteCLODrl6>qKQkz*Lvg<$6~LU^KDS74`^t6jfGay$h*bd# z8JxyP9ZI{}dy$l0AW<;npH_eN0#=4%t{H${z4_#)$3O?KUSX~V&xZdXU;ORc+nZCw)Wf7;i!i5D84vG1#{_R5!{ z5-v%1kd*k)Www8P2GNb{wC{TV`l4+?zi!79q&R*%4nblQjkHr@CtNywEJyV4OMUVf zbZH(3OekwQ?OOIQL=7Q#sBv_d+sPWa;2c)h@MZS_7DZo$hBP<6gr?X{^jzOwgrzRg zp*2Xz`q#%M9k2A^*tW{(lb){}%oc3bt+(se(&N^#6hmijykC zG0D5oqdzr(mMv2{Cv{4ZA6c82xXZcr9v)|)RlNT^$nI=ct_7~viwcFzdS1bjkuyFQzy%&o6@ipq7 zr_1=xor~x|n>67c3`KL}(?D^IxA5+GRPp49Z0T9YfTb=oZ}`aoaiT>j^3plANE?g! zS&=0JSFkpV(46&{$nIHM8qc?CAvYx0qs8W0Iy-|w(%S7KtJRTuNZf= zTNcd_^?8=@*)Yskp^#9E|u8Cr7>$V#<3l^9!(LUo`%C|Q)3AS@zF!A7>Rs=irA zv_T3CZ=Yy}3n?PUK;9lTkFs94g)|)_rexzvTxiZ!X;T8?O1vu_va`^fQziat!e`K2 z-4fl-_y*m~`+rHzfqE$^pxVrbY12~qI9{6$Zjv??n>NKaNTU%*)3TP^vB`iMhDL3^ z2@l28XIQ2ty_)xg1nas3yuu_(5s0ugh?whHd78mza%r`Opq&^8ky>ii?KRF7?Or)n zI8oflO!zb~h(JUNZ2Uuj zNLWq#?t~tiO*idTk}aTSd_xf8se%}ebxW|cg^W~n4YyL>L^M;zKwmz<^PalITpu6- z?NKk$TGbju$>CVmeJ$!AZeot9+^!F3TeD8L?tIX9H zlAF*gn7M3oZ%{E32wfuS9FVHzGUe3w`Z48wo+wXP%Lt(-iW7GPXmIOXMki{>O{U;% z-Cph|ItK{v*HRv!OfjF5>@@ZNtMs28KfS5kRN!HL(vZ;ddzcwDyEGO5u23np> zPkWA2{w4ow`NvOR>ZF$e78@R!ONQF5EdnIq=~)0GZz*((#DM7JUi%I0V|5%*CukTmai+Fui~Y#%MuYUb0WkhCcb_o$xa8!?sE0Us^=dE9N(g-+brS!1GS$w~^-#esA+DW2_JG?BUnP?;d_n^7|3L zJbn_N#qU&pBlsoeR-Sf?KERsg029XDrf&;BW*`Og&ko6kVu%5Sno>pq_99swA?6rXgHp^q`Gju=C*`N4Dq+LpN+XN8aYpOCj9gG+Dv+*k&f zf!!rtPSo}^#lLPoqMPJh{yF1Syi8KI^ax-M;M4=MKgQYs@~_JZH6=OpZE%+}(ZaU0 zdZ*wnlgwltgS$)=Y@)wbaF=s=HC7Jr>9TiJhHILpq-#?2=i4;SqEi=N>m0cb(G>a( zc=+iffs+LK@Zb*&`hcJ0&h8e$uVj#|7Fh#Ui=2;Ei{LcfEz9@|gz+sWqos#dx+;>5 z*kM2_Nu-%;Y8oc1n!}8RV z6MG=*rUg&ImOCDKD%-1T<9B*Z4)IG6B2(;?>e_13zI4)8agMvn_7C#LIc261ogC}@ z)n=?Udc%?AoPEa}k-Is}g&dh!ZxLBBG2-%v9kkP9y{tcrG;xZJ|7wx0Xg_Q$Oc(DrRgzO2ZC;VKC4r|#9B2}7` z32#F}5L7dDM#x!3ey^{zt8Saa56Sh$RF8qU)48Mzn66EsnU;T z(jyV<&m|oa!FAj0*||ltwG=V$l{p}6$c$o8Dz|Rig+!-h8Jox=lK1v3>Co;!U4)zlS$xJT}_hmJXiQLyrrz75$a3OMq#o;bD!OK3iz-l#P z!AiGVS4fgrFL_&f*6=z2i|i|igK{V3f=r>7zNgX@#POhmw%UDY!Mtj15Rn+`fyMH- z?H2u4NCWCem^!unt-$A?@K{$^ZYX-gR_}0K;8sH#ZnCGFt=?{z9g8kyhWpb(BGldt z^eu$q&$U-@P$Az1M@hK)8=>OvN$MijoB}>|=vz|k4Fsk*LD^+I?38Mo6DFDZ5nlUDOLLWFk6(+8Sf^2 zbE6GWNw5fY_&G*&dfo?*iHaEOu1%gD#hy+z=<~g6(?WxMwV7)^c!CBQuY#uf_f7

      tJibndr&uII6`JZCr?izo1A95N;)##);bddWej@JK#1|JQP3Lc~?E~8z< z08Xbdd?^DqvU!W3jF_ro zJNTXOlk)1);yLQ2UJwz$_OwVuLfNigkIX(~jWFd`fr*6P7fgf$RmA;A6>gAZ%SSg1 z!jYN0#<;l4lMx?b-R(}jlVd2^wDL=#bPW(13p&goIJ~ztfM`k|*~1T_g$W&8wh)A) zw7(=FvpIgCV8#7N$Kn*1l`K9W9K};@8v}1m#k2=fc(ahh4TM?R-fT;k(1tB-;KOW4 zmj7jAiWa>o@m`~Tbry$%-W7};kU&ecXX_brCGHJ27JdpOom=;w@DR6x)Dw1*%28%(~J&XRePGL z!;Y+$D%2L*!nEqG#H(z&;=3u=-IQ$>JKQ!2I_GK{Zn7z1s38qwZ? z!jYwb1EL zl*3Oz91(^r3MDNde2V+sL^;N;^sdwp zAxcKY3RyDEUOu8vriSd3kRPUo$gvx3Ne%H(PV9T4{J26cHL;t_1}Fg~OJkVikTV!+ z7-}c;!0yYF)p;d#A!r`-&|!Fl406>b2tlW!J#b zDuNL-^|}_V{7xU3AR3UpeMW<+}>=tg|(74%r8kY?d0?BLkqs!?s1Y zR>`Q$?ng&Om1EqJ2I0uD6m@;SP+e()t~epUuNo;~p&uVpxl9FD-db36a;wT2#v zjx?AOA`TZt%_)rLspw-?V~IypUAT;Eb3m&fr4)^GCu`I7`L_5yEnPCMfqEfysndS` zPY5$cq$gQlhu_oQB1Ef1OtOEbJvv@)RbP+Sm)e3i3uk+LGckj`T4*1MRLSz|qA$&L z`XkLhs4mRsxHltp`%QYJ9Q}|@f+7`S7s*$_(S9(X#t)wnt4-vR!r2-y<(6@V4oqWBQ+xUoOr%e==Wce}q7YJ^hNU zfm!N$N=t2+)2C#-~B1 znD&3-d~1Ti(FFBzda`9@N_&1FI~T`FxPK5=Y3r(G?e{EZTCI-YF_TN3DdRWH8K1=X zjpUo?mYz-Q%15KBka|A1-z~hvx2nSpBU^p>Kj2njp%Y2iorKw8X+$IGuA~CLJ;FJA|8%!5VTl*5rm{kkd%h z;zV0NcsQl4PARt|9AwH?i+B|U`vFFz=?^@I;mkVIR?ED(z=O05zGG=nSoQomg>~xi zkhOVUKBkh?(wtI01l_VU)0q#L5OE6u9-L*+D`UhruIEK9`*5I28Yo4KlbL52=cWR3i7hz4(;DIX zWX5OIENT&?@hW*5_W0%cRSH*=^s7c1&*s$*3*|HtDX0D1CBl(rUNBRmp?%mJ0&Wrl z<1Z?MM-sc(!<9hNBYw$WH3b&^Tx^0M#`Zq&!uUGl>hG+DMPK={87?z|mhPLWuf~jd zo4Fe58Bu$&idLJrKk1QoWFbDz7NG1#aOP(d%Sz^2M54cD)dU1i8C!};Y$Jk4O>frpNBF?sI! z#Ki=hon<4Vf;6ug9_8IYEHglq+DvW`bfe+0GWR%6W3+gsc(+sQZu4)(_ z1^a94X1&`Qg^89;a!Sxb2%Oud`JSInb)Cs0Mpt%3MWCn|WeVZ;?y+hii=G{3MN(uvDgiu1BXl28c5d(>nS z`<};Q>R#&sH|b>Bhx=aX?}}$yn`QaL1_Qc=q{Di9Z9qcNkbG1zgT+#>`pMh$#z`w6f$Nep83sD=ac7PZZFBQZq=U)vUm{K_fL5y-q2`~5;| zhE!goCdd{Xk;Dzqu&(22@Dp{()grB9wUtU#h80=Jv%T^j*@)`?Dnkwdh@fVTzPf_G z@RO1P23K*r|DISr&!U~7(RM`Vcd6h0DM4b7`9#nDG+kgUBXT$71*taNKLI_)yVIf@ z7(DEw5fo_1k5q0~=l)9AagxR`uel2rJfllgY&^r=+Cp_jx-p@<64jn3)ou`xG}9?VbY)p>mR3-d zBQjm9{>J8wEVXW3(U-oJ3y3w8{Gu;|SR`!;5k?ij^MrsA(k!~->ghj2b zmoswwHMQ!%UeanawpQC%osColog^!cZ;)*x5Fpiyq!Qqe6jo#+e}Uz*SzxCizdbDc zY8(cQ4vu*n;@A3SZZ(CG$eqy}JDG&T%rs;i3^YuLjcRTTBTeb^90L?%khcqOK9}NM zO(&&xD=jpX8}n;wBckngujG~hbu}G?$=Pd$rD3?LEtl=!>t~2VVCRT##zz#Jwpgah zNu(QClvrSXK;|#wVB0Qhg8&#bnD%r5sY48I{a6?sj$P%`zx5tih=%C+1~(}IulNQR zFKXp42D)+7?4+m8&L@4+7k~uT&OS4=ZJl@dbmt1fn`Mw)jo9~=E!Zq(nU=B4OngHQ zVN8sfX_Y5_e&HqQEX&UQS{9k~_y*bfG4_$j^jE=|_rV})4{=%}=GuNM&!Rv2A`5s* zv-U+XTj+os-)1A(p*dPOFYc3*q@`8vNZQsR5;tCM)5&jVmkzqM3q`JoWimB-r@rsM z%}#Aj8|Qd_!#I+!_1K$b1~$opl kho#Mn>o&-KlsF2l2LwRdBaQrpIocla@KVfv zW<|#HW@#JIMO#BBAZ*EZt=gXkehVW&VxgF5M6OWd&Y_cJ-0g5POD&jb7mowaDIRMX z8`S-l-l>Z=1jy%$pb5Y}w3zoAwe17xm96(Kdrv-_hSana_Tu2C(Y2~+2&cL%oXLcm zIM#xWy)}S6B4R-i=Q{A~YH+Iu{1muT-AuVf-M-c@xJDw4U!G<%M@mK{(gsw6Nm?vT z(A8onAct*GS`h9Zvh2-RmI3`n7Fzpw2BKEZUfQO{y) zvy|K3CgmD1i9V6q0s+eS2I+!njk@iC)S4ssfza{vC|}5MCrbY>SuJ|V81xg()@HZM zYO!~ejo24B9hpiDjvk)?R&Bo&jV>38F6m*5>3HnAXjNeI6E)U^)Vr*!zvImLZWYv`TV~cQp)E8Pf#B6MJQX^n;mx zy#yLC+gYQ2hZ9{gwp~reucwSmow!4{Fu!QCSwbQ~>r^mE{rn0l*!Oi5*;F7lCtu6c zn|86mP8zZtU7GLwpBeAh8AB(V>L+}?j*Pw?{uWoFSu3Sk`t%fOpZ?qR?Z)1h|JY>4 znPvOs;3oWs{3;7PWZzuAmS_+Qotu~&zn~bi)(ENO7IJWzlMPA&FC|ch-rr)Pnzv1a zy|s;~z;rd1NYjL6_X^C~=H&4oHgJ%NIAC*UQY^~}*OS+!($}U1Pi+9bX;qISG0bVq zp7(8&2AtPmnXkqR^_utjHH2#by@=8-Fi;7o0+{0rV8WMnKr?@9iT%J0^Z@|f_~sm+ ze=mEA4nW#|gh6_2%|wMwA1fEs$k&#}A2L>+TI`8_##~?+ZNKlzZ4`E8cSdglGl0caFNJE7vq5_@LL(CA z+7Ayx1)3cODKIG6V&t6f8i6VRz9#em**LUq|6PN2Xq-MD^vu@mY%|F19wrG1{A8O8 zXTkO^{(Xw4iXo652`5J8VT%G@`XLb;ft6;qSEn1TZJaZ%#byPF{p!Ng5%@g|J^zNS9C z?dVJX$@-E%I&sMl4h?@bwsF)Vt2Fd-875oMvf5PCz3jI}44}z}={1N~sPCNcclbF& z`4p#k+uvo)CkPLf4Z0&q2~8TzEnZtwu=mucK!bJ%HzVShJ}5TdmnFEttC|57b&d%g zpI{ZQ>XgtN6FRcvUST&)(fs6uULwpE5oJnP&=7|)5zUL}&gv6F*5{B@8^)?!o8{hT zZIMk_ZfJvW;ZxB0*;B&7*sUIW@+7l+O*0*nYXX(sAg>geE3o>EQw z3SlBDi^^bfMz$1FjW~0Z>e_!gmA}@hg}J^}+G(L-#V))EQ$&yzIWVjhVpv4=Q$(b# zT>>7Hzkzz;1EJOfCV73C%9f0IWnEe3_JMH8BS?Z%4Ac@wLI`iC}pcU>VwrN14Tm;X5#xChi~$rhGjLhDu!X-8OwzI}!K zEqqDp(#H5V{?1THeevfc3{34$gdmmKZLQD^GWMU2a51*~oNkzA2S+Jn2$(n139i4c z*a&q`O3;7MM-d#v;E0ylbhsOaUq~0;Vtx{40ScuZsbIH>o(+JVkg+@w{}Wosaeu?? zYJ^tG$*!u<+>5lyYoNMeHYvme7#<(7VXi|p&C<8(8Rl}!uQdn>)>nh}%@}e@>t5?9 z9rlEfy%zmsk=0r$(Iw&j*~?V8|C+`VGIka1_Jv!>DKgQm!z4PECGY+@f+P+ZQkre%K?D5m)fdQ0tYcNxBeUV*b>?5P3 zLq}eY_;Ul*qH64axnXQT{gXK~{)Ophxbfu)4e5Bi7biWwMRwYvu$s6?2pWSkUR_jp zVyFk5;PYV7q}dNFm1U<78@;7O9$Q9${Tl&t?EQBLJQX0Fq~-pA^kM4B1B{8z25`No zSDgK-Ip=(>Yv@4pivq7MpC5+2KK|4XGazbdN(MIFFKT6c(N7+0SP8z;R~dRa>reU_fuzUF_oeW9z8Z3|ugzqjkUf88#rPR=Q@U5thKG}Hzc745*n z{Ht&DqeNwl!0)bBo8J~9yUb3}J~3CkztxJ2;( zgC_qFTpUQ@ut-%85`LoQPu3)4C=b>*>x|jz2PWgSI%6&wQU8(jNqK|%pExORGbtyg zq?B~*1Mr+qj^CN5&ZO1xJG0d(`sr1pd9tFNQ_v(FDG82*C81Xx;yG7rQc_U3CwE|V zu&sJ)?2DE$e8M7VaM#vj+6ZgX@1QY1-5sb$U{!yyL^!@tUwlViw4JjCFV-j3HeGZ> zR-oa8YHPZej9&GOgh|jCg0f9nIf44Tfs%6r^(Q-D*{WG5_XHYpNS+5MCeVqmzID`W zp#O1$V~-1|W!!E*pT3AgCcg&QE!)G=9JFNE&AW#9p5GDf+RLKNS`_}OC^Qsr1HR`k zT!bX!yYm-?r%ViHkjO?#``;K0)c21w7(?`6WG4ng&_pvB8#x8$>Yfiz4#v+VOa{Yu z)L>+1>yndw9eHeDWxu0^RgM{*<`?uXfzt|&Ez5}-KxBk-`A!~l=OUL5g%HXO>UU^J zLR1ow9Z{3i)^!Y+Qr?ah*;vx*qH6|!C7RF4?`&=ye50Rrl&0A9iSNa2PaM|WuCyvO zWHtuzcFDDzou!;HlvWP>tJzY|1ld{4N@jeovHH>S)d9kmeX=f1TTw>F;Mx1J!R#Kl z_c{m-_C!~-Boc(x#fit>q#NoTM+}k1HS#IIodBI$;xwp5QBE0cC@<=R%Xt3X=yd+v8!h!{z;VZo& zGH8|H^SdO+D#^7<^2E-)v{GZ$T3{qnHa-w3!-8O0F28JkV}%AQq`*p#x>%^Sm7eyp zv(*{AwwIkVFg^xz6K9*7I##ZuKRR8?&)xkb%=8j%VV?H>mi>K8uq zT}+8BRzG-Fj7NCW3PYaYjo>J2x6uKu zKZxy-E8Q4{W6xG)KSp$`(p&H*gp-Y!JMnNFTlm{3E;YvWAIE{sI4YS&c|s)|UN70` z%>6s4wYR!PijPpd(5We!dc=*bNajUAr!sbWS zHCELeJx%(YGUm;vl2x6?GCyV(P?d{J!?dGV^SwdR{Cz9O;j{`|)3i;a+7R|=?74o<6?(*O%Ow&!Ik-hvvON9@hMb_;etEAK_Dd&w2S1hug zT}^4$52SI6tQKjK-K94d^taObN^ydrJ$P6p2s36gAHcOh^iL>SZg<>MSgOuq9y?A9 z!aqTj+%}dW+acGO8QEr;4qQv@8F}*uzQiaphPb=41fmCm?HQh95=CY#?#>ceR1f}| z38so?ZqCI0fXr^V%NxyPohQnYX-g@Kv_ra_*itiLDX}xk2R@v6dV!_FJgR5)(>*`B zmKR-kPIs1cejtZ5H z#xrrN`}Qjgm$Ui?jz^8}aeKL&(MzN(Oiju7F<lqIWpZ-I5BjX1HzY*xI*&`IXdJ7bM`!Bbus^5j7=HtZd_)4c8#0WD~sO! z1002bXlr2-z@=gEwULs&i;A``fi72Ehgsmq!5L3nB7Cjee9w1<`=%_J6g)4i#s<$6 z4cNS}a*HnPpx_WOq7|Bi1*o!y^w<>*!(x{;jEGHXaK|og$c$YWRz<;lNfJCQtTKYR zVRc#1H(~9mP#W06P~h8Ix2<7hY>2iZl`U4J<`{Yvm^xhsbMdXZm0N#!dB7DM!{3bH zi1?C<$aF~5`-NOG*P32oPY=*o-@TWS(6_O9W+Rf&o>z6UUR?%gb7PbCHzvTK_f2Citv={&dAg?7iMc#%-SC|)q zTFsj;*hIvr*kVZ-YcSOW8>k|9W4Lcja3Muw@uDv`HbcjGf-_L03tmaLf~DcU;la!4 zPH+kh4_*}R8xfpHUxNAJzM;WyhWors1gdv==q@szeR;7V)N)eL%ioiOxaM%Br8xrH zi&p>T?t0g6m({!egWnbW1~a0CJb%S6!teY1`baaHa93KoYetgQ4w>FMc1 z(mjLapR>km>P7Y*7@zZ!fpJZrc=8_!`a})xNDiu^)W{NO>&CbpWw3r*dgQ1)2GgxA z_`Ig3CVu<5j^p-kV2%a?pHRV}$1WSjC~xbMW7gJeGoz`V2j#2lF0F0*J$L}Sw{YBY%NI9M#)vA{}DoW#r_t) zF&l)zpA7}wqpmtcEhOEJjw^i%_e>h-5EtZ1kMEjct_L4+)u3rui8SpZ-)-&<6@S_6 z`poxnr`(aq7WH}*_y z@Xc8eLZPsy{L1FSiNXH-t%CM30%EA}uIhoyf%r;VI=HaJvrJ5zK+9)^razepR-rc; zzD2zcx7`BdiO!2|Z&qFOouOh&1%LM10=q{EBat-rKGwgUtJCbOb86MQ?43-*Ys}-= zM(o|hu>oKl+G~fjGMpT-*vL?$gY#w2DV0Cx$e)w=6S~T-%CoP`Rj1WXV7Ny3`#$jZ z#V*-j;`yLXzn*JX<=9uE!<-sF#;zJ?UpZFw)TCre{~#?@H$p&s(}!~Zc7R>JRn9Y0M%}$KW%#AiO_F)@*?kO>Lnl%D?vjhMFdqLzsLW`e zj`EIEqrRVr>NZjSKHoK&0zFceCsCO$Sna>o)QF|QY%0aWN3v2Gq1)xp_4210kgLq5 zqRgd8f&g~A)XbTZcdlR8JSTI_x+ioEy&w2{r8CVGt&7a|)0y)#d#`?mCf|7;3^$CB z#h1su%MpD9sIW;w-JKM?V7Cc2@8G`^CqWuuVdP8b(K_lOhqr^FqRxc^GTjfwhF;#`7_ z-k*p&QS;{#Wx6Hq&O}^pREUKQ=}u$bmO|$yB6Fg`$Y?<7Nw@SPiJY2<92ym-L^9`g zi99tC>5Dc?Bx)`?r$_2cH<9j!QL#nIGGCW$3T%SjyBmhbDv~kpOU&*>%&^#n$*OuJ zW_=>Y8_U&_%`%p`QqRLCCbQwB`LUCdQR5|QIZ+KKw|36;l^!%`txS*5-OM4a7imF# zJ8f4>H<&%uR}%*v;c^YH(rE98YRyli@ zdAp}qKzegUzegSR%!)_})*MC{TR316>)JFX@e>{tB;Ex5n^ZT#1|Ub5;@e_Q*kVXx%BB39s*(`^j8e})F!qe@P{&c2U6SlI8}%*@c;y> z=Q#xOBQw2f^{ZUN5a>SVd1U*Rc(^UdL9#$itTYFy+qL?k)_T`G27EuyT7KvAo5eQ; zXQrj4XQpLjW~TAKI}Hdt)*vsa?AO(II8?SY)6mERLfo#Ig-oC-;QCjzWBwgy>}buD zP>1pzP+9%wY5p@lH6E!jr<*?J4F0hb!a*vSY92F$Hk^Ya^vm%y2NP!2W0QHq3L<~I zwXUz+*vcJv{D#rc8pP_vjc7mSKzOUEtv|quqlsN`(h7FTF^I5B zF=Z9{nnn#|o1(@(s!nU0LtI1) z{g`xi`Plq7I?~$RL&OKq=dlZ%(jq!#qD+SaTdQUalo-l)N=u}?j#}$wvkU~(&oR^{ z^>!|QCVC~|c0~FSK22D9ycARLbqp)|U>nftiEoftlz7~rHZ^L-T$*h%Y|k?jg%OX` zzW;F@eg77Nhh{QPj427zxnokYAyzIuJto^)$#x>y0_tZ_Im1tuk_K793Lf2U@AFrt zey(;$8acoxq~ZGniM2OKX^2E>C_(E&GD;tKfVLLiiupNw4@Dm38(nE6uq1)b^^tUtyZ(rC0(r_?+}hRlioD;TaRHWBjRadH%;tW+cJ1C&aXMwI5C@}$-NPtKi)T(p! zt9Fign!GyeB8?*Evq|8@RQywTt~C1u45FI);;s0P9CtoGL2q0|@Lu%AzL(Z9L|k_D z=f8tz@3YSp^k}|8%H#$uThPMMz``E8SG@!j-Q0QRf(+xr5PS#q$664`e()vtIJE#o zT?fLTotxlVseCqF9m>L-6(HE&W0E5Qpf64u+XYP*Oun`gYzU_r2PxJH9dR&w(ho=Y zkB4`hkcAI_SDLAHE<-1hF)M-jOsDp9 zH6sV<_Ojg5%JO2D19U_1Wc$ro6I?^LhR(7>xe|gn@)Of1usbyju|LI=aIMPJ34(vJ z;IV{oMwD$eQEDFkThLX}Hkw;{6hkwxYYI_~Ei;>)Qad!;Lu|Owo4zcud&Rg4stf;9 z=)a;$=J=%)3ZSqtu?OBNmf*;4@Aj<{lmkmPUf9&|+-s4QPS|ly9Q6L}(7n#8UkCCN ziR3cr>S9){wp^Sh)IbyV6T-r0@ij+MJQzii);Q`l0bz%~Yvm20QK}orBd6JQ zJh2A_Ye{%Ym;;gvqJZn%GIN4(Qo&jT4#G{j2=hbr8%B8?R@L!4bCv%yWFnhJyFQq$ zKA7DboW!hwR_{wd!Hb*&CaA7YZVK4!)t9@$7w&p4ExM8Zf8bZ(#f9_Tp_4(~%RF*Z z1iJi+2(@th`GT9r(m&W|m$83_#)q4{@nD{$^ipnRuOv@E$=&V?cg1e(c@46nwv10y>T0C0qjD}OZ9Vc@WM{!{p?!Kk2CBh_g9^<5di)Oq2ljR z>*VlUp2y`cX5R_hH}q~2hpf?dS2a(@VLx<3&JzTgBJh?ZqD&V;3u6<0z}ReJVyf_8 zB;bfY^twKP3X8%d5h58F<1}}Q{iCE=qrzz(Uj!)yZIiwj3Wm;x)P@eY43$?M0C~=3 zUtJOIAMRUK&#{X2c{yC8PU_HOaVig+K04}J+sI{Lya@zXp}Zbrg?=kq8^q-i8Ib}w^fP854@_y?${NP zl2V$32;e?F{$}Xyp>T@S^kp*s!C`h0jJwE!QVg+$-h2=-(`)KXVXs;w=x;$jmmxy zzvDV}IX2zGh(%7~BXWlq50*}%fK>I-k1|QMutrs-hVCXbdcQ7Up{}$bHFh1bw2boX zrQ%-d1B^^jhCZ_1;GLl>>h;|>i~QY#1l!gZUvlgy&Pj_F5ghJ6(YNXmMkCxm+7}Ti zww{onG%5FL#+&>~XB-}qL=#6>_bFwz%s4c%Vuz*nFPBr*`<6jgNf@v~_R(Uq# zBE9-4o1-(Xe65x*M)KR&xw@wvdHC*%QAGG2=xQ$?9sRk?&a`W+@?0$= z6ONu_6qq!$w-Fh;$espeHY0d9RLS6-LZ7@Hi6Xf6)8_1G78+|>Y@~hl92v2eF5z#f z-~IEyKxtj0po}2s11#=5xvjcU7pBP65lD0=md_DFk@DjD#?9iA7REUKUD%PLn;87zP z+SpLeDItOVfQGQaIFzw)&%}Z^xk@wY{gZzz$YG?c9wB6mh7my!iRIj9j7$ugR&am2qDAv0-4rOD;UK*)WbeGsNW^YU|C z!SfQlTXxFaVB?6$6=_z{0n0<$1hwekCWf#11pzLY{VcdCW2Zt-u)afHcFa@l zK~|QHuymPQmslhcD-;<}mytDgE~%?))JRFcAg67A6V8S`Y6746+eC!$L=uT~|Dm%o zT=R6LyHyooLc4Lm&LQ3$Q_nDac>c_sDzd&qRww6}WKK}$63?YFydmgx#oO}J3U(Ej zAU9v34WLSycA40LTRRcQN^~?pDUgHDT3d{TIKGScHYpOO^*)r~^9YXpAz^nh+>?XW zu5d~#4~f@X@Fh_`rF6XP)#9d?GI0I12TMCGUGez0e`#-RuZxd-s}QXC ztw?!B+pfE&9)1HNWLHDR+`|Wv_3pL%Ztnc2?RW}ToRjZx?c_h(z0D=He?Q2tmYo!E}uE8}g^m~kP7M|o=)ynYF8R>u1B&!U+8_h2W%i0wjR&?HtB(Dj)GG z-^^~rNh=T4svoj5Gg=z2*sb0N8rX!=pG#|>AJF#DlQ$2%4%Tt8IRe(vl*w|7-7ed# zfY2MKX%J#i%ecbI9V=92A7#LB5S{&r0Ge>wN3TBX~wxvD)*Kui~0eDvi+wU0Zqtl^eJQp`cD{vcaz{tpaV-{|YDjR(+pz)INbW z$~K;G!>;yx%efAUeXPT0KzRs|@~9-~*QX@eBS|J4n`C{Wlu?xOG)Z_oBPqoUuF=L0 zcjc;29@q9Ki^S67{2yzSUs}SaK26j!KVvK&kn5CKh}1op1>s@^kW8AW$X0U=aBr4% zVD2Mx{o0}UcmgP*%}rK$3a+r^3VJbYA~D>TcP^Rqfetl{l5tmPwuMgr!DB}#pSy}y zXLRmC*G~_}-OKKWU_eRgHxCT7Rfm}7x@c~EgEZH)6*?O4G+4a1o2-xowv$(u;ULW^CF>ofQ&3+jL z-CHOUNv>0}zomdL%gX65{fk}ZOp(uNkDeYWxM@vda?G@#4--&Rr9nCg6O&Jtfr&}K zBr!39B*=Zwt8VP0ozNh(hXu;~C)2``=d{zSPp8UOm+MrimX&uK_?Sm+>|P{yypd99 zw#qiirO<2#ce{f0)Vux2N&ZA-$50I zyQi^2ohAOPY&XD+mw_>QV0an&nOs?PJh}zE(CMu&*&6h0n8OZQWiPS=fH0TqQ> zW%LP6KzyB`GHT-33@3YJT0N@oPU`z*EmXGd2n$A&rZ(Ph2Hi1ixbh-1>UuoGJ;4ER z)T~<^07Fxvhsz5D=*}Utvo-N)2KnyCzS2~cl|m}lFi&(G~4TY z99&kT;^CfUDMKYzxdlGNBzeDY)$UX=64$jn@|L{}3kff(kBOwSDstroXP?+_Y8 zz?8oJrzkJ!g{-cnqt((+kiGS!kmxLWNwLcp+0#YTc}e!A(yP!Q^`R6oIKvM%dIIQg z^DE}q9sYS)&RBQ`8T#a%*!+q)vCoS5Td~z3-KYL;za(x}zkG-x#7>RBwGqSn92Ii< z3Fa+Rc6&hzXvi5Wh%n4P4qZ%Z?FJ%3&9uk>{N?8t8*Cwb;Gwg zQLRB>!jZBZh(_W zOkRz9fa(TcP5t=m7`peUTo9y$9sDUfS_er_T#)F`t1q7_{FC>KGa*DnJ9M{a#ZIhI zY4Tld3UF%qI9(9KBO<0N5V7Eb1VpgHv_z?%f!)j#(xXh7NLik9ot7w#Z7l-l{1F66qiwu=?S4sBrf{`)-hjN}XFrCj;Y@o<7ISo{ zIz~MqkGCr|Wl~;gt%NcdT3+cEw#cNv&4SLt7HMP%5tcIsGp#Msdij#$y0AsMC13Bb zTh~RSNWL6hznrfeq`#pF&R%h>EWbHQ`i)?IE zA)x-TF)7I3!UB^y(J95}w%U2VnHB^z9sbF}@$gU1yp!Os^G~891)DsEe=_z6FmxRL zNw_Cl&H)eS0MfCSY101N3;+zx$;@~BIX#`*FV$>3D=Z@wzAQa7rY17Y)14(|pG5lf z3)tY%$A~MuZ26W*WuMj9S5>Q_FrfAT3aGRA`;etNWQBSm1DroYip#V2Zdy$pg^hj7 z$Jzcvk#bB!3}2E{9I<7!1*&GLHR#a*MzPU4A*H+|F;71EgdOTFz~5DHP>uT4C3H9P zLjnHgDX4f0Rm%RSenB%OVhSxjoXLAyV5QF>f7kP@Wp*6Jms3=zR=_k`4GAq z6#5v&5R>EuX&>pPOmP>6hJmpT4jl~Z%x=akV$00d%rYzT5nN-5r~uZ{;!%wiyc!8h zbHxQ*`|P+=#aYdb*p@iOc!L`V&Ngo0Br>$y?v7=i+!@}P#@ZcZ>Pz1uEw%U1m?2Z# z!$ZSRY#fwmOxnM0r~O)u0?y%c4fx@1>G_C|)NRyLUCY(o>}OaN5ky;V@dcgHx8)Yk zz9d6jjVo@w*!w2yX?;)v#nR#if#}FpX&vcTfIs%ke-4|XZbC%Zr_%C?G&NfBbx{S5yq0_=U z(<7^7h|T`ZT$l9fxi;m+CalF=)jh{c^#f9L)s(f>lVsjh0dG&n0y6K?;#BGWN#p)3JA-b!H2FQI%IrLobAx&ITfkfP3(Mv`!y*|GDmO7# zguloPeJpXUW27k>`iM8Bgia@ZaOh8yAD7b<;Z!~GRS~Rm;J08e7x37f)zzTB8ep_# zCN=ipz`?iXv*f{7!|UY7r1zMAH?yMw#hD%F3_G0;$Q<3lMF+(ehyQd&X=N*wK-T$ zLbt%S4p46V_FQ|X8uxu_=(R$JVwv`5R^1`tc>a=Hh4T?4{wXieB=DQ_sO+liG}PS2 z5<-Qb$MWw(Y~l7ve4%>P6Au{*v_%2pwSkuft`c&cyJl@!803d4)7v{#bVmkyNn z5@t|Yh=p~1%b|Do;sOCvl4+3{d8!B|4T&>lw}LClsgB5^x_+MEe`i*H=aN58(BO$3C23QxNOOXGvOlw;>V}5iv0r1M?&6RT)e^?wK&-@WJ|u%%*^7RZ zdJnJ#CG>m#6+W1{CVjw#Y&X)lYe13kBel@3JTmzqX9W$Ct<%;>3pNaBYrSmV)VN^t| z9E_RkL@W@GeS+4q9EtG8Q3nR*6H^Y1uVD@EQ-^aRs(qibo(*KYroqx{ahd_hf;t$q z!M@sEtDXzcmTB(j8p#{hc#?zje%!-pTI--64;Sk>2f4Vlwzd|Dm>WQmRE#8n$kiTo z+uzwSUedW)=?mq{q&Pud!!pawa5{(Am`$BDe`iBB!sfCkjp=2+UaR5Q8l=wS>Wv2K zpX3JK=d@+d--z#KLJX2T<(o%s7h_WoQ3%O$9m(NR?Xmm{4BfZtWjcrD!^rJv9cgkp z_2=&ftd|Wn_p#`s()W_Iz%23StzJinS-)H}DbrP5YsT!waN^@lmX$OV72d$AXpx zPei#H)a6BUlnfy>bUG+ZW+YTh$$bF{P@XIt#U)4a*ll-!81i#KNOJ>zC`aYxySKeB*DQZ;g z4vjq>#bP57X7-SB2|1e38jdtcf%W;FL!rHS?04)PU0-s%g55xGdYgqT_1af9+W?O~aUJf(YfSKFI+36!62mrpHvqj9iZOq1P#*r_#Jw6BwQ zmW|ARC;Wv6*`ea%j8|oVgm|7P!a#ziG+}+E;LX^#WH!D%5lYq07dxrF=+#iMy&OiL zgkL=n9y`bGqEje|t@#b!PP@)@p^$c|fKzB3OxLdHFx%VCxrd2gkAT(IJN8tmKX4tJ zYZhI17UScJ+1**7hpt$-JoUJaA9kvVLW7~x;ThH zh|Vg~HYXB?;;GLzWlX-w*P2C8y$oVRvuB{;??h+DZtImwK!hz5L34Kssr=J2G9pv;#vJ8NR2wONw4w7PECW?y8$5%QU-98fEJS+MA`- z5qF8PChdFPV?`vEmgU>9*xx$P)+U)kV`jxSNQCLLAOY3FdDv@fE7WCNpG*niuRP0M zu=T)V@YA$cmsl9l<=~Y{PsZdEL-~^{vqRss+hm~Z4W_Hb7Xtic+zNED`JZC{SyyX! zwMV`rU7?;B-+i9~kM;&>yB*Q}_O@VrQc4Q<-xQn^?gy8?jwupe?h>w|U~UtdU(S@# zhvIPsF~)`}bY;^c6cxA)iMeSRVlj*-Pt&*}UFot1V$1D_40iit(v+gE#_!r)rg|n! z+8>_U0(=On$r~+@yJ37%3vKv}!J-Z4476d3^dKTLi2)uBNJ8WOFZ5f@{Mx$2Lfxlj z4<(u-U}1mez(>)xrvFFUyTC_PU5o#dWReVIUMp%0Lx3S;-eO{)iWM`H7JFk zk@DC0URy}In@@+N1z}U9;5V=(drCp!| z_0@!Hl25p*XeqUp$QU_G3if*rEWfPq#Hu;&qU)9q z(%ZYJ7kv|)YNPu68fN7x_5(xM&P*2rGyjTNf!Yw5&rY2>&GSz4wS=8q-*%z&!dl&v z0dDhW(@p(l>5FUqlvybS-JZ__>1CdGnhsjsYCjmTQ~MGNT0H?3TpOITB1hb=4coK2 zs`RjQ$M|B0%#~UW#Z#wx4!PRCBirn)vgl&|s?%I@Sc_+#vP|k^I^rrYp+$eogu&rF z*&jdHtiUiL<*RFWYD0sq!NAAO`2C;7SltP)HdlC-IXiy-7ar@ahZ%>()0|bInF^{5 zwF-9?4R+0paJZhyj)=XGVg?IONQ4T3Rc~FJbAlGvg`Ta;Al5D%A`H}Nxh4LJQbkMT zmdux$@XE2QXJ13!ZFk!mI=Ck`bjgRhX8v_R25d@>wsHbR2wkz5K($!}TOobx26+TC zm?yt|IFA^fU&zflTR6cP4Nq-^247%QzJhOptY~9ZD@=ViL*dGEUcGVhV=fb{>@S@h zL-9O;7;=d^Z}1emP5ZVW$2_mk#nh2-F;yI3KN9poQV@DGm>yhB&CnQmVCzg5q|1Nn zQiLI?(MO1BT0JohXJCQr+1Xqlw%_o0!S(|^x--r@02n+VI9#?61cxH-cZ_}@n!-~v_%1tscNBXh$_X5@t zJhsMAXWrnjGpMJqQ&c#q0Yn7RN3^|n?@2V|Z>VF^3jYQKeSk1+_F!Aby_p;305x4> zmQ!t$e8;q?0%j`C5IOaf(y;SEJ%zGkFm64v+*oP8aDKSDS5K8%qj%!#bd#Nj zwBf9u4?|BV*EArf8yE41rusBkiF+&tfi6AmRk0Y8lpWdY%n>+``HUen1${}wtTXbN zBlw9B5tuu4g-eF%X<_@ia4}3&+rgzntfz}V)3+<83~Rei^Y36P)GS7B=+***^-QEn z3+$YK>rzcFW)9<+Xa)9dR_E`6lse;S1{g8iMPBFP^U)SKUnFA0G%A#w=FyVRu@&3_ z@2fPFNj<+*Pm?s<1N8B)*ovW716}KVZW@Yw=%DA$b-^PtHDw{To7wHkYLI&U^*%koLzQrFARzMAp1awd90+Z z%Obmd5kU_e`cnHg8JF(d6mS0m8F36+tM5^7!uO`s8|wrET`=g858YX{ZqI?mqv*w? zjfuwbUDRC`fbep==fIMW=MfL9?{*>B72I0u_}_?q=P*=mp&Rx6n`NEo&PPY@VN-B6 zPkFRg@9JN$LqeaXhO-|v(`4ZcY}>`c*<%hXRjXN^BS8sQ+w}|B0Dmt$s8)B@f!nbD zQ|p?$05?A4$SjP715Pc&=-`_;gh&)5xU_PjC5jp24Dry=Fk_sNtIf#MX5_;MWAL3a zwdMs|^s8lP)>6jF*KWQFI*(52XZWgkV9?4f zs}C6uEa#5wy|`gryzHHnJ$Yz08jQn_%?@>Z z&&&v~kc&b5D#oR}WI*Ow!30u?h!QInigW~KwqPAuHIvCk;|_$sc5 zCCVRBz{`_!!)0T`9#)}mSbG6L;Zb|Jt9=t?%Ns{U*ZqS!&EJ#cG+xR#PP%PA_YY$G zR-EZ-t8(dhq}W9QmNHj>nSmDlzkL*2u+?}vI-U?}|aBq5D)NbivC9j8WbYv}M{ z{Ga`^#G6uvXe@7rOdzA*0%x^|@A^zT@kS>|-665+@ocE`cofg-kP`FpB#<3bqt^E| zZ2S=$>Bl*2jO%pk+00x_WY8sA%@47Lr?4s3C9!H@M_V$Pt;Y~UX!G*p$)#TW5%OAG zwtg*tt)BgiuYDrfU%4%YJ#Mo3*cp>2@&-L39E8RQB{a<>CP8*eO=Bj>YtGs&djf-S zA2EV#tLS+YMC2$Ty^R;{NJm@*+q>o%;KSZO#?uRF-q)D-*U6*u4Qua^D=c1bW!RWD z=4mR3s&V5b$YBo==sP*dM?6)|JVMtC;`JQ`5nmN1J#xj-(KzW|=>Kby8@q0&wBF`3 z-bKb6CKC6fkaIevtPyM6)}7o?6yEqfGQWti>hl3%Pba$Jq3_4z9noFC~2C`xB|$?7)KoqByM@ zZT&h629Ds~b)k-Z;$OdHyzYHT-$Pe_%uBZ6oWMo8cOAyq8`vW+h478;NTpF}qzkWm zZr7C?p`b~WSTbY6YKS~dbViB;?~XsdZAQSb=I*XiA2xtM!9jImZzw_)ZiTOOx; zA3WlhkfwAM6kkopFTv2)WoVCf?qLtZp@|tZ^;~2o^OPffXW?xv$T4U zHA{+Xu{a80rKfSSaAM$$7y_S&^op33bKUUux_r<6=6kD+6+;vl}HZPK`{jLY_o{pJZKKw)L8yo^DqrTxz3y;M#tWI7vq~OtYC`S9&9_J*Z zHqMUonUjq8!ddMv$>}F>U?t0d1m5%XnG)G2 z!S-Ar`&Qu-ZX^0Qd=cnu%p*X;Q?z7tbC$1Dxw*@-HoAUo(Ybps3E!MjWp#+bucfq+ z{_@utLRyHp4sXw-?pf%XDn0!1J^kqVc%VYpC7?^%I|E(M@W4WfXNUhRv@G`bqh*Sm zYpVTCgN1Z-g-ayJZrYM`zL?I?scEkE=iuXro`iRxt8FdcEhPAiQ6o4HZa~VL)KxHf zyY$ms(BID+=w}}$PvHM=Z6R6?hn)oEfsuo(VBp-7E(WOCiNScQx>UD&aE&#L*l)O;YR z<`GBIaMxNjGg*fEA#>7Mb>Ek|)k$@KnOye{RoB(_icDzQZPp~$80|twXF9_nxvuz( zPd;V~&4gdiiB5sUblSQF=-2<=Kij@!pjiN=7s<12#ggl^sax1Bl?!gpEziuv(=2} zOa1ebhI&_W{XDDT{CHFgqYT|Fp?laf4M3D-*I)y+(Pz(H4ig3NrXTj>(3uRllQjk^ z2)80=f_fqSw*b51fE!cHnzN8}i-4S;1aebG5|aED$gv5KkM@Dw!lX)HSwTKO$J>Puo39)?Do_LH; z<2OY}BX7ubwf#bIwJM^FPX%fr(g>8Flt5D5`18BzA~!9%$hD?X*fte`#S<17uJ&0x z*(AYT5b;6Q!5@@e7)yA11;m&s*^{wDqPkpmLOpl5!k4HoX@ScKOG4TC!J@#w2Xb4N zrrsGC_H!`_uoAdE)ymgZD(O{S;~jBLh6T4l>|+Rzs(@!(!C<6`F1n(cKyt^{&Evq% zs%!WQh*WtULt7;Xjx9Vd$2$A-7^fAChrAJ114M?Ph%)q?p}zJ9|IxXiSc4N@i<`+P zF8xHWOLM?MGofE#_G;~R!^KW9D|PPS`}BFJ=mciGA)j&mXNm=HaqAV?T(1U@`i$44 zC5oS?RH(=|U#`;fbCw`dym>+cwcUXPO zr)KgiD^gopf(zvOSz~Nu({c3O7T5`6Pcz1r&#>yY5_!Wl)EL?DG7Q<`pq9^- zm5M=GXG$K;#K(O6?*5fpk(RVlQ)!q@T%`A1_oNB18LQ3~G|B~U19l>P>_of|+vr2| zMi$6f`(lDzSXLyp_D*V2YY($wXl>XxwB|M+jD!BJfPS0VM<5eCDmRE^h7p@haooZ~ zsGoC`>yR@2Tgu|azC|q{Z-=^&m!-sccfu}$C%xPAh3kR%)xORU0wLE1S9^|B^&$t8 zYqhIw06!7IlESEcfsB&%xhY;E=TTL(r%_Ay|>&fNzwo(HA?3(*!=gj2LmGQ- ztQt?3E37j;*fEkuoCT@7e45G}BXW|7HC$`kUXaC5L1yz_zz`0kg1GZ>(TB=dX^i?F z^=9VwJw+f==d_9&FR=QR`11~dqROL_Q9TlW0T54K!ZdO`N*|-Q3Ff{@9;81aT1C%( zS9m#as*M-fwk*{vTBa5ImXr#i%quS-2>yzli=yE z8CH|S8eYpX&Mmf;C;tx$wTD7dUxMW*FlGUgB^q4=vT_b6Potijbs)emm%0Rst) zS&Dh1inVSbGfE&Fu1!V`JhXXtLmsQZEU9VmHSw2t*#_Dzn>nI3eher4SECwEOFE zwmyGkiInPAKK8vB*D!_$L{D)S|G z?U&itY}X3JFFnS04frgX4B1$^x2N&a*_`n0TbYP&g3>%zAS?m`1tlh7PGbs=Z4Ls= z&=sF?DaT<&bdgLBo-Fr#b5Ght$SQCO6ddUbGF9Z&0n8@8spq4CC*{AgCE6uXue9NH zRM0E{FnRWpT*^UEsb}Pf42F7cw?f{16GZ3Uj@LwJzBb(X*+~94t7D=O00f6K9qxJC22m*>nsS!O>Bp!$Xf z=`}Ckm32k?%Iev?j0m(3{k6mzD~c{p?6DrB2GeT)qhz} z!wL@_Lfdbd`8uNzT_BTIE__H<%)3$Qd0#U3H_nkY#V@HJh=hK)F-3jbpjWQbcZy_` zcS50z1<1tp%IEoB?=yZgF5M>kD0C;Z5+Tx_mMmg})i)Th59X9Q;~^Q4bnRRzm#5o* zex31))4egP?La!`v^gBf(|xjw>l-?RyV_&yl-<#~(f}oq5#v886F`Ij2{md6_z<-(>O=&(WV*k1Nd9`6tU|e(fy9Z#Sk$ zq}simwqk~7te>nzD<7Y`MW%{0^-+T7o4X1-SO7wX;>v7&X0}9fdXdKAdPz?KZyU<9 z>B#IC9cw>Z$IqD!LzLc1eG!AvMaJ1 zZJ~~_zPcKtB?Z7gqFXlb_W8!r3)bYldYIa$qKuPr7MW zLYCRJWe#nbQ(NZlOq-fQzW$WcR8Yy*_u2++r&0Io)(jLWD?@fH=`_ZDZvdLkqu<`AYbMZn_;yqqyg&QorVj z>KNC+HJcfL?#->K7iRpY@}oHiV|~m+&d2{owsvhE3Ve>iha=|jP%O0x3YLZo#Q-ce zHuv%+qi`3tJ>Qj4`v=K*e=wZe?)(Wf=*=a7qUd!o>GNnX*9CIs^I(p<@YRLTy`*GtE0 zC1dr{aazeZy>z@*GTt0o7h9McTR1khFh90%d~D%3V;g9&jAPJ6M-Dqqlw>>oX@w;@ zsC1T&FFaA$$(V-L=(ES^gd%z4!|-kP!tLdrlTF>XSt%^&lBX(fp&j#(3-xLFb^7N) z(z(O+q$#T&Pxqpek;6G@+Y{!%tPf%mwN7$y(=ArkyiK29gE^Y0|4E}!LjM^JJs)rF zSqay_ypWjhp%1^n_=A{;d}jLx^EuR?)hQMyHuL<@Zo5{MO-@(#_+e+(c69CuTOw4s zq7R!YVdK4y;D=(6g6N8f^Q2zLBSC|IsHAGZy;XtA3+@*BU}o@_X%MJ`fI3DVD!2?p zowAtY>IbBAH(&=7BWpvm)9oL|=Mc#$pkU$V>KIU(ZL&@rC-+~>xAXX>ca8SCPaYV3 zQ+8IDb`$-K2eYvHSzz@u^x+!mj)R`9gq&IBeDqZs#f6T^;9EDl#Z0Y zbAD(Ui=J#q zG90$9aoScfKowWHxzsG0Lkf^-d?Aj1N?<@pjGZM;6LB-%r3=P)i=4x~Ew7Fxox#P`4mW4Gr4yHV4ZD%$! znm+4#LDc03f~41|cfsYgg4)tyQMjB@ni$JFQmBJ)bu{qATp^3NNN()%{kf;3@W_t)<(t z|3z7xslSWiU%?^V(dBaL!^>Au9}5}6B}PBzdGeU$cA{bi6dbd7pfeV2QQzi*KbLho zl2&j>NW-?L#}!DA9LCr$zJRUW)P2rw!n1?JSdVB!v??~UL#uLXRc`iQX9?rBwRgKlE#%WdKwWVrdkQb;^tZsRf?+-3^2h4gzMRV4Hiur zsqkiG7k1QON+bd2%H2k1F^*T^8DovfOgdjC8KU;l_lBq4Vm$gj-*&3F(5vpJ58+i^ ze0H|3;#29o7OMhNyeYh;P-`_QpaW7 z!Q`?!cp*7TiXn}m8Pj7DaI<`>I@BDZcO!usHoKiE(r9t$JH;eXqmarermL84vQthK zzE>08&_v61#*--Agw*UMj~t`dR^H2Fav&NKh(%Yw!W;HWSD$=esN9o>`P7RY+RFQR zSYu?4#_aL%ph2DdD$_DB5hTfcS<}a1vT1gFM-zlU|h1A%zF};$rAX_n{0jgtwKqqC}iR9gg!5a zFnu}U3Zi~>8IGM_$BMiT|EO{vc)n;d;mN}@F~xQm#XkX!;xH*(BhF}I85ukZt9up! zvjPp_9~h5RqCGL5t|~&E!-3Lxc-H*(GCN^h)!`Gx8kTfJl7{3s^FeSJW3%884yFAg z9$=qLwEx-S$7EUMOqP?D`2B9zqmdHLN(@v}~JgKOKa-GoBksw!Cl1Oh{R#>Z&( z#VF$jUBwirYfM4Gpe%>>867BE>hwc6fy)CK*0^-B?3RPswZ_HB;@|@1jpVeQXFF|0 zd%J-B0f|mjI%!vxq9V(Rn1jMIC)F7Lhfo!`n{^gX<)KZRTCC#33zQKFC_j|knQ>{& zmFzST2cD!frnX8%q$yW(V-l}ae*`?F{RwF{a%50la91awt7@d*eya=NnYYv!RUg_D z@myw3GVYX)95RO{I(Cct-C3sk6?-`!V3x2)Q-EVH%R(?}s@eHr2~%_KB~{6Go7q%x zv7t4g+<3`e``iZ@(HaZ+6Mq?2suAO%kLU&AQPpHagRdZ=!z80?lJt$5HO5a{~Wid^ps4Lqsx=^k8rW+;F4HW@En>yY6wSetp8^*zI;VXX085m+Qqw&*b>!(Sl zP2VOR$0ofXTrpNQ>8kB&lLpd@YPp7$vrRviQOq36W|f_K>c3gF)=qUMcB=48gp#&G zprnh5&NRKO7_kWZDN};%WVq;r`EjGq@cAr11{dHg*HJG*8NG)~1jUdR+ss!9&2{r6 zBP@YWylzDk;)ZE*W+X8*wHT_zMF!1oMjux(=-V;7wgl+7g&=5B%89U&-*Z=vs~(IU zx1w%VvUNYpMP%zQ$`d&pysctKq=ciL>Ql}MUt@|<{b9PLBAEK@2O|05INlpGuVs$I zn}ycOR&aB=NB6gAG;Glkdp0aD0GN#VSU*;(hUF!U3LN;>NeT`!X z5`6NI5C2;^WFC+M$GB-evf~x<0Djuh7jj4FwTftG+5ek}OZ9RGO0+_~IG5bY{LqWX zX%*wtmq}X1B=x0Ot0-1qrf4|iNSUcx#Z;Lx!btue&2*prfADAn+q-{Kl&lO5O?V>* zBYd+%+xnQWK2NOWlN@9c3}Pcx8S9lTJTZRrC*cyTD26}dySDWi9*az%_NbCffEum+ zd7c#$vdwsGhDbT4V;UNMif8P|3Vo|IrS|1`RJ5x6b3Bn5eF#$tXy|agU7lcWrfTWM z(=oXIBUVV(Pu1kP^g@3`n$=a$OFi3J;Y*8Qr`p%?G&%rG$1?|Cg}zEtMu3_!0+eaj zUX})vg;m7w2n#&o#s&&>g&w`4IJN}ZB1OZ~CK>lgOqia|_LulAccrMtlG57+e|i^o zqtdW(gQ?KsQ8@9>i$mHf??RDDTw0b-N%3FE47*vdgvZ!o+=^8ONEm=`mDLuFa_*(6 z)&$e$r%50K+pH1m3M(7snx?59>8eF*(H7%2Z%h|^T1)ZvC}h{Cx64EjCf!(ot(OyYBy;yipCA*O08Q zF@*ruTMP|$L;fzifYB&p#rRIRgUpUr@uDTuo4zGwPRVLlOC>(0nb*n+(b}cC=-XVp zrPLdJrNZs9rwE{@)=X@{6ypzyxZ>({g*6BXc&2Fag$yCMPgq5h#DDTgKP|vk2(XiU zx3F7+F+;q6*YY(f#=xS#SoA4wygD9AtnBNB18Dnd zW}y*~s?ykn*MJdnB_4tVjQ*4zQj zvAAU)-vqm1CPZ<|H}XJ&1i7V#y8pu{bz6&VpAo^PQ!!HVK0bC_8KRYE0FDLGhyfb+EnYU3k zbqbO;W7;f#pJlpLkV1;5kOFe{Y)+|c<24q3O~W3>fCnnC766F`+J}mI9NIDij}}z`FA4)V{fLN!HE_gPNE+OF^M=Zxr4qe z91=Q$E0Y7Y&8Y!_WG^OF=s@sGDYa;%9zolO;8!_YB52LpUU*Rc9GJ7CV0Y_>uGTM8 z0$IqA4=BG&a_&Y74=TUh5cvU!&S>3@7oj!^ms{j%$(5r2+HcIeN)e_j;hWy%@@cbyWR$fdRUrPi-H7G1^i zsuBIYLj<-WT>FyrDBUbCyg|Yn9IR#%wi#b!!2^8B4}FIUMv?Ancgn9!eGkDD{+m0S zBlOXzRkfS-;`~N}mOnFBB!S-NT`CcKxB{B`7(5SpMep;veVyigZc@jhduTfrcuuvB z-{5wwa;@fl3Z1ER1nE+Wf7(X! zmpf*AK4|(xpYx3FeTwZ$KhQ5Wuhok5=9dt#m_(pjr(pTH<3DEiWY^4KCfqYg9&{~HyYOG6hf-C+O=dE*SybY zwU1d7GlGc;WUsE=i~~d4E`NnyyH+Dc(R1eYJR{@QSo9euS}xRUpVFH_@jfjzTn)^9 zL{KR0#d{d%wZ~peS*7ah&Ch5P1v5T70TMU_)W}8i(zeUhp32{|1{r0L`l0AMYM7a> z_Wd$U7snxdUX3y3N;Y%1zAuh1<}kLn*uc0$z(5b~`kZfvH1Arye0t=gLBTz8>1K@} z;#{>tAkA5ekqw}XFRuVnxH))1YG1M`*aMe z4lBM<-&ZWYEz6ZRl5yc2VFmF3nQ9M4gnAj3Zz`_bC@ANOGMBv7)4>7^c&n@&EELrWZ4(t=aP&eOe@I!8U=u^xxEyO-@#lI_ zn>C#%2hZx257!7@4v<+*CwOyho92D+-1`DufxoTCdGz(L-52Vx6F#o;G2_zL({ba_ z=iDFmu9IM&gC0ZHQ2B7Z#1lF$=lS;L^SViNsY>Z zj{ISAyi@TDz0A-VopP$AFe2Y88m6Z7B01l7Kr~(VozGXHgGM?w`p`;zEnRI}_#&Cs z<5|b?!K{#!>(?c+uai~k9g2ux*vQ=m0jd@j@^L&9qObB?%sIH%w+!I-3;ecX+(e({ z>%>}jU<3yl8;%tuaVF4W&PpZNL{^u%ARat?9eIE(@);dm4$QGKDyd+_KzfKd=o?ohiOQ_HTFG>|johk42Y(++lnON( z?zCzcGj_}7a@9 zdZDZhI3+pFIk?E8A?JAw$CikQK4p$MLeF?_x8ARk_kWVrgTYImZ12ch)`nM_BuJ&` zpiUY0NcN*Ayx0P_artNII1ttulRuT~RvvgA!s)^LP(;?NFbNZ2 zM(53S{j4JqGc0&i3~A5UwQfCvySwGqEB7q9IA2DKq1Y(b$_w~Xv;bY=0KQ106F-Pw zD&$~C?l-uu&OlZSj}<+^lMvkM2+_4D(LxPMme_d102xsjUi7983=0BHdZ}F>XbJfu zJ)rc!glBU1p*1ll$Uzr+o>qHYf4hJbJI#hx+kNld;gW0&5=D~x`12ykJs!A14DvE< z%ge~8NnRLFrPDtqY`>alr9LA-899S7In#Y*9jUfR%jSoAM?L!#|&k{yGG=vv{>sA!%3)6 zP|rYx64{=T)gr4`t+Bw>O31!1zI%;HhSGa2A2eCX*auoNcBa80dPXs{n@gw-%d(=@ zq3@PkKO2Iztz&+LYM2<%Q8DWeh;~&k$=6o2sxK3RkySLQtq@CU<528G3>(1}tK`Rq zVoHh)WiQr9+1d&bh70GSMB%!Uji1Y@=|2%cxtMW31K7}fw=MK+1JJPO{^MliUtO4r z;z>)3m5wSg7frFit+2GdNSzMJl~CPRad5RBLoTtq+he?Q7<<2r@XthX9IouG62%?w z_SP6Pt`s}?q8aX%Z(&HLXLsqhcVXv~wZrd*QZ|!H+^uEzXt(#+D@r^w+)eL>ntRE~ zrw*XR@*oFr@_!=V7wE^%PzFp!i1!W304h=*Y=Puo3+v?{#;w*D??06J_P1qNnA)ld zsOKeYug`erV))*k(DJD%ftl7TSxkf!?fnEEp<-&t;|g398jToD@MAnCOsx7!k$0>j z)^BSXjp3(H#H{JNO|O{RC#oW9CVYD<0crd$>|8kwb?1Klmi=}!t2z`JYy9n3?4T~; zgPg`Kn^Q$rHYmcRB@B~b8VQ@VLDb=7zLgWh`0(3FBD^t&=~uU=3J|VHLNE@GkwI*Y z)L=nc$D$G7RF*!eWAu!0G6dNHbF6dDIAxogEXyw8R-KJyTp-I=jmhu#IbzJwzG{LH zzy&rGp$jD#Am*UeynwIKyN!`NwD|SHKh8Bq?@Kzpt=>q0GKX<76=aBN+GYNNY86@s z_;3DKW-Jj>#}dIR>(LJLvfydiJk+;t5d6j7JGzyC!^&&z^eiMFQYuP7-Rgu!U|1;We*5r>LY(vC+o zN0+4%*He&sim{__A{L8rBi~@NLttWWEf$4+LOYAzu$8A`)9F}kC;6vk)e6DxIlnnG z-8Mvm<%Nv%Lp?+J`5pB${m1H$YeVn{h|gt@r9Z|^VTT@E!0$67=E;8i7epSR77FR% z)yC&U_AK1RaVgFTk&=`LWNPMGJwhlbG)>Tp+e?#73?k8tm~Sjs;UB2Xqq8pH9$&5p z-VB|N`ERNd#Ed)Ge+-O6nncc+cUebb)A9G`P{cs`WseO(o>1dcHQGK>2p3^t5AXo~ zd%nlD|Hg10#T^ggDqI<#I(wK~HI9p{;Z7xf&6&fwtZz8U3sBAn?0Ft4Qm16!nPA5& z9jp3W{HuBs=iqX&MT1&W6IsIUr9XF>>b&cE+iQTp+SEHwl$@Tk$n*R zxjba11a`-1kG0B6@ zRJh)!XR6ibY8OQS;-3A+Tf;2@^)|*M>XzT|qDF6ilSH_d&lkb6-NvJIQa?0%cANs2 z=rbJk#*{;>O9+cG=UHY#bZsl(AH}|i$>3bVqKARi8}qsK*Z35icMhwiYF;b)xZL;U z;!W|fqK=z^{PDFBB9d|vqSz|_8>={mX7xta>qt8OZs!US4W$@YF_1*s z-sIJ)=tZbGJLb;|HfMKG)~`S6fv6KFW_F+H~oGI%ZNld6MIlsk<1hE31%R!_6Xzfc!|#`o_b*MDmY;4-3WcSo1K;j46e|V(saP>TKRy0^x`q;mBXdFjv9Ah z79hH&9%N^dKpQUAZOnr7%E5?u8c33Zqm-?y*Y?sqVvV+cC;)5oTy1ahMX$_dELEj4 zmRjyoiLu<^+AwLVlzvHCJ!2rUmU(-#SseVh2SRKu|g}Jsdb*}j+4VjOfF~lwX zL)6ZbA@&j)Ukx!PLtHe?)9hX{DeTRQ4~;c6T`Ld$u(qu=HRP1Ho!hJE7I_dj4uUb`cI zBdDd@{8QuUSB2tyGu5H=qbq~5odCj{u;B@3ZftL!d3A(JcO5Kkqm;X%QmtcD3U zaV_uWsu4V`mO=*N=|$$nI0X04blV~|(@uPG?vp91&F1={5K!Xrx|fjgG6!jy1FoT3 z{B_zul^XWNGHk-M=ELyfT8O@-+YDOMYYyGkK^IJ%fT}44KP2(o=0e=er5-O+tV;)F ziYJv|%hfAuHP+X`Wpr?5atD`L9jvc0jtDfSDA(#>k#z8iaBW_7xYkh(XXB&HM+`!B zuoWULnNP&DpGMka{*amTs_NJPpRtLzv+@0+Ps#IAs^+D#JNnzCdBNPDIbk35#;4_j zlinVQIOtN56+96MsCc^AqR>0I?#pX5q^`CSrUbRf!``DZUG#z(OH9`rAc5)f-}O(X zN@nG#jKi80C(APTtO@x-<^h8AS}u?oI0*&Z#t=%9^CS^Q_c3$6Y=ZBAe46{mh zFAXvqm!EJL-18J_YV<#`8fzCAlloW-LCfQK&T+u5l8a7g&m=0Bh|H{irWrx z+P&mz!yB-HGsJ(lwG25wti!{i7z4-<4biyA9E>pFxN(OJyMHZ?N~}dnDf&=l+$qRR z!j{{3h{eHpA^n_L{)Z*T+FWyYX^cMoPb601d7!}6_L>Zt(MH84 zGqDC;?Iq|c)ca?6Z=oqF7iqP=FdCgKW@<=cBBAb_(5W<6c|`9DeVMj6E%bSgXLmG} z>cS}?P5oyFIF7AnAK;RPs(q-C>{>{+NU+H{?pp7>rvK0jomzgz=`AwLGY`E>Wbw=C z{k?GT26`<%NH+q|fBow0Yr^-nQeo1KORivB1|#ymIC2D)n-E;r`t505Nt}Tk;|fw9 zxk%(JmxKHTu*sRPj%@QmO**rgfU=NNT*cs}qP)vbHwDsoWo@NdW5ogPSS??TPA$&peaeV0o zMHrA+Ou=8y!H=X#S4=@;GJcx#1V6+3@N>C^98dy!D$=?D%{YOc0IVzIz+2?efmk3< z@KeoT*9^4q1Kncvs#wZj zF=inN>nFG&3CCG7q0`Hkz(F_{nKuMai;#VZOoltWLRMDfaE7d>|-dVx^7=)76oIf>m%s;!0^hxu2YbH+iy0{lYUom z5EiI@OP7HK7>nnaEIh~637!M4NO+F_ps4D!Q#y?v38q8XL5ZQSq9w-p4xBGaR0&}< z6XZ$pgEv|<{CM=<)BRIvosju);(er#=@>_uf5LRsFokiZV;7!UmB-Z#Thsejg`*rl zF%M*F`|x8;EzF_X`!W&ZWMv8=$FzmBJKG|^x#8Lz#cj#RDHTYRg8S$@t$r+;b=c{6 z5dSsie+bEM^i<~2uI%7RL*Pq~!RmCIaWzx*RMgv8GMY{*aek=Q+bY=}q@&SgXX zA5gvte&%1JJT+~{u-*%8%S@=nQf+T%CY6xMw8j3sM0aAV~j(A>0^;}d_ijs z+;mm&;bNLXv?47AJ`*WvonDsxoHLNQEyh7qYoV$pkuT+P z%XAlZ)Fa6+D$8}XJwhj5k%I*>2|O$Wm{Y6vXtnXDA0wDTefF$OLG97tmv#!lh>+h> z(n20LFT$tc0)BcT3$G1{l3*amafXLAHU%I(G{fmYJqPugUT7R)=y8a*0MX;^S)}Br zi=g&X-~^5rdAk?cJ)H~fJH4?Kz1E=fXMg*35wWrdt zICGQg@fga(<}JKX05gK2q@Iw4qF(pnkFVO3=GBsOT1)Oyt8?7FmFC&%Tjs_N8cD3K zF=wtW=a|E3httyYY1c;HQV7W>U5J&pM%+U5c^?PByyv(zixt?0b z;z7I#m*(mFL%SX3bf5|zQb|IzUADz`Ylv!BY#c=rv`v}pP1lsj=>5U%G7R%=!PEZW zhw?mppFAQN&~Diz(k0iF{pQQo)bxw0@WO^OX`3oikU2YorzAQYdo7JUS=jN)b1Wg| zPpKZJ&MYC4gD3`8f#9l z`fGMt9M*CIOrQcC2A`Fh#Am6&*r$?@S{ppqycXJCqYqqtdrC^UBvnfd#-x*27fC<% z^z~zKV_NH1+f;kA!6w-Nq`4|98DjW86}<*K6q{@1CRPKp0#~wdH2anq608y6RNbfk z-e1+qU$M`OM8z>$J}1`#5ZvCuPp#Iik0gMQ zXOycgUtSYd;tNPe1^n)Ua!cCkTCtx2^iN(^Fxq+%21c*&)S5cK+nO!E1lNdWNhfy2 zqW{HveNGO@x`4zy`X05EXj7~S*ld=`V?QI!d-Z4R&{0ys48uy zU7P99W;!*@yk}O zbe#GeuRbLimiFjG^(om7v`358=M+A<9$(xri3Mu34YjNbvM{z1lQMEK+J(qy6*>CM z9C697Hr(%E6F4*1_`~HA8ckElxir;spSwSLpYV#qOmt^P?`(pL@KR6gTgip17SmyH3^3&H|O&-=pw#Ma9gjEkN`W3^reVsvasx#sIua%ob^}iK(xINW)B5ZYM87zX(I?^u zEzPESfBYa(fnglTbm9FeA&hP=+93T7Osp~P?@OTs$!i8O0V4t z=Z?LGlos)|l|0PcqOVj_Rgo=0jg%J6wLW+`gaLDY?WtWIMtaAQ zwA8ND-KjHDSE-P^s!@lHL4`}~jp^Fe+KX#JlJ??LeBP=p$kxV_)GG98O5h7UGFQ=h zQIs7MV-7K#K#O)~O}$wbirM{lz?@Uv|JvZ9ShGa*0<|by_i*%?bk`k7M|vImG9(!iDLAx7->*ej1?hF zUli=1~Tv1BKGS0s;Kv zVQ)8mnq+i>sUvYEx2JVz{>a2q?ID4K7fH(~Y~u<~`0B_Zcqu0IZcLiSX#r=I@dwPM zkv6SMF*nEUvz$62Cbv$E=*7ab&e<`tk-roV+KA$N7!+*#%uR5;>Cg#$ibY=YPKuRoe61 z!i?CFanP*r*0GfRZ6kU^c-nYCXX7K@=^lwf^oRoWw(9{AZMYGKtukT#K;p033e`W}U_1Zo7y3Dju5-ok^W z`p!2#v~XFlJ>K0EYrzyKAQDcf1e8fvz5!*@bwQc@O`uGTSv?Vy-NYLUWwI84M9j=vZ3x7#y)^4cZWkZYuhTkk3$d8SNWi{)e5jL>IpPxtaY(P8vhpECI=sg(i* zZOY_svp~O{CsQULm7Tj+yM1!EAkBEgBp*12brxO=wii>lNB8JE(>g-W{Gmb6G{bYU zC71l-hwTL?L(inEXW`=R(4FaBw$R^F0%UfM{sL(kB+!bhaX=ZOP$8``k3%OsHv?J` z&iyaFQ|(G~Y-|zN7-J+P6h0z+8}iZ_LM-1784i-I6m(JPjZYESd(sxYslqpOGd~oK zpP<4(avB^EnF39@Wkh?_XxQ^<96|q;i$Ic)JR@|Ta^nYEw&OsSj# zN)~Ig9j+HjWP<3tj0x_pUf(7>g-5X^++MJz8yoq=UK9GkbrVzc+pimkDe4L-VGfS@ zubWU~Y=$@0rd&6UBuep^hRj`K9^IJh+1s2+0`)gOB}Lo8f@2$nbW2|8tnJ)KMtdD^ ze3(UK!yPIZxt7wHdh2{eZHh(YLQt|`E6r%ZHuWichG<=_OL1Kr5WB}=jQRuo;|_YP zKkx%4u`^>8VYFaxGx6|R*n2t_p5Zq3ss`sqBLfr%tJb<&=A?9*NXQj(-x}lPFAS*b znO=z=a=TvV_SCxrx9BUxNZhkhKJkxRu|WNj&%nghEBySuex-Z{E-!qq{a{O;J|jn8 zl2dRDX2?Dm?PQ7FGi9(n;4H)O)$?wX!I7V;IET0;7(EZ&Ft%wh{2V>5L|sAa!}Vbp zZbAOxW0*Yq0nt89Ibi29Wtq%NWHvW9q8xbK=&#s|%BU7=+E*vsEpD;<>T0mn#E2Ec z+ci(~-ZBhxwJ(#h6_{3G#3cqy7=>LZ!F>)zzr&l>=4?c4sy^OSzVSfeeA{Q-L$~A| z(AtUwg0vtd#zilepKRziFyltAqWmtocRGD?eY70sq$aje+&tfjeg&#RugXl>0yl>%i~R=x9&6UMJKOn-Mc$p z`U3Kj$4j#SQz-L0*hllXx)()o55Xk7y*RFcZc?7do%W1}sh}SUeZ@UEK)caeK3ZRu zY2_j=on?f|CD5+tJ{A?-y~31BdK2^Ii^te4Rw=#MuIEHWdCV^E^yZMgjO`@uImj@a zSBP~j;fHg13N!4~YMuPa(Q0#Gf9XHfTii!FhcWgpPY%lj214N%unS-JqGdZ0| zIH<0;SbWZ&11cJ&wrxPv*M?+AhAN%0=#S;M>Rp~|!+vCI{c(gVMZ6dpzUC80Et)UEX_U}zF>$cH3|g-5ND4-; z%onZZv88pj?VvZC#WY!bIzy6P1O?SS&B`+q4{hT(BJ?;no-J;h*+kVhrZD$rRIHQf zRf_pGTve&^YXDBU|aX~CXl#RW#O0Z|FlyZgKg;TUF;!kV#W7;jp?9n;U5IX%w z>@K6_d}nW2e4u549-YiH@W^LjN1X~kP!r9QI@ZHRTTS#l`N?n_Q;oY|(giV@JVI=M zL*Ex;XdG!m8!M!|9w?ITbatHU|q+`=2M6_EXgl%wBRl7an2;CXs z23g@wjc!niuVn8+d)#}Fc4f04LK1nM&>N zEq^;Y=N!lhzeV8^=!&8x;W+rKq%^TtAPmFxC3exDlfgDc%OsdgvoqA`xLMN2wp;kOn14O|`z`PP?HcNc5lC`^V0IR%DC{Tm8A?p#nKYfkX4^BC)j(}86V+Dr+GV+Ujxo$Jd#9^f3%)94kX>= zy0``H1bwBDy7rEi%&D6Cs(U+Vt|nqQ@?CH~xPI=#dfFn0fi=;Pv>~l3I&3ac?JfGo z_U81r*QnYfa|UjW3VuI$9q{pC~<-nShAyE8WD&m8?g{K8ycs_T{{5)+(ozJ*d zihH-DeSn4Y@`0+hXHHMkR>_aaKIh~n?dDxuMP^jlTlhy~2s=tdTweSD&&2tI(=}) zf(3|v3+#uCn_gLWDTn#?=8GTSBttrRig%&ysiBVPWc3zV=l(2|(0}Ju!S>0;9WGn* zRgb@_O2)zqQy)JW%L?@Bu$M7p;@~5+-H*ShB;nqV;3K-3dZg1NBfZ{z;B@G3t)dJH z^qK=(n?{|s1qO!9RK5{`_OlZ^QvB(zZNp6$1Nr{`fv#;8Fg~->_J^};(XZLi>v{Gx zf48FGowQRoA28W0WqLDWlK?hA?yR@i%!@4n@M~<*s0H9#@VVc*J@GBXi3R|xCNXHcylOeJ&-*}5L!)?To)~P8b ztR-k zK}9Ff=5&Wk?HuM|`vM~6iCIvOcoXC>P|$J}o*3O_M%F7t+oP?X)TTi^Fv7GZHe}A{ zQv6OxHGA0|tIje1$lo}%7$@a&He$Swe7E0mw@$xWcBZE#uPI%hk#CNMW$ldgphUgD zw3wwRKhi^oZ%pe7eKHC?#7$x6N}^if0bpMxbDV?%x$;bN%!xiMzJ4WW)Hr-nPeyF5 z@FHZfk1Z!~sLzX=t*1H`4kjXzXSY8Sb%;OpnuDt?1s>-U8dereGg56)`Eg6L zwKyZE1_qH~lquHUmjYBtF2;L7IM4(#mLHRN#CtP{7#;DmKtH3R*fFwFcjg_3%C%o_)4?#G_K`yVw%k}Y#6g5FCkP#iyO zqI!VGKPT-Mw$j%(01 zNdSA@aj&i%@(}05yxBgZ(yFF9$s|gk#PpiRRP%LxrA#7WhQZfJ2{r65VcVw5EDGiP zKMXl4mK+Ta^I@cXm8w)G1GuhscB68`I6+eolrvzOP$~015ldEPhh{iqdbyoY-7Msm z3O!SV=0Y#y9F2gV!r;-EqRni{4Rw62p*&4`dx*E8A7-ZnK2=W}Q@Qn7D?#8|D~&+l z)=DEBxV6&Mssvl1pSRH)TPRX&tS7mP@Z@q6;=Ga+OoRpDMCzFziK0~Q03VBpK#@zA zzDuKVI#tTgj|HI$WauvLl3us5nA#`2&J_Rhf7urjM#OuQE8XZgor)SzUF!B)7&gKH zqfe`F4Q2MmsQtur-aA@mO^%PLImSb;sVPsIJC`z1WPNd4F{VKYtY%yr?y(!))^v_O zHeYOsyM?n=P0HMY16LdV;>uM}UF6K`t*VA8I zJP`*}WDu@lPXkB}#gY0N5qIeIIl{9m(T8r|t>3cSZi+;z@SvPx@!0huDU!A@ml8az zCH5rj=K#K5L|@Fx&^C3)w;UO7)H$x%i9)8;;jZt8oSYXw-UqfHyf-7J$Z_I0Z^_~r zEVDY%MF|~e58!Mz78k?H?QhPAe3@~RdD*58jtS3!<{_gG6zpftA|K)_Wy{)cx}XoP z4MSWTrlks_c0lYwsQKWz~mwk_;>x$`}si#gGa>$UH_TT?{9d@t;W)5nTg z8$yf=OckMepK&WBl>MJRqy5D4|0Cu4gDYG3V|Ebs&48)gBv3btbcOkp{(4UO3qw0k z-=wKut_>NZG0=M-bdKQ7P~OBJq0|dxScTdTF5eMnC}pO;p+DB)`LFu(9lFy>7m(x! zRaZLwH@h|vjXz*#dtQ$ifo_Huq{jP(xJNpXOTTjHRFa5jfY=}@5OnQ-5Pb&)>|CsS z1QQ|Eh%IoD)k>)2v{hCMK1?aA?7Ea4*L1{rv_$z~AqDcZRqfnzGIsf|b<_L6u?6z< zht%{1WyyK=``twk$*9;a!3X(E#7PCOASesuKu;e>n0PFe8whp(i0nY-0ywvE*?9hdCc60@|WwgcP7u{h}IU7;TE1Eux~7*eFD`DF`+Fxyiu% z*Hg)7{12d{iJYn8xa0r>2Jn$IOSUT4yv-Z`ZHY_eM^ohdv&qOB}qZVdn~H z37k0hyR#OzHQuvOCWdZ_p_o?yT;w!bN=TtKRlgdy`D**Q4OqOs3KlFCEY7)UwBnHe ze=*2l-l`}#Osd%V4V?9Y{YjiP6*t}&WGW@~#2~H{>Wkvp#W7e`S^t0W`8{Ti44h}t zD36LkVEj@e0YP zOzUJdtHV61qW?PAhD@LF5yVgC^D@rFaK&i}a3jEtC4BJsX{$GE;qbkw7HECPE3#%s zW6vmiw>l2)Cf5d+9+9WAlqZENQY}c~kdpHrMm}PWg$_WpRlhgVnpHwup*F1=aP&$M zM_O_IlL)M}pW?K|(`g;$x4JgCF&4%b2z9?A52jI52XRrfkn6u9e?t4DpJSmhI0N0F zcP6Oeus#wKzAw?oPBAot%5c0T_8il%V`Dr%JS$Zj5mdoV7R7^`%n;s3fcl$rmc&a=4Kz zWB3zEl%>T#SyT?aWT?_m(nIV~wzyypKm0|=`Y^X(`3Jz*`OaLJ;A&@{7u&q*z zeIU&6Xp=B;GMJOYQEyvXy)Cuvt*yPaS6c<~f#yMz0A9eyPw`E)k24*v1#OcckNJJq z-e-~t*xvj5@5krEbM3X)UVH8JFzR|y9mbEwPJx2XZPDArd$G zGdQ5KN5&=#rUX+PN-FIdI4`CeqE^@2v^*7fUMdKCakun@@w|{TLm@_TjtFGboS>F* zk!}Iq44O!QEa~&jhBpAaNIrHdd>Ks-!57CXk)GHNwUxUbce7vW&~prpeM_!+#Ra5D z^joV++Ft6l9{LgOi#pAHGM+{DI2<~_2P)028-N9ltW`)GY|<;PZ@mdURR|wY+(2X#YfY|GowZhXB)!(8A+4AGQ$`x= zJfjx_i>}gs2sTsJ(EI`G?1I4aQYd^4j``0(IGs#asD+l*x6mZE6=ffescxLn?NM#U zGLr>0-l=UYP4}%d!Rzy^20qYSj&XUoM-J=>)D@z({ll8*%>h%Ig3tM+0mUYI2^}YJ6#UjCiAsmW8gtoObFRGsxt)V!ex=sCN&(! zPh#MCDXiAZZ;a=KAu!Ygjr9IPyai_@%z#ZmV{nisOQW`lTp-FM z=P&p#^&JS> z&6}pjnkh3CccgQt43(|jslKkSdewLJEubn0U)5i|bkJ$ENHboX^;IMCCEbWnGhN25 zTUTeSpcdn!8&T$4%3;%3z{RW2SdibefagLYYh`zdnr~T=*3vB-X>VlxD@9TzbB5vo zD$)71PoU`SB5D9Q<`e`Cd$$s+ZyQ2$Cfp)GJ6`k zkJ)jvC`5@*vxRr7yPOOjYu7R3dF>8Mwj4G{_-+K9NaIqjyjC`0oy6T~9)>BR+EG<^ zg?U#Y!qehdz1PJyINclDl+PS-|7?Za7-KB5A6texKTRM6&C#(Wia9Coe_Ag_B~YVW#gNF ztk+z8>=e<3dM`1Lb2p2%`H>s-^=#fTlDRTE78z2p$o>r2AeL&_*c@n~wW`!QuN{{w zu4RGV`hwItU$siwPZD$FT&yVG*g1@IMX)*CTvjm6T|dMuLuikOz*YHpl!fZGL>70H z6=Z?Tb~}s&f2-}(c4n&=o94djhHK2WYC5{ezMt8oGY1i5AXw4PPioheQ)rg zlB)@yETzUG?>yI<;Vb%(ECtu};-e`fU^ zB7|o6PW+;cMB7Qi1@GlJfuL&v@m=Sc`$AkDREjc+gx~vB88WcI>LaWY`yV)k)`hS7 zzZI@uCs0FVnu2r9V+fsMqvuK@*Y);O1p&NK?*-;MhOC+=rPW?t3F&_ICtRlXVj3R4 zUhGurFBCMj%JS)O0SjaUJ+ME^Ei2Z$%jgsSEN3fIkVC^p%1a%$7}D1^@cVNfvp?Axyd~} zk>K<7zrNDt+MNI3)2DgqIWhjKmNBvSqp>z5$B$zRNwBIk z>m>};6@imTr{s%wqY-?hpDBwB(T9`Sax{rN(r`vulleN_S<|t%^_v|PC2b))U$1PW z=06Xd^lyzob<8EZ2yIZ(h1Sk4b9gAV2$h#z^6_H%h=q8E4m!HCRug8(W9;ZS)_I{^ zN{ZK(S3o}j6DFRpWmtK7C%u*Qnl~5CoY;bkt19ux$bBnL8Sxg@^dJkU&HM;LgIC_b z$LrSOb^^~@>uWd}xe;$viwc~+^t`RL*M+LeDfs#dDfW@sK^aP-;{SOe!}HL}m3^=p z6_#EXKX`QAZ(pYJ;@KF*RmmHE-CX{6TEbb9w6x*h5vn(SlhHZ7%CELRdO-E+6Y>X6 zu8TkwrAuE&&aHY?2OEK!jS^+6rc|$p+9Jh1k-N%EAO{l(Yz-G(Y2H+1-YwnA=+!>^ zzRbL;OVmzdI7o4Ng-?O63CsaYk3TN%t!49xix5=qSA2?B+uT?LVKSE@m7Dc?)(m!nZbBG*oK*&a>K12I7g4obGrJ=1;C_Yr ze&u2c{f*xuY0_IDI&;PDRf;{5KVCqhRd^WR*fY(EB73=ncoo$2A%OiW?HJ47mT{LB zS<`xP1U{1s2$gBG&h#>w@CZN-^3@e4j!HkpycaJu%a57M(5j<~Biz6l<+c(0Bd&(L zCx2UPE0F&{dV3^OkJmn3Kb|X{w=?pUCI299Dc&_A zh=2ZwW75cxz)STUYG%Fm$xT25wUeV_w`&KMACu(y?|m|l0Uf7%0-aL~nCAAx>fT17 z?=7Hjt#Hfz_-wbi{76ES-!1Q9bHYrk6pWHP*YzI>yn%qX*DRPV$s9o>S^C=1@V=`> z*cE;PZT|Rg7!Vu)?21B1CRnyxCPD1zRD>Dj{^;o&sX_TbdiKT}nVeZ~D5zZ;EW}*w zE(NuShT0#^X&uDVz?pa6>tpsCG>Fv%6Q037I;%b(KdEpFS9Z6xM8>kT#jTupr;r>ufwsgE-UDso6$=+mvTNh2 z>}8;0diR^P`@PfsPaR`aVb1*Ie8EX<3v?wffmFr5J<=8C_G`ag(K#%tMg&e8R z0J{MH=iXH<`3fHtX$T|AUIO(Y*6$86!*TE!DVhj=%LFdB!}}l6((yBr%q%0 zRuB7eMykEUwGez6PaSkgA2dV!Zf2ch3{M$%N`--H4^ zOjuS)7oJJz#n<`DJ9eTz|JGZjOXnHe-ln41Ct3cjT;j{uA;Ju2ftg!> zK|<`4^Xdl^9F#db5*Tze!{6WwD*!v#C zlA1hl@L9S#l<=-Mw@GDIenYJFl!UP*kf3iyEa43tsy$|?Z?K~mn5rl?OsX4}w}GIP z6f^bUAC^{K(ii&&@Z>c)(y3jf*-gTtTk@znr6_gnh}do!3{*M}t;XGe9s$d07!kBC zV;WLZ%SQU+U*#)xP3o>RcBtB}lgfQkd6!gP!fT0oq;kT!Nh`g++Plmhf=kE*?Qf%I zAd~;BOun)gHRA%;YW#ifko<(~PB*FBFv>=ns!C70L_Ga>Ja%ZT5!Xo#(*O_`7B{ke zt(Gd)@RP*Xlu89%p9JG|eq(xJO)dc0!k3!C(r0PU-oTG(sjli-^3}4f`y0PaK{ZP` z#sZ%Q!z00})?SZMHnt{@YHpNj^82cpaCS9bUCrclH68>E{na2dD6a8RO)t_vF?uBm z(gemLEsK~@as2+qZnk8Z+p;6D!zrY)GS z(X1@gz-bkC`u_NXd^M*RsOgm*F6h5|izKO$N;CG&(%#U%_U516URLeJ(w;=;qZyEK zLB1~iQm;`qPDp2+0N);K6R5eIC;7nd*bd9mCuU6Kq~c?djzI*(QNo1fS@3{Va|8 zXvpphd8gnSu9eJ6;ewvS;P8;(6hvtb0wl18$_@8~&9KL06i?5Y?MvWYgGj`$#O;Rl$o|KL*E2@Ql?z?4ts>C zpIGwfkio3l&pFsKS@2}aD%1V62whf@L^sDHptc>^WPo*l?V3_!;Edx8>4EPXv3=KmwHRuVl98u z6&Pi6P&K+<&ZYi)!b}4SwN`$GQC1pj9nHWO%vv=S&gzSNQQ>G;O`VQQ+1X`$FG#BHDIK&2OHYUQ_4K4D$o7Lq5o7<>ztFJ29iJUAgLy{Tc#W4<{1n|b zZ}zT^GMW&K8r~CVsw#C?p|M@alf7@3K$&3EGQhx!LVx^uDx37y)D?IO6z0%W+eM&k zfcY)yJ&ALLju@zbJ_J7mr)v`=&AWt3sC z<8ORIHas%!lbKO1LggZRlex6BRu$Fhrc30@RVu zH#>wIqbx#P8jwJQwN`D$my>I+=3Ji#L3{Shx`8iKEq1^F1a z*K&DYWcW~)^OWT$$07>SN>KSIK{dAUE&Sg)Z}LrEV#Vlbi8M|{a1;4;+2lZ(w>FP$ zIR;d?tr%ujO*V&$aah^p=Af_1J6PQr&?^y8i6NF;Ug9)w(%#0m{M%ZoVY;W4O6vWh zZhgJ3XW$04HR#fr~vDs;oIWjBp<^MSvM-R@Y~Z`vl7<;J#J`3*K2lv%O(Y^+vCv3rox?rpYFVT&du90l2 zhS=;>CFbrwQqKI?+%931V}FM23g4)Xxdn?j=Em4{%tN|w=04>4oEJFxyIdEqEvUIz zT6$49M^)t_dHuPxuw4c#(Scu%W2&S^sO~a!J)Chq(9P-5BFa)D-Oy+%R5KNVNSxX& zvaGw?an}3)@PNdJTI{0ckv>xeeU5G9G)_0W?6)D~eciNVa*z~$Sj1||m8+kkz_IWY zj?EVaURsxno5A%3HJ&6^=~C%I+y3%twCIRW!(RtDLSusa3|$j#a;gnq-xQbF)kuKa znzp^q6C|lAE*vUkf^cT6X2>2AXfvn6vLvh0dG_imqjkkDu7+mk2WI>H_x(T)p=y|> zf{yHFudthSw|o7KzmRU}K-RtZd>5agVte$g7-dMxAb| z7>oY6I?Q*6D{C%Yu*^_tf#bE8n;mJ4d5>FUP`2hWtGva|LGUE#a$J{2yg0}z8BxFb?6eaA#-R+XVD8(9f%lkZ}R3z#|2bn<0FD*cZt42|C>4VF9 zPM9A}-7c%_oPJ(UKd)37^-v_LaLuLoZJG4)vYz8u^xt`4z{rP?Uyodk!kURxogmg5 z5NrRP<2p^uMZFihp%$#9Ci@23sbL#h-XcBT)>0a>+k`nKGU>z8F%Ak+SVJfwssIXV z|4klaw`4#lx!dM1v&Il3VQzK4NL3qhW4lY~fh#<}CTHQYz=_&R%+BAmyd zLv9rpv*vb7IUliakdFOL=$^`~s|HDC4@&0j`aOd#=?pnp&m*f~v^2qeN(%&6bp%I3 zp+q4)RG~fMD(rh?ZC_WG*IfGPT>-76Di)OP$`jrHv@2>|^>w6~j2Rs%$IU=)U#1D2n@M%6)H#i=2Jkx_v;m#`iDKCp8NAc83!R=N`+yY3 zWunizhd&rQodu`lKl;1J_5B>WX5UT?-R;Hx#>Xh3Nf>HqEaJ#{+M0X)u$01<`P&$`1`>WwE6k`=7N$g5iu zIg7Fq;R=5p%GmXpx&UMLUI8kc^M`!Vy)C$El{5PLAF#+MVVB81gAn zfg%zUUtWl;G*!RARLoDacLI#6xA{;KXVzV<2`~Oo^0=V0q*mKav57AeHnjF7-45L6 z#pDoH@lQ8%w>?xRW6Y_#p*!V_tROsDb;+x`6ux8h@~G;|qZBmb!XG)~*&+DRH>5|3 z!{b!BLAu=4qnAIY%7vv|a90`#jg(-s&X#*?c1bk_`i4AOw^dwjL>lc!8@S1i?iP*= z53?!Nko^OdSl6ZUwAf8LkFa3@?7lb>P$vlY0_C6LMra@s|4CMvh2zbVXTG{&>Q<4 znza7`P7x&R0sF#5D*V)+5Of+)$^)x<8lqqi!x<5K`Z=B$5mt}zLWQP# zdFs~5I5W|fIJO7@9QC@`(K(sj!q82*{V1#^N;4{)!TgXtcPMMMd{>pdVH$IPtR}b0 z{>oa%?3`=FU1))PD8a0;3&p0Nc;iEvlS*qtK7D`A{&)}Y=(2w;U|EQv2G4%h$~a55tBFr#NLT7|yx(prehbM|-{Mg(;gp5K$Ma~0koP=-;@ zRfu9<^ll1FVD9WSl@bbVCTgoK8?zmF-Bwh#S6)F=5i_O*BHq8pDI;WP3S{yypHMTTIz5O zs`)qvT;Y`Dz`M{ZC_u5vYtS;qhC5wm7GfZR%xN)sv)qXu6r2&g zn``YHXjgJBO*jpl{-%RvUl`Z`fe5Oylr8-t`-7=)Ss45sw90ff8@%=lA}pd7l**oQ zsvxAh8l9Z`hcGO2E|=q{v_q8eAlaI@3NPexa@O=LU?BGPi|l)-o6&;r>(V`0Nl&=6 zlsf*d>gd%>9d!`O@uL1ZfQYVShE!7C3+_la;Tc=9#4ijU^BFw=(N1Ej>^vCgBtVid z8%{Fh=pc@RUf|f3yjHq#^cxO9E*}VxOo+ccMF9kGB%h~IoVH@JjaQVlL(KhH95ZT? zk{)sFzoa1gNy}QI_^R~$*omQ$SvBrTJMJ{&Z@gVLzS*dIpykC9CkkU1F{-<&?9Y~g zU;7c9i{2Lu4EM!TCGQe$Epf_mN^Z&JvM|;=DDq{th5b4hIj%zRUt@WjI1MAwnC+G1 zzxrbDJIMhq9*;9oxJcw$@NY6@#%q@}Q!ua@NtR}srP%F0bql&hHB=xC6`-F(JHsMhSB{m2c_X(Wd%;M*lulr= z|9Cc8g}z1R)v2l?2+kF}5Ptr{kU0!vcM?X#PI}Na zR;kC*so`PZeR5FX%`gJ5gZ3?)Pcq#hG#nMhicIQ^t4;HbYHMA3*HF7X8^=XALE3@^ zYA<=wa9he3q3tDgHM=8Hg6Af6PfFRZw`HN3S#2pkw^RMfXGNFt*xSS{rZqDJ*Q~gR z|ClGl)7l|BD^>Vs9Y=%3$*`0(`)-|K_nLHu6VSiFv4|J-==tKT;MM;*mGVE|V(!Os zc?cHtK6^B{jIz?`wK(&@xkb>;RZSQT5T{ku{^Yk874@5YUFB`Ts}gy*=mCpw~g_0O&o~dJcpdfbhSB(5*Vdr$Xo} z0-@g>?T66$eGsThO|ox=K?PD)JxKB-P^lJm&v_&!#~@J3hNF!t-7O(iR~gf@z!)#)<@wf@U+NSuzR9(soZ4pCv^?>a%?!29XKdLe1c8uwVbmUn zrK(o1x%&>6aRYb8*V;wPRai*%b$sl3$?4iWM!Xe|fv+OF8)rmLiEK(tu>X9EDq*Tx z4Nt#ujc7rLtA-pJz6=R*l~EQlMwl}SR!@l0UYVET6YXD8+$;;pHA_yPtwF<4u~X?^ zaf%s&<#@VJp)#aBT}9b`3@q+uR=K@azjo%hJYAlgbEHW!N9sF%!P*i?zWAGM6OKzHCak4*SD(Yo+v3th`TtQerN^~Vr6p3N_?IK)#w{%(O$2yeKo*> z&>Qiu@vwfP?vAm24R2;IGv2_RoRMv9_8L`QYrSuoc#E-31!GecrW4jZEwo)}4rAE9 z#9g$eM(%H1C68?7zSxmVn1PUh9>RV&`KtJK5+@@*do#2-VbNTF(!GE;@h#~=B%kZF zmH9dxVI}`k*IHJXFZORPIt{c}8FAIqpf6eNJnQdPd@Z@S_?6Eg`zG!;Ej4XWO;vv0 zGmI-Pqo4YaOy}n5^qJG&j;$ogc7Q}vKvJq96X>XaDBW@!&Zzpq{W4rkRYKfoIo~b5 zC!Qm9)%_)PcepC~zlQ%e@c$nEpW=T_y?!_O`(yr}sJ+9LP5N)0bSWqQ^<7H=AxC$% zzaTI+j}x?Fs5unZ9Yn7*4+q{0b5S(}5VCTYH3iR83gL@IY`VZ3vcEooLvG!9Xw~_` zqc~GCPO*?G2rT!7(Q`(L^UXONqQt5*gu?d$y8(2W9jME%e=1fV!nnu(2#0V~o1e7)ZHSqz{QZ5er%j2@K7(7DjWB5&wco!AQP`$-3FKx5zh~Vm04F+8 zh54f8-6#&m2q^r3eR2k5Ptla*4XO2BIVc>ElExNc3hhrYlUdcXCCW1{fQF{lQ>A>i z|G)`Dms9>QJ#G_6v2&lBDdJ8PxQ#iuB4>C(ew~DSCpIe{x85dSDC) zPJ7l;XF!6z;=jQD2CYT8@e6N~fvL`;JD~=)v~OUe8CWu)#uKtdqQmHCrgv`RVaIOXp!xc3BH*?Wey1GH)5-MIGM$FDctVR* znNU$lT2)>yvd{&t%Wp0l2J&6FX<|B5uNeCmvw4_qOa?-e#ka+Q%4+)}wn%4h0smyj zXeSeL_Ixg4ab!d#uO|19@!))=hS6DRt(YTs8-GC}K+Xz$iQv3wmg!;R4c#j0-b6>Q ze^lxxi7HlyoQK=Q?a6<_(1G;6+IN#p8QOr#{wJfW%iE=bat`MOOpSdj$gDi~SoexP zO=tET@xCzYY4N_`<5BF0zVU1Ez94UjukZ+-X;}367pQ?j_?P|#()ov_p4vz&cK#(e z%}K(DK&*#<;xA_09{_0WxqJC2uo)O}6v)@!kV&ZxvgeS#zJP6^{Q(2g`$DVGY zr)Zg)4UIfFhH0W_c~+qpIV@Mll(lQt<{73!AnF@0F<%dIU;)5fY`slY!<<}^3sTCi zFX@k`Hs*_ph`RHlJ?I;!pS7QwRNnx|_(O}W-Wx1k(K;G9;(6s9s>m1c3J z^cov3tuEvCi)Om?7puA;QqQ~lMV5!eW?O!*{Y6E5KwPJ zML6*!&l<|wsC0{1Jw|FZl-1(@6euhEP@w!3Dtm!do|r9A?o<}OX=C^=^fe34A2Roi z+3(={5K9^OYSZ2+c)rQRbx{4X)J{bWeuZDIWk~{!6ry}MX)pI=%=iylr@I{tXYWqy z#t0l!zg4ByNvX87b8*I|j)yskIQuB;a%z#Xc)yR4>P}YcwT}Iz0>V<=gU;Y{+F&!- z(zN_p`$B3)*pOUl-Ye#()%I=Q=59o6e4m5~#Oel+Vrqrb`4O?fUB*8B94@!mdgN1h z_>|zY8}8!3WCx#D6DWuJC!2!L$~R}oJBd86g2!(9A(7u&%AwpM4Usu?FTXWL8+T>0mP7N!u44fVBEGoH81_PprAMzk83NIUqZfy}D`s0R5_SE7G zK$7J~x{)MSkQZ1cg0h0rHtDi0jE|=_4e4uig6tce15DQYR#AKMma}?fwkPMtexY`% z*e|4cS3kU2^vUrK2K?{>L7^dY^tKYR|MQ6fEA7h6mFBFk)lwwAzC!1&ugCk>R~HTI z0sJ4<*DiY~HOuRUIU1^XAyK8-DW zSr!SZb-62Jf&J$QdN0wLH~o9&0t4RZ1tw9^9q5dc%*ogL?C$3|>9>=v*3!nQ>8>u@ z;B<8tt0g=_b?|yRs66E3m1Wn4_P%BJ()m;?IA00oXRUrY~r}Ovn8yt>JL2H!J)(T>IfxPYtj{Q6TePS<29M7#txw`kOATK`1?j zRZ2Gu_ZPv*s#8jFe>HgXPq!^oLHxIU8i;4L?UlAAM~UjexoyigT{89y1uE6BrM#=a zRo@JQ{lRaPdozc@9`Y0A-b@(mEFNW(%lIe!hdO)o@!QvNN0#QEKh>XCI{z26`y`GH zpEs4iGj7=p<-DxfJ8W#rv}j~F2iQgSEA47U8p?^2cnRyw;K|QzfAIgt?{oANtx72I zz3l+r{Jwy}aif7l-6Hln<5%)Q%|LV-p$nBNl74RZ%n&kT_k$y z$VD%oX^Wm}5vOTchoYx?FWMVz^+r#fQVCtrQ)ez}8QmJK%R9y;wcJ0eR{b-0ZuN8q z+Un7%-RNuH_gUpX4LWkEc308ty+DB?f3|Kdnvggms_;BUaGwxtN8qPsC4Dj&a^Gz~Z52;b-1=OLz-}rep zdCh=>t^S=}pOKyNm_xCyDnHe5qJ<&&w~DTQ!-*q2*KG>?Kp+*qOP6W(7I-D%;Fn>g z{X36|W3R1qTI4c#hR<^VLpL}E9M59VOC-X)12ka_O?gt+*uQ+z+2jQ{rbqiS^EcMZ z+d=!19NDZfujMu7Ig=R7UneBteZQs~91e7e+99zQ)ME8pD%gNJNjRPI-xDRP?svpH zt$1zNROi^{#UsQ*IQrLU^phJmaIPALO z=7|gZ<@jd(Kw;}(jjdcP_cxuG%&0ULik}U^T_TmFaAs!?*47GjL*-tw6no1D5`)Ox zaPkOUtedSX3*VSVVYdo@IUxgumkJ8YMWkSH>j&9+?Np<8Lw~d?oZd%gb2f&&#)ib_3*4*7#$*#?EZspzigjU?dFH+8}pbgL%eR^#+N; zo4f>V!ea5xa7lq{LxE~P&>?a42%scRli{+i^iXRF#|&y!f`2*rUjdXvv^CUJYas9g zwWNc>MO|(wA8DU*^4D1p`E~4*gSKeZCoY0Ql} z@NeD5uhk$kDf2kHpVIar_M~R-L^YM4ZN6=yJ9;$Ao*zARBh%MUMKjRWnvs?Ktksa7 zzA?@Qa&fwr;p`7GdF&5ew8rF}-%m5E>|37IbJu0ICNEfI|MC|DjzDfj!`SDwRYb-X zsPNl*P?3-GaDFDMBJi5_-?ob}I*!m_BRIVbM<_JZ_&3QTp#OnDVrN$dRAK|5a)Usn z1MKeJ1Td~k1LHakjMO>60G9!c>?s0_%lmY6M| zaifm3$n<~FD1XE#e{z+vq@^kNjAkbNJ4X(lZulEcYG|l65bIw9&@v@dsm;~0V4}dl ziKnN1n4b1$^|XJWN!VdX*t4tHI{Z()m3LT3*k`R+{~A!|BAI$!%W(D@Sp)1efaKy_%~4;br0_q@Z%P{87{2wEP)h63~6}Ve1h8GZe$jF}4WF;izupbgJWB zzdY!TpJcgKHn(fFv=#P|YtqL~y57M}tMVv^%#CdU*k=9z7qq8$o(0;gP$uaUDO{+4 zdEQR}W=`52>nN5~auC2Za#E3>JJNyite;75$)@nGfDVx96Rrb84L%6G%eW-*3^`c6 zT5Kk)nQ4f$T#Lr#;S@0>L_ zb-hC7yG5tjnw~N|{+-hb8d8$Dc392n>Pk66Ry?JLkMQbgwKF=5Xn^1zE&c_aA^Z1_ zI2+^dC^$fzT|`gTk!n{RlS9_v54F>L&(?et&dt&Wi?Zgw=L>UFI0M?0@WGXt7i{~0DcXFOaOMqdi z1Owdk7AP>S{d~>okUCV~s1YJL3aOh+PRO1Nu4l-%uT*8#(K1tnVkx)KW|o-Pi41Ry zX$YS)$H(V75XTs^G9plspvW}>AP+YhKIt`>axQrD}+*t z|446Aks~$F{m}q1 zSZHDV32E>Fv0%b%@m@68=2_ZG+mY%vF2m0Rh@Xpb9cII%uMY$cbrN+ zdxR%2?9v*K&Swm83i8^Fs=^3%OZ?~U0m5_$Bxd=l<|uNGb#@l zM(+YCKtyUUjIHvy#Fb!WXLc`rLA%Yqdt270D4#=FYrj$>zRxN#y4P1{=c=gBG53e; ziDW=-{$ym*xfv$CMZ>5|)wt(`?85)Za;ayvlVaLIep&ExF@|OqV;|`xyKCd z0WKe605}0^yYJVhgSgnR9QmucT9WXjSaH%C=Q!8xy`-z1Hd1 z3E|P|^&9&2hIIAD3N8=z>?Ny3cb_UhcO3!@Vh=@pojJn&ByU(P@^jnsJ?*SyShZAz z(ucj9GoRVTfo?As@#N+#i0!gCw?iozuYLvSQ!mID+OYixP{DqWct8J~rd5tX!vK~3 zks{eBM4uNVf%-E}yLvc6ZeqoPDooS~BsNm#Tv9ie0;e>oMg|kKWJNwn$voV@tj7a`5B+C$m8>V+D_6i%>rrNoFADLe@s)vUQrj~# z@{jrS{BL|XKwSCaJA-yDf6UdNM*FxW$0-8AIE$|uFAFl*`wmVQ9XaPa(+m1D>-}67 zu+LvT=qK;|TxIvY6ZFY8q&i7`yuKYQa8h`8YHwrB5~Gg>W{vep9nQKR6!N&<{(1rG z%Wr4YlOAz@`MW9qk$+i`vcrOXZ945mGTO`Rj_@B1M<0h4X6`?jhT&jPJV)dk+n0hQ z(Qg;H3@gM_WL!lmQtYor)BjUC3t>A6eN9Z}r%D?^-HRceCF<1Zw$A6bGkyy%kIaDP z#Bb$Em;`$g9t9?Kf7+(uzjrY?V!I_P$CTOf^00cbEYYpC>;CIh3TO@52(&FFbqg_J z#0^mGDAFk;H)Id0Ws84Uv~|fRe^BF9HH?1Z6dJC@1cD3KI1NQ=5Rgu|bcfPx)|u_O zy9uhaTa`xvseUN->poOFvE57+V6WL7{+yX@Su(f^U9lK&;l(6{mBoPee)l`sjGUIj zUyim<(2zkvH)PiU2~z=v((c(fPi5Q1&h5KD%u@H&XK$+YdK0{(MD3)-k@Na@>02q1 zn(a+?IpcixH?*s!Gw~gInc08c0sE^4f@L}R_^bCOFLV<3lK9T{#gqWdmi#q6YU;sI zbAK9Lhvkn=g~nC%WsFNkj8p|@)Fjv+0A{Dk@5WB^D4?=O=6S?u#a_treB8}`inZg- zcJ<|YGc6YNWmyXnn;fUB(A{yV$XL<(F8&nsbGEmQpj7fsw$`zzv{Y26=4<8lRu%QjNnad1>C8?qm8Hxrn}}@t;wC1wyUb5055D#gMp(#7C2zDZy( zX;6)Ggn8i8#<_@D>>H=dFTBSUpe(!hD06|BDm;P?t?&ZVFrhWF-Ixa$ zk=k%r!Q8P-W6PAH{>DcEhozkO$gSXMh{uC?6F!XN`!-{{bf`>w4+`{dzNGHL8duHW z>MHx|V_3MKn8yOjbiOvR*&FzH{Rgq#YM$$hwGSC5?{xCc<1*)y_*vS#NB?$-YpOZk(EqVROzoLsNQC@_|l0VkI2fP;e7XKEBKTwpj!d5$4e_AaiUj=l2 ztIqKfq_Tz>pj+*0c#^*s?mPM05j0(PZlij}V$UAMW8iRYI9g}A!dFD=hq*ZDx&po}e$E8Zp+Ozn*eb*D=a? zkZ8`&gjIX0AHNYD_~1Bz1%({)o{>}ZCBLPO!iLDtgl zCbgFIO6nMO4kqX&1w0#$PGA=L*OL}rL?qs=CgrisYDBYTMC`&v*l;m0kp!he#oTB! zoT2nKaU2+ljhVmkFFZBWVU2o;YxCyXY&_(pHf+Ez9~VRBwe|xnYruO@jUZJu(p;GT z&UUp=)Uz?dzl;R1aY;xc!E{@Iw%#KT~F8hoSjOB&NuPb7v zHcY)Q7gM1OA9mS=UtoI=?4AZNiJ*jbpT-vqo1sQ2R+O}+cfQmPHMzqwT9gsU9%OH& zMWC^e^YrJtHZ+~vX`I)R&s4+o9M;aCb=ajA;T5c^U}pcMXLz6_ zXKIH4%wA3plbgvl>g;T4BG{AuifMgv`9H-na@_sXG?tx(JV(`5E?kYB{WFa`2Nd!E zxto@1+!+Dz8!+|_;7`#;Wl|NB|* zAD{Jp{H*uhv)(@%_>S%$ONQYho}4{EQ))H_T=-*SDODoRmYCg>M=9}W%%0{~amr&h zF8-ebQ{^Ep7w!1Zz=Z;aUX|W4ZODGEswuD!Zf4+0(Y^6PD&r&~_F!75eDz;pL_H$A zNuZzNiUrPKA^%c%cr0*QJ>0e*PA12AQ?^6bbMpkjBOC;X- z`IlqKr+58oy8by@*kA9!Ak3zmIevQ4=@HoyjPASW$KQ@Kd^y5|ud5knZ=)2k&BZ(P zJSkRQ1YE0Azg;6E&9hraDzaVqwd#kGG2IFqAlitL*yDa8=3JELLfK05}SU?36m zuhemv=gRR!Vhh2?EdoI#MO z0<+c=VnbXMUcm-rM{&c*-MET;F5#eCYTR7$aj6IU{FrQ-|K!_u|HZcrd`n^$=(F?a z^~!!d7}_7;v&IpwqG)vD3v@$5V238q2mDjf3xw#qgkc;{>z#egsX>2X_1)jnD)r^D0#lftnkZ zW>A9{U#yvS*8BAX-x;sk+|oPuYtw}1>Yqlwiz}IO--DCdChaTPcQHPBC5Uxe=kVZvGU-?$9<$USE z>+uX|Z~Xb^w8wa-a|%RKm7woic0o{SH%*=xFY3eY%Eb4&h0EM zjLJG~?{txk>|R%q{PDS2+sV&%il1mn6%`s%xt&QR3$+t5Qg2lseLoesVrjlo%m@{9 zlok<|S0M^vYx4UZ%ky*R6gqJ=zDL0fj+Ir#VTkLdCT zi>mDJUji-NQG&GM$sps1Rl2lgz#vFq5apg5AQ>mF~~`LA2G%5p==xH;WhLX`X9{bcsX4+)U)0DoU6 z4+QxO%s~OV$-h**7*s&VliB>xhuFhdZi!1$ z>53V=Us#D&`r8qF$hD~$ldff9y zW6D1ZpnXlo$gtfWx;_{uR13Oj)fs!MQGP!k1HowBkihZC!q{#FnfkI!K$ZdtEBKQ> zaK(CWS$|o`UUIbu5DL1(V4zp(FG!4LZ84G5s53`Dh_Vb#5DJ+LyX^f^?OA97u9nz&#x1J(@S_1P;0r$-vucuey39FDH{MFAgc)>@Do zcmq#s*^HxznI*4D0z4R@#(O@` zevxta{m4+w{X=s(mzNiaZ2JuXVlaQw%j&unI!w&G*|FXn|2=Pkqp7j+VI6m{w90ZP zy<9VBWls-Z<9jzP54;|(j_pgCqhxl8A_vZ%3cR=e{ODAuopR0@DOfNapLBtq4M{w| z`FG;NYsagy^spU>e^pIgf%!(WSFOi0T}^IkO8l8N>D9fZd`Is+K1K4qp8V>hmt!Xe z`5$UaF63|hAUct>35mwn?y_7?0|h)K6FS%Sw&ay~E8CkqIHk&0J4~t*i3QaRmxRBW zFSUMh3D`??HeV@?G>Va<|6ZJ|q;Rp%aDs#%PUb}ex&HX~`80Q?QC<)@xZy)H-x9?4 z@AS;&jPY%l&}MI3hScPtSklwsam@=HUf0X+lmY{XdKP#=#!}X6m~#h|=7v!+q4~+% zJKVW*16|}S&rgwwNCfVwTw|99UXSEXy&*D)nvz2RjZ_Y3JgK4dmO2}J#ZyF(hC4TN zRP3Z$oIe!mvxtLW^=ioubGuQ|^O0K2-%j4-tE=uG^!qzpsXceN{=xq@_);2dPtXHRhetY0py%#mZx;iiCmJQUtE=$*4Arn`4J)Mn)J^sgtuBf35J3yBC>iQ*n-DJSZY>B8>TWBJ z9PMr`4(E5b6@+tW-E0#fZzh2<{SIX}WW1b2z+W6$&W7AIDdZtu-3+1XG8BJ#S2EcB z`vQMl+&$4`IG5J^adh-}D}Ex217eLERkMA`QPGn*;oRs+Ul^BONg@tc+b?lZ!MbF- z>6)Q@*GI*yXk^UCug^hIhOA8+8MeRieu45yT(OICYxLxx@N2Q#Pl>;cK=W)LY|z+f z^bgVNTEl~ZEoy!=I~rN9j$wwIQuwS1qNX=)S( z`>j>RQlGKZYbdfhnnF#XTt6mEL`W$0MH2-)s702K2Q)-!&C~fUY{D>Xy4RTD1=&(p z({#Zi`{4_u=_0kvq;uxbspa{#`NC#uo-?`FY%SqVl^XL(cJss;zpT=abBN zF6k;M&!3L&SU} zLHrs{r@OT@d=(2nGO9aR6vE#%A)0hhnU2}HuKd!b*}g=Kd<}U~>Pu|ovAMhmbLMRu zsjRy-6uwy3ZzWwJd9ufeu0c~m9fxgEcE*0S5Q|hFDr4rG(d5JkTFQ=nmPhQ zGl5?#XAbd4#hB^*Y|SR56#UKgUWZ35SwoEJzmFl8ng#}%28JGwv4QWqIXi%!iEHSH z&>6o#+PFZVocMvTj*3g;sJ7H=KSEsu!(Qq2TRCJmR(cbuK|n&Gf~lM^niXu7C4N)Q zcga3BP0eO*TG@PiQS?+aT;08=IGiVq5DmugC%-?n%DZ`n%=DnxiB#Pbr|$!M%G}+D z)b{M@aI3zLO?*prLJ(8zKjOCv_*hLt{5u86`a| zsyQ40vJI=$>1q1dVO9AEjZl^wIJ9<%RiE3O)#RRgQ{eS=-R3q~f!s#AU2_BbU^U{> zt`T3%uhU&tWU*8Slh44_R-jYNxZoy(fpQq}kvuoMn&S2R#cBpmdOTQ5-TnoK?`#=N zFnL~$_%wbewFt9ASV1X{QH1Y|Tcu+vTc4d$kER;IuD9V-nw^uff9GC9Iku0T7;LH& z#@a%2_Z(@Y)H^pYWnHgE2$XtA8?4Go4%LlP@AUp00%-r%vFwg#ZFk#c>?H)h5qbst zI=JTz!;TFek$j8nOW0>kl{D#Px1t6!u8d1jwlT~shv`9-bai;$t~r6W zx*iSe*u&CkB(p~R79LO!;&+ZmkwuMBrUHLST)?i|G~3c|vs4i^J*vCf$$Wws_9E>$?=JM1MO?Gntj%^ z?B>s3mx#;@d=d`MN!n~>Mtr<#Rp^qrTb@fcdYe^~hI*Y67g>fsb}7FpOFB1KPe#Je z^K}VR6A;x8|J@JK{&k7)X5IBkFSF;|*~I~DcFNP*vqLZ>S*Z4*j8ws%8aFG8xFn_} zKyaz{dk%Y4dtxS%+93cl+fzFPu}aj;gevU&FJ`z3%{iZG&?a7i0Oh<>dn^Oa44fJ3r$}2cH_5X zN1#o55b^1T>$44o=$i1G+XNzGqo&%$D*N_g)!RZ-HEJTxmVBDEB7!Zo)YL$Y zZ9)s0v&Ooc6u#?G4j}D_pSbAjWtg+ z4{mNfWH)7Xx4OgL=#12$8G+Z={?)-EwI$%o_k8n!KfX^ik#-B2aN+Y#p`ff{J)Mzj z;X&{!a)GJvH99pna@ic#n7}*Gw)t;FEK}k*wWR0zcS`)U#!plwGDvfd*L0N}7yvre z*_zZMd}pa~Y93~heK%aQ2sC#H(3B~g1NS{+9i%=mIhq(v-EiSJ-S1~`Imjda;0|$y zaN81qd!Em1tuD#Nnxm9+`Q|%_2p&ADWHQ728hJWcL5r;5G2)@QLREyVZ(4GK*zWfG z$LKY)l#gFQPA^(eCA^r#?M4Y?Q*r!dR4(uZV6XoW1~C;u&)t5Og%sOUoLon)*c4ZI zNOfw02!O}|rVQi(KJ}CG)&+1J)N) zo;PHvU;A)EGS<~`x z=y=i{;VjD8pF7Kkh4Q=w9Ab4JS{3_X`^~7l}|D6S!IJ z&e62tq}-L%=b6h-)#R;&5|`&uQ9bs??Xe^7AuRA{@>RglaP$adB@?G4M zMRe$YjLcrQdnODydFJQ>4QEb~rS>f%C_qQz0prk`TxR8RsUx*L{v zSZl%)IHb$^XCL6&dE})Nt$c}`mb!GU*ZP*PHIZe0^zp-R=u}@be1)-N8V_&^{04T& znEdzb202VM!>FNd6A+f{qYD%bC|LVvALQ^yGCnAka=)=%0A{uu+d}*$Y-Cs4g5UdBe?BMtiI(-_`S%E4gZs$-J=28|&~nT|VZ&TN$`2IKnFMT~C5s z%t&ri!4zcEGZ1U{8fua>tR1LqX;L{Ax~UmONFgcOfZ%xG(7I*jMV-oCgQGKSq-v*~ z%YeZ|^uue%oqGp=_Kl`dWmrlO`Rz}-c&yFWlwGD*L|~hAX6@4s?&(HU^(Ds>UlK&w zF@+4Vp#_Qk@;1U!+<~F8#6D4C+3$#mE0YWGv|ayibf=yJ^t20vILOkKL<5X-?N|4Su_p3`hogx%VHLKEM56h5UvhG@(MegY|50xl5 zO;t|k{j;}89%GwezuYJ^3#hca`t8ynS7+*t{jj+($524zHdRr|rfn<9VXCs>8~i)t z@>=q-o>6`Jk#34`wyMJZ5uAda9N`32A!{-VLMAOasKYzdRW>v5=GyOPLc2LGn?Y4Y z(@Y|1v5@iXyMd#hnn?v0Za?REt-`C>mNA#vG&uh9uB@-^Yw|BVq@iiW$58du@h25pTg76Twk6@9Ok|(o~dvgP6x`l^hCoK%*Y|gEyvM+}% zPu_{JRqnV}%W|)j;K`Sk=LZhK(fDWM-CSIWhliKEY4$dI&uhw> z0UNRQAJlB-+?Pde~(-rx%8qcE)|ah zEZMrh4Q5X)M`l^-kIORP(~aA%7G< zbX3uBhV6@I(O_#hBdmGRA)G@UtGK>Zfzz8EY zUguRllMx)6zLEpPH42pfy`I~uk!o68i9^>D|ncv zx+YmOxwiNP5;@^(J*j!#6MAFFJ|ly7N+hRa$; zH+(c~xv?U>BNd5tQp|{?4vUQ-Ss}$)E$G`l)`d+6>kZ+sofgE<(HuK1(lH#|w^kNd zOLB8sVA?&D`>V=eZ)_gjve(-AhOP9(#`B)_ny_Cl6iiz;gne7~fkclMzy6&|l9Jl~ zoI!fpqps}EsQbcfA_cCQ#~F~Eijj-Qf|wf8gGXu8OrryZX06Ay3wEM;EcDjHvRT7K z_25Y_$w`i;Sk2NfjM_^gfz0kSi+Wm$dIQ-Xwu~hf;TyK`yzeBznsmSH(WVc1Rjctl zc!nTpNjJQ1Y<^YUd6LLEUnldPKa<>Lt`D2JuYZww6W!KllR~aYdX~dNXr&LviIOji zcop-9!|T*tQicq?OcJ845g!^dvF-LC*KoakKT2f*i|BpZ11LRNpvj_On6FiiN>2~d z1CP+sg~@}W-?Q^Zg|EXf;2P$q;VX!H?sA9R*&|$Su&;G@i9LibgXIJb9wS9N4K2cR zpU37X>n=~kP6}Ngv4@2wVNe?yCqGv=?9JyB%qdVgk081QZ4;^Jn{6@46!|V3)7$8? zMahM|+iw&@ot0o|@P>mwZTKn@7++ub+K4wfoONnCy5CFLWkysCcTG52U#9L*_fKS5 z6=kj&E;eM@yaDVUCU}fs^u{P}$%&K2N29wNq^PSLWD>1Cs!$1RvCMJC^+k3$Ihsu0 zQ9%b$-%(INWuGwEx9gj9_AvN=_e8Q{rd^=wOG7m-8~@^dEV6)=oWLS70GL;L?@_%^ z)$H=1Ni9|GdGwVNUu;nb0T1R&Z&$LlZZS#FR-mVaia}A=;wb7~EwO%^eQ3Jy#d(7X z99M_y&D_IQ=T(&%*{^yJ7y+@+2wjl1)kE&prwX*7~zM26s)5Ft0$kK8J? zX77^NI#JJLwbuJAx7uK=dh9N+UT7)mQ)^oc4(@KVM>nTgyRvt>+BkXGCJ$J(C#}6o z$_YayDc3kHGP2L|6~;IjEf{a;twC*rwgwyJ<69$X6d6%TGIP>D%XPLn6?FF^>puH* z)SrAGc=He1c0e2($BP*co4NZk07bt@>^MHztULx-V8bQAWTx5&#^zDR^RG9L>3*M4 zizZkkUO@Bf4m4kvjfLfx>jMGDV120TH}b?VHa{svu~MM{!b12muJ>hxE*Aa&7-KW> zC3qPd)si~1IprSj>4#6nR$03W3ES>F?mfMHDUg8ohtM_27$^)UD8pK#u!!%Zf|&r! zM&Lk7LF(2x1Q?4M34ny4X^`yG75Bl)V^_`E2r1JztqIQ`&4pc41W>L&Szv zR$nt=3Pp!=ddNXjzv0yn}gOgjW`U_y+^o>_Ukd@unMU7hag75fUawy)ORo_eDna;e(&Iiy-h1OgaT zT;7p-_ZJr>{Z}T=+os>O=)cBs0SZa$PUlc~E`#)8sSo=*QfEFeGs*P<@qn9pASWhQ z3=a<%gTBUhxwDd`O^>6mHcLG+6&?ubQjb}B5*hjDAi`oZjLk$-TyS zF=pY5@YP}idATx98EesbDAHu&VWMXa(s8Mii3bnWq;VchSec+W8IGcxXOeJSJazf4h=?(8$? zQVad}&?1=g8LQ~H7m-zO?SC-w?Wv#k)8JUEwhto%SY72lG>aB%Y4Oe>knYux?xn?E z4QX|$A?;iWq)jq#*rRauqK?#@Pe)#;WRd2*Qlz36S)~dZ2SRt>gK}FUCQeZu(;~c9@4wrzyJJ6Q{LJWs^ud>X z%R%YI;nk__{`ifj55FW*5vf0!)zziP+{Ku?^qAG99>eg?LlpcrcAzN+*zwUO%}s zBb){);tIi%1Jiqxa}Nimd-oDs((vyz{D-L1Tia8!1q^FlK{`AisJCG?9K*PV+RP-< zGzhtYt|Om=;d&O!tlq(fQswjt3$t@@kwU}n_9WN2um7w$S&T;#gO3~siD6KP^iv=( z-g?{B4t^6f4NJwj&u#5VvlNrp@tkin>j#ZsEb1pI8ZOmExrKY|URf6>nP+r0RE_>0o1 zgUV?5dW1NfYr@)PnnmL^cNZ38@=DG%M1&lbkbhYL*MVt}!;z1MuS{(olY20BC-~?x zYv=3s;?4&bL6}0WZf-;KeZzs~G1lv`%Og7%{++kc;!_Yd9Nd-Z%fH7dLf06!m>!bH zH`9B8eP1uTN@xFN)Ubz@nQR>ERd4UZoQw1|5JRnsEYX+c zIxrnQeQ%<(Q;BBwk2)I-{-e(N(*5~fXd`0fzSZeNJHp+Cr zXp??tl@d=1em{Gskeq2Z{Px^l1WDQZthRxjG$iO~_16r6N)ipw8ohMy&vCRtFY zdMh*Q(!uE6zXztZ>0(@Xh^weSez$9vYp=I`Ic!8rhL|B-)af+7NuN8ofXzDK&J&I2jA@%loShngl!vf39v02@H(6QrnE3FQrnj#8E$z) zRP%KEhp^J@Vc9eeVO9j^>LKFu=UVPcZzldYw$#(y*i9$5+%>#;+HfmHSeHA>qF){{ zn1CojGUnPD**OAaXLVf#z4u!oU%~8$Azy!^$=87Q?DD_PzwiEp-YC)4ss<)tNN-mi z`o!LzR#K%wy^S1SFj(QD(~+CL-MOvc8c&ODRz7PTAS$ZWW%`~$Awjf2Un|a6Eu&i6 zCgn^WzH*rL_Fb`?h$7f<=F{Pem?Oh`+9Y;jAldMBSiP}KvVw;%Y&dgc*uAMCHmu=H zcGw;8$99;N&ov#kDxYnBXs=niLE9l?32WB2qB?4v1i``fZJNN}szQj%syX*QpH#NU zoSqKfV|wkc|5|}vB5fXI>{WB5%v^rZ2@bs4!mE~|y)A8?EChEgsZ$>gxu=$d)BFv4 zGMev|2VV@OPn~Hry#nRe;!mFX0JqbOrk|?Yl*HTba~rL5#gYRJcjkmXYB8jX-{zt9 zX2Y4Bnz1aahBJBf&|uHqmESUgXSMIMV#PQiyc+{-q1;AUr5n%zqH?^jfnWkg)73on zzHY3$l)o)Y(g`~lZZ*SOfk*c*b+;S#L>)$J|r1!^!@ZREgjCBJZc>gbff5%12T?^l)QyptnhOjUmf0a507a{XN`nX0Z%yXp8NpV za4kj6v-JZ-!^X>L#)DMHMiv`bT`l7zqB4=)_yRF!6NfM;+j39*x)fw}F za~VR@aVPa=9FTyXd0TI6pwEa9;Z;7HSNq)ZaaQSbGEvfd? zzm4X-Zu27V*t+W@UwAPoTC^1@+l$4sMKXKOdq|RfTVar2l-m!EN}Cg7*W+P+cQ&3S zHN!EQ%}x_5F7@p|(GFEK1K#*%Q`~603x-7HpXI(=3=-w9hzLYW zoY?I{Hu~;&rTNVB(b6a-cN?dus(u8DTZNCPgMC^^ za~Lso4!9@-@&~@4I5euf1S#FLCn18{Z4MvgM@VC z?x*BwjqIMBSJ@|K0pY$f`!6Td00z@spm42(7jPR0su(!-hh z{JLUE+X&Y#UR->-D>m9e-X1%@Q`pU1i7ljfPDy8^Vu;qzSzy93yW9+ z)xM6@$3dxfn(Tgw|EZIwDW78datf(xO#cE%hDGMgg65fib7rAAbA~w+v)Y++nrD`o zGv}H!=QYn>{#@gSJrdk)=EXV79 zGq9iqd0L>L#h2L}@L|wpRZg|SlOqq#OKJ}Iks6wTLY%wJz>F5(gyz7U7T?6?KxvC_ zQgZ;|ca9mDYx!<913}?gS1v0t165{Vsr^+XdQkhRS{;v*zeG}e~5TAlA-ZRI?CNBOWdd> z!pB4yCkfh&H;NN?SJ!8|KsSj8 zdiKyq)oHFCirjB(-`R5LsdKwdpKIwjxAR=?VC8ISJT{L7ozF#GmNpN zC?_}G@{niBuZ+#VG&UbHW_4M<36T3nqX;pD?k|-ekvtns|IH)%L%)peuOjo`e%9FT zo0Q#IofZw;>}r#o_t_uC>UpV(?35xOsv`R$trVzElOoZnW5@%9&r;pBLrVH4MOssJ zEyng;OM1~4eB}BlmSb%H>ySpJMeIgg?NS*f^C_DBk?R~Vj=AU)bWwhE0dsBvPRQ(atwJy_1A z6mD2umR5gF-s+{{k+d-NY|YrI!(yXb?k;UOlUy^>*uHy8a|7rUGtpaODdwfl_K?&m!NK=}BL>}rd^eNVTSZwI__3xf8(17X z-a5WzNIVuG8#yk~6dURnGWoZ(b{Ep21QlgZqDCQ`>i=lXswuHw{7)UVim-*5M=E=X z98lD&0_|idKfFu==CrARIV0jLYY5x+N3_P)qtbC}opiU%%7J(i@1y97EW7ol5zcc0 z0HLv0ffppW-a7e0NBtP1KWz4mjrwf)(7IW_mI~@s1yVR@M}|}&jX4#x6pfXNd!)1W z{b-bKWO1ZQuUA|{TTVp7WJVU>BA?Oi*XcG1m$-@DMB&@{NIqy=G0FLW7z_vc%kaT7 z>c;uHgBu;%_`dn@yNO7zdQM~|D~0@-$hna#r*M?pBj>2lZKu1eu_QIkx{TNzk)xiL z#++ko5$A7jWz?Kc5>kylprT~W&LGIJ1Za`9BeYQE&hdldP0HbmfiHn3u~%F<1K!_b z|EPpB_;zZei3z8>goe1RRhs$UWNF5}gd+*_3}nMJ2r?RIREo-BSQfkwX|r#FZWXbI zQnTzF65Ub7uTc4?Y9}JLIgxi|ofuyn3&~6YBNR}>&n$t zX0q{E5m%tyywXf#-88N_WzKa@O*J09m76uSzYMAlpbyEJL@y26UsEaF&br;J; z?F1f;)K@%9=E|yDF!}z4M&k*YTc5}4pJzPw2d?Rj(exGa$6&HL2BxZub4|irP7)t z51ANWu@p^friM{fHF-bN|Z#;Ywpk=9WytC1t zkI#0Q$*RAyCXhMfGn|1m^r#C-Qz$R;j;G;_huo&*93iYlV3CJO#9bX0{K(G{)jt}`E7i7lXDDouDCYwG3P+%kmBD~chZGe8v$@XhW;gf zrR4jm&BP}5P~KHfLjyjiheP89Kh9V+Jw)k7+IPlwYsCUXII+=ug6JeLLj^Rsm6~CHg+FP0l3ob6vOs?F=FCe+q}il&31rP?hezOt~y*gnf|Y!4I^bKxrvTCds@JCl=QAm!H~SzB)Pf zD_&*vzq(4ll4_`KXib+(O*dE{#wPN~ksJ;93H=}V_&}O1kdztMQ`YLyF4wVi>qB$B zjE$KYZ8ZrLb+o4L$J`8MuKhTbY4POAcj5j-Jy^Id5C#ttJome{3XMU<0h%qsm)J#WD?!*HmjT zUN#O};QC;4*yWE6XTI|SL4sBw!cg=4HD{h@$rRrzkD5fo4T!&TQ(}TE%i=5N%G{PQ zBXb1ErD|?xU|Jme0!3%_7rjM_GOY)Bn%DnyeBxVqJMjIz^8K~UXf~xsQd+>@Bh@F$ z&5_BRM=`4hRibjhY&vB$Hn8`Yx2{hQp0_#9ylF7Y+(kMak9;ewOo)SERY=XB%$I$Z zMd!?)%xBPklD#}={*Ls5KvOW&*Sv$O^|^GJw9`YT<$C!{zje!`ogFfzBjv3k9%*A<>|-}lVNV4?M2ejSrIu5q zGsjsbf4Q1tjkOz$&+cEaYQQ7TAMpS1KvZJ;=tN?$fmO~}vSg&c8#2;6Wt-}eW`suS zVcIwFFmL`Uqw%<`nsIgk{bL$+q#4b?$XF%-Vim;EzNUWwh0Xx>TVpS1V=YiAjM@~DFl;}5ZqvNlwr?DYDZ{iE5=lT6TU&cdv9=e@guSJn1i|;CZ z1}C5&U%3k0?Ziy}R3y<>jdxc#I2e({@~UUp_fW?G7P(aBpoFpLC8Y*nzj=!J?=t7F z!UV|BR;NTwY{ric=k-7+Swa{dl3kO~cfR{eB?@)~x)?QKi7A3Y`*Vm1A-_&{RcIEf zG3WQNPzVXH#Qb{TC{|aTDxB-)v<2a6&2Jo)huFEUL=#dyw4izen=x_(damCi>rF1q&@B(Ng$Y~o|PH1I-|-T zIat-l+xRB=(2R=Y&VK)>RF-8O$lE60*NuyBQuSE7qn5yzNSzt>r>4`1L=~QBq6+)x ze5}9Ibz&%E`(Kl2$*QAXE-lpzY9l-qhrKkHZ_BF5wXvIe)1%5w-#&Cb`xrq*1`!9G zNAFEaNfLFMs7$N9<@TdbQ&Ud`*iC1DbYib$cf5{~I+d{uqA$yOVb`p_i{(WVuSNYS z(HFXSNL$HBwioci8ALSlB+tpFbU()B{m;fRhsfXW8T@RnJS(^F%o|khNnI|RXK=U? z1-K+_0EW+;>W3O*)RM2OlRJ{0W8C)9X}V*(CH`qgQk6V=E%7XBNsr`tNS?nq=($tJ zMtT0df#-T;9ZAjdym8>Uj6&-9raWKDbG==xy~N(iWT80g@8Jtb9tI^Ot3Uu7Dg;D- z9xbGI_zuYqGoBYJB}{tth-jos#_W(0_OZ{%$UVADOPBrG?3AR&!e<1Z`Q-5n54;Go*1$R`K846#l()fa>Zk93_;#;z$xmCE~TN+Vp z7pxH7E-1qMRwKVxtrh%Gor*Ln9rUoz{v9nPlsA#p*qJ7OldTyV9{;l2e)1g-2&L(O zASWvSTIr z{j>M8VWMjbsM2@R3+P+v&&Li+18fbgh8Keo7S;JZ#?pkHWY%7xf`1 z8)UMkcna%~_idx`PRd!93}&F4mUZ4REE$Fv_q{yyMf4GA#(Y^`2Q}`u|0?n09})a$ zDnzIuMfl^OM`J-N0VIiuEDxp5=p)j1>QF=Y+eC)=hzy)3YWy+vM4-YG`C}jA2@bfm zC$o2T`1(?1#VGWTJz4aHxm4zA7sBS}Qp^|_TjaW=NPE8J>y31{BM$WiV|TM8W7f zH6d*P2kYF*K6u;di7~HJW4?5|(gNP-G#yOi_HZ{0i988(TLfhf`X1 zq3Oop{An35bzT~EUm=6})wZ+flhY%+@-gotY(i?yyV$p_>5$%2Y&0o{-Jc;(+;oA$ z*%37{y*!*D2>;IRJkvLzUtE0+%imEgJNYl{_Yk=x^p6#v@P7ZG@AE$Xo-CJg@cqxA zS}qz?N-^EW=5R)CYxM~0Pz7PZjPYRs2PT%i_!_S9o1j>7ELA%u)Npvr9_-cLyO`s}GZrHBs z4i68=W{;=VJnd}Dq4ZZ-)iG)Ngx!0Urb?B*b@xYu^sTyx{U!w<3Wahtlya(5$pLh- zNXhkF?-moZf#sjus_X|O00b$Pm0c9s-6@M)@1`IZg^A z4%BgSpiTlBLHiHc1Y?INw|eZmFmb~!lt`numvHiMw27(4UB4JapRYOI%+LoB%vhOd zMN6#*s|Xcs)ecNy!3rh$H_DPvB4uu{%BDpy`MJI9TGsb!gcPedm9>_m``1zsI=T>J zA76vDSByqp=}_@#1j@v=D@Es5E0fyt0Am4@1X%i_VSNrXD!M+svEJdO^5H9JLE?IFTUQJ4jsvhb7 zemihON>UZwuE(cPweqJtA^7&&J>etLF*|-WpDTHXeUeL|4lv?S{;ylL#f#ntN(v@c z-~*sU1g>1J@FZlti*8AW-^GcU7L9dza@_s!KM=0%J)#0M*<0rR8F%MYqe+xAjHaca zPx{)Jy*;Tabmev#nFFa?|3>3o7%9P&1%p+ci4r*f$}HHKyyvYhEu8IZbPagl@p&vD zHc9(Bw2{?ie?$*-`}l=4K1(^LfGet^BMD!*kPpc5vP}MvaXX>?<0!1oQd66lnB}Z- z{Msq!z+8pMDS`2nZ(VAd8HIfoc^sR${zj)5r(Rv?NSs7#qr;c5Q5zx;rmM`)sgn6w zoHQEE07P94wb)B!*E11B`IL!RzD2L+Au?U&qgW}_K&xWK?jk4y8|RjT;sRLdX)XoO zc+bk>4=oo5yJC?gdFAI?B~TLc2Zrv;C@ypKI@Rv#loFQ4D;(UhJoRqiRV-`hgOr#t z^g*(GdI&tzQW}rVJ+J1h>WtX45qos#7U@6+KjGWTLPbfadB~MQ~x#9jF6k$ zJ;1&giQax2evGLd&v`Nuwvr?FiMDBGdcyh+J=_c9tJS}bPxyO)XNUM_^Y5?xyOe=m z!@nf{8T`A6e^dFV_BY|=2JLS}F6s5l=0?g;ozK$NG8}vH<*=pprxe=lWc}R|RpIr5 zgBZ*{%u(!Bm$8-=EgQ5($7fHBM%ClyDgghp4Kwt_ZZnAGb%%FAKOLCAqirTG_w_VRE@tT+ZQb@zCvqrc<6oA zh)(1$vYLw}HhO~H5vr>Da`~!lhXP>k&bIC=vw>KAhs+hssemuOL!gSrU#=TY;K+)z zQ)cK|utvJIy_2;Vo61>w!Q@JhJovRd$hH*c9lJ&sIv~%+4l2|o4^pk|Djq1_tBU&r ze4N~c^hylZGYCdp_aB0#E>9tlQDJ(dJ1I07Nnz+J`MLOR5gOiJoq~}{347pWRGP8t z&G$9;&ADuU=Ak3R>4}XN zh_1_FiHU)&ly%r8C$D;NVEtQd09ugQ_{dh_)sol@S>lXQw9#lZNY?bXrXpF5% zvz_BG9>k(zBNCQrGxbJhx7Js(UnMgf3F@3;n2!xZ2OV=kF%KX=Hgeqn+EK+u#8OT5 ziLT>$>aZS_Dk_BR@0U^+$|-({`W+RqJt2N@!4*CRnz$1C(|m0a4WJPz$p#P}A+O|R z=~;=LO|_BjB4WVs^!B&7G?kxj7Hw6`(i*0s1S-f?byPDO2N8@AmFnJgD9QAlwv(djO&sF|dSUfo}`fTH~= zNQ*Wkj_H1W1$&CBoO>lbpnZ-w+U%3uQzd0()ya13a{~UT9Gg;RKU~Nv!5++hcD8g_9p4vojLMu5u-m#oKCzRDhAY}> z)SKhf=4xld6Z}VH&vC(1ED6>_qH_<>IXdz5Xm-VJ4^>?tq$U0M2~@6RZT&$|I?@`( zwl7^P$t!o2*-7JJbr9M1z`&1*&mI>eRP-AGx@!`A|N~fvn>*MS*dUAZz=X2>Eo) z6d*h3dDfK59&OF>Ijq6~WP!O-W&TdLEudr6T zjV<@M&261L6N$MZL%Oi;l+1?~qWUz6E z(uhCZvNxRav*bv$hllaVzIb!=*Ib$FyZG&BviX&i)aJJ1>V7xB{8w*odWEaWs#2W3 z_k_x$QK?opLr_JjBpQ{^i)XW9HjZOsZ&PiAueLTxWx5Kl>UF5hsfyry(nLp-G{1nY zTAfwGb~M)?On_0$>eeFxT;e>r-_d094PYxge03??hN&b4U~xoCleM^EiH4~ zRvzT3d9TZK>Q|Xi&AZaO{c^UT3KZ%gq84l%nVHJKZI3+hH#jw8?N;7d>t#Ny=xh86 zCH~O+2z^xE)u?Bjr4pWd_vs9>#;lz>iLBLT%xt&z-vy%88CrkQ!$+zLn2(qAvbEF# zuTHwJ>C~#()_U2Vxb%)LqmA#-M$lf02XO`QDAkrEhsC#9S_`$uCD zAF?pS*0^EYi`0mD<5y(K)uy|Rre$0?@N80>!G2QQez(arqJv_2oe_=7E!$6^X?4cc za?}ux&z|fQwt7Ae&~AVwdejlpo=P=K&T~u!*$EBek3K)h-m8L7|&g=fM%!pcH=2z0YYZ136T9;a#Z4K=x zXn4q;w!eM}C-~?7)zY_vyM7`{mkF#>Hw|E!k2;N4#|$YmR;Y><6%G^M$usuf;;vm@^+DYjo|xMdQg}x_ zH}%o5FJPDOy|=gKHH~6%Mo|qpcu^f~-rm}2R&TUPwg@!6>R*{gnf5C2CRV6HWYS~0 z1x?y8O$2X#jp7}OtO6<2E99q)i7~lQgV#h$|B-X0EGMA-B5*yWsG1C;NzR4DLKe^m z?Mtb=|MZE;B1)V-%t`{A4L)>?bxZlsfuWoT`nVke!&&tElVG^%Pa1{-I0uGOgS}oo zcg}5KXz=||7)mkcpzp2qehhkcKEu#37P!4leL;KU`+pB^&dTv_6VzlxzkWVcOqI6Y zeu@ebhpjq-jdc>jvLE%o$kz$fU!B$uE!+FEWcI$mmlORvd;u(OcC|C_+4NkYMi8ao z_Mkog0zr{d)A=*3XH}*Udq-wX5a*hAl9*0YU5A$^X7UqGiNU+wUUE@CE(+i5RS2*4 zdX4yWH%bx+`*p+=dZP}kG-q`=Sh4mYn2*K(YRkI^uweLBr{zhX*m8M)%P-0D#xqGl z+=>bx;XPMZhBRLc&xT0z#UK&b8qQv_Zy3c<6!SQH%61Wc!HNn|htyyX9J1O&*o!%5 zts5>&UoOX9O`TZ5RKx>XPVZBfa^~9c1||uinPb;9?R#1lkeRgT@oAr~PFk8>oizN0 z>ZHf`x1WD$+`r9p&rQ`yQ~1Y!$;l}$_prqOscGr(=aJ(%gP2DmO6{3UCUVjan!dM) zL|JAnbAvv78RgZf(b{8X>4B)*$LuGW;iD3g@7M576^Tc_uH4oSf0F0xs=M3R@)b1n zanaCsXx-mk1cs{pbQy;EuRblzFy6lh7D-5@VO+#qcxXYP5d-CbS+M@tbicQ<>-GiAq^wa0%XSVzl$WM;^T*goM zb4!Yjk602uIbzA1BV0v2u2S0-?u|`ZQe^YAheyX<;ghk6suU%7UDOjBEw6bM8zo2z&5k+-*+A zH}QX%Nn@>K6tZAbtT(OS3D7<(KTG7NQht=QWIR{lTb2|Z8?mGmU{;<4Hnyv@$5q)2 zs7irkC6FvV?y5X#6&;J55deK806OcfyM89o6TTnwCcf5R#(pcG@kwl-yx?K1b4lA& zYsRKd*G>V+uEo7d+)rQAF)>*T( zi^!K|B_WHBo3#W0IBAA^S;A(~(SZ%^vRJ5{wO4p6$JJj_%xWFKUai(e-lB}~o#+id zO&F{%%Ayl$|7QX@-!ax-@7THrwW1|=&*B53!8juAt>ye^*!F- zgxdO-exy4G!x0hytorE^mOY_lW%UzAjz2wQbf_VN0YMRqj#{N%(=6YwyMrt(T|IuX zwI@>~TeThO_1538xK$J-(OJSbxDMdCmO>sy5}ojFlwMoaDfjcD4K@5*-f$-VRLk7v zGS+7--Bok|1833II4kwoxAjU@ixF9p$hakR;+6orx>a^{SKC?9=+7sVRVGWE92-6? zmD0_WXleTF>aoG=gdd=F z3CL3IMKYLDokAJxVt>Nd2%o43xBOFR{3;I;#1riKjG75s$rsji{#SfchLop zw|0aE6sP(*?q_%hiX{ZDcEOWg$1yXs+Egd@qS!5l-lEDw6u42 zbw2n}X+H=)qfDWMaBcG)xvY{pB2!1`$Pj||sVn+$hE>w} z2q71dGH>lg9IlWOumL0WF++%Emm^~?4`OB8i@On%iEz_CjYu5Zzsu+fs;<7M`Cxh3voxK6XHijRiH9&<8B=)QQry@cc2I#JA*R9E`s{KyHQ z&t+6wLt?rXK5m8u3tCChQhRo^^f;<*{`AZ)i@&%=^e&EMTKsE7<55o-GmyJX;>oDH zN$SYUscnm00tUnmCp3y}Hp1HxN{tltvMy-{Tcou=kgthx@(X2w82Syb+I$OdnGRNQR|RZ^cFZ% zeD*<~$E{M^lJ3-vlkKh!+?~er9gBPP0h4Kt>xZ19S|t}1(cG^p#bH&=B!^1rNtsSy zmKSszYsF?;B1Kr8C3fmDNV6V7am6q zk$ssg96_4mm)omKtWYI-VplLN;ctHYeVKZXy+I#h!7mH7;>%!hP4~`q8;_}=Vx=do zFo46Z;JB==WI2Dwn>XXBZ;o~_q*`LEFCu6Ner-ojCR$p7k!)YGUku%3EY@_P+(h(O z#{S*)gtLD?rw!X8yYLGuigWwK~r>my~OFDcfMWtY$ zP(c_2Pu5p@oKNXCsNcSUjuaC@#5+f!kF0|K3l#8N2S{zoP^7g zAZb1EFm?>by+yrs!*G}?>WvoJc4HW=l~hbTVQ@hvY5DY!iDg>pi49{|xrd`9CcBS< z=U^DuM+((WwfR6X-rKE&MC<;dFdW zeVIg_oqpcfC0Z?7DIpSu70^326#+7gEkVL$_m(drUIQe>M+sA2P7_YM3riF_Ot+sx zn1Qyt)Y>O2IeM!>B=r(?((bp%AkSnqNZhvDT;aaxI#H?`TZ&nGgX>(KPK6mIY8Yj9 zp{~&FI{iX2c$~@bWi}q3Z}|4zFT1f<1&UC3V9oJon2N!~xU#F&8DquNNCJG6LbsRT z%C`$)pXeno!oIF*!Si1dUH6kmSP)(4HxG-+iFUl>6Y?{X&{;IUZ1h*kMUM~nTf=>O z(^utbd(&6skNu}p$(W$z#`6gztt?J;x&?sRQE!(;@Cs{?@!LgW0Mnu*+vw2J;n{x z-ap2-s3S4PPbVsolrK8*BnA`Knc+IklImjY3jpr+M5R?urJ+Ur6ebsc zNx)Y%Z3-?je^GTSbC#H==_K6LkkDyG@9I7Xl6OqgzC#`QrGB6)Zqkst?h_$(XFsF@ z2W0TE%b~?L9o29MUDn^_F5UtI1;`udaw10xE!1BJmdM?c-8MwKktW)W3bY%0rsXNv zghp5{Ov_Q!gF>}waPY5;W!HQ$dk|Cia;u*iNkq6TDGydPe2Q&0QA`oOJPUfS)+2KP zIX2&I&qL%dhg6q+^3y3%uXln*REI4X|dN*Tfg*yPq zjrAfHZPoGkigf#H22E&*U68CAp8I*5rZ{*A9he|!YK1kl0SmY4ER19&L6j-R>3n(? zJA+yaYF%woF|Lp|z3U{YcDG1Xs{ zDO9?A{{1viOi@NQE)U5#$_(m;6Ua({m31A!$`W7|;QBTMST~Ir46JkS|3hGjwZ#Ci zOe|nN0a&G@{taMpvXm(knA}rkcJfEbN$`Rp33PE|iS;&dl1RKq2|FTdqR0bNX}X`{ ziTyuF#->|6-pY)cw>KseLrm<%BF6`r#HlHOGbQK+X8U$vIODt%G$cmh!eS=8ACh1r z30MqHY5uyrDy)#Vi_D@I`L|i3xYx2zwBZ2j52f2OrQeg3|7VV!t-h znxe}F?axzE%n0|{$-N01*OiowVM13SJ${dQR7y-Sk*{>Rt>|=F7|(p z@!x>GoWFTsLlk53NA$+(>*faSSFZ)`P!z4JM?iGi=4o0Bm)J*sbT;0OFH!E{kDIT+ zc+3_)^!CRR2Lwk$_*(HMBHIG^1x`qEatIT6lyOKsvCH{Qj*V5*p-8b_1|o0lZ4{Xv zd-6WnArkF6!B{$fwY3h6d?Lo1G9?lM`!-ov=54Y<)$7r$?hCbX(#B--HreJn+@qK! zrn3S+Fy;QaSVRXxvTs7^9#)kqSjzefyT>GN#7BB&!p5ku8{e9#{+FY5H zZze+-RAzO!~e4UXcCd=I+5u;fdBrs}~wSmFsV|O^domz4Rs8Thi*O z_7D@%3Ec&Az6+xZqNJ zGv_D5RNYUUs$uEOpIEZ@9>FR*kv9i6Zk1#sA((Ey{3%qpMFqGj%1}^ZDsX8a+LuJR z0#2VpOhvuUTgXW%P*I_x1XdLFN}MjB*J%n2`x}x96vXexKgC%Sqp66e$O_62>llMy z=rtz3ZcM~7zQUIwLF(`VnRkHb9KWUM(JRxqD$Q8#C4kzi@qBq~1a>Bd$Yky&DAiFl zLKT`YmCH+F7pTf4P8YYs2ZoMphsITeEs=nz+d(TsMp^*%AqxREXaWoqQO1r`!ZWGx zXZ(ee)xoC|0}@|Mpzpwzosub}!5wT!;tS`t_831ikaLEvF1N>Qg5Q9-7z=5i5ij*v zsparc_6O(=IoVml0hq436f>0|NwNnO2XMmv-Wu@lBj03_RoGhVTTjY-FIp%*(oC-X z1Pp=WKgvgIj^D}x8A8wtTPFP~H?`T-8BT9Jv_#Wse@-fYR8_uC)%)N=Og1~xRLysZ z`_nejh!IN^^4?Hn)gL**2T@sXa;vGepzZr_73Dw(xM0;%!5nt)4J%3&wp1& zEJ2DbWu5bS?;ib`hxV)I*}YP z6?AK>RBJ7t(AqRwGXp`HBlRs+`y-!Ck(PqGB|j~Vk(NfYFVgOih9p-W1Cy8yy8Z@L z{|%o||2yB2`sei5uSQeov@l1vQ21|+ifCd110i0G zOvB(RpUhLROteOgYKE(xQ8j-5`+!8L%Qg7Qf>j&Ti$AXw18#vREK2MtDJ5F!#G|UM zs?_emrG81N$Zoiw0~Dkm#=6NY@VGLQLj@_ia@Vq>s8^#X7EjNTYXUn?A1^=SxIy?yov z$h#5In}LN0+7hm|S6XW9iWxEk%k1rE;_;1ORjmD%ydI%9nJe$GYr zL&pYJSYnirBr_KdB6^5bdwH!66fOZB@E#!ec_3u^LzWWzf93BUKEhDa)#!;R!u1lwKlwQU2;jsa(eg&pp^NZC(bOMw$qj(*WVLf_$@hj#(Tu zi)Wa{3wSWsEMDkTs>ZLPC&&bgJ4aEOtqdF3;3q8QXo^4jp3oJ>j&Do<$b5ZKBo7a& zt-zrFHaDKPT_6-9N$Dc*Bhri7E38N4k>%OiU(DE{UInmVc{jdU-r6(Qv)tzs zr~ba~N7?BN7S|N8{fT3IDw@LPcR3;>rO^uz#*WTc@sH^tbAJUk*5@G$@KuGMX zd?)S0JXe=Jwz2>w72Uy*i2B`|B)s-}lDV9<=l+@8?XgNFiJh-+RUTxZjFzar7sA77aGcsQjc zB5U{^7@wzHU9d72?G#^Y#K%YnR)doINBi&vv*N_8W*W@b8Q*;ZuNv&{7IzAQg`USf zlSl6&Ins~li+|qYbmuKExhr(*+bn2#Nomv{ecACx80tTtka9K&j}NIu^xU9z##}Fl zoc#{c+sHO01~t}kswGA0B@Qb*lA6NMWF1M+o}6m4dI;OZ5( zOSIDNLP5AHG@YGt{&zR2@0RDVL7mNsCB7;zdrUQf6ez<=cF5Ow@YZfvT4+GoK_YeJ zn82r35f3cu0Lyw^1Fw{1PMr1&jV(PyNLB*BMX*EnScgPaJstB57ILg6JIR;`)vf6M ziVI}@vkco-j!_zm5s3)0Urn94$opaKFD(Tprwtuc;Ynl1Zwg6*nrS_%&;)&&L!W}( zA2FkgyeDeYi9X)_9yivk1=iEjZ)0=8=w!<$<0y3O`cX8wG3Flc+>5~2I!QoC-y!$pcyt~{=18k}(+^XOY_tUa_ z0yEUo75i-BRew|i`^MX(J5rs@bh=1-H{6=&VgI8oJbFPzzdL*sDUFst9^g{v2H3NAi?-RJag~qJ{=zK--%}~EIuxCWEe?eDmks>pdhF@^~0b;B1}Mr zi0n$K8{VS?0x%LAmP~n7hZO&RJW`RwAKlB91P^~~rN9RIx930oszeF8J(!P+)65EfAmM=&X|oxrO zVLX@-L-Q!f&}Q3r^vD+dqHlcEm)TEwNkeq#u3+?BwM!df}lvB%i*XoIY*PE&1mFcdhkOK{>%BjmCD=E{GB z6GML&C#q^evBqQf(k>2ipuI7&-TTqrj^C6iWS2m7f(P;K>BofjPcgKh2c`7jJhUfx z>0d*8mCsR!!ZQl(&E$3v+S|7LJhXRcr=UHBmU`^hxY1}&+OvQ9D?xkCyJxuhM`&;I zC!@XFbEG>8ttQakrkfHy>_>a8Jkn_I*x`P(cZkdL(B4~L9)k8XK62CwBAvq?oX##!rZsflhi=ssu%0^SzJ&f-k)=mEt#0V!wsEeD1-#i;Q)m zkc1+&X00kCMga=zjJ$8l`4zf7Z*<))Lhe4Q$ldEik*-c;%l$YQD&2IyAQ8f$VO4>< zya#H2M?2OIS-B|PZm^QQ?R68fv2jG54O+6s63qtvwRPGv|J? zz)R)|g%2cuQW*E-*c~P1xra-tYzfmN(R`G?XxSzp)GIN3;zVIk!NgVJQHtjakII|B zFmx$_y>*fkt9&8&s>e#6ts<#~{+M_FLitR^8b8EV^jARw1gaEevj=hg+(i;Cd9~NLDT#W=ok@ zOMI2x@Pzix|CfyVRK?L29xrHTP>^9nwH5ZOT_5}GfP7{Rd?pI}pnZsf1D}0^JILhf z8CLq@d_^jo%DKX9>V+n=zyE7qtKj7~F4j&VLV2rqO&pMl%qrH#-zq>52B=SC29siS znEq8lfQr}25WZ>$m{knK#l7qQ1h?P6Km>%3Gyp=jbs=(iFHCXDVK2aY3h^ z8*O^8#B-Xj4*O*X06#%BYWvuC!kUN9*hV^wo0 zW^+3`&xj*C7a3kuDM1g(e=Bv``fab9WW{)v+m zF+Gp#+q|idlMGTOPfdsw6_8Ie)gLumkIj|#l=LiUmqb&TEH!7$MD@59cXD&nhZL|! z(LqxQ1Bubv8v495vob*}2brMHEaQCM9F@|#>BMZsZ*7jRkTBIsf~M)6uTEsKW|7KI z1=_Gjqw$wqD)dJ++L1_PC%kNIwa5v;7QhyD zlKF^2=zLm8`S^-ubnnMM1aQ$;WGpw+xV2V_M4ylcRH*8jT|Stha|$n5%tq|AGUBsI zNg%+3p})Mp<8$%tb_$-njxbpSJAgY-t^AZ$^yQKDB3`xMpg`=QA>9)q+ww025uwKq z+CO5`>-F&TfqrlU?MVzUs=6rV(m@ORKBDIl zdQ#t&57h2a1casJQ$f3u$MH>StE(q=H4hvXDhg%jxUhUpE(v<^75?_~Q<24*uuvhv z{}nNmyLlioi}iXLQ42T_+iFK!_slSMkYU=&JTbE1ggZ7do5SfIj>tA42Rg00g23dd z*y!vw>z+AM@}Nbrk(noyC~hz_r_U=K3LsDH)o3yxf{#=lWfA#~BJ&yzN(xjhA0Z&f z>fX)-mk`|{kq%0ESUDSXkO!e6AY4j*b>uu+)-NMV@X`S;c3SQkqbkWQnl6zf$n7P6c|2~&c| zwNfG}a;?huotu=e;T%_o6x9+$v1^D0-lmj7U}Q@iGJxq!4lh` zXGr`Lz1Rvq%{|pE5%Qg)WhM4A^$e-Uxo7@}LbEAHntx^uN*Gh6rRZpy#FKfCKcA#E zPYqnzi+L|`@)4BYJn(sPnf)LybY_Hs$0=oYP?tBAiYcN1L)5s)4+U^Z-E9H_4aE2+ zY0W->Ou7GwXp@etSE{b9JZDf&4M)~z@v43+3;Y6^95FdF8lRyyIf&!~OAUdI>&Flv zqe+UJqLKG!V6u1<-!;6dH^#VVRQgg}UX}lvvLg+?K!v@mD&(cAm-RR44zan*?2V!$ z*Uv2lvHCko>@5+cPdA#r3o?&Qflph|H;yMuzDdXtkWkX7_$W7D@jDc z!$Sp+BT-1XDa>n52g;R1cB+VY=noR_k8yaZXin)JWSgUUi3YcyhcrN@?0??C4=DSO z8i?>-$#fq0STj|+8Qc;6c{5YbZ-((1TVBOv9@8Dpf$_Y@M6hFi<*q>!Gta}sJgX)~ zSymAASgb4T=NKr$wu*}Sv4X9IiF!@tIw4XK|Am2sIDuC_) z$1GN9cm7BPwWYpcmOm8BlW25c$^`4?cLyDOY%kjj;oy@r>WGt3z0wZ~A`#Bv1^$ZK zIyCQrK`8YZR>t|fq8K}h+25^T?Nig;q#2sP)yF-I?r5M1V_h0A%d0Z#>35AR+Dwe< z;O|RWD}C z3q4?~N#5uaB8aZ{GrWrIo*LPvpi)1s#GdyCR){_AP13()L4i#dF)KsC7T+YbRAo_n ze3Nv-e*dBKnn<+$n}HW%wjiesW()GUT~;e?lOIF3J%TV~twz%inUNCv)PX+6w~%6j zYes4t%5IZ)LHow3`kaxvuua$`rR<$xSirvKoXn^Zxr9C^;NJY$ZBlfyIu=70^h0-Y zdiX;P7GgqEN3eKk|2D&1Qzc4a-9zk&Ra*{hoKdWJQ1Y25AS~gMg;qhbmSpPFtL0rt z(V?rQ88a7_B;y)iV!!u#p9~Sgi=pV%G*=lAWl&T7q=s!W4@seG%AA+?^0C6de2{o{ zo&G?#_cZNQbgvQXacrR#tDDe*{HoGH?mt10pR&!a^9H!mAZ;I}R(I}1z)p2nN8vpLuxVY7NWYHtT@NI1N{hT0{QQwQf zs-z_>)NjgeS#y=%lC>|gU(wY#+v+74)(YzaMQnm-9)4cJ3>r_hH5a|yT(kkJ*i20{ z3KlAJUix0vgZ^LnmVo~$`3A`r@ z_Z;TIRtEffd^X2`)p=KhPSuaHd>aULx)~c(&X5gO(Q~t58!~iL7t&O2YekTc%O?9a zgvRPF+q*yzbn-fV8@pI{*505WI|Ogk_Z&TH-Qb`L`-8QKepfWqZb%BHHK%p&qwA3` zY~VQANK#5?5WnB3){KIrkdh#RXIY+*Ta2u%DxWDSv#YE1NTa?DU|kvehpXkYN%U0> zY*9SCfinO@^P*?%|NEvSjtHlriE17jyElQssSk{uNCFrSKWooD*gs$Os86V&=s63g zZXu8t>q>^HO5{NaqJT2{frX4Kmd2WR9I3R>7f#rNd+zH;_bQo-UBYOs-U?RRq})?^ zE8TV13M&)>LXcQR9@wD5^yMN{%Fo~$O{?F#(p_^HgFi$Zxm2!=deuF){yFxye~0hK zpB06k!P**F-;p1R1ctpRf3zHO5dIfFSmS>rDv@ofsIg9kc~duyM&od*(_aUx7RUk9 zD69Ded~4-^Nqq8q2DC%Yf^z#$kIB}Tn%UaVNa5(WQm{qnu|ML?z#;K-J}I&P2SK{C z&qQ8QZa??2&u8+vNUQNW3*YeZBM`Bggw=Dk2JL&lDkTAH_!7KNoLD7#0oPG&1-W(c z5s^`XK;qP{)A+tt3SlJb(uIDYnsm2Jd<`dwO*1D@E-7xgI5}V9c9le0TQ2^VOoD$FHjbA!_dlez z{p;UABe)9QRbaH|{T2@~#jO=4O3s<5P;z}Yt)!AugEk$^8J!}?yYu6PPCF*+RfE&l zEkXx)3I@ouUMJ%v-htLreB58^sy|i7iLaiI{G_z#FbZAeWjnYg(I+{=@|lqE=&0M* z;nB)aw&~e4rkk^svTK>RX-U5oaLVbPz_q5eD2eI*1&P2q`Emi_?*<(iPu|aw!jS{V zfiZUS#hU{TD&coBJnY;=N96w05l?iLN$yE;E~SAoxOVv7KD+HU&cdUu$7laRtEXqs z$eUZx1p(GLh_`}r2MNu+1K{{p8BxR_KyzaoTb6wVmcSRAGcwz#4#=tgT#3NO!E*7) zJRYHa^Wf*t8{f=5C=+820q@W|^7=n0jMpv$BUA>>4Za1$H=%h^UnG(ulb+meOY?E` zU-16=!aZmi%ga9?U)39e_uHxu;6q#}narGxl*Y7evY2NzJdjEom*My;A20^Q3n&M< zRBV-395_rPqEVJEO=@{IKd-brW-}WpM|f8602ENi3lDU*vTED0`>7E6{!83!IT{HQ zAVOmR*{Vssv4Ra_n1qagIQ%UxxM^T42I6HcMSN?l#HB&FhkqA~3afEX!*MKw*|u4y zOw9N$D*?5d6MRpWq3KaTT(Q0v*ix5K_$pz*_vqjv*kql|?TI?k71_io7@9d7|! z>fMd1;s|B|R-s_N?p!SPy~UOBVr5{b(J97k$KFZp4|ppst~f+?iahAm#vm?@ImU8v z8tZ2LunMpLp~N?_q2*!&M!~3QE(`fuvsjgZK~QGrq$sn`tFjg;ckTdSnsNAyZ{}i( z3-L9%0CQ@K%t75iwn2>ts!j7Xjy8@1h6;_tw85f5PQd&r&O}kgEFwiOv7<~uW)dg? zk3^(=|4Job^$~oCSFr$cg(9%N<#-X_VXy>K&y3d4;EhrMn)pvV#Hj=>Pd0{cY|jGd zu_$p)+hwxtoQ$&gxQc{%^9`@g(ux2)QoQq@!2DeFm(SkRTjKwt_!js-;8UYH&Fd+0j{ zFnf6JCuHF8Q7MhN`KD!ozne~OXiJ2rEuAUPT=2%~YOK^Xw%G^M3-N>(=Otmct@s;UY&4^njttebS2m3< zR9eM;OO)cEUXVHI}n8eFZ-smAy5sV4sgJhbGn5w1S^Bf;aDIFeA9VrUq$r zOJAICAP@JOocsS}as>zrXH9O4$DEvWm#w-JCoY7Sb##jEjzNu>T+9Eb?%wT9b~h#2 zU5A}(*A;+FtMHR?R82 z3e@>J07LBVJsm%sR*euEm6Zvkn3Dez@}FDOKb!axLO4tY>9)&@P2d)MwFeht5#OZpM8-u;MmxO*c+G* zA(9(66wLt6VEOlF^hv9nJMFkYe<2aevu#e*JQ|3|y@ni3U+CBK=icVGu~doGQTssv zI4a)!BXkZ$Q{)W~jL*^Esw0>nUhGNxq-RP?Pn=9aA9$TtmBy<%H4x)LUC&&WJO8U9Vus(Kk13{VVM$J8;`5ttb<(L@Uz@fGhZ7 zGa&zR4a?BKaS)M&CxOSg7C#p3kq;(!<>VrAL~gJ4XGeVpQ;gOV2NA)!WddFZWFp|q zZaT1|K;^)NnA?21DIadag%Qv{-+5$uwm4@$`$N2(hf>)&y8+*f{cCeO3yWc&ii!Ew z6G23VnA00rCip6;($R}Gz=MCi$cw8_y=YWki|<3dcI-UFRn)8S%muGXbK7)ziR}BZ zY5II!UgCR7+M1>>&{t8OX__9=S9QuSi}mR>P1Enyi`=?2XlR;#pCrl(KBQcZrw3*2 z5;fVx6)?z!$a~rmxy+b8%eP97aHMa$+<+l?`>YDuMf^Adaov@-TV;9HwdS?dZI_4@ z&sgxdCAIAPC~NepZ0OdEqFFwPAtO29TcJ6t)J~^IoVmR*mv-72acCWbi5+Ed5et_1 z7w47WQ3f0Fa!56qT5r~}G(cADEAR(H@GRwqhuqeE@+CCtF2)n~zK}EMdBUG1zJ_uOj&qmsVASA@>)U7W^=pssB-XrcEAh3hN#pFoSx9@f zMg6GT$|PGjkKPj^V~vi`z0XvhIEfbyn82HB&>*f)@GHIDpJhknaDNsg*6u#;aStW} zj5fM%X_hTaK=CI4#ZN$i#O63kU5n|Uz?y%V@eKDh?>(HUH|y|iqVG>|=Y^X!TWDy7 z@wum@$C&)<8ee@2QasZleYu|_4#;QT@ZjmWpGPLcr&EDZIxAKXe}FL)9+(ziLwGR` z#IDsIuCc+151g+JFm{3g_rM1Xelk?!&fEhr+-l)xDctwG^&22RSSjx0&{EI|_b0EV zz-*_K?HtI3r?U5eSv`JuHxqXPAxcc7c9r;-9^Vj*vfgku9>BCya!q={D1s;9z#&sR z!`+_kij9K}B6hny(0{j^+OXTRx!Yh;9S3GYt@RD;0Icj>k1lWFDNKKK`Rn*Q5AoQ6 ztR#LU#`mEV-ek8RhFY|qP+%c4jIX|XEp|95FKRC=0=z;H;U5_5hw(>zo8FYR$&6(W zijJdjyrl9=53j360ie@H{)M3$%PXXLsp|`?SZEVGKC7mt{ytIJOqua{BE>3ocr*!} zs1|+kjihO+WJe<#C%F}WhLT$e9bYd_5jr4f0M{3S>%pSnI>|*cT2PhPLd;iUYTyGA z0Q-PaBt4Stft{sfd!(r)%{vkABf-EBi};@5!Ku08c$*_K#%N1932iASfpKwSgYZ%e zv29SY0=Oc1%+Wu|5x{a*d=1TQtc_6MLihqG2?L^9L(7}oO2E!r+*%lcdA2+4{h&v} zkJc?^770S01}9Je#)?q2`3}$Oe__03p7PyI{@&0~paXba#MYF2B0PVW?9k}uDm;bT zUFeg1oTrhuA?Q$R>GQQNUd9XF_+oE-4b?4JrKgYJZ{BWvTYV22HfT}uZYZ+?39=#2 zq)wxF6zpnBAoui4NmA3wHuHr#4e)1w^3XNf&f}gpc8Ba0`s_Xw+o||>7OTKh_3K*E zQVgyV@l4)3`xE$zxP&z%!`B(x2^B9FcSdf+mHSTaKCLw)x833Ik;pdc z%=Ap%iEV@P=2p)%tT(pHGre;v=GAJ>OFr4>s6Q!7nr%Ji{371j~?H0d_VT}O(`yCNCd~UWs15X_%&R}gO zVr_W0E>`~FLOeNfae2}!a(DVLH+Ri|+3L7enc|#^R!cOoqT%wcFyXr zFf2*#zwHT0&ZLi!r`U{m3jVONm??!V-z0OJm^V0k- z^iXMk#(|K^1O#}oMbZ(a4(!0(u7x1viQeS;)_30vnvtacyyJczhymxVRFCpoH2NYw zt0zB!Js6fQ!!=8$AQ!B>$`g0GpwipM!VqdS3`T71B2iZj9bWe=asW$>{M(O5h{qGf zQh0=MzfGi?JVNfLiIfD7AX^oak4RD`o8HL%0=UX;P30LR{LI8NG{rLvzeDj1Nof5P z=Di*1cVmj@gVtMVwM=Mb0RfY~1hn3P@yi+zKJkwYQvR3a{(@Q-ytY06@8NYV^DTJ2 zF9lwo1iW?2O+8e}Jssl*oSx`OmHCpS`#Fz*+FR>EFQXJe)}*2zV{5|8y|` z%LGR5DgJ+CuFXE08Fps@Z&gX2LZDzG*k>arT`bQcB%C_gXiId zt|ww^@9$0&I|H zM|N~F{^lO2n-DF+7du#oNDh7!^9Rf?Vp%xJ6pD^uxbx2Cr$GYO>_P{g9qvZ9m|x4r6yUf!uc^s>dVFX9XL^w#z;N|eaSQ;K@qP0T08h;sg8C9-Ag$%IF>$oVny-L+m z3|)&}>z0}fE<+HizR=LBAoR*Zp=I>7M=phN4fwV+^=p{6!=hisvtnZ;{envY?4+^S zt=4@y`j87xjalMgn+weKr7XZ`yAT1==XU*wNFBdxnPu8O!VmxxTHQ)T`QB%6 zY^1!XD<%2)l-%QAQcCV#Q~^^jNe3(HvZ7e=m*k;31BHPkAkz0b<|pX~3yUvyCiTbK z`Y$<8)LMZ-s9?Tzo{AFZsoJ&y^rM&bLx(BV;k32=2}DZ%0^~opp?~(?W~b3lpK8=o z^5gnn!u21{k1TvdE@&RV5S&o+W%BcFLUHq6equ&AB)C<|Epfkp1mJb4GrHzSuiB_< zJaJHK8GW{XMeELH%m#?*C!@a+lm8N@t8^)FBGja(0p5yixFYj3@Zk`2l#Q(Fft0IS#X&W+~DCp{7oKC^EVZ`oizjDfPHsY7ZyxnV7z*jnhdsRz-gZgvgoQk z%!QEGS_G*MhdTqlRAni%#InEYxDbl;b^R0tpn#%9hpRU6Un#%9f=grceCdz9nU#u5< z^{1)yX)2$uFCL{o&4+1CC1D3h~`+d0TKQtJY)e47nM(9sA(u zj9t|D-ox3TZi%$1j!tc77EEADTyVp%PhiiXuFSsqj&*dj%BQswqq6-J z{p6INoU5OtE*jVD<;LUk=$~Rlol}l*iFRs0WKeW@H=K>%b~PYsu@7qCuV5J#9*29! zV=|;iKon!iV906oirerF`tONYOH~X0L*eZOAlw_f2GycV?Dc;~J5XTH(Dt7x);dN* z`yIJpVS85S;!3S$Fea{@%35kKHZ|v5Ba9#8!-Rn@65|VUe5Go9^~v$wf$@!6coH6R zqs6#fh9MU&!1lm&ZX>?sw#UZ9;qDn@C?YQGi9g0|;xhLXYjJl?m(d;@xv(`k5I9#n zl?5ev+BY%c6g@u1gZIgpX;PlTb1z6#yCC=|iHhH%(N26;i|2sl+j{xvIQj&bNwEbE zC{&&}d5T7ZENlZuIU78X)yUy>ZzGk`6#qh+VpRw|xa;|~)TGM36h|pr{a{C;vf0n! zWOJ0JSnBX-k_K@cmYEw#1ypKBBl9FR`Yw7?9Oc0q5*%eIyv-g}$sGraeM{XnpUyMd z=ESH$^t*`xiIFQ)(Agef;Dvry)`EzO8zB8+!UJXKVy(pysBc{l!PEgY@GIuc8!a@H zG92UG{yR{^pjZcEA{e~jk_}WOGFiRey5MO=MfoUl=3RKs0M=lmEYbpg)9?N8GerSn z|4|)y9`BKy;>QPQrlQ&*5pY?=qXh#~$>PDeFkrI$EQ?#w;%^?@gm0Y+a zxoZp3Ap^C(c$HXL87Tc|-1X?E)Y5yRe?LeIVQC*0QIfu6`H?=)YGQOw5Oh>gx$jNl z&u-~?_im|fRIePZ`m0oZ-W!3YdR9Mrb^{OYh>cG+QE{Fo5FuO|!m1{g-3g5xdiNh& z42>9{ z&uKt#cN2k>pM&81y!Bexj=OaDKK>7kEmm6p8L78t`>N&*+{A=hIn66~uOjUV^Y4aD z&y!_niH(x@jBqNRdx_|8!9Iep3AC+ARh`7o#vtx6RCI$7h6e`Y+Bp8kKyQ{%c|1G} zc>eD{xSR&kPhfiEm~5-uWKXpt`NJDvT+=6GB-){chIr3m>sd}qw9IfxzxakzxV=N@%83Ft{ECzSU3p@-}X?5~1{CCN}6=~IG z`XckUa_oHd!7@QF61lyVuyC_4y%4P1op^qEE7G9EHj`_*!LZRaI54pd(E$6zL=d_r ze-^Ir5f&txjrRpvw&vdF@e|{Z)4gkr{kffbu%;<^uU_TWpQ^*YGzIUYp}HFM=FUhXcR@6zU=ZU?<=0#r&%>`# zZ(@AN+Xuk<)icVaPf}|ZTC3Y}bjhc&>~hfnw3CvYd$bs*XxZQKJ{+Wc@i6d4;=7p6 z!hH_U_6FAyZcgUHcKoR0cggfvY^uan{NQ>fC=^Bzh!(?{+~??t?@AEPN=W%_mzUQ+ z>W;?rB&nJ}{rc_+{rD$xPkV7L75Bt%(dYquR!;*Ai^hLQ?&(=_PvgK&sywk35gxQ{ zENoj=BSzo>n$^hRb!3k~KO{>A?uk_u-FOfxYpc?5v%F%XWb_}*|0(O> zFg3BfO1~VD{^e+D`8a^y!l#32^hSJI{b!i1)Zm74fVcv~z!d^--(2D%{0N9u&<#9# z5QhO<|4hRnNCf~1bn16G4m2E^6S)-dh0_Ti+-a~YIh9u9m>Bak?tVB63AO1+SZ4ov zXi#+GASsCKpNU>xg1VEUAnsrl(&VkV85$0czpCqA0jrcQ7Qv+-h6t!AuXYhb?!&_X zvMt$UTQ*}VWeYlD_=As?y%G;n97;*K%$8 z+`c&rkB`=8_rjY1EKb_-J|A>Dj8KzKcv(G_9!ZCnRV2;(BUXzbd zn*{iU{&@gsB#evF<7-x84v1!Kc7oR`-n0ntrHP4RgSa01xM?5b`dDhxdBUYdo4h)` ztp-P@)}e`uuc4&}Y>z=XGpTS%!|SRTf(=Ovt%OF=7{sB;D?Mpks*U4sSeHso7CHjy z>i8Aeft5Ht=VJ$!KBd@!+g`;nAv?f=;`i{{Zm|Q?xZSiP#p%arB|jhwm267#1MeH> z?2{5O&RTucA#z0G4$HRZfCzkUw= zOj6H#{C|lr?6{ z=1^l|Y0=_SkWeX}@>XO&u475JK&h(WU&QGT{0#b1(l6jbkg!5Uz~+&H{d@9Nlq6qO zFd-qbC3L`gFlibV`BKxcIT$+mS(t|51;f8MpU@=%aW#_3bkYi_s=oEcH>nViXC5|M zJKQB4ZBj$P{!;VHAl+pwG=jnhcbAnX$Ghjmg|C(O({2YKhyDLdAU=3l>3nP}K7Y~ZRgK+#W=*6Uu z6U9=8iOPT6l6{%f-o6s(_ZRUxPI4kdZztkAw;Q2hq~+>E1KY15x;1=bMPM0Uf5C(o{E#cx2x#X+p`N8h0dIAnCCvtN2liwBl| z<<2Pq7Wfogp=4J>7gLql5eKx)AyXb39uU9nmx*NU9|7OVrHIaL{3%vtbmX?a3CCGB zm|I;L8bef#A^lhX`Ml_dLI@p0Cj-rXA^k>yZ#cJHUB7Z#YdXXqD1m|cC&E2HF2tjg z?67DCvY%(lEJ-Y1hcOWEPxmGTmV~s@58W$`mE@;s5Zn*Ljyu0CaOjyNhD8;v*Bz0z zi1q?_5-SxC;cP2KnV;`{l}v%_`s2pQq9AVSzx6xoYTmq}8)7V;6?1DlIA~tEFLsmF zNg=L)dmQal`fvbvBL#b#_#pzllx5rs0`VortuL>&h7bA0fne~{5oMToAE;s=LX@Y4 z##F=x!H&HsUg_(kq52rbgQOfkMIT|mh`M-&cOIH?9)bZ`AgvQP81|oOQwF|lqy4An z(a$kyc$G9Ud3iY;@8EbT@j{o9g&2q!1JK+`;oudh!A;rY4ureNmnD=#)1Y{|JwXy+ z5Adb($3LZ3R?!J*FDqLf3Dn)6o{Z^8q$KExY*mck#+MmAqGh^NG)fVt94AlCPrvy9 zY0kUI!&8P-iX*Z2>Yw!?TCg-3IB}68IpD%YL^aiKg({Va>}xcUJ%lo~Y!bplI88i@ zV|-W^Ze#6R{ui|ilC`T)`#Fx1qzkAZ)u0{5=kUy9S)Y6G!$M}@+F`Ccw~a9;P*3Z= zg6csS+})izkX9@*ef&Iqk+Z5$pW;gLKiTTx+4H($a_;>pSQ$SgkChm#^N$$GCjAB%ZtQkV|quG6byTWM~jj`y34dSoKj^waI)n$5!IPZN9NE;Ak+mF5@MRr#j-;y-(@SDR90$pt zF-!asS(bfHUTu;;OBR>-(>^zTPqvw+j^PxvLBSJ-4AvVm?FA?q;M)XNRuiO#w>*?4 z-h@IJdS2t;vdhauG;nN=Z5(~rEW3ch?(p2UvI1NP#UJ|w2v#~lPHI-c6OXk;jx5g6wiBkD82GrB?{ds3mHAE zo*I9^Yy|oc=u3m>J^t8UGz&QfBpEm12!_|B4CrAW&78U&R4PNq5gtYfeFR1io$g~4 zF+uz6)3r19Xp!4f(ry;S)8g<{DqK)HzUFtT*m%zB7Omy)911y`)Okq`B!E^?=PA`L z-J;><5xvt>TFJ2v89ags?Zxx$9V^%@f58Z-z4-eGUX7Ppy$Elm!t7GT*q$q4Jo?nM zOvukCvue`eyE(mPK*2=4cotl02ci?>9V@t^Y==XVD>b3Cw7qySef|TVzOhEiEP1;N z3Uvge_GcI9Givl=x6zjCcNH|vxL03YhssSe?$f2y`KB2QuoK0ju#E9FN05UZAB+tv zQl{uk$vxO185>uhE0NeUvAv>ml&I zDd(-L7Qd^vTt5Yy1nX(;?Ue2TmRjz7lTF@`VPKRRT0bSg^~W8Yba zPg;@iX=!vV@rF@^cL>Me(w2e({IZvcePC0FcBFQFiFAcvi@zbK`39%SqqBw+_0@Wz zYK-6|&UnAqBH@n5-eQ0r73iR50^yLj`tqGB$mh((B z6@4GC5Be$PQ}z=p8RFgc(PBPwT~FW_mqG99Yg;xD57Vxrwd+->)~+2%OV?WW!p;fx z9ZP`mb61giI8OFAZbd)b-xPh!6`Rh(Zv!!6=W#$YBz~yF7>p5M6gNcx6Vd4-v6&{_ zwIZfSj5ROU)aj*6hy5v;)%Z|`=E#c{v%WmZ@&v~fYJthbQwP}5P-71m(D-BgG0)dt z)$jF_9KY6`;t!Bv->aKYR-fA}o>)wMFkM_+DIE(=D(kSjF+)0m`sxz!+SRu37QQ6@ z#m({fMxK&bx;~nJkGI*w(s|TZe*nMAYj#85oF;6)mRIv7ebQ^nr9%`?n>sr=p8D=- z=iE2I)WN)O;J0WLZ`R}0YjKptF!a$Ph~-iWL|Pql|6i?Y51~j%8@$WHD>EFL;%^jd59q55_*V z$^#*pfqoBSX}Ur9Y9S3X_)A1@x7)z8_KIyLn+?oWnKu4=V3DC+54p+A(>eqAtP|RR z$`dE&;ToYTIuXQpC$YM+9gqYBZ|p%i3KEn<(wHwNA0t3Ma3APswN{cmu#0h6C26Wi zBjI5GBvF?9l6Esiw-j>1^O>@GyTK%%y?S?qldHGvmM>eq-~E!SCp#z8t5$A5;5&8Y z{u@R--~i!36jyp^3T7`{M*Nr{*U=>+O5}hQjMWDHhR;*%x!)zPh58*px&P*cp@nGR z3u_8@=hgfatCo)?a^YnRt+ON_XQ3MP!{pfv`66E8syzxpDRyiqy%F?Ar=()P{snMB zSxk;jaVc1HUb8t|3ukyp(;>tp-S}15e>c*WS#f4P}eNe0=~Sxi27AtRtnBtWJ8gq^}e& zEce9&vwUqeUYVQ;!!6W!88s5*P~r=hB`*w3$_wv9>(O-zJ(G5O8hY?8AvQb$y|EM< z^toQo>i3bQq=yjFE$P9tdMna%;asA;AT$8nfS6|0@~qx~tU77tXbXRLc zkp@-<^Ou&t$u&w{A((EapUaHMRU$q^W8j=DUVIV-nVTR!B4qU{a_vw>I@)l93Mt(2 zPUCx?sqgsqgohgGxqD=s6W;B`*L;HUog?a4_z#VN*Too3-F4LLIo7pSEt^SSceMhPiG&13Tz?(13bTL>tviJ<7Anr`dZ3?;;Dhmj>ix# zv91APIdCJakPqR7%ywd97_1!=OC|u}s8bFjx$z1g|2JGgP&H0`d`;e$VU$N+QigHF z5X379tLmTQF?z@@T2M0;xqSatX(V?{+<-n+1uNRXT3~Rc5sn<=4G2$7nHYd}{>Kvo zLn#gbiac-?lt{M*X)ARzr=UwZV+`W*0Cl^Sg_VArT&_VxL8+p4<3a zzm2T>Ci}cpo2yK?r0z)HMeaZ8a)(Trbb^!7KbJRq>L2kr-;c4PxCo^zd0qPt;#<{} zRTzI0_Z1b)x9%$<$@^5>UJ(6ij8EvlA<-A9)P3*X>SX=`f5CFbfjSDWpNxh8k50G=C%h3FMG*0%RMh%`<7V|AyJ4{)J=1UQjNpuv^p4$`4GLz2LiDUoHzK;yzX}2_32?PSw zD}RGWAkv&g?AZ&qn9;pt3N0ma56-}LZoR2y-YgZs|Jav$H+g6Bdhy@sl7F65Ij7uB z{`PTllI+v!^8I9U30?AN0*UB`ptX_kpftt08q5j|QSy~l;@z~w#iV)5_$R!m>PUYc zb37a9#e>}b>Q4~94lsao_>KNWtrK9uKid#j;k8o&{uh1;{G0ls3g%nz53jA3J;8zB z0{+7i{$B-r*Wg=%xyAWut~(39NAdki@_@`GIOlaZ@C<^#XnY?04O6^G z0hVDBRp3l=A<6htXqvu`_lL}R0)NG?aI2=IoU6;FK%*j2!QnZ=P_29o^Y&pbd@Om> z&5(;4=@xAg1f6aCLO~}B@{soN8R5f`S21MfB$}K+oh;r8qNuiK063|-#yYzh>Z%5- z!amlrj}K6VeOxR1cm?Iz1^*sz8xS6>g0^TMe<6O4t47t!zZf4!if3jooT#?PiC!p| znY~Ofd)dTZ9x!|9yood6GO!o^J>KSIFD$Knd|G@r(aY*YFJDu0;i74KT%5}{KeKx2 zLn7z$JNA-g_VP{iV)PzwbFpQX&^|sPhM{Hcg=YM+g(}1iiPo=)Z{~t(d%RNCL}T_I zG-ihMX+}9N&tl1g!VLWQ@is43UIqMV1w=#}*(RBT&0IB6h=Y-m#yN^>Qq#)C#i>8V zRMM|)a$w6`@H_`Vj1BGQ-f!-Srvb@Y{2>CSz{3EfIKcy-B9d-fROJcgEy5$vr;G>JW(9erMjr8YB9)NRZUaXz54n(>{wIP zefs(a`DMPoevSOHKwtla{1U=zY?{0ljaA};g-0z6mO}3|m@oFDcO|5EQ}VZPgb}ZK z&%5l}?MpGf*j4@MARclKGKt=BTm;94q)@>6_J&U((a$AL5C(&pc9(~B1I5IMKVLnJ*lB`%hN zD^JIx%L_nuIx;rA0oS+D)%+nA?ZS#IcVoYh!at(nHF%!gt*<5()K|mvEk5a_NMBte zKkM-M=<)`9Hm%@i^CC2-uWpi=e1`+Iy8L{CpDXAIN?*M}em>979nZ@27x784Uthh6 zze}Lz3F=nSp$)~YecOXeY=}XCIRd+Z`q2Jvk z>I?)$^=}FqJsmbqIJ!#Cw+``R%cHC0OiO>mnX2)xlG9x!rz_pJ>8s>)S8=*ct2j}8 zm7L=$ImcCUj;rJxSIOC}lCxVb=gUwVD9@R}_26>ORewXyZMii!AV*9w5D=$0(Bbfq zUk-oK`{FaNz(!l4oLc+jUMtJj`tDw=Npj8zr4AtUXVW(mIDEY^2RII(z}xvoFTU&P z(OO)9;GH2;Tudo)itUd8qphN}9M^t!41XvZ$?~*TpnwQP6)G$j$byEt4}X5rv7CJ~ zCRF=!=*tk~WY^^HXYxI2FPe)@h;Npi?-9$EpN@a@0{be3VsaGzQbCr9LeWP4VtknY z@3J&nIXAp|^IHB-ECG|Lv3CHM;CMf`$R5Vmc7dP%ph z)zjF7l3Gb`Tq`*S2jrer71&GPQBO30zm&=1ugL{&{~DGOdZ=Ro)tK1Kgz2==g#Rwz z6jx+oY5X;Aj`*r9YWRENi(K(7GAWx$!%>zz&`cK}Hh`-zO1g_MeqW@oCfaobOb~sj z$p;Kllco3r@#~A63C`f9c`2NMnZJ6)=>+GmpC|uC;9!fhSa6>FpQYqaJx~4x7?@T6 z%Jby+;YpU2Kk%%4JioCXSa@NVMupJ#Dc5FpBC?p@TdDQNm%3D-l-M_L3A86Rg=HWj zd2x7P9EQS(IDEC?+yF>PZ{eoem3ohqA^fbVlMY@zlz?P!s(lk08h*a+eCk_aJ?9Sul(zwbrtaoQ5Oy<`WkmH8N*vY;K}$+ zo0t{7%w{X{omhGqF=a_#Y%jj&Alq79vTEehXe?>s8JwSmvmUBiNe2vF{Zs^fqc@Ut5nj z9rYC`uOZaZ5RAUQRbpB(64HGP2J8iyKHT;`0o|y4fKuN*7U(uPUeo!bzO4rs0LKy` z#*uFCPXg*pCTKq+g8?vKe>eVu=H?zW4)_k%ULP7;$v0RR7f-57E z?b$KemFZi~8Z{XOy8JRxYxVlxuX(>b&KOXf?ze%Xi2I!w0GMsb!QeTx^cvgYY=V)r zt>EQ&njAu7*Wn6#x){SRf!Do?3gyjIb7I%8+zmhaL82 zwveMjmm!9=ZJ(g`c=#IQsU@6~Y)qT*XnNS4?|d|zp~h@i>ALe#)sOKcXP|X>C+hN> z?|sk8+tAD$K&<4MAO5ET9j8r2agMIaM(eta$n4oNdBhcgczDERQ5mo@AO_)n%baw_ z^_pBA2lmH|HiU>#E!u=zGb4AP=B+N(6zbpVRDrc&Is72y_8JTzz@syH5rq!^6o>Gt zIxZW;U{y#P6~+bxFDe%RK>s$rPGDtGg+Z!PQYk>%C$1R-ijP*;peZx>t$eF(Mrh{d zb-jU)1j5E;9vOpj(NuwHNoC7Lup|hI_pfBg8(i9mS#_tOWUB#>Lbb$MCb_}tX70pM zF$MJ#^7ID80ZQ0U;r%G^6L_6+LzAG0H;)oTA){VX9uWJXZ6{pP#N3b>5)Zz{Esnpz zPtks<8cfQux%#@Zj?G0((6;hm**py!35wh0kH}5s)kg*_v{ic<5Moiqo#6DY#l0n% z4%wbOmE?HMfFnURRB7@dZ;LFr2yubCal^eaq7k*!-pTVTx0yod&YdHsE4U?jsSeu#2FDd@NW_enl~Z_Q?HE6=?x9M-nWFA*+&%0T~xDsrIA zHMyuO&mGdu9Mbh_NGvJtM!oX*BB$(Jrd(%ro?~^s$0Xk_2z_wqVvGF)P+=4Ybf?>m$wUW%Mx_e?TQ`7H|LZ+ z_sK!HFS%aO&mp3uAX3zlfrfkA)sS#wIFgmx(j2?hK_o+bI2;%|O=OIKP|?HE9-X_6 zw}1^4X0YySui1|HZetNC7zbeFO=ip|Ps45w+lvTmc<(r~rc0tdD5kt-NWWh&JL0W= zU5%(CowE}AI+fwu}q-5yXc%q_9t{Z!m{)JiGwiPaBug{g3j@?s21tuCWZ+ z?EbOK&}__S?CF4CMD)TSRI#hfCdJ%FOz}eN*9B-kW-YO}0l&btgUyhfLpHs4S})>< zaUgO9!?)2wrc8}x5tgE?TzD`P^VuXgMBGo7#b+*3e;=a-lo=i-PyxOhVLg@O3;Dho zuY!wWLGJ&Q6Clj&hHoleh=iJ9O*=btEa9*Kv?0_@U24k9pAaN(_ySIIH~ zu?eCOY&&i;vH1hKY4W$!kRW{3_A@Ba0kX zPTgi;-V^yg7>k{b-y$w}hvJDRfM{kaKHY9SGY04GE{aZg4d*;^NZTiwu2+Jn#~7qa zKl@s@q+-e-y`RMs*idk7#tL#0y1&_IB~!D4tEr85V?)Ld3X?@0u*n`uD{W|rK43R? zc_tslL_)R>+gM7;BQYWL^~XfbB5izncp8d8Ri-pUuAj+$y484^Et8pbY7@L}JRY6k zO>_V}Klz`qoG@C!_J()5AtX*aTI7o~*F2}9Reyj01(=eh;`n3CBF!enl3bY=V*j%A z4x1Mn1-?ANETW9e&pta}+F?Q?qIG+5XOcf2cWeIa*sb6rvte(ETf!XJ9Kt*`fVtwA z*K~0(y9W%RzVujmxwrsbMN4``8OMhcL{>S6N2tEL+1U@QB)6<6USt%o=Vgd`hIitI zKSzJ^ZhXNO8nd(Y#ziu5tR4kOE9CJ zEdiG!;GCqdTViGCjn(`rc~yt}j<{eeQcPE)H)bU_?3c^13&rb|*YKT2EXbh!(m6@n2I*1U8`x!|j?U z8{v$^#W2z}>uIg7Qi=FltCO z_TYww*&^SC@&{FokiGE`qH$ItUYil+j0$!62M61yxIskILh@3sYv>0=A{%F7P@Upe zFMPx;LR2yYDMJZF`V9)T9MP)wI0I0A)yWWn>+D- zG5-;gx<~<(d5@6T8T%}CUb%c)b5ZmWwWAZUI=|tLid6vXuGwg)OeJ*X;X9f#B)|sr z#sKH|8aM|9XygE>m;xc|{#t^N1;o2on}jSfHBi0CB5_zFF0yznk((Q+_TFOFvvQwI zh#^!BSBJjJ)x2K*S~A3FB*bAs z^P7OYZIPj5sR5g>!)arzROObZkt>NtK^1|m8TdiM ztRk7Ih#&fh=?^NUA0yV%Va7ENfO5;0N^$it4P~jX<=-^QsnFEI0&6n?4gy0S987(U z9<%O7xG%&LnT^BkY3xKdcAPM^ ziVlcDD1tUdT^4Aj?ln542dB#+$8S~)ik>I1J`!E1CarmlI%@`{CRhvH>tN?^qC9rz z3<^<`NxePT-`Jg)**>f{&g@`w8N_%XvDgS?Ols_kBZ3N!qdXttPdGm1WrVE1;xxrP zC^8gvnJ^WupH(S^_z)x!lLRg#zDvRJQ(TTIPKD7-3GvP8+zCPi?ZOoHUp7Xy)%7pD zgVH_p>|dZ~m=&5>!Qv2p_=zH>V-watl3tQi%La=N1q{fdJ9Z;Ixj-xPKtmU?e^|PY zkUVW{xKt|cAtSoj9fDJNm)HoKP04MUZyhG5a99jG1l><)z+Ln8*)5U_iOzmII5QDn z{c*qv`dyZVLq_f3buhr-iFvm~4V#LcLm#VAOZAE|+dKcnMDmMJx=AuWe5N=F(~j6+ zlR<`BDU8jVyHk$mY+vJG`V2ZB0DaEZ*U`(kF?TEmIjS6rI=GF}8)p_u+q3-K z{5(EAt1AIvS~F3GJv<684Y3kA@y%?ZymTf|G9$ir-9#{KB1tjPksif^Bp%=SdP$4X zBnjM3M~i1mxYgwdw>sfXQI{8m*ml?}pe*iU8(|_72h+a>YlbUVd!IKYwt{$Tw_KwO-uXUig&W06x$&WLh2g~q$O{Gyhu^)IB~PjY$m zs9c;O#=|L#)7XVG+JB4>fOsl0aLY210i_^T6r)aE@~RHYB(Cp}3K`yDLA_EV)hk;* z1_A<8>VF#!ZEzpV>s|3npman5kuaf>5?~PDOmGPX#ozIs!Ysb}ul&mP#F?)H`FafH z-<~9867I0EFygPsNF346jwoOsC1We(9WT$1cxx|&mniBe_lq+TiG79?X&nW=h_|MT zk`6(ALHiMafddBJ|BxK8JAp<_eI?bcE65f2U8aC$)SHy&CV(<@x|>Jwat4&=cz6tG z_}fVu9u$MdSv1@UkqSNv(Ww>wLEF9(@NSD-t}c)R@R02gk7VFr?}DC(dBBQrhUHS8 z3=NsouYQxPe>>5RY6D6k4KuCOmop2PuCjI*NTiE`F!b#gXg`xxV&KmZ(Niif<{7fA zY&W6Y!k6Y%XW3sw`~Svj$;&m^Nur-+V@#b9$T1e|#b04b4kD6Pe5uEZL~lx#&_ZOF zp-gm!ot{tklR!aA_24^VwL={NhhBe*9l%feYK!f*#)SUx`~Wk}I}VL~{w-3gVqpEs z5aZVAS2{FY9CQke3Y&v40Q@6LWvW?1Z2pGSQh}Omf|@uOyDC&5emhxJ!*!3VuoSQq z5GSDPrR^XzP94U#h0qK;5lJYiPMDlbEayZ;2N1NDFz%0wB0bA3$h zU0z)G8S*AvY3XozbZsaTd;}uG=*z=snR+|%L|l$0lBsWJ8iqVqmysM}g+5uTHlO86 z#gAB!D#JgheATLIDF$y~`$Q14zylw3`|kW<+`&W~Y_+_H4cV;R5DAR1?wt+Hj!0&N zB#mfTpUa4-aBy|R>5%$^&;ZXCNms!-78CslR3Ack zowkQ>F=qFAwoG?9raO5J^cxn0h9b3W^bvL!FfPU^{THa0b~-JxOTMO3H$v9_N9)O2 z%Gc(z;j9!v?8tF{&q;85Z7wiD;(P*3s;OQRpG`#a(rm8O1ytBj59Ja+K6nbdMU5<6 z72x_$YVd9#3}217Ggc(+^tDQXQHU+Cg_U@8b{}oE>8&@uW)r}U>RgOa*^AKWF5-g0 zoLp)Lj6XQu%MTx*zU2V)E&C`&t>)Zg18M0#vzW_7!-B4@y zQ??+e4Zu^69>8%R0oJ3t@C~sWN^-bgUj0ItsUk(+_BKDCT*J@kT72e@tQ}+&JMml- zx|vbnx5lr%AA<rh?^rNe6u`zkOjrJ3N z@vLb*@nKdc9O$Mh8U|Pp13rH-(Rd5BlU%c{-)A9Na zwyb?-k9=mx@fosY%w@Fc>!ev;lw&s*qlr!UVu|fEB{Uj2&^xl`T0o%gRsEl2Ec7ItqZ#@HEgX0z8y@8b-0o zlX7fwSjJ-vh)N=tzK%0ccV&7bzZ-9{TC~vaXu)~h zF}WjC*=jCm;WE#2?4Pf1<8_8w>yE~c@SR80q4r0PS(nS2|05Ey@J!03?*zm+u)y3+ zSP-L%zFDrN7lOH*S*Kcp_{^Mqnd52T6$%&_l-h_5DJS=Dx_^(xvi)2>pf^(6D+9q;MP>jG;bpZ87$%Z}9Jb;S|*&%svh?YEC z7H#DGJN(Z|=BY#e`T7ofwQ#A-mOz ztSwa_$QPeaf&Arv7Q7ex7WVH*=4Yf@1ZzO|-gi3Q-pKP{H#QTvSo4QC)@H5c@+((G z`~Y9a%cBDf7hQw0;EwT`Z(rsp(Cvl--JOP9NgP=HN$!uj{xzwF9_4JKQ9`81MSB*= zFgccC9_zv`Umw74u`5==k6S2m4_6{L+#EW?nMNZK8*Vs8sc%Y^8G{uu2Z}mkKgfjH z%`SY6dGvLgP{okgMqlhy5H7y6mBpAN#D5{XEx}1X{|CiMW~T^yAVR>+crQ`+CNZcD zM!UR>Ar=Lho@3bY@LVf_2S-quyyG4IW5h@^L2dL%Z#;0faUeg^8~G~3n%SZ3qixWr z=)}JK>oK7L#yd2^ie=#tqUTC5AD>4{j)}c*VU3jEV=LZ-<*$>9R!WlauYnLpIJu;h zslFLVGs!P;T#9VT8n~jr8?cOueIO(OF}@0*Y*p31alZ|8NLf}TZK~)ksj3Zb*!uo^>(d?^>J4_ z$vw|{e@$k*pCcs)WqycV`(`wH8M+X6LMdddV{g$$CKyqg2vXrA&wB5~ zFXA+vxkS#=*k{dCtf5J}YT{8e5xdHm;ZiNY8E)k9FXFL36J6545$JLTp0Ggy78IM1 zgQH!lEplT&p=To+gE#VBUojQ!_!{L@ML4Aut{bigMNkZ})I_Y;;NwLo8FW z0F8-A3aaK$*LZx{U5G&`e#_(G@5TK_Q5>xtX#l{%Av9+N?v^LR zOtKe|J>WvEG{~wxqH)M15jQU4`+RLnp>*qw{jBl0G=HjuZV#hR2n`rNEhn(J(d~pH zG_d4HwBd}*RYs{PI8I5$##x4`sH**pVmRxTJp*(sZHr+u5)jYMgRQNyR(%H?gK5LM z178(8FZTl?Nst$67a0#MGD`3F1)WR1)LRwaZ|s{XqL&PiQ437TTa7ni&IEGs{SH`* zQU#!G=LIC=XqC9cga8Htb%h5%qRXZ1BzCR*D1Np8kM>Z4QV#<~DmjJX9pCO>iuDMM zg&i+0{6!~})a2x$nVbe;_5oNcQBk26O*4uEdJzyRT;@nI<(dcnC~Ey0Bh{;$k@v^ zil%Abo@LXEr_ta&{t*6~C2k&w@g%L;`;GN(G=T9L`?UG9(2^IH{ix~%InC)vXN%Ak ziDSHb;^@@C6%mRSIRnudkawqW#eRne5=PNvy?8Rh)a%7l`uB&4MyESF(q++?Sk&*< zizb6%(2J(XmfecVPE%`?ghSddUydxz80G+(#@vNT%ejh{9DROVJMgRhHy2;i;m38 z^2F9Fcr?fN?Q+q|${639W+VE=a(s7EdofKm5xxVv?kk=axy1+ueC2`2b+D7&WJkcm zOO1zS88c?(!hNOJIT)98c6mRSISIM~-+$F~F-G(pewcIN_^tlKx0egQ+4pT`-=ow7 z#zu>=_0yf=)xB~;Se(he;>lc`DZb(<*8Tsv3&is$iAKPE{NRNxXJF^p&qIJ(Kk+#< zHJ1JI)El|I=F4G~uMUIo0`*y?E=?_!+z_+9mX!8R-f&KPqCF-5!_@p>r~)T+E0cf> zGK17>5v3w3xAY_#3{6A+k5lt61+SjWmroB-WJzj~35g=jYx?UCn^&Lp`-lC1V?Ol{ z&jRgRCcy?4q$bacfZQS*;&gxVEA1Cb0|108jKW!%!6iU_0ENj1dI5r#TaJUcTf#v+ zoTFlfr#6B9Qo0C8W#n1;+QR``?d7WZF{*j02d&0`aBkyhGz#lrTK-l^OaL9S2?fZ~ zy2p~+g}bEQAZ|<5JM12O>&E{A|M#glE%3f|5dy`5_G!Du`icTe;h$|3ZHMH|jW-_1 ziQN?~IRdpC-pykY0dWji8K-X|n?HgNdRDlubMZxWOLJ_IOdO6@=@<|fRCwz$1WyfP zBiST~E88rPZEQjtJTEfzibRI=|AM=y#R2GZmP{{ubZ!oNES`np@MPh2_Q3a=60u>U zL*X0lwdi8XODDJJ{=$YsDV@8~irN3eTjqe)O!4*1^E{c--~VBKPJ>Ib)@N4j+3Pdv z?DhGbLMHv!r}clkK2zlStU((o>vLlZC`R%)O8HC1|F9NpDpo2wss~Gk6>)IQ63Ydj zHs@KcOSxO&d^@`O!FDF!&~#E*#(p0t|K+bSt)Ye-^Zrc3iAu z&fgXAh{?_n2x!SBT2Zv*{CG z|HEj!YU_0vJ&}vy_QcM<5TEwU=!mCG%wu1nQ4KUCISQ@-Pc%x=Hin9bO7M0}w-*X_ zXWl`#>vDqPs~bOv8wYa#pdz0j{Q1{2JX79{xflrjq-Vx~q`wvfoktb4;6El>cd6|} zv+&+Y$90kH+k*V~jwF7O(T&o#*9sw)Eo`hibHOkaNO6NVJ`4{Ei6ajZ`q*Z? z7DcFqpc9Tl44dwN7Hl*g5{-msqRCg9YzME?Ru9F~+g^GT0WT!2QL)z$d2~?HR$N`6 z9WJoslEG)QU4X0`jyE9zxWwEGpbduBsw2G@%z9N@hn;`bJq^OMgQKuGsSmFpY$y3G zrlVC=F`N+;%_#*4Z@B7&7s&9m@@TD_7e*6-X}$S#-Al*gEgnTpqtJ& zi$&)5GBF?DP^%V>e7wjNe*qVRD?<~qImc3`G0_Rbiw<8c=*zIq&bug=w$#(8$J8R5#KKZK>yU{!S zXDAmPUx>A;ovk2uYA|1w?Kne&lkGIH9S)b{c^2*D#bZvmknF%T=p{q?HJpKljKKiN z-27T+cvOC^D?CD6ume}p5F#?=UzZqwzp+4p8ot)uzCZ!4Gj|qs=kPa z++r}s3i%wpTM~-~>4q?}QO=7t4pLE8g*Mgs?MOesP5kl^Xt<#T9jvTemSs%SoSv6Y>iAlzoVsJ4lAWI zryw>uC*a z?n2-G$mh6tz5@*8)^3?;PGV^2rRx&r9_yDoNY=!-yPU`jWf||xVa4sXufJ-$ z)j1d)Mg|u8_C!7nIbw&5cVwQsU*3M?Ib%D_yqsiSCOXcDbcNDlKQ%MQCNt3}E2hVm zn|W6!^DrBBn9=oZK&6>IzF#)0y1J$yyLmD)j8mRB+_&HA9v>NmxU^X8(7>)-WY*pO zjmWUNTKjh*9?u&^1Hdq3gfhE^Am>ei#l~c?c|#&D?1Lk66pOtFcTp2Yq75bK^NQ=vD@mfbSo-A640hQatiFCE4*l~y^jl#X#zW7i zr`Y0y0Ah@$+?X=fcsKfe`=bLUVqz!DazEI*4q13Ns8RJ7ee!P1Gxyy`?M=?iLXB{zmb z4%nUdo^dpPgaQiaUkMabp%t6tYg0hsgZc`9@Rj_cdm<8BzOBeGEZjfU#5ZC-P-5degdVk|04L6FUC*3m8U*y`z{el~*oB6lA3?AbL;T>Te9utb-actorrk7QJ1h^0Cc5&cCq~S4115tEY z)ZY-Oc0PoL6SN`*56le;_cS1q&5(-o=8VlNxEncqxm$hrM zRkWl@%*}ugiIN7hVKE&)=Yi&dzuVGE)Ni^Sex*6F!(3HzYJ}~dVMjSvzW(n2_B$9| z^aX65;PV~tug(mJL=Zh&y!7^|_l#9AbTuCJW$YmLl`79omhKr|+k z3PZH|4kN*{rAKQ&pq&}Gm?5^cmM8L z2-BX93=$FE+z>jo?g`0F0yIQReoJW8OLpb$4#JprFT!RrRY#-u;;Z41LBj)A;2pQe zv-&ZsQpqa;_*G#E@i?$c7u4xc?KO*$Gz~AhpROWc^nygg5sfZEv3||mnP_HHptOtb zPw8P6*Dh!R>u{4Ohpl%dylum$fP58k`L!_S#kM>TzUv6=pJ~oId@SS^zH|Qq^<(#o zOIZiLhoU7btx;bl^AEHAk|%IQQ?fz#zm5=)ca*_0c%``VG#}5=A{;>0b`83SKePxv z)S5lKjsq%N_%U1Xzm99P*M0sCHLY;y6D?^jD=3AB9~g~reqtp~D2<(NsGsNg{D1j;a(C{`+%s=y&YW}R%$Zv>ZN(N} zT}>4P5$w=v^PMeYw;G!Vx0o4xA)Yb>m6?&|WZvoPG|FM7YxXw}4Reacs&be{z!LOl zcur?5p+dD6$IlS6QZ*kI5cQ3wEx`%?nsjS|zmQJxV~SIJNUi&~-UEEirJ@4a{AsLf zqV!a(lY@@K%=CHG^a}`Af)`pmVMLy`=C790cjgb`&TLQsUt_IS@mj$o-G$fbvH}fw z|6^ZvcIy_kwe$9pTcy+DrUJc1Mpj;7s+y(}gb`1+r^JMp=B71M_SQ0u@6CK;JP8S7VIf45HDlW!{Dzv_=&+&v0DRy()Gr8lBVzb zeG-8fUR{*fEF8UcVfiiTb9}f8oV?!WM+T zlGiJFGAb|N>}7CwMYQGsPQMiMwxO#+9lMIK0pO*4Z_ybG`5ZiDv@tGXDDxVB&Lj;uRI1n(VQdrlSM?7OqEjkT}$+Y>X> zcPB18xdY3Uhv<#?KyxOX19*E~Vrv%%FahK1YUXZvVeFr;fCvT-%vz{5{$t@gnX6e}Yd{T1@Nj zf~7Z9eS>BehVMF~Z?2Pcu5o9Uj*p*p0`&Ov9T;f|E0?#|tSua6&1=(g%d?yDlauf^VP!nb4y) zc>a@k=!Hj5NhCh~f=PW1P&U&^-siRBL!OCyfz>#wlY+aVolniem4Xy zc5!#XVyiGs<(ar&k3`Kbxe7B>j){738S3cb?kU9iRHli$;kR5YwW02VD?Fbb-LmL? z>b8R$#_g@#ukC;6)5I195>g318E9`Mff%k1ay5nNrWq6vm>8meB{~HKvpzusPtkc>*@+~Z5nz=wde&jO5&gJc9fkmG_jTH6sJH*`6S$+VJOB#jBCF)_)%Q7BeyckhN@qEG8{w@ zMYEQ!!M%^rn(x{wcuWVE8CjmL;l)kWxy3A4=H4qwdNo^ z;hg$_$WSMB%1Vz_iO*G(YsIVJwcTD;(SNSpy}e+#=aVPE_Js?W82;@AXL&K5_3?`a zT~`GZ681(s%(6ApBcFBj|Dm8rkx%_bnL;q4#AfZxa?j!0u(-aSqRTxqZ`B7G7n*t) zD;V)$hHt(l276NGCdMgy;30J?cU89nzc;lbV=^0mqLKWlOjPVx#*mH_a+gn)yexc1 zjb9YRh_(3(GHZt7?O{C8lbl-L+~9)Dst-l+KT0wpK?syyT$~3kie*gxhnVNOTM;tO z`8Avm10H(O#9hPFcd2^@dpt$aZJFFgRQ3Km0r>hZJ}uPeN3Ov6!4hB1xzU>8p30&2 z^kG=;Vdw_K9Zr-EpG&T2M_O=+uj)1I=s>}sZ&RW#-bP&zy^oZZJ>zQmaGS{ zq>d{-kV_#^+QSYFPTcKNp@a1PcYJ7Muk}=(%q41JdyG04*CE!Gm_tTBT(D38+tcaL zhOg>STGEjr!>K;y7EEnEG_~6+$K-;=e(irtTO_!&;u_ef?A1(=hc*aNpYY@Upz&6?hItYWbR*nS#Gl*N&na><=>N%lk#P*A*zhgYH}{LzY?2{ ziYoL(g^~|t)?lXoX)MJ{Fe8j>owgij8^oKOE_1mx?G!3gYhJW|VjILpNKF4?;fIgO zrtH}jRqErx0+T}+kC6_P5gLl#gD>O2+@DNxScraov$LCoMS)_vPf)fG~jaQj*R%I!20dCwq>SILMH`_ zRGhUK3com?vuh2@$ai-juzt534d(O35Q$gqsae6PnUPVsC9s9u7tIAI_Ac3`d%uoP}Q~7{*dLUkGzuoTbK{4Fk@)G(>dl zRqIm>qeVrkZ6ZWffYCPuv?ic0!CVANC1z*NjhFFdq(8IL%7{;`s~PBtT*b`TFi=mN z%AsXqtspD-4z(2-Q?``=Lci6vmL;wr_6YK{Fsm8c3kQ1bA+rCg-XTu3=(@$xL(}?j zNu01mVx>ZphSAvXaxApERaTW*_S9izsv2zphhlB4sHP56-{(!cySKTo)w)!0csDgm zMAmBk4hMZ#&~}M_li6igw*r(U2#B%@{T2|tt5Ec2xi`|)sr=!WNft>~4$Zz$nIU-U zc$&55N#VQbWzEW%`1Zd`ykNV;3*wsir*yo$d*)&xSXwSYDBzL-rUM7FvdO{qm#{tW zu@dYdui8G!_&hK7Ft4yBQrEa&4wXBMFt?SjBiut_ccmP*tUvSs<@D)S2*5CwOZ|thKI^XQ1U)is76DXN1zLO!l@11xEeaaFvRbw$Whf;L(gS@8~gSBl{wCR zzK(QRKI|PY97C>$6Vo-Zb=|r4X_`^wrO=!_C|W)1@rUqZG1+5dlCtzVcbARg8NKYm%M>A2^q0%TaG z+&T51OVe4f^krH|E9<1QO-)dJ_Be^W;W2}7y{a~i1onj6uoSRG>*d{6cMr1x1An+Y+EB*x4WoNeniI z+Pm$~+uu%W?}Q4WeXZ_7gqe@-LXr3#U2~Z-#fN9o8{KL&Kt(bL9h4rZoruUhVWt{u zc00N(`do~*X=dc0Y7{CqyGskLhwXvUtv+jZ*LELf_94YOu7caE9zkTF+c<3zRt>9# z2pv*Y{EAiF+_{yPmZ{&h$(-L`d6xY-70QA=UrCH`=h8b}C2F~35T6TLB(KO)v--&w zZIyA{$kRm@E<5JZwRNv(T15llH*HUQgjd3S62c!-Vjb zsyFtGqRpAxCtrg@7=5VPxcC*~0KRIb>sqpAsq+x1(V;yrb5fj7=It!8eJw#>b7X|x z9{zZvto^01G{=ObZ{M#w)82+?Av_8bYK6}oAPy(?w?AbSW7>bt{EiIUKItr3Dr9PJ zHpT~3@ei~qdT34`qNNpkY-ZrjAheqHph35aTV1~fqT(;Xf58}|g*Dzc+Jqv_OuB3O zGkP7C6^jvu|o>#iSqOtTik|l6sdTVISa2G z$VI$}l_n8cQ=%GP(fukQD@m}?hN!_;!MWz33RiYI!zkl8nC^NSdVTLlLa#-k+T(cP zB-t8mO+;3!`~GISa(fSPxN>C=C&n>%u~0d^ZV9wtur^s5JTo!dKR51LwYZi=;uJMg zUrGSc$6Z0w0a}CS74&Lcq^6!ZU9ciQqc&*I$h6D+Tv2Ql3EIUcG!RG9N`gHUDhN+i-N8x?=Tt(M@i zYu#ze&jK_Ys~j=y5`nM$Whx+Cg+P)e^ar~cqH4|wcg>|oGTp;v+Yw4AVm7pPh8!jH zu_Q|}+1wm*nw}haGLOtqAczRyQ?m#%|4pMvK)#a-$) z5Fp9VyBwHQM7HeIOQ*_$wp(H7BKOf4We9^Pd+G3J16vm{@j6AHO!sgaQ{DJigI89RaP2WMMl?CwQ;-l}b(8s0n&Mq+zi|Wk(!* zkm`*1nC&JPGij$pl}QwFNd-$_eL)6OurkM<37_01tov5s+!qInGb;z*J%Du0QNN4v zr1_}+Py_AgB^R!QgU8Q8JUAH_xfQTSFLDvR=N9@*4a(Gh!}Oj_1^$9`%59SJ(I82Q zEI~NxUtUEF{r}RhKjXB2?JX6T@KP~O-2Bv(;irQQZtc8tXZulc-Z|Z05Nxl$MjsAb zIf-+sIWA)|ky#(E(E7_OC5YtroiXf4K_kMvySYLH<8s4@1u5zkz9v6prhG3es6!`` z$l*+Mzp(E)Y^t%>2E74G0xgqdJwGsKacq(=&~ODW8Uyo=s7mxT2ncJ-O4M7Z)1at2 zg=slR#U!m0{>-E9C79O+1xJ0F}7aq_YstZcL{pur|rxKWv2>7e@svk zns%2B`(3;V>(|gQX!1-hqr{CKYjcJ+9f!oZ)R`k0&|Tv@AkzN@Sx@4Znu+qtOH@Q} z(z1_Np9#Bmt!Y5*qF9^Gi5Cv_7s)04=}Gf?>c7y!Xn=b4volwjN=0x1+o~=`eHZhmC+o3hlP-{T}Z4@W#%Z9_4#fPZ6B-CHAC(Y(JCPdSsMoP}nv&J{Hg9VMp(^AaUi zbrw>X;D|x2>MRACrP2f^RCPG+k`K9C=jwe?>W?A{J zqa`;ve8RHhzThBIO6g)x)$VGQ2@pF{5(sU_DXhdVxKuhu;;gYQFs#~E%82=|7NATv-7Iwr1|%puJ9i26r9U5~DLjh;>xC@pC&Q3% ztsKuBoc3VCnr3S&bdGny0`9o6K7S3+BI(g@c*NfBeQ)GnBFCUzuwRYd>-R+Zu?ofe z+1F>%-xGU}foWWqhaUedcL_NacYgGwt49EcIKvK#AM8uzF;X7q$m3Lb43-C#6y7v` zT18g;u7pVe4pEx}bze6b0vgAXy`Y<9Fl4}-8LaTC$xSM!l5X0Hu| zUa^nHtE1n3+7rD8c6R>bHMes50-0k{R&!Rn0A3hE}IV+tMUYgd2}~tVJp>wnGmmLQmrh%AU)S2rNAwr!G}1kh3QrrM_k< zdN8nTlq^MQc*}y1v8Z%iEu!Y#z6$@`O3rF!i78!9WMK0o--t2e$8c6FdS9j|GIFN+ z#;2O1Rt|vBFZB~#Fess-j3c?PQ6df440Lv zZ~lcV3&u!Hd|dk`Y^+YD=QD?YQxLa#g_-(tQW z2sDVRg=h^Oa3KnebB^@(K=WR=2MTo$tV!*GHPQp~WfO^}(h-%}vX%55>c&QqtkH<) z)}Q(QRMCaa=o8B2Rv zwx;)PZb|l@?z0q+>Oj)^_DrL1H#dm0zi!QMotd~j$1D~9L46}}S~WQ{xn}IecY}#y z)LF>YIp)yEBi{++oO|f%^77F+HF$*1{Xz+xeR_$-sg40cp;Z&9~VM14;nCR^&*G8aF+Jt{F?weTH|WALtC z=T!vSnt}3`dywfF!H}6+fLi?AS+|g8yOsUZldoh4AjLN0SAk}?4*#e`{JUaR9p7qPB5`X zzMc}si}nN>en?7*J;&#&CckSJz>lKnXjSt-Q5xF- zvo2bc%5&9!Au1+qC9mv;eb9wz?d~5~ed9SQ$V!yVaY|1P-G!qKTPB^hkXb3XbZW9X zXC$i=yMr=&G#$mulAUGN4d#Xs>yFB3omJxU(`!&U&J}MgyD&5_)DJeYVJuVDC7e?1pG0jzWOJ3nAgXv$(Q~r(*@^%V4DPK4-c_z2j zz6CR8T&hOy!;+yxyQ~vcx}&}4CDrMhrAFMq&C}L(#Mk+A8eb%;ti&X#IqV@MA$LM9 zm@>T(89Nt3SIt0m>FXH(oXb6^ zLwch$kn{d!OiX6wKVfVANw!vR9BTSfe@JjMbr7MpmILuhAV`&2u`v=t)2N+vJI**> z!>WH5rLQX>oVS0my?H!=#oPzO6&@Yp0TWlK!F|nR!o6Y|MdfrzNtuhH>kxB5Q4LvK;`T++U@D3({|hL3vGh>`AtaU&689*GH=fyZSBq@j`kMO3OOL;&g@G~Sq%CV_vUg#>q%z@~?ZHC7Iqe@XBh)L{V?CWd4sEXzp|fa0VtpM$AxOqQr*K^0-Bw9+`0e;O!ypiVAz@1FRU&X z{0sS$>Ogk6n>iI#c~kTC-iDo(v+M3n^F(Hhzb%r3Oj39B7P%&A^47Yecj6nJK;GVo zbw|HLVE(r8cSg>r$S}E*dHUU0;Un?J_}|8VJ2If|=*=R_&EKZQ8$AtOL#(W(1=;xv zhDFY21Gtrw;;bf>1I1e5%0HuD5j(6xM9rkj!8#=_Ri7uy=rzU&>5tNC^R>E=YW(o@^XG zP0IA3E>RCW2|9PfiHj}F5LisZ)OW6tS=fdZLdPVmI0z@|aJ7OY>MGkr2UnS22D5~n z$A7@49cq83m)*Ix)kC@Cwu3$Kc;@OfC$u#%IrK8z0QM5>iR`=wTih4pXT!(+@b`x~ zf5RDE(u@Z5BM2AL#9asues;9ZU^gVN-nWFig?6bqZzd8&B80UDzo`1B?33I%oUIbo z@)nB`bts1Ur_;<4hSG*4y-FDi2}b|xcJa5UJ1d1RG%NaW?0eV^!dzJRA$rRy=Cr{Y zIcy~c+4)zZOvW~RXf8r#SvYYLwxL>VkPIuyK<8mcLr3^!c1cxd)`^Y%0;!)DZI14& zb%W^e`EI-y^ogc#J%09qla*YSBxhn$|UY&9fI*A$2HUW6kzbIt>nz)`Z z{$x%xpjfZB7RbgBt0Jn6wPk8Bw5q3Xu8NwzF`l-{wq&D3g7;HTqb!Qn4D-yb94M{W zt=7=vWooOA_7jb>8sq6kFSfGYiirLU1XVaC*X)B>`>1+~vjcDv(JvC*nOL>n=ZTz+ z1``k5{aZz06X#=GF*~#Uv$)9B!qnebZ)kmtC`%B4#zgO_^x)HY=Iz0mw^g58%0bDB zgf-!I=LbIfy2@GV#Xp%{jWclFj#>}(Y?8GV29H%cFHwd#idOJCdOoneu+KTNLVvKk z`b;@t^Sws*=-9xDOXU5#C~1r0uZSu`?>O{DAP@%{>e?v{>^1gqk59{5(3?Jp^!^A8 zNA_{SLyvy|ovt_Wzx;ctzAOu3A!bZYA2A!^zZ7*J+~$Is0nzg%?3urU)ORW|bcpcN_M!pls=Dq9EW5 zx9p%nbO)Jj)Xw|(0ulaMng9e2=?7XaAxfkk&WX&*?!<~tDivr!V~i}NcD>KgYul_q z!}~HRuIEU6py4eEV)=he>!`(H!{G>LCIb!INr-;Co1OdaFl*m6hcv2UMnLC*%!i@( zLs{<@%=c=CIC|StHpY=Q_n=_6=O1IgPc&5HIfmHr7>v6>m7N^BxXbc47Y}L@W2Qr; z7__t57q+Ij+k_<@1->k@ssF|{juzBjYtKInoN>UZHE=2m{s%B}1crEWP6}~y0dYXz zV41XxnwKijQPjek)6G_8F9Jo+myY+uha`vbTX>0^J6G?0r=Z|tGVYKmdSx*F5I4|V zORIt1tO2HSdHF8OEGo?V~ozQXQt^2VzVpY)hD~TnjP;Ta%l9I z2SHgqC%?>}+s>4n_oU`5t;ohWYMw;VW!k@*u$(=XQLPi`Pu(p-xHub+PtzB~OkbR2 zaAre&pDMb=O5LC*l8em8XZ$8iflD*!FHERS2K959AIE!wKqZti^teqC?}(Y61)aZo z*Q2k}Famk-)5<%=7`seh$oVgc6Mf@%{HcJZ393jgaf%?V8UC!GQGp)S-!tAQH%b&p!$imD`k;LZpt zagnwp9n7Vuy+fnTMz2ttlMvp4R_<1X&wiFj>IR~RQZ#L%70@;kXoOqYu0SvzqcZu} zTvi$RwssG^B?}D07Id6iwN`rrx*kNOXW$!V!7fUD7+Gp zbIK2kOb!e1E_f{n@jEnO@_ro|;z%C5)nY=d_+rYC_s4mv@IKRCeWpBxoV?sR(Zzo; ze}(OZ$(DVW($b1?>ioBXp|99I4K3e+8*jr^@4VYURqJf^Uu~a>KKT>2XOrh72J`J; z-9O*_{bvb)WR*WUpR)>As9);tV{*tQzBw*IY3>y!*YriwV!!(5WIAlR%)Z`%&?0;8 z1ws-fNFDHDlOg0IDZu|S9B!mi=nyg~djHKML1Am1NNv_iKhHqR$3E~xjQ;VK zdh$s1u5047nNS4`|YhS0fA%iDL5#|Y-ATqpBcSS=)~2bdGfmcrJFHX&Rd z)^PXyRN#)Ww1@lXW~ohDAoifpsa-FOCyQE13C;eihD6RlmOH6=iubDN-pCL(5Te`D z8g@nwrtTojcN^x`KB0>$7cg!WUuig@ikpZ!u8PUZ<)v0Go?&Zn##uJoEY2`#O)OJC zvv@YeuH>1oyR`Ot&QurLn`PJBnVF~v&Rd*6yeM+6voLMD&gON7PqJ3XXB9zfr2!%U z=M`MfCG~r4J;cUIw_Eq(daN{65l^T}il*4~8Uy@cny5&m3&Xbd>n-~57pKyP|9UXl zY%As?o%;;S7wG|dAxi6K;QwZLFEZ%yQ4680E@-`_gt!)`D)PetEJ0JO-*xY)w@_-q&{;7-;pk?aGtlyxtO=VXqbIQZU%YU$&YdW+ zg?!=|T@tu?Wu1JZ-add`hE_zy`$wM;%wu$=>x|8a>%@E`xwsBV)QQFu)Nnzj-N3XR z`6jHo2ODz}f#;f={DolZH-7o%|L~0qNt?@xTd5I}P@e+q*8oyBY zcmfTb9t@InJ4kXHl1+xhIza(*TXudeSCSk@8>UxDc%qu?seij92)qxl{BeQ225alKV<$n=R~13-oG>Hi=y9uHYQOr=WU{t$ zZn*3XyuyXeXXr-h*9O6h|K3l(LVPzr^rh~` zen2naZtQ^`ATXHP-B=2o2L;YITsRTn2$KMdload3RvlE)W>%m9DgdDeFEo4E}VZnn5<9ck!}7;1Lsrqkb$#_%_h@1rd`Hv z#jVdFfpeV;XJrqZtRvenj37_+-4E4F1E=yhI60~HIVNztE}YptaE2Y(mgB;COARn^ zMjr>KAQevL7T|0khxE_j9yr-YwiUQ=wkVk<^v^-|bxgZPF<$k%>O4fJ4A~d~^*tBV z)}N(%b{pQX{~qnw?Jf;!UWxh{z=XC9)~7(`;hWvw0SEF5{INAXN8GLB4loCegbtRd z@3{GgB<|uGHZ>~cgJIV65$*>g5_e_0A6(&nAY0wv>a3K6*=_BH1V`Zrs3>fhn&ZT*|0Ue~`P)T{b;q}r)}N2_*z**)K_ z&X)RyT2Jte_vY<}rubl+kdyXLD${mn{cLXu`?J$=+ov7wCEs0td&$>K-0i{gC110! z`AB&kX4Pb+yk=W9a@Z!BdAL=Ro${Jv)eKL09bwhvq`dO&h?LineZL)T)r{;(wQ5GA zNftWT>xQrHW~{y@!#Jx8#~Q0IvG7JN~zF%aVEGF*{f77 z!P)_5f)cNt2}(`nPi$vI+$k#$(}0ShDlr6yeq+?t{dlL5{L? z2{mWBWt^wW7?x57_Zl8aD(PXzU1=Kjp31AmOdeL0!1_>@Grd6e>D0WxP@ZVlGCi$w z3ln<^7WXr8gZG32yPd$~6PBIi2DJ+3zLAK2yA{QSm_Y>A7ip~?+h$!xb$qwzjZu1X z{BW(hheqp@5c2W}FS7Q@f%PlDmt6XeU*Du4YK{$qR6d85wzo9gmH|0SfSn_dKje&s zyo6F9|NXlLvU`VucrML}oNRNMfWHD!A*}xRCSPiGfDa8Y&Kf3j61vc*#Yv`&_H>#B zO*5bH!NcwcT6q&?FF~xBs@0b_9lQ!99%pkYVczkMmME|jxlVi-ov~LPOGQP`wjBG zypApotDl;vIXbFMM@5MO?FF|_ur%k?;})Ub(txq#t4J#Yvbs=$gDTS5udEUd?ia^I zI?zR^c`q27q1ohdldqQ&w9vo3F&l}%E4V)OR^0?CR{R1t&(91zx6NDMK%MNZVv0Ci z9vC2cBd2e#uOr$U&)QypzYg@@USBVP_ILbzwRq5;!1}H5wIPlpWC}JX;J1>#g3&iJ zWmZs6SIB1xfR%h*6bmwKe0PV{dlS4KZ&b>jJ6GbS7L=B$=K+$mg6$okJN;b$AuhE( zJxERWR z?kH?O%7PL>=ebKYDc38IITkyUY7G-D(GRc+fL=)5WsldMp9LWlpJAoymK$WtW~yJ! zBaqDWDi#V!|N7)i-b-(;y>O;xt8ee%o~P4i&Lphu)759MV#J>zNxS!ao-nuN7z)?- zY!YSzp|yGYqs+Pat1Hq(h4j%Jr+BqBUv{BVw%yb>5gBFk=>a;j41+PO@7X^tQ@{A` zXNh*@j~=K+o5dw=>;$p4w&L;M<%MGJ+Kz~UF`_W@G5i*WWSnUAp} zP?3v4@C6tIOGI2E&L{AW1SIBl*)(7qIrvs!+3ob3=*OfPtONG+EOq;e!wGu`2W?mm z9N!cuC7Sa?&|bZ7@1qIggF;;=*-DuVlfz#;B{L+_52LCD+n5>V3b`_JrF3>rr`QYp z!MC*KZTTcDY?Vg%6I4eR`n(x@g{`MyrEqN}RDu34iyploGMl|U4op-Q zvv;}Jo>rE&*z&hZzb?+7T$UEOl)XPppcjy(I;X@LUKIVpSAFVYJAH9bk~0gV+tQrO zQ-j4>RsWa=g~fIn@4NT{8wMO!u%w5^n|hUlq`CS*vEZ^okK<0xA82`tGU;8WA(K$g zz&RH4k6qy6)cM!>h|VX|Zc12PRFRx?VlMszp{C!F$2@tQEsp??$oDD+I!oL5Fn*JS z>LfHvX3piZ_>k+H@;F1XPD(@`ccPMmvkTnpwP-zgFRtkCOe%<H;- z&dWeBxs6`W-gf4)sDmFNzd%m#E^~4wxFu6^6gxgP++6wQ**V(%! z!B+&|sy?3+yK+Pqx1{PYwG*`#7hZJZ(~VhBbx;3x)%$ z6WGXO>95O-EsCm)%B%HUy-eonnOyE=rt4rVT_{4`%a=^dw0Mp)Apte4z3>a10JcN+ z;+eCstnWVy6Z^DTvnb?1w-i!66yBxtaypC7=o)B4 zwMm9xSD6~8@MQ`^FttEkM9_J*jsmFlmCw1{0pT~+amz(rq zs=8hg9bz^MUZBM&)`X#u<@ImxeTK|1tpME+z8WcGClN08?clHo+0-9_ZtLonse4aG z$%(PtzCg>PQje3xgpPgSC@*+Dbsd~)$ERf}j!#t_&2X7}+#WZlPAG~JT>7C@ZQH}T zD`)Z>s3PY|q-v15m!(iCpZbTX0qN>HM2fpq<0|#HsAA{Z+K7*%U%Dp|onsNck=Q;) z!IQp~g6(D>>ZsHBBDKcj9Z;P{UpirUV0EE>Maj);OC34XX*%Xb6VoO!{fLph2fd)x zA9|Fy-Z76pv4|>Qa8(d};uZ--pD5QqaH2x^AT7FMji&_1k=%2v>a`sjF+?U>Y}_iS z@hmB_(jNqVNomCe^X!;FvbBo^h|ijDrx2e&Lo?ZgjNC2{O@Ky9NY1MSVq&h1!O~jw zUzokIG>PH!T6KfGTok`fzZCIes-srP;>3~S8m{%`L&2T^$oi~&jDyy9mOpvds@2L>PDi3NS#Nv1@kx_#V<$ZOo{IU zM<`Z@n77q0O5q`n?{d9=MTbL@bl1|wx{s2byHfhtS}CJpt&}dLyD@-2vBzJ67D$ha zN~ZL<-kx|%vbS@$RnC>3)dXm~gieyj03MMA^zCJI>BVjfZvdk1$xu&EzQu7})03B) z4ooxs)=9O-EBy_^VD?t8k1}IM!M)uBmXmRanqeI9au9ldh$yvWpa#JK_Kbv%_IkF$IVY_ZDL!95ZbvnOZy z94f2Q2u7bgAoUiSF7&)&v@@Mu{4qpz6#5GIQ3sHmD=wy`>Ms&H-&rn(-)bi>dYGK$ zJLG+XB%bFi*XLTFmX{!fOFbTumk^)H%a7$Hmv7`HCNCH9jZ|!jyo_=yd@C=mT&T&C z*k-(mo)#5{rbc@SH#gQ%aMMzGHaFJmusoaf>eICJe!{k1gRG?u5>B~`QS3dqVJO4u z@64D2XNZ3}ZV=&gzKy=VD6_dRtEq_l^@dqR!)z4yMcK`T!<&kR+o1o zQQ{YkY%Uz#R5aRVXp6?!jBe3byKtOUG_JXDd{fbQ8;wj+L382crlQGCA*AU)8!*h$ z1Mal6Q73Du41RN?9`mL0Y;Kg1Z(1r(r?HJ^SRF(i?C3#<_R83+y*frlo*4O2Z8}B< zUg)#L{8q=bnHc#|zZJQpQ80o$8ZjQ$F@hMxX#8l_F@hh&Xf#g zx}{$#jW;Z$zG@V%1*)FK_9kX;);hMv6V~Q#dB(Dc3ADtqGvXFt!s<3!qyNL)7Sj_7h@s!Bf+u7(Y68Bil+f6I+xgL9hj&!Uqb?0_OyS-HTK*q zlz``*=(l1LbmY+cM6LvXoEOo2^km%8n^A%Y2GgSLQ!MAv-i$jqh;BL9CJ01aHpV0< z5;|@|j|#A)--}74y+NAgwDJsg2b}yNVl`?xYj`iPoPClQ%ckMa8%^IFYxX9w9JN-+ zBF~)`ywut4mh+khb4)*d(v1$14$m&0j-xkwS9pl$2mvv4il=GCdAv8R;G})RS^;B3 zNg@m^|=dAxcaar5;*tsOL&-^KI@X2gGOZLrNE6E}%6$@^b76hD$14NeIrKW9X z*ma5(J4lKcuWe-HYyJ{Fnig2TjFRzkS-Yd+f*XTdBiBi{6!q;BEDPreq+tu-+b+;P z=tJVw%84BSp5@5XcBCF*^#Ti>t;-3UDD^bdj}s7^rEE9{PvB>51?kmy0X)o(E8E{FH!7WqU+_W{M z*((H*ZAYpQ99T8fc2TY^xFfKdDCZ!4UhAJ+#iVjkib{<-Tf|5Oa_3_cMLRW zsY7r_b)kS=ngTX5)_|1HOa+p|aS0&p&GKDG;Yj8`T_~N z0~}`AHT0ssT~?{D%Kv^p?TMl)x>--0KztN-lUdVnYzhPjiyGXJKQ*G9`4Xp zKc8Y$rle~GF;nptUH1JlFJuS?JjnT#&Z)?D_Wd$=odpuqbgjOfPrtIB6HPtu?x|-L z6Vk<}FRN#RESq{3ols9v(QvZ7Z#@;m8CZWmY`fGmVBH`S>i#`a#g)+HWEEwp_^Pga z1j2+q{f_8np*Eg?^PXQan;R-nV+q|v-89vYn^KUsVF$?uuBE>StgoL2_+CuSu;cD0%L?Gw_EcFtya?3m2Retum!e3deNCs$ z(8Nth&k3D&5j~+Uk#s${bXBIQYrwitR>k|Xc6nJ zTPd;P%SQ2qKYZmV=1PTDNqVwEFH@o(y9YITAvJnB-)1DDn}r-A;oR9@cj0DPeOwxO z7Qy3b{F6>KmF+CtYVChUYN_xOF zEq$}BI#x`2wX;&>BZJ^gUyD=cXyAdE9NlYnWMOaE8L(DU!Z=-}fU{gm)5M0kw#=Z5 z%dIfien>=mw^{J3XE^m=kHODSIcEC>2HtkfL3jb{Vqq^>!Nc_K%l0;{kSe+0ueaCf zMKpt{jj0|9>SOp^Td#M`CTDx(>@T(^N5p(>R(k`ZYOBEj(|xuhsL5SP-QMamZH+tW z8cR(kxhQs-tj#Vi%T9Wr1*guQy3a_75J0#x`WG`b?7zCq&N6lA6k9q?Q zXJ}Bu*6}i!7lY>3W?|GI4%3e7-22127owX5m?x5*B#XVPy%m$Bs0Q#A83eXFDNPG) z&GSVja3JC8d_5^@E|2Y9a=E=uI-?-Aw?iX5MdMOrYi`#RYn>oja^^@T11Prlo>SZ@ zNYB6@J;HJTq>Bl+{Dg3Dg=7vaTS_>IuljStB<=~ce3z8E%`zE0frdrAH0#+Q%+@U4 zlKno|Z9t%9yu`vYw&W489a%G=+p~hs%Y-5WqEF~mBtF5JkQR&y$-+%pOyZ}gZ|n=}vIR5%=Sg^a)p?FjnKdN$aaM^AS& z$FON*3&wM6d(-^T(`&Vn!qD%=nUNP5Jv)q!wd#vFBYF;Z_U*MT(?>^{>-Gv=z;c3>k#tg`K(rqx0Ha zYB7VBj7bh+&ETsv4XNzMtx3joY^<$i4XbcmvPG4d!I-oudH+1x4O@>GWcfTx%Z;|i z@?1ThXg+Ksl4vnljOzie1D}WbnjC zqz;uw*`nP~4yPWmdn887NNNe6xx2yR^)A3BHI`pn3uqIJoF+KQSPP!NK~?g0c1{#E zo0e5OJU%Z6T^*e&!fS`89})4|WO9bQ{UG_~k+++ZZzofm`0V7HSJH}-Z|U-upL|P` zx7_5LU*68*S{#>^3JDJxpO{SUPjX^iH&w;O*t4K0+pcbNEe@Kw%`HY7E}I-7emn0a zmpzGz9=ScW^Smnk)*d|XX5XgoMER$V(KBQ}!N+bw0R~4_=zDAtA!`U{U$Aj(nm*i` zKC)^0XlwcyYx>xZ!f_PlX_`LXnqJT}eRACkqT298#yYDCNN`?g<4p|94^9&`i9BE&mjLB?r?{bDiWh{QJ?%nmUJ0+r_ty|Ohwh-QWDx|7DswIQlhk0 zr9`bI3e$8{kLK9HE7zy!+}Tvow~3)L$q_AhW;BsC3lF6Br_PLz0@GfKw)t~E3YUto z)*>q<+3`~_?RMd&1M5qCSRE{eV#8;@)XQgQ1>0-;Id=!*S#H|L#t!ICzxban&dmLY z4k{XHz>Wi~Xgnw1Ju}~{*Nvj*xblFpp7gjv0zq*!J^kvQrj1eY>Rn}U%xX_1M zZi@0r*z6xTElu>b`uJIiF}nyYJ0#|SjuF)*3MM~4YPXJQ(8Jp@MPfGTm=_`F2o(+jUcLs{V5Bg3k)Igug{*!|{rBD<7 zeBbX3BP{n+efR{U9>L~vnK~PO5;qQn?j%Fvt|by&@GOyuND~)CVR0O32&-?ML3>H@ zJ^6V8-y&y4YnI@mz61>qGo1zky>w~Z+Y!oJrc&=i%Y(kxjNjrwW-kg!y}n%e=EF5_jf6_p=nsicI}l~TgeW5~R$dD zx*>JZuZ^X3An~lO=MFUm{!$yI;_X-0T@DD#ky-bq=jayQh{{Xxm-XSVl3%ZvNS2$f z_gt@8oIn!WW^R4UNPdZZ-!=@$v`v;7ST2!aS4KvZg;&je3@^X?I|{34rpH>a#91x_ zVXe~RyGj&H)+!ON)i+proaK5*PSrs@7K3z94}ymv6o%~>Dq-o-uvST@TdSm6O{=8S z)hYV~jPB+ebWrzic|VR!uF^fbT>8&i)u5kEJQq_Le$?on)1%9ESFWH!3GM=hOb&w% zWvV%-vUG$Ravoj62Gsnm!}K}NVHHSf0t*1F=%Y0!8RvoK8hu}0(pC(NYnj0-0mZ#mQ(QTeTfz4y4w)sdr1NbaabM z#g6_mFR)E_eRJC_g1Wu$PK(CBA5o6eB8aNwgaP|#5}Z#9!5g6z043P z)~}0IUVfbQ((w}c2{W1t%*X{5ip~kN)T+sR2 zlWrS#$XNaftaX-awA-PB8s9eyE^`~xI)0_aPK%7Kx=R<3tV+2l;JA%L?`5zi091M$}%A-IL6yGDxE?g2UT7nO19j*!%RT&MBtr04?w2n>+ z#5PN+-u@42#wHN^H8F;qU8TucAoh@svB-awW^w|trNlUzsL{7V+tiN-7`tNeg6b@l zX-SHnoe#hwNS#V_ieZ4vYJ0DnlCM)z$7PY5a*j?h4AFAE78klH{YWuvP;jX%#evu- zl<6!L%0$VUK;7@=WrtriwTe{>p_(Udb%*f6^saUYA&}8KmX%RBg}b!~A3I( z_Y$akEgAV4{)^AeJp!&zd>2dcUvi8lvpPpJ28pD+n4$FgTIU0zWj3nEj9p~V`E6&^v2lc( z8XZCIYxx?L57LkYpegs8vsc3hNFdA`J(r)+F$YbIrWKFqnA>Orc{GJ~h{<1h12FNw zyDff_-6*sU3*mmZUNtML{}!QBsrb$Mb*cdk5!iaFh=j>elvW5#>pXPYn|d*UaV zFd*JzZld?(2H zFkdB+bKjLI$oaMStwCJng7|(4h!v?Ii~{HNC|5AGw9;NCc<{|YgE(_4a|&5BIHJ<> z0K-iZNBv}k0vTnrOUw}qmF6KrsmTDBF zPKvpWM$Ekhi%F+3Rm?pAR5RmkTT`t6{E8`O3$b1ZZ5wVkYL>dK5^cim`w?96O3}k^ z>om(1V=KoX?RpUeRZW58$jG3YdWX&%PV5I*o{&e7R4W_*MF`HxwE7%JG9kA-$b-wq>VW9 zYZDzJdIxo)rt+g6Fwqy=T2v2eQ9Y7l1oYt2a!^mYUWE4GQhD~aBIz%OlY6!|n1=to z3BKS&9~dyfADjq+pd{?|>Fh4nWeTmea4idx93|qHyiXS=Uk)dWU~1(38mB0m_iWYv zL*Wf7!3{x6!!ZhO^m2<*K_Lx6%`Ya)?HNDuAL_k|vpCHYyjM;1CexEFcM@~vF!v}2 zSh5%ewXmGbn+i*}l{V_O9@j=W^yE|T>}J-=fvEk%nJPq_caubLr@%{Y#D-*!Rc^#% zI)WSy5pW-xb+GH}s7c=5Ser;p>{YUPxHm9;k5%fkwIMV&(X<7w+tEtRYuQ$uzQY>Q zYxOVRrm`LW-a|#=T(k+rZCHJG`RC$NyiPsM**KfXP+b|UM2Msxu&9w@cd0*;CTiYR zGP8^%{WdMXG-bs)!O1L&Q0;nG+)($H_a6t9a;b4h&AzTFQ@f*17W)}EX3{A+*Dd*) zz9kP!EqUfl!^%0u-Rhq}M6ZRrK0LWWi$t~kKH53bfYwjixLqIG)yIlBQ^comVO&zh z@~Y+~zwYY&`f2@j7hgXjwN3dtwcPI|zf38&K=+@N>m2vx@#VfN?1|2} z6CRX08#HkHGRGiMN9e#b6kwF-gbs9s4pO8i@tiEYj7nI|X5FM?{jM6exn2Ms0N^ud z#8UC9{?NhWX0AANmyY#Yj`&x?GMlHKRocy#n))}$i%HVXnaVhm^Z@wNCk}^A!}*Le zRnim38&tewMiV zB)8kKf!wVwCMiDE^u78i21g~P!-U$b6R2fs4(Q^3l1xK5BPp!TrNo|b`x{@|+l8ms zrzO)zr_6`wq5m01ZlkP}UU{rG*(>L?^z9Yf5@vLMClwHh7UnP7J-m8g`+*GZc1drK zXE^mfln(BK%5-#oAeVkU|0BI{_v4gnJiz-+5OIAteRQZ>yABn8@tLPlZ3xRalZ^== zyFe1pOcs%g`25~@yI$ll_GrA@a_dD%%dHn7ZCl-j)A{j43hOppNUSGvb=`)?bj;Yg z4bSM9+`0{C=$NzXHjL6Sr_^oug^tOr+wglGlb+YMts;HSHV)_ttDAUcm|L~y*u-(G zR^KiXZ0Ci5)L0A&GgfI)m06+f9!S(H0%k#-6aN2|1mvUY}Gj}UVXV?Bm-v5A+ z6{UlV*iZ4A%%y2MlRk?b*kSh3Qup$6b@SVT{1KcM>6^j)B%oMkmC}=KoK~n+_E)za zru=?t7$q;%MH?5$z3|*3|6st4Ffag0?PS^P0n}^&efDu5K=p@&;p$~CWDnmx=QZ{v z%xQh@OZ^L48?j0TE;1&6m5f(pWb)jdQPTaHlX=2;<*$-4Wdm;2TKP?T)+?v=PWp+U zy*_x?pCBmTyiMbL;6jb_Mk>+c;M9w75_amfTvj>MsTV;@b7D_AVxi{L8+BW6{H?^N zU>&?`$dAq_$Ep`uP__64tqn8A(d&9?wAwPb2iM7M)z=XTp)hCDw$}?^>Qy^*rrt00 zK47fRm&i{{B(L}nNUPwAFu$4ztLshxahQs3N=N4s9nY3or9D^<=ams+Mt$eUxNJyH zJ4T?)c|o+FNc^4KWM$=;&GB~nxPVk^XCLO6&nxQRn@~M{`(?}Y-3_MsM>h6pzPPG=q%TlC2Lok0XU;V9esSQE_PhG)i5Bn2Pv!{qJVedKkmiuT zNsG>E*Py-_A_9eK>W$Pn1y9sty^+yF1>69nd3kO(uI4i5gPf)YfvwQXPvq@KU$KR|ET)rTwa zGt+HVA6BEXAX&tz@dP>_=QAht8rhxD%VBi|pVV#C(+U3o)vx($##As5UsC}xlaI6f zFRRlD$Fu7|QBo@VB_c0#ja}&Fg0Sigkn35k<=d?`*jlT5ksTc_^KiG#jn36dJw!Af zI*VT`v$!?7UcQ)~z-s0-6(MZX#LyddXrC22Akzz0UY>{XNY4dNBkbZAov;^YoN4K= z#`cPrt=ja0czQv4`xKfKR+j-nDu#tspyB`0Hq2fwlq80^=f{{0B&efJ~A%926e;yT(x%VxWHK!0I zB;&A_b7?khE@nKlI8+||D6s61RCJ?OwnWavRej{tUKkg-9{OAxpO_#jgS5r zxuL_suBs`NR6umRFc>*heSR>as&YylTgFALZ~Q!gWq!q&xr@`=wVxz$m=iyTroF5- zL!qF>{)#bk@JABw@75Ss!&1Cd{3$3|sZ;2s=56YQMx8ySZlftxvfWQMxBiu<<1^qC zxghlZ>ksV#MCuymvU#tldnSli18h4&o8)NV z961%3uNN^qzj$HW#0h4HevXoAh;8Q&DI@Wm)<^Spzk~BVt@n+H3k)t>QkTB9AGNiR zy)yOJc4*HFq89e{qz@(CUanQm?YUYBovW45v7KdMtb^^{`aH#6h`;$Vt>??Xz6s=2 zLi^;X&3!$v(|dBPlN|bzAN2sVQP$_NG(o-noai8>PMm_*F&^fI)2Jyv6eRzUUYpNI zYFAC3^K@(=_A9>A1Cr7oL4gGV)c+X!A>BexPc1H?7G%%9tm?da`+0O`FwAY4Fh z1Xi1ub?o@vK(5@fJ`%dbd5pog4EUzcOJ zX}tup(pGrO6G#xkRV0~QkqFp6V&kUvLiGkn$KvsS`4LAH4>2xsTME=Wnbg))=bevuLuoF(%ur-Bv^&Wf7_;_)2E>-xRsZH%EKqOaL*uYa)bYNe`Sz-as^@7G!E*0|6 z1hVT4SXb7S`b{Z~&x^z^6;bd0GuhyirQ&+aa$NnMfzY)Ph)}dB+1kl0z_`5A(3Gw9eDZhU$*7M?=Vk2MFZ6Qz_ z+{Tt!M?CG*ee_va9ozmHJ89w+g}cZ$%kQUekx-^?CV@F16T0_s0JBBib?@hNP8B)T zJc2#)Y~ERB1}07Kj(EbA7u0Qd5da>8bs}hKBcfYtSmqG4^vf7t+^K`yE?c#@O0T^f z4&qafXw)i4l{)K3570An#rJ7nX>!+osWBTcc1IOZMfXy7)`=4!`IC@dG?1qDg=F@a z45XZ|hvZE{l3gHr$lDi^q00u+U)FtXoqS115BN2t_228$I$0aUeufTI%lbe%@rt-i zSKVR7Ml&!+`iCnk+1;!Ceo5Z`aoP~Ea#C^@$TH~8uOGe5&}g6FW_1j!({~)xo>U~0 zy-)q)T`HzQ3bY(!i4fdXd1~(-ma%rM57aTtJ=Y;zaHhcpBTLQpA4v;T2J1EmdV3=0 z)NL3kND(=;Zo{KGW^mnxH9E$38AoN-c*oTX)>IB?(!bGx1%e-9v^K-1zPCYd195eg zw#lvU5Oy2O)CCK-VGTuiVdt!Bkll#+fmj(Ob@ES)=DJFqXJk=`oF*HcrRuZySeOd&YGK9#-$6;rZUljj3HLO5vXydSj!Yzq}jp~ctr@SMjsy~JCR;u0w1_rJsE4aIw+xlKovJO>vr9JBrtueJv-aNx5Pkwh@xY{IH_LV-i`_5rOZHC8~6Oo9NUy-%`CvVj5TwLHFH|i z%rL^-ggH$!7fDFcQ<2GcqkGn|@UCZGkSbxvzG!!g<NP6x2E7Ab(s4*+#1;AKTJOM$ z0PyeU&;?iP!A_qd>w=Y5R}=PB4z>%YSm}1*G>qco<@WS(6(`NXufhx@*GwFsiR;6* zCF6uox`Oe-yZpe!oxX<>dAPd#O#S<`QJ(ZJkplCu;yw8@>@KYPe0+1yZsaXWwbKVp z@DzW>0)4-tO}}}!*%J!VCyWhF7>87_EqdMLGs;ni3`o4nNn zf)jjIeYYp6t{wK}&-8I?^Gu)Z$@f;LSzZ?_NX+-v_A9Wwaew{<$uhy$o20c5pY9W_ zRAAcHzDY8}n0iyTrou7>RVNFoNhyf!;;lFWEe$-^l^e;5evwucX#c0b{vFnj#GsGu z?eQBVJ*#Bn7a&sLxgF`BTqnj*kVbrk9rZc)6P*Z5+Z9dt0>xYHJ@G6K4OS1@z{zn> z{rfz;xL*};p2VQt1P8se&~Be+d_SWTv)ciVD3u$^(l%C^(QaS$Y5jym#Rqb|VfCPX zQgFQxdT%|enkUhIAZt*&p@XwC?X3W5@Al{Jz(wtW+V=PR2Y$Ds?j3L7xvevC70f0@ zR(tn3iq%8T0_v~Oj-s#IPNQiKS)y%Uq_=O7QXcyBXc;$k+?$50N?n^X?A`61;w*N9 zR4CeZEPWe!qFa6OlLdfOT)sAuY4!gfY3~9bRdp@?Pm)P8z`#s2V3Y_bsAznk(Mmd4 z6JQch0uw@Jl4`)V8e`g8D>HzVygCUo90#=3R_|47TfL>Ny`{Gz)K?Q?lK_^7^;)b@ z(Ry{Klh&XVf~3yxyY@bl1hxNrKcByT$egp!e($x{Ua!3t6s2@8FQdEjZSS}pGSe1&r!U#de*i_9VLFQx)2?=63~)9}YE~R&)G>?)Gn`b6@>nf>hI;ZtZ&b zc#@04^s@7?%XFlB1(F2E$EG~N*cd-9*W(-W&~Nu-Rm%+uE_y9@$CituE_F#=x>!14 zKhJkHl{cjDvB!#ei#@hX|E<=4Z`6Np;_v#$ZssqZ4!_2a)!nnMo?qeCV~=g-Nv<(y zH>AmDq!!brI`c}L^2IkwR<(UC$EIoU^;^<;l)kAwJc_CJ3u_#sV`Yko3ugnzf!Ykf z58FSID`o#E$D|$2JRfP%!%O48mKp`Cy@i4c*3d}$)gR28xr3p8m-@CF{!C3|*2tNM z^P5Pnf+~dXVk9~qB9McGP^hPJmRH<5xvZXX-QjD1jKQfKpy9$`>wC#-#We8OvuHZ` z>p3!{bEpLhzP;nF)9J(UeQ`@>Ie>TLX-u@PKgHO&IdL zAGFqXIj!8TqQ=}iC$G*as`B2ME6?Yy&g6O3WZdAo33;%e-*Lo%+!-%PJH9XBJig!R zTw!lL+=I*XSg*%w2N*+B_7xp{UQUx>{MWJ^5(F_+$1#w)l#d%Q|Iy!eki(9^XCzR2 z)CC{_@o%m^9XC;ei6Y}1igry)t{h6P98?>iuWD+9<3UvA;8ekdCr*6L$6uraIlac| z#Ht%o)p3c_c0=3bDrg*R#jyb%mNE->mL#s!$OF&fo^74DKSjo*;{JZ|O!J*qp;!<% zl`FZ-8s*j6+q%;s)Oh0%wu2QJJ?Qz=&o?<7WzjA#oor3Y;5_#(1)i9h70a0w&tn~0 zK&3?w(f*4`2k*ri52j}9LyB1U2!Llw>B{&IWb%-ertT-Frf;4rddpF67v#nK?;s`) zCJ9ZM77+L8tC2bDDQTN0?T@&KvE9_KbQMGn$0Dz`eyj&hkVx&dQ@o?zBLLm)Po}lL zD_Eb22wJ^}mDM-!%Zcdunj|$w#t)wa|f*tFjB))J4tx| z1d0zLE;^Tj$W%Gz2TCe@MF#Z#}^DS1Z?6@Tp+eUtPO zy{elGnCZ86XCO*YZy@Jmb**w$9PJc;vCQ=~W?jXDo6PR=(NI0l<@3MOWQ#Fh?eV`V zGbSSF3fet(kKnSj8;F;Hh|?jvzt2T2_$C%l^BO3$FG;+$_KXwmeG6GylMWo06GN-f zofZ+F!hQcnsz`f6YDnO3Kv2VFtsgrO+uu2^^Zjwr_wu4Wu5rgjhDANO;oC&Vh?}3^ zOZHxTY(%uycG+`Mr1d>Vhr{vgVRnJW@_& zja3a5eNU?JZ2UKBHpo7pcHlNkbPPLyUH?0sC#L$?K5f6ELZ5$NRk>9)XikXuw{vJE z?p((`!me=IA{O|bazyQTp?ee2q5fr%4R*{U(o zkFr<(XfDa|sN-lddCefr5%h6a!fEXtw`<&Pt7^#7%T^b22do{%W(h=FqLlDG7xP1cr|s`_!x9~C7ifD(J$5DnGN?xa{C4mqGLfJy1W|({0jIax z9|zg>6{N{g^D?>UUJ(v8wS_^fY*2gE9FqHm+1jZl-rL<0C;11MB2$uVt8xiRq&D%M zIH$1VHx4jMv2iUCD;vUj;*vo-j8-;`O&#Di*RJ9m;6YB6$mOFdGT-V2$EicdL^?8! z03$Pye&o@)mY!0v2OxHkcV6Fz00Je=Od<-`Wq!Kig#-R^oiL)M-f^Y5Vs){htFKe~*9lQ64krJT7vDx9 zygm2)NInEzzKt5Ioo4Mg&w;i@IDY0&M%DVZMh_oJD|fE8Xradn=8oGDUJg@7eXm5^ zrtsvQ$6rsJzEr|A+$*aX%q`prnf5>@F)^;S_8zAT$dPfV6rSY!o^EY|)j85yWb$Z4 zbm#bSO|I7WI_SW-lPL!{dh_XnrnSF?FC&@=wxYJB_6l}kLa~OmaZHSfw<_G7YJALp zUno}9Mi>AbyU(AS-uaeyT(7k*pJ}L&(B1379R3z{D>wqk5R_o{jsf|^m`dE6)XVlU zko=~o;;V3SaUWb#6kEs;5h`9@U;F*Ib8Zak;~|xQJe?a8JbW;i&c5}u{WpEa(Zv>3 zKUQMJa0&{?NWVA%J?l5{Y?a^Z>x|^juKj+vDKy-mFdTQ#9F-?-m2VS6qq`!>p+deOgKJl&tgRyqo0D+5#(2RQ@F>h^y>EkT&o)QFOi`>12QX@U{O{P*gP7nzQ? zmjQdy?itdq;1ps837Sbp?p1%pn@`cy=Cdq+%frGUwyP+bH+OBx3<1mV!=-{=h$C7YK%M`Q#U2rjmWrukc zlyu}g;fzphXwK*v%^79OJZu!Q0{)1A5GClYQgUXFpA*(Lfjr-9cV-qv+=;7!8(;UG zB3PbfZ3@Vj{j0KZruh91^!%Nx--~Y(Y9v9@syCwDgh}%4U;Ux4_pFYOJ4AbCTLZb- z2T*B6es^R-D*_cE-m>LQjOC30$37`Ej(bkPfEYa6g&^)(r%8X3>c;8EcsWKw07pe! zGqw1kQP~k_2lTYa(o)2_SU{rBfOuKc$BA$12>h3dGNO zHW6&gUx}s-KmG?ir4Z>r?UrAdk)Ne&1;uQ91o+CF5jHUdCdLKkx$b<`Kc#O^7SnweN_EYz#^Wyd{dY3EhSZ{ z{OtZ{0$>^x6b?EBrcw3fkCxH!y|sUU^ih}|>99W^E&~VH#h@jtJU4`pKnF;U`C>(} z&&PE5*w}-j>x#9{;cwAw&!)Rzgo5}a)UM!(6w$)J4xB;7m+5Sxv9#Wd`JY$!zVI=& z*HU%-LHUMQyxg@kWTk0)P4|ps;7Y;e>DfTJ?H5hgq264hAm`NIt`haIlvKYrDeJfe znQCW^q;ECp%WuHk%5MK_lKvr0n}kDJy{qmu8LuKEJklh)+ENHB8k%ZSue4KdGI_`7 zR8L#B^v`r-lF9%67o`?Y``@6fwH@3Cp6blatQ0Q~iZ&TzxE-E#d-z=Exn0NKh_^4$ z>9@B_{{kO+-rX73Ga87u&zF>V`y%^8N6G|L$3qBIQ28$T(`&5it`$EuTP3pz!;#!7 z+GORx1$x6Y%+@csMKJa(kl9o;@6xJ-6P7lDrht;0rwF3bSu+VhV}|CF!@5`9btO86 zYW4Qbpsn@*g(P(6HOZ@rx8bQr=QQmF)mT&DFEtpH#U&@U1F|Mkr*d8<5F@Ev@q9sk z?Pgw;wtLkJi-(dveYeHa{!<}wP6ZQfP%sQB&J?6Hlhdx}`BfT3ZlU#2>$%F*zQm-a z*7H7-w@9aY+VtHIGw4#2f2#S?K9%}eLfyJ)XJlb>+P#cI{o8XN3mog0Lyt09vexbL z>sfc0lh^Lv*`~?Y%2V(P9CWbg9ju|wttzPKpnf!<0RYUQmQR4gsi0sgH_fVNBYFnD zQtfh7RE$(#t?Q&2=M0s5*Jpyte@ARk8T#`71}fuW<30r{Ud*gm!^KxP(diT$z=Q+G4T;^~*{&xTxLNTs(kH@YNg+ae;Wiv<|gRIgl2(gA?-O{*}jqo)Uu zJn8K5RWsDfVLjT&s7iiglJ2Auy$R)N#cn!)hS@8G)>Q;RFMY2 z$XRx$ip-bOXrf5(((u^fU^H)HAJTp{;PDAS^}Cj$W;O^-z;w1CG~vALIwzVwz8E|O zO!vYlGyKgaHPy4em3oNZ(W#!cS4W`f2PXd-^QHaSkuO_KncJ`bmvGj%{r@MNEj3M? ztoqk*_LPKP{4`4X`brzl9=Pd$gR>`Lsy_v1n+NqYy$db@B`u*6180||;7ss}I<5TO z?Wuca58u(pqelG6i5+XNdPduYMT1ioqD>bGp-a^-fEJjUH91#by^BH$d(t# zy7LqO37=mn^dDRae5CejXx+j9G4d%`%*y0wLpnQ;*j*IY>HL38IPHk;71mw^}xn1tslWebG8 z#>@qEv9^m$OfbLl4gyHV^6a79wv_`M^TW%)F18ia3?7#Y-y?R2mkeI$5Yb1TP2@n| zV4EPy#A&F3zTjvQPNdPw5JgZZ8JGz|5VE_$%7~XAm7%(W6%zOi!S*oL2)M;Hn%~Oi zHrsHPL6c>#K`bWAxh;+P$S8)w7g^jPtQyGJWkrr=bi;2F#Ww7Lk)I-tLA16aA8*BB zPvU)_e=zb_q~VBBBX5g2@$FB`2%lDU{OZ;aXR@&!(!-Ze?bnt1JDEvd@1JgE)8|x& zu9Uv4_n+=*tD|&F<8+6o?PpXYP5jNSI`>fRJHV{}9glYRFQ3+aLqq>nWq?Zg%hsU! zs!7OQDu(MXXAG)~u+C&bPq%Xns54E%2Nf<%4tyU+=1Vq$5Xl!CfY4 z3g{f;d8~4JRW1FI={}S{BN@E1uZ9KR;6GhZrs?t1%J=CWqZFb?Ppe(G>mElrvw5Y* zzcC44rX3RK@fy?cm+Tw^>Q<9boa%9z)bnjqtiW{dN=drb5B|SqXXo^WXzC@BdZ7sT)mz5R~ z^s2);IfAdxr`1vMNZhM_uagp2o2K40iM{wX@pVW1lJ8}c^d$LAp65)$10;~=9O=lV z{{{ch=wdE3{IdfIaCiukO*V5k!hfl#_*b%xURJaD-Qe%Ib0&}N3hLdDr z@}))#YCXPD8dWpMWA|q89uW&jzt!L5aj|oG-_uAws3P>+Ww4>4o-Bt9@yF+(7D7{; zT;NnM@my20LPCe@|1^K-vKBgh3!Jd@hUq<(-z2g*!3_e=V+TYi^NAdkr#*E6Lr!s` zJF7==#`gE~Mt%S3XM7iSBvn2(>N|B?8)cqH&D2I&qmlRIGqPIhOBdr*`Wd}sK^|*r z%n*a21{Y3FFQQIspav}LmSEjxVzBQzM#?#r&&h06s=H?}PfMJYNn{aAoH2}~zeh?< z4G|+vm}jnOYW>QwqN|&-3p@JWrel>j4S5+OM?->)!vY(xY#FhELqG;Em1RaE=KFVXyu~ZhHl&rH zyEsv>3(EzS5KcoaOdT&A3nk?75`ZNMh9sDELP@d<>yS*w;p-iU&wyhm!l2Eys zEF<1b^^G|Z;C2BZ;V0WkS7OC%1}Wc~DiL+O!6c0skqcZN;sVu@{6k z`;E5UDSv+bqj&R$`Hx(>VO`t4Axo-BFl!HKEwM+#WKdry8p52vCHUUX)21@fYT&hQle5pU5Qo)}f$u*(cGab`?M3r*y7 zx6AO-dbHp};3TPoP*T~~>7Au-x?&o6ZvnZiEHN?xG_>7)QC>5FJ7msNmMSUPeW|NJ zub6KzGJCe3K179DUcnS_*?uv&-qPy^=cyY;<)CL&{hEEE)jjt6k9jAai*6>lRYqoM zusC%MMJA1{hTSdCrWW3T*lO#fmBpSBKUx{6v#dRY8@oKDZbR?w(?t2&X=UkkHu<->cea!QFKQJVv(cjs;O*Y ze3D1y=&C`0i*FkE`4o*zYRvaYO(+;_NK>!X zYFl9TV!0P2TVUl#xLeT36eOM`OoWv{@_!n2*@0+To%iTmxp(ByA>UY9?rxEm(@b-> z(H!GxZZfZz$g3bqzY5_pK>Jm>0pKuS=jgr-fLa+V*^V-G^kF^*xy21m^(`(UaiUDdH>Yt6VZ*kKx(a`in}JMD{Em?5u2pGEJD&YJk6 ztZ$Xq+7Xe1WB9|_f%@uEAO4C15M7n0 zO?->WA@B!&lWg#N+FwssDV^G$k)~Q^HH9nnJW6o@-~lMVh+h zUp19)=lTtHbFdEIp(#R&Jo5&tfr#(s{xWDiUi%mfPoWRvSH;kc&iCdkNOgr=P1*FnOu6Y)h@oZf+8MJ|P$ z%_(5oo5Kk}dvm0{3#B~`&hZB&!P+Viyfi3aC{PIi3fQ*Gw^Sd0^28f*wf`H4Uy=!-bfUmQoQ>AQe4k^kp_QeJ_YL=H_349)3)zP zX2Xolp6HDXoNEqxs?CSt&3e~ou1s?A$V|zcE)AL)LgvIAnYnK`ynK4M-loD7>kXe$ z5b4=|Zln%-Mx&Y>v2x<=GTQ+mN7{?2-L9q=JYz4gJP7fo%1TOxnmz-o!hG0I)p?%|8{Z=jlKVV)6A6svu~0u?Lzff3hTW zcBD>&SIYB>SY%^S`6uMmb;nDchm(=gkb3>wAc%c6oH0dQ)DryfO-u}_9VF|MA$+c# z%q3zWP|m*ISbHAkh>`az?f!O~o5#M<{lyAgcYt|c=rp1^eezmkv?n23 zb0p%;y_xbo-Y$Ow$!(fj?G@Tbcr8!i&T9^$A@t1e?0Z*WT4;C;yDtiD&$Fyty!~n^ z9B*I4Pi*UKd8v$TmA7vF$)Ud4&aCRp+@MI|sMqLW%L`K05x$|$d>$dC2tg1%fr${j{N#8 zrSwhm();K6L4Xjze~q5Bc>8Qp7>Ru6cBK|y9Q_vJi@2ny&>}fN^)xq4w)--Vw0K;~ zso6aCiTxw8Xa1UTVwHI;G5He>Y|`SAmypF^%WEoZz5_SOO-$1PleZ=S!#Am3roYl& zmuajEyk?>_m`a&oQc``ArY?l#zchmdWc|*L$ECA9B6@RF1cLERLiWb0o$4=NWZleU zej5n32e6vQQBJ6u-ZGobNmMs=q3sS@$M?4P%XmmYwdqTGt0m@FJ|~oOrP|MB=o;}- zdl?(J5~1DSB;f|lzl!8Z)lwpHdQkaA$`Fv74U(fp(FqYlCibYf3noS|f7R8EA1C34l{_Z_ z-dKA-j~o2n_3Z;Z#Pt{Uffm(tAXj6)Invv&XS>)OtY&M4Z8dBpCO5%Y`SXUKRqF+P z_*)E=H#l$5$HC8;{W?-dfIGwTw>2QSiyx&?1K7fnsuqrEUzdl=5CYc%whifDtcyM9 z;3EePnE`7l1DMMXVfiFcHlv(GTVhlY8A5I*ks`UTp&QG=imc*q>;b!i`Zem?A_6ovM=@SSvQX@ zW~#9ccs9u$+XlBP1lEl#?QSbB%WTTVCJ;W5w*Z2(4RKlO%JqveBQp!#Gua4n>`sjd zsvX!|)+A=Lm)@2qpzh+9MlZOih6VBXcY#oK?cAy~7`B4Dwt9D|^&uKHqq<;ZRQdL( za`_#_&`$od*e{b&hW&GjoX5zb+p!A|Jyxdke_{r!gnn%iMM;BIP<# zM24spKl)s?#)w6b+K0f8flsj<)&lM`h9|O7^^r(HIb(CAsrJCCv!vjGv9x{yR=VRQj%jEUET8;@Ko-vjiQy z?_93g$JWX2N32-m*%TJ!BeY07eh|oQNb7MN77ME%GFUr3pT;CzNqUU*=#vkTm7OC$ zf#k|*^$%_2Q`?a2GfArm)NdhkK;8HrxnIhUwLd^=^aWkav+3Vx-Ok8NKCg4WG$=W} zvG)5$ayCy1sK)Jj(wk1l%5St?~n7W|}cCz;9gZ2BqV0`satM}`A~ zeXJb$Tvw+s5&0k6TF&ad+ol)BfG#*v60semeTgFt^JQv(a3RY zL-CQ=qaqH5xYB~-LiDcDCq)blF7_$%0jcMoC8MT0 z>p+U`(sE6A6oV{v59iRK+M~oVUEqw~<#aTkE4&0&0XLSo5P)Pp6#k`S)dX8Jq3S1U zc=QhqC*(>3_^$(*+b8sE;^RylW7l>8K4*dHCs|%!4#uYer>}z8;TwuwpD%HR|18$b zqqJ|@{xsSj7y$)PJs};R4<$dRo+$=0c zg?>CPia)lB&6u5YRDj34f-&x>z8-a5K=hcOhsZ_5MHo5z9F#@sNt18k zG2GQu`iTD2{E1$XUi4(mmyBqLX3mkLWyAoN9{v{)lF~npIrTGV4}GW4*vB8r^uGE_ z?bKfm-6Lu|hm>~D>h%xSd2%}#)HHigJkH`@G5-SmyD8{!Lt*E&_j(rrlZj`ft&t=9e?n=YWh!(iN*XLylMe|P5;XWJu^E$@YG~(XOe*U zefH}e`n85n!%1s~lO(x%AEhSl(`h-u>O-Z~sga6LT_syMHACvRJq6UA;~$WHHK+!D zXI=;8)vbPLe?3fve$sOMNKDlOEl>4vH)Hsb}|7q0fC{8W$V$ID&nhd`*-e2dVW_xTya zPLo6>>@5_PFafO-*H+d)&JIwQWkDp@x@w9FBjX`BGFZSGQ4Zu-8KMig!>NAf5p-b< znEV%$ADD!esg*5bmT?;WWf{*tX)oiMbUlmlXV&XgT%Ngoxhxhycc^sQa=q2gqNC(0 zT|lJ63i!EeCMm;T^{kMughYkQE-)6NAo)@6@ii$(EOsZFA zwkC5xFE7GE-LCZM114bj^Ljp~z{o7mjpGLmMBwfdmAKBzlG3F^wX*tRNLAfILZ|wf zS)t4WrhqJxw{*7pu1@xrANI`D5cZJ%T$8z3|K7NZVOQ}%V4=EvKtpRz`2k*l$(+Rj zRcTlIxLvKZ>OY|7*vU#KQ@s?YXHrb}>PA1cR`=Q!Qi?v4(4o@pl3VPOGBM*@^h>pX zCVQPKGH2;2x>0(;H0@?)^>}J(4%O~cFTSK9IrBcd4w}-yEJXoknGYWP`_zLvV~(DT z%){hXT|3Mspu;(S#_1*3FG)KjFBCb%d%;%TYpIlv^x5nRo^k{nyrv$X>4N{Ty8PJ! zN3`D?FTFzx=jYFG*#+r%K>3DXfi-?kBS&gaiyBYj^^%iu$q0cgc7`TfQ1W>_Gc)gC z25^sywy?)PbTfVTp|5| zR}kolrImIOawrS?6#?aU25Ce(O~p568n6{`?bXvOm0b_gJ9Og=FPY}c-|Eafvp$*A zhC%rP@*vO{$yQTCPwe5jyUdDpm=$x+uvg3}4~t~Vau&_-s`ENWvdQF(pLOKN)Zkq< zBbQfMLsqDI)EMWnN-$kOVV+S4GJW=PwTxb_>d#s( z(2u=bl%jhw-ODp)Q!a&HYX8C6GG0<@Y7TzgWgka&*6K`GD(gr|v)1QPj$Gx~at%su z{?zD-WeH?{ZX7RV$xIgPSd3#WXrNrN$Xv`(D!8^w1QLy|8cxQ@WNrj~ZxCAe3v{Jv zyveYa3^j=KOJZ)cf3|c_aISp; ziGFdp6mm0|6bR!0s#WyauTt~!GHAc0afXAQI#$nRrQGV`o2nsP=$qxXw;FaH#gM*eD+E+XXa8mGn#_OmGib1(8Y(=Z@~^ zt6X2!SyS_o$5&l7s90*t2fWvH3wV8cIEPb(L=SSXQOR%)d~oV;>`rc!9OVZ-HJqQ? z+4l_(=lgaF!`UYt*jH0iQQ=v4vEE^9I;`!N#eR|TQn!Z0)jk*!Wj?}cRd{Hm(B}K)~yBst+(j?TSunwVy z@sO2kvT;I$uL4&wzl-DFa%T)QID;y^6!x~}wmn}5Auh=9=YI8%Q&ud`DEDUU&)AV- zOK1<~?Y@^-Gn56gml(w(OdnEeFGEr_ue@0&dyC=c_P7 z#hligTsjRpb&|-m9XAppx`U9?V~ffb;K3`w9ZwNjYYzvA?%-#J0<=)zch_%4??3vM zi>z9u9|7^eZ)6mhXgv2cSstc$$4@j&p(R|E4LyAPr1e_o+vx@Swo9&z{YAAy*j0Gu z4_ZC3oEn*&a`3?oSj=3PCRZ0nVID2;Ru}dn^Ur?uHCA=;eBowY(OUy}uZfk-?=D;B zNUmC-BoacbYyr&aszoYWzbtBLTIL9QQh^p3>s4|R;(*E?oqbL4-5$t&*n!gdh}7@` zhYz^Y!1~f{0V;=hYtTQ-`?@H7%6vnh0*M4B74zbnkow^Sb7S&h z`Gvc!CViQ5?<`Vel`Vqbo`F~ zf(e#)6?T~WxZ1lFog9N9OJpt!P%K70JHuDw=FwN!4PxgEke$XrK(It-wC!y^hsgUkoGPJ;z3vLI*%jO&D5m-@Q zN)+pzHrZad>eKgED6w%R2>~@pkvtI7q8njrX+}i8eOsu{vhy~%K^;MLd*hqOW`H21_rNrKgKo zZ67DIs;5cflr?!;=3I^dA1cXF;_F>|L_{)IT_z%}wbZUI;t|es^&(GOK6H4|>VT*H z8ZZigT~weU($gjkUM0ZwG{Td-m)WF|S>+2qi9}H}<)l8gx5SuM^uyOf8sE z4q>EaFO=6TR7@LRvRn{bspSe^^jZDG2ZPQ_KHW28c{wk7GTn3UUDDH0>y{Fbwk_8^ z4iJTr1=xO}jS^(?uf{go=tlx<%;s-k0sXgk_%4QU;k%4^X=-}p;=Pu|R?>JH7w{{r zB>}ZhWM4j!$u-NZA7fptvk9Qjr%Psws!5(7Z0a@$YY<}X|+8< z9k#k-Wr3nX&!({?GMPbjHL^?|tOLjpjp^`tl42IQ&}{m+?gYC*9X~q-00DLKG<`|V zTwZ3X?VFduX_mf0w&8%O#J<+dU79P@_EE*3|3q|JHLMMh-}Ly;&95tDHFcAl0#5jB*$t88}e|b ztG_C|&m#pES&J8avcMt+C9*!8GFYVnvd>6(L+UMNgV>aZ zS+>$ZjkP!+#T4yi8PnicQ^1y*^j|D}Cy>lhU7UdBvdE2xt=fZfwXNHqbf~MDNcILS zH>lD(29({49D;nJq7P4~^IY1iubf$5k+O>e);FDtgDQf>f%?tfmpW4>Mu5EsCH2OP+kksRr&i742c7) z#xuF4%c{0d`1I9WHevZ7_~z=k{~etVM^!7XXA#>27NgX{gt#Md_P=hnsT$C^G*=pfmIY5*fq zscK{zJ6E42GZYz{nv=W7E@qzEk2UYX{9jL4npNYn?h^4fVSQ>3(m-OOp0_P&BQrWl(7+T^t` zUasX@;-zp%tvEv#9BckM_h*2|3fRL+37bq7e--6X=q(J1EQ6Msz zv1$y@^Jrf&~@#!BM~ zeAHqejE%()H+9Cw>iYqr!m*CvtWYx{5$}$+w}Wh^;`YEN6EU&tfF;IdB@PgQtpUw zX;|R^!rCj&ADZoQ_fSq68jy1{$Umjn z1*u|FQpL^~DTZt(pJGnW{QcH0#9f`*)AI14sgXpk9U(6mfH!^>{e84?$kDt^!-52p zF(DKB1t~Le=4OEU5|jd1?NZ6rPjY!KV1qd4R&gQ$1eWKjBK^otAp95P9YFn#ovFM-RJ$8`@^SgVhen^d=ur z0Z_2+60sJncLIwg02w1W&Hdv!iTbs@)r`UpkyvCk*HNGtQIrHw6a9zZ?+&PIuJ~9C z#{K!k4mvnqB*rkhVh|o=>~7&r{euVngV@$&a1SFTgH6GZx`QU^x>hJ=AqdJ4PshW8 zMf#~{(sZ`L-Qd*oXlCmwijH_c(Dnn#$TT~@JwCF_?GIA`zL5g?BC%xB{rQEj$c_h- zO_M(}@G!b*fGo3v%i!f5T4ZpTch3CE5Y)v5T=8MPa;bBvN^?PjK=l1LbCw#EK)-91 z%W9h6x51Q?>{g9*`ua+>C)*VH5k+(_DJMk+S51#LEpmj*?aD{svt!^NbwMOodf)~{FS+e=_W1tjuS&ksmX|XhW zUry8O9qm5_o}FTL^M8Qn-w%E^Jb!=XFg)L;A2mFGhsS>b&*H&S9B`En;c8mBnkknDPjGpTkalN?C`a8XI_PqD%=xQQs_+%A{T~iPh{h73 zH!t)RHlC;5XXbL@a5A)QNR^B#P(D;<3cVF8Tz-T0rEEJO*6#7OFxfi6l8M?*>p%U2 zg5q=Wjmgrgzj&C-#q5Q@I+@_bMBLi1Q+PN)ilF^TtmFuWH%e6h;35B@0d~Eo0ZUui zV#_bfA$3n&s6D>DF2B$nKh4zg%YPxWT-`6KcQ8vzW?5$^M1J)dGE3P8;N9rwji-?5 zmZpVVOXF2u{tYdadtZ9v$gM9<806EkG2Nr^PqcrA;6JvJy6O$li`{hi$HJ({C7tp? z{td|OF+4X2yuXvef4aUwhxSHNsJ|FY*$>7z2$Mas0cIc7faT`WplX~T_pc(m4H}el zqe2_EYDf1HW&k>C#iAHzNjG5{GdisKUASZPEb5Nmk>)$nScMn-!_JJZ=^}(Y9szRuyN_P(}}wo)qwSwk>vLEOsL7PW%_9 z>myxY0}ItkjFD!->8NV#VYya{)cH`=QEP5M$`5$rPYQOLyNFm4Z#gqMnGsLhI+C!9 z*cDKBeT{jka>X@2M(ZIQz(6z5p+pAH^o=N#Lx}CGTz$7vo$pOJR_?`CJGp4g z?-~w-RGgtx?88v;wOJ^|Rd5nJx zD`pLLzUR!idl8ovqt|8$)%3JgzCEOV)gbN^BcDT-dm0I1ULI19=tPhIL(9J%r|vtg z;zic{UN?62i@J(^{wy9aspve7#Lq6wAfD zx9`D$7rMB;5Xi6b?CWmiWOHSpU=g!oCsOq+QyZabL_GI1009jJ<}CfCqv3Q6{bmD=l)3>xXQ8m~OJ3PN zN0BzCeKtR#dhY?ib&lRv)1rgPaCSkDti?njeO&QUPMNlkMMvcBF7=2xoDnn0M4Nz< z+Urv=TJB9IJfY+>EkKT(QIDYb0%OJfgdD5H1;4ciT>7TY1|5irx=a234CJSPB5*YO zT9H-j%;!sHp+R0J%mB@4C%YA5L<&SCJW@bkcF(knz=D1_MO-gL-qCcNF_%f@KTX;q zzt*MtMv8QpB5&y;CfbO=@e#FVeL4pqgw|#BPLHNB(f%7h z*-NBTPeJ$5MWTIdjuwdtkiZMruqoT>)^Rd9m3E)we>&#ht~Ng?hi>GXaIHV*(JFtc zt)s{P#6$ETe*Y{`5&RIL$DZxgk5x}(?2k5XA^O16;jdHVW>b2FRlWrTig$_YzbcTY zv8kHD{;dF1IC-5v$r_m2a+8w@#3y zek#MiCBy%OrJF0*XSLo$vt)@XG%-TK%U#dgfYA z`4TtS8{?)b&Og0n>}|$j{HWCNu(f+>K)IOn(VxX<|5h1{X%k?5ZbHQsLkxEO}ub10L};1+l;(-pU#f{Nr3}SL@pnBB=Ak z*w(({naDR|i%MO%DkAW}LFzAc*2R|TgyB;R2~a5Iy=HWrC4;;@H@`9L+lH_EIzP%p zkQ{UYpi9|(E-_AVaz+U)uBl)wk8r4AO)Xe~4Cesg-ZI+}$%-~R9gR5}IdBJ&o7yYj4tFq`fQ5!yLJ6uBqMZ8xHb?Fc6 zZheU--F$Y%HwmO9-egC|OT~Ot_H`O<4~#-b^oT%sna;*{dLQLh*U^0Sdo=(zvmrf=~8uvjr1Z{!~C+WC=cd zI(cPOeTD3tx73)7Jfh050AhLaq}H45T4x3tved(5qed!#JiS6b`}rJge8kao&i`SM z((D2mK*=0WT+eH^OFOhGuGiPP=&UpZmEEhO$WaQV2n zeztb^h))yD2P7!>jh<~1pr>OEh|~`3wi>p3$l9B!;Z^-;xggu&Jodsb5lMYTupz@D ztfO9esF0yz=|MwggAdQsRCef`%KqMbsI<_S}lud!x1^9c>QITm?J1+kpMIAGMA z9OyhLkVX{9+9#qc?q#y1AK~jR}txkiXa$B|w{v))O@EHS`E!gP6M>SifxiKuP->&3}s# zQm|ZEgdwC1YL<5xH=zLQgpy9}toI%>tK=o1T72%TBIo^)F>|9Ija~ZzH~OyV5L!Z? zq4<7KOBqnSbbcVdWTxtH$+MH^di6BV!+3i*_YBFsPVOV=0-L13x;A|nP^M*c8QByr zZ5WFGRdElgTE{{?#y7T6I+m?gnzxtat<0%zHm@>ETtin?=5@Y)b*oalsDAaTtL?J- zHCN5F%Yq|gWqImMyR3fAS7Yt6`gNK*3GE}6zBAODoVM%rkp@+w2PRgL0reZ%xa(e$ z=lCYY2lW$DDj6u0A4ziTsBxEL8AC3Uqz}u%Ss?FqFX`FXq>sjLP!7Z)ryp{t5?2g^ zFsGh=U1 znd{2vE+QPWmJy{+SYXYzO~0Lf)Mzooy`c5u2bLT6uZF4+g6)X@C2$NzNJD`rjGNhQa8f+~J^G>jhoNs#RKI zjKn2E=^YWd-CR^3>VN9A9PdgZ&dkn>Tw)}v*Cz^fq&^e9#oJRN8-^13_IT}C!@p)4=0$$D zBwGvfYWtdQMiQ~mUE6p3D_Vl|sp-8)j*o>R50gn|d7ipuD49UvN2+Lg?9}nplj=(q z5jERi@hsRUaIqtnW5QocpdbxAGEwkWIAy?n)NE(7z85_l$H{e#d|WF-MLkv9g)H!) z`YjMfZsli4nvpT+)YbWJdh!|hsIYb=hZhP4)g}nd)#G=~A}x?`7Yqa-CWG}4!Pcp% z@S`X|p*lWPjE6EqYFZ8S^Lsyu(?weK{oPq6E3Ij#M)h zJz2&_6OLy83Cl2Y+kzaJg=-<)s5~cuk5lt7clsX4s7!ay6aJdrX!aQu2`C;hvpg!_ zE6<)V`81!zDTB)AM1!lkC)@O?%n4C5Mmy9gb0(I6O9>mETwA=s@4^zGBYbuHu{GoP z&8~~iS?P$(M5`TNoEBSwV*5yJwL6ii($5rk`#lnoR5z`K z;nF69US1dbrp@ZE9#eR%E>@9MnmAv0U$0~JENh3&`wou1L|9+L^47&lvdHMFV=3yQ zho^SFn^`xmn^dPQK4%FS9&DwsO9U<)nFI_@Hg1!ZZ*;eUiO|Mr?nRyvwJh-Mwz@p! z1RX|%0n!oMuKUS-tkjtv4`xN+lA#`YI4EDr6l@`8HtSgGOe|zqRKgvs{X8>* z_Pfy6)qI(73undME36*hiSYP3f<1+^rIF6ahXpA`L`$f!1DhcqNVy+@ij@IGUYd~z#=QrYw_X*ie506-5&uqVxc ze@T`JYu1xCAJFWZ4)$hkqccSgjTN#Eqz0N0{n;^ zss|VoIaCNx6LPsnOV?IBI4omgYz!becy{wRy{Sv(GSA}BH5`o1%~!_f_z?~`qVFM_ z`R+4D`7+fwC5ta`#uj_Gq{WvE?eA;g*^P6M#m+=dv<~vFBU8qa>Fg@6jMM8}GqIjFhb*dUUq zR5PRPk;qSXbmTrYl>!@zoilPi)0sV`=$|0vg-!zl??YUkl3&A{)fx0`Ti~?z+beyf z^J8Jl?to))`Sz>~SBBzivX1RYXG^RB#pEt|&T#;+Ch#Xbi?1tEetd_6iX-RYINjGB z{sL<7CFv5W6G*&9CNomdx?{}DWU}+^v56_T1kNX%=8}&IyZ)AB@$HU`i?7$;-x`~- ze}%Qqn1RIK>(+XI+;oDI+@-losDcZkmgjYcYBJ4`c{}iAWYB+mE z^kgzJPWHF;CSzId7WQLvPFOrliHS{1BX?#l-b`@4&Cc-Ypwq&g(Z52>4S0Sv7Splj z94Sh{Cb#cR&qgr`1gA8dT@6}sS|<}@d7C(B=7I%o za--Jvo%Aev(`tMkMfF+iefpp=UnP6H!4XmmOn0QY8#2Ist~!LkQ^`*|%+i#2*-&(6 za=_E+5`Fqph(^W))HDCZmQAF`(zal6YfCr2a(_y?F?vCPPbgQ^YFGnB+)c$2+T306 zaol-rK>ZuFm@otw$PeLy2}lmAyMz_JUFTrtLqrpg&&>+NOPKEGcIaDMiHlR=Bq2!QM~~f=W$9RxEsbuu;`n93 zEyd9g+oVeyfWGog#m!^!)aK)djI2EX3{Ncr+Z)f6tR(#qCd$b++FfUS^efWrfSQN=YAI z@xr%DBrIw}4q!ry2JRDfv&Pk;SY) z2FX%G;&2vT#)#5k2YRxAmS*qhld%#7*&lDU&&5i0Z5puQVTxpIa?6vBy6r>RP<|K+ zT1SMG4X8`Y-$+Vb)Z8sKuL5Y{l-zM=X+Ygv$3oVmW>{>JAOy8IYnA|t=&PkFh@kft zeX<%MEisJ+O5klB%U6sLAtBn!@w9i5jIcs1dbi7?HY9HQ1&{3EGa$p`&INe>`6{2p z!<(n=JA4u>!G#Ao7&!)qWma*g?^q{eXgIruF)YR-Qu73+?gB`1Ht94zYXuCUBz^(N z)&xk9UgLXLrq(xlGC4xx?rI#>K@JfN*w-1(35j1mhO$(3qo)ysV2Zz%Jdqqt?10&* z2`0#$?2FP_ZWFuBEcaf|i7aD{xQZIxa`E_>KowiGYM5X(X(w*d{w$By@=83ImGT+_*a!cdlS)V%bm` zS{hVrZ<%8)nt<%4L2KWsO>+DJu6CCL73$_Y1Wb`W(B1i+T7&^;Y6!=CW6`G?7tr)e zuQiZQy;<)Z_`6K(O%l$6?)`&In?_uz71dv6+wdMxCl-EkJf~KL1?J=B}WtRia{?Z0XCiHc2_mmYGaawq{ih{|Pu#Hx(0B2SJ} z%nf>2meh`UJtgHm*69j|fJZP)QKKs|L)!=Z$4_DW%AYTI{ldlW%D5AclWC;{R2e#v z>}#eHjWE8g^FUS=bQbxaTAL@F#_!1iT!Ci#Lga%~0h+2FhnP4`OOZo?rAnxaJ_)3b zx+A+Vc~0Y&#Oay`@NZ$81=KMRSdHAjkt?LSrSC3a({vSZlA=WEg$PMD7j$w&i(Sb9 zKEydl|umqr9$ zGNeC|Y;d)n+pEi%+j4jGM4D&gZ&RbS$qm7P-^8`soIw1_)t+rxo^5B;#j-U8i4j;` zY|=G`t^rD+17w(TaM7Oz=|POCwsQlaNB;QrpTDO*qPBzx{cP^Yl|sQ*-9AiQ~?)fSPznV}z711$H94(W@468ln}@ zmn$@0W$q1nstno(lC9bKrVAEYY>cWvuW6x3ndW!b6w?g$eh5fT!C;6^C;5&yp9T_~ z5UdC&_f7gV1Zu&e0p&5x5~|WRB|L?vXEi}|svm8tSzh%Pk0L>ngPCp@aLNlJxfL>k zUJu`9(ELcyF8+&=;y=>G1wmSSQe{6Dvff6CTx_H^3$U^oSb;n_(lOY197tm1$L7h) zcjcuqUkEWz`#N5R7vb6YZ_rsT>*C2NgqG8R&$q3Fixr<<~Sp?L5jFkb<{Q`ep#vpeMxaL3|?aAit z_UsuyDiAS5b$JaeQ-_+s6P>X4&vid%9}&j5HAZ6UFH?+!7oUe zQx0lQx(>ly#lYqr$l-ArB2rjr0B+<=gA&#UrO{J1xy0917a5MtYtnO#=x3zt@9nmhlWrUU1fm6?6X2Z8{Wzn&&QOB`oo3kSL zqHN&l-DV5tw!hK@-LR-;QEG%{AC7|y$qGh9{p zipU3(&5ai>B}Q*UGG3M@WahwtUg_M?=uf=&yVuwkwG5Q$@u#glX<`Z5n<{c6av=D@ zDx|Oo<=6~JqQhl(iEMR+Bm4#Sk=aGJlzawF0%;Y1FksVYQs=H4H3p-CETK!Z8+IFf z^a5`_Gjb;46L`s7s{*O0aNIkEB4>#BBiQoaeOUW6xSQtme(a zt2vj1(bqedOz$euXIn7)SDJSxt~&lFYPd|-05N|4!qJ&dCxxp6 zh*zd}nR?O|O0m~4*O9wzE(aUm8O~>}p*)#vSoieEc&kKM$bcI95r@8}W(ABFJCAjG z!<8UIkHi6*uTk;J6T2{|l1bPY6-9&mU0^V*99^$oAKkb*M$(cE*{#}~l z(iwK8dsGYPOP`P<)YK?eD(xDm#yu+I7at;DMu6gK_!y8Agvn|%m2r0o*Fcb}iL_F6 z{EwW%t`yOoM?ZF~$cXFufs;I5s^cL%S?Gwee_AGQN(k)fuQMJnmYXR z(RE7=A$8g4x)Wm>va4gdrS^{IiKZ3HM1{j;KBEY@TVBv34QGec0A7V^Rv>HB)=58Z zG~~Zi5D4-H4V^}Lf69%WO6zrz)39IWIb)G6qfhU7u0l}?gn)+Q?}!7fj8WeAk{d9HQMoUCE%@)c5}u=jH%2Zk*t@VI zv{ZBt>3^q6?8kQpR7gm{^5>!37IK46nke6nole!$zCDr7g5!J&hL)=R>|tZl9#HSR zZTj;)iPj~?Xto&hk+rF5P@#W6kxc9bqojy{5dlSokiYf!1;6G{nK$S&#wJ`Lpzwn< z6*dT&2Y`yaiF;r?L1`g*y5zfB1Tsus82PZHEV^W0ukC+(XP9WFVWes^ z)=Gv?c-$6zC)h{~Dr&oG`_6e^lU7FOgC#du>J_jQV#p;yrZY| z+CLNB*r;8^r7RFetlcHLA7lXSP99isq~8CJxp#q&vN{w0XEH+)U|94y=tE+aqt-md6p+rkC0X7Lr z%SCIkv|d`@EnaMyeyZia?XZOeFL*{+Yd#=xU&U2pgoafRLkJU2* zYH_LuncI1m)5UBL3py%x)X!y75Y6ULbWX=1|K;v)^|Wuflq9$`{1as{tIKo^-DyX-3`;tV(- zM^v2Xqv4Z^9sCyQ3O8F-;fnTU%-;?foZd~MTV#BpeL0~n)!(KuLig@Cj)-Ck<#npt z-Fl}G4g@Tm1O~*;I?-Fa$UgPmZMJZD7WEk6EdGYWQdJpl^d+fH1^|_;>lZ|A8{#e2 z1EzY6t$>?<5DL#o*?hUUJMPB?G-lg$zB&55eMD7I8<|gfX@S4&OJ9aHv`2U3kR=>G z3a5)�&>BM!+S8vvf#}kKH@R07d&W`P)nl0f)MsW<^KnHZwZrn(<+rj?!Olbx%omBuru>#>3KCo(=tkxW zMR$ZV9`t?`$c-QPF;zztgYkITGCBKO)2GUI39$%H)i;@$#E9OEbofD{npDUZ-!D|4 zC-81=PtQ=M%O3d!U8{TNq5GM8aD~XA3z?>ik64->Tu48N*BJ1~RqiJ@!!qlr*l{{S z{tK)iAX((T5d}jC?5}@?4!mwr7$-^kDZ38Wz%RWI3gEkL(5ifw1bmQVsr?gc^+q-S z!e3r!!c>7CIwXZ{!w7!YsOZN$5K~#P`jpGB=gndOfkBa3f>QJWvmhhjF_-5UHM`)I zTwFh?#B2nT9p4sT8?DDSdGd};t?8axv(2d4*Ix5lq>Ae*qi7$8EIjOW6sNQoz2@G% z_rC5=jM8ns@FQ{=z>(&41Os9KQqj*dwU~7gut_?A zVRh3D%PON4$U^(8tI<_xy1cnD#TK|!EF6nnL3gMLdxVi@>4Dy&BX(2=)Pt?J=rG4< zv!YYN#&Iyrt$E%Ieiz-1$-c7kW!4oU3aIGhY(oBU#y?_;WmINz4?l)#bBneg9&!-x z^+1Q}M{D=y`^}nt5-;MP=@q;=8nt+UkkM6icT}bb3@ToW4O0zRM%shH2g78HjP#;m z(kjDr?^g9Y`eWnuN0+;oNV@=tfzxezW6<-OeN0u;Y{u(;_zP)bL6dARgF0veY^H+V49CZMrp)TBobK~{9>fY(f&XS;&J*Z+mW!=+sp zmd=ufvssg7L8ehW!&o(|eN|5Ts>1eF^V`4mi2y2U4_q30Or|kvth(7)HM`bWwV?f5 zvS?JX43@AQx~nRqcr4bpwwfp;-QLStC~vKe>v5vcsffb17*W^f@1lRQUJ>S(zTWYO^sKde)5N?ZOj%Nf8F&s?3UgiZHyc2*W-IgIUAL zXwzs#8#;wD#D)u%Ywb3R4s2e}KJrC~ABI$M`ghE|yXdvkM;UK?u%+8&q`1<2=5LQN zHfFQ*b)gJ0e2mtFGSCuDi^y2kHDeYnGFlWPfY%{mP1k!Xp%CIEQ~Wm_Ce!RA@Eu&}0|)zbHfDoH*j$3Aekq7T1-K1|m1!A|HC_FAD2Rb~bBVY^Z3 z>Zmx@UYP=dK_V*-4E#ap15$WRA4Hp7QwKpa{Bw!vM-ep0B?Ll1NZfOQWwf!*S*r|$koAVKDKtF|-hC_L$a(^D$_#5@+2VxYu&;Ubnz}O+tX5B75UC-Ubhpv1q8nnbMwCvQUcd zXWm9eLp@H4dn-=X|B}in-@amjF`JJm##mu{luro!(wTjD2jNtLe(_+3bIzi6=fs8H z!}TXAA?4sO8wP19sWbACi63puGAVe z@09tSRfIfxr?=?Wc17T;x{Zb*2(@Jd-=nZ1^9k~vTqvoOi~ZuyN@YPSr}o%`!R98y4^84qD$B=}C~^A6vrf?j;7qfc_0>_7&C{6tnw((zY{d*U zENL(LHO#u8Vi7Fpaj?oLviw;_!+WL!n;h}u{7$&&ol5qLlh%0TkYUQW%Du8?Jk24}uE?zz^zLb#l)K0A3!}yrxx`E%6H=(38>0rUp%&%j z;E7J0;Zw`)-9bxP1ZIrB(o_I7l-=N1SgDij)mpc1Ded6 z=lq4$C!Uif*tck^obCm85koFoV=T&u6}#QXwvqhx{I0QkWFn z>&P0I&CHAu(>DMB=j4&NY=ITxBDNxF5zJt^s=YO?ptE<;RD0;&lQ0P{Q#9wiaC_XUR<=u}<^m0zStr9qq<=c*L zWm}_K-Xcpy72o}+=)*yA#c^Zn$H04;bu}xk+6+rGqO3m_=a7~5j?`in+?m{uAQ+Fy zsmyGX-h?y88e1f1*j3^^xK0FG<2gi+4L>3a8v5YvgDi;tfo&OrTQd5P)k;4(@ynnr z(UdcHND4yM+|!3Y33=VzC3VTi&{Z}ByF920qC51+C2y=QiO>+MuFCSMUa7BPDa4_0 zUp5D_L23+aHx-PyV><=H?2x`!Sv|!7flK^!?UsjgUtF5Fv~GAe$4gfdu~dK)Vkv-& z6Uz^zX-zDDBafO`a=U3WM+&iIEs8d#QIwNJEWNMb^%P=hR-A`uK8#j}O^D*dPfM|$ z+&!8mrt|F)s5esA+|nGAYa2;l0IjUa*|_;sk3AS@ZYqq^N>RnEvYt~Wi$W_`Q8~1d zhIny#4-2&vE~cSK$YO(Qm}aIyDK8+B6&4nJM$Jj<{E3T6W!j&UN>Gs-v%plX&U}iq zUUiR^i7=$L4+h-UGvLf|w~uWvwri#Z+-^B5*T3uC<{oZnkrWplLJ}AGOzgtx(!Bkh z1wfeBVn^GB9=T-ap;`| zj(%z{mD)qUo)UIGEZ@~zf3#;H^;4lUBi&1TG`;^{>{W*bK+cr^^`6A%LUjapaQ}-y ziBA>tB;1F12@jnay*?vc$XZH2RwRz&@Z&e|u=+4TK74$^hc5~Woe^eDzC|whR;s?e z!{7DSBOZU(-7|!#psNs9f&KjN!H?#C@uf+uB=O^4s#+3nDJU+0-|GYBVRVN>17ks} z(4Lf75whcSGj!IuF3Wrcp8dX_^NvFj?#FY<_iUj7d+>zL@V-58MTkFc{sgB=265jP z881(rM|i@UZS{yvDg+P}$|#>?7%gXVr0u2BVMotU%JrhKh00VqRR^w-KbOg$G1Af% zU+lK^{5$d4zu4XVX@@N``itG3u`CnEecf}DArUEVIWt#ko!!#&OU_G3Zcwav$Kgk} zwTSWJ8~OhJ<*&UX0O7IwVxUA)e>LKrzkfkucPaJxBtQ_-*w3a ztNg$N7p(H9R{q;Xt6XZ2uX1ORyy1S0_(0vWUeGpmT4Sja5?WoILzq;>4PQ))G=2Cl z(xO{0q(#^KRa)dyw8-3pT6x&n9$#%r$(+mkl#Q7!XP*M-0Z+@>v}}Iq-3|N($A=f5 z4h>D*I5u>4Oyh{q*{u3xgGMoRky~BsLC(HC7QsGS_Xg3UO}BPX8Gb2)G24~Ikh#RP zZ5$suJCYOM+3Wy@IW>DFa_s*aVNQ_1xh~N(PIUBtX`dMG&dC24x)Y~`V(#$nl-J&w zW*>CgPRDKq{vsOx&uyv0pi24cp!%O&Rl^-}1;#A13Rx3s31|%0&Zh&^0-&Bk`wHs55`XbG>93=*V_)k$i6?*J zX>H;u3O}h!*nm}{zNc*QjC-@_#{>Dp5Z&#*+A_x@!_ocgI_;!%inw?fJx$%{DfcW@GErjo!&tnW)ki ze-YCdMX}V>G~pH?Jw7S68(y$k|L{4vH`Iqc1XW^CG)|ckshzU(#>#(AsoC54uj5AR zeM+4s0vU3SbYsUZ7Lgn9i!Hk`!oQlmn$La=Mt@q=){PK*o{ih+b-&}M*|uKQ$z!)| z{Rrqq&0YeX%SJPso~T~x;&)QqJcO~dszLUz0t)0;xFQAaAMFXdRDMbBwylG$E=-9f zp{3ArR^&VNSm@R4Mfcjh(~ffMDSoC!n>fcDN{|5*QyIfm9E6dez=LJ_@U{>x6nTnA zZt)4Hz2XxAO?Hgni%;aHO@h_LJaM{rZ=T12vUW308(>Ek$R(^%>dEcrjP4=A!BTpG zlhH!CYA_3KMkwG?_p~Ata7Ati7cLY>R};&B%#_+{^Q+gc+&EG)V7(tnmxn64Q)w-O zAy9TEsuN|L>+lkl?{+`_9L4knXc=-SPk5Ddn%K%4FtEr(QtY&z$IWxz5&EBBnHji@ zlUDv{Y!o^A7iSutP;sWSFn@ILBXTTo2bVJ++<@(mp&OJ4?Ry z0@SB3HJe{+s?%XZr&we%C|Yxwrq$^#RQQ7gb6ww;dXi39f7m@7weJMa$?+sBvZ_D` z}yE4DQ6LeziGRgh&-jJ1o)g7jvKI_%T)nx=y>GYer`%+|~0n`{yrsGJ>y>k>i zR?K>KQDs$385EVpl$M^Dk*q(((Z90H>i83C5<#p>su!C5ul<@CKfUMt+tFyi*^7S| zj@{n38wz2L?_^JZ@B({WH%ZP1uRr~Bj?C|ja`cy3^Qo&kG&C+a())J(s~qPeX?aJ? z{)Mk0>^yJ25_-puKj_fAXOVlJe$(7DdH=LGY3cNvr;ko10zs%@$fh)PbkljKXn8Jc z5o6)%Mdlu(;$)IF1^VQ;jLxVYp+-aVhZZffcArnNxxe3AP3wKEd#MnqRAAKU-haX> zB``TM;dF1yF`k^gg^aB?^iIy)9K>zBjQ(ge<`}1Yugn%$N`{ekQ6<#Q0FH}Wj=cR# z5K{tIC3JMRp9Agyrjqj%?*CA)q=!KGlX>EP!Ts>7e4ckEmB&YJmq$qrP8atKH}UFU zv%EHc;dyu4G^r(c-usq2EP*3y^HT=IGuFHy#5#Ddx8{7qUCgFZOb^}bLD(Yd=?Ei& zSB4j*croa_%)N72in%AQwLUsA!H!pi?37t6#HgU+q==7)LPKNStuv{=H<9!B%I!XK!W^90G z;B`qo)>!7=dHZ?Y;Uue=obVzpuo^F?%V!hjGBTLa;fLcBiQ0tp8vl3F>(J08s^fvC zSdSwc=AD~Gi7!j#d8e2F5OZB|0yCwytGq#1;0n-VU7`^&Aa`ld6!%~u9)rz%T0!Gt zC?hbD<4Ry0$Qy9sWxVm9W6c3Gdcg!OVw#y?=IJqUD5wSRabr6!0*R_I$M3R!_7W9B z+1=0^tR1a~l`adSy#1nfssph_#*n)aFO(ecFb_9-M4Mjk$SjvvDytw8jn$Bg4ySwW zOh)rc<7FL--O;(9t#{6SuyO3%LVi~?rp}l(cjU%P!)5l!)!tWv<71yMn^8D-(uNGw zBQob^H@W6!HJqF~k^*BIj~9ANUG?8n?wN)B4mVcA4(1=Zn)SRiG!$zQ{qLop_&>X% z)_Z8Tqob)n-5kHzWXjKWnB_HH|ybZDq)BjUt$AId2&<_Cws>`+yS z(luoL=3ENaVn_jz`sLTS+>eP3C&VJugEr22+5ca1f#0=U^|X!TlZcwdh%fw*-Mw>? zxi`G=lO((xM}bem8~>CbW=EO#ay%Z0r_k)VBi*gv01fA(%L9d)vTi$)q%jC(2$cW)}fT(XHB93)DSlVOzlBi2mgMA0C2e<9Ryot z29z(hblXc~vK3f@atATvVzV`D1qwe&bovl1z_J(!0z|Woyr?!tPzUxXzBg+rh1{yd zjkNgQa=euhC2Mo!Q-fB$$2Ul|?`?$E7o9ZrmA9fU*1N4wEhKXBA6+05LH#!!7@|UbX zOzctuu09p)^>T_vMw*LUI`*rnx^h!@d)q_QYktJ~DO+f?eTEkr)E%8C%?0Mp+r#b{ zm@?wz+w^_NzHv;iDr3KM;Gd*Bs!YTcOYGcBW{f2sC>{``^snbWlb6_6??=J=yj=kr z3C^!#d__ND9x#7G;rny@lZWAMJx%Gq)&IV*>w(-}E{zIPeAbj}=!gbxJf82uc+({~ zdwBG6nv@1#KLFRPx-YuKozg?`?tqHet2#hsY(e1o%bcZSUZP^N%cnfxMpb-Iy>NV1 z>Otsk}8ErzT?j7~oo2u196|W%4J+e14A8?e^K^ zW8_kEJq8)Ote1CEZEs|hJpWLh`?&7bivBN^YRpxB*vjOLlErnW!mci=z{U+)U4Gd5 zp*_dmajvqxXvnI4h+Tn5&)B$EVD+^myaX+jwY$Xv#KakjU3LWamzhCd%k54ZC|YaW zcvJMIV`5EvaNS!{t|6;68u%2{8S_lJ#zQ6EWxndSIePnwGNdA(_2nMecNysveG#13 z9l5@_)5lrB*0AHI=D5d8 z#_83*PyfgCO2J0at1gU({u2FFuoG_izn}j0>>D0W2IIM6csw6%*W-Dg-}rb=-u@qt zM`=o{@%({H@fiIL9hbZAEPU+>)}v*RVZALhu_$BUMle@!ztReB0^w^on;-Yqq`OM%|(N7oE1YVc9vO?e%Q*fw-;HsKE*p)U(xZIz@1~hduPEXRLh!kKO*`W5McN2 zW?3e%?-PX2;A3|-g!CbXFz|IsZ64L!KsR zo#2L8cDr&(G{)@X@_b0v=Tg>Zv6G!?WU4rshXJCd62>KRi?i;wYoNHQ%(M&2s7l9o z%Chth)sJj)dJi@@LSsdOVZJ&twaU7w58s)aN)qo^@{Yx}Svpt=ODIAXmi~EJ@q6*^ z(A+qZ!xY**!sjeB=b!HDhH3_9H#d&51txP427SFnL6?oN z+U&R9L5iZnqu_7Ek&{u{ZT81@80$AdFmj7#3zm@6e|^~HGy4o3TvitpPd2zbixfqf=U`;8I?6<2sT^|2i?k0my~oHDxPz2 z1?n>FNcGUJs0t!4Z{L9KE7QNxI>7fp)X8a9H=Jm41s0&;Em9XYJnZ8o=h6I7&22j^ zVm~aFsp={rimF9hdE>P$OPwO=G!=k3^kop2OKr6}rnhw->OSyQ8jHpFuGqCKcCN@# zYA+l4#O#lfdU!04>|lE~R2cD&qHbmXy+1M%qxaH1?!~1CF#PNeJttEHcOhH2o}3Fg zwT68fEe>U7PRwL?wB2z;?XkbqRBsx8Dd0<7O^TKOAZPjlF&AV&2?4)w%9U*~Lf7 zfFXI2h0R^^4YvvLefW;Z)uZ7ar97MO3|zdOx%*1^Jx|M-`{frmd|&1_IKH!)wJ@^S z*(rNFn){LQFRCZJJf_FLnW`QR@7|xgA6AT|!e&z~4vj&53U8Q1$lS0O4-q6xl7nQz z?VRI~&PlIPJ=*jZ1KQmkvQjw;rfghqs-WqrD*(1Ym;ggXd=Klm?;001!)95Xz(y6Y z?qA2EQ`n=~MOYsZr6>+LS8?i&Gdim`EEDct{Bz9FJ>JKZCc#@$v(2hA-) z1x_tY$4pyMq*O(JJUHec#`dG(4YsA~;h zA~%Mj3mQ|Y6P(6hq8c;&ynKtT&sYfio1os1BZ>1QaItQAp3<|DO6x)wE$&$1j}i0f z!Vt4_-)EdCM#n5uQxdjq4jID4R$T*fM= zaRpW%itT}5d9==}2qatsMP%q}+eJyi3bmDmyLp4m^0y@_MA`lL<+2pUh1-0j`RXJM zB|Ui#mt=qm7+kBa=CK;26Gq!6{^DQz@Idps_V(~+NP?rU z!)3?Bpk1U(?%h4ZY|>a$)z;jT-R??@tld1Oxl8I}fr@}vf8S9$bqU>3N1vlj_dz-b)09R5`^-2gR--8OlnB>T0fMNLjBq`B zg;R=QSS$LE$z0Fdn(Nsr@Z;=R?1cB>_GpJxCIJhyZTCPAoo_xfGx%*pIaE;+>mJ+~ zrzQ7AZKzse9p5S)cJv8rMi3nZZ~bLJc3g7io*S8}QyhEoHP%*7exEhwMa8p+!@Jb$ zcXz2H2+!7nf05ad?w0Fb3T8OV#ZOc?yj*fr?xp4(f_b`lCE_y?^x*h0y4D$;6`8QC zQh$kk5MA5hrvF}1X~AWLP(JIoGD%_Sm9_7?Qn56xi(9Y19D{PLaG1fnYt1&nM%kCO zfRmB!Bf+uvWnnZCYw+UjtG_L*a2RiSSUbuo@alYpB~6pL{kRN|^|^cFBmb9$vD2S0 zr;4WMn{6^SVKiqZ7|k3-=qDnBzYMSldRWg4#CXi~IFA|Y^`HJ(ye7oX?5Xqh+E;Op zFEXvnA@;G{Xc4kg&LcJ7#g54cc8UkLifwY#Sw<|(vF4|paKhVV8qyR?nuOUs<|>fFrp{oj5vBCBTl_$9)x?a zZof}V`0u>HgddYVaeq@HhV9}@uG8D^4!;9zMeZLuJ2SXiZ9Hu~B;lwm_rqxLdHl&# zmf>5C5S}Ml?Syp0E_8`=WP0dsf>OnL(oF%p55M7OU#@so7->vM_vH32v=?t@qfZ$Y{pp5}Vu zh?K{AQhHo%0t}$(Q#89;nq@?XXy~S6VpfK0`p#l;Gcf3WG@BOL_MG0IHW0Xan_2UG z?uVQ~;-fky>aUBOBOS~s(ir7);fA?-TH}tRvgGoCOZUk2%o|=EGXmKnxWMJ5oMf!a zA3zkOe2{8U5E=23kr^}KX*vERBTS9E?Zz&F)Uh+h2wKV z55p%5m!o;5T8K9i)@O$Z4dI-zAWnVn2L?+P~R)d+Y3`PvkIf2gTETHt$`P4 zKp7hkJS&S@ZL4qbm=s&*w{sLErGPYPW zs^v-Ofxk#RkKtO4CM5V#sY^xe-liL&HQF(DOVikXOjH{Ac&@1uN5wb5<7iuwgGNL5 z)Y9jThV7gdr<Y|uR8&k*4i-;y1Rtnnc;ZVDpU9>AtO{r# ziD)c{(VPlHc{vL@T-s@+U;PFyN4mKY*+mBN%lHs^;EggRwW>T;@H#2jZ>{Dh)bPA5 z;4^E!>z`L{?Z))C8hoIv!%9aSDYqKNQ!>2c;XTwpcw?N%i1eEhm3fHl7=(XufZBaK%3RoU&NB;+_;jN4*CnkB2K3jVG3?78i@W7+70==J`}nI&OI? ztw~S9F~sVZ?`4%$+_j&n>!e-0by^=h!FNV>nfPfk?_8UE=bEzU#sCp}H?FZR<7{9K zO7}#|y0Y#7g{c3fSQ!-n`FrGv2S7H<))1Auc@77|D)W`%@aDt{J-Ex;+#~mRYPc4~m$q4VZ zRaaSud7+&V%yDGAINlQLBuob1q)K*-)oSKq=y5=8QArLZJ2R<7D%Z@k-uj{sWLqCG z1kumJS*N^~BdSz>;4I=?(9v{^iMuiJTHOD|9>EF69<9L^Z@=#D=hoQj-lMnH4jh6# z?V=gE{RN5qj~;dr%}2TIzD@NeuOnq8_$6%z4m+6 z!m-6jz+HDyEKW+2D8O7vhXP=V*kFBM{>jtp>d9<401+K;J~E>wo(=fXkR)0mcHQft zb1rxI7mSi~$pmx}vn3>&_3%APk*#;}6;3v>qt2k8i-?Z&<};tIAJKf~!NyU|XA0{p zo6oFhD(hHczc6`$B+uzsl5%14bVREgc{I>vg^O`=YJD!&v%HD6l2Cou>$b*G=Hf0Z7k;HUD>m7J09P`mP{SeZ zh3-Mc3b7%D!J-Vv1pEJZBfpkU_KR%v>1$(LgE!W^>Fcm^Y&V@seDi@ihZ3vwIT zf!J-{C<7tX){)HST~`GZ*$UXH1bT z^38JHaiR3TV~KJS*^nK*MS5ZRbeF^k`F?1Mp=hEW{Y#%^^g>Z%EX|3Tn)b&jVd8$3 zi)9Fl9K3VQ%C)j}U1h#fmArGo2BI)qycQa?nhEt7>Bwu9<0D51@3%*ABrA>^rAD)G zjZwH(?{8v@&4Hpykr3&#_NKl8k^yBEli^DeY>e!DKee6)N}SG6MN`UAiLb&et-F)) zuq!s^7~hf|A-^%k+-@3VF-uoD1_ODbV1%rQc_+0vl|6T^k)^Jfve+wONnJrVl!kJm$A z)Fd0XNIv5hq428mljCEJypsYNz@bQ!$@M$@vb4sW=0IN8?z2Yt?Yhj9AY1 zhI4Ko&KWkOx7N(z{O=*UkeaRG{H@9PzsXXyJ|R=A+3h<2kB=wvms{n@1u(&|Sw9&r z5Yh!+9!wOdvaU=nFbmjNPYxGYrVH#onJ7?ceJGA@t*q;&6#6Ji?{A$O&sF zOsVy9a{hf>1zY*U`Tq#~$v=Jf_ieicTDnZ7)sbB2t7ueM&f!8Y=|Y~QMph)}{|x6{ z>vb~4deEWsXOREpVZ5!frX?4eKAJ+`9xha&3uVffWA%KDgUH0lPfGqT59gnz^6&P{ zBj~&uIH9QbB^T&+QDFXXfs;VKyu31b(!ZXZ|IsnzA3L0XpUhNz3%>DMO~IiV2p`I| zhi?^n3YDU&t9oA+FJIoi;3fH`>EbE5@RO^0iAE*yDlbQ6PV~7|!dP!9o)oyiMPdu;G)?cuff3w zoj3TVIvB>Cejuese>=aH&bfCIpvfLOpQPegkjW}trQtWs&_ER z5VUf&5}jQymKXKcsPGC?Lk$_x`pL*oMZOW!02O$Ap4Eq#GT}KTbUZ_ONr63cx6Y<1 zG{0nr1s^_>`-!f9DEFM>gxuIJG<)4U zk3_HrNXHifRg2}rEw%X-$AdYJy~xDVr1E!Vx5jz0C?gMmmw*fb#02u99>JEMn z$*hWof*H4XBSpvmGV>rxjYg5D*0eibMb>>j_;GHj=kOUp{W%aX;$}F`VaH9DaK=cZ z;&?dYPNM?Vc~|gyur_HtSKu!ehbf+cX%rI+qDre04u&}&__e_3$mTEUez;o$e=e<$0}Qp^ zl;9K=>Z{(0q2M2B4h%mj4gNjsrUvU6%6o&ygFhblo>WF_NYc}jUH0IuLl8^UzQzOT zI97=wR}8C80FyXf`905EuGXAnMkXQ2+?+x`Sam2^1wY0=OYT9L5QS2GWJQr6g!jfG zwBa*x!XsApH@bHck|cp!R|4&^XrlGg9{45EW0vvSszBx%c$jx`OfcUFKS)z4;yA!t zbTW7{_veStdJi|Q0A}V8I{2(Nfm&Z+iP;zWBY1MMHh)U+Rt$j5w*>}=@k+elbn7lX(~5`@ zVh-jL0|kg;dM&mJgNe1w6tELiMu?<#B!J?-M`gNE!SRj2`|h1Tg-+)7#4RL=V-Kr8 zn2S2{C?X$B3@=NOb^BrBd)UXYu#Hg3ALrsVN>Mhs4fXclS%Ld408ey)k z%6(h9mlgUzd>r=CN8)nz<_%HA{Zv@LVzN4^a|CNV7hb$JqM@m48b2H zY}WBraiUpSi#DozXYcS#2QL6ri&}3U{IwC3c)wKT?R77HMd->1<~Z^P2{J3f6oIQt z1NXF^BbAIMzZ%_QIWBKxq{H~EV+qv;m5MQ#*NA%oT5!U$PKpF za5v^|e?n+-gU5T&9sVkh5O#zeWkzbW0;>)8P7F^DOO*MFlYK?PmDxgPE8MNcEP>G3 zV9X!U*-h?NxgrS{V)0Tmv@x}#XU42ZiVH8unA79GiF~gR$)vuHN0q~7~J(xI`o?lyeGy%#g5Jp=c|#&J927^vh$2AV&=flV^r9W;<13XYDZ`tcDOwO2pg zSK2F1Mn>bO3)ptNA}PPYB8A>1UE)gTcFc~ZvB#)m3z#+7XXkuRgE=- zTZ^Gh=*(yE0M6VLxf&+&*(cnS&>bA;3&B^Ig)vurqCCh5TJ|cdw%?30QXOwX&!9Ym z##oG^hc^M7)*u*F#u*q34`F`^a%WVv9osyUs2b zEfMtI$INr@fZT4#<#`~F_>_mj&T97I$V9S`kzB!XQnpi<#p(O+BG03T8qQii@HGmG zpTKn5%QWA_q)=`0;;#@>FE;ra4~|1mZJum?gzc&NmKy4feG7UHe_{kPyl*w6g$_o| z6OoaGSUeF)&5M>$W7zosou6R#MbIXWcO)axhY0IE1_gA9!_MVq&3WoaMLL|d2r%~* zd1N`@Y_`@L^k|n;wcZAvo>GI&LZ|E-JoPa{cwHisYvX0%>J;x$2yTGcC`=hP@Cv|$ zKn~d;G{1dme(6wPym0#vR+WwuY!};2smJl5`k^V;#);vDgryF^XWNDg2d*MO_V8

      M^J3+;X4z8c%{t>}Ar{&sh zQpbsE_mBD=XS~7mb-!Qv7i!AAumel!fcK;I6L6mcv4n<=bquPmT+orw@jHfvEg-h+ zYN$n2nkOV+*|Ff1sWqM4BqFVoBe+QG@@qO9N21U0`zKIMTcWP=Pq)AYrE<$o=)I^9 z{psy>gZ1}|Sjl7E{(I5&as3QIi-dlD_1j#R97DX6N|-CGBt;Xz*CrfU;$l(d7tg`TM%A6O5@V;hW+dsboQB6 zh{C;{wjZ}sM|odbx@78XW(0!>G6R!QZ>Y2!%k*J~H~?Je^`*W?<06cbfD;FC7;w*S z`Zhe`doR;xS>4Nld#Fu~SK$}->C$(rl+^ewUOCT+TRfHZg8b5)brM!Fp8u-9onMXN zFawO|KhZQ?Kb^qn1QZ&E6nKJ1cDW-HqqDZJLMOv*KY&y6w+S2!$ReAZ`5g<rkMF!tmhJmLG}7RX0JL)%Qfp#y^yT4mtTv#8q}3NSky`r*Ca>j z?=U8V#2f(>AQrM(A|g_-K+`J-R5)W_sNi1d|nl^k@Yv&t!M4mRBg z4Y=M^rVP#bw!oE|HlaH;osmJAi0L6uMw^ml7vBMzYa!w9-=f~$$mlAnllZ72D~Zdx ziYDq|F&^RD9m1U4KrQ4^yNM*KAc&VGC2Ch8iq`R6=whK$h$XBD)NwvY%0?}ceOFvv z;6Pq?LKGjTCv4bUhA6eNOC_pjL%MdHjM6jyW4Q0Yu?scS*>-con*~&?=*!&j3Vf=o zFRU$QuZuKB35NKyiq%O5T=NVg4qhri{1XI*yov$g?4y*TQgXDeD} z-JuV3;f7zDgL&Oki#q-3)hE7hHf(3}@%giH;?5RSH@E8tHf#Jl;7~&+bhL~r5LP_) zDSpEhzvS@vBj>1>zPkAbwmHsGB)Hpd;7cKHDuch3daA5@&$2WrO9-lJ_u~@a+`QC0 zh)(%3k2xrlrPlKqI{S2Mrqh|U;D?c$<?pC9AR-&8efj{yBr73h&5t^?dKVdT-$-OpJ{0j9{0i<4PduwYxvSit;;V{` z$0=;xS7{=Wh9J9@hh^5Qh+#zEL*lKfg@bYFYS2$9Z9X_&FJ-m9G#wFnhB*#!jgO&F z-v~iU`3Dvb@9t{-=(VuX8UD&Q`R=o(Plo(jSE|1?c_5Kh#a|kaF`BGW6r!!$F#oF_ z4jdJ$ROq8nGjAon@T!*t~I=^N4>xwtDz`b<%gL_pcUO`1$2p zGcJ&ZtTygff-$Q0A*1N>L}!@~IHNb3o1AKY7Q;Nks8?G503B2>xG^Mtxe{?FKu&q8 z=Wc3S57e#sRRVS$W*@6tdz2+U;h81OlJ(eeJK#p5OykgVUb{uEt zHrfXH+un9Y{XNIu-nO&+wOb2bCw4PI4uoY&Nnr#}f;?em#6!5XTkgINr)^ZzTQp>| zK1ZL3K}R`XSXIT3)WVNc$??$gSQ3_YpjCIiPE!ZPu5$e}xo54AG4l8ERZ?3yg>^EkNP$6QgT6RmkCO=G&7x} zMCp==S4eEVh^$CR!BU+iw(sd4jM8aprx}50i%6}l{n2;KP(_ni_sBO`ogdSn!wD|0^*^Vm?n zE%>1Z?jPqf<4MZv(_M+_Q?WSnP9eRsS#$oLdTX-83`>F$Wc1oF9SJVk1yb&F)va+sFmKG1I%;Q>@kYA42S+gUP#{>F}NJQ-Vd$zNsulb`8+ zd<7-Lg&ElJ<5|DT+>~x~b;=rx25?aFDo^(O)r%Wb+qcTI+0qPrqdUZQ2z&nymBAc; zvmK|11eLkbR8~;ft<6^1-L2=y9&VF^8gX~8gqbyOa@-r=u=Bv4Cx z_Ex9hqPBW;f4xoa&%$kzrMIn&XVlFc%cKX=$B?p}Wh{5|#kvnBHmpo#eb(R6l-VW& z=a6k|l~a}u^>N+o%)r(9gv%M`^OP%NE71M>;sgq*ysY*}s!nb@)-+jK zL0nY;6E6LUQMxa0zpw@p4Uaorg0YF@xfGLuZN9#uev!Xe4}bi#m=(fyWreWK`gjh* zYv^W`?`wLm(^aLf*O&K`)mBkj0tXl<%-mW$=2#yrgr~S~Xqxp~9;&MyaoK9i z@lM8>yrxxPB4WY;8jt_;dWnRKz6teRp|ui>txJGCYK*dviTgkF#YS4EA&KVE$Y{Fx zV%(hQQj!ki6aFP4Bz$Y$ zwKh5JPa7@Rl_}x}LOXtw?9~H7K?UUn0eh8+%AqEPCrd;a5RZPu^U;=@A~S(`A+3AjR=7u$lV z&6}Z)xbcLgBT$(~Vn7i(q%0Hvp`kravmo2MFe^CD{i75@7ofsy7Gkq7Ba-fS=(eP` zyXZ{aUEdIQp8FBKiW@Uj_rqaQB`s=HV=O`D*Ym;w@+1@yz(nzy*LD}+7Mbay+ z7kDyHh=lfXB5$W)w^;1TPY<4s7PC#Todr_!-AyT+0DBXB(LrYd>spSBrbaSKp;jTc z%}}B&qb&;&7i*NQV!F|mqh7KN6*ATcXY-2YqWsl?aLtAsAyzAxM8%Jn@xZXgXd7to zZy^cdan5ENoX4M8?zSF8?=4+U>QKhd;qUMsdd?&7VHF4!dnjxCQi_Eo5fB?H7A%*h zkA0cEX1S-(P@m*xJiNjl=agQ9cM@LE+w&3$u`ehz9)Vs_^+y&TTL0Hv98OEtHXzT9fYPOrbH~4RGw@LjH6WnNn&jzKUldubEsHOG0GP77YMD0D6@_&c*rpo{%# zSU_)V#UT`XmP?#**ap5zv$4X>7Ze^t;q>6|LeEL{HvbJ})++j79@QadbuCaZ6_l4X z_~~AUZIMomEGRd&O4qCzs)W%dEedW1Mh)lEy^)wZYQVZ$U0vw8bZIlZ#l}x8hV3#O zpmeE9|8yk~#e~f@1RRhO6E_f3?`-)C3|Nvv^K31uf_)3M-qQ-Q{3-GjPf z^}q`>q~rSPMt#f5tvPwjiJI5H)OlULEYwZ!pZ=6!Tb9`$!IClq%3~htc|Qwe+}f*cA(T>Hw05AToxQ-MaBSpi@&P+?TYHyH{F}D$S#U2bX9( zP>UnBurvy(`8Aj1pz3ZYK*#3zO+}mxraK%KbOp%peS!>S?3;N@7|~JLa?V8qpVa^| z6(|dkCMiVrRV|A{D7-L(GTY(xW$(|?P*HOK5~um?X4*g=PR$^l?v!c=CdA#g0R)OC z8(S4^jVJ)7^Q-BpX8q-dwi+ZcFUQk)H%o2}zXMJAi!T}!2gHX$x(Xx@a>XCrH{?lX$R`a%gaE*w_yb7ra}uTjaqcyiz_ zWqXGWr%!!{)8&&I7fj!69AX&TEN_vgA-BL+US@6AoZ0Y+eYBj|-SHE9>_{HEcLDy2Q6b`L^8p5?SQ?p-{s~;unSUyIYx6jiut@8)!|sw zt}M<^i2z&L5RrqNqgK`DFZBdRBW}R7tUcXWT2C>1alKhwUl1B9s4oaN&h_OtdV*J5 zu2}6$(dLudGh(&h(2-UWt35J~Ab-|)$q3C39HUN&fLq~myb9HiWx7y^9-1dd3#@0Y z`@rcKD}3+G;Q2K5p}KE`NPp!YHw7_a2`uisVUb9!cnA@>nMg>|tvQovzS8p0c zLZCwX(qRx>v+*~Mb?{{QtR*8NOUgT@L{8=js}zyR)6%AN{q8C`gmaNt=0h{js<|~b zq#~s2`Kt?pm&MLR#iB-LU4NV0O5F5;LIicHRtF~Q>R7Sh{*KaU>;6ERsz36q`POPJ z=t`x{YH^asC1reYKn(mH%amZg%{kG38F@mr5YXCsTTBnJ$OVrY_fwO3AkoG-f zZn`2gzcnza5_JJ3yVUO8te>G@BMi%Uz3W7Nh>P``SVMFge~?4@W1F64=fOca1lJbX z0^4=H-i4|sK@b!lc1e}BfLh{iK@`v2tK^e5EGMlLI$KuWt`e;O1NEh9RfQb%C*1%A zR*vS%#p?il%`hHvYA<>z;c{MF&~Edre-x6cz^LYjpkwN)C9k_ZBzuy%D95*~H`K$C&n_MO(;0Zk?(_#xfB{O2H+1u9~pQgU% z_#`PD(%0liV3(@7j$*|~;9nLyQ{%}W>wes%IQO%Jj%{t`5oE6iVp(dq?WN}x#%Q2T z*5Hb)D!1MRCIED?hY0GL7qIi^av38sJiJa=-&fdA>{8hp#}CWpo)_78b!18CIYC$IxJ&w|C5LFf zi0H6SrDe+AQ*QlVux_~Y{c3QTVI{@4nz@ur%;1KP6Ei4qhhU8t{1zo+cE(u0m2HQp z3T$g;0BSA1A$Xy7&-eOLx%aR|ekn63JDoD($PkX|hmv~%^6c;Nz}%`cYMO$CFkkAz z(%t?DkNKuRsk$vd6(0ma$wu;hy z_2jSC*c`Mxlm9FE&%$s>oX?aL2mi!nOX&ETVOd1z-d#3!kr;u=&~BSNM#FbS$`BMb zOK$zv@Ss4Uk)noI(`=T8d(^m7(BwzL=Mf1XGa%3%xPeT|!izE>LywAIK@8hL?QKTI zvqsTVVi46Pj*!iVP~!Uu&WVIO2;IBgW;8r$K2(pNYs8T;p<``d(E*sxhEAm9Z3t|i zHyggIBfa7}iJYNLi*4qnoY)6-uOqeL9|=JKoXVI=*oh|*S6ZLCS_nAqRK9M#_|DJJ zzzTj-Nin}}-M|+$)YoNHMf=Q#UE<$~{uVujZ_RM&QwW;2gGgL!(B>|mb-$O4;>AJj z7e?u`O5748ZufSH*Hef-pxl&n`!P_Y&@SsE;j85Y!`bC3v&1RBycH*kyDa!zqv%Pq zgn=V_l?s9eqD@-H*Obw)ixCURTIGsVJ^Yh&6Me-_>+wxIm3Art@*L&jLko~+4hxXE z44Ec9$Y)iFjI`R_`j3{ z5vS%i#nqJ*ls<0JcRC4u&PP5>EcY_KST%Q>L8#}d;l(czzZ0GS6RW{|yjkEBN7C_v zq+u7LU^UJcw5b)ZCLvEahBZLS| z*7w!MnIV)XTQpU1OT_{ffUuAm(+EALf%QV?)b2TOFOTu88yP)W#ou7$2y3#_cR5?v zb&$5iNgJKnKa;ZQrIh282!sCK5&)~Q~m*V&wM2;RpV%6u4la{Mv6w()B1 zyyjZetN6?ZR-v4Wo=r;njZXTzq$CC=xf+v_PV1!mNWxtm)rR)X4L#S-gH4?~5IbHv zQksw?JjlZ)>3;aQ#yuGnm}Z2xNXK4YGB+GP7MK|Jfs?FGbB6+uhEA*w zJP+$yAPLr`r^pnRwnPziD0HTo`;ap&!8Cg0KmwR|47qliF?QeuaL?WLJbx2i`Mivt zOE?NwS??=$!IQsL>T&?* z!8m`vP-WDhW9R};s!^buy;UYLI6;3TzkDP`!&QxZs_G6TE+;;CJLmN@2C?P5+SFZI zg~Ah4q0lH3!%%@Vpdz2ox)QopWqk!`0Vf)!wcySC@-Z+&SN3w^ia4Rv#cdcD$!do4 zuW&yWU`8%Lg1?O!TLm*>m>utaeD1ivw^quT^@6!`x5_yvHe*-t=x)p8?_Zv=*$M!j z7^b<~K1iOj1A58?oUxhnS!ov)=%T;{6T`~X6Qg2`2Peitwi<$Gl8B zL#8(j6L5A+nsZq&3;&AaJF4w-R@j3cZEk{=%zN0$yc$WHyg#(xE(_1yDmSHE$AZ@v zqqj=Dh`{KavBV1pVyK1S6OSV@6fUy?SGko58TtQ#LLW1o%)@^kh4x)kKu}2cnqJA& z{Ewl~&maPS6@~hGlTqj%y$|btUW7s#t``j9Lck|BpkxeseZ64NY=EDHLBWYJycw&p zNGQevq2XPMhRZo%H;cKWCWp-gA2OhZE%E?}^ripYirQEN0tyA1gfvwYBP8xJ#&FLgBRb=_UQoa`z$(fcX)Msj+(jo$aq` zrv6zi*_Ja z?Ts9@R{}pyVyKo>MK?O5JC$rmowirMBQtdKz(cU+9JnR(oj3fo%r~jbvj&!u**(R! znl|s}|F`*nDgXccpe@?gN~-V*AC*+0hX=&N%Ab&yD*QlFz9OOo^BdByCEi2KW15Ux z$@0y|nt5Dk_897OZ0K0dHvjGeHT0j#4;o9wa(?+Cod;7Qt2mL6vW%ovvy=eA75$M^ z4}W(li-^-!WX>`?adJ{wHS?kjr;x;O6%v^w09}TkiQlS(j0hA^5J-FSSV6mc_`in# z|Hl8X^1q+|HhYQ#C1JbMIf8$7&Nf;wLug>LS;ndKxQ8V#%BmGv!@u)M9l&?-pb;c4 zgVM4X7q{2#|G>xmZ%Z}q$HI~^`GBXTFX@8{E`xs*xOnur?g_>yaJg5oqMQgGjJpU} z$#JZl)0{(%Feg$J`*!>F!{2_73|zo*t;$?hWxb&iG9sC=GbE?o5p)I5i|U-0(6U-b z4-WIcmH*xRf0qAm^8e2v)N=e;Do8&0WpMISy0cm`rv+njTj8^=XBUdc_fkSQ9OYaM z)|*`-Q`6$zD&Zh`^I1($1aa3UZ$kAZSTdUFV52fF$kVYH2t63gesRQ=7}({H4Nk1h zUz!pm%*Rr~eB_XwTkoW)fW4Sx7oDyH>$&;267%Qi80v|fv zZNi+Wt0#3TKd(>aXrNjzFo83Du$?07yDJD$6a$}rXO+=qf_&p;M} z|52ecj=&@_;aJYRt7H1ZGZbPBd=BtbBCp}70@oljZKAxokVZtpZ`UgVpDc687dy^h z&m+qb8i?%65$FjGr6y!w7$q5>Ov0$l$uk^2vFRi7><_e#7uLPgHjQcdeIGHN-r zrvK_5!EBM$u_V7mmOG(@6|JWI^qA1S(s~v%x6pUA$Q!Nx?>tJz*zHFd8Py%9XtMoZ zlFRF6fk4)M{PAa*N3GBCfO@04gW3#21grdM)#lLdPHb0BJcm%4amOq_tX7_>uCmU# zOvP=qK1+p_<>pYGhlDEYIz_5;M1+z~BvryXL@q10wt%4J)*-TzhA|rttX$kCSr73A z)#cTZi9Rhow}deKf0Vrod{ou7_&>=E$p8a0NPvhDutlW?6%8tJKocMjl)!|*43VeS za&u$7MVJw=dC?&@C&%$|E3LJnw6)dS+ACV4_&^iFO`^64*jg-FwYBYzgKh8uLAlKD zyY`-$1Zw-ge?B@nXP^CCd+oK?UVA;Nl&l@meqN@%lLBoZUz-W-;^Klc+aq}71{E|M z-vXj) zm&~?bvZ=M?iXYu6l_fW0cko4d^LItKRrjc80X{*+#lR*q(HD zIME)noX?d3*ohIz?*s$)#Iw~ratw+Jk6NF`F+rzLY-TBLa{}6lE4KgKx<=goW9#B4 z+f$Y>G7Mo1Hm=xwJOP{JY;wvW7K2} zpPo_Q49RM;FUQ@>Chs#&L@>!p@j@_n{mFnTOO{=xT>vzc;V9&rXfh^Khm`qG)*ber ztiL!m=OiHyS#~%aAoywWJ7LgH#Fm{To-9?11+Vn?Z`@hHP~{&(4cPU~Rj4W^?|_Uw zQ_Zwv*dC2i<922^YGx2m4n3H%v0B+URM#tP_D+Fmn&gPMyA*ZeaIwAjRGlsYi}r8= zG=!+qel34*YgUWvl2S0@XxvH9YA+6{7a&chZ}A~7NyVoFco|hxCsD-GlcoOFCU&Sv zwH3J}5>!1Dt`^L$MWOg;cuDOriL4S-zj*KhM+ff){*gly$js9r0ck-PH&W1hk_2c=CdN(nYuvjlA0D05@YT-a6bsxaKW1B%!s6{iez`qz3kx&c7(G^qbHZtyh!7*U@y|wy!agDYlL2j4zvvs5?l$S(0Pj&<#WIcX(^&6B(`Ma7djM zZf~f4jrZb?TgM8_M|mczyMzKkZNgl|r^&Bwo_s?dZF|^}%Yo-)yz=7-N~&7d=rW-b@qfEArHFAn#o zW1(L^^UMwCr)OLlem}WS=#GBmT{>j@j)xt3NP-z|!LJM6HRz)D?8Ry+IX61L&c|?e z37wUpyUp~)OHTP58T45uIewo0EcmE4n`%3#FcNG5X?ZrR&;bhsGZ|*-3=maYhTr z*HrJu`Vy1AfG_UE#{yzC6=4H+kshPoKhMUnF?KwH#$LDyeQ3|lv`@VndI8MO-`07xH z|5&xR;$(hz{u~jP2&j?P!0Fku-GnMaietGG>s-p>sxM6Squ(Y%n5Zx$0y$O|m^2cji;cif#jg8|#RPSv zlzM?8c9wsLe2Jh;c1G9n1RIZTDH$$Wp9~2w%iVsJzKUg!Rv*(j?YZ)VLOsRNdQgt| zs)j2_tYTWz>R+TN(Y#YiB&bL1yJ`esmYvYBy*zo5_yB%qXn=ctBe~RlV4`U z$CAXg#%omu%mSnjfJ}|FtNt$dv1%n97snfdMQ8#gXU}bi-1aJ$HQOaBf01Ebv)vhq zVvkt#>{agzfAOkCXaAkyn|>Vx$}&gEs?hlx7+v*1pI5>vrA9X`sHO>#1Up8hx^9dH zJaH6Daq)t!J-)lhw+bl4@u_d3Pz?SiLmJ1B@CUP&Kj@K}QE6n+qmm)z*rJ8rcrA2P zJ8`kaT!f2%;a=mHQJ*mK1bfmZwZpoK87$h(s}NLH3i=lTX}M{k3jE8c_t8txLro&1 z%(*HD6m}nxPvG%OK@{@!F%NcM(1Jx27wj^P=w9^Ow+e2ll~k(N)MUUJEz8Y_hVmTI zn@ z9&4@d$Fg|hS(aX2q1s7mCHWB=iP|O0vq$Y_5ZE|m+Iy`LVe$eH%(es|g;%U<_{so@ zhu77gQzYNIOtPDbL3s0d<%-_D7)D7y;bv`#@GuNE{3vPB^O6z;`66((z5XNN@#GLj z9e)A|>k6=Us3x8@yvj04(#h1H#5~U_NrWuXOXo;PozTPr+9XlD_Ntq}sF2D*Fa|cV z8q@iHL%!--oO`Ilj2xW%IHW$5G_obT9juv_$)@mihNptx5gwfV zsr`|~!xjw*#zhcLlFhrFu_CeBEoE#C;_e|*wftl7Bg_UGJy#lWq=B4v;2}UyDdPe) zR15Vk>#faP2}_O6DO&rQP7jr}v&2*V?JJVJIW&x5m)|z-lLhGU@nU#+KH`ospX|Gz zTVq`lvbKzHTwaRV*hfO9-o%%_P{R0e`Y%Lg%-wLkdNfjvR{llz*p(RbFzhL=C&z5( zFGa|%_2#gQ#H;Ig`?5z#ufn5ARpJeP#g|id;tdQ6*cuXL7}164yM1;aovE%(B(6xj z9#qpwihjeLQ5_jgf@uK>y>22tCa8*KxMU`c-1q}99F1ftZe_GfUoRyE~8=vpPLWnZY9gZM1PE1Y!V6c2D5j{q49?Kt-7*v(=y?!D{xGQ^YkgnpF=bm+t> zbn{E{d~}n~{x}v)yF>YiFL(Z&FLr3UogMQ~#ZLd5c11h>CCgm-yZwE2!@Dy?)U35K zZEwtVsZ};T{tbWUhFSg421^z1Bhv0)*Y7R5;jD z;t#Ltl5h~>xmu2mRq7pb3)P1Jqjl|wmwTU?Mz{B+o{r-Zv+-KDO_N2= z4(UrkA)1w*OteD;T<1&vK4*5VV-eT899R(Sy@&K7qiniyW@zTaNX;dfinh`yw@Wdt zuXp?V8?H2>FlWp&!~a^tC}y%KfWJW%oq3$SJaQHZ_TD0{0@j&?VJ2!G>w;s`z!q0< zpm2%XTd~CLubf^#)XuOf0SDgAI+7m3AP7PHN2UhW*Ktw?c8gm*)c=wAmKt{sP)O>? zo9$08>4KM=+bb(8(;^hAQQgQ=S=Fg+8Yl8s8ks#jnmei-;Zfq!iAz11hxlLZ3>qqS zB@xrGG{^10B>M`n56IG@0MRTCx!7UKCk^;nNTD+8i9PMeOWUX}JPw9UTqGP- z?5*zj*gLgdlBURuRXSPTu`kv_1Xd?~(00)rPvUcfwbRwZ$nmwK#dM43F-}~H2@A!5 zgX#?#XD`+QLM`B)X4H=slTxC)#-1s#TSGKtY?Lr1X z1kH67W;EV#v?M1p?3Jrfw8+IzA==_M+jDaLb0#&6s;p9*sSLAd?3B2go*qh65g=9{ zE;eZbkCJ9TU+RnPs$4XitZQ@q*XBhEC}CCM??8AOdyZUfbJZLs{_MVLPFDK$XxJ6x zHGNN~O*T#hLwY*V6z;E5hbavj#NP&L7_LD=?6N$2VXi$9*Q(wZ%cfZ?PWTs2YH)Le z&a1yAKFq&xa(yl9apTv7@&%zI$6yTs78DTVN1tz^wIMHFifiwUSKid+iFUf32czHY zchsGeSl^#02&o?n-#DBSn2Oogp0GI6UE9x@t}Hhi_fTxpe&oGX>KSy6ssVk>h7BB#f-%+{@WzMjhFlN|xlFNF zevdn zibHGQl~s_XC%B)fwkFJ2dC4*{Jo=Hm4&u}d$Hv@22BG^z2+)EdswT>2WS9toh==Gd zDsJ@=0r8Vo$CVip`Y_GurOON90wx}OC5zdKpV3?fI$a_{*e_RU|GNM4I@fGZds`1y zs^@sDuDiQnrkM; zLFB_VHtvm0$0;gZ6+{SXLFcANB{>T^Q7d|TjxfMGoj^^7%?~RA=kQdBOBgNo;{v5`fe%eJY!>WnB z6)q|Vh_afkM`CCRALME;Nw3v|`cvv|FGtKIQ=c#`re5<2Nr@~=JF5ss6!oKT>hU;- z!JO5PEJBV&Qr$<|Uc|~`Uvg%~Kar7F3nC`_w#q#2(dl;6Siw73|=&|`g z;r71Ge-zfuS;-Yaj{VA(M0i4L?v-aoW+3{T*19y~%Ib{BRDOYQP#XlXvneo2C^vRecv%}+x-<`OH|6HnMm~3C7FosTwsO$`8%RB^`d$VvH zG51Q`R={Null=xLJ>fHvWGwNZ(y$qFn(#)IJAA&dn4`#OG=GxWF9jI*C5+{)B}jxs zhByPdI7%nFVxAomd<5ebxd)P6j6mt--0N6A#6%{rU6KGY53(xRAvHfTsQ>x@tp6Zw ziVL2Af4g%Tn)Y(CHk@UY+eqwq*VWMvADoV3JBZ%?llC(HMSDno3D~sJAN19)x3h#7 z5T=4?Jb3|*TXuPl|4p!?$Q9?uliv~ZIJr=Vm&&`F&&`Lx{&JV|Rj~h6b0gy{2QVJX zZI{aCN}v%JtP_%<`5f%vfU&3#Jm0dT=cZY{ zD~PheQG+0Z-mTcgOe|dC^Um#{8_cghMI54Q_F9gp;r;%P8b)+yBf8|ct2cB+T%X1& za&gdttfxmUMfRr&%+;yJC18ARrTweg3@d{Juxgye@+}!4Bf)crH}N|( zydJV77$piU-;7#{)fIWF+bN_1pIZ_gv*=4G@=)bRaK%XI1qTX#y-Xc{ z-W>8}A=7`O_60%dfa(^GZWt|V-e<^!74Y@$kQpdS(U$%+Z7GM)a6%I5vZP#oFOwgf zmZ9<~ofuRHX95U%QJUZkgW$wm*TDV9uLe*3sjsfs%pJBj+U<(D?uvhjFXs$=$=N}a z9?IDr$M!|vB>-p4H9JY5Frn{<1cD~kMweBN8Ko8QXgTsJv`P?8Xp748zSvaseeP}b z_y^IWv;P@Al4FH8B_0qZu8rgU#qRnsLW?wtBNFCJ%z9rb%RO~~hw6%2h7gF^dY$E) zBT|-lCUR{)jh0IPm=D%BFto3MzO0E}nX~SSrrTVO$R$m;4RJ*Bn{La>jGWtan|o1Y zV$*FyzZN;O>9%3(Bcq#c8$LTSqII_CWY5gZ4TJA=q22a=y=i+*R1G3`TqF$yT+x}W zPOsL&+c`w54bJ6C{MI#vb6c|_-;h7^Zhnu^^~nviV|64*S$`l;=w)s^E1y^o z>>{3kuEG1vC{$m^7aUkqSezLd$*(KoUQ<|^70G-uqm_`*n?G~Dh4#o9`nyMe&*C>L z{$1gZ8Gmx~n+v>+j)kmO=vn0?|L(eM4$}FrI6JtCaIDshD1&3gNys8$@qJc<3pX95 z;^nWq)IEhMhIkjw$cPN(_E=8%;cQ}$hzQc|Bua=+-A_mZ%$B zxzTX=57zw%%g~N@313oopS?;X0RDpwZo88t?lzkWo$H3O&2%WYL?8Za$gR^jq_%cU z&S)u}Y}3E9Uw(*x6Njz7~UNDK|jvk+m!;26*)wx#22Qwk|#EX0dvn zz#m|^qLUNk`GPAfT~~{K%{8xJH1GP^&2zcoO+Ofav*RTH|DFFwQpb4y7YJnn*i5I3 zf12;C|#!AbIVJJCQ8Gaz-aP;`8|%ux5zTh|aVX5Xt?T4>@z>;#93iZX2j|e6m(? zVPz^VIESzK!3QxtPw<{NO~zagOB5lmwS zjLH%lko}6i+rU_ZJ1CG|9a&3$e|ef_mTQ_h9qIWo*_& zJJR;`!>J6+K!Y*90If(#VmB$x+}ts05=7uV-|(LJRPQqj5Ga(o^lP*$EBa6qG{%oJCZ2Sd!TcgsVJMsM{? z<+b@uUZK2j!2}j1LMZ_9@AJlXOR^YEg!8=5EU(P;uavV_shqt^J^7_M&Q5$#m3W-H zL6G814#H#f@m2>87wf%mNqJNt=g0v>P_oefyZW`<1;Y@Gv*+I9V*4H9Eb+vR@YczN zF9eP+n_cnwU~GvLUe77!PVX~?v3Z%4zSQnETthbpl7F zb7G!pGRHLG*k7b3oznJhzieD&6L?egBr66KKG5MBUO=tpQ7vN%MI@CI$K z2*aF~76B>rmM>R(e@Maew1=VYjE(cq%-J|j^q>x+d)|99k5DU46T~7fXs_j(X)z5V z)n@Y&ads)P?HqLli%yW1)1k@D)n7q7g}ykuC>-nT`nJy;RiyHCwJc8Y#8l!*mCsRn z_m?KLA_8S{OcSDOWcu<2g=BT;hI|gK!zF!Jovhx(tsd36pDlTf2a|IYinff^0~Kky zTr`%s{BvAkw6fzDps`iBAtyW$jm5K&R3xVFu*>8(5z5gjYu-}-23Osm;WLrk0|3f= zDtu$=p8&)@qUzYxQ~F6?p|O;H5})Pt>p`o6i7SxVj-Je@b8lwDNK9;S*1A{PUGOCV zHH-dQs4yXaNZsr>t@T>B)7%aL6yVOXF2W!M5Od3SroF($5|2)9ao9nZy+BJ3T=yhO z5exofp?3ing}nbHs}@e#Z_-<%lk6V7cs#ww3VTO6_*xYDej zw;8}Eu5R=?6aIeh{C@p9QRF(wyo9RmmI)CYI{2E924=)m1)nPOuUAHch#EAMQ z?tFmTb#u*+_FJ?e#}UqF{^O&Wr^NJ~ESf}6V^+jh=5KJ-DI;qWkl?ZUQ+70e&{h9I z>k8I~yXj9EOsd~?PuM-1bbK3El9 z<8m0a6tpKGl@K!3V4Cm*xT+pb3&#C@s(XgoX^Q~xb+}Qi)K@jB9Mb>emmab=xZ;xp zD=V;wF=#ni*Su+15S^tbfc!5rDx&MapwLDpWig@_?O zU<4Q13q8(Gt@k$;hK~q53^fxg6O~O&m|}3_zy;2rx-F0jTigigEU@* zTu9m$%B*VC@V^dTlzFV__a(}}ivj(x6}_A2m8N()9`BWgv~jujOfC{=8jpV7xFOem z9cK2GA~8$(V94w5HoLYihcHJn3l6nREL+fgwDH%gmL(Zb9f|i$kY1qFnpKKt{&{Px zOyUCL-0<%vliY;jO*|x=$}VP8WL2UXBJ_!)yLiaeJ3rUf9IWmTA3bP^j3iRw%Cwfq z$IXdNo<-_=-xkWu`MlqM%zno^{}1u6aiwoncxEvMlg2nwSAhVbcXv|vlj9m{xkg|AmzRv3JV>K)I%HxOdCT8tfRQ)iIGZ zd#=T2=PP)x2nK5ICLy4q+3;yPZ--5fP{5Fj}2pJiL5Y$#6#i z=Pvp_by>3HK|K3A8ZN9-ud=ML39EUGibHCq{%j%-Hh4qo7ksT!kMLU^e-P_M&T{Hc z9nv_5g->X`@ldoLp#kpozNNF)@k@YSISqAZv4c6{&q3)6-9)$JnCx)u{5tInOo;>y zKP(as9E)EPvYqzH_&ihxxSQdm(X;z|WVzL4e-wA32msyLXDX2MVwbbsp4;J)Zb*B#X2(hsmJ{#1 z1@;-Sg&8bW=K(rjIR6bUigUbkGkT{(7w{mHQTgM2Y=7$f5wgxk$TLS?CCI+{@M7RS zAh!j0fLW|{jekZRHiN0bfiiXBg0yDs6=)bfN)?t4vtc5ASURqS)hw}>l)Dnm!+vr^ zf09EXoH^+r9nJC*7##2@(I!DT)Cbe#@R%FjrE?P~T&_rf5jA!P z`46Vsb4&HxJp8hBtJFGbBkH7&cQyNOpVHmQ_%ht3yUHDZqD{u8=DY_Qh#KvvM4J>< zfBS{dg*b?i3_(?u%Iap!oRvA*XFFfEw@SrUUJuHHyjqKUT;?fyV-IZ7SljD7U^nY7 z&E4-#WJPsw7EXr$#frv3IE5>5jL#o?4>u2Pd}vGSmklRDqlne~82yViOER9qG&CgK zO#E6?xs^xQcy-Q!j}poEx%*G)fgZT`nQ}DNUKUln{T-i)#u^gwREOzREGCVp?{ZCM zAO#<}J=vB0ERa)R8-SrRFdElRFSoj+^BUm{?%HSAL!Afcml<9_{V$A-9g}ReS@tNC z6{rlgq^qX5SxLiehx6s`xjh~scT}TO$>|<|Ail(@hbUsE_jx^P#~zy3aISUg8ugb% zxCa-+b2)38oTkU=x^*7j+(Ks)S<3O4;PEtk>Qi} zkCyFJ&wqMShbO1*W!sSkxtZe8W;&%flf}de>L;9lTps+*(nIeZa)D@TXb?&AXFO~8 z6;&HJ`gM#Y?;WxjY)xcs9a<^TrlC2V0!hm775%8^X9AB&TBO!734jK!Wq6`l2tjW- zIul7sF!_)?3i#ETJerZzOuG~{eIMb3rl~&%E^wsYFUOtqZ+W+Mm^uk|*WNfR6-*7L zRugNvElql-y??vDUNeeFY&C2xa53yG9#$k5X7;Ua{~MSA`CqG_f?%CX=yEn1{p2cN z<3G4=#0H71S{(m_TxI&$+2X_fZ`2(lM#mf8hlF7pq~sKQ@q}zRN$JXHW?Q5y2>CXj zoP5`d4lOB2F?Wfl<)R|-wBUp~TR%Rge;<_u4?jVbr@5CL!|EFOgf^5uD;QhvI$G*R zSrsYHQHTPK_{5m#1Ki*KMcz}YgiG865-|RdMNti%gaH?2a9R0#@t(R!xi8T3qZQWy z5)Ae8I~WNuDAk|#GbNYFZr$yge7B!TajOfyDK@O}O8`u4!M}97J~+^lTMV}&ufkI_ zKq+=oFQI}p05uCBPTmHw04Qhb@PG_kYti|lU&cSPtexojj{N-tq2mU40hKc^x#w4d zxI*cZdw-gm%H~ZxX5mq2lnrTMXM7*h1Yr?0Rd+onYnts=2!$Alc<(f8U$YTJ z4NA1>e6If*s7=;YWlYCQ6q2KEFm)udqr0R}j_@}VZJ$Vs=3+ld^`C;w+A-5<;U$Rv zAd4%O+>eDdNOCsUbCJcq`6YXo4C6JS({cD6DHjj!TtD$*wXq zBwYdS96oqNms2H_$iUNMHm%ya61c50|1K$6x7YMHsCs|Gs{!dB^rLS3bskfsVRh#+j3+z0m4=c3_QZ5QgzNCVZ2QQO*(R=)h{c6(b*mF;%v!ik~zShyQ zZ5g#Ki=010KVV^t{?&CzB~l+oQpX$SW8_!(&uhndEXRn>fHBniPe8?@Jhc^NXta@}^68^ZIn9vz$Y_8_+S`}jfB((rD7 zf)nmha$K&DbHlZv(!2vCpR0{Up=56!WS+HR-s5J&kerQgSeFSOKcI`pF>JDkW~X`Y zl4yZKAw;HxeV+RD{r!k7yv>)B&N(Yqp{x>R)%RKThpm#gtQGHDE8bO;_!z5r3+F3i zdE#tnzuJ5#K8rPVm59@=WE~$d@t{{oZA>P-M*=mfclF=5IOnO~>O4eS;H(vS(XRib zwn+IQQleKo6Wf%FsdS{sW_#2PBumV8`y_eB$;%3DMs{r#A4}xD5B&?QuE~z_`XStx zwucXd;(PeR_+U8)SMWySq>f}iOiE|#($vQ_$^}4pf{4fo=vbv%hjD?SUqnKzzR4>x z%w%+Ta=PuLZLpmRk%0I`PMsp}!W}3S1x6(P7^`oMR8Xqk(-@WRF?+d6Sf3r4l zC^Xhzn-7Z%k%5Jm+OiODd++)&pbEYi#-12~St4=kiCCLPwMD1vhBirh7t-|y z=!5r;TPYUzsjm)XSjyu{At-|T*WZ_>CtNq?GL$^+&)@`y^8^}r(+VRw#$y&i(o*-3 zKCX?{5|4;`=2!80WY?d7IwE=E@@Pq}#9zzCEuJ+Dm2NzWbVvJ#)wxUkk(|0+@lt=i zr?HqR6alj<+Udf+VZF zuLh(Q+I&2fl_LUbw(RxRWs+o% zkhN@Gww+&Y2gP==WN&}MEO7$5TqcKlEwkNxxCe|GKqi^C!*JgaR!zs$5& zP4jZFV3Jrk-WEckOT<8Y&3o_q8_y|^`8v)+Wvwe21g~Z$UXudqCxigeo7iHhPKS+k zG**fOulXQeIf+CoIm`&e^0d&_F82MM^;1&c{sJSHXp_Pw1*4={7~+_Wav%uwuAmd4 z!MjYNO-7&=vO39OY4p~sq(si!$zZtafTN{@8p=7@PfTXm^lH>qMkd+<6c4ISNvJk& z>J45(fvTX{+|=>)Qg=@8r$X&?jkT)+YUlycrl2}}m=GX(In_8K-fkUCf~Fn41!Pab zOQ!|~3HFY(2_-PGas!wLvJC~*Q$Loax0ISB0;$xz+qSZWCK8ch(px$~YmDg%6 zl4KK)pt9!OAN`omE`$=%J@eU1%rsbfoQ<1oy~uaIPkTo@GQ%rq;0L$J&^b1j*lp54 zvQvpRskSyFsBZb!O@04KX$sCxAPG$z+(L$TZkPFB>Nb_C`P&5MrTp3&GSYm*B3q;3 z0E8demxS=8Uo_(nP5=|2Zvv+7>?VFemyw#3O^R2TdO-xtDkL;?Hjk$M#s}3Hhx|~dBAe^Oz z5uf+l;>F-JG&SryS_FE(q?TM@{@{V z^Er`)21EK{$*&h3kp2=c0%@60w5iTVd;Qc|Ghpp%UZ~-2pgWWWm4>d!X#(p0hX#^j zF{usrnZJ4L~UT5X?5p8f!i;-J3V!k;{3{opC91`w4)mJtU!_2@70ZqSvBGWb{tM% z!^7Sr41}z|c#%y|>~=S@LUjBc1oYi-ZuEF&-Fet)x|&`0Kk4A%<&V98k^kF2@~-Tm z-im&4k|{DZd^M#wWN8~!krM=eD;dWz4$e-=hG73|h z4~udCAap|u4MwMVsT{K~MQfg^A6Vbh^+O(3XjW`K&%qEoGJhoscbIdi-D!Vb^BdXc zo99Z_kFDk#`OC!W-*Ww1q<@#o@2-IUUCpmrkIbXGt63ZnBw9O(#Lk2F#U8?L@?d*n zB4L4X$S1J*m##dA0MGB^g#3n#E3cOT&%4E%Ys>qQ_tOV4vbs;U&m30Q7XMm{u61T2 zyo}J1Qrq-4sm;E9JMc@~zJuSvU9@j!V^0pj48Xo!gfpNmg>fS)RopH|P4+UKB7@Q6 zR=;n@FnpIDM76hh32?RB1VStvekCfOl;)4Xg+BrkR$8Cn$evuhX5TfHNi}s{PhHim zo!%GwY>)0RW4ieNJbdq#|D}f-1iQR14iPyNR>K;K?Sz+kR7RZmb^{XU&pM)evKp6iK zDF&m%U_=;<0==uL&MtH3?~eB0*f6B_##Qk%lGgyoI}&mY(CE(p%+`y>1hB+c?jrRe z(JzStOD~8_%x?gSB!37kHk}H=kFWDudt*SI3x61mNq>c1*GOb-lR=P2|DlNF<)%j9 z4`t<7&G;C!>Y?)aydiZrYnotx8R5&}nMu%jTM{nd$Ps z(>UGMy^*-A=RzyV?tHn{m1q+Zk(l123f`rx#t6<0&hGeB|2uV;$Vq4_JD}ulAIQxe z`6;+cJ7~%8TlaX zzLNYBt&9NZLD!67__%l_G&nozw-TJ8h-L8Lk=-<2b?;Y~1ZetZM{PG!4Ce0$OH7<`SlZd(RihO7d$fMb{9U;s)b*JnG*P zcE@(fSNx;+w^+NL;xRI&+bQNh@e%3~h-B`(i4aYrgFQ4dJ5X~kJ77p1->1F7!uMaS=1bK*=yDA9_;CouU2NTt95h~I zb$5Cf3IW!St=ThIh21kR^fvn?ZL2^4$-dPru=Iaa@9J_*SY>)q8nAcgcLfUCW1b2A zkFfY9wh;cFtE6AtHTkTVK%PJ)7n!P^N3bw56}5Vsj;{(2X*zykWRz(mRdp$Px4O}R zjywsVlH;~_)0S>?P=i+*rWlaBlMVF^s(%CeQeSE<%V1b%*)bW;%nQTg5@tL{%y^_x z{i!v(;6O{Wpo;%U%r(I~e_#GyVreZ(v`LzndTy2J3#jqhevgB;q|-8&i1MM#*=NNB zmz@0wj4=GMnjhvZa$eKb7e&sw^ySuUj>w~D7KOcjJ+1Z57T1K*vN-+^i75GANc~lA zCij_Es!qy<40L1MLOW>0p52;>gz8A|9#SQ53`k?7(A>;lTSEwQl68cya;~3PxJzcU zVVtRn8Z;)9VyB#0cSKs22BNzJ9u6kSib)^10YWnuqD@9qi3j%p^Os(B$MiZkGa1$ZoZ7orS88x>r0EGQH~$Cw ziLJ*jNKtIb5@}58)kU0rl^X4IvLH5SCV3^qh{;Q|Ck{$7N@rjG$&k)?BWW-Iy$L1MS65d%t*2$ec|Yo)hwa7jun@ z|5ff9*!QrmWefM9D;n~DTo+^uL=x%iD)F)xeE3RgFBs+jI6S9m=EPOrdpqP0V!FL{ zH}dUKt-g6ppREcH=eA}@5&A}d$LoH3cxF+4zw;P2^%V#~>wh8L(DKaI3a|I+4pN<+ z`F+kFS_R$T4m!Kp`L6!{6hP;Rzlz>g{58WWh%#tD!i~7dQ(DJkd2ej%uhW+Isq=^g zMM_1ZVNTD)&c&AKBCqm*NmCtHJ=zgoXMQ&paN1eI=EHfMqXwVFOvG9|>NYz#$024p zr_Ig7IXd17fme%Q4`A&2KbMb_tY+~pXzg;5#cK2MOKdEtU{|x3XGc6^PLqF9__HQI ziZRDXkDff!yX9RTYG+lcKks4^`)d7FR@*1kqJGP}Cc=HZiM7RjLQk=A#wEbF?%>%z zng4k-ai%x+ATI?6APHL!OY_Z23M9OD{+ndd-DvgXHXWZ7KCe>!;VxMslCS!vy;Gd8 z%r=Dxpp-)wZC$p=RN?Qg>$Y`YWW|rCvYU3vn5I~}q=T57bZr?Tr5x71v!?MEpUyHm zF$j_CJ3A&l_aE_Y`2%k_-+pS=bZO&FW@7@%ck#^Gswo9%^*ko z%cuH<#&dSv$i$?`5DDM%iFJq0gbuRqO~Z1O5~MqA(iJBXL}?WUrR)Fbvml&mP zjMxB@dSJ0_u& zikuz(l00mtw(6z5z~$6Y{|3B`k<)3Gz0Pmi>~gss#m)t8OQ+2dgxV(Ud+*@h5IqB_ z3*;Yb>nLy91z$`k25FcWCfWo^&?e&-0kiZ`-Mmaw`re-*K!f;Iwbpw$D2195tHKvF zB`)OjSMP3Jk=v9g@^1MV_!Lr~3)uU)3H3IMH;~>3_>oM)BmS1GY!EXq3KzmHUM8N3 zx#tp|YviiZOApC&uJ>uA5?^9#6XVYo*T|U{M$GpzsUp(J4bL_4yQpF=RTNQ$SBh~Z z=Ie50rD~a^YkBJqYH97^Q;R1Hu3T92sZtyHOl>=pJ{bm`295oakYF2TV|tpE_;k&<(j|@hr}D zqY8u)IwJd+gRST)X|I(1GJEV>^*BA%b5Tl<1M1(?Rb=ZbrbSQY)*I+e=ac5+t2N+X zr;}&!j>`I2AlmKFv;?D79+`3&*pyOFZIQ?wzx#}wDm8QxktwoZ6OqY@2>0B1xVPYT znhiZEqRiCyVN;WNbHtD(_37O{!M_2=M1y=5{m-CJ!ZH|-`gMi=#*G}WIV!rxC9e!NUQQ2k6i$uW>N>HXRjVhB<_yyYm4pV zP~A2CkCEx8r(~Kokg0by(sL$m^I_S~PT>p86%10@9G0xc5K+%>(-UD7rVE|kyMDsE zY~8|W3(05mbbPU2ANxdViAf@%WawM5{Gs?^Qa zWSZnI?zsgip};80ju4r^h*+C^j1T7ppE+6@5L8O4u={#t5T&)Vg6g(5wk6|+Y<#y4 zUN&gY`ol)EXPMpH+LcFzcDMiJt)rSY$|hXy@7nOGr4@Dkec|?km#x?&viSSfU#lI7 zeV4%vUKI~UcggqM`ubL)tgMu;wl2{!cf`BJrODE5(#*OSqsPzmMn9pSwf;~S-;s)P z^Nt~UU##L?;H61Io{kP3$hfjnLSSlNVyFSZ?b&SHnka}L%5W}_*BWHK6R5k}DGR1| zG>>IXSHq`3$i~~h8_Wa8re7J)ZfcN0F7O}Q@Tvc#cgx!l?)3{aIoox+8Q27b2-E6Z zGYcDXpa(u^foEnu(v6F~&5vs`pGzD5ik$l4_Ey1;)@+=v7MEFCchrA!-IG;Z^5rDj zA{4sWzs3dCf9Ee{Nl+?Dx=TIGQtV5ttM3MO%&{3VpXP?ujnFIg%rSk(|PL&)N<^4R} zADqI7-mHv=+H=qoNrZ!iS2Qk4(d%1i3VJQ%ItWKMUc^Qfnp}&ZOUU&YsWDb8v8Mv+ zCBB12cAq|$N;@wulHvF?B~A-@H9`xsJAlw~p=xkiI%2LKxshN&uxD1fD_!g=>Tn~A~cAVBCgFO8>r&8U?%Gxrpatz1mnkp zc+%!xbEDWX>V5bhs9nl`l@LJ3L9j0Z%*dGa&7}Ur9t)I>G`F& z-~xXv{hP*!LQ|&TXdo!_7*Gee82HDkbAl{DE%?s*M9;9S_K=!@ZW8kozPyU>{Hqbx z5BU-86jh2C^a}LfqI;&2Wi+8B%;l8w@mZ)J)F_Py{cF>Bu=%ja%?2+{Uu^3oz>l>r zt2EczI)%4_1H!!;4e##esiaJy*cxl=G#;(30`Qit=kwd8d4r+0@6U zH+3JR&cmkeW>a^~yf`u?`uXbmiww&$r#0JD*y1WQCzxH)&#zy1R_`S=mh3KCmV{Ph z(2m|!JR0kut}SOvyAHLS5t!rImNM>|n}}=a-7W`N~!gS^RIVul7DoD7BHvk$GC3atLCO}ix35m|9+ zv&&3fU)=0%@-f})G?Vooo2}wQmu^%xfI(wA`H&uyOg}vGX=6J3l*(TxtC>rK(ZT#4 z^asu8KjvGjt{=+Vd^4wpLcMw#mT|~sk00EmZJJDuCso4}lA0dKznMJ$IFMF8q~Iq_ zWzrPliCKjc8qxF=JhczzZ*%k4`Hp`@PW?^n<~TFdt2?Cbc)?sUYFiT>T&)tl?MX>W zK!8a@1(w910>+N6cQbQjO!JH-ma{Wfo#{LXS#Vy9slT=maUQ3sx{1bv;^~#Sb!DA# ze^+)9Cy_F{!~R{q7G4e0!Yik?s4&FE?&!*%mEVtKYpz!-`+pkWVT~O`d+Tm8v{zlX z&hYzMFo2@(d27%SK3L6Yrr5`3WQQl{169dwhC~f(9of`7t?BsC4a2m2;g6X45En7E zjbfrLoTXMe8X^_REiQ)~%>Z7;zObbowyQcK4&e2^EBmv0|3=9vO6H>>TqJxGu8ZRv zEaBj+gX%t{OPIQK8IP(_2v))^&w#m3L<3|W(ca#-TU`B4_*CIbiWMU+ra7Jq6=OWRcu4$3e z{@Z^|o%YX6Om8lKRvh){;r~f%_~2w9ehHy5FXZqp(ot*>{40F*V`I~Yd!Keq3#fe4 zqNfGpvrp!rGx091IpMVJ&$)PIQ_ZxdY2&G+?$&_s2R6nPClG3EWb0VU*75Ib9rGgB zwJsQ7#GA^vmT;}{ZJ{@7&3A5 zqn|tLM`}zsN2km^`^22m)-2X!7oQ>*=<)l0A>(J5M%pok@o$G`WBeiY=RfQHU(Dl^ zgFw8MjwmI^4v{I!c|#&2`*9=}{*PAIRdj0t-5O7~#?q}b0_yn<8WY3WrA;#ta2>)Q zTx2eVhQ#oE;UvCPwBF}J78vnyYjj~Nyx*JBW58Y3l7X9z@vUPRQ&A6$~W0C`FI2O7E;yAD|w@EUSH0w!9{Y9B8w zXsj=cxP>DYW+c8A^9&ru1jMTH#u{l}T|xc$@DRTF?Al!QRB3l~x5brF~@Ra9hc!4Xr39p?JPAM7j zPUgeZH%<2dpCh}CM=IuHB0D_ek1asO)3cxXeB@UrxiYp&%dOJ+R%yU0U2K&uO-_=` zA(_!aS>Wo6>)TFxz6bkpEmY_xdT03&{upWxkIbt53N7l`+@^l;~cekJmm zUZ`(S?J67BSF_pfx-;IQPrVJVCYwr);uwVH!4y~j`^w4mDsT?YHBe!)J_J?ioNrR%YfK!O=;SjzrA z6309NFb6p6HWw@|NLYL^MlP#=&<`F4tcJzOgoPwn4FQR+B{MIfq{SF!2FcMi0Zd@* z;`yxOj84{SieS*6=;67ioR8SoJRz0~)>;+r#<^%9t+7hlV@qDJGZrPi9YZ1lv4w8+ z#8<^&E1YX%@`VXkA}}2jDPpl-51BxgKTNExmhf!&1BtJ?;;WiH!1t2@3hhG^A`&R3bq zn%F3Pb`Rnsw~kOOwV`dDzFSza+c(gkO0)QIa!p_!Y=%oth^wbScgcy1A(HB`*BP6P zS5r#u^Lo%6GM=VQ<&K~j%(-K?xLG=P+@OIp0=P;Xw6C*Fl8SCwX=rB zmzo^LxAWiSomyqR8;?_oKyH$to;eP*TJ&|uK4O(@2dq})DXZi$t9}R3WJFJI zi=1^B)>P(fw2T3OJeG)TPXvm3Yxu?{9vNOE%U@l6FAKYHWgs$#5Y#VpoB0?fHiJVx z60=KAKBWOsk2zb)O>7v6?PZVp^?m(`-r=Ow_%`8CaGJVK$VxT-Un`zU;t@EQM52}z z&s!@V5dGRE4|kP3mqF{{tEso-QItB)w&%?cs3r^m3i0ZTYt%=n0ygPUf62pje=_zc zy)m?D>?MyzcV}2j9teNXvf?>Gxb{ZYMa6ayc98^q!=U6TyI2hWD(TR~ZQzo=9q=|U z6Pi}>0PJr4j;@mDac}vkzvAKgD+6}PQ+7GXL+c3|7QA`N28FgK7J-je#eE{cOMncV z`uLIU6WxL`4m`&ddJplyscZ%F1GA>AX> z-MkBM1+wCB>S&P*Kb(*76cX=Z_wN86l)hK@e7g)US8P*<&{2emY12yq!`q<#pb7oK ze+nT76dAo)kd)eT^_Twv`Q$Q{u;L{z7?856U1~U;uq*Df7S6@xPsM%q=ZI>rFhTL` ziXGhtI2 zGgPuebo*Z*BRwx-i;ow`5MvCH`~#WC4`h}brbOi7L^k<;#N^l|595i`DtUO*{}irx zEPNfEuf14(_e4L6Tal?YF4Ui@?@y4LiuRRtpJ;Crg3Dcw2NWEAJ*Mtsw~2emqu*ZZ zVdy1~3D|MfRFG%etiF;+^SnOD4mo83w+k+07O%9=uBkd-R`(D{|UJa>V%KQ<+NbGY( zkWdOYZS{iw!&3VHx7R?LxUz z`~8;X{d&KbEe{ue7po7C3!-iu87mi5#Oa?pc$+K?&IZZajJ|-xmrHFikVPRn6?8#o zqB70TbCxq93A}f4wXW}FMT5`ue%+n)zHz>zIx-vT^tTQJ#L;MBr-)PM&zLo0j&k9- zaK6aR&paIh%cw)7;4|%o^F@7IeI_s_a=}os{Z0htvZp0sT5!}fJ4K4HB(hBoj-_&( zhbc~vPLD5oc>cgH1_O&*F@3g1)2{`3QQ=usDHT{tb|wPT?1P|j$R3UB&Lm$_@&a44 zj==yL+k`QeX|-4Ega+E#96FxDc8UJY-~chs9*0Fg2Zl-Vu}?k6$`O?VA(#Kn^Wfz> zNTl&!*A1*v;+D$(2$!bv5S!RpFvp3&OwAAk=7!XClPIikVl{3Ck3=ux9#`FhWHhK6 z+krf{W}Wad$tjlklUS?lz3W7pth1N>k4or9Yqd;IPD345-WCxy{tRIJ0#DqKr}|MO2jn3?t9cx zoth?ttSfpiW!>^D2Pk^$v0sY}Q$25{L7N}%0YP_O6Gl6=e;O)M+%j9gSNfoFv!dOHuhwpn2wxo@y`)ybaA9VUDgzH1yvsMIhU zH)VJedJg8P7Ri%3j|44D@-{Cf55)SG7lmZWsxV$Hnou`8#jC}m+cW{ktA%&VB+5kV zo1moPRYF2)$4Y)}mF&^7;->DB9=W6lRITYQ`4x=m1x&tOvWH+|75#)yiB&X-Y2*gP zrWH+A^G3R>eaDP@TkiBkRx-=pC8?5;`Pf_N3? z+yC;-1Zi)jyxk_B;$vu=Nh9v~SUN6LZ^e2yzor5Sc!XowO8v2Ia z;G?8r4YtVMCSRH9?)+EtI|DI2B4=j+E#tlFuW|<3CRy#h+>pqKisn>N%R{CXtrOq; z@}_o6*JA6A8AWVUQLQ8YxU&Nkq-3LnLETD?<`YecN_#;4bP^z_4zMY`Jb{^vNvdk( zF)ka`BS`B3PRjSndrQ*rIql4+-5@mW>|w;fmZm=ZEnLw=2AxQ(6=JD=0^SO0tUcrR zpvDWT@g+tl!cIBVwInNst^@mE%?{Q~ty2XF7zxTZJWp0pi~@PWxUwa}^`8xs!X?*_ zWj!^F<%@)w?osv~@Eqq#qJw|}a#?Fafsd@2w*MP)qHxP?>_7-S;y06*&58qvS};&} zM~0vQdqj7}QsgabtYSCht-IJI!FsIXxh5Da^jXVTB#U}XmL?L1tNyMdADK-`#)JIk zb><)?PkZ(`sJK3j8hP60!v_J|0IorqHSMsETg`Iuf~sMq6`Lwgkm@Q{LO5 z|HNX`;9>x0=bJ#c69<7L9o55 zOU}ZA1;)8g)8Lj3{B~|+dIs2;Ulp{ckJ>r|{W}#GM~OHh*(bw^b9jzb|Z2Ur87@(=_O>UD*?v^&=J~q%0H{Ib*@D`2}BWe6Vmz)4o zrzCq7=`!)+lhQ!Q#Syg{DVYce7L<2q)d})_Zzqs6GFo;La$H3YL0|oO4N^k8tGl#Z zuvd$B21WIh;Wqcl%v_WZ6^zpmS!3Nk71|CsZlA(m4H4DTSDwN~lcSZO%T`-;z{JrA)Z{qznY zf5Or(vdcD#Ct<^X6xfjyv9hq}2b6pw|cPQIhj+`N|6NaTUhO>QOhcC7Gjzxcyn# zFz9S0N{w>cWR_xz9vJbPx*stTgp$A_8wFib&eAK9_0`->TUO+R`tsn$SWh(fpfuN~ zy?nVqw2`Os^xB`npyp)!z*a4zv4AkK?=8^EbSd`NeAm}(Gg4XJ&{^=euKm{!KCPQ0 zu}FxG$ ziVxal$Inl}*}y~Yp+T$YRcA(=c*+ws&WR8Ub;%=Wq@{@lBn2YIPBr6iBE3jS6a-$t zkcE2zSjT#sXx}MB#=l@Av0;icDxn*Of~k)mVAmhC64UKE8pla{9Y4)-6qc>kL6~9N z&ZL%0(c71nkQ)WTAwP3!*J;{Q_)`F$h zg5_(h1*=;Y+yMKMBkE~p)72GeICf`C4cu-Zl0=;^R>}eSIDEB;M#_~=SAau1e=@v_kAD`;G!wQOfcl2NWNr+5A`S7d6e%+2oTR_9%#ZyECJ z(ty7#KrE&9@Il%keq^}{K$rk99{kf{JYq%=Cs5*LPqj1rnUTo^A@a|5Me^1l99`p| z?IwnwT|A7ZVPHow0hm4E0}}W!C5V#6%s(>$ii1Xa|M>pn1N#S`C1^vgjz@#s8l14N zT^zL6FSjDO*ehODi`G2(&5?LwEl16udbDYZBeuZTU5dq#K6F|myGq>-aPO$Kelark zFB>^sybSF{kJ%<>Za$f4bT}G@cV|l>QP#}0uU-C;*GGIKFkEn%)o;yNZqHdBiLq!d*sg9cw2?I0(D4oVx<@=dq}SE}Y>!D*Eh{ocj^P#-l{{4V=zRGAp_Ek;JV5 z0Ii;3j#)p`>;(bZ>UfVhLIJz99EbhzSJ!(SIA-ETrWiN(IP2#)!rvVJ4$~BdrbQGZ zaUVqXg)MCD`Rdl|K#LVV9Ql1-UyfHMfBlKbS#lQzkJ(+~IiH>c)Y)wJrBV*LuGoyr zYF3@Fe5h^yKi1woKC0?k;GZM|49UP5Bw!Sfpx8!(76p|!s0lDhP!c8t@(_uSDov-g zwK4-JdEsPQP7WisxAt|lwXI%lZy&amhplJ=GzqA@vdJ1c5aaABzJL8bLu5jv_k*@3Z;dPA%c3p3i!G0z+jr)k2M8bx^Bd2B5<(++} z07z|WvCB#?sw|HzX!J5M_DN3aTG?@ddLSZ=VmuP!i@iN%?tH!!k%Td8_lCtD@~7=) zn{Fv*JN=U6n_MIuU2D+Qasd-vom`_9)n!7zX}a}pX4ygmzsM>BV8NorH?@4JsB&qf z6x_Zq-K@gxTKk1&Y12oWDcm-?%M@;-x?PGqDYeB)n<+LG2$H3X>Q}Ba$qx9_unIuka6X_bf?F```Heu@=t4kyC<5HreU!(WQS2vJ(K) zV;zXj@kY)vo-58qQ22Vl^ZOP3#GFc;9i1~K;x(Qt&$i~({odW182S4VZ+;DP0F|jn zRw-EVraP--5#JLYZO)jm`|vvn9B_WXoTSbINGe-%tder((pBV%5HF&m%Xx>zZqYIi z?lsNc%t$t6h>b-$$IQzQlEYNPL#UQVQ7r}S#Wfm@e);1RtvcU9BbbSGLas;_nnt4` z4riT2;xMC#Fdu_*3*F4}+2uq0%G1S>1@d%K`sruo z>B7jR@^pmMen!*h9S2;Eu=_%QRqj zq@OxNRDk_S`l-`Fg6-|Izah0t)oLO~Gm(RRWF;%W4(sF{>1tLt^3WY0 z(aBlqFFr3{EYh8vB43Dho zkYXU=B@hNQ5PdPs)^B;Em@TynM2`&35DSCwZY_yEAb;>Lp%EOk>wQS9qOZSSl`878!l5z2u#mAUeuiyNR^TJ)=gGFSc(J6;#{* zW3Xqk(?M^ltL!iHOo=7eUdcXL_&f$=HFfFR*9N2NT zm}f2yvJ#x~1bXl2Cs&5tH}Y|UfL~)GGxV#M z^s7k42`HW0{as$awEHR#WAwIAPipGn@vXf$ONV;8R=KHJfYF{ z#hi927;3ItSro{NNRcr9#NI^de5Iw%m2ak1+hg#G!rpY*K<$!HMs;XpGIER#KFeW+ zIY~$syz1!tnRvJDVfcyPEwTT`IV15RN&&%1NfF0}08T2eX4%vf>nR}?@mTjYc|xb_ z`Z@%1B3iV+Fi&Q!x0IBYGjA+j3D=HOx=)48{>-do$Nt3i@sfQc-SVtiW}Pg2|MG*0 zB4PUME7fWh?LV`Q-&hYU|12Wx8Kfz?#VNp!k>@F>!i^3-6vP8^CITN_L&uvC3mA2p^-teSxi2`eKwtB-Vl#qsqLuD+v-;V0pAdvS zvNav;Yf^RjToBL}SpP2K{W5Gr1;ccPp3_&W8_bNrQ+BC+B8zZ@GNC9##0WyFoNSM! zN%i%Dex@>_)`?UR zar>XyB=C)qZ331KVyO`AdmtJV6?+vnqYV|4F5e9*=91b_G|JU%j>2(#h=Rixbs1j| z7_xgzrUoVEy2an0WcfE^c*rBnQPebhMnvwQ^TIn_rwd#YSt_J;Z*dTw#4e-%kT!^V z08&`kJI}v|FmK?g-e`&wl)Urso36t3ATLWk_{} z*n{>P?H#;Sy~*bP2qX4gDvX{SX~Z7nLWVbdcdGOiRd|i~H+dNvg{r3jVPI&K8est@ z1Hit?+B+vO$!M1xM!=5k<6>G>+ees3VOB#Z&nN?oBM}=;6D&9ULvz*7O81n7r6}S z7&|Z6L&IuTi@rpO7 zwwpl_&1xmimVWM*_yl5`al3k9D12t=26CP4Q<2GG=NVC~smkdG#7N8<&Y^wk_%}lw zJkL~#z`&;k2ErNb<8AZ~NfeG)n$7hFMfniO4K+3?@d&-#M9~`iD|3d@%gFeeC46JA z;z%Y0XYKi=iQh!~*F{Do1HQyBc*Pos`~+a(aWknLi^{}9!VEtz;QBIsc7|P!?ow1V zp29B8gpVgY2YIjU+f*4v@~1P;!KzR;PYXm<)SUoIy3|}%D!uN7S0y20Njbvh5eT13 z7Fi{jnd<90VG!vMA-oaF73H;F3byeQnVOkr*11=jX9l{7V3xI zeTa0cq#5&!W_DNqr)DJLpxDMT^(x8juLNzxfX-a!HW4c(eNBZSqfR1I5caF=-Jsok zC39W@zI0yb;$(A;3(Kp}*g9hYlm;Ww_hI&!LUM2C!dI4IGt1^9w)+f=yBC32dcA9K2vvftC|H zvaxtQEzNh=)H*w0zYavb&I7V1io^i-=_?$5d*&(w22ldw6Co?we`(}Ac(>KLB1_^$ zAe^1z5F;Z*eZEua$sOqjdF4=S?X^8Ozei`u`OV2z<-bfFoJF*bi*MXr7PMcNS*S1U zx%ogpGpxl@&iB0y|A+5)eZ=<+=fn14&`WzYH3sdCOQcC?^$5;O2~r-PX-cNF8PnKH z5i&RtLx{_m)_pqq6V^)dSEX zGG=}EXl#tS-pfx z9bwM%C5-qD868>kf!4{w!{&{?=)FFAT4z+w^O^J92`|N;4XO|S^_XfxpriClOmcKB zdF{!BRGfQZlAUUdED2&=1zA{k`N*0W|6jmYYt1p?n74SZM!euzf3l5daOmr&!ZTJ! z`*YS@fs4MsyU7jzc5#RM>KScwuUj*%ty!&zTyJe3%k^r+QA1!Grf`s`yex4$Zr0D@HIAZv<4u)T!bg8ySMe@unIfz zIyVr>qFT2Rf01I=&0foZ55eEu{42w@&|bdAVVdn2Yw`QVlF@4JH@3_c&>giEzr5R<948Pq;10;M%%!3YbJHQtpRk@*b*>S%H7uE zIY-HnkeD9-atci6v8$h(s$pF8Z3U*cN9G)rwi6RWA4t550YFvoGrEN!2xuLhwHpN< z!Z+iaT_stE*{uBsjEy(YHHH~&&4ubEt>?{JIS`qojweaQ7NqyW{`~9z`$7eHlc=Q&aZLzcOq_HNJoRDF3Es z6oAQ$aUIBt6Q0W|Zk0I-{>Rql6=> z@%U?eku0;p9c@vQYb?N_%xjgZKrVW-QFKz)$1;yK&qI#z-stX(=)Ji_HtfZGQIg><5g6W8%8&gwkcBU3;N-45m=k2>fYz9HzA6JJHpNE$Fk6_mVbu)`<(n6 z0j)-VCO+3|-B~9S_0dW%uE;*Kl>X<&l5599_MNU;m9Puz8K;&yfPP^KcAVEUSnYwU`UYR&l^j&j-g8YforJRoA|NSfS>c)T%3-5 zh=)z&)it?hgO|)cn?Q-COMw%))(`ai`)cNSKX|IOdkd@fy-b|_Cz6FG=} z_*hlUXN8FkP!w3jCRqcNAbny5>Bs#;mYvkjm384>E z-$Sk?_RUBxb>9`=-s<5j6x}1i50j@`$6@XgI(=i-YsAc7c5LnD#HeT&<_5VpNc&)m z5#PrdC3-T$*i_F2$Yyo*E#XS-ry^+fs19AS(kjh;T6R?F*~$yLo|cVuWe(DfUT}r2 z+g&WHva4?z$bk=;uU3=|XZv3=;@Pt8FnQk0dFI)Avo$t;jbZ2wS9X+zvZL&T%D#Tj zwbsav$(ii48&>47)l$=%!j1)*Y9^CxH0N~$a)#`_fuytj=JdwrWhM#+_uy&%m%>x1 z%$=#W@3V&N!V-XIRN^daB%5)y1mr}Tr*>ki#%sOCq~yI0aaONmX69)h|C+<`LCQWC{&DPj*a}=x1qgPtfI8a+oK zMK!*rGDs&R2YrcAxr31r^ku}fhTOyz*4XRKWxh1Z-+h)sc^`~&mHl}=Ukcw_Mu5)b zp;8j>BAKTXl^r8FXKo01VJO3Bk-Vk$pRiD`CzQtpg!Gs?H$OaS?r7pz zj%gWxd}juPg98<573?btvHUyKF?K_R7jXbFMly|uI|n5x8Ee8X8Bw;Cigsc5>WWrf|o<0xsUu|#h3z0Dx@;<0%Ql{;_v)ZqQw8bqie?Kx$f0}CV2>AB9Hy!%VbaM?0VZ%pVOTf!LJB) zm_$K*yf6h*Ia@;Q%#CeLPe}V=?mg;HD<}j#+!+A^fM8q-9 zV*&=qX;M92f25srz)(F8j4^wcWR?|kR6_PQLG&e|Ypjh66Y^7dPQ<@)sz{%w1Me@1|y=I2R&c1{0?+;^8xQ@RV8 z3StpKrSgb)w_*SrsVl8Wf#9di-(O18022Tm(cq(jm# zGur5`Vp2+SQEh*U|JK8@a_Z~F?9Yh$(e?b0_ItAAY^4_(HpEw2sy=@puk`|Jv%nx& zRbv+&KaDr48U`RIaxzha8AReUP9m+Ft?e>6e{)`Ip8m>Nv*`Qw-AxB-6Fs^pW&oF0 z6X#eF0z%bE=NsD5;7%*47fLx0>1tLzDP!)nx zNK-c4C3uu$E%Qm{kWX_Hhsj^DAClm7cgZ!(%^{vb`Whdlht>AQ2VfC^c;uZb4e18GmBm0FJcmv9fKCL%sXUL;F z`qBS&*8d`d$o3-(BY5H;vtB7=<1m*UGQRiQ4RmK{~O zQ(EteyGPGTPHTPyIArZSaOWF-A_Tr+lm+Ag)ZbkUS>6;EPFZHlND`#3-mo=EC}pEiMubJdzrcH5kDbQ_6;{QYOvj~h_gH@*w{?=>Ex18qiYIE~?s@EklaI;@_a-;pkMu&ir-vmIj<+lZ~@fp{PYpJPA&Z$%{f%6SOu!sIpH1O;pCTyX}u zz6{H`6uFjCcS)(44QG_f8B!{Gq8Z5-dt$~?1jvRRpLR!%o73(U$H8!BgtA(~3T(Yy@?xn0ny)Z6uDCiX9L zSZW|zr4O)un(7d($&2I~UzNSKoc*n`0C4g0nkZ?J!dKBsu7{i(Zd+cWzVC!^O zcy@A)c+)4>Ot;@@)eiNMDG+D;>n?4><33jh_^88BTm|r`>n@#{p2$NS zz$~4yp>(E5jfeFc$1N5$)8-{%ip!p$x-sBty*$;8FJC#N8xRC<59P)|v^@5gu!SAc zBYpaGG?ueoSDliKX1N~;uTsFM+B6${W&^_3JhNf4*^qBGOg9?}%!U~o8fFsaEZa_u z!S?shG)inOBX*Drr3f?Hr6WZI^W69>7q#|{l#{S)*!7|j;xK_Kah$cItKT5UWibkS z5}{fNGp$&my=v`Hg59hh5KLrm3j4l#g&s7Jf08{2-TIHD(PVhCkO=oY zj-RDy$Fk!~GEMKdB)026dGBxWG_!a5vU=jV^Ng*T@g+2N{pqeZeFzSi6YsV%iZuOI z1i_`g9yjVB04XA46F-F^^NM0#*%ki(II(jv+f+WfY5e->?DQB3%qLw*IN@&eBG9q~ z5R0HyzF|0Hm-8uca^NP@!6{qv5Vs~*=h-v#J93hx-dQa(fSd&G@?W0GME!lOxU228 zmroQgZT#(?nWB?2lXtiD}*z zOs?|SJs@RK^EPACex6(N({y8%k73x?E>IQ=MeA}SBg~fE#Kn!d2dls6q~hLZVhpw{KXdNz}nSO` zqq8_Ao(Li%QlH4-T6>Hrb^I*sCFT!{Ycn4;RP#mRVe1tmLd>O(vQK+#rWP>(Th|cv z>&b*9uT*C&vDg)9L-^bp`z4IcbU4NQtoOqNlHJ%?)2>bw};#;fu@RRm0Px zHj?=0>E%sE^mIeZgy`vYB!)lTOd@6bIF55t4Hj9%*2KP%(=qCon*>jTY=S(lvCHl~ zozzmeDlPk=XulLCwrikY&TT;!@H8ndp*VxLAV)csVcfr!H?nmiF-pWWZaLOoG;7uchQ;tuoYV99rDIS6o)!NRc zZzS%L(+NSUTR!8&yt`eo0O(5bzgg1AchYu*7VnT2!48ZuD*9216_)VNX|W&Zq*~09 z7Udf+(ubK&ixnP}cOL)qP2aXk3ue7uROfEFVGt7QoX+;PP#ghJWdV6-8{p|`?MJ|P zngm?U6oQG6PyixZeu%QvHQ!(7ZrZG?67N(wP0JiL^ID(U^j3`3GwZ!Sx^_B;oIMn> z%JWq^a!ErcT>K+EtFelwixP6{?BG1B8*2{75(;7#DZsp7I^#075@@As&_pU?Xj_-bSB7!JUr|!)Y z6eq_Xju4Qi@_eyLfVw6dZWd#*Nn+^qU5HEc^i7e&Wr;&TOqNs`kV*@?s)QUcGBeUo zN-ZNMSwGZ{@d3jW(x3%OLL-q;wZF|%VbBPFBS{#EC1YQKm48vQ$JnHRg@4mN%OBn8 zW+FsxZ~2IrhZmIb?9u2u5);FUpy8E$DSGDsr$-Kc>M9(N`^X{x`>nq9SQm_Qg>SZC z$#OR&#;)hA&HZAzpSuBGKt?NVL}|my&7_6dStT2=G5m)ARibaJVkHu(PYTV>>?>wa z#zu)(s;f3)XY+(|4pV`4fTdFkwIL_~o6S+!I>+MD>+-+flBau8qMLSFeJUey2{Ly7 zQ<*fv2ovW!{eFB%G3fyB=;Tvbbm;P3eL?}K($BF8U-&%#(hUQx;}=@FYFt=U5J z=Z+NjSsA?3q#mR+JUb(?w)rB#!wDi`Ysm9ASp(2iW0S;KwOaBPT5~s%v1hTr&&300 zyzM@&hqVY_?lfAIJBk)ZeYiyhJvyzL&0-WlxNkNKPxdfj?5%fGQSwsJ$;wbKF_W^p zT&H%IBDK5Bs#$qx34F|xv5gA0wlBV?wrbl}|J{!Y2*$;H#d z^nOS5r9?jc6dRe@JRs;S*4XwI%)N_{FmDnm)tRg(wXh2ANB1ptMt2OvbHC%yHe%ma zWqt7*;Z!}-nn{nkp0o1v(XOnnzD$U98Q<*=8&+1CDQs?hx!Zs8?suc5p3{k2A*qJ7 z;5!5U-pHt8lZ!;<&@Q2(3)<6kr&|43ThKy0cYXX`Pu%9$WCnT=XqBO=JSCsj#zYA@?vAh`B_kHsr9XAWdqT9EP}Gf<@Uoxva1E@0SC= z+G381y*GqhR%OVA?hTnCZb%bOuJe1R6rf10M(AhQ7m>}DC zVl5705gvgmPNFL;o6-QhfPDw(O|;?A_wp;OrkSNl-?0jvT_z zL5<=i=ufOY*5%2XIjLhNY>5tgqW$5^iENsCr)IG7a7xfY6`k12c{Q}*gg1q4PDhpN zK}XOcakXKhqMs>nCANrLv#?UB_R+Px%Rm}(BUcqQ%!qIf#o{_VQlC(q)2f}%;?w;2 z2>VwIuBgEm_7pV~gtIs`!Z|J_k_)Q@^ZqUgD%D z@sq~jr=edyjb4UQ$6f?R=k&9AAE{daaJQ^d%qcNx$ zqAT;@Z?RJ<^)_F~tid*YeP`AoYo`)$FsUUJQUcqN2mmlETF#JCBl-}2JIrrTwRgR0 zZvi+TwBHblqA~semxA$VEB-UaA3(?ens>^lsbGVXMx@Z(frqohDgtFfC=`Ke<3crl zudLMOfucDgYhaX-OUr}ypM;Jz545h3#qN$Fpn^ZdY^u{86sSCYr8<@+D?N!zAX&e1 zN`H#d0u#0la9s*xt4(K0^I(k3IUJqo>lJ6IE{~zhLJ>p(p28)kznUSSyOG6oHR8ZX zosu{)CRh3F*Mz3dFDP2;ZYh+I>-Q`JeJcyp;#ps-Tyxao*=uk77jNbll=;`Xn|`-E zMbn2g$oyDUxrqEcR;IOQMe-K6RW)PCZQgpMJkXgYv8s?t?YY2wdPZsu$a+K4}s4(7Lh~)v^kJ z$i?kUY%p0PA?eS@S)t6|>}fhI2fxY!y9|4Lb?{45Av*c5!7hCjI6aXO`Is(AIW{#m zQibm${4JAPu86z07lRsVnm;>T<24pP;_j(qeWwq%iP4Cx;+U0|PEPv_fUZ=@LTS08 zHon#;?g_{MSt95C=c?4gX(1f1qXHd@vLY8&DEk`+WsR6{QiFSx;sQSfimGi>{E0wS z>(y#259VQRMmT3~CINq0NS*{|5J+m#9HiLg=qAcIR|%6CpS#Wfyk^`cKQIsD0Ks)$ zS(CF8Z#Rz?R>=Fnyu{h-;TvHDG3$^L*5nK^E92UT_P7(LSCe60?CrF?6f3|b}Jj0ch z5nt$z{vDNs^jSiyRCyw!t&)Q1TDL2#VycJ<2XaeeYxxL- zNn`OzaxM8!wX9|wgp&zcXiLN^a?aNii@~r85?=M7d~`lu z$k%h?CCNgB&_3K$sVJ*k*CT?D3OaJsKHI6O6A9^jY7-wSDtyUtaL~|I`)%|{F4*j| zy6C1H!o||w=ieLoM7(^!%4ifQsWc4Xv66c|7vwAM`vjB;FR-aX$cv{}3n+|sm)tFb zaob~Ml3N7-8!^D>C-OHeGCIiO=|$ykM3oT<<{Z#0GrCIz!*R+aO3poWso~wkYBe|18=xp1XG4Z9=W8sMuMtD+aB;1x! zxVMN$H(_{h1<;DE#W(5b%9vO=kz71*)XAGr?176O8KdeF6A-OPFb6yf2Wl{O!Mw|pnIaph@O{GHNNzRj zFdj(j1|;C1Y#+yAfD(S4B3kMI1qT{d?9- z0h+uMe%Z0|4W(a++?Wz>x z4K7}7Je`zkdcwJsE%o2!Zu+A{Q&S;5-7Ypl*_K$QST;0|h~^`_ep-${MV^*SLbT(o z0#%E)AYUDqTs__X#uQ<@rek)S?;`6GpUNI9#$U$?Ly;Cr=otKrd4#2Hty!Ar+yXC|Hq^RY`BWhd7x^$tq!Czu4NblUhI|}8o`#2Z@bO<Ouev^6}bo|+(L3HF(!A8+! zi7Zp(#InAE;HATciB;iA`!?zN3gyu_+@pUL`%eU}7a^x{E*wPJbYUPSbBYy9ujkD* z`Sv?^aqe1-0Mja)zS7JsXChN8LGK{400jSGfTSn4$o}z1NZBNj?p8y}3JE`BjU*~~ zV_8=JeE*686mq2n$HC*l{m4qa}weRFoEt8nLm{=O+J5nK-@RNEiCOuyA<1jWNn?xxS?YtKDHMlSm3kLR@2b+Ys8?jb z7yD0yKVfWjuQFqKlpP`j_O0&{=f%>lKV@gd<(-wue#`!BJlk2M()_Xk>Gryv1iUAj zzMB}Sy9yfWShib^YczCX`PyefU-(<1y-G*rfPs<4RDH~vSRHq-vGyP^9}uYb0QKX1 zjLV@>Yk!4s=?=8TsawID;owoN;4SFbYY!l1K035d~QF-$7wh(pCE8f++#113)NZnVCq`1)B1ykT&1x!ca61U2mog= zmI7nzf;Fd2mFjwkZpYL-&&rE(KbFHLFauV*LR_^GAo|Ir_}Mhk^60Vc;Yv zk*RVe%Q6vQ9u$UNw7Fy`@hz#fU(5j_{}d=5yeHRsHGX|Mq4oj&A-1oAx>}+*WAMYN zXmVA861F6kj89TFhKVZRfO7&?k`6fEG6bCAA>cd@(@8bG_F?p1X_$`6RWSXueR{kg zu9Qf_^fe8!>vgAaa=7}MHhO)x^6Sw{K}56dtJ$6~TY>;cD1U{RvVeh}s!x1XT7NA$ zOjTZs2K%C8!=U#uq(D;wnFcd1)juo_ z!Ri+eNBe2HR=ve^Pl3DG+^jmk8y5wgDjXN1S*7}A%FXC2d^_l7bTtuL{MwoGQyuPE z%G>M{9ZP3rwEexU?fvW4oIAv^Xh+(wDB3Mft7+ffX;73YsjqW~cojKKi{EM$Ca^N$ zkkmU@={fAR6aj)=mn>RChzu6BQWWKt8jt^kv2hmnLTF@s>6|4M@1^FJL$g(qXO{4P zvRRd9RS_)KYgSE8odnbSiEL^rTU5jC{em^|N_2c4`;oV(*4fyiM`jFe7O)<&U!Ze0 zR~)LvP0@?NZFXejiNoDlmz0L4Ebk7Sbj6!bvWaz_i1=<;Z1p}l`sy9$c1|DVo|(C0 z!zcu%f3dKpT=8;NcZX57!BdRu%<;m=%NjxBrBfP~+wJeFfyizpdvmRInmuSz$Jlt) zbMcb=Hd3u`=_E*qQP#C#WGN{3S0(BFh~nRim%RC(ig$1<{7{{0m+T05=H80W&%G@p zXOzqx9!FCSlT{fVDrNP_!abZW?#ZaN=bXh9scbxB4>6-u!=OvCn z-V=u=btXP1tBj>Gf<>QL(J`yzlN;{HscAnRE-U%WBMvjm<93jgk%nm}~;>2+WqU;yx zZY*L>nHANGVikErj9d%f?U+1vamP3kKwZ^-5bM7A&jE$3ww?L$dHQMxy}&o+rNaH> zvS%3ka6b{}Cmg~~NL%mC>Ll(PttV_+RggY&I&dhGq$+t>)kzfNc*%mER8p1ONnc#j zn9t(W2}p1687ak}$7AEA3s6#zscr( z-mXKLz-%g8KoPn6tOGT*c!x^|Zj@~_8Loy&f%6z^orqUvbf{%_vhZEVW&C<%*Vl2T zMd(3aFT^>;eq$bM0d3?i%ttZuy^B>mAVWBcG$>AXMkg?_a##}ewvOk|_?>*I;$Wg} zgT#tonC$`b2`E~pj8lftFXCHUCu>Ms2DtEkxtuOssxnUoYZ+V$7-hqtR^~M`Bst~7 z^mvb-7JqzK1egW;&s~vpZGX!7n;av(}Q|hJi@U^wpDRRHHd_v+>dbfcO6VZAV%;8<|=qUu!bxAt(8m zjzAllhRgNBBYe?OC*edkD_vU6ZfS~2+=;bms} z48qwzGBK37zDLd)b=Ll_zh&#svQAntfs@sXU9}M}X2@1dz{g>wyu^(4bE#X2AL3HC za;?82m%v8pa%Sv}R52C&$5Nj~rYOFH#Ls(`7g5RO7>_4hBbVr*&0}C$+odpxlw{8j6g0v7!@Hs&(czQq(p z(rY~^V=n9p*2KNnSILyEzHtyyQsPSt-W9I+`y+KIHEZ~|K9nhEY^-`UW|X^;!*^E) z<1w65E>q(gqmm*|(qHhX!`*tB00O3}eF`0+>gLBnv2!2=h z#NTP@M*E!# z;0%y``muGHr!0R9iS7u{b>ot8=kW^A2XZ}nX0 zf(_M}yzE4e3x!jpkgy2;nDi!$jM zL5Sip=>an#5{FuA!y`b?zN|{=~ZM)e5f} zOtomn=J3+oEGx#IHKRYNQlTdG{STEo&-q?KI3AONoC#%6$;~s>f2kp8{|FBkq!sND z1)?IVSAy|lf_$)9iYWXC_EB{>PCADOr>V>fL|UeVA<4Vk4xuv_shL{9kId9~YLIEV zn|s~w1YXLfu3W_>mG(tOBc)#a!C@NKLzm|Dq!NgGe+{##PcTm7G0~sZ>qd3O_W!U7 zEd?9ujD6PW{sTNMQm|o{(J<4D*(CVq3%$SR;%=Vm_pK-ts||?f^rU$O*tr+YE_&k{TQV27yeb#c%Msus+F~NKZq;fJ<9JH{mUQH zzdsTiAo1UNRbgN~bno*{X1R38DY}qd9)y&uo{@WuiCfD0z z$K{YBI2kE3e`%)&uxtB`q^9Jvw7JDrBxKY(K ziXN%T+6BRrK8X#@-D~;L`1axeUeEn zxdybG%Uk=b>jh<1<5Q;5?|4kEg&OcSgopnlbU7NItt*rtDpbYiQXwup)F`@ZRb!LX z*tw8dv=o7T@ENHjv#zEmCRdui#}qPTEP*@Vne6{8Ag-7K{@Yc5IRTvw&khyW1??-T z%b{CRSWx{|9tkrjW0z-8It9wNs|C}CcJRLi8$eg77H`Q;RuX70ZEWTevKA}*5R^XS zd^1;nv(YK|0zfLd*4Xqb8R=%--eC_a<9g&uDvAdAh>CAK@n_?Kt`moIdI^!y zWg^u>HKTvh52X_IP}TN=JcRF(v%6$m-SnrF^g{EwZ7mC2;R(_1o8Xv#d@EBgw%pH@ zF-f=LKiopLC;NPM3o)o#)G|dfn0UVhzsm@+yx$@Nmp$&ghe_qzu&C)TR!v<3yU?Xc z_XAeLQj+Re?*H<;zuGh=I{m*~sGINkOLyr4e4}thT22EuFGn+k_(K`NuRkJ=t3y}0 zPf0*n+~h695wqwjV^cS%|6%*zXn$sFnL28Tb?*Y9+Wi@=SFmkvE!7j3Ekbdd8zsUe z-;hjB-&$%ToqR23!=J6f1HX~`+9BIbJpOs`%iJvg?Ohl4C#4IYqL8!V)$gz6xthaDkyuBbg(|P!uxN)+R-v){tmOsbPbXztPzAV_|gm zb(bx0*-HuH2!ai8ayREWvs65GqW^#ps z*@*e*nLZu$od$H1?STY|$cU~T`NJn&iK*1n{V_D@jrqF$3u(U& zJu4X@5Z+CO7uPf?UR+G%)?LweG9vHb7)=z8qX@;uayZo6aNj+2BEH6rR&1~R6J`m! zh83P`G+K2@v@q*%s*fq=AA7??%?l+M?>d?OO^<+O7`XM@cP&;2?&=m9kgXL*vvy((5#(d%)2D=$2n-ZUa*Tnl zw=-+(;?p2)Sve1D%(6xHW!!QRv@wJ42hGrRue%jsQcjwN=}NHKuG zGUAhk2MP~o9i-T#_}sT}k=E#8vx(#)cOuW2g2jZz7VB?sA-Jo1`fa+~9x%rL*?!G!x(w<~(92e&cpQKURU zMPBsrj-UkKL4fqJZmUJ3S}$ftc>fewgjpG&CQg>xqsNQA{mmSe9I??FZ_3i%ks2xr zBmsInwVylX4b5KP^8^Pz`^I9u0!KqRzt)ZL0;a|!4A{^`CcK(*;_ns5Fi}9l3Q|A8 zB6kMA%tFQ5teV{K&xf*+55?#2~Rp08ZaWeY0Av)6~LwFP>ek$g3PMNw? znVTq+2-Mhb5=kTRR*ikdSNMIS#{OBVT6@wF}@-_N$YuN|C|)4QBG8Oe&l5mE0X$eAO#VlE@>{L=y< z@q529R|9~^45Zii0guI830;4kVEgkB7||8oBDP<|UL=}l%NH@ta;(Cz*}@#3g1S^A z6w!aQ^-?zLn&dK%in@hD;-0guKP1Kz`O&b>j+dg4!c1z(Z0g3GslVkQ92!J-z+Z8! z=`mT%udf{=mQ=7cK2E5?*K%MWr($ zOJKE@U_X-2;e1ReLp&E6+s1yumAD)N#q+y(?qkH_(w7-*eA36Ovx%2Pn1})Ua+Ia@ zK}>vtjr;kAH6mwn#Hm`4tPW*p!WVP=~5BwERZ$6~x4P zL)xFfZ`*bmQ%2<6R9$nq4cc87W^(8*?wdmq<%$=R4tB>>VG-S#56T10zN!QwseXO? zf{*FfA9*pXUw1S7P(vMtfOoWQmm#rcEKG6B-3CiUO6%wxv>!&PXS9IjFp8O zXS}WeHFSyQh9_up--rk9+NT86!=i{?ec~CFCAG9Lv6)X zFLpJjq;XS z1Wv<7`?qOPP+vqQRu_K8M*C5wQ~+SKZ|4esW25~BburUuznf*RUa|9YF~x{o&4(+C zbf054@YI>*$OZptLQm~b6ADTzA)D@|%YK_YYTdEr((}aJ6lxD!%swkC8|F?k7J2bSR=`+U20Ieobu(>_$a6;==cI(^vws9 zE1kSdM(kYL(*R>NM((t->K*j|$ie@V;V9%Pmucueo`VIh$m`rjglhwEsEnVM2 z^-4{@5&NagQo7YgrQj#(^kPzSrBris8E4Rb`@D}KSu;`{=%EHW5E+vqRF20=bh}`< z%ZMFfn1WX?^Q$WlO{YOw`6wx>^0<xRYMGwk)hQcpamD$?XbQ^*KjK`C;23D6fT9>iyb#dBbfNfDq3snISDrh^4E zA}e=uU}2A;Xx~@a4Omfkq>w4H{QuOs9Njs_2+*Im{{%gEh@Ng_It};Ts)i~%Dw9`0 zLp`H1k;o=iFrDsjPRK2BBfUAvWqBPj*#dV`3L%DrDKCWTkVa;0cuYhzJuZe&GK z?F=-3nKxFUajJNNP;gr6v8>ZR8#_kC=92ykAW70HksjGE{Tu9oYdt60{1iD}Bu*!g z&(THfi(dw$puk_Q1Y2Ni&!dNFz`XTBN`aubO*h>i?4*_m(L>2{4Wnzu-ONSNNMqCG z5O8ddjo3x%0<-meEj>$E{WIF%gZh0~iYK`N=ctmuNSExTWT>D% z9;={HQ(=bW>s!EGO>(pJBpwrQbTjUg>$tpFX+9`?g8ATD`5*J@N4e@zG5=99@^y7Q zE^lmu8*Hc5X3=l(k(pZ33=04WdEM^6!0kQ13}{izY0 zj<>n;8Qp?I94$sfPhHbA^=Zjq;y>KvS$}FGS50H%QP-QQ8fE97+${a5wtq%#C?0yF zCzFxY>rZ7;G@QHs)HwO|u0Q4Dm+gjT;xQRFyol=mufKhfi+p+mthW01j2TMPyVCeV z*T0OnJ69T)Dn;=3j_+Dvbo_xi#{q1^D>C=0jy4gP^>Ev*hMiG^vCKYu{J(@?2?Sg$ zPvvH^R50t@w(SBO{515#0#+-iM2}o@Y8rNEYTGXGR?>0R%gzJ`#w=F}A-*g@s*!l;5a5B79lY9vPl~$-g-&N2cge>o~wokEbDKC_T3B zOya)AHa^uQQ|SkP3xmpXrOU6OyAd`c7|OImn5^$~H;31PA2Da~?GAm!saC;S)CcTNgRtcV?|#O+zt_;hP;-6BcZI)8H() z&wlbK{rEX^tFS6ajO4HU&yYdiz#9$7-$-O+1nfiKUXp%mm-Aeq>fALXL@Mb!EB&hR zCU_0|YV{pLl~Ijy5>DjlS{rYXms3(NeW6z5nEUMQ`{>mc`k%nspIG>;R0t< z1yL`9HM(Yd93d#di(O=LEOqN=!)ZM-+Q}lL?R)-&q}^+XjGf=DI+CGFSBEki7XcWG zY&?7d=5q!u(6X!VQU1~X`_MLNKQfLR%egVye?T9x5fC%D`>C391X;I3F5~N}a#DNi zzH%>PAKK*xc(rtw&+M$xE)guNN!RNP@G{-+bw*5Vo~lF5baZOEqXH-k8fI*eeM2U1D{Eq5lUtX^A3o^KOzpj){9U6 z6hXOUms^g|-g)*O&n#_tpqfJ+sy0n~9BijhwP|hJ1$zcbou!N#EHzzOI}x2aJjD~# zB$YqHFW$te&JUsVw|_eXrK3ld4&t-yqk0#WXpBFRrq?Dq` z{@IUo_y2V15SHlgyHef7zD99HLxM-Dut^)e%ev z9+Ab6W=X1a$A%er(?5uU(nHO(53E3yakA8hqWJ;=quk%E${JSJI zT=0zVmPsN8`UcbLTih|0xT!NriQtb#E2c{=Bj+sgCBq(q(&lgQ`ikX!{IHhMuMU_kAhkXsxHh>&4V zRSyAj>kvQ;Hb{Mxq>uK_tx57YXp}(gEl&}`&mP{qUT+HqDTE-mVzY6ut+HP3dS@!K z|7XlhdlW}0SzXC3nu$M;)g~)NBHI*nsTC}ZF^&;5KkACdejsL)o zI0Gwpv&!9FLTa6o+@2C&o;)p?+*6XbOQCfW&%0|m*Pm$EwkPIQO$A#_{eT`FHaspKw0$zi&(Ap@wZbxl{)BaVpp&9mVw1vf$ znDu0f)pZoEO4(IR)aq?0u}3&oIrj1mCW>N$FNh$@0S`4_)gmz_${U{o#`bvWI(3N} zZB?qOly2@&;{yo-3(xsE{~iE5jSpzXB_E!YWC%^wj#2Tlt>a%jhEn zPq?0M(OSw}MXFG3NkSzG3mC=xCe})eGH1 znwG?u9a|E#Z@LK7>%~7rV!BKx2mr@@#PuqP!^U|eaTtsB7=fk4uDum8AJbHMHE%tU3c)s4Xf(Z^qv0zMbPI~IGReQk+L z{A==?Mp%od6MX(`DU@Su-8iq9(}(&Z`sQ_6z0`a?$qnP)FI%H-ZXi6jiq63R2j^Qn zvYq*!Km%&Nhpauh99I5{!SeXa5|^{RlTE*iWOwPfA7DcI+W9_uWEgz~AD$V+hfeUp zI0GM^i3d7U_|Q~593Q^uAA%20{w9SF>0Z-cV@nAbkFf_PL>_zG#X=F%VM%ze-pQ*g z3x~Z@b?Emi`q03t7+a}(4#h+6S?+v)e0bHvzOSG>-=eM+Iv{b3C)V2k<^ZPQU2Es? zF$dwyR6s8Zt2z_!Qv{p5;+6j1)g$352A8sgLgIwdG*Jq^NWrIBjV#Bm)v}PNX~;NJ z0CB4Q+$oNJ?&-m4D4?@{DCln2eM6YNGqyuL-*5nM##dmPb6dV9ScE+Gyz?vQ%B;>G z3RVwcBF8rBTJ2G)LQS7g5(vrg-kl9u${pH2I+T8S-mhJXp6m$cO0hNBPiva?9|pwd zsrk)N^Ltsruu0_oAbv~WEC;`1pzg=uH_!wn?54lJpIrHL2Jq}1;@3re(Ia;a@&}5= zf*)s63FlsPUdyPLN8{CA# z-+)H9;}A{QFa8`WHhBH}&Oe>(z{tpvxtiMsmkHw$e>~FjAX04+yeSsS1f`w#_Pd-Z zp~~4>b}FvIx%#v3S_D=*J zlR(`m%+$Y>r__qRjgyD2uN8fVXAItBl|Vk0bJ(CsN*~UtLPTqKPg62f#H-LeqPaTm zUYeg%&eRwfU?oSm2}(aJBItm(?_o--jTuI6$zK_-M6D&X54KaC*iP-Wr@z9%nuvt8 zoo3_>rsd72XXM<{M9L1{Q-ZDB){-q^z z<*W0523=zl=*f~1*i-1Ba^KPh2ZJzD@SLpSnFpkl0#tFc0@E)|5SZo-foTe!k4_nc zpTPHKELWsfd7p--x2VFS;OVjFtU}69*gy?WkCW;=dL%pq^~JqI?PASHg}{EZ`6>Hx z_5r}mk!_R27zeKJ|3y~8lXw)jOGXgUTp#3D5@b8BC?|C~?iK>J;QSKk1lp_)XI+?) z2Y~z6)$-VA1)k~-Jj%D}z)Weg#%jXGS8NR0zx#v&|CJQ|sAAT#Z4|2(A0O*1Cg4fX zGVU(H?u`@ul49Q3-~0&%?_kP>&?V(4mYU(fF1{-4uRUi;2M;%Ij@nO7eC7iQ-QBU>BWGr)h1i1i4#^{Uj@|)~qOS_&Mh4Pub(U1gm`I}5wCKAIG8nxIwv2!eJQ8^f;D znK{pXDG#z6m)5m+Wi1DQXDo@y;gN0Xb-G-u$5CY|6DMnziFb?0G3}==;)tm(iOBK` zN)jo=$@V#`lUdeF?q|PHOHLU4!TCFm?!=it+1q>V@BjIIWwCgMY(mywjdg`^L#Qvu zvcN~bi~QeSd$t@f#|WQ;owR;Gcox4xo^uwzLXHpS6~gVO4&-8-w{nK7XJk3N5|)>? z2z6CBAGa9pS(P*NtHG1M_~M?JIOK%PKqzVN1q7+{ZXfT{=iO~fX-^01^131=B#cdl z{VJAeJ{F(9lA_G5kv5ISE?R7~JIQB4^E6CEBDZ~FHZj>sXApvryd}fp{Ym=*G&<`O zdCBeka!+0qxoafYq~fAvG^P3e(#fqDq4L&U99@b0p)?Hf+B3FFzYGm67FF}HDl=j-X#!UFrM477x$-X}8%GOL3TNhX`f=xAkb(rhWf zgp$^8DJQptM1m@o_(LRViB?YLZJybZPqfk|kLaI?*y%A_rkfJXQm{e~W>#kino*}_ zg%9a4xu<=03v0!h9$nN+Ah1q``w?aTAKKmpJj(J+{GMcnWFRB&08t`Fi4qizv}mXj z1~eQdK`<~OCNXND2Td`yu96vom7JWU=FRJP=$2h=rECAyezw}K?TVlkO$eKCa5-r! zsI6&b+c!>DgHT8yCja04JTp0{-R*wY_iW_KL> z{#U7WzhrG#Ypo#IL#@ZxR?91cb&4)-VBka7*QGg!R5$}(k5kbP)${36jsZBL(_#@y zi7C730ILG*LVhaYH2t~FC0_G>w{S?qB6Tt>plk@9nzdf{f2 zj<4EPJ1cyL+mTc4u9+y|f=lf8*c=u#)mkMT<$J@K&5lLB{hLmj)vA5v=`$MqZvQO! zt%`$`!VU_gq>P=me-ua^MN2pWPMSYEZi|2-jvw|=;(q~8hK8q$(4r&jSMcO4wDF8T}}lao)3#Fbnr@n2d}mC zP@m~K#K(ZS^bib`f{Shi7yTR~b7{XT1|D8)@?8qjFgM2c;9P+bI2x}id`J~OWl89lE zD@q2SLu_-YZF^aawSr&X;M*{!vO_R_Oig*Bd{^qO%UzB9sh2-PbL=^EpcE|{8%UHl zu*)F{!C`E}qj_Z_x}lJ((iNR3L}mDo*DK$M%A}jEerNBYk59EF1c~mv*S`M0AZ5s& zN$zISt}o7rc$OL42&$SG?wSrMO)xS0NyZ6nRcfz%N|mj^1pEi19X?c$#SkQFUnwTm zg-9VBL-(eM^)*Rlzx#q3>FbW?9gg2T!aPb*2bH)Y`S6bNg;|6<)5YcR&+DFk8`4J} ziYRo%q=(rFraL;6ZQo35#LOu>-2n!2gr-ZHu;BS1hZF+n2t}K1zuu-g>=rM)QhYWX z8Db+m*A5yiG}mVeG{f_onMpkR4Jg(dL$O~M^0%Ym&koE-QmWiDLC}td{n7-6h>cmfB-K6wa7+^#|{l&AR2@#{ssNqBwR$ONs$tJzQ6{VSA@nrhnKO5DFjtGjOVoO zn2W9k|GBhMJERyNqwy;Vu>XGV<+Z6r^YYS+@7hdC?0dTSB$_M1YRSAc#&9ht5Y7nupSI`=YiiQu0w4PChyw9yo%D4@Dw_2NRiRw5$ha`=vHu$5?W(x!4;`YVoHM*^wDa zeg^hh4WlmEE@2GOarV#o@V#$5^lcz6I=`hnwf<~EH53L+-NxvI1qszeizf7WqL4Pk zJy+yc%d27-(NHC;xNJl9Wn9b614#Oq@Z=RQoYY6+=`X@B(bzqgz(4C8*p#q_J zp0~mbBr+ElUzv)mfRp)#^HK+2NFZF2zS@dP2;8frk8hTrkJXxdYOzS|yU*g>#_Y*Z}2wFRxBD^C1LBuIK{KD~`D$ zxAE<*VM_>liEmeLbbR=a36a$0L=FYMD}2YRKL*GL>qH>h8@k8Xwm4BRSS2atT%?ps zX^XD45FU(21LJTwchU}Cy(G3Xwvokz`u!VHh8x79Io?!XXr?qpn;RyG_+n~!XHs;( zwY%Yut+Ye8Zb|7|a1wX6(Dm4|OB7~5 zNmAi-_u4OGJ}DkG>7t$xY2pz?D!xBdB}LW@QmqoVrrRI{MK4d1dyiy$9cV62F+)9w z-x_~LVe1dZw(B6T9@;7Alw?4;Y4EL`ZT2`$ED=@|o^IxhE|$2$+j6~VaEu4OCxu4^ z$1s}ykteYL8JFU_=EIJX=os!{+yNAZt{NR1Ba>l*NJ<8W&pxV+(8S0C5*j1iK`Orq z&OUq{OYO5@I~4)?Af}1Zf7RvN1t@);qC`sMz&cq1+^G0NVof-C2~Pe)Yainarn5b8Y5sv7V#B_5(7JD>|{Ar zz?#rh-@d9Tkrjj7V>5QD&>+Urqr8=1&HD)z9d*mvN>stmjdHsdSs%n^T2RqZqtQ<> zW7`db+y9?Qm{%9rki>U1v^hQoJi`4`s%mAtM&k^~MK!APC|+SDy&|P6vUVEV4q~{J zZiLU$++A%rrzb{QZvS^O@^;?Un(o|9UQ>%5GnWmTl2mm-t;WgjPnmV0-G^FKe0iqo zK3?acRbV%?m3>701JQQMtJO+jwOA{nJ4U}L%M*QhdrXsOJn¨{9L>YgAF3TGLu` z)1ss+O2I7ZV&BoK3t8vBBD+r1OT`28cW&_L?j&z;v|QDiqdQQmwYn7QE7^YL3~$HT z{d}-JO^et|Mac`&O>@jEPB9)dXaG>|R<=ias3e;6_f_};sm24x*|ybC`F&iAzo&2J zInFBYiJqr=gbu^lBTXbc0sF$~a#MH+zHPrcLB2BEJ~>orfs!I?qc>}#`_PbmJIY~! zln_G!(Ftk5h)We@Opevj zqo+#re3I0myFU%k{3y&rL(2iy_5sHov1 zIX-qDe+2&5;A9x?n^sM7;Oyv4R(^)HS5c{|_=YTwx!^$0qHtSc^g>!mrIq!U$Fxm* zH%zzoX6?4}F^gZO6|L3hloZJs}HhurG*4OTfLwS!m|{@{LD&^~2c1rl#A2Y(BSYZS5_a@_Zh@z4P#OoUBP zcY7Rlw`aDtyH~RkInBI_=EL z*FFY`cV}|EWQmIVKxWBfT3-`{k@z`!((z z)A)d(hV}Pkzl%q)rXP#Z2ktbM98rKe9cqeX(J7A5xxW6YY2dAaQoA$7;h5iE?IRub zyz-O{uEuvmB-b8@V?g#o57r2;<8^Do_7}wKa||zR%gt}L(rJ=M@20q zkqwP)ImpC1fiUh(k{l4dvd8yHa1!RSNZrU>lUlOc{ymaqQS-#ALMn`?S70$nA))LO z-KF?UW9aWsC3;4W{XFLdRJ=fg{}H3{NrqP8TRVAuvB0vijTi*swnfh4g8v?SU-sz; z4!w3z)stF5gxEdVdyJRbV^$;Y7)y3H7xZ#jNDc-8dWWO#F8laN&i0*FHJAFE&<-Vx z0U@+I{Fmv?{!@*6?i=5-v}CB+-z%4FFK8AFY%d-Poe~=kR|)yqmLqzN&fH-1*s)k`LZ`#nAuESjEkXA%8!Z_0x>t30nAjwO6Rp)fo1B)Mb3} z=V&7^rO+2=is!$hGIRO$7K42dKM&xci1=K~8^|G9l%*FpHCoP6n zMiYjrJ{-JcZReIRwcEIrrG*!zg==|an?ODHz%_7e*?V3W%m7xX@VyO~&nu8Kzb7=U zzCWS4AjKlGEq?7p?vTVFecg9Tr~Z@Om3*q3eU@_%N_c5(yEfd3 zaoh-!4@xj;uDXucRTsU-SK|qm8QZ3gxviF2WobHXDp^x$!ug4>N-UpNWWu9P`5Tr` zWcuxz4*FUi@ibdbWnp#E=-wV$T+i88r6Ml)A{Qu3vc51;k~^ymU!3fSvXv~s$Qg-Sz#vkgv-4A5-*{|az&3^ou z^QL4PN_fu(^y5MzX0r&E0`>;a*%5;wQj)mgM%H)f+elUTe7E!_z@(r`b^FwqZkK&w zx7>n$PmbSRMVt(>mN7uLeT6a7cXb!=Y1J<Tn9RQPH=p>$4qkzEVy zbG(Gl@OCBux{mHPU1IY3<+4iFX^5b#Ud~XsW0CVj_!2QTh4_=Lyf%8VNVb*SZ+JtK zhY}HQvys+>3UltNp+qR)dx1M_o~Pd$NnJ*8BWt(SH{>Zr0*>F zm81$^do>I$`Pj@!5zpkT<0$gyAR~+{PpUvml0O(IjI2bXc?CBx#UiE3k$X}U0?KR7 zi!4qQ^);Xn*VrioeRsHZ5d3CrI}ZW_*=$~7!-uC)4Yd7fg7e^N`=PfKfLHkPJ=LPQ z#NHaFux05oC0102bp)W+s=~sKinwbH9Oj!F)~ah4`Cy(mihNO^>tGc$KF6+P@_Mn0 zOVu>Dg0KsRTL|q`SA~pKoov^#XEQ?6Rp`4vzbw!NmZ>(P?}SoHZ6Ak3nAiVcfcpe& zipAOPIK8YP_XWhu`uVY*jj%Aos_QvGCBxt>V$a;V$k_&ll|%f4H)Y01*JP+~SM7}r zgRqaafcRk!Taw zqYSq%%G&Kb3Ut??_fq@IU`qrwEN7%w$eM*xU(;*WQ9bQ7fRrWZ*l?IR?2pf3`CxD- z18NnL18gaqx;Vq?SDZaGkeTnY7H677YPS~8sz9#H=R7_q@_8kn$nY1>;d3&db2%7% z73SW|PZP!}YqwdNj+v#2Ji(7tIukPr?$RSLkcO2H5bSH~cDJ|^ct|+#>6m3@Fh*nB z3E{(*AtqVUy!6^x;ct5qLLcHx(>V*Ss?zN|ligZ&;yJ5kAly#7?w9KUi-R_eRQQgr z|49t#Db`YH1y=%pi zyC`;CM3*2T$I|VGq5oUTx!dhI6o<9`EBX)34EV9>yP)-!89O5j5}o~KtrxQAOof$D zVJ7FS%m^K4*oAfz^~=h%+CuC!;*u4mP{E6#8gcxh)T)?&PwX<32|wPaJhq=`jXjgq zdpgVE80WZ2ovfkTOcB6t|F%kB~zUgAspfDMY~z zxHgfNiH!a@NgCk_jcoxA>^ti(YS;tp)T^^%9T$b7Be#Og;Y*Hpi(ngrIS$rQB!xuY z>ea8iP4!|Q85nsz8L>5&8$b_SR_BV?bSLx=6r5a)7jq@DE~DfGcj7)Q`dr@U6!dI( zhw(Bjs4go+)Gt~L(BUEDLGe80$K(n^JcU&<^<2*Ao;cAL76P$W#shy4-L*%(K zl|`)Y!!#$%|c7=Or zvOM*tl00&beVeXE?m7hq51)Z&(-Gga#!-X|;#@6oqGX8HX%pkV)=+`wbJvNbf2sYX z=-!!mYED|+^}f?p(-}vk8hKe#z~1*8aTPeis``#toko5KC`6>eU;3t&L9q88?AO@N znqETKPaKwR5TjZo3fG#UKD<%rr^;jf0p{xTo83Zjm)MRrv7re~$bOfn-H*u&EAro;sjDGF+$bhUja z?1KmkJ{3lvQXI<0<9ugluu_L~BoMIqpF%;Y>rsk6iWMbo1T} zU&nfF4%sni-kT0B+i*rs&QKDoyhb$&4ObipdFkdk#A$NN+SBAWsctOI}!Z4v2EfQ zZE+#xhGmYl14EXJM5D{MQG__lGKn55it17BYy1#}I(ko0TgQbs{w|A4$g>OvWu#+K zZ^uMA!zymi;!b~;n)~4jUqKh9B`9PuE#bhOG>g0JPY~V7QCQ8b3^EW6R6bu@{6q8o zUF+S#QC-V#Oxh=BPD}eI!bLj z`^ouoYaV1x($Mw3u64bgs&IPMI9Z8<+)3F(7uR%En3D)1yx%&w=ukJ?kYCV+z92QL z7mvO3Don9l$@lfIN2p@U9rzCWg<^^Al5i~~6_mh&V7WK{AZO=275k$($Sdohwg1o= zjXydW7X(2ZduHvfuQ5Opy^#kvWkbQ>LSV*GeTlVmgpW@~3@40WjEB!p?0$xcOL*5v zKBhENBO4PjaqxF#z1`tA9E-DC4}FLQLO$*a!3(YOE{0lRB`>NlosnA;BXxa0QW zvC-oque?1nXgpCFns0yAHQ_tD9M+pzzsqi2Z1poV)>Vc!74Ea3icx(-V+A(irDrf)Ghjqs&b!7-7MAxD0b^J*1$ zH5U)D=_?x#hpv(O#GlGW7cV<^5Y?H$+s`Sex23OoyewX1LNpZp+ zQ;z-JDD4)w*IJ9bS?y+-_fTKLqExfY)3GSc5tomU^qjnWq~pU=3BLwK^WV(1m`jSj zR4FKSDU!c$r)W^{LUoJk*w4G1tywLfkFd=KL&X5zt=WNCDq+sVO4gl1* z)3|YGz%CmAukI!h78>O-Y|JIx$H<0YLn5v+thKS~l%dhiMo-pR4Df4HW4sc4BPj_N zWt6-oNHY=`Br73ei5VR+V-FI(S4|G@Z zodj)wrQ}-L1Ph@}g;_|{>aq5?g~ApNRxQ9?2V=tx+kQPUCoVu;epbbH;O*_Rqm z_Pb&bseIp4kv>UW5kSaP=B7}qvFL9kCA+j_-J{rb77cAkv$tYXVyPmf*c!~S@8&uu z`$o?6+KaT2Ys|d$6XYhP_IP?KGk+vYCcNO7;b?y~>TFd@b0dq@%r*Y3l z4^y#RO`9;9E^kLk|H`LqWPSgq#?qZJpKkjwYw#KY9w4wg9~b_ zCe)v8t(v&Xcc8W#?%&!eISuR2c9mRk3KU&`w(o+&n3vU`9k_t}FbC_;4qmWl#$F26 zpY64F8jJU5b*}O4-o#ZE?O@%w?Bs66BC)Gv+Tp>Sv|Vb=6JJu8vP7!)P1{r7Ce6vS z#ND(vt@V;N8Y3AaBpjq)joVnvS9n7qUL&sau&GZ$jhTGK-tJczGJXt6xn)`V-|Sj8 z;|K~2LOiaPKQsBG)&DJ?`SsoPZ673Y^({_0LdY_fwWhYd|N83tKJyOgc^B)o@T;Kt zP*QzO+F+?NGj^lh zAjFz-R+ns$CdLd=wCzZd2dq!0Eeoc$bY5A%pjLCJr#f>( z+4X0~8R65cneh_T!S!!;)wd<3^wPj!JN4@J(J|KAzk-a7TN1a|4|S=18){V>bg+IX zwqrx_9UIa+HWb@2Hf#P-qp68r-~cO=%z4I3XK&8xBt(B}?%}Q$I%78vGJ+Wg-~1ES zN-3YzpLJEO(ncnAH~8l6P>Y&7hP@hB-#-|d-MFWAdBdPu<;4wydX-;MtK2bTCnB8L zx{>Oc#AI<6!VLtXlbBN#Yz$)4=tp{fhd_v|YA*?Gr$WlJq#V;tVt$R9MkQ&Ty^Odf z_QzNemx)^Am*DO=mM46B{pg~Js_3qG(eUV^%IFgjf`mR#&AF=P@^A-XdR&1*`zKo< zilc~|)o=R_ewxYR=pk`2lF1p79Bvhd3E6MCo^Zv=2-jk>Jq0Qpccp7=x3o|)RN{^% zmDp#WFuaKah)R3Bi^_oQQ}b&ym5-T*l3$Sjlk|F%v{b zCz=p-i>tOTj?LqIE8t}w9`uRBGZ+~+3mWd3JKDlT)Bc>MRI~h`>3^%!e*{^aMAz)} zzn8=}sAo8PN8Jk2{w!b;^MpUFy}C5w?;?!Q8~lHd|0nr>g#R{~hFxg8!@DxXoBWFK z^@iLCU>s>uLW8QWyGPid!TS^&)E-H7wj?fC8+0w09da&?p1@w~-r?-G`{6=P;WBi2 zOZwH#<$tL^i_OKsU}}BMU)BaE@;5hVg!|lePv!~*mghUZ>1}k-UWPXmdaH2tP^b%? z<9jm7q0kW-r2QBeF1+hX@v&Sl3X&5e=|)-btm7DBt?Urb`nQVg70+Epv=!PbvcFv_ zyOQ30ojy4YJwjK1emNy>sJZ1KHrQ->oWFo=XVas6k)`cydWvsqX`7zrn_AscR(Bbz zyHu_2b;LrHSAj^=_w|QV(aWsbiLLYx+t{$-0V4j)12Mv18MB|aGhL%&`J$B=ZmzqVzO9G=vDF_bjl+eUjx*L4Sw48*m7RgYBKwMG zFT)mJ9grJu(g);0dIs5mltiAHYLOVEHmSqqUOSY`yT1=*8uZ4BKv z^xX8B6NOZjNEcqQhnZtGy(q)+XOyzhR?RFk@&doj&Cko3CIq^q)@1w zT3N{}OF=G~LtAAO8Zzyl>h`+D>fBO8wbW4K?T(CuV-g?4y}FV<5`2#r9y5rkG6=3G zZ_atfBUzMU5Ys<1h}i5_^RN3}W~oO2f;>$A%IbKtY77(^F0EFgM*)#ui8n^A-Izg0 zZ1>?o{FG8(Fo@NxZ0gWf*`V$qgZON>GCF!3+A14qhlabYD~p#L)8%yOQX_=AYfI>F z#@K})+0j^^8)P@6jQwj#jJC_GOm~N6a1B)&B?77qJu=bJxExO5O5qf&^0~_7B~9m> z1pI)-S*8k2D)~5anU|y`dgL-dPm~)3a|ZI=p;K>H^H_GvLE#{{Y--BEk~*aFy!>1?CXJh~|?BG6ycJehBa zJ@53Go<#Q*?q{|BU7&1F?aZ+a6~^k>Ep*nQmNG$BVTXi;)@$ginPZ*CnR-qM2vau9 z4*i6!FPH=JLDCk=Y&unYlg`swKQA{plTQ5BW+~X=n!h&x27Z5~e#ZiS%$X#SNKOA3pd09)8$Hd?aGZ_g3HbbPTBHqF{ z_8@A2#i3LSZSTL!jIcAAd!G>XiDvSxLY&5EQy5@zd&oo@0{Le=(gdUwac+&qD!$Q% z#HWzNgIpAHa?1HC$lGWvQs2_}Ch>6ve2hl9Vy*HFQLxVCs~YrGa+BCY<2Zs?Js`~X z4$UdC|DA-vnglf-Il*{^mG@_wiSQU%FUzTc!)&vTv?MgUQWl}tIz_XiDZqiOMk_1X+6DU-SevT zbh~M|^~8&%5#)E$JUsTq`u^PD_+^CiQS|qkTeJMg4>kYL(DO7aG#c>{a6_&Ifj%~m zoLxfA6+%RDsRMni*Ej$+sz6g;i`aSp7>Sk~I@B8ynD4T?hoSiI?_m6Y*TF+4$8^x~ z?NJ@P_?a0HVu^HRxbm1yH!>4pMJDSQArh6xid79i6OaQPQ7M{A2&o_#YuyX1W|6)5 zgsgLFEbm6$b>Y6GP)>c#Nk=4fGC0|I32o~`HJH#Q<(1Wwee0u0@u}Bdq^6kEyC%$c zO$?9qDM_++KP%$a z60f*2md3&j4F_*RT=hO4dE6y;qO!yV*t2Gg?q>#s2MU~<){NErV(cbLs}-WMBFugU z@u%!M3|YhyD#dzJT70+eR~!ojM!3klU6ZmJu|)mviOW?ykWFgVro*-C=#c(u^M^YW znQo@s=z|5UQJYV6ki<==j)&BHT5q!?G4<;UXwnoGFqfj;rx9(?>bQrT554))ksS9NZ( zMPPaP=l4z%F*&?P5^xsxp@hTzO>&kW6=YX1fLF_90C%U~h8JQRT=(WF0}g+W(ew+R z_)gbsl&7(Wp}X=hb2+z?{KWn)Sa-l1+thvb&)yYPXs@*oQ81ZT{9U}3Fw~F9^Wr{~ zBFMbOMt&(u3DLXzPH*}ix`~HZsm)&^)<#D2Z26%A&~?w`tGLw!lf+yjo$8m0QB-Gk;K7eDT+jx+$gpSDagRI>ZRylSLsa1KA#Rn0a+tugYwP%7DwH|ctCPf^* z*SJ`U_pI_`2wlG>J>YFthR)HqyE4I8)dpo~Y-_XjG1-V8*W7@8-8*VYySH(qtk2Hk z>ozY7PA>8lcs5PRDe!KZSg4?2InPNviQiGGj=08MuCf7Yk0S2TSqR|;zEDb}b{}E_ zR(YmX%w|^>Y$Pqy^=o8^(P@A4t)vc3m?>Fw2cqXUbT|a> z;9kh8@Z!>=0)hk14)KPX#L&Ctl3`-85OXn48ztlwx98f!D`3*&!m@0m)Kz3 zu5^gSD!U{up~cT)=zvX635L()D1qV(xo|F8gp3%-n=i&|Ji3~NeD3=irHKCU`OhL1 zJT^p%ijPAgnGi0*{2{iyBSGmNs!%s4F1MA5;GKAsy@Ks3^d5?suV=Sbyg=Dmf)6FW3 z>#)%Dtj`;BN6esH@FH-)`Y~=M9(_mTsc;pLm=K$0RcfGUUF&!5b`%a3dtoXu+v@-d zvizA$VgNQXjiIO7-$J&Ba%tCGBF{{u^-T?NJF9lfKZmfXjEODkQB3CmKStADndD;P zYzTN@O2Z}M)eNS&SvZTFwAy4e!2QtRuy8K(d~+J0#wMCug*VapAI+^d^Bvy>x4C5_ z-=gCquDp2sxm0t9@L1*!Ieg|0p)7Ps5jaW7e4V|_-11c(pwQoPyL@hu*QN^GrsL6> zDg+!`dA}8r5*WLIjVJ0N0ID$O<4^n3M0AZbT$N$SOYds)L>kAXQzMdl@&?OmZkE9! zvF_DD<#=zZ!q$u9GI(P(j?3gj51*h4AolSxUo{jiD6>I!c(V*v$1s^18`)uo@b2g# zs4{f4^sb#U1Q#_J!g7n$NwNwIu2)B<s0Y&{MDvE^G>%pkP3x1`BWIdAg09^ zi7)Vg6cDOsQlvq-`9fv2>#S&&Y6JsGmAg&1s{{|KMWgAvEbZx?s?~sRhd@AZgR#vR zK0eaw9h!I(+N~|RI+8b#(O{WEOV2Zs9>V(hUIH{+wxmPkG&W!wumFon%>D>m$qB~ivuGf%5fi)#FeB1pyLa3K6~ zV)z#V{E6`ml<}HP0+KP%R!MERNX@OXaXP(Q`0Vt$a}h5I#~_Hxj^qgG?1^3_x=p+# zuoNhN)jEPbQakQR>{Z+drD2~eeOQdnAOdGxBItDO_$v+bJI)c+pT?=upoIzY-2@#Si{B zj#)rMzl2S%n;JV4xP>H*oQPo7Fw_YoUl7R~)W93W;~{TglyO^P);`E%-I6{Bv^2_V zotAcvv`b6*v?R+aE#;4G=}qfs);m#f`w~Qvq*hkqLy*IzmSR=2l=zC6WC@lMI9rjq zw3DR-W9sQh5a(TMhB;u=>5xlc;~T>@nIifY9cX5eeKpH++MnUb1qnkqdb%%%tP$ON z$aDG-bdc5miU2QmKX?1i)Kx+WRhSFzA(=|IT=$exuPGSrpI(<7J}_h*jb2IVi+p?Q zxOph;xrdGz{yqsIk#7IxCkTgLhmh*WIGpf8`sE~urF45A?`TRj`7)EL%i8ZdTI+^( zRpGKxxkUuyaBJRr^`7Q}slGGSsIJwB@}dhGsNr=~&yJKN_zu=wDp~<711IR9MA{@r zg(bo`>|P7MsRj4uiBI~}gqDJ-#DE|P>Cz6XH+p%*lkMAGmk!;05yD-lD@^x@Tt>C^ zdFVLndXeiLk0v@#j3jQr4aZmP#omCyuy{;5fR|c%yO;^#hIoP*#C6qa2x@CrSOpm@ zNh;3Yh*nPf)7AQ;x%EULpgh~v+}nJ;wMvX~No2uQz8Y^GhT;;9EEV^?fc@pK=%eLC z{vy;vOw+5PEyD%WO~X}_D0vQp1;b@sMHE0J;e3WACYV4>FT5}nJXCl6!YO>ze08Ci zl5Wah=;Wg|eW8nw;EIJw^09QGTRtW(oWw^cbGr<=-Pg`mbI+XWx`cGu2H@8MlD)GmaM9SI&^_4wjmLD-| z@C!JZQ;=pnd@a*}{er1lMzB)oZ>$eH;Fm{GMd)&0aas^DB!xW0HyDK#3~d6x7`J7r zIFFau-9D9LeF)Hbbms-<6&x! z->MK-(@*)2BnHoK7<@vu$=xvc442YJTe@I!;(?_qC`hMt$ExIef7$8=^(sa1)Dl!jUO+`9kmcavh_Mvkk zD<>fucx|YTxHYY@rTBGZWm2@8K*cvFh}EUv##y00!4aJ0YpY3vWqw&;zaqzz&*Uhe za*#L~@q{Ckg?YB?Ysf=3GhRC3zbl>PKbci<(z(;On|c7$gd;(iL0jy|)9t-K;;^2l zzCQ63lPV`)R9kdn?x{B~!Gp|bY-6Ul&cnaLM|kW9xcY>TKsjSHi{>LX?y1{lz_1*; z*sT;3VPc;YqX)z?40q~w8Ru}JYeouftPx?xyS1y<3Bbf#IX7Nl1wjt}7`{Hes za>_GmL&D335L$f!Bb)I*GqR`(`!K=U{|njD%wY~z)IWW~!E#fl+CRr8Ua0CT5ky?* z3uSDwhC+mJAu&%{kzJ)W+^g-6l=vpb(EgXUic%O9-{V;*O0y43Ck5$&)k;2gEFfKA zdQK;}TdjL4>mEko!K;Uvi}bU20Ivf38azsdI}F%~s>21Mu86@)xMu;J@hp*^3p?B` zc+n4hW`yt9jYaw!{C|u8N6~*kH;4x49lZg!2d)n{e`b0eXV@5+>ubX_GYDng<_#I=5S%m-uBr{9fJ&|FC5#!yDhWSmaAtGJ6hlVe9pFuXo>pHhWM zu0gvx)?8dGY_MB&yHI+GTh%PiMrKKAXzEZX10*9SngQ6djp%x!K6Ng~97-v|sa*HM zmtyA;5a2xG9}_>4Kj~2uEGb0|vR)5m#3r|)=N=$;v=qxLNUG^krh?j4hGjNAsea62 ze5oSGwrVoW&EMylx#My9+w>HFjYk9)WFuwi#W0fZkDO#<5P&o)qZA4~^Z^e-=K^6Q zu(VVoWWdDIjutQ^$oG9xof7e^@f}*9;`?O%yol>NzTPU>^ebtz&K=qDH07c*BCZPp z_J`|fL9%CtrdVnOI;3y6f`vi-h)WP7E$R$ymGKr~swER+Nm-shvyzWtdz^dt0SCAusa2EXBMi^<@!| z6b@Skycrl~_#}j}@h`3FA|Vq!X6B-Af~gd9+feew1gA=lZj?)75}SxiRZU+@B3N%e z?lB%phQ6ezgv^%32|NYlTgu5`KOYLo@3}QJDeUhPHzO$%+Le7c>bl@?%A16|o*JBl zEdBgnF!^v-SNr4 zNuSo};WF_s>5~Y| zC#@UMBe1|m)32ee&5iDhSGl7Xusc`*oJ35{&bu)Kck)Kuy7S$mw+VJS`|x5bfpQZ2 zF8o!O!%T=S6K)I0nrBUHIe-3iX8bNoRF*J*t<1PB5m6|S58_L-m(fguqR7RtCA81H z*L86oi6*W-OuCg8?R^pMQG#uhR4qr?Pwv&`a&p$IOZ;U}2*jve`VUxx`(b!mCFw#k zD<1tL5R|kcb@O<;5n3COjBGyC!^z#NEe^Xei!*XnOfn?ZgA%UvnRPA%Ut#I zL!lYm1SEME<6@}cF0}H`fvdy2(v-p8R)8)#x6)%jc6SW1XjgZ3fb50ID%iQX)@6SH z-HPx~{0>EMC5%V08_)0_UyW@%R0=lWJgOGIL5l>e5F*5m6b>6iv(~lq>F4rzKf(K8 zGw359x}AvXoyqob@&?==?}sp6_M6`Z*$i6<6NiAN+0YeYa$K2oE5UAS344W=^SQ@x z09e;U19ETNSgW$cL@zD1AEN~Z##m$Rbc^g%?~*=D<-KauO8ZzN97*H9k!p8pZ?UcwIFokk<}n+wx2g%S)AJxPLC18 zpu2{iZ?USQuR<}fPghR;mA9KstsG6AC>*6ISD&2JE#K#_ea8crIf}ARm72;}(ylr} zuS7*}!AxjZDt8NIa;DTyW{ogb_<(FMWl+9pNnDM4LgJ;`C`zHCNYg=Sa9FC~FK|V&)RRZr3=}nHT zSW;r)fqkTm8F$jiS!NK?GSLGqH!XZzOw*_4HmBxTo23%kD^>E$rauwAL_flgZA!TB zcH$|+eRVXB6M?FO<9)`62%M5hWirl%zi#aWDCXsh&RUq|ypTcvS3 zo39ddI9}3dbW%(k2x7VA6kHg7Mrz?hAfuDD?H=H1BUW@xe3sfT{$6GxFV#$@vzlr< z?G9eZG}I)S2aW4@2+y04+&Qc>qmBQ4JH#^Di2Om`M7HxiYcB+ZYm!{br?i!`-ChEH zr_8SP;^me(JELpruit1iiM)PjtL%t$Z+9ZrE5n|L2;96dcgO&(9qM&{f=_{F%_dw* z9>;=GIqcTv2MTO6{La z(lZLaK5Ckt$wb#mWz(e5&~xEuo~Bnvkr0qi%B;S-k7@TYBf&fmft#Zd-E_36GC_~A zGx;QV7X+T~>Jtq9GAxR^DMFBolVrfe7BwD$x8elKq%da+Yd-<>9&&iL$kVG2H*em@ zr@2Lz8Y;R`h%LyIxmL>Pqsl?uaIvM(lHgP@@|@Y?C#t@M@;aKNkp#=B&hg)Qh(q79 z)PQ6^l<;ngV7*wQ*|RMpZ}bQ>o{+bA@(a>0v^N8*Abq6vh$gE61cgdKLsp&3Nj{g* zzgcQp-4C%-QgecyfehaA<&A-3-XfBcb|q-3w41F9%YAY$jnl02^k*Bn-}SjxVxudy zProOvRJlf)xgy?-b*sB&?6NnRvIz=^v?>;`_+b)li)43ZIzY$VxX4+0mDjH~b8=%nrJjw4jQC)`HLZ@kKG5&?I~gSh)NS!CgJn zQ@Be6Hd;Skc{{{9arKpYC=wB!e37%QBw#jmQP_SiBp@O~<)AqCh5JGE8|l?jZCRV8 zP)FlAQq8eQVP%*NVyN0&Pn6&MX{qXG^!RQUv z7HLC2(_88)ve)x2zNJmFo^qM|o=eBN#~rY5lD8dd!@GC$urpZ@x^5`?8*{5HnEoZl z^_}6_`~0bO{{%j|j{0U3WPvOXw6UrleZbnRwq}RySf@j-1T)}5@_==^dI2XGkrg2N z?>G$CXXjgl(nN{Yl9b0r^jm6Yvpy*)ban>puLfl)rMN8RAT;ux&^BGf+A3WamNa|j zMbzZ-potm;ziq0u6muuO3Nw2ec5UK@FW$jM2H_ z9Re6JAl1*|JR$-ai%8M!HaE+AkqpSA7Bya+#^*cG9-`hN9*3T&YBB2mRYG$_CMy#v z=c)-0jyEDtKyQ{HS?dkhGaj1-w(`j1@Z-GaAqKs@m>e$qt$>CsnmRdmP$vSD+!iXe z@UcqA$Pxn9+A6!1)d3wM3ybIb!zr|)cb9Caz0Qt8j+C@w-@N`Zhf}RT9qJMwS4W}{hN#j4!Rz%quwVMD%`<>I#f zUXmAnThS{Wj)dq!j(O= z5IvssKIWR#|(AWI~8t6!3)4( zFf4@Rl+Y#Wod8A$Jkoy--!pTsi`_Gm{c$_;jM0~jCw#{-hY|)NCPx-g-X%G9MSwpG zSiofPSRtNF1-*D0r0v#M7%ISH__Ff1F?6n?)XveA8kIg_tnf<=App_%wmRo!n zIv420Ry^lzW3Kb?Gm0+c+Gdp%_laq_BB8jey*b&&BbkCdltW^n_ArRN3PiE)U7f0* z9OaH@Jkm?Mn#zRF`+y%@Xb*4U^TmXS;v`yjH9tcL0`PNllUUiBkr(Cf=I8l~H#e*q z9^F&8ToHsCP3nm5?Y^1@*oE;OO;Xhnb#^4e#2SqfSFk?Ef$2)W@ltZY-nkqkpPXM- ze?9&cjNDRJQ`E`YW7_>RV}+y>as z=IRTU@nB)>!Nxp(%o%>mj~P}cG$T}r`%T#uWsBqNSm$9s19lD$By0`=48}Bib*o+l zJt@o`#j2|kJ72nrd9TJe&HLym23(r;+?*DJuPEO1mbtrKxZSIoBGGJgAP?KtOcHX$VK$_Quy$dkFY)LIZVcNWI$_yqS;) zu;SMP;%QJrNG=rFwFp%-&QP8X$80nq;j;;~>5(Pk1Ng`xbsW;rx8Q1K|NC8P%z33H zXe&JS2U9;gV&&PS;sVDUn+VD|2K@|=T1UkX^~%_VZ5Et^k0Uy&fPMF_*vM^?A;`#k z$BZ10#%@T<(If9sBezG5{I?Ja%Dp=UP(95oG` zNuRkdMOydV$jsesCxLq$}pSdGf z%5RmnjYqsx2=9>Z9DFA~1h+~Cn~S$D-6(d@FymPqieBIq;{9CK1+H z$Gb&=qYu0klmnk2${mH!jYgTEhTm>+|AX*`J{wdRpfzta22dlcBpb81V5=S2@V~rj zz2Tv8a^K1_$$h(=^Zl2bxo<^y5d4~U6*aF#PS9;@t{`+-sr^Gr$f+nZlucihuoH0i zJ{d^~)T@jnlx?Y{u+$h?3biDQ^!hX&HWZ^0ofu>G?;Ad@b$46JUX|W&x3*{GfJ7emUMzUh=HPjCdNz3IP6WSpFL&@({RjyR+ZxZx@(4k6(zzeUEH~)W``?04(0n;jy17NKZxN`=OHINlEGjOaLS#-;o7mf$$? zHf7GqI*!xrw^RwqKd&rLSP~}r1;Y#XJ41SG9b6Wl8`~FG8Z)Pdzo_2-i#g5akgNXx z=A2SgiT`;{kwxV7N{%i0b~v3cnid)gmcwi9Eg2m|W=*(1F*K=gwLM%dU4osdRm$Ge z;+mu&&W+!ubJOwYu~?kwFJ2|w(PK+{*B6aJ6ld%?p^JdJ)1!}YB=2mv&sjaGq|`n$ zFf#gRMtIN_I=>}ZjbRd*ZY!N6#)*{({Xw=`of*~YQ1Cj!yV(ghaenjDn_4jey~h=> zj~DS9qPz@qz5EOqU9XZnyrUi~$wR6AAN(j=qt9PMPa~_|;r}znGEZSRL0%cIVsAKu z+a;AKZU0D^*fQg_R$3A={Vm8YiH}q>TgZ2RD~>;y$9z z{NFeIk6Qjm2}h^z?>gxh#a_6ki;(iPuT||dTSK!kZ93|f-+x2yc`9`|g(z@TUTH7Y zRmqFq;|LLuxyyFTlhJMDs5W}+4e&0!;5>Ah1itkoN(}3s?rAdeJ9Z)UxBRY4p-+=hz#Y!an0Gcf&6@tV+b3#ft>zvX|GW**{0=Dv5x z|7v~BUN!euv-}U4{$|VHZ2F(2rqBOu%~Bb3(P}m5XCVpJ%h&i~oIgAf;!E4-%ZX!E zz6pU8pNQpuR;}Ym|4+*+#_=K^RN9o@@;@yj`3nzP3jWf}M4x7WlzWkn7m1PN2)!2_ z*DZ37?G4NcR|JAxcZtc8-zH&E_>LD?qF(-s`P6%C^buC(Mv@txPnHWu`li(EWpjN4y}4Y~VvaG!1^F<2IBK|!khHm8r zi^$$fTUe177~~7O!EntB&YG0rW~1Y`zZ&mB7-QXoD_9fj;iSM-tcN?*QXJI%Sbl=J z!4lM6uSR^ZIe{m1b5Q24zDNnRWU2A8-3#MoqwlIMK4~uFrJARxVq|N&H?dKA6z<{G znm%e2qgJa@x5sLw#aekG-pVz@t&nc==RA$gr);Dp?!edle-=??%gFnhQ7gIuDya?M za{%`FaLw}$Y-Qr7xBDdspzdFZ25@-q-h;Yg@18et2zZ|9gv<#V72#n0hc|+~&d)vEM3|0BISml}ZJRt!fq%#E-ESl0WlL_~siEH46TBW;3 ztr7-dy>>gXD)cH zN(oW{!*ey*R(jQja1ka%XGSlIZN+_~wgR9K2#qF!LM6hy+O|F~6MT!40tU_UKM8Y7 zd$xkLC+(l+s5RtJ;&>cQrrysfsdnP#Q9D7T!CpJ(Ms^~)Xk-KK)RjL6sL#DKY6Iec zI$oMMwL&&iZt#o4HBTuw@uy7xI9%yh5wPO}3YxAP#@yn~)`KI1U&u|0(iL8uh*NNGC#0TS$BHxV0 z200eFF0n(xz{nsaWFu$i&w z&0;p#&{Gf4jgoudsA&+RgtEL zcpO+KYQ~6)#~4^`KZS^rk>sc-jlpxYSrkBhW~7jPJ!Q%wk;kcxhM~!$UP)WcTmD&E z6jj7Ne?FpH`#CEJy0;In>>V$ms_G`?k0~^IA)F zhF&<_o>*k(zQz`53kz8>J9INa`w*p}HCDgB=aL15N3ain`$j&<3ONYm_jWH93(mCQ= zxo+ktsm2$x)`>CxZ|=vk(Fl~su>F!zL3qGyOp@txH+?Ca zWDxf?T>LUR;&G88LNUes`qcKg@z% z*?TI?f;TV%H49oJ1+688fk?rwPXF#%Y?l2RQmk-Is{^OQ{X>HOciA&|P9)%Zp`N%z zcGXWSHY+y#5WdlHaU zjL$_jvZ)hWom;iE2PsT=@Z9QYL|Oh`3CG6o!C=v~_2x%kbJ)M+L0LSCFF8y4lg0Vd zW4a75SU{%kIk1W2{*w!0aK8H9g#>!p_k(F-k5_ptxzH-l| z-&!Zk@&P&ud2jWF(rPXtzR&hKjycREO(MUg9qNuOAX}^V#B)>jR7eaJNrPFFL<|hm zRc&=Vk+l=QTYnn2d&bHLPeOQ%de-9YQDM3xxq}sE>e?l~KWzGtcpeh@EFP9uq~zA| z?8Bv%v&tfCQq2{v$dd6SKX^@8?q(8gIL)HD&E7~}v6*+HxiZjPa+AfEf2x<)-bns< zGud3_YA$tK$z~}9VY#^+#@UW#vX35znH0PXWJ{zI+wXk~*iR?_-fi{+#T*2_?ri8&6ro`znMDcZL$VMpt0ZxYzr zaHCzUf2OOSsdk?HTq6!WBG3aehBmnDCD>09-T4aMmDrj51vhG`2WqSg&Qgw#a9OR< zRZ^k8Ht`)oa@9I73uWh!DR!y^m*z&{bPHA^N2P=+3r;Pv7hsk1xB*xX*aLQrJ7eJ|1}5lZx7-CB1&(psNoMEnv=P-1>e zq9?$O?U)PJ!(StV;2=0K1;~UA6+uKs0z1zYe}Jp8r$DDjDC=1?;#?AaN}1SSP-5>u zLLo@R%K#FhCV@hPn`?tkkb@ti&>DJr8Sv+*R0S}!vp^x&19;%F>-2e_^wdjTpr0Qm7}s?{W66$rJn z$ZM%k3#6oo723*B6#mgk!2dLT7y~u*1jZ5s;D)BRq<@e?%oYh|S~*CY%Gyu7U6sv> zjv8w!E41b<2dRS$Egesh+*j)ViBN$15Is+v@0t)2$)7uPJUXj#{5tnv372R;`pp=p z5KOIfuS-?WHpQQXk~@@93MnAA^w4Ug>A(1EHXW0{Thf>#N8gOt{G_w8$}iI%l&Of7 zg3C%G%Bs>fJ#P(hcZ&WsqU_F zW>tR6ZSu0b89MKhbzPwS*l6EP86K@3XSdB3SKd})Z@A+!`P8PG_OnoceBaHi?C103 z9H-)4r|dC}rtee5r`{P&%~E}KiCs;Fm<6sZ&u#c*V#e{F)c>aLQw$j*O35;`RXu+z zFgP?%ZD%l9jWL?9d*IS5h33Tjo)S4*WDubn5#DLzspulz?%1l6OQHt-x^e^21hz(X z@X-V{S?O4JNyGLU+JrmmixfO0H|DDN&xkC#JXy#S1fY5{IpxhkUuor+DQ!#mK590D znzxGD%$_23D{qUas`j4GzCOtVYwH_o+A^LJyIcmO8~dRut*kqwJvH8Tp2f$0wJI8K z``ceodb2dIPLPOxe!@P?OVhTm>l***hitfN^TYAOYalb$9o<6Jp{;WGBFa*m2u(Y6 zIazBQ{*>XbolUXPZT)CeTY9;4b19#1uIdY#JBH-NQn3A+K%`SalZG)%nZ+>=f3Mw@ zOEFBYjxdzi9^b78JERuVz5=YI@LOT2y_dpe^U{KOV5wFr6l#_H%W~W4n8do0Zh*Hk zK~yyN2rIv97CkoI2U^ORZagA!o3#bbkKK=nU^FpQQW{Z~wJ}Bi=Nkl7v!>D}*m>8` z)`NVD`Pa^owl9peeXgLsSgR5?Hnc|f1d-*McYesN=NVf0KleA>nf;6Y;VHbt=F1d* z$*1Z@w+`>3I=kV2ZuSeN@qC}6sTu4ogl#K{4c}=rN!F6Tzr}TGD~1=RWVlrqQiu)K zk$M%#N~jKfs6Lu6RL3wy`@Z_QLol8yBd65ftIK>}QN0h@ztLp`g{v}xzwMvOL%E9D z^;J}QzP^f>%R}1omp~1!GGk?%ncQ7XtBNX5&))OOLFiTJ<&x4~<5v@)Q;1L58p@}Tl6Xm&5RwojV7oP? z=}lpVi<`^DNgy*X19p3Lw>Q^zx7~JEyQP4aLMFIL5DNiWjfI~^%j!E0+lInI0x|RZ zKIffDg4*5v|2}^{nt9*zp6hd-^PJ~A=eg)ZVlHd^fh|#3hq(6!-nn(Y6%8fqi%vt2 zD?P!w^Tsi5x}lv5JD-zU3$|OU%}S2RCFF&~wcthT`oFu1aI-Dt4L@;v6w686P^AIrPEYa|L|m{*d4YsNjkAm|k-K z%Ie@QKaZ6ij_|ts@kUv5FG#Y`ILKfB0pW$M2!)4y)m-8=R_L|{dwjDq(227{d<3sc zN*fo)H)q5*J1D19uGVARG4=^}JwxMC7QKWhxx_%h!BN}0(gT~naejP_*7hS_q>0=H zyQ+PCKOjR}VQsRB8GuI9+GIsDhUh!AqwkVC1xQ7e>uhrcgVDb${CRG~){Pu)7E(Bd zBwQ)juQc5rK+{d7DNVP873f4wH(z@0+3Eu|Iv4`h)Dmtn^r z(3kY12(hl#?O{o6-D2N2u-oGOT%qf5V~j%+1;XtXmbb_F4E37N>m`rJcz7%U<-#Ga zm8Gk)vXHN(Lp8=fm(biI)f}4zyAAKP#NBzH&gd5j$fLMxqj`i$>aX>?@O+kcmqhMh z)k8v}UHnv68mE!7ns<@EA|dZCZP(A`LxWY#zFA47Vc?I(E*iaBak zQ>7v6Kr~N=5^cRlH}oF-u$nHRGc(7yd9haJO!^aO;Q}0dW?(MQ*$m;v7El6R`5R~v zO7#_3M@~0%2}5T4Z)Aq(dxnsVe`#;>gi668Cj{)$qyd|K;6JI*P} zY-!>=3R6dIy}y(2MH$A|L}r6`2VaKq+ePFK9ZVhpD^%A+!dN$A>|q*N*BJ?ccU*zp zVeF=eQqdjL!e2)?A7+VzaxHls)y5ae5-a7%R{sifh~wqj`n=Rl#G_2b4PAI$O29}7m#26tD~xE7(s}T=*e&b4 zM4q?RM>-w#!D4QkL=2Uh7?JKq)x-N45hTnvU4Gpx`m#5OjK(X9mm>R+bG|^UcTo7R zETUcs35A@fZgN7Virj_A^D$j-rITNV>~x%&j)O z807k!oye^xR~vovLC%<#=;ac)om-Ngc9$d5%HX?x@z`kYXym<&^r0G~j*Q@%K5EF$R2%!5wil1n zkKhTxE}_(q;Hsr0!Y2-fxp6+!SXdwkyMZe zf7GTt&GgI+lSJrwrL}JvA<*(C@k$4o_f02NLeNLv&PeYi;$w^i;?Y~!ml8=SVf(#m zdJ}MERqDgdX$v}|&$HeXOX}OAuX_m7ClJvH7svI(D0H2^7$<5oxBt~}kuUS6U!$*h zs5+coWc;1XtZyW|B1_u~-?*UVVm$K4jKHXM(=`I*qtHAy116uDzahGkRkYE?HCS`$V8+wWax*kLhj6YA+nY2wXe^v&KFZ_@do{KT`3(Kd~FRy?9<%T?jV< zGcpBMticC+0y`A@$%+A^StR%^6zs@IV828A+T<)KV9MQ&#_2qFg7Qt| z;G@cB=CDl2A&cTeIUqhx{g@cD*trl=8yS4h=N*`Be1ln44^eBqCfk=iep+vnOM zkRI_9Y0?a17BsRUWpz*LD)K^$@W|3r>@Z1Dsa#JKQ^6`BOT}v_25%0fiEk=33m6YP z!u)SqWo*b5UL{=aFs_1P=||Q^k9^sxIwnes`dQaSpXk)ihFKz=S-vK|DKow~JH9E~ zNPCA#c*%LOUjl7Hk!izpCuZIcoHarW>4Mu~^`=!D(XTTS)qgcjVvWGSVIs9%KN0+E zUSnxa?@7bJ)DrzBf4Eqw%q#Zzb;j@o2o2da;LlpNz~JvDNxQtSyAJ3M-^ zuzs>YoV~^`IVRAx7UzXxr&X9yA=wWK%}#iSm+m|Dv&aS=#{GO_bH1kKF1XZ-U!w`x zV^N4NUagm}$}L_KxYrpEPJxOs^T8qqyUcO52b^QCMx333sxmzRc>pJ0w;OMy5Zfb!OQnwJZF#DOv}3OoCaoA@NJ z;cz1pY|L<6B($;bt_exc_@NNElRxn22l3^uwVuY`Ci4CZ3Al!!yL*eBvbb;74)jMZ zPm0|@_Jj#)h&+kxEj-3n>1#9g2?DtKwfp||Lc#vb6&yjPKnT|G6~%`ty^cqt)*qeKEs( z5l#6GR+j7&s{B2r6xQ#K*vCqZ&j97&6)Pl%+_o?33fIDC9~R$?+$aAH)j(~{h~g!# zp{7p@6L46J$2ZHTGAEbuY___yx6pR90w(7nlIvZhIk4~YzVeY-ZJMjHWhOIu78(@YMJUOXVc#py!mSDGcWi>S=_VL`~l9 z3=`K~D=4=0O6LxyDO}C)zB|T53;c-B0h7GM(((n_xnMG`2sBdSSSm~+{+CmPIL7Xx zEg(`(rb80J=1^pK5_@<#1y!(}OhT-&%+m$oa%5*jC;muHaJk($aiBjgx6fS}<4Zun zzf!N2DK?iRF(A0010$;le19&v6diP((S@_m(M+Lm(Kgm!*@(yZW2zdILkwd_B+G+* zV{sNs7?xv+kKT7>(<~cVp;Ncmptk&2fk5u_uUL@uM~H*k!tcwf(XDY$MtozYel)%@ z+n6hq{UI~U*1@&fg0A8anIsdf%x_wwY6NOcSVLWJ|#N_TDRx% z3LLw7pG>~Isc+)g-+h4-+$xmm*x9fU%nVv)uk>L!EI|Yd0h#R1HlQa}D zGM*FGRmR(3tCvb1SXoak_36Eg8{MPxLjGsS86_d|o1N&@#3}r6|AeQ9too+tsenL$ z{{?WCm9$8>?GG$1^Y{hLTEuY;4wK(WEr{K&AEUVokxNrr-w}ShwW}c6)d(M?tItci z+11tc=~WplKGn%8CI|v=PS9GTC4P(LN|dL6vT2vWzhxL3xo=WTe&CEJpu7W}VV@O& z%X59NeNC*{9k{*DMBz$bz6kCz3$-2)V>t)h(;T5uQF?`+nMC$}!m=<04e;|8TyX18 zWb>l?bNCyqdIcNrjafMV*5#0$jd4l*n0Q4z9z=EbBJu`EZ!KcTJ`6@&klyh9bOF6* z2`ka#-fbBWCpa%^;m?p9-YMZ_^4N`W33x)gpUCg-L77?LhnHj(<3l;7MQyY@GBk;e zJhqk18`sjHxG$4~4z=!+O8BI$Aihr>X*98~lRGCfZFlUR0Fm&#SEH>fwWMo%+lmTM z`#`lSHVr`NMa%A5}KLlpjG%jLx)FeL(EKm6q!$Ppe!5EM*)fMI}y#3bQworU>WM!dSqeu z&n--u&jASzyuB=DYbdA{`xfzrp#`Q$_Ocd-l1|6`-JLI6HXq^a~@*CPwUI)a3Gna+aHfzi-+DqqGST9j!cEng5&z#9fQgK zWB3E=y86A>(fzADAL;&&bi8!aa%_8&I-C2q8yPL@kPRc5|Jhw{_y`pz7h zX}kgd{ynaPK0EO(XXras2eu_UfR|hIE52Y52SCIpO)6maW7q`pHk@wajLp6?@Xn34 zZ*7x_*3HuPCzJ$PuYeient=%`s&S6MJxj+37eo-r{RpfzSp%dpY6^=yc0l;I$ zxsF1|cX2^(FAUqa#U8`OBqx*wxF|npx+pK#w>t41-TJ4CuY*U0j>vmcaJ6$saI4eR zoYOc-FP{^;S)VDmCzYb}GUJTXcYT;R#c;oCW zDBY$-MwH*$+G^u%`ArC6@rIFfzfD8Fxk$@fBL%my4t$ve`GVMoTZIOSi*koCMP1fp zDJ)DV6#AU&EtctAFv<7#*_xDe9V}HFtVn?qYWz)3b1)mH>PI0%iFsNrH!=jnxOU;8 zeKK-hPcq>0UYY1gxC?q+GGtgbIrMU8AnK2O>VJU^0O(#YVhkIizkuLW>TAVsa+_a> z&sb;DRA*v0Cb}{AFLZ<>->L9Z)d`)|_I|5aHUQf( zRoYn{w(rvIf!Gbm!_=U-WXg_ZNQ@Y#Oi&J}27~t??44TYau2Y`qJ7J}2MC;5%*L99 z%BH&Al~BOM;}9WFq4*(KDtO~|{tR6baU}wuk2Ch|BJ2#rGn&#(wL>MbXkEPEOB+`C z{!`mqU=Ivv1mk+AVR6{qE0WUxx*diIZwfDQU@2rNRmfgYuNO{%XE?>LlixS_grD>i zk#|xe1L@FCA=yRHWHEq1i+04;#d8A!-X3=rYtFJ-yPJRq&vXSkIW(7|HS8MFc6^z6 zZCGqHXN}*OC|{0jyqrdSy$#dkTI8pA)CfP45iGh*FLDMSo7Y`5-x6F9c0$t~0Yl7s z45TkNQrGMvR&CKt!Vl>7)?iVV-fE$3p~gisMPwKxNWxwsz7-)yZbejX2^Mj=Aoo5g z!Nq!4%pOdis8m`ZObqP(3t23oASTOkj5`G<^|rt~k}mcK1M-RPzMzO~Aj8ZUUXg=4 z{5mW%Q!K9T#>xBr_USw{H9`aiQn-k}MiwZdv=O$BFX{m)EFa=T$xX3T80T)i)nYyy zi^&=Kxa<)9=q#cGFDQ80I(a3mq00bKa`GZJHH3~ zTjNr_Z)!u1d`#F=DG}=Sz$Z~;R2JsJ&BERb20*Vm6^Ow8oyP|{t>{dL% z8~?$rk!sa9CGbak;9v&E3h(K4EDnr`h>8H*=ugW+d>4EgR!_Xi!Dp16ZjGohJ9h^2 z0zEmU0Fi6xa}r&KGwxf!I94N_Je=Fhu<7abupO;ks!Zm0f>Q#KoOs!JIxTEl%b%p% z7*bI@w~x%(`c8!`^w<96@{)TA7W1EEp;mG%Jnq`B=4Hovc8Ya*-w|ABzN7V04iog; zL#W7W?w9qpoibmXHq;{6re@nrbEyK2NA+zv6rAu`y~A9XZEv#+g3$bhgEn6*s8C@{ zi92v66YtYq3ax6!aj5_>ER}9Fp4ERS49)@RPAj5RE30xOayh;AU;&>I1?26QZfiST zU`cp+C$rhP<(}|%g~@_QgJH$b|#`MmSaEjB%w(j z@M;0~dCU_!3t7)caYD}F>l(q&)Id*xNC9^!7(@?%8m&FjOzXk7X}e+B158lZz8@kO zw*OGPSpS*U^?pH)UNV@-;V2IrghaMP%_gZ&p+?K~;KjA7nc$160a|1F`Cd1Kpq8_R zbOAJY*>rq=(73#(7pXO9ut>g zYKxW&k>=~*$b}r{{#m!rOkfj{YFo~(#Z5_K_m+Ud^cOKL`mc*xWsl2j#ZCQ@g`Ft1 zMQo91it9D4q?b)$5!;ez1jKT&IEv?XEj$$Hv_%Z{y@&mZICT=BDQ|%_&(U>{~;Q6p{<)l_M+iX8Eo!MZ$JYj4UB(@s?jfSrM%dM!jt46L({i zEQl-!F zlxdl`rMm`ytD-bUMdJ!GOe8M+5)sOTC!Q)H7`$of^pCrDB%hH{j`4e4+ZA-K!s{`0 za*1Yk#TK;hO-zR11ecdymw&(Djm5WMYy`q#OaD8!a=^|qoqiw=QG^m^5z>uOk^MO_ z$luAzIq*O#w)**{athFP zeHkd}+Xa1WU5TXCB!wTBu_Y2pR32HAdR_2S#)z7u{J5@U(p#XKMg5MLO@^Vs0Ki|2D)>C{!}U~xw4CFy!g+CJ%D zEUjKwlP+<2>V~)y&Lly4TW>?aRy|{+`T`@N>#5-JFILy`O#nsoHwg3EHmK^lpx!p50&^x}+n`5UNT1Zqa_ zrlB4iqqRiycoew`8kc9BSi2?SNw&Qh1b3j zV;>11m$G-hg<_&4eS`cWrJE_pxfo;oCugg(Rrov7VL88`nYbc5Sd!IKk|QKIxOtIq zh&vs84le20CY-*dfay?-Q+U@1TV&5R*#uSYAIe(p_@OL2VuH?cy}V(jewjccDM4pi zpvTT>n~aTvv9#y>6u^Wt<$zfBg*zmD(g=SL3AxTeyN))( zsE)w9L7TBiEvP;B3sqcCp#rLzG{PUVf@~@fbGr#G!+19W{1F^2NO^}U|9mI?=-DPK zmo>$L4Sq+~j>+t;4nDc+-?`s7nA2nBqs7+SdfCr!<9n{(H_dron5^*re6r`hinROv zNk#h0=YA0`vPa&TWc$6US&Eum%k>>_50|BlrfVj>!a?FW7Oy4uFhUhBy|yjv1Q=c6 z{jx%y%jORXZ@uyGe#<9#FQ9Yhe$h}M87vFH`*Xk8CoE^rHlbNR<_Wr`I3N8|Fmr#P zs{otioW}Fv{nA?#hQ9MJ$jiB3K<*KXKoK|bO8?+(=oc+E{s+PKZmKb=CyPp{hreQ# zTFS2=;Y-e>7pTPXO^~xJGmvL#L9*%`-n1zT?B$r#J=7J7Tgr|TCW{8f!_KkunWf^GV zZ(q+NUdVSnBuN}EA6X>Ge=l!|T~BLYDlc3U_z3!#=~CFNwcSY~x*_`Ez}q(pcULy# zy{EwntftBi-6xwP;k^$qiO8hn=yfnBzDGEiz#j%&{Vj#apUh)l1J?s^xlf?fErH9( z`BE0O6ivlg?C=yuu*5YdrAhI4s_&vNZo zMe`8J9#){|cx^_pb08`s4@iCxX%FPnh9oa>BvK5B)&>J%QKR~MINh;PjgYDzHihxF zWBQKo2&H$au6dW~5l&D6llQm!<_qA6Upg#Vnp^@4bpkeFQNy|4-XVgUCsp{dtXPBj zIWND%yH3H}Vb<$IArCF+EmJ)!tBu{tX^9ih$^!833)lqU#Ka<+RZW5m!GjIFS~%pV zv#yshUw?amGp2X4-XqK@fMG^lbtBr2lX7YRQ#f~S`YToAy;36vzTzU_22)=I=kQ`$ zESqlZF7?QsV~H*N(14g#288W{jOpLbD{&$oB9+n-(LT}uH(Ek#6PCXf=vS9u<*e=W zlWsD;8A#c#1)->z$|^lI6~^EHdUyWJu8`wm^Hw;}^0`LlhTprkvUv8cW zg~oFN8=LkF&Kc}Cpw0jJ%ePp>+_~CV&1Z22VUvx|JyJr01dVr(xSE`ePnZT8awup$ zGeB=9TxGH<2rgYEY?g|7lM!qe{x29-Ca2#PyWiG$FJ*|srVNQ=_}6@RlI$_!p3aeQ zkV%LJDW`z z`lotE%ypSbcc#b`gY9e73o+^*;vvz$vhZ)dAT8NHivs;`+9%ue)0DTXxh$sFg;6XSdx7@})Yl_4aD)6(+Et}ZS7Ir^-y<0}2q zllnQNbK-(Pdj>w)H-aY(?8}Y4*iwLXJnG%@MJ01~98z~?!foFG-^OQKU1qV&X)=9F zOm4l!P+}iOh3VhJF+X=v}#oapvCJ^eKAh z>TkL+X-uDOqB!>Gpl&bVrUVez-wf6{W4DEi;sk6Yk7;?I$h=ZiuZ+Jl=SF`$h#C|5 z`n4V3At^@HIk~TD&(zViL;+i!V`ZfwQL90$3EPo7hm+{%WnZZi9={6DlFg}Hfx&id zaf`>L=4DC&KM#MR%}WBqlN+<;2<)55M9IQr>%rwDs(ezf+KR?g_t9F+Fg5hm4raPm zb}l@L305FJx$&;B-Gv7Veel?*enfkwEYnt|w!aC}f+KBQ1`q`+=Gbc2M^R;ZQ&x6h zXmV2*tN)YwIhha^y{LyyESDSheT_#MXI zT3KJRo?Ur;Y_G4(b7wS7J~nDRb)12v>)pqOatDon zJ;99iVUjbcM-c zARo{k%d@7`7_s;{cHV1yo!jaHRCPar(f}22oI%0Xh@}&zUsSnm zugA0xsdk4mi7ToqpQ0*XmpcRuFVis1PS93j{OXvi4+mB_+XzLNVU8^?Wtt_TzhlFYjmyKv~ils|QHJ56rV|+&X z)RmIwcKB|>n-;f>+|g}iG*be@1skNNQEhc@BsNo2Ql5$cEa6xFw3 zdUz8DtC*&zg*T(FiBC2ne)1H^5mTM6Oi|-eeIS^u@s*!{fNkFjyYbH7 zqw}NW7N5D&mofY$fj&n0+84Y=G={In?zKaO(7eEGNZAK|%2#C_#e66ro~;R&+j~+6 zQ2I9Z{)D*_dA&2d^91O*{>5?A^Q=e=?uX%kv+2?%B2orbLb?`;5^f+Lq5>WEl0qodrDc<5$Uz=1Zq~ zdC`24TUq@`aN7v4J=^kmlk=Ogo>xhA)>zG-Z=l;os2Bt^ ze)Sj)fY;@L0|HNr*WG$RCO3tV6GqeR@V~gYK&Hn#ukr;amUETHKRHL^B0V4%I9L(i zD+Q_Wn*ATdD~;#)TKiyf66r}rg^<|#i^Xz{9&O;kw;{hxZ}8$F~_=Vr95)UuBJFW&F`O?1*dL7Fj9>f!)OT4K(euG*3nC zSoAyJth-2XVFJ6eAkZbwDf%D|gU=xRrAmz*#k~up>D^=e>IeO%23k@D6fgivx$?aM zIgxj|{E?kurrs*JkAhXJ03BR~&#CCYZzc z_JEuvGSx^%P_W}@2o;eLIE){xrk9B40jAP?ZatI9G>?Ny5vTB8IrbT^u*_tP15bS* zTAiuky~1}h;nl|J9|M3C)FayqWIgN^+7ea{_Uo@LBbj$Zd7G?w&1la_v1f7=w6LHTeusf+-iF(|Z-FJ`XwID(40c?KInuxj^0!YbR- zpU+?Uj0MkFdev^<7Mx>E_C*(-q~k1&mBG5*M$uCG@7~=}_X5=AS^j^)LmW$ZjrV^f zNW=)ATETvw~(wCRSFicZ|beDPz7+Y=^_9hw?3R{M&54sX!fxYBN=}fLOfNNd%?# zSFfbI$t@Px2)sBd386HILIcPqKvcnQg8sGu?)kz|e7YNEjs zh9w{n=n;n35D(e0f2k(s==wewwL~r%eC$ngg!I4ljBrrn)33x2Y`ik}zp*gj;17^h z#Qpn4RD(|(3?+6F_&E9-Bw68VdyjG*AtZ%clb40Ii(p60-`X7%OZpWI%ga82jK1?F z>e1X?wsK-cN^-ayxl4vTNU6+;rQ{`CK2!VlOK4zp{8Uu>k~O|em`7fX#`mXA3mo8em+oeaA=ufCxwIg+Z ze6@>IwOJpj_GR!qSuN4ARJF01kQ%Dl_2b^sM3+CNw-RZRRrZl;HS?l}X{I|qq{x`iA(K>d%UI0@j60>$p9(-t{@wpu)h$@}pb8FGZ$_64s&G`i{Ft2H z9EoQ8eVznn0KxbQy5nprr${mecJ$**RsqX<^A#CqdW=JW1~5xTu_cHi>-GOu=F#Gv zJ0WlUH-ZO7m#TIw_Y33>ZgTgO0>4$G)^>fG7qzJ>`CwRKm!69CuzsXR$qr>DU=(8_v|NP!S-2mSuYz#eW#6jM z!?LP8#+`pBJ4&Knje7MTm`EqUYOs1LS;1)#E^`!~@b-NA4B+Im@w->mUQ)hu|7&mzf=9$^hgO$j75>$=*k>-$n~?!>y@M*XMJzWKS;>JgNPR zPhBgG;NQp=hPhXknZh1+@LOj6-Rr~->CV$e>oqKXQBH1u+zdo8D_R<#FR?7oW{A>oapyDTAvgCUD$Wr0%Mb6y0dX~+wZV; z7ul^G48vuPnga1KZ3Nw!#;vFY0FU;wV793zW1bp6iUHZ?42!e`4Ctqe#wI+@m~7k? z-wgTo0N;{qZVJd>hUca$*<7$01-Uu;>pXIk!*+DE8uV#|qdee!L9Z^@Q% zb78zHp-(@C!JgQDTcZ6WZpp8#1Jyxs&A|1=KOplEE^sw@m26ZpT*2j^r}+fq_TYq0 z*yu$0M>{dG{a=lb-&`qy;g;q#dIVuO_mM4A&}npbA{LAliESMzS&<>9bD$$du3}T? zEOYuhimW2yy(uy@!#QZCI}_;>@*tYF`QKjVKjiP2LNH@>b+OarXAhX4{cm@s_fI+d@u{>FOA{6Hd-qt| zF8Ho-W&bvtBSqshv4VlKHgCfbMLG2O^k)_eLmn|_-#9IlI;S(=?@KNAN3Fj93>=R0 zDL7xquIZ18SK+e-K>GYy$H(ELpwp20m*LZi3L_xmkfs$OAJ_I=DgZFA4hT>Pq5VA& z+JDLFUFN@(;{AmGk^rVi08<#N4o&k%{Qw0B6sPz5hnHH@mkyM zuzq>7v|YFGi*I(h4n}9LeY!Bq_#@ikkneR)ZATme2CF(*UUvPNmsT$SP}k6Q{fCe? zclP*HX>G?(RKBFdJ~KX~wDBQLOAblf z@pZZ+UFbB&rhT`wz}BDWu8(g~v9Jx>r}enc&@t3^&kL5F&qZQ7^knYQi%n;a4eNcb zm$mX^Xz&Iu*|Z%fJIiz?=1wdaJ~VeV$v&3CO7RAR$cYU&C=7;BQ1M0i2!-M2* znyfGoTyX~8x6&!C?LG#An$r2P={*TMo>UZ>0F2MGUjhsh6kH@l%*niRo)c4BHF&Q% zx3s{5*)>Igr96CAop=3N3+x7|6PWyziQfr;U}u&D$nwOzex1AaZsHI&)+fhTHx8K< zAA{9Y%)Cd#R{-Y|W-Td=ImueCnFu9SCMC8GmFJ3;W01hn*T+EuadZ5Cf$eiYgzeOA z0tE;>ZWW09lrDnb(eLt`K#H{G#Zi$yCa{9LVYQ;~P6EM|>^|sjV)-W&me-BrK~{38 zA42yf6GnDX^tlqsKojOz{Ci%B?PA;D%ak5JNRL^G?3cNtdRfk~xa}=2s8R?SrW_EZ z1g~Z7deD2o^TnqSsv+-$OUCg86U;^7xS9f5Y*1GWOUi_}_M@q;4-!D};>nupPTt%f ztQ!DsQt{G!$*R2G&*sO+<(C@TAp^2yEJtk&^;9u*bt)OJ0glCzhZboO!H zCKA~V>Z>BMvomH_jYv)HpJf?qdo^iyIlYA@fsUIqT<5gF4Bk7Y6-QAyW=@1P*?cQj zP9S88wnGy22;4=)NQJ?GUrFsKw?bN?hxvk$CaOV8rHr=y2@<&Zhs674YkRNJyAle6 z5JF!DMxCu)mN`Ejp=H}K^gG3SqSo;=WrP^@1unI0p0w~#VQewJ9;6F)Tpdi|8LQmQ zlNxNb9LFBFAlX_PzcItIIb)wNOs=l$4qbc$D+aE|@g0S>N~BTr%yjg?px%SAPnzSf zHQo=kHiWlIm4{TuGe`I(IILo8M|ld1$plXOAA|%{osZ34c)Tcft#Y?;EH-_dWGi2& zHnFrxK=U6MK?0f%Zp)+Fcz;1g;5w|vaJv|~CYcqly}=gCP5=paX=xKc5PYHdFt zH36ye52Mpk(1|usB>|&sFUyIi)T-%jJL9|jXp$N}57>!bqYgh}2dXpsKs$s9}`eQ5X#>5Jfo0pHQurv}s z9xlhPgp0Oac*_JxZgDjYZTw#^GX&c*)c+rsSuM+K4zhsS+6J3G_(1FvYWa0xTKGRL zG;>pY{0(!Vq1+bT&9G#-ooh&WAofT7SnU0A_^CDZ4KgI)CS+m3N0wAh0xH+JE^qt` z%gUpcmDX_w^nYw=EuK*8|JUVZ>vLV!9$yJyqd%oiMIxBWEA{~typ-fEsd|>U#rQp& zE|TnomNfeW%a9xNLPyA*(NUNYa%XlFPRD0Rg*{l|?5LQLjMbeTtjHl;x7-1T3p4ZZ zkj3qH=p2}fL7+t#?|-8k$x8&+IbTWpg=TkPG_~a}<0_W3-WLv8ILEgRkFJBZ z&e30v3_D#%eAhh}*DRKsBd*BC41I;8NKeCyPU&dWM{SXJov{swVmm&^i@5Txm0vj% zVA;NkXY2xxcwOk?Ws0-QM$y=gx8#;MUA-+cMHyF8o3i!+9=}R$a`u#Dpjm8*N_0x= z3TI$+Y18$A%S)TGT90&+6nQr_{aiI??7!h9dX}7ei9NT(5g3}(q>(IR6p;@E(W2Mj z&7Sg8$BODlVpV8awQx|#MCa&;#V;!Myb_GcQxwb7yK!|eL{su1Fwhwp)+YHGJ-i(W zQ!S4Or;8?2ebDJa_Ed)ZU#~|rz@&$1>4)*e7AtMNtQxqQ1`exw4lO0UKA24lx%$EV zk`@`dA<%hOdM{z4FjPSGT1$U39hW{*ZGCW!suN(-28tHJMWyIs#nJ!`qr-f0T|#;? zHnY?y7h7T~wR!90M84QpDvc!+ctPgRb+9Q%DttA!&-Gd(#(t@Zd5pRBwA??_X6b0_ zs3ikifVujck(l#K2L%~ygF&BTzf>SF7rQTLuxcxz~!kL%KlDX5Up+If$hG(t8W;9JbB3UaW-CB}KMycaJbRJ8xh^BaBqUG9IIeceDp7BiKN##AwKpde>qJ zyuvPCL$U?^sbtfAa%V`4hJ(D5bMp-Ntkyrsr{(CfGpg7PRI49V70;21|FBFyT8XIo z8eXiMGp!|AENvOuPoA|Z_iG7-ICTRm>smz7EbzOUrY9P=mnuEgLUx@Rd*EHGu2sGu zYccXJ>ZJAxZSVaRDK{TX@4or4c-4x8?@f6S*qZ8vdSRxuFx$U%hD28{%(52dsK0X# zRxiAe_nCRa z<8I*8n7;Hk{AfErB`N7yDrFi!+Rp1#N{&j=_|bMwmXuGLDYvVXix#O;9^2%owX~i` zs{E3q>=bp`rJplXzMxX%o_T45neug&A`vW>e&G(O;1}{}88zGEN89qdV7qY<}czmWSYhM(9#@!$kM`3^U9?bt9ttrKh1Y9 zeK?2v?xjlysgNu~{4{@>>mthChHa0^d83q@wbXCE#pTU8DP#0(e5p1KY(#}JCy--N zhDtJ%{>5MNWpVw05GIGq1NLLS8uK{rLLKB5g89R=Wm$SV`ITskab2y zgb{Xk)_4q`9lWX99d7EZt$k`e^({PEjfbPU7xA)r?2k_skP`Gg3&KAl>aUsl)K#S5 zi`G+P9OkrFTN|6NPhBl(&O*H>l(A$waUzdVfrC)eyS_iciu$td5DbH zFXm6BQT$`Ycj-fUH)y+Lnba7Or^rqqMijXn8)ww?q_Q$CMk%Sa(f4=^F7?yA{+K|({%6j?{9`y$>1sM!p@0I7G z92_D%y@f{_#Jf<@oTnRk2`?&R%9y!t@%+=J z$;ZK`@8_}oB;w}$4fTO#DH|po$Y<1;$=c4@x`RsvBg4)OVS7kclM5H`Rku02gd3P~o;jEXA2q&+3zWD!gw;L?wnjk)q}sck@$V!e#JXOc{} z{4?Hu_ZG3LdDbfUATnylf(vpfxF8CTWpQMxnV>g~->@xBx*Drq|;-y)&! zCBB{1_8b)b&s(U;SI`#s-4aUsxblwt6kj?$iH9_TiR>#0MW%Fl5irxUu3Vh9bEO=| zHb8afFk^UYuQhg3360b_KyIV#9MeRl*HQnJAlsN$tc)F#vp}5auKv5W_}u!*Cn zkiwuDWgOx3A*DXeOSQ3;b5-Ca(W=L)M%1RNjarn`lqAeGRjS?K#B?;J@mJDz-NB~> z>e^ms=~E{8D2+t{x2T{gh@T8iVKle{aCA(QtAnB>cz%`u&wpxr{!PI1?-QW?y9Fm> zH~-oiyAef#>q1a~k3#!rK>H_%2Vy@;u4MC9t!G3a9Ezj^PKXVT-|YJD>#-8#e;n`h z=6zRAjEy%}dk7krH5d2KgpOuK{~HI2#XtIhZ`zLMc%~M;BrEiU>}R285Am0n<{iEd zK#vjcy>wBqY+s_JLoZ#7Gs>84c3tO%lI#q01UfpY z5^dp*7y0!!#htppk0-r`i~~5E^j)QwEW&R9S1QgPw*igfzIS$=p?6*Ezpit3-3go& zDc#}CoGgu5pJGhzQSoz%=k^AxF_{FkjymvgaNNr=LEH65=!)*{$E~9lc#x5iwzHI9 zLgtEZ!npecev6R4wJb)x;APx_aK+c|e$o30-96Zm5odH_Q;%DYveQ9FzpuDmdB@tln0}` zmC(}&mMr?%jGOP1OD!jv0!?&f=d-jIa*yU)eN*Y)P-MW7-iKr%i#2?;wx?`}#No)> zj`Uvna}0S`VlJZhn^mNELm@Y}daC$&ae>f>WG`9#JjMSjQ9Og-n) z?zPz%%%17moq$3Gz|0=M?h3J^0LFCX{`(tDfyl?Fi$BAHnUf+1I3;uDl=q8HT&Y8XK-UqajkTIWeCUE1Cwc*BdlZMSjfF34S~+y>}fu49{1B_D26Qyz5nUe|du zhxC`CHYtVckeBr;OwBdAOMsHd0Dd|sTa=it%{8!u1dhPxn5^e+?-PReEwDw)qh0jp z{|WblGLR-C#WXMff5QJ_s<>jvUq19duYwXLDuI2QKKB<^KwfeM#0sydKLOIQ6?GYe zN-TmY$wd&G1~bTN-j0u9tYoVBg&{0F-eZyDYV=MSQk~O0yi%mjsWkL%Bw4XGZbNIA zT}y5f+i^XL=A*;EH3jKF9F*6~Udb!#*B(E|vmj+melIi^)9X;#kbrftz~3~Q0*B?h zF)*6aG$Z65?kKsxyJVR)(WE0(Hk_DyVN!0z>vE$1*&+83d4G8q+K$_JF?mdG zFYp|`*puzMzPh6A31Ky1D<7Y)*vbow6kB--K@WT*vPN+(UWhNq5oA${nam2}2g*Gp zETWE3&fUx1T;Xj1v~Z5Nc`TfVU+!?pTs%mJO6FJU>*lp}a)%sR$5#-om+{?mJ!@*= zp|+FSw<7o8`hDRcmSglW;Wo`peET*C;$V;}{XlLrNw(SnMM^Yk2Rsi20_{0VJ8GanA zPs}ubEE7Jn=CsfkZYk8zHUiJn(M9w%qzH?IXa1N`nc+wOn~@2x&&bAxm4Jp8{1qRr z9GTi4K7M3vl6h=oGA{1BK+UW1SS5DF`2L2I=me?J)D(a1iBW&X9CgzJV}<9B7rts@ z;erW8$6%3@fCb2NIywq!$K6J#D2}kD1Rc^dF*2tcV5UMT+Wx~G zcjwKGT_2jE?LXMDYVlk_4y6V-0WGKmN2W!E%-HBba4U2fL_y4qC>bPS6jmROmz*>c zwF-|WRdfbRm^Qx6X`x#k?p}GxoTKI2wRU_if*hblH=6)#)!xkV{U&<6w((|QP#@%Y zk^~-Je--eC#FM&vh|}dNUjyf@ia=*Jb|JUQ`qFzl>IPg#2oh|f4S4n6R6t&(`-TJf zLA5L{N+~?G@+w0m00vF6ghX$GoIO^PY7bE`)=NwzOc_R;kBYIgJ4{7G87 zh%+V(b)Ryr&3Nl!>K~sD`1Zx$l6BFyxsFO(-w{vLcrXJ3qWz1ePge>K_Q9da(%ulR zWJ&E?aI#*%yEMgB)vpEqh0f!AY;3$*+Z|Mkx+8@Z#Gnb-j;NEKbLRw*5x~Vvw^&S%k>swM95r3dnpH9 zGN(9tl(&3XMA51TSox{m*;JaJCfWx?A(~=BGV~Ub65MJGME_b^bq__q%C8`kM!bW5 z0Kh%P6zA7gMyUU=k`m;*0}GKFhp_RfZ~AuJWHn2 z5ay@c5$Xq3Kp5N0APXp?HVH$~fFW6Lk2j%d7JXe|07#^EP1zmlgC*YXl0s|r=e!7b zf3NLSbjAd&_HB2cB>hkdHl5JRUefk=VaVp77kzPGZ;kQDjeMzkg?$NRoIKja_Os;G z#@FUH6v9{01^qzB7( zBh^6=jx;A&_LAZyUlH4)8_64Z44X&7lX2f*iDpV+_W{T>NQ;Kui}eRXK& zlIa~)@99-15T`c1N08W1wRH(rb!OT$+n}vi(tWQ1-bpyVI%E}D3U?AQ<)EJ(!|SnwwT zDwLy4j=@i7{)QCzjth|%t!AqBd(|=hvPVNr;Gx=pBZqJsY|M|H4rs#bygd zCbE&EKE10x7>)J_#u}NAEgj5Q`MoQx%YT37_87?|(sthXV+| z%L*AP$(%pTl|zRA1;I?j$E0i_C8RJl|D@NE@8q<@b`yA7+O$N)+At~Q=DZ4FYt57=B}?)KjQT3%QpDea zTc7qvK|5|8Im~R#3Up`V)ho13dfDOD@=xLy{)^5(p}GJ_FO)blyvvXvf47%Ku?Z(? z#`8Q8Y4L&&_o*4x#6U7`pDv6Q`^!~oTN6Fe@fz^5x&9UIUgDcGjm;QuOOQtIo$F5| zlD?2g@?Eq3R3fP&k)*W=X0_gzZSeyfo#*wZ6IpIgmU?vknMBfc$)vUG&nJ=`$)uw7 zLy4sS!d6>_iTw2Xkwnrv$)u~++lS149!(^9ua(vdK)wul$l)PP9x}l3uWJ4eoIZQ^ z@_d`VO-LTYx-L|DcPKL2$ro)8V%mtt_FS3YZ0o4ZM@vV%0#2CUz?nrH>}%xCu<1nd zEa_;txH{S_oN-Ck1;4NWDZVq|(rj=ySoVs#s99;eFk1i~ts$G71uOLj&>5=MH^7YI z!M~qVp+`=Io;ks)0o^kXiDkHkzkT`)*z$1Ad{ogxJf82UGPvVN4;5U`8Kc8(P=-)P zFUJwK1Y8hDaSI21?B%PrCpE$458woDNOyK{-ouyLmz455ti84D3>>^!kIM&Zbp|w0 z$Ahtg$wFJPiAa+30t{+PPN8!!A^njV4E zQHO;{lw+~<+yAzvwQV8~41m@)Nj-2`@C4A4U1qbG9c}OrJG>=WA!%)LVDt~CBIj2R zX-GjHMym8?Y$x0!TuPyN6p^?~QhSt}Bj|F1w~vY*1e2q4jwy2rf2*}!ASsk;<~I3O zWr`vJ5Z)0^6^&*#0kfpYwm3I1)=u*{!*&55t359JBUdDEp^ZQYkh{xMD9Z!~x+aV0 zxi9*CX}3%9$MG) zzQx!%ykcw-9<`5HPp|n3qynlz76+fZ08%JCTB?ZeZnZRA46b&pj-Hk-sHV(O#*R@4 z1tt!0d;5SL(wX2tN*-T7%$jI&%|l@jU-%odLy=D&>?oO&dpTt5xckPr%Uy45_^+On zbTY>_CIT{k8K{P9<_btdHaOdUOx~8muZoNP?vgpy*uBqMJKT8O-P@eNi0|v` z=YlQnGi0Z3%M?;9jPBJisvT)1A$NTFXs48UbHnkNjaN{IUg(FP7ceOu-1CW%g8DMj zU@1Gqht{gBS?DJjMEIi@WNCXm*UO}M=Ace)4@Ha{7g;;(cNF5q4peD8lZcN~=D1ME zWggmWS-PJ&hD2~f%1eQhBAZhyxm&Z7B z@lx+9e8k*QCy6#}n!Ytt+h4Ji+}(xC#~7&9VRn!At=`+^5BC)r<~4h)BCvIlb@Q~I z!bL1_OIZ96I;MrvI#P>6CDzzXzNYx(D+5V<)k10ECI?E>uc1)aS7hE6uOwK+e=ZW; zmdvE7T;NP8LO*j`DYfg5I2fm1iEEO-w!>iQ%QJI1eJJ4-^hd7|TEQtJ*wm{RErK|~ zo6^s}?WEmcoq=b0wIX0n^vC;1d%@yl)grUjw<6|xQMtRQP34X!4vch|6{BX^d_Vdo`Yl-Q|xDTz9<4AMa!eY<>Rt5Da+4?vIbid#^t} z%KZ!M*C~H|P%FavZ;)!W`>6yTqwEZa69Fv!yH5PkHebE4GjusvIIp8{j$TD1mHy~8 ze3z)Zm{UR|0)JwbP@diSHou`;iaQ>Tx1HXyOxrVpQ2(fKBjzpa)!;UEpH)Le_W@kM zOeEmg3$U%6K#8N2Z|gyerci`Fk5RvWWMJb=|47${Ix#22IIfBc1Ml5f9J|4HuQDhM zMdsz?-?({c(!^#FHlC;v=ye7pooXRaTk_>5N#gOHr`~#Xal93(6M8rvc`r467&F47 zaUwqjg&r@6YkQjFwEJtTGNK&mR0gGe{*i=*=}6MTbi}kUZ328swgd#RG94u_V*ipi znvn6c06Ei~a1CmKo2WT-OXwvvTQiDjR@?K^=s}52aAL_Dji;8pp|zLGcrV+$ll+%c zd}TYwfk(wbr}d?^mzxL!~n4t(6xc&zmGx zT#;U8yfRwwFF{miDD}y2`9|;sMLRO{&X6KkabIP3El$gNizU$Cf!qSNo?+`RXZ0l> zVF}Lpw0?51>!S7@iTf_=1;*`3;Mu|;?yrB7lS#Hnx0XK>Kx?aKv{m8kVb|Ep!k)YO zF9VvNZEsSrJJ#Ny)gEE||3({UHK6bi8#%83Ab)z}0X_kRw7IA_1`!n~!3Tp^!~6B{ z@SLHixQWhvhs^zhJZL|^u<6r-*xi6Ta9^%JtlV>DWwkB6=(w36<+W2SudF|{ zm2Au2iw3O)``FX4#oHx$Y1@L?7eUV@?$te=g?V5Y_m1U%q=+0Qo^5hc zLSP}qWDf&30he9#x?*1s!6h#6Qy@&_Umn)ZCd%xC~nOc z+}hp#R`AYu;y?hvDTZ577?N*F;Z_I%(8Jyw&pU!!_m9M_?|@r5z28x|b?^TGx4s$0 ztw(7V+`6Bnsj_rE1HGR8EKotO6S2EK=M3c9Kbuz)uejcDqm>9g32}vJX5IJrZNH+h z?OTzSzph%~+;VCdvx=2U7vdKSxAK94Vu2#))iV&@0+E542?NA-QxNQw{2EYo>lL8t z{uc%9oH}@KWqXpXsp-^TS0v}&aPMd?0=I)#Z);x|kBfH`p53KZdb z&Jk!Aocp%m-2arpM{(|jpT)T@3+G;C;@tYn6ej&SwLS-vitSHR{Wd~c5Ki%2ki+L; zXPXYZ^w(Hv=((W@l$`_mZUG)zJc&kNv~p~<3fgE|tu)_jM{2&o-BHc=D1r93W5{{$ z^eA#>{sliLcAL0ao`*bpy|C4WlK9R*d^7?*@8eU!mxj@^TnSzPnt8G}Jp=tKK+g)g zhDF)!Uzv*8E62DP&t9PK5Y??{hVp{-14y;WOZY0Sw53zTce-FPQq{yhS&p>H2|3U| z^?!`-)z1Awd@rn$-qjl?c)GutPisXARWC!9?Zgj+bLBNTS2$EAg>IBX;59i^Q!83S+v1BXTH}kOS?JZ^aES)MS&;Ro(_L*PopKgzGtYvHMbiWB;yB=N zlzrN^z@?4@u>DRs4tA>JKv2+rq2xTBvW=iqIYvMCL{QkjA zRAkR08+t>4|CP+<=VZ~Qux_2Lojht@eRHe2`3*PDtz+SLE(298eCZ;@WHs)(g0z<= zaOG_MSM`40LYF*D@!!~gzcgrD_j8(qPxhIi1o87wYn`Dvsjq6nmEp-b*lB)qw8jf`)?ExwC*WKZM$EfiRj!BcsV5}K8xBcl!+ zg^1UGPslomApm+T)PSxkzKF{~G#|f-d+Mp0r?Sb=vwkx}3k+4|+&4WiNp^FvQ#u1H zvtqh_Tnh@DS84o!QkL__c%rOUZHyY4Cwifh-h3ikBZRGRcZ_JM1U1sfOAn6II!duCNzd206S#|e5fv+2Xe zw(=Bij?sx3jl85MZ5}%Tm59UNR!-dVDLxy$@m(an$>^7e(~3`al(kp8D)crPikKwp z^)pe&&0sQTfH6KhByVYjF=2Q}cxBzhi4Z6_UTBUh2g&Y5-|S1_=VCFfE4<{JyBgHR z^l$Diw-zDo=FxoCH!Ymcwu!nyqj*$*DNoy*|+v%B6;kfWN2rcEdE>XJvlSjY3Z!4HxP zyFM5tA~@N7y5omP*_P_9QeWTK^LEL}G0kxY}S_Jt=jvp)GUrv|3CMpk8-v1`4dxd-VAu?VG85d|*vBrMiO z#_Rr5eVwjA(4QfF8XOf^_}Nd1NNo8dc-^AoR^qUN1T%z0uxm6v-HCnuGBz{Ey|eWj zT;t4DkkJ1%)g&i{w!Tf|yY~anr*Kb#;h^t!+B{7(gIcT?CPh!eddi{`|wtl!J$l0T+ zrHN)scS}py=+P2FL6vnUOWLV-hp%jYPZV*IckcGMhTA<6tap}Tt_YRdx;3j>Ic-r$U zNuC7`<2#}E>W(#dA}3w=vip_5m3b1&Ij$kB+qM$~8lOd$HK6_h08$zcR}qwvl=zdv z>eV~I^v6LW*oH%s6NtOqZi>xq?bIJD^%toaVpV8nOd}UN&M`y;_T%kZy(2eSIl$0D zDbdq5E3mBxpUpNeR~4nB)6Mb1|%L8Ef>tdz_|dw#>penCnk9upM} z38E{FoL}@=%qF zRYj-2iZe@+n?U>6_n|1&>dA}?8RCA;pY3yn9BoT=RB>Bv-U14b>oROwd>$$5`QOg} z4p6g@g>OqF6OSDsQMU_*$6Y>D_W~;!U#yyM=%JSyIalu`n4>_9@a)rG7!FfDGmk zo8~YU-9J$7vWN*9r(?2c`AG=&#ljp~6DSv>xfcV2J#?%8DpvCdoA;7qo=8HV==hE} z7!zl!B(+vO7sGB+lALAm&co&%qo;$CyYcoI=z2dT@c;v&4Y>b9eklH(f<;o$bSix< z*EX{wY3-6F4YsR$nC-F^0X_Prn6K7uh*3I-0-|Y^;=O_+d9UCw@0E;9g*AN_0tA+s z*SV!A!HcguvM|84$O~|&pJcoGjP8re>ud$I(F2Ifa!LS=IXWhgyo*@>; z1Ec_Qt`}*Bte3#itUZ8SmJE8Gs}+(tsJ8gZOa$B`=Lf9A{8*F2qzFTn&#!P~NnoS` z5HRk$b#y@@@r|rH$(mZrs4CWq@AP8if7x#f%SKAiLuOCuslW& zf4=%1`NZ4>J#%k}7YlDnLh%YPwZ*fMDQZQCn~rKlET%#HuZQ$+zzMlxj`=aH3m<2DtEB0c*Uiivw?HEp|EXqCLW zX(o+f7L06`CW&_HixV34SIh_$hjUAEp?jbXNr{!|YsbprQ&%)9#pHSRUx^ub_Uoa1 zoVe<7nfFf!*;4iy?%W<2GUwdAym0Sb9(L#cektje=l$Lm9;J*#O+^ceR0}s0IRri2 zq|n1k6bv|9rAZq0L9x;c3<)M+cY+MW3afg*LJ0@Y_O>!Tt(xvb)o|-<5Q$PXAijT2 zCJ0AJk%%abnuRIOBSZ4O6Ydgp2zF-)KP7@J#wdoIt-1bT04#_?_MeF;=#XHDFOS3! zd;J**mf`HlSXw@qZ<>k0-_K{t14FclI3HmXhlWU|^X0d5FpFs$M=wb)~Y(S?I4`lDceV+r*`EVCq zd=vk6i6-VbM8+tT9@t1VOwq>DU*hNF7XxvkIQ$pGA*h8g^6(9uibV;}Y-0|cu`z>(XDYAB zO1;8{jgG#=r4vlK~c-q^*dgz6&7UnGlFRAlJTJOjt_lzZU)oy-oWm(r1; zv&A4zEz_ok3*)w%>y*=-{97Dddxy1SAk_inzNV8Pay~iPpsoCpYJIl5{-86M&mxt@ zI#VsyNkk`7Iou%w3DY%*dP6AlKw;F6>NMR@^~6h>I91HcaHuK-fwG2_2NexPJV%8+ zDz`V)ze$?fA^*RK-HqisC2k7Q^Tb@j;_0Opv^wU{n(SSkjm1+nTC&4)NgQt)cpef1 z&%-wL*Z>XAhqlG1L*m;W>c31-TnV~iRvpHgrpJobU?+3pxk`qI)>zgdP+6o-5g#E= zggD+Sbnk1}ZJLXYr7aFCjh8S-d?|~#E~@>P&sb;>!qL^@8Ca?TW(*q(Spp<=1~-$z zIX#wX-kSbG8<9|CN>M6fwXt|QyJRtm_8j4>F)`Q5iLPS{l4}@iJ697_d>285zK}!wFm_|eD@%s{V>ysVrIcm{W z;8D7sCtc5j6+TQ#_ye4-?&^0yTFw%Fs^1BI>T*7C076M92pdzwN_TF-Hzi=8Qq*Uy zq465+D%tcUL&}aBL3li4PaOcw@Jdvh|NpE1*PxLP=yjPu0exx@z-Lm_B4p}Cjaf2O zKem{8l=Cf{T@ZEz`(42gGpHdY0td4O2o4cA2tk;&Utun2UP2kN5V3txJ^%;B!?>FV zK3kQ>UOAfBRU{?>|6jOVC?3<|ZU`V`WvT#I>kJ0thB62W+KVo4Y&+UEk-aQK%~8Q!eRvks7n6BC6j6~;`xbur!*sqTujZ^aaqx3UK zpeU=OOUaI|Rk%hX#Ngp6!~7j&obY#?g9CaI6x)zQI#N`GNx>Zz3a;81#+cd1$O-Sp zQXuHz91^^X8w*BjL5YI{CN0pX1ZjZe*5FZiNX`b1F~LU4&jg?IHg0nhoh?oBn;=I1 zL;aiOI>|pCro8pHT*oE^RHuOBTraLs3f#Eq*>R*%;D%?ZKu8Lli6kq20RsYc3*2vi z7y~z)ieNRnVo`)t&su3u{5Y(fkk>tmI8FZFb9EQ*y($d<(={Vhr5X_ZW zGSn6?SN692__opn;1zJz?e~ig17U3IEBxkEyPk{V%+{Y5 zSwx3$cTP{2Ru7sT%sz%`oyhtE7@hRM@aIDb4cvRDFON0vIameJ2{+5!CCbYJ5tViN zFNa(X<&vm1Ing1qUfS8R1ekI2; zDaezWmE-_{g;C=U3^?!q4#SS6$7R`zD6ABtK+_0JV4;6shTy|Hu5&4N1X;cQ2?BqI zz(19IzV%1LDLz{`!KXr_W_Q-?>lb1d_s*@I^uMsi-Q`^KB_S00piN6~SYX&VoG783 zv*kUtyAekpaX$NTSHBCS+Vz1gF>sK`BF+}&upj{>E~OZsb+)`uXVk?L=7oQe+_k>V z`(s_0sFMgd9-YM2iM^gf)wf~rcK^~PqC@i>S~;<)duh|j>Xo9tDvQjFcy0KOK?3zB z9-qr+1&G`FOFp-u>i>B|B8MFA(U(wDjp}TG+TM0I^6$UXg;!MA)Zv<#03==4%wYY= z*WJ&L(!QP1eL~nq``@PmLl0Lb?jqf&$w^xNcfPncd@D8l;~`SZBG*PLfj*0hw8G)5 z6*RBnw7TkbCf+3z4-SYAOl_Z7m@=^tTe6g-#N#P@{hw(*+M}m1?6ejn0+OS7zC5&! zY#5d!K2jfxprmAfbX`JH=dpNXKRAPTnws?fO-h)8Kort8uD^ymwkP|UNVkEsrsrha z;rmLwKV?c?YTUqC#`0CWSQK%s#~M=<>D+Hnl({Fq42JTR&Mk4h9u;oUx#cTg((lVu zV%_j1%J)^wf?Vz%XN$7Hs&?R;!fX7n(y5x*7a^0oW4+#mSb4AI*ciwX#mZiNE{o6M zHB~D_rQnl`LUZv|{7*7Qh_7OQ8;?*zD!oi&?x?_G{XVKtm3o!vKR6ne{|kB&NRE{l zQqQYAOHUHM5iy@AZcLkDBJwS$B-}eScovv$atXI0MdW&Y4V1v$u(9Ruw}t4pDY6Cna^K?YEE7mTqhH(r1u>nTqb@9i|{l z9gDKcJZ3zsSt=eDQL%`JMO3V$1QiwQ>nbYN-6|^9y(%h}Uq!`AIwL9;Yt5DYI)D?U zDe0KC6=|WOTrx?B_s&|*cl=x&;jy_h{H}uF$=v!0VrC(6sse|5;^VaY()xc#8G2$` z`}QQ8F;SaN%pi26FWKqo(FbbxGl~ks_l!zLkF<3Lp9uCOgK}RFPoU{Zh4?T%PCL$! zNNxFq`of?2LU^^$UVBj0zbsb&@?ej>eJnmRt3&yFb5mB7n>}@I-xWMK5bU3s+E=Kp zSAGAABRrc14yy+Ge-Z7#1R4mc60YGvI?08M&hYBo8G*m?d%1kU*?JWxkXRyF17w5t zKq$C^Ka=(cVzm|HJCa^8z7C1>lV^xw#ge_qYdm&KveKSRh+HiXja$&EWOr8mRBpnf zRKe_BHQJa>-0NdDO1)kF@ukMR7Hpm`l6$i?G%&rRo|IeufmmdTN;-Hpgb^wOUj?o)tYtUF8K;BT z8>pD2_THpqo`e_avs5KXcJA=yD95`Y4R5)*X?WZ9%yq@-UK=u<3_YHYCw5hU>+EHb z*HNcfJF1B`tHLQn^P|l%w5g(tS)`1tyj9vL^MvdGgaPNeT;(fu0Vm1zFyjVvuoR^fg)67=b-J$ZKMc$q~SG;L6?=3a9P?4cny;VE|i7|4f zHjDz-hS9Mgr3=icl>^o2x*y;vPrix0$pSo?m9N>vQEEs3HtyT1CxvZ2o=Neld|8F@ zka*pRg{`CAgBah@R(OF{kuG7p3a8AjvImw1*NGVysSfYzEwpt`{dQb$Qr!99CSG5< zRyad1z&oy}tuR+zc-smK)Ww3f!t1ab@@hzr3NZaIW*En{$3+Rz)ZzRms9PMSi@7ti$L-(ZE1zqAxRs`0yjr@8B7F(|{md&(+mTevY6l8dY=`&jnd!IGg!cn0EsD0h~9 zTwto#+>1qqhs}uCOeUU;;hf>XAsjzfF;nJtokiq%<;V3B1bKYG1{3@rX8Y$!`%Cm* z)7=XA$bv?2dwx>`8!Wx@CFw<_(fd7`Ewoh{VJ@nwB*LA7rMLu*fMvNodzaFgm_SU^ zUQ{3p3CPGD$=~=KXG3y!XMd22*m9i1r|iASLVbk$Lyrpx#Z}Hnk&sG&TZJpAY9zGz zD3I)JmA^7ixXkK;#6oj(+w5(rT16WCu^yC1TA_n5P2+xYJGi2^Fs*OH#<>3Re6Kwr zw;bz{@5J96IIrnD356UCfxtNK{ee{OYXT}S0BNFFP}AEB5_2z?(ze-w2~C9j2-|aK zOF2M4TrTj#%8If@#yv{k<3ecYTtAgDgj!|9-jEuyH*#;95qefli$=WU7v&u(wfTzE zw}!mFavw<6lEaDGk~FeL%4`4loF!@gv9vC=$C>TR<@7;q^1L+xKimvjR`HAWK6*OeRvlZA3Q0IH3jVqXL6?9h z^tr^B_PdBT=}*Ox#d};xhj3x^e3%$nk>)jSdsJZ$vEv%WQVCx`$%`pTBOsNk#tFO_ z*K{AwxWxD!f^)4R{xEw&ojt<~Z<<6xIi_hf`GS*6jivGlwME@^Y^BOh(m`nTiS9u9igE1; zxbzUcwm^~&+2)5o(A=Dw8irU67nnO@T-(AMvOcEVyon16=A!{XJ59zRVgA(+Vh#36 zgWamZg8AW(qVx_u_{TQvzya)q{2alut5O1#m8Y$!Hp$Nh`~Xd>9@NT+IaunK=S}B) z)DjZk5Q>_jLPdUzzfivxsDDYXpQ2rlj!DNWFgd(OxHaTQX*)?Us*H6&azLZ*SbKN3SY)vMl^kBM5IpGN4sdpJ+0prj4| z+L9~Ld09)9gtmd5Suu{79w$c8b)f|)sY8c;1;tm=R%1SGdL=- zFZ>3DrHm_%NVzv<1pAx9SGZTssvD)>G&`KBSEfn9ROi+Q3OG=R(L*gIHlp<#gC9)A zb)HWxT_PXDEKWg_wZo#V&m&gZ)w>2=NOP*iVDO)9d}c>GWGDR7K%Vdg#Wh_#;?HaM4Dz7RV#F{V-$qsY#msRKAttZd_U$cl0hS z5+8=luFa$A$kp=3_&N8gKb%EMc=Qpp5PcUq@NOmgAdh@3gS?zdlCXBbkL4q049M)_ z-b9%cx__zaK44xeYiEz)_}9}=Sob~0Oomq?oFYX2^{o(tJ^JY~c;TV!V^$x&sk$oh zkw0h^2pmH&xyN|*`%*nuszY#G0}vapl#`X%)e-{IpC*4&M6NkGRFn~(6e>y&pM$y} zJSJ3RgQHFah;YGSxKtXrR{mtkpQ-X^y!=TvR+|FSHDn6=9VkT+_#iu?kXjjOE^<9$7Xiv2SiA@nv?;{fGD4@eUjeG zM2ydqO_EOd7}HG)J%QXjiLVJw&tE*uUNPS5JdMif*6MCYoD7Na1nZH;5c1A$O#bfaNOixqWr*Y5 zTyUZM)3{ZxyhO4^hcKipHN@47T+vXAjSk(V_tELdqT=cu$_!oEpj(hKe=78=1@e{F zrs!BNo8l6_P^Dijpw5nH*GU2E{Uhpqvb;Apmv)_$G7{U_u-D0s-xyz|T_;OWyH3^$ z*>vcs7(Saa+(-SX&us&J9X~-jz9h_x2lk!TdtT@T9*-WccO(vEN5W(D9^ZwJRvkYP z?9J2%+@Cc5*Ef4ILkll{^!SOy-YD1A#2DMl?d{$Ew9t(|hH`285Zjn@om*aa7VQnE zhHiX`yOoJe-5KrO3R;#i))aaX;39wgb<=CLMzTV)NUlYtNzFe7C;d^^XKS7Wolt;wZYho$% zdfp-IF4Dh-Vtp`__LZzpLyJz&hYFo!>NK|U(p{2PpCNfg^uQGOBFu)X(}SHa)!_N6 z{G4rgM8fPe{+15v^#>&qnNdu=3rdcLisD-_0U%PwQRhvAL>`EH`G;;aaPE`N&?-Rf z%UqgOPcXW@~&*K^`^6=e82nU zx=VeTRaq~qMwvzY>@Y`MFMe;%XJ3|CE+?eTVdY$)>}B_2Q;szt!AqT6cCkAK7ZHTX z_zg=N9no{rHN-|RF7)mYY4^$p2xM13h)!{RBW)(4NL3M1B>CChJQ!)y=4`o*C)hW_ zW%GGu-*{NkmQ9y}o}t7pwaUOu$~10?!@FbEr-~v~?Y8f&A)11&I!&sx@93(%qJH_dsxwYR zP>$Z#H>D|v#4w6VP2D-SzCLn!2HbK-DboP+4x|hyiM7@~9t~Su1{Orj9xIzmv9^3j z3h1iE)NZXs_1WwNE#&2!12lnv8eGP1hVztF-S5|KtgHPXzEi07{cPfgwb^)VRRX8DiA7UO|T^ar9~pls?t9fN=5yqvw)O8rztn- z3m|j`c*;kD$Jxrk8$o*EaE7ksN`G8I0i3pVUSfi-R?pd>GskTjt9}vS@(WE!Ny86F z^j!1SoL{^@H*W;kt&xT?vM7>$mlIph_MIYM@nS4e)f8wC$$G*vu5}x~?jz2S;JOzC zabeD(dI{>dOmEpNYfE&?jX7$uHjZ-da4y(i=sr^So~|mJrStSpwAN0_b}-JytnRGM zvN|6<{-Qj?DSCYy?K_{{EVoGO)#o+UV&d=3&WN$EMD@^HTIHKs>n8rHFOwoLsi6N8 z=H1yUf6Y~-zvaukC2OztkTmI=96T9cpOk&9aB+BS$bn&ZuyeAzZ?Usv!2PGXg#reZ z@Kdn-9yz9eA3Qm^epFNUSHqmZ6ZMenX4xVDYIWA1ihP;+4zr}L+D9qeooRkI9Fo?i zyZ6_R556dUjH8_$`C)t04ry%1aAP~9F%w8d?pB$S(6V?`bI<~~w{4agFq)9#nu|}6 zqXK+vjyB8OSTm(Sm1jbXW8{I~GwGqZ@df4+YbF#_<*isknyae}RxvHIS%zn1U1Vap ziF&J`Ez>k1oD^jgViN0rFN{g7@vNg$%B`A}|`B3QV! zeS3t@Tr0TO)tzg+q_W-p{4|NSekLP^-3M09Y2; zD*ZNlZ(NBA$Ak>rwYEmySim{Q0!|7oB}H2jsOal0*re+55$_ajje0md^t+iA?MG_p z>*epQ3Ls?{^Hj}~IWaakh~e>68oM-tBH{(zCBMw=_Z}LIh-*0tVD}k4K1`3r?a}{d zT{W+(M%{h>bAa(azV)it*hI8EO5g}-=25h`3i%%Lm=B=@qVkvnKNoJol*dSaP@9wE z(}c(u0|HSm(B5M%2(5a^xbl1;9`R4kS?UN(5EWsi1>f;RcxQKq)x)x~GVAfVWRi^m zoH*}E5pSj`i0)Q7NR<&hxjc>iUjpC=e0oqAW$g$K#y5@?e#PneMDOYUCBg^Az3jlI z;?YH36Hdkv!guja<!^`GPX!%(=~bnif~sLj@6y=>2GRE~Qo# zDKv=KgtKp8&>JGAP4$5BpTN>=SO)skIM&Pls^^rkCqxDk@!9%XHQC;bP*5_gyZiJV z=k02K7hW;a+$CRE0&?*Unu@{DjUihb`9urCmEy%idUTJzRn%TD;+yAMtfzCgj3Wy3?f++oVx|SfDL~O$00&tB z*5w{Z$*ORwb=N6(7N|*|b_TGI#(<4E`Tza3^M7z3m}~zvEGBkq?d7ynPYTz{nK<8=(sepRgQMO zPl&KVEc?wtMHboPJww(2ZRP;~>1TA^6+)+04@q1}F%>DnqOHAyC#6(0 zrc1RFySuM`w64k(l5GPEuZ9b<-!78^$x>jww4m93RXEpOJyiD>iP46uf-3L6ZR1cw zqBdotI%|{tb|xm`%?l@$%5Sc|A9a4UI&PgF%sO@q@3nsc!*CMIN8TjQlrAA)FdDPO zr@Jd^SIKl9A%&|5`aAt86;M8}AB{wo>_B*LsS}mOoS3gp6LA8RwcU!MdRXW$hwuI> zUvg{bEzWr_Yh%$XnW9-m@#vaD^`+Bg!;nCl4YMP zyXIzYjSWuKed&s75Bf;VSWcK55vHw0I7c||M@#hq{Vk(06};(w%eh|ESao)ZhxKc& zL`IAqX|g~ov;UVoL8qgLP@|A9SeL#O0Q9iT0tg9}*X#a8?yKsG^z|~4Zh!kwy&Fn@ zZLQp0Rp-dFE@$0ee^ggb^;!4pBdDM-n_l>;p8i~_u$4k-{3yZ!;cC9izhq?T7b$HH zOX>*3X4Fp{CYPpog;a{SNTr|A)hdhXc`dTcWt@T#Gsic}-P7C zob?F^vPr{VfFK)5jr}iB^N3G4j7A|#6bNVN``v$n2ATvs7tP>%Hdf#f3@IyzyWk1m zXnaT$3LErpf^EU5O|kuJgomlrSJ{Z$vFcKjd8#x@G)Va^3McLtmhcsQ zd}NUgL*!W$TYVt=ZSy6s4Dq8fReM-BsqZN=-I&$J=I>Qb2-st;p;XR~mhr8?9lkVU zrnPnYTN4%lUFjg&$@ni|`EB}1y1YP`&A^w2qlXC~|G%(BCLl-#qUtv9h= zstv8HmPc{}wM|c>I(rk~8uz?=Ohi^=4sny+$plDnF5`x)a>-b)R6Jp>)&wyk=YYZx-Ja z{Skc8jr+REa_K)1B(X#(f z0k>mCloQ0(MPV*g<&oA`Tue!9Nkdp6DS8?o^)SrLPYwbjATZ6BXZ+=VS!>UiKn{&%143R1e?sY z1%D=;kLy{hu&m~J<}9M}Nz_Uf1uuc_pVSX*7dCAK!84=&TyOnh3JvXS`+jOGM=5m6L>D|pmoa{YOXnv zG5TqZ#Q^qv9s}4j%mDH=#)7BVw(#wy(bUR?@VJT*{BN;=dSK&OoS@ii2`Bgi8l`!& zV}zY1X2DKH`}@a6){1)NqR2~}^o&)!y>2eB12U4`JD-h$rzVGN%j~Ra7Whs2KUuHJ zNZcQrC;7UY2?DOs$Q@j&2-Bzr4c5EtR>f5weOkkzQ;VHfaEf@USw&Eim)V7N{vL; zEuX~@u9LIbvy;WrpD84lXD7XCJ(tVuUHScE)uU~?I*y$$<=M2gYEO1OO5}@^pyv8b zSqn4HYsg%6ZX*F2mXFs9r#$LD*_c{qbN8(rr7fHu9uo;{!Zh~2Wb?fBbo65w2UYMS zj=HV7T&l(&#dq;7U_x_R^``TdoY~@ABU^ORB2YlrYqdE{`2U?#c^pO$QLgQbIZKJ{ zt^H%;=aQz3$#k#3;NODG7-rLnLq|ieNB%4bHo9&2$s?jb}TZ^A7!DF4!wM% zej}8RE3v=^&JfI{&;|)@Iuq$OTj;@V_7WQi^H}#0(8fv7#vd4lpp9FIMzu-M#!1kI zXp$|oaoztW+7O%(zQsZq#s5Qu(eVWcBgS@pF{;o@o&gdHVJsk57_cD9=d+;7ZHapo z`glf=#y>z9&j`XW(ZnQ$CYED#E_nhvotlun;Aay_bPAHV^dBLKPC*i}N;2(J7a5nR4J0aA&rTow2x_>?1Wic3&`mt+ z7o?$=Z-ByA5$&zb)XipM7<#u>zEN;RVJ6;gt0pUSLH4I9kLHwbJ8O4uj08F>jQM;| zHdJ(XLl7_Gkc;*ff_Sbep42@X1eZvJpfhkur@|%M1eesR&wWi{r?(n!QP}Bb!A?s` zjhhJhS`~giTGhg9+x{DPZ5w#)r_`2SdOG`mN(Ul=ZL0GRSdT|^{)?&kSILe3KSWJx zZ1vmz5o$6!6QO;Dn($lglXws&e){8#D1I_2GLt?MveDVP7j8t6>J>Q3C{nnxvJ$?z ze#odpsw={2r32Bni>k!ba+nGYZM)zsZM&SMrY^%&UTE8es@1j&zou;$K5eO~P_UTG zUZt1dF*GAy+H^@c1&Bi*G4h6tdEYllwDCejSJdAAEDlY5MjZ^II2!#_2wt|u6*+;S z#!G#6V}eyYN}9hzK@K`a7|U=fj9cok_G_XUUxLw*tSqst?~b5PEqw|Ge-0&t-x%M& zo*qW!^#3u0SiwCQuwk=5t2MGZRZqh9(wm7^!e_F|dM_s>L2``yrKtGl+uhxD;~Q=6 z1NV-(>TP`@EXsBFqBJBSq2jMZA<&Cg zk14{1v_0nnby_p$7HPS3M}^nCj5CgWO38s?VZ>W%T3skRmYNffn49Wj|^bAdn*?_9NRd6FrtXo$i9eus5tYV}&7h;fU3IT}S zGlJDNj+{0j+Y@%f_WwZ6O7-2@7AG+f{F$uXxX3*=-d~KkCHRthaBnJfdpqOE zlc(l8qMRk0I}In{W|?;LlkcCB??^dWZAuxb+uHj7RVwZ=Rtaxls!vxrI7Z&*do1Z# z?Wa_28U7cqRi#pL_xe5NqPC0fDV zqgAt!=s^DtsrmGvj3d?smofA=x?t`Jq%;3nKi=H;v-n_CI&)F14|S8R%kVhE!)N&* zXRfL}Jtk|B9U%CzRBZw!hh$q`uWyx^B=h)}7i!ie)2{f+IDOW}k=x)y_P>m!rysFg zoUx8S_+;k%SfKB0`9LPx+7{TCJ6n{`wqmt&s$9<2pYcAY%HeEP{EJmk(G{X&Dwqzl zGeN&Gc39`1UXfI+6`)C6Wc;UW3yZ@?JZ3lk#1_*BgsVIU4XEM<5cA$>_OGov5*~;2 zzCK-7#IQclL$pt`YqLZi_5R2~O`sB~Fc?>x8Z_Q+my$G+J-eEZ zh;e`zGu%!oZH+oc*Qi5Q?RO;(2KQ*qe%>1|p&*b$fi;4!zKC*i#xOS!$2T$6ugux=zQKR`wGqri&vx(>ccWHXSQ+W{n*u=N$JeK&wiVUdc3v!Yo z1+m7nmvD`yg#_?72j03Xkl|ZwtZg?BZ?O^K)J_-XbI>Fm!USBj8}nc({-IWVO)(=w zt!`Qrm^yJ0my7IC{?R{VF2oL%E{Y?7#49p3LzR~K;>9M!>gR1A3*0Sph8$&}5x5cw zA-Fl5-6pld`!V`BEH%yvUL;gbT<<6m^~t}D@p4iJ50B(5yA%kRZ`ixuxDLiZ z5U$EHp~0UqayWkQ?Eo~GTVV6iq1AVILGurOG!*gH?tJjqamG*PBJfn^n4S(;kM#q5 zCpg&bZ21cp)bLi;?xxWS^LggKcaOA!(m$K!Q#qnJK3po!ZrTj)cKWC#tt(Y$*{?y$-j zUuo=<%W#U88a|{YhQnGS1O?tW&#Ur89P@0*eihVf{Ne(WVphUF*`Fnth2AFXq*=Ck z1b0QX-*s)C%)RJetksIUkgVP~MX51q&4(Z3c32{ygoUkluvW3*PpibW06oepUSnG7 zsfZUMIMj--OQet#nqFh9JOh8dH|kU*6q4u0BmF~MN_8W|rO(xyEZs83u4PH<*!ucO z1VKd6n|X-SuDGA(+qHWfh&Xp?CXXU+$=Z*l-`TGQf2KMsL+;2hhwKtmBEB~I5np`m z6BT#GDH`0^_3cxU-lSrIfoUdFpD_Qp$jV~46b zQ>x+{bsOaXX=ouJm2MhDWgv!uZAm{~`trs+eoc5s<~xF`9dT%_lrkXrw16KYk-=$!DK*Ub0$47{@6Mcv-)|T>zLJ#wHZzPLU}{NdqnMno*P-x zY|jvD&glC`Kj*#VvyZ-C{n_^>Fpa10J{2ofHlh?CF@44Hjy)ibVelH4Bf`#}A6euLzJjtwCJ?=l{wdK@jUvua-P};5yv(=Bnyqq}g^WiO7Iy^)GZ?d~XI$}L z%(->Fn%As+_bdLJ%_d4wL>Y5$fYjK3Y)8C*PVmzNVndr1$C!&n7Lk~Q6J>6`-S~Oy z2@srB;xe2<8htB191qpMm zLKxhE2ST7aIxGn+?PX}e`HqM$@m5AiMIo;R5JsUIV{~{oNiQLJ{1eTud-eG?;~rqG zMie*z=l(XK`9*EP9FII1W9z;7a0@G71lo}mAoK6LU6R7rKV!Ue|4=0RZCOcUDmneG zJx7F44~9qSJGANt;VDycrZ!q8l)l@IUs77iI;CtXWks(2T}r>ARezVme{9ZF=Xz|y z;!LAUxkIW0VbP&gKcZDXps%u5YW0s9GhiA;Ls9)iWvJu{EzqQGu49`R@p*%CbRbl% ze?qHn(W=`}f8eaoeRd39xe$2V<0qFy=KR5ZVpx^gAcT73OARUW1*WJQ9=hk9d4JTFGI-uozX&1T! zrTf!8&zNa~^gx@n)~|8PTK`qEto1;P_3#4q@G{o9!t~xJz@UV)Jw{39mbGB?0lvlD*C|A!D%uk?04{YKfWT@^g zKQRV2AS5VTrGxr3|q3X+{ z1&(C5=drpik-!GdSOi@+GMZrh6GRJY3S7Y{B$M2tRVgm%8VHljuzId;(1M3tD zL_CjJACXeGfDLrdCh2b{HvJx^Zlk;8G3NuTIkf1!XG4zXv4$I@)ybd`E!L|H#MgvY7xd{-VVQI8&AkinijI=n%8i!;hIIn|FeoJVIW%8V0~L6q8J+=?k-&iT&u z9=?@R{eZmxF7FSR@7oNw^`0nXky;_!jNdh?h3#xPhez_&KK+wOpd}J$6LQs!XcmLG z3wbwuJYcV(D83`cBW7jGUIR1kn7xL`kxJ~w_kVfJa)XncxA*e}MJtGPh8!ZYA!A;@ zMZPIUk=0<-vN=gI2@L3aaQww^0@mJX?k_z#`*n!6g)gh0n?4?1R}zcoGxTMYO1XWu z8buU2M{dtl_tF)0;G3kbbTL<`#cbA%DRCMxcrJ(QyQ1}@kHGh7g74LdgPaOx&wqz0 zrwXpZMR0NOPP^D3dyR5SLee0S0Kx^4tqKv&>sQ!ZG(V zh}?|kqri;ZK3&FwM}u^;(&@qQK5r>&VYJU?q^4gS7oLiZQ_u0gIKSI<{6H#EDnXXc z?{^;GpNhlPr*$UEzCfFaJ1wO0F@L%*;g+b{+iOeg6@lAfAq|)6T_aYFeDtjKFjM+0 z+u-xogQD4@gzzjWc>)6j%UB2~eNKCMQmX8~)7}gzd8w3)nH8Ar!LCaul{vpGhMO&R zTHa#2J^W4)ixye#)yG8^rJ2mD61HLSyy}pg`qw(@?L^7=C~SBf=YN><252hk?gtKvKL@Is<>CO_Hc5o(TZ$r0`WX^^d^fLg0W2H zuf}FW{B_6EN~yln7q5v#WAB3mr$X{#EO-diigT&*qJW}u;JS-npZL@w>8LdzZ)@3A zO_2#R_x@0sJXm~tMMdo$OT{Q^BU}gpqBY zPTjV7V;;!IqUMNBl%4`EPK4?o$olWGDD>Wq_bHXrU_9}IsM5)nOVtAtOgeFp4P=G7keb7N>o(K8 z{U*2gpO_WBkqLLb&cIYFq0QTQ2yK`75|O15mpqHJ#*u8{y{+=v=DR3ZQTqh1DvV!V0I%nHGCSg% z?kzIXcoW>23#xCGP)D$mRp7*ouST$ zGx>5KwV>IoGA4v6qDt0oRNd&NoV49%w%wTR+#0XHAqvS0eHkQZ>?M3UO@cWx`JwYEA9)C&_lA=wAP#Ddb6~kx6Y8iuQ1*6 zYioDg*5Teq4MG5<20pT2KmBuIUuoR^Wd&1BbqaV{TX9APm@;b4acMzhqGuRi;7e@EA%9O>2N6oI@9k@nUatZwn zb2<2@`7)MZiSl_1#r+3ou${rEb)x3jTpX3g%yU^6v(-unIIMB6dzD$`3x0aIdt@XI z@MB08twiK7PRq*P&&c2QqdMHJzd`u;z3uUBwiH2I$4Evw1?T?_hyPYO3GM<=t zahxD>6*yARW^LXMjO`30aK`>Oj>)PLBR=PkIt5+Ej(&9^=fUAxa96E&H)=+kQ5rst zg|eOWL$w^L%c%BLFoR^d8T>n*gdoT=HguJD-ZBo%#O_AW8N8xFo5ZuFOA5_o3%5$`; zo+piu{1Ej!Gugl6q*r{Gcizrigs)Bm6W zVE|S2472+E(dvUEs{i!N>JOUL?;cs*`uf~x^`Q~f?>Mu1Ik%PB$BbWHZsCi39sp^> zJze1lln|_HMH;TbbGztp&d zY2c30Ia?m%eI(Eard<6s)>8?n5|#h%vK|{!@-YG?uQ7TFElRY%pGjk$gU>$+uvPRN zyF|}%@(6q|I`EMwFeIdBgac#bO1R@jW|ZJ%gw%B9jCZbIs@i!1OQiC5wDQA(WI0|4 zcR=3Ez(KF^L(r&*YF!vClStsE0V)R|Ii95C`NJi5dyQpMQe?GO$w65a=8~W#*c)RZ zC3sJWf?)ko#&81WFnH%ShP4o^t5EX$JVJ+oNr7R!d9elNZED2N^9r}R@=tJI^w16G z7Kdy5MutDfF;Nd34mb$}oXSB^@=kpJQp!HR?F`VILvkBHGbZp6B@+6tqXfSH3Unzi z?3QM1sqCA8Qx%eCZ2jpJYN{t@<9)t4i;V9T;}$6E@LQy#8i@-O4yb0X;W*Vyj+Vwt z2K2p6IdT3B-Dir$GK&!bKWa$DFubZKni?BpZT7!t7>k`ygdoT@VU*J-`#R* z!N8Ii@6Mfoai^@PZN_hr7PBm1MHNh*mQt8i;xgyi&yp%&Nxcayxl!k?z<=pdX)0ZnSwopf;4v@Zbpiu~koote@-9t| z;SIDyZKJ8|lZZ?s>t>U)<$gKI=6H>6+>F(9-h)i%Gt;?_{s3i}?f~XV0*#KQIdT4r znazP)o8~Z^DKeX53k!J6Y|2z_P~wrp$c4&!&^1|mw)_?gyl?Ym3Q5+CO);>1gvt%D zAp2lYvIkn@IVQy|TI8r|h(A^J-lQw&7uwIE7#f8}K~2knSEb>Sn&B!{b}eNEM?HL@ z?Aws%kuvbfdWEnAUX8v;;1LC@{lKb0u!+DbFcDjoMV~}sy;`h#l~!qNqAI-#{F_w1 z96k<}MY423cIdYs7eFx?&5_w5L4ANXOWoBUsx+Rzgd%X# zdBo!HA4Ql3ODQ+g8j!~@Yn*V!n)*mCb&u85L3Kv}7L~}5wqH{Z0vk>2$%E}?`6tYV zHkxn}@Oa{p`zYa7ZR3JxZ$yi$KTJSlf( zoh>(~VQg+bzl9A+GrpQTYULy=PC7{jRmp^3$G3OG)*<3QL5r*%)3f-K*;9!%o~+s| zJVkoql^5%ugi$UhP9*RapPN)zG<#~`k0JAA!f)cO?9wzOnO~I{gkVJ%B9yK_hja{H zW7h;#GccASliHJVZ}Ho5zZ3YlNa4f%!AKHzMrTWqtd@o&Za^Dn4u_uWjt!d0?BGKrLF{-)>30=po zi?%V4&nh-4$*-A};&Htub*RF>n9?|;Qg8_A&IhZ@F2eH9CWaYt_~Dk6_s=~r`+yr!3&GEN91Q`3nrsb4EE4Hv7mx` z#LMFT52dl!KJ)kug^mZehxiRSlJ@nxU-nn)wpWM#Mji++*xBBmK4)?pz^FbN$W*k_ ztDBNB~&0G<$ayJA{@ZqeF-2<{JoeO)srDevZY!Mqd z2rOJbj`n+O=f?$Sw*)2zGvY8sBEnutn$LNQuVt}w-d=5--g9fXHOlXq_8iH+cw^7( zn1~-7L8T+X8awetR{0P$EX!ao8`n&e(~q$IHYK8Th{cbjH82ZF5(ArYZ3>u$42L6- zBRcGv|1tz(RrvRa(ZeE)>XR?!MND(u5%+!5-;RTW@977OU;a=I;D`yzB>ovV@_A#MYE zrN|Cior)k6ERrsQ@(ppvKv%4dkgg)Lto02=D$VAM`?y}ZMBjlOj7x?aS|?xWO_F{X z*YYy7PSu$qmkW!HOnyaa-$loxPHV7ZukGwfvW@VpTsNY;lsHyNfE7-B{I~4 z*``Fc?>>cLv7NnaeD_Y_t{uRK1T=VPZ!0Sm4_+TzhG2Rq#XR2-$*r*3F)3&OIjgZo!xkpnjnv1yQ*j%$_xCO)%T2l`&kr( z(f1-=Keonf@Ef7+Qp~rM1(EeQauU?m<7%0?MzLHOnsO|H;-m1`ng`UdCN=l8aiPCf zVN})1j2o*O5N?wu`0TZ&zlLRDvSH9b_(fw8rNj!s6uflA%X*LYM$PvbQ)t>6=qG?Y z@~}HtVPaLZ`X`Jdw6eHDCZuWR2~^2}k{ay!Ws%#RFZH4PWto@Y5LT!bKF{`cos?%4 zc2Mq@&e#lI^o`q$p7>*tn&9A4Wf-1t)!Xu{iY>-03neBR-P=#8c^;`X0=~_McLImu zRTo@6PYiXZ^1Q~p0}@;*&3q6FpMTFisKBjGda4dn~HYrOba{=9hq zIidUopbC3rrjeZ^@CuJ5r*!@Tg`sY`i}S&>o#B)dy{H3A9F%xA=a#Dq3d0vjO2|by z9#{S7eWwi^IN~@Xdq{9OV7w+=KbdY$k7|4?J5nSCDaVgL&x`TqLa*_zS)$5)yzyP@ zb>LjBjCh#|*vl+WzOdJqxHM}J$L5~^zTnsGI1BgxfXfY}Lj(Euw{pGDDDWjN2@aO7 z7!@iW2!A~|c-M-tq2gz0gv?>7eFb4JjCOFaVa3E?=Yu@zI_OI6b8ab!Pwj)O2wx?a zfpb(@F3n1bzYkA7^9ipK)stYiEpeaK!=wv)vj%YNI8LX{G%}WIoW0=OGO@7vWG6jb zzO4DA*e9+S2M^QSjk#H*>pgqw-okKY2bT141nS&U7{4MN=}zeTqSNVm&n2JQm%5k8 zg3`f>f$^#a74Ti zTaT@x@q_|gL#Clj)k?+IZZ(`%O7KL+@)TcU@ZI>uSzX~Yg4%|i!LJJZ!^xG448)a? zjMllNsGlQYTx~O!UnVK=7L`(hmB7xUdnpCM6Rs8Su|rE2fiWe*C^hXWmuL<)#hIb} z{~|B5BxdRSoNvD&-`*oc3E%EvFN)%j*{&ZIS~d{=2D4qC8d~-&qa$Wy_)6xveiAEJ zruv}Ex#h~P5A3M}&Mo=z;dCrEN+@-u+(jQJs0-3yK@V7=7Y z;sK}FXpNwx{h|WHY?f%M>JA5TQ<*E&O8f1s{ao7U^dX6Yzq zED1EN`bqN;8bj{*ZiF8*55vpEr*E1_^D7`BX)TPYHZbX;jytMYz~1v-hhb$~apupfQBG zDS`JYl_Qq0=GPKtHrwiYWV3V$4V?)GZ9Eb`1@4h!SobPpz|zhFsB_&b+y|dZr)IRL z0!j;H^4Myyc0Wg(*T|;T*g(ZDS)+brvlI-4WL6Ppw%;gaWD3oRhMfC*YOoPpl>eGC zWA$k{j;#);brRXE)`^?RRH2oIJ8$P3T2eTrH%VyFaDp~AI`i486%!Jda9w6xz+c^h z2L?r!Ki`S0ptd$pCgW zIoH=;rH;dE@L;3SVAl{14azbioue|1xWo0NOSsq8# zzCj6yR0Tf60Qgp`afiMS$M>1q{SH|A(07Ee)b4k24IZ!Z<@F}a`sSv%&@$U6PjMI8 zDAaK1dHKr&Zb2K|^7oUceCNmmA#}QV#P26h$;qiK=xB^?AE~VEuWx#Qm$Uc z??G`qG(%uFOqO2)Dvph8kQtfPr>==dlfQzg+kAew}l! zbDi@$ul`hq4(sjsGWV-`r?xs)8GT%O1R+;3`8iIjP&YpHKR>`XcqOPnhm)ekTpjLOjgiksH<4e83# z*ss%7F8WbwM~&~*W5IzA8j-8V_>``fnv#;5LSUt)RPt18sqY4|GIKsmv7gSmIQD+J zepuRUMW?9>0qb<$Uu_%C^1H+dA*q{Wf+cp_)Qqt3?}KNlfpHz&h|R#g)mRo*M;~jW zQexVB`L#+l7JW>*HE6d+iv)4W|EIdSn|LODe0WRHo+6Kb$K%%SWwLP61*`eJ>6W>S zPI`2kjX+NR-)-)yn`^$`*m`Z^y~KO+0(-}glb&qYyy1^X^Go%>P36zv=$b<~^CmJLe=e1y*4E_q9N1XNLUjwsWXpUNsVk8E(6Y5AEz))SstRGAx1 zoOW%GRtrjsGqCe!n?-9oME4ECuZZpaYUAbl;rx!+V0zKi)jcS3XSCHaU($3oZm4x1 zXefzpNp;sae79?RE{Q&B$&*(eXQRtpqti`eIaBR>a@Tx)&K1B=~@n(pBf*{ED;}j;;lBp=ZRMUe!sjAI&EgRiU z4(-ty%z;5sWuM>dcClU>6o0nA+-z~lJ=g4Y((F5v&A#>gW?%PLnthk5p}&qMSNtDo zvenG+@(VV1Ce0P2Ocf19u~Ffm`ES>?ltR#%A1})M*qEFVz|qpi;2!|YC$L6e`<^jGyRCdPU5;%Q0ts5viUjd$-=;St<@^(BOH^4$?F8`t*W z59pZaL*~c)ztT}I_(WTm?{VrIUo*9*;x{Wsp(cjRk@FaZyX!AajkmF!ZtK$8^63)Q zYNiAg)7p_H6Rg(3EBHOvcGiPxyN#!VqD}mZ&3@**W^bNswpW^6e4%D9_$$p`Y*w>< z7o_k1RMQ7A;-=~COUU!Qrcal~A({$k_j>(Ju$E*_Y|xf*N`gcV*cq&Ub=dES*cP>Q zY%fQzc8vsz*_k7xLaY_UM&mVpCll>>Pn1T6=K>cJ}_IDq4c6I*_bCexfJrja>2C@XQm&n+B$ z#Ht*o5c(#`tE0A=VUJxOk#qI!Zu;fQiAMXTd)=pfc6qTQ9?!+I{qvMP@z(zbdHXx_ zt^S7Vb?7&nzGX2aVU|W2CM6>gWD6%>y9ztBpy@P;OWt>%3F;1K)YQZzmy~vEfC?B?x2Bxz`+Z{`e*OzD*rQ=0Ek*fZKcnv3sOB*|a zf41)Y8JR@O&IXnY*Z)KxNfzVo^!;nN$r=CWiDD_JQ*Rp4Jg-s9cw{pBcKoi)?6;lE zUVq(-R1itG1p=c3+N0UL35*UmG#4(_9{-Fat4#?E1ws#G1;%)i%MMWCL+)p(Si}F(9=@B(_gt%69T1=0Ls_!;N;2N=4+h0P7;KLpL z;F>3cQ>J{C!#~FxcTNn6v}c61>^=?1UX^1oQ)q=pgfEZN6sOD$h}v4?b$!Cv{2Dub zwyFEWs~3m8OTw!Q!>fzJtC#7e(--q%9hw_k6IF@l*0IVl=-*U6I`XQ*%QVx5l zF@_%@?_GL&c=O`$=ECsiqVVQr;mzgY&8xzjD+S+{xN`$3Vb420E7hj5p&AV%i?Ep5 zXkY1Ly{i=PpX2I+HzWG$CF_m<#41}K;WTLR#j>Yd!;69Bo^mvnkUeFK9lw3?^GF*y zn*b{#ArCGh@cc_uFn*-a&>;KX3NZsc? zszramvR1viMfG7h|IYQzd{H#7+U`#GVP-pAOv0MF6vW$oNg1OpdCg zF7(nQmXsbNDus-|!M;tt(s!$uxjc3&N49Gvvv9?L3LnYD zrVX5>yy8qjA)DJuEHgB{!(@}_&Pc>Jt2(Y$b<9=u7@!`%`~BI(Pt6MVx;wR1heMaC znl7A75n&#=`jct8+;8cxs+tZ+dWTy6hFYpZ?j+urwkK1MO^I)G zH8kIMg|=s1>SSCWNS!~cH8u@Dfk|nbhys#_Q)~MMxkcBDIR$h1OM4;ivMh_6@EeF1r<`X2mr9~we$=|ItxRyk7ezqWl1J-M2` zjE3q%28C{v-c*BapeZvvR(n^bKn#%<;vd1`Ag7b|Asnxsq5k z#%lJPIK91+Qvfqt4Y@HrnIMm};ra@vNE12H>~bXXY`xRfqrZzp5p^ul_GCm`QfmuR z{Hsa3viC5%!NNUt^S;>+V|1^QTIx&$_g3W%(R;}-FM5|NWuQyHC zQv!v=SD#nnetqYk^ov;brl5ZFW|6?|X-ONOD~1IM{EpchWzF8-`U!>VY-I|e~BImtezzvnuw7cWtq z<|XhZNu{;>S!>~{K4Cm^!k`xy5y}gr_WnCWtD?0j-OBPM>x}%HD6|(?LSs+XFp}Rv z&ij*2-=fnzY@Y8|GG731>o5Tkk^HM#<#YAc@-&g^n*yD#MpgI_*Ag*>DzcfY2s zdCi61hCE(zzuwZUceya864Gb|74tdpUfrI7o#`&|I@l|2?w)r7g*X&c^!s7H7;PV< z({MWg@6^D998m@n@oaSQSGr%<+IC9|E1uIm1Mc3PsV=g82X};&1bnsvgL9v@JmKjr znJB$EES*->hx2%!8@$d77%f) zqObXC)m1;DtFTsh-nfLts(Oix{L8W1!12Ajq*!vmHC{4l?xY`d#-ZX^5yRp3&>O3m zRb~jjgOGi?#`>1)W8Vglggh?|e#h*4dXAYA|AqKx9y9)xsf>_CbFajkX#sX0?^yde zotH3f`H8^~$V2hdOJ&l!cqnhcq^tMp0_6q z4U~xX$yJ3Ej4(xiJg35L30C^6Y~BWMlw}1j2j{^&s+2LqoDtJ*t?eRSiRlET0*=IL za=lBGPqng|j)$8JKURzV)HAVlmGMio8cZP8R$vE04u*uqz_j*87dz2;h4F;Z11h8Ik7)uG`@RTMb?$ThK&WKhaJ|7^BLVA{M?hsvY~BAg6M*|$ksc3AIqz3M)| z8Tpz6viy#Ps}8E=*X?52vC7o)!+(Rlz{K+F5Fq4<<#$Y$U!QVyVfpO^^27K!$^pF! z6ZXmF_l#;Wz^4~jeuN=q`IRJq)JT@j@?%AKUSYz$f^4!&0#>u?+EO7OHWFE9C1@0cD*a(xQKVMR&OxV49fmL+;lM9bPOP7M2P6qr7;9nS*?()*M9k7?Y#S-PB8vS{7WsEIB*Wy6ptr!FpS- zzehI>iU~2aj$vaW#rdpXdZN!Bxx9yf-*BvEYcO@s9CRYQ%E; zEjGQU_3^2z?b=aUZ9QA=F_)Y1#v6ZiwIz8NcqPvzdDtbK&klZJaFbw; zt3bEylp$y1-yzKH^Kw&K2rhoO0&pj-O+XS@PkPPs+V0#OqPs9L{2A86gV*z-^^6jV zcLjJDSrqB+@f_o+#a2{!XT#qH#s_8{8Se~?cSx+>)V{#@$gKT=m@P0qrXKVL#>Z!M zTn*7-!`&Yk$K<0^E9uvEcNMu~%^92lTBDm7t$vKHuVCRuY!~Hq6bAh1#esN=A0uLh zyjS=^zy7AH=9s&NRaw*LI=~C}A?=CBs0akwb(mO>RR<%f@~!VaS)wsPsQwYl3nJm} z+nIj72i$fz*h^}eB3)D+^xvkKWB)qiUohF{Et5lW$3t41L>A#=P?PyM)djVIJ31A2 ztU4(Bs+G)7b8#MOew^xAS)Vn}(brIdV*1&Q#osOh-9yFuEGD9{TBsf}7QzllI#+6u z?#1^PFRBFttTwRphFynRa6^)DCdHT|q& zc6Aj8g9S{WKCLYx{eu5l)j`&BhJLYHo>~dbILP*D&0*aFEvxE)4-lS%kiL6ey;e$n z$z9dE(;G=q-RR<`MffQTxA`i*Oe|c#)@W2Z5u{_fN?7D-z2YUt$J4)}Xt|lAWYgXJ zf~?l6gI3JsdxM^XHkK_NvPq<`n&()#9jsio#_!6?9rk&{O?`vQS+{1(V3LrB^~T@W zCRXfatk`+U75javfa#I!;niZD&OM9urB5%`9e*+x>jZ1O;n;bLH5)D^vMp#SvU~tA z^PChZe>o8s(2Q&aGwyBC9B6HFa^f1X4)a#MNB}8(T!c+=*h5p%@?|tMgaWQO+59=Z zYD_OdxK2s2&b5wYxqKJ%iYs*X{A_9(ssK6UW`c-{c|Nli8fp@ z;;uNk^Luz9xrVJH1YoQf8?2BH?Un&>AONtLQpjAvAvTC_Dj``2gs4--&j^lY|6GqrW3MUx35F0?gx_qr{ zr}S=Dj9uV<3keF!0BhrRy1E5rg#*1AQ+x~wd!=4oh(0rjo8R?; z!kmQfnu0|wa}tXfPgg26wsuz<-%*uiTKjJ{(YGMQ)=cn>m>G<+;Ci_|CwKnL>Zb+u zf1w4+J;gkUo@fIoDP=_r9+S(L9<`MxC)t|C*6unvv913VbByy1(G9!$)f}^Sudl4e znbz1R)I#Riahg@HuUW<z?CGDcHp4WID-II)7y7iJ!{JBicS~&&|=t zCXNu7)TQ22P~+T5=#U+$de4+?&6P-*(Z?pV4?U(;Pu+N1$0p5lAfCqLb*wT2+&o#pU$ohbYT9mTTNNL|Mf2xg71 zWV@L67XhlBqaQl`rZnh~Lcd{NV;1jNukF6P?d|QClXm?lvmJb%k?--0G1f5K0RL*c z#NtS=az=x57?I#eR^w965`cm`vg6iBaf(v?-x#^yRC{aa;2Y;)B!CXOHmjeU=rGi7 z9<5d$?s+?_KVB3K-l=lBqVZ}_{C!tUIXdv8+kd52Am^1D8_d2f6RvNExGKSSAwK5Q>g zzNlUM0P~(zFe&tW=?}uDd)YU>r#2Vt-`67h{7BJ=4i;B7+tVK@v1hF*_H2>$gO{~P zJxVezE<`faZC^#U6v0srlsOS4Ho|VlMR4)f(WL0pH@Kfy$vwo}XnA5nFu7=L9VcHa zRx|8X*kfX5fY54g)rr`!mmQwF+cX8lw-~tulZ|6Zxuiz;VU?j|5+nr?OROT6Op!^B z`Io4z12V~skCJQGH>beQt`fInC6R!8_R0Nv6++Tp_6(Q6q?fa0-%F<)Q#EOBQ=&;9 zy(Xebas%P%&~|+ckvoG&g(-Q zxqGtXKzMs)XL+*sZsbP9kv{hBL~imNODs(I>8B5eWK!%^WKQ-EeEyv9!@lJuP~E+R zjbN-1NPa?1=pV#9>qW>cbVty0%m!C|$&IRD*J@S=LdmoOLie=&n$D5^w(l->@Pg~m zF^I>4j5w`iR}+6xHu1g29HlIfP5kA^C)Z7G;;p|&LP7pULQ(tohp404zdv_@{rj<@ z^Y`!V2PT9Rv0^;;AIprDV^7=)zcR}3b7}Y5Hf_?rE|zzaiuY(Q<>fEtijnsP@I>V0 za}8n|EdPEYiTd7Qd{w>Q>-$UZx2pHH3%*|qhR|64+Z!t7aA4MS*2wTCg08j9reL(P zPxFK@C*oT&z%B?`8{gv1*bfR7k@_dUuauLXj$e^UrSaWHsR)QcWHSTGiAJk(iTUNk zhsiGD`_>^jB|N7_goP+qj`n4Yu0TK)^4rrcmj2?6g4wk^Fn)|t?WO{Ctvzv%OnqlG zDv1yc*8)umwwHhki5On1zaV+(Pz1udW2lersaq5eM7+Y*&41B)^GhT3(4T1QNPM{@ zO4nXi0i;G#K_gBkcX2u?EL&h)ijHRq>zU#a=rIwbZ7=f*Sm{q5vv0g;Oz zCAs5?wGBG?bM>6r)||1ZW012C%X*MNUoskR0?k;E(L8}@R6#B&^sOHCuX0FIpi5eH zhnZ*i1xZv{m!@5$4D-9&zaRw~vkJzUKc&pOBJu5#?#SOCpGJ37bYgUIaHnDsCY?!&9itai&K%B{%6_x!gWoJH{v?NI%wtnLNDe<8cT9bVL6Y(LPa$f?anz%nlzaGbO_!^;KSpFUzQ51~t z&G*JG+&1N#@)zT|kxMtt-j8@3vz8$L zX(g{pK)q{lT$!j5^_e)wf*CoC9e9J%pOZLJyswkJjWHXqI7k%n@iu|~o7pf;x3%X! z{Jg~kGMLCt#t*uib_yX&<@fbZkoaW#3olVbd{fMr7>HyJ$@jUuH~WtVEEan$;ZPeh zYu&}!4aw823A5h{N9(A?iFxi7!O_CT>W5;EwQT0niZHFlGytL6q58RXbfzSl9c^Xr znRuupTcs+e1*GDT*C9SWmbs{`IKHzRAJ*V^cLbJEa`Xeea}uoq0k(br4i4;b0vf%e z=`u=FB?Y(JI7Ea<;QmdQm^IpoB&Z5?P8OOb1;!8azKF_PYL@83d&sholApyKNIsq+ zFXy$!EFDm#QAgufwcV{n+Ez;gi2bnr@F)I<-BEtOzFAKNEwhy3{S!H-PTaD+qRk zRS|o;kseQu8#)L{UdjohySBie(~wzPaQ8Md#3GxE;D}8h)|QS4C~RdLborC z0~Pu!uuXCF$J$@gQ@NQ zBW8)?REwjotzu57q7dCzkkZX}&;p2ieFmMVP~Hy(le z$?|I*x)%}STvZrOHsfLp6plWNNE)r!3xyQO&s@B-Se^;|G0Nox!xnoV=Sk~IyY;|Y z;}*7mvNP!m{#?GYgung_KV}RTw?A8Z;xM&VjnWTA+keD6*85znmpFs0*juUXX{(UD zt(`zWe~Y{j*$@_BasGl})7(^lWwJxmmm7?esMS>x_Cl?r(j!_>T%o$#rb`NXr90Le|c$k%()v8ZiW zECB2`CHy(Dfiz|`mIB%ud`~aATbw^@6^IRq5(p^kKGOxrVqI%2=-UvR2xj_*GC zTHDjf_tYZTF(;Wzrz$=dR^A%yPLCICyNw_Ba06Ny>fX6+zSRAiPu5*3epYoQ71!EI z>2>rJ?h{(@$1;R_(os9|wWbW;q-4Ec3jTFkv~;3iQP>7wp3Q+@;QaP~?(=c^Vy$7O!mpBw8pfPB{&Q)bEy+T#6nbAK+Tm7hL3#p9z zM8mAwf|(#SPwB_tz(D2TbJC5Ja4R7q7vX3BXUWptMLaQ}hf@7>C>VRzi!8V~OVO)6 zPHDWDWiV>-)aS%pR2CysL~&F(>r^Bl{}iwx9(x^5dqvoIK!kcDo%ORi3>!GKqBVKn zR+|;8b8M=W!Rm<54*a>J-kG%ZW_=8(ej$t%NFYmExbdMjMGB1O02I@v-l7ArwM^^?=6b?7--b&isY z9S|1TJ|`EczD(8l!Hp=qa9@X|17_sv##E3Iz=uU^m%zxpnHF7vZ}EK;CZs94k&CFK zID#S(#FQpyB%`=2{PVxzDIB;xm2c#g-_YNSPa`mP_&f4SV1#ZjN9q?1QPxU1Z|^xokPLXuV7) zRr&I;+DmDB`iSEBb<9N*@rC%FYrzLd!bZ1Kdb&2eZ2FKMmA86ZRB9Jq7TpE43%9Fh z-!WTHH3yTG(Gzduy#{<^fWp+f(; z{OW(y_QdqN+IK}}(Ve-G^b+sw{h$|o?x!_h{g!2uJZ0Qpkg|(w-LKUj)>Z3>C;2%c z0}WZa$~UmY;+u6|%bRxUs=0#>DWwOIsKOb2#1WZ8F;3U0DdB94J|5yf@NcQRj zeZ1D)-|(5p<;Bs`zQSpZc5Po*&{!Cs9xZ(tbhmlx_O{rEwya^~FNHc?e*_uGpH;A^ z5$h*+y=_~Xnpr{|#1_Q3{Y8@z8aZ%8;efKiY8~%8i(lVWt>b^-ciZ$AMO4$fF*l3( z9m(jow&$*l=WZ~*wT>-C;l=)oT0azO**Y$sfoPm;b4+hf5yXw})6PwWSJh{{nElP~ zS>l<{I^EIk-12|2_haU1Yfm)i$;Wdd z2QWup6Bx~$)e$>m%Nw=bmKrmsTF7=={1`@>5W7-IYU{S$c4yS)K1WlN1hvwZf6Cei zeTx~Uya1_~1vZ6#277;$elBfKx3vcfa@as3)MGI1T6dwd!KS~7KInwD=L`v=YZC6* z&j03$*A!tz)K@zuh66%f8(flI|Cs=r5dZwZ_B3oc1KaI>e{Nv=w1@pO1KTt2_d5gI zv%cuh3~YC#2;jd6jfz*vU~YKutFyOS9<%`^Vm$t36Hxe0!4sa`Hc#E($rsgFB~?E- zSH7|^Mi1Kgr`ovnUzJAadk!+fE88BvL#_lA@ZW#He(rlt?j9WGqdJGN|9|lWsKRqw zQB}r2%NLXQd`|f+e2Y8_-y&ZN#-3C&d`mX}Dla{pHsQ2TfG(LI$O=pVJoI22R5ZJ~ zmUH$3k%5IocezHRxy4w%&cVr~`}7IDyEc4D{*lusqW6Hi24PM!^MF8i`1{Egzy(%b zZTL35DwjdFhco5at14I9GmH~+V|;p&P9(_>yPl79&s=7hJq$_(2V`?2DSFj>q$-zQ zlZWF(vCNfeA#17mMI@yRfe+R&BG3+`pyE~Yi)&F-HY{WU)#_}1T(-vAatPmrOB)jo zIe0JYhk2o9yk3zf@S>A8r>#RaXyg<=@_jq0l`&RwkD|5Bg76byi9k7W(PX!2(G;%4 z&_}S%17Hfb4RcX#^dhf;97r%WA-ty|*3wYB2yW8G#0zp|RQ`fA>N3=Ji%>A*Sl8J^ zXxS}oUX%yp+v{JA&*Vo7{*)}bd5oB^(ph-w&+5r=!1o3pmvWoh3bl435J{a<{l8fq z*m+Cao&H}1$F24K>gGmYpWN8Z8~-1J$LWURWh$x?8_=c!UUQb;;!KMj*zIRr~R)n zxv78*S*5`dFH@o)ILq3j?|l-6#M=iP%}6>(;|%y_-n5&e>l1KnIZ zGuahY4r^?+>>G?X#eeA)#~m_f{r4lXW?F}X7`(h~en}cLwJEu^k0Ibj)xXNa98s3D z$MAQgL?iEy6srnnlZH|8CFU5!84Fr#Q4C>n+j;#@k_;i^rzS&Sq6Y7GSc3OEE#VXd zYlQ{ukT_DYbI$PkVSR-IF=uW{2?A#EdH8L`_JR_pe`)Zu4okd1Ut!yjLVUP-n|`sj zX9WqBkAKoKuf$&9wKZSz$%ohzD{Eni$VM!#FFEz)4&%pHjwQMXY^6`bgz(d4y8D`} z>*8;M+6RX(SPNPWX*cLwZFsbFtMHylL4K5mI^mD1xJbD$7;hnUW!~tk#u4F;vVb8Jc`HV;T=3g`ev3ZY_w(1sY#y1a#+i}zy%;319#o4 zhTDs=yK}-oU8>IT_!d;hX97_|y=gWGB{B@aqzIVY=cFzp)yCsTRO|fxf;x}{E&v@t zWTFNQk7rRT*gVb#)P(n%pb3qa(j1w?^N>@zGo zGxm-x;C7xQ%7WE-DuW17k}FuOClvk5=PfZKBRFuM zc_@#clJ82+1moc4eiKE`re|%wi!syZ46Vv8fU`S(E20Dw;p?VEVfsnFUTq3`G)j)P zq$0^iF-|~7Og3tKqEYGuEZ>wJCmMAtnM`Tab&}V)M#&e+MmbcY^ltRiI4ez*b}EM2 zFcQnN7P21_qd8?(pJ9D{a0xfy9vEqaL@88l*7nR{pSazPCr@CxfTL&dDn~_9B$-Ls4quTCApMCFn3pJ3Mwm;5$gp9JmU0fjK z1?RHQ8I)*nZEx@RFTE=`(4y@QocqF`7PXbdr$ue;Fm8(#t7s%1a_H3$2jACXzXJ|~ ze}V%VW{ud@IEv8_Nu7LY!4EWm-8y+i0$vDJSji-&P@?>F#!pt-X*2N6J&>K^hPI)=0TEFuKJzJurHs&)&9QYoA4mIveWs!001dn}fT+ z=>6KRcWG&0)aSpA?7-OyjQS;mDl)Ja1xD*7`*m9TuSgZK0HNzBl<@x01F8`NQS$4{@ zA>4hg&N{e^&J2t`?5|F?nq;f|D^xLmBi}5WEQU(RXZ!sN>e2?MtIzJz+OAX=#ai21 zb+O79plVv1=(qx-tK&aV=LWJBsQSN8N`eC!ig5hDQ5UOO7X>S~sO8JPF9b(s$^xD3 zD-Moa>ANX7a<%XB;KL7tuDSB~lijpT#5Bnld-@tN|r z5ZNtg%#GtjVK>rwQ?9-*8WiYyc~;99#YR%&F9nT!txZggQO@|jEdOjSmwz)@)MBVr zmx4K1{;A3hN~!w{YgnCy@3RY8B zim!qG5C6~fAG{51&wl+x>?0e{TfTiT0Z3#Nh$%p*K(vhCDKTho$=`qU!`0XPQQQ64 z6jp*bxVS7nL)+tfoRcBj;{vNWjCSZ_q5H$}&eKQqPPUtBU=+Wv*2n*!;`a>9=jcN1 zW!$(ktmA{S3seK6?a5W_KI-sXjHDB;uupJ&!9{@MTeWt?YIdT_eba;ED>$4T7pwyR z^@`VDQYqq-2$A6oYUhYe_2@$vEMqgM)lX+*Ft)Rn^)AAF6fydwis|Kf<;6m2vjsFdpE0Hon5hKP%4>_|@}@$>(h=cpml6 z8T>rIZEtJg+xflVl5rHr)1!`7WFbyH5QMZgO_I`xSgHs=gV%8j`4Mq0hl3xpD52~Z zsnT-JS71p>s(F6O-=0*oS*;dh<{vi zVqB$XVpMNPTzc1GiM2SU-?8ebl$3abGn%LJJ1Q$H>ukK<$m?(^I7=uR5^oHCnNA2d zWKTWhk_{2x%nde!pE!$sV&c+!CC_cyiAyEVV6Bb6Y|Hr?J|W~DJDb%ae6D<{x~K>y zjZx45n(x_!OWt=RZWWw77^1^?h9+rjB7-VIkh}8Fg?Si_eBE; z>dCI8mbz_ZqM$#JyDDf0KxElCq=}=-NIZ*mU6CE#l0s(gcX$35+hSsV$N?0m4uAS& zW5Cxp8zZ|T8p8&BtTJ(%G(;2%Dt}+|WFr!bPs=Oc#4FW+%`~7IRV)4C41#uyOB|6P#@foQ8Nw)=i2+4`szwoKrBf*%e6G0fA zZ9Qs*&t(F$lCF<>T_gU>(8FA!?Y_MfbmkJy=e({_wnn}|@(t%C=^1?>3T73L=wGOY zs7&o*z}(7>4&Kx$-y?zM)VKU!2sB%-^VbHN38{Nupn00be|N;|C@l5Q4Kz>xqQ4^0 zJmX=1S)f^4<}VI3J5&7bo{VP)pygK=-sQiEG=Jy6o;0QYYe-Y+ze1(CtS93+(rhqp zpfovS?A{bEv&U!jSRsqRaht!Q6e3j7`%f?#C)hH}jMWQTF-HOHJ8Q)*iTz-meN*jG zbE7^b1qTNgO2PaEEK?zZ6RO9mH{0l*;AicYhhp=>^*P-o4ogq!UGKw2S7fJc`^Gn~ zA#U$yot7=44NPWua7p$<-Sc`<9ehttDd82)&1pv-5A6nL zM82Q+Tp=%=s7AML%YT~;?zSnr8h_eVm>i|+Wi~NyAWx3s9_pAEZqC`#lU_)kwc*uH zYgc$fHlxRj)~@?6sXA%x60~VE+=YTg3*Jvq;}{sVd;#VGFqm>>%%^(=Ct`(7qFkK& zkJ+FmfPTV#S_Mwdtv0r?K+%3Xb#J!2EE_eEH^*I;n9AKn=q|H>6?$17Ym>FYvD58Q zuhVr}Felc`k5(7f>Zu%s&LpaOirY5Be;spNFE-p6defMHRuJ`8DMwaB4|cz|^VoAK zCW)Yqi#n9k)nt==*H#<<^1(dICTyJkQGU_L?f8x|Mx|S9?lPNCtZ9_BgzB14wT}#b z2(zJmvubs(v({baByh?3J=;Igv!D8UZnYt{4Sb!=+Pl5X;YUjFeMm;+<0FjqCr3nb z03pfBE=?4p0)P7XR5Wx-6>F;Jiu16-5pGu-_Tl+aoEQ9?R$M=e^TKzv&VQ)bHZM_} zXXRXO-ewRLift3qwm2{Uh^!wW7q#J?>dUaN)tUT|kDwgHZ?H)g)*im!a$W`k5QP7o zsYr4F9JCu}|9DX{OTi$!75HdIwi=H-B6S`xj>sl%Da^d(B7G*BQp|=Oa&7a zr_(CR9FjORB3PSe>G9f@En7xxm^^3#<};_@e;kQOPYjBIf?oCQ-~&%u5J$qEr*zLV zxaGA$p{l;E6Vd@M%%{;Hm^r|}acfh1iA=D<_# zUjJ2$8mOw&yat`Q`O=k`LrM`QI#pFOpW)G^c!v~bnBCDPn)(2 z<7Px;Dg_>y)TrVavgD=i`D!@@UY~qH`Og%1p2AqtOen=anJoT~XtCp0(!oz9{9h#- z;{mhaiT9aQubQzi{#6L4e^>l7b-AmJOA==kyvs~J()O$(7@zNjX9XD|kKMY2oB>(u zfYHDw%n7VT4@{mh{o*N8{hn=Mg$9QR8p{01#;LO)U3)^TLP8$gd{62bB22Hx&KI*R z|1}bUgBxcluK*Feov;NADB1J<(%c}8SDdz(Lv|%gwA18 z!$bd6SD>d z>&Nn2tm>gt4?HNOR*z5>qEzIc3J^lew+5QBQe{|~2jRQ)A+K#7PORNt*el!+054nIMabMo z$c8v_oG9W|BW*K2l65C>dl`_j$xM?k5A!lf^G#UvNtR~PPYJ(AzpfV3X>m*>o)q#p zeRDznCzwlSdYbt^r$>f^!sPESSZ((&1aiGOFS^+o-r$Jl{w#XW*c#o+M#6#f*I_+t zoy_h&fGpb+Ex+DE;E8*b7&3(g%WT>Kyp6~1w{k%FN%m}-x0v+?_-Aaf_9U-LIMruKM-P9n}lD~3QmUz;GT zRn@T3a9C(5tw>|r6R)as8gHLrct#|=BfD+~WSIJf8|^(A@^QG#fnmrvW@+|h$jPe_ zrwMIeO@79koG-CUq7Iod57>-ioT#6sM59@91)fRF6iv}g0PG3*0tIZwooz~hFZNGW zLa;^NH|bscPNEFjjGn$R)}1={LEsTClagRRBpwyW@Y@=xcIh@;K!aeM@$ta)Cb6-5)KLI6}?S66=@uCj3AAu*PA+Rya!HU7Q8dJ+$g3&I{p@ps)50K4mJLX6d`>zj}z z0`U1Z;q&TIlGRgA%XjHyR*@&5HwB`_ux=-dRr!F)P^_yC?|k8)kdH}r?TnUT(k#PvdS;2ZkpCS66iETq3H8k<3kh&UK_NT-#cWF);baZ9@%_9lQCXgxu1y0n_88VBTHa?EC%h9< zzh<&gt-Fso>*6;(7H*UB5B}x!Y2PW z822L(M^a{E)Fodz!U9pD#6fa)p)E{uYxjxf+n5Yu#9w81ozOE}hu5xK59fvM`%en8 z=xs3P4GYks=&z}c2W_%q*nOhqwJ8-UlxxVham)0(TB>EP7GCBDz zOw-yGUO-pgaN%67y;a^-*>Q6)rUgH8=B0#6a)`4SE^+8(j&O-nFL78qXv@999;a(K z%+k9(sT$7J?MHhSM>w=f*#d4d&p*;;wLL-$~jt zFlY1k%YI4kuC7J*5FAfwUW$c#^A%Cs4E805M=;nd)k=o7(q2I=!G*VFAbtf8S8ltk z7@U7G=v=wYaqcojF7ak7T!~67hUW5I3)gGA#ni{#H)^}r;32SVPs07C_Na`AyQ{v* z6~i0C?{K}T+x`iV$%G~T1x%Fp#|GF~+2zO>VcLl$1hwRh)7H$%mDCafL%<8p@z1O0 zyYVZSKW^I-+b)$lrO8#+HbK#~KMsBYS+wK-CN84UxrwSR$lm!TOXq zBzx5S6jS?20G5$Vw|7C)t@?)f*4ME*DUnAuWs{=!u&Q{pf-cd$i@|K+W+51+*r({( z3t`}r)o-cwdQKxPb8vW)qh?ec*6y%p7$uUmTg1sBSZz1jSp^WPHw{M%tChLvP&E4+ zxMct>t?jv8^)=o?CxQ23feV_;oN7UE$uqiz_7Jwi#9FfZGW12!O{vy?cSSa+p2Y0i zlU)vg!C2hs_T)C*hp8-2fZOxf=|Tg#WQ>r5QtfWPMciqq%3Y6&L@L#`q-c+dcU(1z z^NhRAlniT@m_~n$1B#X47jOIX^E;Ai*v;`SFpu zRQ=<7TF2?;fEkvlQ?Hmy_VZB#r*S?a?r4CTe$Cz!3_oAWy zIRfZT)d=PkS70q(P=ni==)nQEuCm7gy2w>9a{zPK%;$zC1Ns%sMmvG~fM;(40(PfXRP*6YDp+F>iJbXLobiieyoM7 z7Zb_&RsVeV$J_FLJfo*&n=Fml(MK(o_r+JyZiM(A&ohoX z@Dn4}$i*_qR_rqfIEK}&tr_^M{VB9=wnh?rE&3nvcYqldOM`PgOCNkqOy*bLDdk$X(Q4& zWzt5oybVSwRF@{i>kuiH>ecqT@lCGYWcA#!rmLd+By;`EXknSFA6+o?1Q#=ah{c}x z4^WhFwLSC|sb~B;L8!2XyrueMQf#vDQ>rpRwZqnXENCi~s!@i*bcPe^SCE>nG)?9p*jREno%;>QDA8gcqkPUiAJ z==xhaQ{DsZG{bcuWexo(x0d)dt~aBPN#54jdU{f>DviqTsJSIQDXHkm3v}VwL>CHn z3tc$aO41$k^)2?(Z)*GgK|YLUi4lC;Ov$yxeR$`I@D@5ty{V>;VQrSmsCOPHUGMIh zXNjl>j9{{^A#WbmMK1hKnsd@53&HK0sN#QoTUC)xov7tx=O&%RfaB0b?BbG)*i&WVx&PK)}>N~is$vF=ddy~eN=%>0;o{WepHMOv*i6-v3L$FqZ%Ya zkd(xzXIg$oEpR|Z@v9&&BbhfA%@{ytmpNO3IDU}Sck_dQNMv% z3<-E;L$y(%Eam49K1=0cRPw_3=$x^@*LX}9D|4*B5wcb+|J*3F?V-T0=LF8A`oHvI z&Ak{=C@v6vbjxNc;Epxk6X@I$_;bxRPke1M-SQV}YUr}plef2@KmR!wI33>i5{(ZCY~Pb zbn>{24h|-Yv|axouYiE6c{)C=wbO#efwwU5m*8%@9^fUr3i0IHZ2Vntl0u5t4B-^j zx;Z}FHX%i?hW80A(Fvu}oE!ZIlNQzL z85rc&hEt>Kl4PhRJM2zUp&0QO{w#E8L+Lr@CW;!!j7+^TY7_~`w7np$krr2FM_13o zu3nKFMZL{-r&cBwtrzXBv^&bonV>G$(=w)si_Q3aT9rZq*b)52Y*+hayGnN~4SiRZ zJ!|?B{Jb{Ii=>7geUS$xLQg-Y=TE<>Ujp5LQMTPFi@wY~3f;IQNj82a2UU~a#0pTE zBmJ>TWuF1>Qu3^61*4dVOVAx(MMOvBdVfyrqdDfp3XWPE;qcC|Q;(hQhX#0JA`PhH zeWA<(0ytJs;cUrJ4j%CWFlLg zISdBWo>a0$e9GT15EEOo^^H!~ANB2aoego3W0po8<8Q5$COQuAW5gP~$- z$tk>QubpP9uAa0@p}&GdY-kiD2S?-O4jnbkTXY#`33_=pO9PR+GH0($r`G12y&OdK zct%>d(>&tq1_>S^;0c{}xzD{XVn_+7opU*x(47 zfNQy6r^07o;}LTpWTnsdl%LNW8ZP^nE_WQI!9)P*BdN~j$Y z&j^)fs0(MP)UGZr4wX(*7uliGOm#6cRGOtOazdpJbulYcI$d4lhDv9siz|aYb3>(C zR*b>JcUz>{#u=QcabB%GQ4KwT^!;IOFz(bV3>U7Fu>om-;7%&Bw@UY)wED+T-01#+ zcxiZ%H(YPy&(5ENKPP|L{N?bM%imo7^7xz2-va&?^0%13CHxfzJBz$BfnKESuY{z# z_h>?nz!Yhm5y~o+xiTbo+aA_|ognM80!o^FNf)@kg4-RNncoE)+USU&z z5)l?JtO84mlTsV9+#9p&(|b~6fiZKpY-a8B)(^2y$U3Z+5&LQvciU5 zN3Taz`?6ENC!1=y-qV*aV2&|^D%>>Zo8$<0hFLky^*i_*o&D%D`PUQ4Bo%M(p{Wq0b8O{AQ4jp16nJ^h6iZc6Agv*rvIb} z75^a_&G5GE-!V5@d?y|pk4slhWDP$(FYA@=;rebW67z+E{5dW znM2|2$>2(?WLhphK5=|KPvZ2YsDl%n@5wG{1d5xR=wt2aIJcTm({aAl8F zr-7->Rc2(31i9kM5!sSK&t<-u`4)GK_i*N~GT+U7FS90*Su-9u)6zHtQXA}cvOond z_c6WdxLz^f694?BlX}xTu>mUp?*5TF%VrL;2;0YUO#$clNb|h#ZQgJrOS6%s*~rpt zWN9|CG#go(jk#XPz>4@AvYo9tiA3-@5wAUo!j{HMRbym#B1_YV$ir>Rgy0t2A{B{H z`MmC;JUkF#EwYk$LCF$c#WQqxg!OV;uqU}*!aE?^VS0J3Q!NU2jnM$WC1g9h{(#Cr zmQK7w#!s@hyNewS^8~@8*d8Dhu5=efz1SA2Jip8&XZtjzpPUb(ICJo2aQgxaTlI zv*gzi@;c;qddNFnerJTdGvrr8{tS7w%w7gRFxt|XwFYyzC*;Hd`usa5+F}>-SA`?? zTbuPg^adj5FnHIO;Gi!Y^Mt!}I-zR<7zUU7BLH zCH~Ag67DYqvRVsjG!=OH$L4mZ z#TgrMI0kw=CzZk^Jw7WoargQk5MZU0RU8jj91o77=lg})f)LM-2)Ai; zK>RXo-^!(-WtXp_2gXa6>J`V$4uC9r*?*jL$F?0oV@Y=pD(_5=vR5uKmu5VjOFpA_ z8W@@SETP-!6Q7H;#qz8)*QU90CfAS9OH*D#*S8%J)2?sLNsc$e50k{k0t!^Vgi*hY zx?U2zZ;1u$%ise;M5-7W{0C{FXIQogBdjZ;1an^j;E)!S?X9*a3&Ag3b38c^rPQlmfwlN#tUm8lKZ%f=&CmUu=CLWZaHq<6mzN))usY#TCrVN(w zoTEk2>~aV(DK(Uk)?EXKmH0LjbLC1^AM4b)B70o?F+9t@)b23^pFgah| z`ow%O)O@i{&KEFSI=HOjop8lFOriQ>=^}^fqKH*y5F-hK#+bIR zd?^o>6|7Q4=@svc7cHHn!YE}+nN9}N>1DlXNUtG?1+wAr;8L~m9YdNSEhCtmTGQkK zICjjgnqg+w;ZM%4E#a*>NJRDvOfV&nvuBzjk8hkpPgXC0Dl@GvbsufGNZYqLPxmei z)*{e&^DJ>B1w~RmqV0sU3%Sen=PlZ! z65Va;q|%g8IXGhGOxSj9>mb{8lAz;d@MA_MAcH7RZd6$8VPUK^teAGx$_6KO5Y1;I zL@R4X!Zh7W3zIAM=qLO1ycJ6_tZ#kY-r@<8xSvO6M#(|iJ7qoRB>Q_i2EICO=j?#C za$Ynh)Vv5GbXZ>_{VqWg_WNc7q;{EJwou!*B`^553oLXZ_3bWW03MbB@UVo$VaHuH zqy?wTV%cqH_KcaM&~TC2vhbBm*-|o%AJX=HQ-&m5bCOY6Gp{s$oytR;fB=nR-i4OA z)sXl(F_7@0)(S&1EOpnM+=+VpGxxz}76u+DNUr^E+9b`@iM){`RgRQwgO55XQrP6N;)b9OAlQe}5nJL>5i z#I8xXXYk8(eI&CaFdAscLVJu*Irt!tHfXy~)S?xYE@$^DKr0MC40K+1X&$ph$|3on zME9bT%dMT*L~py515uLvIHe~&ODd8bxgqik72}0f7#ok3guak7PipboczRE|$64T@f9VXeC!|m z^rP25{itioBQo>YovJ=?$T^50Y92oBkExTwQDT>NCvvQBu4@wW-ooDu*QZSg71PTv3 zIK<%=(Tl4kj@DKzwJ>5dB>NQ$2;Cs7YrB(WhSI<@!1~IHlq`(g&6&^1czUSon{AR%Mds{Xb}mdrdepFH^O8k&93HdtEdje{g{kdRB+ z&Luiz)7BSABsX!1wZJAv8 z|1L24PmOhv4JnaM6<1+P=%&z`lu&hQd|AWXz}e3F)sY#In0mF0qP^-hLY_DhKSQ?u z&qQYO>3xNB8uKEnQ<6z9Cs}n$XiX}g5WYCrV+|VC!7o9S7bPM!$N5ghO*%UfH|cCL zZqnI_xJhSK+@!$SVKz>TD4P}uB3ja??f&I>r#d|ziW4`|(1Nn9h+G?aMfLt=UdWub z`<3x7L<{Mwlefcx;#hQYp|u|)E&6Lb*U^k$!`y%ZE@URV9qqaN>~ul`-ylfk)lBFC z1m{_SGd8XLyL=UG4ZL@&C=fMRmu%-3?Qcso&(e0k7VMnIv?5XBu&SU2I4g(^tZ|KChx&4pP}CRzL2gxopsbw8tpvXc`4j(J@vl_mD^#Ndzv@LO8jpeZ zx0}`2j~N{vFhgE8#M*DgR60&%s9<^y^%+3s_?PvPiFe&TE%J$(L= zYMEj940*AgMV~Q*PF~-#kbMn{&|Lw0wzAg9tH7x}A-f{fTAf2(HWTH3zVTq zQfQ;Yt3f@woxUTMd-ARjEwsY_&Ob8vZ_=M-^CFjrY7&Lx{>uVq68?O>EGPf%JNk#< zHec@wc4frxEKJ~Ab!Hs4Qt~mbdrP|b@c>0tT7ISn}IGH*2+8vsbj)$G$l?_Lb$ra>X&nda=J9h~>VwCB`#eETIIF!HcX zBY?rbB{yLau9#T9lyPW@W_#Td(9EllcS0DkIanED zi#1kZIbLRICvmT*C6R6QdS0(IoVS1DplVdNi4 zGKs4y*-`)t2k3J;j6v*hY_o&E9Y>gAuc>)Q^d5e%_Y5C4T>Z=n6=AylU#UC1q-_`T z9C&SQ&rIuSi8eH`=@Z?Q*h@&2rQ#K1*4N@S(52Jr7*A_o%ZG#xdvrO!7wCi}-fE}y zbfV(qL`Ep#q~)p~%=YsnRF2!o7|KpEXJ#-0!VcOw-$@J(C2J{220C$9_spbA&#UH* z$!g{!#;c0Ljyz+j;U&VCI#9xogqH+8Bevo}u|=Jzym_p85-SJo(Gbrs&;b9|iSbi? zU{;;Bn6+m#)%Ydr?-|*YQZdFswG@jlgOqxqtCWh7O*GSrFXtG18=EKsU*UdFTNMjy z?_e_f7vubJ19Ql-E$;#?zE&RFOkRtY1bF{^M$CaR^9wl%dLXM(#8gR#`R+i_}y4YSnAx;x@FtEj^imw) z8tkra`rMxxd}M(|Yn!Q_yInqGmw;3rZIFW<*LB zgi7X#yoI!tqU|d|(v&s%CA}9Oy)1JcyU!7hue=G5Q7)PsX4q(|e~Gqx#XNvcudR)} zZ?BcpqW$=Ls+AP37*gjhTKm(qHF@@Oxhdksrv*pmHm{W9vLVcCl`C#84RdC0XITFXP#bZBX%GOyuNR*RRM4@&%E4`mKoSU`U=s30ket z{r8A?gThV4L;sm*e^FZAYB5&!G>RNTlUL~HGly{VRGpZg%Ym!;w!a3ZaK1nx@SK0E ztX=~tjT|_q>oX#K&c*tSTTy{k4+(gD>vIZ0tPrd%dJ8QA1SAI7B8@=G*nKKH{b7bk z9B;7$Vj1E4Lwsk_a;(?eJ@*QDf*VyP!aXET&r#2j9>Jf?oryDh|n83<{yg#_+so+kyuJJc=^WO ztNOYtvX%DI?|TIatc|FK9PbUJE5$?_?~SK!!?1Wh8~yR_;wvoI zn)))FizIAfEmc^O9|I@%$jS@C?v8Vh6=!OVw#6V%E9G+WY!bQaR&0r*4*lNz(>+|k z&((RA%F)8L;ac;1P^LtYQ5zH{r)}Kvql^!`lAoB!YR8H)wP&Ax>S?6lF`pcX_2CTp z@4J6l{`-Nc8Tn6kiAr)fI*|o_Ny&eo@1D*yWo}i$#CqRxB?Z9Skn}9! zK}mrQWIrb3e_QqwljOfr_WKTS%i{3>Mb0k!bx$X1AR0vxQxmcu_UxmwUlj#K_7kJI zvxrVw*C+YVJspXX$-7eoK&v8|%E)_y6szxN6a3_s{NP{$#NYG#F@oO&7)AX1IKgi{ zbtDBp@li-el;GFJ^I4z|-;*3TC8qwVvq*i} z-HQ$j5v3se{aKk0Hwp>1a;?Z(#D||K^JP*IbV*&^)qi3X=-i?|=I#IQ$a}NmMB@5? zQ{F2c`d=pRU4gW5`51ftUm)+**l`^rV!_7?q5ma$Z*GnVR-?6^UEUjy4(4`J!uww) z?e=YA_K2hGg;;i!CM6f4{C;vZ}_iCAlf1|ut zMG?pUN_h|Y>uF>qC4W74ru>C`hDU>fYInz^$Q`q7JYalZnQuvPBENAPoFYQB#P^<3PiE~sQ-^0iJY0(Uo zzIgp%xwtj{5(9@-Tn-eKW8+Hwc?lq(cX{ORW^t>IjY<~(R$vC3m1U-`#%s$#Zd~BZ zg4jXSl-D!Rb(sBPCfy|9k=}KT7eiIhxU#lxV-bPShDhp;e!yQnI;{SRcYHl63Ryks zAFGa+YTQ&`(rb`0;sPP_pVS|l`OKvamfK@seZIon?U;2E1UbV+?w zK^=&8d1)fB()m7as2%|byg6X%eEMgPe7-mN*^{Uz>&$vGC1YhWqc@SU=*)~clJSyc z#*9S9&NDOSOU7eI5|CvYDkMR)uBcF!=BM_WL|^ z`#*c+yIh>d>K#m+*yu09XGc_q*Ezep^un_K(hJLNMzL6mZ!D_l#$!^KjJH?@xvlXN zx(;cz<`tl?K~8$pc|g2fu3WbN{Q~QD!zgj`0DY>%2xFOqPq>b|0g=L=*+P@z`9Cu| z8UKcgNPKc@EWRqooch+ucxU@%wua^5sqxh=bNwpuXXL`45qFQ1bz1YSj(RXvnCq%2 zXmfXHdc*7$dPBb6P}tp28cNq2uIKf}&b4=bAzUCC&MR13#2ty^9DVUDeevw>#o45W zJ~8LETf$TNOKx!vl+3#*`%1s$nxt~g(bweTDT7v}J&tOXx5U&)PuXeVHsw3|`SFv- z6RkdK-Ge}Dq=$#_Foj;vxR2XtB{vzjdC|pbFI3#AFFh17@6+%sK{ae z!7WD&@is2LNw4&(6cY=+Fk7;lkO)YS5E1ipjFLH6G@BzI;FzQ$N2XBqTSk$j$q60i zU1Y?ZuOg>=@lB%On8QUF*$*1QoQ);7Z0Kpn0*#P>CG!H&;&}nH<9-MLV>Rlj$k|wQ zOLy@tJYaogi`~}QaibkTZ7*$ZyV30;HpA)F!B2ci#37#G5uiTCqB zygA40{=ER;(I1>c>4HzR6PFYR4Q(Tl!Y34oKVfFW=o$z)0*TYg1kH>^(TaX?<|+bCIo*2o(-`RJWj`>AIHcJTH131H1~G+*^oTI9wwcCt&K)*`t)Xj=<#tt!VQ2NUYs*DbU8qT>T%Hm`LJ za;B%sy~cyKb<%i6m)5nJ#7NoeDeDI&<=|TT50f1yB7Zjr!#=|FWwo7?hwrAM1Bbq6 z>#@1Cu5QWP)WHkMzHVbm#h)urc} zC6Jc(<6eDH&&KjO+SXSfmKl<6>>B$*GIz3m`U99A$JS+UYcFsou1MQ@estYs zZ+Dm8WL9WD#zV>**y^wUa35J)4;bNR3=qb3uC{|4OJ;H`ShhW{r@!nExTxA^!_uOl z3=0GgS`iktO{x5DT$swV-HEPn(c2M|3Au|Qm+89UyU7QM*P~LNQd62waQsxtoo%F;2G zzeS4{FE3o$;^GXygFQ7DiMWC%8jb}Nk}dX2#I-kG-B|thwdnl!(WODT(i?s730Bp} z@XgwTSMo|Ago5&-@P+hw(Z1-W9=>(g-{9A)cXu!S!(ci&BJD+33w%T;v@JE)N55WV zm$2(xY4dlsU+<*6R*F%=zQLEtF|K2)J!a+>7eMtrr`-}wp^HNHPP=h zezC`M{Ic*{E$8!0&cb%AEm~3|<|VNy;v1e*_nwH^J_V>>63y>r;dJ%V_3`gAZg}LoeK81*UA#Via~AK;#`f5s)MYDDBf}lqgRhcJ+&S*{ z<9`Nh_wjD5cC80UyRCKVu?K!h0%V|U&$#$0-U=Z7v-v1+>@Xg9j@;sk18WI=(MvbU z<*epZB+uAoH;Gx-MZYY*N$eZ2y6J4&E=oeQX}58b%59Lk=>2!dNyqu=I@@zpGbTv zye2*w_qo*DUyecYNqhKH#?oguV!ycPIU<4?)fjagf{O}`49Hk6`hijQdTt4~$t!hx zj0>^PMliTp7A;Qkl|9{3FC|~;b|7bRYYTXcMac>{HjhXJ@agK;b1PkWJujXRyA1~T z>pex>%9w1F?NA4|JBU+Ow!$6K6`S68FuCT_t}m8%>or>`e}V66=n0?B%36 z_#su@^YmzA`HhV4q&el+Ya9Mmdf4`Z&W;q=;kS8_HA9)eM((3|B`D+$I8%H8wg39g;w-1>7l#AQm<%p9YP@_Q?8v5Axq3H z^M19&e7$0V(4f}iY)gLQ*aK4%W0}XOcUu<%@oB*UQ>3F1S>bTFpmPl;s9kc<(vOYGOj03u*&q zHOn&>j#xrDN5=hU^^nMc*A-M0hG!R~Xq&bP~=1F?U$QlC?)pGJDhx5wVvSTURNcOm1^ z_-wLYtBL>!hC=yrIf^wtftZbb&gF$SWAo9HMO99`-VQrM=i*f{CHj>fWCHD>yXfWM zJpQN!Sk&`sxxFU&FfIA;J5UiJ+T(^_$k2$PQyE}woV2lT<8QmG-DUSXNJ6LCxIa6F^;Vs^OitSo*|)oi?DR@xI6a)UzPGcJ z#In~@<+r=~M5GNlzDyaElyU2-F-1z#p?Lm-X4xBRyJqYg6iX!<)*g5ia63|m zn84IYA`q?LB}3Z#dokOcaxiw!#=cpXa!c>Q&yX7ZN)e1C)(|<#8WbQQa`N`(Tf^x; zm1Qed9XZ(^_We|rtXMHwT0TM9PHoE$oJSc&m|A$dSrti7i+%;L8Hek-EAmy6_Mo}~ zbzuF6a;11xzU&mrGgxIV!AHzxak7Ork&Y1c<-+Lr zTh{bMFZW<57Q^RH;!)ZJ3xn|S3?#{;W(v>pI%0bgg z8D#Zj_>0(w9CIqEIwh2@?mNa(8asmWS*|=r))hHI^4A$ki?reV{G63fFi=%gaK@Y`VN^=f0SyH>z__wA z0Vp;y*~^wJSN>bX?EyP4wpgQLQY0ZJ{hI7X-C4z?{EfJ-;bM5fqKt5kwsnv4?L?GF ztYf)&5)sKMZ$BYZDlzTmS^N67l2|FhT8+J^(YW@Au~N1B3p*SRLkU@1KCOSjY$P-Zk3Bj!DPu&F@!G-{MjssS z{ESQVqt4H;6-ONL9Dh}x9ouU}4gnPt=^U>2gUDdOeDde;QHfhV-Z{|5YS+d^?qj|7 z(0QkNJ3n0BlG?fL65M}$*xoX|b6ZwyTD0U%_!g<{v6O4~?;GqqaSd<1O)+=piCg69 zY0^0)^mL2;nL;?XizN~Q-gv;ga-)qWP1nX6mYpe_Csq`4AYU+JmEVw%UEKJ8p`0&A z5xg#kdz~uJMnEIPK=`OB+A{IP;EtS#vnZUfhl1EfgfI&C6gZlDI1$k+3Pp69LB_^& zZX;W`06!K?RIa?Aqje$9+cqxC?mTJN9+u~5Rs5=@Q*PX)ZF-V7t`Q7w;}?OKUGy`N zd%X5=FUOt6(hTi|?mG|@q}|UU7tE#E_DhI89WLtZxYic(u#^<0v^lyfu4C0niQTHt zh?N-?Yy-V&J}CCuwJ$u?=o_%jpou~8$J{;t+Sny$<_f*qJztsGN=9*Qt8Kc4-0FVO zO&j~J>g`q@ZCJOCAH=E56{DVFBKIm!F&IHZGgsOvV2=@oeMUGv^3TG{lQW$OUaM_U z9vXs;bF~*9dFoGS>`pAfADObjfaiIT35kwasHS~d@1ayohI^xK--{=FJ3<#2&gfI` zvUlEwVecz3XWK=_38UBdX7~*XM$m(1iNC(Y^#iHvJRQx``h7z<&>pn(apG(W2R_P) z#S`o(MBW~f@JOLtVLZN$nJ}=%B4cr(x&KMa-SOl)d>uQ!D_(IUHLe`Jy>L0sWYLh( z9WgICR_@9QO*d*F0PJrGm=*U#RurBVdqgxI!rw%nR(Q6kl#i+UlET-l$MC~2jEL)I zzTA&>hh8o!s=S^#W!})Vf~B6;b34vOk=HyeHVyC7t&=+N)97BUeA_GCU7|g_S1TqO zG%5?Ze7Bb+#642byy3|vz3S|Iyhr#R@ZB5CPyS%;A9+#a4AxT52lF-qP(PF z7=mM7?f!p}+>0^_7GXa9O`cmP`NCf9!AB%{;4v|LTr|YTj?7jkm+jB1H|IPH0x|O$ zVhJ!7Npu;!mmcRHF?_9Ky11G2u9^&sFg3|IoO_Dqa|MtP%jK}|q^R&RjpN$|S#cJyS*S+gm<6%${u|x6fWa%cz-U^gbq1M!i?B$wd0X zM83~aHX@msJE3!YyV|GeH92DOnqyJK83|x&82hXkrI!6db8Ik@vJDw zFAfh8X5}NjBw&$2yw%IGM^-T$U|@Qpl$k{yy98={+D?e6#a^CzPID%)>IOy zVym<1r?MNKxy{-MZ^6adk3h_k)jyyuw!}@R!-a|cuW`FGed!4C&O6R+ogvaY3b85jIu+m#tV-vUPtuH_ zCzigVATtmO;Sy^E4+5?42~gwgtUn1zGZjeO;IKeSd=;oBSx|u+B&>LcZ=cpB%v7%k z=*t)C6|?k;OyX}pBsS|EE*zaafHXxY4Wmyvd^5JePlw4YVg_C|gUKR0TRjK~v^vzB zuJ~%~CK^|$67Z7fx*XUpRj^%@ge{4#$)o5(g^FjJVeGV-JNkTY32f0g!eO-m&0y14`%$-;uWSz`e0FGci9`kqqWzPO@KGUhLb^IuOee48Ug@ zouJovQO35y15WTmImBgj+{*m2ogMxNsH+@@y6{zSL8%926yNY4oaIk8ww(Jc zQLeYfRzHP*;TJ|t<#@@Za#V6j$}0h6lLUW}!J-JkGvuHMoYcVkjuPS8X$;5CVdeML zFKnIKk?JcCG^ZKu0lm#FyM;RA&Cpc&S{?|y$r4WQinlwW%kc(rIjY{ywW*bn9YaOA z2aP_Vb-AsH{r*rveO7o<0X_;h$eyZT* z{;?;PigS`DaHnSRY48d1yo9w;r)AYj>?F92)E@hjtUE#05`j8X;(Z`Qc+K}yt>tG} z1;eQ`?}TJ!#Ak^Nfg5({yrPn5VM}1kiXXE(MG3~x6xg**C2FQ*A<1`tnnxwqDPLSO z)d!Jhv`y#p+zJvzrqLdpq`oK@1Vw@IGRz22j;`;rhd~_Po*~n{jUZ)Bg~lE^@I5cS zppbI_!gU^Ju{7GUnSiac@{TpynS8RIZe@ZJ15kOdGoP6*beg3CLkubh0+eAT1O@bC zgk$b~38l){`?xTl9d%Cem1T95T8S;J z3ct@$XI`=JgZCKw*fe8kARXERi$@Vg;e9xcM$klK_K^6%9h4}Jmf(j@k^AV@Y#-|)V7ekD7J1Z$-)Np=Xudto=Nl!s zR`%^!#RW8W0&}?4+^eU@yuO{y%B%S{KBedGbX2=^jbIQ`g@n}d2+fGg=6?iWMJV-# zKf|Jt5%U-6<7i}^Q89#>x_tF6aM9%ovQvw6(mF|xf7rNrl4Z$gC$OaXI- zz?@1qW7j}ijJU_B%omX3wI0Y;==nUX{FA|*Cd=drIU{$tj$8c}K7%HqcKyw>4&Ig@ zzV%qS)5!(H@_ej)P$v*5a$f@>pH8xE<5Nm#Mtt=g^VS6-@i;$f(A(z_jg1d>y*)oP zrCz_;{1o3BjN`I-vkCQF%T)Hv&kmM%NR_078`gsj?THkJnP8es)mp zp9<$117iyx*X0LdSJ!blAn!Ht#eJo=_4c_b#x73l;K-cTL44sUW2eO@je&&Oy+LTW z8n_FME~v$6Dl5Ay*=&fY8aX)kAY3dAE?L0Ex3oL`WR)5zj{Uqya6$0#oJp$N~auQe}$h=Qz2ubSub)X?A?S{8QU zUqvFerQrS1+S)2p{v2O%X2+z*9K~5PYO}@XRDLbNGa3~B7$7&{`Pvr>x2?$WRm^HV z&!`YAws?tX5*+Q$WnyiC(+tk{#_mU;2{PNI`3Sq4$=CM8?vN`M6*=Pb@ZV##Yv)sI zq$39+kva*Hk{xf!8mn_pvQD*{BBojL-?X6FiON(e4Sk>Bs)Sd-wxi#^<{1eeYE4OT zlw6sQ;6B<7mqi4ve})Jets$uk{>(a;DXausVl|ZK%-m(UP6*G20>Hpo=qPk9qe%tU z`aZKyE$)hTrmK4;Inf7|J;9;Lj%`U!&I0R^AU0xG(IQhmvd(R5pFEH*s|9I)hY3fK zFw_B25sMZ>_9V9&HFNUf1LgTEk70DTtPoE*hFZulQpwWGOIaD}7e;o*i}aczy?(J? zf4g2YTSp?U&!#JSyGL*L>g}?eiHgHgTT0_H&}j%3Z8sHuL5s@5Whk$8BME^q!C{Y?UjrA`3q; z5(Mor<@zPLt5YF-6i*aYY6h;?XDF`toPt6Wd}6rgg{z!n^iLVky2N4Nvv&w8*nx=V zwAVgk8%`k}?BqkUi-AMy;Au0mg@HwX0l7IKGQpPQx6&Bl>xTE{tf5}cOU_pkzv$mXpd50LtO?51Yvb8}=X zwGF|{As8FgOE8h81IdU1#NLImx?z*cI-HS8mrD^Z-Btpah+n>C*{vOjTJ2e@*KnHE zu?o?q-P3Y6Zj5$`Y{CLlo_SGC_G7-C9i=LcN6SsdfP5*>i7N)9NRpV`<6S|`s0-Gc zdjPE7yk5GC4h3(Q?3J1Q<@tOh)(CJ>2WWm)u_u+7;F$j`OzB0dFRn;C^H)tOLi1+F zS7)8ZSwAOW)C;Q%;=!44X%qNnUe|smzv6!r3!^1SOs9pFr$*&vHd@Ik1zqJt?@vyt zf#k$r#NI}T#O15cZk-M0YO#zM5HWa|QO~QEg@Ns5XxvOVi0;JE7MUVGnRVCDa~Z^b}W^R5|JxYf%y! zkd+g$-!+&6g)rok(;kARb$>?G-=zEJ#8#~L$vPnxp+bj)&+>=K?ZhphKe@)% zvBnyHVxGDqhfd-H*S9XC{pzPuLQ|0%%-_sqt-UkD)(|vDc%)9^h>fo2chho;zAhuL zry#9kIWJD#Ux+$N$DNkHRQFfv{($aZsQVY|{@Znbj_#kO`?GX^wy3E5UfrLG;i>Mw zL-*gM`&a7zyLJD(0{@(lx4@s#uEkd&{Q!f0hZ0Mx97L28 zPSPtebtSwO#3`Xzh&g~W(=s<+>8Hx{KbDGkAZHQ*V~_bJWf=gy99`K!n$$s27k3xs zaWKYLHbg?@OhngcJl4{ndFdCe0HhblFM8v_wa1AF%JOSP5zXQZjX!G*6Gy_^`k%y+y!3wmC4O4%q`Qjh37rbN5d1jNPci(EFuSF;?BE?0mgV75FJ zw@&rddO%{am)&)sPi3=AUV+!G-|G@ki*Wn2)|*&+y)EU&Hd#fboh&|wE<(0wF?Oh> z*b=$6sm6ad*|84?mCqWgKHmG)#K75EaZaV49X34;iI z0xmV*7)UJOVa-BAaqsUYlhg6?=`9(xZd^-#T<>=8HeNL5y7jp(-&_eMUcyi~iH0)Q zmBhib8DD6pD_ef(Z0+$?^tH(LFi`Mpgi<3hUgzjG3sis#Hh-j$ul zGV|!=%FbgVwa~tJ7WJ@CO|)To8fC+pcxQ%4X!X@zGcpN2vkzqD)qC>FiNKc!N(FvV z4Z3_K?)JIjrsF>F7pDUW6z0!2`jfcI_RV#-U!rYooqx(gpp2b%E19F4l63N(I#)^d z9{6fK3V&`Q`4xNT@;s43zz6d;Z$C|o?-pT}VzhC$SVnY-3oyBzP%QQ?xX#cUNjUy0 zPY>V0(+eWTar)s~>((BgFL@ih^YyhZ#$esdeoOmu0Uz5LmC|*mBuOAni&n&`Z!SyI zw!sXm37pD)#%S=2)_Ah@LNr#o1gHUQ{4^9~uHn13!L(9nVhv`$G-lO#q39W$aJ2;V{Fy zj+s8Tr3=sWoeDvy&UND$+UYz+#5Xuof~74Pn=jZ*!6@3w6*Eb4lKI8|ZC0Y@Km7$C zCBA)aQy7utbO1F8o~ih$uo6W}0l~r8WTFP)H!vG_du3hytqM4qvP?m&2mYH=H3=V{ z=Ran$l0)Vz{`zX&ZK<%vSUQ|hn_ue@2Dw7m$0&n$29s>VD-{ySsx){i$%*a42!J?P zVsRI15va8mf#8HipkHy8w6lY<~YAsw@3#Y(SE80Kbw$^l*4adr<ub zH*0wyT9sk`=mFR?zc%QPN4Wn7G2n9mtxrf9M^SjZp;~*S%&M1!|4m zgjd>Sewu27)MC|ZE=$z;`|62x!pNgF83Sq3xcQ>axP`Q_OQ z&R7ql+}Nph1HPgNjKCg3)mKFBY5`t<^!2BMy= zp3WCGkQXED`1R)6TM$a4HKof2FYG=U7lLJ1H_5OO|5LOznKI=AE*00_vmj7w-gBdp zhf(-`wMXzV6z3*WZ(p>y6dq;RakYpr*uP#HugXa1e-PHZ9N)T(=v)L2mC4T&JjiF}2#pe9pZ z(01w-u7a9udC8I&cR|f8dC8F%N(0 z9c3CNq;HurqS<^eVN&wo#0+kB43c~BAn9tqU?9&+irG&}au%!-K+crspS@7%UAVys ze2Ajdjr_^J#zPRBdq(2*oR=RozxSmPDA(v)(ii!R6P3w;efID(HpYFxZsUQG4{{^X zp2>4`t@Hc*V=K>RFoL1qK$_$pJNw}zg7;;8R^dd$&L!-jq)hj#$}-X z(eKg|`JOTHyTF$>uKg4E={p@hxq+D+nO9ExUJC;d@4%6`qa~z_b?VK3ALMQ+CnM&- zJ8_H?ytanW0-{9`7TcKjtW(Z1GB5-#tvBEP6I4gOC&-7^wane|YV1>|=gX`&KNl0~ zyp3ul_r2ss;X(kM)&t9ype{nizAYoM|0L>AkU*}ltjvT|IL0u)G7m|8os;n0;hTuH zK26|(BYN3G(XwAPUL9PaFa4^% zlmo!+di4%ocH<@4yl)6r$*n7i_E=%OZ@~~SRO`9N360cWiA~Y&Xh}+)ZjVOiNn`i7 zv!9GsZ#Unll0K=lN108!Y88Vkt96BoKs}t<%2TJ$F)OU151HQ?D|#D66WzEoiwdoB z@$f_34pSI3x2Bzb15>Zd(S;SUPtYh8j36nK^ad2uv+a?-FeIrk3)C^MrD5 zqet%&beWg5S%h<|5tS^CJp;D87zDY^8I=t9me$v}V>!O5l~VSKMz?vm)hcq{SdoQR z5xj~UM8*rBA2gl7(14}g<5Ec|%^K{^w%s-^^M<#Z2X0_oI@`XgULP{I%PVmXl6Ql{ z=ULnD@v-Mc=z{)LfI_AU(^%BzaHr5uPsWwPZn&XA+jJQtE%S>w=LG+D3q0BeaV(y9 zED}Gz*!4aqyauYb&r*pj;0V+`1zWDJcG#2bPNsSRZbLJmq6ZgAf#R} z^58^_oTOvx)(S>;nLjDDF!E*QljI%k{&SLRk>rv#zMRPRh10X`mTXt6Y!(PB6FG}d z&*_9UnNBOGg7D@<&hsUwdHCn2;`)O!H900|=)e`38)IGK#+#X!GoO}6t9O`7PSMkf zCfN55vwkvwKPa@IUMtkA)T>_S@Vc@I&8%b{N#|u`w)OHZFWf65^t{=ZZ6$4_S{V!! z>2iJS@#)rJsF3j@Sv^2l%c#he9uRN-`Xhx{iOXuKs{cGKqr`|ST5hsv`Rf#qE^7ky zQF(e;dSKqK9u-zvc>Fk8&J<+#wpg?rFR@1MAS61Tmj5{OOj=$n1-qqSf^4@X3V)Nr zqqO`|8ng^xzY}O)P}3~k*t_z_=gY+p{y@$v_w!4ZPkCv40%<2`Izi!Mq&?p=fwVt% z&OgH5Md7K)!qb;V0D?LHIr&Y_`P<~hn)CB{{8&86)O~EVg{PO1lw{674e5=?(=RSN z3!bFl9a1pS$~O{)S5bHrPd`9*OU(JLK*45h@5=4dKvEBX;(>XJ3H+NRtXB#7D&aSh z@cOufaYg=0HsR3zI$ScbEL`STxSV+sv?-dqK%Oj`o2DKW%{kPgFbQ+`!wG0Dn!rkh z{7b?XT04s@v^K1nh}JJ&dL~*AO2J7|F#51+#h)mgNnt^&N?hc$$nQ>|S@~%Y1)cq3 zdV;5x3igT=_U4VF&8sEZu9EZBIE>4ezw#PBBnEQW0S_o2dpCKv+7*#|lqFl_JCU-- zXgM-9iGSFFp`f_%QW7*=UV|DeUKr`X7bKAgC#v~2 z{A*k_GCR+x=GL)lZcbEleWIGH6V)^%s}YJCNE5;wUyUMw6jhC)$m7GKfE|`cI{udW zEi_-}S2~_fjY`b0KRL_yr^kJN>@458 zL^oP~?ODE`8uz_n+;n>b88P^&+(NTG^ z!uB+JbNiGf8}4n=ml1!^gWalS-uP9kdLy0Iy+-MS9!K)aeaSC!Mut1=`ECrYwzQM~74f zZ|gFQUMoD!L8B$>%FS}5Oi%)&CHsQSlEF|7JmyomTk|krSEZY;%#BJr7=G0n>M3`A zR@7aI;3WDx))^1l*}*HJ@&rI)*1G5ox@FeCN;$M@J1rPxL)`xu#<%B5#BE2hl2X%*CprhK{lDcw(>M|G`G^Wd|tIOX#R#zK?^wZC$EUc0b%Mn^YK-%_{Rmn z6-Jqa7aCRFmu)X7ceYKBD#u=^gX_$7PaluR4hGFHQ4Wzt(3?6OYN^+gLi z8DrR~Ud(!dmO&bhxd`B?KtO9Wqu_a|zT?uy^u@XYm#x0~g`zVtFLcTBA$zZAR2nhY zGerll#~isaj>KTKtq_W54b zqH>8nsy6Co`V}8wgIfKZ{JwS6X=Y8dOD1#e20kA=6Y0K#p^H?8 znNog}Le@~d;7ji2Z!rdvxO`OLTVQlcj_9L>K#3xZfT>XhIJBd>+R^vx1i2duafYIF z(J0Hod;J?9h*r&IQM+S@9u?35s&fJ*Y$)LTAbOln*7%}$*=yeOZ^z>ig?O8xinR|6 zzC;%4K35Qxrv04Ic&XCNyT9Q&)bw$Q4mF>XWKLySREENsvaaMlIjRW4I4)#raRl>| z5e}fD(r@zxW={gCKUR;bw@>l75=?X`43;76ad`>4)}KEp{hC1CM6=w`%L2>Qz(;$! zyG|<5!*iLL4}IZ`nfcd$;*r;l=sETM*dlHMOE^wEe4~}JIH2U zN^{BQ%Rxl~Ad*7zImP;{p3_D@4|EM7hl?><0JBM!Dv`>|nEJy!pd*#916?EhZGyxC z+$Za@QJem_OZ|28SJFKEYSX(iRN@@#B}cs!@>g;cskch?cU~ebpxzd%zqj+(4E>t! zV&M4rKHj93sEs|SZd~*}2@y#3f%T<+Nqjv$SbZ$keNspj+VdVKWd=nK{)XF4l7{RSW^%nnw zbmN<)J!5&HIS5sq8kM?jE7&cT=U1CT(Uil!N=(a^c<~^j?6){=W)|pF4ar9fb30TsDSwWhioLzFK zAv><*hS~)B{!|B6REkBW_2%oO_Pfh)PRd06+&y&Cw0kk@&ikdsTZ%iMmvOOK zXw$kTgIgBB4JrKAj+Oj7^w3zZTGEUHWreYbb$P!mJo{zgA<)To-_Ewu$go$7zChn= zrNs~KmKHZ*ao51q`y`8+TZd2-HF+KwWMwMir+kGW8wT9=aavCmDv&XTW@D5AsK1vc@-eOR?y;`D+FOGExUs zf>6G3(){AfiuS`7kLI^NtNc&?%kg+#ydri(L@`ub`_;zd>a!9daN1;5+eS8?AEL$z z^I|F#&34DDT=oWL?`Ra4{Ao@ zG5dT&4VbkYVZdaKmes4Z|6;spR^ekMG24pN;~i9DUZ)bn$pf^wKwkm6Dv?@wDOGSdlGb;MNstEsTs-2+uMc$35WQ9k+C|dN}Nr6bG zTRBurMOvj%`FO6%E?uF+99fjEzsnDm@oo*9g}I>FkbqB%{s{OZ&r6QUT2y=tjv{{) zw$JaBA+Wj{?UI2AT4-?WFi#Fi$F)sCNR9sW}P!@mInW3ymAXtwR7WPKAym{Jj1 z3%%<(9^wn+9QKa*W_hvnEyi>!v5KKm;~C$g#*03lKCtGe=}D4G9103#V`@^Q`{7B&rw!2f;FT z9sP#l9wJq{FzBaq>OJzjOm?Q)IV047$EZE<<@d=TCJ8Pw-}ak$yb2=}js}+J{c4%n zbz+QXjX&S|FY&MS|D*it1Na2!N%Akb(GxT^LGC#I_5NSrUy7_x<6km}WBlu>KhliF zzvM&EEFwWDQ{IyNi$fQXYB8UOcBt=Vo(5wl_jR;Qzu+SphaoFCs&F7fO_c^n>~y-< z6_XsD>q&+-lQzdQv>e(H?%3A+H!`$W4@*VD(4^-<^KsrMGBkq}Xz~Ip$2f*2G^8*9 znG~vG3IpR9n?j}{%Oqp#9I)Voi(9;`K((typXAkAR7U%HR=y@x!q;Xhu(eGM7GGlr zB_H4$1rI6KmgH<6+7r$;B)`^_Ge`RAqRje_;cU{2vvaoZ{DP8-vq@|JQ=BarQ}m(e z=M2u41s?!Zi?fvgx%B3;alN@(dNaz|1oqQ7o9fOPoJ|dtqVvC!vk5~3kf8ZINMJ?@ z20o6nsmkGOtG1KXS_sED+h?T{W(&3Cs!D{jeV#WeAFb7zOn)ih}FwM70P`%rC-m8ZoWfLg$0# zCjMH)Br%z|9Gw9Rz;g*Y23b3sMU1P%4*=!Od`f}^rosFAqr#W<&BD8JRcGvob}50* z6_0i*f$k9{&^@9Ax<`~i_lOec2ygtVweV8m@8JqmSg_fW=yocO_)(u4KUu38KP~zU zsYgd6QFjsD^&DOY~|J`OmrbQnEa^X%& zY}BF~1%3T_`;Wh8F)mAp6>%DWa3ag8o;voJJ_Vw-sf+@+oc2Hq1skpt;Z2K**9Wfd z(}wVbX<#8K?OaHj;&2FVVNWj9Bv9rm`7HN{zFA3a$FzrErY%dd4w?f!l$j{C$#!E@ zYLk~Ur8Y~t$lD*^A`lk^&nCIGyiLulj{<{3N#^R@1YZPj0?5nd& z(#Ck3>H|`njABA+lO+8N-X^JrnmS#tanVhi-|u+U5&=Y76T(jb&}XropgBnA;c0>w zA*6b1R8nRAwm=a%?YloG)9Kvo>jJjoVU*H|1{P#TEpsz`lCkiE=R=JUYH{*M-fynd+OdU?z3mp=Z(3(`j~ zR$OlLD}1xW$%gf(l3woM!l_4wQ&OEIB3b@xP`-1 z?>T@;2(MA+Cj#c;Td@ zn>o_daD%VS)0Q8tA~NT&UhPE*X&Jv>T5rBfhI;dN&+!+#;}bxSr&ICr;-*aNe~3r9 zmm_T%m$b|>s=3#TUr+uB_eAH-pBL29N zRPC;doVcXrqP*9L9)93ZSIL}^hACupZqjr*oO11Jc#cY1@DfRL{c^TYD7TP8ny z5_6>$T!(N+*M9>dBDJ6eL*Au**J8Opt}z}NFO2nFQEpA{F|T-)({V9o4&1HIj5)gJ zSaBdt>_tuQZ$64Q45XFvEavd?+ov+%twgLt%_FP^qZz0dm zIn%s>Ks9p4Y{8-EB_~q-7XHc9EfriHVZd1A)WZk$ve$`KW^MrafGA#SPMOOY0i4L; zyoW0nTtUg?DA=2emzp8)FTW=4Kmz6uXfRrRFu>tmy4gheSgLv3`=_jWM$AuBB?QPY z;dx#B_St5r#T70ieDTqOXHX&MW4dZ z;|o!OL>FFIPUKnYiKU>XJI`0`Zo@X*W&WEq1-$xQK*4q}3x#%yUI1{WHsw@YtiOd0 zGRNa18(m+d+Kgk>NELa|OdiHKnkF(im66hvIB5Wy|l*Ue`Z3`6xtlbs(r zz4M1Zw)6ik)l27_0ef8EUpHq=w)(CnL8e>`lbd|pImF%DP5iNkZ{QNs`V&*LV2kO` z%Dym`v;KtJdd2;>Ep`EpjpCPxchlUR>rZ?{l2)$5ZgVHny3u~PP%$B#H+(t+y)}Sz zeG>(CLAhJo@MU>O6IWVJt*eU{V_7Et;@7Wp-g1jHIpB8^rv~58ZlkWySXZPI38#k0 zD~F9~&?U?h?)9mBm4ge%hn2S)BAX8pLV;-6k>O8h4_+g+a{0e(2j-l%cy`w>K5DXw z%aX7=QTyOY{I)lG7W;-*U5oQH@s@itg|sa;oU4x*dk+wK+2z0z#_Txl5Vhj}2!gll#HG}4 z373u!Y)5b7CFq;F_T#Kk>x%H%*p{soxgs*R8F|+!{QW4tmuZNo z*O7HOwy;C5%88uNT8e#DIW2|6Z|VucJ%fm*8D@tV3Q}OZn~0sq_Y0iAOTjV9`kglc zqt24?vIX_v*6COTm1oS7=AN{khn+nC1J4r?`=6xzm59Y1Xy=En(2PVsKuxWnriL1D z1aOF}P?PvnM4PeS8&%oN=*ghPbVUwvf$X^7YeOF$nhDyRp^Lj0S*WKYf$l|vg8aKK z0LARu{P^S~%($_S2CkQW;q-EtpgF6!0HbK(+A~0=0M38QhJ_Fy12Q-N+8QYbF1C_Q z=c%SYC2{UeaaPWt1D>b5>>Z&3XYV^1fI^I|O!F1y#p$5jkOalTAD*fdFyDoUPsiU` zsPZKXAq0RXKC+9=n?IX)t9qq73EaoyW!_nUnFBD`WGE7q8rXD&)=dP={nrA9AC0ZKv^Tj1q6IztmWep_lD*^!m0LW&2h;bN6wi$+|!6DBCWPAIi?hSg`sf z+D`(Sp~m!_+IVu}poRT1w z;k#Aapfg*A+w3E!fu}cdE~ssBdth@ifPe<gSssT1JMhDQN#q0p$` z`#m-7|864J`4S~gpEVHDStgFKb7u&T2mVaoKE*?C7pArshul=oV18)L0yVIT>CEUI zo+K=%corBOD4LDTV_UFbf$1FW11uBxWI+ScK|_3dk7F+fc%KN{S=r0ZpG%mfnS0?O zhdhoQiqp*;U=?um!bzmaHZVq0308KqjGwSFAnhse*Fia>yZW7nX~AjG6LBLS=@7F!m{tKe}*MLr3;25+?L6B3KP8;MUF9gx+0nAi_0nz(jNlL3jmJ1uhPlHPYx zQ^lb;Qv>HlGB}b{gqI_E)%=p$`Au#!kkj_Z=BM++CFIV|Z8S^ZcQ>|8B;V9?0DF-|h3? z(fma0T%PiNc}Bi9}-CiB>I+MvfvC4A{jZRiJi3|jaOw)_${@7vq5Ot6n5$T!I`%Ze} ziO6RqFyKpzb9)`bM%7As%b3EOLau0Zu)tzVe9t9@7l z+h7a>xcllPo+=k#DI=ajg_5+c?=$Hl#*T~FZVf)cvzjK6??{48bTd@}nJ@@BTr#)j z%!`t1!ki&fl7g5yR?QQpjm#Obta_G8pQ6#H`OS;Vq&Zm8i_OeFZOakI9(ePCKNx%F z>x=fyY&&}3UC04SasC9gL)(y=fA48qb~)bj9bbLB1SATN2=^@noEm&+hDRV^yd+Am zwwxl$J#+aW+b?Zv+5U1pJnYzuT43qX@&j)hduwJMIq)Y3GQ~@V^XcTwbnK-WApI9m z3(aX;_Am-+0afTpX0xj|HPsatPHAlG&0>vCLGimtLCxHRQpb?ngyPPO)a6|pXJ8BQ_U|UOzbJjJ$2wv zB`BD=?Z7*Bf2sY)GLVdjfw#QKZk}moF3lKKx99alo9tktYN3p7k{uo4*!uL*U6>qQ zYiOh8IME-+6lHW}RR8sVa8y?S#{c-JT0<&BXAPoomIPxT8&#{1i7{FuV(z&H(WCe)eZ8y8a(jLL*{jcu{A|0-QAJ9R2$&M~z^Izz^XIRg zoa@hbRL#oW5lhY8;i$?-aPjr);eA>;AyZ!Bvhx(9`YldxAqrNH@L`na75%wGaA%#U z$KicEBC-s@Y;t#PbY4JcN1TR)KM;JuIhMX9(E!(#+O)2FXcK6KQ4LCDH49|XB^u$k zHu_8BWpBl+4|gL5T6s<$L(D**qixs)>`6gRNPG=tPQ%$m=?7HF=KTP;fF0)Uu-AC) zRXCDm3vdlXkZY8^Rh!!zS?49P@T$yEx_J#;9Npb#Ep}>cOp&=MEQQbzhJ0+cMMTG8 zXq*73mY{yQJd3QZUNam!L?rhToWNI=iJQyvjHiWb-@|M}p4&H0T$~RQBrmG6uhKaw zw82R9GO4TjGVgy?FY|hQby=agG`EB1K%XpW(xTs~bZDY3d*C%}6Bf>vTFf+7 zmb|!LRamfYR`_CHy(e^2VvTLf=Rvj_t%O8lATH0X_bfmGUax{8fO5pMX*9ZkER7?B z3q+^6h~e9vTka&Qy&OL*UVEJyMZIjdzUWXWm;LA`xrwzPcbkl3!8$KPc^3i)L-`Hi zpNkHS4keAtk{O!Bg9z*4)Srvq9N)jkUl}Od-U+fV`Xyeqep^Ha;lNsH*>=ZXN3R3- zp?KU6@5U>DlLi&^oQ=sM-*~b?EA1Wp7o-f{2cO_~#UsUoO|~Dr(`5ThtjTtm|E-6c zZ0G#3$@U!o@BUMhE#uuLTMz%Q9%`}$`Tqs}``>G_ZRh_k{$Kollg)9Y$+njNbB;CH zZsGs6!%eoY@&AnzO|~09Y_k24|I<(M%m1&8G}*q%e;4{sIdEX+)tldf6QGg}r84F? zt1r)tteImAO^G+niLcIy*Jn30#8+opkC7Fb&|-sxY@s+>ar07y56l8YbbJWBbk6y- zrGZ2>Jty2o{ep_dQ?U>sY?oyeEXyL+cX`&n+|7jraz zC?u>PmBV*}ddks_>4#c4vQz1JV_0B*i>i|S$B%GHX5KFs=#{hd%Gr8lzA5U|29;Ud z>$rmEm&Rp}-N|J$QEf}OiLPU7)37{vBjz#Q=soF-^rc2l&2Do<-qu)lwa6(~D+yY= zLi3e)jDowIThNpf^3=v#a^gW$BqI$Ckvrztg8E{&-jri50n!E>U2`lU=vKhKC*ULo z3t;DF5}riAH%o8!>ckpv&fpxMuW7QkE}0$Cl>io9FIym70_yjA^n0`Qdkgh@@ubzH z7cbO{19?3I#THVFGi;sUcD*bBf?jKstzNGk*KX|YdZQ&XujePCU_gf-np{xhw8%$X zUwe29e?rs@#ngi18+X9GfhWXW+!u$Oi2WCfrwF182hGLQYfWeb>BNLy97Bqg%TCbR zl4X{kZ_cpjS59P2mJO#KYqD*jOrtVWq0o*y z!Lm8wEIb_>1Hl7_Bv5>OL6*$=@;O+Lr5gi-!dDBH%?eK=(}6#TukmI1`m)(Z`z*Qz z%)U39GlIDT0rBRa>rmdzA}jK7;X5lKi%S&6n?>cK?gOO*rcPKaqsvxCI%>edVW1$f1MJ zrEYD@6m5&&?s(6EWL>2>5V8F!j#KK_k@$5cep3^_X^G$T#IGyyJ1OxyIq^Fs@#{|f zPEGtyqZfT1#}KbHivhXT6=tISMDU_>*xe6eF>4tx-WT(h$UP%=1-$X0rab$AdU12J zjgEmG?f$Pw4-cRh0Y#A*^-2UwtEu8dSBeu|DNb~yIMJ2jL|2LvT`5ju=fw1DY(2%tn?6A*n>7W*$%ljj;G9+XY<%_X15p%Mw>DDrIUpbu3n6^wWo~@>C@^jkKL36GmXTnw9G23R%Yc&B>yi(8c z16^^Vh=wjc*6RpmFbsKpZ2pj@^D?^*A>|a~bSU-)LY{X2Z=pP*y_>06KybZ=7@`+M zdYuwr+08CdHjaHt>(V0;!MxE!lQ-M)yj_Q;ZH9<@%?x>_LTyW*Je|YG^VE5c6qI8p z+B7n)QZy~4NXx69{xiAE8WY8 z^b>nP4=2asZ$N3}9vAaCS5!C-#*PTN&6UQ>=&tfUA%~uQcmzBRBDXb8?s22bb7FLP zVw?yk&GnM!xmFBSrJY7qq3csRtEL%1^z@0cDz@dEI0r!a_~lfGW9deIx#FmEa%>MHJz(@{ zCEI+x#zC#(73%XcbK4GNQkvCu(9674Y_QjHOvE*Fr6`N&CHen2wG>i$3v53!ZT1CQ`)JS=bQb^BWKayc4=nYnb8W;`rq zqt5AgDxI$?kh-Y=ON>?NMY?JVa19&Fc(S`vS-{L9I~ncYl2_va^;Z#quJBJZGWIg3aDx)_9{W}%iI>l=N^1k5jC`YFahL2 zW0zKupnKnot2pZnTU)243JbwR|L6M-v{W$}IMm%Gh+*^){Vd#!C-mgt2pWR57<*ki zOF6aVLpWPs5-XjD|HX`wbawxx!)#KD>uW)hJ= z5R*VLU|XA7w7WnufR)6Ao41?m09{|(wbgCi*4_Hs>ednz7xO}y09L`cij{4nvbz%} zt5GS0momTabMBpF0_bYn{rvX-`TX;Nx%ZxX?m5qS&U2n~&hvIIPU`>Z8kzsb7-TV? zSz^fyqxVwI)p8C+&1H+?<5?VANlUCW8H5bICL~L;3(~pj!)|TEdwgZjVOqzwPM%C% zD9oty)`qo?BW6~H*v%vz`nLTfXK3@XGC22He}ISgv{~=&o@zeItsKi!ZOkq)%{HD) zU1R`LpH~NqeZ&0agOX-Grt&2by1g>>Zk5fHY}%GNvs}4DR*_SGDWw_e3nJC8gi&$y z+(Ns+ZPr&(92Ks!KB+clmWY09ui87C4ZJkqCJ4iImLr_cm-I9S-X~SD?Qy(Tps%gZMR!Wx~ra8!OTb47a9+@|_ zEe%6CD1eep`XGDtt+G3*#{HyYXN|YLVQ4ynlkr{gOl~ii*}0RmNXdFYlrZ`bWtHSv z1uF=(d%C8pE`@x8`bz>#YahS*wqAaLd?%L@t2MZy%NuJ^G^Q8LBeeylFQf7GF+J$Z zV3{@2gZrl5EjZUYd}Z`t+0>*$~imwESSC-%Kzs-DZ;YkivPI{DC0 z`Q(rR`fZhIs;^XCLLU0h1+C11*8&g*TS`^qRN$L;ck;?2KK&<>Ek!b0X1Xkb01%hR zY)ielL+ON)SZ4Ugbmfie0NXRP2R-Uzd6VVB|-y0G0yaavVsJi5C@J-)&j*u9X*Cy#ylv`RiJl}tq5vm+~y z6DjWP)H_{?AL!eJRvnycHVS%rc@C?*8&5Cq-(;#A0lMirI!su3h-(@LlEwI-?DAki zEFH!&p(Yt7Drqbe`ZS|Mm{0*%%wdHM?E=U%5%B-l*bsW1j=iQD!Dt+4l&P4Cp>O3r zrqX2{0IT|@soq;-yQb1SGvm4j#wDarioo0V+U!s7`Xd}rz!a9JW&-z7YZz6dQ{lJ(SoHr4 zBOJ>HO;hlO-tCYzXjzOxc!4gbqNHfSNei*o$jnoKYOVjoCugP~PJ}&Dd(EFUjV0#6 zd1koGZKEvER1+8qJBtwxPu=z?5KMj9Vugmv2@_nWCa*Lmh_x5uIhhyrpGz}gg}K5C zX(RH!PEssBXl#3i`_X<3hOn9Zp|BuRv7lYBAZr|VVF?zi4D7oews7w!h2W%=5#Dn? z5)D|wz)wlcQ-x|xf~-?GCadQEhGl*@!;D;=#$ZNxBLUVGG@LCXtnqO6Y2dBRQs7xl zw^**}&Rge4OM2Yqk|I}3e;?BYH4w04;4bo5jjCnk(Mi(C6!0fB$in#tvgEmGEgWH? zW-P^$FU&rzaX%1)UU%*;VaYV<-mYkYYv6LaJ5O=t+QKuJSZVR(-b+s_@LE-%U0l=e z*m4L#@d{_<~5c%(1pOV08&GWoq`1m-jwTK%8qIt!rXg<$9F_db(d6`<%r+8?r z_xu3H#4+2)*{b>Fn>+oSF7$W(pZOJsY)@Wsd|;d;)@M05ZEnSQ#Ntb8Cs)QhFxi!y zOCn#==jQ;@s`xUD^6}Np!5ZRGZVwGN|iFWOy;B#r7_& zh_4r7v|cY+QhOoCUR=qtyqZ*QXK=ezQLA5esF>o6$D!0Ho`DINXB8#Je~!5t(kH=@ z*8Db|0{nSe^ZSr$MSP!lFLUe@Th$epepQx@oQtM5v^zacGyTCU4;52*$w5oaqBE0y zZrTSQkB@ksa3!)*m>VyK`<^RzC0tKwaNl{dcbd!9tABTj{os`cmOJW=hli`6oGjKQu3l-6 zRUap~a!lrYZ+pH+>_nyEBPrwT6f(#`ujI)%EhW=V`Kax*s~s)UM*)Cf)hx?1tXQS0 ztkbGG&rVSQ>g%p>)SiQ~&zoF3Bi;ic$QGV6)2p+w$MJ;dG&(<|HNPX>H-CzLJD6yC zjR&pcT3VPDn4itOhCOfCm#9S&69{J^pExAg$oIR$>|n!QH)-)(6Ks7^b|Igr@Ns^& zs`(Nue}ntha1Npu#_#Sb6DY18fx-+Oa)z@j;}>bEo@-t%Q%9+|ujt<#b_D195cRBW zrQn4l^+`O)viR}0s4t{U_~;FVs1L4k_gkkl{93Ew*J{mANW(=*2R$_XP+=hp7YMpC zSmBH0saN3e;?tV3W~5Bwb6~z}kzVtUVD$pJfHXhb%%7rd$@1cDLvP7>0{dH$TT?COJk2cD{!rGMNtN;QN8wls9QIHuo-s25(4TUA6L7a(S+r86@S!|tHfY|!%6HjjZrj*E9DfI&#~||L)k(( zmq0;E<$oSGdfl{HTJuEiSSN|U--?q1Nhk_K=;FzF#iIEywlx36IeEpR`7c(Qe>UfM znP#oX_^K8v_Zj8GobkuuDo0*}lP1p5k8AZ4SGbn&fO?H3`SWIIatSfa);_G)`Mr@J zM2m*?;moyvqaPc;Hj1yDXKkx~+#8t~d|qq*E+n{O{L)**Nuxq(*|Rx{T0FLa?u0Te z5;wv<#@Z=j+Ms$V-}p*jztPeFj*L)t3FG8)x&4u>lZ=)&e(miLCQ>br@W@=?NMIl{ zS?|m=REnvBG2=7Jz`$$NP$QzmXnB;JtW=ec`3jfO@)*xxQt$LK&tL+Oy~35;(mwLuvCm(8A?;c4D|@ye*D&}fl8>8(9(yb4-GBF9$Bu$BX% zDTZP=C;){!Tw?Q*zdHaSSJK(>;2*JE82AAkz%s(HEf|z`q#{mPxDv@JK;t32_=R2y zQRm+ZrCE#Yf0u$GXJst$*Nfz=tt%ibVq~x746Q6e9vjQ$SU0gr3Qsncao*kS)-W^Y zPu7pRBI8!%Elx~av1;*(%bRyWSlve0vuF{{yuu=HdsF$L{-=Jmf|B#v0Lpomb}|+xyCM@&cvi%_kmM#lZD~c%c{8=JAcHe< z4z8n0C7Mfh=tCht=U2>_vz{|3EnTJ(t(Pd%hC*f9FxxV1_+p+j@&yF&`taqopT>2# zHd`MK)n2R*Ut4>=KD@Mcl0N*cTGSJ(YBR4^dyFxr4@wu6`&wn*k9t8|ayQqURR%yfGz~RgZ{ekuJ2v`6RhfYDl(p z@@uvT30i7^k~}MC^X;+`R~iVS#ZIur^Rm6}StQ$Q4)bQSW2*0yU$Ulzc*i)B&>m&w zEoRRu@vLmgUS5^2_K*_j{YVM)N=>CsQnEu!zk%!!uX-{kAN77a{y&qEOBCE{C)5~us68sKb77QR~v1^z1&!RC-T!)dHRtIYWJ%sQnoC@^4A&M8~JMu zO9Zap!Z*N5scP(zIt#3)+4gm&eZ9iIPP4C5>}!^N_1RZXaL?*z0(+v3QdTgg6~~Mg zfen7AZhu(rx;4o?iF{Rk$S=DY4}u zi686REm8H{4=XeU^3TPwZ!E~dc}GERDwWaPGf=`sgd?`a2xc0ym?%e0mBj9f07DNo z&?ckmgxM-LX2)iJ#~lNIfezss?jCbfC)dEc!QRzZnwx}-&7J@!E_yCR5xeu>ra7iR zw1dRy4@tJ^4~dYjGF}OVu*`D5Z)*DOBG+(3i)O1Tu~jm2S9iD^XjvfXyJNP`n8u~s_9SG_~P-`ra7E<$ms~q zdcX6Itm$|7r`KmiGOUR`W&I`-aqf$v1ZimyEUB%AyVJ1r`D*oYhK)z1z47o^0N$!L zO}-T_t)uY`wn9eBOO(Y!zk2Am9uBI9gVw`;sE55gEH<`xaxu0G@fnI!8{4IWjP1{; z6zRR?M$2>Zpm>utv+IMCZHtim8hB;4NMRP^wivd#T|RNYYJ`TO8)Q&$9$v5)JNw;@ zUDCOt1hX(tFbTYD+UH!FYzrmZJ(sqHP6oI4^YLn*RjiyZ8X7XyWN)@e6O?U+5sG7Z zXx?|1)U&rebaIyGDy{jKJhg|Cv*uit)S5+rje|?O>#7Vetu^0gKNmW$3OiLwlcccQ zj|?)E=-sY@cIQ=v&d68P)fM@Yy1FBuQ&&&qGIbpnxkOzvBIm1XX5{Pwz1z#Du81f2 z{OYGU#3JxKUTwuzCtU=eQ{ZJ-VKohk#X~b@75erz8mb5zT8&&RBorK?F?X{x>QYwK?ak z1J&+1XFXGG%sFejkmS)zRu2F}uQczoX4PY+LWyc8n}~C$CPZc*^;s={Mz#F+X8EHS zujK9ubk%-d9FNb9g*LCm&>$AN=W#AZ>BEW7kTl4)hNLUhn}?k;E-?mv%n03Mgf_=Q z4`&HwWa_0)CXLV|^hfD~c<(=MmOen#kUFoE(=Uxsn;fhXl>j)A%&TvpYjBvY^SUD1 z)n&A8jS_B1*yZ-_%R`U1g`T2(tz)ve2SHpg^l%O8XO7E!x-GO73;oc;%#~UA*@W(C z_mq%khBh;klq53fq?;rs-BfiK8Vuuy>#5P)9VmUAX{hvZBh=K@51(i-Ll5>5pyv^H zPt?~)mj+533}>LKDRMYEH(Av8rdj%6!nH5a{A%PFR$9JjQF3apn}{|KCW!Y(z^KrJ z0H}=9psi{r{R=5ZCNmtGhQWr`;Yf8sRv}$(Ry`2x(^@VSV44L9Q@a2q7Ckh8uQ2xp%6;RKROgPFM4}1xx?eF1uE5L6ESSNeI%dI4 zala~h$(s^M?w4t2DBLw^vE|Sq2V+JN;XOYZ%9>pD#*DB70Mk-0-`j|*ajvnK7 z43gb}p{{;+V88JNaWmVgcaGywRx{Kah*{whILT{|O+iCKLCcpJ49$Ys5>|@^_6q!) za#uNSnS*tG^1NGK{DI??@Nd?*_cQ46pRF6p&)v01`?2}{QX|t?>oFF1jY=ep!^=M{ z#;!*~CqR^E*-yk5WNGciM?&yi6l~`l4k6z6#m0#Zzf8-CO#Rc!o*&47qg$PYX{~I; z23bFPR(+XS$?2l5W#-Q6zW(a*tv=Gt1zGLtM#S93S!QLHxxm}rdKRxpdBT7BCi$8- z)qQX4t#bcQx4C@)O)i?X!-OO#HXA5sD8lHx3@+#}VTddlaC z@giGQWmLwCnLU>vqZ{}NH?T{4wZ@8~>O|f{`)POmjpmp2`YT+K36=3S7{f8ke-TV{L~Idc4L1qvuF0p2AnLozGlPlMGZquWfz z=fY^CfF5hCC0EXstlAo-qoa+|E~8QUIoh}vA}|`8xXx3DfZ%y z)W+t-8i&PLi@j#1PCVMrj9_OAcT>7Qs@RBm16 z8m{InXG*iS#Oc*}>v6{Wu<8={mDZmFJY-7;iB42SpH^~mi_msdNu?1h&!r=iTZHVR zN{C3(mr07Y2qp0Fd62B{$X;>ISG6r0ZWapApJ{oK9F9oFT>Y54E`IB7Hvvn!COJ0> zcS!B(XOC{kM9`t{mg7x)l|~iIjpqLddVhN0T%tc@Gz$I z++79wHu=s~x73X6U?Qv=S7`1|patNZYOBPt<*|YDY#J#xX-b+|Q(ZvZw7qzrtJ<`+{!P=TC4{dzkA}t_tIB zsl0IEBBOkNd^ynImullti++jaxm~>iB1wNL@D~|PrgTdDC(Ia2ayuJ)HuJOu_1g37 zJfcfk6T4qT3{`rdfLMz43A2v=G52x0S)N(-lGagsw+l??fa%BqbC`~hYi!>;IO&=cHSzfkL#`2>5KO7AHQ?W0Wp z(V`*v3M&A6>L2(zG%ej^?oMN9o{I(~(1f<-J~7}&x2ttDeJ=wP;!miEE6#7;L`gM)R zWfg~ugRWd0CW=>`?c`wLN!zj)-}@DQh1c56uEm^d6Y&NS4EXC8)47}fOhC_o$OKcC zXY**+L_J@yF*ozxTdw$(l8FbV+&d&_QwtqI+sC{w5LjYL zwb^JDJKDsk=OPQVv=vLp`_!GC$@i5}|B>isS-TwWa@LNk&bumdO?cmc-tEy(URs~1 z&fDsv_amR@MttETmvJLe4UKb#5#=9c=W9p7>mmGmECAc|Y)D4?;C)lr;jPrgaal%-9 zjvwLs4I5mX_E@OAxaP;S1$)e4oEzs8_7af;JK7V};&+*$e(bXEyumDuqmr91z~=4> zh6dM<4-je!Xhmp6ksfy6{bnfc?m}?d?`%;^__~9R+KY%WqjJna4O6v0^^BM{4_EK<9?Nsqe-V+rOQ zSpFA`^ZnMsgq+pJjg2l!n@gei&;1e*fr2oNb;Gjtj*cP0rzLh@MYK(*PZkzmh+gXv zU)T3nToP@Qh4WX(rk)#ZlO^=nRA&5Yqb<%*f>7E7wMLtCfYB!YghrdpPS%QPA?tL= z&|hgbs&&pYPYAU{v%VDEt8ID!7#4AU-hqTzER;{JS9n})HA}Bxs^g9I zn=_!Gwx3CBnh!tQ&UHoRQY~~m_cb|pwny)A>zx@!$R8~f!h_@E=xn|WRtmI^F9lzy z^8{b6{aSDjYKpoE5YJ{oc;fR=%lX0b6SZE(fl8`QHu%8~7Jf%3+&P}7EP2Z0W->Q2 zWC=tP8E*mLPMjV59kwtT%Map6H`&wRAmbTG^Hc}I~F53=~1l+(9s8#kJ z0P|-;l9I+GE@s7}%1npFmdF$Z0p%`^;ty zz+a~b`KZ=$4wFpqRSt`PPiy)bCE#uxeTXWxj(a*3K1P-i-N+|dN!$pgI%IUP8$Sh8 zA7v+w4Y##SJarj{5K&=Fm7Rt$&m^n&V53@dH3%E{E-P+~4_SME4?Y@<9MYOLeHg?` z{)Zs`P;jr)I_^IQmN2>uv+>8uutQkLUl@Ifi>i_GQSKQ~m*OpF*I!4i(V9R03H_GN zRo)vI0`aUFqD6m9s}3iiLz14N82$JJZPSqInU3>;OqRz&K}*4au+2Xc1Jr*i4Jjl@ z(P>bPtdMOkch+AB3GWXiXxb?la1Xp^wfCY^+AFie|4@6S=nrY{czCRI`XBzxPDdE5 z7%XTPLFXURsw}XD!>sK@v3!UH(0Gdvxf5DmxnHKhC5iV|WG-3ZS*(XnFa?UWKn<=B zW7b7l&L>vR#D&~nGDGv{=W99psE2h(+2iDCpO&**J;WmYc;?1O2%;w)Z!quTg%x`>T!>xenL{EK$2ej#Nz@;&K`Mj)@D09 zPp_TzuzJy@%8?iH1yAqvkaB*f>&V`!o<-(?g$wnAm^ypP&09UjZPPsFVB=sLq%kVG zG6}xD$X{XBU`B92npb!SPO)I50Mz(2^QVE2(%(TLTSYJOKV^tgLpSu{k}(BoVi0`Ky>ng0)$5&dqV zHYu~reKcOkw^~kUGXiHVr}S|xhq`j8D@W=OIH>3Ce64Md(E0rQu7QkOyE=(@tSTc7>W!bzX%(W!dXdtf|b z*R18Jic{cflP;xlzf|5wje0Cw@6JvvjfQ7X^8$sH-)K4S&{I;-)q*Y6?9a*_#lE9j zkyFfs9KOi(*t$lsJ&@k8CLd9HP6-w5oS3O=@wIJ zJk>hw$sfvi1CTClQvM9!<-*7Le4Nk6B`edzVWIZUId8_#9&vCeR#(4A^FOdM7YPiT zAMKq!&F|H6Ua!_>IpA5d9B*oqyqX^*&T_yq5)==^8;}2j%Arjfuld2q$V(@mbDoj? z^7JpAcreJzZf%lemD@e38Yn#HIqA1gkMx^8_9U-UtK6YgQa=Y`osnbdgE_D#Z>9EZ zO9L1-l@%Qu9FRhZOg#zo5^JvmntJYY!5bek`y?K!Ay;14}859;paQQ z1mhbY<|R^W%ZrH>>2zg&HvK;NXu7h%je1JxyneltK?zn~6>LTGhx7q&oZkGHC3Uj+y?rB>* zR~ap0Wr%ir^$LBvXgM?LzJPJ+RnBksUVgD;!I9EDNH?{1^ z_hN6lJ8*2ox;#AcWw(6!MZOe!(e0MKDf@C6G+5Co+4!8a*$vT`sK53oQ$FJN`eQ|Y zAaJa9nG;dc>gz}e4I}@T6gJLyHp}a3L}Es1Z?v?R(_hA)dmM*7FOkaiIw)?C&|kWk%$gc-DExlZXa(KFwU{IP!+Jx$DTQ6MGlNFK7^mr{H&VXBOHx zKeb(>O2;qc8MAH&K~&G;(@H9d|HLo#O_9p#3-r2SZ!~n!hD$379Tamu0;<;Hm-ke? zlwj$o~vwcbHE8Y6atUHw3S&W$&DxO%V z6L^V=7Ym89+M&RYh57|CX{}gzC-n(HrJck<9Re-^r~)i_l95AY@f-Jl26(ddx=u$u zP$j07RYXgli_fNNy{?~jJcs`A0N*@U7Jq%iE8+&(zTX1s?K;&I$^ID{qWt*n{+u=1 zpQ31shI*wpePx{FC9uXP1pmPCk>CNZune51%1WrHvMj!!MQZTEr4KG545|H85&w)# zZ##ToMITOT_w>ZK%zHU075@`g^L+Dp0??k5hRMZ%CYU@EeU9r+ShU1ovojic z2GE{aS@;V_eEknzNgg=srv9He^g+%c|F9{ObaJ;aO8vX5m`PY-xU+D#nD(NhWe z{#}q;;+1M38-wH!S6Rx6vRmsTdlrVlH ze~O=EE9N0a2NLXFzw<^%bgg$ir-fxPU7F+35nUusYWge!I>d@^ByM&RFIgomY~J;h z-~}m&e&-AnO2ZLM27L&`C6>0|bR;IKkrpk^p=2ZMU9>Hm?67yONhG3ZbG7D8;!Jwy z&5qhnK$npz=v1>f6M2Eajl-MPb`9^by)qZf5T}$cO741}h)^S+j1|wI6o&#mRVfw8 zEwlM>;yz&3nr@c@LjF_(O-H+)ZTNcYyeXE>0D&skdBs{T9 zHLxq=lP>~2*uATQ=zlt=`5SzCxb+5r$*8?bn%8w?Kd{q4V#S|tdYaq5@+(K*TUe-b z)St&mBWe{^IFLbAeUVI^<%g^yJhf+2ek>DVmSe!d8~xcQxpfeLSdx8`JRml3s`Yk5 zpAt2bC`*d-A%YO6x1th>2fJz)39Tp}MYmZz)7>gXDW%F_FcjD3h2mDF=u8F)#?ZA7 z$Hu|+lQ~3FyENZ{YJb?k6tJuA50nO(8=G#Vk=7?D7KRB@pNVF`F|Zhbh{Me-=+h)6 zObUiofNPP#xnzHuLz7j5r}I*~6bLD(?b-1Xv=C?*&T)q#*7be#bmf>cMZZTqIR+t|45jkE$JQUBI zu8^k?ZsESKKd*S^`nfUH3Za=5oO;aBvYgJum|QTAwm>CW5EoQJ%pTQY@=-qSEXA{o z;@Q@xeCZe%8trMVc?$meY5-dOO$lIc;BAS@U=c%owdxuIK;n0 zQH3jm-aXv)Im~OFUHy~CXQ0AjQcwyQ7Bk?M*)-|m%f^v=%%zk8E>raxN-Ey9$=6k2PJNj~VNCxD_T zt`BQ9S66Q)D2QkTqw1YE4Y^Q`-Z^YBv}mCqT5zlo%$s3t^{*AvlOvl33GjHQthBqM zp2l`>TWPZ4DD$9)0k|e7S|FY%@CR*6C~5kdZ-H-!H8m&8h7wsvCXM3+L@<|mtWn#e4`IWcA0}ux6q6o-y>E)(!TT z#xf{4!-D(#zPI!@u89_8s40l!=7wH z>OFUuU*t{5Q!nbiF7rnvLa?%Ahvb)c%!IqA0S}Yd2t~X^ZLk~jeksmWMVr1nEbuVT zAU&x{6K59nDy@d~KZXIQIgNNWgjt6Z2psYUPuK1`UkZM9Kab`sf>?>jZobg zk-o`fc61DEkT0yfb!R;-BY_4E+(v3;{NZ^*$R2AgD93Hs>jh!n1J_D1Y3tyFwK=D( zgAb;!gWt7FK1b?fXB4@{l$8y`KY)jj+ZkpZ=8gJ(P0=j(vpKa}z{3-^@3JTn#Y#D? zgWwxJ!-*L_rnX#dV6Zk(nvkkOWgK| z&&Xg)_l?b_n{Cy|b|~rAGm?=+;yMAjcD%j2O3XGnaA-egojaHLrY{5Re-l_w0UH2i zT09MKqw+>xOBM^E~M@S(dwQfP6@9?!~olRgH5MIAYPi< zbzWZ?pPDb7<+U?xHWsgPT)$+M<7@nXZP_Zv{mWN5YQ8b{|K_i*a=f{8mE$L*-*B^a zmHVn2S2?!w{}25COw}q!_D!oC+SgV&cJlwcZ?1BTY?isP_v6^BT!73r8(q?rMe+Nu z#Tup}`3lPvWj>Jh0r_QtpMRsh>E@ZeJi+r@WZPlZ-<%iDuf3I!;RH0wCdNw=|0LPZ z&A(aVUK#Z_i?G7VymOBCB*I+vUHImmbDT+{X4Fnju9=CW`OWbSKV*eZxE9KhnLNwN zY0S@$7O;AoV}@_W`ZIjXa<$qYk$|ZEzfV9iEx&GwAxE$k|LRX8$D&N|6LkV#s?(r{k=eUH#@_z={4&ENMWI5r}hwV{23EPfli<+m*~akh8O zrLq!CuoA>|Ei}9i;g_qB;OG*uyG zp`ly$n)ivUG~w1+NVZ726%PqN@6e$jGh87dlO);fwZz^sVTEr~BRDk#6n#xbgq4Mi zNzaGoqcvWA*rT<6ofQDqYKT|n{naXBY56KE7R7&quMVR~MQ00>A(_d+1!mFYWKDKV z_X*GEk1}LC(~#N^4lyyM?+2~#F_G2Y%yJaVtZ*2b94MzF0kOG?E7C_*Hk*saEd+{3c#mDZBu3y3+O)( zfman8gF|J|@vj1kj+tUFfxICW%5peeEP1np*5ayv4RaQ68oNCF;o2h) z`N8frZ|5G)P3A?sYx1rAZE2h>)Y%h{wKrWPS=u~jx9MNzM!U3u8XP3c6X#;Tf2nQqH)xYlIaOQ1N`|@ShFp&JJY8ww$DqO=tk4oJt>jr!H$G^P_nF{Lz{$F_O zD#sVTvq~H*i9c`6f3j^-F;xE|^Is>tuCZHw{~yhNH?f3n?2+I9fBs_@{?Pev2VHN^ ze{pU{=D&kH*z=#H8!F<=nE6kVW&V?GSJc;Ls-sto`RfVj($?aE%Z-^1E&VOt3d-YB zNh*Zmlz@;a-n7Cl!4`^b8eCwl!73*h#Xh4lwFc_ei&+B|t2J1$-&`xvSQf|uL?g>D z*I1$>X7>j!x{7_&HoE9iHFmx2mkQUWD%^Qmg*&Cfs^Rn%7mQREdL!$sQz{+1&XOuw zXHm%+*I6G0iUn$&CE$O+I_skp0`8FcZoqw6ftKr6SAHv^Xjapa**Fo=z4wfcyDxm(kSso z=Q@oNul=>L&O-srKdkz2=9%1=(BE`M7dnkHkGWB_QTpq{F%^1>${Z74HGU+ChkKkT zCR+qLnK1{>0y^uFn^R!B%CsO_@uxxL7a^-NdaV;@G^50$HD^%HXw~U>aMjF4zHYZ) z@byvKFS1ap{Zboof8KCY712kf&C$6?(vMom==#rbjjvxyyv>P6jqM6M$J~+6=`VOJ zfJAy?rJEx?*K!?;4VDaQJ1shYE2~;jDg?8B=o%QOZNbCB8{DTwAC)?N_e#};3{}jM z%*A$J@6nHXSYfPFD~v3=g-EQ^dU(O9J-o+QOb>f#q4L$LIw39e&^-MO&2E&`el+;| z$XOh3x5g{liQQC=B%=r^c9&D(!RF}6p&6+m8|#wG3q;KB8QwwJxN88%dP4KQ)*SR%wD;% z;q;`h<(4la6pr;S4U??Zl)g*BxA#wgFP$uFWmiN;Th&-_iF_#?8?KtGL|q+Mt4?b$svA|H|<`~ zQtIRa5R0bQLM-_ESH~YgRe_jsNr4u5vujf7X`^p;dS#JhXit zIH=SI9JQB-m2A@nTC8r4bCW(O)7gkD;w>i9O)hEwM`og_PJ+QQzMK&paQ*Q280FYB zDjXoaGIvd`s;qY2N3O^{GD5_{K`P3Oe1?i*GV3@7+WA2O7Hg2UOG^4sKqP6Li+K=| zNqYh@FAlsw1jj2aD8Bs>p&(T2^AC5=B8pduXX<;vp#=1%x9<)2%Ld_v2uHls z0tQ&DfvS*@_5zM>?I3KMsMK62SG8Zr7Ly!o?WR;9%rF;ukOIy$>JEv2@`f8&Zxapj zbF`YnuS7af`x#VpgzkjL62V(*dKbQoep_o=ghN4kuVd9RMcXie0`zU20$pU{qWDs* zZ73)4hFNr*c!4582o1_h5hYC(9ifuZA&c`E=Z}i$d?$?zC7~0$C)xG(_r0YQw0isG zwyKj2#|gNB!QaqW1?|ZZ1?|wNf_6wLXi>FV3R;w)`7Sf-*E7&M;9Tta^-OM1KS|^( zzqY;8(A88>w7zR#vY`$eGRot!8rEesOlT@4%^GfkuP0~*Kmi7gp=E2YlSWZ9k3ZiJgE?(RSHj-v1u(>4++pyO3N5<52{Yim# zo2*YU%KEkBqwnq(u3(h+|M$q~AL)8a+J>N)_3Q>TavNOu@GCoqA!`sV@k&jy-gZQ) z7sXpd1rqi!j{c15Qjn+BYE`K<9i^UB$p;aL=tsS4I8TGo{}IP11cdtD?2g{lcu0g@LG2$ct^h0G{_19sf=*Brfk*8LjxOSO1|#qXmN6C5z+jH z+dW>SY0=`7JgWPXR)6f0Z|(j#pM$)H6jMuKwE2)2Pi-kZX%^KY9b$--Ce5Oin1g#K z?lp_n(aWw;m1wA+n645g^<%fVUv{epML&Rof*rDm{XT8h9aKsIWuVgajyGL1@d9`r zRZe(7QTtpWHB4OEd?^&A@bjGTbqhbu87vX3GeRBO#(!i*YMR0oi3`uER#-9K)0w=E z!#5un3>TGPt6|R3=UJR{V53YF+jj7Z89*s!N(a*#FDd3;3&xm&Tp&EsO;;u(HK+?dMUzGwV`ZVu z4!c=Tzyeq^Z@oDAi+}8kKkfMY<;UEr>9V6rYrhAH(v5;!{&+XowF^Vd@s=<+M*K#Q)jd?d}@rl}asg{O~Dfv}i`)|J;;gL5Hpf z04J9AD;TEYWiI}|1XA{fxn@W|4rynO0RxsLgIj+L+Exf zU4a@ohgRsu-QCykRvqfb7DZ8*u72N5nlcW}qFH%GvunM0c+86#MYFBJY;tqA%y!_A z03jP+BWIvDT6p4Gs?mqDwAPD-GVi`kHa>{-YByxV(O}s9#M>!r@skki4!<=8yN5@)I#Ei5+sMp}yNSBtIAQPXvwr zTk-l}H1F`KqhxuDPbcg8A^gSs16T4TZ_T3oKumaXs9&b5wu?!&?dz_)*^C8L=h{;g zdKmpX*xu9~s{O9TzHk5Sz+22~AY!f{fmOP-Pe@@xFhtLa9>OiV>hyH5snX9%OJ|J_ zUac)7_we(Pdu(H@dnq&ZEjrMVGHFcAErJ|XBe{sUX?KX)mRR}=+eIL&@y#TY2NBxP z=9fTr>^`*CrF@Q-_3^t9)7ASdMGtCE#8a~WuaHv$o1}D6x3jhUD=+h}GO$I*FBXSc zN(JP%KQ!u*OuJUcB>vlc5u5hAjqpvZhSAwOYZt^?a%e_20ApkqYZ0a+e_NRX9onRp zy~qNpwU=AO?I+Q$Xx7midC+Vo&Qcmm$HQIz_GS zao|IHAFT3fdZCmiy2321AhW6sj$nd~3MmWi+#UHE>Tp{#DB8qP z{P$AA$H2c6dZBd{UYYAHm7>pipI|q+MSd;BmaXvOx)UFmO4*{|_haeqGMvcOgqGzm zO|E7oN^{2u6hc|cAxAY>tQ;~>ElC{th?g}o^w5sm_f|#*jy1?^xgGtl$k)72C>pyG znJPK{@aQ?3-a}rSpDgn|o6S>uJ8HR z;(@)u%orw6ehuCkhoBw>|AsJa7so_K>~f@E7*TD-l-xoG#3VgMIBfb#<7kE#?b`8H zXsJ;jLcurjxnbc4TM|Q!`ZTP|5Vr6b-7c_HM%B;Cx*DYwkb1( zNtxQDVj|A=N4J;p0a}#;BQtuZ$832_2;_RgkKgDzNzlPH2a#OF)DWf;xQN6LW4p&) zird6myrjvW#f}^eawkM2oD}u^8ZH=+z*8aDB>%tJw#u=_Smn6AeU)PooHr#yQv4dz0i^V!H;2qNMRE9qwMpBsdNA9hVl1GeZ34(R!H`k)(juZ>i63WZFn;i2 zX#&nkT2q&lh18PRS$af1tJ^PrQ!BXD?_eVp@2b&Vk>&PtZek8zve32l@mg`%q$nD9f^nI zdAiz|S+G^Q!hFG)`E*}=I?;wh2dk5wbp-JW4{QhPl$-k^WoY+y!;n}|6j{}!Q#QpC8+)mtdQx#MktMQ?(Hx0`G6if_%klCd z!|L?Ss-qPdSl^^GwG{2hRngBhHQ%$G!lddsfec}R`3N^exM);fCxjd2ahw>xG3Hs} znZ0P-k_Xfh=c9UdzY9d%h59+ij=D~TxPfez&sLUbow zR^~{IyU?(>taLCu;chY*PYR%Q!vmMVN}?feSw%836u*D;{lCcjkT;QG>RY)T@n;e5 z8QZA~uNDY;nDvF|6Q%u}$8?Hc%ZIm}AcL!SN*A%?1j^J#0`fhi8i1DHWBawlbkz%h zV(6Xxq9BQc&29bM7ANKbsiEMsvOy#OKbZDSh8XiB)MH$Tk6AynlyW&0>gQlVuet32 z-=OP$2R?KlIK0{w7&dh&9j2hmJ44lFolQ^ZHUu3-x2XZ7HX#=MPqFPMmixqkuWHEh zcrZ6vL*QUzmss6cwiM&U{)ITF5QYo^j9a;7ATR{t))2t^MyvTC`e(jQ^Edkd|C@CB z_m0y4l*aanA4LCWuqv~?wY28<1siGf&ouRs=-;d8U$l*9u+Ni1p#Rh`9UcYKa@i6{ zdCM|qEd8epb(!u*>HmbHe++Fc`X@pq^dG{MEgCwZ=-)Gz{;N(X`bUMUhQPx3eWMwk zk=CjKpxmWCU;r@9onQb2KZyQMsJ5RtbK6e@L&ItGKb%JY!>7^zh%=Ybx&zSk<3j%r z#knoA=>Jr&uF#=T2QUNr7XwKKg`$7PLK^+Q2K_&DkdmN(&Tb4HB;KPdu-|Nz(mB7h zRo)q@F3XKW?1@@MMrbTh_C&27Mx4D(w1&e6jfY+-F*P1Wt%^Qi1Ta2?#*{wT;;$+G z|B>n6QZli=A0;fyv~tAsJ7rp#qNp>PR*npUx1|B64uX7}|7lHU;{X58>0cr@K>v&4 z9duJV|A+pk%EEb+{zo(XFQ$J1&8B}bOZv;uznC_iO8-*2`Mz!T^t_=Cx4IeZcuzC5&1$=!RE)NjL?fAV^T3OUxI< z@@@|UwjCj(Z?<>srAXO>-D|HU@{8~TZ1}HrEnRMZ$w&Gz@0u&fgG&UfA`vQc*1=SX ziz)*{V%vC3&U}j&BCJC^P?M>gU#fbdh2GI3=b2;5Osx+~?D;X1>Cs$1)2#GhvdmU+ zR2lsTw#7;ry@VZ+Qbs?CqXvu4QM(}J5T-xd2__toPglk_Aj48S432**A69!k))K~o znMNh%EtZHdL!6uzpr_ue=Gk5~&+f41*=}2JZInM}^BW9a5EH9q(j5#4S#PHNyOZ;M zmW#LYIkpQ>#>v|1=j>J77-nOw;wGw99P8avR&gnwgAiqO7CU_vSLQ-9Yx@3GskXb! ztbY~Nwyo7}6}^L5yq^7*D7H5#wp{*<*72g~wiRcFqtl@xCXl0!wWgh5E}e%B1w-DN zpxxrXS1;`qY^u3R$jRr*$Ud#LkgH8@OmG*F)vg?-$wjh<}Iv>|;FQsV#zAtw}5e^=F0AIU*NT#{UURdV3eW zk4>DNxpsHTsNUS<;DbQ7O~84~M^=1-pHV{Q2@aVrCzp z=ZOvhw%UAd4pf!4FxrF5^R=d_G%}@;JRiIbEE5`*Y3hJXQ$%61I$LXc6F~+Ch9&;l zTyV3Tf>$isTNcXEqLbD=roGC3KZUGID&viKQrpOSgwJhcY0cjUb7*iUn#Hwd)nHrI zL{aIQ#i(=l;LBkvb&D;fZfk=e&evw42L}%nC)yeOasJcB@5fw^96WtJ@^M@}1i$-7 z@GE-p(@@+gD_L9V+pkE*Ql)Hs7Cfhwx{f1Mj-vuRxTGpAxmg={49;eZg zbD$oAC8T>av|svXCGsbG8BwGn{qG<6YkEu#3`s2+|AH*|6w{(n7X06s7IDCzg^ifPku>!m zM8~W(Z{`-}c1?0Y$tdQmT(lRnX@$d?+($z%S^Vs?YCx+gM)^{OUP}Bp>T@XVv!#iC z3l+v2ZucoYky1iiMZQkyW0cTVvY4d?l=r>X*1^5G>5%+Zc%~Ap=Ah-O-#088XbwD4 zNG~8jh2kEZS67rC@1a>b{**oapxV>0kvP+Sj#xKdYd?puU$*sGmPycF#W2~5DbBwa z2Oi}7NUK!b0Hv-*)fqZy2Mti|(ADp|$xT951aZkL7FFkdZC(%ITr3hcxw&8XD{NI% zoxhWo+p5mJO4XSy4Y>a_Ri{@}onBFO;@coorn5Lr)yd{PbWmo>mnj-8gi>{Gm;02e zljc~ePOrQ4;E1ZT7*%IaS$y-?Mb+tLh$vO3ojO-WB&tpo+QyC8Z`fvsQ8`c0_Wjm2 zO@Vt^pEjC@FA0fx8%O=VUaq*kp^g^CG3~^oq6jB^EH1>sZwidq#JBS=gR|w z@T^#-s5s{iyw5$6+G6TMicZQBg2e;NR~8b8b2>j{2@%T_mFK`OD1&9>f2;3|Wr~(_ zpn>da-JSYT>u;aLk}K!LTGp|7n?)+F>7q+#y{K^2yul8Ym1 z*u7?gsN5X`_e$j*&wh@J$hL11yHa1QL8Q0xhxEA6d~&PEsHql*85zaY2$50K5H3BZVCTRz>El^4x-w)+b>`1O4 z71-&Hwfh^6b=FL3IQF&G-)cDa-L+qDcrUxnpIF*(tiL9sVWl%WQP!~1H7+q%AD$Qq znfn4SyI-NqVEaW4$2)7zjTSvL`@*&38s5)tyGXS&abd&p{+fvmtDV`Z`HArjt6k$1 zLIOkXy`0qbYhk`y8ZJt;RWp#aGDkzwoN)1j#kGNPL1fZdCr* z`cK6X;7BR}0r^wMkax(jKW6b9xa8EGZkDu_Gv!E1CXUIx&=%~|ej$ipO7NM#6+aXQ zM{I}pr=od?%L6>!QrLl3i2D=f*~||FQt%iV3I8JE&{hG2gm)#h>LrvjeX{c*RVzyH zO>%<;fXm=Sbcwm z+)@nSL%7-#*ctf@hbF^^rkiuUU6;fAl95AY z25K1%LCUc&%H2!rn9E5Aw>>1jN3Q9upH zLI)*=nLQqe#CrjeJjHNzuIV&xXnwH7aLy%xeZU1I{zcN5%}y;bnx8Z{{YB@Lq)2@= z=Ya1FJpfk@{Xh<+mIzr)Xv}74+p)$l!jp~g6eFB%gr^zd9F9>n!ZVEUOd~wY2+uac z`NYpK!X-v{o z-XnLHB9cYh1kFb2Jx0}LtW82q(c4|@A4?nBLJy#SDKL2xx(fna5S=1gAuu>c=94-1 zK3J%2F>X5cFC*}mx2ahy>WfN|fjxm&49^!hcZraO_qa

      )*MHa4~IE73nmqHgmYQ zJDI;PLA}(945+>x01+nO4{HLsf+M|e~ z%-xGBqAUH%(1gL&_oi9~#nHl424AipZ>2xa(du^ENGGT*Ac_?p!;zCzPGG8gQ5MjKQa`2zcyRsPbe)s zKa}dq7P`C2;8a6G(kYXh&;F~f)(t$s&4fQjCe86K#44BEP|4 zDTh3LN;ufQ04xeinghyE=p{yv9vgBWtJY_UDjsuVt?4yNXz#i_XuB0P?xCv~ zFNZng)WW`v?egBh3kuzTFheh)&_>!qsD7u|tZU6*kp*e_fqmcUFK{P8ir6XD9W0bB zUHJjQ(8jmb8gs}N7^?Y|W3zl9%-4I;q;s$802=F>oDutBv`oR4E{1;7d|K zsT6>vgA}Mxnok4Q|GQetWEJQ!mn_Oz zsFY_##Q#&3FWpjgVrK@GNJU;%nGLR3{{x7ERRH5TLjX(M1P2#h4FmU>!<-9N1K@Lc z_g$hdSDSpqIjHSj)0`(e+dLaN$TM^OfLM1w>lK`-k_tUik|c7)Ji1UyzJ!*#cZR39 zgU4$>Y4i7}Pf_ne_w(qzlQ%GUL}U>>9{CTJ20dz)-0b_ORgO#eznuS%@&AkTWs2dz zZ!l)?i$8o;wCGZ#{ZL=%W~`j@wO_;}h8;{MxiZ_#m(WPCpCJr&kfR)q`nJ=c3CoQu ziEy&4+W4y1nClr6+E`UV`7)U$w@3sv!Xv5ZNXaeAk6Jy&TI7xVCHE$`oZxEZinT}{ z`IGbpuBmj%BY%>97uQsJgCz1N=?`#CrAr?9BYn-ysYJ;jf0FqTu6BC(W-C$OksoW3 zboooIm83!ctJ*`9!xAXQL^O-Nmbi0Ucd4j)u@(s+WTnj+xl0)b##+S1(0ZFPVu*_f z*l1C53EOdZC>EZfGFkrAdavJ5Z?I5+)Cb{qzYiUqdxf3y${KeE!0@mGwDn-&#=#I6>8dbdw z&$ce}{9I$R5eeJs4#qb?=<^7SKf;V;(msC5H!WZN2Rk-#d~kd{tt7QHb5 zV+~5GDIYdGV|~b$vUB8a$H-kTcY?22!*e5ddq?hG8oArgo&3cb4)AMz(Ju-7#TpLs zYo*0iilmKTw;?rPV+|)#Z}TneHmI+pi2U{PYG;E;LU~##PqF-3b!ljl3xBbO26dIY z5v(_)#%rwM!T-zMy8uRAU5WomW`IEk?l&4WD%Pm64UG>p+CqcMYXYc&Am)Vx;XYN-`Q3M& z=M|No{4T|usW^@3Ak3kcR@}!y^h^}T-hF;k&)ihGC5z0yWKdslRc4qo4z|TMdbai~ zHWHLhwP?TKa~g+n7RE|K6?a@>HaHy4+9H_ng>9YV?u3dfs^@ z?IQGS;p4+FiS7O@4w&feX)P}&>-7L2Nk5_MJr$|RKeEzC>|FRp)Oqa9{ae@sRla_m zDrY(%Ev(H*sXp(>N~?N^Nf+Gnacn6`CE>r3kWw?`USgr1im3Yel=Z9B_T@)bX0`wL z$VzYf509)&Yk!fZ1@~vkCY`YdS+72*Pp)7m{giNF8%I>Ec;QPa<>jX? z$kq9?lLjwrQB>^D_Dn0uJA%!@iUj-ZQv1ZH)Ees#w0|Lm3rEcLv|o6HGa{?K-1)fk zRr}_qNs7qb?A*WZ&e-~aoInuRTNImqg+9h%WX;a%EQVQ}TA|OYDA5N)u?m?~r8uLbtGQFC&)NKaFq2 z@{+y(XXd?rcdX?SV~vXtEyM%n$LPo(>z(g^q`#e-pEh5+EZEoo&Z)8c0To4Cv9hEz zxW4BPAos}U2J z6|R@}MX|xZYUwF2FN*c!D&#CT8G7bEazy$sMa4~q?taW_3wlAcR8=)!i@2c3&F}?WLx=8bH zgOAvW10})PevUJhejs0=c)}E&R zd*A(OicS!V38RtsntmKy!oG(iQ)X5V=(#>7eOJ?qjg70*=_E0moFY3fxga~GyrRJy zw=6|EJND9n*fVg-k$^9?dO%6+!1<&E5=pFC1c(;aQJ(jPNc%*=5rR5+Zx`|2Ux}>_ ziQK`K*@HK3bbf)iroRjm+WmZcb}`@h)C`1ndhl}bf%d;MRzY3MQe6&|12i8|^9L@f z_4EG8N4z(zZcqCKr%Cx5*_dl0y^HFDx1?12D6#*ulxVM?x$nD3P+(iMUv#G(#d%2Q zIcVyu9&kfMk7z_jr1lhfA@_%P%BxbcI2Pmu=_9q+$yix8>ptd~HfBumC4fD?- zT9f0VC6YQ+OgM;dYKYUR)|A+sO@pK{>ZhkB7JE!e$nUJVR8A+v@avkJDiyC^qARwy z9o=#9juR`Z#={Gu1Hys*MX?hsMUXxoslL3ZN|vWp&6CezIcOvH++I|SxgCSf%>{~p zbqQd&4VA-YEE@aFc_g2YV@%Z# zR|%MAm&%9zMX}0_Fe8uai(+2@KL~Kt^q^MfP$DhChfpF)%5YY2|BR%vn0GI=k4fd zs8jt6B$IOdC{nU{_tkgnPQEy>96f|f=!3?)x&Drz#l7ya8Y>fK9Lsri% znpR{V3;kdT_pxj4$Ts_vhwHm|=9HsLcr%TERd^m!%-bT9v8d;(vB&F$u|~i<(nO1)>Rx>+IJ^O>bJSIiFYk(Czh$1DZQ@(TVE}9jgYeW)`bl7*jg` z54W};8(dVkou@G(2<9Bigy4bgME3le#)$0Eg6UkmTevMbQ|TZydA7jkh!`X0;(sYB zxIc+jcvXajON+v+5!evB8EIJ*TV4Y34g21)9<8!Nlk2>>6HAfIu@{R(CJ&9JBbxV}$j-bbG`%@9j~-5+Y`FVc}YIs{P{ja~L^psO*^jiJy* z3di1^r3ZXj$yOck^D!9Z%n@Jg59QlY-G16zflkqF1TPHAFc7u zW!i~(#{P3tk+y7jY|Z3}MTXwsnw}07wPZ)PetfF*a;_5aiJqaDrvCqg*pfrc7Ak%6 zm!opxq;lIM`vWn%WLIRC*kd#7`I!?ZBkzH*)c(yVAo0}tJ>MS9jhfV)zg|r~pq9?} zd*;i*>h(R3Wgp#@|B0INNomhlIHRTK{71WfCo(;ES9Jv=?67}DUJoKsPIBrZYAL_- z$q{x(?$Lt$Lu$&Quva@;i^PfPUBUFoE#veYP43&(S#)pbGhvV(mI`!D>$&misqqRN z51!_?920LCF5D)2!E^ds1~i<=QE!K1JJ)Z9iS`l(P?~Ai?7S`7d08G#X<3mpDT;7n z3TH|Ki<#|bWVR7ErQJvpyU{bn_agAxFJ#H)*Vrh+_UiYk>i}x|pA=dDji9tj%l+bO1h+ z&2@PKEbGAj?q8WgrUb7f z4{G_&d>kILQu}+tbN2I^1&b}aF4Kcob7lsP+59)=Ur@jCvB5_-g6pF_M>l%jVEvQa z5=*3(Hh5%_g^x{{F0Nnwm^#{OM_)Yp2?yu4de)*8%mWQzAhN_hlzSk*LrsAezVJ}Z zj?-9Oz;P769F1@cWC|}gh60(@13jPM3g!5?b;%9V{AX#1Ii-E%4;O-`>b$rRnwwh0 z=IOMf1n*%5tHv|zO`N^aK4j55J$O5!ADkQ9qxOjlGx+EOgZ}E zHaYrYSa{UH)8j6`b-_)!tst|t{hIvN`NI+zKBix03Wkrhr?a1X-fGx;(i*#kV4TUV zd8Hzy2ooX>_ChJB@x0-+0j3w@HzJr z;*YQDN$E)eHT=cnQT zM<;7E$w;G?Zq4g73G>1lOK zZNE(|e_C4mnzTt=-(RJLE%q@xYLWmPcrwuK)AW(@$wp*w~qzmvvbo*>hkU0kG zR*2fmZ8Xiv4IFlw+vfGGjK1eZ!sZ^*H5yb4{T#wT6}zS@`jKzZdqPeRd~}HRc-Gj( z9bhYWlg`0pj&y9Ixw5qbZ@u@RKAmX#7iX zj&`EhxB2b)z%qz)kks;TOW*Ju2tJ;X8mjTt+-85p-io9)71`_6(iWHUJ#Z5&YnTIc z(PkH*ysdX8cS>jB0n=oy(c^^gca|a?b7`QbMuj-udkHiRw0)>evg~-fG^GTu|qB zU>9AiHZtGywuVZ@6baRKO_D&QLQW7=FYJ*q3}~zIX`3YYjt72!c#2v+D13LCth>MQ zd3$S8#nKoTx<2aio4VNg#-E2g@r6pen3Dg+Nxf6s9}?V0{}d-1+dHb|%Y-eYhiapj z;~Cj>Gtem$f(+xI|94Rn9vh)xsilQ1HH;vch#PVE)20(_b@;Ofe2Q3e`ons`c?*l% z4QMbyUTbnWp$k12n8`&^4y8$#fCh~&2cQa_q5=*^CjwtyDiJ&NeUj!{bw1e;(h zVlmk9>0tC7l*fJ|chG>XAjN1PQiLevc=Q7!%ASSL`k+##^(#8?gl; zlQ$3`yzv>9M230Rh(oAYj`dSZw;PbvQZ}PDh>tUe7FUOJ(Rdrw(xWVbrYGrc)Z^KX z4o&SLZ-A z$=`|`$U7byDZ308W*F_UA2h1^cay|cZ+(tsD*D4w92L0GKD*ZNAgukLRcjnRTdje0 z<~AIyark7d(GxXVqXWggU8HaVLEt>Eed&w6dh<+Zrgpcn#Oo?0;p z+%)irr>PHp(2|5$_?M9+of$Wj-<}G`41fbYEgY`QPJ({SE4%?WBun&JvY?I)VOQ#* z8l4M$Q#a9mv&6&$U1&cd-Ok8!+iw%C=l>3VcUP9%Y$k5|e?^oo0n}8DL?Qz4$tEeX z*grG4$MZ1ZGb;RK+U?=d?6J5wG_k9G$CLZ-rd~5Xg7|i^grjJ?K^6f@5F+zRot!V; zQ};Ey{}j6!IbZDbo{Q;xl6$Q9CN4!cHRw9e}`wi?$MN*bAojXQW^tY zgyHg6yh8SRhEg$!At!KzNg1a{f)81kW*>;1i-Rtt$8xyb@$TWj_YpRc#U?HsP2HJF zfd2Oul0A6bqryGhOjFB$D5_*pk2)7Y1yOiKPT#NMUw7zGEA^1Kgwv4Sk<94 zZzMU#>YO^?Z`vZ9NETSrekGgZ*9^rel_{>(qy+OQT@s|_t!7Jd;GcCjDZaIFv&=-q zoo9x>gZoD({H{*02A*jG&_cEA!c%;)Z7ghI0fSxG9Bj(Ai`P|&C#)&3>SeH_*r&%T zuw<{EL#nPIi_N?yWZ7dzMPox{C$MiXBx(5DlEI!dD!OlI5r)Oo68j*tMJ2IsF`L1p z0SiFCX8|Kvf9e9_GlGv>OgZ@VT?Th)+=+LOB?n_ANYfsRZ4klHsKOJ?5=Y!_c=IFp z;t1fx8+YNU-Z%~nC|+leB|!#WHJP6qD?y(2Sc&sAEzjMi;3 z9}4c^%9nx}v{rv9_@+IY@X%^|%*2om+KAmpQ<(dIHn2(Nx%bm_&Eoxq#j6MRJe+B7 z=y^CJHvgw=OFtodVfA4Aur)85ZZRR-o{*hAWK^1}7egohy*U1zSE}Y5nG!g#i~xAW z(k7V@82=+Z#ZHX571+$5!JAk7JmsLW&QJONKhnKtM0t1VIw9Efh`Os`wp^~;Ha{Tg z_saL)@2`>fF)TAx+OLgV_J%_$eSEf8Uhj0?@y44Sv;T|nZLCIGsoNX}`CphEmY%Mg zgp@LFh}6*2;#aA;6ko}pf{g!2iO@rsh~A{T)j~eWzggnU)?4yq#s8kg&1!<>o>vh9NGY&9xXJ@YHd1oQ$QEjpyi`aOyeq`?POdZ6NOGr8y=3 z?n(kZ#f^GdNP7llI~nsdnr?7vJ9PbezjWd_N;uIPuZsNyT0dh7yH|C^e!D{a!!edj z+0$?k6X09XrhXQ+qMcS=Bzla_jh|RMi9`Lxp~A*8fy3-1b0O-~6DcY!iJfzU_E|dy zGswb>RX+=`q4?q~K(hb0C_IY82C;CspqeSZl=DhEd5H-^AbV^!GYG61VLDS4rJ)EX~ z*5KgzxK+Q=UZW;9i(9cFUj|}$lyUV`5IH*e#CZY#6pi*Lo7{1Uqn^$FBU!HhzfIE@ z;xYw*)zlSx>(w}UAIWsEWIrQIG^a{9=U!xp5PWH)xO9sBve&vHGaI@Hr)VO>w6W~r zy{P<*kXFocJ#9e4#E)-C)FC9=N{2A^VuQWbtvBGCYA+m4MykfIgr~Ze7Ixa3&LeX( zn=N4Zsh_Q}z`aR#XHN@$6rF}xoVDi_ALii2tH{rxvHn50@1*3=E$|UJ&#r8^PCzL3 zpHg_BW1^fc*yzJ2C`8m-n;Hs^WEZl&S|z|jS4sn~vK>1Mu|fqWD0&J2V}zbUK0`n8 zmmwB}it{ow2}3eXmr)eE^go4uIOp{&No@?1U)rpeuU1QM%hV0`W6g%-EFWA#m@k<) z6+Ek_$_b3~uI)uL(;aIFB=Fgb^=uCVrS;KcEV34l#Pi>WW=l9JnU-l9sO1Oo$Kjc@ zJPbbGIIjW{IG=cdpN2OK17v_IPB0sfWCsI4G&?l$1Rzaj<<$0gH_`HMI0G6G+#>SN9*6MDoCtQs z-w~AA6^X?Ox(po@%uIvkv48#*xUboUcb|}*C+Izm))c`wt17s_5|f%aQIpj98<^Tq zQ#M486Q0eeov-+p2Qe>T5(PHrZy?5p6b!?nyN3+IzaWl+;uiY6a4>u=EZm`fwo(Mb zqEAvN)sb^p=E!&Y*WUa_6?_>Q(J3b$ZI>|-D}Veirpn;Rm(HDRp27a14MZ0P{38Rg znunvut^BPIeTy6neJ(+Gi`yoJ)!d__yVC|S-n29%p0(k5Cz#24_Gc6yY)otY$Zick z=_5B&1Co3!Q)ZsEWQc}JJM|mfeQjwZ@T?s>s0C+J@T1h4HLk3tVR$eCn`M2+L3~+) zy1doW#$?n+0pd@Ny^^EnrMeJ5=YQw09dIM6RXe#$(rFsAWU=zPxe<|I?1N_n z528h8=}yvH*z0NK`eo8L_QSLG6x}m`S1sQv-azJ#T49lt6gW*pLW}*3V2b$zk7yYN z-QqCYod(##fw9m9GRs2S-TwVB{Gt`32$z+3P-K=v7x<1Yuvr`-4K!63wNlDy_DCF( z4?UurI=PGTYJPnxcW8bWH^3@d6G^mKalaz0s6x<7Ooxrz;3o>KKMls z!_)KLe31cPdj6)G!6>Hu!i`a-jo%U@5S$SJ9qYj zj}m)4^2LR8Q1#uFM6-TzhIF#viBzUmDQGYSSyGV6R0OQ0f9S}nXNhvnfZq(4miS0)x2W-Ng#MRwAJfW< zR>-$mp+(Y>C?hjo2JKekoBH~a)H|L2Y37fa^ELew&MS#s`E%)P2tNjJSiAPqf;KT) zDp0OIIe)_=2FGR6cck~SgIa3BV3`(sh?RBBUArQQ^{73MT|unI2{nbCMQ_CxpB9^9 z(&Qek&WGCJp-<%X08egZO)r!o)TQGH%`=s1#=Oe~t#bAGi6 z_2|WB@B@jpyuskjuy;j2Nvq#ccMB$x=I?OE2)o(z47h1fYuNi}=mMMbw@2`3-t%fu z>+Q1HQlk&g*y|J{W@9F+ijWV@7#Jj-;%N}e5S!vd>W{l?gdc$q7H5cNy^>aqR%EUy zZS3UW2~XX4dktIhPb&=*jgguXW{m4e8FZWtS_f^HHTYd}qM_IWBNjDzQ@km1R9wWj zXrF-+CC9(RS3U@N}I+;5Q zg*!v3c)RU~ng8-*$Vn%=0MWv5X>Q8Y*qhm!G4)7Ow&!h_79RQ)7&(7aa$`QBF`Gd~pfwTs406dgtEVKl>-A>HbLwt`h{y2C2?qRIt0?N~hb)KpvYx2ZfwI z=0khBkLDiK;aDYLPog{FzTCILLfAVG0g%6IL3a2?HYi;vVigHh6#KrDXqTsvWI9dl zd(vJxNnFR=@|sP(Pj)8IX5n91YZ>;BCb)(bs(3wfw!O?AaQz+`C7bTQ&pOK*|6*cS z3Vn;euy|#MT9*E`l{H^*_E(@$r+%&8{cQi4d7_V&RFgmX_rH0TpNn==KQ7KnnS7MR z`E~bmTGE1{%A$|^lr<6GB3{OcNR2G~_IoNC_;Ad-z)u3c;M5N?34bhY!4N!h_+_^8 z$`{<1hG%ram9y0Yys9IZ&mwAg_o-J*GmCUsSzZ>a>$kKh9B3h3n`Gg-tSGjCgg9Ly zBo2PS{>wNg84zdjYME|*mJI1PKKYy`uD$1O!On5-g6nnl%cM@qT4t)JXkAex_C-n! zHdz{l6lVpQ{5zhu;6_jg)bVUQ_9qLaNFyRev5&qk`Jjp*nvA~S2WcqQ1%)6wIU|p~ zGyW$Tb*{SpNsv~}yIDx`kiX|4U(Z8UY}RN^lB5);qsKJ1gc)Jq&cw(=R%!5rrJmah z6;#fp9pc$5-5cL;L|Kp1%o~(-8#udjxXNi#!wTDGtM*1Uthj|Mj;wavp*vR2R@JL! zt2ZJy>+R>C`nE2wi7$=(NVUUFMM@`CO@>OpUZp<(^65@udDefcIPiEvkSa|TOjzZ^fvt^3 zshrKaxf-$^?GAxx(q^Y^TRt%DesBv7-POz&5OIQ);pvlxL&soaM=;7^6r+X4;p>=4 zl-SQBb@OvuWp^XSbKY|%haR#}>M1?dcit?QhbGzA+nv!Eb0WXNtdM;)bDdZPo58>u zJzc2-N*dgN5~iEU;LDS6CjB|D5yoO)O;Mb>#wWk$a-};HWrW73%Zu9pp_jZU;>D-P zim@HlZXhr2AmLfa3pz+r|BdvP7t3NtX6aH}L}rNmaRtUry#)r& z@??PlIKPvOIRP?4-eid}xwpiK^p+Up3_3Xx-@Qb}!n|H0Rp@?&>%6%SGY9 zg-OzX^GL~OX~hu9@1+>F=j$SkVuUrq}iz@f_?h zpmJ_nh@9r6S=*AGza-*_Ks;2qxL1hm%?)G`#Wj(0P6|0q!sdM!uW&>&+7oA6V5p}> zB0CGSIT(8i-lBXQU|6>qY6>f~_A|CkNqzBXEmHdd_Ry?NVV zP#dpBm&(~`pJ4oO>CtUemlkaB&Q_J^vwQfR*d`Y?qFG*7e@YU!bEJRC+!&x_KZ|3>8gR>b~B zn)tUHXRA5<>co}U2MAQM;9u;TEN%5z#3_gCKtnD;cR5?^nxS@cZXufRp*Ou+UmT{g zdCh!7RhmjshVvp)DYc(iPo=F=>1rzFSEo#+{u@M&;J=~qsK z#L^5=Be1j(cYl}cjv@6N{-bU+4bGJoetMI||EqEU>~Hzafy8wZ%OX|mWBw|?rFM>P z7!Ax_qnl>8ETN|G!-B-KYhXcFf~=-BKbLk02i6YEU8AWgeB=vfXg2c%{GNls`!jJ* zvOXkB)vse%WEbZUS(<;m)@4Ta3kraIY0pXgXgU0-yO3zUPnTz(i@xhueyTic>m|<| zeYdmhtmN6J=)0#)sb{Y53MJ!N>AUlsoF|L4$PK+j+NhgO5ossuJNyHum2V91&qTf< z-NOE~{K9M||FS)ep+e1SQ7zv(R`ey`M%qWk&C~=RW!r^04jaOt&Um#+gdYbiN-sIY zYw0k!>euU_Q}JN1T&C8_U!%hR*jwsxJY_CYRivJ{;aU)UBJ-%|u`eE_e_!^LF1ZiM zBUQ!7BfCS^T?SCN9KxfF6khMZ(`4YG=9(b;spbjeIUOut9Ay>7bFyCAsLY~Mrcy!3e(wmmSRx45L{rP96w`8CW{&=O%0sm3fYsBk%oLbL3mv9DyF#BbCB}0e^Bo#4h;^`Z?YYU6X_@%cwmW7_mzJ zNi?YVVzgCa(;3AiiQ6MGM`X-{`1;2)?17GPa*hXk>4E;94z~+xSj09l$iXJjy%2F_ z$3fC23M)d-%0$uqr%(GNzqmt%C1^|RN^O8?(~@-{9kkrBR*DbL7JKE)JD=0w{+@$w z+uVjNlZLgN-d-VQptrs9&#t|)|0H__e(1wq@t?W9^0|z^>ZhD)uk<Y3Y*H%rE|vL8K8&Xes&OFJjxB}69F0(3YWG`3P^EtXf z#+9b|%x%xf{zbnLF%kjA5{Pq*X z+I13#^n9hbY^M;ZMqD84qBt`Cgik%U5Q^wAsm#?l(>w!Y$|XL{^Mwh*=7ipKe9AP> zp9&l?#DTmY5kJ*Q3_25DGT*~Y4^XIdT+vwoKs4F6lN?&X6W#?-97kV#)&^Iuz!RVB zc~O@w-HpjIDVL>x+_OaNMA`yEdh6J^hJ9t0$wU!Px&?Z=M+%AE9nTF1023CmFZfX! zlgN73Cn+!Na8lmOOkQz}B!OJD@T_0=V)Ai5np^5%E`o>=U`#w{i5fXn{dSCll z>D}*tklz0hr`Xx_&%cf5K683s*EhYbn|jfEwHD18Nj*5xJwJm#P-N%H^7QMUO`f8| zlI3YztnTJh`)6BUZoy&_o^}5m(Mz62ddt&gv13d*Q8r%pz69!sUIJBS#9W~$0vdt( z8_AA|*H;gfS+Rsf#iJaTs7~fuC-cc&v}i;xl3j55>AL7&wtqb^;#7L|IV=j0@T}?e zDf(~USEcN;m8UFEwitN+GkF$7fjxh>DAU-9=>+z8Pkj4p}a^5k;x$KkR>@Lc zyiAp0#um4=GYMDRrgHjOGCzv(X#gB8Fqh-_4sBnW{baUD zNHL?>`8Spl?(=b)ZvTDfOugoZ>tqbu;EhJreXGB7(=(Uk9f&p#UeuVe^sVFJ8($56 zoLaMO7ORulyq9qIi{+1BT+&}uuilnMK(cyuENABU@;GxhEiZasL`sZC)O`_MR!833 z>_rf>@>bs0{I_e`>)COJEv^QWu=%E+|FS_Ith{&>G4QgVHS=*2A}kTu96?5yKw%qm zXzWPMf|r_(u>acC=Ro{rMg98O}eD7QWLvdbWDIIluAY4yKxz#bI*|WZS^7_q$|D z@ign;g`rMFf~PZh|KZe{e+E#FL!o|VN^r*#ZxH6(ApchjMzZ5lO^3RpK?fYjCl>e6 zkU|L~paJ;=K0J4eOFJh_O1GbQiws=Y6Z4t1>ws!Q)sz<5>xvy*8uM0z6;^L?`tCDC zU5qTuP|pi^#6oD7w1lqN zo+48}G`r#9gEIeKoJE`c=ST!}@nNC;Iza|2$cmX}T+lx}YI&%Ztqsq~4|LQHWKtsR zWxUOD75^B$UPboDVUdM;?vayPW{lu7qwfY9b`pKn^NVzAp)p;o5`hb;Yhpre@o%3Q zvETg568rj7QR2{B_LsCK38OpoX6lxeRM6X{cE&U8U8br1y}qb@my3+v6kl>Wdeibx zr8h)nipM3nCn^;0AI|utY@&7wxgS2YZI1kr9h}wkL79YV(Rk z3l}boew@iRH=N}ij6Qkv9mPqvY&gPdTsFxWAp76EdT>yON%)?dWRUx*;iOOU{#9Nw z^BuY|ll3KfO;LrvCe&-CMS>sW@G%WHtWfVj!px&^GRm<41Ape-zYK|_*mX`8u;J<7QfWp3eII6 zWJ&Heo5dSm`=EMt4Zua;^9?${!jOGF?$oQR2OVIeE`7UZ(1B33r%U?q>oXJkvxs7> zwb+M+@>p6@ve*|M?O9yZwYUs&99XoTMPHmhyhfKR?bqcOg3H$?;am-K`~yC#16V&EhF!H4I5+p|!)7F7FA_I`kjSg?~RTzrtFua^|e0l|FI!O#k@y zne`9DpDf^|*9boyG<0*}P_LeO_gLIV_YnIb0Us0|W_EVUv_GNCY9L?{fH3`IrF4Si zUU3@W)(XthtxxW|xawULQd#ImPTzI*$@ABo4n8KLg~ZUvCo3U_sXsKby7dDOstr^7 zo=Dic1>B}E1s>thUE|P|po%{c-g3U(sFtH!qr0s^4XyhQ{q(%mvk(1L2ye)v?WaQ7 z`+%~&dVvIrp3-sTQ=DTNoLp)@V5bx*1pL7PBKUwYLzqy!$V2U|tsjK_=jI*=WriO0 zhRS@QM`gby0qa9J|AMgpPwaf%!?)UneK%auZBQB=}Bp0^e7h626#7Fh4m#hMS;YBEi(;1X*r^y}yn(b9i!stK9@E z6A4suf)Q?le@P_x2o%K;HQr6ID3RdxKSf=TN4TFe=y+o86Dce(B(#dQ$vjoBMHR z{NvT}kNe$^e~5on@sFMQqnwGmq~PNDDRcNe%kMwM?s&wt7Mlxz4+=JzdrOZfeQ z-$s6i_+<>8pYj^NH~D?SFO!~k6TiRb{!XqXTp!_g6F)~h8TrCSk2TX}%%mqe=g9mf zwthtBH`7y9`WTC;FeWnJcc(G&q(t-tnLBwoSRd-Ll_@iK!tx6JrY=>oR1Mb-xcEx2 z7$;-7E5WpUllmEUCFWXl*|943fW$`&ESJlaY0Ss$s$t`6`xyGW@5D$ zTvTQu`12gKCb@2YDDlp ze+~kNVHh}7&#e}Ct*_}h>~v-QjV0)1wN~kevaX0o@Po4IiGdyST2+723!*Bw$S3_y z7F*@8qN%c*udliBC239@2z0G+PxVH)8N~nFMz(c8;5ZkD1CqKflbZvys^{(ymAg2tNY5F;E6xFb+ zRo$o5BbDg7q@GIZsA|@+nYt>_)mOuCp;DLIhi1YV7xVicsi^L9ZKL$nCsp&##b(9dg9OZN!V5~1n>7zrzNK>Br{ToiZy}_u3f|F- z0+NNw-5}(_O;EENhXS#nnzE8$&YLP{D;y3Z;f<}L6mkpa!4EluWw{}@(6t-7g2i2d z4(@k5g=w{&-1 zeHX>=%A*(il1HT<;%!nnP)j(VvYQBW@caf8_!B>ff#*rkUWH8QM*LL1tE{PTYBw}S z?vR=5R)aEOF3m>{spgz8@+Cnrhl${ygnX%t%NKScyh1ZXx@HIf5!zEh6+Bki!nOHy z$Vw_WNt8^1*rF!6r0a&o%hMr1pRvf^BBKC$8rA#2No9U!7*UKyG-wmy&&UVMkq-xj zioN8+N=-}A*~$Wpo5ah8P!KHxbE_OEB^|R8g@7!sLWhX7zIC6slJ4#w)HD{1Yq2_}%9Z!`#1&7r(5R7@(D zohrTD6$AOb#lYRl`m(E4w71YDey1?x88ZNty{pobm|!N<|FU6%%XQ~Al?b1oeGR>N zq8Of#D!8CYKA-aIE_XV2ul_vv6#HVN=7DpSbq|#9ZCp$ji{t+y`{Em{E_XzLNc_{< z7lti_uaOC#QSbL+2{ADw8t@7&PE0*oBAjB%oK01|c|%N$i?q!6+}mX2NZ;}!xc||F z{mjObY%9PS4$qac$%BOdMMa`8sdl@yL26DWLQCG@vh)OM~NVg>z@jB6j?2cig38$*%f|!WRQ%m7A zNm?kSaNh|m5wc7%7r6{GfYdw83xqv-BObw*5ePiXljiY&An4J0Iw2g zq5S|bp?8mc;@{%9i0gmxw~1-F3PNk2mW)XBMoY~6l|x6M$XINqWc3<>g^ijtE^CUGZ9N$C3XOK z9|L1_(_QtB2oJVOHq^)*RF3Q!k^U9#ar#ZRbTF@aVX7vx>@AZaW@52@j%WmnB`-Am za{D%>^3g0}9a5c`2HIF`GxZ3(RJ}!P4w|4hk?1C!u2!ny#2I&_QL0OZY!r?1(uGQi zZY|Q9HYxry6%COo+qM2C+i6B2T-dANEOvd?aJvPM1~&pTNI4zMkb20;{!VDP0~aPk zV3l*TQT|7m=0v59ggF>EN*fsU#c0AO{6NJPf*yoMduR~~y-MU~J3k?`Xmm_%q3)J_ zV2)u$_f;~`o~`y?wM1XL(Z=29JMYdn?_`{KMcfgqt(nu0=W`H2e!7edv>AIdJzr83 zyNnaQMTnH{AllotV>Hx&)j3>QS?m|9jT8YDkTs|sChB9$K9%Ee0S(d(lN8cc$hL(+ zW;cy;8`7%*PNViFHRMZfa7SWj|7Yy8;Ql__b1P@^{gt;z+Y@lk4vvj*mzy#0TyJ-gEX>ggl$tq}deCVm!sfQb;&`U4mDa4pwxC*c#Q6d%$q zBX;mEb><*$5G_?G6_IP=D*D(wcC)6|7?W6DI1BJWs2mh{rT7rAH8~ZMJTY-viV&-! z;7V~^Vx&}&q>|FNP@y(n-a&XF|%u38TFsb&i$*W&!@J> zF}}0{?UDJ7zi#_W>r*U5BC{n*QdyQ}Jn?d)y2Loo5=&Qm3wg$c43qTXE!K<$N1<4E zUY=yPy88NvB+V0}v1eL#M{Auv=eyLBJOWmmP?hmL* z2041TGY1>hQPf@7AdJFtwrItyb#;}Lj7}HZO7yez8?jb+RrwLGVP(zMj6}L&dzXci z^|j05r`6GJ`%bp^=&aI2#tY2;$&i6M#nRLElZ+55+11s6<_;UMu0Q`F!|C|d)xR=a zFeYD7tRo@r|GMlwk%ubhDlH7f>;t(7N64t1OORA7zZ}={gRI)}t3r&4vwEsYFBywjsJU{g8eTL35N4U*w(^lfo}_cl{z?{;m550Zky=zzPn@UT zgP&xG+-Z)gesXC|f2g?&5d6`wjMMLKZ~;Wsi<&@x3T zN}=n0mHtKI75wqY4dc*o&DPqMWV|#r6v~}5V{6YacIEq7(Z+t z<5`pW`#C71u8&pvm*WjN9ls36VJqtwat62H;1SU@4Z)SEEM_bBsK!0Wvu@S6moHn? zj8&>}OOI;Yn4)H^QN!-Vp~`kExDgxnu;ivwHGDua8nIcG;SKzgDhFa#h|d_P9k0`5 zZ=JjDZBgaK)|Vrp0v)OX0VgSV>KBpv%kj|4_p-IB>>^dRLEZJ1DsELJn^o~aRl-Sr zH_ek|WgRO01~bxjD0Rl|yI$qAtHyTPcS1FO2;f`Qj6bTzt?XEQKjUQD?lhAHLk;ih z_A#^8@X;wv6sNMZWd>(x-Ajm~nud^1r6nDvm2J{Wc>*cYrY7Ac@+4aP>CHQ>eOd|q z#0tONuL*~5l!n21TI1}->!EV6L?kSv@?*4zc0;0dv@b_19*8J00Q4?VGkr1Nu)>Jp za+q@q7JHT6YFKL~Q8Z$5Vd0~g^oM1-&YO%^qEfPKr-qkw#al4TsHn3h!k<-|D{^26 z?T~cr_$}`UN05ux0uw53OEc_!vLEs!A7tfGl~YSoV5XeHWpn_V?j-5TBKvWQ!PDH$ zsN@>Qo6(I|Q{o`#fgj&ITxL#(Q9@4bOC-Yy+Kjs&*|b^u^c=tfL0#9g12Qezag~W!*oE9^r**qf<}x{Yae}2q z-V{Pv@$b3=D!*@G(QW3YpL_BKVoZ*Yb9g0upvyriB=x*=7#-csIZ`ickjZDfYv z8rZcF@^(y^Hb(|zVuE6%%2=ykmUb>lhE5?0mO>}2B!LwlAj-P9c3)%g)Y$?S9Nd1u zK&z`I9+(kFoIB=%BX@~J>(nE?PHwx{2;ysTVdczU$oMj%!_^Q;3@nkP=mwPo{v`(B zUEl;56BZD!YzwgJxD_)6aB|3s6CHwl>;&;$udDQPbhUlUk45_zG9{+F*b%pj<>tUKNZ;BflTkE=8GB%=qRW!8ijBNw z8cs)iVIg++bG+{Tgnvz^-KlbFAWJ6*aoKh6P3AKTno7}C(v_I+5L58ue!}F^X6~;s z_uq(_E<IU(!h=FcsdEok z>E6qLl{(k)NQ(qxRVyig%#O6tazzGF2oBBjH7%y7Eu;y&qyYijAghMVI{Wda28Jy-$XyvOk{EWLvl|3w zaa~J9S_kYs*s!-`D}IS=u#fPIjGje$chk#;bLr|uhH7hKvC>1gqu%<8~@X3(4#rbziHpuQQ>eJ z-Qh?Ox{r(#w_p~ZBvtgb|DEq>>4cp~4L!976z2}1BoVP3>=Cxt(am?mhRo?j&6j4s~B9RFlUQOKR4b3PLCh4 zXI9gv+l2aNc{c|l$jEjaX6j1SxDpdIf(hE9VU+RoyHKY^HNM;98mlwARKq%KFeJ*Q z9a7F+$0VzmtmRFr{4G`f0kT%?vxc2%s*D~WejGKUUyCH3f$(g&w%EUIj zCL(o}6UD6VTBS;O%WC!W=gG@5P?a7>l^%e&hSXopBZPZ>2z|(PTCK650 zStX6?9DF9#pQ8tF1_{~_`rJW4q`W0lX97kNJxi;Pe3KuV2chlH7 z9cgl>2nx(Rq@ZiG@isw6upnYszq3rg@5G|TzbCR@{Cn_=R=0;piAPhDwHq92@yj*Y zX@0X97f4N)tj7uMG-N$pf7XYY5N|ZpSqc6)p=-gf`@3Y=*)hc)mua_3fQoDduS1^q znh>P^I*gGe?7p~me_%E-6B5M`(Sw(JB7|Acei|r2jf_XN4TW6XA_fF4khoPEDNZye zo>}br%DoO>+_P7t1`WgtoepXwV%Wqv8chW!xHF}dsGR#rDnojSdz?cT=x#AeUh5SG z}Kay8ei|Cm|JftySr_NemwCd?AylmVL8`#*vtoZxYaRt&VEBf)($M7lc|r z)Pt&fJ_IJ3V{BZbwVQdQUMJvL%v`Zz#N^f93?%tU-i%d%L0F{|R9~%@51~GZdE@j+ zr^2|?{DFOh5=r%hHaT^RA02DK4Us*AdWnOP1tHG1dh^up`_tGj$E!pM%c4IMC`Q0j z8*!`hjAH4eRVURe(uQs=N>9Sk9Wb{YeSt=4} z6CVBtA*-?sA^ojjaGo@bhg)>f zpASDA+~@Mv=fV#^HpP8rei&cdCqHQai(kDOW$HP*zHQ`kz1oZ==txg1!+o(YlTA^0 z2RoARy-0N5WqkJQ&j(eR_w~^){}?R!R0cN7bh4KB%VL?W%4ks;yAiw$FjV8tpNM0( zaaFOzu{G|+h+U;Jw(B%lEvyI@CIucUkyt;DNk-;XA`kD0s=G00uX;&r#xp6*ln100 ze*P3&{0U_6r;rIxVBMxNT2;oIYSyKdQgX$m+A4M-5ok0#6|w=D>n7Lu0zJ_pS(PVv zk{cI4MN?%hBHhJu&3f=Go#_UUfu2@_9P+ zs|;@CRcG{LpGW?*50rBmYGh4g^c~+I4&L+);(T7;pbfL^Xs`9*G;j>-$*f7z=*#&{ z^{R|E+RE+V%`1Lx2(??yy2>>BD&1_M&?;zx-hpT?YRd7}Wy&G41{)e5oUg|c#bbF# zWIZKidY4ZNT7=>@Dra*8cKCAqfuPflMZ6`6Lp znaZTL1XM0}ne|+5{z=m6Lg}?`&1I7W^E z_+Px7B7}ZIk*1$?Fv!SIWt$G5SV^8${N6GsNH23KVcM+ef#;jOjH=Hk0~`pzbi=+>5DVu*vcjF4oxFYglZ>B6DwuYo+AyZ)mc0MM49jqsIx}Pxw||A zNBS7A1nTE(Z)J4Eh+(tzb;Pokgp!wK&vGcI%;LzF#a8R_`i*s8Vn>O~77DlWRe$oP z3WoIU_*6ODQ?`oOt@kG(l3n1FMHVN+2P`@K=2;G)@&KUae>@e~^2Xi(M+IO#H7EcB zHr|JKMS9B^kCUI)D=p*DH_{5`S9L282)!EeMH(U=4D;G)g!7bW$Ib-Kg+8V|KcYQ= zdyNnnpEG!8)q!jWBMe$9{KT;dLWchQX3Fzy;mSAp346W6Z!)|ld}9?jyj5NTOO?$O z+O+X2$>Ps!VXjtn?N-fG=g>IV35OZuA-J)86F;FNOVJH2LAKf>Ow|nLeNfGvnk|I^$IFpkvR;@Oa%}=&NbE#^FwwVJHLk-`whA5M8WZKaRQY?V zY^N&24>6QITl7XItMD{QymD}F=TuNq@`|r|zzq?7jtlz*$eF()r5E0+rS!sEm!;}Y zuXyoP)UdXaVF43W(N*9oYMmx(<9mAoX;KP+*KVl)8+rm_Es? zOC>{@^ji>wfUt_dF|tRCrE)~aVUWvn`2p}5@))gDtnh#5q?@F@=SkA|3c{is5uGqLOFsf(#mXDlf+GPU@GWFFJoVH(VT(dP zQ$!p&s5O*UXOpsYeIRnoP*B~hrbiE=h8%87;o~IUmx~^xCP@bRPfn(LxoE<2QK7U( z(vjnobW+MBgi^UA1__dmLQhF2*c>RyG<1@o&*G#Xh}CJpgWbzT&7V@5)Mb*<6tF4j z$a+dTJ~+@xD|B&v;6${t2Hn^L+EfD8Q%cKXja5MKeXs0GLLSuD^a#ksp`saz3XqSg zv|k(h`y6t3ihVJ2qO^Z3cQeLvr;SfRSDL)=InX%og^R4Qz&?YoI;BRQ zli2~;{bJc^p)o#|iG{{wEK6+~qZ`sRCVOEDhOvMdhv$4fav>r%XN>_#urpTJ#;ryG z8Y}!Z)_W>MGmCT!T(C50lG>C2OMm%Pu;LvW_&D9khZ~o(8^yuOpWBF={RB9^#;O;l zdbyhpE6?~F>YFj22DHK#wF1eVesvvo;f&jcK75h7?)8WJsq414e^Kl*!!GK&ZS5Dz z2PFd|_g%Ezqpn-4z8|TNR8LYl$H3(YNF+6)YSGEe;9UDhEr9yp5D}#ZO!rHDAMp*f zGP9lg{Rr_7xc``swZ8V-rG^~J5tDajlmzHx%1W>8(h2y$fJT@41mk%0E*WQ#Ru@VQ zI!}!2{auWG@*?WG4rx@2H0q!wBcz&HcTg zt85Ps@0;FmsWI!Vv6(VQqq_u@7DKFTtk5=%2auu7f!h#Bg5dT$~W^_ zq+a?|GR)ML)os*L{<@?T>YT#^h88A*@DM4@CvHq3VuZ;kLi9v>`OrVpbA;v&hr*xO zJHh?g2)^^hZV{uE@*kjBs}8dRbHMrvlWJVVXchaSd_5IZXA4ZCe;7t1o0>_W?G1HZ zbiQjh@ow-?ZB>wsurgxg#6Z&O3JYky=tIX~X6fdi_Wgivt*!MpNKTeA3_}V|AD=DQ zY&K?q;PI|(Ix^Fc)1$GAzoG2~r(W@O_Fm@XaQu53Zo`O-`SDFARI z6(%gfgHmuNTuo9ksOdXY&_ctDU7OQ{WbQZmJ4>-#*r_{b4Uh7QD}`s_Ka0k0`nuRP z)*abd82XekUaG%t@GJj`w_^G>Is>W3Q$bGi!{=~I))@`$KK^o7)<9u{Ut0DuC4fm1 zVKM*?CC|WNA?PwVhM?s_MuTk{VG#V<-)ID1B`j{#oiqUiw*k=%foMM&zajik{>^My zW)(LKNSG{wcgsNpf6;kBFI}O-g~lWt51vY|GAgyKh2BK(P6sNepDso;q6R+znwj^g z?erXel{_;N*3ZLvE=rhs!q5BfNX%SNpdN;)S05b}d_Oh%e%g_O?1j~X?e(#Da9rb` z3l(JB1=+9oRsB9D-|Bm6E_o{Qn0$}MzmsK%dTIrq#cgw4fA!4o<^H+?OFbhy|Iy){ z9h;j19k4JP$8sR=VXS(4JzG47_2k2TrV;itf?8L^cHLZe#@dJn2i*l3c+5a{Kka)G zlOsK__bvV(njQPyyzG>>Dqw0WuvbWRNLBQ^QFGd?ej^OW1y)EIrz>Cq1>ndEtgwq) zf~(m1d9z)y%`H(5ESw(kYzq~)getb3TK3h=o&%x6buxR~NoW&G5~AB7s%dDNpTJavR`-eoha_ zmjJoa1Ck>Ef2B(^%k&5XY-y`Efu-+%>(j9mlY%I>7n)bS6<8%`F3|<75;Qy3-l=HT zFab`l0)G2e;I~r1`MQALN&&w;9i4Pjq!r18{`FgdUrPa-ACM;eS_=4exRB}7=@G~k zF5drpaRT1m2W{B64ZK_(;0mU$4m87Ya%F4jPCGR}t>#kMs<(mTcfAjNJWIwxdaH;T z_i8^sC*OA65YZbZ+~&N|8bR!-G1>Hhv9FA-xdogtm>~@1+Nib{u96oFXUx-u^2BIH z`?TcyiU_bi(QgHD_9>w;*%TCwd0t7a#>@~$Bz92!#_B8R8)^0!e`u^%hP`8b_82QP z)^CsTg~nR;n2gX^EWNnj@?;3E=mi0i1qha5dBkCOB5j#+m7B2-r`oMFfn9M)jD9x2 ztHtLbe&vnZ9JM&rd6V2EwYZ(eNIC|DrrAT}i4mWEdZOQdkxLS!5tg0K#^NJ4yh+Ud zMF-^Xpk{kzusN-M^(-}h<_$n zSHc`_fiT9cFh)Kw7PzQP4*B)IZt z$L?ZIMG68DmUs~4%XaO8;^SA%$9u6PiI7@FM?r{0w^ww=eG4*~Le64zw&?GK=Rmgh zq>~L6Q-=hXYU^bBDs>lrdNkp6+f;BRNf?|ZzgosC2H}p%$pV}rFG8Q`?5CcS)Oaq^ zad@H+*u0V{-hwRV@WznN_>vpb=yQ^jd&FU}6ikmk8FKthL6*;74 zNt^D<_Qms(Y9<_S4bjHCRf4I2Ic_}wdBv&qCoW>1i&LwOE8!nPJJ+f80i}II?2csD zR{A%!*`Xa=m~*q_@b4G&T%PXJ%8p_V@@_T`!d24CmA%xwG5!h6;x$bZv{wdEu(oM}_R|EL zt)>Zjvae}^_GdOt$P&7eWHVf^_?23eDpnp0>H3P&C-98<$jgS%gzUx1U*tG9t?$2C zq4m9)MAW9HlV2=3BX21;Q6}@We}73z%HqOJvld64GIEm3ASBJT2c8gBNXK^+W7-X? z6L}8LaO(}SWBpU#H@KQ98e8T)th!A8$b^RVfHdvlq1ubJLrrIh$UH9-znEj?GIU|Y zb%db`-PAaF)$|W}D`Pe;41CHDV=))<{5toHcdTOET;(4-SwvEC`zK!M62xJ~m`HqZ zj6}+|w&w~Q0s`D>F*-zwB|Gl4Us*C!2vPXxg=8@&MfUU4=Na{?;3^tP{r!d?_%YX+ z40EsTCqp#D2>-^{Q0+Q*-fW|vHj9U*wbE?mc^ z#gv~4eYH1&tM*=s&#>G$V}V=yP|J;%R6Gk}k!cV6<0I6o1=-kP`6p^F!miv*92A$m z5(I^g3J~YFbwXCcG8}uiORr3t^4F!SNob>)uhpO<;(TpW`5)&nMgqsOGkP|DR!^I)?B#JFMAWJ$AOP zG0I#|qcU=LauNU5%PH~DqhzUJaF0@%u~Jh}l2C95AGGUfevU*Bm%>V-I-Mv5ivL|(&-F5eN6@UEaQDmJsxoV9Rdw>GtcyPd(y<;EUd{?eS@*%QWwxIweLzE=ob2e={@E{`h!#_Q;d2l zeNtyI>gUuBRsR4eGBCPEhtX%j{dXCWyDBt3yNE&wufZfo_-YxHQHq^mT-D>Vv%pCT zx-L7Szh#eF_}?=(Cud6}4#N=j)DlX5YPBBR?>*$A+o)B0X#En#)8X;iInoh<#|UC? zwt!R8vx%6UKful++{bqfC7mVd;v#f>S2p)_-X1WF2PKR2umicY*0<24sXYw*fra{q_JTMYDoa?-zFgBP1DF`#B+c1AL%cQe zeKp^=;kya0^1U@9JBNX@Sq>mtP-n`30cy6*;s0{S9bXvK@dp6Y0XVbO-R+g(gG_52RI+fv!RE&k`TH z1XA#csH8(c&QiCns_|_=YSe3P2~%inEY>kj2J)>Ma;6C!$k%Jgk2sJwCg!x$FEWrX zC^oqFrQmk5Hx$J_$a7?j__RLkaGL?!hYNSk^=fu0ad@St1-Quv!_4&-#lCfe__ka> z!4>h6-OkOG{!I&oK9d9q`04cgg;h@cT!%E4X>q1MG6WA(9Xyxh}!k9*;J#Z-DA7zf=VZBCXlp+GYfs9*z7 zE7+c@o?TBt`0cO+>}YO7D9{pq+#4Px4g&9paB<|$^rQ3hZ?TqOLr`zsUi) zNTWa}!e|J_Ozee^Olt$3J)GRvrg&F6ZEBpi0EwDr&CGlK?%0+)-O7@f$?%g2n>nV1 zgYfJ~r__RM(TvptOH1qxv20=nMAIZ94^27HTf3RmQ??*a+{Wsuh1}A3ZGz*U6eAoL zr8A9)kxlH#1CeE^+HEe@ zB6`>D0Mr$sy4ZIl{u~J&=z2v}`%A*C3s_$itEF-o4#zvCso(TK`rYT~PpZDdZAfyr zkjM#9VylJ-H*`@SoVqRcE@SREv{f#&8}Rr$&{CH6sq4s#lK-E*w~vpix)#4@GD9+u zftg^yXrsm&TUrnzK?Q@F05d@`VFD%rA&I@MG{xE~WB`>w=n&;_I+ok&t=`(!wzikH z{;IuI!CR^c!6cvsM5?IRqGEe6sf{hgsMLABYwvSrCNI#Jd;fg=Namcg-}hd7t+m(N z7A~opHIjvw&p9>9+T)I_Cxs>G$>8R@${U)*O+qid&tce<(|n_p2&V$2+ve9)0Fy`Xxvp3h3}js``s$$}8n z2X$@$DM-NV$uQ43@Ik2fiUoa|@JWskN*TaN7OAP0KgwElkua+{ z;oM_#mc%%VeW3w&xb;5BaXM|i|0>q-HgpCy{wEb^0IjiJWd&1fE~3W8%3@O3URiwM zaFrNxv6!|ls^n9S{Nbo5S?wH)Dy47oM;)e<2jmohNJ>&@{EtHk`vqF1aACGJ#U6zc zqJm!sp0|{>nqWklQfKNKXfYbNpeWb*sYjv`yu>~$$>IV8_E`y!*u`t4JFmr>+1ZK{oU*@T$#zuLV$o4ntn{ISVTaINe!sdEG;m~3T*Vd zT^Q^Xen^^l1QoVpaX>$g8H*B@bd}{&0^1gCBweQECS@QR`B+G~bo&*BZ;Ci+AaHxR zHc3<7Le_4BU9%rq4_BR@C`T_CWUK8aO?Vc-rM%Fb4?D_KQ}S!k^I_})IUaF03gpaY z53J+-T+cCjc7X`Z8Slp3Yc51GN5;$sl~Y8*DrdN0Kt|SMeD+TEOEpjBXaK2gaX4sl zuGMfpN2!%X!XrdvF=tD?9S}E437s97gWu+FZlU$(EWr?VKRA7FT*Ks%b(w5mL`cDM z0oYwUh&`#890b2CRjn7~*3H9e&I7@6w!g9=lrO3kO5{}R=WRX}NimhVT;T(G(H0X@ zugGN*hu=mG+K(wiKZ>)l%z_8Y|2~(y|zjd zYlXf1drh+N?*+*w&7ut!D>n_%NS=bB{SEbMU*IpU_k~0eNbMheUc4p6ud9vQj;=+7 zCPwH!qvC;B!n z7q!w>Y{`@^70ROO(U!5Hhp4jRL0#|Xk$t>ex0Pz@wsOkWz~6!JFlEB@2_!3K7jC3Y zGs#xtRhL>*qeysym3cj*(KTgab3Onnuw=Qz!N%z+Ro*#h;{ALrk%xvxDC znDXwbtY5f^l7U&Apa3yoTlx|;tpUsyWAeB3cih|AG$QtqCwl3|SDOG2(XB1r)iat* zii98I^%*jWxtCV5kPkp#w7-Ws79CO~DQBsWA<^RTS3~Z!LhCL@SHDEG^qduI<>Ul$ zhp;D!ccGj-B-Q>hwXLh{e?!o{K|FL)`kjmHy(Utn1c~g>D_{{wuI7$9 z-^+CZ?!=#*Ah-w%blb!h%kZwSVjlQhDZ{G?c7-)l5oRaCMuat|5iU@W5LS?&n8d-y zP5V6O@ZZ7?!jsyEf!oIhChymbxK;Qb_r}2>(3&vNX>+ApbPRR}ax()t9eY*>Xmptm zH67;j{3si^;@v#eiE%!^H!{3nHGJnYU9&WYG)uQIOOJ4tZhe*-DE-Rd-}OFW^ZyMz zlCvOJSbWZ;Z>eL%h$l0coxtRm^`M+Hk0-XtD0jobW_Lq{F8IfQuNe0Vqc$gD+l`lgVpd!FJy!1 zb5qFQ#byy6)){A+-`NZQ+(t7SKfEJPXj-NJea)nd(Zu$&iWQ0a&ZRqPJ@bg6tm9f_KdH^KARK-q6a@+KDcDs6(i ziQR*GE08zQAF4N+6ekk<4Y&~x6Z?%};(VfByoHVXA*9#?Shrpv{7YmY#bLdbJgX^J zisWRd26Mzvs=%04U>}~+uoC$}++tpZ6&Qw9SQmwSNomn>782EOi-)7%j=Omjy$S64yPdy}Rq zhb6o9IZh`+;p38hOz{D;xvzD1Q=S>lHSzR$Gc6S9xRI2}YlR%pf|# z%tze00RJ`E3P@^Ui=8LHTTVqaLjzx6~8kym_d-$LBc||B8Cq&x`i_=ZN%3r|tRQ-G0pH zkw4PJkuMzBM!B0hE;Z{8n|}#B65Zk1e^dJzp6Gs0bh}3a2cTRus=EW5c0#Zd(L)Pr ztQS_$(dusabI)Hy^?0nI{!zCr`JY>o90V11unBi~Li;_T?NSZLwoP|XjrOms!eD8W zR24c(RSehDp)=j~R$7JcU7oB^rjKn^fdTSCDvf*RGV%5_T=}m}1B>d+M6CI!C;EvE zZ}c&(?eBQo-|%jDQ=YS*Z+{cJN%ip_{U8g@|=yNG6Fw$O&jELgW4O&j3&(+qG^YJlZp#Bp0*M)ZF_()Qo` z7_2usCi`6;v;QoA{?g;m{!8-hT{VdPK!!btHGgLiRWqDbf*y^QfE=t5su1WWAv}7{ zqw^f*y{}2|4i55dP-x+#LlS`lI!m6n&yx(l8JvM5{g=p121{jlMl#6V(t^m+Yr+KO zO9+R^_>Ri>*TFUQTT3v>N}Kp^Pj~tZ7Q%p8DU&uOKWNkZLUvT4atk$R#1e~>jcrk%3Q-~Q%zvJAfju$r z9Zb5|IwuwBf^0%EXcN*!n};A>hrx@Gu0z&7wjD*sL%L#n1bZvmm1WZ|C5cE=ttbYO z@rl3LLX-v>G+Z*v*ZgJkdjE{;z0IHJ5{k9YxH{ znNZrP)fwGQqsWL=NV$3sx=~%MhsSEYOzIyG3otTvl`F7Oj4g!*hVFrNMFKU1Hwb&< z758v2gAsbr4Equ*$@-Au3AQRgdKh07;iW=(M)dQuPl>!RLAOr_= zc}F6eZ-h3P<$mbZN;sLXn&rVnbh{DSA~CEIQA8*Y7}YI_=siZo#)wtP;LM7a*sg+K zxE=21MF-Ao?xx}aHPvNaz8A$la<~U!9c=P3@)Er#^K4@QwI`2Hb3W>Wi~Se)WHQ-* zP<5Y?DN`Eunr9A~)JmUG$Y#Bb=wqqXx7m zI~}Q=oaxp17x1+Y|EH?FE38jKVa`fYOdm(JM4(>92k6bER`w{E-5o83*PdABP29>N z_rY;bEb}EU7S3aDitC6VAOnhEj83wnUDkVWc($Fk*Y&S;4~fdK9h5Up+HpY3Q-g5z z!qOM-u8r+W7;s(nexvTBSsyg&`px=Wqwcs_pJ&wdne|Mmul3cYy!dRd`H}+(SwP^k z!s$xnm6I~{p?;bA&~cgiP#-g&f|2PWP1WmUt0RW=M@)cf?FETfUTZJN=_bC*7R+R} zz~))2FI8KzE4)UQNb%8l94PHlm=oH%(gNTLv2wW72+xi6djhTZ%It^d%Iu#A&uM|) ziH%#Zp4>U2*UPC3GUmzx>$zVmBR}~jLKM+V&Y^_2DStT>tUn@oti2+wQ~@v~9tPnp z(#5HVd9djn0srjYQO`8kZtaZhp&xTC*p2b zV%072@Y2L8n#2@m7lz0UW~UNDrJrFNH`3hlTN)qar||}PcHXQF0DNp${;?S|-6@F- z`%i$kat#ZXwcKTW^(wcEC9sCQl4W9K>b z|ARGE53Y&wvF5zBE5>0#!j+7+`C}(B3+r~~x|XlC{&JCO8@x_p(CoHzJY?q(wPS8- zxElVyIEeTVohr6|ZbqQ>znON{m6J>PT-l)U@`5VPSXlspP>OHxjr9%fDt;BJ$kS*g zUAnge?dNJGWA7F{=$$vIY8FDa#OC3)uex0kE4B&LI)4ouq*3ln_IX!=`PZ*;MMLq5 z{npPh%);?Qieyqm8nozxz}fzV5$nGFtD*xdP(736gJD(#Mb1x zqTB$v&-x1!;Pfyax(87kts^fE?Skvt-W7U?f-VrzR{8A;JuE*YS9Hq`*v^@s--;bP z-(zjsAiZg7l%YQspO0(=frVBy21AeXh@f@aYa*$?Cla53t<`-6eW`e0^C1N{oHX|e zuQFBB3OOOC(TdktaE+s66dz$=)>A}ByUNv8wt@0JAeIVG1%_#y-`&aTQuHMe&Es4i z74Xo&A(*S1%Fc=1=5-Os#XX}UH#!Om8Pw3S-0eJR{Q*Z_pW%ii1-e2$nJ05k-LcQo zryI1QBbA|MzcrgAy&pJDHT0^()SKQhrLhKL)cLywC*#8sSI55x~lyRm=n6F>R)O*ROtR@V^-#SIpm`+QmFmN=-B(` zMe}sw(b9Jcr!tv)bPCPU5=pW4TiRbgGn+m+^*BA#zw~cI?{jn_Z3~)p{_TSOYKl*^ zGzaBEW?vxGXT6^Fn?y<9+Rwy8dA5}k3=1kEtdRP}qcGALI_k3K-S->umWjuwp%JTD zSZkgA!NEkVxjz`MIGTta56rGOidl43#M-fYUn-;JJ$W!e4l953E225l=Z4561&qnb zq|5YI>lZ-bHCFw37ZT`3f(>Hk+Rd84%AaVuLd_%@taayH=t{@^V%u)}prA=fBLe$Z z1T~!(r|hKaEp(DR^-u~bRDSYuHWI)1EI0*5?0OmTUCLKqW|aP+8}b*o$*dLc-r{L% ze?7x|3BTs{x6jSq6VD9^9xK_i!ZUGCY3v>MZNJ58C~bh0$G?d7s(or(i?xv4CBd0b zG{ai;uQVpw=fLqLI2(MTjl&Gc2NE7;X|(ivBL}f!+~BMAIrzgmmiT{9C{{kg+eF&OgyqF2xdp_LnyD zUBVcM6rR8!69^EGf@3i<^~L-u-vAk$0*rpuqplTsyrW%Oj7RMv){8#V1&tU=jXUG5n_j7X{G2J%2E`04Sdv22dU+<6zjJ=VJZ6_!N+l>_5G8ODF&|kyX!OB=M^ ze}*gL9DuEA7;TYH55*X20I!~>2M|2%03LU84Kn~mwAHo+5(sxTfJYxN z|B8nc?^k6bFI#Hy^AuSsCR~g5GdvrLcdi(A5V8u$-3FpPssnE?knLFE>$xa!{qut- z|NV3AC8F=NL2LM?4Os%&$7%g{&TRij^ABnmI{#`5F44V9!`P?Tf>X(Osx3I|5-24x z{ZHa&F~ztZC~64em%2#6Nj&paD4hlg+f_FgRp(4p{M*;)UHHZam-PM1;a<8h~nR?ZN>VHs(eaQ#S^ARNp z^)Kmbp1sgq?3-~`^As>kNf`(~x4E!nMstQSqvTd^v&XpATk^s>k5T0#aoxBj^+uV$ zLA2Gz43hZF`;vO~#U4m%Jak=+2x7%VEaO#0%d5+k$*JY_eEy-=o$}VoOL@9g=I}NK z_uk4+GR!0V`!i!c#=j4lG&1K%mYgrh6yC-ZN<>ewtk+Q>l_q_$`Yc@#cpK<1Z2+GcmpCI4~OkpqUyI8{Q@d|G5s_P|CakU94>@YIpa(RsQ+>zv? zm;sqC1YQymhVMDmhXeB6!YfI8^i0_)={`=9B*>$GbLdsuobCJP>!Xu^AS|rV;+)Ll zU)NhkGC|EB@XmxlQi!v`EGro2P2y|F5=hVq^wc`uhPuQ7`@d?bmeO>2^B(+uNc2|b;L&2|3}Mq!J~34Wg0AD{2uoK=qK z`-sF5MawjG5{JM(uLz1{PKFWC==w!HAYs(X&^lMTH)n>`0=(OFadJwKKTwx>s7B_09#c|f z&xtjv%AS8_qG!Y})$q?W&Wl|x9hxU5auzNw!%Vv96Ft zB|f+;!)18G%aYs6FrQ_JN2GC<;WAl;wc=gjA-l9!zlVdC{L(xO=x)00`C%#|u?22qOMOvGrt5 zq39D3;^XTyxAO`)$FKf)L}wKbz`5W^wF30F_}A9;=jgslrKU#|+kU(>kQ<81AY%Qy zRJSW%)n&9Er@2_0+i30Qp=sRmjEJ>Zlm>k$Q%v;{!=n@NieQzhXgQV(x>pydY6`Hj zcwFkJv36nsQe&O`B!w$5&-0pH#lHqBtY`Dn58-M)yaVP#^aYIGeAgaPg|Et)0BcF_ zzC_{{Z=%ThMNqn3zEoMcxi1g9qvyxo|EOu)=2;n+ zhclwNvG)^AzRj~dmxn!3?WnKf#H5*UF&~02k#d}8zE~T--Mu+umIC0H8WspHurRV_ z(=va>2lR(g&If1zRpDa^$MSybtAUNIw#&?t88v++#1abz%HNHx@w%h`7WbZoaZ+*n zk0ruJbRm8h-$PGhc8f-+!dKF_a{R>3c<#lK1#$n`Ro1;1GmU6mcKH_qu5s_h=m)Rm zQwU#4RP;n4Jz3xBMFEx7u*C3*fYI+#Ed<%jSqjtiTp&nUQJ0AIn+pXDDeN_TU8M@k zbk6ZX5-O0C1+DRP1$h>;aE2ME!P6dj(pc4=(*;jwgbdc-=FtfPKR`a|@|hDmBk?jH zX`nApN5uLq$&x6+qm8WLQRLf&3TH#cbhq`oJAYXZf_0~mgDeiFuS{?8fhUFcnZcZ1 zTM@(@X8!Ym^IYcMxv|#+m_l5$+3?@I&9#X^MBgR`_?j^)KK5K5J6%P$y%(=OY3`f2 ze*rQ!pA}a2)h87yD>+L+tZgZ$+E2r$vKiTl6@9I3w~cyle`l!gqIku-rCePFW z3M5UG%P-h~Qgbh2X?rWYk*6zmww?no1fNWe4_*Xk#L(fITF#S5s7x-&MBd!k3$0il zj9AZs8X#I^P{st-+G}Kn3t+{}eHd=g;_bRcHI^?AX>z#nP*b1zZp3QC)L`fcKAjpt z!I0{No>$>Mc#`q}rgifwSxgBO6`2kk^rgU|FV99S zi%p(X2A>?SI?$o03mT?0>arT@QcPvSXXS$(=KeN5+s#ys6{_O-xJ^~~Hk72Oj_e;r z*|>C@6<=6miH5(%`pNkYMbY%+4!Z+-2dVYO$_!jnW4g>DHfBj@AodG(&O-CI6IB?3 zk`DvrA4+7OZ}D~Fdk(%RNHQi7>xVQV$f78TEQ$nKpz8Nq#{|bkPn!5y`;6*-GZU;% zbE3VdiY%~RDQ7|y>M{X{>i&tpYZ~im_jE0c#J!^;)-OpG6fvHiWn>PIBDxARTerjp zA_qC}E6Th~VL8tl$a0QKTxxC6#kw*Tqop}i<^%pjou-=3HFws=*SI(PN;mF?|L!vP zHqhU*H9q$uV+4E`ST=sQPo6a@Y;v%oB$no*=%PO+h*0GaW2%ZlCBoU&m3h0)7Q zS4rQhk;R=F?N6{o4`p%_hHRPan#e-yr#N#kAD!M}kol4Zqi7(j9xmxwc9X@j}A4nB#>h>KCG{ zrelZ_~_AG>ci5U)70 z_HyI7Vkw$HkXVzt)ybTLr|cV$Mn8A(*aU)3L-lZSLo{YQP0kvda(`_EBx zKg{VwjVIQdrmsbqE!+bfaS*?+m3a+XJV{xF@T~Y)jc&}0*q_kyVQ9l;ORNA8eIEBO zMQW^T(7DOFbUG2SuD6ST2mia}!;IB4TQFESHl-XaFxifIsopa<~6~R%3$<5bAjJn<^Ox^@kQzEaX~tJd`3EZoQZiX z^<&G%U-id<=fD&2KrzeJR47h(dCC)yJy_qxWa1~$Vco}!^!TlJ(Y^MJus$vG(?>r= zG~$?RjiP{{HnAsC_!O8R(wK8KMi7E6Ux+zsUzYI^hdTL!dx!m{SAVI*Z-2M=fdn?c zV&}o#$IjDje<4(-{pAV$B{TWqhkU347zwLc#0d?2AchEE)7e(xtI-yi+^76~J{Fi9 zRu^Oh%v(qfOwLrznxEBqFI2V>Q;x3~Lq2s?M!*y!7kd3AMy5l<<4UAT-JX`|0;y~Y zBfIM?_4G{OuAnY=WnfBI;4Y7T8T}x*jmm7_5j00r+9e(%g6rV8FOn9R@_gXVpRxpe z7~P^WFResOsdK4R@jj5$O?E0$%Vg@Rm6Ebnr|eBnxL)~EEhPX^TJDhjk)YnGDvG3v z?YfG6=?Q0wtxD9l++Ab+r@}{UW078<0ecHwV0zXDyW;eouexTqE?gq5JvK~h`EuWj z(_}`C^~v-m15k{U5PJKw#?$ewSZsP09oBbpw@9-0N&I zXTIO%zP5FntCOQvm*fAht@Rw2sys^Le3-9)3iMB*{+XbECdm(+CU-+-79T*)&*H5M zi`iINDb~2fCycVW#clEV2%EAdc}tCp4J=!bwDo(|{;?5*4VTq85)8aw`gWk{{3`P~ z*0{>tWn8@6W9~7gTN|FD>rpXsR7=gHrd`8X^nzx^BSU4hK?MRW{vW~{>hdA1kR2S8 zMEc;5BtH7&5LA?cIvKmF3ZP3hKv0zA*ChRbE^^^x2WTlMwsUvgNv1?$YovRHtMNF; zuo^4NFU2sXZMs>2nlEqZ!yjaMNnJ-{9xz#By`JslDz`!Z=>fTPUB67`I$v@Dt@o$r z62!X18MU7Fce51R0>hYFvk+^o`*#S4sEh`7EIbtNu15-hmB4wfx4TxjzQey={0lMy z!MD~o!6>Ij$;r8u2bI6;AJ6}}?+IL)qk~UB!gl9Q9)+l`ey>y z@3n5sRE8Q9suN9fHxK17Q_5zbGR@0d1&fiO8TIAqUvqm#%LL$tDdxNqSe4ioCXFbw zhVr}y>1%KZv#-}*rZ~UOo?{qUYY`k$NvH5bN}dn(L}3<~qP+E2Oh#y7$Mq`h^0Mt( zuClHeeIfq+SYHG~;+Pzm67sDea-0~l=nGhq%PH_C#ts;gBe+_+aC1H9OMs`OuW79H zAZ!m0BQ3E|FX@X;*)DLkL<9|-pYe<1fGM2r-o!0_>rKYXRuI9M7KnLWk7iun@v*kp zk^ETOw4QFWG#G31Xn|Ptm$H5IHWMjSN(D)O2HdBxIfR5~`zCDDg$?}KZEn{Iod27$ zg>f$Wf*Yw>zuu+uyv{DoC#@IJt5K%a&wL5vEXUc4VTnuHn+lbEax(Z0df@_yjhHJJ3DGf2OO3Kp zE%()7@>9T|;cr8)i}g;4$N&#Ej_3#gs4;qf#=VR?@RgSVh+*LGSEGQxZ~MqXiB|bl zP}r&qJwzeC%QkAWYm+R2ub9Kv_GML@l$F}#SJ$Qs)!4O(8|i@Bt{A?y^G{owNUmrl z>=zalv(q?|E}KRDqh<@kK|5(hD(Qfolxru|rjoYVNqKhC%v90?c2d5bbbcyngHF0a zSX`o4&?90hVKt@Vs>*G7!7s^TsIV$3{;I?|mV5AWZX|Qg&5!aY`WS!YK$ug#gFm5N zss;&Ao>SM>724mzUZ#+s%}}>a13}3xINTXxP5Z7LL1Vv;ps~?9@Pv+_u@TS8hpoaN zYLn%cpda)^p=QEmP{Ef32UoHQ5AwTAkn`(e1}x1D^wG5gzYP9#{5GKjyeBN1Cp4( z33FNMHNRBzr1Ml7Jf<3SLuuRE8`=5zy2=PrCqH>sqbz2`y9S# zYsnE`RW%VoOB?0fqh1$}Tcdt+)Q)60qaW4T#%)Yy7rUPkO*;EI5364pr(Bhp6L--7 zziM#SJCCVNHsT?bsa|b15?k#V7_pV_@mA?8OVBDsBYJweLM?i|a$3KrQiCJzv+J%_$t@zJ4QL9O^3tBh*T)s#Hz|}$Pi)4^RIgXUx+?NCctSSrSvqf*_6z0n#P{5-A zTc}Sx=E@^$$k(7e0t`I*<*`>i`sDG5di2U8t1o-}$rbLjC_4|k6rm7pb}|y_eaUZ% zUW#iAem&w5d?uJuXy)UH@}ZEQ00nb!7`sdva&M{|)fvhbs%W_DHSN^I&I%LAn(P6c z{Y{nK-LubH%c^VSEBkEVSE>v~CJp|2u6&)z zR~42ftuL#FUO3A7Y5D5=rhN~qktHz@2$m4`8RftO{wsbQ8Etnn1HKuD)$&|%SS=@h zL%va-Z-xtu@&dwn$}I%p37g6%n3YZez`DgP(TDYL0n>#wkG9?&d_XCb z#Ln;pQ9&yvmHsP#(pvEzb(!blyEZbu5aR-@Vls@gWGL(>hJsL>p|FqGfd`thkgAen zx>2Qu!&YKAY$JwKriN3dhEpcPX{g^+HoT5N)%nr_6S$#U2VHr&#_R-TA!OhmK$1K&MK_w@bursXYk>DZt1Vo*6!~t7L#bCe zl=_rIDbA(hG6NSs3cVWn^T2WdHC~TPsKg#pS|w(Au5v@o!xz#l&o{#PW_f`TE-=dr zxnOQ{`GidX(l8p2RR7Jat}Fo}x|(VCb9l$sA^pS?QzS%cPN*-|i*i)W$v!hH5kYSh z9Vwpjg0eZ6!)x|QJGJqOBe0f7tlRoIG&CP|1->c@)mXE|lQ^82mx=baFA?pvPW)9w zIY@=tkocS7HHrNqBrYQpm00~^UsPdn^lRNMw?elq3!H%iEUu-|<2@IepISCeRX3MUvDR)Qo7|H5rOZWq2;3KN0&Bo%%}p3!U&&||pumJlrs&aGU@ zGof1FBD7))&Fk^r?X8Kg2-br1{PB57yGu7tzOi*!i*NjxEa*CnuQ%q%)8#z)WMw5V zo}4)Z4w5%YS@H%%9FmaPxUIPoD+m$4ALUcIgq|Tr0aiSF15ey1%Sc%9z$0~sS#vXV zP~4p}7aDc`L?n;EHHWNE9G5vcViK6<-C{XbWu2G7QuL{qL`OI?_KZNt8a-M3 zs`*iC+q#dNQR?zXYHF?jngGui^3V1}j{|j{{*t;QYyTiB_BtPa$kDzU(QlhP@ca@B*$C5aBG?-rUD7R(6tSm>K3Cd;-(+F@tB|@=O-x zzU(+W+nXji`?h{E*WO>NgG#ManVNaffH@x*{64dscn-$}2OyK_P8d;Q;K=syPJOj! zQDSwWM8Z&zHW43G`pY=&)M*-$2&SXK2ql~K1dn7=PWr=AQ#0C2EA-|JluV35h55)p<|1Fovw=8z zY?p~QAR2nXN}s2~AE~M`4`N>H=<5)AJ!V{PO$I}=4)M@q5$o%$316+t>9Y<9gy77F zAxv8I3vHh<#+Lh^k`vO*gN{jP(?3Tk&w80vqF}h3@Y=+L@DmQAEFY)#%+-?-%HQxi z!U`dh^X`p8hKJ)rq^K$kJ`(dF`LDU3f6TPavfguwP(mHmCV=-R%6ps!)1Eg8HwX$Vu3;O&RY(>?FD0M@%`+ z)xADnUss!rXR_FMpfUoHTA!g)#Hxj_%%y(W{xBK2upA@Fr*3WG;uD?B2S$fCEOOMK z9^;!r)&y_J7_+HvtW@`E&soEaU^U&4P+-GOfY2EsGum%n)=Pp#)S8RDoT{f|+=6v{ z4Rtg7Vmk6u1WanaWZ{|n+Xv14y!3ueq`>VII7QRRxtF?z>G#v8Up6)KgW*pM%6u(r zCb{4rkglhh+6Z_*x4CS>eyh-({LFY6>kJ0skJlzqOon-@pJ~8S!o1pROgHA@z2|Q* zZt)utpD|Yy1&$FT(LXR%)U3_@L}mLk{x~o;5V4(o9~ZUMpYJbekB%&PF*>3FL;sG3 z;x=b%tN!Ty@`<0i^>IM&KQCj*XWOvt1BqJ;u_+Cjd$3RZAHg&-;FO@4{>OUrX;cyP zqk88kN^WyE3u_?hy;N9b*MwN-s1>CuV#V;NU^3+^Z_V2-B9GqFIrHlv<9RLz)8*N= z)H0xdpg*t?5eqPRNZB3Qw9XtFa=IyYH!8oCGBs9~}THx=AZRwpF6cI)MSVtIO z6Z%sKScSfl9!^(G5;~U?l0+&-ca0DvNL-9jM?6`)iY-M)<$N`_7i9* z(Q^hNvAyQ|J=rCpldCgVOfPwV#WWhJK;Q-9iia!{!_MEG6e(b3(5m5*DcqE-cN()? z#=62Zaz~l_QHczqdiG!)cu>J-kR1wi*2dQ5;~*oXs-oZKanyMYRX{7V{iTq3_pAhcM~@|!GH~$4FA(~C45ft0er8-RGSDl zndYKgqrMRMJkN}X$UuYxfhRU8<`-j?M=&jUq{Fk{^Sn{x?HM;b1SyO=6m&FOsVuBn zf2IN`Rp^hS+E{Z}mrQ}nYG+>6sZPz9g?+&)P(e6|t@Ze=>UhHBKj37tr(D6)q=h0? zcsAi2DUHxUIpK083n7!Z@`aE|Fz4l5I;rFpA^?E9=LE~L3*Xu+Cs^TO;a=fk3t1XD z!G=!S1)OOdBvJryy2{b7vTpnAn=S3TF4cXO@DR@JmU^2xS6&uMkiOs?+A=E+k}_1ZpsnZ!=r4sH`!zkj8-Qjz1(>)uF(cO0m%CX2NhUUG(_0_0 zcbI8WaK?WmRMxM!^QLo>BuX)Cs8#n``RHWjtfffs*QCx@doqO9iokdXtDd5@4*gK; z#jaP|p_Mb)N#VBGD?Sccfl#+7pM6{kmBwFGL7fFfVjFL77wZWcR@~7(D_f1rhA{9% zd49ZsI7aI1eLpAfJ;WA+KvmUP=fC}Nl(&8&+(V?A^1&V6k{3CD@8&vUKS(zRB&Bv{ z&)EaggdvFjkTkVJ<>Z0@3$d~WTYEG5(l+BDiPnh@tmgCt+3RPA6%%%VZ7lYR#h@X3 zwwdOA*5iySwqB03XOWU*xoms-7N#tvA7w7_FCO)ZU;K_>t@YyXJYZsF+4ei; z*NGlSl)3yPT5s0P=Njv0seIccpB;^ESHwF0JDu-AK1+N#qRbI%F3`F~vSooK&PZGu zvDUq)l%XOVS*V93^&my3N`8C{f5!Vrj1&CAP=??LA;;emC?4)Nff&mZxGnmQuUT(8DSW-d4ik znOV#*;|?GnQvs+sbp{DS2a{@qT1;+g2yHY&_Xwaqs6)~b(BBA2KsptT?jfigr{ESm zYr0>S!M9-4f0`(C52d#I@KNYuzlYyqn{eS=Dl+7kk{_`J`j4I!uDk7jck(O$Ei&ap24zmh1-W^P#n5oiy9Th9E8iE7dEyg`XjPY z#x{I5P`<+EoSP+d+^Mqp?F){HF$Q%#Wws}Pv2v0K0i;QrQSw77OPczG>8{z4Ii4mSD0$HUn z(CZcTDMTt>6M|Ak#;dekI>QJM{+f-Rl2jYDULsKs`s6cf{DVH(ij4GvL9-@zP%fft z=MDOl$1v$bmMxVx<_}QcnBfTq>YMN+qkNJXE;7oC%kUV-j1r+iw^Xe#I`pCbdO zBn16a8$Mr}NL+<_$k}GB+z_rp=%(0!HAebZ$T1q9UKx5BVfztu7au^%nl-)p%;ir}I7bIj727fP;|>zJ-! zD3<_hZi3$lDwS*G?a(<~h=MX2g?9P19_V2?u9&ErbIKQWm1{I!3JCaPN8CpF4UBEP zIC-UUP80!FMvvwef z66$}Nc)hg)sh2PT5VTX_15iaeMHIEGGMgD5d(;l3c_u6YWbl-A48B(H_M z7OK~)<#htD6Vxl3hDjx}CPk;p=OR8Asm~Y4>oi`csn=YyY71;~W|qvF869d` zq9D}af1VU7ZN9kSjU)Wlnje@uU$A2Bp6veE`@R)_HeXcfTwI_tn6EhLhg5p|J3*CU z!|$cI`J&mWOYc{y8}^9hTl*Wn>=)$EOQ7zZxFI<0b4lET+rJ<(MG?LumG7RM!5JZ! zn>Y;jF#eP%(w^K%=zNeQ!sPWMthuEbVk;C1F2ofdS~5pn!6?DkcvO~a5FxQ#TaS9E z_y7mu>05{;;EK=n1?D`@of)}}QXeYc-@dBOp(1VXXmpWf0mmh4d$y7j{=%)YSx=^A zQu5Tn{n>t%-JhDj)1NqXr9T*naq!J2Z@9T>a_6A>>4UU#cH5iI|#9Z~7HvOm(gdt#X1m0{ii^fo1xoOu4IR zjFA7mO1@mz+fxO{{ciiQaoC*`-1JW)Vy|blzcV`ahpgD|v)W(xwg17#^$D20#X5bS z593un&tE(*ph=gdS9e_*(c`Eg85^p0qq;ACYa(9VYi4ln9jWa?iclsiAD>yuf`lvP zkRWoeT-bl2J)`O4vDg2G!gEMK?NP~q+GJDGkY3P=jb?2bv&f1xKx}MM0e=&BcK25w*lJAZe9G@)AOl+B~+ z04lQdY8e5c#1<#3&hHtcPII_=h;Xyzs;%C@#(Q*c;q)Yu@vz;!j@HuaO|MhfO>u2m ze7f$QkyZiSl_3xATV9VoX(sz-pJJU;>g<`tCunMRk;xS%;k@5sJ`hx+%i+M3$R#$0ayGnSDk@)M#O6}dPcB1m}$(0@AYkUZx^W@ z;dUWxvpL7e0j7i&FyEWaIj_*1H*<6O#f5$C$8uX<_l)Y^H2>n3*8{5X*g{X+5$~w> zP30HIKFElk8Qbgb8Jm>s+Ctom(M-%lNa8JS>%r@V#@;(5J|~{iP31*1p<=QYEzQ}k zCboTWJ{FDo%Gvo0bFsMe1Z%;l5;t^dH@|xVQ${}q)bud@L0o#KjM&N>flm>-_&dvs z+#B`^I_oJz_9b>sD7TJVhh70UlzLHX zp&&D2?fy@<>*aR<^2geIsY>K(Not#IAOzt8gTCjPDDpI{*9MXYyH zy6{yz!6Q{-JKl097UmOiK4tAH4n8Tf&Qs_}3HV|$@oMA;TQTUt64qNx;1?gj+IRIt z$&aYXBA?onTKi(;NT;y(33w>;XsVxv^l)gX15qvhpP zT&C{VJ9`9+;7)=_GnP0)%BUBYw3 zKJ=~lFRpy6Um^~-DyJzyht*7}YUD*GNnV16nh*IT)1+p_p?RE7^$FWY{FnI|uKErw z&dRpN&Q?1pqrM}yF4v{K^Avn4f4WM{f7x*omE~;ZFW2#q%05bMI29z=6yqOz&sBdD z!+lu|;Aune8itS#;<=(mA6RZamgNUm3+KNHStzyj2G2Fd&}$Y z=dos}!7wwz&1jL@cx!}Qgi$#zv%agSE3{Eikl8=AO(Nb~Z#|~~I+kc!Jt7|6)RSFn zeP4ef)S~$-sdbpfjp)XK?K|z%Sow%#Of|y9<1zz=@s z+^Z*UW4vNhY}Yj8q&UfqB#wmcM?9`(;`on&Og%%#)T4~s`Yn&_c=r3fvICIzr{DEp z<0I5pwk#~g@?Sz}Szl!#;J}idKb9VERBPgOfSdVpFdQv0=EqlNxQ>}Jk@H2iGTL;< zs}C<+fVpG5?l7&?THXf~4fcRtU#=6}B?wG;fQhq9a5h9uzxBx*T!`Gr47Vh2&^G9q3Ka8hU}Rfg%qTyGzB5|LsDoTc^OUeE zv5sk^3jH=KCWvZKVmL^yNs`M`pGU)HG*=HUOjdd!x$Uu8cl;(bFk#Acf1R-np_b0@ ztl4ShPCFr!&59y=o-2KtX7`B>g{2dLC(4T?Qph^-%)cOJd7^hDR!^}0&?jm_4Cp7s zy?+&5vPWH}B*=e0o(Aw~Z0IlSmrMTSO|GH2sqIn^=ce|X+RjiH{FysPt3&S*U-r&+ z`9t8wQ`frBdI);eV7FH9=}@-d&VB)#X&F*6*0=<9I#*jzdzGzp0Ic!NvB~2EflSPK zd4YR(X3xvt%%5C;M)tg5_B?;~JYV)aISkJ(V3oKx2M&hQ-Oj+AZZoS&?i|_&z#8uDe@fGm%B`j_2JO^KRei~#TMy1h{iOA=uerrZkSbZQgXJmqY@+F@zkhZ@ClTW$Hr@Z7-K2Np^KV{0G z(3a+JLb(`yap-pLy~gPJsP#I>0O*Zyz`ws1JXtBI>KqV&V2+~;YU9<%i5;*&R#gHR z&)Em9*A`YaR_H#t@+Ar{iU}rmLl{wh{~H-F$F{D*Q7uMJ%D$u!2Gd*{3XfWdVP}u&By)U*9OsasKg*%FQr5fy{!KkgKqaa04P% znY$X~%}s8w_m)4XK#?nZDlZNIFQm)CePD|W?|Hzn7Q zSLDVO?MH>t7T122iRcb<7(yNDhDuiw>cXtsF40trOi%m{Z%LPs!mFOqRQjW))n22d zC%eY_+b;FR@R-fiD@}8x=epM@O-rwY^2l1dIATNS503UB}9nC)az?~H9E3b-}a|2atUHq zcIJ%c-00X^0(JVVE6_n{lbj&ew8ty%v%YnNAF$r80N0<}h{+a$rRiYZ-0`M6DOtBQ58F;Gf z?1`O$r*0+aUO{_*rY*HC8~fxi9=x#+AqKy7 z$75~%P5%~n8sEgHuO!DqhI9@thI^t5AMEhi(TyjtAB0g2CJJv;eEq?24EWmH$% z&#N}XUW}9FVj>|)Jc}GoK3p9k83?5fAR_?u%|;oxMTnB^jjEJ z4ZO>?I6W8e<*3+%S+ix%xf6e11)FN}uMIq1IXEy@; zD9tI9brz2afqL15a|+X3B_L@eccvvn+T!048_zU}F5~|P+jE*oH9DX@Cpp!qkkWGo zx3|zd%q+)_LV>*1=1pGXi-leh>8yddh*xZ}dSB80|My_6YlgN|*)|3Y4y4+>+!N?* z<1C9nA@C_&3HQQ+LO;!BEPIt9FOrjTb7hdiH4w++*nIhFtwz?8T~pDAa3(Oho5(n_ z@$L|@k5C208E{fR(R3CPW>6_^ikUs5F^s0ROevEijt7LhU!QA()FD7@gmnX?g&VV! z=H7gBiDO@jenRBmnqHlVehfG!=zb_KRolz&sKBbYVPGAxM*>K`?%@_f7s{=jiflk~ z+P$VfE;b|ET{$aV?Qi>A-f&~|hESj`4OP_1otzHzg@Q9e{uNI#+?NrlOmEQ9V{^f6R6mF6@z4Z6ICay(D;OTjwi`ndmg@e(>>~wUIr_mV~XgKad;%=WKSFPmC1ra5wa#K|G z=}{(P=y<(@hdW>g;l7}zaUmp{c|aSa1|gHnAk=Iy$ubc?95N0XU3pb%0tEbmYy%Ve zEeDloUd_Nt?;Kib`;bc0kq6K0XAxP2ujP`>l5ivtyHi#>d|ho-;!@0d#T6*<)HP>M ztXvvvFKB;XSc%=&ib&(v1AV5kP!BW8G!;l`^-99Xb^PWiDo-KMj#bwK_M48CG* zAI17dt)7ha@WF8_B?eqKKP~H~xT0rkN!du{WXT~2BiDSF=z#0-xvB41w&f{uexH9k z`R8)GGcq#dk6Y%$tP=hHK+{(2b%M&1N2QC_{dDQtz$ooX491#XUM%WPS6*xvPLmD; z_(auYIaPDwF1tu{%JMKtJs4G!(p`?|Z(v*1OfFu0RUGKd*pa{VO# z*>-;a(EQH$@{{As|34TX^NT6|Xi@158N|T(b=K=?%>IUCWjs#*@{;|_`(O3Xsn4IR zPp((^*Vogj&zr2z`+rhjZnD1I|C9QB$@=6Xh5yxfi9@+E2h!PoWUPiOzsrUzy^xS5Dcq)DEWn(Db4K>CCs(Kc@Z2cwKp$Q@P%+8lE=1u^uLTbPIcA z2v7}#Kf69Xo}jMM<5Za(&uZGs(}^xmY7;sAm0=X7x|wXjNq52#s__=2GCJu}enRSV zdU+eZE_RmB{jaZ{*1w41yE1`)S=qkB@4=-h%lAXd$^-lNG{g6HUBQFqB{Yrt;*uW9|Ck(R9GE%=8;ah&f*HjA`H@v43onto&= z^B_!Dpxqg)n*Fi;oeYVkuJj^e zhYk38u8=>`bIi`zk&lG&Twsm=gNUE}&%cw*yRcRmr!%dWXf9wpzoFN$8llLK+R=#ZC*QAu|S!&3HfQVSV z92uyXDreOBR=nQx^O6r&{)7U^qi}0_ikV|>THDr)i{N$ibXw+ZX zXZcb>9(~Bi`mB;Zo+}PpZ$inq=0xV-%EFa|Zkc<qSwrZpUgDfa(VVbEB>ee2>wY&tq;B~zM@C0Kdaxv*4zBDZBw~rl;i&3 zb~Qfa^y4mC0t<8bI%vsTs9JyXe!DNr6O7|V>Ddk^f32OrFfIQt2IRj)@*i^Yf6~rB zAuWGwK>iWrFdMv#wXm_zDc1KNd?d&SN}WPAEvhT8$kzs+%IaSzYe4^=NoAds%KC_W zEuRkc;5wMbLNeD_=Dni(@tX}|6;{|d$EhKfs$qJnhMQGmL6!9eC+nhA*0jcE@in$S z*VUBYxYo%znQy7e3RGozsEZM2b@>5y=N-xa@E@`2Qk2zV7$VWXNd8w>>_}aMN z$+Lque7;ssQj2({EQ0`)nxqFMr{(1QI&ZS*MQMxj&Vc;4NPh2icIkh!^G{35|I~o| zrINqE$v>4hoI7SpG@DCg&xNwZ+%2-Xd}g7$aXQ&xCs8-$Q=WU+$?WF z)Yhui2Hxy;#_B@bb)oQpLeu4Kf>Y?zsY1EB&@NplXFws3yp=kI{whdIk7&Fuv|krG zOhRfzd*$sqr%)SjXne17Ms!#g`SE}v-;%dmoFZ}F>~_x9?eywGO#=!olebMyp+&q6 zuN_qU4)Q#S-yuF4guKc!i4VU2>Nsek{lkml>#a_O!q5FRq*^s#cdg@J(3k zK>LwkaXUPS$5q@eUUWOneZumG?V~4OB%qm8nWtEOjO|_@YgfdPfSQrliHyx=*mHGJ zP6JYz^7{$cN#k`Ayu42G#g0glX1jHR9+J>t<7;^Ww`_d-nr4_;Dn~9>BoZeu(E14PYW9+V&V1Moxu@!3rLRlJP&#D>za6H53`2c9xx2yKtHotj z^qoW^{rxuxwgHr?XRk~k@0 zpJ!*{*1W{6T#$E@T@-P1(-gBJpBsGA3oW~8<;_D2UFsAnP=yKy6>3`fnH56|xpg68 z>sej`;ngO_wSc?eZH!EWPbq(b4ZXV3^bbMlDU~@2n z>^&2z#4qZg@*)u50P+|dMt2!`L`sQR-$bbhr_9h{nC8XSm%5^7B(_NxIYfNW0gA7) z#J_ZPDP`>V+U8y(&l=M^5R87yyX4)b1`@@<3RADv52d2J_jOj=+i>3c`@K?;o{qBVMr#v!ImIul(q;hGGWtYU^qURx|3(oz`I|3Fu!E*a zX2tgQW8+bVM91LJpB-w+4sFT~-P3diCU(7;8Yr6r>&Zj3)n~sP?i33`>6?MwLzJ@x zh7|G84gjPpByd1%i*Eh%oc`G_KbH3@XH1=Hz1-H!@o(Zw16)<$EuktB6y5(uL{vw?4tzoXViX9px^4b1g1t}D)=bUXct}M6jj@lbs63xPHuf3WTc6_Bi5Uj zh7793n3k(pjS5S!q)`m#;y3S9dw8~3Fiqe>H56sN9Qgz4n$HOMu>#nrumlV-AhBxi zWfsLUBhRcUOsKMnS#x>EDQ2%_h#xeoijAEZOD=gReN~6_M{KAy^R%2$9Ox?XB8i75 zbY-@|enpm}$MITOnCZs9Lc$D??d+omz=duXW+~9LN~6FkaCsHcfjlJ;6$vKpK{eZOO%K`#lNp50IJ@`#>Ny zXm;C>Y8!yw1q8@Mt9U2^oy*<2N5}&dN`gLk&Y84E}mKBI+wS?)i zi6rxXn*M%Aa6RFuz9wCchYP{iOWz_um2|mFby;Sd9t7;(UPMQ93wD4Vsb2!K?ot7O zY*hCW*1&o}#q*7LYAK3+`u>ceKjNIOrV!A2XUSWM0bNlu=yYc8cb%!rVVV%+u(~JD z9yoJrr<``?)MPoaf~1!UUM0N2yUr31g3X)$izy2Q<4?(ynft&wzK9j3pFLd0YW?cJ zxc5|goCH^3F-JkGb^mt&B2?8P1-X*_UVH%9kl3Al3asZp-xWG8PsO`ocw5_Q1M|C) zU!emxpXF%LCpRAUS)3^q^n&l1pYKej5B&nZ^A-3m(eMlV2VX1>uv+k#ntmDIY2e}R z9}R|wFJAu^@`eFxkOmItO8aUKoi#?kd5VdfO5IrH-!1cI-3vX@)utv2shBfWoflDW zrv&m-@a2}Zeb;)FAVpo757Zz(OM;bJuUxru6}aIN%uugPp*hPpF+(D3sYsYuPY6A= z1Ee`IoxU%yUm<>h!y?zN%r&*DA-(UNDP(*tPbq@elx^OjgYBp2V$QbEMUIw-Zu>`f8VR&!->}>k&S)s(DmsK9$Qn zfntMf|37@r!@Z!!1De#_EvSV0?G4|cq6p0SVTRge%!eJn#;p7tnT9)RaQo) ziA1e6Mb|7rbxw|8|5SQKnLU()mzzfAGSbAibWh|qvH`nWuUGnz4r5NvkV4Z24JlU* z=?S}{K|>N6uoC|fr@gP~Y{PkUGu{ooJDBh^l7~@Y#YRjhgNoqERZ4k6^sqv;URx{D z-yPOlUWPfFd^;op+idJoxudx^85&jZNSp;^)Ad?sj`P6HZWK}S4z@p1;-Cc2LS&0b zd84(d5l-=f$-;CzsO>&s$c)fK)>TA-WTMX!^oR-bcH*63JYbuKF2F#`tawaf=M!cM zT1e0-`uG^`=<$k2CD2r672$=q$l%Q8N2zC`S#0gN2qRRQ)*dj=MzBGh$X%*Lj+z+S z${FE59@W|5yeKh_5W8kFJXn?%9(e5z{QC|OB=4|B%3M@@HMQac!-Z+8-U^7Y6U1K! ze>5f*-3jWzWr zDyG_5LVqd_>PSmg1^LA5LYiuvE12T5_tP+TCtikgu~3@lBzm3Z+1MIi?5BXPK@no( zN^4|V9XhEv!RJ4JH&r!UrE}Mxw1ged%1c+eGU==sQ{YkMY*qw)ikST=gW=pX{bCeuEigLz7> zp(AEei5cpZYa$>4xD$tt%QX?9ez_k)k^2z@4ChW0QBpOXDXurAh5sLQZv!7ib?=Su zCQDdlVHRC6YSgIFMzIAADi~i9$R<$;EX2Gh2C%J2skK0|pp}H+lFB#?rLA7|UTtk3 zZm(_amEH)|8gN+b0vd{N>&dl!Y8!xTT|NpsuBs+8F%$f7@ zJHNN{dqE^S4PsOwj_?pRRfV#oz6)P9Lsp;9`~X(SY9ejHIz|`;bHrF*;RpkxF1UEY zeICK_AgaJxrx)Kvta|vR!5NLGCi9;cQp_2q-;bLKtp$%1nLJzwc!3#bCgzONRnRRm zvcazi78p5<6408B&B>s<@C5G*RN@%Uc=8&d!^ae2nb@W;>OHNIUxtyF@SX-sN3|Qm z%_!wlY0c|NhC5gdHh8o!O6Cl`_UExapO*iM&0!N(OCqsO()WXSAM=0@ z*nK~-CZT3T_fFDUhn{sKe8<%?U;1&a6k4v#aqjw2T)qNNetZ4p`ES%;l7F=R!u$%~ zlFa4M4&x93_oRsM^VGJZMtvMI?un`~`#fQ@63NhD;b3zZ6IvUQ> zGU(EQ3EUAbEj8{M4d3($?lff`tl0dGO4Ga4k~QQUDJg2K8>UamHZqX_iBn!uq?Hu4 z7%rN5Gxm_cfxuHhi|yWPfkVKYYWdhk*fj0t zrom+=_fX@KVn^NOjZ2Cgb?1Z^Wiv?8BA-zj42PGO_*+Yg9B^rNG0RuC3-*mKv%0dZ zpBpfDkJ7s5SIVeuc-p>@=At$2_*2#)lBSk%{aN6>cRT)6>{dn{Sa`OQiyUDGlw3R< z&hp_b-&6Yl9@c)#OhQ%kTe|+-#;#^tgK)dJl6LJimK4o)4w}K7NH8 zJ-^+_KV58hAO9TWt-&h*Eezv%)z>|Oyp;^y$_cS%!koxZRz@E+t7!tC#ukV3b@i8bpq@ga1b~j@5@jWq8$gw2bwUX#OXWmZSIp zEJ_N{xftx9vJN4s;C++rs_B)p1!w`3B)XX^HLg6$(1YCE(M zIGANHk?@Zq4T&D5w5N^2yEeg17ME0Yf>)b}J+>O>r3|b%n0`fpNzg9k`wc~JA)xyY z=0j-I*YbK%j^K*@6^yEtuZst$XBk(C1z#-m8e7OG^ z;+&Vw7oUH}|2$vZvX{8(dA|63sux%D#h2n8g{tN_+dy(?4GOr2$_iuc(orvDz_W&Un2sZ z-w9*p7USY09WZgc9)WPtIEmOimr=AQ&B62vbDe?kG%uANz>meQpk*?&dbwrIKoYrSUA9k5<@>oXz_0Cu;dsLqn#tm~83^}kvmEB! z4K3!i^~}q(cC**R&h|JB_eBIW^XrJf31CTAh9k7?p;~C=P6*#0UxoO35L0Md2+&^D zAvZ>x{Haa7NrtBgo`dj0Lkcs86ncgfxe%WS5&2xT55XI=j2Xv{y~o<{?;i}o#b$I8Qj zn`X?6kr~k6nD_<+KM(#0p8yDbU=4vMix>uoDb#BM=oJXeZc-N*lasE@FpM9HmB-vj zej~F|yRH*X{+I=P`aI)?>U77PSF0h;wQF8#c6wFuJP$Bx9LX3|ccbA$71A>(oS=j; zuf}^2+i2B2Fe{i_9qte^La!R^g`Cbp9Jw)|v*5;tQ+G2M*#qE)84iFQH)hTNU}S@P zYaHvS%QRl9O2^U#M7=Y`+o-7KdR7EJB|y1s16aoorgi&GjTi^ zgli<;uox_?6)Z}KS65N&)hamf*KGs;19BUr7&x8ZBIDg{Tdzm)PW*WJ+_qldM3v;@ zZJ%Y0mol9>UKU#GMN^qvtpb6{8ZHS3aWWeYX2X*k+sX{nFGfQ>cj7Ysts>=UvMu== z`d6&qX4`nyBx3n+ zbd+MPgp`;7q)O`1Svq>LUbAe(7W!Q6!VV0E5-U7E%620TIt6cX^>AN2&v@mIxY2j2 z;)OOpMO(*_bnd^$Q7QTOM`P*A<^F@{w^^;h2~Rr<)e3CMR~d{#S@|X!qFueRlI)BK z`Me1in1#X0s1o>^t(A8SaZ>{K3?64_pse)t_diE%I}_9U*M#a{as&~c6)~3kkYOj4 zS^#1?-a}@b=K|q{nc;;#W7%X1(YtX(1vdEXaIlk7)N@rhMiByh_gFX{RKnSDAAToi zGHP=t+`g&;m2Lig=!*kR2&PDh4P~;5$mfKy)W1r`k2`9!L?z!UCk%EFm24*}!S80G z62W7?vqGZ6nDrVPzh2wLdePHSEjtJ#7PDSwp#2zV#d`6DHb3XqT(5)EQmxnXGb8J@ z52CtSgM?k3EL1DHK>Fo+Ek#3IuZD-28-R%##X8mAk1M%GwfAT>?d9g|ju5kZP|hxf zY-r9Zgq>gYGMb4@ZBJxs4Qpz9*kLiXy}aVo!hL5rL`-s(q5AFC)b5s3I}D=&_rj^& z$EocM2X{xN_7N?1Y6U+k_Jc2GesK_l`J}HYJ#$LwAQqsXS~ZLydk`}s6Dome;3Fyn zRp=T$FQ@NCr$o|LQ!2o1O}~+iK9Vyhi5p~oJlhe<=e2FqgHr75GvyK67O6{0MT z8t5&Oh87D1X7|}+a!qbSCik@%bquO`~oZ(wL#AtKmKT6Si5c& zMhz`HkDAE{d<|{JfHo$ERm?ME$qJl-O3A0D;Lapd!$NavV7&6Y5HTKPmcN-ZY-I4I zDM?4eo}Teb@HCdZ0orQFUNPA&ttkh4V992yAzyG!iuucMnOh9>gHj&Lf;#W zBV8~v7>3a`6uav#tlODfJDB*l*G|IKUEsyM(~uLezE|JEBK^oVv_Din4}+Io2TFvEG9|L4^-UO4RC4q zh-Iz9d-3zb$2NE$gDS~qXU)AyW`~7xc9_boZj3x@zBm%YZ_s6y779fQ(GWZod!_Lv zID1$x`HdOVV>rP7DN8vxn*b15|Cj9Rk5}Wz$LF^3-GM5}$JcmwlJT)HvijhMPJv~3 zF6l1aH!0<)1PK!3N#GZn(fO48f{G?%Mhp7G7h?E@Z=zE2@p{1;CGZO@l>7q2G5$-e z0o3(i4S-UTpBTij2A=RjxACpwl&rxEm{Uo=-~umL14taF#2UbIJ_&0uc_LRM1#7Tz zSt|OKz#qIS)+dHP5Xr3tKX>T%#P#6|G5o=1R7$=+%WER*6Xg$BDER}Z`NrroP+858z}H%mA2ShEeu|7J>Lxp=(Ka1Hlu3GdK}Xki}hS@&tz; zkv*`H!>ByjalHA82*dFojK(|zBfP+!c>=%`$8I1PAy`5nQ$--2f~6Y1ay!mBx6|7Z~Ota z3#MA(hf5PzSbWbGkCBmDK#ZQT&Gwd(#M$O^GZCz0GFGEf^7+oaD}t{N0x77$eGm*- z2w|OxrkKg7ryLX%yJQZjZMKs8XDH%I!E4Q&<56;>uMuL)>=I``#cs=-Y zZ(n%TG6C+pE$(-plXFR+m zuvtGxrQ|bkQZ@@rBZ+Jxmo*t}rT`ezKq1oKep`RfP10XJx9yKUf2!VQCgUGiXs55| zS}ZU4AE@sH|1&QU;8)@+Df({$e5C(tZ2hmoYw`2V=P~@@wJAq1I@u0qp&S70XjY^K=-ILB;2RZ6tzZ1+Y~r z%Z=~TL=*MqI-ufoLnKE~C}aQqAns?O9&;*VVCkSxonrpt#m*-uZ~{}%nIZLZ<4F!U zvi_^>>yP(i<_Y+n&tumgm6Fd>M-<~kHD)Zd)?aFht@!TYRjZOg!RzBwLV=}>u;Yt^ zw*EhfSL6H7=eGS!yqWvm@3-46F1-RQyD;H{ta9I z-zrS(KcCzB{}QSs?|<$$lJuX2_WoZC`~g&tP*a1YdzNh|vl53=jIW&-j|k<3eLbGD zjc0I@@$h*JJRK-VHKGTT!4nHDc#7ha70DoJIa*H9`{ei}ksd#88_hU07Y|*09z&0P zDM!;775by}n1x>+Jq|1m)yEU#(5;+=6vX)GgBCFs@R$n@l!xWb|>z#^BCE>bK5C(Wie+SH!6N+|luK}fBJDts zZ&94#u4)u;)9L7b%>rceH?lvwZ1Zsg+KitMKDX^pAF3pukLqOjg@yM03HjODpD`+T z=*4(EVj`XD#GU%g%_(7BQ2fYv`fTI54==@!htF-}DMFRx<5}~~B>0Af)_8b6a>YrH z5CZon4rb>~DF!q!^Hu-4tYhRjT+C^Bpd0O7GCu@_AeX^a8|g*rX>9V zK9ZvQvHCyYyBBQzuflur@Wbb}`5%+A|Ls=)g+|9ZFXRx+^Ih%-*?W_7m%UGrR(Fj% zY44Gr+8LgeYr|RC4>b6!=m*+>!5s|1@U@GPW(fW`=n!U)2H^egKWL*#ej8FQyfmW`g*P8=ZNs8L#I>)3~!gNQs+M6Ydg?XiMoS zV!n(LypMzZ=soKXr)V%O8@-CR2Hw6smAy`GR7C>i{lhrvhoB4H&zS;7R&}9QFqUln zz8_zQ^9MTtvl?8{ESmor8y`x8j|9v?5S>AvoUP8wfzK@*5UC+?Bum_BIFNX+t+*_oYVS!+BG;i+pw5}6@&0^Kwf8bZ&*wc`_1ZDW8yZ@ zu*o@?XSLAX_Wdlgd#L*mQu!h2vsUFvM<`cjeoo)0R^Yg;2kpXt4(wbPqP4+R!o!+X zndw!~Dl$(r>eFD!0L6uA%6a3eJoWG`Lhan4rX5PVGQGvLL-{_fV6<~};befQ8sTa1 zE3*Ri?wBVS1=_?&)(PviwC8?IWpw_blaeNa@D~g{j39mWURCb`X;z!|;jgkXi@L^# zdANEOukvAY2XiQ#rdfxppQAn8S%<4VxP@Sq1-tLx!048CfqK(H()u09>U#b=;c$1F z)~1PX1dOX{XbPk>t;1VwO}kNz3k1FX*}DEX?u=tA@Mf>NmXAUYXFHY0TaPBc~t6Kd}JB_;kVaH&_ za_AtzK}6MWYSt>2Yr^RcF~-{b6muNYuu+B@pZ*YiSi2afOWo*}a1DG!ligxrWBpUe zxlS{0%fYqoCBoWR`1=6QJ%ctf5p6ykT!x)UgW6yQd(r)EJku&x06mUkSh2b3l_DE; zc4WL+s>3^3M!Owl*`IMqRRugQR%zE)h1U`SAk)t2e$$-T z&v&4*&b7dx1{sr9;?}Yrob`ZYOHEos1R~&V4yNA@Z|-unsh1z!Bl0^ug-gi&KDDWb zh5oE6^;v?8Dtc=idklpdH-Eb#7r|_@9UiVMF@4KENkOs z#VQ7&F7u9@>=`-39r|9DL%UUdg7Bc~gqYw(p$%Lw2h7wmrcEsmuN6xQkA>CvRQE45 zo%i|^2L4V1KuJdiaSM2VRPI(`3b&TcNKgx}Wz)#~uxbtaYt~klRiFaA|D%~il_uDy zg*jjFbUJiBAIptDeLF7+C&n7?PzyFUe_O(4X4JMn0-toMio&N1E(C-E`f$t`QYj6c zk?dT4;IWP2u<$Dt_HGitWLcnf4)DwJnx~C({@a2qYJ5(LUj9u-Ph%nLvPV&r60*(# zrnq7z^ z0A<->%(;n1KH#OqA+XZx-Y@VY0yZo&Zo+ivWzQLXb3wfYsugHt5cjwaJ9CLuj&NI9 zD|hBxxpG2-3w(k^cQ7G_(_57aTRNDrm%5NV2<_5pT`lVq+2`rg1&2;sN=>|=Euk05 zENu!sqmm@uM1pB%c&j@L7QeOV0(ep5?E8eT6a0>it`78BBq&MhF;-=KI9t|*`%>LJ z)NOF94LSJYHQEw}54{S0CU_qV9X^i*(-!8y*ceGpFw{z8+V}AW26QVzyzkNK`|!fV zP(zLbSbK^~FPRevFZyP9(b({OPk6o?=8wkD7~CGG&)$-o<~qShWaDZQen-QcspM{$ zGZhqcrvZlHKeh!mMNev?R{i5$QrlTlgfb6U7!bqdg7ty(NPeNO{wrFcH@`5m{$dz( zcxJ}(9&pqn+adgPgekwcm3}+iR+0Zi?h9o6GtTCOl;?nB^CGDxI5q9|EOl}g?qHr? zjJ}T_jbHYCd;$7iT%g^E8DO5`h{sGMW4wmQ@x=)EAXquIRsvw%2qHFVe=2-ve8TYb z?=YTGCf=%PvS%>K zt~82vGlCJF6Ce9EYA(uxp|Kb3AwNP7z8qf5c?+-Q92%t^visA)4Tb7G@E(Ej5s*8p zXutCSju`7%)W!T}hL*rhC?m84ad$n}zTVcvHZU!Mdcionz@>`rziE{(s9rRR|MP%rpX2FnZfjr8}94ECr^ccT@wK9sGuHqlfY-ca%aJ_j4MCpg4V zud_gHnuRNEd{*PjFT*L*wcxtO4Xo}6Uad`|BpVyqR`dmaVMt!kRE=t?4in{Y_lP|7 zocDv!^EQz+idUfxY}~2o;v1q0EsqL-l_9Mw$6F(BZWQ}K<*)!`sC5=&dfd5YhnYj)3G6M z!e;|=GgJWy2aE>9fIymCI>(`H9Fg@1tM{Xgn6q>B5G6|~ko!U04NM8=cHnm3^uS`hq&-JYNVUY8LQ z4v0oomC$)#22HkURREg;D#nq!wxTD-l3-fE`0l%M8EC*+M7YK(*kmJi7~hkDMl@v zs9`CLn55ftU_BO7SQS4yOLpGnNTtuQnGl5@_BxpiptDkW9Dy?na)f?I_=udp%7ho% z*E++sNTC+UG5te;iVAY{(rj!|7?HyV2v9T#yhZnAh{2^*B0g&uv?nmlPH%ysHL*`I z6)JGv%Jp}#yg= zANj$(c2%vw80hcPo;yHtqw=jVxuDh3VX1I|ZJJxxUjXx_3K8B|{t(dC%1FCT;|8=# zb*bLOS`17jbZm{kqvnhHwVUyQSpAysrDlNoxI?(04%myPh_S&tZDH_e2Hc3l4+f zfq?wRbU;Z|KtA|A%tll|{tIs9ni*U9#G>`@-X&l*N;Sm#Q#}z~f9f|fwLM&RNFGBV zc|(rB8QH*EWGu3?wBoEG#hF8jJwu9JL6_Fn?VYMe^|x28AQQCBSWqJMw!cB+QavZ2 z&}p3U4XKZ{RC0Gh8yV3zNqF%mz{|mBP77Y{U7P?fpTJ8zHM|_elEo-YP6=Kzz8rWN zECyGXppPvi*GS}{EEDQ+se|2vJqGnF%{_4b&AgY_+a*1^N8(Hw=q1qoS`=>H`@4jj z|F|;-ZeHLnio(saytRPkx789@>?}zV{$y#-tQhzKTOu{HbgYnY0V6K8iHbgIbm{$) zW9f3U)n};&tb$f$Sirc&FJb0=G^p#(;el}hmJN)g2S`QSYXoPZ?KQ#a_p>bI!{-4D zs?wq8)atXenoJ2&jRQ%945w`YnVI*vI@Y1P2!Ku`)pN1rYrt+1G7hX#!l!{qt>et;I1+YhYB!Jym z6$4-s7ow#ofZc>!b0x3g6ARY-l@ivZm!!$e;%8%AfxuT!#lV{xze0U>4SHvuQ2Erg z?YL7`rbDWhXH&X}KJaOIUrpSbZvMqwtHGN1MvTbCg^MbjH-6YEi=O|j7E*;+}~kdn+H zC7vNAuHYbika!df@lFH>=m{7HzE3>5!?EvZIRStnY|+X5)U*^;>Fh7y9GacIx-3o%<&slm3!*uraBLl>t+RpmxCG(^^U zL*oW87h$jrA3{UZxB+`EjEL%*J`WeIO?>7wI{(euxaR{9v?d=)aW?k^rG8Dn8-IB` z*Th#i26;kPPH5Y}hg5B4;n(Q;u3T>xHf{js!>7a{-A*}pW9L)Y!6ovL&LXurP-;l+ z6=qB*%b|f0{W?TrHA#}Cwg?)ETjYri7(uC6Kf|os{S8^sJiHSP$n!g)XId@_x-%XV zzv>1K1!s9@$DZYhhtROKKOxq4SaitNiJr3TInI#KYe;@Wt_s6Y{D`YljbL-ivU#k8 z?C4w-P0X9x^fIoA94^AMBNGCR`omWvTEI?Yl>45b<@AhS#x3Q3q=w zJ}a!w?cs4mX7zXEUxbkeOh^2QXPfb1M3NAtDZ*DYy@Wb!5??<-dk(ax<>RZT*63z5 zYAil*JRCq63h@aj$G3&oawbF(D+DUTPl}@_FBM5u5k!U3-=w!_=%)hC9xF{@4s z-qw;7#lqY8Z^>>Yhqp0+=hJ5{za)68`oWh9Z};2bE&qUow|_8&x^Z*x>C` zZpNsU$p^f(;O(=CvG7)N=qr1}VUwj4@RtqLW0QA zsAaOWXsiUe)ugL(3)&&deTP+Shp1^khZwv{3M)6@#aMmGL0ABs2L8I2I5ZZXKADZ8 zl=_l`Sklvnr$JwiurgQ-E>T#?Gbit4_DBMML0J;0?*403AUXV32}!@aJqD6~&wUle zT)*b61v-DaO@dBTsSbD%R-I*T!|6(QB#WoCwC9-^cmgLN;u_SzbE(D+C1AZzJB$N? ziF7lZ;86wht3LYz&6r>Hv8HJX#A%Z(Zqz%D!rj|C?XhhoJjrOeIS?&6OUj-;+AaU1PR)`20|M&?J zHbe?jzW7IK`QkyL@}lkEX~-A^6l?5 ziNBCCKAKD^gLjlN_?t?~Sc7L|>(Pf8DI>PMe@A{Q;slN8G=$d@u`t4fnC?U0#+}?Hha5>{jqPs}Nj4hG{6vz3 zR3S6a_QED>d>^+bk~LQ2BjUXpzGq?6`9(HDY^T4c&Hq8q23&G#^2V>AFpS~TAV=MxNA}}YQ6g3?fhQ>+K#2yW1zh`4SKzn*fy44kDn>Km4g3U{?E|s zFN^eyE$}P@a89J ziiNk=vH4T;hnunFr_UdLN$~a|R0vp)1bF)=<=e$}d1KpOB(Q}FVu0;&?!G9O*d%Tv zz_yUL7O*{bs|9SpaiiW{!Rm8>!Y2J`zG* zoPMG7X0;63)++u21S5Q7JMpt3E@rXWc`igGNnRxBhjv~j-*2N zYSb{M+$Fon>W%fw<6I^R0pbx5WH|Z@Xw$s5j$ep+O{mW9`G{7pJwdz)4eYgAg5w0L zOhy$`_v%+o#VcP}?pNtMp{l{gB)$_W)@pjA1&d-VmZlYYF`KT1jE%6Dm!~SUmp8p8 z8tsaf2Z{ACOep?13ggx{2#c$Xqc;;4ISYcQx@$OxVn(U>JI0L~MSLIe)`G?3H%VBG z9N7tY%))Znu)-l?DO-VR{p`RRd6l|@NxQBk6 zaK3w$fFHZRjcbVoKL-IJC$$G?A`XqkUuRXLD5ZSs0(?e*=al_zzNGWruQXUNvx@K^ zftf2#biONfa)C+RT~W$-(JqOs-pr3dRv&WTM3Ge|Z!L)Exluxdbnha5f<9zttUjbD z20nznv$n@%*UK1gBU2Ud25*nK9_ihII2Qr+S!x%JE$5cYtv%}VIJBk<5D=sC3-pTt4a1q|77P&0P081m}c?Tg1fr0ahOO700JK+ z=-+5S2{_A_`rr8Y{&UWW#P@Gp;)i!(Ib?S&KfYRFv|6am#gqlXNkG`Q-zPSoO?Wto zChuE9K}66F7{AGp0KFf;22l`^Vym_woIiq*wl5gN0-SK&O~1zW1()-SaLpAYxzgCQ zO=hGN_L2A9U~R%Ubs&Azj@=4;scql~vnv(8)}TxkS{9k z#L~p#%LCI;loDU=28cxf{gm-#42Z*j@t?GxIts2K8NYWGjvSNQ!w{y4Dqt4_Z^XO1 z_eF8$M_33RVEp`g!Y)vRB&xsTK9Aze)x5P}_vP!X<=Sq##hTKqY5$vLBc_(}xXhs5 z7_1u^x;G&PV*nMlctEGZ)CG*cK}n1BUyK9`FNuJ0^Sj5fsg zp<+awp@ZedWjJuKhZsWO?t=#0gJ_{Eb2l6qBS#fgZd&{*P41&ZGVT9Vow^5kC@hqi zI4NE^hdXa)-Vvh@0tDc1*-wBhLZ7DvXG#?xwgmS{DT9G7WNxN|skCQe z<(_>NqtX#6M5>+a3iwCiWhRT^!&ikPL_uA4(Z_59zaj~YG(xizn3=F4I6VUM4#6sx zz|5V3qLc*YZh(Gd-<>9baoV-<{}O>&7_>HEEP=VsoJ`Yts0bQkaJqB~HtmNt;xddJ zFFa2yr`vy^fP2x#<4$jvq~z>8ZpR3Zn?r0AB_-$Z)&krsua$tyGiyOV>f+#)39@Om zDDv4#J2T{}*}zpb?aY3_17v`bU_SUuYzroY`1c_k5E6GpJUH8-Tj4p3^x|y#vxR&u z=gn#`>k*nn>9fNVuplBs7nCrQBe_ZX7FSM1dTVJQyG>oYg4K}i zVy(donPI?`jNo5{B4ayt+o2L%X#yM$<)C7eHtcv!(uVJkCNM^5!;{>iQQEMaw-zuy zGb##<7XC~IkHBnYK4D4=UmDZ+@gzVgI0q9b58e<5lzC7n+JJIPJWy_$e_B9UgxQG$ z%3ZgkC?!yC0)+g343xdla3lrF?KYr1J%GIVwi5y5r~oI0uonTyS8tP(5(AKrEUailx9{ier2n0ccem$tk*Xt zR%uWKWlvP!nW!(=EmUTw9G|0NGG;6m2Oj`dNDc100edG0_xSi6U($K_(eES$d}swv zU=MEU3-0LdGEJi9Yc?o(|0-);BCM>qNF|SfnMJx(oHP%CGC{yg#BlX2`{^?5|2IYL z|91w;jjI4)v|C+pu7nq%A1Xnx7Z|%zmRFYj7!YK<;X@`|+*{5fIJ%N-KC-k!i7;^(jDJ&@)uM_94>LW=^k!krkTQ?O^Hl=GY!dp}c5^~$8;zXzlH=bY&7(I# zqNN&g$T>iXlZOLHIahD|G2^8?XO4e#(Fz%ADU|c*r_UyoTQhry#2}v z62`EeAlC5;>_!wvVC*z``xr?3mw5Yshk8R&)mYx%hFm&9lT3zQ2KeK=4`V6!pv zD_@n&eDPNZZyYt)mqA8VG2V|d^QFAC;O*`!EO?9JpFk`;QKVL7bQqln}4D)zS)7eS!wMcq)VOS6l5&)_spK7pvGi{_?UHltl&_)^(h z)y=WM;gs;rrz9q^_~wy96s2UR>HuyLSV+m^$J3WDNx$->REZ^=r@`KebEuuzKTRMW zc&4oa7iPD&TKap5e8ycKgM4l;LW@!4laE`u4#sFcvEZU8Ck8GAa9H>zF+LPf4stew zukJyA)eU6-H6i1f?DK!(G%QA@>-$~|`@C1|e<;)}nQj>rFOt5Tl1w*7f;0g4_rKEggbl#eS-fWe^=s2G*- zde%#zTzzQ_P_E_Xi~{8^cxyr8@1bamc;X9s_jn9`V!tC1@u*9n#SRN$K}wYwEJ)R7 zX%3f1gE(RFZ@dP{0^qfbD}k!QH3q-sFjewSgbvv|0Yj~x4t-el6VyQAS9tZ{S2Q4x zgV9_~5B^m2;*Us3;O`IZPY<2~xqO_mwy7ZNMBW~BrU|ha9D03^EY=V;Ak%dE5kAAJ zu#qzNQ-ygfteHl2B&U_ePZx2jRZCIwH;brZQ#CHHQH@dGur^f>A?Oqig?}?1-HfHF zH{OII?5pH7^=bflWM7?#rru{i6#l9>6pqoDfTk9SEa%EPzba3Ul_CVUvY!WAvD8=$ zAP&GFC4rL48RA-tZB{H*Cn=>=ksBQfGpbEq!la6=_2i9mYpKH4OR7!yP;M`kz`B+c}DPujZ`<1O-_(%qt;4;9paFW9#L->*j|Ut2uLWbr`1Ipeh8;r*M@Y%G7U;06?>gokee z-u{1sheu&xA`w|EJiwk$@Pnsde{aD9A>joeF}pqAoHY^>vM-2%gllfZghV0XQr=pS zaQ*oSkYIxcZwx$0|6k@%IwoNth7H#qZzG1*HH@IOyp|AeIM=%c;6+T_gnV|c@HlI z+(VtQ9fsfV?J%Z*a)XcDE+RK$hO{?+mU0YRr(lqZw(ltpFGp_SOX+`QzmeYvOxT@j(XsDsWlR z$wg4}3m5<%NpX!UgrG+cvi?F?$A!yv9w{^Vt5%xHl@{F z2;-#CdtU%-&PGrg1bRj1i%(^twSjAQ%&B@Hm2BW3Jd>Zm7ZK2woa$KzPS2aN%A? zTSO?yJ%2$2`Ymwlz`*>+FkehRCNzDmAXFB)~D zQ5A914u$Y)Jo3ORV*Qw(d!H?Tz`1XyCFBp_^O$@$pX^B!ga+;$aT(%!lVyl!q0Arv zc$bL}kUy&#^PG_O^eMEQBJF``)hEZwzvzGCD~wN%&|Yq>FejK9LWFvKDMNMzrWqU9 z{$>vcjs+{o#-GyBN-kHgI#~3Zd6(~qS_86w^M07f|_{Y zb*rXVWxvD=_&|$t&NgLZi&F_Shx!%eiRM)6V~@Xw^buuVYM`ZB*n|9h=s1IP+$nO? z;cktS5#D}d z7FaVZ;KN6I7^Eba>r@c|_&n~~g*hY&e}pguBW~zU5nB%Asn}zDzB~;}F`$h{Y)Kaa zw;`JU$P$<8@6}4&BL|CIp@^B;5585=OYJzfUz?nzmf>%NB1Q(2s?4bCrd*IxkTPJW4}{%l&9Cq}hH*f0^(t@RO+ z*+4`OGbs(|C#1a4gQbp!A>oxwvk)#Vov{g<)Y;IlWrPD`WGUp$rN01KNA!Ui;aOv? z=^{L$2@!sNT$#H{DMNaoKeCyT$C|0_IqyL3|iGou5+?)G3)Kg%64@1NE5Zci1(U}epxhi|vW}ClH{`AYA0sg3E z&E_ZTz%cn?MAnWVw4!(Ic!m!8k#XrwKRVXV`dS8}M#pxo+34Y{+qxEyaFWfxhdKuG zUAwUerY4Vs3cjIb;GxXLSnzOUF-nKY#X#d|4}3hdlLF+jES7mt zz&k~IgtM2t%US3$VG=1kayTs@uL+Yf=Z`S*Gc6kvBBoBi3iv}rOcl*=W-;#gHgFC& z1GC^Je}(wxQODy69_)LiX)St)6MIA&pXk*}y!q{Q!w@*O?hJZ>G|}K!O9uuzJA6aH zxbgGjh*?WwyKD&`O!R0I+#s3Cx~09yjrg?It8E2m^7OR8)Jmg1a0e09*^8D1N85c4o}~vB6s2L`ke^hF{Cyza_4% zzzs-x>*J6ryy<0G=mt8IU+Z4{t~oTS*78U@rg%fg(t>BRTgtLaP!jqKF|euh(#k!d z&s@riGeqH_hBHE+4OW^yN0;^D0j}MnA9KKdPiW(DAeqo-gBD#H&UqqpYb{U$wI+`4 z^Kjwfg%=kYycmoN{5nFd$3w@(3u{M<7u?nhZtDfN^@8B$Lx-Go7x2#@{y78OJC@JU zt!NWK!3Nmw09yzLb98?nwBG=xnyxg=4Z=cWdK$h4M*{SftV~%Srl|^h8Tij@gIDM69XAsz zFbTE8i(GT4NUbzx6aub--U(QR{F&~>A6PAvctXuzg!)~|qjZf4=QNdK00f=8mnOfl+SLJSa zP&8KrMtCpUyJ2=jU!|-s+LIA5f{5YPIrQoq)?>Ef03Nx zeB+5PBx4He7!Jqy)JSt2BB|FDLlw`Irv2hp_dgym-b5H~kcXP5K&If3aN+Kk|J#B4 zbGoiu?@&fy^Z^!_Xl{tZ6PzL*F1xooz_#9&SL3v@uj!3bai~`7?wUCUwRQs zUx+V7vh~LUbHCM{D}L`ahji@+X%0~^+bp=mD!9)q@S;Gjab8F)oGG=k+4_}s>4pqC()O&%2L{xyNfgF>tmV#2e(df6J| z0P10SE);9xg>X=|hIt^oO6!&i%-B$_8QHOBtRWN%s=u9P@L0KRcS8NlWhbr3Iv3QET*VZ%!7npqnKK4A;$en(p;5HT(gbqQsLwaMY z)P0qFL0!K5=I%4)^(F2{ZbC{7&h}iNxu`qe!#9epon3;ReZSb*#3_NfU*&d|m)CGR z%gc+no#o{f+|KgyQnST+v>0Aw0uAU42IMe0k77O~F1gu-FG96R5o1C6r94O8wCdt* zwT=S(I|KiG_;(%tU4?(gcGNl)bm%?&{vH1=!?g?lBEl0cz|R4lhmH+ibP-8sj^2R^ zNLFxOs6Rb8_+>(D_fTY1I0IqbHwpd*;xHgKO?5)&w`tXXqWUlKZv+0Vwf(d1(Y`6n zYCFMfFLW{83>oW%u-(sucE+updqMMM#lW$irkwkLfs4H@UG5?6%yK;~QyZrH-2r^> zJY(Z$;9?<-??i9V1ZM`huDdghV_?egfP`shc%D}~H$2Z1p5}%U4+^2IP&CDXCnnV%K0M#6O+`W~k2;o$$};avb)FZ>N;Tkt zj?!{^5&W@FWS!CSnbu02Oi%DB>l*u`+^t7)w@cEng6-NTPv^IQyL}Vf?Ur#9UCJXb z6Hq63pj}(}8(vPtj4LaD&dc(w^o?3=Hb^Mg7*JK+bq!+wtHC~Izw{4466od3Ktk*_ z96tr{*SerZo~upp;Z+bhb|SACaULgcR9w*IK!bnoV~_5Q?1RC8cw%Nhd^bgl;p&G zfIr7-&?R_>S~EbYK3kpO(sr0v2m>vykapvM68h|n3%0Zv?#s49iKkBRUfZmBbO!)K zo#+XkK|po=*4dqQ?G{sQ(LJmjw^ae;E8{(t{Qw;Rj_&Ud7*$Z)ppZIXw`sEAAJ9gt1gLWm4>79!jf6ui z>j#h~(+o>6JP$B<3pK)o!A>k{rE%jICJYMIu%&pH`%!DD#1udpRMz#je4Ggn`j$h` zE^g6$8%i-1%8OXMPm~w8wtSd52-MxNw3UDH%F+*j=E6%`csrzZ>3-n6Fp7t?@J}1y zJx19e_di5_eR7U54W@4B+;p(yNBnN^-<8Ib1EPyiUq=LB^lvJpKTl=V+;F)89R+6- zbL_{JCI*=zt zY5D=~^TORXiknApBh=5`S82oW$uo?xeS((X|0jVxeP-#kvb6F~WXL#$q0hs0H)?>U zolhJ00uwa7z93`K==@EKt_G^y^oH?97lhtyt=K)+@pL(|c}zWi3F-ug;pjKKWYOU1 zGuJq=p3`SSxmdGF{uP(2ns?Va{)~Us=r8}hV_yFQzhXa*75ItZU7HP%9;R1D6oYBq zGkHQVAWjG}Bj8_~tpZJ?hW>$6&@Vm^d)o7GPNi`U3Db0t9i*XI*I0_~9R02j zNLMcmL;40vH~yQjT{e*3J{-#N7NYe*`4w*BbtHY>9HO@1rM-WUeC^=O{SqD8?D*Ns4jOhT1R=wDrI^7YmFt z)fL)7p5xlkaq9$71L_rMK3=`K9XVG(eVZVr*q^rZ2TY#KC2V~CbIcBow9aoU zc42`Xz{>b0&J^Yz!{9)0fx&VI^?tV6A++JMmE(gN|8uniQ=i`gcA!ToI%a%Lw1Ip> zp`B@3(FU-718T7=@6SA;G%k&_V`GT8empomtTW-A3)AEXv}I&H3A}umogm+ZWOzXT z9-a@hwiRcxb8Q)(``0_HWXQ$YEE8N3#sk}X`53TsW?LiSm;d1)LQG$>^M}b!i!~UGaX3<@<)&O0=)MvgRk-To`oJ&s>AxMPUDs zLA?yp#7xHHY%W5o6+rcw!E+_6b+zCIh_Z3M4PGuM${mRBO$7sejA`!lMOncy)UbO& zQ1TDgd9`6`2EQN|QeZSBXO|dF%RtxM>dOM1WkfPLqW@C~GnLsOebrh9S}Ly+=Lngh zZBh2DAzKCbz{;3;%igd~uLcWA0|(tAbnBW+{wg@CJIEDW4ppQE#$(IV1P_)Q09{ls@a71ffMk_ zGsG$QZ%`|S=fv|PeotE6`E340(S}R3aRJ1-a}V8&Ms&XiT3ffVbY>?6J`X-(YXR@` zST_&QM{t3g~Ihxfo+9QtYxMkeY*CG0jHu{!KAJG={gl&xhsBdE{AUMx6LX%8+X z5-Sl{ueHRDOJQz8pm(dttPZ=Cl1!~lUF2;mp`sTRvhmk3yR9V0;iPn#fbY>h#suYk zn^QDiC>t+CoM!+AVixFo#L zYb*c_!!*FqX2zk`YA5h3<#rQ^iqbVG72^d;wl#4Un>e3MjFL@s4~>7<2;x;sN|@h! z0(^=7g&MLQt;Lr+g2O@$J_oSQWZ2<^14#MmLx+ZI8O(2wgF#nYu{bxdP`g+V**^&J zReA$qesELs5~vT1$I$_v9G}0lov}T1L72fI7q1 z?H8ZNeqe3|gj127apRDw*q7f47swIXj`9Gkc33$xRUgB}S&e}F>2A>u8*{hErus=W6MV#@k-vt*{bWIlKjsXzX0T9?zDvOO-=aT z(gR)KXSq91!P`Y}Kdz6X^}-s>2kujxob zA@u%UrRw#_`34N2Jmd7+=t)?JbglTEwH5z1&Q`u?pRLT_<(#eDw`I1{;Q6=l`4zs! z9q}TxfX|>OubBr5usFCFvk6Ikn7%MgS$D@p$J2LVa&~>R+~+RHZ(IDq^d#@&7!gc& z-WGO|b{`0Nv68BICHLk6NIOc^5heGl0bb#}2rAt)CHE~%+HB>X*4fJ54w%o(Ru+7M z`;VbtZE)f7e)(+n(9w7+v=NUM^bG|=_&)06S@!|75dW%@yJxl{-$3<$u=+cwvxnv! z(DLIgSmx|g?!0gfxGy}|rsTGu;(mU2lakwkmj}%P5}K`i_7{{NKm&VG*u4uk?A(F_ z`15T{{F@aJsQOjcPHLHocDf4lcPJ|^2QH4#e2Ix8_?V~K^**wim>sIUOx9glc^tC@ z14*yGgmIIo*De~|udM5UvO`(dF6L;nr=siT^+2G?W=|QfoLb%Beyz2|z$!Jj{N1mG!Q{`VwsKYqWM{ebs>6-227m-tQUGu5FZ? z`+&8%H|m~JtyLC&U=_Bex3?Th)1X!I6Ty9|!)V+2>pDd*AS%f`j@-7oZ>qAcR3ep@kJ6U=h85=reT(0YqCB)0 z>hTJchYbUi0<-mcC@K1N*L*+@G}0^c!B8Z@Ez7W(XoT6|6xcx`7p=ZO9=}`@k6&82 zyHAQ=&@jFV9K(i_;2D8nOte(}p8cZ&(L~l8^ zm0(sJfbb$nx!iuhP94BjL{mUp7N$x-FsU$=iDTk074eOQ?JS&Sp}ewzIAq1DCcbmp z5as~NcL=-{@(%#8zi1~?9es-UuMcl0!+(JPF9-ki6aNAE0h}?%%8D1U9C0WR>k-S( zOi|Wn2!3Yr@h^jwp+$pTXh`_pB>VSHh`oRH4$=6`Oq_@Kbb({P47=+WgvE=IDwf#H`4nN*rDZPq!Ckt9&$BpEgzd) zO&eI6+Y8Bjm3i~aKm-uq0z^QVib?&D7*7RNpyiR_c$JmEz;IsS5zxr3m1Uhxok$5{n4l8n_SqfrkHu9q2l0LwTrWA(HCcNmv2gxQy z-U|r^OGsqzqCTEM6w5t_0}-!Rzhm!lBDb^;odwSo$1Qb2lry=dI8jbaQ7qH+<|#>Z zM}ZFY?#0A2#_Vcqc?;xnFUS{9dS9>pcjs8)^oC_Rn6WxyHuh zNm`X#j7}6qYGcNpP^ue#&~6l znPuKYp37>=r9|4onDLSn7R7<1)s!}7@G12x@;22K{|u`IF;l~_;}UG?2FQevQcW4u z6gUOL1qTqXUNE4n_;&2N%Jt;J5sUVkd@t9xN`(c$O&MxE_+Osn{$8NM4z;4M9AP~m z4rf5|p{$>Yt6M{U4^aHIr^2A6cO*mLUP^&&QcC^Ml2Y4n(wE*2VA3|B7xLkI*27Kd zP!RMf>wTkv`L&JcY`ox0Y5_SiJ&BmxFK7b1X9Pj`Dv&7fj}XP}@C^z_Xtrd5F@yE2 z415PBFv`l#2yuX~1iE2P2(E5b)?a{bU90sj{Xn4m54=NqLE;2i_#i?SB=+yM(*#kZ zd*)#xSQ)Y(RAw065D+yu#45Pb8&4P zK_Nc&d$H1$P%rA9G<}S7T)j_ONfQbXORDXas)JVo>t5W5YoY*?dmVsu4I* zf8cI+KUM@R?PmM~PWz%0zuV2<-KbCu>E#P5?@)oitRN+E7PR9ZQ0M$Nu=VfT3sBGc zeF-&h8({+N$*=bD9ZMW(L6A%_U3g(nv=va#qr&mTRDW(RjZ%G7x%0Y4C?epMh*yRB)TWPU z6X#ZwREUd3HTzaPoGKLNSnYGCQ>+`Nh|@I z%H}uINxq}{Se7MfIY_v{k0!QdQOkG@MOLIcLg$fX_6ceVnCT=olVx_P&}Hii_RQvY zsp$Zc_@a|q4!BOHAmk_LT49u};C3_#d8alHJcaCu06U9akpw=Xm0>4LHB3Ykt=UJ* z3egFZT#Fnndc9Q}E&jHGddH1A5TXq!q+NM~A^rkq4^rj>V>COa&bdTy; zMHLwUDbx%^+Gi=sUPu5;!TkyT&s0t;>lLj<9wG_KD^8NAtG+kXmIh^+)JH-GoTiUf z)}ITdbz*gG>r$b*UMkhqP+)J>eUsBWpc~b;LNA@S6^Bvs8+ltvJyg$K6R44X-qQL4 z{}R~)=_>1om{e9AGzo%8%zsyC6S}j0BD$fqKz56e#TFry?h+NFik@BauuAt;M!Mn6 zLpMoGtv-BDkb+-ZeK4m+{0RC3QDv``!a%`>gQC3wY3x>tGmuC>2ITsUAy|f*6#C+!YN#mr|6nqjy0SB8d6Zp&T91Yea?;q8iS< zj)BPP0q^X{`5YP?Z^>s$E)THc54>>R1*C5imxRjb1maShav4;~)-foTO(D_hUR1~Y zky8EsDe0I`O9EYS9ycZ_Pdug5!{wJW#WD)&|;NjzT%+K+TzK2>|a?g`x@&>IGYVi=K6h zvVNG>VrqJ%&|o_XPsB*+En@10O>w9-O{j!`Q=n)Xxf6OJ`0kyjk0s*`*Q3QS@iSbM3Im~5YqpN$yooO&w0nJ^U*d`*1#H}LOyP{Tg}^!Gpxkn}9zs#!Rs z`l5?Rh!0gVU;~);Kf!zz0>a38uL^j&n6IaCncU@;5*7Q_w>udMI6I_0fA-K zpYaP!$A-l(8-E-By6|sbjARozXZ)Fo^`jJq_#3CQ6_8Dpbz_F-?N!z}aqKuey_cl- zwn8E1@YHzZMirWgRm!?E^bx2z7N?KOx{`2uFaAQR(OtKbN&xG?adk-K#5c`6@ol$A z2ENDhNa8P$3?an`Ne72y9wqm38YqDFT4W=IP?3bMC%!)(;qAeln@oL-03?K;*^m(z z2%+a@lbM%-Pxa?Q5T)J;6sHmbmp_iTu;M#$p+yk;KzAI#(k3qE(WS{E4#k~r(AH*N=rm)+v4pl$I+jt;kA6!bw zsk$fbZ3ud?qK{JDgBkiOrd<+8OK)hGe3WVs;E%yIz(PaLmG$MM^QBaOtlarkDcJxR z6C|70VkMh%KL&*n1?`JXP7F7hf1v!k;SyVI$ zBd=s5xDr~vE@dT?Yv?5s7YL!B+%r)E91UE90d1tbRrG=aCcrl!Y+{C_@DLS#EV+lW zSYp>LsYgg9Lekl*L4OxJ4T;7vQNbl5k)Y$&S+QtL91sK8zSyGyeSPtET$@R!HmP7{ z&2DOm=L1M+)=cskI&qlslWW6;Clqn8b#W@a$w^5mPOO1$C{fbsH6@)`F=ukDGSmi- z5#65%oT7UME9-C2eNM>Q%6cclq)_#F)+rd@WF<4c>68pb8dc^M9=#+@E9(tyOau6Y zTGGS`np)9667hoJtO(88`oc6lUs=BZ0V~MDoT;^++J_MwsCB8Z`H2WmR%XY&*q1UDDj=t94e+7oHPKF}1;l=N*ahrk3SwJVxm49Z2LqF^7XOb|HX zk_4h`;e#aeKgNj#!0co0wGJt;iRDmIm>LR3L(d8%S{Iq~{{{7xr!xNw#QYb^`S+Y@ zeLcl@u~(9PTF$(9lHSR=Ck0)92B+T~O^WtpV-YJUECkiU8(l+Mu^O0o*<{S@+x5FN z=}I#7S0qe*0zU*E#^tWW-)v#pM5YKli{M|#v*6zYE=3lCOTv1J6JUhT!zN3A3z}Aa zio}r?w*>ncyyKMY(j=u{pN2Lcm3m?lDC?zk9U?3!}~q3;gc>0+@pNcHI_`)6emr*#*}hl z*G)ODtSfM)L;Z)1<^k{J;KsoY_Yd&K&VjiE2j=%uvGKde$+YD8%C&v8pFG$LQ}7Dy z+b;F~92Z%#u@EN9$+zMll&WRK-~rJk#ReCHQ>1%H%t@OjctPpk1h)a@eS}#+9k46l zqaur^hkBcFi*16#Ru{o@$AKQPNoizf6rtGBO{Hf!lT+~oF9`Xi+}YLwc&U(L6;ssSC}a9qd5Pi9vw4v zrN6^m+``vhJ3$L&czFVyHt^`|Bz?1eQZX0#0B=E7~mDv{}{ z{*>@ojpJzXAt>6F>UQYTyI^swTv-OqKltx@{2WH%ye~_^ZXimf>OzF)9<}J0P_QE~ zkf~z_K&^Nis!VaXr@c3QljJw)`2lVWs&&Dc$wO;1R2oQqdJDvQ?j1X0gMDFfji<=d zXgqL6T^==q6~vXvT3K8tSWcBT#NZmZ8>?u(~cP1078wN zZD9@|`$5q_==V(aU9LN7ngtT;1l1v81w0kbg5Au8X*5urjZS63|ZViVmXR4e(#5z+6el`oL7Ttfa5)0erKZsGn z2iI@#myW%rI@tIbaw)+r+Ld>t+b5zgAdsymU|fZ2bl~gN%6dd6z+Z`&C~1s|V!9&2 z6;(R;iSJDc)q9*GW=EAa!>1Kzsx{yRUJd#%Eofq>Q3-D(cuyhhGa_*`>l4GFV+fP5 z9;f+;AoJY$bq+kd8C@KGkb&a*It>1Jx_bC?F#Cc!{PZ?n%%6eLVHWlTGI-bD?5%Sg zx&m?yUY>VAy!_k;;^l&F@$z#Y^QX7>Q~nHOf5D%gjx_Od*ATpX2*c&%$d?`R<&KZU z%N>6gFL(8cmsbslmz$m9Cr->mof3xq+`)0{EJLH?Q~9HX0Lp6-q1RRsK6pFIWyGYbt)@wKx7HH?X~%LV;GKr5x_mYv;AFKCpdevV zl&iH$uXd5{TB??9Myy@cza0~;EyPTAs%87sU^D!5mDmX85DB{wH{^#D$?G?V+MwQT zr@z*bjn2ARh_@IlhJJn7M#Uc-=>7%<<%t=TOf^(#T=bgo+0=Gc28`En9W%T`6uF*9 zpeilck5yNSf_-pM4EA=PEem^Oq0ybL1rP4(7f}FMG^u6RXZgF(cV!aPnlQk6Sy`vb zr2`YNT`hr((FqY~t2(8xt)!nbsg}LOnp5C8{i-?zwkdFQ9Z=6jB`_op6v~u)$hU{{ zz8Rv#i$D=oEJgvm(1uU(YD;?I1bLZSu^G<1`w)reP0inqK#f}2zVrwCLf_f!)Uzhy z!@(}CzFn*8*Gl@dnLzOS5>~COS^Gq-XikYh{V#>uax{$U#f_MBr+<6sJ6%q+j08kb z&u9ReB(X5yR+ncr^JP5)oA$k^zwRU?^9)fC_ zgvtC#F0U=^p>4D+q#=T)mirhNvx(;tYS{~wTCH0RuCCG_N(+6KrmXlIwzN2DO79=p zuGYV-mOb+diX6Bpd+HS+YH{`WD~Plsu2#Krrg^pE6~sysWy@coM>5}7_R3K6s!?k{ zx=R(QjQ=lnZv!7ybuD~PGLvM0fiuCNQDco7Yb*$nPzwe%3CskMfeDZVkPmGu<)&&C zW&o8yU=qmWFqYek&$YLB%Wbu#&!tz|3ZnHR0n7xU2x?oYAH~+%lO}DWQV5F7^Iv

      ^&dSsFF}^Kk&1TNh<4xbg(ZDt$J<0Jn>U)Bp z>&==?QQr=pE?A7^+~TP3In%e%*p-)K`dYZ8;HSyhHIW}k+y&Wgv$H*8QvON3J%WHa z2H7G_=wycu%$!Q%l)EqRoa_Ph_KM^GK2KO|1GD6*L7uYBhTUe(cFFk+yL1nC=iGb% z;?zv@AwdU_1E|?7-Q+vqz74p6XH113AU4dHAP1m%63hU%VFrNPBQV+dp95&M>jr+{ zZl^)L^&-!<)QdpudqyDE+c<&Pm4eunf>^RWm&4u^&9oUbSal{E0GWn@d`3nJMuDO( z+t{^&u8FPE&4WG(&W^Le0lu_t;eQ((rvhaLDmqmflQXgg!ZR3nh5!$uk(-D9--k!z z#tc6y=&{u&R`2K3d5nK;#*>(7Ma43+Wf)@P{fH4$3DY@Uy|5o`n*J2zvG2Bbxmu<( zCNJzqNZS92v3X&CR(c9l^}_z_^ptEfaERj2Sj+SrmJ&0tJ<@^d2W!gi$X#1mWVbWb zjpoDLC7Ox>zzl?KDwoOs_Oh%Y6w+P-r~OR1AW?@`c+6+yFO$6ZWfq=-Jj)$zmV4k> z-uP&EYqVw?jYR{GDlT&o>_gvY$1|Dy4NnMjNwS&EDK@hy#b!39*i1``%`~OhOk~-0~HiZ5)hhbiea`fGpACxl{6yt%TFa`GMb1AcNcj`rEV~ye;`fw|=F)uY6^OCbs z=1Yw*j~Px)^Gv!KSZ6RH(@CGU>;3`h)AZRKEwGu|?E@fB0mU5tE<1Yy)(Xd!%+Co& zo1h@^z;WTP@Lxzym?{a)IJr;s&rSGl-UKrM-yO#f%z7d}K#gNZkfPaMij4v3QN?j( zRB20JQh`2UrS^>#PYV>h`ld_JSCB$qK?;3l4O4aB0tKvQzkny~R~8_EkNURjxgkKO zz_pn!5Zg=_pktazr@_7bY`E3<4rISF`u)e?&%p15Uu*WuW=n3(;JE5nIPy^tEI*{e z{)7~uiaL1j3dMUNz`<(y2yBD>4f!N^6dnkk(BuD8@SsPie?}HC@sq9L$w}c*U|_Ge zYsFB&8U{SZIpB%-wt4@DFll_5;jJJBl%ct8HZW^eAB80vS1*7uFA&BI*GcEi2R^}@ z4}3arKJW?NeBcwj`M|k&voPikHW-fzR}OED+_eR+3`_prN5YbYU8b|-ue~~eB|r7! zewHlf?RWabUI{O0k=3Jc(<~lg5HR9@tsEz8a~;OKHfzKWFGo*)|NF)~{PHSSzD7jc zyoqRS%n>7USe}d9$-c*qKw`8$Ls~U^aZiy|@Wd64qw|Y!=jNSOghw5hQI}LprihAT zk}B4$s%-vG4N^NYOi8(va4TP_B;4~zv_S;6mqhhWW^QB1J8$qk`FNs8T%wKFC3|iSl?BGy0 z=Dsrtyost96?hVrs3|E&qW1n+_TTMha1`F4vT;d^gB`Zx&HGn=V3wCmDeGL*jc~_9 zn*}k~evVPGaqDU=H!Y>hg%;9A(vObRhwHM6QFa3Fj6^*Gpz-l+i?gLQ^=U1giDz%) zRUCvh{%D|#CVdC5%bU}u#IyI2okPoz$m%;2TF&CB!{_2to_~4HVa7$ulvqB^IpT*iziUxZFuV)b>J_@ z`q@u15fE4hf2?|CX8$B3(pJ3Q4YBRDO*z#ts{V-)vq(M$itI)GE8M0`0N<=o_r;y-PM zJBmc~(`27GMyTSxvo~6WT33&9gJspNeG9?=X?zgyP?+q%`yWGIBphm&^pJig=<2$&-J1T@A zZ^M6r5p*;6dBpGc{XYcFwmUXG9|yFD7N_$2!JwA5nYjwNhPT2~pC6p5CydB|-Vw>M z^*P#+@PIMj;U$Mh(iFWMgmuDI96 zQaLYPF7gUT{9G~rqEqq*h)^_t;znMWlYJ#;PIa4=D8uxbQwd5REg*YKQWEuG6Pt3T}oH2#jG9XTLiGNNeOXJYcOig-t#_08VlbVR`%=g;6*Wi ziKgX6cx~NX0t(XE;X&p5@SL3=J_HYJblKRvS9kaAAK2Y(-OEL({U7j0Ru;-!EBE3T zcCT46Fy7T}*IiGh$KTw23|^5ct?-Y%$f?+(iMWfl(N8EL(0{<%G&loSz2H84-h>&` zLKE~jTqh&o?jCDa-5Kdig#JY4cO`_Pa`+a0olNnnDKgak%j(#+?iHm%6JbT&uJUNrojWpGd_#bbuqJOj zmg#8q4Uu8LRqmb`uLWI1=1ti6knzuu5ppSCy);-kF>$#6mP)=4V)>Q8k({91{aN4!vUJhNi_LKx=SUnPj zufD<8lowN)n4;}hCg8Y39qexxM=LW++jKVLyKUtQ_AZVN9+;309MAMm4deO7lY>!- zqcVZ*27!!FQBP*BZ68z&i`tXf{`TM~YV?2 zn8#c8(u%7Q6EDx#{u5fKW>hx5-8O|P!?~od`Aen0?AJ@bqp`CH{*nSEg>NLuJ)Rp9 z39n;$HY^>s8|hoKW;jd|63%SNP>@M-ty&)OS$@;%t89CY*3PHb09@nSH?{X=H|}q2 znfAq#e)G^PAC~P|^Lu2}dbd11MzZrvtfmjfXzsb1&4BNCY1^#Q*ULl`+NkP;6!}DZ z!_D^A!LgYcGbXhdWv?y$fDcbIh;aK?K0NXA;KMC-*g}hITfIVoPc~C5NTt{qnTOkd zm*4#IeOJ^y-^P@1zAXCX(=+@LpgWd5q`m!*S7Lk9TT5roM2 z$oe+O*p+L(-~MiX zD~w%xBgbxP|6TTw!_wf1m2c4?4xii=i*8-Wva<(o>bL5F_{4B%`g%{@ASdsSy|(XM z0xm}VB}5yMD`mMG&Wrntzzj@-E8=l+y}%?LB>SQE#+wMytaEUE%!P6RaTVkKQ97wG z>YsR`s;DtEl%r8znH^NMsI{u72!Ti2$=4QL+;(Lnd87VvnOkb23x0g=vUUl{$6}Vj zA=1mP%PYY+`7PwPgx?agygXV_ZnmGr9+K-F_v2+J!*1nbo_Zsz%N^nD$eMCTsHd*h zItlB8>2TTXmP4A<5v%eBV}5VYdOi6q^iHgb$e@10y~a~%hhtSGq?H6M+3`}x**Em| z{Nu_z+nhcQZs7M4UYK)aw31_kD>{`sXiv0~lVzT;H$qqv1#wSwYJoX@V!X0Qp<`-c z|Fyra&&;5v3RP1@q104CeIDWjOX-TdXk{L88Kaf?X2rN@Wr11Yj#d_$75PzuYE~3S zD~nmhqLmyG6+btK2nK7*b+D@fx8TsydF3t|*bW`|~I}PCX6gX}ml=kfpqj8lwj#bKIPl z%yDzE%HfQ>m`Qf8N*>FTOFb3yveEqt)dg`)NV8el#n}(^g>Ud2P>R5ZHgjkoAr&QZ)R8^%s^O zj-FS@A#pmFckEHWj(c^P#;|dG#ozcHwQq-z;VDD|PyC2~38VSjG$(~Fq!5_N5|^Lm zA)aQG7MbXCj#^}B3VW=_s zfIJxHPq|`TM6I=)3Hb37Gb$H>i@#hb!v^(V{w)bA+e;VR$QcXo2I|2AwOCOZ%@To- zrY>NL@v|rotxbNvR*X!GpjLAa8l&4)!+A=Sq!4gJs#bDp0w`{`j{w|V?@4iK5W$|t z@6|u~`lmqu6zU(v+--Jk%)?d^`P;(1{5xpOLtr^?k1_9UI+iUhX&ymDqO2cw!F|c^0|PYOyosK19$q`S2QHs3lptNx4T{IzO7Q4BXsi!N&WjvQj*&BlY{R&wLMRGHn4L!L6eDOXc#h@vvK>)$PEACfR$;X|75j3!Qd`yr*COmTV*Z~)) z*Dj(;YbfVFroo&0Cuw^#C7T7!{cz7km-h&-59xgKdwG6Vccnk8M#bFs=(QzP2pm#{ zo!&+IF^vtMVEJwS+33raUd@$JnBU0+K=t@V`52-CnIu#u2uTiCGS2}i1Fhxyxd@sU zmj?z_XZ3AQ)$OU=+!(0;$KLeTWmhS^N)pm?D+{@^ zlI1Rt?Y(2WQT#E#T+vC}-iI`Gd&4q55Rh;k?<00|Xk`l+LY@tfNN)3d)kP`ytUU4! z)XpcHBt7QQNj&G;pS{nH(rKsgenM`>SaQFh3+6uCqh}1=l_aU;$Fo&|+}JznlQ(8p zKuK?s6m9INHU*V@+Nlwj8+(IdM)4Vvk|j|ff0Je@L;>kuZtPXN?ui<>qomVynYaS` zBL%w7M{FwY@8aC%JU$u4?^57*(o2`l`D~G{h)TRM`}ypy+RTCJAYD}zQNv>gZ43xl z<8*DR290@@O*1Y?U-2e2m8Awf0J*V!s)o4%1}NFdW{p?W<%=POxy>4visdwGkmoiF zqLNkW4$p1Yc==S;bmhOLSd*Af&{;0IikZ5CKxR)dd|>V)(hJO9dE68tmL=`L&bm-q}b=60FRB znM>(R$40OwuQ@gk68`e(JjgEMQNxsENs4U=(aMB&*`qtz&H{>rx6W!ZACj>nr#3v-)wZ*&ngJW?ph1%>?WwMtWx zrl7gax~6qH3% z4XqT^9h`HR4hq+KNZ^r13-nY~eD|?cHWs9y473!qyZL+4?8%x0UNHOPiFQ4OHs{y< zn;V;^t3n@t9=Py6CNwGS71@BwC{q5}J9R#rVVVnvn$9ed(NcAHXGfFys1 zfH3Y;M#+Xu29qL>>4BL4irw6+$>zrMut(~d$cFl<_Y;X)WC)fBe-T_tWcCBckt_zD zK;AQ$z&+Wu)}w!wgwx!diunKJgUP+QmN&>Xblv_)TcJ|<5xv)>{~osCQ;x}>UjDe{ zL41i4Z#Db}WAuw^ca9eM0;1ArIV1H&deY)w$w}Mxd=d-ya8>3zS^9FMy|BN2@6A#_ zReLL>4Y@O)!!ck^Cn@F9Vut-v;g!!~L8=pSiRnP}^HtBpd_9Q6bC_d2MlKr8T5;+; zyN?4yxBwsZ%I$nE_38*|6;$Z;QG0HMfZ^kc3yF(7<;xSVUSEMc@#^&z$`gOQz9M?3>DBS~n|4MJvV+L`n)D1G}EyxRwt_dV>9jV=a8t z0eucc8+KR+gpd!RPinQxQ_T}*C%ObTm7O%23b}zYyxGuz;bjwD;y~&Bx@H$l$lk6%c*;P!^RZJRC#g9`}lzkNP zl${B=JA6M!J)k>>-;9{=nISKpY(LF(Hkx-Z)DVjkD$b6V>w{^zKBnrMG028XGMCT^ z`TWq`+(}%X>0@enp`^#llLS`I7j>$Yti_VGI9{$Oj%vzDpv$Dv+MG!|Al8y3&Y#pN zX*}hY^T+ESuL?`r_;|S*9Qic9>oMAkJy2LmU=G}8*#5lCU;kVHOubXV%wzmXYjnSlHZ75;E0^Z_W`Or(Me_Rx(QZ;_?m~g|LazPUKX%vGE(=)oj?&*zj{l=u)QPGiuy?2ldeV-q1rYT%oEY zUZv)maEFDZzqr*p9!-vYzc7j?5p^Qgtx%&7C#;hoT}O6`SLiXTAj*+s(J}=+D zI;S423N0M|OdLSU^$UppZ_YonvLssJF)PPKD+Gw^aN$v21Hk7wX5u<&|crtJ3>mCww z4QA1-#2#H#Lz=Il4zZ9q%@yO<_s)053A_1iHbv$_7Z?5J`DL$!9*C`Qfo%V2!FINJ zzZ>-()HwQW0#t4rbTVFPzwWsnPr>N#>-}WqXZ?2sTH)7Ws&%+7I#=`REE`gNW26T=edU(wq9a zuXld*MojkouCM$0z{#Sh->vS%84=aUifO3^u8d8&0`!(wTT^vubaTeXR$dYL<1w&` zl}y+7Kxfbz#aG*CNrJ94ZzQ!l&w94=jf8dey_Y$xBKh;eq{|&v8-G$fMCLD~){X|l z$-`xbR}4Xa#ra~?o!leIcW&*xqW+S!R^*m5nrmM==z z0%fWTp>lO06vVGt#cW-6j{KxwWhfZ!_7BH1pd?5C*1{I#8@psDFXEO}et7wz$k zY0a37eUc|jRsVn|OBS_8rtkuzP?0O|oh4Kow0b`LEL6KK(kMrh5I5JS2tRAikh@_Ob@EpzHF?DX%{KL% zA*x;SMUPq4!4BiC9|~v^=ze#aQm$0nca}mc^xg6O|e3 zoID0C*Ms2oA*EQ`J2SCU4mP#cq9-nMBz7v}gl4e@z-sQ`wE&=A2nwyOqp(&i_e9l+ zITjSZ&1YgW(QmH&2){o=I(ayqeE3*BL^tjf^>lya%w)$Dz(U^q!!+cN*)Tw9B`pWqx({f2A_3Oy9CI z?Mus4m{z08bQhT-4SioVHhhIAt>IkOzI2dL)vm|SjLipUu}!P^i}K#u_9g}|8k-}D zp7Qp$Gs})FyCSC4@8e>#;jk+2I+GClJH3^DtWj;J_7Vr8E%f=){ZGr9e)4z5ruLIZ zhjdn3EzAUMGKD@9E(i9xy0cA1KXD~{mMTSp{yFBk`H*VXkKu}__Q$4XN0qjJx0`qZ z>KjVyA7Qc;+2d(H1`R}2qN(Kf;tXn6`RO5@>8~HltJD>p(x=lU3>Wzliel2T61pwz ztvsW@;OSIBXt3OQcENH2!RZ_k1&2oil9j5!ZFXX}fAa8z3}b^JmltP7nbI|1u|k_V zMA~sJqs$q!d4s0^GGCvu&L!ib(2uE{B1faC3S23YG@AOTP?2Tm0X;mm*042-_vkUR zHskldf3!}n)}vKxkLB-pXGqMQG7IG%aW+-kx^gJF7|n8H$z|kQFwa`6e3j0f8vJc` zbtjsI31k>eGXJV$Y8s1rcn*3(iJgkTn&nd>+*ccnsR0REPhUXQdZ1O;Bm43pq4VP^ zNys9aW1atDmZR%x3U(-B$*{6W(CFx%qg!^k$=jRm0dzkC1Ns zxk0*7(DfUZc3lUXv_J8p8_E0(RcS_6XLSsh3b&{V3%hnwhpAYcMsJs>py@{@3!@++ zm=Kw59h=nVfd}}lvCHS466tfUxG+)Fys-u=aRSbkyV{RsVuLEjzXd4bp-HuAJ>TSC zh<|JNC-vCni9Z_h${&|x-3?Qs)NZCeKk3aKWc@pVh$@8s=5LuE{&GEGcTp!1{F zkHfUvf23!95!G{am$%fl`UkZxbhj+nJkc3mLhWB|{K&Op5lTe`xZuA8cTH-V@%*{u z!=?J6X)|?}y<|i-@@vN9zK8k6zke|18ir2$=9uqcv|=|0tuinc*_Vf|%f+$4!`8u* zS&p%7DG9(|9?+v;1|EiN&aXE2*)>H```v0CIw8A0GqAa7f9P}Q9R;f;b^J-jH?SpW zee(mj6A4v)^82v$4JrrreBiw>3GYS8hl_2%57~fs3B}?L&4rYW zU9Y2)m^W)?%(p3Mm5R{`U)kl?Y;2v16s{*2tIVU5n}WtJ`t5soR?vEr#g+*~Z?98b zGMWr(VzUr=Q9|0wKEh}gfxReMy3!Ewhx=_r_#Un{4G57v)P1;ii_)=K>_E7qy(M@P{EU?>p6&Vg#yw4(}yNeF)Z1jp&ML9gDXd#vQbed^qPiC=tJwoH*GQopR-eLoFyf+2ZkHC&#Z*+PcilsJ#q2Tp;8YK0$2Hf67T*;b1m`iDuY=vRRt;*M;cf{$KGA73 zUr9m}o5M@^Z9K&WERP3J-&!>odyN*~ll8cqIF8z`2clpIwqk6q_6p42`-aFU-2EGP zl$?Y^SLlHlCj-$5Rbt8&v=T@JW9m}QdICJeeLGmT98Wp;i$V9(CA>syHb(=S)}9#) zoZ;K)Ldnx2n8hlT@U3hntFC1`AqMPKV|AKzvvf$W7=(v6QKKAuBBwHqb#*+gJte1B zW5X>xN6wH~DT!xv;&nWi{l-`~nqOmA_;GXZ$UXL`LuMDirFJlBt62$|1(p*Y&1xjV z`(v`$`W}YBD<(Qa1{rjp+URHZMW%0ynxUE;GVE_fNgRBHv6P**1NLMFc9?ImS2rF% zYCOJRn{&ZtPSxvH(?V;_lOy*6$fa@LHu~fMjIAv-TVZj&Z7ntbQ5$Tj`Cd!S_pMg) zDwbk2U9JGzrkYn}qRHm}z#LFRu&TfLYo+;`9Wl>L(Y!Zy)jWy6WaIG{BY(*V6AEUB zoQx0Pd|}-IS|5o+?j0Homl2$q2yX&6Le{<=LF_p=B$NGU`xr-TdV#W(E=~L84d95JfHb1FB$ghw6rEGu4f^m^G>!J28l|u~@Ho z-j1JTSesO9+pHG5)y9FXelM(B1u#JTik<1!fteaonYNJW#(^Jivp+IRg*A(qGGHeq z7j5RJ7&l=MAp5cnDuOcJ8J}k+IVOZX%Zp84UaKd&@l=Mf{x_tVanzenzHMTzLSXY| zF?Av2tY_(KX1sL&$={c~i0zUT^%WTF#PBQTdKQZ2z&5K@Nx7h(U$9%IqMv2FaQKS}H)_di|) zj#K0;>O93p%GeO0OKhelFA6!pUV#oL9vwEJ*0p+qf)BVB>v)B`rr}m`*W_8^qu>*; zhz`l*e=Vsjt97mVCF-mTZ)I1uXu)2Pj^eQ|U&&~ykhE(PDddHi3RO)}yEd|ww()22 zrW*i5{&@1>OJ%wzK@&P}O<2}q2#?ssjd%&Q^Y(M!&9465n$Ap?5qxo)< zPrjR;GM|(QzCvT&EGfZ?+bfx$=7r-J=3*0SdX45U@tPbL^Vd9GA|s>ZQO4uH!i^CV z9SjpFMnXX+lDNXI|kPa<&SBDTlfdrZ#w z=W2EC3&;ZY7-RZG4$y%-z*wKf>Lw)rApKvokPYLG3^_7jLl6*K!I-a){cU#!F!g=v zH1r*pW3^C>*%|350m^6?51M`U_(dA>Gt9$Ab2cMR7u8HH-5*J~mfjbuBAS4kFe2rc zqM7*p6}c-bS!QfG_J7Igsnn`0q%c^+4@l!2Q;9Ey0ck9zl};$-tmNa7zh;Dg0KJ=G z+^ZI_K`I)_rH{m0w$YsA6wE)@gBYzW{UiD4w$s<^4EJyy9ZmJCS2`%7P*5b!Sl zf|vwlcT9GVa+=xE*_|H#uIltwVEO3W6KOb}Vfgo$hsy%qrAL*LE!YJknc*KQTrej} zPk;+!o$yVeZ1I$cUOW+nl2{q1uoA@$QurNN-*ycKJqjJ4!aw{VYbqjyO6R9>7(b|+ zDiSVnp>j?hoH@(O{yNEX}XYv$MDW?$0tm?{R7n+3apj~PNrG{`r+7I<% z8c3e6D)sq_lnd?r`ANVoN^8zOd+w^dB)uZkNfgEk(sCxx*_Cq6P62jV5~?@sB86#1 zE>E_2MXE?L`!SVWyo&XM|4tJ&=3*ImC53tPd;3ge7M?ftvIc^ zG>y%^eB0NhvxY?!wt5?dnAlK(gey~X;H-(gwyUtR;;vB1+OFKOS2{vh!0L_Wt0@*a zGtO97D2+Dc$9%`@YO#;KNw)TvM9!3SzY{sb7D(>6(mvnAR)CugIb!`0=)`V$!ErdE z74K1d-Lj+M;j&%a+$LGnrsuux8D*1Z8(cVXL^+@@ce|98p1#S{H@szUEr+unU)wIH z3A18b88FJS;E%M=FZ*EWpT*(d>eJ3}i1z9Wt;36z{50wlLFWt@ZnYUGG+&MT3Mu2L z1Nk=oqJu>gBeGpc@wEH^bM(UKy=dlOUY&0(Y-BgyfXL)HLegvhK<_Wtucd7y6iPxa zAFcCw;)5-N3>R`BE9e*Rs(q3ZF>I}MhXyU>S5NczmHqr(WRW%bvub5%x%c3DNw(S1 zhDUKM6}k{QDQ&}dhT6ocbI?gOhmLP(uG8Ld!4m${uyY-(^bJLDy<~2 z(wXxoAs4sWe!fa!wf($e87P)}4bD76>z(N3Rs5cm*ElM@E};9i0i}kNI>hNiwVaQU z0pJU;VLK=6)|w|u+gfHjN8um8JbGVW^xo4@rkW-B^eM$@h6w?il=xT1V%?F3lF($HYVQ94%jvUQU$=j;97+MD?LHTfF%l*!jb z-1mfZmMjGv;&BtTc05_W96B$7Bgr;|RNE(npIG%LW`J+IFs8pE5|#b@ALW;M{ab#q z98BEnR%6l}WMqTZZ0>y-XPNllkqlL?#0oou+*=@j?ay$(WC(0euSD*au;=d2Q%fH7 zU*(=N(o=-&O8oHTkusYUc@~{R)wb-kimb2xS~Od|HN=YfGpblMyLky54?VKE}CWguX-klbju1CC4QN?4yh^NS}V;l8ya*Z7MaUOEMfZ z#vC=)J)u8j>AONpKI}8byk@NX4j+~<`wLSjJm6(S%3h=1Sl4#{!R9UxUV&K-Q%}rVc)(^`>{-SM?q6UQLblYQINBoA5o3Yv)& zIit#>*P7uitQHYwJ)FeqDo2o}@uc|?OteWRQwmEh`pwrAv@UnsSVGbsMyqjCMu)En zmq&^bD{l5gT-j#X733>4H`;GF{mI=uk!QNxYqriYw)IDG^uq zg7Uu2wzhH1$g_AnVu za)oFcE6ZS(kGfwh8(NZ;>;TpX{omv2WYXMAX?77yaxbIOJVS9-h zZ#m9`kK&RtyDNTLc*s_WKfCMaJj>AXu2O;+LW>U^>|v4XHFK07Uah85nX zXBcZ*97-3461p^PpK~7apo@peZlgh9t=UQ!WNF)@Ze)MANS8i)|Gu_oA62EVZxTF0 zt}yfJ65)Kg7-^o&U?88;^eT7T^GS$4JB7bY);Hq5Hv}BKz8{lc*=5*UJbQZ=4Ihjv zT9?n(58;8Whh^eCB&$=?%MiO-E0}_BWSB}T10isv-5GiNG}n?*Wuj<2-X4v~@=}H% za)T**U!V798Q1SM)^DWNq&($-`77gbmCt#|+$mHsK%SRbmVrDEVICqqEziTv_~}r2 zYv%RrYDZD4$n-|HR%TpZLBho<;Y{d~*2>K5D-cu;RtYEU*OlyDJ-pi(>?J_dN=6?K>;v?)w-bR<>Hp3zWcDv(hgu z)I+5Nt1`jV7HsQ3K}8F^Ng5nHi{XCesGfnQ5zYBD85zQDJzz3a!Ng9%c|An3qf3Z9 zU(Ty{Ku%`OF}$yb-)MbAG9=}nIW6-uMiGl3)agOKBbbgHn{pz1T{@GdpU9p9zowf= z+^s>1{8+%q2(JVDu`fR-e3iTTN@W+a>qTQ%(@?>H8m9{wr{gkC(|&ObEuro~Psvu4 zA=z(spa9uvZ1BMz&+Ku&cl|3%_taXazs4BZ+vMtal~U`A=ZHpM%OZEY%0pq?g?aT) zp8m<#KWdK~uPW4UMf#^$|BR9!Ap~=$%sF#dH2c#=yY%JgL()ANR+$%i=u2OZs`-aE zt*Ek{N{(-Kj1k{>iF7zN?yZ(-&QYfNo+wGE$x~YmuGjyOHe=E<^kS;&BPy56c^F3+ zgCeT#0^M+Q@=@Ghpll=gdGSt4(#*HaGkQKW-slVm%nQcuPw8B=H?GP==i-*u$$LE4 zS9-#gXWFknpmZ);vboe56{o)72QTvFWycVs(JN4eE{$4*6t`A{gN z{@ugxgZwLAuK(rpdl~=I8Kjc`$r&&|lJG3c;o3?L2f`ceE1jgcB6+U&Yk}R`Q_Giz zzhX3939DOs>h`6#--GTP%X?BL(l3|fm>lWjviMy&Gwfen))_92B)rDDU-2IEdxBOM z4=|Xc3q-z;h(T^&9bGq4aU_v%toyHIzIOFMzTTjx=PZ8}T-$ zNE9PtIM$swx2(i$f=Y>L%n(o7}ze`Rhkp$Oi zUsP@6v)|-_Tr4({=Xs%H8m5{BeH1W?Kj>;yWkh0;ER&}m3g}eOa`P;p>~lX~NXG74 zB8g)9&j};u=W~~O&{;+Q1D7r24q8XlbCK%f3p}d^k$)UraGb~R@#kgk@FW6X?_ES9 z5Lqkn4M(G^n5#^mhJBZ(#Xy}~i>NL4ZZcq<&7XyN{8^qaz93qsQ?)VrW#t&6wL-o8 zS-*@^FKzneD)sWZei6UZ#^@9JWvF`DuU{PUGA3@UJ1OJW7~Px zZc7ZaNq-`!-RKvjjt2(WrS4D5v`A-K?lH!67#pgk>M<`E8>Z;wVa6B{)&*FAuhS_* zw{mF&aF^&a+x%aUL(W<_xbTj+Q)zl0G1fn(hhk`>$~+&rpq)#+!>-?8e{IoU52bxv zemC_DU8O&~l>VUxi#`s1)AQ03%k9Mc^u&=;#coxF_d1FUsQ*0fc^59~aAfGaC$h>t z+WbElWA;fmes7Fta>re@W`nTj1BmqbcmSpl(FtdvKDidC~nK{ z6J_f0NpWgFqp3z9YHQkN9aaZy4(8%XwNtI6U_n?Le$&IgvkI5CEk=)_Srk6_A~)IM zQd#a*c8h~F_3=UlfkLHyjkoqghfq(mFpP6o_y_h<#;ym4se0EN{3NUWJhCoT?H)Ue z)U<28!A~+v(U!i9FNAIeWM%dqu!mQ^at`oSFeXm1EVqWm%d{<&lsND7e; zFEX09d@AsACZ}6U87|r236!c7*hBP3n!2pwaJfJ_uC(j=#Mw@ z@uuX*6p{s%1Azp|EC)vOzkMp4jq1yT!!-uaOT*wU_M<>6YC`LWY19~Ls2QfmAY94k z;nK*i2hZatg}Li=Y5bKvIJi(guOGtC*)TV4ku#0Vv1rh>!zm=jJ((i4;rE3cpXc8^ z{x$PY)?Ja$2bc)lKUZYfQ=lR<`QTI!(D5F9r;(*K&U1b4qqrgzl}^et1+!!dVwcNf zK)AjwP@3Ovj5(|XL8M)x)zDvCJ{aga9Lz~|fsrMQ69$mVipDzhp{wL@;?D?Q6ghP!bdelP{F&jQky8j}l;nIufe9^~|n6e4l2C&3xao%*D*)aO~bGnAy7Y{hX0bc|7^-nN#@ z#v^ILX?r{Uem-t#_r|m2NB$dFn;MVmt$BRx@SSnA_!1K{LlfArkE(a@Kja#T;1c<2 zy?V#T>@D+X6oLL3E6mohBTK%pT;0s@@7v70ATuM>ud1>N)XDL0xpJN8H3t^~Nh*ZQmlImTee_`AJ;i ztAAwl2tmJMWa4d3gonj^-k|k!ju+fQbkB;dz{lRwtCo}?`K+I`B*@Q_+lYq>9`&2$ zy+Wi21y<)gF+Q0pF!jbo@qsN99{xPh)wlv={xgQ!*B@XC%o%lwZP#6utPrxjFpJ#jlj=N3xwx#GtPMkD>=y~ zzBTJ&tMj;V|9f2sT&}y2MHlL<4b%G3s__|{nipN_T?AS|sOm`)p|;%*?e|;zEFuS> zvGYx#neU9(=w!tV)|H$;`^O94d(cU8)VS}7PIW~YEmF@pV7kBFRDV7Hz5Xt^O!s#L z3ek1ezurQBF(sArV?0L<9IhF0*to*WQBrlc3I>hb2Y0@;)j{iwvVp+cwL3aq8>V)> zPE@kwWY_dr%e4va)uo)nns&Y1c6h|*EPE>?)Z+KpPQ-8<2q|F&>d&jzW}>*EP-dcd zb5NcG{gd(ahDl^%MC0ja@#;7S#CELTD)r)~c>SaDz<(X`4!F(^8Y3-XJaCpU54#$$%$|-1wS9mrU1h|tzfc1BwQKXD#%Q=w)2^*$QKm^v5 z#n~&irg+lgtRWAv{)Hr7s&x0b+WHk29d*|DsfxtKTPVJAy~*`SjBjbB&U{XKOwo(Y zy%f%osp6&Zw^iYfZr1Z-x@Zudv)R>RxjLZPMXF@GE~$O!2f2|KU(MTfq76&GQvvWB z>6z9qyc7Gn)(u+$EcT@QMe7)ry9kzBlVrJ1a<_2DZAo@} zvO)!9ya<7%XJBADVaj5y2#bPY1Vt{@caxHarhJB`k+bG6?^)r`Twg}5we9cJ*IMD3 zm=VeWN6xWrdv|1*e_?GjXBv{E*|T>=49^_oK)zH5`F?dijpy_havqB*WGN2RQ{~f zysHwa+&bT3$!GD$&Ufrn^0}$%KMMQn%ja=mef{IleZNeZR>cDIrOriC~?zcY#fzM$@+it3IzN1pmA5c>A%z$T5*?{4-WpEJdcxn9cts(=l4( zjXtR6<;$T<)Vx$-M2DL%S{WF1ur^q?`}NFR(8sN@ttQ~qllOr21{MyptQ&Qf1V-PA zt<@&(@x<0|qyC`vr%S|*xVIxGlTLJJw?aEi0Nv)mor%XB&w=c$IsO0*)LC!(GzGH&y0#)_3bo-O&UgEQ6o9nTgink*9+2HP|9OZ~r7LVP(Ufd(wtXe@uXX4pX z(t4kqiRA^>hsdI3eN{aYli~sYX?|rFdEPD(PcM>0!bOwy5DrAbQw8i$cXN`JSPg{m z$PB$dpb4p8G)m0(AdFg~ix3;L%Jdh_!q;_dPDa_n!qr#CZgH9I-;Vsw>D<%amq{2B zf1$!2!2d!)f*)r>2usx6=)$5~qZ3=SmtqsAnixBK^_%V%?N!U{qovrw{5o1|C{0XQ zU9_5DnWBFx)p&L*YpJTT)kUlRO2nI136EQA4p9!Z!`G`WCFS+0uEkbn(u3amtop3T zOKjv%*9B);4>tW$bSczE-tfH?dHYPY_4IcYzGKsi$F{8}ZcP!Y^{Wd?Uq_lAb4_UP z$}HP&5aFYd`?Nz%PIB)zB&&a^rs>Ag6#kZu5%-u8n^Ya3hg(wC7< zZtx=fK7?($Cq+XY*x#oEzF3$uZS;Q1 z&Ghv$O9_N?k2`UX%i5*R*zEC3*v#U~o9$TkWQd-XHE#g>u-8xgRqG7uEVz6eQF+x_ zkPD>)RFx$0FI9Yk#DP!mua`7FNE8A9ZH3lZ&tM|5$>zK4|0Anij#UdItKE)Ob0Vuf zIV)xo0@%4?T3!8k>nG)G9qcQT5;44ZNotg{h0FT0#HV6!nj_H1t4gSwpKx|K2$m1lUzS2o2&yfeDlX5|6cXD8ypske* zgc!a=Yfcj@2t_t_U*IUOE^PkLjWtj!!mlaYc{5RX7#cRqG(RS6XGgz1^;l2e*gx!JgnsqNqYJ3^If-TN#4?xF!=j!V zeebKw392)Wd#?oh>YoUa6Z|He7cFDbo~___Icg%cRuip&{#4i`X(g!`c#cAU#+<9x znxPBzYXv4}<3M_zujsi}(Q{DI^Hibdw{Ph0*l6h(^qgnY^CfggrX;SpP~fi`$7t%_ zrAWA+nnhc3NFrPyrA07v*2rs^`sd%)H(R)?M~1 z;-s`M#6TmpZuaM|Ge0zYn-i-H3J_jKBDlE9ejUoh!r;FAOtT|gq#|#g?6ND)RTU4> zG$S%Fxl_fxQaZO(_(w^e{=s-h*5bS=-*~(>ZzR`?p4e=r?JLKedz{(&tSRt=A9mIY zkku&t1(X+1#9ehwtj=xg2aK85xBMDo%)Haf%Z)J?Ex(RO*Yc5Q1H}9vNA`HjI#<0> z_TK8D#+ZU{F3+kcJGAO=W$&^1439WEc?Yhw5RkV!yL%$-ncaV^=za&kYS~8}l1!_v zZz36-|4pu&=1=}6dASXHO_EzAp@rnRyv~^~Pq_>7j{5Ra@)9MWBB*`lLgOKXb>?)h zws_M^VIo+_x=kDp|Ck#ROsVh}Bx~q;9qoRI1doAYShI^u6NqxgTVI=_qVxz@Xrm3E z;PZstv6UGU{O(ZJ^RhQlxhnc|3Fh>F;E!#ESuqg{kZl=ZTeJyF$wW7~&l&n$z3<P!=b69Ku6fd3_NYNRr!${`NI&eTfy$Xr|Jdmb75Gu>+0j^yR|c|>0*r##4_Y|-(W4^99W+joMm?ft1nwx#DZr1bh!+LC)VJ2PDnnf z?=a(ZY|ZKE)M1A#L~_@ysmxBG5%o1!BB>?U5l&%9C$v%)Z4WUs%@@@UbwFkj6rFWs zqkni~6C0oj;;v$-P$JNX=PHk5iJT~{35x|#5zF7e0XT!*!G>1k*0MWbJCMpYJe7@* zdQ7HH>$ZW}$d9(ED$zd$X@6~xMKk>(B5^s1OHqyOQ|6(d^|j|dMj>cPBiYoSq_&VY z%l^>>H2Q44%$R89Syf#2QA2QGYCEa0JG=voR+lL1n%eb~jPA^_`^}tcZEjr6-a%DT z%`zDrFS=vRCDcjNj;L~@t3SuobFlsk)?liw=Qtpp*59nJT|;!oSl|t7^z$DlY%}J) zKnayf=sU41{@Zw_|JlJgL5sqN8&dDb2P+F;4=u!oS6E+ryM8ySAKf7-g9M>(01vWj+2S&^>^Fwl_xfvzYv?vSb!$_+v~HQdgkoW zng{|hqR*4D`RGeBTJlIrAKOgp+ZWhD^aiA!m#;<(-#h0Rt!ze1s!*dPl~kLDlB4A% zU5}QBC*4L&d2E)^nonc>qovw^YNWLP44y3Buo|9~0aJhuADz~^Yg^hoi}`(S^Jb6m<3jTS*7DxO%)&)iblCegNk^>Yo2_`7 zj=vaytEcwhc%i8su$(XKU(b_4Z~NJo%-8B!=F#Ya)3PwAMr-nlGI%-h8rpj^FKWAd z&nynYExtUyhTTvpYb9IgS>_bC9FUPkQEI&6%ZTu)PfR#reiDGkjs_=?0z{C*xh zw@Pv90B9igQ*!^qYT}{C z%KDrwOs37(Q~v)%J`?tc1jU3KqrM)ruA7^Q9y@7lY=TxXZ-B30J2( zyo8^NOFd#zmeJO^*I@~bc8+z}4it*yPZ@nxn-Y^XEpF)rY+g<)ms2^mM?OZfE;`sM zQa*yXKJ?i80zR8(yYf>3+0M}_cZO;_^!*U>VOVesJGC+Aoxw2Yv~?A~Y;Fnnrq=yY zgw$duWIqEB{?*#u)fg)y2tK~#QFbiYuZ)ljB{>F}jzo!kBSzp~E|3b3Tkj6n6~Co^ z`>bE_D|;~H<7u=ekI)CTEb*|Jqx{{JADBtL*Dycvtj)bzLELN zhP{TmxX{BZ^+{%LEq)@%q=hyd&^9OY4HWN6{z!v6BM!+m-lR;1v+}v*?M4-;trP~8 zTj5%aLrSxK?d@1nD)T4t2N{c=+L$WWatYp8@36i^ z+-xFRa~VytlVUtcP+#W4o%(s0 zdFaZ-8kv<3kg!lyt{{>A_lUp(k}}5lT}ub0qIAasy;kg7nGWMgzlZ0bb?hniGK?3y zvbRV98owJqSm@x1;nM4NlB+*y<8A?Ah=cyezc%&QQeHXU$>5DG{yCvHg(o z6^|hmL^xNYG0fh{A7z8jnIJhHI$6d;C7%>;poujDM+9v&W%blQBB$-_X=9S!R<>e6 zsWzM{+^Ikw=}gHefe-P!d4zK4vU5IECg-i*gxPkWc^N(i}e?b{BA z6YqrFy{F%KC^Ap1;q*oe&+k2${w~@kz}srW8zA5xUd&Q}-9LOF2(r51+)dhi`%>CW ztP#6&U{+1`&sX>}&d1`8o_n4=+nb!`5AwY??%4FLzyEy;I(BEBhWpD?|KI&i{h!wU z+8#No_3vL9FBvV|xRuD(Uhkq!->6zTrwk|LS2V&USAH~B%%eF)*5rbyij5-Q$E)wT z%FrX)ESlTadp@T_;yaqXD#GK~{U4*t-x-}zWX>pxylq52!ZBL0cA;rBzXeDHS8x6m zznsyH=3nq&J|q=^@YeF{+AP;Lu1a^2Tz1IV@L&8Ulx>9RD~vrdjeLon0%WA2C^Hrl z7j98yL=jcH)|lGU)#^Q-#|>b;kK#RH?4h zY~-god~n8MZd$5VCZZrE=Hg9s6(TIjSwH zOrB!uZ}&y<=0ZwJ-k5rdtEeCHj=*0#Lravz)JO$Qb%bK$wK%epAgtp}HO6r@m=w54 zBRZ~#fcG0UrnP>5LWSxIS|6agI6qgZb05{I?#$~?2?rJ3AE^g+Rhzds2Wit9aG=Bk|*OA21*iRpD)D~)xKi4klr0FHX zo0cq*C()~$)&Fko`bd-!3aq}swbSWUxcsOG-3YR1{sd;m6d)d;=jGih<<{m+n+2&?;G};|XD;mG*tj?dK=w4OSBSj~q72Wt5ingetE{f_d zLY;A~XDC|9N)V^H+XVHz><;shIiNu64=5HLdq@^kvs4|?T&%12xMXpX6)c#jbtQHd z%jcY!T9Okxi+D@yl&{E{M53sKfiP<^Gu4eO{eg|P?knkgGN{R=S6-IxoI#)0*7j@y z)9L#m9ENOWD^$!WqkwHrQ9ZuiHnL5s$J5s)L{atS!DvHER7Jb8UM$LRobanK)`zS> zo8~tDB6KohfxP+**mZSvE&S#%JUVe0i`b3I@2)c_qhG*t4WC6sND&`*W3|5ybUjOXsT zu>BOFS#?nagZqtJF+!Pxz{e|9O8hA5p0Hr!(jS|uCjf#1B0GwqB0}SLg#J|lpXO68 zS0X>DpilEmh8cuf@Q?(P1PA}36`%Vj8f%|jyt z4_9NErpY(3IqG}Z@c&<9;i771N!=}Tf;{_88!Xky3}=`^9wFX)>p4Lzl5#=#{d zr6%}488)|Ail#phiV zcNPh|nB+3|A___?n)9heho*|27TkTZ=t1e~Ia_^MMnkn)klt$A*-st?AH>5ZgjM6p zVn=9jd2q2Id z61v@6p4b1@-ze>g@)-++3-b~6hj=Y070Ka!5z8>5IniFxqB*PKmm(+39;ptQ7Adnq@g;VlCDKn_Zcc1 zP+Z1G#D5};jOWOPEw;#&;zrN^JdGR4^zp)tW+5-{-!kfbq?`cRJ=TiefYRkd5~&4C z`ik}(9!zg@DL`mH(v#-@h*kngE-^=JXXZ%YIPWD(pfNdJ;#x)Bm*o038tZ-nGWj^- zPCgoAUNqKiB|-UE`B(L@hoCm{Fs~h_PlUzIMaZq?+;z47wT*gk$H;~3-ftx&JXdm8LfFW+VI9F zMf;=LoH$~gG+c4&#vAdV{94p^EVMA@do_re18m9q=It4d#)gBKS9MT#%y$?fo@LFw zMQN-y{ggCWO-STZ(E15H{k1=ApX;Pj6luC z2@P-Hy40B7@WzAyaea=*8hVWBJfWQ9j5WNPg!J*L0%^!orxPp#2p6%KsvELbE=j`F zKRXn^5bZCM9`D#OYF z8ThVPffTkLpDhig$_iY%Ja?nGNoA1L99_`0o{YK$zOU^O9nfS*M`%Q1MIo~F#ELxYy;C12TB>{lP{&l6FLy;VM1*iy*5@E|@(wcPiaBp?4Mxei$hdz# zjaHQyp%gEk@YLwDvYCpiGc{HYE(GwC%uIxkuBeRYzL<80QJ!C|JvYPx$8f3vybdIi z`>M?snO5&8^^dta$cd>cl#BA0LvwaFk`XrrGdfYToY7}yj>Icb4}lg(wnu%vgeoJh z6#i!`JV5rK#`;Qqc?vPmKHX1t7G3 z{T_64qW(PVXRi}!qb>A8(7KN&L?Kc1E38L&M#n#KowawS8tZNqSNwcR3s2T=L~3IJ zaaJb(4q8M0_%V*@ji%SApN*4s%R25i)jgNx7>~$bgs>Z>O?u(?jwGmxIF9YHT?X6k zf%|)O=eIIYRKMHrj;Y`*m=VI6h_bD%m*rS4UtOg4Cn5#TI?BDJkLmY@ZabztU)AH5 z^)>6hg_tX_2@DU#piM*O|MD3w)b;;jN-Pzuqf^%1gaNR#lwyb@{rOK0I%Z%W*E4y< zFgS;9MKY%86&GpDr_WY3KO#LP{lpK!tJ^lSYT}g+N1NjYY|9VEL03+>VL7ZtTlYzz-&hz9RWTXfnjCt5(VJFO~?1zr{UE>!om_>z;vB9VbX*waLu zA>#5ofBCVJGalwzdGb#lbtpS?{4KI2f7P~iXEsUB_v3=nS20Ez@0Y6^vHvgq#iE7Q z^)^tdqs(vZFPfFUAI8N`oDHMV{4xXrNC9*kdQl3A`Iwfui22P!16|Qb>S^n%h!x1~ zJH~QxjpJXxBUjGG>=#%y*jICln|eKrh5GVA1al@ryHPBi_F4S7(!Qpq|F7zD>Y|wG zKIcfPY^O2ifRx=!Kx(5{DpraS#u)L?dXTIKmR^dX`cnKuix+ZOh(v~!FJkPWl!Wx{ zMgN{b_#wAkJ%y-f^$&0;du*G`N?J&Y=B1l%HQolbi_S^oP1@}ILA!2*m7FEX|HTDQ{DO#TiQZ+iktBp^E**?C?fP&K8z5hQ%Dfnbrz}#~6RWoFN zbL6jrm@3i1T;{3IthLI%=VVRtMmoIW#QBd4Z^gxV+7y)W;69z~_i)$DD(0~U=@O~+ zDbiEWKR;OvQ74v`YD-T7gWHz@QDA?`@*-h?c zip^~|_b3idVyD?IkG(P1^)Nql={4sITAg2Y%1lso`Ay$DEU9H-@2YL7WAtkyQmjPH zuX6ek5y6eAXBv;O%)#a`j9=p&At&P5)KdwHI;=<7*b7Y!UI7cQTAgalZU zveeIM1W67nj47%a=n<|4OY0BLVw>EtyqYt-F`xLoRAK2}7_Hm9i#C-m9CtP547tEZ z5iAkJHE0XJgfMuwBm5WPpd(;Q8=!L=Fo4j?p~B38$83d z{0O7?;N=>?U-p5q5yKrN#D^^mq*v}oVIi~XIQm=9;u!&YG+z^oDp4LRM3U;pryAxG zQD5GK2Cwm88yKif+J7)P?EaszJJ9>4uUGZIK>FV+{YTm9-2IoH;}>@xP5{+$AX&DS zvgRx80`RO`1InaYkE}~ z;BQ2~nG0gkHxN81dQa>B1OK@HV%Yv!`hW5Np#PNp@Am)Ff&C`}it4}ae$@4#?!8>B z_4nT1PqTgq`>8Wmx?wz;#%I~`m<7r4{opJD{pm&jn7(CvKS&$j z*v>{08dqM;@%myBrLW23AeO71@_EWpPjWc>m?cH*0GoT?!#JdQJjIxjj+5o6skAvl zd7>98pR6_IWbCv$YtLZdxU3-df5?0P_^7ID;d>^TgaJm+L<2^R8r#^?1{Do$p+hwx zOaf{k0h2%>#QxAyuJ-yP15^pbPNvP_a9VDK*7oYXw55G~ZoN;j1;rL@0+btC2`2udq% zFc(&_o(JYaHj)psdvU7rlN$vHXGVdn#!=!tMK`b^=REYsqE*zccfUeTHXc-|w&C@X zT?CKL^EE1Qx!jMo+EAkkDMdGHCYxytnO2>A{34l$AEY`Ni>Rhe4bNHrjnRYU4JH7F1W*Mh7e+P%bjjUl&Pdew5CSf9!x3)O(>Up+1d1v9f$ z(;u?5n~VZ>rZo@}5e~_T)+Kv)cA{B7Du!mJv>H2PS0AAphh!&uNR6K<%X-K)&Aceh z7(8AI9(DW^@6)daKl%7H%XP~Huyws`LK!U?l*Bwz98FEJQF3A)v)G=Qe2>$;-Wcwy zIpx2RYIGAz$Sn1;gy2h; z7skowJdcN7@3}j%%6o#Rokhz1vH{LZw30<#e5uT}*r%N}@=6GRHihoioh;tMvCk9- z;#T6fB#DtfClM*t#}7vs0ZSv*{f{Ey=zqHGjE_>q_b=sXeO(3-s zck5^A0d&Y;juZJ?>$oyXHFyl>2kiUQy#j%&LBz{q^-pDk^$j34WK^_pvUnJ zImDTS-BE1{WuA(~bJQxdiox(EBE+u@gcqa-5-6Sl%wqb)~#o z`3a+Jj>;OSi@C0hWr?mn-jQwSUMMDh_@td!DTO}OBehE1;%R&YMNx>TD=$P^+9;_` zKW;YcjZ%+_=o_jWQitX3(UEW)uNg@&&2WC2LDwa^FYE<3N@I3Hs2fht-=waRfX6(` z{Dkg=+yyv8*g)b_bHq~Dl|1jaJw#>3SL}>d^P`^r;%QmJb*m-`nua{Nwf z;H&QBlbevNfVWDj_&zR+@UXKm%c%PrYLr?hhgt>R_l4COd?b*Bt+(fW1Z2b;UpVVV@e-a(#dqyO1?q=TX1Ai*HP} zmVugCTr8ftj|(d9W=gB``s7h6Qa`^*WDMQ-muS3R?cJ^sD2i|}I9Gi;a83*kL8p<2 zZ{a9(5SMIm<;XAJIe5G*n8hlMsoW-(dwb&s{#pq+$a2QDF4LzGi;7UoqjgbVc$L$L z%4k=mK8+BkrQ!K3%;9=bCrl6XN9z`y8NADhgd9ega|oFHS;r8J%EgRIUEfS@7mkDX z^%1B2ZaKz7?eE-Nq}JW3_2lRwzEUQCYD6zSJCu@hn&kAOF?x*Xa40aXxi48?7ajiF zR#P3qXCsbZiOul!Y?2(^tIQ#F6N-K^7837M-AtzL#AY7pHV(~WSD?di6Y{O50U@6A zwx^I9@#2%8 zy5`0u*o=1e&OtHWsl)_XzKKP%ubB{C{$^bI_+!PJTAP;mddF|NO@6N4R3<+kkvwuI zBpq?O_rgtgf0-|#O*Qh9vnl+gB|edr4Ipv~i=?W%H&lWYGJiyNA$+ zo@X3XJxrf$ceQl6p{VtK*(Y5ns{sDMpxvr4*B(99n-)P?H(Ku>gQlYGA<$m>(!@DI zE78v5#5rLrv0NUSNLj>#Q$E3|9m{pzSfTSA7uC3%n&Vbv^`8IWyD|#;Du^|uOZt6p zs^3;(5+yg?R`f5v-p|ies}rXP{=%^iBBf+0^YWoT%$IyM8=HN-pLTXS+d7YCU*$WA z7vxuczAJnW{y{XxI1U|02AqG4+{t(6V6WBLTd?VFDU`Em6+hSSuoI8abt~~K`9CAg zT5T6lvz*UW?@?cj${{OWm=dS>?g24cfEW>1*|D#Tz*&#f7?a*%*ntsSVxkY!WpLU zH+g}-Ni&27nZF^+S3{5O#99*crlAC@?D+N~uh?%W#$6g|sY&_MO%3uOO<#iYLH@G> ze{9ad_QZ0)6t4u@rnKH+Q;tudjm?r83(LM-v!;zpNWi}+yKz_B!geL@B*m|?;^4i4 z;$pMYmG~z~s>?Ye8Q6BpZK zdhJs?bvP5f`~Dj5DL!dkqvJj31Cl}vkECFCpja1~Fpi$};3w*IvbQ$5c!D}{Sl?zt z(>j^*x}Yh6LO$n7YgtDne0v93r}Ddxf3Lv8`RRa|j3~0QMws~Amt-#hQ|HKxKl-$~ zaX@YP$*Cl#M(9#nR+jFNh5Fspp^=;wzVdJiEK(*V|BILVVPy^3v1Ec1^slKD_R|+>LG*v!n(8rjM8tzd(FC8m6GL zMb82~P|n@?Q1vuUz^Yrjqpd<9wVd?`(pzu$Gdnj5{o{W?`EQivr+H3tqXr?`DiP%$ z$K6*l)~Z%-*1|(?WGK-;Ps|{QU8+!d9MUB>%H+a;Qv2Q~`i7~jUTu*3cCJu0i(ig< zhdr#Bj_TvUlwM&@|FuXPniQlI1R~G15{E?H2Xh$Y0UQY;f=CSBQ2h1Nc48e$2f25K zn$3zLkhq&juoD~ji({E@J~@ImM2wO}=zsI#x>NC0s9yP;UxFGXZh$*Dx{Om>NJe|j zdP<`4wG)ragRThA($+UFA?L)q16D#5eT>>|+$4I*x`wS+-j5$6t4v6f{r*e2;6WpH zVgi4;%)nnCeLV_K@Hu62`Wcer?Enh{7p~YHNt?&Zu;jd&*&F{3Ged)6Zg%L}4UBTa zIk_0<(nYu*@Bmey3rO6@FK~tR-H&-?VfLz?=9BGX4_|T$F$5K%=WA2Rik!1(nAI>! z><0|oknH{x%mP2qQsJCY-ZhV{dj~M4CEet9)(C4aaCaFzG5gXfE# zz?zfdcvLsoJHmYG=p;DDMxkG#q_hOHo-P6=JT}@1A*WUGWDz04XLLHQAjmc}QVxye zsn4y3LUghaL^+o=G|`q9yKCh75vF$aGi%d^zsZe)bT=WNOina}f~1mk z8rEQxY<0(XIo&1tlRGJFO&MS|B^FQv>xXO}&%-&>(aCZtNly`nqy3}M^M^P~jUV+l zpU)qw?G>iV(aXpbPZEG;4{x%1SZ!TA)#@dt^+wlirPUfW?^&t)FwY3p`~?||P)GV{ zyZ59j9*|kw$E%v49|z>|YW=vH$L>Ur&Wd-+#4hhiozG`SGYfW~BpL;wHqX_3UYqQ) z>+Ztc);aRAHSsRKl)Jq!s%$>E-6T5@ zgQ(=aqS$iRNT-PwHPc-q;IOpuB;B5wUegj%9gVq%&F`8c=J!#>uei=B6x%7Q?M5cE zH^%NGd{SGvBh0?u)o)@y0TVqvN$h$|lKR{YvX~17<4X#C;^1qc1Z1joa!m#%vV7F8 z6XrQv^!!Z-mUZ?yUiJwY+2y0jj_9llxCwzpvO;ZAn;aI5VNK~J#G=TH@|iSOS6rjc z;}bmUQ5idae=H*hcNMN`tyo7Fj%%vGPDu(j2Nq%o%mv-ipE)fN7cWo4lH4dH!)^49 zLNMYMr>yt#jP}g;)K~Q#++2BBnTvME5QkdzRY9p#q(1jf5mGDn)-;tZ=7UFjck0K( zIuDOWC8`8oO!Tyz=t|?ue&T5Qr8^QQMnXh#pMgsGRHJ^5v7})SyAuD-H~)zP-J16ceO^kOs4R}wCEnn6-kmM$$kKT@8z+h$KLlW|VWj7-Hyx`^ zn(25xHm&5S!aDA(EP`NWYza3VK;@-^N`Xflvq0&R-6P#A%_{3A^k=A4vOuAdrAGbJ z+d?YxtZw_2O#a7t%#H@Lw+P!b>sUlHOzUg7KqRm3bpV$DUa^Uw=cvStV1?7)3M?}# z^~+A|>SR=oQJa&HBOq(c3$p%-!IqX8=*Oed7Qb3PFfv3!loehJA6=x;VA!^Xbs@1@ z4EIV!Z1JUJdy&7enAe#F@jnIecW{{A#;;J&I+`+ka!RKs_5xp^({(o(>IA7jSepjo;&6x$z9VOw$tA)7MbTk@vSevDHlBkq(LP$S*e*O~^2 z_DBq*{vQBNO+M+0+>A7A9EkPgny|FxreB2@W&RKA%O!*kmRn8eud}23@;**=8a!%k>bAx({ zekiiFmQ_^jMbM5MZ6gb}UC6Uj<;lvqyrA@)rEYx@D%dVJ)IXKf2XfBys1~Fmu^rne zRkII}7S&O(E+!jVeQ>o0cOi8K*%vG>JaIs#c{Upl(P}FP5Aq99Q=nWh8teWBwRktx zYDF+&0lG{y2)TvnrLEzsRZBXhFJqZ3q9^_Ri-K@zMlJt@s7ysStHz^~f`YLg|7->F%Jx87Z94Za zW+V#r7DekPI_U8b+-v(QCsqXJZT4tU`c?)&+}e7?j&`Vza!O%RR3SFN%r3fhuu)bA z@v!6VIhj|l{D-(o^0GehNpC@ys=NjLY8-Jou3Wg%zMYEwprSq611j+D73-;0cgkVK z3@ledCk_(w_tG73g3fG0OlW}Ac}0BgccR;~xh^9r38_kOc{tmSu2t78N5mW;ByjpV zYo9GUW_^pkq1f39IU#4pTk^#;V;G=E*Lin42$SkyUc8ck9b8(A&28KFRdFu=IOQp1 zt`|F1#gB!WhZ8XvNzm7OgVa%+1+$~J*;OK9MR$=_#g=NA6 z*kgZcmW8N7fR66bJ*!?vFGiABw+GPbHuFUS2a8JFo@WpFEMExsM1*09v#D9I zx7-O`+R@DR?mnf=c5H1;!^-Ru#%f*wZ_L zSd%y1MvU!sv1Dx5yIl3Z~)hRZpA z%>sjlWTBsvJ+c4LX%Ho0qWP!>)|ex8F{Lt1BfR(qwF=NPHluu`#G18~82ltjiFMLK zLWUr|ywMJ3J+eUzCm1T8|Ou>i$imx%GjMJb&BDl&qfcNPJ8V75_KBGeUpI^(=yzW}xWbur^|6Y_%b6NT$l|G!dBQ?eYkCHC+MZA9}7(L`Ls zpV;T+%nSjc)zxF50cjqg+PO6hJ@r5q;)%QNQ}cgYwA#*qYG${;uc%(kJD2aaIGwy5sd6XfnACcKupTWgxLcQZRTO|GR*wwObe^Jsu zBkH2G6=IV6&q8RNWHH~uWPtfeOcRp@kyGHE1%0aVzm;hgMxMPlle{o*BL{@2tpWe} zk5bfF1L~rto>?r50th5m{VQ!M!D3q^WUo)Srs1PQQ-ZFempYDa5g1IJFY%5d2qaW* z;Fodk6U9)SoMxc^Vg6~0CitnGYIN{!?k3d8h?(c}Jp6jr8bE6xeegh4M&N3O) z$55BkHI`sttXB)S2}NvBuYFg`k}3N^^I4{lE+z9)EgujPm13$5V*!qUWvWdJq|yBq zovH_+l+^UnUUeizMzSBdMeO;usk8PY#R%3=5?XuqBe4D=-i2PmEGMbmM>fyt-N$hu z1KEANxI;5V8QVP4u%l+PA=Sa6L=9O9c?cI9-~~}SLspV4|HFs?e2wN0{ls--5Xtw) zzAc8b1yqMnz}QN~d`Sp=kb-WZ8H*K&Wr?&RIjIVEsk6}9(3@eisn5~1Ko?p$1DdP% zv+vyme6=-*o>vi{JzbTq@O|1nS*(ry+C4BH%@%KQ-rj2OYX<8D=h#~b?CRS5!M)WO z5*+qcm$Lc6pM`Y6o$c+ds;0``>M^(aaoJnh9psd~)#HM+aE*hqDlbt;35~>hvpq;7 zhyh~LfjbN`ATK31N>07o59?Y8

      x79fJzftzM;+g^*Yhvn{R$~42Y8l9+HnA`b zPp8V+0>|v?0rXpVPtQX_$eS9Fn?GrbiGK|Kn>~2vRbu~M@V;OY15F1ZcwabQWJv!p zI5XsN@U6k{?#&P2LL}r&C+wc_a)D24!X)pro|$n8m#pHQMY#Qdp>>jQF$~O}ZnjO} zrAMk^jAo1E5e+Sxq6b8fd<^~w`sY0dc8x6=T`@zEjDb=v9%GIzzxfTitO}SO>AU{2 zo0%>9m)TrS6X)k-;SJwRLr|}~^pD~H79g(19ZH9Rv}bSx^eJ;SplNpl^Z1f4eMl2Z zwMQrdID}I7>;K^Z0IzXi#1zeN?!=mvPEZFpL>KQ)tB%Sh*7MJ;Lvx9n?lkEQ_Mcz` zIBdl)x%2K!+*E+I8D==O|26KmVJ64fH;!HSGc|PdcXUmjcuhHH2{#H+)MQR0^wfSEFB%l+a1@~_ zXDX~EFRg3S^zx75YyUa$rQJ{r!53`R!xs(8=MO>_1_)0cG04J@|8F4cq##Q$kVclq z+y^2H6nV%3ZE0jZ%CZ07k1Qz6;0ya4O}!AU2#gBr2q&K+G32Ln&{@BlNq*343$uY&4Hh^TO`hz<&8fz03fnge zX?kdGI44aGqB)Z$Kl!UnG|wMOlyf1Ep+uQt&S`xAgY)^+zd71|bf0#EF;`w{# z>G`kz-=C-NZ2F%dCrv;9;Cz+k8mc*qe(L`w0qJ=O0lo2G|Jc0zCHen9n3wQKfS<#i}?je5Th z4YJS7RqDjXzq>>4Gd@U_3=fXKy#Y$m>ExHa0Xo?DzMbg@A$semtzjsE_ASPZz zTAlsAMdzPUR6H?LbipnBF8CguA9SCJgq==Mi!dV<3HzE?#Jz)dtj8I~wA0PLHvavZ zfA8^65Gweb7GOOlcKF(lv#afh4U=H@;t!%OWM^4V5&`U~N<#F+E{b;y!{*eU%%PU{ z{3h}4$rpb&JEl*c&i)XHT}n6y(Z0)Nsk6R!Z~%ICvL5HuA3fgO-)L~)7ZW1y;iT*C z0KR7<{Vg{+bAl5uZmDqQ1R`@nytGW1nAb8s^4FGe6UzfFC6RkVEgzXUu_eo%IPso9 zOSXMaAoBZV*>-JkVtI()@=(+K^?p3J1yF8YkMltu1RsJ7C)au^EXEzV^KI-Frv)01 zzE$D_WAa_@#J?%wuVh<^zooG{__hgcAn?|ic#&Dm2kAuVw!8&iZ>xK{lhXT02o;`400d+-+@PVR-rqMI888h9zM)fwe_CxVbcHCnv! zHnD@52iqgp9KG2kHx3Y|1#Kh#49P2C3jQSc+&uwjv>kTp19nZotqQ=NeJs1kzy|q-y=2lxILkIDSIV*(1)%;FYht_WjGV zv_OyQtqE8=gz*YO@GI_}NA|XS#zB)aHN;aXU^(NQ*}=%$EgyB3Xo4MRxol$N$(Djh zY@p@B$etD}@@~sWO?a~F7aD{Z&0`8!et}2(V|r6BXcFwnctIheu@WyJx9HpDO1yxm z_qlH=R_1IUy@DwhAQ$R_ALKp+<&hK=_Y#?YS1vhl<=^nTVzgViUb(|BM-L06ul?>y zIH>rfc)3x$Kt&G=ye!~nT^{bSp{%huL=hSpTYZf1X!6@Gt1pFP6)A!PLzR^+`y5>D+*kb$SQCCo7x z_UnQofyV=ymHxPN-7`3k^E zM*)BFel+cBLJC|#>s$}ybeDcko(7eF7RWeY{T7!1Zvo}J@Log<#g5%hdGlTlE8 zxk2@A_1;&dqIq7nR4ASlVaVA6?w^MVRiJ&pu-+M0qq?zA5b(OVp7)peUcJN>7sBkW z3hAF=JsgfVZ4+XlmyFB--tpY(jion6An^)K8IbH~L$c;|kYc+lO@)BDxV-EhCLzw7hc~FQ z9)slW!LTxE4oH3UkahO`P6l;V8XPfxdZ*h|l@1ba%BwXPd`M2ov-iwA>BbDdr9JiI zjQl_N+xZ&|d+X6A48@^^f2{`v;Od){gCK%xa$)r6e=smPBbFb?^~NerZMV=RIbmsxV5xAB@O7}3K@XSd*AE@e8hp8eR zj+o#SEhKp{vyE9M9P6V3-ys3RgRh`oT?V-I&H)u88KBV{_6{pOUiy;V7$S(or_!($ zrQ&^-1<@T6_VW?pqh+C@ULr1=xS!p_WCpu4LNZT9(sjyNQ9@uV*&XjVhQAU0^2{*{$F8qfRd2_;vg3a`i9_}pwQMgE_JBK` zTM|-F_VaLULuGD5h#jYmCF5TMv0Mf#t9RrqiC1>QfY3x6x&s}}0eeDkuDwMtWN(o) z$Dn$rlg&oQ+?Mzw{K(PhbX`Fzy95@qJVy^sy~^eO98LGeIF%JZYSfXK6p&}g($SSW zvqMbGu`GCQRjA}d{Lf6TS*iqpvR`pN)u3wk2#XFor&)D=Z_1kbGskRj98;rbV=XNp zsq46u009We$#wldY&TSpCN=#48z1HnT{Kw})C?ebPuMA^lXJW!1bT#2>k0DWytyE7 z(=$XI+lOZaVF(=rRjv%_Z2$qWJwb*1EP;^yLAhIp@?Hi%k3%Bj2;Sg-0ADSLG(lfO zeXS}#u2DZEeV0=k#5qz32ff+lp^~j}6(ZX9;Bsc_uwVa{mouFOn_ zvDh|LSkZ%EBp%FbowD#Cg7rIN+dMoz0Y~`+*%^v|{XLYKKO89!ao@~K65*gS9H|V& zFoc}H4d<5XC`LT=Y+_~DdT20kx`#2RHb8vf$mFnBh0q&8ZSuGg!9@;da$#fga2mNh z=R&$p-Mn*gS|fB7QCE-bKP zCsjZi5j5~S(fkOfpSq;cucg9KH!KQ&nJ;LyR&8G6s2CY->#s$ z19ZwB5qTGzHIi8}kC|RpmNmIf^i0mQd|M8q-(#>Ra*;paoG9rm*#__6lE>tJw>(szy$!RypxXUrk8)NHEWAs3gzv>fSPj^VF%pn6yLOd!=$~{U zflup0>Bfw3b|+38BU={@$7?PA#zPnnqjfpJRR(6*&2W}gqCIQKFL|q^AO6pBHu-JF zu^_$`khiizUIxH&DRO%#d$(O3jJ&ewa`7PfijW8!98IQhz^9E;5m5Y`zDGm;D$b&H zZv-BEp~T~O>J;BM+0WJ1sLykALl$?&krl{bOXCyy5_sHdu1;}d zN(NXqf;rmV^NMJ4(rI=^L`5O8xxP>pu%3!CJ)n+BNm#x9BGED_h6_FY0mD)K3y_9? z5zJ$~e`qKRkAA$w_5Sp`=IrTr-M=@DePTE=aPO!RmYD{*02qjLH^HRzLdT3L>5gKNx9`$Y;8{9=zv^_Y132z91z<{|0*IZZ z0(fDer~p3kOT8-L5QAJWQQ1kSx8&=|Qm-yBS-f4bCc6wJDe#Hxiu^4zTZBciW#mQ) zWL^&EFDVZ+e;7IOZ6>NHa@DU+An3gU@25!2@-)IIzs-7pC_Xh%(i1-#^3MqM=9<)V zih}obBMKf6Q7{(D-bqGym{~62TK24feRD8=IxPy;BMLt8--clC!>5Z(kMr#Ukln;o z*E5MH8+^&T)>4~^LI1cJH{|k;v-dNn=;PuM?a^b#1Ivd#Bf|D#t1Ei!^wY9r-(g4J z=?(Fkd^(3$-kdC=862y{^DsX5_87VSx?eH*&j`{>dk^*n1DW?5MBWPFKB_usyRy}4 zV4S9G!Y_c2GlmCG%L4+t?7>c3RRfN{0hdPs2?8l;4aoE~>TM!)d0n*RL~Og!fa)#8 zPZ(qYg@LF(DbWx_qWqV1Vv3p#zvNi2q2mtg#oUyrQ)xC?xsM~(s1cvf_SrBaR(F2G zL@({CEcUfmUZuC*XRsUe8KRZ&CM(Toe21ZRjFvsGVKuDxb)U`lB|qiF`dMu7Uxq_k z;qki(!WBKny*iaMH=Fa5V=NFCyEhGr0hq}DN<;#zE_&-0j!~nZqMM$qHsOOh5&fL* zM0aI)l|RRKM>joSmlwE?=wpa;ES$t^#+H zNJouM=`4?L%WA$1JjefVidk~5c-F_a`I|3sst4ZZvr~QSeZTbcWoSrhF|2{c&H4*| z)A|kx&?@?iaZeg1kXGUh4!4X)?H7N**@(|MFZ}Cge9ZFk?LQbpFC$-v@O;bf`N5?0 zi}kJVNXC}nif(G%5lah-HndKIJ#rkNj5;3gfnRP*T+T| zj|^J`gH2tzS(@XoT9G>`EB0P0S*Ih&tzi|7#_jN}f9?z@#?(0Rq zq(shZk4INd(wwDRN5YZJ-H8ChZ=S^QjXcRsD4l_y5NYiH@v-N)^32I?;QE((zwGL0 ze>Li+N8b?>x$|y?dHe!f%OZ-Trff0E4=p?dM#k`s9jjhM#wCC^~DsSr|}$Q-*0ctlM`I z7M{5yWPDk8)H}Ek(v)?5$I$asLXpzq))v?8zNmoY}H4!d|BMu!mYTa@s@sHY>^f`b#fug43ej3x<@z& zz-Vx$hg|l(8p#hoV|4514~{{->RnGKV|ufAym?G!_Aj3+`)0Buu>dU4s7j;+TBV^O zC9geK$*-A`vQ7JoTui7|>UI5lMEw`PXCMirs7>;DdO)q$zd?PU!P9X#UEUIxVguka z-dBuB$7O5|U9V<~NzmZB0h}8xzGx+5*_|pV4vHlB_^*cxmZJl| zQiwsFZ-kNDBVCAok>~Z+)w<=~$P3mjzc1avP4XGLsipJPpagE}&h9Dg=zJ9^)ta%5 z#0v^#5UpV+L5b{^0rf++-Jg-!XSLPCZ+e3!K4&a6Rf}WRH+}~U)|0IVJ{%Jp zmCgJ(JJp?(BA$d?BRQW^T#@3S{=1KyN@C6`di7GZ;?Yyd8kDQ`funuY9`7Q)ryV<{ zt{*J9pLA2QF;(&yC2Iyt;#Y!_;7s<^1MHr;#UyQhKV9;}y5un-|57zNU9$H9fb5p- z_5gveoamuQXY=qH^@+`z#89p+y1)&HNDa$tHHp0=N_T*oL=u0G5@Y2Mg2pGPX z`j8!XqB3&g-aq$VN!nc+l!4w+Jb#X7Cddd;CDR+!Mr zK^VFWjs$W)M_QfMv1LOS$$K#;3ox(=;ruAyI0^8S9il^rMn3U6T$&qP$JCGhlX-#2 zh3|mo&x=#i#zX1D)aZbHK4+BnvY>SIBCn$haYI}8E9rj_IkNXcy2tVrmgiv}*_Q4j zpv`FUU&usr0uR}Nf0-Ql-O{&2IAeQ^q>W+=On#g*<#Cjsjy}k(@}}>>Uz+J_4Nl*N z-r_Uo-Y>jdLne7Honh8G)goo3*sngT^p2v^d#C0`**m@XxX%9z{Ei)Bc+J?(F*P^M zUtyFZ&N(Y6)fKEU6|kOcxntFT7sY&6UK#Vv<=?mY*T=sB{yhn)`*L&rxmmgYfBY{y zkTbX>z`ulfiP*EV0reNAQx|l;796>UhYR(?Of^O*JQw|E^M@Duq4)y*4htBk&hs9f z3zHZU1#4uIpm`%1khcwDm~=?mA}zj^+8pM>KI`P{Zx4R~M2A!FH#*UveY0vgjHmQvgdR z(%WTlYiJs<4N%w4py35R3U&dNr=J&MRqVtAQfvfI{i=hzkYt39B1rScihSn#4uFLK3;5_c(MISqNJiJ zeXw16w%cDxL??A8Me9{Pk`wb5(=67sqq%$@pf*d__Pi>P+7=fysB29&(PyQ0qEn>WL=>VhOn=J}>!>*x*a%8Ilb1+-)o$Dm)FuTP?O{@qL5KTBJXR8R@ zn5@d@_}5hGuL=@5NEIU?2&Ye-=a#+%vIa3l-Lulwm9O`IeHfQNnKWvb2uEJ+m^4v) zHnls?qgrxwAE=*hOZbHb^=r=YX{7WeL|d~K82K3mGdygn>@y`6*5bg47b`zZ9JI?L z+wQx1!8}Z17yOX^FIXi{x8Z33jHVOR(Fcq%>JRYuiKffVzZ_MrD25jmVJO6QR1Nzn z<5(3qv8U|A(UaL#o^}A`Pm>$CPHPHyPRrLs2Pb;kuTNirj9z`xda6F`PEOu|>irwX z03v<^cc^=LSW#Ip%bhb1^p14zAJ+Mo?4x2IJ1IL>VLi2s=vD7M$m~kqxajHyv)KtP zSbt^*(g|ve*MY-7Kb`D+J!@g0ckZM>Y$|547r6KP@#l#fT3y-lzoW93?l;(Yh|02) z3$uDH_x|ko>-3}Yf`xu+5}x;UnJ_&PVh+FWLP8ffjVJ3NMYVKyme2ny%~5hqBqpr| zPVYrzz0um_gWCB^^Ih67;7j#{)DA-UYAiLgaOo>h%0lcyHRDSGQkA$({y?~?h&UXVn89)IK`hKQB zjk<>|LdKUgz3K1%8pTXH=XW_`sS9@woR7Dj&iBs84^RBH?D~;gQA<7rEQbq5cFLBq zMun*Wt$l{JTJKL&=hyY>zhu}4CVr|p&;Ar>u6GC!S7<%e!SKK};Rrj`E;bcfLF}Pb z#@jppu2=v50p|lFiZVqf z463UZ$X7M~>6FUqGPnA)`UE%qe;^BSSB`wnqSkGCzoqL!C3ix9mE=L$OP**i-dDhV zq0)Wz4R&KcVH2GDLXoaT0cTIii|p(p?^%=IV?T#ba~@%nVI`Ry^ zv4PSKNf#L?(tU3*@|@+$^@VJ`bg*tDZ_ZE3p@Z@k69CP%tNZwpUQak_%veuKcbMhG zTTK|NiPLXgR>sOuIXk|zpvc$!A!liU$a0t9kDZ?jSr6{~s4)87Yh{gO{}d>XZ!4x` zWcsa3dmPY1zs;25M4nhoKhjgmojy;!@FT8TESjx`k;J&mbRFDsREpd~{zcTwmwI)V zG!X6M87(*n5W&caDk~w=*(iU(SZaL6I-RpvSnA!`HQE25b4?ckI#G>wMgJlnj&PMbtUg38T7Z8tm194ySN94 z89@$qCGO@EB%>&C4#poSLZ$JLyjB$cn)cC^c@b#!keI=6-s=2wxb!VH;a2oCq4J!2 zG1E_e_;-op%j$$PEDPGiNM}68GagS7Y#sXh%EXp_Gakk4(cODF;1k>Uib6O425Z`j zPV87EBN{o;a-q}G*ZZs$&bIP$aY_~@On2A;J;;ySh#-NRwgF3PAMuT6D2^!dSiaS$ zs{vQrF>Iw1;cQ)~->b#0ERu?n!+M__pY<(z(k?Fo1Ck|)0lCSR!G27i^mObnmsTltyOh#- zUVB7f2_C(gZ-cZVPnurD{IW(S@vTlXWPgvr$gWT3aL z`8i{8UycraiuTK|gV9ED>mjc2_N1_)tH6~2USSNFE{qdC67MA z1j%w8@vMs;@*!GC-JR`$8!83(Le7t2Io3*y=vXIYJtxm7Xz}D;|K!+sjhx3-Bm+hDI@|;HGqZnh+3cBp=!Q&rSB~> zy3x?VXh>EO=+S#JbjmwLayr=3@LL^{aOdZdb}I921EoE}|d zUe0#?3mpxq*VL}*U+NtK*QRtWXP5HeSz2=@JfBFx15VB}ZO%VWVDR8OAn?uqfSL_N z+!Pa2@x0_GlcR2V;rl2X-ukZQBc8^D_G@A7D=Gr@?tK9xaLz>FoH{6Q)~oLSlM*(s zYv2H?l^RlJcB9zJGCs>Cdveseec$)l!&o?z_5*TW+SHrt9SB#jg^&Z!ami6@$z&FJ zB%E`#{{`CD?#MY)jLP|JRl5Dj(!THSZXap338NSq?cd`yx@{1kGd^g90T27Hr*DP# zrK}}#kAUj*EfDr&K3`X5fo#E8&(aot@eY6UTd02Q%5l!_);r1weI4qqoFKXBcX#C^ zdFrklZ+@nT+|X4ym6Tf~MctZ*93cn#8G8W%2w=K30P3v`qBNS|^duLJcf!e;`R?>7 z>N55m$1BVH%_B)wKl_o^lymILrLGG`(O#}tYowK9)Mxq^UsmW}HVTh#2tnt^0T9{r z_iHp=m}?k?&BoN=S(B(COUa{yAT^x}q!nml20<#!1c}f)K2yKB+ETA>KS%u!_U#8F zndj3DtoEflR@7~>#^mgwL#?l!vJ>MWyVloEv(ymXf@dd6Akj%YtcV_P8uN=!6`!^r z9m{)r^ne>X#3rsgx=wIySFgvzY=Ecsx=nU9!rOkfVm>>z>kdM^c18b0z@>4Nv#Y~y z%VxXfarmw}zSZA+*YT}cu>}i@C@oZ=*8UKMP4#+&cup~}{aE(#J61W>k2`@Ux&u#; z0mG7~9NgxH)@N)5s@GRW-duWMMRe0+ez6XFT)q2))4;rmYN)LE6b**_?a@tc;9KQ@ z>bM#fjvd!6^aC963eRURwNZL1I>@1RwDoG|_X4uTaQ28RLG29P**=qNTsMbG@Z3@n zEXl4Vnk$7lQgXF7*c$cv>nOqWv%w%IVTo@8zq3V5c$Ux1NCY`<4}?F_10+26Tx{y2RsZV67=p9TvyCK?cLg zW0$Otki9DtPeLcM*r7OQqqIhb)tMWz)^sL1+N=NQ?8HDo5boR`uvSNpIQIrio_Dz1 zf&B4O$yWY$^Y2CeJ%<-QJNk$lZNrv8O4!wFYpn3?tKEdGs6>V2ucQ-zNTQT_Z$x|H zX*`pnOP~Au@$A=?m?vMmb!Z<`ghec`ZY68wULG1*i{~A%@@`+vOLZH6qV4=yvy@Wu zxz)=1@hv>7?_DKsQe`}AgyG>f)3Zdl`%4V8_UkOc9BUn}9LqI34z>fo6#gOBkC&PyeFlylKRAQf5BndTuY1 zb$e1{`nRZ{7+uRhMg?#E+aMLB&+6E9Vn-mxZ5tjk6rj2E;2-!|yzds&uVJmB;m&EP znvK6mtVg(OFde-$yDfd18H=#RvfLSi)@HH~!iL6_)5& z#U(Ss+Rx=NBACwN)~8*4O#J^niwYbi7g~?Hvs$SO(+XB+G_;SMHg~djGjbBvmv&4@ zU!$x37cOn{WnBEUKb8>15nB>Z&y4l>4}bhyj0ZMgpYia|un&lCAl#l%fq0VUd}vCs zaI{nu0Q|KQjRgrpKuxnCZaOp z@#7Pteao+!Sl7S22%XE)ODDz#mX3Dn_G{_Ey-7yhZ(n$H8@P1pc9rxHQ*mLI&0upI z;sU37za8u0RH3BHW?8^Ps1w~2@0euAwnOCy?7EH`6@6Clen4!QN;`W0S;c z{?RnH=dw;kdrG3)sY)V8h=WqpO&ulC&Bi4u#3M=OB~Vi`@QWQ(rIGhsUYEj?=oo!05`%|CN|_2k8Agv2>_MvK?gg zp|*XoKqPnBNISQ8n3G!)-JgAcin5w7q-gXoUr`?hmYs)DNG}eA10_+F-9v_eE}0XV zAH=Q5d}%v4*GrlnA_={?=dk!?*APf5f;{8J6c_f=z`QIQqYa@;xh%m+IJXTf&f<35 zDt0lkVA{st!cx+(PJP)bN4usww|PI@g6k}rs5k%&U^%^w$iNd92bW!8O zESh8*Ss7UzT>3gj=1tphgVHp}yM$%2cam#}W3{bl)?Ci3od-CO#N6dFWA9XPj`~h4 zRoa%DNrGRMAr)$R9W#VpX~K>kkn@N513_ObhoB0*_c+umHv9PD!>78~?&bH6kXSm< z0c;KOt~X&*d6{@$aM`5P`F08(Yp@`hd$TDU?+e2#wF}*xFP}%36K!XuBi2O&C#7<2yJa=hkmJlKVt>1XP{q8V zeXRTPurJk2?B{#D$D~)~R02y*1(O59?M`5hVs~y&krs ztL5Yt;l7|hjDcGCYNNL=@Xp#N#$-}T4c{MYei)lo21}lS#o(%qBumJTaG<|)wW93 zfO7xd0bDL+cg7D7M7B0Bw<{;Pf!5B$xE#vGp8-0E=xRjJiOVJ|n_RjtMgP;sS7kqE zh5e8@=G^7z&ZlIBc|i9)C98-B#&Jp(A*jpCS99(`O+Jow$rFKtA3@k z=XuPT?!yMY01ga`x?bA{!k?aZE^-3v6LJV|t?7^`1kj5dk?r8Ha2Ns^Mo^kL?Q<@2 zD+-anlQVA-6R6~UW0N&Sna96oeivrqD~KF;gx2xc(g1Of6vk2}LOuMmp(Ev#wgrnG zMc0&;6w1Qx%|R=V=)x6amE0K89DX+EH%`kDH?$GV`kcT-s>^L%LZI(JS4Dx};Wp-^ ziP?ME5QK(oJ4V=_rYq;%VO2(Ap`|~S#Zja1*Ize7KPc0HzxrB7u9Jk2u2b44aiwLS zudiMI^*_vA8_^}fpf!KXl(+Jr4~{olf(!liZsnN4(a)8+*Nt&IK8=_a5~OEYrLe6k zq1Zlq#sm^Ecb;U=m?Qv7xPdD?_)^v&p{+>T})y&#i#76K|64>5j zVszD(UM+Cjf2j99oyjaWtSGH|MKQVBy^`rQrN`AVr_WkeHhIg+CN8UDv(LivpYO=R zqI1&-^l?a5-E24dFwYM|N_bWmeJDrY!}VKqS8q{L$B=fbcbUMtCZ=w3qvTU#KgX6# zBcqCY0Zv^jmVnmETs}D_(lyMYNlz*yRZSB=ZOdQ>W_(3_=6v*+J7Wp~8K4ch9VmN> zM91Cf`Ttq9a`2a5XZd4A@DLW?8i@Zna9=Osm?9OEOsIReqRixND5L%nkznjA zlC4AM{EL_ra~?f)!Zds8gvguC6IsFCe7p0tfE#);dr#-9fo!uha^%M?bWZd5g*n5Z z!;|67@aOPkSaW&VT&^=W&1cS`yj+to+|xT79B^8WmBrBjFs&n16IwV*Jb5$^qzb-- z|GcY@lHKv~$lHrP;g9XXGpVU9gIBh+8LHWK?fj z7{6X#7G@`FZgr}UIMWK8!l&)P(=1}6A)bsoOT&~G{Gud&~{cH6xlL$UT8F6udodd|9LhdxLhMcTHm zsN%v-+P(1u0TSRDbU&uN?llwNR7*(0)93)xb`OtxtUSNX*)n&moH76v6AUe4eda+k z+lE}U9FtBIdfIdZ-M#uzq9}vsnLAbUh=m}mR(wZzpuTLb;4D_st|&ARJNz6nLft`cQZO*C3WQ6a8kjdS*h)cXp}K@%tatjl@JanOArzg#}Z$f+-JzIiOJ% zXuVprEHeX@k|0EW5Obb4Ih0Z}svts7P%y){tK0b969;_eq^tbOjN886eramvz?%J@ zNKtQMJ|Z{aaEW+rWoXezcI_wz&~;aGYAhZWudNJAYShV{3C-!;1}D~F)hnMpm29ty zc2!Lgjv;L|%3VAU3>sTPn$3sC5llot}! z(J3EeN4JYe7gt!1Zyl{LP>VvET^k-IR8dubybcWavUi93wz-= zozbn!M)^2TSuuI|r#qXo+ix1)x@@#BmfN~4-`C82QciC_DVKg9xf1_gSQX14=amP# z$~ET2Giu7k{2cLnI;R{&&tdI0{+AyZaeYU7c~sjgtoNs$q{H>jb*SIZyp1#Z!?+Do zQ@>gyTcXV4OMzD_pPe@&Cz@-Wi!`EU37(wG?a{14UR7z=i90{!_svqLmguU)z8k=w ztO~Y6j!#yNY_A--qH1`1-{N}Ht>-@-Zy4N`3SBW=kX(^wH#97R6h6P%EA5P_9k z%6!h5Uf^_=R6>VG9BxTO4>^@%?CQgA^#L|xs%oOo*Sbtk1!7cT8o4N6z0kl^sEl@1 zPVu$2^!cm?LQjS3WuDcskmgnQWBpJD#i+0k_i6)xK|j z6;kGU*Roo-;goxGKA)xySl9L}%EAA+)6eU0dCTR^y_?lGJdJssdMAiycv^Vy9nb?GK9+C{osu5byd5W?2P)MDx^i+2Vi-Amsf3m@)$8}{*A>lD&$m>|_nqnQMZ5-f3KYYvF+I*+MD%O73jBMV zH_Ic>FWpPQ$cvo*G-IeltecLKJ!rpw&ynBJH|acqk82w0XQ@}wG|R;ZM940y?G3)5 zup)g2>0;Hkhi01J4v>WhtaQe7@%zOWm-pAqI_=;JHhOTW z5r)?Bup*@GEiEbjhE|qC!;K67Noc_8FCcot>a}LRp(=i)Gpy`Odzvpq4l*^h>nHY*$vLj3Ey~$#1klP zP!*VWNY+AUHw2V(m}>OV4xgiiXXL%e}{Ro4=lbyk0JhwRR1M@PR*+aya8I6qo#kHL7N^p zvA6TxE3TU^$E#rmWzS}b88(cw%J{X-vbUn;7eMjemci$D<+%d*i7P-clOI;hkiUz*?T3*k%WZVlhh4b=`TffrcLsM z#(aZ@C_D&}wsVlGSMGq#>c*{WqQ_)PTPvP4NhqzqNuPrR00&%X#`mw_-WkF46#DId3y@uHUDTQQGk|$bq;H zT2(#PwR^1Zbd2mt7Q0h!i!nZ1`Ipxe;t(^so=u?H7{JZ+W^mkn zT4s|ecu}f=7BHJa)HGNIuzaa9C+|&{kw%)*jm#KY2Bl)UOpjLv7`&!*G2ImYPfNRf z(xVJ_K;KOj7<2~I<|Uz{oZl4lt>NDe{+;6A8T^>xyPbF-EZbK}IFLn?NoeFUq6~8# zF@$y+YtdbzWJ4T~g=Y34{y|}g6*c_TL59WDHm~laKA&Y;Z8ax)%qJ-)ey~*-pa(7c z4HSHTux}+F2B(~;XG(Y2E$h&_++FC@6qLM(_T(Bfe^z8o@>^|J)Bi~XP`*ljv#qwv zsE{Nd{u= z#$8xF$ou2`X%tGheS-iXi|ocn=o38>_!@UPyIDiRZwEecBPf`1iauc-Oy_x)ai3Dm zJPA*ES)iICmfJiFn1oFEG>c9Au66#{|8jEYzCU|@Sk;cw?D^qA_WZMAk3BE+83xVH zmi1VDl$@M8t%&|quB5b=SIWk)d@3sZ;_UYFX=ZrUbquK!U4&SY;r5THx8O_1 zD+qLb9%olS9%0V!DvF(oV!jgMnvI~}8K2n0A}3ox^=*bBwH};=PQCSDAjkT~US4s5 z(RW7-5mPeP%u2q9T-n<45*OLyEn$D`3TIe+NujU#B2M;ZU#WMOa-U;M3DIc3O>ss* zTo$lPWfTnaKa4enyzEi0UkLsN9L&q^OLkeh`8y3v^W>S_!&7Mb!e* z5e<^$Jfh`YYIP7~396u*Q_mKe`@u}74z+~lXsjbOuzvL-n=r{OwWr(5XhwnwFUx3!Sv&)hI7=LMNrucPq-rTQS^}LLXbQjQQu(@Jlan% zQwG&jul!SLhO$oee<9|Je=+8JgMVMWJ?87?-vi8vv*v4tJ&ypcrLzV^WSO(lGjBxb zpA5pmkI`Z*-;M5P#?-43a#ZOth$gT3l=X?$Z;5^Z1sVQYzWE)7PPDY)St}X|l3iA$ zwFld>yQ$~fVU2)r3IRUV&!&a_03hk$D?Bij;uv0X(i&!0iDl+OzglrQoFsH=fE5Y+ z5nwgQCH!agg_=;?OLLnqBQ;%Vj`~-rbWmhXF>UeSDLOsTH`Il=I=PRd(s)O1%}iNo zbAj8ew0eEr%9J->abRCv$a8P{7-(Tt8`nuV|YzXgZdM`gjm5h4U_S#4#i&|mO#MRr4K*E zE6)z^JQA)JZJUTy*cwq$6!A|_jT(k>HtTFy0vRj+e&C#jz_hPbhJ%m)s#KO#-)sa$PbT-v2^wcnvMTy7{>I- z5h)SEZafCmQ{EArc~ZnXEA_KXmMJd_Y$+*1fMwDi3o%k#r0(p~POOy?lM}98YThM= z`PIAb-F#Fb_5c{P%X4ZX`qh`%o5$~J^CRf2)Z)&n3~|TO7To5{6}TN&!`&S}JS-d6 zRl7iE3T)>Ua47&jn*sQ<8G!#L1MuJMchK7i=o10`=yO78jji3$Hj%j;jU{Ji_6dU< zwdP{ejajaHr*s1s!O{(R9_+?ic9za9@2nIkJyh61!Ne`^NQba<)!VpiJ%rpxPr(hI z1nN^6P@nRk#w=EMCXdQ<$R+mF+7z`%B?EXN1}8x#o2|6fqdnEuoKF&NXD$TR%00 zZLtDgJ)w-*>JoK>G*Kt3-PVhF^`sNj><%!6!Q1oIufAKTJ>vz%zDx6VzT|un$71v0 zyiJ}l&tXHYg}-vT*wOEFG1@x2fpNkshCW}M4$6`9#YuAId~t$YIbRImYR(tG^Fk;# zyaJ_YPM1$_vBK@EXPm%p2VQcI85`6~@6z6ZiwCl0KB=xgL1Q5l0T=_k6urm74Z*YK z@ASZbOX-{#=>G67L&fcrZ1~IF;S?;CQv{?i^f|`QRJOLO@6Wqw&qJs(ja^vGoSfTh!1O2D?i>O@L4}`36w-#SUxNKCfr%7;SC%gWy)!R&6w|` z=iEiFbfnV92<9J0X9g;4PRu&uJSK@U60+37ocVA*BaaLl?8&Iy_Nr@y3gVR9PdN%g zN5dP}H(&XNGdLXAQJayWBB@z6og`wIk7`*qS-67X9+@~!c{^a+fo<4ic|}p4MGH}> z!9JQ-ktZ|)YLqUO;DpP>cE+9yY)ihnV!>!XA+=W|!yQl;vN@L{*dKlNL8i7hic zl+v4U+7}rS@A1dZX8)N!0!2?sKrfCM(P&NL?j#W@(9$XV7!7HQj2?gq9E%8QD|fCVolJsyc&u?9GxvIl>L?#!=G_u0yyUK~Jvi+DDOnT`tEz#3ztQ^z76>k*JSiAxz?5r7rH z%bR`HsIAsrYj|T@+APOP!H>wWUZZI0C>y-nf`vTDAe z+ke$_{W$jB)+(V`tx*H_GtSnk$IJ)NZDNR=tI0sF*BAK>N-9xze(zk*?uTTjqE4bl z$l==HbIQ=xROtpTFeY!(ew}XmVc0*>s$0(h*0EZ2+fO^CDY}taSqSRJsvRgSHCT>x zP(l}NI_T%pJ~O^n(~r{a!?ahGM0JGPvzUR{GP9y}Wcvl|3v(CIdNVn=o+*=rD>>#0 z;o%gTzJ_=O%2P8nltun5FictlhMVJqDFTd0Fl2}#LC2Y*!7gCCG7*DKu`anLg7pPC zec)tHeRi6jA${M@J@&VJHdnq+S4F=4Ac!_YqY!gZN0VuovdO5L(IZW!T~wXA6tgaT zROTg~5+Xqu;E$L-)Rv$!2r?;c0^e#|JKgcpN0Pgt`IaKnEcIbeuS`$(bx6PF5RuT| zIl4z-jY$7D0-SmJ2gK6S+auO|aR+RlQm9i;w)uR8~-Jy43A#zr}sgj{Qda)ca2iNp}h zkzO-{TY(w>PiddmSy~X=WhkXZYDK2p3_iE9P7F=Vw?DPd}c@q12uj zLIHVV9%=_0keF$=PVPs|I#Y-Hjd>CZ23?UqPS2OQI690X{Is7DA>%2~WAMty~8ubB}7nYrDje2+4 zP-|4jG6ddlEkgr+;TDngXYU?*zt;K_Ia*;w3!LYFbAnkwmXwsFO}-$X+nv4E2F0?>oU;rb{s#FWo1EHZU?{7q}k3m0jzY;@SKE0kmsS?HH))C>#FA z$s)+s%Xs8GvyA=lbXUU!I`J=h%R!91*B&Z5MB2hu)QB2u=m*gx(#S-Vi8Njlbyd+P z(ho43SHoq}ve#fRx8EMq{qv-)*?!@*(nT8*+K?G)m+r&lL!Y=hf2Cz-ok8s= zx^p0AA`pDxH4;_4@p5pDts4M~90*S?MuZlE{@n?H2cqbWhg-!!U_AiKA6LKrAr|R9 z18TosbG49dllZzH0hdWoZ+^`XaQFYq-(?DYcRzn_P>p+Hr&z^1HEVA{#ZIgE4c6?! zU7e_WhAK#wTq1N?u#?{#Yw4Xe5N*cyfA1}dg^AvJ~?Ic(hpYn7W8>n=_V+#Im(Vv&fh4Ru5!h@OO7 z9cX=1oz8My^@BX4L}9Al(>adgpc6d6SNVJ;C~ThJ5th<|3i-3}-cAhcLUJEkcrOX$ z5d3zGrd>gnf0fo;OqTCU`)G`ARp@)PPd7`D+`RXtMY=hoKH>7tvbol%zb>0iBbH4U z{3d`VfAXX>UW%RkiJ1-^C{(86E7o{wi?NQ>GX;}@wfOV@OlE$ldcM0d@+#9SgO!4r z+Kzuu2OWnR-fOxJ~YTLo z$0|)N1k+nBRK!$6MGQ?75SINzDrg#k56_e{k#l#LFLiS}zQ^6#;uSH^JboM9 z-?!^xo(T6cAH`!*Vb&fm&jne}vOkNCVckk;}cX0;K-rxP|uY>;SEs0iXhgU`j zQ@{d52$Q`{l39TpN9Vu`kd58c*O9jiI zrpG~c-eIfk1$wEQ6tAGNvUY+-TBBaq&t;pPO4N`9;Pj9sPr_*63zO!xss`>8H(6zy z$w6mV@6cRp#Qs2jPCJ^KyDd!zMhwOAT>AN&G_3+vN&-sW5?J{*BXP%Jip_=G6x%M+ z-qLBioe6~2S~19(hy(cB$3l-SJ(*~^tb8$b)4|^GxJSMqVzp3 zz2@y8&+FG(BhOs_)H)6Sw(;a3h#;yGqI@RWc>{OI(RB_UNMO{Qi7MU}Ym~C?l4FTf z{5f55t8o&~e7i^nXnKL>^M_6mL`Q$Rs~OC4Rf~oM>`^uA33<7TCj)Yd5FPS-(Tt50 zG(`#%msPKhoI||8w#a#gS40E6vB5kJa28>p>s0r^!Uh^LE77F}7>5wxatLu5Q3Cif z;Z|ud=b9?TBSHUhKtWMtpp{`8IDx9d@CwG0p$r_|tbg#m{!;X(>&j?p2)YU4Q6S~T zlllE2neou^9taJ{h@`~qUiy!Q!iVeY6MPtMW@nbO6mr!qcg8#y$77y5`PK2;%rD5m zxa05Yw~0|;9>HIKa`^L-*J{5`Z!sr>2dt4nLrn?$WAXuZg~>1Lee%{59RH;{b4>hU z6Rc6tq&>Lf*O03MTK{8y*@JOHhQG(Uv-H}p4G|yGo_wGuF@V3liHQ=JRB8%ZgE~IZ zs9YsWWykXz6{FAg_LoxTYXRjj1e7Nspd5;T@&qHGlxU}XorStH^$7=}QH%uxYWqh= zc`T;B#E+9DA%10VS%Rf`6`Kj%TT#D=i3(S^xASznH1F`sbcnxQCrH<{GlpbyH-&@h zW`Juh{6Y6j#l~V3MBBY)a{y_Y^GXjl{m*NeYEz$;U9#i%olkHE3rlt!rto%IKEWyz z+STXqGL9N^K__-uapJxxH-@gy95@yT>N%9u#}VmTv88wdjNY8oM-@p*>eGwdHGSUa z*XY`$ru8{{G%f)K#}Ca~OT->uy%2+lje=G``2m zBx22&OGw^ixLq!_CmTDCSt=g^y=%o$e@EC8J43rgFbA$@uhbMI&Wv@TT9w9eqj3{p zek`?8PyOeJjlRQEL&|EH&y^?v=TYRGFZSva6}QvAkm4&I;7|F3^kRo-JCc6;7kjO$ zL)={R#XhU}O>QJlsQf{;Yxc~s+8!g>in+YjHZ_y;vVSrp%&mUc1?D0o^Y~8ke1Mrpu`A3x!l}*bd4r7+#`m<1M(pbNij4zebLRG$f-zZ$yxO)Uh%~8s~5FR7(4)|uGQcmx3s44MwH=6 zrxHer^tUOd9^>wcc^2?nob|hndr+k~F20bs+a({>ey#o%+*Iqx&GmIK7$bOgZXlG>OL$4VJt?LhS9T#TaeF@lK!u~Bd->X+k} z=_>{;pC)M83sRoo2PYE>G(iw%PE-?vaK1p#@V@w~@ndNpGQv3tOP^^(&Bd-9m%@Zb z#bQPL$2j3u@iG_Q$&qn~=)MePfy&`#Iy2rzA4df4B8hUsd-%E8JnB7JKVFnS5PpGx-=Ot+E_DXpQ7Gc-F@8Muy@HKYt*hK^Q=+tTX7LMa3)@Ir8Vk{nSt>~!tms}-4E2zqns1yeH4+Z=? z0{$Zb-;x0jTmerhY4Gg=zO_I2pJ%|EL$?-GLJ(=WkG3q+it5?+NckDVb7i%%K23)VP{C0e4U> zeMaZpZcJua`FQYg8LTFaNZ<4%`1&Q64|Urh!%HJd1RULEC-REJz~*J*sml=ML%Q)7 zaE{m_6@OwCzmte{>-|JpOyMOX~@L7rR@GNlRkgwclI4Fm*}nVC@NISZi7L z$kuEs?B>*z|MF3MS^ki+I3Y*4%Er!4(}*v zWVHo6O%xjW1w$hTC!mb}mP_CsMa&xbh?k6LpKs{_=u2+IH#XFyx*mrUE=d_sXDiKT z$YTAkAjA*3<&)!)k|6D@2GJhPzsT!@+pCiA_2*xB)%h-5Ccl9jX zuI3JCE2`{9Xlp8I$2AmjY;&nU9QvO$LD%0D)hnvu!8F{oa3w=!|BDOv%bUPHJKLTY zEO~Vqwyb&H`dg4SMQkroTf7tetcohV5=*u$9bT#V?ZSSHf978{jKgj74`ZIP&R~2( zh-2x1PG3Cfn^Ll6+1^EoOE_Lu&xdIBJV~C1`TdID|Kay2zpUXf{LdrwSw#UobPRn~ zX$iuS!KvOwf(2tImsIRYs3wBhM^(X2LHmyaWOXEwnF)H3NnCnpC9^Gy3esf_jX$R^>o6YIe}%fdXXqu+2M_2UK$?W0NX;f zXL4`lq$#<4K)73$ig0GNdxUV83QO5y zq0ygNfQ80SF-ewX(tXh@xGQOj4dHv8AZI^3TZC0w?TvaI-tCOtrs*2dScI;b`#{Xo za7afwn+13EcV2>?lJBBJ9q%%Ift#aE74)gt)J3UJaY~`=h5-D*`|k$cr8rpUeNA_u7Z zyGbGYliHgi7ZmeJZ=EMJCV*#!0cZ>jG2X)D^;u!d}mq}W(aI1AEo~HUj3r+gBm}eosjr=Cv zk9{D&2}~BfK8o4TSt7d$eu#cXHv+lgHy2n9q7`eF#}!r1cos-8R2{k;qn*5!EQwb* zDNIRJ1WLLs;^zo8J{d+*P6Yo4*3&CxF&y6Ij8AI)LD^N&AAIuPwLlv0f6{{oX^D2< zfeveJm+2%Nef6lXzNtH@C*4V2)%bzwBt9{#L65t?qZ+sZg&>{+QTkuI{Lrv9^G@cU zDP+I0`U>H^_!nJBSGte^s?aS&U<*_M!jh9aJ=>Wa82d)|$SAebQ7BxO6jK zNoEcf9z+_JT=jevz1S*gv7J+CFE8XURVuzpy7w|)MGv|+F}?`8uu7y4S9Y1!2dZg} zZoaJ4qexqsc8|;VMr}86ZL&1NQ>l!^``4 zFX;AX(?bwLP>(D?IlnI-gGnIfMXToc36ljkrb@lY(TCf;+%|KId-$}9+N^ID3f};+ zQ>fHM+Z*LxW3ml$7ozdn6is(S_;E?gm$XOau0ZbAt3SXcb zS^d4dkNy-&B53c{%#uUab?sJZLT=>=cgtdP0m~_bP)e?Cae9F27vZh{OwE~Ipbqz+h zYS9W_%tfXmZZ~y7L_O~(RsoiXRb(^YV=5}U z?6^p0+hJ^RMrPQ%{$=O(HSBTq>7RAO9#3y%167sK&*eMqmcu(*dd?n0T;rV`??Md# zyrjE!3Yu%-9l~A2o&FA%3h0U$DrB;r*6XAxyk|AeAf7hsqSm^RTt5Rbs)pQmb z9ar*~+LKsnEcvEM+S$`2?f7YucxbwYE|;x1G$VviMYhm+77QqHq60s6>3L0)aNyKj z-Q;ha0|i4v(?y+^DM~yIokl){(3!UbGjG%9S;1JEKl}dZbRFRjT=TP-rF4=}AL;hlX(7-16>VxlRhSyc-zO&7b%-U!__? zH{tpB+b*9pe2`snm_0=Ov;(1gym`o?_`Y7vbt7Cj=g?l^0^_$%4Vi)@7H3f9UBdfA zo{2Ni!#J$8hiC_=xAVDVE0Uye_waC6X5-fglKQUfx|g!EP-KSjTq&IjMzP26cUKjE zRDE3p$2~`KkaJGVaFFZkrr@$~I%vD@3hTbjogrfi*HrOiw7f;XTOe2s2wTx`-EFn) z{*5*2MMPHZVx*C~P!K`+j!x9ILb5(Xk`Vf?tXMP&N4>oiEviBsZ^xUs{Lu)+?AOgr4aEpR#I2;VQK9B-rLhJ|Ci#Cj-40n?MdSrS63GcnkQ+o+v zU+isB^{@Nr1k61I1iQ5c6T;y%pzPAojHm8Q(~|tgk>}$PrW@n%x+6>n>5GSXB za{#8W$?$3l7k97c)88Mrymk7JcFaW=`xE7Bobvjp`g2(HVe6Sc?P~a|hOx0Gv0@Dg z_397ulIus4nK5$CZ;*3-J<|qO@(QBT56a>9E)q*tn(Q74e{Bmx%&CUfLX?chqa?*ffP`+|IBM#Ioki$^PmEMjpX zvdI~4O{+{*)$Wb|R5kBRrmIPVtCKlXXl7zGW69&9BrQi5V~f;p@mO`1sS%XU$ubk# z)h98TJfgqTqCd#aFDiPa3sd{j_($~P8k;Mf7@=3YZJJs-PCHGtRt}|%6wG)b*hQe} z-efgb%8z$t@na$8oe7K&F4W6+GSh<5S!%;ydU5bvI~b$Ro$AUxY-ZsetV(d?zf(Qf zW?C8US#QN8zASdj>S8{SXccCmz5g{c>w~gc?o_vKmEF*=aJOe(rRyZ)HDN?O8XwLr z0bGr2SC_gaKvga)lE^~uTK0=b%Gsstlf_dyg$9uCy;zlsPG*($KQV2ne=sCQqFsUzcQ+Ad>`0oL-KOq*&KbmTug#yWcqExs{P|s69`7ckWc77kjBe?365|w@Bu-KE9=5ViCN3 zb}BkrMnmt^rJ1+s;gJ4X+4V5xw%K){`8AI?Z^uXNU~tMF6oodOS`^~4;&3)^-_9Qc(nnAqGCz0b0CGwr^bIKo|DL$`9 zCsxVcmCWg07Xy{oo+fc?7N4xP=g@T)k}~xicTb47+dX#qdfGBjJrU7fdz;+ANzZ+y zP*2SM+zyS8S9TRbaP-YTiBjTpL(V4}5As*k`4SKHa7WCKyTxlhad$92G~&S;%RA@Sy{R&1z8Hz>ooP~c$=`3^ zW9#C)v4GuX>zYXHi(R&^4neE*TT?lzbk8lU0hi}6U%kQT$O23YdRSlX`MqW>8^mIa z;nZ?m#`JA>m$sz$5z?&MQ)`NT{C`ZoDEX>nN4)s2y{VeuZ{6feNX{JLfiL(pgH5}d z4YaZ%PAC>5RUU8wDlgxO%H?+T-hS}6!J~Z7_9EJ&cu1Bx?n!z>ONkFUA*dfF6q-xO zTnrm$LcV!2ES?EP=Be0RSf&7(Fxp(k$|VbBQ=Y_Utt5^bAsmxFDJ#7?UV~K0ig;vS zS#;btV|jCteN(S9p%-p$mE&LPj9&@vwBjEUZ$nl3F}xw>IbNZARk%nm7)q?RuM`$< z|9Eh+&{9hZ)x=TS1AfxCj&afge4#RQeW5PmFA~con9Rwp@2f}DcY3D2N4?SYrLtPj zvDfk6;S{WtRlPRe8N}VzBR=Z;p zr_}d8i(3F48W0dngZEUW))}9z}f{egw!iQ3&OD_o@j9CP3 zQkUm^Aqem^0h3JK;`7~#JStF1+?JAw{@dF-FQ{a!PN%xi%ZW+;&eP=igv_%YKA4z< z__i0to`pT}wqU%|OMh97R|+jp6AslD+jYIpB0T}du3`cpSr9j_k9ghjpRMjcM~`6t zQ)p(pHse7V$TO-?|JmKY{cMK1&7dV(Jqcx!M0pRRg@Ms|2Wa}mYiY6*WU;Ka%cSk) zmxO!Jq$&?osfh!1(RZw`cvpd*U64dLekO(v!9OMV&C-1Ljy6WcXGAi* zpE38a6q8}4@9rp;!(mr4+$)c@SL2jS&W-nvmZsoNdq%NSv458Ar9oS|e|&0b$iNP= zJ;z6 zh%Be8B@dyT7700)Yv)u^f)8x4KAJA$NbbMJx5q3mPhi2auke zo$-!L5Bij99#O}QCf`wY^dF~=l*bV&-jy$#SQYV6E!#)1I`rmT<`auTb}idWYREpB zu#Tx&`5omDjq%%1E_}frPtesdT3B^tl=t?>&4zcJg8AT46m3WDQXv&MaDz}BQRm7L>fTR^C>B^8g7?<%5B$hBREccLoWxhQr zG<;iiVp>jbdThWrj34J=k!OiL1k^RoTp<+*3>pRHFDY${2(D#mVq)* zrY?3c*vC`lcW$FYw1vl4>?sl*_H29D%oNd`i2uhLBczPREa{uh%Y+F3+1U~i#MO0r z`BqV#kq|Alc=RUFmuL)Es?X3i1+R1t6aa>3|oYO-#| z7b&40bUU1cXCE{Q69WapR*jcSuXo9RX$Ow><1(-7z-Es z@!Bt{o|F8x_!S|qi(Ym1KdsDU*Z5U(``i`VZ%3j%$HYJP0svg*;**z-i%+gM`HsRT zPhNR!oY%j+P-Z_U5;(MOs8pAu$s#Iz+7Y}DsrV87|MjKJ%A>~j&-F)*ub+&^>HlN5 zUqFbZp^Je{2Odp7N_~zAV73O(w_%{ARgL4|-uOGczAf21)z>5=&M}7hDv%`yO5S9r z>SU+-cfC^ysiHS@zrCyE%_WoV%E0i?g~BQGApii56C}`Zpk%s#X)ZB!)ZRM`G>Li9 zi?F&RSsQ9m1DxQUc207#SHq+qw&=NlD4O~&mQzx^C8Ruz!I3TGeFk});vx^~>LL%x zEwq^g;=9<^=Yi4ecQTfX@*yMjlmumQstc(JQZ@8$WXsR5mL1=ijV;RWm+f?uP4XoD z!lm$-d}i9}`aqbxTxDZ7H~?0b7&~0XhTAVjU*cB6*%o8_U_BGLY|O+Ex`7ws;pFM* zmyekmioX@)Z(?d_`t`)k*i5YG?lP9#P_K&J^W6m(26mT{Wf|SJIr5 zF7$QVb)~f9Tq7*gp%hN$YpNw81k~pi8?80x(k(=9ylq_F>GZnjf7w@#^=(tb9!RCi z;%x;bw~f2~Z-*w8dSzJ0s?=HO{*$St=Qzkh;_d2zC#ubvKhp#6R2HQDjsE{-^s9|x zDdR2r&+*GVut~6|QP&}45YiEc(h?G?5CkPE#|`y>7UkPW&FyfC zYPxt`^Pt?h-tsaD>SmZ^@zw(MwKKJ|mGT~-e)k}MDiBJB7It;)2NWjONPDAwiz?n+ zbJS>q6cCdB&s4hNug=?6iv{s2&xh9F5F@jV@SD+;EMajpGws$=z*c+#sF}=0YU9t zQGi;AoOUiQQ$iKUY9-o1=vriNbH(I$DQ5Zrnu{QrqqL6tlY0YonTuPHTybkM_eG+ohi8v`vv)JI`~p!=K8idd<(MwIbVCqq(Z#t!kZ{NoX1o z&qB|5)Z?K-VU}i)4J$^^r=9d#-+a=vpcvyN7Cy=*HznS4(XtC<%O%jZjeXMtjj3DC zsa}+nq4CI0uEoD|T-bkP+TM{^f$MvG)R^du$#AP=)f@%E8t5wt+TgNJE^Xoc+-e3x zGW?*VNQ1?Fc0NomeHMsPF!~3%i^oD@T)^ZO>%PMbw)-{_epvFKLX~j4de@0uTNJ@Z z32!b(iD)5m65?ixMw5JF9RBOdjdrw4KGiS+nx7XVsJ?y?wZjivPw%otDcx%LDc|X3 zA&aDO3nfd?ycx`5RPbH-He!I)$*`I??Et0k2PksPFUYB*3&6Hx1H@yk3J`+j&hNyvOBZnTly&yZ~SS zfnIDG;Kn_jt|A%n+g#qtSK894UxZnyxF@Ox>rx(9HvxvY>;B7WXcxz*iE~Xr&YA8w zSdYDFm(Fc@X8@dyZu9D!ysBUE3s3DB`S4lk8b0pH`nZiGJw~zhsn|ijHy;Wba7X6# zuQM{?2RSr9SVD;0HJ!4#EPNE@)K+!bV7}Hums2s?;8fhIhLeOGMZF`wNm2Mxujd=$ z1Hp(pReybAp`_w&f@uD!8+Az{!pT5;BVeH2mxi{+g+`2O7ux*eKs)znX!p3# z%F@s-I||x~$APv}=4bzwN`OUa>8FR>mUg2@D`Zw*-ToMKTgplfx0)53-MqgKG9aE# zgZNKCu$~3VmN75UMs>Rj!lfX=7w}`!G!*XaprIG@XM-!T21`vb6l?n7IF&hDe8bftPHF|O3KvMAZu?tam? zTl#ijjN8fiD?SNZEd9Z;L&JS2IM*pEqx-|oh}?w7p8zSYXTq05@w6DRbd zwMsBo%RYQ_x01(QgNepw9>%25AG39h*`u{{z0l-AK~Tc9L7eDA3kJahnCs)N2(9zE zs6frdhsRtzP@$zrHe3bE!GD2-Z^XMuP~A||`G+WlC!3tPKRIf#97vT3D8WcFpgx&UWt4sYcL z1UKYkK%2nVN4OwShLvtGQO#qa@X+Gz0VmH?tgJBpb}v&(%-9~=;`?)A+MPvCSy3WV zj4zqKDJcY8G7%YJmlc}h)4A5uGYZAs%v-(*{m)NH$GTrAd3iOA^82j`GkzB%f= z)i3{8;i^Z9eBn@vFqV-(eO;j^R%C|@8Q{~Pa+t4pse(&Wq#h9Qswk=y;K-)X>)x7S zW4t);q7Rnu9;hU8ZEwbqy$8E?MsD!{x=R%@{7!kETFpczw7q8U9mBu2J$PXUqijyr zG9N%l5)eb8TB|ki>Flb&OndKV(}_^15<7n`&8T<=bbWmEWTLLv~otY$o13?{t5p83ELH@ig^! zpFXS6l>xhbVaGE!`Ej_Wg#)_3N?j4Uz1==lOaN1}rb%3$tA$hAh9S>&g7r`dn9StX zlA}CWwN29tn^5&*!h1Y~Rf6t}xHIG|5FBwhjvDVadx1V*@399p?!hJPec{2HIh{G4B zT0noCK+0wL;a+}UuQ`K|Ps*_x5|Yjbi}K8bJ_|NYp}SnEvstdbws^}4oc5W_&r>1) zL()uiU8q%GLq`I`db*N@#1eYd3F?K#f_D5rv?q@)5{8ujbSJnn-csz_);ZYitTE5a zT4hSmmO!QY_Z}K&ROPJ3hiK{iv=l5~2I0jb8BwTs!`necrnxAKpciE}7;Yz~h02Vl zJ%Ke-H>4ySSdo+MibF3D-plb*(2PiX(u#BdS8vf_@V9(9@hOFVd#E9jKpGb$@jvA8 z{2}j)XVDhL`5SS3)0&S1m{K1nCgioDvY@+4T+KBniLS{%^#066bFPw+B6*T<%85XR z;iczaf!%^670y6Kk39t;e=MM5++yHgX^*xi4=wZ^FhfYfp!BGYq~>zkv6$mZJWKRP40+&j-|=U61|&y5yk<&XvRYQub{_s^@3g z#4#DQLhI>0@SC^SdX=V;E7u6%=@an%_)e( z2_F9XZ1ov=WXC8XY>>SyZ%ZA;7mHOT(L_$R z39iid{OtKY7&DjtyHiWnYy2@bl@=EHGD*xY>`(%#Xii3+;@VqHXL07rraR8vbn(4w zHr>s#>7FE;?pY_wHXEQyviwL`5zN|mGn3eCJz48ZL|b+ayzm7=nhX)$-bv=mcq&vk z!cP7^#3&r@m~HREchP3lxz_P|HvWS(_{3$@V7}2oYE0D)b=Vrk*PLIM=q@W#j!^+w z|Iq6b{PE2`hTpd%G1H&TW7q4gD4V!GAUkdCb$aDT50yer8_oTj590b`ur^y+h6O5H zFjO|3k=}^mW#A*SxW#H~5jq(X(L6v>i&cwxfZFCk2*zNM+PAlt;Nnaj&7e>xdARM* zozV1_mj8+hE$)Fnb^I5JhC?`%I29$uL{%`cER-nAOO_cGsj>n&cPGmV1w$pvisTai zdtgakl9P_47!2fUzpTjf#s($JG&&-H2e|Fx4f{4;@A-+fZgbA!K+C=yW5W=giNr&F zdl;K$nLohPj^9zBl>i6bp2Mc=g|tca(#1HDIEY36A5Nhg5dpM{f#6yA9r+RfRqBDipDmp6G0oK({-TgG z2434icuR|c2e9GnQEl0p^QMV<{@?;bq8=WoawerjCpCEZWh9=4KB)AMNtF!S5Ty65 z$w_B?$hRVRo+!gZ@J0f|lO^qSLuW(ksDB{`GokaPl3_Rv+B}@T4?5u>_9L^@yLr?h z;`eVDy)$<7=&+n*d|D(^Yd-k`VuUnQ#w0Cf%8Z9wUzfm%r#hE@wPp_8zIci5eV5JY zKB>F0z!M&4B*3wFA-);&;-3eWUUa3sFAm#DYi!Fmh6)I64YzkO}+0PB=VVn@ALC|s?<|oaNMgbV6^RBjjt>p zirjMebicPQ-}gdddVxLE@t1(`^vFkNCl>h=XCc^A*CF`PUBB4 z$D9794th;hvZU+-LpXsL+aPou%-9Xo0D^k#1b`-R5D&`y7W%z!73oUPM6Kn^SJBRG zeXHoKDtozE1j)Wt^qyWt$=LpC`oxX|55Iz;XTAY&6;?2`@|g6tlj(@#O&tZ{U%{82Y%pDz!_sm(vy@>FtR@oqt#+f6x;fY?u1= z2OsJWEW0!~9FJ{yHr3y7U`yX-R*t!GwXrkGtHOlxWEli7UJQ0(0=7+R&Q#eTCs`iVkBf2RZ7Mg{;R!%$f&(k(~AnG@AX^W0?4qnjJ=p@FYuhmEtXV$x_{5UwdLo z$khZk{ptGa8xGw*GvIrzBpQqraIZ(RHY8(P+ij!1)W*KOXbV*FO!#|Q1d(7}yDpfT zo*%!1aXr<(!*8}aHWu}!&yWvwK^)5tkAzCf0!xDleXFU5Eq0kdS!TM;Y>7;vfV>i- zOXfr*WHM%Efm`2E)bX|9_!x`^mK4gFL(it#ljF;Sp4ty>)c@LedyG1Z(qWmYYlL2` zw3ihKVJaQ@Lu#Au$Zh{bKhh9Lfkk#zFn%lDbUqW^R~9On7+QLMYFPoykEk3IX9VpX ziK%|BiCoA9XKG$zDz1A&px%kW;boyX;{HULKQGQiJ=Z>vy?yGD>;$+LiAq=?*oI?pn}>R-@gFQ6 zh|BQgTd02V_}eLG`iNvCdtInbH1Lg`m!Q|J6m}>wP2{OdOR+c8^W{*4m=z?9RzFK8 zjL->%%1I{_=!B5EJ)NLM^WRk0o9E07HSOWVbUbOWXiFz^qK~Z8s?zs;tjUo+Q!*Kk z8-f_rg<^p*&yOq5Biv@T0E_qF8|&%72G-kOTRMCz-(u9yezk}5N+}uT`!0B10TfeV z)Le+BZbq?{*jldKX_mceC*LDFN$a+zcA#k5v`g1I+Z52X6j{_{G+5GXmCX9k)Da~O)^+|ccdm=+#?$6mJ5O! zd^)1pcS1=Zc0qhI-u3+P5By6$1k9L2Y9}BY4=ut`r>3UWa|hY%A*L@4#J<@y)qCj_ zZ){}K)B%@H84&wQ(^TK3Q+%*#E(vMLz$JHA%H36atR!uzW{s}^U5o-6Kx*I(ReEJ=ZjQ4n&vE+}}`4I=^du#Ck zkZ&A0+-RWI+1xV0>rzi#W$e)%&*r17^@c2oP;St{Eu{1pJ$TH*|UCkV*MR z#*3Hz3hiwnO18?u0v=Nsf#C+0W%-lZ^`LP0@-dOa8fzn+!f{i!kSLmk{-to8(DSRH z;=EDijrxl3QZ*}myF;CNC;YV(RM#Qv?tkG^%;m9P2kBuygw?#h*=dJ~zl&WFqF(%G zIAZR*z%z?hJ2&=b8ZO>rBw&`X4&VAM{C2#S!b#L_WI_u?&Rl^AI#k|8mQoSM8&5L` zlTAoyB#*8;3|`_6L(+MfJ6Ar4cJpV76eaeA42a)YuKPQ>QG)>_F(HEwHn9l<95^p*%*v;U1u5MZUFWBM2ZB z+u%lZe-Tq~PW{ar34q)ZDQUl3hQXws1G!k?MAK^b~JHc&<%%3uy+Qp}Mm&po9?XE}~IX;ybUO3e{%Y1IysG~!8-H`IPj&80G%`TnhVQE{FO|t?(a6W3W$O>jl}i;hr=V)wp2`-|ACFKX->_zZk);D2l+&bl^t06k|9Moc9{KI@$NR{7-Kz6u>UEpQ!qfG#GWF^= z-s$n!e&BfHaVi2H8SkBpixKJQ0jQAy=-?|o0I~_t|16JBow5-qA_Ua4EP6hj#RJ<+ zuMy%!Rh!msM+^@0xfXy0SjoilWMf%t@Ih}iFHSKUhiP=M`+Y;Z(64L4OX9Qc`&lk|8#|M4mu|b#qW6-zZk{sjJ=J<+MkJTuQjQSPZxx0fq z>?LkX#oDm}Rx?J+3-oUqf5Z!Ye!bTEL3kIaj%)c|{#5Ma&%*uoAZvbeB?Dy5f8Lt^ ziZ!1&MG#B;ab09^x3C9;b^+USi2+;tJK@X)6|BThgX(g(Px5=o(k)Onc!BM`JdWC<~6005;t7|lZ4u%iVX{8##W z*^wDTI$gX2JgWXW#B|d_3X>}TX_y|thKVAdlMG`Ar^Rv^Qd6Tajqh(~kg`yK@Hg1s zcO!5~=*aUzUW!6N<11Ff0d(Ftq%?GJUF@xty}yA%)DmnZGrpsoAmjjh(o+)dQ;oaF z@6q_eCpvcYidN;SEp>D@HTV~z_dfo7kH<%lTls?i&{@9a@p$1K;dVx24thn0n@vNI zY@%mk2%PNRg8H1j4k5XY{1J7uLRr+U=v7}6nYf#WQY`aW=- zh!3=a8bI3`C8(B{z~>C-gG`+U;?Qd*3eOBzUHD!cmV`G-ZN&WnwbYfTmQSIt9rZ6$&fUBnVQfL$xIhs#t3FqhBH~St|)!fg$sj!VDn5^z}Jj z$s`kG|6B>cogNB&@Srt_fhG0~Oa+0RtWYK|VRt3Cr9@=dFA*7JRv#2kKZU8+7*)I54nJ(Sr(zG< zAy!0s{<{v?DrcvDB>0Gr>+OnlzQ5QK7YA6nj5N5l8eGZ32dq2iGAXL*Qtg9e}9&-XG(z9oNRXT@(}0|{!9_ZWLehCxIBbAC=z zJ#jmr?N_z2=ED4{Lz9Z?@i_CMYQMwKHj|3%NkyWuX1Rfo+2Sr)5wh;)WFjIfPCfPu z!`myJ8?kKdG5RIUPydCo5oe*FkpDA1RcEIv&Z=`A0_hQw^k3%0Mx~#;S zhqMRplZ?JLX|4k;?bWNI3lNepucDXZB!}U7Smsr*p7n`&!DiNFx$Iy%Qu0vzAD2+& zH4>$EQMHJdGOS@eE%pBY&+wbtX)_i6-}0MuP`0cpnDKCCLNebJw68E;HU_Z&F()Ow zAzr5JmLY_ddu?K2?S;@zZFDTOlN*_jc7h&AZn0nJmr6JO@Q2XR*|OvG{E?9hC1wT> zzb=$5@ZiqJTSg!uKKvIe*J}!&U<#+;2`q^pYzBI!ur~8R8DBSL^qt9ce+HSNnrgOZ zh2on7WA1fCsgMAZ<^}TmIoF_lNvV)<_e!ujyr(Sh1d_$xZ%C@u3uNY?C&zpH($Ly?bw4CTH7QRLr&+u-=>~$-$#l_ zHSZB_hXz?Ab2RZ>$wL`BBoPzHp-dhLaUC(yF2~6uDkTvev-8#qSgrOJ48VqOu_vz# z!9(~OuDoF*1Uk>b^!@%H2!(|{d+g7sSxkz5?nj*<+|%J@5{_xcB3!(C%<#j;K8i;% z`7ioVB3$m;!Rat6;xfyQhF~eEuNf94@}ZMU^NLNOsApUGO0lN%xc0lkVz{fth!h%|e=9EPrZh@@|7F{db17W~|(~^l2tRJ^wpHpRRl#`m}?5 zljGB z1|iuvEpsO!+)Ub>%$<15GHJ^*cf!q+GM_$UF7=+03tp zX zYuX;47Q=N$ZN@ZtlUPv>PU{wW?KzwB6Vo>3gSYZ*@ffMI(q6s1c&jnCm zHlN9xM(C}N-DmQq@v4l%y{7PIWg|z8`zzuqR)P+o?`pp&_)uc=H7+N`m=O6puIGMn zp4z-i7skpXh&9vfghzmp9#R^bBdoMy(t(X(1K zAspR+)HkCld^+WhGh~&m&xrJdX>^+1wAif&vFqNa8y&|_HPpt#y|B9v&P@DL4tk3N z>f}syEo7=R!IShf-};QMrGY#XQ{mRdC#IefazCn?zTuTwTd8t?Cepy53;2n%wB~Z7 ztUJ4WG<&xW<_&7n)t6@}(Zq*5kzx|h%4v=8BMtj_vc1lI0)LispJd}A)#W1VoQvee zgGazE?XREeW1VTSHVPhGrI!EM9cEd#^#29lst2-Y`pfE72lk622Y*s8TV8-J(u?1A z^vV)HA+I_UWV_4ud!_LU@Pu!#J<7nh54vTQj}{bXW1AT)k?4Z(NKl6kWezM0nR-G5 zs<&Ft7J?djWo4HvnB(9(nQq2oUqYXnj=*<C!J>Qj)Ctk$~!i`dtatj zKYS-(z69ST0CWs|H*3G(JE?HACi;=!yXamQ-wEo;;JY-+?vN8`Tu%zv0TN%teoC5R z@Ljr5X?(ZfPshS{i>yM8QMajeqMY0h-^s+x;5(UBX?!PL9#vaT_*f^+-&2jhm)1U1F1D0S9I5mA5!|1** zM}*&Y>ybf(0br>oJ~{#so{*{TKSYFr(4%T4U9J&f;3qC3)PR3;nn8quQCvhQ`2`Wm z6zoHU(xhV}LdoBU2n8xnlD!`y)TQk`cnn1NudjS5B2;gF2_n=>?s$k$*6I<6(C3!* zj}YM;=AcG|yZ)#Vp*{`cKX`)Pb5OqW)<8Zq7zmMM@Rl8 zS8n95N!zMZBu((E{7bGB0z&>JR|?rt{qYaRCs#^=7hMo7ORkhvWxkcwWAe!^Zqgbu zY0a6mU755z)~(4mf;;oApa*j&tJ>TN9x&w!29R>IPUCt%fR}_kF&Wn92vOEe=G-V< zVf1n&K=~k1t5>H;4^9uVg-LJ^2%nkiGq>|~2FwhDYOlZ0gOWY-QV0U}vMd7vb(+jSW?5nxHXSv2)Q?bU zMjBk8h5*+tE1*S8BrMgI6^ir3^Qks<=Ey_!tX!i%FH@wlYLoDKo!@KXk`5?qb?#`L z&bOz;pHI1Tm;&|Y5l43CLz-#W(tmSv_d0iHsmAI{VKl#qQDHBy-GNN^bR(T0Vp3+ zk;8k;g4cEDy(g)&$(=KOx!MJ)vLjdX)mgw4^Mh+ttNTgh8l69KwOs7!a~2(YT3zjT zXEpSV2*>Z1%}d=OTw?K;%C)~9*Gn%M428xxh7x+D%pddpm*|6`ic3Wq@V}b@GjP{m zZ(M1{j)ZIA9g3uTyo>P7te`#>wms>DbdSH_Cb%9vU*z1w2Wf^T@F1H1vXz1SQx(t|Q)S@fXjcci7jD@3me_XT34 ziN5uE8#7xS!eg=)CJaiHKM2Q}O$Fvy)It2cV!d#kMeP9Nq2>|j=if={GJh)e@N7(l zM!-adt%x6p$aqNd+d*N_6_IJ2e8THsX~KoZ>#b%(N5=C;v!Nr?;2z;zNej1mxkkua z$vEaEb~S;)gU-DUIFV_Xg@1P&J%psYzqD)X)(r(yH)W{<3q4#}v!3>=b3bE(xpr+0 zij-u|-dmpGyj7T1<29PQ_16~kf)t%dX$D8-3yP?}c6_gWV(5>XJQ$NYk-5ppSW-b< z;{<2dUpt4drZ|!1$;dR59+mWDj-rsHncwx-){?2lS@nSa@OqO^%*H+SkI35YH4dh) z`Nasypq()5Jga0sGT`c&0d{b8a@E7~hJU|!fb)OJN&!+w)c0T9%Ok86W`%gC-;C~d zmRViUQzO|`Arp-075|nzrD88sZ4l_cZ+~!;2b||6=p&@q$ePjA-Kh1imOEi>RrNiq z4}WerTfh4A7pYDIIq@wiU#)ym!>{hRfx*jKep~G;LiS48y?lD_6#IJk_4O-4o=U6X zW-1|a6Zq+~qiW_1%}ZiFp1GCTjo8zv2w5Sd9>%pwE>CTnG1`8?8nwe}dqE6+!o5}m zFDkj^JwzxrGdXn1&JF+Nu_7-M5{rl^RvB`2Ze*Shw#tOP9)R_!Fl1|n_kQB?U#=q% z2QcOhY^PMz-F9)m+x(CRlmElJTHIu!FmK9=H=|>W8G^j?sRRpeP-vn6?la z1xVEL-DV&G#GeL2+PrW`Rr7^}QrYqkbAE%I^M|yFTFMs8ZS1xdmH%b1gUZJjNbfoD zwd~7xzhqz;znTD3vgQiLu4andxeU-uf@*)rOq2RQiH4dhtVt_a8^v^2Q~l`m4E&W{ zPXap|f2EDF5{>J@{E4R?;4du75sZI3R}fE_L8~j%SVyUzt3*0hHo~l4VH}wJf}o~x zo6g#Jy-r6g0w@y~Ly!&<3sX+x2HvBtmuM6fKeI@|M`hDkkH1*Mv^T5Jx<}OhYvz*R zauW{Y-Xiss)YWmuajRZ~&^16EM;sLNapjVlgD2}cshuRqvSvR*&-6d|rgNa$!^LsL zpFy%wTtY}zb?ss8?l1=}n-e|v|5T>ZDFrCiploB!X%U?pmdMTdBx6?EFU@~ZbLW7^ zy-m}LC7`NvFA!n#pKL1E*7%H+P``W#LAK2U&Ss106Y&f2;K?M#w-pq&Saqtu2(0E5+An|1j>Gkbc8z#IYy_t9TdH zQeUKYGuf)h?+WjLF-=?Y`HNikuki;O#O&5h_ z>!=pk(~>0hu~zjm)yQ?C;0(v4jcRwCb-YYA%3o0R<=~k5XQh#nHBgIJig_oFknS#S zQG42D)#fMkx1AGh-TE(IT`lSnKEe#kYvqvU^Q%Eq*G7H2sz=6 zh#1?W?wr!~imC&Tqi3OO8gC_Dxz!-T3Rm0md|VU=TW*f}spz|DcAGRfs?IpqJ!Sq! zlY7dP{Z>sz;RNj+t>igVm~+zhwEme3wE10jeqErgm!OpSdn(zdmS#2nn&+A7GMH0r zHyz>(q^VJwK*xn!SL^X<(t1*j4Wtrc@{Ux_W}3>m&*~55nPa2cqol^yof|&2skW zeyh+O-Bwlt)o?$!7Hy$^qbp?`F}iOvWlVum+DJ<4I}i~)nrHmHZ8qZ?;z_!_)p4ZL zxLw#|{Nh-}Y=yav%XR7kS*9oMp!<`$=f;d#a=G)AbZNQ|8P@PRdiW0ZPPXPnuhYx& zy>vL&hi>QUcCs}}D+^g=-3D0!I>!#M6!qdxIMSs0TP9Pl+{Rk&YtKpDRG7LcFW%x; z*Zx9guH;xfA?)J136eE*MTnjI3gU!h14u{3%GHy-_PjnoXJ!ELt$qu@HbA-9aDvba z6a3V{SxaeL%O92v-jEIH`HJ3At)BB|Rrj0oDEv4w-39ldSS^@u2WZBiy9#JoDjQ1A zd2!t)+5#b65^^^lUnB%ex_9P*v*!)9M^lIJz4DzI6TE-PgG@myPsXbJ0Z?T{xBOWz zd7nHoxY-2{_oh}y!flbsBCJ5C=z0c>6G6Lr^Sa(t{j;*Xr7O!H;7`T9R^u<3?A(5R z-#0*!RfnumA6dn(FZEefZ%E0)Bd4kw3eV@8u9??rjoP)0C}szUik8W{+|4U2d|IRP zOl4P~o@Ot|D^l;Hk+r)~Cd!y*4PQF2l`QEB?S1|)ExXN38m04D_ctS>+#n9xHV8f; zYj}r283uhYhMNuYNOztfn7M)^!VmPrC*gae>K3JuiP@yp|Lvw@Lz?8^RKtNr6BnB9 z;8y4hO?J@TWz(t`DW}DpYXY7cp(xa{W|vTxrxbk&`d;k)y$~0w@SeY?YSyZsc#;Ea zc$R<3f!Am5mS^s2-8=Oic#sC}KDcD`N=F6ovgvavems zId*#vn6|)TlXV$EZ@P%NgtjS*(YiPMI0Oxn`=aJV#gl|Yk{0dP_1~`Eg+jH7l2q}e z)E_q%>3FM+f1tX+LD%|m?&u!^hyrqB+NYsb_6l!xn@PtQg)gQjvCE}!)-W^~t`6(@ zUJ@Qv8-yNyy4fjTzZmcB`&{g@u^)DcV5g0gX#*6cK?Cb-5Oa(+^xzX4D$s8_PoNjd z#^sldYrkL(QGeQqM(mTF=ktLvu5}`LGht#-1zBB@!psNJDmwj{^=_vZq&t1prtD77 zns6H)=7^Cs-xv=pBo=#W8Ud|F{!FyMvYjC4`HYEbpZ^QZfWrU9^O{kE>_z*(kgE0b zf5B_~Uzkk)JO3B(t1{)!HzGsrfup5e*I;F;p0ew{Vkdvn=YHdSU3|*q_+Jz+=QH}J zrk7q@oKhdKUG-;($$R4WCA?Mf<)Kt82gf8l}f z5okL#uF`skR$1?e)D-Kll-2{%URBS>Pt$8WrS&czT#*{uZH5?jJAuW{v8VD$BVW}Y zK0)h>j8+Xkt~Zcl2Pr~&gR!1ZjV~KF8chPcSMjZ5s&cu0(L)v~7AZqwp ziC|gW;074P(=^Po+bq@UU*!LOH{X`PV?p8;XW|w|0&l^m(U2n~q!Pc*87o(jz0cva z$DM%=9g1&Q!-qdiw2VhWpHhj)5Oe)u^3_w@=cl|&sch4R?@)X62C%ZNRzsF6zjxA|Y4Np^#rgR(W$RrhLwx4c(^;vwi zWo~0CeI#xLFaA#-Cl;rF3`uA|%W4k)-Q~!c!yf>VjSTn9pj_<1oog5_yI4*Y#IZ zX4(=6Zj4Jm;0^YlD**% z91WW9MSVc?0rI~^!-+V^1|KAF?V;V%8y-k#_iSaCd5^D$J;^=3t>Ms?OzqCw5GU%v zEs6ZckL9*Ip4blG%m@v|$T2=;AGFw{fkR6Mm*p5DiX~tVCauFDa<4H+raX zdRE(>Fu&aDj#nkCD2xHVRHD8^)kZB_Mkw}q0UQ>y24kiKR6ecuMLhyuY11C9do1(C zsOP)ktr_b+6q0NO!}ng^*qVVM{8_gQAK(My<4d}t(Z}#1!{Sh}z2i7LHy*G=hsS{p z*-}&6V4N(#2ib9E| z4zVn;Qm0GSj8En2y(ILWceSdG%X^z+&C61Y>C~cWYRWsSIX?@SkC5=_EleC3UC^+Z zU2sV{t9v$UkB*DxNVb%r;+y#R_O`Fr;%TO#<3QU*uri zrQL8JQVvRYSebo9N>c`jZ2L9N#p4C!w*v52tM1_&*$UmmY&k4T;#Jct+FZC z+Z|~t(kiz{s*3gJN~`i=1gr8RRiH9@N~;Q%@Kg|~n$D-&ntCKJNj}s*!f6J-qBz;$ zDB%)&lB_J;=nyLlGuo5R%uf23m|00BdCJu)Qt08u_HTiTlQmT#tk&yO>HZ5K_uiQ< zJIux?%3(uSDGD9471)d#_jL0F?_B4aaS}}pWT#EGG0^y!(z&q0a~%;4)qkE{D07$2 zb!t^}oe@p20W-|0BRPIdgJ`jDd=_Z~`${>L9I7AZe`(AFoJ4(t_|;-Ucn4M$hhU)P z(hab#!n9sB8p}~-Ep1ezZ%&3A`edsrI_8O%vp6dmp}2ANAI#xZIhgcKJ883;yHzD< zpKyQmQ2AQHsOmMpms3cTW&~Du9KMXhJ>v2Q-^0DGNaG&(PmnsoJ@8i%WOCh+;5Myl zt4J_>o1dkcYeA1F%tIM|^$cH9ivRA~Wh^Crl3=_P(aw^?Mn7zJuXdMs(U1?FrwT)%6Hhg)3DuT@~qnjl*|f`tS@$N1{UYt zZ0SsRned6hmM?CwUy%`<8b0xH%lRA1?N`jS2QLhtIMH(YhVqOnW@ZF)nCn`c8_F}U zm9z00pB25GFJSjN1kJ7Y`2dF5sMTeR#c-^>}cv9i$+6-0aXzsJsplCl0$6&NF zXUU8Xl2->uL}E#ny6(9@+yCi5|db zTuem@#~hK+p0IC^Q~$C_r_eUM76fv{`!RJ4J$3{;ZbVp&!_9cJ1TX1u%n_CX3io$^ zlu?$MuqaGa7CmKgV2VKODC@tDJs$ApB*)l{&(7CRdBZ^;&4X7##b z*m?c0i22+ELeblCeoCk| ze}DloE?yHl%ln$h?@I3wR0Jn{kG z9~m1_ZA8=9ju-^sAVn?vSXZT6399y;HZ)gf?+`MoP~|Ew`RigYwJ&!F#>V2&DuDId&sWybsDPKjrxWt2pLDa&6sg%N1x$E z)Ebo-$$iXA+=oMlZJ2-TIPwcgN|Bfglk{;bsR%tKbdL&szzY4LWD-2gSk&wK3ZIKQ z9wz`dP}&{sT=4^6ShtT#;L{x3?K8m;^^a2QKg{h{aIdZh@$S-gE(keoXC;D%jfWA@ zD{U)QKxbq%=7Yk#?cn1S^M>T5QaoPnGd@rGbP~q{1_MrWk1GtK&y*>{wVUz*F2ESEb)|L#+S22nG$sh~Ht zYq;i83TaJASxl}&)_))Jo*}8vSej^vapb)SRFX1_k3#cUy-IzqP{pTJBP;n4uFZD% zBoW|Wi3`L?m1~)$C@66FZuq-Tk$?P7HN>ZWisT0AC(PWe`5{@?&ycTt#mxWH7(@?Jkn9jZXU=;;UK0L_{*zwe?F_aBR#E(IwX64!ZEY?h_d#2wsd3La%k} zCHgE^&4PO5dhC@Wqa&+;8Fm`A6afUYS%xVUX_+MKTj{NimZDQjnO3=trN33J%>EqA zWVR>~aQx@HjSJsngX>bmhLDnSVdfs|U5J-KE%3f1p*0HMKZlL|eGav2MB~Ub78r zSm-elg17Ib7Ov@e%S?P$P{o=zg z)pM!%;eHRh3Zcx~IYeK=V zspi%&ofm+_`EEo(OdI{|B#rOKN#k?b0}gw@1>0%A+>Q_vTA;UZ_&nF0`8>d#^oKsz z6W*G$4xNI;+Lk)_C0;o7v8a909r|2ZC9Rj|oA&Eqsq>z{C&dUJjwuCmI!7N1w`Haa z{@M&RZOe!FbhCA>^*KLn{iyROdE|$7ZR191>dKrjPGB~+bC2)esADz@dAKWs$+<&R z-`B0VOE|u@QO8{zJ!u__%rIf_*J>SeC5H(tNa0@AOrQ#U{bsea^;6`P&y8GI>$rgX zTHH5QFsuLF9;x$aogXu+>F2IPZbLrn|H+egkxRS#Z*sF=y9-k|o8ATk&;CX0lq12Y z<71JWX7+li#+`C{ItlQ$P8kxvMftHU>0csiKD!&zDXvLdFY>2kl_K1GyS3;#uIu*( zM|ph*+it6^VM&R=CE|8Y_;_P1(!LFK@s7mW-+|QCYwkva)%x>%U}=^J3{c1Q94VpZ z;gH7`yo@G9&@qKsnLM6yk-47fwS$PzBb(Xq-@#m5wuC*JDTrG7Gn1h*f%%neYK|2| z1QQ@}x)orJCxByR3VR3opTba5PMMiNOy!*|9txCg^&?VnxuYrS=*X2@CN~^$>TN7? z>`dUQlm`Gc&ZhI`i?iuFeqz=VG;>NtOZysES{qA!f#03om^h?Dd1n5_+On>{ zLF_5vTJ`BHQ)kpi(_u`Tz%k8EEZ~G|8Qqo?R+#MNg%G+$?NsQ^P6 z&ez51ryFuP-SnH@Z`^wTN~;)Ii$>Duq1K`Y z0Ez9|Jw2aH6ehN_i&3Tb>@3 zC`Tr>bLjzf{BR7YCh1*~PBJ0jD-wKBJyQV+IR&4<9jV)cK8Bq8v4zri)0$$E9UQG^ z=+EILB@qPcZ;!E59ij;|#yLW551JV$_o1b;T`gmJeXrZ%qk#$K#xBTcxq97$pO|TT z=yh95QS>T@8o?APa=FO4Qu8~6G?nSFLON(w!zX?-h@XF8b0f3Z>BKdj{+@i-lL*Q9 ztUk@RznZVZzX5`(eHPu-Blo2huOT{p@Wr7_<7X3O^5eWXwZRpz57xHjFZ8+$x0EPP z^*H^(1Vni*eIJ<&on$h9MaCMHa`Ix%U}i!UA7sOArjW3jO|Vi_l<6)nEpk$)gZN1Q zJo<}fd~{lAOi;ClS}bw~3{<_5St^>30H!jJClgacMK1-A2#~Aw4K;eEAV@hmh`O91 zzk9#8n}gezTV(%<^_8!`Mh;Q4exptd^Yw`c z-c20YL~A}(Z*^4bNa*)Ke?`Q5?UBL6)C0`9l%CCm%XeHMQ-C?yn#Wga*bBxuq`b?R z@n3_9-`V4;@8pkapML>ANGW3dZ-57x{S67we~>Uv>qM#x^J;#_u)ebD!+I(Z)-KLl zo^0IoZ?>nV|MgckPKg(=03=$S0*o4TF5gL$)*By(nDw(jVkSqmGoU;XZhT;T^>rwZ z7G36v%@W4X7M(RMHVZ|4w8Ap;LTCifDvHf2w(%|&7M)-D*WLyQRgN$WcgmSJqPE}9 z}6m}A^$Vx0!*rLqxL>`b7kw2!zm+#?YjK0@Uc=hK<0a5>K z%k~jtBUKB38B7SOl_ZXRdp3XN-w>0*_dx%M#*OpIC0gY%&W6>NZEVahMng8vJ$wBH zb_wb9Phy_z^k1CDVOZ_)j!|nRKd{y=jDeMUL!hA3U%<*W77Slw3T+m5MFXB{DQF!9 z;fZOIWcx(mV#zm9B%b)h-)B;yAm2Ces#&vkvbOTod#{gCD|@g1; zG)(K#yB;kxfgW$jz;T_Zt!^)FdjO6?=U+Dox)}) zZvOTknDcB(|FDKMCK?r!*kGq`BC5d?VV8utU&vl@}p1lRvq1n9i)mRY?M66)q1mh5o5a9yZlBjNyQiQ$(VkFsrYjA!H>}qZtQuG z{N#7Vh@XTlvVJ#mU1r^W7#+bxVr0It^=>~A0XVVKgko_ z$4cSBUu_%^KwJ#N1PyoTcEU&X{o)au*r)xVE1e@&`IimRkJ6llyj?iWV`9Ik)_7{G zke=4Dfp3TWu$#|x&nRIA7kPzDa6$XShQtnoJv6KEzu+FB?eTc!L7dK*{{_2;XN+rEUFIY%9E#DEw3 zo~|~Y*mi>2+TtFO9~%#k5hib^1R!vM3VjEKWvJYuoQM7DL|X06wQ83#BUSYqhL0=gw88J(W8~XAK>_xG%-jc_`%q=CmC6RBvUBvyru!>ePEWMvVM2|sE#uu= zQfl*Pz#=n6MBQIqEiw+{=QG5S_cnT>-}rlv`7Kl(%`jDU>Mh?b_?4-4z3zKvyQXSx zQl+YYy1uo~W1VHH_T{WE>f54P`7r~*#HY0KY1Cvsgti>~qrzeKhyj}z;WB|eCvKS7heZ%1{r zz^h$+>V)%^`}B&hjbs?XZIOjY6xsRT*e+a}pq;ki>YysXjXq#Y5Q%%)0ahfV!?W3w_9bI?Cn6f*Z( z!S^SFwT`FxCPnj?-hV2Zf8b6<^JrmmEU{)e>>0wcYY|iHZtshsMM)j92xpj$IicAY z{3_dIETaX=oC!@}%>@~=`cq-djaQmwI}#kNxEL$CO3I_rdj{A($!YdmZ>niFbCWsEs*=Z8vn;Cw*&AVV zVwF`wO}Wd&t5H}_EfT5Gpypea2);sc2sU$44!eB7DXX90$A>8x& z?}-};L%3$coRvqqkARPo3=|KZmch|ieMcpOSt^60k^#1j!gimW0Tz^SW+Q5lrqRIUql4=~1YBZf(kD{)K{XMM+JyJ0oE#kDL zoR2C(p$roiq&I2S07{-9i?^|jt-8?Ck7#zb+LP=yboOXx;V%$>DBk2!f!UDx48nIB zr_FcR;w5S|dF#8UT1{%!snrBQ4O6?7C`9)E5})KDagtBEjk-aXcG9N!q%$o(Nw_0e zqh%(e;Swg!=tIyjGCWB@@;%`HRC&}_|C%F5zJ<&^l(Al99ojwJomG>dbhDXMd}U}T zD*Cv7Q8}ZZvrAZ4F*3ywZich-b+`R^P1TAR;I^ zNgRT=!XlM{DM(SxeqQ|ojtz{jFf6604|TOh?lLZ+GO{D)qy3)h1vT>N|8jt?I9-|+oYDl5iH*ZL?_9)=xy?)Dyyi%XRv(0<5Slv(hg(! zhS8o>$!uR|1N4Dc8}yuwr|y=;eE!1N=!e;Q8-*K?$l<5x?)7|1#|%H4+@Gj{c;A2U9xTJPq4}1snMm4hWxJPPjO)dtPJ{ zaxkeBx6<6!#b)JE6tEtnjgO-=>@*!`D)o_-dB$DOh$u-W%?goT;7W2=gKLg zo)k;6kVYJ3Nr3-C0H;LhHQwtu|yc9xl%kV$-iE zIe=`9jnt6von;;A0djItB&JXB{Tf2UVSpYqzJrS)#NXtt!LJA-*k!zcv3C4x=ne8o zh^e~N3*)UL#O&)h5U&h}2JOMiDf~fbX}H9EY6t7%aEW=_w|t%lS8q9J~l z1qJ;8%t4epHWtZ_y{7V3e(>QOQxW6{kEK%tenBC8oWz&znx11?+gDe)7WvD z2p3SsHFobg8*+!G>N6_7a)Q7<;kXy`-OL&4TtTc9-t3>bLbO?wu~MVlQtSHhTjvm zK4Jn#Kfau2qvqR#AkBPpmWMxAYWEUdBW3)nHcdJ;v-D_Ril=oN4HcvTvzhNex(AJKGz#fz>%WI=Q&lwS>_*l1ri&GHPUS!}iJzbx z9jVOg`pxE(5-*c-E}=y6MYNVGzOO2AvsCfxRIy(w@v>CnRjI^)RN{@5=Y&HTrz*(Y z;OXxNX3%=YT1OTii-Ly=7I~X&=q~+@kkd}2RM8IUylUgCx>@f7#MW^^^J59t8urSb zv0+C?SKDa1kxuJE_uP8gF1yajTb28QG1}zkYmI7;z-Ya=5FsW9~a4W2gE(3_oEHaK* z_hIAuCPt^i)0QnG%Udv#HpayoiAd#hp=5tigP9%ZOa$uRmZ6SkIP1e|joWXQfxcNr zIZ&S`YX+#XYK#g~fuzWHN1Hk3Wh186^L%01ppxBG&R6x%t_N-t6}=|u<>myMJ+i?N;#q+F zVK@`2H~6!Wjy>=+k!Nz`Y@{qVqF}DXJ>0zl`xSXyu!|xJ zrYfS)yHLPce~^hi@{Hi@2v_oqAT+)I8mx)(>G1yR%)T*m=7mk+VaUhM7^Jki!pw?R zZW9R6s9NQ#jl9Xp7kZ~mL&nYc9n_sDucAaY+mX3j>?sgtVy?L>GlnLHu0Ysu?tr@T z=)@-B`(c;1=?caU^@_lCU_b4Vx+}kD%xT;cV;@DT;K!ZJy~H_0cs1ZDzQa)ki)6x` z0cO%66D}$GIj89u;NH;Rrcd1ZhZgs*qFc>mHBHMoqEegm;egJtSskWpG(|uyxIlKI za}bb<>PRx0)^WLrOtbV|M+&(?A;v5qtop=;kmqsfqG+^_zeX$COOX!gEwkrXyi^b3 z0pc6aN+U{#>8isr)kkMWrGFwS-0VoyU0TyCfHnw)OC42j>#u~L5%4@)aA7oxa4li% z#o>^yAg-bv62N)Xe(`J7VpUC7L=(MN-X$J?khJx9?@Cl(XQh9W^hXwC@sUU4Kb7TD zkgfFRST7&RV7-(lSuBeshD9A46AD*OXe6Q_z>JRzbs@!{}f|0tTkszdHk>VC?9h!75|Q4Xa|rcwpxSi#c?))kmx5=xK_ZO1j_ z0^!<>7yD$2(AKYK^kPN@?=gXoG{#P}7>~^lBaDtlDKBCC2Yg@r%&5YpWHH}p9Lq7; zt$-xHx05(Z(uQJ`Xpxyfb&-4TBb>_0pf;wW#%{v38E?ItDFbI?G%7Z~3}>2g7au4e zO8Ae2FQXA;fIK3DVm;wRF+szUeza&}SH4js>~V)=!x)pQQk?ME#w=)XPgN?b;{Nix!lWvhBjr}3OD!N>b_eG3lpoWwolGzEqQvezDqQX za&$G4^<9kPYUASXL8j)IP!t}C7OQ3{2X3@unt3Zoq7~fILgfNF+Od!aVbDCr?O8Hx zBnc|9)IgoMybK+omAYhavwZ9k_G&n^<>wU0yQ%>P_nM(@W-QQg=uG2Tl z#{IT8WE~}~zH5Z*!o=e;5{xtdA$=gkA60WlwQ(;+CI`Z#w`Cxxh_C%K(`M{&pdKQd z4xv>#ioP`mg7~mgqo6F$q`krOF31Y8;Sp8tI#3 zk+72nfDxctx&obKU5G{{Q4NA-bJB#45PkC(#IfY8L}x32G;6^#>yPOSr=TEdLuzeS zjbHZX8NYm4zF$@s<1S_f){xOp4KjsG2tA>Q!kpY`6~049I&F1`BAw)?nTuwkx`kr; z&9NosI(SW`;giM63JeMQ^UMjI^U1T*hFv>vtzq{&#E8~RHT!KL6?1_wl`3CiQcKf% z)}uKjWQ#J&DEhAQS1~afkcm%u(;2Pw#aY;r`;$p4%>4=M-f(_*N==Git5|a~zvf2o z_uBi6%3O17H~? z?LS8IeHJU3+OJI$fs@EMXS?-9o(Qt=*{%qhzhdu%VOT+fep``VR?KqA0U^RZ<2aTA z)&b(UlPbQ`cm=7793!yV#KM}roIyJH-Q+d}pMCwGcB9qO<73m#mZW|4b?r<%LxHNjJ!#BwCCq*hy(57LW0Eb;k(L#=m?NdgHP!Vp z(2TMF4!a@b3@sskeOXfe*nYi^jQzkk*a|)CZQ?n44mr}s}uOWPw zlX2tA4_ZZ`#w30BZMU3E8e=)NrkIH^SZF2N+a~CDUq_5) zd#&;MK{3`FreaS0J|jOYf+W9{9Jh?j@9zJd{F=@DCcb)deqTOie&PPyH2Ui1;MmlN zxdk+d+aUhK#w)+2Nn_)Bk>dM|_g}AWVB_?By-^lp%4;+LFJOCCUuzzj7=IUzZo5$; z--C^zN55OTCwgbUY9!8EIKGy{=>@-&ezLUg{5Pc&rJ@w`5ADY!AtW!SFt_Fdif?rO zCuhU0xxnH>a|h50;z%U9pVcE$T1nUR@=3wb)5}F6sBCC7Df&bG71=DiyK=Yb< z(C#&_ie3}zRQj@F%m2Voe@V+Un8eCK**9g6drOg?C2)jaBoD9O6}k`+n_>KHvmDXU ze1e!2R-j^wb{CW?+UM;o*7iIEe_je`%rtVUSuskj5v@ese0!xQ8>$cow5u*BY%yYAm2Zof7GrRJIGV~MQ-NJ;#T4T*U(!Wwa{W~%N z$bvJo7}4!iX-!j)eu;suaju8 zGIfGyKFHyVzE%E8Imv%gA72i=p39MZBdaI;o@gH6PQla?$QHqVR$AD0memQ$Lxh_Z zcF|T|U9U~)(Z1cu$7oYt)VH@f*hj#YyR)@|=e4WBWX`T5`=#5-afeEoO4Yi6(U@df ziN_A=&^OPs?QhH>Ii|GRoMwDqu33!F*_wA!ieC>;A@xhb^+|iuz+^^U-Pbs@0&25Z z0cZ2PNM0=G{Alquem(sDq)qNpa`A6s!Bf(8{U&Y7pI3Z^Sgvm6@M7s!c3>-Nk{>ap zZ-vhc@0Q(GDF+EFrV)EyHzoZE&1MjqyH}iVM(5sGafTUA^ldA~mf;R)&5t2%Rt&3K zs4wZoS@Y6z4_%UUXHX~V)M>s9(2aAK(@0B!7#;Rvy1dAf7x}|qd|qA@$cv)kFS5+B zCGbcN8|8;r7iSRnYtlH4uArRVlsg4WdJ&9o61scoAql4G6uNgRwC~7&LIu3a=BKd4 zaZa+cRrLAFJt{J!(n`xxk2m=B#oHtz)mo$?o+}Z_RVq29uT|Ru6_cG6cY(ZxBK8nc zlf$V|t03Rc$tCq1hc@N;)^Tdn&)YZS=SwDe+LS}BizSZaIVYb}pw_ucL7qpxU@3bm zcSX0*#=>roRj+y3g%=C^Ht~7&IyS0V`+T_=NYgeZ{6ST>TJ?hSKNI`;YbF|6o zkmh!L4=>JDZ!@NLX_Mbl6si%0&YxUvrpuU0Mcp^xxcOBTQ_|!QrRg6^lTVstZjz?F zK%3l`N>enH=1)Uuib#{pZ7Jz7DGTnkhoQ_W~r#lCfcR{-!{12k=)F3^9FJ~O)gvGFxr!VmPCXxQCg@r%lsZ}Di5$Sy` zEcWo)l!MwGkEolMwL5;MZjNYo2nq{Fh1wn8;U?Tx3<5+FGSJ+IEL83}(7pNv>_3fm zBiZ6KO7`i@QReA&fKevf;`L^fITFQn>L}NmQKY^jqX=p^nS5Er&^m%_kdta@$%)>& z%J}Y|p1$6{!%7SYTp>_#1H~&R!V0s5aB`h_U2@^($kNiyY%UhJ8*u5{`6*N!W8CeT zaO-_Y8@E>*ccDGWoXxjxfu-NBBSe!;H!-o7Q`QvhxA#*^ir8!y_Ta}~O_pL-Q0fM=B4?0mNP%lLcup7-5+5H0+Oewgp$PVNgD=DREi;#wj zmuv?0{W-z`Fu7h>{Las8(fS+_ur<*UqPym=Yd!kLAVewCqGv&RZeLG5%ERgoZ zE{g)^@e0g%dBfuwX1sq-#v@W~ zgIU<{oZ5-OOE|S&I@VGYNp{o_y|R8QDU{5sc5O%t{smpqBh@p0_5K{WFwGcR8d~p2x%@Q=F`d zDpc^ilP?H2wL4|Lfj)&r%Ko2M&{`&3=9+M=RB|zu{EHU;fC7{|mc>%PZBj>mJyt!n z4f}bIejW)j2$wiBNxgU`4YGJ9!HZ|Is4bq!n!9*rj{ISzP@K)}rGlI!7vIs2dfk0c~58*wR{!O0o`SJ?C zL#V~>Gnv&tQ;tkF$}<}@e*+zxeFJ@(y_nw3UJUn>eFGCl_TqfGE0DV)YmFtD43VW! z=3-b*V+CSxlfRPhBcyM|#YB~5S)>dL3_Khn<3IyM^}tCT;8OhIaJ)*{Op8d1DH~u- zkE}c90P5{?Se2}!^>LE9pp6WM%F^sY3(lO)WfzAf`9~i9l|VV#8~TGlC0gy5~33cuV&!qrI#iSbVzWy{1Zf zqDp$AUV5TldZJ2tqF#EUN_wKc$g2F~OOuTu-`@a(=^iEiV7O*8D``L23MYk2m^}o{ zaZ5FS(8V%J$aX>klqBS+WY_M1jB18_wx1h!K!&$^$BjEcCCqo+(2&V@+_(c&%Y4U; zJ3#%+bll(_F8Qu#Jw676x1o5iPB-jgc@eNFoQlXE*I&TqR!0KMdPXl9zXH2R_#U&9 zURaX+PBJClF5qmq6DPGK0(DjzNrJMgBrAy|RRckmk|a}UItkCNDl+B|%X&pBYid>| zDXEg=P(`-fl32RIN=(fqinNJUI7O(!3D2&|XVp2%`ZHAXiK*=Q5=H-6*pm9)B`?Sn zDPA%apV?&m{p#c=vPLlwLK)v(k!dao!&WevuVnoq3kXcs4^C0opmEJp+)3Kr zUlJ0(M#N>Z`_I&EV&8BEh>xiD>f@r0J=Mk%CgdYW=^oq)&odrxP&%&2nZ`l$GO?LX z*%6B9UJ;16603^E2QZ$2FFB33^K&^SI0JXVh20=4_;U(b<&DwUu!tIPAg}vSCV7e5 zV2`LMzl{wBFQS10^g#;@6u)g70u`P93iKr>Ks5Np@H;jHe7HkG6?|@|e=Zk)r{B*d z(CH6wnceB1&1Fufe~#{rlpyq)X2L&@mTxOS$n;AP`6$o$&2=2OteS58Qe6v-pK@(5 zGSwHlnFPk^jf0VK#uhW+x zYY!1CpDt-)c(G8IGP&T*${s7vliOIiTIf>Vv(=&)D_84VtbCf}e0{8Z&Li^IFDYjy zw?c72r(Zk=vyQP%=vGglEkrVD6<9)!VQcJ-cUxm6&zy~`YJm3mgm zUSw4zT^$En&W}zLyi?#Gc9DaKyOCv88<%W=PV1DQzDL(0XW~DjCK7NOb5t=v4_R<} z4qNwMGRS6pZQ`=T<;I5*lNi7;4mg*Hg1RV_CFNMuN63@vYzWM~V%FRiClkIxKhOiy zAf55vS<}=$$PAm6R~pCzk2a92Uj=e>a4*#NrrvEr7SZ z4gyyGGyK6|%a=A}T#==94Demy4?b?0ykVyO3O_iuZ>fM2EuY&kGvf+>hSu@23P2Bg z!_3Sp{Fz$Ep9m0D_W2&Y*3{ssKr;&eFN3)10m&q&XIOcQgGYQ3gp)265gdlv?M zS8e*BzZfF22EDSij$Ha9++7KMwU?wUu2VE6^z`6^MCkRMuyy(pGcsCA8O%irR0VNv zqI$W!HSTHt2wL>equJ5Q69(E_iQZB2CL=yZrJs=zeE+9Xk~(}sg6&kIMe-lEzf_`s znW@GNt8`HIfJa4%TyUfM#JYRyjV4+u+Th4U3F;m=3p;baZ-cKdU+eV6qyA~l=p+2l zir2?*lf?TZafcPyLtr?x4^4ilmb_M$phY>V7=}jP_NvB8cyf8 zFu)E_jN6Xo6NT43DCwca>V zEyKVqDJ{G5YAZQ52HkC~>KEg>jo(gwyZI^lbTgy6Q-;~UeETDD2L|gwkQO{&&D3ycR@d1Nx|5u&zM=a%!J?J24z4hG8@R$;MM7MK+v4vm{+u^K0; z{NCLyUslShsrC4$@@{^vJ~4eoo|#iPlNC9*-kgNT$ddm@7Vvn9l`?iNB+FHKeTULSPn9tTS56uFUPIx8CLI3y=7JQuAHn9&kS;)n* zu)~-|QE%(W;LeGTram3Hz(GH3?{B2innU4is1v@Clu8(7B=`5d{`cP-8 zrg~L=_Ynu4dfV6fLHY)+!0}sq9MPwq*;(yxUmLIjeUSaZf8ba^Otp2&(<@SGAxXJ?(1 z4#0-@?WB?xAQ_1)HyY-m0lf?R!0ET*C2RBvMyX6zS*oS8Vr7b>(YeW^{#bLN0Z=I3 z!ty1|@(*KtM{*}Y9O+Aai8PVc@y{AOn6*6x9f%B@tnxVN2WYX`o`CsGF+h~Z`6292$??)vWo_AdV7l(wEZS!dzjsyHnt$r^ z%S!g@tEQJ6=zb$3>bRu)NQU>Q7I+SZo^gH_o8Adr$LMy+m;=LEFg@PB6-UU3`QzMb z<5!CnP*W^m@}hwpgfiXv<{? zgExr%glr8f_eI1J#7^YHs9O2@`KGL};UGli2WVy90^==oA+4<1+kA+RAFS3YLVaR6 z7us%2V%C=+F)#ZZ_cO9IWkP}s@^o?T{YM#TT0=tFv&?|u`w`EKyx_z9x#JlL{39hjMKHrH#pRtqhv??%qJPgwm9?L4UQ*SE^P8fyJ|Ok%!(Hd@^{_~ zhms#tP1NK^P=CIw<4f>WxEp{?p%rP<>KcJZMxZUCkU(B6pa!0akIarRrYz%cm}hQ4 zg(p|*nTuW%p8z7(js%a%a)aUGs;RPs--$=C*98?nUeI1O*RH=F&*PdA&HZxxOl}-< zGl3gtGw#UfMo?uHC$y%x%UWq?h9t zaO*H{bGUW>L6O0D)qe4;k^|D>(P^&=sUmOXudMWeocCX(%AFp&J|FRxClSbRU!X0lZUMn=8aYJmbaB|`jo zNGyf`9ryEnR=YWEPeTtq{C4r%&+jn5fATxdPuc}~GN%B&J|E8Z+j6!A*I2l&8fQ~)KyX6nd-8H2^ zk);I~Pvn{iWZztfx>lpJR+zk*b=+6w)*!_x>}Dp;+@9G}Q*C_X8i?KRVK0)|V{b!- zlOxlA`hJwEfK}-YID?}%XK~o$u+6SzuUoG@k)vN8{>Y)-`4}IO$p7)|4UB~>ndHTP zE11?C7i{Q>T;8-qrPBQa);mESz{@NCh^%O?v}oag%W>+cf=|G%xg1%PE8GhPoF^@r zkg9(G=uy0zfTx-jnJKx8$0?HFajMD{nd?E-Br-P#PfFq5oXFhV$mJV)tjcYQwA%iY z-^={=@*BgqNPmIwG8;s`RhgT!dNv?!NcP_)5j#w@C2CQgwuGU+5-w8O+Fxrj)K{u& zfpHnvdgDHyVyM$v*Q5u4?0q?EBZpOb)b&zyMz`ohvX`K%wr7Ssg}Y_2$NY+2==IMP z1O|xrw$q}HwchP3oss&yNL7A(7V)c%=N6dj8xYe%Te~bI$e2H0o-H)UhL}H39*rBR zsMxh59rQVwSwJ9*;DhQjW{~5m3|4iSL7@G{tw~T6+Q$;7P?^YRW;IB~oZBLJ6D2{w zrPi#jLGDJbfs^xxEnGnb^Noknp(fMIi}jkksHa*lXFA*z?#fSJZ7um8)AUKp>q{4; zveurc@U(=p z%-W^*8BbmMae{RNk<%{YuHO<^If!8mRtiMKEPR)7WZK8p;UOnlLjS<30`7=5R=Q%9 z3>N;8@|s-pR{bSDU;sn>kK*mH%Q7+)J6M($-2>WT8ByTgO@8#7|jQ`D=&PmqP zO-)6EuRgILRk?XoPEumoPo`JyBV}<+C>udT7fpVWHknw>OVqDQ`SiAhHXN)lcgCu| z)2U^o@=*J=uEA)H3=B)^X|=8ir`>*S?x1yUml9aIrQr6jxCUc0VXPQ!GZp#7WJ$BN zUps>YY7D0Yp^E)zzjhukDpUeQn*58Em&ru{wQh5x91Yu1cThYcRGHN^@LER`E8U5e#l{zV$2etKY5t?~bg}!oj)G^0}H+!_O|${BeP~3t1E#C-5cKK(2thZR?|_ zXL@TZ*1U6k);v3Y0alh7N9U=To$QgHPs`+S)V`@m79l>_)Hp_HsnhZcamNj1~&-LvM+@J%jzaIbz< z1#<5lY`$vC+Gk|ggPDn|mX_fg@m*xqBOurrFKS3PJKDbv*#}Ir513?6V?y>{XPgAo zVidyxHUDA(bDVs=h!^In1g@fbktdh-uQN~r=0HjA(#(PKbp}en94G;EpqSe?B;1+^(>?fAD?=52@{$Tu@juh(T|F?2yFu7Gqic(EQW@At{M-?w*u6fjkO@@ z#EUo?6a#poa*%?H%`8L_LFM5poFxNmu8R`7lCM*FkQ99lsRVJ94u`X~RL|r=DeH}q zL{tJlG%DN0+a*BVHc^d5V<=<}2<3TjK*Fibhu2MJa|K>(M&#qdtIen8Q*7oF3#h@Q z$6^6BoMM4RoYp`ROXZ?iiIeSD0D5Ce!CQ@o$?kfsZ7VxpjJQ_z(Ryt?-j}rK(Zz|d=V$%!itd^^7@*W+5}2Cm*7ZQ~tstsGnv(pRxG;#(Fy z@hp9`*WKcnx+9+P8#^7!;5kE1)5gOGODV;~<#ksa?GBNVA>hAKA3c{n({c3Y9i84i zp~>E!(8cBY9&*~X1``UV&tr*I?!+pG@k_Qc$o-fQOlPwqgi89(6@78`Vlta4Am}gA zY61j(DIX*PM*ODwj#6VR-j2zI$y+psK>j-_ZDM>*!3MOTaw@q_9R~HAT#uQq`O+ZU zy_}LAg+9;pN_Uf1(JhiN1$OAf;pUm@)S6L*yCE!pAS6*`}}Ip_LK%qQO7P?lbC zwaq_s^EE&Kl7fHaZqueLwDS#_BK?%Muw+|XtU?wxU|?jCm#_T?*)$g z#E+pUKMYF&D?Lo(mG80SZ+aDb*R{Brk!JI5XPNQ4Ml3TQsAZ;sFEf{!m@G5hEq(K{EICmX2L9Q$`^q#PaSg8*G1vR$bH$8$^CKlYO`{K)$h&T9~&Db zSNZo-x#=AxX)|OBQu(X1OnD(8Lv@k6lCF}yTMLF-Xv-r+OGzJg?)+)a$IqlcOZ^e$ zne$1uZ&2vXh3F88qH)V*c{ZNM@7wZg*L{(JPtwiE0dTxmJM zmj3lI-{#aed`W~Y=yhP}vK{X4z5h@r^F7ebY-TTY29sSWyrdX^lS$oC<|A~-lrpl? z`|*iZE83YrN}8yWlgkBFG9ByJT?t!k0y~;<-qV(inoh+)V3Z1DtJlEwVt#5RuXG!~ zY?IF_!U6F%88M%e&r3p8VgN$KO3RjHvFpxc=0p_B?ex6e4&GvSLQ_Z^OfZ|KQkrJG z*)(YD^MzXYBBU7R$1C|=vQ4da2V_YqI;iBs+7w^zis@Fqsw+5=T!e$-tGkRt(}wzk zL}r&P^5t=8v*IjlHsUA`E%xzekq^s(ZZM$;qq~-gw$&&1+(vaqXps^9m#iL>3dWX9 zCC-xL@*ytacj+!c27x>%Yt(~bD1e&zshL@w#iNQ8Rg8LwS1TN@MEoqtPXT;VrLk0w zHK~ZDekxtU2X;EH^shT%V-{ZXGvpE@$XVKpXcsxDkVlNMbQRl)U!eCWflyyev!X}tt+)Dr?uX| zt)sPx6R)WMV-CQ*+t(Zyiio)b-DRi>%ZW%9*yQAf(>@BU3r=~qA zdRt`OBFJyrLu>uFAa-TbBIj~29e+}es2?kj|3)AXq*-2~S++{EbUG%^TKAE(h_+GW z?ZU*RnuYcdQ<^$@*&WK)3Yei6SLW99bdy`U$sJ_kcV8$pO`eGL&E}C_RK#fYU#jz_ zY-b?0V!5HvyS_Dw+Q*yum>8Ab8ox%H{DK@1+`dqoyi46¿Yw8WcssX2j(A~01E z=1mL*vu3JGhU#HfDwJ=M$Wk9_Z%u#V)S_UU)MF&UpkLUdS_I|NAwn4(A{1@oWvKy0 zd*IC!2qx_bT*4b1nF>QHu>Py%&oaFn^n!x|fS|0#FdT;E)yuG+J1Sy2EQpz8vVDhO z1_kr*A8g3mL%B9ioUMjFp+YxH83YnER%aCUE&4kza}z06E!eh-Gbp%<-!#U8~?6CopQR0Q9c@w%dg?XYM09@ zf$~1$Kf$r)#qaL<-O$|^c~FloGtY^T?OW{laRn+wIWX>iTp)| z+iD=`dfu2{plmJ2#Qck-R`KyAU3@vt&AQ4W{zYj02?e!G7s9!KKYDM=1W-kn3WFdr zS+`A|MD{fFq=bdNL(h^gjDm_SQ|c-D^S=Mv`g1!z!x5*9=+C_>^wauN^yB}}^yklU zI3oH(U--(PwUT3SiSt8>CcxBtNwhH;|kfv|9?9^WtL@m z)F*7HC@lgivZI|btUXcjftn3&l-Zz=KU&9!gxACz`7i8rm2m*U;e+<*?x>>^y<}Hn z4{dj(ml(haU?6M?<|^_%gxGj?|LxZoeu=B=JK>+m)p>TLPOgrdf3f1rtkjnvtpV6g)4{@_{?tU7XoX6+|OCRR_1!!4>zB$~l8t zh-6lnfeI)5q)2Yn{WNtiOnim2SYclP!0|wZ%L%Vm=$uUcpeRt!|LE zDo|}Do;g!(h35UEu}pu?P(yX``u{~ktw=T0&rWKn?^q3WZmOXucBleYE6w~Lw^CXj zX-$+z^JiA&oYX#Tc}$m1rFEO{ zmwnQHQ}^W~zmt{f9BFTjKfzJa+w3^I2<69Je^lrFqy8wXmI;RFLsyPP@I?Z2To9mw z2y7NY`aED4^)iP-UPNmN8rILycQxBL^d(MHep_HW6@SHkF3DfD+$3c#mp@-Mc`FP< zT9^T0v3|OqtL!9A=1Kt_!B~j{M&V|Kzj}t_(RREhpOU}Ay;s8IufETn#b12}+eH1s z{ncsbVff#UG(ILCxbjomnQ^Y#W$lUR+!(u12#^^IJdGs(%JlMqp11nNwX zV7K5G7P5)kT9$_6_Lj-~3Etj(ow4`}R=u_LUx7as{m4@Fccfx~iq7h{(r9|_AQiaw@O;*u9=Bx5xMoMdc;esBrvNb@(m zt{+b&wqaf7iFWKGCwk3=c0@GV#Y44mi1QBAFoZ!=f1(|O5+038T;sF?ipE|0kGJp? z>v)>K5V$R(pbUoq`_K*6?)*Jt0wtNp{;L(wQ;Te70l^8;4oO?xTzF))&;c&6J02lG z4>%(oo7D}dn~!m0LE}Y!EC_kc(~rz0`l&LSazsop^#I96WJK0!88uHgvr^|{9Mz6H z@-9`E9JP*d)HPYL{3Cx(g^PkyGQ8l(R>JkbBAEqzG8jGl(K-YMIT@!UzTjW}qRZmJ zp=8ZgzKbPanazV=O}?CFww%$*VPSKo^{|+2O}y-1F6;96n336CM0Oy0-~=gndU)+M zwxC9v0O%%UV2qWQfu%8p@;Lb^<4UR4Z22RMdazOyhE0sfK#mERiS>pF5*StC)iH&f zDpSz%O*Bwki>kb;n{S9aC`hvk`YD^bWEJegs&FT7*w2Zs)h&?GPRJ;#zznOKzZmx> zZ!d{sg}2letV{-cA^v$4Fe4doaeRUthZH5B&$UXvNH&)E(8@8NXE zgI@9)Ip`mencS+v@IjA{9i{^{;vesVP?M8}8u3EY)y-)m-V8_^@n(RGcpQ!~;?3ve zh`*G~M~?XKoIYa2A3bl_h(G_lE(;0%q|9y z^c8z0Q{yUDE++1nB)Tmit+e{~i;K_wBIj*(aB{Af=)064&)JMXZ@}2!dIE858?G=w zL99X<;bmLoHfLg%GcpSiS4UzQPL|8;vn*%2!%hd4yas~z z{sqEv4!--5^h#FI`S{y7hN-O$`6Wk&G#45dppApU~ z+urUv5zU&9r}6kJ_1L>3!D||?NTQt~N5+>)*Bmwc!|MviX!XjnM7c9u?#e)c)v9Zf zP=@ul7%;Gl5bsJ-XWeWGI^F1RIjOUUwSqWkaD=rHleEv<=No?UKGRnly((W)?KaN%y&xeB*0MQrH(z61 zlpY<;wq|hPaiYw_|$D^WY&OjVa}x_L+eJr!VFip^hmTdwhs3)vr{FFUPO z-`?!NjnKX9k~rgUB!{P4$)czr4i`Ki=wX9D&$j4h8fYaV>0CQxpFEIoqde1 zK247C|AL;IytjrVX9-QBoiqzADcG*4qbyqXan!Mnsgp-LT3rFxZ064P+ugR7iPGjR z<3YUWoaI)eBFLoNn{=aE;uB}}q4RdWCuZwIbfDKbBEbI6kt!w|lJ?`Arap126WC!i z>)afT=(fz>YFV*tnOo6YcGNErk(CFfX16WnxM*npQ2BR}zvQ`P;oN7_joi0v9R5ss z>-xJ`i5`56gL9>~I?(I;*gDd$;z++-*mLVhU*Z^NO->%^e}QEl$wjsCH^%dmKcGAH zqkr5&9Hg!9{YUR8i7xiYa+NcDG0S}Kr|$0)A?}D|;%tkZGRyB2&XmF*WVW1#Fg46}uL=;s4aSvGY^-}S)Wxr;r(XSf4lU%N@w%f| zGM4HZ&hT_**~hez~9qph%gZ6+o9=A?QY+k}CzVFD4$iO3)f0XO^I~Kwl^j)B?2m zY(cF+g=Y$C2l|y6g}Z^qzNNn30JQxyeZ2?h=F+So+hloF+g<)1Hvyt%6zC-u`^AUL5yGrK)wGq3k ztyj>1pgw&iCi4;KGlPN#fJT|GgFsLIMPV5*|HdT*1%O`4R8Pq7$}<5$cwtI>Ym6YV z1V3=1Ai0mYD<~)*sCBNO0-)y%R0xzXkl2b>&(l|UcZsJAG#=>o`3jo|w0VJ`NkFR> z3YrY`?ehdp1$zC1g35qSEf!P`bmfNx%>-)xupn9E-+!*42+-^zK?{Jk7^oI#lF6?g z=;Pz{bt%x#=LotE=pq9(09_SPnCvmNny?#zo;G2PKp!$KS_AY46SfxUy2Ydjw|v_? zS`V5>d(jdF-o4m7Hf%PJdkU8-@V;jAc;I>S*jW5A1wQfx^LX@+=JD9Aixjvi!({gO zY1Mk${PP+;esV#r9v%DY^w?f|jUL@4*XptJ&*rha-aPi)SFgam1LkpHw#oD0ZwnQ8 zX#EHD@MfN(NADGRdi4E4XgA!S{b@Z0GK9v$gS&Vn)wtdZU$cMEYr@yxzl*d6U-uhG z_}YFIzP6C?wS|PQEhKzxA>r%i?^G_r*EUS}`UDdue7(@*EPQRh3SV1D_}W6k*A^1K zE@@MK!q;Cjknr_au^+|yNW~Mrwkd?Ki~n6;g|ExMD=34NGV3ux0U#SM2dL#g6cz+} z;6DY0QeX3c)_zN2`9R&@7E}O~^BqBjsdz;xs5k|UPeBt?(4-VJIR#BkL1ihZJO#~6 zL9Fa9;U+;304?}0K^uX}ekkY>pg)?gj{=>t zUSW>`eaaQI3FrrR3wj)A`sV~~1}cdO`U%h;lcEFY6ccYd(6YF`cI#`qpq)T(o3y)u zzW8~C?E$)bgP^@YtzQsy0O%9{_Lbw}Yt5M?zP9tnBleYFRJvZE4PO$}2ejZmLH$6L z_X`>Tdh;GZgFwr^DoFU+<|2G;A>nHa313@C_}W6k*WQnmR`~jn?+FsVwqJ#>EhKzx zA>nHa313@C_}W6k*A^1Kwvh0(g@msyBz$cl;cE*CUt37{+CswD781U;knpvIgs&|m zd~G4&YYPcqTS)lYLc-S;627*O@U?-$E%woBAMN&Ww|z)n0Oq^LKJK#*-QOp0qkTML zACKC{WA>qw8&Mv&kInX>OBDom*vEGJ=(dlY_OaVO_SnZ>`#4}92kqmKeR%fKYae~~ z(Qh9Ek4G8O@ZeX#YscbiS?iT)kmwo=*`J&`9mUFu?D=)Ri@B>CgEeS59iE*U9!9d>MAeO$B&!{cKJk z8$S=11LxI&^S4Y153V|Od0-x_g-?xxDT;lJcWnOI@5BQ?|ov94LyHXDw#TsAl%;>|QgSO(d!%RE$-`kBi-@D~vHCRXR@ zM$8Xc4sl%WW>3X2s<&etmr%n&0wN8eJ*&9o7wVc(Zf44inf5VD4>uB=SJM>^3icky zKN%^!o!oq%!{~*t@H}yc{ERhSRvs=)6&%l>U4%rAvRlZ;XlaUiu95 ztXo~)HCmOGF9SD=<8St}-uF@UkI&Bc>Qw(--Un!uvQ~~?d(RvxU-swlDK}Wdh2KDY zT~3X+8YU22YPd}+-O8Iz#9$M21r z*olbHzrffT+c4+~VL^1var)$IKUAM&__ed9=uihW6U}t-G5Y$ZzVPqxEHW5DCnM-R ztLce(Ia6OQNHosJBxNZY_G3|IuwwR}Dk{8uv@h;&{NVD88qFbh59zzYA(dom{3~b{ zX*Qt?F$UvBC~|jL_=Hqe$7#gAC)J2jo4s#OFJ1qb_PAyFzDhFn*Za%>_Zw%q5j3OM zh40X<{c~==><;wBcwWqfTeub%xRDUU`!7fmu>15*R^wUGcSbknN8cI4zMPVl~W z^j+zHamzF1VSxOjy~Sz5Nz0FK&WSbcjV})2@0K!PQjqLZ?pSg;DIPu;@t#SToN8Tc zfTH_5BZy1#K3G83CHaiN{qrJotG%x?c~QW4^L|W!olyF7-Q+xQbCGe;f$Q)ZZvq`D zb(ta64^2F<PF)6!V6K3svw=Niccg*VL(OW{<5KSw)vGF4+I{l^?(N`>052Y= zz%W}hh@q;UbDSrm8sE47fM=*a_cg9!-#>R=#QQ0;IJ@tZ*WAwgQL#Cr^yQ}0=x#PW zE%dC|#A}T`RVsX~u>%Z{d=8y&qP-16^Uny%WLyFn3_9fnu|*!9^u$<)2i>;6X-w?w z!|%`(X8J|$l47b3;!XM3$#hSQouR(tHWuEQG1Hdr6%AKHT;Si!<-c08jg~g-T3l0Kf$*yTI58}Rq@k)ey2O{&U zz3azhvobJQaELsEXuDq-$nN$M(vujn0dSLMI4p7bZA<xru!M#O>5EVL`w6263wO=jq{#Hy)e6|X3ccqN)2sKl?!2kjTmb$6nF z7sOpr%A8be3Q@gYqRB+FFWHb;Aoi9oeZpL`P-Tym2Wo$sT})>N<8z0yW8J|+pFLjU zlGzg_{FpsS!jIXLV>3fT_BBlX>ycN!(G@ntT}?c^yDMx6ytFk)qZqNhUNa4gHt)@7 zTFG4ZoOcZtTga3RVo4|2luY=>(HB?^d$CWu!+O|zb;MlKC0$HmPLq$d$*A6J+jaD`_*`#hS!p;xm*}2&=`q zgIPT}*4#@KjG|x2x?zni939`UBju_o8C(h+gE&m!W}vWF0H z0IPFZB|GL?>lKf9KSqxZy!nxa0oHeeLj@ZmpBj>pqyoI$S1cL2BgnQV)U{juZWQJo z@v7ekHN*2L-OEyqhaUl}P2(Vef}X;Uj1qFuf;ojQ8>;^(V62VXP6VddMgcE@KtQ*!Vi3mX-3fm?&|Ze-ho2?~Of)Ec=)O z*He*?$qE95(4qrwWGYnj`P^M!NOgjxuYrQUx0iM4-FlHx0q8lCTivH`P)GwI*-c!p z3ueD-EFk<|N{gR8+3)+!^!+o7P2cyNz-ZV_MNvMZ=3v(II0!Pix%lfg)vM~yE%}QM zmxrvsG2Ws7-l)+9+)qoRx2KJGu%hXvM3DUll~w+k7OKr`OsL3#12JzN-mK1;4orRh}# zu?9{xdbhX%d)(0s-LrnLw;W05dTSK|#7SGC6*Ch}?-z+|_xbcX$~i`t-S8J1(WA<{ zr97i?JQTk>cUCOqURkdGJl;NFP?#{DXb95@$DlvqUr}7v1h%35^OzTg{(sES|AS{s zMzlD&<*V=Ab-F7uK8hMb(^$IazALk2oc+w`?ZFJ``XH!vWbLEr1UBmzygEK7X6Hol zJJ*yKUB}mP(RF;yk)Euq4lYSq1J?ajq-AM4#6x+*->ENX-k>pyzuw-9S+H5Vp-V^4 z^Va?A(L}PQb_$vCG0rn4~WhW)Awm(o5$^Ek#Qs(`5J1e@%0;V^T_t&guPFV(8=$ucoc-_f0iG@L{*~bpETTV`jdbxM5uU@00%~AHT&ys!YQ|YjWG+v#f^x0f3 zH}{WCUPivFufs@rQ{XY3``x7@2lK_ZM-1kD93N=PL!u@}4yL;*XoqlyIb#IaIMb)k zap%wEp(2yRxoBjW+$2(&A31KByS#gK$gYs(v{H7UY8WqUSHfD$mKS>=GSgc}V{J_} z2mkg_e@U21x_#aQNXhvoGgphY5%JZcCKhsivJUyk!uH=Y^ zHGrY))WO1EXd3tCjK%&-s~C>jQBTuy*o%Tsd}R;=RA68q>tLG|th38IZ^=;%JWaVR zXI(8MSHb4^%8-fFEz|_d!$is;((+7j)Z1!3JhX*5GG_$AmL1FM=Gtj&LAOq$Fj$^2 zo~r_!t}07!%USzf&RF)t1NMWZA{i;_E8={gH$%H6yoMLtF%W$2)$FhnS)X*`>DFPi zTgC+wwt;!o)ZiIxNq1SRMih<}7`buCWpIK2RYm=bm zvLfbrMq^W)!@>7neV0u*=zUvHV!sekV`zztgos~+RV(jOU>BTi3>&QO} z#VyzO585+>VeHmG$5eR?ynkemFD~@YecpJweLV-lt3wzTsTyn#_ls1u+qK2ECoVdg zP>d?Cbf44uJ*sqM23ASVc~o{;O0n>T;>opCy*I|`Dcr|};=?+ZyG^~ZrUPKhV9WJ~ z24hVJVYu|n+^l^O`@nNLIrU;}FXD~O`b%Pc)gjhI%jJQq`vgVH+cnNM|+P52P(BHyO|*?>oIL63c|roCPy(=Mb%z1UG> zhh&Pt4LxJPESZuc7&bX|L!$9*$k&0yq_@2-oIWc`-&zX;vL7yCjTf@%Q*+f{Uyvv) z)NC09M#1UI(%r{1{qn3a{c_!K3u9Xw=Nr>6*)aL{+)bxdP-k2UvmYKY&M zIQMM`?(6X^7BA?NzSg2X`e$M3KvNl>M~sixD(sZG@1vXE=e~3P045R28P?#K(wwHe z>2SwOUtaqL18%!Vge;75&LhqJ(ayvz+1WP*rc+Sq+`!teF2Q@9A-s*hO=u4f+oznd zQ25L7t^%Uu>$vt5awk@&_QM%dE@3~MEvunsKO8f(AI|ajLu-4-C$^w`ZWQ^$t@}$B zLr04-Pz`zb6;Sx%i{w2|ZgI^+1L^+>UoM0XVN^1={5~tbIw!hyRBSYS8th@xkLat$ z1NSm#SZtB%*y)K=TdZC(SVvtyf}zgjSRPE$eJo5^;hAqFw}aD;M-PcZ$E--*&@WJ; zl#x(FAhGKyP&=Dh-@!C~(n6ezG98h%fBaK7e1fyeKx4)o?_^N)s+$ZH+AefS?lyFwxBGb9 zX+7Hy7LL9eg13WN_#TvxQg_X;H1!PAtJ)*h<+ytdPb0Qy58Dw|#ll0WgROiaEZWMP(pi0hrkmVgpPAcC?CvS2tjjxppBorkn%OkR4eyzb(T>v4+CL;5 zcL|t29(ap$vz^PU1MY&iq@uPI>TKq@TTA&A-aPGc|ZtMA4>6Yeg*aCTIWWqKDV7)QC-CfiX!w-*X?1vVI z60-~Zt;T76mAMeFI_Q=+9- zE)p!Q%5mDJ@VRth&}oy?I1|m1Ax`T#et@R$e2E!j82x++!hIZw>MG6TQL$9X6^%QcPKT>t>0qrEB|9>uHh7$ z`C6EUZ)LWH9Wu7)kY)|LbrL-uOrpnQH^Sr3uiJ;vWA6y`*mr#N_}AuF?{U%N|7w20 zY3WPO&lGGSe={sZ%?*GF-8>|s#n zSo~-<*A#Mn&+RoH?(-9uEAb-8TFCr9_c`ImY!UjaedO3X-w^u8Aji9(_9s`LchhsK zey{gQo;}%QrePL8i+Kb^1rCh#9D@VRd@3+j?YKw3$WV4+90pk{b+MH?pIuh6!|k-5 zo__6Y*z)$ivE6gMF}+DDrGO}Bz;iP6p0%wUzcNQ;_nV?sI8RZ5*bIch+(3{iPYENi zp4Y-7Bf7Rzw-g=+bc3Do0CYYVxM?{IEhFVM8@4v;tIbC3#TNF*Z%Ldxz(&1R{H7T> z@t`QxnA|fpUNa@^HBEPMAEFJvYM|t$DY@$k-F@fpP14K3Z0J!=3Im2D&0YHkmqt@& z)gd<{mf2IR*M_M8VK+Ssw~GqQiC z_D$`Bihu)8`<6`!4>W~c$8TT1PjH_pf;)}gJ}X6UH|uzhysRtc3=!UH;-FngD=pPc z6YouLxI^AFWw8!H z@iAFkVzRj3W+9!BuF(;$sEKjWnw~EsPJWzIyeEFaa)z(6JusZznf!kJdwp-YC78uc zpcGGv{K$uqKY^LH=T@x@=ij#>XwIf>wX|Esc9ldIkOdc(Sk%mn5oOhcgpXwW${H z9p;m|?4?sx9U|N^8l=JbqMB3hmQz$|g5?45!gzQfQk^(;@Wro)&+`H7+ExuVojG^z z+~rww312|C+qYay-VoP8U;au)Ng}CFV)&B*BGoF=KsBR$K$0eAc&3e;jG3yM0c`yf zr`D59)i(7-DxKqffci$fLMkYJdN+h)qG=3_5LKP|im(+4tA_+F9`;cF8I)Qxe=HT~ z=YD}Knz@Nn%WZ2|Y=cUgICUl!k9r?`d+(X18;+?D{iTkO0*~r(DThR>yi-9I(T+iR zryGZe?y>(t_o}Gv5gs%%IxuGSdAvT(tF@qey+ zXuMue3jOS9Hh}hrX2BgRy+fxM=kwx5uD^3UAvN)*^}wP_d)VQ2(GpnB3zIBoCsN~$ zdgsqRyZLg)c&a&ZGnJY?usrB}|Mlcfbuy9#A+4^AR$-SLjq#~i;E4!%caF*G$yv5x z{TP_he|Gas*b<4p;#Z~1M!BvQQso;|QSY5!o2;Xk=?%JVHrs%t?4!zg*Pn^zQ>{>;2oQqqII2FWTna?tyjy%Wvjz*O@%IMX~1 zEieynsd@CSFps_)&7*&BIHkC zVB35D5$}Yp;>Em|S(nmZA5FxK)^_X(>261sPqYcG0=EV+_ERZ(bIE}J=KVn_bPt)F z@Lt_QY1Tx<@(I4Vfo+7jPpBTqUsvULFK^RWO3!IL;x;O*JR-|W{pk0YETjsKI!TWA z3}y_8-SgpiTPp1PHY`2$<$mgFliF7QLO*OeVY>1kvhSKv-q&7Hw@7{5%ck8a!tfH7 z2)zq)ivIN`pED}sq3ul3Xh&kr8RFUp%i_WKPC_3#D0xtW(nG7-UU z$%=MlwZ7DJ2(yr*&g_VG!%oK7)E|RTlD9l(h!eD>$cFM%6-lfNK6X!4IZXU`aNhJ- zAg;=Q(0~+81VkXd8z^StrR_ahbkvs^)yp&Ia@Di{nDt&2jGZQdjraI8hO?8!ms+V7 zQ2MGMy$mWAQ8tl!q(|a=)YuO|gR^Qt;v-=}>Bsr{8b)+1w^dgArPKZM7B5uN`N{52 zJ=@dfZrS3URI=rh9T)%S54O79TMmaxx~Z-cekaBa?Akzle&XC$aTKwC-9;$#!H?e% z56p`P?|@57=bb$z9Bc}dUf6hgd^#-CcwWA9_GSA?R{tNIJdiT zvU>u2{2&3QK1TJX8AT^)jl~?j${@oS*|L&Wk5N!G^95%gkOb9{#6nz91*IjF?_+qQ z5p+ED7A9~It({ascx027=%Rt)(w0+^wgiy2j7kYrB5-Eo5X}fx7Q)+uhL`N&xC%6q zN(|RVG6w=_#>Vo~HDye@ubp2Vufw@cDF)i(lkR{vxXhhB5MR|lhis0oJ0~ZF$NhrJ z*tYrJ>%TA?1EV}*!c@B#a$K4j$9wx7;C;!SZ!yn2PnRK9CEd(u8HC6pcmh-6bMm|bGVQ7~M00#jq3^lFcjw_HKm@)|kNBMNU6q!VTv;e2 z=Yb#iSR}YB>E1(oHL|0$HbFeAEl&_xZTS!L%=5mrs*jL~n0I zpG&x7tOBw-4)>V;SihW{jlQx}Wx$tnQy$EGqWJ@#FH0yklF?}}lz4JIGLL*J3~dt# z%{}l$muFTdCW@@`PWu7Xuj)sD&5TYKoYFE&YH4vub6TYlvwWgAYo8epR^4YfTN!(5 z;00gN)jzewa=30DU)b+k0q82TXBiY5`15rey2|qHn;na?Li=Wip{&@xnPFfJbAs$S zhbMXJaNUnT&mPC8Gvf;fo`T~jGdgaTbzl@5ePml!!*IaCBpm5aC@#ZQ~x8OOPW#o8Sh??V7gWhsw4OL=w z9c}+J!f(*g%d-?6#~KyLJU{!AbG(cuUI)C0JmAVrwLgPjzrav z#Ie(968rsBqSI;^2%>}x)orHFG3(X(lIr)m5Z1AaOpmnRZ@dLhYVbL zbWf})$d!-?MF+hn7(8N~U5J8QjnwErOsqKG&)l6vvrU^f7eRM{X;si`wFy3Q776C$ zYZ1D+bKUK14D$-f=-#uHQ9&xBqGK|88IhSvF0~nLCnNR2cwWtAkD>W97v*2tqxPAW z4XR}UT4qmB!#VtnAJLa*n;kkRdMJn3KmT4LVHJVReB}O-(Wj0z4`9jy?n}u_7VpGX zi~n`4;eTndzMbTMVYFjQ!1=e1xA%_S67k;Mn_T=C#3sgJJZ&Y_d6plh6`K(+3wD*6 ziP%*(r~q-t4#6G66RvczVohGGhArFqoNT_%mpYo$`YS-xskXRF0wM|UDcEnRf*1no z;}8Z(PFeiw#JPyr`fwVx-}&5^l#BGk@OV*9O{QMymTy*3tzYNMlyDye$s+2|UmAGI zUDS(0?KIH}L1=~U>7_3>S2MSJb`ZrbMmP9WEbtWLd(2`o8*D|uSM_pdJr#(RKP7a0 z{Frn#r`1kTl5&F6mcz`v7Ad{AoQYu9IwE3Iv;X6g(K#r83b$edi7|)QP-^;ex96## zzrt$VGu>_UJqm^;+djEl6q$&Xts=^{4kOA^eLu(aJrhXx4Zf?sU&ZnqK<*!(bf@(X zQo`*r$g;CjT|L=!^{dUd>t?|#TA#bTe)R$<$rpn&2<${YWi>8#Hr;xB!Y2n-s4oQ^ zxgYv!*_IF*M1;(sFG(2d;aXe)HujX*J=G_y5ADZqc-u~aqHhl3xsvUwv*Kiq6YIyc zSA^DA;#?+oePvdAh3@u&M>uxN^Y0j6OP`xTyS!&kCpAPah2x#W8_fx0a%C3o#rf@Z zJDutKx+?N?>R-~n_~fK+iYj5sr}%OeAI?cH{ymDiW_VFwp0rqz=O<(}NT9^!fW zYgC&$!=#}waTn9MZerEM8n0lKVcj07m@1{1RTI5Z zViIkA#Z(l2)=iWO$K7(1-_8HfuR0D2jC`@^anZZG%_DC%73R3 z1nez&>HJ@oB%<50xAYjN->-2LI2n)YuQIrm@l}D+cbia^8FX)&Xj4x5t0_@8EdxP< zh`nV)8F2rS3})I4W({SqV|dZ~RJ74o_3DNazhRGMX%s2#G5wwAR_71(cfsG?-!fiD ze=q!n`kN!tu>KC!c#m-t0jlRnMS9a4W6(BE=>Yx)~r_=x`IfDTL0 zh;UZsmEN4^w0#Eth&y9a>GVlX+rJukR_XLvPFoFd$qsuCbw2lPmfHs0IJi^WUCdqu z+R=po727pRC-$*%iWUj73GEhKejzM1Mzp=1lo;BXb>T$rPL>6-w<5=2YtL~%YrbT= zWfKvKwEaTpuWE4pw9uuP)@s|u>-uTAmsaLFZCed|@}-q0J8e%Y+O)h7l|+~qCH0ih81hl|u;niNb?kbWs`Vhp&ZTdo6E}LkDW8rs z`ik$1;_&|MCNDLQPjRQsij(A|q?0*NbxA@=HGfB>-tVVQtL3l?9k)JzYkiK%{a>!n zicl(pe|&w$h7upUK1cG84}x_q|M>RNn|JfFtwBNFoaYUR7QIYwxF>DM0KJ=kKT<3& zuR0rb6YqYER2@7UNMQ$dDosw$57T<^pX$HLv=;nR_^lI$ua6-A@&4N}l=#^Gqdn%l zjf>jlTnyiHygmJR8+t#PrfujKv+1U7=-OrXX)9-U)ovb4$pk2mB`7U1luUJu6S44; zAr|HavUg(n?XU0POZ-BNW*zx=WgfWYhZ*r{g+3kRTlkc}Uwn_prhHFy3x4rZOWMgO+y-?sM3QHF~+LOi+?TJxQf zBU4rf)}3MH*<;+`CddPgmdk1PWOXvq zDkb)=?)Gt@-V#keHvB*H>0#yP^>&%>JrAXIklJILlaM?2EX8=;ev;Hc~@P<_ogyDeJLOnQ(W%{w&3VxdP_9z@|M9qG@l+; zT5rBzu_w~_gT{KLcSHYBA2)KzG1b6hXjWq`)@{QD&V*5NQg(B8^w}(F z=)VkOVR%Q^)6v8X(b-P!of^W2LUfDYj0+wL@{;QFd~e?AexD!P;YcPLl+@eT>G!za z5=}qx;ta3(^ssXCZnfWg9!~YR!3X{X+VB>Qvl4x$^|RCmXE-H0emn*UXW)4-F0nuI zQsY=R@VRN{MwXVou=WjEEI|}Hyk*(<`BNyLGX3V1Ka|G{SDetHO{_Z`nLivEH}He5 zzz@h?dM?j-H=ZU1_qW&nS|gVaX>7)hr#*+#NM-2tKjSx2Z;7UFd5g8dj_5QHk&VD9Y+F#oIPphv#|KWX&nEz$e{GkD| zOP~M!f2C@Q>;1qM9lcC%X8tod8}#z9(t7iUsz!b2B9ukZ7vMtpqHQqQ{7KItG?wGt zCjMEK?uex!fgzdHG3l3&9+|^;&R}a-4!UbR+O=pTnZq&ZwPLtIkX(4%=i;)}-EQkL zM+ibWi6J;LC)>%&59NbiI8r!OOWq5Gyxvv~g$|FnCgNx9-9*c9*MjN;xqCC13TVs4 zn=_u)hU3l|jNd*u+mw?jr8m%c4`nZr*kPz>Wt=v;W*rIL( zI;X}i7ysFJ$8sX0p?t&?Kg-SbHRVR9#qhS-7&T~5Z^mvO_0zp@Y+-B`=v@Lmh#pzX z^#|ck?^RG&_<()v(F1*S?plndYkPYF{C^Zpl1Ig|dp~4DgYxhi|47$b+|c+b{8~O* zvIFzjn8r@{h|c*UyLFW)k-048-?9g$V>@NqmHmK(?9ojsl0Sp@q8ou8@|bmYWjUXJ zSpkO#09CNZ?03VvOS_ESiLdeH{DD~W&Pvqu!6IkYaHH6}CYxhk)xq^!vN|r>Qj~R3 zcYD>ro&atAi@X}{@h;`N8{X?K+!GIewk-C(lKrvp-YJWAt_!>2ZZzQC=AH3L?aA|+ zO*7i2fki;F873V$RB(OPa8qNMrN3JHiWI<`I^5T4uoq$PlLb}YzvGEUL^lH{9mrW* z?btM^jo#!fKJL;R3LK|EsdyeK%;$&IZ10s06X)>TY)U?VaM*mo)QEA&ofj){wAbq~RX=SQ3^~7y;SLfzg_YJHoW6KlY>6pf1mit029a5rNO>?FJue!uR9wU;!Hk z;;4A@;9sBaLkmD{-e#Iy=NF)f{|~IU%wg;8W!Ccl&3ZHZlof9EjYIsD#=o1Na--#^ zjM^!F%8C*El!h9w{!I-Q{FFw+PigROd(P*lG>V_nAbtv7I;&T>vl|RQWrgr);0w{& zOLLA#AJSi{Z`I#-f2(>V$1QB`Z;1mmpL%d$N~^V;8j*Y5m$lXrf&uZhzg1@ZvuO!pwk2qkEf3$a^Ie(TUVoiOq<~{D` zbTosf#IAbM`tSh|5{mu@2YaR%oo9DT>9fwPttC5*>LR#Gcj>*>9av4MIzabLL6Wi8 z`FaP}5#xcd&UGhlDM4EjC$NLDMZ3v&iYZ`SgW*@+sqk88X89tcYin%9_04od~aU2nRxWNWrA`z1ui*aiM_v;{y=8W z(`n-uH=|-U>2X4O!^YVk-)|;A97jJk9u7rFglO1p-$;MDEiLM@V7vFi*WVpsPQl{i zydivSCx=r!YBvhH+Q^wF2qLz-xl9jZ#%P|r23O^~xJeF$@mE-f^p$%S0O4Nz6OL9e zQREQ3F5E{*h4Da+n+Y4#uORt03=i0#+=}30?@vz|e7`j>#p$p;LVIm-VUxs^M+P$i za^*}qSyXOWdMUYOEDVzs>5VXoW3gJY$GuDQ#|hoFk;i;D$H~odFHBTpv%(m}8(F;V zpZv7`K@Lc>#q)WG>uMYszplxG2GIn2-ZuHGsNkmIy+*R$3J8%PS6=r)z0hmgQEA4t z-rGM;wx0SrPk!N>WQmyU_gT?{xE^Ry(`U5>lOZlnq;X&VdUo{J@^Dhl7Y2iVc4x)$ zppxUxI+aHd43a1Q2vHX1OPzMYR;I-`lps z5SdQ+jV=F;c|2|vj794kxU}ocj&r+`FWb=jdT#6+8l8rpK%-Q9uVZTfTw&>0BM`Lo zf}+$^H|!;ndpSyk-^qu1tqdeq<;f9qSpar>c2~nx&X^JJGN=ST@HyH=j8H>FM^8iq zT@mm7hJq+O=KitC-@V+=uQJe3q~o8TZ^ZjOWXP~AC)&@-l8azeIXz2_pE3l)*33ia zF|$FMr1#hz;*n{&iW|vs0!cFT6EYh0~ zO7eCx84$akTv2Mitv$3Di+U#hVoW3%AZ_&g^Bwl{?z!jJ0>^Zotn9R#`yMd;?m0T zPTOyZv3|x!F0K5C)3#5spL1V*x==u7X_nL0351-IQHcH_u(GG686BOe?wn$Gez7r> zgmYb4v_yhtXeDlMl}&U{MCO+LEKW*{Xl=dlJ|C`}SlZomi?;r7|1_4K#AH={7!#vn z&fT(5?9xj3fL#9KMt^~kDP8GC)sv-n>3>rx$l}L`_;S>jV zvzBYx5q)zJ%O?Fjz^qDtUpwOa<`M6QM#Nt_{9X8hDkJ(7Po<zm1@-~1L3wY89rrc$2p&+^T;R9I&~xq!*g2VWpSO!Bd_;*TepO}+lXgyQ(iiY- zbqhKUi?20#r}dS<<#}H2_s#hditdA589Qly%hJ%`NFBid#d2?9qFPrnbUjGvU)=Qf zr_WdGhov9yeIb?p!oOMm-IR}}B14zxL{o8CRwG(wU#Z`Psr>(T`#O%(zBj)2_qVV2 znD*s)-~R{FH;zoN`2mA!zVqb$B5JB-TP9J4Q#6d@coRN#iZrw;0__Ev_PI7Q6CLT< z0j^ISZ7)ADEBTV(B|BOX2v~)lp-XY(kFXmGz!1&O1)tqWDaK)2Sb-uP2-L#_;z2uf zhsX^A^)P{FD)2EIsD}w0EmN2Bk2D;^Qy%{2(&<6iU7~h;8l+`ieg;HdZ{t)l#cA6G z6$K`{kLb0J*Fy7pwqE;rEi$i;UI%zB*6VF&xS8>Vz4JJ#KqEwol~HF!ekLSdfuXe* zd!5V);f|q>@Mn+h4?}@X^9C8g<0w|Lp`2Ld{x+x6!@EfHG$>P#uX46HkO{hgAv zjo=}?U@WTKJp2UQ)%da4ol0yDaX)*CGx>myz;|j{6UHJ8MG{X6M`6#!T+j&~F}Y_p zj}e%wH!lL1x9octvej#UvX( zStLlyG6b0wGvgI&x~%2Ct_mZ_>>4c*W>>{h)ar?ZB(tI+e&>C>bXBad>8&L5Tk74x zn8kFkXia-e1k;r&!}98N>mrRuPyJcWl3kUjIQ8qYdYp&Kc$Gki`xMN827UGZ^FPcg zk6xy?MAQD75rVljnJ{86IG$jxCQUHce22)Z0`KA@vSjb$(-~N=#9_(~FXxQcWXCZj#wL)tNHha_UXlrjg0~Z6mLFkxaMV45y~< zxt75F1DM z3CzS@EKYSx@I>m}8hdw`C`b5pDi|&)uaV7I*NAbLpj>6gXZhuE)c+eAVrViH5R*gk zCg7e^O>jJ0jHWSM8tSm0u?*j^Q=mPgcVe%u*RUC* zPYJ-8hpDerAr2!5k@xQ8p|_Z;v^qCUbtDVzdm4@vMm< zvtOvbC02(T9<`sdsn>s+Z-{|%y!q|spe$;rLEYtD_H7@X=?&43PCf7qJ4pSbi3Bwa ze(Pb@`6%^R=cw`g&-5<9lkkrw0eby{CJXvKP(vS@W64No!?m$ReDzx@BIoc8k{sE; z%{kwFB>ns%`v04zB7YbCKRA*;W_}p@)V*I_4|$rsf2`Tg(#X{IrT;vcO8%PIc_ng8 zoZohYvyyY~Rt~c6)@XN@FKg@?BSK}kxlwex3;cU#Trmq!IkL%dX6%Mf-tzjg{zVJXB-$cjp3HACEvybLR6-2I3@*^HdA>9rAir_nk( zE^(8tb+mDf-8*YHnY~k4#V$4?%8SU}JxL&hsm`5#;a1-Q@ua(}#vLttm0aL-2NLrN zFdv|6Z-|BNaZ0fV zrcO|ICzvuEtM|uOX7&_v;U9Mhuv_k;RKv4u3K}L^PYF&c8XHjoI9o;mJ|(~J%c4hf z8b202dO~A;^yt{en&{C`&xtk>E-gkkR@AU`e*O^c76H$d%?~mEG)nWk#_VPd$Cl*8 zRtLTM;&&6wGST?R`6e$xE+qvdWIrkR+Ek@!n4ve)^Z|&grZD;Qz`~(e__5fcM@x@7 zt&dO^?j>3u&@RQrGl~WE&0qd81&{YeMM2k9k6!c= z!KX@Z>Z1M8Ey1S|!)LI$E?WlkqZQbYJlGmvtw}I~84!5E+EQ z8|70d^LT;Ng2O|(13ucBP_=1Q)(Qu~aevHfGCsr@d zhR;;{S@>1B0*E%}XTgcdXbLPJ)swY6;9bE7UrceWH~$;v$eG4F(mZCoIl^(|g2^_D z`#CW@6Knbd2V(#pm&e5)M?7}puXy%DeO(JZUP;e>S5-s?U3y!JSG2zeh(-Mc(P;+LIHZYFm@){3Rtjo!tM#A;Nu zw#UfBi+F8sOFHMVZb{`*RBUv~^SUqOtwlrPwtgm_s?p~i5?!)m<{8|Ag;7NobMihKOQ}#qtZh6Q-RouqJT^^3^1Y7 zxC}GsrIqy3ZNcRkvG{cobz*8gX8iwo_qFh9oc+0F^3&3~lEjgCTMp6iJ9I9t#X}i! z;~_BOe8~8R^@`xJJH-YT^2&%AH?Mr1NFuGYruh@u4Ciz2BMmP zxbf8*@g{7PEeHii;_(6=-t)I}E79aZebPUaQ|IN`HHjy%4UIL~oqSe;i1(BcNnqb0 zq7NpQ$np<+kCV}Igts!o;OCutk0K~jZxsd88r9uzpc}8}#o*!NxNdQZzged2!yB9r zUB3yT!zS;PBBTbp)KTG$k;D_V$|^U!(fcX|+s?&eaL`+E8wjXs5UPavve>))>t=eo zzquCM4_evIr}1;Mbjvd5V_TeS_d0cFZA6ah6#vF4-sW`v=HH#-=bX-M3!UQKPUn8A zyv@mb-O1bS;a|o~FYIZM=|KYa-eCR1Y7`ncaxOE`(T13sEIbiDgIU#3)j;EC% z>w3kh+u?jkf@l+qZ_bytmh4}@^#fa+2|d`|aw@mMs6WMC+%x#*h6gQ{E7|Wnxz$7> zhi%#0vb%AC<+Q%Q8mRGJMX!U-LDuqq1P5{XUEhmggiNEl?Q6Le`59rN4*NP6<0Xta zgTz>CON!AY`+a-Lh!WOPqX!Z?wwJ($XojWh%Rr*Vr+!?6^uS$Tgq%UNXe>q z-Qb5NQ8x33E!=$(B=sW^gjA_4FM8{mOsZL4q;V<>ZC=U;$84y9A{@bOuET2s=LF?J z`skqnSf<3}GIeZn~4}P^X?4 zmp!~twc0v0sush?MpDGFHrb!o+09{lth{Kc1b}pEkWI8@-K31BbI7uynA_%&YC1eW zVyD!6??!N1XT_w1swJd%m z8&7nTW?}^8NNPy0{^m7*0CDw|8o)wgGmLfs3yvAUtJV7=w(8;L)Qdo4&`4tk4Oqiy zr@YHv;(K#lH#qQc<=7#cZ%=Y7!(ppzWH!Vv?g1jzy1?GGTOk#mRvoU?`o z7cqR*5&DBcXZ+BOr~}p1mKRMnm7HjrI@KS@@}f!Ji|3kdYl44YAvGGaOrp21$utXz z^^*O9Y0f_On!}%G31LF4=_0bJ$P-CGM3W*J+msT>enAn`FLcD5>Z6IC+C=5r=3#D)OE+PSmyVn4^@Fl##3T^UQiKYcR&lPst5>G8yz zwdAxy{&B7)yXsVSNyOkknU8n$ig!OmtWd#l$S3-9YIrMk-{JpChBx#@KsjmN=L&hc@$)B0tq9}nNx71mK#ipB@K z!r}&GcF@_I&Smr@&lZU9ZtIn~?V<0H|{KVCP*esxsQ%yY;j#%dRl$(b}J-AMO2&z1^mwrqF0ZspM1e zz0<*=q0d7&yL*79g&$#h@*36vnVng?H|tabEIwYn4o7t+kV*Rc8;w)6qImd$2n6|= zpEe3X;YT38)LF`rSPKa5$#=u;vG4{re0MB-j~i}@g&%Okt+DV%(wa`#z~o(iY6glX zeosApZ?dOsPd<3EA$&2x9_JurYq3iT*DDhILf&|JZsXJ*N`?TXMH)N!w36v2`@yc3c@BmE91*w z)ysJWmxvv_#aXb8t%Esx@MfJjNA7Hgzr~Oe?z7x*VWKN9u2qB4k4V$Ld>L?fKy?Z6;2=K`(9)IKWIJ*&u$Z%_!l z(QnVK7mz&OSX5-P7@tfJ8XQWTo|b&g#?20H`r}r!gQqI}9y_>Su-jOauMI#Ihi$D1 zGk-b{EeXxd{};%_cA|xe1Ki#g!nr2_$!M+f_Mi0<+hE5DVOL_L`CVID5Eu z>(De-fZ4~(#864@afbH!@MC^7ZS#LbqpY)nZ9Y@myhwO$^Q|9aqRO1* zg(Ri7L$lSa*{qRzZ9JhG`lOCopTx(t-Ohv;ozGrmr#Hkw_$PAXH>{*KN+RhprC+Dj zb^*U?<@;NHe|C!donm+$b)b|w@jUvR2^R}{uP!8>*f*i74kBuU(8ddFjso31pVTLP z7iXs)E!29JVcqNe1_<=mi&;;#ze6tb-$dBX$DRB@QniPn@&LPuD?+l4Z}m5jo!MVF zaMY_^53~dKQ{X)M<-OQEM_0~h2*wu@pWd4Kd7z$!_b;REmZbC z^){>zr-6n4u3^nL5tG#0a$NT?tWBR#z6{ReW^j_TMbp58M}mso!;Aac=abcnhqtqNJjgtR zyt&w0uzmm#ZO=8r#4;>2wd#dQ8p;&V3otDZ5!gp{dCN90 z_?A^3Gwi1U50fA(SiNR?tX>Cz`s+P0)vtR8=(Q0rEw)#{X2MAbDov`4zMKI_T_mxEl0&BOryQ1%8 zuYC}mc5_ROY{viD)#gXa4H0NAey)Egu&zWO|#u`!#!hp7m$4tYbqD zsiL)eZ7bAi1#iM0RaF_|+82qmpFmRsGkd88x+KnoHy1mf{RY#>RPy}<1~e9HpH)po zC%j8a8fs3913jPNTef9KYD*IgCBf-6SJzKe+gcVA za#&tWKJ}UawM4EXhk8@EDG*JPw{IT9E+TbUHVr+J`vc4{?FCJP(RGmw=X1}nO69?+ z#;Q?sZO3`CVnKZNQVK$qVBLxc%Q9Y3L?!GI%M!q_ZKm=YkIcV*ZcSo0-s;$G;~zPi zXj!)~!)Y~^fYvQ-xgF=SrzTbx;viZc>33fLZlb+1+*w(U`H>aziWRY{oR(XNb7tbE zLUi2`5P6Rh2Q9nyX<@#1PAku#Cbz58RwHRTx-tw@Lk}2oX!pvG0*Or(x{|N^R{jgn zC-wDX5KFx)^PLIr-h7HP;gy@mfuL?affJ4seUV{{&_eIi^I&~!<4u<|74Sb(jvC|( z#}Mvxs>zxP!Y*gSn2J{{)oFTV6-k9gNE+>28eyN?L}KmPFHOb*f2UKv6{JtL(-789 zn;LPa)y8jGVR|Z$iwoXGWWYiz*)e(M0;*faQEt@1i&-t@TYexwOjKwrF~ zoIHE!_eu17Z89_OwDAx_s{dtksNn1sT@?|~O2XS!a#W6n(+p#RU#!0B^zjrrZ=zG& z%>>fQoL0=gxf5ZfPtvATcapBiAlW1I%JHlI1sZ$R2e3AU2^M#HUThk-5(;C}3f<{N zv1vt{GCQYT{9gL1etBdcn#Vcq?C_xymaEJ{{w-(vhOQAR`8de6UU$gqm*?^C41OO6m!X5C)#zjI+(oR)Tq|G@8E zT40fw8qy_%;^WiRXZd-C7BY`RrtCw+=@2^U`B#FZ!CdzWzu)nqY{dW$eVnWpg8-9w z)S%B_6YKYcoostS9Y%v{)l9Wn(vf;z>WL$qq)or}w|tzg&c9WiFB~hBc74z(Cbn%l z8z@ya)dshI#GJigE7b4f$KD_uEPh+O@b~RnY`fNG;2DFdOM1;r*G0 z$Vh%%sUXO4@A5wy`n|NG)@kbiSGF|ohkqd6rmO^nw_^b|j?%*}BvkWRL?V`?TSC^A zD6y@eE#WtW1{c3{g+bMdxRh!f6R|!S@jEtRcz2TQ!)N4FU4W~IK=a{x zkNm{A3WfK?D#l~P0MbuENZ0KNY~LNpL!7C9YZ<7uzgO)i}2>$SeM~#5{&&W8U1EW{}0;e8j^H!_T;RDVE;X{T^ z71irOUOm0uwmDgss#INu#dp^GglQFNs!SSZ{Zv)!g0RJ0>n|{GRectZi5gAj`A$o+ zeIxRGmnssJo~K99P@b=uH$TtyJMFiAQ^NYE?Y9A2UO#X2<`OwXi>1n2wqbH)b;eb5 zS7+Sn|90_In0`Jz3^HeGa%xSEUzWyiI;JFWEmX!9!Jx56R7?~-UtsC^SVbY4ADAsO z^t3da%$0F8fc%Z!KmM|w{NwK+kSH5%^&ws6t=H_X(@kNY?qP)LwJdBHGjPK-=4et_ z1L3p12AXA&R!+Eo{#-*k5aTGJJr}bOF78b(gr>16Gk_uN;|B5Qo!vD9VYc+sSRq&V zYIue?YjX*9v&~XKJ(#-7+$qjmEAr*}w1`=Z|6K~r*1`~SxSE>hR+QVb=;3Jq!@lh8uW?pA+P`V*A7} ziR}+za;83g<@gfYM^f1hn~(+{uN|U4(&e-zMo#-FFjz>Eg=LWCke8uKa7?HMWL)3P zwBQDS5fzDkl881}G*SIq{Cas==z*Wb((T|UdXXd|L30=Bs~7{de@cmHA=3N;ktM6`2x;`lb=-3SnsnoZ*^=6xxOfBP0aN^PnhC0wMrotln&7E$FbmqLO?=+i&q ztJ@%Dd?dE;Q3(elUW<%o7y<0E|F(S1qyTmqU(yAzpSUGC7Gil?+2cJh$1jk@G9!Tf zPc{Zb976)wLqh^s@!t@@?&UuMSOl*|0DBMt>>uFF+f;1-62PWXNdWua>7F#{?lv;e zR+2ry?;a(WKX+9m`Dwm)^?(QqU)=EZHOY2Z@#s34bxC@&{A}uD+6-ZS%%y|R6ZZ?V z{X_h(Y7A1B9I1)llIeCu6WPt$gvN7j4K>338m7;h#{Yt_ujfjRFRMI;|Fs?4?lP3@ z6d#2Dl@0&v1+=Wzew8Z5#gPg%1WMlEk?$1$iFtG=dL(-ZuX!qV*0ao0aY^gW6ORk{ z4Gt!nX*o{uQG$W%c-9X1iU6xWOe&M>3d6P1G3c;Jc1=~Ck~sJL)}AUz8VaiXaubu{ z>J9J69CGS3iB+qlm5jH6CliGuQ5^@tIv8>~?wAVJQA#ZbAhC$*ZMjq5RG}1T7)5^^ zD%6Yu{f{5V_Gv+1fhzfa($G7_>9mTnP*TZi`1nC=5hartIGO}PUrX}(`Z9C~^C@M(YJG=5qna;AhbT4;@dz-_m5D2N zoQYQ8XAR|jbKXhT*KiCB{t-P$=uG{Ka0-2$S`_k|$$9{=UD9=Fr@(K#^8Ci=*Fr z@#|SAtD{XX#{f9NFpc9%C(nue)__j69;E2P5xL%!rMU;XgjHaxk9^VjYzJAAK)R0z zTW$CJ3n|cUG~FZh$od+(XS>=(MeDYk1w!+H|6~u)tPImLRje+iW3E^aI)=k(O?D3z zG2KHdgPL=1=%;(sS#-}^v&=NmqLEHVNZnQ^0@d(K(z`}-gwbH3B}1p?pz42iyjm^z z0QzM-iZL)X0X0}wN$s;vDGwIm2frZT%ksWDiGczW!Bdl;fm~t`Vz4(@z zz||ZUs=b8|8gfn=?W(a6a1p^=J&>h#Ga(Hk9wkB=^4$p((`(jNkvF5vJS9pUr`%iyK#GcUE6^rgC$A7A1oo(1APGl0N zXB-E=cVV&GAoQ={jG)pT{XWMzHc0py@$kd^c1FBBH~ATDOS+U9FwDlDyfH`Dx zwYlhMVrphnU_Dn1F4{qw_Ns^5<3^Slmyn6(m0`?4bH&V@-0(d>;SI5c?S!5bTlfGC zt!m|8+aRst84r-mTiE}X1iI}4uL6uVKcI0j(uuCN41$>eR?)NS9$gSUp)33VOE5#K zi;K0~O{7FqyI1;)0LR7$Vn(#;-N2jlklSj>!`;=@Cds7!y4q&)U%7U+iFcjhoqQHN z6H^6z6h^$?U|-GM)!DX^kD1<|P}WDsUrqFO@P*1%wZ`M}pvZ(dsrV99%~LgI6I#5b zvrUq=%r2uPr*c$DIjtdnhv1;{YJLMB!cF&;B$D@I4A;iw>)mwDQNyt5g<%s|wmKvF zQ&k=b%IoA7Z`)1T$tr#8{YTMoPlmPS6ORi9lkG#j8cEzM;V}waRw8X18u8A$*tDfB z#7FzZXa6H6h^t>z(}Sj!p|(8UF+1(Ypa3zZ6ycDmiit<)L_&FtDAo?{FHTV>n{Ldy zB-!6XqvFNSM1Ww1#;rQwh7a0L>b_W9&55;5)&IE4h_y}Pe`i}W|1%D6qYlM*@iWb$!*}x0ZQIO$gu8ZP>S6?V32bAMc-cQE za<(F)?M+SyT88KL<}ZoBLdrPInFpa%Fr)DXf5^CEG|4snVsnqR?Int9>K|)6p!`fo z#C!ht$@;#%` z%kVzVH@Eq2f1toDFESu*r`yzG@IaX`N7JRy-u_bKI56Q&mge>xR%d3@iBfiXdIHD0 z)8bW+c-Ix`js>R=qg3wXrcbVNjmMlHOHj zUI_Dff9zv*7!A?R6-mM#9~SR^e09cI*R9UDjNdi^TmJX-Z*qQ<0uM?RZ{qmknB$u%v2lR)fQ_i$Qg-Lr*q`HenJ zUy03%JtLuQ^5;1kbI(&KUUJC?MlHGj1()&Oibx zkv#keB05L{Whu=Gp_X$o@EK|6Piz~1sygItCx7nQ!=L*ON?0F%lq`#qGgc^X)RI`) zol#m2#GI&-MABB#Vswg?sMrbq2$G&9Jd><@j`HWe!xBdISz)Ol(j#wDUsS5UPpXef zlkVAOL?6c>GfG%KVYePX{V`N`dj=<|siUgeNBJYeAGq(yM83-KbdAt_ft0fDa)e4M zt^t6V3X$XJa(?(pn(tWm(F4}&|H83b zPh)OGOvjDC8tkpj}(-^o|keK~M%7O$+?6baC&L=j{z;jXP zK{s4X(e+pl0|UTEQCf-T(hi3ff`Yin7rwjHKHn?xfKE|X?>&zGyL=_1-)-+fSDjJH ziSKZq+p5p}5mtSERA4W(#rG@4cPT@^QkrNL*ySFZ#d+Gc`>PGEM|f;M_53KceS06I z{;K_Q9Agp2Maev4jM&H>UrMir1N@dx0xEpg1PVw;EQ|AH{Uw|f+QG2dD&Z`RHVUV3 zFxForwl*#|N`1+^<=?=ije1!jUUJ4*&yi6QP92%hPr~~pp}gR~N)j59uoSzR{&L~& zRj?-?zpsIIWRoT*F~xqlA`!G-u1;KIzg(NZHio3RIT5g5J|`th$Y<=5Z&D@a#8>-V z^<=^5?k~G~xqBV9}0A)O#yW2~QQzY@VBV7V(@lo)5_iSL@;& z+N$P5Ps-TMeF~lBz19ui8g|X{*EWTTDRt0ceY^fC!{?P~+bQb>STw|dL9Wq<0Rwq~ z)r@s_1MdZUla*6#F0geKDl3?f$CTft*fC%&I&{REyVY{s!M1bsM3CLw1D{RlQ-fap zodyC-WAI?49fUpfNV!>jm8GgYV5eOFQbo$maGq@*LAg~N-T;66vR&hH-?G5h8(hl{ za&%a8(5fe(a0LNJCEzv!;yZIj=u^vi9rKT>_hP{v-W@^y`ca~xzQc&-rW1U0dSrq{+Gd=zrzYzhztjirTwTL9U%Fwn4*<@!zIMZE zkQrVUET3l8EukZ}A*}j);O(Or;71lqi4MpymyG7ntV`kGpbVS;GA5@Cj4w3i#n=19 zrwtAQQH*!P!&4tq6W8J_`RWm6W?^V?ul3*HE#0Hbqd-|_y0OW|0XZJNhsR%h_A2uh zcCXa^HubFa!om=fIo;tNrWF@ysWqZxe}A%%HG=z^k&DTQ$W-T;RR`x);5%2%@H;(z$~JgY^VEMIO!dd?GV*PUf5 zPs<~1Z457_NB_ZIOw1qsWyGOr;?S1mn~dfna93%CZQsW zQx{Tv^pWJMDb||^QzutVZ4EzV9pJS!`~x9?z~gC6)_Ie4e(S=!GmxZ@JY`ljv2R)< zkMr?^*2oihqnu|}ZE6jFXI`={U{-Pb=)&bai zH6XU0DSo{F!hEvOSZ>Z*J9bbmTDkd*>23uk!MkpHv|fQpZTxhFf9g)$v}`Bqec9hg zdj^!04zT`wvweAefB8_7EI@!Fn;khrE=9?1!!+N^P)Pg3ZOQ1SO6wbY+(O4;Vg-3K zqHW#bHt7}fh}(`F!X^CxO6l-f+GL$-!-;Ea7P z=V?>yr>=UheoNva3a!!etlJ)wrr_hM?L0ZutPTS#Z!VVpY$EX|eZm7;r=XRoi`4$& zT5tR7$_CeOc$C2(8EgKz)3==sZ_Ae9+E?~8reHOlWFx|mfT|Uhy&FegttGBqQ2qW&|T)G8R1sY1*Tb-BKI3Mp(mA+$Ni zEFZpk43*nZHbnH6Y|>%$T5riwF9BWI9UGt)vOUj~;qrArXgErw`fqDCfqWB@^H*b5L;SJ=a9Zis}&vKPiPmV-F~u zSBU1HEO{0s+l7)$6$|!hbJxOjMMQbNu1bGuxOBr@LL*oXmsp2yl|6iye0rDXTJmP} z7;4QK`*l+q8}G~xR(j{@_*Ly$RtS7Me=goq`J4yqDDt9*AWlPyxYV^nKB0Rj8yZZ0urh+ zgib0AfRro|S1~&Ho_}6i4YfY`yi`vbiLA8Ro|k4p!L=(=ftZTXDQ(zPj4J2dNU9~) zENa&#smh#Q8m9D_Gwz&@*0o7LknY>VZETjA606~AoV2V7_EgHspJz>g7Mq^SfaTr- zwN7PVewbaKSsu{AZa3STmcg7#Va5gAD#h8xJnzQVO0Ggfg&z2`y*u?vuN}aKz|Pa1 z9jvHA(MClI+|I7njuYXx%x6DQr%&p{jO43Sm`8=yS4XBX%T>HO3hXqKrBN#7h&tgI zQ9mnOag?aePNB3X7YV_r92FSVD9LU&N975qv=RstKxj|8qv8 z*WOJkY`JTmxltnZ&8iLMUMnHGX{LP13Ri{LRhye-lj@tx`D<=gjoCa~y-UOO&6T_Z z0aZ}XEyp1%|AfPhV}oJn`2T1DNOs~}dqFMxCXEzL%8>P+Utl?}UcSmSr6tzd0rlD7 zeBLXcYtpf`_GiN}v8!sWm#mG;A8^tZN@U~mwa({F_UAh1^BVgz=6qfvpX<|kz4m7+ z@8AEXVpDnFwLepNU*mIG6Fo?0|7|)XRl={*A*n*Xmkvpl^RR?$7+Fp%9g-^NYw3_w zIk%@nQstBpl0I`YtYx2PvR|CQXu1LapO@Y5#9m;{9*(OY6Ms=|JWo_hXZBe^l|a^- z8@G?CgWO|XLU{Ufl;xFA`%+aq)L8Gs=DAw=D4vmfd7gcSSik>iYRfLqz#f*YM6)~( z6I9YJ_OA8gEmE?qdJelS?$(yC@XB#@`5E9g76t|6+i1srP=Aq_$rBHzc1Vg4YA#Tq znh-)2!9d}!LZrfUS`prG04<7gIAeq!Ry2tdp>P7!IbhteM$r_EyA@5J}W5!xE>M2gQJ`e@Y; zZSnFQ!M@IqJm!42xM@bdufE>AKWR=G(8b@b@dbE{QL*}Ftn%VN&YUtP^j<@L-GvNg z!GeK7vc=q`m|O|X9vF<}FtmgE?7=~Phxi>bPJ2EGy|=1Ykk4pfhF(t;PUz~1iTdMz z6>&nUfqwa~D2q4WOVk!7XaP~uFFGLGsGSo^@`6!(XGz`TjhciH3KxdVybwNwZrkpAVrsAEsgt(!aEk8Re0(=I8I~L$vu)@l`4I&HT7F?>%%_0`c+#; zXDY@^n!>KmBl0il9-YTfQi^z1ci~eI{Zl}SRK91<$|rr7e|G+KQ)%d!N^2Yqg+i3d zyW%`~hw~e12+oPGoK^I;nlp;N^z5ST_WZAh-0sJmGb?*~h8jCDtD2TnRqHd*@=D`P zax8Pl__dcthkDm(!CrGpsb{d|mGysx;Im_+*6JUpy|8Pkeo?S<@lxGeZJ*kbAL49( zy-}WxElI&+Um68fGM3{4UOUD1+QKKt6G(6ECOvx4m=%DwgM6kjYpNV=v-~LWOE#fz z%8G?FnGs!cHd%i86zkXJ+*JjUuNR4D^2u7C`^c1 zAUUV0X0CDY>~c-$rMFuDv<{fB$4dS)H)HK4I;7WP>v+&p|M~dp>6tr;>PCV1Q$H_o2$EIs{B|Jf7&Naqi}9NV{W#PeeP7F zTxHZ|8@oBR@~pRJ$(e=Iui#oQ-m=WfNy{c|XmIKCz1C5*t0A$I8RF@H^;>#!?2ix} z=sz{_;<7fZ{W#fOI91*gj~FG>I<1VS-SyYan{R!_ujFbVf5Y7%hgD5d#%nRHmFCoL zYWiX&>`QbR*ONWICdZ>SN7b8;u&>G6S_Dg5{((12zK$yL#8h{l)?A??r{-u6PnXDu z-x`m_8=+X;B;WIWdes2n?pH)LtYqTEj%iKwVz>3w(GOu$4+!h1WFisDr;gV0F=Rxe zc(OUur&4BF>(c26Lo?ebN+o?ol4cmY<{O36#i<4de$ zv&4&wdv%v`-cQxXb4Evo=IOBktKk)|YR0o`RMRHWG`kd|1m4I{Vzg0<2r9n1Pe?7C z6?H-Z24d-9?Qn$pt*YBp7H0ecyd`ATd-GpTjQX{#L)|6t80e-SdB7SyBF-}_ z_1eST;iFQb^)AC>^y*b7T3+E^-e>)Ako_Sx!)XQ;OMg5@ESt3xUn7G(AO-JRF4i`0 zS-!v;H$&aM;cTwoN`R}`4zcY>6U4U5S>(y+2@E9(v)g}!h5R(xH>{n^-{kW0=;y81 zz|3K+?helJ&NWL4jeW~H$O-@7dSfOr!1%ibTCdt&h&cL!jVjKgkm}!1BI;Y2qVZ#7p5jn`bj!jEf8Sl_;H+2cT2J~`_bET3WwT1Se95B4k6!T#+WnI>QQ zY}fPT4&s8c&5^5PevWg@XUS2RDc0xVq^i4ZB>a-Pp8zNY3d^er9god4R(p*~f9S(l zp{(W{T%Q>WIr0aMoX|pFENCqBBTN+9q1T=;YKLN1grbA7%R+}@7l&deVi$(C$Hv$O zv`|4v>8_@$q(1!b#r#Gm8%=bfzssteZ!8W}W3#z_5kNA-pH*FBeHo~e6QsF={ZL=Z zg1DQAGA5$J7up}Y%~<3$R{2A3#-(2yUDre=0M&1O`BzPV`P$Z9U|L#uKbjWJ z2kI|`6nCw0TCvp=m$R=glZ&D&*v-ZZ7+E#Rc_7_G`5mRbiD)nNHSKb0Tk`~o@!8-D zp2V3c3M@6rO5dWzsWl|?Im2(bYm-a-4*bO&!Y?{yG~@;wvV&#W_#cQrsz$xm7h0U7 znH%|FbLPKd^k^^1ap(8+n*Ji~B{z*cVKf9x@8x>fhiB6-GvJeg?+fb5{>ir9L=VlV zLS5JIc~h?5#R0%GlPRq-UQ?!@zLwna<=IJtX>w@@tz&H2$1c;mwu@aXXRVRYSH@aHA z7Z_DXm+E7e>QiQ^xFK2!sCaR(7x?i?b6S~aK!wEqy78jm_E!I8OZ9P#K#gicKdq;a zp<;`;~)%|5gbWq4GbU}~O6MFG^yB95AWS4~AZ@eM+z8cJime<#e zr4DyE;OV16BXXoh7Rd}G1^n~nMDg1vSbBhEy;KoZ>*xrbVgch@Aq$t7bLSyECO$;a znX2+L=j_793ysXV^X-Ui&-+FsxA|pOW9D4J`1essH5sU)c6*M^L{;-AtAZl1sJR+0JFii6FL}t-<>~R#WtEGDTa%Im#t6jQ?DkIS_iwhz;W8I27}@ zVxl^{t2L5)>-Olix9)T8!R?hb^NgG3C#$nrP_lb-Fd*c&qe-^ixJfXv z>qE7^=*37_RL&!5Ae|IBi%*6~GPCToipWVPm0dRcPxW`nFn#JAJ&!)AV@)>l49m#w zc?@5!OmKfC4wQlBtkvJdC{oM<9{eREpn5+)rC(sw_Mw=>pvX8J(Wdu=Vo&jz%ZRi_ zo^Cot!*A_GL??Wdu2vnUpB4V}NF>VaA*ecR_x?J-n$TOa_nwvv+wCqVCRUF8x{MRa ziB5N3$cqSoT)oL|sO_^l`lQxe%X++%^{j+g_upm{&zz;828r=$-!lmisHEho5e#i3 zi@Ej5>hQxvd<{bK6HDapi_7?HH28wIl$zdEmC1Qi@?U`tO`z#tp_}CrJI5E)mg?E% zQ|ISJ3xU#tFvF)wif}*dWM1^mQ~BH7QpjHc(cpVZFv6JOe(P&{m1-@zHr`*lQHpuR zSexCtxlXdZxPZT*wVaTvKwa$f#;BXbJ(O?Enh-h_ovdvw`K+;7+FQvhwyiF%PS#DF zo2<))mq}=HUd|lP+DXSIkiYpAt@#oG@k)G6(=wUd(elxvI*1RMJfp;K_}lTB{bDZJ%5+E7()Gd>4n+yxJ14vU35C8V(s2Vz9x0qP*u&F_cr$``mJD{V2a6Svqh_QZ zUA zD|w|*NNleWoezEgzVhr3`IG*Kl4HK;D|ycT z?=4}(?codMy0uNe247JFbHn)t<^rIf8}=XjHa*_BUzwh_MGC2fhBTEBF1F1M9UnF7!5lIqrp&Y&5+U9?~KMP zhN(uQ+jv68!rm4^cWZXeQW0yh$AIA|m^WVyg*sS_(KX4NL@d#7sIzXPI&{j0Pn}I| zP)+14RT9?C1@>WjmIY>Y-%J$YKA)&90BFMWF7?}@AK}Aq@E>uK%bKosy-|A@%T3|K zwk~Dus43{YVb*cfRP}3HZY}klmGO=B|L=@PrAF^r8IKnIzcUVyar9aFo*^FsHPNHM z{;3ulU3Qx%i=F*c!zYV>&Q$9s_XInIWCk^zo77uqWW_r?a$CSn-wQq)jGQQpAIku= zTdL2@FulcK<_h#)3X2c`B;xCyUVK`PD>P3F0SIZ?Klu1F*AIWZ&n!&}o7`-0BOPF_ zl@C#*J;HCd7}pjthr4EYwL8V~qX-S$L)-2ekFOO+m-z@qT{>9}wCMSx^N$uGinNnE zRD#?0w7Ts8v3WVUqqT_7$({I+2D&~9Kr;`Sp2=`PT) zLZxgKDoSJ$?EFIZ>We2bxM&B>lGAvGh@PnCf+CA}D+pXD1=(udI8cf7QwoZiG{!A> zi&FQlvXW6|`}R(nbNhZ&fhKoU+il(6I(=-?*kxo4Lzrp#?i4=a699nq`bm7G?go}G zYzLzz$Fn!o5YT2f1VX#Civ7V?ft)Y2F$B;9fJ+?Jo7w09bakw>{{&y;U^pK5U zfeTWfO$a^}Z_LSv<{NY1!U0zc{(@g-wS?yQRZuS95XoF50cn>s(sm!;0*%{A?2uvb z(U#v8dJUiuZfpPtjj|kUt!m9PC~JN-LQE}jY7ta(akj9;K+8uPi_kw)q(6g(t6wjJD{ZhpglPbS|5k)h~a=qrFOM;FBJLvp)SE^Fv##(PGMzum>< z60GsgG0t`!s`q7 zW6ichueDlUU%kYr?N5gLH-@e`6$eO;daj8b`BhW%TlMEasV_z!GBTi$>Jv6fJ>a0! zO)n?o_gU^WzXX-M$jDI0^a*2^Ak#8P;lU(kI_VQMRN-jW9%j@u{p(!2!+m5t%Y8x4 zT%S4D9sjU!)fJ}q;^iLrBVR&~2Xvmvu+1y@6VUffWyTj-!0F)1gK+nP4a`$R_T1&} z`T7$JDH;-z=N3<1^3wXD7lrB|22K1R*WiHa&b-4L+yNW}F24F&?dm2*72O(P&Vr5K ztgt&zL$;a<@~t_F3>bylDx1jHjj6O2-KMxJ=`J|@^z4!N3M&)A(*7Ex>jcaPAyaVj zmzM}qhRk?{UwpmSNOie#JBfw1KizC!PCnTm2nnBAo?6Ps*?-$WaIAle3eqs>f_xLb zqRkj>Ml2{o+=IC!u=cFCW9#2dm2ITUcFvD@fBA6v4%z_P>enOfW}P>_CXlS3VT{HP zS*(~H5i0e^ZmphcUGf))o>V^>x=Fj#6>wUD4iBzEthw_A-Bqn9J);%s{`H>GjP#C` z^T(mLWIOGX%Q)LOgx|u|;{~A+1l$9=0U9T(tBmk9{R%}EB8M6;kYiRI=NH?Z%9%c2fitRsMqE z@fxnFf4(4~ho}ftPHOdZrO?p20K^aLc%6;iMJLyQ4;s7aD9RZUe;(Q zt$%ef)27DjV4l4sQVnrN?33$*!`C^px6QL+s?I@I^rmVD-=d9G{h+ZBXKtb5fnaCl zJnZFx*UJ<>5p$NyYqssh#nxR;y^hM3s&B%G{)a_t7@s$l)`ogJZ!}oVt$+Snj#xFS zdxNg}bS)p;X!kBH7m`{K)R$Th0cSnT1xifLHx5O|sg;0?6Z9!r3)zlwI|e_%sz4w~ zu8-AM$)drCUqp<*WMeCtyKy)7s#-aJItTp*vpI^smlJFV1j_=*KYUhEBDqg<nbozFnkF?~3rCDsl@JfPiZ~OV(W6i65G$$%1Su8j zg)G@L>B8!`-&rtu?8Q5q-M;^)$ucyPrFI z(a3m)eaZXtj2Nhd^IvDnRU74b3?z(!aWYm`o>yr7kfI?Z%O1l9Havh8Fk1f!J$hkq_>GfB zPjH3TtXWpQtYgvxF63b?9Rr>M-|VB1A#1G*o@}P@;=9Z4k`r8Cyo4eHD7meeY(4Rd z4~4U?m)&h^v#DB~rm7!%JoKWwhV3gM3`C28d}!|ymJ%&z#zf}eBB;YcsFia^j*RlV zkTjW4P`*TK*~L<;Nv^oNI(g}8E*mbH^un?h{zdeAhm4tb1#jnux;;C1yVo<`19jE! z@pQ%?Sb{=|Piy`ijptH^7@E``dVunRhpvynCh#{+8|%`V|Cwkr`=11Yxfn4c?!9I~ zx3#SW28z_aGJFLK%(A`H@@ZSAT%>L7_H&31NVrXfAEckGL|jBzn4FK!iUR|4PNU{WOjT1 zi8ij~uL=3L7fU~#M|@+q(*pUGj>#___3PemGjvtHGrBPp>Rz`o-341- z16**~CRP|k|Gl`w^r6lXU!UiyAGhprLYHF~#X6zEz?_q(pwP*pB>byU!!mH_=MgQi z>AB7~jw^6YWL_%zSYt|v@ij+>DkYOrv5lBBC0<02&#ZXb`srat+$??C7LQ1^7XZ1s z)vRb0dAC+4D!tzKs~WqDA)>+XFZQXQj6LucyNmsHn5{`rtW?dri*xM2T>EE&{WDR1 zphXo=0xHmpCmW3-N_2*9qy7K_LVmp%rQ3jBJQZzPy%_bEoW*)^p|M>J2m4PQ*Nr)z z=qOAF)$UL@hn$dbR!Xy@4dQdR0sr%OwNd=5`g`JQG3>lpIQ-Gu<7;zW(fNv*8ZklJ^B?dd;#G zbC(64Zb0}PFE1&+X2fPSJW;f;2{V-w zOT2B5Jgsbe4}VRxH+}1!jlb0%%fyh2la28O4wJL&c#VPC-bQGwP1~4iIV(!1ZEW4i zJ2%3Czv+#485Pqw(7gGtB(B(~tBBrU^>kxLu(Vuzwsi7=cRZXaNUmlZ6$@yA_UuP; z7V*Qw0y8;Rv8+d9KMlZyaPb7RWGOwFxWuXUBc#m0to#T5eg@m=6Y+mAOZv5dpM#BVerIX4~SCwghQ(IRO?>jwVpYznG0TP8^^YwwR8t(!;X z6MYns47XZymDY{C(`3=Qd7M{bZIy#z-^}ujK_&jmI&!pbfWp90p5(8ib<@LZrS+{( zi`I<%WkDQd$A>C0YSyi;M@tp_SIZG?7cKIi>`9Q|Z0<3K6=KnB8{_ zqprQIX89MLT2@j^Dmva+=vF3cGD+B_mX});?bc@6A1Dz!RVAO7MSwPfEMc=0Rq0#* z$}uP&uvy>>^2G^u!9)dRI!>^!b`}1t!Bxq#kY^ds5}tCN6+Cj@3!HqM9b>(84|^qy zxao8@rEHWiWzObaNI}o`c^C1umowq$ETsox42^p0Rsc=Hx z&q%d!wiEJpI%K93vM(JHaY9~9hg3TuKTU_sbwVCXhg3Ns52iyZoseicWR4T^<#dSL zMKWS@(;+oZ$d}R~^PG^+rbFgCAy=eBW;r2a(jjuaNy#VOslMOtg#0lba)%RgK!vp5 z$tTk&xv-7EoQi!bw)tC3_=V3lxDN7rHNQ9Ul<-vXe1&HXkHPZ<&$B$8JO_CG$a9is z4Ee6$`7F?_>QJ6t$1XvaI1oSW zX{bt0e17m(azb?+o5He0GUnK1_3Jt|k>Av2gtR>eu^C}xYF#h8@J2{VF$tOlah9Ey z|2ylo38@{n!&H|EXSf^$)_pEHNz_5_oc7yfyPE1&vc5ZkqZhvjs#$i9?v@oKV34t= zBj)5%mxt(n%J(uSR&TkNH_U?QE$Xljcjzs5ONjccTt12Hz1CH#`sLVJQ?1eXG*w0t zIAI?pPbcl|dz$V0dn#sFe9tww)ZRVzG68DO9(zgNWUn53UfyJn9{Z`h$=*EnJ$aKo zdF)^1P4?n3Q{H3`9*fJH?7hUgcG+-=XuIsP#Mj$pYbCzYF8e95q+K>q;`VmgIf;4g zvRx9h+GUR~$3 z!*eyyr+GfhGleI_Q_M4ir;?|JXA#dmJooa{@jSq@fv1&6_K3iD2!EZrsL?BmMbMrQ zo*iR&f7c|SZU&41=et>b+e$~N&E@1r1h(UJeDH#X@xZ2oEDf&qetsnJ#;_k(L%7hY z-O+ZKup>Nw;z2tnBO}A@M$d6XX?AimGzgQ4dvcXyFZb||vR4n;Zi%hg>pfm}(W*cZ$|p1!+CQ6Uf$ z(TgS-ou8nnFy5$zC;}_elMLQfU8UJ#{Q#9G9SdDu_?GnPSLutqg8w15KHsljhM0`$ z-3~1Pl|4!}y*)^?dUoig5FxN-?&oiz2c;>=PH`?ft2#48F$?jWRNHq@Kl-Eh2aHz{ z9pLD@*(l1H4+q`M{U(ZK*Vfonl0fnn>zau}$r`KqGMP(XyvrYYf8{%J*58S&r8SC3 z=$68INUbFMh%)BNfqH4YM}(=BQq&kp|KHa-s!rhf$*ohM>~xQw5PQL8Z6m^{n2f_Z zio+h~n7P)E3F5=pyXe^0ccl?u=LDqv&hUj!*56`O1VGcq*|oVv1#7IZoW5e0AYe+? zXxOp3N;XDG0MIPF9;P*Zq&&3SMp02pz3HDXl`eaS)1(hyUPv!cyle_v2m_Zv8x+6- z;creKJXRKxtSIDXOTCSs!JvuJ+0wDbgMdQkV1}o&GWi7|>MW3cqn?PZ$PgU;9BV23+nD}@Ul0+cLMXRYtumv<-zVX^@;p;pe5OO z|HhFWcjy;q_kBq9J@9|+`@(C6l9c829mLA%`_P$vx4D*Q^j?j>tqkiIc3G@Hv^Y2B z(HG~!;@EJCtEs8+Q_zDtSqhCg#++=J=`fIxsw=?{EGxkh@KeyZ#preAAg%q-?-(8? z00Ds}87ZSC8_vV~2(^z6zGv+642X=v4w=pEjox6d=RLVEH>f-!;;LQ8JzZ1 z7Gh@s^1V!um}o?5BRWuNeN%;E_e)J%jAfYZt__&}+qIX*>yd2w^6;0KLq~EUg`qNk z&f(60tqD*GXAKJ>i0u5pN^kz_iR+A-K*37CS?rIES=xrwTS4BsQwFrcJ4EWAvxbI4 z*W&!n)VAh_y4LyQJ2HY@>OFQMI1vA}Y-d;WdSgv)a7}iZ>3vZKveGJ=AWNKXc=ZjE zgwxUVu9jmFZHl6a!t^Yfq`fqbzH?-(Nb&#R2F!Ac%%4DQGI)JvJ#OEh6x84}StJds!GFAN@!{zThamqDu& z-(&pqUtWruE#m;k13BrH6QKyMoRp$g4zoql>tFV{thP{tEVYI+mRi?2mRhN^)aDK) zF};+-F|RlHrwLbv8z}5cTnStK;^l7m4XEA7(yO#SO;X+pg;-b>Xo}?~&6#dwo%Ki# z5{ehkRgxIhmFRg5DH*Yxja9j3adO(n4cSrTpm z9#%0bp!fUmmrZ0Omo+5uSR<&)M%r5PIbQ`8?w2*)5@g#6#;7=bqU$JBA{9?Y)!qy8fr@QzU%`Lhr4+eq)JS)Bql3X)+g=GxhV>zwxVcd>8 z>v{6o>-qjGQ|p;R&tB4NCK)p(LJJ7JXWogd;CoB;n>LmtS)Hd%|NX&N>qoI)67R6) zL~fr2H_@2M+M6`838|%bh5_JZO8~8xeRUM%(?Kwll<95E35DKZ!$WquG zg~r$CU=eqxY-_FMUQSu@zsNa)b9>GaTnG^)_&Vxxebxp08K!}D7dswwqHN@9FH{!_D&Ag z_>6{Z<7(p+!bEy>ixKVXOnUV2Ha)ykujoy@^ZB%stn0%VruZBUr3+UZ$f#(&cj3fd8QDj~ur4iod z2|wql-4g#ZZ1!#RMr*;a6ga`tW^8BtH}?7ZX`?PTSeK1lywD#wU*EobD5=LKQjXXX z4%ZcW$s{BC4AK&6ZUeo{M1>ET$g*tX3p(=KogfEQTTn-^h0GeR0h2wrvw_L&kTMh3 z@lpxqnF#Rmx9B3*Gw9r7&v9%Us&=LOh^)X-J<@M1^kUgo54We_d-(lm z_lCDg@y4ov!6mv6o?Eax)WhwQOneU38^COV4@GO?r^^2JasT+Zdp!G$MsBQaNWI0o z{oF)wVZz%OvqGHQR`eL*XC%@U9Ib7=g?lNW&WCPwH}NfZ)6%wN^hh;F&r|b~GR{w% zRS249BUo0V!=x?uV^s18XMl({Rc-N9J;&&TYPYR>IaJ%OZ7P&GNXg@#xG=RF+J3kL z8lLlX^4rdnf)Uw&Y&m#Y|MLU$Qz%Nwfw>5M-ZPF&pJ-4yN4o#)BmHZCmqrTjX!uC) zKJ!Q~<49i&njlAd3NARay$BZ`f=oiIvrX@9+$I44)#|yN71nMreGZ6m91x5n`e#BO zw^?XX8W`wmu~jM(Pj-y2l(4kKlZ=O`j~U0~AGxEGHj4C7K;&Fn(GDGrcq{fmy26(t z*T(r2KV^P+el?)bR77!(GC{Pjg@ zM8?~KHA>z>R*$?FvYtf@V>kNjl>uX=H@Fu`cv1FX>31YP4X@B%`f_ln zRXMhSu_ZQpZn!Tz|vHBKNJun8FZ| zq4??3_2V}dW!zd!iY671toLm!^4wbNiPkm6kS)e4MhSC-%4`YB5#5DKAjB*=p|%@i zRX0Q%0su4LxMV0EgU-!%Q}(bM*BG_yC- zA$=y$Uw%ibxT+zkwZ7ljl^CPm-Z24Z;}}3#?l%UkVpY7T=3ir5CFm~X3WlIzw@ZjJ zUCvS96?v&MzW3Plk(=TVc-_&UQRFW#DE3FMk&|FMN|DA~Uofj_HR2PRwiT*#MsU9v z9NFTAE^H&hYJMjT!*>Awa^G+R)Wnau>(}x}Yf)-vmxZc*nkm+U(VY%0@@wW0tu%Zg zwp#@;f0eJ*-q31f0f>By&w_yV@N4qB(5pSXS6<3}+NR&i%WA*2NiK2tzsPUlOf3Z^ z9v+>#7psx@?YCy_6Z@*s!t?BpJy~jhuzYWp1-#f58wXb2!+mNkqWdWx-X%_V{Fut<$Ix#Ce-KC1T;3v@v*VfgFEO5}i3RO*N&z^&+ki@ZV$Q| z?=$4j1GY4eYze@__~580HV*1XIWYSd^rs6VBJKhmqVY2ia$g)OfDH))UT#E8!$9r4&UkM>}`tSiLfCz=a; z;RDZ-rYsX9KTk^Ewa^^)<7RoS@fXy1HB*=O`M!cn2#BpmT&Dm<$ueK8J~Yc0`$mB$ z_B9DB^TxhhFy9+nqzIki{$nC`a>35%Me{Lo*l%_2R9Dq00@Q9Z z!yWVSWhaIc(9<*{9o5z^5o+RPW1qF`n2-d--l4)fH>Qi1krx1*#f8?voz{wUOk4K8 z2G{*OPdHC%3$h+;QqElKZ3t#5GmxohMZXPaZ|HB6mJE6n1~mJCU_gUgy1{qG^YY{$ zYz%0yLtZioX?qnY=B+8kF0;F z8=c*^jPAtMsA$3FI~m&1n4P##)KuPwNfhc6qBE8`jtWa*y+3qPGxxCAkafjIUaSXu zGv8niza}8#8th{F<^0w#JVc4yD)sxzE2wQmuhS{P| z>EUPUv9zDz>FNq^fqMG%#$tDC_!o%_mv)D@xS5Ej8K(81AT2Kg1!>c}^vH7<$0Ki5 zyB_Y4yl&6-F31t!%0LpW;oqvfJ0wISb_s>a3fPJ_9hPNQRdDH z4MyiT#geXQG1?JQh*?kWl~)c7|d{otyGE7@hzsD zJWc{E03DU4Y0W2Dxl%q}3wX1Ei5*MZp62Y>!Sf5A|KyQHtL|3k5uSEU7AuGaC59mbq5X}wf(-6YOo?3#=V)t1 z7J&fTp#zQAB(A`X6NwSR4*j0xEwS31-`fd*tkH6U<~YL#dT!n$t8l+offW?mV1-~E zKgD2hIR|^Vo>~6MDkcPaHpEyVr7JRm&nBW5=7y>#&?S%^WhY{w{xd8qqX+&5)bt#M z^0JQxgpliV;4i%h^`t-$eoG}w1#)_zJ_mC8JZr|gvTiYy20BPZC*0*;fCC5v^Q_N} zi0UUCtrHp+LR;=jP3sZg%`<9z*!Bt4_@mm=?y>+&tjs4foVYBWnPC8=u@v<(z*RR{ zTg$RIqz!xItB!_tMQ1m0f<>n?C3>|tRPBfExU0KVl|a~1fFHNZo}k3U_~;A+sdy={ zR0?b@&9Z0HN#FqvmPTpKQ{iDq!CEsu@aP)-?&n%A^xX+;pJl`LQ9pLgeAe&&NP>|( zI@XIQ4=fbcW9H2riXs3xQ}NV7A8Mumd)%C%NVaDFTHf=pS1GW*DY7oc3V#86+x#x? z1yi+$|5bj=0Tv&Umr8)e7G6RS;y1111#C9h6C6l6(_(S$RhaK*3TFAuk~F_T(R)11 zO(7Va4<2WV!ATEj$hs-O!l1yk?>Gf6%O|n*80m9* zr?9Ft;Y0c#LCFD%$=Rr_x+92JV__Wszwj3`Gi@ODeEh{UMDz*v?;e5G&y6|$a`YLH zaSAa0B>!tezd(V*Af|$MgkXY=*C*r#Ld?B1z8(SW^8w*yXI6DK5I*LkD-~diC8R5w z)=qcTUz)6&V9vrpOSUz+@55wkNw}+IxH;L}~zbQ@dCeb}_I-l-& zv*b-Ft+&1rZk3Gxpfa{f#@6#?+$0%OHMYGGZj+45JfeHvCK=n#m+=wF=qRnX$Z7qC z{g>?5OZF!uj1p9+8F^I7;b^yooDaew!hSS|8tbn&FRX z$_7W|Q7eX6u^D?5c&yL*9&v`6pbtuLwK+x$XxPo@Puy;V`$I@XmO zuAsQrKW!Vw2@xRruarz-QCxj=s+cJ5Jo~KQ&cQvQACMlPy3+blxyaQiZFJ;iF!^qq z>Hy)2Jmb(}g9zHx9l`?(1d4Dku6ojR-kmHiu8BR2N3uKIBVQDPeGjEwsv=wNBF=tW zz}qBP6iDCkrYoSo`FR;G< zo)~5cB(Abr|3N{C2|OoA@pcO9nu8MWw}GY&r=-}}7{ji%d{VV2nJq@=(=;UyQ02`( z5%}^M>w>p%$?@6qY`QOc(wpw}VS0*;sE65N9atY>v}6R*_m`8YyOuy;x zq~zR}Wa>gEyNcYnk2Pn&t?CXAv=*Ii`C$FAMT_>d5eMXOM zgO48{Oh#|Br|hz^9U?4ZOO-HVS!WbHqT32U=vB^V%$o#!N18w~HcPZu}G^6r*#vh#sILJ+jk! z*(C!;-VP3&Bi0=Sr*U$j*Y;s~DY8eeIyf~lsI`PyT>?LXmjs3Pvn8}$d*}^nXKh~& z)Dwh`+Q&}qkSXha1E{0wpzPLgze>Ib@rlL8ff9-fz1f(L-uC%AlZ+m=ZlOiwhteC~ zBQ1*@#yn=^aJlZ?Z@^@nzF&~xU}mbig;XbXeN;l(K`yE@dZ|YkD3S7TRZ7{fCzYNS zBSo1ES7eKs4TQX>JKQH}^vFT8C@EG#deD$EVpcHLZgh|6TjDT%!!CHZBN(-+6`uzC zLj+U@gC$@A*UlQNf0y!NJ?0b{OsqelmR)I$rjgYw z5`Cc;LN<8E{JHivXMbC_Uw4&Qi)c?qJ2+=d?{9@j=IO4q3Wn29YJI1+w)z!#2}T0!fR+!U z{(^>pq67(hUu{neW}F+^+4-?*$|vZ6k~4I=K0ht1b)Njqc7Bn(DaC2C67)hHH{x@b zdfgYfEBN(qagPu*a9XYQKZ1FnXYgb|k4N9!Apo*49DQO`=CE)#i@ozZk9ewU%m@7O z?JyFi>aji#yAvdtwbIY2%cURsNQ-}tZNYvv20U06lKs)N#_fs<7?0d#aKO{cq1ulU zCpgj(h}56Xe}xlx0@0kio?gd1Y||Q0y>QjhApWz~{{dzD5GtqP6JuHb(Y(V?wS}r`J7tt7HTvIgXS=ThUOLt#?yHAqDV`Q@VQDt6F z7!Vknvwg;!@X23p%uSJ+L%Y|H4IYYjWwgA$K9Lx8!|vAd)6f{OubYQimMoP&l@_uz zhH3iRw5^q=@lF%kzup&w1+@Ne3GWU2TLVazNdsv)l2EaMm8~h>20Ad7;@>$~t(uQ) zRPbOm78{XMa0HjKc%xURN`HCQp7V$e8GL-FO~B^a4M~z z32E9E|Q^nVrF`aJe_*6pW4%tFua8s zf5EJKQMLA;Azd8o^o0GjA}@OGc+bmDis7>4%}$?Uf$O8qiivuo7o1lb*IgH{04v%7Smyy>O&P3y0BY0A|a zTC7DiqUstz$nJvBOaQU(kp_NiK`{ucBCgu-nMfrYi~U%OHSX}m)AOs`(Cgxj@%vMaEiU2!+!DFrkAeBcdXnNeL| zP<^);^o#|%OPMul5k8P$o|xl@y;yp$(WO_cAQI&o=;$g6+-o&oq_w}n4;eD+j|=Ea zMPL!P>p7GVmw3}yp&D<$I4~C}WfzN83lwsY7YE>V6;6Q5RXo8cT5%E~`mc8wMfYM% z^3INv2-k}bI0;k6ti%i4&5wWhNph*0&nh2uJiBm80CdYx#r04w91Hc15v+xsHZLQC z1jX|^zquoEfm!T3cE6x_3|OJ7wY0q6&qWj#y@Z;MwyVzwpr|bNlp;(4?vHA z(M>b;>boEv>!nMe;_Ib%!#mbXmwm9qC*Fx^#L4qE(|f15Cq8_hct9p%&a~ZtG>ftv zE-2F((ul+UPb%)Rm(cl2t(bk@nCa(@DLiisdjIFKJTcXYk)aYkWu^htmt4YKr_M;$ zKP%r7A(xbV|1bV{C4_|Y%lF&-!@5AQ&WDhmQIc(3f?V$E&kBjH4Zd5j#LFSH+LrIp zw)z7b{ROT50AXv6d%()E_jE{3cU3<#tbML1SCp3@7_ETX9eigy-*OS`$ah%#YR_t0 z=jLcH6v=Am%Fjf-C2>{!Lu^lU9?3}H<-!{sV|v4qFCi)g@gqap3o|Z8P}=B>|2ZS- zF}*X=cY|{uZ|HxNH zeM^dz_Gp3HqfoyNBB6nO#6~D`L{93|x;m@0nxoq1cBun*a*+-xgKTcvf|wWE;D4TA#a;J?|F7KNMTDv~jJL>i2`9gVfB zm;g@0<+Mx<^l%$9C1{IQGwR6a#a?JuncU#v=j2UpZzMa1qW}uR+q%mp+Vf_2k915Q zx2fb{xb4m+E|)L{BE7`IG9YRRNK7-N*Gpah`tQ^jxH6ZHL4MU1pb&URj}muykg<|< zkEFvpv>W@h_%~z>A-;8s$GJP$g7tIw6TKY}W7O&&JmpH0r_}(xVgH5Z`}x0Ig;!jA z_1ZLFj^z={_5tbZD6v#PD@P|7gRF~qN+FoWT~T1}`rG8NDJ7NagZ4SK@YRZ+XuPQQ z&OR&oZM6WTtBXp#!vmF>xWh0djr9g85)ngfHfd`BuiGeA%OoCkyc~)er@e5U_D~c} zVLuHwanWc(*jN9hHi7I>7JspfD}@?8B($wAsDd9!75tPcSXm@hWiFB~s&cdZ6Rnk$ zwHVwVAOj8WzrSOn|5#O5EvH=ZJ<;?f#WCi`+27sXiELuv_wUGdbXqcAwc_j~|4b4F z60gl=^JSh4BheY;N{8D&?yN?N7#M$u*5WRP5I6L|kNIq$L!SZ{J z_pR@|MQi)wJH6npSBrFN7(qmG;vfcDzunfmNYr+F_5cEje4(M~S96Pqqbzq){83zn z?`qp;lH*JRSCyDEN}K2!Aw+BAJNYj=(qG+$3d7Oyq+6c7R4*TYHV4Q~&+J^dyiiDG z{_#pzGM$Y04gFJD)x+mCz_)3Nkrc(4(qm0}xY=58`a>~GTgKVCQ^=P6z96i}22t$+ zqSx__Q0r?JAJ85bLql-zP%U`)!7z}N)T*N2TcJZtd z-oz`2F%Y@KJ$D$^u-{qE{c?`=TPFq6BdIA8+TAUa`75R9&*$-m6K)kcmA{N52DPX0 zCO4+_QZDXa_9o-8Hdpi(Q{_V;UJ9`$UO5U;u_%@Xtr<@aDc{i%*0)F$-(r1boSLL# zAwrVR-$i=k7Aqs62nF3~W{6#&U0yQUhAz%qKVey$m83@oV?3b1QtcAOu)uz_6!N_A zOt3?(*c{aKypmGe+O(5}dGcqoCCPwZ)e1rKv3clI9br*NT0H}o?1Fe2>WYpJ?T=o{ za?L`g567$|w_a50nyeR}d@cSj=%_6cfzfXM;vQSxl`x#HJfH(?`puccyT>pCl5Vs7 zWlNj`_r!Hri?qzH0>A94MCl{0+12|3^`5KV7xEV>bISyN&F~}gI!V3ml-G&!+9FGv zt&og1Ti)HC&#RFchk9RpHEe(uRr&KPC`@a9 zhAFqXP|&cEvZ-p;BdsVWKeU+4W}{bEXY(+=V-JS*Y^O(!ldc$5@#K*9P#GotnoRg& zmU}{1;yZ2m9p>B<`65b)V2hIXkqdP|tLP2wg-Tb^iH!|X>ltA`l8{Uyc zZr5o}gFwCMvCgE=*1y!|oVs?uIVHn}sUGV*4SO7E@oV>cdKobEQ;@`%vmYOl5IL!{ z;H5#z(zbd>FTHl(($2R>EgjoqUs~-$L>Ou;mtG6`JwU7njgF1pj1J4g(I6=ml!X!< z40l_o3C4mA3fhBY77dE6z5PP%jR3^NoB})>!@T31`E1Y=T6VVQ$oCD`l~m z#g&1_!3a8yFU5~!8tM?TQ3taqGkydSv`sLaGLdYqY9h5UFFV+4Z#ih~RjqOovrDyy zI%PPNzJvoaG=2@5B=mGdj8N|>9ku^h{K$7VyxjrUcWe&<-uRJ+_a9TQAVCj0uNm

      A3G6K(j5%PyGziaArf4Ph{EsYCA` zT}t)?M`n!e6>AHBGh&-s$CZ)K6K(Q*7{9O0O#!xiv3+=+-`BHq)vUQ}6hM?*TAZ*B z;++>iopKW@cj3E*FrU?(Z{2xHfksOBb;Ti@Qk16dr0A_(g*izBK`mcx@*lk;Vg+Bn zsi{$kaIBgDRFhnlZGCksA{?dRuF~l)2oq;nNLBDh2glwp{DHDLmz-#G@(*%Beg}Za zDMU>O(oJz%ptr2%Z$U|+*8DmXX&{NU+o&tVaROCf(NamT_Bv0TX0owu%*g}f!Z zTJDs9?vg@@wq|h48nX)ZIw1#~^9I_e@)`SXEy{^{4R@jzW1`v%EtQn=Kf#+#QBf5g zV}&^TXUKHSwKo1i-RpLr01rEG#6mjrMfuybww$Y}pJtlo627h3cYe%F-7Bv}@)~aM z4j++jRGKZ402N;>4*ehQ-Uhs?>Pq}hxCvY|aBeVYw4iAl+i0wyScP7!32+lof&t8z z2Gmw5QtkMW0M>+$-bA?`j%7M9Y6quuN;|Zr)y@c_gEco`5k|L8zUXKJWXye;#trIs1FBz4qFBuf0BaDUHn==AMrLHD-+Lou%%#*(ioZ zxaK~t3=uJ9exd92Go05>zcFWB znh}103E41IR?@}|^r^LRIlt1|NaIt|*_~K_l5h_Mt&LAhJn7wbCGSu=l9B6n^{cTNxG$i~NZWXm*e>*nWD^^p1y-qrn zzhb5Qu9HsL*F+kZ$WuELdA@=7$cjbs+qjfp(O9je!w!~rh5pF}q4mhQgs9n_!+-*n zZ09<>Ts#zPn>R@Gv!kr8;oZdawZmiY$Zy*qcPVVv+nnMYL%#wA9Zo?3)^(zP-Kx%n zvwGmIJoUFEJWfKkvY%IC+F7J)|NL|l&VtR1+^MzndLb|hmf)-P+1mbxCp_v~Lfgg# zU#OBTTN)W_inzw>FR6gh;8!<9AjF@)Cvcz`jK? z9;rs36lyFER2yEBuoXffVbSK}*?_CqXYLJH&x{+w{%p#Q{CYRo8gT?C5ZAWWkK@1v z+plFn^e@8p!%S>?^j%^5aReLaTv5xk5w>58FZ}Lte6X?yL?*c-(kR`-X?CO31PgHN zLea{+T;Vr$da0WynjIR+9QQpTseLUZv9)HC?fzFOX}Wv$Kgo$fC_9H|yWlox2aYs! zQkS|N>Sf9Q*@<^_zfL?`mjPIx|N1=*(?Up_cNkz4PN|q zN|TjhN6&1oxr&7`3Y=hFm4g4m7p+RK`T1($@fz+`Gf_!_u&;(WpUSmHQLa_7#TpTv zH%Tue$J?QmjPn3|et!WLJzU0fDHk$;?C%-wXbkuqL>(o?9X#z*Se#bFGcs#Qz`pMb z68Z1)U9!p@OfRH#l;VXQE{x(pk*+{{n>a*idZPYgw~?Zx6F+_ij*Z63Bu2C-~RD&se1}NgO}bmH}r7PmAPV- zrgW-FL6xw9JD)htA-L%4(uzF0E&P@hb5SQ+>0FX%1KuSgtmrc- zU&d&jmb1#efO1GT+#YrE8R|j|V|!;P@(s7IIypgFZvuh*D>R-NViZSzxy{TAF=;9T zv)jG$E>YF98j<1#5Ubo@ki4^1CInb-pKZO+9Bf8QxIE3gWs3su3(;V-cCbAKLss&Z z2CE(|;ggPYBEKQV!eqg-eG#l9jixZU7wrai* zUWf_)p(sJ5)LLpOe;^(Q@F!1nY>Gd;fY>b2(tt=Wz>dBjIjJ4O{P%8+d)st*6Y@K~ zpGM#6wqD`{Wy(yBRqs0!E9%qx zLr+V_@tW~z$@ui?GH#F>>S?#Mly)o~+dg^6#r7V+NL9CJ|DtoKtiP4!g4!5L%&`ROqA8@~2^|46y%UPH; ztrYW7N)x^Yjb^JYWH{3&@7vA$c)7g@wR<15=6j*to%!-Okd)X>PTZB8nDy&8-!cIy zd3?rA?w8xlEKFW~wr^*=hb50U-#N+Ox<0L9z3oK-;hB|Wi`0NDPH>QAHy#=$WOO#K z?)~_0utVa3ic74gQIwFthBJ(SaP6gFPZlms33NhkX?bj&DKR4`~sV^y^!-Pe~F0w0FaDr03jC5S>%Bd6*p+0pK9K3jTmF ziJK$qmhmc9o+2w&@)mI(<5%=L*6_^NUk}@5Fojhswj8i86msRGK|VsRatpKIWkb1Q z>!fsX+Bi5L8PowjEku<5im|=fLskv&HEMnAftxAI*C_R(Xyb$qh*Mc-1D~alGS@x8 zj@*7yb0swOa~m2wZ9~cyI2 zvp}>wBfqTMr-=Y&XmDJGCfn=a6l+kDH15tN{b6Rkkip1cT!XXYvM5PZ< zp)_+zQZpCkW2Z~)E?Q6S>TR2WW<{Fs9G{McPs{Sg-2-H#tRuN^U}4DtgA`_nO`~=6 z-(7mz=Jp2!wj)S{lwYG1T^MP+n+Gy=K+nUd#s)&Tv(Rv^PBXBcr+AZ(wa~`-8k|w! zQ}?%AP4Hba-t@-N!q|ZbD!MaFL%wRS*eH1#H_NX^eH?`mya%2Omu_R9Zxf@;WdrRaGL&BkQCX*i%wnNxR)Bb6#{Xy_vb2^SmU$HiiKg zqKqZovg5KER?Co=>>l+}z9YzLhj0y~y1x7J%Xa67+I_ns8WCA>rxek+h+iaQ?{>0^ zA}f~jF)PwvEaCOznp)_C4p_Nj@55<++mSX+#S`f^uT^K!E<-W6Cv1;RLk&#p)q)Fc zEz;B&bfm_*pV$gUTQPv%d8ml31|3c0Ka+ZAIu7ZUGSLiiXMJG0`Gj=S>)}3BS;D1CvS$1l3K_t*+j=@=*Wv~uslL`hM86gM%&7+YN@ee-%6FoU#&i#u%t z-OS+PaNESbz0~px;5I)KgpNqpZH?Y7D+!9#igHuXF7_4$I`ur{-XQlX#k(B z){{zQS(@8fveuHORneBdBTla6+1q@KDSp-^*7mXSe@c@Hx^vb@5wh#STM@huyc6v( zU`DjeG!e9lH|Pi+$e`wxe@lay-rG#8v`s!tCx33UoW^!q8tkqaSngiC%`mItyYVkH zC9j#Rm$IG1NSTPYux{F-Y%b=4jU#4V|3{}Mum9otY-~-786IOsEi1CF{bMqr6~nya zEwXO6{5oy?!u+OGm_a4`rgD0`Yo0oI9Pol{nmf<49Z8S)D&AKR4vEeGl(Sb4keOyX zQU*IHs7h-{rXK=xd*tCxf-isr6seP(IG!wxm5ulO5p7;ZTYjaeIsLqH>>aI*hrPh*uKQK3K$_<6`>8044dd3~yPOB)(EkT_@9)h{ zDvLAyYWL#>s(;t{cx;_?7%{1s)`u|^Ib7nhfj@b!E_Hv491eS&|4i-dcljHpk#Gjw z*6p9f4z|!B$~(B8r>yeQNc(yD6=?^Ba6vW*EA15O%83$<_BRfS2D+)*UMF#m6JW<= z+Ti~A%WRgO5blf9*h3`!t(Ff*Br)6%Qe>aCDy8HA#k@X_D0Jcbr_x z{m)eQqMyerad-G|sO9$5D+DUs56lZtirWnO?elR^d1ngsEs=D@FyFmSzrnX~*Dc8# zHzfVlSbIQB_95f5#tz}Zj{WsoF-^eHNT|NoqE&-W(WOZ;&Cbvhi+O_2z`=`Zf*TmX^hZ<1&X`KwLt?CAjDb28)W76qBf285<0Bv5)RfKa?N-)MOXQ1x5 z0YfX!I}*kWtX&&yv7A@rYsQ-3jHfJT3-4m|A}Y^UjpYO}A?Z9NiE5t?ioMdcMkNI% zkna_HOOg+RM*R)=_#2X74Fy4=+b62PODSxd;evKmDt+a z=w5RI1|qI?YbVQ1z+Z8jI?EqFKqMw@u2+&hH!XjgJplipQ_IyMZk8M-bbM01B)y}f z_sxsDDrr>`N|s<8Pfij3MfYEX<2&Pvw-WpiU%aJ@?$1k^Hnk?Z+|7Zz!3~5bQTVgx zOjjI7ulc4+Y%SWihs#~Df1=ls8|AFC<)<>gG|~5%ph|OQy0>}RlN-mo;?E_$jZ2)* z!JjzKJ1!jRv5@s&-$!C0nv*P?V$e4SRrJGwCw5AD@f@0%i_{!iY0gmvIO11UIxIzoEHvE z1?(1q@b_R$DOV@dEgydGgG(7TgeUwS>}S;fNEx9G%P0fvLCrN`U!-Aws6i&lH$IhF zCIaIKJ~0D7i{hD~C6f2BH$9i`4=t69shV-AWL$c>jLRfrx0iAG{?KyC=zl?KTrL@x zpDyELlCjHV)LXIr=9lbSeouC_`#}jB3Pl&@Cg%zo+eR$;xcpnvq^K(r?iz90JmGrA)6h$|nK z-CyHR8Q$RQ^^<}<^&$JR;63PqudEN+_oM~y$&lBPW6oW8$(Z}o7JhZiRDa!<#uR4M z4Ug5XDtB!KwjbBBO5)wR|1iL|Q==X9s{tK2eOZDUoW3lz3%L<&;2nzz%iLeTX^!qk zXaEJuZIOG`NoD4FWiprG(qbd#$YGf+NF6u6KsLA;=*wXr4ufp=%nYsNF*Sv^9PLat z+(mvaz@l#lqVEO9;JxLs$c)w4Sj9TyjMer3fa{R&26xtfCm32@|E)1)YwBkNOIFuc z2H&i|0b}UF7IBWd%EC4v8_jKaShq^p$1hh?X~7~dK87f>&4Uf3ZeKqyU+g3T(0UCJ7dwpyp)<@(<{o|pP4;aV!|DM z$`oe3P}EPfUb}b!7_$3UYyb<)5uo==r1(qSA76MPHk~8vFzmayB`1~ouU@GYjw8}i zZpqm)72H_ufpYhY@m-+Egt?m@m8qbKW*nk66GMd6yv*82*pqd0Dt&~j#NiQksRl}^{XRgOIeyqmXn5?ciGRgFlClK<{g@# zc5SVpwLMF5PHn8*Ck!cV$YDM8?rJ?|Ii(9(s)n_>2FC&1mtt;?b9^N!r2)@i$%Eh;@NnsUW%4t-CM6J@O#}?ndN~4-bwfs_E#0W=o zemB?ud{CDi9o1?gGOhK|{GP>cX+-@JYNQanB30mECA6m0eHQMHUB5~we%TrkU=OWy zUQoE6@H;=!mzel`kO3@PF6Kb$R|(~-Mclt9$f?e0V96Ee)j!6JcJ7m}vX$wY^JDTX zwaZpROw9mN5Q5Nl*>Z&Wp)Cl$<&UXfRsR)eg4mr|m4C=Si(8@ERl?(#mc=Pg>|tY! zGPH);gJnzWzXXjvpXB+iq(m4Uc5{W7*rX&&Xw8_~C0@$2@>@x^1TI>4IlLmuOiD)m zX9uJ8L-I@3;Qz=sm6~zjfP<7QyLK7Ehrm6E7ly}bzntHaj%6X%<=@be>EO_6uD4dY zL3Y=;SWq{Zj0{o|LwY06H<8753+15O5^Bglib0gi?UI!ksUIZuQOHtyioN`j)r6gA zpY?F`NV{;3%56BK6=bB%5(|VOE0<3{sMh%szjG?x z*;Za5JrVO>Su-IgB^%rfeXe!WcqSHj|JnrMJmvaM?f6sWyvw0R?)*5|oCnDi!8$CM z#VsT^|Jsz|t@8I~3TcxAE=kKwQg4U<-j5Q?{L({)wh8@S>=h8F-SX7-tOepp^bL`h zkhBM(Rgu+-s9KRxs6adD47Qqxpp0Qh4Hu{#O2bZjI}y{_;0@+aEmF^vE7e(8q~4-d z9I91ckZEd^WyMbQ0ltQ3bCBYBp?PMOuu;t{>)>Yw(V4fquxln7RS>xtdJ+7<7IEB) z+xF6_?$|CQ2sUTP9YTayn(?JX{Jv7})jhj6)wf9neHgU1Oll5jSy^)aR%G!g*uPUU)X@1aPw8NfilCYDz{O(j2fvn;_7Wg+Q~VU+PZnl2yJf zrFObq+YqnXT)x~!kZsr8Lx{eDk8;>s$#3F)U4np%Q+8hD!03F2ZxT1(6a7Y{CH&N z&&arL`qc7iZarqOpP1Pu6o9>tT+ID&(+=4MOqqLp`OEb}DJ9h2+#&WN)H4 zR%&s-*(1pRPcrz}Y9sJCB7nS%2_3H;ZlCionqmHnqbJ(zokG^22@u)i(6r8PH@t*N z2_U%BKIh1uzLD7Tp|WupE#n2v8;U)QQJK(j?uN7R7?x5qgpzEuX(_B+33f>U0&3X< zAdNltPAWMJS+&-0YIvjOEC_#XK+WX)-6h;~&C7X)XAr|JqANNFkSSKHFG{bSG6o$H?B{tCeQuc%o_JGmX-Lt zi9cyyxa-a&VvfaT95unx$9O(Xv^O2yBTLPfH`zOm?)~zPGuvo020@PQ`Eo0&c%dv_ zLRsiRE%_~*dhvJDn&0yHsAfTprmLG4LiB%FCNa_cO&aWl6%yucXW724)Saqa7ZJF6 zjee~%Un`&1ugA>S@+Q8dF%Xo{x%L!IPQ_;S@~NZKYENQ^lT1w*n8~eaK|-~8SVKP z)md#lxh)*ci5}~pit!12Kegnyilwf>)RNzffkIAddpZMni~X+xGUva}ww(_f<9%h@ z?}KzH_kF*ObbgsaH?Nr0`qU z6pA6lJ>0g0He;I|RZrABx3YOD*&L~D3ZAeUu8=Y@C4|X|m*(d>i&GZGVvD1(g{f@N zITY=Y(zyI>_R-rt(PM$mFFA`Pc5zfvo|FdSu!o?Dg_1GUW|wAQ_k2tl*AIW7FF}kg zKeAamRfgBI?RIHeuxt-?P+t9G+<&o$AGGwe^~Y8;)>SbrI}_S!6NTN#!w_m*q^2QQWvl8P+RpEZl`QoO;L> zOR4|6A={7`R)%atpCR+>c!@%4&~H70%wc@E0%o)p<}!RTQjB0(yIe$_l{8A7{iWs7 zIBw=T00y8xU>^JANXbfc21FF2>MW97VHS9&QP+$ZyR=Z)EEgRU4EE=VLmX`XBh`R>tbL^cs?%0y(kmn3`_Y#)@WI&b(tQ9j9vcg){`@`-~@I0 zr|Xhb&VnYEcC7VVWsPR}WPLS@bd=Q5pM`BteZ3`i*=B7 zz}<~OVO9l}L2LcXERaJnh?iv#h`#Tirr9wJKwUr}X>Ac2uIpQdG?~Su$KIQsvWU^{ zrp>x_z=;-ZI028WKf`twO<`%iFU`GOs$-wBIV;KARu*)QYx=XMBBMPeHdPajC86vv zTBU04iK)+9x$aL}yh$sQjfb_q&AtkA{Zd;`|5DXLMv%mSfB@N@1VpODA1lve*lwns z_=@#y(n8~lk?GG=xpTGm;3`%-BmL4Ex}nwJ(Ua}b7%Juc;V%reC#5NP{EBb^Nls^M`iVdPLwbip15hBFtx~C+81G4Q*NM`MI6arW-Vs5NFJM!|TEA^-xpTb?)!k|C zKPJ+cos@P?$EylaAhD5J?_b=aLw1%PfEhGzpr)4EE#RgM5dg|Vz`8hCpHcVP&CY{5 zPQ9ZzNt%2ggm7 zEo?OL@e7$C4M{F5oh}0-pwn$2jc1UepBW^nU#pI4m)L)LT|#VB4)ti_nhKijG1KT3 zeVPv5Rpinqv?h)RXJpj9oaokPQGoJUrRH~`hEqZu z&LW(2OC|gknrDcmGYjPzXw}%N_}{@aQgU{Vw}T zEG)8V>1|X=wzO(bzt;twv{4m00}Lghzg%&_KaW8`5c6U4AF$`+2d};e0eA7GS<4}% zevEytSih$Ap$dg?74Bb=G!5H4=>6Ulv< zUwT-I-7-?%<)6SiB6w&Zd2ZcUyJ+H~(J8fq>?sqh7gA@1#}=m4`3ESmL|FySvQ&&W^6`8 z^}gjazf{)o>-_m=hL7b~KU^SR<1@lhpV)(Y>-f=wsPg{sc0%jURO{W=LzR3is?SNW z8mI6E`x{<}Gl6p52RT4k0UwUn9HSSkDwj64V@0-3_((?SoHRx~)9!Dy=1T#K(YmHY z7&)pq9W3(K-#2D~*e=y?+gU{kaPej$1ubu?n_OQi>8=|yxV{+d8gDfX-EF>6H~p`2)u!4l{l z?2r)-1xf{;T;7b~)FM7QfJrKkz z>=HJ{E{FE1PTEAz-VjQA;5UbB_aC#F>xF(G?l=&ao#HeWR7lfikXBm%fN+~7qgEl)B(zb&@0&!g z;x~@-9@PyOstMq)Opz%WPSFjm{RJJ^rHzKd$EFQq4qQ#HxShi-%TIBQZ}Pho0sKYb{{%l#i5qs2`LX34HU`;z=uuxG&VN1hAZ#@>bg7NjmqUsrp{^!ldBH7 z^2t=o2JVb;s_^H?mDWer%_`LdIexZGPT}o%h3k8$wQ##XMXbR3xS@Zxmh+jk+o&2yErx|EeG&Yge(Gs}-MztoQ(ln*z48>-mv{{bYd~m<>07)sudi~Sb z&ES<17vn&e(Dcq+g=;YF-!|+*LOyA8Slge0#<2cxUFr zz9rZ~cm^LHNWIUBfQcoj?+svM5p1s;nvZqz1z+~HIb(|nq%^q1oevKLTbE>9Q>ZL++|;^a2{ zApE;Q0R1-&!M0DlA^6cj83I&US?{0NNdDv@kO3&I@IdcYm=<}^KX|`^{y)-|#H4Qg zk!d9TWq;C|BGg5+5A{0-+eg;=6t=F|t{2N;*(?W~7{U#k zul;>Wl75s?jvQZ5U_X%c_|XSOJH`F%51s2%Surp`!;;Zvj~{D2xub#=!ntljB-Kfq z&k_+CKheEsNV-_@PAZJ@X&*Q*8wc1cN7=JQPxQ;bufST;1vDw@Ie{wUZ{IW-9m;$- zLdUI1yR0Yw7%9t$e%#MjIhwBcUT?$!hu^s()tc1J{@m9c?(ng@rKk^4Y!(Z%!}8m# z^}gs^;?X+F2J_~N+h#5~Q@885Uf^W;o$~1#5h4EVtROM&I(Exs67#{e3TR<}tM=kvjU?a1$n+7aj>?g6c1+ z7+}jTkOpDCBH%;vY^!Xg@c`f*BTh0OEbtNLJUoL?z(~yh5o1EpPx?J8fZ-Z7zham* zX)DInm{uA6>|HWfCbh$395XMc=8V>2-QPv#<=|*D_G3HQL*dbv5k@yy=qI~0D$$C2e&KOhan^HDfIF6}7i zVhD@8_gnd!T0j&qhFtz9jUJsDmk>!3DW^H2(&X!$&+zPc|10f%&np99lvS;3Zv2dhAJ<$$?Ti~Vm^WbUV%Uv&O z4x_8cor$kSZlF6S$jRADnL(OUWFdtXL9|>YL8(j;UA`8|p%e(0>s&v9?Zw16YGW{B zd@NF&<7N)VPFU>$nPlvU0Hbo{`~Y&iOgLQredcto^v5_iP2RG}WYe>ZaX6|LJ;Xtr z)o>x3poa@NV_(+p=Hg1zK3R`_?3{$6I}ErDteXqjP!y%TjD584p^p2KmABQZ7$nAm zW#jVT%Z!^Oz!foHash0OD9^AS6pQh^1*`{uCnL+9Cf3N@OQ{~EO!a;yCVsIlq2A9P z;C)fOjWnupZM&~?DDHyE11IwR8;pqP9g@BT7m{u`3PI_3`R$iK&gb#&%O~*6bLNM3 z*#Q%DK;HM6_kCx6SaV)%om`Vw#MEA%yY)M|JRTIAOXBqS8@oP@Eneu4adonA;NpcD z^0Ht!SLaW$1c_=+YAMGKjP#;N_02a}KI_}Wwo4bB8!cC^YJV|HT(~#EkM}OakJNHU zXQyCBM2Lr8(^t5qH(`?Me(mRA?OwV2{9W3Z@bhvBn*w9PE-A2R)GzCIV=&$L()t$T?AwLRI&ck zcMj3i+-WJ8++W@Zr;v8s9N&fyOWwSjJ;kdJo8{WQaco~*9BKjez6?yy}VtLuuau6t_vT6pFLL2qpOQ1}-6`A^1o+9hMRWJEyu z)MCY4M)&I1_v{b#NXGYnBpG`oBXi=^8IO~(zt_@^{h{*5`_=IK|KpxUYtk|N{kc7j)(oPqp&}vUJP_+VPrBLPbhAY8;4^*1 zAVHvivDZgbJ3uibSBJTAd;tYNsr#cL^|I6S##fGG|9=?YK{HP=zUD0Xf7AGWWrlV$ zX?&CV_}?Ah#a;8^2_>!HD!u~mLbzq@Ga`)><;BN}9*8_Kf%owIVHgI^=XvU%<=Yx=Z-PJhuK`!SBg#UCX}3GH=|vs!bXUNquV_rr@5?I`IlWlt8L?uMogTdO(zlUt4Sk7+<3$BndQKXZ1?1VUv@iL~Q z$#Q!G|?RH3CkOD~}I^7I-2FsE@T+O4gPS)>u@q2e1#W zWJq|b{Z*dMWWM9_Y2i=Ot%s`F=EZWK$eli4$`zqOR=ar0vLi#gX@$%QDfd8lbB+`#jgW6QUjD&X+2GCbC6(8tJx`Pu zW!J%>hXk>8Qd+6|!*fM2Dou8F2K>Yb>@n?r;CzJ<_wSpBC0B<)lL5rR@0?uS)V|eC zqdL1Wm*N~p28WFR?Ufy-XDI)h6qS}+>Q2hWG$AHX$2>2ixnQELxa`@tE_dH2+G}uZ zozMW&SkqGOslGu=ivdcwB@omS>b99_Ezl7JO@OMm?Y{;y=Af{ zNi%1l2cHCR9{Pd-&f)OpOOh*)-GpLEXG!>Z8AH&)$dD>Js0?YDTYEvDQ9sYC8olrf zsFo4xJLm*>h1GsZ7X2RIJask#mSyTqg!EIe&CHU}zQ_|&bsVYw>&g>?Cm!+!6nXjf zkUOBrZ7cosXjAf3X&f$h58m988D|X9zW1=27{KBm6}bbyBSWkN`L{2ADqCq|tmoer znmzNfK}m7$zK-?&@3$T-{L|mM9)zktvmQ))@_)7-{OY~` zuh)a@k3N4r$dXq6U$7n=7Xt@<*Mosz_TYx7LFzs{VKDLCO_~1+_}3Sb z)`K72@2v+pj|Z~#;nGzVLP~kp zxLiF_JebgJHVi8^IBF|qT*#|}(*#nKPngGA-o}Ab{S=_m} zmzIk|8;Mv_7+O+=UHY{Im%3N}lC{A<$(#{*cqfFy0!|0EBMsw>z%p!32#>v$SP^6^ z8PUC)oDg0WLE6L#p-shV%?V+nyw|pkfv09V;`~ZNo|mQs>o+3}>O4+BaD^0TIgY%` z@j%Sj>hVBCeN9U^B$T@8Z2#j&1QR^EDz7HZ-rIRWIc8rJI;ql3w4YG!G+oe|ndC`F zgz>#cgi-AMA4obPeE0N61akddj|iTJf_kiHjxM~|n$Tkg(O9T)4`NvWCpiGd1aL$+ zGD4Pw$MlGhLxedZEY~A~?nuRf=1;L($es_*iq-IC_TsWD5_t2}QzuWA$6#yqgcq(S zQ@(W=WXmPB@>KZgeT1-R9(shWaV)oS71G9%$$K< zC!`0%xs8%s?6mb563^JX)4ota29QbwZakB>+OZV^A+yM_A(o+cf0f^t0D47wLmJSb zHj~g+QsJRU#5_hnu! zL~@ZZ-MwWh=8>Hx(&^i|`FGTOz1}g*TJ6!ZE_fc$vu+p~g<`vMCwz|rZkFKp%UBtA zWE)%|CbdKH7jH^y#k#g#%Vpqh@gGvowGXWsXIkSpE2YB2Hwq-Q?#G`cbzIWNxz9i% zslT&JzdB#;(I`dkwLeyg;D9HG%=zG?_~-tty*_RHuUM-Y@!t4w*A>0Ml#8m0CRsZ$ z+z}XQjc7qd2CS*wZ9O!DIYl7qzaw5G=&n81L)Q|-{k)a;D$H8dp|cmIt8}Zxm4VAcc@U*CiVE#P z=~qhccE4;=ggUgi%FrGPQT4_WO0O*0ttC^35*adTz7i=OvnB6tFvTC}EuNU_&~C5z zE_X92!kb4TQ>&=>i+jv4bM3PaZo)4#7PBpKGMwoy@nQ|Xm-FA>hVQF@2qT-o_d>52 z#rLl1?%h)`5)RfHytAs)Q7su$)CSf z*WOdBXMDs|`zWp}Q#@lPVvVLC*%}Q_(Tr&tv3XK}5^R$WD{}#5Re|$TBv_t>D*XPL7Gb*FW<7e6rd1r|G-+$FuME z%X|GI`~D1lS!$~fyWmk&1*Yr>wnxx9Z$rH)cr>CW*6khEl%0qV5Ti~f5N@8*#(raW#FgWEob_ZlSpUcG!ob#w=6wTXs;>LJl zxxciWxtc(lPRRh*a&99;%#GBJrU51w;R`P|^_xm0;9TRUbWF)2zUt1z?13qv{#>Ne zFtSXMasgU>5l}(@9%9{qkm%0*9T-6(s82%pV)@ZM;rit%R!L}iFiJA(k^ciC z29H`((6MVkwqOdf97~<~Ip|CURUOxwqK|M(4mwnk+C`!yCXNZwSbyB^#uFBm^KT(# z+gl%>X01LHD4iO8H&Bk;E8&Xg>L-yri;RCuN$>vfuHkTUC-NFufmk!ngBE7i4dCiF zw(vf`qY<6`@wY`lcz#-}Ztz0?V(}%qXl|N~eBK6m{e6dI4=u^BT^fG(8tX~qi?E$? z1`YLfTNk9*s3y!wMQR^LIwG=uU+of95f;_Gcd%1B-LBYSO*vt(PW&6*ul+`ox;@;S zgI)+I8vNL5*hq5vr~MsCmHeZ>%TDg^6@;7q=J00vD{dj>pZk+LrN5(jjjR~U?@9fY z2%r;?y>6t!rf1E@u-Q^3X}tl`jE zu_Ul{xM0!-w^^TS-RF23A|L&3oa)6_bKSqp4ty(lJ-^r-Vtd!)#a&PJq4zAt8RkeL zI~?~puIM3@LOsL|Q(y8(D0jtG(NmI1p%Ja2Q1t1I~$te#rJMkb$ zlLR!%a zmi6i@ql@xt&w@p44sm0pJ+-T0?IC}!;^K2IWPDJZ=s`Lgn-J8}BHo$yp1BDJ(x3EO zaBcWRzXc(Lmay5p6VVA|Qo=1K>~jiGUS=oPMIa_K(04#dTf-2~Lc>ME(6YAAnJDHi zx9@DyFhpcG$e)#zQ|90RP4~C?CRmN z^!liXOe+zYZts(O{{!9dAcx>fO#RsEKgx5KKIgY57;@#0<`wQkn<>dn^89oEg; zt+N~{j|8UN5slI~KGRk9y(l_L^8Mxl(1z> ziUb@cApCLag3Fx79$uYmxx$=4g_XOs)6G`pi&hoCE&AJPos|-9;$A$pcE7l;SSP@Y zG`u3k+C{^7lkyO)tzZKvf!t6EG(mE9=wesX{n_n`-u62;ZPJ>$%^KfkT57zv5`7-m^*p{WMa{uR)oVP*f!ftb5(T~m zf23N>1zromtLBUL*~{M?srmczb4Uf4sy-!8i?+40RkDmBYMR8qMTAH_ z?W3^Qtr35`_kxPjsnc9P$~t4(K735(rvtXS61&TzeZg+NC?2_`GSie zB)p;?ECd89nYS4n6V#I57kddvhdnM3Q)?rUhEJt9dt4T8QjSxcilt|*0|KJV{?XuiOenfA4bU-1UC=?Nm%xPwpPI1!cwSx8geU zt!yUt^(~m9NJ&o-0~P+65x=+ANU6HsqVDR1j(fg;DzGQ_7UHcTC|Mc{*f~gSJFv!T z4~vX1`%&5HrF334$M2pqQ#H^?bT;&v-9$=jL7FB?$%FME%rS(M;HH)II5Yd(Ln~2u z3h(6ZqE!;5{7k+@&D_C`?apqCUHGw7w66NuTTv)GvMCL1fAquN`Gh0)Sq@eYUL#Ea zDq5S4hMlD7S2Ha9&Ziie8j7dm-sl11?nx7*VqmP~@M-b`Xc2j(WXc`Qn0n>*O5-Vf z683XTf3aHa=a$Ymh2otzM8I?EZ9f&Ri9IOr!tYb;j3qy7ntyD++M@=V zKrh3&HcbgOoe)0-k$`L_W=o~+xn_XESIbwd_6M^A2Om#yuZC}A;-Ax=_z%v4ZkP`A z-HmDgMK)b@tzk~aN=vC>Mp7b!kND9Ys8vf8>03h?GQd;q&19lMj8*}bOM!NOI};u0 zA&F8XKZR2={jL2XNY#8(9H}xB*c1SpL=bjV(@Em6p1uiMKI-igRZmJ8pmOu1-crG> zR|$&qs&dc|q$?N0|Ht7FRG^3!I=(Cw6;PCmL;ie!i_^N_y(gpx>DB zEIEwTkCMY2dAqHpDU9+=Z1Ac1J$Umc%NBd|0Q&=eG@JtHr?<)|GDU0CMj1(bg?M!GgYe^nf{-r&_ClV4Iu{Hh)JC0`}nEF)w$|xzS73#o zgU=Xo7g_36gxxQ#D3pAeY2|YENJ3zfKZBFEzZH95YO$_QM?RT#ijGV%Wr@{}M9a+lG5smWK;v$265s;| z^dBh>`f4*G15O6iznrT4zf>jwb;|PXOssvyXBlVHJO+aK6%q3y@fl{iDeWmy-B=Gi zCnxaeR{X&PEHsrvegb_apw7R((&*yP&vTsO6#(KK8+ByNytD;*y1z!NCF3btbxJ?) zMZtM#b^DJLXQbAg5xdG=cDsVQkB>guA8w01yEOKEiqN;lriJP5?55-Fa(=|Tu)7y8 zNK1jT)@95V(`~5CcFLo~uN0BHYbA|9Oe z@7x@(L>u#L4QZu01)JzU_Dc4ak2+#smxhTKHlvR$qu&*t{3P@~Yn_aWoz@R1h;gww z_5*3Q?|RG<{FOlhPNVEIPcgQ?vweRh8(WG=;k*2J;5uG&W@l;dd41(id7v2!L?GSML!FcC%qI+L61L(!hJ z@TLLLP9MP;_AtU; z`EuIo3(!#sZo2nP)O<-Zz$p@qo57{x{+IHkp_aQ-w#-xf0w>NlNuY9Gk(hh@!K3r8 zl5G4Hp{z3^I`@nAt9*>3u*`np=APiz`_9yFiJbQ*LeHS36 z-DfxNa>3_&zmRA_n+&Q+qEYur2PZ?&I0inX9hChND8-UMrlCDUeg&6ShPz-SDQQHY zAm>9EAS|hjf}lpAfat1bJ{W=k%u*R$x>YSuAVcLDybJnCW(fnqDz}&{5?(3jCFPJu z(5-5#m%jf@J%tGUI?%MZ>oBNk&YPPf4Y}QXLBz>2sDpi#n)Mc|(t(TkyH!r#Rj}>? z_XuzEemGp>R=!sFcNLME+-&Q{KT~N#?gmOBt}tNTc)+^x4Tk7X){RG$Wf-$=e2Fw` zb61gumzBA~FyZCt+^5V-LvE9K*_hjAURLL}o0sLedw99`98QRIriF6b=H~Op?c#_X zo!M4i3m-3PFieHbi8KS0c*&_qmYWXBkS5&=XF%K7L_&1hM*LwegHgR%@^=m=?jG8I zB)QN`qTeNY``o@Iin<`dFO%n1fN?-txG7$gw(xDqB`uUjZIT-1(n3bpRM)4xnsHLr zz2HIho4jqCo5$P7yzT593hOFSfVAc{g17d`Z8ffhWT7}YA$LM4Kcl%zU3Pz}++QQX zZ9ODxAw-0hHOvR~R8g%!T|fRjeMh z-Fb0stn=lFi`i9)6DM&_dKKI+Nr{P3PnkF}Y5-GDmp3CJaz@6`&pGYJ#L?XMqr_3r% zG{HT#S4x_kJ0ZL|*T&*Kq;x1FSj9kBK{+a;?$Jr-Yl>TRoN`W;WH(9Z>*U-VaLhMG5Is^ud zJoK{^fjoh$4|mWxpu5=$XHW`nZ&_hEZCZJ+1N`m$y=i8Qfh`p?c2&}6oJr|(FJXHq z%Rp5|43Qfi%RRbO#e@|cj6W-dJw-f}rfRs5aq>6uF6By6$_^}5GDV_45DCUs(GdBo zlya2z^Mndkq8Qrjh9~v{)Pn+LoDKx^5uh6|%sodMu0XISCI^v)pvT%qpq*)w;T;oWh>O2X19Qw)}(FS9gPuN)d%J@a|*>jpdv);kIPzn&J3{X4bDDME4TXJ}pg-@r)g&q_;3_TS3B7Y2E zrL2jW)j~T2#vr;-j@(>#Ri#jlVM*LH!%sWVL&0}pJBhLbL*G`c zh~*Uo+@1rMm}hOc%Cp-5#0Z0{Z)e_0GvXjusxwLWS*ZgNmdB867 z&Rj;KilJ)PibuwatY%`*)Otai4>itjJ-FHswqAHJ0#SGQ1aG=$L*6NFW}7ovS4T}J zXs0#HkPlkMNLWSEX*mS!n#VRS5baFkx7po(=>-PL0&@n`4Qjzv=@YfTjIk7<3$JOK z`*Bcmu&id=^>nNnXgKry+FE*_IUt_AGJW*!CrRmL+my(r<4ZOQ_U0nn3(W;2WRU0o zAwI~1G?-d4`p&o7X1{Vg~>i!IHs4AnSz`!-mIWSK-Z*&do zz1gC)P!7J*Iq~FGl!m+L000o2)sv2bO3ASYmXJ5BSx7*$Un3)|p#i1R&XJg;ZflHL zkH~g_0){K)uVD5EzHUfJ;6iCQ-&c=jb}0Xdj~iY&z;C*rAV#x!-nD!U3P=JyNF?vy z4&M8?j-;e9c;VEgMKN18pu9pD!{CavaJE-|9Z_t@oo-4eHekiBR$+ z4Kfg^x_Z@9im@M9dGFEadKR(j+xf#EyV7{wq? zP9rt=7X({*hbVa})l?tlWfJF{Hz|m{*I#)21*r!fE`RUx*G-C4p0a9wz~4vwN$OYl z`-5q4J4p&bh$;YF*{)}fs=|@-E)gJtWDeZEn-Hc}pfJx%svpdxDprq5w%u9KWpBrr zS%%*+iVS?+OzlARD{KL)XMk{-GgiwFchIj9vYS4>&v)5I?WouNu7e^YO_Z_45$}H2 z!3~M-)2C`^zxJNZOV#UrdjB=E%TWk?-Fv4Rg@QnU916g{0~q36G_di&5ttzxP=yJ7 z>!P-@jr@dos}2E)z#x~Mxpjj%RLjOPbXcMectO@fuW|E9@Pt>8^OmiOq6r?^tr7br zp#bvs-E;f%y{9vc-%Xe@gq4lV%f|<+lmJ)mB)B9%!jg^FLl03N06o|j%r5~?YVj7s zOQU_Tt?S@_D!98zq1Yy9hXXA(@rbA-BipIK&D>0YTab-h43@#Fsz2~i2zh6|{8g;$ zgK(b*Y09Lh2Hd@n9@-1(cHP4Ffpoj|&|Thg^-5O~conjn6ta7)e*&^r;~Av0@{R#S z<`FYE8Io%cigyhf5Qk)IA4sk}D4OV2oVp)-Q^w&)`QfAE>MO9+-O8!xzd(2vuY45qh5~kQbO%dXz3xxOss>!L~U4 z$}Hf^Bx*7VE0yL!yE5hAV^T|$FCf%u;1k_BEsJ6FBRI7l?ESPOB zNm1-p`jfnwTR zT`awbm(va7fq6l3hD!Vd5YP3qi?ALRE-z8tLWQh{g+Iubt28OCVrpjwUmxh#In&TY z>@IaDx5_S-<(Gt+{X5T{y^8f|PRi`#Otsmod3U!4KIXcNeq#ZwVhaVB#iEdaB7frZ zay~;+yv9C&U$#q?Bx+@1{H_~qzc*WwD^n?1xhGE+kk$Q_R3<1J_@d%h;0^&ASRS}1 zM^BuAD!*QvRDVLx5pV7StH47!M^ty4^Ea>x+yT%kWqIY;Dp4|#D?2$>>c%s{BH}d9 zvQ#;BB=9WhCY=znTcyfdDWJN|oOxv_^M;EPD~(g6QapagtkkmW()@2rE?PD@&Pb^! z)_s0lCLo#OX@4j5*-zdP7}Z1zbOGq?j4U5jbpKBjeg_??e!HBXJs@ZW^)hQJg_Uy$ zov3ER6PU^ZTjp3j_DK1e>VP?2yilgc~Yc_q$4nwL1Q zV^ZdXKlJgK?FTCFqSwIV1G{+?d7{3Td@?WOI2gD= z?sJ7ZT>TpA549NtO>QSh@Vi=;1Mo_C!PV`OgCFH2OC-}7T2Q5fL!3FpKJ*h>!aV0t zC}HOKJpv>*@pH3yOIPkDLc=#~V_>86{$bP>Ac6*H0>AX6TcE~lMv_q?<9onv> zs?*o3Tb(jj=5)GT0D5K49a0Fg2Y1vxd-LT@Dnf)UWR!R74**_Fgf_lpHU10CW^5on zT*jUIlE71`ClOGgCkOC44;=`2?3KV!X*nh*37R>w!dWnqOT+*lU*VpNI~agh4PRAm ze9cC=NMKtGe@26>hXSkxaJ@IF!UB8(jvY6OPAg21-@G6cUByd21%wn@?01S;7H(`J zb!0*=mw%Fj2w5x)=N$fQZ?+b)RluXmMUC`@CS?E(aLNUQXWJa*1GtLHwp(divsEmo zCcjnOrr+(hvJ(U65KcN;h;(*wyT%D%`&q@(enCGD=!1lFWEBgFv2@=I3ec>vhETy+ z7%CSF{8espZyf3IsK)XcovI0Gjxfk#*z9E~4xAoWg$o1 z7e{ELbR;PgXT~1)j2`adiV*FAikLPvM}J3lex2HM1%|^YNL?rOv{7sif0Lyy)+fOd z<(*X#!#9}&S2_!57ZM6n1V=7%%12U1i_NYsFe{s%nK=gF<#~LZL0ldq;uMLH#1{d% zGbJZ7IX8>1Yz@x?2_!C)IGcr&SB9`X+%lTCZimZjY}6GWqpSf0Fhc_X!YXcc?$5TF zKsv6QWy~k!$}CJJ(I!)rG)6{UM)+)#Lg;{`01@Jq4Wa%FTQKBS`cw5Mt5`9D;!qS< ztcVw*cMowMT-5-pSXxKq`QQP=a3SYBscw0v+^EL&h#{jGH$TfGX z^M+i`MWn$H3W#&a3UeGiYK*2$bXso-K-WuKWW)4;v~(X_KkJ6q>CK+G8*hFp)hi=; z^T0brev!W_86-h4IjGGzyB#>!1t-Dpwt4fAn8!W@9QV@Ty2Iu`f z8w@=i)%2XKjAJ136PkT+1~Ve5zGjTs$`8WA{)BM{x=4EZQzAwP;+x^`50dpk*n29` zNwl&{i9V#eW1K+}Er&NRzFH`?4rH9^A}Rh3d>62aiD1}!Bl&?2C)nRKVs{>f{r1y}0A{ok{Q6uD2-P4sT&ph;HzT04Mowsf zp^}c6_PK*eBa7>#0C#4H{9CvShgo8w9YKAPPn5FR2t&dHv#D1P26uZ0gGz9# z`V)4>x@9FvWt8o4@}XchWGnelAUuH69|}qZOu7qULlL+|s=I{(PH`yE>Ko^!ZeX}J{={@{WAo$Ls%aeq1%^x2ZvAi z>hY7ME$%L&I&u2;MB-eR&C)okN#(G!<8y@ZT--H*4Mm?L53)@CjN;a*7r)V z(`b;9lohW^^YWslXZ~E&==hNOh36p+3Y0AEZHNkBP;Tb!%ZZf(d?f_z5CM*8`_tmaEHR!(Aui;#->;zfH<)kP>%u~L`|((=r^mh#0OUG^Y%JxyR2jjJ<#R^t$o zIL{=m*2I&*I4y??D>mihPxOQtJ}tgd zKg6z;$;8&CTI`z%%tFigU_QZago>^ zK=lLpCK!y+>{V9_=nPu|`GeiW@>hL=KbhnzsgRzhP@c&Qs@}=G8LQ2cXuV8+iQwHr z6D%{3z;`CFuKq-f3zO7bea-BlV=_E^zQ-SZ=^yWECLSX)XXOz3;=yf@X90{*G~EH{ z>VJXm49LJvII{>Jg#z{>WW5SSR2*JL7nU(La_FO5S71%|4Od>_wIwm*FbVhli>XqQ z(fN(MiW(!Y+j-q*Ug4@VcJbPo=e>9-kN2j`knRh+D9|{}ymqn0*6tK|tt;?aS1=N8 zzD-w)Mv9*QKVM|n4q0(JAK#|x`rY@w6!+yJvehCff;B;B~ z|8Vy{@KIG~;`dB42?GqwM59KHnrgIZp@@Q8G}I=6nSdIc07;DE@d6^r#x6TnPR6hx}1w8d)MOG8_%6oaDk`##UPcQOeku#*Ti3@pBi zCn0ss=pffL5{gddFBWvJck}N}Ze^AeTv`2ed$W^P#|uV@J8={)ij|m^Xs7bwVTQ^a z7jQn}5a&!o$3;#VRja-Sw*>gYPm)NyqiRcZKnq9{?SIxJ)W4|Fy+zf+wvVbU)9k-Va?dyjio+fUDan zkYVBTXvkgKQ>S}xAIP)-89Vxj!emoFm{bwTMqmPr7=n)jll#jJOl+Y~+vAPSS6<2i z%JZBXzCZ}Lw#2|>Byjg&@~hmUB7y1%xpqv9%+fn>w9MLpZ=>RB(-_0>ka0@dW|r<*fnt$QNSK2;+@9 zv)rB#psIXyY}co$tR49UkQ!);^6TuU0zMUllbw;;ONAY>#aFD{{t{ zNIVV)rBwyT91cHvkF@`CaYvTe7>^y~=NCQvpp;}w(VJGoKF*VpvC*j=$b+N@*f@NE zRldM=mjSuRV+WmoJtzk>$^szIlLF3zKbKyK5JiWgdlsFH#x!Qvy~)NK0w7T~HPm)r zE4iPy<7Nlli~GVqU)@fl+B%wtHrmfP*D<9p?>^t&p?>W-ukB}=2RAu&`a06+1kivd zqx*ufWc1BoEoC+mGsyW1uc?uW#V=UmI?ZLUmB=-pZBQk5u)XoliC>sWlnV+9y{dD4 zdK(b2(4TXb!d@MZ2tjE(SI8D~PPX4pl9AHtQ|%aiN^z{y_h z?^xcuKVhhCnJ(3eZ&&n=mtfv&vc=KeUnY%#w3pa}^5L_<2AyWIW~vvPaUGMT`e($4 z`?c_|Fm&p^SIQ`KE&encB(DUk1e@$FFZ7rX!7+TO{{Y4c@#=aUYXTmBouiXm@{=D_ zEnVGmTgVq~{S|Fyhy80-w4E~SgD-qwCIDY|%GXSU3t20TJ#siTuMmWi6n0R!)4?$* zSzF|-U&`qbij5EH(H95q(RrpvTYBe**B;ZGcYmS1v7_zDEu)j|`LsUyUR8L_#b5)Q zbx%KPCV2?xlEk&p0>QRwZpeqizqqRZ+DKZicbiP7xHyfWx)KwVCc_Yk;9=hrF2P53{z}=xP-yY>&JTJt;D_j*6kp@L_$o&FbhI64v9(j;zkzO; zmg3Hsp9wy0kdihis|+%Z@Q_gk=Rjm&Y`lb43pPgE^93V8#~&GVlug-Vc8%F)HEgmt zvE{55snq_P-4p~dZXZaxMvYnfslG+qvzehI#{f8#&Ndz}cqL*UhC zMq$M!5Ap1VP09Ar$<2a$wASuQ_JDx(1_8gRJoTIQj<|EB3;~3?`0w&PByJ&a0(4lv(jBq6GIK1|3w6t5mXtG&Cv><(w zj%!&wL31i!1g^cD?1jMI)&n0o=1(btu(7H~(EM>{wGoJoYQcm}qeRz*8b0<^;bWiZ zqLID(cWDlCB8p=g#s=R+$VB4jg7m4Ugj^A8qzPMpXSB!Pxl*|e z=PYo3)k>jssqe^dIx195=3-@z{dUKr>boNdiDKSt`YvC|)O<(jn8AU`sSFG=Ru#fvQ;;IZ11Z69x?8|g<^(5oVtunP3 zDap*6l0|2dsrzgawk#6cpk`CEn0(j$yuLs;4a!J%dvX9X_ap$^$gT!AF?`1#7#b;8HaK1( zKcnN$><3kWGQE5v+hHc^XVX*D%V%+SMfogD?PQxy!*{YDhKpEg-4uGkw$Up{=S#^i zV8hPZC8cvKG|P{1m0QUgl;o`0y+iV6&F&*v9#Gi8ea!^OuG#&Kh--EqncT|s6D_I= z>nJV|&Ly@P#NpEWU7ba^wG_1#rF!rHz%1G%=qPwx;jN-e*{tIFsN}L@U*aFg0g$ur zv0t0_w+zQ3j2RAiVTbEJ!F!q{PXT$dr;DeAE_pLVAMvJrnUD#H15S*hS>W$Ayz;ml zR^?4NJnA=k1ELj$yP5u|E+n^VEF>GbHN!A3Cj}OrVvCOCB6lZ+6o0cnk6MNlOE2NmP=1$epdC)&+)Q*B0|IpCM3u9#)C}Gptzj0{6dI^FTAo4 zpY$=AG$wcmpp8^WufCJ#vyPYDw6faF4x{1cMJXwNI%I3JKfRNY+IepcS$ zbRcNM`~mgG$sEd+8J&On9Yn}b2;=u)Jb%=T=o#f19X6(#jV9_cu5)fyp_>%G;~%LA z$Ze()NI5Lh5dF5b&#QKNlha=Oo;@=d+@WzR#VnQdYd%g4$*t%y4t zzpZqkn7KJofKfi4UuLYCq4H3~0QH@v|aMi6KhC)1IP5H$u4-iN4C$|qk;Qg}^(8SG-}cyMdl zi3U?~d7`62zDc|^o9H5(u3rPo%MGP!xjA=IMORG|J=;E zTB9XD*&5ta?lTe;6@T<3x@LrOv;)#)(MIOl&m=|z}UyfwbM_~R7 zyXHK}Qm}kRq_6p3mk&M8+i7pQyFkgr>qDUNl1ZL*LvGVda{?tca?oXcq z#knpU@fqV9n9u-WXvI&4xN$iv`~{d@yd0))hj8p)G@7(4B_c^IAnS&lJl*^9#GFZd zXIR_lx(ZG&7kxTsMX&rumN<@rgla)VG-NnfBT%gifh18+Mus*v^=21Z%9}ydX{bM0 zr8TuQgjVo0j;BKJp^OJ%ddlLYc=S|N9ne;1?mYo1tT5FiwVh&fM6~fQ>{Rzcf|-hU zq0rUZcO;(@&zEdMuGlD?0M7YET*R@E{M?COp`ILH`!~t{HY8O0f{WF$3{GC~OsRaj z#BX_~-f%cHKM2GX51j|UCP3o&3+SH^#G2s-mO13`d^gEkeLZ^#C}3!xO68Mq7J|8& z!ESEc1Z11VETV&o$xuKxBMv7b0-FSB5cd>*XQ?X+YQi6vsHb}GmVfXIYT8@AFfboc zeA)4fpVGhh|2OpAdCnhyER?B7NWjO}cVGB}|6Tg-U1w>$nO=SOPalw8{Wta9OQF6W zqVJxquhDlGv*sMD@BV<-$I*AU4mH@@i>i9}A?x=?>$?m7EBfyDh8VJ$vwqL(m4A)? za1T_*=nuh>kEie6@=bw0^C=R=_m=JIM&F&IV%&3F730h6TovP*4%?yQT`rJ$;mIeHD;C(=D6h zv>SFN+sl%h^EfuoYT(d~WY1`04`F#5j0W6B05&Sb0f?3G_v+~+4%zXFRP+I~f2dme z6DuD^4d4#nhRz%f<~p-=HkSujOEnY!{(xvCJbk&h>fc_fT>5Obwm>W+!)B=TugZ3` z<1BlS$Rf_*TRA~@(4Jo~j|}0J7nw?gdB|!HUg!QZqCHqtrb4K)7M>(Z2&c1+HX+*8 zEj&8AueUAwEuVOLg@)bTdq{tJ(Ga67AfNb%n4MI;5^5RBVQfGwnlwztDS|N1az`s+ zU?Z~+pq)j&AVxSRdy^17z0)5oebkPK+x*#WWX5 zxlP+l(M5G#-BaZ&L@rZ?pnX+ID%#$sjIGX{UKvC-R#maa7BOykbzM?|l&A{eI>2i} zkHG4*Y*NW^(Yd6xh+Pu|07s88N{8kqhNu)DjG{M9T{k@^a0K7YHsk52b?o}VCD^eaIQj3{Q~>uy1$9iofYA#g6u z(L{I2yZ)MJgKW+pAk}E1cZSzohYGEi;k%P`X2j12)JxYC8p73w-|I(CW&K=npar1x zCuy5VgQR8cA?N6%et>RAA7Eq!zjN&&cnKWG9`b40$Op;jCXZMhV-MM2)ouE}Y7gl| zvi$YzzKvIMw5boo`;wy@P!`c}JRt0b4IVk#WHoGX$&qUhxdogx$XWq#RGT|bD5J1a zvwkmxN;j&4l9440yBIAZ3+3GrZj_foepZi7QD`0I?+||syn2|aMxIYZi7S4OMhE|N zD%xUbnriknEXXXJGCLu7hsl`c4@b2b?fkK2Mc71s$Co?9!Y;|%U`SpWTc{{>;@?}K z3|SKQh+=2lx&IU<%atf`j5qmATCKYUzAXKa7Jh`uW-nQ`_L^*vm5s@UVw7BZL~=c+ zBJ?4Wx4A@;h8#;I!z;fJYBDmkQvFhtNKn>3If7&5dVNXHi=yk9XuU2gpFm>*Sz@eY zVp6iWA{%;ik340`-F-Y|$(^hKLhjbOr0O0ecXv5&=&?nH+=W|HQfVKOw_g4AXw`G! zl{3`fVyKl%%pTc)If=Y}T8jcK7fW1lrDtusmI z(3$9VLr+4G^go~E^X)%{bZK>#+&&;rklP3P^kJQIme+@Y$nAP5K_F$w?Rv^kK>yds z?KSrZxfRF?x&5+7ZvX7*5FxkE4Mc7q8JOG}#p7|w?IVWVB0~2ew>wxFJn?${K;+gS zzO(pSN^UoV*X$EsV~5iyo=C?S{$BST%c3fO8u<|WA3Uhq|B@0QXF&U3pZGhNQ^dZ) z#;_&~AI6YUU<@q4v4TI(#1s*#qtqp?l!sU9(T)gbJkEvQi2JW>51I9f?D|CyN!BdQ zk?Gn)CN)MubBMP^kz%q^$|Gx@l&=YFAsdL;yvJ8rV)Fpz|J0qbGQ(w!d2N-r=m7rF zRAFp9j<*oTov|E6izI-JX96}JnMy@s;PF@PS-O*p8vn)W|CJ1JAacMa@b0gl_+P0% zo^}EqG>r2975(u)t<0)OK9>G?OmF@H^v8)i{&(q*3*I?H)~PE9c6WU1&cdV%g8!2K z_{8@OX7$k@e{j@GbQz})kv~6Lf80m@{J8q#Tiqu756hp)HUD+_v+3VlmhOM2{JAPM zVAnoU{%pD1W%xc^{%5>E=4E8I3`#lxRue+OR{WKB8Xr%aF$Y0xjzh6;P}+5> zj-OucZi3uyz-vNJO#cI|*eZLlBj;`qT@=x5HIUra@EzY1`9uZb{}x+C7@8KnyGa1wX%7neXB9&M-iclMm#o@~#9>q7=MD8W{HDNtLxbCD>! zFgF$H{+U}(8q;pF&e`FP3$F~6CB2^l#Dh0YiOdGxA~<~ocuQ3ZZ;T+n=RODCFG_6U zIs2#-C0x$8#ahvkCOJ)j%AfISX+H zT_CVs3==R|<6FL} z)u0ar8C>IyMwJ)9f5B9wQ_oao`recYKic!oZ%@x8(|O%d3U-4@xJa~f(dj@$9Dj)v zVdPT@AEiO6yH5jP&*^RNkX%t-a$$SoX7+H6*+pq*$dn%=9ysT^ll?QsZ7OobZqcS1 zzpKx2_sXKr@+*_PVuw!h?J~)q(@A~`-+S|00NrCpR=;v|IS9&kI zx(!OQ*l@6i3uBV_Wb!ki!fVVfO!6O z+&lmDv>b{S;q)dthof`-RE^K|(5=D~d-1ulZ?m&N@L#l%krX^pEJYcXqs+_s*_!cFJ>J{w`9wI*!o4$jF!95h1hr<={D8c0-TGFPSQ3@^aQo zTuVU8Vf60SOtz!m+we!uJGC_@1n@qgg+Q$5c-joKN5% z(=WP&t}ovE>PH8Dukv&ml}Jp1c9akKyX4pq=!#CQ$n=-cSP5>IvqAn(jDv=wk?=Hv z+!B_?3rGW0Bx0xRFE(*%psK2{^up4N+OJ}r;-2n$_o5`>2oCi=tb;g|#hg%-DEGR> zUCj$hLtW4|0ldchW(i`(&fLkL!(SKa=kaWX%~Cy%!~vPPQ|Sv0`g*@`D%;7cn@#I0>b4Uek;%3Ibw%LAv!vG^4{6m@w>n|9r-UxtgbEA$#XfXivzRzhC4C# z`_bZt+n9=#VNTi?cX}2DIJ6T#jF@aYIT%Mk*yp?3{+zC~hw z9>lqF4#z^EnZi4i3(NCN4oQB73vAa(#5wNfmeH17`l!fd=XVj_#1aHz1{~B$0u5Hp z*Y&%|Xf6cjd6|p+y+bAtc_#5JT{ND7B27Xe2u&i|yu^l5lbi;tSFKu|pd##pkSZ#h znUH6)&w*af5?2B)h&?m;bmrd}+@2fH41tH|Gu|Pkb5WsAbwZl-<6*q@$}Auz zw(K$SVss@1#SREwL11qgYRpq!JQ-QrW*wkTK^+OPDZvW))5!d!>%4xGs|1;4LYvi0 zrW@0#&(daszJN>mri*>+ufUh(1bxx?rellECqdVRA*BF`k6RIWtqEOqnb?%Imj!3UwH>`RQEqa4LmK+H?A)!1p zZ~|#F2u(Cf^p@8cd!I=5HwU{vCl{gUrod5BpiGY=roeidJCm=pL^P{2Bw?0}BZ*>j znE|YdmhILto_U5F#ak8nw-i#=r@AlY_shL4K3^&zn3bT!{@z9l#!91wpO8j_y)#Lh z@h4hlN|W|hoAy=@(B6)m_6pugVIBNwdxc(;sNq(lTh*k(-a(4)Qiw}KPwk$_?@Vdv zK?SV@2Gii0vdK__!3r)5eE0CzK-!E~v>g15MBu8~5e`4w97 z7%5p$Uk=y8C0R>WK+D{Lk?7lS5;X=&ogg8r4=$M8{Fy)Iww|%2VCPeJ@8>K4$4rb6 z)j-fl%s<8Z!$k|^L}6kCJ_lBnIidYVYIP$KfUheKTn(1>LD?u~(hB;C?!PCv3|CXraVgt_7I!`+r~J&c@1}5?&IRzKprAnr=v-qKe=`EwN|ucRrK~$N-D5)y9_o% z@otPeF>Jgo%WmiR_B=BowMcVh)#mW+e?~l^0d2)<$YL3~{WX(v4IqkWf%1AQ1#_K^ zC(Nkd(dyJXO(<&Hz*R8>ac9)4ikcUav5=>j38XO8g#B>8Fo9)bCY}QG(v-j#$~*9t z;isjvJzAPzUQAH@IK|1l>R+6_QHC7m87-BFEwo0BiK&N3_FNK0pxX8&S1sKv^Qo{~ zNJ+l=uHDNQX>-3q(z`dCKO{M&`34Yl%kb(c0fB7Cb;rDqxc052djv@uyuMCmq(s}8A^t8i zPcnP3XAU#uPy<B6E+kWW=`fwcj7BFj_FydEs}ZaKCcY_U!C=tD6vc(p5n^!$r?h zPFF?Dlk8L`5l=z6;G`p$GJb>Us&eyG0rvSit48u-w4{7*Dd%NwNf*dP{^iJo%ztt5 zN4YcVkju>n{K+=q9>TgAQ>4sEbgX_-_OH~DUIn)kv z-09yqaku%;ZLc+#+n2|Wcl_xzCt^BGRh*9eldDo!Rycp3j3IJyv6K3%1XB*A2gzC6 za`3inD&P0I0!YBvCzgZ=d9)u8-boI;769V5<}bhiq^r#_|yc~1`= zlQX@~kTbmtAV3ewaC8>PYgPWJ{!Yu1^S$+LKW50(2WCT>Iii^en@1MJr&-I6W=?83 z`XsIl#4`(VP^^q`>gLQjJxI55AnK2K_WVyc14aA*07K*Hm#;ZA=nlSPyfm^C+q_)or?>$sE2b*))$F(j{U$+EnUCVohlv`TL(WaFh;Wb}? zh%#SHTr@9CZx-Z?w;cD{l)ANo(=<=uY+%lT9mKJ~gV57nISDLEgi@CWo!tP~KFHa( z4IFT3Pnm8Fv8T+iE(@eCFR8qs`MgHwd(4q^Y#v?n*_^U_wawYW&H2{Cc}Y}%)&+@t z>jq8@jvsTtI_H_6+&vh6K6~6W82acN?+e;$WVak<(2Uo#Mv#G!AVK>rcbw+PIHfMn zoYRF;=e6aZZL*h#yzwdiDpi(p$bEBhb!u8BzpLt;XDYWW{UZ<*_+_R9GKB!l3VhW~ z$%0025N8P%F#v4F)E>Ra7v|&;2h)D=jrf9A z^k`~Eg*Cf}>3ymJdp=+f+0QzAVn+$NdzA1$9isc@IIgkw?4ty4QL)GFa%v&xKsOxc z(DkZW0&=HWs_z87f^s8h*cqU3>b8z9w#66GZi2y4T($Ro@g`|?@PjKXQow5#aE<#9Qy zJM^hq2-rM(!qvPgu&S@_&bMky=sZzRz%L8NoDU`1SM60I>>V5L&0}!|8F(I_ zz&!5$k-|HoX9ZZx4ngXzx`RM9Vlap~$9dlOOa%0aU}`So{H${t;ShjzFwTUY!Yp1e z-+A~o$oozvnALEUfoC6Pp@tt(HkX)SDlHKc4E`3bU^Lg!T&v_r*rJ*$_vmW&+*vm= zzE;h2yE$U>I2>}0_Le>O1Asl>=XI~nRGw^$zqYIfeA(UJe@h!h@4E&7PbL_xV zR>dI{%rPbLxsK zrv;b(zI%A)@&IX>e3X)$5MEokEVA@|d)c8zCuVB56G!c58=WOU)FXAZB|_^Io0Ztz zR_e1Bmq6_nmlC*DvEL8&*Oph-mMuE<+O>9VX=P_~L_b+p+>Vv6 z4>h0DyX0&Ox5}wHsp>%T8Cm`!tQPx!N=j?{&GPl8+^;D!+_$0yOPo1-XdFQV0?B7N znX`EwYh-^wfSE)VI?9Zbv2Uwpiq;)X584Tj$n=BPM$VI|S3B?R@N$tYUaDOPbWWjF z_KR+#5`zVy0&?y=t(OUSDOrlhLWYv$d;Ua$U6h$>)=dK}##d!dmN94HR4P3s6^qk? z%+!ekaDUskZ(4YGNk4uzd0=EOe$X>zmVhpZnX22Js*T5|I(MgVDNYpISB4~{OXD;1~*2_|6aF zrfHlMD00N)oTky9di9^9?pP=@njwojpUu3V;fVpO3^rHS+gn|tW(5HzBS9dpW|m~$ zgWm(8vAq1gLaR-*A|W;l)9|9Cmh+Z z!8*}Q^%#>!j7uMPs-G+&dvvPnfNXj>JJ)4AnA{7NI`8f#@t`}$4l~E`HlhTnrhfP6<~IA*gzhBrJ`_AJ@tWj zQ))_F9-S?>$$y#~$K%f1w;#zg zO8TF;u?f^u_kg{y#EzGaSQr@*FV26m*(f%h)r6;W}jHN;FtuQV|GSFN5FfyL?j;~U-G^Aoy9#T4mDX@Kw8fWMxWpNH z>bq#8B2j|g$am6hsy5Y0x_~iI-srr|NZZj>cEehL(PTyJhP$kIzzLmBzfFxVye$~~ z5ULQc{zO^FUh>wl0$s-xc;50wzk zX&%l*be_82#noogz||Fst81J_N|RtYQu1XjM>0)vQ_T$%hg*il$KNCwpEzo>>u0bm z9$=hYl-%|qSo!R&M>5j{C2J-bn&_^d>vnmd(28l?1={#<+f6b|Y_=6Tm*4FH%DoEx zJZ3%nQcuo$HnHD&2FWl>+6wVFmnAK7+{MWpwfo;$(t7FF{8BsRl)ipbM+?+N^lutc~u z&TrP1y#9#DittMF_fFTqco@qQ^!vKBWv>-1xI z(PP(Rm{jGHi|srjKV>FHh+Gj7b!C30Drgni9l4(feC)TeyIRNJBG=%ADVS z`aMyQ*i%LiG&VYk8Y^UlrjAL0{AZjuUwA(w`oDCcXabuDH#)CAXS9HweVS6*PY;bU8#boJ^&$t{#~yr^gSN`=m=s>4H2CFt87%qK*h3HY`2mnNjV-6V=<>ty5IA4|*)4 zpB`owMo_EasPU9&)#{w&*0K+wlF_5NeL7wHBvaDm`(486bx7F$RNWKKv|U1d>BbWa zH~_vFro*lppVscIkFJ-Gw7v^H82)I-`NUj;6Ftvl~$>>@dEyy?~YTJvej zNw=HMJ7Z|Gu=vUorV{N7i1YCbQ$nOdM8X+xKKouF%bs+t&Hzw6b!9L;sCOPbxYC^m zB`?Z6Fa*6e()LSf#uH#Cd{z5(m?vKDjrlhvMLUXwtF!W$rBX~ule4Gk{ z*vpW}AvzX}wX0UO2bpSHSCXl6OXAejmA#S?y7*LG&*Q>jb%$L#kg7ZSIHpe@95z$m z_DjG!bRvTeZ^^@#oK^RY_d&gZxTeEf{LREN#}IKG3g9+LrtA~~+KUYL1WFndlQR7i zrHZysxM;gna=2*AI-Xp%(-*!|g4-mQ?dDD_9ZD!}Lf8rsKW-aMj)p|cZEt=Q`7Y{6 zyIlnlRM(#FFSRH7IZKOqX%Dg*4uL8T?6rj4b)l2f_AArL}>dn&WX>ypOG#;{#>69Nat!PpF;_n zgxzxDBK12?D-xzl2;8m;UO{N8lb`n`#wTwJ5DyMLs9%C|P8?EFSsP58$4zNvZ76X@ zeJVEECW!gzBSXH-qLBb+nzMtg!u$726(_dsqWEnTZ`N~s#3cH8#NJw;SyUb_Vvrb} zv(`$LWyxiseuPyfx!pJ#4PAe!-8zNJ7*XoWf}RoqW24i8;Y$Hu%va4G;J>*InlBim zg-)q(JDlQ}s%XeL%2uBbsi_`d*}H|P>SvjWL71OlmiZatRb4>UnD=y;`cNpHk0V(= zbRHgVhE?9}eCb({6;V7vADz==nM#Ozc?s`aG{2i1QkYStsE*3%I9K$nC_{ETi~77) z94betbHB;atGO}pZzeO?19w1(LSG6)djTQvJ2h2Z9?#rZ42f|Db;>Lfqm{zYTLI-k z`&ZU0->^(TZ0jJdP+XQxiJWOS!d*q|>fng_zzDwx>4+G+_}hc1yI{0cw-5Q^ZTxDW z$aTnTGj?(l714LLh`uPmezHY*KSHH5ji)nS3w-tV-eYj%#E%*-Q80{z_AM&Q#L;6p zobNj-4>nL3GIwQ_4YirXzDDQvns+nsh9^rLrmUJZF~|^hk@<`=?un;8ImcU%IFG9r z9*s>34s_zRC8@=c5d=Y!rKq78HJCsEEz1akMga%kRGxRL+_fv-n5r$0e<(;^yqHCo zMu@g$TyGof>hkQ`A`N1ERvc($O7=F%6+w?!v%Bo3(h*I?G;Ks}WNIAxWg^GMo#>hG zWu~cw7TqTrC{aH_AFE0*UZ@Y_o2A0gmq0B}lJHhn(G=7t4{tTVU`{O_4M9ss@1bg+ zE+y&ceR7|UZjcKD`~c7$jBe51qKd`ZQXDO7i-}fZ+CxNlS*3#ZPV#ZuqUf_uwb=~* zY=(%;c629)AXw2S($RKdpsa?iWIKt$>eW7bW0i{D17&@LzkU4ei93HhRT>{jF5BZv z4DO8n*0*2$B9JTV?cIjCv#*pnbH+fE-lZR)OuLnrs-v~#v{|O8i6>AeNP8W(;x7DSklgZReOYK;2 zL?KvgCLS5Zu&paFT5`1>p_x4-BZF%$bM>Gu$OoObIhaBhE-bOGgFXrKBg zByTN0W=#`0k%jBfu~sK!EbHW{Fq!r^=RdZ}QWA)Z;=3tx6YvP4x?--mijbCkiqbpVMLkgRVPn=$JK)Zjl3wBu;GzG-g=S%P z7|B%KAz6^qo|>cd8$b6Y+bcxR(Xqsp@5Vj-F7A_=#36JfPUZVABkYwhLCY?zaj;ACvAOoz^aJklr97Vq2d&2&eK+x@RF4?Vf=-oi%PMFtKlskV? z5h~~JJg)ozz!}nnf63xA-WAERU8L(+86_0jej13ZUP6-K6-(=JG@K~jKSaCv?N6eR zuI;m?s9gziD|2T6GfS^k=(|rEn%d{gFU7}x;~_KMN;pc>4!PoXdXS6+9b_QJEp`Xu z;Vs@kaC*dlz9$0_NzE;{pVgJRHj=J2upcyTXXI>`s=&Qd zq8j>X}m(AwQZ+K%yp!65s2n-k5Xd0t%!)fj) zTv=w-_8EnUedT{^6izu$X5;aRm71N@5;sbwT`t{{`6&9xazFqs^x{Te<>Io(22w5> zddK(n6x4Wv(0o6jAHzphP?T`yTA z4=gZ7z(Uh7(DqCOodbx>bq*|*5xScodtJ_Zc#-H_t#hoxq2^<@PSXac&Z3F+;TdNnMh+Kz$sHMmppwg%`o(Q3LkN zt@9~e9Ta6(s(NJFxDfxM1()5l>qqRL1X)NM|KW6X85w!f23pk>?yAO3mGDHAG2N<; zd#Q0ZRe)8!MBZD~OVcY_xWPo0xi-C`RT6z!2qoM7&4062$U5j*U1YG*h0+Fl`4S*n z>UzZDFov#rhco_~_n7tHdBhNmDe+WndSzGh;Cknr&FW?)%AnZDxpPPyRPPKYab|z{ z@uRAEG5YM%;~h?ok0DNm#_b^=)+bPqpwY8eP@e zmRKw0nK^*^Ph2)KkLvR&xU|j>RsOqg{>bz?Up#X{a(U2~_?#V!42^{n7agY*d@Xm_ z@~KyjDWa9eP=sAbGwPc}S&T*FsB<07GafVs747P!P}6{26(@oMkTB1sEsrT`Bu?y9 z9D%=_q}@*i`gVW2f!BE^zdvz?T^$eqyb1+Y;)GTDsRy`e=1a<7fLA7}O{Q{y`QVlO z^>BfYM=dWQC)eB6k)hQg6TBcFvCqK&I_Zh5Rt zn$mo-`6vuA@xFW7SHR{&hS2EAQ`IFcUo1XqRR>em<6J5N0TG(e^2M>FSIEADky09) z4Mfj=ZMwROJsj0F{&e+3a(zBsJ;_|IFqgPowro#VOCb=JGRTzNrTu$v{yC+VQfees zU6symbTGAzCw+9PdPcf>tY)tsC&aDgi_=M;B(0!)X@#7V$V`&SKPGeW@{!9=H~y=! z3Olq(*8*j+Yb%$JT>7WOv9W$J^j0|ApHv9TC!ysf*RDm}?w>y-`HMAw(7Dg#&ss=; zuMh{SO&69n|6DD<`yM_nyCd^kXm`)B#TUTn20wALFH_!ju@D+W*gyBp@1Ude7s}ndi#6szHo^I8t60=aogct7N&FK0xA#-@z5G4E-w*iP z$lp)+^ZEUGdHM1$P>@&9yQb1U=+Ar!VBxg<8u`tY2`8g!V(S_D_-kQyFyUU~pmr7+%20ielo(S~}PLr^t#QCB1Heo{V2z z73n3hv{$E8$Zm{Orvj5JcPHwV|}B?24#-FX+bS3Ywa9Avmv=47hc|3Xi) zeNcW!a$is7=H`E%X2l}-L&HCo3D^K&z}_R+aDnb0ni5PEtN*(lC`tzq=2-Otrzx69 zYhB3=v@ro0;VZ-l@CEAX|>SWPc2kx>x* z7;H}-KYRZ_jx4~HbAx|#Nv=mH?~%LEZ{=SZ;G{aQ$F-qjdMuWaCH;H*C977Pzo&7Y z9xark7}1gkE}k1${u#XenYhHS9Q$qQWd8H@sZgOa>rP~=aQ^d7@~a|b1t(O_4J>_i z&f(gS|ElI8oO5XZ!YrC}XVB`}Q2F~I|Ek*1T#q%8{`l=l<6CZy_!7fKL=(w8=(LV9 z1joFOk8in!_n)Ey+$jXCN%D6Gl1p&9xx1rvTeJIV9F}sj`>7(We2<3!wO6x6CuCIv z*kVJ(Tv7v;<#+nf1FDWi@;3;5XH~{!Fv3D*?!FAC7cv`0M>!fg>Ij9K^-k5KULKSb9HF)mLPOts{j)G@a|$~m<&0KXEfp|b=a&^o;xvzJ}eVceLM#8JaBD36&{WP z4{<&y(Rc)9ZER5qh3{|29})dv5inE}>4+)G4~8y2C;aHj;`5XM2Dm&`K-;?`PYsgG z;HQSk1v3ZWqQ|}c;8_USg!2e9@;==!sOvdOtYojtUr$5RnvQ>*Z;{pPth`yS+P zJ%11L=VJ>*zAxVoG0da=>{AnE*AZi)M5n)yaVd^FZzbFT!OKm|)2_fEh}B0GUsvq9 z%Jv%w&>pL8p7SYshCv0S3VAla@BbJeM}y3otRm1Q$+RcyUuJ}r-mz+~a7Dgjh%KC% zUC7!#-r0VBfv@{)L6ZIixi`;z!3$$2cRMAHmq(d~C)zLd@ih@1%S@I6=WpzgH5B`} zjxz4~o?@Q@4RGXa9i-2vljntcR`?FSCsoqvtZ4tSNjklhZjnCG%L;RXKtEbDkHlc6* zhf&E?_*So6!%#7$tLFE>{iagm`M~)mezZ7xPFZ62IM<5{Uu>y8Wl2*iw4%z2Ep9zylFZKBj7Zx;M;Uvjt z$fX^zyWG1PAf#<+TreZE(`q})C#kkW{8}63H{I65uQb-WTVygz3$^o^A@PtMws+cj znH!4HtKk=iuR^%>Z-wBZ`+D|Bnv^K*=+0|-!*6M4?fT;6yMs~ChwtLh%Q8w#elR$E zSNkPh;kKXiDPB4aQ=JN?EUSo=_gxYjol|-fz9tp438a%tK!Z=(Z30AmC9=rC94>2g zcH`e~ws5*@_NulTGE#xq?1tK5M~dclaA(^DUSMxBHY~0 zad$6jlW5RsJ>pV^E8QmHq~*@Je=k#_O}@cF&)%q5);5o~*V=9SNWIq5Lo-uaf<2rz zNwIMkCX+FrY!npDY?KyfHcEpt3(GParGw7j#ud>2aO>x3-{I&;KQuO_FD@>Y7tMp! zpLq=t1nrc-J9YOse$~S+V&5$lUD&>=t(t4wu5jxxXkPNkSv>h6uv(D4LV$O%!U+Pm zLI8TP0UTF>{CP72A%Y@Ec0nT^tM@otrLpkA(t)A_ZBXEw(5=?eXodg9JbY1@;M zOSI!R!0DpqMkAcMjwEj7zz}i5M#YU8eWD&V#3uSLU&AzVyHr9>?NUif4<$v8!w9(vg-Y1$BJQUv7C)kjrPMT$5zLwJAXN099X=t`CX`BO2#GO;$ zl;T3BoVfEJT9CZzEy&&|-$OqtO&@a?=mkH(Q70u(bsqkNpEiu+_QKahxpy*y>|DnC z{UPqy-s7Bssgk~MYmIi=56L-MlH7QPjzvl^4rLx=akro#1A+3eGx{sPt3k!`;B8sc zS$7|lhM}r+-5$>Rha;J|Y{R-sj{Vgfap#h20L-9NDnNm{m#xIxw$g8XG%dH$j$M zfm%DDPrjQkE-vBLpYdQlDKv{Ic3M4B%w^z`-8P>Tufa;u3enCkEVgT0!kXYaGn;Mg zP-bJPe8Ies+-8Q`lY{OgH_mZP^@RcFnSU_zd<-SDz7}q+VX;fKy~$I&$@$#(h16=x zP9(+F^p;I`F%E%nn@^Ku?v{$=7!^MS*gCYfHo{UY_4ea_K$q{_0`j~2JkI-~6^9ZsauYXnXkKj_{+eg&%$e z^3>w%a7tEbh7}au0*#h$O|Fja5-$r0_A?!?2Zwf<(zqpQXjk~rEt+bDlj%V6$1WGZa}L2G=0if@>yeLk%&FJcynJSTKR=XPpZu+jrC%CMdUXTP@mY?fOoY3gp zFkXm9U{&nA&e*yBIa^l8&YQCZ{zc4Z$q$At9uEJzZ?y8id$<_sej$U^N4n1@I7JB~ z-EVsciR*)5%>@^>&zZet1LDe-YuBbJ;RXKmpPzqvqx{vTa-N)N-!DBL&r~Hn7M@9F z9_+vHOoBw#lR|Z@Z!7#f@g|p5TKJ#`f*e-q5pXf3=;r(jJ2pI4X@bnmzO0gu*KW>p zR|u;l)!7%ddaP2*myTtXfAuyeM>CvbsaA(-tEbY*I*4!^AeiX}pU@NIB3+;n&=rZ==)%|b|2!a^;NA~DP)<&74P|~d>l!Y3aEl6?kto% z;{R?knq1w(#YL$ne7WmGUC)oXaAd%lMhpU%u=z ze){N2dGD40s+6Sk@@wL`XSjOh`Nm6~{1cu}B)~ATi}LF;g{#-4h3d=gJ)mprX?&eZE#yPzravmf zY+dX=pNQ3ywZy#qz8v16Y@SM$ar^QTb#uhm8NpJQ)|RCg>(biH#VoBBh4)!nvkA_l zUolJT_5c1ZQc`!`264dAU6%HXza><|if)c8{<}$OKl-ga4g6G(7WRke^2K{w=TLCD3=I_2#_HT%r5SwQ% z1igx>vR>$7ICorxsm!vIN?4tq&lLDp?-9ZD1Bw*VP}w2YrJd_kbqkS-fDdeAd)_(Y zTkJ;4I}U$zaPI#T{%G309&>Q^xSM_F@#p@_@+QJCiT!ug%XwQh~!JL#|a^E0XCm@~U z_)aLu^LO6#LrKNyJu-nwolX6^q#_Oy5m9~QK>ap&qTc^&G;$*3&jvtmS}IVz6j;sP}D-#j22{5Iz! zSXdUZhr!!1j4{C=J`1%Fy$d&Rj2G-=zio>SSRou#xCljj@f=yudW{!mzOXH&<>nG% zFnto#NZwrP3%8xYos<-AJ&`*)JXw&vI)c)bYrP=(%wj=%rM|LDf39pfk1`&!t7K4_ zBxW1G*}Q)=yiy{zkS)&1%Cl#L!sovlM)?IQ%1&+oUF2sd{o(VggNuf+Q^Ml0s9NSR zy2A6TLyLym)fi*sxaexxTOqk82dU+zE4iB~$2HeWp*K~%O*qhrKV3&%GdWviCI>Fh z+#DX&u3;e0LD#LYkO;HYSd7Ii=}Y_M*M!>Ua3D7en3B!K>wdX3PA}?cp*IG28^~jT z_kHdJc#Tcr)_>*RzJaLi_RYZ&X#-(HvI@njtrLs}P4bgUhm^<4f5WhMt4ym0d>7&(d~+POJ7{vIFPP(+|Cy@s$5rd=`^Ys7aVS z(RL7RK-iwoa$EUMxK;UPb#w`e+cdkN5X5B7SLvo}_n!1v z89DIoa`h$Ys)IcHQdK4CDwSr^Rr@3%UFDdIlIi4rf8tlxonlzB?hNoNmMlxF0jS9X z753IKyM{I#txx+(@4*!Cyfq_WEeTpx<>;oT#+^md8_Y#@q0RznE_6R6#aqMK2Ih1P zLwhAV#MJpuwhkO5UIgT`HxXOXoU2?Z1`okL>kS4LSUhL5d?5QZ``cGYbemNlAmjuL zg*7RgZPU@q2+i52Jk@7(1SJ@_^JLz85?x@}?oB`Or8uYM{NWnjvE}n}6lAR&y6$5^ zSS-7WHg^jZXosx3S;!B$C=8!Jm;>1d%1OH<+gW439*Sl>)*JB7ZvCU-10AA-kV_qAR8MDpPmqkMt2QDB`R5Wt�vt=6YPl> z6jx6CZ1LjAjYGJPa38rTV82R?(vFgv6-NXImTt4_#-##RrN(zMGt^Jss)hAVEZ84n zq*H;ZsZgiAQqcvXy;3m7sxD4yia+^p@{A`_P)vroA%P?^W!*UI6wz94k}MabqQyjg zyL)r^(OpwBjS(-1&gQWM-ebo-L2-iiTn==wqerpkvZot=011$onjqVibVvCh!ZKm3VMXTn<`k|T54{zyzK9Sfz-Cez6 z`L)#hUuFY7vnRG(8-fy9%Y)XXo*P;+!`}PgV{64&Q`bcdqvXZhbl5Dn8u-o`_f6${ zt-{qYfH!{k^P<#-7U9~UT`GjD!2Bj7UGdG1$ zGt7Z|$=ozDnXZ7~EOVSGJlYKevBR?hciBg)t5(%iaj9NaQ_ZDjRZR^m6Pw*J>}B)zS>sY6Tl>9z4Ryf@z@w5buNfvF zTIK*Hh0(<`M~3fwhn{%ztGc2OG@1hTVu6Mu(0B`I9OLQo(rqZsns4e0iO%MKG@dST z=Q3J9=CEi<_FTL;uzUm_F2x(EkkE#?4n2eVKp4Ax0t)Kn zV&j4{$m_ntjQ*(Zj|{I7Jpq$1>t+nnZqD`l1>ZdPD?jn9z3>JxyP<@gSomFCYY(~B z8ov6nyj4^3bXShEzZ*5shx=abaIQZ4_`X*aDJuGK->d8rLi_5WVU0})nKCVPS;7G& zwd^RWjwXC*Tq+F(^E*FzMb$47t0c|-nZ_bv9K`1-2REWY*n_Me*nMlHEoSRPZoEL( zAKc7w_&D!hPJ4>8?V)Yjp4|g9>02mS*!k=>>5Pxjq`@DjNuJ+^w8xbhPZF6?))0IA z+6V6wrXz8*@(yAA!(Y7^vj5;Z(!7Luvf>wBT<`#Ci4y_h+&O0XHheC6$>kwm^AO<( zMSctTE-tu-tioF*{=~vYbe;1HWYxWKuRaM|J@T_Z_f136Dp>OG>wM0x)uk}mk=PaX z9`9xL-J|ZiNj4IJ`7rzLo4kXeiXP?Ts)@(EzLnR%5bc)zOyw)#nrAEDeO#WxH7~DF zUFa{((+8iEtA_Iq*X(KACd-vC9DS?f4=feo=;omZ$Fy@_nLfS!oV53_g@-LesXKVp zTx&Ffx#{|R0jBfkJ6wrdo-*OKA2YBE{LX8?$n$B2?+JXIRhlcf|Es*6F93Hodf&+t z->sDIe9rgeJ4yPU41p7Oznjln57*=>^Akpg(8#!{+>g==4LrLV+Hr~~i`C?Mj+w7a zenKfbHBXSJj`_Xm(rP(Q%no#0~Wo`K<+;1lYFKkaw&?%Olpx(F5S8ztxqy=R> z!r%CuuY8@ke>t%m0uqhoAk%7CedZ=&3v6Y#1oG+O3F^3dQ_y+iUkwSHARdV~;gPs% zLNUQ$i9Jow*i_6<S8Na zyt=w%Rjec(E0w{utC5^bMRGn}CFg39oXg_Qr%lUT7kax|#b-9p8jpJ5AzS{0zLdFc zR08W#NDN>H=vJQ7(})1l5J?yAfp_-&)*6jQgvb?xc`YO*6%Rbdtn$Iw3=si+N{NKZ z)+iE~8LLCdeg3Mp_SMAUy?b-{2SawQYAic817TkA^lSOu`yX_b=MCAsia<#cfFjcz zEOrhe%dehN2JqYW<+Z&29{fYJWYv_i)RYQu&xh`ZtEl>|3BYv!ns+m+qvdRbk=eW| zHoAEc9)EEsO-!=PBDMvW;oTN@9NkZxjqYgADYvGS!=;@Bmu6=-&h+wWWeoekn`+9B z_vU%$jd=`F-~F0pcL?n*=9^eZc;w_>IdoW0RUP(fQ7Q5^Q8y5a*~S z=l0;yOnT)i20;D^o4>Nv+_TwIs35yPf=$jM`^!!a~Kcz};~ zp79b!YC@Uwn3qth2@z+#m*Db4_n7BK=baTwg1ow{l*kZi{X_+63raQupB?!KxIv!`FiSKki5jdJl~$Gq4{~2Z!dz< z1(KbC{oCtkbOE+n3KM4pM=zn}R2$sWI4ybP zgXYrJvAj!a@)E<6M>5SY*7=vzQRpOGD&=Kv*QGeOy#G-Y_;T{2P@wPL(Q4E1oJ~yHGV^2lYfrfv z;GdeThT@(muGoO=X7&yd6vtV;9S#=y!P@8b_LKB{z}|ZO&Bf3GP%0ki+rs;o8_*sD zJr{pOqd2S#?uKen!mS_f2+*Or77u#oaODJ~{1EO)X2PMYfBKX(#r(A5JC} zh|0pr#uIbtiyyEFVq-gj{VVrOQybe_F5=Q_>}-XYEBn~lvI))G7HX-M+( zB#zNj7qCz#c5=)5_DOcW2~VmYU*mpETouve|NShDb9bhfxuH+yac*Wlp=PGx`a3~?v#Y`;Wj`N zxsX$HCS)U9jtB8$>|I~av3Jej0ecs}&c7_xDT=*|C+uAd{Ex|7r}XmoGV|9u_xjQW z^Ldtk>4NLBcT2K&&F-Bu7j3I4bMLKEX0ZDkUSqh@KkzN>JM;jveE@x=_dfLC!0$I* zcX=Ou<)*QHpZR{pfvvQ%7sZqxx4ykpBz4Rf#p)s+ZX1gd4y(ZGJJygJjl=o#_kK$} zoy3CWv|Xj1PFF6m4?5ef!3Ub1SL)NEo_upafaoV}z zfE0;S;>BB0YkcOz)ZCCKUZ1;xwJRchzJDi>FrzM1Wb70JC-KDZ;-g#!d7_Gvs zo1qmspV?0;00-Gs9N7^%Ts1rpZhe}brRrLpZ=@*~j#2$D;!Xu#^b7nZdQ+Ek+K=jmlF^|!lDN8B@>sIaU3P^@^sqW z1Mc@*ao_>k*-L-ODW-=b7D3r-4fSarH0JRBln|h~!PQBZ0DWryQi!62vL4i=)aP=c zK9_&dP@nHLLVbAmEbr`#s=niro{^UxOM2vGI=YrdDBZcl8APUm>5kNB=uY$j!jxHw zdkB*ziB`ip4wAr%$AZf#HqisCV}(1N^;oGd1@jNb3OOH2sl%)S-(Bbp$gy9x@yPPT z3a{4ahvWgLO)qrY zC%3%rkB1-aSn-CO^D-@N*T7CRWw2aGkW#^?zw&MCYl%XQmvWLg7ZHm&T_vO9Bcxqt zRnTu=Y5b~G-Qj1u4651G>`hFWw0gix^{wq`B?xkF<9>2ibc0!fBq2kyil&L%YE5}& z=XihOyp(aB-w_v9wLKKK2Q?D8R3eo8be%O|8I1T7>B*HxU%Dd&8TuHfRk!UyG?4{_$Viln-x;saxJNHII zla{UZ;hq(}N2pwh^Uftuxx_k1T;c)fTjD+<-H9m>6sJ9&6cN*%<0qYn=&1D<-quV%f`@%wi)` zbq}SZ51DT^Sj!%<>UN@sZ2da@Ck*p$=RtfQ*P8Avup9PN#)}hYtxeVKb-i(&8-Dpd zkqM>umz&qkzq6mIu^RTU0^sUI*TzV|Sv5-Gp_VAHqU*bdsQN3vgL|9$Fg)Hb@W!~f zUYgte)x+#xMX{3D>)fzhX`*H`M!$!0d$78Y!7fcMAL&DwSw5QRb1lnJRt~`#2PNHw z+q(09O3bcxW7=D{g`=IIOV9+D2~r=n1rX+7CCg}CkTYur9EM$trK~p*pEG@qXH;bU z=yTqV+7@>!cd4Twf&~L)E!$%yKE^0SiITCv*Cbw^VsO@mJ?}KR4O?_f!-Utr#BGqMD%bCV(I6N zSjv(wQt9O)kp5YIKJy_`>8B?esq}ZZs#MCiBA148QBzYiVQ4F63sv^eS`+5+_L#c}}W zC*h3K(e1({rlQ+BqdWZ?pOlq>z?*OKN>_pI6P@_W;;>(LpVQ=IGLOT+LVk&<1E(E# znlEP+CieB&$z_|A>OGM|_0Io_QazS(QDjK~?9*8kG~0okZ2yO~w}G#!xc2@Na)2O_ zeIh}l#v1Es8!G}8Xi=~xkP}b|Btl4H!;3B2XsudJP%B`(NtDCpwA@E*?XB&_N}qbY z^p;++r54)+ViF|sqS&HfMa6b#QbpxrRBZm=-^@PANr>(Je?Ct>Ip^#>d-lAnS+i!% zT5Hxyci9GK5ubPq7I8&g%A&7`aISKM^LLX)IM<1At`*^2(^I?3v4j(!TWr2?i<_WH z>O75KeOC@!Fn_c^Js7S3p(ijz-%hXlePXmy9@c1`FsIJx+jo^#xY7ELVvW`bvzKT7 zr^rgK3b|V7_DQhva#AO*q%iBa*HhbFX2}f z03~f!UjxCDH>(#^H&}@6HwR|-LG0Xe2eCUyBPgBucOd6a?n*!`g;ouOm>%N7mJtbf z#RC&R31X@-fY=@mbHr*n2hyR$81yyT%bJ=?Wx@wpPSP*d=_FZQ~o9gyQ3MaX3kzcGndWkC2W>vVp`S3@7z4T z%E$7xcmjK-e)}buxqcyxIw$+Z`-4*}ZP7#Ov?ZpzJUcy`@A>IDb|b0{sNU6{v&=AG z*`#SRroC2L@?LAC`Nm8NX*a}{=@}eBZtN6-G+F+m-J!=F7YjZ12|e}*Jvwm8o4m6! z-$*bV)dG@v{>ETur8{<3&ueFO8|;96{HVZYZgF{z{3@}ta)i{*zbQ%hMeIL+VHV6v zcKPuckvh&x#){i97~g49hl4G}9M)@!&4~CjBF!cwet(5f4}Rbv9-`fZfG+@6(SuMg zev1$BRVJ(4g@(O*lUUYy{f41Kpxh%+?&E9We)GOP#gPHOFgnSW`CWP-d7W$p&!$p1 z@o{`=yS%*T_$`8EUyO}q_&PQc;RPY=SX)$Py9~m&khJiqmnWOBq6{*^e}`qBywDnv z|3JxN`S0PY>KQ&V<-CQARku)3c$7E(o%g&&z6~n1c zpD&Va4rZ}0Ej!E0gQd3_D70cGWo6p0MJiPmZ5`GueWt1f43#oXm+V>znb-3bo`c!! zvo4dGLkBA9t;%V|H`pc5pyH?8c z;DELAVY^nIFyEckw^qJzwWB2$k|ydq?+Ve9eW03MD>sinnU?5bKkEBkG7V0BRpUw2 zSBZ}LvQRax$pv;DtI5K6BN&%2Rl5nxcR~7sSmPeD)opQ$ z+vMtqw)OFiq?wCm0>!u?3A)uSu>f<*5)%UyQ4Z*@vCta+67ZL+Ol}5c1YkWx8(SxzZ zwKjv=6Ki}}iT0IMKU%N!D{v%JeHi-%&O6zIgZ~CFBwMWiZyHmZ#U-qSdGHnW3e3T3 zv2m#ii8jOn0tg(Ub`nxi~ zGnHQIJ=nNPd3MT!B~F$bo=7#nq(uQdmaRiOKj@U&N?+=q-o(2pizFJ{!j%@Sh}m`_ z^Xf_A2urjZ2E%%Z^qd0jn3Dw7z{OU>JP zpERJVF&Iz|E+0g80KcfjSeZe_V%H~)MA-cHsKzr-d*tg8XR)G3bD=9ew;}^N!7vby zPiuXlyq|=lIb2FzhqEyJBqGe6504eK)ZsFp#=#Dj;l^6s-Ja?qj3Pd+CUF+!2ULXktrj6jjVGBy%y?Cp40 zOA?`(&V1j4(UL-KU?j$_2ZJj@88<-#EJDdqRg&7$M%=qxLCu4>l2Ju1MzVSse4L;RXV}KbOnX|Fl4QhS`^C&TR~p0gtdh$HeF$(N+#Mu3sYK^+@!H)?FW-HA<8 zrWYvWNw-(n?l;%Bhw8qapW+oZ$FD3T_=q_^56Kj07~NBM=k%1CORDPtOj~rbP}^KE z%35!*(XVD-!9I{kZ9TP3?5O5(ymTK*gi@gM!Yw!wyP|qMFPiu9fQk&5VTi9%No-3@ zT3CqL5sNCU$GIvfnp6<@vQHsR%o-IlWMUJtTS+D!iVZOz{27!T6l)g$Nm%o+#hMKc zYi=TBkc7%$%|>C(V~7a*uqMaF_sIhpdT~GpCF~9=D;qX}PAsAmJ5?U`7-Or&HAm-qv^Dxss=4|-N8E|Rbksz-X^nQLnrVk51B!A03XmsF z(a>d@qDRd^3K<;O?;aGe_Xh%;Lk`>@pD%EC3EW2DKCF4lB$Zs%`lZzTJbd)tu56T3 zZi#M*HAJ$cs$$L-MkX;)`5~H;+e1qJ#`&(;?8w+yO(dr#TZbn7HTI2(9p+OD-Kvl! z#+diA5?t}b>a`lQ*^w-B<}^lziv&kpS>#6Ums1(J*^#i>uM8CaNEQP`A-UK{=a`G> zir?;NeAxQw(W6I|r>!u8?1*JMWoXSzGlGnRkD{8;QxnOT^EFzKO99pK!pIVOvxG91 z>UnH_8UxGE1_rd=3}nJ&-ixlUm9`A&LhGp^-upM>3&h( zUa8L-mvGY?dG|Xo$l7nuj1a{q*l%A>2K*|ug(4h{y2Si8MV2RCL!JtmAIZj&WMY$d zK|>^$dEjL>M0AFdA+qO+PfSa3d!5d%eQ}CK0o%A$1<_Vq4m(TahDeyA^8 zixmIa67$+vFN}<(0TM%m=g2-s z(<|1;w@%jajBgTq(SSBdbz2JGP=CntLyc>}H2b2Y3!zAP52BPX zhn!o&s?C<4ZR0rSQ=}_~2N|`a$YzfaAj=ru3Fi@>D;@+1Mr9Kpou_a2@_^OVtPSXR z8zLL17yO^C^3zLf$$93Q{RrRiZC#E;EL@ZmNnKSKIRgbM7~O1!d`8+x4&l+e9Phr1 zK(zoYLjYMdkmMz17WJJPK^xZA5IIDm{=B@09S*ArizW9My0MHom4`O9!X7yE@(z)@ zA+lb%X+o6+ z0QZU(KC&%Y7c??+P2?u`c0=S=ckytfhKt(Ime7+DJBP-&F#uo4?TYw_=s@bjp*ZjKWksNS7AJZ_`kHlnD7nqC|_RL5@ zujVuXYv0{SMxU$5NohWm-I*&W&jNKesZp&>DHt`XB;A_!tC&K|BVJ0)*`b-~eF4rv(Hh@?V0F@N?>(!}&?&jZ9q0kOG!gymPrCQ8(;q^;9HrUDQ~8Cdkq-7FD^ zyvN{_Bst$Y(%b_YS`8QLjLXL;Nxk zQ>a0IN;=9fNo#^6-YR6N8D|lK^mRcxm+Sj3H}qXTW-skY-iF93ZsOg;$my$Aep#$IHHYS%{g3dj_g-mc^e%BtW5VAD|ZTL70a@GA&~VV zJLGvtds)@SQjJ%B*c*RnS(;Z4X7rYX7@EPYA=jEno^p+UOEB|&RR#U6`ki>dUQ7W13g=kx&^ zkckG-ST{27!Y1%Sp#ab~YHqL?4dJ9#jyw4!!~6(SPP41(uY6wS`dvOBTIf?i=Efjn z=EITY_KnQVkvey=HPXOE?P%ePwALl&Tl*~a?mV9&o^`wO*?~_|WjbavEw`D%0XepF z!%mxkG9MDW12#!>#<59iwbvjp4V4_4XR7JJ)Fsk3-tOot_f75llKlgj{{qvL>95m7m`-H}NV zGnP?(D#o;sX8EE@dvFjy4sCMTghK&`V09P(x`H%I50CPD$hMeDX)#Oz#IA(z*^&93 z)Eh3!WscU-X}k6$Ejmgw^P(0S3^cg}LY5MUH=ABdC7e9O(#(n`3Qa5|vr5d7YwbcZ zTMNnT$OMdnSP&?{Eha@Z(1No-r#58d0Pk?tq2M1_XXVgmvU6lugc zdABExE+8RqF>EkbE-5v*q6|7pj%sYQ|t5#7&2JsPE#^=-GE45q8rlZhJhBVp1=L)m*&QHl- zN>(`@6OnV^+%khT#p!$We4MBU9|9OzYJ?%#C53)t|nZcJGF@FBR$)k{<=sT zp0&LO8COUM6`hr`95+WpA*6lxd~yu%U+<>m?(Wl=ZQ z;^JXJ3n`w(#q$M5Jq(=c*yt-q?k9)jp!BAVr ztj;qmG?N}&l%ofTJTQhMenY}hqYc9t;5_QaWFMs+vl9TNjS@K>j7>22LA8;RCLA_B z)|jDXL{K7s7(%#8V4sii#k}#K!l>{j-Awl}@(@vHk z=^=t*!OcmK;$#|J_MjRA3DQvoq^vb)(v(ODco2c(vQmWHfv0NlHb*5oSrR@6qbHoG zw#3}Lk`cophGn@G%tg6y-o$9!{(=Qb5{3>clIwU@QldjvBxjtA=%q}_h>l4{bW}1T zaKs=ZiWldYm90HQhq7iYfdQVy=Lre;I%}*n2u?rweZGb6F*E-2ebBufk}fIj&I<(H zW9B`c`IB=K(49{s2FmaCFtC_)&>c^v!J(@f1Lz(?a2czW*@qHsbiO_QLb!HZnvKT; zTKzc7FvySDcwC>=pDW~WQrun=PS?M7mJ_wl*Btudj>H@SER045vN^07+s$)lX$nbP z@1{`ikVuw)Xm2niUc-7u%E|MOJjkV0C6ME0mNw0wtK1B>N`!7sOG9^@x?tfZmCrE+ znG`y8K{xN)QCAf!Y!%%+EC|#Em&A*W8TMQtYBa6U_fpOMe?%u#i>ZqlC|3M=p6IYK zjl3|pSn-GLLYO@kVfH(OdCU{S92UYH62csW9`wm@`-Qu4`oHzGIGF@Glc!ZyAJDMC zpOJ;tCWjW_bQ|Nsr5R`o)+8i{7gtAQ`ebd0%`2S4@{89bM2DZc*df(2l7k#SWJBan zKAh0?ofvg8Ug=?<&9hMJ3bT)VgQJ#ecc^6*dvR;w9kXX8+N=$`GQ`U2Q0cNP;>i-; z*spCk$I9PC?mnPYoe@6HAJp&p)tr1G88SC3I z6f&P@4rBptOKgtLor4nW)c5{H?2Ko<&nE!0 zvKKJtpJ@Tpxw^kT)Y8wJ226&9IDteJmf=)k%m%E=+bw6gxmOKRu8A>|iP4gn7-Oqb zWN1?SkZFr(RvUOg=e~=*{*FVV!{Z|CEsn6~ z*~YX`6KL%kvtg$i(*j!O282DE0x1IJExm&3T5$gD)3mO5orujqp9QaT7=D2A?d=i5 z^^=ruy(qq9MuOMsMOurmQqJ}w;)k?yfIe>i4~2&(%;lf%Tkq?U2Wq`P0F3l3?R+6& zM}jUdr6~i~dp+!DPj)$(21i2G7$9MvHLnr_dotGSuQr8%W}e?3pP7eR90rRe(D78T zssNBhoQN%Vq?=ivWy^s{Z$GoL?dgKmNhZBkbCytU10@Te{QmsVN5bJ`dxo2&`hw>< z7g!+Iv**0NcAGE#Eu{K^@X zV7t38yZ-J8$S^*yrdqy}4F|}oMJKV9xK<{`RRjhUhho{F@qkp@TEN$z4LY6hJD zm8;`}UVZVC_@JMj>-eA*IH(<*4|?GDnoj-9de;vVikxKD8!*g{4+1~#?UIP@B$96> z2`&&uG^5-(f7f;pZ|-@lKS2-->p&m<=ScJEZL<4{@Cc4n;rP798ZO)n>c&#b{QOg3mGjaa*dKPn@o8Sp;7L4gGgWig-Gvr;#4rV2aaQO0yP^HD&^>xo zx!P>-DvOI~UCYe_WE~tA)tsIuvuU{1yV};oY@mR+^=Tioj?vp}Kmp~AJt#?q3y$U6 zz&QRrS>}aN77@Kh3I1H59vx%}jwUzCAs1(5;$*Bf zJbIXfW1mw3r($ca7F#yYywRIb5RV=s;rZT#2`(O#3oKS*E_lManLo<`4YN!e3_c)S8H5cg!(3V5TZi#5j=6MnftgD11@)|wd`Et!%q~{Zj8iopLkKbF?k953 z@wLVa$--WXjaE4t$Eq}MT(cGPk5(eer7HGaF6rAv!K>XFdbQ?DE{F{INsRgVoX5pO)osVhta>a(BtF|gRr^&I&F@UsI& zlc_tYy=qCwYHE-Kt6`Z@$(!wVyOA-qjB^@LzRisT&Q> z>rZf_u)u6p2k!Vzm>>Af27P4HDAxq;e(i zgf6+Hk4?1v&jjmogMGZ)!~a#2^6sS5UO84C)NRhqw)~IvvhlS~2mH?&;(xl$8$9zT z=k)SFv}Yjyqlf+ELFbZb@HIy@2K-N-JV=RwJZME20WAJ!Z|)`Z@4b*j=ttF}JHsXd ztr7YwojE`D3jZ7_pIu|mx1Et^-@q^qV#qsS`>=!K zYbR|V8cqmUgKr;_o$#H!zZwKycLwl!HLDL^=fkmzkGq>R?XMmMZvNyw33!F5e;~Z{ zuphi${pge6r5aCymlFHnHROq2co6{w+yq`u%Nl?Tkt>q`CVl|CZpaw~Uh`?n{~BIP z`Z3ce=2l0;tD*;1NiQd};`JOqB_5h=jnS;MLzp;Sxgs~v23#eUKqAJL)pZgj!BdT` zUZukX7!NNW4H)}GDL9|7P##0F9$yBu{mCf_D)r+JPlmD{CbVz%1o2&D8XPNCX#nM| zSl7mCH@8K%C^1&ngfg#g#Q~U}E}AIQ7He5jygMPNBZ)}Wd%VWoJomL4hfn7-hgDC9 z%EA(O=j#UM!&+Q;tAE;?^Lm&KPNMO&gNth2rQe3npppO6AbqayUiVsYD z9vUg~`0T3U$2!yK6y4$cA)-_yo>mhEb=p8RTyrKfdeCzCD8igFYy@6?9Irg5{%!@7 zh~R0tEsD+#-sZvRKDKBmRm!DEAqolXwY)$OgrN4Z!21NY%nPt%&itylyojPvZ!nRk zD0Ia}EB4;(#NNNe1`x4}aDA)9-smegYgvqDz`XW4K>i`;X^G_xXE>;%yk1$$u`jqq zG?^GANzqEj;pFMz}2I@`YRk`n{yxo8azgAuFucp8ax^FF^|eh~|=_=)M)L`O3W=HPI&KY$wLu3p}r}-g8nR%_~QJ(DR8kJ$;&5(yykcD7$Xu?3CY>to>oi zmI}T&=TK6;%2ph=`8mLrZnjbG{|lg9N|AUO0cbs6Ac9G$?QSiNP$l1_l77AH>mOaa zJkbP3EHNy8T~LXgZ#T9$;&YI5}it-tX?(#!{VeDm$OzJx;KOQ$=^_FbL?nKoyTY4V8# zyEEp!lZl%iw%J&3A|R5O&NhF0_mk+G8sO-gwGfG0Lz$S3g6(33D?{wTDq0w`h5ELG zEKpc&uudJ60M&N&YNtukLN$*>ty}#Utcs>!!SWj35M}SDd|r(GOxxpuob^dT7OM>; z5dt_eBUd(3qg%O`2Ku8D97eTwEIFT+BEk9(RF~&jwZ=7we_VzmrPPMZ)s_l+AN>vO z=uWMPd2x4nf+(yG*y5ePb@DZm>-Dp{@;=q!Y(#%9jd;UU6 zR(?iFv=*n}v{pI#TDy_rjy%e}+9_{d9A9#-=*%OBt@+T|)fJ2cN=O;-IVI$;Kkn8f z>AcxNM{d*hp+AhSr3UCZ#N;U$Tv8{q1uB9DHz2Y1(}$IPn(^h$`E@{I1;mk`nE@ILgKrEsmI|} zH~UZ)Bk1kr82`AncLM(YqzPET1T6YlVgd?mOh7o1I!a^SEhoXAr~5$jPIn-HIGVoG z!%|JlIOEVSG&Pjvhz`sMqwOf{Hp_nHX5OV%-HkYxvN=agCCsPiYZBCV#}fv~CAX}Y($ zO~s4|N$BN|t9Xp_*1p^gN3=$ljr%m6G*!*xkGtt40_2if8*kw{)zmfXT(UBi%mX=I zdq=Zttr_tXJG+#Q+FT}ffr?!qU1dIx5<}TO{b-^*^FCF$j{LL9_3=+Nxn@(eom@f@ zH@QN8JHa#(a%gf@>6gh>!EZ3dk|x&;pG{0I87kr<_5C)d+3!J4R(;q}n{w7IM{Tb7 zz*3td*HD(z|5yVfOwsKYQ zl;hukU-2Gj;vm4UIHsk?9Cm2oA!f)g>DkQY-X~3jgVej)Ef!^a4>V7FUO5JRi^x>L zlf+xvHx}i14{ZDNUTRCchpf2jkT-rm2I5pj%s2deyAt)DH>15_N9~9y1S4!14H)rw zVmsT>abzUO*Gt_jf28|9Vw5ELV6*g9n)zh zU10!-$n?spQ1q|{8Vwk~4gnm6VKY;=9=COJX= zf0p6Me^08&zs(d$6Z!9T7t?s;Wb$v_#q=)sj{Gkq-{9oG&tr@wa3_06w%%hN6hRF< zBwHUc9Up7Po5nYx&Vw$;J0B6nuuMlyw9ggprRI5a0@`2+G!#QrQxro~uGbZAXI6Yh zI=a0s^Wa?PG+K@M{nL6dhv4C!a?;cV*(=63?jR)BoSaLp%2;uJW7EoWajpCi z*6)aPkcwn3a5ekw^USBmxs&50pXtv{@A($~KRc}HYPM_BdH+Sz64q8P<|f*oL=3pJ z^KlxqIC(y@o4~UJ>x=KW0>#QllpFJ%;H-aVh`ph)fVbMtT4v53y*s*)Z^~q1nAnmbae}iC|!QiTMfd5V+<5Kk>L8wKZlvdb63jhXkF)Nt1WxodCF?L-0U%tR4M)MBp2g`{u6*Zj77sP)rR@n55@o5Np{q< z{9yWA-O84?7KB(Td}lKH=%3qYqkWx)J5xWdD~ax~ad zW^tJW_St%JW8z)ixp$RKSAKk&Uic?q_Zq%HuVszUkjKS9c$zc+4M-jpbiT`!xg@%- z_DoIH*9i-#-8r(K2J<2}G%U0!mFVsuo!5{?UYIruSqH)ZobhP@;l|VwbM0kF~_fTr$LM4Np|^};`e<{RX-(0o}h^}|kjz4IXl%~}?B5epm{+>r^U z&j-_gCz5pJKhdXGPa@pXjnV2^{3N2PxI1&>-^AYMm`{J^!=BD>!yd)sEg-xk)203{ zAMtdfIE7fFQhmGL;4_ZvN948)PjWUnkE(Gm$F-83Ez>?JPVGJe^Jsxg14+ptZp5adP$clR4aLkCUxmI2NrE9I4W`-Q!Gr z&a65!vB6pU*DZIY-1g*MDf9SL@L9q~Y5H6ie3DmOKQnOST9bA$K8ml-#?f#=Xmw#Y zFDZV>J9eux()?m`VxxnsUQt|-Rlnwyu*(U>W!}`Y2Pq8_<@7!dpLknXab1y(M{pBv z4JC&rw$0eGmZQ2!{P>n?#G=XfTl?R`9|ZFE_{>SfoS$T_d{72VwZkOJPEV=3CpTqY zP5$adxeW)HT1A-B%#D~od{x|a?FIhK*;9*V*Jd{mk@|jcB|ekqb0X$f?)e>GQT#>~ zgLW)eL0$Zr69`AJdgi26MUw^#GWFmXt0?eiPKgyw0cjIa=%*1&Z(51@(-nGbqtH)N z6#8kDi)V(S3|vbMyFOMlj0VMuW`D&65Et0!AF=Odm&6N*SkEf9^#Rbm-PC?=Xo`(~ z#dG}c_Sx&!jF@Qmk+gY$68G6}T_V5k=Tg-mN@Jqpe8t-70x;mg{!sykKJW?mTArS^D;~OH>Yl+O(LQS<(JmVp zapF1`iFRIz`Tcpgv_3#ga+cvs788q>_+?&vl8wikwyQLrG0b!w17cpc-e}fQ^`d9?1J=VOkoa< zu`U;=*aFHZ$XJH=;fz=T@`KC*w)A0JI`zDC`?tBfRx09BYIyzjZv;n=3xBzR1xT(D z6i=&in>Vh>nu}e<&L3~A)?vq~vfoSC@lo;>D7iAPkYPY6O6AN_9ge;tS62~T<>_i{ zTfqdDNsG?%7m%4si*S=skjn$o9iAs>l;9IhmxSPSV%8B~+YbWkjXwS3p87AR)Q)N^ z63<6?!F2r$qR*=Ds!7^RAggH6_8zal;7vw3dv||@f^>yyZowBYo9WP*X*;3MtZa*X zNLQ$*Fg4wuof=~0O6!4`oe>+J+>q5{XvpPi$V}IenYJOp-KNwwci+1kJ22W2Yt#v& z0~cRd1*q-t_gAu)KhvHTDLgX=bpXE8*v@mZm`GEo8K#H)(|c;N(Titi!}B9#aw`0U zCNaA475-7wN3S_2<&}jSrJ&y^1wD>)hfcD7XBH2g;{4B8!@Qz|{nMUTqI>jWhJA65 zUflCZFJd3yoFd6IAo1ep9M$-bU);xw!)T4(+xiOsRCwTQnG}q*CI$SKbzBiE-oi!g zrs=ON+^TkLRXbv3m?94B!`P--ML0Bz=@7_f_U#AFE0=5EE;q!%KKYxc^+LP0C0=#_ zj0?`e(1tZ_(e(nnUzFY&eL1BydVoW@vxqP7G76tH7#h#>^K)!GjQ8ve(j(Bh;Q# zy^ohry)5Z{Yg+GH=ay3Pe1)4JPL)|IHYVEfM5-uSbRQ(t)_by1L}t&`638XaPrnjQ zjE9@yc0Ic_X?|Mgy|U-wjMPT!Vl^=9xl6n?bS=6m$*gCSOyLnO|MYFBaq*^v0PD{v zyS2`JnPfe_o|EbR8g13fK1##dQ)&oUc0#%lq88*+6CwT_G-`l0`^hfzXTc^P7(&))+KtkD`CGW{rTq&iVm0$M8yt_$*U72h+ zwBJsM2D7fKkL%k{U?9zg38ZPWS-}p-pL~p_S=ZmcdEw;QpoemK%b%MK>&P_tY*3BC zY65P4Bx;@Qs=aADj@n$9UjGi>=W= z2YR(Y%^Z)e=RC#%DbdzTV@+V5^}I?Z$#MyB@0pqFH2&-R#$PUS|AqPo7a2d~i}ze* z(O|7ZgP%SxG97l*-eD_zobuXJ$uLbyGDK>BNI6mNZQM()0W;>CnG<~7UE-cK=Ee;!PJu7L;M_| z3DD`XIPZ<^ctQ1kySr(@pKhNB_vm{L&u5XQ)$mr_l=zb;Bz8A@*?rQ1apzw4>P5 z*b^&z$ou!Ey4OAqV!)mPKifovh41{0lKt8aYK|9g<$!jnKP$_O`fFNB&+XZM8SYXr z$?F)*B+t&LC7mH*}cRy{s$6TR%xQRNtCW|2Bt*&t>NL%t{;zmp$}EYQy%L z5m%eXN4xFTpxU6P@7L7cV5jy*H?^PLrK!C|Q+uEd*ws^PogQO=MK z!w4^6LsXmPXR=8O3BRw-iY+|I-Xp8$dAP+h+u#yGIy=#=QYvM*1ss8j;VmA-#Ce~h zt6-Pmb}Z)AIqa`@Jf;0nydu@#{{HLU+UECP8rfcI+Vv`2Ne1s8Sb5I%-nk7bJf$tv zYJUom9r2exb^CGxlplnR$LtptzA16o@07qB5YRgeldU-Ph2dQJo)+&NhWBo9S1{h~ z?h5X`1K&d>J@QR}yOuqwp~T#^Hw{STh;ynP>H2tN2TzznifE@yAgcjc&v9y)!gQi? zrT0eV((%N!W*z7tbZIf}#`nh-9xgG@YyBz1@3`gn0tPQI&h>``A{ML6&CE`FR_fdW zn%a#wVsSjM_+2GTnf>&+%e20j#`0&l4LnS+CEZc;xp+aS{#n_vhU-7hGX8u1DDu1GhqTYl+PnBZM-O4VrGwm ze(BtzEE@v#d_edy#SUWg*iF|V!L5XF?9pSoq92FNC=NC7>P5&;;Mdwv)If)7NUz#!Xprm;irahJG}?aw@b-tTtJh4i##6AHUPC$UaM@&c;5E(^#p>63 zj$oFUUlpNK6SgxH>)@-uxA;#z`LSpi3F3;$nrXXkObuq&={={>MYH)06nn1YJ7ko_ zUiT4_dRN(CS|!b>Wg$khILiiYQeRSI!$Etu+0>pb94pS6+Pv}xb}+$?7@;FTTrY@N z;BD3wBL<{4m`4{-8^y8T3GIgUiWTmrkPQgSK(90Fo09A>Mhd6cC$jG&f4D#uwJ-lZ zl03N%L9NX`0EhY#{F#hhX&5wb8$w%$)wkrT<2_-wl^hKq`;0q=+7bg0v<_qJErZ|R z%ELlBnx4dYfWOGsBq7wC&y2xFv4<=oJYGgy5koG)QI`F&$QKBc>br+~_ji(vVqw+Z zyIeH8AY-g3Y{PPIL3fsTxi?KjYCt|9fXnz$&G{_8=lai@OS@%!RFkzu)N?@IEkjRE z8~FZ*$ZYNVBBKM}S0@IhN!T_p4Y%b3(;!zx;aE|Y?cCaL)9df;xhv&yKELDhJfG7@ zyPD7Se1hde{M>>YCzyqQKRdCh#1C|BI_px~uvIt+HdDU_>&6I}e|hS|o<$3{b3O6+ z0#oDe96vZs{uNeWFx5_=&?q4j+G!qqSs+5O1k+6C*aM2O#((FLUyk578{G}3CepUc zs3vp@LS}YK(W55z+YfvC?P(KX zAwrjydl8s}nMiVV)`%q-FK)+TwPJYu=+Wl4SSJs~i%vkCJ4(zWSIH~_0Y$s8jpb%x zhNB*=-&!25kpCRnpK(f{#60>6Bs^iybb4%5vPkhushly1rYF z8cS3uA@hxE(-k0~ryRq=Uu=OUtmq=FO!=7?;2gQhQwQzP2J~6^V z*s>v7YpOLUruk!=vHmjMv3>fgcF_e_gi`F|M>RlZk;`+Wh-V4xv-^pGn@T&(c2jxJ zt@HeI^s>_s42!P}O>NUSFLSN%%fk2WbR(P*`*Lh?$R8C$z&pwx5-Z5yXL=}B5Y}&c zj7UHHB0$gfzv%tCXqXtUrV}Nl=09nrMjidrR}$TM*Y&%%JIh!F%x$y!b?3V-kFzrD z*B?fHR(*HI9W$iWd@&$Coq0AAY3F(FwCGuu`gD%wxG#Q#Gc4V}Bts;H3C8daiKQkq z1#3rB$XR^OpP@WcSN(~Yw1_@W=PH~^v{0r?V_nE4Pt($l2 zW%Z?n9p3n8$0G0hO@D84rTqOPSBiV-9=#NOfeF8_#N4)gh!ADfF!p{y6?=l*yt`?L zLeKs_NVtCOt$(;H~Z8b*cGKqJVDNCET&JEa2?U z4%6!t^Fz*9z;b<7G^%)Cg1zw?-r*q&ZXf@6WIrhrn=XlF!OFWXEC$=?Lj7))!0E(v z_xcej$Rt>L_3v!BYct}}P2`8U+C;kieZgBhUc$D{5_e2H@u2|s-mN?|5J9Lt;moBm zUj&h5FlaRD-_)q$eawk~ zSC~@YBj#AVg2<3Xy99WJf7*YQS4*~GK1JA=1RcBuIZ8Bp;tpDoqwP&IfesYPWr#Q4 zVgoj>gn2OjMIZMQbF~eB_&&)>v0eMM;6dbOFZ2HOTs>kQ{$0u?Xg7)d=QN3%Xx#yjmdwUbeTXOp51D&(n zkk(u1_9A&7F@JfhyN4r~Y*kE&Ipun&m0W#xm9xS;tR@s2STjZ)7+R+6kNu(SII)O> zzJ)H)Ot2{=*gCA5i6OKNFfWB;rc9k} zka>5PzUV7vJss>nT#kRp>g!)UHo1OTqKjEIW2`$BGx=^QKcpu;@;mj2W3J&-b5Vpf zo3QsQVq|W+_w^KP(V7p1N4AfA7JubP>(QG1xvANl`>t0JdM1Cvqbc&7myUt7Q;gYm z*_fq+WjvB?i|&{A=wO8=7lx~Wo9R2X9{K?=CFUY9og`7~O{oG@aqxap{j7Dp3!PRuZBsr2V~tE;;da_Lkl!eQ!3butPQxSI zn!LZ~=@j$J`{bX|E|e#nD^wffd0KS(j}A_j5KZ?VtQJAa;N znfn!dR%FRPGGOIc3HI^SSYitMS5`}9?7paP^?pWkm~Z_UuNEyixx6mUBTqbDw<0H{ z+-nd$#v8VORl4@GPwFn39xpotr>jsw$c1K1Yc@IchthCy8v_HQ8K|*x&?F)qJgRvg z!Lp>Ezm(z}+XU-jn1y{f{-Nbz-EWD7Pm zQsVeAvNEj))?xKU@{$nE(RgfbVDK3qi#>mVlH(erZ!|0@aMaN^G>aE8I0I;#MvC#a zPCT+pBs7KfN?_yzmh}fC2N};AWXP7#L)6pbcc+(^m}5sJIt>F+M=GSPlf*_EI=esh z8a8W8JdOI}ToF%BQ^jlek&=rLO`LkiDDPKwx4w3lc&BQ9sw;e~>tZ~wzExLCF0snv z-UQS0j5D?S^~W%H^Rf^I-kss!4sK<~%J#&{)?<5)BUpb%D6l_9My}13^xaY-F~Eq; zA3~-cE8d{}QNPpVSK&=X`!ByaR<{2KvEqaNyFRj=!=h8(hFwV1j8LTcwIP1<52iNP zhNk|ZX2`@Huz@h4rHD1mAp|K9i;Jqe>uJ5Ge&n&uN%W&P!F(y`$J;092U^Rk!Xgk1 z$g&7H4;k)R7K#-gix;oy3!mDpcEHo94d(b$mh3FTPqDvio;iaP7f_+O8XX-th(3mV z_H70T&Mp`rtalh7MyCM#&@NN^O>tQJ%{T4u8uQb=vh!{+3%U2VCj?_;oE>B=3^Fbc zGEU+iDIWoDVG_M_Q(k)Yu9S(4Vepqq=lSdC*m5TjNWv*gk29p9iZ2S|d;B!F(MxM= zx2^Npsl zC8hxALgXO^^(#XHom#YVY57DptZBQkz8Y@cx*B1^r~KJd^8h!KC)jSJ+UR?5X`{?_G(?`*=b4e5IHuLkiFU}vx2xz|zqI*a ztG+<7T$z7Zt3YJrtc0+C)_ciTxa(Cj@$q)B=Ub6j@g~kqV9&yd{t}b>J}4303fnaC z0Icwc`YCu^jR6$L@Mgx#Hcs7JbGLtHn;pH*Z~1c|+BG-&bEf&xP0dGg>R(HXE!@L= z@=NFgGKtL+PC&)W_Q%WGk$(HBGC{c7((H|vFlHy@+gp+->VaB?YfYHcob`6FE-DVrz76>8kSIiTXR-N+d3~2!1_0dfZ~Pb zyg{0^db__M3@Kb{DYJ^fzU0~ZJMpT~a5c9oN-dK>O7J(!pZHKt1u8NKWkV1x81AsM z@0$gCT`31LnPpvk6*D}H3||Wa9&=`)KSz>;i{+6TztqkW3gAVz#OLOL$TnW&@-2eh zX4kWXxrHxV*tD9_CFU|bylPGl2Rqg^<<6W=d!M46DSi-v8pTPLq#fS<3rJ>Rx#`GV z7L_;@;802JqJ{mi=tiQCSOhz!0IR*o1QJB5l5 z5*X4OpdcCDkJm)}R*NB9CmxrA$b9eD>gCq{y;PeJ1H$~D+&~M=ek}u>`JaSRH8UJK z{r<)Q=(IIJr|a?BWzlJ?MW^9|H3#Vn3c^5uUfTp_9od7CIIUc0Hl^A@XKWet=wTby zs1hxjMTlZePm2V0{ELs$FAfmSEIhJSM&`@LnwkIop;d}ov@$WE>$Y+gY}&%JLbf>T zjHr@9sT7iJKk_K=$|7qB1PuiS%GOf<*`AU-00u3)O!zaGNxM0i|HK>n)nJ&UP%2)- zZ7R$~sQ5aU7dIV|6VIna_BzjdN<#0>v!2p+xpVYWP9pY{mfy~yPe~$n^#b$LjgmIm zb?CoIv2JL-^B7m)qn$mCKh#YUQi|WX0Dfl^_y}6A=O@rGc4l*7tM<4MGItJRQsCmd zS|yqz7=#7}RyDJ*>D*=RI7f2Wt^TRu-*bZCzV+mCn~1hy6)d-i1RkmA+eBRQ$b4=} zS!jqkibFxOWlB$v&V{zI;*9i1`#aH*oW}UFiE)a%RYx2}u2w0g#soVH-SyP|(&U|s zm_Rp=s$et5J@0&ItbqsMGoR0;dyVV`Q}^7~o%*d1vX?;K_fC1; z$_)8!M>{hobYZiPnajXXwAUwJ1Z*2uhSH(83>IJWgliNf0{9j@|WfqipRo9jv7xOBf_bPUJ6^AjH#x{C{ zmw9czS5=TtmI+DPdneyH+W_Y%yhdoK8^qST%?^Ot1dgA*vpo>Xm;ch{Q+H97!M7 zV(rU^+x4OI%ig$W?0qJW#vk&&w=JGkW@lZ5(yfTWo4JP*>El~yZHD*#W-JBAKZ7h5 zMZ?hPHZ5=HCZ?BMF;xKKrr^4o>!ZQ-om?NX*MzyFjV!Gbh(1-}xB4Gie8r@`EkFCc z(B#YG`8i%@J`Bvtf^dDaSo8d2Sf$hwS}isD@y#`s{ai<4q3`gxDpvR%5Giy1cR=;b zs_#%fS+YArs*6}%d9-(eGg7BmIz(oRdTQ^hkFY;n5l*c=n;c}ELS!(=cirz@u-wbd zryfLhOXx}AR0$a-nS=k@-GlIJI&cnq=jNvnIBY)QC&H@6cy-bWw1dU-Z%pH45~0{8 zEm%pYVb&amkD2H0cZiaXjXX?Hd=26 zd9r)+$_M z#D%Tc?=?Kd1LzP&4cIwm*SD%eV_YoH@a!#MOjX7fzOocIMOmm74h1SXzIoZGAfRU= zyk`(~67pfaBHlgO8~^O>6NnW0tT%3lB`D`79-TFF>WVCH%?&U)5Gkt#`ts|p4}y@G z;UeAy%6<{XT!1aJXp&zvDOSWvMMAE#Hgi_IyQ2g0C#gMp#r zf#Al%8>?T8KIG=x#%B%B75073MsN(@q8SS<2;Twy{+Qpzg2zX+1&mRsT}39XI%*@G zijahFVSZN7_A28dMa~3;DmsY|=_ycV<(U07io9A$NX&}zY%dR*R4GBc&hv!7uFAen z0a}xgkyk1}qCX0KeB2H?U3X;zltk!=-Su zBFB7$W1_^B0-Mshlm?_lot3W7L9PY$8`xmI$#ZeoS~tU$K#>hqZ>y?q$U^r)5h5Lx zM2f7q0Vt{gRew#Y5}y2|Dh~}>W#&So8V-Y>2eqtZBK=u(zGTel6OT{afv<*fG{Xg6 zE`L5@Pe)Q=9LFu&mW?FF`7$&vnW0}76=0w9Cfwy@Kf0e``ZOC_#wSfCiy8_qb4EBg zPjk+zZh|b3a%eXvZ8g5dC&=Yk(U1S+o+l=Oqo=sSQAj)lkq*HZX~a(V^4_5L*E2-S zdai_U0kT!lXKt&2h5cxpipWU(R9>|aChby^37+jZ6+By*;df&c(XAjcQ*5(x>Cc45 zo|R)Menz$rzGu#WBGQ%mo*|Y4nlWMVA|*`GSDuxO_1aVYllFsK;RT?I?EoW9AnpG} z2ZR!XbRd0T2ktST{}Q71lVfVlUVEq2wh@1-a#q(~o&Apa`>0Y;)4`moNOWOJshQH~KmX zbfvGcp=l}uffnR8>Zj#Bi=Zp73=QHym5!@ z#UyY1o41c=F?-V+ci1jwpH4hFQzIKe0hLi|zV6o6Ko2M2YrO`{u&&};!`63)9eMg| z`=em+Hdr#hseCFKwnO}Wi}s4t+XaVyR{h-@zmFioHiEJ@?seNN4zBL;?t6q)oHaq? zB!5$4Gb?tfE6*sB^0;Sh*16ueZT6yw#ryUGy3(9DSUM^3=t6C|9HPP~XuYH%Xdqeu zab{7rZM?41u?67?!+{g3`9tMA3tj0R@0zy0J9va`%Z9?Yb)Mqo{i$=P%@0KQwP#`J z5;&(j6<%R)?L*DgTj_jeewH+tN%R2b&_y~=!0X$3{~8eVFZ|xdivpM^S1YihglPI8 z(2^P3|8r4jDX(CQB;@>zeiCqwJi&NQGU*)?`V^x&?LwSf|J zDl`1)Va%c?G6OQdmDL9s2O;pOzN;#Ue~e;`d$19M{qO=$mT?k?Q?Wj`3T}65nl8y< zo5ODjUeGeJOS^_8H(Zfr&xtae)U*O;)0xrDZYx^GG1E+rvt7dy5iZHl&4%8<)|uDs z=hSF1XJ0FeDd~0Znr_SaWG-YZs-pWekJq35vXt9+3!_Xp0e|q9_qZN9}F$z90W(eVq19j0q`{~e2UZ_01)T_x&wXC z8wfYK&Yne?T3GBLAwXbgEJ_lSaOyHLQe_eoI)74rv z9nqC7`^?_5g;PSJPbzr;?qHmm;*I-^ToKs8{)fnOAvv{av^lTTn5Tm!VS77Ow;9}K z+1s()3Ri?C4qxnIVByC2g1!kH26%Kth_ezIIvk3|L)-Y5tT?agWwrot@fyz23y)Ho z^jw*4bB<|4_erJo4TZe|ex*=EmTkuw&!VPquG{)mL&5FV?^fWbtzQKM^B-;fszLYU zt)Ezri4%_{lR(-Ck zl|YBtRoR_Y1=sLNRn;0V7^U9*llBDF%x$}GBcxQ{zU_a%i3(RI_HD+M&Z?s!JKS4; zRkikQ2b1cp1_Tu^$D>D4hbaB8B}r9x4YGeb`U(3tiyX&58H7gKza2C`9s?!cqa7Tc zJsY35dzZux&dJY#O=0|K|NYy2`2|y-UH)buhPZq0K>E)jUw)hyhf3Vq7L~1*=xT`o ztzoyZBori~AKNN$ckx-mgNh1alF;ju*jBcb$HeO$^2&`j?k&x-yD#v@{n=jRifuhR znQa}FcmzY1d0qNT(e!{wiGMf@V8UXuc6j6V+WGn|5+tV%pW`IP;j#>`e7oJi>bLxb zAfx9$tkuTFAMF=++10IzKWGR`lV>b zB4o`ah>FkJ_{QcZF(hLp!6M}M7y*FBicB! zf(RVMYeKYbUkts3xWp`ZE}1m+(&NKN>$}EMnx!;Y`f#~`v1H(%ss8ZMd%L!Pg$a~th-`Kg zRD>0(00!`71=h?~VG}Au?}EZez6F@Y!A~V9)aol)8@+McZR%yzMTa}5CJ5c1t$-9d zv2vz%>KrwjnH?+2wmLLb3i|zUryay?8A7z#wo7+pQ~yk09-ga~+@o$v3~VKrplB64 zp#A)u%jXEm=uY^y;Hc1Ks$$fvD4B;-sRp|0H9i>!7{fr`R+P%*FG$)zORTrSro1ulAx51d+NL!=In*_|bY&L^cRQo;Aq z$P&KiN0!>_o9y+id@qmGn2zn1a?eH!XGwRH=;)$$p3aU`Q-N)kyzeWT8qa(N&#OdKchsvmq6ZZpsQg@yzS*qGLT0L(PgRU^Zje2%A+lbD zvNf#eMwRSU)I@IeDwgtP3(s2@snc`&O2yyQN-8@nB&2lqomJ#?5BG=$RkS5$x)d6% z-l8^5d4^fDmtkS9aFxv!0lHDPR*(gz+!2S$KT7O~v~2X!q*vq!J@F3OwyNYupi<&d zmRGvXTVyEt=4_OOTWPgb6`s|e0DjVXqWA8i6=7`^!cseguT>)}nUIyc{ZuXkjTS;W zZmuJnCQ&#P@$#U!RbL?At7s`IyDS?lsdwcu6c&JARytKzfbSK`)DmCGyUZQxsO%td zyO;MW8N?1NQ`K9sVVrd(OQBWR9K?`>REW3~7*^r%M}C>a(n&9Rk83^K$F(GOJj>K9 zoXbmKJC!hN1Zb4(6oZgp(QIAmh450E!kbD*#2%1E6P z;p_T5pAG#r+oVLpS98$>Q`wZ5a$2z{pHrWLxexr|u{3{X zC`Lrv#-A|y9E8OGXt%Se>Y#nsfuR~3g%=Kwks6)-E%y>KX+4&f9nOCIvv(kJ3CqsP zT0mA6)7&ZD72VWNcF5LqnYR{US^3dBwW1L$+{4}!yh zm1kUuze9|&mZit$bo+BNVslQ2u|hzMrEC-DbU1=@&NB}A<*QPE34Ti4IxAm#Iijlt zSd}|*uan_$H^*(mFLkQGEDW8oEIbwCi#^u(0vnAH%4MZI_N0mDpG7+@`)S8+J2pYm z`&*@7%~WbBLRywNTo(w)Du+st#u+i{&rC7j!|aQkNW^$PbizB2B4f*(nafEOgqQ(l!dH1D=wsJ-@O z>aS?xCTP6bim@AN9O7{kNTI$ZV(n{Sw`pFxci)eL=J`SMyoP(Z^2&#7ZM<&2a38r4#4MH4=21e#&yB~15tz|h)WhlknpqI9#~mX>8n zf-5b7f2EoecEdQn9R}9B|F?9T>D9M0dz^$Dhb=H`tYNM-1pL0u6JErus!BxMIGuv# zXdPkV4vn~dU$FmM#H6+{G^BmBQZhMf(oMwzrm1w_+8kHRfml|ePO)~75CP=1u*WsO zwM1^r{-15+P$eZ51FLJA)-r6jkIpCew)*a&%ijsu&WW5#?d3o3?b12;J`%;g1AkUB z>;iI>1cxIGiEiK;^_jcbsGEdy$IZG4g3U#@>L!Ro7lm4}$q3#NNz2FJ$d)FOmY>7% zKZ6J`Q~ zjNFNi8WojFv}r*}8)~6L+Ys_3kT3!ABni;pT1u&H(PRL5h{4GKm+MvhR=4g}w{~m0 zcGs@9iqNWS5@;qoR05?MDsE}ZwwET~HYkOlsq=k*&bc$00B+sy_m3YhGWXu|d_L!# z&-t9s`81;yIYrf!IvmxTD#tb=tDWOKdS=ps`Y~BoJ3GX$dN+H()Pv zQ^;zLHJq11=A`mmBV}-95KvCK(#v4N29(4m4B#2e<9NYZx~$nz#F5o0Wc5fKa>9 z*26qEZvE_sX7_$J#qMPVrL%jXlhWC}H_E3hmD__XRA@0pO=Sza0)wl7M9xwzWBIF+ zf#B}5;gDp3;|`k_NOvXJ9`*@@84nJ>*WZ}c=8AB1x?Vv@@qKG*PY5sJc#^Yzii=R zH3ln9>RL@PoHL%w)Y#*b!fY9~^(2jO>qkdh>aT)+fKFAz-|z)K{--Ud_@A~w&Ho%I zER>0i2bC=k*eDhL$sIKqxT@XG5(^@~!b2{%st2s<(;e>yH~lujjxH$3!Di~FKPHg% zzV=MVVDKghFG$>?0urJ3?;E$l8|rMzG9&$cSyqp^v459DxoYNTa@rNK3e0^#d^_E7syBRIPthC>Hp8$1Hs@S!cKBgFk^-%5g z=yUvD9mW+c&nq*fKFbyFk~8{oE%7DPy-@o^FHwwkq8!yO0@>)~yj-94xDaA_V11?+ zt3=5AI#O|PW?yaB0ZVRqQl;Yj?Vdk)V=V|}^moG6xTDjtUT~>-5PL4T`Hpr@sD3zK ze$Dw3>RwB)l1*N7Ae$+VqlQr`0obJOUL&Wv_C5g;L3gw}JN`*I9_CoC&j>(}eW=5^ zj@ooceb&-?t$~x4F*PeylxEo@UL{41iN;e!HC#~C%>QXoli%-1j6(X= zZ_h^`zh#=$!SBb?_@e>;W@-86A>qvmN7&1E_PotQ<>>4kzdg41z5`}+ZoqnjLVTD) zFdh`y@ih4`Y@5i%*^qFk)_qCQZrD?=jlS!}F;M4waAu2a@1t_yFgb!-vxe;35eRUs zSp(**erwigbJl=0YtWo^S`H7#5i7OUJ^ZA{DLLxw z`qJ&p3g_k*lao?zqNnbYG^@uz7t3`*QtV_rU}J*m!={p|RKwb-X2*yj6+<#3S~U_s z^oy|(EQ`azQ(TNa3A1~j=qDw`d1>sg9 z-3eEekkG^>1M(x;M)Q&??VFTF*m(8>H}A0u64lT5QAes6s*;1u>YGTajudi$QYET- zRZAhtvZd%s>}UzdhdZbDk7$2kIx#A?7SL;Km;NFrh~-F z5cUd8jPwHPuY2{a)Rz!!h9TI1V+27z4YjiQ^%zs%Htzo}bBvVL?70VYA}+#}m>`Gh zQ%&=TQ!-cz_2Jxn>VOE^fH4}5kYC=pOzByDnFwI#!5_)4hKA2>JkfWRl6y!G;T|f` zc!HeOoav=GB|UC4nuyB&Dqjta{qFI;pC~SY-ceCs?60I_Sja(>@IMi}!qbgd8u$gT zbRVrPIXFB2wL`;z{ZEd`s0G!u*_CY=cPni}Fee3Li6`=u^NX!$)|OzZEZ^#ij}HFx zPHoy= z!{$9eP;3c>%IKtAX4i`#G+U!9rnUa+q+ODfLg-kxZ!624>L1fhWPX)#>B9`4(tjF5 zU*e-1=mVBi`EUG4vR(L`61 zXk4$kq}Xb7Fnx7~VMXWKEP%#e?D$_8LF5B(s2R9N7(xiFoMsI=ML$Y`r1@F}j={}( zXj}4^>X9|`#j26mt&0n2Ftd?9AAppyk0ztThEks#9L0JUu75pCM>}U&pJtRtG~^hO z-Oo{duZ#$Ky1yWd)rtlgBvC-Ba=t=i;vPLV17=gc8W)7LXEQ83WK?=@V^kPaMuj__ z4<40M%mdnptk0om3JCAx+ z>*?b8^FMU{Xn)#zgdwJc|E*JrRRLB9-rU2^mg^OUteFM_3xF<}&d>6h{8ScV@>B2_ z7${rBO|rkp;>@lXgqxP9^?r|q9p6OPAdJ$RRmvoiETH65szG94$ZX+3)^{p1M|>ed zE}=pWW|u%W%KIL9KjB=16Be01?afHi%h4x7O_N-}Gh``y#f@w;p zHUs3S(5uWJ#C7h@x4JPNykN@t6J%HTx^?OH6Lz&8gGrguzAJt3F|V;veu2rjnjz44DYVRiHtgU&5@$4JMvuBNG58C&)vSzHF zjz9W5J@#hxF~CR1pM0JHdz1R^=A+}J&(qD174JCi8^=l8H?B*5I+&>D?7Pq`L05bl zzCuJ(1vhJ5d(qV^oGR0RNo*``56iA0Ho15ThAJ6!D)p?3&t4^$78Z82XE*2uM#d1x z$zB9swdP6mnG2AM9?xk1%)bTC-{V65;_&PjNDssFt(J6n=Kuc!PYuk(Di$C2QHyU? zmdzA4K(6z@gYJ^7DI=geFjcMT4+Y(u{_SGWb@xN$d|R&M1_8S=Hmv2qtOms92juuS z(AXJpZ;E6!sPtmS=vP=FG!S9?W6_stc@lXUQPy%*uTBIWgMAekh0@ zyNB50=*MP@1VTRi$JL#k@lWnDH}9!(F9| z#L)J|t@(+$u55O4a(!mlR-)QK6+*rG2YN2#FtP$ayjM`FRe9G3l~_4Zm8h&Uy4DxP zKA;?6;-jCwYiEWWW9EEc9b?2Kb0#n=%zw^mj%Ts0HY-~EFv3Ot<=qWI_N4-7Gl6IpD3(nBGGqWd*)fals zi+|0+UsLm1D@5`#zqqKf_Cr=+n=qWHT}xuI!Rbt0|DGb<&R_)Lpj|2h>WiMkCxt%l zd9B7Lv40WQb~;TD)bQolwI$UI8TK*OmEu`gyf=x7DX|cL!@sDJ-!09>;G5LjJR6z- zUBH5&ES9p*N?BBS<^!N9s>DlR?oiY4+$3y{FnmU%EW)u=A4QSfwMZGe5x%)Z5=b#bw^0~6k`T2KgXt$89dz(Lo;eLIt(iHLw?AlM`-bY+w zjhK?;6r zG;0ty6@Du`WkF(fz{UzXblqxi*!dn?8AJk(yF@=`3D-4>Oa>m+{bFQK%vB9orI^@5 z7dZfeajoc!5v$AvH5hPGxi4&swmq+I6V;XdF41{UQJ?Pm)$S7^cM-V^Cl(Z|>9M9* zJbejYU`@Ha5h*lrV!=EK6t@mC`Z>tKx? z_O2+rbG;&oKK3+Gz)23hf)qiToG;{v5p54by$*(*n;|c(#vzU_DO1`Za~#y~6*i{w zUuQ)qj|yY7|8!P_9JpL_vibU?BM8kJ$KFEB71R)Rs@94xx@PE18B8z6O7t_?74@V) z_AG#YcR6I`%26w`grXc%C{~kl-2DU`FC<{Tb@Wv^n6gU8+BIG)POC;Gn&#CwzW=32 z0P4EIo-NCFI;=SJ1`=*$(GOGLeP3i{JpUvsqeoW8;pULoMf!w2cUqM_*H@KjDo->O zS6OrOEwQaO#l+y$vGA$g^p1QvdZ|$MxXXjKs8rNHGAdQ=b{%EafoM-^JwDq z@ng2E!VAHm8Vs*pG8A^il5lk65RNxQut84j;`wJIBg{Cjaz6JIL)mNXpFH1NWzSw= z9bD0#2i;rdb&45(K!+7-5NTx4wI1i(5_wN7+xp_36YQz*yP6stlW{57YtCNA^>y)4 zu$x-L7dg1X{!}&@X+mnur2S%VWjaHlvAWn>nZ_4m&Q1tR9BN-w-XYq9SfU8PO|RlP z(|#bgo8EHrbZ4fbIa+LQ8BZ4QtDhyVHT{;b>Xt|dz6RAjcq$4S5m_gq|auI!Qpp{%= zP9&MIFN$;LAtet>b~t4>DYG5}7mx%UIum3f4eh{#*swXAP7*B+aI#k zQ;8(kH9$WB#|@k+dX2?zBB;M63wim~I5q81x13Am7K}ECs0O`5+Cgprk+yzI{V7?fg-085^JsudltZE%Npy2EQ65_!DF78s!H^qk(~U9 z@`Lk|MT}y(_`qvVk7}M2J^ojkCUy^VMsWQUK6aC3Hea2@<@<(_)EMia;B2m+3Jz1? zlo^Y1^I4pC3SYUr+<2tZDlE2|bEn9luAq*!3ibh#PN!pSxvexz1x-|+N*WkLfb+}; zR1`zGNRo-MdHSK~aaKdXd?fcdf+R}zVoE5S=#r$WoM#9W+H^&O80&ic2SW*lCr5Mu z7OmJmWgS@HvF`}c>c<3NYyorwAQ$warPBF8gcmFl1h_bp1Z&jB+j83}RQ};ik}p~L z@{js7cHrd^g=CxwwICw^p|+ZpSRuPJH&+NHn!tuJ4hyVm+E#MdR;)t| znA&_VQM5={HX2gp2pQSU+!!WnjhIM=C5cwKFML2DW@P5S^te8;1T&ayOs21{%*2%w z6sYbD4azk?$-JalZ~hgUIgJir3ekB#7+j2zT_uigQuM%BHI>y&1M|64a5(xB#qjF$ zNO2f9QuxO;$RYapZMmlz1CdOTcQ0^6_GH#X#!kW!`)<>ND9l(ESRTI$J1`x&P?j6S z#9Ri8hA|BNWC=4h^AoGe6RV2pQC`?dyw7%-^fAH+x*ZV=`8PVE4u+|I>XX*WW@q(d zDdGV$m{dvaIq^}2;BCQ6VW7nEvq%g-Ei;QI@VHazq`qt$;UghgaLdK=C!JX|QSz)H zeJ){Z&7x^MHkd`zExoqPqM5wOvNDSbWs?&FU8F9ScXel-U9^Z4PpcGn@+M2iELxEy zT;|*bZ~E}cj0Mh_CtwI-3@WGxlyw;nlO&~nq2Q;fKg6Wf@(N~Fn3CJslWqnAa)}q@C6l!t3Z{~ zs{@}Skc=g}qW$b_?mj31=;G@y*+SsRx?k+WNr^<*F?TUDYMpOxV4lt{PfUv)hgV_E zE_UBmJfNc25*^($-P&L4R5USTlN`Mt$!t@k^Dq#k|6)$)UU7V3hcmbN3fuNZ&Y_yt z?n65*?dB{6FEL)s(TPdun=v}#eLk~q)F71oh{Z?j;mCu}E z1B?E4$kStHiyFSTX!%4srz4dffA*(@`A!qfjYFP|zRLX8%My&JFo3q|5=$n9&UTvo95`n!;PP=8*h#Fp!nRPZ~Zy1s0IP=#NEEcC*)W% zu^e|lNInU}F6lr}jfc-V6l?!U4*w_}X5>(HR5%fj3-N9zC#ZEHF+XvWN| zo3iXx%mu55w4t{*{8GsFPUBhGIL2DuoW&vJcZ$v)wmKVkH;vLycfH}V6b%9ERP4>j zC9X|v0Af`JYz!cj`f6AD7F30S0Z#Iq#dJ-swDGoa?>gDS7M^`05tb7y=?k%cPdY41 zb8-!p`dcOon(X+8=x;rq&W^!Ro(^1V@G~pPKg8Uee30roe&eaK zr{RvzR}*&b5-xbjX~1P(k9vT6hN5v~DIOgD*0aq$|KA;mooV@K0U{jtBEr!!LAvLT zm$fMFwfylybKWe(i>o0XZ9WPR6qgA?6(=WxrK7%-rIbOb@z}x3x8rmws*BXa}&gf5&g4pFgj7}jQ%Mzaw-uS za(?s;UG7}jQ9hNPhYZ))_j>J_Ta!_3GDVVfe{>1YNj zZ^z`#E{6yyH#+0Ct*SQr+P-15{aZmiE5bPK_MvSP;uNrxUxiR0-q zD+a8{G39dZ6V}{f<+_54SS-jTBFZ_ZmCdDSEo?NzT8}TK=T}=auFD*sw4eSf=8WFf zz;Oz(DHf8RtQR5`y1EF8( zo7^4kz-;G`r~8xbq){4;c~<|`gMTLVbdzi6_%;d_JGW_F+|}nN-ScpffI}m z!HPlW-@nG7m9iN)5OIn#xq%So9rh8mr-`t$QbKBj*8BjjEo|=sO!r-3doPnMP^nAd zr7z&z1TIw;DtQ0NSZT*;=L@uhVx4;R9CWI9p4={Nal6*h=W~1aoKT{>|ASv~kW{ey z%iUku*B6tE;!6uUzTEz)fB$hOrtwb(3cB&ZXq22XBZGE0G3oV!GngHmf@?DN>MKI!w-mkuCZx({797U?1O6WERf$QbsFA@bwEe5?30rYgO^r9tC^;PoER^yd zxJNkzy3(p1jCLjN^?26IEFx#9cIJkCnE#*cJ^SXhZ%*okEq^V$`PFQz5Rzf1 zl2TLu3>c)WiPE+*F9KjbnFw5K%Uoz)HMvaq@|f>r)#ImId5%q8g9t12VxCMXh!{nPjKe)yaG(Oe3kFLX9)`&Gmj@rVQO?LDwE)h@VF=+$k}$u%fpEKeg02D_#$vCr_4~jZC7P|G z1IXOO;<~58F{=mU2C3q-HD9(W*{8t4$K)beu917WM#fH8?}cM|T;USC`gq?}(l6y1 zu1EZlaCP9{1$N1>E{O}ll|jeMaZmf;4OKYK&k?Y)N=`iOZDzkY?)(Rz;4Wc@=x}qoSQ&v&yS(wcP!p0`Vp8 zNJ@Q^JHrc{FMXDUD--rg@q&Wv_QBAhHJ8{$vW!BVxJ{^0p>OCAPkbpmihDG>czJU; zrT#yaSHqI@Qj0Z84x-gQJcZ9v-}_v1XZ9|wOX z14m8iJLo50`fxk)$N{)Gd~O1J{y)KI;D?w%#Wj^1lF@g%#ZWn5xWRHZv5&0 zB|PxuF@$f(u#uI`_TEk41uJ;PtziTXPZBkhGYHK03pKnR+}HZvrE9> zOGQ{1+zyUnr~7EAY|5G&t@(M@qD@0g@bj*yIm?>?Ni7+Z!o_-HaEFol(N2PjE@&4z zy4G4ROb5OG%q9_#ZG;Wh^;0>NrJRcww9`N1f3=_O9oK;j#a4B|pf&lX@Hx=qBHPXO zTF#Ie_WU8IcR9r67y+?;pI?qRf229q#vvs++63)>+GN{K7!U3y2|F;_6(&B=-x2%n z(fhm^Mw_TzTT6%3=3?#s8zhNQa!3{tsfRex6UUtXJksjOK(R#6sMU zsR3HcQN)PNm$QE4G`-KaT88W;obm4C;^7+fUeIsR=e0li5gU2^i_q#wCY@U7#A6D2 zDQa`%^3wZrlHX8kU8{OeqoK)qgeC)cR;Q3Ewv?NBD6f(HI}i)|g>0$#I>o$4g~f!7aIF0F3a?Zrvx8 z)+H-5oJsd9ctsP`~smk%8YN`B^C0oYxB$UIG?%1SXg6$(nVMR%QQN{gBJ6CH2(g`E*lX2tC9sR zJpcLr<=Y{0oA0#B0+#nV5}tyv;?whK@PrlHE7x&NKV+{OS_w)!7TAYB=gXt2&{!h!OY;7Q zuy5@3#cFekWubG;1|~-=@2(WU&5fr+=Zv-i=G#J|D;dAFvL6Es)EbvF92hoPcE(<3>dRo=+uT7V>8s5n*$OXd&dNFkSB zP)G!u6{l%fXi2Wo7N+j#OKQFuvDtj!$IF_HCpO2Pldv)-bwIKqlmJ%`*^rkTYdr|a0B>r@w)SsyI#l4$k`Sp1S?~2Ow&xC`@CgWj_8nGt{u;%)i z#xmpnPIYd?3=V61ggQb*lnTLtj!YT!0^`lcg|Fx0k80ZN4fs;(wAQc9P+aT?SJH zc4hi(SL<_Ae-6Vpd}Sh=QFV}2;5TCq?Y3h>{93_B%b9;Q#;Z-&n6cA@7_ZL0a`J#_ z_v`nd@#@^1$=&9o1M>assa+YA3SJAuV}pdqm+|b|p#h_4AT-c?)k;r|a|0a^_N^+; z+#$)BJ#YrV-~l|Ub{rocmiNot_XW-mkG`8YI~#0Ix2?oSbtf#sy4Ah<;eNpBC1FGXJ0A3GhSVoGkJio zp!JIMb8?RrlRjEo1*w^{a*rno?n3-J zSE5xd3e`y47D(ccXKdKVJX*cF#?O3+QEy@7DDxqE5u zNwEtdO_at0_-iKjNb?grRD-*%PK1h$XB9xgRSPhHlgrtJt7f?)50Vv^v*PAMjla-4 ziq>Iy!1J$hcKs3{mna|`uT}<)ol647&X&uXflTR@XzzM@qwR2P1JT{k<-)q{^Bb?$ zTxnJed46S9BSK%A<2e@{^sc!YM_~;$>qK@}t*rnraz^SK!wXO5?chq^$~?UHXJgS=u$9IW76Ma+Lq@v z&bel_FVt;3*hw?f*-3Dx%rfpEMup>LdVelc$j`ZKt9u;*OH69S8^_+3^_F)t=SV*_F>7hS3P$C)Ca7<` z#%KP}eE$Zg&!3p@OThWSq=i2Uc>=SVOO!yUV?(UQ`Suo?6yfp%orw8fXFI|XDT2kH zvHguj>oSsmukrpf{?z_~JtF1h28D@dej%#~5}3`+w^ZCrvso_Owj{@Raewrjcg+=v zT)Ve!o$GsUtoBvKEi-c0p`PZ?SdBqzW=s%=m^T<=0E}lhBCk0SGSCl)y~dfVv^D*n zNDf8@BF{B~4dkZL1iaek#{k|)~f;T93< zwhcaI5fwxo2;>e%4MMc}wiT zCJIxnaX=a_8Y?o36txdVe=w%=t+xl>zjA``#_v8Kvv2j!C=E_Fmh5Xzxv; zJThmwIXc=k3i|fm-^2h+|9$%)_Stx>#sN=7j%VW_J(s#R4pCj?i3?gWU^bqXR=h$z ztPi*Tnc5%Mi#byDE@^|kR@HxnwSQ9g*`wF&J=DE*{G3v$_oS}(u&Q^!YCN4*?|`cJ zbmV(!_2z_r5t#s*GoIZI+KEhbZsHmZ0`j>`cLU*y5EQ7!HPMo1JX<1TN;|g0^&hHn z&WLsderxymGfRd%@5q)1b^p6m4a>K`2wF(~JywtpKq%7}@}!i9`;bDoUx1b!mdV|10pWxQDD=h8I#yG+lU(fwI{{+F2Z_&t1y z0nDiF_`TOeCUV1-Q>=Mc=3B*A=KaIjbKGgfJX0Zm7Jo zzsN!ymhR*(4fQtXq(n$O$i#As9)?KW^A|P<4tltyg>&t5Uf??#%2*s3tJe$%1lQEs z1@}#4Q&;k!29$~d1wGah-~K80qwjhmUJx8F-pDxD zKpLE(-O+Yo5TyxA>+u3T|5SE&vF3PuFw|LtAG-gT2)yYSVM6>9+=DijQPdN9U7vi7 zvbSrTrMQo^E02Sp%<`aJKG9s2;}Z8~Id`l9%0QSECcNJjR4((mq^9tBl_V{f@y@RM z&n4>JX1VmcRJz-U{%#O$fEjhcraJJuJ$quPyT&N$R*eh2W|W<(agLGK>Tw$}Cuq-^ zXx@|KUcIWzQq>4C{x-*}`FoTI6Tz&-??X=J7`|{OjCu6=eruLr?5mdfGwb~PeylFY z@6yGILZ4lPDx4m7+9!K$v}+K-tRf$qLS(6Rw=eW|a_xQD-6s zTNTrSDgH?_pX2nE!YV7u`B>%x=cP@Gj!--hbCxtpLcf<5YRw6h!#4}P78z$1VOWN4 zWflcprr63H=SNNY^wQouWdu3zwjy4rjOleT9Pz@S49R!zL=tazJWC$(FMUSPzp5vf z5z$rhe#X|4#LQ96C6F`I<-oZTm$QlR3W;@^x19y;;ykVSI=kY1Cjv3@9VxFXOQJ`~ zE~D_9Dr@Gb$XOLTl6D=&7u;Vt_fv$`Yc>wqO?ZqR1WK1_8SL?x_!t8@_3)eTCJGWW z*85tjxb>W{%WmSDKk2|5RRopjE)uQGWI^vf<$>TAUZhAP%=TIyGq{!XoWJtcC=Fl) z2>=L}zHEr7 zjY$M4y68Y60PKp5}1|mVv*~?1;o_8)U z@p&Rcm~=wZEZUPHDZBn5)D`)7s5%h2iG!3m3#=V9@8x18XqO&XiZG8^&w@aFLy4`6 z2d&z6s{>0InTsLfSSgCul|fAVr}~F3ItQBf{Y~RRAugLvhF%CkL`BNI3$2`55r%uTQBs`R&<)89g!$NaWXv`jd&A zr_|;-GEqP$g1pcr?Y>x|ph~1%yN|1)x_{D%Kp?cP#u0n&Q0#DIuFx0c+3W)mxE$kG zsU^L1F+75iYevC$LUiKpnV2PS|A-d6$5T`PT1*AkJfNeU6$Mv!p;xU zqg{xIzKKNVhMjFXTEPU;W4$a2rNeL@Oy2#Pg2{OhQSiu#-iwSLfWRqz8XyvPPf6UJ zC)YTeQHl~Grd>OQOq;KY-v#9n*j=FR{wYu7WxzSj)5*;C6z#}yZiC4D$p9iX+mj;O zTK#amzJ;{L>!S>MPA+r$qP%ITR<(B;{As)50DQHD`BsyE(>^)RzvZi2RG3)MfgrTC%;6CXe%@H>3=vL%*OD6D6B|Yjz%Z$X??OMV!@R@nU$wv2-ei1c?#TKSrgR za(=2Wrl+zZMW8@B0p9 z=SC5*LAx4m4fw&HHb&ZFsJ0|tmlpTRVJXtj)^oXJtn$RU-AB20(u;eKm!Y^oR?8YqWy`;Y3DchLYjzpVY-xBa=r!A=9>ujG3Ugmd|NAJ zp?&z)SLl!2*T+3V`C3<+*Fz>=p*O@!MCWnr0>>c{Nl>a=h-~j-Gwk!!`es1Lj5bR4 zL4g(Q_0;-j%n!KV0r?Khm>+b%gBG{}44)@Y(Eb#8`mh==q*+qSIoV#H+ur22f4Kcs z3+aH*I?C3KE<0?E)wisuYvQc-94%k5{p-W0wp4(#qfnpPzPk2YqQ*LlE}IwPzQ+0L z9wu=w+mY=rz`WxUj+q8th&gF4bbh0e=Tdh=P0?dC+Q?HrideaboG(LUw?(|HVDO`* z9Giz20pX03{k8m+nV1L>qx;xaf*UdH4+?7ym;`^z$X<@w?_U|&Fib!w*`;@hf&RAiBqi3ejDY7%X>Kbw(|CBDO(BRyTnZHv@})Ur;KF#NH+tNt zLPpjb>p`16!F@DrmR>-YVQ+NQ@dpXyvOy(n-yjCqij}dwGAy7plnwEX#l16tv$ur# z;$t5@+Sn^c@x4+#>}+z+E*Ej=WAY|yEhWe0tx(=h$Xl_zIr1ioAj-(fY;%q3y@ z@+Rh1W}_a35d+nW$e0h)izDg1(C2T;`5S%txa!N1WM7V)*B6g8LUqL}Z>lSG@}|1d zAaANGVR`G9W-pRA)fEK>)fEK>-IaeG{b9P&GomZ${yY9wfA09aj19x8$EGK}KeR4~ z#>os}g1R&0>JQbR1FAt0=T$i%k7!S+J6A*oUeA?M`rJ@D#5Z$g-{+(~2c$h+%#{Oj zvPX?BP|~Xi(szudB}bru(ay+v5N3&t}ZctQM%uAd+_ z{vLRm_vm`I`?i1L&92Q9D*w@Da-RL88Qa4%c6dX!@lY$Vp9Lx1XKabcYv7~s5Cfae zbyNO*zD)^vwk+hf)Ybjs(SuSEJ-&1g{3iMk4p7c6WkYMpjKo+=Bppudpjn}W9>v1u%olNTiwyUqoS`!uQQC|ZaX$8 z+3lD4wQZ432|F8BAef_5G#8^YTBswO;#WE66r!bMmlv9`r&PWp{5mgvTWvr(Sz?DY z#i_;rsu_El*S=s}B^L0;RfxQ`uAi8J)KctmKn=atD7aZ)()V2vk3B;^NoA|Ip9tH| z3YhkD1e=f6@vBdrXF5iq6=O?k=kI?9091-I9hped*iy37N@!w-?%fL{OY9I>=r(el z`S9D)ZHaK;<+-nBY^DUn(gM~>zzc{aS&yoI$5s*072D5mMpsOV&t$JGx72L1%Kekd zeUr+)lQ8I#!>O9q8;_{O?#H8;7}z1*Fjd}_-oy?WkOj^xIOrU4t=WFt4xiRK`+`AY z8;E9t6bcfFwYndIPGfEEhhWs$R`)}YYU}~`L-1;ByZa%iHTH=6G0j#53*L%7Mws&v z(NUJlk5jqYk5mHLlH8DMv%o8HM$8^(EbNP9xN5feghoYe2cZ zlP2r}4)NII{K^D`KH7RNxH-W7}zpr6!IUTc*Lg z<2h=v)Qo58cAK#~3AbW0m$>qe$7D839j1Mn%x0`XXNx_h2mY03^z(a9>*u47>*o)r zD2Qi2QK-{DG1L8CQmkCnl=kI95Y{sLQQ;Lh8r+Mz(!ir32M8m~KZP_JV429pz^$TumEeyL4EWggvRNh-nzq#dI68 z-De=CVO1B?Fv)hGfmpHXd!3sv+kFON&@IDoMGwl5!K`Rj?5j!w86AjsI1vf(-{`efAT6H(9$|i6nFPCn+VMqLt$j+spe1`XF{d zm0cGTo;PJb@v?r}?L3V>84?eU#D}^*B_L6b>2X1nH#5@nH|&5 zKW{0gsV)X$vcL&@;(&fW>ON&5lP(aG zY>C&ezo&6b+oyiFJn$qUSUVUP1G4MU< zfS4|Jy`+kD|D#5BPIER)X~>Sx_xX~kqOYtaE#%xB9&E|EZH6UpT zt$almG3{3yV^K6Fs}asm0MqUo+iA3tL@AB*Y^icPK>HsY3-gP-u?$s4o!V4&t1Vl0 z%EC#uBBQye{j4PedpkB^yOoo< zF=`dzXFZRZhy6rlO&JCB;2|T3r>tH|HL|acqGgZ4wx78aWe~&us6oZ*C|s&CWl#gQ z0)Lg&omh}-EAlVw{ObZ`A5Brti5*Xq9wRo2QmtK?smWKT>k|kBKPnC7PEi;$NaR|t zA#CK@iy39@6G8Mx1;dLYh=-^xJ&6(9DD~@Pea!`XXV`m4+OpEfyCv{1Vm0zp;tbGw zRI0aBQ(XBvBXDE16W#{)P4PUu2Xm4KjILuCm&B^%2~hSPBY0F`!R8Fl~pj4LH=62%9rF%MVjxG#~3ILomwXgll_*Wyhn;zgM6g;ETk|9p6H21XCB z%o)iP4nBG60YsYnzipVJo^VE%q^?A1-==tr*`Qp0mAd`!H+ ze4FyblfliYBDuMf@+t8@uSk_x?3T!0FV6GC5^|mEMUPLM%MbxYtHLvr`TuD+zt_z# z*i`!;Ubif*Dax6`_4cel7;|6J*djFv zgo^`!sQF0P$#L5fyHk&rt$Z+ro$bR#jZPI607wCGT%R4Au8ImMC@RlSfDsBM`_V8F z#23m#fh!3p1*Lmk@2KlOE&vI#(Ug-gY^(GFy6G^cT+lsOqd{kvJP@w3ZC#^yV!QLf z1jg5lwu5Yu0*j~YlE|EwBVp%lC@Qy!&5pPV~ z=KPt`!DiSGA8q^ZTWT)xEwQ~@7pIV0@;)+MUlN4KK-St~q#Y9~^7Gub(ob0}`CCg~ z!WOb~gIV&7<>3yEyW97dDB%??0TG`KrxRp7Tdot?O{Q)#*o(F#B z;OI4f0K09te;sxl=9P&X$2z)G?sf-jC>~^$Tze7a+FnGl^AWc1d`@ychy6{82L#6EPcy=Zl(Zs=pb8~8!(1ye;6!|$E_}!yELGsb+(j|1 zFLRrJg67j+)q|5iPgViAYF9|-pc?Chv1 z1E$rDeFFS)k;eWW=>%-lniVhG^=jZhrsnYn416AqrGYY&RePlt+*d$x(a?Btx0-Js zzVAmHM)citVc*MWp6bd6k3t(W?IIn!G_7ME8HNA0WAkZAddH%1&&W{_;GPDy#od9E zKjs+MRq|5iNi3-8)@@@!axLGIk4F|@Q95NSzWWwCbHW<^Y@c}Fx{USw6|}C)c!j^8 zY+9F5$(pO>FNsfF`m{t`{N#8rEmMopj3JB(RQMnR!TYC`^}G74-0#V4i0q+`Z#$!h z9BY?V5uDulgACduW}21F3BZQmxjOdCfO5trH-~j$p*R{L&+A<`>)K~C%ddmKUtwy= zSd=C1f$&AxBbF3XUre>7J;v19ywxJ>LThAL{52xtQ?P;qa_%16)IgBF@)q24~E&w;hb#l4X&emX*IilgYLKU@FYPI zeuW}*@t_DFri{vv;Pu(%$N*0W&7av)fQs2joLn|DiIdk%cka03oEknU$f}rNmSMif zXU;FQgN4@o>6=~yX|`J>6Q$J;o5c^~M(SZ-T7#1V=RVc=rTP11To5Z!@&pKz$I-2c zw5t&^+C<2N9?jsdK8K&XrK`W@sIn?ZuIA$)sEV-$auG}{<2kBD2PjJ9JPl^8Se{i9HqvaBgM+P z^znY#EM>g07;(E32bZ`pxi|6qg%JE6YD=y>2#gUUS-C#PNo1rsc&RV>V;^olb||+ zvg>)t&g7o5?cX)v#P1*Lgw>IDoJmwC4@@XN}*R!tRQ4ykD#vVW2StU(dHQNaxlaDypR7mGd_!=*a-Rufs&Ge}Rq z=KSN09I7=*Rp_=t^maF+_Q&5sz;G3R$z`P0Pnv&{i>#j>cl~r~FbK(CCx?QY^kG$b zNEaTWusr3jp&N^-#KW;l;jv!6X9dZq&SK{$9!}TJ3c?fDk~~=fN8A-K{cG+DI3isa zypdc1Jqj*i=QfS~(pJC;SpmuDt2ElXUgPD%Q{8l#vQaBuLE)H0nY)D!k%7jAE&Z^rFdrrFza?egt*@DqpL z#X5~K)w^YNmVJ*HfZG>3wc!s)8<54nMZDvAX7yn;xO?@evxf+~Nw#wIl?HFXVsSw? z3GE=t1uYY;qCukXI2|fNGt?>?Li;80d8hy_5K(^wd3R>_ZWWAqc4AOe!zL@!o*CVM zFT46~3K%7cCFt)iI65yKk9d#%2}8&nmZz3ZS)JuXaAQr@3p;N^jFH%snrH~O1)J!qj4zQ4oTMxXXoGIZlNWIUf~cAXZhHJckUalAKI0%K2H&zH?`B!4Sx7zCkKI z4bDwNw<5jiZ?CwiyehG+;Hk(?8fpZz+6@L>r%?&PK)-P0D{y?Bi zgV1FcR*8@x{veP*xeIDmX0cR5)0Uc=5eonMnFxr)M%ObjvS?#po-uW{Op7I_6zFHC zt%=!FH1Gm*r;v-ms$gL*RZAQlLnb>4JFdWbbbVn)^Qjszsf^}+4Y~C$^*m%@;mAK6 z{&$3nj6GuWvfbd%+>8u0&k>7or^BcgR-u8?;mDx-bHmnbJ>o4$GzbVpQwq*1k(!JU zI#q^gJf~e%7G;t@ROyX~M|SGfB&SMEfqhGem0Ad<5~c`en%2*ctn6;#(a-maNJ?1% zLk;Mmit9e$6%t!WfqPz3MN3Jk(&OG-0T(4xY^vEGRStR?6|L!z682<7+?CawH@r5F z{@God+i-2@`sMSxxM|650@D|$o8RTbM#f7qvOc?)7~gE)?byk(D2OP1pW~KA>no=u zQ>w|K=d;4^G9(`!soxCTHP%t{OPonqhm>gMp+D9l;cK*=1uFJE347X$_O$24=tPSc z%M6S+HxAe{FXITr5%(Bc*IR^Yw5m@ueb)BAYR!xGqsbZC7nx`^M^E!PU@eMbh%$MnS zMrFzIg2SN>@*NI!BmQbU-r07zc`_Ig^^+5}x7GGXxy`_F28tTEpQA$_+A+sL>|smUi$}v@%Jm z!oZO~4e{RsS{SylVo=YzuOFM53`T#;GyP7BjQh&bn8`CM1K5(u zHq6>U=+{k)tw!mG=+s??N2Y*X+8UY?V_1Yt6^yFRm`}y?y)&wTR*55vkc@gAs+mGb zk)NWgfVP;xi6V5L8Ux1WsdRC~=qKsB#A>X;U8T&eW!Y% zK)I$5fjYX=SEGu=d5${Gnh9orK<--1(wx4pF}3`m87*J5N^>T6L>(WjQqe?t4Li=L zRyjKXHcES!$?#SNEzEDWdu;C}8NB(4(Ei0O*NeetA3sTTOr}&?Dv6z*s&1)OgDV2g zl)ezYhiA+gilB)Vz?5&%kh)PbFQFNp3TBcwTACyFz0z*k=nwe&OrdX7bB-t`p|Jui zUXQ{BZV4ooAOwqAScR|gr00?M#77b7tHhe+y+LkCi>%uN)|f&o8y&GwXQaTo+dE^8 zH!`{4FzvCIif!NQ$-S1}6Y@o_EJBVi^!kQVqRTcWxwT=ML6ZYXp10Z$%G1uv=&@n0 ztor5XU?OtaC)?G@(HZkuec13Ka~OfS`8AO+vE_v2Y?(npu!t%CI!y;!MKsIu^D+%L>33(*oT+%(nfz;c?wMS1 zz^vGVK)^$nfTVEd?JU6O5fd@G$6N4owLF}Ud?q;|lhl@4f1CQZ)BE8i0%gwbDLOu8 z<0EL=CCrK*aMOM#y#2idDvC?Y4Vi3Q2Q(ar0P z7q_k=jpr0ED|ms;^*N=d7wWzT5xzi0?+E$F;-4Ld%3OVks=&zW?&A%e2ep_BLme&0 z`u>qs|M!ydI6wILC2K55M0@4Vb-=x-&MMTqzV9`q{iotVX zK{!+u7q?sxqu(m#v#NVT)sI^hM~r#ZkB2HAGfPm{;6d=A4HFZQp4x>@H8YNVbxCqK zM^8@<=eAm3&mU2Jj+Zn9ZHj+ZI;E){O^oVrRYGJUZHON%VEGWcq-Z6uA$+hH?MfyumgPbr`Wf z@CscR`?U%(E82g;aVX>LN$YK^TQZ5|Rh{XT;Y>evGyN-1F3p_#i}W>5$umN5Jwm8m z@}%n#k9&chc*zUW+FEDtWurinT>W9z+i3fWlvuJWZCkY~o^-y*IhGwYn{;eK(JqfY z?MG(hImqtFb20}$rE)zpd7$I{QJ`<5P29*t-yajX*$SY7P$br*JXXoe=3EH0g{Y&O z3;oVA`@O{TnJ2|dwq&Lyg_{wCi9or_l;g z^Qxp_uG!&$wmMqUFP3k5tV;?p%@ytRnH5KjSQr-Rop^? zUzVgHn37aV=LZ%Ltr%K@ug}HKEvayg^AtU>A`RKWH}_jdxnT%`@E};s#$I#d5$6ck z`>fE}KFy_@3)7)~U)-}*;ime| z*JlO34|VwOw5H>Djv0N9tnsLtki1!?xw-8#TcNXFbM_xRi(g?3AmtKjeI5fJH)R56 zw&&LSiZhyX5^E-68z`|R=scV~nAloY!k*hzRxFJzgM%Mvf@c?y<_5klZ+|BZ;@YPE zBobP*2YK4MV;oUu5?3p6hZGA;+F1uvuMw_EV5xNWKh?cZod~4=O!Dvtue*`HG%74T z1SE{9yH|7jC)~g6*@ZQX?R5+2O~n!Ci^q`wSlMx^hK*cFdC)(h_@T3-?_030>3mtig3V9#!bVzlRQ<98rb z?rpjCg7RjsRh?;ScD_Q1kS9W?RljV`ZkD{|J}V>c6{#|~fjxrTGHl)8a#q~Sv)p1o zeL=D3_jY`$a8u=XOQ9mF@L6hFncj!vQKe5xHQV85(W%m7N+1K(=Et0${zh%1M%(km zmm__)=1pWX+J3MuLlj7rw&#|gr_Djsp;u;}r?YB#2!+yPw@2=^?;le+D@Nu#wh}uF z=WDyNrCa-vuc^$)IN8Y5*55VGq1gn8oiwZDDaF1MpTW#K7;C7z|6&%gw-OtD=@9{- z(ROl-TB2CD0G!Vs;Fq~;$*yI~RbfL^wk@9H3I4{*>b+i+`&gDpGRU63$7w`6SH!F$ zT5Y7F-I~kF$gb#?t>FnO5a&0Def0FIMQxX`P6E|9t6iBH?!EMx>YWG$uxtVq2XN3w zMrBcvIz;?TrIlMu?G5~Z6S$7@tafQ&Q?qy{3P?NaFUk%^Oc?vknXrMJk0{Uu$!%3a(&ptF;Jw?J_>Ow2lI zIB%^lDfHHyn^s+McaQ}0y1^PMnR+8}5SR(Ln#A}?ru_{Wfdy$mv#eG^tZ2LZenVQX zA!m6vg}e{jQAw|%SPdxat7T}aUrqu{t zc{KU6%=@GUM88N3UVT}Qrt=Mx(NbUNq?Qb*{gTOQL`Hfg#L7l3N@!> z46|i~6w%0a=u55A71a{A&}k3Zx|cJzIOmE387m|O$J$=!y|+hm*g_rH4?)n_D?L!n zn7x4l=j{X4(i$0w;(c_fZeAyHYc$DiN>YG=*3bqf?1p)|Nk?>j$%aV_3%yPYRa@N} z{aI>zF*B`isMgNi;EsUz{!sC@LF?e^mCm2%(v9xrI$}9V4_ZwdoTDn#F8ymNB<_a1 zp9W71B7O6sPi{*`|+3Bu&2A4Us0h z$h*15n%!*4aX?Yo44)oCAXTRr%Z1*ALX*zPIf$w6T@HWbpz{{*7eXYiLhVx3|JfT@ zy%bx0AnJ@VRfqH(ma1Ns!Bf}i>MSD_skKtl<8)GpB{mQ zuz9yJYGuw0)td8RIVru32c2LtkxaG}c;CNWx<^O)N}RXV`}xHjOQuNW+2@AnfpuQG zXtwW-O!W7BYH)N@f!hQ+8r?%{BtjN-w3`oiv;e8mCQb-A_o`7L(WOcXdT~1rBm^lh z0TT)(RSrz+WjN&}o5P>c_C6VrdA}_U>2TSAT?9(0;Abg_QVUfx9K5GdWD}-9VFGtq zBOSlVVG>}!tfU7CpI#wbZn}T~DRU`@=xyf`km$mW!9Yn5YKUb%Ys_*pSpH#4n3Y~a zb&q9GLTW9dAMha?^6sb78e&-0J-QeTbZ=F3{RWTmz>9QGqbl2yol?(ROW|JDtJ*4s zqquOUsILfRV2!G>_N4*Tjy_H(3h35;cjNokE&`m;mBM>${w#~<$uhF_SO@8Zu6>lO z&24U|UCIm^W$b)j;+$p)WhSB?mDzW#^*N|4OT}38-WW9Jo#g`IjUk@?uIMwQ7nWMm ziTfQN(}#ip+}7Z=8O|H>b69?U&JR4Lm!E`|;jj2R$ineA%T8{8gl+0* zRh%2dJ?0cEzqN%E*42sC6EO@gX4t24L%+4OL?XLNi!)j`;PDzTh>BrgjSwL7W&2(( zZ(oNhQs=DS=yTRFFwI-)lvN`!X{Rhy5!ESc33<~`S$iZ0f1I{1JY{{FDjw1hZ@}?1 zVjW5$ysS`BhuPoMQ3|iA0Z9(bg?(D=8PO-ot)zi<_!Uvzr%g#}a$at*`PyM%+(<@J z6ADNK9DJ10hdKq0r2wHGQ$$Rj_?GANIFVe_G4U-g=n#FGL*i<$a>mZPcFNb-KLrEOejq-!Ro zndZdaI4f(EcWLIL+`KMzk)6rMr5Y?EVMp75Pp7m|;KS4J0sxs?ITlGbxV=~Xm8ngC zJLoTOIkdh}dONKqOf3*Vj95Ou-`+(LPBrxtd6#uC>|9+0YRB(1L%F1fbEm&GG=FW& zO&1()%k-IfO|$dqsTx_8HIwJ#Zk~q(VP52@y+y(m2ViHbRQ>L)I`bC!BL5!`!VvH7 z_>FgRcjzHOb1k=AQ1uoG7Y@Kq!Fa@R8P@S_bnOVLB zK)?WR(bH<2C-dM5zS>VPJ8<4O`4D8r$F+P|4+*y8VhhEehlZr23?zXPJ0%GaUY6J? z@iFpNRnCJPV!7t=#4`U z@40vtLI0G3jFQ(Z?>>TZtm1uM-3GqIy*0W!qzpS>8$6q!1u_-H={bC)My5Wy!W2fH zw~%VfhHZUvnB`lwCyynawJI!=yB>M3j@5S~AL$fatAwwan#{1bjXS!TiI++$eQ>6D znVJ;4kNKN?8{Gs|2ulC+Cy4j zm7N!sgFLLV4M53{@72&6rnNZX9-)vkJgt{aNlokd&E}d7EDFE1MTXk+p0c)xe70G9 z%4=;Af*@JuPCe}}DE9nm?{N#))Bd4WY1yJ&zqwNivlJ}g1Qnc#ZxPnC{F|YsR?Cgn z7MUW}LEAfky`dRGzM&uO%fL5>O0nTTqpv<98934t3dpwf@Wq@22?QQ`ig$);%hUS# z&;j)fd{f90#)~0T92O>#nj;gOb7#&f9*do&3VTQp2GdI>6^XRf3H)i}Kn`?OudZC@ zDb%7W1Sd_PphdaC|3llmz(-YGi~kccB!i61L;^;Qn%dY##Y%-L7}Nln1jT^~Aqi-B z*ea!|-lAjxg~Zq)n8R_9-l|u7ZMBtF+iP1|MQF7e9!&yLK&2X#+fs|V)1)o76oMl2 z|E|5yyprJK_W#T0lbJK;?6aS1ulHU{?P1p>mf|neV&5bEjOtCy{1ueQBx0E3Tv5L? zw3=CU@1MA; z; zYOn?~78I8+YaHJX3X`~@v`G6%Qw<^{_45kQm}fx(smUr|VV4Vy)jGiI(E25Cgur-S zvBn0Cm-cI*FP8Y<&$I3tMTn%zn}Q>3jV&x)rL9>rFojt)uc`hcw~!@uI$Oxp*BAH= zhD?EjypP_Lm#5Vzlm-ZmY(C-aOmFCucdqAiC+S=QIzMgazSE~hStopSh!cB4&<36R zv^7pitI-)Q=R-6a`ZR-$ou4{b!5s#v=IVWPPkhM0(LLJ$ZH;h+@ZHnFukI`Z-;ujS zLGXmeEAj@p9q(zCZw>O+J%ZnDjqNQ%2kv=(B#*eH-W4G=x zPN(dp_23!%zw`o>?&_@{W|h9?w@Y^&=bI#9e6oG@FD+xG3bhYEoi5ZOA!!W`mR-=x z`0^FLHG;ex{&2e1)k{VOyQV%m_P1Q1JIj2{XzT$IN6hq}t<`Tun?XbzFMOWIH zXM17%g;$%~$t@w;T-U^g$DO;JBM)kOVWtH$$fPn!^FgKNyicVvW}gQu#Ar5&5$Z!at4ZI|QZjJ^bAk$Qm6 z#dD_Lh?WU+{Xo%S6aIkDimpQKmXLnW3b&=U>B~dXuV3lQgL3&ZE-|A)+vGfByaCro zG(dmu?vZzsCT#IF4|;L7%R_^M9a{nk0K>m?DiF-o& z5&Ger0HZqjKl;CRSBI#vt|5LmKgoFG&qe+j zXg=c451i!rrt7XFw?wl4n{xa7UN<%U`Tq3Z)F0_7G*Oh_lY{4HX}<&igWG^{e*Q>E zmDcafo+@Z$8~$k=))g?!@ys1+p;;6MxVr0#h7(ufK z*WQNIX}qoEEpgZykuMHg`^8~ve>8ANyscoESZ9BbSB%dUAf52uBCI&)v~_$~mYUU< zgF{X4XvNi!r0e9a3uHbz)&E;Iz>9)VuBI8(|QT)P6E*dZCU*jry zpj9yj<9>sBWwcuBZLewKsr7=?V(XNZmiuA*dsvK3_T(;e1zfAM4MelZ`$VU<)&uW_X%hp4IB);A&Y zv;MDD-_)n-$gRgSqEk+oidoN_5Aq?42Pin>p*3G~kD#tOWS2eM)F9E0B{jI@#(RnH zBpCRe6`z&K>Jt%Ut}I-@tHCBGct8NaELYNzc(YZOT>rC@2Q;Y^AK_21{${CCE9|@c zi>UU~E&s)OiPGv!U;VS=RerM7ml<#%%WQy;sCvtpX^Zdu=*9muH81Q}^ND_7MPk~9 z!(?~MuvQ7Wfb3YSG^%^F)nuM^EH)ZH7C=|UD|a#?q5m|ng7y+gxI$bjh*5iyRAWcA zI0vF#M%*3XQ|%Li9xdrW;`oB#gimFYc-4P}1|BZX;6Jj7?x4%&@HS#ycJPnw&G40NY0sah+B>u#Vl}Ejy(2D;hYA5Jm=<~`b(0&C$rIv3$KXJ z3Ga!49JdlFtAFQkP4Db)x6+fS@wLdd-D``rdz0e`A__-b&or0m&)vh-O?&9B97;Wj z3&;X6uMSj(7IW4PZKvO6x*;*KawM8uPT;sY>mt3;bX+;vaXPFVJ|D*0Binv%y)4(* z7GuR%-p{5wdklLy%VlLow&A_5Y&7Wd`3QQe0v?LsLgw*6z z^{R(1G+j9E3|_*L>aIu^@$z`+JbVT0XXpp!>eHni<0xP}J4_zZCAX^_s##$AEy@g? zo>UC7$1V^B2d)w+_ukg`@NY=D_woScexvVU$W1BtWAkqJZR%03d>i#lrIonHlt{a` zxKB;$%O`pH+CBwk2$$)5GK9Fd2RU%-%@Cb6(@q#NYnngP%bD=_I9lX*e3&=XyZm0@ zz?+_?1)RR2ncduvPLo+NGu##tH>!+cZQc%Nw`m{H3|o7IB%DFIxv#yg$WSe5NhEHB z5=rrbe%hKc;{th^x@@F44RWefVmAfYRU8D?`T!POR6vC4;Yz%}#3?}Gop4aR6Z)$; z#i^1|P?xKNBfxIPJ>j5@SAY`tgt&j8?wQg(JNPj@dxU!IpmKUfFZ>)V5luy+XTo!Q znx0)dV9zu(qlG%%fn|W&aa4*3v1h>1Wf{Iz=dy{5pVQ>MKkbObX~)w-E!3ZK4LOQv z+QE@Iy|k8gA58VLm<-!+&~}I8p#T5-KmViazvkcT{h+kkaYx;JqHFl40FN!FrH=mp0eIY)*1!PM`)@8^#sKxp zNl0~#1LFc5DZA&Bg7uGc{vS`wl(Yu=P0YUu7k}}mc3*U%c)_}o6;w|Q^(5I<2JFV6#&qrZ4 zuznJOeo_$lkuP-)ofSGrzeOqUbR7jKr(ryxHz5iK67+K})|ifa%wznjZ}NlqNw`;^!WTLLF=F!R~V@epgJw&`6JY;$J;;eMib zoQU4W5%IM@T%6Fh{1%;9v;%M-3sxZgPQr+$8Je-2Z9 zhnt44T40UF!HPwv}&L5}>KQ|LSiNF8BIn>*5nBI^El-gGZVl5HrlZYG=^hXDPMdddYxE5?M zYYKTQ4{2seiwGc!oZ#W&$;%qQ)DNVR$3SlK8WEdxaDrLnOw=JxgGds*$wn?n+V&zX zGO2+>z?8>1`0~YmRrfs#l1T&R5Qqj>@`avYd77xnt~zAtDjjcP_qTk_zLZ_zw4<4* zkKGlI3{3+r4z(Qm7})(()nD1SdS)qY%S}ii$WK-8+o$yDcHer({@?12eq6ouSNOdI z);;toh{b3s7e?FQTk{D}Rvj9Epnn>2(K%$GdJP_*N0x#qm=7$yyXK;g&=_0v5d&gr zjh{WK`dXm-EAFNj#Mjal{t~|)6wJc+8WVu97Gb}3C*tl1(>gt)WT9N!}G5#mVDXM<_9B~{JzpA10=91vugcv{tD7r5cf9LnpsU;PEyRr== zXmuY|5r{IO^EH}|(*BCyk5~LHb*f#}#4ytJzCthNq4*_cmDAHWr8nOio(N$`;0wI6 ze<4o1^vln`$nCW#yJ{!7YofpEp&sU{3IvUoChdIpDfZp+ny=_R`&$Q1F`XLV;(YQe z^8VN@)J=ugy3KQ65i0@;=h2ES+&iS-@fT`a~_K8~RyF~eF{(AfQv~sGn>brhRN{l~FpWlAryhPM4-zC4l{Vd-lZ`?kT+Qc*T zT`Jt^yX1Gb6SQsL;)0Tgk6vwkONLbZTD>f|44Tzp6kVrc62su|5;nhibLFl)lHSP~ zGqD}`W#}4AbR<^Bl*8EJVTnpX0MwL79Vzo)n_|o(xxGC{0(NQLjy3Yc(nBPJt>u1M;&zn2>^?GC_vj@x!s*fELVI#bk1CTr%8H-3+{KB@ zuED@TVmO`OP8&}A&}DKsfW_IJPdp_95|}v%sOa-$_8POT{K5SKMhCe6k}x`QW@h%Q z#1)8xQV+kutp=`C{B^;xQXdLUqeA7Ec1y2{PuJC&jrqvwD$dl5QcxyLIa8uTpP~&n`Jp)R!C-m~&`L6D(tWhF-=h2~Z>b-)j?)#DV`keU>p-MpgT7EMqo}4Y-Ulw2t^bbJns# z7Bha3n5gQNss*94YbzPG6RY&#+CDqTt&c4ySBZ+xcH@Yg+(G{HJ=!tZ?465U=Es+M zv6IV0Czi_WDnh7m_f@@AX}by=ZvtEEv{lTFUo^mat$4|-6~#D|9AC;_9*Y%&$E=jI zNb^2^ukDWMBOJjFXRiq;=wb04A5PjxIM^0n#FOns>7hWZppe*16fYbN~iA zF2i+lr6Umw+;F}~vZl@YnGj08*BEwu*7t;jGM~=<*%x=#>+>hhb93Ah-h%gYoU(pR zfT@p$bDV3xCdKi4Qm1X`TJZRkdDbdnTkssZK|S-{nL7HF*R}SMeRsOP{>GiI?EQDT ze)_-t&f^h$*JQac=;C|544r|7WYklPO}o|)i=@wcRx#9^;PK)Y4pXXeTt8lSmE1Sf zSok`%|F~Iu;vh+VL`YmE_ig=Yy;q&x6ECalt8RdQI{8nDu-hHqZ+RldTi! z;Cv$CZ)?H2Idjzb?+GdOt@#I^(FxlAGuhrs@_B?8hsfr>92ME5HrGeZIuduS&uy=f zE}&qb7Ge+Hks-Amc7``$01t*f<2(L=9$%H%j;MBy)-$9G5fxTqkn~og-9S&j0mfyu z>pU_%H=2;+9KK?N*i&VH660Eeug(rCIT18@i-e*yBfeK+>^Hrj4@iWEi=yt*)_LZr zqUQLw5_>B3XFB_D{K@t*1xXf^VFU?CsMjrM@p!CfZ9 zlhEL3kR-CBH2d8+*)RDofEj9+st>fg3n_fH`T_;)-d_t8alS&QetPvSJ1VbPRhyz? ztK>;>M?GoQo<63tE=Nw}EXj?!|HXYgYEPJ(_92{eH;m@3nrdlxgH)h$iX;rorZM7J zgr?d*jkrWu1GhD|Hr|X(`@GKQCEYn#%qHd~Jzw0gZN)lUk3Slfju8ftc(g-8s=HT@19v;J zfxr0I_@<99GxD8;_iOOj?fj(DuHg?8COG%!Q~t_f8*^+YFgq-iqAt0sG30G_yqIziF- z#dD?3ekpYlb$%~VCn5XhE^2=^fNCozTPO8O3Gu8;dlJPIXEtn{WDGt1hK2tE`rhQrNDp6)Qp6O(dY-i&5k8wpiq>gjqR&>j6p|Y3mzOc@`t)FYgA#jK>X3G%EiLAZC(#M|h&lPA? za=QNl8EHn1K8sG1`ps33IMoQ=T=f_~_RSGM7NM8iCB$C>AS0X6r7*G_okqlYWwwsm zLMcttoN9Cp@q1F6txG$;Ir^z_&#|)|^-VecI(u}%hxoKswaWG7_FZoEhKJvyNf$&o z*{D8gq26^#_5+l_8i~&9u<7+l;t|~2eJ1294>y3Ll+nG2POFEEuQC(ojO8(!lbcWK zZ+5l%3eD;XFl{nw{Zr-#myw(4fxYG#O5-wNkTniDWmN2UDoz-_oI2w{GTK*l@|MPE z(`xPN38WyE5CIQ!r*DXWecB61+!>kM*@GoIj;xL#QfJ^N9rgo%(ZjZPS*zAlT(FVN zUTF1%)cbFMQ^6m>UNgUUX3PBA;p2LW3DOSO`Sn`x9S2T!L9K+ts$H{_>gWxM5EJ-^ z(mBCH>Lv~u3tVo~kNtBFVHDy0HPTt}4f0p@=wU$GG4dg3-)L*BYF{nSPYZcUL@6yOMdH@7=xu7j5R{`}1W>tb&HIz{6 z8i(A^_wz$=#Zo3+GI7t!^%bFns4emGA;MbieEE=ML)uIK4IMdAVgt@54%e0?g>ely z=#cQ*1j|XHNhh_1TMt~wD#}jk`k6uAwKOxk%URl66~hV~RFD5!z@&bTbWxDD!QVvS z*HSX>m!eru!P}Z`0A-UHjEHkRD1vI#eSZ}6U29MDOIIf5g0ST$9rMesotQf>(Xsfp zP2p$byk(8LCt~3Wn+laTK^ zR>b8yZuxx8)jW&_pHlNtvQvqKD)E1nq{RZ7fv0>$J?()#O@I(TZ{39Pk;ghTrlgyk zeRC_M%Xn1J7HLne^^5CyIOiE|V0RP(t<|&=t!~zzN!PSIFJ0$PI}f06P2J0sgfqg74Hrg5vs6i?+i)XKE2T1V;-E#QNZ0P9jWT= z9&E!G^tP9afR6-I$m^FC?~>PRc$b#Uz2WJH2yyZ0#&X}=eTp@`&^b{^-uSC!qz{a|(Dm$9+!Qa`!z zefR=@^8Di6J$u;z$thzIb-rzF#ILcBStH|=1uJ9Srsio@0pJL_f&8R<1e*BUj82@~c z-$-+=aDgs&W~IHm9gbdV_sf@h!;LcZ+Ds;U@l3Ewd$U`L^Jjh6%T;^xexOW#w`Wt* zrG7o1ZkTr^GV}Eiu}HByJUF`8-F=}QmACcuOrpEd=wUgDcn`0TrsSn+YlA#ir(-E3 z)^91@Bq3e%LCQq+CsU=TgsE{C68NUv9a4Wmc>sUXEKGETy$$_LyYvQCk-QgDKas9S zrIS{(beP76st1M=lUV-@RY#+vq!Z`WoFFnXN+l_(w#_;rxJkEWlvw6GW^9AZR&0YV zbO|M+&2qL=;_Uo_hMYs2mr;Fm^0E+XrB*Yzt{zt0Of=z=#OWa#mENg~pOO_BR6j(r zjyGrWV4xwqEBuNcf_+HO-D{*buZ}Kt$NRpZI<@bf)V`bd^n}&9DpgMoRp})p#(Iu3 z|B`Rj+%%;_>H(J0Tt_ySsv3Sl+b@kzNVM6{m@87Mj_HMCF0Uz7KNby9R7wy?PWM{w zJ`OaE+0H^eu-VcND+I3p%3WK}xLKU8`%bco2bmhCvs4Y0Sq^rn&$3+IHw_3`YHk9u zF6J^7vVOzceMX_D21s+jsk?bF2VSN3(pr%I#TRn3)U{jPX$1Qe$bf}$phDnFSu!R) zZoO6)4gu7XU_VuA;Vi72r6wNs*>9w4=p26LSY3uR|H2a(*5-J)bT)tb&W}#!{(J%U zkou>4|Yf~{nbh5iWfei3=9U3|2He1{m*g^uX-D>GDdYp~NX#IH+l~I2xAK`JN zbFs?(-J{uvZfFg0%yX^s-0p(-Z@x)NQ=ZFrA>W03kL7!8?CF(sD0-iKs)o;>La+k4 zWUT716BPyK&2U%}6Pv{LOFHd!v|H!05i%K#$_m=cM$5veUx%rZnKy@$Wqq$%Hm7UbJv!Zt z$#>?5KB@D7bs-Ooe8Px>KUVr>f*4?9g55G?k zdI2PHgx;lM50NIM%#)dVubX?Zr4t|>_O95{aUpf)Ed&_9tHcGHfo_#u1^YVj)B&pp_?2Uif6L=8abar^8Q-L1dr5{ z6;K;~FVgj8gfEk3!lUhBV_L_R%qdDdddx)8(YG;Fr%)X6x?n0+?R6%kbb)l|h zkgr*!ay`${=`h27U$n-Hamyy)T{|9I+z~y)bea0mzVhAj2sS?_+{2B}z?kT`csVy8 zHf4)=bn78s`OCg9po{XK$tS*B&HwOY+0vqhC_AH*z%bcq9Kp-jBpa-+``b&Ck|IO0Yt%vx~-Ktu@I=Iod zu`J}wKt#Dr%re2U=kwufUI@TBF$lHTQu`JxKk_w8)0HL9igvUIlx!ql&8ZTh5LsD^ z)U|(-f;#0%?LJn8S7r)a@}hn&aVv9jbsl)>6{DADhuElmZQ{R!|4uck{(~6&=O!GW zd^y=%al4$9W8^={DKF@1qhXT6eWj`4Sr-aw#xGrw&DZ=n_!ox1yr$m*UxT6(Js0Uk zb!BsT6YR@-svBc&T(QL}70!BH^T9af&20o`Z zq!!~pf+#OuIx>zDaFC3nq(H`DmyEW`M@JgRx>g4_v`i~$FB>Q0aAM1bFSSRGXHv+_U5i4i3r>3@zne3@r>oZsZWL(-A4$PF1O!-|YXpdqn@1L;<1#aB{+M#)Ac} zVOy=9>)q4c^ydu81;mW4Y?-qWPP!icgs+?U3SUApx>E&p)Mx9&g5870Y)7{+OyD}3 z!T*4qG!EQ${ROCx2JROw_k))AMbC4Qzyf$hU_lpOOmV>Ge&-b^fV*XGZr6I=w0)Pp zVg=WYt0=F(k_8K?Y|@X}!F8-v(;ZWE_k0g*F>7YJ$g;_j1)lUhJMkK)!&cy_raQ`A z^|S0O-?KZc;CizcrTtUr?muS=U$vettVFU;^dj4uHV!sk2HrBa#K43ezkmfWVF#YF z$|iITk#3%Q>Gp9`%X}+K*mvWmme!AmEiS+q8C#sIHvIHxtYvbbZE~pyCh$Xno~Gq= z{n^Ra2t!NPmY1=&WyebQw)gAa%tZHkl6^~n!zpr(R8kyis37arCFR~FLzAE(uyii} z)5(&%Z}Bp&zAAW75ae5nzh)E!gG+z04$P#L2qFSSEJg?M+?^L9-)y3SrFM+%pSM7>slSy*iu%) zJdz)B+Blg^(NLm^U~{hLzXt`{J5T{!wSb!maU2?lo8n4w6^&0yh?TT%B_EAb>3W^4 zTBw0R;Xkl*U&(1=SBj(R8CFokx5^8%@0d-3Y>Aq2{l4V-cJ`>_cb;gZ#5-oim%ygtgj@lHMQyEuQq_CM=LnRihAhNm%fsWg+B*yL`=p?Ev<&>&PB4UqZ!vb2WEp5AxY$o-LR{kQl)G zd;#kah3Dcxfws_J?crk@+oyKFQ~|WhHjvCZv$j!A$4SVk68adAH*nFvl5_-YstE~9 zjV2@{00JwOja6;a9OU0{*fI6NYOyT;YAY*o=>f;*Nci0hvQGoiA;y zeIl*_iIUZ%&(dMFMb&U*`lH1*SjzfK1#3*=bOHqc_R~VjJ1xDGD(-Vb-oRtVOYtFav2OK#p8~19(ecaF zL*LPoNca>|WRfX;HA098BDx^`6?wQ0rL%ak}qG#aL)ce znH(2s@F4w$Pf?H3apubHQa_Ae>HV2!L!ypH#=+TifXQJP7{MArT=qWFgIRMV0bKJp z<@YeAdFeH=!l>W7+@;;`y6c`p+;w$-BA*n*TRlP0L{BRPXnLC4K?Z!13m{|?Ijf_J+ZTDn2)71*(Zf`0oHt~ ztlBeSnQU^B7Q^F=c?DLbBo8l}=2+u}_MBdO^U*!4-FXP|keFc;28aE`dqRbMe{1)t zlTZNMHF#q2?iH_H+KQW*-4WS7C~{S%4?OsTZ%vzj$v zXuf;$xMXVc6}gk$%rRGoyN5Oil0r9#&H?H=Ay(`x_QiYxR!C# zN_>GGLp!YLqwTT@LpO7)YYPQr`(pOZ$#&$ha(~zVa9b9O$x>It*0NqKRf{n89JmBx zudiojcaa%qqFfB)cxa_PakTGQqGkB3d6MByZXU8H=3O)~A6kC>u`|h+lo@%4m~P7fb9YcgRdR`<=a;N3Uajc%QcZbUK} zo%?ZcdU>F&To_h#9Sxn`V?P#`Kl+f_j5T|D;pH7fj%{|@Oi<5_VxZ}n5v|&fktR=A z4%Y+bOzr-7W*0|9g}B0i5(3T$qJabQgAeVPUaKD+lwS&JtbZwf?C-9SI-j~<*LgET z#R-THAs*?$`sm?|7rZs+ z8Ux-1lbj42-Oqan@W1#1w)6Mw+_m3-=-V&2iofaRcH^M#Q@(#cKdmzN+^q}cff~748goak zlwX9@tkID6tByxraG}A?;J9*gEc}Iqqwj!@TGX+yMXrPmt4aP=Z(~XqF6_HIdt==$ zU9)wiw4|1{>iXw(uhL*7{7cQkC#8?a)O~+N4hJK<$zgh_T{9mil(({HsJwrD5NpqB zx)Z0(UG_bXQPx@|pXywsXrN`DHCl5Sayi#13I&eh^)p@7H7~SUygo6vxz!#YyUlM` zczw_iNto)6{ZcBkOWf6&?F*Y=7DH-*`#9YPrzh%(!+c$?s(3+<08sy2yKCpFjjpEo z{^RW>9x8FQmuTaFlSaMWwTS8vHj)7_882rug#lNYzLgL1is;@Zh^-@wY~zR~c+!%n zBXF3Uv|ds`w+9aEip^Q#jtQW6Tq3zf(k?SVtR6q9#&L6l;Y@ID)Y(Fcj8g z-m6ChjD!W_*rruh(w05QZi7>h!I|@^tFtEz3crsT!?9s7-bl~5Bs~YFjXq6-R}K9A zO9WSMFO%&{Hw@5~8K4`;93`&jedoUZZfL?V?k;-0zCch}% z@txZwZ`&EggTj6itdI~m@^|;*zY{F1+poT~6horK6)o(}jLzw?mwQ>4i!$vB_eIM| zblhQ89c&LAph6d`c$ytJVDF#~K|s7^lmEEtprj?9=qC>wyBhw~lEADxLsr#JNzdE7 zm3%kBohOq}Y+U*?t!epo5CF&%C-P!JB~=F?oiyT?XyqiRms)9rY1zxP=%#2;x1&C5 zT43NbGMxA9SLMy5bx&0+A;ts)9AlK!$O;$OTPXtx%m|-@Q9)gD9)xAOn+me*49-IP zYgFN{HFAN48=!pbGyTdR{*@^o6suYeJDLX0jC>#_#vINc2*&}yiDh^4^M>C@KjJNh zMtf-y2sa*Uq-5xHEUFH=ZX8eIodFq${sW_G%n|^S*@9rrYgVo4_3PL#oyKO=b?o z9P5yccyZAOB+3iEk@8I+U0(JpU{PaFyCpvIKA>SwTX>Qu(P_2ni~^a2#C-OBw=tj5 z%Cwy;%Y3%L(Yxoy;eu(a6fpYVjb=!@95ks)^FBz#4{tROlSn5qTF0I@785RJH;43) z>aD_=YSe%yteX!zCUBPTYUtraQyo~Y(6DjQU@z{5i`>ve*}-klL~9uvr#Cv!-JL(C zmFMzfmb=^Mkf>hLw z>c`YAQWZ`ausY8w2!K!nuPwYGqmb^KF&>vYvod6inr1R;t(ahILv@GF@y7>iWgpo( zsQzqxy&`}9Fb)^5(bE)Ua%5`;G$eSO$2kT^jfQ4BBwKn|k5SaP8f4iybo(^z!yuGA zWpTOG`^OvUxek%S2XS#07G5~dRgDdn6wuG8du)78!uebhG@cOcKmfE~J(dXr5$+uT zS7a>^T(NM2gNydy#wNIeV{AQJv714UJIs;3TN zq*8oTgqF*=bfIXKcZT?N6xE^ZRUyi$FGwMDNLA2OO`~n{a4+-Qi@Y#D)^KYo$5xaz z*=;TMTFVFYi_o3fn%a!o_f%S623M=Pcwu{-5UmYF0?r?`8X1QP8d2#5AJo!_M?G*|RfpWtIb; z$ottoodYCR_`uq;m%CJv?yzrV3#FpCMLdMR43oKHlZbdSc`Az%JmKa!>Q4PM{Faow zifhM7%igR@jxz5K(Nc-rkz(cCM3Z*3^Q_j$fkAQ?u*f=6;&s=rQ$P71JzYaK32W%Q z(YCZ|3~oqtNj0yu}1i2ym$B9%bRH|nO&9Z96$xFZDR^+>}8(JU3LlM z@9o1rH5?Z9Nf?RA{>&{_xW^*?7Wj=wU*YGis#dFEr`An4JXZ00zUV9Lh~hoI=nlSN z;MQ#6JJPTRhE0Zz7h}tM`F_RM@+9BI$9(rb#`pNZ9^bwH#YHqK=0)|zO}G!&AV54u z_hH%B$yYSEpVpp?A78ENc|qV(b7?+@OZyvK+L&1P`Bw}I=dYfaamA#JaPI1fgRYn~ zDC}K5G4qN^nPE522cH#-?9Kp{35zKPk^y0Cr$AFxr(KCSvEL5tu>uEt&wleEC@C!7 z!!|PkJGax`@$igLMYZ~mXW&sf?0-C5ygBS9x(z1aifEuSmb6OV}d1FuWV zuhfr-a+YHk$kM}^Ak0iS&f;0s)bP41ToVmE7JpOtL7=NN8hosKkWF|Tl(ijXYY)Y4 zbCY5(_C-6mEuk zig0%$@vauLV{8V9gpEnBWEJ)1U`}9`d%#%mM<+vbZTbLE3QH*an*&QdxsfYe)%8PA znn=SaWhQwettTSAgO`5U_iWRI&ny>|J(e%~wgL!(7(kM(vLri1MLS6g6q96A*pt{P z$EC0A0QC+tMBh%12 z)l&3uSZ@0$b1gD-+^;Vv^0h;!#|d+5{Qc(5HNrLPm>|kB-`JZ-v@?N}5`P(U%RVA# z`t62XE8J-{>{o&@VvCEAu|v`3TeuFX+XxF+t^HR-S=v~l549gMc8+M^KuGyL*rm4R zv13NaQ8LHC{N~S%oRQ0N`0ba}nN$`Hwje{PN6ADq<_I{+3U31Wfrz-;Gd}DM-xOQw zG3~~dx=G-I|0tE8wDCp*#>tG{3pY zaGK(~D>y434~S@R4}uI4v0%aW^xyt_(PilU->LWie!c&}1;?Xh3clW|;^`x*i?y`S z*&*eksM;NA1*>_5;xun(u{+d|;doRw6u5lN-(jFq27Zcp&O?&+tz0Gd=6H-^3IwHo z{WEbkBDIQ^i|yAPl|xc-K=c__Zume?!aJFfGiY0j%p#@Vd%aA@-+tV0Iu>u#(}5?L zR_HMuvK^?ae`M zD|2&>FSdl_>L^+`-Rf=+94r+*9-6^LZc|HLMhFFGK}da54$7TtAongjn#1rm5k_qRnz&Qf8@V00PX7O7k#;%X^nhTq%GfLXWQ0D6&*hvf_b&^dl->BNdCT(`-;9kBWZR&NQgOxAHek zuw%41Rg4z4x8?h{d=HDo-EN-v?)w3s-(ScL38I=Qp+o$>jf=7(fAehq+aUXN3`JO% zi(jty%}|Rl>aflD&D}`vkR^UGO{rg*+g5h>Aj@ZG!?|q!(`iGAropxyYM<`gNT`WP zUfrXti1LIa1#@(gKco)H*$9MYY%U)Aa{OqscsJ5|JXE2Y4-Y~epKE1-e1uP1C|y=N zo-mq-E9FfWt9=h_RTuw6 z?_kZXYE1#ho1ySYrGfA#*SP0&L5PDjn^le&^2$R!B zi7+{BG{R(3vBvu+?PBYxx{Ih9bT5&nVtcArcdC{jCp+0!Lq~mS{^y#x(b~6T?ScKk ziVFtE-Wr`=YX$cwuurwLB*LmYY@1zf$~yRu38Y+od2F58A3{I4c(YsGY(y=T|U;HUT6h+GVy{r9CcrcKqwLD z1HF1OMOv(|4{Lq95!t2N`jL>Ukrfs8^n80SJ=Xeg>y&74z4|T3&m#@%UG-l=LACyI z4R#C-1=V^{P(AyOkgx;M-~nAv_c@}3gU~rYQBf(Gs%TJYncV)OQNukssQ$AkC?W?w zBm)KwjvPSE4cq)=M*W#~@Bjq{(t|^>W}^V4)alY6##blFE(^aL>6wybmgzZ=4Iz>FskE>6 zR@=9GYV144W*%kw?1|$tJ4J-O7Tj)y58H!uY^Th23m>2cmb8b+U9zC|(t-+GB<~(! zzCauH7Fkv3j5P+nG#{>y<qR0RW~Y@CtclWD8wc;Sc$qZacb;cAWl%aN9%_KU%2r} zkZEN;@9tU4+$E>fvF8yw_B}f@8obw@N;ljKjt$L`fzV0~#2NdKiT;>Y+=RjHJ0I8fXn!4XtX_dqTiFL4g1H53ZIJ#g>SK zBXm8a?j!iyNo97ZE@WAqVactZ9Y2+u(@E)HxXI>aPzaiAj{j0T@?4?GWZBIWP_ zgMVm6{-^*Esv#(@7y^j!u5}s_;wb<5r;+W2!T%4#K58lR%lcGV_YD=Q+7u)K!<(psZ>jm4;Ug+1%=fGKT4Apx&cmE`#ing zV*BX8_R*N1E)gBfW+s>d!y3D5>_h4okL%Hh;xb8Zq7(Cu?mKJyXE!^yfFF^M?Jrsx z?3@d!o5|HSDy{ziYZldNgHb~L|JL{PW^qW45UXL#(|H)!PSq5J5$4##kgQL&GcY@A z6Lj)mmpz2SBaci(b;$F&Z0D75=B2Hi{L=9W9Q$^AR?#|G)hjeiPEQcR3=0!CK|{!a zg!-e*%L-d%eo=pLu1$oT@L+X0OgnZ*8F`X&8zjVdE5JF`n9svQg{GqNW_Gtmu3QAS z;Htk0Op&0u(ZF#lClnhYk04tK*;nheoe5#qvc)0nat^%8SB>RYwS~`=zEoSSaL1H=C@MBORl{P&_RMu!N|^$IPrxX5PV9ib zYv486VduF&<+*_58qtLVX@iyh0=sEiz8F#YJs_t(&23_SSRO+JpY&fHp`T5 z#iV_ddBPR>YvlO5piZK8N3KSh{8O$YcM&gc&Es-+PQEZP#YV>Rsc+)KgQDUh5&oEm zIUagwq*$rvVcvjB+q;ECqk8RHAyotlpkfoCPhT=Ge}R|PcyoQ8h!H`*BSWk_L$pE# zY6ahM(*;f^1&~bQt7z98n4>YRbjcC5w2wC)w3rNqsBtz@+}_}tRO@$GTtWc4*@_MH z6{?DAfw%zyKP6mhirB^ix$W7t0EV?RKN*yO-kzliKsm>V^%1SnqUkCiDo1%qH(qB2 zYHEn}(K1}2eV?pah-JuDH=zOQJ}o+Zih3V4yQRY%aAFDBPBgLBRUfgO+EhQ_LTl+Z zeTlXGM{|_ol#{jy=)PHigjkm?PBlU(Pf|- zqECM4$Ywbr{-+Od)}T3Y0#DAzDT(>md1SNZP#-(V2Gd$r4)L^vBp!XMm<5!?iLfOQ zaz0vlT)MYeL+xOTSiQttnIyWt=8yosEK^q*SL%buah*H@AJWwDs;mAwd$=g{Al0w1 zcPFKAwJ<6>;V_;7fvbD)%!&qAq9;jHVFsU}!wwp^{~*MCC!sdwSa0wVa{wf;m+#TA zmH4kVmXsj89qp9Rqmp~L75~`aUOdQ-;+!gHgykMT`N7HBnb#a8qzC>xFRAfo`MlBI7cIvIX%+&=&UaNYGk+&X_mb0;gwK zbN1UPa4R#qKVx6c4S~lrD}@!_|7#796f8#(1qXUSr%ya6=iE?7l>=cQcPn@tBm-og zmS$(Bhgk4nI?)!emf|FYs}L{l#VaYY9jNU*vSkpbYTx?Msya^NX9;w^%x2JL{Wx?| z(ylswWJ^Z<8F*KX;ADTYOg1S&USdZJI~eGI3IQ(!JUsS+@LvR#6N6FqrEhl0qRCpS zZw!-V@{Bps)Ns11zO({m#eU}33%F{zL>jk-Mgti1sV8TtKppOueV{IvSK?5&%dR>c z`=vAxom3Et-JY+WJEJ%DwD4jn%j-#bL$7r%ngPSA4H9=E%0{_hq%;Gn z`L}T_N;ONjMP4`!qjiLvf ztnsVC@9B5YlrVMuJP>b9LgYElSdRtuKoP*4A+H zD!d2%^>c(}`$((bnLPr!a&|V=>i0IlC~UabHReb(_>i{ot+&F@u<)4rI>v|nzUHTZ z204RkXI2PaL#wK7c%31&s;d`n@F}WIBY+6}+J^V}McPzl2Ol~)TO~~CUK+3~i;!?c zSMW;xuvGV7Zi-bytIkZ+gMk20-^<*rjK|!?CcH4aV6_MACf8R1`lGJ%zxslu6k4}y;xoRG}DD%+p_wBZai`&A! z;@87N;W#ZAeJ<+0^@2+Vh{Ry3g!hQ)zEVyglJYbZhDC zv*Aa?Uy|bsi`c-dthkSOu{gxV^bEl=;~c9bo)p<=?TB(DM#;coryoXI4fGf{n6Jtl zcH$IMycIW?m$62_iQBbOKR50O$3yC0CHPNsgmRk)5%?l4bSNuJwm*A6EznS^03m)H zCEgc=r`HPSoz@(&iVk6$*loh5+b}$MM09d4PP^+It|Pb60T`V+gn)ziSA!2ptE0-G z&5U#?0*Mg`VX^|pE0bEx(L6zsi5py{x?`2-dEf%~ip!2Lf+YOVs?HRfXTx!3?JV7k z1jSu{rBK|{qK3=`RT2&z=SPj&;s#Cw1$zA#iCGAS!tpK@2c=oUrDvg9;4IY2dzgUA z;&y`2rFgAa@CiY$QKzC1*PT^beDn6V2G^qZM)S%uV9-H0)JMHLFz?RVT3l8ZB z7FX6~RM&_uf5?}``x4`>Fba?S6`}yQCU~=^TFuc81ftegGcZ;PbQ-K{gdI6*a2vi6 z!L@4Zes{8#YHFd1wINZR)Tq;`MciVy<*|$VDt)e)AWEM{Y-iT@fNKn&^O=V=&jLwS zpCfBg${3R8ZcJwq)R*(i;$NN}3l$J4?nwO?aL=(rxpvkJQ3SfbC@ypQ5D4Tsi%a{u z(P9rmLi$r6^Pfs_HAkVF+(wldXc>7A0 zoY=N^i^G`kSM;j_1rRnx^_M?^R<*riSfZj*Pk}W^PciB^QQ1k)wCXO7ZwPsFT%4vW z^F{SPNQPDK&sC@1hXuUhILCt*=Zl){h9Zo}rN=D5{mptG!90>k0)(iiVCLw2rU4!R zbyTmtq`=CvmT6nxTuf`&`_fS!?TbEXTAupyo0`GRcFxf7KEN=zxGXRH*W_`Uf%NfO zJN>fJ%3D<{t?!C2P#D#X*HQN%^v*&DorYO_%>iy1xwlxZZZEPntl&jfIZezG0e-_W z9z^aea`~Fq3+@Se)%_7o7%S}HN-df=7{MAk6gHPd8<-Tan|v!pjbMt4*4x+oJioQ( zyX%+oB+wL6N1A}o2c$c&U~#pm=?3^t`wYevR|%g%JJ@uRc13~++>3?%KH|BFGeg6@ zt}yu*`t;lm-b)2Zwd)8{e3S{Eb6gYS>KQ!$ihg*bl?f(#SNsB8y)GSojoeVe{ykBj6?L&lnx%x2UL`-?kVm2C9 z!g_D3u=kp}0Bt%uAX6+n`2FhJC)fsodqL^#fqPjrm)NE5SKfUeO0I_*(r5JW4fh{z z@!jwWbfFK|f5Z0nK+_}tr9=EX0WH*BXC95AW0A-`;JPV7)x;v!!74L5alh(w4D)T@mWS(Mv#k8;@( zEcbSVX6;kkt^@bTY^be72DP;vDU}bOvzkDgOw+%9{~_Nk>bp`Z6)vJt*$YY{UP5hD zgMOY+c0Af*n5U$KtntezxO9k_HtHozwO&{$xa+-kb-t!{f^+Ore}Rzia?eF5QPFF7 zFCtDg6x?};6YfE~3=R@*wyaPu#aJta%T-<)sDjy3`m9CA7vAK zl*E*9tZ--=>v4C_O2(BGp%|e?HNpfocxIsNgS8U_S4pEW*R|H)Y5QpCRBcdP-Ka6& zSF2S);`#O3M#XcSkn7Cz^2lA@tngW=D6-JW<5*bli(M8{$Lr%B3ZJ7uhJ@eY^UTOy z{){l!d=3*O*x<-ju6j3e!ypWWQH_@e;0*=eU`!k#Zpn`K=Gn5#v^9_YWjMvtMcs

      uP92h`>nuZT4}aUE6twNO0%a#Ta3UXPS(%Z_;^-5g3EGjkw^U@(kpzUD6N(X z!mDaU!{6{!CfSL?zQ~;ggMQ^^YKbbr4g2~cXrvb!8Rt!(xBm%_7#+Jjc6*Wf=i>N8 z6=a65Aq*JK zLg>SmUS(IUgC&@AKRR`NOg8Y?7=k4=p0i+WZ0vLDArBS>_j5wJ0*{qrB>M~H(a=t$ zc=3)Eq)yyqq_$03YU{`H%d#@!Jb`O;jyvKcD4}!Q!3Z8g(p}Vh($7Jlw9KgZK zf$KoH1NpkfUY=_;Y`YtIE9P5r@xob)IpZ#@%fhwaa8A1ubSQB{9jOvv%vV2)_QvYm zo8Q4MR;_-q4;ii34s5d;o{xGt!`1-<$GYU$yEgyHT~S9cmUHxJPZ)}wutq{<(PFIm z3*T}mq-Oh=*jk_mPaP<&dlR0O3w-m5ZGYot-wg*sM3;K(N9%}QNLY()zP9~8k+j%t z+p2s;dwgvNV{$WhpD%ZhFZT`K1#=Flx3Z4L%Bd847bh+Vh!kmMPwy-~vEsk6DqtPb zE=y;BQ?I)H=NqDOK>2I%Qx%KV*<`W`6?&=y?lgo^poyW+MA`HEIT<;nzz@vi0d1TwjPhg78b%L z!p`tC+N|O?u*WpLAG@3OW9NPX;GA7)fHTJy;Eay_P#Pjqw=|%=2DR1NxUr`OigSrgl!r*~R@r5Y=v#WLI;+aN2@yxoe{OE07I`D|}q#HTdl z3j_+S=3DrMJ$W!gnZ>28hl?Pt-F(Iea(&ISp$5@tt<3LgA~3-tnjdr80ly`9*gnsD zY&kb4-SkH&8ogg?z2&a=xgTwoANci14WVk&-D-8$nBy_RE8&+JT`TQ^=|_pbhp+in z`etjmc(LThWv(M76EZf1<}RbZy}*OLLAq&RE7~k03dLRn{$-gT=FJ7k{NlDAu-$wU zg<>0|6~e=~Uox{Ip&GXFyYwZuToN3{@0LUf0ph*+OSii1=7su&oWPzsN;nVqnulyZ zDT?uq`s7L?#!*v9t`EdsPw5y33VhAC(*b8vPG?fg1a^(YNZzhDi7ZEZ^Sv}ESE2@a zM^CzdK?P3OFmbzaa)xM_fupjq9+2W=w#yl`Z}Czj=DGbp?Dq3n`=&bvPlpjpg#rF=v@htEy?v#5x z*Vh;+-|Sf6YusU)?#?nb5WZi|G@>NU^n+;z7&fSk#g!M3kkzmdIk(E|d_ zGosUPGH~r|C)ae2BOYV(K!0|tP>5Ibj36uW()si^cBOo@XOI3dLF4XkZ7H80Egx;^ zLXy@@!e6DT_GUzzXYwZe^K^+Q=`roty>x7fTGUAWd(8HYcW6pUT89dxLksDUeYs(H z?cYdGIC;!kg}9!2SHu%GaCei47QAI5O9xeFndL|mDwf+t%NvV42W&Z zM{m8r*1ImYK`JH^U1Dz>G<(DBH`xd(@kk;xrR}LhiANH$iAT{y4$B4L8wB~3F3a9- zo=#(3e-Or0kE_q)mD_j%4st;>^aqo2n5l?HAL2{BMc`d~gNzEqZ$BV|tjo0B?-7jE zE`84}46*xVVTeigWk+QuNY)9bY`ft&o|lW#4obD!hK9M(z#eq2OAonije5l_?S4(n z(xtCa_K@wy`|+?{y309wh@n~rDZx(Fe|{0vsquDHORXGSdW7{;J1&N-`2&v_$S0Vs zBnjZgQ(WeAi6=qed7KDzGEc;g%R*+|;%j)a)q9KC(W~cMxdMnWE0|b<1jdusW#RTD z9y$0fi3~N$(|A&&JQl85W*GD?UDfE1YX=OAug<_mx1>OVf2cJzvab2giuhTPK5N)K z0hZ3$0XYwI=-5!fckW>A;$cP4yu&cQg<_`O6gtr4O5u1HE(0;tRW4k~mlJ%_`K8{Q zYUu2b5pohCe^yVNpYpc$UqF`EJjPIUb#9!)5Pff1A&RER0Uy?oWVTtbFp9?HfkEMq zMa;C{Lqjy&_Nl3};Jtj&veBWsuc)i^51wSIG4ad6s));YNS);S3pdF~B&@WmJ&MQX zF14PBvSu2!Nc-;ru+f zYYcH%Lz{R@;6S#jx7P{3CYi#~Ysh^lrbJ}(U)L)H)Fh}C=wL%Qg>@V^HV)0j?;KR` zo@VAX(EB9molX~3TX3bi`$9S1(-aM?WGg(Sw(t{%KQl&GGLKMc)l-=yG4#*bM8kx< z8H?j~VTaKM`DzdOY7ekMM$29)lGI^PFX;2^t-hk;zP96V-95gxo}WkvIMSZ^+S;lp zT_UA(HY_wy>(R+Z<;8aWV$KiclvMJKpZG3lCM~f5_!M%eF?K0SfN`A@5enHX75Ul@ zv0L>4D=A2&yL@d2c**IJzv_AOhJVg_Q@13aN|g8NERM6Ircd$QRCFk3ir;x8y-vO< z?K8DGQ%L6q8!|g;x;Xm}Qbg|OaX}<>e^sl=a}{rDR=!N;GXuBh^Z!Psl2>)MV5z5| zU-Rw0w)Uz4dQvz*Pnc9n%lyCLYcu`l`j1j^5g)Tg>12mm#JM7zkTVP{>{V?eH4oqX zzY=HN33xs{Su81z7<*rC64KesHFdLyvH~O%k15}L6_~F=`D)8@sdH}E))cVm5S$}B z=kJV(YQb(KCR8C5SlmmVUOO0p@O)EnVJ&HKl)5ec)){!MbNB;|A6&UDk@9=gf3^)4 zcK~W3WR=8(8C7XNI+OR1H00dvTRg8+drciQaN6(LEP0j_3w`xHzo~^K=&~5?#1&uXJIe`At=rEf9%Be}RfZAEEJx z<>!Xjd}0krHn}*yRKNZ1V3&Bhip@F0sW08p)mbC0KadgRI`jJGZ)IM8x5${YrpYnR zlWG;v%*Q3vlw;e{ZhKY;SzB6j4%QO5YhI|`F| zd)7|KMS8$7?wXKe>Ydvp>hS~tcR=!pJ-xtMS}->`o6hklQB1{_qMxN#`H=$|Fe>{c zr;A$9#o0~{rv;Cf)S>ykoMA6e zvs%SWE5tQlFgP>ZV^xEqO47@uo39Ey;yDoz%vBC#rg7(eBD{yi_WSPemt{k(S;f|l0=PSjt6E}pZg(0P)dhAZW zS+#x|MeRhuF{d_bSX@zjSO5k^vBwos@4i3(5|^@S;;5=Mx&m1pfUZH=P1nf+aaIjq0wXULFLgKg z3FYKnFK^~$1P+#Ucf*3j7in@q-Dr9jU#ajdag=*HerJU6spcp<)6}815^&M(0A{w^ zfdgPC4m)aU(!;WtdC(YWQ`6MDQ~5>KM;6#WF%OMfnx~mTSUeYYF4BI$o-U4;14L!i zlixniC`l9L4{MXc#}(K5*63~d$fNmic<20399bTpi}Vs6D71m2?|^S z|Kz22lJ@TIX#t9pAcnpdB7s;V9mmB>ayI=&tXe3W$uq%ZwPzg`C=WcZ8iGK6;3O6Th0^Ef1f8E&Xe4JPb3bL)CN!1=N$sXWUGqzqc zJ;SlUx=7%$+JRWtvw}bHI7l)hmMq$ zG}WI1m}L__m}r-gM)W`{-w^MBWGNa(Y1)jdWY<=C((pXG^17Q z@~WX08)_5CBvA<_V3HY30_|UH8fA-`5vv432WqC*S?R9bx?6YE)wZ;CD{d{&mbw|B zOjP7WsluvTY<;;jw1TA=Bs%}^_c`~@OEN*U?(T2-FuC`h*XKOvd7kr}=RD^e2Z#mZ z(Vw-8sMF^c@V49)kvjQ>R?=Cik)<9NAs4KB0|tl^!t=qKKi)S5p7 znN*rTYm4${N)eM0T^Q&==_ndMxt$f;LhBwo$MI)va-fIKB(koDV#e*;{1b$>)NOvb z^&Xagk19XpU2T`2U9#>*M2J@vi3;z1qK3fSw>rtTYj>3r?Op3G>HQ`!E>0ar_%5vG zGuEhke9WHan4lOPQg7Y>17rWqIDLyOT*p5pILtPTQ`Rv}b8>IOK}eV?XN6Ja1oEDz zXW2mi46QW3{ztr*A@Hi@4hs+pEC*S({b0YYZ7hI>fIXO>0=2Ngb?|RI2sG)ejYZ4J>sZ$20b|lz$DZ@nmza`CJPevLWxp7xhZnpRl=SYpnk8|JC z#c{}}de0kMIo&nDabQdACNyYshJ8N8u5IHcgR{z?@0y2e0=D8P^%YZNSLVgMcWcwG z7`U|ze+RX1tO8=RX`^oqM`SAqB>$vOJY16#lxix=w`SUCOf{L(k z2C}{8J6uQ(;m!RWupy4dZ`m4~jmd3WAF5Y-Zi0N>A=_`-Fm2Xl*uV&I^BI`w_fLpy zb@e|Q*_zk?quKpG0JDzc^*Km0ZZP){@w1u zF-+TGO*v>@2Wt^&0kZv&^y?!v=yO?g8;zku92G@h+Oovfm%xr#u`M#ATTZ|$=qoYY zmfTdFa7_J$d3nDZq^MymSQ;RO+Edl;RNi%ev*ZrP#b3U|@zhuDaD2ZbeI`Bh6(}bx z_6!`_sitlNkE(N9`@WO9RIxPJh*rD69EMh)!#slf&Dn16YBO?-`xLzQtksZm*sxtCE{62;u6 zvNVc|-zstO8%|oD5v?i3;Q?@Nh}KLt@2nEubK%pxL%qBC{#Cp~)y&k$059|}%n+gK zEWe&-=x_O(JHWOb*sNG&UJmH%J39I=wgaX}zzzMyc0iE?+}N+#0b?a#DK<67YCX}b zi;XeRY_D`c6 zxVNajV+mEQ^(=%l1%}@s;ny>KU1sbHU=P!9GweE|I_#f+qtAJ~Fx*2V#>AoSwHte;IXkg2!) ziLD((Fk+e1{5r4i#uWc&8}OA_`#AoBI33YnZIpQ0P zPqber^`m+fTGl_>ew|@K@lGZ0igw#TeYcw0Vo~J1JZR1ikePyYA5vjr6B#I2z6>?p zCN&X~`i_hH%VTTR>y-ZK-JFHj*#Q^!Pn3XJcECmb<9Tr2Wc&L(tNc!sPZtBf`bNzT zb5G+*Y(0}>2oy@D5hZDll`no#i55TBomMQn!*LUSe}~_l_`Qzbi}+OmQ2vhMJrB<_ z@v~{i>aWOQzwC->HrlXHg5Hk3z`Ka<5Y#N(b!8Snl0b+D28{veQ2CA@W46;}nr{LC z?a|g^?a{7cF49!HYvB#->MBxY@Hl_yT~da}+=|33!((7PP-SS3KF#Hv0<7$~cE@I1 zVg3tSv>&M&J;rk=c|d!#alrM0(RIw&9X~V?#U^6z`9|YmgtJya^LnqVvB>p~>p$Pp zg6?N39)1WT{SlO~Vl_$d)|- z_Z|E&qy;5Y=qTjwc{3o-GUa0w%W24Vh@qX9SX1wyhJp(RV#f#ffwRE zrIG`el?E9ZLS=GuDGg(Q4Tcs>mm`!6mRbe)QUxHrUB*M{GJNSW_=+-qhe*mO%p9}>tq9cNm*_FC zXj3@VG1Y%`x!b%9--}#O3P=`055xuXab8yl{v?a8ekGY)eHl!C`YxHUhLAKy6&Kw6`#(&Hl z?_I)4pT2}G!E-_}GQsWZ<<%0g2c$^i+ zU%O7>wp69`6O$S<>tO(zbBdb&=}Uqa9!ut7T?Zy2&&NLUYRXUzYB+En(*4?rXxUbuuqgMNP*7F`QlOO9`^!n3gycZz9O z9YrJiw5cFeHA4bsx8Kh$2tAE-+EoXHDMRSi!ntz0G?0Aqi_-K7w1OxOSpsU)TTAh0 z>EMCZWAM3z9EZ$msRKBno&A$RH^LbrC#BOR25X(xifBuKDYx?*9RfOIZZ3a5gP@&g zuGP{)+%yk^FeJAADZsRZb(R`|$=cLIcvB583`|DUQWU8Btw#IV7%r!xu~!|{reYNt zO%ClubAPRx+n3Q?tErF#`tYWrY`v8&zejE=+QxCPKrW~;E)hEh%JlQDT{^L$0}-PLQ*;;W{Lt7rIV3c*%=rbLFpi4GCWwku#Om5 zLXs?1&0Q*#P7*(8$x0MHypiY~SlZt-pb0F-nxtmuIHhlM@R$ zjn9_|~=?q7)wpRXMx6CnWN+$i; z+Q$s&KQ%Q@X!==}ljC3pwLgxL_zk+u+-l0l|c+56}@F|lU40U7+c%+idFfM=wht9Rq z^J^rA5u}*nvlt#MT>wl!Pn&kGx&@x%v#^n9#gkJxNKYUi{z(`occSj?p#Hx8QA)W* zKyX6o_oxy>gapY9+eBb3U@1rNrw+wa#1;mMss2F}E!+wjL>1e7Ibfy)E_Ln63ze>Y zL=?={Vki_Zx0=+mO{q?wQX+b@-Uyl`nZhk>+69wYJt-voNwj2KDJ;#(Jq%+HhIo z6GS3SE7Y}xPy#bshL$fG)UL9dw>)SyPc^0$G-Wq0SEqq)|HpbQ*@<}$ray}Svbu4e zZ{t%ZDMEj4uukU@c2Kh`vXb07JZyIL?@gQ>kza)EtV#1A(qne@ZA2o*g`do>it%EV zAk!gE&z{Ly08+Am4XS`H9xQ>p7f_|vN_XS+%ygw(i`368k#)+#I^=AlT+rmGIBn{Q z`^%mbj@qqFedqqNXXX6`Z7TGiB;I9pO}lCUM)fn03(&Pty8%ZBxAlYWEp12w@=0z; zbSbImsMh?f_8ki0F$fYaq$kuLu~;@9h0rCFeDVweOZz}mh~o$l_G?q$L)CyMF*WO5Yn;5E5s z%LEGjxdxH@ZM#9MPoZRqM@`RRY?!+De)P%h`4Ef!EF3Vlpev}0wQWT#N*R@%0<<+W zg-cQhF6bQu`+)+pWjoNLib6RBDvI;PR|jBXMVh5P5l6V@6hds;AtZu=tNM7HIN7#A z2USWh44{(sTt$(f659Sw0+;W+LuA2rC4xDA7S$=Of@*Wxg4A-wQtm@+sYdk}tFeZ+rVM*A~XjZ&ZoE z5oq3m+*MLW3Z~9ZF}f6hv;i_bjM`eRDRJW!mEdokPI{hO;U>QrC6S)M?{}yL zx;(0FIe;H!EnIEI<{2a`3DwF2Xem(*d}8Sar7qDyaxlBG2C;S3`EkJ1>Tc)?JSl(m z1M&h`^hW#%!Ju62#^Sk}c#{2QBe-xj{DaAltZ6oiDx3{eG5|wNa5kD$$Ui#Adg254 zX0Ex!Yj8gLw6KK@Ei5T%nvchPe-az^{X_P5!iowo;Wgs;giM?RMV|=xKN0YK0&amg zye7^*l5%Yk$L5LcHp@ha6P9o!D~iuF=hA-1^K%s*#3X>sue zJ@ajNvn*_oURF%)lJ1X3q0AXdB(KjHOnlE&oLs8)WcRW!Ts; zHOb{UWiF@(LvkIM&AQyD%mqvg$@LI(jUO=++_F8%=g@SRAu<&Jg+D<7n?BPB;)Whi zgY=}a+&d3_16$HAcyOvwinAzd4eVmpc=gDwLq6re6{0d?Wg4txCZ4U#H~|+;3Bc%O zxrwIa-#FzQN}WByOxlQT!#2PXS|{`&lq0hjnP_m9VUz*zwV3Y|Rzv;ba#essE&Ywr zkM#zoS%q{lh7fGxE8TU!u?7TXT;+~zW2y?oT0>X`zCi+N=2Ag*P7Q4oi|&#I%|dZD z+AVt1k=iCsNoJ0&mAOm6$JJUCK=M^FZ`P<77;$~sF~6~5iZI#Cj`<~Gz!wKvi=+`L zm;!#`6De2$JX}%C;*w$Tc7H)Z^)svPG`x1qcZb1i$E+R(uO0K{j~L#f6n^a*@=?QZ zbSQ~pn%Iao1W|04YU$I%BiR)y@+Wqrt)IE=iT?*gG?g*@1HLgYv8KV*Rv{D)grqJU-D?N(W zF4j!jkzS2fg!1VCAtpQ97a~L_fS}0)NSgA5U;wj)#CrnIrNkPH7c`ip+$GSIL$U`s zDCViafcgM>f-vGLdlorU_32WS2f_k!2L-|A6E6#Xr45$p2IG>x1WR17k+d8T-W0pt zc6{!$M2swl&LgmD(v8N$9ubnEy3cMXO+X?wV0=&u0qlbiSxUSdBui+|V_Ta1S}Dv?p*j)?kSWF= zwHz%%3~m_y3MFvS0V1cf@+jM7z_))X`zNCSH7faFj3{jNnftz=%0N%*B!D4hFeKpL zPt#g<83=&84a@MG>#Q>T_$0~LjwCICqWw#;C{Mb;odQ&^WoQdpMjt3TL&pb{pj01A zQ_tOBxL+rYEzz<_?;#2mH~``;T>(d}xe7jVt1x#+WCvH@k?=t4VY^bMEw<9K;i^z+ z71@?)k7cGkcDdlr+K-0TA`clPSclPlFst1NOv8kgBYgLQ|HxbP5fEFc*HQq*e}EvW zXn-ftmPkYMf+9VU7XaG`N^=$HxdC;H0~yqDjJ(E~z&!NMGF%ZpXn>9Nx+1ubA9O}u zce;*`Jz~V;ujfS$=8ZiPc?H+xxsLDs1HK}^L%`U*{2KcfwQUj5f0EVUzbNlfGPu1a zd|#vZ+~u2Me+t2_EmPj0)sbf6^XbuBA<-V!8xTW00DX4ngJOcB$07(ii6ME}CH8=5 z=bbP@-n4pkwd5sLiYfx?vhyC81r1lNJX8IZfhP?DyWLjF?OIs~X$&Lz0x^VILkQJ| z)IZ>#4rpQ)772`8jo4_7Ht9UNfkx)gQ$`_%IVEK&S1F@w(ZF2t*OJAI70wsiuU-p4 zWLP5&aV{aE7gAeEUBXzOd^T&QszA(y4|D+A+>R%4XjFw)ffR~M`_g%l9yN$zPxK5B zc#F!H%EJPN<+BlzS)Z7P1r;szehUS(b+hk-6+}4(du5E1v8Mu!rYd9w5e1ECcd&wg z>d|OLFpxy)#;pzrfR2{0)eU^ ztNW>iS;$3w)~pbRhSpN&8tVURu}DBSE6O-`)r~y@8_|jFE4Nq^Lie|@i{Glp{VjzH zq;s!R?gE6I?*Ne~v0{KT0gN#KRN+JN5Lqe@f-#FE$T(7M==5FeAB`5hruH=|W3m1v z6r$e_73d{Axl#dNhR~Jv3^2r1(I5w?P?)umH-azXw}j!MCe4+VAD;DcCD2Vdri9n; zK}1-8p@hTg5Sz3@mN6jE=I6ApG-3${rF=%IVU%H?KO%Y;6c+u0H6nEMDLvT!3qYt) zQAdQ*MB}8Mza6JZYSYMQJJo6zrstvGaFKB@qFb>l1}0NF4fE2YVMtys&t&9%nR&s; z&^?(qu9d!me9VidDyYH z`wZKKdd?+Q@VtO1!IQYwr&vgtK%{UrS5{cr@TdCEN-r3&tveA2JO#PPXpVij>_ga@cEFCO5$*NJ|92jwS1q zWHfvBiUL<~KrNneWd=hFlz%Xac|)#9-HM!t$jEm0fufRA*u$hW&i^?00^=4}+B!`v z;H@_Ud$^(1Yc$E4;3jXS5yweXxx@#2z39DV544u^6$EAO#H(MSADQJIwy+mnn{T;w z0jasN*achOVi+Nj3N)MB_sjA?bC<|Wlrk_i6HSdTr`7)5(tdk(myHMRvjOCQAaff< z98JUd0T&#^X^1w^>xJSe5OZa*Q{85#I%U(^RjMIP1HYY4d&0YFUz-|6FbC@w}q?IHbt61yU=l)p+dr9(Lybjm$D zWtS-JIOm?7n^oipdv*qGP4~@(>A?eY`wtI4MTTdzGEhwIiHHTZaKcL>$JG1IjQ38wYdfCB z5fDRl3R_p_6ZLU&%`IiLiSVSu_qWP4n16XL!zNP0B`+n=h%2So%TTNad#cpdXxQ9j z&7^FT4C=S_8(Dk64OZft1LaEp5=zqNLl1?6+Wum_JE&}@TgWC_C?yp3N)c05gHCY_M&cFZcpMmhPi&6}p*v@)1>qOmmL1Y}6}d@4*K{ zMI(dTQbwbOmyTpzFckgT)}}%oC?>SsB8MPcjKzhCo?b%R%IEDyA-GP_xM4iZ)~T%i z{~-3Tf6VNAntSZZ?3n_-bN9Y&zOXxA(Vucw?5{LAP( zWE%weh4R-SSSx)QulTjF-}ASt94~9r4#=b~jIA|{+>b=RwS~++eC*Sv?MrH z_}QjZbDWA4#qME#=r)mWV*BQsEjgt$_M12biO_bJ zq_l#xU7NZI|0#M(k&@7*q9^tu?p1WS##q{xsa^X=dvP^1#X2es{=LE3xhPE{0R1pZ zlZYV@3#Ca!iqb5{TP1%!%zDnl7ph?gRek97oW)idXvc?M&ndFXAd)z^{dnBhOy-TE#nC2m!=V%=1qTbyM3ZhpJnUQIP(V!ofJIvMjj=PySCo^lNxEcwCJ{( z3j_%w6PcJnn;HBAK29-Ah9;Hb7rTCHiK9{$myz)NzifQTK;3YD$Ebm8EOF$^m2Pmk z$m+ywoE6#qg%2*WXXmsCSk{qz%Vad0er1r~xs73#wB|qsIb@5P)9EjaOlf(M(LX3i z*^knEz~;_#yT%*X6!`zPF==Sm4e!5H^D_Gp4HIL{a8niAJH+ypyVsELkbjsxO*${v zpo}n?Kg`C?*AaUcyMdzXrX*to|11_gVkvp&zk33>o|(lv&KW= z55*lWPhz&5eVCZ7!+h*W%;wQ*II1p(rS2nWrfMwyX2?5H6+RR_|G!|o%Sp|{^$*3a zAD*5`g2QO^!_qTF+DOvsqoZf+_rNI}IE?}Nd~=HAMDf~mO<#ewX+>Y2wy6b|t6)#@ zCSTtNu?X&dUlU)-BKY+CCQVxd0mtcC1F=U7)YDk z51CF})8{5C@}fW)k#qVeNdXT#QsF%B2WTv6LSvare;?~=st#;sw)6N-k;k%`3S$>? z#zNuvVXS@XEE@`qYDM%#A)_?C!5)FuDVbe!6rif5v>u1q4!ZpEDb89zR0}U(oUp*vQRsg zWB7G61Bl}S5ZwSoH@l6|F?WUCde_9FPJk4pJzQ zLn8-5aoG7r7`QDZ-`yi{VVlB&UT~a#D@_qA zDNtxx662d~pblZtf4}{V2U^lZm$Bn8ns++eyy-<1VJ)+Q}9K;_F8rFc6$h4?;#O^-izF zAR%7yyt_&zU=vcQ**=w;0+DW*+FiqU05DD}$t=*=X_(b+#ZLOV}s7+<{WM)OHtgHyuYiHP5tL&_7e=4gx zGb$8QUt01rd?)aW$;l&V!FjD#&)dFIG9`Ht^=7wbY)^k2Dv$y*Q@#$tH(XnY zZ+$qvhjeH*lF5EUk$m-dg=D)0IWUZD0{U)YU}LM*Ld-%-p30C|W3P^qbjn z3!zxj$EQ&j?`%1A3hE~lu?=Qo5 zfe1E>cSHz4_5@`DixuTb4=0oRt9=pr6jFZE*L%oT^|sMmkyeqIyud5a-pcy`Vw6G2 zjtBUbAONDkc2c)YMeK045Vj#(cjcm6218oygP;CK)V`}8O1BRnL0AuK-%1bLry{f4 z*NYgzNru%dwc-1(X&?45d_?WL;a}7314+u%bV&dG%P6)_MP|3}AYz8KPmp9c&d!JL zECK&M{Re-WkEngdgX#8>x&y)UK!Z~0G@*9IWkiGDmRiviAA$4{4>m{5v!X$b*n4~O&e2wd}&0H zFfbl>j|7GVf-H5sAlAlA2r}xox7_GiTW*FRTE+)Bzh)!hQmb}f_MHkg21M~z^Hy85 zTSw1if@13r5{VBKnL#;Tf>x9xYlj>~%Qsc*gUUTMvYp*3(93}b`1s%QP#ps8&inpPng6K2 zE9HF&i3Uf6iodv=ZYTqssGq?Ja;opbI7E*K8}28E%OHqIT~Pug)R8!Nv}ECh(duIJ zRfpo|W7!-?c`_z%iC`|4umz{1pD3SH5=+xPE}Wg+De{*}Y)wDTrhY#DpD_ z_V2v$R5`C!IjP^X0Oj8q&+_lYb%gnhgG2~{;Pli&AiBb;G;{Jy$(1>Imhs&hLveXC z&Bu#Ur!7l=WUh~jV_%lz3om}Ms|<-Z#fPDWv_n;z6zuT<^{4a)o|&pI1lMtcu_D5jw}k47OgeF#0~$w(OK(Z0DybQ;bbqQ{i<1 zAk(301?XQ55nKR3yP=MWV-B8J#KFmP>h9wVuaHEw^5aogzbC3CxtJm7L;P#GVhZ;r zlWXm>&qyR0C8W{~Nd+T@a#YNiGNt&FT|eBOM|&Vj=XjN2B?NJTOf#%_=}tg-NGpS* zoRlFeg}_c+c|-w!ICBID-fB$5x+q6{sEv!e5xcCr)J*%F~@~z{ATkP{R#Mrmh zvh~>~tN=G^1&GGnp+-LmBUvd@5=2TEF`W~KsK0@n+QQ^~~XlCIOkPqyKh1?5cozWOP zayBFa)DGi_9TtDxV^$(~>=C>%4&_;?FS1hWW3y79X$5m-9Otx*JrbR9KdP|?C2#t? z7P~mBPpzRygpnGI(#}Q@OX$zY;nIxDL5)`G>|S_GY=gtvOXXpo7U_kjB)A$PN{`h# zqjmcY-eVT6I~Wb)_H0ueDY2LAvabEhuQtLjX%lf(^Tag_b^u!3*PAWXhn*w3pg#G$ zQFjnSWhDxYRXWQPx9%VijV~FANpW1FdRUJJ%+o4}3ysKE4S1trFTwx%Jgf~b0?yjX zp1IcC^2f6s87dgsPxP~s^GmTmNt`9@zGybe&F}t6b)Ju%r_#h<2aQ|3wZe+_v$uvv zw_4FfxuY*fv^5-G?Pd~=F{9|Qn(kVPcT1N0Tw~;eEN1oV_0bu%mOGa6mVzf zeKT^k@0Y*_i?iA{6KUeFW9DtO?>;NqY9EV;zYhJ#itZvdl|J#`(*O&8u!lOIby)wL zJgngNtN!8UGhrzUz?ZCOpXz|2(Z8~yh1paMnYsT3(SKd@qBD9<)ji}t>GcuXS7x3= z5O|M+jzbg_fsChv*$4!3)=&cJagRBLyWacN5Bl#{_{D9NHjJ4VT46!Vdi;o2N1;tL#m zITx}vy0yTS5rGA%Ij~y5gDEfjtT09Y!*CEz(op`ER~Lh&=d$u zw2~EINS6SmkDnc_^rjpu?FGv$?@2ZPV-{=3nY@%kj?NS5cnOOVT3FAQ=3V7BTusI$ z&9PalO`mCrX<=lZs~SKXp=!WwA@R#r)$C`h z>JL|+*t;?;>gXqS0Gcd-WVAc2ZT{gk)o#{kRW8}czLp^>_Q`osY5Z8meAFjl ztW_b+U6N5X3bxw)RjHc(d{Xi7+LXTe>Hy2(LV)?Jm*sdBIT=t)GUM)oFDHzCywwIS zKzmfmX?<${tw!2DD93!kfux_u#f*DEGGNvc%I_9GP+oXuIR^zN^eNZSac(Fsyi^Fu z`p_5(Ml^*Wd`^KNlc`J)aDlmiuwSLj34$*Z1lE}W0;}R;^|?bpU@`##U53si2%BCK zETloG!%R7|{(Qj-7NPBXp+e(`1zCQ!5Rg^-2vuVxpKejI2A$20KARo0EDMTcQmao? zn?WxS3*=_YwF!<(GF9XfmF?u0!LT-c@rtFXadGY>SIE>D{m}=Zz{1k!y`A3VI|b8F zflm0+MXGs+eSd*GWp!PS0_y%kj#4DQb^f1qV({h86j(c~~3z)70Hj|U+r-$ep|>1`-~{e!|Td$i^W2R|bo>6Sa} z&@Ki%a-SCKYt++g(ru_vub!+b2=N$1@&o-sq-?n=MZv5*%K&N!3@?XvR2MUux_nLU z=>vRlCBeN{e|ta}WnPK$2$p36$VhN1n}92+wB~#TFK>0jtye6T4N@3#12s4)_)l*r z^Ks^09Ym>Br1bjksaLJ7IpqIv`}cno?Z5IPZ$FU-_Tbs+Y7y3Jq!wX?62T1UZ9y`) z0Cr&2-644D1?eScKK{bT9Td1~gdJhA)wWkqf{332GNj!QNdh9$Q9XubT z62KL&D*~XpYC$!iPBVrbb=JF= z?8RuLZsc*C)1JzR=dn#zc5Uj5B2sbLAXqGiTu=GWi3P#(Jj3bZwnIUNB}55rk$>F3 za@4^6f%DzQ+&o|8#JJ^WXdA!fdHW7WvgF$iJbvozzodP;vB}Z?CT@dmU&gn^mu+%% zWCWOtA3Y9BagphNpE=X_K1WQJgVS=ZQ9XdfL2+g1H!=6V=7E z8Aa!nMyn^|h%;l}eS;T08e?<82^gVI4>42MO_n(dBr#> z9rp*~T1W39V@I1-=)AUds~CRZ)W_;A*T%~Sg?v4i5Y1cj*UCZ=XKT^`x8b;(?@<2DqV-2|t zG|v}3&|@XziypYkj=Rg;96g@AJ`s4_;n)$_=)e`w`QI$)32Zc$Pfi5xlSP@p1AHLH zhvmcycd}}_$Ecd_28^y`g~zBV#o4{sn=x_iac#|m0A3ayUAxRDUVJB+a3R2P=sI)& zdh6Wou8n!&v#>#J5^l#khAnE7xMOW#N8pIFe~wY>i8bD56wHq`9*Nd%n2)+*jgQYy zc1|zC&u{+M4S9|=z2S3=x(!IjRPzldQ#2VBwFxYv4EI0m#%lhCdUH=6syvQv z<@RJiGab+v;SFn#hsRn#?FMA!%O`h!iWqqSNCvhOfky~%T2$PJSICLKyYqMw7D=$u z!^!X?kXZg?*q8hnyTJU1Yx6-KMbW^9$Ut7Wgvr_$gTRL+T$)Ol4Bs0ItWPeVQE!@o zce%oXTqqmmZ-@mp*BgQL4aUwyU_F6ph&qk!3!>A_x==n&?Ou<%fJ9!&Mo?ip?~KSw$?+n+WivRYx?ir3uqo z<4WuyJQfQa=DfTa^PL?{uVSx+f)Gp z(bhbPsOuh_jK9V>{Xd>?;JkweZ~K=g9ObK_nmM$)c}Mnxod_^A*nE+9fwpN`K@8h! z|Ky4PDKFMmP~O++Z7|RH{o6cymJugM->S#l|BQ@|dUK%)kB*AXD~P{x#@ISDibFC2 zTa2?}wbGr4 z+f-c;!x2rrgY^yOS?A}WdwtP@YmM-$ps1oqAF*B#8E}SmW0$#n?Le~0Jg`s6h`^Ru zUGJi{@_6Uydb8zs0yTQ2>=|?V3#voBj&@?e{P^>dBl3BECAGDGc@MPoPoKzB(GL+R z=BD3BnnMQ=XOD-|A+i#IeQZBFCl=V(fnM7atJ`A~G&CE#5`q1UO9XI^lf#j$ht&c* zQrR7ypMi{pP_1wq*LaGVp}KTFE@c^PFlv3~qQ{-E`wt@7c$grqTfn2E`oD@yq&LZ! ztnz^QJvQ?q_Jo<1y8y* z43tzg%6cT#QTtWl43>T#bu%6eP3t^3V;cQ{_c z@Avrq0l%a84d9o=uK-|-!_SA`Irx1Nzfa>g9X}g(J^?>eWZ3e35Ya0pajrTuuk(E4 z3Xg1geD2`dYJb@GbBt7u&7Z`d^1W?ZRlIep?%2$66Y7SZRbGeJtlT4g2QHnE0OF`J zRCwg!nES{k2aulO08aeX;i|TT<%MTi)19z>&?{|TVN0? zwu2DoF}+{m$ToRV>(*j{qx~=ltK-J@4R}}@p!H>b@q0@BJNxCglU8cG{jlv`ZtTW3 zaO14xGJkSDBn1xt$4M~m5CddTw$Cn4v3@MEW@)xL)HwPe+&zRaT! ztNMQU66&*+GPbwT5B*DTirnsV8b_N~tcsk>>%85Vm%{jLfB1%uBJ*4Cf*bdf#9!>J zGgf+xr;S_P=A`EQtl=u*@&l~sExza-ehyvT5X$z@MMdqw6$psV!HDBo)E4!N+KKnF z7gJxT>OxjEz^am+^{Bn1yyY|tSvf|OMlRL zSz9vo)lLA--rYhYk>i z^u-Ul#_q>AIHkjFOvmt0;WjUfj)!d*cFCS1r+Th%I*pG(z-b!;V|uE_%`I;989yFka`T7JNPPcR8vs?mZX5-(f}Z{voAiLWVE}CSi2~qp z6p{j913qj3ppr1oyi-*W`8>Y}Ksf>6$3skRmJR^`^>bvAF{cx(%E{86rv=F2lO+J1 znSKC3F@5bj?@+TFDLs2)VEpoB5dJsjuW)Q$uLSi5_1LT)z3S1Y9(&Ydzj_>04^usk zsKt5kFfZsv< z-oWoq`27XHLHt~Rd<=et`1$dhh~I_yO~G#lei{84>GHa?wf_OCGaB{dc}{K3Px+3y zxpka|wsGs~-#LFzTI;&1w~2pN9^r)uoQnGqKton!2Y z_#67zfwAuxzg^8KPqL#Z-jAEB1|XF%#(OZv*L38Of}zYVg#MPPuO|xFPtldWo;DGH zTR;XD34Qv(&G;Y*LHI?d(-Q%2WyjO+3DgGe+1Acn=0%DyBA@41G8{Mm%L(G*$3ra0 zeEKOx-Ro^^*yD${!*9&^*=-Ot=8JC&v0(J`bvT-gKJ#{*1%M&04O67J)Zb=T%2GgY zkuE*2b1VR}!!baJ%ggx4D?lz)WoZ51tnjY)Yipmv*V-qwH5(b)G#ur?_yP;#@uxp9 z#?J%rHpZ_?Vce`gU5smY-wC)fv3@PkZeu<5p27gy)!{#0;nl+>=D!}d5jP7pyDzEo1U~Jmh`E%b`eLK0!LQA z{<%-m9Ga6JH|!op|1@M$Taz)P=fNHjL-{v2JzRCxgAb=Z+E!h;`7V4>vutM?^MEQi z@_BwG!_Q&zazS3jvcYlq4HE~&)(HDQkJ*m$~yuJUN zUYrK%+7WZt8t%2^31ff!EUw)0@N6qkkG?UL0#2oR1N~*^pZF&Im(c6Ycs#zHG| z&QI2tf;OX2=rx%{3@ThFm-`j+RoC1-+EV2?%T*dW%9o{ekFf}Oqae#$e8!IWL4SOp z2pBnwr7hQ!%W;3|0(1AfBHH2Mhv4|@MTm*Nhrj+NME*M>5hF^lt^JF<2P+-G>_#_m z#t|6cvdBBG@Fb7}ssDVKm5mCLyB|hKocA-o$&3z&gR`;2)~9EDTe$BMDpKIS66e}v zc#Lp>yX<&>{u3Gqm&Y+#^gg57^_Dd{y}g4LG)(yITJ+8dgdv|WjE%hG4NvdxDsqG` z>hPOq9JS?fWpnZtH)hpgpE>2YC656Mm1n;LDa|8x%Cnj|;`RJxXd)5HsVp|F@wvGO zB$c6`Z{7o<&-~s;5=iGDe>URmO!pWxBr)5=Nhq}E=xnd*LB?15kR*QajQGIEdA1Hz zb}wIHGUR)Kyi?`IONp~*wr=-5Yax9hY5`={!J_!@{qd7$qvs>P9~iqI=x*w8N3qw( z()y=&okHt>FH`GJrnP>OT80Hk>Z3tE#B&{FHX(JG&#ge=Sdl2;ltP}IQeea%k12&J z-1-=~aJ1)mrSFLL?cNjy75>mdnQwfv(*L>loo`UcU*RjS^=bDEpJA{(;HB9(p>15| zziheQc_|hGb{IGVKn`1nU~e!AhwN}@%ctX=n5~n`y_jxCm+PEQ11}w(_Tp<-INGlP zS(p=l_f8T4z31KTXm4l0cok58E&^_2z`L(Viu!}yj`kh~9999{-w!+5?`6P?Dqz{o zs~zp@8SoSWBHL?G?w*TK%oc`iWFl94{X4fg+IKSGdk8R>!E9<8t@#e~(zcUHh??%J zP{={Xua!bd4*d!?i8OIq^z%S32IrnYa#mjFWmpZEOvSas84D!q+Zkg9pZ^OW@Ijmu znv|tG@)?{*wPBs)os}1Un_nm|A?rd${Q5*C^bPS}LVqNj#{h){;UxS-rHAV=VS0u2 zRC=Ih0+V=0$IxaR-%;tod{Pme%4x*2@}{U`=T1zNx>vd#ozr0viPU(KnDg#7YrO9! zv37AzWR=$uo)B53JHlFImB$et4UK%a=|S|O?v?qD&g*ebUc_{C&WV`L&hzjmd<|Tl zDls+|URJ4xy_Z#b!lN(^e10sf@Z*zL=#j6X#OaZ*p~Qj^^ary9|!N4nD^e$=EN$z8k5A0c{2joYzENK*Bung1V(T5U2- zL5TS7m7_=Ggny&P0=QnoQ<3R+@s>@dKYSu5C#WhEKcEQoLB6>XNg<9Pd&Xjx-Baxm zAubbcFPO;*1x$(c6nxBYqhN9h1+R}fB?^9kXuFzGJvDAMRzycZzyUMPXbnu8mViU~ zk*;DaJDupfJuzz5hE14*hdqg!T5zKyQ8Sm~G*MHpzR0xrsv3msFsk)vO%PNSt!aT2 ziPkKJIWJms9ffF3`!@r6PtA>7`L9`K-kbk!GFsDV6j1j{)U2Q$+*5N~;?8cChktGG z;jX|<#-oZ*Ki;t}Ub!V&b=hF7MrT(hY9O#-Rjl!Nrf=7LE{@mg1~%qrxAZ#aq- zi=+nB49h+iP+WcH5}?qi)eTqls+oWy+39yLFzZL&$EhMru^vD=Ix z8mnsCU`+MOKurFq-V&R)r8%~;kL|9SzC{{NM~&EQ^ui^ZWtk8Wy+kdRSk=m-w*v^A zcdXeQeJ;S5Hvj^+mZps5rGRPZqUtBxx!kvAlM>z<)_t+2+SfU%!Sww4?PSQ3Sd*?8 zJk*YAYz9F8rRv;dp3AaI2TE8ezF zj`;2_jL}#|JzM3rV^Z=ca<~{MYBpB7yH{Q82%ibRCF=k`47ojw2OF$G=^ynCb zZ^rB(u%jUSX zzr7o&e*O}q+oWA!rxNU}TxXQIcDs%yMj-}FLVR3OzDrvh z5%+DJCfti)JyBgExqwKlF-tir9rmJTrXxLAN$UnHB8gIfQ$EMNVhxtv7agDDg|d+> zGarfzg`wFc??%hK&Yn5mHtruP8nmS|0L9(#Y2iIsgE>u7m6IH|;v3P5qFC4`G&IzUPRIA5*7S0P#yg&(qz`}iq0$9 zQ8V4iEtX}^w3!PZS8fa`d4n9D$ktiqdpdFa5xhEN$TY@8^D?-UYtpv-&y+Z5FP#zT z)*>R*m@g)wxnfa0(^@68rGdr&+5RGg2i_u}uI3%pun{<^mh7m`bMzEg zlNnl;Mq%KEV91A$#wEQy)h>#LAAvC8S*A{P;N`?Queum|$4lVw2nloC@xt>;h8L^5C8P-@VP~?tk7bl37i}#xAVNu>ufSR3-&M_$48FmBTus$u0n=Z&+ zeC0W7%1>%{ErQ6TjDy9Fel!QrrIbw6P=sIL8M^ubKuT6=Hh#VVukD-h2Oeri%zt{> zwx+=&GjK$X`rHZsQ5e>~I_6|DTEJqJpj(tEKrRPnj_O;D55{U1$g(l(($+kI4^CBX z;GZknZv)$P%xmw#!}gC*UuNYRwOn}Omv1NSf-M3{U}B7a*5MY=wS5k&2{iQJ>`ZOP zlMeKkR#+gB2>Zu}kwId=wH|K>i9Vv9(scALH`#@_$1NmBc*t(7HaDz7P3VzA?(mw& z*+WKEcJXO;AU=6tGu$$9iO+na978jWE$!{pCyp9d(Ih-RZ4w?Vdlt*yIAhW@d>HIg50GMT8k#Ow%#wJJiVto)UGys*xclB_~!_k6f zCMtZOHyGsUk+CXKQKTNl>QTZ++U5>?(XUWQr2Ok_et04JM*2jX`t=78Ko9QQ0}Nyr zB9IRWoX$Y@CIb18z;hVLu0`_zTcQq2 zNmCe7q)iPRkJoeo@biw3Q8zn0ALA9=cIrzl$${;nG7vQUMDbyU z`Bn5~qZKfa6Hi1=7HN0h#kOpW3|_E;%RdM4Xs`NraLXlJVyS&B#W(2yvtYGiohLS9 zrTxkNMaQcbJ3D6>)sPxk8;f}ZoObqKhN#bAwbucEjCqS?P0ICT|0UvF)jtUlu%Ki_ zj8PFTASZItzv`^W$qAijL{6UBISvKK%{+)4SL8`|11xX_Fh|lqUHNs~$qutzJ4U$y zdi4GW5JCr!Juoy{i{mpM+=&m&8KdH^V-15)P65SL*leCR@_I^sbX+0k8Iy$FgZe|}@U*?ik zs)Nqm1Ug8gE?~9GAQhhVSxH9#Awv{2g-^vi)jbfyClKxen zh$JUqL{FaCc^1;C-Wi94nfjdIxzr%k&RWdNe`NI`zmnl^nQt9LAM)cN zR&4(EhZ27%4Edo=bj-bQh2zKg-HzX{@cVoG?#B=RtX|A_IrH+JS^v~{1b-1n6DXV0 zJpO|}Ks%*}xqG_IPWPV>uXQ)Ii|f1VoV`ajmeb3t%~h_Ss1 zI)eGeqjY$O*iZ;mwQ)SBIyn}I10pR2_|*01srsEm>VE@P!Bf@$o;4-Kkx1kF# z#715HpTI+HO@RK&t9f^$BXk%?QYL2`XX4X~)%uL?g4h4GB8knu^{NT%Q%Egbf}eBjG$f}Ma1^w03EUhbCXnzkd}h}RmN%f|N~@!bP8GKrU~y^Gq+hrX{yYhMbtR{uo~2h$vn@m~&+ z3T);ZHsWEE2jBE2z8*1-@`L+M1IGk^xM&Hms;;nFj5wTpYh<-oC7@71q3kX@mIe+6 zqPaWK+$~mfQN|W*mqEl!Z1zrb&6<;FiQc#w4Hu%9wxg|3cd-?;a8wEf@|i+|!T`hM z!iXBG!h()_zLyIfO8;d;U=iAFwyni5_e*w_*sfbGXc)bXa*slMxY`ozWxS^t<5n4{O#g!-2~k>iL1(Zj7_d z=3~f>yhvsq$J7Dbfzy&a4v8%p)KQwi?*!~zE3Gf-gCa&|K^|!BKUTYRnZ=UxC@$Y%!VT95cb9pZs&15Dp znojoi>yQX=KNr%$O<{;ZYRp71gK#AxT?3A=yP>H+uc@Klyx}4`!28$>%K%NrR3gpq z*gr{>mmS9zDXcXZ6KUJ5;R5u;dK|{{#C=q1*QY_)R&RC!1b8;J??EWbp7C||Fg92X zHrF?yncL}h`jSL?%(LuB4>;t5{EFD^W!uTRF!ayUN`J#~HNI zMMpm&GhC7cYHKk6_S0||uEAmTC4lu@mVuP*^*t$Mp_r#23xy0l=2rm+f&DU`LlI$- z;N}vb-Zow#Z1Z7IT*f#3pY9jU2Q^;!zVokTEG=_G1M*jXfc)!#!L0n$C!n${Fl7D= zmyr1H^|Aj*=FRX8*|hLOJD#M=XPMb9CyQC^U+Hqf@fAyu*Lw%C0XAB2NpISM;6{a= zS6$K@u4(QlhDE`HZ*$foP{^^5ZM!@EN}j=?%iEB=wAs8zHUN2#SBts#QuFa2D|2r( z&Apey+zY#{c*DeI!)Qo1zo`3LIhN1?4^)i$?Nx$GpG7UkDtZfn`n@ z&e2k=PTV#9VN58EHPhEfnjZ5~N;oX~%T_fH{D_>99UisWvL382E{pA3ESTZ9_z#$` z8FT!Q8<1iKJakq|ZFP?uvo@QTK|77rJzjR){Oup!Ny2Qdxt86C0CSIghL1uQ!I^8W zW$xpFUM!y+j)sqPj!lLiH?<$BRi8OUM&t03^UUAE&Z|mZt4h|_xt2k6J#L1rqFEw} zM|^x2xCaO z54<16PT#=cXyD;k;MHhgJ@hK&K)R5XL>( zgt5*%my%fs11gma#~HLpk*N5Uqr=)K+CfyEo<*1R%3?am*!V^_2n^#+`}&{KT=gH_ z9PzyyoTDXeYSEnqS^tFJNdLHQH0F)3jxR%@=A~FKqW!Y#c+z%6N~c#7Vj5^CaR2QB z!?(^j@Zdg7LYtb)zfP&4-HnxO3_}BE*NWrG_F@3j0YVxuFNfWwy*>3g4WE?%%}7Nm zx{9L-SMUT=KV@S&#wV9~%#Cw6XnJDvipkvrXcp39Y=hzOHkO9A{xrayDl!fk5$25a z7Pp&Vp?Y&Oj0uJzVcWftcyar_#KQo{+<d>Fk=I%4#q914}`9=9f`WO=L%LwCmXF_ZFk16`QRzhebFr%^ajjhL5Ol zm2EoPA#k-HOQk!9fdE2gAebJ92O$~^J$W%4I_G;RteV<;&}NFP->zi;iY`%d2T?g- z7U5}84z}R1Q%v_iS(XESVei&;kQeQnBbyvQp8-(KF}EL2{(L6i_V8^M-*(`QGY!=9 z^J@^$?!()T{ONdgYK8d~c<#ur=a>2P*N`cQSMyuU-om##@z%Zpe(rXnU%~*TfSLJ^ z1jciSqJ<GV%&fQ*6dMwjSO#9&9Dhlk>4L9==CDiu3k+07#ShItUXw zgwVZ3m}&Z?u!e0A%ilM5-+>ja8=GQvKJ(9j6V{3t4yxR(B!0cQiuHzpKVDI7?nR0P zO)*Sxch{Rfz(+p6n^4I>BHkh(V{ebS9C$}2^HJnr*+0OuZ4nG^Sfap4BzXw4WD(x# zVVRu0t5j*2Wqir7uPRM8jI%RNz_H%KgID1JR!<8HgCLg$=0UQ})gG#y3SZt>9kdZ{ zsGYC3-vj+NR(H(2@)?XBfy3p2W1VMkHKlz(GCzdOY7kV597JaA~u- z;WnbsC;GG6eo$}Df@#L+^25BaqI(sPeJk;CClZ1eja|*e98g|wZs(>C;2yS71VL^1 zR71O0`tlbzMM3mI>=#Eqkq3CHH4~qsefoxn(Bt<=Dm2h%US_4bI3pEnOBFrQE_#t& z^q}d^NNg2ZX%{(YzP>zNVY+YlhW@eIZ$5@ZbVZHC|-c2E<)S@9G^4s88C5k{386q;qLIQf( z@wL4xud0Pc)0{&<;#8L1tp9=Xd`EfMlS4pOqnPSQ0s_)k9@ba@;L+CAIK+uU7eLe-sd zuld^jZztyf6a=mKWB1BgnB8<1C9%DE1qKt$9^N&oXGW{564e!;Tu0lr+dAl&3(@H? zJ7Ba+R97)P9i3t_^dJ0VX!ODT$uPoU(^5UoaDWvBN2EM@qfj4W=V6^uZ^Qvfa!h^* z8A1ixv_5>-4K6RXP8rjh$MNtk8drF<84hv6pSr>R0xtezX9(P7r7A2{23a7F6ic0z zX5QRzf)=1^+_>#Ab|a=r&YR-8CP29+BNm4zLEK~|X^~qdkZv;4iRen(n<4gCWF1>M z?2v!+Wc`VxZJbu}2AWmcUIyaEJOwAIO#i|PN7*w_SM)j95fm7xuf{f~s~y`*g^S4*gK#uz>DUduW z`o~~OfI3+nY~b3|ZL;vmX5=6I|Ji&0_^7Hg@juB7Fv{p1G-A}KX^ky9Sfj9&IA{Z5 zk|+cQViIf(*sfYi>lP)$4`o7dGLp;jBHL=~cC~eP?Jm3PF78&4wx}6GN%&C+Kekdq zjmow+P1;7F5FpEZ-p{#rCJA7>>%P8!d|$6cGxy%}`#k4)p7WgNJm)z~c=-7$c=S3T z$CZe)#rbuB7m`0m=#&7&o^r zx={D5tAph6WrYRV(elP+bd~sN0+GNy0-P)^a>d81s|eV?vG7|VT9(?GF|5v9q!z`RLm&eaz9ulp8CY2(X8U$ zpSR)7CB^x4Nu_V7es&Ds^!$afx^YxK>W3vx(7#OKx%h5rj!YU*ySZL>q4t3Jy7b7Q zcU=NZAYI7WB{)^eL`O-?VO9lM^)v&}ft#S=lDj~O^#Zj)(fUqhCr!YeV;UzS{w5ZX zE@CC5oJeZDbjV6bn+cQNMC^b3AzNweKjkJ;#_E5dW^4U2A{_k**NG}inh%zwr?4`R zPTEm)>&cY0C_n!D?5JiT`A)%3(+0?__(4s>&O~SlOvpZjZp!Z-pesf=A)r*}q`Xfz z+o}38axjn0l?~a)o*FdaIP?SUuSNc^F55EXz#1T2=0cftukhsl`4s)}C7IHKRN2AI?3AnSS(= zx#Cet`w~06${Cd^4%&$hh&|K=PtoWDYG1I%JIhj{Z4#G@yXGw@UzTMrT+I$Ei`^Z1 zG2LMwUCb%c+faMqsmlJ0`UAxqO+N%X)eieLPMFH)cley|oxgyxbEWLcovKfr2tMMq zYUkC=YZ>!cmO0aFU!hBGmu31E+h2Dw)i&ZV6Q?=%zP9rFDIqKVI5XWvjmu}Jq9X_r z;)_3?mmR(4c=tqWlil{DE`M(KlWBTkb8TLcjKoR%-5;SFIS?0@O-9pb39G$d?TCLc zVwU~qKNVM#_dJEB?X{N$kSkx}cc$9UKGQ|wq*7aeds35pmU@vGGsg~Wg$t{dVx;$w z8JEYZmH*Cfb6kGa%2)X{oN67DcY#pQ+X zo$?qJ*N?!;L(Z3e1XlJqU-D2Z`}sBF@=GpV*r?&W1*F(f;^uT^f%95mSHeoH_=}Pa zvVHT_Q>hy0b;MRt8TrigVR+u*k!_@MJQq2nk%s5c`+xM#CGPO*4w*4KeL`b|9LQkR z`HJo~9_(<1nCUit0I*28T}%OcwefrQJpZdGbv^S(&G$N<0eW#uX_n?$W!|l&`Ptxw zc2GIO(Uc>Y^q^L!NM}zHPge`PVrGtS%~}4&$Mdu5KSv#@h1@)VS`mHJfq7%7AYxyO zK*_?MRsxSKy=9K}xqAf5t-3XTEjyV%Z82ZtsICz{;BMtiE8MPw|%DhFru8L!CJ#+88GjS_Jjt41*bIN0hC zH+)lW5g(5})hv5g-JE2*r3eSP^k*~2oS+4tdP2u=oUJI7j6SeRQ_}64kfJrKR{k5= zZjZ}vw89~*+cjZDZ+A#5q)96}R;?5)3&rI(dX1&&C}OEieA@3EK9QQ+)G~+T2Pl!` zkmjwdH7== zYWYF@@fe>Df0PKj%o(lt9rE>w`Qv3Z4uAZ)rTL?jW!@n*+5fQOZ2kzfi~T_W3zb=% z^vlV$f6WvHlN1&)ZG*6efc4WC0cV@11^k%LQF}4Y=c+8sWN=E1Wf1EU@kPuPFUBv* z3(WE{Tg%60D-2TZ^2V2C7i1gHB%5d4WGPv>+VgHkEgAM%KeG8kK43pb+yD9a6!WQF z_TT@D)aq9|(l%ysVQcm}xK}Owsuo)m;ajP7ns0$+Vj!dsE?y;^tz6z{9cX1tP{Mj{}ZU2OPkn zw7{$yv$Ygh2wtampB+%{PJ>d<5cUJi|5Yqs z{aCov@O<@O&jID6Ck8+{(;MFPAEtutpAdpd#U5){muk*kSe9_d!oiri-0SUH`=(r>WDGhd<)5PN99v{a8bB@1bFe>Si6HbZ{^2fK ze3`MKablG=RvynoyU)ZDcD6$NH~NVNmRZoj(B+}b9q&IwSOiKG3##nQQU9(9`ZhfSA$Se)4TFE6{SpPD?jb2B&?~DQJoHlO{EvS;Q2bF+n{`jMC#@;MjXPP9NuIb77BF zX(KPqJ0|SaGanO!9_5+O(SaSlk*OB|se(0ZI(PeCvhH6RV!eb4*$C zny5hbLcjiH(RUq2e5uhkW4;Z8jlJH%l#Bvu<`oSI-s%J+u~X)}65=TRoT39#v}C?- zNMNB(8~oqhA?!Tz1+2p5+F>tB6=- zC~2adQ02UdloGMWqP$@7CwqS@NW^w>|Ge2c<`QCP5ax4;oGzgAWo&p)6;T4xo@2fc z?inVS9AU-Ia-Ds~UhA#``)_X>rY-w!r&wvjtvt)(XS~K!^Mx|ebwrQV%$rAD6ey>l zu(g|mzlSoaGo#0J$~#FpZzoBtN}oOIi_(eS#w7?lw_BCHb_W5tftIP5M(Um0UKvx} zSUcxka6H@_k*tdzk~Z|(|0+2ai^f5clQiC{E&k+GmE@uc2VWOS6@d8cMp9dqhwUXi z9i5BpXb%0iu@jUZWZzdae}etuVx|+4N^xPwDIKV8fxZlE%rpJ1KEKM)!3;w)J|SzR5%UIuu9Gk{tw-ftN-XY#-)x z$RZWF2Nf4a+4FIme~;?LPU1n93ttASx7X|JT-Ha+Z~mz;Yzq%zJE-$QoKx_~1L|rA z#=Bodd)nsdhi=Wsi_C@N0qsGd(&=6^FTNwCT1lKO$C7V#SH#`;$@dZCEZM2>GS(-$ zXkYwfb~L>_p*5GfRmD$B@Z~7okmU4o-%&8?@n;>xsrhQ5ftp!r2Ih*XNTD1Pii*qS z^sx$Neoo4(8RI!Jfj{ol=Uu;k;>R6Dp=@Mg)MonJbYeKibr8qq=fFYJzWUSd-{EhU z{JUdC5$k`0x4zqP!7I^*LCco=SXBYF-5IMV)b<(vYN<~bEQe1`rw8j6p! z>FA;&nN2wtlUg*MH`mBw5KG!9-pvN_Bk~JB-~^<=xSKr|P62*HY1ABESU+?UlP!&3yOzz6^g839WdoX{S;YS0#A^3H_O zHbSGt;v%zrycz2L^uU3i#$kO(0Q+yl&O+#mF|2Cvd*n_2Do3@~*k9BI`z(JE1{vnv zUi=hU{`FEVH{@3KA%6eQ>bc#m=g6|5^&DxJ4h+;o?=e{qCNYH;_xc{}$J5=p_P^1c zeN&w7sDWxc(jDbgBX)7pqkeiMr`WSi@5QNwKD(c@Y^i7;?0=!({=FP*D-Bpv*$-;{l#KJTN|s=Ck0{YiXtzgeBDeoMNUV<%qhSUP#=6q{xpRW;3{-HW{M#9l z0WB93T3cco@R!kq(bL-L`CNg(3bP^4d|mc;J==i=F{a+tr2)YtdhyjwAY;5?EPgBg zhOFoof=OjbNw|1PtkyvV!Od-YJ6j5uw5HysZ+JlTHJ-jzWkqNma+*hQ+mBVAJx|(z zy(q`$R!zT!wM)}Be4&($X`VJA8z)U_ba1nB8q}wBsU=SPLSg!SNeO2T^8-FfnTtnu*xXFza-!u30r?BE+s&(f>L z$Nd-|{p=y*(avj)F&z&XzyFVij8ojBxm5@8^MQ{``v`xR@B@g;1bv7K_0dkkckq0l zk5gnk^~-unxTulIfSbuUnn)1wr#2fmRJIs5gkR|%Y1~k~#^PGH8|q%vsz_~DAnHiR z!T=aFc6}aFZ+zT`@dMW0*Gp;jUo^&C-SWeiXy;{X_@-LjjDtUa$T%o1|0tUmns@LQ zRM$?x(QI8kT_WIZr(1h?mFq#J<+RhLN8R06YJ6>15^*bC~&KLMPMp`6cuhFBIBpwrr$;-?$-fX$}#oWT)>5{0o|0Z(wwi- zPU`-u``3_L{E*QwrP#})T9X&_(<0m9*v!cGE?NH zy4J>}H>aZ2+RNq)?Pc>WH^RB2gjKNSixW6B9Of>BMkN0F&&;$dgpReY@QT3&`E^0V zrJ(vZAa{;PTwH&lPj=`^)8 zV64M@@XaDm%;#C^N6x=VOk7ss$f^F~8u8OrYrprRWM-2v*YmFDjOATGa%3--GzY#U zQXKQHz-JOgX;%xHH+m-dJz-zO{#z&WptErTSJHC{w=3+`D*Rme)KYJ7v&a{vl+)%Z z^?Ug0m-X0!ToY@96Tt;OV_noAWDQ?LBF_;yZpuZ9Z7f87pS|QNRo9OQgO|Z|oFwto z9iz#fsGq2%c4je?9#f~iHR=)S5~WFub7iFVc^;7rOY#Kv~+|c)^4}q{&FXsmDO(P^ek_*o_C*_G>!Abe>dUH~Nnw)1&Dr9ld zmVE#$QnSaZ)7+GzT9bCb*wCw5&80?e%wW|8lYFPV_d zeVFA_T9!fi?E3Se zRF;N@i|=eS2DA#@FSolEDI65f$VE<=>*dTQ><n^GxLw}a=8xvV(9O!8HE4m= zNt4UyH(Zqp`$a|VUm}ckyOO{0jYFuD zuW@@k9KWpXJKkD?8N`hKPnNy^cxyrZ1a6%CB$Z!&yfq+odp}X`TJP~zpJexavh2R& ztzOCQ|76+y$6IqGd*G9056B%PWY7I%*>lm-akM4=a3Gr-H)Tq%?D16g#vjI=GFBXk zw+V8{xK+gtZxr!Xv1fB4xF`Or5o*`IKD|5=j=VYEIU;$=6KvOs_I1K3tnv|pryYrH z*5nj7p8Q0z8{s`n_bX1yyII}IEx!ibJ=}BRT{(n1@f9u=#rB4~bImb=uF<^fw!_<8 z`_K(nUH41S^nZaU8c9Dnq7?k^5JjWuCr1>Grk@;9G@5==L~+qH?~~zKo{OgWpDcSm zXv*B}iD}FPe_(V*;tK!>hiWw7Bpr9ebJV=;c(SDa4mof12@6>4J)SI(5`3Sy1mE#w zKuYj`;u8GFlRhaS@QF(Z98Y?sgxpVDLhkWoj+Bu1iA%_n`3 zhY2|>GVLn%e_04_L0a!;x%&v0M)}meex(0OU+`Tdb2gQcyRC_c>V8kLUh6K%)oWeP zk%!ixw@359c2u>jh&hMuS;GFOA2%oQ?(FFMZY$1OZ(#7i5diT*s+Sv6b6Ih)#Kr&) zpU&!Wn!Sg`(=8}F_~Wi^2u!JlP7bYSDx^r9C;Ft z|4}o78-;@S@3NyCJav5{qelNGEu7Z%W`xtDXA7r+^9rY>BUp-_S3X^F+7V8BP?8y8 z7QB9hQ|wsAzoL>@F(z7;)?D|t=zon3Bd%+0YFV0NUc6SiGu^wkKpwue(wpi2wbGgC zfwj_?>A7pAE7SADld3sA-vcP4PA4|HomivThonSnZuTcElpO-AtN=`0GE<#;XpOPq z($c2AG|zW@v$U_mdwjDru!3)CVTJ$rW@%zY;P_@~V@2-q&C_I9}yNq?GoRupQ9;ypRDnPXXDz{4VtYo)N zzT!jqU{M|LBq`5xbX=Q`o;!{`QrVYq+Ji<$ZFW}d_z+=_%J!-El3gQo&7MkhN6Fwv z6se0#(QISgyK1-Fg5OiqF5OZpI>X|9v(o~n!D;cO+HJw9aZUrrX_vUI=id*B_f)9T z+;Mx=)IbS*q^4H9pg&|RXvsn`+{yi|tJlj)Y9Z$Ng$|aF>+2F;9Z<>oyfT=`b4Ozv$Q~N-6AHsPQj)al^&E z2?$qWU`KGEqSpwF{jM?QePav??SsF3$k_XVF$NX;UQso3l9@L)5cX2~K@{Kz-{KD) zwUQh4QjoNL?}HTl|82wZAkbo! z6vQ{Pr*NJwq?@lJ1K|$Z-x;btW<0foEpNsi-@%XjLwgMC9~qY*>e}xFx0{dqO?Gnw z7WRcKj5u(2OrEHNK9Z+gnyf1NjSbsm#HUT@*Fh)MRDbZ4%mm4l&vQ!ML%cXwf&1=zUqdn(ldAZ_1A9M@{WWM0IQ2pXNWcrIWlK$64)89QuwZEwu-urn$Sf_{#%<}id`zzED<+4@5k##3Dj8l3^wmZ$!-qP#q z%#sXagYj|h%z0Bxflvi=Y><-~6X$wb@v~x$|Guat-@G={$fsrF%9$kw4mVF5KsII>7z) z{j~#Ko`kl0lIj2noNl;yum>Km$DZgRaWM7dxQ1Tz*$;Pa@r{wv&VG7BAi z73aWK!~%NAN1^@0)eay~*|mgs-xlART5>a;wDMnLM+NVD;Q$D$F88!zdc%)z$MBl#;C?=W41CyKvT@RtUH!sBUxbVK$SvZaTlat8Q!(gYYp8<&r72sk5qfYB;L_f1hc^G04{Z(8I0AnnRxAOtEl8 zZL@baxw!rRc>X%=obqlb znO?-&NT@U$A{7j-zo>SW;GhPAKTFM-SOqHJF_X(dC#Y)iT0Tl;&(E4wB{Y{#RaT-m z8YNIL#0?%Y{L+6IMZBR13zjv))oL+A!H&wBgHuF*ZI%7?OLU_#dVExs=Rp`VaYa!- zeqIH;Rr7vKj(HErn;b~S{4En;|J^l?mC~1LIC1zTz0I6jG?s->ghD^_k-#wEhU?QB z!Lp*rK!WT4QxfF52?jNp_KJNm%gmFh#bd0w(n@w_f97yXTKP3LxX)_k&(CgUCcyr$ ztDRP^ucnnU@A|TsMWvM#+Su!~^6c=wA>o4>=g<@USM8AzHLLs7eZ`hwb^R z?1Q5@=>;<_3de+Xc=;)>7hOn#b?+q$| z3iM^hd2%4P!l#z_gFD!!4W41eZ`KKeIOeR%t^DT*_k5AUY`gu!z7$dpj7e26WuoRj ztRfSIomR6|$TV1ghw$&p-dR$BGzwpYQn_Y_7^FMw@bC;zon4kqLDiTZEZ+(I9NXD* zGs8uth^kaI(u~f>=##U|$+|0(Rq!#sv`9{$W~fLwlgJ!u(pYB~UEL-8+N|_D+v$<2 zni~7q1;d=Z^Z<)ZdiF8f>AL(L?niR>OECy=wn(k<&2UuD0)OL@@mTm52|#A!XS|Oo z(`eex05vYDz>*PHgY~7tE;R8WaqOCbdu{PV@(pK_WdE57Br?-;w8mck7{(~!zzozP zvhkc+p0*bVWX(z!fxtXd0MFT~A|?eD!zweE(~;XTnZykumxnR)m^O`WMm9#QXK$d29Wj~rSAXCWRsrM-{j0dx<{G*gmcRo<_h$< zXVXaD3Jili zkNPL3>L(Z*I@tVgo$Sm&T4dkuifWtFD{(}#w`l_c>Nu=9Wu-svm$jYSX8D9FE=CImLlAS!QK%{CkiG>*RZI}l+*bb?(G&rJTrOGy4sbPSs?s-= zjvie8t4v2%RpvIHOmUhwQo>R%kE{7NjlieAZ2rMx)o>c;3CDe7mKN!yiUIPdnPbg>HOVi>Q!&{)_dFi-CgKLCCTe=D={>1Stg@cL2FAqG z%5mH5Rxl3*pQcaFcQ_)78S58?z%SK^-~l#pgB{7!-sCB)a{59?j3{FjhV+ zRJwg5AT{=M1(TtUMP7BL+hcS@so1$QJr^m-0}+Xm+CGw0(B z_uETdTRK+MKC~Al-e58^v&ud_n>k4CGXdZX%sqG*M&o%BLu{$bSm~i+%D^rgUEQNM zti9Gq^a`u2=*NON{-3-ClbGWhPrS`*yze?=$xj;Po6${@Uv~Z9d{P zmm+|gSGcl(wrZ!EZ%HOd*n5YrCumh%NBK`S5^G-@?XAgr8EwUzE7w_zp3BIDg zYZQ%)*gqg%?{El>C*(kU_dTJbi*5)Wt-nHTrBII0&$Rz?iL{5aLw;$`E^~%xQXGk- z-X}r5=Hh`M`$&9$%APa!iY)tH`8jolpFi+3WIEZ2aIA&{x0zz`-oe>7eHacFzYvD~AR*!xLI4%B^!00lk<<6m)^!ZHZ(B_<0`^j^v)ABg-4%(;C ziTXL}kKIc zzOUHY0hDX4)p?+YeL@s~tNpxMZ`c$?y>eIXdFohwm}u*bmOq|IygFEK$mz#FQqnV$ zsA0j!r#Qcjsy<}4%l3YBD)q7b!+(O)v1|T+)G^oiHrRVAV;1;YNYlmOelmV5dX_L! z1BV-!bkQI=OH3rn`93r8y!0D+-+D=2c4>D|=K7cUFcZ!E+R-m?K&(%_rCpyrJ%;kw znId6e4X)3YOd@ijPrMPzeeG=ACDuw->p6a13sSWi>&k4UBT)C6mZU)EZ(7gjmt4~l zH*RWbUR$}Bax!5sIcXo~7I3I-u+(Ik!%*DB8d7es0i6%~o z5>ldBUZ4_EhFM;ybZ79sq7u4qGm5Mk<0EGISo??hcw4}JlYdruMO*narwI|~agXzu z?L6+2$JX-uX`-kzd3-}ZRtknXZ-UUyo8Z6mCgkG0iQ_5fEjRNfbmfHQXWk0jH~MNzUikU-6K=$WgzW!1sJ)ygBvgt5(ewKC50F4_LLr8j%3x? zeNBC-#u%sGFI5f#fLaCYDSH1cyL-f~+!45{5@0$wGBK$yZY*JYDBg00iC}S%OD2~* zhY#MB(i^k6`Ht>SJMW+JJu$I+wDZ2Au`$$rq4O^NY>X9T)kirAt#cWl8zz1-^$G0z z@q*H(+bZeI#EZ0A?XvXqN7<42H`-&aI)#fJ{u5^byKM7jdddBPbe61g=2Caf{xZp^ zAlygk;;~oXu<7r<>ehoz+Z^RaeEArUxXcrL&T2YXznp;V=u#`Og*qda^@;#-)s@tS zTRPI{A1l%0#7ZK2)9oj5YT%?Sxt11`&uc5!_+pmh{?tlH84({E=^!|lnM(ck3`O8!1Q z=uc*<^Y7=a=&9gb(jXSV;l-&KO)unP0CsE=-1iLq`%Fu_`JchbAul1K2!4}p&$JR7 zIa0yAyXg-c{m8NsdBjGH8xp+)+xOlqmm}zRkt!In0MW#D5-Vl20$rTj=pZAZYY{-T)f8b=-NAjEU50{~ZmWSJDT!qv~1dHtX`y)?{ydu(>#^ za}+hkm>&u}#EH)h54PYJqQ$=Rb^KFWjf^p1Q{`}4>Aj^nl-#q{VULwY48g8Vf-sh5 zi}sueAcZA)IQP5M3U@@nH7U++BA+1lAs4x~>M_wi3?3ihe1LFWjSQbryN!)h4&dC+ z-;FhcnHEy9-!V6PP1p5}e%LzW8 z1~Ii>fF9|3lPIS+D;GbKKk>Do8?PBi5QkiH=;iOMJ{bTV5t)Anr>U6{oxve} zmK`6BV5srX>4Fe|G@Sd4QtO4@Y_3a3r=$aEp5cXP(93P4Cmo#QB+h z8El4=dNdPu<&!QAohI?(iDyO^YwXWcjP^by?q#p~yk;4kfRZgwD$Gx~XT_ci+Yscz0t z5MR`Nv3`#29NmNX za`e1oIkV5rdiGhw1S+GjjRf)K1taP&n4iPvb|?+TtYOgrEb70%3~n~Rj;J4y(t^$J zip;;<{uUoj+ufjR?B!<%ecJxU*+IA1_nsYelU;Up&}Zy%nV>b=zi&+=Ev-|hSz z2QK&X1Rn98@q;)$%R`hyqBO=pj3u*J9Zkw^3m;~EngtcA?W@=p+fKvery}<^n*>14Edf90x!v~_=WIZX;k`NdvZkE*CB85+> zd!Qg**&-NY&o*@O?w}htVNl#eC(bE`G9vR!Z2OW-F|X^S`*r=J@LCnIR?9NPP8@-` zRBHbQ;yH6aYtv_2UxV>EkI`ckn-EYJ7w(5Fpg>J zzbqQBowKa!4*uHt+kz`mUpHPs$QYppZkez@hv@Bei9qAEiKU))PX|gfvpQhqqw499 zjz4{oObKa+x0`NBV}gC>)n~7kHNW{dd@M<0V-DEpH1vOjjknM@2OB43+MxLxppv~6 z;cIn>J!kK)#e41>f}dDZh@r+uTqwuB%9U(Km7f+;b{!TUEOI)CKR8Ui6Psmh-_T;c zkq|cx8k5)Be;!C<@>=^gxDN~#)O_KRG$!9@mCcUK4_TFK?RkRWQefh32(3h{nchIKMmp!9&`_!(c7HM*Qp}iZOk?z(+srxS_m)n=0jdc3* zY5SigjT^eo2~GFn3-%l*i$G%BpkA!}wC;s1y*T~5kMD(C0cdB-McE!BF#{B0RkFu6 z%kJY+9xV5j$1~OI*@jz>ve_G@uq%YTew40LtTriK&4|eHA~GNn=c*?MEc{b<6I(*C+!&wHWM_y&?W zq&kqc=R?ZCucRz>*hXF~^Xp6hz(p)#q|!DkwP>CP&kpF#e)fRYW_H&aua(W46>;J% zZw1j2F0Oa2iHZmE;he#VOIsRUor(Jf#aiBWCwiIAivJNdlsd|3p!Ob@0pYu-0v)rO z_#1k8ZzN<(ThshY_BZ`$I(f-19fg=sHilkAOX3X$-sl(N4Y^s-;^MNx`tb;gPs-|e z@H+R}`8ihQOZL|_-#~P_PrfQCvHM0CP5qTt_$8r>uVY@otL6~j^l7ScW3rLin3|yb zm+Wemo)K&M0()ooA0d~@4ncDE&m8X*o;Jom)Mr@2(^S%#i!^F)!tY1WgQ2V-b$Uj+ zrAuZcu|`OZ6Yo3G4nb&7FuVz5M$ewc=hXrzGrUuY^srH*a;zN$2hF}IXtojbl8GoY z36+OpEz7J7%;yKwFlRngZfPxA)xQOg{b_6!DsV7Wiql&-t`GJbG6mTGJo<{PH8nq6 zmbHMt)%^Vve`m>$@t&fA`9S7ZS6-6&iCVQM3oR&#l*Hw2%vN-e9-dc5`fK=|Gb{b= zjp=?2s?e2JW&hwsYx;|_fAHd*K@Lg=#lK`te@WtBIw#)s*Ct-s&hM{H1mE-eYx}Q* z1KL9Kv*&0F^?WV+h;cl2)DPndfV$Q=PAH;(04~OcsW;cu#+T#{W2@ar90dmP$0vBO zu)t7gH%plN?dd^Q9tZFwb~L!yTVqwto>#P%1x&5izUL-l*uL3OW1l<&rNsQ>wy_sL z8Eu|JP`~kPQYGW-ZnP$1IJgR;DYloL zChAkWYplpU^CE7IAB<%rsFA6Cx1FHQwh?(h5&t0m)WQi7`?@K#LJr$wjTOBRg^P0% zyHylzgV*-@@=@ z_QNKPwZ?zP^T-(4wV8zX=X==gWcOz#bj7-`!xN)H0o(&%A17NE9Jx3wbTMGqM}6ta z?v4BpD&thTUh+{(#78yM5q~&0J1X0qgRKU2f85Tnn|yT7@5E@(XnK;7vL^S-Z3*l- zqIQ!7y!Z3$D2G}X-?Q*qg+=6jPxLD;!p5o6E_yK4rxyD{yFjK`c8OX>9ENU0-zCu_ z^#?wwB}HX_%rKX&>R0Wa7G2 z{d>Ra^|XXq7wr&~*}BJu3qM-K&M#lmGYX(*yJBI~FL)G;nb~9?` zlz-1~EGz=G_IKVBjiM}2KOJ9=la}cMwB1$qHQ&_QqtR_nMzQ&tGhVi1G>xedAn!!Ldh|3C!Tnik>DKHF(N$4_`4((KT>x zv}{iqOrvS*SgB?TS=(V=A@m@)alb z(_l|?c~;i)5qHR=Az#cLdLmU))=djfrs6T1HSSwrq*Zr7ecp^VH#SVks=q9?r~uE6 zsYUq5&pMuJE(>qvmO~^TeJc=`UL7&+8}{NWFJ&E}0nfa{|M`V><@_sk5+CvJ)IBqh zWNeI&Ogb*P0tx&WF zhx}h`fu9^P(j}ag**+1xGV7hXCh~-v7-lGmO?PV_P$#JJ8I%DQ4#@E&u*Rxt1RGVXgT-=_BH{5eUk-O}RC!stb8mKaFOCopE-0+}8H@rMf>Fg) z-k86N0u+Aq|AEcQcx-@ zpf9yK@F^|Hxcb8tJ@--lVEmJrPh7CDlhDI5uCd{UEF&?CrFZRo58`RF{fjey(Aw%} z^gUFwhdFonff1t;y<~XD`2`!B;hK<+SlexntI9im1O&o(6 zUc*IGA79>0|LyWR-SVFLqvgGG!+*DZhu!j;|7dv@Y% zigI&Jl~v)JXb*}q-wMDTyDi)b+RBka-(#hihVmtYbFlyYk&BAo!qCV zsCXNm!K+g11-m#QuwJJ~Iw^+f6nNqe_9oBd#LsXB?Vq4IOBX}Gdut;0ldyO*(L!#^ zlHaz(7Jf-3_Oxw@4nF8XW1Czfqu)5!Xjw1up>#29X!FjlB)^iYE%7RE{9A6ym{~GV zxHugVn(8-ZOywHDvCqmd>YysGF|CSAJZ8>HtrvJ%x*eQ#uouuOEXOVD8!g;u!m zt<|q`bjN;q*l9xbIL&-u5J`rwaYzz*qA|waQl*dkVkQM}%f!WPGZ8}{$qW7>vA5wO zb(ddG2{_hOgI5xn`6R9HXVW2%9EO_i=148dlVuf4ptiYYSsu0_en-DN=zeZg%Mia@ z*noWHtwoX%H;F#g;B`4s%wa<(V}5+U_sEqg+ZaVSi*sLA44t8DXr^auEgzk~e0+$> z2^FXO>1j@f>6Ea!LFIpKaQRoCTmFikolK2``ImGdp9=&MFT%IkE21}gmfZK?v3(Er z?t75qhYfPSV_;vWWxY%q^Yyjz%l#ZLAN8^ukct-2xhmP6lW2Qu&M@%pIbP8yE*Ca! zG|4?F>RG3T92j3SvFh1pTN%?(xO88fQ$LWwmbF|5BPJ4RyG zx22d7!C$By`#zYZo|VYpvr?A+)Gxo<_W^4mmc+ST50culo+o-HI^Iq@Cb_Ymwq&!* z)LUMf0z{qeAol&dkqBCt?Y?PR7|#bb0Q{N>(XY29B*e)gvX?^(Sj^Vt?fdn<4`q8l zYJ?aqw%@0L0|$&52Lujni3OQ_^_jPC@OBUK2^8jr;n+jNN+mR;6H5qpVjEvYKa{ht z(@ZQQjKksb+Q_SwkYXTJepi)UfbGBR1bt~&Uuq(TCsJ_qCWhmN`0Fw-Im-$nPT^Ix z5n}__7g-t{5&M_)3bO3}6vpl!ljI=~i1`=Fr6hapPRKgC-|o0x`|5IW;44?bL(^#f zohw~52ftloz?k2fo3ir1A3D15&s1x0YqBp#l$jS9ueZqkgueJk*LDy4aRH4%0N*Ij zs$kO70yo=uR3?jnwzmnLYRFU5zSFO~-(ex(|BjmSo&L$@BrpDIZS*(l(z)g+H5{>W z@cIKsZRig3Vxy!(wEco~t$&&&V~V&&UmJM`CAcGNvby-es+VsSX~-@HrUnq{<-Y`&h-< zD%?3Td^mc$wIZt#^jsys$-Y4HB(}eutPQSGq^S;+L`WEHpQ$dPBg_u7u&(Wc*OYco zx{Q>-ChLODf@OLsBiA6Na*u3J3KrF&WEk~Kr zJrIH~OUYU0#8!pcut_A>6u`3c5!&?TwD03tPjNXS0;VZS0)f=+aMud1}F#s z!zAQNTzHZz8*_NPRZjAD&jL$4Wj^kn4~6?;lbAo$Tk*%d=p4Al-d7(ezT3w@1l*u# zZ}F}5*HXZUbO9z;1>~5+`CH&MZ|%l2H^$|?s<(J{z*sF;UNpuohw}ySfm~UD&3rw&dKF zsXJ-gtpZRvKd5qwD|~FGcN7;zkFx(jZzr6;&FUBG1Qb~RX4jZO*x-&ohZK^cVXE0< z>ydBz0sO%FB8MpB=o!>iqPj3S|H{%kxp@A<8#3ycd^I&6eaj`-++kPbC}yxQVqL(p zI<1(Qny(grOsW`nC~L)tlrB1&N`EN1==&I8i_>{f`j}`yFb41C#HOq~>Ut3f6LJNM z^+<|LoEL5S8I4WbvwQzt`}r4rjp_e)#w+aCdYe%1qv6ojg}0>jHH-7rUDBp2wZ3Mt zA326Ezw_m2k*GhTz4>0hI)L_O>!R0HtE0Lpao{hCC$i1RSBs>$JpJKUi=?!X`Xitg z$uj98bD0$4sB+*B^vy5aV#@b${nc+ICex*JX;hDobM!(41S~i9iEEIwGDmCH9TiTI zOuf-Sh497G80Cu&C+_HQAOveN>UQ`62QJjnaR<@l6j%GzKBJr+8`0xTPQ&kVz@jGS zqt3~b43jlrT;0xO4HrkZGr}C5*6p-u-OkUXd0MeE!cpuX6`BTfi#S;k4?=JKj*vPA-H9)Fmb}q-6cgB%)$2A4}ZMCD$6NTSNv6Q^PWD> zR`DZ?Z9vs{(8iiR7QR-)K4al5uGIncaV8KE6eYXGIguHk>%1my3@R_Az9mXM6aKpDHk( zX6?joDT+*tb=wJ~%hq9@*4>`?`~4@n5_^rOcaUb;$UCxl7%Sh94B-G~4vF96d3{2- zfbDMy($R*QiMVyjAP-BprvxAsmqFvIjOEUDxmOXr+!?917>zz!?TEO;%{qV27Y>gsF z$`=#${H)p{V*Cu*#hcp}ycoUugZHx-$nEJ+hQQ4{>73RKl{K{nD>*JGr#tWIKB zJgk3-r1m>gWg%TpkY&klTVff%GBA1>vBdpoOFY9H!^SdVP3EmJ^VXC}_Z)BhTi%vv zc4PH&V<#dm13*w)Vn6RvgPG{ytt}yO^4*r`;myfxXWkBE-VSBb^=864-8a+MbTE27 zTl~cuJB>>HVC$;fU##h&;bMm_nCM>6P}ZZM?vw*+x?L(EFy^yy`4pOVh!0etiwkhL z&2>)p;qE`An#;pm%cr1;5a33Lu&-%4ol>vMrtZRGHm!i zzCf>Fy5tISrAt-1N~a!rt;1@G@e569lYeDyDmO>rI4|D_Vhkhch(5SaP zxWlt8lys^mUb=;1NB;_tFrA}KHg6nZPcOV=NHa~l>l$fVQEL5jf^m=Mxr-`IFBe_R zqRP@N=2;=q0e&&ddbWiCeaBM16a1oV_h}UGnmwEbJKXCQ^pXSco7f`DLnDz#sKd%E zs|VvR2(c<+e_u9pxsSyvVy|6&30~Pl!|m5TWYNzCICLu!nrQbO5uz1T8A7z*aENx% z0MVXK6YS~GdMPbKtn!g2R`Ibc#CoSgtkNQ~k{lWwj1X8NL6L9XZ#DqA&~s@DZxp+1E8 zKG0QvDNSjbLJ8qZ;(R3ieC zot&(BDxVJFNJQ7QLKmE0Pt!&rRS0D?VV0sPqnCC-8EpxP=@UUq3k3GJJ2NyQNi>bD zL+Uus#P-K&L|8?JM&#pTXhiC_EcyKtH1Y~%2#pj9B>Z8)Q!hc5CBK|c;8(CWLnA&n zfG+ap&`3e%Es%N3&7>Q{8~>n@JU3R;$bGbpiIY^=^i})uo3i1A&d3roD02{e~-go|6tb?%{BOwVxe`?Phhm ztisFkacp{}F^$VlpI1xs&DeqBB?ZfGl^eC%?Oxa&Ys)K)H%qSxVRUDG@iNM3Racqe z{iMgVB)p&G4SQ5|d+}oh%m2){7O|pMZMQd^owGo4?jvV)yOUGrAZK{L+AWGxwm~YX zp)Z$okv!`Ow0K#eJ~SNF`_<$?_GEwewV_k>*T`pEaB}{M`2pkQjzIDhrat>Uleq}S zZ$6esJJjSnCN`bd=VrV*^jKc~Rp(@DAIL@{9`hG3!Q4ZkjVwbn3YWra~eBPyfEL4Zercbu8Lt<4#b_NOfHCB0G6P|+}~YA zCLK!7h7l4vtNRPeqpCL*NAhDe%uGMQ8xP@XWK&CXc%(692gX(V?J1A~4uqPxTC_1X zl2IUuF~tLlv`6gE>PSD4?1rNQ=o==?`Fb?(GKGudu^v^oDb#9AKVa5vQg!>e6$U4S z?9iCujg(+aYl^8bkk0l>G7Pvut8uW9qfr=5-$rek)Xf8Nd zfk6V7l5HJ#9It0i-r`EzcuHKgp^$SN@>L&WfA5wPzfpI};D4=!sDR(NLxbw4D@^o| zh$0idhDt~920ZHxqW`_!QD+0dnP00sCQ$lSZJD^H8I8#IKAP5<&gOp7*f1+pyN?m7gDUfJsC{=f|NwoRI z!~N$6D?>LwdtmSwjI%*2;O-6WZYa*ci`}}8AO~2&eP7$A0XGO>q-E=c4s@#R(nHLn zd*iXgS;p#zX^?JA*mvUL!ynh0&iUChD>NQW>nMp92sAyVmIO&}d|EMxWitY=l5CfQIM z=8EtLYo#!O0?o2W{N|XfuPdwbBLt1$^!!NJ+Fbfuf7S6%G z6(8u&%2!srFE7|wq=%PHk7kZ>;Lf?EQ15W<*Dr@v_~q**X=tDEG%Lj{ET|{J?##MF z7~6;TG+;lwMQ!J>04+F#??Raf4yo9d;@BZ$8ZHsBN;IaO#5$XOgV=#ReKZ}zj(t%d z#vM)Hk^*s?wOt)GW^kX%^y;3_0gmVxGkS$RMQ!T|VJT+a7Ts;QDKk{m?|vLBhPys} zgFp}?FxOT@^#xCwu~%2LX$##5>2D0Wm--J$0EQL1iBmkH0IM_kvUozZZ&Q#-S#vB4YA?q0Wf+QnOt??wr2 z_6NFZbo$cfJf&DAf~-zNQ)9%7&6A9YrLj15z``esAri$lVv1+u#r zOiZca(NAOiy$g0FNoGoi@XNDJ_oH3+qp&-iimstw!Zac!spyNqN&1LsMG10XN%!?A zQN-pz`(Il-PgV=5=;6q$h?G)eKlfRg>&ELg7QoVqK@&?1co{&L^bHJS%%`_oD|;Bk zJL54Q>eW|Ckk#-Nx@s|u80TOEv7tr$hxBh;-K{I! zZqWzSht9b5u=m={9>ZGcnA@R=s`^;yZDaK|8BSQ5W(aTteY)zqdfaTv6k4o4X8Es3 zp1eSVz4EF0Vo+oxGe)yNr)!mD7p%kOl#32v*rjJ-ShN4quKP)O7H&N?2)B+2ZcUWZ z&Wl(?mvmiCbi5C|+DrR_xEc+2!p-0=U=*?-+thCd>+Iyok>bSlwEV&@n=40xJ!8Tn zSA|D5hnvZRpDO;R$;s2)t96W6hv#)RhnwnUyzpH#5_n%a2y;5=g0W%RrD9;132x@Q zt65+*92Zq;SM(Y^0Wt*%DuGyRl{y$zm6}!9{pD1&ne9FVsAC$Tn%LuDZ)0?c?5dY^ zPac9!n2BhN5|5JhtZs&N5Uvpkrs*gL*T%wFz%@Ck$TW;``7~Aiii+)2buYu@k%u`2 zq8W4vJg0(FAkyRdn{oZaPW_Xb&tGBc=O5+rl^Y#y4$B4?!z~U|7RSEFlCfg}hh@XN zVa6CfraARa&5v0iIE>jhm@z+vTn1yF!i=Mino(G@?XYHh5NqymSabAHC~B){hcPW| zhjtm$KEeTQv;!J&c=OIQZ=N8s9(~^)ddrxx+nD~AaOT76v@rvlhyyNTj&*8YyyDlw zmJkHtJj_^6??rzn3|Svz>kWQnMt82*su}W`fEj%?ekPmxqE(hZ3oqM3$A_7rf_p?d zJf#T)a5q;sQeXYWn(}?k-cem=G>*9PQ7YQ#;QcY-sfPvc-z7dCdlk(77fH!^o2buW zn8`CEU507G2-e{h3}NT6xI6;A_lm?C?MTKt#L+T7sD();Pib^MzL%ENhhzh_66OJI zdW$lMOA*cfB4fjLcDu%7Eh3)!rx4iNJ~S`9M$Z< zeRAj*%YIFBRqRmr6`97ld``pChR=oGGgglmHqshw8^qJ1Q=rOZDq#7UZX8Z#i9s@k zkiy7DbiqX+3)Xe&!ICSd zg#8?(Lf-ND*2AbA-;2LD-E9WuCIP;18t>&9$m61~*?&1)=JJ8jXy&8)tC@xw8+I@b zzCq(a+X}nO&KiYOw8vo{oEqq??Y`>VXuu}yqZ9VQApN$$8Kl^ORP+_8OgKpV;Vsz+ z7Ap2ihKm?_%kY!&4({=)+%!x?O=x|n1jr<#syo=nnAU-=z)4fxA%`&$69$+BIy(HuWi!=V%*qzM3fF=m{70w*MCSnC*|H&C`5;>@9Xc#bWW>`Vj#ak6jV5X_ zai>|`;_#vt&5JIS!*rbI(1M~b1W`<5e%Tq~M&4=MCuWJTnt9uXIXLBX9^cyv8a75`m9QPO`yniM|Fe12U9H&g4S0*7dN zGvcD2(%H^Gdsgqwh>KTJmc#sP=}6_yWX#Tpi?+-C6szcUTqvMr#Eoegabt6$Uh2fC z&EbgK^_asbw{ug0T!&qGc-5X8t8GEq=IZA#XGB)1-01MbK!)-h2{6Jg5z@#PY;8vAU;N9{2Dc# zgonLSSqqN}oKx)0TfYHFkb4hBw z)Tc&UrL4;sA1ypiq8h=ch+d4mG}B@KaQH)K$&N2++0ho}e@Mo+#_qjRBU%czUs`so z>p&^c$I#XJSYJ5rs&c;|F`7@g<9HL-UZ6(&BI}Rm&AaosSjenA(DmeR&S#wE=(AV! zyrfaYuQ4ePUAB09IQ0g7S&os99J2}+nv=N3*sn$=e;rWonb8(CDW8+k)6n|udCR?hqyO&`z&PNz4C*G&~Gq_$WA z=Aa_duwV}}Kh=*x4JwB`G3Th<60FRFMHHw26LB7-;+S+Wk(t$bjj=IV^`8rU+tspc zHuYPu6fH|>VX!pUQyMViTFat;DZP6{TX+jK!+Oy?a1Be438=tTAd2>RXIdvBWup`^ zn%YT?c$I3nUPZSU8xD9rO3PQHJv-98!9RL3hRUoaTT~r-*8ryJs=7do;{wSC^XXSp zTeuM_!p~`QC2Dil+(P?bJo#YH006IolhMZ!b)QrD|mg_q_g zV;U~ddyUsvAnZhvVG|=5#s>G0y2Xq>Z&q*o$E*^RPL=dnRVIEA{B;U#$b{DK5)5o(_u+3=6jn zVC`D&pVIcHv0My$Z_5_Yt+`Gk)2hm=P8_(Zr38KUGvTX3tx;dowy5{D?CzXfQ=#zM zdOqvDKa$Ubt163d(16c~|Hs|?z(-kK3ICJK00WFX6AhZ$RMQ&U=%7S{Rvc{;U=maU z36KOZA@0^v*RA~nNzj%cbP~+)@F>2@R^KhV?$&*`+q#wA7PVGv5-Ml8@rf*3+;e)f?Z))57X*>EI zzo-7Q7&}x}h|JgvbuN@K60^t6o(U>BX`D% z=aPZo&a_zZGS_;==jr`>d4m%@yL$1au>oQ11Gt4qi$EC9x*1HaNTWzDE5jKBG0s#i z59sBJ#t9rl4b+#cXgo{^;Ok`ql2m%ZaQD3h)~|}j@f)(oNz{-}^A2%iIp@kp98kY0 z@MuAMs6Esb{*V@}HGcrN9Yo#%A$G+hvB+aI4#p4`>???^c$@XWw?`m$I+y3m0PMnI zIRf7cT)i6~;i~izdvACT>HI1lv1WXPQ{s#+FE#h?9<)2<1h3d(uafdz_C8L3OeV7Q z%&zcW8$03}YZkF5p0L}knVrsqGMn3tPoNO9B2KJ}A7?=xYkUSB_JJ*;kG^U-n}itJ zIYkh8E@gpbHHYb-<2#pVE}M0JMDaujHLKP+PY_jq(dyE7Ao2@Xl(zT^?D`+{Ed>R1 z-qU*mXKNHtlpC?;iKSB3M&5)SiE!U0>cB4m(qqj+?oq|qzDZ^P9_HZ+F^e~gGa_MC z5fVhtye?HGJ%CFc+5)L-fC8CKmz+_^me4WLSO!^;=8?AAwVEVWhKNk-{@==wVR9e? z0j|eS^$eW{$2xSice?=z*b-2+_^uX7`W9X5l~CkBVrQgw%a}?JF!^O7#by^8XnIAf z(Y2*t3o$jl9AEw)Gs}Pbz4+Q6i^p@K{UR$P&n2|qH8Kwzj-#D*CkSj`y_?T2@76J> zXc2)*4+5CDpHmCgDWDsKviKZ}rqb?3B|8nqr;SbP{UswM0of-A!s|ajglz0xElhUL zCG_C~MtkX9O#!}2=)?y!QAHu)PcVm}jF6>lYMSCh6qz_eYAGXT=XZ=`8?5h&>&Gw8 zE|+lm2PiPdz4lyCT;XE)Vn};K0+^85=b*8RhGtTbr6s>XN4haB#2@mamU zVjxo&RI<=NBQdx5F6h0V0t)@*T2HQG1Tyw284szw;7iRBnm?c>Gf78B{gAe{-rYIQvpmFNxA}=)~wAay>yO+m6$Zb+aW3*ws6<`H^Q=zQJ!}9 zb3?f+` z^nK=(*KACS$^HqUEB2$^H!ZXB!bLvv2*$t}UCE_Rtn``Qwc?G~xW8$z?pm2zPN0H? zyD%T}olI(2IU@s;nXZeoB-YWxk=HOqFvsZJ)>|os*%U4Pxp{A%7V>oYCGm->j)^K( ze7EcF#wodUfVJIdnbz*VOo|rga0o2(q+>h15&+FE-Jrr>rq|L9*h0dQha0~+d8xnt zvK5V_Zjt#~*ia_ZxWa(@6$$I=2ddoXaBN_{9)8{@Ag5{qf8=?ehgURC^3;EU6E@Mi zeI8sLrU$*#Wtt_>6Q-4MbY2xZOvvobqhs0cPoA2Ms$$pt2o2D>f48`_p%2#duW0-< zVXGcu+K~=eO&g?_q|rroHgdeBE-xGjoT7%zK?!1{50<-brXWStkb6)=J})*qmMr(= z5rHB`f`OuZIT%M2>XO`8)r43{J|XfkG!s?Bj1MuaOM;9~iE1QuV?-UXntXsGn2hXC z#pE0iiT*;{xITQ7hCycUe(cbqDb!!3jD0EoG@rHa@e#-3LLrf&?8bA4DFl;e1sX?o zM7lkFKK^2LK&Lq6+5ek8i^AMZuid?mi#T6C|O1a+d z-N)?q@SCUs?N*aS9|m=-sAdkJ3dncua`2FwV{)~@nu%Ske`UL<0_gI?Q~}Wgek6Lp zgQ^EK))^gO%`hF{GDME(0HOheL?enzN=f<1X?Njyk zl8ESCp>1kwFf(^4<~khMqG9v*_1>LHVKp>=V`bi> z^S9mjBO2@7mJrJ!0U2NQ6x~8PWo!{yN!_A%fjm6@w2uK4?-`xrbXlUZS+@ovYuXxL z9?O7IHg4L-n*TCJV|+bY*4-v`R`iFuS7ZCxBg&Op|Kp!r-Y%0o^I%J43jr-7I~1*S z*yl}=$B8bQd0w@FQWk{Mya?tq&h<`WO2u1;-d{Gw3B zE12&E>~cA+C{_!Ks=;E5tlPwoPNw?a3GsQp`_y@!HOXxBq%5RzraNN{gQ+up?{Uuh zDiM8FVfyqCOtSk`>ds-$O%6^FR8wa8NG4zsX5XXpJW)e-EuVJE?5;rt+0z;}yH^9g z)wEKCj+x1k26OqK5ib99d;i zT^j6ts$X^8~ldX@5Vj%~QjWb}JwX14;>(KW50lH)dG4)3dHGCiNA(#Gx@#D=hz<7|E)v zry4W8`*c4VzZqlA4V)*tVSSp2PY$l#QHaa;9lr(Pcht#MJnvuff%}u6e!#K4Z1*eg z9vLKDF#RhxC-njx%?mFH*7@D(Ok1%f5_BvyCo4Q>Qsb!3sgtPD)BMuiHQ_m#jq~hV zCgHd-b%MPlzlvl?-a~9LIyX$Ota4|R;55o%d7`HE>%medvjn)o$vAHk=yBGs(nCGo zekXGZ8J<{!9j^^7$&W1|+>(S=3#3E@RQSLGnZVigI38Xq0RH2707&Sv8h@xZD_ko8 zmKXqEyZbAg*>rs8adiCNdG@SH9H1(hU@y)09wIs=XIlvuAGVJXv!~4cyJ7)V1H8TO zWX`jms>ximR^UvU!xYW|1Lq)cHXaWx&5tdeWavbLEdw7hbO<3JF}g{(I}lzj5RMQC zIc44G4-pT5gmI<8dq#RYL%Rw%x134RPL8O{4i%%p{WpAWlTlw)6dVK`{y(GOti6@cl zJwmc|kSr;Tr%nhRvTqfl_3q<T@4Hj>bJc8;rEyQ z`ZPI@&%htQWo7kW#~+}obvK8PBAX@B0sUSz?3RPMdxZn zToD-P_+VL3GS8GAmjEanX>f|uyhI+yGFEz=sdx^_MFXm!Wyb5xLM~GuGE?Qgc zN{qVpdu=Czc2DSym|7oV%@UC-rV+W2{{GmeGSR0#ViR;Ek_EAkbvKfQGAXN{d`zJ7 z-fC*5xz!bUVk^qgMe>FAdTFQ@TWBK6`3HNlG!Bz_V+=@Uf3zTBJzCLtou}@z&l)+@ z7T#8C&1z4n;b(~&jHXcA5=d75Nc`36n!FX{l`K#ot`Ox_x2py>3Y=y^6R^pbK3j4V zLlq<%s7cg{Er;a-{&R7!&j2Bg&?=K3PKtjR{pjL*$2ps1*DSW_Tm0?Ia(wF{3eH}i z_i`5NV@`3(bDQ|37Z)6H%F<%ZqRu+LPsi5D?zuCa)3&mN@a~Ffyfew~DCcCOANdzA zcBb-WQFvhKXs*1S;kG5U_U233u2^x;i0RR;fkJkuyP_Tb@S$ZN+M8xbeMO@ljlMm~ z+l_rU%@ci_Aop#*OW)o5{!fs2c{uVan6|e47p-ah_x?}f&$M}DG1&uK6q|&9SeC6s<2XNoj)NcWlGZ0;|b@RA0zEAchT?P}kKn(py@5*6u@WgIbsO+O2{bzY5PTg{=n5BNq zf2U>Lw=ML-BD?Oxn%TxVQ}qT5zsn zRh-94`SNztLQ6U$RS?>XGqHjhdc!`pcC~+X=BVqpHH^G`TMI^>4v(i$B#)aq=wese zF7}o60(Hz0+H;E1!^-aUe~ERaNVZ&Ya6sv@U)AP&tS2#}WQW>T-<22AK{11crWl*qQWqvNS#CPUg2(+74Nd;O5^(YtbE zz>qqU@_lk7P2;0m(m{$D$6ts}71NDkDU#pCF{^`cs zG<6qNXH24V?2Xf@3475IBU+5u^{V9??dN)C-V425Dsk~IIcY~$(ow_(LkS1Z1VAz2MG!HRednCAN~j(@1Y*cyhg(oUDp$|cg% zwCIV8myfP;Uw%==CIZfp$bB* zVnVEb0`s?Bm@m#vL@+GOQ>%8kGS8Y(na7$ZyxV$U1*S44YqmtcOcdl;X(k23-JIxP z0&mB{GcwkgDN7j6pPdLxg#ntHpgtbn6EW~ne_Xal`8>QE(p!P9S_x&B4T-JGpU!^#CUyF*(y-7C<{kg_RG5 zh|k8kFctseLmX5e;w+Q3gtQpj;@({73izm%f{j33xgdZ1>WW;VdyTW}vvJm?&fb5L z3M=r}#hX{AU_DsrOHXJ9r%)&Xv|4;)dcR3AsqhOjyllrOybJ*n zISzNQGIkM(V%LlWTO#kQ-i*|)2rxTn=ZRZY5vaRGyA?=R9}1l9Pf>hLx7ey2!&W86 z-P74Gvk@0*eRoT@vE0(_OOxHkba@z?U@&32G`+)OnAoQ(==NPBJ-iq)`E;^>B3|%BWK3nF$Jjyp z?UC$o9ha_5P-nh8V7q^^n8>?AyOP^m>dChYh`kYfnntT>5Tb-4Yo(pfC?*L-23bj( zX0*P}LdLv{a? zl*+QT!!9VDOYVY-9+U&MQn)q6KEUqhDF90Mzo^~6D%pLla=RQOVY<-K)1A;$%F1{{vzXH` z0t?Yjz&DVET$yt0DW4A~V0QnMh9$myCjX9C_FZ(!7fRr~C)av?mfOmSZAko-ip|P% zX#I(OkpsHnsoB<==Y>S3PQb9~ESXTXXmYUb#)2dE)cnpHiot8`TgWMq zKZpr4ZEy)Oa|8C&yh8hy%twzBC#)#lKIVKojYwg!@8+R-_S;i)ttXF`JHBtlrcS_= zLVPIamI<+``R-sberLw?X%ls2@@vs z@d}P})s4cLN6y3BZNoD<^O&bY7_*Beg^DH&HK6NlP2XdeWrz0?Ke#kl8_uvwGh!KV zS{XSZzU7--8MyZr*6`NF*=m)1}_d@NORLj-9`-mJ}n)3G_JAS9k8BwN%Z%?^W?9_?=2*eH^O&lSkI&)4V-y za(RGrk%uOy)xY1zCa({DfDorau3|U)i2g_`e*P8thz9uyz>Q4+Hx^hpD(@$%=~!ms z*#cpV`F_T>*w|YI!X(1Lk7zoL{?#S;dEHZKm)veWHLLtlyWcLUE_g5W9zIrkPDoTZ zCjB*kFXUHphh2M{e6abH_un(`_YAC_H9OR^=cAP$i4xrRRgU|XR6mNBVae?U+d|u@ zbN7d#_Hfs-x%SfA><+v34tcqG_`B;?&ngeSzvskCcJ`=*{TlL(1Vbf3b^E$e9;4`yY!>>;6>u^gkA#wi8(i&e}SQWXbO7 zEK(`oSrjmL*e&HD8wT>j{+9e?%TIiWFpLj2WV?}_N60zJwt%m*SYIzhPt0_Re9>)# zk~2DbEUkV7+3{Sf_9m>QgG;mBKfFjiHCj)J)ShNvq5=-jF7C5wxg3UvBt=7cuhI#K>3-?o5ZZ5fK`K`|NkwKBG zd78VzzA9b^`ipq-u)hJD0p+P5h9NBz?w?hEEB8ZpbZnqqtz~tG;H3W*Nv>c1<^* zPaEHDP3$n=OyZkb{bqdpo4WDxO_5*o>sS-h<}{4H`ZZ_fsDhXJMip%RS(;NWG*NdB z7!6vqyZ9QKDt%f0>~J^*8R>EYA4o^oJ9V25$r>_nt0Y4)z(;?T1b*6hspFe|YvK!w z+0V@+6Zx$}y&*u}g_?7ObC}U4Mr<+3i7Wy#d@$O0% z+|$n4!IZ)a67o8c{gQ6LE56F-F$1%XZ^_X`wzC{1tINskkMDP-IXC%Z>CWr{yXbgq zN&7LQ$e?fX{sE^Fe8ORwPJ*C4&O`S`O|UOUez{le1mJinI)-dud{ zQUI;qV@>>Z!>FrUwR+weYOZV;g^9J&-#6-cCFz&w6$8_6O}zb@!wsL4QOkw!#Dqkd z5})9_`kH}>cnjFwja}VZLwmY z&(N(?Ayr(+zYDC1dzOrq`aYofj>YFCE_)jMOn`B;bencEbEUPpAN0Fp5qA5kKTu$3 zi$dwbGZ)Hxc!s}MlkbLa7Wf1XJ^|kg$>-zWkai09C-gU!6u~=W^dxWi3*fIESvDjE zyLdAqn^Y$G&n*(NoRJm(#2!AsVH*A_8Oj1g&c_VI7a zd)E9OYrzX#w!LR9?6LBAGH-vwNItRhUgqP?4d+Uhoq^XQ1N&Q3{|ey6 zW_cc?I=$^f!i4*AVE5XSR>yp+3%25&L>eu2)rr3x-V-apQdGho=V9znc$^N{J!|bz zKs^OnJCBG-lBFdm{h2o%4r${+gG409m@tyi%SBP*E^lAF6WBzD^=j;86M2~v8(qMS|(wewDDLQUXrqx2h;w));mH<9k@sLFc<^_R-zH2N71&8t~^7 zv+40Y`ny(Azj=>f;^N#%_~_CqyJtzRO&o6$p3zp3K&1#N5~xtl*`o(BX~ppmZjr~5 zASDHu220btnQFsF8-B_tpdZP@nIKb>zYWMB9I0OkCfSW?Dg`rfe31VQV}i#XBaY7= z2`c`-C8&5X{Kn#INUiYM(*ZYKpeRz58OUPOo;_}#@E!@j-|(XBO?GM&@Wm4rt(AD= zKwB&&iUsbQ1m`zt*>hquC^n$qE_o$Z_v~>@`&RQ`09+iOM&J7Hr%!lu-V_XaN}oY) zrpu)8-%6jf8k{9f&k|q?wf)o6XW}Cgb0xm~FQZR^YPvL2Bv4Ifo9ra|l*hNoS3|)3 zx6x-3xak5#k)rHu=~GG+O9eMc?{3nvXGx!8YOe@{w=MZ1j=3+1X8Tp+Z>L@4NxtoJSB+_bFQXySG;eiw^*vcYm#ob>_lSMnh?;dUocjNCn z<5*}fu0F8Hpkx+5Zj-<-==^KkNNsbEKAQKhxWVsn zGW~dHlc71#f+dtFbZkUW+$X?nn0F6ai$yI*Bz~Ak1trUHMq> zcjE(d2Jqkg?OA~D+>#axv`Z&W-vba>mpjyn@zQ(g#9C)gT6k_(KOPQ=en=>JY^TCU}N{IXdo)Jqw)DGZ1#_z_@?>zywnV zW@<~i4*Ltf*#$bH2q)&(A%;VA zt;48P!lwjF%WP5bkpgVlT|HSjxBg3ZdfS2Ym~_Z+{$F8!Is>#ndHZB&Ps{n4e>{Pm zj`KO&@E_p(y<^V^{=v7-0{lNI=Q~r=VGkp?tS8?PQJ1;F32Z=eAinCqJWTXjgOfJ6 zS!V|S3IQKu7IL@5Cvx|YaJR_Z4Yu!JP~~Ei+GEv5;MO2;A5npug}}|Sn*M;ssPgI& z*?wyJjou=#9tqcV_4mFcw~;{GyBVSPm`FlLm7+#V93)O)6FpSO$qxZh1=JoVp3M5f zlZj`(93eRUwDFAtN$g|Ap0t*I<36n7i9Vcm-l(7(Yw3oU%rHSVBZ!kI6USPaI0Op_ z+*HYgylzR;gN~@|L3~m~_|zPC0@M+(ubMn*ZT*doZ{yHx2g=vF{~$-nPY?66Z=M8m z9N}?bdnGv%s6wW(+szEX?8Kok8vK|MzV^(`-6GAMd4v(1$tiV^`BLW7e1nz&3D=>DYo%TNAi=`Y=YbB00v?d!=w{U58pWSklN z&z}wWe^M#-C)HoRDC+I$xoyV&lLsa!JdSE5LM|yF{=cQal!zD2>HAy#+FA7Xe}Mkd zBukLfcj3`j&!P({`pW?J=Ko^-o4;# zP@Mt$clCh%GtX`xufM!MTz}a&Tz~1}R+SgkTz2DqrYegrtjcpApv>6>Hka^L?4@^p|`?NFlLtDHbqY?cqpXsSmF z@IP}M!AD&0kFrwFL~!PVBe-&+g4|jko*2X*A#-)HKQ}G5K6vcJU`z7>9uB2(s;|^E zP7gQt@R$@nq&EtBTAIClS~sdge?8=7vc05J6VKc5RKMl?Tsqz?)ses^JTG85kLeTn zz*g(KI8!#svvuM@8(t@;CK?;;O;Uzra`q;D@KsaEWWTL-H&)n=et|aa8UnY@|)7&+1g1jkOp<8tU=bf6nc|wvq{zeD9%dREQl0MiG ze{iYo$iNvu%iK%uIHp!{J=JmF-@zWZCuGx;JH#Z!qg%D-|oVEc2Jy0j&tcHD1`l`>uRUf zWe#O&`_gjF($-Qt&1rrHxHU=JJ?DQkC}~NuO-YWZY?R?7UL9%VW6k|^O16-0AO_5e zO+sN1(H07m*bNShZSwJmOkjLQDkT0|P2vY@Ye6!h@npK=yRWRuT|v+~^O*JP^nxSQ zdjB-}H1ITr+#(3SIlbQZFJc%JKaMFr=R15q zCEzRw#NS`fdt*2xe%Ey3c}yGJD8(J;I^Z4LC>6TLF5<9s6&W{p*n#dfHNv{<+pQe7t2lUNwKXRogVJDaP{(d^lZ2Dv>0+ZqHrRJSvR&(k+5En5PoC% zB96mIl^ZkV?@kUpINw*h@3CNb_r2G0)?k|$aQX@V#!qM4363pl4XnP)2zb|lpN%sm zIkxG5+IOx&y+O1=x`C^pHP$R$ovgrG_ur5079^dM$DS&`+-?#&QIiK<1+rnHcb$MSf9n;-qEN6QeU#79RO39DVv+PEd&d*a78GSy94g$Vq~BG zr_Scvr~{Y;>Oyv*=C^e=XHyk)!lU`@$4}^yS8M>xZ)^L_7}>znw&E`bB%uA@gQ#%dKK`frC&Z|^MDWE9n*FqJzl=6?X59wAEx7KO)(SLF!0)-{RW2dPSZALr<>&)Q@MEhwtYAz=J-Hz1Z$J+Jn2rO&vFS7@S7S_BjVW|BMHFc-z3pz97C>KO(D> zt&Oo8A8S4i0&#(ht-qZMyf96p>*R5)SwON4tn2QOC!4;de`PQ^?8ILjuCCyW>t(in ztJzQ+N86K{rP02u%5t~&e2?c*+4t`k|33CgK*qhW4>h+mKR^u|(qc*pi#nUva0>-I z@5uAm#$3UXBany~`=!`K_Zm3u_0qP9gJK`UAKI~nR~P^fBJF!3GYJs%Kv*>6bt0ZZ z>kXM5rdSw3u;x?L7XA*CT2QLpT(I@%KT8LbM`?r}z3nSD2_$K{Jrm!Ti8(pE;tbA= zZK2&UNBZII7Uz1-Zsl=fQrW=1_Mw;)-~k5>HcI2sf0n>N~k82h@>fVl? zVKKC~`-GfnYnHyG`5sK1l@qEoCtX6EYLk~#2kn^p(xyG=dlndx*3yUR;dY{fYwh-W zX^#(M3W?pH$j9u+kwIGnwOUW^@@|{r-JXUWGG4xW*&FtH84}y{N0DM)8YpykKwFT5 zWn!>?FVquSFJN+Mpa#Ow8`hKS1zPVq!FXErgU4;t@;cLpU0xlE-V3mmI@8mrNe4Z)8hm^$PL;WEJ)-KvNlw~(dZ{wqA5N4VWtv4?e zCm#ny@3~@qJqcAbu&1{ln`3C5P;5Lb**Y1gmB)m&tfsFCW0{V(4`Uqf=7N`E%~CAR zIxxz^?c}ALv7J!tDjDU3dxeU`wwMmj5bG!t3+upG(t}WUY@IMz^q=LgC$>(=&NgG( zBmqcm^ZIu%Pp&Y}@6zHl(X?3E2UNj7_Rdhx5C?6RE)>Qk@p>6wVKEhQaker0qKD$_ zv-!V>b#B4DA6qXSGu&fulxvxFQ~YsGB9hbbkMtnUKkuK!J4vRIyc)`ANv;`Uqfg?V zB==fRzGAB+Gt88RZQs!;+z}9Z7YN4nvQThNX0EZJjl!uQUpV)Oo*qP+yvE)@f=%`r zvQ6^S5V0z~nYKf;D|{T{=;1D)V0+MO*k$g=@R0$|KpZn5>JiJ0DsVdD9Q9TPCr5?L z1X2QIpB;Z~H2kGd4S}2#a|vFC$pt~FF!Wt(*bUL5a414WGqKp)6poXC>ab44)&m#9lq9{T!DT3Zs#Xp(`Z-J5`y#wi@RHq;oX*rAFiTiY91z6Rq8C*{1A3rX&o+lR zhr8D)N;9Wd4RI*538j1E%T1AOT%S;YTS~8q=KmJT-;x|)N=PLzMXR2pFI464L9YWafp$c^c#%yVu zc?F79nBF(6?$xmmbzta4no8Q6Hvls+XAO~&P)J&KOK+N@RT==9g1{cx!tJMpkO~du zFWBmc_2jEb4yQq7D?x~Nx8XBrm1D?h@i7W*Hcvw`n;E>t=kdK}a0GWJqeSU~3C!R3 zjW`Rj1t`5Uprj1Z85&JAX4)}yf<;zGOv(L}xh;i*64O{*H6TmI zp3tjizVh~HknXrb_)vTqM=B&$PeNTWM`p-`La3t0Fo)H2yYQ51ityF%g|8AfGldA+ zjUx|d&kdIurEs%OX`nL6Tt*i(QudGFtc21MuY5RX$xGTeojRD{tdaz08ES&Fq@$t^ zik(R2hv7<3ay~mPf0>ns>FJOrXy_*CFrpB_SHdes{gbIpAXlwWdz91%MbH{ea8y!K zrOZ}Z>MUog1ghf7lL~X?T$!a*H3~6Nsa~tC3P#e-IA6g}y{i;K65SQy`E~{o1(}yr z!691+9$JQa5(95$pk@Ihl$egmCN2xDOF%qRbzv#W{5&#jR+fS#F|zA7aVMC z#RlX4^`m-@CvK&>;(-BP^w7SsV2SZbEJp6Mi;02|RI8S);Y*x#Vx~l}^B3p$Mb`4J zMb?rY41LSnW;^TTF^P)#3mJHXA#=DkCb`*I_=0jrr0VS63bs|}3~rpu17kcJ+$hFQ z$LRsQGI#rhay{=DptjyFCbSjzPV>}_AF`nxyHjmw9VOE+&HV_|jvCP>d6PyoDLZ6D z`^ge20UR}>5vKgF*!xVF(VU-)WoZ2xgjq~A`ywR$yrmxTygAQW1l;DvZEt}(p z_X1xDmcW29pnXZmKJYVp?$5-2#wd8Oomp3U|D@)#ZvkiAeD+HgTw*@!I?5>hlpEV| zxwM<#k-wYP@@2s;d)*rOZBI3yX$RGOW-~&)GMXm-DXD}clSwePZm9F&ZDi)#)THRy zFBQL!iOu1iImRybxLUQx&7!2(!IJj4 z9=d?J>svBiD1d{E8B?mRRcF~~`_15;Dqh-bjay|yD`ghh}_Hl$&W z3vlc4v}mWT=eG`-;&wBTnm;3^a2ey9eZrXEOy~{!sIcIDqL_rc?wxA3cR0)82w{bn zVu8DnO2Qn;b0jUC)7&HS6r1MnG})}`4P`t9ma_6*A*PU8)G^RfWo(mxx{}9fp1LpF zog{4@FjZJj>yukUOdGvN*U^aR7CHrqX@m)l+IeO{L3!qHCk@=Eg6@H@%kn zmKA`B#w$ZT@rv!uaXgSg+TdW0!vEav)E45iw9q6|@t2LrHC#H!eQytEmDuK+4I+ z7O`r(i9op$s-#GC%MH|&aZ0Hq%&#^p%;ump`?dHhNNhj5L(i2bS^pwVEeppP#t+)Q zjd8|b2sM`b<{Ye+)N_(0nw z>43yV+4ksc>+wUuvU2jqS9V5RI z9S#=U?HgPcyw|_-Iw{pKk^@b&B&j!6$c6MTlEc9$>nTr}#)FZ}R&t;LyqRZ#!F)Mt zJ>@M4ypWv|OCf$94QKyOkBpY=b3b!<#`B4@=?Ndh)L+_LdGHbXl}ZA7Bp4K%*jO=5 zH5XkTWGC@aW~$Xi90Q%)?dGPnMC_Bbv9JGGQX3-#oJu_iy~MX?fF0m&Hh`_XZSm94 zoCva3l~AF4AO}XQRT7uQnphRER!uZlL2K2eTse`0s?{z0@E9R%HHozIk&qA3c&xq1{=PpWRtV{?h)lCbO3w7zl^i;;oENy8+<4G( zp5r1c>E?bWPb#SP$MS@;0nXpa6EatqMh;HqtY>K{DQFJIG|8Jav+?lc3IfY>Jg+p1 zEgObA+7>iQ@}2{G212SX$JTwF7kl2`b1bA+W4rB6ecQ>E7Bb&T@v+@?7n-CYl_uqx zyK156F@fGs0f$rCWJNEd7+5oQ>`L?d;k5vTMCcWc2h1-MOryWFjGzVBT98V3jIPNnr|5|C}hTV=U4b7uG~qyfC;*@>O&rhPG&Y&$=J?~ycE4nKTh2~m3Q$i)KX3rnk`q^(``>~ zxk}mYwztQ$9ZP3hA_wK}ZPf?mfY$O0*tl5qgk4`OpcB6i!yLLasbj)92A zCL=!hJt4mCG@Gb{)=iyBS$*mzYG9L*)@;j<>fRpBM{ue4v&gcjR!ma_}@HFZ1B4CI2@_-6~+tht*xjofNYJh0fZ7PJrDF5$#{1_yX52#9=-f92Z@&AmrC;+%o2ZmGX{ zE6=y%K2{2d4CU`kZ2ddOXDD2 z5eMm-6-+Y<#ufvWyZ9oFrjfk0G=Rpu4k7_q-*4?BU_u7x+)9I~0P&0i%8_7m>pi0` zRTz7SNdyD`pjEb|F95~EE2Rw(G1LYp4tH7;x6?rH+sY?W-zja7fZ(U58&{l!*&9ta zhywBg-QaZoyNf@qy^>qSH9R(NF9-M&eK=kH^y>_LsH;+dleJ|?3sU8q*2H~@D&Gt7ck@Cs{|22yb?FM~rbD~Pi`L@mw~A~ir6MWk~(g))-z@)Y{a z?tEP6^iM~h(meDjz?|GoL!TlpIgWo4VFQB*LwPZr3qGb_34XJxUeibv^EX>pwyOJ5 zqv?`FoEUm|M=D=RzlXErdBa$8u>uc3XUUe*?NJKrvW^5x8u%)P$%8n)IXavw02W_7 z92Qu3-Z?G8pA)x1V-ow|R9Rqvlb8f4tOwp%&<5 zbog0wR^xrcSvS5?Op6TpIQ*F8DpktRK0|XCE5abZBi0K4yMMQ`{h_=6_HsUa9VLkxi13=%B_TyLtVrH&!ij9< z-^={lVSeX#6B}i>MopPdg$LC|{K+UBigE%z zRvvtUX>(|ONQkq7m&7;_Yy3IIW=cK9S#-IJEVfI>FS4%eQUQ7%&qwmOIN0Df2{$U9 zkxvOZ?ga*I+F2qwq1S>1t}WJAWY`V=(Aa6>iT!wBKuY6%ZQt@q%qmbP z#Y3$HTfN;}{@VI}n?C!s^$a)$QcaOJAAGW)TAh}rS!xC$C&BMI3w?z+msljgix!qRKu7s9K zW-S*$Xps#CtehTqDumJ`gkQ_7H1|r-Y>2J-9{`99PAw(r>I6|6k6QNPVq?H#h0*wP zebZ5ro}PI7&Y$rW$IT@cnevo$a{Gb9Fd`~B0oswh-Zd4 zV#9xeBkFBB&$^v<3trUry)0O27rHyXoj^chK1JC>p2^6HTCbwzQW;}JRDh?|+x%W3 zlT0LNb@ef%RdwbuRwdS4;m`xts(+E8pSzozw;M(fhzrUHrek5ugdINfqmAfz83Zqz z68u{$gS3{xDLMS+@SD$XJ{Z zY1;%AmT(G3!$?Zb-N_>J zhP zk}XLod3y78QY!!CQang`HLTQiNj)jPoYD2RYJWu{@*>$P-#$kTX>w~08u<48zJ^ut zm61$+>)YqnY<_*jTIN2p{?_vPy(xYP#Z7f*Ri1d26o_PF=aGezoC!(>spLg5fazL` zkc(f!Sd7u4skMHr0brrbx>7omC}HvMrsXmQGBau^B3;V+#7ioeK3eo=9Wv zQm8ffVxNF6!7WA4;PJ2Z@eBGGBAJg;R4bJo0j6oWQq>z!q5H_!By=WGGK1hz>X$g0 zXm6kbq)4PSu<+2KI4Z5Ce_@B?b+D$$Ob|x=7yaZD#wUSj>ipZ^pY`x0NA=Y4*{8M0 z_&iH58U&&LWdn54{~O~o@YS;zpZ9SgQBo&8?Z=M~_)#L|w-jC>4%j(FafKuz{?{d* z9*+!-5(_X%!tr-}RcgK(8gJx1AC7_HM=QUd&z&knMXC^e2L)YrK6rmq@T3p2^nN4) zf)C;%f~ypoQhMr-9=yZoyIW$@a&JfBMYfymumBH4>=h@BD2AIy4ddn%l6!((A&ljs zK4zmnO35robh8DmNCYa&R>GGal_Ug-A-N<4Lb!{DYI#L8F|@8SXIgGvnLFVy>Q$8$ z^mAK{g2h}izKykkb=kDs>9AgRe90g}0dYL98;s7)&36yKuewupZoXCZj+M7Px&=!& ziW3^@c)pphy`0aNQbvbMA|qA{S9dXBZ&}|fH45W?Md|o`zemfMk$Zc=4)^jq%?$0Q zw+r{c;(&IWjr_{U%*8)qZtev42&kx1i1|}i<}Lyn`Va@7HXx7rvQBDq|MDwJj2Ah} z1xFX47V|U4?gWTE_BJc;fK}4LwcjccxL&nNPS|z1*>(qCF(@h)$5|zNxg5=-bmA$- zpArjM*GE>#d(kZ-$i^Y9s1Rv1PfUwj<3lBwjSc6cD6lJ4=I=Wihbej>9diYLF{Yz^CQj0Q#pf_(zegs2REW ziBYH9Jq$d7F30zPdDLWGiZTN8iHkX}M+sma1h8-)Y_(a3d<+Pd>aOdX4e~CPsfTyJ zNxWklPTtA%bpeF)8-8aoz)XhonLFmc%s*KGLuE2u3?q&}^11!{2U|2t^1L*zH_MwdYzTN9|>~Ol-OgZG$v;lfmsM zLj@2sG-qZnNQAp|GhqRFHlTtH0as{|nQY!>_s!elf-zeu=JXTS^$13Wa;^?CX zr7En(zJN)+sx^tpa~MDq9anOJ0>&_8^71=lQCNbk(&O*T>Aqq#jgM~vCG!cGIv=ed ziPEBzP#R2R85Q|A7z4%8&HiX78B|Ay4=sBj9!NZ~W5>SCieCtro`x%_;~XJ7=fQa@ zi!PpqBA?e*3{(tcMtZcJtO_gT<8c47cNeMwPWun+bO5nVlAuM==Ue&0TR)M9tE8j+ z-Y>oiR0D;?1Hx(t+ZK-jW1@z%XL?qzlA5au2Cb*M(FN|Lm>P+k`vn^Au6YCu^Lx`H z{P`6B?qbfkaezMTBF%6q3Q*^zfq8;3u59f$GJ z?nLbn=12!yG0;p}R^1!MovZCFpO<5JzOr(*9?IOF@4zvHW+V*myWUD?rBvwn2Fje3 zGAwfCZsZdb@#D@aX+&SHx-EX?KEg}u=~XhU_Aa$NMYrVcdE4%~`RGfRY$I#V)2rHf zwh$?0~UlrpaD#q(PM!BZ!CkXYvsLqe&M zV4rZDSz4MW@{+k^q8J;xnz!CP{uwE_=fI-T+G~EaGi?inP*bN5X-^_A=*W+-Jxr*mOuA$r9o|8EY(r z-B!jZeh%?O8aDM|<&adGbL{<0wb6G7gzc-a|I!!xdah4I-n>e&|CRP5-6F^15~Rvn zC8-1o2A>rlpOtOWkOt=)ScI@^;!c5@D%hU`%EeMz&HRy+ch>iw zznIXaNLU+JmZxGW9|8HskA3}e-l{=_e8034>6hBg7Y9Np}m+-x$6)MHu%J0_x*oO(>Wd0d? zKa0H7ANT%&g{OPZdUfT&>(GD`DqK_UB(*FDR8}QaIl%<$jv#8CNCAt3NilR$T%fJI z-JyQ?VTNeuXiGWK6L@=Wg6`}NXI4J3!=21#x`zj;Fjdh3NTE%a=3TlpN3)&St@qt} z52*!<`p@DcY$%^xkqE<&ZOyr

      !-S|Ctezz;F5ze&ybqNPZ&|L1>$|vq=440S(RL z6DlkW;+$QNN-4-NmDwo6hEdvCXDQ9d)1JrR&zH0On%PlnV?JhM zh0603)0+*ZtMUZX0mXExyqIz}s7(K)P65J{Pei4Bl=De7IkQi~cb@4~cqjO73mpRA z(NvZ@|E@D~J4nz3EuO|^MdDrg{L5{Bf^^T_8Yq%#a zOPO2tP?mW?NvA3I4oI5ERz_298JF^V8^7*ld4|h)qYxB!6&lLzP*gH*HvlZW&B-} zE0crmYyJ@$-e5Py6WTP=N%*zESiG`UJePZ=v}3Ij;GJc;cgSiiNR@?U?za)$mGHuy7zzl8YdtWZube zDg9}sez^-K-XYpr3kmI9ziMIl*u9hN&JafsecsJe;^$TPSem2?-NV&t;(NH!)}Z78 zf4!D~SE>2gq6e#oHgm;xKr&`@J?s~Fv$RrCO%qWqw&ln> zaY{riEyn&_W)Hqk%rY@&bK*+l=e zvze)#%}VKMVYUui-|9z1! zuvkWMVRSGJ5AtAfVJ&xM9mThKbQ$6kYhsQm^d_^Qy;sVx{;3izyr!SxatL0SM5-yf z`zwsVrDE{6cTQQfmK)hhK|*=0Dl8De(cH*n85xi#vYza6BK=My6fb#qidhV)#OYB5 zq(>#rYdA~`ss1YvYoqM5)-B@0nT7n(RW-j?^y^NC+2j811-dT9gfu_CRBf|XeHyOk z!{X^IZQ5l$^4(0{zs~a2EK+-{RRc0}1dEwPiVJ)DxT$oO=Yug)M7^a_jlORcPRNJ| zcNZ5@Rhuq|R*SNms6GDZdpwfbc&y%<{3?|E;y+FkTr4VtVzI7W`Iewhp#pXm=f5$q zi~W0xwW=0a_*!At+7)0u3?Hfbe5yq%GB7$n>JX2jMIAA0NF8Vk>B6XJXK}N)l zv*55g-{dT0R8}G>b@Fv}1X&0yQo{gU86lghOTI0&#@kUu&795$Giiqw6JWb1gT2f& z0m!D6tqOT54OEu`=loJtzHoktk1-s<2t|4X_tM~W(=ol7IZqk{St)orrNOa@KGk1J zdFcr#Vl=fAI-2LOA=^@XTb!HNKpwi$^?mf<+)t24Ds>X_NTp6f9;wtx$Ric833(*) zRgWB=h13~!|9@8MRL&kIb%vHiGM}m^QAGgs6lQ@QnS-j!_#>W3$^FUp zea7p~X3%sZ|s%$4r{rqmy#YCf#y_fJuKe0;%E?xBnxy0u_t`UZ~MjBVOlPsG8xM!}i*IFL^eY;3pYs_z55)z)wq zvG!{CWF&s5m;%6czg96^wz;0K5MutEj`Hpr$AW42+lK8yNcc-Us z1i7cjl4I9BfQ>hfr1~+PYI*W{yoqVW(1^~*Hw@7~&7ovP_VXLb2JIlAbiY^^>|JHC z`W>;xt`4;!4NCe z`50ED4B}t6*5e}Fe#?mP2($IUGJBUajyWtNa@c+RH>YXnGCrfB)!NP^vKhCYuCagW z9ULq;GNg}*rvQ8)TCX$@3p`*@lWcgE)mA0 z;-pJeTf>-VWaZQQd;Su-Q$Jc#%rr|#06BiO9~yW6no}5wv8Sf9rRZt@rcDVo!9eh<`dC`F!DL3{ zAf(ExNVdI;H8Su*)A^@s>g;Ix*Y6sdM%Jq5%g596-u**;`cKkxH4P8ZbNvoG(k(cA zxYgb%r%Bxz91CKdU_GUSQSc%jVb9)T=B6C6bgR5cS>I@IV)Aj5*lCM6gvst!Ypn6P zj;QRRkbmz0a=`sR%8){IYB$xneR0lU{Q-OX8Tjt!zXguSfnpX})FIsWv|Yc2^HGrl z1)Q?p>CQ=3S=yZ(XQ>kY?X`+fAGHKs^+j-59XKB;{3?Z ztvm>G{#~>@|EmC2?W#?n`Yl+HJ8?N;Pf48$b}ybId?~&m;@+hBBQc3j+`TvqhxUO9 zmB(D8I!n4#{{BQn0KY#Jn}ho|9D71}UmfYQGQ1s8fjBLWy?SOlt697!3broljJ(5Y z{}q0FxPL8Hx`REb#sm0q5^2HP2A?vvnD5-N`t#7npCa|}&+aQ!SJ4tH8XOG`2$$@V?-DO2r0opUDSpL57xWM9)%MdDW57IbP zZmsz)GEM>o89tx|kGXLn6W+o% zXz%_w6ZKJua(w$z2Bksfi~;K0_nZcsnQ z%#{VLeRspostC}e?yhr4x%=->ToaS4*>k69Ns7D+6!W1kx6IwcYCMk1jFG0g8`A4P z2Mnup7Z}<+h|(DU`X9{Ktn%<1(5Zn*LK7VSAfiJrJ6d7{)A?c2&|p)aXoLHSc%V)+ z)Mu2_fW5se*4PuP+0k*IP8IUz9e3G2nd$@;DPmm}(p?{?kTx?LNEw;F#n&^TkiKbz zX?}^XD_-v9S1joj0n**Py52 za-)W|_o2(FKBiBNVi*5ploCD(?y&{bk3l}x_w@b&ghHEa`V6VAaf?S$XF_#7M^m=S z=R5g)#jkW`)9pu|SrJKyxw~B=_GxX+1T^J-TP8wN(0@qx3rg z;Nu1c)>F(X3HANv6WTEyHP#@#Q@Do&=g71rg5{KH>sPM{b#Io%mbK>3nFyneJ?Zu? zv{RjVHn1MHo>K1ykv!qG63uwv0|gPb`JMvtY{kB}&8J`~RPN{$R3iTKm%MpwF5eo3<3`^a^F@)oz& zC!QF^0o~_V!5~HlMlAnEbYN6{gFTK0M!S2jmCOruUngo>eU1|$UQ0G^A^54VD;_9w z{ht@>K~A(W(^EJ7&OCSRjr0*01Yh%DT?99e&PXP;dYqZL<%13Q(+oCbx;~)m93@?d zEzRxwtTyzRyO4(Z)wR{9n{&lVxa zS^3489f;3n$2r(rtW1dHFA$@wJPx>@pvLt;QB?EohY^ zL6P>&)>G31+`N@m6n|iBBl4H=C?~C~c;TfDu0<>L*x$;si+wngG`H6K3SR4DlW$=l z`kS<=#4joI*~{`X?Ya5c_Kf^2ds=>uBq(9$GfLF`<$+o&f)7e@kbv(qeX&aaLJe$i zihuJ#zj5ifB{$jTlAP!+j>ip<<9e3ubxMzy+uH}rvTT1W-(HdvyG3FwjCYEC_TB{D zjRKsVLV2afLGpPJ<{XZh zhdmz=YswehD*WOn7hin>?zms!FyzSi-IP+i_j!sBja6d2)Me71HS{54fafCU8e`A* z+2g`9&daIKXAr~F&daL*f?e$ABD?+~c#ezAdQOcUclY4CHMuxgPb{6C?&lx$LHDPQ zmeL0x)%4!J#G{T}&s;UveZqmIk3GcKq~vf4Q4G^nKk$ z1hgQ+5Y*)Dl0rG)evBQoy9Un{aZx~RNwienF+GEp4!J*>tRjU^$K9DW*pO>?x!-#9 zgTaNH@jOg%k)b`r=P4NKhp^5~VexoZ<49~3vOnMMv3JI5`UhtRXk?EeuYi)`&eer^ zEs+6xBqSMaJnn%xXJ)zI?)7+J)SL9n`T>XqZTv7%|GIo4pMrK=ph&b3i1Z~&r9)2M zZSJTWKa?;+G!wA>_D!I{J$wU?mgcGlj=emHBpdCJJ*Zu&wm2ucojHlHFq7+#*H!a! zlv5%E9lSH&{a@E1{ZQFq`nt~#)(@21JIZ5|?Hz;l;%y}&v>!K9B7kgjYk&9$LbdjN znn;m@uoEeuwhxizCBpZKMVR|t}K;GsS3CIyV$y4b@@$Wwc z|Akq~NHATi2$aG=^gvo+!E0h#iR?=y<>^_lBw}WoKZnOc)`%q?AHqQ~1TzEC4}Hs) zM?V~~{Oi#VN7dKGr;Nw*RchXevQgq^Da?tYz?@3yJ>HsoFOE+b0W)FLesO5RxS2Rp zoe_O>HEG+7=Lv#HTiMmLy2b(KNi+mqudwWDQtgr^n^^4 zI%_PnH!HSM_rsOHn!cOlFV1?%8L#P8(Sfw3qjfuA zoy9?JJe?ztKl!xBUb~j-SY@W&BFC9yGqdcLNAx0FIy^In*^3}+E1nUpDXp`30zb@F zZ7nnN>=hz9W5xM)M@R7_YQGM}Ww5jO2Kfa2ATZ29v@>mh=7tzr>8WsNy+k{xFPWIc z=h)?0Ev(rHhg6E?#1))X$@--k&)!Suh*$|e&9B{v%f(?1UOVT=T}?l-J-p9yM1Kr7 zx|VZ<3n?U~ViFlR@5=pF>;5<7mjm2_XOA_#@tx+^k~cN)ge%+_VY_DWQ$s|e!{M&w zBM1u0yb(DN+HThz2<;uL-;b5WDSgK-%!x&|*i(t=)Xnh5BJbdsNsugD)jK1tQhgZ_ z?&LRC(dBlnCcRXt3lY^~+ff^l_yI)@c1Fb9>LKcD{U~};>ay;*s*?b+0&m@Q!xgj3 zM6{}&ax3z_;6?Xbp?Z!3YP`HGO80FuWqECP7~q0K^CC~DGZqC%y&01HBfD_CXU%@TUBA&7t}3<$~A zTPjhECMML zCgC)!2M)*`f!4aM2Y$_^4C{;X%W%KIFK$~30CdC7>+<3ty5b`16*@JF$&79_y;gVm z9YXT%tb6K_t$>CPdp9R~_-t&Qc&hVEuo(T)C2MjMz>X6$kLvHQZc9}eDXcdE0j=#;nC zE*!#H0@rbU0iSYKqrx6cIF|^!(!Gd`88HD7m8jPQ&fLr%8#=ADDWGNwm|j^m2PkXCzy2 zRvGiVpW+vv68Y|@iSLrV0RD0jxO719Zjh*0V8WtpyBtTi^tsm4H;Dkf#nJiuYs)_x zthA?RQV?Z3+B(;s?ZaB@M2?raABnmm$}@?=>g9NAXXLm*5*z8}o7M%zQgS*aeKMS? z1m#g;v7xlq{N#*oHEpHrooSWj;Kn{2pQz~j#RaWIJ{#%oAWN2MhnxS0xVM3CvO52V zlQuwrNP-5eTa`}H6^oNmP_Q@)ZCV6FQ%YMDN_9imAG*y!A~-3OrP1CTZe<%x-E^|w z(6P-4PEn?!Eih7E21VIKWm+9`hqbz@wG^%7|NWkG-{}j*x#xNQpN9`k?%eme&+B!r z_j6qbf3BuMH2{7%mkmHQ%yJuhmiu*gISsM1x?2p-`<&Lku@r!-MujSG>aGP0U9Z+g z_AEEKM>+K_OjHBqMcsFki=p8O$f4%W37AA67a1NHZG;L~M(-T$5L1CgTOr{vJSZdO zO-(OjsJyBE^2GPYDyW7rq$@HWXcgKsGmsXN%YhwjMhw$72(@N+v`j;X&F?D?v<-J! z#(STcnyFrqcnwED0t{qrK?7cM;hmwq-tl3%t{{lq=}PU476NWP;Me5emVZj&Ej_x@ z=ZK7quJk)1zUWGiBQgYx37$WU=U_z%YTV(97f5$#UNfTx0<8#U7}L|j<@y$Z!UN5Q z{F95kW+XRS;HF!ZMhKCiVBK%kEq*z=0?0 zw-_G%!Dwgr5;2VuP@1SwY(PRyFLOx-%R0>!(W@Oj*`kl_- z*iUpIN9Icu8_g_~;X6r)IFhp<9E9X2kOVN4Z^2Oo)IS}#2KrAZJT!XLNC)&IBtHPM zzzzi3J1j~wz}@;qiuc)E_HzhoDw{3uqfk-kHkP`kI}4Bz+J%(oP9zNEh0i(F$5iKi zLX;|eg;01?EEz-pj!$)Qc#M!2@Wq{vKL9lW>Ol;~sR&f#F{b)OgFecF@<66M?O5F@ z3jH<9Fu=hW3icd0nG#XyE33KdI!Aa+)uinRg$Y6HxnUnC7CFtClSG?5mDUBs(J0Gs zkIz6WJ%f7CrS@_`=mwomWkBM!pg~bt*h!_0*KBrlmyuQDkOyub!HE)wI;e zAO)u`$9Qn%-J-8rWDTDH`Ek+uMEE=ep8sP8Ar*{O+bBD7KW@-7k$TG51fhY;P( zcv&FB`bynu&!>qQY39^KtRXT)%t%*P;a<8wzOs!;29w;IruT!fwYe?OtHB7qS#kWH zJ9(Bx$uy`xIvHAGkSmk|Ot|HqWjKY>Lmz;6&z4o3I4e8^0Yxkc5-JOlkr&3*pz98A z?XU1jL})RG-r67I27)`=ymFw)EN#L|7K?0!crHgB1VgcA9MPAk9rqBvLd6imF>P}7 z8W*K=6P!47(o+VbL?^#14&K15!Y=pXAesFTj;~h^<#lW+f}KMJ0AR z8RArH%;AiVfzI${iv8Uu&N+?!WoTyT*?QH=!VxJdFhSb&`#z?26Qwy!vP+44m4vj!5}v)2ASM(8)&T&IHKYu zCGPM%M?o=Xhj-cz5NbI?q3t6;9o8)*XhugkgD-Kit!{+Vfod#%2JC>J-PxT)aMH!! zz<@7&+g-q(WHrBIDZfU#AeKi4Cl8_mlLJ7{111u)TwrrSqTTW`BnVTE zl72@=z@Gvrjbw^47i5W=WoJ36)1jeTc`jZ7N^{Sal~DyM)(ddjuXY1c2AGx3mP;9$ z-chsICEjYez${Ow!#eQK7du{&se6VtMNeid{s`5ZH#pT6vOqKk)2(DU?=;%&jlf}m zbEvpP=Km0U9HO-B0*g=GNT`Gl#k1JVZJyc*8*0Az@Nb+dkBECW!m0!O6Q11o@e^VU+sh2|j;IUxYc zhj6d~xfv?jVsChBf5B&9#+k_^{N?ODDg@h!cf4yGPP{g>u~?Rj(Po9V>^(-%Ga0IY zdq2b~KgwV1@I@e+jy_*}n&(?!6d;kXgdWJf?34gaYL6-O4`)ibsCNdVUFpCnY zdrki=e4Cz`lY^a0T{*8Txk(&c^)|FcHFplUHoB*Is(3Z)kU2BMD8&)dPIw`#<#9F> z2b$_LU`519vRk~L;b`QvEx5nMx`qjUDjNK(5#LST;WJ=qRAriT0`BE6K^q9L$ca~H zm>!&yn{|uuIF%D$-iiV!Hq~@p;|z4BzKXG8bU7IAn)9JLp#~!r zSRw+;OzvnUHBXD?0doxnqd0%DVnDwfy-Tr!cPV!8E{h%9C(p;@vg|jc^Q(F$cP^+@ zSPP6NcNpplW$zow-gjdR(Wd!no~WYMXoARiA4je=7Mm`lRyATiUD}A zke}jtZ5YBq*)NFtvd)b9M)pK~JbbGV-@gFa3g19hoHYQ@fyu0(A!btT80MpFzK{)gdXo!TFx$g6OC>B%X%km1qY09UU7?K^-O?o<;|@)RH86*d_mN zsveT>v||&n18VoS|8!09_7ifj7sbu??mJ(pFF5X%ydN8-t>p;hGyDKpc=sYCP z{}}r-*oB2Hf{ASW+-(&2aP&#Y1f6oon$PfkM2>$1 z94*vxYQOoY;Ol>8$c81&2*0-~`4hq(f}w#ug5*9TG0wEAN~y@EHN7>rfKFe=)` zq>Dbyek1nsipgT?6mtg5eOQifGnLxgQ`*!16kInrr zzDWDo|4sXUy|DlGU&Q^>+J~Lok3nISWirSC4#ZGKQWOVD>Q*|*w{HbB(?aj-p@B#L z6?0(Ib*ut-f~2{^!Y{<#lsZRt?0}QUCN|Q|IS%gFfy{OSH?J(>+S3nBz4GznWLQhKg z9i_L}sfrMuz&gR8X2Eo1csxLU86bnXmt#Bgs&S)F3foXfg_W3}# zgzf&32|*m_io|lbSxj_wl}1;+_I@ve4fLQeu?s%b} zy`2*;%;0ytFr8o0^-ZW74$A7iDF}sI*)8>=zP{&`%u;FP13GC08pX`C*;-c~cKc;@ z29RV>X1@#|Q4UlfEctr{vNXVc0_2Je31TC=#3F6m5E)wnVDg>&MA7J}IcnfD#W zZ~15q@zK*T)7n$}3R>;yAQNni54!C|=wTEY7zgk&?sG#P%HGovNOKzZc$949Gw$)J z3%_xXUtJsn_g8mM8m_&yDogAmd~1?egYH4gH2)>4c82H zt>FH7ls?cZfA+gi;m5S!5eBL`TmxPuO}_dLQhUJpy%7d9bTI!<5N zgIEaaNSU&?BT+6FqAWd`X62d%`5Mg}zeFd*n&p@8kNP-K86TKg`>exqLQweO1M^-5 z6_*n#W^p_9>oi4gsrbOqV;iADER&z4>6Uu?OzHZ{xsmVXti}fth-@HBdc#;8#l3`$ zGd#5V^z)T=pHAmUdUxo5bccved+kpk2olzCg}m?VE>h~^>^CM?q*tY*ZST6B(uwzM zhlES9=}N%jS~v@o34908lyXP#A(oFq;yzlU!A5*p6!;L@BRouf0M#2n_7yw-NHR}T(n;-07Cq>U;tUSD$RPR7-u6TbQqk>#Jom?T>=PZV0y+t#VZ#Z9 z?}9xK!q@n_B|Mxk&*Pm}9}0Qr?O~3xd2isfTc8ym!8Ux9A`2(ZY0AoawpovvI}6bZ zTIJ;*vEJ~M68_k+2D!Bs|z)v-~na4G{C9DOt*ChFB__gncVxOWFacEec}%%aAg z?~T;cYEL5OXH_dyZ;oz|0LWl|(o~!vl@D3m!#Oo#RUoG|+enxk;fYngdQc{lXbFD$#E|HWznTz*v7Ht_)Qvbtd7jF>VAl3>FL@vxr6K)|c0pXoT~A;0t^+|i@__e~(x z+tvI7X@oBqDk?r{_Go$08=%=+Ihi2aTRGvN+*>)#I=8Z--`u#uuOQ5#&kDYpFd;qQ ztCW^EfLI2$ps&0mZ;F#~+uVk^9F-aCZ|A2_F`iQonsIOl$*fpg1;CnSVwbKd zB;ULPx%Bk&yc-A(8|BX{fy*CWhF1{#1aJrVLmF%RjJ*-Q0P_O<|DfKGc)fzew3hQu zfAmDU1*G8#8jduKAw4$J+!=ulXd|(e3lI-HM8LwV1B3z(h2*ak;B1up&>yRdHRFNV zt7{c!w?=bzpB({|L>?e#w~n0M+C*fHh765M~1a#5Q1-h8xAdhCr|g)3m|a%dQ9@D2C6JEj0(H@u$?EtEpM(RWjA zHg_Hm`hiyN4y?wG)mR(~o@@WN9hs;DPlw9nDL?1ix4N;Wx&}-jAP9DTM~gT6WhD{U z?(ycsrc!HlxZG10TunQ1uALcErE(Ovj|0=46{&^7N~55{wA39sYbIo4uTLRnKm~yW zc^N?g%s?HefVwZA`=#!V0vzJ#ko+gqSoAvBT%9asOp{a#8aGk)9ivvk^Epm3ZkC`o`xAt!?zjZ{g9md zJXqAN#7E%iEVg{0X3OF4@L~rv(|Y-g9Qvbv-U zFbi~VUi^~oO>mRkc@DY)-B?d$%Ng7MYsKm9|L~$SwLe$2|C~opNzeAb(cOOD8QWjg z+IxQ~%?A`+O6QHE%RztnA_9Gx->fFzG7D^TCxCvo5nO{QD>ou_U|S58RI@kt(F5qi zjhY3b2n(pm>Gamd0P5JwUi>lrYU7frxLQgQ^=*&$^7bX;aa92x$XD8qz}ibL!c{f6 zA>Vg8y_bKs#E*n~NI`h{iN!+@oM!O=@8zvauD~He1>V7{;9DZFrXv?9pG~QS`lX$~h`zp3Ga0h25uvViF%nl-NK>-6~ zfqGOeW%807z_z_l7XgsqaE?Bll|$A$-^GWwJ%M}kaSqToV%eiOEsZo@ z0Q>n!k2x0^E{9jNx15Db9Lm3*KZ9WReU%CFvg@a-{ z@uzs0!>XcNx1kWKv6VMu2i!+_dIL^c-rDQ*mc**;3ehZLOcJ|{G?`LIC)MLO;Hfal z&%tx0F2)JO7So)b@?hQ-5{g-b1gzUAhH$@MD9F&w!3Lw=3&|D8kY$?rr~{HVv?*>e z&N9K6teCxN!&(cNh7-Qy|G*`O)N?F7hXL!B>X;heYG<8VYB<}}#VSyl9L_;n2P1AZ z)kABH`!P%$k=Tn-rmIo5EUg-camqI*;*~beOGkK;P_MvB6m8AFMYwMRc3P1RSQA#ffiJg=h4uOkSY%S6Yfs%LzdZD00%H3}oTun6~FDS7BlasnKQWPV1x*+7tWAaVAPhF(MT}-c!bS>l^}eIz+;GiiJ71 zH+SP6&l6pHS_UX3I|(^Aiy5UD5s!s%O_r|QP+Yz4La`8R0L%j)hvfD~a(Ak?@36O~ zqS9y3Z)q5Sw3;+e4I6?fviJE9-Flyo?qPl)JzmvX-)Fz`yqKXt2zy@%1>$+qX(O;! z3j#GS*-~dS^`WX)a_T>oO0LQ(LfBH^AY&R?K}Aty z8R(l_T|xw)r5QtO&$L!`d}(zB1f%0fmtcnzjnu#;B}|`G+! zdwllrKPWm*utmpH`}%+vRPTIfnZ>l~{WTQoAGX+{B|5gj$JvPB^hhgjGHN(X;z74r z+6C)KVl64AsO|#dnJlv9tLwqya}E4-8^O3e<%yrt(4mW*0XIdfo5{*^`lOz|YtSoiRE;J`Ba>#Fd3&-%F0x08m zBGQQHJ+$%%*dYf%EJYrD9I{2A32tz;l{nw$og%d# z&5}CtdgJlOP*lFVkRX6MbCV(y!Cb!hSIPzZIc5k=YRpgvYvi0*3ZLoAeosbIl})+r zvqZ~0t52{(_U==7Dm!R1vEx|zO~w6J&WEb5Ibfw5s2tg_yb}2FH(a-YX0T4(bmRCR%u#eN zX$KR+vsMRY!$#Cw>gd*SUVan7At05ngG5yhuqFqg4^bxyp$~XS&c7I3PH7#q<|EB% zz0c{Uh`l&Km5AW1)RhN^Z3)or_9MQ#}tZ!lI28+8TI3j8u!Z#RjDC*?5=R zU<-Srw!!Ue^xJGSAbV2UjVV1SZJIN=F#o@<$0L>haXt25^k1#VcVJxZXFVQs+UwDk zs@7vYAfdnY_|7Z+tVbFuwbo;M)qlAjw{bmQWuv{L6iwr9nRSpA9uU=+&F<&dBEE}4X@Z&QA*g#7&X zC1V%_X*7g}#iJm#H^9C?LHQh9*Q@IziwDJFdL|fShiwFA-DGdQO^)zQiO3eR5R5AY z&z#50<=Yipy#w+jzY~#-NKdMe>n7Bok?YD|6S;08a{W;cr7y8DvCEh3u~6_7>!u`ECJ&ZBg4m!$_YEK5q{Q1WCp4U?<7iC?06U^H`VF(haNP-{-*5X#GB#uW7P0I=#eEUY+EV`{A!OCsxi7!F=Q7y{Kn%mat7 z&~w#s>h5JB;8;P^)TA0>?TFln>igFdqtLBU@a2GtY( zXy0KBs*^@+66!V{_TkgE@}%S1R-sR<>Qwx;ANS;;H!%MuAKQv_@4K2C`Zk`JrYf}N zC>f%3n<08{$LS0aAI4)Ds0ZD$tUP~0x&C<~cEGaokWiViOne$!`59N!&jQB!3B0Q+ zjot-C@3p4s!X5dYm0(8IAoUG6CG3td4T)2}W8l#s>o!QO#<%mW7mwk^<9`B>(`e+a zWmr~SkFuvR-fuvvoGN?0yZ8PUp@yLUZ3Muok6@FEg{i|}cHhL#y_q~h#bIn;mO!A) zzaujmO7Q-0-aoXYntOX0B5XlhFd+ZQjga`S--SPD7p~vw{aU?>p*mL#g2n*Kg!v$j zowR?$M%Y-4B4<$nAr9i|d|sj2AR7oavw@@h05di`h|{pcseIE0$O|7s^(cp#;)L45IrkbM0K_JPz@ zSD}nrfjjJu$uAYssHMP-7A*n}x!uvSxV{s%D*_HJS_Cdyw77Q@3cPv>4$qv_8>-t; z&SHVo{-T)Hdw;3T1;xH{=BasJORr<9!rV>4I(hezZf~Bw@90f*A@1?njMun>-1ZLo z-AkwMAU=!-RHa&^xEqD~-#%>75-A>nh-XCB#RCuUrct`V2tdEPQBFpd8Q6W)>d~-C zv8k77b6JYLhL`rV8W{mt4K~ukxExa!SD#$JkX*VMHKOK6P;<0;jV)!Y(^AH3FJj&! z8z^NwL@DC|*oyRA!+IF()Dvw72vPIfTi&3{38W2=whkFevuA9jT1A_AI||)!T0F?T z3!&K?<1Xg0nC;xdv!;lKiye-7$JOux!^4eOI&8^;aR_wC&E~zEXOOfp2&Ns!s<#~u zk7LzIhXYvU2gRT|+8J)L{O~u*IDd<_#$onk#%7w_!*f)9D2d&r^gQz1pSCBCD6PtC z58sAz zLKpUVt18&DzUz|pZSJm5iRT&_ZnG@eL=<8YQAN$lLPr>Y5k}uQGi94P8Eg-awjqc& zea3NkA~%CYMeaB_Rj3zKo7?ml<|Nz9>29-^fPQ(^bPDKNSvB!5-7@-}Z|Mzn2t%_T zci^#@m}&2+@)u6uQ+%lP5m-~VO`&*R=+*g;~p`S`Xh_Vl&0972w^+aRJan%Zw0u~T~CGYa=cY!}r1P|zv9 zp;2A?j93#cjIA&5r{yMc7}u+7h@G$*a;hF6&NJ(AQ{MLqIS4+tIfy_1O|R9(cw!Zr zfn^h_!e4r@CPs|qaeV&*x#77^3`n~+B0Pi(E{f{muUIY~+kkRv?HmKb<#GuM_rG@R zP+}`uo>HgPs8MAJoY#~S=LzpH1DeVHL5@chszti_cX(npioThO_;Fg zcFqYf4^0Kp?VK!V@CxxGsp$(g(mU&9z48V*@VVX~yAV^1-XK#RNx|%qILRMfLz>3R zB(a6?sm$9o^%!`fDJ1{gMKgx-Lczf+ytx+Lkl((8To6}E-+*>vckJivAjXpmiNeyx zkXt|u?zAUQE6#GBWVu|r&7k1rKtjDJLX2=gUllXPhU2kq_*683^jm2i;i`hC90k7k z81~@DIWX1J@1UpFaKFjnVg`QjT__5!P#KP@gi*^nTod z9%$mys;=ld@D8r1mG{Pu;7X|7Vwy)#0TMZ_AsodX!VkIkYK$wU?gN)&TEw8!mT};x z)-r}yY8ZwfvsJBMY(MHqY$d3HmzBR?LDHOIs;a>)@hP<->H^(>LPYaidYOz^Eefzv z-Gg|n2EX+JsmqXTd6A33dgO+~1Q_;I{so;r-iG>2cvu6WPy8NG6uFhL<@8vY&oWOQ zL=dAQKb?Y2g%8YyxNXF^^??-e$qvP1Hzu$6ocH?kpk#0xq2WnYUtXqX0RB*TOQ>4) zJQ%Uta0i1*Y~`kd5}rQ;b@ABkxX^8ett%LWaV0xGLRVGy&eSx=mVvQFw=1+l{JIHm zYW#ZcGsLgN3dFBl_znE}IKC5GS<2!Z>9kn=?_TIt`y)*6g@IW`U6Gt=#{rjKEJ~qjr2TAJY*re{Zt*4VZKD3TlYxc1a zh5E;pY|&yLp(Z!_Zq94n=K%*~slXzg80w{5%^nQng4Ejvy8K7Xp z@f`4cILNRIH|qgOp+woZX!T*6KRl}W!#_Sv{!o%XJVySo85+POe|XvZdOqzlaf)7T zz#{jYQV--?cbRQbLKq@wA?v7OQHD(0QLHveq{db?k(CIpk?-xt>;-FW^7OS=_2k}- z+kE^4CRt3JVo$CYJ?-mh&xdiv91-%g592?dI@A2JU5k%c2Ds6pjiEiT6!*je+Vw&^ z0zzXl6IpiPRB9;^v*DZ3SAFs_&@+w9!%I68)Ks@t9Y8hEC*wfw@2Zu8do2{qiILIj zwGeLU{z=QyICwU%&hykkEPyeHc9g(crCMFfp#YNrZ&+*v1IG1|5%NzEW6?A@chQaV z&Er_5NF5EW_2ILza}^KLC{O*G6dcaed%)%GGTfFtxWui|Q(}n=-cSlX1t6!?Xv7q# z3CZ=3kQl6!L3B|B*J9TW)J9~>u+RN@J0{TLfBwMzNvVYUlM~DRNoG_#xAm0lj<)pL zpbDPG0{i!YC)g+FvL2iPcfeFSBLk(83K3fP?%7iV~!CP1;Ue$)J zmk(>$x)e{WLPhjBR2b@b{Ojrd#FCw%fX1H$i$}a@% zk0+sh`w!Tt+KwPw0C?LEB!b#alOQ1{UjeW$^yrD#P6k?X0kD&2)@E)+Rjb%Vy%#VL zWzX$xp})G_+6LZQaw*sfue=NRQoOj{4G43q!~{U*Qg>phOMVHmQTLvRE6agu!>#cu zifJn@3Tu5GCsFq>9-Dw3S@fHiA$jXVq~B9;Eype7r5fW1j8S`NW9ux}Tc;(g`(-MQ z-0GIqsTek@b^zQT($8he$qY zfZhD$?NN>xZ;GSu!$J^q>`hFYhpNG!&#rk|0SMH5mI*s)| z`2CqSBAd3bz6X6WW7Jg|TlpD}x$(&Y#(E#`s!C0zc9r*KV->e@82ZMUd;sEY7W?R} z{U_jDtl+_tvl)m8F{5(R6HVEBu)_i;dk7|Fa{SX@KrFfJQZ1G|`r{OaTc~}L)tj7Y zk_@Fcq%lz0@gd!>!{0{yJuPeN2npWW`|uE!h;_CWWq-ATs=LIM04Q*@CX{B-g8XG6 z`Ahhr!P~wdgGScyToh5REJjR{;{va-E*?9EO9lUlt-2SGJ=FH#1MHG?bPXG|*De(W znIK<`Ef}MU$240B1k?UU`7!8f)UDmI6L{d1X?H=)=~s9sZ>)DBNNZdPqwI_v$?j`! z2BE+XJz*pGqTEUO{U;Aw?hLB&2pSiGW1yB7AZ+%Eq2PbyO>I0lgWxyHvS}R?z=_y1 zvaA|NE*+1>-`<606ki3xNVwAbYytM8rG3RdBkXaX5#kaG`jTwc?qhnBxg7{W4y4S1 z_Vy)d#vMv}*1YG9jmM7SmRgG*f}WaxQ#}gFYyKBf#0WIj$9~+5Rp?1?_5LO9#pXqz z5#`TqY@dJ|nhbZ_C$^|vJPA+a*LRY{&c&roV!!uiy_e%VxR+I-Ru-D*v-fiFx2NxA zKI}%rdM{s$a%Ui_-Fun%%8cc+ms|N6S5%cfG}aTR849;ET%0%dzZh~9NAC?mgmi{2Vs5q)cSEF0HO`PuR_ZH>_^ ztDJqbtw-&PQ#U5}h1R@la}N5Ff#Td2%YSBV3)S!fG#uSN1?dLQlecYH2G}Wj@lY>#Q^JCRvk$m7;Te_#+1GD|E<#HTz(~=JIFUC{ zKO!XPcswu{EkuKIE6OG{mPWEc%S`g>Wt>{_r^RLgO|A&%lX#}5XWxjHB*x~!`W}e6 zTt4`OLd*w0S6{Slv_{Mx6Q0WIB&m6~K0b6Cn#D#1ZY@FMS~StSl(3-zf?dNRRPjqb zsJy>$M2J6?HRZ&7yZ>@OhLY4BZfNc?vwBZsext1_-2BPD#*cAIdhL?NOWnqgKkv~y z^kUp&)RSO6x94D!YJt*8T9dNoj}|Gmi;E$OutiIS1KB#vc96lM}cH?%UNL6SL3tc^qYe1LDOVRCK><(Ne`7o|DTmV+(GI^a$LAm~y zfgR8;lZyJ8N;ze0-;W-}l~$4kjP;~3mXcYG3}>P>O<^1H7zqxqz`z)4v~)wDSFdt9 zQ}Y8i0jM@l&{Fxdp%^L4{|xq1_@9Y~Idk+vJAC2|NEJKbd7yQg_(7iut<^lfhLgnk zvk%P`&WGQ_GDdVw{Zxe9sr!UOs0mJ0jij!3V@8eG19(NG8s zPP-p&C1$J*Z$W=}?WYNu@tt;5!2St!TQ93_Rrzbj)om`iW`pCZL;NlMZk|@gW~k@z zV0444$}O6ChS(@ft_b|P$JfKH8z<7$EYwX)k*zuO>egETuJCR+Tq~%@m9|mby7(kI z#n)S|7VEho>{_9x>=DlAqQ60GQ}uu!>o;PK@DX{{_@OCumFZ(=~PUUoT2>6SAq3oyyUR~0Q4l7xmZ&lc3O5GOA@b- zur{I~O_U)U6Al!K1?j@%rb{)seZ_X}Dm}Yn)TTkHMxnUFRJDU~>?p1jtwhD#qFDp<ZYd^{Q>%UdZ+(W;hmUP3<~Q|vj-7a76}kk|EhdiE)BI(5&%=EUqm22&$8oiP zxxiYEsX)p8=bBxxbQ0-k+*D$#p_C2UuZ9JT_2knHRjK8g6X8Lq+;Q5Z2d|?6^g05y z^3B47`NOb*l$RE66u^Kuzkt?8WyIu@38+op`MdVSYY*q*5{1+xK#u^ymjyTvmWl5N z{&r9f9ctp%pd|mQXxk%cUzyGE!dlvRK`jXVp+Z^~bt~fI#Ua+p!3dh+}1{*>3 zE`G_UeoL7`bzvF1pcn13b`Y`cM5bV#snqx5Qlq;6{TWdm;g6_}FiKRHhVO)e(xkjM z0D+Sq>m6t`c< z#&T}-tQUuj&BuqmY;1pj@Ju_eN5Ft?8=DRoaJr2RbePi|s8@3g8{6-SU4Rp$Ou_Pj z`8D&#CZR-~vv7@8Cb#{t=QJWI2~2Kqz3*#sD?sPYXmWe*Wj&vMp5s#UnSc6x!eZ&~ zo=;dad)O~wxm>PfKg3ghvU^q!J+EhV4DNAOi!r-m;#_-H|M0-+v&x6PX4OQY{_z=G zv}i~7tny}mmdko;R$s7ZwKSw>6@fx9aWr7|bD{$?iif*!+7+`p;q+N;1IK&DSzUOj z$E^0zhxz)@4<7|PZU4hGLsgMs;K%|~e5@0NQ{V*+A7~@E7V)zX1zVp3Rf-&=`T_a# z3(kR`klR#jiTvAp?TL;;9Cf}5wmng!nZ;j+o_OH`FbIJ)YYJXsNP_@hM=Wp2K@c*jzZLEY+uG= z^Nz9B`MAXQ&1>+q3EAgU;V%nkHiedl-wb1Dh1KxO`cOEE!7sM*AUVIwS+=wd9~GV6 zyIUaa;K^U`%9}Wt?!EhU+<>nl{OjbypjA|3|5lap1v&v1@EJie$H1;Kgm+>TP{q%si6zA6rB>5E`h@ zi~oK#4c!_W*aiT>w~Cb4v+GE_#K)isEli zQ@ZNYQk#gM7FV@wu+S;>AUi_+Zj=c-jmp%=Gg>OJX`3TL`ph>VaJG|v*@i*-G3}Q>Vr3^PSj=dZIG_ZXg}wo?2<4uP zYN~7S5vj!ov61iQHTY1-Bl>Trg-~LDM1(h?Fp*H0NCY;d9^&(!*eQl!NoYjj$2(fs zh)xJC_G!ePsg6A>d4Q_)9wf5?I1x%`pQzD?oF6Fb_8x%7ZfuobQOk#9z`(_U5jSI1*F!9)FQqO zZyKd*HP)n8_uzBE2SQPf94rXt#@OSd;iHg&081r_rDNe#OooHD?aai|aq{OLhvWDk z(71X9Zr@5dEqw;lJViNF@5HHIMv>> zN5cRn$smp8bjw4CptKY4pl?+iZ@};URhXF+Ir1N$V4N-;pHDfrgUGv)?dHJ~r;xU? z(1q_Te7hga!;MBU2)`?{8W)&To!-qm5#}$+Kq&q!y&KrnNgu|*tOnnEHzz%DJL2BR zkUSfjUqnqs&M((r=>`a; zYoL{CA#67!C-T+%!8`pME45B7{KHGYUI|i z8JoN{vD9ZB!!47QCotgBrz_J4tRSp=d%;=ZVZSgoAis*xj>+N)Whf<^tLF=L9)t+8;a^yb5E*xlQ z2V~u+h2T{FmskcXap2b7y_TUTyy*~(ICstrwS*qzRmn&!#>rZQlTAFSU=DGE--!XK zGGAbN&zz8IJ^jol3V6pka?Dp+V##RvwCfey;9S~@{KG5#@Lod>mf4~hi`9iBVW1he zBP?e-m9jn8!5C?2ovl=(NWgM8fRyNSgCsB^xfo~+u!E4fL$m8?yHj=;AT?GG zpjhcbNJVX3K~&m!z)gSxoIpc28>b|fKqiFNsStgu?sDqjsOv$uyX4zD&IQL!&$ln3 zAtWe;sSq(y+l{Zo&eHW5W}&ksE1PM9g&jn=A0ehyy|F?+(Oc8R=VjVhZk19RJQ9reVK|&+0@o%(@vOEO>$Eb4S3}`3Lko?+u z91S=kg2$A86bV#S+};$%{?ZX{D;KQR2~_O}4S)~m_2kwkXcl&L$EmdeP{B|4c$Y!| z_8~FEh~NF+9`DYEFEHNs*Zn^jZ?rX|Cw_zXDuO%&nmft!V+Ljcf|DP>3#PW?`ykBS}G9W8qg3BmvT1|Ug7kglRH zduv|=pw}STb@&#o=aKh3M_Bj9OrlN|{8_+1m#NDH&}&b!U?E%ES!G%}a!{$rq|G5C z$TR(lZeahAZpiz7tXdX_01jTH?XXF-isr4{OO5+UKCv~@dTy6wl5KQbZ4DK3Tjesg z0wvq0TTV4-v}GSB)B1}^-SZ1D28m23{z*fUAtr8Z36+#XQ*1<<A_|-Qoxj z`Xj_pM~f%>WfgB2^MOF*ilSQaCoIK;j>nbt0ityXv>4ezb@rR9vc07zzmR%bB(ZG1(dfeV!G(Grj_YXQ~+eW$vtzIj?x{+s;=C zJXuH!zSDaj4{3Tg?@*`QmJF?2Fka_%8IAQLLN?PGoel1K$nN5h=bjBz81NjDIY$;B zMjd8pC#u0o^sHebl8N1|{dBqO71V(!l2bzGk(;+uOix3Q2ESR_#t6E;*@^ zWc4N@{n1qp%v~7_TKJOZo#5WgY-m0g9sRM5deJl0dDURM-C&p9V5i+6T7&f-jj>JP zL|6N^IT&q%#IE|3t$FYLIp<}8ORR883im8$V4GlsGp_o zXy_b*2ECixwy|Fg?~a%pN%s~W!R%BnFw(3XX}w}45yz?Z?#<63Kr!N_BFM!tt|0js z73Uq9%cUdoKPugzdL&d}3Ium|s;vrmI|j@+w2rgWBYC;BLh0MFE@t3ZtSCK3f?(ge z61PiZE*6 ztkb=SDy>6uhA*#bSLPflr{qHqDTU`u2B~U(Ov`VRaL+omU-2+SxLjL=dog;t2*-zg zMYx}$T>l~*n?6m1+saBy zOHUjZA2z%{D)mE%xv@PW@Q^ovL(0mhN{6{A!FeGHU-+lvSIK`hr9hf8J$FDbiaeCM zrx;n_&EN)kc41e-bbZW{P!Mpfc(*Iq1!Kdz?~x_*@J0@9h&C(US>hEi6_5}YM0Z0& zGAbWC{aJNf)4aoTi&4;qUvp3qEtKUc{*w!rjrw9U^F;V50wgqV)X#|t_;d-8$k0$Xx2%kJV0uchqo!7 zlS_4}o7NOJDw1!#PHT!1UcvP-(32&Pb3WqB`Dkh3TC<=F?J=DQmOV=h zMD99K&}9sa?(WJtwd8C*R*9{w9!1_EpF5C=qH$-puI7&CG!MNq>#c@QQ_MW4Xgl;i z@)LS%@5ZprSx7i{AI7NQ33+z^n%ZHMB4LRyr)_Cy$q4qx^=v3w-xad^;Vdu<0K4~~ zX$XtX>e?jHCCyn8IaoJz@+pJddczfRu5;kN9%lTzpy1M@vQ~yHm;x-Fj-A1#H+ro8kbP zM@GAk?)Z!N;L!WXIM4hN6+JcjjTn}sRECwF% zMW;DA2TX}dnSS+ZjCx>n8PrNy0s-@%o$Ufwn;}A(`Z7GCW*b4x8S&IYDiR^z(2xgt z)b2n`$H;DEhwSN1XVFiZ{H*jkW#vXiCqsmI@1>#u;QGfdbSkUSKybBXuC*fDbWJvk zx>DPW$vO)&(uKxzxjT{DW;DN~M0f)+D-*kLa5u-gbhJ@48YHT3Jma6=%;3SFJ+1a9 zniJWn@zgf4AQK4DDx0cfAMcajL)j8}$SOMw)KO<7DTizYM1{m>(fC+Vfdqr@Jfos3 zXRb>e@vgZxIjKm@h56)W&3*%LF!_4diW{=)kwd$yTznmkuE@kWfD1L|P;mEiQ-`s&#^1XNgO`gKOljgWBUtqtGQk zLe|1~o_-$JNf9X&EJ~AKM^orMD*f_}x|-8e9C`Z`F5W-})Y4eHp##)4${=_vrfm@KS&EVf~6X z%*ViX2TnQa0*NUp;Q++?Ns8M5SC$A>@u{4!=OZk+ACq>z89XJoVjREZeC!^;$0-B_ zh5uAtQ&J)))KlJ0c3oYdJt_%sDAb)8QPZ`ZWV&Y=1y4M|Db9tWVwxy&r|!75Y2mF6 zGqLtLP2PLyNN>831!&~}8WJ5PMxnb*EcG-rr-Uqc(EC_^@Z!e_qtKK6hK6Tktb^TS zo=E=%cH*^2H5ATA?IO=(7AJ(`q8*SjvR{TNB@607;aP> zQ|?~=kCvecq$4l#BnBDjtGIV6+Oap=bB-*3v`qd2O#-wQ%){`o)m}oHUX|fHDUOo= z1gMlp>q9CB0wSzml>nq7Q(jT7Okh@#JFAa=#}@nsLeQ#NJ}%P{87}h25q{6F*`~z0 zFjVkvaiCnjf9kVD8EfMDFdci(s_glXwn79(7;v7Ha_R)^pk#n~^R97Fc*@D#NKKFj zE)z3=gs(+V;mDUJ&u~XZh-to|(>#&0;Q0j|v8+#neC(c$J^a|0@k%M+KV&Wj3fDQ^ z%TU*!StLzN%QRV)zCRmLRnp}}=i!wKk2p{w>);w9X7<6a3o;F$+|zMp&W%JD4{z4^ z6-zN_swj7-Hr(2{@YWqOL3nc-z4tz8y;s}frp@^VOZ@?deT7M_(Aj~&Orj{m6Y>wnsE<**Su7VPp42nBHl#7jpBf_ zV4*yOu!t=K6SHm{Q?O86eLK*G@;84DIWVeRJDyFZFN421A2Kj+i6~h3pwdXr$tqZA zl(s$yvN8^3LESU)g;?tDRHUtMgM*;_J}RPU00G&DwB9&%)>*tLg@~+b63Uh@$`eR4 zh_O)fYwt*FJWvb+=R{v*|2ZC|iA^)^=5L`svjQGx;ryBx)z~5{oP`U;#M?LqreN!U z%CpxP;1R@!G{BXJLOq7UIa!7OX$-$dMV~W~5Dx4PbUDpgNM{2RM4}xGI+N1}P$VTh1lgCZ z%$7ATZULk@kdU-sVQRpWQ!odofD3NSDF`ip9aZgyH9}Q_kb}=zm4pGY2jqN!0T+UR zKpi^fU!}mS_LQ5ma^-uV0}7Xq5=?QL$RF+&`NK&&QWLpu)NJ^;w>=2*JZqf1hNaQJ z@C~fm$*Ru*?Y3<$su^fzEMIH-A+ZrWTqtsA6r_Gcn5}e?w6TTrlE-V>fzZcY^;HDhnY% zB+Z<%3h@;Z;!rf+mGkP7D@8nugJQYqa!m*84<_aXcV}4NFwt^K9gJv6^wM31Bt`)92V>;X^WdtXZY zBJO=!k;8eFI1M=6X$<35>t<>Jc{bG;Dh47ubWfTA<{j_}h=+;)15Dupx5&*jXOi7) z$liltjU$)}|2<%~(qRe+`*Y2bL~6s-i+1GfTmDa=R}!kkELUP6L_ouHk9DUT-CFf$ zzpPrw4Y3IaTDYhoS-a;Ru(Ii7Wl{Ug1XSxz64{o#4nX|yP z;-WsAs=+AGOL>Jn_!O7I4d7$)d1HaQ+;IJo0dxo2i+DiJ8>AQ~o5Cyn08W=&)k*m# z_#CBmC|cx}V;+UbY2}j`4K>t|_%sR>z#c9Gc6#W6u-6AB3V|UtnZ*Nal71hRpuX2O zqP`;*8~H|f7&vTWs3n57AT%$v&PcNev8Er6^;dXiy8biAn*N7A9BUUi)*Cg)I*T0Z zwa}X}rBo*9J@yDC8^yDJP4TS%9lzS8v<^p>Zzz+yp0xPYPHdE~LSn(Z%(Ew^H#|mL z)5v^$AaDExvyA{Lg=xT3&3(|}!bx`qX zPSYs#_hB|Qm+35+Z*iU8*ec82JMKU9(JVumrSMy6@3na zR$?<~g_&lNE%A&Hg_ckh8B$&hIxZ0^m{G-F>gM}<@uMKj6wx3olx<20`{cPNQ5*_T z9JC5}T2gVj2^qN=YEH~#Hd;urX{Mia;AJt(FY4rAVF1pVpMo!1lJ|yB{!?EP6z83MR>iPz;1uuZUiJSgxI zAl!Ni7pyMPCO(n#xQi;>scq+c5`Dggb8p-=+E|iNiG|`pLtw-xZ;J?=D|q27sH%Bh zana$cYMxi}Yvd-8XHQm{W_zk;p$gol8X zMzZP(Z)>?ET6nuNl99bs!xmk9pxF|*8-sW-Z z6tkQJqnZdbld{!&?|lvLiHf7<(p;m$y|x5kG3jHtM8nOhKKw1XVu+z&T>@=L0wBJw z8Tk4YxuOu+6==T@o-IV}BNXTEk>^LqyW%Mo*f!f<(YE|Z%UOxS{6tZ190DR6gm3fr zTfvo8xJ%5UaWX)rvJL9Y97^qj0GH@TJ?(G>?nGoLe!TMDC#X5hbgz!c2;^~fM7+#n z8yO7N<$zp=$I+c*F^cGSI-MAaH}-Y%DF-E8r$y0Rh#dh@d3)AtGjl3$UviZ?c|QU4 ze5p%Zk+UFuaV9D`$Vyn}2<-l$1<*90M}sMhsa4`TkpmE?atg^F7v7jt7+O)X#i{Db zQ#GNI)t_GpdNc_W03BB&9A4xL|FSjIptKmDYj@#oPCocm&j;NIPE1{xGj-0=pY@|j2Gv);c1|KQZ_@HsUAG^LBT7v+)m9xXUM%g$| zYb6d7b+XOw!Q)Dg57c-3%V2ivN)tf!0Mr~Y81W7cof7^h%_&cs(2NbW#x+5lBfQ2? zXp@a||KP+6u#o7n?Z!Pw&wmoiMM>RTy@UG@hp*wmFc0Hj9Z)&;Y~*OSujmW?ouFHW zc7HFDz5^WKc+q8P0IBFp?oa53+Qz0{skP4+D7$r1`TSmx+N7d~fy07uRdb1M<@3wG z1>dM{PJIrL%r;<4T>b>qIDq(ra`F2(sq}5nXXX-~us&OBwFk!PR}KOYt{-qBk@J?f zc0H!KBaiuyI|}i6A*N-Jk%~0|Vn&DaTn02)Gtqgsk>@sw+%4Z0MJ^-Q3Y8nY)Qn(T z&CTsyEf;U2W*UmEBDfN_L4OmH>(IN^rS0f)%{!mf?8U^kBT))eCGr!b@+g60q}Gkg zd6I{J*|kq`Q!V0&Gl4J64<(T@2TAn$RVP$h!La!z_{DQM~0fX?ay zF$!^Tz?ownkO2qSROJByi>{pxBFKt!1W@9sxw*Lu;RunQz9pomqs?2i8(uaI$Oj-} zzrl0_n>ihCe;gy%UdcWhD|5Tp=vR8$-T`WEmGtPc-HK0qAHMcdhl z$<>`J@!2PZUC#bJui574q^EGm}&S zLADRb>)-t>QB&OpKb~4O2?0NLx-t>+;u6BX?5%@E;_1U5eb5z1Nf6rIC?3AP@bs z2e~`;?&q%6qj+qSyLOPfE^lnICU?(skc!+Dbd$RrMWQC+9Cj~y_ZDmUFX>&eMenBC z^zLV$UkNbPbg++_-W`$q|8CQ}o!!*#h}_zJyBE4Ayup=NYe&&jZ;WAvHFfsJeuHaU z`t46=I;OA+nm$qHpKg@8OLCeb17MG7`8xM{p=Y*Ic({JVz~r#FkdInxg#7Yny0_SK z&<46BBUmxStQH?C`x74uwfL~qC!cs!3y6h2`1MkJs7#w@Oo04g6!;T>se^JqR=yI9 zv=Zq+S16bdlV$M77sD1r?*#90j+p8jI@J>y3ZNgPBIkwZsBitV_8*4B{Wrc`ftR1Fl1{8%0LeL_xjVC))T141AX1+=-as?O2jW}09=td79)6F zHyi}H#ewJ1P6*~{0&bz_B4uZwGi!$dJ%3l$?gf>GQ#*9hAEKr@-BDH^ zo{u)4%RooX#cyNVjgHnQ!sk#UyH}io8)~#|R953F|7;m1c8I-Mjp7upQ^YBF&!F%n zEIb^At%6Nr?zo;EcS)37C-PS3;}zO zc*}d;5$R#~p&v*052)UnOK`*~hya$A-u#bFyzSlm0ee3ls?eSCt+)FWu3X^Vyl>u# zx2*vJjEK*nhD}#S55Jh{@YZIN@2O<7(VeG6_=w9)KN3}}Js!TpEjF=+$c`3H z|Mft2NA7<%X{CjQlMi9x^ww@**_n`A+|fVQ;5vcar%RFc>#O)2Xlcv zVembw%)W4F4Yn2QREkw|(PG)6Yn9noEOChg1dWXN-IQMVujQ+s$GrgLQ(+GpLW7c; z#CTyQ-xA@yE^#+w3WAMYzY}L6q2PnY)rZ8s4yY@T4ZU!z_x_!=Z-hr#(`j3j({)8c z^}s01A|sg#&P+3B`f)PiZwQPL&r{3HS|eLDIqSp!@jQn1$_G#-m)=`DifaR=2+M!> zIk>i0e~898>13Yn<$@s$LhXn6#s<$UmXmniL7G`HSq-u`#m-8Fds3$7HXE7k}!6qeI==|iu$)7sQd^J1sDd+xOI({@^A z_g1qRP$-hsWZF)Nx@rA2rAg6sk?RGePC4&%8>vea+*p11RpDkqirlzk?Ol2 z3Ey7J* zW_pu7$$iATXKK*9?3c5abc)?4&}zV^=9X7**fUDIa`HNt&cQ^@PTkF^{mV{HEqX8} zuQRm`bBIYcz}h9>Ps{p{GmiKDVkRbu(N4yVS%T98dZto$C{RJ(Q_RT0GPx0AVXqm- zlR(;OGY$?QS=r)bWmZ+z_@S?bSGqmpYVwt-PEBXPlUmPX!Wb5o;DA~Jzr6%O@Qa=H zVyJLATo2S|tw<*vyn8IApNpfaCP!Hw5^*k4NG`M12-Y37MldouvGGovz_Fz6_0kzI zRQ(xIoYoVEVBYiAZU&wyFEM}MFVpq_%-1M!-AD8bw~6s^ix?|LK+|LOnU()hCrC8( zia%uV{V~&A;PLYLsyj(nB-Z(t%Yk}8DnRMZlS7MpqbA({6`vy+fw%Til-7;6*^S$r zK%2!0pw0h8Oa2>PKx!_4T0@+b{BB5NsOJ880h~<5@u+Lz1SY~ColZw6O%4*EFiFz! z=HbsJ9gpBKy+ILXUHsBa}+k z0vD#uA%_E`8K3t0bxP)n7mViZKKv-wAFr_3coft6X~_MTL1R`77NjG07!8IUKha`a z!D!{UCvVYJ8rE;CYGM84KCu63_@XbIVi9S+0Ol-Y>E6cd+W z`N1Tn%YV=64I4l_pdaeFVmvmn_gZm&~A^AtBCE&WQ zU_=2!H+Nylzqj=~oR)?-2cU?Iwgp={69;7&h$nlc5v(_Zk5{d`8$3BYhVm!D{_z5m z@epXhBscaBA1yCJjyMrOX5B{Eb(;|Y{1y?|atk&MUykg82oI5SlD|y+AJ)zVKC0^4 z|C7uRMj4oijv6)6w5B!HR0BZ;2W=kA1cZcvK!QSoZ7q$|wpeBaYZ5{yKqkkr)T*_; zw$;D3*ZZlxrPU&BsZ9uF!b6BiZ4_>cO5077wox%ejn4nO_Brzig1!HH|7hmC_St)% zwO?zm$8Vig%MpvO?Z#PZa-QJzY_o-D0?{Il#82Y_icGi;^{PGAHLb4%L1$>zIG1_!|9yccnVB9g!{!XsOcUq+o+SzOGhwP1sUd^;)27bs@Dv z*4dP;39wTa2wrt>pPo%lW66dj36sN9%TxS?_)aHE=m_$YFF$$m`Yuom_vc`Vi|44$(T>*@etV zQ^Z&I&_aREKrAYrJGrP;SZf~Wa&PSlrqKK5wVU7Qu&MoDxgcFps|r$H_soXl#}MAh zt>pDACd<^dtKs;G%;#K(tmnoYC#&BrE=eo@cwe^kHPfh)1%Hd^e`DeuG(AofX07$wM$=jLfKWw4Rr=Kb&MZzKK^|g|E)h{6@-V`{Sf0?FVhPt?&JB z)CUJScY8bEcWRwh*QP2pSt=z38T~U_9j!j}_mg5?QRv}umK%342-w6rE`lR>iHy|? zf(h!`r2nqztY778bu`CQRbLs)sQP4A)^hC4m!?QcV?|mEZQ*&fYC$8VG#0Xm;TABX z-tb|l`f*e3s-2rI1nEPK(0YJ=s3DH^>dtl2mabajLet9vh17icQba&3d{&=^J}LG$ z{IQiK>RkPbSjf6jKP*UG3y4QN;;>;{)5Z2&oX~Myfzh2`RHqs@p{wqXHh2-pG)(uq zLQ7^;6^Cc8^r(HUx)&itBd1Ro?oK%VJG|s|`0KoaG;)=bd^(ok6~I10F&fPRijDcj zb;7TS81QVPs+c{J@ajl#!TqtAcHNWBAL_rrST6xQ>85gE>bjPpS3SDGnC(<8lh7Lv zh0ZrT7Hd2ydVWUFuO8JGxtLd=>>F#@n94sgcuVGZ2fRgq6OPnlacfLY$2zw42wdz&kBj~Pb?RY~oZj^s{UDA#32u7azeR3F7jNVBwr4j(4HQ;C#{Q%Ya~1c7M>#7^?Aj;~vUd58+Ge!o zwVsc_Uo2g70N7dOf;FUj<~9E<^6W$MI*XFKeL81}JM-B1#{DO_$pSVc2lWH|drA+^ zsLN};B&A;_H@pgGPZt@7Ycs<%uX&);kFCi*<5`(T3g0VyA2?5WKknbD%c$Po;qQ&M z9HKu@Fg8lLG1n%#!)~Ly^zaq&Xu~nAT1yXht8CQgRS3OVpWN;1$$|0bjxF8}Gy(_- zj|ft67Beo>QWw2vQ7NlX>kS5R`dkl5mns68g8LuEdeW1)!)1!an7lDVRVQXLxT^c{ z2ucKtdA|}jmERdHhk~){?dmcoB>a5uduY8YBXI{+rB3Ks!|UbgOP8`}q4X#68)nU| z6RC!JAgTxTip{9RTl3uac2Ze$f07f+H|GmXZUf#0hRd!-eA*tTtf_$3!@jJW#7$+K zs~Z;3UjppNF-FddJK#n{b`rXJ?6mR;sk8$anjEw^z+D-x32G;Kauo}d1m*HPK2I9f zeb3!6*|Elw*j$(LU}qJZJ5xD18kHf4m5(lO$f#Up?6t>(%7Z2{5--vw0s??i8H&}e zDot2sq9mV5;tGd79&@!B$Od|i*@eLJ+T_E zx{pReFh=Y|CMSmeL5$0d5xz6pGN>MS)BMz!9F1voF?F!*Bx?SnG8u)(i9PxRV^YwV z<56$-LyqrDUuB+6b;yX>AuThBD|%R)Ftw&jzNEY45t@Ix=(itS!i#Kyv2+2pifgl3b0$dG4Nvpi90K&tDmp6R)#z(QDKzg>dy4L8vd{>>0`kn1Jv3Aq#--u z{PT>xbw#P?EnHN)wnK@ppcFL90! zhWf=YE_QfeXvv4ywsM-ff@&nKpQk2JO;4Z>PzG0w1$B6NB(3POj;LE1u0)8?jA`DoRxZ%tc2n=f-5TY0e&DivCy#`fs|D*lRsnk*;%Dq zub%>})?*!YxA)5R*w(vN&ABesda|!brq||-xE1Kun?mbNNw(g~0`;ji>94;sfvKq5 z`t(!2yq+&F!HM9l2U)e*evKcvkb~)9iV2m-GWqiTYMlN=ljd)K?L$9T`mKoWq}8fj z77?Yby3_B$Gnv?L8unzI#(onreb52M(@|sUyM9o(;xr3X*9ma#Vy7(R?xJyhKYAR$>200< z{=)aH{jDtUTZB{{AVFnYK$?Qf+Qw=jk!jJNg2r3{O2++0MV=s1vVpGf#vW)EJ44WC zvZCQ9W8otU-y?A!e55QYcL92>FAt@68TmD z!NinkAO~xt2~{q(zL=_E+8;g(E`1z2qybhm512267gP6%33flD^8ywngJE+ZaS*Y^ zRVFw_=rXcIFe?jL5yLo-5nc_pVS&L$Lhc3Go&Hl;fF9g3(({Bh-lR%7zIbSvaA*?} zcY=?wPJb4P_|{@0uCdNe9D|XYu!|B?K+uImj6rXmib`C1hl#x2%swB1iafKyxx6Mdcik(OgN zc%AKTsF?Km77BW-uNY|XfOtGZ`l1oS#)a$TwBMqZS-WmWo8%3~2A zi-jSCC8xFb5%Q*rQWL0yPHEbh>h_-g!S)X6_8w8i>=0P4G~U*#rDl8g2Bp16)R62R zuD&PP-V3IGu)XD>Wlvq_r~{C;%l?slR^;uo!e>WX^0M6Dc$GVy4ZXxI3SB2b6zMIJtW^^ZW z{A=S&OfOM)xM9A#Y)!0jUZUI(+-XuFyfTy@C@+B82 zNlRGuMRn9V(fXuN(viu&Ku~h3in9s)?(pX%`WGg0GNP8tg*c-XQ9zLsa z>C`R&NeXNxo7%W^OP0R0?wa$7x!#BKaS|&q-e!{0GZxAMn$yz2n}yCY3zg*y)IbU? zu!_`UBb-l>^o;qumM3CoeK+Jbi`Hf_4LkA?gaK_SCuXmZ?=Kg73{PEsn@<7_+?{1} zw~G%p`!I+bk-0JA_s+~(<6hplD_d*<8+LeYyRxaR zb#7JLR1#-&XzH)&2h&i1sPos>g0Lf!(2GG|2n-)j3${(iyVcK-J8*TbJJD=RzOF8>_kvd5(f2>rA?|HGFv)8>R#XtU54 zHYLU8^S%fx{Dtf##F!Kr8J-LyLHaV4&8(&vTOv)>oNi%CPodwRo!%UuK zmxiTswL*(8wyaS=eXGG%?~5YrtKJ9W6}~O%KZNSUE{1HFvmLYdL>u~9OHf7~GBygO z<^Dz?yy)!w+bqagOSQ*3vrTMSCEC*=_0?aT6pM%%rY)dm%!gK*jCr9*h5w3-`ZeZV zpU#*i$$!kJvkpH8Pj}t`7<0&)_JK(|v)dN>WtlJD{8oxB>5jA%nA}PD2gZ#;?2C-- z1;!qD2VRR*z&=zIP)%E8A9D=u4s#;-&FTfA;3rN z-S!uv=#b>=k3<)10`O6TzTTFpzL#6B)cr^Ey%T^82LM%_*llM`lNC+ou!%xV@GyGS zvfpyQdX#xe3y1!3Tap4+m(k-5%Y9PE?T-r+aktaLc{6H6Z*`?_Kh@4+>UKn{3e9^L zA?L+Bfr|34Ma(IvH}N}5|tN$~CU z36B&~St5Cecn04$6}&8iVN3S!;`&&tlb6n;DhJY4v8t}oo6%iuq*T#yq#1ENIHWXf z1Oi}0NyH2q+SsES7kyCQ7AtpVX!|t3$St-SLDh{l!v`3+ZMTlq7wYj)qWQI?aA3Sq zT^t!KvSjDR5h^o5l!JW>`Fj6}mD7QYh*uU$?@=vz z_Kgv)vYC)QB&8&ui%CmL%?MRxy)3e+lON9@Y`Q-Pi6(k}3nQ3whrd zvX2LDk$Y_`LL_R6=@A$Y+%EUxfmJ%+AIZocjc$~o178#0sQ2}fV53Z5l2>%&BmCa_ zXfeO>obB{uHdBv21UKtjFL|_P54az_pG!7rT5ja9HOW);2MA0LiCiyNiSXfi-Acdg zeOTkuWyRKJp_#d|sf3y~2?N>GA!ibNv_5^Uel){eGaB!BD=}c^9KBwOQ`61-mk+Er z39S1AOedbZ6XjdTQcs~hO~SpZ>+jQ!a}420@C%IJ+oiF4wXE3>Yy)#LvoQu(%)W8I zOJ2rfLB05>yyl9v*i5v``J=IQqct?YrP9S3WdPyY@GYH> zowWrUyCw-5sNP+LSq%f%8P(x6V?ca5fTBG{y<&CQa_Qt!B5tCk(!p#?53fk$q58fz z$fJ&mEce!4B8a-@^%^=+$Jvz~Hzqo6d_S_ovHo3Y!{$R}=KI&{t6w5ZD)}Ay4=lgs z4*_so2Tqo?edV|&Nu+;>eYKq;EJ_|=^JB%>{pQwp*b1fI#wsb}Ei-vcM^#>#6;!v9 z*swyEy4&a3X%q&L7Lk9Ni^y+u_+@wdR4%Al88wS-kkG~}*#u=_x9T-x8OQZaX_sJJ zhqjeds`vy+)%>f3O~{M<<_K4CWq;;dVmi{YdV0${iCAnNi-7tMIR(h}QI2M>xQuWs zGIe%^&PD6qtLnw4u0Og#;+_sT@eBN(oawa2o9gXvBvVg-iS1RNB((@Mtx&@w>WLF? z>X5cD?H1KyQX%>Vfa2^~60@9$hn-3BaP(}ejwSuj$i85apcuHUdr$sch-_Va8p~qi zdlC_-sR=+v{S(*Wx*x_;UX@6>(moOe7YE#!eiT&BYY@h3+Q)QLn)^*Q!M~7R7E~jp zV%z9$zlA0@exU;n{rOGn6BZf!t#1&p8H<9O{_u_jIhLMhMHx0JoA{YoSxx5quyZzk zAJ(sfYUou$LXIOb-%Su|%C zNx5ex(gdqqz^2m_`pdMj6sqH&8Rj;qUY;t{2?Y#2CQA>4ZgO~SfdPxI@es0n>t)1- zKT*Mk)b~Q`Kg@KMBe&kT$+>*R{{Kw%(jI*( zEvdF~Y6dZ;ho%s(vOkB|U(Xp}P#iXN0AvaKa)xNp*4R6JDCwAtaNf+#hyY^>)9ciA zw~O7MAf_>z`xqY| zd4z13mIXEAY5}17WK-WxX0)rC6o(|tsd=S7S86UH7k`l@J(yOL4 zB-IP0+Aa;OE!isB;Uj3*ZIbmxyD7Vf{{M51j4pJnnh7VMbCx2MV#>6s2B7d}kxTr@+0LMDww zJWymFisj&YH}u)k!!wpUT0O{+To0+wP>o98a!2zJn5o!8_Dr`#!h+sAOU4v%2 zpjj^hxA1k1Pw0+$zsI)%jx^Q2C#YQ4TbcYt9Pt|ld55s-L`XHEetGpml=6Il-F`s2 z%pmDS<331oR)@Xn@K4@B-Qxbcn02VxFFNKf- zkjw<}34k6(Nl- z*8_Hec+4)@v$}J~t71xG7N1+B4n8a`S*)9}*r+T5N6BJ^Q=4D2|12OEvFZ6WgUyD; zWOujnly;+QxUKJtdj>WD%_ZIz#*S_^v2@36U046-&vzKT-N!wpy+~Bt{+CLJFYRFm zS%Fo&0kp#6(U_|&=ITVt2&`GL?`5L5EOz>GiFP!bIW6XJyXSNVd?#CSd12s%57cAQxHdwYl&86%R@in~{HET7fZR^rj-Qv?wnY z&)~Ye@)Xi)KByHRL|VP+RGrjpl%|4erT(@eX~@?98@O=y0AaC>Q!-0HJ z!-0ME84}8@9>@nrqtQbL73|e~%CExBK-v-AF0q)r9R{d(YrXD!=F3-MKEcQMoze^V zGIuVZ4MoN@XWXItD09F?=`!B?ye^|oEn8wvH`Oln9hqeN1x{cuo|@9IdvAMQTHe^x zeSBi+9v$`Lw(iV!576$<3uLmB)pr;?(dAAWolUhbLxJx>rP9mf2P&gfj{z>~f`Eid`{nx7sxOrHU80x%o=DUL?V9r1Ea z6W!g+QDDx`rs^@>#-~TqU3_XA&ocFnSZj`ht{K*vlThQG&P=oQR;!6Kpmix*w=Fu- z#+ai+s(e;7r75A~NAQOa-)L>r9%qv!3U_m(R@_wf9ah#q(RZ8rSX-=(TIyQ8cZIpi z{^E1M#t{(*oekEH&ZPBYa{Y>oj9aq~nc|aQYb6pCq0`52TMI+m(6g;wAFO+u&3g}L z-h0Bl_jKmHF7w{L%zORjyzN2X^F9p>L-xU_bBTK(|yKs}--k!d#t7Z1L zHkveqk2a3Pf@GND!1AzY%vVK3dr7W5H`aCn>39H;2i1Kf+uHG););&tdGYbnC_K6b zledmXAE9e3HMjrk3Lbr!D_KpkP@XRGAn}g^sv>#OB&pSIlN6Eb0qgr4Y^`pn+ zeYMhjKJc>?Nw+N#5~VJ+es2!WWkfU_=iYQ5t(Pc_9c^xfsdC7AGM1GR>hM7Lsnb5N z-e3*mxn{nsH^!N7eDDGHC94lUu--7Ar?T4o6RP%E{_f`Qe*SjxH;2FE7tubfhb{st zOuq@3iW2wzJqcLR{VU;hM%DgF*zHV$1?|YsGLOw!S;qMcVfR-5`yI2+&Q4w=xUfe8 zjtpqIWcx=nK7a%{c|G*ic+MyUMWUoD%32`b6DTmR3eAIe^rvvT1S$*^;cXfX6a$8V z;K=|$DliR!b2Ko$)9>vF%tU7q4V0;l@4u6X24)%KpI3#bb!9`B=m^Y?2ZE9xQqwX= z+>vvHayg&P>@yghHH8?6UJ(`nHVm6+@rc7^6UzX=YjxOK9g!MWR%C6N&Df>Sv&~Kg zy&@P6$)4dQm`!{Yi3#S4+vTgYEtQ^d!L^<1RkvKsa%C4~j8wp`D_~Dn;KEU{p95_u zPmA-4Fr?G$=dMb8sxt4RS}XHLD_txN#g?Pi0d@5cKEzS$fEtD(mIZYhx=6Rj6>~<9 zOBFNPpD9=Qsj4^x!~%mMJoK(ypr;J3(vns4jZ@!;m>HvE-@a3yLofH%@)LT?j~L|+ zRLSBT5;V&3a~R}9QK0q~KqoOA&k&i3%7Tf=+_q&fa37XGjG*L8A!LmJ&CLDsk7?<` z1LiJ;`Y^dYuV8A!wKyof_>jLAz?j09upKbH&NgAu(j?T+?cMYe zw!`C%^`Z;uiL51rINIj?p2Vtr^&f0L;G2Bo7X9WKo4Z0EQW>23zTQnG-_PUyJayZL zy$^kGlya_sc`&-;S&le^)np<}3YoW3#mRgKLenpwWcJ*cg_vTTdiia(+=7IiP!gn% zJ$Ua+?Iv#n zGp{2Vbum3&q!#Iarij^GaAc9`qSn?Lle29L7d=gKORbx)M@Zy)xkBI5WGfSSB|pEE zRBBfLyNRZubQDk{SnmrOgL+RiVHV`y|-W*tGS&*YCX0=r(Eqijy9gw4w7m3GQ^<7>@wx zlE{byld3fi^~lYdyG!m7_2$r;bJ8E}Fgvv{*_)Dll(^$dkR&iBT=4*}GZBi~p# z_9GFV_`;)Mf}-F?Uqlv+`Qp_3d{*d_-LGXE^b=7lRJ>MCEOdf z3&poqULuHuYNdHIUXss3enJKS66UP2$U z?_bDBQRjSHhiJYy;0rsO`;FCkOq-KutjP4Qoo&RjbFLas#2+A5b?GBTd>GxC93Gd??;7Sh#Jips3U}bxD6p zsKJsG33#!_{5$7s`L26w%_Z<(cERnP)ARcmovy~Z}A%N6zcEn z87LrM+*x)GxSEcbxjx8aUGAhS(9#6*ufR7qw4`a&e7csW?7~YAGk@3NtSDvL@w*sP z>SI*()Kb@3rLM^+b;rQDP5HfAxLL-5x?M;r>9Z7B)pWagZyfi`9(;+mnGQCofB!K? zq5pNIj3bwfGu^~ZZKOw5olq}a#T%*H_n6r{n|V{WRGQugRNv($QF=LQD|(!thMJz# zA1%ac<85(v8D#q&t9CJ$ianF~sYP}<+1J}6-8h+}3~>bOnx5vhdUd_7pO@6?>ym5a z9>~I^IGgd&g-EE{Qx4dM5$WLeg2c2f67Ws|W~4tVv%zLjwm2%xlw7J^0pC-SQ}gen zUPW?Gf2zjQj|>LW%DYa%>~eMB5Dj32e`lw^0ADK1IhYslc0vgh-loI%&Zs7+REyK? z@0KV4=($4UnD=DTl-7-6BOP$mvPMX62rh_LZ^vD2p_=^Qd-N0kpY2_d-uFH_ULNWg z+R}G`;_@H4f;dU;ANXILdbo6VN5gB_TVG`WWU<}e9rJ$O$Q~}cB`a)?T=t%kU2c@! z(yi=;S!ZK;am2SDd*|>rUcuyoc`F~L@D_X5F8`}px+LI*t;CX~K}8#mU^q+Qr9pM$ z_2@>b`{4w~8+%W_bn)(we_H7IO4$Uy+e0YDk!)}l{e1%$wza%!gBSPrK}nl<_y9uR zC+l8Y%U^Aw%Otb+W|CPiWUB68{|ZkM>))1NxHtt&mHyL?#^^u~Qe4$!L%_U1s%JumESCl&h<+Sg5pU^Jm z-vYkNbI`AP3vs#IYM343(VD!7y8uDwFWa+u7OZ^u_(Pi`Ypbw>X3v&u8dUlh~W2jwqtDoz;nrV*L@Qii4=Yc7v! zwNGXt(4!6=&!6u=gkqWB%tURmVK1~jPmDZnH6|9*^zodh$?eg7tagU$n<=SDFW2TS zI9ievnq)|4nk2pY)+}qSlq->%RN?)jA3Y}Tt7+zQEj8KJFQ1h9d~3aw;DTnYrM~z| zpp21$8LPpo%DEc`>X@(qe$OxabcOQb0T{zmB?E0MrlHf3uVKGlVjha*khHwXigaa# z-atGM3k2hVnewQ!W*!L1ND0_rw!QLxJTOb{#sjmZ_>P)+E3?G36^kkf52QC;_Cz_p zHqL0a+PsN6)wt@^CNCS*8W=6@df?!xdVIrsiPL!~iR8YXwB~0ChvvIuW_Ub+DFh`* z$eS;3d=H}nkS(oGQ5Uw4pst$so+T6+4$RX6@-kI6U-!o0z%+fMNL^*#kX+iK*YbEy z5N{mQQNSX(N#D~}p!-~avWa`-RQ0D;LEN(gWX=OwM)ir8nF{Zm;$u|0FkBJKscb3(vr$bUv zSDM%_RO>J849pX4L>YA!ZNxlksG$#LQN!rW&8CZjOZ<&A+@MSQOnxM?Zl*1CA$q8q zB6Z`}8HzPp4~66k{fyQ_B~37)hcUGy zEaBG{yI1ksWJ8r14=j^AZ7Z75&5}3}lFN8ttq5gzoRygFwG!=i%J!)||of3#R*JLtE zZR$s>B0XN;T1WH##-(CCzMOc7C2IGLdL)>l8lkuGy7>*}$Ei6~GFG!nt%nVxa_O3} z?z{&;R1#R^_{>!MrTZZH$^OaK2ANKW$6`K5eg=>Ub@>fc&0Ox1`!8FQyuZK^#SU_g zGdeq^KiYO^tbOLThsRzUbELxKS7xb-+Z-%ZlxNLPt33d;As<*nz-?6EU+B!aZhZJN zY>5hR{Cw6$3&rX|I>_>6hv#BygVF;L$?AX7nK3f;Rh5LVMq)wt%`@gp$G$A6Y#p*A z4o}o0$cuM$G4MCBDsND{P3^xH32qnzdc7y+F=FK~Jhd z+>hXNqkV49gn%QR9`NLyC|*lc1=1R$y6>qh-GNM-#WWPq$5SPao!=sNg>2zT@$!7s z-AE=2<&d5okgr7Lb82jNshFJFv#0VYSu<=`qx>e{VQc(Yc#slrH^Bf0nX@% zQJLR4Ut;LYBd(MWYlGM%cm-p=mnb;yST^Tuf$n{W*YME3S5Pfy)H~g=lVoi=Ha*_*Q=Z7=$zW0kW~B!m!X3WGMYZZ zyr5fBq9LwQHY9BHHH&XxznR-vGi|sV6rbU4BB7eWfHrik&5_E}6KBg5qxmGYxJuT+ zVrv~7f#k9d7S*dKzhte0NgiWwz*+~Vu@1Ht$s#ySSOfScm@?s-qJaXdQZxszj!*RiWlzNjKHIhJRdVcGT1iuIra4*nuO%6*KXVnJSH0 z5t=QH=j9yf3=kLoQJ_sI{)ADn%D6ccbK%b8G^Wg*L8OCu4Wp5`H`+2p;6w~?xav6> zt8xffapGEh0@OApDTZ>B(K56d%LU`cRffa;CiV$l_f-McogbCcJWf4#p3iB3yJfCB zC&(#x%RFoD0AvJ|Ny<{tGE~Nz!6(ON4+}xC zA;0H+1cS7#PzomE#+g~M8=dN`X4qgY^h~yQQF=a+$rF}9Fk99!GB1j(!@R>Qk~wqc zXqb^~5R`azEJnsE@ur|Euogxi0*QmhgjmB7)?@)*ttzM$TbBmT3OPGMaC-X23EC#< zwg?6Yuq?<9_eaA=qpLAr)CPNuZtV<*edMt0%To9>RjVR1?F@a{0K>TGp>NDzW#0=P z2T}l>sl=Mf1h`>AqHd=(l9fo7)k7?)uH=%Mji)Sf3A{NL8s$y_vM$FD5A$sm{d$RX zvZ__|WhoCF++(~SZ_V-$0A+bdZx$i~kBGTJ2^vF34J@#vQjQ-E*@dloxR1Djv z51|K=YQf27hkGV^{FrPiBfGplDzE9$NOY0qOKBI8{U=sA)LqM&NizB)__^Sp7<0`L zF-c-GtSVt7slGoz&AUU}WN7V z*-FRCnK47I)uY$KEDo6$#*0^cYml1@V}WT+tG?N4i$>&9eQySti_5+0!QDRU2YMwo zca_>Yj}qpFjJsEfDGoS4)1tza5p|b;QO7gv#N)G`F=gDdp3!%?79PkJo%M{z6ew0= zu5_l+vgjE{blx+ zb=vEi{w?^wY+l41ATt2gj9M*^LHD&wavX0g>Hy%qBeM$gr3w<~#L692#c1<$1OQ}x zdTcI?IpM9ef+x*U2=iOB%3|DAYl`K)P~F!^H>|-IMsxY;OhpUx;u}dVjMO)iKc8yy z=k_;EPpiDKo>sJaJWwcPhBGe_&iqg&XMWYEGdOc|yj%Ju;)TrqFa=W;>s@GaWW*_& zyLsv_H|UJwRrCX9)~eZZFy_zVD?D1GbawiC07jLqS(Wg%$*tL>DJE-Q@5&^vC&WT= z0Zo>1^Z2h)a&|(_isWoW&ODqg9+XR`Iz&m_BdoX-;E_4trfwd|O-ZdU%E;X#xtLcn zPe|_Om8)%Ttvs(POchWpXS&dQInx#K%9&H$YL!RvR$-0Hd7_I;WqF$7QdQB#S$3vU z>S-wRLBdd)Nf=#6$mFTg_0e@q6H60@lBA*{#!1%EKRBk2exY5OCPJp%GEEe6zRA2i zwVGZ{UtA%jY$-?2wpF|(jcU=zm262s+QB_bmTyugT_|+2%A@|dWx6OG`6Rs^-A88> z>35y;Ul~KzohoDUYhy?U#*iaEVXkqdM#uzwB}2!xAaPB-3Vzn&t%-zpcH$bfigYAG zy$x%9gK*Za<)~o@k%*kao)fKcG>X3#ER_cr$;gPkRgC49np#G20hh481sGCo=)zZ* z^SsU~7CLWz`11Er>vf@-D8T-fp@1ViJK3*FRC67lix}j{chRWj+cHvirBcq8loBts zv$8}I@PA;T`^UZAuUy;_ScvHBEJUJf)d7aA+hZqq89lMBrq-bv#8W9FcR2?!Sf&#M zzBsM(J?tECk{93Npy`z_Za01eGG)4agxzNPC=rD7^}J(l2E{z%0}hNbe`vRAi3XF$ znOD=m^L}r=NdfXzj2$DK4+YMZ@A@U2vsFjSEHE9A{j~W*WGH!xJG7v>e?w{b4NRGM%AC@c@~$52Iu||kB$rACn`H9>Ev>Uj4e?VmfyU&M zlk8|*j_C<0{`55cfp4VUWUDITl>f*65E;BZy&r*d0qG#>e?n{n{X4a06yN7g8+(+N zZPD=K(Zx@9`1d~HAcW0)?{N7fr+dRE*=Be4w!M-Cvr^^72GA3_rqjO{7jOw$@0W(L z4J>CMq|q?utLGe_w9@ zRvYA0ynnqMpEWOrHtgQU6?SgjMz22Weg&@ww|@uj%@fe8a_NgNytwPqc=Bo&7rQ3( zg5GUZYY0b7F8h9-g&MeHc92uFm#%}acE55-M{t3JvFK}?U0cQ>(y}kh{lE@mEf-G+ z#HsA4>6M<@PWM&MuRcdU${{;x3sv;1D0_EG-FUE;&b(|7C&0~ypXU5eeEmeBrV%LQ z^b$EOgo?S<+acxioHRVi$-A5^-p5bN76xh|bI0F*_onoEdFqk0o|Y~AEZ%1<-X`NW zP)LT>_UeazD;{jovrhp6hMj{x{Pt*gb1kZ-+i+by*$soD2|j3@c5%EqUAa6n}5d*uA~bcb>F9qFgIW3;*dOeh@XZ>m|O05=a#!txpld((p`5=GnHM=2YTuqIt$NN zyf9>3e?h+Bcl_}=OC-#ZRX8u+9(=~Orjkbo`8&+tF_OH%@$Y7-%YHwmoK=$C%NI^P z*jZj%c=GHW9p$yhC&+AB-S=~6#=Vo$Z#_AnUm&ui@`p@9<~A2PxT2KSK!E@l$tQaY zRnJShmbfWo8+G>45mkN%N5Sa<5zN) zCuewM^>N|fA{Rq)_OzUxFsEhzc6A3^HMz6pS29D8K)RD8vZiV&*qo}(QG$=h6MQ59 zOuD1#CYZH@o@sUhX>K#26MWk!26cYIF+HyFnyOf4kP(yrY^hrrRb4ilHd$6CovfFF zW-lUzSl^mroChy6#S8_IbrdCuX(%Up`sUOVJ;Ad+BM)S`BUEviU`wO!t#y|eIallu zdD}di#S|D}TeK$z#O%zD(%qf@V*(}E$4A=)O7M`JVB!$>A7y$3{;$8oe+<1}{S(>Y z+LZ;|mQ_!EeJWg6^%1T0jyVJXM+|X1tegFH>i4+&@DL3jx$`cNT>WZj3PE%I$7F|5 zeFPRP+z$`tKNfS`i_y-J7&a!;)$Ly$VVm4XPGMv5Az#oNzCyN@2rJvA1jOC_Rt;5o zD(Q`8($K5Mo(kgdGU+2HfH9bgK*`+G_M$z)NX0pDwxvFjs6KNGNmC)v5KfI7j}6PF zVgE5v_EOslYAaO@6SHKL3Z^J2g1TRepl+#Ui>Nl_rhqMkKN1Zz+okbD#;kX>t?<6r zS>uh?A->fc`N%t2tsgNX3ir9^??8K|HKnCyacwo;tO1YKlzU`Niv{vJcsqd7%tbor z;zsc4Ox)>Ichqb4HeRLW0w2(vrPh1P{1buXwU!-);PLf53Rf0zl=kz9z3u8DwAOyW7$Hdsr9CgcqAJzOejOqzwUwSoH@S&~7=zn;1-71F-Bh zb((Z~yDxnl9lj~iYBaj7GmC+g`Xay)IKT3V=-oKpwID9y=F3HgBMmM0#^t<`$O5@+ zR2}{((@2h-Ezs#gN5@Ds>Q_2c!ABV!mZ#^Hby%pl<%VTF;>F=UM_OJze+NJi*BbH0 z&LU17$aU9m zk^JwtKp5Ua5SP>n7u58ZaLU*-2>21+XRYR#U12J`AtZtqXt`mnK5?2Lqej4mGq1l* ztq2N9+#9msq@v*xfX}?@4aXaJ6>(-ysJ|4P6a^_JJ)edxHG(+sl-zbt_S1|asfy8_ zy@k{D-Qc7p?A@>>CAZDXcIij6vYq4f?Os)OKI6fU`YtBbQ42omunBCz7n!cL0I{Gp z@eBRr+rxH@3k1=({X9r1wYi@fz%k$|?rwjYBE?;NiO4WE6!W?etSF|J9u|aZy>b)> zSHjsNicr&eH>khq%1byyag-O+6k)C_K(xs2%Bh}uTgogs{$CVGzcMqa7K&F7$`tPa zvyqk5PqtZ-?T~uqBgt(4kblN(ms#0vOl7MVL-He2r_PWcU5;+#TvuVe+H~gpw%Z)G z{Az)T^VaN$Lq4V48aW;L4(&EV|6* zW2r}c_{qu79J=_7pZS(n%5`cOrt@jVs1)ab9O$$sDnaS924t z#otaf_@>oW!=TuSU5fhdxMYLmOvNq6W80FIA%Nxm$l!E|f378uEXGg_t);A_ zm&@4l5-TdYI`VG_6=;>Y9v0l{A(mTecCI;BXKmb5v4xIk1x^oH;Wuja8h=DS zL|uW@LUV|-^ zh>Jk%10d{R=o2#*51~kI88t32T2A;pp$lT=K+4BldG0yAz{<9aqr8DVAl=P&p6q8c z)=jwi*&<@c5yBPAUylmzuy1e3XX#_7NVt~(o4U|APyvDdsuJ+{aTr=~UJo|4!&;Or zcEYzeyqDPYvH5xGmWg~V64LrSQb7S<^`LtL#zCmGMl@f8f!OUuCf&yCppj<_eT02? z8nhOUR_^v=P{{YXyItsy;YFltmN5nQ^cWG3VWDkAer8{PLV3^PO=yowcGU3D2J%f( z=NqNYI^gxV=mN9OD3Jl$v^-$;T8^0N=ct8@UbIE1st56}i+MEy!w@q?;#$* zN6fBjmv#SKBsb0DS*hmc)v9m(P|T7MZjJbQ`DjE33s~%w;rKf7U?Kp=0>J1$5fr-2 zhCxCfLF73CWo|l02*S7S4!M2Z1nXXdlVf25qYGfn#;*Os0_gFE!i*RQ@PQ~8Rjt-D z;>E_wsUVu#4LXBI^Vb%BJ>K}dx{UdeVoMyMjnIB zG#juaeFW~|c9_@~dA&G?tG&DcBNq1Rx{OU#Bmh2K+~m>A4PlxnE8 zf43*od#EsYwf@3WYpvT9F8u>-diRKKQ^%0irp4(tU8qUGD^|mftp+5b^f4`3uYR-S z11ZsYCl6nIIMQPWT2k20M!H!dd{kT?va@9SFsQEc zo7)F-zLz`d96{1_Z@3svRIVR7&rIpjDMJ7*AHf_SRss|hCy`lhd;S?ZfW}1O>WjOt zfi?SL*SYrRe<^}Ydtdk8oW>jL_uH80y8q&w@P_^|{(rus67kS(H z)ili@dh}Rh{HzV~3dp+-QVFc6t5L=%-lDEL7yNkE zv~SZ2(l=r8hfe96((z@C_EC)|f~vZ~+*1eyP#x1nH6~w#xZyoub)>S=nEqoywTNva zv5E%Oz>uu3$4;|FeconuWc7VCAYnvpx&}`W7^A<0@C)sUrqwHUQxL;>7> zex14qT{djzz^#VA7XfXVgLOzE1VVg|My$}T1b-g-wq0ltH+u0aE~5M~*tA@S=B2TkIRf1ZiNUry$}f!v|! z0E;N?gNR78kF*$4EX@+bKhjXhb!a_GLu+{7jZE=jq*2VVr?ky~uVL1cAq{i9m*z-L zPo{hW42){{bHiyu90|6O#yCm>9GTEYz!6#O=GPp0Fqig%ZWNoJxO6X^W}>xB>Mnl^hkFe>dbl-5S~c0e-cJWly+L* zh1BdWSX(yvrMqK|;|4CHw`p`9Q@oaA>=0-ej21%Pys@)d{!761Y5!{JAG$|&&PivWuh#;grE#j+pkh%QC<&o+;9$9h9QDNt0;)Qr6@`(zz=XLN=xC$7BwA5qluwIR6dUEt z&tB%|Xhn%}1C4i9(zj>4Q8gz}!z{^HlMt0mB*%oG*QR^@VcI>Nq%?7zFxs@#4eJNyOr__3lwclHe+1s76 zp~Tc2i_BU_*x{QFf)%LoU9o8%_ne_}{BZgQauO4?e74pZn|WvVUxA3RzY}f2kwfsS zRy)YV-eoM>AzRV_*6Xt`-QgQrca>4=gq$z?_P30e)1lS_Y=g`U>~}ls)t7|!?Eb2X zqUA*c|Hs$ea)`8tNjvaE+L922(ws*{Eug1Snp6pIy#0ms5$P15#UtjV8_mc)Yc&h*%g zdEiOJ%ZG%}U}Cp@#xWY3QxY%N`tW#ppAbG;-WxAJDk(&Ca!{M|u0fD~B3kdkV!OZR}j*428e(A7U=@vk%I z&>8I`^dM?~%?!U2Gz7bEJkxI&3^_V6aDLcC$6V7{rz(7ZXaSaaXrQ+i=4$A#P_$)a z;9R+QO)gkC0VZ!5N#HY$nK#yE0OpOlH^}+~O+IC`j>Z~CV~%wUm`InniR2RQ_#Y)Q zzYnvQ{%2PB^;&hSOH(s7>7LSF%+ki!?}q{=s%7$A?igPeQF?TJN5;9_aeHJ&^>jYO zImi1RmV3G7v$(&A<07Wkid&gm%Ws8sh?=Q#zbUE4IM0~he zt$?o#@4&JOqunWjd-S4^B5*rLAw{5>0?LFG z9Tq8cND-gTtob*z%b0jk!fT$&F`b588Y7ycdk7NbL1Qh^K}R&t1jlsSip{ZUbGrZH zup@K{NQb=6*Du03lyUSbUrvf?N_NI;$!Gxi8G;D)nLms0)`|`2fbEx?^SH^}fOxDC zPrO9dhp<+g!opFov;^-pgnet@_>g2oyD2W1}cII4yAJZtUXJC@YC> z?2{A7vGI^TaYZ-wb7H}20Ep9%gRbR1?0)o+_SQ8GHeI$Rd8R(^)V)7)ya>e=yDHRVdG z`PCb!rd&KG$<=c6xmC^75El9h){xLs{pp&MDQ~yOrkSGOQ$U51>E(OWPczc5{*d&r zknf|jj=XP2teA$&>uEYlQ>eE~bxHIt9e9Qvkf%;LWOYF50MfCup@(DXZhfZ9KVyE< zwCX=n`JG2rMsJ<^!Wl9%=a0zX+6?)}V!RPV(&#iQO7Qs+IcfgF1$F8Lk*t8^u}d~x zrO&BF&{K2~0@t7uym9N;1f{72_OMtc+$b}Hwj*(0)xG9PE*4^4zhlk+abLM-;SYv) z&idLVE8P^dhsrXIqzW3yF$>~RLO)8^q0f2*{39F15fBYcJBHM|KeZB2*m+_jG_|X? z!+#j}6u2`_X~JE941J`#9`Fmp7RA2KV>h_I@+iAvv=dUPyXU*F>RU5|M{}`GdVbAS z?kl_HzPnQx7Ge#!ek<#yyQu$#zYbjLzOu)BDC?yA#|H*-P4p*=yV&JFjFHD7e4(9@ z9@e}=k+&Vq8zKp}d((sR!q!cXKi4X;aUSB(=|3D@+!6Qp@&vtP=o+^t8!lI*NGuaf zzWzrzGS>ZDq^bN}h!diOW)Uv2`IPlwDqpl`U#o2) zM`Ga+4Tt{-i6j4~2BX;@>-4Z-$~#(;92lR7J@^PzFnSjzwn`sQY?awe{YiMc4*>&D z<|nU^-{w?)1sVD2ocv-_`r$d5wPgH71|?pTxWK;+!)dH`AUI!ur(af6vn-YNm6PCR z&~M<|5aiWC#15lP5Aj}5 zeQ8jyu>%Cd8j-vE^xb-Wmvw0f1=}Y1+S!qjN$yR{9FVGT!@d_<1(cixsObdh>D+84 z?ZA%ziQwecgZ#aj4|bUkh%!3knkS?!iUuKoh)#a5OZ<6xhuXUA{j7c(t?BA-&<6|ED zA^l)%iOoMldP3;Yz^|$HMoCF4eVoTu&*ui4W{wZ>1eR`Sc(Q?J4r=G4Q}V< zfflQjd&U%h@tKOx9#j05GZa5BUHsUN(L>;Jt79}NDG}hI)Wq>49`aq0-^%1^4`0f| zCI=kR8R8!Nl^HFu8t`u&`e3!EDWA0DCUekIos~xnoNRx3GrhlOulm4&R@=C~R@>p{ zTWxDNeu;Uk;h=f^E7v!1U+&4@5$nF3=kZ>0P0{nU*P5>p5R4dipKiWpejYN$%Y1zR zjCOHl^$#({3SxPwIca8o{=WJ6*ex|9MG1#;Wx+Q_7Q#Vw9pDYUb zYP0jL#PKU-q)^_VS)P-3Wl1_sd8{o?n9fo?Q|6H_-M+iZQhmB;%!8lsKsq$-ZLJDG z+kRkSIQfb!41?wzJbg?Cx9bc%$2ZAvqMAcyH4jPWvB-izlo*{RSq80QqUBO175rdf zow_jjl8f}095wrvwZx6GSrN8XT5G6jXw0*tsb@`(2$@bFwBvHgpYPpy<|N~-BH;MTnvq+k5l2WU({u7aHGU~F_(SC4QkJsA6$9E}54oJ`7N*yuPW zxv$L98?q@C2o;IR+I*a(AZMUIlIK&B&vVV^&gSDFf@+IifC7@1y&3$nM3Z#Yt?!Y- zFq^24bmtrIVuSkp6>m#^7r3v?*5yqNh>GKVU0$R+Ro;wbdFQ0dGZi3UN)stpJfl3H z((WK_(n@TJ)NHyW0wXvZVT8r|5=OY}NUMB+NUc28*o7?VuT&Or^84eTrRPdcMf~VIb%m2PSoV8vkEsEb7FZN{CHbBIs?xj?Ipvily~jmJ znk>`&j^od<0hf$FP#5a?E1or#F!Y+f%-4)rs!})9r}mgj)t|H8l8mI{CfzlChywzY z)F41iBLa;8NpCH5@w=?h$?qcZ*T5c?=uL@Wq10>?Q6IF|oo`F7qW0H=E%UWnrT#)M62dmGoaJ9=;c=1CjMp~Zngc2V=Kq`{K@e} zuFta0<@&Q3=O5*n^mxs0==kp7B?o z*#^4%G0i$WKm&+LZNOw5?mLxrNZnB1>owbBu}!y!c3IZ;#fz1+%(3I*(;2xtKM@n( zYR`qSAZ_5e&2;}+B7QO2hwEcd+dtwi!UbrF7+i^S4`Yv~Vx+7+jkMpd9D)1Tbpu`Ae)EMC+H5IYcsn=aZBR5KJ zvkG12g}5}$Ds-9`RHjk9ty0}!HQk_)T&hp#eq;8RQ~S#5{Nq#1(Ku1M6D8{k7EvFm zg19kBnc~Xy|5WbrSNU8D&!uc3sJn>DniRarL0&?>9*cZuBpnGLU1+7ih`6s3FDmU- zb*GO?aV0~<^kw{XLO#|@dE#{Ku|9>tBChkf^YloZMENJ;x)nI{C(#q-b_&QhEV zXN~^Gh}3F}$`X!@&dM?n0*HQ78PsBOQJU-Vl@YI)m4(RJTK^GkQ0g}{T@W$*IJ{Bf zIfDe30pw^}NMz3_o^k^PI!Z)IXH_0BNb$gQ+605Sd>|$>@Z}1?mzx<>pD7fHvP5uW+w^$t54Q!rfX^vMVsn7HOTXq4#FO5hw8-uKefudaS7{ep7$S%O?=_ixo+1 zRTh@yS7rnl+AN`lBq~px8E{Ch)x$mJ1i0wk6A}ql@`_$9r6`MLjRT#@y`(k2C+?UR zW3wh9g&S`dDZLsG^)mdKvKkV%6k9LRUk$k~Nna<0hnrw8yt^Q|f}#)GUMEVNMO^7wGfjYMyNs9$VaHNc~WXE$Bp z^>|s7A>YUHSnM0~r4|T{v1_cuv<-_*Q8xRxVfJA*LA3g5Q+E?>*^YV6qYAp33YgY$ z$A5*8EphcRZlNx`?G}RKjNi#_V|_f2@h8^0J3HqSuO7cMz#{c7fa12}h1N0OMeI2e z*`niPMj0n+&lkjK_-Q^6L!YNsNd{S3vlW@mxvANTh=wq!YK%0=YdsikNSuR@;2}toU{t4qDD^RwW3k9Gzwu;qB4t-j0oH$)>amZ|4WP1hmxsKzGcs z!6Q}k?~J)(;#?Q4eiDP0=)ED58bj`%z8;(Ju=4KyOLm=V{r3rg%yy56Fz+t#O zCKBt`;R9|S`Z<6`c1RBHt+OI_g1`EEXEfxw@14!cYP3N4u1K75Wced9Ve%!_IHxSD z8eJf&OqsCt66OIgV_DS*m$<7QdQvuv+Zf|_NECAKL+js8P~p%OVl$HG{%LnawcXZ> zq}^7!r~7Z*SlqiFG?s)d^0&6z4(j{QFI4y5K`yeDLqF=?itl#!`d4fTTcZ1@XF}hE z=kYv=);Xh#reIT26I}#|?xHO00=X^o`Vqtbq)hThsnKNq>R84+Qa{gp=KWkp2|x2n zLKh$8p`jS;Hao^pHI1Lj|NS7jw3_-#qQ-Ny9Pw>l}m+N#_m){{Lh?Xl5?c zQmX1Yb6JZ2w>1Z_O=>PJmCD?t%l|faI!h&X3ij6{aSwynM?bn}k62DMY>#1zT>W$~ zR_j`*;`h_6D0#Y;uZULW;MHsNELD#Un3HXRtx3kRiv3Nm36bmNis%u=*t`6XrqG)( z91!tS?y#OhCA+Ae8`QvYUBvO{(XLqYpJ01|8MqqIZu~M?Z|uXfrh7nYNQ9<4)MT=t zHwFYhZ?&WO)#ciC=xjVJ9p;lU*vOJ4^PAv>X&=vm)@#L3c(l$~oo^rdmw-%ND9uKF zcNaAGH4ax6W#Of}I$u5fmaYNz5U)NYF1e!Ow5qNTD2oA{MDlT=##K63Vg`jLitQVq z&{?YbYEUO@#Dwg=zLSN&|=D!aIW(h^^oUS^}#LL0KT6#RjCNGm5LVq#5x>rx-KmDu&cwAWn zl$V6?Vb_yq5uVfKOt$g)2>l_Qozusk6^g$RM4KecrwQvZ5aAtfm=pR zP23**L|su3q9Kt9-SfajnwJ|6SkOJccvDkg40MkcT$ugI)b0Um+A^wcW{YGzBOisu z&?IA%U}jQeY^H>)Nq`0iW`y%Qkyq{Z9o-`YdcUS=l%=p%y}FlSu?sI1kMCso2$rE@ z^<@$2N1vm$_GZNU828+p7#=#+dvWvlXO7GvfjnLU+#xbp@P@1cd2-Lo4Sgk?eZZ5v z5{5efXoEa+6gGL_Zi1?TNKq+pW)dM!9hD=NPy=?b{y|h&^@F>vZ#K z7ek3lM<@7wh3^4;AUJ*(mmZu!CassG_z45lzD~zQ9gedrd^~CXCvQ@Xa!lv|sibby z#<$;n&q@ZW0ZeC$GwUh&9AlI4JXsO>9j?mB3XNM4nVXZ-aX*T3Tvl~Ir-K#c}%5;93pf`gEkB!IsP zji@bZg4hyF93B}CgV<7~z1$YBw52Uoyi$pkY62+}6akf5RBBOaduXVQN--)jzwcW6 z%qtLUZ}0E_=R@Y4v(G;JvG&?)@3r=N*!^cIaSBb(N;?s_6@{Bu%t&CUS`$U*^|M_m z*o>Pk^EuF2s|r^c%%Du`G`v#a61?P(??td2m$ui~<2d@40PvLizsBmB#RB0`5faMj4b3c zM>9D3rTxL1CUb&Iq+rWI*=TF#UHrzXv7aNeg}Fwzyrkp72HabBnk=Vsn)IKNzb8~> z8y`vV1+cj83EM&#c2pe-6r>=0YGc<7)>W~^IvA=tAa7f`@sFf$``SK~x41Z#^r~IX zC%PGD{M-}5=#y(A%3NEmg04SjjJS#kDAz0aSw5j;#N}ey^&q7*wu4}fIKjSs6+g%sR;W&dse#=P43GK@ z&a!q0cPwgM!>8D1|3NosRwZuFj5lp21n)zs zF!4^bs6=#fQGJ$1C|*zoEHWf7+Zenm24qgLvwqJ6sLBJ)2;Mgu>|1&Z)oQcLUD_s3 z>)n^8G@oW($U9WH0}F_;e0uBMquKQaR>~Jc0w21X&JKJy6g9^W(}`pEVOrBLHCF-$ zU*!|)nLuYYf;FO%=C{8~0A!8DwB*(4kOr|ec_t#_BN}*)u>ukdrF~5Y443i@7%aZ| zoUueU_=>@DnWWyFf4vyy04OiTFU5fFfpVepUjUnQ0qe)pp?-dTimHu7&%jA1l|b z=w* z&Tv=PKvZ1Tr+Vu|rML*a_>`tea$-;q=FmbwbbD3)_>nmGOT!en{jATBel3e6Dna|M8 zwpm|6AyMB)lJ>VJ8NkP7-w}CScA1gK^YmA!O5-6$qQ+kFv_M|i0yFe}`+6Ds#87lk zbeiq`qm(8*#rL?f+WyPDgqNxZ@DkX+JC&7ENrGFaX!p$i0pliND0E}y@D<0D&ZNfq ziqBa~mB?m%V$MQ#Q4VKOhVN$KESB$Yy41Q~%8Bt7rq~@tm!<}OEQIPr*f1L)?G7ce zDb`Zi@OIfF5XE|<*+)CsKbo=J@J9|`g1c)ae#2Yug7~FvO5IM--&k*nS0V4A`7=CiDOwYs!I1~>3bs(EASaCg~5 zfbkbhj?mN$IMOF`83=0#!BI|^69>*6dO39HbygLZX?y4gQY0Hsc;;m?CHz5OrhTax zXi1pqMRSCoYCay=Mu2$KV$#Al_l&hl`qR#UoLqk#`<9s1VOp@xRj$irv9nwj$Ck_D z{N*M2?Zu;)mwZ03ZESn-r4(M+zwlvLC7GZN$5SWJ9)U%wLd0Q_mL{@DlapAa$?3u( zl|@;k=`cNI!Xk;oN5dk?9UOg>MUp!vsyr%-RF>_GbqvG6m$oBf2*j40C>Xw7)kMOu z?ulV=Q;v0y3`pQ$I!5p(5Nvlc-ng4PXuaK=KIYgC-wCXe1e{}b)<8^;Y3@`jC9EE( zC^*G9<=U}ip@@rvm90(JAO;cI@!-2C4l+44pa9-YHrNl2UBCD1qS@T|T zk9ZKrGbn6bUXj&Q46i`j_OfZGT;(J)?7k@=ES^)3;5_i$Mn9$b8-E@v_)|{7_esIc zds|x~umYm4!{)HHV=2)(Z;yG!)eRG1t0^uQq@BDL+cL0Ug75UaYEX)sC73>Az?+#eY z1cew94uN3yFE~~*vNiP0j3)8J*EbJ_ZM7UPMM65i>mE50i#(>|J#LxTe(0Dz}IEs$F)f#WwIPLD$8BJdM#5ZKgBm6vW zGCG6Bc~)`W+|c(f~a$;k0hQ@;H-wk>oYe@L70 zdu6%W@X8W&UCzti5&T#pMplbA$h1BX_jDug6R zR5pdGwkAtdI#r_5kt|W!tP+)tQHjb1Y~~wm6{@I21#ya8k*E-YTb8V--@3fJ8AL~# z@&#l(5auFfGm4}uk>>G{<^mC&c)$_}AOV`bO}ffYnh#l(ML}Urzc!_}zHtqu+P_^C z6M;xAQ|&{ovSb_pQ$IoJyZ!dqcZjpuTx(dV__l_hX zv_+N=Ijc7wUesG`21zJ=c-kjtierOdy4@xR)-zn838`Igrl*}J2AG%^5=Lx7K3P*j z*W}}lSxtjElrW~jWx2r#Eu z?z7z9AweZg;(|#f(V=n#2YO7e%c-j--u1= ze*0Y7%IRj2oNgY9pKgAR;$agx-BkWm;}$j?iv^AyW?mmF8=op?a-;2I`!)ZuvXPpQ zYyUBtK(sD$c7e1??iAn{uKF;q11MIIr5*-?O2vk6#(DG(nqVQQZ zgeOT9_@1$|s&cAD$4hyA3sRy(Ok_YJN7%J=>^flIyuNIO&=S56fU4N zeRT9uj`B*=M@G-`B2DSzYZ^B&X+Gf<)QgSxW6mZiWU+hE<+C&Et%f-L^N&? z?59LV%LaOG#NL3kMg#%ter~SqT&ZEgDGnDWBpoiIDeD|HN{c28JX}nnB?ANkyX``! zvN2Sm*6&H;Cy@tOZ32?EE@^C_bG$hybQt-TN*9_`31@&N+u`3rtaO%jtN{!I`R5Er zrRr@t2{fm0p+%YM@ycK;zF_fq&L)ar&kMIN`~`|ww3aGUmrB{kCYaMUVI?QTPTLGCIZO}RuumY5eS*5Zw)=!- zWv9AH;@H_#E579pNf{(rVm9gnwGXnns%%#PuzIyw*SvpjT?_L^bhg^ z2jSb+H4nEY=U3ZnmW!jfd@~jYf-U%=`#VW;%Jd@DqjVN>O%G-Lr?dq;!7b0Vf-hBl z{8aWE-163_uG0DP{wPV4&evx-x1BVTTQx=Sx(ehy%4*(e1(K+`V1joV@WNYqzDPSX zdcvgh1x-t5%DYK3^}ayvrxke8KCsHh2UF9YO}xmx>(g|Bj(|}I@VBO2aGFgA+)Ii8 zDbTZ8HUwJMr8G^%MTb>e-}UAY^l2}5pWiC|i-Bv*|49IsGI2FE)ea9A*_+nV3C;z2 zQ=4}SMj$C@*~I+pDP#~Q`rQI_IUkR<<9XSrNb%1~AvOy(yxh4nW@6Ig^3 z+Oqe{ zs@K)HmuA_gnf6%wIbD}_+MjMV(w|qGaGoo3f;Rd}{Z12o(nJCRG#4PFMW^Se-!2%m ziIWFy;;B^+biqvA?hE{@YuJFlZ@)8&_TTBUUSi4Zdc&3WQm9O{UM)`lQfJNpe5*n( zJVO+-_vW0%Q;hyRo?tx1qq&Z@CKd%NijtRN9cX8KVI$tQQ$9lt#FKVh%y@n$+VeLS zaAD7ePZ?RT&7N&(KDT;~W0(2$LuYuEAdO zMHa-RMUsDVleIL3n_{ba0jR_BQcEVZz`z#KN#DULT)20UdwJPHghm-e3~^*jh0okA z%Ih}{JfN8xEL(sxC%-*r_ffWDvR~bQ`J$#p=Z<;7=wD2p7rM@a2)NYS2R-_?zQRRK z3;%MgY@zO(=h;UA*2JnG(Du8e zCuQ?^5$Nno!&W4?w3KeyzZl6>Xvw6z6+F5Zi#+cXot_u#bowXg^vr>so*eD;RkS{# z)7c!u{e%8)+%;%_PubDTV`q};Lzt~T| z(@(jYesYAe_)pxPVmw#;FZJ{5wECax=YeMi?Wds4$(ZX5C}=D1x`Iom(ZS`ujP|9q z+`xFLl2%q?(#)`C5-3F9Hp;BGuXxH~yX6VCJCzd}`!7e|i|Ffzgb>)j`?cmd{70h` z4E-@A1TRFEQP~iI#@i33kQsYb7nQj0&1G6d#vK=d#%}xlQ7X`YtKjAO;@sXVraovc-bB79Hq z>O6u3Wg;5j8X) zB~o1x36;V_UX*hg86?2gP>B;Jk-yxd4&FYLI9$E#!0N;*tMaHj|8=B&Z$co4Y521G z!#uu$`M_UzJzKVTw;t!^aQCRU<~wobVb3YPK@Om*vfcR@&eiW~ue=b-&!-0xsJ~RO zi|5!9fbB?>{;N@&w_zV2ck>xnuMdEEtM-ex_zG47ibtq=#98p|=T-^qP(J}meY}$} zB(-Q$9dedidm|Z0XOD_hPBZ}6sd{C{2|<3j!N&Q#UlI=5QyWdj116&+9+6xJ;Ik_X=#amug`-n@pZ6g!Xx@3)swY#xnwfB3pdY zi(Ev48z&>o0Q3As9rkHEOr*E^p|x)a7IeBzihGnTO$)rqWFhm=gX1LLAYt>|H9hW8 zAGvGx&d+ey?B}UB-Cc8#=N(IbN=2v{XB1X>GiFUJHaI1s`;0>^M`Jd7I}SZjb7wec)5$0vp4cnwTTxU_N4?eniF37Gb$z& zOeYsUn`J)R0OLt=?6Y<9*?Rp97p&3GQd15G4Sak#!ribxBp);FbBvI*hg2{pn(A>< zamK`;*Nb7QgE|aIy&9&0IIrBNC}`%NWK=GO5pa*%F+bZ~bGks&U2~QJs#kJ&h0g&F zs9lJ$qqlN3Gf$3O1c35-4bN2sM-fm;r3t_SznP=P5gP7JH_>bMuAAjTqq-#bTHvzI zz-67lQNi%;-xUlxY$?5qoGdbO1oUgi1ZWRQtN3azE-t0gTdCALdlj!^x~h*{1Vu-g z?0HIUmp$b3ED4rdc9EzmdR_OCzJ^`Vee557$TCXrV*@Gmm)Du-V@#;)yNg(iIaOpZeQx~Qk*(SO5 zZ3v;4+Qh849t%@%74)O_+2GRkWS!Z*aswAj5K>7><$lvN3<*UY0{t&pG3+f{oFzz} zSb}zNsAks`d=Sys56Kc@PcwNA|BQDD>(A);`txA6tUlKJ(e>wgSpUelED~Yz@A^D! z9Bzy6)wO5X-q(S-u~}n9a(h)L+-#GV#b_i1a+z$9?E|Al>V6})p)In&3cBSWX6M?H z&5Ff!oOm)|$qF)8ArD!coFasW`i$D=29TCByZiRrD!r9l`Gdap$& zvX?BfAbDH%gEmwriceLpx*+R0o$;$cTS17cnQg`paa8jD%-( zXZteQM9PtcU@m7Cf^GIkn;p!RCop#fa!C6>F$dDu4+-+w-#2*<&*Pop(-Zl(BEoWr zT8P8HW&U3Ix3OFd|0dXI5L2180sNaZR`|EIRAdZ2-S<8M-aoj8ge3lL|M|kdWlR45 zcl_HOok?5YPs+a?czV$NFU)0yfW&tceqGo&VJ;Il#Mb>O^a(YjpxzANbgKG;swgJO z)eGX`#ZS$c4$h-}pB8@Xp8m{%JZZ+q_No38^(kY}KIJ;&_^U zBtHApd`gBHjyRtpvT~Nc;8LAT4xfTISixU=)1%I0k|!q9Wipv&*>EC~@Q|RiU1{W*j$JEG`FA)wWC2kiD6+DAK(G#od*HP7Kg z2CEY3^E&(l0RAX_-u#Nv=L1~+8T!1MT9WAVDiV_DbHTs;e?XsK{8iGF|D^PJJf96R z@1f6q0+Roq>GKCqBz5d$8QMwoxsfjh?^DXF+9&Z5@iA-8|6BU}xqrG(t2+km)2ZpR z=T!7rYC>w#%yoJPP>mSmTvBNilgW+bB zF-N3g6{KvSuw4)?HGlM+$<0@xsW^@1XF9~$>)S6cg+%%e7z!x_Z#LUg6_e-|)z_E6 z{K!sP+!yKb8~#<;)ADf8{>ws#_MtnKwG)(52F~H$5Y!m%jc^Kg?1xM*f``NUCY0GJ z2L+|=eY%TQPc2ZrEEPJSlq>|OerU>S;o*tmB27g(6PBZEzN|*51#stx-rH4{4F@#S zkS*B=I@?OwVd}QhLQ-Ll1Y#0G86rFTXU@3G6XRYh6tv@FD5xYnBm-vu@~39p$Ma6k zKceGZn!ukeCSwABc82n2tt7HIy!;t6+^9r^hh@SM`wgpR&tipMey@)A78!5YE{CBC zrZe^&eZ)1NIK74Gf&qj3g30<)Cv4V1VYPrpWuALfk9+A4bVc-3<&$))EQ`%K1-_9@ z=ehI$Iv<+%z_#Tj3NZVvZLa}FBjjSWUQ z%-L2NqU}dhRhdZd>>i51O9)K9o$^gEU0JoQ4yG%s2H)ghyGkZRR*{75@KpIJje;Te zPk-W|n>>MT`(+zAF&}i3gogxS>@t(*@K#;0(S)!I{{DW1gRhZybJ(-Al~E3tHG(c& zZs8Yk^NN>r<=)JtbkxMh9 zZ*@biqVDwVSlKi^ z^s2CbV$$RKW%oxDqUvNzoCIG6Rvp#$(ih*86>p$%nb|*6|1muvP=^!3R@!Ceb0e;| z+j9}1?6yDq>$q;&Z>mnATPA%p{W-Q&Bqmy3t(14{QSFFRUV$m^`K|Htnm@k0aC!oB z9EZ;jO|d7zXPHTl!)JapAqt<_PJ#oUIWPPp_y|9s{SlVH{+#*TQ6^|SU*VIQ(4QYo z`&jsd(-St6@&4@Dbn5ZmV$$RN`EfKM+Mn+_2~L0RfBql!N2sdyM+mE3Z9aF#XU%!q zpG%*NkI!$XeoTK*FUSqtjhe%`Q1cI)dmteGeW zwu%Rqzq+@SV-M8)M;s@OwT{ZB*uMGpzcZOdAjAC4GM8L)Q6)vIM*L7@CYi2G_5`aX zK-8(-1K_xSG9Kfytn%z&SvD~h?O}f+@>6*ZUPw?-aQh>7=0@h{+Mj(%h!0CE=E5Ef zAk$Hw5PAnOMrJLVk)jD{tRx55i2T-T0;wj^2No4bbdA_uy(+9)i)C3X1z!Pac{-tPyD^bAM22}vYnsV9sG#Q8u2kd zw{Di7)%I<7FcPRWy*j3ogod>oYBdif=4S5&Xk5rbDao_fh>;M%@7#+;k6d&yM8s`X zZ6pirxz6PtOiJm#=W=j|JZFgjlxs5;dv5J;=YN3sk_LXj-)?t)mkM8`}=(`+(y`t^ZKIl%Y_9X)tZ`EoNeXHmRNaS{p z>b_$rj;n4T+QIe$&5}(hw2bK#trv-jhh`AmFIS+us5n;@V^D`--@^tE`MT8=)r;X& zNp)k$=i@BpB_G~FHrn@`Lz!4ttVe~ZbwLSdKLKiSTmWp~HpTviUuTJ&o&B8WP~}!M zVh>HJAwa39#`uY2iCPSpAu1!l%5j8R_dJnG+)KqFs{&9#X<*dFp~jsacRpiX$Ng{E z#gJ=eJZuUD86*F9uQfB2P}}Q6_qNNdPEoU{4MfSx4dKf`0+=2`31*WY_;yUDa2LBqLnkjK3^Pt~u! z#*H{1uA9Yl;4F8$IoBhUi_VVN<7)Ty-3f2k*njSM0T@=xe?FRIXM(tEM{q@Y+w`p)Yj+^(5DG>n8G5 zZG5=_LgQiP!DYw>7|1AgF8c{xiDB+G_cAB)E>tF8yee}bHt#X{{e zlkpET8I{J$b_~H-=0=57A62I_6Pqc$7BeWny=p+AH#mjHCbw2~jgxAOR^pL=#yIIo z)8DLL(`3+d-J{MbeRMtkl32Gyp|Axodm8e9brpPpx1rO$RQzHa9I98BwOM)gw{8<` z-7MI;`IBQSv(j6+Rj_qyBDTH->I>rW+JjDUJlMKmtCyNcPsG-2o@eL0+yJh5U|GP{ z&&9B_`%at?3la+E&OalWrjnojbAhR6&Fbi^Qoymf)GqJ9Qc*t4>c~r_s(t3xeedt5-Hv z>E0;9ZEC7fgtODGj$zt*FfGz7^p6Ae%DzZ*N2Gak0&qM&-~iv4<-B_FG9SUJMVD?W3?Vi7U5jC!!=+gs(8~ z*Q+KgIEO3LgFqGvOQ>0L)?_gK&kbq+dXRNXi>Nc{0^9q<66d8=*6`zenc#9 zsB&T=1d-uuO6kBoVw`3R6zQITj- z*Ot4`Iu%rK^cH}7-Owyt*h)&D_AN2xsHE7=7qZ1XK!9po;}XQW+WxPjG7`DEUC@d9 z?e7^HF>vC3(@Br6*MTFG;_w87(sVgk)|T1<^t^&k z>nq}riyl>@OS9K~Pq#vCkMUo9x&7jm25P?`8Ml{nQ>H|XdMgFmK%lmWmF)np5gFU& za!4)$5wlveMoH7(eNSnsjIa-TMJg~E9WA6tb0<;C zu_x)Mwx{Ew12BU6_Npv2uVwe8;GD3=fHM|nvujMkKBUWbp}_j@G{R4B{HCnGq1u9l zM7)g11J026a*h>YfHWX~MC(q-zbBes4F==1cZ-wm@C%9KSD9s1v8&0h4%{_*2nKvi zgN$HRHzpN~ntRDYC@xSamZ6jlgpTw{BRNq;G^hJ7grO zQ8t4@uj3=hTAMtQ9VH(#l3QgIHNyOTZ^uS*$EO%cIgi(oyz72vB+DFAi}x-~upNkv zWG5rJRZNA6R(}!NIWm&5GR8S&V5q1gdAp2yJpZ_N2IL=_Sf@l24p1j1Dppmun4YVV zhp9QAflF(?K+2m^eO-Z?RPg;-zU26}o+4f${ zgi-lRPt+u+PfiPcN9CYg#QTY=+A&X^r#}DwDuU_f`vaZB(z*f%`wO=CIY}!!oiCD3SZ1P@J)I^oU;C&jc8X7XMJK!8bLYjx`&fL{-6H-99kB%aPMlJRe#fXE((ukeXIkLk@l*wd zIrN}yz3$3e*E#!=CR?>j}Kx zU-(SZb@=3)oFU=ByNr+29J)Y!a)62cm(`zE&2@+fK&}(_MPJ7XB+>YB;ckpSrQdfaH|V4P{09yC=h`!fedtiy^DZ?- z?L&tq*oR&-phY)-e2eC0*=_f#5Sl*ahg14QW;}~fNkt+iP6-zYLUK_p09GOt$Fa*9 z)5(vbK=s@ryNCj;K86hIa(_5oi>3H!Lt2@N9 zJhMZTa~X+zFdo~f$PBGYexvBNi}pUh@{_lBJqNZ)?FIg756j^UMC?4a(0CdC;UrcS z_sTW&bj&e{A~Yv%pSMf|#DOEDA@8N>;_Fsj+ve*d%&~dQ)yMJCN47y^jv3Q>^f6{k z%hDA$rezm2Hob8J`r%?bJDL6dgwXubK==4U)2J2S0uFE>YCo$QefIE75mzSI&o(w2 zyV+Uu%(a3mb(EjNezrWxeijxm!G5-Up#5wo?C?qUvmeq#G1h$-*CVI4pG|=8Q)CkO ziu83b_=>>%lfgGT+FAqOq^^{vC-tQ?J=U2-_`Y?!!Z%mptBpDZe1Ce{0QhD&T~47l z(sldm|2y!VMQcui?|%SvspLCUa%%Wa0l+WwU5!1HJl10(p=aiexLK{OYtv3(7K-0z z_u@yv=fIBfpaOvnkNBg|s~{mg`cNcqk4K*hr%vI^?viJpRPQ=37JlF^`CZ|=Pm`SDE_v-rNqtIw+$H$-Qt7VS_dXtO z2v_3UHlklsOX`dVk{odx^ZxQ>GA`{n%vv^{ zo4n5Pt*9odix~Sid4}WBH|BkpotBphFES^s)4gTCnPKnkpX>TeXMkuSB*-Ydw_hGJ z~1JhaS!6rpCSH32BR3$&YtBq72jqce4xq z>^$wN*wDXrVG?7PwjtHPm?NyNgQrP1eVHTvpg|s^Ew+lCSdZG`GjPqNEk2vZFZZ3$ z7MuIXDO*f?f&cP0Y2egqfN$E234g3n69+UZ0qP3Ixp;6q36MvN1`9zMg`;WJU~m-N zkbf_?d1zT&1L5Vj;`j1C@I)r>Q_*5K>Dr%L66Hf!lzWirW+7PMP-la3kgGAus`dwQ zNIr73(ywY<$uTcxWLeGYxlR_coX#9^q@H@LBI&O9X+$Tl5#(de!V58&5b3Eoe~B4A zkjLv=V~49Xn%&TBBxTlKvft^F7whC_quSiGJ{|Z#O!8j9ByVSX<=VgpVv_gQ-eHfX z^7KoQe9V@5Ze8QPgz@24#1EMgXSs8sBX3j9eIU|>O zeX;q*9BN!=nq&1>J96b4#);kjMnuaMv9|f7ZGvjiGcVIRjyg7T%&{iq+vvC7fA*x- z-RaasqY0vu(Cit`3q2x1y1EJ99;WxV=mAAuo(P0i^If&={WIkfqp~~C+MxoN&pIE= zJc|D7SPRFOFvU97z^WuZA7?X{_&g7F|HS9q0q;Gin4GxeTr^A87!99_pgZsPK;MOp>p9_6Q2KVV)8fgaC4C>!_jt36x zwF1HbhE~cZ!+KJF{o=KEx(--o=zd8N_q2;XZ|%o@Xy|T6qWoZ5S8>CroUG3%rD15SZK0_ssVW+ zJ((djpo+3$-;Jb+f2z}DM9luivT`ZTdR%{tOAE_No8PFhUQ(zVc>ietym1L`zG=dg&W&;+5r|^RWof-^lD^3gq=5ig{D|DEf?N5ZwFAjjN zB^;%tcwoqnjJDlyEs1gRQ@F}f&BxH)d0_7Wp+Ax>l!Z>L(4KOoG#;y5C{1n>rP-0H zUw%A(JMO<`0-QLp`9vrl-8LtHQc)CmihmzDgvW<&4Q_)bd#oAR)*^yK_FH9{LEO~# zOhxg@9x?*fwA|IWfdz{&QXHtQC=haGEiPCLtU{UXcH{wY&&_U|Z0%ZK07G&%n zv}$^@|b*O-zkC;`jr-$pA&hkRFZC#B&C%Sx3ltSWHjr3zx~lrk}<&~VcuBd ziOz4bX$H>Hk4v`nR0GTW!5i|}EMN(=CJmltm6K)h;8|`ZOREy!6udA~+}6SK7CXfq zA3V!>PL{DR4+_8!XL43zhTFYZROF>r|KRzb)%-F}DNPqj-c5t&{h{VH1F3mEh@S_+ z#XHC=#Vr^-i(j(%G9vTDLLv}$HLf5ph@BSp+ugqwjn}x}yaak4I8r*5xq|crF1k3| zy4<=g)2buDF(mhRu%$oP+-Lt5IS%&t^Vn<=8VK|7G=F0&J2z{$69$Q0IFX6;*xK$l z=w;*{k`E z;t@{5zC4ovu_96{&rrVEB2#fd(eIHBV4{*e0jU^^vCePnbEPVD;a zyVJ;J41Y%};KtgSr{VpNFRLX7=-qE$4E41dju2$Hah>!Sr}=~)=yauR_uF5Wc1+;( zDU-CudbX;J-imBPMzW)1q@#gxnc$KVwn_=H&qtZh<;A|F7iY^0A5J~|em-pMOM3bK zlTM|hrP7W;DxF{|ZM2_{q13>3@A?JE>n(~M}C(0-apuLUV=1T{@XGFWI@SUcgo>Zt^Yif-& z?`=Gg^!c7&DWv2@U($=m@x39(OJ7w zvY7b@j%<(5M=)nBl?*x`i<0K!rB+?0b(hC_R_7xaS>Z~UjA)X`e92)9t!IfM=1ikb z$Jf4nv(AL$@yXbubEw+>?mW(n@XkUi}@@L zxW}TOYtIM6@{ejw&p!ssUy&?>VEJS!Nyc*aXKhE0)2$>C8@u12uN9f~x?@X)mu|&W z!T7eHsD4uo^`jSYCRT(aR~pZA9ZNO0mE3LqN1wWIQi4 zjd4G|Qn+tEa2Qg*`*G#ar|?F&^C^C$fYvjJg#Gp}ABjXb7V8X!P&Gvgv)F1)ku0H5 zg+8yrJ63Dt@pYt0fQ@tZF;-@DEa8euAcqgN2Txfhz@Yl0Q4vlXO z{<>aoiqay%U)SpGZ=?fX=nrhm4E`GX9YQqh3ToJaIq~yvik~|&4U-1X^?BCSDDc%{ zIq11g4h^pEN6Bh#Ua)eNRY^1I4yZGe8P9|=uMJjqS|O=8Z4ZiDybfjF8?5ZGLed6F z+iZoT4RX853Q6U1yOF336m$gkp+SUq*K@*Ed;Mr0YcRt9ySrwbOps`lXN7lRZKXm86=&rfalvG=VGowHA zb~g3ZwvbO<6?^}k8`0+Sh_0QtBAYu=>+=@T4s@_sp^s|6d(U!4&u6 zb^Ma2MEpq*t*|63SWfqNrj1sMHZv);McSF1u|*m>AW2#}AW51UO~SYDz)CGqK2L6k zG5TrQ)%t{xK^iN^{gNp=lvzY+rS}4_++gXw0>TnT-f3}ZdvdzAd0=L3^+}1+?voOw zKHit)@|jfrr`^&Egt`9c>h zK}FRP0Bq9pE245he1KA+t!S+n`@bv2*z;x`2{6`aD%+QfVD0q32_*WOgp zxZK27-W#NBrEC+WI3-#Wvxx^J50of0%h07d-YaohBHfqN^(53$A(Sbh#9|MQ%H_3u z{TerNfF_NR{%gf`E)s5%mQ0a4)u>J7X}3}FR_C4PRw0Ix)zh$ok{YBZq+BkaNy~4N z_Q)5VT!l7zLINU_i|9>W(E-L+7C*798+dC1>yRpWr28i0l%$N10f$Vs@^oqw<1QcifOpi zA_Qx2@+2*f(-+MTkvUajG9_|yO8ZaxTzU{sbowxmJPFuKk`oVG0NHH1eBGh(VO_U% zvrtY1tPFM|yid{Hh;+?6Q;_r<*$y@}Vb7N|w26yN(^*no;zFZ9bAV;uonUQv z(|d&RMWCJDj}Gi8Dy&?waC>3p>XwT^2MbDizDQ4qpJlnOl|XOpbArT88-k$zuTH2d zRx;KCb;8JG);;YLY^vx-S72Lds;}Msh;NPApQiPPN{$wqP+Fw5>~b%ehJw4*ye<^V zqt6(~hL?=xMrtIQfuzkb$A=O!tW!dI{IZEevr&)yQWTx+8_s2He=YogwM4lD6E`qI zY_IZ6D>RxH7^9sZD9(&De>!j%_TOg)#HyS4GYQA=RQjp&+0 znlB#cM*nPaqaU>sm@-GtqtRG1e)MOGBmMEQ#Hf6|?T9FqB=c{m-voWD3C(a!HEe`` zGm1AWQWF$!%u9!VyWrC?{>@~)ZJ6QTx?xld|Mtjz@NYfBzX8YArqa%SQyO$3QPd2JRc(RSclN~sX%AS@pK*u_jV|x$t z!)ldNLpcHrD?8>}U)b+nydT%0R@J6JI4jt)HB^FLNoVNl%n=F? zRe`%RAPk;w9Ovgw7yApYUpvZn$0|RGNpl=aEC2vx_V$|0s>z_%-hpde76T*H${LFN4{4OG%CU-POW zCtRE(K;nLsb;4?&CSUr3QVPs!-8sj=0J!cP$V$@CF+C@cDSuu zive_PJx+nAgw{O=dFvEK2KWL2T3|;31%=z>rNXW4klrb7L_wa6Lc4MVss_o`eMLVcdK*Nwq z%ffB*oEDN*rXLsZOlOdy0TVVh866zI%mG_FUq(v}x5<+!QFn_p?&H8F(yO*@o%{|2 zp7y(HQzDrOw@G#ZW4LXDbJx}-AJbYv9r{mnnxF~?GMKiIz#*Wud&zDrn&?0cUd0Y@ zy|y39_llu|p!i<3R<14Q#0Qcx<3$CH5Ig!sj93Q@)R9g`=v16hJB>sb4)1wZvrczo zcL?DtKTb7nL%fuPl4**eciLJ!5O1fpfUid&eRWQ_OvxhwPFo;*-t)EAT}lnLwc0qL zsLz_l#Yx_&iYo}0X@*l4$JQ`fTD?;mgb)-ELTE}$XxX%InZ7+`QR*>5fk|iLtt*2d zN_l#rH*`u!_0{vFyAGWkygb@hZ;Er8w=_-?qjyfB4)~T!ass_P6%gZ1?KVv{3)|8t zactWmRE=`)lavAFOHu;$l=6ekof1pdEN@A}r8P+>WOJFz!+ZFyPQE?QX#L50Sh-FXA|c5gx*TOJ>0EGbpg(od8F=DrK9kU9~FHKlAESV}Cx{;E^TXDDUN3%zIls)BNQ&sUe`z1hF|GEbs*<6a!%F7QFF`<}&8 zk*|Bq&XCI==sW?ZFd|eE3AxIM(|gBUYg^#pL4+ho5FK8jJI*WYg;$Wz*=@rwz%0Nr zpm7R6ur1Cqa2sP8#4iB)Zj)g&BuklL89Ek1EIJCGX}Q2^q4e`hIBN*!B9CGhCtJAkBZWB5STY#{ zX!w_qiWZcskT7Z5Pp?X3h(#>h(im6Kyw>bD(cQGYI5DuAVXjso2g2$@Lj;F}?O^+x zqin?4%0_sUjW`W9;^7~`M))=al{pD*DWYhrWi`=y)B#3li7+Q{5tkhhE&~1VhxZEy zAwu@J2?rrb_Wo~tQVzm>{V6zz59*?ca1g4WGfiAuHp*sM zbPIMaQD8es)kLU?Rstn9q;uo87=Nq#lnaYx-!O8mP9mp`Un-k|~#;iFy1?8OcxGSblCO zh< zjh@B*2L4lq$vMUQ@=M?yu|bm9)*I>wCx_#J42IO6wik5cddscgT6trnnON*MhOWIa z;`apZz9oe_o|_5XtL!Qk6Uw9-4bcR1PrpN**Kp}jLqqS4TrWVnZI$%9^WO$%ZwDi0Y*X)>;=p>w+zfJDoyi>tSNkRdDkoQ- z5^zv)(~%hqHcqtJZ@FvEl@l<7_;sM6w<=)=HARqHM6I_8;@uQ2+fxGaDh4CWZ}HyRF*b_g+TaZW40Jb;Vo< zzb`ozekX}zwoQxD%>;4GFJg&CgG=#Ub~bT*mype(|9&i>N9jRC;VtVC$QUEZ5C3Lx zUSFCljzH!<@u)0~^L z)#;EO1V&!s+;5mQ54)wsJF)v=hp_Hk+?KZcwu~RrbQL}E}_e}_#5SoJ+bi} zlnAm|AI@&fm4pTPBe3ds?HDSrhx88D0>%$%es5ilmh?C!6;aZdXi1Oz8|951`C7E3 z>_)#NToNrwUJvOVF=v$)A!TurDqE<@vU@s>D6K6U4= zX0$o}$5x~Hdi-(VsL|6XQ+)1d{H)j&7dx+euXH{io%DHj!snk!`uxlC`Ec{OZ==!P zRBF;rQy?IlLK=s4t_L!TO0KT@__wp?gu%zXvRhlqj!(j|F5+rg!gDHh2?$*ZB~X_R zp)RMBiFu(53}UG06bapq=%gofeU=eQg}#YK9VxpUdQ$;?z|P4t?+Bg^At(#_tcpYU z%i&hY&@2}OhGQWwEL{FyNNhxWC7yIPTeX6^ikq*yf`%00aE@r;}% z^J(xhPhA`0qbIi=vW~Yg82jd0^tWFJ-kddo6!O#g*O_NTZ(d?AJ&bm zuG&$Q+~xpS&KK_~l?oIc!^`B}KtPCWv|y7%hfb2EY)Rt!uz8L`H&(7QaE;`O0$1)$ z(YH8veE*Q7a!fgb zA%&Yn@5Az(fWw=3jF+CPIBaI-1M-S5w`?}o|8Sly=lLn;`C;=M!(bsbpLJlcPb$-? zEWN6!NQoT<}9>{l~ z^AIh1Sl{iCcZI^Ob2f%Qak$uxR>RuRV@1-khV@fJOGN*Q_0IkaI~o5}n8_QS5oS_O z_mlTM!AkZ$SPYuAsd}otpgS$4H^&JQ-S{KfO-S4+yYD}hKd#+%5FIk(NNKQ>_>PVJ=*%hz@x2m46iU9Lx(ZX+0EAs*i6kB z^W1cMW-K+T4=?_s`o9(TA0^NEE%9geTPQpJv%-~hdMXZ=o~jbzLBsYA7K{`wqs>LO zM&b;af0U000&K(Ji-u+ce7{}C=CWa1rm+y`J-(phn>|sWt-{`g4PRzkIA5@SPq@i#SQ?${IrTgI8Oy5PFHcrFvKB0T>X9|xQN)r8G~k7NEV>$_!<(g*FF#D8FR$dWUwrk zYxc}=SvFuv;rRlbLuExx^P}Tq1!YoDLwdvEUwk$aN%9}Hye)&5af4JHuSxOoV(l(q z%+#_OGb99r_0?>R4#@cNu7aUMX|rW>0bZGnVKei%+;6dyGJYJQPMAwcF&-TtC-#pf zs#Aw@HWnsZP@FD09v|ABmlbi356DhLEEUT#+sRUD^~FkPM#8c$Dc4uX^(#rSdM>Zp zAM$ltAE2e_E@|0c_=>ya#kLdjF36kaeW9wYPx6rBp0KU$ef`7}LSt&ejwO+&G~M@J z*Pk*hwmcF_)rUic5$}>vxa~8Y7j7HThvx?#x~!JXJa>)Y1a_Y|lx@1AF&m9oN6KlR zf9wR)3JdP0n}ipuWa`v%{(FEw&y?y=Ww&tSgsY>yy%QS?_|iV|cm2fbt3fm&2_L>E z2gBXS+b&WT?+7*|&9xX*AK=g9w?w}fCx`ZhrkEjPc0wa(&X_JcP9ZEg^+yoY2EUMsXRgXRZ^**|-lS=Nwa?OF0_)6H`i*uRRLra>{!k!Y9;tV(nc z@fC??PIj<_8&7x$r7&|*bSTL{tjeqvHhoc%%-WKC_O~QpBT4M3k|MV!jSG{T@G0Js zS!A1_+2-~7=lbny6RYx{swy4oPgWIpUW{0e_+a&^)7_VJiLZcf{hOp_l2q)9CJhrA zUkbeDPTDx8GrTklI7rfxoikAi5KF?4%O?pM6=nxhn2>}r0QTHc^#m5UQl1E(aVLCz zhva->193F_++C@m1*!0GmoyfA55IYT;7#Kyxf7XtP5jyZa<-x8Z(Vyd(rXG2UMb^g z_e{_#4(Cv`L(j#uQwPhQ`BYlUv88#`sG$X9%p18{z$CarkZnDIERNzRi zy0L>!NbDrX2^=FYbRoed+=Q4HHODQ}FD??}5D+3CvN}4@nc>Iw%f@m;DmnOB{J%aX z)3nqfX7CvBni3we`kNz5}I>49MXs6xz zv|C)RdAL&DzwAq_9iKh}d{^zZx6@jwHGjS^=-84jr-0$p3mR@NDi%&z9S)+vQdS<=!k&2dMYD4$n4> z6uaD2q{xp)99a{hTJ9vPTGW(#{Bpb2{$iHkn2YQ$H*84s%s%ZLhSRskZ;y!PSo3nj zy2Kn`A_s(naz7S)fXe|#$OWtwB6ZTII^VjmZ=DOIjsw&Il>*6u7jiKT=U$&i>!aZx z0E+wkRz6LMd3%2GWg{onLDrBHQ>Vs5PQbIJy%xB2U25}gt6_y1^@i0U*JCulYLz;K z_q42G3{?6y!kzy&UWkJo2^L=a7eb10d6Pfnf3kdL4z^^_!$HockY{FJ7X)#KtT4Tm5%=JR?H31~r{Owh+u zDwtF+Ls~EPL{fs35T3G&5DiS?{BRZB^g zQpi!eT}lx=)vs!`EhAikmi5>*{4#L_rtFW7fbeX_=oiFN! z=907RL&?-My6yEyN`#=-U3SJr+(q1vJnMdBd)MKNF+G}S-pi{L(#P}&gqqF|o<^U7 znO~Y2%)EU@Fms5r6Z_p2W+wot#+735iZsQFvyYB>E;#;6f-j>(uG@nJf^egc3RJcQ z3uc<98Po0WIbRDw?^p{QV!JKpyj`}4Y_HzOm|vZY5UQ^7D8ru_3dm|eJV9OaR{cu- zjAYD=x@-x^^1<3-1#-9v{ZJmO{T7xqnfBCoVKaQ0V~*kR=3I&UbKE-9y2h3E(sEaN zS-b1B!uJ;TS}mmGO(G+8f@_A=rW^HT@_Veyk+s}5G= z2FU_X#WIcL&Qs0-p>ePxclfQ9N1@8)+0mx!+9p4`U#sUxEbQx{^(oc396(}4Jej@t zyU3(1I8*vd=CK#>^b~j_)v=lm9OUi**;CS9*x@@AN$U(&9fYN}|GE=-2qF*u4)WK- zU!ULJ@&nddA0CZ4q-s95@z6f(a~u2l+DyodOr4O2U#0=k^DqFzh@@BxTN30TD6C@<~u%ILY(*^L_{VgBjP37EW=6EL~zsnxi#94%RUs_pG(nL{TVekRAN zJW@S3!yHMS*VqZUupe{ld!KD~V0x;g!u+}C&CTFAsh>zg>?4>)>+N%XA*a+w<&=6m zy^`}JVeSLEZAvjawy4qg$~N9uzW%O*X`GtDjVO?TE}oXWY`cg-zsTP^%zmf`s?%>- zG6bQr(Ori#Yg%8&ALGs`p~*#4{GqZ8Kf5>D5otbZbCL>4%hfF#W#|@8f`L>XN$V@N ze1}pAK~;IA&=TBQ7_wSyT8>Ua$Wpv+>_B3PI};QQ*4w?0AdLKUR2b=ENX#I8l@ouF zM3Tiun;&UYTnzcOdp=eSna}H)j6ZUS3j;-ske{{4Kef;{I!D83nOp35=U}L93k%$Ab`;#5fU=X65}M#?zXm-Fs6d+i z136W^#${DyAzr{&`^`J+gZRhrWu}b?rb;9dS$<&Mb@`D~f20gV5J1pSj6)%uVik`B z&=&!?On*(FYrOsYGhyv#F{wqLeWt9c62pWrCA}AFrt2hAhh!=wc?f^9i}PG3nM9kx zCC>&v3znSp`Zh*dQ4YyJ0&aw?W*mn(O(2%0O%76vS2&KCdT*XsrR=X1GoM4HEgLxE*2zKWk z(!Q)g3j1zn`?7j&K*I}EM6_&{Bx}UDW%IbDj$#oFEo+rruQm~#S42k`8hh9~RQv5A zzc*kmPghT_3TAokAK7LRe#^m`X?sGKyQ76MR<=IcY2FQH^MQJ}7d zs4IvkN_$RnanZm=T6S#c^hVd`NdN@+SXFsb1tblbV>F_Xz(hdfNre^76__9x7qAfD zg{S?Ba>hq!X%DF9I|(vd?IY-78OU@3895?!qRQEC{9yoO0836BG6-Qh1TtSZo(!42 z0*D`*Zxu39ru|DbFX~8!%w|)d1DQ_b-+ueRKY)zlGY3Ek{&R=#GJHT;o~-2Zn~m>c z(QQH4C4w_Ha@DM^r`wM(J6I+K3%A?%5dSy&5Qn)_eobNp8=j3;Kq^c>rEf@WE`hms zeE9CMmpEA*mS5gqpo>OMjWi>h)islrRNI-+S|z;aDRZ0_ZKMVOJw<;%o!A^HJx9As zEd%@ebhI+*@3$GKLHhePThKJTGFNBBqP%1Ru#62unjJT|h0omWLfAG)Jdb*GXdk;G z9?zp**CGipa{3KIyE2cJ5!~ps$d~Oek_$Spylk)lBii3j+@5+!bW+rrYl3C;q0_`Z z$(1He#`_e3PoUymuMdGbXHJoJHP1?J*LN=;q+PTJ`5*HugBSsO>?_YOqPcNgSyKOX z`JY#W8Y=(W6PN#e%2aajbdmp!Wd5l9ug1Qc++&W3QTphrONBsY>V05(yz=#L4{K%z&u8b-84clYyp?OkC7=|J0?mSui zFZ)52&#{-Vp0!t!F|tLNGlk$(`$~#65Y*H~*IUc74g3T`j&!y(PoWnJPNL9@#U_!h zR7wnZ^E?K6Q|&hpD+ufgwd93AHW5a2oeXaPYKdO{)18i-7-2f}C$1FxFGm=eK^q1@ z?OFSK^jV;GAC;(=|HKV4@QSDx^|mengpiY{g!FZGO|f(4D1{`y@j=zrC0z@2dayQ) zfAfoh-zP%RajeAfw-e!SOJe-(#B|xP3a8poqI*?-Sk2^-AJvZa$R>HF zXux{q&La*QW~vr#akh4g_JMOy{meuP{-@t0P;jVa*e6GYEOmzruWNIAgoG5R-lgux zeV(GQuTP%EDW(srQ^d#pvXlrvyTf->c-({jYWuZ&VU}uJTUeBRSz({Bv~bSH*#sO# z)Z^!wwp44$@OnNPt9c_Y`!UMlh6 z$QhuHk!+9?U`g_gbEp2 zgQMgrp?ihu02X_z9H00y5pvvQRUId4(YBFeUbU7<_Rw|pY1=2<+*5DeBUT=1<{Nh4 z_h4}yVF2NKN>-SGTvW2wVR}l|lQNPwo4JnX%2uX$QsHY0e};^Pc2ZfY79aJTDl(D@ zF&sih0$QXeI8H^>Ndyp(NOUi}a!0TZu*SFsmf0+>Rc9L4z?sn=C*Zpy98zeN6Q)YU zLW28-h`#q0)J=`;T?b8jCXRdp@=PclO?z`&W&K~qhyxovFI2U?A#>jL*=O&y*Is+=^{N5^*PGvH=ixI2jHMl@+>YL> z1OjOr5<+0hw&C)a+C0Q1Zf4sa**~}>+_G#PoC@UBuHb7t95q5A+_I20d&F!B1E#h< zYuB(E4?7+=qf)|X5NvrJ+sUe<42S9KG}u>q+PNMueeD1jW@<#QVBhI0>)Ut;C=+(s zcxjQf0ES`N^2f7Ox0Wq;Vn?R{;~dp|!`un^(Q(1{dVT3YIz6MBLNZ+t8%f{D=xEQk zqnsY&hRfQuQwfZYgZ45D#F$_tY~6OdVE?iA!Tzjdm_77JhAioEs%oAErh|_n3i6-0 zNZ_Vi+r+cB}`dpXwmAN)t&|s zi72^Gr!>{9k!{E0*8jPWwh@CYawFXAm*PiS=NNUvCHQsSEv3-T8fc5#Wq!C{Qjs+) z*hg1*!pTb()>|KDZ|RO&v1jvmiB&e%pA~({Xd$@h0Dvcq7r zpX9OKxuH|`I6eYW*)l;x1xplZYpx#cRl_)}hVktzdl*%4IiqISvfj0aaeuuUMq==) zQG7(k2mQTS^DPGQTh?{=iqvjcq;_xdU6IJ4Df*;L&q+j}{9J6q+7!wRE|A-GlC7 zy>2LWV{eugf12$Ro~uSp4?}H4kJ}80wfVcYj8jJ6%4G_V&ZsK@vW;}NVu_$;)VD0p zjMHXR?8XnAQI$Lfo&WZPO1Weq=uDkvPAKM+FfXvLC#wqER7#sK?M^c!e7i!H~$B_(#@|bT*!VI=@oOgvZ$UbfL=ylSHAW7^4P3L0}>8K7X0O@2aj~4L(vG=Sf zG!_(!E3T$(-VQS1{u&jp!zDuaIW7odais@*iu8uu+R0v;1oAO&sP{%+ z7SUW0($@isd|1HC3}lf$qr#(CshG}{S8(CeE3e?nuUEEm739EGo?dxASNR;M%x~6u z^(=xxsz2Q`Qz6|bg9yGEYQ^Cj*lWIvwO{7;z?QEIn`1x!&gm6(?yvT|kv0RIT>wxd?G-C?a&s_KcSj)k>b5sP+o+ z0|8cNNj_S>s{78@L5c(}y@hq66X!tHkDU|{{>HM(7kmMGtm zWzSNv^^8wXeVa*UiW@9RmQCN=3ltKXRi%iKOwaHlB>&J?_A1MQX8vCnEwD-%6kv@2 zsjVg7rA!Rb(7)%=J@0|B(JKVX@Yq--s1wrk3db!|QqKILAz`tFTF99{G%S}geM7@s z4J==_N}tPsmD>=_8#O6*lm(Ogdr$@V+8-K5+FiCuFr+oRKj)z#F84LdP3uP&I%0CU z!UV5gjoPT?;+iaC6rI&_u|C6caU;rpu|zNZxUyW7y7bHBE7oMY{$>4JPovkdfeo4V zLAL0cxeI~9x*V>2yBNz_A7KxQ@4E4l?3uAB3|oHg2rve;>7gMlb}qOgmxEjmYcWy1 z$wMd2lPv?^PbMdB9vu~N2SU3<)As@@AtH|f(7TW$h%v*%Ah5DD4?St++-XaBB?j;I zNXU_Zx62H$-gz!1=WR7>_9OS+#ot|$%c))DyBEUeq$JmaOzH@t1eKbrPxTTI){d!D-`1Ui;WUBVGbj zFJ`pkDu42@OX(l%K@6&VU^(5PXS4dJX*(+>U!1&ER*LMX+;jEk!9m8~0hIE-SDQX= z#Z5b1+Ba~F^=FM4yhqgF^dUXIAga< zjolUKdk}BJb$m=|FCJm&29@f9;oBv{cS8oWQCy6|IIYEaC!y*X9l`O>%Lwjb1P>}L z#v^JFWp~!YAa=-jT2sbW>p&Ti#OW%GMaEGUyV!9_XIy9en@1;amWXJYGp5WOzi|y( zz?&tmmobM#a<}+I2{b34PY&oc`@`06yVOjXQ=l~*Cvn)iN?e|>GFY7z4hs$Glb@qj z`Lp(X>XTBL+1Pk4IFxzI>K79u6*oXD>W5oYK|+^Iktl1CzQP?Clw^$gnQrw(P_l%)cUHYx)S z`2mZtloAscIkD}#;nM;Y;sJpZX|LAZ`vby(XrHKi90M;}sf+<%(2DxB?mjX|>?1_N zgP4D5-LKVg+ADTfg#VG!OCRI{L#?Gf+Vt18Z*;b2Bi1jr``Rca8~Iz}I7Zpv;LA&d zRI50nDrjh+?Uq7UG(y|xu(I8dRnPo#)t9;wa8w<( zuf%@0x7qa@+kE$WBp>Fw8L?;Am{q-H`?UBavO$&XzjpY*kKBpe0vSW59J=)#-oes% z9UC7J5ijG&2mWa}^e+%ioFRt}sE>KA@q9$dp+&Yh#(3WzKVy@40GL60oO+E-!Wh}& zY17ji>+Bh0$6E$dnIWZC{1DNyq6qT9McxU(YN4&#~*8<#n+*zE0K4{wz>= ziJa!&B&RB-Mn3Hftn|Xm(jGtUQHC##2RNB6t^XCwD>Xralrf9|EFiDQ)-vE@Zelqo zr`WWfxQ~5IMkVTnz<3@i3g{dCesJ{rL8+`segDK%ky+Krpeh?~HP}rfZ0}TKkl|94 zEwrMJ4IajdYlh;n1MZh(@VKf}15)|E1EP$zrEdzyKmgm0`&rYolX?$R!`b>4Tq9L0 zqun5g9B9fGvv3>zD4!nY#`J!>>E|%_)F^i0|45C6)RtM}S19)5q@ z;GX_*Dz~*!mv4JBYEN}ZJBU~|#yB`q;+O^R)gG&vHfkCinr0gY@8#AQ!{E>~%!NaF z?oiN;20n_3PytGfj~mefIvSnEowk-zSA_T${kgh~bh*dr?pAov8tBb&>+Jn{hiLB^xTRvAjx*27C>KHgfpQiN9 zr==&%gAk`;J$>J_&4yFiH@Ds<5`@c@93lF9<2KRbVE^f)+LT@Wo&r$Z+$N{C?&meG z9o^3#$)9T2NgY)jFGGn^l(E81R$SOzEUm~&wL%_e z_fJ;w230L~Q)W3$xoWg2VtGw7@@&iN8=BYrmS)Vfn?ZW4=n&|Kz+N0GC7#_QG>d)z zFuT2PVU0Gh$a>&b1`=of;}Xk9_Qaya5i{*r%aE%Tj&8W*ND00N>?4t>5dX`bZgvQ~ zF3abBL1kM zvC%R}D+vIx0n|**`QI241j4beY;32Ib+?a=0uh@?6bM@zwa8lc^-P7t1vH{rVcQ>$ zDr^&-#myI;rjYp4;ty0vJi%kE{X?K}q$s81yXbTs-$b#xR%wK772g>wx#Fj1jBeIh z2WEk=wtv3ZMKSk|m5A(OKyT^6E1zYoIt({DZW%UR59cY7orObP4U31@iZ zTd5+}$?^8XF&_E7;#iU{^0HH8j7L7R{`izOP4q${qhW(O?~q{1ptRL&_}ksg%G5kNhUHW*)+t0sevuu%RIk zM7_vtnrVgd$Zz9K>vQ%i$|GN@vc80!H5y0TBfrTE%_HiF$P>*_5cv!;e^I9Qg{^LDaDdKpBm4#QSvoWV3JYZj@D3*aIH2YDJ$gX7W zI}+J(C;mbMlb5aF76!oO8{Ev+V<|)WxxbT*Y9DFptZtdMtW?`%r)Shz`fajgAs9fg z0{$QZ6SE&%d|6STEa6pNZjehIwdpE(?z*5I22gh%2Gm_C6qf3y-`2=M3dvDdH(B4+ z)k!RXu(YRa7;nS@ZhuqM)*!AD0fpfPoxqjKE3>gn3)Dy{k-xAhYZR&WsAyXWYtoW! z`-(93&oTlc{r~u5j-VHY%i*t%|1xx3_$!}wJ|7jK@8>#ST{<9cS*b^FO|~D2bm7&d zgPD(h;XE2vkA^ZIJ#9alBw{NVHmRF-H+H=$K{H2X^Nn4Z?YFN|l6m_|3FZ;z`1;2y zH-PJZEPMJ9+Y^BN_6Yl|E5|8Rk^lmN2G%D$jtpL|SZLnD0QEF6{NEQq;4k>ri5UJz zni9iHb^2!ot*k9>KG|{rb6lllgXJA&MSf!_DoVYkR++Z zd18v!3PLqIgf7_lHeMl_@V+7Y3L86rd8 zj}5F;%w{jM)z#1q)9LuO8Hy?iIZW~B%I{4X3PKo7#lQ(q=@>I{dQ80GIQH^49JZeM zqMJz=G#nIy9U+%E3$pD7wL#pVawXmmFDcgg;v zgY+7%Js20cjEP$Huo)Vn0fS+7?+s3Zk5~&5;Itr7eTIerF@33Dc!9v6C-$5wJUSKRJQnu}7@$ z-6YXv@3%e`#5gEQAm^3Ws(e3Zw|Pt1<($n#N70L-GzW}Pm=Ov)eDIJ&rt15qDKdr!K8_vom{Q-TRGJ6Ikomaqz(?VM zN5=5LBPKqrb;r)+fsdYz2ZoCMO&*x^IDLu-E^Xcb>ZH=2>px8Kz)RWTnKd(#QDK8s zL@F!A|MuH%T2_-?SaH8niS=(k67JW6`@KlsCR!NrsOCZKBo>tzS6gB0O8^1m|Te&K#^5YA+2pWbpf%>$34 znaRtVd4MgI+uI&t)^}dDLwa;nS9@4Ho!t_>Lva-=r zrh`j|t@#h1!4h6;P5tW>u@Bgr=V}(5KpkvdBVTXG~;#RH3(05 z?>NO1D#$A^TQ|S0K5^nUs41M}Lv zYS^?g_5Q~FB6JGj>S1Ttp1>>}qcpt=M_u7YD`M4-q-&45jH&S|}em z%!cS}N>kvI{E2k&O#hvK{o0xA@BWT*x_&zU>vcTb-og_ZlP}*Q@o`X&Q7ItYy=(h+^>;f(pJu!g7?u}%-MZE9GCpjRK8c{177GAtW^EiQJt#!^h{ z*O@*E2xRBgOy$GWz8tbx$d<~wRs-exa@`<{nZ1HxYZ6%QVNK)c`3yfOzFFSnM5$VX z>p2Zdsis_yS?$&H+;6+PX#gkPdY+zNY~2qHk(P{pJ#xFT^e}l{N5T4nwN9va&C%Gt zJXBDz8~10?N7J`S*seIjiKMZ#*YVtm_ARokh~w*Vmv!R}jQi4_QRDQ@^v@pKH@el> z0#56T%Vx6D40m1k&=`s_=8hj zuKKgRh>uBixgdQrwYsVKAnQe~*eIVpV8;Qg{h{~Lfd%$+4xxt^vlmM>pPcx-s|zrg zmI1X^Q3_u&xP}*!_+xBt=jKXd(lics+)yKUr!gr4Ls7QX!%giD+07;|TO&-@0qfL* zyk6r^1r{?>#hW~|CCI49nmQ@V9wT44m zYl3GOcS9NmH$N9S7xO!;_K*P7NF-1a11S){fJP-s~r#+?&wo z-|oF`b7zBt5`!Uf5onI4y;s3XM4?n3T8qW zO0UQ_SF3S2`U|+jA8u%H6qb zEkTUU#b%eX2=~NRHBepwNiq!lc6R*{=+!C`bwA$!wu$2Do zJ&MH=d-cZ2M$}U2ZyB{JmhvSGd!S~l!KVx$rn49E!Bl?S8`L1j27IyB;%pSOl&CC} zRbQgMEeYl04T4}&TRhHn&wcE9M+V1kpWrwvVUr0wnX{=q^wkNo#FFBdYN0;)KF9#fzIcZt$40W0IpGTI( zQ%BcPSy-el#imkOG#04K!qg?;rEofWDMQL-e(I?VQDsh^eTkg9G^e=_DznI1+Y7sl zgnC_ZIlCGpN@ZK5<=X8_pq9&oXWmX=5Z?Z$tr@-YrLnOHUa;mIv>EdVWN{^m8dn0vn}NUb$}>PL(-VT=~Qd}8tygra6igBjep`~DUu~e z{Uc{LQf;7^KkN^)^e|0Kl>1&h_wX}`a=!~-WNC7sIj9bed8z|T2V13NR58AZsRAM?%Zg#SEy>|+MQcLb5bplK9y&@LKB>>T={;l z2nfqDqf1DEMwH-ZfbxA`b@A$H4cue*`+XZIubc)d=M@`NWBb(B;&TC{&0n|W`m1Ec ztRw8~v!Kzqd7zP?(_)2AeN-G`jaEs_D2A~_5q77If7FVG(#iT7#b`2W@l(X#jRX8h z`zd}S*heP6C7+bq6bQJuOg^C%y_+_X4@j{CX%o+Ya^~CMSD>x&%b2Mlw#Q|zjV3id z28V{!3@XtzBb)lBpuMDOgZFU07+6CO15Sl!!o|5(mdU7t8T1x{~Psw##>+%RP} zN;8JWbg9{{KtX(k4IY_A3Nn6F^}M2n#Cf}BNU9h~RiWB2*RG<*Qm~}FQ%`dS`m4TY zG=9Tq3rGL0P*|I- zLvNtzHMg4**LGc^rh^&q?%2`RSnaeCZ6X0P$)oB95){Sx{yJLY^t-uak24-v&Yt%FiPhVR8fIS)k^A`FU7*=PE5%=%|!9 zrn(_|G4*+Ar;1Yxdt<)~(ZdByemd=<>V_bAi2kV1pn=e4G-0C)2AlC$cB!RNLJ<4e zpNo-uqtxA)(28U=3bnHa4f60SLACTO`@&|U<@OS`%1ho7Gb)nF%FdJ#%b`%ylmUJ# zr_f^myeR^vJpLGDdANAWqlBn6a!wm*9toDnp*b&>ldsMMq|R%VQ+A#48q3n(e(ipF zZ8DyAqyRNScj?5pc;A;m-yHQ7zN?4_Q}wKc!Cs*|s_@@Yw{$;MJk@cs$E23UGd~e~ z$FJS~xN=?h#%?Xj*5bm;0KEnuKjMGg_&=OfV=s3*=P4y+3SRo$zX4$Bm4AMLO);wT zWiII4QkeG-R+8sb!Ypf4l_;g{KUhhsB~)U!A{>APeYK&vh}-%D1+d5Z4iuru zL>x7Ss0v-y7bc|=SB^J&tS_SFQ2Mi{rCX-yqu2t|l+t>!Idx{{pH4FGoH_buo=(ekWjz!<#6%|=}kgCRZaO>lgNJX)%|F5 zSOp5MriSJwhSmD@6ENaCqyZx2>_e?xas-3VZI4m{nX*~P6C*AiG&%$Z?zi>b#ay-B zI?bhR{xj7Z^NWa#pqsO}Ynsy31=?M4Vm+`=Ozx0lgGDGfYLOB@9YNR<8_xP!@rj+T zJ$byZg$}CSyH@#j$#Xo3t~F;bBeQp|S+%Te@69XC>Onm&pVaoKz}TjEabDNCN?X&5 zn6i=z{)v3vrc}IfciBrV=d3b3S68fZ?{l(vzqIiWvE9<*EG1)5(gvgoC!%WjR5u$K z*FD4Zth#7yp6@-|>0JM(_jJm^$@Bf+bX9>ol}$Z;!@BmrZ5hG2zbBF!aFRA9*A!Xb zKn`aR^4z1cpl|ygHK;7;n>bNv&#M8`1SbJ{;^rHTy%%2uOa9eyb7MWn%JsXY^`B5s zPk~OHmlf!G6x3o}1!j3U`OPuK%K?m!+o$Oi=-jR<;C`=jU!_1-1HG}66zB;21pWYS zeg@#4-}nc+3r2a7BrTgQ=}a>-!ryy3B+@sm1wXMNG5!RQ=4GPQ!bK$O zUB$5<$>ad%1Ut2Olc+#;%k)EN*jCH{A(KQfdv4e?S8&&QjZnEybKBK_*=kI%dRC)c zshXm;^C%FoZ$C=1lOD(9=xH#Yy}FWII=TY{=66|lQ_0DF*^#LP43E9}E^>h!BTH<3 zV=c$BTBq2NN+!q9M2`oqF9 z0vLC)92cNLy~Z~1$R_fS`+2MKS4h|ih@puAJrNU7E@d^+2(GQwp4A&M#xZ|dD$pfi z&VY5^(Zn~NgNt`Cz?u)$-M9s3KGB6ndaV$Xl&tKXf>#-@a+EJGJR z6!94ojH~3cFaGi*bVE9AUAm3W)pTY+tL0Gz+Q&2C^nYJfa579GO2Ee0k;jSgK)zfC z;ub6ZDx1Qunwy9ZbIEwRw4K8?skb48NcUq&`f3jFobR1Ix!c~4VJ%}0QbgbJfd%iC zg7y&X@Y4=GKEg|4*SULwG;X($`$Sx7lEx(BF0SQFf55}pDn0JyK%?BMQA2j4&Q}@d z0y8W8QQyo8Z&dQlO;=44TsKu$0kHs7-y!eVguGtgExoopwOHtw0uM{)%YSFq!abm& zY!T9G3YCBF`{}z%-p2BO)_jCQqQ(%p^bKp>kL;=aso%)dCK2HZ%8sTbtW{TP!DT<< z)c=o=j`N)Q4;**u7t%rfLOMosLCFWyekUWJp>j47XIzl z@F5$VVi~G#;G6*MxBp@%PgXw3VQcM1y=sjLo)T2SQ#KM$rYfS!Rc#O-oWyM|sY0EJ zSC9PbzRfFViQ9bXNB-1VPPkvyzCjM5pcHpx^5=L?B{NNe#2V;!WaYLUkaowrkmiTl zxglZ4n@a}}j8u87+h>FMbzVpmiyBH+g4Nt6tcvy&mg3n9jQt6r=!k7F_x0lDwc1DoeChn%{|VYOiP1kgDz}PcFGfekOHze&$s2g7w$zQ%T82db3?gH9E<% z;f+197V_9_lQeMVta9V__vUgY=z~F?A3}-qS654;IqO}4wEMlOWI6Gx^%Lhg)%K?< zy-Bk3>_-h5BwV~u>^vxTUW#JtAEE=d@@?tBDL_S)nAyZ`^k+q%Hfke=8ixv_egmW% z4O}_!F+EqYUT8F30{)cswrX3eHl8&O@$%E-{?_VM8{pH!*0eW-Es^!7Z)R(xHLv85 zQM<-m=&xpf8h~Z5ykM}bHL~&dC#yDQMJ6WKt+BrSx+5CjSop5KY>h9gy=o&3L|QS( zR}iYZYuD&i5lmZSs?DU&j2KmG+$0{W?4icngso26`qL2;d>InqhKgRq zSgW_i4JmNj41qS))Nf#ean%R)^z*0pbYZHevuSrmPxDI-DgUOw(c4Fl{WHBah?*6+ zO>hNrb5?b4%F0g6zhpL8=N)#GQ*s6Wb7BM%-#y_}Qa%2zOc3jdmsOb)FY+u!NSvdh z2YI8L8GFWIkY}inKqB_ZmzlSjdeRnngETOCSsS;|jsGmf%A%5{CEQJnk)1uj39(dg z_7F>YOgwEM?0Re^CtE|lb`^bUYp8HFnNJF2b~zf7Rf*V_D3axBkNq1*>y|rJ$R$w? zk~<)1$6E>oryevWs|oKnZwe+V4XrTi&C)@=@?dE?uhcDHvBRYiNt~%YzwrH| zy{%v$Dbd>e4e4lac$F{tBD=~Z)A?Kf{?Xp*MF4gMe-bSY6(~QovKg(CEoiN5JnQrO zMb-5${H>D0%cS5sDJYtWz&a`TWhuBSKi%}sFQ=PcZAW^mXM8duy{(4zsu{56K2AB@ zQiSE0L!dykuyZg6g3Iy>m&N|`u$WI2C>&ehi5*Cy$i6i8URslmc5R=%06lZaUVsW* z&4K~eBL^L9lPj?8B;0lf!;+D~^6xV?jQn4l1DN(pr3#hmbcIn?j{S)f_bF9q?8M3w zvaY1i7JLPEi0;kSP1+;9>-Jo@fQ#~#DhVA1{s zuorE6RtwY;xiVw4&3AIXb&KHntgLlj;|`e={W+#OiiJ_l2zFnM_1ZE2$I9 z$1*mV^oXfhAcj<88SJE~V6LiUK$4^aGo`}jHMArVDgfuk?S5KCaHUy7nso^Tm>cYY?ugZH0d%Q7%}HoZb=F zv)kv&^@y-V<-*}7yUX)jFybYhV~k*BKA>NQ4oE!q_wXTObcIlco9_a(7Fj<;o{$RB zu5Nsr8(Z&?5hqG+8(}QH#uf+P)KP5MyqJuX+5AZGaR%^vl-8c|6vILZD-!WbOnX(^ zJZf|BiQw$PGR*b88=o&ZIa5Vx*S1-7L(CDqPJX|XetU(x3(7hgGrv);rlpk9VYy2C zU(J=Pv^u+7uF~4<8FH0YW*5tqqsz9{;^k@Qr~-MG)}TXLv2ICy50XoqzSNb_e3yNJ zLVS%sxu&$f`IzeNQe+ayBdcOv1OkfCEjt>$cDo24L?^zHod>V~(>n1XX!sdA@#z3t zKJsxsqKs9~G>C5dshZ2{CK#J!P-C41`^-(voH_izai`qw-X!EF%O1^2zt5;-gQG+N zKD$6_)_?ZE$>gP-87d;7UrZN>(#(4ssiWQ~*6!YyWRHX!x4v}5dOA*Cw#i17r#(N* zK5op)GR}iq5%>MQ_R0y_sf#2RZrnsXcHm=Mz)bzIfqboKT<`zFu&O?YeAU-LP-#a1 zqe6sL`M2IFJ#Bj@YhA99r!O7qcO$B>FQwa%Pt|WG2Tmkg4Jm9YZbNW>g1j=qGkI%7 z?&KQITZ$2p)L{d}_*knwb)URh(#cE@A?z`NKUJ~{V_u+GuQ|S5EK#Dzjo>DAw=5DU zrm>OS^0Iv!kN1;QX3(e`*y__R_xYn2BymrhbsH|@)!I{SQft|8OF-K2?d8j2Jy;Mb zWgMd}?u<{V?h!THcx~#^VWaI?CX&9C`)Yude|TA!Hm}F@TvXO|>oa%;5s4f#1KF-t zdI_oTL$1<^-E>p&ufAecX69mVFxqa+Lj?3(#cEn%POQI@t-3C42x)UR}2F+AJZq}KFp^<3UwIk`Z4O0mJS%X&8w5dmPyrq)nI z)>gA5pAcPwbpzWwhbEaVz{CvxgzROjgA)Oe%6 z#&|+4`u5VF!@{O$1oWY}tn!j#E&dHE+p0pNUT(*Wjc?+P-JCHEd2=!fn>nLt7DvOH z*eL|6Q(;ZS8eFtDw$4T+5g66ks3ZcTSr%0i0hMJ@p+rGX8YOB*F6~@K#kt33;m_J~WV zyL*l&%c%8Pziz~OxYpNTRn_5nuecm=6GJsJ?<`utGgz*5rN*8aGB(RZXo^M?_mR&u z5`RjzkuFF4JJ~_*b$@VWC$+fx`p(Pq;UATT{| zVv(h#!ov*5oWK2H`AFMl+Hd;Wt;0WLy&xr9OuoH3yLmsQ!`5Wpjom{0qFS&0qPA@^ z&)r?keRgf9)v`@$p-Ix7=HnD;+b{{LStKoL$+f22E$ZMPEgJa17R{!vlH|-=g01T) zOz#?K0#@IQ z{`&*sg&+JWSzUHZaN|}f+xN={KA`M>P_};-9}r{xuI79y4qF#Un`*sgHPNDdnGGsF ztvv^)+3k7wj_-cJH_G@1)g{*zG#5(86%3s2Kjsy!pf6L=2)+`Z2Y8Qe$&o)H*;XNs z6Y(dJ;4c2iV>{*}t zwD86K^~SwV3Je~2R0?z^Ba^k=ow|ZeZ15sfL2m_{Hfl@6H}ESj z8k6<-Ms;Vqb0-nMEA=d;(oyeNYpwu@lYb@~2R*)-G9Z^8Z|8(iTxt^_k&sl)hW%z* z6Gmpeq}97Ar3t$lO;~&`ofKu*OyyAM>sB{h-SH;wyX?n__zJn;pRE{+N1RLA@0_7# zlkJLiGnI>mtkf{2&{!qeZmCA;y;gDpkW+fESN5pAk*LZpF_c~$bW5q$lqN&HB?^^{ zxBkO^%Zzt&KWuG?0+%afRac`c>MHXN(N$U7_KBLxzCcyAQ;6lLw(1_aw6^{ng;iYo zpmbJ(AH*I~6>GoAMu{RHv1_)r-OQJix=J-O!0!5-m{QiOW{U1MqnX3csLmM=JScUV z_w#EgTrzeGN-Qw!lr!eH)P+WpwQ%w&m$d0)pXEEf`rU$p@k8kl1B-dqyaq; zr}$62n**J~bLGs$M}x8w_w2zwdH7P-EkYeS`o zM)W85{nKPO7?~max274e6w7)M)1Bb&E$+;l0a4=|+nyz_QDl9)LiFV=hSwG2bM>Q=@|8+|)sSOizbFT9J&g z38cnGy+_2P)Tq4hK|>*3<|-5Z$@)u>0d8wv%_f$+-*5PC(~6EU$c5+IYaXWz zoPV>@u`3jyF-v+gQ9x`7Z4{6*Qh4<8g`i<7a8|%3pP$DbrTVC$7E!&L>H}XCl$dX& zM#EpKR}Z8HE|9NR55iy<=+#51cLXiIC}?qh<|}Em2o&nophciaCuoE789|M&h$Ofn zFY}%J^k=5&)djp$tRu~K-YJrIrtvesc=Vmv-WhszX)LiKg($nvM3nyoQS4zc6#0PX zK!e`Mh$Z69{DLqp>%}|RRG}*GGfY_)pn7LlmfxK#%5tId`i>7QcmoCX-D@al>=wGG zKOhT<@xc9@kFGX}_zm2J06}bIH4!cVQJY%=T$pMJAp^;7AxRZJq|#5w*;kR_#J{i3 zysi`X2-fTtDr9JxIL-xIUz_TrF&u1hB9{~M`{fTpb{oW6(Fx2k6bV}6<>eKi;t~cz z(I25bw&AcMJ#VD(E@0cRV$>@w;J>U_D%lKl$p!yK4=D$8I~d&EWD-rr(t;5XhP8I1MPRqQj-k^WbO+tt>Z z=ZfIcjda0lv^B~+=#-T9L2LZyvs`$G+Cm%JZ^v`bP(S>KhyakEsbk4WR1cRazCSt+ zMMVDuHGSL!85}_{WXu&g`M<~pdW8M5H^uG4=fB|WYdkK?^Y9c$gTwd4ZDOlrTlPji zy!pB4hhno{as6>8!1t(Q1Ru{}cUBf&UZG&O>OVhqn^`RHXgfWjl~lRPxZ1mF;?*9$mc7czk?(%AXZb39f-@q5Poncs=Js!C zPwmro`l_{^2l2~4xz~%NVy~X_2>jRA`3U2VqJdm8gdiCL>w&intG2VUdNQ08{w6yy z7W00zN1uGMD=WGXf!)cyS;%_|64S0E}1J@g2ls@Fpgqt}56t?AH1_v>{J z(o+ewnzz;4_I7sE7f*KRz)1^r8-wjNd;2}zp}iQybeN$>k?cLWDiP{rf3}cNMNW!w z?(RxR5Tv#%aqoXzj!ItQ=sBl;xykwYEipugfHBGxRTXfk?#xPe#&1l1wU_kJfS_yRLoSoZyS2TC>ZO81}sJ(9y@;tR$}VzNj^cEK5}zw$&rj7%5L@0vb? zC_Pu9gz{|-``X^f24(OyJ^9)NhtOhwq&L+$KL-L)mbvUgcdriss$t#&A}WK4I?9SjUm2idfk9o zH%J5eSm=`xZ$5wI7#pyz54{KH9Yy*_R|Z5MDP;l}iWv(xBoFau1{LZPPdo(ml{7Q* zc&<0Op8p=J(0+T0=n`doq!o*j;ou1oS8&PnP?JDjeMF{OE+L-=)qHRL*Gbo?yCn|r zAu0rfpTTlKi~pPpwv&&p7)myrU>1V37C`wF9d!az5j#-f31M}T>-}Ntl22u!f(#nP z2};Y{JJw&|jN72VShaxR%O5Qv%}As9Lr*`t^A7mar6LSw$)3_VhhFlE>`rxzK<|%eo?1?*3|*t-@AtN`JVB z4~yQ%v61-pPwa`L@{}q17aYZBF;;-Wk#MjfpHK!ybIfNYgY9tB%&988 z`)`NtSx-L+DOpy|hJB7lcRQeQI|1esbBY91R(I#01eazS^Sx4IgHM*@A)`9ay;mpG zDMq>woB^HC9GHQGMILCmZy>AkBCF}Yg#y78NbV+OV|e88ln^~N|E0yP&G6R_oN{eA zkso{+gKJ&#V;fGjiJYR%J6)0S^;VW$UNq-t>MMrfMm&jqgk9CfO7g&4Vd6&Tq>NyUl zzo?5y3+_%Dz^3&2o99eb~J zFc8%wb{BKX&1=fVTiqrgR~vKu^~}?tq7>KN&SXnZW?9qIGv?%DCzBX?G4(Eho6Koz z^|&HZyIySTe*Izs*1)5g@H7M@QPjkoL%ijinal{T#(iIq!Eemai{WcBtG-^^M&%T^^HdrddebI#!EiLTG&<{uqIM%I*^p#Rj+ygwfpGzoF1eaYGeWzwOeb z%FVr7FaIm{BZsX7#WPlbSASsFDFdk5Q<<@Tf#4`Qq%EtxijR1fL1IyrNbqt}-k4O{ zAxSr68#-a$ejHv24n&x*a_1(Mh(0u{Y@8Q3M8Ax9w``nGPCt*gOsw<8*l^DJM%JsN z@&ZfNE?K)^^f=uwpNN#z!|8_`tnXiq`f-r+hI$q>$w!PK6By>jute)hY}U?om9qr)lv@0fKCxVQ)!Itqq|q|wYbVE&La8r}p2 z{{rEv$-O?4zQb9G$+;J1NA??9QJ2=;^#di_2}lCwX~>u5R#NMJu1;?2HAANP?EfZ_ zlTYhZ3-(ah`tUjtZpdBhjZJhj$G#BG3Eh#`d6bB`UCrW?WJSN1!rk*!a!K{7Xr&&W zEkJ^yJL$ahc_PfIF_-Lazk4J#;-}-^Xh)Aa9o^5^!-yXU6&uA2outW$+)~hvfTYriL^Ydq zIVdaVM7468NK}h=3pd5rg)m#yh1yOw-#wgtOxsyq*!8-1VvoMQh#kudZaLu2;|1_EgW(=ND^x=2vQu^>9_5sGcFO zCaUMjVU?Ko?U_H9hn%V{Vm15PBE5QXYL_AArfyG&F3sBCy-P~xfu5|&+<~4FAE8Oag8`c{e>?Q8o zkBiUHnH8+sesWrytDe6b`Po>}V#t2w3Qmo!1e%$bMJ`NkjOB z%0Qn_DzBi?b?>Q`e4SkZX`V$GGgJy9LDuNK>fM*GlYA6D3hmG+_8KHOj**2qDx_8Zkc+FOvQj@UPX)-NX_JIgLf z#%?Wjk>5G`AtVYUP_&J0t&0lYQDKH(R%AMfd8}ML6c_>#@#*LXXJjOdoDIg$P_gRGb-M&#$nax#*oFlfGL* zYS{B0*!$pQCOri7#ru|>$0rim-oL=RtQWRMg8nLO7G_Fc>oKZf-q7#uT?WOn?!NB4 zG189x`8jF_+{IIpVeWct;MU*>K498`%mA3@qY3qaSMQLHB`t-uJW=$Ij!_)dDWx8qkKnY?U?nq!#DO?@L%nrW3BUC z(Li!td2-z>>to-Mxc}^$=P{Q=Sk>Z#PcgC@78&JUVHTp}oh=cueOqU^qURe`joM>X z<^0VGTfci$?c4OK86sw?Z8Q#QkG*VQT)AgMw)R--ENzcVuN!d>YmdF{Zk-W(o2liC zeu9ih-Wy)9(5!8;?rg!ddS_L5RhFB>!c|#wveQ8c(n2)g z1OF&oqnLo}EkkA1e(jFUOns^@TOQQz*uZ)0)`+atGIZ-|%=vR!;!^h5mw?1YBrumS z-+7C|mccTPf;j#NWvP~@xyCwnZqXycJw%6NUA`(_*Q3K_>mzGBjp|6rA(q3d&H3|` zec>h8=^%Dp>NBeHjSI_S)9j|KUAz7~8Kq@;tpBv~TVhj26W4u?8e**l-j)Tksk*Fp z?QWz}nOuuH#kHk)7ZI~mv6PK~QKpNUsC{Wy+73)PV zFl2ga&gHXi6cbyFVuB{mtj~-7i?MWQ=CXYH6g@X)`KaQnZ(cfDYwXrykf7M8Eu{jz zX1MiY>~#mXLzR+|K9Aw)TTq|uB_!<}Fsf{M@y6d0H<`L(knvbUzGx+ije6m0L=94Y zj_KP11Bsy?1ZkXpwGTT~-xijXary#pzeiuZ1)=Z=3GHbn&YM0tXgg~^CZMd`Qn`AK z>1o$PLF=;nN9j;;a@}I1wumWaR85O@Wiip{ZgSn+^&;AGYdGVN|99 zzz4Bc%0c$ZryVNT8RsNstCk=hB|~c#_~IryQS7T8mmY|^^#wH6 z8Ctq5+xUr=djxj!LPc7MF0I$(3xO3B%r)lSQEG&P3vE4Ak2ADfw zQmULYYVyokevwc``@ctj%ZO^}0NJ>@5)x z8MOsCpqaj_^r`|p81db8*XA?j6BTNGEgNP&+1npThkvz8uPC&mg!;K;sJ>b#OLqlg z%OSmDnjl&<*d5Zc#PDu*f$1wZX6L(~GZyy@8}oWbFd`*pQ;k;-`;GH}wK2PxWovdR z%NAWc7uW%tV)5U~HO@6&NG|kj4QXj~w*1#-EJBK2ctt`+2=Z$@#v*UZL2{1o3|CO> zueHr5=`WoJ;C+GOGA`_A& z*3kD<2e!`f;iX!Flj*q@EB_Cc6$bN}|5PNQ3SwrF4{Pp9?<`=A;QdZ|%?_WEvtj4>3e4@MnD7l`%^hP%P zhh)Z7M=E07C_IMBde%O@nOM$}5V7P4#*X+cKtUpl*=tqL-ENSG5*xd8{pZ^C`>22I z1kP)`>j>~r5Zh4THLsBmXtggGukw}sST@Hx$u2h>`$JZ=Lojjah*?^W*-d08tsm0s zh9xxc{|Nc3%{Qv@%H|iYmFlYt*80k7?CL{OeN}-FaP5xg>BMY#jplBX*Q$!4aYFFW z_6^KjUfg<-F?c$`8^|DdLn&&-vk)Sk$wok6V^X0QUl&L?UKE2NwbVIoGZ z0SqTlJG&-!X`6dEj`m`J7#Y%wB4d!v-e#%Ub$WLO|9{b)b;^fNx?|K0vz5W~w24)m zQ5E6pCt2dLB3x{&kJJ)pJ5jl1u5^W?;_FRMG{7Z+xqVv*TggD8Jw<98wvvO)n#DUy z6O}vFUO~k0sLqss;JM#EnM}@)Fli9$VwDu~u>(~;eoo{ldtapH&ot;yeM9V)h$lKe zwM6bSASWW!I%>?3oQKHqL=EU(orQpT#8Dw3YmwGC+5VK&`IZ}yI;$P~Vx?blxO<%x z0|d5x_wzixCc>I(292~DaBV5(6~eqDY@qSvo46N2rBZUGMb>lV7R$|?NNi)Q)D_LW z^vH?p1gYnE?>%*kAN~3qHZQjXnW8@vo)|}uQ+msQ_SjpPE_R=KL)+eU>eY!oC7sxo zYyaMPs&8Uf*joE7#e@UR^YmgfEE@>TI8f4Qyz}QD8Z84XsfYNWTHynxFUE2iupuA+ zBal~5j7Y4~tj4irP#jxCItn{w)D6uSFS~*54wuI!vHc#NZC|~{T5uO@p5qevk>t&+ zwZjOp-RPiihM65~KoXLLpgm%>@e#GEv!pXo&bpldm_|;lD~Gkuaak0=qN^Z;3-7q~ z3UBOdEbG}U>$5$0JmEML`(u`--z*e2G>Gbx#?CdrmUKUF(*?SrSMe}8CjtdjBl&5B zgUZKM`LN0s%Ub#RFzg;0De-4LFV-4#Mg1{}cQIkLOP&|uKcZcixG^W6064kfYZBujJ?{BNNZa5s4 z*jU#j)7MT2Ag;!rm0SC;t%P-#b*JOIr)U92ENne^Ipn9t68JXrPH?zS_TQ{64-3+V z{0X;gO7&YjFd`5gShr%cc8&G5qX@TaBd{z)l`ws}QMD#f*`pW-v$Tg4rDc85^YGby zp&pID&T8@kL}@hXsOnQjeV+ z%O`WjMJ~7glR~zL-+=l!XR{GHHA;4He=Q5%YG+i5EW$102foYm` zu#pu5V+itE^wI6;VUk(E=rMsYZL zHXj%ff9|*?cPiM&59;Os=RbAvw&*YPyN_{M_Lly@pcH&yh+l2?TZDz;L<;Hgd?nVM?fx?vSW2;! zRV@m4=eVjG>aC`IQ(SIUP~K3F+{5xrLKVDbsHWLpbE>bmzK=s2g_Ap^;-q>P9~9}h zB{OeppJ__Zjkt6OC8=$?@X`AfLkmIO>ewm#X*+XhEOk`!nls_6fQvjN1>c*pbyL8q zKxxj&)*q0j0O1C6w|qJSgu4}NcS}>s-U7O1Z$&;L(0uYfpgC+qQ{bpdNL87jY_N7G zY*5;xcyqS<6hPddjM?nb1XRY$Rq-ROAzR+AJ(X8(k6T9@WWn691*T+*(eu$4PQ7}; za|e6cCtqE~`t#Kj@k2IPZ++2Ftv3{MfY9zxo`V00EPQ6|k3{b^R6l56dK5ltw=B6s z0D%C=9)QpC&G#9A|NQpp18~zFXAXeS^W(#@fnuZ1FGM{U+dDyDT!{PG1fxfQ7g+XI*H7QiG*?k%t3k%#L-|)vev-L>fG+YfMh55XLT*tSd z-YSB|%dKKc&H@L&C0-$wg~+Z-F=v}3J{m@E*BhR4_b{KvGqo_!yxQ+RV1|=iE3*}D zYujE0+l&Zpo9(A%(`qT`E$4%UTorSXKbMoBSOaZSLX)nkdx>RQ+jgZ(i=P5ed`v={ z`&STj7dv}@7`0gAv!V;**vYY%n|OUp-@ER7u3p8qZUH9HO|NsZM9iSC!>-!jI4G|Y zomZ+@F~F;0vv0r3#X))f+>F-)*U76()T@}^`wKAX<{(KLC3i*RLH>xl+ZY~pKHT^| zAC^e*{sjaYmJeS?Re$rte3OR95Qud8tJ!90D(D*^ECgD?*a`o9fYsV;RwV&kk+~r6 zRG*A;4^N96`5eHDewy!Hz~5|gBTLh-r|A-zyK$j3BGqBl?1jK1aQzTJpBs$*p8Bn< z=q|$^)S!D_;WYQg!eVa9Kxy#>qOyw=;zCfE2X6Syx$kL@&0~P;2j?4I?zh3Sd}&ZG zMsnIV7ducj{1wSsd0$3;yL8}My934M)x)YZ)fG#-FQ=^^;%~u-12buNdawXay6yH@ z3%ITe3e5b#tXkUMK@)tcBZ5^+K)?>!-%ahJ0mU66)>5a_I)sf;r$sb|Ru)qr5BqC{ zd=hs|;D;@BfC{H^zA}fe`J1wQTo);@Du^ytH!_=MgO!#Cu9x$mO|uX+{Ny9`m+j=!LWcDGeN9{f{mY(k2lH>rPP?N;I?XkWS>pLCFA4i z*H#Add9Nuz;BC;C3gkr@L3xiq!R5t)U?wszlrl1lr1kW}!3+hW_-i&26gq%)_bPeW zROU89>Kh7!VD0%1p7aw5uh3_H)z2Z{{hq=KjQBFKB2P{Kaol7a5>N>e#+CD-d> zM1eiq^0fFH4iwq+VHFpF7#`$-`cB0WuZiSu^;zo z)8FKA6AMsGcDvg2*Vau@^NxE&;CdNL6i&o{kNN}TirpwP`$aCWv>4?I)&6pECbJzh>I%hvpAD7v*j{0zg~<2W zmk1q}9wvk(oI^|B%$fpi+l@A^O`5@!H1>8K8>fdJH$CTo$;3l=6j^o2A-%4LP5-t} z2<50LFgGNxBK(J5^Q_Tx3O|QV4zKDpyHw)$sXgV&QQ*n`@s52(%l@r7v(Wd5El=B( z{pTPa#v7D8W57eDDssmU5eHWU3O|+2DS>?Xj;rG}!JSZ-(X;7w32##NKSo_ICSwK? z?Khb;JQ?2fyNl#W-LqRit%ZiS{>mU7vg~N=ed0+Ix%}1g>RFdA!CnKKChoTcJVsCplzCiNc z{v3X~a~Y1FYLeW|rsCK>f0cl=r4J~T^=h|Iq)7$3Xz>QJg_O#n^jp97K5ticR<_R6|Z=rSi)v<(E|| zAQ>$JUpNjkzwPssWGY`KQ#mF7q}Vh(YMWSj{2QO=)uy8=Z-ThAk%vL3#u8RWaeebo zvFCo1%o1&Jw-8cNb>IB2C7s=&Bva-%b5*;iv#kYpb5DqVCnFc~+82&jXhpARMZZQJ zVE!7-Aopsl{y2fKJGKAly0p{u)ktAbM~m;_dF;LNbp=K@xVPFJwl2Tp&&gD)q2{*G{v@YZ#*jbpq_%At7{fjnQTBFoZZ@BrBrP{9lJ}l^&*(yg zrPuXw%7e;-@DvA)I!KV;|NmG!ANZ(>Yw>TAC0QVFHySkBsIf+if`S4Hf*K$jf)ZH7 z{F4yutAElITZJsB2n07FSuU%z{;9Uw>eKewK3nbcU#x$ckeCFefR-vKwy0<)CT#;o z2pZYn_srbgYyw!{?-f3|d*{yoGiPSbIdkS5xzAP5I{`%Wp2OeO?vOb0Ez^|d*}Rkr zc+vm{AT51|_fG5TS7U%^UpB%T*G2!GzFSZF8b!pnmHR}tZeJ3tcLCCLME5&EOu5nW znM88;YA@CrIQS;o_U#5;cP-i}(Qi4?DjLmjcyT;g*t=^H);B$VE*Y53F?yjz7I=(a z1$wSjk4WaiJ?Kl?VF3?d3;KFJQCQmUVWHe%UORV~o8NTP#J1eTj7Ve+%&6pO%}vZq zkn7*R-8rGcJwSJAtF_@*U~PCVMm&2!I0QrpEV`w!cQd0WI63V%nm!m(eS2c2D{vfy zL=t)}hwax$+ktC5E^+PDa4BZ zxzS(neHwo5HZiGqZ4nf2(cX2^R*@cMLz3sFkO`|A`c+EOAH+WtPU^Hbk5V63)4_nW zz#bA!axlBsx?0?Wtl9&RF45EEsy2h>-B$4d>yBD8#g?Q%^+7q7rKa$Z&0{lv;7v)p zHEx6#&7>9L#cIjL82%u}Tt@8>(Kmqtq55)Dq*c(9(t%Rk@af#_m8VEqCFP&F6+J^9~J1GukIhZ zkkSI6Anlh7LNb&WkanL{w@s(jtff`ANdiLUmg4fLRNVcQ+(?ZjJIpvrGcL}s#x*ZL z!=OzBt68gh1bJl6CAG%J{(9LlG%iY>1o8~YXPa3*jo>M{yqTpZH$nWSSy9mMT$*X1 zotq%W;QGH?!BaGt(v~E!JEvWh;2<#*oZuX;?Xb#YnRk1~Ufo;oje-yw{yxB7_Gdzw zDSE!&D6o=sj&G$tfL690vVy8ea)}^^!Gd0y<8KX|<55(pZM=1fuDJ|KqU>4=3@k0! zIYBVvBR)XBn`Owlx+T^Hy=HuD{kX|l0<9+t8mBe|PCo*U2;K7g0oj=a@^ju{-z)P7 zaBEo8+Z+M)=b}Zj&8l50C-C@PO+f~7ieJ4M(gdqHxQ$7X5t}h4zV4~B+^f$BbHQPt z9+q3{VO^xoTrZhDp%mn&EKjn?a<7f^JoY0YQ~S@;^zdR?t@`$1nUJo(qxfKNq-u_R z5ddJl0bEg9a@0+Jq2tTkt#*Jt#UU7FPg#13PMmIAMCWn<6Cb(kCX}>7zL#=Bz7}cr zIl9?^AD_5Mj{aD*-8a%{b`0Hg+t6K{BoiTCUSm}W}hGSd8f8p_inPD zd-KXjk$1h%Ay?J!Zivc<9ezoiUwN<7LbOzCw9HgtrM;8+6X(NTmaww7^a7DqC4|2> zkj@t-XxU$6@@Hr9)Qm@SzmrOV(h!-xbYy7-bSC!17d8r&o=x{!$id~$v#-*o8c9la zNH|`GvbqU$OXlceb9mKG^JKu$To7ldCJM%YlC+Dy91ac)DQ=DHu>%>)6A%7H(@>@G zEMkR?*MRHG>)0em4*fRv?KoWKbb z$~8F4%LJ$;z}Oiz$}SPq#4{X?k!=lbkvCjXI~}16=?FCnBT0a_{w~l>Y<|#%#mgKn z&BSzyX?f-z{Xn)Day1^7)eyu>Vgu$1A zF1f+2J)mF1c*ikb=6Gn!0(&>Yir`+kHB)GR&mCHl?G_ckIG1ciSjVhpvkMnIh58PT zfUUEA8;$Dp=pi@BE_k-@VbWZ~E3mi?xO&+F&-OhfngHp&R(iL+EY-YhB+k7Fghd!> zwKlq7p{$Z#KIU$6Be;lt>b{k!(`t?W*lKMp6eokDw_B|r|Jq7_Lq4bP0a2~=55PdH zwT<|{TCLlDZH<20O5Z+Vvz5NfN`J>H#li)c1qs$-weJ44)!IVBEmrG}2&r_-c171q zNnZ9L5}6iQk1pf@R_oqEEh>;@MfN`t9LPd%-G>XQ>5+pwztI@n!{~c+hjdxzsh=Nc z$-OOoLZfqspm&94jqDE>GVb1Ug@Tb?yIi#y{SX9MZFyQnq%AK?*h=p3pgL6TLWjz~{ixA7xg<>zB*JuqnfEB)9dplNO8?H$}B10imEyruisx|JWjhl`90 zva!oF7JPYCAXoY~up`+j{R`CNZXLywC;>z1XUN0&`4VVsAsM$vi}&d?TZ9|wBkH3G zBAa;CDy9l!Mtn6mpQZ&1*Qb}O1IuF&a1hP;(dTQA)5AEHAE&R{W*1z)cfMbB+;d25 zIbqSF1@tY&(3%+Epme#2XWh9FzOkq{9N4Js^N{fRuJCGRkN5lCj4yLR7QN+&&6(w8 zd5XYly!Wx@mX*`;w6Iuq0k(vpdDCje6b!Yn$Y}}3Lt_7f@Ar!B4<-+AaLAx>?aM2f z(pm@;Wihn~E4pAWA79BSuR0k!1>B$99vWuPb8`UB9)7t;zoy!A`>?)&dfklljyp6d zSO%3*wwgw!JuB_vSKFrPq~m5Ipjon}K~tCfNkptCk^Xx6QFb0_f8jLtH`3U!wprun zGLDw8HD0E+7jU(=R?@_O{XJhP{Y3u0PsJtonu<$)V<6#`(!Hk=;gnvY&7jb215tr6 zSRDnJ22epNa?$0LVQspNoICh?FIK1PGJ$8A>E1(PszqH$8#J)~o<0y*RP7X!HbY>b z?Z1&7EzW+}b(A32CZ5L~HDSWuaOP7cZ4*?u*{aPGcT?6U@2G6uzF3*X+7 z5p2x}{zhAtv1-MBEBl+=<65XDRT=4qIWJq=wKImYEuorhVU6VagU?fhz$-hvA-jez z#USt4Xq%$Qo12|agAD3!gu@L#ll>TJvcy zE@Ru(mb3Jh0!J_qwJ(rki^?Q*33|w11GyjI#E;UKOVd|N(=`QD#*q&->t;&JzPd_K z&|4%R5xk1fYbPEWqTYrAy*4|S=aTF>P*+ynlQ8zO zs*0qw6tYajw*xwD)osv8wrIrHv?fc6W|@UVTV5tb%i7M$j`T?u#7`(cH#^5{+D@4e zr(*KWdu?_ODV(XJNhMz@AGXk#eBEvj!1>0y8y@CjN=_Fp>ehg~u&ML=_mqM%1X`uEydtX852Z~ zlFK1*WXBb$B_qTeumof>L@-Ry%m7ak0^jk(iU5Xfp@gbPFT+P1oniRoOwbIj-Z&ab zCA74TE7gQ^N5u*H(2E#}H54!L);M1(q5>qxmpHS19`|$NXS=S0`pw#$D~%esGIu-- zoWT-5t8-!)3tOE25-cI3-p(r%FjV73#gdG&M*qwV3u|;ub~US_UZ)2pSxFK;cjTF* za1RtXS+@i@l`v^R7_aFiut?_((x&83eyTu=fmd1WkJW;HC=Zmab`#2@4c_ai-79`&(w4nv_NOW) zqMjIRQF`aPUGscP1e5i^>1~Qp%d*D3v7Akc#aNcmE&TB-i}4%FFM*WUrv8)Dd5j_m z-8EO!T_Xk3@(Q3cgzn1A1WfGkbF!Dv*#%2XXKB}R+T~qMQ)8`Xjtksq4fScVQm@=p ztG5XHAQj6NRW3ajSL|i7_RveSIZ2bNS8*_0gU>b>NlwtatL$TPa_9X%ASz>N1Sd6L zuV=mP@e;j$M>l4x?q`h7SMF0Q)SP_*JRUNXHMJnUiFFWRqMo`7@1f;oXvspFVW+VQW38*NIU#`lNFdU@pUIb zOZucCoWmzGA5k;Zq^mO>ndCHbni@LOnT}(rh)EWmj_hcH3T%{8s52c4`Jz_=rXy%) zrelsqkhR>r8h{{dP-Zfso_%y28CPj=q%s)?F$6 z#DJnqO|hD2LUB_Q0O_fT>BZ3+JIBVb^V#p3nt>|jMfz#_zUi6{$c+D{_!eB1IgEy} zS9!%5l=pf%?=7b;)^{)&+CZRT1Or;0A>&W=sOs>%R#sFH*Ry&ECjgzNXb{W(EV5zY ziv$-O%$K=xBb!BsweB2^+9fSCGCS5FhbAy&hO_sKSGly&%!l7Z7xHWhDidWG$OGZU zWRurJT9zk0xR%prpDZ7mUi99scUYPvBJU$9fphsNj;_k2&-x_(uLR;qfeWctlLF`R zBGA$sw|A7V$K*)1ia(&Pxd@X!*8nld#uMOBZt3;3sgzZ!WDlPVQIaR$h1^E_O=oAl zFt{kFUD{$5!!tp{AgiGqk$jf!pbl-Mn8xiibmc$!%${BL5B|183VdXZ?&1@zk>d+$ zAFV6QUbBL{T6o56V-V!1lgY}!$%&3$SRBetlLqa?nxz()u@k0J9s}tN2$+ZD1rgNl zYX%VmqyuGG-lD`nzMed}@JsQNN0**W$qxQYBZWyj%0m0e^)XbQ<}Xs8)Ib*mGQpW# z3ejXiUJ-k~HvUE_LKm!KW73hNTEgx>IR1LGacwXpgWkJpoLUBo8?=3qy&O4C7G+0I zcm+j;=Xuqir|pjv?J7e(F+9(s+6WPts5`}Tv5>R?=MRfxniYmV8tfQ zvT!~O=q}}NIkUuju4u*ZD}P$Otd|2>&}u*7EdE4nD$_{F*U~TfP%IxLrKXQX_&UlI zfjW(>@ghqvVWO3cMhdETPDzJ7$L1 z!|fE&>&FC_x#W*9BADcv@JCXrN1a3i5nPXNhDgpB%go~7;Y8~WkyU`~TrcG^c;^&7 zl7aMHi!!ZoflRCJ1&J2k(|bIBGXcBzTlCq>pGf6PWQd|exL7{Oc$NM+?CX7lHLCPg zpiufzh#RK?;8psb0HqL6h}0*|*CRVTLzXr%+i!9yf3f7^({%#6MFKh*y)<8+x>O5= zygrOKW{AzoZZ3uw8GvDC)Yt1*nWP{xsm?EewFyO?EEeB4)M2~Y32YASJ zfdYEtEu@bnZ*oVrnjRC*NoSpuE~X{)e8(sVx1B5k&( zKS>US>%xRI z6rdYxVlw+r8&A1X`C)wpD3iw&Weh<`?Dm-iWC!UuSi0~-XDop^jF1tzA{#v zo*lbnb5eYFiwtcO&PR&}@oB^;Ts*nJw`;iiqD5Av2G%C9e6!*V_`mb^fuoM0Ui1XI^@} zjI)2ns_7LSL+JbW`}Re4E!xhA73lM!aWZBFTb8fF^m6cv#8oN8%yoATk)KrY7$U@W zvJU5Y*v`34N`^UNsF%${U75K*QY_Zb&K|x$!ky9`j^eB8aGSk#ORO@)2#}*voo|aS z&$ne}@C*0tp@k--+r+#sZ`aakInMJAnWK-}7VBKwcloxfI~JK;WWWZY`+JQherTe- zkDND9l6M6wgxBKl2eQhok>vy99anF*uKv4q^1?lC(gg+_-(eob-%-i=Q{F ztKZ!ZnaXFB-$u9byQslLckWcw*Y)xUw3GQ&URFKDqfqg< zaVL+0$9XJznB+|)XeQv>!vi3;eCI?^8T(gO%{34jAYkDhNFzBt9dv50^^jmuwL>b> zoicvkqogl?hj(8ij~i(L)BUN(_*zEQWj-3=4baH40FCfo*TCC#+i5S2NYkkcCG@rBc~I$li@Hbzvne;T5~#s-@KT0WDkFezjppW3sDi1dm?FP@h38cw7HCKS`nk0 zCQ^;G)#*YJVjGCe|2h%XjuQ zI88(#rF;4CK6=*6$-YA?))D~$Co&SvPRe;!vz%vs#p-FU+`DYbt!LDO|B-($GHhFWm0hH48Z2~)yMQpN) zhZvR*=g3je3@A*O(mum6V$v3OzrTHklOb+~ne}pQmq?nUBC?unEK);adBPjAx0|hB z?B$>h%az~-e(teMqmA$wZONo_wdQ7Dl%N*8+YH%^CU`$~(zc z%{q8(Ox;*@%Xq=8*-I;{T{Fo#&ei!k&PH@DyCz$aX}*6A; zM_j%|cml!2#@255#Z6IOF->1(G}Z6wkozsBnZh!r=?M~z`+`$QS?NWy|1ye<+a*aU z9A`A;8#?7tw$1#XeZ6h7`)o1io2tu0K};8J&1utaK9hEJ+)Vj1t8WLx0*R4iovLFI z-;fwj0}x`4dLeSu;l*a#xqjnapyau?R=Z~0R_&U^ZzaFX4=4#t_y%uHPY9&hH)nEH zHHg~-jP78cxp~UX-l}et^mtX<&*}l!6RVCx*Q{#91)H%aU$fcDm1Mt5hzrC`KjCko zr|{1iNH3lc5#NJ>3$*r+SNm>+)8&%o`S1z$%FM9)Wx;Q34`hihvdXE~bW*U526+*O zi)kkg@Mk;C7%D1nwKejQsqAiW+&+s%;0#RHBnMY|T~#U8^H*RtC3V7qHXk>|s{inK zV%6{|%e+_)peok{(PnaFdghnj*EONGzX? zUd*Y`xAf}ARe6lplSrqr@fA%nZ4N2LiEqsto?vbn(KJ~fyKp#?pqV>yZqV(Q+Q_Cs z(XGyb!=vtaEzNx?OYT(*2)#CJv^|KQHW-)PJ!57BUanI1E4lBQ*G`2~&6 zhXt6l?N*s*^hmLPqn(STqu2{(F3?yfmF}*Oi~&x<`;7^B7K`R1ULG)gkbz(OfH8v; zX9FUBz6s+p5?@D2fpPd;#(l4=>MVOGC7h(b&9N__;hcrx#~@%;*CM@oi%CkkrRMX?l#Cjqq+;Mn`r@|aCrC}7=!jLUo(x#7VwIs2 z;|C&I*v|(R);muZHoy=(ZK#cW64<+{^)aH-A8xa zPbYA>=3OF^ZS8MwpwSP?Tif*n`TIp|poU@bxPeqFnmLHEu|>sQe$liEJu7-P0-%sq z%_$CyRu|3I&L744)iW&cwnc4IR9e0^x8X9H32^3 zM%k)aBJp{6Boy~mSm(eV>VrV=0SqF&hJfjTEB##5KJ7}D?sj|s1L$zOr@mE%zqKh^ z6U(||Ecq)+&{t7+%q5XAg;A9k(QcQ*FHVC9fn^$b1LlLDz6JDb3tmNH`B$WJZ?G^7 z&&SG3LrDwTlAr1by42q)EJoHFTA6{#mv_U#KH@_U-A?Po2jq3@WvIl??PU990h42| z>sd)4R%?pXi_0v^&Zadaw6#1)n_RZR0^#v&PzW|2 z4)zXN@gVfmj@oLM(tw-M0FsY8CG*?xs zsp2N8=p5!$_h_~2g;Z)c#(xkIV(xGj>PLB5p}C_&McHcejRIhIa7}7*)k3jKt`e%! zcm(F!dAZom0p65m-lZG*O>QciH#x{NZ^CHlx9X>Oi3Of<0&VLWoHxuSPl#wRt8ahb z!m5uG=pqyMf`x!CHqbVGsdpQd8KUlfq${7xS?lhsWa#cGOR8{RO-~sudty zc;FmU{Xhe*3V$}$65OaKNYzOM+2!{5ahpl0ex>xDl?v!$UP3{k6M~x~#zT$cgGKw9 zaoai#h!?PPxHmtNQe?{b)&Cqux}x8qpNDLe94dld!gDlf916+m)nqGn|umB*ZyShe3H%rAGN{r@_viwJ#);od_M z&?z@(GdRWU6OlJ@nGIrMlco}iq!0gOUiE8ym`kZGsY$oE#VpFpl*NYx3ZCnkn(qw^ zmt-GZtLN9^a%ZoP$;+TZv1G}7Sb+OGdQeC|E_tKic%yB|Jdoc`P` zIik>6K1Q-vM!~T{msS}CM+L#b;J8YX3*I-xSN}B{g@ajc?iFaN*WZH-{GWb`B4_hfQs^W;Ao38S$R>z%t=oj3H7}IQ8jhRnw>n zdd0qIYB$~mdp8!rI@N!R>RZL_#?*s>e~3A{i&)=puot_hep)q>KYOHY zjcMYV)g`)Zbz)8xuQ`{v;MSI&bD-%otMzH;dFk5&0kk{a$GpxFL ziEf{-e&y54ovd^in6$#~wPF<%&qwlt=MV=Lx}FttVs)Gu&Od{0=ge1=O#wpWgiFo{ zez-?WYtHQJ7)HzR15d1`v-pbDv0Cx4*O{*Vd;Ru^I&s1%mpV=!PY*f4rGCr9Ss{vS zF{muA*Em{Vxucb3IYC#GD%5ry{rr+_V48kDUcB)YtGOgDRy%T~Q>pzl^uj9#5aiG3 zcz2A3X1<93Mj@bA2?5O;1oVXhqJSo#4^$n8w=D+YxVq1U9f;D;asD#m?dDP5Ab%vn zJjvbt9YQwCnSHq@6xbr12B*{upq7U+t08oRf_hTw9S+qnNqxu}K5XPzO!+Eap_bnV z-JNuG(R3q(PEg;vRC6j-P|8(55Gq+4frLbU1|S&{d8R`m_vJAv4v9Q;>RW*!Qwnx3 zoyt;|^_>l3&%fpI$6V^lH(RNRHt%L^PerOVM#2=ky%I~7fiuxS$G4YG=T>ECBxg3VYlrXwccAKbV#{pn z0`(c>y7V4AFcp9eH&S7d`gDdK;5dT$YNx^l4ALb@+VFL|ysw44q>R&XsbR`cKZgX4 z%Xqqzk>h?Dj==F6^dnRSN&zy`zY|VrGj=KsnQhg{Jr79j+`FnVW9b!w^lW)xt{Q2J zO=LsXFRBe?U9-92n)|C=zxO^+joE}vol6^Bk3s!@&&l^q$(PC_P~5Qb5hAW6Lk=l^ zpF;_fVS2-M`F?SO5ayi|oP0V;l~0h>9d@gxFrk5`=KBp)1^NGd=Q|F`psC*7SLwMnW@F0Usn+Tarw; z&@yl6G*u$>QU8FyBcsZIH(c{$niFcciE;0|V?v{NteKe_pYgPT86R;n!akAoH05&W zE{c{b3wJot8>in{?aJqGXSmws<@X=_eurOK55y#;u$N1U>=mAdyR&EiXw1HY|44eP z>2tTezv&;RCGB5(c=nI7hps4a1h`|cYmiuOmdle_E&~(wQn~D0y-Y4WizRZ!>9Rbo z&(X`HK^?q^2xy#ZyNjFE7cR48>G_^&=)KCEik#H@ToKG;_Njzfpge@%!rP@7@#Zy< z@aw}hZSXct_+bXa#*Ps~VPDKyY7z#3S6}Yfqp{Jpn~Mc(XEOUEOR3Dze%qn_5SAbh z!~Uq9=Vc>X{Z?y4%5BL?y3H-5U!$1yhx99tl72`tpzPhG9m~X}>v?2)%Qz_x0|+5=L{@GXpQ zY=K(MM;0hAGZ5Rw6W+wyYr-EO3|zQ=v^jSjFjNS zn|sTxZe2jTdqSfazq+@POip&mdlKn?FYS@^Ly}29gtpKpb|(3MB|Hz}F*indF*$zx zE3FX`7MalZHVNRdNPK25>9H$GinUunFMQ=Ogt$*~Y#>_&?W})8Nz@<@46~wg*5oJo zB_ziYTCgQoe8gDN{xx(}Ow@?Sfl$E{*y0KKo{?BtY%!xOOAE$AA$ZoTjYz<%8$!PD z#4m|=jXBu#F+`-0X4W0A0n>2a8CdXG_cvbs>d;h;3UU_wuEgb^5qy7-)HA)0s=}Eg zLyMllbfK>Y8DTn}ap$YQ20)d9Ub`7Ql{WdFqIK_LSBE1fUn86^qV+`$p;a$o5d@wZ zlO_+0+4P2xqj&zC=7dW<8`0QGI^ZW^5!}DJ6!AHFN=5LFTSBY$$oDJd`&sgR8wH1N zPFSBd9iuyk#%v89nz#H6)W+~(HILHF%qeJ45A?7d$esQ!drhB6ssi0@GkXC^BrmkG zFO(E)&Xk4?XwuYfYs1Z?z(kO}sDa#K9H^jIFW`2dr+*FK)TB7^S= z4PH*zIW`FG#4QoRs)d~xGF3f#No&08$!Pw62Y>hMH@=F$``grh{w~J<>Kri+?=cgM z@xLY*BlcA=_jXDh<%MvI4&m6Skw@D^`EV5D3JCNjNQQ%%m9)o$X{G z{l<|p$1|)@9LJ(DzLLY6TL@_`v~~$^a%@x0Y;zdQWt89?+gy!)0Bn>T+brf4Mzo|q z-4)Sv9NWN%{%oA2wQ5B1AUM@!)yO?Xb6TTftZ4MK=4OGE!-|f86&*U|3d9tLz+d}W zX;N^t=E;P*AE9=fJAfyP9(`DKn@JDJvjmRFo~3!RvBLito=gt1Uer8U6K^$}Ulg9K z!SG}|JANav!j^SB%A1q>Ov!EW2rPY3I5SNJkyDtn2E&}~>|Fk$X3l=V8An3k@)tFW z_8(3Gnnke`>C16WhHR-ZLmtlVp(*H^3k@E<=>1Q! z4tdebfyo7pf%ojN9=Kc6Q}7>OTLGMeGwD1Iit5%3hos_|PT)7iRrOnrRv~`$Rr-pN zP$uS3To{wY^~Xc+dLd*(;o93tujBpdv^$T-NR+Mw?7I}HXbX`W1-{ckq8b9QJE7Wo zUIJNdx@cNJIyq+$Vhw3Oaq_M6R1*&tIPvn;#LG8q352UiTf3QqmGDixb^MCY&cVv1 z5c~HECdASEI_zY6vnn$@!_6@WWcENm^tw=uk*NmO7ue=g?P%KQS7&KFCA$f09-vmL z_p6nN5FoGQuth#dd!giyao7?LPbQ5@xq(yemv!=Rt$Z=?vvSRpdsbj(J^8E*N~pG7 z;uAueUcgU7sP-E9&}u!YAsW)C?^pGc3^`IO;E_fIUlxEvt#Jg%%j(PRgZ9h$ys;$c zk|VmB;-bi(IIZD3OlQ)|Qg%*~E|a5E0#kJ@x4&lVQk;qQva~FzA#341F4!|Y_6>dl zzpv(@(JFUSQ8+B4T0B3pUAQDBx!9jHnBzAH=2t^o1gErm<8Wdfm>3`8oMw?95xNFh z%@0si&|fNq*?{N_g|8ys&H=TggPaV>Q@)o)ze{ga;$PDdB86)uHF#X4mi;AN5E(TC zt9BKT!l6a2Wbs#Yv*r}31MfxS1K$qU&XJfRRkd3_dPGlQjvbbjG4iZmKP7>7oD+Fg zUe!CFYf=n-J`T%tcJP6t{aRftJG^vDU3=R82q)_&o4D@|h|4FA6Zc5f&|>xY1$tZ^ zDE#Gmpzy48lzfi2_+)95FpQ7v5r#2oyvd;F6z53HS~eP%>GjR#9>qdR6nfzLjeq$m zD+PZ``1>_~$q!b$M)2osy-|9JEx?=)*!goD=U)>xvufYlWH-f~6qsB_zJWdwcCzH0 zR1R#=zAeP3`>^1q#86?X{YLP8%ih)Wp?ml)`?aQyRC{03$L`_#jiq7 z{^sVeX!s$%zwaLY8b;C(lR(B#U;9Obf~%(3=?@7#V!viRxiv7_bch2@%{8qls-RR=ZMj(ZWD~stDjk#0*cbBADdv5UVWS3V1lSwk_;kuktO0Upp_Z!vpapD~d1mUQScN6v*-p4+okKvV1rYSwIV*Ek_!NJ(_m?Rm5 zEw0mJ*m4~;8fh=dbTsWk-dpHm0xhawovd7kfI&n5mJQz2fHwIf?kh@!@IL@*R-T#5K_r{gp&RIr1na9~G~bBYpGd`!b_ z$dz32-VrTw3n0Drk+A~e5#B%GtSGhqkz0QDifigxfxC6rCp;gi;sYm-cxoc&0^72l zzbTpX%-}yfP5(#?mnQ?C)cNYZNg6&9@x{>PxT|`IywLD}G2cTe;kn68?;kfDSJsHo zIchvHobQo#gg8FXElLh5tQCi6WcbxdWei%O$4;@H!|xc!$;g&)bS1x@&~&eT5k3Nw z@d*}e?DNl8KMjadb$TdyA7Aj@Yx6GLOb^s}($Ns@Y-DZ7t7zC-1uB*q9 zhC#aoFOg8h(pnX2bk&y;9sQ_4L-|aajy;e?vi{lg(V@z8ZdBVB>#@!E%lN(~qgyN! zV6o`h3WAWn8aw}v!Xh$}Lsj3D!vLJsa~|MVUDJ_lTA*+!1->!`rHZRBLN7{~%(KO1 z!0hzJSVG9dZA>1HM8xtzUMBB2v&1d-49`;uTB(=w>1;no_dqP_Eg8L99aWxXJz1X4 zJR(;{5>I? zs&zv~MPYK0hDz&Y!t{9cSx^*`db$Zb*LI0kUH_8Ah9KY#)sCk$ktc*|v-Mksj8Uj| zq7Gz+YO{EeYsS#(yoDZ`!xJ0~=kVKBD^J1Vw%Xj-TfXzACNcI19flkItB%=2BwY_5 zB}Z5*LAGfvLkXj+Ufb)$wbi;QgZ9Q&Ib$Z<(Ne}=a34&k#=B71MbfFdae>sS;Sxfq zVKsIRG1vRT(m#&Y!n)#6cq~Bznu84Mkh=7?UYrR{>b5h?5*sR;gemT$>-^ba$$6|; zIh{S5b-~t66MU8bk!L0?AycT<%hRrv_C~5E?G4qY^AfI2<%#~1{0JP{YBPA#eXq^r z4R+t9{`+7b?5HFW1PH*NAFBzXg3{&*9!|A3yahDvXJu4H~L@^}V8H0`hQOztNu87hcmh_gHPfo!fgI z3rV})_i(u2F|2TI|K($@>@TwqbIeyS-&)rD8oBma@Qm=iw@_8~;Wpm}DZJj-XfO@a z9Rv3QyWH#E(xzXf^iV>$V1rW2z=Av&&=D(&IH%q56nYQYwOjZ>ci=!ys;7#htSt$h z*Uz_mDjp}By3emAZA|DB0dN8a3ieh(8x(8^C99uMTIW@Tc$c?+@~mdEZ=hA_Li` zQ|NAR*OL=nszQs9x95M_8^Ks_Sf(u;K2JjTmhfvoE2C>I+zjX4uhiM*tCnJ{g>Sa$ z+5g~=dUeY)`%skQjA;XI#KSs;U)}v7K*K{8WokrOpkZ&?NCT5?;1coL zVS##FxUgZuf!a4$V_N(fJM}3dhB^rg8}g>^zg->hH6~OIj|84k|8bsPC+))fb&gXV z{};Y{2Iafo$@j3%caJ*9$*0>!1xHoj)i@1qe=U3#%@ET`vz+~_Lchiw>Ad)8(+l0y zuaVc*3$EErE;-i#Nw3MYOE$#We!~9+a`oz#%Y>3&;*~O z&M5njrYB$V<5QQMlDZ=I0I5GY)sP%_&XJg7j1yv%VR!70M6Y8!XY$06l$0Or%8%RJ z*ibpF^tFhTW0i*)D^7aDmmB*P2pU1-_RtC7FO3iZ63!U|)3DEA^h88sL5z+-b_ZV* zxup1Vw`wc+1SyGU%6_$(N3#s!UvU-fS6!zN5~XRb*@&WYlH~BUhYK3G8pPo)#?!@W zlCNFhsjp@cFO=y(n%?%<5PkT+-l_@sEt-I5k=vrqs7CS7*V2}paR5D@b@>9ccj?(o zw^r#F5h{nVVceViOaK~MCjhtalyrECkND?^_3kb-zxc(!z*c?=dw4AB#iBQRRf3;Y zffc}7$X!_N`XQ}gkIetQJQgW6p^5r+accB$_DB4T%r$ABMrgwcw4onZxCJ%38vsJ< zg`jiAhn zGHE(3hiO3J@I~2>Y!7bf@s4eF)&tFnRi_A}_2HNF@OW^^e#=26=Q5Mr)+a?*@WaE$ zNWq~C)nnyGF3c&vX@(j}3+(m=*%ABOP|(-lkv2>j-rOdwb3N{%YaNjL48#quw7pC2_-yIvrphD(zQ8vPVAOdY;V zkhBqH+Jb7WF9hZrdNJf{SN=p}U>=nK0wJ=W$+1(7T1!_7cG}xfY+`{~jpB=_dWg-7 z<8XMbtE45!Gk4M_mebuxQ0>4TJdoRgy`oDIP@zB<%WUX`P`TSir!>z)4>IUMzZz6@ zDw$HA#-T5~QV)^>QTWY+GwcfGWt2PD!P3I>rSlhyzS0nl`iqS_=s4`x{1rZLymk|8 z7`F~Y4WaZ!v@eiRfih_Ha270*90LJ~euwp!N$AK3fY0FkC%yEQ`9G=o7x{O6b^gx> z=U*Vr+a*o=`OEtu`BQCMFhxH6wr+m}Hcm?l`u8(ueMk$L^#Wre7*gVe0c zY~mK;flY}4Y~?e|jlqa#jTm7m3C~J+qc_-?lGGO5(@WB-JQS2sl<_P3%ugdIj-h+f zJ*9B_Y72Ey+x^3k`@R`d3%B3Ck7h}sBO`$=%0*Jbq@|6trTR6Izw=&<%ClbgLaVmZ zKvfKM>_uBp;xUt6G?lU)6`N3?g@xf#76zeC{pyR$WIcGvtOx%&4=O$wD{m)KuXXm7Z+~B@j6)e!%p2Z3Oa~T;P^0*KAQF)D*NS=V z$aAu-qDrpLP66Lr(8RE6UnC;9CX@SizvB%BaZIx~`v-RlfXj4)UqI(34W0MU6^A`B z(Af?OF_UGrd`f+1qJXA5tnW{;lBjReetS``DIkpQIs6$Kn*Qd2z#~KgIGUFk4Ci=(Yfg!Q+c!UTu9zT{|{_F85 z0HU$+$Pr|Wj>n%a7}UQXU3kQJY@14MyqRNML&$c65pR3aWwc&!9I|K@BeG~{#_sx z#rHiLLmYfxcK#svULZXgi0?nR_(=G!{5Qb2IKEYv$G7Ue@q=3RAk*?l_`Vef-`hwr z2)>OVUmQzfjIDU=T|)6NkzI zS!wq21`%XoVnEdH3w8*#-gzFRJYsEM7r#X~>DfGxuV8n8wr3M7;IcmE?zl2B0S|Q2 zP*-SGyI!emL+Kgk*y1WSSs?XXD5qq`wX)) zBUaol7fHseJN4jc*L+g-fcat7iaw8?BU+z_K4N+yCA@04?%){H!BxlT;K1G$?v!;+ zs^F4NyI$8!<8=Se|@Zqky4HS4a}v zP-=Z}`#8gI8@hn`7Na-3{q)A4flqACV%fr@COCA(7|L=CR|o||{zV;i?NBZ;dd94e zAQDzgqKkK+7fHDu#k-tQH2cksQcraLU88Z?nSY<6STkV1`5z`E_gQHRn~lBAuhNET zgFMhgcgfaUbd=ScAzis%`i>dvWADdi9lBD=*EThruIQiGdi3@B^Uy_c{n;pZ7hM_8 z7~G!^n92kCGaYqtrz=sqLWRF>>+g}$j%a<{e)aX*|K5dh?cc63E4u%W9W)-_9Nhl3 zkc@-df1^#az7F(vFlmq3ewiro>lNn%yAX-UQCUH{CX7HWCZh}SL2NS415ac!7N;Ju z+63{)eR)pmlD-$F8ghrh2R63xtgnc2?FV&Xi3cgQqdh*6Nkof$VyNl-k^Tb$w)!}45KbpB;TA}eP*i{xkIAUzZxUv=ByqH^2 zGWF%Ei=O%nN~N0>_)%%0PlaJJoh8Bdm|rcDdi8W>8RM9BZ_xsE(w)-y$JFnbL9tcr z)e%Pphpb1j^(+n^L;Cw8i`hC|WTPsl$Rpt4tY3xRc-j*o;ZexX-%g;p(dFwA8T;sT zpLq75>GCP_hmD$U$;DvW@E>nWce-U=8lwIzu`wn#Ho6Xc9eyyqe|#oM#nJKgQl^yn z)Lmwj>nTk43ZgY09&!0UyWlAK$Futh>zIFx{Biu~v*Z^_Uu>=GW;pz3v?;%Eiu#fX zqMH)sLgU*LH$Kc};oPB+KqJ`dvcpErjy7eOkE%&JJPcN;0K`Yp|jtbh#ejjR~U zl#Q%NjjZsHVm$W)u^Y(6N_)H!(jr-9Wf*0Qi6n@I%h36%DA|an4~u}7Qz(zxeY~!g zh6BW~ufZP^f~d4{2SgBx3=K5}BdokrgQG!R&xL=M(VGbI=4jQI{vBa(eEzZG7j=AF$|ODAFh#00d^s{b9g9|}G5UdD zI;o_QvHBKuoW9?b2SISi%r7C>U=FHW$E>+vv0vxl{grynt*)M*?o%CmE5-A z)(Su$JAm#FoMMEPVtx3IdIX)FJ49x_I2&FmLzhTR>LO>{JJ;#<0nfEvB1`UH z;@Ho{Sh~2bNtLUK-JB?hJW%nA!SvtvNYPr{^p<=H`yQUKx!50K$NuM1&R~5H%aJgm zreLF|&G(obM})%}NSjdOITxCZ)o}y1xX}UAC&9dC@hWNwypFeXatM_X>YR#uJ5k`U zwSPnBE8pYrxDlRAbDjy3v=fgpQ#GsR$RfTRwRpg2 z1^k*>mkH{O)W#$;QWKcy4~H&gs-HVB$EkyJlsh>LQm~racp;EeYo8Ord?_l{<7FRG zr?KKXmZ_|oS7{z2wpINKo~kWb#>w7ldG$zHY3pRb2@NF2l%v3#>LiS5Ykr2NGW4LN;4FzHFzbZ zfZ5g{4XqQviq2bTJS!eXq{SS6!iwP1>v17B59n>yQwJ)`oyAK4V zkqK4bvXjFFJ@YG5DibQE9YnVzsd9KFN{_wsp@q3?PYzDjrl&jN0+Y>cvUQtmbB>)Y z!;vMKY>6gY*L*oNt|&9v(vDJFCI=nnbabn_?tP{t`bn5H*k_h#&Jae(BK`YYC?T9$ z4{I4J*vsU!7xl2i`xbS}8Yp^Em~%YPP(dmycN5&sBhRp`Ms+Z+lO+Ue4MQlOm9ej) zo^*b7UxyRCUkCqduM>P+2k(yt8+0%f4YupxZPDOP9sC}_U`xK71y(5irBr{xu0~%) zFCQu+s`#UQk&4t_d6&lI6O^`O@WrprAvsh+cphdQJgm_e(e$JFS8)&B5DjC+iGNai z<#3hu-7j?Z*?S~IuLg`=us4sZ5P(H{(h!wOxIav}V$QN{W_n`?q@Tro`t*t|@|uIv zr#q<)`PNKk3YF{`@bxn1>s2(YKkeCkMfWJUs>fAzHJ(vuqi*1a0jZKCZ-3-t10p}> zU_UPMr2&zfiNwepr}PLLX0)vX(_=jaW%L)Q_D9N2*C21X8SK)%xe zv~SyhmAAruNcUd=HP+M}UbXiXP|3A1_)j+rcI#glbd=opIrqigt_s0A^{X%C))DHj z5<>lTEekt3ZjI}ocfIg9pDOx(`6#o0h>UIPkjHo?sGq#IFY>|@ysB#`^@XS8t%$dZ z@t-^pOSIlQ%BdnnSK;Y6i=tTq8qz_rs4@-V$}F|^3*88S=@TR6X;hfwZF6l|_q?n6 z8gE})jz^Y~wj8ax(`J;!+g#%*rw!}4{AASC3^rG_c@%d^U}SnJ=qT}489pBet~!*t=53?AWnd9@R!CI+tLWIc#q?ti$K z{gXltG`p+58UC@Xv`$KS)hS2Er4((9(@7q_OSXg|@<5*s%dAi;L(8M}mM_MP-jU0% zv{x2i4xB}u=z!i7xSfiEw%!cz65a;S(d4) ze<|*o2A)?Rg??=TW8&!7MuLWZl?Zi$!G_=^68it9Uq9L^t6ZjfC|T35QdZ~^sY$K) zTw~kfe)<(=j(vBZI$w5U>|y=vVLIEE+{dJf?UYHp$>wOK&BWMpU88x;GCN@8`Q3z3 zF9U_GNR9`yF^~#Lk?9_L3mTbs3KgQBp7KTHdb@59@7IUc$tyik{ZxPZY zk+5sSbetx9hQ^MQ3!iAZOOog#sN(Q_(ljZcjzpU5J95J4`6BpnNTmtGwx~HlB z@^irz5aTY580)izK%a^0t<><3W#IAqL|Ibq%*k96h!&XtH44;2J%s`*-Q+}Z*c<-& zcskiOb2J6J>>by)%^YjA6U|M_T#v`j^@u8z;7e#&_;~{p)pLgIfSK??dN9`evg-9f zs4;!$;MP4XrNI)(`9)Zh*%G?!ED7m85L&C_^gs|ggShHHn1RUSaA5)5n&0x~UjwlG zH=(v42cxtkz!aJ}y8eoD?QK@t72ejFV-x89f-E(bLW|hZcAP2gliT8{I%871`t~6% zB8fiZqD`4Gl?cWUwmE#K#=^@kf+BI|gMQTma5k^tRN`5m#q=^;>Ak3&2n*jYtB^&X z^450UL+|_fU6xbq!LRagc94wjA*@DJMVU(%I_#?^F3;mc-ohp&Va^$J;wmTXb;5Ge zCGqJ_Soks3Qnyc7uCQdr{0klov<3=tHp3Iv7?#*~kMM?CaQGO>9rL>7zG_;Pt3BtW zW~;~lN0+4;J?&J-tCcjg%uXjYWyfa;ki{N3Wv(Z10#`|<z8f318fOsCFNdl-`~=`}T9K56Ak5tFuj#x?Dj znUeVZn>Nxi-9~inw?rEjZ4u%o)P>zbsfq!N%z;;u1;2E^*+Bf6#M7ur=w&OID%ORp@H) zf2O-4UuxjOyW8H7@tCZPH5oMw6ugYeLmXs^^m$wMHts6*i z{@@7+&XG(YAvpD~5S%B-RjDY!=>(2Ra8kb9m0K%&zvjuxw|eAZ4CQUK#tQD_(8gDA%~ z8_Ob`H?_4_qEPkaE8IDsLYkj);GD@7$!$9M?ocXM8epO$_>dF`V+2rAc5UD0U%EaFp z#;bWYTIXrMW4+>>>b5a77!~2@(l~N}g^?45AZMp?dTpJzN$1I7Ns~i>Gs){Lv7t-D z1*ytja)=GYtAhN-a^V#wFjA+~Ojc-Q=Z?x8rT)&6>3Al{u~&H+u0U#KRNLQaj#}T` zqlJO!;H0-DsmH}C=XlBrt(-_7XHE{yoEAE@vxYC2hC8)GHZWoNw?<-@PmZe3EwE*T zXUPaV3ecvji_7h1J-`|R84sMb^l!$3i$?f-2sqA~Y@Mf(PQzq!aLqJV;DU+>mkD#eX<3+$)5CI3Jql-yBGGB%&&&fDyH;~BUG`rbiya8<7hm}31L zapGco-b5UR#G-ooqb`c9n1*UJWgapiARx+~-rdG+hvmuxZe^dI zH@-+!>m*h0*&}81Q~U6b2;u^DmZc`a=A`PjEhK3Qc=Z-Iy6?SaJ?a|Mlz9F9{n$MBt)6{c5EsU+k^Ls=BQQG2QPTm0f$A`cDcpW9lr;(fPrC zQDiUmhVzo9&PZK71mj+dn!|aCZ6Y6Xh36)OxMqDh3fZB{z44auO(}Z4BmaD_eRFzv zM$**j(ITwplS2vC^SMQdcz=>#E^T|lGZMJ6jU})sm1Odh-O1}_V`>i1AdjRK)$P=f z$r76HUerucI)5mw-<}@3)Y0oVRZ1BrnRd_|cM(OzwL*W1H8U>40aAbe!b_8;-W=_m zB)r+Hi;|`SoHWxVCw;L1vzln8b9!|>Gcm=yg>$@B4J@o~V z>O+ZEO%D4Ip1x|w@hhyV+^USshhK|y3s#H00WVQBjJ04=J7N;d-ugJeyCs{`?32{N zr#_2Ryi|gaQS3jm+jNI?D#rxDf#e}o7ppf(qzmUBnBDHY&0xQ%XasSKDoY}0IVg^~ zLV-P)?39loZg-)$*?7UbqEyv0WtM04`8DsNL^{hGPVEl+4*S&xaFjE*#HYFE)`P57 zBGd{Rn>TfZ=k_*s#6`u)ShUZ1+De(pD|=P;)FMsU?mSAEgx zygoX6S8oC5mc|9AxxvT<@BOKkweaLGx(~ z%;fK~>|_Lk>W6R?!QL}h__$pAFuMg`wcuxxJsVdURp$u^RM#s#5g3BgnG#ZBGVi18 zd{5_JbZTM3y^-w_1qSil_y7gP|1BI8j*pY~)lU2^{Ko&u_rZUmqkJ2jCK{HqHFi1LV__|$HiIJoOdDGAh4oZ%^*(CRb=jN!(bdIW64uaL%IO~%0p8Dd$;vnYRYImEj`lnY`1 z<655rMGppS7UR%8S33LsK)+<-lWcWvV&E6_W$pVeSE_3*mImqjJwmnJ1(A^$2t};8 zid~(Ff<9J_*tZGZ;&xdz*9k2p1TS{jbVIJ+cp=b_|GWN^f#I75gfPe5O6cTzj+Uj%CdB?Z&qU78Ra5TGa@s=Vp__x#2n4 z+)D!&+;W?@E!mG@0I|dN!3Uas6wW~wk!Z)AU#X08REq`Hug;{>VB2^staIB?^aQ-( zh`m{)SWY|b>Dib~?r${holhBX6aG-3FFZF(4f~uko9FUQ7Zhza^E1x>vZjYcIz^rW zSkrA#fvK2U;R-H)yCeR5eDvZ__^{P__}A9BgUftO0l6rPBVDGzvI}_=m-61i9&6k? z%W!1xy^%wA?{&S_xUOXx*0@iX9&e5N>wM35^TpBh|nv&GKyZ*%@?SO!s6O!#!v1JsNRq#%EA}Pe!b=KJS~^3A)1q4>2rx z7FPCviF#006YRJh>oQdwE2l@Ks4`W#-luZ8>&z4$g(NUzvUq&*e8C1aX*-)?d2`zk z`IUdsafuGA;17pC;dy0hEmjx9^D@PyB^*G)LUym5nC$twVnJ-ORUOcH<+Tyi-fTL=C6=sYUu%on5p_kI4oII7LV2; z5}DZPb^I6TBBvz=4n86y3WBDF{jnS8!$L_NjY-f*6^?_Bk1^$_F(dTsUJ8?o@RJ3> zwyK^sM zjfyPK!l)58OjN}y`y%yuzSg{4mO`wf;uISDR_bQ2+@YzOVb9AoTOFEZv$BWJ${Ic^ zefX@@fQ4$buJu8ZKiD~XK4HI~+^X)l{TwM!t%(^KYsLmrqCAB`Tj`E5r4dtpav7_c zG1Vw|gG^bD)h*~fh3A&3?(g(aEL&q5MufbxIHkxN%kOA@r|~p9K45(a^B@|megoD~(haT7MYGCSgFDs% zLn_NRP};4our!qB_Cx860Z5p;(SP(l39Kp*FfKtES9%R?X<482!+VaZi znT+xO4$)deNu9|?rX*5-yeEs^)gJ}Hpp87(`uR4%)vk5>t6lb|#ttd#k!&By zA}{sGMcvf!&7L-GN`z7P*`a+f37Ym?_IV;+Xa{lsntnK1esEk?iE{Gm<&mt6e9jTs z^?n_#AG7IPV$k)o2uc1^CBHb{s~Xw>#%K*rhS!%0LpnEy0nE#lAmg5vmrvnd;}3XR z|Kf`OTQ+~auoh545i9F82diDiumV*fI5@jnxw`gX()lJ|8BI3 z1x_8M(w(cRW5NGdcW#n8mgPVN3^slH9FmqI_3+1fUquL3L^Bqa>z*!Fm9chU@8$}C zn{uGqwUoa<^9O#-$H4imnHc?v;JJE*v87=7x)00}4(DD*b^WZ_3p9%}FGrQ#DNIq- zE%v-=_Tm_e(^tJxvp6``zCyI4)T9PMjK2DrzSf!XEY2*$;!JT^oSCcxWiyXpab|)r zWiuTXXWkW6!xk>-XAAdSqYt~mU2 zWU&n0rW-`H{-{_Mo|Wlm&+uVL;ux5AF9z4>ufFi``L5`c{>u8U{J+%ai>q(_*Q@V? z>;Dh^6aQk-{+%3OpFsOWBT&HW5(0&v{#FYVlAcOvz5qohXu+sFBH<&46JNpVBb@lP zebsQ*nza!%^`o&iIN&7aNR~!3uvX1jN>bnL6~Q93n>{i-+pB(3))OE6-l-yKmDmdn z*L%b{im*ubNI4;S50p_S$BO&c8J>^~9oQ24x;2QcBh~P~$Z)x2sO!%l%UQ!hy`0_L z|Mg$?Ow1#xoc;{qx%uj5Q_MNBuOro|vG)t5qH(7n*WRi;v9FifD~`7OT*MJekvjbY zv;1sRZy)%&5UILR{W>mjQ4R;>&K;3N5i|_FQeCjaFeh78bu8sb^~}}LQKn7eA8+uI zcz2E1+5GHJI&*lQSN+FxPNO!KgLmH-r+wZZzJm9aUzqUKyxaV}#NXeY?-D0} zr#inAo!{tp`Mqw?w>rWP@wb(~FZer?_MFe3EMa;*hJWI=c=DECJ@1;b+OrxGk&7>R zh!%U*6Md1$tf{L#w|9o;rmMMc^@v45^~*gP^oGgTGMVVAXHTCNY|M#{7h4G($j%iS1DB}s4-QGt)g z%m#qmn>6yoSS3dTXz=wbr)UVyhJ&#rUEbz$AdhAY4V^wy0DOCe?_D0V4DL z);?z*2|?TM|G4PMIkV3``?2=gYpuQZ+G|PcUzYh!d@U9n4!bypglwQHk>44SgLV~e zca3VR_}`tqRoedk-_5p{ddPd)`c>O4+g=mAk%JEVgbdbj@#oMFXW8n{M<~#4oE7Tw zXcMMK-bxF#Y_qq^29lBg#79wcJ%@m!-H_u444lWTIuh-(#0B2T?<>A}=J(>C##301 zEK{PK)D$Ay$X3<-LgU!1*k_8rWG3Vr7LKCZz%1dFFfNE14n-H1L>Cqs**BDWPQTPh>@x2%Ru=-q z1v{2}q{+bs&!B_f5Ql^wf7ZwDo6dO}37;QqaP^2O#d66L{zcd_m(E#VAGmr?&Gbrfb0(Cl=`q5*Rd z!5OTSz?s-{s4<2!lNHXC_Qjbfg~Yhr*jHoHn~B)gUp2l-{-!}5hWI0P4zxw({T01q z9%tcP=HpnfD0+cmd6v5duMjs46PU6pLh`YI$)d+yGt7ef_kiWB-Q=$TJ{~;A)tqC# zneny>;2Ar(zX|O4YRo^lOU88hES=oulBvstumJp40KU_NzvQd10KSnKH!#3AVFDE& zhXlaK{4fD<`(ytv0Q_zWi2;0T$3OsA@E)BspV&@87lTYOSgUauk0Hjh$KhTzf&Feo zignH=Or~>;Z`3L$AxhM*ix(_!{`i-~8-JfSO)ZHxS0>)L2|mKfZ#MoI<02e=cS&3q zU$^q5b`)P~l*)MlaolUnPAcN#S7QB%UWFA~wQ+lh&Q8wJeS7`JPx0;t-Bj({5zmN* zsf)mqIShIssA16=5Jw2wk)%)Vi+>WmN;>sBBHqS|yDR=q`;vBJrWRp$qv zq526Pzp()SBC-4v`{XYfF#mty6DO8`WS{(51Loh9l)rOV3=Rz0`)6$xD!`Z zu_D_OS=>`Yi)YAGDVlCMM*}2!QDGb!MScY!AmTTEfPcDJ8Osx8R1hura=cha$F3%)@!6C_wks0ZRKxRRSj4m@-j+gn6b|4p4keX; z{IBsIyNL!v93Zd;d;x2~BRud4)__gQd9t1Tr|9JpI%!!$m+M7dzh2~wmH9|{BID$wj8pZZdh!)guiwZh zNo2Y-kx2kya?+nnOk{AzGnnYOYEt4|*UNEWBtCwvB9UQdzYNj&lcMv>qw`CIvHmlu zq~9bmx}$U|-l6iziP9PpnN)R&qQ0Fpv^8hU)ti*-@}yj9?g#>uTSHDGRSPwLqHkzsiM44)$;?M~|MYdhlIl|DrCqVqGO^S#me z1Q8(Kt}8mH`yj}E#Z2U>i}1jtJu+G`zhBh zu8RgW+5B9KxgOy93)gp!?+LW$y!Im!Hy^|q2Zl?{OY-xhxy>Qwx3bvjMF@^C7@P+*p5WlBgYQ$kYgIka>Z zd$;eRY!cymiV~E{`U*;~JuGV}lYI@{9v{jy?UlL|<_P+^GBogV@VRWX=;`v%o|KKp zXxzqC?%9pV%I2zX<8Z$zgIx$b6L-e}(b@ z4MBYt(FWa~6j^S(qHOU*O>ea0xJi{+R>FJAcqXZguC`e5SX8jPi4If2Mqs31BgXJ$ zvG2d8y=Jwa-w|Z7w`EpiDF6 z;O`uMm-V%^PnBt0{{!URGIN1(w(6dHMJ=jtS+YgQsOoimZoRVjq4HS0N>2Cnm@6Aj zomAi>3qe~y{Cz17TNK1T&rOIGo~bUHUMmit%4Mn)iq|J~;9|y3UQ|)+j4kdlEWAt? zb3Su@r8+FDuMV@DBJNj7WEy|;^228%1ga+IeQuNcfy!#KfGV1I_!Zgy5pcUYpHp{l z=aX6*R#L|b%Twz|DWWpP%e1hjS_}tL4&TqoZf$;{+FbM|HW!BiS2h=MkQduu#5qf! z>GdC?_U=1(4^NT8u7nuW5lf-aX#KV9Z-H)~hXQiS-cy0qfQbUJegT{6!#y0_qP(gD z(@>>}0gX^5HjXAcjcdO5|EO%J?Jvy2D-J{#Kp@HuFRi61r3jRB2F>@Y)%C5i?yfRe z4|0r^wP6l^2xigX8MV?Wo;!F}4#ICe5+({=b}ni9Pd;`ZnV z5{}L!$G_eZBOL10?cIr2E90-kZf%k%b2BM|Q*WnH>o1#i95@{9Va$h5WvNlvxnD~| z!~gxlLYZ$R{PCCbXT~IEoSJuMa?>s_>3o1vw4y>Lg+pi_165Qay^q79s5}`M*4r2~ zW|(gkI1c;O6xGTzr3c@nflRrpRhnNbr-mZ$;jhcj;ewvBEuo|w>byvcSK*FLVB-A%Tk z9`oJB+>5w=U|oy2|C!5!{^puZWkOy z1fij&-l3(gp{0&sIzC>sHn^_rZw|)11+ONqsWmlxn|eg%HSBmWN0E78Rmx>L0(9VfHvPl^3>+rAU8-3WnD{Is!{#+ImOnDB_y_H4Jvs3 zQ4G?|9VuVW)eRdOM+1;yp#Cm7{Y2=Z;7EMJaG>o$&DE?Gqd9Ijo@6GK6*O#Eg44bS zjrtu*>)Ls%v4bVnzg^{B&cT3)GIai7=^0FyPQkj)GF@h{09OQ-WVP= z0)JAHHoLH|Y*r|jP)`f|o4PgvkHip&3f0wjXP00BVc$A)=URd0A*S2Cru=uv7&qmk zX#O#?PmeMy5w(0T#J7u?6=Y=t`RawvMmW{FaBxG+aF@NSs50C&v|yK5)BKE%I|Kr3Ek-`9t!m=Bm7D(M;)j0 zb{=i+zELY#-7C6DAFXCrt>*@!Agp+G=^^T*E+BfTl|Axq8U#|Gyv>gEg9>QQ&ynU- z!&ZDps6a)JasxVwLZwsv%MBe)q2%CO(O|c+9G9jT5gSXmGvN_;0Kfmm{@^$9KO+Hr z%5^aZWX>g+D+)L|)?dULSky5^EWCDM@@46E%St-0ic3HffiP3}a9rrxace^8dSHEj zC8IiT;!aPKBa=UV!6aDT_-e@7-$=4A)QV>1;$EQ|<#)KELl#D1EDKlvm0A`4YPV0< z_C?-Fvww_5@3Q*g`ed)sUIS&=)DkWoPntV81nr%13!-2r4$1Z+6L^hHwTkWpYii`3 zmlosxQY)IS)q7RHvQuS2o)FR`lxajC%0y_B&LJixTJ+BtCDMEy(5CX~p@`SM z(`dPca(ypL(|s>5B7Q~3;R=Rbolr43;yurs5WtOBMejzIG-6Wn!+0W#M72IFWC|VE z7S7UM(^$y8Em)i?Sez>BB_2vr4d%|B!WKeQA8b=+23_TO(0+WZ0L1|CMCB*qTv^e^5U`D9KT!emMBc z(cgyq1QZq9nA&q@Q?zNK5nJqXH;oHt2lTsA3L0-|yaZ9QvOFvQd%HQaSEj1H9dj3ww+uOnn-q)_{0B6z>eXM zx3c;QVv`u;fn9aU4VP%x!D+`=S4FiM&Vrq8{hy@jx2G1IY?!837*lIFVLS#=i@AM0 z__U&>aa_UHhOt5p)H$Y)&36|{G2yjO0L4)fxmoafL*TW@S@4Qm{}v$EZ%-@u zyIX&g48(!tplZ8uQgz?Ge5<6DooGsa+kL0iLZdc`60-909#XX>S=csHGQ=vNH$-Badw@v&=58oT?< zcjnlAnlyHe=8MGGeTlIvE~SraGl5w0`0bN%sdvQy`gf6AIW_w#P7KkKOOVlE{N)y2 z5)f^gu?wUz2V)o?nxpkFFC|2Ykv%@NUCA8J&vJS?ZR(SW4<6pT}{)_qkm9qYoJc5D)_irVleXM`W z&;O$S)ssW6dDcDl`+xg>=KlSzCDFfIzVb!=n@*0{Rhsl1OZ(rtpSgdne@XPOWYib+ zZ!9^IuZ#QrPJZ|Q=kuBS_b%%I!Ow3n|4OpX+&}RhznvKjl|g;)yN2yjvr60Lxy`_Fcn|hLAC-AFr?_cq>8JlnBcnv&Q z-zDQ|gLS1evC$f=Oq%GGCNfx`*#sow9(IRAFZY^*#Yll9Py*0Jy9QG3ASn7JT1YT} zZ#|*H@frI33I;tCtt@ z6@A+v=f|myUC}#46Yk=iUi|n?c%f6f!*zP9OPhcSS?U-cuOo*#Mw@kH$6A&nb+BRS zK~sSuqX^}xoZD(F%0fX=m=!MbsH(IZGs07dLL@lYZ$63*TcidrN-T844LufX6C2^m zYTfaoj8Gi`21Y!sR2ljEweA(s#*1V00?)nUe<^to@myCMOK$!o8g^V&444Z3zT~Ys zr*Y(AXq)BrXQbAOX9jz9_%4U>o2L{B(Y8WxrLyY${l?w>(iA^a{-8wq@<_l#C+?jw z&pd+0xS3j)actUM(%tk9jA7}}k0s9NfRtq{0SZjY60Y?m5trUqNiTNlcL{OHmTdu7 zAvlmF^rht#p;hfpwT)>WzBAK= zvWj8Ad>f$sX_$2Vd+o2^K|7yUG^)&5z-di<@)*}k z1?_3~S$cVScnWS-H9}w|Xq44(L<^;N7cG=B13?R=%s}w&mKR=F5-uyWaK?(rFmQja z{I~n_(Ds4HxSV;2+Mw`#tX-*Kju$7{_DP%$#FtvQJVS^^9Dd;Q8Qb^Qwpjach@3Rdekv@MCf+I2 zY%crRj=EVE7x|`Yq*o?dXopLmI7<<LG{v$r>n7!Mf*|kl<_`ui$_X}`;YLu!UtpgBwOf##ZMkPVNNXg$pw0OR(ym_ zxkGEnwz$c~ahjdP7v}SEO`I$I=U?bkLys_q!Qy68Pl~}VF}rq#Yw$hjGTwxlXh9Ft zT7-J`5%XW|yjBJE5^7)!Wr$^o;0;%0!z?aT@^?r4ynrd*4mZWy_YrTks%$@}LZx_@ zaTyXVfYn8^V9WWts6$ zKxPx4@$XW}K~$EQy#$aV!n5(IjdM!1vZ*CL?B5mUp`>9E2dmpw#>K&afuyYQPr`>4z<4l{>819KpF}N3=Av+?4F1mH*knbj6=o6!e`EJ5Sf}a_G ziyl>KZ31*91tl_2lrmS(7(r0Z>6*~C@V!60S5a&N-iOZ!Z}+wV;Qc0?6L^nKz+1`R z2v-k&8i#kfh@3HU_picxF5f5S!;fD0TzCTjU<|>81h9q7a?RviMc#i4di~z9*q;Gxs!3tsjiXSu;j~C+% zVF>{-tgyI335}J&ONuLu&^38A0Ar|l4w%Fk102DWVv7By6jMA`q?qFQCf2|m>dp6| z<&FF`(S?iIIy9--&eGQL`WO71n#wBVIEei{4= zS@E(JQh#n6d0B%Osx^3<8FD~;4{O82X^=T5fk%w_-2kD%Y0BrAe~QPU6s?pU@18<9 zc0sA5@nRkSP<{7H9csVyO5?}|BK)PvCKz?E1#99$1d~MhjK-=W;d?CSqJJ zE;lf-+deiC7olNT@~SB|u?fSZ)=XE%*+SCFWDOrHYG5sxFfoj+Ny^MMiH1jA&@K(_ zoZrZ;ffrO9og=QxoaMM6Hi@JYU;Qp}RT|G#e-c&W5|fW&{QQjT`SQQeul_>P*}~^z zLQ+PIYak@Oc_iLh#Wng!NDWCmqh}zVaX()tXxQdw%qiL{Tpe*`CXC&k%-9*L{*1$K zF%CqmSiD3mI3Q63TW8A+@v=#Ia-J4 zN%57oAKe~$QtaZ^h^jPYbx~A8>l~35AaYMdO2K>e%s4ASe6d0H@sg3HJ9R@RP-&TA3MX^x##%-dbo8fiLv<< z7m=AyYd$plhlm{Kdj0z-T(6}wC(fmkxZXrQPv&~xecI|^|L%p@cc6c&q)Xx@CGooy zN{Y#+NDWFpEmo{fmJ!11is5y|E(MU-is1|R**~A7*Zrqhvxo(;_26{I%x|d*mwq69 zahXfPv-K(dxQJwF3STkSK1KIpi}2W5TTwcb0nwh%S-i}a=JdzCOQkunk%`ZEMyC6p zGBTkZN~B08b0V{&FSXH@e+3_mX9uYDDdF_7T1_CBTEZVvE6Wv23wN$w?(e$@Z8ug+ zFaSGcZJJcW-(|I%1Y{Qj+c=| z%d*Xu-7jUJQR>idWHso}hK7e|6CLa?XcO^*>(nN?!Z*6uBMeVK>y#0mfQNl=c!F0e z&J0h$KVe3=raW9W$yzj_D8uJ4>{$qv^^BA2S=CK<$P5 z8i;2S=Em_i)RlA|7)evM%A6`*kQ}hI;LOZ^sm*>Sh6O(5SSqsAfwYksnaf03+cpO}X&ly_P zfv_pM!QYkOhTm7;zHqfz!VEHQ$^Hn{KgSVvZZuW@>ge!2KZ))0D7z|p>0&W{2&2TB zO5?{LP&5W&b+*c=-zkQQquA(#WtoOxmGN(r&_VFw3+174n}Ca=5`Bemo5%}HS*4U= zCrcrKIcZ-ytf;UleiQZq1W?LO(R{{~GP~vUJ%%~Rp2dYQ8+zgi7nc}|(Z$Z09WE~K z%W0DE0pX^G6Ahw)BY?V~?@I?LODS$SZQFlWXwjbs80_K~lLp%#YdXT~5VPqPy*W=W zPav-~-tES@G(FV7-fe?R@sBGsP1Y!&OI=D$T%>3*70JN$ zI#mRX7<$JkEIszpPK&}Kv42@8tXhh9iwo8Eh~wSf{@!Wb zZk6L2K@>J3nTi054^`LI^jS9^JJbS_@M<>9}LM_9?5S+-|+b6=pB~&R#}0 z@$uw5dROu!OV4oWBy+@-2qEFKUfH9}rzi(Q!z8Fl*86JAs}N3^OO$AaX{4$ml&Uz1cXErGp1{^qiFPzqUkO=i>c zkI*df`v9Xk@F&4*_lor*WyFN2KC;q~$0a75(pl9c?O^N?CK{7(@>mH2^PlwiQ+_s>hgy!>fbgyk5#xy6!Tv*!F3 zelzggzW!0b(tmk41la=B#H1wEM7c$ZUirH~%VVMPg|c(pZ{@zz*#D4;%(5GiyiMo| zPb@_GQ*+bWE0#e`UaRz(X21O-ZR;=MeE%sDtDX7VL)%j%WCl7-+>W(5I{q8`%J8HP zN9!PYN^%&j@FhEO{zK|pDN0%WZu#4WvKBL=mijcmkplEtejrMOm1PzTKD<&1DIB#; zm}nU{G&9KfeAy-LUx;#4_vfe0rE3mN%;4Xd52*~TNQ zOetTc@R|Gnhk^Pp;(^(Jd!PQl7Vp12_3wWm(SM9biM(vZ@Uc%tMD-VH#pt&<(&F2z z`(E}}((ZlM;Si(Y5@sf@%4Kiy9PC=~C~n0nKeSSHVyj;9P&l~0&3C`_+xTnxiD;!6 zi$e~8@zNNQae|dj#d_nT{8SuD>b?h6@`dM|h{i)=xruiUz6|KfQOc+uL1tO{q(m8? zUTKD$jGAk;Ax<6C`nNgnY+ABsO-9n0L$R4f(RN(IgXs&s)lvT>=xHe|U{;z$nA(fX z$rRhW`1pjyfNS7)1I%c<63}=(^JZ$ z{r6GYdS<)aV>*>bdpXAM@o|K^U3s*>wVR(+I1zYTJlY=@kM>>S(Y{qY+V8=m{V_b+ zFZ7tj8|Tet49YS%ydqvy@^n=-)C29PaXvesIJLKOeu%GY8A3CQU)ROCv+>4PQf-yi z^Y<7}>+y;U)1mWDucN<`Zoxdb_6@-}*4j z=(Ua`ogBctuXx5-Xv>jr%CqMmd}B zweKtK?5fK%-fL3(BeKM6sV@>4yV}!Vt*1?PZI(%Enmpza39A*Yat()Ej)q#ieq-nZ zvbq#9BOaMs)I(qVXzCK?o|qC^6)FeJhrG=EzSEc^<7ML91PAFeTk2BqCsOMS|1too zaEKhHEY9`PD-11FPU+TrvIs+^Z8LXvv{Z(;!T^)Z;0AI8h95*gsP`a%jE-QEFuH|9 zFs2i9zmfmir_s=hw^6n&IGQF|(aMtIOMbMRoe(-@O~9K&<^){hTd!B#j|1@z0zzbe zrUf&yPp$T?U*l^ISFFwcOs{yM%_sX=w(L{kibuuz)VEH4w)yUr&8Ie>m^X8Kngd9- z)xPF=ZN8UMQd)i6&<6Y3F+3Xy1k$)>3n;3c{FyAFMBOv@cYaArkwdyQ`{^C&)14e* z{{AFq=CbQ;<}rJLkGKG@Qm*VkduU?)TmaD_69Vu75%*;sDqPw~NfL8DYNRiDNo?awkEijesZn1$Sb zpM<;oos>g9-*Vg;TD2HW(|e+tE?;Ob3XZ5yTVAbdBRKzR<5w`bD3J;u1?z=35?E8H zS=GkUf+I_eW4`7Tf{k&S`VVVOySJ)!>N~IITifr8b=DW_)fa1xMb;Op?lX~5ddj4V zhctcYN3yLJr=;gH^JK~Z!R4DF8VtptMGrq@)Bil5p72YYPvbvfT?O76h#Z( ztKXQSJ8mfGZghj^8&c|>8&ZSB4(m+4qNQNhQbxaiv0jw2yC>8#*d7TT?7`P*AndzW z_CSpm4c;pSK~ObLWH)||^V$__HOCWejwfXF!;WX-(2WJat5VS2XV#V;4X!oLqZoct z425NX7H(MUN@0RQq8rv~3bS`RX{ zUzUjQ)ivT}K#W~N4c?UC_uQLMsW|MEIscKc%e7%YKk}yN%DA z+sJMLG~MDrp;Hn9NCofg6DiUhWF>!QC72C@2*G;A`Gnm%d26}4mq1S?=VjV=0$v2m z{FW8_wZ-0W!%?>{BGQ>Z+;C8+r}0g{qI+xFS43A=ywARfyXH{iL=IVU#G3R;T9ggMOgSVm8!jJ8c z<=Y{A_*-W^Qz7oW&mwWqxGGPOx=<{5&Jp?mXr_Ru5?}7?oNKSYP@K~G$So&7FPJmC zS(u8&u%29E(inHn+npDz@e!1({wpSnR=V$>Sg$GiBG;Zjf>@w!u$Z6p$aFs=G)Mwy znZF=L#B6}@DEBi^Bs0R6`eivyO*l7&3aICw@_0|5l${Y)ZC1soJSk~~q zt$w&dG;M;jpyWJn!^M2`P1-EMCT8w;=LoBNSv(l=<*YZY3T8X|eCguL%!W(kOPWC^ z`+hlGzNA^RU59^6AC@(AVuZ4arzF^3b(aZxn(d|>8Ey-TX=Z0)NMNOw4%GH^zMNnN z6;~iH9jKWqlZXe_xQH>4&}fmiBJ)&Bk&6*$UAG=uFt4o$0@hkIBC#N1KCXcbm|qR_ z&FUgS%#m_x4bSBbp45$42c*02ZCPD3LgH$>Y*(;x=t=FD7;6vZOZ+32brPHFgNGHx zObX2<^0dU46#G4vAwdtCai$Am4dkZNX^h@@0vby|!()*Yj1)?p#|mA}pewZ9bF6fj zquw6cj)zt=G^DChmFH4Nx`-rf}>&?#4Nq^3Ox@U_q~ zas@huHWMgRC*JlVylZg!O)T{5Y&F&Ny0_BUgVEw@Uk~RXYQ)(3Xr&QRhr#pah_{6K z#XoJ-sN$QADQ0V0))4Zkq9aiLo8Lmh9z_e}d!g0$a*8oW<=<;uqVn%EMw$7|)^`UU zqHM`W{sXPPt`uX8%8&i6y7w3#s{4BN?j4>r-@U5MzV(5PeCs#9KS#D;fX@2BUTJ>R zSUa;%wxcTBcfJ|V=1EoAZdKXVYp+zB1>Wzkvj?8G^KO`N!{1K;y!A#CHU0&U1~xsI z5w}+keUQcJ7~@uH4e@TIfs=cUYVLA~@GanM+#rbnzewFz8&|9Qa^rG!zt^~wyR3G_ z<;+(W^d%>Hi`ukVzu;E>>2bne{p=>y@#r7P?$4>1u^yj8u;b zJ3Z=A;p`ywD9CM`m?n9pbH;}}%FI#9w|DO7H+5qCNG1szzG-WGnR9BlE^ElN345v^ zsokx(!^&l}HsHMWaf>d06WGA10(l#Mi+h#>fBqyoMfge7>0b30az?XX9Q!Ri@dPsh z%OLaB#&hH#0|&e*U6NO;e z4e9 zwHKMoWVS0HFw6HpyPW(ic$#b1{lexhkHGZ2{+b$pWo2bxuT?|mQ&tU?mHrwit+dD+ z70F_^yivS7v~9X2RP6hoUs^R>NDb)1`a4Ka@{la1iD9JR;ogj5FUV1lLT7d0UbFo` zC*0sQ=2L+J0#HE&@h19Lts3aq z`u$UD{54Y(u>Z%C0tG6}>+^L2pkw)Z`F;gR0IC2h0F`C~%&`_QA5g_GT$RGK1k}}m zxxA}1mdhIpn3&M1;YtAWHKuzXu_^KDd0r*K8ThiFq#P(Jfli5Y8G(b4uu5Z;S$$}m zH`MYGeze@H-iCXKQcL2b<(a?1M-6 zk@&#MelHzKw7Mp+LAB;GS|h~;UQj$P^CxI+Zbd7X!0)OEP>j?eZFK+_*UMQtGBEAe5rFl_M8fc zdWF{*CU=DVO2huCXga+-9X|>ms|nnzKAps;qF+~X8q-%;n-tuv-d@JrSXIs;(vVD5 z)eI>+GD+&_HJ;^ebxD5yTqS#r|CGC`diAkb)s4wj?|yvXs>`XUGbA-kQAJ3beSBC` z9ayj0uwH%Wt*(hTRwXx)+_$kmASJYIk`$GZ+(@tS$wXz5MqGW6KtefR1DR z#)*L1jQXmYO5&I~0(pHZJ+!nA6YqlAWuYxE$ z0&`nQ$drT!NH8wlnQAjiE**pygMk0~6}CX0yb4L)!GZZ@B$Pm^~dnXqmZ36Dy`NHd}1 zSrWEM!Vojz!Ivm^pClY#q1x7cjD&7UFi0>fvW?*@kDIi;W~PIUv^QH4wwei^G;)lW zgeT2}Wp(86OTw>JF?omo!`0XS47$6T|EnODeFLB0c(dBfmbj)#9yOqMYVs1PVURXB z>YuK4<9cCm-5?&Vjh$`bJRJ)n0l1r$qop$hcEXVPe}c>$@Q}r5*`}b z&c41A#s7KCPHlH=%Va2OO+~@Bs-(m$Auh@;_RoHqU~?#3Z-EqYl>9 zZbeCp_c2<;#(|QF~f3%cG61sa?z7RzMrS7vV(jU&C|9@>o6Z?+u$s0 z_s!pZUh-zJK0*5D#fy@BOL5^EXLzBjZSXQ$PKI;HpzTb6AXVFehL>W_1IpSSUZ|a> zp<>n|s^8Rnbfh%j6~2xURV z(}7X;#d=9!-lCFkaJoyXT+`t2VxhoW3RttxIKcO7wkoSPWwA;5#1_g&~^mfuUb_kr>w2bJhLz0S#_lWXjy5k){$Vha7GwRP#(`|u^C(|cg zJTni?GP{!IPqR#}q~B7Wh!cSg3|qB!TSFcv6 zSL{AZc;DD7*At@AsZ$CL#1};cYUMOkY23XGEA#B#u5kWZkZ135LDtATr4|$9e(47%x|W5G7auH!wfa)r%cV6 zkT!E-Q!tcSbj?rB89-qMJhU6~w3OQDT(681ze8PxiT0ao?TlRY$ivZ18i%cGb3 zA?&+LbHvfK7)+goUEN;eE;oZj46Zz_2LDhkS{eKG+vrZ%*Dl9ueJ|_2mT*;vmhP{N zPRo|oS&{3{Hk;S)h?b039KXJ#m$LesR$?Mp-arV}JpYdV_yj!?Zh`M9nQ;>H0&`}M zxS*1z7iMWw^Prb~{F{jBrAN(81&?uk;Nh|wbgVdgS-7E{!_Pa7e;n^tF5Zi?Np%Om z1f6y1)sAO{HbZKMgs(a*28vo5Aezcv3CHWB{>)HAhpql>g17HAN`?crV2572S3Xr6 zj_?9LO{p7eOqprfrM*l?&eu+9?Unh*jFij8K@WyRS+J(?qCBmkU5*24RUN_&#AnMH zdBE8TOzDRxO0~MWR$+<^h3bEj{id3n*fCC)IXFx&BiNZV{~sO}n2j9Z^`vQ~W7WZaBm^?w4_Mn}QwJCXF-v-^cp7@Q@8*5j@Y1NNhr0P%dpKdZ2 zAvkX^Js$OI6Z4EkSMVuwseTNMKUbgVoGNdmS(9lN#tVD3R@0yPA@OHU8+=D;Ls^#8 zr#gJ!tXPLteaYtmtJp04h_Y$~_of-Wg5JI!tub$T%i<9m3WLL?p5J|H4!^G_V%RsN z1PO#TI=f~3GTu&c8mq0hWur+pGhC<*=DVrT%)$~CUt>fpD2>Z%3Sp9!3x1ioJ&eDc zUNqq$?WuCHrgAaMi2D)sj|Uz!59aN!F>VxFpDz&85|d2zH)+0eR$Jsxw?c};W6Q_t8s z^P2uXdvo3H@0PPRhk~(1iGB%GkJFwuESO=`?eAdTb4>a>} zU@dejuuPt;{epOcahFv@K1E13@yP^BZV|p)5;`6Yp6#!kW^AHy@M3@9pn&w+sgfrB zS7`=m)yAIj(v%F*$axu3Q!52tO4fz3tVdPW4JxZgvi@^iQr4Rm;bWQWT(0xEa=GRL z*ZaAj=^v2^%zx;={z$%UT>r!MWxlicA0#H!!+?E884S&BcQG`*G^BQGvtxw1xy)OJ zdCN3!+2(Duc^hlq#;Y6by?gwiINd8V7US?28)^EThSEirGa&D%Qj zw%)uwXx<(*Z_VcIW%G8xymgtkqvoy0yxGoHop72rk9o^9Z`tN;w7LbxajW}IU^=(h zOfY{L!LON!^!0CBh*Z0E-nvqd_%p5%K28?HyVhVpv__cyuT;xf2CVggG^q=<(FbEiRfCxNf~FGuSdv2HFji!xqcuf<8#EGe5tD~B+fe7 z39+?>Ugj@qV#vsuj+NrJmxNi6ZX*e z6!(~I?wS8|mqjG+m^~yp)tmHM7nvkKr#a+%wB<9!x|uJqN=w&Xpz7FXpODUJ3JOgB zp7mK!euTD>Nq{02vNndutk0_K(?n%-TUCaqSF19qq9y)Kgqk!A0M#&u+DSLQ-vqcS zSPwel+(+-B@!l+~->N-4%mQ`P&|j?0N+_hnX zMBq2Pz!@CFl*!J2RUJb&&jV12W4QaW6m`_WGXd>;=!9d*VR2uNxG6F0MCwfZgWiaI zC_$^fbva?tqHSp}uYAUKb)&QK%gWyg$|YAb)mZlIWd)7SCGQ_A^~hO)1rB433H``wy@CpitK*)(4laeLs`V5&_wOG!}$8iXjCoApuji;NRx%8HUy$#-(mcE zDh2d6fuui5-fhSf_28}4jRWD}xonUi?;D)N5*Z3h$Q3v8Dj>$|#`e1?r&}6AfVod- zn(UC&BDTkD_N_LBqN(g!*unlNVZ{syg2PA4TbkiHw%{PO<`jSN=b_|e&Y5G-mbMG#n{rx-yb7LX4|rbK4=O zwX*ch1}WIk<2cuAEc>BUlxb0yl{Pw)pe_d>1txWI-*Xvne!Y(b&ODYn^py`%h~G%R z`xDN%>@uEZAb{~PSrnomzABjjUF)Zc&pCgf&J&_=K?e&hQKt|39R~O=jRZ_+%0y+0 zx9c@kS&S}RDAQ(}NAuOOgOt@%Q`N}>V;XFus_k=B`X0w4+= z43-lBuNXg@!U+Jp{rAz!#??0Gtc4sd1ulKS>mIZGEY0DfiAL>cT1La+NpjHtFJ}_7S*t2HUll)#?JVIObG!Nlo4mGb5$-tey zQf{F9Dq)mh{YtrOs|3TtD;29;CG0W0@{CM!v|^Ilu1av&a46h&hVx`+01^uk0vUd(n`c#v`AgkAs@J@eZVN~bau<-uJ^IX1{%ZGh@mGM4 z%0NI~ln~BPm;F~*0l$YlCfHB#q`)pR4Pe*q6Kc?3EoV^&QyTd%$suw`f>JEK=5#92 z8D9P;4r;wK0$k0Q)i)&1nBYcZJh+uKTP`)0w?V8N(N%mxm(GsY;2m?J}~E^#!u3ojHq*_i67vyp-AwQauff zHA%JcKvI)b8-?k`a;P>+Kg|T%*v{;$F-|GvK#o+L-=~fL;KgZe%(B|(O==_UQ-{%@ zL3&kh4TpTSQdT5Rtd5tRi-Eu!98V&ocAdR$cpZVYr^$8$ql$x(;Vj|&e$#>=aIfTr za$!a=WGw?fTx}Xa)1sY2$)Yb-Mg~1Z(4?)frUe)+I-+@jZG2~JxI{c6EWlE+N1vF1 z0WI7{b~Y9`YK)hWccpu`6Um>um6+gl0V!;!Yi=)#OXMP{lF zs3JMJt)?a?w4L~=R7aB|8AiI*^hfBPrEYQ9n!O-b(*8?xGXt6QyP9Ls9VM(6O{!au zXf5&{^53#~p5C@nCvCQIn#sIT1HaPhfnr-}hAg6tTxx48&E#>Z*4kDoR?{4N67y(o zVj9g&jGv>kw-OL&Yc=Zbxk>fS`B&--B-Qu)#s6Y`t)+Q3v(DIDmOJ=|{H0Ed90$RE zCDS*GOnW7w2itMKjN+7QIHn(Uj@6kd>S^_oloa#}=Yo~Eem}LkWJs#Sd_R{TQGVD% zr4Dfmef6(oeBD3Ys^zg3FLX$0Q=~NVrp=MUJZ@~P@SOwl`a@gH-{@&(45$t}aJ7*8GgDHV{vD~?yMyexWv)k40`vp`L zhh%x*Bm?~EK2}iTBVjg<>Az2+B5gBURJz2wze!f-vT0x)T~p`BIELDol@dHB9>9K< z6eHQwiR6QRUm}wp9bpLn$Xu z<44X#Fe8>mwQ(O3yB1O$5=|1SBK8WS3r8Ct{!{rLIBioo8NvHK3%&~j%fOrO^|t!j z&~?$^jKFe;0*hVafeRqpWf?1477az!Eh*z+aqKRjQNWlQpAcHQsJ2o#J|hHK>_(!~ zpvV$JhGSOYG-E$YEcq~>yEYhow|mudtYT2C&iYR=tH(InJjzv#I}KscSXjB3A;BCC z(}RCerC5GBVF)ZRlr~NGWdzpJFTXJZ z649sP_mm}0*5QAMMA6`^42(YfknBa=^PnWGTE>{j39dYmgNgCzTNBQ0Y?8d#V9BS};?Y;fQt+qgK_+@sH5U6C{DPD(~xfdSDbf z7X~(}9LAMWb&$yQs;Pk%mFo%d2a$%29D4pkD&<$C0N8*FdR$}tSiQ$apBzkpU{2kj zSTCzLoUxZXFX{)jgemw&USV6880S~A$ZL&rzmYDa34UWTl0~19{!AJ09A6lA~0@X^8G0_~(Bdqn#(+Qans^v~0WENo~Ybl=!WxDAt zp;n@W6}^+Bc&ZWMZrV+D^h|glegGJrJ(V!q4?eC;kdj3Q~z} zj9O@mBlLme&JRU$P__y;UvH8zeArePdR5mnC|$lVpd2|aj`uhABdzV#aq+CeUva6a zMIwe5W_01TQ7Wn*60XRojb2pJ`yvFvBkJntIg9uK4ze`&d6Y+a(~s-{G{!2~qGOaN zWHI!vJ#;EH==^m#pJ9DjZTvR0Fz5K!6!d@wABs+5LExC%0YON=!)Y_(hTu`Os-Ut_|nb^cKHu?#C-U?#J8g9oklT zZ;Ny~`AMuO_3rOTifMdozB!R1JNgG1+hK|Z8Nfe zGmfi`_2E`x}?;#K$EMM7RH@a|jd6pL+{C&#v=)MrjrV=z_Tl2?3|QM`lk*y^}Zcl;Nw z&T-Kr!*B}hX%;@18wvY7HR3;Wq;^s}S9>ESaYj3x|NzVar{&7{PP1}-xQUsKy?MnN-l%G7H1}ionyZ_4gF~rK_a_(z2;VKWZ z#Tu7$IZA#BMDE`7hUU7WIC9vF|51KEz7zQ53i@eBA|E*IN7#YpuDQ~+YqSw`z-*A& z1KP(2<|w!yKP4?YE;~rB`0U$hrzj^gCI5uk0WCc?ZK&%tl;*BHR+Un&HDCE6{{$@# zUsos?N${zlvw)tgmD8H14TiOz0L5{qvE6;QtmS-yLZJ#;5EEe(cyeNjF}&jk6x*4+Maku zg^jPp(Ee}IbwH3|mXf~*Nz_jFoZ)LY%TWl)4_7%0BJQ;_&d@t+zfP=N6+(p;XAG** z3bZ>N;RZnCajzJmCNaSRy<%@$qTT7rz0;vpI<=b|xvy(mgrG<1X6Jv42a$LM%!^ReS>Sv7!Y{Lhu5WL7W$4pb4J) zOSYRAz0fVJr1N|d=0DJ6Gjj|hhf!<2!tP4S9EGAFi0LF}%A!>sdk{-%9ZdA z@2K^WsAtvsNFGf4rc8w)bU=_~tb$lSB#ECtcRw?>*xLD8q;-Odj8>nwGNh;|AxY%rwp?L;UiO zxu40HFt6ZHC81 ze+Oj?1+1=lUI;q!B|GHLxQcYgk3=@M&6Dk2p@j1a-jJOS@8Mox`Y}1+T$wp3hTAHx#umO&)?iD{2J~7D|L%K=3mG z(xXH#1(2ieO7mC013^RJ0Hf>4-4W?b16nc|0*j;lVL{f{n79hzx^gQF1&qksPU(2J zz)PmMl|$j9kqnYU0+L=p(yKsHJTORPKKh(L(-3T2`8#rV{49Si%=xFK*G=A*G>@Mm1;A@7&1lp4zR?%A*!BfAoiUwfHA9g*72{70qr_Lf9IdXlj+;-hD&Hjq+D*A5Z>`2d9KZBFD=AXztp@vec>MCe+quxeW zPN}}5X0g7bl)FQByg{+L>%XN;a;O4(SQGh<+ILci?kG$uww+?*7!q+;Ab9=^MP?-b zNbV66ZMrSAIc4t-wR$3_2C;2A)cs;B(=yaOs&kOSnCG&nEVrXsOh9&@(DqGWniX`o zr*wp?4(StEz#Ul8vN-+uA-uM{ZRWlyF?aFyxkK|ETwOZS6@8T(C*==-AFE5hyt?{4 zEokVDD|3TDL-TdpE4uZu3v#<72Zz{E$&J53+o@-c*z@k5_n`Dds3ZJFE@Tk2&M4Gc z_q?s`+ynDE#5%8SPY-{INqkcjMgudeJsS3B>lq97oZwU4@xyS@Xx%X~7g2xeSgndR z0N~Q`n+`u`#D>_3UT+U}g^RQJQYuEwc~e!~s%Mbv(4Mz-*GOvHX;wxDRDEH8PM=B; zYn>Dq#?QI0YYtDd!$pM~Q^HfnS*AL%Nv7rtF^zky`I14*$R4wPY=5v?eN$U3Qyn#6WkmUCTzq6r(PTl69xx8H4%33PS-ZU%iiRKkyLda z%A10Z8b;*qLY#5hD>5X4&J?2Q;7vfmCvncE5BxIW%_e~g2fK{(pfqAO2s0K{7Fz(- zneNR*#3;=o&P@)Yn|ssj^N1aq9cH34=WDw=(`3=s;Jg9;$8LKT%uD;by>axOllC{s zp;h&2C-y|`J@)E608H-LW3|R{k)9z4Zzt%NL1@Rw@ibrwAPaWMc2vdDaPW{8>_XrE zYUgzDB)21Sdd9UU4gxcUZ&^w7ITV37 z_n5>PT0J1%DOzly6F6wnV(=45qdXVv6J;4iRuAXq7_F8TgB|@+4 zyMcb>?X$wAnJ|T57h*JoCi3nOdp9H|JU?5%6Z0uzjgVL9ixKvZMm9SLR^(P443}oH z{AHR%C_)nP{OF{wTZC3QWf6ZUJdsTc8R9)BBJT|e-!*PdxOgl^8sW-3h3T>LA(<@T zIWqv(x;IV!GU%)|X1O<)67shf2a@61E@YO@;imstI#!E_-W_U5VIyd9fd&#Z92JTM z?%TJ(yR_2LdwNnxE*+avI$BV@G;hyImK63{@}-pKaKa>|G_Uh4t#rIL8v%q!?(Ru{ zk3{JLD6H3HMNXvYMOk5lx}G$Uzn}w1DmVe&fpz$FUsdmBw;% zvMY%^^wNEW;YSsQBP1m-91x*x!oMg~zkwrAixsM$2hM=rS;9iLgeRNP)?-RAh2Pl< zUNZk?=O}1pTl1g&Vu7N98_e90c~6*_9_D?QIq!|6c~5NSqe=7r=;`zRVE=g!Q|cm+ zl@>e{oA6!d8 z?FETqfUyW>HCsv_1;i3p{n1Nv{6|r$nr|)ImDx_QoAWLcWYASYALr(yD6(r zD$W9wk5ctv!O4aZGsBBBRhi+%UbEQnO_>s3vNS7Pltm+F&RJb_RiZ_t_ifbW1t%Nb zl#<-C@J-Ssvoog`F*DY1tNk(FWzl2cw`{Q&puGq5LyKKJ{f~@8l~cTma;R>_E`F|= zFtYlZqLIOI+8r5sX-YwnhgInW5AiaS+FF!Rc=ZHNa9H^Ej6`Y-YIl$yKS_%{1)l~B zwc9faT9I25z-e$7G8{>zQHw<5oRASN%Aj_@GBQzUK~YBVih@rY)Adp&V^LCddRdg; zX46jlECC5?$zaac#D0#_CFn?ooOi{a#J308LOp4me8Kl@w)`0pGE##VNrqj1<9guI z>9u}b!KQ8JQ0vFTppQIK#&c#F!50t!)&B61i_MJ{WmiJ|LR+5W+5}>W7n5spX0jwk@OoAB>quds6wHGaIv863-vE{Q>OaL?C zLx@N<3bxTwd(zN02trU~-rw5$%p^g)_4f98-uM4UC+D1f_Sqk6uf6u#Yp;*JV)TZ= zTckh|MJH*3;>=j#8s)(`oQ3g@CKvlIec@@U zFMH1G3K%<4xVvPTBR29+6n0T1$Rq&qTXXj4&9Xl?(vPVc!)1ry@gvupWhP1J}a)}yYf*Coj@7`gftsvW5z?H$p)pc*AT|`MX z(%xvjxmcBOqblJ>DWNQ0LL6zI038+502R}Fwt;hX;C8QBe@&m7S!|OK! zdJec>g~VxhqB>11b5xqAMkk2JXPrxvR0EzJ}uEyt^STKZof0bhTD~>j@Ar z#i;uoHBJ^w%y-aA$=is-L*=;?QND#gOo|``W;DG=qIY>LZh~ppZ3$X(7^=&pNsJ6o;H<+xQm*8pdPd^-|>1cDck$ zQH8#6XR_eOpm4oB%9`@^Gtp>4aHl(0eYoU6#~1kW&p{DW7mk=) zwg4NJ4W!In`3>8e#nff4`)*RDv&4GJPu(-tvTIGffnby! zzoY~_DVtTRLY_4WnW<=;swnH0Z#h3j0QV0z&ieRdMGAC6?4nCvig6D zVn*A=SfB4HMq12z^QQ%|Hal+!;m9Viu2xowPZO5&&A)3fe2Y@e!nKu7z))hXqQDT5 zYUDt7tr>VSG}#&2AQ*w5M^+tPaDgad=r0(|njABuyCPO&jk2}7AbQ15-gswWcz*@`*X zs+fac(dpdhq-zU*99?)e>^+P3)z#LC_n5q2khMFoQr7Lj@_0UD*~7rLSKfYjGZdf* zQIaKkQebt*9PY#7z+)Yrl_=1-vWBr1(h!5saY1gOrxSpsf={nbuaZs&poJbwE!DBr zS4sBmHCfC`?KK&Bp)jL4ubkc?0&M@2=8V;5;krmay2X$k2_+$_6~sVD!7+ptLfO-^ z#?h)F$;seq2LkkU9p$PAiROW@=V-vt^y4Q_X;5;2>((g}>qz=LN^)1NN(=xen60lW zc$U+PT!ktNZx7LA)fI zEbDuhC~WE_F=0JZ!YPSQ`*31zwX^yv@zd7yRPY^#LqwQB3uQ3E8=)mdTcAb~)x_^7 z^PHi^popQ)XTVcMCSY5u+W1@4BR!VDYUdqSM6f)iDZ-Uet?X@;^tb2K0#sDz6S3Ej zBKzQv7cCsf5w}7Vm0BqYdO=7u!dte47i5MXQpXh06yz5@M-izB!%+j=TXehi+{&0( zty!dMJ9`Nk-RcZN3Ds^*4NpU2G2b1!HH}@_EKVepRKq@pxb?EW2Q;!jQiltbN$e-W zQ^!TLNrp9)DCf|FWG#{ME;gr@k*}$GdQwyMOn!6t-OX<+GN4s8 z>d{y7eD-hWH|}C9-Z*E1Zc`ccU$|YScOH#b&Fa&pc^7OGt)W?_m)Oa~sSbJl);3T_ zNfm7TSe`!?-#sj(sn!)VR|GxP{jG14OKvd(=5MU|`aB{pCf~je`S$f@$#k>24Egq0 zG(|#H$3o>t5c9|7+ude4=Z1((k#Dy>ly7=xYT@=Av=GRQu9Ej|5o6CZz4s-0?Y`{Pf9ZPL_Cd5of>9R;@ZVyk+S;(e*XLA9PId(v~Oo< zmK(XgeJtG-DoG8Mq)~RLBt68D#EfI1l1wBeGl{-cc2feZS5<%XSla&$4>g5m(`ka- z8@DtC8@q2h4fS4>WkyJf8n;AlNx(WfASqSwF) zwDg*DEp-4U#{-2Hh8>)Ed6$@;Hc?!yIu<)8c!jMH=LFMbE^$s!rY(E=Sd-c3VWS2A zM2V)o)SLx+%;dOWtVTnn(KYKjPB}RH@4RRw(2*kpkHwJzZsLr`@&K|ve{KtBz%?D^ z1e&9Tv-E(r4Bv5+xV_)oWSWYQNrSDHHj&q3oB z3J~xZW~vRIJxCBcheGd~%nxOCK*>FMn}CG_vD!#NjY8OjXmot_JY!1rJkDFHy7XDB zCW6Dkp_849$(jlJVn8=*vBq#dplR|A*5g%O!{xB&f8R>9b6OZkRe24!7?q66+z#cev0rHc!9k5lur}HOLW?1PxjG0ZG9RlZ+L|xiPZ;y=xq%sIME@*R^vKd`F~O1l7yF zyk;u_!i)#*=`!4@wMOEOP`b?R#v$?j1|{|vZzt8_}pZs)!HhiyYGEt3s8_J z24wfwcVF*7m2c12cMo+aUCB;YL&oU5+{luBe5zrKn%x8k+6WkrA(P&cH-r&DeP_jg z!nbPUpI+RmO&{ItPtg9~j8n=jQ&H6HGG9?czN25$U*bdlPJGDIX4pf%!x4OkA@@?p zSpwgn)#|u8=M)-LGUVdB5lOt#Bdrr#gy0!QcQQ8&>ge$dDw-P;5cg7Zd@#}{SBvCIc2gfY z#e5M2=zK+T>-&RkWZxMtRA*0!XP2z6r4<OKo48!Gv{(E^ZG5|O zo2qinw56iT?>6_;zT1sd7#+r@cav-1J`4N?9B24MRp6Z~kuMDpW&euM*n+&=rX?)^ zA58H&W~2^B(|m@;lzvxHqV|GV}9p%pKLdAR75$-~stzl22 zkEbVj0`Eqf11&sjKuOUAc|Q6Is^h&f7@G@E*EjwK_5;=1Jq?AYI~~glPlpPhN0;rA zXke>dDwmBEXTOU22cihSHJ)I4HlBK==IzAog2)ZGUHxKzuD`Y5Ta3+}aywRJG2oEcw!#F$ckBxg642GjO8z3s~FHl{@!Ejf*Fef5WD8`E}*#>a+PcZDXq z&BEtTH6{7`pK5aXonv-)COwzf&`?heuxL1`t?aKw5UIi?LvMq}=Jdc zU%{G_53`Fh=epmhO%Omo4@uJ*hoBxpQPs${1%#mJETpBUvY}?UjtSl>R&vT-TFaKZ2@= zq^UwUhl1;Qqa8)mPv*s2`fo;-HOf6K;f<%KsLbxLT#**RGIB!F|wl?=nL0I4qqe3|m*O)}NPzm~mBiGHD- zqeWk5{$KNbHT`jerenVqMOz^Oc0QG(UvuyqeCk}TF6)T?D!%SzMAolEI^r(ex{azO zVa5if0Kr}P^T_T(L9q@21ofj8&}`U;^VHMe@K~KXPz_Xgl6sP19sI;N{braR!VRkQ z5lBA@qpmYQ1E%u`ruoNLN#ae#L0=vCtlxZIoBl`b?=bN zyl$TWMhTgG%4v@cw%35mwHJiTg)sgxB0>H|l-oMF zV=<(k?>07BSH5SIIbX_K`$N+1Y*8_EXVq&Qn}r2z4BH1!&qD4rI4w)C1jyHgf{m0D zQttn7b4AiB+sl<_Eo*3grq#X?FTd`vfLsXE*xvE9`qjPl;H39>g?*F6)REK3#V?i z?)hU^6xVLqOa6Y!J34W;_;$;(=8>12NT9vEF0on?L?-Ht%U*2x3wzn{RG0NR^57-F zx|FMqT(KJ9iBq_h`aAKBW_zuPi(|CB`?$4f@`<=hxG(=V+3oyzZ?O&z)Q8+Dz8|ek zh`E!y`uuN2o`!CZ@}Ck(kyQY({b#gO9|(iYe(lpoug~T(O(gvNcq!|1aJwSw;bn61 zr}(VA&Y=lNdMHJ*$ePY>(teT;fL8WrPQ^R3DmqkP7Vo>-&me+M4erP;*|NF%G>S$%Ld^+|`I}@}e67ND z5^9&T)xf;sxq?O3tLJDxTB=UOCR1~ED~@Aa;l>w**{H;yNmK5AA|j2i+F(qn+Fz zG#Omz-`qs2_>58k<-(HENS`ME*4P&W-iriQH$zmXtlC!%a zlnO)KyyVZKd9sr)E><5@hH0lDF2hur6!xr>Ag=d+dGWmB=&)TH^!^N-_pO^<(bVXg zWo&7*KYGmm=(qTPOvs5=tekrzB*5G`Jn~d!!tfpN|1hHKeXpFGTf?wBPBWluqr+P4 z(R7->N7z}NnET<9h+qfa1qCz4+lAWraIeQT6A(D^T|TQ&bVPPJd*~eSs6EzA+2@0# zm67tH%F-Ggmi0T?XBZ8_G?dJ3zh2P2ovGDY>GoNjUnI0rdh?{@c9kkp?y{ScX*a3? zp-nF4Jih&|hW8CQkm%J(H_XBCmP3@ARt34xM;dbBdU4?tQGdyn;1fq#?kJHxhPBh< zkP0BnP`HCHNXEnklc8`HZ}g^v*$60nVD#%tGZG{^=>|( zo%hGdSA!;B9FWGyR~_W5&L&^xCi&pwL~MUZfkFoghM|^D`>gMB3~VY;L{e6RETLsW zH-)-|asYv;U``;1l-V7}VFQ4?1`ms~-G4<$1X0{)HQ;-Zkn`yun-?MJ=$C{7tI^*G zekma^Beqc@=tE;59!X%whpIG8zIyK=ZqWOO%Je9As~9YC62`5pY;);Qf;_C`0mGK! z<>eCY>FRN_M+b%=CvlH2$X?Q41SaDPMpO+d(o3GbnQNFmTBI-Ir)3+3)3QTcwoDx| ze%c70M${cPXJd4?E;Ma~KP9;H%HSW{#WlB4{~bV8IXdjw2d%bh#-y>~C5TIE9SV&R zkMK#zKQ}}?>!o30Na0y8!cWh-y4}bzm5^Q8d{u;Iv>BcqoK$4ruZ1*+hZ(I z9&9&SEBX9bxF8E0rZ(H~%O`zZLtoMH6Gs2P_(r7(Flx}#@h3NZ=s>N0c6QSrlL+2` z`vaK-i?Xak*QTK_f`8r@y%*Eq(``)6jc{TG8Sq~oqN9l0XeG zo*b_XTTL}UGXrmL92Tt&d)88VrCXf8Nz2yCD0D@Kt>?<59j5fOHF10QOl)k?9tdHo zw%XV-c?c~Wj-e+;#ydeLM**=qt>@!86;^>yf zj#Qgt21Xyft}C`(DR_|EV$>^ESQ*vhDcYYLJd+eyES6V_(tWR6gVCvxLU=jZF&|Y} z(nf4-Sv(*?wQmoF;x3Np&2$S{cJXWFXT>vVmd|dNHA8>#M6l{mBFj>%-=WM2mH+i? z;W~=+{raJ}{!@rYS$zjw9%dqKGpqCueBhTp!QYUR-+7t>$ETo48fdIs-K~`F<#Q zzb4f5B*!5F5GKvs)J#DJ_aQ+B9M?%)sDNwhVzvQL?_QuT>b*&43}+>$AOD%)7_LOi zDB8ktyslO%O57@G5b&JcqFHy+JXeuBamWHrg}O0&V@1em%sEJsdqIw|dD3?ffToU? zn?wYi#%AZ}0ochqzY~85rG96Ev1KAw!AsEWImyvOK955jA5e5|%aUJV>??*>Xpwa< zpU9EI!|n#pIrRI**8Zq;=+m7g0c{FI2g56++agAF%y7n$E6dFk)+n6sSuQd7P&)s# zMp`yx_!)eMhX}*8RIg*wcMH1;2bb9_YX^&)u}#4xS0FVnTZsyPIJnS<+d$( zCf+I3qHZs-yhmlU?U>vksCi{eaSmwBsuL=usqwc4`reY=R&m8LB?I$)ost1_od0oq=IEb|@ zFY>{VcIn4^6l&&|VfSw4`>;Y6p8=TXfh~>w00<|d3R~LccAz9*un-x;u4GHI;BO#4Xf{k)_ zvGJm(yCUNKj9R+kbUh!~oQ7~7jWMnRSS&Ay$%j|cl<=dC{I%ipu}&+1+5CjPr8es3 zv6#sQUg`)xE|Os65vmfJpeve`G(w;1q@ zkp*sbvM`#vbah8CjDifgGtBp8z(*FO#nUr&`dg%jA6-LJKGucv#tp%~|OG^)X7=Ldk>36TOAD_p@BWpZGO_&qMN%Rwvz)2_JZ zh-WKsVTcdaaN#TFDPeFn;7movDC}ut%zQq|DLlewasqKrJAXV!d99FFjj499yFt>V zJUh)O#a$))EJ+q=dEeycC0W+PUL`ad*~yK_d--aY)%Zl0I`(Q~2y6k?nzuY_M1b|| z`)La1M@WC8oFnzYr0ZA9?N{yU)sfz>M&%4sUmaDi+IzoBvtJ=O6%4#uPN)R*`dq4f z*Bj-)ayH%3r*6Qae3!sFmMG8{Bmg!uRR|_ESduH2L*7!xOwSSWqO=-&6C2(UGIm4G z0~Kcogz{5h)SCjKK5=;Q4){tSLCyBoi0m2{6}?VWp_f~;@{kLkfC9x%(jiW(etv>* z3KOs2wv+aK?c4En{F^b31gQd*~KJ?iB@ zmVJZxX*^?W!Ap-O?$I1pin$4ykRPObMZHN5QoeIU7O6caZ;fT?0`|Tu0$;El#ocf( zI;*~7%Mnvs=(~0MwBHZY-dEJ}RM4Rj2TLah2hQ{scOpe66&QHd?OQmY#Clq%b+YoX z-{pYQ(Yuo+(!q~4SLEjT|7~Lxgg)_Oqwe;o$l>A!Ur$-F)~fw@5in0RUnwc&#AAXj zthFVFN^Izu;2JkMEiO7->^7z>c7M{z2Lcj2O8JZLEmT5Z^G=s})B1y=NuvL&Z8`#4 zRYo0e6tjKm_z2W}UA(Dv;RwO{!@(}v>6V-&*1=c1qQ1&#Pc|EElp02yp#gtTZjiGN zk^GLllAXon>!^<@qbd}uciyPkFOy`~$25OLbUO-2Ed0_GSsmN`?3a z+YRUp%eExAP{LiQs3V)d5)taV5gNsMMS0~NTN+MDY#RBe%2)DFb3cYiKI^gw$B2ZX zm7_$1`{f0x%>}7(Q)2Sh9(&T+TfQRtAF>;lGZ|FV6GAVnMdvW|^por!9tH{p zq53sEqG}=v0lw%ac?#9fQ&~htsO@RP_3KEnU&qyeZj7U7N{KB5`B*k%bNCN@+Djiu zJ$I%oS6A~1X-&BPK1`-tJ5Ie4s-MdpdOrGps6_PYt`R{RB0R~M(S7aHE4&GR)SG?6cz<@Eu-!kO5(;}JlD+;+T5=p8kn0c zcXr&Yc!ITXtG2Nl*@Xk{1Hl(md02-7=ddc=XHDMEqzVgUJN}L2oKv*ru}ir#BfpU* z4{t_ma7t?qy{IkMxiEn76S!c4^JbVaDH>MTVR&{=_B*iWahQpE_Q>LT&N~##Hmr>7&hF)07 z)yIM&7fMx+O8%!Su&Q4c5#U1-73r>U{VJWiPG6SjOM|{xa_RM{4H1n!){Q;o3=O^@ zt%QE~vOlWvj?ldHl)V+~Z6B%nARMQ5%lm^pzCb&6}cjN@?MY1-SK8 zwdI~M!k0?j3VkX}$9Ac&;;QEDQdMMAQ+duQ8-Afp3Opq?m;@BX*3J9k@S72? zw*hw_pYf5{Hgl1o;1Y*labL(K^^^eQqyz=IP4bzsrCGNRAI!Sh0PmXxw0*^`0=zrO zW9qR!9C})s7gE3gr-s^tZ8a&BaB?!8Vs4Tq3C3O_A4aw*jNOSV+$k*}OIWG|#$Pet z5VKSQAZAvCHrkl_VO6}uZ^TP%GgYNjH?l7Zmz|Hod*7C=YMSE@x|ud2|G@~a;;67< zrLNC-Opa=7+%K^%`I3#y(rV6~6iDpB@G%V1+};>zJ+~)57$9@s!T6sb^EZ0R=`$o6 znVZeVW*;b(M^7;GM^R-%^|N4=jbL)s71?yB&B-Mv*@pF*Nc9i(+OLjQN3|-d6q*uDFg12Zh z2f0N0^G^wTx`=Up(%Q3KeZzgXwO!qJM^eTjL03!SdX;jLdzZCF?hCt{y{U=TTB(Vz zS96uKN~vX~N;_*ca76({IcL)Ac_|f2JbQJd!&zq1Tt6h-+Hyqk3W$0yhTDL%kg$i> znl09{*BFcL&I~BkDgVU;whQi#@|jD5b;csw1z&8HB?z0?7oj8ExOAK<{3l(ae7X#Y zIpfhQzy2%jsbtx#^$YpO&N}<7|h|zrlq{&tG|;Y+>dDx@jaqe%~4Mn^OFSj z+Wvt9MGD?LVRT|eXu_DS|8WMg_Sp$zj4kuWnEUa>9emp%XGaE75F|p2`YRPnfVR8# z-AB%$vix?x0mmys^T*V@ST7w3q}6o;=r{B>{(#2BC@q3~|=IIVw54@=nI~8=vXJ2&+x7s<45ijfl zE%&TzY3ic{B6{E2e!HwVu4y8hv<9Wx0yf+Fqn~qQpSn2X{D)NOlXc1ec z_3%e&vO{y7suwkgM2_DbHIw@%;cP^;DcCsHhcy1XIA4KVmgBc8Xz!`|6SNo6`(PeS zM{}Obv0NpsOAHJ$5t2HCu0)+u^FkL{6OiBP6w1@*wppn{Rl9 ztlX?0E!{jN(%t&8+;To(){j#+C(U}{AY`A5F@nVA$V)RF6ymN}X>6~%P7s6nU*z*K z%8hE2{h3GzamHMoUXdG?0jn~Q*J##qYVOIb3sClU@-ksQIvl;q93ZN<}|Ze;-X|T9o==xVhD6Z+5}2Z~xAl^><71>t+|nW0%KtPY19nNV2Hps%(-0Phyd{`iL(a76lWn zSwh1StZ`sObkkxIVUt9|_uns6TAv&POjVxfXSvL$<PYbjsiO`Qp|+PSy!5pl9GnLiNqjl=4TlWz$p1O-^TlXsZ#ixfI_ z`QvqrLxW2`>SXJobjP%nF69M}&FhUkc&IH6KbVbbV2{cpyJ2m$0R>&tLqR<&ZLBF= z4Gj)?Rw-kjy@tnwRVynRzB(iTfoP0r8OhbLfro0Y(Nr@UcrqGTP3E4Q(ZH(Mj0jMJ zz`17<C_Cl-njet0d^Gn(eAnWjJTu6>mauyb0#hl3OGq z{=w#}W>WZex6u-EKAxYuf64K1z0^mc{fn(H=|Yq!hLT>MZ4HVSVlVm%9+`dDOC%Gx zgts^8JF`uKA;#Clb|{cNs7iw{qyo{1mSE`xbO?*%I)uDcI)uq)psjOKOpo27GUjz>2g?M)hW!}{Vv%;Qk{Yijhwuub7}Fa2GaVMO%t ztQIbTQ@dd$r7^VL-i4JBiZ-)4-GbFcR>I#HG+bfta@AI?X4FwUX^}S}#P8qsY_!^6 z074fGm#Y4&sKl;aVn^=}(P8|QW=dTxVnv?NY1m<#!-ekOGJ7!2a|I7X z&BTbjO$eo&+L`3P99dfMj~^im9va4v#OrXR?%)U5%t+KK=c%2E{&c{@Ydf&=I0?P2 zUjhKqQ?#a}G(P5qLBMjW-TK@(=EHkcmDKQB2=57`I zi`X3qr91v>p{Z!Y($)7f0EcW00FO{e>(Jl!vS!QP<4wt?xOJh33V-JGA|6t}8ejeH zt>r8K3tcz@qQ21y=apuC&?@7b%3^RCE{cj6)X{qseqiGD=&LbuBIKo!lt4V?W9=VFF4U8Gjf4LB>Ad79fvG8qeINJfGEw_<$+2?ZQi}tEc;^cO!qCGm=~|BU4(4^> zi>>Svti}oCGIl=+VXs@skR{p&`s7>6*cgQ;CiW63-zZ(_%7LQ~RiPe^RL?mJ*?J~i z>(2AV&u-m%;Z@P4f8#j1x&ogOWX!~VRS zMx_LZ=WR}hw>ZaDuv}ebw&WJ3F1Q5RNGQk~8zh(`_^2|B4kfA&P`lZYyK{b|)LO>8 zD6wkz3kxihHqe#N)Kd+G+ef8GLS9TwHI|B&Fl!tZE4Qn;7-L8!2|QM_>c8_knT%T&x=xp5=BlBbyh< zA27XWv~qOVsE-Ealy;IjWascuGzL{XR8HD|5k3*k#V14XdJ0tfAQi#f#K1I2#wql% zk`{Q3E&D0doV3@~yTD|rI9}+az2ZGpl^c6O+22}mBI>QkU63^Yw-m~0^YefRrH`b^ zHmPToeQX_R2;{0jJz){SasP+JrvK1oPWdp^ob;g^?X9F>-lL8g59UzJini!EGhoqpuKiaCuNDofrPA&Cy2&Db58>89rGAefw*|I5Cx<&lL?we zyRfreAxt?4AaBAMJCRTd$d(?Iy%J+`J>D!hsyQ+Lgd9$*A(8NIOYi0V?7L!i%rUB~ z=06LJGGVPsbrAf@qK@D!RP5joV5b*hznkHR#L8kHNFXj2uLZXM_3YdkBNn*L9l;&0 z(2Q(=Sic##bXM8m9H!HiM0VYX9Xc35C0r=ALC zg*3lUh7q|f!0aF}dxc=_p~CD>g4q*Dem)6i5Ap8P!%RlnGlEvvjHWSG3er~#G|3t*tsZH zbm#qjF)nuo=yskvOR?y4Ps7|yr!8mo^B=zEXf_n3Y zP%#3d1P2M85hOGEf_P`aj*4JaR#L!0kZPu)y(IEU(qu9`Cg*6Py(sIUtU0eC6lUc! zr?fzlx-hr*KWGNBa{~gQb3r0U2C~_x)yr}#5JFvaK~i|^`(SB;<3uPRC^e?S%&7Y>74za4D`B#> zc^J8%-NuTrbzVeY_ zikG+LBQETSIm!RHe1r{P^tlEgsm-Y3`@s=?`D2OuWXbV$YIp$w!80Y0L{qrPh521S zbdVhUCc1ejAZ2ihJf-uLSYeEE7zI1IC4#BW=T0Iq#VBZ&#ISrM`Na+Ds6?ZnMZPi* zkjOhJLei6rg4UcCw5Ra_~0F+-SHO`<(GxtzaAtnh|PEs!>eRL>{l(W!+ z^uGryf-1RmN4zRuF%V0)R`s#TSL$=sM>@Wj=R};UlhtAJkpjp>mr>w3%7fkeiM)|%phETh;`qN<)e zn(~PLzCbljk7S-p8hPIEmCAe#H2(La2;9^t;?7-0k?~XQ1vPZf%&HdHtv;i;@ITZj z8e(2kYRz4wjDXe9rG87j85S-)BBLgn7S?3_{?m`w5lpVk!d)L9ug56;e?DG~3TO&j z|5xMn{av3hUZc+&ucNW?vh4B7{2z^1`~P;ltn;KGnp&0ounP10uTyVTNFMzO=ry6%2=9)JeWlSoZL)>&I z!5z@MJACN~kO)%=Ey2gqE-s{&y~-d?$`a35JRBquUsp5V;eI#2IoZ6Ok|h%|E6XZ* zSs3Ey@AyQkgDYnxfF z@oPe3-L+-hR~RFkL`nJKN_6K*tZNee-+1bD^EUW(*6T?-98JEklT##LrNeskD<4L+ z`F5eiQh;tW;r|fVy0^I;IHr04_VC?CADblwF@Z^HmUR$k*S~Q?s|m$dfNa@V@fC=n zR!WnVOaD{*mF!;giG78I-e{hfpKpFr+J75f% zhGeHRPN;F26Gi7^jA`&k8`NGRs@~Sa3MHs<58i!ox$2R zSl~4n(-u!_v!_j#uCy#m7+aC;y=?v0i+WaNs#Qyk*PNdE<*de5?N zv9;(9JaqGor!5Jinc%t6OB!k<=t!MlNzOrd>lv+~!ZsDp_dT=J^~$;BO9hiCrCCa0 zMvRH!{5J>Dgr$O6lF})@ut})fVd<3Q(Z_$NoC`fXSDI>fO;+Ad?waeuUHd#R@wCyq zo|zJBknYx+GSw}5Zq8sUnHk)Xgo{}Ef<;sJXpJ9mOZ`#wkz=tnH0T~z5y0+6*2-+M z1`&g-X@UkZo5^z-o&ft2G+3UQZ`uT{EStBQ!l3V7-=YW_D1ovVTb7@&C6fM2iE0Qv zz4)#7*T{NcsO4a=M{1D){*@zHJ}EzjTRE-+%bwW6v-*0Ld_Ag#jGh)_*+k0bF?kLd zjAhs9nhGh#eRcaP@qsw%ZSMcw$Loce3_G8xx5H#;c-y}4bIf5?Sm%vAzf7Kmf8Z09 zf%F-NIuTZldTHTBxH#1L(qhB^@I~D1P!=4SShO=|bT_02D!Jr2 zwshVuUtvX|%b+*zJOalw_9h(FtQm)3Xu||#Lj`dDFnRwHLkF0 zwhHoL*3b>F|0KZVjWD1!UTtSNU& zYmOQtEd{MhjgkA*4P8l;TJ147)JfoMcYY>+in8sG4#qyZ%ow>xeKbU}sILS$K$^~E zKJX~U{Q&dBMIsV~YAkh_tXcAoqpD+lCXf0+=c{0(ytx6~K#Im-O;x673r%xbgGgt_ zeCG@^hG0|5Y{A%EBfywt?f8u*Y#F`Saam7mkJSK#^GV!R($G>B^5ld(S-+kt^lObY zVhtlH(CbaSwtgb<`ptBkcx{alub*k+B_|r1cx?z3ZngDY&3_sFDuDbn(RlHsP;!CB zEAq6p4}|-Yr$pUw)3eo_u^~pDwuWYGu*p-A>~#)UmDo9JMb$)=-HF<6eobId5ROj zl{^RmTq$`WfKMs{xXLQ}aSs91LEQTi!F3&bX$Y-)*;rNvE>TQx^0u+#HWGRL(n8j_ zogIbhNz-n_oTQ(23Ux8e>-CeOH4hJh!tYh-%da5aWEZRtWIDF#`NoV`RG` zp%CDg)y;VXc;kf$u>R;13GhZufHw+}?L~k;f>Oo^@VW~TV2$|JpI~_)z#EJe?ZTZL zu(D1H6*!;dPTO=oQ>*w%ba-G`yVyk|lv`fgLZyg)<2-9ugXgUERq=kH!Xd}D4(h7D z&*&l6vJ>Y(jkB53P@&blOtZb)g}(!eKBl2Nn_rns%!haq{zm{j^8>DPn6on9+_&(0 z=AXEEkjx@qn)zNSL}aI?Cug~ZkG|t1>D^??w?C7;)OdxIIL=npX({Bg$ssvaX?gZD`4{x$KS2Jd zKTFy@*2kZ0pS39$#)KY)r)N!4U*5>yDOr;YcRCs5VK9wsHN1Fp9)%3DRZ_WS?Q&mC zYM8v-3bkxP=4i4DA2oyo+?Ei>{QBRnhrAAlPt&4T8W;w4FoStTe*LM8Sd}1Lp!0jLmAFHC|A8 zg%ff5hD3Dnrexiiv(GAiPGc7~e>8qfBQnu_*3I$6UifzG!u#798EX2m&;3;U+Zjjb zZsAe>%#i)9*l}KPfBV}Fx?TU`{q4@Ye|~@aom*`d@&C>JZA<(Fw~e=`ZvCVE z?KOXe(tpzaHeHL+c7eG*na;@TgzEDA54N|N;6QwP`=f1rx3@pl+*9xEZ4W)2bm9H& z!IMszGDPJ5|LXpBgIBS4Hg8wXat4D3vu6`A&sJ{KZufcK2wha1-v%Bow7;GIbPs#? z&+czW#>%)5d-ear{p~Z|66fe2?{AkeQWx6ajwBssYs+6Q#B9CuGfmje-``d$AIVU5 zmZb!IImspZpahe$_HV>qv&DKe>v+_*>Sz7u1&Vu>3Ck17m6eEq%olwyHTs|{`k>nq z6-F)j)&!jVcYl8biRM7}i`x^-)Q0cRT)RCXw^nL<ha8nd%GESb|{VYIi5#F*S5$=r*TmG`;H@5J-2NlE_|oydrFPsv21#4?%ZHgDj}Hbt}w8_%Ncy7ZJsrNsO zs@Ff1wpkTAPls%0m3+OX$|Y7v54n>9*F^H&um}W#g4xJ-^913*=miDVe5a@;Hd zBq&|?xp34W?|l-$&O48Zs)C)M1HTwOng;KZ&@(lBVLf!>R5Y}#j$5GWh?nB|FD7(rAES3isGod)VlevXQCuZ+{&qWk|LU$`*%phX{l5uTQ3&6j5NQ?2T!TGcPss_|kcfa2YVpcl*? zAo2DX5$4%tqLmmJ7OW>gp0Pa zjar_6vH=CYBy=8}r`s-TylMyaZKNXX6wyTubWtU0XH8b4pN1+UXNVxCV9d}!>TzBVUUL(N}X1re%~S1I=$PgP`%X5 z6Xn@cd4rPt14^xXo>L9#98j55YCWkQTxJ{76s#Xm>MOR!V%8Ddl{!~sFV^Efgi_mf zo3{XXP-@cOKuL6i_G99gvhF3k#>Z!EX!|NYiY$AQzw$5ij41PmmaXBhHRU)?pwy%k zW2#2&bRpi_*m+@an|zXB)c+@cOU-RkV7MS!k0Nl8+u$};cHo<4?HV36DM#_srtHx4 zUSl%T94O$C*^au}Sw>}+P0njJ2su~w1Xl<(XI!A=DTHkcO-9`{wD|l{InZT~%B;I) zYlKtaw}z~>$+jMu$E!zmnm3gmO zSQFi}gjXeIVsX?5^)%{c^MRP=Djj_>gfQyG1*my3i^c8Ejy&!w$A*TCT-cz^qh9`=#wzBEZS*)6JQJKhFXArv$>BaR0v9>WsS=*>5;LVp3?+O) zZ+fEbdo@^+0qBW>4dsZ=b6Y=VvY7;5^IvV2q?#9*w>ZrygPnZbUo2U&%~ot+46 zzFnTD%lh9B6T1L<38^JfpZHmfx#j(*>i_)zwEk>eKW<<$qk#-!6Vs%4bJA3Evh)(H z=d<|yDKZZc<@pwub<4r`VYh6d6$$idPI_#L$^8B_;1kmn1p`;qmnw?#c6od+pG&L^ z2D0Dy$*FjH>=&Ax3LBaT&5yRC-R3dBRAMd?Oq|L-vQCL&d=28aU5su28wnI+Z)(O_wG`ycu%AhB`Dg ztB=)ybUM|nk&@M_P5aL0_wQphu-EHZtk-jSWNm=m?^&-aerm7RE?KYP^82jUsbb8` zx(%1_K5yOr`Ct01+ftQv@@X}ff;Y)iG_b;2+`;M~4?mQ;tta&R4w>jSJb{B)HAK8_ z>85~$Up7C&<4%^OnjZ;CIvepWk*CPA8oBT<;$18kvtT-L0vA%>d)pnPTFA>Ob&S`cV_SjtUvZy{(jaRKI^;) z=HQ0U609D}*Mcb_?-aAZ7xMaO5g`$c%>_iaEi(&d5)+Z4=1|le66ZC@e!(yMg=RhY z9-4i>{aeE|hH?tul>a2WCzXWyX-?DZ7s+#~{ugA+#d_(9(@}G3wvd#V&xb^Fk$81y z5@ej`*?;kE;@SVr?`o0lWLwTi{nu6SioJ)v^b}B!W2sal+ zueBc6nIPkFj+Xj^$I|E`N-5>Xq#3s@F&^7Uvk5+VWnO|gak1%afVZ-~@@F`FLcpF3 zFG$5SizW`y7LtSNcRwOw+pkSJfhVHz54);MF!j&a8eZU5nOek#E~UOvWlAMerGzQl z$xK0;3zj~dpZN9NBZ!3V7+_tFOqP$}Yj!?;5)K$m?2`q#54)E995W{U;-~ftmZtJ! z`LsBf7O$Ajr+Qb$1`cDp;MK;LnJiU*mSGTfW$D zJ;*T0yFjNsQs(|y9jm{8qKBD|(Yt^v=b+jw9~gd`(-S8?H`U?6H%CrjlO6oPxuhfK zV0fAv{dswPZS1w7U%Qrc%vM2fRCMt8P$(1^{9&CGny%+?C3AT3xTO+jr)%bkXtQ@f z;%xb&N#uU(Fo`e&1?l2+Hyf<>@|v%B^*14Fkal8g)Mh zx5RVH?U$3{oz8MGLul0$`nhuaQuV4IC3faYrjPDYz4N9kS1|_N>%2E9U?2{@g&*2Ua;H%W&vg=&)4)+DY__}Za3FcytTKPnuM_3d zZ;(eC`}tU7>x&gyE#Ikj-cIZ>j{}Pj`3@1#{ z=>H0vV|0+wSU^zuz+^GM@^L!zKv^oMVOXm8a4>4zb?vAa-#1aD5vmJEF#ZNuUatmJ?_xO@=JTeqzLZwv<=K)PnSGsYa$LB0Vv*q*86ov$9^DrL!W1Nkhx7{w(u|!IeFK z3H}EbWnyqoQbe)a@`AW;PCn}4b4f^331U`i=g3kCciRcp06g4ab1zerQM}w>_jiuq zw6)}BZWUyO7iAfvysiZcc=9^AOrIKzdS(z$%DslQlk;BPKWnQT{VLs^S=PYsXz<0{ zGJzlecj5P6ec<=jz)uCgl+XXG;I~gzAA{d4s<+`6MCZwd-(pdJvf=mg6aSCFuP^>R z4M+Sb@UQvme-->zB=^R@E2!Rv-$X?7HvGnM8-rhX)yLq6D|I2T4?{qxgzBDgLwN7qzOO7IVhF3dz=9$lDbotW1ZZSZ=Uy_00qKWpb! z=NGpo>|FU7KKeUl%I^d}=9^iBcpkS4feb|*>2PX9{NHiohAw}$!7c7N4fh17v%EBK zor&v*Lg9y#mrt12KyUi^lYl?!A%4(Kq+T;JAfJ#v;G~09zl57v&fBu#prF5F17Kvl#duOUgCb(K?*xISPd5CTm|>j!2) zvv;#j9JKvT>vyaYWjmE@C96@FLXAc?sxys7 z^BX@kM(t%hB%+cfYOf0kPB*x`g+GO@ofiSX!dCuBg8QC*{F!mc81>G=p%``;+3#?C zOh!pZE!Y_K#)1cUx!_*TaK)B&(sN>Ve#b6;sD0eA!x-79RIF~nkM>^N(#vTNw}*H) zaPhM$?=XEGT-YWJXqR$v){SDlJfe(<_JQ1iJun-c7t@6v_x~-iZYa>TD9}X%8x`;- zQdJyym#mBfFR+o!8p!H&<}eDcLY$P*z~3K_<%=Pl8qZWgp~BQKY#u0MwOxBs25hS7 zoy@k!Kafe=A2gB9b@t;%&t>#S8hazsCu5KnTM2{r`ys+k%Jz+irYzaXffFZ%T@)Th z4w+Qv{*6XUmRUnjM8$%=2L)AoGkfR(2WPZir2S`<)8K)i|C3*cxeYeGSxpjM)?Z#M zN>6a;XKxU1hsS*3Y3bISe}`ClR6h#TgeXuGqCj=9p`a{Mpw8Qj!3A@g3z!fEYC^<; z{)5M2zzi3*TMpH=V!5@l?T)oKdpcFe4rqj*hVGkWc$B>HF}W*VjEsruAIACO!sTQs z`#fvUw}DwA{QOCITK%8GBA>K2K0y)6ZO6q72WF?S{Zs*5x5TM}_5PaP!UXO&7r9S) zT}l2go7bN|sWQGEpHxhRsj?1vnJ=>k;1C|;Mzn{PJ*|-1Jr$KFw>XNQeH*#TC$d`c zvPPld7~&r)Kku^8b+MMTcvub$_f`CgDdn97Vp=8Nx#hc-1v2jz$tpLSRqn)s7r1*w zR=IDm%6+up7sjY}=l{eQbzuHlW7M1Tzh{iH=6|;{y;uhA@aIoPJNui{+{IR7jv_2I z!AE?_{viUDXI9xzsXqzB8nd`%5nP!?gL3(;;P)MVeek~zyzl&0Z+MRY&QkKESjlx? z_+P<${k{JX-r{#2P+S<^t1b-hDFy#}c#jA#N-t(Q-TQAs4g!~#;7_DW`6065pEpL} zZ`8@=p=S&(1z#0r){D!k-ea)JyENfv{Lb>bga*qP2<7okm!lG|{29a_@YU;{RWr|( zv@^D@l^B${-}>GlwHuw9&Z;I3haSl!+3OaciuN)#EB?t<`jh+4`((=1AO9qV3vyNS zukU`co-Wn`cAHhu`^g0mj{n7eaz;gLKbZobaHP{AOPAhMa$!YK%!6CDpKe(jurBHR z996=GU>ehF|0)~F!?C?PI0>q(sB>?1n__wL0S|@&5Lhe}4&XQ@@QwB#n?A{~`#GQNNA^ zq$0lC!-dDJlzXJRIw*JWTw--mWg?Wa&6hKZk zejMI_HrD$Tp~W#O{FHaPIn4*B+8-YH3&MV0Z5C&aFPUQ0za>yV13V82fJ=OY?(HA^ zAlayIk{1@d&!5yyVxTzq$n?ZOp@?{)lRgfCtUvHd!2UC?G8W-k&`^eB(N|?S{9hBe z?j^ni6CC)^F4l1CPMU@X#SRgjqF`~DwG5AG9?N<~?piQS1ReYH%V$BD&95BE#;B%+ zpCRcMq44>#eoU4%LUuGwi$>Fudmx(eh4bD=<2YHI89b957!;mB6b_#yA_#MV6Y1nI z8X>N-?ziN~vBe4q(T#C2*Tlb9^L2TC*%uLs)YZt>YIF5arnCiBK=ESpWm#9|*==V;sb$i@g|`~n`>_0?)i3jMrz8;zlsLg8~S{}JLwkUF;AowPjx0d+!Ly3fi# z|2;WC@J^SygqWAfp9%c2qiAv>F|OtjwXH-pHO(1alxD5|3hQBkr@3H~ghO@8Hbost zatx*;z+ZEAiFJmY@k|tFs%K(fS9lCf8Vs#=C&@v)r$tL& zjYqG9Ylk0m7cJ!y&gO#QS$OIkBfH6HZo*>}8sDk<;iu{W+ZlN?Lp?A@#8i9H9DJtQ z+r!v?ZEY|%i4{9Nb&gd#TWxWx6#gk3nk~a+4^iy9`{Lj6cIup1@{D*g%^dg7HM5ll zNHYcBW95FdG}g>uM}q(6U`LXFbg%=A6h}3&mPcl(8)0kk(g4zvuMXFC*33Qc~(;hlyiPY~6g}#{~3N{xLC)#oo70)OdnbYoL-7 zxTE1>YfqJZsAPtPXRF!{pUxe3rD4Zqp@+=dx3GlDI~I+5uObpPrF># z5fV(UI2N-6H?66^ljCTcm0VgK8xq;`|1lBHk66$)u*V(+gS~0t!mWb--gJ%k7r=Ri z@27Ualkv4MNtaIQhK1bve~5b*@F=Tm;eV10Fv`eGG-}kSsm3;KQjJ2DG*lD9BvA-V z0=ZDbrLCn%ZHtlttRw^{(Y(CAmD9qh=Ty(3t?jWro_u38!3NfHACq*uzozvTvH+mu*p9j>1`bp$X4iD&T;geG}w@G|LNaK_h zn)Qk(M+C@2-uuYwCx5^0uS4&n{VDtgfvKwZXxl-%k>IJz@dMng8UTmA zd2FmXi+q4bUJlPZ@@L|xs;=JykqEB*-yDrJSj(B%zqBTfB`eYBj3$nSZ*D{r2l+5J zgKEub5-@i+fbKV=3#<3(w;VJ!NQ((___GyeVns!#;hW-LD8@w2-FiJ;4u{9tD01dJ z%_O;^=bKF7&30v$`A+7)@+0Pd!9mTw=!_P0gTu=uZZ%G*kN)nLK8M|QZ-qFvwe)$K z$3|QB8wRa;l$Izbh=saM4?q}4GtdKd%)Fjp_x>k|`;q(~47MC;2+u}*602o@$*zF& zGj=bDWY>rYSfQ|R#QH~^J693~^vItxdWm_8GP$%-)Rl%I5#nZ6|e}WXNg@$BHn0hRi`}VKbxSetL`!vEX&bWr@Rr1bZfdVl3`8v zTfY{={8il|1B$+p7TIk5t2ANPON{HO_GH64#s0`QlI>XF-WXUK9c{QKo9J(+N38=*lW}~q`P)H z^Vl%#oeK!IrfoJov9e?Gy$Pf3-pEMP>{cH^zWvTB(M?)+CdTUCSICGf{8o+E9d2J* zb;S4i@Y*EqVRn34}uFuM46Z=^P8M6 z4rTzd%<*1Zva>a?y2AfJTC?wg^oaMNw7&E!x=OaK)V`fPGUBqdU4vvl&ghQr8zc)^ zyGZN+bN9aVnPGKmJ66r4?Ici=HHV$ySaF57HNsh`jjufRI47$^UwAWP-b}f&yys%{ zoFj1^ueNU^lw-o^XpEd@B=mX1CnfaxuOr4lYOGW48Xa8|)ka4%)ql9Ji10mUuvFp; zS9n*fop+c_Js2Kcsm?MVGOE1ytqc5VofZD;888DO2(UeRuH)^*Xu!^Nqn!tbAf@4x zP5yZ}Gi4Xqf3hNnh>0lzp{tqd28mNSh|N;#Ed;5Qc$GMth`rK)dU%uAD>>y@*7nOb znS!5F{$^UD0;T=av)rPgvTU18&V2WY9Uwo^vM5-Rd+Gwz3 z`id3*ZbyjHcr4j=gIGyT>I8CA>>2swHvs=#!>u$8Lv`jQZ=-AISCM7|!vNN6#&GNC zDhSFGwrsg3lor{eOo2D^0vIGE|o$WmK4wKb^Gw`g=TMQ2fT zo_J2>QSzLQmnqrmmgJdw{w2nVHQc!j!Z-`ntDc(;x@spXNq6Jgrw&yZIh(S^p3-!t zAf?KcZk4fzhN@hWtWsN9YJ3yZ{~>%sO)pX&OPdCvTg$Rp!yB@hIlNbLn@^wnP@2o( zu3uuHC8otrJ|7&})4)N29kt6A7VL=VJg1DvuD$JYxUANEmmW&&*JZM2G>8Z^`d$Ws z)hmOCOMU5)aUuvkg`D!u-tmX~Mm;TOauIH{U&8l}lOu@c90q6|aw(eTYxczBt2^?z zdmz2pHzB=KUz0!gFq}d4T6GzAW#(&cdsQ%5*o{yI`p%*-$){x*8K(p>YgMoRoo1Y{ zywgc=(KJquc@o!#KsH(onpoPE#7hHa1XZh-o0?rLbg&BUCAW#+>LRGU#a6Uc;7 zYi*dsk3A#Xy03@}Yu!Y-#kyWh7pM6|3pC4@gUlYbH5S?{AdQ9g$&a>BA+iB$uTH7H zsah&`Mv@io`<9-1d@^m_65b!A18w(W=%iZzsE;gx_QRk(ss4yMt+v%45x#nFn7m+g z!EvVW7qEot?4*7%w_n9|^*`}PZJl#;mU!e@bX0-OPKw?97+4^hu>3lh+iO*?HR9%45Kb(=jI2u{nreK)|vIl}jr91J+$P6ak8;hsF0^k?i&T{Jdm4GM8M5RS_nqA7y-+e;pLlphHI^C1HzdddkVBaa(p;>v{H6 ziG7|W%m#MoYrk&LQh#WbXT$!iJg0jfJ99@9MTwrC6IL&3?;?L6S;pjH++&p!&Av;} zU;|VZ)4)LcgItitVRd-i_^z%uMzy_~*0Hs7T{)izW^_jfy@9*83S5Zig-zya{X!I_ za`bB_zP&I;9BX?zWTC8tygejC>WVNF_aaV)v3QX zgKcZ+1*He62x8g(d~=f%8q|mw-yoI3w(vKsR*Ok0ro>nnk&;6)NQ!xTJ2dH$v;%(w zE!{r!{mfi=`hE(V2gqD^KGS#lDpa}Idj*FGX*uF!813nlcQmrNJs}Mg=1b}~V)Cb# zk8aw0(wx~K*;1u*VHL%ys&CxT{bp)n*BMlAJS5wOe8fEZZ6E6oN7~)r5L=W%9^GiK zljUP?(97m2SvCbnYHUZZt-S@?tjHkeX>1Z|V7y#`QB932CbhS-0QxP0b+!z0D&9Vm z!icl6wa^I=V33?=g4!i`+3-(9UGz*oF{Ky-%y$9@hi zdzu~DqW(~EBwoC@De^^ogLJ8QgY>p#n!QeXY8HFRu9iu5fPs2UPrcoYV&B?T8!h0 zAsLya^XknqEsJ)$QT>_+xEy7@wELAte^tDQKHu zBtnPePKB|>#r=`5?PuBS@!}4vLN-rqAer}SE%Wxvm(~~#IBY;89c5-@i=)ghzh;(r zHSO*+2a78sdh1E?QD2k>$Im~>clF$&G}le1-d|9Uj?Gsvx|XCo4r%JtZBJ@PVwT}2 z=m0HCX9DfFK^79YIq~a<;s=N~FKS_R^jR?_V7cKqA4z1aswT-t-Lcwun9L%_sEYpM zJKZ;)F*4S$`spMX6@UbW8!*ZK@d;T&q}kd+yq;rj0xt{GNI72}m>a7lIDsu$Zw; z{czDCIDzfzz=MOvrCCm`Lzbgv&h&ok1Fuu}+c|#2s2RgCMy>foNB>Psq@~$C>#0V@ zZQUnl3TuOA4mFD>vlQznd)k_p2u_oGBA%XErj&xDpCpJW}YsZsMg+) z;cb)p=d;*Fhe{CTH=NpKSA!V}5e=PpOt?Ia>4;YrBaG z<+14B_B&t9ibb{1kEixhjyRvPYkr4DLTla;jvNcv&4HNoK8UMWe zz>Q+_(+|<2mS}%IZmds$ zns;<*Yoft7t3&Ei>wif!3XRYQKFtJ?H(mPKYoq|`%RiDM{XOc9DRSO^QoX&M^Mpv1 zbvjY?nvx@Zq>fickg3vsD+luRjDZEKGvd9#!8Ro$p5sUZ>RKvJ;C-O|J)o5!EPq}A zVL8Bqz+-pF1h89HeioN|v|Jr7RMXrBs zGyb)Uxiy4t$iH^9TVtJ$hk?m8HsMJZ+rTr|`2x?RcfS%G+e;LNDnAeSH`$wfGSchz zs{b?0>sC6TTEDDE6a9kR5lTm5FQ^ax2hUr1@MGzfI?sG_pq_WB=cD2DnjHb@qvPcx zEaL4`5Hhe+A!j)9lJ!&;PldIHi%!ZKx*bi5%p*eWHGTsAxnYDt*`AE!0f{jWf#Xm| zq?2tz3PsJlkvctrDc$xqqitS}H;MQu6d~V~1Lr1K+@bK8( zaG%HPmM#}od+C`eq<$$zdAffGo@6O9wn&q$MH{vTyZxLV(;^bXXrn}ZGOZHnPni8R zn|3ixT$BM1(2v)It6pJ}=3w5a-6b-sF>lPQ8&uza#VZFiU902xD5)OZFA$MSvD#kH z6OaE;;ziwHpC(kkZG*@{(ry2$AKvx71hxn6{yg1W*vJE?x?N2c+d^G~hTFx-3O@>N z@4j{%xNZ5)AX1l^i$tXoORy(sP10#)^`&%PaBxJLb(CpKy!_wrwC z)J@5&<;kmN_ewpCP|4JLnXcD&po#j1*lFy4Z=Mh3(bBVw@m-q}!n0HZIL)7@>W_(SQO6D}DeNMj6*>p6L>$?1)^x&S!A}O-C0koh zdYY@B-A+FZX{{B+MZt~KNu=lM=4Z7~BSf^*gyl%WQf$FbKAr&xS<8&&NWy;Xv$`OW zD7Dn%__ivT8U#ZFZo!1f!i294nJk>h=0Qop{t-4OM;8p4Yq+)!$F+1AErtyW^^pAT z18VZS2ast&`CN7XoCKUwX4BP&=dTX!$B%dB>K61(z}}bl!H|ebXcNg7>?=D%`y18> zJsl?-J>J3u&B+s!!Be8j8|aWTlL+Z{;NtvPujs!69lLnehqJJl@HJ<(gPuEh5_oL0 z;}21Zr*Bl?v1c>3x)$YMmC7b)`$JnQ!#|m@AYs+{3#b|AFgigFP<5j;A23XfIHLLb zU_&sV)roTp>m&qK^4l+r`1V-eXWVZG!^$(f-pmo-rpO%Z>b;V`VnydM4^mnrweGrn zlf`kx%YAhsbRTEj*;v@Fpu!IAg%n%`O73ACVfD)QMK9(r8E8Js4!Q@tan@NW1tcm- zqVywa;}6d(j_hqcOX6$#MUUdvOW?r0E8aL9+AoT($R2e7YXi9DxyI`{b#XD%tgjj^ zF>KCvLUDI_sK<6``-C%59gN>Pu{s`D+im%@{Rjs#ZB3Fmm{A^e3P8@#`qq=ETfGp_ zZ;w#5Hs3hY=vf=W>PK{QymZvwQ{3upz1+xuMZfwKlkKrb=vV!6taL|QS<>oV@w=pU zbnvTsz)9`sJXbvmwIGdULP2We(r*8!OSGIqH66Uf#H0Bld#M*b?i%;@4ADC8P(|AX zDv?n-RDc8=z+QKF`EkR`$JzL$I=B4%-yXMow13vnVb(pu`jgI2KluAwaU!Z&1i5gX zp91Zra2gGSZI`X|X!?MNWt_xpdx4lCjgb-i|=K}izJw_BQk)M-ppH2Es{58bw)7%XzCrv|J!_EmkC~x;7 zvzNlUF5NB!-qghfGVMfZE)ZrX?zqqfY^G*LrtRU(-A=i~Or~j6JBLE)6*m~|r9RoC zYB;Zn9A9K6A-S&J`?QFgoVo|?w3775`Dl2fo4nCCy-VJb_!veb`ecLQ4veNqObvhT zKGAd^d}c8d{L&L?irz}Z#QNy1#83=JZ_V*Ut~*>dDJ?R^E}L`-?G$~1Kel8=#|P4-z#^ePGoJ#ihJBV-fmQWby9&#BY7L(H{M z0nU1wl%mW}Xb*xa-%Lcw@yPyoWS@m-T{Wmr@NINUZc=9Wqk6Lg=E?Din3%iuvDTiI zmSay#BN`hr+Wwk&WbX)JOq~w-K;?o;$f_mX`I;_3!^Esr58nE2oPJ|YxK`XDb4?Gz zgz1E&)pe!HO@7$G={8}Lc4o3O!?t5%pN2oroIFXhowBZ08Gyps%a(ePk#X`AK z3(^R@Jdv7PJ{sPO5tJRu1&*ml^556XQ1Ynqis8EbizNV=*BDA{%H{kdV*oBD0GLk^ z&p`W?a28I+=U&w>%7;`G!S(rhtWX8ibrqZi>t0Up##SpMq!x!kKhJx*I~x4%sz z2P6QaNUFq47aM;*Rp%6$_s{c+;&_JMul|ndqImiUQ*LOLtn>TTY45)k@2hh$kO!`s zfPv_4_2D|AIG6>$Z6eY9w#mIF*Dbie&nvs`G) zk8p#%bW-=5InmcMROT35ZMDTmeOP7va2%RI0Y4?!0gN?<)~0Bh1gkw$T}UfQj4q#P zme)}1Six-8|Ehj*&`q6R1i1S_XrTq#=};^fEOVTG$u_U5b0Ij{tBFlkXLs?2vB*p`EhbSnCF8fn%YNM5|*vH<8n#Pf4?Aw|*%$W?MU*J=|J4 zjtkA+*7kY66q#RSv93a2H{W2MwQp_yB6F|L{_3Zrn2)He;p18ta8?x&K{&oaTr%Su z1X$`}(Q`Y}5v{_~HaLOMHcLwx+n$oa6W~(a_Uc=>bM{R>T$$I_d>Tra&;QL3>dHJG z1tO=p^1&Cp1M$AIjOTOL&rmcxSgRrt1JEXQ!>+?9numw2r%R-7J5_;BoHZgz1O3(fnD-gb=x6)`#Bnh zUYGn;DyDlX^+Cwuj|i~ikNEhjs;)l*3_+bh`zaI+JhpPukr$(XO>=>0JtYk_Ut>mP z+nUryWzUIk5Rs3iqwCNmjPjihC7sfLg_?#{-$h5_2Obut#YL8q)EXp$=SSD^*8p{V zlRA=IVx%vz+w#aC=nxA=Q20q#}sX{b9R2 zpFL}*ockW8d$wM+w*Jc2Aa$H4`Bquazb!!pObh1Gf&*{IQ^le^9WlO4lW60q@}gI% zc2Sy^7{xb8cg*mHz+Z3X#(oy=`F=Vo?YVOlwliELFq^mfuGa45yPdk9PLZXLoKVlB zfJ6(XPh7;;lnAoCs3>`Rg*r?+MLBbASCQF9#9Jp>q;!b~N0fNTEwNFTcu1 zQRR})@>)Av%U<5Q$wu2OJ7Nf3 zm#KQF-=XdFTlVe`u@%yHVJUDgka$_C+jc#NxcCw@#rMV|>sc?Pqp&Nm2J^G=u2TDh=_pG2HtbEi(Z(8L+;uE#Lh?V>#;Eh{>B+OkPx zyBnY?YE<&Gv`}q(4uaon4|Kno&EdNHK#{4N@?J}+s0Fey z{k0o?7<=20v`B`t?qPAl2ea*A;{$Nnx6 z9w8}Z(fo~n1b>5ZYA&QmWZs-~8jO7*@F9>R+^d#xV@}hOgT5cl2v)jS7ho}>zu%Hn z{@3^mh|E;xE8xtb)&JTkF|2OA7wpn10Ys!(RzQ?YkP)n5yRJ3hTI8`DKaD&3FQU-H z+etE|l`QJ$y2D~-Jj%WGcT<^`&Latk>AgWf8PnXDz9J$s*_MbBElO)|!6w7bV2e`F z-4nVOj>khwXgP%*_ppJpLrXap%X-!z?Vgr`)47Jaf;6LLV ze9~`>Js&}p?kYY)y=*o@{~T@YoG||6XyItJh0FG`w(p6Blr&B_X*dD4`u|A>_d@$q zMDj}gdZsJC*Ppsy+SPlaJCcgg-w#)entn9M*(N*M@@QHsg0qd(IWEc)z~cS6kfzlJ zq=c}}0br^YKqsaNL3x>%I*SOV;MzYkV@#Z!&rhu~v!)M%;8Q$O$muH{Aplcq0Og<& zZL5Fx%CR=z4N0o;Zy!S)#$Q9KMTVXOsm``KCILDSzsAyBCBTK>w)BP%ZPy7y+O7df zMJ1y4X1yJ+nMFYHkf_C&Oi`2ZlL{;K;%dkrb2Q_f_nG<8*!4R_6qYH++cL=SL+=Dy zD{}1(Qs;ue??YV(O_vqV@JBvfJi`~sE3V!Xxln32|7^mY6aR+&0{dQWfNBuqCyKST zNiM%`nYb+ezqr+pQfUjXp8?O z5jq{GNi5yt*`b07Lc>iU-t#VOx+8Jn@3Yo@-g&ov#jOprFCa3ju(O|iH; zcr%_;V=CBlrWe}vMMM5X6OQjs)FOi)?oZTwlT}fKFHu-MGebn&a7%2&#jS;{S1edV zP~{H^xEYP*J=Lzrw?_!M3s>wsTroiy#-;h{bSe{Rd1$Rwk-xfPLf-r02Q)$YS+_=e z0u@q)mDR}{^i)iiFsZ_O4b$p|?uAd%Jdd6hiI~bPd|07dv75Q5ZVwZ;Djw-nv2%`) z=?ydI&d?9w^a48MJeEIyoWYqI{{J(is=Mz!cuBO5y32N zY9WlJ5%63Kky^q0Aoc?p5dhw07OZC^*@VPh7scr+?tM3ZCRJi_c@9V?(gHnN}YCWOvr2&cLss4sPrY_3n zP+QCQJk4Y59xJl8?_#6g_Czw>*3PCiQ?sq9JQ#}LXNQ{ShepEN4^XoXH8{?yUfXsn z5kIoyH|LTa3JJ6NIZPoK+gTRsDI@5I#Jkg*0mIzLKNItgNHT%^U4fom1oPVli@cFx z=|6Q{5~;6SvgGPWeeOe`HwT?S@T*$_m+h4=HV5+e2J-g_cJe$^o^M-nDKD3NT7vVr zf&6gto{jzZ?CpU|x9UKC5?Po2$Q1RB8{Rit3%H!R2WlIfx_j)jTBmMftzDW+pZ7?= z^+{EWCuAxgg@!SeI`)V|eBFiEu7(nKtn)ccZ6TKU0G9!lPoM%7 zNuj8;uW~)wL`hTV!m(>?_sve)d#tRA&$*j8X$$pjmpS?Z$@rnQ3XpC#lQUtS8bso5T&z;|!Ey8V})dt>ZT# zM@OCl3)e;jLG7vrn8ON3ch*oRLMIW4{TJBEN3l>R7oKo~*#Fh7HJ{g_(bkA7%x0l6 z6#1H#cCinN%x59}w0v^-O!j&)kJQD3GWP8DE*5n2C2XHbQ}s_@!|oR94mGetn^&%t4$N$xP~c9-CxZBu7Q{7Q1DO1Q&Rc*~12ZpQKx1UL#|$me-~Xk$vKk zPkchW_7QNw1j?&7s2iVF40{Sf`z@G>&_DqO7NPZ=FR{Eud>LA+#qbayJvSUW9*_=k z05CuI3t3XD?}n`tXN~5cb9gp>opGFUh1*&$+A3L!Z4_=ZrS6haFe&hl9yRAQ$=4O} zVq}oV2GKQ3pFxNzDm`XM@yJ8*$b;&W*vm8dtM`!i2Tx1dI@_u7Ms+5Ebn&PirS&qr zGCgsRBPq6@_3GiHn%`(pKjVU#gZEgydHinysajZ)I)8G$?ou(&y`1KT5+e-l|N8y@ zk9a>2^YkM6IAQtz6Te^8KhpovFSLn-heak+ksT_WSq~l22Os&BQ;2+$ZD}h_yNbvZ zEjjW=*mn69#@*7qyn4L$?{Uom4`}Z9=1*RvNB>}ARxYn`wVhGORN$k=ula;3g`4vWs2AdN?Y83!$Wu%OxK z<33L0;%{eXIND&3AX_Nv0LnTKUk4f_-lsO%M7JH}Ulseggh^g!AT(R@hOV2&r~K-n zvkP}8!s&*Ei-EV#DmznlObu1g=cW7PY=u%=PlPcv7aXVhQB60?{y2NoZY>fh?6UMp z-kj(A&W&}*=}x|N^i@oo`pZ3z2#!<8%XpD{_Oi8EKRK=z2phL_qOIpRk(bJIje&NO zGrZcI65|`fQi(R|537GY6;H$sGHHR^|9~7LNk_gp(O^EycKM>^PN*I0%_crmvnE2) zbqO4`q^1ZKKL6({LWz*@H1fcFxX8OGsA9zgjbnbT4w<<~k-gKY@)c-{@>#Qml7we%U7U3tkK_?&n<0)udI~s1s{a3#_m>c%nzU|m@24A z>w)$%t`gmPfcyUdpo_9qKHal-TDpMSE2kfhX zFP0t8C%94<$1C%a_|Wf*?jtOcNPpy+poZ=3SY!AkFMIG#oRN6Q22MhzGXH@bdb=n~ ztp?I!^e*oV45D5BnuYTL)i5yJP6YKt?H|fx0*8qV!%ZXt$-xZ z-sS>m!tr2(ygUgkH4lj;oQFF58aekL*b2;3z_aUf8ayW**KY-bT<`?l4&6Syn$;hp znmbae@wnBL46mmAV^niZN;N*WnnR$*KM9^vbSwg%L9&$ro}bHl9>Si7NlpXyoD@92 zkU4e1GYEPL_Izb{HDCW2)qE|bnw@Snnz{`2ChucZlbce_fLqP)Ko(hV?SeFYY0Xpg zT6=~&hMMIrlo)}phYi)guxliSZ)SdCV-(f)HK!E4>tht{)J6A6(c+Y%H6NpBwJy4c zq6W+WI93U-0HY8JX6QsThP)T+>m`fq`-Bb+#S1bUm9x&rQ+vG5KS(@Sc4^t4WfKp_ z>%H*}`SN;6V|mu>0@JfnCCC>d!?C&5&WNM!(PoG?n{0xp<4odF}8BdL9@ ze|1@cN&O3hP>)ysJ+1>4|AafS$o{4_%l=4WSc{>mtoBns&uTw>K**_H?HI|$0I@w_ z|GuE^o?2%*S!M5Gf;5p=+lfgY8?D!Nt5*lJN)-C8DYT=Y`kor6!rc>)oQCdE-`9oo zN^bS`-Iypb|HLJ}s!QlaONp!WDxqVS4lCiVO4G)8U7|~td8;>8q1S{!FAGU|M#~z2 zA8L1@nHlOVZdtSBb2|SU2hKGZ7j`0i0J#?nj&t7BthQ|Nx{z%BrqC_Vi4kG!(i9v& z`q@+*=e!Jat*5XtqMRgpg=Hm z%q{5uW5_QB|Am5tIQ-)rzmz3D#}~We#PtTFOn^(Qe-OS1`pnZ(p)hw{9726)2IEWp z@-3?#>qzof3hHbr9G(gyq2H2VIoOoPM#}+EQrE5dj8>l|Qu4Yh+x#$od@56f1tBc{ zCEktbx3U|eC1_9)7?WpjFTv~xaEE<@`s=5#cFC}(=a3^hr~80!)hnESJY##2w2ZA+ z#k>`f=RUCvyq}&1o~g(RJX4oP!&avkD-*vtQFM4-lnNvJ3Uo-KIRzfo-L_bM+T5L=SkG zLqoLR=7VoYED?ha3~#oGvN=>Y62d$)0%|l-Nh5*Io8(*9*psVfIW1)t<~7W$jbE8S zh-F{W2$6_;u=UeJC}H5uagROeJ{db&R1?P^prhQ$W!1EG_VOlO8x9Y0<&m1n(u>a7 zubzldcQ2_+@L3^QBy&OB15C0BKA@wf5+Sc&qVEs|bF>|vBq363>`mQoWOu7z^wkWk zUBKBQJ2XM7v2!&ifIN?`*Q#sYgd9eWsWC0GcNPhGNE%WM?dPm_)Bm3(`~RO@ea!wJ zZI-DQbSjh))X~#DdIZ>sGXh4#2pA2|`|*~IfO)P{K#^U=aQ1|2ZQ~js1KO9-eL#}z z=s!}!B) zI=y&NEY!vKp7BYSP@{UcB74;b<)V9$)f#G(ehQ)yGqB8<;g3@nY!JgO|NEoaeK#3wg97S6E z)1)gDp?}hU1nduv%7GVxC@jJMVs;%{QKtM!G!?8q#=Bc|e}u+JLefWM%Ol1Qzui~Mdeav(7;zd z>Q_bIGOjbphjW3Q2yfZJ+MWdDeCGb@OklibuWOUpkT>$HnidUUE@Ns{&wV}R=F9R1 zk)4QdR7l=nX`pZNNqj|84raS;wXC!>+qb%GQeIkTsPD#*UxKz+1bm;IW!LrEk=`3; zrTfL~m2jN)tkFJ zrUOfwI3eyzK6o=2SADOn)NZI|UK*&ph)xV>Tpp-V;c3#(dy!b#)%o@jMA|4|GkUw< zV4V=NW`N}!=(w2fmUIWAH*%b`L!#%lLOYSL60}nI9VaAv)S-CYMub#bkip?u5@_Ge zc%m&u=>!U~>n1Q;L5SPw5%C8qrSISvONtx9CI~;#IN2*R?q~lyBsRvO-S9a)(4ry) zi#0S6bj@G>o8*VE76`>}0Zw$drhp)aPlna)#1&%yuPphXwZI{}de6Vn|BOxDgXtM; z_In-g20G=Trah{%NJQN}C_`U{`1MIoF~_OfZ?){RPqF-Kh!}{K-$S4G$-ZmzFtQgr zK~yuLooRwYc&7}O;NyAw`v?mUOb0{+x-ixj4u~xQN|OH`=lVgp$;Aa55OsRc2*`dM#r3EEbo&_i-q}Dh-6XahEJ2WVAX) zYQ|Zsuk$;TgI0RmEAPi9Bl?0#d*y@9>-@3FKDi?ZM^S8YDOaB3h1ZSg@Ve%$R_^HU z+T;QM#cr45zWf)veLa8aFjvA#%73xjA21h0B!T~5xiU5xb9(t%&QClxnPcZl>?^%d zm40Kd^g3gly-HfKbgPMLd1C7b!zOla;`%P06WVVINMMPkiQj*@SDs}~p2G84{LaGs zs_X^~uO{EXjITCdWqwz_Qg2_NxownxZZr-em~`3I+wEUU7UDDwZFv&3hDw0b;?8BY3 zLIY$gLZJqVTA};#XR$&L5F!bMAKEP|^eE;z!eFdFA%n4}-eoVgpbD#1`-mV7`>Y;l z*6f8#jaQcr@N|#bRDgOf@}zp4UlzX`?N9I5BlSser&y$Dk%o?~iNT7PQzBT0U(GYB z3Okf<-52DkrA;xd4Wg7V0)9DHY#jv@y8`Xq{5IIdC=8#{YMB|6hKMoSHl#RQqhb|u zbVhF=A`z4fv5>|utniXKf@9ju5)fmtOI(Anqu<1|fxbKqtJ((HoEEO%cq1D?yLlgu zU!~3k8msSXkpAx^Bp|<-C~2!VRt=_mTEm0wTTGkaNL_(nm0sQU+A)|P%Mne6)zStQ zX*GxZiqu4YZ{W8eM$ju{1Ofg;M3$i$2JMZhGq5DSGh(9ghcmS9#;DrZn2m;uc zwqF4AxLQcP$M_f1=0Yrdp2@z-XPz~VRvd(D3F2jNj(f6Cx=%>jU`$)(>m_(X1v=EZ%#&)wzb1qBDVBVI%J~O z4i7K=8qbXmNLz*d?9=E|wNOU~v$UQPp#TO0q&@$J9cm*$k`wk9#O$YJ;N5SfR~lW1 zJ>Ynsq9&@E#*0Ke>dA+kYlBuUn_%6>9*J2XJ)mwq3zi; z19Nb~*eS$~$%^;xxSp=ExUuchC zg|_UHDGGC6vg>%$AmX%Q9r4(N`IZPYW-4rLFT;ey#$?18svGkAufyl$OvZPDIl1u! zb0Q;2nG-=1iJ$!s%!d^DC+B0-r#?I%0xjkPaB4uA>CkJnQLoYD%tX!dVQOxoh&w^9 zVmDKG33n|tYSpH#1EyJe&SX;D<*wfq>(v*yeJSg+R+WAWZL_8*?9)OtpcrCo@ENJn z6idh=gYNR0ouCT(eP515lN2MmhAx?JDWhqJ`*pCo&@n;Y7Nui#Qp9VR7*Hk{DvE1@ z%dHu!j(5x^Bh}=|C^uy3uQT;%;@ZMJzQHeVh!CQ!%vG2e;~YcvB5zPXy2OAu)J|yX zc_xz6;j@ios`{7?<23)=p@a6&d39C4$U28a99p_DLFCVvcCbN;pi0Z1NqX7>=h&rf zYuDgiBXVgxYjPWqh~n#SMIN$3Thz5T3}B=fXg>z&!(mWHt^WQwEUwMv8((I#=tso8 z`z4(dS90UHoH9oA4`Qw$=M`OQ<(CFba51@y2`%xcqa--8b%?N`ji@u!%SI&edV6cs z=h-i1Gh#>9wXolC^zBlwUPr+J!s2Aau^j%FgX?e(PW>Zr7 zL?;RD2^H#-5lqb%A`;f!FQlH+&`LQCiF=5cTRyZHGfYh3ncH_6!WCO1GwkX|$)C0N z37rkJTzVbasfSj*o?(ooZ*_Dqv+haWR5Lt`D*M7bmFvb~ujP%7vAdI`&Eb^ulS!i^ z@&J)9J{Yfiz$Wa&7Qhq~W6WUPlg2q`JmI?|c{~tUCf2E5Y!am*`9P;+ZjyvXO$|g# z#03aUl#cDicOG*;jcTF6HU=oiwl&gwgqnAWUGa?PWWnWS%z4O#-R-}H*@xLg2>i|> z&F-5D)bFkYz6p`%fwRoA`}O0udw#>e{rvlYf3gHM|Mnn_rLMnhOqVe!V+oQOT|2CS z&Kz!Y&CykQz0<1RQft+9S)nJ@9wt~OWk1!(A|M*yERd0p1n=J%Z=?t^&J?f$O?3?h z1pq9RKm1iN1Q_N0jNiNkJGUL`7RLUcXQ7?gk4W7ruTdPpn{Slj+cgB6a6HBZhchqT z@R$n5Q30TWSHDnOu<;>K-sotytR_6OpkumlWzB<^!cTeM#6RC(?0p)+}RIDRFuTGSJ{2jkXg77O2*SWk>LFf(kA&WMH8A1j0a z`{f3koDsPi-T5cW8~INWec;iRF_nm#RArKal%F6e$RAmdBaHY1?Y%s-%6&I>$%%}3 zHE&<2_X9WldGt0fvB>41^PSuIaAOyfSP-jsmX#t1u}d;~R!`raG00)lZtz<5TVfSm z)Z*!!z8yBN^}>xlZc26rW^A%5db@?FtTnZ_P2Zl@7vy9btLT+^cPe&LhQN{)UG{~= z^;=rcwx@U5-WM$IE_=!gUTexO@8pvDEh`SNOp8c(H(<{w#oF(bWLigS9B-zORfLx$ zT(9IbSdqnPuu@Kg6?r_li6@2joo%#cRg~Iy%2C6rm}2XcE>=aAeWx5SB~$pFYxG6f zzEdAgNqTyxoFuJ^M*B`VN|Nl+zH`04m~Y>CzrMJ^zEe)WR>eY*{fy1%$&hS9_N}G( zTU=-i5_OuCGoYuzyN?i<{kuVsu$p{o-os@&{mJF(>W%aD$E(XFS4s&!66OARZgy)!AHWZUH?ly22*CX|8<49%12Bjt zMe{tcAli!Y*jM;U@;Do|g;Ss|#h-d1fo^K}rtVlMNUyGu(gUfLHEoK8vgD1Hz(HXV zRcdLBv=SMpSC{S=4u(v2(hgNNio~%|#8|$$d@ZYr```d)CUUl{f zyIJA?h<@Jj+CSP)z4-s({!XL6)i8j_9{_bz?@*7$uNV2Wyl0l=&2Ye0yMV1Wfc@R8 z|73@uSKx;R8#+muu|ZV)eq>78VpjLh9z>xZczVXU1=D?;D^bhq)8x}L&OvWSvM0UG zGmlVsqo~zdKL64wW>g@>A%iYW+rS1B(gPGRsDlncM#?Y-E~(_--va6M8YjfJd8LF2nMc0DW|{RPegWf8a&xlPhkM2Y@*OT4? zBr3|A*_#rE;dbp+$kq#4MQ?|9hKhs^d88X`ViM@ z#={0J3fu%$VB3O1&+aDI{iR*nZ!uA6dNS!u*lQT1Z zWAEpF@$e>*83f07U%YAj^Bpg@=GiUB?3F>=f2Vk;NxHaE#W(w#FDZ4V#xpiezPP*O zg%z(#4B_fyoYZ{kZt_ctD-K+)pRj>;w|hBqKNEv8$@*u9ea>8;UG8hJ$Vd5kyq~PP z{)^wWsug;!Ig(VPqpNi~>G5puMvQV*g*;y3&3-g*^Y zN&1`6Kp#0J_q)UJ;@LMq0gpY_F87uptH|j7dhZQi-!#>#^N}RvJ7V+Xcu((me&wi* z!jO~N3ZaDPkz(bVL63>_)1!8eLu^v+A1@5N5V{r_+5+@Blb+_JT}y;}64Xrfp)P0i zPEFkQT)fGu+s`y?ZM~fNvi(u!;5?awais!#3>NCt3e}eh@Z;C|F^u51%x6uC+Jwd7 z@ZB<4Nh>9TEAFjVOKF`}B@^hg^-6>f^RV6=I&}|C5cm@9uNo50!Rc9ZdKtS2+^(Wv ze2Gs&b1lYNt3Ry1aVqgzGQQeg74CGR~UcY(<-uKGYOo-ubHd_jJ70QSJ-Jsn#&a_0$zh|EML;6P~8 z*n#m~T$jYo>$*6WxY<09yUk;fxc6F%{fWd!e+1FQY|hRALUyp;ccS*xDz zKwgL)j)Z|4iUAduL=d}}&#^nl|CSVI*Q@WlwdnH-lRN%-y?j^(EFTZ6@#1clYY_=D zK@?f6If5uzsq6HwS{~>1#HV}XBmweS{yW_#LzB;yp8sjX=AU%bEk1i{*qXD207lt% zd80EmXnVqF71U|x4}jKTE2A$My{*a9d@66TC$7JEfcRQrWJWi=i_U3klekgaU=Q)x zeDb2yr(Jr7vgU2@XgF;`YG-gwoVbVMTAJ@8aILK;foqR~Mvs07*OF+^060&IX;&sc zI02@enf%}cn0AQq{C|dNf@t=fEn^3)CH}svhNG4Z5CpZp5L z($HH4e)an=$Zuq#T|QqYYP(p+89qOHD>CJ?qqmY!Gt=%d0%hNk9uX)v`&YdhC(*&G zZJu0@r&hh9jUSWQyi&`R#eWNG=;kmVNo6bal(!Z^gs) zgs^=Vnu2rm+PDrOj#~|M%s6PhM3>eYCX8X#vR>EqW8DE-9&e-_UEH(4x zx8j`@p`MB3V;fAnT2xrnNL4Q&hj$DE2F zHqs$~tio&&6+V$S+qaS~&WnlQvF5KW@~ijW1AcBc%{&pgJ%>bijO*>AyvVa-W0o^y z_le1}DH$ati`d`Ub=U!+1jkDpMANdfSNjOpvP)rSIb@rR!%UyRO2Bf@5RW(C6WutvYEF)c4lAL!byi zRL1Cv=6|T7I2e4AQG;=n^mR0ST?P@=mW#*2>eJtW=!pNkMDv%kxrC@FBW@M9Uy`H+(=J+)cG|8vuOqNb0D+G;d@DZ^^3C6}SNuvLz#wiLH=ifPBfdDr=VYS|c_9h)#7J z1|(a3K5_;`J}ELTK!CaH^eO7hZ7@`rPK+iIk*7Ix-uN!c>*&vJ|s6BeF z+Q8wZDxK>F@JToS?s2x139lIn&d1_PHtAg+G*|&#)%A`-i&!<1KFY zO`P|X{c9M!NA}RsFGw^;0+ZO5n9^R$)|DI;)|LG^~e~yNDu1v^~X}R`= z)MgPM2LEfnId1=149@hh+As%?z3DQo$3;!N`T;URXjLsouS51ijaz9;j%7TkVg`KjA*fq$vYT8mZ zzpHeTgs@k~D0ik~{X^`_v?F^;Hq8r6+c}qj$)ju4!(SvC8ci*drm7{s&GA85-Klrq=|ocNHdQ*{-GRo zV4m7qFZaYoPXaWUrqjpG(#MXjm7~->^sJ}iazfCxPT(+|>CBj@W?lRay6V>t>J7pa zm86#QB3YEB zH85PG?SOQr-E>D9AKslx{P?=0Z_=OPU64*y`jh?n?N{he_DA(6);+vGM{Z5_XOi>> z?feWMJ^GH@qoF2G(ys)}M)asedUVI_9|57yjp)%=hkEq$tEES%bp0jWNRZ5QB_>Mz z6%&9NHc^S*460Lg+q;RFotPaMxh>d!=^3w8k9Q3R#v99NFJam>4xANnMq+y~@`C1( z$SQXCVm+Co?I?*%x>iSMBA`=fjSf6hcb7p^H^~8LdapY8V}qtT4Cs{a8Z`a2@PHu# zF1kTWtHl3Skd*jAfo~EBIs=c*BYVuSs|6oKSak#m5}1p(Cl6%kgw@oZovz`f_^M^j z;cSl&llr$`yk#Ps&R@@wxy9#3IF%!rNBMII#iH(m=f7&yIj@v(!?{K2J_WXCqcldIj-U>$MJEZ<$@=h3Sj`z@8 zLE$Vh02ZU)EhgI$R*Ajv<`Eyt7{s4KPVf5EplFc5waZ987=00RmD>Ss2Lm|#$pK`G zh)P8&s{Zt^pnd+R^$bQNq$V8ycJ*Id4YL26TUv>BX?SqU8zv0p3_DSjfG4Hp{UZt% ze2jvSj9_Trh=NxfK7+Ufha|QDB<%R96Sqjgy(0>~`*)G96%xm#(l#T4Kan zSWS~AN`ZA9il;(JIA)?0Sl9WH)=Q`YD;=s^90)jfvk>iN-jZd0vqkZ;t_$agZ|j1^ z)f=IOE#J^ji_fOfmM@i5`dXSKEIiWX!pIh4%1(A>qh>BbncbT@|;7OZ_KbO7&o3H4aH#d-( zAz6bDf?~snBlrn^%`^hkm+WPJIW0!6k^|)KC-ecbS)V3j++bOMLG(5sp5^RWBET;Zd{rTX{5D9kM+hyX;*<@yE46ZJp1{L|-!Y08y9o0pB znb-oj!0HpyPj?%R{R0rueSPt>5JMfgF8XcKj-4svbRlwz8K=lax;40+eL+jagmh-$_<2T5X8lI?LnSJjI@u9VvrFdFgQ(ZS&{3+`*+BuI0#5 z;l)o%%sNoBE!~9>(=;xb#3EUbr1hO{9&qI|S695;_HDnX^FB#9*8GL`mkATREISz) z<{d=qVu(JJr?2@Ox~rbJWRTXEpB7!2o7U4Ym9lA)fJiPpz{;uH4zsei)~?Eif2oZx z%VxnZ%ZV=wA}fm%&6t1Ls^_Q}@#fOA&$PeXe4$z2+rxa#hw){;_%d&NnO|L|!#w6Z zl6K%m+{#w#MjQfP+?PvhK;~9EG*}QCz?!n4y59u+J#xU(@yG3IWxriey)O|VaeqN* z?~wz6`!}U!bd|il@~Ra+6L)9XXJvv*k>v5Wuvq)=tURY!hfrLZnP{@#G}-67qN`K) zVkmQfqw~aAj^xlu$s(Y``^gR{S$8fLUa>OUK21^tGgbV{)M@CsE)B{}Ap?>duiWIj zH-3{MMjqwyNV3DUagZ{(vjcZO4os+(DR&KpM91pJe$3QB;2vc7=0KKb&;OK~O7#Hu zoMyrh^7f_s%!@)@P-oCE0rb^Xy4VzHct#Fen<;eM@8u))BO&ra(XLTuGAt9C zQNzYrobKqH35KK3dq?k=(GN~pnw4->R^KuY?cToA#&;RO;#)Wc=Zi$|b7;xHTE;4O zj9x>}@pcHu(Y-G?R=em(NI>1N?S7U7vhnvRBkrusnF*&TwYgx|uqGZ~;F@Dt$i&q7k{vYZ1qJhgQOpuLaB_xr_?)m83a1cMlkGF z{XBTMZWCU3EL&@x)D~FRnf_XiEtSS9b1Z}4 zmD!6Xy4W}AHTD9-HwN1OowCkUZ!ANOplbF-@5N)~dD2u*dA=uBUMQCf6@M1Q%8Te! zhMaQMyRT}F#nKZCc*3^Mp&=qc%iCa z7rh&|H3>U#2E%uByf-|Abx3G++b57rXtzt{*&@P;dzEk6JMo#0GmS}8$G#?liO9|F z?HnSETp?0YTm~ez{|;5~I!vPW4&$kNz#c7fP%;&(UwrozL=kC{AvTRj)Eo*5=&7x6IYSRN~yQ=ysYEeC_X5QmhnRj8eW1*MCeR^@I z@8%021rn*Ky5cV+`ZPoPm%oAHdI1P#e3B2_p3>V&b1iu%WUYqn4so|3)r~sz*n9Cs zMe58~+&OmZJwN8@{2}4XtGsRr)fbXAF0Vy`3@Hn%M*kpH%eLofp2Sw;Xh%Ht$}ADZ z3#X}fBF8w|>HUbE$*+D$&Lfy}_v^0|!JlWiX+_Gtbc=>0Kn%6%TYO2@`x28nl5A@gDJH0D>oZXresP@ebM* zxNbHU-*4^XHfHHC_vl zUF)-|^y~;+Hs;M3c7EO1Km0sP{n7rSA?BXLDafxax*EdvyM$i=jcaPjlzF;@)~Mcz zf*jDMvg=<2vqUdJv^aEkb;NEUz|wBgFiM}Smc62IOsf_9LaiXov@>~)ZPU6g_~)>Q zWM^dCb9TCcA=++5(Sjn?A75NFQ~hn_Q8`4+XjCs;fS_bXlSm6Ho9xO)E2s03H2R~b zArm*f(^JTD>`#d<>G2f~jgOJNr0q?fv&);R?1rL@O#}~E;#cpSLdd1V#Y>u6OT_}E zZg(vskXf->B;7h)*5f$IFyfU(6(viWR&>!3vpbZ!-565WYyBTKPh!jxIYk1H0XWuC zxo8Bjf~m?S#+IzHs~8vA2IJvexV`l8Td}UUN9)LeeiQ=Be8g;s94o%9iR6Un^U53R z!ASW$r?TX>rWJ2uh{lFToI#`w#6=;8SgDpb5seQog@@9Trdhy8bdijFSyStIA_oSx zjMrfIOcGpGlq>_g(E;i;&i6Gl?QXlVslLHk-iWgsk*g}bvUac#I(Ll-d&gw#fEOQH z9~C9&7OZ5Mo}yev3qKx}jsvnPV^(m&{xH%tyL-^zb{k1#}300RHmXcea^8(wbN#rW27VP- zU`;O#1T*lw3)232fGh=qpzf`o^su|i@euK zYHl{HXm9QUaruMrw)m}zNgS38oyXm23NC;^J{T=S|9I-qT#8QlI@#C0#QfYMht>>4 zRx)}?p)hJebb4v2Xjf~pthylM&q{0~{-JFIUW|55w>`3>j#Iau2fs%V5(1rNmoYNP zT@J3FfyWwhtop@)$12aarxp^3@v+LB0{nFS8E1EFb*5LjjIA>{Eih$MSiQ<_JpSd0 z^KzDcDe%~g^BGmfvvyWz%-bmw<@hD~9q}xuWuW6a20zDMZHdx5XmjGHr?R0m*30sdU#{zrJ1)^DxJK)y%I+fLN- z;Ky!x^6-{toL_FcEyhE^f=$Jt;EM0sb%J9P=`MY>vhGQlr_@0lxkv_K_e6qve$1+4 zhqHTDnkzy|#(wq!x_i6HsJ6CnAU=Mar660}y zri9f+r@afi=!;e8_0-nlPm^6(uc}zZVgYDmEVeyV#Ob3VOXv@KGV4|3Pw(3Epfk>d zXvsTEv+U`|NP0gs_L6s&_0!piucW7WdUVj&Iu<5YJ^z|}qV{2T-1BQ8Sw{}od&VQ_ zBZu6C{R8otY8-z#$`kdt?~IPatzwBH*H}eq3TIu#+|F~d9-4c7$)+V|XnO@h@q3LW zLCL0D4kr1a;qbJ_(YtaxZKgdJr#bxerun45E`c}ZFG51>X^@Yt*kBsGHv;U&QA`v<- z+KMOlnd00U2}D~FyqyAJ-l2ZNYuy0lfo}Af+*05ZXn%*l(P#4Iram$Y$&-4PebWAw zJP|Uy6xl*P2#m%VW532)kdEwqzX@jBZN=w@JZ$JKvymo!z#bvXZ zuek){38>6xM6y=xTaqb75DK+ULk@3f(>kOU-8;vIp?p5U)i9>`ZUc> zny(b_9UraM<||i=o&+InvOC)a_lf5*BN(g9qSqdEJ*TR+ujRaN|4N1tyHgK_7sKH8 zdhSVQ|G#)Gqn|f7KHr~;O@*&)6*@@4y(QMP&Y%6n?+r&m^VzpIsu3fg57#UY&D$cH$tECuJ=>GYm{aPa( zZOu9*u(q2x8T@p8zPouGcre$MMT(JrC~IZ|;%yFD3j(d1Q6cYxh%fhAb%(I4wdU;W zc=^^-3tj*lc);EB-2H*z4|DeMz^>lkv6Tn!GEIEUUHn#m0f||)-xK$C1!nY7d5LPztf8%@3q%ndtI#g+194P8{F%Q;*I^SLxVqae=e~V0c*iN3+tlAIYnLm zF&G>0MTscpG94GRgWE}8(cO3g61;=|>HdOGMSu3kE`qu$+U}2u*!;}l_Fp-dsbT@g z6_LHqAbN&%qHr3mQ-zCfW!-6=xD578(Nftu8~g0-=8?Fxl_*XCc32AFsDqGl#sui} zcu5Z5U5R3p7;vZtx1ls(jm;r+qV=kM&p;s&C3Un!SS|6AT$9?DO6{}8<~pedB~!z) ztk^wx!JfgN)7@xEuEiDVz>>UZ$xyECxAEHnJ>tJ5&hH($%a4{IHSL{t4Y&Exv4vCh zUSDkNi#Gbi-2}u)?vy?J5#5i0)wW)14lMCu2~>yITkr~OiPRh6p1}_ZH0<-YD+M1J zA#X6WK4u5f?ftpO9$Y8Pq>M-#&cr(FF9{XjhbNZ5(9h6H2|3=mQxW$5pBc6NU%ex? zhdMiO=uVlB2!!oL+q9a!7RC2M=rZ5+q`9AEx8ipqK5S9xOYpv2s~#1HaWfBX$KF%jzQ`<|744H7rjy->CGV{Mo; zX$MAKzhctoi^N<|4cCRvSp+SvF}V_#ia5inLuwI+sfb=zLGGY_Em5Cv-xkxEbn@W6^#CtVf5Ayaq&zfhKZAX6lQPYW zII)0H+jr-2+b3UaZ(93SNyKHz_Q_{ypFDfoH>;<8BTW19LpH;PSM$(Tk;UI;SEMyh zlW((2kJUVBpV(^=eZD#lj9-8o7j#-<3axzEqQ@rA{S4HI4%?*|=whhQcUvuI714J? ziq;z&6SUuc;Gc4YJ6q)JMQQIqrTg=;b3ZG3yWw@c@^)A-)tz2qClN@vj>4uYEi65p8X;XV7y7D;5#IGI4ijIgF%8Hep#e z!J{qb$n;^i%0JgQ}=fV`S0i?kP$t4NDzSZ}S94wL+A zp#IavX!IF!R?U3%WS5+W{z;4K?54PM-4|Of(6ZkFPS$d%G}a=M%iI?q*r~)6OY5D# z^bjnK^Oayp=^`k9e=M{p1aFocCBC7q@!~=mrg-si^B5`*ZU@WdR&YXG&8R0ZYaDNC;{&0Eo0>LD8adSp z%M!@J@aY?EeVj;a3oqKrQ?8XyvPyiI6yzqE5IzW3a*GUW@%94DYZkl2$v~F-t=Lsw zM2+J*S(?7<>qbpW3Xhj~rNz;V_#IlAMBO2GsPZp*pKEiRk{`@{LKqVhYxHYI5y0jwSAxf|{*D9(+P%DlbgF#>$>`vLg zAIOX$->c+vG&(MD-BjU~j#?Zz;Hy<;-852d&&S}rUb1LYkh5j9B0oAY+r7VOt%Aq# z9Z~HYw)|20;BUTDVDhSc*U3DfJ24FBiR{h1Nv&_Y1J+VG<42dTlvHqp*o-zs^R`%$GTK3mrdaAxl}Ee&7f1uk(30)1Mj(?r>OaDvq6=h z!Te24(%1|}4bMg46Q1{x0PEV}KF`bfOUTF;X+1Sn&f-r^SezFW5~`iepQ-cxL;fUw zrl*KqN=Y%L&O=B(P7}LJ18c&B@Rsc#ICXwUKN)h8DS;Y@wmf7?hO2s|&%IoFW%Y~P z9>|P}p|KJVdf3QUmvDzhRmj%#i_*@3eoBjl@su8Ii4jKTQq(ihBrYH5!OXw6;}R_d zej~+b8OdU$0FBUmfdEup5yY*%=a8bc0<5zxt4#M;T@PyRs|$-4S1 z2Q=3RXm*jQjOio5nmkQ9F=Z=J*8rreNj&Kq0St*IPh<8DoU)?>pC88E*H!}}Iozn# z(@I}&vy~znbu+TKlvbIgCMhvSnyxJ)uAnA~kyS}K=hjbAp~!}zIG(h2^K7v@i@i)P z&hUzip>^)u*W#!c55;!f?Z_NpV-^R|)fv1@He7M5^z*;?eja=BY2$$w_IF-&jP{f z)~)*qOqWSnO)s7?mSF;&-OfWwxa-lsgO3Th6LxDGxVbu4&|40>0cP%_)m&G~Zs3Ye z*~vYE3P^zYqAHkz{Dm=>Y(yatox_MN-e!XK;Wm-W^Eb=BDz!|dWG+ELQvT+jQJR=e zzmh-x#ee1vk2wO9e5~JF>SCKLGFW>gc4%;>TCuh5FJAsE5v-HqK7EmfF5qZWKd82@ zqm*Qo9^`_xoJkcj(W>)FX9^37-xJKVN{PGer&ERennJV$6w;sx#$#aAYoGT^k?qLu zxXP4S9WZUf$eWfssXE^jnl?QUeXp~pNQ`ZH)*8U5^He~C(LHFOE(BRRgSI$g#-Imhxzp9HdM9N8`8*Es)jqp=Bxk0H z_(SQgTohl;m!i-8%SFFPz#UwN#0pe%bzo6Nw``;Ky1z5gG`WoOLnyB^9L_KfW%ke@ zDyAXjMq@73rbK=nE%(|n1V5eQN4_2*mA=4o?b`*f)M6I8dzdBD&cA#Ef8h+l#i{Tr zkd%MZX_Wz+Om;nZ2>bl4&5|l%BE6VDZxx6+@S2Roi-7C`bz%g#7}M-t5F6w`OmyhG z#{#Yc)|Q|x8j)5tXD$a|2Y3fyIR;=kRRXZCB(&=HHNyDoE?Kl*;6wXqagpi5vQoeZ zptTLw7BKX&D^KLBPNb+o+P5I$ikp=)Qxxi{t)QgugLo z4O>MtgHL!Fsah8z+4X&1mdkQWlUbYF_hv47KZAU)*-;f&J5OFLg_3ckZuPfc-uEdk zF+^6?Qj6}P5P%W%sBiYl@9Aj;lGl$H#IaDljh!Uz7|kKL5<`1E8<4dG};m*&01QnEH!h=iY|A~TIZ$Noz>&kk6$#$EsJNJJ@9!w zZbfv8xR5z$Z4sd$BV-$GnJi%_xR%ib;w^F%lzR3qc1A(78CF4IL(Bm(2f&KnBcMMjB8`$qbbu;5lM46wC3gx2{3O@balI*yLvKs8}c^j$^LE}x*zMe>kp&M>evPrcmP3h^lO-G5gk#GbF>m1d@u{XjfrCSJus;c5Z zS}Khf0Tsh&RW;22HGi>w+PU7Cnd#)~+f(+zvppigb|=9BP0)FCf?Hf!GCZgfNeSrU z99cp&3ErL}w(F%K)=PpU^$x!;CmzsjTlBId*7;9(YTU+NcP#me z41+kN;8gqLwMk6n@GoJ{L>foB>dz7>lK%G9_NR$qEi&`M{W+ZoD-Y4MmL?+d+UkZk z)enr-OtwECZ}c}b-h9P!22_1OF_+whlo_{rC&JGAgOj=}k66;>Wfa0ITih)Z-zhm+ z@c$gMU~um@sTNU@T-ss%$$ySaK0+Bqnf}F3Qx2MGa;&;J;FUox?kv-}s81x(bhP1H4< zdIFWx{TFR8(LZ)lhDhl%QB5XFO=~VsVu)<;gEmDJeX2PhUCk+bpjg*a=bEGB#I%_- zHF8iwH*>`74B@nMbw5-(A{okjqA?=HUOftoIjM}0ppwazv(1|ApUhKV)~lNt;R0q# z#{}`6=oR4YCb(+>Wd>Saq_Muj9*9NTUJBSM2QOVcgp+6!XCGu($_BQaV2lR}~ByU`HFNf6$EVN+DHg&?qy z-HOi00QYt~G)$5}nRb_;-NBKpNN&LoP?lK8>r7c{FK*NNjivSiwbX8n$B3M_7MZS? zPh7R4NZ_&DgI|peZ-t+Fj?`V_v*J;%3K7xlfuZyh9j?bfUe7h3FxLY;5t8VnVL?q9%FpFTThuS_!q9 zC_-}jlz;I>D@}lqY$5V5zUU$T0!>1XN(BGnN-}AvWVUcd<0asGd2q0RV_JgIhJ^{| zjtlx9u8Hp1wYp#bpg20Vn0uWgRTus=X@N5P^mr6- z-v-I=vsMWIGqyw){^D1h^RhD`VAeb4h{i(tb9FBkc)CC4itjWzG`YBK?H{|!V+ZjO6u~?ryZ$C^O_yEgj;2@Y6~dH_-Yb8Po2C1REP}M6_sZYnX6YhJzgVe<+Ow?{ z!sLzKD}Tx0$dKnp4kzW~!Ic=xQ2%Hgu@8uEw8MSH=?JoBdI99v?`BW%3a@;;xvsFk zSPBDvi4d5PuDR#x9G?(JWJ!w)LTk;@T2m$StR1L)V*S5oYF z<1G|&WY9LKfh!U>qOcn{btu@B=U0rC#=v=l)LLWU!o1&z)yBZ3`R4nGU10{M`oIk< z{l9CE-IgeL-MwjXqVen-Rxb5rHhr;hUjL<&Gc%gLY?||p(xSH-KDMTGk{Vt_F+$4Do7O(Bc-SZ^aQ=D1K=hdR?^3?VR!^b<_RIhKSxUVj^6uvhRxjBY zX_KT632k71jRaOFNkCp>!OGk0)gKUpG>WQy#``u?qzcEtofjl+E?xZtTOQ&?lsi2? zPbzmV%z4>upGu#UVuB6;np=6lC8 zNzmz&_R6gR=i31k>FC95fH?vS%WGc*q>1J-E@`5I^o#b%?w-bfs22Nxc(fDaJ0fer z3idZkQC3FN{HtK@y+C+rNq;8x0Q;KnvZra%;e2_RFEKp`q5jx;iC`ly$%-O}-Qf!( zhcm;2m_6chK45LEgPCpL{}dvREHMVloa49BEm;Q+-=pJoM%*wDjhb1}kk7z7v5Kas zI_g8Y!o)vS2g_6}tD4umDb(H7*WbL27QvqkzbU-QuS9H5c&iZ^>#6c;r^?7-?}86m zRn>dU35K9Ja-S?b#>sjkr3V|($71%qggv{N^{rkGGc0XP{n=!R$v2+nG?qGQjqL6? zM`GoxbJkJ@`M~1tWMURb^`1(KXK7z8HRIc{?nLLP#>qC$*($&wuvDv=sFRTs2 zP3E>rsR*+k;u*5^qE8AnVOEYT4IeW)srTHEGECNoy+lKs#XNI`;EU;zHW*X-BWT}= zLK2`mQ9KkgqYGY_ou=N5M69;E{o~9&GO0C%4pxvWuwMTJ|JCVWTVL4c zyxD^SZ&MWb#Q%PdW|@qrwc;U)i!PVH#(9z%U2{|E2%z*D>4g<$d_jUsWH!V+#X8FB za48sTd5k#hYrYGB6lF~lL`egAo94)+$*Y0UipSDnRR43kj0uDSk&j zLa?03K_S_cVNJuxL3e1a^l85}#)IhfNiz|{LP%;5G(xm8%Zdo(P;p|y-%AL-qQ6;K z{FsRfwUKXTLS*5WDxf^>&2^{a>M0yjZAp)WIOl<<4 z{*(wAb_1zdVq9q03sRAPd5f6>+~aY_W5za=P3E9o`LO`yA->ZQ_`___nc;q+ z$$aeS6Kdi?MaKcn52-_%@#yiJQAd)hBGZaxKa?%P)YS|6YmcA*bg4oNzGfw62dIlN z2@ppb5F2&YwaXbKgb#6Uu-z=EpGoPGj^vS=-3MRizLOZrx|`I{J{Ev!wVGoipb&a@P$h=F3+qV5;^>@ z@Yj}>WL#d#g+b)-;qa+TOENDn%|xH)FlJ+xmbfo3b=P}^^(Kg27)$a@wM_!FPc9Q* z7nJRb&0$LpG~X+Y^k3B1bg`7#E54}zs%K7b4~d{|(Uv?;TF5!X#V{kQCqZFS>YgLf z8p8=OpnY{Vd`^oJBh@%DxE`I8l?Y%BaUy zDdbACqZ8py`7Audcg2QZX>Do$Tc&kLU^&prEW)CL3>I9~Bp638&AdFL{(J#r$U^E@DO#Tyr5HOs)&p(J`V9Ki?=f6qs z0M3cRoaZ^k=bzBWb?;BOi}=oF^7P5!EDJBue}~wwBJl?yS#qSjzT1B0k04BQ*zz|A z3{knw{`MQ6>y3hAIL8neWJn4_iSw9&N;g1LQbk1I;Rg49U@tw*8fYZ-zXSww=+_w(xwVf_}O4zipQ`N*gy&+am7= z;(habHB!Lva89a`3u_Ni!i{Ipczb&k`4sxOn9({$d?<*_#qK<7pn0 z(h#kjEgnuQd|GouyfUoGD(B1I6m1zqUhWs;EqXyJ1+;jiIR0&Fk@F7`;<`=##am>S zYN+pQKte66vCX|~@+LGslgm0j11m^Dr#F-nv991 z9xf+FRPRHh-+ES-hrQa{oj9oFW<<4L{^p%@$f^lj3ZfFLc0Q;KKLV4;fvO?=SRV;C z;ft?mN27mfWdqkp-p4ZQJ*zW1GB0T>dUc^(U3~XQt;1lnaz0vzv zfRoG{&YI~7-EWdvnoPzOF=aTR$20;g0?l$~lEYzK7TIe*ah9&Uv2>d_#VODHxy|<* zt(w^UjKv9r!}D2Fp(s^{S|ub(HFZ7j_D{cW4)GIzslwq>Ty%sCq&>t`vG+WRHd~Ya zjqIJVS7v)MiuKFlwU*1|I9}^}fPDqkz!7s++ri2SItU}}ubcRTm6%UqRIuZdjL6Z5 zfbDT2uyr6N4*G09CihMEd-l(@0h(y|*aeBE7i5kn{N-H(UXV%N^n%QAS9quunNJ|E zjhoD@m?bO3{^PgIEvbGn-;IBPert2dBf{LVr)0qm=t^0}d)vuViK0y2V}3QmGDu4m z1H!kbf90+!;L-xwCvrt4U_jhj5P)2)=#m>)3`ZxbJofn$9C{APqSh=foFExn!wyNe z)FB;(qFY*#BIvA$^v!rM7%kZTT`6s*XV@wk8vorJC^$L=edh7UqZOA{oS-zRDR@AV zBz5@A&VV!Cdi?bv)$T_JvL2__9Rng?WIitpBn%TUi>+PUzC^YJnihJ&9zK~a{&E!0 zBf~PS)BNSoHgi1#c;}m-@yI_jC33*7r6p*>wc=I`8S=Z~0%2n4V0}OPSKs8c(P=I8 z!BF?b>Uzu&g;vrt`}sex^&?v;isZ zaUvyJ3zWx24)-UQ$VEv%>vS}^#-SjE7XW2>>i$%i#_Uw%(OED&vxNzOLv_19?TZu{ zJX^8TAX$-FY%CTz+lm9>D^pYDw?os6C_d&7pVQoSn@o~>Qt@hK8llCV_9dg~w)pM| z_YcbZ$ya`wuz&guBI|d+{i)b$ohJGd7g(=$6d-ge##5(VE_P4rU+H03Iu<5>xyo>j z0JVw{iC)Uv&&$BbFrgOjFUNs+K!=Di)S+m_6b=(_t{7>Bg^giNkD?f0m0=)Xys-!J zLtwks@1Py20)mOTZsP8B2E2kx2aav-UNV%uQI6uBBBcS(Z{frqG?oUPh zL2ZtGe6MM|&Oq$E+xd4B;c(W&sHm_zH{HMyu~It3PAYo{51Cu+;nUex?fO9gUN%DX z`&2lnGSBRjn;4?Xq4CP$kSka}DNe*IMP!bLh*|LvF)SWId2Fhj;F`(_19h_GIfMD3 zbIv=~Mp+i*=Ic$=uYLR&^v(r_gTzfSTIg8BhzErM389Lo>;~E03{RCtHil z-~1a{!GroVeZVfsNLP2lcX9_qYa?PiRZI`<(XLk5^00r!?U$vyQX)UJHTo=6TDN`R zZN^IXVwwn+$jiV6GFplab3aWuo4V2y!dxu||0n6)+cITi>PAsA7z$BVD3_0Ha;pi? z9AKZAz=)gHB}!7>v13IEaxDKto9VYyd^;6KHeztvYv)pz*(fu^qMa7%CJkJS)`#ey z)zn1eh3)m+51HfIRD;bHM%D=mgG%X&jSNPs_k}Ou76|s6(JQnvLcXVIjC&?lk(6Ci zEk{~WC+OOQH>0Nc$d(jI{VVHX8r5TON4lfX3))+|=m6|OnjN};9a);ZS-I3mhkNat zHOqUULg&*Hd}2{1>TL|&IZT@kp}Zxc4SJ_$%fa0pLfIuFG4O!l<^$vHGakgTghZ9Y zq?ElQXmqGV&=YKRK&m|N92ssOA2VV~t0m?QB~K9XU?m}787l>q$cOr5iIJ&O^1XD1 z!omlcQeo#|YEzI8ec87pqO9DfO#UpOhF6XSd)M{8NJ=v?TM zv9@4#Wb&EJ>@?(&ZRxp%UGyZ@xV1fqw>#r*1D8+d*zgh9Xv$6;!<$ zJx;;vLp-2Sk5cRv#ksMH%|ZLrbE#&*##l9khu7*iHZi9h!XcQycS3J+ImvIf-gZPw zq6in>?t%IH4Qc}MJjVu^s2#kyE;ieX$jM5pDCW7?&At$=?84?xyt127#?)B&+yrhr zYeYBu47E{pO5`?d+MF1<4W+t%Gc)Wzz55UBZNbWRjCzsfYm!AQ@ftvhz!*x z_h$QNKS#`DVs~T{S{U9^SY1WqJ^p3;fTzQHQqEqI{zT{l81+>U=|=xww0`wF0wRxq z$dC%DJR*W}>>f90955by@uPL@JR>y^kO4~K(?|hg{?dH|mK+69u7W5PJ~|B` z%2BITNyaAqhq|Tr_SZ&;UB^|g2+w3>(+z{5e{yB6#4+Kfj~spUeGC*Eugo`b${=aF zp}adP@ElFxb_lJj1G4q=&OvxeMNIT4S$-J5{*0WK0O#t zy(W!SqzG8Yn@gJI(ja>|i>2V*VN-`Uo<(h{&s0;01l|pge2J!UJg;c#@P@xnJ6Kt+ zr^Z5i+bS(KR+D3wUCs2`X8VTsXbT4kb8Zmj)+BgUeuJr1{omO?67!6&bw%3xx!WVV zyD+RZigjV`CBa3jshvZbRM8dlUD^JACU7xUkovqVdzvq01?fD~(4|LNL8AX-t#+Xo zF`EK~SU21nQ_OAgxT4K4NUF+@V353~43g2v`Y%P&tiek41QoVTXsa2){g=RSyegVtQZ zf=xn`M6d+1!!>O5=Uw%Ehn0Wc9rh(k4>&8|2gMm%p)){C4lU_URkYHnC|VteyzYu>?ZQ*nc+MgxM;d3L&}UW7h}F!%E>;31*HQmr zGSkE891m*BaW}odyqB~s1A+jRi7KeIZoHqRx?%2*QB_4sMfuL+0iBPZdD5>OoQ%M4((5%hFimQ5`NRMQP|=)K$VTKx{i+-uO$g=M$G0o z*i_IQ3XLE*x;_=nK?Ln`Ib*xEy5pnEGqj*AjOazD22vey$S;}yhLIz-2i&XzYkRB; zXNITTh}mKce$-!xplsjkoR{2CIdBQiyv)F7-DC$osS#i*v-8jFJJSOi^^Lb@F`vX} zoYkdfF71o#%W?G8Fj6{Y52w250>no;G-#peFO#bY19~xFUh|_(AJ*@Hq zG!tL7_j|rfDDGE3X*nDZBJq5LWwA1a#Bpu|oTLNRQ@Q}ld~OV)j>0RMCz1FTvL#r0 zL@9MHo>#s0uPDdbY~Q--%Y^$1@{1R1ZF5B1mJ#`pG|N>Psp!V4QfJXq+6`4-vmz3X zy&#qJ*g}qT+j{JyI-6cq(E@M74(!E^%CXmf+?{B;ZqUEd zsfQ$gkj2L3KTJ2oG#D45NY$K;S)V#b*tvXmBaKR#Mo#WWkoz1xV>Qk8b{ZI~Y(^X} zby#3N08*~>eHf9;jP_ev>On!WwaOFuzzuBLKk%NH*qulW*b%Ms*kfe)RT|&ZG{%#0 zumU6W@vww5vB;O4U;ll1V#K6Zd0DtUkcK*wd z zOTuTucMW_Rs3Q$NF`|Wn+LkhJc8z2LKI2Ikfx*9a_1fRMo_m}>FqOxK1~Is`_D9#t zqVlEe?Rs2KFdd%e_X5B5{F3mqN}MSZv`Zi<3tmzD<-fb#YFDHxmrIqYBxjQZnuIh3 z#(~MyB1LLpcjVPfYdtx1ea=r?pT^l^w4xQ2gDtqvtF2?P+^UE8d@1d$nVy*qxY3JQ zLs`LgP6YAfF7tv3!KVs|tc}%$L(@k^T+tuPtDU_VJ^1>S9Qf;(CF)!4#~zgnh67L| zvNF{+yR1zA^7~oGtj@hnJkg;J+UuaUX@mMMyJILb#hG2}ah z{1RiK`-PXFPGg3-*?Eh0)GwgJS0@VW8>tnl>6SzA+@ZVcPlbs;GMkUX5ha1gsm_<7 zg(1CAF2g&Ke@Moyxf1gEhm?43#Y9H{y}lu?TL(yp$YRf&T+#n(M?$J#J$D)>7rc6? z-NhYKy;sb+%jPu|bMj^rOHL+(pJ{2q>vB2M)82mCUZZoaZNAKY3e#t_dG7zGZN{~6 zTAR;IwHYBfFFw?gvPuC*R*4N*=WDK-i$>Dj+zSXVaSu#7+t~vwzkf}cC&@sVTWhtaW8^?`?4H(UMQgIs zdzw!pxm$_WaKjS7>xMPJ{(BcarSqGt0n^0&VNF0NhqOtrz zT@`o*>4JB|1?9N0mY+jjR?yxj3l?K_P4BlgeNkM04ybP2f zte?`=fv!gOdEbN?650GsYlpS@wT~koWWX(Tzm8pk$nK12b=Cmv$G0;b-LLb$=>5cp zLUbaX(*D5-c^Ly0f}X}#K&)~gQbm4D5a0Xwkj z?|yy2YxInsIQ@F9>B9^iE@wfnlKl;&8|DmTrePkFeS&Dn|H8GKWwqDa6YISHy6AEHbr)`vUjfq3S#NO z8YsTm5OhHepA|0R>~a&vl}&#*E)_Q3NuejztY?yzP2i>EIs4taC_5nx$0%VLy3<{S=`3@4bD2 zvY)(e7~*bbeZv0v2|7}GrCa7PSGuCOZ0_94@}dRy&#so+KCb$@LX#9~7YnUd!DSfc zZG0eGuF#eA-YmeN>zRN6UY-}`KezhVVfQ^z|6Z(mkKM`x0!h0hJ*=o0E7bVql zg%fqh%aqj=FY`({agN?RHkAc3>|FB2MrGUCv_wv%0eM#M(QjFVArhzp+dW(%@2Kw= znoTpIk5}?wA=xE3JjZY}6A~58GMN~Ekph_xZ%KoybM0w&I1^>@TU=Z@Q!FQa`kVQs z@^!Kys!ezI_T)ew!>T*lSN`UI(1Rle)8D+CNHB5x?mn#UHzMY=SJ6c*y7+K-ccJp= zU;a~G*UFtn47KYGoUOUcwyucfc->#ZuP^BWe~2EnntQ84rP>p#%G!h#!$>|mrlVDC=8;_lE^=y&*!a6zjqkM&Q(cO1iw8o<{SG@&_6`u_6 zO<%Iv1+ddvy%n}GHj5C?-KZWv%B|vA!zw-XgKp^2ABxp*`JfZVer^5diD+N;=^IVD z@P~|#Omv#v*D4NKo>uYq!+2N#HHcF3&Y*q&LWZ1)J8>uTSnm(nvE3Vx(ZI)<@RvlM z8s59wR^aaNQ*mLm;ex&20|2;(`mI&HS<12ciw`o4Gi|g#&Xvost;oCWgcv6|QgUvV zl#n3hZdp^}ulCJycb=4Ut^hK5brzhPygExEG~fd`e08D6nZ>c1tax9spOftJI)+eK zC)qu+8nRmKUl7k8DZVezu9r0!dfHh9MbA0P1co7E%FnJ#iPT&(Fp2wAbmnTt;@EYU z9;fbaYTa4Ks{7@&sk&j%qS-bvJMD6NBP}$T(nuY^weyK}fTR_TZT7-IvTelDFeJYm zNB|j}(u~oT8W7n(n|N&4EG3>zRoVx#NP=gp1D+ghqIwI-c7+ZQ8}BP*mp%SC#T6a1 zxNfJoKRzoxc8Zfh1>VX}3Cz2RLw(oOh-Pd5*l%e+aQJo=f3?6SNGrN;wD zTJku_Jg_z@Z$kI+IMqBbV<~T97awj-Lp7?0L)iO5xe{_Lfu|zuzg5cqmt#MOy`+LR z<=M=pW!LhX$FGs!Vt&i`{g~hX@OzlwWBh){Ptr=SonZ}84SxX9OG@=>IU`HsVVGT%pg^BJK zuHd2>Bwf@le>I6L-}azAfpn3Lxd@&mIm>2ADZV*IduANFJyfpk`MI>?Snb*O%zxLO zjiftndoB-_q&RG2}l^pU2A0^qJlu(+B=|wH*~Hs$BpLzMHVPdF*C{;Lq*Juv>$&?e4RK zW98XtkL1an=d%xypz&hP61NY%@6hdq)&T$S{^=gRNa&{6m@IoND@_cY-A6K5^OZ%K z0giWBVNqFm{a~nxE%v_Ej0Xo@cWh{@;C_U1=H%ORX<4){^DSOhPHvYqzFZSobB6kV z_nAA~+RY7LqO3StR&L>_4G*$hz3ftzg!kmMRI!^wjw;s1P9jcEifwO@|-GZwqyXx9Atfo9oDFk zSdlLpHKG1OsL@dY`{myWu(EI=mV{PTVotF=^7a(8CKzZ}xGM$0C|YJ7I9 z^t&dY{YP;{m6yd*qtGTeM8I3Pd*)nZbAjj53S5(UW1JW*X&&db?88U{>Y-IQqC)*= zaM@PrW69%aBvO-=v9vnT{0c5nGzV5?1W9;j-pGA0c}dB4P3+_Jt$_f!GLxlc)}K|- z)(oGe4G+eGKrN4W7Km15kqW_7)xr_Zz4-^Tqt05cpu>lf$C~dwSanh+C%2dHA}_aZ z*O;$$Ga-t+_LSE|UhgPK!wAVrrCZd#nzd|SB1yGm@}{FL!C0H^Q}`Tj84gfZ;lh1d z(x8Uy7ZV|{@h-+*SSl2rh2j#Ha!Mimd{!x@fCE-(j<`xLMG!38D#e;kj#Zi)Ey?8` zMe&{ZWBmV-LWq%{G&&(hE2Fn&NRL7Y(v|}7B|F34)gz(c16(MJ+GH?#hC@KBk$2$z2eLx)hkAmM~-yq>J^T51$rN@G4!(H zfKUw}KhgU*uD*qJkBgq8av>?&F{^2GD?}Nic793fM00G7k!eSqX2LZ_Vg9LdxW4k%3jLMEc?4RYRf>TgW@g~=03i@Z#SJ}?Y|_E7unFFxT2)fKE2{YsVMJtUs4ryL07o2Fm_Oq!Bynv$Jt%EQ%c z%ZT_+FsY7}q|r&zbo?aOI7wbSev(2-B5lp3y2u7kXdh_>>myP8_-|wwd$d8p*D%)t zBGQrtU$nkInh^D#Cq-TB6?njSaFw&{eDRj)Z~m=pXB9q1`a0{h5u79!THE~hU^b{N zXq7r?)ZA``4-JQYN19jK6FM2GgQ%NnH0-j*T-6^Ij^o5^YXEUk&y$urGJG}ebSsN4 z6MbH}DA-Vtz^U2Ue0ep2&)8Ur7|TjC)m2q=xZwltFcvZk;Xle;7s3x6arrk*FBy8z zFZQN*-vF2^Rx{|hdIwE6xZ23l_?A2j8`(v3>6#8}&BYdxT<#b6dz9eTzfKPjPpvfq2NlixMV6tah zGT$2X(b6Oj{>59GO@Po2C)8Wo&$(aI{TZ4wTHh6$iu<%qSp5Q!rt9!b(VHEnu{sjAtQ}zpX>lhGQv6?u$&o<0L%Ph8P^P>2+-JB3s7@qOeFkBu} zFjEM}lM(CrCRq{ax0hb4Xb?7oNe!R$4ANytI`rQ(RkuCEq>3$>PBlRTDLeiHV6o&b zVxkqkqFv$di->XKIbv`P;o9x?5)2O^bXhDym$*vq5>_BUF(YMdNzC@xcL~|OWR(;F z`dOi6;Z(e>@mwh-=J8ttf|PV~6R4qDBsjIOznQ`k&pt{oM-XxNI!h-$1t zxTxUWH2#;hKnWAUxICG?EO-FNn}G7z$(%*8n#l2DYGWK z@d{%E98t5J%%R<3MY|+XYbg!b|l|vt<47lAf0}S(ev~s$jnA#bQ=dZMu>>z_xGu^^5i|0>t&%oDY(#x4X<4}818YgQ7SupNn089*>pf0E^R=Lc z#&eB5h9w7%Ds8?gtwBoLDy1o&pukbR3apR<-$jua;7XYf2sUXv-&(R!O3YfNP>Wq9 z_&3ASRCw?$E7D|G{BtOx^vgJQcsU6~wj_}DH7I6Sl(S6`=@F}WNc`7 zFEMw%otU0%@H&OtV8>pt0_u2;*Q5>aCe{ed?H4J+S|^yBE^zc4D8}x7No1XUp;qU0 zHj*W`^nscY^lCr;J?(((L{H9;WAPySzCA3$#ykoT{BsVjFp-(uZr^dz{zRR5Ge| zdL_LY=7Y(0j!DlUH?`x+c~boQa>@;uE!nyvdKztW?18HPDQVt^Cra}wO!H(i8G$hJ zli7X-s@F)3)!JV*X;Mj?leBpVJ%a(O0|J}PlYwWwcnF1J;Yxe6eOPG5U1$Nn%Z0v( zL2X0C6(94#9IIWzm&V~r$0x^}U{vAidl*#0^ zPO-MYBRE-|v!#g=YJ*JsA!h$8f4t!%&pFrWjZI%}Y|fp@;q6@nD`ibg^)!A%1?Vvw zvU{15KNjf%l zR#{$X#&@s3)tVoWL1Lt=ZFTbGK6IOP8pewfvwewiUhDQ5SiihbK8J1%UpG4~DVX5) z8I31fqo&tdzUS-(Pj_QE>Gm0Hqqol@Pl4u{_uX3&7f%&0d1f_c8+=+8(yE58XjW4i#lQeuwvSs6`jreTlA@}ig1=2h* zE)>~N9J#qWqyA%SS~j}gq$o5wL*ewC5=RNy$r5lR<&-cXvcVU**{dal`E0s(?e}M0 z>vT^lW;sv8w1R`5#>@sV_t{TR{47ycG%XBZrZtfBdaXEo>-BSw$l1_%l{IF*h@DBc zDIJV33&wKw3L#FGZE~N5%({- zm7u@55n6VHz$jcaV)o79YwN!eTe6I1g_^<4}}%$se0XvREVHCvh-uL{fKk~U}Xe6Gks)HZ-!=y9_b(PkPHc(H z|4^HmXibFo{)p(v!WjyW>Boo19VBz$F-AahTzFhfLV?GOqv0`uVUand)bhL;{^flr ziIvTSy8el7<~g1-QMF0pf0f*#+iBYVeUJ}?Xt%1GR9-oQv0K{n<&n!3yR!44Yo4sSMP)VDLi>5&(k#~G-j3-{@mG0Pk zphTk61jU~#8CYC06F>}_^B1T(r{`?CG4QX&@A{X|pl`I5mWY~0Q1;#+6-4m+_;Gqu z(f7i1SJ3{XFQniUmLumy?O!b$rd2vg*g4_LA`A0y{c4?p@9(s}gwG)_7hrjIF)T5h zMcHdhMg9q9jKK)bv~x+1m9Fj!UF=`niLM2*OlNuaCu;2l<8=(vM@{w;|Ke9k6D_Sj^scXEdcPa3(gV`82LJM}OG&_vIXgSZN!#8& z9YlygkyvH6Hp}fUk~ZTe2_i-c&JOZfU|~P&7VdzzgDrqtIRWfqdMScP(!}uB6LSNR z>TU$Cx)O5{gBkR`*f>Vk(pfp;=FQj94|6Fx!WG?!U!4aBF|zwGOiie&Yy(H#DLGpd zk5k~8!jH6@|3ap~_bX14s`()DsBe`;FNd#kg-?}z)xYdCCTZG;;qv6&#%~yUh8(`t zY4x3G&NExbYMr9e^Il@!d^>-Fvk2!)o8wi=YDyca335TU2; zN**YLW5JqBiOs}33sv>;DA}biRP}LAtjbY+j2qR*YoUN0OR@Gj(+myV&5%iL=bPG; z{(b6Arn*%9KW`DJ=r+e0=wE72$qY44bqL_@bOM-3(#UyBjzcT8h+k4xGXEz{H~7+Y zkm#?F&lsoBt1&d?xCp}+gRbg$iH>l*1TG4K5TXGj>8m;aa18m#kGS69KD`;H&xtgK zzhax!ZnTh;eko3uPZG64pNMo~t47f5g00ah8>6Zjl7+nQK&v<}Nqb?XzT@jNN88)S z=-_ecInDB0SK_fekobX*^H1YTkZbCn3OONr$6r3h6WC^Ht1{k>Fn(iI>`?nR6mtT3 ze?)4;lsEtu)!;5x?B9aV+5HE~77BY=dBlt5+EVP!Y#WTn4TxLl_AIo^)@-o8EZTr= zrFT2dT!buZ!qxt1wjxte*woV%$zUXn!RGW8{(IV?nlMKX|56(aP6l-+pv)LX?# zK^W3as+qE}sM71dqh5CMDQ&dobSca#vWgoLNYJ+70WMKDUour7ip43YelvafsJIiZ zGDkPkidr-0(SGqNA-NC}a_kBeup$h?OU`w9GCoNmZ)>~NPdbOB=X_t$Q$jK>NOI2m zVfP?O_XVs-E8nJBp4H}*U=E7r2ITnV$$oIW@|yl_d0>2*FAR$8d$HLG>_pc0Pt{6u z`(sf*RkmBGREI|Ow|~^vJ-0!lH$(th0?>qm2nQ37?%~Si>h-j`)=9VPM3Y2kJG82kCGCx*KrN9pZS~570VjN z;o258AS8Q!;u%f+jF?BVr#}PdK-V(D8ojs=v3XimzQICtNU6OVKOoh_7&zsE zAEW-#j}QwW5gf@V@SvUc=dzF@3oI4md}9q>*>=cqP|f|w zlf^5xGAUeCh+NtI{2u4`Vj@_6WaS-V%`6FrV^@CLzpMQIpzW2)$2*ljrhP1wY82uQo|ms%%ZBE%?@{&Sv@m*f+x6165>R*3b~%DREaKt)*MDOXd$3L)M+ zc|rS~bcla)ReBqz$;3M;xn?tT8p?v5K_##pO=HwjnZ9(ke}uMtZB(HuY%Uth+hk4c zb-Yw+)p2c{Ou)DTlFiWtk@-zaA!wbB=?WQBQ$!L$cnfgle zY)%eoFu7OQ)HK74H7l8R750KlElm-sUavB`-eBo&L3{A!LOHPLy1xrtZiYf(7H6L7 z^zh`#!+3$UhqQm1;8@x0r8MDcZojOv2bC7|YT%>Nq|~4t6k!P+w0$~g!>!W=paM9> zwkb^XTf{w0Gh|(EVQudV*4pQ9NCVTBsw9{U!Z~u^`W{8h%#h}-ekm>6T}Niyd#wzn zpq6h5RaO(S!i&0jgARZc6twtNDM>q8`*K=ISEZE{t4_zK$17+T@~Q^Twf2DYq7s#< zzA&h>fs$?ws|4m&r?W>0mJKm;bgx(}Aso!i*GEO`QM(7*i=t!QNK#$lXsbwyy%+UX zd{P2hEh=b#Cml++q#6{93Cgoaf8C&Yc`<0-`B27()HZrqTDD1&?Nle5yqIjg_X-C; zA3iUwkk2a8fpOhG(kD{h{mp!X(E$G)?CGAF|(ubFFNs}IUlWP>ln!X*XEAwW?Gp9ZL<9vDq}bk zTr`p}UMS>hBG`K&{G20Uav^|0SO{xb2#x7oSYMtFuYz7(zz}+3?^4m^WL{_yF>Dc;@W$B&1!W5QHw$5@&m?0&A z1O}($jupLfyPVuJrzf{m-7=FqW|l$cW`~sFXU98LhFo{N2au3Se4Ax^n!Lor->v=;rq*Ojx?fi4M@Cyaj=<(jn|1vXUG$>`m{| zi>2uRxlqKTxd)S48{<*4g{CDSD7{h=BIpZdvTd zsPr|sJyPi_JW*VeQC>%|r~di_LHjr9_5P(ez1zXGdc*&|UIB;IL(IxDO(SNdo2jj# zNLu4ow6rA=94Q!dw||JvLx0QJd=y$%a`=Z-?DDtxh>=csB%A5P7wB)$39WMrqD|Z{ zrH|d2y*hy_8PJcx8v?-JNTwy`$&1))G~EuR>GT+%nqW(SB1Er`0`;VR#veGJaS+eIszr)|_{WI!R^A{2vb3^?8Zy)h z`zXK*$z<#yffD0-(>gQJ&`dx>FC8uB_Is3^gb^ zc@CWNV$U*~(v}w9$UU@hJC!gX1k*8%l6(txuM{qL?W%925zU8(r+54N`{*|KG2X$` z*>=q%1*bpu%5a5ba4^xe+6l!(X)E6>^`3294G^&BX;{**MV8vvR z*jNwl6n^_RXM(_bVcBbK5M{|_FYiUO8;-Z^g+o{I&v{FF(bP@ z?H`@RR6X>j)o;;9Ot_|0Q+^~@Seqi7Ga?JRxB^7(K>KUfN343Sy^?z}Fpup`Z^!-L zO7`BgV?a+k1X`T`{%YFMLrgPxNdoI^>ST^MBx=WfRzKB+c5K$ceAwgIEMlY#-;q^u zx@?~gcZUF$g)Ci2tcZbv#9FCQY#EtI57LrE&LNTuHwJ? z$me^ckWMEumq?D*4l{|i{BChfG#KlmicdV4OtkiQS@DdfLtWq9Gg zZ{hvvg|Ga7TKL!gec>x8yyyNiRrndr5!Z|Su3U^YMt&EzL|lJqjkrFKVpDHv#5I~{ zH_rkq;(B6v#Pv^p16D>{Q~B-ZH~Y>A*8BPPBg*)3#C5@4=os^R$o@K`VK$O zeU$x^h^vZUl;0!#hW<3-x|`oS{4V1L?az^j>*{3@*Ghhic;8H&@|0iUiim3!^{u=o z;(CMcxwPZ$B@tI2o)R8>f5i2DemBzoZyd|`wG!}7PO8VPq+tUAuxDwRG zeV@oLW8!o_Y8Hun`}RAzH1C@w>O;##ha=uHlE3mV-ZDBB3Z_C6QlUwy(Bx$3m>NSj zeY+2KydNS>cf3V3I!xjBr$VCKA^$`Nq(wA0Pm&W zolvyJ1)o#QnR|G$S`)}D8>3&0535-uQ0mZTG6Q3+Q;mfdX?84UNzs>czJjl#R})8x z>_y_9qAzd#&}xzNAglB7KQLS+MB*A{TGrG1Bt#I>Cxg`@J^$}2ko2a4FN>TCdO+C& zz$8$ubplGOMSy22$V=Mi{r4S_Y^I(cC+q1Ml%AnT4v)1?2E}TTVTgH_6m`wHh$C>i z)M!#&VnU8cj$UC36}TO~^(|2zYLNm=jbBaH*fY>lt^s0l$gOoU&{m5Kt?Aj<7#kHM zOINQLaiNkWW`O=|wMZsY%L|t~@avf{QkJPDIdu|i#4GQ?} zTQn%6Z(pZDSuge^g4XiK2}U+%ql$`z)L`qj?wIH0Sk59uMNW=%WU(z@{1h@^2nk|s z9_KLKLA(1RZ8Y-L53C|{V~)rZEx(H(Vo4iNL{*u5{nqfegDns7AtQWJVvVG*KOCn0 zN~~#>w>Nl8teGIeS2Z|Nf-h?tA5wPLuQ1#!BXsY`GC1-HqA&5+?jC)K{e!hx$JLim z`K>xIT+3Q2K_bnrIuig)@g-WO6JZq{5;?X+ea#|Sd9H9}GNCUv$y4;e)1;Z}A0J!3 zTAH}*ZX}G*<(ufWG@|{3>;Z2@ACQu#O^s$DhuH1-AvL8e+9cT!#*5AO6g7J0dh6(2 zl@x-YUSCWRL>s;B?`JQ1MXHYaG81kj6sE$n_r`AT$#9xv=t~w-PmB88)N*Whry{@M z*ds?kW`)cL>|)-l>&$a!QRke~hMgVmAKBz7>b&(I9sLLIZ$F&5_~30*G1p;zMx{kd zWa%^(V64e%zYm+x?)B|mndq}?yj~nUtCQ?euHvw5PhvS;B3}4rRCUZybu$`d(Hx_O zrrK0X4CK86&<7QuzVVJGV$of6ZHWM>Qu_CxLNYou!}PC5@ZFgM+CP>4c~GXc^|`e| z(V)*N+CS$U8J2PAQVa_QOfUD}`We0a-1Kr56{wPz^{nK<2$gA^yf7_dlQN1P+)TLf zBI!l%?n}JszOJU9bCW2vvC$nfe=$~y74-+TG&~Ian?6_lIN9g_*k#jSBW+V>c4WKj z(mo>D+dKq%&sx5UmRa}Q&tJ#Nz{yK>=|R}`c1@|K)9z=gAEAWfZ(c%Vv_*<&-`zK8 zuliP+7@}F~h4{`e@|DhdSDC~y6`a132w?qHyr^7aago6Re-hEeBhbKmmns?{VYEf? zf@y2sztGgtl%_v*YN(*ETg#3rkzoI*lJa$-SsLLik#%M|0UKSP`|bp^EfN&au5;F< z&#jBn<1z)v(mEpF)2V#POmPoKDVNL1m_$Lk9}gX08@umOQ%9Zs_PhHz38j@!$1ZmApkB_cZk_leo?8 zp5t-6%QVCbFe2wW^p~>|=Y9b*qMw{%)wYdQz&#xKEA9IqM=x1y=TyIEuhj5+(R%Fr zRByEx@rrqVYdlt=c3Ey_Z_GEYsJ-FT#jiJFcC(|8>R^lm)8G45CIu`&4%9j45+w7` zCn%RPFVN>cJCA2d1u|__8hj)6ah}>C0Ez74Z_LxedIH;Ah`g!&TvNAVyDs~8go?Vt zCkXzj@4ofJjuQuKF0(vuX1bW=`IHti#w<@Qk>ZL4JweB;GOp(l;k^{EBgeTIUb zBGMuUJ)zyK1z8#yWhf#tH)Illm|sXvB1I(IVzjus?+Jbl9E$5IQT>LwNf_e z;_E-baCaMu-xj*xyZsS6!{6La*#yEjvQuueXZ-CGtN3N4dV7S`kJT)a)sm=9zoqc+#Cf>2l2Ta#RJD(}d^i!Si{bGSD$0z0h+>{4Wvf zP)wXEv{Eu0RqE5RT+D8gx%bHvt8<0(lURsYLBPA2c%S4j@#^u z&k`C+F+dN}rT)l1A0o*l#_sf#1GZ>HL|%|=uIFX;2&ZL>I@I-7>=4H^Gc&-wwp&Da zbmcDEAYF{j^I%?JE~4sN?6?IW-H^4>Io_zRpIVddip}mx@C!+>AW-lMy84kshL%oR zq};_bse8b-T1d73!`%CTS5;gK-w8<|%8`AdQR8iD(>A@0B}x=ppC}^xpS*pYM4-A3523X7N2LaOWihWxFOdr#a2o)#}PLY~5p zi~GU$@xc1TBmua-ue!$TffeYKsP9C91@26DhPaIk0J@9rq3Bz8ceE&p+HIQAWmhq(6!Ha#scPGV7zbj$M@MM8c}{8Zllq9zc96K7(o`H z=H$+2@!ILk!*M60lOx}3Hi+rn_(eA+eha$miEl&vM9fQNHBU-?Y-dJgaPop~1hQ#G z4@;!e#TY3k6)+_W=4gOLdTMFx!ku;iPsbnpTL zzsg`-{{)vi4wqYJxLj=U$ePNKyG#!P36D#}SC#udST7uaEd(1wjgw$`=hIV(KDx)< zB`Bz3qUp19hd;6J+Plh3*(f-$b~5uK_FAbMtzSq9*p46eyIeVo?8Z_{*ohMUk0|ji zEnz(t~;MuMzIWu9u!AJN(p1q@*D87jG;SP=zMFM#fnsXPAax&Nb4w;@PVhnK} z5tQZZQh4t$owPiMq&=a=61NCniWpZe?QvfPRfRC_agUxc)rF>(1O~o%w{)Ib3HX9w z!9*#d=A}w0zmzgTq5%N8{XTa+iG(tPLz0C~<^(`WAb)FWWvC2t?BQ~!kVFc7E+pG= zF7O)Svl&Bv=9kaD=Y1yEh%K(+YiE+gYEFv;^PKz%6X&t&2y*WFw1!*>3qLQLhOL?q zLK5H4_P!rDTZdce&?vd~Yk77gb7Z)gYu-MiGn&MTC!|b})A5usgvlItFOUdc4NHH< zrNYMmq@fp`Xgt0+1yUQydPAz|8aQQ@n`yXEU z*{S9KF}Qpp!Tq*Z{lFb1j$B1soUe`8_o&@IR?^iqqs6(-wMnFM=q(b zxnA1;SUNH#Q9|fQssxz~o@wMS(f^twawo!faGNU8U$~0k4!=FcS5a#Hst+FE%*+UP zj0(TjpD{%O3dx0PiE*3g_ThD5fd3^R8{oInbt;JSg?^<4Tr&;f$xV=qhwhS5WU*zl zIW<%xHyzSWVf#FM?h(CY0&?Y!Lc&FWIWxQNmtUn}yG5vs{s;3|X5!u`=1L`Hsy~yxDPHvqLr5E+1+) zQz#?nPVL!1Cp|>1V@5^WiD)}M`GO3grF3uNUf9<$*jHPUebL(|Im4m7&1KyPV@}~l zWnMigbY~D{`ji6Zw}oHLhhfb_Xu3$5NdiX(;A^qs>*e5U7Je3H%73evD{HJ%oNorK z^dt@3wnBygIY4P3LE1ddm@M%am$~< zeaVByc83(;xZ2JlhN+4UFnm^SpOV({1$&m|W!Y*HY)vH9IUyL0L_jW*g@>EMqCPk455_%=Ii?rIaa<@!u(1Qp9xgN%!1I{Rko!3x0gO{SvKL>h zh>@K3pKEF87X^{sJZ5I3H}5Yy`=S( zri+!YTJ8v1He|jY>`Sm?H}(_wW}mXqmY0ORf}nBsTI{}ngNKM%5wJ4V3{r{1CJUZ zI7Auv+DrsipEK?vsb{3rvq8&9HZ%r*4YY15s=A!T0C{v~5`;L}AF;m>jY~Sz%tf5D z**6l_$vt--Zlqt&5X^tA-|=;ZJN>dvqfMlg#vFGR4kdg=S$72e<0SYV_eX*<14wof zPlpL~DyTPSM`9PvIAT#E*i1vcQILDH|;@X$=(I3pH0Z zVzLfZy(Wkzn+l&ZNl&+=cJ!U^4BgSIILl$C%6PhX`Ydn%C@Psy;{{OAm*mL4(ra7X zoOH-V%pF9p@0Dia)&-GxpORJTe*W=<&^wr5>v+cHNy8t`r@iYF?R_Gpy)*d3#nK*P zlnS-~TmAt0$@zGrZ_K}0)g7|VjUM+Z_t>A~eSHX&W2NtMPu+xI|1p}!?=O|%9YXW? zBp(i-Py_lqPRIAl^tVad6b|*L0S{6O9zar052CJ=?4^c7i zasP`C1@#c^%<2*RlkKv6kw4TIO&|9~!BAgJ8TyNgLYPCmE1A+2g#SJ6`O*~`79m$i zl8~!;1j#9qSxvDMzp*4adP&VgDo!##628p`v31Jjs22)|xKNho?m1#u{9d;O1l7x& z_qrE}2cGKijSk(@gDa_RmIg=2SotB7GE5n$%Tr5Sn<$Y>iTFMzaSPf2d@=j2OYPHc zKmo~x2)_^J*bliZGqLsd^4IZfy-W|sys-7=4q@y4mi@StHTI-nwlVZditqt3^!D&P zgywpcq#Hx8wCQfY$TRdR1SXUzY(osaT3g)EYlcRq!=!G>g$w%3b?hq?&i_8huPg6Psje}vX+SEzBk`{rR` zQM=s#0=ta;FW$wx)Xr^Mq@AlmSJo$sjcJqp#egy`@iGFSF=d#N7zJF$&f`=mym*#; zF$6FEAxAr4QOMk9s-`ZMZ;)in77+uzn;gPpI)Lte-4;DigWa{q3J* z{hVYXW&QN?H+B6Gzh*)xbLjOWWe2VwNg=eDuAe@hhgv_9Zq|>q=`Op#TR#ec3Ems@ z>-y2!K6d?lY9ZYpQ7+to)iW-A(CSH(Y=k^nJ5W0|XfiUYc1p!3E+&)h67Jv(&eiVU zUtvHJenpCJkg^lur$WFhal5+XJ1Eakb+2R~&eXN_!;866@wRgbcT)0fm=lGN<{u*W z5D`tcLtvt8pVXe!9?BtdAUA)^_yI-Dn+MaHKv7k6}Vq{_KjFZFIC_w zr+bfa3`pdU4DjIHA$ld%)aYKXf|KJi6rSk>C9|BixPlA#@Pd}5#t!~2NTLX{P~8^~;S#nZb8(py-0B86sBPD9daa9UAPA#~>#Vq}jG&7m5x*Of zdj#-p3v3O!Yx!C}?Ek#nSDn4MM5F|E#sUr33=IIk?cY4`Po}8FPVMjuC=i1_w+0kD zwWDD1ID0;{6r=%t(>$OQjxIy3j>7r4Xh!qA3RQ`1%g_`0W>jX=mHl zWMVvI6JOOIl@J(dk%gHx99649C$jT5!aWlaHL(eGW?J`kynA3I%JHvd3yqO5!Jm(m zKCJ5ec+xGv1oh~OAu;@!Y_`z_iFIVa~OL1Mn1?HAS{J+V#!r*7vh5`_9 zCQS&OY|5Ek?OuofF;*=cVJ@P!a8w*&ZkM=qrGf{OGnef=euifbwbBP+rXj!d6NFia~>G2or<^9e)b#xqex9o^+SQCCjl)B~A zqOOj!-3y27P-r4TH2z^KU8jZ}1JAL5M1X>U;Y^&r+L^AY}eG#rDjmF}tivfKQevzbhi)VT+ zWq1t^cLC?!kaX|AB@uhSA~ELtIERoinqnjOg(0 z?u}{j2;2{)D-I0hQ7Ydz=DR^kXk%=0T*3GgUxFNMDo2~ey4xQnEjDUko-ko){7 z(|r8WX<5TuilK`Uma{z9nU5UhUtV;EM`F3($t+byyTs>SpuIpDji|Eiu2wc6fom6rT$i66rvb%XQ`umx<3=tA-;yLH#BKeAcS> z__`Syub??*C#&TjtvV7T_pg5nn^UiPDxAogE zfJB$rQKdK2`X`>S>s>3jN80pd?3ws=C``|tV@G3I<|^kq4|D0w#J856g@H5BJ7Glg zCpmSt!=8ylU9bHzl?#sz9;MymXHilVCfE^z*%HqXkS5k2Sr!iW#TH*F-c~2p4 zS%T0yUaT=(QtT7Lt^)py0Gbjm_Xe&ipL09(-M@S^p-=~UkPeuy8_vN2xrzwII%W0Q zqkk`Jm)Z7RiYhxWmIE)N~!kA3t1;sc?!F4X85@8Yhl-S9RFqRqw`hJg~@VZ=nmgB zYM7{-UHhzcZHIO3i*H+VyWh6vy}-Vys{bI&8rq|@ z#=F>tj+<5XuOmNtmHn^R*dtoW|GdWLvB(D84}kp+=Iys?o*nxvpayw*ksX^a{9)#@ z%bn`}&c6?HDzYa#zWW($=DK!TpZxUm!5M0_TIvb1+!1ois9OBJ`B8?Uw4y6icr{*KR<(O4(FdIigYxa7-f z<$hnk@voD!YCFiGP&d*(zAEJ9WDjCEtk0D_NBJ~0exYbHalCJ4KNR6qJ1WJd^^w3P z_v$_11+jfwMscW^TNSOAEFSa_|7L04ac+d-(TavIa&K7)!*1S$?6XsdV{oH5-nzGM zJ0aI-wmd=_z|PFHYWQUCIZJ=C5%@P*mz~C<^AIE6B4a26d(Qs$U#7iVfu$gJXHyns zXG&^-S+5HaLf{;kF%qs{Z518lZ&ME$ukjEh9$0OCi*;GlDmn&K!4+h@!9)GJhxomI z3qLolp%v?%&jE}z<^!wfWzwoPE%94LFIYu;^o5_`3edq?B?pA9G5f7mr}W{EOQu^z zJE-$%kVNNqgTPgEIIto9&ZFDjeW~TlIY=*@n)~b%xHh-S%z_Nz=3-(y|BKA$UU$rH z!lp8nbK=w69&-PKQ!p~Ur81(AS3ps$)^R)wFxwT3xL4hI+m0uQ*i?0Z9D z>445lGI{=BmoAFB;P!*{Tdd1uqyls-C%9Xem=|Bwy6gq>xuBjDoH|n^ZEoRC zc>XF5LHxQym9~5zIKYpu(B1xfIj6Y~2k>rp0nZez$Rq(Q%My(AiUZw!gt52_@EMo=#jf7i&cI{o$20krK8)}JfH?Wgfv9*kx>*mi6>7?V;loJNI!Dvp zyB<3gGmmY7$KCypoZ~e{eN{t9J$-=h7mEpnGB<-$LvPaLdLR_^&^+-C&9iqkdzpdV-_N z5k|6UU0ZOAH>tnadWzMwxXca|zPpbTD&zS!P+*P8n)>UFX$!v)Yw`*LU;?zLiRtIQ z1`62Cn=2yCn~@-zH+xn7P^+|BpCQgY&aTVPma!k^ey`&MSoe7PadzbE-B!qgK<|BX z!9#*uLIT{cFFO&tC-6AVM;eg!ljyIM(FFU620r%rdG1IrC9(g*+8I7QY}u@LJHd>! zrmv0dU`c~b2)SQD1d`FX3+8*<<)zF`HwP~MVU2li$!Ddf+05|M)@2>KxN~@U&bsW` z_)4$eaRqmUn`RQfDsN6rVP?XhpH&N^b=g-DwvpPmN9sEw!EUL?x+e!&pPYR2mSNtC z&D%SiXd$n}yuEJT#+kQ+=54%r+r=9IX9=gWE-Ra4Qn#7ZDVbgutb2a!rDP{k{@qLQ zB~tD*DYO07Wg-q#DW$XSY48f>CJI)2DS3&MsU{^Okua77FwVN`3p{`!Ufjo0#gP?P zyN|vv0tlS$=_)PL|y(;Lr%0hRX<$ZB`N}=!Tw^P_Kt=6YbYgJeuGOSg%^H9@}$FDmf9Tzgf zbfYTV{luq1p{EW&Y2W^dv#y1gC-8z#dul-?H(I{`_D`6C8_BerI;yRlDL1ka$Xdob zyMQUn9&X_&5|)pI;=AdnUcy~|$CiEH?}{b4>cx8|f9QNQduLf+nlmf2t?cwYli%N2 z_Fh_B+57iQ?%!F~&(jC@O#WbJ*@rx#1IcW9-mZdF!C;U=qUp7BuPKOphnP_QVW2A{ zqPWBAM#3dwGO5WF!TZUA--$B*Xj!iLJWulcsd*x-PR>nDDUcKjCciI?mKB-rizSZ& z$-ELtDNIcnCn-g#DdVGMlWzIO!f!;rQyMLsn#M|?2tIkqTBea8@vf37(@s2dDpsEdg*3=g*M)*IR&x*T-p!*Lk8*6Ig3;R{jyaQg@a_ZhhTrOyE$FT^~Si? zU7M(il7a(uSsTvG7q}&#v8>BlF*twWjgrTx)-eu)>Ru=#F4$5Bst?Z7S!Sf`b`F4N zq2d$cJUHExr;z_?%m__w!I3xlbXXb~zeCb2h^fU8IynJxGF01&=e7~2k<63ZLey@U9L9KJ_ z%fr+;gGX}VWXT%>Q@bp>u6yb`Rto=)k@K)9^C ze)^GpvF;MxK)gSL`nfRPpF!!@d_-Tgk3;n33py9I@qRSyhMQHpufhD_$(pw`k=Ltv z&zQWnKx{?x$h4;170p)K;wp;fwQr0U)el?ZZw@ zC!m|TXLStfuBz2(i>4BQU#1LeR%r0FT6d+QNmkL|{DnG%g78@-XXHWuJ#;BNBk#)} zF~pyd^dW}$?DjnBP*g{kn^c0R{zF896p;~SrFaY?E6xr@w#kMk5?J95lXG-k*=We} z8;gnaxA3a-7)f88b>#lTu#QGw!vc6rwL8n?JHgfN>+ffx6>LKUORKTp{+;}d+jjtW zxD#k$>q9}=d9=7c%S0{D4MK#Hc#Ye-!#B01H$B^!A8T46b=i`u2bfp87Dih8egTk+ zak-j<`&X>Trhl==A&_Qg_%(}b9jwPz_-=YUt!;9j_1H>zk^=u|n|#{tB$qOY0`H|1 zc%yCd`)3sBPbu&w#?7|LADmIvgw1Jp5w98^F4OTva6Hbr!}YZ2Kh5)pLN%d4LvUvep8k?DD!SFQ2k5DD$^oW(oUn@^=i%UhicKYZ;uk!pj?fM&7~(0Y+Baz;9H9C>8cHD4i<&rNUkY zr8B_(QeiJ5?6sgyhKmG;0iP1i>dE@@1j7O9u9%JT4Q#>^UWSXBXR7?Jhl=3k|!n&DDO5+=lV3&zzg=vcUI({WTvx0vDp? zhq??yRXf>d{fbk7ll|h#EW(($mST`S%l?|*o_;zrGRmIpw=??yA@%U189xjyjhsT8 z9vxl>$#Z{m>P@{WH#&UNjgRA*P|dmN93aXZ%3NpcHF+$_YDf|WefN&ZY720J?yOM5 zoS!_E=3aF2tym*^T(6d1^~AXW=qlMox)^wn$Ag%dd{$05Wn)>G474{C^l)dW z92P*a7b5+5wtGxl@_|+7&KF*!JCB$CW{4s~xQ`TUbYq{la)xt?1+7(%h}X*ly)sY* z^W2|#Wd%&ZH$e_uYi^q^_S?7LjD?ryrZwSl!t0ZCcRmI=u>|-cw-lk>EX41hKjW+% zA)?DGrp~9@(t<7NYT>lYrV}SI+!6AY2=C#g1stNXOZ`|uceF2MI+M%CtXI9#+n!Mf z5}!vWX_RQPoVLS0T@Fb%A*kdg!((C_Xe@H?`7<*lmjiMw zxRmM<0)+iK*psZ?t`|eU)ML-~<3@89ZZx*GYd;qW9(`-Kcgfm&9d5pJ-t=N3X4jxd`seB=-yxvIF0UFI^XwJNRQ(UT! zh;v6XEfK!aMdHKr$|0u7o{)Rvly_NWAM9GRC-Ke-J%T3#sq(LlY76D~+s zYJbf{HThVPa;^Bq=34PR?&$k^xsT9!%}i_57$}nnqw~X2w_K|zYYXkzU(HA8>9NzG zH6qsFgolTqcrQ-QV2b*NaXlW=TEgdE@Lkp)%~piJlD2qqcsagVlfuh!$@-H0oqU#A zWMme1bT{R+%Y;(He5z173A@-UKDu0$oSNJ&`~1{|l;tn@&33=_#irpX8=N;Z3Nrf$^tvl{8;`nge3o!sUlfE zh6zbWOacrT;0TlzKu!V>h{tBd_94^SXmgj%VR72X_rXH*4FnS@eKh3T0wTeW2 ze^Vc(DhmB8AJo3hzuz1Ee68sBDOkIoe_j0R!CHcfe||6j-l6iQ4nnaMc1&8)bPmJ# zw`GaZAV$lcPB&u{R?7X%tKd|~z5AXwVlr^FB*vz>S%nX)!e%A|nuC&-Ln$>b1{is~KZ$r7_?>;VLjy=!+uSkpjn}B29dpbCC zUjx3X&HMzn9Q!_fa$jHZM(m*LD6HBhAKb}`I`--bTK8I%#!2@8nR}^p`Jfm_{PHvJ zIqJJqI_-h99gs*mJ_xK11xp}Ruw=mI9ud$;sbQGrVycH+q|BGUY#r;m&IBC^j z>6(9)YQ$^akX}pML9hV(OKqp!jKxx{t=G%QUEgQ#<+%zF{8ha?foWRqX{sh?E@PU5 zu~*Hld_VV3@_y1P0ypa9{dGRPNxp8TmD*!g5g*m|^N)UFyq9VvSEi{JQx>>aM`A5d z*Sb9KBMTJESyqVDf`5L_oI)@%XS&?xl~Y{kzVllU%s&Eww*#U@kyPw!xIKY=GYVx( z1okcda?7*d5&W?enINFmbhZ=hazB6H8?ob-6X+6(d^?jVTlJb6$vU)3R${+eQaWEv z*(iBLN$87x!kLlnKK;!To?I9D=|+|7@(!IT*C{>76_UvHm5olRG7ix)_ji_GER{z-H9@0usJn?1+wQ!FX?pLt?yu2UP3mJ zDb)E0F@?ZYo|~8gv5R6St8v%=qBmCQS!bN!7Io-%FO;+I%>*DSCDzy$w{I=4!w=TW zIt%zK?b0GKDr1Y(*$MiS6AXIi1bj=z%cO3J-;=?d7S{+GfZ>?f=p8g@5xuJo2x4F` z8)Lq^ty@}aTqh>Trn}{N6oAY}QZyXdbM#6*4yXK2okvbr3f53xg^U}pg#_G+c$b%a z-o5}Y9*)1qX3f!){}p*)UA(A#8@nx^OBZB|6Bq6nzxL9T;X(3exMxlZzvJA5@J~bp z;)DddCN%r4d&M_z^iHmCxM2-2pl^Xj_-BZ=+K4N`~aUzD`ONpXzG z@7ShHyS5{w$EyR_B>$y|kcB>I$|y>>Us@s*2cO}-MkLzJsBuDepqo1|H7<9iV>pu? z?5cq8gm-37WE57Xql?kW(+$UUe>B7eV&fTZXL%_er7?dLUvEr~uhER@Wu|s{e%NJQ zuVHjGB3iBY&?+)_$SLRQ#^46`o@-CA6a=-6X9s`P=Sa%PbV_NcB60oVP2*B1O+O%pa%tLX8OIP(=qRWl7ke@> z{p(J|j(w8k!5?RskL!{jze^YR82KzuJ_cR1Cp0~<6A!df<#QB9mVL09=cjn~s$buj zfk%p5F+-{p8Grlv7e^Z5PqH7iPc)>> zX;0(+A2=s1mWyf(0-ae%qw+3#G<|Q#({f?THTZu0V?J5RBli^yTKNflWPN*Hi^?>d zc_q=|y|?S5K}Q{E7$>Kqg!>M;mdsYI{fgzf^;%Nk%*c!_$#u6pBJ&y8Sw2;$Ou1h% zu~yx@3^E4R9Oi%gwyIw}7r(7FY=8o5MD={8%T`W+)uN`l0Trw}99Sn6oUawElM2>- zR0Zp$0@lKS3O3*|C>88KED)r62@ZA|%L#0h3J_2SRM2)f&?Xgpj|#A#2iBu|YC%S8hG%nJqV+go>QtcDM2( zQFBQs)lKe8d2hwIaZ;v)_wDXG58yCF`UhHOJ8ApeGRmxIcGH@!u$vA|Y&zPUkG%q2 zgpIo5!qJ_xL)ChV%D8g!mc1@tSf4RpEZ!qq_t~*fiPZfwsng8#DSFx}y~%`Xp%C(B=8Cj&q)fLWzRjDrxU{e}KHx9_k

      I9FP@Ic#QsEF)L-3{*!YweIwFizvN?8wy(!yc!5Xw?XmxT?>=^VZ2Gl^`6sc6U zhp3FFaZFMhZ0)#n!@O(fCuULlSH(&#K%HpayG_tgyu$p-x`D0==w7ULZWZV|GM+Y@ z{Mr{3rLW?{o2sI_R=`~%7zmGp^_&1v;!>_|V0x)}74=4e+d;q}Z0|1V5egklv?;C*2#nhGnnA@|w zHvt$voQj50X@)IXhq=Ws>4vdS}+q9V9VP8cyNdE$R~`zLw#>(hCh@|U$TG93Qs@C87|2$au>l-JVT3kMiL z&Qb%2r!Wv0M0q~Yq>&Swg^eJtC)fGTP0lwCvP?OLF;3eYRm|pVpPfF-sp^@bbLPCGdQMR=*32Q{e3MYyIUkTERpkeiY&r6v;z*qk zOby+kj!2s4o9B)rPQOs))ZiF#`K_2eToPo4B_C@O)m8aLg&e9Djagv#Y%+=^)(Wu- z1mYT0HjxMA-dl5J7Ov6VOFqSC7zfnlyn6}PNr7*n*=`{1o!GI}*l3-=YH+lTe=Yo5 zr<-<;F}y>Te(3~OuvbfnBI?yn!S&uHn(l52QowPFMSA=S5e;dgRbKGFFUB^am(sC_ z@LA4UJTfZ28fnKy@D(PN(Se?b-cE^mZgikGqK6{P4OJ0>*CPx&`w@wwdYzek7-?NB z&HP~xhYTFKsK(vRqunZHal8nDIuF>r2o_rF1G7Sv)$R{>G0@%iTMta^Y|5PY^5S7* zpRIJX#*nGr9e+eLhE~g!0Qd2A&G@*w6rP?xnYxZc25iWKxzf0KxAm(XcGG@4*lSlE zc=up>us7piMr#RRXS@)pKNP7t8mZssWVU07iUii!tq16~92IKKq(~&N0j1x&2hsyQ z8GRggZ{BS;pUmJ;w98T4=1q3AQcChD?;3g&=Yn2()1yo@!MYSK4=V;)N zjAb-%ME=~an7^k*57%)@G@VzlXR<_1;mUUua&>`To^* zQ`_uN4bk9sS6cV}H+6B60)x}qSks!=`P1)viYZ=4%qmPJO`B@S*dWp^2BVE87q&wJ zR0jJ_i+oDfhS>Sn$%oA=IM7gSwjHx;$XHKah{{sGJw)B?T$?sf0r?w4v#U+br1SY~ zD&Dq~4p)00O3gHSOwP+nbsqz&9<4I)NJj>Nx*??($G?GpKd$%nz--_R0dS@Ec5|YM z5S4gP4F#~)uiY6MW{#rDTykJ^H20tD-PUq>s$LXHkkV*iyG$jkRB$jF=+HN`b!g_8 zyX_&Iw*%YVBd1S7?)~1%`SUJWM6$lzKkyj8UUO(GsJFg4;rOm2^(pI|{b)3tYyl3IkZ&}xL3spp%nwxcCv9JQM)66~R zz<+J#xmJZ}qZCIBJuLs&InLe78B`9Oc4Z%~D;!U~QwztNJ#2Arq{QAS_V5+o$(k1K z{;-s|!kEaLE^^9a4~%~Lg}z9-Fu8Oj`bddUiSP8%p{sI`Fk7Pg1pIOyQB~y1?^4cd z0Ie_&;TzLZ`36{+Elava`s0Vs!y-VKNT6d#wt;bFH$Hl!-a8pPwgh zW}~qPxrKsT&E07TOX}u*OdO4EEHb6FC^Z)cq7cpP(j zGQqtB{jNkber@lYF(Xa++6A$WXQ?xivLzdL47s2du;8wq;DnHlI1YC@6mmBbW?fws zD(&6$3qPQdPKfIyuq&TU3S)*UW_L8uElXu~1kq%B$o;ny`2PjBhr5bepKZb^==dG@ z3ycmNva8(DRX7W9+PcG&4RzJ2uo$W8V+ea1hlMH`&>p+eCqX|t)LX%GI_Qe{?exky zAfTugd!SQp;YktJXi8#ie}v;fH&7#^*k8@e=yt=;5F$+k60<T!0`d_8HZB-|T^buvC^ey3B9iF9etC9E_W%xrekYe{>nz&(#?_4Yx{b;!*_SVV%j)UI0VIhDLY%lT({u3B$5Z4@1h9EP!jo9w`biA3{V zMNUwx(BYo*39-O%H6D*t8Ya zZOv@jIw81jIgt?8*@4Zr>Qy2tpuBs~=Ja2X|J&n|jtrLY_01Xk(gRyz?N#d$#_Xy! zNCizB?IxyUgI%?*Frs|N$YuV z0&DqtHDAY?+VH{+xfSonV#iDVZ@zemDElbE*17#(Hcf7wgbgpSjumsE?FfF`_lr;% z$+7R(leU$al=iw38R5249FW~+`7D9W8#>IQ645`7YOKzot~QjVXwIY`}amBgx5to?!s~sC>hL$YsB;r|E^) z{9?EqknMxqi>_&CMJu`+NPe7!c@^{?4)jU|H&TI#3?a(RetX#A`d+CGUC&Up6?c#B zl&fhcXNok*+(68{BqR6}@#SP5IgkbC7{<<<(> z3r@&hyZ}}`_C=>We?oOJyG3j2({OiiC_9o3;N|SP{4+vuFNRa;KBtbW-GD@q5B9TN z9*UgmmJq^e_FHJLm61R<(#5jkxnP|^gyS2@0lT!M{LzrcnyGO=@t;PYGY9_85CJ^s zp3oANhs^k*S;^PpJr5)25D=p)UpJpP=+(d$8m5xjCsMkW5N1 zrf8(1f$F0bH%eOD%*Dgu$5(z#4XZwSUcNUwrCWClif{}0-wj)0$EJe8gAilppbz=yI5 za_#SKssp@;rom_Tx?c+-CqE=xCN+p<7<8N~4GsDYD3ev5$9c@!CwZGeus3y4EmbFgc68o%o*#IUqr-H-0bc!uo)WV_xU5bl~ z-6SqF`&aJtF$SF0M7t1Kj=O2#=+1H?26!H}2x zIDLEd&j`7*(ikZGl|G&PCi?gp22EYxDgMwRm*cmD=FQibUX$3W3qq#3Gq3dYkw(P+ z5ouz`F*-;da7WW;oXZc^cerUW*&p%3UMLn~v)zR%@=&GSKeQ^c!%;VY$c1sr%Fa;{ z5>7@Sif@95sp`m42uvS2Y(dwZMe9!RfcwKkMlHEhjh0t2C1$5$CIo%tnmqK8M_J?U zLkEV^M^@J~Nbn2y1b58D4Y|u=O$D-m^VuE|uhZVIFbjjw1K1qQf`K?A+RKbhdstCe4*!rxaA48tAm@Y5%~oRY&y{J#9T4HZL-kBA%Xh zJW&#GJy-V1c3)M<3@D|{)^Vs2l)~}rA5+!Uq7PWv(*eB6{f?-Fa?v*9un%{y_sdhn zDHWM8=tGofO!s`ss(quYGl?-adibmm8?)A_6bZRsKI@%W_(^$|&8*t~k7ckeupSF+ z!e13X>wWkK7Jg9pVI;V|P11Ig)m`{OB)Gls!)QSG8>cdmE~9}B@*E9p6q@R(Wuk#D zDobm_c`6!!>Ff-=3^@-Ra9_Oi9n^FJrbE<1Tx2?Mw5@-SCF}?=(hDLv<_9PxAd7TW z?i*d6xuSUub@!N-%#M`EO6*9Zt<(5!9BPW4t-{%s@VMs8us!d zmcpF+KKH7ocf9Vn_hpFjc}?2l^`^2KVX%4OCk2Z1<#|SB%Yquk#qdpMh1?%LVu)o` z$JkS*EBSPV%L6%0v)%S>0ZqU%J>F2&Q9kjlW$vj!cRDdJo3^{Be#fZ|h;!A3v8T)z z>j!Fur{?OEKkL@n1x?B>qdlUOjRtQP`XPk^5!3o%?I~ zomCU^w&1$QM~4z|Wc(u!j^j7lDrE!v2nGs5viBbm8F}m*ED8J8e7iDl z^sTw0EB&@3+jv{QkN zMSk~HIp!m$tODy<98Vj$&B$>Q9|+7xh+Fgxgg6D3-kXtN$*4m|wWDT?kb5=z-td#M zTTN@KFqQ{zC{h$Z_dE(;@g~4(`AgOr1GJAMGeA3eirqHJlnzHHxj(v5-AH5y9CH8t zVh9^Mbrevxu6<#gsL%YR4S+mV-RDZLvlTW?$gGU&i{Jqov)#7ZXQKKmX_Y2X#yP4Q z4pY$4(GIy~eS#K(eC&2wJDMg(GQ5~KBQ9mvtyQNo(1#zPqgs!|zAjz)LDJ2d;7oOtbQI|vLcp0Uun!my<&O__Kn6qWXxht5!E?PH_b&`3#4lP zi?kN<6jk#YQ_V6h;a%8?+l3k4)(q@m*FhsZJD7Z6>|pm1O#Mtdm{c7y?YJe+2rx~b zHUs4){+5azM~bR>!L zRf;~iTZ%p?D6a86pVW$8$@tLv)suN7hNHtWo|IXW5TO_HxxwNL3a#Y#W((#=OBzp53UsYv*rpX1z5*5vF zczW(D@%*3{=Z-A@r7EAyGsjXy?U;eLv1x&>S*(s@j?o|i16%$X;7 zChnT)22!>s63AM=A4wqjVhliw<6m9D5{ux_Hky4C-MhnuY|($F(hE(2_+ zk!%==EL?P7N5xbJ4|JVYS-c+KJA~kbwZ*M}RZVcm9_nWutF_D{UURm{GFuAh?y=89 z9g#FVQ`pGO3|7JkPxc3A=+EAL0m`ZRvx(V@zwr^uGh_^JeHy(PQi;)`VKS+9Te!)S zM*lxope5y_hO`>dpS^Og(VsQM6=kdvf%CffdqaVidz5mr{oJcAK8-Q=k?#)FlqKY^ za8Gek7?RBZM|D&r8;*;IeSll#?cwT%TbewZQ|cY({NO?vdpXXz2)kBKG@u)A1eZgi zgv8nw*dKCTY~V1S@Sa$zZ_a)`($l&x$2URdc&(}K3osedOTr(fH(hM@KI)^QR+OTj z>lE)WyA7FpPhVnr8A%aS$B*OaC)~RZGwJx(KP4bWhj-0IgNQm1B^9&Nn)d+NV5|M(Nysbqg1IVAnbcAnY_ z9MY5M@TJVW_~D?>!#uUy>y$w5gM@0Q6yOQ~#u#ceS&_SUQ-P=3LaViyMiY?V!ixv_ zeJ{r$=hjpy>Z}vd8jsj4x~d&mTwX5I!slXB9W>KtV*e%EVBNC~va^MFe!Q1I4ph zv)B;rKuL8Z&|(M1)v%Z&t%j*$`9|_T9Kdn9%??b$*br%zU59)6AK1s6e242dilJen zGtVz%-I-Aod2ku|5k~|7v5O22@+p9#A2Egy!cc<~T&^Rbr?_x&Ou8|$Ipu&`Cmrat zDo~Sf4A_`V1QfA&+)nd}wr5KqO4`nk+%ICe*&TgE+ry*{4vJ7OPF-iz`NBePLr)5b)x`$HLQH@WN5rKe>Vz?KA)&yxVK99A4+r*3 zzwgpY_sf{?x1&-g77XME_-t@}vP%C2D*D7jtJbOw5(-@`!b4Q}KL_y>G6&VTqz5(_ z0qG^Ce{yFBJ$6z0!x`wvz{w=<=HLJYcpN-;m5cD`O{RqV8z z)|;|~F)w!JrBe_iF!?!7X2=e%$-ssFK%{=H^PO}OGWwj%*|rLsk>)k*VKQqXQ$#Cn zKUu1S?=KbLAgB@u)xVV1>)zqt2fQ>ur)qCvJHA42lTppllT%mfS=^kPq|KYaU=6`r z`wt$PMC01rq4^SzwN@~;UOt>JB#*P<@e{k^R_G5>Lrw*8vT3=N$;cVc-!A^DHzDWVQA&#;7#k8O1rAX-X`k~5Q%HdSl7xdm1f%*e>I$Iry*osEykr>OHfUQ&TCGo zOkAh!2w@<_Tn0i-`zSYy0jTx#lsU6RY-6+@6dGW@o$LeM?O0ERvZ;NE+uV*SxF1lEHw}F7ui#QLt zbD?F8`NP7qtue1H%(BKDU&M9Ka$;h)`zsFlBSlNtG>LJ`u|qnIVl92P3LW0@WaOb5 z_vjVccHjVeS5&-tZPaXZ4n8P^Oxidk8S$4RDOJc`?67)F3SDT_wq%2MP(|UCf(x{u{!*~aYfH9X zMuBqhL9;I;2(Yvje{oZ)sMRX;mnuGdUHT<7?BIh!qf-is6n|LvWdhVo6qG8JkgGQH z;Dhp+^s7fQ;xD}^Rme{8uxcr#iu#NKxIjiztC$!vXS>}NA}i`#Dn#l zq!kpJ{=gbea^hC_Pe{HN*&E4?Jc=@a}u+!KkDZu>oZ`xmFc^m}c+%=Gx8!%=NR93FUC9nWF(p`BOqoJ=&2|4wv z`9>guR+l8jq3e)jj5uU{_h$BxC?W`Oz_KD@$d-o}kb6#AnvV^RO1_amd#B6A82v=~ zrSF)5K5_gsXQ%b*2vK1;0nSvDgBAbs=F_-<^`}{_&zgnHS?a_-Nfpzc%W0%Z!l=-; z=&j`s@S-t0@opxftKG}si@$^u@N@k{&$p;ljOCtm#l2NQvE5iW`b-lG@Ua)&}fv zQi2N{jfHR!a3x3qPvK@a!#-eNVDBMz3yKL2RV}qIcy~uXC{EhiM4A_@ApDn%Sg6!) za>E~H+_nrHSqv>d!J&)LPln6$AIMXy=2`CnSGI*z`WM&XIxSYh>e*I9pkVcw$)>y znvb>l%<~MWIRz}06gN<8sP)$Lmm$`hT$*9lT72dG4@-__#L>TQxCZ?w77a-^BwxI# z!k-4wB_CMo$`M^i5?5-43{*E~q_MY!+=FO^(c9CJ)|l0DOxK5hNhX3?BB0+!x{(?= z=IPrSsOU25nr9NhWS+jQilliQ0osw0Rz}(l5Sy-)v`c~LuLG0*iKJI?nh*`efC`q3 zAXOBO4YFr&=S6j2!ORzN9#H$jKF#!{Ix+z-(fqgQj9N>L{|#R7grwlxG<-*K5!mbg zd_4;|o*CdwiMP_#omKWXvUjKUhAp6yjXwgu4jq{p(U4op_Kbvv;$z%&kx2alsd7TG zA`=_2ST{>~AOaVkG;F7ekehA3lREQz9#8r7P1#a&UBS%EaMyUg%jm}D=4&{~SImsN zAgxc^%dS;tozhHu_4tjV=#Z=E=XUj0g%MsR1TqBfaerj*~z{L9wL(qUU0)l(us0S=)crp4Q9U=?kP&H|5Ign zeFQYPCgYU5SjZeAxs(7m^#@42iJ$sQeLp2mjRXRDW?`;`Gh>yF zecpZe0bN=gth38YQqfI<6%o*>=^`r7$i#Z;EP+D%7R}-El8?^)l6g;%trXAAJX+y;XCmUMi!kzgDDMkupQ# zM^h_L3$Sq-q;*77l0;+|7`&0GA$U3U zB-H&?61fCH1Z_FObG<7GN8Gx_sx!}GG>>Nrjgwe5!G2EAO6>lb>*6CCC*jOLmiz`` zhv;xF?gHWZgdfEgSK0T9lac6#eD=Od`w(32e03LyP0h*9cn;qo)|t34II7!;oJU7g zX@hFYc)z=^{)5%VW(Hq5Xr~@3Uu!&JwEfs)qC@$3C@Lf8 z89)S#EmGV75ps*Tc>Uv{h>wQqFZg~gEEWWr`$^+e?_VI&bx2U=FFZ^GOC*q$A8J{< z3mhO_93G^U7#(t?WX?379HydwvLq;6mfds#E*+A^3fO;@tN>ord%r$QRscDH?1O>q z)HNpSQxC-ENy9{wI=HBuCk3dK5I;v2UCHa^{HrAMtwopcq~YnmMdk;K{>d8i>caD_ zF|RL#b-b`}q&3D}INYpaiFc;sAMR;Lu3wp}Ks$XxW3mn{l3Wi4LbWOpkosV--n|t8-+Igv93- zhP?Pe8m+6g6U+O+B`2#Vx!&|GvDoyj&#mi2+752U;(@%BZI^h&UtEi{n zf;*lmZ z(jU5;0$CcFZA_~jBB9uJ^}1U%u3x=X%V6y7DAu0p)M`=4;*kVrGw zj@=1`@VMZ*P-D8B%W{A7t#>%(A4kgi@5PbwijKCx4q6^5Vkd4I=iU<_{-}w>b!DOy z>uqIEH<&hXNfGAZK9PiD!ADqIGy z6-PGY$Pga-Nf@v!Qq1&ilYKNZ*p(;VMKVs1QR8OB0@;76RB7cj2%}lpM95ow7V+q? zQO>LJ3sP}HnJ`OwDVSArzPTHWaC62fDJ_Ion#Kh3i>_OrGvSZ z|FHG&Z;i3McG2n@{%xT78#NGJej!>Nwf>R3g@0Xck1L!0@k0N+n`Bgtfj}V>qNj`2 z@QtV&9L1av@iQPznu1YCM!y!wl*7AU(G3ZF+iJO#MEat&AtT4s4qh3#TyM{UL4Edb z%oCTyS}mWTq?sX^9jo_i#I=0vX7l^O`y7T9NnZC*{Rsr~K&Xttc_6=Rsh*sJ9<18TKzBP{1N z5Fn`_p9dw+rO#NY>FhB*7f4 zKUpXBsnpM7rfhq1N(+ux(A03T5qWj}?V?0eukgJ#H7i-?g{0xLlaB=ZaR#xXxZqknqI02+Ocqy7@^)n$=ErJ zrE1Y65mr&v%y9*rvEq1K=+NQ7A>l$T`#IF;AA#t3xc(3{3ZrNjtO)Mn(E)={ar6N{ zK!y05@JTs%XVx_jstGl3``{UIqBAp>E-SQf4yHNwNvNofkunb*Bm7}f$-pO__+Z%g z%OV?lDz50c>t56}ghGO^v|dY&ES2BMR@q}O@RoZtLnAf4v^rkT*i(8qY%{LA09s&z zrmCRHiuQ+)A$3uiIPQp>P+b9*-XU_<66;HJ@Hy9a#VIi_azPO{=J6BQ=l<}`SnSw0 zsa=Iy_!;^J4FSVJ4JVjwFUqV0TR9!z1p6C&vUSX89Mzbq7U&{0OHS~l7HH@f3vNc^ z$Vf#lMQ!jqrA(hGw71Dre6Ludb%590v z#-d!(INDiz0)sDew(+|^mP0_IS12)hg_5{l;hCEUU(D`pp%mZzOp_c8TAInV;HADN zGS3C>EA2J1i3`6sti6zTE71AG2;MoJ#lbZEog33VY-}GzvNg36?Pp`A6F3=)RfCr& z!7qbzc?M@kMy7z5C+!h}mlCszGLb2HayR&tTzf2g(|pCeLW;)+Gvuz{ttz?W7fA=l z4ai!lSzHecUiJ}$yC(is!!*i;+;5PNGmYYNO~cXw-v$Qctr?JaiRSft-)$a{caG$h zGab`o9BwPktWo@GIHV2s?$XSf1|KUi4h;G@NuHA5FrL(gZ0E;m4W&Gp?;Aq$SW@lI zk)1b%7D%CDDb$cGwA3p!MhZ#mbKHhLwQiyBEjTD16O9B>M{U_PROGKM$Vt4n;#CWt&ow-Si1) znE~@_0_KBDq2T1Gg)6Zky-l1`!Aui<%eX1gvxXJVJT7q;yDIJd@%^Emvl!}p2M0=x zo2`VU|IwppK=cT%In#X+XFnn%TRA>_uLxD zUkJ-WQCLEr@n}Q=%J8JQ-^3{u_Gv2hP`YI{rXSB0CzH&^VaG>`k`5|!d{|?al$`m&NpY(S^dP?SHz)zSsyH)tbA6vV zpp8iq>y7d9UH=1gf^xNW+?gMFJtugCpQ@w$)Vpr!1#iS)+=Pme*nnzE47t~GAVJy+ zGiYY0?Q|l`<(X%;B}1QvQFBe=aQjd1W{D+T-tt-v^UnQPd`~Y<;yW7NI2K7@v?ZXo zV7S3{_w~2rN{Kx1oEiuI$9igSKbPqo8_7w*c{zrqhvp;B5f*KYJ);EeYNYiLFX3Y- zAh;1FEqshU-f!9C>BA%Pu++yT&YO4wx5X%(wd^Mn5qyWW>U$>f22}rD)~Z(XR*f|8 zCt#wK*=Mc#HuxRF&#&MWI~eJfSt!xgKAxqH>JXM^mlwAcs}mxAiK)Z6Up}AZeRRJx zDM6F;rleVFbP_34?#8sWA!mkAp>(G@FQbEp&xyte2bUtAhkb+N**3M z{P7GYAfS5FP(dv>$BMg2&V$`F$g{{}`(-r3GWvW|mWfwgq;Kg6#n_t9Fr{RLP*baL%&GW~4*kNurL|OqQp_N+ZEgJ!bZH!B@P}3Jp#XuRh#!abka=&d zrwBWMb#|aTqV(KRqy&}303RZ2lQ}CS*i}msDeXLp+kxAE0jowXWwTn|X1p9{9YDLM zTG%FPE$qiMB^UQkr&S(FNkhTx-u3DmLfl$=NHa-LGui)`E9V)Gsd}_l5n6mN66x%= zvlhL{N7JOOA3pd7hpW67r%RfVbO@Y+@3po+EAheH4YG$-7{2nFJSu?S1LV}zVsDdW z;;k7w-O*Ju3mJ!q@zpG?eD@ordeKet&YDlJFl5i4<_5?!69|i8^6b6FB%}lgSKmmh ztY3E?#W?SBK%O6Ig@($(K6plDY@4LTu9PsXPy9M3Eq0~**40#5o{RPfOwu`zj3D9{ zm-i5xNpZzYu7?SK=~da__;6dR5~G&vEdwhqA#Pel_9YemL8r}gD)OabS*vERsifer z`DMp>?oRZc4+je2l!c@^k-N{&U;&x~e{k|1=2ydGxMS{)0gP zQAM~=q_q}opB8bZ@h5Wsbbdw63Cp)uosU3om-&zbtd_HQhW%SDX*@6y1G&#}Os*t) z+~=@)8^nFYEK3=W`#hm<9{1U7UJUnnh!;Y<0SNjHeud5n_X%{!llvPY?uVZgpwkKd z#vc@pNEq@?HV1{gPngvOJT`qoj$Y>R1Qtr~oIpo)$ZdfE9siW98_8lBY1aMH9!rRT zeI2vpA~CDw0(hbANKK=i2Kfzk*;V*;?F&CWEaQc6$1sjmXy%QY*`3iHxgU#297GO= z^3pT~l$1Im_ZP{pGnHQelup{MCGzWxm*4xx@yj6uSqw0~4NIhOe)7FsI zqram6d0OC+H>pSdepEeEy?VURqJ!$0bVfbiQpD>>$1=Gdi**P&%dDVcNUQ0JDK)zFI?^&)W!kU~NZI@43;6J8o!HTi%+A+F>%?*_k(aN+ zC;p6Kmp=zZ{JQoPYn9$NE`r%Un7E9Sh+?A5zd@n9?BC&3VkT%N?$#LbpF zTpTI?QQHYeSs;?ZQVO{ZFB{1~5XB^Ygk-RQ0)r)k_I!VIi>%ne<+8!q7rn$IPRMLLg-b2M89~<5jRoPH6XS@dyVyN9hW9FxttR7(^zx~-4sP+1t6GHPm3z|C zidjkWS!LuFAxC;3!xOK@kqm>8UkLi6+fzN*RvfHf10hBoLAH2|t|8o({h(+fq5)AV zrv1*xPqej&6#irHSZJPRMD@Ieq^XDL3TOI^uD(-jbetz731x! zT{NwVeMJJiF5`n6;_(IS5;!DPPJP?sCxO+6`JWEF_1nQ6@W2)@^f>H5NQ7jrF^+a# zyAj`bt=Z#viJI4?*6c_>&FE;a7@0e>wTba${EtmcAKy>>HRIJ?hVn2HY%x6ypU$*e zFQy86n~Z_=c=>SA`*!q)D&5zAhtI6y3Ud+}?&v6S)v0>9wuSx=ac=`3RdwzCCu9gC z44jDuO*PiEjcqK5C|2QyTHYpLb#MaYh02?)(lpi9mkfAYz~Ce#hvQNDRH}XPR-gJj z*L%yYv=xZ0+5~7O2!&v|78QG=()Q3`jh0Gm)6Vlf{{`{AW{dhA>btjqh?{N~tpVjGJi zG(5uNMUm={tX0;cT>$4InL}{*ZK6y_x`Ae@hKL0X8$ho)pWHxi2y&BP(MDmu3+6l* za3tm(0r$%1GVx~yiO%luw;~{p1d&wn$x`{msS>WbxQ*vIZM4vm0JqBy%j47f_%tWm zJk}OJJ(uJ^==7yV3|5+GT3pIdK6UNoJfdZEz?+@Nl-6}}v+6t-qp}US))^reub7%>c5dJ~ zQ*)00B1NX&+5+jeO4t4OP1$uv8A|plrp{7*Dy}U#eBGBz-BYyPfR-0}ILcvD7Cp2* zjIwjqGY$q{t52)H0=&!!m`&uTwEB|hKk5ihV>7^5r#Q4Yfs6<$@(D|mwV5^8hZGNaNRJqMm?!z zD_N;Ggc%Zeh$m~30tjm01Pt&Wc$B~iCs%GFLSURVDOcYV%wnh{{v23yY`OZy3FN3R zX*t(R|9k)ZCJ!cUUDQYxLOcJr=_igC%9Ijfoy3-g1bpnnY~~UxBx8uQkr3o9BoBt!#j2|hS&MB4y&Ef)B1;#D8NWi2N%lqZD#TV` zs80pjb5I{c>Kt}}<{hxY+CxU+39gT2Kjdpa=>sN}q6&oxh0hR#$fD5Mo0Yrru|~tw znPOP-OsjqLhhl3chDP{~d>|Ox7be! zVgXz?$ZE)b1>-Bxo|mjBl5KIKXTYu~^gi)%qV?B!f4xMvdUiheIziRs$7}*+@(}*I zW8SA8laU(|VoRIMD1G7oqHZc0P#og!2T7rBK8{mjJfnQD-}?+twD4U2@JwTDj}fEv z>#Clx-iDG0ocg9m@^lH2i~m7ym^r~vMJo}1EYFBCv~%))jb&ezA5Mr2}=W~ z?)ScziIE;kdX@TO=;6`_ZwsS*>j4^0+?Rxs`A?8v8dtO;2E#J^QKk5U4y8w^w%^;% z{4+=2?>$T&X{YLkZZRxL+Nm_(pN3BXDvUUwF@TSKbh6mR$;Dgtn?B?-X^WZOrLxW= zM~N-s3viG?3p(OVlkRqF0%^C|qtPz3%LUOKsER15urW`Y&)I-B3Qona6%`*cZ*COE zFoQDwz~@vsTgL4OQo>!5JWp#J955?>v{qu!>tPrWP2qxW;< zf%R`d_9d@0pfAEw3mpwGIt^6fUZ4`gl6*3vi=Y?&1+*0%NahJ)*>?$voBVZQi*JNNTFC2hS4PwlxEB)#X_J9cXG0=J8Vb0W6oYXzS}?7^iMy%9~~jL>!dVy zPn6O$;B393toLfgKLI(;I<`;tYX&C1stb(xIDSi>augjNwCMO&C%)UR+JZR*Yr+<` zZq8mdkVn*c#S!nE|J0%I5t1|JfI?JXIgQ+Il034UW!RD394G+J?^aB=qwNlb*MV{K zH-*p{3-OD@u@ZRO0^eB!7LjaL$pX+l%#ym#(IkjmO4^8`Jm6@!@#f3KK+N``&0w>*0Uysr*5@APkZR{W@23$6V?Z9ft=v*; zozE#c`u^335$b}=YcHdqJ5W>b5{=-st6nlV}As@O_3S z^NUGO_I5a}Ld62@aE_wFGfTLZah=R{D%TmXC zrlN0(vAJq{~gn8H|Jt0B-BCMjpXf5|m)J2zBz-JGso4RLD~*{z{Efyy9jH z*}He=;-GC<$n2Ud$n4H53}p5?4m*I%mbC0oN_JkYNq>3odNYV+{2s5(S{$Mww`z+F z=6c|jS<7#gwY;Ii`1E)p=6#!GR){d|wGNKs35a#V5Uv2LTpeni{)yAagcjj5e9K^A zK*W49><15>Pv{X=mybb%c(9?R@!*J2IoC3=4d6PJ>twF;xXw7mgjVTacr2_RAKj=L zd?a=r?ujv$_2vuETQsR(MIP`F{m2iV7;U?A< z=EO%OD+=3f?E1#Bss*OJ(mMu|QFpPZFXtUb5v1-Z5?JVseoTam>`g+>DA_il$}2t) zPzfSg+2lw7PvN>AjsLPhDIimd)s-xl@1M^+PuJ(4@QlUGpo(f%Z|QvI`+Kb~j5$|0 z&!?&jm7M)pZIkahl^?bv+XiyupxlJTL*LjEnGOj&=&4d${ zlj07-C{?^4F(cQtCyYtULU*&ASQ!Li?J0$Van-Sp;BuzVfB2?WWDa#0Saa&VI0DuY zFgS~&TL_dC#nQI6OOc2ctFL+PkqRsp%{U3yj|eC@%l~j|R(uigrQ;)G$i(j={y0DW zQ;E*PtWP-G&wN4$XFl0So=dy=ZjAq3TVfaAExzp;i9|s~dv7s<&c&i0TiZLB%x}5< zJ>lRnNyJ(TQZPEPQ!=d!Cfd0cd?B3ZC`|lEElq}jmxrzkC+$3NOe|s8JM`-;Iuv41 zVT*4(BReCTi3+A!)&XVG{wV`9$nfS^f9GPuqXm(~gwj0p@LNGX@V(o(nUBnXZEIpu z$dV62Pt0&AU(h0#3J@&UdGzBlIyGD*T9Rc4S265r_x4K1iWPS);?u*YhG9&7S{Q1u zhgTtIu6@ZW+uO?kt$o=llN2r%6nyKleO5~paR|;xKU-^7rBw#rlxZ%8$P#*r=%h!m^@6_l@ca3J&299 z*7TQF*~{d)`pe|Ex?b|S-p{Lc`tYqfW0)44GfddLQ^F*dvuMNB%s@+bv0P^LuFe<8 z&l=Yj<}{3bcfC$Aoe>UQ0{lu7Tqs@f6B+R`TmN(I6{#y;L2?dQOh!IAbA~IkEebB` z5y_~%aCFdZRdiaHRYEMaq$GZ!`b|g)=@L>qlUG^6lheVxPY0)icvq0ql#1tDmsRzz z8nGj{>6Q3sUPeyPeyc|OI9CL(zh|uJek&fFT2&Yyy`X*+?D58{-bvNef0nyO?i$w$ z>_6*mkbo}}(3EPB$2=Za$m1*eIFiRo9{p7>oE8s>eEWwB)AI7aFW;_ZH2ppKHsj0v z+M~2^^+@@BPWW7Bba^m-c4DVMp(Oqgxa+OVE-HI*HS>Mq_@b=IUiMY$Ox9lqgS1kk zq)Q75wpF)(F4~OL8sQ)0+;l?fg0~2+)vE6^@k%vS61M_dV(eocXdDyBC zi&4hjBFZL+5|B-Y8+ZG`Sfj6&X;_u28wKc!=~|cpMfqwxPJqLlWrF$z2}yC0%h4pw{1J4Lp_j>Q42{R>?=nTrbNU`#b zK8(hUmcy8*&RILIuJreho9NFIeJ++kiB#d5gXvw}Uhl^QLw(uU6;cM~<00}zrg~*J zYjDGk(C`!o*MI9CB47L*@&QGX27Lr$G6aifv8Q%+>PEesm*P7{;A%#hWhRU$#kTO@ zMuQ1InZ@(JuavQ6)etG;B@CFflu_0bcGJhn1u3`)YQx60r2>4#&mzb?Gu_l9h6#~% zjvejyMR9gyz`Hy~a=vu%JcceFo%=;-aL3bqsbqd5-GCVIT^Uttb8uH}Pks*e1_q^3 zl5%bsaPJwIpI&5tN!7D75pYNJYl?S zYA=P*UU2Zma=fP6DR9a`=_&++3o%%Ass`y}Ml9Q3nIXHjo^_}5&)MmVGYE_Wk>`ns zc|r98lO4j|>Y7T;&ujfTk~@=+w?^&}gjAtW!#$|@~HII7w@ z2CSZ%x!08~g!VY63wjrlyr8p&F&dnTT+x|59bcKQsvKb+5NUEF_@A5#4dL>Cc;FlO!bky{1jiC;V_YcLt5zKyHS(oy@;7 znAI)&WU;OqFR1IXs<@ zZqFLbRUrU_Yk+ZnN<{zGq!~fo-kt;Q5c2}th_6P|-M+B8K4*dW`#iayQ7v{*?T{FE zvO|t^{g}JFxl!<+n;YwtO2D5VPZRU4*(Q`@~5|K3C zBaI*D9{UBca2iV-;tHg%0Z~xI64`v3gJ6SaB6{HR>9`N+S?SW<^bucyk|_Jr@GYdQ z$h}p3w?vqo+j?GF+Ql`_kEn@*QOgsSe~;%}k+RAT_rm-y`}K}ov%kfOAKVAf0|iyP zjgzlv7Yr>8Q7f%ji{D@=W#(wwyNW9Gew;TyM|h$y=EdTLVZZmIYY~S zm#=@E%lo4gi(P@Fcmdf(tS zDj*1q9Mzn1`}+QYoMbEacXB!$^s51Dg}lsfQCd$k3`hg`^f2k9X34I@i~*^fs5e09 zrn)|8MDOQ#f!{D7_$GDf_`>o4pkr%Nw>*8dT)ykpz6AMLYbOn*NECBKQvtby;<}i= zU7`vSg{9tevu3(7;;O^vaD5?>D?YIEwTH z%??Zr@7`|e4|9tuSmuo5l>Cuz zrB(qtIhpUgBMVg%Fqt3w-;d{{59u$f7dDWMtTTS;u{ElxKA6C88 zg|SMbj!qvkhECof(xH%;Kgm%CI$EEM&^LzXwVI|A=AY)cfk$M<$AzENK3Nf#C*;H& zZTyUr7V}gr7w^NSW$cRJl$5ZpxCRNf)uEWnx}sc2 zTYxb9pQsqioju^F{IA0sF~gnS%&Q#xS>a@yerJ9#@0ZT(emgLlTanYw86A*2_1Em= zB{YYyyjK6F%zWR`W_27VN@IRit&Q9HO2&1-?}c3mL5+;L>D#=5Cvzh` z;D^8$2%WcRSlHSz6Q`RXCd*^I@ZAa=ZHfMG9CKKNQvwF?gLN zRYzZ1T13rcqSvMDgwE-KALjOsxMGhr>3Q?GRUX@$x~%4>84y%nj|0&CV(pI>i$y(`+&T%nRQd(F;C8$)5uFh$SG#7nHu7bjl@JASUSC** zyIf@}mUIq@aaWzBeS!q{D+prxOM$dp@@qx?%>7$uwYq+T(AQsW632* z1Xz~mxt+m+D01-v0Rbqe2=$igyD(eZxs+Gq@JV(QA}Ia_j2{V9`F=o^EY+LqYa#-{E^tT($UJfhQ&5%abKpq9jg}5g6{mu#Q(XVxj+d^NDKB1-Ua#ucjIx`F!Mn4$OUFZQCm%Ug10-~@ zj1AOtmik4bl;m97z3!78ujQ#eJ8(P()|6elOmT~4G}cCs@}ndF`XE&+2m})y6tuRc z7$I_e?~v4%bT_U&FUM+EDzEBI@AslEL^I{SuFNkjCC(@=2=>^uLo#ti`F8a<-nI$j%>NhBj zFm3bAagw@LYB5&Y-Jsd46jtCC;J zG;tXu6~3it)jS$_CsTr~kk7mtdB*z8?)0shdbnks3vDBC*{(2rhS`iy8>KO<8K zpLc6HtjqSUn#|K)=4?qpP-XqZ*i^eS5lT0<#H#U*g-D#r3&9|8Pf)La93dr!Pds*vHiR%O{18DO(DPx}?DO zr`qp?$w=*Y;6jahW)R18{_dr1^2XElL--O#6yxNVCmWUs7dj@jD&UFyBB(GCTvg$X1YdyDIfk2MPWXB z7q&DsxFZuq8rIY>Gn2ZoaG`jBee6Lm_vY7+@Z&qjEta|1&k>yI~*7UvmAOgZgX z+wXmBG&1b|+)C@gUCBTx%gU!(mxkSFqoFddwnreh8oe3s{3&%{Z@VogJB$XYV;VCoW_a)9Xp$S1k<<@z%stC)x!GIVE3z$ zZYlIXX`#EN(A^{>g*IGMl!0taUJLP*g=-U}!GBqG2IrH{hbQCQ7P zGM)3o$E9B)p|0_-WT2-yYd4FR^>}izB>|= z+vDpym;dog)4c>h1x{y2zeOsZoEm7M7LROT#Upc}DM|SV(d1*Zy9h@~sa8%IYth}0 zGA>xaStyOubP2~7tXKCg-QSyQwVD%BQ)2m!P3&N?)dwOue2dOHrR+V~W$zg*`%%B_ zNo%m|J!dX^iC=c4ca$_NSa5&0?8i@-vfFyH0WFn72+$ZkGm5j%3*k?M!fqjyLO0*f z5+TncfBh#;GsT(GDN4k{%%9R~I)55-Nc8?iclyO5k;essf+I{O^@A&US;{cGC`x&Ir_0yQMP32-Bl+qypMiDXP3k$xB7|OP&kk>F5hIq?*=IYd zW+eKT56vTljYTM1@8AB0gt8K~T+h|sAiqwFNa*Yh^6RuL(tG)JT59!Pe!ZlO0&QDq z_iM%C+BjzAsrM#%l1j_FOL?~tdB=Yex*Wye;m`jI2Zfc`ubP!bEYY=xUxpH8a|loT zsn2r;hq38*AC=^zg~?IU+x7S{5sgzCG_R8VeAqc;70hNbUN=L|NN1PW*Ohh7o|voX zn~60+Fv=fnZ=HSVaA=(L_XDQCmys2qX9K(5Ot}w8b$lDA`c(Z0^79oFtOAY;Q06TV z-5-NJdJiQjV>?>Ye0JaUpW}d+wm`TBQEc+8QS%RV^jHg1kGQd$KdI?vEFX53!$xrq5^i=l9<;uS9EHPqunLioo_e&kj zVAeFUO|(cu?Ec;RrRv@VcbrW5V>HYyO>u1bpd;G>JKeMCv-G>Ja z-(H!d^Uh#Q!?aPJ#PO+v^r^}zY5TVkHK*vOEc=1#r;IUr;m019mK1{~{5YTI9Izw% zL_C)mUVO#LYpM&(z1eZ7UVu7xQi)Kbh>a^jf;k z*nC*eJ-Kj*UQ6ZV?43kb{S~YkW7Jf@Y60T~_oiVHx3}z+dmw1gSBVtYFG)s<2w-Ta zfL>HvsxKu)U$q5~TP3R5f^n0#`5WfosnGO( z9&c@Loc?$dN6F1sa#55&9PrgTJ96p{L+N$5%iRj3qxD$<-uH9OO8U8JZ>6T75Xo8B zrF{P0_nPR6T)xwPTr>SyUAKZq>&z4?FIs%DXtBd*UaH#cGXge%1(8w$(2rfb z*AZCzCGXf(e7NML@>s}n1>~4i#u~82@c5~G&(01&=i515mU`&q9e*ei-4ZMeZe0I2QPgQz=!CY-`#ciqT^(M~+TLw# z-__9@ww^p_ZGXjjvcr1vrHOAnzAz5mNzVN=E1Fdm9C-iFD>>~U18hg@+fyOQN>G$yKD+^Nz1 zxFSA7x|509l@|@?oxJp0O38xqe~0t zqIF5T*m;RvXk3)qOABd1TIoI!|Inbld4vMqIE&VomcQ@2gd06kh*jsm?De@SsB4dwx%%E-8&kHSXtLZB8KM{QO%n23#$MzXLxQc4D0g2+$C7x*U9RdTh}h^L!P@q7G`_xKz#_bc^o(efV%-Mz8}v9#Ei+36-+!QOHvNc zcH~4usZ+pQCM&eS(m%zR%o9TxG~mp4MV)iOa44_qB7?dfe!vS8ZlGQL>s|dNR>#>z z=qk!7nBeRKus@?P(H@L}$u8^sWD_5-{cmq#QNw9q&yUE&fbE~^#IIJiM?}%g^yjeT zI3p`WGp_3+IOaWl8@c;l10}P(F3Q5yDM+-Juw%oR29Iu$pr(hL1uYiIcS~KSepXZV zEAk~tO8G|4v*&^9x%yK~Up@bZgUkNuPv-QVQ@4oty`j2Vxs0qk`mf)YmN-K_HjSem z%6Vpz>icgd6_KPU^AhqsLv9~7QQXyn6p`pCs-y|<7m(LS7eFR-!tJKcUM-sy;>5tZ zPsRJ(YfDmh1ygqgs=a%DGr(@}gm>OqCb#$Lqo>9KkQWVl$4Sc!F08AVtJ|Jv%J~_8 zo&5cRzdR~Dn!f`6iue4X3uAk~{y?AhyUYX1n$P{;eY2!*zQ;gkXvO?8X)5ehbPmu8}$c*MF;X8r!!e0YJB%3D<+$ZC6b%tf{?Bhy zTXA;BEFx|c`4#)Qw4l-~M>0RHKR#nbw!VXd3TX#(F!Pk?kOu9|;;+`-{2hK5R9D*W zQ}XDx^NW^P~QqckjQ5qNaS66F=WSY!@%Ns$_QV z$IQIL=@+itE2cWGrl}6B+-3oX6@^D>F;{<+8YVf=b78b6rA)*Sus65)86J|&t&$c0 z*jQA^Mn-iWiC$*3C*@!u*(@p=63Khx5hJkXzkKAGq|N3!?rb>hqjvkg&^gl z#kZ}gMCC`*m2jG+o{lS(x1&AI?Zr;4Xu|D<69942wy`5e@^;#hqi$fFqfO>lIO56N zFR~}!+f=o$66)o_@nQURv$IXgnAnr@OZRRAfa(F~U|Ml`v}l;X-V?*wETs_d2XBw2 z{IkST2uE93MZCr{es-QG-eB?nhmf&~V@zRy8>bZ7_9@NOZQewBz%f1ab=qn_XlI5! zbF{(j<_D#=t`v{0%mD=(SxRC4)nDw9mSM3url!!_y-D z>+*!HR|;^}_Md#o^n2cWdC|U;hwW#j37oYj^7O3n^OaEpoGF>Zp^wBML^gDy9 zSU$R8GSU=a>?b3S^2_CM=D{3%dZ7Q+8QD%_`0U7H+jy)w_p|;5jtSA z(ciphUAdUe07lm&MTBtIFk?G`A0`9hD>%mv>@eV*PG~DritiJV1S-nkUh{$}LSbr~ zeB^accuOcp?QruBnHkFP!#VnAQ+VRf#evz+T5 zr)41Gsw2=hge+cEGX4f2X*qMvJR`Kzj$mfaEbQ=G{nZZUZ`T z+M4&8?_4v*lztnrzmjjZ80)zbs7T2>JM;-cU7c3EH@_uL@?@FvUguW*f-6HX@}kUK zE*fCk)ciEdyk~9R$*oyMq~#TxxwUE=Q-pL&QYQ@oCzVOD>WJ}N!xx($l#d_e03A0t z0?{n}5o0zo(nHk*tLovKsOL5On)X%3#}PNweaVQ3xO41T0et*a^-t(dMtUTG2Xdb?y55+v>SWUJ*^zkVV zYj|)F*wFRSK9G2D*+49;i1@YLCHzufq9&Uc$=Cc#Hm~3gAqY6NH*@EWl%i@NQme^q z2fpd_InRS$&&zKvh*eg5zbvM8x}0~uS>6#3l)u<8V#=OMctYL-DlVyecVH_5M|ibq zJwI@OBYD@AXx`Tzl7`oo`K^XZn|QBqdu*>z?&db0v)5(E{SF}$+$MhgwQE+)cCY8r z+TJ>qQaZC1xtqlZ31>i(+5$>1;qGRMM4;rxMan1sf+P?;aOm<7@x^qA-m#`^RS##b-a-`=3za&x|*#6 z;sr!B{Q{`@Jpb9qouO?p*uHStEcf7-($ z@v%1VB1s#&rJK^JEzeFYozytR=k(LH-VdJ>d=Y286u10d`Hf%Wte0Ap-z&fBg<-v% zxLK3#m5ZvPiH+2HIeH^dE*dz*PrJVz7W%-R4b_aF5)D~P$eGN{eU=M~=q{%15fTy& zsZrZN%=^+cOnwqFP(Clvuq2Hig}4y>D3~z?kK$)C`OmFY{arb@UcCrtt7@<3cMJ$Y zW)TVdX>+^*%<*L%!5mmF@>lnZD1?^#=-KRuPDNa%xaY9Y5P7PgC65w+si_44HmSRY zAW>%I(UnRHsF|WkE@CW(CTC?KRwWKU5c|H{JBonY19`w8io9}+ye^T~NJ#f2)|CMA zCSt{hq`A31AT3Nnthh}w9l9O<}*6ws+C-HscKEU%989f3dM87EAuQMPFT*1sxq4~o?yUQ+towag_uYaO z%_*64SdPp3Mg2vwBX>Imu$-qr*U@2-?izG@!gd(sJenS*T?yQ$x1toG#$hnEa=V*Q zykdKED4IAq%{nS;AC8Lkq>-btrm3(rBFtW{rBRcx^v2 z{m)bL+AmY-+SPJ*&!Rz>?Qih>dya!p-Cpu%sxF@w$ma!$&at*X{s}r=L44OJ_-=!$ z7H8}RXZ5|QDhD(%R-o~7%nA~uuq-p$layXiyFQb7#groBEiG@20lIButI%JT&JKmI zSae!Qw*1w6wPZ*f(ezo7icK_f+nbTw4vw<)>@D)zXNJgYDbMM6mthuIUn>U8OAg<* zxY72?7^d=1fy$60pqEu$&|ACETQag+F5XU?+6XA4Vq1PuSW+;MD~l%FQ8=LzNb=oI z1S{H%SWm=$agt+k&WQBjW{~H>&0KY_j`N}5mPNwUW(ygQiDMjLlUUEA@S4XdpBvel z2DjYmM7!XSIJa)8kioT&q78yu3d=h*wI34VeW$cjx1fk^BVFDP@U%m3%!U{0=6c-{ z(0_e)i01-uBSX)kXRVsV-K$2Wog7{kIV2CF`U4v-5G&rCNyc}MK3rY(2OOX7(`}Hm zo4MV{3CTgNfc>dNatM@GdjC9IG-!+bgeFwWx4Y{{rtVr1^ZxopIbsd@?=B-giLvQwGcsZeZU0+HQYYS09MPqL((3j#<7Flp zd;|N7|7TA1=yUJGKQ)YRKUMQt+@r5Xj*80W+-hNQkBZ9X(c#(90-19KeaG;|=?};8 zp&*YdGt05UsQTRZPiJD6u&+lrdJ^$?k24o`R&;U@ht3U2kdcP!Nd{{^dCsVnIxk_2 z88%*KxoDra=qIK&ecG7@xO^!8eM(V3SM?9pkqrKUHsbsKlOWmN*+|2r2h@S3Rg-K`RJ)H zqCS*by@D`r!Y5!+ZwRry$%VUk&K1wf?Im*{_11lZ-ygD*<6RP}lZ9Fqah z>&2o1#&*hk1LF~=;$}e3n*`*%>CZd(W|Dpr8r1&0ly8PCJ2L)`GGu%RmfiN8QZcv* zxj@;=I#?eT)cXC-j9P<%eUJ$QwSxUCiCE;Tu-6yAw4^lTec>#h0TSD|{~;4gg~4>l zFQfwae88B>9NEv&m0JADskw@AUnlr{i!tn3j19>Nzg?5lCh z(d7VBry2muhG+noCumY#*qNs=tn~Gzg;VxrPfcH?S(^EhC7EdDSs{ly^CXCDq;+C04wL`N@eM z!BisA3Hm38oZ@>qa@^apO%^P{Q;^1>{rz=^Tp3~BBgl=V9(_=VY>NV=@^oC_bxeeb zZ=hev+*jj`Xq1)-qRtv5%NUa2tGyqTi&CEKPq7hG#``~n$Ofm6)A&~z-c#Dy|B^#} z7|LbL3v|x$m2#YwFW8}~io$XKel3CQHGFieN~L*h~@M(b9O=_~{g7rSmOGN6=cd?8U^$o)DN1(wyab zs3P^LRhQP)-i6}XRw$=#)0YQT&@usD*(;K5vDb6GIu*P;SHM z)K%V9#7pcBkb%%TM>E%OEK?EU)7hlWw|V0jfhY@?Q|9}kwCkzsN_q!C`=jk3DzH(b zydb7f_Iwb8t){jc_tr?7$48rbQ6p?NSdq1!=2Qi73ZkI+o zUH>C-{BERoA%^99ZXm)Y0Uf9D)35~?6}}nK?gImaBwHTkSNPEqw=vZXC^_e|!lJ#(kqE1r@q(l7FFWm47s*{=LzGTaN`$+QhyPUKFg$ic{1 zHE+@m+WxIAB@`L;j@ynq_xACz^mGA1&PGWNH+}J2iJOzv(I^BC+tIHOUz(SRcF7E3 zIP1 zi@C>HFT`V-VTrR|XosQ=)lW}Gq&VVf@uTjQ&2n4qy+R769$w75MoJNpQXqpz9FJL9 z%zZ$J-rI$~P%7^A)|kf1jW4bbB_kZ%Hh#)`h&0er!f0$av=>$-PIj4AA;bQ~9Pz8E zX|OSp1CeCpXdWqY04W!*UK2jzy%REre2kNLkeRf#rHj{&c5tG9q}8&KDFE%lr+(SQ zP%EaVWPRE=6ZZFA6nNVcJs3EY5e(FTyJH{UR?8GwfLjkS&=B_07-$Hpe;KbCrWF$@ zfIWjTDoQvic1>y;@>&R?GZM^cxZ26DAM4Bu`C?_JynMn(;O;vgMAl5WwY>`U03|;w z(%o8xkzuQMMBD%~0U!pB;5qZs$%vD8M7|>;3BaRZN)EM^NKx#_i-bSQ^{|sKh61-^ z_V;kiyZ)>{p;6PVVv_bJ0?=|1RfH#Eacqt9|5$QCiLEm-F4wdELn27iB>GcUQ!5EO zYIK6cpi9n)cg!pj;Q>0H$Pd_OFYBVaW|qi~P;|LrxCtnDppX>2AALUn6Pub0@Qi6r zOe?+=BSnR?&$#ORcJ4c}=mU{gY4Td+-OZO~+V!5jg451_lX8Ga+FF^qy-@T^y>nAY z8pIzSgEs!jy2*9urPc*U!C}l}%JzQsf-sf54rd>`UrtWaq%Y+mgvj(4C(hX=+;;=` zLRuUWK!%g{mz3)lXd(sTO|nJm$iGiz=WrlLEM8>2Q2UolO@3b>Ke2qdNe)Xg`TA{g zpxV23NH{#sxd)r{?+*W(e$L1{IKNs7mntjP)Pzj`Ol6s+>ob(lEL~IH9bC4iyfECt z=9J01Y;blQa2}8kZOy@c zNRqC!ACgqOw}Z@OUzZ7+Tu41@z7dvwvz~RgCjL3 zA#`gi^*RZe3e1GyBxKZ^vCn5hQ--l{60)@U%Va{PM>9#fTIQH{UpWFwv;4(_Lgf=a z4wa|p5cH{Z{)l;3{yPRC{`mo#%V~Di?7s|tWDU4wQ|x%ZSEfG8a9FmRU5L)X6}Y$1 zNq9zP5{@M|^wTo(FS#Lya`Aso=LRD&P{T;`N}5Cdy<4%Uk+Yxqlf7vV8R(3PMH^=q zUGc6gI0EW@#S5(!D=?XNW*6EOwfwfmQ>|5&6KLK_G3<&Z&g`(gLDog*Izhz!6d&fM zu|NXb1?%WtqVN?j=Byv^9T$8x@FRKkg0=m5YkOy27fI&cuc_!S{Mot-r?gL-9nvw} zTuk~HVZ^*dzAk6Id2U6WfOI<=-B!y;cY3S+oX`dBJ6o(5t%6aBWSHD#*MVwzjrY_< z-C+no3qFXh<6R(c59R9WV-tN~N^073QigRO<1G7rNhxoyckmu&&HFtb6nhLrF^#k4 z*Gx9f!eH|YalD=|`A$=zkT62&(=X>a=?eRP`DLeet~sk!9O1NboWy1<0m0IHQML`K zqaWGd&`*bvp~=Bi;;W&Yh7UX6kPuAq(L6nc0!B*hoT&Nc#tKhZYJoz5Xp3}`@*3lEZ zRE7^(pdG#L;^(-}ah_NGIr6Bm&m(b&EAJr46~tfjdyVY=J3Lr*~3A zSDmyfR=%lzra`0?Xx$2GCk?Sv8)Bz6M7v|UvTCsTm|tgyocpC~h>v}RLMwvapKed= zb_UzC!z4pvq7|SYS(6G>)uGUuv^b!5qX%2VQS$zYC@29EQfNru+CDSSy*BWXZjmj# zv;NQWcDdO5Zjh;4EReHL*Z1v{o%RNqJCpgcTZC_7Ox`ce9`jbfZ@Kr&ciy(EPNq`Z zpOM>7bKv6KFa0RX)G&$^Hdd}-hwqmOFkyU+52G#N-Y-4xjbFmyo*BQH;}=z*Ft)PGCEJ1PW+Mtb*Uq=kV}Ht#g-9BJPoK+nHHZYnz9Hz0f}glB=2e@*m~oe!8>B)=Dg$yc zd-BYRAo7bU1PI}oc!il2(muPKM`qd)`cNwG0=zT*IbI%t?VV*{dr#A8S?Gv{YT~FI ztXDZ-4A`9So??=#P54z1#srp;@?L@wRVejCnUQ2BSuc|fCvM#_FI6F(2I49cZltI8 zI>(mTk}<~z@Wp}kE3Fl5S#AQ_tjAh>@uMhZi~rZM-B#z3f49o^S)IG9tg>#a^C%d& zyRE{Ptio=q@MY_gr9F+;aO~P6LnqR0T@vYO7z1EakN3zwznSU{5YWvlHUUm@3dV4w zmM`;;o*>{iOPx1vOdl;MNzi`pN0PtzUm248@Rb>o+>wGK{s&3YA+Ar7jod0pdfPud zXfpj3v|DLx-w@g_&wN(%XIMthMDK!3YA{M0&Z_nvcsneE<5XK}pZ}Hm=`wW+#lQVG zDGnoFD8APcwoKG7aeOlTct~tPi>xOjMUA%<=T_Gw zyhf)R1J6A9!FL`OlB`T7hP>uyJj%_>Z-= zvnIV_N3pO7+f|3Hru9O4PsT&mlWX}yF8CzhJXuxbZfN9<)7SBbU|yfwq7VH%bi5VJ z>vt3Se3%D}PV)}C>-D*d2U8w!52=Ed;Lu<(-Fr1!H{n_(I~vwn9maZlf*=GHcJzeJ zlHxg$LlZiA)CHyolimqQaaPbSqsasw!9rxhF7vc8TJn<|5@+Aqw5KhnggQa%+c^X+ z>gciTNXeA;rajnJTM?=)cH$wv>-cRrZ)eBv!g=p>yb;d(bH{7r@?KuQHY9U34JQq> z^pMqj5oC~9>*ZL@7A)?L0%`%%>O~Q7;Zu^7?Y=7t}HOb8#^rIh=PmmowGd z3Ne2A09El7d05P~Ih4lKnXP`^?-q_ihtDm{!@kEY%vbXDI$np4kv>Y>_pk#(xw6D9 z9^LUq&|Z4fEgmr;($D>bD5{fv&Qj>KgwAmGI?1fIF_l3JmK4TxQlpDS45Mw7ZqgDC zfAcy_r3**rMMF^9m~K?iFGiPGO{TRQUegZ`+M9BuO;M|Tp6{}9ikvX<=@MFdFc+G& zDDR-=A*38NJs}w!JyQmzU8Ukxp0-bSZiMDNk;|$4(3T$XTl%=PH1^O|^8kvu>Bg?= zzoe=Jf@4hN?VRvDzw9^`=A@A$Z3dc52n;vKzj*z7 zLgTEvn3zXGj86!+5v=i$(=Ho&3ptAQ}d43f@5e~e!J)_ z+Cy%iry;ZY0gn#k?iP+F>%8a*ilId+$&2=zBK8PQ*ls( zO^?yHUD8|Dlg|_C928=d9~OBT8}yO>1JfQNf($F3?+yHMZR4_nw{T z56E4x7o3Ta@w~*I(bo2RyCB4bm(y@X!pp_j(aVibaPC#EcF*LKhc7^!I%7-+7;t`A zNmf{5PuK)!g{Aq~`e5Cr8|<9A$3>2J&lqHb!MfOD0@@_tOD3T2CIa?Jz)};?{Urj9 zNWk?3Bz8~Es3@BCnN!^&H`*@ge66LR!_8Vkh8G4Z1a{_Y)j_o z88)_loj-dsg)0jpGKxh-X0d{{W$7y|nxYDhs6o3#xJQao*KpI2Ahf4gpTQ3}t{BiX1%_rlx#@Fa0Pb$ZGf)rt15> ztL_u9(D?ZzQ_$+GI z;+WkaD|^28vs*B5h#vM%?sEJQx=A|V%9c-5SwWWy^M4|>-W|u zK*pVDB~%&~zj6r8TyXC&G;?n2Ff?=dXR~O=P;}Xy1(N*4DQFIioDAZQHM_rtNrT2b z!A$Edqb)PkG+C($G8-5|PD~d%ap>WTlGEU<@xhQOzs#J`u+AT}shTcD2fVU3()2Y= zO96dxM5X1Zq$AvDe|iq4E7NbZPsEY&h=%|FsV|HE7=p516?-3lHA8>Qy%U+52rfCp ze56{azSfVAVnHRx;oaT%S1Dr(YpVG+_@22+fM0bAEJhW3@x?nQR9 zfO7~IkSpLFw4mZn*qa5Pf+x3xtKD2Izt4vFwOYOf{{qIl)$%oNNQ85AT_3^!UNTFT zN5r3l%j3Vcy_rH^VZ11&=<*o8(D%!ruDxD*B&->Qo8_uX0~o}ju7LN|dpA&F#rIDK z-MO0lv`Fk%pti}$NC|ORn4~RJ+oYH>VX4S$oCL!^xG!ydWM~IVHTgIgRb-kM?eE9?g-6WX&TpcW%C^KZhA!_8V6qrAl4w_G}U9ui(Pd4{+ zBjK%@BNTR&06|dw27#w{*w zGjto)lBL6h0;;{WUsZKW*OlzOdpd;gDDkddn%&Z$dCj!6^Q;uYbp^1dX3%-vprbqQ z%aajIp`4M72&0S!gNV-YL4TP_pr<&^Qf%h{=NgIjz9}!{b*` z=7jr1H2pi1TjE(EUv`93_8`Na;B1x_psISJmDtG^{wGeP%^W6-Nc^6WRuE{NS$<&6 zvD7vhnG6Ryic!(lYYhp3G9o291(!$}(`}jBCOACc??EWiq6Tk98b?}ma12SSnz_NW zdb(AmrK`P^sxfR$4zJkZ*=T};Hz8-eazkN$if>v59$F8__ z2MS$(9vK6xkGDNziOGvzX0$u|!V<#I7a1?>+E?0vgCe-*^PjipqEvlwMCNgXJO+4N zW?tvXbN--dV45GLKvFR9!owxjg5B1_F6S(3K|6brn5^Jshwy8#Lhg2spTQ;9svX;? zFJ4yf;UjOChsDUak3xBiFBYfR)}ozO)k{|OVQcw?E0BVt7;>?K{VlyP{IBvjarYms z8}}kJ$L|JJyX!C&SSN>Gaxa#XSW8knbWON+t+YN1@Ess3(rBNh#Xc)d<|W_05^hhRci)XQ5VFWb}ue5k^p-vN{j(w>xDOqJeZ!wP~1X0Sa(<=NgQODXy!qR#yY zv$>a z_p-^(4ZJETGA-7TnVAs13&wJ&sky24QUiXrbXt=r-lX5^4Cs3?bCw>C;VVt%Oz&uj z&mxD+H{;}+vle=(-xyx*5p6DI9eU4l9+E>TXZg)kU$#D`Ck0z(L8bQy$&iK|bnR(~ znOA7c#?Ll7)u_HDXTYH~eyVrMy31Kp+Sg5xu_7SvK+wz)Mbj?@_7Y9)$JAl8tS1jh z53YH`QHJ2gtjStv#H%&MOlsdsiwrUjPGk$Q&zJg)PsO)-mzt<6$*f6Y`gDi}v+klD39JNoQS9kwwK%80=7yp!Z~KU(*T- zDs4yeBgFm$-5EGvQI|o6U4itk)Xt~9#+x-mJso2*i`-#pY6XVnH)ckc^6%;ow$Q<{ zQf)h|?Hfc^2A+V3%jSr<>}nC0E#kzqvTnsK*?5S{icy{ccJS^Yq4NmEa-#Rcm34D? z(VJgcS0WLzAt6gO4)Wqq>aHR&=M6fCoed)0Q{Bh;u$$;U9{Fn%RD|RaMK0VDt||tY z(&5OquWl;|qR@YBzEOW1?ASM%;Oe@fA;F(E!E9nkxNcxTVJuH8!GmJ>I5)7cZu*dq z$MW&Qx)@={UX)r9V_{wUkSM=DUs^ZZ_?+|-heaQe*$?+*QsurOG24l`urBBGr!@V) z5iF4pzxqg4-M_BMmK-~j$+k#7%(Ts2r)0ZD;`!Om8xr$c&9;`X-WF4Vp($NrQaV;I zDX?3kYjdS*A%VZwwac)1l%l^+*Or?or*`dA9~ic4A4vxf?b;0{_|&fbvI+h>UHdeq zj8gBq+lMsE6@0v~u1UhO2f_t@R@HSk59z$TbY5jbM$%W1`)OnpHF?!-;#=MiN9!M# zDDlF?b0R>`jekVi?_o-DhUkBJ8snDdl;3aAxNT>Sdw{qkmq-TK;j{NA|GZ>fA0Oa9 zx=6{?2s?LjBz#fMfxk56yv5&QM)lc$ZpsonCg*-TTd-v2;ou>3}?MOFh)e>t3ovoV^C%!aEY%!JRR znsU^MQ13rI&D@yNJ4N@fy%WV4r7CD@?10THlU`o^m^7wu(4Jee9D}1^4gizFIkAhZ z2dW=z*1CQUAc#AzK7etUwhyt3()s2!jFiKb4{Kb%MRO$e5%r^nd{Mm2WU%Sul<_0{ zUCv*ze=pBj)id%+@QGjYHTBU6o*j~N6*<8`%RrB-XNc|IoGv@s=UgWXe;BLhnD^TA zZ>FAxCUSZ$-$6KF6WR*SR3qq4bfwp8$O97PW{pdaMI9mh`)^#kds;<0j}M%_kK(b1qJvkSFsBFW<5WKOh?qb}#%F z6WhAf0#I_X9p&z>Kq@wsb$e`TwFy`q5=v7g%rP2Co4e2%L)9?P)2BInP)uW2lgYz-=Q91UkAH4omJEva#%M;WF% zG_5)P_S&OffGs!K`$#v+l8o|^Plwb@>$3)^C*;RKO$);w1G@cB7g85hW_4@xU;x+U zU6*$_@t5$bbA8^kJ}>6Azas2q(CP0TJ*C}U+sYBeoPP6_y|&3lcif&UnniXKaQy{L4aE@&j@h8C-L0S zBNPWwd2nH6D&8cd-{rkU43QyS#S%Z2U3v2p5`|;<+lx2mw??e#BN{$|By55ioo>Ve zq-f01sUYZtd)cE9O$1_H-WLVd zGuoA=h+k19Rg5)?b!0A?RXX^jISmgH@Qic4F|WUwI(8Qn#;G%;=nKb1!Uhv*HEkvz zVJR2YO=k9~Yh*4{8;CT}eOW8Z{X-Dy4EB?=3ou-YMja3jmBLIx3zefi#)w-PI0I_}cC{sac5ayVL71|WR8 z5i$YZvyYlah#&rg`juHL%$_vHu$6Jf3Mp}Z(FX~6uSEhmbwZ)u=MUf}JksPw1xvHM zqv5QW*Fb_gv5AeBe=wD;K$+GXJ(GN5;^2N9OR3h(7B6GH=bkj8r4U%A@m15xv}_^zO;D zBHEE0_x20Ti&eMh{qI(ET$hS{4&yqbC4N`PX3~C_eH44L4Be!sEwVmSH=qN&5QO=# zJv-?9NQDJxD*tUn{NvVkd=qVys>iJDvsMVgdY$OArtS!&E*HjT>0yyf7Wb}lX5Bnx z4-+h^&+b3xmY-aAliANYSN1!2H49JZ>-bx+{OxsDIoB1L#&iqYBzY3XL@Wwh!*bL) zp<_lYbp;Zn)Sc*!wZ^=GUug!;?4r5OeiAQllk%ZXv*v$E)uZ0~kb}r%hNp-1$A!7f zB8i1TO!)M;!_{+w>Y9x+R!m8i<|b8CBGRSASBgiqHlN3a8!$Y(Sp>nh3Y1;{Uc@f0 zMz@=%>%B_J752qd5r!SP&x&+if%sjd5h9YZ*B*&mBI{~f;N)O>%G!esURyG|24$BO*QR@n-Q`sX_%Tz3X9D^bppuh$*{c1PbjS{DTa#rybX5$rgP z(sJcHt^2E}J5q;Fh*d^XB|s<(`0@u4R*d?YEMvXrnnau#H#^h2ouqVPe@9AOQ>aBl z)eB& zbf0yJ+r#Qze)67qD>vEOL_Gm<@ zHtDRP>kikP`y21yWJ>8IrD4a)k##1HCq<@bG#st&7-TQTW}d8|DB*wCNYl9w1fw$Q?Yq4h$1!` zFKhg05gUCZR^QNj4(Y^u$0mLz{A5nt;_)t%qWAs({dQ{O+!dv{_Os8Bcj9L-zqG7*XQIhs`p7e>c32D_!ZMO4MU{Z5PuU z2yHbubjAOn?tS3ntg8I~q)FQ-fthH4s8OOuteXlEsuoiurI{pXQzreBKhS^5A7>-D zMG~memew?Fho@7zN)>mDTNY5hE=pY}mbGZo)=Z%lO6_8is!_Z8)D{g(w~cFLe(%q@ z&rD|86w$ByeeJK1d7gWp`}f>?&pr3t^M@-NCiI&EeHUisN%keYgc{}9%!oG+KCaez zS*`kg(5j37q@9b}pjAW9&?>8b#M;HK7XPKUn6(SfrXIkdRi&N?$5(4mzRX~JLr~2( zxW%otA+v@a46QqCgnE9+l1MCK;AL7CwAAm0R$hbH0{!zkP}grO{C@5I_t{Kv24PBU z#QZH!V_JJ(e1kxtD*|~s^=t+`F5K+dT#Fl|u_bO#h?fsWQ(32`g1%^?XCaF%>OXci zd8{x;#3Xta5zj5J9!I7-hQFg`>efT}^!~*ZP4Dt2G@(KId7#eCsPLQ13+^N~`?ZZw zr`C!i^hDxqmp8-8(UN^v9 z6X55P3sVgx6W1fFV(svza&x8pb1ARn0WD)vujk&1VC8xop}5Z_rM%P1xkG^)TV4k# zSVrzFJGX9nFDWFQL`DoF1Yw9fddoILcnaUkc~0V4!Lxk*7F!$| zc!7?_tFD3On3iy|a5KM{NG-~|6=&YUnKxQdQn=ZhTBfXrf&f(qrjPhS{aF5SUu+7; z^AEoWDyfy9$R4h`ye+DoTY}(pZ5Ri7A+)YQTkDs!_fy8@QY<^5smHzjhB1vGgoiuWY8=k}9gy;E=LBvH6 zq3e!%RvP(iOHF@cHkNDT+E!Od&qF-HKktj;nuXWYX5-x$^;aNk+fl

      =1QUT8-g)}s8?S}%+GXV-@hN6 zw1<$vKh(cRxGCYrV7{c{Sp6bMb!9)-#)R;InPF+C$TZ^6tIt(CXoJ@ht4I~Pg7j&p z`xM@y$xLdY8AFmJ58_;B2v1tWWa3%QlX+88%2RWsm}i)0B~Q(PDLgd^3V8|z*kT|& zkucLC4J1jj#2sF==?AvNBMQx!3SrXQy*(UykIh*9xCtFBPfO&c)Y3_mXILeu#NnGB z*FlGg(%rGSeb}>pGUv%?w%O(!@@y6#(NeH=!#K3WB!{Lx!12OK_(hI;Wl`7x|8w;7X!p?=^z-8)C7}YE_6Mw- zfJ4gBU)9H#9)OX%?tIXT$hFVCRaiIquJQ1pKQp$md)H7cVld0M!u&r`H3&(#HB6>Z z>kF*B-calDP^*X%-d=PBAj<;#REi3i8zqrV*RKzSi`nmx`q&rQj93gJF|V+hS$IR)FIlynjcdvE0Vm>0Ot=hOj3=#w>pdojlyW$^6%6VP_mjQ(2;M!0 zQNe+NA#eKM7g~bu?PKgqRw7txeNJboX3oJSTRe0LmkxMK57hi<>3dvFRyt;cf(rJI zR4{CLhj8{dM~XNF{RMlm^I9N%6!e(}3L=NlN^xJGdG>Iku;k)>Cr(_v53`%n=34Qz zSPdsm^!=*n;(ccjCzY9B6`eS-fWWk(c=hId=~YN{<|KwZ{3cWaeh&lY4zuU;p%uF{ zYkFj9$=UX)S)q%qP|uD0wun9OPS&9rxCmXaqLfJOk|FOx-Y}TBfNH1%St=6~+Bee}|@cX5*)3g_ty5U-!)LNzJz&q@1pe zp4t7XS@Ebs>kv&jzN{9;sdwilRkK{b@>npO_Ajd2+8Vr|Ss|gGcHne5G(B_hkkzDe zEEuiA7<$Fo+yWq|!m#m=1O5j+Y_Y z6eIG+^r%C37@q;8+1(ee`L-%uazD*ZZPukj>f8GD!|#$0ilX@e3^Twy={{=3Q9*R% z@GWCCU=O@4ycEBuQ4Jii$@IaoCYLaHUJs+GY?xN1VP}i=k)#7#vwLptEf@SZM6V&nL%2^a-PhP#g-KzevAiE!6N*7z1H07ge2eG6bP((M2m zS-n3W@y|@}>%4>t!FGLL(Zw&|FGT_CalsBmj5KL^@jw4=c*6D(^CI29&F^}_vuZt? z6R9l%vRB~kPHoYk!23YjSm35VE5lrCbPr7ktsBpaOX`p5Gmg7%yG;D}Rx;xU(P>-~5a0Np%bjRi9gFk^u>)F&{c|RFi zCzsX?=36ECh=thabuX0RU)Z`2Jy!Sk1#D$|+@|3GbW!I6Pj4Lochmhln{#Am*jI}jgvG(8aJ(Coh%GV~4a6p%yf9&xZb z(_pnv^n1|HH3k!Um~N!4^ujSC2@DV?C#V}U0*Ez#3Jwl=i~)bAD=nC+Jf{{~3?{5` zOwcbD=Q>#-;Y0B2AHCTQVxwR-X2z+uq7lWl#z$ zDg73tD4>bM_LWFv&YOeN;p1ydcjW7*gLdKv7oRkEQ#onZuuE@=#7P_HRG zxv{kKV;vQK-^1y9*J{2ZFG$k7WS-1BBx{R#$6{ZY^lNbIy{N3e7SFD=MT$0+KC{jc zcjaep%Iy9+xDoxLRgEjY95X?PsGdVpU)SpY=8>0l(`MRR^S0|wD*GS(!wz0iMk0?e z-Ia}HZ(L2XbFL%}&q&=;=I;Y@(MmQIHddXL$!M?!|!XSikZKE(rZsT%x#) zs9x>N+#+U=A2UpbFCY$SlR}xPwoZRI+YWBJO{cAYT5kOUPHQ9pB06 zzi9F7`YWyeS6rgMYX2uV_)kmMKVek(-_K|I|JSHr)Yly3ykRwCcv@z}#2Z^yTX9Du zyk_b|n9oxy;>{EA{D@G}l5j=7%>7J#ubW$1FQQ+VL#fA(0i@Vk?%8MgrC)dv3)5V1 z28OgQP1AE`pbIY=SQOrhS@pFW;4zvwL}Sg+(zDV=oOk=bq=2-At*5%p6w#Pv9kIJ5 zLzKdZ^$x2bD7_A`iDpmo@`Xcg6BsLzTtgaEGX9IFsbpDJCEL>cSUkPkK~A-UaMl6rWKRZz&}n6Ar_vnTrq|?j8y+ zo0TYE-uKHfHD6f+s5&p|d7<;nS^nm&w&a}OC~wtDKE>DR7etE)!Ta3jxaEN(;@LO& zirfVh^c}&LH6qD{3F8K(Zb6tCyZkig797JbbjI~%?>Q8V(+I^`)sje4VO?K|_T^qk^ z0(6PR`8}zw3u4vuDHf-o*c!bpyaZ^7?$)dJhP0- zL!VPmi5aVdDQtky=e|TlN2&klSJTAM5}<>{V=O&29m^0!gGfpAL;VDVQL>KZS@zBZ}}kC^m*E7?#>AsoO7urN-lXAb8ZW>Yp{$Wv(hN9J_`bp@yft*O3kW zKpeL>P?tM+#e`})AcZvj)0Z?M56-_wJP7{lqGw@ai{adsNbXS3Chkl>>IMrnba z&P~j~M#e7xEU^@uisq{(?T<{J`L3!oC6=API+Op+iFKQ3kBZnmoLz+U07r^|_d|a3 z=du(j+~Jwv?EKg!n(94|P%h%^P88S6N9$?=IpfnxyKgVe>%t0RX>T0P;s;Z=md5tz zjft0$F&=+}+jXRe2lOEm`_gY*?ChcJ*cXUJVrcnoWqF++B@?bqkak)R*vV;}25c;$ zoIG|pQ3d_Zh2BFnG3sv$3OuL=XR5iw3Y^e=TX}xho79TDj_l8$w9i;DtoaDC$vBNpBe;dRWe=-{`vx3-(IkA@pv5h&g?+#+G&511uV%Oxv z{=v6SXE%8>38MZl+=tlSoaB3g*rA-*$AZ|x8?u|cDTtkz6MIJxo24FtJbY&mTb+}3 zeh@o3C$^DT+KY&}{}Xhz1B7e1T4?t!5T8T4p*vp&S!*L_5+Rrzi&9SPLD6&t3{b(Y z*bosNXZY8j>BQ;tZp?1~z^~nW2V6T2gbEpwOvBv8OGej|v@ZNQg;*hx8QSGZVVsA$fInETMZvoQ_d z*g_IS{VRhH{e_6W#~!@H20+z*fDiOAL!-nr2mIal+FsOssY0+dUj|#pYJYxz-s9UO zwfgJ|d@`@vdRJRug9=x&o-93Cm%p>lVbD%Ar)J48hgZZB|RibqT1wj}{^l zS2B(rzCH}8r(M_xNa#KYqve;Si4pEuMn zmZMeM*+t#e)ZKgHcd36XriMhLeB_Mc9|s=sZ=)R_^PYhNv-gqq4?~yOBhLj&+t2;r zWzZzQB~I(DUyZ?Zboi zDge<4G-@ZfN2MMeA3O3XUEnN&NRbB-y8V;eIlQ^v?mK=;Z|m$pkR=|K)!(3e;7c{C zlgg|eeq3ed#Xj$9xQ!6R7uM3T{d_^6yDVD9x1idqPp$o2Kn2d-%QHGrKNIv*>HEvnKu|XQcdtw;e;==! zeO))xGEKd{|9Wjxk2&|6r{0ZJ;-=m;_NJ-V&YPA*aJ~GD-$+D&dYn*Z)&gzmsDyI- z%0F_9-pg4NDd76#m_4h$owxks;o;=vMF2K0dATMn51Pee%v~(O4Noh zId;B9b;mES@V3w2adGc_EmPKK`aF&#}>`xS5A zka^qAcHC`VyZ`b2?1GB@Z>k_tjWd_sdXfKc4`7;8JFUw!CjLIJ&kk;xs_n(#pQWrI zJ!@PvItHu!RUb$+9Sn4^YNhIS)YP$RG5RK1grA&+1dOiOBw_e+~U)%foeOTAzRdn)b6AM>i05fG@cQ!qSF3un~6g53cs_ z(;PkJfMoEJb6j1gEvHV9J(vMV%WA~jg3yJ#ZoWYwnDle8y-#pn$725*cT<=&;NVeD z6-1s9yQu>+1vb_F|Hy~U6e&%P-^9iqzcm^P7l>U}(l8sAnTN)CLnnc2;iuz^@@zhF zb!YFdi5VM==v zvQLQyeEA$DFFHYcxI)eAPU64$#XytM`w{HUh1do8R9kWA>O-NcUtpSFcZ{ETLks|N zdv%GUhOY1UcZ!&bLK)5!mK@^SoP!L`fAAtnLK9n?3&x$eFLc399#6VVo5-XjK52i# zUtj2g9qx-ncc^wdoYugqSQlOA#LpTjbBiV@ zT(B_y!~f;`85hV0{C_zM)?Z=?xYu8fFGl(~=cs@t$Teunk0)y0AQzXID-tV+fe4&z zhn#0_?RTLGzd#v+x9b3Xcn&aalgw+0ifQA9e(oL(9^XnVdXAq4q|jf3*3!T8*MNk= zc0+)L7xyAg8o}FpXEbQt_Jfe}bM_>9)KVM>0id843f!_t4P$m({)qBO7nG~21RjmJ3 z)?d_rejCIW&TCtuoz1LH)@)SkwfR(q!T33>yB2>k+T4`RoB{`)(qG{Wn-_K|nWMf6 ziyPaqa{fMgE-i+?Y^^9r#B1CA6InsS}vcfmGa9w4!La}sc zftY{+-(M zN#eS9wt3G4*B^ezXR|$4s{H^Bb5|{ci5Y{bHzeu@=V!2~jR(rrt=?@#$%2U#2!4M{ zi}yhs2>Vl6F0KAAKW~RF@0Fh8UB8}hcI*qHm^|vlK1ses>h!71e-4kIikXy&xu2LI(;F<)tdWRPi}*MZ z$9Ld8QW+;?GTuhv$9EKVhMVz*?l=92VxIBO|FI&Ag2*x#*+xtm}@pHIZZfW$Qsw z@@N6k_BX6xzyIMEQ_1=|tEIltYN?;@LQy^X>u2ls{kWqfv@arAP=`iwync4i3tffY zPmhd+ri@o>|1V_!k9QTPW=6Yj9L8S!CBnB|Lugzl@1)*cs`tsx_d;eQr@FiUe65V+ z)FP{Ks!==(;x`q~kGB`ai=1&@TzoxwQrrkU!z09lEjH}G-c~%Ovvfhm!SV6GcWAjV zPkON@>g!I>s8ElX@ZHNAX{5xqycuCpZJ*OCDvN_Nz1m5-1nRumJFELMb$MN%?EXyS zn6B%XKvSoW9QQsuTM^Opj#SSQe=jkSL3XS07)&0<=}4UsSm&I0+j ztVxRexXyzzll_BR>oRYRdc(ca^r$Q(OyNNDG`0g~8w*5Umn=HQ$at64f-h>O6)$;& z*_%c3Z;f7dGW`a>UCu?Didy}rm$Q*-Vspd{`xT#uXyvldd%5b?!j{CWqFBYHJ$dog zLjU}`M9vN;3o03SHU;j2rWJzaPTn1Y^V+2B@tr46tL`$@|J3c&Co@%D+1{*Qr|Io> zr>S*O6x5@${GAx$kFP@#(xqy+Xoz6%_pfJL)#5Zlf~El zcI_YGp?iOkgWUUbxQswYnmSC{lCS6!{7rx3!*VCRU+()ZU%};)`5=u_6rbxPUg#<# zhKiM9ZdeCpw#ZX4j-EtVtBLnWm^o4}OCpkx&E?f6#lydkfoIPp6RB(qT^i z0{d-63*u#0pF+$8^q00~El^B$u|8vUi?-tD^qn`cH3+!HtkjENxP(K=x@`>4tk^>P zUZC#{b$rJ>#T#RH75$6kIG*Xn!(-vGqb-f|hNn%#1e@M|gh)zV#=#QL{7rmpQ zt};KioX=9qZSi*;)|LDjn4zkB*5}Kb%$NT&@}7A4pVno6D&W(m%%_|Aq)P-> zWS?Ki*M~A+=VWIb%cn;(pFWiRX&j$=GoQ}0GON>G#gP{=AT%OKQUrfDwuh80{^7qf zVFB;y*a5i<}!h_!1sL zlj90+;)?X3Mh+*I<3!Vmx|1)U->q>ppS#(%eJuTB>%DkZN3s78B=QcBH$Lx}2rF$% z!hC76!5i$TkhjB6yTZ6-Jrg07My^P=t{+TER*tod^!WQg!MpvP!o`Dh^@Xp|jdMMe zgJ(vyTi4oYy}J8Gc(Xt9<{_Lv9N-OEONbOLn4c_APnhrEr5(gvEp{j?)Oa7Ry_n~A zRB(&$-HG^3(=q>=zaNwe)f;I~+t;lG>Ut5XBTP&BXl9H5%hd)8t)&cq4&xPe z{%40f2X|npMP;d(Wo&4-f{~B;?+I$ir#O6~r_f1fA8Sp`jA?75Kib-qaDWPwpzCMu z+@W#Wx~Spg{cFWhpYDuoF(PD4#a%}KdM0V%PldzPRodFUxD12oD1KKH8Gk}T&+#pj z`3~{)j{F~MR8MD5S97p(e*sAVPMEd3M@b&Pk z)aXI!$V#DqeWGd5f3R2?D^QWMQS)(}~ESe9=0Y=%@W_ za1oJMI_Qn>UW~D?m0!__S+CF>V?T2H8v3fXuWiokYrSky^>vxus=n6kYyW-;rJ1!} zwl?%!qyEja28|1Vj(0M$R}&)Y%16Mo*dU0?c?isWVFg-p?4_JE!dc1LWUBj&iz+(Bbp;h5U zuD;Zt*7!RVDFt|D;RR8@fN;tNB0df{`Ln*Kc^5u%VNmbOXSjNg@Puv*&f?!?c4|8= zMRF*#@*k-r(X`7?UXR%-y)2t$c4IE|n)X7{?t;`nR4FaJ^tc(q87b@2nX(cIsWJHL ze@nmWi(N>~hU-%wu0l8zlS1NS9u-&vLLYMDsEnf=^&fwQY_DY~VZ4~3%~0#u0dqDf z5=4=O;zVU4Ax4hBU&FhYMsb30b2QPTHgb$`7Nl8yi;Dbjdg&?bcPHFD?YxGTX+|Xy z%8#a;J;G>Tl|zGl*1P zq)r3%Dg1?i3$r=j4111Wl^!84Vwa8xiD-~v;WM3m+56Q6ph_ZA=$8p zZmDh*JS>IXS{C0R{UaG!s>S|;R-%{C*Z2n68TVQ#t;9?*#GUbLj5NN72i( zLgQuwckw$Z_&f@J3k9D$YQZKl9oW;?T9}H9D9NhjhY_*dAUF3f|`QJ+ZH>LBJlPD{{YsN%H&e`MkWQV96eobwu zutJBNv04+)DQAETq;URS4)D%{QU4F01R!Q3ouWLm<_*onJd;#Zq?e;2abiY(GO|sW zHl7gT4)k^0m~9YngRyZ|*d3hAK0W$v@t#3V6x&VW8|swU%@Iom^e$v5tK857)3-CA zZyj|&J*(S|gz98G$z4V6cYC&KP96z0H9ZoY`32-Wo(A88X%J_R2uRC~h9U3Nmay7d zTRsy~Lr@FG5cdu<1#@65uPykismuh{>1ze`0BGJSQ>k1SkOM!qh^bFEm-?43CGzyLBbTfWCrW>5P3Gk zbRl9O6r;x=+AM2;W^19aQbxvYhRsYbsAC>p6n_E)!LkzmNcUYh^NOJFeW64*r@urLOH`8T*7{0DHrq1W zU~|t9tuxNe-2MPq=Ay*quQ=0GhJI`-OfMJBtMqgSu{y219As*!^Dik$%S|QeX=vH- zC{1`jtMz@E)%WfivspDdE}c%35~7M!ke;rfa^C)QK}wa=H(^Z`q^A{Ru%d780ZQ-c z*#{okP|LRfFK^Guto5kOdb-TkieMuk^IL+CH}AawhJ9uRX+OcfZZr z1AJtQ$!vD|_NQj;Uh<5x*}0-d-|Y5VHMyIe(qr?5-*{yCXq(+Vi|P8QQ&zFrQ`U2& zve6BfJGwcT#R7D#o5qP5An>f2ympTEzJRz`nI1LI2$5zl-}a^!hf=hUnaw)}tjcH< z&`Ci+(^R?Bcq`lZvb-ug3g?Vo5sfVv42HrEgBnGVV+A(Lg=&79n6nA~QIz0i{IH%Z2=C&n81u$f(28wDTka1fnCdD<0W4+Gxys^pv59JQ|F{mP(D3 z?Vj;*7+ex2h8s~Ew-3%aM%+Hvm}$q*+Aj@h@P{-7Yzx6GQD7L*9XAXS*uL@<%Rh%c z6-d+j3cH(UNue^Ibo(4OC%p8IJIZk-J2%_4=-TvIXfg$3wjy1tXHBK`c|tX2)3+bZ0k{YkI~=sFE;Z-c?VsX zc*m{r#-vFJEz@R}f1+tU20^iVG8)F7vod?Z_g7hOwa5j5kwp#}tzmU!Ncyv*K?+=! zY}&$|M@B&bui-HAKaK)|b1jSCj=86tZaIC}k{FphZooKwXttzJAN_`bHT2SN<9IJR zZe(x-eD4VxB0GfGqDUV?Y`Ap#hzxP`5V{eAU_3^%87l-0Ysh zoR}cH5RRLfQKZjWy~RcG4FVz@AcsU{2h<%;nk&8S$e*YtPXR_o zO6-ghdThz&0{A_f$H$)#bmL2X?+FnU9O4rV`HlgFtL=h57@3Bv9SRCPHhWEhW2TaO z&G=RheM3OU#3bVz3{lQG26?UFs-?V>SSGu!5-QTBU@Q|2Wy5thk%$1+JXOFT0T zlHT8K&>fpZ&|ouH3^sXfi*ef&ypst;I%iARWlg*Uumi>k_60brdbVqOPguL1*Czay zJESF7oURWJmxu*#Q1qTqsUGriQ2-ur&_WLz(kSS|A-nZ24X-6z$2(Vp4r=kGU~B;z z@O^GP$6@Da4k&`cMNsVJB$A$MXLH=WHB!?JPTnFLm#y8L9m8HAEV$7f$kLE#kRJSafeufIla!s9jEK9 zw?)VJ11@3*8ly>vt~AHOVcfXDAm%}QgN=dYg34)1>%J;GzH6@QLzNM51(w0>mu~83eIupTu1k|O^W72rpysbQ zcPCH&Q|aYboBY`%b5PW%RCBN}Z1Tgk)5LGzPB)v~oq?u!W+^=5Xxw;kEZ5L8@!eTm zGE(k5J~AV6&f^*6mtF$4&p8gBTLFn$sIg=OmFeY|W#qRUUNhI8p1FvP=bXQbXhXn| zw_(URe@DWZ`SV1c5gZ`_V@(jvG-#0VjuD)FHqM$pi%ED| z4630_bASU3`V2H!dc-|<#2Bw86jpNh6>4CwVhKb2Jfp*}Ryv(2!1UohcNBKVUd^d& zD%gz;$6i~tc0|@{SF!?!knPypw2`$;(WgE53hMOx%-67x|5{Y;g{%*}@)pR1?t&XpTy`ZN%OhcCJrD z39I{VE@V@}rvpl`j}?>2p|4AfWD6yHqt5K~X#N@9jhd)5q(=i1O^8IBvSA!iWLva^ z9l+uVO)9`PLYe_Cp~f^E^=q6JR6`B_M|Y{D{1(j6SudQ5WRCjIL%`x;rd3RRQ0K>tF&~_64UCWa@A>jehzmA;8vjjS zkt7jj+BWG?Vw#AASX~O)BfPrTh3pYtz1M~G0G6uFM0vdUr|+q}f9wr}NCz zRHTUu5ojq$LDaq;xvsVM9Zy~FtsYXo__XjHtN)v~HPhbUt(F;|IPPt}WLDZvwuffg z|M4&Co3~nGqVZMwrL~eqqP6x2ua;a5AwAT-2|U$4J-yY{{Ki-5cf^Rxwv07_+uwcf zRsy)Sk=3D1G$-ocbKgs57%K94R6x;qG120f^7u{Hm>^j9r3$6GcKG@K@KVY?-KS#w z-+tV_ANhJ(RL-6zf0m_RWB!D^-}`rcN&3!3iGNbP$?+N;fAg`U*t@4Y1y1Z~8swD| z=bcs&zj;Fcw23(4lM4NkYG=f28ba!FF^+%ePgNxD)FAQJR*1Sb&!}|E8jF$CLA|Ua zg*FvB5?~nFXuKNowQYbu?p39rI~S&JiEKWX%p2rq4&uWlO+)_t@NnwLhfg-hF!+@b zgAC&UF2+I*5EUx1*+QGg`UDw<)dRE$iM+(OHSdtQMvlgOuA8VYypN~-xfr@azC}nV ze64rpMAF4q+o(q*v|>XaC>a`P-0+)Jn2o(bND78F*!Rl5k1DqDFJ5u)$Y_V|{AbE` zBmT@R1m68`VI@nN9_{PZ1UaKB#(~Nea>w|qYlvzpHbtT4LUb~bnYxI(p{}u>sTUzm z9%xx!%BV{Kt1K@ju=wx(STIWzLV{m(AF$8UD75zCgyeAtD&(Z{L&GVT>5+w&>F^^Y zc9U(u#RQWrWLE(Gdge^lgj*Wq5=zL-Ih$|A*n{)7J0r fsnYw`z9u$|D0F95N0W zlu$;NF{O!(*HgcT9>d!7RlBl2;VmeW8(=px&#t1_5?M+fj!#8vpon47I7}_o;dW}d z8Syc_D%#h~7HtBQsV)>khP~g*5expc!i-NI8k06T{4bzFrdh$%m_Jt5G+~q_$Cpde z^VTRMLVXRh8KBX%V~djG?;`1GzoSSon)Ym<0G6foeR_CK`riW2?xT!%S$ez;vKlP! z_rXXfn#vqdrzIPl!2S5Sv>o8ySehBf*Dwp1RJIbAU-l~Vfl`~ojC?CoprolRXJ#}A zpUHGYLn)@>;|)-i%dm?2Ttfx9#uk5-F~%Xqg?;gc3D|fc|KC-I>USj!JLF><%4}0L z^r4Kn81fQtmrxhFRkT>B4jb@Ox zop+tc+jfm`wBB2aK`ce_XCgS5QHNGyg13Vx+XwhN5V{KA1SPGt{HWNH1&#iFSH1!N zGFSB`8zAOCbGer!x?vJ!jNQ9bz%G%Vl@ry>ELL7*`}@jC$?+lpn3Ll?EcvCv2y|EY zKfe?cjK`DXMLk?{Ytgbd%kD1M*k1AGk(Bi{w-zn=&GCkC{`}4}QnwcRyJMyUw;-_j z!Tgm}wru&WQoLal_ifCemnA z5*)WDsO_I~veO>Q_tx2_KZ+ivc6P(;Y{C+EMU>4!LUbQU|mX17<-rohVpDM$eYxt z<1aA$d}$6Cx|stRFl43xw^kh)D2Z=uVmJ)H4;M`4yhj_cnT z*wN@HTvMKJ7B#XBX<(3}$P99vg=q~8YorJiID;Ib*)jzc`EON0XK_bn208R%<(xy2 zdL9F&xA~q}HEFzdW>BMgR*mA{$UFEP8~-piGLjKzX~g{q*_&)9Jd!NKzw~07rw`(hliPo4^k<88l6-q<4dj~4eKhT09{p^TTg29 z7?}wg?=)HqY3iu?!SyIb+kGA_khzVn^8qg=3!2Jb4ZNp;?)QPxsL*}LeTbB?EsYGu z7l{?j&!bAGDTbGGf8h_0!H+BV+jvSte%_9bh5ip`1NgwQM+=RUOY&^Mms1o><6=G1 zfS2tlmLPzC@9_ZeR77M$n?|85IldU=ukc*VeXQggT6Z5lyqHae5lI+D%_K0bIw)%c zXkZ=Npfmb#r1ftQj`yAwL_0$;&(a26xJWJ4aHAY^uGCp!12q&S8;U{3dC7(_xWa7? zqmlEBby_9f@PD<4C>ebjht4wY2}3I%0STbD9$H!NUa%=1=&&wcfaMRB0B zhE@)c5+}g{&D9c3j-Sia^p9MEnv}?6C}Yt+&_Uru#MfttGJnrWpGzT=WGKdegbzac zO!`dT3MeI=2tl*YFPNwn1@Dux-X~|?QH5!VKEGg!{|U-s{bGMCtFT&zPIOf}^jBlB zdOzE!NT`_1-1_VX6f-$HrcyCevSZ%hjr&%<*~M9`bCRIrjl1Z{+!!pax6aIh*JegY z$~ull&A{tBlShNsLEt3<+~3G&)MT>yA&8}GrH+@IGj(8B;?(l5K5h9rF!@tnwS27D z1pP~IAU1!>n1#-$&e;=@>x6h%R4V@C;;_^;xR*6DV)G{+bbE9iJ#Cl8o_CozIi6bsQS;IrOeQ>No5LzmwOEsB zlVthH7qV=hVclZSd@?iv9-w*alX=$m{j681Ne_ogIR`!$jyD#ax;={C!eZ#D{VNXo z7sj_we|Gn_)4jg`z1^cfEv>Oy?eV|&7hw1+y$M}`{<{Coqp83gWpZ2$l;+(znUwK$ z`gO*HWuS5=>>p>K^7eP!+e<)JfzeDv`&pXldd*mo#Za)4`>ANaCr~KWwab5GHHUiz z?o$c=Cinfw!|90?JagLn@Y0d?&QW_`IRfKw+}$U)bhQ+WTzliI^ghB4+e2lUw(lbF z>TOqYe_Fcj3aRZUR?&6^?o$c=p)0L#)^-#{Z<=92_$y~)pN~BNhj<5RA~yRJ!17rZ zJwp1aqohB2y7bs%^RZ5sp&h0XWJPMNl)6~11N>omNytze{#1zZZC{(o4u|_y?N{LgsrCFlrT{^vu1Ev=#I$N2lG3N z9vst!L4YG;F6ym$?)D<7PRgbrKHQ!i>h2w1u)TX=sHVU3Mm%PllavitVNIZEGlwFG zvZ0V9fo&(uWd-cTSBrZB8`ZA1~|3r(b#gNBXgn6uArL=Nf;;&yLcJwNY`L z?k8rYKk@C*LQU%-CW524H)k*IsP-*;TOgl~?vS0gU*}Hde6Fwg&n5ox$bozg++BP8 zt7wkeGH0{p12+ae$mF00mSd~sc*vg+`F#`f7an2-`oA{crUWef=i~GI?%O7D z=r4{(_I91+xg!aO5zHb?@@_5USYx`0@P%W?9{n~p6+4PM3fX7lUC3Kaz=K&PMXdBQ zD5n>6oFSh3I7_4yO~(>gmEscX=1H!k*u*84?#%eKGP+#oEKyU=eqn|W`Ze!GKO6Hq z`Rs1jQJX>ew$ zvS%pK1CJ*>c7U@Kw6K|fYR$aNiuq6shvia9i8gJ%Ka)t|17ylhyr`4JX9kH+SK^Qo zi5rqGAzfR#hU^m8bdmTwLE^j(-_BH@ov7><66t*KT1tG7#7AyW%F{J)@~x!!NV+xI ztvk8DyOgrx)yisv2WBRqZoOC*6)F==1OA@B(dZ7qG8x7YP})jzuf}&wY~rE&AfuTi zjPK2lz%7dGNvGJusOzev*UT9I3LhEF53Z_-iyhL8NO^0k?+5zc%IcLs12JvC`a(t= z3j@171Ro2qW2{5}8=2xL*hY4xW`g;5Ui<>QAF|;9YdODp-Oq5O8uZ^qGua8zaZhy} zZH*nHhN!=nIggPtOjY?~`Hty!5sJdi=);c`dzj@?T$qNz_8r9REdZ}JmYl>6hx;Xf%;{;XITwT?jJz*=zu z!nA8zgMZt505CncnP+z@KeX<>?19YtMg#!5hf<-0x!l8C^aRQPYB=vb1#lDO{ zOU9z3IXxOjk0@He%8xDPlj_juQNxTMryY17q@5)o_rxNJ|a=T)YwH}UKryICRsN9U7iE3f`N%Dzo+ zU&zY7pNQDpJ^z}{K=xju`p53&H{ZWo*$*hwd}TkVx7k_Qj}Z~8WJ(7a$UZ<+|JXr( z^Zj;ZA5y0ClzmulXJ=(EWwFL4Sa!=m_B^8c$Asiwzu+*>0C;Z5w90Z5&_6EtSl6zvuUipLQev0~S-*eW^l>?BD9k@K^84 zd%RO+O;P!a^)^Q3FVWi&ap~UOMMNy`YiiyiUNy4Ic{0ul`G2e=)7`xKJ5Xro8CUlTWpi{&L#S0E4{P6RMolOJupNcv{(9V z7DMk8qIbLXWh;a6_q;Ph}Siv$I8rNlCElG((Kkk zVU}~S1dM9)(_HD|!(*i*n$GAb1j$3uKzbnof3(>?t`9zn)6+DRMSLmEuuF4)CQaF? zX?&MvYbK5Ml#|Li=F;qRY0jh}P1tTL4@?!SJ;4F6pKTe%dt>Yduk zj&TDQ+eKkf|8=Zo>@zCjm_-aRlNBn4qKW#y2|^VXI!GwhHK@;(7O~qRj*jI1HzLeX z6DAvd%AFN!w1oehQ_fw4*f5J?i|u0%LB=t0D_r>E?wu3Z30g26RR}{l);ktrAV0P- zz}+GSuKySKl3ihMob4D5h22T^0SeMqnvD8C>Irark-y{}8C+eQ7ZW`EYo`XdS|R5A zuXQW0P37_Z)Z}-(U2|S<)#QErpx(~sEwk6b(8j9N^$cMBB>=Y zXNX&{rXuqIBV&HUvAeZTL7%5d?%`m(>Lv3sLmq* zMD_WztP3Ckg;HIsjqZB9lmh&D6@Z{jZ|@XX%Judp-av18#XxKl5e7T3J+DFl6+A)S z3i)qS_Q|~Zhx9f@Z$IWOoqaYDHn2ekveyy?UgkI7|JiwDYEz~Mlzpz={*kv>oAcb3?Ji4aLa$K5fqlqfE`R={;=Aw&J$*fEeSFB{a;Ma?7kT_=fdN9Uw-| zQ*iE_=u*QJH*By!8Mn<3q{l6E=jVcj_7bhvP*qb_)W6S`-4GEhzSv@myOTJjc+^5G zg3zFaZYE?y%Ng#Zp7p_u|R!rI3G_vfs_CKUUc{>g^B2rL#XuL@>OTLAw`G z>|Xrl`+3T~RhjzrwoPx_c#GA#-OCaU!ize>6>B4n)?Q!K zkI41L&hW{l+x|6b`%hbb@u=nh2M#VySN@8lk_yRTad8V=3TvudOsTj@XX+ZwG+ZTX z^@O--&ccN=9pXoBdN~!1o5;5JOu|I)qyE4mE?mzs&xCj<9L1iq6H&&h^KHdgJxx_t z-Bwt2vHzZ0STYIm24Sm2TU!vGGGXATzhE7f#GfeROCGmrTf|Fr+PG;8@}ZTJbopN5 z%`7Z<>hL@DZaSmhM~ka)ATq6}ssN^%d9jGIJw}efu6xP*NO{#qN>8BqI-6K zmRsTpe@ON$5@=lfrIpA`@%_iip1BrFDYm@b_mUe|Cd~)03%30?+`@Y_tf2|N(z_r6%IFfV6x+au#t>N1} z3oT)rT!Y*bb(v&!E3n5UHFW#d6La6pmGi7bU}UDmMCX-N61+Sgs0)%c^7PN|!SI&J zak~r`Di=S;yoiy6o?52zftd>f%xiD2%ROHnarR7#VQ{P8=^=T(p z><=AIrDi!xLy5>kSVX6^*HBJY36Eu$un|ejKf8p^>=M>?6#V%mT$ELUO`s0h7yUCk z@}fTi3e!I782jfJ@?dr$nw%Zu{`^9&$u4BN3K{?B7xK33LXg`^brk*ig*^Xj(9j5i z0WUaPJGmGIj3IQ zTGrzCeL{W|D!P{*$X|9g3XEK+oYf6IhHKRizu&g;biLck!APS?8JHD1!_L{#u0xaI zo3u+cWs$|en^jAh$qL|n0kX;p(KS1?I;f@rpt!h94B{UnF<24DGr2CDr_JWd z(#eI6%Sw@J4Em(@3j>|neit+MG(FlXX_~D2sjU*G$qEZT^e25bj3P$d^>Ov2D0D%6 zk@=P5p2Q zNi~%UFLxCRK2wVcx(d%$kP0t%73TWhIi>v)Zux)Mfl=zmPvqmwH1#|K#Lyj*HB%J* za)1oo@r58N1I*AJ%Y fZn7`BLKCojR4ffrh+0X48Artl>{p-Xk#;h-~nU-;|QP zpUfMA{~j5-81=iWdcUI+Kc$bIWR${!v6JmNv6rGGe(Q?i=JAT5nm>>}bmbqo@yHZ7 zGrPd!PSAJsvJm4MDQmFiWh?9D?6SsXm-VE|GTD?4{?a3pmJLRRBCH`a1>fJ0Mq(OB2e9MrON}bCtB^XB365deZN` zu!I|^uw9x+fIh78tEa4afzZZ+vB7}vV!)dKqt(=IA<~8$m4T*dJ~V08j5hFJ|4`Pz zzv?(qTGlvi)$~9CQ3F4iJy`A81=>tH-6YBx_#rEBg&A|RLYa#rv#Bt<(2*GsZlY1A zP6PTL(Vh4eyIi5aS6f3@?vn6$)9@|hUk)vZgpZJQK~vbk;TEXvw>4qQy(zp-z?s7Q#`LXvSfQoSgjl zJ31JZEeHfLM@jME|H-5f{;?Un49%=7B$$ss=AtYYH})N2rG2aqDwI9t@Qga9mF9Fi z=)vZDeIo%)VirPR$@0P(lWbCcdNO(~ENPq86E&?5Pb?u{81wqA`;ds=t70cJGPj(? znLxSPXGmI13y0INmY4YpRGxZfj0J?)@L8x3;!h>DnI_X-tz=-4z%{0SDdLG872c3v zJW&)7bE5N2t%(_>^2Geo9=7`?WN(}|=OWfxmLN{x9L^?$mt8dkKQ`fyLy{j|F3-uFuEv&@%QEAkF*VC_|E=@7okF+=iPMr;~ zj39#kx+zLo5v01pQ`_`5)M}LGj4Wx%rNt)o6kmEQ?ZfS3?T~>o=#FoO>zHuljtr-| z5XBXW@^-qGHseHPHxk;D{kK1v7LIZ(FQp$!7D!Htq}?VXl`9=}4fl9XKx$fH{JbL{ zki6!cV@?iKg7DrLq{s@M@;`CGODP(B4y19Gz3TB2WJEmx4!$LRy>zvn@;^jkN#Pmt zFAc=2HrepOvfTNAu`K=BAI}l5n(DqE{v>-yda2se;K{tpfoH4tnGt}_6+n-TfEEMq zaz8O5huRfDwremA+3{^7kp1+lKz6c0w%Si7M}ce_rULUZc#6pa$$2T(%tuT7DiGwl z27>h7U4(I35`Pa!197(VrzsJ63fqCm18l6QyZ{3<3Zt0l9z3PZO7Xq*T)}4}SJBDaXSEmY2q7Vd`WX(#Agv7gdHi*zwus9KxTLx0r2th(BTV_ zeD|i7RiP!fLFE-}_qHgtRGX)kSD`RxES7?PIY`2ydVJ17WMtx91C08?=q#q*9{<3X zO$(#i+pt*mnizG@zR=1aBFmMyyl}){R;Z_!C|1=|hac68@qfH7yvPlD8?4sq6F<(M zGlW~ef~P#=9-TOVu62IoSiv9$%)Bk?7!ZAK-plB@bS{!xM+1g-(h`h9hNp$$H=Z~^ z;8CcnX%&(}-3iOAmrIQ%j7IjJ5Zee0r#ONHu;+gM0pzf(qlsx#IC0<4-%)%6s6Q>O z{wEM)Jp5}01usNZ5$(pXG5@w1qD7(~df*&-XQ=5lKCe{vr+3+V`wHcg!OzY_-xqQ;jIP=V*# z3_LMm4LoglP6yC`e-40}p_s&mB@{o?`)E{3D?;Ma+H@1y4CH%s0(LD`{A?Qx4AE2* z9XH0CdODYoV;ZhRU_I(zf^vm}gX!OE2sAm(xG3z2WaOaWg$PzMGN3n`sjc+jp#R}^ zu`DLI(l%lMJCV?g@}K)>!0=N*=td~LLOM&qLpUi&dnicj1Y}f~o;lyKCPoxAZT*%q zlv(`izvBA+#yuyk-zk5E^;`DE(bw<5sq6O#>Gj+9f3<$kx$3XGey`vEs_XY_aKsKD zvjv-3zdy5JX8rCZ=yNu>yMG3l3TxD+QjtvS4!x9qLELw zel>?*ZT;%jAnHE>4QK0D208o%64-Hf3yFlq+*6Xfel2p1k~xQfb8ImOOZbidbPOz^Lba|BKl|q|<}vR)c`-YB zHsGgm6D!Ui%rQe#8HQk47Q4?e4a>7)a=DR?f9d#he_461hKj5jTukLDF}Q3TVN@D3 zbK)s6_=7wt&E!*JaG!fpn%Yxh>at=4qDI6#3`!!9b2zf#M|W;)_TLUw$pIwm@Rx@7 zOA@eiI=QKDo7N-OB4KkaSWEHF^2P;bi@{i3Rh}8us4<%hUGgEfO4NSng4KGw3O6hm zk5{R$YP9;!$*FI2Mq5D9(O;bpPurh4qm^HqQ~pJx^~X9XLYq$Nak@@YKmG=>&*?bA z4aE}I#H(p#Jx72mqlr1i7z<+2;*qo%o_kGESG(5`y(CiH)tqyPm{%l4NiJP$I53W` zxH!z0Q8eXt1V^Ewyo>iG8pC1zgN5 zb!SoiPDiS=#Jh&Omrcs+Dq$?WxLe}VBB-AvzH}?A-OG~(7c;XMe{5%PwDzXINq$gYCyOT) z-Y(Q>pY$@f=iHihFDa|Y>v}zHIkOCl2}cUBs36$`SOp*x#DvdoV0pVgN3*DOdXt_V@;2$Is%mGe)T5xrmpOEcL*zpsLX_toDDe(Rd8{6sN zt#~1W>~WZ)+GID#l}LHQ2Bu8v^x>tYDFBr{e;$?r2tB``(7sUGcrzi^zWw=mnrLv) zF3^GLN_VYuAyEzD%56_;XM&X4p9)=I4&Of;_RiUyZ_edR=@OO8b1v%54yWf+_t7kW zw3K;f1$=)FyYe9i+A8pVk32Z>GN#eq*Ni=iTd5VEsRv8jvFOBbHXewv=qxmpidJ}U z6!S_MijbOT)}%FD&V7s9>WlJ#M^60=TDl2blIVh@wkXj>_3eEv6m(NiGd4QHwWM^H z9mf<3d%8*)satlG=lkDybGjz$uH%pW&-b_3`b)FwC!#_HbP6k_HxOnrC~|Ukq$aZ> zCuK*XYhaO6vLnlh6ijOkrWLs`-SMW}o@V+R@Ow+WE6Owc-cl2Wb@+fyfR$))Z!hJ| ze2q1iu_Vnb)LcB9eoA*x?M;e5Qw0nVh~jAy=+Z6^bq4PbHPKOZOBulg2N&e~zt0yQbB@ZTP5>(}AaSe52oQ z@z)R!W$$JDpnv?2N0GwMat)lG|LO7`vV2uRd4V7H!b%XBMrWk_y_T-P%Eupg+Ryr! z)0ID}ek}UGVQ+D{$0F&k>KjpzO;-Kh^nYI|_;0{I@c&o+Uplv_O#bKSVqewvk^c1; zSP%dADge7>llg7oHsK}zyKiJ|?G-D0U*{#s%e5EfCC5mAAEr#b^!6`DwlV?`6&Kk7=YhQ(dqfueH0t+CNglmzH&KpO(&f2m1SC1L;N%i zcb*B)?bF}F8r);O@%l=y9#yEJj{NR{P;+yOSJ<-`gq_l=lx+ZvX0TX=o^@=9978@S z>c79wR*97-%}+S_`snKo?AeAd&I(qz-52V^QGfRv=rR`++Vd~X7!3=$+@LPA(#?WX zxS>=zLx%eZu9>|eJ=a= ziEPXCevg8^BOoBybTk_ZU?)WUNFa+;K+DGAHxK8u%O7u^20g9jVDCl&K+B9!7Z}VuZGr-<4-HcI{G;JliX;-Ke`)kkP;@dp6 zASTz2Dfkl9W+M+#lyc$t<)C_Xfbg^Yoh{qzhJt6xN;QbK{dx6=?=X>FOv$|ciaO~3 zFq|3p(8?Z1TwXbml&zEaSumNOPfU6B`LNCA16*I`11ll2S#u(?Rbk+`EV4g7bprBA z3fD4U8oj<`zOz79as@S&G*eSaJ2jPjY|3bJD0>AlpPG$UX_Zg+X~m((md|Ece%TxH z{?nUQ_~n^VXyjY9e0O>O`Q@6vuELtar2czcy#hZ1lI#JU6Md>T+(aV{*OTrO( zdAgNmN>7Z~CG{>**8VWEUV?G@3I=#~6!}k|6-)wX2c0T2obmHh$Oa8YLFzV^QgXST(JU#i=c}MsEu*`F39G zNZ3E~m!ewA{qMi|x2Yp}R&xAO)$RWiLqhor4&MZeZDa)ie+dC}aVnurB*<1)B3bZ# zPS*FFEr{>TF(dvYG15Nvz}Mx=l8M)T<}qH~Kr;n*C2MUIm6}!EK6b0V*4mKjGpn@` zUQ&jz44SCZI_AX=7)KCl0j^rp+ux71mhGf<(_ftM?`msg19 zg8tZg1|;fFn#t_S=wK)9mMG0(pV zcgFL!k6ayCi#tmFXU{N5BRX(?GEc_#mM_Fkuj^^DwwSS_-v*0hUR0%L8?2zelpmWy zJYL>^`=3XtA{*d=uGQHxOv*XjD_wu@L58>Hb1IOT_WFAd5M-v!-x1RX|5wGqyiy2P z)PLE$+A`qg)s1B~uT)n2Qq|-)xbhbqS!Mm#c*!20uU?L;xc&4d^b+f&XzcHvZdUp3 zuNkq*7rR75l5LeQm<$g7-AAX4T+WzqC)C8s;axbGt?Vh{u~nwfj$9OL^FR*=C^fc7Z$cCuSrPs(f9gi`AJ6%1 z%1})d>&i1O!?bgOMlJE3O&XmWHy%wnJG-E#=1|Fa9h9-d#Zq5ZTM@r?0-JC{MSsJ| zmV_JLi%3Ux;t>rov}gYZ=on|b-Epj65fdq;I5a;HHaJR{0B^&*2|JX73cBSSUI8}z zl5X9nDJr9ia=qANriY0x|YO@Zhtd3-*cm8@fZ57KoIr--zWkiK&Jz z+!I=TkG<>;t=2viy6^{~)gCV$*ZLnH4=4kJYu6%PgQNi*;*NaLGtY3FYP+L<*CH++ zW$|_Z%mPus7)EK2&gCTy3js$}t~2*?vAOUIRg`Edjepqh>TxFCG<`8rm5!dD6-^{n zr!{9zT@=#LmkI3L6#%|SPk+uy7rdX*aeWD`dUAMKyjA=8O+6->LUzS_u`7;PY@<#l1+p-{J3hvr)F8X! zs|HA8cEwlyf;ZU}Uv-EV**N*4X70)6HRE5h`TPv6v58!=+Rf)xn#{CK4{wzwb9}Xa zy;Yja@zwhER%t57SL@d^i{o)KLG72J%%8AsF@XM64KgAAj6cTKP*EJSuVzJ@O_sNS zkjm^4>HQKM{EYvzUvsy&PQ7=GSXrY^b>>&crnACZ{pCl50*WQwfs%f=_ zv2wnlUAT6#X%?=Wyb|EZ^vIUqF!Gc?$$giRjgymnK1j0g^hy3MNV4YiNu~!$9z1=L z_XJ7yoIc68Aj#nAll=0q>(TJ(lk^5jCaf@^jMnLUf+VriC;6;Pq8&B|X0b(8z zN_p_~rA$&1jD6NuMmvgQy(ILem2)FUv8ifCh9`F6FX({yVVJV4mYh6HM||sd>gI54 zk4nkRvyX!pQa6{99c^@dP8%Cx4%YLHV*ske{t-?D;0ds<;fN9Z(CQD|#-4C)qMix* zOlszIr?|54G>R($3AT09_jBpvT4rz-ecUn8e>N{o|2F+e`nQeT$=XtmB&j53C+$)0 z9u@9UsYie9gn&#Iemc~<;^;9Zx}ySj##dGj67uFqEZ?2wrDi(2a$;h3W%bO~XuPhn zI#E}N!JBA&dga9U+{zo`ODZQN>niKWm&dbFPe1%w;4!@t;sDXQGYP+3%X;`#iw*2;JoM>lmq zi_9kuQ;3A&e5c4C$GVO~*8SobwO zpA4=0Czsb|lxr(BX&P3!Iml|dmQHLW2GGsrk;hb7$a@S`X~o@um>Flp0{THDCzUc5 z{Fk|AeTwixxNFTV{+qxTCv(^6@xmxY->>XjOJ9`up%Zl%n%D) z)h;INCy6;+rpB+V+(Zf7G~ZRZnHO4DLENKyon1Md;B5N9poP|bfR^H~^Wx)i77fy` z>q?2RX;WU+*9gF##JT6yPljgn@xB)teR}0&Y$)2wVUEd`f6461sJFeUzY#5$8T}+X zfVovZiBD>}%b^Q*-17es_dW1Y73bO;vcL*~vnf%dqH^1`avQ2BXt9en0X9KpVS)Uk z65zJz-BN97%__BkiJL$UCkIin(tEMR)>dvyE3Js(iW(#(5fGxLHdLswP20gl4VpsK z=zh=h&N-V+NT{~o_xt=wcFvrccjnB@JM+%_cbak8bGKh(j0eswgayw+n)Lt&88W+M z53EVl{!@Oodm)XT82|uf0ATTjj_J;;?S}SteIMfHcK!9iyG}=?;r@87QqnXD|^5)(YSZa`GG~tQ^R0Xgkd|jIja@J1_q0M zM^>S=J8J{-=AgSX3wrHpN@iuvLXRE$FAUU7FbzA=H|$fXJ7fX5n95!Z)^aXd?%yhS zmC`UK4~=5Hds}te6MHkZr1!u;gE6ZcHe$2>$lY+#^Hp(U&S48%qVZTw)<*PxQeD-n z#+KU zf6}X0|A37ZSrd&1_QpXB9a`o!OMBFT9q>Raj^yE(zQ05HkCGkAC%n>Y>La1QApCaw zUS5=n$aQ}<4JrF^KHt2-8WI?0RB=_so}(AF*xTOQ+O1VRwj~`tHR+}7cQNzc(Z;1I zqB9kl2JaWK_q{8RBU|oR#-+kNkhj+}lb0=I@<%dhhAFo$Wb*PQnd6vAb^8b&kz9bC@fqsXU)FmmZe zIVm$ktfS;k?v#ZBMN(N#e!sGsnG?|c-sn4YJ3rYH=0`YNN86M}KG=JSPM~I}H1~d@Q8> z%~rCBVbX#)%#Od!Y@fB)cx+Bq_7JnwZ+k0J^YOAJP`cf)zkq5Rth@rm8VK$-igDhi zm$n(jZTP)O8O3kn_tp+5SRoK535f4<-OLV~p;nSki}^If`U-q}9=yS7FiY#Q^CGEm znid5+x67KAHq$I^g8c(rfPxE=y?m*aQ(`=J*jm+Qd#m9p6LAS)6oLJa{FP?73k|#r zXY*#X*$6cv0DIxVK)Nw&&(*8&w%+oCNo|B+W7KIKu>yf9xOf_~8UZWMnx17mmXbQ% zYn9enX&YdNRM@dcal%Gmf8{E3f;yS-+FO_uzG;t+_N4`aT)8E1;+`no8|De+oM2yo zB;}~?<3df8Gj@V(A}u3DxGlIvVz;W4M6skY$^c6n8zQ2NhFZacu_$=QfXnFPPib2| z20qYj)Yv$jxylv_vXh`G$y=hARj~FL{s$HF_YeKB%dMqdZtbL3bu*_MFy|mplbHLuV1Jkl_DrVB)Ye}RR0NAH@bvx_CIcGOsG8L~v0Tv4907>Y zD9P#nt!E{}dWqi(s)@RGr++X3HU&Na3d}ydrxns&hDzG#>fL! zX^S~BwijNq{kbO6A%7sW-KhBkNDp8Z5DOeL;1>L43)9?At!fzkoY+V*s6%F*?byiEdsVS-(Wpw zmeyzI16zTrojk{*Ju|cKSZX}BA9x6Sw(?8x{r1#q3og!ys-5r~Z51{L-i23f$d!Pi zX7nh89GE9V@D!LC0N%or3sAL*Hh6^xjnH$}i`MypOz0^RTTAP~$H}v%3Bpc;Rq9be zSQify2$Mh->vY^35J&ssUNU;dZtWNl_gamrONe`gZI~o$RTsPfTU2yOzp0a$*D(!) z7-%wT_Grw@Pr|%>cQx)l7TitD``-J+yxqjS-P$64poNH$%GWEJOETFCA1fR%=QPqw zy+%G4^1mfRJ`+xB$eo1T52p#)#c3Dp{`Y!2Y!}uMe?VU05C~xe21cPit_bFIi^#4K zA?YxBGXq#L@L-JSLPiMcxq%@Re$CnsAN0o= zunfF>$a1jLwp&;c-V|)z@Sj;m)?zE26GOxk&B(~}K*mPpzfdFN<$`?&%|d^mu-ULb zjYnW_BhS(e)_%wV=nHM1oT90{M`*MO(Ux(CmcauenyYYV5)I)YLk`cIx|4B%&A%*xLN=KEIt zTi`bD%CUjl(pH^I;wm3#w9iKWz-q+;PD5ycNw{MB4Ps3uFl`#DCmln5u*$E)S7N^Z z-=2J(17aUeKEXaX4afXqe<=h>g;ByEx)QS7<7I5brAvkoPI8#;$%P{ z|MbI%^qzi4j|GqNb4LoSqx{mNlRo+BXYB>AfTv%}NC=F&c^>Km&_D7(4pC$@E~RF) z1!qtoh%N9UG6ABXwbHOD3Vzfa=eeivynd~pK7r>Q&;X+wf6#IyX z5(HF#AlPcyZ{v}iY|wu&K5fi~+#uMTJ=}Qg`Ya+C3D`E|SfC&?0>Pt({YzBP@ytQ5 zLVph@p3tklDOJQnH#wt*T& zu8AlmA&|^Dp1`>)KNBeSt-2_1hj-<9fjiRhQKT^i*Fa{br9jN);F@n5kxe7h|BK_R z7iXclROgM|+L?lm>gBEJOha4}TKE!B-jEMOg?yAl%!e(pD{#oDd7r$UC~2wzDM)oJ zsJN~kf0v70ab2lNXI`V4Zv065km*CO;WpH}VqM4!k|B%Fn1RrU$di07;z-1tnN*^8 zh(UbT>A-v5N$R$s1BCRT2M24SNq7Ez-T9_~u`(+#$G7TYtl&VtcjdW({Ipe{k{QRj zl~#@0ERH42cilXwkzr>o3ahW*it{Pd##zM-+*(E@Gu!ASYHmiAA_mz~KP|()8kRmso5L zfCRJ8XF;G0h(%oO1Z9$lMY-Y~6{68kMEOq#bwaqdDIL#+*}2TV*vj`If=c#YYYqt1 zquGaeOY6y=7Rlb18tnSPsrPK}6;`1N?88mVo(j^S+W^odotDU+Cnd>~o~KfGU##oq4;!TqkfC1JaAbEysc_{MIP~ ztA*d%^3NP;t1|E%&aiMFLd)q;yrbB4Qdg4y73rH#`RkNcX;piY~f_?<9 zBXX4{ALoHlEEMFSPigd=An18e4oy&y7YcgPBd`#WK+&i_8y@sE4LQW6AzK5aA^*su zak_9}+*1vNqul3!vf#e(R=xgm;^6eK6~d{;Sy`XXjPH1@^AQ8ux;_nf32Z#XbF;xg z%5E1aJ5#YobOmte`^jA)M$UAw(FFSK2VX`gPO@pT-^J1ujKrK7wl@hYK~w@S^W?0mk^Hc88xpG$x6BGrYDh((_PZh zU3kxS5F4C@CnwW0ni+EXHAp~_$01Z+V}*E7!(s-^Ifu+phjVvxA>VWwIiEl)_!;P zp=`bNUIFEy!VE4D`1C%CHDY@&Mz8_nvDsOHFCjpW5o)m0DxhBMUeRv88Ao7LU(t99 z=3=nTVM00LiiVpQD97;$$`MTg%|K5!8#SHD#G`xuP2~B9?z;SvCh$v$U`^^)LnBy< zU{te^pdbg|(ez^z=to$&?$4f$yJ5Gi>b=>+fL;(+q~?N%Q~}5e?VTt+=~WzmKr39$ z^sTIvR}I;lZ|%5xG45w%&0G1np9%kjyl)6?^TD({U{9_F(pU$w=R{J0EX1Ae?EIzH zU12+;0&h|w3L7EE6pkp&DM{%6zsFR9a!eu?RqX8)qiVk34z68o&b6zTV(gk8z&O-= zr0-k z99>usCd2xKcP_~Gti8f^lxvq7;M(Qfxxi}!jt!u{cRPt2>#&yb)Uwc=4AZo832De0;RyVqCWUTl>i5M1aJOC zOd;MV-k*3h?K?B>^bCkQ{$AV>?!>@UUO(z>Kq_x=e&9f8(JE-MLeK)M3a5(S-55$8 zj2MrXKb}EOC?w z$<~>4MRUN?F)2NHx?uPIB?+v)IFR@%kKBUL;_t*MH=ufPt zV5Kdvioy^)ndjQ#z7M#e1!_kDDc#z3O{^@x&yAu^;4K{t!Iz@kGEiOpGL;sOEGG$ z<|%%g7dmK0%@>faMe7%X5Dx4!YA(ccY!z%VDuqV`H?#P1qk0&!aWk_&V)t{rSnSpB zB8eJyJARjysn=dXbFSL{9^}QN6RZ$ySYeW5!a)el5XK|hqekVt&8;Gs@xM@818aCJ zRQj=OtyD8V3|@knUtrx)U_5q57=uT)Jv`PjwZuv>K~Us+!Q0A@SV06Tzhzx8t2%$V zweQrQj17BE9U0j;SEc^JfcEnfY{|?ofrDFrSiL#|8xI}M(B|XweT^J0=rwW}4_*|5^%<5WCedi+i}KP><5au0KU^%iqx zzSEntt(7@9x8d(|6bJyG-x&R?=$M5S*}Gr4TEDoy z!AX)CEC+|n6tvQ=#pV_vrkWkxWUktXewz<*V=~1xWP|u91wrUgbQar_l%GLKrXhq!=k}df_nEY_8 z`#j^G6Brl^?}y<%2cnAGTdZy>LKAN?#o?nZS+IwkMnzNX^P9q|We%d9I8H_Td4S?3 z6pvy=H!4)ZTs4MkF=m1+Xkns9h*pU+KPVKbvZ!x2t zT%TjPKK=ZIn9c2DobNw6HFJIZ$6ller74rRTVD zL^hzXvjwsQovE7Q2~WM{f#OvYc1Y}7mDG;WE8MBBl$sW!SL!to^EGO)6Do{v$4DnmERT#%{En3cI_fabH(w;Ar|u#UkwQ=u6I;-hS4;?DjMEbQsWvmR+g=I88O6DSqDK zzFn$FR4c!0xhFa?Cc%7C$}VyGWCyp0)%Tzo4F0o*6jr+h)OJ;d-`LYr(3q#}{)E%i z_!9-lp;!W{EkXKzq(jj*+`z)>$FP#Zu-kSw9#tD0mO5{ooKM%qsWtp>`q3GHQEbj8 z0QKY9P!i52_{4%`oJSuh_WS!~ZtF-te3Qb=lw|3uJ2p^e$O1)u@58z7m?N!@FPDot@T zi&ZK$SJhxuH=~cFF+e}DKy(AdGXlYs*Y%0l8_d#bv#`dDR)Tsxs;g|^BDSko2$jPq zVOMdOtkR9v0RZ2@7k~r!C?*RAl`GY+5NuReWeMv5Ub327My<#D^6xFjZc6a%;%Q~d zhO3!SWNaU*Dsar8AWKLyeIU)yEy>HH{hPT2FZFa=f^ufChAaj8iQS-k1XB)i5KFap z>;={Qk*_J@AgFUvMMKtE37Nl3O!_ZpL04Sk%Mj*b5&svml1QiBP43#4Bb?_eSSWMD zVrYCl#CKM10ZcfCS*v|Btwm|6@25g)mlj)_ zJ#5bQ*=b`Io3qnsyGIxhW=FE0%MPWb3`>~}yD%r)Y%e;`U88|H>uQny)4HepBGMO*KgD5zhO&j4w7uP{zV-(pZDVo&>IqiEE|Q0* zj?cGRCe;O=D;uin@p``cp)O=z3j=pZjA+t?fCr=Dy5GEZF^%4t)1ci&Am_B(j2MDojeenffFm6$TM2`3s*I#P5j2?^qhyAsH_tgWKw^@P_~P)Ry3nF=J0S(kL%?;$^IUvUSLHCiMiG zk#&^pJHQ$LSjP;p?@Wu`<@H2A1ua?ivlr26u_xuN!J3n46_2y>!5)QX)9!{Kbwxc8 zDmMhXXx9OOnkthTU9jjVK@YS=N3cU1bj&;i6zbtVRjb3-@nReuhv44&lAxY``<=KLJ?r!TpzJMs zt^9E_aVu+$bzf<$rP()WV`v2NI%`z^92xWBG7qDzfs@zjQSS`b<)9!$!Mt33CxgN7 zTt`sx$0!!-_VTLOrN;c;xhf_DIer(4=*CtO0IEkn?*b^hiIoqr@++?lP`Nz_vc#Wg z;5WLA6>M7u=2oNnLnA)Uu|q!>KITCYqpOYT{43su;r3Ci5{QZ8=Cv3c^|QB}>*|e* z>11!_0X;5ye<(ek57vb<1-1TRYm)5?v46xmN_yvmjA!UgL7BZ4nodR5cc7@y%nLx_ zHYnqn)WqA3%kHXkwW0JPO~?O!zch%Q7^Xq{&nK!u|bKK0WhpXlj^Jw-u(qW>{S8e!|*2EM{h%&NxZOIo#v|TX0-n5 zRlAM#|HC;5ZL@=Q;9@j8yHz||tLLFOtg3TCQ@XbX?^Dn?G}E3!!{<`Tp?6;fHwv0! zygG#H2HLgdm6sJSv1Vpw!=>8Pr>vZ@R*^S#bT$y}+En;(od<1{4t37YfElZ{=flt$ z9SxwDH6lcc)wJnf2WC&SqVlMR?&pO>WP#-%~?G$ z00)WDdb6+&LUQPStv-tiG&z&ORK_{{o)xM!gP4=82&RY^xHFlnwt~jk5mpO?x3UAa z5v3NEln*lxmfAg7?pzPA8kI-b_H8}(^d6}3*;5~{I%!nyMjrXS)|?*uuAbS0%}>?I z=rO2P9=B0kO?e>;+yexq21gn zSl7Z9-);P8Z~5yV+G9(xHasJaOnSb$boUi?5aaBIvD4jqf>_^YpX*q!tt4E*Q3#RbNy+fkj?c~AMRlXGU z@!)xYJq&f&xhXGp$LfZs?uoT_gUeUBius-Fry1?S_o#ExTk-7&;IwzBTOEMm!Kv)m zzz80uw=vT@$r?S_x`O-u6Iu>3#@_sr66d^MVZ zI<%d(7Ax39dPoCy6wo2~)|SEAkZna-rOLWK&GJqOct=uj4=Lyab-rLc7g_-rK#UJ9 z`JTo_W?hgx?VGIcOjs6Hqo3uJ3Boa8ysnY?fP&7 zr?Bbk`mh%(F@%Sbw>yxavq?CD%y032;XNC2nmy7iA3wn9dVTWG!uKt|W z@Pl4T`M>aDzADqNKQX0@_8fnB)`>_)tkwhme~&796eKYYGT+s!eXA$q>QNk-z<1W< zTJ-g*pdQ12l51RpVeO;Ai+FVJp@t`e$oibyoN2QJN5|tB!5;QF^JZFEOA_e zW(-MqU7C@;hF+JZ;^*UfUAon2_p@lXmUvCCOD%uLbq>owTrM@FPOO9+r)yra<0b3h z$8)`;9WEIg>#E^^2|Al8pnk7^lZ+)e6ppRR^tk?){H8cw0>9aek-P*}RL4jus&4=n z=uGL)V5QNSlJ$0Hy!!!#-nvSPjM8fVt#SVf6IXG}ul<0_t~v?jwJ>qs}F0 zKUx3RU-N&d|1@v;B>g|TZ~vcsHmUz}W2@45uo*RvV`@b}R6`neS&91VZfBp29bn|I zl@M7rXopiIkCPb%a7+cKJJ?I$#?(5jhJKE0(=_O0QScM=Hw>SQ{RHA4mjQmDKYzSo z_;Qp0*z;h{V7-jj{@D8|(UJ6c4pN183*Znb|7$T(6Sc2}%-9Dh?HB5N=bAGBsWa&1 zPp{WAeg9Mc?Dv26lYjrV|4-jv(NT`s?nOb)TWBog)wsga$9onv+szPERmb5XSV>7s zsM^|(P-Erl3nzdVSM^^EMe2b%3Me27#T|ZALy%UlxJ7T_k3}z4Rzb>GYeq^Ylxd;6 zYX%>Ic5U|X*s2X+KEUELxVdi~Tsi7d$fPwW-|e1^fYtkgbt!nUd0(&@yuslO!4`t& z6;EsOlGNru`UE>|wbqzd=(eR{>=>0IM1lFu!@&l0*&L5`cJi##`Dp_15*I z|2Nu&8=N2_?yb|6RVBm|Sx@s6p)@*8CJ4@p(vijC1^^D~VB2GCRkg=hPpj(w1D@yI z#UqfI9*+(_;JebC0iQGYfZMfw2i&N<7@)CJBnPh(2W)z~I8JY^hzH;dbM={q`79Kb zLBet!XQj-ev~tjK>UoOeRFgbT$C*{Q5j)#CeWL00ivGB^-Ib2HD_=GQR@qR;Wr!8W zm8HzTFoHOh67zkVIZ==&u`0Ghwg)(Q4DQAjF;=_|;x&`ZS(7$L?I%5X6<2H@1RS7(BM{cacJCWnS zgqtr2Hql#pOxL~CeMH&N7WC4rl5Rj+QkumN7I{$ip7~lhW7?D@VRpyCgMfTCLQkhx zQChYFYrtPLk1m9s;FyEtvpETK)jL?Wa9l)7Bw;@O8FSD11ZxhfeK)BfKXyKxhw%0Q zuVgcPK5K@L46anTN7T@)CkU&^9HHo64$yRe=Cdoe_ z0+!kiDUI%}m79he@dJCR>gJk1&u;5^PA`Og-8UcLdc&JiSc!a7Rv3Wv zsn6BQs3_@$V$#>GQuA?PlBq**4!eqDgaDSDQq@xZuG{}>IAm@Vl=PjaV<_m&0nTeX zR4IpbF_Z$-)k6SdItHBj?lR_9Pj%?GGTa#VdbRa+Yy^(${`2Eeu#(2bqhsUI@z{>c zi3;0G+#KG1j*hjMJkar-6nj^ywO$!zq%Qmd+6po%2t8)ZB!?;t3$1UKr14PdKPD_D z<055caHIlKrQK2sr=gyXqv1Zod6d;!Swj@vmD&Mb7Y8y}2@xY?_3Hk$7)12wgOsEZ zJiMd-2x9zz7;u1zjmyd2>fgm=%nNg0+KYxW5bVbG{s85na2<{p!o~JjZ5*gogwP(EVweZ3C~I8;`dFA#Arh)D z8`N@cS~jajGvl{I7b8u>fDduGC$Ybv&1Lc+%zE=ROkF3D1w6=6M7ZK5)**4A`klXZ zBI+$Km-Y|007KyJMt;&$k=o9Tbi@huudUO`an{;qq~cE=#b4kXu+Ql0HuWGV5$(hI z)QP{tdFt9$l(Y`rY_4I#*tzyk_^B30s@7V{NlfvjYOSR>$rJ}9mbgnb#bb%JmdBeZ zu3%7^H_mEtf1+9-Po9sPZ1^24ukSbEg>`72dZ!f^(`WU?G}BtkJEh{cL-~nQe>kd0 zXF>ua(YZ}JBP2;cBzgu*&r4gRF8z%xP_f=;(TC@&2tN9I)ww) z{7lf3hzerO@y5U74TCm^R3!DVb$Pr+^k zQbB-pz(Paes2|v0>?`kf#^X^C+P?U9)}*Te~Q&zH?Bgsxvp@=wj>LMeY|w zYNcz>0AuB&{q9F!fPzIuk%N8u@gR!PTofHVgJag$?}tcy5QnFQ8Um!I>izY}{6+4s z*u;I%IZ&NsIt-xCn5-vIy8+z1g!bmagSFvL^?SymN_xL+ta|+yLR4deocs^{oi0S} zzWz@8c>j0kYkDe6+LD5FU4&SDIE%#7m?@fYwy3;?i|10gvD&oDNHGA>pIC^5`82g0 z8>9%37?r zZpCOf*hR4o$|HV7GfQnN5&a3tq#}k^+V46R?4qUQ=$%yB@1mt7oIB9ibwEos(NV-} zt!PNCe;2?DPxJx+>pJ%IN)Fo~pdg6pHfmNwgAq;zt8d3I+C6AJz@fHeEKmL6W@B|7 zw6Q@jrWCfOgxXRHVa8Gp(Tau)0YvmN1op_*`j@!-Q9RcK@f-+JD^wkxul~379S|YYoVuXY9Pykx4?eaNTO<|mj`C(A&V)|i4Ie&1BPii-eSMs--t$aM5Qkyf82J{QX0l@6_RQ7r$7!|e<$Z9I0AK|;)_~)f*qNR9|t6n&kor<6g>v~u>2X(b# z;Lzw1NM>ybj1H-%scrj%E!h~asxUu6uAdE6Gm&OD8mbDA5{(rJEUcdW6#&cYum+<( zd{8S1y6sDRb;V*fp{P}#LlBJS^c~88&L` z1&{2~;+ngyHP&0Ln`Ebcb0GhS1ls*&w&TB`ZNwK0?9;Tmn@IXtDYU?ACj~ zgc8nwz=hG=B0VbD2sjUO!|E;EufRrbpAIdnFI#dOVb`42tXGW3qOD;|E~2SV@HV8I zLU5*+-C#cDnXVIa?K1~v@`KO=vq0}&Zbd&T!ruq>9r#NH z`9I_zg=NZy2w8z)kxlt7B%0v)q3hGqQt^y|^q~#4$bkP=QCUyi7pw|W;Hh;ZD@bwE z?^gwh7Kjil4tQ`Dl-aqAhqgx|sFmN}UjZW14 z3Ea(IML)f+f~|k)ZvMr^NctGKn>~#V+nz$A{ffF?L6OWK{aK!92=WR5l04ZH=Z6PD zfIw5yb9J!CsFbUNM&wD)1C`;IGdkhw*%PQq2TLsBvGouLd93j8UjWO8uzK&W@%U3X zkv;97AFOPeTlNJ+s(%VQmWLzG-{Jl@ohm|0wzc#W9Wb3krNDDex;a1y0laK9_++hFY{jQ{d-p ze>0AND(w>>RRjqMT-1Sn+l{0Q@;QN#2@j&6iEveiL0)=V7Oc6x&43HxH0MfaR92vP z>{+g>TxO2Yk+iXxk!Msv@lG=v*X4T-tiVT@-?U5c}KU)j9iVsW3$@FyKj3d zJG!(2(y0S80&X_wjf9KHaIT(->zlrB3M~hcG?EE&uvm4k#hI8_09D;^#3wm_MGpOY zC4z(grJ6*ob7ytuj=y^SJ0xzT6U>QXwe>W3-|r9afiuFJ+)I4&GCXK_rPst;U(^-1 zeuv?e4kCU)JUsDC=5rW9^IQxko#la%>kMP?Ad+x|tFGe=^_9H}n-Z%&N&9W6sJ>D5 zx?rCxd!;U6&yV}Cbhy6RR2r5S=4cP)n3vYkxv#PA5t(a=fs+(*XFYNu+8ntBaL7rC z9gc&?1y#mAk#!Eiq%8v_J?cwmX_Gbx#d;csb>U)z?-1|45?m**07!E#`fmN+m01c3 zQDS)#OPCVNNhsn(UY`<+r$il%Yca^6KCZ|$|7rQdaCMv2SGSo*L&czaPnmNDihaX$;g8CGvRimA!hvc!_F^<38H zK8E@g9W|JT-X)7O3-={)xCI>J_=f5j_G><*lRL=#z}jpGHgfVXi3jOpl z(QsxQ4`CAr`w-U@nlIFb)udTK$<-4)M%54To=d7$c7i^!6`PI)n|Kdd^FO>sH1Qq+ z6KpsTjAGjw@G3&DrW!;l+!qaVC;}JGwMlS577TI^sY?Yl%-Di0=J4YivD-o|$|`Jh zh%AQ?v~n}EbHU5(0^2e>Hv<<%&>x_#EJ$Q{I|;U?hze&)VH-a9D121n?(vMcmw-t_ zsKw#-K5tZBffoAU;&JV)j|LhPxX=YlGt?-cNoh}?YQpPbXa_(dewxutOhw4F=*6ZX zx?4tN8%DD)v;)XdS-+_VBU7{?52-Jn4OjpA)|0lI_lJWR`fQp6HD*&QeH(g2{_-9; zSros=Gy3X6s;lmO6YO|+pmePBLM=3i=-qm1W$P(YKYWQDtb;JAn710OCRwkZ{0pvN zy8V^Uu>E=*>%iH8PH?S~=3q0AXkfEw;^J6V)o!>Ix&SnRL7Hgk@CSZ44W~|5X{kO!TJ6#8nfv0 z*FAhEtl{CCU9SCOJ07rI1CJyh*fXSDD$402zNeI&H8rGyRDk9=53^E=sY^GbNSJPi z)n8D0!2J;G2Qq<4&(rjz6=;w!40d)*?ysPY2M(ob?3_Iop;Vz|>I6|mP}PP!9Y^)` zkE&;nMS-b^rYZ#{1IHjyM_kn@M7MGln2G`g2&*auX6XV5uo_MjC}?owtMVmEm!T*^ ztfF>;|fLMsTeHOaR|G4kcWp;r%LU>SO~1A2Uc z3S49u5Oe;+ipqTwdKDadBYn*lywG6`b<8+_&N$@O>D-A(@|u7GIY_qZWEifg(uLD4 zI%*NNplW^~e81Q=e2PaO{O2NT-Ux4b)I=Qf(>JM!NLc1I?6P`ulfYkm{7bl4y9c1& zFI;|LnthuWSMxdlOD2cd#}F$(*De@30pUY%jjWqG%-Gpz#W)p=i`&X&gl%R zD=uWiKKpjRuFbK@>!e=pQ%O{-v^Tc*aMi*Q_Jc|LQfke*m6Z3_&mi1&Nm$ ze`6hGeZG&^f>Glze8M*#4O6-y#?BWjUPlPz_?|!cM>dUo5mzB&C&FkC;DqJ5{x0;= zgEfN`d?V9!5azn&OAl@ss4Thw0aI_GjVJ`V3QqpsxR^d$ewXvePk>x~`^XCDB#B<0 z4x2EVuqzF29;gB96ZG0~=-Jzw0lU2CjZAAc%@9X?;*MLh5#3s_>u1xrU6@e`X&KX&m zsR%XY&$|UL5*{)l%iMVmi(h25HfLx=6t4NPP_UO1w}yK%Wda$Z$ssmGs!^FS^EQ zsJ2f-mpBcD&+tXF+*YK`neLOcIYU1sH`Ls$zo@xSL(d?WAF$*M4LO$2Gj!mXl0FS3 zh-j`B{YBq!8tUmm9C)oOfF)AsG_<_`(Dhr3rw!H&9igVrveXR?aT;nl_E1to9WQgS zPIeZn%g+W17A?yRTUWr9OOY?xj-i&+M-stN+W|r(=^6Mb_(kiIJG|B_P&YpH(zNV- zu|K8S>&Vv#G~RyRGH--Q=*{1HA6O(The9Zl`i{I<23J{YSi;Qrs%5aK142{xwLZ;U zQ;BSQI#_huuUZ2I8Pb78%RFkww>q_fxGM;82&STCWr)K(+6Ig!su8_Z_VtD#62$(i z2x33Yhw7e&X=(b0B(|qvNVm{xnyyZthS1(lEM~+m@UN*u5hH!tWF&>IPM`kXtmAf1g>1Kh}tVFZwCCz@rK5Ti)B=-ku_(d_`UI zVC(%*6UUK_=oOS>4&Z9_=xs1xIvH#5-Mk_G#iGbIyqT}={!T|c&%O(z(y!t^WoT5e+KL;*j7`AM?KT^7G#B+8iscQ?ZWn) zuuA(mgn6)q007vX9fD|&EYhofoy;OV!r66bWPYEkAJH^4ng13U@V;4_Go#OXM*WHo zUf+5@8Tx+0e-kw-$Q48i-4LW6nQJL;;z;Fd_P4vq2UwiQFu6Ltab>K%} zEJ2_L<*CE!k3%4L@TY>)V~2K}Y5`vXjqZR~Tt9y6aqXBs4%d!gGwBI1g}_`oMWH}{ z_R^yP%vq4`Y5IO9sx|4}LKzGXjq8G}Uf8BJ8$znG?z^MWvU=r`jySwJLbrIU5glcV z^C9)^FJmglIL_l(s_qN)olxed2o?ft%IMYDD>1`hYvM!qtb$dh<9#YthY~2JdeV_8 zvVQcxD8bZ{@ldak-Q^C=X^aw=YX!$2!m@r>2=f|o6s)gIjt7Tt4^+$WoSh1}bizh zy{K;pt1mu^@ueK1&b&yyj}?BS6G$F^1y_(k9+xzsKtn>UEk_tisNGbUp97YqtPDz-5phS0mHmP^_)f@AzY_CV<8Xc==SKmN5l^ppJf*VgMN{v^-Wy0!d-YWa}(lbispK|9b8+v_>27-oB) z408vb>>qaFFXoO9>(;)7ztwB_H(8N3{v>BaYsU@*Smthu2Fi)jb4QPlGIyMc#N54C znKXA|OVg-qw3j@0%D zFPhjjeB#{w9y1Z)!%qlQ)mKT!WbQCuuKn_R@G7~g#~g0olZDl1#k^dDYx&oT`6SK1 zRxC}@{AwNyGbH%zTQ(QxF3r=$C zgYS)XOeP8Wp8n1T=_p$9G_1`;<2p4qks9Zu)Nj}+{SA*wQaZm`lG5vYkp%HBLC7I= z5Bfov!2o#K5Z-fJliy@8hjtHIKA+Cu7~jl+3R^2q%y5`*JJdT91)S&!@Sq(Jw$viR zStPL_)^Y*>ly*E?Acku9a3=JPAR*59{CbIxJajTRbap7?NU7hr46#UHLmJG$Ry*5{ zBIQHskdcQb;HnXdFqb*Oh#@6m8_I3N$aDSvx5^dqGS52$}Fdm0k!HrROQjw&=Toj3JI}Un$P}H5C77btDME zH80}xhaeon(C>kOh|`my?%(egy9x2R>QJl==k~kC=l7v659-NTgxT_AK*sMk#)CRq z1m@x*XioUijm!4jJ_3M##DeXpmi{PH5>f>Lcy-4`>TXr&o<4VaPs2$)WjA#fgZ@Mx z-+sQgkLVox$j%WwdU6w|HmP^$*`ntX9b+NgFVIl*$-U#|lnidh8No$bhd$%6?~xttd<|?|(x-BJO9po8KKayMEsP|&ZKQQLL9vQD zOhtEa=R}7pLrgM?tjnPta;3dq3j7Mj4fc9z_9v3$D5y=6-v zZ`?17t!H@Df?~bWX=*9!=nq&RNr5z5k^*TulEvx)4ar_lI!@j7?BCHm$qH45ByOvr zU-kM~NZ%&xKN3d0M@XW5p4>_8x4|~TY5#~MrTs&al=k-`S**@>+b1oe;?J;sp6;p( zNwojMFMHd+_ZNexFv%N*PP{qvSmF z(|im5NQ$jt^iK|p7pujZml=PFTD(UP*Cr=3j#!LL_qYYRbpez;Qrb;d5lBIbjTCe$ zW9=TJ^79y>SbK_5`4B!3i83CDSPTh!qP_4O)BHVLZ8~|ifdN(pYJk)~q}I%JbcDq3 zJg_ovasb<}pFtYZ^QIVcly+O8cw-+4j*w|Mpj(4ZlO_r?q=UUBAJ= zz)U*XJ2bvX-F(Ocn>RupIA=3gWPf>}*wfJjL;Yy0tXLQT;xjAh69i_=@N5WGu+ofW z*h0p#UmyYWPX>R~i0!y0fMGA{g+c!^Sk*M7@QT+^(Z~Y$@8*VzgOXV0F)Nyof?*}5 zqM{i|7&za!BpKFZ`%GasUyGr)Z&gE{@UFIpllfj%&yTmBRk!PCx^P)S>_FBzNf~u0iG( zVYZmG^*w%9V(Z%~N!c(SlB8@H_aRxN+E!?E4Q9e#CgDn8-%9kRa4fiuX^tNR^*FPf zy>_p@!(D*&1k7^oa7NWdIO5a+40qB!uJ*f9=J*i2<5dp(LGOGX{#o*Tj*$6;DytP8 zYn5hlKF9HE`%bI+(y!e4RIGc5QANC`j$`@F4Z-phsFca&bYJjpPdI+L zHVF!=pWX=zZ5G07o~&W*1Uo)aE69aaB?`bBFcft0sthAY<#`=#+arWUE6QyWWaLd_+4eZ05=i{Sy9A<+lQO~gj+14TWFH^&Q*5xZ-u zCt3`d;}lSr6G6c(ONn*(t$NrrxIr}ztb{$cc<_ek$2tfWr`ihcBdFx#L~y!Fq+*;^ z56{pZ^$*}~TGEA{%X6S2vc&_Ugza#2`qb59FbH(%ZE$C-hy&$j2TBh#S1I)xH zt-u;D!%+1`5zwAH$~h_+xVffZTfa02SDLvTD>KvBnLjIxQPLk1zhh!p-9Ra>^F3qr z_q6atkq+Ri(A>q22bT79M<@8DvQN2glBVJqe~7Ylj;Hc4)6ScU1OTzjI1m^%e;a=cdVRFi70 zu&Tq|3YTxHWG)z*dEyr+UXq)`H+1)~{#z*0QgO18_tC*rc)Re<*ohl9BCWk`_l2+H#TRtH{a0#Z3io>^a1?YOpv-0L zT*K>4Dj+RvF?QDS!PvRsb@^GNe|GqEkyONq8-F0R5Z}##*b4^+EP$uIsWhEf_(Cc} z-=>%1%Dw<^EBH3n3eD05xIQO_s!{Iy3ouaWp*CauK@II?{2*)LD}-Z=2jgbpTgbxO z-ioZz9P9SoHWbsT**eZ7zo7*uIX=NkWC4wnTOX`g?cCWw##DKlw!1e3R zO}aNX_3h1H(T&1R{9*h{f0U#2H~ga!e@hMq`2`5u@Y9ST#ON--8ZN=oEWz_aY%2>w zNR%MqFT@g{JB9_|gOxNPgIiq*_JW02{(9fzm5DhE3Q-BW9-i>dkI-=Ap$}7ne+ysa zi=!+8gek$(B9tiMeu_;s5QM+w71;MtN#=g>A{N4_g$ie{_~|1aY!|4r7|mn9I|Bb} ziA@{(H9QUQ>^z}5|69mgZ2SnV+NkdR3r>>3HG4D>m0W*&-}))AW&1ewV;xhp$lZk5 z!5Da>fWzvlm!fdp-aZn>iT0i1Nub-B4tpkeV!X{8Uk=uAGb8<2!|YHKFF5dB(F}4L zzAIpF=(w!_v|v-%%+190{hYp@D`p&g#PM^{NJ9g!c&>2E!?r=nFSSPD*5a|wrp7Rw zfm@UBwMKa$FbJ&oBHy^@-*EoG>{Zpy29*o5+QZ?9{~oxEsPjF;4$VM%*(kN__kWK+ z>}9nzy4v+ptw&X$T4WXqL8nzc5+e0D);bIi3I)i6Y6^&{U|U$d-~9J@q>Qj|1h=UR z=CiRLG-d_cXxbWS)yr$U$bJfzEQdcH5x6x^iqpHGc9oyUC zw5QZB;7AnSJ)}J)?Rn0^=M9N8>-H?RmzLDtGHI_<{TNNq?*~TZD2hgMSS>ZurK=UN znm?&pI^wp`wfi?%E#y;Q!*8U=>4r~bp&OC08}umn)Y*81m9Uuh27QqUcmezJFf)7H z%pA#lwQpvLWbW&mxm+@T-8XZCWNz-8xm_~XI+^t|-L@Jf|67tTK0Y8ch$zYYiY{#7 z7{F|SKN3UWCZy)hjr5=Z3Wn8Hy{)hS4VFY9`I_9O_) z8*bqG=vLG58`&(t_~-?^$o9nJ z-=#AL{dVEh7X<3IO78v0r4O7mFs6!C70bYHOE{7x&r$ao zIa|R?Dpp@ZPON?gKgf4IhqOa^XhG3rQ}zsR{8BxE%Mu@n&h`f?2Wh& z*2#0Ts>QFvaY2Ln#t5QwltQh zA0tH(Ng6(KGBP4LuRnse{7AyB=+JTa-8Xb1pVXtQJ_Sj2E2~ds>T5_v>g4lvp$Eae z(w)h0y7xJDf?Kc3b-TwWbZ;f!v_1L@&#nT($|w91rbZF|LZ(u6_v+R?>Dg6=j7Z5> zYtf-FlI-3R{O%jNoKMQf>MM{`hnQN)R6SDoI;p-98Ii8T{5q+C>gCAVH*^F3rl{xh zP-zn@-NWjenW{o6;*r7Eg?54OroRP&a%Avp5yUCN6GDAWaxnOO!q@$dZ#bH}b`aLr z3BQ)9%LsorQ=cXL9D%0t_;Ub7_=mBMOi|H*t%LmSSq*{lR# z3HoF3YUF_MN7|C8q(=Jda)H1%w*~@nMIXw?@`CK?{wYbIu0XXWVV;GND{4O6gKVv! zVcc`Qj~ld4{TvQLB2!J-`6KoC4Xa|JS{9Ot{3gl&GV@t9k*_5Gl0^BLc;+GHTSqts z^O=?OXQESLoRoMIt2$O+Q2vx~7mP|8W6L+|X884qwo0VNQ^d1Ges7AcmP?5roT0>4 zDRGCiI+IlffD~zxLi40hX5a7amRDbtSAL#AbR(u7obHSZPp*j;KRtt;DB-8`4_lfc z`8`Q5Kl#jM-UcI?*}or5G8qZ`P3f)g**N^GXRZE@!{W-TU#Pf ze@66i8!D5m``v~z2W+UIZ$nY1pEjdeJ>Y~Ic%kX-?SCa_@=P>0VG&ln}zDTm6Y$ao3}g`gh4&c+Yd@?X}$gz3rBA#ZnIQi-lYx6h@&QO}JL9^YzY| z(^Fq^Pcu;=tj_+2J$)Bw=k#<6d+K}SH}a+9rT*`TltdLh-ZJQJiOEvpah7mDuRyZ4 z2*`Y&bVZjNgLAB$JmWQ zMt!4n=o*5P5}b|1r0tNG;{+0XEcK{DK;o_M5H1iTmz@nRTy|Du35b_vsqMof`oE6GZ1Y1#BwVIEQ z)0Z{3>9B5Bdg>$gB|UrkJ$GXxPk!Gi&(+ca^T+(6neAWFAFV+NR1HOv8h|8q-Bzg^ zlDbpe&W{#t-6D0BWc&0ej0gQ(q&|Zz-M~b79>ZrDrJ3@aDpj)Fj~k;uMwk8D!|Y*N zpOGm+Ej=<vZRV`T$AxoYey1qzRQfNFE&BSZD+xygb z`R!2S@Y_q5^GH{|Qim?*6G)#+x=D0luy;)+jXe4q5Ij?uYG!IGQ~Qwu<>!YqWmf?* zWDr2fB1ytA2frXA`J@g{MWqrX)dQ@)kSPnPNRH68y3n)V0_7x~nYvI@WH)Rlz4lBw*Z?rlVd)4k zwVA07q};FDfee{8rvj>PLDs&Z+wnI=oq*Q0{!%gJ7AY^}ee?I*+{`u2(R4o~K3-eeeXfL{kAsjy$?OzD%uxY|<_rE^YuH$&dB z)J&vYV~kpAFZ8t^s?G94?cn|;Mv@JNmL$_Hme#5+rglIVCc&llED(ZZW`ghUN+J@{ zhDH;So9?=ZF>T6E9Z!96&-)kAX!7FJ=e}MCcWZZL@5wQTRb0#DYJ_{@uhw8~sOpBR zUXqyhYOh(oP`qJYV1c zXs*YT4fj)a1>{(F8FTiS!#*2N@sxje_{>orG?#O;nfg!Fnm#19*K0`!a&$kgp?4HUQ?85sk|U5(J@#A;HTrYAsv9EVT|Kz=W$&}U?*$9al(B?__-Qt5 zSG|t{@be}eLUAlYJ}Lc9p0W>_Rc&}S?N48uD{WqJH5A`tr$;!*A z-_7TblgX#a1}esJQ@{1W-56- z=%JKDkKMeFoV+1Pc|F*3q#XL4DCgu2Ny_WNeNW2a6B6Z|ydlV=>Q~h~cKsnP?23Kf zbS@Bg#XIButaSTHNSI#wf+UNdw;*5me3S9y^dXW%o_;4V5t)!aE*PcL>E~dtnC(?H zmx-42Fi0aI18{V&7YywL7l_Xk20+>fQDapHI&n<@g{(5;KOn1oh za!xZo;kdYw7kQ=|hH{jEPyzM(LMe0n%W^$GSlfehG-*GqZ3HEe^epo14C({=i!r9w zd-!(vttuJXAtOrlSgkJYdVoE!m_pxV7qb3RXhfa1Nwz??z1N~uUTXkIDN5Q! zlBXNSTN(u{puiAs68&0m7_=7h&@{z&A|b@DNDP06e9HO?{YPLH0byL4=g3yZc;Eg6@HPV*&Ik|qF;^U>{eYbIBFE3C`219@ zX>bQH+iMN09-E?nSEi&Oe5?hZD8Y}aXN(x)KE&~m8q4!~wQ6)NrAihH+qFtL4%*b-TWKPvMQ+WAGn);qvu!^RQV6w&A(CKV#j=X@j&*| z*d`PHg|HBy%6d4mggV(d^I;#{2_9!QEYJ@Z*&9lb8_AgoyYgbMnpTLnaAuDvkcb#L zISWt09((mdTwfc8&>J2Y0j?<~f1Zmn~^}Q6iN80O2A7YEf#^cYK0^FJ* z>T@}hC5h7t4w+(gGw?(Wx}gVprR7xI8NY|b_QJg7_%nN{TLq3m)eVL=_H_K7Vt%x8 z_z}($PlUskSR7jPNLkL&cWe90Ir-9H{I*Oef}?=Ug*AMxDhIyL zBK$PM2V2-$>rDBX;g>%v2mqe1lxJlqp=0+i=N!uRPfbE*aKd#4?ic99JbD^sC(wSZ zV@0nqHvGtWP$5V&mk@%k(5EqO1tvVkM~^lHcVN%~h7gx1*BI;n0wr{O z!$y1d!jrjK2zYnP2ypKouctunIB+$<|M%P!o!EM*=PKJ3Cq#3AxlHNh||-h{yl zLN^loeKOS&+;$BA;}~38B3fQ_`l;U^DQ$F4O1DTZia>~7+y z;p6aCD7|4LAH^+b;Xzm`S>Kr|oyJ~Yz5%Z=7KOF^vlZEAJML|@V%sBfoTh8t%QpJ@ z-iuCJ^Cp^wEq37}h!;|Wp=eaAL1)sfPg04p|pej}{)brqfV^+RWSH7wp&G;F# zhQ?GSK^&4eZ=ejv;=9q4p;_X`3n8?a{Rp$sr`~LKFu2t@-I;DHy9n{e7_y>9Y<*G@ zXK#avXaR#usL?;L{AhbNY$4GqeyMW-b;<1YwXM^ z!2+t2CAY}&Ew-T1xa>u0JyI30{LAnXi}pj!V&DX4Vwdf`1B8};Z@U+N;Q^D{FH#fh z8g2?n!zR?_ii#LZr4>`0>@{-$TBy#PVRyui!#Cr0EC$1T_d|R_vgGRN`fOTBM9WLnBM2sQNcn z+u&9kgD3Paf3mZe5b(Dqp+wdj&}|{$6BBibDM=+lEb)j7<1k7NiSoN zQsZz+E1Gl?VzT0s)5o4w_Gxv=!|%~C!g*G}I)Jb}@utc;>j0wQVw(!bi&wON*-FKW z9C=Z81+;Py;Wc&3d*I>utci~KPGK9Acn1s6mkROvT)LOeAtaa#!Fjk*^&8^6ezsbm zHJ@e|B_bM*Shid>=3_-UUOO%q2_6;wNBsJ&c*F1bRYtHLPl(BGe9$=-6)Sjj(cIFY8#$;a>Nm? zSbPZU_;1(A`ra!Yo!#pe0UfotOdL)~HGPh*I zElY4aj0xx*Hy_S%x53>kl!bPO)jKQcqh)s$JnS+oruy`aa8weir8~C+8$P|P$;lN8^D*#7 zOCM_1<127b?{Lsc8XwTL2-YEjRAKL8w?exIw==bZ8%YX8d#$ayj!;6NXeUra$SHmkA> zwRE#=VIv6yqZ&?Y|1_gk7g@K3f#MJ7t!!Re)yYNhz<&dLkxY8%Jvz&tUH~FGK5v#Z ze%n%Tieukfni3tMpCjZPix&(Rp=vj*?ax1sbrd8a*B)>e$SuJX##V%JDrc~}CL)bQ z+sx2*qw*>sOsuW|M+F0qsQ-Qo%Rh)UjOG7Y6iYpCqBVQG8LTx!y914eJsicY*%Pe1 z$xsi4V`%1q-wVJ{sj4$WDzL|}|0EfR3{oF>(XgBG6v&%s*aw&$-5r1!EZSz+yP01! z*{~l+f}t4fpED=8+lneoyyA^jV-I}+#-dua8*J@5e=w_5BLbpI);xk0(ZKol0OCN*|s&;rVQe4UPSie}bR%3q@!Lanh zk#1eidD;DnG1 znt--SQw~~`48=+ioCGs$M`@3?da5n9cuFm8=@BqmqzS}K5X6X7lY%x{YIjW3C@Dlu zng8!yYtJQIs^@&)cb?}DPiF7E?(1E*cfD7&LP}yW(b;Ls+d$89i^xqn>RWX~TNwif zmV!8TD((5So8~hcnW3( z@4S`z#4d2*tl-@>!PyIfV{8hLGD>8t=IjHfpd~vZl$ubb|3^I3EV)SAl#V6&(zJsAfyCr zjDA67^LRHzzqkZ&OHlU!XI9NR)wT~fKWSJL>3qd{Um9y~s9!GB6Dh&^$*x_t%A}I< z7H(JC>L+P1n}sWoIqXNKk=1;(F;%C?8^4O&yIy zAl>zZuuTL59iC8B&=T@3jDB*N4|`jwSiGH}m&gb`98#XT#Rn93AWws&W#l+SiH3u z#@*y_#SD9i{;6%%Yf3h+&A`H(GG5#BBIPxN2^omj>AYI{wTf3626GCX#cY7Kl10B) zDn<1}u=q^nixs}YDMDQ!)#(|K4g#Mf`!C=_RS9uyrBHlWb;hg~AwU@8I_`4jHTRyB z*UaVwo>8EUiJ1=y9aJ)ZRWeH}By-;}na_lwyHb%g#nUQe#ksPlIpOoh$~#UhC_D#X z?wk!tcJkPe$bGUxK^Jef=YJ;wv~qAN(Ee&+B53blBW?Phn@z(uivo8P>e{7I6!7;8 z(4(-wUtppkuPJnP&+nHp2B@Wx92g`x&^K1bNHO%_5sKoM z=Uk0-du~>HBLSB~yl5?lZ~}1%X3eJ`h$Y($;<8f zrFK-;2jYfkJM5j%T~%sU)3fNgheXt=yf=xWmZwU}nk_}NK=Q*Xkg+nCQ6olef3qh`A+t$YB_@N6 zm8a>*ljtPX!&|DNZ&j4-<3V@GMuEy}ZcIvE#6RkzA(T7&RsqNC1qvv)QtY@s%2+@fnIoh& z#+_wM5nde>!WLCi%W-Q`H?i4!sUTY_pp2ygM`otX(krv9|2m~F(#d?GP(m0FnT*-d z27(!qjAjFY&IMUnfYoh`lOJsq%oz8tyIJ)vH7gKGH=}T-V|wX~W2{o?9ls0cQ?$%s z9g^NsNS1<+%=d9`swKw~IBxoAg@VIp%d%*vbnSmEEz8>O?u&F;l*u&GWAN77bW)GL z%o^GP5UAx}jwhOhKqZp_&6H)V_9NumwSU=9qP~I_fe7}Sr{P)_jh@QKp>(DM{e7Wg z3+=u6V?;v_BqUho5-E1P1{DwJl((vs^T*(9nzUi>0GlV+WlW=wE7z2CBpPj3eSs!n z!X?+96ljt&A{m|)nCPG`Yk^(Xd?!VL|LCfMQ!7NG2;iBlI3seI8w(CtBaRQXi=vmnKI}lfZ56 zIfo?T#ToO|ZOWzhSTHY|l+xz29>VSelzaOcrSN>tOGWPmRnEdXM@0m`n6}mLnyFw{ zKI=v?BOzw*JrLlH`rpDXQYY4I`=#N}yck6Bpv_ou=vAbRDoMuYc_S)Y$1-ZdmvqpZF+QU3(o?C-YiVX7+YPcsEU#bJQQ-3 zt?8HY@L$)W)J0l+)>?{W_PA@ZA64_y?i4^+C6yIt8CwgJe8$$K3Ll`VsF^CsbjL{} z_8h1RDcNXMk_f|>1m%_CxJ zmY%qbAK2AwIdPIZ>?GESlT0ItG^12EB;zNE4cQ7`N&z-q09#3%Oq`#}QEpyQ7R z*uR~jLGr+flWen-w4XT1&+H_w6R+TG@X2t&(hH@IDpHnn-8gD~# zj$rTGDOYhg8cx_pIa8b*VBslp#dGNEV<4ZM<$2lRU$Op-8*Fi&J~yGz(GZgQt<}V+ zYi{sNh;h?|QD5ppf^&)|XNoIW)*Y-KfYlCtoikYZErsWV8I*5Ix%k#7?l*q7J*7Pb z=_^;>9=joB%2LWDB*_t*{=&xJZgxS;3wybgEx#^U4DzF#EPD4F=NAYoV;iw0iW{q3 zF^ZW3{B=;LGYgl__aGt(9$|+n9709;LPghfRYTCdQ6&I@ed}#3U6NOv!+|q^d@19s z6k~lA84f-bUlp5|q!U!6*b-Bzf?gjNzY&vs#jcc(K%$!Y8&U8NF~f3Wvo-i#kipH) zJaXc04!pK~VzA6jPe@jEN1Oo+ z0G|ZJO$G7%PUC@}B6K*H%ceaCqH{%_>b@!T_>aUm0Y#y<2Qi&mio{Ko0!>VSJ0mfK z#MeY=?~;6aVx%en>4c*SSeOu^d8ti8eMlfUH03h66TatXSu1j)@?#Uj4&{pBW?V58 zxMb>v3*7plCUV%}B=>N6uW&&IpoxSF#65Qe9}5YE>;BvFUxF+k|JCwW=jg`-qfri@ zwIJ9V@231u#jn))-Nm?LQ1p5d^P72<9sH72g%{fl10|ZSoI?k6p5FI zBhICN%i9xZ@ksmxroUdN zcP{NA*$tj({N>U3OA^Z?XFx9U#%0Upp(;E{%^JDLtJNMin;Dxz^pA{6QX(o>Bo?Ze zPz=3i<$jvR`doQHn#iP3zPKjK-N>V;JQCNf(%3QFT0F`Yw!{b{HDnXsB-<*2&5RsJfw4T*K@I;-q9*fFYZU1ycu1{EW9r$>BQ zfvr(YeyhghCrfLDS|q@LrKNTdRWrL5ePTaRJ>3}nQZ)#lSFgB58I&qz$WSE8TV+CJ zR$IO;V+j0fu3?7|2S^*nD2~9eQ6irERE>xAVU5p@ks*!xXQ&Hn*1~2ui(?EQ*Tp!b zfHLDYFAsv`j}J|B$4HfpKV?}>)GO{jWD(Ur_b%6)X!DwmRWW>xUHpIBF@osZgwF3`XUt&O3nVCGw z%VX%LYiMY=NVWU_556AhT+Gp<7`@zed_RwlpD`L<)ho=X?X+rU2{!DG`VVNL(;^J8 zQsg3R{s7u9S3;eSd4(MNWG4&*E1 z->O)4&$U0k)d6cKDYPW1A>zNRCim`V9W`PQwWd+tZk~V}!T7gz`)9q}a5Ah5^Az7e ziVA*RnqoyRQpNXti(NXlyXfsz$PsJ4Q!Z3(IOKIDg-81SbFHKHq;l&D z9XMPpC)PsBThZr1jUvw9P{agne>eCI-7w|OJQUvG(-v9vEZCkDn|OA z8VBny)F8?nJ{}V7v%)>eXr)MP+!D<*kV4NFSHW69$eg%DW&N?KS{T|i1Tj5tA7xWU zpgSq_g1nfo8Q$G_hZ>r7Dr54IKzFkFkumw>Xi(?}O5bDhtC)m*+i7_JoaNGeMvv(} z9ktDTM1YXDqka#ZKM#Ly{)T+k9+Zzbw-W2eNAnPspHUtv zaU!3=Jih{m#&e?n$-_dtPb{2SLHR5t*pj7YS2>m&jrxgfjDdSx$UtAl+x)TC@4p(uau*jLW=TJaz+Jm9%3;d(DHgcTwx?jwTvSqLhzUY)ee%BpuED+;pP7%e)?zZiFfi2J^wEg4iy_y8I#+AbJ!K z#n9Jb+)tZdULZ#Rq6QV#n->F3h-l4)i_rkHrY|`sQH)qG>sx%@L?d~fZ_>PNT$8_IQD8JdGvTT7(TQM2l7x6L%s zy5I)2dy(;?Qdan`;N?JK3^qUPY@@8g;n@hc1q{YuzA|OEbtm;ufpymKbg`{Vz1aJq z-ca>6Ycfm8ERI!JqM#6n^GtTR%*ie%?M{gl zxPm9MxmKc-i(CN=GS2bia)sh;((6Z|l7A?mZ0@C=P(^aiU{s%PvwKts*BUd?d~jdh zICaR_eEnzo^`E@*DWOMrO@DXD@`+0aZy;2qDY!u%;4G;eTX zfereunWPMqh#BxSxtdW_yKa?X%kEt$ z}%s2lo9Uch;~w`*qTmN z{0lL_{Rx}er=6l871&++orIcE$wFC zI!(}ooo0XJSxFU{nQr2SO)^7`LUspPL|cLJq4U(S8?BrcG|B0ka3-?eR`gA#l*IOQ zg+g1vDTL-^<$Rfb;y3LP37IK-NQR&z{;4{R-qNfxok~Q~1~`R=Nn9BXZxbZ@l9OH3 zMw0$?Id z8Qe5TRfbn^qV2}ymq3x8m($enzS__nd}M&gCi#w|N;?&*v<+Qx;tp+h)utw3OQ27L znomgkHA+{CN4Y->p0cT1!kp*%BAcXCVnNz`)>h&|&P6^`l_v-w0{%YhmpYia6HzTB z9EuS91_@X1x&b;pcxkLi-2}o32{!bpaA_(>~w!;*(}|3`wyO$KF(p>l>9 zk~q$Z(-=JSb#N(9;L{{fDFL${YwNq2YA%o{l|&>-@IxXlftB3cP1ac%(XnN|WwHql zpKr*^mzs~s0EJ52=Vf0GI zWpqPxNZ~`qqT|{akw5 zSfFdu(=_Q!pU-Ac?qB(h^2;?Mw)@!lSXz9sL(mklv|^WepP&k$1wP0czD(oUf^;aH zt5gX$;gu<>Tmz3Dafm3(UbIhBiw7YFiR6QrvehsB(U*bV49!iwHtdDo(#!+x+sx|} z^Y!NI%%o6R-%LcT7o(_#u`upWbF8kj;`2x01MbB6lCY@N)G-em-cMygBZ_Iym)B$S zr7bpJ%;-|~+Vf>c=)Yud;D!Wq+1y#v%9Ri0l5>urpyM6NgAF>6(}vNqoYyg2fJ9T- z0K%BqS8(R~jLjqYb6z1om-{Me_LH^LdKK|~a)uT|su`R@b}rIf8mVLHj;O@oPU{c< zloLUXxf}_qf79dRA<8_^#@Tw^^OKJD$7=jYIUD6_%uqRczaxHFn;_YW)E%$w_N%wQ z#2hj`;@BW`eOwkFeYD`2+@+fM+vu|)?z_f)b983JRFJ8e9nV~(!{5~g z!{gy{_cJcrsmZ**1vJKGd-cbY^5Gd(3Jm0uVqJ1j6f^v2xu*qjj*645G*URMkAH|| zey+Rr0he~B29Pi%;AX%MF-YZuzaw-borm(or)w~Yc2AMU8&F0k@lrKfksx_PMYP;{ zW0AUdQd6Mc^kvv@CO z_md*xm;z%7O&`&ix%osFQ3~zFZLf6tTGCw5i%vwEEkn%RLezlNiI8w;=*gmdvyQTx z8NGjFrT=E!9mKR!hutr1k>U!gJ48!iV}N5R6#`yw)~|6rucnUYj>c!W=Fu6jXH`RV zW3{VbzOLw#H5s3>W?7mU)hZB_Cs?*TRQBl1@{(Y2J?l#deF)aC57w;>`X3H^AC=J# zdmopFRrkOLC{Q*z{Ab&DyO>yc+UaU!*w{_)dNEXXGs|w5&lGNnFoN*H}ShnMgZr(%(GqoCf$^BX{XabjW@t{j~>*`e>F*57nPX$_J z`!0lbU6o{9)}m&xIfkSX3Vpi@_Z`vT!;k^cU(NCEM+4KSx74SVgC>Qy(Wr-X=O{t( z2R#a_;sw#6=%cPJ*3KYxp`}?iaJVzc+n2&bdYmKla92`se+pnkv4Jym(7Zc6=WbU0 z2J`NWoV(M4b?eQ#wG+zvjF6v#CwTjf&;nipbsHRT7}eW)-YR)Bi~I76H&Buh`Uamk z-*~W4g6q~#sOzT`BXorX!dH%?U6X zRQa#y74gZB1*=>xdcXd)$^~?{(&1QR{iRYAnk22YRBOpoP{-roX!3HTHG>q$*MAY+z!9ba?l*Jl7N8k5Eo2NG@_NNkskhv?&BDa`mhxGZz zSA{SEcX}w_RqMrHlPzEtgyYV(QskpzU%9nV=s3kg9O}mdle&KiSeV8x2b6`lP7mC` z;-TQxC(I?wK;=^Vx9Voic#e*8WT5wP95TvNY!#2F%Ey#SIOmEe0=LgIWmfb{xN00W zQMC%6lw$qZE@J^)`e?#*Nmvv8Qia?a{ZfU*bWCa%s6u8^2wZoFJAv_z+KX$3s-@^_ zqMF?6fxUveR)6-vjkK*I^HrIGhD|5j$Dm~Gb5gIE8IQK(~$Ah zj92aLZ=u;)YJKl)h`whC?*nrb=FG~{3dKrDtFZog7OO*s{MHxVm*(}3VGkRE0Dt9H z`IbwB(5!#V9E&XUL>9Ugjq~qtZMdToZ!H}OkMR{jP{z)8Tkno$c4^uF+6>Ocu-8pa zSZ-RyVPqqa3l_OJ*$?F!~;j^SC{`K}E_k`Qv+ZIx_!KT>WzLlx2! zrO2xpfZ#yGc!2iN8-*wGg=`cIuhQ$kVh6`oY55iVwh9-eBCt)kuoKfmVrmHW1$r+} zK0Ff#KqZZ$FjouNB02qt@+2QGa3V-xV$%A3{*lJG;-SUK&m`6F@SjXR3?Gf#wmA9s zNy5(mAjuyDJagwXBL3;QsnI2q0Dd-6U37*eGCeUClHX5ZxpOT67SS z%PNSkE1K06;Z!>$arouFQ&P^z!Q+FzA+}ZOT#?+!VpoNA=ZH@ex35H&PMo8oHlhR* zMpB;n4R+cgNH2d8njBYIAvUSiA+#{X>dpwX3wvlJdhu%RKJuK*-NP<5cN6JzO&hi! zjZdNp5l0re-{^f_RR2278(h|Z&f&Qcd=s|$4_iAEsM*#gf zSyIpPi`xfW%Ur^nxgjU5~ zvb^pu4*$sIb#FOpols5W>^E5UXG^o91jfrw9)5f&{u*Y8TiIB+Oz%edcKD83YVK$8 z2M)-lRA&C0Gq@njDJ1_4I%!UW7O_a?s;H05zI3e8DDdR+epRM^uatSd#A&qca~N%h z_=`AG`>K&smtWFSL8ERAm;rjJ5;x`hC@VdVQ|$^*(yNY#}I!Q4z^`Rpf}G_A6EI z>1&v-hvQujqrRa-==v^W_McSO+w87mK&^6TtoJQ+$?l4DDcT+X+BsT2pZ4b=7$?hu z#t$DmY49P(u;JOWYyquIY~O==bnGV5AlmUFcIGtjyN?Av;8wuzP~*TD#2}vlb?1YH z`7bT~nKUxtpN6-zS0L`8y`mL5`*a)Pm9%%Cv{x%Wwe1nW78u!=s=I>s*GocOC4?ZE+OmkEaDM2R!9#9y=Q4sO%N<_iYHivk=``L`$`WMr38!Z=fZ|;-h`6!Vovs*mwT1QG_ zu2Ie6OohRZG*cm`o+?+@>g_d>*$SknV=nM@`HJ|Tx32ygwxs3b7gC;;rQ>^_1Rl%> z8d2t!Z7qA7!qaBAltYuN(A2PVxpI@>cC_k5sjnqQt#j%K@oz5_w|GP^!$ywVP>O3E z7O{tjs5+=|BSdAb5gOP0H17LI!{{nyxlt+EwQ&cCr?~4vL3oyYYi{G+tx?1tnx>! zL9a$ji5UozL|JSFw#6OW_<(H|NZ&ZwxoL5sTrJ~9$=V4TA*#co2l>OJ#D!)4%6)C6 zTA!|xS#srbZRH*NV;xh%7@$fiYSI(VZ6v^7ckSKZ4F&U@bY_a zb~H7&uY^ic|A&qpDyf%t&m|jes^clZv zOQEF|C6U)s>JAi{#cRoy@9$sQZPsCC$YQvd{E8F$T6E&tw!(^cogl{U_B6SJcpD+X zsrJ%#M3m4d6k%g#2h1;-h!9hOU7z)vNrFtT!JLP5MtZCICLJzxsgMD)&`oc3F)E|b z8nK`v*~iR)y9jKbTm8~XM^nL00c;BfqL`V*f<{67R zp)xM&LX}}z8-MNj{dL!w-d$!Lwq_p98HAV|%4m=VV+YEX?_sb2UPX$U@aU$MM9S83 zK`i3f%=Zs2?G`&$HPdyiwLcU>(mAYnG6lA+o-{zc&KK2Ij7>rgP=9+?lMG zst{k9=0uu_3zS$0NUEtPwH9R3VoXDV%1v|nl#?a1-<*UFkpDuYooX5-WrRs#J}_RZ z^Np`(JVL03-t{)t!p_DWkF#biscbQ(u+QqbPGK?Z$l{qp;x`V9-$6W~<>lq%DaWUq z2qA@QT1n)y)=Q)~c9VQV!}9$=qQn)@_~lKqojPjIS1DD}bnvHm6XvNVaKgE)(LiK4 zzjFni;D+&E5Ik$h7J{=kE!dEyUNV9W8R{joJQ%u0-iqD9hD;TdRS|5sk~gb)oFI6f zJR~2+@*R9Z2PHW>0%`z>qw(_UEU$0+q3=|EPg!eh$sHgb_zX7SXQP2PADXnP?&^VMG9EI zcZfwL;Tct62Ti!}la(Gire*t^APXu`0i{T;<=gb3$bbkv-DgeuHeK|3ShrG+ho7lw z{P=|HUzx#{RW96(2C2)ZyIw*)$T@D3{Je{zn9ZaDWgKR6PB{-BA5zWrS)cq0D^a0z zX>@DGFw1Wt8EgO_HU6eZ{d_Os8UUUV-Fd&GWKep)snPJKFN~q#wZ(`6?zYBX+8@z) zwaAj5BJNbfBOhn=+30szo&Ex3@iJi{5g+w3@e2mv$pZv{QY%DAPa)u4so*VhFcIEU z1>R_T(RVDmogxDrXKrX!c(l)!JR665I&klNM!{WXr_b7Xo4`H&#BgViNC3QK(ty|e zA?d{z1HK;SrRyN7sUb&@P&hdfEQJJ!Tl*Q^$KeZ<{F#f%X$iZf**w%WZmhj z*CCucnChD$WC@)j0f-s5-g*)2ZYgw}zxeTF` znQ*xO^?1*B{CCHDyq%+1_;AN}PPy|xZzmRRrnyu6HTufXPKT`ZBG5B2`tRAw=1s_C0_xS!GM-Tdq zVjImf3WhGjrCb4p?sbYp_TS+&L1Z`s%gQ&4r^tjOT$LOBX%gy50)-9y2&PD&FIVXB zJ_NTag)Znxc^xDzE#)tPyWMd4FOq9ep+{Kw=kS{Uu@O2=o}U?^(L9CYpCaFPx{c7M zY{ali9{iYR{-6m`Ui{|CGPy~kpGPtogh#OrA`A! z1GN&1Qkmk9vTapxKX>8Rx@j#@xVtod=N(9rx4|3~buZ5;8%pU%FIw?R&DkzAw#D{j zSs$8kMrfMIKqBqs($OO3;6d;KK{T@tp~4Qcu0IGaU6)4cljEtClp)t1Epa%6#G%q~ zsO}7w?YH*z3L?}gI|UYlLCxYTupxZq9wXjP+hIIsD&cfl&A4jRAvEak9y_8$SNBjqjgE*Hy9(dNRc zXA{%S>w%dETrybQAr>JIL8DU^a>rvQB?!x2BqnuVq!+>B18}^9{!Z&O=|`RFM}!>@ z&GiHl02D(`0=*j!zyD*mg&6E^DG@nHcUm((Hp7~(0Vj=pLBC74l0H=H0&so4yyOCM zA1yB#=u5C?2o4GTUbMnt3#l4c~Yw z8`cclt!Kz)cy8NoXWCCDcnk2^VBRZ5Z`7QD}A3H3&t$Rs=a`o~TpXD6c%b~Z9QOq$HW|+S8oP}vQI93xw z#9OccEmjjYaE%T*FNYOOKi4s!>saV=6F)W=z2y?$C%HH<`$Nt#Y)=9mnLCOz%Tg+zg`UK@5act^aK>^ z^bi(&cC+AZ8eFpZ5^IpnCTi$Ll8r5rvsE9!7=WsyRFB* z{4v8^JHzzv4Nba69o&#-kW@qRw8Y#W-C-2eq2zWEQ}aK=TZf#rPo~Kg&r?wTOBEbjBguJq14W;8vMjpaS_B4;AV%D(^&WAS+EjG7yZZhsbjF_N(ek6 z@74SA|B<|xlw$poG5~%|RO?n1`h#fb(V|*Qh!FBMIhHsbwb?bbD*Y|-^i!R~WV@#5 z3~|}6qTNy1F8VV}e$Pyj?s1h;^782rTV;auMecM(?!>Ku&&sL(AkupZ8k=%(V?0uw z-E6A}@a4TMXP9+Kk6u|(dtfIh-zU~(k5j=*Ri9VE4l7=PYX4F4_UH>J8tDAwQX31l zuU6Jux7qw!wbl11Cr`>DM5dV+7|bwtg3=j3!d2OxnUV4(f|y%N&b(>*h3J z*FJ`Ao2SB$X4~!+9B_=!dWuc)C{67Smc|K{3$7Y1+hA<7dgJe^$KZMJXC3dspLMPk z`?sU|Bhi3N3AjuL)Qi=`2b^PgH$!2pM&x`oeV_e5Kr;9RyJ3Mj?OEOsGOW-E%JeHeyJcbI) z#J3<%Mt9U>*exQjlo~3Lo7UNyYoK;iWpYILjnR!N-k;;rmo-@#`m)f!Oz$xIvJjJx zqAv>(!Mgb@ft{i+3w>c2eOX8!KI?;YQpD)X5(X+4Gt#m8U7;^4%65#ttn+P_e8Y?&x*&92=6aOUrv8A4tJq1FL@$?zWi@D2;Bb{=*t@T z89x;Ivb@{$WqFm|Lz9Qky`0u4x-O1bKz4$;QU1fCt6_^N!ZD<9*7(ID)*h!$vq?W} z{Uw*&#}Jo~9@H;LZ2lpIX<~EsY-yCDZ~nK5&5{d{`wzs3&9c5jii>0un}2nM6fZPr zAvVi((R@L+pE$7@n(^mR9S1~c;J-y>-e%|czd~g$@75?s=Kl>UbIngrOl1}@B~Y1V zD?XaaEMf4P{uPz^M?VAP$5NT4@Xx0*OZnVAzW|k4M$x*&kVz>;e<3RK7Z_{Td;i_B ze!WNMh@YEB)42Z?g;`BTp)fCeD>}-W!hGYK!zs*#LSa5RZ5W05@P3u1=R!?kmivL` zzgJkf1}wWMDN@)v!tRN5$7!x zA4GcYV6(&?P_P<`;*yyHM%@MPnDA#Gv1Y4xF%j!0I+QXbHm zdPK7m#hd*WVk(iI3-ni?br3U>J*TUJ5m|vc^$r2TO^~EtC8;^pWlF2?)0qEi-6pdV zqZ{u0&bnVinla0E<-b(-q*>RVU)NFhSblM5-NO^g_SQX=KUinxS9jE{#GQ{Zy?Af_ zXTjoDWBO;}`lqhlxPeF6t_j|bWhv02py#yqC_Qmx2!w8U2A!rULjK$61C}Tz7Iz8( za1`_tApj~RP3SG8FAx(h0wp^`fDCq0o508xiqtYP&x<-m!lT)Kcli=Noa#e<+I`jr z_{Fq|nntSojV2sSW56|a?y`TZbbOV+$^6aa?@#6_I#J^wjdu{sL z58+!x>2E9LUHp#if zTZg82IwG^fzh4I*#C@>2Di^{w9t}htuDhh5ojs!dfqjMiCOdojFQtIH!2m zvGlhlp}%#EVP`CE68f9T!m=FiZ;#X8PV)%`tV3Nkc6}cG?V?>me`}A^-!>gmM~HW0 zl>XL!BKq5gIQ?zmDKYxnZJ&TLRkzyIxNlP$y)z4aLGPn*QZ5z3UAHdUF4x4seUzlP zKVIay6q&b=)4~Ixa}7?`pec1)-`=6AgZo*g6jh9B2amD?{8U?H7Qr8Vd_^TDAmyhP zck>ff>s>psk8{v&-;XEk0HqMZp@4OErFM2zN|nX!;x0~+6n}^XF`!*xJ$JqWyQT|$ zE(x(!Zd%7BAu`>LqFo8QKH*kg*csgk;+HPg`*G=OSx310B+}PTlYk0z7~N*FrmtQ9 z|AfA_N9b!6V=>TcOx`9aXGzdy?t;D+EE@_YMZPCwwF+wlWMxH8OZz_~r)hap@xR(B zG%4s~JJIu`mYM-Yqk4faMd?b@N{O1%^~-4J(Uh(Si8v0W>wEF^M^U<}b%r>ltLhI? zN|zoZ#z(B^!N7}P-nelM>(X4loE=m|$R0u${iqu>=}D_q6w-oQ*O5Lj==|O#9H^`R ziHxBSDogLwrm1V!J9-P7D&^~IO*Qh!YpRvU*qTNj^G~l?!$aAZWcKSX%lMUaFT)CV z_eGixNHU}|c3Xqv{}I9FUs}zTPl*WHNgPAm30PUgiwK+b1_{LY!5=pPO}NWAvMs`f ze(l%f=dv0P+2&^st5APgKV7FQESCziNY;B=lS3ZvrU7Z}2-P3W%(;t7u--52n5x>b z0x_OwJCam8Zm`>NHSG|U3y)*y0Fkgqa^gNuT1xmNN+hQ=HD_b#6!PB=bx~NG(baCYwbWK{!f=S>y>8B8-w2 zEOg74D_H13jX7AD#@EPTVLEau!NQEdsLVNYh3E`eOhchKNjMKeK)cXGoQjHpl=`Fk zGexw4BhV2jvfFSLs+1_lB#Ukg^^ZZrh6<-Rd(TwwNxaGlIYtsm1no+bFWM!n2)GUQ!=;S&JDN5vLSqx>$GOO+;mscC554RRs4_ zXSjQF3B}~oxFYA`5fUt|R^M*@Ev2gOH2qB*J$J~DSgPqWR(9*Il}pzMor6PL>EBMR zobqS8o2_~pRQ;JM5~f1sn|z}z@VAISRi=Z|@fg;_yASFfihej1;Ff&cOE}?@TC^&# z^hEb?1_@G&JahRiPqVr6(>m0tk5Z542FZ^B#BnXEE8^114x=k}m?Y8Z(qds;W3L@^1tcX#wHjCZQo1=T9b`lBL9t!3F&?B8cBC z$qsE2k`)%1k++Jd)|)%aEfHu6w510=O!B{HsscD}rkN6$6dt0(D|=#!NA&Ku_FPC|u?eB}gURv9V3uJ59fipd z=f=p;PZbytMuL7Os`t%Gh^kct$GORE#yf&^YmU=5Q@N~;xM?#2>z;GdRN!Pp|0xAuH?Wr%wPdx8jq_FVZ;_7@W_~L79mTfwLKitJSq<4kDQ~1<0k90m-T3*9gPpH=&Prqgf8MTzFh2O0iTbI zaZ_;v-Inl%52^f)_FCp(* zju_pfr~j@F1QOpsmBr1xRJSkwsxfZo;>-E&Se!#UxkRrOjhXrqKG@yrsm+}wArD*M z!RW5ar2AAsDX+=?##X5eA$V@v!kfR9AF))YVW;dODA*|&9S3-x@3N`A9P9qdM~?05 zhx#l#L0^B*Iz6hdTi=cKRlr}?#9<>%<;1~psI+oDKh+!fQ7ux#tV}(KP^}uBV@KB* z*S&Zma(L)hB9O~?dcoD59IRPKeGhI%Pal_e21dv@+i3473YG0*n5yYiPW z6YJWuSY8qTa?BzKP6H<6;&+xhqQ_=g4`W(fq!g5lbLWm|A;!4j6s=Bw+4(?ttg9#h$_S9!GTB~&>H(;Zj9*QT}aVUhR7H?6fW${K7 zgVxH0z6qL&#CIOuY-xvX_7njQ?XKfa5(7(1dlW2`v|mcPL+F%ITMR#sMaOnib^i$T zCD<1P#~!xXq{(LUHCj{PQJalV?Jm+sg}NSRpDD8h9`?p^E_=@v`}iiuvH}m;%B*?D z>k_RNo5Flr8mpU(z;D3S_4e@#-a_637yvm!_efcNfRmCZb9h|m;v6-X1>Y#Pn8#|~ zvTjMGr>tE!h4zAQ>1xgtdBy3>TuBGMCtJB}8ajgVrSOfMT=s5BI_#JCDC`a6TE|ZF_e=VrC5UW0 z6&CO1N2=CFVe~Zbl(6{ZmaRffZeykBUW=hfySXyKuZuTVcEjT}*R7iyTLWsb30_>> z%A{o@PAwK$OY2HBN+f^x@P*sai=3qbGHT7kmbA>eVN3d(ln{gVf4-P7Zr;J+h1yw_ zi}2{e%1X>#6U$8-56HrLMA3(AE6U%9MceCXVf^qGWVQJ5<6){P6+!=MK~uj0n_RlO zhC70L(E?rth4!vnbc+~jsjzmu7e^{*5L5(F5=(>gG(K6p9%OPcP}Rs}M##S&OfuqM zEjZ+PL(HExg^#>%`X9zFA2&_G9#skcZ5m?~55F;-QRC6H3yQ%_3RSVb(;5Yy-9JPm zSs9)Yowect%cIPCD1#V$+$=FmQ2&>y!h6++JkRa?<$6+9MTOXS{Rmxu0ADr4-`iYX zYSQ`ngureBdKk>xq@WAi!O006B;a;z$fJ_akt+^mEAh#rp2egS=e%sCwyORJaUd<4 z%yRNExhXNVY{(e*k&%tl;O*ZVW$R=a<1W%n#jtNvKk}I9f5H+|TBch&c~ZiN>*RMX`fg0$ck?0y3QsdO z-;-=^Yq638+fz^qFssvA-oZk@Grcj%Y-_Qcqqmu_1-h>z#ACkESeO*}`*khvjSM-3 zrREsjVID+mD)5fPU(r~Y%;W0D!W7Kff^*93ah_>AjsPiQMv4Hf{7uN1?{8&P| zCy6fp-JlZu#ZvbeT&U^UigvoVkrOFzt%Q5_w$PSVHOL1&t*sbD__wUIto{ z55GO<)%RN7A+N|WCa@DV{T2F}TzyaSS&y|S?xZ%#_BiT!;vvTKM->>;@lQA&ZFsx! zXIG56YzmFycnmpLL|wS{LrBi~D34W^((*xae!DT{uqevEK{o?OT*iI7rN7x<&;4bS zJ-Et`8Xl_zsMWSM22;Su}uXp3V)_B%AHF#IroZ!R^b6a>~x}>D8ygjgRMweUj z^~}iIGsoOUuwH+GzJ&XyqCXUO&v#>6*&HQGD}(Musd>%JPBDab83jo1=3z*+bY4rd ztK4|DQ~bp2f~|Cs+>f!#+&AB&EHjhWbJv$w)b-tQ%k8(-x{64Ze{kuW`3GxH(b9w- zWm*5UIXA`1-@R3r&plW4l|EYWE=aT^oo7RxibpGUW6#oMHD zjBaW90K-xP=BqdlSn-bJQ}LFExjecf@a_N#ZqhkaxUu1s64fhk{!n$+$+&%7l3oJ(Zf+!5I!j#>8yClTl3G}@C zbNbCQQ@nf2Q7BV!8zioHZ{DFmiyOawDP8$H7hPnQwVHMNF@IpR=Z6=M%GqYLL!VtS zq2{(*ZZ#%r?M~?wZf?7X1i&7bT$5a(j8tW+Xhf61 zOUCDUAsNq;-pVFO+SPjN$KW{w^Xg_jx%%`M83=Yf;-s zX(9BQygk9{U3ojglSbkzCn-GXWamlpkc}WEJSokQaT45HCBIJslUd{ z7X=msy{*tH&Xwa!9P!z|v*((vT-WV3QuJ$M~>?)l$s_&qst+KnB->F2r3I%Hgf{*K-e=z8RdxXjTO^(M_1 zi+WEzr?*-W(KFcIbQOIEkHca+VE}(XKf$ta@u2l5d3pzYp&4n`bN41Y zxKhtl{YR>&aKa2%?LFZ3!5MB@&!i6*sg)co%CLT|N*J(yVLwf~#6Uuc-&Q5oJ_7+< zDgpi6q+$oD&uRUN_h-;T9<=7FyaQGR&$)9};m`}MBqtY~-nXM?hU{PBKT2J7+{TT2 zP{*3;`Pis(@lu(|3&OGezK=m!a5BXM^W`nrL7kpOqDtPXUgNKmkScK(!!5wt@#04y zcNwB!b~@`^48HUe*lrVX9T}V;)6W@!SiF1E_R86M>$FQ6`D1jH%s2`fzy83rMVydLg{ea zbAC+$dp7*R{F=$USRXzh95;`sl>vCSqXaTuzt0*!>5$x#z?$ZXXi79z4GHj|m3{ornOo(QM$k5zLtj#iinj3pj;ej`^w$#Y94NT%`{YuwmHA)t)S zf@fx1M#ZIT-dsyrvp=Ad7G)L!_}K!_54c_t*392~gr@?Pm-quZo(~rC8-SwQ(39^tkcQ zsuA2&$WGPcxfRF|!fzv?`0*9sdaAK{aTya>h0tN+jB% z^a`-%224padv1xsaX;~?^yWgbS4NT0Fe(qk2U=!DKS^X($YfA6Lp7d7GutmM;tC^u zY_`9v2C*^5H}M`>sg<8{+c7FG)KgKW+3dga_ZcxVd%F4iBq2;j`qQ3MXeIeoN6(F} zk$a{Pq{ef0bsAZU<;TkpfTWw1(*>NBle5MXd`trRTPZ_OY4wg)#Rvet!PI(D?LC#! zW&Q+s(fGw4m5txZLj?Cx;*4yaUV~NbknoOo6@d!?vg^NE6P>- z&M<<#tgpTVc}22$Gmt}Lm(3E~Q0>3cYKZ`R5bb={x4D)xFR)h?22G@7bXNI9Lv$2U zm!ED_C*rnDVGK}yb&qK0#Lvg3j8i#^J(FKkRr~6Dfp?O^4H7I_!wrZbsyAcvRM)FLfwzgQ zw1YyA=dhkS2Cy#o@Yoh zVkmm?^n=En77T{)>C?0~*fFW9BDRM&CFqUFCib5|Wq{WUf&5_Ve5^aX0E8KZM zafZFS1SssrZC=c_PHt=Seu776)PYSk7$kxEwjOUaNQ3H;2|hBF+)6!pEpez0Th_Wu zQXI?cK81$99(bS;G8n>O*$Yw)emswulN3{7K|b+~B|VO)sT0{GV6uy{$d9raO?HB+U8ZweSDdK_P7ksg^TnQ0J-nsX z`t~UKpUVWnaQ}lkjuRP(Pm`_ZaJ&SA7tf5?bueR|%HB zd#GWEn55b_ZRV$|gp1@H5qOy_K#~vY^$ZJeibw_F9oE zS+>uTRTEsRTin=<3H70*-WDRm7=_0)W6Cv zJSDglWWkPxNRo-!hrW;(dr~4Y4VI?Zi`TxCjD2&izGbv;0OeZ$p!FZm>Ea)gspIW8 zUlBF4gUWiufc0{w%v1ke)JwDL_tZAXjnzBIZkjaD80Rpiv@gHA(%~=ZxsBmoUWcE! zqQJdZI{XEJt*taGsrG8@G2E|985^(kLc7u|sq__Vo=$)@9+!3YKTi^X#oG6@>VECD zB)d*0L$z_h?Bu>pE5I7ZB^gt?mfu4w&aO}ZYqtRwrU4?9x#V?v{fhOa^HLnW-;9-e zs(2*r=cY7s`Le4V{^@N+S0SS-Jd99fQhs&!vK%aem@SWC)jMTd%V2U!d$71W|L|8TGw}KO0){lQj*9$zs6mx23$a}3}bCbtKPPi+>yZxwd++J0h0y#c$J!x&!hL^lKJRaJx%=8_{Xy1&LAqqgc>()lrbf|V##Fb1EwS(v=#SZ079JCdV=Xpgkq`r zRK&SN^gQD4#GHWj?biUoX4PY{Z@#_dFF|u$`wtR$( z#_C6|eh4Lo@eUUZ$xCSY!~BMqF94MC9q38&9|*5piX(ACB8@XV=1W$0`eza7qyBT| zwykU+2I8+RGj-;#HHs&;EZ2m*&$3X(QfZ&hT5#rPf`Z&84AR^C6hJ&S=oDa#K(AAA z*2-Xsc&b5lqkuF5uM&en5rKvcHp>WX(aEEr>ofvS>ku1!tw!K6JBba#ZARdJLYCJd z=Ttupx)=7M{cA++<@{4VgBr8ndiG17MV2qAB)XF$h5E!4H&qU^Q@j36?|QLQ`?Y5b z?9{Gj0(;l9U1OrkmQu%JwR-G@ z)oI-C6OW_n(8ih9k${lhw(z~yXO%E1Xg)Sk#1-5~>-T3nWRHx_ZWu-O?4GbLI=jW0 zrqwf^LS|&M;H)DqW@tzFzD8Ly{4)t&^?-hXJ~=Y@1BnSN8|w&`XZurvf-`Ltx>`0&K3l4SYM>-ilDPh2Wr;ro`$gMZoF~7)N zmvKdNqgv8&KT?xp`8FgS9hV)83)DT15hEInm}T#BVcHlsa{UC=x7WVU;V6Q(US9^43|!A-=T-=rm`vyt=O+SZToUnjQPa9Yp74pMX~ z2FEZXFs5P0z2f}!2ctg#<)3hmYgsv#FEW}!iv)8z)%FzA(5w3svB2Km==vsAOAuZ0Q z#ShHl6q!3GG;N7>vWrHL_R(q!Q zzv=ClW8|6lWKZswW29g2^3@}*R8C*!ju@|=O6bTV!peHK+XW21=^c~;?otH^&h8yN zQ323m5Wa{mI=cYtO|K;d+__#_U`YYii3*_g9wdkKqCG1A2HvXmr%=v{notZ<*N;@B{Yd|c>_hXfZE zbpBKoHcPk&C*cw!#hchHzy zRKQPpE`>LFOq;0 zt9{WDWOFMCLrA}>k23voXOx#ZxG@NNXq%z84_dd=)(Lad>dGl)4%K+dGs#v>6RVK$ zP=$DAP`almOZKU1(YWIoSEch>V(;}LyBI@Vg*MBf)3aUSzBWrIHcJ(J(?x{^HRezJ z=Ysf#D8t%#2I^{D1IzlsxJ|#+Gg9E|w>_5?!TAwtB{NS?zN?;=x$^}kA18sz7@hV* zzxw=XPwz!!Xn00MDn56;xXC#3sC?7N$8-}@Qj|Nk3{!Xv1k*5a@deBJxf2~{@*;*} ziMdV@sYe(hw3(-QLt5y2X@O6Y>duy>!}i$nwligSaOB)MsPH(2mE&^wb86)9wq`w{ z_7V22)3lVH>RM`nQ!Fr-=QYdY29A}$_@vq?_Ri+hd2|7%@uA$@;^X#9<`^+7S?;7l z+_;s@^o2(;Ob%=1t5S;_VTMR>85%zc?V8~Xj+AD_T^h#bg1j&vgto%PDIKZvh(8UI z2TVdp9&&viGfGrz{q(GQTRKbd%HWh-u~jKwx)}0{|Hg{I)>)iq5&x{vGSBns4kAQe z+%BetSH!R*G@@20>E{P=T?(xMT=ZUM8aZw@JCWCs#K(( zX|9&^W}_5=K!i)9TD@cxUpg+0Z1Gv{4lj?^8D1`_<)7IoWzUTyMOI3g%6Ug=&17D! zH-3d;E0=F47DoSQkm`8(gO5u7kSQb<1V_Rt0{PY9LUn)ACe!T?(fmp>%U!h59a^JI$AyIOZb}b?h4opb8*NHy#c0^Awjw=4ASM<54 zI(`LIo;p~};f6G-qES$#)9tt53m&Ont6NM#-7KdCFYdOn`6=$4?U;MKl0!3aZyGe| zOwvO7m15ewTawzm9fH|4E92}!7#pD8!}|_*1(nK#|GI{K{(N&Tb_y&k72SIQA`PJ_ z>7}yO`K*JYoKe@utTd}FDXHiC0gKqF0=B?&eRv01T|FDurQ{=EMn zGxs22-e0VO=A+-2xtCCtff-7{VcDY`!A){S?LA+|K-5s*r08{<`c=82RXtQ{Hesdu zB5+!^B=1n@hBWKP)NZ2nAR|+J-P(~bP zFhfRaLnz277HA{=`BT!CK5nZ1>DK5T3!-Mx;d?Jcm;-KvbV0-I528j9g`4hE@2JQ~ z^9XPg2%QQ@#so%!0+m}AKc-P8HN1hky=uh3lQ5wl$CHwEqG0u28KiV`yQ)!9F*|+M zbgGk`V?<;W{{2Wn1raJ3MFsF39#s_tmA&bZ0*<*!W>jAD{G{>f#(+rWR9fETvp&i} zuCvG)Dqek9ynG`C)@+VM8~ku5C)Q+TEiz^-(waOQ)z-z?tL1pF7CP>XS(s#;Q)w=P zK)*fkNs7^+_Sz!Pp#oR3QU5E3i%W_c{Xh?MF-uVNo+P7w0h2(R+qWVZTn(wYFEXva zk9-RAK zLx{d&@T2AcJR6@C!rqUrd{w8FdmgqsM$?=PN%#yk>SvHT0L!A@s|ppnJ=XMhKSJ-l zA{0_zb5aFlvrzCg>eZfy=;a-ukW*4#p*kb4(wPHCq%&^5qMea<>!0UPKu8+RB$Bkc zr6HwRrHAGFrP4%I-VuDPCe^e95N$_)Y~R%xV{iFq%>a*&;&R5Gk#6rwQ7qBiZm zg3LNA9aC^o)8S(*eXi<6AiXY{V^Ega6KX?hkau+}_pWB5oWozKm=m2Q(`J&}2Z?5r zs9|Azy`sjku8He%6BY$9CvZZ`>-SL~*LOjI40E&W`aM76ng)jiC#bSGj$Rl&kLcAC z=Q{Y9?pg#!A8!1r{kE357T<3{TDgw}8~P|+5dGj2Yk3RYgR3fNngO|o2R988gk{|f znjZGH%NE<_-6hr(JKDV61RbD#LZ+>~6z?Yz1a>U@!5M0GP7;8EmHigQ5LumgT}h9S z#99@QYa=`timz`DZjvX~V2y_xx_OIil3$;7|5un5H)U4@pBUg<$jJ_u!?9{oCFsEm zLj(b*Gr19t8_#X78R|ZpJBDUdl)14ejS^RZEAJmDH$G)tv{G@oRxYaymEJc{^6;D3! z@6r30@lXhqp{A06P-rUC!*aCBa+acL(ozX|>#S%z(-Y` z3I7u^fdNKlqEXYD)wHH9U8tg@77Vrt$s|FNFbE`}CdBO`O_6q~WB?1q(8-Y8TrRS$ zw6-gXEw;4MEnPur1x*k$K`GM8wpge|%iErqsGt<1M(6!L=iZr2Lcs3+_TA49&D?v> z-{<^$&U2pg{Lv*Dk^A(!w48~F)e4=**n7VObVj!DaH+zKw^h+C5o;TLL8SDP3E=NW^yfO>CxPfnV>E+_j-a127s=FgT2?!CTR~5ZH9x~uGgt(og zj%tibcRJ%^DN5if$Ub|G6s67_UaO%2J>KbW-YmaaE3k;FSAUpTt@#)Z(g!-icAYZl%wm zbhvH*nzn%%6uPI{YmYEAvx6`rH9(n-?Rz6nC^G&O9-n$J?*YKpyU! z{>s$7N4OvcN-JEVF13pNI5_*toV6Vi`h=e!o57J6ZJ1=v?l)63pXQrVCuM6kj>ph! z9Gg#*%sp{9AvoiCLU>QFd{<+J*aqR&z!8zQCxHf!MMGxuhDI8@1!&>07>&YPY4q9| z?R*1$#(0H$s|SdAIEJ5)3n?M$#jv9{j2-9l!`B~JoYGqU2djJ=3FLCVO1S8-UeOli z;Z1909WU{z!?cG?g0=E@*tsSF%Hx#SIYt zzGgALE&S`|(K;~L8F-QJG+)bAv>$U+hi_@2eRDY&KSxRqu=c@N799sEIV1YtephDT z{ZRG~^9qb{A%%Kjslv?`1~u2KUCR&))2`S3L4*{Xi`K4Xh=KS;VN@O7^#N`MrzUDq^-V4RH`|o-sbay?d=4Q58qy) z6$ZEW`%cI}dt2?0f%dL&k_@!>c0xJ>e@N;64-PKQfOMR(ft*1cK;H6UK)!32I?SNR z31Tpihn$cBAcdA8%>a;(I7tS8{2n3pC}c3h>`@rQn>`9H-h@kFRb;BaywC1iepvG% zzKD8{^z}DE;|cxgMXmN8=XI9UGsy!b5*1D#?0w7bg8-T7g9^F?Ape(^RTpqfKGs(L zhvoym$Rh#)F1AX>%lYyJhH22YkwGijHva6uou=Uq;qXO$pVy%<4_ZuLVOJ!Un|6Qyr!?n~ zdWp}Wu>Ze9W4{6pur6HGWBjoga0L^e2s=*;U=8Vm;v>WZ<&vxIUxf*e83JF=;7T?l7Sxn5g`ev-{7EOqaSHd0{#4KpqKx8%I@V-yO&qewhQ#K zFZ@>JqERb(qNm2D`GTYRtHW1M?+T`-xOwS z)0!6{NGu8kl*LY)8h3JwfT;l53}(+Z}T6+vIoVWYfDCN8$WA=yHob*65^L~gko(!%eg z;hp=CIt&GXmEtrMk)y>y0S$LLp|SjQ&tn;oIs6{3gg=6j8!nQ3&9C#q={ItUXZL4G z5#OFm&JJwPPhgk?#G2oIF$wTfd9`G{x4nBE#p_bm@}h^DI-xV6)bTKRm`(7(_EvpB zYJJcVrLygJn@#bpo$JZxdIJ28()oLClqPc3ZIjLomx!3w>fU!@n1AvJAn*6|jCF8M zXOG7A7Ix1k9|JlQ^=sW<1u?u>(O`1~ho-SX=}+J%nI>~1S4vB71(^Y)03W%9cL(n7 zV%|57D`|1ztJ8JN6SpNXZ67O3rQa@O%lJ8Fx=E$G?C59xtKBL z;5g2@ImsIt{vDeQzZ(0D$mumh<`t={%5haoyMsMY(#rh95~lM3TaDoiv< z&Mr=qz&+BWhR;Z`M=abBmXxZ;QkbA4F$C;u`6W}1gUa!F98}8pt0no|@o7q)k2*fM z)=BM_yE}=kARxAU8rDE#%cl?kJTPCH8uL-_YR8HJSPK^6!JaQm;*XJ-J}sv6_iJG> z2O<&J5|GkSmyvizcW^xTQ{u17lcKqG8dS8G%7aq;Z>0?Ze_MGb2d>a{P4C1)6H%o9 zgv-_Ly2<6rcZEb!R*ZI~75!o>gwJ8u3OB!8aNv%xXF_5!?eRUkDuwPvT2r{a_msuL05Iw8o6Jq_`7T5Rq`ze3F=kI#@SkI3n{X-FM z7ukkDFI^`H{9=v3xe83U{@O1wQ2^JEBTxn|LFrZ6FTLZnoF2QJzgcecX3vB%=5+6b z>2C3-V4KDll$@6+>F)&<`Zx&}-D}qKzk$FgK#a#W?>oH?R8CTDT=XOc zT$w$OfrO%*sx))#9KUVSby}KN>*)`$ljMF__(ozO`lc(cNp<4qtJOFf}6?Bvf^s>jQo5y=bl`ObWAioE2zd4m9T({pOZr}oFX z*U&J@7y78A=`0wM4tIAwwRw}`1ztuLa-UNiGBM_C6rjX_^oXXF7rB6zAiPauW^`0u zsXLTr;PHN(up>Pox8aA&7xWlojM-v^R5z&kTG<}a3$}qoMa*Ml-deja1FVy&Zt`-) zv-RE|y42Sej&t;d!@XFBdeJdZR2g37c7<^Fo56T73uBWPr&OxtoG2WH9*mTmW3kYr zZRy^acU|a{d5wNwSVX2I({s1TZX6kGAu!Z**F`9Ka?Kv{=n`Ild686I913B3 zBn1oLV<~;vtxoA>eUv_SDi+H68`AQq54$kSTA-Ma_;vNv~F8a}cXo2hsvCrlcg0$@JoVVE-J-_lW%+XQz z9eCW;^yTsW(UNSwUD1*p`;ny|qZ&klqhz8THc1{vNiK(t3ip(P0w`y5U%1QNbXUI1 znl%j%3}ETla<_W;lW)hYx*BWdG`0Ah*J9B^y$M(?U6TL7?fgbtc1U6TYr98wu%?&a zH(G@A)b#QP(Uv_D!M|1=2ZF~jPPC<+5J8LPa&OR_k)`T>@|Fnv^ahdmGD|bngIBW8 zF3%+GVpIV~nlt9G*VZ(Z{Vm$dKBjqFQ0j%u@ZE--6CM7>q50 zCRP9b1qg&$OVwrLp}roMi_%J5mT4^vXt~2r303X~*^BzZn<%rJH#9XCxf(8wEzcGq z)#VxL`0SooYjL2nxCrSR5k5N@Em=Z2_FnveZbiHL4$tm~2&HSxf=sQ~QL+@(AxOiP zCc?#bPOr(OZ}!Q#^4b%3j_18ozaPFci+2%#gJpgvhVs7Fq2D|1baU!S)5dR% zk|jb(U<%Lvyl1PxQQp7EC=rVa>G&5B*S2cgviK3FUM9Kv)}77`oqTaacQH#|UH{hU zn2!FTOnY^$ou>ONt1f9tv7SVJ*TJrGtT5JiqQ!dhW2nsAv?!x=4ONZ$)inA?ue#eOsLAAb7-`W_(nQdrm#C#8QfCjbZ<>m;4pgitHus>V7=-?mPQ7^Zd!rh7F_rF+1azHTWr$E`e@ct+RV%dh;S z>#uG4(fxd(AQWA9pA#Hix6yg4i>}+^ygHZ}Tn8g={(8gw2NJ9Z{^wm3rs36^`*=~WuIBxUS#>)Vp3 zFDFr7g@#{aIJ`eJYX4zBQ<_=HV)%J}8aK$!Di7b2na9H959u zBO7Je6cH~UY0EJbhoj!SW$x8~tvg%jO=%c|>h{!lQI0*m*+LImv$BmW`j#!SVObkA?fLUXe9h?OmcV zOti!^cPolkqk=!$idM8J?WpTM<4d}e4tIOHWs{S+BLA2#%og=o=qFpz3p&Lv3)1V{ z>+E>?O<=Hi`hpKne|DX0p(0iCm~5fyM|bI|WNi?HuI_u2y{uxIx-FYcxgtw>Ze;&I zq<)k2cA}0;|KV*}zvsf_!2gLP_T%5P5Y8BQVG%#D$8e; z@fQB2Z2u{~^hOsZMrps{GEh^=_biHXVn{(m!C=aiOmPGlq9vJ!#NrfExYX9|;y!C4#DO(E zMb6D7;|=dds5WPNH>Pm2|1{r-wCY#&lYf+X$asnJm^E{fnhgv4?9*3;K4up7=RLjb zqZ1Hsci(wQ_`R!dU2#!Rz4{eBj4}t+S9M-z{1VD%Z#AugG|mGz(WfweAwQ(tcepi? zazAaC`*F(cafjc#Y6bVdo9sf(mzo+cay2}|X06M==$!JA$Jii5p81`2ehV!3jJ(5* z7q{toye*}{vu#Aky(0ySD(!jC-tA`je;qxe-}HssN2PXPZZ&UT!)?Yo$;#%3Vev~> zpuwUGWF$LYPQ}V7<`HMx%b`jw(i%nHq08j%<$9UewdTBUJSmIEi@L9@raA|}d0uKZ zv}qJ`og`RbWOW&HyWBL*Bm5fd_xd@5Fz4Ul1bba5mt*QA@h1Pg`gfKMCtirqQHD!i zFryhQk=h{o-=GC$K9!!p^r;iiaFGCnHc@l2jDT{ z*IE~UmUFSBtM>RJ>z#tJ40OmS^>nY6W}ts#=NU_$0vo2kk*URbIH!*9uY@k+%|+gg*k1^mo(U-V{0ZMGgvtX*7LY=$A{1+$JRvmG{r3l@3TWef=Tu-MyL;H9(_(lKHB zQJV&{sCV+7iFKBEQ@X!RnY!jnlWT61+~b^zDOx&?TE{!JXOosjiT#&%%;j!)5WdK# zWUYq!rO=)NC!J(W1}aRg=C~x7Qj$Qrj5>AhREm)`pT;eetobSSn!nD*CI1L6S@DUW zdhm8|C^~#%mZ-s9icTL>m5Elj!0>4Hg2$!Cd{S?ddcJzhf89!3C%0Exa9%-@^ZLbK zl^Cr>5h&zY`>wnQAJz+BJKQmiLy^rq*6c>HgX0gXwd`3eJxn;~pzQB3rgk3$hb9St z>G~!OoR@`JP-Ql<_ZO+9pM!ml=uxDEc@e&QF5D)u8iUI+(}St571^;IYyXlKS6hC5 zkGCy9qi0lGzE`CB<$~}MNy)k>$;oM-))cyk)qdLuxol`RN^%J8P^sG}x|fzf$hGv@k?C_F!-L$wl@_$E~yei-oK5 z3UPXag4uuggkulK5nr~SJbntkJEyPo;iyxauP^C%_x|JP@mjSU1F3@9N3LX>FOy0&kPB=&J0T_ z);&Ti#lX;y%BOlO{qOB%6ZVD<^V?tH&TQCUX7QA~;-b*?*bF$N-q^~fjs7XB z|2J4ADWIX)*C(mFmiERB_miv+S@UwbETRH5zT6Nvl||%Ocj$#(^JSAE66tr zilEn!MXM3}rzJ}a?m+a}oS>yJ=!-Laetm4`HHV|SKCg3bFV0na{>toXkwsM3}l5>pnB!NNR3cxfvi-s)06a3V_w zBKs4O5ht=}AhItJSx;pBVW~TCMm?9VDPcJC%%E>ft@Zp$pn6h%cFT`%daY;entuCr zUjN!PefDdpZ|#~h_N%D&dnUK%J$=Q2tDocEF>l`$?N{#`+l8%WK05j6jDG|?dK!g0!d96}{l@E;N}Ba0zI5Vk`XSEU${ZdOBge3xaK+59z--AgfsCBLE^ z%(jJ+>9eZppIJBD@aX#Fl1Eo(wn#0MB1;(!huhfI)cu@ceo3&a=d+7*Q7wW0raW51 z)7u&7;uh~Xm$6-r@jHyd0ej$#ZbG0>9)`7p%DJV*{tZQ$T3rQ|LcAZJ37>f1R$m!7 z?uOT#(0X$xfgvt1{)+|n`A3&@wgZo(X8HQ0EPGc1Xi8(IshwdZWn5`zl*?kP5NxKq zP4sktNKHoK#4K-5Dre1hUGo6RSLPK7c~ z?KAXDfLdG1p_-GH#NvmPk(tEEOiGN*NEwMk>ev7D2KG%jX-T?WGG%;^nOi7KGWlam zpM7`W6(B$>=iEXpRUE)SYfWd4GbK0uC~m(-R9CPT%k_bD??#u{W043 z=~zC-&yG{>RpA1(?>`d03+BKj;k#fCT(mev?fWT*cAc0DH%|MhG4|>56Quu$PEShG zU!>EIBK@~?dR+y#Ypj6K2~>!g4Om-s>F#ifIC)%`W*Rr&c#edi~XdI7*+)bY|0!#C`g#9LO8tcEKefPoa*3M^Wq zL!C))7&1S9r15CA9bHDfY-PPubY|Z3ar{<1}Gr5G*^jOy!*hU%7(R>gq=#gy~ z{+Fap}+T4IaIlq44oY(7|UWc79DCg%coU`x8g3O(baR8Oa+Yi4;IAXr$c6wY+ zc2-57Sf;?>QWX|CJxWFbZpVfPcp~j!1TxGi=G)xBB10vYS)VkoFlYPoURajK1y+ww zAH~!1{@|N_nj^w!Nz(8qik0xt2y>)9#$92K)%?r6Qa|22PMN4HnECb*t=CxN&HJF? zVjVB%)7{7S$EJq7p|{L(uECH`2&%t9f8xd_{Iom#Rey?6>-9xMBd6|GcwGLZ?Mlw8 zYkRk$=sK`paaNdvHnB(qVuL-S5|qXJI|Qtr6?7j;S2KyB5M^nCGQc% z@6>?bx8ZwZnVs|CkgW3JdZL88RvLGidGXYspKi$a^w2q`OP^CQaOur^zF`z6!2OJp9MW4A}J?Qu~C*d;w+Mf&&+s{j0qww7z+ zrBc_kD#MtWfnkD);S$YAeO|rrursgk){NAY*X9f7T0pcY za)&0?_X#h`RsR;%*H8Kh#`>otA;fJ|LWKP4FWL*&KLqr)p`d3PGcyMPk$GVtUfen? z=&um0*}%g$_=iM?S7i$5D*+eKIq^84w@e%idj0%3==K1bmh?TE=c#%a7qfMa;Laj;+_k_XC`CfIr zIpL=^%5>qr5cW(gm}Tmd0UF?X$!w#M_z}^wGHB0L)SLBk+SE^+dgCN(@Fh5kn`Pom zK7jtCVG5}ce!9lkED3$he-W8)yw12&J4{PT#CeiEzis>w*shPKn!s6>QEAt$LRrk` zRUCu4-a|_0V5o`f!?tZ&#>kRnF`@Q?N{7Qepm05+61OBhDKbm)2PenrskmU~Z*&e{r7 zk79()tkDDdA04z@d*qEm#95!@3=``*d#spN?gbt(pxQ)@6_r;cV zko?$Qg5$AZlr}pa(E=kYoWY2#@T%J{VaaG*W?KCu&uf)w)Hr&!Sjz3|W}4|Gr*0ZS zx?O_h&5GNsMlhuSo;S-rQ9rLXZ-P{)bDLkV3R4g#jxDcN|M*XGoPJP_(|SshD_UZo zsH=)hB-}=sE0Rvsv66gy%P@CIM^s|Hn+I}Zv0YM?xmTt&O<9&IhR3C8uw9*0s*#m% zE#tJ!rL>NlfYT#?`F7vqhs}t{uulk_;ILH9oA2>123ovKMpp94yO_R9kF0h+IMSv^ znw$?gIY*kE4^J#2T_i!RPEdxqOLjKjQ~NN>;KZ$$0KZ+=Qymy+;M*)Lg+qXkTwUia zI6rX40LDNzp;8{NlZ@hg5t557!xvPMq03f3$foOWEwk6Ph$$C{Jc{09?J+Z7%F~PA zw?WHbnR31`zunGnf?Xfp&(}HZdTr$WE@FnV?CXuNWY_oA|6B*hUYE&8!m&5>nuF+t zYyYTFI6<`|A_pz+SzU_|sybX9SfB}9Q)e(VUD~FTUccD|n;NSL_g+(`HVJD? z)69GGStz#A=JHAQE^NMJ<2-ib$Y}0OnCR&oy>09w6Z&31y`{+!b6J*o$Q&69W^)@2 zobu0HR*&j7oh=`b4wp7Pyqm9nW7kd|#;)!B_LTfmE`-d^ywkq2j>!iQ11x12C4rV4 zxW#T3#uNx?i%5Q;c@X&l%Udod-Z5RRmV{b51(>^6K5YE=S@0j|FsI)2Q@!`iPiz*Z z*qhiZWwLp9i)5lX^ENwRhM}n)xj5^PaNPpS-C_>~PNtg07R7F+1)}x^lh5YOyv-Ll zZO*K*zTw973PqYxjHbv_7vu{tUG-<-c)Ra?KR=Y}9l@E=JmOdc*FYO1u=vEX!#_2v z4!cmi3mudpP;A~R1!5|Fj>nm2KA8E#PqK&UmLZeO*DQl#6yoR%ag6tCF!O)b(3psM zCimK9X5XSki{k$I%&}I6c6w;K)1&TmvbqfS<=lFE#X{#fa*&8hx{KxhJ8CyMaS5JF zMS_xSoM&&Uslcu0B>u@}x}&-$|Y7aOk<`vu;|X-C`$fu0A&c{+Oa z$+LQrVSKbog>JRMFW*XP=c@l~Aa3HI%8or7ITb$|o|L0uemwXDH-h>gd4w1BX*(GI z77VL;zG#Cy>R^7aeZ>`v*bvCAc9#srOI5Di^u_YTUd5A z*7TW|n{S%aZSwwd+BcQ+ibLOXXtC-0yf+(0=T#ubIGXvS?|jv-%QVkML~pAJv`ViI zzkC8MZlj=|Yq=EuFkHxwr@lUj2vn3i6_<5aCQ^skbTSJ3YU{djT>I_5+mQng_QZ6fycO9Dsx2(aRkG3$Rrmr(ZV8$aLVFhxNw?FnH$&rckZ<~$emO(Gu=WEflPfC=)4=mi zJRzOpE8MsC9SJu5?6bbY&PYrfgYX63?)ZyGE_x9W@&%4gZXf#=0S-g>6bxZLI$!~J zj1_TIbIsAFyQjMvuB%@u<8F(BtEumaJ2c_c!38*Dl}|x;#XlQs)@nAy)UDLolV5)y z8I;dXX`ZUGHb@ET%J~Wd$^*X=gIA&z2Gdy_LH6 zJ$=Ks$GRs|8ary`b`gFMzbQxezZYw}Cznv`@$vk|LhZ7Aik*e@L9|$;nO&`1qQNU3 z$psi1FPtj&bM+v)E=RZ$v2|Tes_lok55cR#p~W~!?o)eNf!Gg)pxZBU6$ngv|C6F% zZ%)7nxw}h9ek&IdJ5DKFx>Ss(D78_j6_3CK7XDJa0B>C*kHj>P6)l2uOoijA< z3g0AOApBnn!tea$wg;bdu~DR0OH-gYuBp$*EOY&zsGxqMyxlhSaaZNQw+jD*92&D! z-n`yek6p5%$3k6dm)|WL$w3iT>Y9o8%*Zk*3GN}2?owq{3%*7kofUjqo%qgal)DxR zbJ1GYM9tCSdTC*_cnQClqh9|zWTlE1?&Q%{vDzqJ$}oZo1OryAwgr`=#SJ=b@k+ss z(RG6Gbig{d^VYdek9KsOHxcEJzl}T!kksIM1d&WJ!@f?eliG5v>tq6Hxz@ITw{@L} z9@(>#!CWW)HpKk(+{FC!-SZp59tz6rWU|zk{r+(m^FuxHD0a=($rLp!8cYpefmykd z$%FzifvL=X!R1503n>;~Tk-01$Q2P`sT)G7G*lSHE5+WOs+{Y1BQlRpZER@F zbcv^i*DB!|GSh7O&RAf=ku@IeNpUD&$rcEQRnbUJZcE-&4S~ zgtY`vvR_fBz$GSnE0!9?4LGt6>sGj>J;h7S??{)2+fPY~4g=wdb=gj1D_156u=BL& z_Mt7B8*foF@M-@_c8ji@{98yawx)|iW;+# zk~B96mI`-_PkmlZd=5#^aCAzZj$VDT?yR1NLLEIOsnl4zfz}3@QmVY2Tc1PfFEsJI`5@XN%|R$x^DmYlojLo~8pPsde#yEFIuiAtylF zqDPS) ziw=u;{k2^y>WHl3mbj*lL-73H@^_3RFZix~c14k>b{k zRPr?r`5~id%u&QNc^r?2`T013CEYrnClQJBUGpz~?e%kv@0u@X$lI!kcDWA?Dp!z9 zav7AHA?1o#U3{?P_%0JIJYUsGJPuU7#xebNW!@>rd69}wza0uB{r0}_2P1qNb%Q^`S6mqTp%=XUJi6MOLK^H3YK zn*}5?H_}A~gY?Jw#5ZUVPd@)qRkiM0T}pKguFZA#>g=Ht6nv3* z_r&EHEJ{&jz$F;nvw**JZ;o1h1;=ac+9+_U4)g!%RImFP6X!xg(b=CliuF^`-Xli4 zrNj8pf@h=<(PGV`0LjAa@Ru_?^l(*UgFb-xlwDprLT@%TruSdAXsG{G#79s@)N+&T zIOiUaWyh%pWrjOO{iZLqEBta_-m?w3y8pF|5hlYYz{C~N$v>3Ch!K0zZnMwI(6JMK z)A35G+}Pa`yP-;by1{0{Ah?FS_YG9e~eS|3 zEHeGlJ%gjhOAtvWa$tXIa1>OGjw&4zMOS2!<2EOH;gD#exHBADSjM?Qx#tFP@*bKo zcy3VHxj{?L4XW2c6>i_-qwq0*v+r>qvw2atW5gn(Z2Ac2vp_ze5bab&H;+stOO+T; z;#21u!?N&)N4dkr?vbLJ6e*QUqEU262Ft|DO@e17sdS#)-OiZdq+nzV!F+JAfMF>P0xms>ZFNX&lA9S&MIrzF1V&@2g4 z+r|9Ks26K;1jwQsoOicdx%O&06)k#H&tUbb8^piy7ooM%iyrmUuVBDL+nIMslX>Vo zPnyg_qb@L!MV#9eZ8n?adCt`Q|Isub7%!l09R}KFv)KtvOzBiv$cqf`^yIY=Ul`6h zVO==O#x3jNLzahL7i=`CEU49=T4a9c!Xra!cvM>Vf2J`gb920m{R~iU^^6P?jOs7i z$Na`x#$5gG(eKsx8JEzq9Lz2h<9L9g#mfC>FB z#Bh;GTq2Og3+~tDO9AuCa_S`~r7zUQBoaz#l<+boEHujomry_E_gBN_PNZci$fO?< zDsU6C#fhPkg;EJs)k{^`{CtTKa$3XZKx?ut&>Eoj-%M)%bTR{fwWOU-?Hh< zC)*iM#%Z=%dJQ9}B)gxy2^0)T@;`{I6UC+pX7?sOHQ_TZ@u~5?A4EMm{9niHBUx-Y zjK!32`$Rdm$k`-sZcdhOea%}OSIcsiaHTT&pn57-vx1Wt5^??uXTayxJsCZ**ki(n zs^1C6uS$JBQ<%KymUwLbQcz9&1q`O=O;>DExE*^KF?GjBP#Y=tsDCD}JZJKx!=a@D zA~X~3&Bo6eM=A-+AV7Z!@quM5=gT8sjz=_iPQ4#?b5K2fIa>>tQv1ipt_yc~W-k_@ ziVuKCDmi-zk*My+Pl*Ez7TRO3l@<&Tf@_6Owzfm~W0w1HxV<0ATeO25ms}GbdoNbI z&l_jRk$-m6FNL{_x9WyT=Gs!p_6uPHJ9;^XRM(+bwO&p!?mlh3oCe1t+6bgf1K!1M zqqZLd9*1K2Zndfx-^!wz(VB&AIC-v4!I_mCU8%qatwm!-IPWpuQyG5uU_nmcS=%d| z=j1CBycQgU<0!gE_QeVJUtFPV<=RB9C3bM4tu)r$Zv?ihnw{wC26jdRO|-}rtW=LY zj*`-TEmCm=t#mWATlYRc6@pvDSl0Y;n)idvC7i{MGXpy@T{Rb;gAv%d5zQ%GxBB*R zDfoEM`EC49m+8ygAk$YB^lvBSEM zKvPhqTp|~rnLYO>@;*2?@5y2EB0DX4pFs$lyiAd?yxlPi{@y6z_DQ4fsN%~fuG59v z7f`~L>lWMhiF!UaxSr#SQ_q3Xsi&6GMO#W&8q^=h;d$J^x?!evzr?5{N`3j@kd_ZE z)r=e^Jr+P<*Bob=F$NwhBCZ(VVYNryIRO6!xiIQQT8dEH34%0cxG6K-nPC;5u{)y>SqH1Q-~PCP z4_dPbcV)8FzlIy?gFF|&Vg%p%EBlyW;QRA)b=fg$F5_=OKhtp#Q}^?X@u&RBV=Rqx z#<=*59^>LZ8RK|ZKOZO1CV`*Zljpl;QNL#Aj`m%1jppW#r@-I&k_(h3CTBjXGh>u% zkM=_r*psI_!?!+0_aOJkukA{O#gy0KYd(sEOHkc;qwdu1XZcFZiC;fEWKOuxH`Cq% zq{K}7i~ewW`b9q4v~wyv-!LfRJ45`v3D`_RhGMF`|J@#nMJ+DU7eL`CVjEV!NbY)jd<}A^s~t;WbUzVO|U9u@H!OXB9oE#$mqPEZ+gX zMT8tqVqmxJ*w8HBZof!h3zCAJ7}z8F!=`UKUgxb`kMI)L>^4VgR-!TQKIlj{2~!W5 zBl1D@SP1#Db!Vo@O7d6q@>6_@-W|h^)@Qtp}I5V^(JTlD;Z4ZweO`gDx zu!~#g?O_-1d(3%TgzzZeO(XJt<6HkZdZ=fFiGo_>Kw};4p0~&J#RRC1h zDaVbtJ{4M`siz}b+`4121jtUjA zdn<%b5`DBggR9`AZ=sj8$}jp$p0lW1+qU;?mD~seYK(#fBK#XOnd4ay%RGm7o{C)Y$bQqA2&@Q zx}MCI4*9OU;#Xq?Dp(!jXEpq~d)XUpVG&Zeu|<9x#x5Ap=QLX+z4fU4icQEvW{c2s zL3DQzX;Cx9X-1$Q_uXRou<@Tn66xt&VW8iT+JV5vL2H`L&g!!Y&!F4t{=k}*M)+~d zdk8}G1JF-nVJ{nK(FfV;rR~UEq*}L55i15oALJHLvKi{5=)A7gkC?TmPX-&AIecRo+u|3$X`s3-ziCyOtKrl2?MzLCMO3B-bFnGb%qiw6Rdey1 z(1BfQ=P03!d)0B`tnxFeNLsccYp~JP;3Hym^^AHOWoyUi>KXMaAKd82jjo>29HXoKVs!P4+D>A@KA5pQGn~=Y`~PCcV{~s~{!Y z=;|3&E6qTbhQ@wP2C%|$5IMfUsn}A# zS?X1De~ywI?Y*Dax&=E@^sINgHm3Zv#WjwHOiVR?i z`E{>3-)|mbi(pEhQC&MR^E^JS=@q%w!_?g3)L^}!9rKVQvPGlNcI;&_xl|A56|+Uw zT5M7*bfP||1tJ==iIW#2#~0wdM8S(wV@tDQkBi)eI`*jOfqLZ18jBa@eIhZZ7jkS8 zHWK>P9Xp7Z3$eb~(p;-W4m!a^0@TCKNTTJBkf`=leYQYVDE2Vnv!y;ARC~Wdt%Vrk z?ya9Bafyhn0}*9|B20;(%Y$UAuOAe(G&!nuP}DrTIEE-*MSXw2922J{=h;0d&&T3X zx+*`5C!RN`((Ll;Ck+aHqh9x6Y-u*Yp?g-p{ttMv$=5A?fjFuks%NLqXJQR8`Fy7R zSqAo0294VL9CVrcBYM!(vLufRI_v1h&iDOBs9h9(Z!|j-+$%FIi0^DsS8o$nZrE(D z=u+Qpcc{kRv&Fr>&`nsER+Epu%F1X@pxvC5`XCvxhOD}RTG|2uzX~j*lUU^XzWoQ$ z+Bn=Z9jnY3d+t)VbiOJG{E7PPXCD{!rdiyv)VFefsB*|2=qfc*22cF+VcwIx3G(5v9MY`&zA(U)*CT>Dgl7S;(8hw1B( z8BSBzZ+k62lK+u131s813HY1e!MF>Tf)Y5gWS zaR#eI@Gvr-R{_e>K96nx$wJ%(0m#@Sj$m8uOd87A@>~bXp!&?qqDK`CG)s2CG|G2t zZD{QvZmRa)=-co$z%$o$+4Q@v0=mu0>RM!`E-Ljs&ggAreha1VXgymisgh0~UO)JI zUqyAylH;GT>w*cFO2WW4GqlABv`%hcWZ>&Au+>WSTIiZLDclDVtbQYr0ZJczL(6rmMhAO%bcpyYuXRSTE-w^8#hJ zFNrtoywz{kNiNvxZ;<4y_M@yt)@Ah6@`?Ija5f^-QU}WT2 zy)U0Nl^1CDt^XD0#h&u|;1Rtl+gM^f-ulcJ^w-+N8g(Q7$r>G6!}}9-#Yr{vY!w0A z00#aWCWrIuW7g7zp?|dX0Q{mBEV?J5%ixG5*8BIf_@|{OuVS(lDdiw8& zZ&-1PJK84#pGV*mlW=zwyC>3*P{T-5d};Pz=)U=ny6cCB?v9R$sUt=9mHh(VBTPc1 z>eKXQs}B4)i33TzroBgn`%--^-7FLsY6o|=AkK@@h1kGG4yD8s9mN`V)rrM62q{10 zjK3PrU5&U^s}bS3efk1oK3r~xv3{+Vm|K3Z5{e$uO9boE>-?(!Z?6jd2ANsncg}^F zr6W$Pv1sRP^ShvI{bJ#Neu+0a3XI0d5njK2Xe8yVj07CBB$IICrHJ`*PbIfV)w5vy zb__^^!B$;Rtjm&am>qVuPlQooSRr~bEm=xs<#9J4Pa0+j!>%=xUk+V0Nrz1Wic z<)baG!~9j#J-_BDGgH&gQy^%xegM>7sjVYWGoT{?HP!WB(-Zjal^4(x_=XdC0X=~# zC&`8N1g<01|GJ(4Dgs(nKt74sv34Dhob!8FuFLL~3`V*NJRC=Wbq3!sV?ft0U~9*k=d+z>C)JaoZA zhu1HdhJJx}%P{%{HG_yTHaZyNnk_yFEg-n!$yx<6FET`Qdp|s$U9Pxnr2-s=k zKWo|nj6}hZ*GJxp@x*W!{7(GH8#v+|d3!eNG8LdmT&|P}6N%R%^%V69ujL#Sgia_z zM+Lzw-)dF5Z?Wc}gK+oL5MSl}yY&KIWE5gld4c)#t*ZK?_6{=9RWH4&rhi0B@P%)Z zFT|xEhIzJ|mb?C|N(bX!(-=T?=4hn@J!E=_)Rs(LMfc4VoxDR;n%6;P4A_h9U3fwB z9X}&_kctBMMC7xr4Kk4G^>4iwn|y5Q1473)ehg9Vji#2nwq>=O=vrj8OY?NRmem#v zuVuA0&!i5pSx?Zufolf@w7a7h5YX26OsxBP(9-Ek+zD{tX5cEovNa?5s{qq7EBGnz zS6=~53i-N{x=F-U)I4Fc-QI`e8u0V{f5_q9#T>)iC$>HGIClwH(H{RCJZ^DyAbM*f zkV+*sEt_-{iJhe}A|_Sf6`M*0ei0c-&zB;lYN^#vi zkd6^m>1xSUEg3lbCg+(ZdGaMsk>p`|%z)o@;}hJ5xi%&^^;bWdIGq&d=!>VSs)0)@ zNH4Sq!}wM`gx(TnNy4sDk*N)jDAiVc5hh(=ri4>UqY$BY-;J26{czh4zx~LxA6fPT z%285sIFJX226=F5kjFIpkuQ&g>~3Pe%T2;}9Q6Yk$hK+|qDJ{a&U|1vv4DJ&ocw01 zZ`}B148^a*6@1PCRsV`TSiVtAlg~%^4DX+mFw3$2GMlLy`&@9&Y_*0tWq!^oKS>90 zwp8zUn4l`_LIz>=XnYB^7GX*{M4Qzh!OM8lR@d??+~M)$10w8J^~K& z!)g#j$H+h38%PjMDe2llA4}Wp)aJi>QG%@~S(wv){ zN#d_4mFTkJat9@v7=JNo&dohnqHmMvg~R2pmuQIrXn*l-pithQp3K)kJ|Oyhnew-34i^LqzP}8pE~EVRgN3+Tivw5iBDWG@zI|TDp{SA7;wLOhT?f@(R+c@ zFA&=^s8*qez%I=q-Y*N;DnCjS0;n@U-qwf!NBLo1ekXy)ZTGvROP_Z{0{XRZj7}BE zP#5)Ra<`TO{Mw(9RC(N2^#`et3bfq3P|Pw}({HCs(`)Hc$lYr%60c6nA(CIw$>Wh? zBlGcBb*Wzk3ja;^)rvoK#8>qOb!&Z=`67-#Un&s7S>LO3>+&`!$YFaw;A)iCREq&Z zf34RH(HZHZZ2b!sMS2OhZp8cNF?uzUD7^&yih!42d!5ipvUHO4S_W;M1+*HHFS~jBGa+@Qyu3ugCv=(frA$$a z@XPsQey6YMuRMDB`wL~$#y{CwB()SdUy{^N$b#SSWVq(P!XJ%E|8lMXHVNF67Y%rj zO-#bSKm1wJq!}LnW`@7&NeTVhwwpe%KK={(3^hX!r87B{TJCmRlfnNF@pCDf4Bi7A zPC2vNqV%^H4nF)vvd%sH=^Gf6F0LhXjD&hsLBW3io;Cut;mi+h?+fDF2HRMr50Q z$;N+`bsw*oZPWodvn{JZzW46Xp*9nty!_Cx=Gl1RrLS>D*5|V$Yru$8_!| zQsktmg(H|{m^$1|hR#STp@_h6XxW1xi`1d=p0Wj5dO3GD{3qw`NE5;0-Ji0m392hdD!;$A3v&E4bHe%E0@;GDMM zRrrXBLNQr!wj`&?mL9R1(3)Uv@;@72`u$Qxc%*qKm_UVOmvAQz5VTvKn@KGmv37* zOv^0%(f-9S(V@9w;7IP?#qN+i&u1uUJ8=SvR55H(;lH~m5w(i9YS^MyUiSAwrJSOq zFNZDaGv^e=BoU)a0))1)v}wOCqc$y9Q|EPQQ}lBpi(rqAnHZ5;j7YolB|Tw8y7)!B z7)M%$CBh;mPbo96)Z?>$APnqM{35s!U$O4xYw9K`%xAUoPW5}G$h^I}5WNU}*4K0@ zDZ*!c$xd}RZ<7@5vu?4!H%Zlb`+O)!=u$LbQp5H7+h2a1Zmm7ZPv8X8gw0Qt5#H!qYCt)plpV81^bL~*NuKq!h_!98sVVYVNT!vaRC{06cvQ2SUfisqyH*Rk z_*(oM$5H$Bi2|jV8oU0e5&>Zpmy;6Rcvm|FwHFO~fz^4O{G1yMEdi3-3K6?WJLX z<8l>xLe7Rr(a|!5=r|3^JFHCJGq}++3NpDaH43sqmDmrsg~3esT{GLGg{_MCn&I|c zGsCMtKg(x<-*-(xrvCh-d}i>Or9UsX@iG!C>6?xM0Z;1)&te?NHI=#S~fx*`-wiWXwf@nQ9y{kO;SA71fh1) zg@o2xmrjyuNx~s`VE1tLjqXnD(FlIk$n>qPgOKT-#Uo~eN5QJ+L#0>~`j@|u$L~mI z?E!`$NV9zoxBMF0Iv7>m*LW&s>D7(==5tTWqevh;FAjtG5_(0rb*4``D{Eq6K zXR{y(-9InXY!UUZM{q-zP-hj4AzXWz2%@0|w+t?WIE z-5-MaFi;X=tNlAL-vf6gVZPry>0mxz^Piw{+agQ3Q-x~hS43dzdC~+|&Ii%R65g|U zcY4gQ781~^Gc;72k^7|G=PUtQk^t|ar+T>>A1wLmTs6LEWS4uqyIyP;T+rj>O{W6Xyh7}T#Hjxn=o zfVJj$&qo)hTJBREXoSpEV+gg2x28ci+1t(kd%}G%7QA%E{}@7jw)F2UDn3x>MW|1W z8HxqZhvo$_#rtkp+}vI0XEM6Yd|5P=Cmp9YCm?_=+P`gZH5b zHKgMO7N7MMJ3fI>#lE8)GvWw!hW(vDs8ji_Qgv+bgR$vjEV2YPZQ7EIO~njeiM~(3 z&I&XmW>%mX<=wB}Gq`aUnh`T81zEnx?GM1XBh$Th$N;tCYx}7kl#EQj>jWhs z(`JIshfMFl*f2c-?tJz^aHmEP=3y?{+^3BZX3=Twf!Pi%I_)v0W98tq*TDT#Jj`!Q z_Y;!L66U{%PGR?IT-5=bK(bun+5#%LE)xECI7Km_oF385SvXZ z2LWBKeLQdu4Z2!kzEcsLd{b|rxLTU?K7P=+5?ZwJ#jX}t@IZ^}#%Ehx*FD|hy7^Fx zYv&6suGotdM>!79*SZfye ztwu&<$SHX(DX>CW$+h+azfC$G*Lr-{20SZn$3OQRxI^C@6xUB&|B4yFa8Vx+^F+Px z+O9iC*DaW=J@LSSUeH0m(ho?J20R^om-`;;5(`GIaCf7xv}-pzA4*8rs+C@;TM+Jw z#f<_wyjyt)zm(RCJbl9`M~Z!pxj_5a(xUV$#naZvgT2huhEK`+yU(#?`bLE6fT^Su zN6q$@tbXu{EF~`or2r@K@Jht+r`dkEu0+JX==ZSp@^i`9;A8#tcwm0C<=-p@tq_i~ zMf)4Pb+;zT)ZglWv+-*3%Ac3NYxw&JfAJ;&zxJ$4;dz{<4 zY?UoPA6NIYFOsXQCo@5{2%sBlFiT|n0vo3)zatmzUU3FikVCMkW$oq{~T}62K{)U_{eL`hmpnZ5mv(_A}OyWBQ)Tmc-u{aJ2CLOhDefCv$b9$JQ-KxNkDUx`yYGg*LSc z0fPR0>a&XF9_SO*5s~s=Dhmri|BhS?x5E5@UvSWzoVw4N)~>}J3eFHBq7Sxwe?c#n z77>1ML>~H9Bi2B^d0upDymAUAU9MT+4|kLz^tBR2$WF6WLtO~tMx^%g0M)Vw0=iuX#5Pcz8yz^(bB#ppBTDeb zT>@39+>OUENBv82%u!36nEzxC(~TJHKg=cs16_aQf0zbecR@|ocEK?Sa4p~vf9LXP zrAXBpIN6h?3->)<90Zk#IEMB+)|1KwA!-1+QrMEa)zoi@#Ln1Q2z#UfuuBH_o!d-4 zW+E?Cejir>Geusgyo>V675T(?POn#sW$iW(236l(TI6S&R)UCyP7*^&_i^XXp2ci! z40MrSG$9TL)e}eM{=Zr(-a*Akj%rN^$8T79qo_d~RhuNLynjau=>ONZsxP0_dmTo% zKJtea*C+Y=9DfV>dy2m}Zj`6K59&h^Z(z#HWwuy*jT8wda&Ha4=Hr4C61UCY{a2d? zDb69t7aC)gx2nlMc{SE^i4|zY1g%>4U0dYkK?c1;lm<->9p(T}*85%Eam%OA8wa?Xkijhy#ebuKx& z?jeUj(W>L{eMO44NG=7y%e68k{Q+Z>mjWcUUkcKxC55dQVr&vVwXrFSw9!a5zmme( zBxiZUnn*gt;sqcH-8G&!ye{du?fUnO{_WGha#}DnrEJ)Au0B&5TJO}bkZmD$Jip-R zC6mvZM>m?<`Yz_!2}EjL@~2`WI3m>qnV@(gj7TF0l1_-9p9^w>v#o;hL3I$nz$scl zKD<9C+*v9jHjkLPy{3lU)IA;BC6fgm$qD;@gHN(-K6Y2mn>X+6Zp$`)`)0@MSEasb z?3zN1dc5I1_@k1Dn?HTI)ciA!GO=AU1I$Ri{N5wG7nbS)*wQS}pkc{XixoM{uX&Gb zX8x*5Mgk2@JVtd1TzPO95t=ckeqRkd`!fEIc-Ek5o#ZwL(K^D$d(QZ)=MfiX_QFUWdOoQ>NiS2U37$;_d3%gdPI*G z`{=s7X(K{!Kh!%~EZYVRE&8suKL0naCX8Kkr4468pNj38#G7eJ#fwL3XETd0uJ1?c zR~ZL%Qmxxy>Y=l|`IaV|QxDLwav>2kBhnkQZCwkeJs$P?SCJgm_r;=J@h=RCh_QT` zr(F=!aJHD|m%45Hux%}J&)ymlI4qqLM+fp@>iL)2IVY&@J1Qs-R~G*8&m?C`=zysk zVi&4`4=x_L_+l_~G_uhdTwKw}%`i-Qd8j{&K;~wF-97;ry2{8goWgPYVy!0)!!^7s zy3b8R5kaTNJqHObT_k||DbCm|d1JezKg`W~+CQh#79x+T>sM_faWGk|y*M3G7f})v z?-k)j?Zv54dvQX_KQwwVgQX7TQIRew+_?~A6EXb%YL@^5ssKKjW2Rm=-5Z#*GTH2} zCcff|2-{gc^&25f)GA~^>AXQgmMv6s0Vqm`Lg9koY2BBv7E~o-47s>EXSC zZCoLbjQdRl+v97FZMCOUi$ithq}W5QvhEP~lCrkrMEy`ziS4?jN zi`_9j_%?Q^RDXCD10LWQ>Hi*akG@xr#4f#0jkRfDyRrn$E453sdSEfNYY~qjwSOYH zc3o0Z?J_;%wXg1?_EYxmL+#x32Z_YjL$!NLwJhz;lDakW1%6rDGg#Ww;!9h?g7uP0 z%}b3h?JMhVlYr)@ouw_&BYM)~{77A>Uf)XA_j9ao-ID#!v1pGPn*~=!j>-DgP}}P} z&0gQ5>y@nUpFE?J+Gust6f%JF`Ayvd)4mN3g!`;(I!LR1tERsw0_n*?xMm;#fev#j#2*+F%CI#x6`ON=W3k%^o+PR>b^Gj~YNDNfGh$VAR*PR>%vSvDkR(8)OvNdl4W zoH>`|t8U}xj)erh&)<6luc{|xnFRl{1fSvWO@fy#aXPtUr9BNyJ?^F+=jq|6Gwpd` zk9*$leCtPoF-?1==+zqDE7Q>B+t3XToBUfAu`WRTnP^I7c5IhS9s1h6+tjp*J^ZO6 zrKT4E>p&0RYDS!7I?RgPMkafV8DNK&amM)td?mqtcv7U=!cTkR>x;aFeHi~;EZ5tC zQ??gc3G5Hfk&rWZkKo?o3u-bnD=iDZo)UV_ZheW}>Tt)(@V-pDAM9r2>DKwy>sg=F zYFeV<(`%MB@{}NO7n3x&IBoH0y_qecqX>1)LD7;|X)F(Q8R(q_LvFj-roCo$t052Y zy~~zXPs;OdX$wCqTbe8=Q@a*5B9h$HooGa)T1!{uY;sj*Iuc7_4Di+GveFk9}?SU(H@4EZSxqq359y|eoh6c zOmCa3^ya-vZ{Dk%&HFi(PBh!>)$y(S0^}j?rmhZ07lupN;XjIjMtt}A!#H!qa@VNP z02O&wUt6c#Dz02z^oe@%EwT6IKC4A!G*?;(c=h9WupBaUu#od=V?0<+F*;Z%dv#Yl zSPnuuSSWq zs%~6(bDLI28L)%g^`>t1IhuR!k7z^43vOj5#x0EjpCivnAE(C9o2x)S>O7jWb=RMc z8TfD49;}B~uAN4b|4ZDvz(-Y`YvU7UfKdi!z^JK4o7U7r3knicG^l}OCI}1+ms}JA zwxu+swnd!*R0v5Yf$VIy(4$m(imk1*T8k}Kka$mkW`a@(6m1Z+*rKkO9E}=7)Rg(2 z=Usay3Adh}{=fgnkICM9t+m%)*Y|zbdxc>TLXdFf8Ubk1q#6Ne()f%(I?R^l8-WZc zlBOmO(ZVmv>^VG(8aTXE6sbGU|0sT_gep}*Fyf(XBMQr+QImybbCH-C4WMICGH@>6U)_CPgyizy=K4}kEBA(9-Az>4Cdf&OVEFub@yH}wRDDvspL;R&t#eBs#uTY9>Y60pj}XaMu1{F%jZ0LEpg+2z_{lY& z91G}6thskApxa9O+UnW-plI9Tp7o5CAZFtT+v|VWjs-MaVgYS1gFbDzX9PFuU@tT+ zhvnWLkg!R!y(V-desv>~Aj5cnHej;wl41i>f7jb=Z^N0)_8y?wp70Q0w)Zo@bTQj& ziqoil6Vz~_2aFx@n2rhK2eDR`Bi4G2>PHKOr3vk3*aU(4f-wSzJ`=GrO@9U*^BrTN zQpNj$iV}9qVz+0)OdgJErj11T$H;~whZ?@4KgDw`?^6?8y1WyaYPkKOBd|R{jd>?v z?|KxB?D14p$vct5uPVvNQ*9_~`X4@3+u>t)U$9O3G*{LaOtXy~(8#tWbD}FUu$gWd zyzEz-;Qt9(G#pq0rsXZc%%t%z7?RjvFhjsA{A_#T2{#h9Kzz_jSPFs*{nTYf)wEl_Bo5r7rpd_*fz!~Ui*M5d#ZGpxFg4kkAudIO)p0ggq z^vYHu-gNMDTN$^Abs4f;REe&?8NV)(18R8dpGa^UfAIn&AOnq-A z01gK1la5}UOD-nd0N>3J0tYY+G5c0@tBbG^HNP9*9imydFhQ}#Hvo9XvyVf*-;k4x zFNtl1kdBFX#IDTvHB9M>FX@If0_kwCio_*#rMF=UXQ>rCARk&X3A|J*P?sHpznBOj z&?QYi=FI_od!?5**N4E(p=rqa7xi@ouKd8i>&^9(dTw!8JoI>TeMOD7KQwSCM_zJA-O<|lh}>6TZ~QK`2!2jkLL-VU)y z5B^CCpU;D|S5rhaZzL#Hn2DBoOt@xnc~`%JrocpG^l^yJAcYP;L1|J-WB`TKVV^bK zrRpD`t2S@tFHo{3e=w53oawLbSx0wm-l`fTo6|heyJsW7f!I~1pyH(&s5B3i)=Z#- zxCwL+H^Fug=dCKlJL0cuoA2W|RGTq1Ic|Ve#MNoM^UJ7Bl+HHvWO|U9<3g@CdJ(@@ z=83`u_&)W=%_95?(=FmNa_FoJ2?{|3Sf)n~S)t2f)A)w95_k^r@ z9(dM*Lp>74aI%-s37C&niZueA3fT%cuZgEFb1gRj#Nw93jf1Qj4xIqJly^5UAbjE3 zQu1YHNmq0y{4jRRf|n5UDv^(yxd#)ZMQ*e05CHP?T$Laza=S!Ko~ibiV3@(HE}$#C zaTCp4xYh(skqd8_Cvwc(wCGM-THXyQI;769tGz4Ckf1*Tfpxq z5yv7<%sDw%CG;>dRCr#wST*zWLE{YNosVAh=I5tLxT0K-Jrp)nknxC)V4!NjZ4CdKnK5{;q@^yj?wmgkEy+_K)%LnUa%5z{$sGz|3v*}W|< z1vh+d^|LvYEbBue{A9repZKuY%)_Ek#e@Jf?jcf&uv&ljEa=CWdytfu=?SU1QUg5e zw!uLk+{kI!^yY+My4e;?!$seL4=JUAM0}6Ba4w13gp0mowu`#)g91Rs&`pR43gN;{Sl-%^hx$GQcjo<+F_z52J2%I<-ws6VaJX$Kk0I^&@DdowrP$I`osjTKKDc z$-e==$MC}e%ioCgs7>VC)EEA{A7h{25RbI0Cyv6icjTb@6|U%!wc_B56y)~!yNfUF zuvT`cD#?du)0D`6xBQk2$H->W;)q$UAvbUa%dU^hV1U&u5*&+M*`itTZK=4%w{f1d zyia|#Lklr_M%~nmX7LPXdBFSipm6rfWh0yi;BI#+#*4BF@9+OIQ&+B5p*eakI1T!3 zX^pv_ljhuOh#bF970j?)!@$+#oT*%?g15b@V4Hz~ZCT`4Jb8bA+%!b!*5WZQu6T=f zwuY6CzfS3=@eoTvE}Lb`E>CEgu<6=w3^eohyC%Y?mGg7mMj(~9OnJeSD&U7WOPIZX z=9mkaj(P>6f@h!L_avA-wu&|x;%~@aqJGZ)BST=+!!#Q8@QR*MMcagY zk#8o z-AdC{3r3<-R2K5HU$_ll_O8jo->lu&1vg`4wCr*{2V0M=l{(S;#d3V!0nPx-DHocq z>In;-4GWElC$fW^m$#S#S+GLQhqxB(Eh_b>Pv6jM_Cs8IuUQ#Cd%eCYd3wFlVc{R; zolWWmxjvw_$+cQN!Rxl=_=NhU+%D$rgL2CWP;2D2n70+UHDz;0cV(CYI->QHqEB%1 zr`Wr`%G1q0N>6166!sRjo_0H21h{W6>o4L9h3X6Vi+;^F1y({F@jvuyw_|^T?(5~( z?ulfg#t1@RWC8_b?G~a9nw4$Pv&Kw-;Ho8)cHHy{fJnXLi`Ro1TX7`1`=k)#jRug> z+yiG}N#0~<_F+jLBEv#0AhVgb)px&S(1t&#*dyM#Q3r2@PWP|#*h9R zA;yo0>#)hCqXG5Q8)Zpeq=k=wX=qu`^JW{taeNzn*v7Xh`Fjk1b?9-fJ6;5OuLY;%J_v;g< zaw7Holi!oJAN-zxd-f){Not4H3nPFPXgb@g>DC z2)%I>Ilbu(oDa-M+H)ia3@x+sj}(nK0;%54%E;|J2#!^f+c^V66~DR(NjOIO zUp!ROg$z0@8fp>0;<}zK!gX~9%J40I8E@_Ad5gItkqZe9q=CqeZ{uhhLddBrKK_Wu z0qvBPVtFx^kdA7Juu_jBst63lzw;q==jq!m*X0C?AR0w%da#X!It!`4eFT*S|1td$ zV-?4Uw%Dt-;zs@Pb5O{^bTekGO~>q-!3<+cDST;YaPx<_Gs`p z+)>IUrmRR*K2%DRk8xL(!! zFH8L`H}qz=3cp9|gPOh=dV;oJYg~x4|5p=Y&y17wgd!f%ShAx55w!OX3>0l~w-9RU z-7WhM#C>5=%qiPCSGKiz7XrNE8{;4GDi{z_@%)d3i;K-gU=nkNe!a;NK4+GCQNJuq zuRh{1_FwapxhYjyp5`ahzO^h<`_dBWor*ubRG>PhHMr9T34!eyC-nBZ7{0z*g+o-PAkJB?_QQq=j zOiJ_4boQ*AyIkrA2ldL)5H|+lKSoN`H|Ukap%qt%n%$$Bk~022GKVjO_1r{ry4$(q zyG;weTR%li6ukFsLLHXtoT}X``-?>loWT~FOFeK05$dx-)qy`_JqEk67~#;BF1tGz zjANGRS_K|BnmGyV%5ZK7c%vB6dd&ImtOHet%SM^gJ*KAu2g-}0pQeO|qDxn}!^E&3z%Q)oQ#z7_2sZ zE`SyOzef3wd82Pa?FMkxe-w|(8{LOTt&K86%kMVX^1H1``Q0uQCmPeoM_j>tS+LLR zXnumnN&Rxn-&l^}XUWt*aYc^u~c5yAEm1#QlP4yP<@EN)wRkvR22EN6(e zogtVDXa*54;O3Ej9fwxkj`}$`d+cKp3HdkVJjJ#=zE6;+_^5v4A?C47yy`a1#aY?s zZ?aJ@2M4HEbm`yFe^JLm)bYkcA>;wO@^#*7jTpQvRrgdjRG!s;-i&}^;%fnOt1>_M z2rp0xUHzmV^a&xVk*5(1hBXPbfxH_5cO#;$XNd+OI1+itzyv{spC9C=j>(w_u+*XU zvmQ}K0!{Hi)m(CEZo`dKdRwE0|+SCRPKJ1X%*1;HaFglZ*$3C9)v^c+{?Pi^oHIfi7U<0 zif?0{nhtZ0f2pn)zbth@8m{3+?u2Uk-} zKa9Zb*eS-eQhmZS*YkMmefm@HoZZ-dPNC49*i49GHB{E3cg|tliXLcUc9IhEq3gL6 zk-VN;#am>19US@)M-gMqwG1Vk#VEl)#nd>|Phne@9>9$+uq=^>8(&~~B5%2QeE<8= zcT=M8qzu|S2n>Rna;znD{f(&B@(j~$H$NJ*uMk;3MAkxMRV7OZ3F@q3IcMFVnE3(; zOk}QNrqGING5p(@LM_ti_$s2i*eaq!{zDS>zyMWPBw;*V82wJg5;{l#|pxY>^z9L{6xl5y9W!qHTgI>p9 z75wBQOcE5TXu{?z$iOT^r9?=0u!3f0D&^M~W@BFod41*F6H4RbCxxu^Y;HO)va)%|PNW z5UYYKcqMoT?8O}yOHAJ7-RU@OT&MK_>`s3NFdK22e8LJ=0_md$>=J37#$r3LH@(Aw zgyvT1zRb1Qe@=lt&i)KMXtDo2iu$&Ffhpj&mpgdeOKqEkTxS}5sU>yt1e8@(CNAbiqTS16@s+fmM6N}vR z6&w2nH>>-v=KW@)ip6ym@W%*)Ek0JU5h3;SI7r^A=W%~BM%#k4Bu3-15sbzg!DzgJ z(G3dO7)|EDZs<>5XamYp$c%66kiYHnm)`_$6tAkwN6?1^VF-{O{z4=JyvHnrc){QJ zHm;8NHZCCWGVwR0hNUO)-bg%~0+e)~DjERz+N-*MT35rx3B1R-YIz$IuUC^A-}O;E zhbEHWya;IsJL^x^Iq-4;MUp!B;&}!|hyzI?77!%{i4tK@Zn5c5BFA5i4}lng5}CMu zswD0PRX-QnFpAxuKKP7Ofe(HludoU>)W_b$ON8Rl~`)pJSLHmeco3qh!1(`dj!TbnV zR-;#;PJv$evP%YtICeB1`{Gy{a{lW$ma{B478_&omx*8-u^7*QV7aW-rq_vJWv?2? ziD0?H)!rKkcJw-}M1qbHTl+`NGYEFqRPjsD$D5}rpVgQ*J;_QDmWrHLJz%LoyT>`j zWzK?2)0?xK%DgqX9+>{SAL|!!ZAqahI{W375_PzdTYW;x{;p`BK+6IZ1BPi4)(jpt<=a+ZC0D5-=;(b94YIoQd{gkXp6dkfd@6>$vr1_UM zF!Dg}Z*xKFX=r&Bq(x$VM%yyc9uIj;)7<8R!XKWHnmsWb9#Q@h`SegRgIHkV*o85_ z2ZH|apa%bt6!izy&(V4gZXK%VH5d;vXk+EMC~lUyK*)l}aKz?9L|-ar-y(yx=$ z8GwDB&sK5;R|E)^0zAmgK$$s`A5$33)7xciVolVZJ%VY0YNv`XaT_IVY7MX<+Ktl# zW+x@!vt>Zagzm3-=AXS!@1&OlYitgh=iR)+4SBMew>{7M^vih7 zQ!S}Gef7$B-7UlCLT+ZQ&qR@E$T~BJF>7+bd$VQ3|mDFNpICZFb~&3 z3M8^s>}~Cu2ilL;!(Xg+)Z|e6F^AfZIi4n!nL;tp%Xq~sgD0_sXNP_2hUvY$Q;F*u zZ`C6#HVspEETrC;r8N`@Ekr#MibOa6x3CHeI&g$2Xal_bRu}HRg&5_C0x%y8#7i=_ zKpSyBawwfCIS2;U6^;jg>cEl4JNu6~*^mP!MkP4^y$tuVOS4#3CG+c$zLVr8BxOr4 zwBz#X1MCe?CC5oL4ykbX)nwYjb#<4b^B90faovpHllUbk2R8yQeOyvlOb8GQal;I% z6jGfqN{DOA^VE4+qDy#gPhi~|5yDmbz1K&%%Oh_WTH@X3#S9FNC4L*Qeh{bETQ!T* zl#JEeTE4>Th#)FxD(crReR9p!1oEcIzx{3b9FNHKhBepF33Dqbi^5nyPxTgzi9}KG zK?lvd`XkOqlrLL?8VT3;no;7$M4;ba9>?0+E;+vU&nJ}!Tz zi_4$AeyLVX19l7du?nsN@k!}f>wHkh$Zg`D# zz&q0bAowmsJ;8AxBU*=%D=W;HfmPcrihmVtn>m+zsQou|67ADM88%Z_efBC2!u}3e zTi^C(JYKP@9VPV#)L-8u`PQLB^#evFtHoE$V zmW6>N|9&n6${MqJE4xs-Q_Gn3o(m6E+b0VY)6ekm)j1*4^DL?oI?>_H+c87)Zxedg ze*si8*B`?NvUXS2EsTkcJKc+XgrpSj`ueQ8LHnP{Kn3GgQ^s3LalO}HKd33Whci_9x^jAAWIHm zK;YDgrk;}$1Hx881fWMIWCg}1hN8F;Lva~{?!G@w&`;H50G>pgT^9zTWhXWx<5q~f z8EdNyFz-X^^P>QJl8%jc8KQNHn~t;C`kJx`A+|)lwwG{AB54@HkPm4VKWWJsrYvmp z9QA8>719nc^}>on+jkpxfMM}34k|qn)1E!v4t~)YU5ea`Z0+$x{LPqq>FrLfH$DLY z5E%$CQd0%7%QkKqLpDyI%1h2(`K8E?zQ8qyZ4`y%Ju0p=@vsCBS>Q0z9}lJ(6U9|} zoorC=eG`$Z^#wJS&^ya1sK(xjhIS)g839{M1+W3%5bx6zR#75DcIxc@#QM<&7nzxW zh=ApKe_V@WB{4qe249e51nu7DG7yh%JvRfcU!mEYchuj21cX|k@tk*fGpZ0?_?_3n zUE&VgQ{jmxy^a|ay^Y#Ru^B&~Xa>KWT*9|DwqEHS)wDz`Ia4!LL*l*dAD;HTTj`6e z|6>Op!Ew^9e)yP{>yZ`jEjs*>_txeMm?|Ql*V+F<5M}t_AGq;ZLqe$$qlL1m~MEl6`_IYuQuGYz^oSL z))5ra;tX&LL&}0OA=Q%G(H1PklK2w1mLQ~#FDX@_4y|r9mY_;RAce|9R-DK{3RM&D z2Vh&;x*#s$^k0BCQP?&0Q0adyVxm-kh@Ih6BLTHM> zZbBAV_V=kKCIS~$*duh&9$?sbbXV5m3=&tn%FQ&heE|;3HTc8-@y^qQa@kq5=qhD&-j%T~fAq<~Zo0Ofm=+M)*)vfAwHziaF6dbHAY6BN=ueVS zXmKUyWgLcyV-80S)E-cuJgK`Tx&*R@l1}YfJSdxZGd!yITQ8mYtsZ@SE+bPmkof}F z7r=gX1_!;I!7iiqQ1#{dHm8+Fn*f#xZcGSNpWg4?T+c(V<(lbzdbgRkI?qa-iG%NT zQy-iZ{=PW@ViCelQ^*N(f(L`q-w1eGT}Ix6ld$Rf8;jko=bBOoNmF$jViSN#u|+0; zQ^AWonRtWFruByTaezTg$OdGm2^Yx`~G6RflLW@;~oCC zclaCL;jeld-ez#8YLXPV3cY~?&3+SS9)v_|c;j))wbI)_Tb|-W_$h4jVfcN6V))eS z@#psId7FL@Z|{*?5Wzzi_*}+hw=wlX{O-Ze=Z@}xCC;jHe8;=}#UIM$=}KHo@z(F% zZmhz?LZjb8t_n_y3iPla>S*;%=inZ z78?1Rf;w|F2F=zObj_}=1mu7=h7CLFVE5Geg@iAYOEBA|jo=ojWl#)-DT${12*(nt zdS|0rgd*UAPx>yK@xfUMjbX^vL`t8xETJS7If!3 zKhL!$#xLv2etpFSU}3jLaW;y>11#Jzw`&!*QsjsR}s56p!U+#Rl1IdAzdR?Z^)CyXV#M$`utYA9@hOOzc8&((+knDU!X2tJ38SzxSBPD)v1SAR+_3HYE)C<^{m`c`(b`JH!3f^N*MjOSo0-kx- z21&+b2r1YOoq`Zdu3ky?@6+S{ppUuAsGlc}>!HH2*axi*wxljKq;~MLkz<(cbhzS% zRt8KVQxKYdud1Ea1~ZF`ex`AZ|9LA|H*ZdMJ=g&1q2J0Z_OLlI-`W@x++957zuaTx5$soTdQ^&&F`OWs*;PRTU2Tq=bgSQ%^>|(W zpjxwA@{vZ4$PZTHJei-7bs(xz!sqhOt@sn^|13bG!s5v6ZrUjN)1G* zq`8ZNzZ9CgG{W3PWxwv7_~(ifENv7h3+Ac?drmcXX*`{|ivk_x2RIt^as4~)>>U@^ zUAAKod`0k~9uEjWyK4|+kjKQ_C0I%w)|mewCqlhDC294t8qe{_QEt<8#FU#6kAQau z+t;bM%h2aNn4rukgp&v|2v(qYYjNoYRHlBRYY~eV)~>b$>3!!QcIen-m0T>S($6Y! zmjO!`T`Oe#um(WR!I1h7)++WcP(P);%R3ohlmQYnXjT8(je-ct=GW`rwlO*1_tJ}C zL_(OGy6zW8prl^}IZE~q39HNcw@@Y*zq%R8u*rX5Fl-pFg9a!0ZWKd~yBdYeadEI$<6^{PfO+&bo!hgaKx~cjyFdfey0>j)+?F zUji1RH}DBusrLY}Yte*%IhOrIXd2Nn;~Axt)y_CZf^9%&?Ohz0Z&6}o=yZL zGMih^vBY%SC~1yIun&$J53!zE>N|giS2lm6Z7)pm^1GPiV}il? z*=>GG1>oRjPII&R;0sXUmdKl%)yMfdj_wEWtFU}LWDw8=z~FTcA!f{jzF&S0hHasd zKetzS$!LC_yY&S#F$W+YdgcHO28J6(9kr~(n;5qn&HOxF8OGCWn&jQy&aCsIpPp{a z?194QEi`;GcxVjVW+A>Mi6}Opo_Q_yCvo-l%zZ>I;E_;zCH(gi?7v(#nFK>LboJ-RXNM8vw6 zSf>76S5mQQIOZH%BH+O$0%I3EU{_{oxxD>0SqAX8zRL$Sr^87#CqZJneJ80ox$oBM zO%Ak#>P`wa4XpRyRdc!xjSy11w^OR0qF?;T{rJdf)SLt!0{ZccTb4JXEXSNzJYwGL z`nYrd=TJ+!@2eOCJ$0P5S!eSOI^oTBm>FZ%@y1y^gkB`YG{s+*+PcCFOyyB0Fi9k_ z+83|*AWe@>@Wdk*MDK>*SYPyR_>DbxQHnbJ1{ffab_dSthIE^h>Vlawn*-OQvNSTF z?PSbLjRn$}ina1(GcXRHH3MVO1oTfF0Z;Q_r=I@f^K`Xf<4F^I=CsVh_>$4_B_maC ze=5?1M(lJ#w8Hfotsk#W48XB5Fn&bL`}@G~M6yS{i)78Z*opDCD!2?oS#{;lP=O%s zU0+vG&y@pu*atlb5Spq0gph=y*Eub(dVBPrD%wV(a1TlYHq*>!L!2s*dNE57jlP4B zS}f5r4DsCp4|1>+Ad^zPoeGLk`wn^?LjxQ)>E>#PrOCrq8)m_M&`u=V&((Nt(DoKB zn|qS)Kyr^CA$c{VHeP;;D7m!F9xOaO-&H zegnCPuj8#E(Z?1~vLrVdW+!DS3NS#IxAIrIh~$H;=syxtCTX@lIcne`4td_te<48X z_Y;w4NgQ;9NkK;sN%#eT`IwmKAZ40&l$dDipc39dy)KB>K&UVh1)!wE`02?PM8+o> z0VofTMBoT^9R}>u_tpV5avig~+8Tp&h(-TnTrjh?1H1z5!v`Y+c|ANAN;9jiERVy=+0DhWdoo2g zhtNTEWA~9iN~T#aDrb>NmAmg|<_F2lPP`f!Y>BC=s?I^EB7}#fg%u(ysOBrF6%ZcA zh}zg|OjcvBL7DM*jnTwkQNKE+rnxM2BWt<i67&!;#!wL5f+~SSMsPWfY!RNih`!~T3KJy=$Cye0cYNj2j@i#-O zI=E+nId~*SKJ!GizxfyBM#TJ^IIS^1B`>&aCBB4#@-H?&#LOn0dXTFW>Z-?}1mk}P z@!kANyU6gaWnc)sbWqh}cnKp;5f;ih)SE*9f_1+*(_k|q&=x~$&GPAfg5xkJBfc#S zU50KFbd>-)w1P$4n7F2L(;}*`F;}o&M&OFm!jF^=xZR9xwpDJq+h?*<$&6 zdu4y>UGvNCc>Jl97KUE6x1uGIbM=$K{}%?4lEuUzj^hVpo!PoJ>Kb?@l3`>q<;Eb} z(m-1i3g@g$Oxc*jHqv|tHQ-EAgRql4mDC#gRFdH+BhZRP1m>$ZB- z)38SaMO;-^HWofRvHzD)oZ~zWPUS4;XiTL4TrAjJPd+GT@NiHR3j5hz%l`tqM0EB4 zjjE~~(dB$d@gC%By`of(C@g&d3!Mk2d%o2pFnRF@T3~Vk(wKMS!uR5|%Q(Fz0V01jD0(#8RqbV`}V|W*)0dt}#LJwe?3@b|R`XQKa6__p9yfb`SHZhMXk1(q$|pVuLBd^~04 zci=NIcn~%xB{Y*a{moCoX3;E9LoozN5eE+;6&?UjoZ#Qk?2@2QeSD?Oi_?z_#tJ(w zjA*J6?k(?_!>xZdg9pdd1)}x7)}L)j0oTy`bbGWjrTjUrV@J4uw87Qd&)JDMk(z6- ze!w$ZunFp2hPWUwgL@2dOkhduIz#*dLceJ$8W5{mjK4fi8ddbS0-U@~onVCNc-d81 zoe6qPZxm<43|$3)iO6BWWm6Rd^57ACkPi(bLsOaZ_k4?nO8*#E{ zpbLpH3EzaVxg)BfK8zsXBq+h5+MG;HtnX;sf}X_$m(N`58%>B0Y}p{zdabPWht+-G z=vnIrZr5x5Ye=(#538Bq#9D`22KAeL?QwPR%@Y{9ja7AM(o#e$-Q<0s4y!-I{|?9l z?t!aw`T_SWh21Dz4i!R8jjvwWl+a$7qnv#kDyu&|mr`90+a;!GIt@>xlrZ zCjz$hM7aN$x_Ko#iwJ2OXA*R$M5cN9_U{6azZDRL6C6W*t7S zCNLO}Scv`AlULJ`b$9?Q3{dm@Eh+fBE*?ZyoL*iz>HhHjAS{&3~WZhSeSyP^? z5;Dq>tP0K&_r@c3WdN5M;K`(GZ+y0Fas+GZEt{O|651>wn@lg4U78@7us*bKk}3cq zpDd(s@))FL;7}%IlWnLqe)UnLLO#$1`)rX!YPH|kz|l|DLj0IYM6##rvv|!~YIs`P zhvP3;Mm7)53P4f{*(JC<5Lz+{NU#I^FqDDgI+!I0eV`AFtBa9p3nMcO@#1YF&WBI| zHU8n%tCt}k2ptE4)up(Fnu5Bk-+v=|Gf?}pj{)~f^pEnw*G;h85bPEMW#q3ntF;>af)S%^zy+}tRlHb4~lK*UgCK81*H8#A;H|c zD5Z4jU$%q!=~5S{PE1zmaI711uOVL7RX?N|;^^F*7B;1+6U@S8pzdH_Sd158_#E?h zfXjn3XtzUbpaaWKv4JK7=$j|mKZj?|G6Ku$kGc@F>ZjGM@hlJ)F0=W%vT#`%-0eJb?wZnkFC-}T7HwUN;EkWmZYT|DOGu|y~_B6RrV*I zxyJtC{kUX5!ogEt(q&qnw3kT&yzhy&ENH35kR%eYe#kthka{GBzAOVmYV*F~xW(d! zn0mY;A*N>b@?#KFb0)>19ZRW;S4(fL`_lMS@(DK6Ue)=d9*OmTeXXy=I`L(F#rN^~ zSns9NGma!w`o2tI z!zmhS_G5JObfs9tD}rq8orBRn^fjRtxaia18Ft~Wnzba9ep zLw;J3=BGJsQcK}l0-RN-r{F^%2)i*WS)B;NkcAUG2#`pV%Ik*r4VzwMw%VDQpcmzF z?AL@|^j311DO_63eFz%Cb!)XF0OGO16xOI^QK}5G%?|TU#wzJg9g`W-N*v-7&Zt5$ z|7PxPHE<}&n$6A+E!TC{_(`T{DQmh_3#6~9l8FdJW6m*$Tj+iXA+YgRJG;c!$Sz|1 zYqDxtWwp*0)(mWuh7kQT!;!3U^e-;gwz+Ln&-{Po+T>NbkqVLuQUExEroV#x89g;>4& zKQnhsmY}TO?M>e8^?-g~f(qEv>tWJO^KAD4x^Y2gEAvPHtNZTF1B5Z)Ypz>qF*Z4FO}bffjs#o z(FASd>!KYhFWJSWxuW$l6vi}HID5p9+HWshxbS#O{bx>dM|8(O65Z9kn|PLv+OjK- z@uD>Kqp-kJoLol59PPl4<+u5|V>!ftj#v)y2QFlDI%1AZ#Be#OSfp{NMrPIFPhzI@ zRp1HHW^Z`nGlO&~oF;sn6`t~Y2|x}S!P;S~3!&M&N`ij;Fxe-t#?d#QG6Tj|=T-@`S<1NW*MN{E!oYz8@=mON!>|{Vk%;cWJ0O-4UK}rkX`Zq;X;PD@!hwsY^@FT(8Bd)41w` z$6D@1Z%h#ZY9NKx608;Z6u}*Z6@~!4Q^1`ttyP+*9f}q>!(SKN;=OM^Cd(>LwfRYG zs_y3$xSP`b47tOTdpF(;KL5YkU#Jf!e0!JWw&4iN4N`~J=R);)s2_@?jk3)Adw9Wi zsnaRgE;YKAP!ZY>M!Ee8cNkvLJFMpwu!xf1MBEqq4Q?-8MtWc5 z3g0;5LcO`(J7sg_6Ld_B<^zhzEujb>rVA9|UGU%p>N$Z$g5h2BTfk-Q+)m5-vg^H- zyTP*!skh1ml(#&GCxqX@vE)cRk`^i|R0HAU1}Y#e^r%oH?v*XkIYY1gwHnb7k8qHx zb+#a$K8S|sNh2Df6cz41j%M&J>>h;F@NcD}+3lEn&T>!u2pIukwPO{a4_I(h4{132 ze`OiC4)vOnyhAcO|JpjpI|L65$yv=iB(V0Mt%STozCJGrtd*BeS`5><7`$hKv}axn z991gDdHO|nI;IlT<|RL8#uq( zaa{@c`MB=D^AG^4-Vhh?_9Xv4x8m&NeOiuuq0&;E7-p$~1=NiZqIMVUn4lX&YPPp- z%%%4JPx}7(^K4rqhK_$)k{U5W0Y%f znb#S}^h(@Vt*4#W3^I7oUl+OP!Ue2w7_g{ozY3lBA=n`EtJ72Drh0iwiV0bXtHyt# zI`7sa8X5;_$gyw$wVI>_KrKl|9TAPy_Md zL4EQOh^apM9>w3Lz6YyOk6o42_mJlecy181;I#EUB)I~~z4Sep7E+tR{U|TXaX^U$ ze!?((fG|WT)c26Lrr<43t=;B6${gHL5WB*`}j9@{>A{ zkJz6xkgp#4M+>wZvgb>~=(y8`@;U?o%HO)EhQG z)101EZn#O58}_MT?nGuMUX7e<1=pzGeG&QyUdz9RE}K(^h*|?4+o0Bf+}qAa?lmY) zorZmCf3o&O1zXkkSiyOge=94f8?2r6n7VnHb#}9glP{vt32la_x?5m&*E-4+gIAuB zdmoL@hbxI*(QWl$f&Kun+68_mRtOgbxSd;PV1aN=gw$2pqQU@>vrYE=*FSE@ahW1a zdn-Qtft;ukQsg_otLe=Q>b3^I3B6YQ!uUOo-_QlsjvwK-2*1_%-G(3WNbOu;hy-(! z&+S;~y`BNDc<7?gG-Z&z0V7^5FbxkxOiBvA5^j~^*K0=p1tO;P!JSfgknL@V#pc_^ zPr_e-4`Q+f6-G!)jY!uFtIPv?MmP{6wm~pLK{^NC`-}$Fm5Y!D0OYk8mQM~@^KsBB z$#KK+(UMD$G#y~bM~^u3C*iIn$Ab*-YDNXH?k8e+DFgFq-N)O7wtt}uaBs^`;o-m4 zj4noka~1#Iz{9h5EkU*^0#)a#a8L3ZOg4#3tyRRY=5zcDS3VLEv0IhgPr)jLTxC}Q zg=QUI2NYorbiSflttnQ%OPH+hv|%P8Twm$S&2C-}{nIW=RaddzgbyG_G0Z(FieUhq zEXnoE2TbKHf|&4`CrAmW9spINJpl0z*qD#_gAnTttCpee6y4Dj>8S2qiu4Y$6Fbb| z{CQ*QdPh7I{Ka>B@E7f~;G-so+aDHda1$g>q{UOv)umgpzHIk6?fJmwA}ve!3%YWq zmQk%jj$P=tlTau>-CCR%6JiMi4Bu`(NbM%!1Ca{>VK$7DWfoqE`!%@7$u(?FPg6eZ z%R>+4p%{8AzSp6s2SHv4DYo+rI&=^WM6p-88d3wBLvaocaZi8sMFc;z#8o@ah}8h8 zYVdvZddmv5^MBQi_=l!6taX4XO){nDFgrMn{CG$g#zg9`u9}WY=Fh`-2C40+q(%~O zTttlf+HdQfi^DX=H`)fP4MdCxQt9~)qL{lq<}CYA>Gmyh#uul@ zpC*q~Md1n-noN$Z7;gU&SU2+@Vqz)&VFcm|VgagtGzuX8A3!OB!(c&nQjzAUj7gKK%`u zl^K2YKoT$m<3q7YWWd?v@9WS<>WhmcgzgA_2lhqQfoG_dHSR&KUIHAi|7AqP0&5Cj zck>K$P-u}yUGle2V2jfPp>&2FfBIV}UAhd7S6{l0LJ8j-JAMQr0D_5Oijc)}mBXP8 z*5RO#T6Bld^OPx-zr=5W*8zj;Ixyx99&zbh%MrdoH;w=wDroq+<;n@EvbXs8W__~%Ib%k_6c_jIrj_@Uk2IWAHS-rVf+5+n$vmL5-{f$T? z3<(ZHG2ptN6S$OpJFCumkdP2dOUJKWO919Ya>Oh+NQpcwzX#A+T7eo-&?H>CbB3|`#+acI6RT*a`597c^f3wif%Mpc`KKr#g>S}>~TRu z%NuZ-#udIh%Q@g6cNSv<#xBDcuiepBw z4KsbYNcoEwL@qL&<|}dV5AH>L+*eFzWB_1`uhmJRK6-5}M}=onuCOQ03c}rDJJlHc z)!3$MBIj}oU4;Q|gBsM7FnfGx*iXk^i+WHqFs3c*g*jjw%%b6mA*pt-c4-PGD6XYXcoMVG@{ zIRZmj8p0pde4j`g@b)lkEf*IpOJ^MeC~U^AIIN92u*>oo z^>6iqycbLN{s+jFgv?+Ar@?N#_Ul<48H^X%&LP;*t>euV5cIZlPFZIW>bnN@S)Q9v zQzQHKzY=s$Fd#d#W7W$hOtCk9vBt-k0yO^o_QcMp5Q`^mTJb?4{ zt9sbhF6{*A8_ta8mc}EOnz;+CDGOv}-0r{~o_nng9K#`)dE<83pz~nDh2erh`yQQ; z05TdM{8RmpgG92>@wgBAxCo>+g^`92Ot$qukS6*c6B7C#=!QD@{J*0A5lHBNa4CuR z3g~})J&Cjuz!_J;Un6^n11j%%=#AM|(ZJKVR$n=YLpF)3eBL(V%)JUwkie_6&XBR@@A-eK5 zr!^g0#_fFopsAn>&@Zd5;&12zC_YccXS`YDz>(HwNx)};wkq_6)SOiG!C~YV*Q zGgHLlZNj(>gJMp&4J?7BgTW5i6ozOCFx9cMbnJ%hjz#{`Nw}2W1_z)Zm-Lewf0foe z=qPQC3m0hT!gU+*B7Z-ye~Gc?Rr-@7tK9PMqTZfAUIb7C&b8LdD@-!A6+Z1y-+dFj zqY^mZ@RYBJJ0jSv+<)@HI=o;z3R$%)?t~qQZyg z@X+AzNQ47#Q;#E|hpiKYfq66dC@1lB{2dGj-lkTdFpmZZ2ab86z$%Y%Dxh#LRI>Ws z#R*o^o%nx%3_K<}D)PGBG{DU0S63&2J0j zO}NY6i8J%)NVVez{HEb|FMhA#R~y1&PApzM-=g0(%@eK9Q$t3|>EkPq+eDW^OL#zZ z8C-%~P!3*kGo9x2yJydsy3_dcS>6Lbjo>=$Drk-d*T7i^V$0X$ zPlcRmWa(oh^n(wmpI$E@UxLg3HBW>5Ymvsh`PpQjt}*@V-~`pYJ1xH0t)@Vxzkr-oSax$x>)@K3Q(N6NH+z~|%HK+1jN=9rQ2SZ|tc8sO zRyn;O_z&7zM{CH*IcDZ~%t@LjhKLPQ-4Gvrf3`cFterW#GqEMwxCQJ(h>ll8cZEX> zx@^wMiBB{(=*{r)R=tFmY^Kj8orwYop3O$}4A?Z}*=!`w#shpp>XbYioAI+zecOp~ z*r(dNTH?)v=?D=k+~0PnWF4--b;(!|#f;A&Vqdxf&`-D#*Ee$|4~-Qsi~6Yx9ZNEW za(kMdUG~A3}^#W}NW2XMd9NYl~ zo9r42guQE<@i!j95`6&9_u`StqWIPA)W3NZELbGQQih{Zu?k`%{)@x#QXW9;TpG=R zX=GY-8O%e6MWJxTz?mQvpM8Wh#sk(Wp5lxr`D)0*(#P2RJcaA|0V<$P7ywdoH@Xey zivBfmcoLfAQ8yiJ7ZJ)&0SHDV{dgIu5L@QrXqgA_mb`?BH(G}8oddPyy=pSDYy3ae zWX(J^vN%E3l(M7hf+Abnh))2|LqN`}r~lF(m+VKRw@(#HnHIXc1su8aZurVxTJ88x z{2s(_BYp{-QHy=#=p{7={+OY?{fGj4QmOZ=rE_J2yVbL>#7fX~Cvx-#FGL#UEoIkY zK>Xe0JYZ`xJ{C4MGH}|csYh1f^zB!Slw(^bs>#=>*Qe7AiQhc%*(4cRy3N83CBBj@M>=! zl-Q4`M==N3d8hZ{Q)6fL(TZ)Na5Pbw`nFx9k5=r#lfC#%K&jqZu?OkJXU`eD_%xmB z#b?j|&WlfDj~AbDr4m#725cc6iFk5VAKZ9vr2QZgv zlpLg1WH-S~1;Gq_{ajA`bafY!(9*}?NrxxmCitj|4RCFvGHtWw62o8BpFoEq*0JdD z6&b?6Qh|FIHq8nBRdZi-MKcWYR#6oVN(4Y+tB&Cocq}&qNNiPyq?6dJUPaH8V5Wso zrW?s>-|COZQ)nZ>b{-@f;tgf#BG8t5RswP6Q_DS{TJHG?E%#}_fUDfBCdhC`_qlKj zjVj#!*nwMIf5w^_LTt|NWT>LNOp;eqGf9ulmbhWCFP=FX@(!RavJB}bVF1G5knf8z zpQDz{(oieIQOa>sx6QPn7M}pM=wMMmPmd<<|14he$jdc7e5^z?aao;l3Fkq*I0K(7 zIfw<<@(m65uEZc5EyFnlzb5=%#SieJ6H17px;~4TUr{cB(d_wjUttZmGKu zu=?XeX9ZTPkj>A;2I_AVsW!xF|%%qO8WpM=(YPg868-&1<;1a1M>qlqoxT{|8-!IIFLG5L!ofVXQ%Ak>&x3^OI> zCte5sT|>t90^ll3;yjw|zi^;3!~d8S7?AyP*fT?YW3CXuc#d|Rv&2V--0F8a4Xnb! zSqChul&mWVJzqv4Lu#u(I&6^tF?#pgXUeCeb?%TFXyI$}SP5OI&Ea#rz9^S$*eu{zmeAHUeQGR)V}7Qtw}Zw03hJH=X)=C3l<2jcRLxmEWjF zeng>|2lXQ0Eya*OLU+x;GN6B8h;zJGHvYVGSKht!0pQF-ckv6#J(DmqWYGqBP8QZ8$(<6^iolT#C3*p~HqU7A2VE$-r&b8m_ zjJMF8dne3Uz_hZWY&EmK8w~ac$=|j3u1)@KRi&VN&EUiEv;MP}KLHC=IBKB% zt9GLc^n)b^Qf+|W-t}V2t%KC+(YOsg=bc$jtv*AfBc^|&QB{l#^}Pc);DIHEap<>9 zJ0ag}`JbX2djAG-Mn4tB2s5dibQJxeCDp+95wB-g23KS7s5*o?O#fr#)3aq{c1lQB za8)Cl;*p2d29D*5rvN)*eiDU_)^qLYg$)Qk*%tWUKG&e*)5#tUvoDS?TaG}Xond;(s09I8gD z@xf2xlKlu_gnC<7-f|!E)_n~Bs>kvBoPJh8y7$LV0HOVd^k7@2S>S_yitWKH=0D0w zvV$FwM|}W1>WOf~R-!`QFd8yBNgF;)u2U3f++r$NOdh{NuuFliMit(Qy-`bO>=U6VbZVycpz1fwW#) z{(AgAWEe@Dt^zLa?;$vx=7G3UrC=8ze321w_gU1p{`jnm`eJ0`tt!l3LY`laBUSi| z(U)XzBF4f%vTM`L)qI|B1T^Q={&q-BE|evT^wasvtsRXC?L}jv{oogpza}Q&wDkT7 zJRAcIMwW?|!JP={r0FnP47OE+MTRmFyUYNV2_xo{OYKOpS*`hl@hBF9EC10(i@{N} z`;O$(%ITp$0T#j33dT?Bs=FZjMcScGz_?&XwCmh5pBlNh4acG^Efa@x*mQXoPN5xj zjq#=mt0dmkYcLqc6g%vkt!P~D-z+>!|J<{{-|1FIAHalkS@RJstc$Xl=*x72dtTLn zl>@=?{=@IV$;#@yZmGNMQnRExy3?io1I{u%Pbz=$hw(u6Qup!?V81;NFP}3@eSM0E zVZ?qpIimR9$@GgTU%)i^7!16@U@BiJ{$}T59;~2J*>K%~n!a5(GiVmyLb z&yj8@!W+YJK(_pQfIyGpEJ{3T`xwEkYCvy5fBf#Vc{{^RA;sKh4(uhV(yf7L7I6FmYoaTtGU)@T+?%9{)tk_8gL_5fM3<$*ADDUr z`7Q6^l?0K5!e^nALPfogNvBXs>c*j%YcVNgb9AvNo5p;;iBAByIqHsW-33EJO!1*+RcYUTOD zBGn3&k6s13ccXyETyfBR1(`2?3=U0$4x#f;tiw0?6DzW}b@+YB)E@i`UJE%$cMpeo z{wr|PSk`$gvYBdApg?n=i15kEaVreZ8{%} zA1(e#$kPJ85q>wEpt(Z8JM@j_QGa^|w50aL))(L4_*M>5DE#F@oZ{eVVn95U5fg46 zM|EB-Kb6<{`~bLAf{>=W&7shrNsZ6U#9tMgE-0dRNxQpj4-};e&CzK8e{`c{fQ`(0@G7YD5RLUS zMqBe-@GrlU65MljCDHgfONLpl7ueU3D$t3o(3pda$G;QuP-DRSdDhMS>fahR2qEFX zl=XKDp3r_y6Ac#pFt-Q(XiR8(s=CSiv{1e7Ym3M7ef-W0d&JDWvt#)gOo`>E^P*l| z1xUS5P5a<@ywI9HRu#+#1m9kcEQo4w{+d44h6)1~C5?Ro!})4#^=4l1FSdG%zQNtr z$L<-7Wpw2@H2X@t7+sl)t`P-DBk5=Lmi`+H#QA=H7-{`C z%fr0<+4y|^GWGhk&+LxFnK{pj^#FYscKT)m5GkYdMq^`^_=8^lJOL*45GJmc-_>Si< z&cK?C41{KN{_@r@jH%;gSS)`TYPczuALgYYf4QT4<#LPy26_i3lE7*amqcX2$-EE` zjwT5s>6?IL%=u#>=O9%ZzuJwwLiKexgaYN$-<;(E5dfBl(*{_Du4sMt zjG3y{`~*h@cgr!%*va2W?e&eJ_y%h)QeSNmmV?>MrWz%?yp@k)z5K$5!l>1p4&Rfz z5Qi{Whf^bBM|g3*og(lH&;0DC0thU;13)lUX9*zK4QI|MV+;@&uuEV-9guQ=Ff-7D z-KcaDd=nYP9(3zs6I(N}@1bplmVsZQ*tAshnm(Krx821QF3*=_TSijl1R(2o_u}{B z#%d;;Yx$R*fP5uq9Q4#6=r@B{P+Or5YZkktlQ3XGKwMY?J71A*>ONjJ8L{orXLNAa zNqsCu77~+vGz)eC#7uTk?G?c8dFd$iU3xlN|99V@*OR?H0OWO=-a61*)Wr__x5gI( z7Y(pn>o67}^{vIgmVHN|UkxWZ73@+2tWuHls_8c-kZLK{le+E(`#8)e9ETr;a8x~0 zjpHyA9^txDuZ@>7Ehh3xxk8jP@fM%()~kFg%D0&C2p5KW*naC7;G`}F7Q!R*W&+7W&(o@oQXz_HEJwTqeP7c6%4is$xKiP1Y#191nm8Lxs-Zal?-Af z7@P!h*bdSvz52V_YHM$8>#bS^u>$6SneZqC9~COrXu0jd#EOa#6q)~b?Qjn8o`?%@A0Yi!hopb5s6kEEe_Zo#-E+6yOo_6 z5qjr1OB(9|o?lnUIMSh~p%3u`rqLE}Ouyo-OKlbs4QBvPaQ0xH;CmN;08cR6hO2Z` zQh*qd!azLCN>=E6*!-kGKPmV5J;G5$uC+Oe)eR(yu4v@fu5OB*o8XMr3pFeQp-f<( ziy)Lx(TlUJKbP8Td?( z);G*E25n#;Uip<9*qit~Pt;QMDID+wSUv|BzV#bi6PEdxT~I;roM{2icJWzTH;T$2 zt!yOvD`cZI((W%<=3n~Goc#ENWf{vdX;x$@L7b!BJ{^xlC-asTEX!EBKfXBA+EXwJ zFUkR{i!1p>NG&4pvI)A^2I`T(5$dxr*E&94f2PCAkS)YqQZ;7HiAK44(Z?KD_h4a$ zebF5mE6lQ=AlUS7pV&p>I^of`KAY) z9Z=S|a>ZAQus&%bRAK>(WE)U4kw3p$q=IZnSIGDS~WYwM@4wfL6j`wSZ&qlC;YIAekrmt zvq_|hoPnvbTw9h(zz0XV8WBE=`oak`iTE|L#4pT6FpHL%;YPFmKKUX7b+fF&XuQ~q zh;uO!4@A>cj;3-rj#2CMQ=|n@1v+w{(Rit>2b-fDhsxgHr&nzwYeA!;LLSR4VR@&Xys!G*d`+zSUn>5L1tpsF` zXI1S3%I*{0$U?hW1zHc-xKC`7@H-|EL9OM8v{0|GhfH^tsXOlP_y=`-f#UbU_6CZN zP~o}a>tu}a*2cJSGTGql*ikuc!~=%xkJ-u(b`ENVi$0RY3ekPj^CZwtIB}kN7UJ!{ z=Wp}>P11x^{p0>N7uY$pf`mc)7u+jT!Dzgfx`~p6(X>S031|LYeTTdJrdznv3KM6M z9BM4*kiWOSxY}M(bBLlal;)3*4SOsogM}RAA-OnuKaYUJm5)iRGgav=s&#vpm3YTb*fM4sUg@e3fuB>$pSy9YdS7-)AZn4f8DQ_ ze#qxM(%3@svIk+z^=Ev<3ev+!S3!|xAYK%`0~FtwZ~;Bx5-IgtG~ohHaU5RQgKMqD zmVi?-TLmS)PG&cXDA<^7gt<RXU_jF0ISJKlbY(Ca4 z#R>m9IRfhM;NZrE;v-vWYng$b69T65#L-bsoW=N1r+Sn2T%f=lNoUOm)X;tKC zo;+}lDw0GM9A|2)Nb7=#o)S$H8Lm=tE}L>c^6TQ{N`m)f_qu$$lk=%Va8o?JVY(W~v`wugZVBE3r4Xqwq} zjn&q=Gi;Cfnr3XhGErtCrJXyGcvgm(T;%m5!o&UPo$>Fcu_ugwmXsF^Xx$QLfHUpU zcJN@R(av*5`x+JiA-#?Lqx~03ut$3zcSDT!EAsj)M*HV{9~f=1jYy34CD_mKC75du zN3zy!Fvp%LGVFp5*61_-g<;p2qpeV@ty=g|XV_mw_Siq{p)2em$o`eWAJ z_t<0ieY%*@PmkO!vvr(|tX6tG4x_DyJR87@}Kx$~%m3vfwOFCp#N-q=>3Rbk~Aea(w+M31Biu+xs`}yy`e>gpf4p#GDG| zuIh}3^9J>1wlnCNXhRMh0sc%pD8uqK2y@9wc1F3?5P>`gvt)Ot-}1p_)@P|0Tf%0- zQ_6{HE*wXmE{rqzA&bev)d(fg5O#Tf;wqlS0o93_ndEA^_aDl?kfH6*FZ4Omo20+2 zh11#ugcGKXNJ@@`CJK2p!_7w1VHt$U>EgCNkl(8A_J6zcJKK7i$h93`ps|K zGGEMzA$HJwB!rHT(Qm@!NW>S`;wD1T?)qI&KAmX}am63BeW|oi}N~b;#i*Rw>TCO zM&qvqPHDOwk=ya`=-8ITLVhVFwqlQ5_!nCtL`VL`R_y1O85Cc&`Ve<`ETruc!)}Fa zqNIM&6@C21RvdJm%@wjb=D*skGptdo$(T})d-~KaE;OhF6%U;RwBJrdyb&4`v?|I*Fz_|bv+heT0`o-YeekzAaf8)HFXfO zG74SmHC5K1Yh}wWB?-*Yyt7=S<(afHZs9czTirb#g|>8X3ol?jMZLQ)y}9fW#AA4J z_GXJvl**&9kCAM-Wk>_iZCQl$PD%$T`@i_<4aYW7R@RF${?Hw)J44?5SIx5L&ES1z z<%Z~z_?V--U%i>{gz`b7s`f$Tllr{4Yr&=V$fpTCo!I*<4#3aAayf|FgA%5r%QfwQ3eaqbu3mLzmqOH@}9A#^~m0l zoinVGOA=D1vq*Agbh3B;nwYLd^m5^I7kS@JWy1Sa_!&kH+r}IX9%mZpQ>9z4NSwvQjSDk_y%>9WwT$ZBPXdx)w~iU?q%v4=BV0X`S3Kd&{cu627;PeH%RPK zg7h8qY~@UZII34$f5p6r;CQXwp7Q9*sq}KWDC6wbMn@U3(h?a5h@gmU_4+7QZ+^5; z%bv1b%<2`Rt(YxU80~$(^=1IQRIWzlCe4>lX0lXNYy0eI@F@;;{8l=(5QgRQ;0_}q zX0VaX`za+JzCIQTNO{q!Ky+GqZ21;>;GgIVE$_5%?A1)Z2#<@Yo=i)>`J-;$*h>yK zLOJNc$?6A^Q0crn`1ZX5h2YzIz4e)EnExUHpQDc5HB49u(IrAoR`DElC0#f{w|eEU+TqpcUS5iaA>P$BMlt z+k3z2v+B>+J&7rV^>02417u!%-my`~RXJ^JW1>Tgh56l=Ut$a%-)R6TAlKO?~-#=c0mbOW!Hzs`nPOE_;&%(R79Olsd&6N$hfS3K7hG<`iGgQw7`V_ZD<5 zeZJ={%*YjiTaona9}veMI2SslG(+Yr)9WpI!(OIUbp~8P6WTq(zqwu#@=93e=nZj{ zyvA&YpjP7Tq@bpg{lx=(Q{GPXW9d_8HNGeRFst!p==`Y$fvSEezhm3bG_w6Q)E`tS z1>S4vm~dGr(&jDrg!N>4x|)}%c1OM2F_n$9N*5rVtK06S{kN#njLBm<3Oes0lFQQf z3U<@}&Sig8m4_6`Q&h=zuQ|!vvzeNUnnP`$!#@Y$pH=WsArK4N>VI+|$V$r1%LTia zK6+y2DjSJVkwO2)EYoU zQ1ar^oWl|6M`5s@la8<+xzt_~wp%~lFTr#Vod+ofb2*a~?d-JrE7KrJfb_+9+8?g8yhEFU_W>`0YQIoifh4691=WL{cgHcgk&?7D#@!L%wWx>w%1g zZd3pw?|L|oDw!-AuL!>CND(a_N0{QK1>B;A7hfl(TEG2{z_jo-2`IcEi?7QHfZMx;oN2WMF43k*?0 zmf}1y#OqS*ub)NP{Ghq6frox8|M?q5d%Y6|Q1PG8wN5LTiB zGApD{P@do;uf-$MY}Ad`_Z@jhzNMcX7tNhbl2>Z*B-frxY*>I2;f*dg@lBqkLh>vi zjTegVh(@31F4FCZH9f1Z2lX`|U9wiXp0sQ2eo9*_aC*Kn&k1R-m#z`WgX)khJD@XX=}x0; zFA+D_$_SH7mxV45x4KG7cOHq>KBg0-J^Bb&$V0Ixh9D==?!IQH+9td;UGjqEx⩔ zQTeH;!K- zLUmea4F5oE0b0~L$!Y4*hLi^2f8Qc9Qk7M2Cy%dNz;_!htQq2rgA*^o5$ljdA@Vp6 z!{;Y``4wL%yXke3(H31irhbx(+8}E`i_~_NarU$B5byD)qp!vb_hc?V?t;WFt)V)z zY<6`vmT3zSH#P|f5$iv6Ivi_MG78fgZ92x?44gGtmt!QQG=6HnhbfT$eY5eM!bglz|Y>S8aYbHO}?7D@& zhxpsVUqbdNS6OeC$a-^H)=BG4t@f*7>Y*|>Nh^jpP~Sdv@PWFT&NA~LX@^{9-o|N+ zUS@NCdV~_1={pFwa3WW4an$2yr;>=<|$tryVKab=&VRIaJSIV6+%Nb4YYe6c~X;%-NNx!@Qh@#`3@!*dX8;MBAao@ z<}T}rRGCd7J9&Ja;FL3AzQ%;KvuFfdlKi zz){tpa$xcjWk6$z37^SuwrTP@-48d#({}Ix66-vs35n(GPh)nE%mrN?uEjjeF0E6V zAp;>ax;pqP&NunSTaDFH@B~eGjC=2b<#vd%-o_>o;~#VOHJBJ@;_WDj82?0wFvNJJ zCdRuG#P}_UaSW9(0^WPWKF`XNcGtfh7m2e&R`@(d!z z=MdGX%6j>T8&4a9|!YHZ2^j_q{Q*E)~Pa^ zMBs>aB}Z0SPB`zPY>px`&1gDb>_`Nr4gg~6_$Aier(y!9v&EYBpvXgiK;R@otnGi7 zLn*Uqzi9aAL~zUc-U~Fd={|k$)Awuiy`TFkbCbmbWS(E^`^PcKu!Hi%S z{d2-OuQNlS9e2PoIGbA`KuTyX#k$M9BbWnqe1Cv9@ddkF+7uXY}OBLQl4Peb8yX2+(Q zHd%n=70i~@N8ZS(wskR;;I-|no4GWLP+Ls_oz_kvAML!9nE+(H`fv6@WfRC`s}%g7 zbdlD#d5gOt4w+?f zfs)aA_#=)#Bl8@K$Bz?AXeFa_dCw#IW_6<{RxenJ{;$Y}zwya|cxiNTVPs2ofd;zt zX=HSw?HX0tlwpl(M^kralG$_3p#yQTM81)l$aNxDN-oYI6J+A@ zI>Fi>l~eD?XDMNf`}^cg&&6tWChziFu!&v%E^p$?kIHYd|G&P-XT$D13y)=cwlur+ zoaz~^-TPv6u$4nryqc~MARL(na63oeiNhHG49xoiI26}?b^aFmDi~PRiHo!5)g`1B zU4s;kZ^M_W)f0J^Z3rr;xIZrsFiV1gaQd@u{0ug)4)XQut&X$7E4TK)>vup{LcON& zH8lwok+<#CAQVR_Z?K8+PaENOu}y&92R?8LplYn<-V!0uQUA zbo8>-${Tg1@eA#@e)hmeqR)Jq@~*q(i5Eb2zbaXtp$hAS0iO`;Ga8SRIRV;JHxEtx zx|<{_cV(n+SY5e#Sp(Zug=VT>LI#d@S<`KpSq@AN6J|gJRmsYXNXxi#t2;Nvb>K;$ z@*%%PKHMEb}CE#~|BL&w+Nw8bwMZr*z{>O$C zNHpHAp|sqobGa2Evs&bpGc)XtokPON<_4-7M`1)y>kM;+JS%O>AfAeUMULGEj=Zai z12}^U`ddFtff{&3BB75LhxRbqSB1i5**-HYCy+xYc|(%qi{>H$wC_$IPnf3dvMawYvEykSfbygsEaeAyc06>@3lVxk- z>C>P2YsS6O?7EP@OZk)gbYE==z{el(p8-A`@ ztof!0riKKSiUgG=N|g7}829RQ@*6(4;U$^At~$IzWH421B5QS*2=^K;Nb+HCf6);D z)Q@yh;-`oIG~oOHLlvpffaN#*idr$1t2-jUYK4$-Pegt(i#TRIwh!6TbMmOVtOs~_ zQO1nTH3#xjTPNUAd-Y0Q6zpDH?8IN!v9w#?8#c2b7CzT1JRMz@W+~`2}z`oKE6&S+`U&nL6p=&@gvh>iozQVi1J-V-QRkhM+xA?0*I+ zer-rcA z?-seau&Q#d|LQNb%!HVl4U07kF8Z~ z(_dQ?x#yIa)<~8%sD2oBZY!#DpK(%dsI1Vi$fj}9db=z{Ua24%=BJG>aifOEbRal^ z8`HZG`%ai(xl;{!G9e0ug*>f18ogPndriluaeL9cYT-E1mtsNx8K!XzeFq`faGj2! z4w2=%1%h5y2S-0NHM@+5(Q>Qz6&6w5vL{pOu28ti=>EcPF%-)Q922SUb}u_!X|0XX z5y&mJWmCQOmRmy-jj7Afo=?iMX$ci|FGE(clp89a$atEQ(SVXaE-}jSkf0)2OhV}T z{uAmM+^3f7_LFMAdRE_Rt%h`>D&VD}#OG5bKIt2rsN==!AVx&YEkAAzCVM^GtRD}T z7zKW1aOjCUSFwefvz!L=Y%TOITq-`Lo)ukFbWwx7*8Ln4V5IQo*edVL==3^N64cHG zu5*;jT04SGM({y&GNTcjYKn)e^Dc%)R~|%-Ov*e3t!v7>M9M5{G4+-&eDqS7${`_)lX_Yo_ z?Kwk-=YULqe?ceo+G>2`0E=Zn>DWnh{g}j#?Q28s*zE8Odb9?OQ*GH-4*$7)wo!*% zmHh@d7umT=M3@u)hW0Q!UVE6mQX5QJQ7Q4VgB;7 z{)E5T*6ezWzhCet_sM^HKSgj=(OPr14JbzlvoxY3cpMTiEbQgRjS4nSK5Z4#3D$-G z!@l$_Odi&@_b;1mk0dRde(kqt)qma0n4lKKz?85a^c8BHYOds9NfD?N+;6-ycP?lfHW8YwLm3$h#+eL%#t;75B{n*Q%95@D_A3fp{m%S?F;! z2m9FIzzTN+Pjy?D4iejWlFojGTXt%L46}nO(F>U-NkS&+&|Kuk_=xl%7)_5Aa9;;<@b$7Jd3WIoU$hDqG|Qbh#jhTCwk~*8kTcVIdxUla zDzMD!q$KNwFEsplJu7q#!N;oV1tR=aN3C7hx+G!*RH^El)lLR;rZwxzzhQ3ex*mVA zJJrg^NNcW;U$ycHeJ{UirEDzC74oa}@uImxbXly=A$ua>G4r$wgkm@X#J~uAAS1#ItN1nWt&gZ3E^vkp5rHleE z<)U8>d&Vt2e`QNj|Ff|LIZ53h$+$jb!w+Su=Ev+eYXmA&vey3-ek(DMNelLgACYw9 zvbpIR@+rn;RT*-3_wA9R9{iylO{p7YUO~*zHO8F8XO}lqb3uQX$kvoQ%Z<(Nd(tOL1xuEBpe6apv zk51$|dHR><+q#|heEZK~dcFxP^ExTXDz)Jco^Ntm#(bN1(ZGEBw}JU)T_*D_?_Zj4 zN}tD@+Bbyt;aAT+!B9Q_#0*bnpI((b;uNhIUE4$28BxQ_+BFd~uvpK|h3-{_qq5x# zP@{7-sWWL7=a|foqO+4)JIdT5q zL}gBz|C%VAIR7$PeUrjpN1&f;sMq# zaSL^$re!r^r|yJl(FBY`g2iCr-yvuernT5Z1lE%U#gV$mdM#?cJ0;*I4$Z2q-~Eb^ zt@q@*>Sn9yITd=JtfsO@-dZ<8rcjn0#EWl3e9{*2oL9--`uU7Uq}Op3Ef2nj1~$06@gMH-Fb^AQO6&S z@I<4Vw&GBrWo|pHWOYH&t>KFX_CL{Sgmm&!sLOIs`di!_#xk18(QCovTkHPJbzZc{ z4K-K8=BmO4%G=y7PEH-zg2wb0f^L7b@>o^%Oy!PN;z||HVkyh8@DmO(Dod9>4ZIEembyP$rOZRvo z5CMDq95->)2l_}OMnslilH*}-tJmSgl;gWTTu>h!E}n>^vY*p(*2h&vBan>xtokQ0 zDJ}EK7sZ!&D4;4PR;vkSrN7}GLfD=SQ-iluamqIn7LcU4I&Urwc9fQIs+)W=eWpm( zFSE^OzkffZ$72o(kotk~PQl`46W-h_ce+q0B~3e&eAm_KKnGXWj8>dAvxA zEX#8(8>yyAp2*bZV=&r@zLu-)k7;gR^lo>-vfO1C(0QsAPbnVpl#=3UHAA`jM0jzI zb$eWN>+rvu11NJ@9(=6#Az{uFzMcL_c;^oVj~&n;c(#34tVmCRSdovkI@B7_D zv7*eyH(nVS=sW2EyZzQH7xe0Y4dM%{=x;;xQ(`=DNH+)o`Pr8z9S&$76JlHKQ}g`B z6R&w%-}8VG+nOs68BewPnrr*8o@g%nRNnC-fJu^SZ!SA*Jk^%*;&^(b)xuDzx$+1Q zNEvzWo6W(aW4B?u)RRHl=HO==mXK;}TXXH_kZk)0#sbF6qs<-(FvOdUGh1%NflfNqJ^-XgHUQ<`C|0 zO3!Kzjo|XN=Fllz&TbBkwO_JmpaRF%5The2nxTH?is^l-bU?)qqP%F8nSqv4Il`f_)4 zF;(?N3%#xH`9|(G)=&OCar2qJF{_S6K6Hm)SJk2 zx3=yyJRgtg$Zt*k+s;j`o?^eJPoTE$I>mEbgMQjr`l+Wla3btWI#!l?iqlVoeOf5* zNl$UciLl*kLtl7`Gf#xQ=b?sgdy2C>ox09yPPWwFtbJbB{^=tn%F|ANo><1Sh%G(E zIVYB}`OO;BQ=EH38J^<2=)+%6Tk{}zV{!}x2-Yhfa7C!s+eQ~;FP@ln5x~dynWTwOQJNh%-_1*?|CP`J$2HA&*GjU zdj^0#Ue9Yx#N~%?U+F2z@*HgK7%3x&$Bg`T-hcgDkN&5pC|B+D^tHwU^kdkcze~09 z#XtW4zVL*`d-kY~*6kyJynT6V$@`n10GCwEvpc^Xd}{OJM?>H*@A&1eKTYuz1x_m9 z<|!{7_7pM0Z1D6#qJY~rzP#BJ${AEZ$Fl#f;8WB&bwbzcdt0}SSl;n}55M&n&zt$% z%*rPPUpjGWSMSenYi;EiF2B{&ZkP6v-DA)tPbr~>pIIL3Tl&-Un9?1(S^3a0N?P9D zK6}o;dnUmjKe@c^->aV5LU|oWx@a?HdEOj}k?WHXx{|M7e8@9Q$~w~3+B(d$Z6r1I zAQua7Sl;np@k@$jiUW_Y9jACc8Yxup7h@j$wP(_JifrX|%An4>jciIG~So*}zkG*ETlUbecx=15Ta3 z?8)zG>NvRm#S^1H?*2>eaR!uKWLsggAn-!@#(Yk95%yZP5p=`uN&Sg0i(wdb(QMPEqZiKk$jQ z!GnnY{+C{T^Advl(7C}UJRPmA#*shJzaN>y^FNM8e(>6g9#8mrPltQD&t2_r?HuVT zMdHdb3g<{DEtb(MEWM1L$ZyPWHc-_s7qUQ#;$oGs31dGic;}8r5DqEKggx z^)_Zb+!B!kr?j{AiK#_8r=#)co!>0@WRW;FinL__*6=Q3><-(lL*=wFehb+ zOSMVa*eIHlkd9}Vlk!ws$D~|WY|=RTf{SoaTqfF=LiUTo6M_S*&W7J+{HAmzAzevw0@8R~T;6tQ7Wi$p7rMzK>bVh2TkX2ybgr(&k) zzJGlrylxQhznNkvO3m421+zLrxyWksVj;WsA-neCk%)?h3hj$s`;cAxkX`$bUHgz- z`;e}EEOfKZ5X`Xi={B%G75BA+d`{?%y*QlBbnRfXP;ECtO}lyEbYD#y7uh9Y;!h*9 zdXrH}+6ky>Ims!-MXn?x(ReX-7%nbywTE0Vm+`m5NwTj!kByH%TG2nyDQdKNE}4g} zAQ(Vzf&uIhzySIb3_u>xp||3Rz!<=%2}8G_`k!h-T2d2IweUkWPV;0(aQS;*x+9=` zk-t?^YUfx@Yb}Zkpc(3r4htHUUE+0T%W*Lg3qY5c43o(im5I+6Rn>=iDedsZqOVD&!!3x}%I2}}Nx}EQVp6_j5Dx0}!Ug9T; zYwy-K=SMnx%a1=rg7DkKOw5uv#<)ZpVS4QHdaf7@*d&U^p7MAl5dr-w z(b=G({@v0h8 z`#-4WK{TgQ=TtSzHx{R@9G^ri7h#YrEOi8n)S04?lpGm>#+jA-Wdy>6J+7HhxpHXG)lkc7C%AxV%1bwb*!agXZaB+M8J-sxI_jbD$stBKD>fatapm$#cm42ZL@l<;ZDhVUg4`I~pqht%xAB3Yg1Z5S~CI<+5k zg+!8Q!o4V#QabR>K2o_PLM^dXODCf?r<-7w&QilGP^4#ML^nKD)OasMO}b!;ukKtT zm*|C-q>Frr>SWH->T|`EkdZ7qHg}%5Yr6kWiJncGFCxMXEof@Fi{L6u4!;DE^KupQZK`yi!}nJEi;uj|I~*oQbQ| z*vCx>b}!A)>|H;s%6?e3K2!-u)A$S_3~vCBSk#+gStZdX2=@M9tFeA7b)O+k*r{7! zG=2*dU{c~F9F&V3#q?Sf%rG{Md={^(zzNLx1(n_Pnb3QVMdT!-OWlwaIgnC!zBT|{ zMPfZi`fJp_FVSkiPMGcwFEj#^B=DEoVx+lx${-U)U^r_ifzctZ5^a79j7iJC&$ktJCv;j=O7*5Gy+X%a_)Y!%if<{)}3LUk;ZaJqq3 zKHeUj@SzIpGJxj4`XY*mjL|$JxD8(=;GUpfdVh5jsHd;shlu=P<{Wk~IyafEV>~)S zx1fKUr-`?3?lW#qMKp@~@aT~e4zP~6!>2^*185|Tbl0J*HIg~XRB!wXwZKRhhYYe~ zuuk1Ju(mYRb4)Utti$VMv1ycG)HD$-rT8@@C*IJrAFvPw3ic2@G!Z9ZqYK#; z;HN)4LTkxO-6G4pDb(m5fP1fO=}94iOX!xy7KnG<6_J+X=$73%9_{HsU$aXS8$$fm zupa4lZ4mw@`9;J^smqX`R92U|(O`XYY8gbH=Owyj{+eA!nq40{e_uG)&0G_mPJb&m z?sWP_8Y>IQ4wc?_wAn>{I=QII^b=PuIf%n5_Y6_SCFs&L9ISC_=$CrpDNQP1`KmsO z3!5wJ^FIzj2tE)5SFDc8Bnb8C2;FCRiR&0muap9i+Din&{{5CyrEi>2B>_lCN9(R+ zV4NiGX4DJ_@<9H?@gl8)WoL^P;!xA?R7gtfkv*d-OBYX7I<^!opX|f4k4{slEA6yb zy5}q1lG^U%hFXlpm!2KLBH)?^Hmu?ARsPOnBxdpFa;JE_9{%%_Jbvtbdwm2o7+!Zq ze#`HuZai{VmK$D=pgmgENgl(a>~9n8SDY@+H%>!a3zI;8`!%8jA86`~baj1(Nh7`e zC);+3dd-4iN-AHbD>2D5&jV_@>+E#{1Hn+n*r0E+X0QONuXg?cHqw4}4$lD!uvMX4 z_LXjyUz~_?=sYba7Semcj?k^J7j>fs81@uCLlQV!&Wd;IDpCJ|^-FV#URl40uel_{ zUcU&aSgi_gjCZj-$(VUv^PF@7fc(T?)f)`;krc?hb%jUS%#J?j54bd|$}1Us=T(25 z>#jMez9akVOVz2ZR91EyKoAbbf#C2hEQVMw_3~aAmwiodg^Q!L`((itLhY}%UP8Pf zjLS|^AZ1X~SuXo9$rC#_tS2_d&xc?@NSgLtDq zNSOyM3txyVsae7oO(x@#GsuP0HbWKq3p(q41#QOag)Co`k<sj4&X-8cxbHXM*~5Qx~u=; zj`k1qGl3Uu{;)!rn&gg-htG`G?~`zib@S)V(P*hFh+XPD326L(oYfERIng&%*NcH6 zeJCBss*>o!pP#3@aJ2aKgdzm}6N>$HKLxJP$pl=Sxb4Km8Q(9~|KS{*o~cc+qB5KX zq4aPntVrE?vb^@e)F<{VqX8srX#x;PRShdR83<=rFbrmBfmQsWjKpx1Iwotu!z`AH zIZg&WQ|uob-v{_H+CelZzqYxB>E9=8Een`9uQXQgr%VZ8A{;3e%&PuSLClD1OvLJ< zwy)qdBih2Z0uJV)!p`7YcJwxNQShmIE{!E*2M?WrwgFfh9K9o3goJi`30vK*DkD_H>u0 zY@c**xo5Xo-#e4Yoo4O9a%*rG(D-_g>RHRgwe~;u2YwDV8Il zEb5f7qWOK77HPzWWfC4eS%ZQ8UEaHoHDsWR^-_|HqDC+a&na33P%txP)hpHK7w2>RMb#P_%H^LYQpzLT%@@;Za!(sDADH<_1#CsM+6#S_|WOlK6K`GaoetM(cD7oWo{?!Tf3BGT>Z8O ziYIxpG7unQlP?N1fvD6Od=Mc@Wv}t{arE7uhy@=R$2d`3Syo5zF}JztR#IW84@MhL zf8G&%9yi$=q!Sdo?$^vsx9QIq`uAZ|1d#m0XxEr)CkyNvH(U8$bJJrwO`rMbjocV3 z9%9U;fNWA4D^~HOHpv(%J*ZKCz3>%LZ%{7A)18r{XBqe3BB?6V7rLwXkKFAf-ph7K z5*0kbUz7}lc?O<41RJZ2gBxZ%D)9T%g304`p+jWk7QAZJT{Qe?tO6>o^e~~z;${dZ4^!Uv9 zx+j3FjRV*u^d@Q9Wog93Pln*P4kR3H64b$(oY1zxN6M?LI+SMYsztWsn%7W2Yq@xl z2o9>*Dxf|#*9v?ar@jQ6R8%s3=|^3^tw!Sxq#~=dm1uPBLRr`auxFty$;qR$|KX-CChZ|Nc5Z|G5Xeze>E55s%53^OiAZzcJ^7WvNEa&K?i0 z)FK+C+{-*hP6zt-=*P~&#aT@^e+LM;x$YJqN3~U+5VdsbQqIkz8QgIFd8U2+U$H!} z9;!VMFK5g}2raE=Ek;}~+9oc9#!YpA!v1t=AGAj9Mf$fRrf;1jQL);y9zUDGZ4$!G zJ|SAe^~fG~lTgAVd)-l?ZSLr8^4lb&4QGu}fkx;x{VVg;A^U3!xo6xbWBTDn@K}h` zP2MnOa={3(qv`)~i@2W+a)z-oHbfbxF!( zl6x0#MSfv4Em-@A`3Sb90FciPfbraF0J#F7-T{EzThm3>R1d3caGx2K zQNUiAFn9XqpsB~nUL+6v>NAGOW*}GzSn8!I%$TO7B&JVGwAb#YC+#P1Hu1s1XIVe9 zm~JfIdKI0@Y{n%Ghjc;(*Gh@#HX;GvH5SoZx4pD_&ct&4j~aYLnA8K$vXP93^>Urnzx?h%&=IitMtgO3=!$mV zCnr+98p~%|>8L9z-Gt~`=~?_gX$zCD!1l+t3bsq)WNcTw6>JY*X4hZ6W`nicF>qL6 z*b&8KML%#ZHCHxO+6t|9%kc*YQP#_%DeI-o5%eb3mQ&Wnm3z!e$gPb@W>nLys8FmP zgSA*#I`U~?B&vj6>oQjSVSw7-lPZeT*Nts8%l3g!_3SV9+sLFe&yAzzejL;IWaC&r zcHMmgqkh6tt^43hmTE9*V6_$u9~m^CymrY^MuO5C!_Hx zxIqU&*k4G$G4_KHMEW;@Aa0wF>qn4J;FSJJ1Zjv3g&+%g`;Q^Wn-bzlBgpUN&Os2- zd`_T8M_*FK0aAS7UE-m3O9I zxAYf#P1fr(soEMg}f zR~+(%Uu?b;y=5wg$If2kX5N%r@0@-x{t{XLRWuYRUqaSw#>*AX5lWU!*^Jc%oKdJC zl+9?&=0)n!eG6`s`49`X$i)nA zF)KSMX`_hk&H84utkJA(hy~ZkS10NiP1zW}ly(NQqQN!rEClp&xE39ZkF}^mxRs3@ zbUsvl;9KyGM!+qmr&bu;**F8rON41;vU5*&ov&XEx&#c{{YWH~dM(Q&V5>oOW zLM^-d{fTu;CCu=Cv)-a`*vvKP%i(FqQVK;8Ub}M3QjrEeJkeeH z3W6Kz4UwWo(e~wl;cju+5!_c0+%KQI3xZbS^FH}pqd&hsA$Xq=-As)OJ~yIr!k!o_ zBYh<8(mablh@(t}msJ;Pt5d2U0A@h_fOCTm7!EydGkgDNb%~J$Wm38L{ zV3P31uF?)co*g|GCdyLv4N?~APQWsaWV(7)*7-o?benqRYxUPFHzg+RV0ruU-e*WT zXnx@ONs7Ynt;j4WCK19M39*Pl>`=QtQ%fiCSj^POG}p3~Xw>#{)jMd1FMG(evV;6o z9^$9A&ssVaC^}@a?8}1>!m&t~T8DnXLO=~S`lun|ee8U!AG~z(0BL!>(4*w>5jv|Q z%TtCP4|yiKymT3dCHsCpnPuut zyQw$-QNKjmKwzv-z)c;OU3$N1vb65P;j~JRAT`rf&`6*$fKvpLF#LiAn#3n|+k#nC z*_*x4U0u$XXj2Jq26-lK_$D1Fl}F*s5!4FSlv}TV7i8BsCp$mHOY)iuiUf*o4uXgD zKX-3kLDfziRvG&_TVbsRjqh8q1id2mI(b-segj;O9#DvkGoB{!c@%y&-<2|kg0?WKkO0s^j zUc*oF&mr~$qA>Q6D!w_=Jsbl9^mBSXfaSZj3P%&qJp~r3$P@gc&A0t=tcv`WPt7ajSLwJX=8EU#{sB1)I`J^Z{E@tkKi8>K zx9~f3aY9Te?txEraXWa5Zk7X73YCXd5jj6?UZGD>BVF8^E96&2Uf1{Xt0H^!z5Fik z5O0n~AR;h~wBg+K>N`>IiX5|Vv$)mC(uQ%DDH+l@Bn?DzxmC5t)OMb;ECWV48hMO7 z_y)7SwI82)cBm|#DtM9*ng9JM9{ssKz!fX+gum*;hU2KPSMaTVtjbaGM45$9 zG-$0|?^PvNh_<9pHKW7g>cKkyiab057J5BxsvK8Qe7RSD@u1g*9_YoZN(0vx2g2vC zDowk#I4ykEs?t-hEj~4zM!?^K;`DyiDl|82MW+FE6w%+PS|Ex{>Lc{b*%`3dvG1)S z=#a$g;}Cx?7S*ky_8}@Mw){NF!e7&esRP76(Kxs!h3A!S(SNN+UrvU_rJm7@`QKQC4- zZdw2=(8T{jai;k7bK_wh2vyNC%m@NR>z)}5N-!e-=2zI59nEVQ5mq`gRl2 zSEp?mBJI^SXcTZ0pm!udZ~U_43CO58g0Uar&Z;myen&u;v0+tdjyl>L{3}NHO2o)} zOrin1<9B3=9YNVX98<+_&lD|3p9=3o_^*b?7t6PD<-rT1I6@*BYWs_`bjPW(&i?y` z`oFqfls=+255Z1uVYQ2gTTsm9VdI9SbZ!YVNMP*u){aybz z>C_@d_wX-Pm|rGF112RFVJyM!tX~{3Kb@;T&&4DZTNL~r4=%djmuWbMLWNFSzZdA z<)vKo%U{hy5zQtNN%T(7k|HtC!(k%p!wF;{irvrla%PY)?tBfU8!6k)*Z)a+lsKy1-!+XWiV zkb-;O=06+xx+B6$?2#?}p0D5oH1j1V(R*O{c7JZxisDVGnPJYtJT;(0LS3?5vrPf< zE;9?aI(*&wSI7wntUC5n=tOtF_F`AtOd}yd?5`9az zY)AkZ{{R4)3o^Px0(f)%-|HSkUjSf8hs^(9N%_BGayY{&zD{Hq{myU(7*2B@{&~~zxHd_Vs<%i z9rz#ci*(oR*o=nU<$ZG7$t@pq{&+xqR2rA#EUS}zowf_EuEiHpmp26V783Gd2Y)gC zc2dA@D$jvh%^!P;DdvgCUvMqP`TXqEeY$pYA*&LIt!7V8b^=JtNkC?80|+J7pac;p zlj-I-@|t~4F1ssQo7;Z4tJ!;2QNd2*zB5^3F#XB8wTDBD@EKShT=|x@^VfPATh%T~ zNOXI-)%6|xzl(UoG+5N{42-=~EH7o6p`sbiU^MDZU6@jC?OAU-3PR@9*ON-nnEGDG zGoPxgO^Hv3)ImNSMl46&g1#iN&%SEwP0qITYZxJ$T!%BL6!IxK^a>K87<~*M9gCvl zvKuiOQ)L;>coAf#Wm*1!|16kLW4%AmSns`dlBj_lXprbGK9Bq~dy2_Rq~t%6A1k&= z7@c7lvXK%HnxVL4H2qevq*i8^b`?Jb#H=Y6B1jB?*{#-Q`iLGIe&t&SJjg)Ht^Zv} z7ghS{qe#8Qwq#i$0y$#YhdDj<;bX~ox_-Y0SDYzTo>oG$%@re!GE@gqp7VQldOjyr zgQyFb_?n4{xT9FNFWi?2F=g} zfKPw>_W|f$IFUpo06hN>0HE-I=SwP3M}Bnwp$=c&4hU!wb;!k(wg`B+7!wqMBeDpf z1C6eAQF_l^INs#AzHI;4R@AA#!w5td(eod9!pAs>WN?YE(nrKmYaYgN^u6a3@eR|{ zQxG}o4o^(v%O4`&{59lUAaa;0>+8vxEg7uvq37IH*6*HsKVEG;&o7MuYptdy2T!EL z)=ppbekcohi9fO|1J!<1_5)P|KZi{>IHhHkC->dDNmhU zZhiD0g1bIZwDX(Ss>y+|*jE+$)y#CYI9-gG#};|ZXBtme_IWCgd0v}Y6~CgY+A2Wf zy25%x^3n!mRd@=_$AaV%w1&sRqD@J!E=O24Hspm-Pmfk&&zl1E7(jgqB=#^&mhrJ=Hjs@*X?zz_BmqSe{Pe(hS#Jj|A!rx$LJn%tDux_bLe{J=88tcB5r1h5Q!1>R zpV4zpy!%UhgFf|IiK4G+2XlugHrS5T_ z&vC}@0%!cLlhwESWk%UG_VWpqhwi+n2~XU{^>2>dt^JMf{>-?38$^7SKaDxm>^}p| zg#%;lV#?Ct#6LDJX~Q|rf%E9itsfh+yuUAe;%9i6{VD8^vpN_q z-Oa*w$dFOTR2xx7X--6_^K}}@s`nq*u92m6@xaTR_YTN0k#YG>SPEO66`!Z(FZnC^&`}ud#a4fM`_0792<*f$Bdl63_#IH)!maf@MdVZHj?!t z*n6Z;^t)~w&(65aD(j`l0ha3_r-7QqQi+DqL9k|ehU{K^2~`7qXFD@+_AA_j>5MmeiVn9%v(n$si2cZ2XwkfcQ0gr8Pstb6NpUCfl_drko7~O334%lNy!a z!7h-A!@OY*1~h^-`_Bd2p>`om4+-;L@QHEne`#g$zIo-=g8vn~wzuhnCKHs9`6Tk% z%t(*htj#oaY~wT5s4|RNiB`f-_?Ad4zNBW=XtbeEH`Z_coeOLpi?cLz z@Nr!4YYr5KSP1X>Q_pxwn6Kmc8S68Q^`q5mBndHjBJVc{68k*h`Z2DT>`r-&e3I=A zYC(yzPV5ptHR)VFa;jy9AqNg0If#5q{qb|c`Sry?|HZ-di-Vce)GW(hQpRKwE13+= zc4!cd37EB6Ynt9#a*nb7%u*@^Kesz%*PCMQIsg#iqS#iodBOrl)n)32qdlrwj{9Qg+9Y4{lcjP*G`j_SJYZuw__p)DW`Mba}ualCji){Ew z@^?&NqN_#XVeNY7W7NZ~CwC4wAG}qRSGRckoiy6~11bx67X_Of<06sZ%#2ESn7)}d zYb}xFkmE;Lt#Q^PwmFBxBh72XqlM<~7l=&U+PR$rOyn0BWEqXSG%EEW%SKl=E!b@} z^nNJnRNXO;b=M27Xz`L*v7CNl(>kTjEMCy??iaD*TX}XxBQif@#kYyZc*DELo2S$n z>(zriEcBAfjEFQk7Lg@Q{z(e`H5OUJqkvpUiCS>JQ0R2SJmI5RWS#NucG>Hyy(31W{zN32s2j!cA z<^%*V8XuPu`hx-#zbYppQj6%1rEDXhNnY!N8;i=0f3 zGqARl=q^PfM3<00#DLsxb?%d+jFp{|a_4-rIIwEvHtw5?PgN^-a07p2je|N=&|bf^ z6J{81tjMgi(4D&hvAf{M{=P`>cuf(iEEnh|JqT&CSKk?CN%lCKTPn#O|F-RrZ0t|U7U^)4~%vc+ucy!@>vy82xCV?B>Zm!%Hs8brOD zZQSHtPSkt6x{8|&>n4=4_qF7|3S(~Gn4Mu%e}FJ)Z%uX%nQqL^iNw9eeLtlaqW;a% zBLCQ(=G5%W=yZrtN|6SHfV>WP=@L=MB@on&*_rbb{zL&%cnnGowN8^8A=zmmnL6~y zTqu1SSJ^qI`BNk`bYu2- zMk!Hwkj1$CeV(-A@c|_I5(chw@tLY5JDdKXwX*}Sq?+OO< zn>|-bQrd4veGg1+W>jimhJ}fhhA@7!z0EcZdk|OX`e}w!I+DJSuH`sIL!|bzUMrN& zwEGX!qx-rb88U*TPINnc%n^J3*2&;nHhPh(#ae}P{48kKH>u9neD()#aN-U)*7TZP zc=PxM7=RT$<~Q9@|7xT9FQ8zF48Xg0o{7fuou>lddoT5Mlc|e`pudp2?U4gsjG^}6 zN;tmkTI$L;c9T2me{qQXwC<$*tvWxTUX7My=S8PxXBn5n=Ybx1MhI+&m|y+>ZpbzBBW_zZZVF=bU}^*&l1~z4lsbua9*b*L$27A44)hZy8uRGAukk z-zS-MHtN9gpmUXL3Ydia2UH5Eq7G}-n*z*$-(H$Otg>xe3O5|`Nmlmr~j)jD%8dXtL?&PD>KT`#m zaz7ot231QxGqDwE&VsL51>0bvq^H7BJ)Jh%p}!cwAr7Z?h|yIHpVhzTG7*2KisuN}lXY+t>7yTsHZl6|xap zYtFzAL<1Yz0~>hsL;~x7GK9B-#O-%`KrlOLPvXQk+=4u9BRlq!L8t2-!gQ%%Bof#V z4Xnr9R)YID8H-M+TBg--3#DS@RS3k|1G0^CIU*M}?U(D>$p4AiTH~P!PCCH1dulv< zfl$u*@DVc>Fj1!owL}2Xu{DAms+`~BCgSxLRdK7kA=(%t5qund;xy?Z!LB+0QntHa zklcr6^(5tO06l}_H%11ldDR@s05UQ5!)y+9k=Op-1ZsM@moJKQr?_! zmlu!4RR<=E$mV|${&B=>h+g`MNJibP*WF-ui(Y05zV|-CK_HEgT1_iBD~&gVZb(~> zCEC)eZE5|Cw)`9*HuWDjdBrEv`=yU_7F^W^a36mN;0kT!?fRC~bow2cjk7HUx3IVx zD4|?tOu(Vi@nVyMVXZR*omimDq5d*_N_8TcnwQ2PBRFxc`VOOveOcVBC2rzm#UuVb z`7rx`Ig+m&wp}Z3Rr-)g#aGnVM9I@a{90P+oPLl7im9$p8{dlOok!lTf~ia`am?iV z2Li;M6sLB3$xT){3rw27W!j-Vyzc9Fu5Fz7oh$gE`J#M1liWo0{P%Urx+JKq8d(m` zf(JAsF=u#+Sq;ur5_e)g%5hvaDG$JMt1N^W}g!I>;%BOMqd<e%dh6gN4Uux^^mUpr=gP6+LWB(?sxS_M>?8 z4`f-lv^eE2D@A~!Y!yO|Tfnd^{cPXU6b^GMix5g_hN1#lc0xAch~d=IEw>&Dm_QM6 zM$H}bE!|MqDQWX^ogb{#*~1+E+wo<5fT{QSx;aKq%qZaD`ky3<`_O&Shu48gXstKf z8lEnP(^j(}=2G!4cE-E(PrOn-gyUt3#$b%H2cZ$o;hp*ZEg=OxW4P!dk~Y0|f~{zB=ih?xiGv)3#e}+bgWL-O!>l7;bs| zIk!kbX1dcUzE?wt3c{24G&!+p`5gG;mWKL;8?gg3#H~#EZTOXtkShI)+0A${gr{7t z1zd-59mVxJt`oRU!V{AnsCNBWDU(`y8_r{kk(a+xI^QnFiRzNb-144Q$L54Na+yJ9L+=gTnd5VFY_95H=%EM;L*P&LNnSH+d5#LeX6i#_K z7#@-i;bHX_MGuqsUuT~bOCx}|Mj*+aoF{F|4_z-s2{~IvBde#-;_5QlO(z$~`(eDW zs_ zj-qlDDIHSlbLC14ad^~GDV?5i9(^@lvlM*9Xts{7QWO9wO z=`nW%CnOvrxht6ZsE7btlb4!FZo#3L&Rt`M50PzjSViw3PWJ9MWgct@c2ZtazDUOf%;o6ks&a1j)Ifrn@ZS337aQ9{K=$AW)qi6$3S{VclO0$$$I6DITpoBtP%r-7K&I>M2|1DTHTP_%(akRS zA$;ui)c%<9rR}+9Z1ZGnvF4H%_8Q_6Y~00p31&w%#S@avj69^x{K~nSd495)kJ*7| z;>~5>?2@IR$*@!BR%Dmd$aBk` ziRYzwm-K|7U;RS*@V?jcmTGWbN+Y+__kPy#DmEm7vc}UZS&xW(Cs>j44ld`j(PO*a zjmCc!3^Tie3e6-98o)efnLMw{GwK%~Wwjper>-%v&2oM|k)z`;*_A$`klV|1ZjAae zBD0QRC=B&6**|nLc+^KkUQPut-m2JPHT^wYmwg=fN~lPLd>J1^2z?mJ%J`rJE;c&y zV%+D7n}m>0>C@JaF1vgmDk!+;JzzEUmrp++KFA-3cF?Ct`Qf_j3ULJS7IO_d6p>tWDlglpt-ip2DJd7l+yhGcb9h zRD|xG4Lg@F70r{UTCArI%(J3R!hL7#n(DkEjxA83f#B(U^wdWj5D){nDrBQX>YUsLv@?b>?OYrl%v_~N*Kift3Er?&sY!8FVh zi2&5F^S<|}m{n(2>}c}h^17!fx6qy?L|$2G(Z|;6fpRd5O60PZj5mQ(#;LSrr%TeX z(r*{V6Ce-dFr%{?wjsK44+oOVLDsK`oAJzsMI_Bl2II<-r?WO#@(X?ak)2so<_(P{ zuB|Gi(t~~!(v^X(7pkdte-gZrGl=N>lLxbta;ZtYq@t% zDQd;_ZuBO9J8}uyGEU?y9%p5MG& zIVj5li=Q7E63dLtkpRi!R#fhN$wwCk^k=Gc=x*^#2cDcm2$j)ue4!vN{9y7zSz*V! zAln{LbUv<9;ThVzBrN<(xaV~34b20_oFDpHxaU7>M>gM>HfC~K=;CnCncA;4-q1-6WpUMBdtS5*>CevqifzHXatxP*CDA;v z4aiKua;(oi@ED6uokTdJm;MNj!6WxbFHNzLdkD^unvgQu${&E5vraaOO9Sy!vS~gy z&hOWn@mcMcr?1UC7K=8@Z6dB=ybyQ%5hCoHmsQivlySbek{EsmS#BQ=UF@xl{?H+@ zrh8Jv6RGk#xshWyMew7E8}d2(?!q>%8!XwsB*Qaer?|KsPk57*9<9!pD01V-|Rdii%K% zAAv4KtJFUk9EoZvKOj_BG*k{U#nT2q2#MaAaWr;lRwr4@g&hZl$jeS^c!%(y_h$1V z9uQPm?m%ZW(18;pDFX874)Bgtgu9nSQXpTycTA7Hm3jLrFx zHR9S9Ob}UTRHKMmGJ_y%{eGM2*Z3?dkyfSa&9!;5FD~@d-Lz1KbzP_k>$&rm4 zSh3lw>%U6O2W9rQt1Ada7!CD2>s{c4x%9}zsrdaT;^q^}=M!cLv2xA}I)9Anw6~uX zgZ+k+R=qS$)XsOtFfz$Pf6Qu-V-{5G_u_0;h1_Z`(0IQgEbug`-jT$Ee6Y~?hcGEv zq*A7>{-KNyD7(MO6?;}1ZSuyRZQ?$nUZsq$2=hhk**Z7Z5;dse&(1Tp)RixYY16X?7A@ZN-*3G_SFxe$m%-P*kpx1cd`F93=G$G%kt9O}P- z%&rT&!tj~2keii_s9guHeuaTR95E#Esjdh6Be)tk&PwO!>pzLvD`h%JOplc^9VD#B zN|_EKxLYYOhr*n*1u3?tFH6UK2p?OToD3&RhSiC%sxo>P7<)Z40@E6$EpZmR*IAZ( zG-hpTA?C`-(tIm)4YSty;z)4o;w;)TgTy+`SJ69Pezg2a=lF=Dv97PnjK(f|{8uFC zLa5zrD@X64jjloWmHMXk&mzs2;(vXWY)r_m#F-&pMxc6n2j5;sNUJY{MSI)B1FKzv_&=3!xf{|zde{V^7PA)imv z?Ne-0D(3ePz9X=XZ_q$or?BrD#JTS>da_F0u_$;-~2gn=@z)0tc4}t>%4y-kl5SaUm@`mVgx|z%!w50 zB$L~7+Ox&whtM{avBh5J(9bEvN(yI@F~@Dgvc&qUW-V}@hh0&YGyJK`9$-T&OR!%*jdz-*`Ec?A;@ypK1szFu@Tcd#x*wWI(d?HW1fsR z=H3f%%i1ZCUi81GwHH5tJ=2%(H9Ym_uxI)kCQK@cz3;wuk6$W*8*%lQDyKTntflR8 z%;mLlpKv+`f%y$FX>#txP2hjeo+1;k1r;5db>fhMlvA%mje?2}%|fLxG@yBw#iDuVbk|kS2_@#SvNA43EOr|8d=Qq{3G}!&u_NKwis-k@5kL}|%xeV$&u_Ksqo6-OZFNlq} z+JI0Q3R08c&95osiz?@fb4+#tCX2dPcA311?8Tb>UDkpeiS4a&p4$CMtj71tpPFjl zqMWm)_&M~wu7gZVp$|t1?WXqD^1^xLZkIlkr~fj2__K0DAI@q}`cTS>TrV{_*P8Ns z(T6GVV1QA%(1QtDj@?l-`NRc1EHk?XB$Xiyg%(6gouIyy(842iA_1D~`=dUU9J`=E z$*~|65TwG{zU&jB5IGTRYwsTf(gZ19EtmwBBC=YEGDt8g*V!-b9ezbm3=5HhQe-}0 z8vN}2pCsbtW-nHVssz5T_*MAH701?5O>)crpP=6!WM-U$e*02=ANuVRmQ)}5O_t$V z^jq7KB>g5{wOsm5z0D7ab;e0FAqx$OmZZ82nRe)LA+`*e2AGxfGK8Az_CZQDgqcx_ zf;h&PK6~SWv+1+DuRNPRd$xBzrO&34FF~KJAM$DRS+l-L z(q|Xv_oB}R^4Oa`i@ftcO`lc$%V*MO8|DLH=(ERImCjI%YyW>wpOtR>y!6@kL!UvP z-SCq>^x5P^Kmz(qA@OA>)z3qpnf)(IOx6s6HtHvA8wUZVkYEFGG6#VM!A1-qJy1t+ z_B7$k#He2mZOLSNVujFV!Fe&~`I%x7e%g74&)ls?O1XpN&m!bre8LcN%lOQdyckp{ z_%cqvb^Z&z>rKC9f-4l^;=2vp>&+)1Rj)m6OK@gy`t5o8l_JlDe*4Z{|Ks%A9;qaS zev@O=twP8^r)NP4rO-j`SjY6HgFafWXbJm?p3k6zKIGgh-uYhikdhF6Ng@|#Rys=~ z%FMci(Qs4Mxd@{ad}iQZbC^yk{enlcSj~y}Q!`J}5ZMb&HHfle&O3~FP5!&<%_n!b znPi_#$+T56dA7Ob7Q2~*s7cB6sFw6Ymx{TBOu~x1v@Mmk=|^g>agT4g=b&%KLuRDV zH^oAGD19R@oRjli`bM7q%k<5Q<6ZgJQl)RCtjP6JlT&5N??vAf_S)QY66A~si2&{2 zB4RdNouE`Yfy@^}hEfqS301#1xl>(^+JFyO+nEtVxyvcIAy>$mAgGWeMU*t936LIp~w+_x7PrR#0;v`s5!;I*UH}s%bpY zdZOxS+@()S^Hjgh->(pZlL_=y#X4Lym_fMb+C{er`^||F0T{VC^tjL!`WOe9AzV-i zQIdsJ*Soja?#~?LpiP-9cBa-7FaEQLqEykKFW-4kqZR8oBPDgWAwoyPdzEoPx_#E{gK7 z9#sGNe&3f5`8r9>uxabuZ5C9{KLtoh>+@?_AkqGJ?<~6oJ*#%N5ETr*V#?;xr0GAJrA5oh%zxM_`00 zSe)~+kHs}$CKzS3;l zU76Z1WGxsciLdCJB+WMWVgOQBsPeU2xTiYw8Hp?x+iYZNzdr=c)?Z|5%SEQPK2@f+ zok|gKy&y>S$kT#=ek|Kv&Ct^9i^z@d)ZTM6<+`9k19B%f%x^$k% z^v*5)b>(mk-|J21#V453KMFkLaZ^w@h|A+f$tF1aP7VqB3ta3q0;tGp`2}Gqj3SK+ zsgF>f{hM@PN`2vDxp9#lPL%|ZxM9JOfxXxp#HEDe40)IpLP)3+qL+g*=>xKXXUy}> z^D0^`5Vz)gBjbkI#DtwOTc`s2z zg@z2Wio0vpQ)JM20%wZh9XaYTy6X~si|%yI9({SgzV!b_q})vG9w&R^(b&oD>EfB_ zgfsF+c}SCoZs%(}pxYYcxPpks;!Wyw%@Hl+dU4knKr58U;zxKTes31%h>#JtNC`3H z*B%t=^tAIPHAqc=&}){nk83Y#wYR)6?~%_%ui8q)$|idbB6dsncY4#WOK5j0{W{9| z$=o>o`gecJpVH@*KQ>WGd+{(f7aT1~Foyfui$}`E5Vi5i!ZnpXZ~296+O=XX+bHu8 zRZqF73nL6+{W={^5;f$vZt$Ky$Rt>6$mUei{YFxgq&w}Iih#^mvuNbR$TEUqDlq`_^o6>)KD<&#mS;u2tp+kE zEQVwFc*uJ0ffsQ~Q{KVa4v*%h)rP7^kp{u?hPxEZk^aqirj1!YZq5JCGdt_vN*{nM zuWo1BoTka@d{T8Esei?>dPXrx&l=?(@p&Q|cA}0YqZwGwjhMf=r_ynvJ%nrI4H1pj z5}zzi*_flTH)cI1cKVNr1o!5Co`?TgJRo&YM!#HWPwa3OEaX8Bpr3R}_S9+A`w)5a z1b$@ZYAqc6EMeiQBb$^FM_gHDEIUkIL);iy*0bLs1P=9;>0%oI~=5i{Wc9gF& zT#2L!L4hnHqMS){Kr}}i^GKtOf%Q#|1@bzuF4CypCUF~--6&^uk!$0v8sfG}+IUip zd_`WH?xv<-H(ehqjy=iO$@w7b)104+B$o4YyzRON=n>@)KL0WL`J0r@!DHPCL&TYL z)CoxC&_>qVx z?=@m4j@>k1U&Cw5C)y9nVS9As%GSg9<6JAcbN&HVb~^TEoW?S=e%~6kC99Ts=ymT! zg`hI4JAh@G^8|Tvp0IUDK8x4-RPL&ph9yPL`T0Q+ zO5_rYM7owx54e(pfj*oS!E*$Re@p(n@lG?$pRFF?5{S3UqCo&H;C8|OGpXe0muX~j z$}0YPfTfn4uaH(?)QB!r6s|#3zVKFA8nRw=WdJQ*KM{3wO(z?cP^i`LQ}Vc?ZjP;5 ziw&11D@_Fxvo#w?D9()~WDVJYx@6fV8>Pa@MZpui3Dl*sampC*^6-~>vvHmrh_eR; zzrf4|r_qGTl8e!ZHh`RSgPd5voW@;1Bdz_G*x96=Tq8*JW^czWo)SnNKn{PHx`)L#ltW>{*+xK zvt|{eq^{!KGG^d4M~8LMw??##Qfz2F(9*A&Y@*HZ@wZ_jLUs1O${H~Ncixp}^_E^) zvs#MEtPzJHJPDW*#TMSnGfJ2h9Cl8VLxr9MgdlcLWyU~Dqv*@%B zent>=G~k1%OyPOo+SQBa^$|J;J(3=~6wR|^FuUymAML;p)Is0#EIpEL)g$RvJ(6zt z?jyog1fA1UISwW}wk)5jtN~1+2r)jyQC!zoP}zu6JCQ8(rxoUWpX5HFVb5Y8C04g< zBi!qNUdF@7Ypa}f_F4Q#FMS8YcnJJc7!Q*uW09J8k-g8_q*F;WG?L`no-LjK*o!|= z{L=*3L`47wyvj(ToqPfeCq&=_5rIdRofawhaH9=ywiNuszc)l%04>rKqF&VjqPli* zGwDd6rRIlZ!i;Dc-6+(z6~N|oXT1bn!u@>I_d7o?ZSOa5r7M1*&8yd~2YS6aEUy^< z`UACM!2WT*v%Qj4cmz-BXOr#7-e%G z4IE@8zlu0nSe8J&>Qa1ihmMPIFat&Zq04;^JfjI4oL5c4r<^Gy=VwiAoZpym16;xb z@ux9739x0{QceMWh?ZsYJYle#sSm&LkCJI!yrk}Lo04>f11fL6o=i;ClH%tHyUA4Z zWc-ugx}V6Nky81Ey()ji&7>@QvfSgvl(Z#Y(n2?ruB2q9J(4LuUioA)2}jf)m8hhm z#wb$bOHA>X^266p;P?O*=$rHW&Mzv##;(HJrH1BiFH;_=y)26v<7qEb+$9I05&aMZ zh^)q685>-8`nTvTh)>1n)R_Hhq~gTocvFb5&UWHZVT#Z8Jt}&d_2Rb6eudycT+)it zt%fJK!yU9}ZNKkb*o8zWR_2Xa?cPTKmItZ=3akvbmq;L*X6XD#vSX>~CssPlhV!ZA%5cb@_$sO+X}7ueMD=INDlum-$*Mh^}_Jl5pE%G^6(Y8uw4HeM5_I^^S{4+uw z5wj@#b3kVLT@_w|1pdQQT6F1WwJ1GaqX3_?KNtLy1^gI=$OwEaBhV8cfeL%J55#8Y z{suHKfk?u&-w>aJyLB9_%XBD0gOkJX7XsY7t(DGWXHs#ZETgCR@{gtSt;_m>6S{sm zFUPs}W`Kw{afRb+wHADfm7UQ(&M*DN)#z&k<-vB~X31t|mQ{a*S5S}Y*blCE%Ot=f zdb|+}R5aIGcra@O5j0-h*--q4 z1Px>ohBcDYB!L|QCyJ?#w-4E~x+|UE&C%UrI@F{_wMb0XI2FnIvM1(>HXRfVc0^gd z$+taKBU;)^bc{#D+Dmkl=N6R=SvV7`e2p(wlHcy_FB8V*ZhU{m2j*6Bf;}}q@B$qFp%OQ*CpOs|>o2p-yT(n4L&97QzK2i^ z-{myy5$DJ)r^N4(y0If5nGYdDiqwXWDIqq_Ot_Z6}kNV0Sm1Tr$+2QfTM? zGJG%JW(m-jVfPao=N&pHA6(t~iB|$>#7mh|aOxFOu?j;!^9tnfh_FioJQo-;8f@Fe_-N^ z*9BkE@n}g*#B$vrCZI)w=HhgO`9l#Q~>3aNBjbmT^4B$Yv@fJ!4@qE5Qa!q1`K*nr_P1h~)h#OCKm zC-@0QG1Z=u>ny$eL@Wg;g6{?2mgHv~h>h>`qG#KCLh|0I6oiijjhDRXcFx+L+ze)f z?mlkx3am9d>6tw!NGg#lR^WVq76mri{UhaDT95h(d)6L!My5-9;GkThC8uE@wgjC^ z9~XZnFd)yshD6IZ5>}3bhpE_LI@esyt9|&iIqk6;{)LaM&87ZmIWZ!RaCZSzCT?Ws z0mWl{N>t9Ysfnm@27d+)OI5M?Inh8*&13t|?yY>qHKBU-vL3C&SV zWQj;R^G=zr9*Ilg%v;awi~Dn#og0~)%T72riWS-);${|^8tejnr1BGS8B5|_+yvt^ zt@g!R{jYKe96HDj^F_+|HUXS5q1x+QeMWZwAC&7BM65YNS`@X49m|EcD%x^4)*2aI z=Z(plEquK^Aso3B;fpitM>u7XgrCY-JNKA8N7HzhSkKI-N@H90ReOPtHWVV5wr|X` z$NFaDoVk6hBC7VWin?@tkM%`LhSC1a_F_#8-{Zr&fHEQ_1t!`3B=t*U=^^uX>Zs}V z%tE$^EY_|n#aG^_K1{??@?v}2P<+E@wAsG!=+O)NMdzn=rQ4lFA1wW|?fs$cDe76| zn=|&*f!X#p{d8gasRPJO&4c1Yvp!ni_Qocqdo!ly$0mBi_keKn{uY`I-%YNsR@!&v zwwEY104zQwC`H0-%D1{l0AUcYZrV^>?H! z;z3FI4^Pr*&`W=3NUE?cpTjF`pAX4N>9<$NyvvIIW*uv#J!1#Vfpg0r9dH;nxIQH} z2%uE#x3bF+Y%DL%Ly}yU7g=1;RyHgRg%e`9EiKGTLwwUzb`^U{=!=lzC0WZZK>A%& z;#-EC(|8%{%CM@AK-hc{S591}ij#_o61}d(7qvU7oY1QCV&ZBi3qM^N`>X{oBv>4a zTe)g%=)~W0_N-(4RCM!Geu5wNf@2?@65=TOv_m0?!;lB6LN2T48%yZiGE5PLXB>i7 zQCL}R)hY@v1p!Jr0^Hf^JuMOzUadJ$&=i(Ejncz)T%Ai;D#;j7|85)iloj_-b{X8d z^;9Mf>o4WpCHg}Z`+HYMr+Fh|PnYnTmw3QKAve!PN=k3jGz39*xSo=w^I(Y6B#ro; zRM$k}txhiEC);SgQ2}ASAgHK{P9El@p=AP*(SJ|lX3yy5S<5jYF4lNL8rG z)RU;_z=$W&M!7+T`7xKKM)|c@iWOL-QGQ)n` zM`Srin*`GH2tBsNu9Fo!55D!8Xt^VCsrswNhs30x)foxBE*`}AF5t}bL`tCLJM3>k zcM-KJ+>()Cp@^bbCV&5sH+ER`Rj5rN(FS_{7=0sYi+@6nc3) zN3O{+FhZcO)EsUB`H9zgQg&(%aV?e`8JABmEj))^D8Yt~kT!pasHlQs2Jm2CX! zh~T%JX!$|s2Vd2WB2|oq_Druiakr@W^@zVSFU3y8%2A{KagT+ysfYt@r%Z+2jhUEXO|JYSr#pFsfZ zMU2C$75Zw6J?pUB1zJa!YiGnl8yR{OkTTk03;i_*X-&|18oYt52OTE*aEzoRj30@= z(sx-eroLOsyYP-tM;m0eP1Znssj%IVgzdsq*jA(gTgH>>hxICN80FDEd5413LVvs! zHKWKDbOyznBCRZ3NxbpIH2z?vw4@NHe!Ro)gOt7M9&M}4@|W~A49yN_iCCD#RW|P& zZ}w}~GK&3_^Bma~hls6OivWF^h+>h`NCo3}`ZDt>oJZx$+dB~oHVuYr;p86_I zlZZ>mlh$ep1t5;x+8(vf4Bf^_k6q#4-*f7q#KaEttc8l`P{*}1@q;;2^l8c+sOWp_ zZA2;C-(&Ygz0Xnti|g2_H#uG9pcSWV8dyx?6;Zi(51!GQI2y$X;DmbhcvkL|(Z-6? z;!K!wIo`$vXGZ8)`1?cBw0WV;yhrs8i6+NV+A@1tcd-cn{vzD6MDt$OZE3vYI54cI zLO9}eWm}M#1T$zmKx{Z`^^3GJe8#`vHoNT#3&*^7_nQ#z=q?8P+pi4mjF#mYe}(?y z!_i{uz`gP=3CNT^VV&Ihi#JL*j%+Ue;uiCwh1*V(+F7(~DFh_8d7Ne7RG@9Ar)cl8 z3cGD+Yq-a|beR20v?P7#{-}3l_+4-7yXj-2z8`3PQHWoEu_JK_vWuPYyJ?~K_^_8h zYVR6=D95heHAG`t`X1a!(go3$BTx+~6i4N}VrT6QOc_^Ryx7ol(06rn{il1&i{nD% z{ymh@UYa9Pr1sJw=8|hJCdy!`Mj6CAoFqCOFbD0WsuqVaVChKG?t|ksm+Ry*8$G$% z+A5u|S%f3R)%>VO1ygNd9O^19j-yt{1}n$$t%v;s4-R}(wpX^3y$EGYtimTCLDaT) z-npX{BHPt~g&@xhiC&lpSZM#VY}#&7ky$>cGG5S}b45KoKQ-#1b*`v~Ng9Iw#PypE zJyfJrztwQLG+wpfij>l~8nPv&Bl@(E?bcK3z#{svJhZ-*ju+ipn* zheeM3rHY_Hwg>r(afjKVqLSBCR5HVxaR~3N$UE>C5DVtn9gyTZ!}sP%m5K*L{aEc? zSv(FNG8)Va_ruyQ7FMu6>k*o(%#jK4c0%5|uO8!-c>KM!#m;1JJv|TXGrKc(*AP{} zuIPychltgc(4DXcm`LM|V1BMhYs-E1wb2zaq(OUy%wFp$ozwQdUKAf62`vSg2PV@h zXrq$LvZ(W8cjbw1SJ9JDx;dUjUm@cc$Drk>qe|;f4_3+6-~Y_1xZ%0*+ly?oDYI!#8nH=+?hn1& zRaHvXqEJq4PIGB&RR2)-n9?)R$!9_i`vXvGW2Xt6t{rK2uQ(&cY>^-Pk5<{i>C>X) z?rX{{t8)JCpTJ@jB5BTeiNI$SSwlYz$p%NOK-happ#5vcf^LQ`>%p$QUF5pk+cG`P z17hLp6F*AK6#N;xmHf|W$E84|JSP%B1io;pwdq>BwJdz*zQtcG z9oklOaPhaSO_`O!>CTi|pJxlh?CJVK`2G9z)g_hasBRXsina`njeHq@EL!GYh+Dgy zt}S?&Xwl#qLuZ`^X=~`_6jZHk5_}?U@FPm@hCrlY2u${)C{$YX;llB2=VF!6mOi(& zg+nDAirM?G@W6{*?>Pv?H^kbU@-lk=d7$Uk!viupra}VlbG{52QS{-0-@*?i-OTBF z%bPCd8Ot2|qPg~1Ej+xfzqPqV_Ea1bPw{fn!qFSc!aFgVdw;Y9zh6ftqlO%xF}kIOR8-P{gvdy~PM+nj-S zVFJq@rO|V5ZCLaxX?^y?yk8-PShqJVP2>o)zJb)@UY>pe*9K_a`HI*REULyOYq zaz0dhd3)f9X8?T|9XL{Zp*-+UA0+d1$vkM9-G)@Z49b~Mq z(g!Ldy4f6c-rz;w;<;%6N9hN!t>3Rp1bT=WfcH~Cq&&VYI zOdl+N8u4xkmCUo3t^t1N$sKYDjD@w)M;ROXjwLhT%ph@06ET7F!PW|tMJ{EqV5E;iGvLtWq%XPnrr|ovOo3s{tkW?N6RUeh|} z)m!z-G$iPBaiT%i)|K*!wbhmj;?|)Z;kPaef0VPxJL0vjZx!vobzF2GxueSOMQvT z&U05$*Fb7)2_HVglsFs69yfZXhsbfvYmQHrp(YM)a}a!B@c`9_yJ@uD2m&Ty^- zoPv(fUr1AUta2{m-bi8y2UX0B|8_&ml2II^Tzq-!oQ9U!)`QG#?ce!{{tawxXu*qS z;?0R~#d{7B@=eYHYp7<9wYAB#P8&J2_0bXAhHeY@WX-l7j~Dry#D@|t@*2W_4!5={ zSX>~vU(M~ zxp8astwhFNt9Q?y>Gtao2jL^a9#q)h^G5E>_XwfwyP!fOmQc%IyXV6yY&O z2%=$%_U*5>2&&0q-41|%m25p-mVC=6)d7MGk`P;nsl{4q3s9R@gsbxoD(ay8fc%uV zkZ+@~wAR0Rep1%bm-0pHBTrL)AvCi=^e(r~-KDAaAO zzJ#$=j?aGQRx}+Mrf?wv=%IB?LZ9(f{M<{vi5gSWoPMc z6~O{wL*A44qzqP*3>Jqt<(=&QGGYfI2$n7f?$OYZxk-IK0F=puk{-Ow{S>(?e_i_W zj6mZ_0o(Hu+J~ERIbty|cY*QaXW}qdUtCe6DYwI&vCV9+D`dF`zL%We@un)A{nxraq{3j&$ zXHi3y!LQr;6N*FQGWz2>u3eW!ON)bM5$*{(i+-cCAjS93T9azJp)#?Ae3QG+`oXIUoUhFC~cC z*jKOA4RsJJh7k+292MVKvCS{j6MMD%I=2tk?V0B7)-3=LlWf5kHV0&U&ES6d8}Y%F zT>H@NoNaPlT(@jDI&WZ4H|MFs)SR-VA!}?cv!xJz|r-mCEWD`9iO+bN z>29X!(W~RoQ2K8w%tPG^M`*aG)~b6!O7YAAcFJO|(N65A-a&=Oe~K^r&C@-W`2cUTAR9uG(x~ zP+oPqb@MjLI=J{+Nr)G9Z>BwweLu9HDR2=l(i1QG+0%-c1A z{pI_FZ{hsFz7Xao2e!A>4KwH%0qvr^5|TDbg<0mQim15rVFFKmu70w-&V$ zRC-@TXJuqF44TJz|1vtW&-vPy*iH?gC}(y=fh2pifNZuq5Z9Q;1ST*yx}JOahs{Dj z3wt>Yae?dlEFhA{;&?m?&a(Z*@%Y9ZZu^UU2K@#&?G{?wL_S6$>@P+YW(UtfS*RR+ zYxpj#I-QeC5PvJh@!nNB_6Y>jcYkrwi>_FIV-uZb!Z)tftADjfU3gwyr&rKQ92q>* z7a5HF<=M!99i%$IUgBRPXchw>xR5v`DW9drgkm#0&?TE$1s_yb$V4xHhKbTKo$o7NUnG;a{D>qh zx`^LxT?6?I99cAgOXni*(=c$?ye9Q0`@PZy>6*SE)z(Pg8Ta0s>swEq-DS{Gwd}C| zhou|?(ud+*mi;x+Wj9e8&y48RWtU)DVaiW*d8c-{oDZtYPf%2abQ$W4eP4TAfng@y zyO`fr)8jph2Jz6bDANd4IAZ6sm3=xr0NTwT@AjJbOrmTa#@WYaJ zkGwsoZ=a$Q&LW@mYte=L9_*5V?9k!dzR3Ga8BW0yCeMyVU*x`1^Bh(HY)b*afL5!a z8j?>6SRh#P;DS7U4=)g~buP$BMp&4BWxVOUX1U13NV7}w;(L|7R;WKl4#0vH>bCF%m=RSH`cK%bmxH$V!QjCy zo>-^Z^K>gB@PceU$DFS{&DOR?3g<*Kv9=W4GugAVGbO=KLVq60c%x7L z$wL6IWSn_E?>b1v#U#)l4h^0?#jh)5z?|k*jR53jR{6_>N!%tctY(*RFU@)m86YpK zOAAtJ%j;DePyWdTf3r5LS&SHZ)pO5S9!s;XX^{#>#rsm2TKZ&?@h)Jxq5YA*&;jMO z&@5r3I~V^w+z=y!t!^Yhm;K`l=}UY!&^p{l7|Nggdwe)#Jl&U9^F`MeI1wlg_hi%p zI+{hvrK1-4xbNpVw1t*uXNqG8GjM0q1LO-J;rH7sWYx$z_BO~`r2cfJ}|S z7wb|)UYD&3V8#bf-~AlkQ-tb2^KQwk?OFDB8XJ*D#UJ_rD~;Z)dBLk%2d{ZoM*6 z?m3LYvzL4nc!GD%4NrwloN!av#Nny1!De$$5;jv|)pgfO!e&Z-Dr^$?qgQ++>X(iE zoa3pZ7O!7NEndI2EIyvvviNvv%OD(|PqysuuSI29$i-yKp1s_(?A-FE6~|_<+>=}? zQjJK%VFcY~U>VMPL4ZD+W4;x_P(-3f;J{Y#VJj2=*sL6xPvOxZ~2n#mOZPIKMsclqYR2(OaWYDZMH1 z3rq@elwpJ}sE{8-=rVPxt>SFj+;_{hz0WSu#@Z_d9>ge-E}E~o%c6RUWm7x|yU05* z0X`a}D(;C6@gNMl-Pu5hn+j8*2--FDdT{IxDb$7{`%hwEX-a{8y!#vO=%m2Y80uI5(#tjbUB?Z@-z5w#W5$bo_0j)^N;Z4a%Mza&$adJ z7^qdsxK5tnN=}ONB1?H`M16X=PyA|>?D7o#=L-Hhh>@Ppi;*Bz0Q^AylN7Glm8Vtt z&+tSJ*;F6M-@}8ZzRXQ@tTzJ{8E-qLFh)wlV|IQ1^SmRuP3~Xk-r10=vKkJj_a40q z-CYS*%;=6dNuX{&L8g(2jL#3w#mhnt=OZU^3mW(c69%jPkj&Wegf%}&{HpPEMUREt zrA$8v++7&0&p*s$2)5Pd|2vg=oaV}uRa>8bkTP`H*5|iyD~;;p>U@`MvT*D3H_K-% z-g@n8^nv^q5}NAsH*taJB>fTYsOO;6LsY24{W7)%X-^>*wC7mKzjar#1gqa6{maD; zAj`gA=;f~d1_Lroc_vi~l~lQsT5!%(4q+b1|1qs#`s`r(jM&*UKHnP2K|bW>Ke9&u zypy$G{}aj}hmf-m?CGGF++6Ah)C(@O3U&x~~x~2J+rg((svdYt@ySO+Z5u-kXEc^SRQ3TqO0;Z06dq{ zf||0=wEjmw!5?NmXCN1MCmL7Trob}w`3^VE7ynh(Kf@^)dwl*#E5Ou{>PBIL7`l!8 z8)%p*LDq)3tCKREH-4t48sqcFBP66Rlk$s&LIEMUL<%8Q8KRl8PeH)X+c%W$HkkW41F{Ony6zPi5=bPy=K7T&VxLKOP``b*_0^A_) zMNv+r@`5K}zGk#K*9{)TVqc{t>L(QGHy^f;N!r@#Ttp_4Z_lrx*@vx%w=r>YM7X## ze=s8J`U6(O)f5l#AegHUGeZg+PV&K3vO`(pS@~AMUwPJ@D%?_Rahk|<1mXoRSpiTN zM}So&@%>1)p1r!Y9M`QyN-CB_qTX}sXySW3f98G^Zt)XyPWPiXnwe}g>=m7fx*fgE z=T{72Wi7g4WSY#yT9Hpy=Z~__a2+q;^WS_T*mQF~M@-q(`4bd2dHjMEWd3%+!tFHW z0__5uB(orfvPmE(tuGdUOky&}086fY+#254^F!raZ}8pY_8}d8;pMZ*(mbW7Hd9 zqA0^h^j%lJkfmBr_VMrw9lZ0@erLo^8I+4 zm8wthhD`3zmmXr>8-Zk&i?0?p>_Mzg{{KTIrF6dlK?yt-mcnv|+Hdj{ zbBN(B+8;Weklnldq3EyL+mZ6f{#evgJH`w!8V4U#uC+HBXa(DKB2bsd5xN%s`NPoL zoMqhm-As>a3rU@#B$TXM%KtQeZ-}=Szt?Kt#3YO~NLXHbtso1#PCBc!TO^uCGPnj^ zvITiC7WPdz@36PZwi=1%@{Y9@a3n*VL&ao|+-Q&&^E0#GlAp0J+|nsa657tY5_GmkNUKC-dfhu}*O+S}CqCtQer-_Z;)cm|?LjkEl1JkyK4P%5`4^H?yu(7%1Sy(JfX3b&{D zMdV^zBZuj`wY5$zNi`&t19~q`ja?eIXlcg0KsJ-jzcmp|X-s^lV@xcS`2V37J zmnU>7AFPoN-2IrxesWr@)#tefs~gkixQE_aS*0`T9jX8BI@xia?-uo%B+%?1DE_-& zezAr3p{S>bki*>*_O|Wde??Zsc`jB3-!mSd{D|_{h)*M`5fEtCGRaM8QsPL*n72+PFBQcGrWlfETc?Egc zG=ZfbhhgrodB6_yEq0hi{FjPN0^@aE)TPM(k`pJmyWU*m}G*de4`} zJob&l6eJYcTg|)c-pXjYBUblOM(D!2Widj0T7hlNcf``S=U-;}(A=J%aa~5pUw_03 z{2~1hb#GtR^pLjyAt_}@Z8na*3VIC_qiDP!r2T_-)*91rb=gHTVqPW!F&7t4W z@}7)+FFE$^K5ZWQNq83;)AlyrmG`{#_MCy+QoA(g*17GCQUm5O+EH#jZ91STrBB^p znGY+DweUVgxY-&}XNGo@Or5qmox1IHLPy9y)D#ArM9~dGi}RlIb@gw@Q9xc*bV+el zY@=+A_CvBU;LtQuQRfUECzxG5ob8hXmu#4`T_w7;pH$gONZT z=*GH5B-fK#;Z*!NU@mkWXw7TZEwIVe(i&PKE&AN8anDi@`pgJXX_ee&z9|wStLnA2+)w)5>sG<<%@jm2Ne8|Y_`SLi zc0arJcdwV=L;)aY-~Qt3dRCKt=ZpBlPmeU*&I*a%{Nl?+yB3beZAfctPX;pRTEF$% z7Q4f&sPOU2y81nrNB?8b&XDYZ*QW)y$n((FjFzA?>}gu61wmOveF3sS5WL4`8Hq}M zQF+L22y#b@zW@57^NP9N`Qqz~Pi3^28j4!2=u0rB_$(Fs-hLUimP2`S!nUL6OY3`l8QelG)3nmQn8%o_zE8IaP{0Vz!#kkVW? z+sn@AKfEub+G5U-MYKPK8PCl3-vFo&F(=|@$yey2$Zja6uaR=*k|3;tP8z?DKh{UJ zjKSm8yyl)Mmi=H2_qtq=Kn{oG$X1uKGFPqU>(fM*IsEtLNt8UL#5_~?6qXSsS99t= zv&}tOmTId1pf!K~TK+(}@mlWry7X?8Rq$u2sgTm%vI@X^u@a6bX$eQ9u#@tDWAx?`Iu5szc+N;cbkxH`o(LQs1T%f_^;QK{4@qC4>`>u&B zOFc>!>>-Q!>atONKU$QV$bNDBU6+7Mi{$z<19bm`6BPJ<9V0r%!3yX_weS?F0MZ$v z+834iYTdjW*`sx{$Ol^&4N^IznaN$!Y@O4#I$bVyC$bvqTB}CGCz#y_qhLdOW;Y53 zi63^{ooUeP+!rIB_uRh++ahY{X1F0cBKV(L7@Vuqtg_a`7A*3bBR#xPBRC|-jNUH9 z9mf^L4nWCHS$!&4CawHMlPTw4>$oD|whB00n)!r0aaC0$`h1W=UNr?kOu7Yd=p@^R ztUjiFwg`r1{0S`MO!SB}b7nv!MXI^RgON~6jjk@4oH8T%yp+65BGxOJX2}=h^JP_7 zMzCZR>~<+z`nhY-dDMdw&%Ir!V&I4y^7XyLiqr?^F&Eyb&X)=%<>O#qrBm|Ff(uCM zSHNo>Ca*bG;(mWqqXeE=DQqK0;9FS!|(^R=r(n7~*mTHJHL{;_~ zgirOf20G-vA$aGcj1yLa&?R;m-oj4HLGb-8JQm&mJik``ee&u%j zt!zkITj`Lrl=j+m6KnL3=w-tsRstk18JWIWcx#T#&WV)dkR zl|3%cu6snj@YqYd;Tt@m{^ISf_A8b4hjq&@M&d1;$^B(`Qa1gWZSR|N>(QwbGdy!r zRK2x4;7`l4?Wr8kyebqUTB`F&xr4xGf{k%3IMzRUeqQKi9?}{2Z7SsMR3Z0ShpaN+ zlqTB?Dgz~pboT0_3&7}Z`X17E#M3czoR))x>2Z~E`8_I#>Kz_!kEmvR#7Q2MMZC*1 z)HB~WRy?A<{z$b4EPdZD8xO2l#q`JCkGrs(qHVQ9&`Yu>_(kP6WeRQ!bzxi{=h!6w z)SOCseFYuFv@|4ZfR4s>icR-x-KM^yP4$_k%9Ky7FPD#Hs$*knYQ+xHO#5x2|8VP+ z{JJ=@#q#ko56v887RFz%QTBFYTD)oT@v%$tSxgt0{G)?;@&PHK6X*Is%O9nA>zE-P zH~*;5$S>+!c5B@KV$eT&K`(f9^nw>!e(`}&oGJBHK$rRh>Ru^wS01P(%}$S$Fmb%N zXA_QgqCYY*XKs7R5SBy9#h%E-eAg!>Zra*Q3Zc)f2_U09si;?YrkyYItmf^ zU%^3p%QL~IqwLaAxQUER9!1h`NJ{i#Hddbr)E}R(_^Xl`b*Kt=O$g1Mor1{k&9U1- z?C$c;zvM{IUmD(cUW_Q@P;%!rf}BWUo0hcWq+7IGwUz zWc?5B7rU7VpS53PRXReu=zj4}sQaI5zrd=1)~4h+gQ9_VXq# z9HT$d-l-E<&nrF_L{NKCQ722HB!Pt5inA4AMoK1VL7IR3=gB`_^Scu)xp)TrDvgD6 zz#8AW{h9;uyX2gr^EIO9L8QaBMw!_j=kAdr(&q3R2WUG;X=-facW!%QySygcj^xLo zT^wJ!>x206f9YcP-=xBsgRxC2lGyEBJO;IpW&U)#XXygNnPRpdw-1tKpKg_Hv*%A( zlxdF*o;rvjN=cCOq^s?{Lox7IgHrpIQ?DZ5p7=`9wos|yJP!M%nL^|iG9mp}=8M~XpaO^qDM@-4-v`w2~OZ%X|XpLGr12O1GrJT{cw}X>T zy~<}(C($x_o)A2Bi06qx#=uO4L>-Zkf9MBHf>YSVv`3cthimwxxB^wLSD$CK&M&5Ur z*Mv85u#6LG!Vsc@Ps(NgkZmZ5CA_~9^*Y55m{YN*_&^wts>^a%iW9<1CJ9ZxBqBKqImnan`RR>{Bf0id-Cm2Xf<2d67cEpz#eS3HenGP^_5tg+M>P*)~4Dtc{jG;JV7V^@$H-b<0k8;D`ci?K(Lehy>PlWwr;_%62FIAU52t z-%P+l!CLtdiLv~KBX2~|DBb7m`L3QXHM~u-Ql;k1qV2B(U84fp6IhQFQe<3}I7mmj z6<8&SPr6dCz*^_jT=`f$j_83$6Kg~}0gN5mjFI{&A?>s3xkuX3JAG(til z?+YdxqUPxGB(Mvtk2kBnS0kI81r$#EMBp>xcegr6PQ-h-_Vw2zo;2X`ZT=eh>ofjR zj+pPj`tnO0&r>S4sd9qHRduUD{31l>+@}0O(TBBPi+^A*Do$8D=WE{D!v;(&5mA=% zv-U*Uk$Bzk3b5k4?UgcXx#LXXfX&U!j<#am+xIUVXvRmswO7hOBdGy?E4OfqQdbRg zjFwf4jh85LZC+1$tkbk+2V$2VdmpaS3A`XC$l3?zQXz%Z7!RjA=QU3iOVq4vJZt>W z?S#+NL~f%_nOa$|YV3tMNW^6h2T<7nVv!0Ompx7&^v+jw3T3uZksuASyLtGsK7>9L zw~PCnw?9PkQkH`b(43q|X^!(R@5`!m-Pj}$rmi2s|9VI(x}J>!iA4MK(8)AR6)#-4 z^ajJ;zF@eJB2*06=k!+BKS!w|^l+vYXHt(J)N*QWLcT?U2&Ot{K%hq`b;}ki)BqR- zjyvOau*QF!G#qJWwb~C2I{W~UGULHBMd?yh_M@d)N_>rd`+c+*vP3sfq}J|;_i(;f zLoTV8-XnAbrNzg7X52D8WvqG)5(86;2QEL?$;1a^$CleWx^elzb(Z`T@Hd|sRQ)1< zdr`4z;SUFlGtf*W1XOh?V>v^7N0L5gP~G$N;Fgc9f<3&N%vfvIR&WIfvVHNFN&O># zf8xb!{2k$2j(tSL+-^0l(}DB%SD=#Ax;Qslc3V+5)bFBV=;ekd1TiD1G4f3DC0C4* z#R;~Bqh_JZ%bIr^LbpPDFRLWY`Ab<>jQu6ta@)MyaG`F8PD=pve-MMb06`WI0~HhC zBr?A^G8t>~+Kk9u!@&PCCK&m}*96W1HZ%2@k+*$2(-SK#6nD_31!g~!`2foW!x~-= zT`?fMJO~YNO-t8|wm>Y+xstD#*rVs?)Q-0sWjW8ws&QllwV}?9G}7+TlzE)wt&vxe z$zEsM*JvhX(#(CaMa9s=Z*s7*{JQ2qEV}%*Na)0Ldv-DYRf^uU>P1n;==Z@xl%1=V zBc4PZiV|xwimEoZ)-5H}|@|N#B@e-&EWb;Be;zwcL2FT9$uGEhoR4 zTFZt%qJR*yMY-I~i z&aKj@$;C{PJ`|^sypK4^0v&%Gi-l*+l&sPi4bJ*&5bnZag0Gk?GR6F=lA(yo;4f}D zCmIM(gWNQaEP_Z9BrPrvWD$gR^cKca9*msqL#nx|=Ov5!*%Pl5957R5JIZ!ns)>IL5-bZ@^I$d=&iOPh$v(9MV*dH3T%23cv2$j|SMrZ;Lo~!mc zmFUyPN!u*@jLh?{0(6t}Sw5Al7nE*fQtfrFBIAg7Rx5DE#3Je`Iv9G0>=)Y|&cI|* z@WSovN?ij`(`>GY5v=a65i$0m-S&shcxmaucpIk0TQ$)rp4M$KZ5uXlAt+T8v}k#HV^R&82N9$D`<^rRZZ-j0ecHbF z$pk=ZRS}fqus2bX-1({6e|j zX=ANPEPZARc>n2Rk9P|H4Se@)n&E-F>Af!pne4qUX9GR+dX^3J%_&4tl|T zd6I$NwJ#ZFmHLGp%*Gg}D`USZPEuAO`%g&tPi-&Au$h1|Z00>O!)D$iGi)ZH3>)kP zH-N|oXxk(BXdfYa&o{35w7=!xg7#zx8GlLsjDY|DP5V^;=9BDGcfEHKyzX9n@=Aui zx^&9POE{pvI{c(wM~qsyzyGZKuX9f-@BJd>zxmsfdNJUOlrO@D$E-UR0jLYKkMuvc zNh~nEA?xG-3?y)Jf_ty?=F!bIySU-JSRje%NAxb-@z45O_8_#D`r4P4^tSiU%b$Df zBzVvMBITF#oK*fVaMnj10sN3k2tQ;K4t@AjAH|dUMg)NS*Ju6z8|-nf{O^QE_Iit8@?NelJRAFTGYyT~)a zUAk#+L)%n?8tRnX?sd$Jk`j*VWPX;mAL3^zoUDEi^h$_S=-_Hmp%=Bf$bdY}+e1w5 zJ`md^CO3{()cIwZTk9`4GHRm>jh^ zpEF4Uh3S(E-pKFFtEXTE1i3g*EkCTnKOCeqP``ui3Ai z*rhGi1CSqVPX5rjwgAaBIuV2SdbCmlKTTeDGy9`ThM^xP_u~2KRn%U=DH-87;)hVU#B@;Xl-712-}f^CW5qLEp2I7C&; z-3aYq4l~42iX7>XLZck#mh`Ky0k`ZYPt>(P#ssIKW(8{uGKN;#{-@|mUP=hudL@O- zUJ-r8WjW?C-ync>o&;VOG=k6dq-Dn^DhxMoy*S>*7OzI<=%308wYc-abBynyDK)mZ zo__GJSt@VquSp#n=Crl(x8f`)9-%U(lL@hS4ZYc06JnCmQhnrG@pwWAEkWhKv>zPl zUes}2im4(@_Sz%y223$chAZf!d{T!5B||ID%KGOLi+o6OV0wodkR3%RCMRvp+%$TOrWIcmX+Ih$27}#6B$cKxrymY}kpw1Om2uwS5U7!DB{ z@C!-Q3|M-i=K1)$G^+;r^c+~%C5&TgvnVK#VP1V39?7^bh+o}~YygMFL)ua{6NENK$gBg}vp-XGfC3NH2+N^IQKW$QlSuPlj zJ5e9ImCi)N+CnmFg_hNI03K>oF4mO7@7bL!TtUC!qly$F*hq5*$m0}FlakOftuSkJ z0Dp1=dcj;aW;|C5W)*Y(LXCBz0jD-4s~FCRkgt&HQ+zS}IFzDJBZU@W8dC8?r-%ln zs8vua=O6*sgUxuPERgm|RpKI`nH(q0!nO%?XF;?A{F8g5di;m0u&LYimtJGV0?dGL zlbw{yPGvxO^&HbWWf;sxo$#=k4=g!7z?8D|2v#5~$Svgw2|LIS{>oeql*3>hIT~1H zY3OeK)!y_)B(aFr(DqAQ9rHU`z5FlTB4Q=?^;gH|1M?Wc=L7Q?!Dkn^JxS>LcImIL zGMGR8JF?YY<`M15^EvGx{iyfLLqF#^9FfzKYGir>{uNhL^4=%~u`4hf*3vR%70IEj zT1GkTYD&?*n)}hJyLk*w|1I&FdSE~=r&j$ABhq8c+l@r%A@4vu*#Y7{+KuiT%FmVA zc&;3c1N-+ew6rH127bwBdL^2UDJv@JqU#r+LQr;t6OV({!)Z2{8JoR|m9PBmc)~^Y zbzTK`S)k7Y#69`#-_ASM{w;CO(DrYjj=#phLqM(nq3wW5upuVIX0^}I+aCRr7tz8t zz7TB{^0ss@eO`gj)F69j8w?bX$x>o(cjByG3FpJ*j{9t4`cVE{bQBl8p0UNDnZg(F zj17cJaifDf7FZEXO^Cu-e z!BoOs`{k0gn*UcM<4$pp{%t(rE`7<@2U-ZtxGAFJ4uJlXoRX^FZ=wUWCs) zny`Uz;SQ)r4rpTn8Qq>nCDH}#!$j%~TD~Mh#Udt_v_+9aJEmBPF#nC=9TN~G-Abep zB{0OeEr=XcYDp3zstbi6>HuNtqBxqZ3H?xBCIW-e8sdY#wTS+rkMb;W<2E5K^uhXlc72-(}AGI42F#4$etD@k27_fo$Xq;JaAP#OcA_rb3q@JOi%$ zyzWuHaZqqg!2}`|6nI*}oN~hui39!l(;@CnQLRxgEXSGGG%xyyJ{Y$>Gl;% zktSCQ6ADbO?KSsda!E2_%&c?JDLs?G+oO*Hcs!frR3ge?P9=Kool3W(?$c6+9zq;b z29-o#r8trS^E{JC`!OLGyuXh&StHYhoATRl$lKBG5jPEOzZMY1wi`3)7gTA2E<8qW zd-OAQpngdgUX=E{t&{9P>JW8Mu1!rbE%8$FR?euP4%}FMvVTv%RG|8PM%&QkO7iePClHBYWnslAm}p)~r3UEvZE`dZs=MxrOwrPPk0QoHm~ zuk&G1sU1P@d-TWfj%nj6gEY4MFY*eLJnWNY=7q-lK+5Xv&O3%-88;LIGF05-hO^uZ z(#ytr^SNN(4qaO4GarS1_5ju2DP9#ff_MgBYRA5y)Dr#he5BO=3BTwwpUXr^C+zVM z8$tEMD@c8v_cNSwaP>{m89%~#9D{}P)6KXBM??swG!}uV$UdwE3Z9@MWI@Rhk?#tK zNv=s4DgMZ?=@@lWu2M@ZUd{b9y;xs% zOeSJEcw$QJy9D-_q2dJUyO6kOOqP*&9%T66!EnxKFx)g(3>h^pH#m^AWR=2hY%S2_ zA$MLp#Rb%FcdF!~pSc@mi0(%WT%e1*IR`JH52(!a`CI|j@Z8`&GFb@iLVU6IW=ug4 z75Fp=cuoYbfgOQoZ}98-oLA|{dKdzb;JHBTG`xDehl5^1Yp5sGL39WOOFB@{KxaLg zGW}0W*swe?XECEDxiPOiuPBkXFmmlzAkKvT{Y$~7pq{;@dNCFRi2{!7!LZ^}F@Neg zMRiERBtL0V^w6ZZizdZhT|r^P?S;vrGQA+?hB%vU{qL9XfJzV%fXkRam5KXiF_SjN z*{@KSyF-KJa)gqw9Xi9j9FK<%wUgM%hW}hm0;cmonmwNc@1ySg8Qn57w4WDVFw{cy zV3+=MQaZ9@E+SWAaw^fgu!)OLL}k9_jR!Cbcj?dDd2!7m;X;s1^#}>QyVV8Z2T=C_ z&=z>f+@)8+XwkgXhe7OKeFh{WRESJQl8QZ!yl-V1n$6e=z|_n5H74H7Rl)cJe`uJj zKpNE}E+~W5-~h3J__+m`k$pDdJBGO!V2Izc29Ircx> zi#=P6z4#%jH?bE->1~f*)qp1Y?Zw@B^;jG~1e_`Oe+JlI$5{r$Dab?KW5-lJ%2%T#9;KUVS3XM6B^EjPoF| zT!ee`-2$pY@3bFEzoqbfl}g&l=|t{{rDEj-_vw@q77$DeHc?^R1+-4a*1^JLj=0WzOPJ>d-GCPjwNshyCEsZPcp>HYPAjQu~D z8dvMlhqy}nyQwuz_#o93sEh#(gbF@kK~-#i@$tW6LRJ^kXyX0u!0|U};|NHU8VY&f zL13Iv;ueEc$5r1#VCoWA`(Qe8C*Be3EMpdpVk?V8}@Ux*E^}NEt7}Y{&>;>HTUGvjw%JEN@naAXEon zKmgi$p9^QaS)wRg>SA0n8H~jK&3uhL2=QA`em2U3lQN6qH$g)dTp=D9jl1BBNrL-? zECo-2yYvx#%fR9Qd>wJEz5A6&D;3Y$D<;-S8sRsxi8$e?%H04d;tDJ>Ld6s+%A%_Pqu zwwXn716qEy*;1N!jNtCc1D6SLa~Fr}qfJAJkTyKL59s&rrI8C>X7HcT!Uf$xu)j{F zmRv#wkfn^Xg#L!}kvOim;SEx02t%G+Y_-VBet?|BKVB^>%k15+h}BVQrx@SQk~Ot~ zV52MK+{ZNzPcwXkqVag@y^FyoZx8xLsMeLm-56msa3?CDoxK$`D3O;bG1`Q`9PyAI zXckD?1D!Zc>csWai+Zq^^swvLcq`iap`jO50lg?Nl?2}H;5bQ|MbUPXU_Fgu6gwq4 zwPMsb^sX=Ixfv&YeDtyh*|jM<9txDt7gm&8h$Hc|#{Hcr%sC!Br{pdk^C~iP&I~4GA=jKtgn`AB1Ku`0@)d zLH~e|cXf_vgPfw+(22h#S)|uBVh4RPXK&IT#QS@az5uCqlR;q!>`E0)9|&~WzMU2b z7A-&f9CA`1X)JvSvL?Rmk{6(_U~1#-W%)*4IK_i&fP1t;{u9C?$b{N_^)U3%JE@5g7M(e;pDz@>*7 zCFheJrp!0|u}z6QY=F`PwGakH!r^7OOtI}h)&B71VuW212DC1F;bfP8-VT6-nt7F# z251_0>6g1dJr!)T60lJhwm=gk86<|!1c~7@@$tnpXAp*rfz3@uIe>+_J;65ZXTV#p z_VTWlUVNp5u9Sm`Q1*b#@Q2}}1#0@k@TIps1(X7}p`66Pn?oscnzJ%pFiuooZu>pv z+>%A^znp3`x_VL}noZEYXupgy8M8oUGW3Ofs99!8hB7l5%4}@MbQeIX&uuZYhf=;z z_gAf$`cleI_gA~|Mob7R+2TS0+GeCC2`(}nYz^e&RS>B=@!>joCq?drX-gun6>uJ$ zn_&8IxnTzw{k3xAttgv~%M*eTPvl)UlL|7P=|+Upb7}SzW({pF%(~2~Ujr=_xL$*V zC!*PK^MgAMM6hxM^mP6}nzE4~KF~!7gan=`D6 z%n_N>bdhP+fnrmVi;+ncig7nH!S=#~Zx)N{gIPlWRub@WO- za^@YY*^<=^+*y>x=i>*RVRl8^!q_wXu`KQCMAdN3N_{mH+57lqQ66kS20%Rpw^A-L zY@CsW`&-x5o~o3B08qRGwYRlfj4fc^Xhi!=uX5 zk3YqnLQgP3;NTWk3Rr22x0@?1X)mWoIv?Rk+K3$-EwSc8DlSN+;g3%m{)`FW95Vci z8vel243|je`D-~LO|S?zp(61WHUvqp{D=0~f|-sD#Q)Gi2g)) z$F>1O2#w9J198+QNX@)B3XYXlL`B6Ao11o{q8ozi6FDcO;JUl7;5x}}l+=T`z63m= z+S0?AA;F%8gRFTxW&DF-WKE2dyskj;HIcEme~UUgK~3j2 z&+E;-9l2TMLW|5m?_!au_={>u@uE3$Iaqv)zT)_qy=obeVk|-F+jA(M;DBm0e)PMM zhkbiqMn&N9K9Y%t5eMrcm*N*&sT#?^gVesLd%O&-(Bb+z!U6%N3|m3~^Zn%jxZ7(d z{W3-#z7U$^%_hVN12$Xnnjh{Spe)&x!3Jgv^P8r0-P~zq7^ALl-Hd8{Ic?q3 zW!)>N?j>u`Bmk2BB8NGCmbU{+Zw!cXQ;SsMnHcU!*EB*RG8)_)d(SetH}4vJFc~jq zTl1lV@e<(B|{0K36IvuY0nDicl?k%w$g~TJ%gB% z|8p>z;Wd>ilFtV+?w`pDAE6HPI~s75nWPSMeUT2_^2hhh4t#k2m+3$gL1uQ~iybdG zieXX*I#89#LwdhZZ#sI8o4v{UQoZ??oJ?4!U-lF7dK^Z+$UrqbmKdlT&%;15TlW<% zw)fL{A+PJR*d$#TXa5(kHlonx;^Ngtgvd-tT5TGv2aVO{1-QMd?F+;CRWG;C+k-o{ zCPp!Q?w9JpzjVEQ-tNqBbejXR0ale?VnF_V3-0swt>%}Bp*nE3x!}wl^Gob%5mW|~ z>?YnZja`jha4IM5YP{)vb-S7bI%!wqt@jk`Y~}Y8>+B6Tb=?H>H0$iEhO_?=G4pT= zIIHeS!1)b=li?7{3}{UbfMsju&cqw2DP^LK#^eBCwQxv^){sc?u!ush#&dyLbPc_j zMc2`bQ*s-~oV0sw(3_!JYLKZXhM4Gk#ws2nz$ABs(k6II@toK=SI~>u2DP4Ww@R%i zc7AG|!vC_OB`oC`@C`^b0jEAE0H;1D0H;1D0nYo7-nAhy*E^u(F9-az5Z9uL1jG!! z2{D6j@+u6z$*VBw zvm@Lqvm@Lqvm@Lqvm@Lq)3GY`D&gr?dEX~IPM3P{lj7n7nx zUy2m%PDbK>dNGkmqnMb#N9e^wVh6oo{_gI(bh?oIxrx-1zfK_KI`rd95UH=a2cMUG z&D@yiK?RhSPD8$y60S@d#8c74FHc2tlJZnE@w?8z?^i`1_ODMsx_hvR>;6ZrNCrd? zNx(+3jCTXx$WY_m068+!csHPC(-Q_fevQoN*9dumru=3j zcN*_*jp1dg!#=D7yrN+BKz9TD)cY}gQRvYgb$ylOB8B1&MpbvUKftAKHX(fC` zr1(du3|wK?mm4w=cdbZ{+`%{pB!Y;3IMk33p0=Z((Zg- zB7NT{iSF!!Z?e-6>Dpw>GsQNEG*fJoNHfJYW}_5FnVbYsY{qw+4m(Fl3jTKpEZGqy z^(N9`yqk-x%Xl{zSB30RZyZUVO3cz5^NUiQn>KC}vwqhz){Y65fA|jiPrF*qAlYoN=e! ze!emQ`)og_8m1(y+-acF9EzavZVts)NQkL_5^L0GFCo6Bcg~DTr8)Bz5#o0^PD#W$ zk_6gxU_-aR@bP?0(gGrfXNiqkQe~4IFt==y1Ll@Za&UyomuO_clHZ2WuJ z?VMo51&Wu}Cp)@91AF62KEEKAD>@8;XS|uNR-))lhHI9;aJZ zHIj=g@}gFa6yjMlggdQw)X%YPS0f|wen-O`+X40Qp?D;Fj=lOBovDcRMOksp3@rfC z1Q^GPD9}8C0%=;rMR_@-jONB89YaUs_YL_sBTK*bx6qo@xQZsn8;{dRRKlN0dj-!h z;X`aJslRxC2nhwGp-CV4d;bdm>o=%S!gQJn8Nx)3m!U?R#(OC($=-LQWUzsChTGyR88 zA^%FsEXKNJaTNhi#<;POLUVLjL9Z`%Xp9akkiOUl!xXPMe!?AVTk7K!6;$OJ*QQb*R#F0jTzJO1f_Dg+ zRrU)iZ3V7iS%dKwKs&++IWG#$KhcF-(g@$&RI!6@y4G?ZIJ7SL@mELCu+Ii{HWzu z7ey`CWJN81x+-dU4C&_oe0S7hJv(aIi~p(T_Wu7Jp6^bNT5dQmYWWe$pL0RfvJL-B zGNP7&7e*~F;{OTM`TWIEOI2pna^)pa%h{Krt;?d82-=x^dDL?06;Vqa{x7~VYFUvT zwG94x)Y69kf6j?o9vK?7thqXBX&e?cRe@Mz2Kqp3`~l@;%vek#(rh=hAO}h<67@1e z=OlO!z8A@SMiyu>(;T0j$TFU)ApZr4T8iv4&zMA>uTwRB^7xEA7bWtfa_r9S9Ar4z zh6?aPM*_+`F0qRM&)FjyV0srm+*5Xa4d$b=)Ji+7*A0z-j-OG&)}3@6dlQ)ylsFKd z_{@eAHZl4U)%gelPnUFu8*OTp-tbJWVtD798;7rSy`odQSG5_~AH86C){P0;IZD?q-SHyb`lQOjN0WUDx_?*rISDz(+< zi#8#yIhT>4G3>|o+TimN4u_y}k8++9l{d~iS2(wcDci`R#oj{TwxWg#Ymq44)&o1a zMDhVZSaB}Q2h`%ls0hWmF3*XIEwH&krB&VGyL#;E!eu=$5}kndVe2W#!oHJ`js3y- z#0x;UMVzA!R^3lLPkJ?CFo6S`=Dqjkcs`!zJ_!~B5ViP;9{2_FyKHgK#}%)VM%u1@ zZP0AL_ljP7j48{w6W!d2inG)yDDxWUn)f$#AzsQ|;dU!fq(trp!lYf;cCFM7n=8-D zmBlm=H}!~bVT2RC?ykrY<+?aQ@K3sL(9e=gT5%YnG$0i&P4XK&!?18~>wL|^3G|9GG!g2EJ{aohLn=OhT zCN@3cQFv&;`1u?Shf@Oj{9m;}+sUq`Mtx4ikbj~f>(kG6)V!54s6{l_?6A(N8}DQf zTcp&->-VVsjf>jjHM7%uurt9v+=tr)@(+p|Mf!p4lYXF!L_eAGCyRbmU$(w;MteNw z%cWP*9P6A2T}R9ZoXT3n%^7(I zAIoV}wHX+hQuy>#%bP^2TD4{03AJQx@D{kPDAjJV!|px&w$0Xvh@Z9=&8|_?@M`uI?acT z?^dKJzi$Rk$jqFaZ=BfoiCSK#R;>vQiI(rk+o5Xnkth5&xP;%({_V|>CBY=#b3iF> zfsd+jJLPB1{vs6*=;PP4#iRZmm@JWlDm+~NY!sM< z=uI1nUws_$fm`pyqgwUosI3gtvJ5(=MQEUee}8o4b@VktA^)P@19je=!n<4b)`RV# zbd6;D!ruzV?Sk(_RR3zBkpUtCj5Es_<7k5fMqLR^qo3?u&l{;umDj4cRt>EHYDR6O zD-K1Q3qqn*TD8#+sG+6d7>M%vVWCWqB-4U`wt8vMw*uP@YA#ytTOVd5}81mF}2I<+b_W~5aqiu>9H815n3K~ z-d)D*FR#bEhdt^5%`M0?NVu`b^ZLARAY|)y&@>9!dX@~?>a9tN*BaWeITL-JM1fi- z2lPvila8xPc-Q6~1C~dH>Xc;*@m*9k38F8XMaCkr{juX!>qLuaRetYZx9>#GYgstN zC|>^-#1&mM`p1Ck0r)rBweRDazgZP;)fTmC#iG#2`qUm& z?W@3(SFNDe#_(N_T2=c)aBqS3%IkfeP~E~M!rzp4P>g)+kC@0i>PlL$USsyhs5+Q( zyF~NxRxx@}%)W?H+F^dPMT}k_v#+OD)1QR5R&!1l&{471VFtlx^4A5D{QJe-+4_Vc z9RX;?p6k3V$_mn**bfI7HTt7j@C6=P(e8wYlUgw@TVFM;9U~9w2w&pQHa2@(EXv9T zPfIA}_^WVMaVsjlQ25dIVVQ_RlPyB)SfO?^H>AAF1X5s{0Iw;Ej#f5mpI z-U#q(KC~Wx8GUXWjTZxog6jYlM&}?b^v_3??C)gJXhw$;c?IY7v7Q49-#_Nvg^&%j z<~Hl&pWroj%)65pVZDC6nXukil|yAhJhVl>1ds7hlYSm2!GsCHxTotK{~-?-z56fo z>!on;Ujr@!WRN^{lj#%3x{%7g%wGY#wVPJTEh6Rokibk>= z1Kp&~8ADFS%QWWijmI>Wf{s&XID;~9RZ8t>s&>LiVJr2tD7Am10oW1z8rmNW|G3<~ z5+PnhD;gQlCS>SO&p#fYOb=`DfM{)^%w3?_Z^TZaM2phl4%D%>caPi2dt4=~UFH7U zKzm$caJE|H*6jJbN8I((ws;;`8(4SQN6m6oUx84b6P&g^6E$b5ZW#hV=}mu!p1iGN z!_7|5EZ4$A#}G6XE3ne3@BRs|KzsxW)gmXL$okZ2tt(0gbY*B-EkaoA8%2>*bJpp< z`&xUveYos=a15rHerl?%E z*eQz9;qRG6tN4nCj8!ZOMv5DA5lz#!-nt#mXKW+tw*#dgPlQi`%%$;o@>!RbJkAyZ zk)SZFnZifIdg?Jd+YdN=xisu#E_{k%&ns?^oBsXb?19#IJ|IM9THn}qO!`4f#8}_l z*hxfV6y^s_TXuSvJpU0a<@6BFL;L3X$mL1jXT4?#p3KEYXD^jiovt%iP-XwHyM;IR zZ%z_Wz>9O8lpo~mq{FuhvV&4ncyK1ocen$CJvzk?9oO)&jhxS&5H|54@M4du_9$cq zAi4E6EGJuop5l2K)^7+P7w)#-J1<<{gQR@bi%G>C4GJkRkgGUTq^cxO8H@u4(k9p` z(TPMBkC>_O+hC;9Vl`9YiNQ#v)l8|dWDDQrvWA`lS@yKdyVz`HFtx(Y061F##1fvC zd*2d()s+fwc515T>j}VpFI8{TKfs=alQJX`;Hq3EGNc$n`)~Sqzuogm<>=Y76Z|{1 zg#Sh4>7XJ5j=Oz5YHGN-$Med(K}h#edgXfzCffd_VlP>bZO?h#5M$hI6(8^WAUHvr z71uI;g7Y`ZoT=Gw5XU_YmD%&o!mIs3#2A0Dr^1?#7d%iygHd7OAA3Znt=`j6aUe{N zCDMxj*c1N18rq5@I(V;D0I`tga|&dI7)AR}wqXP0FIL%-9^qeN;^1-wpUs%ulNo|#$ImuffnIlDIm;uV>y zFH3)SB@tchg`ioP=#e@zyV-8F!WWb_*6Q&&tFyIneM_o7C!K5J6%PG3C=5vm$|JKF zk6K(}plW|j6xr3n*X->#iSgM~ZK-qr3xPE=L6ubb=I*8?vz+5)Smnz}NfFF<`(@$E>Vf=`?HTX;Zrsv~#_Huyw6x|Zzm%l5+ zoACH!y3@w*V^k8q>IVE)(4u|vuuQ2rf?s&)<;3Ok>Z&f zAfC6!Zizwd0Gm|uo`e0Srn(f4(5F~Jetqyjc9vC${6mNl9#5|IMueZ^?uD)rrG>{_Oy3i6l8xu|&Z;w~Fb=&QFyw2xs_7%d#i`No5r@5#UE@N3t zpZB8v%O!@zW~E*8FW0@pI^ywb>1ld?N4(klylH<)I`ow6{&q)PdA0>onDED`$`Zew zl-soYiBUv|FR_HquBm$75>zzrlZfnwP$vO>dk^qKE`~N}cUwJ`S=E;TFabZf_t~&l zkZ23bqcT%1%FFzXKkSRh_#l@7fCV2F|pv`~v2Vgg(<9a1Y@s(l~1E-c(f+Z5@w!_Ngh z9mbi7UU1ZXQqbQuZGXlNL7$HF@4!ir(fnkf^^-o)oCQ~PL}KyNP;U@1;=3ng14Yq7 zYkV}~h~0|za3rXmYPKuN05=XH28enB#KN7Bgx9NuJA2x4Wajcy010z^n5|0!3a`2d z_?5=4b8ZKeO?|%|!MEFWboQ4=LY>Mj&3(U-H=|G|+XtkTH&Gv{ zqLu&^*-hVC^|@GxqJ>7mzk%q29eYIE8`!!~zX9j#j*rx&f^&gET z)v=#4AJA)e+AVEl`kX`}p6rH^?Q-(Z>fgYmV!c5st~hC#nxx|KWh8-=Ym}))$$C%+ zakS2vVmJxv6h&}1x-M8|YgWDMJw>$WX>&~`JV}eb7!_i!>;Z2Au1t(UP@lQ3m3sp&C2we}(^jh-$>jz~f0_ME)vX&yu&&jU)UYg5n>ADv1w^I8)~H6- zA}##B1HD!woAInXo1$*qP1zrBp}&#!l%YFSsa@{C^-E+8Ub8VM%RMWpXvp4NG{rhb zT}k3gwp#xMvO(K=%`Le8-4Q&`*pijnr6`1R>Fq#HTMa!wP>67T4y-#d5b;v>=nGzb z56uybS{)@LlwYjo0CLj5SPk#&cxtZckqNxt;88q8PiV`D&Z_d6eCMf4=vmKd20h?v z1@}uxWZ0r*Q^e!c8U%OYg-ga+!GPJ66%As0xY;3507TW*k=BZ6sasA0?6x4-j#9YM zySNF9=t8_;YWPU*G@CfRnRG%e1=*ibidPQsIO7UD%*2j04a;xZb~sIJ#j*u^q%0nV zK5CIUSc!pBz4{j)&`bb-uheErTEw4FXh0#{I^s7X6^*7v?&ghSnxUdUEkaRu>ATbn zoffGv-fNBDI^%aKewAVM#Ca;w9&lJ%q!axQ7(nRvw*XV!TEv2UNTh1jtxc3epM_6h z5jtBM;Q0pJhF`E-%x_|sS@15Tw*7Vh#)9+FAPm}$q(_l-nn576_YOiSgzq%L zfvE#bIbDu$Jq^s;a^hooYXmq4)*QaQ;(Mj~W9vSMzxMbRPIPJX3t^8k{45%fim^Dj zYLRsGIDosHE__7PjcT7u)987&@=C;xZvZVKYfXzd`JH^iJh|}$cI9S%mGL^DH=w_> z1%1Ng!q^Z~fnnel^gZY+jSZn1iKHs1Zl%Ep=+EF2j|~B+X;e&moJ#T7P);5jDhX6m z85)}lKQzat6ey;m`XElCu^CH%<)VND%qW%^p|`f$3FndGL=GM&uH?`7)@DNoWbU@} zu=`T5vr^rYjo4cUh}=C+7=g#kA!d!G`ZntKZtTX|l*i%rtkcstuRt_v{?42R3g`s6y zxUr)h4ke+#)ru>m71u9EH#{G)54^&So$Zu`IR#|iD8&DdL7$q9&kxQ?C6uIa_rjgrJ=*%|WO@&UvI2AM%IU;~ff}tu%}> zY+z&@lJ&pe{5}RhfJcHcEh3*_nw7>A3AJY8@oxT}pR3hg|0Eu1=GIW@y_4T(2KF87 zANW>J-^@JvB*=larCdO*z5X!1O$_L7d=QWO>T0h)f>)p#4$7DP1doDeJKaPmbw`Q7 zZKclB{dLU)#W;8FLz;LQ?)Y=GqOO|j-~s)nus${N(gPoPUam^Jqj4%Y_SylXy}QBQ6b>&CN=2r{~S8E43wSkiex2!u3-^z)CmInM7+ zl;ivv@TV1JV^xOgK|Sc8HBJ}(kY5y}g1rKHzsU0xa!u$pCCJBBdvVhpEU3%d*bAN~M{~SZW5j=}|vw^6l3$!4~ zDdDyAjpKH&7r)DlB*;8)irz6PYIz0!r%#DmJ}HS>hJleG2^ydG;ZWEC5v@~fFWsk? z!40fZ`#PcWrXIRRha2=WL^rgiG^YiTSuppOJdUsP#)^?qu`t?$wY}^J67ai(eoY_e zLy)leFcR{>87!fP_5t+RBC2}e-5&%Q(m<$C1-S|qu$WbuRgg>ayn3@9Wq6os0iZ@j zvX&ug@J~JBW7`f1+~V)?$*3Fd+ttE9^@Q7S-`zD1y_PMB@3pxCcsjA1Or?x)*czyW#-RN#){NR7I6RHw^u#GdkF3#+-w%_*Qcm z8T(HfIo4;O!4&n|5XqD79~A$7Ptz9euc5KvhQc7r+b5IW-yr=G8t9pJlC+0h)G-xV zd;6wk@kFpAgx!+o(V&z+Lnlpq6ELU-e2eMVoR09y>sn+2$5XrgVzis{QNw2`zS7D1 z?;(@I5zas|&vgm*B=M?wKR>2NO_BNv2**Ob z@y&fl72}CvClNR3Jo?1(3o9soVMR8C-ncS#&5V(2%bL9U^6ir`;3E$98J~m)`d^~s z(QR+zZ*4quCE`(})*cL93}?+Npg}O`fd2M(De^&!zVi==vPcyMx3|w!Lx`5*q&Ks_ z%l4xNvA7j~0TFpGq|iCyzCt5JkfQJS5hz}_d<_o9k*N+fQ{-nSpvE;gL*xlLLQu+Z z*TPNgipJ@6X;5QSt?+FJ*Zz4a8j5CcMfiPd zFnzK+)X2^msP1aumJ0KzY^JIO1tP&Y6 zkQx4f$JRdpuxCKk=1t1ynZ0&Bxh=ah{8mL7`g=$Fbo;|2||BBIm7vweSj}O{a z=Z{M_+Y^f`el=p{3bq3HWl(oW8FCa)gz9sx9#n3n|Lh>y}~Q6UrY9-h4%SFUG_@*YX(fYocE!;1GfARh4qwV~AR z$M&j0+_@*9zwld`)PN)?nIfzdZN1*ZsHBN1`6Gr^d;%T;#UHLQJB*HgAYR}Tay<05 z`F+S!Qg|7nDhy3?AjHh~`egm7ZK;HC$jW6e`9g`;5B&3=B<~(FUN`04SergOMw zd{5LXz=G%Y1N4=6WJBI%CJ}esFNqlBnSIj+xL${r>hJ>Ix15QbU216aJo~ zbNCW(*L(3Yx@+GX(4YGju5$SveWv~(BaKinm3?it3gTxxvKqoTwh!@7f3Q{vJ~Sb+VqhfCS_{6y=B2N=Jsp zvplTFLaU+Md+y|BFTC;2y&r06-ZL?B2A#zzvARfVgFXL`wZXcRwZR;Hw86R{E2N!b z$aA!=u#*HJutR(d&&Sm+Y;^@H->ryN&)$WdlY1{(0FhNca9=-&64;XZHo&{X-2dd{ zEq#%o5I-@$7C+~rBz06XMP5Jfj%HRkN4tLM(%UA~0| z&4@=NFXQQ6ew-1`kT(0{0tZ%`=3FAIpr=5ORmM@Gs}@|zSGi(X^HfU_9MTUGuOciQ zl=rdykC+(0HvTeLae#X!L}G*0RH?m>A#R2ae^)-u3~%SXuY!A{Yfy|ocI!ctX`|Q1 z^aSWuR2{679xV7q@d|1F@66e&BCF8}44ZLD(O^umoL8Zetd_VC0#<;J?A-T0qB#ZU zYo&3`y$XF5UlV(5$DoA|D+W(zW#PQE_{dH1;HDn4>sBAXg}Ts~-zm|NE($l{D*Pc< zBJbqlp3aIU+Vna_3B?Ikr##d%9vBI~2Y?V43$cQrz+2*iu5~T;NVXSKw&8G#+xJ!K zK-L6SovUCZ0RscrMZ9wFHJ%UWxf8IUsBGHmBU=Nr`DU~YX7|I2{aE$_ox`2=z1K>9 zXkv0NGWwK4X5axl=4aM<2jo_bY32vCR<(Eu3_4&UP!1^j@SMCq!&m_!jbdIV8)Y<( z-RAnJ+1x|(C{$$}d9d4AgFn!wVgc092NABvUr%@o{syn7y-;vGX;GaYN?%khBg)O8 zxD_wKK@Rq?8E6ZHn&OKjg7_@3i{tG(#7|eF5(sR58!f>u(+#!8fl>@>P1-D#$Pds5 zjK>&^ZTQ3>WodD5pV+zX$@Fn_FZ~4(0oOvIYfTx8wC*;HPX8x9Hy}dbXzUb&Lb`X**#N4pdB`+p6-i<04c@CT=Zuka-NVcU|<{|!ME-(HyV zsjtdj9@{bDwu|;mLwJQPGI}EfeC&mI-<*>H=K1`83f@6eO?WRk9lXWK_yu>+gazVv zOJz3$!7|816Ht-BGVV_k(mxrH!jSk$hqDI8yhkV-JaugVI>{tk&Q+SBV8mZs*CUaM z<$$FDRd;>C_mi>8`0N882A*#0p*P0Lczxj8kPP3JWcV0z6F!FAgbz0s3}1%{-ytN( zwRA+k{%M8}BDK61;bb2nm2qQzHW}SQC{k7r=9iM_74hS`^%rI*!=6}QN%2U~NzK3R zbnvfBhMzlQNLS_jHsR;anDBFF3|Xoi2Gi>Ub%eY=Bzks4*YbEWeBS_eIhpBJ{tC&8A$ci;5~LUB6yc#4?tF;-3Z z7;+Qe47rJKh8*)b3G(mH|3X-O?6zL4Vt%u}AXXC1|KSj)ufjn*!7=uJhtfQKcb@b; z+>ylJBNI6BzH3*mN3)x}9?foc&=kQikej!YX#jn|M0!uewrQP_581cxBSb%Ydsyjedl}s{rjIy zas#!DcXJXk-VOJKy?8fv?Wt3EI>}x8&hPd?BIEDh3{Q44Jcqt>5x9Do{L_ zCcHti1WjK|l(Q*p2giPaRWL%e$Y2h~TcMh%2D9=hG-+YhXiUUA7h_t!h=(mo z!)y8x#QVU!I&`laGwm%r?XSqDxkq!Y{cMB;!3)LvXst-Y(`$Hoxk9qPH~`j@RN+2( zfx3FtS^}*RZSQ+exn=vYmng7I&D&N4lOaF$w-E>!(6rkqK+TL6Wr`WqYG37$ydAhi z2NcRG7{4gBSD;Gi3ttpxWuq{=q|)pK2#qot$9BZ>AoW3b-=!n=on-d`rYyc`4H6N( z5GwU9gjt)Cl@1Vc!NM>53xqrrYNQ4kfVZnDHVU2114;5=q_1eAYN5r4=L;>XeoA>S zCmdrUP07kcpxqE%`}kbwK%+8+g4Q2amQ1J0vm2WWvob73Vnw=iD2p>(Awu93*zx0P ztAGp#8BrK|R$RCuTdd*{W%si<^Wd&Br&ZYZaWQDBak+1yoJ0pg{g~JQD%?N?L)N$d zC^J=)nxl9CRKUaxUvidjpLBO7}Ma=n9AwMgY2473ktuz|2UtE?AKweG0@M}8)JQ*YzR?@wBoE=6Wv7j zvSs%Q*{sKON@fl-hsAM+Um)z+6<4m37RfniG(N zA?Neva=LU0GX=_zM7~m-)>j|5d8d*olQ+BH>*YiVDb7VIj z=q{%LOrr7#&Pc=dvHk%?LVS%U>^Pf7c+|MJYGgH@MTGjRY76lfqQQ|OKQp|Uz_nIq zlaVaYkCtoyOz@x{84rALbL1Czx3t}j?RWO_@Cz(7Qfil>98k3Sp~HB9Po=|f2M$Fv z*9r+OE%X_{rE35O5u37`fUP`lUt3=Nv3=pUKz&{ZV+|epv4Y`&T$bg9T7>6|#sCK< zO7Q7!!bbPh%+Q6WPZUlncaj$m_chhheT{V4x(Y7eysIa z16o~cjmc5?VbroYP#Lu-UVd+fU8DSxOJ8z(zsP9@eW(F|fH*<9mSH63>6|wur@5cb z)qHfX_eMahr1=`(NJB+}XTBaF#VcrwJgb`niuEA-Ai>S6k3~qs7^sI9>59Ztt?^_) z6jzq5246z{Puz=DZm8z|Y>QIcMBEB3B6Ic^Hl||?d1bBQiBIUrvgY!$7-Lr>HK>{l zUsM#O%|HY))s@s0*@4g?+8dPGG^$x6*g&~1(Z-MglHxP9{Ucub%!46|83R`o_q0@H zh~i~-ln6Iaq1U~MLN2b8+S2W{n6nXqM+o)@3yr!iR#LayokF8uv69kiw({x~47R$G z;DI{}`h0hBFy;80#&>liS8#WL(rjGPwnyAuI4Qo7i*Sm{^)^R-isBai=hNxN1~Xsq z2w-wh6*7pL*hpAX`9nyd5XCF7CS^%$d?SNbF)qH50MV!QRz&Zph`#r&h(3fIRM7>f zsAemJ5S%S|kI`36LfZVV*$~AxLfBEB)u`8^=21)wwXPF?+rI_x6G)p2-9D;J_A6eI zU#gF)MAlP$EX7wn10QR)5}qx=birMe=v5izD#I$|mc_szLZ|&CJd`eW1?F1gAs4hN z^h>TXKAZ_5hnh=K?A#VAxJR!*NYt{uo|RPuKAB(GoFi}^40mS*-CW_u33-FwT4@;AYbuzsoo=E;9ToORC+hg z@;w24SO&T3N*9h85ddgwhwORB+6RhjM1|dU6xuA<=A6PIZnWE4^t34*agi$a!~)RCFW>Cas zgH>a!0zVUhY4{vMK@TpC^0Sm;+;iDtW4XfESOz9GmO0Sa*mP>86ruOr=+FqQfHwN` zpySGFt;|2+Ix*aNaZbz2Z?~VzG?r6E3#Sa=m(9e)d0OXYE5)sF-Q*bpH)4u^yU11N z+0}Ut{b%FJS&1E0pI=%!7h&&!3kp{blGdWL1A|Ub|6>>;_yZ^uH>mU6a0)OdUYQ;% zaux?RTlC9kw84Pf+0wFxDiQ-x6;}6N{qLxyO#hLrUu>6GSB*|Y4GdltuSkb)CocZZ zbY32Kr5Z3HFGsmj{hP8J25dX&O`sgjFQ5;C5lHEvUiERz>mWGEYS^uo+2O3I5?YEb z1kTNAHh_cKMy!bO7%R%4%(0?O`IALIq9`5EUKG&3V*p|1H8OD#QJFben`!mT%7E=> zKdVt#gBa%iK#2ZZt_3ipqhifjq0Y*T+3UEy!a58CcnW77*}N1uFq5YDL&O`m^g{%- zUaAlC^8nG@rA3>xK1;={eb;VI53Qp7mBZKwXH z0M<{1yI-w^{c8<#ttR`=Dn5XJ@-<9I&=Y6957P6^a@@$6P2?9GEDY3|*X;G6^<*)byDF$to)P!9(9OmPEpUW#j=_Sey>vZ=^E+iJy+W45&*Wj%b-7&Jgs z+r>Ga6VQVybttu@w~xUC!scdU2Y!g0dfMtWKRj^&eTsh%q;o!pzU4-M36Y^4Q~fdw znXqBdVvtHfmKf?{iU;DqQzvd!7}Ty4+RC-hB8Tv(d8FL>D&_7adbwq%CVJgaTP)*| zgl7N(0~%gk1|)WUL=q&I^o3-ur3@pN0IE{;Am=hxdTWu6C#B32J* zyBVVx|Hf@d166Q*jExsw2vZ;3vB^?1JG-Z^(?8P_V5*L#mT>r&i;7@xYgfn5$Es9n zepQ3_9(DXeb$qaWC_AEq(0M|G>RZ@wctAjZxrEI0gTP31F=cgHvp%ikCzxj=2NuTQ zK>VBWilCmpkWd6A3uml|DY&r|4TTF#u*J2gfds&diPG2niulx?*y82*p?|T(E93*7 zmKskrzgml@9vpZUKbiQrCh7!9$TF%NzmHJe%JdzxRbQ%To~2BG36ckYH~y6L z;KsF+giXwEI4pAryZRk+Xv5dj8{EGB6eGw-JBoPrwB@5}9&o1rM~^M0&XH$1 zKH=-BQ+V!8hJxFuCkQLmnR(E*DFo7%5khQx_3zE>A`5{m4}V|y?y<#$M6QBz=-bgY z2J09P5jn@f!2DjOiRxTXj-lZqM;ugSufFzSGG7Q@5PrZ(qP+)PmXH#Dz+nlUF_&x$ ze}K=TdT5^_p?_TDT71^VXXx98bitXjzU0_P@nc?xb=LIY8KwFTya6)Ooy7*$XZA~d zHEgkdhYgnOr7%vFzJz?vQ~DCRt*^YHF*tcLh*!g5dl~$zp|g41(1B6a_Ua4rULtvh z7_3cl6+xhwhVd^vztdA~U)X-k=d=a~#jn+uO=6_M4<`f*7dhd2)90Mt2TVC$V!R!D z>OY6?=Kk<~3*c$?ddNZmVU27Jk+k=e>DxDU#}ja*Cd2V<2seCC>Sk;i?SD@E1p2ps zLm5P?4xQ?kuK0Ykqd5cdYs>WSz+eN*HUY$FOmo(YRIru$Mbo?DMV?OEXm z>9)oS>?mT16*%ONQ~scDpy~5+^&4@N5ziCx63-AR6Xl&^7b<=W+mrw=U6O%H8{V?p z&Q!X6T_jou-yrQX=LL31re)aNuJC;zGlS4M`$NQ->1Ium&2plk zz)w03Gx*6M3zWU6`ag*^fV-Cj-V__OLyK@fW>ZUW#bBlW zhPuMrGqtguo(ADPqC|Qy4}jJ1^E9J?#Q((K_`IQ-whkY_lj&V6AbRk_WewKOGn7e- z@TYHLD#X7Dw}wvrnisGwx9BG(b;UJ*tN!+)qw!;rY?|M}!SRhW(e;bQOClYyP;xBd z!q3nLHd!b`7h2Lk^&1&CmF++rqEun2vxOg4CqbfT?9FXpTReB!9?I?99> zxOHoO$3$(}a#$;qBeEsOAvS}!QY?ECDe7YSJF}O2HC%u3l0$u9Hp3m6@DoslLu5K> zA5Pv}T2fMSyv??QAH?eo?HAi#Ki*a<8nFx;^ownc;9hZf0H59?25I)K00^gtE^VYo z*sahDR-u4z{{ziEZ;vgemUlqORoE9{#-Iso)`y{~6|Q%I&FY?Ip_H$WKf|OiydTSm+^x(_(Y!F2{QyRO;i`IU zs*(|8Ext1giy>&Wga(c{*mfbvNSKe2gC-x^KfiBq;4f~X4YrO`J{NB2(?<$r1}r2p_Uj6 z013yjNF6efu6-R>K<6#+41>f^iJIH~iV1em^9d~bkfYbXnDXqvaQ8rE3GrF*Z}8~K zs6|+D9x43uAv$Fi*u{-Ft85Y81FC;_ET72>X66*A5aDFG9K+l?QS6uG!l9 zeimXs0_sELkr!uCz_c8%9r%4xKRO8L@bB)O=fZy=+yKSp18rXiG`_hoy=O6Qs73$A z132ADu`)}NHG5rw6bGxhZ6BleaH34W`kT~|nCn~ADGhkpABRA#Ii-Cge}y7$|F4d4 zv#os?|wk9cujw)K&9Ky07>YNE0PZ*hCdJZO8nAPx91wAQP@XdO3PgM>Hi?Lx1TX1`~KM z>^q8v1YshEaX$t!=B?+fDS8oh6JrE*&l&wj?HOzB;{*xOOd2kI$2g{$fCMMHp+t(4{BOel|HA)n{AXf{Kbu_#H(L_YX+s_`zn9n$sVXg->lEQ!%t`SvCZ)eF zo~w`iUN^j<%+H5!+RFplLrZ}v{nr1+;$1?=fM`p~ju9YxA{zy~W-=#Zwcs_BJk^%+m-ue&Y>4(sC zazRAnUx$Vi_ddMgBEe0c;KbUZxZlQ8smu7Hi}~q_Tc?kQ6gONqx=P(zWjtqo1~N=g z+?`0VDsFOrInk~(zhqIS{Y7c6$4`@T)h{zajg+acC|5mAyoz$wM&ew^{Yv)hI9Jyx zX^+oG0<1J^-@|UBO@wo@waT-p?8BxIDWLJ4tKn3w>KRM$M&VxrJ?(%VBWE%tPb#jG zI^nS1VaS#MWHSJO^+vnKZq^BU)T=b_0K_i_ zOvtD1fog+N{+cptAJq3C1JLdyz?&ON43G(WB(o=R{gG!0ptb8!)4FgYT|}ZAs()Rb z_nEd0DHt9Ce<*|B6wnm9t6hgqXrhp=GBe6nx87qt`hLuVYW{ABqA)fZ)=@HBIo($|% z6xaPpz`DW>G&_LSHVR;Xs&B#=l64CnQ?McoaE+Ga!m#86T&#^3cROzgXdG%8Kcfli zsVxCxXsM3Aop73+2*~Pzi~e1Z{VzPJDAs`N|2SEcXIKBi$rFo#Il2G&D6aqg`QE`w z4>zRC{AH511WS>WbRN7xe;$;bv4f2`8 z`9R-z81N$;giUmVVR6EmuuQ)W79+`mlBvjtOj2spPf+rO;W?eiW-u0x7Q>h_m}pea2WYE$Z#5H*O@nc%i@))r|}yrH_1X;xu7{2x+mwa*FX8qBOI&&slvXijzIkJ$ZTmPQy=Wrs0z%eOeWkHn( z=WHCZ$2e>aV%ZA9mba@wjB$!b9>oiN>;@mv0SPP}0pZd8YthB4@ue@?46L2PsrzE8 z26Co={^<3<8aKg9X#g)J*TndfKBOo3Q7_BIGLCgU~wCLA*g^% zPM6gJpAByfu(3QtT}*v}R7Xj>(PgSG{6Fg61wN|kTKu0RLo&d?Of;3Wjkjq{+f=AV zLB)n@UNecBz<}gI4UgWUopNbQHA7GVgOkJzhlBK1t?gB7ue8_p+Ll^Td^Q2fL_`6_ z7H+XdrFvpwjg?~1=={EG?=#6v9*Ax4@BjP5Cv(o(@4fcgd#}Crdc;=;MPIW%aJeG# z7DnT=NcprRlK+m?Cp;xAB-&^!;O-|OBfl)`= zoT()_Lur=|c3jVQb#FV{2`YVDaoXTz<(9QL;?IFcohZBk*wy^>3V-;JwGS9XOP30R%M3Sxn$glA8^6Q+ zO%9J}>2ls3(X{o{m;uqSa2!-X z7#q6k->$Gw??j0q5cwAk3x89+rDY%H60CG-5syeXn_%mbD>xXd%;se)xT*?D3g1zP zRi;G$F5f_kwUS$D83vu8VJHC`n9d4wN>WBtIb^d+ld?3OOcrlamJK?KG<@t@UQqKP z-mp7#7J*Ab7FTk^ex8(NTNq&bj&i_0L6*j(EcXrTiwr&4};Z2ha%dcMN?&P=r+Mg0nckNM}T@Cs{z4nO9fr2-19ig-Yd3h-JN z*a2LD$pzTV1-Ysb}a$4Nxi_J=HxQN^2a|DK*`+c!MP-3jQ;@8NJ5Ld%# z!4(p4lZ?Pl=dN)Qo!T>A6)-C`^bS|B!GZ}-IF{wHYn(TqH<1wOKgdZ6p&+rVq3ZkQ znDt4FWfcw8ceeygiPtC5QlC8I_1!MSX%iqtSnRwyyULb?D&wG5&t=)x+%Kr1qdQ+x zM`P}8e_!N{I{H`unwEG6Y_4ClNRZSKEmF%=)Ui#_uqX?vI>t5P^mcuhDE;9os79lf z;Fa6hhYUjo;yOi6_|X3$bH3vh@5DMdR4^DK3kQq>gyM>v*4;;d3zSiMTMmZk<++-z z6@Lknu_*FETiJxv_(zP7w6Ndl)JW(WL?3~tVh-1uNL@rD7e%Gbn2L`#+n+Dr)~zA# z1|}N^3->mRpKDDyUtw0{qIFL>94<#>vC}voL4kA(+#)-S4D8C4!nt=v5bD9ZLLvaS z%?At#A=Dr4%~vM?AQn5k|D(%8Vl>WnQG}D1I_yfqaos zftemD&SG|s+t!aD{y4`2sFnE+Qb=kbc#zD(S+=AH&;$oCOoMefk4plf`kMJ5efOG7q@}FsM?_=6r81^&a)F2 zc}X2mL7yQg*rZ;kBxMxM5HfC7Q3K1VW#ionLA^$66HN_1M$9r?0k&DQCtI;#ze@O= zB*b{cPFFDJPxP`PE9!t96UQ$rZ2}@mAP6zpLl`KVf@N{MB5GF=oQBdBu@yzZd`hUX znxsgzq(RPT)azsu%|Hef)awYZ%Ee4Q6EGI)3eHzKW|ISn?j8(}xdJd^yMoJA`1vY4 zOO;*_Tag>QR|S7cCyzDGu$mu!O?X>@phXO~O$g<1p;2Sq@e2Uo=n5Vsco{xZoK$UW zDA)`@jOK!7nlEthPof9q`QR5rJ1!RLjTPvmh>2dh@h!<0bk(U6M$4W-_VA-Jkq{-4 z8bT8=bsuyyjy+S8YYWaKPy>Izn@asoNx6hTvW457X}bbe#lHy@Y_nzC6DAXge$t1P zCBy0VIYXiVQ>G^!R;EmU_QYZUH=S!!?ulXmG~KL75uSNEHk9LXf%bfNa~Wi`%5Dbl ziZLHA!=G#PbLoLf%!u$#!kiN4xQWkKZhU`l7OySN#6nd^`C+uy{ zBJ`ZU)$9@;uJH_k9Fvtk&LWi7GPCkxSXr5u#l>Wewd|qSxEXuOD*08vm_A96?UQvw ztq*cmvQpQ=9YwIYRmKr?j;6OUD(r4sWN_5(tJHd0Wh+Eq3Tm}=8m}UpoXZm3I!lGK z610ld6FY@m#j6zSeK~Ed%lTUG^R~5qlNY%zZe78P-r%K(r4q~*f0+G4Z}Fa+-=m8^ zK1cxTNlLKt59spxo!0zKM`MxJ21!4=!Dw~xQf$<$g5ZE+D|nd+?7Rdz1_}!EUjqp5 z;(*G(depPZ*M?)tJTQeDaS-tX~;v+OUX^6WB zNE+hrY&^jbcfIn@8sZ6Of7Bsfb=E(5hy@nb`=7RlSia&z{EIq2lMX_Ky^n|SI4iqR` z<@}!4KC3B|Wp0#Rz*_w%t$wgQqGEJ>hn2=UoUzSI9+5Ixw@Y@EiT%g?c})%C9kI>M z1AEM$cdrK>mOu97t5PNQ%*5D7izq}DsIIs@W!UO-Pkb?nj6Wo24I$qbkD%k%Cy?>$ zeWOwF+jg=#CeYK{T;N8+H}G56n@{^Sl@Il7%+5B}y5YSU{{m?}7l|=W|G&FW)6Yi| z=;vHYGWL!_KU=?qW`p`(CmTVmK*+$nn;vppZk_$F5R_Q`Lgx>^SXF&yNd8bjw|r;VH;w^mqYTJO0MZ|gbrqRGl7Cdl3nMagnm_mi-;8K_<&@S z>qhGdRhXRltl#JoRAZH!>tKZ{LFJ)@Y!dC#;#Sr}s)Pc`wpx`iLtej=Sb|LEU_h0S z&#UxeCeK|hGTBqCkSal@y7eVhf?RT0XX_HW$^;0@2?^Gz5>y^as3T}sOOW3bYq~07 zg=FhjuMP702Cu+DgM34DMHm-3*4IDR9qYbQZl6QFMvGu;xE+0(QnXM2 zoqZ75f&JG-y$JV_L@+X*WOY)KJ4j+Egg1P>+zZbQ$ban@I-X-wQjTRRhbnPrS#qYz zgldvAohO;pU8pLwWm-I?y5o*lv@@xq6qRSWoibqfHpJ5%PD*!ZA!XC}os|Lp8NU1C z$&Mx^yI&IFgia^vhm6p>^&dV$vy$rXR5{!NxD$;~a;EP|rjIy6i&dTvAE65*-Do4UBB|Y8 zmF%R(;LpP2)&rylU{g{-QDPaM9v_uzoERL+9VwzMjh(!!EJ*=n&+}Ee$ zY-Fx5p@J(eg%OYjM;M2EZVY4!%So54c2OTnrbcnj(Sxq^i}Fr z2FkiZy{hFtpkCD`;8U-alHg0~b%wm2tzHY{HBY@xlh=={*DQIRtX{qHnx$f~@Vc$5{1o}kr|KKImjzyg0Z&v$! z)63k$DCS-oJT?LNXvE27KOKWO`FFV3V-qJ?xhF@QC_$Lj<>F)rhYZJEi!+VS2AdtpS76Vkq5) z|9L1O-E%742&SW&KgsqSh0=$=cdWIDp=qi$pAafL;@c@VpCN<-AL9_S*V^$*eefyI zJ64|OX~0)*mhlHAf@`D{rg~Z~B2&1-iPwnmU!2$UAZlu?*=cMP<{K=)Nx2t1F+in@J4zDDrQU8;@6%GRS=Bq2`=e_rB&D%8p0;0BaK$~0cOX(aYrSIi%|gBG zOQl5(pEst^2F^rMv*KE+YA{!JO=WDJTPJQSEfNuA#YIG2C}6e8RFBJT9?sNqn{GIa z8D?o#fU89OQFA^o!d}$ca$!Xl<(fX67_Q*_0#MB=@vdoP%#B@xc4sV50Ia+Jopsda zf9m7!T9>&Pug1=`pBtf{4x?Ax(c_-@e9L{hFdn#h5rv@}B8yy$7n$x(kSbEFt}=_W zhI|7jmA}ZPTn$V4!(0uE`i!$l`Aj_Dx-Tc8{QuxeeX*IPgk4gQf<{5I#3^WoR0dmR ziEF(ttF6R~=*OZ8s+FsD@O4;!&KRXXc4sagtPE+I)94JUn9g^lnzDD19zmqQrCdFG z*M4?nAzszum2T_!Cv}tk9C{Jb5)L*^T%=6Fwc)8bUP{iW4x_UX6R;kP7m+Qe=W6L! zWKnLLbAsWY7V%}NM&yrTIl!N<8Igh$F}a?&p>FQT0*V1*4iqTCfJ*XYwY%i8k^@xM7swX+|&;PNuur#UGI>GJPd6g`XJ{0+YIzTi zFlX8CX{;s~2dfhdFAgRW5Zj}eH_cH{A*zMoY$YP-+Xw>~UHq)4c4EePT&F>^F(?9K9xknuzS;I(p zKV{BP;k?!&_xOsmH4`t1PW;$=D>DIAedS~)>QA)43xP+yf_mo=v0yiLZ0SK4DKq#) zPO`3(>zW!h&79+$ z%aZsES6I?sRy3l0tN@F!B^4iPOg^rq9%9nBP!V-3rV`90;&Ycz$&=}KDh=!`2hM8j zw>W2eaQd8Ok$$uSzJ#lc*Ypm%C@5(l+juamE zY&eIG8*8jE#C-E-$Aic-igfeJ`lu^Ynf5R1!`SkkfIa&A2%eT_SuZpCFa*VKSk)fP z1C_nyrFOTh2vvIsEZa_t>U@&iw~yE?)2;Dd=3{-CLTEP#?w#+Fu9ME|l`NPH6u&5sD7|_ z7P~6Mr|iZ?f*z6Um`F8*n9|Q5Pd?SkfNr8$>_Q1HD{Xs#hnM#J933U)E_~0g&2cSCtDow=ipl!ajLUy48iyxa{zxsKVSgk2x6Wx0zqia zX;iaNMzxwjdWz>~1^f_kye_}7SFPyYh8z1BEzC*R!H7TG)N znI{YWh_zoHvi?8kIs0Ytt@dPSF>RbBO{2q{YO{^`6OvGqWdKRwLG(0Gb^_9X99VZh z12#mlLLx9tCrrtxa7XUkM1-UJSNve<;p5Us{%EXVl(e%BOSoN)_(N3nPG-CqEu;Df zW2*+N`eX*|yFGImJZ8pPX9ZI92J2>Dw8(Ca-4vs86Lii2^U|2zsFo*JebT5tVEb3O zFsm)(whcgqyHl=xGyGe%wA&uOJR60v1Pm8uO{dk~YE-UzjdT%d?rK_vO5b@+Yml-z z+d$92VF;~*O1N`BNXiK@g6U|C=?H>s66o~OM_0E%hIChE>tUQETLZA!nY8mlQgmL; z#^6syqqk4aq?SYYA)TwIXgZ+C!Ct_?s6hv7#Nkls^5ZoDF<-)Og~Iu0WH zX&5Azk#!s3lf=$e8Eotm41>z{1gJ=NydMgcOK1lr#-SoI=yp3eX$n-lCk2(%gzf+p ziut>s^5~@DP)QggKmy*+b%lMoAO+fCIbzcJVKEZvW9`Nft=`=mCL!|1Uizm~M81d{ zfqu_}o!X8cB7Lh|X`ag6k*Zwl3HR{jJWglk*b)?+55>M96s2TaGaf~KvCft4xIBs& z5&z6NOKVVE?=a>p@!Yb*oU!oZ1g5=RSox6Cobk}w&yT*H#@Po?(*OZH+c{K`>AV8{ zj+Q?%^wF}LmP_$Ay@5i4Y@K;5PKu7^l?{V)wF+gw&>mu(c{M`oyv8blr%N`9Pt7tmx> z*YAj&v*-#N48jjP(jV>(0wi_ng}%o7fLLKmLoR@ZRlCi(++l9VU;u01c6_{o<9~x`d4uw<#;y!dK^GN2W;@zP=--(gcMP(Nuz`uqrt_>HBWz4 zQm(*7PQzYK!`N-Fvx(bEap^#@Mf_qiU%fBoH!IKT{{!?c=2zm!YBI4r3&l!$UcF^P z#@68jK(;@rla>-yPn4WFy>jNnD0x7IviuV_pI{%?7%co$M-TZWz1X>r469BmqHvv? zU#U*E0>W6E@^o>AbBmPdh2|AqV2r&}V^GD>Hte5EIwvl+CgOP6*ay=CEAFBq3yi$Q z{1g>dIM>cJ=W=9edGgw{a7S9l@l?}^pVBN*QMMUc=U9akWR1*{#f<_WXFKR|QKUjT z?p1)7eIe4&3DN(&V5pq;s9!oS=cPaMRp+GdKrp#mGsGXZG^i}k%bagM%8lEJsC=esNC6n6275tS z9%G@&VL9##Io$fRw3t!UcK-#JT$&DS%<+|?U30q^$#LLjAx6U8j)ux`H$9i*Md4pP z&2p!KoA&0f^EBsFS{Y1u$rW+Q*KwJ)m4Hrt_2@4zHt~t?o;D+S93;kQV6s#qurdWG4Z#?L&2eXhL?etO(t8?ntU3k?!hBmyK3U zE%HHlkqu%?^!!pmNUtKe1jm_N;C3FYE~ZI#cf`io%DhUUyHmW>$Hv$2rNZAgoL|_7 z8CypAR2FZ5lcPs@oc^-M{2f?Yf)8o}aTa6+!}kTo<e$kXpy>K(alTAjk;^qM z@dCH9!u_7+x9FLemlDEGNDWr~B7Q1|Xs4l5e@CQzkdV7=+#r!aYU-(=S@}cM(?=-k zvgD#bTWNL@0d%shawHd}TU9pHDjOs+Q(u#gGjqj8VBtP(3G<@>;8y294FH!W7X<+9 z7SB-BAMiC-q!cy=V8b9Z*D?BljH3{nfaK~;5LJNKI6sorHmGW-7w2ew1qsG8 zH02<6jW8758CkO-;@fQfX7lSYb4F8PqjT*UBP+(DB-bw&SZ128H>0poE+s}ZP+v+k zx~-*l!g6W^uO z7&X$L%|CrT7Vb~?G+)jh3bQG#@p(*V?0aRsL&PRw%0zs(U@tA=yIqM;`u<(tJ}MDP zM8q%}-sPD)w+1gA`#8_Wu;l7B$+1^V{J18<2yYz}zZ{>O_wcf`(efS^R>?ES&30cx zF9tL3`EF9hhnG1=WEOXC%3?$1MFH!MoBxKrSWv0(A<=N)D2skoGQ|?PNn#WTAG)14 zt1U%?U75Bq)NjPshP9WPz+AgvVRmEsm%k(Y9S&GCHtBkDBB9M6p{mmptHRStv8z5*h=tYXuPm*^~*46t2XNvGO*50V{f>4WWP#;{# z-}|=7wzyeJZwEXizStUf?wi=6W8SGllFt0x%Z4fWBDacV4|7H}vzFCb6w+E_Vr{}1 z{vdN@mg!VNab9~lZ7rYTKiq6r`2HkiW!Ys&|!SKV!V8FO6Wsn^ad&c8Vly{m)J>1?%M`p*cU(e zVv^ge&Xu0noTS67 z#!Ux36>|PC`kH9rsfNp#(~lPpdN%wCWH6?vl$3C(R5s5|=@a;yM>QH+y5$0~FQwQI-Md4ApLA4TwK{kAOptDKnHq7zHq7L9skm^?%+*grasKqBSgiXo z%0(96)ABMk=z}|AOwaQXFMaxxcCAw9Otl{UJ@s*MM~S+#G>3hG=2YE6I|IDY;J9we>xjim>TcORhQf zYx75BDX)jN)EjA?)e=u%H~rX!jjpwe2kni_S;F$7Sfh6ome;R6dnAdTRM0F6GO9MI zy6Z4S6DeOJ^m%z5M7cWk`U@LftA8f7ELmF-3EgeXDKKj5j5T)~&bJ~?eD%G>;hk9< z;Tnva@1eM|DGPHuENm+zM3qDFGy*WXdf5-Y`)c~v*F>rJI zFY&OeHvRRF>m6S@yx#H47uGu(c?$ofHw%Rgct*7_3$JyB-%K?Eu*L>FZJz=+E;n;- z=y)Y<5FRN;Wg1NJJ|Vx~1n5RtT0Yl@LWOtnDMY&Bs`_F49fk4NU+5o|tLoRp_{vIa z{JVe*C-4lHzY-N;1C3$-e8XP}@n=Xe{Sh z*?4REKD3zY6N*u8>Z^K(im4uu`=Xxg@S7=~$Xl%cS7_>V$mpAbr!xLA{n-d=59QoJ z_G89(n<%_=L6hXrSqlBsY{4rNIJlM`ehoRfPd8!ANI{6?IU zVarn(G6QnkTP}WDLIW~X`#c*KvgiO|>ApSpby; ziMK4BhKn4D6rau#kXe?F^A-fz)1I-~cW611e;2f=b`gA?mKvEHI(>MX%O=bEp|1LS zPL03mPIN|8B+YkIKnmNSlHO1}yZI?fo@AfMlXOa%(uO*@cvf$Gvuq1XC$U}mw5umy z^P$oa1c(b53}#6T;=s!GR}=~L13MAuD2E?<3{)7734`(lG~;yPTPdxmwb7nB;3Quvf4I)6nJEa;-*3z=;6?BGdTUXA zm#t+1cVvKo9VStNMWV+EC4ivE$|AFziGxwW*zBy>?A+LF$c>q*8unsuiD06lT z(i?Vt8V!vk;3(?^OR4p!5~|1)o>C@`Mf@{tMoHo!%CFBvD+{bg{$?qf#KnR_QAk|* z3n(DspK163Q>K#&GAsKbQY0Wwr5t_2-nGRJdR*9XdTU2ywXKXOtsHb?HfG6f9D@ zE+0Ch_`LxL+dz%g*rJQihGT!yHQbn3L*z$yGo;gxUDoo)wb}Z>!P!oqNxr~!iNEme z)s`JzHIR4~nMkZH94o7$S`Tv+00bB4`TI_U#7z=5qAmRq1=}P6(_IBK=x*5C z8(zZ~2RZ}M^7#^LRSLJs*RM`sAD{m0CUy;TUbY`DE z4LkTJ9L9^^W&^HP#nj z)!?;`BGtlS*}hiS17=BY=!tFDLv?7V15FnPtiPxZ9I>u?i;aekEaC|~dx}Rds*$np zl|qLV<+!-Uy2mc+ld1@(eNknD)YBqjE#VuMq%XXixxSi*Wg>c>d{gXJ%Z`m-gYSjU>3LxNc>rz*h=ouDr2pGgTi!7LKY zkN7K8f=ZR3wTVa69~ewCKdKEJMg5}OOVn~n7fn}Yx%|p37p1I@__bXw7d1!y4JwUa zndE9C(l#oQ9aR<&RAj4DisRp|R+lQc)olkvTfOnO^ch^_(13cm&p~c9b5!dS*p`S} zCuq}R<9n^J2f6=fcDN@c^cJ^c+JHr*^#MxO_9h~C-N(Cmm%vkOPV}N+uMHC5Pp5$E zrXO2`Bv~YQu}Ulw+$$MWLFh-17rC#NXX%D9(hf!4A4Doh>`<@{e5f6Y#l!7T%+_Wo z0@m06V#TIE8-{S~zpzHEP&{e)SD2T0OW1#1eIVwAeT6kiRw$l-L#-&<3dLHiP_+41 z8~z5Plf%E5nJ7w2wn4$}DmEyH!3>4ipb*%M(xcp0QEgQ{nsgF9x@vfjs^dMnmG&j{ z=u@~m|5OttA^~^ejt%twT^)-X*FgBQb&GV(=eFhZ+}kkEQh-}7RD3Wlj9~167?)mL zZpD3jMJ8Z9B`>Qtb~&r@EYOO~<>4LK;h1wZ(gC})%_l5%2nJc_cTLcS$K(q$4iB=w zZlgxW!<}~|I}IveVh4qm3f^92Ypd1{eOsvyXf32idMt4oB*jI(EGTK+@}jDu`wEH{ zdk<_bgZ3X-KNJb{TUi96YWkRW3C7x!h{F)QIW70C7-yo;TSK-O?x7km%%1E+*31kY zK4c5xx_Cg`7Q;8}0H3zSu*@wAH%{*s?rM$p#8Wj++ z!*f|QMcID%Dz+bn`CAcyIie};e`dic&SGQck`3foR(n3z_=pI z&;>*mx~&7>x64pQ5QY^oS>@NodB!wlrog&w1uJo~{ey6Cg`$|n{{<2!l#KxdVL2GH z-2s$8#G=@merx-`p^cMaR#{s8b02VCmMTWaM4d?Va`KU6M2lT)j3Gc4DMbyy#U8!S z_9sYG0jp13@DD=-QD3JT5!)SMlbYCKPHYuzgtO=PG-#5}O$Xiv1hh>}BoA&Ta+$LJ z6_5jYdhmb>NK9j55^K7SbV@U0!y`|V$k|+E?Bk*tQ)v05vd;Ntf2=kZIvAYE7uB!J zrFu!UjV6#zv??Xtc+$l}?ZJAT>?@LN4W}QsvB-s|6XPaXd)Zo$s5-g~H+wk&>)1E? zV?C#W@@8?iZSmo9tK-%8u`{A}qcvh2IaWaJeb#kXQT)mo99akLKd3Zzf_`lo%nE;% z;Xp;Ni&oG`+L^&S+5;MxT@ z@kx1U9RX|Yr|6qMAEiIej(}j?<*^ytbTUcNX}wX5LO(^^t6KrXRx%oGO6#$ynemdb z_^)qr(Tv%%wr9xQUI}a7YMyyH=rBn)p z$_6V}07fa&M}R5GewuPD$?`{_(R_}a1THMk;h0*UTiAS#oXi`R&`bTQco?=VHH@ZJ zTOv;nBSu?JQ<;t3qgYOB%o9(a%8Z?HOM%pZp*$%&Qj36NZY*@f49mjKk`=;}X^+gK zxN_pfhcxGQ(0%G4JztB3wYv+H1upXm*(@|ktcZN*iD-I}tZn|KK^|ihx^XI(D}sBR ziS%u@rf=DiiOra3K-KA@twNCq@6kZ4gow%3J8vK~rlsnQPo8aw&0|5WlKJ^lr_nVzCzo zje8=KabuI}kI}va!uBLc^)pYdN5lINZ~YKO>s9^?6Y1G3=Fb@P?ELYXo?Q+a89wi* z^sHcsb=C7WJu6?(v-=@Bt<#|Kf)a3#AdZ!$({yhoF1~QtPqlt2d(YrM((LRbqvL;< z#(&pqCyW0nL-;Q@-Pz_{3cHabSGEdes>n>Rht`)D?mAo3{_B1DZLRG@*@lIg56*js z%?AeoN%P^z#WEihh4#NUA8zPMLY|YE54|t`@5~1|vdH=GADs{P(Y}v1A3kw%Jvz~R zcuX4a`$+SlEM3osdeCar`H<%b3YJ(k&)V}rzT)#Co!O+K?-9hY-rlbdXdf~kHl2Bb z`LIdPhixajAAIkFo&_&@9a!hUeW3rWawQuu%Pe+U2L{EvSa z|7qVx#Q&4)(TVV1b2vU4{-@da4;qb%|L`{iORSo`HvY@kApSFZRP;T9IM&&q!>a>|%rMlf6v0@28VTv~T(t?fYcBIdR*U6XF5!_8mW@ zdKR~R`R=MLF@L*;sNpYEl6(PS3azL@VbxT zsYF~-JFT3d%+d5s|BmZZ%zJ+ODTPm?m=_iLdN@Bx6S*ISpH%K((HDNwBF6f}{3Pmw zTu1X|4W`R9qu~PU`(E;AjLm3x4bz=Q#u$u--8yn~M#C>8GL(fhlrS1Ilju>1DW7=Em`A4%=uidTY_Y9?1l_R%%UT0>naD!`J|? zo^vv6fV;N{8z5U8G;fp|M;`wt$E(uEe*qfD|E%H1|3lD-h_E`-@@5WQ|?Wsd00%7>_MtDP(CY(+?$4CU#@v z)?@AaA$QHPdh5)gR(P5>NVX3%YrE}rTJmqSLi%HMtEp9wFx&BvOACEIj) zjk!geYwE8xw#h!C8}6aAg0#_EG!4?w`T)w+s2fJO zxtF8IYE7I=Dt+fzKpB|qwQjFv9VC5?r0A7I4_>A$_-XeXIM>06rp+!l@ves~aMZU` zCa%q1A7q^0r)INni;6?=I_f*DL%QUFZmMi^;*!${3$DQMqFGiyn~Gt`i$dF*F-EX+gRi_p5k)T@Ox_`YkFBKtltHMOWbc(_h}D2DQ5MN z;6AWhUxCe&g#y#zz9Y-hBE@wq94m9MoDq9S*f6X**5Bqx{-b8`tblowY+wQ7Ci}Wj zUHfpWGhlU9l8EWoq+;T$#j?u<(Pgz@rC`Aru-eKKR*MH%9-4=(7V@drlIE!I7QG?} zBOHF}uodG0dttFx6eEO5A{UNp`ixd#!pLf|8|8G$%l(VYVyymV+l!3xRQzI(g-58{ zK(JG`{?}RXj;Tv}9OLxGLI-5jh+x#Zct{66KMoALOI9SIctc0l@5oDO^G!5%#6q_Z zE=2MySD>~ zrZp2$$_*Bg0Dp!(`{5!@dKhrLM z+t}s*(K)Fy~Yev*yYU>YU_vnjP(2;txi-j?BiSsF-nC)k$Gw3D1*TgtGLoM2lz@}Ih* z6KqQzc9IipOLy5xPOvRqZzr+0mr>wg)!9k(hB6wctn=(7YLgkI3_y2^PJ;WY_}pq* zGvH{L5?lpn16CNGLgH2t+^2$<4-5WC^rmI4xs)XydJ_YzVncgq2NAQ{aeC8Uy&*bT za3SB~)E}l&eGfp**^4#FM4*C$`v7F5rV`ciZs(7VNf#0vU?Li) z+*o=yWiA{57;I3(m$c8nnYg5lMO1!TieRpsfT;Z7M|m=j|jXn8^3* zBqQm|FTAe?d?bD8)e#>;Uw%cGJ7U@gSA$tvFz5o3dO+;e35ax9v?Y zNVYc}@*jZ4_Ud-C>ljJL;J8p zf+yfK9-E+KGp;W}Hlwtxuz7-#&8RW-OM+xZ5pL?Xgnj3h60p%{)D-rFjH- z8kU%IvW(}H74f+I6~@Fz8{9Or+%}C}8aIty8aIv2;8s@*8{EeD;O_a*!M#Hd?&5$5 z-poJI;4bDMv0JQ5{9S|FSf>WJv&Q-_zYOkP>xPRG2KTwGBLsIZrvl7SKt(04gCwfFI#=^Z7k`C%8T{62PcSR zmcMc^QjDwGk>l;iilN9Zw(J`H}hGz{gdryY@gUay&uJJRU#RADFy23d2mkAdS7MeIhs7c z*7-(BW^R;|pO)*emM_I|E;b!o_em|GgK}wYy@Npuam~9MdG@Kh!)v?_vjl}Qn5pKh zPRt)Z{4dg@zPEn@%vLM`X6MPMh+*qDP(;lC3&BemH*ej1PyPX{HU?0&S-b?L--F8B z=faA5zU%5ewO>i-PzMHBQ-C`;!v;j4T3x$-DKRek&{?6+!{ zupRgg5bdcItCdAdJZE+MX!W5`N{n>3`qNC;5Vo%vV zl+3HLi1pmsan;2AEO*nNzA6$(Uu6CEemy6+tQ9P_e)enovR1yhtUY&782#QK*}~{6 zQd*9M&I%U&0AchOsUf&Y-o$lM&Cs_MYSF^zUwm8%qf2oSH7l$PsxU$pw;|mJu%n>n zn=S9NWxSGah^t=6yy224nqK*)5_J=Y?qiF(iD`SS%Ymi)R=E-$auYgBN@AvF(Tup* z!c&C(*h@f?*uoccL~Nl_(vK9|>Fwi8sgxPS*vp5x2_0MJtMf7L_@U#R#=#5Mo|Kc& z^T|Q_At#}to}pcYBDpp|yO3PN5S{}C3Tc-(22EDj;DSpOHb#+T3)r1Sa^dfmVmtQe zNA1y4a*WX<0o=$AxO4~NVr-Gt`OlTx{^d}A68>cqkc5A~`1tA0|+n7BX9sfpn-5rL1GPc$??z8bvzT)`z@mIh<3Ajgw+e+7I zhVV~2TQ?T(Gs^dvGs1;$uSEKN0531-pQOX@Nr`z2-)`(B79szC3HQ6!PK-6~vp%DH z5G~&a+#S*KJ@PQ-h{temxER*ZgrWT58}3V4`!S<@3nfer!xJ4JurB?%7LuslgnN58 z7Un9P_=2c>qYv`{&7^ZLN4k=c|d=QE&V_x^e}!RqQBQTGnBMGCM@qB`@e_iw~2M@x}}nW}8-Q9=w;dactg zO9=$5^qQeSNvs0js#c1~%8R9HvTd|eRYBV*{!eRlk}~qd``}g89TI!#lH^g67z&Ow zJN&pnEmgU^!1chPg;2o@F5w=IJ}i99bJlZegeM7A)p6e&iNy?(bI z;n~asu?}88nHtK(;OS`N`@=N}i4R_95R=|`1D*Uv}u2H`?ZrP!x|{n2T))CvQ#X&nN|1I z%q85mBR4n3uwbi8u3?lf5#P3W#vOwhktdiWX#Z8n*lsa5U~=IkWpBAe+ZTCf08gno z5QWPe!Q)W5!CuZ*R_gUaa(bh(4LOG3dicLITm{PQk&Nk2OO&laH-8nOd5 zu0aaOJ*MmTa7V`e{D@x*);1ro7Fcg|3m956Vgc4$3xXOtW4mmZ_6DZnDTcb8G&<$v z)oIRp2F=D;;X9t@@6xUCuH~BqT`(VAgxb$v1tn(+a>hRjBz7SF#o5X0KN|m%mDt}G z|B@xy-y8n|&%J&t{w2GO|A_u_<^_Ww)8*Fu2n*lJRpFf#rvH}0sHf!`peWpF9|8{Q zKxut?0Y}NF3@$CjhX`D|73;;#qRR?$_>pITr<9#dCW;UD=Bh5Jwq(U?S8egezf@b? zgKhD0whCCCZ9ojWL_70i=ZMQ#E(M>m((KCKYZj?9V~4t7c4~W12&0IH?ltc46T*RV zgeHVs~UnHi}2g6 zHEsI(xgy|{`LAD*lQaf7JGxVmbqJkqZ0sZrM2E*np{!WI+tN;gkn`L>_N4yCsn6`| zJ10EX{!-ex`#Y@E_3C)u^fD#@-kb2$x%=}{7PqN`z1EOcN>S6>!w*XzQjLh5*lA4R zq@vU(91UsV&Q#=bG=3ebX?nCw8i-Hvu-sSKKE(}Tj#>E^>orNm==c%JwErO|M$x3D z#Yx`4pJENyDzu}h(kAG^j^+%Ud37@FYrE(q+t=}mYh(k@{D&I2tsZnwly7Qa1xfs# z!31WlZ=C-&xwvtb%jp)?E1 z#(njtGtkXheRv`52^@{y-ZpXde&`)e;PxxNy zyEh|rs}U9?E^L+G&`q_+I$RB(GYnZ?ewzzI7`Mr*cA@wOzHPSlo8m%I8JRF2l>{Pv zvDeV@R3fUi=BV|uNDg5+=2;Y2zihl1=bx53)3%q`>lHU^!XFwi`V@yK+`dZ6VPpGA z;l9<+i>GWj@N15ylsk|4(^DG8T@}78J!QQ=eV@hdqQ1n?Q>k0rTPpu}=5~a;Mj+ zoXyu*+d1ZN6SzWqg_WJyXGsnzrB_}k<)AKnGlg5{#tV{z)R5Qu8tYmL;u2hmYPe8f zW?L2=W=yKp&a(!7h7vPChL=p2nuJrM{L~+{?*9S}L+hA@Ox)DV%*Rc=oj@et@O0mA zJ(ee_4lp*#Q85b54@gf3)oTY{rgCxLdLU>eMZ6M^=nZDWZyCz5TStU<77!MkMVtt2 z4EIu+#WGF1!`oz?u^rGhEaDzjZY6gFmy<1E-4HKI33IfKQPh)RilX6n=yAtQp@acOJ0YV_v*d#ci?85v+<3?~f9kK=0h7aviQ0xjp zdxK2^(?QHFiPzK{ye}!@3quhHlOnuB5zfCR7WK}Hs?ouMq|lcL4ey-U{Zkr=!6_O+ z<)NBn>WC^jIyuT^BDdl9O9{0};X16wq@{BJKu<(r->`(HtVAl*1C5=+pUp zBEma!$3p5UDtc5MdhmPO&d;*WO}~3W(wX07?2okc!%xJBYRh9hfdVG~Zj^N<(&7~A z@J88_I=W8p=s%s&jI;>hZQLju6O8xBtpj9=nBtIo{d&2VV6XCenmxQ3_p43n5g~Ni zyVJPfh_rag+-AD?ZO9w6mVMXxno{sfkS8?FG=n6tE|?8Yv`EQe%i(Db%K%v^4Zi8e zB3s4!NcSoVHd`dE@l3!9&XRLf=;>e%D?Vqa{Tv?j8S05|sx#DJJ|U%ob^KV(y9ANjAv?BiosOP56QC5fUfN92ot1aRyjAUGhM)NVQRQXJ#k-+UxJ~7awiFRU4UWj;WxU}WFWMqw zE6zYws@{}iZ6JLtX9 zZ)T|^Q}=5ogLhtRs|;qX^*qWxFd8&`s2J!;g!RUcft~`IMTVrk)>_wr%wyqYCf)lGiYXxr~9pSMcCc&6B1Ou66f z&|MIwVT$q-Sf|*A^5ZS0)cOu$;WTXyUK9lsb|V(4xKWEeRTq1wv;l@^yaoU_Y9*Q# zeAfPW*#eO3CaUZCcxB=g{%jiIRXtxh9@n|F>Y#x0kAwob`d2&;nlf#-u`GaP+l1X1TuSm4c;k3&;%${)b=TnJ5VO(+f)yz zL)@kTa&-YAKi(pss1Q+Jv;lk)WQrwx?_xo(JM}<&=SX~p(W1KfU^}^qM%^%z3jzmaP^gOPNBe)$CzWq z2&83Nf0-()q!cM;?27Y@;ym-#CVHnX2Wscd9rQ0l^IDpTP*b_SWrK!9ney`1A~`^^ zmNp&At;0{2D%PqRK6NjoHl;&%_K~6?Q!iCa%eoc`Q0A)D8?`7PtL4?J;2cLnJ??5W zr$0GUp)OSW^!Ax*@4@G48oo(pYLvgFJx$R=X&v_1M$~8MG|yS{mM9dLMO>BzRi2^N z16c`#EIw8OXihbDTl>!hIBE+P;FRPUC3y&HYsk!u=^afJ!E!eF_}w zw+b>-{OKYL)qJeMukqBA|BR>hDNp_%$mgkjj;zeIkAQjWZFit!k~3^9O|3 zJyfV0Y1}F)V_SPEkh>6|Q#OTPE_DRDWm8ybc^C4gYzo@|@3QumO#zO)%f?VP1(f9- zJmS4Ty$gnxO<_m~7nCiVl4B?w4sVx?&OFnJ>-4SaEUw7P*j53MSQ}h{TP0y=JWdk_ z^N`%QRTjL6ItXe~lyc)PLn%`zRxz6&4->Q&2RE4|s$nV8q{E57kJ}SW^ey!S6VPVl>Io(&nBi5^jB!w- zl#wvOGDeJ2#)whMNSIU^IU0i)!xPP@e?c%(hUgKQQEDOke`GpcdB#6^eAKa{1JBoL zK82$*HOH<{u~9r5e)q1dR%Amdylyfz#@RNZ2^{BOq|Cd|=u-m)2{uTy;RH9VmX_`5J^y9*_J zLT&BXhehnyHtcU3^pBXrrc24;f1*qSbp7xNvV z4RLv~Pc$nr1Va@j92qo_+Y_@W5i?(+h}mmlmF35BVapySKIwHoGsSbjQ5s51`{iM{ zB5MvC>r~IVj5}gHtX}81gsXdL90yp?HLd`Kv{D>MEx>x1l!ZIGq9M zj0Bw4u| zMj{2pZzZmi0OJR5Q~;|*T1eWjw|MLJ_uq-X{^Eyk+x#2N1504-oU$o_F(%_P+2)uX zzgY>Hgm*0s`?=UU)4+e1Ff!M|$b7~~51l5A%s40V7mTvD#3GDM6l27})a`?TT0bH? zQ5a72VdQ2Jn-p&WWaDO`4GQrk&@74otV6av*^W`|$->=rv9~3fb;Sqax7w8fSW6jz z{hb(q#YRN;N!yc6ODygv#X*5$PqteX_q4JnD;kk0v6af6tO46Z9MNU^lttN_6mjFn z@`e?-Tx-t@*Zf?!x?ftnX!_GvSgl~TfN98Zt9|XN?#E6BJ{aHq|2KTNGE9QcDH9Xm za}|hu0{Dd2%oNPHQiwg@G^I3A=VJq^yAlG=yO7PvTb1jnRYwEP8rAGybyw!#f};P;q)6V% zNAUSB>{zbFJ+CHY5G%fmnBOVVoUxsq(4dHyqTZM zo1J!y$}qK4vOxU}#u{s84qoUyofE&%!NR+8x>{SCVT1x0?N{Mq)t7q_0 zRbWi2pYQ}=T(FNnYN_AX@}y_uasi2NCMmdFY?oFQ4VXpJgTN7fDy(pKN~oLZ{^x}| z|<_LN4^?EL&?#$Ot|C?dO3c3xLg>Fg`JoWX3x9K_ zhS0|}Ysb5g)_SXE3_|FCfY5GFK8H{_`PMCz9{Div%!e?%>WQxxUa9gYy0DM8s-yTD zJp)+|%CQt2fv4wFfLp;c4@e#sNWQ5dIVg0&{9o50d&0u*w-5-`>!nM1FnFq_)_VMr zH)G2jFz!pskdd`!=l_kPx|?gW5Prk1orFX&V%EDHDKa{V+Ge7?l85woTzgeYTkPqXg00Zz!7BPH${K`{Irz!Xvuqudx{oj)@o&DS6 z6Axm>Q{nBYk@U1bbi91ZMC==*lbJ43ZPtA>IK0N?X!!Iphj_Sx3w5z>ym$cJrqWoS zmtL?Qcz1z&=X)OVr{hK`+&&PPYYja4S7Am((zVL!j-d3yDqf@Zx$u|e3px37*bl9a z&cDV~^gYrs>rbmyn(mJgHwa!0Ptg}b!b}MuS(i@Ja%gM3(X`v2e8|!Cwfuo-X|8lN zT1tE6k)s}IMcj8PN#D|G@HY|jEu9sY@hzSOT|LT-qkq*Q)VDV;l`^TKMpez`^Kt{<&CSKl1rmax1^ialkWXr^~Mo31Ouep!b(Cm1PT zYJKL5z#UmyC4rO`*9!puZM^-M_qR{r;lc>zp@f{Z>BrL;)WREOnep7bj0u8(GzJJl zIk8Z-NDH2qFN1zMR8KT5C<-OvHfag}5EK1e%t=4>0vP8=j+ThEn ze5S-i%V+6FKtJZ|M^HbO>qi464pM-q*o(8d$&1P02^V>l+Q!sYHF>3w(#vJ^qH!m<8>Mm&E4yA6% zLk4c)j^Hg@5v?c+ZsDPnBN2SlU)EQ!R)LoX>y&16me4f0YSUUuDY5@9;ThmBzT(lj z@Y)83OIG}--^;JVtnr$&v!cZsr~Ix6XyRwKgH;vo@LIP6k#x{%wmVXTKf7rsm9WU1 zU3O9l>&)5pCzWu8?bS;+?R+EPHY&UvjmAYTMQnm5GL^?g=DK;WaSzI|s}33!S+SIu zzhTji+GR_vAB5S-IvIa+ZcemVCBWg103vcpb~J@q=7^RkSVT*7tp1|nNXZ~%0va+k z0vXhAE-5hQ&iFgBRhV-t|Bh@+kPM+iix&+;f4!frNH|ZaGq9GgEpkSEo1~u%t>y%L zaNgT7CBU7)30S7|8Qmi}0gsO41O%8^k5I<39jOgd<>>#)`w7R=Q4al|ZBUEGu^lN5 zXO2AXPcf>tklz~{AHL8L!teXBYgBTP=i8;uNsCs-kCQe+%X}AOxaeH$wa!LuDE6St z*WleO`L)&)XgWa;iSYcX#IdgZ!@~2%0ysa(!t;BrU6>1%N}fPPN%pWIl?&Qu>*F1w zfg6dBsm&zVsTz1X4K#iuiw(^bc@dVy93wrp!X4~V338~8D1v1v?CBDzp=GHC@>r<> z>qT-0R~*_bvVD846uS{$(0Wp(qo@fWFKz2Rc!33$8SF11r%Q*c3H-Qjl%5`@J<`(y znEOz>^-x#Uh|u4;ENDiX;>p4q#2UIt}-!V$(7y9Ri zzG2o(Q^MfpWz$3wJXAL%1^%Y#4+hN3g4T1N718yEFB_#x3;jz&=NX1nq6q>4fD6&O zhC&gm`z$}9YTXE`71hKdty)-=Acj2@?;_sS^C#mrDbUVPqB2~!S3Zd^QJRj|wL^wq zTki;M3$Nw(extZf>nYr8DCdVM>x8uEaWj2zM%PSfK;bSawdIeV=B31eRZof7Is|>c zaj7#h2Opz)MJM!p2aVeEzG;5yzVMcJBDX@O{(d|GdbRfJM! zq}*wg;%VJwC^x_@F;DaLvd_-Jnuk}d;lKMl!#OFp?xT585DJk9tA$$f& zhp(-PlMYb2LNF{dTg8qGG{cf`N0xGQ1HEAu_Z3F*w>NjdNKuds!;IW%?1gis zSgir;T}W<}H{}A%I_nl#lK@jJoz~r-f%2+)EOAG;H)ZV& zRS;@Xsh&8g4N5U+WPac0J!f(Oy#2TRb^rg*pAVUHd(V5`%kw_(bAO({MDJatQj2XW zr5|ZKGx2HtyKMbjzZZ`eFiyitNrCgRo1kJUIQ{8h9hXsuT6Mi1ee2clrpEmf_8a(I zKB))3_mrD~H?{6M;T6MP(PGDoL3-f_taTSNR&nXHZ5>>0ef4b(K@R{;No^_-Z}~Ql z%dN+tCIBO`HnLv(x`5HcoDK)0V}CDT^nkShcvRtU38V(Js zZnVE>EfW-`WVPb`#a_D8nAav2Hdm?9Y_!RGJQX|$Z>R9Gy*UfGNW+lHOJBrs-Def; zK9TJC9+f!TMj9_#UpOvR3mRpUG9KwNwbUPnH?ZVtf7?sx%iR^0wMGzzH*rq>-gwJ5 zej=v5#?0;ZYi7$PZtwyqbG1M28H2NowPpAV-zLJH{ep&_{GDdYH@IcS#j0nMpwIh& za8fOn_}s0uSRN*?ihIh+txLWSwCZv~T|A<#GL-(H4Gf+QlowFc;BuoFEI3+k5xm`q zCy2d63j68FNv_soMUn);iK%)s-S7qa8!gF*SKZ<7`3m1pJ|<)0yskk6zs7nb5l53x zNQW8jCv-zKF?81P-n)y+moW&oML-s78*DVMdl8SzXxb0{)_&kX)aRzZCChwT zYMDE&( zNse#{mMYuIX8k~OI%ij6)dWmf=V9R&{^P5ti{|=Nr#UZE&Gnn}$ObqfU%k+407G4X z-J4?-_L8p{SF}rvDq?3D9Y@oQj-6?m{Q0zF9(voQLYoyI1A{#h@=G@RYQ!$q&mNE! z=(h#IAzx(;Os#SEW9o`0tplpfA;h@2mmi@L1X zN&m`q@j{HC?~31=j9>GM;DH8D@YJg1s_n19_f5BsDvNdX6%ZnQ&*c8ePn+QYA_6K= zbqIV1;_IdeJq^<9j&1iFxx0EaAbUw=I!g z91ncgv3HS$b{qkp*eewbaOIieTnXt`${qWW$XsXx8@he%#f(NMj%`eYwBp+$_i4@gFk_s`%_XhW^J(QZC5GIrb z?wtbjTLp)Qvf}GJv*NYB$sJ}Wu=U43`q7Wxeo2J`ZLg;nrR=9l2h8H*YP9JQBW?K; z7+Qd`L84RCcJVilzE7Avph~@_TNK#EG8Wpzw$w*4QBKkryQrTOIrLVJCb0(d|Hr6f9WJCu=^~Krtl@`Qy7U$YmdG=w7eVAq+rrQTCqFvfq zT%dWZxiW^O9^;0cnq|JR3(x!6WzGyp`~aT3iOIR#F6VZQlqcwge=hIvaIbzYnl=Au zZY*B(CMq^wc$OC`Ymut@9SNP@Uob2P(Eai!rTeg6aqzm+{rPH)X^12lDqJ`ro6{Px z?^s?8n`|kBSH{1xn);?tUz)DZ7cZYeZ5uCut6QYTnqC;Y4Yhe@nWyu#7!dY&7TDui zV2@{k-o=Ripg&(=k7t1%PkN!hhd;M$AB5A~1Xb7p%|$%|^#MAhh5<5~XA>6A1snF$lR*J%DD-2hNT6Pk`4e8cUj zz(V5Dj(9)<3;ms1$(r@3A}ty+OMHmRqdqf(Tp`dsBFZpJyooU_hmad_?sjC1acGqy z4Kr$rxzg+073mT}%tX35iOESf*+P9XgA)@sF?;bv9<{=&%h;bm`=(adpD7&n8P45~ zBv(FTr#I&_E4VUd-ifSQ)z7TonM;-53vSy1I-nNEYQzP!of$RSt@12p4 zI^K+8h^*s8S(&LxW#~(|hw>V0Q-;<~6aV1SFG%j9b-CrszRW&@%cviewd@|wEtM}D z3(DV|#fwl}lb2o_7WB8ASeK}zWLiNQFDy@kA+_c$!G@|1IcJ~#CSt>!c<4zY$O&?) z6tWa2@8fb|x1q**@2_P=W~)AeBzy8(6CPu8skgjZ1dl7p)C-rU`kN2o&2QHAM?RIm zQ|)5~WvQY}z;3+u=PSsGwE?El6KcM%WpDJT`y_l1vTUMtiFYQ(UE$uAozcn5GWQW{ zWm(l=$9^_dI_9U{`6sL@TE1|xovx~VV<>wACTdUTX7x0*|rpEFzcy~B8fzfEBbl+IxN?H;`{v#DRrrR7v9j5cwOTciu&xE zpVUPw@^`|NO%G?Hh!v}(!${aLUX#kBO^ky`0@q4wiZdA`Mq!y+<5BhA3RRk`7UhDm zd7Zia@_1qAIjy!9q)scXxvA3{t2lL9X-!X^5<|h7%!O!UNKiDO3Uc&EqW`4o`qe@o zlhAS~+B`Yjo4=P-KjFaJD?F-CxvJsPWd4oC!$xuGrX{OXT9m&Q{vPB{wgAEZGhFcs z(O*}qsnN-ZYR&rTodtS-w~^X4i3|`!MRS3p8P17oB!`(E_`u zv)kD5Sz?Vom*_b`Z#C-nKy*UWy27-`d02MXQFVN2P3z!HS`LHs0iN+GM$x8R)NCXa zxWQwFv_}X5Yu4jE_!Nl*_8EdIOBh)+(g;~UfC9(>nZ}AU(}g_pnYVi#t-6n7^(090 zs%~^yL9$C#`HbdjS`nNO4OCm*NCJ|@nW}xLc-SwbnAP!^P$GUNC)T>e#N~qI_E92} zc&jlqQRUvw3@S;3sz43r=%yXrVrPj>K9tzxLy1j3lw?yJ^`lKbl-T50iA|1`*yLD= z9`()=n;a|A)3vm-q(EpRt#z-(Zm=mBD_aOkSwz5SQ^xI+6$dE|rqBt>}tYUE!p6x?gEx(0+vzT}QgA+a+ zJ_e_DignA+7*`B5%BGlv3mYptxR7JeVi>&qH_5S%g1n@fU@|#&OfTr~QD%|sz8Q;b za2I7tr8KyN5NP%n2H&-JB`|X#^nSn&watTysFz+@Pch4WpuPx!EPMT0)`3VVpMy`xZ;3z zYr06BayoWa4Mu#0S;D@!^5Is3Q%B#q{66X@b*xVLj=4q)GOt=>|qty7=W;85&C zzICu}z_>Cr&`_Luv6MHl)$DX4xpQ0lH`(#eJvmtaQK9vVGpktr)Gy_O!BcCm+e8Hf ze&0!A6xgOPvAvIqJVctkAVjA_typ?;c+{APZ7?=dAaVs=sOp3TztD1aG$<3_8PhP6)hMw z^QYSTFw|#U(JF&#Z2UYWAbPTRuaXdQCs}hef_Ga2@`T&f<<=`hcTdq8D*P| z%v0lHCyBqsM+h9*+3-2ziheBs%I8kF&$x1~Cvgd<+D=5S+ZxVI(Mx{krPZU=YDmWD zW~x++J<^hLOU&5VVWlBc<&%q%2g?0#58b~|?l(d`^zs&u8iyWBws;+Al90ikwH0@=9ys zP>uIfBNgZeHP$;^=~hQP>bHrtDx59sl=aw8dPJm7^@RA!#(eB}eD)L;?nb68EIhSa zp7vF8R_y64w)wPTTYvR&In@otdDdH^J!{NrIZ>n9jZg>M1LO`!`xgWk!Ssm+1gZ&2 z8bY+tx|YOCg&Qpe%=N?6b; zBnJ{gHC+ROIDU(o($P8&4|2+Wi`^dO?cJ|2V21p$YhBSxd4;f(HbXNb1umEy0Y<{m zXo%8WwoQTK`e+AJbtv$R2G7*iMEavHjJxB$5a>CnI$Cy;@Q=|p%C;M2&ml62hp=lv z*ia=%S^fg$){i8)N?#4heXFe(8AQ&!)z;Cm3}*%c%&Z!rCacX1>)1q@=v>t?Jn5|F zA9FEjLn=XI%fN!RCo?Aq$T2oUdz#;hL=<1|8sl57s6;{mGkU~~9<{cyv9Wou_*7js zl-s>pep}-a_%xc20a!W{DxYl(xU{c9uO29|9Ud*~YQ#Xvz?9kprMN31l7rSX%scU2ubukQa=j1YC_7c`ee}bU=dgy1SA)X*W>uM$%P&) ztK(eh7%H}0gw&4q6WS1>;E1_KSkbo`0Z9e-JZTMZU|_{xAT!2B+UPBdbwY&r%tkRN zyzlqmNRZA2G6eC^k@DzhYb!IB7-bdqLB#CvfUg3y??}0|X@bUH&ehL8EzJ)kFp;p=pWFI$9TcjIY$F069h zTiRJ_PspQsLO{-eN_z~Fh~b9@>C(%kVU|OfR+if;66*!f4=k6{O7h$3YlkFl*Z9I) zoqvKRUJKeFYIN)!cf)6rIrld=LCWvMX*wbM5spp?iDcA_eUK{4jGc6^^~Tyx#iz}6 zA0uT5ldwbV`P$L(&*Q~K{8c;0L1e~>UeAHpt(k7)o__~mR0Y@q4;!QTJ8~8Bk%NJy zJ}6&@1T6PKuc z<^o?zC~{B}W7i?rkYdvm(yy?u&_5~h2nM6Miw`n?#E`}AEYue-K|Izg9O7~M zZZvoB7&LJ{e+ZlXOGS85J4oFgMR_CgNN$2QZaAcg+#3&b>j<~fY?}8Vm)oIzk8nJ^ zlu#xs!(=yP51DVt7ARIY)s}M3gjc(Ra}|YD%u!XnGBV>;x(H#$VpUoQBKE1PX3>e@ zThR`SkCv{9fD`n)Gl`RW|e>Gru?1FlxvIo!m{PT9gH>0{6xrQV8nKL zlvx-MiXM1^b493;qsp_mkQk|705DaBzIx1+xKfp8@*tN7l*yJd+`WMHrYgjYQr;M+ z%5zu>n-3YG-^$BtGUF@Q%Y5+_esGspm1UtoM5rjnXq=B%^@32jpJ~p`#EwV^S9z4l zBM~Rt%$_Ydj^COUUy(^fb6P!45gM>8$DEs!sw_t;%dsoVHs@w@KPfe3BkabNVQ;4` zY1TvI2%i;x27aUEkPS*=_xkCWO8YE-S2;&n_j-9y%q51a zM~XN(bI%px#MyIGDuA=>xo0CzLYYA?c1FS>jssiv3$#MIVO-GoNr824!3nhDXPJk`l^xJT@i zT6A9%zGm^7ZUtVeoRa&7BsV-1FC79gEI7sAi`tp?A#`_x{#oV5{3J_L28rb(Qe$mUKi6W{cWRov0;@UXk>Q9Q`y)vkbfBQygm0k>SCnXL z$h~q6}MC;_ZhynM1iJt|(X3k$EmC1zmFpa-4a{u6* zTH+IX_qhTz+ziSY={3z`OA$-Fq-GN15 z6hCH?wvF{qZdh#>&yglcfS53LrAG5(0^PUyV#)OA zO#7WtQ;z*BqjO{XVqdjn@U2u$RNaSznZ3ETH~#)?dIvD^c9y@hNjL|Zf(xgcd9 zJ&3=sxVS+EXl^+_C1v(x*3K3DrH2|E_MELo*{x<}%C`o9WFbOC*9&DD1i3Vy5SYYb zyXKHyt*>(_qfd4IbyV!XrHpNp;|lr85sU>8^W_3L3pyBeS+cL#OZKO{C<_TVq{)7& z$L4@DNma|(a0Z=M$T~q%d&5pHomH~nb$j-ZR8grc-;?|uqc^PI+P>A-Qt59Rs`>40 zDChUZhU@q}-Y_#x?CS?%{}wNL)FmE!?WzL9Go!hkEst)i`GKBM5UdnVG)&_6cMTKx zeXC&{zpt)_m7~j2{slb%o*rc`IZb$6Bn~hT?ke`AKfKF zm_6n5t!s(uA=1!Cq$rZCSz`Zwtxb=6Rbjv^3MAa>)_@*c=xnqKn5(9(1mcs}OWV(NfG$Q4YFz9i?`eLtV!_61aen4hWL?JeLEhG!VKeR>B%YZqN|G7kF z_4$-=PqsauE@|-%*9-YG}7MH zZ!?hS)KpeiScR-((Io5kw1_{YX5~hpPoa-!zcyH*wE-kL(7^07jNi57T?v+ZBDvJB z1#YN{Z1bP95iPqKjGD>{WGe#Ed^Yj8DuIHD6p@d1M)g^1IScC8)o`v|%Qx&=dTyrK zss!O7yhOD(SniE1{%FlvjnbDHmG66JRC~|Xix2v~ZPFa*NdTI|hi!1aqrMtdDHI3I z5qagL6p?im7eZu}+Ab-7jfj+#AOU8@GC&y0?aHXMoEF1O__GFbuxm=iF z-*lc9B-meKnkhb?vg-!RDmSH9cwDYZYsRp$4txj$Nq=wmG6%Fn%`Z1=+}{csKI2c;_z>hcDqHw>1R5%St2v=5O2qL$%vEh~ljMnNg$ydvI! zvAHY_ZOXqU)8P)n$yTwu&?*5;~}vWqrLEL?~lH8)eO%Zir=Fk{td=2oHH#kOd= znhUZ5nU!Rkg_-dA(Dibj&Q8Ukb*41LT3>7~lHrCb@c*sAnT!aGdCfrhnTg9SU>#a9gNzs5Uzs>-q;WMk=Mi9^jP-U6?EkXD}#W zKh4BdHMIYikO4@|AGh^AHRw&&yvTwNJ&xcdW_e?8xOjN$Yq56tpGWQZ{&uQ`&X9;d zAl43-+wHOL=;=wu`ZJ7X35p{=`>){I(DYp_v;4^5bPTi#+Jh@=D@GC_0#7}sWo5tz zxoV_4TRFoYE2H6!r0UmEmNDwlfg$(3th7&^S@lqSS{3z+=OQl9YNj@oj-8sYI^cvN zDz~1qZ{h)$5r0C0I@VP4O;bmuw0c&)K`>4;^pF_ZC8H1P@1}%P);Ky}Dlr~A{K3YD z*8Y}GtHy^rGSYe`QcoPxU_a4_1yA`&rrrdeURzdb6H9N{5vCl@4hy%%)R3dRD zl=j|>>u_mcH{0W9MX~J)q(y6?>9%NX+jmsjZ}{uu@5HxN+5~227`oB>St#(If<=TQ zZ1l!!T_;Mt#Lhc_wO{+&FB_ZM-aa_43*U38QOshXn6uSBwFiFi!cDe2XlEgUTtJ}B zD@OAP+?P)v0MzixHY|3Bc6V#6EG&uCwQTuKcg(~FEZLA9pXW(71gw35*OD7bLmj0v z_0An)@5sT8#@Jlu#d@~90s&zYSw02Hi&4gyYOC(^wx6WLNEuv0?`OX=1s_}5bF-h- z@)=t~yH2o6r4OT>ZZ;eMRQ$beBoNfPHI%A--N?lq2D6^Gw1rE@@6(JM`;FQYM(w-E zjI^0chy03H5Ed|m->z*Js~20KbW=Z-V}V0~1@8d~HyzR8tQWj&)FOVJPUiQO%hG5sE*^|1J=Lz5RCt>PE2qPzTupt=$q;qB&+H+Tgy=t zFiQjM>u^VkbCq_aFc?R&)gP(rtaYH%%)cq`>-PsK$H zVXA13#;bC!%f3?cz5LN5|Azp!+FxM6nCh`dT~jmsj1I8Ltn-Ny{g_D9kcT zMK>hW5a;Q(<|z|a)GW$e+*xSrf(rFcZObqzmnnTX{n3aX$o_4A&!cY5j@Ls|idi1t z%P~tueWbsaBi|E|Dc{RBi?XTIrosxd?O75TG2hG9-#hKm>EFX1%aIpN$v*@lts{LK zdCmHSI?Td=iaZjy(!p?lZN^;0Mem9@=Xta0IL#^oTB~L6y!d_PMc0WWM}(zX-hG|O zi*`4RMm35t@m{HAZ{%+W_PkH~Dh!5)mX_0Rt97r5QE_#0}T0?E- zn@G=bsm1}+N*NuYajwK@E;td@dGp26HVB^;esyb>+1Se{Fml+C1`-)+L4dBQ6#>Kw zGCF37gi%2;b-_sCf~e!sS>B&X8_uq?yt;0j(ehme8cCK76j+7E>qo+c9{()y9I$nU z%zcU08EVf04GOUKBY`2lCM#YqQwji&Q!BD%(o0f0L(Zwp))_LfB`KXD=L|vbNC?hx#QrhaO{$KIeQ~spk%CcSv0crmk5TC^WXU2KX*Vla>qDzVG2#qRnTSeGqDB^} zPIR|G1=Xzf*|5>_8mJ!BEW)s*n{N8PN{jIKRpS{Xzr4$P(Ud5zXG0wEVXIRM|hATR;O^cSks*ek*~}a$kXJVarcH{#e~Y`Wp~4B zz2m8cUbPBdCvqzCmf^lO-T=BNNQ)!Z+Zjz)&#QCkzX`H% zl+LyuX0)t75lUrHA6h5XW$SIaf_47rH__TJUSwtt?N&CvCAW63cwskh66tFQ{gBbz zBBxa%2$gO52DmX2UIU;5>IT0y11Ivg5M4-0_9!66 zzQ!FH8tC}T5=-<2KajLnb~l`ta%3&GUvsa%npWt?asx{R#HIH3A0-5v|1F=Jc3Ii z1Ac&X>FI{rn#!JgnN;48er<0+0MV`GU;k=Cxkw z>hg+2NYx!DqwX`-UPKijkuMBZBGZv-(%I^1IFHbh7~C<-<<>NSAF5LLX!gvIn0z(= z#F;QG32Jfj`heM5<@8F=)>3`J&uOzYi(5>xdvyVy(2wXZP7N@R8>1V8fT0Gr^0r^S?J|Pup{bxJEkDrJ4U!XHxTbF0Ew# zuHj=g5U`02&fi%E=jnzCx;{O9(GgXqkP}Dn6Ph75q%`ARgUydh`M^20YR9kRW3pi5 zYd{uF^fYZF#-Eo6bc=ZfCEdIYNrob>cDr6uLpq>;{@nZOfZTe-c<+OBNMGdrR9j#s zIMvOe1@EI-BBNi!fb8Oz0+>#F8L@S|neqP3d}rGGHuEE?s{V7>`;MwgI_7A*v?yES z4&3yOE86sm7C9FHlagrT{*S3-(fvK@m*hbhxr;agrqOf>Xc1a9ZI|nDbELBEZ6B_pgDB-N8 zVbG%CMF(H1w)RT$2~5K9SE<83NNUnz1(`FEG1!8z+lfl)kKLY`W;9>RBe{+QVz)yJj+f1P zjUV?6DEh>8BnBonNVuQbE~Gb=(zlB?ouRLsC-i4&ivFB8TwnPN(K|4W-z}Bwj9kb2 zr|l-QwPezdp4sd*=IzLJ6>4Imy6t3&-h;_03}n(Y3*_^7M0GstBBMN2*A4i6&fN(5w83 z$L9+?q*_u@V|{DYS5?TmDV5kT z=Lfr^=VEbw4f7!H(i5VlCdIB~mPgfiH5a2e|gmMqVPLz8>fje{*caD#wza8bCRD?%TYvd}uoac#VFx*D~ zF45^}YaqKin?BQ|{Bc~yv{vue@-qFXf^x#CPT;KNUx%pG;R{&fd*Oeo32RV;pZyg4 z8DX~@_`jwF@n&+3Om3(fsM>LxIw7}TXTD~CSfyMzN_dR)T zUlTvs`TXTP$EM3NX8)%v!i`Oy@aIH_>8wYb>!37ZE7I7Qu|}=)ieb^YoD;_v76pS<&6hZXfJ|IezbVRBOs9koaZIN)wIri=R>x|o>QY`1 zrJArf4fBRqBf79c+u}^(TG;GOLtd(g!`h5)xKJHL@@Ce7C5ZllFwI|4ZT&r%IFXIZ z&&kBgq8>Y_-jT;r$WI|k{Du-LoP}{UDqF%3;mIeCBUbb&&=zm>foy(wkTP|dm7u1d z9I&?<-mkXWw0JI;0UVUZ+4R!U{`I|2G90#mQC%Wv{U$+*#munLd;_PkH31NMx!k|*oOAzvv)>6Z>e5OpY=dhozo5!76Y(8$pRGdQf{LabYo`1HqqVKe2^m_n@zul^=c|u%UQRQJE%bu@bQgDU38Dc0 zKQnXkWQfFdtlT>Gq|9|D;WT*0Z7o-mGSkYf|KgdRZ{UMuch%O8qjDpl=H%q!N|tBR z>vB$}*Hl%c973yi?N5%e1vfj2t2@%-s-+qlv@X08SJa-qbGUNo$2i4+x8Cj zRBn~4NX`<*<{@sU`pGcjhn0*>C!UsFqYIbA6FUj#%c(raLD^(D-xoPa6)r6WK3-pt1>YF^bY!$_fBKK%->sCgRl_MQYK_r zBiUpuv#wW`zTpMXYmQcHeXyf2fHnIJivcGKn0 zpx@47w6Pmovku$VteZ-xN-V2(p`sAl@VZ>Keu?G3CQn?hc1C>F%U$!W$~LA0kN#xD zU%fmnxhjAN;97mp%LWs?oqQtQLW<7w$4j%!&~EWO>E`W=6h7!U9bDjGvugnnbpNU# zkccVb)Gz?^0>dJCY7%F0UdqSa4j(GRvY*YQ>5c+vV`peTS*C4V07 z6hBV~#@SunY=+>LtAS>~SH&^)x7}O&wHnEB( zN>bHfZE{x39f>)i|L>5dV z#erFt^0juP=BYk>cqoDH?ytrq6W46mit!NqxzhNe3T?P->X2QtmkFTdXuuVG$w)Pu@ZXU?&_{eg2l zo^}t-v5>rtyH#DUx>n%1WeOy(nvFG`EWze4Qk!jK*K?zsILLa7Z3r8X#x$Q-b=v$Q~iLZOgETKPT%2lE6DY%DiCEY&=L16}@H zc}{t4ej?OyH#Z>9M#Mp=(Qxof*%pZiVZ#AiCEw|A$wtdYCPO@Z?vx|j-)$U&C!=4oxxLFJ{A><^n6YiDOp-I9 zKxjWaJHPT9+TD*ZQw02c@^f|sE3d?CZWWikHnE0cS6kt+Ul4t`3gZpyC$@%Jm`h_Q zpjpZcwZ@ASh3K45Yv^gL2YUJuCRQ?*@zNy(XM@&vz@`Cjwf`$%BW^k(ns%hS8hvQ6 z5kZtV2lB+B)->4ob#Z>ipAI%DGh&D}9m}ky)_UhZWi-6R>ZxIWu@YP|EcTc*VvGbY zeO%o^G7!9~5fd}5NH5aWE&^Oi@JeBU)&yW`v`S5s4Yvw2+t{ZX00N`=TdWaaWE9&F zZ*4c%K}OjOaDy zK<^sbEqe(btaj)sCu-Fooa&V;kv--Dc$PUYPdWlOCCzG)pr?Xq@YR`(`$it=P@rMbQ=J+ql_zjlM zj80zeVw;{`Lr~9o9yK~XZ9}}!g&SG2VT!f=lUCBqz+RyflLG#!nwh$gT0G5oh@Zfev;OQC2(oe z-}&AnGt?BdevT~l*2p<0?tX|a5piCnq3K-TB^|AUjOkMo1@|A4>-k=|@0A|+o0DI_ zgVi%Jw%rr#GFrq5D)`*WUdku)*^R6VCNL4*9id4OYG%~{0-712Y~$X3m^Z2LK4D(m zU4(;D?&}x@b@varA>$$`ln$F!7VgQ)vq9ApqoOV0SMB*7U+KDeSE7X+bk;ffZC`2q z+)sYCU3Inf`189MsLOWc@10TZGw!`pT3G;6>E(5L6-Am788f4vpgrG|N1=g2_pYML z!d9@{*H{Z4Nj%SZ&~CN9fN@}pQtM}OvYb7u^=}(YDQsRq%65b23JC5)majOXistq zqF=A|yMKHGOZq4|DE!t1W8O;+mD>|*Jf3EJKQzfH`3p)4GO}c;PBb>ZNkYaA*$j

      eH0OLya*JB-bH)y(xX)wE5> zBcvjDRG^2fStXntHOU;fegnOBhx*(_K4Tkf!?sly3hlS8I54@J-}5K;omj5{-i%t2 z%Z)9?SxaNB>Bg2mPA|4k`{N}8?(N2wRspAwMK-NOz}T`X%h+=J#c|Kn!3W0XiSACW zK**GOSqRFiytwD8XM18V$whd|IQG9>>W+J^9Y=-z%#*uyT$`~4;I%lzFZVDNP!`8@ z9rsim)Wsd6whc)g>>cXex}2qEWa7Y5bM3@a?tN7F;l*c8Jf+{Ec=Uscuk2FeKzVR?Ghq_g9YUhu&X4teYh z9Ac$#$kT#D9-Cs#zliCY4Gyschd`6KQ#gd~0vnT3&>{GPE^U5CP)N<0IOIE05sMt{ zz#syN*$AZH4WkB{4jnbN6$XrL6`+z87YYt36dYm$g&FM?98x%hLkb6RNYQ}1L!%1N zXRm`pR)9lp9mFB>z}P%t5Qp@BL>wZR!^RWOjcVd8GbY$TlStr#51@}+7YwfdKP!E7 za`aj0qZj_aK_4w#au)iiWAR6!j~>;iPt!*sc7eYnee|o1L-f(fBzxE(9d$Z=^iP!h zlha45&j%F$6!g(kQqlih`UtXS99Rk>>EqEyBe0JqK^#iweNmJ{;y^;V_kD078;N~L zxsOBxu~ln4b~*4PNbK$hK|~);0sXL9D4@w1e-;Wz`X^@uj`&dehgCj|hZ@d34PXCf zDJ3Ki6v`PS&*?=eaCU;{^ny@CA4==Y{4>xxqSN~TdS`-vaJ~Oo>76mj6UqD&A`eoi z+m0g=nh`}F)GYK4B1g9^5rW2c?-?!&LO_J%;JW|m@}Qe*&O+}zSN&1womP$NG`&*= z&i_l&JO8zQh~63V_6N~BKc?iLoZh)hEQbFS^v{Ch_B>dWkNrBEP z>ltgTD-gH;<>fJ|@=SWHTlYW5y8q z0mJI{B_x$fa6Sd&b3scUjKY9t%8)rR! zTzWy`G`*kxNMxxa^hXCzoRwaPLN5@vk^Fg34d`PW`{4h<k#>{>x~a0AHGV-KRNkO zIttMEQ;-k$N<|+cE?I>PxN=aP)Th-+-6?fa)d+P`_i%O6peT5lI;ql8C!Mcl#PYz{ zoNtSQ_lP>_RhOze9QT~7l}UndxKwy;)DQs+|?=S+P!qL{SL~R1$vxDoim-Q(G!nqECFt|81fq-OFt9WIdvN}aQ z!(z;r)tP_F{gyr_OokRUOg-g(ll3{(5hzTh(41;1SuJXjAu<3BsLLS%cDz3cKsy~p z>Bm%#*zy7ife`k(i6}%YbkMgINM>dLKY_#E#Okcik~*GX7eU z@4{{`%4~PL)&-NY#_R4#{g`v6c+aT$fW)}zbgCRjmG*qvd6WV<6-2&KPvgdyg>D?n zH9y8{qD(&**P5QgOwdOwUP&hPp8ue@jPo_pjc7J$7ly{z9rEcBmT+*|szkCdaVi5n zp+JnU-5re5pXKT4W8%U$R)+gaw9^@wH^q2Je4TMxkruuGz|6uWw5RFw7}~s_e(H*>&rNt z+qfhD&@juF>$Poz8Op{@<=*ehi-wwZFu0P`!D7Ln<{b3IJ*(BsJ7>nHtyaDbGv@rP zEb=97hv=7Ns^ps0zL4TdGxKL<8jG&+5)&ol=X#E6Jj1xtMy8Y%8+Q8@jZfG9Y)+a< z?NJZEbHtXfFcXVAB9W8ssW^DRxaW%kr1#xJvnJoC8yA{ReumI-RpxU$H>P2 zj1zYaF=-qyecjM9=A3Q>9>>jz<|QvjSYp$2+r$Yl}|Pi^|r7=bqLRoOZ=j_*p8~X12}NUI{Jeht40ME^{?y!p_vyG z$5n1ilU8qY{DLMQXnWUf*7@VNV>$b555149j4w#WvkqWpEA>reByd5hB;CgGcwkKM z`GzTcY}Hsbr@KGs>t5w53f|b=zbaF%%{hGxUiSdU0rjSPZ}9om&xva-0ZkHK{g7tJ zvvB_`s^??GPWc|q5^o5J1Nm; zd|~CMg8POyZelK#wCOJgrMv!pJu>LrP%xVBF^GC+2Dd%ti- zN|Ot_artEhO(!AGj0VrT^Eau{%J(St_!-KDhnK%3*x*^4I8o|zErQzly!HD(YHFv( znqz4mY4Nboeku9``YS%S-uf3=E_wA&uj&t`M>8IENi+`~&OG&9O~2F*<;%b_&MQ%G{L3@U zx+l%X-PXm4F{}{$JxL{MM!V@(2Khui#Py4O!8XM2WRGJXIw4K8dUU^dL9AnM6@GdG z197gMBvXf;+eHy+hq0x^gEKz9$C#t*u0s7D-&r+BZJ*rP*6)s4u1JpY zR4XZKLkD8VE=hpd@RoVf_GhvOq332=@bhdcNk&_@%5nbWHg_xZ@G3iEh-z;;0wTy* z?uWm(&VQAmIKa>nEAQ`V6fL3d&d^a_OxYz8NNilw-}(m3V)8{NX2<%O)&oC({Eu6S zw0P7A@4^Mk2)E&GRt)8xUT(eq)@#X)v-Nyc9ckK0(syIacD9HA)!OvZd#Ac`(#N)K zD28TcAE`RR_}3jU!$+5jmG>yt73Op#|H6z``JOSuU20}0hU*rN&3DRT6VAXl`Axi= z^l%0{jFw+>TWs+y>$7}V0s!jFF`K1y7{bQF0ABL^Vs+hSw8XhxfhP4sEaSa4&|3y4`h=f47E{351+-3Huen*QOxgNv6rJgtKp-C z#+DAI8@v5GGZ8K(&b5~jvyx_2IG<*X7khxZvB0+J?)f?o^Y;QMRakN#6*@z_0rF48 zZ*$3h;8uYRl8v5tesqhBk;Fkzomlh|cuEpMo1v}7=Jj&`*YB929cq`XzJkDa=9fbU z@37*s0J`uf{0_)J*cKfXtU4S?C$eN{D=kP_`yJOyme}#j)5^Y6F~8iZ)~~7U?r{Ia z&|#6Hw0(!SC-8RE7u>TNvf?QFl*kBVr~~mrPi&W%8T-Ne1X!>k@+cX^js|CYjC-yU zT-(^H=sF|iUcLr1eB5ks!-i0X04U3p(4-Hk0v{n%F*FUg>H=6g6a3?-4P(}o}yv97QI4bijDaD4t1wO2VAk6>uLaTmel@Ip(^V02_aphZu7Jx*L|8DLY)gK zL?B7#A1E1^u^^zxRaNI@{#JP+;|jz8x^wL-n07C2vo2XQO{YB2_3HhGaSLF49b4l` zi;UZf-bfm^Jplile?rF?C81G@Uo5OwcSwkR!os5p3BK9*HSw%H9``+J^Jk63<5o4E z8RZ0R9#D<_I6kb&j7%&c8Flc@wMPbX3J2Jr)_hi|EsU6>5WmDc@G0Lk#GvsWzWxMf6w<@eR z7VZ_wuHIv3IIHsU29`qi}Pn5}HMX)^uF1t^rK=ASC+dafTk zSRQ%EtbE$W#{E1Pe!g8n+zKPEb!bd0!HeQ%t;#Uu@sBw|z~z~i_-3AeE( zlHckW{`*t(Kf&`-?S(j!FQ3_Hol0JSN)5F)kZLd3$EnjRt;HD=2oj!MNjt4Ew222$?6)bJHaNgu3pFiyv(Wjj(>2c)mWFl zXyfob*0y&BG%dJTD6O&1?P0{AJ)ad44s$8wVDdmm=u~p$Cu~a4*y36W5oi#JKK<&V zvr~hP{!deY5@m>_pjx6}J@H?*PugxxUW)VwVpDrcvF-MgFIdnM#4`IXerxzGv_>zL z^#~g%x%P_UMV{DBLBL)~m7K5eUrc=3c0#AGUZ`eVgOc#P1MiQnZPcczNpX6!@tMXa zGnwCI-H>k9uMX?661*$((`5~8a@$xFqHVz1^L01G3i(Odb@`UiDu~LKXY^bS>0`C> z6kY~e4DW@3WyvJ|UoX)wYtrwxCCjb3lUNx#|Cs&gWqCBvE06Md1R258a*vEQbO$U;4>NTZtkUZg!X%_ zO}gUcTJ1sGA_52 zJV;M?_#Gvwm_t@_wLiI3myZqcC#NIS5G^sX-Na;?3>o_P7EYF-8WHcLMIwf&66RlSo2H zQ7q@CHxa;}6v)Uqu{F(_%B10%93?^?i*=8+_g;5ewH0~6UaaAO2ILA)Y>$Bb)YvJZ zJ0>LOLmUlfAO-(QvL$c=@uTvSGkz%zi+oDK0Y3Qpwq$%>dTdReKjKzpYt)*0b(cIg z9yzJXrtn_=p&5&oL;}zyvHsDKQIcM3bUZ6A{fc{nz;=P)l{K#s*xeH(ldTo!6hJjg z)-ah66K2U;!2MiRvc}!H*u1NW7YPN&7QiEYMO#M@1hluQ(Ti8!$w+lzn6ib1ukEb|aDY$~|JH0&`wspAfaXOmek1OslpUK*|zW z^$(Dwi`3mx>tg4t`g`OKtMW#&jm<@FWAkqReVRH9yIw;?6 zy4CZN(ISyN)vcsX8*kkCFLJ)ZAFn!2=(^CFuPp6=LsuEWbfe{N9vPcUJXaGJ;=qRg*cr*+fi#}eS z5x*`SGCg?Gxbt$mSah7RdCpY2<(ZloV{G3jA0e)!@D|nW8GV&u?}BsyD!*y z#JF>^kp8&YjP_}G)W$!XDD<~{mM>88b6-$cKmPw{lrM@6i4qh&q=1x9(GJg#q+TkAK# z!0U6JW|lO#j5ESqGk%;d27kNqZ-hT+eo6+07iWt@cY#0l#`x-3>-h2t>!)KF8C|y2 zjbJnN-n*-xc0T)r4B%pdB#Vc;?#_MB+uc$6k$OtTa*&E}JV{3j3<&kKzQuw+dS$w7v+X&x8=EDB^cDQ(PheHF|%+^rxvwP(owk1ZQez zM<9Q_M|_6aE�MQJvG?!e0}%BDQV`7zXB+XT6d6yn7K;6mLT0<7|Hf*$K~J zGI>>W^#gFxK-ENeUG+T0hO@eM<mbWlYLbp)IdlGdGuO6 zTbm|P2})_|Er*&@v??FwY69QkE7K)4jLlFxG%`t4hy9cBZS;Cbm)uIuJ4D#Rt~onG zh75c3Rf0pMq>*|)*7qJ@xQ4GUGoH(;RI}=9EZ+v3g3Hkk!a}}%O0~$-W!JDNtFn6Q z1xiR$Z212#4KTvfguKhTsTX!TQ?2pDTk?1b`HN40P%8MP$Py*MO-q@4jCkuUbM#5X zY$@Qxd84zXoC}JknNQrvnfb&Ley#u1^XSw9Fbkg99#s;vpi$j_0AMby4#)t+QZ9m=qOY6)L2az^g`xlQq6MrvKxhn z`aM+*eWtFz()!FPHP^gEX>^f0?4WpRTk_>jmOTs?A>bv8=NiU zq4z%sLI^qn`w@M%bQwEht zH8jM;za^p3N%M)BY(k)`co|3YDM{8;A-p3rztEUQ^ItPy&{i$-+-SK#u1X+;=jh9^ z`qCS0Dc6_p3L{nG3$|RZFMIW+KiE>MFMp#i1HqOX_2nLYnHg+ZBA0h=)0bJnmM`ne zNA+cPum#SLr~fRMEY-y^d!aOpO)Zr3REsovXsz_zA!T(>nKXAq2B6U*(AO+ia=VCkITOy;0pIGDfw=*Y=v*d@7em zNbfFFl|H41QIXD|fB`_*)aKr9Hpiv5!r(J&dsSS9Srz*_TM9U#64Ib}R6UX3wwh65 z*J*6-XU@1zNZ=ZaEYL;mBRUZ(KMMYc~YP-^7h+Hjr!I!TP%Y%G0Q|oSzCH*T`t7q1~WI(CkI%-yIXJ4U_ zd%x79o}c`zjQY|+eu0>jdKyU+wA47&MW9dn(m%6hgMDv1aV$CK#<%Sfb6UPFR}T%o zGNrV$mF}ENtUECyJK_o*brFFm)QhpF3pKo+ zY*%z^fh+o?E86Oc?r=rBT+!XGXtyi6-yS-)LMjj1gK^JWf*UF#lfN!&+Pq&L8O;xJ zZcn@_koe2z3Ez3%K}1`+fY6A2Fx@AD&o@qD<#xoM62P0hD}K$l-uf{+9vA9>YCS<<#H^=paR0nlCR~gpY16rT5RU_Jq ztgqRZWXv{LN)NG=WYzs$6DSXIKmXT@th`@q+(z0XEkM=uVfGLvf{cI;(b2{sq0HzJ z>zx;b>CJUV3)NO>r`dQkcE^pb=+xL9OI*>s*fy~ObHSQydt9Hu6%$3#ha3!s{bYLd zViC(An@NvcCVB8|y5)cGPGQ*CNl)}ODWbXi-{}2&C=|Nj2gD{wuQ*uzrd7u4`WW>> zCtknGk1zDx{M_~K=gILx_DOYJp6PiTgf2D>�m-)p%6ke&$ahE3E<+VyxdC-H8rx zA##ljo4BS;kQy>N;|JU2P!x<$MRm=P7)KpT=`seOE0e2pts8oUJ0)pJWFkB4vMG$Y zbro0-ku@3#yf-Pbos8)D_=c7a{@lMW|5jq|rzpKPFs}MoY zT_hK!IBZMQo01|CWlShH{d_6UrQD0a&L9=0<>-2RGi7`&J-!3C+mje@r?%K}gBk#6 zPt2$YE%+|IlZ_%oz-y-1qv5E~JJ|(?%X+47QA-8_VOVP*8b%1bPtQwwrPNp=k zPh%}!o;#=+7{hSYSik-%PatI{rFA8(QKY5?JGGvQ^^Y>{7LzjUIp>VK zM>m5~(JxwFiV=VnSIe}-VriY+zRo)KUvj&ayP9EmSzqS)rPK^56|Iuc<>eH%I(TN* z=51`3VBqp~!@BI3uM&|g@>zNO@Aj*rdWgO20rR~(3fTt_?zJC4$E7XQSvq-lVX6z8 z+Q#0KRzyoD@b@FmU*j)>^WjTW_a7*`ULCWJJSj?zfZ8u)`yLr!e`hE_-3X_BW_pcv z$B}{LQtc0twbYzjZ*1AwnQ;KzV3tH;C;h83^Y?BQ3jgh6`Fn|sSekUVy?sn|B{JH2 z+{Po%#0$wd5QrTCyRC816+q<}7KjF;ZhK~$v1ur@u1DX$aq|O_y~Ery|S% zTT4T2!yP_4l3yg%B8e>r9JxIbdg2jlZ4jeo9oAL&8IUL{3No9+SA~5>Xcv}g@N@?I zeHDsB)<}GjD}gO{K> zc{PEUN8V<$8mBV!EK2mJVeKCwZWsKV>OZs0e2?hA&>kP!|5)#hL-fE#L>ghtQMBFE zhR~r6q+E5^m~}g_5s20>e(Z;muJuvjDioR$@w@Q%Q z{tH)*Q{mUm@RPBVzExis+$?PQm-9yc&d$(QJyPNQ@$f^-J*jVaq7SI>L-xxn+X2#* zUx*j>#rnV6u-Vw$^uWY>WHmQ&K(+B%Ew)R1dYg=S;xb`r(h^zQWN{_V)2gV%c-mmx zDfHPk;Y{O&1Le@{*0^8U@F>pvPbZ^YVh^UOy0HHrtLyB!i%RkjnRQ*{;`0UWfh9Ax z%tfBN8*a=DcgNoGuN_yShwna zdvDw8mzY&Q_)h-z$=f$pVMh6I^WMm~@92wX@uqn=*0?*(xHp}u#8BlO-d)cf%;Jpr z@45Jbeflz|wzlYS?A>$7Pb}A)V`a3I;mPB$RnV4XGh8ZGOG46!4hoVZUi)Te=*SUX zKprUTrRPWdERCJ?YE)ogw-fH}5tAXU<3{Xk-%8vuwN*p9(eh+U2dGg)w(cSgOze&f!k zcxm#B#6^e36x+wE#JGMDh68FKL`uaFyJ>{0b&xprW&SROI%@`T(?+88ViU%;TY%hbY zkM&<--2JrlaC1|$y$m88n9Os@lH++_gR9Q7=;|R*hSiJ;)no6{gh3Hy}Q|^r@j4xiT4joL(oR|A)M{0gtM> z7QZLV00Ru3i3W`tHMQ7=hH6@D1qW*aOcKQ41k4A80Dr5P(%K?q04ssSA%Wp|lvZiA zSFhO8d%dl_&|5%MunAx$AccU`21P}SdN5RjawXW5`Ty45XC?^}v|sQ0ywA%+=A5(7 zKKoR`B;j{xbP<_3PK~On)g(s=VvNpSxQ=Za>pM&uO{( zqAPiuI#2&gHFVlkX!cLIZ{qJ|{@&$ps{dZs&7{jaS4tnZr?0f6U*Epy=}z(fYTkGM zlYEl@-_O0*wS~W}{HbqUZkOAw{R|{FJhOy4C5lyicXCDir5AFeoUm!7g)WMLbhDSKiaPh35DyV=X(m z6ge9Ln$|R(T9WVOH1=;Ovx%~8I5snST2C2{`LzN2k|~ew+1Nnz*R90?mmFd6iTb_%@{~|5F?5+R0`-_@Bt^2}c zYX}IXSdZodN}<_v3?Zo>_PXEPFM$Kk6pYUw8SsZMefpaJBP(m6r^?{bczTrcC|X&u zukXe%%lAhmUU?-uIhTC}#bZVv#E{)1E6KxxOGTWh<>Th`vl`TRJ15>ar*g#d(?og@ z%a^s?)s&yXZKmAD@`vh+$j^`*57$pQaw(4GU(I3^H@DZ!8rK=iAFbcz>dQ#Euo6xz zw6DL{&9NEvm9$g{sMx)9%x0ia3E2-kDl#&^n06U;H!}xD<&R$6U(ipHWm1=pBy~mZ z9U_PSvfS2xTUMbROB=8<@+zkd*$0#yMK&_x75$cjvX(ZO^F3D3Z>-uDvN9_8&}HYZ zm7STtQY=AGs7AvF31bVxrIz;!+kOoNPSVu8mP}$;i~W$=hKM?|6-mZXefGSpmT&JB zbJ~trzj9^}!lqb$6(0e#h57KE-qjLAJ>T22+es?? zw4fR4YxX3>fEMD*B9!l!MToN#Z1e7gr5ptq3m%nH<1Ltxo7cp@V(ys~ivLz{K@8@8 zE9eo5pO5h9Hz~`D{s^7E(8}*_Xg*MOq$~$3ivEacIdEET3bGQ%b{K7x24c_Ayf{^j zOEe;=)pp@;QrcP>A?I;mOeOP%*|*E-W_XB}aVe(rZkY>e?X!X}H3eUCg^JAybL?+D zC^m)0gN+DPP_)0~3co-Dy{0NI+HXX|(jBlvGvJbu>*h|iuTB=@tbF=n<}GBE>q=7e z4EY;tLXj7`pocyG^kFw|O3y|PS>`vFAd>LAJ5bKLW6=^XZnS&FXiA*|ul(+ow=)(T zJF;Bd`bU+f88?=u1@;>E9gs(~Q#adl7 zsrIPP(_Pss^r{3A)v>2Z#(vaSHc4sxgN=v)lh#Kcg5TyUF#tlIy{Z9&ndORn*X;{` z9p|c5VuNIFT&GrZ_z%?lma;V}#wfVpJ6JAFT!iss+qbzYGe|ATtQs$LG(2{;J3iNE zX|t%^@wsTTA86@}&-UB5CQEEGEvY?zr_Zv)#7PQ%Z+5a^KLy8>brhX&MN5TSI-_ll zDutJyG^mmJDN2`z|3}Yo5rC`tcVjntj4vkJIgAfbU5Ncb-M)o`1I0pv^G4#NB3mZI zPb7FwVdeK4q{Op~d99qvzPKT&M(U6zBB{8Ml8!@kj|$OMy!yl>zlyyQILk?{99F6< zl^~Xg3vBUJDq-Rs!oen5)EZeh(-o~aXe^auK`7!459i9SO2lrD+CS*53(ZwRlB<4N!gsEp2 z*-g2(6FL@mga&A$!vVP;tUSv6ULzgY#9#K%J52mZ4Sq&@JGTP;aH&fXt3) z7_qNA!DYO$ePvJ$8PtJ#P-SD`IO;G>W}gz#_=gYBh>3Hin|Y&=v!-k_$B#5y%o~5$ zX@%mEyL_jNaa)CNpgi^~U`pv|W{QXH@(|(ScH&YpjuUTgK#?SQPeR=>1#r{@*zN9E z=nL!wsbsq$3;PbHDAe_fkc8*hio2p?JUEj_`>e?O?(#8SVnXD3jbKxBj1NtHbc|mM z>*=J_&psb_4=iQM>>{D+Es=LQomrwL1ZP-d`oVjkxyesMPdci=6CNIzm>&LO9CILX zfacSvqN-4F4gyfb)-HpxiXtIR3*GdsUb6%~e--$=h%bei4}1!*#t`%5DI?hEzytlI zc{08LQ{+NX2LF_m+v0TMwLs&CES~fDo2EFQ>_*28VvF)eTo}|n!cv6w4{J^}?i!e@Hmojym zz(>GyOq7mS(EndNe)4Ize8Z?udLa()>i?c-YJ)&qIJ&N2d-c>V{B^Nf_Y}KcF zMebks%Hne)i+z2UO3raDgF^? z1i_H-!09uru_@})nkBcoszPjLN9=e;DE5grjg^fj4h(88w%`13uv;DY!+s~aOc+z9 z`+#D*@z<*7e1y*`*tqzhJSwKoW1Nl6nfnpN&eUIhC+4-^01IKg3@SGP%dz^f6}UGqCOInsyHK68lY2 zCXd;K$-+b_kkXQy+1>WFv93*P{V#Plx)d|OU-=t}*a4>k9EH60rq^xEbB>Fyxd`ea zC$DYyt`KsRp`Bt7vx~{6u6BYD_ zQyJcvOGz1JH{oi#d-kH3+`w8ZPS&CL$|>Zh{{_I*J~Uo+BNoh}6ic}KG(FD#Yr7mC z70nS36%nD}mH7SV*+vzl5$`9~e-k5vQ*^XoPOLz0rV7+%N|=6{5&cGweU5BhR9^(Y zdCll*72|@dkhqWhBBJnf0Q2Q`#?O=*@Ishz(BfQWA&TV#zBB7Iu45u0D4)(JU*S)# ziN66-OkP!Y^0`a-v~}AsQGYSq99r8mcpuU*&J|;vh->7L;d%`@DsD_rcHtIY zLp!l)DYo-Af*|-fp;yN6kb~|ILNq=X8xieg+8M~36TXf~?F04xI#H&O ze=Gq}_%u+FwrJmoS4!=dHYkb!u^2!w2yum)#6hh|&qLU%Xu1;Mx4oFeRDDB#)Rs)V z_5u7c>K|cF%!<#S0}iVe1oG!#63@fLs>yaW^`kp3;G00lqL*O9WY?#}$a1r57kGPT zmi-@~3|#_lYP{~8b2j-FWkF>XI0q_f!vJ}KA^-&YS#SlC500bbGMmy-o_3p1;`oLQ zh`oP(0s`lAp0NFvdi0_>m7R{1$CW2_+Z_b74}V0fXpmNE7Q>?SW5)%?7c*X>v^36H0_-dZ?3muo@L zj16k6x?X23OlG~3L9E-i;EM#XAS?8RtQVP$gSO(66GYTVc&d@atdP}DuwU8ta1}Ej zXB)5D&z8Evi$bbYjyXCGeSncW?!+J3J))uZ4Jte}s4;vUPT)mx>4VlNri8Os6vbCG z4qalbIn^I~*oPb6=|AX$K^;qXENr3y(UCIAJ!X zYT~__=V{_ZKaTSgp;0U^lQo*Bq5N{ml8cd==Z~dic5HGjFCN}Q9wBR~c@3oP?#VEU zfe+c_h*s7W_eYv?0w0Etv8s!+$(PK_vR^oHr14|7xfK^-_txu5N=o`JD8#Cd014N* z{4Uqri$2!BO4x@r? z_783wDBD(rzr@q<#rkE@TzeW_>M8Ntx~4k~*ZIq=`<7A=@*(xn7X=Ra3q?w5F0Nvh zp6+UJeu=mmEObi3m`Q2asyq6NED^fiud!>*n51(hC5+v%S=0Aw-#K&fJM-3#oHRZ^ zKYT&$LT_1cOelPg@l>vF)^(+!ZgNK2TYGdDZSA%tAO=j(FDMmN=BWs!%i^KowCQ?v zEUQeAEa;hgp9uQGwJ8CIQ-b#s} zL<7aZP^@MK16UFN`AzjY(t+9GH&|Ik2${uoc1o%J$cg^0*?mf*%DUISk0&glRj2$X zetk1HgdJEVjfRUb>d=6=0_xGI6aAdb<@jaB{WkZwwlAhM2{d58 zsgoHe#NPYu%eB zMXDckg)>bx)}xdGZTMVM4fm+JMf51_`Rb0gKEFYZb66U8jyU69z>iTkgSW`z&Q)4X z>xPfp@Q>bM6%zvM8EG&3995B)M6bG<+)-;JzZ&hE>PB<#wI{9yAfjZBt`dWAv9LRr zD=_51Q-xL|J`%FM9g$3NOj(!<9Pk|>R}>XDTN$sVtZGe5N(jX_2(rdE2&UR6o`vsH z>86^bv6LKWS@fB9n>!M&yZ2wZe2m(-&!YL~Cp0anO;4 zqMq&!L|@{mYn(K0Z2VB+hCZh+>0R~tkdVB(#}bpd+bl-Q>cpLR{c(*bT{KSUYhsDG z{qI^L%0ID0ED`piE00+%~0iR-JOC$jnFu`XJluqV{ zq1PV}mW2&aX_;LnU_EUE1k*CvKDB`ZVW&^Ug!Idm9g(M8l?F|y%zB)=nWLV9BkM}A zC(RRrlVK116>O}sbCr&(_2dzzb+`2d`K7fK2OBm|*u~Y=aBI~)#4p0jCzrg7Lq;VQ zHu}e^Yv4u5vgEz}+G9uJD>(MAIs@ZQUzsk(eyH}{cqHx)8}Nu;C+$JXF?G>a1K`7# zK~*E5#4lT9!1Sn1ZEs_FIb~>U9E?L`ozgfDkF8%CMab zAemG1=h@`!Pt@FYv8uK$P1V^pSXJ1DujQ?(9_e?op6XB3bFr?c(5Yt{84|GU@1zxy z2D}BlhLiL)RgQFly^U_+V5WW+e%)UDBU!5y=>GKYN4Qm^*vf5EVC7>{3GGML zQ8nUT*CYHb=5M)k|0AyN@i&m({x8=~=ibe;;Fp!R@Du!J35I_#!Xk8ughlll{$t{hZDB!$-wKz((7eC{jpGK%>~~lL^>O-==$!=aG+y;No`y>Vq@8* z@+V6Jl5KLsa>-WC9Nx+i5HCnRTELk6Dncp8NaCm*& zU^BSdy_JY$V-O0j57};yfJ9<~SwVc3JxkbDxSQZq*4f?<0Y`A1@Q;`-DsT+}LU3{P z%_>M?H&_Dy$Af6?MlZp%kyuQP?|9s!(7|!;x-22-90D9I$cUD)(`zj}(Ry(M9`n(H zOc75P42@JDbrFNNAdB9hxO)gcWPBolddQxQ|1E<7vk<6w(zs_XRL!tOeEg&_i`V7bfx@mSSr8PgZ$dB z>=&NW3yYiH(-t=Ju7Di&hJ?OV%*3b(Lf_gHPh(X3dml)O}YH3esThxH0_7T~{nG3(}Q& z<|nn*C{Lo+W-^No0Tp(1)jD}75nXnxQeYd70{eXw*k5gE>$5JUW{Wh@wY+XOm#R#} z5E-U|Sv*H5b7_2oKyic@_spvp6>TjcRkDKk)U*svx` zwynBsbB}Rj3pC}%7ly5px=y^DeE`6z%+Wfj_rw9rSOu)jJfP9EGDhKXM4r0kB)Csv zm4WAoB@a>MG;P*Nd!moZuX`(g?(UbPb=!FuWl4F}Rpu%wDxe%wt7iqaRo`N&1ud|r zx_s25Do-e&O0O=&$821{S}os=HaDmyw2WFMd5j{}yudM|X!oc`rFv6goiR~8jM^d} z857l|?NW2ggOcM>^{epGtW)=^q-EIvQT9!yf^qgqrwa=1F~yz>70{cv=%af3r?&}J z7n(PCvj>`EeAyiHZEd2ks2Wq;cr2L^5^8KbKD_FU#wm4=8$F6}4b(a{XDn%nxM>!8 zN2ykYeWNVtv9a_yYOmQMhy~{)9;(tDW2u-*K(UQ7qLY0|ftc$~qio-Y#`I=hNU9XT zbuURRPSO)9X$qmFhda5pMXhd$txi5c7{Z^zVjz3gD@qu-^e(JgcMb!JESrbuwc*0f{}ICDF47v3z_AiPrGV^e++ z>e%0zB1~pus32!I=*QIOWD|O1Dz)j4U6yq7-|!ujmDaN?$p*)#nq{iO(94>tFbq;K zF2PjRvZRa<@mz55lM%BU5D}b3r*5iB%{svwQNtQbf6rG`?(0#xs!kW)y;7KOzQX{9 z+I6MJ#oEfAaP~?gTjaAo;oEfWpS?B#0ovwdZ5=Ww_Ny`ky_*e~t5oNHfJ0QOsqkJx zAL)oz0~{m))^!SU&ZzzpU$VAKx)ITyuLGz$oKBc(_%N9fvBe1axkN?n+BBG^wS5so zXKAA{hsF-N?R>}bSsO%?&{r)`@eS+fny#EUD%{66$n=QSd7PQ z)_DcjEg!$(3zj1(Jdr44bx)E& zpLy6^Y6oMo6vHZ3m5Fm$-HYUs5-_+^8R45=dS0^N0Riot-?J;$%q$D(G$^rn% zp)sz}G&GxmP-3|K^fIMVx>&ELk%bTn!(1f|Yf@`X3Mz2*$c$8LgHCpd!NZoNWHZ*P z6;&@;#>VBcAve}4nrGI@kh!-!L^g-VQS;AzQqRB$DAYDodQ=SCVl&q&wAQb8{?VrYSST`Z;jPD##8tvHHOPcqw$#G03AZKHf5FZ8L} zWKn4A7u_P)hypH4Kr;_~fTN7;L(C2GGT|>C-|z@edhwa8nT}HXC%^7YHusCBT3dN1 z8RHuo_$>_~3D`>Y$P?TOWNrQ2YB|*~Ptok4syJ7#S^xfMU9+owy6 zsvH4JaADB~-ITV08vR5HrsZD;w+T*rOhu2us52ULIK<`>dSGr?O?kqU+KUf*m>V5D z;!g4m(@e!2#0Tg1NNMcG`w|?i+N!D_wLg`8*}+4J%_%JS^lcam7XpNa+;~Fv5 zR{L9QeK4^{t2#a%j~Q>YA0Z9;5j&LV?ku)JIcB5p!e6X$8Q*O90G_YoRsLrTwL?D{ z=z6uH;{$lq4&}Esiwqwc6@9P1<|*PF&FDK)U57)BzLzgCO|iqfF&6E2wlX_^+*KxQ zyOd~h%)}?kY!1LW?wLUgMHPmA&jEqn&okru=}o_hB4dj952Ob|-s-QhBMKDys=tg8 z!!Tl~UV&lE=dew=Bv9@}d@#qi=)B0Ary_5hnyyZ3!Jt9}0;2ay2nJT<4eusBQ1Suf zd!n)@>^#+Y%Lq|-o~FReHta#GalPtn%VPQwf)v8LlG%Ua+a9rj>$LLYLT+Og16kyC zcch{Yjy)WRNgU%&s4W~XgM!Ojr&_19Pwm@a7V@CO`FNaEXSmoUVUz*E+%1!_8kb4q zzHQuU`C@UXEIwpm=N64RD0b4^e~G-85_ZfPw@C@cQxq|1#J*X97GtSw_?%LzxmDj+ zCBK)fx`4N}37#rInjpvd+*Bqpb;PV-)ix2GauScy9O`DKV@XL%u^NI#4OMk4zN9!b zi3To8RDcFC-TfCbN*n*=e4a~BU*+#qQ2*6({|o+P$kllJOGP+-EEYuTN9)bl}P&9lYDe;XBQqA|NMkv{Cy9Cmm@Gfp#re*kD zMl8B3>X-51d;5xR`G5Fn`Niht=V9q9M+PVZ^LYJg>W^<+BdvH^n1K2xxJ{{-gwy?t z#Xihy-$DT#Lm+BCkEsq43Y=W@jlgsA-IA}@5FUwt;V+9>MJ&6~SX;lDXLo%Azab21 z?ZO}PJ?_`=D?7pin`<% zxs5N7Lv?sxjE|7`D0KIrmN~cge8GL?I_*_Fly;pSw-X}+yr-k*E6htcWs3~f8D9mj zuU2)zEAZTtw0}{FnTTX?F+_+E>DgN`lJ3Y>Z=q8sPBNJ<7YOclhUQXXSGo<29yblL zfC6C^b}1FxP6xhxnH^^H9fKBp8S=V% zf^x!L$z{bvUt0!0eRi}B;j*H!PeY&Pwt?I>ywQhK$Z$?*<4~OiN?#cQss`jPsUgA__ZXf z&<^R5yZwE_*cEzH!oFwQOXs>at($tUt8L)3nZLTMOHbBB~pnNyV13&$c|Zp|CeTq@1;?tzUe|G+DD$c4&ljqAEk#exE-nVfP&h*?0Vm zrA1{jm84#=NiV*GTqzqSbbxuUvOsU^E7s0<<7RIKYRVYg@~jN$g`3i`8y|j;BC^nw zRMcPzd-3N++i^ifZHzu+Dl`0y+$DVDx)c%l-nTR{erh&3`VFzaviGq|McCm}%cEkd z806=K?7701Ff)Y3c$NpPxpovDO7E8>6MZ2Q^hI_PnhInq0-a09lgVY`NuzDh`a(I( zR&U`q z?hbJnK%Jtf`i!Yn1K@eJQc|_NsxMLdqu%a~?&?3CPZI2*;#5;FrDoSlt8#n#|3noH zqba}eDPRrMz>>Ld-nW|kf%^nt;r>*w5(R8{MmRMmm`JB?xd=TFefEO%Qv1-kvLCMW zkH42oS$sj2{lX(^s>GJbIw${N7-P%SnDAiki7t~B$i6_g24h`eZKxTOyr&wtolJn| z$0YmWEZ`vij+}V1$6f%A^E_6Lcza4Tpr&f8faMeW>NjML$sp^fU z%+OHO>So>k*&OUr*-|LYE`@TKi_`5?T22*W0;F&NYaua0mgW-ZB&HTo?qQDv%ehg&ft5l;vxKybbY>!zCyD8@-t5wN`bi&1o9Z_Pvvo`JdOgXCS%JKiA1S zXq$)pKZ0a-%TFMsZuun!@=7PWec})~#d_ANbG66gwIj!m%e&cFx`RBYmH7=RGv8y) z@K7>3r)b@ADm42=A3e%7R(F_RF?WkvHh0mwc773xmN@nWDZ25`NtVEC#+VOFr2}S% zZU{!e8>G1S2Kmh1r^?#Vsqm3wAn4RMBb_iCHNLO zdb12C$R=FSaap%GX+Q*l9BAYW#B&TT)kd}t6)&ih{%|Jvf*r6Yd_nx{_<4FM&^~WJ znRpF@NY;*i#^SlI#qkrb zABpg_%D}sKmZ^6_uX$>IQJy?HQpz`YDV@AXV)xD=@-7DW?`Sc;mcp;^o zMY3bdgp|v_*s=z7Roh&Mhd=T{oHG&f{iuBiMNsK`i7A$A*=wG6%jA1q18%<8wUX-;{#@M4v;3*~dZV^TVwoF(NUUcBhp`^> zCGlt9fw$I77NSEY=afmfwZm91iP&;1j$-YiX<+?eBU5saGe>bn<1i@kp^7P|5NVdN z^eukHnS@Ai+)>jPdpeIDr4q9Q*ROW$_(T>eE@UEx!9N^qypZtN=H3J>Kxz)Z6H*yI zXjZf<2QtjG<+R2M!e@J`*is#&l|C>k1Z;s4^8l@+Z= zurJ}FLRJAzW#1Zt!Mr09NRKY7;X_6>DH!M;gS*?_UrSuz9})ywjUV=FiPiJYDoB96 zbg^DLU;C|arL3J*gB|6%7RF(M?lAlBJ_wCf8xo{>F-6E}Nsp$KVq9r%T@DGh-BtZ% zKjdxm*DUt=!vmGy=Bh^CAuhtq@}kHRkBfL=+SGw^#JXQs8Tpv~16v{1oOJ9nB#6Mb zS(ap;?N%Gyxfm}A|DdyX>z`S?2%#qk(AS(K(A+0l?zI%oTq!M69Q&xdGR2}L*Jq47 zVUC~aSY=hQRAhV;pOJG%?3iJ0HTNc1&VlA$jzKURYu|LaE^}Ss>U6mVwbZ`RL79#3 z_8BBEPy3<|5-gZ7E9gb1B3=TsJ@%a;Ouz`8xK%K5Z^CKJ5iNpw7jO~KPljVYlD@si9Rse`@8akdlB^{`*Ir=gj$JMKFF%2Xz$GR{s3%A{16kT)_~ z`=EecPLQh9?PG8V$DI(0Rb7JkL(9W%{*hV_G(FN%vFQRkVF!?)ESM8tkYzuM7E+_A zI3p@?q)EU~x2$Ic3)iJIEqjFeTr(V3Dc}LIQqu4;>=jSie__)BM6MLauO;wE7*T@m zoKt{5tgo#vUOgjr&{6Y(Li&p9{GRxvTa|accC4d3(1;_jqJ+EA@j#GImU4cqs8Ff` zCZZ=?;_Mo;rSV;_yG1?wxs{~$#`nDLc9oRItt53czK@)kpSA%qYE)d};~0%Wd*o-g z{Op_|;a?I$YUkW=31WN!n|FpeOYJ<)WO%02xca1Hn-@H*wRXcuSW$ zH8r8{F%=hD^Q;15)eLh&mbFS4%I^H(J#x~9aJBM+aO(@>^Q!FI?}0F=0xiXl*Nz$= zoH!2ou`!P0BZM1u^4q)qAj6zS)ZbC&Z)NF%=_}=AspB$k=(dG(wqHqmmO6QpD8E1D zW9ZTpk(Q-MxP%E=(K=y~&9PP1bgU%~avxRfbM(de+&OC%{~MF zEXl$@OPTQv!iL*Fs+CHGf4?C!cta?7w9^Firy7o3Jl$jLD2MH5Y?OU!aMjUSpOBt~vR4Am4T*k>|a+!VUA_X1g zClkI>n~9?V~r#brN&3LfJApwxN_42x{f5=nxbM?>KI!8e*uAvKyty%095Xf?(nF!5-Jun$QMt|n1Z z>_oyEC*f!!;Rz?9J(2LFlW;tdu+B;7NF=Ox5)LL3#O_dPIh07)Y;U+jS$+`87YV%M zeR1q9jzLnk_tKZ&sJ?J+Qi|h&5&j-(F7+C|QM$H&(|@~AdWA}r&v(uBNkgywg1FSx zS32(;&=m{rlGIqRS-+g#O#k6vecuu;+}CXwUYM(KMf^9ey#4gIzjoesHPoAIs8Lr( z;mKAipOS73Ree2UTb(v`HTleKZ89>8;EvGl{9H)7u_Rnd$Y`fTeIqJ+0 z?$jOYf$`9<$kB{aY4L?DzEWex)0{f_#MPc*& zrO~iBaw#cllm)G{+nyIyVPFs!87s7T-pTXFSUmsm!dPQqQmwAW;!yA{)$qzU4VLwC8JL? z2b)EBu)ebNq>T6|QhnG}b>RrG-X6tVF~&8se=QE#)$~jax#~|3XsGpC%;>%50h#Ma z44ZO8_J7hu+NA|YlZCqeXoYNT{UUyO_6h0xZ$*L>jmYkV=FFHLjmY*S7D?wgU zF@BPVPrVhNjpy!cY(*tJu#wtd!iX5D1%5ddH#52*i!+i6GMfs9r@$-bdLoN*GE=PI zwonA>uH^+^mWiAK(|PT~$`itTAsUgeVX_U3l&hQcXhfC~dm)Qy8SOaqKPicP`jXvuzv(&XclEaLClnBig7t!b^5RH|M-d2L8vR+ z^;0^hKDRv2%X|n~^$PaZGCc(Ei>E}rfS%bNU8csMUf>^HrbYn_80qXt5wHjGvzqD% zqq_SWofcnAA^SoPbFrKN3Wt@PFs1VNdfb=Xvz0`lzr;J{v(U0)4t(qE|$5?M1eZgKj-HS9z*Y9X$OG`Js*yy!YUtB=Z%p9zTBK%XoG5UxDhqnw}Va%6}L3T3Dd z+1GO|2!I6l{srNR>O`8x+enkA^4=e)t_a@FQr{w@+HViy8~8r04v62bSU%YpJO7}M z?DvIkvrhPjC>}ZsUbvhH-<=Gp%gB0J+z2^oZ;F_Y69-5(3S^#sfSU@=tzA3~j^qTf zo6?Yh!0k4uQ?RGNlTX=Zl=YRK#~oOFd~CCEAL{)&#=4@l%AStai0WcN-g zm2xROuzS%{iPnfE`-mMz(>`g5(ew&(MnlDzVOHt5?1Zd;^Zsf8_por_|D-POfrlN?#&Sv1Ui z$tv(>@3lP3Bky_;BaN|qKb*DFVomku+Sticsx2{){>)bwqx_L+Ea1X`ev0RQ-77ls zo)RP_!~?rF4F@HYPsH!Yv>U&rI0zPyK+LtP{wY_@On+xA*DJ-va(((Dtu zJd1y^+;n}(kjpkXES!I8y&Lh05}!t%RuiyP6!^75pc)Uk2eq=G4|-T;;cSnbu91V> zDA!}BU3MyNo&zE-&q&eNMJXxf`Oq?BWAN1SaRd7#9^yQ>Bl#YWmPmIucF^?`|Ekpd zjno(TANe)ven#8PT4_w+9{DxuR;m4c}s2 z{l5Z(+O4vb)i%m6@g(P_D*qgRw*ZroQ=L^`UXgNbpYWBDQ-7_xd_`W$wPRAkpNpJ2 zRW)RVK1(|-a*9)|SLC^`9fN_I@{SU(#nYKt-5+gi=mSIH>c$dqLu64%s(ofNrb?a> zAGIOn1ksOFO3I#`HP`Lh3hQpY;!% z0gaLMr_*|Jh*T`?? zS|oZ!vZTl-MuGa;+{%kFUXe|A+YRp8RoTfRGyC$&bZSqmwff0EcD2T+|N8Dbad>f| zCcAc>`Mf_|bj5*(#+qX@jIuv7TzMX&?65L>PcvIM|1X{M*xChQ@VY@Vke6O&-c1;% z!_n~ZD2mD8LEd+8UR%*>C)Slw|2Z&ATyFj#W{G|1VM$m=s6xvJX2dv% z0PkUyu9a8DupmcE<``LTNyzaMf)8_S(IG0X;LPK+fv{)X@8m3H&QA68LyXU3<1FKr zR<1497$ABJN4ec{0K^JNt4`Tw(P1NN`z+&lj5fB=67FdR3Bd+AWsWhsrNzj4o`fcz zo5{hwlVe>X2W>yKm%kx3|G5S@%-sj-Zk=V^?))w8Z=_yC#J{m#V{A!#ZX6j(m~(-S z2k!Kn8brLg=kt(uW7r+Y<^F7B6|DwxBN|5K`R4zCMyaky8|NLQZF5>_hCHZ-(*HSP z&3#L&kws^vo%0SzF6oXus9ZF0PNV7#?R=TPOPsd8DASC#sy~{Oi}zuF_o+ahZ|*Tj z;3%3Fam#2;kkOK%QbjUQ9O^J$Mk&~tNLeRc^j|JRv@y-gI21<1hY;<^2+>SE7BV#4 zV>;Qv*vrV|b&bpKXBi*wq7}4>%4wz@75t!Is!zv@fVneP$qt=)cs?eWX1774|7RZ} z_bCP`veh3z3(6=3n&~iOVB8~7y9G_k{w(vr3Dah%EuDr*qW28|!%7>k9?^W7CAMI* zS>0Kf{ZbTFE6-VPX}|yYP)fb*iL4D|SLpm{kmwUAAXv2DxMvIgk{s67At(HuRF-?^Ju6xAK>4r48247FGrtKACg=E7;TB)!p2U+#9l zjCDvZUj_2~bBQ3>K{15Fbj=@5wC-YWzOlBY_YXS)clzcY0Iv|31={D`%=R@K&vGwn zGAyw+dUDJYl#z{$veQ`m68VgcF2Wr5+7R^(ZO-lx30$}{&^~vgS&>2Cs=cG`^3T6s z+xuj5p2EwxA(($8im|cw14^YkiGmS%(7`6vJDQP8$7m7-&gB3E(SRlCtfsb#e~TPd zhx?Y9`9sacY3B3{CKHFpWV1OFJzJUmgm{Y;5wufw@xkLG_5tfak>7}{VNnz5AYt#e zI{Fl2;{ePnaOf>M8lR88i~IlmBCrfsU$q68- zFjg{>MV*0(S)BbNC)spnpT{^w-H~mc!1T@)AioRVgP7Q- z!@J~o^a6U41a?V=G-;UtxI1bwKWmSE7jCCZe+42kRsEud_KD27(#30>*)UQhmI%Kp z0edxWqgyuf8;U-dz-@7z+`=T|kNc$Ds>o(u^Cq9!l6{lMT;ezDq*`->ymfyRwHmlaS3M$6`?42$ zV`FJCQV`EMv9St&@KNKP<-0bpCu*(X)_9;XP$yp*4>Vlf98jNPeJ*CdE@NzSK$VP# zxy})t=exW)YPIMxa0}-qI>B$=;5Em1QpS2xCU{fE`cg=-qz$HO^@#%{pJYY}I zN9U!*#-_70x+2$N7&AbGo^{fq5j#%2J!q#<=O<;Ps>)dE;XY*Fl}-RROJE}4a|>X^ z4@1Ebp}3#ek~&OAoiy+|2Kf5JK88Z#g zGBX9E(jHJ#eM&%0k4)8EM(ubOTbhNaON#y#Y0I=l%~79!S*lk(pB`voku@bL4s9O|ghc;_KtI zUBiyBq6%X*GOFmJxbP6MK|Wn2b#S)9(qanG@xnAElJVPV&f)h1bCqOu4|3CZ={lIy z=!~IiwR+nm;rRe38L z=h-8B?4R|M{hKQ^#r<~0JMj?>j!mE9k2xR;F~nq6^-?f0(9Fuqt`E+jLxLO;7#)w( zwmX8Y`)P3j3(Po>{!@e^Q|#yWFb z%pIa_nuFR#@qM4z_j8xXRm28hw^2Wdc}j8V_GBqeg0lWGyVNtuD)3jff1hE>_t;Y? zjxVt?6G6|EzLl@8amD)IOR*mq)B3Jnw}$JCzODoEERB3s{xXL05cJu@@$u&4!Gf2s zP8&LsdtMt^bf}!aX+ip2?qKaS5&qmfH1`8z`c5hu+@h*LjAmD@RHa;^vD<&6lpwt+ z;p=HH99T5;O5>?vZL}BUSBjc$K)N+7pb6;S651J zoJu@HZ9`WwZfGv1rqVU3jk3QWWq%=2b`~FIsj_aQted<%e!;$d(g0VKa1G8bXdCF2 zW2Y4NglJY}jtmeG?GLum`o1IguLY9p=%&5BPyjt$K=tatFS^H5a(%irf5! z(n4e#RrF?~f7{w?fm%uo>L;S2jHM(e`maI9G%MqMJb& zIIWK{eQTRri1{$ii6SzU9|a6jS~M_D_5nuI4wo@yr{vl}P%BI=r!`JDQd6kI55*Yq zdwW`uqU|DH5Wyw$T^X~B3aWIn*oR)mWbJVD`P`c zC7bFua>y_}bt?(15M9U0ftdYR3;koH7@oFF%Dj-jVkGY@di;#{8ELIX+Fm2= zWn)-{9zetiPYNm|%0gL2aY$`j02*>EoU3m*tz-h|m5Tdf?&N$18HQylb$WaS^Fo0&HDF zkg?}qFa)vPJqtbS5SZ7fsVO5X$8R$Xq5+iw2nplv3;;tnS*HI4KSLnES0p0(uN;CI z5Q45jfD{yu|Kt!r4>0@sDF3@Da$e+2`^K9SArgL;(Pahn@A*oldivp%3?knn|A@Jc zLqIT$%0njp5^8yvltLAZH1Xc|*R#A&gT^Bm13W-c2&7U&`6&?k?s$lQ9uu9@bT5KK zs{GIL{R3$D&+t87D_zVj#ZJQT%=EWM2wIjyWMy}A{t@&P z*V|~u(Yk1G6Ye-}tpS1hqdZLwKEY4L zYIL-9^|XlSu}o}Cl){@r_FD@(IJ<6*3o2dIASa!z+1Zmsq|?5TU~sNb>B62=y5{Z- zmnIVG*!r3!1SM*bRU^y+Lz`Fx<3yx~_LGM{iP(B5WZ%P~PHmS&I{Jh!rl}WT)jA1~ z5cB29GJ8JAjB@~egz7}AH%EgUX9x}|P=bToDH9xQ798ZBMO@ouBeDYrK|rjEt)iAB z8t$^jf`GP0z{6b#xH;yMi7N=GB6*GV3v|SqkY=o4BLsBTEe}4WR>Q^x0;8uCj1CEm zYIghsFp8fJqa{El38U2-M$_rF$C|baX{ngw!H5`vf)(v{o&cwGxL=b1@{fywN-duZGDX_h01g ze*3)n9Y`-c*rv2{0?fgX-G>BQu~oDk1BcCo zPsUj9btjiUQEPQe*i_|G=w#xf<4Grv6a8j~`vqE1Y@QRce@v>btHr5JTHjYp8<>o$ z7r|Xp>#b62iWS~fYK2=$3AGerBfMGOT&CL-e28=VR-v$N5V_}(0g_rH(4xGF-a=z- zKAqQgSY|0~xMI7Dq+3O;C=|rgA+@Ages*d3l$^U{UTTf@n-Liz%eQIqrN&jMR&W=V z02Jj?W(3?|M!;`FTZVDf0F3{VZ?`TWK$w54ehU{V5Ns7T@@}lgF_1iHzCg&V2dlb+ z|0w)334DjUZqac0M1fzCr53PahJe1s0sU|VddbXte@U~E)olKeZ=7xgs+ps5QUfLN zX)2!*9-$kQlqf+CfzQoT^I>b2%icO%$ExX#ext4QL6pr2m}{|Zk#4S`lxn^AtqD1X<;I&PGI5c$}%Xsn!g)5p=LeP~Rj zr&BRpnTlHa_7A5VPa5SXS+~*+e~yv$ zo>6`b;A6H@^n|?RNKKc3UpQ(1AvL^&m<+f4Yu8^dIsA)#s5zOI%RSW1Q!@L;N z13{`@p!EJ{Y3tblm40SG0p29`d?NvKn$lZ4dI6Y>QbNBkOp@YP(eI}TR-s7GI%1R` zG5lE2ve$aiD93CD6nYD>fKmRum|K?rUgk`;xwG*Ia|WY%d=Sd{%gw~fGAGiIYn1Od z${DfkM)|JDk(BVO0<^(SzDPr+QT_*+0d7*Tnd)tR=Opnxf$qn^aKoRa+H<4}08PfQ zFsP1^N~ckNN~8Mo@|-|*QJEQ8;dV94SAGJ;fM6P;4`=4EHJ)-%gB0xFYouN%Gl6Y0 zs3q@S)d;5FO#wvuWs`dOy2gF=GOOs2kvb()G5}8sC_gEA*r!fmGJs@Vvo&=}PNXqc zyh7`yLnUdeEI!xC;v=9NbLJ)+S$kBaK>F=7HCVScbqc1FnF8<2q!_+A^ZZJ^&>=u) z9*^3it$M*9>$8H(S?4+JkUbI{a~Q8b9n8|K7x{_xoaSC+%LH2hF`mkjrgN|)c!rk6 zrFX&QaPzXP98!t)MPmoKTJJanOAkMMpaNTAe@Ult)z7}o{$B1N zSx)5~K=_MtWz>8?#0M26{P-`!5Y3!8liFjda>P^LY%p%_>-x#R!Lxjm#ns<8Lxe3D z(><`26$!K0TiJwI9**1XlruJ!2xt;^p|Z1~gQ?So3L~Sf7}JK@{fD8~MN)4St&B9Z z;+Xf*X0B~*s5F^-eIe9xYQAS_YUC22Sw}Hf3G&@ zu_mN~HNzgABiS5!TvNTCJmre6Cwo*uA1VerQ9%bgQ9-5gRY(S=ZVPo=Sa2ImhP`Ub zv@EH+*y0RYIn<=o3a*54T}?a=R)1kkg97=YL)6rQ0jP1+-nqAsP=PJlW&&I=->tkX zvuINQE^pditP^>em&wogp(OA${RO_6_i}Nxr~%+eht}~^A}~ZU`u#6->o8y8OCSI@ zvUHclw0hc3fu41BJ?!?%><$GIRgA3Q4rqo|tY&xlB_m6NH!A^GiR2D=rEkDo1G`Q- z46yJ2EmS-~__|r;^oH-v;G5tt`2J82e5Xl&557MX+3p7oMG0`|RsJizgZ=VFgIq~$ zN3MD%gm>lI)z|ezco7vIs5mSL&(A*_;RWcYA^iCaoJRQ78sYn9_JZ(pH1K;2g&H40 z_*o9ZH-PZ#x)8piW>%8_sHxumPsMk^0`OhhqwrleYMcr8i~l_4_nIi#ES|}hw(%?!ImoFP>^k!_N#2T;eFLBi zwt#rW9Ba}sHeMLsmNH;ihJBA5qb17MYY=%6y#@J7a}J}_Gd-pkBs{zj`$f!wnk*< zw>SEo#@R&AHckG9`O)FbkAwfv{5S)bb3FAkaXCM^y5|J>*K#?6x2H{z zoJ&rdAWPE!o(b}J_Xz@yskuM|uO1WSwDkd5le1gtZEg5h&y&cXdz&XSyUi06wto-* zFMWp}x=a(Cu4P2=L!XuZ|A!_@VjP4)k`pOpUof5ys($)pw{%n zW;em33a28zyme=q4$fS-t;X5k3jTi@Z}fMs6Q7BL;uz0fIH)P$j^d!if8p=rpT3|8 zNf+XOcK%6Y{cY?8l52wk_owd#k|+-=wW>Fi?+xFd=-U52q4*~y?>U*|oRqPQ_0*>b zd-P5q_=F?u>C|N4%U=<;NkSEU24PR_l|5Gl%{D<$DwL<6vSGTE7MeFfr#^$Ir=WLH z&mNk0+LCa|1&JkLo!cVyr zv>tEEv6Mt4T%SK^-CL4w0Y|Gv$2D8|_Vw#dF zV%-j7SapMlFNcVzJL}h)(g>vMZreH}~f|X0jY9rMVnN_b`xTvwuGovk#-D#r@UxP`HMhwSoKPWq_2mhZ|j1a zko5JZlk`|mlFou4L!gF1$od6p?~i)X?g>>|P;q=kaJ>-t|2i9i?~T4E@xM#{bJRR3 zhrpeQg*m(M$KhfS;VYGuARU{T+p~m=!QoMJF{Ju2J2;aBAC=X!S7;(ncEn5xm6a_- z-u}mke7h*D+J)3Q3ac}4F=gi{BHxaPT5~b|I23~R-Yw`oRin4FdJo&8BoD(Lm9ZDx z)*PO{q`}C#4FSg;tNA3npM$u~>Z1UHE+=Fctjd=`@3%ACc7A4l=4e%b0u}G`2|cGa zRh~jD@x_z%6v=g|`BC2c{7A_6-;nvC<^)qjxEPR4)7?% zbtpgNOcua$`efPeOqRU~{^$7~lchuu4Y;E%PJsBfbuww_50)Kzb|%J4Q8bw?clVqv zf9w2M9{RiI2P)kJ7u5P{u+`y$PQ(Wy=5%I9?<%gJUfy$pXf6mYw4y{*2mb&U^jRjz z*O?E9MwuXvLierypLv3;)%)8LCdX~7!L*fvY1_>(p|nn)AT3%x`v2zqaP$RrubnnO zT2!k)$xBTXf<{=T z>6{_dDtopl*1pQLQsPCUz`_nX8eYe3c>VICO|sEb4Ask`%@GSPVWwob9tLJjA33t}%u=Bu(p!S$pmizN-45(B;H_87Q)4 z)SKnAGFJy-u5#(Wv$VhlZev9_q^#NwDKD5eq0=la<+8LS`6IQy% z*DUxiAn%`^$!<4?$`$`5+v=lYnbZYg#===y*08c{@5zR(VP#1gQ^?M`=gOj0vMf%R zROk`xHf?gH(!@|G#&bn*jjSxSJy#a3fWv-lMM(w?E)ia$LKfA&f@sRDxZ1yTUs$;J z0>L=qdQIPojTx@8pjLinG(Rgkad>ob4o{_5FE1Urbe~b@n93@95>Za#fA^nHy7+RZ znCsO4foU1b&lE+kNEPyj;#t;@!u)|oW7+e(G_t-XHj385p+?qq>;7YnE4z8q?`i6Z zHyYpVJ7(5O!$0Gw*nrBuU|We8v^BN;QjntQmAH|1MAH2;4l3h)Oho@=H2sOU$-HTA zkd;Q=)T#3GV#<3e@0%oE0AB7irl3fjR@NDbWochH^jg9_@4*@l$2g;$%}MG+KY;}e zCBc}Xd|1+nFbhwfiZ|l~94iuuwELe8-}itKZS4)dd(H;m-)Z;?RDo|#z$WJBS>X%3 z0C5la3Ty$fGZvqOuXs@;fqO>C?mh!#=YzuuASNLzhn*)9HS%is)^KDmAo&CWhy4n7 z^LyZKi7%R$wIZ0YJa6RE29TLS%gc-w50Bm{Xk2`?QTLdJ@D1|W88Em;Ae@((z~DT= zVE*U%@l{>+D_$B|S11V28JgXqQTI(j-K2f8UwMCZVq6b zp-vHaJSOjxz|`<8Rt}vy`b^nm`=Ta%{`=)Z6996(Y$u9=6f4!j%Ld`o!|5Nm39brq z?55Ayn0r;RrA+r4h%kXW!NwZ#vqad?HxrvD^&JONl*bqNC)=Of1t*_B)7*_WceM79 ztQCzCHJ~fFpEJI9jU*Ixj^W2lmCbM0Y?fL7A-KoP7tF-EG+ib$vpx;iV?{?!%PpAd z0=D6OXPO}FK_mM~zcL}z)#DiGHRg#m5% zn=$9E4i(?lMsRzpu~o)(;v=;UT@xv{i{dx^_=v&7}hQf9bsNfMS%Sc62x;V;cO zd56IEPae^3d%W&pmMR`d-Ln1S?a!3$8%LdN)E|=ihw>Btb}x13VB{k%gP&6Ok@r4R zwmz7^ebNC@!ABgaRq)3WpHa3?rgPO5=GMp|+!_47=Wo_iIqms!Za&(UQZ+!#nzMGY zG@b_92*n7qrsIc}tN5V;>WR|TVG7hQYfv+@6EQ+H94Ae-|IbVDxH?9G{+{W5@r!4F zpL)P~5BV6Z$;Xr-a+N0BAWgVJpgpyh;Q126{r>?*k*2wohpw>e(jQi!=$48UEwx!_zviB|E zQB_yl6EeU6fiqD=RMe=WMU9XWs-Zy*A(NmG2!tdc1Z-<*KJA4|CPXn1O#&GXQEau^ zdMSR=N-ZiXDk{YUkOV<4YAqAMYo9Z>To}BxeV*^n^JLCB`|Pv# z+H0@1_PXqg({L}@j^uoNeafl_F(sRu@h{oOoY;&Xt527-;2!J$MkiUzGDl;@>JlQM zc62iCK9##m@cnNz6jOi0DjP?8D)9!%OEj=k<8eP0Dk`_5ozjFWTvUmDLit7mEmN(` z?y*p4BQlP4hH?foB_Y#jP-bLKm-_wK_j!nLpz1{;q?>ufcY4)}4%|9?iPqfmy4<63 z=w)*s?2J{>hRtE?X2fwTlek9abNG9HvZ-4s*Q!_j{R?=~d*I;HxPY6?))$B7g;KDK zg^QbP;q6Jm-8M>yaP`mLvPQb_OO$o@CHzsqA_ z*6VHl*j#g&fR?&lb?+lf$2KwFJ(90rBZL#`#yDlf;Ta)V z{)n{<PbW1 z+sFy9Pe4-RJZ@ugU(h;>V5}OZi^Uk=G8Qa67u+}9W<9c8C=s0Zi>7xuw-uG5!r@v* zVLU<=czG!sljWIGU4NszR(JjOUD??JX*lflHZpS6eq$m&9W)X9TkL|=!+pj?nVE~7 zNW=|o)t%)5xwF)3-+ni+ce;l*T$ZOlvTzfRAx*MYa0(K|l&)LmS&fcCv$zwAWF@z- z?E)S?C1W&1G^T9Jy8-kDKV)yDsk@%BT89Bfc96FkX^*KIpb2OuYLEpUxK0OEiCNph zf(}===VU?0k}tXgkQ+z-Ps0JfP6u}+;hRBA{aj~Ki;A&Dd#T5b{X4p~S<+UETET8YV~^JZRGt$TQ=mhz zK9~pIwFT-FwD-YrNWcaT%{?GaNiGw3FDT7Qr(Ob}uOdc+XjOu$q_E;iJVdOq|8y<#X z;pb0q)rgpw8ifd)_5oty9wWbtlf|ZhMK`>$$NFPoO-8Pzm4ngv+Qq~1Yn>4UM2rbT zL=7r>FzbX7K_ZAi1d72D-=G}c=&})Uq$5N)J3_?IVZ#RzQG*9`WJm~*zhnRov54jz z8Gl2G;KHCA%}pJ*|qjmWz8iQuC;kdzouZo8z3_%9?Bk!5DyeKU5N)zmBf1| zi@XBYfg`{b?(?-goBAq-P?$+zE@3czI|YwZU=dA!-M9v>C-Pa;nyVm-UIXGoum^ef z0pg8l4tWWs?GdmkJmVn@xGrYA`Vg_L2O+4MYzFEWS;XdwQ9$MU>n_ zP~kp{CYU9rM;eQ{IJ;yFe$+E5k)(ND=RErPu_N%wf#rebEKRKzXZjas1c|e;M;^{Z zA+JseBhi6q_=A&Am_(DJNfc8wB1kmJCegokM56AFNc2M%Ve{(W@KBORL_9i_h!8<# zR8w4sc(hxL4Idn*8-8tA!wXRMgVS}xiCXlDpJOJjcTh|jLtd6q<~%(i2=pW8_1%_* zcS~>4oX?K(U)DULaWPW^fklC+H)lhdUDkXWWXg0b$@@DdE8^CZSESY*=F~nnD(3q0 z{y1qHyR6vf66>>=&1Ig~i4o`&P$t%O)5=5%1+7{cXDL#Af+BU>XHcXjr$Lco!b6n3 zYLw1%a4z1JP%5dP+F$VrUwsc-AF8wX6%!t!pi+ITue^9yLPAk#_E&tuS39t=hEkW| zD<(Wd+EIUU2s{U$#Jdt=S#`6&;uF5QgR0(>{E7(=5%KCb)>pousu#3Jii8QU_txW= z1be@uA5Qj>1i$E9o7mwfo9R!H4O)0RqY=1vIOy=u z%^szJtGZm8?Q2s1x-_E6e+#(iDr$b5{!rLLq*cHhNDjgKGs4?13|`V<=kS_KNJW03 zrKL+qTeXY%8yZ_e^ow@bwA*<*q$6(Ba8_L|9f5XS!gho@;q+iTY$H#%XSQz7&`^7f z>N|iToYT8QjlkfjJE86YV!yEm&AVXJXfd%L^zmhK&=+oDFI|g7|6=}{VxsvMUnln^ zlFr{yV>3V^TBBHWu{O_kpgy_s*XwTSeAzGMRnPC&}zQYR)$Bv zZ~h$`t=mh*2>o~E#i9PYicKBwuoWP!^q9A^!T#I$t5FcC{-9?p)u#&z6DI!a7Z!}d z#ORq{KrIVn;7a`-6c+gx0q^Y>h2Sk9yblD9z_&?VB^=VFOQ@x2cstiv0K28FbOF1F zlJjiXMU(*cKSPrW6C<0C+T0=dt!kMJe*rBtE(tbgCYbY``8c=pusZu9P*RV&+!pH) zw-sP%9^%I1*mm$ZwgN0^#{OCM`+CqB-uLxqCYwEinRvugOUalYV;`PTDKK5ts(r9V zklG_KCz<7Nck6z2+1LYqHLNOs?izDEHa}l$j>q;?>#$!@-WKorIF*U7>aqvsVfz+! zsoW33eUrLKN;?c#u)*!z6stHK_%3DbLb+1h>r&hvY)XaV_Qk1>-?EE4p#CBEEKaGn zaBp6TZSv}{^LU1w4u{QE?bG2}u}cfKal@hXtyNoatWk!ukVnHcmaGM8^3<^_N&frg zATV#eTymU+C9iXA*JqA3=Bd4*OqfG}-K|`CD6!;lM5eXOlaS=~34=irIHB)w2PA>h@CIYY*3e6f9{TyS zlTCf-pPj>{=^;Bs-TNl+-4h!zl_keY32FGmri5g<*OZXNqCi(TnlD8k%?G*)5`v}z zAqUV^h!Ec2YnOIFy)E~e5MIT-nI29EqX*)IK<-AG<49_DGcm5d=jqkFe-tA6a6 ztd3lc&O^r+3R#4D{;y0w9(g<;$|Q7APW>oIJom|4&_xE0tguMOep|V4q{G*_KYL``l7B8v4g8%}D1)|25Z*#-OYdYnj@wvuwGI;|Q*3r{4x z9R`139`@|Q*0}y?`qf;lMnh z*9`0M#FmoRA^h^xbZ{2@LpUukI!9~CKFRUjPIDYCIUqR(A_q!<(@*8Hww!_H*=C-z z>bre?mz!4)H#7U=WXXxZ{zM#qINDj#g0CzZ*p#PkN~e2xAijQaFbK0G4L|B>l+%2c znK|6N$pRP=XO{(Y?S82b-O9rQQJ_uGpk@?!AqvD?Crv-92-hO1w!|WPohx2)X_E9R zomtB^6j&RPbq~GK-WHwba8%Y65m_H)*3qELaiq&1?_DW$IZ)H(K$|X)P-b&KLsl4) zlsMfNvJyLT6y~eR=YkXf2`Ljrnajeq3IOK^-{AGIdPlCUYOh>d)NZ-9 zsjYHVssYz9O4NFQ&|?bar`f~tXbB5kabV@((BOpQBu^c|4ulZm&U8fiyg?8Llm$g130e!)fh3Mh zZR$Q&kE-vKt5VD4dO%gn)unF6H5`e8zd;s1W4oBcLI~aC)?{x%a5W2@jCn;>o?yIod4l zy_q>KV~#K^=GX&+Ru6D`=X|$W+#2MgO)@Y5ac{%M%Fic4`$NQ9Jd5-#NJnaZeo0D1 z`eRJDR0Mo9F5=}K^71fLgv#GDrKN2MJf=m zH4$}Oq5)%j!^VZ^lWOM!DS`PM7XtIKfdg3@7{I`w0`oC294J(OIt$%~(!&OZ=t72} z5b845zs75u`o3I`s%zxxQj>5ErxeX^>t=&8gS&TP|I;xT*TSD`AsoY>52JnI&-);6 z!k(|sQ=?i%J?2@5%P{aA?+ng}V>cT!IP(i!k}+7H&beq&qvK8h+L)27Uvs7w zat%lMNKDh0k#JHhYRtfdDqgbmWsJUzYM?VU(3u+AObuFloy*K5(~AzVv~gSZATz&vpsJR~&?pVyC6qk{1K&({UdpoqS22TxeX7G9r${@n1- zV1JhSzOKG>f$~FrsmZ|VOQF1_;w-PtObhQJ$YX313|rt+6Z>*kWjMQC?@~ureZh@) zi|TNeBc#ct@rM*v;X&(g`gLOy2VO!6eHcT;`$SLSP1Bjkf{@6IB<3)Yz6B)mB8kJ8I8rC_B8g`*QM@KY z#Cal#u9?3Swc!&Jb;Xqf1!ZU@uF zOr)y{74af~4$#c^UFjKLM_>mzARPYvse(_z65T>5l9v#cuG5LUgs?&nEtMGeitY}dHQ@`829!O1GVT!p!G49 ziE9o*5ANGo8m_-&SK;~qdk5FwX(D+E@q?eV;V1X-Z}3~d*g`Rb3O_tbYGlA6Cj*pOCVA?|r*X!R&3sxgAIb?r&zO^79d4WK3CxEb!oY_2C^w*k zZiANy`Y=UDF%TcY;Uh@J)TH_FkFWwSVUvb<5A!a=&Xbd6f0#3dcSreloHg!(n*~2O z83z7=Abv`KcjSG>#t#eY53|;0%7q~*SGSWiL zf)Q*i0^kj#2#L2(mR$+6th1GcaD)~FT9zvWlQR;K1tmB7I})A+-`4Qhot>t)2+mCq z0zKV~=WNXc4-{w;rr=SRA6{yx#qG*JLzn+cyL`3>B^K!NzXK?(8TuQgGtsn-Y#_t- z!2_Q|JRwzwH%RC=E&Ol>9}dl^;MqJTR>H*^Xnpr?2`S3l3<E+KJrF0I-xsqr z=RZFRUa<6+Z+=%s$MCud2JlbIkyF&n+3wW0ic$lZzz5g(4-Om+)YSWOaD)y{{v9HR z2MJY=Pu-eYkExtDBNkVVw>UY+-3P}DVKd<&-B&%mQbw5tmmyV7Gs3w=Gj=uO1S5Ap z{Cg94R?}P@5Mbi?+@VeLdYNSzHJ|v*=HKHe#VySbBad}@63+pf-V+mfdD>A=P%HOd zZ2Jq2H2?^zs*VOYd;#-^aGR&@MZC=PaW)L+dnfp=L=9-r z(D<@GIC%|CZ8Sf}0r5Ni#r@4=IM?ftxlKLGFU_6maVcRcO0YifU)o@1xOo8PH0-C| zpYxHt39$5V;#7Y#!$p-$oqjn^SH$M0MfG)K`ulNQMr{r%<6Ejg#h z`KKgo8I8*r*OpPI$6-;$O#c}74Bq>@$+22;F1YR=(f4M%HRxe|;e3LpGoU}Jw;EYn z&|NND^)a)PF-_`FRrxrFuSZpRo};vHULl&43^<^Z?WtNQFBam35h%;R8DR>GxcTaj zwiYE+iu!M9na;TPivAlMsV~uk;!Uvp0aNG0a9d^_Y@)Wfi6@IcS3f!jGL6# z%HM?i`ZZ)TKJ01ULiR&mkrVD)*5L_K0z)-6^G9B1O#)^r)zz&80D3l75&3OGf^p5O zC7g7Jqh;L#>uOr?ev9{MhjGo;JWRDffd$)V8K>|j_jM37&kEbd)O}1jpi0l^<&f`5 zH#Pe}ayb4M4PB2rT(;w)@{p%$bMmZ4?^BMr)cU$QRx%4GUDSG?oQO4Fb%?PnCinno zF#(^*xnoIySGV99wji);Y3`G$pTM*1e_G*tP)_wmh)NAI=79TaUPrRM9t1eK^Irr9 zOKos3VgR7yJhSOM!Tv7Y5mRwK_0YY>ty54CBm%bO2khSUb=>*io#V1LPHo`>5LJ&4 zy@%DDlcdk8PsK;!eO5|ihCDa8+e-cI2DvBzd2}V!8hg`W*t*; z8ucGZ)c*UK)Bi{20gyv*9w+XwiM44bon#Dt6K^O}(5Y_26v8jVNRP#KSZ}n^82n1z zUH`yWSm2$6c8&84#P4+;urn1y{0{Q)a81&-`f)E|!mCW_9CQ_W#FQSXs&{8wee+C1 zI=F_tr(YS%3eZF5wEpS$6Xwz+Q@HKm;-lOsYgqj>3_v)q=fQVm_<<3K=QY?yoO|{! z3nmJ`i=?>>61h9Yz$X8Er=G2uFK3axio+w&iJ2~A$Y`zO7<|OxR-?5(a6K^44gYdJ z9tH%Nd}x^a(N%cTI-(`CkSpF!ThI@8qE9ZcHgCWN5VH-0KUvqGFcJ07k@`zd zH7~`sST!xg_)azbe1~J2plTXLFUO;*mNYXC2lhZ5_gKS&0XA`LO(-(Uc@!h6#h`}s zV{p@hH%)3VNSY1n2}Zz>V)|NmcuzLMoETmdQ+RW@vYb@^H&Xpfx48|m6}9kh9Hfov zSD2WcU{1?0E80*nivc}4jJxY=y~lvZ0RVNPm3aj+FJ)?JcXLrP&R<`YfnC+A{VW5U zY{KW9kz`(#gn*4dw-x^H^kU_6rMDT?PXNA&5Z!y;0$urVlnst5Qrqxg797A>n!5)Z zzxIQOuQ{C!`PkgpoFfwq51Eb4mzy8!^&~sg)^`YW=^%{!2+F_>UyCAuEF3f0fSp>jN}x1e%(=1Ms`*tFhBj0P-u4S31DVZH4ynaz4fp z2y7J0$)wy57pa?ybn0fLLQX9{sC$s7FjZCr9GLKp$X7)hy0U#g0-vR40F4d%b?3S9 z5nzl*?+IZ5<*1qnzm+tWt;ePD6c=7L6Pz?Ou1xywBy{UdRxw+dS$E|I-sZL*ypq>T z{k|4VTODdH1o@d|2^~@3@7@&nYZgL!Sc=um8EfLGhD0fhLf=?k<@UN^a8hqgA}XML z2__2FAFwQiuLoj;`AhL(jVIu!P~Cwye<^O^OKc#6>>~VNu*sL|)(;3nX>T$U>fPvZ zNG-5xq2GCQFGx98MbzL9doxsOfOJLmCP!DR2BHqVl%#9uBm5eyA{X_$3tE6w3~KIT zT&kwI)U;Bk#k~M`gl(`0KxfN$$h zRV|oCk8l{GPi0=n)?#ZN&FYh=5H+a_-#&_y zz4jyU5)=ZL=r;!5n3qx1e1gNukv3~N*jG)t(8;I*WQQ)Nx6b_z#0>QA+v~yT>9_NI zAfx(2>Oa{i_<+v(S3WnXXP9*lLgVR;M$O|C3>8PsB3I>2lt62kXS}QOMm{`-hY`gs zM)f?VRwxsPXu40se{cMM3rO8(GR`LO?K}8a z2%q##dL8G83PAP-r4i0OdKs}aM1fGy>G(%4x=%)dfDfWep=Zsj5Fv+{T!>># zi9a%u0QfEQD#~!e&`WT5SOavb`6-f#!^8dxA~l3V!eil(+tLJK!#-qDux&(@fDJvI zkBtGNaCqS0y?9L=@`}Ngdb&|VjgpccI;{H)4d=Nicpu=@Fm5ypEErERcjFCUL_&eW z+ivDABmhrd!ezl&Y~wE;__JW#i_937hrU#Hu7-~XRfNMg3HT$C&%>NcQYCInE&#pD zpnMDilX)dr3Mh38_AfXZYYF|iZH?ajXd)JA9ncrW z3rro3u!o$YqjKnQOAI`0Eie6__{}$zN zi(2D&i&}m+Vg-f5j0Mc?GREr+G zZ5wXQk-vdBFef-spB_AV!Y&o7a{`tDL3#;mIm(c%jZvr)6FBVPEosnI#s`=jxNpEB z1zvk$&_tE^Btc4omNJ3O$0y9}(3#7q7WZnlt7r&*_lt0$2%8e?TeA2bfh2fxD*nU95gv9gLj3&F1XJ;b_|J`nOP?9J_XWA4G=cN+W^ zr_{VvnkW-8SLwc}ISq0#{d1p-#F9uE=_8!pB-rAG!P3W~45mW%ODYUtUF|Ryj$^@F zq2rtm9{`$iGO98P^Hh#i!8%APNP6j0f*c$S)xZ9ElxxiDA?s`2@=+dP#L7jW*lyJ8 z$Y3@h%T{a#2EEFazT2q&G0WRpdS?1gqxxFjziKub-i>+cy;t@4Jr;=qimsC_;l7_5 z;9J7#{KR)=c%yWNYo$&MC(YecxB4-WP-?!2HGc$>N`J$sejnGGtytUbZ7^TXQ$Mxp zeT~8lo0jFa0KBsR0geZ&-oU)C3VhjCzCSP@Sn`>3oj?rM!Vzso&8;BPWaBK3E>HqT^fZ=mx^BK||;gDQPNI*!wQw3|`)t|vvt${K(jxtj}mD<|W z8|OH&!v%%rbL2noQ9Zh@#)Gc?e|aZ0--Ek+sB!1*)?HZ34|0zds*@zaw*czk7OxQp z^19j_<5Xw7aWs(bb@@&P?G*-mN1=5LPQdJEuhE>Qg))c99%VSZ+x#43cms|=Z_O_% z#1VUk)v-Q0XFqg;_3;ZWT1uWrkSh$TuHKX_j<~02B)tVSU-{pDkDOHlX-2^p89Evc`eQoN`f6|(63CL5o`f?H~&d0{&)(lFGcu{aD zYhbf9RBx@#4H#LQ%yKu3jEckRmsSDaVgZ8JPtjo*KB;UQSyM1e3KmkUiA_l$3*i%J zqG{6VKv*e{Jru(h*PubWf~dLGv@xKQ29&`@6t_ccE1omsG(e zSe5|@(m(dSyEOM0W*3@8XvAGXH96nP_HmHCf2%q&a&B=s!_T>mxW z{B!fF+Q3+%0_Gm}j~eH{F%JUE4OU11YA31t+CcumeDPs0XJ4wdX6}J}RfA+!j+UDl z8Bly-YtEysIWHsKyT9}b=$IQ{6Em;~On4qBAkxX)&av4I_T({)X$Q+_(^Rx@ln23K zLjg?w1*;34{Y;89YVLsI~f`kD`NW>L-7@GwL9uAi->bv4E z*z_XjBYyFbF%v2>m9v8T zJMlHU&&$_81WQnQ6nM-dXwRGG=VfSKB6a-40%S=1VOujc+iPMPPLV{9Cg!#oga5`i ztwsJ~xA``#;Y6=T`D`FcA3%Az9v0f>uWbtTzr@4MGXKBcLe|@QKt<8 z2rrArB^4Zba?pUZGeGNu#y#GtrtE?Uhjx94qJDgW8pCJU0q^iR8;EsRuzVkzI2eU~ zsCBfY`MvRQc)oMk*5+69wXF419cgqV5Q-9m@9vnl%(Y5|=W;g#$F8}a*(Ct*zvCzE2eee)C z+4l2nOmWx_2i)qR#ikd=ci=s%&`t(-Prw#m*25a!u5uPC*G|Zwoo1^F=)pdH%M9P? zQ0dWPW_HZYGDneTsQbn@Uu=#d(%j}KA`N^ubaz=VantS=Qju>q&gEFtXD+=F5{z*< zK*-iz7CR!UB?;aOfreSJl$L z(EK(sV?P^VRX5iyF@~lddj*&Un{4xYUFtzT;O?lp8+VM4-Oj5T@pp@XeZvq+gbre2 zlO=?Spnv!=2^euTjK;*Z?zsVY@v>RqrgqZY3ny2SD02C}n@Nd8^BYo&0t$@l#*4&) z!2?}P2kcGNeV=LI+5z+RS*|C5jf z)+wvwr{2T!Pr|L2PN3cJHQ*9gmM94Pxgd}N%&k$VZ-YoQp_m!f_k-gKwSN<r1SaIZx-q}>KjK`l5JS704xBZr-lcBa1WPASY~Tj`ui8UBp^J)&44hWXs%i6C75aOIhiM$FQ*^E zW+K_n^ifWXAlV7&qY_{{^@98Qy{F=8i;p#*JaH1VxJqdE`Z<1S@iFZYSxq6kbkj64 zHZ>sNpBpC?xS^i=T*EM~3kUR=f1wtOE{H{tzqa^cpyJ-P_PsZ%ZwZr?a` zl{g-emE@?KEgD*rkwbz;VsDK&zH`j&t0kC-vw3GBsn=XWlzVudmPU7mNh8>P=8pVH zMe0I!F{OKyXc8GE_)9{&;m2ysfWHX-E&e#n)BMG4HE$W!`{?-?>r@*XfxfZAaL@Ag z3=;~_Q9l%WWO^8xw0uL(d-%E)VTBRCR-<~6e4n6hW$G@Y=o5JS(vKP9U4fZtE^uMJ z1qi~tiqiLN{9l0o!T29x4E_^Z_aV1K7I_a}>@kdJFtTOh$1c45XxNM~Ip+2)#LZ=*K*Qd?EhR04gqL15{it(3Miv?hNGD zCFnmL>gaSBW+9M21xobSqo{fiWHzfk$S_Q%CxwID8V>RXf?07i{WGH`Kg0BEU zoB9a%{21-z1Y>@@Ec7u#9F5k;rB^riL5Ce&#`t~30Th$78C7qC0(%8+(zldeC_zT? zgU6NiH8+`mrp3D#{=j%_eLkrOz8qJ+ihB#+7ayh*{0z;eH8be)E^gy9dAr7g=b&Eg zgo)!6d(9ot`!LwKMie@I=W*!EaHr?EeTncMZByr9ry5iY>Dj!< z8aqc6x|k0ObHnm|O0TreS7Z%sBMK9kkAdt^dAmdThWZyKa0nbx=w?1Tg+lp$AIjI$ zztGKmdTc9%W&@v8@y3LZ#Q=GS{n^YOaF=mMO2iQI6xUV&NF?<`5@XItjHg-@oK`8a zl0PCZhf_cCwNgLPVs#TfhfYj)lW|vTTV&s+rtrmh58nB+J^rzn`>DK4 zf?uovfwJ=%B5V*a zVr%N|KZ=q!6-B{uw~y^D-ow^?46N=@WAq2#wLf@W&C(wXwm*PGLf9Mx0B1I+Tl)PZ z`O2v2EyJxgl{VSqZZJv?`mvbFkH7+CT{8NW=AgCz>xhL;UtdH|i_|bQ561TuBNn=t z;w(~0Iwg6;!UU#ZvQs~ua{7pcmPO835Xx}+dpGyP+w^#!)8D5#-ai&gRyYptCuYOuI$QjRE_Ioo1};-8 z@SgWO1M{8g7tAbMt_FEG#J}P84FncqFa0NlnK_uh8!~e+u{UJqhyi3zQ4<5mJ`#bG z*E0IU>Vf@Z89wzdG}G|G%&MIAwy}f$*UA>U+}xA;iRlJM_s50`8!_SJqnS1JGce0U zrgMY1`pxtY2un#n&DRe({E5Lle46MCK5F@tZ|*HLQ}KC;Sn1F{dv2hE0kl2dr9KBK z<9;9&(GT@~0%%G7UG9CCn0-=TrCA=Az61TT+iZg0*6x>X=$BkqdLQ&lJo;s{^o#F) z>66fY1ZDx&8XQ7Lra&aVnHn&!cADKd8vr4;0D8A)vypxlis;eY6RU)pyFo44g-Z6! zoCbLt8hLcLp`^g2>UZeaK$#P~c^}1ckejw|$NQ=)9Hl+YUR5I;zE8o8{>B?>Z@(VG_XKcaIvvi}W~)U zgX)(4nm^V22s#6%2tzy#5h+Bb$`}j?WFmCNV1#LU_z@pS07zS$qpBL6>D%V+Cn)hI z2CM%59(CDA^APiP`THm=-wV_gIte8v*Vuq+FzbH6mp3`nKcAn;;wiSr3^sFUvt$g0 z=xr!F4^GnMX7*85bu|5rdHrx7d^`U=)9c0?0PuO)2J|@X#f#r;_`Dn3r118cjk^`y z_&=?i5~v&WYphzvuw0^L@t?@&Wk4L9qesV7H9P&KOOK)=5X`+m1C_y_p=Ck;ui1M8VnCRO`|B4WSRMXu z{)As+UUjZJ{q4CIr+2d>h@9G8i1S%9xU9%`#S18~9C zZFxv>^ES(ql82oP`>Qf+E{w_~MuJc@+ zJ2t`yDjSNlF?JeMse_h2kDPFZFb)z79$@!5x@Y=c84Q_lcQ+J+5+Y(IN%|AK!3ZP; z;IlWb2!8e|nu&&FT}9z<2>hNN$Bpw4Q044dYoZ`=*dwBYNpw4$P_AYOc#4aBOq~_TL@M_^|HKF z8^fRqAuIwuM+AJ|J}!KZN8@V+stUrFA!upLC}sUNHXAc$^ATV@&#Ob3Eg@uS{qUBS zG3e-U71&*uy9W9Vw~#_ysD zaUafUR7*b6{){Vd4qa7SH{W?9ylZ@C1$?UzzWsa#(l#e>JQP)U7Rhn0^g*VSMwWqc{9t^Arlb8M#ByZz`JE%!7kp5bS#RYn#TEyz^5#R0gqR*Z;d52 z_^sSfk6(wcSLHf=Gtas)Y9^vIY_<-9Hg{Tt{T`5R`qlteOx1Jwy=zI{I1B?NfO{8f zG7k$g6sp6RbxN`2L}4%pF~8?;I^i=+*2xd})|xw;e`*0?)Vz%jv#Q)?RXGn;+I0Yv zb~U>GHLO3PKF)GweRrayqC!~wPraiPmZCmbP-~F1!b+Ntq^bpJy^Lj7A$Qdx-f_x) zRmD1&4{n2G&YgB!%!^)7f8HNQScF@pKgg!zGmwvQ$zt&ym!pS{2B0*AxQK`vB;Vuw{n7Vhu~e3CQNQJb9s(KdPra zKHCR%Rjh%r(W`R9W_<6!dbS10NV~7}ysAaXj?yzt96ecII-qi$yoNOmh0>5S_K>OS zC+p&T$^4@90?D3)#(D3=Jk#(=<15for>97LhK(FGw$31q1Y3!?1FMksE+R17)LKkC z2AH^eawRGO_o?~SLu>oupOEmq6~;*L*IZuU@8=sQ?}x|8=HW0 zC`X}9^DZ|RmIG~LbkaPevq_a}#bMx6SX)g(ho)1oS8RYJ2NX{LFyGsc3y- z?w$UEwU+-$*wZQs>kDuv6gj^;_cYuBL_AZ858>>44YH0P+<@lUAb{P?KEPiCEdL0W zgDOSVxbLG+0|72}?YLR zjp`%R*l;8++E%cZm9sIZLRt+IZVHa1nSyHxt|eCUUoGw9zm>2bd=6jxN2eTo0#~B> zE=bTytnJh;=*oq&ad)c}=*}Jk?+$RV%UJR=e+*WFzjakr%HIo&`2W!j{r9>?t zN`R8Ou|XrW^c>>3g`sM4G~JVE8fX_cfVGbo(P~z7xuf(atGfCA$Ltg8KV%6OUpFd= zHHK=j7eAtuiGWN^v@2w!rCo&tJmt_s>_gOgS5|AFa?wZxYF46oPBbsoZW)R)dkQsS z?)<*B=;yg0MWMN}lB$K} zj?(YL@v#H$<#nnXhUtKBooPVS0Wp6mUd;;e1AOKw&xfDVYk3Jy8G`&e2N~t9CR5}I z@A83w4t3iV1N|lDgk)5F3kUA9X;n9(;sSI6t2Lnuvf4f!R{Q7&QtdN;4pxgA(Hr3` zWWlH&%tW=@)UWr(IX>~O>}EFkd;mch8g+MHb=R|wvL8s@#n?KbK1r%iu&VF4)kAdk zm+9&+=&03fWr*(1Bn&&%01bnyOBj0EFw|Ccg@Q-^DJXafr~3f&77S8lIP#@8G)ewy zRBK?VEVZqx<8ooo7yde~4fh;ttXYpM`oK{qDUCH;W(%q0sFnPU-des?KYB#;kM1kh zKTCef7)%*ApF(9hr5q=5L&DWerhJ*1OrH@Wj5=QJt)&H%UzhL_i@LbUtYO`Sbt9XA zm$Np&!0Cq9)X)<7fJb?7>Non~$RA})nlKoxI)y;M_bnTq8|HQtYI`G$_Vs-TSuBa9?*zD@x-;YR4@NZTQ8g3@Pu=y~oyn z%!*a!4q%U2Ui;xXxs!#-g~$~ zVm1oSMEM8HnS(=eruKWDS$mL&2-ga zX>$&AYj<27SFLdV0l?>ru>jk}Wc!7%*8M9v`=@+<2$lCsbsrWA%eDDDxH1{5e zGky!T!a+H+zP)1cx*Gj{q++pN4-uUz7O$fQ>{5`bo(H-)Q20&-hO(he05?QYCJ|q- zwt2egU1dDGoOrA$SXbH?rnrC2BVdq2m|Aok-*br1(o%fEFyr7sF$6e@{l$YVL#u} zG8tN7l)YNtsl6IzuF_atS2r5JE9!ERu?50fSg;N;U03=m*88!xI^m!;U2k_|T+*g% zJx$kjP&+d6MC}NguDASer0JUX=|7@P*QRjO6?SVKW}jnr<7VYSUbBExHygc8lwjx% z?8wmGew}UEud~&+D?q1Wzg~gJI?mFQ^Y$v%Lliy3S8X)0U8j}CqDPCH=DFgISbqCL5hz0ffTib!p3X`@hw?_y8zC*-XR1TW=|HW zmAkb0_z;TXY*0c~iBW_$=4ivRX@7=<=CYs_JD=4eCrnsc&z2$k$oF&$2zfh0w!WPq zd&bMUl8aE77_yJNt`lB?^8xl@J%-e~t)%Daj}SvP71XRvvkQ4w(bSP4yIS>owPQne z4hpj3$x-I)5N*x|;}7VISnSzVv}dQ&Yy~=0&d+Jj!sg3>g@6W#J-c45`Co0%e%zOM zt8Zt|g0jtuwK(PON(Z)d@UH5>qRpj5uULzmRX=Hp^9`*^bCh0${OE?#^8sr+t5)kz zMal#1syQCnH2&@f2WtHN0(X{aJB@H{Q+q)Q+O%B+Q`jdf8P>BYMW_8UTB zXdtNaIrK9IW5&HJHwa}KHD}|YZea>6xkQ9p5T@vf%eB~v%iYY?7K>Nl6KvT7nhh?z z3#6zN7z~vQ$2dxh&Cw~yR+s?{jM5!qj~{k_;95%xqjMYoSR4_YM{QKe@|DU;yoS%= z6%f1F`Temby|{oJP)``h7PPJbMBRAH)__1wQNO32zp%tnI>`d#T7Yq>AqE^V_=Myl^bb_w2R=V31;?+QpFGiBCt3|t}q!m7^v3)Ok*;|n_WFT5q`U)H~n`!Jc8{)Lr= zDg$e+=wC=%Z6~hJR|}r7{R`Bi!~F{@k@b~jpi4Lx&KBpwX>jY1!s%Z4cs{U4=~=TC z`*K+B1sBQKb}vi>(S^Gg5a~9mxh|6tr*K_P&3kk&+qX36!5@?iB4rd<*Nk@GZ=sScDN*v7YXQDPuqt zbT4cUcP{{1?X!XX9j}!u;;~cvd#%Rjaoh{5htt+XMPJ#yFxRdy2KU0Hs8zccHh)R? z!shjM^SX2|yppP$_to7C`F4ddxEG30D+K_CIivcepoifFdKmJDVWVcLj{gtrQpE;lhhYN$BZ<{DM&n8{IB%Zu+_Y}#`x@2F5Fns2}%_@r6H z((^FF+T%^-^D?BFbIVIp%$+R!ToBT&EAXAx-=uujHMdt)dAXx*Ou4TaC1;jfWp1E` zMID)QKbHhCg5uQj_vD+8zlSDc;rKJaCleC&*RYfR&74(tD(Q zdSJpFA%vffklD5)q)C1MMqO>kj*yjq5ih`_TY}Z1MpP86RG`q+-t%o#yG`BEL`TTx zm>eNZ>LG-^I&Zb_5oz@hT|Jx-?OV-Oh8!XN3ByhWC5bS&e6#V|R^+rRW=2&xT0aG6 z%`{atCKajgmxGMhc&^%y@;?1;pS1q*m!$O`yDFdnnJuh`A>i&5dO&Cg)yd{&^nk3! z6Fnena0T+=0bxpG4Y$d2;kj1wH`d$?QO5V``@f1Z)hUYWFgAs|Kz@v843g$Re{mE2 zAk+CQWkh>HSexYq*@L)B&fJjKMb z&AV7rkU!xO*`^osqbSQ4Hl&LDqWvC>3Gj_@t1+aC4A{RyG6Ae=5b6am# z;7j^cLS=IiE?7@{L^h`jT8w2}A7#R2v{q{`Ut z_tjGonTG^emil{jF4_-*Nc|+_7pW&&J^*}mceDbQx?9@t3!A)dA@&Q~tmQ}XI{HIE zru2t21sxtMYjUxr!fR{+a_C|3wU9q#CH*0rjp`?nf%g7Jx<{UO`i`$JZ%)V*I`7y1^Q&*Bmp03_Kik&TGs3Wk~s z;U)`uM4Gfmq(4MuAh#Z?MQvQ8FX0pEQ=~qHDB&x2p?VCtsvu6_4O#2TL5@OoFJ&x! zA)C{E^~SPfH188(W$}fOvQ*mrk-m^#KMzgB5PwKHY~Lt!?8+Bre&`2B5_pf)RnznJ&xEM$%)ioewQ5`lafa+UALAZ+o4 zJQ|O?o$5LyLCxU5DidZbV5!vY#iR-=h(8qt zh0T9lQVRf|qxg|z1A+y{^M8xh09VYqi|;`@iGEQH7REjE-5 zh7s3?GYk$fcgAd7XPcD*vBdXzckmf}O%wbvT&ec`)wV3s;g3 zfTQo)h1-KR&c)}`#)&DupVD=F|B2sO6~70KoY*rO9%0N9|sDuW7!RsV=gSjfBTPU z<8>C||6ZZkcvr8pP0TJr{NDk9s2-GITede?A%3ZQM%8nbfWbCy*Qryinmaab|4|?{ z?|L>^GuWsT{P`X3eu9f_Dtbf7MD1(dgZUF`X9iO4pW4s>{FV=WJ>$fc3#}H1# zfw)?kdyo%!6wU5V{YF15!2>$6BTJY1M@R8~RuUcWrvQzN>f7;tJz@b zcz^p6J{8D1iT4vc#{19oM`72zm-0F~-p{n?ct49!m;X+Nl>Z;^7jrlX{w+)dz~!sQ z`{zxJR5W6a_xE0*<@kxj`!9vK>@41Yy7f-S`?pi_N5}i0rL>KX_mkUZ24Y3g3Px1FhL$NOzl z*T1+DtPza*55X5PMg2pw*3DvYkXX8zjQTSK3%PwhQzHWY^{58}$P$VGJK*1hds@3M z*2@h7{&Hi~905Yx2mDhqMU3fyPb&ldtMFYX0sncw*QV`i6lDkeCm;kt`?t^z_+Nnp z2K)sOqo$J8whQ=QrK|1O=xrbH|FuK|jp|esCPwd#h+MJO{qR;;0smQ666XMDqjwla z1a0&V=3QjKpTZHW>0PaIpX}J^twurG-}d#`yOHt!XW_B$Al~mbwY}RDl?UVfVfHQp z4;{q&BP`x89q%9hKN0c%hiR>e>C4E!W%~XMUJa-+ry(M%P2UgUgSSlIe7@VMUO@;q zD&F5fTD0T+_4+}_`_rs=Kf;TQ_anM!$NNc#?c@FR@U@CF+m82-={Vl6yVqT-4U`Vz z{q%xbHdIu+|ME04Ks^MuD5b%8{}gdQaspL~8X;gH7GTHwOQPca$Ekl_VX*Fqcz?rX zfQs>cVoc)wW9`Z32cL#v2cS9)`QseV@b_3AV9kNf#>B_O>?zH^3x@pRYzR6a5b$4# z$}9)OuW)NQAQ15H*0W;=#QQy%9-{*yJLrJG8akQ3WcwfTp=kso|L-l={)a0T+lh$$ ze;bL~{}77&Um^YnM*ib}0t$ump?&24swu#uxF706k^g=qXxsfjHA~zN86p3JME|eA z3!u46{{y1`wLp~Zf9Rt>(f)^s=zk@0u{5D1pqSnaEB;Rk35)+rdGJ3l{?9p>_(+8E z@#6n8uY&shCFB23{Yt9^sEhG`?SG&fUq%!w{x5@zI|t4OI3V0Pa6V+rHbo-p_&))U zSX{82+Bmnj*4_sl|EKq%5;;+LcF6m1PDk;7OESZ!aPq(i??ZI_U-P!a|KSjeHU6&= zZPd&l83p72_auWhzH0pc2XLLm;C@)$pN42m@&Du4=O0lFal(HL?uScJ>sO2aXZ_r6 zUf1#elXdfAa6cSp^~7s;gf;It?uR1O8jSyMh2KGYAYQ~>`}ltoC=v00l0roMpQMNV z4SFw#nGpZyMaTbn*Dn4)H6s3Bk1Y25f=l%j0M4|FeSU#85#Z@gCIWQfF=qyrJ&6pq$E4Fm5lt!^Q`J~)$6kVUS>h#l5W9Hj zwHQr^gmvOBS(b=ux2dP$9ku2Hbm^zSx(NCynp9R{R}CNVM``%k8iE+619T@C*uM)t z#n5yBp%B|=gXsWR6%v{bFghQ--pO=;XGaSHR{T~FaNOwtwQf2|XeQOw(J4YF$<4gN zNm7X`39L?18f&WYteqsxA2uBz|Hddwo|1V92CHxn$t*mFPX{REbBEIbSij{Yx$5?? z=>Q}7U^_{M>Nna+axNY~Jsmko-X@1gHDS{M9$_M;1F$AN3*dS^v|7Hh@K}GI^+xx| zkSg-4_LE%776fMjQ1=H6_B?{ctAhEg&EM>K1TseJ5)KoNSY`nbP-_;zd-J1^t(Qqy z69FE9@@76m(P2#lxDg355r9RgtL{dH9ZUo`2;e)M2*3#c|EW0u3~Qhpk2?ooLdKWZ zhaQ5q$>G!&`y2o_L}Vv(0R9E}Va)+}1i7N-0NhR48a)Sq{44$uA&TJ@k^YhHbN@a5 zk$o>}|HyCLRIgGbhqNlF@Xc{*iw8A}0SxXjQ}wZ=v>& z#Qz8UBmJ*AzJKHf?H~E{H@1Id(GNkDda3^e?H}n2Dv9!sJV#oz{Ubt{Uv@pje(LBk ztcM^=pi?{dk35bHK`S?6Jw)B$pnrs8Y0y6sz8+$#fYHTzh~w1H^$;8^VPQx3M-ox@ zzhyl{xO=4I`5ADJ{QX}a>irg?=4Wh^^cdYEUChr&h5i=wk8D|_{Uc}HY$w7$^1aIT z{t-PtgZ`1fPon_u$Ukyn4)FMY!as6l+LzY{@)2jGJ^)7fy8R=1eFSG`bmbrEaD9Yk z9lAX}h8qsBWm~f|I`@yfjErB+KT>{%jQd}0eMCI`eKGh)mc@(N8O!>JB@UTakt zgMVZIYW-^dk?SzOK{u~U|Hz}=bo0Ktf8^t3Va+>^f8;XM8uX7GZ+%1)MDN$@ANjYe zkLc1Z(gPx|bGOKto5Vbi`(@BS0mkaYEz;tU4n&4%x5x^hEozB`aaC7tkq1+y+NE~| ztL@w^;$yYj)C2JOose6kZ+2G=pKzl<;L;Gp;1>BH@FCqIIU0;uR!Jm`0Wo#r7FjV& zs`uX+n_FZKD*wuEk&z`)mO9-cCM<1heq^|JKiPLu#C?kC@pGf#0BS| zs`g7GC^)z@f?^_KO-`YrK13(PJBYi=1iGqU>V)kH;Y%Z|DqldZsHG84C5dpnu7xpC2DB|tK%$@ z6{-lnK?pEe56BdIX@mm>nK|W{Q;91#H#~DWv++a3dj<6Qy}6%ZMmdbx17>!)weq3R z-pQ~p;x$kuhqI6vy~N>a znPR}r3wMn}J38LH@H=UEB{sAfTH?@))FgB53xTu^_pRes?_d*LqD_ zH?K?Ec@8RyacRSGns=F9A)9v`+xhd4J`~&8s6Ht;vB1TN1>4lM#j>(qV-Emqrc zls;2e`}yKvwVf|&c<&IZ-KMUDPbYlqLh=j*QE=-*G&*eS!tYttcf57srt78EH|y$S zSkdr(!mv}l05=a{2yR{2Aq>H-3;%*ScAcZ(N(}?zNHK0*_;xEz(#=@3`(?K-Ts<|) zHllzl>z&F~CyvlmRlt?>rDBBXWL^&U{;}W`eT0%3*JnsI5 zxmamP9uGG?t;Gx*F{og4$A(JQN`^a-5Zbvg^=1^`@y>-G0jAD(F8sf>VRUK9K@O=ldzc0&64T6v2$S5DZ1%u2PkS7a;Ue4IbUKV2H|9r~ zFTc|gO&%xCsLq;V@<}?#0*y4aHrVN&p3y_J2zstZ@wXGLobJmt4 z!9|c4ur$LQP}PuxjD)3|eEJ#eIqOoP)45Gx=4UNpHTERPeloKQ#T4E!M3i!*Eseb z=h=o1u!6thYoU+H@3*6mly>xy7At-9U}-`hDM0I2p^xw!{{R=PYu=Cqv<21Gx{*3gdlySs1GWnzT|NFVA!cM`q&}V9Hftw zss=#udtFF~K2n18A&>;=V>!P5rs!k1YDXVmL4LgVkFSe9?qf+JKZ5k3;R?}*mTH~Q z$8>xjqK_-E8xk!3j^)RL+lcVE=Qj*FcWD={+p#XC5(Mti&DsCGR))vsN#DVJ)p>{2mkz={Y#`K zeC3x7EO6K$P86vxjrW(|Y{p|{(5%KK8&Na1l==KtXtmC|c{o1?#{>THLAX(ifsf#U zGUJ`HCGS9Uf~>LI;m;{ocOw_F@Vpu8b(%T0d?viH{?X-;2gX7^N8$J90@|yk!}WTW z81S3;)$vgSN+SNAycKJQFo3x|-+;$1y(&$_Uo0WduuzkP&3=`IpJ2Q@D4EZ@FLrz%xwk#OW0uby$&Y^vzUOrR&*FO&c4P|S`>9{Y zj_)PN8%^Ia%ae}qy$TFOd9p&T(fS4#u(Z=RE)2;NeqGiF`o^Mi2$O$?lnoX)uT0(J z3`aC`2L%apK#+7ts4YT@Fg;R=@H7AXQm6yW?_Y@gK^>#imK@I`6C_7Y1ZJoHs#DBP zkmxLQjM*v`xnjU+d->dv{`Sq{b4>id8J|ZMgi~s-dt$-o-|y}KpY3(F_W0~*yz3gD z^f`VN`fTI(LBacPpwEYI3diSjzl;T+zd){N`s`#(3wg7)Z-<2e6Ja=p_da?faR2Dx z%>{+myGokCDG1c7@3Q(fdA#0HRJVlb{?RV=WSNUHL6)#1B4!Nk%j3`BMamhoB?m{5 zB~D1&k~3QpuoJ+9DKi>#%E^6Z~Z=hZEW@+T(GjNqS?4YR?K{^ALKw+Eb5P!4(hTHob#PXtMq5@h}KyC8vqsGY@BR zuSPcX%reiNxZ+tzfzN9tz1rhMt?J%eKMf44AGWo2oToR>Xf}J{JZAV~-MRhoa|#cJ zh9%y2#Ts7S)t)wdj4Jq+XFdZQrogEIqZW2MUIZ@1k;Id?WO)pS`eGhJMC(0n)Pw-h zeoR0>A>-sg=gFQtIjY%xrsM8=kxY%=eLnZ~HYRU^YQDehG$craa18epE74f;1g9m2gyoi#j$L%99*HdbmH&_*1P?j~L*1Ek^b6}sw{ zdG2BNzn4^!O2mYvOqEiA3)TCwNf}P&GO)|%EVIz7En-c<_yxDH{sxQ$h;Jk zT8+skKgS0`Ys1xh*b);Y*c$@|KKCXxCz(A!gemlvtF8KFUle8gal8p8uz(yHh3XOg zx;wsYK244%MMtVTbt+qHf7BDLCr@~hnCMs&2UpiJ4>=cSQTG@j!Ih1J97r34v|;r) zCu+O;Ak9v5WKLd6<T_us#mY#_^=5dW{nQuZMKU(qrDuRy85Qtc|aw&(w|^!!4c@Yas`A3PD}|53-x zfAG34n18!|*%|Xcs$WMj|J^z@R_5>Z9h=D`ng7smJ3XYK*!-UaDh`eRlo-H{=$@U7 z|3t1e{x@lSdlR}I|2fRd_kN?!x(8V(T{}_uk z(1E1B@bRA?1jqk1cp(3;lWTka$M|21S6naKfe5h2|K-Ti$@p*4To>d2wVjCo#5cF< zmz{}#NAzo31YpLmjQ=|IxFUd@%klr)HmgGfc#vj~|0#BQ)cF73!~b8r|4s7$|NL9| z|5=;TW9I+R7aj6HSm(c*{|Cpy|7&fmdi?P3bZ7f9Q)2 z`5&zFU(NrXSonX9jg?OI{}o`*ko_M%{Hqv7IR5j2{IBIed;X6>|Bq?# z?@a%n(gpKx*DpI`{zvueDCWOgr^d?sy)LwwJd*hj4Yt$U>;J@YNdLFivv#Hb(?w(H z|60$2AEImheK1XSY|M|h! z$^VrouM_3pA~-1jo$>$V&iEhBzwP>Er~I#9NAtfZ-_>kwSKgTNrT0+C0Jxz`@8Df@ zVQY}a!g#d`yQ&-|?G8bv+f08)3#U$sY%4V9V7tsjZz~hl6+cc%;zcCVsOH|z`Is43 zWL{C{-Jf5Sr_OzpWSfA=skVlO)hMadjK3Z*tFJijgn zTAX)Ro_bqI-zq~-C_JTJm(#8cHYHSsS?1(Qxu0Um#ms4c@wUz|-!0zgba4Ilmu%0Z zFAWRY!*!@=Prnl=Lyr*G{y7eAS47}8)IV38KpCqd%80c+PgLs9Vj{W6 zABnw5k>nEUq8m=2jM%y;Bs_2zO@AlUzMa1hYu}e-DKor`<8*r@jymhIudjU{t_o}4 zabQ~!K~5o({KE;95gSQ%*}gfmMP$Vw4^KJ)z&dN(j)!AMP;8BhrpMUZlNk=nmn6nx zzl*&+u@U2!Z_nH>4NFLP3^{=^ViO+Ho&*yU=lun3=GDpOA%E^+^Oj0bKjy2SCGlHg z24ksAi#KvwgVEZ*b3ityC7Yj{GAEiFNPtl7(+6ZSyphuumcMYK`LfzufY}hf!AkUFUN0dFn4P@va(+uwB6jgqC-@^)g~geht|GT_SzW3Ub% z*PIgkoVgs69H>kfch_Tq*fy?0THr+Fo$l(sJcAplo9xu$rs{fMFJtgVWAJWhCMfzB zWEGjNViJ{R4}e>>5qB`Jj!u%9G-gE`)&d7E26SU@wy?Ri^c=t45!``Y;^?+g=p^Gj#=XQWhC1RT>!`=Q`11MqT(dJz{yrJZ_Uem9JGpQRJ!xKT?FXHmYP82*3z^5qli)I zb{4>H=jZ-0rSk`cb$cn&>~0@j9?|Eo_Ln|i5ZULQ^mi?aL4BIvDLKgRyb8bTx4v+G zw>}VlxANf#Whf35;5fBD+XYzmQq)2-BpFCh8B>%6b5VYk#dE&(A;q&omafAp6r-zE;(Zlp_ zf*w|}i-aD8G9u*vxG;Kn96Q>5Bl7>3i9!Z1y4#V#*VO+p%m1V3>~LYQ8pIIR`MDQ{ zI{yjYpIGM~12#MF{EXvu{@LF|=dTEMzK}tL{Lc;R{3j6>{yOFV{~FTg3nKem_cvzw z7Mf#4*=sXpq&dghuY>$cI4S>mrTo|9H?qJysJ4BJ1c0I|4i~8ncmM=Y^>#o+FDB~vNKH?mG2@{+Ew)C_ zIqd8L7fyFJt zcWbZ{Z+@IJ#z+6s)>c$hP?Q8P8w3%MDlat(>OfGVP>h(m z|L-|>W_I?GWH$kYw)uRrbKm#e^SbArx%bX!Hx74nF~t{Sisxgdu2W+R1p@~bm zuoHH49)5}eIQDu@dL5+NetU*De{it!Y&n0B54W`4KB%#VcJY{7Qsw-d;Prz!F-IQb z#-?s4*Dkv6$il#e@VnTmEQ3|KUdg0;>^CZ><54qX=wIBETN4aS6)hPx@m_x z;k)BtF4_ij1x)Pop}YCxeokNVt zm{(uozWR3mXyf<%{(J%T+{yR+y6FG*NqXO5_tpOteanUI5HbCeem3{@a-;l$2k`Et z`)2?b`)z@S0-N^9zJd(AE9kw~4#*Ap(Vz5toIb>XwMf_oedwq7=tUcAbb3jN)9V0K z4b!X8K(8y9UUe8A(M#Yh>V2i;eHI0TR@?+0;F&!=t5|7$y=!94=58a26?Pw4fF0T$4Ws zzE_y$nAXxw`8q=MI=N$dEy3`JUIK41e82i0ef0Jz;#YRM&@fplXCZ%w>9wG`Tf;5w+u_*VAY&#{AVBGB!v=bYnxes`2sQ zl}xY5kK-gpuc8?9*G&dvgD}L(a3qY4nU#B+x|qC1g3XMU#xz|M;?}`5hqLAXg)9wT z|2T_qbna_^femj>m*Q3OJNJAZ^p|B8mEdKv-(C;=+m|YvBr7QiBx9HnrZnb||j3S&FPODSNk+4IjXy*Go}p(`3BS*p2@!QubOT zuI5F^M7q%C^_e$dFomu7A%FKIs)HhG-j6A-nevpVyz?k;6Xk7-%1c>lhOM<`U_Je+ zz8`upK5_&;?3?^$HhQ%l@YB#U)uA`jC^sq3B2gV>E2T6mbx6S|o4sqZFv?BQqipSL zlniYLqwEOU4IAXK1BzZ&aNxVRqTU!pZFV0s!duDoB>A?EQ zYkb3uu6OS+EWbXMhYj*^E55OV8t1J=b7pUgxpJfY4nB=sjVAuJht6DHfn*#wgCYi+j=oJ?1+gP8}V1f_(YWkn@Y=hY!MdQ?l0 zY8cgRZt^}Ha-WAaEmR(pNK{l^3M55u9JO*AN6MZ&|F_gy`1ItIIY){SI zLdR`wxreZT^i(=cZkwkPX8ez^nmtr;vfSDt0Vdo=Uk_+a6_@0084_?`s4uMEknLcb z0OjFiAgy|ACh)KQa7z*#Diw6t{#~3&-wrGYN5{q@xpcNLLhXurY>|Y;F_M>@%G&;n zNQVm=!!golw@DA$rRtqhRX&zNDCZT%m90?G5GpOejKNuiP`|wuwkNFR2I#9>KMU7XUnQxBqi$ zZZqX#?Oj0~S+a_h^GM@2`Rr|qVuopdXSu0@cVW@XHWbNsQLn9y`Q>y}_8x+HrW;AT z4yKN0PKVn_U?>%fueTb4LC+k?ByV${Ppjdu#vCqreWRn?tjs}IzNxmBOW?P-mAiF@ zm&_m8nC~>V^zqKYzM`rn0%HX(0-k(37}|AbVlUMMNe2FGRUqL;$zEZ@OH+{00>=gp zT&GWtB(*#h9nB84P>GHv7_9Zym#u0&t!s}-&D?^ja}{XdY|2@{0le6W3OoL40ADjDxZtk z1)e!4o7|VcMQ|P1G z6-l}41c7{3O%6#->3;@!2UIq^7B6hiJ!BC0A+ZJiQV9GS_eBu`KRH_BcR=EI$ltQS z?+gh%F_>dE<0?YlA=`rS&OO~I@-mpt-o{do?QyFGqq1;-l18b2Qq77>>gT9Zf19Yp zQqQs{)s%@OP3qytC!Vph)RVUsqH%WyXv$yofNvF4fV8(M3swqC9JY+j-t29#&?hid zVG35*ls<4@fqCUO!KXPj?T)SZ= zWy~pgs@}*GdZP{uAl0a50;^Wi9a7EjkPbFcQePqHtTNb@#v-8e;i6i)tH1)iawoll zf@haO`u0kK4|@{;-j@gy%eyb6+pWXZ&9p{`%M1!Z%lyy3Fk@D39txj)u`lIB2*9UWv6n)q8Gf}N z%q=mfna8oQHJA%5a&6jSiK5t1VJPB35fm_}nKD()l=Mu^5RrwNVTEISNib>;a zRA!-C_f3jlK-q#7b(3Ne$5oS}9lR~xx57V-FbOCPSJq4lj?haguew9wrOS~^CPki* zbyf}GCdI6iG?RjA`}2j<^m?PybUccL%lc$o=Yn;ttq4@;fk`2_865inL(V3J3b~0O z=ZzFblj4TnAz6P@86{$xtglz@{8Be5$~kC|^;jkaEqoF%DGc%+W>4q>A7xJnf!FPc zFoBQHo*)zvch&IvkLKnGdDl&f(O(%wKDJ3gXePNaEF?6Of;#F_>Mx09Qc%sfOp2!t zX;Kfa)=Y}Pvd&G4i|{=LFfW@FEdx+ZGb!Ff#B=vV8jr!Gp!>35Qb54jq$p>Tq7o*B znv$pLjXa?@mN4v^NkJnCHz^)|t_zbwIm2L5d~*rGCrpaZ5!OtKs1*#YUxZ1q{9wqW zcnV=QDI(S}c_SP1#5%@kQn1odO^R{<)RayPlj0uLq^Jp*6pzu?JbsNYOp0d*P@L2Z zOp5yq1F~UGFf3{K9ObT7i%vXiA=u!YqCPki5Gi)}5n-rVKPGOUR)eH_fps0V0 zQO*1fMbMYgq)^pNNzc>_5!tYEVUt2#xmX)A&tm&6dmMqI# z4f+M)_?Ik3{WAQE#PrLDw9qo>mwS!+<;vucet8(-uJy}-3juiN`X#4tm-?kIiX0XF zLPYLh$@1_;$coZ0zx|d^(XwX*`UQ8;!cP*?FU$7o`o*{J=;#;YdIj&Du#ClPpsOR@ zA*8BJ6&JDp^L+IsQv!<>ffqPG-LY0Gd19qTH1!4nS*JWF>ci~;bIj=ceC==AO6B@bA(MATNMrsqf*vas z7q3*PXR%VDfyG#<%tUh}*uwc4(U@ZztyElQrFnm7rLq-a&z%u|i2S_9eBp;6=jWe< zLM@>AR&#!SnxYAHcbuPpyog0yU#TqOxVlnV4VKncDlZ@m46vI)U#Za8h4WM0PFJ3V z1X`)&2ou6fcnV*s^rhtwJ3pzm?)-EL=3@WoKKKH{MSOCex>5lZdazONGAYz()uUD3RtjhPB%AYyd#WIE7ZN#%oVf(=b4NsfoisdgF znk{l+dh!~)>qu?*z>-Yv5?^8JSh-1g^fU(Hj$lP91PHs*aR244ot&=%pN`I+bsgIF zo$b5J0vxk<8Y1klQiSGcir6$tQzU~Tl;d-Nsx}Rp9sc>?_lSjIy#$aN^bC9XC4B@-0HVnEB!Grr0uSLht`;HMw)2LfBYYb}1u{b(I- zWj8)MSFyBMDM$xaCoIG53JdHjmzdpYNL7A@8i=Aivai<%;_i3SOB);7lDvx9-B)_0p573*dcQcQrPqo~z=&CAIX%Z++K^md>{QOW2>1O? z1yDBh2rD2r_`~JY)m^{DbS9mXXOb0NSC40_+zatzY@2NxVUdXoqXde40++@SEY=C48=)3(-n%tV=3=B7c&I-6L5y$6JR0zvbeU11!e(#ZYeB!N zia0@}>RMu03@y>tv6lGiJa7&7NQ#1CP;~|MeAlm_Dwk+OISIIRgzGXZ-VG=8@zdVyG_X znGqFT^3Udvjz|8v6Hu!%9zGX^^iR`?o$=3(J;xpY%sTr>@=sjzmgV*?`R6ygWAo23 zVV{l%a2?t!Po5CNURnL&F=(&M>7Sszq7!#sUF5u@XVp?x2lGxUJTe{Hr+@q)isI}) z882>{d=0A+oc4nk$TvZe3+Z#;HqWd4*2`D1$9+nfw<%Z(H)ie|%2jXoHqj=SR4lq} zWLTeyZKkgm@itvr0`ix$9pWS0*2doEMzgtPCelkYQI0QA`E{t6_&~0;(QHD=mN6)H z9ljQL+3TU!1|zDsW;QqWHnn7H4M_{$1UjfsF2#*W3tmPVilNQi`bPWb=E3HdlaM51 zx8^p#eV4OHnfJ-QVD372vIa}e<=9YelI#s~q2g2?er#W`VYemuz1-mR#YI8)E4%#m zl}_c^QeG?P9>P9%yiwmEzW0Xw=Ue^ur<}^Y$Ojbm4SXpb7O|5Wu)iP2bte^WrElTj z=q`C~Z_jpkzfGPUDDVc8WxI>#xC z_w2))F83JEoX<=Z8K?>iQLFkVy{f#ik@r}dmCQ}BDQniy&|X-BJ*j>RoynvvVxXWq zRH3jP`MGaQE=#U2Ri^0ayrO3Q7=iQRo|l;s+ak6{t-*j#E-u0E2|B^fMQoTA z(R@MvG)<6Epw~7!%shUDs$o**w^~ib&wMAC&B0%j=ybit8i6 z8T$wKb253DGvMwVgN%kxEXm*a=3u4C-_H$JwEOKFz$6Eq%HkhBr+cUu=NwZfolRQ#Z%223S2h8+^(L$@=E;;Fl zy|0JKcpf=G4YLcRuM@;MO+`QBJxT2_12&wlEPHPdch8&6gMUSiD))(jP6kHIs zzW5;~>KN;bapS_MZucdupc=e(lhNKfPPUR%&>mbtn zuhJ3%CK|26QgBS(Mq3E*%%rUX2c*05U?RNj$N}GIA7;d{Msb1?=Xr{iUk4A66!HFF zf8jFqTdJ6%>Gko*Mu!vajvkENwpgd6;nte8(GyX;fZlSB0Z&cojsG!N_@voa(s~X7 zG~#HWogO$B?yxzL!dE9M<%hnd_1eieNRRcK@>3C2-_X_8)MFgtW*t1%B0>wJ0vj6b zeOo34GY~AW-j-gr)T}NLSApe-f)?6&i(BMjlqrAJ(+H!H>v_f}Ueam!Bt3~C4M5XxlF_6Q&HHg z2ZYLb|72{Qr(*MD5e0H{2)Py!)sfqTDvdRKmq}yI21L3>?$2I}M($`mO|YxL?}!L~ z-4McW9eNV@{n>UEzaAuYgkPW`HkXbt9W-$1N*%9QE2KGqPx_|v=p1b8V!Td61bi2h zOX+kbbLq+`yb?1guOA5G(w9Y4Mm!7^h8j-#9G!>B{e9qnP zLF2gl*9zG$^eB^Ta8h88QDMC@8o^?^k-=~GI2F@L_!8_3FJQrD@)xefB3k+1wVwq2 zg;mOQJmp3{{i*K+5FJ1s)b?@hS;-8OD-&k?3=@{G6`mPrrb?NyhT8B1?1T+dz`jg8 zXxygh0Xv4Q1iW}fXMYMxq*!hO0r*M)jdTHzhl=7)y@i(wP+Nh#N=ls`@Q~vH&Dg$y z^MwYs7I2stju|)`Sg(Atnn0)z*juSwz>Yor^k}08KxjwZo2m$e{UH$Qkf(zndeZNT z695MC%0&Yno?=Z(9yarr=-B+(IfTs@4cN?NOjIcuc$URRC-HwIy?!X^^tuee5WQ?U zk@R|%2U?}PfM@IuLhY;c%8R7eOATGp>&bZ$^dfTT$l}YG2s5GkQ;B3m@DMFQHT9sv zUk)3nmT92c6%0tHRJ&(x1l5*=0pdZ7{<>nEciN1Ed-$42!rjb}R4HY6Mi8!Re9oxv z5}zeJ3C?VsmCX?k}{#BX9Njvv41d zuR2rQiZlNqpa9yqhRh;q-qo-|fsh(CmA8>g^Uf8i^9fy4b}^SdQ7x;c&KIfwB=uT- z30j9+$zOdb0?uOPAoiD6*WYorNWhFMiojdCgL9->(wpA4B&qrZG$4>V(PIm5{ON?Ak_#jSfLm6tXhLy?02RCcwSW_Pa@*?4?w5N#r59= zWk$Ncni8DF!RHD2CCbxh@sKO}@Cf(5f;!lic4}EE`^XufzIs2Ri4x^UZ!v|c@n#6k zQbW_F^!j3TM+g`;!CCVyOFFy?*z_OLvNIk1oqhp*oRo~S}Rlh{jbbrE_QwTou zUASF!qcR+kYBY9#z4StTsV`Z@*e!ZHx%I#yZmz)b3i!s~n5>M|vqEz=^MAMaQ*hUh zB6v=4ZI(!#Ux%KFKZ$##dHvL~L_MUc{Mir(5r5v$LOD_`xqF#ER~!NUyvKvq zI$=?r^JrEHC)_tLX@ny=rTh+fd5c~!f6h3S}a|zp_-VJ1dj_+ zjd0ptsTYi3PVxtYGw0ryI%3Ydhjz)FZ@j1hq%r5=H#%j`$?(d*8J`Sb8@!JmX1)}Jd$e=hPM+W8c}6eVavClx2AcnVPp<;Xoyq067wn4$|6 zx=1hRS*2=CG0R7*(EQ~cap}72yX4Y~^nNrhy$?MAxEQlM4PL1b*%4eyS>a-~ahWz! z^%X14@)0WZT3qh0&+fMRtVptiwpc`SUk=!v_A0nBv>}8u(M{6O%u$)!T{U&&%|zZu6(gi7J0;>vxSm zJs4GJ{jPGNs%siuZUc^K+BHgnR*m7OBHOXfWIlr~b& zD&|R=*&~>9Q7;2?&O;=I@_b5fCyF_Lqi3ni*{%6q<4?g|8h>g!(StEZ^C#7j=4t#{ zhZyPF&iHfd`yJ`eU%w;tXT68tH6PMhEBFd*VN51!IIZGPAErHPz@A*#jQ!rZ^_UO~H}DzQcClX^x0P(e!MnEPIb;2I*rqQo z8OxgkC*<(v58Bi~pA4mQ&fy;-$99m*8)jj^tFHok^xGZYfQ|N(zli;*-Uhl7 z78llnAhREkD_Z3_iaen?IS59$!1UnnOv#53y2iA9Ild!>+k9!1q zFYz$uxV zQ}@ue=>2GJ2exmXwdDCH_!{s#ag~09l#R|N1*Gv?(J-p7o^>ta8_^LWug|(17cuve zvRhhkqx7VA#ir^tvo1v2Qx6XFew{2W903=3S+2M+*kUT<0|4qb+_io6yw3vb;g0Ct zP}hBW|NOH5()+ukx22o(PKG3hhM(h zp_pXrEqa+x>dQ>+S5Z?7vliolZffxGuFXNZlhO+^sd}pz>MgW~QN#ixvT~3p24Vpe zk}ZWw;u3EJ9htH_E1Tl@Y$>gWdo7>(w28jDj;}~Kl~eW}Ag5Q=wKgDjc2*|Zw9!BS z#eH}NuT~ByqQpfgv7jpJLJS(MoJD5JP_tBXA%=t74@PCBQMom~0>h~Sd=4trvhwrh&kZ6#`uYrNkJo5~s6_BOkuxd%Ymzwup zjXtJJH#FdSumdy@3nHr#!o?p&7m!5r6${^>1Jrlm)1x@UbVEH#1ISE&ffdYR6BUt9 zE!B(4r-mxSwlx*|M`TUGcXrAyBe3Bo*LP5m&TQmQ>QW4qwuc3aBZ7TSj{TM`WeL9D{AS26j9?$>^w#Q-7X`eB+4`5@noW5Q-Qb9mfYmM zB`e!Zbd#z**xP_%^@oWny&yk$1j%MiDpPu+eN7eg+cNXK3 zyM>PB8TmuwA7W5cI!gR=^7%dBpSK0>Neqnqb57Q=!9OqlHV*zdFEhkH;PnppXOrL` z6j1pG(y#IlQF$0?gCR{S{~S(|s&-&gBk@r1YVZ%~CZ{s;1C@WI>Xpb<8APnV&@F2! zTJ_NPZZs~@xCZTK6UY1-`bgC_(D&Ght?CnqRvy||xWNNfqcODJ_aZ$PlM?~YhnC_A zIoxp@K4dv%GeRHE9D>k#gg%&g1#c8;8GscG(pDp_c_yTP%65cy&!o@a03=Zc%84Sm z^+fc2XcS)|S;=Y=mr(9N9MBOz1E8TOy6~VAa|{B}fB@AhAlVuqEvFbEfcj7&P`7F& zQLpZzlAt@QKUCE;r}F%{I95I?YY;Zwq7NQ4v`Xx?Dxk)28fKo3K8Rcb(U>vQTWF1k zY)u=`;&n)?v~VyMV=9$E%8X&s3#*Ysq#)cAxvP1b)MZRMIzcMQ{{T0Ta#4vyDhYD{ zV+2R7cj6vH!pc@6Q*xWU8b$MvmfQ+B2(|qAFFg4gC_)gmg(v7TX%oQTA3sGoXDU>>?BR5=A*&^+X(@86wsZ0M0+Es8^r>^M_JfZIVtC%S=3BOv``8jN+0 zL+BAA9Zm)OZ!W%2_d*TraW+mOmG^6t2x?l3QK1R~1w?FQ{G`TaZE(e?tdY|E3cB7E z#!((-`y6juFKN+@BBeiFlsY>LQkFIZM?yLdvamR$EBQOyg0h4f z=nN$)QG%?gHUNT}up>li<-{FrFtGCPRa*Vd3eGepNI#?r-?XWm4H#j6{8F0aQ|*(DCK`4OO&!nY5N`cWX*`I z0qB*Q!N8dU_|nfvltZb7+zSHtWl{6cZs3U5r3dS4M`T?NeVGE`#+iP=pNB$!RK3b; z*s-;q9a~LE*Y>%N%ECD%_^n7K)^jdR2Pi?ak~H6j`A0toKOS&p$uKcdR{P#|RaP^A z4(6!Xp-=Gu0mMFx0LnyL{qb>f3}_Ex%G^IQ88#v8ENM9d5cj1qgEHeWoEDY?!Z)Q5 zwVlc;h#IM^O}E7Mr*UCDU0g zjL#aX48UH0;IfWN;6rA>EcLM%QQ}uZ+(j-!s^f-tjEf&`gEbW2oORpcZnyd38(V^PX8Qtrw~h& zd>VEjk+}mH2A(I9c)Z3iTczJNU`>jz#6enyG*$GKN_x@aL@+ywKx?2~1nv_fC-jM_ z6Cl$9MogaS;_VzHRAoKHH83&~G<7nS=9A{9MH_G{7GgAwiUrJXPSa=3p(w?TP+b&N zS87=AaB3Y=)g-L^CWY$JG8jmpd?Qjw&EWor43?IKSx+I`e_z%kcyMzR08Qxu95i8# zhc>8?Q&Stc{3-k z<79AfSyR-~4;(rkgj%Bx5rgYD&AJY`kfy!K zu*AVFGB_G3f(_-o0SK$#0T&-y1-${Qe%I^X+t1TKskb$^-Z+Ur=hr9k5t#mU7Q&>= z*LF5FdIF$}8B8`_yS?+Xi=Z4Zt3bIfM;?p~!9VoY+rnV^N{Z*)D=$kGFv_yTYk81edh2&<^ZD@3Y>f7ol9 zi|9M>_v}p7^+@9Wot8~r_>^gTB8$lY_|&?Ea!P!SM^zvnKvDP#D1YQ6fD5$^AK zkMZ-J_Z>2V;rw_e?}N^!)w$d$Q%8`g_Jcj6tgI6y4vG zL+jR#{5@|%)G+Wk{5`~;n*?WsJERiv_bh!V1YnrIrvPxo^!Mn{(hF0pg{9?q z^!KF9jKkk^Ym$n;9{PK-p;E&9Ju0vAB{{ICqWnFz;C|er5aI7xbEiIu$L;U=_LLa@ zo?q(?9VLHHEzZTo;qUn=ignlDb3u3)9r=5{#qqiB?FS-TqZ|I7O!EE2@b^^QANk-}4jGvB3}T{3;H97~US@hokH7alP`N?C+_=>P|1eU)Ce^1L{U5_O0@A-SEveDo3)i<9V6Z6WV|A|A7 z9R5m0Kpg&_d*G&w;qQ6qR(;9{_xF6p`02vmb6eE@o@w3K-*e-O@%ei$ec_1sd(z7j z_4k}q6`#N7M{|1Y@9F*W(f0QUagFfzY`RzT_mEVp`+H*edzPRaH0pQi@97)4zo+N^ zo^x^VFv{PP*_prReTW(c{$2Td=;BQcz%YML3E+t7@6n+T`Fk!!*>3rJes|RO_xv!9 z{XL_e>xRFlV1AUpN1dl0Q0J*5yuYXMpPwCn`+J@_pwFBM`FrjN)$7#X^UOh(mgCXi zbLvfT_G3aDUG^a$Y5zJ@15X?s@wc`V1bovnS0G z!`b848xjY&={#>d`+GV*|1~)J{8wFE{+?S=th@f6E5p0!$lucs#S-@S@E)C3%#a~} z55=%EA_otXQ^v+ya_f+A==*!4D&ip5X6ssp#(cdBFTnd%zDVp~^;n81vb&!4IEI zje{S??F;ck=l&k>L*)J*m9%uyhj@jK_zb5VKC`pZvByWDy`txMNc(_Zk>|C-_IIIn zCUL_Y*wdcDW~qh&Zi*2#ITlL)}jfwCr4Bmko}82#TlG5t9-TgJP&sDOcUr>a_f zZ;3dzMMtM{R3TLNfdF)z>;c?Ia2wCpxV29l+alpsxADX{wzV1M&~s;QolB#SZIL>L zTRrO7mQW;MlunOrogV4d>H1(4nZ+HS-pWz>U>N>{w((dYaTxd_0-4U}(3i5he{3tq zaBM3l*0HT$RE7WybL)6MQr$Y2MjYFUv5jXu%0g@gCwy${$)oPpv7-n5yg*myw-#oz zbkza%@t@ziXjYVeN3h$`I=}Vt?&HwEv-tykGEB(7^KhtMr~aMIAF|jSkN%yj#>L^^ zdGtLMe+l__;yAyh@@j(nc@C85lX~1Pp3A<3mWVvR^%uRN1orb}c6fd(+P|~>p1Axw zzd^C?`gbOTchQl5=Q0#a+`j|8%KLK2{^-ER6TDj6xC0N5W;W0*KNODP-?{Qpv0LY2 z8|!{D9wPiZ=MNPIOmCEkalg-bQU0BG(1yA=h`pXC@UfOZO6Rw3e^=KoiTii13RO0) z=kJEZVIuzC{X3_Pj>Ar$w}TN7hku99Z^h@|ai2lV$9J=cvpP@xuH(CXJ}A;O0+7ZR zXBa&|biOa#14N&B0mm%HL!X~fQ#;;8OsV>R)FWOa*dQcw90C8&&K~efN~p4tU&ib@ zHu&X}>*L^;aoa-t(z*X9#`&(!{XZWjF&t zvHd@V+Qbm)|6$~QH~yb9;`IOYWB*TP5B)z|9~1^w{QjRW?+x2<)S>_9rQh%l1e!I$ zL;CqGnl0n@{|qGCE>8asW`Fe4J^zo;jS<^=?zl%bSpcaF8ot)?TWO|hUhgcgld_YLRk-op@6ROv_ z|7R16&2j1f$&1JTvq8mQ5B)!x;LEV{Tq>`sUqz2T&*cFxN1x|9VAm)0`29c4vHU-J zLkakQ64~Fge0F^P9~A4h|0leQ4*fqUmbm|id^oM3K?lAcOh6s(@9D_@^Cuhvr~92# zY&kwaoFkeniv6b_3uo*BbJgt|t=r?|i#fuWa=16hQQjg?Z!sE91}; z*R58^5Ql%~z3nmmJIWAkN{I09{Fss3g@0#W)c&6GZtU-Q%Nn15XL9@ABeB2drXLCO zD1QIW&#+-Sp8Y)w3VOW1=Vt6-irc@_ll?tHY9stR+e+Uj z?=-xm;x8fpPW1V$sQZ~!UiGLpRy^moP93Dr=y5xD#%_$^+<7BcYv|~m-`X}KF8|Im zDAry7PDOYZ9r<@gqgcZJov!xwbjQE*+7(^-cOF+u954Qz->%TLOXB{W;!tJddj5}) zxMRUizxt9m?DWT8U<4d>|IV2?n#3N{{vGd&J>UmNsIrkC7A-$E_~D}LIQZe-Wg&hz z4*fe~GBUVTzOVCJQGgtY{X2FD>%W(OM@5tIds~F4uFh|L@BW?1&*^$1asSTQp~^=8 z&dm_LV`1J1o*##vn6XqvKpg&^Zv!#?JJw6IDIvnYQ_A@HPW(IPUlX5y=lZL7|4vWO zZ&l$O2)!VS-@h{t8>Zv&@BHP;9{YDbx#;`!@7!^1eEyxWD3`c@hxAOW^IJlZbaj5~ zDEN04j7-$OGZGR<{v86j=jXSKpWTXiers<*2*5D^PW{vI`*-d`*?$NBPW#|)_;;Rk ze8>Ks3;%u``ghWv(r40y{5#wKs@Ln(zmxVi7MtVIzcaIc9R8gTmZ*3*2K+l$ou|*} zar<{}T^Yl_^Xa)-Ly7r!5;?!sHZd;$&Sn(ru7BtL@Gd&?@BA-{CGOvWUhT@qlj!-a zivQ{A{MH&A6DI@acsalI+>^SNNZh|OGgR5Qo?iutI~MHpl8iX)^wm!=0^;!R^yK{3 z{-1Yze(T(`HCYDIj`j0f-aqw#UmT&zMt)iJ|BelQx#-k5_~qWmLj2OX|L2%Izoq&U zLfdM-FaM9~p*XVVx9kvR_<#P5&TpyoO4R?O?k)cQ&TmbARM!*T@c)D=hxvaXddI@N z5=@IjPt5p(ihy|hKhMYZ|72(rL!|$Q@zaI>=g8dObN;1q`hT+6|I^d+Tj@Vb^!(Pq zsqvlPIy||@=eIsNB?14>kw3qcqxpYGxH~z&g>sOR1o!ulp6R~-C+hy5u1`pHb$;u* z!6EmG{uwU)1XQfgu8)MoVc>E2f4YV){IlyZ{Xc)cIs{<2|L6A!_I{n z#Qi@#IKRbrJIA=cr~2St_U?3iKl7Tt!vAx;+|T^n{koRuhW{s2*|?rx1&KQr?DUe9 zIPCP*_c8+F@c;De{ML|EOz$JyhAq4^Q8BZ16*YB@TXgc5#RwI`{7! zljpZof5G?f-%%~O&_&TlVt>!iA*}!1--G)N)Vl+}zx$c*T%_xX#Qi%z4plb#cjiO% zj)i&S98(;6V!=Wc0de?u&W2ku#{JCMDcY0};orH7@$;Sdck)k<&%g6OC$WF0r~7+G zvibm@i$ge+N#xmv|T5B)n) z=eJZ|P4Ir^qHj}7@<&rw+vxiPBWOl~%wQ0>u70d{zfEpx^aOD2iy2=@7@vh}=fRNI@3!Ex2rmCHv$vu5=CwrG873piznZwOld? z4UQ}3?>Bi~s^>z_dhl>x<-L1=$vHKzfJNkr$Q!wEj=nelFhz( z6!N9XZ&x3xc)qj@T|~Fvgd!&S*;@QYv`+*S?GtNI`&0<+(?hgRq1f$TtHDooP4aD( z?i>yHOai_RsnR)W`%4hH?F4USrO7|CvZ4i$53f|4eU-u1-e%L#Vw8I5SP{6{Z;4YfiAem7(@}SwwsPvKrdU>(>cBolpc*q>@kNq#NHuvhwReV=Uzv{0Z)9%rfEQt@=vPPe6MT}2L>nxwSRgBu;?m|@Z!E<`3ymK~M3TQGN=s(!Cb9%&ge*lm+H$qm)( zD!wQiSYJAIwZ#OuPb~9YXVIeTe4{JNr29msF3bX-35{Q!qPSAaKk{a>yzf4KgS zG3q?x`e`cHQ>1iS_qm>7Ag%|uk0h?oX>_=l>!%^&g#It@rv5KCvb{b982LY*@yFo$ z|ETfD(0a%F_~i-KV)?e&@;uUw)rZ^{`dG8V$hZVE9pAF6t#N$ivuB>dHigyX8#Vw% zdI$1mlh}CXq?#&*lR1;~#p5QaWDDeA92rByM`D2sdDw(DcHExn9X2>vd9gffkXRcn zHT%X6YMe)wpc#e>R<^@(g4YgK7fxeymWouJU3tAr@IG6GD)PKq`~u{QeKj1acjpku z#H0i=5zDufO3us(gSt<^L#gx^6L3;w!<`)gPF<;hlgSwlIA!`mfJ43ne%a5k4Y?$|(u(hz6yBM;Oo#8PFKC7l5iP8p3BCdhZ;cM0W$c z!z+PIcU(N8!3gPN9tmMGiuPg9vA+oGF{`{8OPF#yh20ASV0DX8U+4OKW<#q%i)l_OF+{gfe** z{TkY*sG)s|a{DY$q4raJe#mewpv7>zzy79IpOI0r*0BE>P z^jBa*m}*FAy}fNo6|;-{)%y{JpK#W#p9PEXy2W3eite2L>Rm`DAShp%gj~sXKZVgb zib>f`WUx(_PN~Ne{}Y>}?9~XaMiM5nN%)_L@Z}9N>1yrjgJ@I(fI0vGCGdHDaq73h z+JcO-(#djRd+r;`yibHfJDs5BRX)x*%|$|Bll>~@79yU>6f%85&CW2t(ER6{r>#K z-X7@Bm(S>$eh;Edm-IVnUAO6X^(~#z?{wrI4f;Kk7EZt6A8HhdM}Ma4rF%-hy^r;T ze&68iSy%e=9hB*ke!~ZJfBu`%8T}?9_h``X3n`p_^O_T(-*~-rPw98@qdlSDkkh)R z-)Sh*CH=m9uiNtXqN_9dJ&fF=LBA{dh0|~Kdx_BRKD~5L>Gwlyb%Vrr)Be2kl&uk~K>b2&xKLNI>$s#&7L>`du)04TtI1 zx59&8najY#lI*LTEl)@niR2qE`9*Sd|CMqq(v}t6VyHshLNrAr1bT z;}%~zm&K2-p^^AH@PinY2h04zlkm+xeSz}z2CN;=_%g*Ba=iStWo-Im%V$ zG+;__STw#!rby1n`>e^M?umvxHX+?8k5nGzSRM`K<{HcS7LnIeo?DAw-+cOAF!y!* z*3PHj1#{PPn0|dLC|Bk(5XltZa;`~I`LG8$0TxySST?U(tPAIwOJj^bM_xpg2nAeE zs_%_ezdQVPoZ`=WNjLD96T)A9toq&2Z^tSA@-OZg{*q(W2mTV4-#W0i zVV>mqbP3YflMeYM88yl;mDl9gP>$taE9V>ImWNehj$1JIB^0lnPrnQ1zRY3z_1#e^ z7tmV@%%N^Ehn5El%8?T>hxX5oiKa0;%mPhK$z|n`&VjU_Q=30`UlgO_zaM_uFN`rv z%mH2EXHBe%-I2dK(CpadpIsNkkDtLt{&_rB#jf?cJZyl>Zwsr}xiiroVMfe&Vwbd3 z&>;IfKpA!`?#6y-E>BaKp}d$$#p`=6FY@*BBP*%!bl#sG!n}BoPUWvfe#OUPKR4!U zdcD;^J3Qq#@%Ag2qqOx32CM2TdY93018g}cs4OamC{D$`=EZUjHrnGojnCfZw_BaX zMJ3Aie)Lu<)!SyCZTHTxCRJnvbFsDbS+o+YXqVR)mna`^2?k{sDml7JE7UtdV|Q zj_;jQVva8-DKx%iZ$^)AT8M(xo1!R~^fnVqNZ|eN3JQJ-PKH=AhkmfDo8waeS3=`^ z@U)oYGa2Y-i9tUP`cXB^KQVlRiXaX>&p5v4F&5G=eYc0kHx^^=7X4fi^eZUuRDVu7 zJ?7}nLn|70*2JJ*QiystM~`lVadh+5(OoVQnR>U!Lp|P~5j8*5M$oT|@tuBV%<ct-45_33zb}_!~{bP(SpLx#)w8Ai zw*SXL)sr>aisMY|%(CjvtOWsV;-KkWJ=dg7($Iei!{;JdPZYibXMSh!HPLLDD11dd zhmXv_DEhw0R3{Q=(0(r&^vx!15(XdD?1;X)gG5<+MobijyF?-gZKQ9!@YQbU9(=a% z2tEaqV0Z9WetM7amse>Zt~{%plW$IF)X5Sj6e{!d6OY zq7*AqD6)wnscK{!MQm!MnIh?GM8PtUH=d);h^$oTX%1KbM`~8Fa`Vlf1$p5 z3bK7F#`6q@!Q;tBV1|VTBDakVShBDO`zJJ*X}cl@LnFa}2vB_-6zSFwXgnF}cv>ma zUyZbNFgO*mV#TEo&tg)?gHzXq))Md6=874fyV6bA>+2p(ZCa$u3asqe8cb0uqNyCc zn4+oDWxY9eCdF*Xv~V=FtkIEfVg#m|K=An%(9+hMQq4H3V$pI^ie!^K*t<7Ls@jgD z`rf@}spVIE6I{=m`&a&rRCd{i_kt( z;t$D8iLr8D}!#L6d(p@xESP&TN5DbyW`YiB+&h0jqB29#flzrPHhHDTZ zo5p%PW^j8*gc2Tj2VBM?RHS6x6g@c4$z2Vu6l3DS{R8YUBdIu?khaK?9Z^DdFdmJO zl-1ZqqmxV53XmV|JRs!8eH{rxNNBF2Xh>)-qNpx3r&BB>G<}57&^BzP7{d<}7_m7! zT>o5wLX0d@l|WXM{%L;aXzHKN@l~wcYtS+}x;7Na+e_r%9t6a6se+dRID34BoLoG^ z%G==JuGpv)r-4)2)E(m`{`s3w3^y<+8^1`Q`x;7HlKppDWqBJVFRH_@?4_`Hq4fx* zzD#jBP&Qe(^>hGezQ((8-<)>O-Jn;A+`FiFhDA2buyM!l+60T*e4{Ort-u03gBuGr zDt4@0W|$-R(ew7<;EbdqKfhvEk{;ZR1y+0M1a30D_2K5j-oxg*h*1kN zaJXmd^1q808>f^lhipQp^H%kDmh)DHHHdi+CoP9cGD#yg<-SoSuP#+yQZpIn82{Y; zWax%aP(++c$4UI9)}mr%!IHh$S8v5S?k9eS4IBCI&=W56J2H^q(i6^-Q+&N;2X+Hk za_eaU#n4=taRmLN+Z*;K`AgD=`KR9JxA>7{ z@>N#?Fd0{r^h$0c`dqL0$7SM~-|C;7XCTmZI6+~%emST#d=q8Y8}o3c!gf9EhP2_^ zC=aLQbi!VT(-pSsVf>^GZ>GFvV;%;RHeA63TTw0lo&Xv0-kf3b8vp%-t%hcce~cx0 zwfy#_Z>j5FG+-6{lV|nk#p0iR#6P2h%b9yi zjiyxD^L&iasN)%sTkk78NNka$m*F^c}}};&Ni8BxKTM)+1`r4h#V^&CXwyR%v7vid=<^;$!Bjx zV)_+Q0S=;EK5C#FyA#QDy32>w91??sfntbvV0tMt-76lu9m z%HI8@RN5?M2c&GU{3KkGF{vMp3^f5rw7Yj^N^Vek>2n;r*&t;%B6BoGL8Xi(woq&6 z!@eJY;W^p{Kmk0D(++f|*#SDq@pw9!gL8^B-q^rPCD4&7lqu-h+>##)M(QF2f`tl( zK+K2)5&8SjYY4#1*Z^jC1HhyX07Mtz049Y1%#Hzo+o?|c|Z!~1?OO^`{dV^BMSH&LlKRi?VvYjwHmz;#m9eUN7FoK!4PZbk^mVMYMQ+OBLn=`WOU zP2JKb=vhhxC3^RsdSdFc(4IL z5&|d=9lT2b-r5-8oiD(fx;1wl&-M%h6U#p=87-G(0O^2%&j!+2Jwks$rnU?RX_jM^ zN2lMAWfRBw9GO%^Et;bhjh=7%v&oUW1%BS#ohwKg2kdS5HI?|L9)w<=(8>ziSE%?V zklqs-ITsjTJ+l`yySz;`dw^`)((Vow4HRylK6+joTMn)MZiXNaOIR>is&s8to!>eC= ztMpfN*9td2Y7iteLxfk&)1s)`JW#8fEdBKxlq?`2q6xz44JOa7k|(svYtCQoZSFO+ zSH;=DFwEC7DGgJqEv0lan4jlBk}QkKd$@PS04h@04#|Rmn1Obn-=tjfUP!n~Azkd% zMul&ByWgCV#3J_Ks}QlN?GUjG(S$$WCa*^eSiy@Hly}t@R1t&o9n@x{k_&;_SbTHg zd@zLCfgm&N2`njc*AjF^^Y*8N-?!|?A|%!SawcLkOo84fqNXU} z4CYyt!q)wGbFw~Az^y8GZT}>A)1w1WM(%4{^{NVuSx&8e)V1VQ(~!A@sk@R|(jL7D z(K27YMP5_N2e)06udMqkt;a0hYbX}1*v<^IqUn)WO|4Rc*XxbpDbyRiW1uZ(?hPq4+r4g0R7{*+5a^DT2jA`N;M2jOV@LK%(`22$#J ztuXoTAz^myu>d_adk};_4j~1<^cSevF9HaW^+oHL#u{3Anw1~OyMz9F+7VX19fH;*Bt(J4@))2AjKx%3yPA>xP-QAN}xiio;IFOf@Mz7U}S zdMHN?@x5GRFRSAnhk}8Wn=oF2iH0fKrC~DfL=023OT!c)R(J@Cb~TJr`!kY&&d1Rj z8RNVGIFMpPKR$=cm4|1*aSQkik8*Cw!E7CHR8s$qj@f4A6CYu*3Q^^$1r)5M;G+mq zw*Q_wL|vn(rJ98Z3i2#Qi2edK_u-eMJy7!ye!0~eTEv@`d${2z5LSw~;UyFtNezn< z{(I_?;+n>!e+ogE{Agz>e(5hzvrGgKT8@xto6qtq1G(+BNL9Y#U=s!RBiLBOB?!$M z)JlPxO$Z6{ZAFOw0yW!20HIxas96oEXcowIfTn>I3!wCmp6wb$&^lZKr?*h~5NZhz zxVOrz{I-@5=|NPP$lx)03kf`A`|lwHxkmE13ENiu3+y6*P&9TM8M|iXN8E57N-04O zGI|dpsFv{GL&H~bx&%RiQ^GF&MPipBX6%}k_vRDO^(du0&TTV#AL6zN|7OBz69PmC zfnCu!VVC{_HJxF%bPdS^xD+loR~>1?lvZe6|L6gp>9+QOgOC7RrizD!A1RfjE*B26f4#(pAfF(MvaJC=Xh%U^E~o&HKDAX2K)pE z+bH-jf>?JXVY|m6wZ(pq^E?`(MbVz}4_rQ>75?C{jtU$4=T0vVb(+P&gVg`&qW|*@ z{om7JlWPC}H1z+|4htLlXO?-oN@tlTILIvXFbA1s?%`k^LFMHjvrHuinPq;-K@S!9 z83n;IH}G?iGLD})%60r4pbW<|#4_WbW|kqG37#gxJ^5%9=2Ut?K9bb-4tuGe0m_$n zhT5~lYOf@^Jp(In5be`t)U2}DbWio!4>rOhB#(B>Y*`G$-J!I5RJ-nYcFgOJZ^U)S zo7=qgy^|Zf&22+gyT=vbW+*u9aD7SB-}eM_nIpIT@GkdV8M#}qtsTzZ0;~|yTCu1& zqjkt#?%Df7qHq;zfP)t}X5*gY((+VuS*>ICWPpVAS1WqLawQo%;~j3;k}&nXZMIpL z1hcBg=PWYuDy-%DF6Gb4kr;wVS=-ul+$26dtS!R3og3jROG{~`QG#*KOZQuC>d@n55h zJeO>A1!{FB*5-JZem7mO|APdSM1PzA4a%ze1I1|R!LTU_u!Z6?_b+bz|49?|- z>rhJhn1d{$I}r>w3^s7vOHfX<{S-ps(RgQuL7=7?g+$kT5E6A2s))bH1%OB+T}Xc+@=W}_P9CWWm-CR89(ss)U^eV5 zGF_TcKGaL+%M5Bez{?B@aW7=rD_=fh=w&JNDtdYQpVZ4TvJdYexYV^wGlHTM8WjCS zu4)91TajZ{etH+-m>KOtMmNs^XCm0h>mD|~XkHQ{pjC}9zIX-7jd#7O5p`)*BkIzs zhW-LIovmtk^bF3y-?0kDHub7|Pz`d{q+}exc198sF0n-`;Vy?nH7SR`RC5QRD`lCU zJC5t_|H7F2fSx;u>u%I?^RSqnQRFJegV&!kw3u?{twI;QwS;sLfwA~SsJRyWpLWF} z(+dL^nfm80GMxb>F%R>qzYyeyuv$3uDP(DQs76odf#W+g<&!NOmgcqZa%z@Rgw@d81QK2|6wC`#W9b zFldVvFRz+yRBqI02BPvp^K}448fO+rQJaP4#t2q_84Ej@Rl|_KDtdwU2?S}SHe>Qr>hc2GzM-3f( zKh%&-ZKxhOq9F$wDlS3cJzO||!X+iHbcW|8L|je|K8;|oBHiWT*rSMf*A9h4h>k9+ z<7RqfV8}KMIh|g%;wuQhED~UpD8EDsVM zgR*0Qyiq;Y$}4y54lb}S^%pLKAyxQ9*0%vWO^l`)W`E%m0sB*= zE^F;em49X)qzw&&_G7g=COy!bwR(YtiUta3w!$Nol{q|f%7c~A1YU3n$(8rR3%9>9KYTj&8Yc_fGG~}P5=9h4RDNj*>pK^h8*GMa~ zI22VG6qT!7k2*`OG%rksU_!Zu!${`Jo3 zkIVl<8UwEhD(G7)ed*OD`{w_*@qqL(UZ0dU;Y|g02o|}X;*QTo$KJIW0ek;Vh|7f; zen+r)Y_W5!YZvE#y90pXd{-VL4~&yhGmiVXx6y~N*lb)tT(bax);%4 zMgL+~9!GZ|O1gj}Z%|Qn2!mDVT*wiFJqL|K{JG@ghLX|Z|Ic4X4Dk`YksZh?b}i#Z zN;_?2X=EcI9dbXiphHNE`E^8wrbS#!Fgv@RL%OS#Lgehm+DA`N{^}C;#*KA*f;db_ z{72^zNNzx)g zM3TJ@i$%N~!M&>5pIGl;xijk;EOjhD#scmjtdcd$GgIhy6#w4BzYF>IDgNEczX$oZ zKa8d|F1Dbu!z?HfQ?}nMM)aFMk_EM9`r^l~S!7y*|G(pZ8UA0we?9&i@xKB8Tj;6& zVf>IVI*x(!mfL+(+vI`_c@`GQ?Q(v)S24N!c@^vmCHx^!kv_vb1MheSJK6n5_IVZ* zYcdX12AwuKJ+o2SaV}EuqOYE=t(}!6-#x&)f^eHGpD8_3@3+{=Vs*-M$%YN)xHe&Q zMaqPCz;~*hqnRhIWHYjz^CYweS$BnPFe=(zLrK=nC3va0J?Km)z}E+7Wd&zhij`Ne zo|DH|ah~+l+(RvA!OS%K^I-t2L|c0cY2VKl~r#8s$`ge@_H93dJHlvc>Aal*ED3e^b6j8Q%f?(^SJn86o*E}>k-#| zR9d;46H--$$6Nt?(>@it9%dt;OY+a(K8sc{;Bq9i`KsSp7x2)8iLxmNoY2JLikgSLT&g{y)mf<<-sB;`}>}` zcmE_LYFqpJy&oU4ckayGnKLtI&YW}R%o#+N4p)Jpe8u(5C58VK*V(C|XMu ze*yeag&*R01^9bVp#uN&ROu^-9|3;)lEcp-djy$6@Q3>c7RgHaM<7wl>xPuCEz>!i z0~CMz@ba-AWMZc=%Chi{lR*bi{(~#e1kn&WN>sp(VLpkcNRd&;H-kSr`%u zDP6*{gF?qCSSY;1)+Y+fEJZ@e5nNm&EIBBc#*nqi67WSm`QE%Pq2vube8S}AzI+E< zcx~J9 z*W+LZ|rpAPp!xNEjh)c=Dn zSpj%P=#t{7E}6A$NSAyC{qesBA4YEc?T8NH!}qohX*|}Lub}yyXiCYLBag4u;iFfLRpff#mPy+qLZ*B#Mgpps*v)Q(D7a&Wls5n zuuL1ukL1{ahjwa&MW5nJVMz>V(be5BQxcY)5lr7C>$GJc3mw8lI+c?W+w4ry zWYed@l1fCCpfs4^mR#VZ;v?7$!f2*4IT2B@DL12>C1YS@B}|;3O!lOU`FD%)-NZFK zVm^=Hi6xgMKerQwm+TW#-bEp}f*vmjmC$vU$bzo6I55w2-eID?)4O#BXq4QN2?=NGECeY_9R*k&rF7`EF}zc0X*X-U zHXmR9y|ylh^y^K*^~NGO^K#NkCf4{^mc>08XFqNL&C9(s-r->Ga@*SQ)%|Z36(e%YoPd`4cno6k{o0N~^Gpf3^%qMFuDp*?13tG4eTNzmgT2 z2Vog3NWnanvxsF8@cgCgz-z%VmHQ@VxQVPqPjFuqTPQk)nl zxq3HL*TU4p>tcneC)eMAo@ECjUAidL^&LaI6eGMaMSk$78198rz)vb8o->8zz!*1% zk2liShSE(Vr{{;#A>XbjyYK>(Z`LXz>{E61zjz94wnpW~Z2`P8^gk^sb z7PWJtIzX#@$@`RRlmg!h75Ki;@jlAw5zHrqCGQI>P70;huf)PFEWf^s9x1zp$#?9a zKESnng#U=ZI=&4PJrD^>5D6{%VqT{Xy{E|_BuBdLk>MYJbh3?gQtfls-<=O(Z{CfrLh z6DHb_IE7_z3#RV~DIW?QA7WT!oS7iDfjG7gg%X*@6{8P)P)8rhr5LL;q0}!dKc{kP zFuq^bCzQtW0W1Vhc>MqohPEDDU;Os&8XxFq)cH0OOmO`+zM;w$IjVKFcU}t4zJLOv zr&zqCV>x=VAk|3_I#u+M31@JqL zv%e5;)se$WfWZTu6;i;x9Rd4j$_2Aa$DcZU8lhtk3iA__x}+1ah(IJF3VSJ|QAt-5 zv2ajo;X%TSC48(){zoYOi_o?o=RR76#cv9QyM-cJDTw&c51kvx@*2Q-;#|r*%hj0g zAO>qBGzjl32eVymlUau_A&vy@_dFqKLhZPb`)hOmV;J@5E;Gjv&H}{ZJ?Jsr&ZvZi(u@!t>FchwxGZEq%m-Q>i50bced}Gb9&K@@2%otFr_2b=eco)uDnGi|Lg#C5@tewL8miuo=qd7FeT40s`kc(>5D7iW+F zM@qX;jPo8T8s5dwBRc!m?W!!u{_^nsJoRd2w*X6WkrLTcxK=F1`MKrptfVU1b%!&+=xa|%Q2OQ z7)8yO?1Qa6F%J1<=@h1V0JXIqkHL{VY*CHN4{kW)kP~*00fO;t9JlQ|Bc~!Kvf&&Y zV6h#O>}ML{lK+OQ-{bH-Clvu^r=zm^`re;`Pvj8G5YOb}-#2iP56BUl@@o?ACQudPMOboP0$*=E;N%#7)Shyd&io z{d%z@Nemi<2ksoiHiN1l{q}udl3vT;C?oWmtA$Ni%faOurK&ejX%1?|Y@`r`?+IMc z;3$6zQ5-hDs%R+x}cVH71?&+0HO+@LtX>hsNU;P6t=x;m%t_sUpx83 zcFZ9!*#2Qq%1QFpJ{FGZ3l5-9EU;vRuq4!cjDEpZ_LKCDk_~T553S&RBdqZ9FD7z-ICl`zRdqsA>O>%q-Y9;;uOC3g zc-A&5Pj8L-d>GH(dZ00&<6Y$SCLs!&_PpO-0qur>etQ=sQ~N1_+J&+n@!*LxD&JdA z;qduv&-e8>@MiF5az56tB^wP1UK3iAL>zoS?ya>TJ63;3kJ=1`y%{Qk3AJip)>2<8{&Kw= zdKR9w8?~;n!SBk!&788q=bemi)Sfr}TB+WoR&V+}LC&h)5T>5r07nu_4gjQaDoFer zA>}y1Pn8f~nsOc-^3>fMu0`G+BKg9D(<8$h=+}dmP>d5Kvb5H$nqy z`nZpJNDk$oCJR%K3ln~uL0C96?>U~AXp_RbOht1hyiD+{yP+(G#%We^gqZN@=plOH zkbeu)h2Ec{({N+4F!il<*DBeKQQ47^XYTzWWy6`>y8k3;U17PP#sMSeQ8&_{Y*+Tu zgk{S?4OjdPrD2mVpAq=?Vf5S4JqANHdQwo#KzO5Z~INh$O}H~pqC z`H>!UB7#s?uK+wC<;&U>Aq6eKKA(4h#zpB1A?5w3zKC>0WJfX5blMi2{G^74GOC?j zRM@a~(zyH)75R7?vC}5{O5IlUI`Fd2j<%@_0Z&E8Qqk0%eXE421H%0!c#U*Gxss^j zKyM#9fQ(m#ssFRVhK7C=RUBa(ilb)YLA^oU-SJn*A#ZY##mjSGZ}DjqgANaMJfC~$ zaYT)yomq4u>HGI{1X}@AC!*@Dr6%J+t;2&_L;I9*uuljr`PTKJC7*2Dpf4cfiu3H3 zBrm6ynovGgU)68d40?k@q8!C<*JLa|d}*5}Cr=rDZHw#sW+gF@jSgd#sqGAK%mC8N&df7SsrO0Z7W^Glev~DWu^Qmf;(L zG83QC1Bq`yCRfrz$~Y4QD!w3I)&q#yJm?cpLL$y!16{~0L@2p@g|GynBw@(}qLoV^ zUmjH17RrS!GE)CQZfoQ6A{P&#lz-T#s6gA*@h9UNQo=wbL)sTo#2DqC$}gd8x#~s? z@aW2xnD9t`zWyXP+@BD>75=Xa0nYysFB#40adkI3imSY-iw7LC{;!cF*yP^$RNf;UlvKd?WE=#K3xg9hs@nKjn-u z55;8wDNq$1Cnt2^=dy(f{J=37ZJdR#BP$&ASO)fR;gIL8IyyT{E8&DXGLcs^Wrs2; z=esH2Vnor=?sA;1R*rUW5}sOv7gC4OVK$@2Non#YcacPcW8L%?bRU)f{TWz1)61_Y zyZn%n-q-fV8)b>|b>MW78yhfbeoY0S_pHQW%nWL(#-CwS9w0vS2FK$#>5yT;uLh>} z=|22K%|_Lqj%p7EtvcIiVWkFEM<*weeX~4nvv(^UQjnh+bCO(oNIXSJZ7t zp;2BP1lzoEI=TAXAKZv{RL&NfyoCXr8o)fzdJ7HC$~u_l>B`2J=@$hZ*!(sG-2ogF zg=#XmF_9a&!c0r_>2>W6`KA|PiIt@n+mV*Ut*gj{3kiux0Pn7vSgHOLrx3+eRiE%z zDBryCe2@*)o)v0*fW3g(lX+Xl!F1=CL1~9QnXO2Mg=%Y`PCTg<_Zi`tLN3iCyR$(U z$U1A#uMYX6LYOt;tXSR=h&_JW5$aT!xk}6VraZ*6GF?6y9pScahx}9_%@6}CHfFN4 z(DAYy)0fqxK;+VA;DDJ!c2+?2U1%VELbumA2dA?X(S4)7Kz8oY^fT2GSdRaXjW&ftf$Zd|Rs;%_H#;}^F6fxPg<#nC$p zd*i@u@^+Z)&zeF_l+sy_!E4L_-O}xm7IzMM^9I0!%JiMvaF;z&&DX{^M*gro?k|*2JcW_C15v!+j zKFm$$GJrA7Qq}LQ^DIJ53p$vXjwCXlXoA<7yM1Kr+$vuSzc2bfWIXdL4V;z92Fx~y zNJ!%b66Ew`#EiX`R@pQxFFaL^kT*WMxHHHCCI|KQ@_OH-dcAr5`DNPRdNbu@Bu5Y* zWDC%A&3lb)rUpq_mh_|2a$neAH*7EA9Ih`Ly=u)|<4z?n&k=dfyTIVLbG(obzWhN@ ziUZj?i2kka-iauQ7(KXHTPo+@$vHi4_ZK3f7=Ko1 z)DINZ?|91_C@t0Fa_;SKZ}e; zX3(`u#+`QSCzWTgEJXDsjnVM-)7apvMDcU_6DB=nnqnM$LchxUE(6J@1t+}!He`JM z?((iutSJ6(m4~)+d|XWpzC0R%pvm_dGb8xp9Cds~!pAQzZ`GG7FVugZSKg5Em?wOx z@%Yl^Exn{XI>Qbg6uxdi>ggDJ&ks1mHG;PQm46~RtB9pZ?lbUA=^h7XWg2%p4mUz3 zXs3fN#pyv0&b&akD>Oa$7)pf)ETQI?pkw021YygYppQaR-S5_IqvO%r@eo@tvUkPv zdST0pNDC%=eTZz?;ohcsedYRXnqC=dv6g}G>pOUTm56Lh+J;b;KOhcZ@t9pZLeUKw zhFJ!|b~^ni9*?wp6Q88ddLN?#p!C$Vl!tQm)=&Y3X7;t26?)fL@jg?GTmO=_FJ>Ct zZH^VTSU6xW9|2%OQ-*9a*SUZ@S?JHXGO{}f?BuK~<0no5A?Bj}GoQ4`geH~H&* zNN7ihe;O-nA%9f()J&h2{{)HuPT3kaBJ>1>dMXei%}`4kh3XOVW)4DqCv2(0r!_}i z*VP_s?!o7;o7Pb0;YY9qnlk`~U>oQy#s{^B+(L`yF6uI*_GVLQ+X+mK3$Hifm710- z2I7S+DJWEE^2|Vi7^Eq9i05Nmmxt;cgXESSB0jr_Wvj(^KSE~^qD)DlOs9CAEsa$; z72?1T!Eu1H51`WCKT!7G7*{6!q;Q|yFX01Eg~8+=+mca@EKgHr$0k6SL=ZlNS4tLY zkJ8vRQkG3>TuTq$c6CuL*{6H&p<>N7M_V#HfMx(?5;U2}r*_>+)bM)O zo#?uxA5&tWIc>9&iR7W$LqcsgM;Ii&o>YdKW7V34+Q*TAl6$D+M*L98A0UqRw-0$= z_n_QfVyB}q7O&Lw>$rn*TqzXfz`lTDTeef1GpNlpYg&>B4IWYRpQevYJg*qa+jk%D zraqV0s~2i+43+gmq}Lo3YStqH*s-0OSPpnvd}L*MnvGiFcU zRZ6I#HO3dy**8vk^Bs@D6x$;-y>qrT-mL=!sH+yj!sBD`=|%1snr*e_KWN~I;UBu5ei1}QfgV$M>jJj0(sM^!X_&GSUYa#JM7 z6e%}Na!mJU%%B8L^GcVh#BX)uTbNyQ@7|`l8h>N(_Xy~PMh|O4yvW$Xo#MtL zjsE)ZUW2Fco^6^^{2jnwYB`?x3*s+nt&*Rn!jt|2_=`a~ z_u+3l{x}Rcl^+umqy0~m@!$A+4S##_2Ms}tE=EWHbs_!%3Nm8YAX0!&!J$Hf{M`pR z;|7)h`~@8k2`2?FD_7P%l@GZzea#o7ul#~^b)6oye0AL&HGSC^l)vN)(p5fl)bdrn zany8`4~(R=e&D4u~gDAiR7u)Vwrp1ANRc{bJK1kz7 zY&+|CJhe?)JA>t04hD2xEE7{8f0mS=^!T}p!V8%hQf4yCOtB7B$8)IqbcmNS({MW? z#c^NWeX)pRUE)Qpls|oiJ04RKN8xoW(Zi{oqxiY? ztNc1SIiLn467US(&f}!HpREQ}()m|Qb1#yk^WG4fOH+yei>e==nQDX8-{5RNors|J zv$2w~gU!|J4omYp^chxv7dY*t6klCB6fAc!Ciw$ zK~#gm*Q?XD3r%~FphE&E;A+Xd*3Lh*o~zsq%|rySNc&KHB5QwKJQ0r$GV0n|13KM6 z@#d4*b@u!ucAmH|kkt_PV*HK!UMB=UB%|D9EhPAJ-B-rKg|oCuqSGEumhBKfTjilm?<<*LUW`f%evfD zxn-388v@^t{{i?oT)1x?-KyK)dcvRphsqV0qGQn4=EpfSk1NoG>4Dlm;rbmhLemW1 zN7O&((M93@`Iz_5N8$eYO6rf$qnipEET~Ip+Q$z1`gEI55NSf6Cx9yL+kAq^(NF>e z+Vf_J_Mkm9E3lxri4GG%y@BYP&@^86DLbh25_%-zAparcGjArc`kqokq(2lnwf1QB z%pwIi@y@YWVovG<1AGIC5j6@CdJZ43Vy#&vwbo2dO(WNF%^MtUQPQk^&8X zS9v4%$0f^mZp^=~KeR*pBj)dde|Ud@@Z=6H@bmkFFrTl4nDKl9Oct8#dIx@D@DoRY zIEQ@rEo}AVVH3%u1LI7K#f8eZFQv#MjMt2z&et@H(Sh2qnnlK#q;_r5d(@@vV*4+yF zt8v}NI)xYVjAE}x$}_g!Wi)7^qDRy|3L}=i)7odyy+ct45Tcm#tsfh7=TSC23oWfZ zh6HR%;kTWB{E{9s2i%S~ntX75^)P;Q_;_Hc4UdO5G#;0t;Qxm9`oqn&8Aoj|@Fm1A z>)JqQIY$~8!tt^^^A7Eyp8q!7c<^GU&@|AnS7-uvdKkQO(xi_1!fPeBk#nTXxS1Wq z_SuJqRylU_30eTI=k&i&Pf$h-FO8~1_5Rv7F6>N+e> z!u5%HNnf&jb2%T{r$?M`|8#ppjYYeeelrjZ{3O~l`yXkK^1X_RZ6m^4gsl(*JMZ1r z1)g7K4k%i84&Wes$Cge~85hYltDv~st;bDKet(?jEhugxUOqg#cqUhTzI@|ajiw}O z>omNcXQn{Ks^7Q>de!7wt|;@PT#aUjmV{;unV&nDjCzH#H9D1?KS!mG4ZlwFQ3;1@ zwrNh|?*#q?RG`71Dz3fZ-RwdmB2X1Msg>+>*=L`yFB>JK*cWEBE3I`nS2Ce5pij3Bw7?Bh$gG;z+xeWf+59{IHK9{Y^PIpYJF} zs#oT}L2M>};;SmhKzX;k_c3&NNDvvRd~LY+Na0x2QT{KL^5OR=)ZQ=qefpczeDX^5 z^C+7Ud=IxG`+B?ag(8)R`wI_56wf{lg-PS@x78iyTnysy_JeZY?SNH!8%9)Tr&*M+v z{MSKwHd4(h{?jYaq8k?*z2 z=LR-M|Mz~b%vUpff+PX+(EA`AP*mo#BT!M2ax#Y0#qoKF#};><*&o+D5qk5w8st>` z1=BYW1mc($mKP?z$CwzNtz6$ljuH6{56BkJv%xVbF9BFO#vy0gmF>y>ASW74$ZL73 z8avEsI_59@pTXdZVGoeD2yBo|9`yhSsc;a+3wN^xDXhApcoA2ZTK(>&MEv&`$XN|I z<^uaJ4hahgFI1UyRYtLTrN(tla6_ehav|EtJs`sbtlW&KV)>ps&IkMAie*2g*$i2j zht}@OC$Y)^nczc|0io1j2%*^KdcXprtwsP|l7!6cw75yHaV3;Ck3l*R2&cpCP#VMM z*gV6`EWJC!y1?SL78k(As{)`x^_mU`2>Y>i(Kr+Y9ZqYO!8HNI3w)}i<)n&ASz3y{ z3JNsqQ84kaWX2o*hx*~X1tvWNg+aUz&7BIfsPsLrQ1){tgvQo$?<92Q%QxqOl+UZA zbugXqrJ&HZ0IHhgwd?u4O(+Lt_p_=~D1&c1DYXSaS8;Qmtp}MWB6Fy|cGnp+(Qc&5JEY&@Lcz<1^iDy9Q z;c)0Ngs^-e?g=#xkVensWI8|2=PzZ5ZWNb0Mr#+dS1MEc-R#iR)|Z|SUr6AXt;7zS z+8k#UOce=6?@Nt|OS81G~X)Bg~-;a0sEZPdt$m($b-u~cwPjB_Rz5xV-3C6)J-sI91 z)3E;VOGtMkhNuW`zN#|ln=_ukZgC+%Gx8bkd;iLsL_y~Q>c>5qeOEteA#CwjFm$t5j@pf4Q>%Yc2n<;zh z0q<)(%cswknPf48LyGacJoqy8fY(c(=fktM=>jfXih-j<=D~N8NWY_@fYR)D)scRg zdWbzlm}q@Vxc`4(7KyG(eT#f@)3z34l$5&P3hgqk6nof*v*SzUr|`AXMPYJAX!Dez52*oK}^0|J#!`sq` zbgzD1V=j3c*Kf2GwX3)|j8 zkxJXWbG4~x^YM$Q&Dy%&gcasdtc6ybEx3ONa(SwP8li3iRfzqho%V7FGeXT{s10sF zT|W{77NM5RQMKOk@dFjpu1a13Psl2j=+vL=stoqgZE5v z0oG(?U6UVxaqh^O8xu&l~?QS)r+TE=_8Jaox=%Lc< z^Dcsp^QBXsiEkQgL6~XR+u+;^ma=SrvJlRy=9-9HS;%&=6S;6gwDuDq={Z|J(MK3W z2sL*h6y)&t{s2LxZ>eK}Ow^~df#Mu3mhn_VpoWJ>LI?$3Oj%tw>}PcWAgy&dMr+=4pbwPI*b>|yFcW3nA9l&ag&58cXKld%H z&kNM&onJlEw%a|vfyTmfT&TBE94@=H^-wV|tp(a=#|Ge1v$z1GOPr1TbIelUGngxb zH~^&;WvwKuY-^w@6_LHS(D`KBK)4@pOSi&x8S!0zRG7>siC&Oj%g{egFLKHCD)B!! zBEw#yRSy>CQl4S>-Z#6Mn8>p(VF;&^hx0EgQv>A=coeDd6kYvj8>kJsU=CvrrhyH> zIRWqoCS0%bA3JDuK80O;@EoMwfO(5ZBWdjvww|Mr?L^)9HV$SPCSAbK6EQ3r_7?Ur zFR34e*g&-c=mW`SmI{eyNd(U#?jhp26hgF6#S0LA%O$JmteWb z2!}W=NN1D0b0a1SoE<}gIaC#zcZOt7gH-qighZ*Z8@6;18KHcXh?*U#g(oj!?1%vr zYFQLqWIQLx6-mZgl}Cni!Whb{mZC;E_omCz}T#>lwZeDH-*Hr z^_B4ZKqCX(x4||8#u#tFE3iZUH~76%m|BDDM)dSIAyj+=9iz(gLH8+SE0!0RoDb^U zgSsk{c$Zo0hD2%{tqBSi^ck@F@R3HL-|!ac#ZDT&7+CzdC&Gk(KP@%swdBhNwN5IiW%OEHpsvLs4 z0>zIFNk8zpU^8%Lo+L0_qRr<04tXXHK;snGRIJZleoviKgFFs! ze~a|WYK$SC5LuzQJY>*thy9R-BDy2$KY}OIK(n%*(}4`LwX=GR3cX(Q___0{p$lck zKjf!=K>yUj?(Q%FwuL@~xee>2o;!HndRlmZ%nD$GbMAFsXrakETQ7K@;gPAWYBZS~ zK1fkE6YTTLu>xA;-`)pWfoW-0^Y9sHV!1}LyG#{Z2Qj-hma=Ugdj~k$JYqBNtfbJZ2 zFkxIn^CgLLCy$&vapc^I&D?|r#jc)2g(j_TJr4Vs&Su4arnAA8?2~nf#D0Yj@w#&` zODYQ2$9s$82aLa1rkPFPmj;8#dNXrDZ{UA{t9MB{*EHGEtVy~8Oluy~r_A}0*J ztOLTs?VN1n>&5*<4yM8U3Z`C!+AA8``TP&75<=qxZ21EDu-Hodp6HKzh6{(pUeUjh zOqis|gp7p4M#MMRrYM(cQl@%-?PG&2t-g+%!D4EGyT(OgI4-B$yu}Gio*7gH*#UjD zz&Isp=?%fl<;RDWykY$hzlCa4in(7tb4x@Olr)_axzX&`K}q=Dl$rmU_^)w@zIi11 zFCzKv0fw`ONSYf_@*^=ZEcww3dzFM0Me-v_OCJ0#EkUD5esABzfsc~>_9BLG7Bq0) zN-`5iC%#U&A!K96E*n~!K#cn`&#T0NYuv_H28z~cns+RHK+`w&6_OCStSAQcLUtE~ zo<~Tun)!PIY{QRMH!@KH&aZyoFdt&#l(c&91!TZWOuhFrgj}(nJ;6RbB7oh0fb3XH z>GY&jJX;;XLyVU_M1-Vj*8Lj`iIA2{MMx!$R#4aFp8Hm5+)$F#k_3r6oE`Gji_Qlj zWL`5Zv}|1>WIop)5;6&GC6Rtd!xOBekgeS+db~`7;dzy?R^v`(4-smUw7L0GX_Jyj z+7xP6QDWZU4y|%T>f0zw8Jp<&oyfHk5H*=dc+7Hf+8d5dWm-Bgp=sgji^I}E{6v+J zwLYGH7S@>Vz(LY~&D>}Zwtk2#ihW?7A@~waoZw3y{3=>Xks^dzVyED~&UOmxnbDgY z;m(2^i3J7U0Z~uB*9{s9sk2*nVYxZ|tZq3r0|%>@s{9G_Uk`~2c6zyDXCMP6aGmV! z+Cw;S)fV6S8Th#~%9T?Mdf2fgYl*u8b$i?`h`ykBD0rRz)9V(0s_)b1UZ;OaS0!T? zaIo@uNWi0w0K=|GmC??YpFwl2Xz2r2fmW-0I9;-Y^^@o$X>5yGg#kzJss`CKeV0}KFfp}Vinm6XYJ9S+yEYjgdL+JxFJOzqzl(V z0*4907*nV+l)q3kLw7L+Ph!qNvQv0)kb)Mrz``D-VNKnadH_c0!V3#3bdcKzbqB3o z>*uDn;jCgAm>63?*XEEPUG*0zr%hNfc+C)CabFJA?8YfzSE9ly#u2MXlIF92J{2sI z$4*tKVgxusS+f0P6_D4wdI^ePiJ98lO8#Z3Xng5=K zoN~X7&bZ(vqEmfWK>l}s0};yV)q`kFhwYSs@4Z0GK?%GhwuR4BpNkvrLwJZ+Jv@SY z;vxY{r|AmGinU>((~6r`;%Wu*>qx5BZXEZ=?2&B8;PVeMAiN}U?J=~xkT;Id!S)Qq zbm257j#%yn3@GfHaAAOhSdDgrm$aXnNWD#@iutXMBy0pB<5A704_uJ@T zH+Tf%5`54iA8`cTXS_DqA^&(UhJ70iA_Pcj3kA@M@Vbe*MpY(rc3~*H%lX|0X=HHA z0|c~Kwul6SL*UN%`7N4cb5<5H9G}QAioT0tAa>(gIv?~5_OZW~z6UbgK{^rvgkoda zL1>v+E6fr!*J`fU3~Dq9U7L>wPfTK(=FN?#$ zc-nL%HZW8)cP#~f#Fr#sBFK9Sad?(P@Snfhrile$|Ar_1QTQmHDyim=hRuZJkqv3k zAMhW<(Q;xj^4^CPQ;99$G9)zDeD5Ra+kAEfHxey?M}Xg*BO%0%{Tt|sX#d8*@9*1R zEdLzDN!f#;t|$3|U*77sk-iSs6-sgH0b*PSPh(G!*hWtdc0s6_fK%LfG4mJw4mzF& zPpyXfIy!ugyW-Uk{B`DV$Px}Esv$re&4UeL7y(Z{tgPS~VdgISvf5EllzudFz8Ux0 zAXcoj7&P#Q?Xsw1DW^480Ies2-pn{k^ycR`qLa9n&m6JcXyv6<`c^CrzDOm=A5TFt zwuGSmHk3v|gk9I@@c}%vn8E_Fn7vB8zdQZ0*@9g~X-o9FIaga{Tk4ta8(|6N<{Wrv`)?QP3 zC+9|KJK*f3E-aWc7^9A6-55)+evucJLUcmIm1OOP{>NstYO!-R8ykmS^9*557fes9 zVliHQhtv0f1fF~6sy&lB*%-oZUNF&MU@Des$w1Q!%CrPp&nzqfYad_H*rLSXAt3$N zlzfU&i<-9zi`5{MU6sHMmOxhyf%lnE94t4I9wUJbz&Qpjgo)O3?yKQf1E>_PH%`J* zmuGsF^G$-^W~7et<{4k5HHT@%13^C}0o!01bhbSPN;bDqJoz^w#>@}E!z0u=d=@DuEL~z8ttT+e* zT0mR#gG7d6TtGcpwWM<(>Y$+Tfa21Jr-NqBwyMD50)!=Rv}27&7;cOW%9v9*)#lA57^7 z1>3v0gbb{-cW!XfzVxFw-@Te`z*-Ie5M-b1HP7*yA7$(45Y>#C?lbNl*6g ze4Ke?<H=YjmUB(bQ7>>dA@LWSM4ls*; z=oz#)RVdVEgH2ru-I9VjSfWVN^t~(2t9M?6S5b^VI-f0A<&QI8wrf;Lc{L;WZEeC)*Pa$NXN=f_@Pudk=bXkw^?@Mpr>LDMy3kmSx{CkKc9>-2UkP{nlxFz z#)wJxk#F4&_&b5K6Uae9e^wF=zdtJ(zj&n318yfwejPO)-c^tZxzZ?pwLfb*Wtu@R z{;XN_@ceN8pg#-4NHMv}BZD3tSq{W3R$`VYk7Y_>E0woZ%EL(y6upMNxf>@^$yvuB zTQG|iWn_9ocb;d%p33kn4sM9>y}Vja3+7QoP#XYymGIncxRn&TRc0^WTHZx3-dS5xJJWr9 zn>q0t9Q{%8Wlo+J-evyJW2yoGK6$dt7=jT^C(spWxiPxEjQ1Sl+uYLSBT(J)Lqv5C z!8kuhF=4(|qkav^0tsKiD6c$o|N? zVpazR$Eqn7YUxn1r}}P8II;)yRNsZrFA;L)(xjh?Dp@DZygfpVg#N^Gtq@v&CQt#B zC6hCY{!G3U`ZG-w*^y~Rf<;MBR31snBUyRy`RRFzD9oULa~d8ze)IHjh-i)yH%kpk zn==rSUd+ZX$on2PVs+=n|AHSkt+SRjsy%o#ZI0RLuG z53@V1_Ux*Aa0_8YipKRLw!q2k8EkPUd}dAW#Dea%8L|5_C?6rOrd2q|Ez~@X@5nL> z?x2kFF)F0W2-f)SpxrsbAU@YcgE&qFidR?ppr;yxG!5g@q0zE*KbB%HASRuy3sK)D zPJQqG7H?FM{N}a1QJnEq8Zbgt8N8~eLs`RZ4NqnTA3&d>k2PYID4G%6U}VPoz4ly( zdHx6pqfr)M92GjhlOH=?*Oy!)V{c zSU_%u-T`)T`en(*1{PotnqbzcwL{)Dz|PkiCp_>hvM_rhzw~ob*JNlURu~S0S|wT! zyC*ZH`rI_m4QBf7FGI>-(-y%bms9O=18env1-vS&f}?tj-X2c6+meTHX>|-h=!Nc5^*0CN)`$ z43*agd6b$^bNQ4c=pD4e&c#JjkX&^fRs_>1E;?Ji-3+Z2idbOWe4aLgsuqgXrl4!i zYGyaBma-Q>DPyEcYR1#26v-ao(4YmYGgnK>OVDn_JDfPxwz|jP%FBrl#_3woex+UP z7c@A!3!KKAtStolMkoXK%ducpMLX`wD%4dC>Xr{GX&X+lI{L!e?YfTf+^H9e3vmBV zKIT790f(sbm%|gxBOPHn)4Huh_Mv55#Wi+ z2zrMzWEBSJU;3?ot}4YTX($Z13bbkw?PTPgshSII73_bl?m*S|tOu&B)_1FJwhmOK zL#m%yC?lmR#kxrpEdFgtF#(pRl2NZ*rw6sA3{E9qw}e%x1j=V|-QyNFtO zOD^_}-4&0}tMrpDr-G&?bMwmG#m*V?{xV?3Lim^#-y2a)N)nN@>AUR408 z*3L?uH#ewcg#n4zheE`AjpW!9>c=KurX!ziCBjcP{>^O?tEXRdO(q=;%_F_0Hdt{Lae$W-m#1&$EBx3qOj#XuxIF#-M@#P49qDCs;nPm`><6;I{J>&K)Qw5 ztT;Cl78oJ6HD~@MY^xp%-Kya%Yk`!L+uEaZ$k*Ngmh})ZE8R1Tv#Y;O^nPIm(;t-d zhZ*j-k+Ki#XIqQ2D|^r8aQS0nhRnXnm$-(U`Q%SA!>C15>T~83G=(y8ra9RxCqpuK zvci72M%4T5W>9N*5H*oua_=vo(Tr}8eDoviy*6p2oV1RdyS2k|ms9S2@=oO0JR@h0 zeFio$5Vd-9g?{Gu-Cy_HEhW5cGhsHWpqhHE$Pvo@Gd1_k-xq2b!uX>2(l5p!1=Tn> zC=Q$gSI&<~MKJhsU;|4%H3tEedu?yP*yCu)2@xd9^PBq&UzqGWjM1Q3Lo zy-mPd6nXUkI9Pj9hdnW>X@p0;k0=?A!H;Z%X4ZA?iD)`~i2}w_x*O@UrtoO$I7HJ- z=v{$d&gr6N;r03ZVT?{VP3k`Zv~D01Mt@rzlnw3q7a?NGiLhcBRY z56HWLp=aZ<2+x89#1=m|=)y)&j!v3A1^j)h93%F`Z?ItIZx|2i!okRuq8Kv1t z(Cp9Va-z_*5ay>jTE4&T)k`{`G&?y03GuSM3zT{vffMisFpombBUs+TpiyIcQ;{X| z71&BmFKNicYIB17UbM0V-?Hx46Cr`J!_9ib4zB7`*O8r%o2? zL3J<-ErgBWY+%}090-ji-9c;X2jCLt>M&lg?m}V=SySM)jJ$ya91@%h4456q2b0WX zq2k#u|Me3TRTu!3N@95f&;#lAV%Ky&%yiG-+?ehFInAVZuuKrg^zihbh)mE^VJSx; z#HjubKoOh&JOO8u;lT})6E>FUjb=0fOe>uwI3?eYs!-4O#OhfZmzgN4My!~ksT|W$ zcPIK*+jqTKbw;!C3bATHvvGp8T3-pSH(<3JD)rNReK9+<^*kSdmO&?ARE_IbLWH>^ z=Pnr6UP}<*fD(4u@&wVWg+H;^wrPHj#qnXJwS#f^81Ek-ZOyK2np^O95P$VZ zKZWPlU)iSFiN6#0i^pH|`i_;IDU8+JH1WKV#(G6NuN)B3oH^VBM1S*H^4DNOn4!n<(RuoM z+dgb|!syZBg0|&e0?B4IGnl z&amxs7s9I43*+~4BX_7P5Vgnh@DT_;eEVL1ON=|QAya$HY^~eekQsB!>=?JPAyaqD zY#sOg8+(;c?9`&H@zZ?%93!Ds?*h!;9oo=a2HreX`@nvsNO`+K==Qk2jVfDcK|sB{ z(yvEV+F;uk`jkXPIxsac*TMGD=E#6pouqSLquM`!aQa*;hNZe>!DKhF6-nqM2l|EW z4)wq?P)Vf+(EMZKg&6lbZ{D$2RXAY(L;i%nr9#rDG(W2&#}H}>nP%|wC)pDerI%jw zB|FEpORP2qT`vJD>IrxhtlF({Ct(G^ZA+eNYy;F7k%HvM2`-jT}XGnaQ) zE`cmBo)1F3Q}|jw+sk6;yvRVLW6)8&bDoF(9`riWIej(i5K!~O?VbA&mK_%$U>8z!keR#qzvQ;Rl18+QD(V11GEK0r@uA)Qw(rZvQ%E z`XAP?R~!IY~Aq;v{a@L&pp;_mDM=M((( zO1u_0J9&5<#;UCt&hY@5s92=a?Jf@XmwmgBt2nn2>Jo0(^qMrw! zLJ-5?OvX?Z$PZD1QdB*Cs1}vW6E{#yq^Ko4^81l&Y)c5&oRvJyMx`meatngu?hJOo z`52ObsRio27Geq#(s(H=1RtaXA79`GDMX6F}w=175y9Lf`8l zKe9~Ya5$XPfonx_28v``6-+a;IuAy|xe_S~ru}pPmPo`$m#tjg0L1^VDa0DVMIK)T9B_od;8<9n#Oc!lpvMzDcol+hZ-{PC(W6+dzl$zUQqbdo zJa;;wM`%Vf?2cv8}} zp>g_E!v|GwddaSVeR2|;&dKK zJVxCI^hvyq&_|0RgD*`1QUzZkY2KN^qd%Mef4Y;W4eOwB-qVp4Bf-xDSnpdDj z1u6|WJC7sD$n;;O7fd81V-G2vxM+kqms0R z7X!M)iy6bg!Nmu3a1Hh6(}5Ep{b^?p(hFesA;*2^9ATT+&esq_c|Z6Nh4eeFrm^Xm zOZ{c^)`b?9zubc?@H$|xEH0*b7~vqCo&1Z3`4<*%U1;%niN2u4EWp!UNH20GW5N{3 zPK04lK?t)yGRY%Uvq1iC8SqE(RzR)_QZR7DV}Z*+d+0W?Eqttg_5{X(z!BRFixvfU zl0MM+2F8Sz@*jMN{!;R73+HPEE(Uj|P`)#2zFUw_+?`gcNFFGkZ4PA*zDSfT_#$V2 z2KjU}$YXhavnr_Y@#Xe_M88fUyF+fin-gMI=fkVgTLCrXROr|0IfR;1XyPwLa2WmS zbcX0x4DMEIn5xWog~dXB&MpI%7nMl(QaO>J2EPchhjm7w6fyE5d>6%-sR)VhVNAv; zAZJ|&Ji@@0D5qHdb}#x&41rDYH9Y=u#4A|ue3nPVQpSc&H=zQW~c{#Kk+E z-y#gZI~OA__MkIBrW{TSdZ0)yp-6R^OHt827byyEKSwo1O&ez;N>Y*9_SLF4#nP=UmAV z?Grn)yNyN88vc3`uSL$?Jp4Ao;%;o%TuQ*GehjCxhm+svfgt)do+<&BI403RHc}1h zKwe6}PJA$IAR|rpBZ>1>oPN#W(2PXCwxb$OzwA@a1)a&sG=f)ArRp+bQkM}YQj}4< zizqB4NJUl5koRo+puYC<6Ep=w+eyNgBo9@qF^X4gbD7{Jm#*QXrgk$MB@YZ-yE>cX-m`aMIM_ zNe_pU%t&%};gsM3?JZV-qsdISJ%5c(ehbQd_C;fDI(wT75 z#^FgRDIqYHA<0>e*XT}Ga3yp2SIyzCzBxQe4ksm066ei{lsYRW6H?Y?0V%_g4rdRK zEgur=OuLb?E=8oc8z)g8KtB>%-RlHe@o%xJ-SE ze?aTcAUu^oSkMk#wnOYtc>N~A1lC(EhOggPz&V?005zxe?5Pvz*)2Tdws1yTz_Ef8 zSL>XiW~@L)(nHXa40^@+gU|=Tom{i<23kO6=J7H^i4HYYR#T_)f|6BMfWxfNKcgyl zT|)m(0z?=VaM6v9?HiqEpm1==ck~cQM({TZ17I^jK-=*{$m+Py&GH_RyO5xEdnUT| za|E>p-TZi~4K`pYrhvg}$I*~M_%E^E^blw^g7_@`8LF8MR^dPL@A@udUwuZKu z9B@+z{e05cMm#J$mF(l8<5mpkr$}*R-bP&vJ-(sqkJzW~z~_w!;PV0gi2j^sZD?RP7MmuF{M%*>VV&P={7vMA|AC2v2Uaf&b4?mll+Qto1`6@ zuCli{D7W51`$vHd-$5;@fnwDej5UBuL39O7Lw@k-#)IWBvrkgxVAM|$+S^k7r3A=u zkIfi=s=p9Npe-;`u^!wY_<^*Lmov~H@l7h?IY!u}P#&tG;v7!4!Gf86~<^+p%r8dgL`s0g_X zC4`)=H3gJ{Bc7Rf|Cr$~Neq~T8e$O1A50CcaAF|I6-$Th+rh=+ng~&jaaGe#CX8Ez zS{L%dq)DtW!Bb(2=`XnP=KBA7MQ!oO zNE*+-qfBIi+2T2c&}RTH0#Zc;q~nwj2C3)I$h)7SqCp~C;1?AW$%A`(#GnWbeOj?nYbKIPu!4bgBxs;uz{BXI4F~A`zuQ6B3v(VKRcQad}&Q}1# z%OYXtcQCb!QcN7H0|Tg2K;a<5bbLKBnvUh zB^?%Ao(QiD6*;JjF2MK&Tn%bOd8``hmVM825QQcfAGG6avqfn7v;1R3!ahXtT0N8eQSTe- zo;uH>`lrT$5`*p_lp#{7RSv|DV4_wjkLlk}jO5c#leQ3k04NMpZ zt$8NlfkN#0DO!ujT1Ipg{SA9>YH0`ojD!I9P$S_LL+1nBgM|L${P#Mp)){8U^8bWr_X)3pH@50pfGZ`1+g6NZE?_~^!n&@d1NY*(C4aKOI& z_^Z{@_(vef;}CR)#=o6gdk9T_{-i36%{eL#DA@OvjXx?@$6pO${Qq;L@kiuWI{q}| z(J0XVuN!}W9vXk8X?*Co>Ocy$PDR}CEl!UdqgsN)ZxbT$iS8=Vf( z6nkgo3R~+!laH)Z;7UTd?_ndi(E=%;J1+*vx{IDga$5whjcO3MG6g~SMg3AV%Mzwp zbg>XFnX*}|HdEyT(Ig{`ub04EUBL;30&CblL1-Ec-mgV~^gkQ!(njxdZx^9T`TqFFp72{)Tu!9c(<0`dFW7ICa2f!#u ze!Uv%mXH2s1SGFRTf7I ztw)noI2ZQ<1=pQ%h?80Es9WTIO!ltcJ#808epijv1PvcXY z3L2o?7=dyM1q%%vrA8%_7Rh*j2;2Xa_;f9RQSj-Hzg9xsGD8THdFZ0~T||DR`1Iw7 z=D!l3Ch->Y#kBhw1&J_HUNzWVB+sTGjTF%73rMO_8L!X9C%(MbNAY(!G{_k|rto(U zMQYBC!1K3X{nPy2FQdujFn%)x5Ak=y;L$~ZXa*1}>vxlrVf?p`H2#SEO2_}pk*cp``~iAs{FSEh@&9FH{1N;@Vx*2i6n_^Qe;Rw6A$^Zu zv%MEux(xkF{xGckklu_w{$|>NH!0UC<*vcixBiTB4}^7phN}{5wUk>SJes5erf4N8}CF8Jbp{tB_1d9wMLHnA%u`?Gq)z@fUo;p8hKdFet1sw*Qro!2W zl9Dp5ythZujVUk};kw>@9LTL6XU%tQf-gW=WNRy6M0%w)zp~P7eUPBqWMplr znU!pM9j;k0NcoV&%UN2(<*cL6km334de^raOf`qxXM$^|(|wq0rv%rg1lJ~WVLcIo zJL#(BZqKWvf(NL$&e{#SO zS&Y2$H*uO0hy3%gzXMr?{+wv2N6K(b2fP4X*taQ<-az1{%#y6Y{{`fTrgxzCm9OP+h~Id7J;R4N~k(!3dZ zu~+N<6q}u~WPKsMRE~OA!0I9^&7Wmng=(Qc1^9dm7zZxya3$k+wd)%E{>XJJiz`AC z%mm$dI@y$I0UDV4V1?3yIIBHry`W^tqAW;)XXg2+0lv=-Y7nd^K6PNlHk@7Dp)FG3CbuS2kIpy&^fDhkg&t+$g#H22kTym zRHlSVP?hV^QdUPEnDIGIcLHG?rXqP|JoT25w8dyG5E}hjg`M}?y*arIM>t$@(u*FH zDf)0oMC_EVlHZ0FC==yc;L+ZoHaz;}s)! zV+rI51yr)u0-Wj_ZA0W*6c52y0I5tulMeWOump%>$Pz!+x<4WhtKnfQE?c!^rrqos zy&9adu84)hz)G_M$+du!#Yq)>G)u(FmRuYF#PWtCZ6#86OD?R`aJL3L9NNrft4c)Q zG`O~7IJlpIvn~rdn}eH_6E2-%m4#fol7|2~@zTlgEqr9^#CABQ=JVp}=kXTObQhT3Hk8wQijfp|Xo}C`dky@xg;GDR;3{u}rF1DOIeJDx6Zq8brpD^$u=2_iJ=KU{rLvG_*(@q&R$ULJ7Uo01mIr z|9_Z!7w{;{JK=jKGmrsBoXh)STXQX1MV!VCvZ z2I7-I9&ZM4>#5yVX;)i!YZt5*@Pr9i6NRl&*ouX=sb#xQI<$?-t3mTR-|v4vGa-2B zcHi&%-s`)rWS-M~KKxJj|4=bgPC_zu_PAv4QiQe6KTkqohMK@TBmRpO? zu2M|<-jhpL+2fkSmjQ7Jtt+G^88qhl|FCy-fW~QQH9Z?Rm@Sx|NVi9NvVeyV>`A5m z@PR$)ah39su=AOD(9@fcNjQ5*Qj1hYfy`9J%;xde5`WYi-p_HJ29Os~f&j>w8bDgL zycRHaFw`_Naj7~?(VqS0{)LvWgyx zCT94e#=QO3y?Qa-yNh?$y^qT8roH<9N&VZUf1lC6z54eMznym-(ZBy8zxV!%-(}Wa zN1e;Bx!C979<4D0c+nXF)GfCoobK!6-5EF#$-b=MB~b!=_T{_;z3Z*%e6*)ZA?Q8% z?A>Ib)6TxtdUDOn)ttc7(ynVeo@-uYl)s%^HP`bF56i2{AH%8Y>&vHe^}K;E>t8SD z7`l_Eg?y_#d3MEkRM$5)z;ZRmv_aqarsn!l9lrA2fRb6IXhQE68%khVYd1K zjm=EN7L2O^-D3q2Irs=N>Xvd=Oa@g3%pdjBcvn#u^A*}8!;fi_*>xkhu?rofZIx)0TaiB+-wMt)*U{oJw9?y%$$FtK z5lRKXS=p;L$w8fYqt7)zS?!zepesDz_-L_Pr##b8Rwt!i z-OB|7(h5y{IJqcixg0c!JIpF?dJ@xX?$GBrdY0vLJGsvKypb0U7LloN>XgP$X*8D+ zQDs?BPOaEf5WfE-x~z|O{B62SQjDU@zH$CoRGc8m{5@p>>7$*0jVzTw@`?L-Dtc4M zGanRMmNqkGrJhZm)md8e&i)aUR-K&#K*lX*b5*ns8coJ49pItXGViB+`<=(*t6c=g}qjn3g`6{(GDm;=dJ}|Hpqn8YE)Rxfwh~;ym z+xKC#3TJ2R??!y(47g)g2$;G&RP9F{K*QN0sars6)ZT_6WMgyAqLc@+#F=VM!!|U# zS-u6$IZK*d*J(67o$eO)#8wn`$0k@!Q>><`1E1g(xHfce0XMM*JkYADj%&XA(mt}!Jbu28N;_`Z^^YOf94_Ov7%F~=v0lILifsYHadPvs!SzU zpQ+@Nx>?#0d}gnHNKL74T8SwsLU{-{#d2bXs#>VFKgh!(8FfMy=EScI_r6SYR`h*LyYV#!qWbj)QmFbmEi0$MQ zL8w+@YHF;7TicqcBb-BG(Gshv*lH@bnyRd(h1R{DlCbFpt7*B_^bM$_lYaBYVQ?1PwSi^u?_`gUGxu%b>iTfNwiq*pK*up{S)5q~ zvefh{Fu#Pi2j%hPhAURC$$W$>ay}|~YqZN$t4*R(Q1p_qbCWCvH372`)%_M=qq}fF zF&jOFy>0_-n^yehtW=)2-cnm-r!`n5eoC)ciP6qnfqp}PGI6r8NxoWDxRofNY?&Nm z>(l(A@YNFu6mTaFd8+b-g05JZ-Yu14=~!!zp%}cr2qEw1%vu7+oP$ksPP2QFQH{Cu zuyRW)Jx={#J85Hmz$zb4tTd-B#!mE7o`SyO{pi;Cb1-)luY3`IiP^Of^GS=0NYHBv zj4dnKQ@A(!nA38wgS5zHf2v%@Mmp1IE}f1uC(+r?@-s}4s78GF%xL|$a7Antd-;7R z2b)XG_5|&mmqj?SGYAI{n=&KD&V4huaGaWDBQKyvJ+*4nLws@Y4E#9=#pl*b#epqn zz=|xR|MNC}@x$8);h{D?NFzXa8u7gc>B+iv;Es7R@2pkrv|a6!%y>;yo1T%IR-3c% z4{zyRQXY1AswS57UKH+Lb&j=FUKMo>oDY}44)|YqNTMLM-`KfThOOu&!aor}$|q}> zTV0Jhh;CE$DRUj(T;s`7clhY4rRLl2wVyIKOcVdE5nnN0TdMUF1cB7x+3$(?3OORv zPh?Jwb?erc8|D(PkY6|6!QakVGd^nH0d!#To&u*;PO~bf<4YuUWnI)3GQ6>I;OjIi z{Oi@@cr%?wr%q-H`r0&?`L*dR*&($_nr@X|uPS1NPKBjQi(bk!UZOdkWUh0Q>+!jr z@~Uoink`WHwt7)*eUyxacnTUe*9Tm&P|-`-1wjhDhq*U>kIvxF+!Zz21r6cqoN-|T zRom{8x%PKx(7+x^a^p$uj$ostsUD;&kyD|P$%$!D*Y{peC2Ky4jRRMRHvoQFV`Esq zUNu08WZ>NARJdevOCPbIqzL_+*0o2&n~KS}I@c~?KvLrzJSlRB$Vp+|aW#PVq@Gos zGST(JC@COG((~r@MNgX{uF!g9N}~hCY}^G=`@f`~?0^aM7_v&1W@ArgH*CYx!WXe^ zrStJiqV~J=*i00=8e>LL7r0ptGK&Z9=GRIDLy2H~xzj!rv|ODgBc3SW2ck>%T93+QdkW_HZY zpOETsX1FAX|KiOWnA00eXRww8omZiizF2eeJ}E?b!j-YrVKr|AV$H+hehdu2MT?|1 zOAAyHlDKAEC_xfoOA!b^8!I8>svhFrW@_O}wmz%KxovEurug?T$zNLzVLwJdmQ@*q zZqeKX!}S*M%mE=-N2pD`Qq>}_$bV7#1aO}Ve+MTqR`W%EEdg>;5qM{j*O6)AWZx+Q z7niN4)K=YIjri2Pf}(VU%%M=Cz}WhI9`WF8Egn>5d4g_c&G^n+8X~LUW2j@vdB?1o z%KsRVkDBn1fd_`g!+2OQb{v2uXMQ0Xm(46fq`=FP_qf^eu&96h6$Oih*wF+#LKyc2W7Iig3ON1&45?^6J z9js=ieXSAYP#QS?2SVf3en`z3MosBEp6A{=O+3lVaFDDaAtJWX@5hTjk~Af>ya1@S zZpkZ_!HM|76$LFnQ2S&aMFvoim}T}LgcUR{exg+62`CK$|K!%%KPZ#c<#md8KH7ZD z*B{&Y$hx&EePziF3&TwXEsv|3sZjgZnWx8WxTM*OoUHXK$fBOuIs9MBKPF@asY|TH zy3|L_(?(*Vc{&h3*;BC&07pC$GZPD4sweJI73-o_MT_l2;wtcCVg}@I z+9(;uTKnWW$|tJk(R@*JJ=q_Yd5TR?ZHKtd7a4N8VupicWp0{%s%DysPDfEL{QTO2 z^qR@`BLI$OUwTbGl$-q{9(weWC%bE4Uk=FIdoG^DK8X`VPgkwoK>{K1D)K#D%|uv; zk7OXJYaq$*iv1okOj$vOTD#s!zk>9VykaD|bbg?TKIdNzgD8#L>*%!`KvrSeGnF7;B9)cV*l7o^0Bq{{*mNkCHW&G z$&uZ<1`g`vxtZjwhHsA~&z0ouBgvT^*TDBkEqer#z`IdBgsWPJ0S3T#s2Y`6d#{DzU_=a4eBVa5K5nY0sY?aGm~6D948k+c&fZQY9fMkcLMYhOH)){wOR zk+g=S{e)gE-dg+Am$D18yWcAb|G*2Uy#W%ct$N4f04`uv#6r=6#ALIZeJ^xispWQV zEMV-yaI~Q1zecmcQFX6uCM`?jh?-Sresu;o`F`=5` z_&BTP2CHVdRr3u%0xz3FHRVJo(7d-u)-`F4ZGK{%C$`W@Xz6g;R^oVCWEW)W$&enAj@dd)YY_U94xHX;W2*Ek(>4qh6gKn@Nykg{_kaK5P} z>aJL>ec5t~9%Fy4UTPQ0rco#!k>3@&;yFd>hNyjcIirGZEQput+ooO=)9N(FX#|RwV_0De2$YLv@Q@U4(V3J#;vF*Ab3^|D5|2s zTJOabBe{*8y--~U=yAf!b)7$yK)~)Z?(7!th*g1f8Lm1$z`jA_dC~CRC(Q{h@x=wbOPA1t zKNMM{mxP*bU_@~hs9&ct4ECq9>p*SlBAu?|A$WLD|NS7!CW+UX4+A7U`>nJ{Wz-7_&B!};Eq}!Q+{er5T0Xxo`p`&_;N<8ysFh-%K zVmyB8844{5a#UCY!9a%~w2Iv&0X=>r)YbBh0M%xyd7dtKD)Au5T>+E>nPa+?d{ zW4`?zw@BFX9!t~JqOMNwjN)*2V(5vDl4P^wsheMG$4FF{+`N&Ug<#UYkw>*#N+D-k zj~LH1=QqCbK(+y*Gk^13WI_^t)qH#^33+%}9&VoEF*?{9+!b&q)R~$+RpS4B0c0yb zV`HB(Pv^#_5T`nJxp{gV$Frx$<45%Lgcw2~#AD{^bMPT}dLqR6X(QewIC`vk^EwX* zx^!LG!O`(bb(??_bGk3zgSu+$$%puRqpz{&voQtMaX?MRqQN0DWel^>d^q z=e#!EfSBgK9aMqzYCTmGEo)I8KPxeu($cxdMA+H(P8Ywe-sYTCY0{j=q?$vyYd@E) zaO2g`(~WoDE0Y!C;ZWayG+B|(-v4{D;@#{$aW^Vbo@P&z%5C;GP~n$9s6xUd#IBT| zT>1HUYEpx}=UiH^Ngv%*8b5F&ZGg}pZ~j;s&#H20e<6PA36Ci5b>qG#`uRjCYp>cT zqo|586$#>cd0ro`^{&{vlu-;HjE^_pp168e^TcaY?5;sWzG9rQ^Z8|- z-euOdeCH)z4J#%%FE>6dS>1fQjBBir2}{d_t(9Kj)Nq@8md?n%6fT+=&U#VAfz}l_ zyW#dQK+u(2C6kRko24SFB%eDe)+!;qq;8Q_GDYQ5e1k5YWp`VJe|*I`oO4`3&2Fjr z+Dy$g{!Fzs=bWjNhM!}mCekrKC}2gmCwvqyi8_aqdy&4^D_isHK!8;(jB zjftE^@f8~ro<;E+HxjiqzJwyjn06pmCFjhat7>-3^%8*20+mB^O?kQ~`}7TY!ur8US-6>CUM(^?;g>q2$=8sja%;~ z4J&$Ms05F$+;3d(zQO2d(|0-Fir=zvz2__O_{R0#8{^+Hc9$@>H;t1cng(O{`dl1T zs`ET3SeJ}PrP?#d%>-ljtT7gTb0QM{6StXT@rt}EUvw1Sv}Wg3ST|3`>!|W@T2dUG zE0ueMKaYT1mROGzFms*e6n?M6a;hF_P|)*Bx{$Mg)HRYCOv{kyzBmNbeC$1Rv^tC* ziMR4Gd|IB5rj(y8t)0cKRv(l1;&6RJ8Qh)l;{=M=31Yu^TSx@zed$P4&WuRJheqFjjw>TFG;uR2mghW}3SKLXMmy}p{o)Fh$1b7K% zlEq%p-~@=f%Bk`6WfEG+r(o}Y_=ad**rCrT+-~8DX5iBd8|8+ zlE=xZm7nwgD_v62OV37Zmv!e6QuK86^GlDU*t|@!MtddjGSebSrJj;hHMhA-te+p^ z&MCLE{2E*JNI-Gh)2Dir9)Mz}TuYaW&0^xmiWL+YFn=n2p46P9cX{Mbvc-2tQnJ5y z1z|k{k6#sN#NNpWX)FWK~;xL0nEac9WsO} zDKqnW)xKCaGw<@cQRS-I*N|<8b~u`x9Lw+J5HA$r*US*;%VC z8;qDq@x0nm8*CigLR})CG*kdiX~4h+12E`)$OhBj1u%GOh;v-#=^gk9Gfq+HMEEkP z9?_|Q9W??c_IKM}^Hl?Zvp^Dw-7Q*A^QG-ssBy}H8mvjcMx*(*3@<128oXR`CgBKJ zQFm;=pVwCXAY!NsYwhp#Gn#!gTT7Me2dz6g<(z{X8jvj(k$U4N6`CXdQhkQy!~Y^9 zIAkq8(RR9c7D^mjaH*9Rhrr8oT9!dSB(H^EZUTGnDI0Fi(WrY**}EEVdt@K(A$|pW zdJo|x+0%Q<#>zh2Ll_+P^q#WuvJVA?FP0$^N+5Y1_(D4J5b>lG)4ceE2s7(XnO#qJ zyp*i!5}(Y~gy%4}&8GG6O9VAkzU)%+v6O(-m#~I}vdh5g_ahQkje|%8ENca+Gq@zX zYDS}zSF-5jHqShirpvI=K^N}aktx>e7^Kk%lG4k_!9qXO*+ynaqp0&_hMdo4wp0)z z69hgb77nM7f)in^GdOX4dcLe@Id2%YI)kiL!WCE(i@K8Y(#2Ly7AK9;waw@YnH^2sSm^Uzf@z%KL~7{ttovOH2gBEH~X!qx~PVDL_hdFrO~* z3|ZC3ntC#Zwo+L_)iaB8SOahrQiNoV=_=veoc zQV0pdeX9=R6~Ayu-6q(!ZJ?j(Vnyb_MBH6#50JCM76li-cR(|U~Q6iF~w-J&L6?*-xHui(hErp!~n4aCG_b4;lXt>fDYer zh2SLdc>1y_CS_CXIa7kC%-VE>dNe(g{eJhT?-)^*;W1ghpP%_|w6B(ZInoM`yCPq! zsGdo%;OqoWA(PK8MYkRbv#{l2Kn5#@<-Nd+e`2T9AhI5YZD zdWDclCKY7`fs6ISa@K#5y4fp6%z`e;EO%zO7C7nB;4(=kiG&D+ACvfzUi0?`zOa>q z$VB7w>^ui0&*%}X_m_!6NNIrWAw-cX1vpMtrJ|XjN&|ZQ7`z*uzGoC}(a4Zq<9rP? zHV2AcN@_Qfjiv8VTy&~aC@cz45}lrVMV?}5t((q!g=w_3YES3ALil&yCG214UBdXG zo0#uhgr#e;=KHg!XZgC31kpp@C%utFG(!Z1Y6<@FeP~^3G3Xbw?E?f0D2tAw0>qm= z^w$#R#LY4%@`q1=8GFqk0gmgB07QsoA+GCB$mfaK&rdm@$Ibx|LQ9Jh-`8|)R%<^k zaMZQIRNhvR^)qTjC?1a@&?-^w&g#F6EJ^dmL059?Tbbmn&~SR{zd@uNRnVS318EEbP1MU3a|D)ao-9{UWNmo*fgAxU)yQ%r6IBX?;3RV=>t_l5^75yeu+DAT^)&a*B?V453X@ z6IGk+hjeise5fVd@TB<}%vw$g$kc=v>ZELDI{qJgoS6Oii3|+_u*PhGlV8W9!*RIi zfK#MdoR^dOS8!=P`W?4QCFVK|3O)}hk`_`VCau@+2|Z2qf__;qB1q9b!0UxJaq=zA z15XZH8cn~4XMR6@qIWv-a}GH|_X_riU+V1nD1a!QYY!3ihXaE_=2e5`JtT1)NwuAR zfi@Z29^tp`^uNn}k^>L!d->h4xb5^W^t(=e!!H=^gZkUk@^0%>`o5dr#An-1@8=qu z+;;kaT(56C{R~&5<2(FD?T-+XCiUq$&LLifwg8EwE~~3cz1B9MRVSy4YGlEPe&pBj z$LQ7aMrd;yYUv&gT+TLaNIlt*dRA|anG~F=Y&(5Ss@Zlczp;4RX_1w-Oldp)GS>uO zwS;1N+v!&%ReKM=ZKr>&@Bf8gU67`SIMbD3L!ryDAW7X8waqAuUQBiQ4~y1N(t$61JTd^2TTn>-*nuAG^Bk^zXPP?r@}&i3>84%l6Ftq-!S+ zoGW!`5FJh5(J8XafiyFPX&R*0z$tzENg5;Kn#o07T0WI&6DL3ph`@p^XNfaX=ouX! zy+qgnB8xTmNe^9dgJUbvJ&+qqzq$s&McwN2TRSr=1|(Yl^OqQkyDw8L{DRB zDp$34im(|viBM&wknTffS5T8oa2)vIL0<}3-EUszx=nkh?40dQ&JJ3$Av(Ycr>vWO zR;l0o!GpBY<#ZdpEa>BpN1Q%y|XtbXeFfYB-jgyg*te+8faj}GLG;Yi399zN1 z(phDw-Tj%Uwc(?%kxn(v*si)uRrizj3U!yr!C}G2TU+H0U9oe`t6lNa1T9{VDP^E= zNT@&Qt@#6)qbvY&IFze}Ly<+Nsf6p~^XRPx5AAtDz@($GoVuW)7A>-dKLJ+8>Dy^` zhD)(65dEN4CXC8>SP#tf=4ZGRhl|zr(U}+?Yc&Tq7UXwsgM$IIJaj!+yotFN2SP$G zWXPUiCQa_BDWZIqB25s zA!Rd14c_ zT;Gc=+*r=E;MAj7qY4e^H1;;!P_dL%G*6B1bfjt)j@l9cw7DW`UnbXCQTw9Iv&eU4ZH(uNIf3x%R5?s8p8kU;)(|gJ&I>Wc z;^{Z?v`2HHJYD8I2~y`N$deTKSmydLS3GMw3uJkkM97Tnf8s4Rl>^`A$`m+@Mzo>r zUolrJu)z~gr>uTJ`ePCWX~iom*wV$6N=%9Xgbt|58v5O*ppwckYw5gdfH5;iB| zTjg*wK1NjrQ#q9|{P?pjSjx`m!zyv7Ynr1bw3W$H&MHaZI~Aay+~r+zJ7#$|m#F;(85lXZ6ye*zlhBHzIxOQ0EM3LTnpz3PCE>O4N(jEDVX}ZAhhW0@$vVM68WTypAlO%rd@R$z#uwIw zw>)$miZ>(-S5A%~DbYH_(>GM)Y{SVq-p#>3ICJl4!Yk%b+XfM`=20Z_*>> zmu!B}f7FgUFS0q0=!F=yH|Q$#HrDGCf2(2!FKP#}@{>W2RUZsTy=%vZEBtH6m|w)` zUggTM`$y;-v;$|T!Nzb?-m39Le)bS!xo=IK#7+hk>SU2jvPQAsi3LEX4R#@5K`4f0 z1uk-~8Dll&r3_As3u^++u0_TyA{^!cD;w+_5>mcQOVeaAko@)PmEl)be^eX8pa1@L zkVL(rKVl*_nb2RZ*c6rU6-M(4oASE(!rvMM+P;#~z>Oa*4^o;^3-3qr`@R zJ&HJI^^Lt2(8XayDW}`6LgIRlWwessPL?3^^?zl&wm^XVUE}pt6251=zWF~KuPdCv zV${watlu!-|E~s%HGT%ZiOE5L34w$}TCw-kbKebP3U;*P7-HawQBHa)WZ6uVL&NGI zrYZHq;a7~g2iV6}X)Qu3)PFT-_!E;t3I+#{0TE#haH!xbJV>0((q1ffpn`Ws0^R+& zPV%sn+AGV6f*>urIHRl|w*22M^Soew)8~$3bP^1|vT7d!jttBi1+LDtUs~@py)Er} z{=4BdsMkjACPp7Su}Z`2AEfl;qKn(!$$a$?utS2z&g8erFQiP(vN*51)k7##~s)_e{c#(gSA_(nzbB zgmRgL7e-Hl5c5zmkAwBzHvs|5|9GY6;F$?Hy=p%vG4G!MSw9l6C7`kLJ{en8DGMn4 zTV?>XdmQBpW}wWOfq>a{F^vsB%SSi1EBYh6M#nME(BF{>(3@RPfTP>S@dE2Xjx2`M z!tYM!4Etgl5-Rnr_7M#4TzJSg_|)-|(a}zyVOhs1|M#bIcnhEH|NeAtq~n9(Um6v! zd7iCpu$TXwq3IKLDt;x(BQO5NeD|u=<2gjNKkGEr`!Q0Lj--nHMtC6*Km1s0!1FBD zRB-0zSG;J~e-VoxVU)Y#W37eXnVuSJ1t5oplBNDp6F(b*$n(OLH~TPGneELUjyg6Ae-Xw?84YZ{&&z}wmm-w}z6&MRGq!8m zb{8hA-r~=|!&UeOxg;x!@o~QK)7v?Xz{`2x=jBUqslMd(PnW03wV#qpe*RRs6!aCz zWlHfEU*6-X8juYbdemRnJR1J7MZ6FA^y4LAlPf{==yYv3dVl~fK6 z*wV(%A*LRzgZ%kxbt+2Oc6eiS_^SI5{CK*>&v|e7MPu&sg-62&jk&LM97}xB*ok=! zY!Kv5y}u4Lus!BaR!kFCGaa3t8kek@hRHog%y2)1Bk|M(J?~J3oWS(9{1d)lvWJL* zr~x``D`}2y3r&-@ES07lp!Sib9LTgoMZJZ6;pdIHFG7)pjGdey>ZZVDPrnBa{X?4K zX#&6n@x4d+;iD}(MmC1v9}ytSnN*{}qg!s8up8tvzTZPIJ!)|LbZBl1+6()%L3$;tUckczTc@DJQPuux*N0VGMKtWcS?yLmGa5~@9v%8sOzWDUP)GdmoQ>p`Z=`R~q*H~k z#=)qFAvKtr;sR)aN-UO8^<--{pfF&~&R1nsO9+;(_BUB|RRDx6PX3?P_oNWwe^-6w zBlVS^T_1Z*d_Yvv`UFHg=e~`N>tAnPm|g>>{>Dy55tkTI`*mB!Q!^^rMgl89?(HPu zI8i%(iGKvK6f8p2KKeVcCb0kTgwBO9hwRu$R7Nx0*C=C)V3y^wpQ(1kXW4K5l@dey z9%M*2j1S$rmunopjRyX-OP3maT&gHLN#Ces|)7du!T`?biBL+J8?nuKO zM`P-!!q2!nrsdizdMdS~D>N?;Y^!DFqAsw|5sGPwO^i&+95dIDHgipUK4b3sX>$Xo zSP&KwsxZHn=Sp2{ZouFq!$)2&6^ob(f8j#xr~}%Y*QoU)h<2m2*6E>!A<~D(j>C@r zZOMwc?+C^FFp1Eo)rQoCWLREi4{PvVq%Db@6c;%uL|+0fBI~-SuBfZ%STP1BB4i+* zHEprimv>hFW{MPE5~q=Jal9U#-1> zwY7_GECXUTPP=AAW6 z0^2wXn$?`jcxCA+4oIPn{7qApa;_d34w)hkO5B`Oa-JXMbhtrH;tX9ZO5(L@6^hp~ z6;D2LKe-VgIC_}VxknKfT&wjk%e;;k9RmFX)T277;J%^eOEFW?CgpSCFu>g?cnJMU zEn!`6%eOPgovq|FifAAeN`DJK8?RQnRp1i>F_^N8RY|^OF4Z?It70DCy2)?d1nFws zG{d@SrcutB)lKEr{3`2_8%SpU^KyP&0~hj(TNcO_@vU`<(+j;oCpfjq8pV}j#*3mU z%Tne$y?V0!udIzs?Ff^y@AK_{)bFJ+fIb;apJhs&&X5{gAE07qSdqarDBKFDwSF{c z=7E&Dt+g|(dDA&RvMOh)$^v;)S*$82<87fbABwyDMXRA)5Ukw)O2vn)hAO3t_dIJ3 zjb~42z2S58M6f41-b`G~06R%)tSzSWJFPQxytx4l1u)F8GyEbFa)#g7vW&%*nF7tP z3M`18Sv{j+p$2;*DZ>bCFNF(0{m~BUXDvDcsti1g+MkB)iP|F6b=)0{vg9K3L(Ygf zZWjn8Vi8|fJPn`?>k#f)llRcd=^TGndY4Nrurw^LqpU0IzGo<*$Fs25#dYv;z$=PPE!Lz`!ke}l)052?E~6pGuSwFSo3d!%9e zeaY3+Ax^FM3CtRHmQGgNB)PaLHiX6{PHC-=;;baPB~@_;p&s|8D{H{3!j8H=jW`s z*dF?++x6HWsUP3|R}A*MjL7rW#DVY9E&K9+)Zg=VYJ!L+scBP{B@1*!?rF`sqoigs@wDLP|wZhJe4(}9vOKA6u z+@q*$qf6T}b{B~|@5tLi{?09VcS$jsvHm#sdaNDa1m?QwuK1N{$IHT6Z+edmRC?`7 zyIC{%oXK*E=Tq?$>>jJ)D5Fai=Cf$S@CuK15!7Uc!)%Q$F_zQFBF!Q*uB;h|CsAT_ zqCm-WBq%I`%9H&V47JIe7+Y_XmPG=E5(p&Fpl0T&B4QO(c8*=qOZb#rtS3F)-9tH@ z7;!y|dr7~loiaOBz!$!AuvGbOvGaZG`x1*x`DJ7G1qdjO-Sg6zcxRKc<2s|*UIa_S z+ocuK%=%!r`2%XnN{cRz_q-B5NJOjF;B7S9 z-C5$sj5B<2)oUy%l2_oMC#-X~92|x5^`63?eJ~0MM-VCiRQzOUuQMj^$e7dzK*yZd ztMRbeW7M_cH{@Ecn!b--yRFv26+?`VM;pyZjaF+=zbSL$hEw#Os)L-#qYC9s3jRco zh#~Ff%qG{Q7e_W~yNS5RRszw!Hesc(= zsUY>le?f~^^vIzQ6C$-Gy-(#zM_LD+`t)i0Np|@ue2W-c3Iun8RrjM776>~%-!h(; z8P0apVsh4#80auu46Dot6PB5jMIwe#9_9a;9QjwS6n87b;oj93sn#LYH+oW@cP6Di z$Wq5DkXT;};Gd>&d@GX5XLIBn=sNbIOoc9AKjopv> zWZN0LxAiBkJ0fp5KMvS^YWLC-GAlxpZ`F81<(x6DZ6P3iQ z(xndbo)y*NWXNy7`?Lhma=cH<;EQs*isuo2rPG0O$;q9myfke##Oa9#vJqS1UME)# zNdANdEmCR3SH&SSfZQofka~>=s_IY^5DCI9_Gzxqp%lbZCay=RtjAM4d%Fv&Kug=to}8lRAUE`r~MWH#Odj^BZGlPpv8&;vEe{4+dh)&!MJZKH#dTqoCcwh-q&uqqLjNlT#fDgLvK< zR=O)0UtRjx-CBIosy?bc@4QA^1w>cd$togGA^Fk6J!i!KPM`8Vrsm8PXpbIK{Sh_! zF>CR0Rlb*_0erjBV2}=m4v9|*3^)iREqnvH-r{~MazYI$??lUOc@4~}Mfr4)C4~;G zT6`QgC{_f`%fuH|{HWRwJT!JboAjGlJ5!>1x$tn|?~>CutJdSnJIV4EDRJQ=jwQUJ zM4rl&Q-4GbZPnsa+Up6f#(JT~bs`X~xW=kfi%-hrx57L)-h3_|O}grR$2!o~p6Usi za&bf!zXB%%N(sf8j%}X7Hr5{BjP?_ZR=RR-Po-!`xo}Vr6&KO-#I*G$evA$|;3Y06 z*^_Ihi^DdxO9~;L+uEvVrYx^QJ~cU9S!LY%Z7GGrv#%jYgzj(~W*cv`XEIY3dzDpL zr7Gu!O*v|f=hoS|TpN2T%enmh^{o1gc9}-@W%#OXG}jipg@IJM3bdJ=8$3IMp5~QP zWfO7eN5n@$FG-g~<dpWUkOGUgEFX4hKSXhPH?V<~jaYD86+mvN*ea<~@Q3AXGn9W9#|X(Fl2=w(9CKYCy}6?i8i*T9mI9rY1Q;XAMb2-kiFc z(}KXP?XJ{kRhs~n&^ll2!uh-$ti%`8G&upc64=|8TZy^iq}E$ZVk-Gc zNwRV-J5*GQDo?83&?BO(5%a9*@~G9`+WF}(*smfUY{c{NT06aV*goPs;SP+NqmUq+ z2N34Yha5%gl#3I{W{ms%P2o8OE$I0VQ9)0ow{MQL$iKas7F7mt&xSC-1%)rgpq&ap zpO=qZ2smeNlugfmeuHc})NG|cf1Y$CAelDOKHY2buyjXHLKh121wlZ#=3oMQ>=URAFotiAeIUxl(WaGwLey#v_nq$JLtY zRvci8K4`y+A4fICrQ(MYH>mRD$?hBbb5-0<`tJd7TAbV9lhXsteKUbR>Cxm(zU1^h z)>uNEZUjb_hU=!cK;S>A;76;EDw0QzfGofieOBa1xNJtt)0C_hcPRjLb+4*_rbGzc z>Ry@?cG|c_oI^M~IMX1?!CusjN#7VNhDbgU*4m85t@$J~zZP_rS&O^EOC}pza(OY@ z31Qa#V9?(GGgeKrC-o8SXU0moGNr5^aL^r4GjgEi-uzJOQBzHR3q+ zQ+LUvRiTax265z_YU@3WYPh>4Ad2&M$h~%dxb{3pC?SqrU{zky=Tb$)fpo-(5nJ0n z2~e$T4qhjq-)R3&a$~l@ud%Zd@0Tp!^jhXV(vSYn46rb}1bG5ee>|j<;p%OkKgEGV zK7toSHP2&`Sw0V8n#kkCw<8`bRe2uV@ev_A%kxkNCW=F%B_sMnUAOwEs0S-iBN^&` zHP;h-7-Slbc>>aD)Qjs+to;H`7$LnEpbrZY#%mpCU65M!%;Avvr;Y5~5~n;8bNU*d z>j|tmB*c&;8cYUn1$`G|WGnt2yIa~>xOj5&vQ1g+T44Atq{?-U*GQ-Pj_b%JIKk=i z4(#Xa=>0U)AuyZ`lyyBMSZY=k44@S`q$;r*>>Kzluhf#DwfG3C37a?blx)aXn{MDn z4p-7w+5h^#-n-VIZ^ZU&yJXeU(eNU?IDDSR@S=dR`BU5=4TkyxOq~pANv5&&0^Vk~ z)lqe>C~MygCZFJ$J(Gk3939}p2EnULiYo6!p7>07aUXM6Ivwt{v|PqaSiFO{CfpBS6 zYq>~ORHT1p;um7dc%Q5V zTKkxv#KtCO^K z>DYJ@;s9G@T0w~Ep2$7AuE;YG>Z&T{!Sst&P&3!q!^#*m_LSsUk?mXpR%8p8d@It) z1%kSr3nzo8tjI>S*;(nnL90W&Eo;!@1N7XlB0Jb#Tf0!LP?JBT7s6+&X@RR{3q#Jb~4`DU;2^u@;0 zA#3qb)|s{VN#p4}Yw=!dai8`5byP3?e-QPwIaX_z_5GMMXz?kl^|;M#dYQX2o||k%!o$@m+GnJ5*;6VU46ZqzrI=C~{~u6^}KZ{FHt2AG_D1OjyqSABYD^z4}VTa6gVWi8`A(QHK7a>Rc zNO#-+j+)#5yPD5cO+o5iQPf4vUQ`F9yGNbwZuC??c~*BXQSpu0Nt8;(^QatjPD|oNO`DaJ;Rb0`O@ucmUniw1%5X|AsdUAa2rVeMwgJ z317WMFKLvnehqab06TQoaT;s1|B2twT|4ysZ{@xr7C(PQML`~laJE1a` zF)9~hsbS7^jja!o!|a}G)g#LpRBplR-{DnJdRb_O(Y{q~-&_`2nParyD)%of3vp0X ze=4@N=(%N~s{GiumW9@x8~Zv*ywF0irP%qA&Vz&TPykV1d?;D#E!4g`M6z(Qc}ydw zy_@Cfu%*aq4k)#LPBBxyR?`*Naml-7B85{QuB0EFxfc9$5 z9fEaS_7I_D&(cT--wAP=88$gs=NKkY>x!W<{R0rI;HYu%I>qy0^KvsxkNG3PJ6Mru zMpk1=6bsx9;DyY26-ekl;j?=@JFbP>!BI$=KUBFeHebY3nPa1}KYUM zlo#O4ROLD-*OfRC)Mq8=FXWNCDU}D7I`a|H*?a_N0ZKiK+s~Yjoo6Vx7Q zhq_z%Q(`OgvRFumHh08>kn35qQ9tFl008G;|w zo%7YrG4+p9nJOy$CEAoCm>n*}>n5?EMKp_0b{D|B7GpA1;nyufb!~yy9j5zknEQ%A zs3LDwuDc>A8bcp6{~{k^FdmWSC9x9tl4wE+x2;u=f@mMXwN93%RrqbCH(OM zcwpUadPvxvY^QO^ro|U>E{g_j0?X`Rc5S1piGqE6J)jfSt$Xibqv2t22s^*mQJTbE z(gXJwy;*`G)+Enh363HYr=HgP^IbO)t=>wUaV;ZHtf=4hH&E#zI%0I}95gom7!p#Ubbg zPP7`aTaA64dt?h@ONb+l3ul*Di-+3YL5oH>i1-XrsD#TH$?1-;oU=3p)z=+~MT ze!2Cs1~eH_G;;iN!N#FO*_+k}&!Pev6_@A{KS2{Bd3DIUpD*e>EtHcZ1wzM+w6BwI0`Heh9^I^;W@J5WWm69+>#$P0~l7nrWGV0P2jK2#IWl z$!!f-KkpUA!Va6?=BuvDMlTGYvP4|GGm7Z~n=xH%*OoS7R=n>SsiO@~C%i(|OflV_&b8JV`!F=Wg$ceZ?u(*oP!0ezCEy{d}=dww}E6 z6sbxpiT#vv(xOmtxF2^(?`x+tgLX=(nI_W65~rGtGhFfeakIuZyc54uqP{N!vT^1l z7j7kc3frHOTC8$ar6I|XYJW;fv%D(hHT^2BAdXtm5z=tnVM?bMo3ro}SisH7Cd zhM%C{%*K4-I&a5I8~*I{-I+zD>r3nQmC@k~D#C-AHt2W8Rv}U=fm%-E4eJ`7HRYgJ zGLwr_(x+rCVP}2m#+HjF8Eeje@3N7xZY&G`uH||lY+7S-+a7zlrVZqo599yvdz3jo+5`HjGZPg;6-;WDbc~|)yrx&ptbr^5T z@yo<3o(3cN42-xXh&zuvF?5p0*xvNK0`XgwL5Jqag`>8u#*J2FR~=_rQT4Di$BI9y z0)m_B_X2}pCjkrQv%!XBD-1ERlfCNb1KL{*%&QGTLVg~9GW4)C(b)P&pn|G@G}*SC zM|1y5SWJ=JMt0ET}&5-IjjDkd$ zYQI$$lj`e!+gJEHfuA|Cv#R^ew|$A_>X(v8J&%MzZ$J$Ht1gFDLX_1X_HR#IseX-+ zvxa0ZAO4g1syhjp896@TdEDOd{hkf4!q^MLQGY}nZ*CJ0IjVen74>^=b->YF-z3r^ z{%rp~jga0iliuSt=l|0IsO~R(O}%WzkDvs2_>Zdk$l*WHH+(2xj(BDkphi7k*h`nY zPhV1qC#oZt_sZGuGoo=t3_=73F8ACHgs_KHdB;iMqi>nz7Ut`ad2=lcP!Q-Ree!ed ziS#pLx@%wkztFYJ#3H8GbL+$x88x?kbQ-^LGQG`bruTSedXMYr?InRs?^K!IpIp}Q9E%`!fr|9W8g4tY>}8x!eBj!*>QTx#?i7$uM!gBToJ}yQ0A~{vzD}QM zxBBJbzd|7NCugUtie9>Ws1zy1Te1SGj~5bHY1!ddnbzWEh5NhTy=2+tgRJ*up10Vs z%G)7E^~LjLw#=@GpS=JMIrDcB z3m|qrGtKO)$RP*fIm_UK=AM;bj9|u1C@6~All1Zjx*U+*??H}dV<*w5MO8-a61>D2 z@`?ilU>U>mfNFgdxn^jygPSDiO>&zc zCaaoG?lQYk{Oh9msA_?mHnC_0H}%6eshhw{&zSG{jO0N&N!+Lf$;hEv`^q;mM7GiX zaV>g1s#=fWR#vCHpOh@3+GrhV8*1$dcr+5r#30xbnAmv=m`HMk)VI}Uju(VqX}x@Y zCh-gSRnp|U(SB$o9m7M?qBjd)sQ}OXQ5_Uued0rawF9ZUG^DOVVw;832%I&f{(?a2 zt8k8*oO1>PI_I{%cuFyGma?r_BiH8&kJ99UMjpTo4qy*6Yy#MexC;1)oX~wf;*3tF z!)N;7lRhjSJv#rI8J%?e8B*6VJ}Humu^_5)M(4|vJ2E)xS%H{;G^}{9gC5@to4q7wf@my?Sz1}Q7|oX zA{EYzk*a=X6fzkZCULY^2+i@@zyj_x@Ef3e9DV@&7-2m;0{_I@@xU+nl*NUzqHY~M zW-lY3&&<1w<>)bMyc?~qAW_|4;sG=Eo2ThgNLB?zVC$pBs=CXJJc%Nj7mZUk8oMd% z?6oaF5`k;H4+N6JS1zV$@m@LP^xP}yy|fSc9x*=zL#|%A*Y}-uTlpxDhiX5^Mcle#ppyhM|>@>t4%=? zT9pME*Kr;~uTZ-tj)g+kASk1qhoa1Vnm*sNojmai&8Ov9>q~L8h~>-)O^`j`<4TOW zOu&MhWlnNM0iY32RiQni!;ol7mIae{&*fHh^zZ|ngZnYu=_bpjhz~qy|wl&dVsWkK#LR&O9Jsj2u^`Q z7>H|Z#lbp>>lW17*D(?q!a^Nv&k&4beQ_*>& z^EvSNZGp%Tn;IM!y?Oai1(GaS54(8T;r?ang=K}k#-5j#m4x3l_HbZ$!kCL1&X6WQ z`$yn%u!MI+wXPo)z_lOVtoqakf##_rpjmpO(i<;0m&KU@E z!H5e~bnELOiFb>x#5_Mx#abIo&zk~xK*vw06#&8uFiqGne=7XD*2xV*6wv!%Dg(k{ zkg_9&LS{u;@b%?=p4V$qcLD<+&%l?qld^M1@!&K8lj9DF(omOKQn$%UQs31JOMCdI z5!Rhgl0xJqI{ZU#I(oRDz1Z;#Z$m%R%k84j>M8N_7uc;R?Ca(B1v!$}`5Hp2S#kOD z%nH-t9n?SSC3L42Rk^K>UKthET!+MHP`W*8PEg&V#kR;?PRVORk9F+j1_CR2lB?Cx z#V?dWhXj`xxQZY1U6$9YtdiPjQWpxY9~>A#bB_q&^m7q$E& zaJ}^tNDfC@x8O|c&VNrGHHe^odDwo?t@J<}5k30OY^7#odCsJ?`h%8Zp)5z@pgcD) zPnM&wN%=Ch&Y=766h;bSMUO4gCrVis3RXFvjdn}ALSsKQy0H&9-v0!eEN8UO8W3IV zNRwmrN(X~bNj-J?qp`n8ukMpmu8s(hlm+4xVznoSc|b@h?@G~i)Fmy- z7PX&~+<{ughau@jk-)lBmKZ3#Iy~4qb<}eD!GDb`CqYVQje%YaL^yq!dHWOcQA)tH zf_?bBvtm&z*DswW2~8^}wV5Vt6LLQ@UQSO?gVlq`yp&|;CHX<~a?Y7H^+_S47wYJF zaY}#C9h;q*oe!9oEC23!aY}p7l$7Wxk)F?T`s}~}UfS{8hQ9#go_jwF=NO*= zs3MQ5Zwo+ErT{mP9HPb0BN;Tg3N%?~|AO_b;nopJSAVo2v} zZWEVVdqqSEmxIT1a3UVhtI;Gtnu9qk{9j0$Wg1%>$(vL{5(%4(WYfDzeHJk$yrgP> zL?|Rp9^E<>@rm#>Zv%_|D6<#oZ+0!<&~|UFJ^epN7TZ|KfIJhuoK_JO8p$UmarFs- zUGqT)dx2T!{V@ZxGJKzCwvvN<;tIU}xMuxcg!Rj$KXPKE{2z@Z)vRBC;fsjr$O5{2 zUUN0oCrX9=8=8f1rUwDt3uyWjhu=2l_PXc({G=-9zxpB2DuO-OJ-B@l;Rw+f>0w^ipV_ zCXK5lh(hpjp?preTl0y-!o;3{;Q2#l;A1}%)hu)_#QfAZ>#$8;Ht1L(L&hP5@l}R( zNiDlYhm;Txlf+pknr7l!Vwer%9Qe%%2r-&*=i>C~f5y3dZZzkTcQ)rDfv+>n%ajjc zUb6fP0qwOmp?LOGnt5>;84>@*eJJox2yMHA@g-Cxp~5!HZFmqjemL38QO}3&7WxDu zR<&8!9H1{MY@21z^3Hr(Zq700p}5P5t2O`*$TZ*rR#Ow$cylX7ifeOjr3|YiUvBlj zC$NLK01}h4;Y?Lqdnh4!pXOHxDor40uj)n5$g^z+AB1hfL(-d=4uxE;pWvLY`jitO zZnadLt3$Mjt60r?F@@sKQ1m6KIILT;VZK|C7xoLiV^K%TqGZW5gV4U*UoTliO9}aY@=&)w{$t~-#hpZ+g*h0|of4IvtVP|>yfAA5W@!~+@eb?9+eORvOki!S zr4rYe2Wri(sajhDa|PP3&uX1JSFPo-2a^B+oSKP|R-WnO1g;A>+jW?4`KQEq{55>R3|z}l&Byo7!K>N2sZYoim%KMEGyb7#?+_1f7=P?~-Du3=--DgsGUM8=H;hT% zJr($<`W0>i!hJ2zv!F4INnJ}(Ps|`s;X!p6%%qB^7UIm$R!5<5CmB!USD?48+vP*u z?wM z`M-z%AM*bY|GW8TeWSS)UGDPB{($>Z5BIVv=ckFEg3C(wm3sX#*G3oSK6J(6{QEN> z<+{s-4<$5htnI^SEVezX=5jQ;zXFrxw$m@({!v%rKO9}TjPKWD4a;3{eq|{0sC`nt zMCT=pyeRj`2j>xIW1}C%9pT7V{0fUP3aZ`1uH;nL6RxjchfLGw+WFD+zKs*A(-H{y zm))lWZO;xYbGs~mj=~(I+SeBG{qPrVrT~Y0yaECZTa$CzQZMahEmQ`1**0*|B07Y! z{sM2?yLTsl=1M&Bek9sFS=uhmR70YAp*zu&yEOlH2!JW!1F=gIAHktbVuCp|W`iHU zpx#t~Un1z@@}~78sWDuzOx2nm<7FLcA2$_K!v~D^TNsb#oNL4TjrOq8*)N5U3#a18@JgCBu$p4IAG{0r zUlwYb5|=Nv?f9e+nlu!3UJNFAA^6sbu5&RZ>b4C`=bbLuAY0eB39f5TW#^{;Gh5Uy z&XETsWP}veO`;u&7yp|A!WC1XZt)3Jv5wdMoxGMkOKD?hG}G;hqhjeT{sArf7v6ef zM^hW6F6Hm&oBNo{s#zDm)Smqf0b060eQ(mAe06?J?TLBML<=-9`iESxxIGDt4JPAclk0DLGN2 zLx@vS^xcMC-z$ic2P7yRFLu!xbx_Lfw77xbAfCh(ZnF=dmj+96Lg5J+RpLRsVZ3?36Ps!5Ht_ARA0GPuVef6= zqpYsP|4E)98OZ1}>a0dhCAQdN!){}fwWO1+d7a=(Ac#po4Y+MhZLIyFW)y1@h!4R$ zJPblts&=dGZeRZWwcQ`~ML?^V32YLS)gY`! z=Yfs+N@;*SE3^+w`k=n{J3K~1)@!Pz&@t>*k!Ix8s3UYJJ&mhwm-UVnQq6_>wdS`Y zybyYOMjFP3U7@$Nw0B6Bkwn3{PFlCYkbL;obC;+#-bzo~1x!dXIKgp1JqDOSX~PzJ z)06gsz~?k>8%zQ|y`_$qMT!W7-w(0bVM9hQ(4_s;4;(4Ol-Cfz|CpqTDui|OS4`=O z8&s5;JvXECriMmwNtK(BaVP?^Lx*BFyTNYgke0SDbjXwTvU!d| zRU|3!bNC#&AOuGr2bd3nMV@4T5sDkuO-ZIP4kz~hK!_10c)L#;NkVzqQwP9ay3DpN^pVAc%dA#(})T(BYu>R9hQ z)8AT@)XEO1wHA%|-n-)u0v0keVk51VkKD7pe}lAH$qDaD;!Ej{cz(4s>QC0!aI7!t zaMVkt(%=G8wG6L!p6e&KN~=T$w-z4jC_EmezkVfEMP?j+_x!RyL)x8WY|c~n z7ayCfD|>9mTZ^Jtdz|Gx+1Nzto)nK0$Cf-gw&SgZQ8m1d!atv6Yy~Ij zZ|>>zXLr_G_~(woqbKQ4wzJ8`w?nQ^MkgOMzJ$3uNq+-hnmBQ*7M-G__@qIQu}Paq zkcpEP6B6{cC3)Wv#^|DPvR?kD`0Yl**O`~~I`UAYntLP18!&7u79v%~$r z7GpsAcz64leS%j+rCu<{TDsD#amgmuBDPr;o}!_MuA=-IA>63W$-28<;vh)}lETUp zsT9F0UlYGvr>4CIgGaiAp<3DEe1TFXd87Y^LsYAa91K~nWc_Bn^Ydihxl3E0+Uh^P z-svlArOG{S)wmZ6(L&ym~+EQ=mZCva~j^##s zcBTj)Ag^9N_6@gH08CsVGZf!R^pc{zt3bj_q|b(LhybE5T-q49v~lE8LMhRIQBVoC ztATOM7ATzp<)7C(&r`7GmC1GiyhLS^zo^Cqa1yR3j0CoSH!QCIJ^?h4uGrq-s=Fo0 zO^ufn+(1S|gJj~sL81w}O+>`~QnKP&&K;JM`+ZhQUXAOni_pY_UIOj<1cqd7U$O6v zI|%c{<4#^FqXFNMhJTgvJ`A>I1Q@i}w07yR1{+U=EKT=}OGFUcf|S1L6_MNq&uSKN z8FH4O93%#uO*n6Bm9QLfO<~5BNRXtaIU@2q(_ARitoSXkBOwf02ba<{@`x^7CC-?;6=rr)`We&y+hMc^4H?U3>VoZx3dSbbdJVSqD)%a(gWZ?e}a zGR~KzFA_=X0sQ*RFedx*{yo4{rH@Q-b!!AN)vUY?Wd0$KJlK&F*SoC#0e7AfJ1M4((t(( zmT@D7^-8p}-f|vqG4LNJ)l;1hyx2XA$uu`$HbaZ`zsr4!-OW7Ss z!p~;t#?K)))hfcmG-SE?f;~23c~gx}TVlg*6BC?mp{)cbZhhOiO6c+=Bu*L*x=1T0gU`AIL?puH{bYV6Dhp^fm%93<@!bj=t}<;ri7?e4_!-rPN?eB4Xxq zs%cxmqhWp9tRf{YBhQH(v#mNwgt@mh`Ud@nX7H}O$fN2-z)0)10im`dFO3)ahLZx{ zl-?U*vV9OBQ}Y>p+nIHdrM2QVEGVC`-XU`WC39g!=3u=ePTO4~mEJ~D98+=!Bp^L5 z|B*{NQU0?~J(2$&MlZAqmHbzuz!v6wIV`lVkluRBDWy> zK$wmcdw1RQ&Hj6(?{P4}6I^=hm*hG%4gzkW5B9}Wfq;DxE-u_eC_^?L8z$H`Zr!pO z0FzI8!Ix}EQU{g~XB`!o)Mi6IK^rF7g*qq_FL1pja4`xpx{-HWwjI|!8~fi9jy4Hg z&&%}_a5XdmSL5I!Q>cRLZ^eNCT#-2msN$GP0#kw_g{v}Ef7Qm6f@l;|5B4uU2}F5v z{q!)E7sr%85l;e<+NNdp{Kq={$4`o6R|4L@(x-RZgEN?+L)r4oVGT{ zZ6!4a$S@{JR2p|`pE;R`8<$*tN__Eh>Z5nBuj z-8_n+zPAHTMpYdm?~3hQ*IM+wrMBah`A6 zjS%#-ZnB|7W4>RB`a!P9(^jj}3@TRILbdpxBllOL9~=||Nuis}N0wwA>9Y#a0kE@i z_TR0y=El}WHH*U*tyvX_)~q#=v0ajcFeX~>RjXn+wkigdXsxeZqgKV|Srwu(koZPq zTbV})h1EftL(wSvEN83c{6#3@(K-?HMDplXgw(2aQtePA!jMh>T!#LIfS5y^K@)^R zZXsf!ydYvl)S?R`XoW@4LRA&1`+$8eBugN|yZW}z0++bCiVcpTB)~)F69MTV0jWdZ zmci5>Y<^4VhwF&3a?$C!M3HsxjI z!$$sTBYqOB-_{Kk?$yng$BvsspMzN&gW2Qd!8=owJm|rsALHS-ue40X#%t0gDeeGL z5N2+K@USJhD-T)=@R;f4Fd614>R-*E-a4OyK-uEUm57#PeO85kAmhQOk=95r3Yn7Q zlJCPx$yG92;{hpTvR39%M#{ zaQ1%%w459tqzeKc2NXWQ1o!|e-~)F9LL0H^%$3(C!v|XMC_cjKdv^jp`UD@XaeQ=7 z#0LRLFts>71olbr(L?^aI6h>~$KgX^Y7`&1`E(Q}MN!8o;D`!0loa@$s3G7Ht`x&b zL^s8Czki8@BHC7sNoeGhIPuEsr-_sMMsZSj0)?C!BUn66iV^OOLr5X0fI_;VkfAt* zOvJ_&f{jwKteieJQsnj1#KyW)VS^);+}V<_XCi%kG;ApPNIo@v_yi+4qNklcM(iM` zNqESA`I?|@vW3Y_S!uxwHnE6m18a zIlGoO9YgADTer}+O-58F&2<^GlW-l-zTNT@^dn6FF5MY3oT)DEdW8}VI4BKE&xmk+esDGvP*j^S| z&@DWjQ+-!n(<-TRT!M5>l$9iA710Ur5v`0Y5x%BX4Zmg9RGu2~KdoEJLp&>KZrtWN zX$!x^f01%jF7fD~>U`#pNp*8m3IB5?`Ay!!Rq+bhpA+1rh%2IamZ*#wc?)lf-_09$ zmztIEld5n%J>W@_ylhz@wJI#0T(KfAapK^wqL0{lgx6{opzJdUF*#hh3aONVlHB$i zQfC4c-ko*SMAdemXI&uP1YIJ3;XK(^eNen+As&p>nII7u`DMz|@m|8C5>Yd6`6_+mA(`N7zMDy+LrG#v`Zg9{ z{VYNro1G7ZoqAw<_>)>s<32>DJYm=2aP1@f@>=+Iw?Nvb3h) zdAOXe2F_GpSMZe;v`SVGE7eaBCCIN<3)f}b9F_`DH0>aHg=o@)`o`V75xhE6V&!mQ zAtgBpH%ScKEk>e^k}VHnHf|omx*I0jDC+nlS?&8!V+j%fk6P(LUg?33e6-k&8>1-G z!;Sf%NAgUQ%KQ?gSg;y;MYj<3xUAKSIyLM&+CY-Ly`lrw3~IO?Mtq%kCbD))`;sb$ zW(Wp_U6rC&jRdv`Dr=aLFubh*(4h^VADk9}QyMq#CHwhAs0px}+GOT#f71kO|*N(vY8<`SGqbr9L+vLdI za$6e5@Iw7;cc|c8_aC?14{%lDAe>z4)w;PDwcL-$#e;HD!)h?ns#ctZ1#!55Y!9le zPN^&KeW}}kuu}skXDjOt7IE0*lyne{9-$L|Hp4M%yn4%JW6MnK0t!EroAS!}Z>3B~RWynH}2x1Fx6?x6c@l6Glgi%JdVU&X{|osflgM46<9trwC=m&m~- zM~Xlb__kWMY*@QhB+6hJkuV^DD47jOvf|2#ch2))M~YJw(aXcyx9O%hJLe?=!HG4hjO10i z^o?r;_beQo|5D`KywoiT&n>5N0vUq$fiJ>ooSPKB{~=cjASn|rRmkNK43gw{k)tqC z>LJ8b>Ih@Ag#dfkJChvAMSkM{joU_&aJ=B~0d|H3K^AI{s?qaGLr{iLdZ0k!xuLy) z$G~`B4DFFz7}^td6ti|JvYR_0MzyqWiFMUHtLP@{dPEN_AHkL4A<2q!2Is18Xf(kc z>KpqR7zr0t3z-= zO2*f>vUeHrPo$zfmnh8VF=>!%4AcMfr2a=Z3D5DpdCAnyE_sHX_u#+` ztCI~~q*N+V6vBvmWVd9W?XkM_tcL7eGs=4)4PteH3)v;by#vk%?dY4YqT< zaz)OT(Tc#R9B4aniT&SXFI{n+(OE*0JA}du$@jht(KhI`g<7irEML`hV+ExpzWb1D z9xmMZikB^8i*ES+K#6RX2p(aSG=89|yG%0iDt;mqZoQG*FZ$)k(qbj_GQWOKN z>iL_#FJUS_*hEymJe(*JSJ%ypM|#Bku7&=MuVnInuA?(`=owX*qT)%!V!DodSdZ59 zVHaO=%Nho$LO*2dAs_ndT)oBNu`j~e7m1g<=@dWH=40}3!yBDt;<`keUvt!7Yc0R2 z&b5qODWndpij&BAQQPI2-%)2Y#+DJ;ToIuwImX zt+bnC6panHFYB;m4tH)MF%NoJPtdslyB?Gd-}Sw+dMQOJVr|KbBUzlh3>WI#zYx4D znP~OdR=f5a>LVqwP)jLE%@;OqI6Pm3MaNQMvZ4r)gfATw-a&aRLLA#ftPpWuGM`Zf ztp|mylC*7IA_Sn`mG3T+w@IAF820HKbA`du&9Qw^4in1B{C&(a)pCF%&1`j^$@)Fv z27aJ&8J?c_{0i$z7uQF_>6!;67At`xu}xKaMRl;XB9WLlo=guNO%6rLmTI}HkQvCXSKd9lr_U{B41`4ChB;z~20TtnB@#QAfu5PW8Y&mD|n^?N^M=WgldXI^Q# zzA=;6;BDm@oYk-|yUa%ixn(VwXKhjw>I{lFXyvvXkUz=h6T{qQ!`4KdBS~0r0oV1d zZ&**rdn8sQ~K8Tto+y`A_cH{d9%8#4t?v3lnJo* z>09?{-2{zGQ(IJnq@{1~Y>}_bm?No0ZUvpo^{u1jx3?2wPLFs(IS;gvqN>JJn$It!<=zr!c%~0lQ3@@h|c+ zNf`vbdv@};VAFcS?qBtwpir5MWCCcyRChVl(jvyc2yjU@q`E25WHh1XOJRkmaqerc zn)a`8P;?RKuU=Nq=w?)CPmx7|O&va{V}pRl;zXAEw-w>-7bTJ#ggr)XYK5{^OVg`@ zOVYtT@k&e}pW1$_S@y?$N6jt0{6=q=h`yFCdE%KtK7)5;XfH!oe3gd|s)xM6JJRLq zQ0(df{yrt-D|H$~F14B!d9HL?xNEwy-pJ}OAMKM@Yux4&VZN9xJ@T_fE}C2R@`>ar z2Wli65fu6MH-3z-imYGDs)1ql=v!aUQb6lly9ciDsjp2Jj6L+I3@G+orF-C2>o?>R z;L>WB{n~(*RY^NuyV1gV`nJpUtuOJu%&IToX}kpY3Dsdo7Ntqmkf~R!Z+%Ck;jL{N z5WGKdl~3IuZSUyAErOh^fJZ&79+Ni)F7!Pi*rI#&2Hndev8BptqE^efRty>4JV^Fc zKF81?wCSt#Hjehxo>l6N_mQE?^io|$s>2g;Mj{A4iTk3Eff_M01Wgg#%ysFiL# zA=H)kU{D%b?QC^_p{&r?)$m6V;yP`{ct*x}Ar1z~DB_Bz-(xD`iQeU19KJh+Nb_Z# zekF?7;dJt7^(`ZEOe&FjA^;Fft_+4`tavWCV?+*5+Rdi9)?w58K%tpZv>&AP;~X@r!?-!a_1d{Fs#S^=I@~SK^rAuXOv7(&1I%iY%7?7ic-T68_;qsjNplzR zV9Y-Ar+6l2tOc_5`H3L0L)ObYcD{AkDoQ6y{G!*4_DudR3?akwNI&*w z6!Eq5Ww{kQgNujFLQ2KC$v99<#y=M-WwJ#Q{=yNf*drNrik(@Sb+tR|YKa*Uv);Ay ztX##9^sUY(gz$w=BTv|TPTv|MaGOhF*Ot@ktG!uQL&f$jgm$8CaNWd;7`Om$H)IxE z;2&$_W8rgo<%3NZ)+H|;I2UUsa>;kw3iw>OFK164#-T-&B^{BF-T5MmXYdjD0)T79 z99wy8BT=!p0JsM}#h|oecA@xXHR=w z7-oJd5-c`Kf~tv_%r?q*N2xa4St?ss)LcHtX#2B<;D;MXV?^}RFxu6v5dsN3T2tmg zy494~S-KmlAUJeTw!TjP9Qj3*oD!6Y8^9#JS1R2|?VE$xVMrP$p~PPkQbO!RGA+kU zP=<{F0|D+pVk1b#MqqNL?Z!9YX}RD$AM+FUAsPKyKYldov7#iNv)miwPhc;ShiFrO zwxrA{my4t+)~b7>71$AfPAov70WH)InT_ClHN(n%4AmQ7r6ln(`xS;g@`aE9X1VC# z02v4e&Z53w;8#n+e=ileDhW#UAV`x`Qu6Cqr9Zo}^-K-B3{~nd4P6Rhm;TuPh6Mft z`&%Ca1-BHZ!>n;@Xa??6DE_yGQb`5N=op&1d$86lOIEk{B802km`G%3>UIyeomS)b z)DvAOy6OqOU^y6squkbpsXn5&{7ATD;5$r|1+7$i@wPzDs5NJcvr-M6tiWr7##Yc6 ziUkydMPPtgj~#5qs8rD(tf__)9w=mnB0&`tVHK}L^AKamKQrOz8DbA%??sKlE_$xz z&c-g=^7>u%)-mPkeLMY8QJPhcH;5G5)#6777?a{6E1WNaZSPcl>1A1tTpoe z1eHbul-LZb;zoU>;}lC0$j1OKW)T1JuGVDC9m66gKLiBIJ2eyuYM;SV9g_aWy z9iRmJqkXutY$e6g(COGRWLS~Ba&Hs$dZa!j^>U993UjUUin{}Eb%-gfh5m@w_zaCx z3i)L@o3W-5)V|W{DGqGw^PeZ6k>(&{R6HnUFZLJFi@ABm?h>x$O9DyUL3X=~DX->x6(e?vsmxNej%Iz6Ok7N}mL!JC6fllG z34fxj4^|~~XJhqJsul|ckWWFe9~atm^-`7B|AJ1xv+Zfj1AbTAHuV=QwUK znldOz1KM+<%0v;(-5I`|XUmo?GoqOskFjsmW{~kPmgGeov0&FKNv*O6SZ7(cyRBuS ziB?+8eh>r-${8N9Fk!8IWjwp82DVgx6)xwtf(bU=Ec&!rkznx6Dr6H^fvu$ z;9?0z!4en}EBRGqCyERh3ImuW;i8Bu6i&HQa73MK@J`&DK+-!33CHZGhGfnJNP6>1 zdw~S@)L)R-*w^^8fwN+Whqs5#Lgrv3uZE+lUctiiY>_g+uh~6cW4$QAlmm)viIu%# z&h&2Ll~HUQU!9?B`?YzW7rSs}B=GU5J@0vegH3&)Kmfp$Z_j-BaMKSk-xJIQE+}8u zZ7zfmhJDXBeJS20+VKo6q_rsZVn zT$PcgHlV!H_k81z2WG;>Aa#?3r>v5|NESw;3e>EaY=QL$|g!lNh~jMXhJ+#_aTI`Sb>ugmxH>Te*f_#&%e z;w-KhU2npO#V*kcZOhVPf5z^GmU`URvwAM6z>1{M*5{CIf~%8ZO)yew>i)s1>5e_h ze3ZMe%y3zbsw#T}A$tz!i~g0p{pBW;;lo4C1sO4RF(7Rt!d5ZR491ba{N+LYtc$`;auZc(GZdYykzStX1F6NPf4^;)a=g10CZ zh794Hc+z4Wxq z5IWUD>VE7&Hjh>`HRoj#*`UslT8n2GyHdo@MsK-YqLT5oi%yvVy@$97Pzxds~ZBI*L=Hq#`nI>j6z)JpoNS zFcBo6iBLFZuUXK9oAnr`h6GNjtA@(7-kBYnyKFUgXK_J*>i;Tj{TCo}0lamE>-2(ulNEb!C>e1cn>2ikNwqode) z@&*117LwD!rwtsm32?H)S?a*m-zo-|zfgR#kJuYZ0zPGtPlnILb$$XqQ$G-&Qq%l& z@M!~=h)=Emr()5VdSp%o!yKi}54|}LC2YaW@;dR${}Q?q>fFFg`Jxm-|X7tIJ9Sz zlVQC@9fe~r3`9hxs=twp1NycrMDdnrw#&sTM#!dfy$bB9L#P`Uq}Oq>AU%Rqc{Coe zC<+M?da=oj%}>6}k1`%%j8)OM>qJJkHi`@zpQdh!bs{HnY?^wkb@8BHT-2DajFw)^ z@;FzDOrvJ5kuXn$+o5q{?V#mXVlC-6J}!Nf4oNto;8ZMP%pla<4SlMq?6LCKqj_oh zkn3JDGbp*JRoN>|^~zF5992}bSEh}o0L8MY^f08|MO3~M5UkbR@H z&ra;XZ%OL#t|*bQNd^pZbKo?A^;f*}BGfb6rQ$}lb`|eP1M}%H;%a_df)U5^qlwHe zZVB{EP%D`3BP~SQ%gnx9le1|N_!K2rrCmY{?NBR6_spo&HCMzy#tssKsQl{U2HF^T z-w!d=gC~6(l~qszu24~~Jyeqs=RoJfnz+;t3srR52}Qc#!Z>(I2q#~=nFLU0qeR6q z?;ed~-fPD(KP)#9XyZh}Te!}}>yVB!=&ALbJ3;>mr78WV6=f`OiDOA&G!Tx`e@1EN z0H^PC0$M-lOh&7q28@l5o%DYs6kSoi5ajpA#wBW)7Q=ts*wn%xH5$E z8ZL8KJ5YwgN*U@_(*EAKv=7dNzJ}G-n$9{>0yS;0F65W365*6nF0rhwG7)TKMD>Bd z_={jr?%9HEI?2zJRFF=lw#rES4KV`8NLlCr(S5QP5}w9?I8OT~z98z?XeWW*)*@2Z zX~u1RVw{I)^p+9X&1zh>`ZdQLV}oaM0HP4#vhq3m01@!My$m%G7fLBS$#8%UQtSUY z^Lg@#BqY?<)OuwiIhSA}4~|acu$suB51zSWbRLVi-o=S112=_jj>6c@DjfC36pw&N$n^CI^1#y z-BlCYqqhtuPVChrA65Gs6Km_U_QZl1CYH$9(TNq@eCVO^EC#m82P7c%chCH_=SclRznKEDq=?reCf0-%c=t{DqQ$=t&8yU1^?U`!+)!>QG_r zldgDM$zt!8*JSIr_ilx#@o$YW?xKk=k&INRCicdpBoKQ^t^9ar0oZ*~2SL>z!0l_4 zHRd!(U?P-iCyN0(js#A8)P}16&;-lPUnmKPW`A-L5OyD*nz$@BwkwK2h0S6D3GmkF zgvMpQF~&dfrPjj4Hzp;4*h>>gKsyBqT(1mBr$GV}p;ROg19Th-ocL&Kk=Cy~WD}J0 z@sj)0>;hA<;S2dDOg}@pjGyBr_enSW$@lw-vi|72PkbRRxu0aikG*i>ejk(EC*APt zzdkj>os!yPJ3Z4rxnKw5OR(W^i1yR{{Qvh&j&HrP$??dmn;hSH-M*IiTj_iAp@x{s zXOqY;m0(y!+wRGs>^Kb2BT1`D&eJUketpwjR8^u ze4JRY!U`QR3)b*t7A!C=8EqB1p_BwWmLjM8Z1g`nIW1)UyBTRmRU%qvwon3Ykx-IY zuMlOJxh`_uJtuZCX;71()LdSV*aoc7&5?xcalA?tikf3FVTDIcSU5`ni){$)RyMMO zV!}E~i*=D&b3V(m)?8&TfrCtWELWTi&9zux}(_Twb6ri$eZ05VHT+Ekk8cU1GKkl()A=zvib-kNO*(Z}C zm=z^L(W)UG=&G#RnpLM7 z5Bf9f92Mc_+^aMpOu+eub7Q4eB=BOYr0vPiH)3kNX)eF zmAiEDBC4c-@qMu65xk51nfx`I<^)S47111EUmUF>Y%NoH<7OnyzqDzd02fG(YO$?S zjo)Rp3gE`y&moycy;(SKY>?cinee~YWtnUXnMl0&<0h|^B(&dU+QO8g?}cI z2Lm4Su|6(zuKO{cyzj_Uzw6J=d+b;I3e4(Uw?x?g!9L4O8z(u@yr#^%^t`5wyJqDz#({dsmEs4jQTwER@Fw$rZE z&AL9XDxXjk6(@Q@>~_AoZB}rZd9s$5P-qaR!*yZqo9hPUQ*y=R6GObqZ55ADG)%jD zW}dHUhT(HIoozREwlt>R$4gAT>MI`67Z#7$?O3WEpQbO=3hg$HUDt{G*~0vWpV6f> zzuMR}$Go?nq)3^FFD#Aay0Uw;=h~1QZC(ND9itq+?hgb^rWOSQA zUJ<@aT_v_cJr&(1BdG}A#8qQ=rdjOjEOyH@QC_Xg*OcF|cC2CXfSu2Cc=(#@hInRd znF~F@2CJ-fLI}o9ZXmr;k%ZI!LK+>{GRafJlZzKCDUuLv%NV8^Uq@h}Wy!f49`=P9 zrs3jEt1#0v1QNa+zTIu!p4;-0dHa0x_I$l$vAeUdK+s{{UScj@VE)o0oqk`Dm#WT2 z+I|9ioH(e?rYspQ%4$;6?CxY zz#=41fy*?c&pZXczVQb<8&o5}Vsk>&izY{8pgEKimd!!&mS@T7ly|&48NoElZG0up%Lx%s`iZO~^F5 zxH%d*s}`VCD_2~IyfqSyzMUszWuGq}B{q$ZMWdfblU3o*t4}W*c zCH$?giSeMyXjyt^nc@OAdkLIb6;4*~Nu(l`7}tG`U#f7|x}|)pOQwbwxX)XW8AuzY zC@0Sel_}yHINyFr#f)3y-ZEFX2b!wF{{-+=;d@mFd5=BLufS|;-A$?ikG1a0@h{i$ zMY@*lVBIbD)#x^1Vs;NwPHdw<-lxeP8z?XrQMpM4CDRVLoNH`Jps2CUX=M(0j`nUE$Mjx|Y4cgx5{t|6hk(mVh zqCk(YD!<_mJh)N1?NoiLa0B}wd870g8*205bsTLZgnbGZf#~uc`!Rj4j)m@@qxv@~ zw5eF>PQgshOGV~0dx@gSTj32{V60BRf<#jb^X<)#$c4YjX$v+U7?>^Bz9kzX*Dh#& zlU3jdK68Ng$fjX*Mac}IS}}G?heSkob4%ZlEOxNj=A%3KMVg2i#xZBpClaueqJT+2 zjip{(MwYDCo4z`bV*eySnD?z~b`THTB`xh)HA7f?49~G)Rj6Uv&n~m<2cu21eeNBr zFR&;&Ef7hVMeK3T+yo1fcIy#ir;Lo6(W;+C8CJEI+)-xmY3X)Rrn#k!F9grZXYgly z>TB-?`Nq*J?!M61-f$kJTN}?do{`6A-91ylGmgw^`eb6SXG#028RNX(b&ek`B%F z-wzr=*jYy8ihw(Bi*yV2_SBD?;cf(Jmm!&KLSE%56YwJ3r$I_Jcekxlu&Z^<&yH#%UFsieFddH6pUwb2ZA91`3wMWTnfET^UAOI_%IY9wPcli9?!v z%C4}OozX5E>nVd($!RcEWAhvKtC-jm{Tq~gYi$>f4zKpzF9Oe;s_)DqgZyp+~1wSBLTnlfb0`;Uv7{~sjdDKMw7=;pAyxKTGENs zx*buvSC64R{-VuH7o2yDxo_Vhe**f%;i zZdKBEbZ*=-H+#n7mFL+ifu(@4c8YvP8)7T)=aZrVCz4y+ys9zEY?tJ`E^%8DhdB&A z>Kpg*_^q89)nHXj)!?n2+zsE_Nl@zn>?#UId{5#q(lVkLF@q4#BZt2Lb;iIXhR{Ms z9$AdXL(oZ?_cwJy!%2d*JA=??Oj3Q8WQ(wVqlL1blNiLIp!29W{dZvz7MCTdU}rkX zTSVnjQ_5?|qU@&wd_BYw9Cx_Vp`iCkt^7bS@*D80Wa8L!jrQvpE#UhY(1r>T=tiYA zrqJUHcpEdTgH5m&g88bVtSJ76%NB`fpYG?jWUf?7D^j>IC>azp6q(=pfM8Rzw#z(A zu9@o3(@G^83OHRDXR9_@V6Jj<6n%@{HQyc=A;i1AB#TjCCi&;*Eu7!rG-~IggXYSYT!(#2^XHoWe5*7wPt))F zIbFu4%l3!F9s+hNB?{kVa}v=fJ-YEZdc>k3)Skfz&eaW7!^C4ZnpK!fO3kcyeI0ty zP>@IwH5U*%>gZx{`X7y6DfHfyI) z^(5>q)A&j*8L8$w%(84-%M}|({-^;$1ufk&7PJIIkw(q!!qYob3Zk3PXe4)_u{z&j ztte@_8%qGuU1q=y<=pMWv~;I8eC{=((4bz9MDO&3UG}d!57}dvh$$?P zbV<-7$o@5H1SAzBr}CqLOu>ceSSxrqyaqNR(Pi&lTvecW`HB0NF_^3BYPqb3MAfqt z)K^(*A6tNJ^hc$y@j0e4v_)j{`LF{E>AaZ9&s2q_c@GbMb$ta5UoD=U8QQ^ zfOMhnxjScA_vVuE?A{W|u_+evdkgffM@ZdiMX=8r_kvaYZyU*9_a|AASLbrVkXPlp zW06K!UGaj3GI*%bmJ)h1b#c(SE}9J+4r^D#sc!Ce829E9Vykc5B5z9CD2#d|W!5Y> zrd6`eTWdM+mh|15+YlbOBZ{ve0i2|us)XoCp+uC$D86imXUh)?*^R*jn+`=z0#Tsf5i*LW&y?P_A00x1vD2?g}tjpsq^f zc=T?v5`GrB33KT|VIzcwE_E^UsMEwpXJWL#%JCYaeaQ-?;J$>x15R}K9myg592p^S zi9+p~g|$12qz@6vkQb4?KvM4!UwIHVQRh%cc!SnPnK*l)_g$+F^xVu}HQhU9?_+y? zscAmb2AU-4Q5V&RnMbzaq44tygjaz*(#PuC7p&pQGqGU@*Q{aCvPj;==N7~c`krqf zxRR54T+6%ju5#%un*}XoBYKGjL+meyDdPabSGXI$VNp#lRYKIu4^~;uN33fe8L5!{ zw|p>sJso1CkkQrq8J(Is2t)QH0glMmL4ErjYZ&Hv);`Xb#JjuJ{A}=>0uiO+D+jeM ziRJ%ym2*;JKgpOIrrUm63K!2sw9;AfWDzhXd&RP3VUfz z1>6fI#3!G>YW_h)q9ete#Jj%e_rswn~D7p__YC$?+X@KTL`VaS={p zeoA|hujY`IGI&o)Fn_0+S}06#wX=vt+whJRcp8Qzr_elJdH~@bPTCDqVR1G*D@k{2 zSZ4UBc5xVI%Mx8?i1>xm@G;rtIfBZ zMVZP4wJ2vZR9TeJlC9gkzTehu)WSsU9{4SDfA^;HYRLYE^S z6V#>3ycGp;)ofJSmn@RUD6BsJWH(Urw2YpHkpBQ z`JusZ{BwNHU{}SH4l*%vyFLvy(5%2jBxc-&1sv;A2yyK{(vSKwGyY{gNEJMMO+M!O z7S3gX`SX4LIq{KP$OEbsMpEFUX8mitiqa6jkA=#T``qYW-)7h^zk7Mr3CFCB9wt7aNf@ z(hWu2^%!ip+70^ykg;Y=XZTY7mDK)PoEh#?cvl%F)|@RRDVkRFPqhc8GEV8bQYm|6cBdZ52F z>CY|LI76^;reH%CY-oCm?3U7vMm+cI@R|XIjhS5WfQ^AO1QjWy;!l12+|9P;o4_mO ztKyfLh^wLwQO{1O75;49o?!;aXn>nL8ym&sQ@L(OF?sDO>6UG2rEDqEyXDrzU4T#r zsop$d;pQS=>?#VXKxIvzR807l5LBZpD|9ImL}&7)I1azc@g+h8wGvqRNKIs{e-gvI z!+OUkbva4=wNH}PXK~`5n$@+wjPvJkt8+GGldQE5NX=hu?L!XMvgX`Q1W2nUSH1RC zkNny0a7&jXa&z>x4Eup}`vD$jLsJi&ugWOsEq4k(VemD?9wD*!N-ms6N+~$Gj$WRy z=YT)aXE3m&SCeAbT9siH%t4Md%hOj~jhg8tWhM~?ZVpCN{Rl}?>KUsqkCq$3Y;hiu z3|80r6z#oM=d2>%D|fK5(tCs!Y3QD3#{_&eUm0|$>TBm)OEcp2wJkwftiCoA_6wOX zG}cmgom1*-OKED-o{80flGbW+ut-vT8E~YewJNhMx)j-2Sy0)RvZr@Z!5Y~D&w=%l z=)2YV`St$et*Pt%(N-#K1DupJC1uZ`RIJ97AkYrqvn8>@_74-FqGDEtKt&#;QmL3F zmD>cW8ldX4NClKCBvTAjsU$68HMrz?$X9#>R}N5Pkt=& zQQd3ET}*#Nc zO0nuIGsrb3H78`v$`Kd_4ZZauRtJQj$k1b*XOKtz=3%9yI6$amaz(VGlMOx07r(aV%P?trGY?zJARtL-6|cQ0&`{m8Q{n!yX4QO z3ET^^giit7Pi*Ehj^<7=tz($`&j5GXhXC%3(*TZTWlyUBH~E4%HO)OJyzm1tx2pc5 z(A$Sxsiy=i#&kAai=^-;{%=U#?6}mm+0nuOFU_>CCH_tnAx^@dR@?l^ff$BkgWAm8 zvOVAnKnQ2+A7u4$Y}x3MdfPE3L=_4ch?BJb91BzCIbQJ3sS<6&ZB8ik2%1emCNZo?$Z@^x9xlfbk~ zuAhLZ4}eLTLx*ileGa%3rpglVlq7gkC`w*mHuAwRDHbycOrQB^Fvao2%n6 zI7Ck7uI$(cLG)n%6S8zCfk@f%K0KD<5S?`9K0Hj{?7#RVFo_!W5oYd`Fd=iPnNxWB z^9SMSoBcuIG!yW&>Yk4PPa-AB%zczKH-Wx4#aK-3rgxE8TGKW=GTfUTkMqCijLnXh z`7hTJf5&-DoWIN&FaPA=@rV4=idGZjs7ULSJQF#c;sTaYZ7YxK+bTE$S5ozfY6&}sl13mlrL#=XPUNoATP9IU`qZlw>JkBVlajHpu9A{S zl_F_Gfc>-xu%D7#NcPTBqwv5{Jn0g~@PO#8$uo%F;Nf?1JRB4}Flq#E8xN@p54~Iw zIk9mNQLHbHhl3~J;UJE;lA{-CR)X^r@Sre!GCag}w~vH}g9;C#o<$TMuri~WU_Mmk zfNDl!c$h7Ld^R4&=-~uB9JA%&ar6+!!wK{N9%OG)c&GsnQeR!LFZ4jtMMVuKU||8- zvhaxB=26rzG(ky?Q^S;Cfo!Pg9106U_+Vk4P{a8$!c$Pgf5={UderdIu<+kO3knP8 z$Oun?g+Iwoc6wN_dBZ8zL;^MZci=(shBO)DDe&++*{l95@xY2$$;x0={I}sjlQEux zH~dBxc+L2|;zRO=4@D0NJQ7y(|C~DrJ;Zk6Ymv;a_iT22@vO~`Th89>`1(1U9d~){ zYl**=y@?d4%HAY7{KY_ciz8ExW=Z7Fd52$>2*nI^1dD?tN_BOXMxv|NIG%E>ad3u< zjSi8ROq$j;80#N*kY5Llyt#D54UzBlv+e|M4@o^4Y(SU4v9pb9j{37ZQ&*mkF}7IF zR2(X`b7yKcR|s!ljLw;$+1DOeVkO1iJXbufN5U^0a5$dqynCcG8OtEjFlgTcQDc{;S1_@Jsf)u~gV& z4sPD8fCumGzouLXZfs3+#0%bX|5_{eRIM+Jww8MFAzK_i>m4Uv=I%0Iqr2hFxaSvB zC-WA)E5ml4!dE8Xl@Cw&mMnGXLq<_KJRN<4`{5P{-Pk?X_PRF)Gq5+tj)PZaa7b_C zpqf`me9ehCY-yw-EPh4SV{MG#sWmc?a(CALoVL)RnYdhp-a-K!%qw*38zqW2xahc@ z_eJ^Au>pIndq%9>b!2}cZw|(=+Yt zITRd3Q1?AI(+vf?YLM_uqu++VRZ|r$N=M^B@6u9-il#!D2fivMMSjh3W8J1vE4h*oev7Mxmv#Be1Loz9! z-cM@P%jC418my9(6f>;dR*})+q;=BR`zqWGKZ$XJQCQ`R;&15?q$I3w^jJ4!knapT zM9_KRIC!hWmnpv>ch36)av+ko(%p0y)t0CzDCZu!ocu512xKT{4+rjIrM^-?p;$DM zs^qQ}psT4_B6SEuk|voUw5uV6jwH99=@&EaJES-o!HDh(yr@j7RKO&z!EJQ9{8YZA zSKmr^!}`Q=DEQ|JePc$Km16874ntA78pRc|Fl>4kT3-^b6Mnm~jVXA_QGjP)s6xp5 zO@Uk}z8jV!1y>I$T0aNbLD4#=%U%ordUrD(ATm@>Z~@7w@Sf?lX6oDK2XALQGsQD- zfz*TuUX={p2k+$Kg}5o{+ZHhRq9jeqxk-*(N&A#6*798{_>at9S~ts3tL)QW)?R_0 zwGMsTWn|C|Ix7%xSv^VGVSOv6^Q$nx6(rGsM%~^klbSo?>tt9$E4LC2*1@ zRGbV4mnCB)3f_?%ECiw}S)^jV53b@z0YIshQxMgvYH)SjCZ1{4pX%R=bUf{#TFsy z*is9#)bx!H(VQGMVe;d6#`!p`P{kwRHh;5}rK}tz1Yu88jN%<-OLInX~)1ZtqC!x5Fc?EL94kaT~;!1#w}~O6Z<(wydFDq>zqrCuk<>MPdRY8 z0aJl@;%<@%F;#@})%xBD%n@qcQ#Vv=wn_`j$cRvjC`;RNg+I8c-Bi6Kyq&Mha$X9q z(ut9KaeuGA{rSW1)b1P5x4(`!He+9S(ZH;I{l0y7YsCXe1sJsIGM8n&SZgK+%V_&P zyQSLwZyOS8{%z^1*8GKZL%}A<0cRPeUnR4Y#hCMcU2S$tWw@h z*7i#gnZzH-i9fW&AI`)dGZKHKB>qTMWfE(%LaKScaop8l+CYtw=LzurT3{OmEo)b; z{`EHfhPLg;?-H=eR2{y22UbuCN;yri{A+zb;J8 z+T|YuplE~v=o?np>pLFATuYsBXHHwqE-Q4212+YIds{#Yz3Hl|b6sEOp{&Sqz4Ybf zheM7bd`nV{_7QegezmDzzfYzR11$uLqWXe%+p|gd#bTo|lSH6|n77Izg_f+v9O8Pc zWpmgJtdeG2_1z>96%C^hhLx^tv%)OQ()7EsS?=OXow204BKp#jD52`&As2;XDepnT z!i_(!L4+`F%S;Nqb^_NpS^x7?|0Q<+__)*mT-AT}l=mN(To{A9xl?Go6L(+;BkK+7 z0_Eu2A964WRu|a4XO6!8e))CyRsGq0`m;KF@b>%H-~&UQ!Qhpi{l7o_+Q46N{ox5W z^zH4O7}c67Mn|%7n=2{seMOtHUa0l<5=fN#=*ZRY=^p2q@9E1VPUby*>5T5hPdeVy z=e7N{h)dKasxC5)7Bsv%E}lSyRV93hTB!UvQ4W!V^o=hw9HY&{wl-94%{QXj-Kj>y z&IOJ@EG9dbabkqEW0-KP9I+Xsb>mL_*c|%WbL4$-?-CVJ7lXEvn>p`4xruQ+D<2^B&UbasjO=&5?||OBcGx3)d(XT2vYGtXp%wm| zk-lZS<6V7us8+vTR;2S6eqW@ao%&#u2;A0xPyjD^64H!NOy>gCGt#1Bp7bpJa%9H? z2(nLl=r-%Utmo_SO^mG2pLM4NoflQ;+o?j*g{tGk|Mf`P;_#1-igzi^;V3`Syvid? zJdoO1;1QNCr}w*(4SYwR9r)sh?YXWX>%A30XHG?}rIAWPW4%^{ulS&DVtqU>$9Q;` zlnxciXwZNw@sAxMz*FCl3%$k4oms3{6X=Q=E3whk<0v z6yYctYwW@Tbea(C@Xy4j|7o#J(R)HK`tDfiK!T!IOh5hss(h54> zMU;$c`YS6agSWFqd`gH+;<%2N{9TW~`M84jg}Th819R3i%y`)mTyQ+#x^hj!89k2r z$eNNFJ;#ri%y?x@$r-OEAHU{|9-irO-2Lw)DDbR)Zy;%b`duG6e$9-YAoXh=Rd{{L zI+nAi=!g9K!E#bUJg9&S%xEo1JFBqZ@5B|Y>Gv%8%%(#^2zIPJHC%59zx(6SAin0o zOimsWXVDw8H=wn(3_)*opS__aN|b5T+29fPO>uyXuXZ;i9+gI@hs&qF%{|);%Bw*yk-mL= zX+ElOd74dZQ*mxajHlVu1ZP5)Hq zxZ&@F=yW5S&(`nEkXNkz>s!>{WBSf6yK}qewQcoZ460lDPKPfPxKQ7@_OFichWYfC zVHz(ggY*XMXYm={-wW3{5ll6N7?^fj8ZZ)|DsZov?+E0sM*0t(2OEv9#RQhT7DMV!ZN&oUkHu;1%|BKTha*;5SYEraRSgX=W zDI+11XW)H+8-$ZOZ=fP3c*=8C;ZIf}N$@uh*dl^u0ojt~GDQk4V+OTePlt#W9r7;iB{b+qln0BMNPgR87*FvJZy-eW` zXjG*+e~Jp93^o`hqq#ao>GtiEE*gF^aI4)})0g5M9gvQ?Pts9$Vn=HLPj#fP{haV( z>8#swCUkZ{b#@@u*^jKMbZp%iSL#xhQL~m`_*GKtz6eWk7Z_V3hyw0&jeE%>bcR_x z$10v%VDzS%#dD)q&ygU2_yYLF_Y?UiLrI*abj3fd);3P@^qp&lSbnfY;VT@}w+yQ< zPV$Vd@7IYYOBeucC|ZQ!6ziMF#FWykPNs(@3FeAuF%ohTDxhpruLi={yJNv zHGSK|JqRf%*%V%v-#a&GvgY?6(vGBgA2y;o*#X*viz55OtttL|V%R%U9Dd_Z9;+Qi zF7X=7llQe_Ij`?ORJ{MKt3UCmFoU$$>?U?i*2Jz8n-G92l9A|Aiu!*JLapaQM`n}9 zGX{4khdgHK7;Lw-3eX^xvg>rRzjuMY^TD$O?u*q3wWE@}>N$Ie``=2-*z{4LcuqUY zI|}@d@|rk1>(3Uj@d-?@CTZu{P;93rwo_b)3}^6T*B$b zWRYop`JYAi_Ww@L_jms&+rGFZi zQ-;gyP7{|+(>^ex{)=&^wl7ZOa?0p(R`P8lw%rg1rCxLh!e z%PGU<=cjQwWw@L-jms&+PnpWw`v>G%lwMm&>PdIc2!~`ZO-543`blxSTRvHcjJl z3UJx-Qj?EdRQk?VmDTSp@?52VgzRt4&qzIYNtsFpRKA%@UFItHomT~el4Q_&HS3-F zGHaF7cUUhvUcDrm9p1fGB}?Td$x^l7B+b8cl{0WwMcDf@J2j`BLoj6&XK6iF9p zyDnW$Mm3e+>#VBqf}f6#MJ{C>3$(|^l9JVFej!OEEgc=puEq9P#&U_uHCNZIpzf`o{0@8C2OcNq4z~lF?+d0F>mEk{;9L%(LpffFdCjY zsNUOoi+XRd{oc-7)O$N_jMneGg+V90_sl_gkA$3*NTPsB4^a4Q&{SQB8)WP`|F%5b zRWUkrHC|N!sj9jz#kx8@*w|}{jr~Tg%VE^I9UqE{ zb~Jww6(#@gk3vO_i)>UfC@DH3H5l|~lgRD)NOewoonv`cdwqs~UnFqMIG)yYwv8+b zU&fHdf}z|-V|vv2_>PhVWX^nF3NbnKXT61HrI&o0ntx!0aa?b@$a+XJj|LYGh5DU^ zw}yr^Dj1z*ReH_)<$BH@tNn0KVarSUmF@c?^|K45N3+~(9GNvqr{2)pPVF7QjXJmI zyifHQl~UF7cLi5I>1b%CN=b4wHC`w|(T7{o6WjGvwhL+0dpiBjwt18e^SeCF6xleF z-z)!G{dU|(4UT`kMPM@hUnA#y-UIgHkmRsIzc=`RWSf<;ROOK+(yo;xxo?+xDKew4 z{WkYnUMDa0F=xYhR%$h*^;yAIs<|}XN)`H|l+hmUA8|H#$K9t5b-(1XYamN6Ns8^v zj}cbQB48EA84=!@h?UGB#)=x6RpegSpUc zF7()Wh*y~YIp)H-%g4%;x$3?)A&q;^`<;%P9@tE#@f+)$*PFKwnU|5#Sc*-(XReg& z$V}M8#La=fB9XG?h%Z#h>FkQ0wG6cSJz$Eiy|LP4|37Q*0v}a*=Z$A_Cdohs&md7F zrWy-&v12V7x+R9vT$l+}6M~dnl-q7y))U)Z)C_ndLWjW|9uB%&V|Cv~>A!Z@Ztco$ z4WyTtnZ!*3SO~(4ApSK~TL;712owg)lK1=lJu|r|+Pd%i`D9L>^PK1UyFb6@w$_)X zPr6-}H=1b%QIN_MZuF*^kqDzIe8y5AE>SDr|L%fmYrXZkb^hJ^-_35!4S(o)aJkwY zJ8Ik+!|g#nTvO8%i~G#&eJaTNwVHgxL0|aqa$KQF)$tqUpkEJA>sx=8hhg*H0ADvQ z)J>+Dh|{HcNHh|}-u2+DdXyOYH@h*{UY3`-G=WDzhad8$g{GnRxZJH_D(}!TUo`4n zRWUdP^q~X8*@^24MaUY6b#oDHhM$I z`5f;94*KeNVs^5_S=I5cpu9RnkDQl1`e~~Elwa632P_rJS9=TFNL7t_PW5#AhVf@+ z|6w50Zk%m5&Pg@_hsKgTh{Oi3x_RRgu>Y`o{Xm}j=Ej==U>trvkrqkS@T^VM@%M1K z61q9&&~1?ixmp%HTue0~56L z{b$7AH|g}7`-fG}=|0{Sn6ZBt*C*O*iI6wLjkD8M1B92ditvYK;}@MWeY|KOt`a<5 z^w1r+4h2X8B99^wddO=W-ot$#Fn0D0<93mT&*MKtC=T~dOawVpc=QDTBD!$_09sua zd)sXsS|p|X2&LeXli|=%b$mN7G~-Ptx#$x_LB(LP?$4H)NEA8JIAu6Edwt{V;fH`c zH1lr2xDM2-7UTlox7jWUb9nNvd*wi5;95{%w|BIe)lv9uE~4aWTe( z0e*1!KVUd&!swf@3Xa%fGpdhcO&?$k#ED&|kFOq&!Q_eR7Z)y@7n&^iyOyoSN%K6L z6~M4tXoV_>GU87ivYYi8*gV{|NRBpss1lb2FpZp%t=ug{tJ&c$eX^jFhh8)N{sb;z zvNyEQ3^3=NC@Xri@u1SJmb13?`PxdFsjBA`>@=#2(JwjJRiD#bBz-X-$z?0r<$Uf9 zVpZtFx_N+D+0ht~Pr9foYGf0H9 zDR1nd&?xDl?Mm9mE2KQraasGsl7YJF_!GzhA}P}}@(}65-7eHDV5@hnRPK_Mr*UOW zG!{2u3_pMq`E|XiNf}<~sXy3KbH*21Ts0zR;)3eJ}^ z=7VI@)1<^4UwB49*FY~HL2)GEq%qCnLSG*aw$<6D;eH#Naan;uZ+Sv{a?rGu1Vp!kqJ{va@T})#) z4i<-93e_aIw}ZuzBfrew@(*ckgLs&M&VpBPHL}9}enW-Y2;K5a)CQBmd0LnY*E}vg zsV>8<8>nbf;Uj{h`_yeY1DWbJm|C-FtT)`0vd+g_-zn?-&oQTeai2D)bDZGKVonc- z25aI$;1yR3LURiL;bO#-#klJp&BZN)Xc=z)()V_ln`^*@=uP!(yLygYooiR;jabn0 z?CSZ;Z&w!El`HHm>xlR*Tjd#*XFr}tN!eycX};NU4}LeTFrOd9EB^JG z9hW)o>#S3a7N%vHC1%I`V&ud1yuD7&rT)XQwtDW`6tTU*iI{LzdjCv1I}}x(`>g_82kC zVY%73e+;)&u?#8i=Osw78+VDeuzR?gcdx#WLkS`sxtz*~`420Hz3!mJ8%tyxZ`zr$ z53_MqG2ZQ`hywpEC1}RgxO-JIfr6XCkksB1#aHF9b2cuikt{~1e;=-kVvVoH&PuY! zw=$WwhJwYT$&etCjWoC+>G5?;0*VZ-z|}m+9PUh?Z!h-Y<}ZCQMHsgROCvNH;_Avr zHp2XJ#7?rs4A9?Ik8*^nz3UA}sJhH;J8blb`BPQ+fG2cQ;RD`KuB$W3m z?q&v>T8U0|PY&*jV!NA(Kf9gQp_6kt$tOzk(LQL$eT61h>yVIAxz~CqM^N8Aj+Dee zOp%kme8k^pMOdhi(pgQiN(?OHoY7_7;w8QDW)LPa_E~aG0jbP5s4ZASU)`}=wMaL@ zxWO~cf7pnv?_x;PRV;C#fH3yqh3nteu$-w{i4R;~Ey84z+h_`Afh>^6=uD+oVom#Z z;VL@B|B^XlXD*z!Ym+;-Dd^hdzEn8`OH(jY=k)J2dURTp(81)>IwgZ@CNw2mx@2Q- znt~ar3jO<#VSOiSnbs3Kd*QTK3v_B@lY6Qr{HCBgNtIps#Yr;MRGPqbl$$|^BOcYe z=8Wpur1+)%u>RNv(8+lDTLJmI4s8j?;4Xm(eh^_1!M4-JU`p`zM4rVfWw9N33?V1N z4%w0CmR`-`wtNCzoFXMDLb+mPqc2(ZrLEA1(2X?d}haT5uY8U zTBerb?GTbx+0F|(Srz)BKD1l5;?-(l(59PK&m zxW8&ZSTbo2{0sh=wQKK%=zTMj+L3K|B8f`^sx#K_^(Xx2R4dcl?M$Q2`OjJh7tKK4 zcB%H%<{Va;Zp*7`CkFic{8AwJ*$)W2K3nUs^|{YrA!itc~q5C(8vLasIw zI0U)srvMbdQ?eS4+w||XRa9aLDZ4Bm0>-~b5^t4g_JE1Yidh(>E+Gtg8jhvg-&@Bd zf(j&oG_}iCz?2C8jI`v^6sAeWZecgfNDO2QZ@vgmTSzWRhs`8X<^HarDRf~%<2Kys z!~LgLFDc53lAa*gDDIrR$<8bg)dc^bim*w>ag843QB}Ahb+WZ{4Doad@$4b-Kr8D$ zXexnv^q;dMguE@F#=TtXKBxg=NY#0%zH_qt3F|bmuIWtU-gPPC0CIQ<*1;e&R7z;Yj(L+%ucXAo#9V&4gQ1S(f82 zWa)cTrE6iiR}w8Erhcjsm0TY{93|y;0bYv z0S4t^vEAH&2$*G2v*X4nO|ybm&`#0V!| z9eILz<*B*JkkV|4v3gp|K%bp1iL+vV4^69fL1p)R?NVGL>O9E2B4bp$kl8L<-jE_f zdJcoSZRd8@xw{b7BjUSDzJxMb2?>{^y*i>hTn<@YjbA0C?=py71j`2n2IW4pqmj}# z1&D7Wv#|@HKx6{6W9_WZLo>Uq!Kjxu>=Y~7a1m=J@oJ6cxG%AyZP`fGZA;Uv&P|`A zIASyXxYtO^6uE+OqF=oVDfg*8><>OON-Sm7LL|`^*5646{1_~zNsYVWo{Ex;g?eds zWW&CNz!s~Qh_REVG7-kF5ZfEqA%~`S+Q359;h&KsT(BL72rBNunI# zsHy6H4;)5DgluI;*nd?z2d9M~O z0=*irgGs4YjC8A6O^aML-%V|#$yb!ypCDYQD5F`}aE~Djt!dY8CS8C=1?pB;ihfB- zR;gPPFzj^A!sBU|X+XQXN9k69?1YJhepP#|lx>x{H5n6bn&3ZX@gp@f zOVO`H;lb8-PiCw4P3xk)y?>J%-=RrvNGiY}E@{tKfPKW4EMR7U%ICc#ZIs_=9~?Q5L_J<}uV zO0?3ds&IF{-AeHT3mHo0e*A8v=D;idLG@e+Lv?+RnBcMNaD%dX({2}{Ipla}n;n^u zz`AFe%;~Jq63;rm9SQ}O6$EfGih`l~+e!Y|)e+{VB{L8IRXcG8tKsSh1O5+;g#Wl| zW`peZ`SR&WQdx8TpM;$BNyCNToB3kweBI*ty1QR#d$~Fq5{e zSk;%Alwq)TPxtju276o%#TMsCSR8evq?NjtyoX#p4PU3Q=O~6P@wZCbU~I8P{=K&3 z)69gyx3zPO�R|Bh^Yc8N2*_Fc|$OAbeE|L2H-y$IfNjJLo=Btpu3k&W860-=#@Z z4q5ioT6Yk#@>w?@iR|)xk^I-$Pg8^VKah;Xon2lm1@}`S2<^aJ^zY(#E#te>Y3e@` z<#&g@w#!#&A``oeYUBG``B7*T`KT=(UWb@)5A6IE$boyM1?3_`%*gVjp4h;`gnVr= zQIsb3Tf<{U5FEHFVxPMW}s-lWPC z^{)YMl?;&x4Q*$1+7XSnE3979nbk!K)0Wa$3M0ED>8{fd`JxsMxrEU)d0D$iYW`Pg zjj-(`OTyRMC7zyDZvP3#eX*6GC(_t!X}W4=-S7dmu%D_`B#E{?w3JlMgwS~J2!T%T z2ou9QqFNYe3c`ZmfPzB^wpB~})HovL7n!P>2|y9|6Pc96HX`oFrG@}UYQk5#Zwt;~>m2|;*oMAVa5H7!E2^Cg_{ znwxJQE7^1XBa&U@`N{Ljb070|7K=RhB0N@}JM9nhD?Hil#EGVDNOHTGsOb@c2i2sh z`BmXqv6gNSdl)~|;ddWo`t@2e_KRevQv|{t1~h!r@Ugr-32ra?Ok2oJPR@1y53KG> zF~YNUoxuK1Y&g_$9Tlra}K7q|Fq^K|89_O2Kuz`^lNbU^|WFn z;THl??X!``Zq8wC5`*tDUVuNQ&%X~Y?m=7P;q>;=i%cllk!$e8P^wS6z6V7$lwr(3 z{|$7QBywg*B90g!;IFfyRbNEMgwT^?Huv>bbS}((J3{&F_s&u+M&I9ebbTatDGR0esJUtOXA0Q}z0*YLgT zu^>kbOl!on+%u3;YQRV&0seMLlMIYSnE$;C&=Qf4)~^4JR?(-y)PDJD^|95)2evaE zahAg`m9#axVptrgT1aQcai}GDdYA&E9EYff4D;_*?Zl(_b5>BhNUNwb$}svc{cs|% z!;COu!`b$)Loil{t4sfh%1x_YS!g|MEo;*d z?1+4kE~{p8ttwP^B~;xY98KXapAjMVCT+43517ktA>}zav*GX&hO&CdT)^xbqijW3 zSZ{oUt$H+D5!gx!AzKjuR(Fc6_-03PB~G&yV_c4;(rmR?*b4qA;uLJvJ%+8iHCyqE z-Aw!{E%m{09Dw_Afi}OfUQ&S)T2-q~s(Xjje6Om)FyyOACefy5iaj7jtX(8A%_o{Y z)L~l)O%sg&5Z0#}Vt8RHNHj%~J9<)_LE)g~JVqm$IW$|~^6nBZN7KR^rC!Y(Ob+I_ z(d!aQSEX(YP=qzm9L*j2i`7Yvunr2h3g=rrVN3<@ zvu>M19P4Ug=Pn${UuH}@p30x8`zbCytw3dx0@IZOs%hE@hoR7QN@!1fdtwz*fnxeY zCx8M)0)iOsyl@O-C6bkBSzDsTHwUtL0IO^Y?S6_SX9(3pO{-*G z$$1N^XpWt%gY9S~6;k4_r=j?m8}w(q3V{;40!{^M&yS{%5?K!mzute`j(G5*npvMM zA5<$VgrC6wsvU7l@KRg8!+G7zF4~baJTdaa6h}hZb3YnzD^%o-GtG`$s`RkXC#FOY z8WKaRAR_y0t&p8uhwd;CJ4&Tseg%_gI3p*a1E*!)@OX+YL(W! zrdp*gk(5R(_IA2*2xczlrdm8pB~;q4nh9Q_^^tX=9$6tZ6Lcu+lmU<^&SnCfnP6?o zXOaQmG59(QqZtDw(Vfjihkv*INWPTE#$XgCMs+r1bomM;hKm%O#w4P%K`&ZOKGF{o z#{~_^!eyu>=B*|-WTPVdew3+%EU6kfCfkY_8IzGupc+X*njP$RGKm@aT~am9;}?Ok zwmH;&3Dqn-s7GdR$}|ia(T=c_oPZf5%UFHFFufxT*D{M>u1baE1tSa>m76GeKb5TDA-QCwYRnkf|Ka9=Z~{g&5a- zqDqD^d86)ftA*GeL&|Wx1{@sl)14uGYqHmrt<6&nC2b67Iw$RGn`=Df&qQfdB1w9O z_nGBuI`?;y%85N&=*MvvXaX0@xO;@eyEJ*TC@8WnmyoHy+v*d-?jm6eD|C~z4N*`o zG5=I63s(*SW582ES!lpqWD_`dBvjcy$q;dw?DRl~8zenEnm0h} zX-Ng$mW#CE#0BQ&zOlOPy}XgpqO9Lre{9Z2^_v~(CA#SOdr1PL^G$?2G{xBYCc@N? z^dX@m7NAyjOPs7 ze@%0Y@rcMl9N zTrDwH=gQv^n-3K*A$@kG!(z8yVZm6PgPhP}Vg@}4lL5=AKJf3i zTg4P=Wqyta*+iqqZY6`e#0If?@4y7K&R2**y^B)}DRvjjDDj9}WTK5JSd? zsznSaY8*u$B!+^jh47>r+_F{F7JHMlZwWo7k_B6wU0R0}NgpDSD!EojF4ijZQjiJA zLLC<@wjVE+j}!q)djbTDTy-UZq)?#dWj(nGdZNCk*hcx(~seY~Hq%_I-xlR2&^VlcZE{uwzB8j|1aR>H!J{3NLxDND3Ls_i^= zsk&=WHIs?M-9B)YIw#sun3;za2!GxW=$Xr@;SogR|lTMDQ9ym!h6P^~k3yjptJ|$U=J;E|Bw04Be#A1*rwP*;V zzT3S1-Snf5WtpBohh@lsNtSulzkfWlh`!rnogf?e#U=ym^a$GkzNAOh%KTjFQDlp< zbZI+NxJ5}4t4H`n!0gA;Mwjrs)kS`h=_5Y`8kT;cG*>%oRPBB2sjy5dgB%8Rajb-8 zX@n89hH57*G-b)KiTu-4enFCj2$>P>I64_Nv#A^_EDH35RXG&zWF+Ex9ilv0JO^3j z(4iQLv0F{$TI1^a&td?G&xST_Imd+s7{p9dc}mr?^{K>6faF|Gq1_=(kz`by`!$zHvCx^w$yf`%%2e_qGj)` z3issO?c`*P)Sx?;0x(ra_wdcP_>_vHds8Q^|NwVr`eGO zMS;b7q&u_YI#Dhq7zJW!u1JV(>)>xVx`g-R09s)k`WDA6-E%Pnv>nojYUR^t=F{41 z+(PM(#kW0G&@4&G4MK*W&W`+=$sH1(Eh3#L!NfHqun3aTkv2TVkD*%FJX@l%QdK^_ zARpn4Q>_F7)~4Ypx=<2esRlG-qYuk9W~R1lVhydVlLPS}YP~W6iWer1sOyaw*18GD3b_Fi%bi0QOm{i(QXrCIGnlS?=K95z5fACZ*}FO-?GG8GO!AIf{8*J?Sz7X5ifhJ<%dh_cRI3(AR?0L zuDl;xA)%FHN z21JUehZ7UNj8M@@vK1i+gO!j9VBa7d&sB?uics>S+Yxyk5SJc z-Z0so@0o9UVNY@&}VSG zKqCPfuyhdPNBok*MJ`quv%Ed_!;86D$aEe`cXBXv#^@|?fXgfjoZH;kFNws~PBEkD z8=-Jp~jxy$a*D7(d9%}+i zGSkPXz2ixJo-)VBOV-=6tiyt*3*Kt2w)TwyZ4m2T7H4AX+ z22;ugtJeie3lnOB9oTFyeN^PNH7MQblPY&xe*JO!n4hAL zc`5q9u@K2=o9=ws(su{GV2uHu4nQ4QAql-TJ&`2{Wv2KJ#`*1d*M>P4xFwBqS==^4 zC03IAE`VhY)`RgbM1*5$XT?`S4wMtNpAVlsPU^cFCV;3-`VDuRYZBoHTtAuBtO#o%t z!MF%loF0Jrb;NNkuS~|Xha^4NO~?|=wJT?eOM;NVQd?`4pU^(HK4;BuE2UbZrIUazi*UA)MlQae={@4!daOMC+XsF%H zcB^Xl)dHQ^kNGj#YiHI}cAVvM0Vt6OFNjOPW()!?m{kU-5*MluK1Q8QAiYa80I(HG zwF?D&lG5R1=_Z`CBQ3*3GAhCZ!4y1Sa9`Tqp}dPs1pj$TT+} z2Ixk}d2ZHta@PB$5+A2$FA5QP=aImuzjiv_vq-F|EmL;OOsUX^rxOu0NAe}pnEe6d zDcKt!dj#%=+{0Ad4H#Bw2?&2J$5>-G3(V3v@=1t2*Z^>d(=D9VPENn{49HUd8AwL# zT?b1uVKg%r9H4kweKJ=QTg&l}#A{2+T!4413d%(qB~8bqn=Bo0HM20)%(l8Bx_){~ z@5k>(FvZ>A4Yrbk7XQd8^y?h@1DD&giP3u?@zs9g5F2!X-IB*<9Qy5knqG6QUe4=S z-EYVONCLZS(N80j3r$cLy4u)V;F5*K!a@MXls@Dj1+ahM?)W8V^RBFUgqG5xIC z89kzUMpyP>T?FCAwcnVqVL!M@(mf@W)UOv@yWmd}`;xvVBxKvUEpo)2#Qr7SNqKZ9 z@tspJT=)$x$CgL}mYNIhB(CtrG6Y1xoy33PM3%Yv*0FqEZ6x_z`;%bmjk9NP@J@37 zP)x7idxn|0-eAmnY}u-8%bu{*A$i**8P;RJjDYx)YOAnoNblapx;kkAsQI$k1aJXj48rd9xv$6MBdx5#B6D*s`aX1Gzn~L*!V|hdD=o!g}SW z9JsZ=fHq+H^`PDQ5}S1#Q!^(hocr)bH~#_rw_AVBXGTst~h%- zDj(S)GBYONv5F?S5fSgn)z6ddr?*Nvfv+pnaQ<;lJKSt@lYQ=UK$4TL;zkDccWQUr0+Bo8yVa%tR;l zzBqHlOi?k8q6Nh{2JIG%gprQCxsOQIDAwp!r|lMjnxL4-CW zlCc-ES5O9y1ivItCK%aL$ZpC`!Q{YEZ=hyvWx6^-1{(xrl`kPDrD#k^Do7Ec7(#>p z!ifpy<{J-r+=5v`*=5r+=_Cd9_3G}HJV)7>NQJ*P* z5fLoi*YQrVf%7b?s`Ms!p5nmsEO3&=1Nl73;(?hw$>M=xo@DVr6;HBwU`1#ao~uIF z%2Y2WcSjDh*g|5)be%k-^6ba+=Z4whqfKz6Zjh6Y6khnVoU8>-9fIH*q8O@y}6rxpm$n5iUX`AqXF&-7@D zjwJGrPZTV+r0EwCh=N7dFZ7A-v2tR-FHK05tRakpEHuYXP#m~CesIe6*js<6@`tS(0m@8S60~Q3(YNT z%n211Hs*$A6*lIDzN|8_@&p!leodgpDxhV>(1fn|49XMP@ zV{*r8_@ySB9Xo+Pv!fG}r!AzwQ4|4x$V|+@wj`BcwJZUVJb-1#{5*39*SbnI*k8(T zKzhes$)`yHn>8qGxZ;%50yi1ngk~^!6q*rQGCN>Y>TZI*jc%bFmIunw4Fchfk`3FL zq88Y}BCPbu9-fbbokTO) z_jOTqheo4UAl1wG9l)P{lbf8sxCTrzytM@bb@{frcX=)TeDRd`MH3c+5fimj{dG-sgQweO?056l_=+nn)xys<}b zBi-lv7yc4WuDj}W{5NNyDNAPij{^WU(%gjg3>0Zn=@jp z3Bg|yJV=Tvm+V7wIT{f0nEaiAPA>r%Yms*HKSp)B-|$pqe96g$pL?3{*7I1yMj&vqs5JZ+d4O6Z9PJ@yIAH)O(q!xt~ulXNAzL*0MxpRG#Z4!97-g_eT^td0ot7LE=ovf ztiFX@-FRi&fW&K}0=^~3#8AXHfg2pH=xYY^5@Rq7la=pfp3xM>NQR&k=?Fx-=mu3?6Ph*jysE;GuHo}G7|@M268uTzJMgLtjX(>)9k{>YR3sT zJMbJW$-uK?rI-`?b;`58E!=~eAk6I03%ALE6Ekt*-{Q9LhnePvohTWHH=7%x5=b{U z>_EWWQQl9Z^6Hg^W@!4#!Ug%E%keA@<-*+RgXPr+^D1>F+R-p`bli=2Y$TR%gZRgR zstUBles5a)zKRtw`cSiS+KgB-e+fLHefW&ne%40&4k!KG1Lu;C_Gp)^75n83z@g#= zI6XF|aSz&Y%&{$Q!x=$%i6th*&P}rK%EyS(g_Axz)9Ib*Nk{K)LT|}C7h`-+U>sHe z)0`)awa==c+g|$udiRCGN^j`O!pfXbUSVZk=n|MC72C$0q~&SK8mO~^Ubexi%wadw z#cJ)g*jpxacQ8-7fq+{Y-s^lfEzOgLbIP!6Er-W6dD4VPVrO%-;^z9EwJ$VfslYZU z*D}niK(*DU;ndr7bMtLz=?K02@8cu%vi{h!0PuK}i-%Um54FrS#`EAT{Xr7(;#|dQ z6~XSbzetWlomQya*I=AxD=?u?tu*#r|E!5{)>O zf{72t5?(BCjGgu3ATE5e7ZqdUGr#m;NnygP1d`m(&Awm@+!?QZQ$Fai2lSZEQxPS> zjT+KP=t}`O0sfKiQcj4=+-Z3b`Bf~LA|e|^XXI3a%JW@g&Q@JJog| zZZAGr1J@Q7O5Zr-ksMxTEz(PH9w&PXdvF!7UTg(vlS! zJyKQaL@O}FQ~7jsm(i`GGp#^^r|hLtC!^D?z%d@Qmr9*1wvA7p>* zEP)BP-$#L&kGeC`iZw9J^8gc{VrTH7vRH-Us^aANf$1>q)|xua&Hxnlu{3mymhId;@wlpI6UIUI1FjJ<>dWQokgY49?>gARiK z0^@0%7mTrw+uZSubg+SeoW1tic+!aifqjKyCB6QoadXEh5gaS+@*xGk!)}}gyV9<5 zt5?kqY}m45t!YVb3Iq&%Fe^D-o&Y#k+IK_IqiLn-epG=9F-nA!^UmmB%Rsu%iYcAd z!0;aX04iNl5Z?x+i2f(6=-ARPg@4I^*xZ38py!+|{cxqt^TBX<>PmY7D5U({O1owv zR%nF3Gl*&VA=7?^$7fE$DR2e7|$gz>p4)V^TJ>+$wBBo z4j%pr-)ir|>*N3iBfgR$8DK0a@gds6V{!na3m>faT8uN7lz7b<7`aUjFxPL)862)* za9N9Sm2WBHmN4<(pr$@V9>n{g9@Kn@*QFe$VDKhmL=4(6D*QPIvXe_taov}aFAF_V zgKsfYzbvD?WI0Fd(naGUPWr@^pz#V8C{hQhZ3QsGQQoX#+U?|L zIO4-!TQTv)G|b9=h>wfnX@B=TE)4*-e#Geb?LWy#tE<26HeT3ZZui`qsAr4KVOnN#w8hC zbe>WI`_6qEB+Qd zDyjVF%SSpaC3TET(pNX870GBdq3Sgu>cY|+)kdW%Y4XN}KXP-B{2kBD;gY@oMsg_KMtFv|9fM@RYkb4+o*y2Vj=oR(v{X;M{X7o6&mA+x zH_~5E!xw&$qUO9YWz3LjX2WcWuRDf1E=L`oJOB5Y@3M3_d6K%6|4=@RS5T{ zj%yYSPmlay5Vr*MB}&qM;rm@l+CZ>v)eyq{?;?Cd+qPkZ*S&}EwQW^KY1%KU{tMyH zw>_GP@ZcX1zPPP#0>Y0TM|fh}%s(Q1@mnQnDX#fkPrxHQ7x0(>RVar5!(BOduNv+f zxJ0LNHB27&VV^YHgLdWMmyh2y_|3*|9)64)`#z?7>|ct$E)}SF1V5{Ww+YBTHwchj z29QlX&qv>T=Y?0QyidpXJAV$o|L(2-8+;EAd^)~Y{r);d_!9rahygRU)xqp9B(C#Ki{^FI4&lRFK&x^5$->U@Wi%tq?_nF|1a>J_~0MX z+-RE*zdZbA;5Q3D#*Kad4EX-p`=5gEt??whKr~B_zIEreVd0MyzVk=q_{GB^++qk$ z7usD_6<=MtZFnFTWOT_#zvO*w+c=&ZLywvpVNBH8lZ9hSH)sqNM zY%Bg>2&Zis<(GWOM<3NG<>M64(-=vZ2N5|nB_ct5l<}B@6`REL^Zx(*V_}z?O zEq=G-$GEZYN%()Pf6tsk|B6FsSN>A8G1#{5K7=1#fiU{F7U8~cA$)CH-+F|L{}$oT zxAjL5URRIs#chK&!qM*_Jh3h9E`+z$jqjgW6#wJ?dC)aXa2owv7e%`s{Wr8R*w)vDaQ?p|d_!AbH^S@SQ9=LmcOmTCj_~K(@_&Qysy2i# zZp-gOxbK$;L%+2noc7%K{)stsp8iqAeG>jw4X5xIM?X&DmxgwF@yo?;I)02B`wm(T zAG;=b*VY0zZf^_>MRuB7?t(F(YCQ1$Zdr*S&kuZfDFV19YPr{Z{q85hE?Ub|@P+ zz=p6v!}pvv_eC7cU%oCo~;3 zAlGmx0dEr0#4kb$@iTf*y}~||#K6_K{gzRS55QliD)3Ce1u}4vT6{=V^fMX1AU!S! zddGaG*H!N_b{c!81YS3GO$nT=S{TnVaq&hku42LkMn>_#3TZWbtqZE`1-=Kr4!Xyp zJgx*T&#~9g6=5%*js-e3xY=mPYvcaA*&+BVsu5kD2Y--VK1ad-RelYwQDm;% znm9H`rqvA?_35=qUxlD$W)dw~3W!+)SMECiA26{xtKi7dvw{_z*SiS;r^H3z^{VoG zTz$9ijK5QM!3?VM>2ehwoI5}ec>RmVq z3HK!i2B%aENi@0?U&b$MJx14*#X|+BiVm*v-kniYK66b5hJXX8n80{-2W zXu&Jf03df^V9>1ChsZU#W^=UQ$h5w~H92PBHOBbNK)^HY(6ptmhrjMsyUoaBC=Yo+ z^?_q%#o@xxJJOawyr_K6NL!dQ&kV$-9UAys-06j$JHg?C*Zi-6fbFGyqcnWaA#`=Q zJ4x19Q40D9d8X__xA(Byg#ix=eWer~JgBm8O{K8a^IfdI&ur;JkJ!Xr(+-DExRx77 zmZ>hemkQLfaG?-OPGs2J@b7Fi@3b|y{4;}#y=3G6#h_ecdRMs7lh*Jxh0DTl1L)i5 z!u{uP{WACk_i)`CiQe0wf;o|B<9F1uTwE==(g+L{#U5HtPi9w9=R?)1GDqzXH|C`^ z%)phVb|6RLlG(tJ6Bw#;0y$N;ER4UEm5$rXeDDr{0dXsF7ZP$3>TX=It)R zWvY`4gEJevHSwO)#|BSf ziKoE;m5kh%iSsn#`MHr7?KJbJYcP(`v`%|;nkjSB75!UM!*}y{i|zo zhS&IpSLY0`_8r}dWW%f7!)x*-E+296x(N^iL64S8Rj48v8eTJuQ)0o@+Er3(s{oTppgA(Qs*at{3;2&Sih+vcGfL-?=Q zV|!e|JSMzmIc^~wQ+vY{UIF{igyGdy@m=UvGR^zOj% zwH8Eps{WhxX}Bmcp2&8m0p%}wH8w#2$bwt)0zTLJ7l^m@Q9KO^+v_(-OdFp5WXw8* zrKY6JT#k$0yy_mG{~j-ZV$==BW`2$sEyK|jZ9ax@g+R(@ziJ3 z9(@#{MK$psP6L^f_Hz*lntm|+^{j?9!(XkA8<_d6s~flzU;u#(-{T%Gh<_1u3l6fg zz(YpWz-tlwl}dzL27$yQB6-KR%xWg zJCKl34QjL(;bYVFHR)zgC4P57bT<3b{2p!@pu7kX@e8g_zAzH1MR{2CX0tOmU;95|r9$1bmwYwL&VvoLXXPW@ckn)>iYU46z% z+kLka>Ob-0+JPtPGY48I%9AL0ish;o*;W5jq$=Y@KEoeQye9)RG_ceOcp!0ys)o0- z55RgGXbko{Xu!+H{wo__H}Dm6`+{_Hd$}w2TTgbcxjifPTO$_F$nLdYBp-!i6LHWH z0`?XXZ9%jr6FiFRrBkXUc|E7}GD+R64^)3y^z@+`yL@)Mv=%j?+HBJEUC3THFiDd+ zE{MIK?@2M0>YL`9EmGzd_DXnYNNr@vvA6-Ftf==MAIh+^aR2D#ETV2;A^I4oVGwmq z4S(GTO$M(PNv3-;d$KZ6(C}9W_TtXu5l-q)jB?Th6xEEP27ca?$+W@<$-B|P3gN$b zCykv|xcFWP_&Igl*CLp^vZ8zmR%M&1VN$(APJ(n&iw z2Ti>uJ{6czy|5w0s+mpuud>))e+?$KVGh~rXCg2hir2daCdZ!vFj3?|yyHx%dUthv zK;J40X`5_pQrmmfBSIICu%&8EvHb`UsvZ`wKFm-00DC)>h@3JvQ2&J=nv-Tme#T@= zy=o&lix&TphS|=GtsuBW8yTV@adk24H~J}Z2m z#}&F(Z6q}2S2?AwDqK+&j^++b9^0p?g-$THDt>ncHK2EtPDyaMW!sB8MYHJi{V5uu zWwl!BsZnLQ>H&8Tg)N~wIehQTw1(`Ocog(Oa{5apG7O)-SdH7={}orZI^mbukN9P{ zBUk;L5)Sp%UsQME$KfCGEo~VHNUH;oA#z?CzPC6HT5xuH;|1Y1NfOGyedSBLsPIG$ zdXy)8hJ<6(BKDQ=nM^brx3S7+5+7`W&;<^z`<*`vAc1MJ4?yA9@|E310i%LGvm+H=W^HG#X)p;R|^uGVBb7*U%z@xxw%i45Lt9{2KZdY56!C zN#m=~#i^C0U4N~ChC<=}&f=+$T1uJQgk`~lP zdo#R+x@6edNI=%umv_Kw!6lev@|r69DJo=rg^&Fd_gmXf^~#fSDBevB1n1R&)UE(s zE^{x6uO_u%4jdwGxB;$MSdV*gZn=nqiC1nU!0n=ei|rQ~a<;HiI~z$ktaYKRszvcv zzfAF=x>I_bAg_+g78#84+~81jdti3BFnjH3F`OGRU=3p_z+xXR63)Qc&fe@o&<2@_px_!i7?Kz&Jde1Z^XA|td&ZDFynP61($ zy^${i?xNn%4OsB59*^R+XbVZ;?yKz=`Q|@cQ*BF(Em}gZ8Ly82x7bDA$lL8>NR|%3r>;3$2k7!pDjWqPQFl zqZlloz{(VO6iz}aR@Xo-8mbI~Nsk?vjzQFhi-9K<@`lfO&F@Y`xPAhvbJj*tUEpX=1Vrbv{;orL=!=Y@TGppV>x|!eB<^s~5Slo>XHJpF_bEN{t>ZMqv<~Zu7eZ5_%`CArq*Y zJa9dp*FwClpIvfu)%?&jCvX6*>_bOiA8GJJW})3-MiPLo6X-{hL&+q7i0&3VDXDI~ zLL96;bjo~~TV7QK7C-f)HIN&i*;gKyE0vJmOa4@n!QvoF(KsOPh4rA-)=!7h+ z#NEI-Xmr*IMS)rM;fWvn4ZF;H^oSJh&A9v08V7D6-3Xzk`>U`Wg7zjBHjSzxtS<3_ zpgiEg9ITJdt_gnuWRu$y7{XS`G`tL~GPmEAWo|FYjQ!q|J%~U?D&Uqt_}r;A7;+Ce zjT6G}o-=yFYkgGIt22rMzBR%1h1FHF^BYR#|IH0I6uo-)jP-?rAfH;AFiA5i8mW_xq0Yr@mg!Z&#DUQV6=)%A04`9?4p zx@CQ%rzTKZ)u0Db=JraoJeZj@CxaQOfLj9LGv2#j4WBu+<`uTNVUkJ@M-xT8tKIck z12H>0oaGItquP`J*2ZqV`;Ob;LR5bViSicxL0;&_m%QueqMtXLk9Ddm!XJ8I_GZ-% z+ymTQhAZDMSyUZwyh)^aMIJ|rxyrOX1GoH%<^lO|q1~Mwj-Hf883WHrJF}cJv~o=g z7c7H9JmEAv^TJsP+c(-+;MGSb1NbWZbq~gOS+z$G1EU((1=8GFGt!BuKhccvnTeqr z!(YGf9)hLJ++KYFKspJTCdc0LWcLA*c=t*e0bh1+DgK!RaLiup#dve*^jqPxuDi3> zxFgZK1u+ZN;yh@SD^W-`5>HH_WkM?8k$^o>(|-oMDC{ZZ3`9c35W~K(abY;?{hl;1 zG_2!gw=GX96J!}Pey5j#19+hKkI9)=2-a2FO4UO77sc>su3=h|Z*g;$r7?;fZ-h{=%C7#Vz07M@`mlt~4%VX9?C?W*X=AEgf@-gY?-ez{ z;|gDZ9+`Qo7A}e(#Kk&VpFe|IaO5j!%MRYowuir-)-c-kc@p)ITihc9G_b;rOVV(d zL&NoVVvX#R;kOLl=A2#_T(S0&JK>BQ6Lb68R5{_5vyo>Wa*vZn9tR%Rs)AG13#+TE zhgZ36jF4u=(_kY)6{5j~AP@Wtcl-{kgHD7@|6*xsX<6o`I}I@wedTuEP!D2hHc*9KN(bEPIE2Qz#x+yS?Hgx4hzW`9+qdB#Hdfx`v01IT!GI0| znVZ|^yL4O7sL#@zMgNbQLsDRiLZ2(Q*XAmBTM}H6zoshjrBsQU*XG7f2{aW(35W4E zH27zL-ZR*!mx7*e4D?KZ&3{}2uJX@;TnLO&T%SFV4Ijxrid&)nVrkV-Emm)%@t>tt z7f7pa@~A~XnYv7M?T_z!pK~zhU})jKB0oB**vT@#1&^4`Re?J73 z|4_kRd#Zmg>^xdOx0(w&v56K&x!K|NK?ZUs$M%QYZu?alVY|}ymI@*Mvo-;a{yl6` z)pPWp@S2?T2mOYR`R-htBw#4&8YAc5?Zv+EIS}wyQv{3!#zQm)AArQY@7g2*=Zz!a zqaM(3c5k@M0}39PxF|j?;e!9&R|nW*@$B;`pkV*|Hm1fZ60x|a2s#`t5pD5nn zf3-1SIQP2D_8!cjA!#5H{vgXA+y5?jVFA4g54ejkd9jg(r@6hqxg-o5Q!w-aYRNV)(5)>D4X#Pi@-2(v-4Jngb^jN%T#AMXcE{85;Q447$I6e; zGN3$;oC~7?ApVgqAmwmI+>=Wzyu2NXv_TM{g%BcOU&eUWJIcc1#Q^b9tLMEjH=HriaA;GaE1ng;}ST zc{nqHRb{(V4G^)PO~G|G*?{{~4e+q`!>oOo)V?^e1`|HZkA46RhPDA188Dh6NB%@3 z%5rh!goeVMV;g~)K-~zB);;HM1VOO>T|XvPmU)UWU~F_>HhlWcaF21c9?bwCGVP^_ z&jN^dPmIAtB87>ePs4-=jIn4KG9RWlSAbBPWiQ1{;GX~jbZ-g>E5|m#n`*$PlETO7 zV9nakQss%`N#q0K)~ip0J4t>2Be-WAJ&vA#mdaO;tNh2w$`gMM(u)=+09=fsfP829 z@MXjHGI#i0Y>&?REDiYM2kd>Os`Oa@Q>Wj6*#@r;%pV{5;5Dj4 zFU*?@z>T+p8M>%9ux2!=H{QMp)NHIBLR*ghUbGlk0j5yJXClKD(kN`D9^jX^ax)3am|MxMD zRPycec^J;DWR?NM$dqC2qI$QpeExDq9!y1gQCj>5@@5;ns_+l4&>NUlsCS3EY9;AU z$0fb%qe<6#Z^Md)1#?1f6&siUN6doR=3{XEJnV*_7q6AM%kiFasX~`~7ojsgTnz%N z2P5>Tw?4fp9z?MPuh1)sIIzL~w{N<0w_z_mX+Oc)jiNJpnEoiyx!CJJQ|-)}48Pto z=SCLDPUG}*~=Sn%DBw!u9PbV=Rd+ZQ*_!aKV7}(miW`C2`)4Yd$6P-95ce5 zdB|wIfvo;>;qN3|p$-axrJzNi#B*m?-uf6zuffuvs`y_aH?kIm1~0=lfDgmbjAhGH zQ*7a5-yY*Imbq^Xq^w_Xx-cK+cEJ%l5XHE~4m{(me-2XtHcs*VMH;|VpKh<+X0JT} zi}!LQjP++^c<|p|x)n25OMk$9_v<+iS$9VoqW!T&HFn_F@lD4JY~Mg@g0r7yycu~I z;Grk;^?DB+(+ah%{WV8PoHsOjIqQYJ>EWnn5&rir3`gg|3-`~vI8%(DWR8p0xxhhx(P(^>veCLO^c6gN}Fyr1zuBYUoyA% zhJOoO_VxtYm}oczXmr*Lhn|B^6p)uzR-?ISY3M+~&P|Jtps__g=F_ph_cncCS3Fy= zGy40ii3e8}US6MWHpftUIN@4mF4$9VEGz0(fnEf|fdlzy2=>FmzW+{}%dY5E70-tL zaTD55v9&J_-^#@9?26v#dpJt>1sBRd>+FiHW~5GBoX-KE=r8tIz*%ccjf`u` ztwnd?MyfZ=1--RJeVal@5MWnh@1|$tDBc%10r>q*i(gZKRkS~2VrTSyY_4l_ZR)ev z_Uc9fX0nYRD8w;Kp&w8yy_`KL1k@etckl0?5CD=o)xN6+(N$Zgcs9GY7T2y+JPUM# zuB7jMa`N>#8K_0o;+L9yC=kR1QN7iEIEQq-BNxxp-T(Tpn1sSn2+ygyJV?as!P9Rv zJ)MV7%P%`s@EeQ;mfaTr%m08QQO|{lOMqZu$Cb+^ut(Kd|MHMy@S4-Xp;9vX0m|CXy{3WK@J zmq9Y>sYiJ2jk_;}>{~axB{X^6y)IWMd)>Y1UzDllk(o#BeQWqyP5htUbEP?z4=x<8 z%BhY&RSSOEJ_rF3&xMHqiQqKC^$K6wFli03oi5;2P;7t z<#N*680l}_2{p+C+L~; zz)#aKiE_~$o8hRgPp^*u9QC6cN9Q70je4M1-8KglaL>d$UOgabI#%<+Od=3S3`vOIfVD~?*p^C0u_l3d0B1Ok zSbJ})ZEvejd)wY#TkTiyqs2_{CPBOygsW-gsS#6qFuAv*&7%XPnfJf;nVC!isA%8k z_rCtxaORwS_St){wb%Dr`?=t>wU+$)F~86$j3I4H>vV^{_0O!daUz$mIuKrt9uaJ= zxBeu4H}PsuTU#Kv7ukbxKAzy*4@f%i=dOWbt(o4tX4cc>l+W8y?(DRtgaWMZ@+q{) z8Gj7dq{XE>%BLXCsz#sIcLnAdojQ~(th}!LzBKh)oV)TooGo|FX~y+fF-vh~hD$5L zr7OavOF02IT)Hw`dPBI>9oZgY8LPsJ`QLTn#d+3eN`w*h1UAqOmdv%`z)j&mb3-_= zY2m85x8$vz%Y2%0k3Ps#Lg9!-z(G6(;Aw4h0fu+g+%0W$9L*Q-ped`$x@0iR5ej@J z`RjasVT%m~E=ztk5?EWsvns3KMoCsIckLp+Ff^0fbye1*I62iqPF;JQd{`Uu*3{Qo z>+wzVHRynAZ439ShS*EtT8BeE-Vi)z?LSFlA~$w23mOg;6eS|7^2)KEee0DhM_rBe z`zz#u8?g>~?b-?cQ+?|-1P2d>SxV&o^LCjftL!x>X& z+xVk@#?ET{W$+yEc*=C_Edl%qX0+xBf&E*3vrf!9cr95bpEje$z>LeM+&cHosJr=N z;GVD2z3~E!&^T9`KbZ275vn2%0-R+S0A(j9i2%dPa0me1WI&(Zbdzl${@9>05c8Jp z5Fn`FIa?GV>3%Hy^& zkG>{YA~fwh=}?yrr%8u7bQsLBDsWO6xBnyiqQ1r$o8Fph&BP5plwtD3;Da*XbNJ|^^JxCqJ#+4L=u4wR zIgeIdB5$*7(_3{b0g;od94ng=S1e0X!AY8LRsJC%o8|@rZ0A^2jLTTVHe^%TEo}QP zs)NfcUyFVxZ2zBSi6mTwjbWTwlaO)+kC$!P6xa&h)blwG}bA2^!W=+Pf8 z^AtVTq%~+|?u8N=5F;d8>#Zgefs};AWfFZh)6=(`{XH98oO=q05akIkRLu$c48{^O z3sig0s%zO{BDAFDCjYAO&rXjY+o`_w$<+9*K4QW(gr20HP2b3=hyoM+zV4x?0kmDLt&BO)L5mB`=FUPqOi zy)Dr;?`nj#qCX(STTuUo#U$h0wuMQl)CP_v zaxq@?GcroFu5jx!k{ZRUR_4w@UrwPH>LEuUYH1fiY~(9{moxmGe;YnZLpso$*d z5bP20EDqNKHJ5ocsVY@UdmgUxMp5BLmA@`#_ISHc)M`PdK}KNrZU)H--~%n+mk*Sz z&~7WlNm{b9bsk?4t3u*dr`6f7p>Q3BFcEBTU)LpW&9i>OwHV)@nq4t8`^~PbAo<2| z)8F6ZFpE8!f4FMGlxdlNAfHXl7yxmaDn)zT0vC-bxwl_CFoq=}gEynj~t-e!l z7MZtGw5x5d)>dF_;`=3ujReFOCN^+)i90bbv0<&Y43x;TmOu`aXSeOsh#F?u?8Juo zh$KX17b53cv;QQI3x@32`Ew+0pCsiC*VS9Ii9JnWpzL&o|8AwD)Kl`75a*Xn`9zGg zo&yq#B$*uFk_{gy^gdff0KOLR2zFE_Hso7}o=5m$X-B*eDG-eNk}Q5cw^a~Pb1C^5 zyo3*#ut|9e;i18IX&``&nI*}`B?alng;uM2zc5Q#91)-iZqxR#wrnvthFKZY`hCar zyVgPVSEuq&k}Im#)Aj_r%!+(A6rZ`(9a)ui-~<8T#G);byoUvn_pm_n9u`R6!vf)3 z3xsbi5WclwTJR!;00qPefKkxZTi2?b43D+<71jbC{!~FVk4V$-Si9NPOhwHdWF#vi z-}odWAVwfE;G!~aqUV2@W=zUeZv67#nWu$xJrAn`+gxPMT8X<# z<#~{SK`sYbAs(w^tH1<<(3~`{kvT=aa+D)^QFF4ck3srt=-5uj022m!a5S?RfN$Ei)?m` z9s|Z`8$Hwe%7=ETSTRP2d8F9`JH}ol{J1X7iqm$~6g-7F)tl#0d$$p)KVsg_Jkh;x zXP&uIbE+I}$Tpd6R?Wwmee#@wF_{y_VT3FHsPJRSW=PNES~ZheU(nskHXA`;!m3FI zTiZN|)E43iW0`FhFM>h4cQ|VlgPs z!b9*>p|;6WHuQruIRUSP@FSOeMA!jDb*aBe*Xq*!!f{mD`{+v=t2(-nXQg42Z zS`=X|VG8enG#VfSM2#hzc^z9GkdT(CgeJfnFN))kV zJZOOsV^Ybc2)UXo}5Ow(t=IZN& z@-5FRS^rl}gy&&%xw}LzVv)S_*B>BHk&I3}I(h5~(OR?vuqu&i_6=!VMe@GBzH>#m z(rS;M57uDHRDyT&A!Vom*}{Q2A`9m6(1dqaju>4Ruu58=abzHp7Yb8q92i!{o3bLM zEAZ6>3LgcVd88mCvEzc+HnD8Fa*O4e89Xic?byxmF^a-vT-Xdc6iI74uS(WWf* zlD4M?sUemK4hv|1pKfJ5RS|LaW;TqDH!QRsp&_C`Phjr6Pu%OUmi;FTur=;zzFO8H znx_%@isXT=ko*kqs)0aot!DYi6!rGJ;<;!Kz<@=c);zT*Fh7Pm!LAC-@0&-z&%Y?P zgOqxp$kLo7B(E^86i8kvki1eLd8I(|N`WMKSmzSWN2gZ`B(D@m?gf&2OC)}haMH5t z%$gg*wS$uWu^~(AJTO*z;J6U(n!HjrgIrr?jk^?B%JneGn*iZC@|uyhFc>3GN;)!Z zym>0SIO4ej7_X16Xzx;B?Xto8FV9T^>!45wQj{y>fK|a15Z2`bG^{8oP|6wPnJ~<& zhVsD@gM*3SfGpxh{s%z+;aQv815*GhZQugHaa7V5fhNK^0Ch<#5uhtHEcKPNZC7pQ zq}t}E+7?=e_ora$5Is@Ac_}EP5%??JBkkBjD6oehp!~PgEAt)!kk-fkFbQ0;+mV3S z@ShO<8C0%;PI;`?|1%3A(_{7`#pH1uOuw~~JH!cUzg9?f(#n7u;p!=w+xgLZ z9X%!U93PW^=5Ii+442GNO;l(ubQ}p@&JexMEWV*h5$>KQ$Nf#S$=IzNMN8=YE*!LT zh4Gw&H0bOD3N%=U&XVqv(UC)+fx<>#%?Y>51`M~m_{%F*O-|V=d0Gtf00MU67xLKp z86y^R{Ok<$R8|7UQnuDkbuYWY&UIhH$3^5i4yUKA-~B>yB{^IFVVASXiAi1ayUqp4 zMz!v9UtoOK%NFSsReTA0PH_5#Wu6|5k2=Je;?lYSV;G$^b7$~Xr4HL4E>C{=x$iLR zFM99|1?uQ`n%cIcvAdbNGkh6&$s|swWdu|%v5z$S%)9U6OLXU6*qYaRvA0!45=#ve z@`Ru$o^228N1WP+#H%&ti#GPkwPE#6vMb_Ng*dZO7vE%l`w_wVn>|qR8#t;5CziN8 z-K+qNjj+v+M#`qHk9)M^b?DnJ<1d~iEOos#>n|cwd(8dYUfldA*s5=TGrj}%o|FzK zct%M><8Dz^{jX>*>^!n*HancI9~Ypa(>X&X5k>AbzBg_rh_(|AF4ycHx>@h&lj_XG z!-PL*j$vmzI27JQ8Ejax({$d43+iIHU1ECA!6Dp>xCepVrOZn*k*{`{o^Ru`iN5C6 zUZ37~aERB!mxb${qSvZ-qn2CSPvlrwpWelGS7YJL5*ivkLV_5eajaOsLxQTtry(#9 zi^nRqRpOTUR-O8Hp4HHgsf?^<>o<^;NWfiXJ;a4XZq`}%^vPNj+CY>|Mkf#eGQkVk zTyBllHHn#hA^`i{Ec{!2_?8YFBjp(ykVi7HQX&Gg)s;uuK0{l2R2jk-nt{2}O_M_l z6bKn0*`!Qsa^M5ZQ_b>|>9fW##SLudG(sy8kjpkiR*}fUT;+&4kLwSA^Sko= zZh3wX0dj=u-P<3KTh4oc)Vj{u81S|2!WbnCz#m_Ddw#RuSDCLbugnL1V&~WzkKEU{ zUXP2>S9wT}G;qNkCP6M&Qx5WMG~C)3o^rH|2cpIe4|S05(b}=Cwm(>G4=*{mS*IIZ z#>gfO%edWB*g`z)&ww%UW*%xMzkDSDl-5^%pkdKxs>3EOm=NA;!vbXn$je9IUq(|S z>IyIMFjTT7%iKN+G3S6xn`Me zQ+m%TQ(c{t>}m=F8}Ex=^j+22?Z;&|wO+$oLdHTKSF!Af$`QC_9EkdAIp0=d)=JD5 z_z7fXv3G70zhCrX1mi8Y@_SDadZvFk*o$P)0+Da9$|GidL&MTSiSvNL1YCr>mUAC zdI5{wC$C^dWZAo3zE>W6o8^0_wG#*@*N?fh5cC**COL)U&YRQox*a}p(!5HIOK$l+gdtQ~qPY%0$9>(ciy{Rs?*U%+#&{hx-Qk=@zoG*CpP`R2a$l_FEGa)R zw_DNsp>x>)I+em>84U#yF$>mGUX}qSv9aZHaGSUdZ>_sb@Ut<0bAh=h6B9)evHmp{99$V5g$G!OfH5&OLPN}J5Ugq`NILl=qomO+CK#?u=-Pe>14tlO)o&)tgp zpdf(Xt@xtC%QoN_A1C$3@FHcYLz~zTSuKRJaZm^)f~468^F->5%nv0=C3_B0l*&57 z_x+FtA)xuj<^>LJn9Dbb9NRAYhft75fpC`Y?=o(T^Yiewy zG>nx#3jbVg^c0(am7tSLckxIP&JkY|}ya^A$b!{^vcZTS;ia}Lbf7>U>KTHxL zmCcb*k*WR91V24tTpu{~pw{)Nh5nWrQLRS?;4!{N5fhZf{G$b87!nf8wp+Z{-eD;! zYkaNH0m;y}iYv}a{EOP-#=w>4is)=}X>^V#Xg0x{i`s46o=@$4PX?_$4t-3jhV1X~ z3{Eqsw1zIR$=17gLweM=eT)%`o28lj(4*qLu!4+4QGO4U-vi~(7RpaSBYz)=zu2by zYB)Kr z?Tpb5?9n3^z+BZ*d&mWo1f<0*!O@>%0!^*2aIt?w;!Vz_*m?3~7D?MOx6R3fgH3~j zr4w*6IoNedbbfEsNK@cah|*KSZLjQ^#BH-O#)%^Lei!|h$lHX?yr)HHNy7eqn{`WV za#lft#5AjsPE%`{clt55_B#*@GVt^?h%w`Rj1hd_)~Rn>k3=Lxj1IV_`=3&OE%mqa zC;|tlVl(p#xsH6@X6Bs}nECc@*^-@;nE8?}G@a^%LyP=0T!(~hOJJ}EA zXSg3eNMB|pMWfgc9O{>Z(vH}eEe7ck-V8H zpN#YI!XzIrdeiI;z{la{HY;Zjz`ZM9w|CmvESWHpE}Lljy7jv@$}NAdS8~OCeoMdW zdb!am%yuAK&PNVc_8Vi_`p$bHB1VGaCc<32*`?{*w#c2aEb~*rDMg9tW6;Rk&~aeL zhv15Db~&3bFtdy(8Svy&i-V~LF}JdR`j{BrtqPhMH}*LW#98f&#E|9h3x6tn8*!`u zL5&5mK%-h6&5mqxLF+5~-}E0MQqXEHF@t@k6RBi0?0kKw$oE#u%%tXawRJu9SC}4} z?a+sC@_m5QL7&Ds;`|h+jNjrkhO&Zx6$Z>n0iMTU!y3_I!y-}oM@W-xneX+x%Z=6o z7~4qm1-{n&%^xy*CUEs!RP@>c#7gx->$3>$Fce}Vl(LXybou5B2jgiyBF({__e>Pg zJ#bD~n9%62z*|L<8Z&O}Tlw!gyqn)~AS8xb!jAfA?E2(<_$rtDKfE`H5Q2Y;cx~B}+c$J8|=KVibT4 zS6U)uAiX=xt)T}*9+|=tac)tu2o`FwY_!1}Y}`2FC{e3iIow=;B)|EC6Q%fIZZ)1w zS!Dvx_cqs_er1{$o_1A2-#p!_$auklR+le0px^PY5}AXf!`?yB#*L9elQK>uml|4HW{2J;0$eiwc2a-$CH%4892BfbttR z(T3D~x+rfwjJbJjN*$G6Pr(PWfIALI`bHV#Rwxi|z}H54zC zFQ79v<1nH$KpT7I-~jt9;H<8)e%NJ?DVR%vjWqW3)LA--!3{-;hO|!xkr%51gLk3o9UhTT7&uMyUgP$8j^G}aCY{$D54(&n zY`{M0b_6@?tpE6*L}F-H(nBXPNi{e$pcsTfl;nx)-&#l_;oV&<5GFEgj!3wzZtoj) zwi!=r&9kD9VoY&huy&bS#I%>#fUVPAZ+(YkGPzJ@nGR+2Tksh3QkUk5EOBvQ9ce8n z+G_?DiK!tlU&Hi)&xV~AC>A|9u%Pu*2FL4c_SRXiQx;xKC~=G|POK+*s4V$q-Twm6 z!`S~+VTsmSF!YqfaMX@+95%kO#+Z-s-&LCFmQ}NL3obraBWac^o7Eg2OU+Sc_lO$r ztGgI)oR$P5WKIqwv3~m>YI(OTC#br83CXge13} zA6f47z7SancS29hE*TY_63+65xZV7t(kRw?wzr$Jd@$5kTg!f@v`eho)}J01n{N1a zcSFjkt6a)zy*)B4St&DclegbohBdQS)*|2rM%dtiIRz)~-U<*%lN9fxuireVFUR@o zGH>xvt;A(6fY(*bArEgvP_%MbyI&}j)%zMtqq0e>u#eAlv3j5bJEp!ydtL0J!`3y@ zL=5?Jg_ShMy!d^K83N%tcnO1oCrubT+EMIQVlr)C&4vmGnhCbd@B=FA;6^4e2MS|s z!q_{VzgbiZD7y&~6j))_+~n&++tim5$Uf?Ox~;_g3}3A`$MlDfYmdrc%`(2)RZrwm zRrS>oLuyi0S+lACQOA^_JfqChdg!RY8t?3!)vLlwn!`(ON;xAz>7wTrp52DVLYScW z)w%cv=9pK_LkcoWMz<_*kb0UW|C~o<9{Km|()Oq*dN@R>u_JW^&{2-1JpJ~+z=!D? z!}(^P0LWW+6Cv_859!ttD5zP$&-p{E8WIsV(>m#O*n$vY{mZ? z9Idl9sL<2=p(}}C!B+?s!0hR_5TZUo8=zVPE{t4N2dJ#?AH-7G2%*F@8`mgMG`wx^ zW*omRIaN`fF zBDYiCwugNJBoY5!&aM{c$U~OvaoI&4DHJ7J08kNN_kG&oVY7eS%MX}!Q`WXl3S{+G z*IQduHxEJTdz|e+3t2Tg=xK7*TWfeC^2I~R2ds!tn&7#0)lImO9@h1+@uh4A# zNt0G@y#Z}+XwW;%5n_GI!iyr0`2N`Ps@eEMrpNc`iz1SixcSwGo9|?JN7q2SK)?3k zLU1%=`B)rc2WmYSd793xifkLj92brZ@V63PZONt-BvQetR&HOfzEk3~ho}YQ2Hk!ar&kd8 zZt-E6(W}CdLHmZP_oxgbXv3d^*iW!M|Mf0_IIx+6ifOHP+@*%Cp_kg`=ChJEVk({$ zw`oO*at>~$VHh*|uHSAOzNa@YLFS_L#G;7mAtK)d*Do+5Y8fy8h4~w4 zh^0{thtvjp0BX)nj@7<5^t^U5&L!JRexth%-SK)3i7(Ta_5{qh@2@RK%*K9`@zJu?Me5|O z`OHZ~5q(=eJr+Hu@0wpbz~WQ1f(lepDFqjS7W4g4U;0P%)|{3H)& z$s>}r4uu;Bdi(_PW4>%W3>&J&MVi+rBNG>q^LylIB+h$8752jerWOwW3cm0sRL-TubkI2k+aqSx#`IIyj&Spw)0sTsCQ|M#cE>Ty^{87Nm&8IL$xOnF{H^$600 zenMl?8^3HE!)PLb^P+B1?d>HnyBOjlP7SyIy{H_J&3T^7_fwZ9?ly^5UH-KByxPk6 zhEbNX37C&8cZ&#%&lFYWKVDDnXje1sg3ugUhQ&s!{Xq1<)w z)e7x-deOQMzIM=3eKmaId%9 z{OSsE6J+Irw_+f^&@5T%eID^Q3lF%rWCaNlW=WN|WNEmBY^rdz8=2P*mujUjny9*4 z7JM?8x1-p3dErJWM>IM2Y)wrhun8@-^kwj$n%X~p80k4-z7%eAH#96%We3|Xi0pof z^-Nr5g?WmGT^8BwY4E8^ku67y5{VAsP+`?Lyj$RCT}Q))@NRX#4G|?7pI|jYuuWoq z^{rCvR5FK=1l$O16oVv-B5;FQ?hFUkMySC~t?*5AB;uPgk@61@N+>v!kDgm)Z3d5l zP0@>Gh;2?rc416lBzr5cPz@}2v7svSYQX|#SY<5|u<;lS{=Nt|)?I%@>2xP9Gkz>T z(PtgpP%6ID+%u$0{HoAc6?xIwkeY&0AXJ#ft)7LeZfa2_o)#HTsy>1|f0@ zYZAAtP26$=>q<`cfDF(xl)u(dc`s!p$DjQ2Px6H9K|9c`T7_8?At&%|k?%n~v1Bk7 z$IuO|eqDIA3r>*OczI%Dah=ut2ogmy9YRW6)mihDfLX9g1S{JDGITLY6R3s;NmO)C zxl=l;mU>Q3>(40P%El0+@aijYRf;DnA9T9Tm=Fev0LqS(02ZUoDUfS(nXBjMTYpDS zrq-l|N%|s$(fY%$q&u>(g46Aq#YaV@l@i1c9Jbe2S6TeF)Qx53Z!e~9-$O&W&4Jp1 zyi<|`V*n5f97Sx+8l&doO}rOIX9D6IqsS8yZZ@8?azL143);NyOk^<`DH z4aq@j^-GonBB3jzJmjccliDr!<5DV8Wr2yjT({QE)Ko~~ul^mHB=#F%m%VBa`=%$L z0B`+UFDqwfU2z7in2ahV(*2I7kYRy!JzRC&-a@u2Qc_W;wnGv~NvdC1dXv8OTXe5? z+$#x!6tNLAW!)K7lKBzyO_#EfqeN6Gn~}FGpb`_sa8fCoky|(G9rt0VLg0vC*pULzmejW?N z+m$nkrM~H_9g*VR3adx-$3Tc zBefTbF)-xjQ&-$cE|OIKVU)?@KcV&y3%;Cj-J{!5V^Ec6r1}c{`JGoQRd$F4gNJ{p zlZ6`V3>l&=$f+aS{}~)U^T7q+<~(2?#n1$z~@e?U8BkvCTser2$Iv+ zgTYv32~CQsnl*#^?)&CnM^3jWccO7AOeZIRn)!ogGOQ4_g{9b#l=T@z>LJ%lit1zz zY#0hH)qRphbi~7!Mko903Z{buJ4Hb~k zLUAHF;{JQ0bFgP%F0pVnZYaP+FiXgWK?(3Mj?wIk((H`)^3Q&fxqXB>$zFE7-S#<& z>bs;&+|mEx-7{I#qKq%Ef9dA;@>z9+%WY@!(cKgUP~=l>qh0CgzD>n6HQi*zv}Ca| ziqeeXM1+ze9){YLXW6cvAu0ootA(npdfNvitl4FG)wv3JkmrS@7Ex=fs7s<3v*4!4Wg!BiLe<5XMh z!z`c}ZWUFtI5$fLoE=u1?BEf$*ZrCja!a1*sYiam3O5W9|G4#n3h*1G4LQ$4 zo9Fzk3NYM=PB(g{t3$`7>@<2x!uXPvg+Q%u^T-aU9egabmiNScPMX8|&I@y7_DoxF zzx~)VJZyQ{@Q*U%!S+O<6NY-1oOmp?L2lsdVMAE066xGBqAE3_5S3G?d6Kr-Bf1%T z6Kle*P(`+_n@OCl=nzFOnmY@H7rk!Ysls8uCFL~4G!;d~6GN4=QY3YWXD4`+#1ucW zPTL0o>-QztmJ%|>#QdtZ7AI^qTErASDNnLdz2%YKvBSOY3CFrlTbd&{3*U)T>s=q! zR0lQLDV`ap%ebT+{d?OozE={72!Lj0TTJlwf8ZhrmT9a_erH`9KB3d5K9*J zbJd%}8@-N4KfumwF+%?Qo7LW|R(eRyz`N2DU{rkdAq{jhn zMVv9Y9OROHFdg{|JIG-YJFxWZ!NwE5^Ku!GnwVi_a~Q~HiJ=vz9;hB1u1V~Y^{_7H zrer)6BQ10w$4l4~^6LxCz76bekyf3lmb6YDaJyQ-4AY0d%m;>I-RaiK>9 zjO(HTh&oDY#m#RhSo}(@FJ{dV4tCpdZvl_D5cN}K8V}Ikd_vZgjS%^j*#EU&sv_}7 z)*O<`u{>H-JBC)B5U%GR0gBRrc)3wtUz3~4Aqr4Ra?~zUf=Y5k>eQogQXuZFT29TA zyoz56PMCLyF%RDy9zgx!$7MWvM?r|OYsaF0c506cHs~EILRn&zr53)pSXgmmw@?ZK zdPjm^!0tOUQs%6}c{j6Itr<=`fEeG>63TWo^DQ1M-~o5V<4y&zWa~xtP2i2^YD-Id zHfn>=BlX7R_QRvPe33!lA*%=h(jUGu7 zg*13PBfPZg>c~bXOlpL|%%f}8PrP9&hiO=x=riYVS2-N#LNR$8>*to1yR(_@Nb~F} zN(u00VfsycX|ZJ9)69G|)VXSMpP*yDWcMu}o1cCq^J8=ES2CuKs!iYm@6ofoH=7p8 zpXm=3*l&#kbc<;D1)S*mQ`?Ny>`KhEXf!k>F>`=_8yZqoBa};Gu1)vNodWyFF13zR zgcT}sp?BP)2n46OL0kU-jW{qQp#k4gB;jSa@348NK*7uD2@m&c2iQI%#Cn-K1r)%* zyN?WJ0SLVFkarKVr=|#oa8eH7gRk5o^Q2zzSIt+&1?whcrQqirro^l|Bf&-H^> z(N~<28i-5txe#eD`Hom62g8AU2|vEjROAjSCbt!x(}-*1p&GZkE+CFB3U6OXd5Ov{ zvu>rYOJCM!tXYelP1qI_&ucF7{h{@fG~9#pz1}*H0xH5Y0&5k+SR@Ps=is*1tKQNU-y=1**1=jN2 z&zZ}Xn$fIfo&#~(atxm--)+u;TnE;gd%Op|ffb@91gP#1u5;I6DNEGNW%=pv*Xj>X-Yq4^_mqm0-l~W96=d9hN zm~Nd_^Qc-w4BzV1vGA>uh=%vJ+_h!>y^e+3g)AYKNF9vrG94=YsDD8S_)f|?jVaO? z&NCj9)(-t{vGdo|(ThKRC6|!y(a0~R^US!7#daIFZE)zjTU?t6CcN!(yi2!TUPL0N z%eZZk!|Z7$y}Lr|!DpjsB`b~im1e)byfH2jaJZ~08b?S_t2Ayarkr0}KL0w~a-zqx zhq4bGZ<@N&OTu~|@f{4!*GJ8~rF}d0WOs(@#_L+Bz zP|@UWh^(9wd8C5P6mEPba?eV+2of|&C|aW1(H<7((GjU=-K3&o!MLS#tOq>P&D}(^ZAWYZBavhDd~A*I?6BBYJqX z$+;%-%*>8lT^KHjNiyM(@~>Iub`L$9NeOH~2$0DChj9GPGhdI~KJc&nX9kDqUKS-V zK;?sQ0L^>EEWrW5&jR%mg*Lv0M0Y`!t^dwnIw&;nl)+c{`dW0o<0?IAOIQ+POO=qb zLkad+*w{dmuo2^xaM=c#-(fN^%*(g+A=;xiOc8T~cA}nq$m^iiA{|>FX^@nfkIJ8! z{0Yt>xKQGuVv6?X4dvTEhlR>dv#$pgrAHhy{ISB~=#8Vu?uT(MwfwV~3Af8fkQeaf zeS^wnHGHho{+PHsJDVHKvE4Era|R#R_Q{7Yl0WCl*DtCfPBZ;&kNi+ycF9%hyQ82X zN`TQ*$P%}Y2@`1{GYmKBcBL`y&QFd&1Ztfzz&OoV!t9&**;l;5gUEI{4wS%; z4|5O&4pGEC4%rbh5bb?cWJwY#F-sR z$cRy1ReK%tE#$Kk7ryy~>gRRRQ;le$cDz`IAs~2_FB7kQ!rUpJFsT$&iU_km>^#pb z9SJWw&zX8~SRpWv0_xeIde-<1Rl8dDNFu+#ztr##6xuRgt;JUH+1ux?z3{&AtuBhW z8JGuPFQO8eP|pvs5NmG`0!rD*bMTKy=6v2!mB&>p!t=tmMa@&fj|(+4?@$!9BP2k? zXUP&iE*yCXb$h8d8jU-{cPI`WSdsiSm!}I=n^yXeXTBb}lKW<0B^3Y>(&RN^{V*Z9 z(QDoznfDR^RePw4;bHA4 zkwQURsUjDjel{qQ=qYIDA{SQh zST@0SC9bgvwhJoDCfF{>8!jm{w+oUQpI^(5*;eU%#WQW+sY**Xo)GMCM9c^H+jf5H zv{V6g%UM1{AiUW=s~YF_6N;I`o`SROhSfEAP{Y+OYrWdpc{SD-RfLNB=r8H6F0!%3 zI_H~&ha{?8hB9=5oVfHyW$ff0-0ZSHnZ23_ z-NkOxP;MiNewcDGq;s;v8?rMQE6 z&rk*u|7b%n*Z6^wR?-F*V_4!kC25+_z$fJNN@FwYt()Z=Fj*os>)S+}g|y_E-w=_} zG>Z9KYJNvlX6=CXdt-ARV&rJ^d`|IuvyDP+M2!$9OQo-?)4B2}B>S}IA=#?7wDF~p ztlj2*&D|p+ACTmTH=3H-#Y%a`bF3V+@<}WiSG_+Wul+<#5ZCupv?2 zN&104qIE-P@5LRjT$P80{=}XU1Y^CZdgQST0!NHB9vs#ub_&kg=pl*Q%)ZsdDd)sF zSkYhc8B#ilCQ+$+rbcvanH<7RE{VSVUj?khh?1B*pb=8R1&IpkT5hVN>ois|3+e9G z+gToGYmoBGw{F<7uz2Hobutt#=sN4ppK;zGXCR7|Axuq1f)q8<68I3-fU=5kpu#L$ z8V)Qq%c?lE$t*(i4GYOlGbvq3? z?3ug9CO5>(P5DWi+AzYQX)J=bS27LU)tDq4wn_$(x!Tw*<8w6EC%f#CM?aE&=uW5= z!)W`gxnu=ESm`Z8(|NX@%PMc#QtfWF4VEmW!jS^I>_ubHel5<976vbM@Ve zKGaNXuog3JM`Q8FhKM9Y_cQC_fPq@))_A68?jTj z+2yR1Zq{}F=Upsv)8=U0O^DpmsKnq8%PT>`8JAZMoHQtc1hxH;kyXC^VNP<3>dU)} z-rTmAF;;Ys56-o+RHV_?LDK8=yZ$%$og{GSpl@Xl$wwoS0{0k@YxMtR{`J~0VL;CC za#y%sl}EG6fj-3~?iymriaOg{hs$sLaxgfvy*2jb<{NJc=C!wuto!nfS5b)fF|=ypL#YnPyw{8>?7G+0x#SI?p##}p$zMaAsE{~=L5Lzf$z zvHIyIr**cF0g(0*P9{WPZn<#6Ak!mc;W+{PXd|sN!}7!!)*C(MQgzzR1IEjG`w@rk zaBv>sYtAjlrUcJr03Gec>z{D=`kJSeaC-60e-T+rQM=6bPFA*Qa<4|MG+!VX6%OBl z9<;P*K&*D7+JS)4DLMrCey=vUqsMbr?dUR3p!^zp3hfdCqE9C4dnF5XCcgkYRq+tc z1#EI%)8xJu6l*E2*(W zErGwvXq<05nv|h!d^{5H-gGYt^Z_b%zyi(%^1SBg3wc7ln_`#Cv z@!0{5KuofC%9HCc*79m}NZYY*+-W@xZC6G%ltk=|{#@^_zY|Wqvk94FIc=C^3&6zdu!9$R5&{&GwSh<^9!>n+ftGZ8maCq1J0i z&gQ%5BaKX4$aqLeay2|IiyL-hqX<_Gikaen6eM_#iAPX^l5MRtT*+2upL)gAtroiA zGD!s<+7vzEWVH|K_jQi-g4&=ziPCz<9`Xx9GXln!MzfIG(WzQpS`ateN-a*+SvlDw z-0BMcEVWSf_W(H%<>b~2)F-~m6dUNS zkxDsQtnE2qg#x9aK%q^Z1B9|m!%*P*P@oukU99!Uuj{DaO=2BYm$7ppH-!QkekHz5 zX)%l!TDROQ$>w7bXDQO4wnyEVMH&4_Ae$~D&Xro1u}8gIQWh$?5IbqaS#7rqd?6Gl zAqqU=Eaz-VD|>Y)@OfL-oxJ|FF0j|lMge_~+xye#DqJRLP6;mHp0OubAA5i49W@u| z9c8S{l7!Z!cieuZ-m!6YdM@lyyQi>5gn^79${5D)mK9P{G2#puJ=tn>8BdDWcWYWt zW@|Es%C1w}JBhz_O)iGJIFYp0$RGC48KT>|aIdW`fyD}1OJuHe_4f3H#-I^90MN8fp)2!&nVZV5h7H&)m;dZY(+qs)GfvoB&9?|nj= zsqfgYeOP`o1|phMJx!a?6ZLj}!sMuULW60N+p21N5a}B=&#GV*^xYmfky|_9?O}-P zJ2ic`)4jg${PnSOjLzKk@u?41(aPw$(&)Z2dOSCp$km>Wj^*xf645aj(zN~Rx%wFo zm1Sv9kN>;#69`;Dv~m!_z`9bCznL(BAcEOJ_2rc+g*$-Aw4}*GP-e+;TNa;s> zb+z$J#J^4T&;bfrfeoy%#2L*~NHM7ItX9CK@K{+Q1GqjLa^py$d>*9ygM~?~$X73x z<%rX)qil*-{z;TS^EcnZbMFiMqKrWP z=C#y_1~p{;*Y~ks?M1&FGqEgsKfLdtQ^}v|6Ux9vf66g;L=+mGDLnnY9xTipk zk8(Fq9{=XsgW7wXSt$70z~14^oe1iF0d+l~MyMn^<|+c6b262|LCq)`0zRZKhe+dXc1U@+`)LU;AT7b@_AebTvh7Cl9nBLlK z%P&oUJ~#f+z9AnI=yPYW{UTr&Y=V+-?=#X0F;!076tHt^mfT7a1;Fl6ch9oBOM<;X z-zipa5IhBX?%XeT6jgveKvIM>^mzRq?EpJa5bNEO25TZ|@Jzyw!AYb+Hf$zofRs!o z4c?$jQHOWJ7m~RrPzUev9nN_v;xG|k$gWhRAz$!?1I=9UfRzI13fb1O)!EZ91WK?1 zaJ-#RS+)1n@{rBXrYC}?Rp`DOK%bq0aI+04Ae@)l-@rwsHboWDw_#T)AYr8i!qAri z1*Zk}yP1TacQ2BrQFu*8e>2oQukZ}JKScs+2Yj53yYoR{>GN};3|*&n7z>%MM7hP6tvcoxrv@#fDe(zJOhNn*HvC|Fgk; zLf^AMgE2V}0Fg$vv!d@(!cN$It>+Rtf!yOz6W|MdSG!cfKc?@jQZQWdH#$mleSo-7 z0G8(Z+)!qB2t0U|+~OZlZwifJKeHz?cKQjmUp<*S-I80f(}ljU)9w9F)^!GfFW4O9 zd3u*`{$d8PeJ27xoF?#W(6LP34zLrM1b#G>v47d@LrK^MN8f3`PTH(YLecj`QZC31 zr8zm0bPyqDVQv*mSr*}VVdA8b$9)Xvl zgld20shi?Fu*n19NlJ8pQb6IY6fCgc?N^}jn9+>=`IOwl3RqjP`Ah6gc&*~ILStR; z$ZQASH7q=nVR6+d_nGUR_L(cW&rS&nmA$#MEpwZRKA?gSIa>;F)L)=?+=?c!dNrCy zX!RGguF&f1(RFfB0<`YX>d$jsUKlDDrAFHmT7BJtc&NNMRDO|C5(1&sNF1TnWuoVx z9*E*oW^{{&5a-5)p>l2g9u2)newBpEXDO95Q=PHvx#z*+l>WBzPn>i3GG_!I(K|N0 zqIYa!Zx_EROdOLAWfSD=`r~Lp(tO@ zTT#2Zv#DGm11%{=^AbJHc{>)b9$Oo`E>uzyD!C|BLLb*~Hgr-+`+TURG*mK+{kwXV z($pA&^ig(wsH}`=N7O=5r)HpVgVl zW!ZHom!etX?4-CbUu9xy@SmSNAtuS-ug{!NmYO4D|H6d%aGN=nojf0=Gz(((%7hVU z6Ky>LIOZo6dnIq^)1sg$--9iTiTE8~jsd6~!i;miUOW=~64~3^=dI-0c`1bWQ;Gt| zH(#wVKCMP%iy9%}xbL7xh-is65z5WbBsk|%jfRpi7&Y{5o3JLNECdtKO~$X#pVK69 zI~YAgj8U@qqqN78zYO*H=mhoI#!uW6l6X@yu6&HRArmrpQYI;_@@&L;j`t4)R=^9N61@~f6y@VASuJ5h584;bDK;b8ylmn!h(*HdcfaE@piZ$2ko4p-Fg~Hl zxv-v+vT_C@t}1=omnN-*?0>{4lXJerJfp25fPjV2;+$0HwpStI{1+zYkj41ZNgLLN zKjs$m!=l#JVPtu!zG>hZZ$IE~jIZW*!hBuZBgjA?7`mAA(jCtH(3F7Kh;WL!jMu2z zAl`aNzXXj)kf#JC*>HNB{yDrnqkk3G_IK?c3X{=4!8-48{Kha$P|>p|OI-Ss=dJ6z zeVLdpoa^Fu;pvuGz2j~o9Vmj zK8`XkpAIb}z5J90yJZ^YEsCHtLa8YnHNp^}bcH7mBRyccmN9pfUKmknvpf zjw7Cx9Pve`7%{_?&-?R2%Vsfd?^^^HFx+B$;3p5-UXMt@74};+2vrpGLdmH|A!|(M z-j`Iv5*n7iO+z_NB+vUt)wYzjWv6VL9B)M#Ev^H-yp=KbPo&^eryH&CN;Ql~fiF~X z9j|@<9h-VzGUI9-pNDK;f4XsmmS3+Jarqb2s88SQ3lnzs`2J3E`zPngY1qz{1f3Cp zHAekwrMwm7YJWTh%+zFDp}gE;TH%gq`7b<8%1TTTkZ}Sc^iAC69574ooFd#jjU1U| z$W&xm;hKf#HJ=qJcUD!8-z=7!?#P{6pnBu?jqdB@b?$GK`{_;;N#rxe@XGO!ct9v- zdTQ<%UHK9JQ{mcQOXK>JU$gWlr|C~#9b5N??D1g<~;cJ{mmpfehs9F1K zL<8eXj}R^X>)yneL9@PY^!KSfEaA%MyvhfJ86617e@z~pK>_%xvkKR8f zNl^mFz@%PNUH(LM8OTz53PLnv0*0^vc0*c`!V_ASg}+H=AAHpK(nD}T6~v#aG4#`g zc0z$dNC27gRS;KjF`}}BlQ%Rp>r%BpQeIePxw+ZUkQ56t+T%G+#^`aT%l0jTB$4uB zG8pWTK{EScY6?+SWFQLht2aK1tyV%FION#>5aS$2lf^KMYhwD7*&bQ`{^bjm!s;I88d@S&-}%?QTuDq?0b$h5Yco#LodB1Ee|pZ%z19Yr+kM z#?dVb#VQ4~mTbCqLB?{*eA(WFw$??e2I?hd16P^~%7gvKCdyU<09j8ZiD0a~ z^<~Ho67uo^4f|^S5phnWWqax>I&apZJbgt3aQ{@Lft1)z7ymTgaF?tl*oeFU$BUUE+_3R1Z*lPKB@%#Z;pFZ~rsN8==O>`3NHa5yuPJOPikuMFIqV zhs?i5oKqv7d~XbWpq}7e^Mv;pc14a6Z;gA&k%-x*47|t6>zX&67(%@xR}njr50&Zn zGYL|a2zBqkq&XFogBd8>vY0mI3v`#XSbtS@GJ=1ETh#o6ys;%<8*gd0hM_DBN8g@&uUF$o4&aH6+CZ>m!Zv*{WESUXgVC{;9 zvXW-*zNC@cO5bs5PbWPdsWxs3*47RuZQ&_Xi1!7?ukPiAoYRvA4OGREP__-Xp*mYL zPg+Sto==+I-$_#uBgtea_EW!C=lh~3x`RnV<-W_&VxkIWO6l|cP96X zF?_k;W7sh~lEtX6S>VI;V`h~NNrAi^vdi0xMIxJ)4&q3Yta?H6n#Cyde)hd96$ z@Y)DR$e?`GM!25~E_IL7z_iN^a&xc3vqOSswkHQXvz;xQ`s+mXS`Ev`;W^q2S)_MAn)S9W#b_7JyclLvbm?%IpIO&+2 z=9tDPbDy^oi3UyyKXQOf%FSo9QfCn^AfT6kTXH5)2cBDaDe%D^qwp#ZHstY&o5)E# zfsHxDJx;(Jc1DUu0r)m~ibKbfaj!|;v$-ccx>xbETDd8HT^PG_UPkN7lRad*n3O|- zUPm(8DJynuuks2>RJKBre-q5HU48bz6{{Q}3?RuW51j$497rR9=d_42PQy}&l9x79 zrx2w-6H%-*qEy*dtXhw^HqXmm-aS7XamdD%NpS%wL`nOKz!T8zGuP3XGCZg<4_(7n2j$* ztgJAR?QeKrhZjP&Z1z{_fdT^TDV#F}2h_13P`{6lDa<;o@4OSp3lkJNC};r_bWLP} zAlUVS9+d+Vm>>ZFJgJZ;&=GM~*u=?pB10dOOi)lQKg|SrWv09$Oc3N3CTNo>afO(z zeMj2E!SMhP-8SJ_M zSq7mXF1#xpY7)v8UKq94RjWx<;!7 z28{|)*m;hyLpfaYGi2EnJOUz!oaFM3AvGbsM`?}?6A4LH1w!LdU}Wv#Rd6#X4890O zAB4QXz6C&OBv_w`1b_u3z?uibq$MHX77(~eZ3UY@*D>B@0F=>HS{aT0AUA6Z7S{G{Zt-<(-h?-dvrp|+e)~9*SX$DV z0N@k>NJ7^V=-T4+NXj%#Fr96zc7?KRfDAPxsYT3NJ0cFbGocnXbHYV+Dy|};Ca}&c zhFG8yE4c!yEb`5%yv<4d4z^+YpDNhWRcN6b@IP(B|FjYjv-nR*e~oBo;*1)>RR(j@ zy6}y0m@9rVF2t!M4lordDBhTC;^kCep*WE2n7ROZI|WCS52|po4+jU-g_#bVlF#F+ znc%y*{*;a=41#5U&eVL9o~Q?Jnzq~F%UR1`ee0_rj#YijSmHtX-IH^e1i&r#a~@}o z*eVLumE^BisVm7Zyyu(pRC3v4>PoT?H+)0xNn(BRcjQX)`5(DMt|YC#_yM_+Z2r#e zawUoMeg7g?g>rAJTuCB*?1yqCx%-dokgG*p6@Oi>in*$~N3Ns@f%{&$k^%;9_4GQq z+AQ~O;OY_ebS+m8d|U3_#FayhWdm0mI8dc0r&;bjBv+fH-Q9B4!d2nF$<-FF2DZr6 zR<7LYX(v~XHo5l{S5@j8y-65{7Q&;_5#njaUa!-x)hg`YU zs{KT+)T%wi)fP32PXp+7fcW+?^HuNhGBlco3|tF%6 zWd-$NuF82@QXFw^OnPMP-2kq$A+Evenhc@^*Dr*iPjI<@AyjrzDn52Kn`jj-%W=bR za>mTJuISB$L3dlZC@o?HHa)*G38-~T$ZBs-2?UT|5K#hNXSI_E)=TA&b)BB`9F82v z7Pr*4u-qZ%6#-8FZrP)XKBiaGwpZExU%?_s_t@-9v+Rz==xO&PopSn~^dGreJGtL| z8TP2;cr*J;r2ES{^Zv+-lX6dD$JFoUbZ59gzWDs=s8TC+dk|-_|Hc4@cVE5eT~B(> zi;Rv5A9svMO`66nl%gsqw9M$m>g*y_fhL#d-jP0h6a*IwO%Uv>>?Fp zPtl7|*j=4KOt09Z9%DfqgWsah$SWXBTvH*Uy)a2$r7wJ2sn_fZP!ra zUrN$ufYY|mQXj?RpvF;+6gi@H;0SPylX6N-kzW<*^-|#5<&8;tDpSWgxywUwXonZE zio(!Xn%a-a1GN|w0^pDtnF^1{>+#3ekdE4Qe^HmW>wc^;vJ1{Vj(Ohrl7}!Dckq!_ z)cFI^loM3#SA+~t&4IX-+#UuBb@fC`-8}^w&gXWI$-j~h#=;0V5p|dLJI!OJr{Da2 zbVwKM)@S{3R(JF-xmy3MG5MW43xn$GS{zK*V(WUsi-KNifXL9hZqHj6%fIbW z3P@!~kDX&4pb*vZ3)+ulvE=PtB3N9k;`0|BShr8!S=Tdv6`q3H7%z7(J!j&}zvtx> z7qq{kUfz@O^6!n-d`3RnJPn!=^0-3hac&`XPJ*!jLd!JRXguV^keekG2jvqusL7U< zum+f=e2v5UU1u?*H#y-_-}+w)vt5skvhb#}-;9||uP=HeJNiFUX1yN$%Zypa)^*EF z*FBw_XV0X05*)}_TRj)F-{?`Jy{Za-LA>gJ^fnAbUCd^ zEPWnKi((1%OsDne9WXB9?nXnd;v{P8+g6Ql+6S9qPqskPd`nUek+Y3s zibKoE#g9C!I4@TZ{7kMoxvElEyj({_-CxQjlQgkX&JJ+l%Bu6u=vH(zJvFphN z$S>FSle4Wa+V5+f)3R^XwPZMDQn#dh3q8pP4=E}rPD*w5Rm5pPTsYSRQ3U%%;1{nK=E7VrJjl&nV}8&uGef zoDot~Xi2WIN0i+XV1@Y%{>Wk69wCm~N>FCsq-?yMi98XI`7&?qZKi$N^*kLQ^WO^~ z^CtoF9lxqgAcr=;R``q~bzn?MCIq9^6LGu{n~dakYWDS0_gtOI3D-N?6La3TTJF<**u};S?_xDjD(hFD-%NuhN*WfPy%^z)_b2r zh4%NF1Q{pqOaamxQP6gIj?qKB`~qO$4M9aECRagh|vKY0723D>%Ap_uJGN^UsLeJ^6A5&-s@d!q3v zlaz+`mqnB?pVb%juj>|aO~HTjt;n~9Tt|;h;eD;2qp32bjy@DYc)Yn!UxZ>7i^g-d z9Enfso7j8k1MNyFvHPcYTFxFN(xr1io5qik(5ftDsEylm&^xfTjxv6G42h%uG!Sqs^&ic2e)5I*D_Co7rhp4MV5L)`DB36ad;v_J}VC zDgI;{r~4F6|2;r^;sTj^hCX--(B{7_XeTc~eg$JlohY^S(4a`fA2nYPO)7zyJb_U6ntw$b!4x58 zhtVxBiv~F@y6weK?!;y^QcYr8IOuD+O_oP8$a4Ih$TBm_B+Hn%gyAIliJFEzPt0-$ zaKgToo{dl}W%zo36C%)@+^Lf$g-JX;FR(bYTmz9gnw%vYDJBMjjj06ViTd3C3xI@> z!bSmP3W}$hH^;8OGa&Qd36M4vClcXF_^gQUN%HY;$K_*@Hx^(cWQqQ+JNeA567Pxp zb{A`QHSxbE2^JCg{gL3DGbOe-akto375g+xcw^gRe za8!|D8+iY}B*Ox{iP)R8uK~3Mg)916_70cnFYI;S|#(OYUui5Sgaw z=S@xO^35*VTY~XvA#rJUeU5Ys?D~#cV9_MoH}m9=@b9p9mZRHbjbPEWjrK=PsBY9UuS%Y{;5Qgqc4-`U=S5bWQKa zn1USF9(6ff4vvjz9Mtw{Piy-lo)V&1qOWO@JWPbo&_sJadX(b~2s|OiW!nBT!!|d7T<7mU4Yr+xY61WWEgudomLg0$@=Cf( zp{}*WdS+}O!erj_24X;I+G@5E-lz=Nht7Cbkk>75EF~A4880{_|n@BH+kbSSyC0f_-4&{+NJ%O7%b7s@U{j<*h%)6bfN$F=L z1j-(+jP1B8tGhV+?=~a2wTJ?U^TP9bw*G^EL#H}_=e+m3()xY5((Q?ZJr`G^sP z-HYxUow!)}?*sgWaIw(RJN}khuq3*_dmYEDwTYtiGIp|_(>Ui;^b~ifav|E1eqm_o zeF-@yb~wd4mVSgSJ&AdoH0{FoHf^(Zwu08Frd{~1(LS>mrd{~%aew^lX}Lnl!)bYf z6r0n?6JmA~W-vjXXpbr$E0x>KUP!vg6-UV@wvaheLWCOK8F)Sl6;zu-nQyG$Hy)^-*Le?#1TR4r^z-~S3Ey)fRav*YtoI(D45(|hLm^`=1-T^hwq-*kB zxpZcqdSYhl?9)!G{Z*NDdTPl@y-SzQ_}rFfBQmt6MTW!rU3p27VRa6AAX#}Uog~+Y zY|vUD0z{+a9FfCw%=-s~3B-iR&BS6!Xs6`mU;^PBC`5)<5gE{uFJGuc22cc%frzdA z=$}Po$eNC9!B3VlDKfMUXwM=t>_cP_dBJ%>l4pc(%~)1D=?`M}YL^FvZHQO<9m zl(oNKA(Uj^%zLjG1y@Z#WBh}YP%1^BPlZq?t^A;%Q%DC?DM$3%xorUvk^KaFScpcHh$1IkUbeW#UX+=&phAkL4^{w9#!Ju+Lt3@rC{`)H$4`$u~SX%-R*j_wpZ<95hhq5fz;_HIDt^a*^$g34W$@R%Ct_NDd}Ps z5`1t95XIm97Pk@Y|6%Waz^kmTeE%fpfDxnb!3IseSkr=SXzCp_wpCFlpaH5yqf9{C zqQO>3P#6(1ZAVGrrkTm%^;n*#B(} z+Jpd}i)`2~>CT2a@dX98=}aKwi>$lZa|(XGF*`NGe}>emD3I9wYL3)@S^g}h1JABz9OseIoc9Ewd;X_&;4 zI2YXL#;YjsAK1Ac7+UU&-75}(rSq;&A49dSa zRQ?kg`zZgfvBPnzzpj9&N0fi!jtN>!4i;dQY7JM$F4e}=$0)S~i0DMPTpVWsx>YTQCMOWenrv7)L@9`MyN=(IHa0T03C!z#ezR;9p zO?sP_F(mR>6!lX3A!98TQH0!u{?say?2n*1e;fKgRGiK8a)wU}x4LPB3=BZ*_s0kW zEU0EAm>Hj@4Ai9T%WJ@%o| z09N$x01eT4y%K!xc{_2+T8eB$g8Z!oN)2vo;YxBGb;|nPXfWf%1 zo9nlRTcg4TKyZ#xqj7Q!9O3w`Tz^T|YyktocmoEwwKSSp7>yJFdMCX{rktjq&1m1*Bkjzk>502;9usw*<;b>|Cx6M%y*7KvNf^uDk7 zSmGw;8d`~-i7#L~r^KxhEo8>xU~K@dfZXDpxC~|x8eYLd5~dT9-nJ{x12Qzd6*~uB zDX?AguLL^C+|RYE4m+@CI=CTvVcoZB3^_Ns_2kq%1&kGJBZN( z

      yAsxRmX|J9GRFOHnr7a6k$_*RE?#F2C~5r=y!rXlPOqUAF~wv0)Sq6q1jHS%!?%W-rm`u+@hbhI%_pixzgpoca4!z-Kd zjEE0v`EX5hYRhT1q`)aLnKmRcnyne3Z_G_iP7u;Q9FL40?*PM|f=5Dsh0RYOgPjqU z+tdrcq>K|AWoHmc>E;HY>2j|9OCie#_|25p=A-R#7J zOj;adt`08+J8!rE2cjD|QX0!>E22r))5IpN#f#DaasP++Aa#!zYh#F=tbFh7w=_A?G- zU=I9@;ux5C$5%~YhH#lRgcyw;*O1f{#fNCf$jSUOk6nnIdF+D12<9_O@&B1?qTg_X z8kS_f!rG=;3)&_ifq?$dLqG6KWOmf}r}l?WQk?1RKC-P%>x~g%L1Qu}D$cZ{Xow~% zK3qdmUXAKAk5OQN_W8XsDar;2KS1qwF>o2Rp+ABn+zxt=mfHM;d=M3cC$NKn zo1fTAKL?W&&uPPdo1cJ>g$W#ua6=RsGiS_CoFS1i=O;1=l^>d@L2&Qb%Sl7mzh*f! zKQUgnQRaKZBAC7T#_6QK0x4W;(^C{@(Au!PaEcAG!Ttm4#?0V!*8Q9|rdg&%n^q8= zh$=E&&Ioog;0(gI+~j_ng40=;-^XL?U+(>BFq1VL|wPr;Xiqb2Kh|n^oxG0-_hvzK5#< z--DtT`ihT-6BtvOtVleNowyUXLzi|PVYOI)v5v!L{$c^g^O)m70SrehbRmy}6DAV9 z5a5Eh9WF?waKTJ=OFgGwVF?EvF1R4X1(yuN1$ZXT#P{%F`3$$gY56Rq|B)2^hg<2x z=zj$IPiktIH>5Co$7ms!!EqKFrJWyMq7QI4z>%$|b2HHp zSB>An5a~ZtnQ-Pj**CndnG18olc^3IbxKVQ@+1vHr$S8^P$HHyx2~)ox57amuPBT1 zxvek;(|Z*@EDvB7k81#@7r!{i zb!uQ{5-YX%1yIB;D@*bkZoGAHIBjjRTQeFW+gBIce8yX6>`eFw8sp3xd>V~0yuqWk z){tqDwRT&;c-drAxw#*~j`-i?LVzhk)`7QWX5&Io$hzDJ zucZNHX2?TkBU8SF|Kl79it8BZOt>s`Cb*Rmr#KT>Jdsq0gPaM)?V&pX9|H5A=22jI zqnrs>nKL2(8s|)SeWWwtD%RiNOxPK((DDeN!6oB}cSup)cHWmuAv50LQpK~Kfrsk1 zdIi+k0uNAauC4wc{xKc-_#xVJN>F|Cyop0N3dU`VnP`xg;LN=X z>?GoS|9=@=P_#qFvIs>zq?+ms^N%1Eey84r1#KCD4^GI*&yaR9Sm1;8-1tIA3Hx<{ z4`xk(ee^kE$v zyA#Vapa2LKFF*Rp(c>P36<8H9Ebbwr?+Zr8J)9wvR|Jb86bO)Me}A~e5X3!mN$uyhsh?fk{*0eL z-~2MEpOSL>xmC7kKezAmJO0JL;=5%+1K(R-)Xr^>=<2zf?CPKM-T0cWZnmp`!}o~& z+}ihq`?;w)JAV9~k(JtV)(^?Qls7j`{2`TU%l%>2PyT?PKQE1vsv_ko70dY{)wz-1 z@h^UZ@0JPk`JNf!>XfhQ>bd21^$xx(C+KRWUHul{BP#WmsYFG_DvXdbQ% z`lQbC&117pj1l(RB#(tG)@)}poLHRgUs0m~&#R3v(McaRATrQ2W&L5`O>1?qyO;|} z8`pw}evS8rTeT)9ToDmQM2=#Hu?4Op;{KLwjQ?4wa1r zf4B5#o|iqo5WNpg6Q;+9(_~sEO#)YF2EVZ3s~c0343_{x*`HN=Epq6Iui{lfW^T3SUky~(#41s~qQhOzZ!7u4Bk^FBf z5XSAt#HO~|GHD<)3MQ}N8{f{J%jt`~&mI5|~}r7=?38Mw=S)>I>79`SJP`;#m6?LlSJs4LhTjpkLOnb-6A&^mq+L)HTwR5#OZEeB#7GGT(U3)giU@DjHysK;T*G}S> za=Np-*q@v0zwA9e_saUl+E4j&zv|y|+hr0X zkN!Y1B>L#F<*^B*)+3nec4sx@XV0GX{KIc|uRYfB7kJ9&75>HT<+rWKN`CLfoGfk5 z&E6!(I+)t5@2tH|agc{uKzVHXc|6Jqi@4d39Q#b9^%L)DLu~TonBu)UB&eo;crl!% z8DEgwkUw!QM$N2WBmRi4diaTOWlu(XbXqoa^zSP09=|K**V3liTz~G3{-UoQ>-2A- zVQeinu=aM_IDDw~0Rl7GpMA%%>62ZncB)nAvOJ!HpfKU44 zlh_&>FEqK$YI*pn?$1J{q1r+}x{>#SmyS3J@lM_Jjajp2z4&lfP-SS3*~Ed^<#ktO zvE}d-aZdNdp()~}JMXlug{^-IU3*G~6!5Vq*T0Jfy-FDFqtB>2*zkHgEzo|#EKBIB ztNlW@f6H`QL`V>8lh`Js_Iy@-6F-VjXHtiY1KksR_NN#?X|i19@mB9~0<2p7x#jV^ zC+QAaHfzVa3L*%cFNY&dYKx%BcPHc6DeH;Ul6%th1Z(Dc$Ykzx<={R3qGdwQ#q+kP z2elKuw$~uLhkwDuH+j!P+8oqoH7C4BZb=WRP{&()ry4t!ydUQfuz9)utu(jQT5?bu zv;QfLURbi5C>S+_GQ6hpCwYv|8@~a1r+bs;@n7UCR0 zjkmI@=<2dq?R@`L9BY5Vp7ykC?SJHek-_TcHmqll%g6DrT-b2KAeV;1AFPLt1ZkZT zP|88q?Pf|NmL(ki8qdGD6ZhZ8|Viz5~QnLG2wm@K)oU1GH zYHOj2x9uB?flGOdH}073`Rxs5LyZTbgj-biO`gm<+r4ei)pdF2wEEjG?IV+>ccSM2 z^ZUKWcX^LD6MNTqD2g{=df%j0e@6q&Z{2Xfo=Zm0fw^|^geKe;4B>~*o6R!$_(zf;xMywgi)DD#N-!lB(&AoRZyFSHx=Zvqi6I>dK8r z|MQ$#6|sl=BJ1)Zzt#z)uQABnd9b{{=xLFbT#99QkwbxdoyooEMbr8kqCc{?4@Z{d zMb=GquYbLyal@cqyUTm5F}2ONtIxvq&kvE?=fnEA+|Jt={n2MQuj>lS>^)Vb#xi5T zmo%>b&Cu7qKTGG7;+K-=u3iwUy%4KOQVZ$IX&DXC$+KrIh&_Cm;}d@T{gk$Go2UmG zCyJEli%Gj=k!qW))KpSg=P6Y{YLlh%mGX2gMylLWd8E25l}l4%`Mq|?6BX~J+ZnyJ3Bjzs9_xu01_mXK^3)<1xCt zkq4R%<=XX2>7t=?TCGg3P3t)4`FP$F943}Z9`B}-=Gl%4cW6*)-N*ZHI>{y8!%>UsHTwWEnYY@MZF3`);$}G ztjpIs2g7&jdgO1D(q_M$J97Qf*oxe*?Ky#ntUHnGB^sz0XF!z<>FKboo2y?|BNoW&(;{S?uXlXyZR&d)X^B%Ps?G?LR= z{OAUDLW*ajj-@K_2=CmpQipx%b>#fBXk}_k#x+0fzHlLgM#Ir0cGb@xn)2+fr?cvw z<*a5qego>(^%N~6w!v7xZLxn#)UVCm^E!*PZ}MM_SM1x^b2*-lj7L=W+trCaIYvF)#6~nz)XwomjG&^wDqxRu3#|Da++-nEe0T zTsA2y5&aX^WipR7t8dMGZS3%he~#a@7#2gA-mbHb%W@kQV8EjKXx%&6H9ZoM`<;XhHFrv$aZG~pyJEEbrdWPwk(Wp`aqc|j z_O5ahC_>8G=t)Tzi+{G3Kl45Q`MLh#k_V#G;QI1`_IIZpiyZcMmMqAf#_>pprm?k# z-!yGk3CDv?Yq>kpWGBz4eLA{hu^;ny`gaTvg^v1279fYfEiI%Xts9PKVcI-6;aEFY zgUzgfgHF^G_vtAKok-t?!QjEYP4C)+h%8QCr77HIi4WVqSTfSTVJLX=<)+>OZ`*E! zT5%iql}+1*6T!{hP4BRyOzt_m^!4K1`rdh$-y}MO|ET|MK?CLw_*s5O$&%b@Wx4I$ z8{QB_uu&px5mLZ8!b@^hspjIQzhK|9{`R5B;IK*r?dc;kYffwUXh-{RBKtS|CaBV$ zrf$g=YlnMQVmWxWy+6{7Ah^z+%{|rz^&}V6EIm8?LHE=Id#dT}+;e`TuXO|ZZV6bM zM!Np-@hzwM2cxt!8e9nOmktd3y=d_>YQ4nY;SzLaY}$g{fFGKty;s6XapHhxC;6$F z5AB*t%5wEs@>0DTX>u6``ExStsJFxV@qT+rto@x0uj}P$xrylH^!pXD`rWlt1v40( zHUJU!Swl7ijlYc(Q|*)flb+1??;gM&;_$;30MH^o|0m-I?);FXQd8_2GJ(U%CwPb(Y%2;;%lEn9-HUD_m-I?rT>jx;W_76n`8{oOc zI~Fa*aa8vR(&E-R@2a^ApNgw}9KUbl5-igQ@oOWW`&d70pulGc&6`U1mztqZI zkY93Q!&|D#hPV0RY^DcDETAiw6nWe5i7tM-0C`OV*&nDx6Xe=jKIcUk@g zzjgXArIQ3Pig(Odl5hR*Ut7SDHlHwl!w%o+c+T+~d}r+DJ<&op)6dvYCqN4!&y^gr zzP_>`@pV8zUd`X9dYt~Im>4i(C4g48JO(lccDCY_#TN(mzQ)hb_TT$Q@tWTff)qV)2UXMGKP`A7_--3?$}7%M){l z$`dz4S1{50WnFEqd$tg0S@M3QBhrsoB#*3ca@~Yd2G8#SUiaHyTtIvGBm=0vPY;#G z5_y}nZF~)AT|Pfv;~cr-*96L!9F!^2SDMJ1wHQYo$8HsG$AwjXTk>)S4cNJE-9UD2 zl{RBtGVqmS?2ew)B1<7tKnqR^3=jX;etv!Fi(qy|;2>e-fbwqXYdVmVh+bU|nkmaI zrzXWa645^;(GzJZAKEQ<7mY%wC@i!FA!}&8yye%+Yyx-3+5v&yY^II)&3O|YjV5GHVCpIpUtz>8Xyu=?x>w2?m z+Rb@m-6JR#n0enBVdky-u1vhn8~h#4#CzjrXX346WI6Lrat|jN&5>gas+RRrt*f9` zeOXTphXPWcnWZAJ8a{2u#v35kO=efNb}IKynZ z#$h&HII`Sdn!%tfc}}fZms`>a!F^WB*EL6)-p!fS@69`0|Nh!S?JMi~O%0QPFwlu3 zJh8nv?R2o=rlDE;AADojc(ME}ySjUGvE@d|P-l_G{0mvWa41HWBL2Bo;JjLY;4Hwe zQVr+m=7hx8bJ&3Aiq@ug*giCO{eera*jd_eGaD!5&T4+}Y5aQu>`XN()gC%m#dEk& z9S!<*(4Y?2pzCOC%>RTdABjl$c`B8{*B|g)YN{4HY;W)y=4B_o$8NK^>IzD2O*hu@ z(+AV9D4-wN(^^iF#cc=?qYZOTHrzCbd2oZHW9P7}txc)+oUVU9GkX3JIw;8bfaPqN z#p?Ped4IYNi;6xUnqHrn{=+Pp{&E7~5#2JCep}dk#S=d8BWh9dJ zX>#WE9&LK@UwPyd`})u(y|^TgcTlL$f0}-;$u~hWnQg*mwR!Uv#Oj}0JDG#tqgTi< zpU5zub^O7@s>VWBx1eeH-Sbi{7@E>XySht8TnOrJ^pJC0|eWQ6&zLCi%b}H&@Wa1>f5v9?;j>YFvF z%L=Y8%dfe?zcq@l|617|jl~stK%4oI9ea}abiK#-_)7|k+vH(en7HzXi;_QMhror4 zoPJ!KyzL!Hp~CKm%=c+Zb8+%oyO`g-jNpXgGI>Usd~(iFk*51*^G+kkq+=H+U*YlY z7bymHk25u&%(?pe?MiE`zd_6pd3WbE#Bibxwj>ve_#Ac`NHI9_65Gak^TVb zCV;?N^a^6GxM?BIfJOe5xqh=C%F}HE22b+~Upxw>>G*^QK2)&6E8f%dbG)bV&g-|f z#ecd~o^3s`%lQNdYtb3IEKh7aXU93sfs;6o)n@`Wf0>$g_imh>{rPMrwr4Ag_vAKV+nxODnM6wDT>?z0>(BNceT@D}+@W1F zHs*YOVgrF6d0ekumbf!poA%|;PuztC(5F2t-XoTbErGVpW+Lqy-cWG|{&~)1+2h%Y zDU46BZ3Qi8b?5YMj9&10npD66?Q>XY8=4Z&P+RTptA)8oBFEU*_vLs^F2*P|qH0vc zt6x0~8M-#Zg}2?Nrh>8QnZ}AJ#mD3%>fbo^ zdT(31x2~%`#qI9hpQ8m(^XgXSX4gE+8lo4>u};9gWC3P=;@ZiHD=$*; zNX?PjT8^`iv&68eSSOf+MFH+O3-Jra$STHc>&ECzI+EpfwbuZ-{nxN7id!ODl}L*Z z3bnQ{Ma(3I-?}k+$>$>t(NEr>X^;1)9r#n5ye=8YW{UF!v(W4MBk$o(a8~A#n$3*< z@H}srlYoWj6}!80HtIBSP5XQj*SOK~_{ON0v%MjEW1CIG92Ua+@gphKw|0d|sgmd7 z=Wb>&woLdNzSkE^&is^A+ZUAjJ5q(8H+5vs`~%-x_}wz$Nm4WInO`V1!=}~Fzip`P zPDIm$~N&Z`GW{?S+wkO$_{+ z=a+f4jdhK&NDBhSd%AI%w~9|CpQU^rXw32^Gu=@rW;r^d#8i2%G?kMo#pTM8iP6#W zyd%goNv3Hlfcy+8GvT%(cGs=`E|$Y2zE>D&3#-Z+VDIVedk!D`H>so}N8)(->s0-~GL=pr*m|x%T`ikB7BjQtCDL!a{!^{h4bTJAOc~5fX zY&Ht#Pd*Rbv-7@|v-or1z8522QO|uZv$qSUPxK%u^~6lRre4oi^m4xPt}wYb!1En? zmCq}B>Uu;cr7rWT-e4GXdqpRgdDT{Qt=@W?FJ-cn7gv3jm%8|?43&eGVc8wvN8S}) z(X;*<23VMTnYY6p(?J55`~f^&#5MUs7=Fa-eXy%YTm7ECwfKytm^w{9!R?MS<2sR1@M(3O^OmmwqZ09rBkFK z9Z)?*7q4gu`Bgvb75!SYfiTeESE33Jw|Yf8T>I}iO2J#aqIV(1t6tH|Ts>q}TX}ey z*U{q5P%a(+;uY;*=5_OG$FIDiGX15c9cAme*l&+_GVcbRo)@d273ZJlewdmU*4$Hh%Y?vUtB>n5bUnt!~ez&O5!uR9iI( zW%*hNsf;_JJ~Ew~P{2eZ1)PA_j4^v5buXvb6!B*7g7sce(wp&EDSXDyccH#FW5N1m zUJ{1<>vFrA{1$;w+Aa0Tiaf_#{I5LnGuO)12hQQ*n|yt<)w;B@ zK4`wk$bO_* zOTU7fOCfW064A3FibP-9;xi_y-$ox#iZD>tyb_fvXFr@5{B|z>$H*}*{>mZ`*ob#P zPuJ$ylO4g6px(oY{3p5o8N0sEUH6Lag^EzVl8ujwp5<@ZX0HedRaMcZT&nKf>@Uov z1`PUY`itIM%2U-Zk^4H|uw`(H$gfson9AA>ux|;U#_jC8{qI*~6J;7K0g$SB1NhbW{{9&~B z;MPVw`)w@IJHriC#)df`+0dKJcGcIaJ_%0WL_fgni&-X zGb;LKRP@ZKpomaLWx~N3CMkn^!{v`R*%&)sLy@Z*6VbynIKYemj2tS!o7ijEbe zmo|Ql!rv?2>+t1_1)IGYHCtNBS|jund1zF!6;Hh4S-%Vphr2tPBk<+1fGRfe_ieA}J+4BD{eA8Q-8~La%C6WKIgwp)kh?9}75#dEU?Zycxp1NrCw^D_ zAsBU4{uO*hXR->{U)Kc#LNJj#i%%X`_0}c+x_yqytIp>yL|l~%ixAG`u9^x}zY=gz z))986DI3#<+A^ch4TM$GDb6tk7kdya>v<1ObbZXVppRGSB`9joPQ8jm(CHcdykx!g zwfY$Wl%YA*{v%5$B(?)Ym-Qm=@P=zR+kZt{u_ zdqr?aZwe!z#Yh?tb`}|d$tCX1-JKL5^%v; z30ysZrI2AF5Xk=mRszl?y?wc!oXJ<71j1BV1R8XFOu8oWpN5QYfREXT!Bj|wnP7H7 z{sn#wBVtwbkNNtHD#73LbYU`nEte0fz(mZdsaFS?OPJ(Ma`HSS#%)+jDOA(R;kbrB zHLmIIvFwDvK455X_iskF$zpJ(f@<;I#FhWZ-%k@m;84Emmw%qMQ}uLGiCKEwaBz=l zK~*kCFEbcdO})y$A&(nrnp_FJE4xJ(3nvCCAD0)}yCJ8vUv4H$xfSh6_Ff2jYPO@Pw>_-w|OuQXPtKEU! zfGkApI-6jVlWo5RVhN3Sz8QBB5L(8De@V~A|Aj9cqCm>ooDNA-k+9cq2A4WsUgs4Js zIm2PNu>dcgyv!L3Z_?g38SdmK!ysitaJlO&elysD3H}yh5}MPFcf4Y$XKWX&hV!fBNhTzp<^nWuovJ3Xd4&{ z{NP^o+jk<$Q>KFOH69d9iBYVDg?V+`k!ERgK~LMGtn%Udrz7Z^HJA(17T#&h1*$aC zSa8P6vu3=2eMVReYx39{QQxfX6qgxD_+UA89M%6cUJyrg~ z*rNO1GvndD?PuM$lRW?_dR25WUwJ>`EC0)Uea>GKLrR$(lSqfFR!!9npr9!bS;@QigBeyFHJe~1*7f}W4iFk6cfn?aTeCnqf2pke zB@EJz?chZQbq9HLGr0D1xrv{;MRo?qJ61&R%9b-KH=9mlmx38fL?JaKXl+LGrheH` zY8VZNwXDYxEoik_P(d~#UhDLeqp(_gL1-YkY)*Y9f`W#^^)!&M0ei6kFMd zbz-i<`x$X7!EyIvTfGVR?Q#&8At{n#sLWW&JKeZ;I!z$$N56`+3uto(*s>cXQ^QNL z#|j{6AD4gW)DNDNip@O1kQD+CT{~%iQJ-u$pzE(Glg=U+^quwDudEOmdmRkP5UG=) zWb$y_P3G{OVQ#bjP#XJQN#X5E8Va#gX7B5vD+!vMS{ZOF53O}_wU_#=M7qnjbjV=> zIg|v(X-RJlxxzF_+D`QZ$dkyXo_5PZxO^=|bc%7f7Ag(l@c?f3(3w52!st!rP7?NA z{rWjUr4#e8oe{6hxgl54G*l~j0&KI)8{om-;{frtx<(%ApCT;oQ+%f?3P&e}_MbI% zBOKFx4?KJe~WG)igghIr;BpX=wgmtM8Mg_vH>3E>SydK@^+Y4BrW5d zf8HiKn4-mIZX)N79J806ZH$NxsyNM`u<5_b>(;^VHLqlIgZk63+R1u>-?g&~?E-Ie zSaq6H8n%cluc%IQ3i+Cps?r$peZEaLB%y`H{^{Sgn z_$;|}scx4C*&WccnsDGZl!0e5-9QYVrTgGA4Cj;(;|a`3$$LnAKkV9zjG~_r68H1a zN~Fju3{^_$K#U;jYv6_sNG|EG%f0U~8o0Kv6S))Po*u=>kUze=%gm0>OJ&OQs7B;V z**3g;k%>Y+``)0+jSL7rX&J^?xmeaUMth@;nO<|kQqv?ozxFLg7v61Nu`%x)-JJ&* z>H(-^%=Mt-?(LE^AafeDfTtb2di@-(B8CGgASYQ5Ior)%YQ6d`ga*>D@*SRGoT|vG z*Qx%CnBK-*Rr38;s!BG7k#4wIzs9d7A5l?FFJL(f^)QN^oArnf*QVX92B?T_;OW|I zdot~2HKTPnY8qx2GoIZ1Xyh&;SXee@;VPd!sR`q}Tk7Bc-l5?Wv}5r5RDU5cDd^-~ z0mmnz=ND_vgE`|1yx14`TuyKZT!eyv;2m#zF)Zm0SmYJ{AZH~r;Q|~J;T*y~-1oik z2rJ&@UO@mRp=Sp)?4~Ew%^@p<-3>bg`ePsP#QK~UczCUPGw}LT!!Ign3b$9eItRMz zeB*_pDX!;X0`tX#MS5WMN?79{y$5fH-V%Pna)ArJhfY%e_rmVr>zEi2D)e$Ww-{)LN^n{3*ijR5{yJ`Z)qo2LYX z2J$eRpTE5;@yD;-g_5RX;wpk=Bq`5YMrS+&?}}iyvdrH7K6Qz z+2djUyP409^8QUKK%}_K_LaP8=#-o_6LgZSmqVu7Fwfm#o|*Y+empb3(QBHS-`-R5 z8D?!5FN-j z#`Bv~wn&1ATi=8OPeOy^z%fL_o9F5dKOK)Ar=L&0$;bV)hg(e^p5)<^ErxZDpCAe2 z90vvAl!I@UCK>9Kc9bL-8IHT>Fjp|H_9IXMfA_p>L*RY}`N=PqT8S%A@b^>PO0r-~ zo$Mk>#~<(WiU1E`jp6V&Cx{9rr{6qRNmpC?{Wy0|g5<*5PH=5G8Pph=eG&jgqgQuD zNHYkIQ-RfQ@Z7;QwQ; zP4_c6R`$DgF%c*)_R4O0W(wrb=JS<8zHTe!>(0vVPr!ZIe7-`Lt-7t0uRAMYMA}~| z!qO>~Q0*kNJXt|TmDF{4BR^=}^5^*M=F_Rn6*Ry{`Rr9bdtK(WT%<(4bdeHMV>FF+ zg7uFU_z^4Z8X5e-gW_)jL!x(5>GIc1+%d!q({yR{GblpnkpVj>FE`b zO1r4+uxN@g?aS|=Dm6c4&eY;orkNHeuKf}MnvKl7*ktY!sMJ>cqUNsH79#d} zKXuH26s`)ovG#R$qm#+sOP!8Ugi{gxrxNjM#i-j_W{8(;673k=CO3Lpz1T!9kVP*f zK+FhW^fKJcnZe1>B4` zPg0R8X)y*y;MlU7;9xv?UAf5y`m>i`HW$v{Zm)=U+|;#mXkmMz#h_)A#`{@(>H0U_ zq!tt4MN?ekPf8vfaIP`A$W+rR*;(H_9cowFge@-HC2R=R&w|!nG)NoA5~@BV_!k2t9JP zH#wSZBG~~!YM_#$-Y{h3M*XPzWkb(TH3Ex_#0}zVu?oX$F+*T-;@aC<*rkUD z#UEbmbHU7{oW}Mv3>E?x80NnBBHmd$H({S8u+NSJbZ44U%BSOb zA63%b+Vpmg8%Zb>xpP@#hmAPB+iTI@b=1ENBA4U7)(zYHmI<9*AmB{fM03HPHVG+g(C?CH-A@U0|>q=R}&HBiw@ zXuih9T8$4IZ?tN?ybI-mZ-t#343sCqMYeNxLPR-HaXH5ZMb17$iaO zI!f+k3X+plaT16$WR#={autXzAc&zsxd@yMfLXB?=IPYbsayl0KOj8>JITYj2V}*| zaIl#%$Isa80Y_FMF|Z1(^-0IwlnaFh_EJX-7G9Kftl2l`CZJR~32gq6y1f&!b~<3A zcds`&hR;LIdY9}WWDlbHUa|sMiajRh#k|S+<=*5kOk@VxMFo35Xa>-a!rf!&569mQ z(#LGFT|o{62sfdH*ixgIlU+z@gJBRz8;YbgUZIVvxR~R=%=hJlL*P~`hM4zr zcvqYW@HKhdJd5eI;$tK}&*zgoA>1|5*yH{V`u}SX`X-9gxJD7$4F8>jXZq4 zQ$Dn~W)lpGBdCw}kd+G3GDQWu91ttPi#&hj^`zmxZUMU-ch6v7UakKgm!j9Go=Vix zP||uXI+N12kdRC7{x+vH=u>ev{I1FC4*EdFiEDv18Y$e7;*vqDpTabzw32RQcV3oO zT7fztV?@E~e?d#^6OZy%+R-Ixk)gQYw^U@91{wWt!-c=0XU(Q_;D_-kEuiCQN()Vl z#?lCpn{7d(l-7(O!l<``p@!_~m2D#h^_ZKKr>~QH=z=~b(I`LAP8Qy!Ss2Lm8spu9 zw<=9>cLL3NwBHL?U!@eXH6>?(PBuf+jk>yQz4VhAUT^U8Qu}FDGK&s$&Pf_*tSL^9 zftq{86eq0qt6xV}rj!~%3h! z(qbrtgr$f6mG0;>XIGM!s_@y$TwM&kM4WKqyh?Jtr(!)I zYMWATqG7@bzxH*L3Jt6zweOyEi&Jb!kr8njJ%) z)b-qf-Up8o)BjK|BP#2@T@iwoNL|Qh>X-SNt|8b)B1*;Y?@%I#uPd+SSC@XFv0=LV z`+N@b7Ko7qkC0P^-H&(w}`p9+IBYob-S@7wGM4zw8Fq^Q801QiB%e-hYU< zcYr^+Je3MqY>LKymhMTckp4Z_nI@%>34%c;JE91Zj<>_gLLy`YYRpEnX|^sh*g{5V zOX1u;9tUMHtYn{bAW2jU`H@ACyJy#)>5KWGZL_( zk9;A9@(lbNuW|3isJUwEZ zKLjqjouXh3O2Rwt712v;I$^LbGy<}x_VXm0jQ6^_sKhILpkOb`A~YwvxzinWi3{!h*aM!rKXcA`~#&5mHLuWQ%RM7U8w?6m2;H3k<`qal`17wI$x=4 zNv;2?Qdg16vb*0RRcJM+B2{iRc!1QFd3tWGu2m}a9a5!s?O{^u@6xqKQiYc(^(?7I z%ej@*Ov~j3QV&==+DLWTb1#wFWT_54_aF7{W>V#r`WsRYSY3WfYP03?cS>0K{mLu{WM1RnD~?vj5GKM~^Ok&D(aXxd66(d&p;v%;HPvVm3eYie5iQjM7g}xT%l> zbjjzIdCxXxu_`NJvUMOk0*BQuFXfa-)KB$>G_lh`E=0fUGPoq-Gzy0 zIa&UOJ>X!S+Pf=xw_#po=zEhzGpaq~-;lqdM>~1>t$~nc4fogT4s@{vB?b)cG;i@x zU1Q}}Sb;y=Z*O{i0!{If0Ul&Dm1!#lF^&Q;6VI;;b@`|u@8HCjgx;KD6(W9h#oz1N3``#VqWe8a&POkH*Ie1AYf`UY=5ASa29c7SSV=Hp zx+a74)Pq57(k*s*FGqbFg;X5*;4)AunGQq@((UH& zP12o)kQwHh%C4ltn5QUuoj3aVB>D7N?=NL=ADyt-*k>uF9=){G($xsN!7lTyPH}e! zFU@jy7*s%|qZ8bNM|tqUgE9CH#eVc$cX1HD8l2#sf3S<2_mLG0zZ89XloG3{_EB0P z#^BQ6xk1**pD^DC5AfO`?+nj}#wyGh*tkrH|Bp*r?h6Rk7a2=wzm9hh@Qu;sIiBi$rRtC%Wr3||9Er$ z(^)0|tQEyKu#R>OtFs?6Io^dFzknSgyx8@L1;oTZLYg0QXL_+^^!Z&eFLn#Py{MdS zGk3oFp^`qJPb;BF)$2}F0Wc(ADgnk8VP=m9LLqzwikVAZvZ%*AGF9qhNDM|b_Y$TV z_kv+m8F-v33494;4@0I3j`^9hd^FjLG^s?#RlzybrjjDGGUWv)59tND4~ac9c_=x^ zV5)+-EF?{Axeu{|xLg;g1e_$X%f*4Q>cYfVX#96!b1TE)ZTcO#uoR6&RgPY|**L3` zXJGScXmIpmcgeA5sbf5VSc<`%YbWGMG4vp>4PGopGXAXU3t7_TRE4gAy(AfrUKV6d zyFzxWW-uN7qASSQ`N22Df6z5#&OzREOnI3K;m4a|Y?^T&!@-#H!n*CTx|NS0HwHDW z*j&k0Cy%^?TWHq8*t##x^|sB;cI-)N$nm3CbE4zY#2-Z_IOa6Yyl@V0J^Vc3a(9>f z@~-4}s&le}*^*K5#W?u$!hh$_O#b|?ct~uD7#4FHsd)%@Wtu@xrWy25CW8*87&Q9~8T934DF$_J{nYoU{Hpj& zeEY4;V$~h!Ls>qQm$-5#5t_61;=}Oje$SZoGvGd?$JYu`lrx!fwJ;CO<1R&Jfg&`W zE6OnTmx_|igjVwq)V&|g{Pc4H$VsOus}P1Qr3RM?>=<)5t*zHX&j<^NO3w7cIU$`IQ@NH-;24b5p#KvC+slq0RnG zdBA$>U=e$Jc(FpL!u}8VGEr>D&)uX)Vg>9yvdlXOZ)v`M!c2Q%^?`|8d)Awri#K&W zm)NL-3$()?>T|i$C&%HR)vr%vKEW@;|MM$Y?Ue~zTpn#)W{cmTW-*?~6QR1~iH&86 zBuZL^?gO5(vqU(cc%`m~+Fn*jP9=?O#6n;e5qmhUt+el z-@=+KW;>Q695llE#(6pMiXQ)jzn1|>z-cVsV~Gb+aL`|O#EX5Bvy)?{wppG&K&xJ7 z0|oxPLe9o(ClB&VG-2NHUk4Mt^Ggoa;5o8+=S|LMoVAXwc=s(n%xd)c>w3J&%lhbXc24jf1$eU` z8QY{V1)j$_4_=~$#wM<;7wjrN5jo86=rmSGzhC(vo2jtjjZVcl=sk1Gp!W=(%4fdB zR=zrat;>5RIw!F>H^R{z`H?pE8&BlTq18>tquvwIKY4lx<2=$jYnS&#lXq)#$@|_D zjrGs5TGX4*3th|Nvj-E=Cs?P?TlTEBPA@y?-p={Gb`e~-$2Pw5F499fF zqBHBt26F3~a_NOH!;8+;fkQ>Z*wqySwVe=;JZJ4(_n8^%auZk1FYf1<+Xd|8eEl*% zFLzmS?y_v2&Cx;t4g#>vWMD$$KUP8Imo&1kMV{ZvHXN+9#lRMSEZ%(wC+yrqq!qu4 z2g$#9b%ip$GeO);Z|`7Ou&)W$32!a)?&V(hgwnrNTt9cO+c5S15x3M?<&UFt^mzJ_4>QUNii>UHu zuse018ch%6C!&{YBbF!f`DAHt@&WIO+{jK2A>kEcfU+ZYpb8AYEqW72e>~gY{ud?N zi?{zpq;)SI%REeOYt4cyIc~1y?S>pZ&3jLeF>;egcmQFeqY_jy>;BP zx48}uWRk!NL9KRD(CU9da<1N^uf2RNC+Op1*NV<1bkuSn08g%N*8?xJ3$Bbu%~pN@YOaodA*vK_k>e6}}uQCN-x=BZD7VH=t=5MabP341=T6rfrR`4Nw~Ho3GuNzRz#*`@-636xX95ta6WNv+D^sx3IKIg|! z`;LYX&sB}?S`Kbem${+{_Eg}bxMyLInMUa3A(n``ZrUyy8Dt&2~RDz(%< zkShN}ZjXux>w0F|^yG6xYo-G4nFUew2Js(5YtYs>$rN8KXV)q&#vJ%u`W#nL&#Msm z2yr2UN>LD=TDrSjSR`51CmX%s^r~=NCA;ca$tqPpN0h1p%aiZ-W|kP5)1&+Q6;DHe z_09Pl<;Gl@9Q`pY%7<%LLqC`y_AGUBTzdgAP=URx; zw*w=VSF|}C+i0_`%geUt>?roQE9j~`Gni^Pu$X;JdNlXZT7MJgJh$l7 z;^w(0hnkMF!(%ST1Z-$p*2Hhi95XZ0c>P1Y;=vZjBH|-m(aHwP3&2pmR!JrDcb&Z@Ws&;ZDL02}%uW-Zyzt^#W z-Vu@Gks;`w8c(V29ld`y^jrn;=;D&+=-xsGy#lA$mbb@yV&on!xzK=R!!f-Z(&WFGvO8(TIa%PU5m<@*wk}GHD#%vyxMYx@NtZM!}TP@~sc>92}S^x4)f( z7)pii(qk%uNgy?cCw``y6Zod8@$;`$GI)KnL+1BxMsPWEDTL6WofM*PrkC#B#2X>V zc6NxVmo6|l88}RCa9rpbYsvC=zXaGS`5Ny5`KA30+?(wI zmY|cc_)S)37o}|`)z8e944a7;QufjeDNQq&%qo)2 zWHoSxQxUD#mR7?IC)KS}OAA)EkrSVhhLcgD58`YIt0U_PTPbDf%IJisD=8Z%^m44J z&fc(9MB<`q)G^!Ts?chPyF^}oOLr2@+7_tB6aZpal7ILCfmGizt7e}c9we} z6-^ce60v_nlZ4aVy;Ae~{Z1gZNFK5z$9`>SihhP)?f&7W6BF_M*^bn2 zWi>LWw2ihlqvm}HuWm2vru|(pi!k80ELV5TCuQqsfEgb6J<2NA*S#N~fRtGTB z>e*`if*v*gk@FbY5NeOHqw2dsImYJX5a+H_HV?8qQi>Sf-*y!p zdU>ek(j7WMor#_sov5jvz+Y^5DPgw}01f1f2h0 zuiuVj=r^|aN4H4DIU_*A-c;OgBoya`Dh_#az2@?^WihNXwVcFKi2Gj{C+?S)V=Fla z{hd%OJ91{IpDe)pM*_TW@;FlV!sw7crQ%u*@((ls`K9Hg>!s+jQTQmhn!ZrM3BjJK z;KndwN7HXd9)4K%oXjMr-=xw)b55$QyKh{oEz^`6Rka1CT&UX6S*KcaoQs`Rw_Vze z!!o4ZI3^pcf&rISZJE9Je}MI7{n+2YeuM{`OS6e@j)vwNnvSCj%Lbf+bN1V$%tYF$a*Rop3MmY_VG zC1AdFLr)RRk&ZrO61XfkUS9;kh%C@Vc71`Rr!y-aH(i~mU&s}rPvehWsau>3YTCK3 zu`pggAmeUZc0BO~-AdTI#0Wfg#IBzo*&g3|6?fW`@%pL!HQ0Q)pHO*`zS8!0IrDgH zKhL%&H=gaUD~vyt&zs=!dWp&PXU(ZlO0Kr`j?|J0zYma-G&85>$utc)aglC^tgA(eW|S%1?+eb7uQn zXYz|d%z-r4IqmQ0N7F`6gh4=WAC)%E6GQLJnUF_CeSG9mZXby}t~wFFrl_Q`WVdVQ z9KSXGn0yWK#B{#v20!CH@(qBfpD5(#iccqQtBgOUeof3SbsU*koL!s{8^#~Y<=cPE zrK6Ts5%KySNKFuhU+-?^*)8=2F1q@C+;pVpSK^?483!jG%#PQqlh~WVda~FCOnj?# z-&T!*;`ie99rn8Yvh2S`{7gb%*wr|`HAy;duAI2}Qo8eeyXM<9|1qoRQ+kSkhnR2N zA%PW(Uf^%lP4AF;&i2)*#}UZhnw6P5i$`%Inb*NZCLz0Aoh$*+C{VHaK&1eBHsSa9;I zM6D08Pk>#Wd?yiklicf~A{SY$D+i_%UNJ)JrxQm%yVN!ILLNBcO}?$%+9^3qeXOYn zVMH=-NhEjUrcvdBc7_#J+gOiDO(dahZx1B2WN_Dsuvwy*HQBXBZB$DnktLZkBy#Li z+&V=d$JmRovQ0>Bqb-f-er{ga01FkGA_v^)n+;}l!RuQfCCf_+zEx*ml?VNHN z`atr${cwrN5sn066x0u`Egaga{D-!R#fP?vafh}lyX1ji$uf$$%zYao$mqJC>GAbg z!gci;FR?n4tNan?!~!0)3PsGAa)WDDv-jv95ew%BgN$>)wrh}WPt<0&_qPufBcH|6 zk*3AviL#fVG71D}#n#IRaX!>!r!KqN|eZ?>b%oVfjp z+f%bzy+>YFeU0j_SA0VlIu3LZ#8)TWVx1rv&4ii5DRnJ5u0se1bA5U34-)02aT_La zNAaB-qn86H9uv;kc>Xx)u3j1^-KE(x=&myYwLvP#JivfWCx~Z<0ylv-4+T%`vZToVhul=1l?eETwKc!I!E__VVO2AQV z;W#`u=-PW7q67kkNHFcCiw96=Jf2sBt_|?HvbW)5FK2q}o|2@n3*&Iu(E%1idmKpTvXmrTu=I%y=d?SrhU=aqYK|oPSV295zGxb!+Cy>|0qRKST6Ud82 zFLdY*WSc+J52hnKRClfGjeP;TR_Ip9mI;AgLb_#svqgYF9FSL#&rI;p>~6EIMJP=1 zcfCNruHUd>8V`Ypg?Bs84NPp7s3}JRDh%(v!(Z0&2>iN6Ib3V#(O@lY4Dqake9{08 z@~P{2J%oIYD+T$)hui@2i4n$xd|O_Ebxay$LO$g`WTy0x*%b~1ChK_EAfID$4G}>; zLm-s~`3kuN))W8mN1OxXGaj@GIsEDDr8MNzOLc=lzMqbSd}8nv-S)1AjY^N$un98!hi|DItCS#L7WV_l_y2Hb800(K zO38qH{ndheQbcLU_s+jkjDvgz$r<7f@+~#Ap<(T41k|{1dxVt^=H7@K%@CT=*s3%1_C~hT6$WaY(+FaJS)NTZ5*#Cr0SnaJanf3l(P*t! zI9luNVYJpW@g3^WqtzE8t=p(K$DiuwNn9Q;5z0opbP=9U?hq!&6|c{R9wi zj>BHNw7*910-Fk8*#UB&4OS|>Vg&1JGv|CTZVFbqeZMyZw z#(3RwcR5Tas(_O|tXof16z2Ii;?{Gm`LJ%inEJ=udLI?zE!YLGnOqnPxqBT7|(bxzYnGBDo%7>V(Qx%IC4dK%;Dl>m}`n#-qRJil@T z9Q$J~jBx9%JV@IEx1NSgkYU@`RE||@1jgIOonaX7QY$3`!+56F{Qkg^k-rhF5%`bx2Busa3qWn`ItQQOyK4+`Tt%MXkMl;8%;NfSs;g2S z9XGNYZ|IQ0#1!IiwfO+VA$|+dowz0N;Q>8x;YmC@a5vjIMCZkWYZ_2;9WqX$ z3uze9mFXA|PtOGUaD4GvrpZ%8ceVKdqN}B8tteW@pE6iB7R-BBWDa27mPnd^Y69yCi1Z8Re|X;KG?$mSmlvUo8?EpV05=Fb~l z^9EZtyk!Kpi79Ve8&pd*dHw4IwN9YH!St8ElP#4_p_J>f)JwzYltPKpZ-x>jbzH47 zP@-6N%*o%Wdcz#b4tmEecHKAMpmW0^`(406+$Ift<8yfe9n4eD$P=i(@ok32P@;yp zP@Cx2x}3~g0*$rukCO4P5wbs|ro9xpXdU@0l!q45}#Y>Lv38c8^4fV(FA8@ci3^-V8XJAPzv?Z^}nQiT5rV0qFjK3quy=lJW%3dsQPq zrAKVo1R4H!GIW6X_5^mlLNNhKlvGKf#P3NkKV^E- z{Lp?I0L5@se5|lnOCY(OjIKVOR(Jl+;?}02 z+-j588(K`1pZKVX?t|sFx)>ej+}dfm?Nr^Ea$9emPHy`NiRMwHH>5?;&33Aiol54! zEo#9x62|Q<=O7Y>Y=o?SLcQR6$v1Od7*aFwnhajfU#5XWv8_VgEP-Z%bNQ9XyU9%f zCcabZ`oK**gE+ixdH4#y90Cu4jDJi0Aqn@f^~Y#EVH`&4;z;VT^5j+p-XAqG`e(MD|e%0kD*J+A~!$mAke7u!&yA- z9Eh49j_h>fZf^UbkbxxPoI^NqEg(wuXxA)hXeHRFbIWovT-_hElEa#T(<}(Bkf2OW z@r(0D0Ikz5&~eC)xH>n>?|f$&u@%Pjrwt0E0nTL95VXYh#|fR;vI;@G|oITVkiTMkwS** z97Bf2#-|Aj6sy=Au_T_&5sSORd103p)Cy2y5EjTBvAdOLw@Ud=BSYmRWN1FUwExf$ zAIMPs=8#`FM=VxPBSZUT*?;7)KyhUX8LAck29cqt^l>6Xk@5E+VlMn#5> zE6*S-@V~Ga&3R%nk)iS*viX%^VSzO~Y{*dJK2XI%hI-u15eqT`3B^DB5$B8=7O26M zMuvLHkm28tM1}?f!?3{qxgla378ZDb%cuGeZ~p2C5O)n1M)(geYoiqbV%4Y&kl`jP z$0{ZNp+=?d5SaK!+!=-p-@JJQGJJ^(Bf|olU!<5|j#v$6h`TxBZy7Swuy&!7={aJ_ z1?MN!9IJIxR59gQ-P!>tivK zgY)+G7#JbOo8u(93Xvx<010|C1rpS}Gb6il3-uzzR|Xk+QB512^5zmqEdVtu#b`dy zSuB~;#mdC1e+RY-5nk2g6v7(=-&N$9_fWNC!Z@Dx9!j93@tq5_3L^y#-$|6DJca^# zY%Do7+k&7lGCCft`rf(q&!W{p)?s{YW^tS&@@= z`fXaj-H7$oz)q_h-Ws-od;N2sLgk*4Ocun`3NB|)d)t7tqEE!89|ON&78l0p7yQ@> zAu^nZ1`{POt5N78vBGFe(;ZG-f1qztQ^Q$K92g<|J|o3x32`dC6Vcr?L5AZ`+H<7i zPXse~Cw7XvI0o}<#2+i*ii@v{oBPEaf9^5Km647=<&<{(X$+X-Pr5Sg_*3go=lE0h z2Jg%R@8(XN4IHfcklvEx&p>3b>ccAfl&%m0nB&`&m4kOz_*-@Jw+Qd9Io+y{u|fbR zI+*;?;N3Op5J2)1nTNr<9CH8P8UhFkKcgjC>{K;?VV&{^7$ioKjl(_>M$X@5*bB;gB{IugwoCCbmsBw|n z4wt#{oQ8LL$>813M#8&cj=xV{CwOOw&$MiS#&WoPD!jXY&Ily-buKu>nsWTz(o8EX ztB6I`1{wa(YgLX_O7KpjGJtnK;?6L5H_=MTaQq#eEqEtgly>~R{m&E=IQ~kxlXCo3 zO7aGdKhelJ{=|napd-WaCt)DRpY>(v_?yYaGj{w9lhMO9lnO~{D2a*FPM?@y)+>G} zn5B(I7tDGrC73N|X{Zr`*)2p1XNGM!0_)0(oWjyli~!eVI73s=PLB)Py(YNfCf?lC zhCu~+_R68QJbUx`Yo0xmq^9Rxe5E{l)^o!=d#buy?*WASFrK~B5L_L2D#10UXOnww zW-m2gWdzqN;~=;m8wbJF+zecA-DL0pYKJ~&QFdP7x-;H1l6m$2DoO{gyC0mD0(QX+ z@hJFi^mxDmHApKwBvUdFUcRmmiw6|+JY77XWG9%^gai<09+=xWOU&))lhM_FBo|1}$+cir#Wt-Ey>`&$v(Ld^h80$5ChVi2^^Qu|_9 z8zChD)6DmC?mLqN|8#42`|S65e!o0VX71egzW2|$=bn4cx#ynq-=?^d$}$Z4AEmfb zy(xFKm1v616Sr$=rbuxo40qHb5R*uuOe#-+HU>CjECR<$i=O~2GO_<{V3ErHOJGsG zvBC0Trf)j6|GulfLZv^sPLHd;f}5G^A!-j8Iqelp{l8YH_ouW8JPMw1J>vhr>ib{5 z>T6@=C(!Ag|9yy_x^6m_=@WtQBXoMd`j<4*C;R27PVd84eT9_%5jwpee~{@rN2ixx zD9o5FnR9e{6UqKC)3TBiZV-S5{@3>HFV2 zIfv<+tXdhv^f}1*pib}Pk7*{&^a)iNVfyYCI&4dZBQ}9DyhPe2P+BI$g?+v2BWwa^ zTs%UnZLJ<0;D}}5SPJc;8pLk;_6?ZJQI!`J5$^f!$FDTsK>%t-^_X}yop4#e!`>RTGe_|u3uJ;;zpsC{JvGw5cL@&pq5cuXg#IPm&wW(?LVxxr?_cF;|2{eVe*5Qt^8Wqy zAO8#R+XP?yk@Nd8o}rc?6n(>Et}epsbeT`zyc%beOBeafvf1XmoO=ECZo<8Z_o=cu zM(C(n7LhFC|KMB<4^hu?ViE7a__M)tOYo$=;dzpHVU6GsoPZgf*KWq0+A(vd*?dgf zE1s2o*}89@50t>EiP3zFs57tR)$9G-Rqa1OFY5J!T;4r+ko->aSDtjBiTXJ#8dqDn z^{O)a_t`HT@Rvw~g zS)cABKv*7GMDexw3bhibjc*B*vhwFVuz`FpKl>%D*g;&zs3{`(3;9XZCuWEgy3T{g zDKEf3_-8VUd~@Tt;yJ!$R(_tRNxN#&DA&S(I6{Km)o@9By*HYNfOSkXAw@uYk%;0}8gJ1J7XmRH^40ecTzKw@uf2|k_wlyy> ztBwZt;>tQv^i3lQ___!3Coy#=O@ZaXfy=dy3r-TaROY&3Fh*o_LQfqVo&J8NKi1~v z)%AW)33bXeg?gG^_^@j{MaVyP{fOgx@ZSv2Hd~7H%`F~tE^DRF3`eNZ4Cm;Z!#<{) z5e{^V58ZVWK{OC1?B`>yKX&IJzeZ38gkkgw&A7KcHoG-=R^RY7L84H9Lm!dI3=n7; z2sC8A2h$Mksguv6g{NhoIEmLoT%>~_glX$hE|>u~cr@LVP}R@jyBIV9krWaw0Exi4 zL2lFL}=#D5TT*xy3|wZPPr)1iKrVpbY6xU7Cq3djr|r2#SRWgf_^`5{xSNs-6f5)8_w{Q8mQIi(6#El~oK4F^(s#KQudU#?AV5-JQ~rfII)PDxyN&~R0!p^Ip%-e9OOB2}r?>4S zi2C9weOc#=>V&SBk^a0ZliB(rzaRw1V4RM@5-ooPtXba42R`>FPbNSmvAbLTp|?TW zYr5kPY0D{XIX}>rWVSm0ptgclzUGF)*5Z)2LDM(27Vgp7iz{%TJ!D3Q7U-cQ7DQkz zSHInVbFEw@YQ!h`+BHzT7u?_0Hz$+U#p_ADF#Fri^e;*A(>3zbHIp`)egZ%dF0|$x zquB$PANe~-c?QK5y}|YApDmWDAoM3wGnF_6*FME>%r$&-i6JPh$KJ+CaKFsbI(~5i zAoEnX2luk^(=FxZP8MTsF;3eRmv!Wq%nK|MG~}x|RJprNh%x&P{$6_RFpU!1Kmyk| zpvk!B?}OLeLEFI!UvmzvGRET1hKAO=A1>v|dn&#OBk*cfxiQNLZba8Ds@EHTB`oKw zFV#({7$UGD{Q{06?2gKq3g2WLEZ5lEeX(Z0L*MwhC*PB zJViJB>`(ZkVN7fzxYS|W80%#oT)KOoK6z%38s*(QC5G?h8;C0EO5B9U)tfr$_=_|l zL%Kl5lkD*rGM)-wQ=iO7)gS|s(Qul=fYxTFWVG|7GV}8pnIAPdkn=0nY}@*glhbk! zQ9Kz?PG(}hXzs+pt-#n<(#Hh6#6SGzJx~=1%XG+FOhy;eMrRM53;%}|{ENrJzsjpM zXW;*&z@JgSy0dOdXz0%b_ygUSw3eI;e(675D%^v#U0mUd))4b2Ht1@aS6$QKT4bIC zYbJ4~1!(sY>{5}r-mGN|^_+DJRr_7mntzgTjmOe{eeMFa4vkB!@&pH4ezd4Akc_vs zuoL>&Cm)VjZC?;^&kG{R{A0RQ_zF1SDX#KI>!b%~JWbW~s3y>64jUn#xNU|F_A&2t z$a`IEr-yH7!(u3=IQjWG@cP}vbPv)FgYM$lA+|%}&IFUN0Cc&7T;5!JR%QBx33ntwI^@IjPCQ(cbH= zg?0AfG+YU=I8&B=NCLGS5ot%leWc}7!Mj6~$&)xBN7#;5z9tXp_f6!DkkMn z>G`o_PV5~|qV&_jwpCBDB~GZksm7XI{DHp7LitGfgFvXU6XogHTfW$tJblA*(Pnog z-^sdXXO9L6`kd|y`*hz@7RKBH-M1>D`&yQ%2$5_MOL~}gHozrzu=d6DoY-V4W~Lwn zyXq2&gH5R=gp`!Rzf`EJ{6SG-3H( zJ^X8Ls<_;$d4y*6LKQ$%g`Gr-q3LKVc~qui$q>qCB=inhh&<`|n-b8J3>@f-yd>g> z3ag_Ki{LQXA`q3=~DXD~7 z1stGgI_3^P#snc%fj_Bcv>_E)2lrqVb{DR^m-$g~PkE70q<2zb1}GBdG&67kjP#h_ zcY*Flkm!yw^Hg#~W{C+>q1~8`%)n(f)R<%MuAz4l@<(;i4xKYP-T?ynNMAq$6~5P= z909h95+oy&AhCDZF3l8-)fj*=TduB{c?lj{CDS2Wg1nlJNSX<$GtXy-)DZwnNFCX* znWV|{@+hmi@+#3t|Ehr8xAe((mGC{FPhK5~wJ#>bvmSq92s6e#EfZ=gtF3`Ar&n$| zKHHcb&ZcKVoFOMHRgb>mQQ4hYs@gp}ktpRspwZ0 zGuyHj7`O5!cUblOUSR$;fD2HMe5M4NMZYB+;qv!1asK3xI*;#2y=#pDD0m z39|&y6)j&3#(1Qok7YV~$+-}e{)LcN(M&E~K!r=0rlsZ36`53_rxFHUw&A5AW=ArX zA8?XOCzf|f0tl%b2|wA=o!PcVFf3F5F*QY06B#n6D}XKqsk<2tnv?E#m~)GVzp#-A z+S*M^-ONBQ-$MV-@VLd&Uu4<+^rz0pHTCV%U+mD(_Wkr{n*QP*t&0P#xdV&LwvpY_ z-mhhRFkAKrfXq@Kb@JNpsAOr0jFrqY{1E+YOXoRb$n^h%?=M{-@1-kQEI@e0sfKli znYt6$$@lUefe<4Ql}<~mRQ!?kMF4!JE|~!8vO6U`R6j;~X1`CrtDtn$tmdkR{{MzK z8u6vbZ@am4dt=Hoi@&G%$h>6|Bke^P?^3(X-}nAVd0@P>94V1L{%7T@e1&@iJsR8+ zZT<@|gmA(&=5PSglN}5B+_5A88p`UEsNR#^(}jPk^0mCRD7d%rQi=w;67Kb!+IVl0 z?}U3}Bz2+V<)09M*f$0f>=8--s(i5%Ue%x^TNT>$*(0cX^lLH}32Ci!Fxu`#WDgC8xQM#PT2>x^zgbHeZuz~q3piilD^ ziT)584DQr7-UDUi7*4@~VF$WKfIz+!B;h)Z!uVc)RB?fgnyCArCJ7YQxxhJQA zpAF3WX^6x=5(*5c@bry!3KCwCp!POi!q9;Q*su|RqyaI_2E+%2yb*j5Ri|K~+>h`! z(7mNghro@+?+R)h04&UPA}s2Dxo;co540Q2J~{pH5v4@Jelkl)+2BKdwq#C4PGn$< z4=Fv*VmKb5FiT)G)i7Cxzhjt7AcAL@csW-Xg6t{4v@9KzhAHt5YvDr=h49G3UI8EV zocr#dCsy%Frai{C9qq~18k#u|oc!%FZ5SUoZdtAdY)m8>A(g@(q_@>eW3 zv%;@Vh<8=j7$I-qaH41eXSu26Lsr{a5cA7FN;yPd#p%cJl(SRzYG=$t`qqxMZ#fWF zwXQ2tJf@1mvs}a=x%St5IJCAxVCppx``xj7eNLmoAN}5>%ImQMOExCfWXQ2-_Evm?s7So;OBkRauNLeB>iD``tRyb{>Sx4SRcLS zKkR)+PESx&>RY+X7Ixanj{4-8EPZRTK6w`TX=x8nTx?YGkdv0ToP50L(zmwOLJyqQpZT;^+`F4ROf$4>IA8RcO}(F z>N%C_C)KA?C8Q$ijoGBu^h>#NQoi3xY7VJKRVqR%@3iFIOzJt6T0p8`K=N*rJe683 zd4rO72dP$-S|Tac#@8hEo;+Pfs`I3z8c8`+yFL3!{aW&ll8T&>R5vM~C8>j?9z7wc zPErMGY%h`O?3KI@Qp`>(qBb1W}I|(c8j9Aw|@Yz)nlHo$M z_Y%2!Y|z>ArNF6jBjkBl`$BdqnzP=0Ddn|Y>WxIHQ)`b{7YgSm@Al?3?vs||AHnpSn3^oW0h@`B) zFf&!lI;7`fVl!$CvGHkvArix@fp&bh38y$zp0ubw4ghk30HTRIn5B4Es?@l>~6>f$Pk;{K4T(snj78I>+v>SN3 zua30=Wi@d->_ zTF1;dCr$kV*}jj3EHAn|CF{?lE|FX~75ET$p!fr!ck$EF$tdYLFyLUb+7i*L_i_;I z;c+08%eCG~^W_mxlX$ZH&jhg-accHqiH<3Q2lY#xOjFLo`$f-y6VD$m2&t|a)peq3;`zVQj_i{0sm?OQ6aZM9Ko z1bt#>#y2gdVc{A*_KAqFYxY@)8*&1<_on$f#E=f=VA9(Tr*R$4vsscCxsF-7CEaiyBLHpupU|DZ}qekC+6w0 z#Cg<=d;`CXDzN5F#9WP5K0C=_Xe&a?#125kI4d56dG0!)XYj{0b z675r@Q~xAnLfz-Y^2F{`X&-ypH6p&k+)D4@bn{erZMa;&CvknA=*8OTfY`W2eNdZA zu59*5X9ofuwEwW%^##{@_tmP$zp=5oJ?m*mu`eY=`597AIUghSEUA)V$$OsEqbjvc z^3>Dqq}IHjK8d&SRnR1-=3y;OzZH(p0#m=PjC_Q6Yki3sSWWl@Tc-pDgm|-367K6F z^J}c#6w{g&tzPI?r23Z`)TI8{i5yuDEU}BnEV20n5@Y!se@0=o-%PUFF!lxJJ|S#_ z3tAcxR3Nn&9Q9**B-R=N^R_^HVg(c5rvN<&J_L9PEP!0iJY!G|zY zAfgR+MR~D%2c5wC8dM62Re3ZT{h5GVWDD&31nN0~s8{O@GU!Z~ux z9?Dg_lbnp_=<&PQz~s31=-Ry^J9Fr}t8U6pERM#U`P!$H&&i-|7@6gHW=T%DmV9F1 zOb`|5yb$NHJQCcfDNLE+l3;i`D*u)o#{=h8TZ_gatC#g!W_y|xKvvaOSYrmwFUM2S zi=eCKetmO==ZV11u0g4{*=u5bAWuA4hHS3zjy~~li8a;Y1DNn3ej{iUU=P&mDs0X0 z6m+4u+1s)#-Ha#QpK;QkmIbjEx1-UE$)eaRhUXY_BlD}RXR|?J9@N%GuQ0=660|v7 z#JO`0g`}waQK$P`GkGHUaJ5z{JVRUPFEi)nT{$-=*z9fk+qzpBUz+fE3tnY@LSTgPZi5r+-SVGvB>*K}nKyVSF;m?7 zy`j(PNQ8N#+nASY?lKngFb|WuIlGLqoTe`dXbX>s4KO=G?oHKCMCMx>l>`q&vy3u- zuVyTQi1}3g^Lx)@qB2drevqaXV(ht)V6szDUE*-09)&tg}TkSn)Tdv>X zuzuO;91|m#A<662HJBsDkM*WfOC0dIiTKd_+#h`M1R2#4bJ*IbVHZ8Wh&s(#9`jZ& zS6z8z;_|wW?}0AkNsDiS$nY6IqHp|LS@>^&LbsakzYQiEZ!|l8wBvhUx^&nV#@}lY9E4OYD9T|B4^Mxb&&{d_36lef(b5`Zn=B(mTye$VlUR8uQHI zHQT?WT5X(QuG=DgG2A~a3$Gm(Ff_d-^m=GfUE$AewQ~0{RrcO$b5|m6U8#5{FKmiy z;VzZ!vA+4g{vGAq!d=JrkPx~+KBPhMV`tQ6LHWiB`sS#w+WM&!wx>tvN36x~X)3NU zTYSM5@5(QlbKT}R{n-wWF^<)jJnk{(x*=`TV`2Z`6Um;O@nJW7mAqtxea(9o$r_JN zGQ+-L*c+Wpeo4!OSiRrT9?oIl4!a#;H>zZ#^cpMJ_$C=MVJvCV__ zXnls)8ia*2`>e?_sr%XM1`cB`6?#vd2QffI7~wDqTVYUf@UroHloMIXV^(|SnRV{? zEBF7I8TJOl{*{-S60O__dl}Xq2EdRebR=fx7?X^!r#HLW`aH(cwdOeUfH~Kbd@DQo z4usl!zzTN4tz2??;0;W*s5rQDl@H!E@Y;bMj79<-#-v^?af?#~ksZ4Tp$kDpyZ>Hx zAbH@IRBXNs3w`5(wafd{PCl|2bf~*^(FnIBBw1FG*L*ehIY+EMhg(~Ed)Ph9 zU;wTSq4ux`g;L6B@#?cWjcR}J?8+QdPn2m4hRF$gjY$;o@rsP)R$z`%VVWvpTZ}Hz zYm|D7N^fzcZ}s_@$d%?qCyv<>w z)8C^o!l-te?&%5(+;mbJ{dX`d(h%jkgAJZrgS(`w*XiMIqs48s z_>GpF_>sozWS0a|gjMGNU`QlR=`i?~{e<=UOG2oICY(fv!IYK3wg%r{@w%ZUR{Ex|=nl z)IH_}o~tDiM#gD8Kefu2TIEf34s_RIYBoOX7n(3yIjQ6OK)f+IQa?h>Vz+}UaF3qH zO|^85@zaeHQeU=OAf+I3nzq0mq9ZhK@Equg@LH-Mb+z@CK`=>d$?O+dza{4W13gbP zxNnMB7x6mK<+3yTr!nwI>dO>7()1Wg}zdRpqeD!GW@)B;-h> z@QCftJj}w3i_vXENg}lUz}xd9nXsnivZl5y;M2N7ZuM0Oqi*iPKI%f#`%vtRu0L`a zG`pr@FJ`Xhs44Ye-OL{%CY#_YtJQr>SmYVM=9 ztIRFZlsV%OSf~rkbvvY7z2Oa)7~%qKI39(9y{aIH+Y~T32qf7ZYD=dX|EcaR3(!GXN?`wy1w2;a~#oc z+{|>Cs;4C*WLG%md} z?2;YYu7vwRBd%VzUr<#Awn*Ip)tWI5`QTmi2=EwJH6fqZYaPj7 z!%N$qmCYThZwGqp(8%VlDavh~4U3@dziHjW0&@j0+Y5}bNx|H^mRgism=g2l13mP* z*^ep@oP;UzmTIknm3_S~cvLk?1mhh7;&xRPU347yuFQf9KZ7z?n!*@+!L0Xgv#(^E zYJCNg$w613z22DpL)XJ`8Af`NcSr^6O>WUEP6USVxWeQ5ekH6;oOWG2duxS9~B*lPcqNaSj2Of`LM zAgXlNcV|!(Ou*BQOlXNcyE5$?FH=(dw!%FLcZf%+;u7$s6{L}}@(*#nmcyYaxMY<4$N4NLB=u`Y-7ai!Ai>;011_C$jVYWU^TlI1nx zgFJ&AUYaR;n)BGy7RiM_nxIPMn5aI|Jfqb*(vMiP$I&=$;qkYBn@ZWc19HofeA=h} zLu6)1@hROG@}AObv+h{F)nW7I4cF8rzTx@F<7|tkz8jn3XrJZ23=FXzXPBz^4~0M0 zznFD!+rK#$VF7dGL9&bM~!ZU*EQ41O3SSn7wBEwesB2cws6$J-+8YFQ+%jV0bp$Hy8e1F0)0E zrtXm`&U$fliqW@)ke+4xD=#va<(LbmnbQHPS)MBZ=FVX=cMVR&Pv7_F$ioTm%0%sO zz3EI`KU}YAiCg8UN#7hAN?N{p!(B5oc&Oz~^dvymd^xZm4PyyL*XG%TdsYDDnRt)zNpu&e1!Gs<04sVDeqb49}Y7l~QJT9V6@p}xR=$Y@)6 zEICZAi6TxAPr#^|%wwNya$0MB09*9o`T(6gx90gXgReGqk4~)cno5)eQ>tt38PpQ< zhlLa8&SJ`_@+MO*b)3P5s&5_$zWjjOO!iI=b~I05jSVz&&(14K454HL4F1M}?s~(; zUERUhJ1$=55(Il(OZ%e2*1CE_%U~02=FG22%m}fJP&9e<&4ZdqAz8yZmJlh9UmB2J ztkow$ly0yI(RAG=DOw?#yxfFayfX-23)sEf|269JjJkZIZYt0)!qWmtbR-4VxB8i4 zF4g}6JveN4$fuZGf5O`=Z;N~p68Xyr`?om|8}-e5o`9ns_(io*S2S=2VZjLJS`PSf z8cMC2y*4?_L4>xi(wJLr?F89kyK`V+>K0{2#ZgJ@&LLZbszI1DFEv}HnscWCOfy^% zKhjcBk7h8C1fU_Xs!v@31^>s@Yn`ZU>y4`6gufUv@2b~A!&rvYn@MmZ3`BWxxZcn~ z6Amnbr<%ANfP!c$qfEFL7~!eG@U$qRWQ^MVez?)VyZkJskNj)3-o0uuTHltYnYP=J>THqOzo7@K{A4f zoIbJ;p?ZpfNj`M;##r+SSIaeKsI~Xcq@48zkN8y^487EJvC3HoHopWrG=9XhEMUF;KgKNQYbz3d$35?^a-->q`w@R&q<1INZ zmb*0#GZZon{f2f11({OOEMDx5&abI%@PKBy=YdP0nJ@OftFfxE^>jGb7oAjGR|74(CL_P+aC|xuUqt+mhEF_A3l51A+3)GB73IEc3~IlUR>$d^oqJ+Im7H z;#xEelN(&O)>!{U^R?!#Th$3~xIo_S?L#hLJfdVX%iMu%Mqu~*5+1jgDUm0Z?Kbsl zb2T@RZl0uZoobRR`Ict_r{S|FInyckBob`B6Ogt&h8{b6dUaOp?0G8{eD>3lS>~B< zz7|Nve(BU+3wG-d{hegaL*(-WI)eM`MxQ3{VQ)c+kxi^5qbxU;t(n)D^U#LV^i{Zr z=1eHl;8iM-2x~?*^1SHgq~vHh4$MZ1NYTAUHkb8FpQyYkV$938YJTKI1}F`7tr)lZ zqIm1d^Aod9JF|^>emZJ{LCw&GBTx~llU-x|8!SQXt#xAsIN--9V)ywS&~BxQTez$6 zmEuTV%cqJX`7M5)xT0=!M&}h*dRnrIE4>e(iW?Qucweql3hiH>Yu@iSD~r0`jlE4I zEL*R4wON`cs)yE=&vDn4QwLJHvHPbwnl6f^q~=!|Ck~Y6CWWC{_c$O_dOne!&0F${ zZ^_f+F)~pKkBfah&-uWcg?ox`$ZyOyXQHT$jxWApTH}5e45Dm7aOTw2JBx4dwCpIp z!P~N}H<$Vwe^7iw(W;3QTa_vD_r*6%kN&NcyIjhBMsz%FDa`-+oROQXc{Bzl!>O%X zNteuK3p-FAZ0$b$Tq%VU$j14Jn>S z2m|FCFN+mBq8G*PcO#jbrJi8ON8_d5V94K?FK_d>X+R!xL$1`LIVteKuPLCFx+(L( z(UJO26pUdd*tx_Brkt@Y@vv$lsg+(M+L>DEvzDIxUCQhzgw*zKqzg)rdR`X<)4 zs45#~*RXysKY>g(gA}~nMWmt2qK0p5;HqvtYH}fC<}9?gvAd=^W*KGE@H>E#8dn5p zoVnUQzRXusZ7j+&7Uf&NR5T3uHBMuVtL^E7YuuWoYJBm{^y9-<6M-X83 z*-3p}EzeoD)h15Jf8PpspKsWt;6E)k%l!dD@G%4fW%RiOR8a(^Q|4nh0wQ+Weak|d4%wn?AnD#YB-T$A}!eXxuUSsUubd)VRyQczxGTJBM!dh zw{!G|+X+JP6NM(S_9UbE1aEodEl>I__?Tu-@=g!tj69p|agGN`!am7?#qjVeQHl<= zUl<`6ML;802 z7gR*@8o#(U6JsnWR>VLg6`*J90sj>Zu14T(1Mc%k4|buKq&dP~%|t9QDp zYL33{w-lFGudisla&7ARS+gRI7pZ3p^tf;!%te}MQEz6&-g5S?ik%s^;%&Bg6vly_ z@Gsw#!&_-IT8qlHJ%nZqdFq8ZUlGWB#icZgl5(a~?yuNN#+hzooH2Krc@YqzxDT5d zw=ez3B@pV1wVpNRPIZp!jdHaSo79jyk9d==l zQSLV9mKaWq4q(=VkcLZ~lX|BWzB1E%t#_()SAXO)ymLBax%Bu2@^%Po_Q7gnob?$o zJnXKOvXg>yJ&hMg<4G6;edcSz1-A=3y6gCxkSUvnSDU47^Qu5wY|y__9Yoz;W8Uvu zJL8(0t`CQ!m1~=>@zjK7Mxte`-D_AIv#%MKUTd?j$r?$yRVsGYv*I%09x%2?+wEbq zTs6+9bffrApm@fEf#5mwqBey}TU}_@Ol50X7gsZZto#7#SOl>9%$aBs&6{SJugUg# zr137{ax@KXvm=-tb%xDbJ@F&a|3KjgslEXX&+Prd{STA^;?GD)*GS1(!NZN&=1rdX zE79YWHeKezq1Y~uwo7REOn1!UNYM=?M{%QPPE^y{YoWMi^$hC#GIK+(z8Jir;DIm5 z=1Y4w6tH?f6D-f8`jY9aUT%{&PON4Z{VjL|r>K}udjmXi^XP`fc_)imRHa5}yHWL$ zQPm3FHFYD@iOk6cTCw|*BLhc_g&pQ={IqHD|DsA^<2bm{Ux;YH+Xy|Yzfj`(SXNFq zs-6>qE4X~s2-9~i50+T&HY++ObecPj=r$;xaZO-9et42b=y~%!J&dE7PAs07QvIQc zvKZMlLfg!$=ds~`XowjzL(c`f8l1Iy+2Lzti8tn6D=WY80r@pYkAFwa>PsN3u#vIm zR)-#6PfG3663GM!;90BVo!_Mj_dq90gNHd18O+w#{XZ09ZN&eEZ?;>rYPV5=o@YD9 zD6;RCs(rVVa|(}9nkRdbQ90FEJ`EMTQJUX-X{`ArNAz+tv|YXUl2MLV6ps-pFqRb= z9OH*Nomgsi^iDJxO&3eYsOo^j#3*NXaGnPQ5;q=92J5E5xj>(ZqYCUlSU%qnIb>IF zHteKea-D3`a!5GvZzH=j60OqS6rSdk!w2eIX5LU_&YWtlm?jK}5d6T*0z~bZ1=@Ss zAgaJ&ctx0}-Z^sc!exD@Ijev}1Jfmgh14+EnGBO>oFe&I7e?tcbEcmYBa;)f(p+<9 zu2EWG&dgV!Fz(MUF_uq-_$kbjJ%a`EMa~wBde5sdADC|4`b&r_ZJsn+W~eNWRi4SJ zwyu?AdWrHfC&{XFmo-dla8z5(zY>|)BWIh)is;R(tJ%lknCvyp3oJ+VLT*EeyfA0v z1%#X#*7sED^kJh~Q&L#*jWNs7cr|u)jZ@|0Qu*-9$9a52kC>$elq#JjA5-NcUq15W zBR9Roa+Hp*23n!TCO{MYS2&=J*NS#2+CZlP{a>0gBMZ%P;pnRiTNBOJ_vJ5G(Z8Y$ zf9;s{N3e&&kCXK}Dn8ksi@DbyY>!@=2yqubga^+ily*umn?Or0BPgd}6G>*5i~MGA zn3vgj#M4yYC9MP9!v8|W;PzXiJq@$f2Jq~gpc2f1m)UtqDz3J2P$XX6`lH5{A0zpR zJAs!CF8D8mV%7P~i-PV8&|z{&(l{x$6WcR??CbE+Z}nbVow~`*r4Wwq;(MYR=X#tU zL?^_WhaA!IRDn&<%Z+HL{MD(5rxqMzUCn+u_;S=8o9pM)zA+2OM21ENhJ$<6#>>U@ z6vr7wd@1=T14;PV#`JUvG=D2fNUZZd8c80Axq@)<^Xfl*$Bp1>%d zZj@u!>NO%hW0|MDB=>3-b$dzP48Dv=z7Z)mmgN|c5+gF(h)gpga}1vmS!_gjA!0;s zHX;j*$Q?#x2}--h#qx2je0)|u{Cq?ynrlSz+DmeT-|n4j|LhIZ(x+5Q`Qz*ck<%T$ zSCbvFvr#QcKQ2{Yv(?M~^iyM5K2N6bgkD7~7`c%nHC!1%{nzawi}9D@H%Dn)A3_Nv zy4V@t-|EmG`aVBm_oD>a@DD2cdcXdV&@vqDjME=VkTOei%436?{?HnJG~7{FygYaH zeZ|Z3R z%jc{vjon}1XbQ&eFLE?}sd)MH)dj_qS5GTme%tEL$L{yKn?GAz8CjiMTzT{Ai;F84 ztUkZEa`Ebk#g%ug_5>@JaPBy|PuW^xF!FOI4$kU82yvGeyUtOIvLkw)C7hLPZ0A`D zmi1N>PiJL*I7Td6>%*P_8H!JMTfSZ(eS%bUHdoCdeeP{;qp zDGKqQ@*?#ME9`D?_FgdZK2^tJ-vW zpx|s3-jc4ta2FP!Y-J~`uTs5qN=g`ISQ_PE?Spm(1q2EUqikyJ>0MeQcM*@v@xQsS z4{2M~qK7)3U;&E`u*xFEVIStZ3_`TLdl`iZM~2u$`>`Hs7eaz>*EpUT8>6F8T>vSYf52gBR?rj96cjI``vjOn-X6Q`@5@ zFE|98o_u|Tcql;K#7H@X=Vitrn_}5iYQt|%WeTr@3L>fKQDe1F!>TIJTzJe_?bl8j zt8*+b^|QM{nHt9>yoG32m{S|hv%jL?JfiwbZzY$dUJ&?Me)^Dl;VDUuCs}P>Pf{jN zkz+cPCchw%O*As^FAZ)!EDql}gph<|Un&S#+VqzeRu1U3PbeAJUX? ze_H)$ow63ia0m0IZ*?!byLI@8{Nz#1-L37V65GkaftAL2-}zjAj99l{#l&DxY93lo zxEslWJT z{l&kyyUn=4;kf(dHOr*%-Ma>^kZ-%^$usB2j<2b-{-r<~=rODM*1IR)-Bwh`3;WV9 zw9h&J!!JPAaLLv$P7d2(+mA|Yj;cX!KmuRdZypl6c5g{3hCj%n!Cm@>dt^i?mlzZ? zRB=M9>elAwY2m!sZ}3aRN!JNxj>*#Fmr_!W6-qLiZPf3a4^ZF0VMPWn*@H`;Tc_+Z zQRL%(G9m(R6$`!}qJWuuvqujdHY+&c$-9^^XUP^ycJs$7{BQL6%g!aafJ zoYFwWkoG=C_UxvCeKdkLo;vXtJU^0ff2xK%m5*Z_ZQ@i49aea{w$P_xk;>f@Ucg$8 zDx)v;R+-@ZK^R739UjdZOOw~^+vXK z78?{6QSh~76hM_2%sA;e_{Ms;VYEms1e;+=Tb*Bk44+#_C^t;(2CfjF<*# z=N4C$Uxp!;Zd0+V7#4$r4nCQAbCDPFnq$Q0NN(ICsE49Fa+4iS+t~DyDlJT?v7=j+ z@k#ngH=ouVIk$LHs)FVj@n=ZDKkl&uqcym1nX=cI=fgR=Q!KS zh5cb}q5nH#>Rk?VN~tJ?ovn&VlvG!tCxKbC26DM9g?x(O_vTzT(ZLB#* zGvezgqCb|D(;qoWHxiv>SZ^N^H;TSc9@_-0((E5R?J(jJpTUeP`0Nlvd=s*suvEft zB%W7^9J3_fNJunoBfg!_RiCR&s8CAqobG(Q>i58t+d0M#X{y$UOI_CI*AAzw2cfm* zCTT}B4F~u(RYXv;qYGmZ33b#SZ{jn>{I|z%Cgow#iP6Y6IZrebGHZbYnDK1-j=Woy z(=}+s7fVtotPy`!k}C8@gF8{=Ft%)vjJ|<4wA03x^`sL;ImVW4l2|bm=rp!GEzj*> zX`7xReG8eJ?vTt)f<-Yk1V`i7&A1?3WonCnBdG9f<<;|37w!i1HpnA3O+|iV zj-(yCh|JDf#>66S{rER*q_Be&KtQBq?@x^#LsTOmFogc7K=5*8jDhBp0uFP3;E<8% zp$r!<(&z4*)Yy0h9(|?6x+##pe zsvl$fPG_ApnQl*xSU2XM(`{*s4R@wJ0K3x+Lv=cM!0xtPY15XE@4VgH^ipHq68@Qn z8i2m;*PIXABTOxun%c6R_8MHwzFMtgR-KuUN6fBrP&Y-?R#xj1HaaEC;7{bXC9aB20#bs$2I~t|Lj%|G6M?`hUP(jToNf<_X%Kf_?x5>Av zO`<@^ax&rv$-8z4aZg`|J*y~|*6rroEQ&vatZgRxcrKW#Z}o>9|NIk<@;BMtkzvq9 z=Maop`ib38r~X3e*i2aoIGugLY3>_SRQ07(-+UgV5PffqaK}<`emt^3bJDwR>0`AX_EBc zJ?5E=?89A658xAY^-=0kU44wi*sjW)XCRsGLZ+)9(~~j1v-@GjZRBu_d18+#15Chp z{9c(uh0A7K&>}rjdk!;M9DUgHo1Q@#`smbs01)uWnQ5{!FBp8z6wro3YoRvhPTYS>XE5KhC*bWM;7rjS%Y!p%HSFnx+xjKBjAOW>#6}KNLF0610(hggA^WBkh$x zc+DT9ubM(*1s@qyX64FErAg9%Ym-72$22KG{o|WFev}Ot@O+90$2M3-`s}`R6oa%^ zM%LEHkU$$z1RP@kVXq%IqHzWg?nysUo6P=CQnyWB|Il%BFK-0%NBbSv3)T4$>1MS& zN0(zeOSCRCA+uM{QC>n|nmn6bZ>d)2^>gb|>j`hSsSn+YB{M zLy>EHRunIX<|!Rh+wSRp&?7rDgLZS!#O#r6Nl1=#+b(9WCZUGBlld`%JReP%(9@xpWE_%A8N!@Q2SuR?#uq@mP=jIw9vP6n|^F0XJkm}T~0tVnrD;VbMpS6 zJxNxN>_$6m6r736+zh?6BLeF2rF3D0GgZhoLMbm7TBkTo?LGR2#>_=R7WF8PFsAZ9VlA7Sgf05ugadYk<~AMs;4Un0Ff6cQ6x5%19Hs7<5+5AV z&!@JmlMyMA6b}7)ex$Y>mCp-1lw9mP{#_A6Hc2tzwADeTz1gXk#OKJZ#^+@)M6Cx z1*&X%_q1DzJ~e^~O87QyQCkV1_Wr7&T(vV*kNIiFH_({Y?NscR)@h668gb!;7tj*x zw{ToUz_irc`x{$QwqqKLlJ@sWw9iVjBGJlFj7>7! zkCbQ&1k#&iJW8UK*F>U~Z(E|3_eG+WBBrY6LlUjhu8inh?#{y2G%fTwBcxv9%@Hk& zlJw$A($m*nM^SrFXq6L!bzNtTgwSwXf)jizVUtOO-NuvKC0nUGxX5L10K1^=iAPnw zbkp2tOUZ+$tNQ#XS7jcA)-i0#AzO3GiWE)~zZoNRMC15xBj& zgyJ-ahQy{!;>3rme1h=kHPcxA3ezOA!d|}9vI5Y(OsPReCT;T}eRG$&FZq^hj8O2= z++;=(ARDFvt-zQXbx|y&kyolyYx57O5Y9?iHMUEcb*+ngJ!wq_z9;O#yy;3FpKK=A zzA5^N<8o1AWC-S#CfXlun-n9``wx~2xzc5xZbbIqZw*lcj$oXUq*b6qz zze&yDdA*_dReL2Syj+l#2OKQvYJ;&^71M^Gtq)ear>xM9bMSR!l_*U6LsV`f0~Ouf z3+`(&^J1gwCc*!YLH98Ov4?;t!BvT*dB`bxQ+&*EHnUu1o zDy5jo$<`__HQKytnwgYAC}vX1#{N}W2Kl7Nb|cZhw|QXe%yv#-I1m)`IORm+)rV~R zxaz{w#a~+gV>F)ejdZxi96qW0CJt^CCqPTvPw8*Bp5zAPGyJyxGVa1nVr|ycMW6Ss-eS~8po6|GW5Ub>2B)T^Ua815~id=1Bj z^ICQi8J7OA-W_$jRQEQh?uoN9skoDh=;qk&J*B$)#f}w|PU>}8IrOhyzooVJO6g@c z&*U|q>UC|FgKz8cbutvYu9Fm%L#rK*@7rU5Piy%HdHNi$;*@A~4BIm8oF{OQc6zUn zf)@GKY*lA%mPa*YzkO1_E!~0ItUQ%(x3$H=kkn}LIqAzJsjfi`7IMdPZjKTHrvRA4iwz9nof2Pn85PGcBPYRuv_zKl1=_D{_SbO~ zKbIhdiK6NHi`n;dX!=$cNA=hU5DrIsuW(Ot*roMtlUsc_FD_5wOc0Ae4q3Ubrf+Ri zS4nfZ>rMy|!$S@Fi&s;LdKYU!UWOx_KxC;8RbjtxM)T|{Vy!NYu}{<+lQ_oa)V(Hk z;q%C4iLhjgaZM`Pm(Gjr#-{oh7->gQ!kY!%o#PzVUz|OCn3nJ9!*3Wwb+$JAu>%;} z`+8%JHjMQRMhYLUCkHkrJ&xIHhySyIP*vfub73xS_T;Lh*fSZ?JOYX0PVtdVth>?E zYr2@WeJRH{Im#SGtQbOyc%(VaCB{Z9^LkH+-w0*2CujT^Emx}ZQ@EK3CzqufL36}I zV5uu&_4csDcVlF!PR7@<8aVwIi|u6|^FD7l_V#d@IA_|t!i}ZEvWx!G-mV zytZ9su_xoI=@=F(4X%5VTISuqA9;7T_197mGs^ONLdP_Wm}w;RxYY1<9$?0dG|25h z@D}?ovw1t~s{)sqZ;Pk)5qdLt{=cw3Ym?R&ALLp`a}V0#Cdjx^wMJi8CK}}EZUDY+ z21#YYyzXk1+J=I8s!H{fx>Ti}C*>z4#=>5{t$(_G81&AK-Dx?*em68I66o7X!Pg0M zidAyxIl7L?%~4c-a*Oqud)kML(09yT0qM6mjKfGd>P31BJ%wS9%6%5g1cW$w+c!V8 z0@s8Z*BPoBS4FJOZ+1)wi#UZP)0ApvCG`>lhzZ8=f@==iTNi0Stkty#cBUTx& z@lNk#?7=JNV@wjUCSwmF;EO)1MTcrI6_~}bc*6Y`8Wu;LH4*JpwRIIayd`!jU4kMN zee!%)!vAB8?8RkgHxZn+x(Utb^TvhZ>07fg;?Zx}LylYJ0QiYLP&5cdY$s1zh1m6x z0Xb!+(xuY*9qD`(fcKUz9#53J?_8U|aQcjGd`}~8+ZS3->9=*NSKW%#-L{tkJgB7) zDq}&1eoOM)O+}0Ca^YoDk5>pwxbP)##f&}|yR#cUPmhtTr?}-Nkd(EnY zwkZokteZuHnK5!w@DU?qRu~46S0Q48Z~p_M6c7i0p>Md+9%L$d3?j+Q?g3RX5R?n! zp{KOA>WJn4fAJO2P&+^o&|2PXm23+98e~h{QQuEZrE==Y$@=iA&){VT{vMfN*D%_ zdN*7@23enH-=1%M8ljvigL)0Jk@ah#4H&L$7ZaE0!Bq5d6q4A}Pp&$eiaxJ})<+C- zFWe@NG0l~UkL@mS3aYMiVk8(k0keQzXE4;EZ}_gDEu^^WS=5f9XUyo+*sNU=46Ru) z4QuHwvMsE*JQ#X(^=DRO1*4CxzG$WqeGEKj;}b+bOK8tYs)}5*c{f_TXpi-eKNrgC z?e#%`8}Lc`ACthq=G|B^_Q~U){Xi~$w)2^awpuT$?`_sr_1$l6R^QKC-{X6}^$&c4 z&1T!^zK?C1T+x_$H>`meU{?6j29+Vtz!f7Fl`c#$&G*b?a`>{fZ#!vfZJRL9%0gG4 z{oe7otO{G}YI1lIP97E|hdo+fx<3IDc1QZwwqeEUN)DfI9vbO}x!3N<+BcP@#q5(A z-*RJyrOZStJegtn#u$qJ$%my{{lKuKKQb)4BY)Je#@}7x5yRfzxqmd!y#QU+kv!wm zH^00ndB&r4&?&Jiu9K8^3Uim`SmSfZv5+rgAU(Qe`uuADg{M5FFUX{cK|GT7kECUP z?f%}g=j^jEP_6o{pM0yeJ5t3xoR*uFoh_D?ScHB%ky{Nj6BvL%U3YiKyE z+}(QdR@*w-hYvd0I`3|6!d94}ku5{R^b^Mx;(T~l<}yO;L@t+s{9?TMtt=^=ar!o$SZ6R+?8q%^|Kc_u2dd2uEftuZh^57A1Z#M>R7^k z3Ens0YPe0qCgu@IVXGS>x2@SiiqdIZ3R_CkLw(SgK7H$?O0)q5_)X^9PFGs$C=MSy zkg5~<);S&*UIfs^K+;4qtMa28{fb$2jL`uqv7x5-&6b=%5!s~OEzB{AUYH-kjE<2h zz!h$2IBX#y?HKY~r-THh(Mj$^+V{8QVt-C*`BW}2Ecd3Cds55ut%go1>crCPIJkv4FhnDNQ*!SeWrZE%m4_y1?*rT#JHk9CcypSl~I%AmUeZpmZC z@h_8sMeGFE5WzDp+v)4JgLB1P4PM9P3KD*O-BT)&gH0ZZ(_y!}aeQ$&UthQ0{%K!2 z5x+9x4seyH+WME5q;C8Z>g$%0jZHasAwqpzLzvD6rmi0p&F6-WNaSHWE#u7*H`8HX zCAYg5V&pz()jbW`M6vH4r10~>m+B~KdRgWx@_P(>_lGD4K(Tk}6oUTy`H7F3>RjBS&9BHXzkzj&u z)^R_>!s-U!$iKi4U#rWHHFIBMZV^`z@bVY6@WS2PkModA6aH&(Urb1(lq30O&V&vG zr!ao{g3-RF9wtfM4>(cAMF5;teU}@1CAV_tMXR)mE^_;N1z%9C@B4#R{x`@V4Oj`iZelS%&OWpIUQ$O%Z^1cPBA9zTpTN8uU zzbnXk4s%&)*gT~_JK##biy)kO&QF=tb3Q&TQSAXW>TLELUf@Y>&6Q_cbL81d`x&GF ziXy9Fe)Zu6UTanq726}y4z6~cUGHd*NKH3I%!i~C7d#}jYmZ0`7d#}jVLg7OU6Z`; zOKr_3Gqp93Ps^8SB5zUM;RXK84T;K1S%j;{$%0%p3Bn?m315j$f(W3Z@?{l>it5YO z`1_nnyqV5V?h63Kllo*3^1aoP@2eO@Z6;x(EXP_+6}<0tQSD6*d0ywzitRU)t2l+N zkZ?Q{7thLj0Lh}ic-FL*Y{)aK0Y1-*yAC`s&Gp7w_2i&CmeiAH-0FHqU&0@kGKm=p z`QpNszPUr+eAettzD2~hK^{+0`9qxMRCMFD*`V23)6hf=bb}F>5Q}(l?OT^2+8R|y z6W-8elrC(IXnSwDV5e5$k&huhUcO-G+GM-Hb0@Hz@C=M2>q*=LdE3LcNz=!#<#Wk1 z6lriIwo1{O*xNl;F?Zd}8_Us;8e2DzsYS)#Chi8yir6mH)h#fOpVMGt@gP*9wHcRb z(PPF#k5W1jCOw3wdFZ$C&|`KEKL-xW^%Hp4SnFlRBTq@aZDbn{JuXQU0?qvnZocuO zaROdYzA@E_8x(bmnVWFpO3GV#dvm__D zQ*OV0d-VbeY#RBn7B^Q;GSX?xJ%M-#{%=Z2JMyxSDBFP(QX8;|%kMGIQntSC<3J3!vY@oh^Es`)bEb za^z>H?0Zi@5BJN$||J+0!u*E1hPSc*k5Tv%RP;ws^>)2oE=wWXHi*m>VKv zG~*#&Une&S=O-R4q9_h65R{-0iEo#Xfb=Hjea-Br~?h?*M@G5CTWs;p<-^?+-E*mKtr{Ojd$=R%tem) zwR1~7Za9kQd$%SY6pV^A+>u)4wwzLxxJDo2U;*hxF0bGS*rD!_;y1SLw)84OP3$<1 zuN6>g?QYH#P;tuQl2IN1JF<)GJo?6sD&f^P%Cg^<`U}}|J^CY18xmgq5!pYB>lQRl zUb0og59PllSzCN*R4=ac;qR%=-+kCAZpS_V$p)Sg!*QkIa(m=Q%aj>@vDVaw47wCRAIiaPd*w`yy-jML{`7 z^cJ3dw#K^T&+TFt)mW>-c5*_Ewf$n1jJjAmRtKUf*Knh_!dfBuHP)#R6h*B%v#-)B z=g6nV3jU*FJ*K?TTS(3AHJ0a#h$>GP*A+!+-Y3nIe|Z{cf6bKEGKxGF5;AQ!ogB{; zVWI-j%($RO%_tYZ%Wo4lO*U4dy;H~M$PD5Z3XH;JGQ60q3#uzqo$7kM)N&rR^oo0I z`$lN&#Pke{burDd0Xz|VD;uSc*Trp2Nhi+`7icJv>q@?_aTU*4*sZUV4cGRd1Gg_C z!C~gPkc+@&FjR8dyOsiG-E@8PYg%{mmswg}QS8oshqQ=0e!prXcEhD&Cp5r_! z)MJKTLi>(tO<2MZ*96l$B-f5bvGyw&S~%CN&eJ!egMSr)sYjFWM15v>Dp{f|l2C>R zwWMh25^k>9!3KKJtu6GdnURCab4ZUrNG%Ei@9>t~EDfEY=O<+Fhh$$t@7s7e%%^}& z4u}gWG*DhrR|+YE`b5*fH?3;QRW9VK`n;E=^pZzL4JKUh{rDl@;NDa0-q> zQZ45XxWB0;)g8!?D$XE~6lc$MT@T8e z9q>2r=>O~}VS~@Y17GiX*mFP&f&HfW)7j(tNqmNIXYz+&+E!IxXA z%)^MVb*>xDGiLG%#~Q+_{2$)l20W_rPWYZ=CNRLj3?|g5sYXd#c0(&Rsge#|6T&1> z2@FK?Aq3pkvN+gXl#JM#58}x{4mSsFE3MdCeOleRt1a%f0sM%~08Ii?4PrGa)~IZI zFsY3~AqWri{{HuwNx*h{J?}p6^>STI?sI>C-~aD_Tsnp|ok|~mN$J)mpP#~$=_qJ( z=#i{W*PtKRde@IW)#-BY%O@86zsubhtUuH83z`*NWSA1|ydAq!Kmne4Qp(zDt{1ly z4q2M4H+gC-Pu#4xSEHGGC_Z=@9dn1gtGgyKd$5uuJTlY$tt>Hj*}}C}$kvf-ZCYZ1 z4}rL9AD2t~9seYpt(m^C8vhlS>nx0x;)C{Q5-o`qt~a*A9*iNs>5rWrCwJXZx2RhQ z(=Vrl(=h_U;pk;*4=`or5T`e!O{W2KNsFAYmMPWtuk?M~)o=;-qqGb7c7~>Dw-}VA z40N5Q%RQfHn|w2`wYrPN z!9Cg>$yg7*lI+2!&+h>gQ5pPLAH08~4?+YuzYo%S-{mx|?#eQDPr_A^(KGYt0(vbT zD?ix>Z3&I3|BF7j&+mipZ}b6^QT|vb1Ls*hoz5&X!$k{xGRZf=V3w8ri|Re+S0DHr z)ni%3-*y{^TB`S8W$2tm{FvwauhyS&e*Ia0S-+^qvyE8CtfNz?Ju>kxXXgk1UG+FT zICq7z|FZhgU4p3tf9x2u6B(CmU~GDV|6TnEO`ThR&flm%haGUWOt-(<9!zPpe+A%; zO}*>kE{;XD&p18q>4%HCkLIOz)zM4Hkvf0BOq$!dlp@CI3C;n$WFLg#^-!zhk5P%7 z2A!Q&VyRYMOV_P{2+Dzd&wuhz>wDkUnR6Z@b3Yo0n`)pLckb z`oLQ^=p)B7PE2|3Cq}HN6H_6nE~h1{2+(EghGdtWBb)cvilT>)VUE0Cd4BM$oCDQ= z^c9|QVD2$p#69cc>@s`B(z`5rCrgR)3iNEbfL>2R%zrPucX?f= zSK=ZEGZW7CW@At4-6hW>f0HXze(-ekne(o7=R!BSKIPo$a`rj$0$r&`m`m!M_8i zm0a3qh1x;#i(|?E=_IG?WO*`3-aeN6T_@SClgIfVlH~hR$cCjz z$TDgtGw&D00YziQL>cd4HqgaW8iuxkX|nHqJvps-ppX)2#n>K9!ydHwk^3fzO1H<% zD_ybitV?jyhKv0>jHOf^R%vnDgS7}dRj67OCG&&TB?O>&Z)rN&3a*H~Uqz1YP-uz>fDz~##2j=-hHwLycP zFNPRvJfauH+O>=o!SBIJvt5?Gz5OPBpB9HR7!B@Of2KyDl9bypU~Fxu(-%2Yo8QwD z8j=aJu$T#yJ<<~zhD<7iCZ2MD&TAmvfQOE3@?2W5@5^nMNvrK41Y+ARyZO7w_-u{C zC4h5M{Xdy>$dqCYjhF`O2C(D=qsTGWDP zmDu?>^hGIAO$lv8mukx0$!az`)r`>&;mwR469C&J{EZSB=+cY9SLZhPCo=m+BO;|DCay(+E5*aMnBfYZs}Vn6WH;1M-pD|95BsHtFE z4EiGwR;Gxd_By>+M^~dCa_}f&TicWI!iB-Kztucjt-u(w&%GiG$y)#R1v9qA-*dbB zYcqF)_c6z-uYtZ)X5RroX^s6Fz5w01O$^(uH1tHPnLWF&O3^#N%9{$FXBSfeqGNn9g~Lq?2=jQ}i?isOZoCnBlTE z$Sxu21GYaTS3D=u;f2!SZTMk!_f}`V0S0Q;d+o0SOxD;l=%mgknfA^kH(ANK&CUBJ zMEcA(RB^2kU%DE?Oj17VqLB9zs44OBMj!l(xEn9eLJO~el{AzOc3bAT1V>^dA97LD z|K#g#EO27?OGuv;wQ55n-8EZ<_Gz@_xco737;xTO1pYd<2ZS1=v37_hVy{$fk@Bh; zC6##mXrR6FW7z36?Ukpk%H!?$X0`Djyr?~N%2{VYdhsVb`1zUyrkB}>J79RYQfUoG zPUzmGH9&onM?_$`KF3K-!Ect^2W}eO3n`kmZ0T!?R`{y@Tld(;%^85{iFKZ8dyfR& ziFJ@$cM;^KUCAGKcGP%HL07?>lyUBa1;p!fkQ;&TWN(s!)PeoJf0H0ABKuBVG%rP( z#)XF0s!ZTOb5VCF;Yx&M2aA^3$^PU{9c9i(#wT{pW(QQ;UzEx`OREw)=jreHeDhJE zKdyB?=8xtiC9FR_&t<7mDEa+PQ+@-ST6EeFs_VDuL>_XCN(+S)(HFlm;1%lP?#sk>vPSNDY z_L&%TUE*y$<#KslcVvKk4K9tpp}+)i>k%4QgC1DlQvxQccdI!)1`h%d~$Blf9zcf>e#d*#VQmCS{6GM5j2)A*GP z%++v3jeT66#bJRszgDzSVjCvc*n`|tPUHf)3s@%_q!GL%%D9dOmg~7b?%V{`w0B(0 z8*?M18iG)S!`5|qn10s{Nb4sWCLv2XSq!*;;sJQAdUU*ccvkuBu)XT03|GO4x}tT3 z&C{x^6}44%H8Ewzp4__Ny28d`?dyXF9Dm-9$Anh8v$GiKmg*e$Nzs()6igOJtrk+su%1prZ+g&!j8$Dj3gIjZb z)?F9)=Z!$dV+9&6RQKvzF+Lr`0A9>#L#NR0ArTT7IeVu+GNH=8+}6*}Y1tVID}>A_ z&ZIaR%!zYKFU7eQ!uHYD%ADqkfy`(5}f zzJytwR+U)e!FOSDjTywuIqX?1vEM7qEs}GR6(cNLWq;+IS{>V|V~~b_ zM`hp~5~eA1P5;gS2u(gJ1l!{ZV=0whw<9-zA04^5N!0-`tGhWd?b)wg6r^w-U-hO=N zfOHyNGmwug#EzeiC~b5D3F;SpC(xUzKg`lbT^fOcG&_s3#@@m~v@;H!j zpY$n;cnKVlfT|zJs1VrahQlIm3@;s<&SC;qdRX~Ocfq1_=7SzSr75?^#Sotx`g~{@ zE5_^*=@UJqAl>>kEP40ujBlJtqy6a5H8A?HYRS^ukY$8J5%Ie3@~UDD?fd~~2dKu* z{3yS&-&6uzUxLhd(_z!_NjPd3ysTI47g>BFP+#kx*JnN(-~(aZGE`@>l_907(mYd@ zE;AKVS;~+ct6$7cYrAL{Lso_qpW1ejur}?+D!`4g-3X!BU-L4eSx8;f1sbwf`me0Z zg(-QR=g#r|n#luS+UYVbcMX1-z4Pv#!RK|k=o0PW{|h3kL6H)K1ecX~ z9Wi{Iu-~+A&Ui29@dN`Eog>Csz z%f0aL6O8;45y2=~oF+&?70Mr1`1aYbLwB%WT>f`o%1s4?<$J{8W&@RDq zh+li9f5*Y6h4o;0F33j_$+JXGuKK<-mH&}{J3@RDa38*XcZO?%2v&^Eu`x7@Y1Yo) zI1*|%W`SGddB7Pxp?>x~e+~<3q|fr1p3ndqci`Fn9rtN`XvccNko-Gehz|x3p*QRM z%q6er+qmJ9TjSDe-SurJPs5_iN6H=td$w@FMkEcfhOmM11fKlynv{_PB^op9#Jp z@&WZYtkS|dch7?rMU(_<-c;W7^b{4109h;M3({?6>MsDFP^%3 z%;p(rGOXYukR-$G3L}DP$0#}m#vq5go}DEwm^H^Nn!U}8?fN71nAl-{g*?;IM*uB| zSXc6IZ}RU`{57{e$FKeBVl72e=B=Zb9zczs%aX@U%YZSJ1B%vaqywJuY~XSmoc#>*m4H!1%9B%|w6{NB9m zvj1)omy52OO;H>eyb4t8<-sel-9cr}z_7weIP8o*YaE%US~af%VmPFl zXYr7e1lSjWE$GY7r|uA?sy2DmCECVB5d0LQK(1a@-kK-;JD&WI!d z7N83oe@7Ka^RlBwEXY9GsiDkz@Nw$t0fOUCYqy97MLg=z3N_JMj1P&SF|^y9g2WHF zw^;Oj2PY}=+(i$8pHk~$`#ay_7>=v9uNDso=L%=x%0=XmM66+hV2TLjVc9TO9)|5n zQLB^9g*@u`=dKk}0Y-Y47dGW!-~2O-MU9klhU)|>;|~*q^v~P;&#bmzIF6d2rgZFh zOJ)zhoMU&d2wnzczAgejS`BHY{){{1TRl9smVYlr;_|_*EuCMtywcAN&bN8WSmDo@1$wE^XZ9BtuH%ifZdC!RnwhMk8_fC zjwVf9^|0)@)8htz4qfQaN4q4;4(LqA>CC1) zk$U(iQiz$LMIdf+vh8yCUdtnY9=z2!J>ALp52G1D=C4X-6!w#d&-`()SaAG{ojen% zzO?B=sotB+D4d{3V0q-N!3!nhhj5sA+MbtlyG!^mk?sn)K45f#h z8gRrv0NSg*=v#kvbr4P-aer82|B397&`$>%{*HacrejkC>pcD+$+X<9TV-nrCj=jm z0srQIgHZMf>QkWu)YPaI*#fy9tYq(%=hP`zo_kK36*>^Eie9JT_6HhC;a(=nDjS2_ z4P3VEaO+B5oY3tOBro;W7Y=<<`UNsYL{3 zdEPO5$}`aeVp|<(_;^|rRZrXL zgNDoP*Y2hu#Jas$VfVG}kt?jVN1$;K1*=p8JH zaheXw5{ z#wLE(CnkP5?fy?Eezf&}JuIy|sL&@{KOWt8-rWB}&;6r%?$gSddnQW6n3fimWbrN~ zA2pyL|CJ%%y2*kcB*A_dd_v`MG)rpijcY{i@CFva+9`CmYWuTy%8XK*x#3BmLUW@C zwwqd%-P{<^;Vk_t0_~<2Xg4>`&|wk6Pf2kN<&6Pl@=&l73^;%^IPYRS6h zi`Dl;5L=~Ni=qEyfO{wA#fF4ZGQ=ZVkSMyVwjn#R?4~5OdET`9OwUAPx5xPSw#GrD z8M@^bKNl{HPzVoIY@T6vXb3EXcM=$VQ$KWr_8-Z>?CCmcWRut=Xn(#=q5?#5Yqf6> zF3kGVz+_)O9rb>BPZZ%W%|^hDFn9LlT41kirj`%hAl)_cMjkFt#-hgXzJJH}q>Wz* z9+N_0kiYZq*dXnoN~FcCz=kcnapK-uy@Wjwjqs>f-Aj((DFZYIbQjr1d((R9jVL+n z%+bZ%UGDnB`9K;2{_VK@Ml_3>w~OwQ-`%I;?$BYrMhJ2^4=u$V&)_(-Imc|y6*x!e z-mjF7f;q-eg@zZDmfBWYlp6mHKrnDsGK^F1=wt>w0W60}bq#tniEf;_YmVvx_Q&%A zMhCjGww*-3e@JQZVm{$JQ4&2S@q08*BoRlY1y%D*E40hMy?F-5>je~;R-qLKTcdHR zaOA@FxI?P7 zU6|0*y)yQKc00X%tDi2O)3-Yo>H;Wp47j3M@HQ!v-6PUG$iYYaiZw-QAUR9fomdmtNkfFAv8FHSjvOsw1 zcYP8n4?vN**-4V)ZIxw{BuCsT$03DI;*d~K4*b;biUv!oAqQSi_!Y)?<oyr^BjFGj5YF zDSabm9d^jFRB>z6c--L|RdLvTA)d(`r@cDRE=z&KvfJe6M)|3bAHV!$bf>!p*KI2E z46af43JK?V!DQX{3WY~)6dF$EMxhIhf#N{nLCmJc{R_JX=csXUJAJUg>1Y&R$a$Mw zgP-*!2CtA5xv*~S5@yGyw(MenpTS8wdN6$xBWq9RM%MGPEAImCn>Xg2i>k^sTw~7$ z%+{#Z6#7tO*Mblw5w03LJdZ`tcx%}H=YOG#dx5#t!$LoCqSej@!g7#4Gnc#j6By%$ zTcwC#lr!-)hEItR!ICuCgMCNXmroOi|B^@07BE%6TWh_eXmwI)OgHq!R8`2*9J%Y z^GD21!8Zl}vNXz%nY#OlxX#p{a$$wY&6NkO=u3!sDJFAFv$QIT1Nra2A+DQyhbi);&xPAW~ z#kJH@O!G)@Xr!nc(&G744^0!%J%G?5Bo(Jd*_8KPOPxQH zPN&t?ee<)aTdjDAOb%z;-bJ&{0P83&SrZ+P>q^cejy$`PedToR{OxIPao%uK_mb&u z+eiPgwMZTAn9xB|z3nF^Q`1jUW0B6LC?gV1QcN7mh%;#p$)q8enx%^%WTe6u-j>?y zVfzU0L~`8h`%+edgXi=qmHl@1y3r|f>8kU$iF1%t$_E@8eF}DSs#IAnloILw)UDEG zqqAL#G~Al#kUeX=@l%aCMoEc#wqXEQ77Dh>$M(U4?8BEqLEYV%ueo&<&q?9;)mR%us0Ng+Hk{ld_AIUcEUfCBQ$22-vh8H2#KQ}m*D+KUJl6PoTyhXmfUBEi9iLN&tfs?gmLT-7KYld**c0*h z)2*fhYX7k(l5~RM?!|%irKj{(CJ(0@{S73g1)M7ABS}X^k}(A3KsYxTk48 z4qT*AcmBN2VSMcAz)->d{QcVscH`5zx9I|<^OhH<$~3-=6+6n9PD$NcrJF>J@BWSh zBw?H?ZQj-cY4f)N`})d)C;eN##T_7H(p`Mf?2sCuQCq*1nqtxi(ZhlN8C#VFh<7tH_w;T z-YJ_$l>^(93w}|kzAyL%W?MhL7&Tx`duK3tXti7F9%z*7|r(moK&VqT?hO;(_!3X?}Ob*iKIp z(0vdWtIO@H=jcl+dV>{uQ?-lGrf%b%&*YTvg7qwJ(A3`I6#y^2_ zJ?`JWFL-e6#E7fPew>$TFjKtJ4vAA*nKw)`5vlJ4!K|f|3c2hgYRxsEym)(U_T5_S zIV+&U$y1Ig1V+FGVZZS&EM2{?DiHwrwVusoa%!s0r9SiSKu@VR@PqqZ_U&J0X6gfw z^Zo&?L)^sX?-AWtR_sFgj`|7`tAwCdBOtlm^bJ9kW|+^*JcFG-FVh}-Gm=&3pBG0{He6)abD*5q4BVJEP9krd zDD(-SHKwbC2&qxp0lDIXX>Fq znwN2<%}RC*Q81yYJ6MA80s?EVuAt(A6M{5aV${IXVT0GX%d;W@AP5AolBj56+HB24 zKOVN5=`SM)?rEL?#|bM{XGHn$4C|WSxRc2{%!Wg*dAZs%rmR#vwxcxpqu|8l(SaJM z5ikiEn#;aQ3RS7{TBGtvq6QNB1G*bt3?bP$x{q&Kp)RX%Sa}{Aae9a~o@$|7flKzo z-jZsZURK+0LWRU8g7h+Uq#3obBgTm|DyPBrWf?<=S*ABW1y@^jGeToHt)^)HueEP`75iB>i{{D1Y6Mme^@Z)Iv@*<$*DVbWH&1a6yXd;GX}eQT z*=q%(dlsc-&CviCK4%3cFQD=_GKS>jNUZU^I;izBnS80@5~2hv*oRO1RpjZoI@CS6QMsmI7a}0#2p^8?;8J$vccD^6>0v^8|1t_Lz+cwS?g)~T2(wB%Q-LI+9jtV(jwgAVTXIHUX+i% z+Td`cmE*x*?g9V&Uij1t&S=(h@E~N3f_-vqa61c|w6$9hNzGA0D;K6xXr%E6V>}mQ z=$u`w!4NUVwq}N^ovFAux@#h7IE@zrjHgzzF~lN**>pg7SwCRHZZPX%DnKs79<0mq zU8By%|KPUDAmsGpgi^L$Q?FI-#qI*T6%FVj^mn)XTF!d(6-dVLzTGgufh#n<&V5kJ zvF(qzxh+*wZ~jXv-NA;<&|X!7+-8cDC(`Gm;S!&IQp zVsqvs^y!P5aw2{NgmCF2iH4QKzG3Qe`2}rw=PF@O6+I+r{x(s2Np#2IKI;%rctxoCVvB#92p~1;ktXS%|*Gev>JL7bs{Gjd3qBAzp zr@e)ei|k*1m9Fbqt{a@eZXi+&>iyO3O`&^Ycc`E4Mc6A92)39TWNg?GG&ek;1BcBG zKh%K%bHgJ#aKzm3s1DfXhR1ba2!4YO44WICl7L=pb{?%G8K!rGip|nrGALPru>GT1 zGAOLMCXbLk)7ff(wg6&_9L@uGDHpbyQdCmdFiDjZRtPuJ=o)9iTDO**S&Y@JaN_n^ ziQ8va+n3Wc+aA<$8XFVCB(i3d-ykq8oW(J%>})xYkY#8CAGJ$8fT8LJpR`r!!|n|? z)Y)6a*rx6OAq46XF()uglz-zZ(nM1r&A)L!A^fs0@`plM!be27)SmN?Ouk&+a&!M1 z8Q8vbAj}G^osn3ZXE&^n*Daf>nhK1wWi69ccO+w5oxsECgX1mFp9g>otV$b6J2@L? zYV6I0Z1`az1)gYFWbbNYJFKl`uO*^6dbbHnMDMxbREfphCF+J+Q6WG+wIN4^a+NC$ zU&erQw%M91FLh|hY|SH3W4GNbx7c~2S$RTnM~Mo!j%mu4Ir4AE6rAUwr-0*Ne%3I< z$eggJlIK?>RRMfNSWyf>@&M)mIzm{JvvLpfpt>QJ16V4$<>fd~;aRsAs7pRki0o{d{rI*n1KLcnc zmI5Z~*ykjcRUBvBo$G4Qy8qdTMok)n5?Y65uu;#sV4d4F2Wm6Eb^7Ig(6;JV$-xcV z2U=NZBqHj4ruJg%B!&h{-Z)}mRr)i)+AU4sFMeMoGfD+n6Kvkkc z8cIwHXopPMR;XP!x2VUH=W=~-uFwWAZIXr&H$|Q_bYE$W7&UYn$1D+R*>2WjKD6Ez zt1h`+Vqkb`XtRCsXIMw=cSnq-yo-XeT#P586N=Vl!L{SUuCX6rHkrB6E8(|H$mr`M zVEWkPur(2SIzwNRSivgcX+VMw+)Npa`Z3m*VWhoSROxF*(aGa4>2AxA{As~TU*iYv z(_;H@K)tyBxycd>^CZn*)?K28(LA80#y^bqV&PaXlD2kAjbE+j__&%ct+sXw_1XSc zj(&9_>{b2t51e2YbnwJZxq9r&>KW`$CFoLnjGxNAY{e(UBhRK+I7)9>nT0( zpXriekMwP_{jl@p6F&xY2vMc0L^ix`@FT8tPzSXioF{%XTM$irV)pE#4br7UwtsuSD$ByG{2Q4sx$DnlV&QL3 zAoC>?J8fMJlY%eZQLru}xIFvLnPGd$QlK!gbcpSdDziD;zK#gM7TU?+z8joHg=Sfn zxg2NnXUsCM<+CoMXQ*%?8u88mOldJ<;`_D{zf3+CAk;Q?{*56_9m)8_;7R4MD!~E^ zj}kyHOyfQ{B*lVShRq?FUL zmzzBWZw}5`HS5>+Bf>^LbNQUAu)XoO>0D<4&CtvtmZ+l_3cAOrea`o~Y4Qz9fuySC zyCh$(Rde}luHRx2L%9QE)+6c;EcA>V8n_;fi0IIQL+^{Fb3Lnltsl=o{iS&(Cihg+ z5G0!FL~+TX0e4@8yXVmRGV#eQE$>kTvzt^JnQ&9l5-ivI7w+!~c>xPu^6j6Gp-yRh zL9Un!{t+Mmas(dCS9^oK;ArN8Jh7=~980^rdZxL&&|E%i@HP}`xQ)DFIKb#a%+_|h z2NG)v?FXq<0}9%PR*Wx^M(#3BiIEDkY_@SK9sSu;WBRj9F9f6WUCGkzZH03ufjxc7h<#1yrhDXlSpe53modRO!@44QL zEz^Z)FQKw#i?JGX;qb*S-*2?O$CoR=pJ-xT7%P5L|kEA?Z;gD+jK;C0C& zHMG7b1@e1ak>O6b3SRfO{f1cxUg&QVWY*f?%I5moD#hUzh#a;2K_($wz1V&Taw}gs zPNdKIljZ!8RjIP?7J{tqquB4x19vuE#7oo+qHr=3 z$bVgONrJ@YNybFm7S~J!&3}6O*F|wV^W;0wv-T@JQ_o1;$#>oTnfv`uzQ9GcM=m@H z&Z3~6UChTCKa<%@Q+g`>u?}7!rB}yU5v5lI1?dq%eRYDfNdDLovZBOTpN-xlnzaet zA%5u%zYLjQ#?LR4!7rl+BYQ}eO#MzQ_pz{5_U@m^5kS&R(%<^w|Gtgnaw9Rh@h$kA zG5IR!!qz|LfdJErP|=l6IK1 z(34V5s+PZv$&AlQ@)1e?r9`L7>!N!lZAj7%pjDAE>%*UjM0w~qG4s9xX#;g01V-jf ze&tRtZd|EQox)g8^8nsS`QYJ8FID<%nAs{F1E--{$YcH;S)n@q#^0GJ$o)k3tN915 zZ+evH%ag`Or=*OU%S_k7Jp{oKB5tGWEKq-r{hvet+Vg%` zA5ec>udOQ!M@=5hN;1FPt;v9I3ZZ>MIRm#cCtBLvfcN^x!A|uubiIi_LAFPW#>D*{QeB0B#K=es!7B`J!ryI&9DJ_eQ9?>O;X@v-0PiNCxb#0&1(Y z+n$BLR9#K*g~lFJ7k3)f^AFWoPrc3|Q@>Rv-Q6+Px-;9_A;Vgk@QL(Y?2g2Kr$=Wz zCas{!ch2zs0QU1g8eY}d@Mbu})25DZ?fS!w|9(1dPxJ5mKN{w*{_lplT825DF~Icr zTf-C{*#Eb~q~VtTe}_3opp4isOBm)4;t%0PHTL`|46HIwK+ojrUTa#i@1V17nJ8cf zdlzcO*xv0W@tj*@FQ2A$&fewX@NfB^Y?ux?$IAEZ;7bjwjmKo0f&a>$E3%|{F}pta z71e!kL_Meb6Fk-M1*J3K+?#Cvx&8i9-0>8glOy`R(syC9@-{slb?UssVClo)OP`B7 zMXC{#ly@@Sf8{9XbU6x^jLO|1gE4+4!%uU@l)8U%Dev50_S+D|&qa%$zsPxZMw!5Z zT!o;p%V8Dfu=9QX?mm}kd|rBTTO@@5g?Fhf3lsybs}*_b1r4wtdf&t-^^yQclWnxj z2J!bcWJGSM1J4?-DwgpAsqu+5H!s3G5f&6+jq!w4Ev~jJo?%s@xiH((s_oZ4Eze$r z*Yr1pjJ?HH=~-NERol<=Ndar4JZ#!-B;|c!6o}=aqt0skX}K8o&g6a59p!REfe5TL zy*W$W;aQKHsfKYS0O>8c#liH(KNajNn%F!Io4o}mx*;5>x!5QxtSAXiY#ekDWvrsA z%2|RBW*1j!>;57{#uKa z)U>W9O6lPTxITqu%PdG{``5bmT%m{6k;kg+1+~70NQaabl5$r=ld>0YlMrA>B;76} zEN^!J_yT-V3g?hf$k|!CAykPHSJV4Mbe7YckczYI$H0%Yy$pZbkQ~RRGZ9~vg5ri< z$c(T(18hTHHSLwFZ9h3+6kfn1@ATzqB5Leq)PWQ?GiNU%2t5KJvHIaiTG6G=TJ7Y8 zOT;RM7?p?VOw|TFy6Clp~13g98H@aInnYkY!QJ`>~+Xs58S{qz%}q;t{gL* zFXL^D#*6BY-^>J*U}uCB0RCN*W|Kk@kW?hd{iWDT2u}jMyOZgyMXS z-6+6(G|L_@EaMP-oh+k^%voZ1^)PlW(Y8_1*+$oR&LHM)^2@#Xp+a{#Oi9_7dTB9- z>=wQcq-oGVud48X!3*`Y!ka%Ozp~I>0hxM^=|ylJVMw7Y5811)7vDKw=NCG(Z9Slu z(~j|1Z})q(z6urME~FulSnIXFtP2$KTUUocD*1apabwlF_$-j|Qw}r=i~VuvJwj&2 z^PB*rpev#01h*|TLyyv0P1tODz-)TbZ0a(b_S#pX`UfST=@EF`k)oA|v)FsCla4=-Kin(U} z<7Kjv&$5z<=p)tkX>1Lm_|xIU~?VnIBRoFk^Z;kzH zUdcqX*S4fFt*4~A9m%3d<|r!DIwbNbW2>b}515$L-_|rlU zFk{1#w)~8`T4k!Ut$!dA)O&hdy_i4ZP!-hf);|edL6aKt0jbI2&=v|#={lx=IQ?M$ zN7F|{U`%Q&IEyQ5{-!D2k~wFVI_5MQ{hrceQhH2EkBRG7l@&*_VDISeSsUbm!hDrO z>T&wa@N(pA%5>&BllkcjMkmu4nxWq+5!<*}B!RKDFe1DqEc3#i7J^>WVS!)P%WMeb z!`bIGKhBLU_HgGydle5Lu%zca1^V@Ab?>9x2+&sxUOqGsL$k^DFYIgGoy~?HoD!J< z5$hR2@x?O2>bTF$%2vC#;kRq*l40yWqwSH=__Prkno}km?j>Gi5q~I*?vva(gWLi% z&bxM8TCN<9xOruY%4ExNHV@0r78Oa+Z68^ED8uqph|jc_n?HvP1m`C1Q6*>0i`@Oe zVe^|FwzxH?++W!ZO^RK9g!VWR*va@*szP|o+eB6<;^r27dTJVeH|$d(W>U;v_|%A8 z=$*`poVX7DA~6;{B2)FhWU8;C-YlBBtl6Z;CPG$8uSvPo~E=fY-3a5^}VWTTMmB#c-+Ix}~ zJ;HHhLduNz9C}B8g2()uBb+(R7BE*lg_koVxkE3Kp+yI{K~4yt_^|CIV)YAi7I6Xj z?7DK15euNwKdQ`+37dj_H9(r|gvufK82&Ay1i`9RRg34)rV)(uv5#Kjl?^ue{FZPh z#l67E*5B)cAO|La0-^G4Qm?D{Gje|9q$H-lk>8#FwtIJy?&gr@UMlF<=f~YUy}#h~ zr)3jCbKh}HgOz;{!h~GkmERj5%>K%HTJo1+fRjx5yIVhYzIW@L2eEs1es}9xCk|rp zu*9e($Mg5B-Z!E3v=hGv-BCBfGb6!1fBEYr!9E5d`om@9kc@ZpNl0PKm##>1h_tW}r)-T!HT%>8Z_T1Gj6wTZ0kDPf6)i__ z2~*}@0UT0?1Sw{>V=8vR>@chZ|MnLwPkY$eNbcQXyP}vg?CiwQNGZhaC1-+fHy$kL z!otvKi%ELD*i-Y;n5yt$$%m~8<26H7^PsA*W>Uy!Sq`7Yv$;T_Ou-IFcv>c5cTwz# z?nxgUXCwjyVWk3-z5t7Y`{X(%=mls$)%J}z|oVbc23>o4xg8}S7A+{foB`Rtmxej+?&ugZD4TrW0) zQHkYng;p%Z+wJuDc~;jDPE0;hKGh8nA7FLEz)o%dkmgFVJ&^1C-gD`~*T%6W%JL_g z=c_CwOm27>MHgz!aHhr#b2bLwXt-2(7I-R~+pF=xtH1{(KKcP*3M&IK9#1}|?;h?{ zc+ZW$9HYCn4s|h)W3MN3?hwp{03QZlIsuE@A+s&#iAeLT@z?+j1%S2*(tA-4<< zX%mf)r=tJ(@deR5YMy4_;O-?RnqkDnU?b5u!XEF?*<)QTdz`wH^l;r*rCVV(gMH0@ z}6#jln6PAzJ3#SvcIxR3tD|``i>(Ow+2}U16uULJ+R9e?o#lttXnl zuJrEl?x8qoZm50CV2LH$U59jRLfWOD^V00X{s$k(zHtOCICqst4sz!OhbGR;Q2Yi z3{&Uu;6i>J~)Boha|{FH-bS0Cnq&W^Cjv`&EO@NPz&f=&})C|jNF0&)cHM_ zz`)w+S9Sg|?>VSjV?&G!`U2Qnw0Ax94Tu`x`=VtkB5p1oS9S2vz{xkNE_r!+ANO&; zJQWDdpn?yk0@RR&r-jvBbIc_?TgTm@9H1sKwq^fvEm!EU)znp2_t;~Psi;_3Zu>hB z19_I0^kKz%e^KR7bRuxc^xfiV`t!W(A_Fxt9R?@5{Sf#AhdxHc{m3D$7o5#(4w9P*gZV>1^RnNW|h++ z5~~%7Ltp2mKP>Ot^!;3)67#X~ZkpwrE07%Sv?}{?PvYOP*{fj?Y(d2jy_@V(hZ$pZfo@ zPg!$Sc_DKu;?%QcEp*FMXc^IQHlIwfi!b&rUZMOu%hKKba^u$@5B4_(Sl9gil3;%m zFdVSPaW;g}?KPua!DuhKP+)KNQ@67@qFn%m{@5EDjQ{}PH4$q7Tf35g29g1z!uMLZ zY%deayCD$rc7kF7(BJl$L~2WSY*+MQjBoichj$#sb^p9xWRL*n+b3WI=gm5Cl7vF+ zv7;i^Xd$7-Tls_UCqWEuNc`1*>3Np`{A_jU&!XYhzH|bCD2nx#SP9u>64o zB7fjMcF$God~Bix6_F`nE%@{fZAK7rKa6nBZwWJ128IKp>uc;kZidL<RF} z?7ds1-oc6HHRcMB{mRoG(NhsH$3RN}y>19aLM1})Mk)wUOw&t>IX^Y_y0<8tBB2bk z3ykJvw={iD2)X7WnYkN4W)upRoNY|i;^?!kNqn( zG3)z}OPt_8{@8bkDhg#aWU2BwUlAU3(?owKqr*i~`3$4Q>xxdTu|MY&ko;eh&a}*u z1z3keXc?(Fo*lzWR%N#kLPXJ9Ep+E;GewnXZ?1H=VR}_!-7I}f5tKwE3Y)l}Li131 zmLt__?eUhGt_A_CIn1NE{{CGj7Z0yL_Ip;JHes7jqa~|yco8O!5&8{SB})SM0cln|ry(*aK1dFiywvmwVmIeKnD3Jiub2*191L)45`$R(*)o zTCB*%y^Q+2N5Qavbz)TZc`dF|Y1(0U* zIwg-TgA)kt3PD0ZKS0N_7I39zd~wwC)t=ngi55HM+0AImMvq5GYA_s{=K)lRujCN2 zy51_Vz297=?~&l!O&6kPx+e^{cPSh+&!u7eizwT1+R12i=VG_Z_(l%bgE!h+)Rf(H ziF!M~J{z600V-*CDj}P=-FlyUCdoJvNRFnV+X(O9yJqO6__O?`DJpolb1K`MXjAV*UV7)?jXRGnXUB$eaKbAbDK83o$Bvs|H zYQ-NHv>th^R{+)xalYUKRjYMbc)E)Oa0U0SN4&ueyI&XKw{_X>;rM$V_lkf}6ASVL&s4pJ~&b(Z%=^?qs%KnxM-Tek%3jmP#|@kmjbaXnKEK00MEJmjJ*}|hEHdc zXjlN7>-STp?&xEzhtV|Tisq^fve~+e6D_#Q91Y2~lDNSysV#bo?a43C*;JfpFQM8q z`AoqU$()KA(J@ky6BD7AM-Zh+?2y6?DQw%iM`!dXDiS-SwA|@-pN_}2HKQY5>d^7K zG=eclItc<{es4Aj)?Bz4XdD0|xuR1d-nv~a{8Jwvdt$IOe?^Y8YGZjFAvCF!t);sf z@d_=6>&CuCx8;j4joD%eNxCiZ^PRTFU<6u(CbHPNXD2P0*Jq15?_8h@UTS)in(_2o3A@Y}_OmEjPOw=2WR| zh-9Jt+u~KNvKWKY)Si52ez%8wXdb$Cw6#UnYY|{mIzTd4{!(q$Druw3Q36e=35zhN za!f{YA(q<9` zv+f*d_gp;J_&B}!BZTQrTWdX!@-IO>CAHLzQzfCh)k9@oFNmqpH4_sFB{zbV>wO_~ z2N8Omo2{+~>lFGh_c?a+E1Q-i*!FDq_>p4_G~zSVYxG>U zRBd8Fu1)15?Vc%WlfDUXvrD!qblHnv^Lu22CMziR%RO?B9OGoU;_>IiIQNLo!=iHE z7tgE^x<;;gM&APeF+f4^{>RiaQib&&!_29Ck5Y_7-t>JV$Mi z)iyWkp>6n~4oi>hD@V9wlY5AbDT`W{ZGH1AuvWf#qj`HR7FJtjD)V=5VlL)Qoyp=& zZ5)gQZc?pM*(T4pcF#3s!H*jMq)KO06s0wB$v6q=?VbzCoz?ikpl?&j{M6U+MfSzq zVq#!BIaF2@L#lV=t-$WP@78^3{4=Mp#_lzmFQ&(u}3Qb+1sVfx!(sQ%SRE1`$LQ_|0CM#T& zv>_W2dno!=1Ki`FEcNePFi`OFF7O7|$q(6aE6s7@#+3`V;AIFa6@5R#%Y5ie{GADA zMb|Fap)MqxcTSPKXUg5j%ruyJLfJmu*uiB_bIC-1qrwL3kIG&$P z^V4yhv=6j)5-Is1?Wzc&B0;ii4`Gj0b-FZ1U`hc8gJwo6u0H2_FY0 zPDQp^kz-Z_%!(|tUDmRvI1lMLr-U$?e6Vtbi#x&*LIr*i^9Ct>iFk)ahp=E@Majyd zIoCTb6sDx|B1r>V!Tmc>q0EzJ)EA6qwM=i!2-XMI<&;ERD~wZt#$IDLVm>XM+=0+x zU)D1L=5Y)bPV3P9^kfXJ8l@JP58cKQvpU7@lKIePezo`FY;)^f64P;?#JJGL7L#Ya zqN#3L?Go2EH4Iv(Hc!2UKc>|vaSObLs-PX@r?;8bdZ{3`Mt-+8NOD=ADvULZSeryW zEE(-zOdxlMj@T%3mFSRCNuzZ_?dgBim*4s?9+G~95kowIm*EZTM512Js_N#ef@T)xAtjU3#@MiPnFp(!({i4GZ$D$mL+&%pxzwa1u(bzb*10Ku6HJ^n{O z^u~XWSrRVY%!6hP%DeuyOSt>sVQ!VV4bIJLxxl|!jJ^SK2j}Mc?@5=io@VSrc>J4R z6>)yOD8WMwlb(KqEw4UOr$w<>&wEVP1?Ls+wE=ZQj%pjfjQP*JAqxuti>mFPe?<1R zUUvaHshKx;62FjHmTo0<6Hez!rE^tz_P?QDr3{(&&oIXr>%xeHD=oTAb?7$Qu9;8O z+ls0@jn}n!irjaW`hQjW_u7Vz8I!*7ITMpW{Fyas5J+v6lpwZ24hDB4T@bwgnhI)Z z9&b7UHoLr}ysGnG)CbWwGvL#%^{#^bU^Amk;P;vDrER z!)*?MqMcYW1lfCp0#-~mLfB5{ch@22%Iwff(jiOh9(Fc1mCK5ta(y4M+l+&VCa^Hm zWVju&P2J9R(#Ipyl9`tEsdAP^TWn`_wmv|-{T-fMlwJs`PU#Gl%1F1h#^RY-PAHyyi$aAr(85ME^JitMZZgr=VEzS5JHsjD$MWl3C(7YDbl zXM+9r%4u%&1!Il!WgOtknbpAMg8nGoiqrHqr(rirPtqJx&NP>~JJkglNvaF>)2KW< zjhnF}l5lS0=2n}i#tWP-v@C7(I?b!<7=#0`SWv${j)4G}8vAb2zUb5HDk<2_8HuVhKttX@@IV4IO z^sB22mgV{HeOKn)uk`5(mf` zu(x3%RvV_xXBV?% zwMDW+%7|S{)5*J~+72)RYl9?l+P)%_u-5mquAmC*%qV)1nN4n1`HY?lb8Vp5>X0=$ z_SkvaMXwDq0&Z7*X&&c@k6oG${wE@nooy6M-eCa#=e_c(JX_tLCX`zkGJ@R4){|M4 z><7?_wlZU*Ghupatxdk58E#1#=7%lS5*bfPrTOa4w{?w&B zTafV)v;NrZcv2ENpW>I-{tH|e>5jrVF6Hb9U36}YX|3Hi%bTFH8?U*X5{cxEEsZ7g ztC-m-P1ID|^JIoQq*Zr^^g>yW@SADL#eL3R{iQ^5pYP%?;;tOSSxin#wH(8lgx1a< zwQT9kT0j^V`VqA{4)g5Q)kTV}XDS5ndQfItpE;Rk)hSbJc1qZR)9~2hz-v0rsl)*) z?xmu{f9l23z?MB#>>umbE4fPGrBwyk)J zF#ss1USw6C)B)V6fdW_$9hNUoOl*8%v$dbEUp+wBU6!R50H5>b?vfm3IjTbfm`;@6 zt*=OAYFBD=yBQAvErI99_DYh!%JN(VZF?%ZLXC7(=@LedSDuwU#jOc3Y1P;-S1e0T z3G&?~`E>D&0ZwID={}3;dC8WTHb>HR7gc{jBK}@B%!#7sg`nYYW5wZSZp7M6omIB1 zCno)4&$y8Ei2af<78Lo#6rI|tCqhj4VYYxccW+NjhAp{`-4$4gmB>DftnwGyR>u4w)Kz|0G(~S$T4mE^p}a9wR2%a?Not9rmp> zF`Ax>HAbQi4NU5HS}HMqCVfF?MB<~H@jzleBr(R%WJD-X&7q;eCC=2a3ndBHV|u)a z4(V3GzHs$Q6slL6QxemPWy)S+&JPV3J?WGBjqYMBvFbv_P9Y(xbUSS%7s8qB!v`t( zkSw{=N?o1a7sw^(4HQX(7X3oFn%lOGHuS>c!eew{fhComR!4I7J$P-SwC-8w@5~UK zb+qn7eeg>(4YCsc$(+~-8^pnP+|5~dg3`OqdQf(m;5&NHx%CFBp%d$+6KpNL9bA~@ zSx~FuiC?_J3USZlL#`^~R&5*Bv&imwTb6}k^XqX&U$HL&Ze^(kr$V-MBB#xBY7MSUOoI0`IA>*um))pi^D<%g3TLA7w z2>z2kBIzYLHE8ci=(PEeEq~8DV(t{N`EbWa&ze+`JZrKf z-iJABhm@rYKBNokjuo6}jn{H-sk0gS64M!+t}GJ2b?5IMr~IU0r!@|-(ZwE;mW_nB z@kOOOY;{WYW``bkhaSo#Gz*E79m9oi72=J~mf6Ey5HNa*TTko$y{5N}l#?wJ9|$b9 ze|F@YT{Bx>Sa@m{MS{vRy994Hn-FR4g^ym;ZmJ?8APoV)spAaw71LzY`@Uq%P)uQ>8w5nLfzz^78MbZ>L zZlB#LS|x9DoJ71SXVkZ2y^=wz(i~;a?W9jHVqdD&Jae1eSqFfh0nFb*M5Jt)8*kbXnLW;nQ_*G z>G0nx^!rAlycjiH+l-;3V90K{Q(}%3g$CB$#&KV)JeKovVLm^4ApTBz+P+1mundExpt<0k4^P5d04LeTKt6CNMYbv`!z^1x7$Y)Ig zE-3{0?*ff+@7@+%(yNy|eZU8=|QjNamyzvl)Ft1{fO z1jOfjBLk!pli>RsnnDRpy)+ko(~9M0Y2Nu%H|!*Kocja++^l#R6L(#A+S zMm@}Xb9p#!5)SpFYQsD^VpEt(#A1p{W@uv^Ui9hBQNM9$QwXuZcvdXuc^W4wH&SjK8>ifNPM=9~e?A~vjYEg0NQD{hHWMcc4 z`zw$=f0d{m>%)v|C43Y%1@?s(b|(!!B4ielA(M24BpKq#*}Xg1E%WkX!3mj{7ne&7 zt-1y`q|Wim5Esv%%w_Eypi3gP*7uN9Se~wwcz>3TMKNl*5ceFqThgo19*t9mc!hTF z*7KQMi^VL4uE^=xyVPsxu7~YI>|*3C*_?K-1k*XYN9;}!NvY?R%2r}u=4Jo(H!-ri z`Xe{CV&Q(rPmee22SlY|XFn6Rdf4qoJO>w$BQkxs{@RX6??87VQ%d!DXKiuG|s$N z+6#UtAt_T-IUqr4si^X>1f}BOK?zB1MV0*$lx_v%5|YYs?I_D;{Irh`BsH_ljjs^8 z6(en2b=z=c$;L3h@8P$#M|P<=hU)|{aHJYJ1^XY5NTbk;qu=@K2VRL20S


      )mb#1%<{(hhT`jO1N=bn4+d3nxrp7*B-1VnqmZgIVq&<*}~8*W!Mgwm`jN?;Tq zQ9oxX_dZ7mE|J8U+!FUb(E_>mHSb@3=xz-M#B{Q9Cp#<(E;2;ke0CE!Uw>PF@A&rw zS)BJR7Nv&&^}K!br)TDoFvoeDIzxq`XGk#Z473dPDjyT)SYdX?HNZ6ZMBZyhe+V6my7 z6yq1}>Ad0Jxjg3<|K5h)M3&kYd&l6c!5+j2wp-h0=+}u6lS8TwN7hY{mH zBB3pc{g@2eO?&eZcJkBwYSgPUvKDt@cg?5c zG-6f^k_tsWT03Os5I8*cBdMDi-RBGer&~Q@bGr=1zgc=_to5@CtmZ~aEO)=D<6{!| z?VdIwi25irwrrKrs_J}G)1(}4_ZeGnyRU#KraV?UD=URdRR5##w+wUhHd@7aEbC;C za){XaeA5!j*4X;^{j!vp19zAku8_8$ZvRxB+Sl&b&AH9i#I)yw)5ZY+0nBT1{ADRRPVlA?FBo|5J#sh~Phsz|rZ z^+J4`>x;O)tXcY^^vIp@hqG??A2%&MzD{FqN6gBgMlv=g`EyM=H_HZa>FF^yMv%%ARt z(o@?q?X+r^Sy*gdWnO5Oxx*6G(Ft=I+b%FPx#8pYG|K|H)Oy*)EKXiqzKGuD8ybBgm+f4lCK* z7A{y6zIcH#;~gP)!dYx$xIMuvwUw^UkS)qFxO%<}4<-Tr?XOTGsz5Te<&?Db;!ch1 zLnEj4(tFEY*Yb#t36=OF`95V2TDf%(J-5Drhn(iE>l?X9%|JYoeX@sSYKVAb67=vz zEsf{8@r$_A>{yV4H2kRX3-27YS-OU@_*SJ6;$qWVZam+*ei^0y4TA3)R%`V*2KQ+x z*@9Pw@p?)N-9V^VZ0;Tv($ntv4J?o?`lA|qC4b?82%AAb*v1Ozdshv~Kh2fG>D$w> zB$hOoS<6Pllf8RX?zs3nD0OOP)zw8mSzEJH*QI)f9TO3LUE%_X_)P{;;vkU4l#3es zVxl&4m=pZ#J93yCk90uN-}t&z*CF%M#t%rZJrR#uCx$PAr%PwLBcoKyjoenwOD@Sx zPW*x+wn)E_TymQ(j%c_J8}bN!iSmW*fy+e*T6O`OlRP6?-Tbk@$H7y++| z5IQsexbeoWV@BO>lB18?wqHVd)r~8nIw8G+ePlnv;d22MoQIJ)yt7K8Rr6XKrP)tz zdP35}WruiW=@|Kzq>)Qp%+*IGQ^vEN2YgNj_PXp(>xS>>Hj3g#(eA{R)XJXe)QZd7 zb>pUTm+%sEjBnmCPGXBumulm#=Yf6U{!HmuU;qaEE^Dh;LaTSf%WtPwHG@)1UZ89H zX{wqKWq0hh-`pp!I8P|(;#xwL)s4GL_vMPXze6~LJt@w~9Pb2;7n_%VlW-8YqH2rl zu)7Y+9Y*dy*f8nt4xwwTZ%PMT-Nk#9eqv@>|EQ@}k}dvG<%G)@l4b*wmsJwWJ7!PC z&_NP?gImL&<3jb{6CbJz8!%xdyI>m3wZi?FYlU$!*9v2zS-SAs!ccUEM`^}P_>emP z+urfy8NwxW9PbLv&!WiFAydDW8R}k5Vez{KE4&_zyYHZL5XVn=SI;7Nv6qy33_(u`9;LxtQCq2{a_`MNA`jI$Ynk zFzi}{Yr9XHOLwi6-Es&%b4Ni1HFT^!Owh(H!@%5Q-72cuAZBzOc~%JhOdg?4nY2XK zVI0ShV>n3p1_{`1+B-f1%Vq+PsfeM zC1HN-k5P=e&()Y^x|GY`Pxyc)y#r$RdNNgi^ab+)Joy|;GQ?U_`C|A}b;j%g>qxx;~qU(D?GA0Az$hTrfFBfldl$c_;(t?mtsGY z@57e#rQ%>C?2e1zF`9iM?u*`+yw3}nswY2rpC|t2X!~C|eh;~?tE)Slf1SU6aQR#n z9l#z-!WR%UsOCz2{6>blikGIA8%|42<7L{ zPv>Gkc%}j$=IW}FXbW967oCeYomBg1x+9>?k+3`2Ia*3ytpx!|s-(^PWS+W1 zHDMBJSJ|ti^?Ljaa+`LpG~%6c>O#vL&xBMdi7U2q0U_1Gvv)qno1~oASy^45YAvz3!e)mn-18 zr|SyW+}zl5cSge{Dig!6(_oRQ`|OV;mnWBN_ENl-dhcTSt9nU*m4OVVV?>Qi7*I1a zQFvCNaHZI$;@dB3NJ_!)7&`SzsTI3^_FgGnj2w&u#-LLt1f!= z}d6F*~@1NsO|rg(o^P3Fn6}y_4`6Vophi5s4b_Re6yD)j^=(x$ctv_JzV;7_r^S()=b}jc`2)7x&HkAH;OoryiPm zflij(+ASuGLPqxg0D=|2(!7kwxn~;M_aD-bncqZkJ{_aQ31Hlt$0^;~F2}FxfXMak z)?r+_)Wc4@^SxaJCguTk5ZO!ngS4-6x)f3z%wKdnG`YKlbf=v4@ulZ3HWtK5rb94) ziO*iN*vy@&587B?9?>ZlN(T8?7s+t-;W;kF5kl-KRjHbJ1BReVcTElsR+J_==Fjy z?=h_9B+AfN`L$NgWaiD4GEYQVZoEVS6Y8+VgagVHep5b=*(v@@w^Cn6>C3CJ?<^K1 z>y_e*DdwE+l2Cv4=l@R1eNsM(asuR{c!wZaYF+ewJV3X?Sqs!Ed5IO8u?dw^KC1+c;@+gXK9)2j5z*B9D-zAKSSsBrDRpF8ZV zk7Imb2i(vuwMQ5`bMqa%X9k}Vkm{C5-J;anw%GXOxFu|8zp?I^aYb;W z=n%3|91yu`m6vs%=>&rhKGoaHAv`=skxfI!f)lhD?G~NvTI`k8C7j`LRqK(6jzoA2 z_Lt7}8Y{nfE{}*Sovm)0;Paywv6`i%;fU)P3RiN#2{l~GpV_4zqv(j5kqOs3{|z*< zM$tj8UXyNbLT__ad^4Ao=JDoSO&G_7IHC;Mcy@Ef1jZnGL!GCmWPp3a* z@Ss*ZsNjh4u#%%BUff9nug@8+9~0_gx%+d5rLCmbX0Q;DaO2gqBJ?cW^!{T8_1C(c za-E_1{g_sSr)^(N6KVr-st@_mvq~( zMDF~TP5ybZ*WN$*!+qY-`;auccUhgkeR)t#FGL){qGy{k^=bq9F8p(F|F#R{#N*Kf zrT2k3y~zBIEJ4ChdIRVJ*$K(H?%t0f(j#Tj+BR9oZey*)^-#AK6t_<`@6Tl$>%CSw zyr5Ug;}6(tI;diLuQ_{AzR)WRom$iNC(f*Cm?KhkV=Q4XV!bh{SE&ACSc7_4&JWsj zyJd~Pb{3=xn10Qga|SVm*hgh-I^nIksU-NYqn6|4yGrqt^D(LMd>#KKPtN1!W zkW8pdZN5sMKO{SEY9Z=Pncz!FexX7|P@iK!}o_n+y+cLez(t7IE_WQxC@p5jYo8_m(%NOj0muN%e)GS3KlhNpVp zvTaUZ)UAcGDF{0UMgj-rFdc%GfXaCo*8b&C3FrWYh0;=KrEj^{!G8b1(lmxY@C)n* zmSvQZFMg8ozh@CIQZuDnV`+>PjLQn@<&(Vw8GEZdbb&DS^39j7Ut+SuG}Or9>8r;G za6t8N6(#mkAN#&}A||-3Z5rtjge8Uah=6crk1QQNj|2b((`W#cQ!kDF9RNIo{lOq( zWFW?hE~dc`#y4)!<1$?`q`fvYTHVB~y5PwV+tMx#?zrt%g{57l^dM9C4 zsaAP_G^3~&=zmM)u2Y@GTA$70+}q=iH!fAdqfi{}Q(c{GrH0RA9te)K_6Q}1_~KYG z^zp*?9jY(NK3bRFN1BFWBfWPE@qXZF8F<7M7aZ^JUiLG(*!vIfqY?+q;5tnu-X@RE zq7rYCl7<1H5(oY}D)INjR3bT6CIlY&U@B1vusb*Lr~bLfTp_}CLDN}_d{+K}vj_$~ zw&A1p!_TbTWjlHwPLYPkpy|#c4PT=`NW)k7WoMjC8XjRi(xl-=I^|?jaj3&}&I_74 z)IsQ|n<5aKWaAAJh(Z=RRLF#p8*&7J*fMgXj35y2PwkT5{pXnz3jiH7tXx{6xA*q^ zcW3%vGe3jOPl_zOS1?Q9kr8C!iea+w?*I2>;n|~bAowpK3*Y>|Ocu_2>&$`-lZ79! z7)H^HK*j%@Ed1}5L&$~?S&qLAS$Ov3fA|&~0)*a279P>3*n7#sedql(2k_-7vQVrR zg)Ef7A0x=ZeoYpBib7|HT_cbGXJla`W*TWye*{@Lj~3Yz)f>oiE_MgRz{e@&< ze~MP=*JR;u+4oM{`heHig;U}z%21=0|LerzKctAm&%cK_Obv1bT{cYminVx}w|Ou1 zJ93!Y|15c^X?yD#XEM^{p*Xz1UEE_$cZl%6xFffoMTYB+OqcWam1U`pdOSOaA?CbIOhy)xSe%- zFKzg5a-gMnm9uHXwa$}XQ+_|3HvA(tK#U5s>c~b$(1x1!)Pj)_JUDellOqXP^S2_%ACmzj+qNE(Ix$9rLuP zH{o}vGEx%ED$vpoMl$;)>`>;<%1cw8xgt@R_FiGmJXlpji(!!yzfTlAMMS{}k$1r3 zAs^fnvj3Gp<}~g|L6588Q^JguW^O-2xUa?VzynwL_BT~8` zclqoO8T$>W0se}y4-b4#YT%E4=)fNx=2_<}XW-;mCmg=e-l8$mc_@w6LYA*|gNUY$ zwW81#ZAYV@wYrYDxESN+Kch+hOrOlp1wK~LL! zVJ7bLf!yAoF$cpl^JIEv9#758he1UFp!8SFj6lWIv!P*wbpzuF`dzxG=z5Er|s*aI*@9RYo21KB>hz=38zmY`j zm;;c2>a(PL_Mb z*R1h+RH;~cU4@&7dJTQ7bz_sd?##9gzQCTn;HR_%N+*yL8y1uL!*o~7RicBvzob9f zX-!=A1{yzs8qj%r$|fcIUN_LQjRvX*@bfF3@-Q!AN6x^|q3%KrHQ2oCL2pa-p~YtP zYq$|4Zr1(!=m$2mRvHQp&<$FlMoaz6Xwr~eqR(X)y@F$$s?C*|*w0LqrDoz?^y{j- zjk;1sjQPk@anSWx5&N7fdirlN`83O zFZ_ETV4>}Tj4dCDYL(VD%K%8CzGNacv29NfOW2A8QC0uyQYn-RaHn_h5a8 zB{*ZYLYe;R{^b><^yskizlLrBt?Jm4HZ1TK*cxxs3oL6(gerSz3zOTW0?#2jwQ^B6 zdrPyT7qA{Jfg>!*Z&mOJO(!N38lYh)@uQMmoq?W=X><1lJl4*b*)F7VfTjMi%$_$hZUJPUpRh0A{j{45#?KQmM6b8K$_-##o^0h(>Z z_`6=JYCQ4nEIPX8 zCQyb}Yj!tNhP{X7-K4NK8t_jWibyWUiSw*!L*g;{1AHj99%4i*f&!B>z)=U~YK>hsmw zW9U8Ztbzx2f&D6p>In85fK)ZTub6kd;!cu)DC!mb^%44xm8;RZQh-XDJOt!KU(n1^0k$h>7R*8&{!4FN&c!l=aH$yZWYXFKSgHx|S$_P#!iA`mF_OO9jpR=%O z-gMoaq24v=-4-2C*EZhdEU?C-^6EP0Rm`EP2gyv&s(QhIET$m7#78;U*I zu+C#U13Tol6VgJ5ztwngt;iYpUl zBGWig1E*^2`FxS!I%)e;v7S_OeCVt%!%^1#OOEc0P$lZ@Youo>b@r&(9Cv2oQfnF< zrJH1#nHYR2;$e~f&%|qZPHybdjM(3MQZYlZwj;VFz>uxVd<5b9Om2oX%R?;0O9}7l zGiQ0V#Z6P6kj5kZ%$&^AwWfAVfn*F{k#hbIJV7{pbAuaV!#;TkgsuHbKmlXnbTHJ} zj(Rs4z5=7SaK`sS-}|1upGvXs#`Zs6LUi4f` z`#Oc}9|-e7N;V#02K3@i?Y+Vv#hPJFBh4kXpNiA{kR7CYy7x||jnu2gib^Wuol^Yn z&&2r3+%7|Z=;jQgxkCWcnIO!W-Kn{XpZu+9iFXLWOkc8BY@*Jfxj`IL{2OEzjMiOr zBr% zl9{zjWhF74((g-=I0GeTJnWWh^20yuh7ecU^XAr=?cIl=k$4k1-Dr4(rRXJ_5%E#P zQ%Dj`sO{20Q@h=$F=U<5-hkSm=l(Iq^NvAJ;=GjUj&^*});p7aWx2~B-5hTkCzA)! z_n&t%c_eZrjg9l|Gu2b${S^n(->K~~J)q9n>$_DZ!_Hug$raDI*#M;BZhX_}nBxzm zEa|RVFHSb46C!u2%=AHT$;yC#d`|;Xx_2~woy@fM2vWz@pli1?T4!XWFdJ*#KA^Hp z_fPi`p+&N2*85T)b3WtD#RP&^#%w~P$fuq8iN+k@65F#61i;HADY1T1r!>rH@R4Z! zzrYSlZ-P9veE|4OMmBfbyD;iHoPV;s4iJA!KmE9~MPkdac8cH_@ohmCx^CsioZTRG zkLcJHvThQ);&yxByL{HMc#~M3VvUa{$X-MXuLf7&$=HqmM9#JL>8R^p zU)C4SSQvXJv+;{qHv$#+YZ1G(4U5f$PXY*Vz8$O=JuUIcuN9`kwmpn0?TyfkYzy7AbOPK9Z(u4I>0?t`QpK*|fIW)ko;A2QY) zpabeuQ!*n9ySWRon`=lVobl>}Gu~l~xmw3!4$qZTdKX2AKx z?9&L2?wEbrW8i4>&2Nik&o~>i%%!d*F&yx1&1YfCMGdu5jOB)JeB2}^bE_Nh>4(~C z6HliJYou!89PZahy`^H!rLV}VHe|G3CBT>re{OzhxpygYFmJe^79Vr_AMobXr2l=pcfQ+Iw89UYxm#`P_prBQBf@g%+| zKwqz><(BL(p61gAXpgsxO86%K98ZLW9V~q?FEUw@?oJa+lPt4LekRaJ`%-D}oP^Bb zG;v@l^DJe$CzN>-qs_`ZF|mmkh^00|sPvg%&g1K`zyQ{D)n21$pIMoU{-yOYrmGm% zH{hf8V`2Ba_^Ip=0AhdYfM(YvCWnSKIU&24F~G5TSK~jxCfzrW#6wo@I)9-5fiVt1 z`n&JH31KAw_t2NKXU4jQrWSW$O71_k?36XlWs)PV!K+=gy;<8HTl$Sgq6m;-Al{pG z{D+E%L7)E=Mlq;mM(uR#3KhJ1ObC-;u2H)yTx8VlCjduYM#chXT0a>V6U?tNAD`T( zuMkYtw;M&>;t)fcPK+3R8aVjP79Tg@Q3KF1V^O<^O%@712p&BgI4YKzF2XV#u0M(~ zX2a2KLaT?}75+hE?x5N!G+Oa~nUh>|rED~rkgbAD+sx<1Saa&Iu`gs#jik)^XA!k# zSgQqzsE6eS>lJggT*Ts&1>^TRySz%QjZ0p&FU6KcX*O5OFu+Ts-hfum{3zw$lsu`> zz#gJ7bR0M$(L0h`L>gwy?MhzP6c-|@(tenDlh#VvgCVQJ9lA?UqkXSa2$ew=7dgUH z<<*qeP$IRRn$w+{Ot94CgQ0Md{YeVRaImn}uD%3RB1~DzC&|kmxU>fGGeoAx-bp>7 zn4&rJ?00dMu2Zi-{ro01M%))vhcIUzb^NiDB)V3+ji+BKew(o6%X4Gzcp3~+Q53&I zfaN8ih^dK-t%^Z^esvOGbo7<%hyK363_OZFo#0w1 zKMFKQsE(0N*_xkctkI@sh5$qcn;jzvARw?pa@R~`vM^SDgwZ^z=iXzNk@yFiSr&UP zPp!ZcR9L5z7(Z%%3U9%bEi|c7;8@m)LHC1`AkfFreqaT=a>g&8SSmOC>hG92Q!xNJ ztOAeAmy*|=`P8p;!b|Di>xX>RBJEgubu<( z+^TPtkF_q%QpW*mkNrruKuY3Y6wcL|AK_y{M|3(tcsD)9Ogc1#086d?WBJ5#Uq&6I zIlh!3HQC;<7yA4GpV-*{ap58d7y~%uuxJXOu_oTAOI*R7JxL-6%9e@{SDthxE;4|) zlMlG<>-X>(1bn0d#tHvgTEZiUJuF9iVvwVqU5pEKcvPL_y|BtW+O6L#1D|^R@kQc3 znx#LiJs3)XHbz!hasuAVoXn*!1wfgE=F|hRti$q&Od4xa35qIqL1srWS!NyKs{nHk3ocN=hzLf$$0eXmMMa`a)SK;g=r)$>o zapoP{hPcb?y&1Glruw^xRFq*C&>Nko%WTMlv|CZgL!S6D?n(kYwRYW0OmDSMgc4*q zIF84ipi`AqT;>)xmRS7sRCe5&<5X75p7p5N&*Dbne+kiz@kl!s?7S<$zLDqt+0S~6 zW-ZWiKP$=9?Fy^hMR=@+IY^W&@58FvE}ak^T>+gu)!(t~IKu8GcnWBP%PjYHcN;+# zSv1`-t$EtMSHk3E>MiAUo&1GV1wba>U2lJ*ci-(2_~j{?zmLE+xx8ZvN!e0TB(nb{gk!kG6l><{4}|9TF0@G z?w;|id&En%=~poRGTqPE&+lP!tD$sxFU$JUY4eVjA^3#6-X9B=iK_!hRf;=jB0%!T zS?<}07O{-)6KN9iYlJwR#etsED00L8i*`-oDUwTD!!Owy@h4yqT4eAG*fZ&ka{rXjZAf?t zcDC$p$bE4|i!4M+>e^ZAjfvY~ATN3oOFC_AcNgsBu^( z7?_+0=9k=49pu2Gi}+=#$1HR6%%{j!#myMY9XBBnb7CLOh<(O`XWB51Ar+?bq1NeQ zz%DcZ=6EhfD+D%WZp+D(bRBoT>ayEYQD~ z&xBl^->pqcE}sf|PNI7zDq z55xaC=LF|Wkmq*5R5;U3R3K+amDrun zK~20M!8p8%EN2{bAsj}{hPIGH>H#cjw?pSa;ic%i)k7VB>w zE(+3#3BetVH)L<;Xgd_x@l%<#aNZ%;;fvHL!WF6<9mn$_hIYuMX@(urdwjC43%d z0JNv+9esV3WR5<{@qYY=O@V$XV)oJJB#HAJI7))O=j?OoscL{!a`zr_p0h$PIFzzg z?$!i$dNF$b>|(qu!+GIvx){>r@M0Vqxfm~e*kaHLy%ucxJuvI@ zN6fmhY9)w^c`G_IUrZ5m#Vn;JE@bz`E#@NbND3Ss`ob^Fk8Zkr8u(x<+Jr4n5r>bdXCt~Oc#*l8s5&vs!srW z083M+<}=w@O*>N@CxmQM2)HIG8H;m)PIXF(* zohZTr!Ev&!_JQNt*tylIZN>F`cN%|k49sr_$I0FX{|flq2hp`K_Ha>6tspqUG;6db zY!}SXdk~xPjW*aHhxz$&EBMVh)M9-;sC$ed2IXu>q4&WMG7I0TO`tVC8SUmSA%?E;u1MC9L%}HD-$<}Wr05?_>%@!N=uj=m}{g!trA&- zxl;ZvCz95=m(2BdH9l1)Nd4>!cXl- z(sV0LGcR71|8+dJ`9MrQz({5k%4u<1A!pVEBs#C@h>>|n{s>bWohcRNoBEwp-OuT| zR}|XMQdcU-w})Gb6nZRg3%55G+Fx@T;~oVb4y(0g{#T6FFGJ9ukwz3i!*g`wu^;r@ zBJqK}2W;dJgAjs&T;WiCLWTuUT^|YAw@DaG{L3+O!NFWb`$U$k-W4B^UmbWyb&xoH z@W5aVQP~5z$tmmX8E`71E2$$4ACmBdtGK5^(sA>qc0=#;M+d|Wy)R_{oirWo6Bc>@qiM>~{ zf3f+Tjx@N~e8f6U$uvJ1TWzIZQceRp0=TyOSuKo^Ze82`SQ0+Y_(iL3z_if1CS#|P z(espkpxmn#n?KRddPVpXYbeZ!%u+Y5Rhy+pwY6%>O5%g)9ij;eM()>JMd^__p%B>} zscx**dqj7vw^xJsDiJ069&)y29scXJ*&7dQH*t62yijt=THvQyf(P1@KzdZwH*8U- z#lssUP#~yL$NV!^Hc6v8QhDja@~vpS6N6m2*E&6NA}f}*=#J>&LPWaP#YT>%tD)a`x+9!dS4k9CWExXNF8g(! zi)=qnWZl6-BFZCpnU>Isx>J;{5AbVF*+g(mG$t4a5dO8JVe&mY^PoECA+8y;e~SN) zM7*~N&VlHHz*f09%41q~h-9>w_aA`b76XeR+^#qGie;y$w2Jsu6U4CL7LwNDQq`w! zT&JeA)YhI2QM*9MDWDQS!c4<~BFrDKkZ^AUCZ-AE(l8{!$UXvZD$=*U^3p8geV0js zK;p8ryUY1LdWrs9&3aqCO|rI`;)}Mg^oGck(yzE9SC(EFDK1^$j(l92Oz8zi&#Sb{ z8DCx9JoFy=f+=*79`8`BJrCt#v`y99#cvZWEpH(a*7z{7B>I_R>}EbiPp}Lrbw3-q z!kMt-lxN9-E0eYY%Pc)R0e6A-c_ohubi>c0%%h*x|_1LA^VA+(N6S`{W!mb2}FXHR@cS) zW=nWu!XN~4iBO*ka(HcQ@PdZyaMq#(c>hg=VmUfGtc$owmj-S4Xo=W)S`q;tA>xsw$N>b=s*s0746@umWVzw88;(x(NArwU$txQR_9r==OQV2eA5ys4 zfg`MA;3wet*r_p%lMu;}|C_iUWL)0kYV&tBjN^O|DGdf`xe0_Gxe^qc?8KQQ-P=Xf zcm!W-It2wZyc}y7$cT6m`Rw5c0kjkIV!z3m7CYs-@1nZ{L;pGr7AjLjz%%039B?R` zgq(-FhaWAFNA0?N+Q}12Uk$qATmrDWY0n>z+%g=h!waI4jl0}A2LnH0H4oQ6CnVc* zOFxQ?iE{~{!i){s0^MOhNVsGHTN!R2mTH(__W04&w33q;8n;VT>miV$*qG5F@%ow1 zJ!XCGvYSXKAT3V$mdS}2?e_0A-QQx$CEysR9a5@;{!ZWm8IAW@ElKM$y${C1N)OJ#QWD)dUoqb6gT#F`NCpxTa|&NSBiyDT>85&8wh zw#f~#!-7ySzHvfjiA=V7fLX>8u=*(IwVsr8fkCVK$UFowf;%R73zJt-U1N{b;S-W& zIbyHS3XELjo3eJn9#%7WL~A610;e=7D9BUcKfMec9P5fxE22uV{|uuXfy|jwhJyog zGE6>q8m*saVH4*QGVNUT5_8nx+t+*ihv)8EEE+s-tYL`EfQ=W(E)NVQr);uYfF;Zd zPLg0%GVJo+bPY&@#61fs3~2*>a{jJ+FSbOcI}%}*Ip~rJ^H+P9Z68*(#rkeMiyE@yQ5Tb0Xp;9|S>Gj2S@hsD-gpB0M?uKHwd7)P!(NoUXvZD`Se)}yWO6LAtuv z)o601CB;RU&hG?KCwmKp!I%&nv}dEY0ANOe14N28NU3Bq9X_me${JCRghyEow!|?f zYL!PaK{a@-s4aq(GkJnzeT7bdGl`J&bJ0mwrI=j%I(BL}!`kYGatRlqe66tyrHIQx zfMSI#pH_XAv>gfz4vWOXqV`M+#n5vdvL({5%E@-bO1#Y4%gelE1rV)OxT_9-M|gyg zE!l#Ig=qzb4u40Ofs|4d#n%sb!l2hmJ-`p9YOPe@=ou@N?!eeMF)67alC=q|x_CsD zF8+ytYkm-3al%@eO@vcX&uC3TCe9&U$k-sNC*N4iHT0=}21y{Iy{F8br^e_olrx9r zm-nB~SM=!}Upktko+eXLSC=evJGw4OVqQZ8J@^FUT}YvpA43Xh89kP4bi!KM zO@C_4QTAhq&Qdxj#K>fLWjmI%l}Q7d!JOM(vMZcfX}L9;W9M_2#M&kqPw#|d3fWiE zFjIms?KaNVe##ICTlw3>&g5pc^$iI1QKxkfU&QV2cGn?)X=~l`vyYcs)jpvG7J?g5~`XLEQIkc=T$%Je=`Q9s5_I3`!M;`lpm%pdpiwtwgMinnPrcV2Qb=F70Rpr+F6mXEEqpBH^E zJv)z2>b^J7cYt+gU=UP8NV9zVo=xnFz@S8ycF?8B-B*uV(H6bJ*ixPYNTy5{xf`X; z7_*EmbF#5;q`;lBd`vt@s8fi2>}1_yA=&b2pgHkbV{1)T)z3vgQ0qS+wu;_rF``PG zqfHM3-eHp|FJT!xDu)*ZOJTF3S*DEpOX*JB7n|Sl%AS!?7JRMxu2Zlt|xc0v;j+5~bM0r@;3d(!WLB^{7Y1SX3XCMID;;kB;-;$czHbYqcA@UTES7~iGTuj2{O z_DX8uHR59p!F&e>XT^?Ws@=q%+;_^=wN11D{;uVtPVS$yFQph0e!_FWMzcWY-abjt7s$f|U+i6&{#Ca!B5+v;z5#v>VMf{Dd10>l%y+~l-sL#qB zZ$^(;`R750R^rTL|KJC}gHV*-TZBGYBSBwi0d1(whg_Yvh#gk2&(&EILYQ>O{)(l*mm6x6*H+o* z4c}j`JAJe^IVH2oP6`&$)y}23HaWS<78!spiY{ay>hO$A2p~hb6zn0aaBp6v{SD_n ze#A4jUut13+!l(z;jtT>2V?sQ)~E}9)^q+w$5qQjho|9Q?ebQmeZBtz-a`PC*?1+Kt}rfSV5`WY&;Ee7;UX|H zeTCY{r>mB`DO6KqKY?*FlL-q{-6OKxzo!LeMZJCi)0KL{AhpR|`vGD><+{lIaz|4p z3?E*>uHCSS^+!lch5MC@Bh8LA6lGZMl}sVKB66=fSp4he{TxgmK2iV%GqD{$f;YHt z4OOK^TWh)3rANyFmnXN3*7-S-%x#t_gH7kf-hYz)>E6)x5+%PzSm57hSR#|8DS~Ye z;Z2`|LtsWS@o_c#TSH{*3FJ}cR-VK;mitj@HW?u+YxNE}qj^Cl5Dy(=1;$Uz=8+7- zI&uX+xB>|osK7gu^ry?=b-&6Q`FkP}7$@eI6gPrU3M-RSzGZ)bdDTusxyIIgs;lWY zz#TSX{jPoD4_H0ufTZgF80E>P-)i{e(O}7LdY~V|@GLk7-cH>Vyi;$K+W*7MnaP(XYu~&>aIM_4A%?Csj+H z$@lv8)HMeOqXm=XR;sc0Gw24B=!KO9wdRT8{4=Whkm|tLWxCk0UK2-TA{Cgjy8c4fKFhlf^u?lF0e}a6 z5M_%^Uu8=uOYNv!Y+m2;AQ#DK5rDGToXpa-%+IQ{p8;B zUZN%`TG*E@by@aU4HF*TNTZ;$Yzv5I%Z|UgN>vxuaIAv+%)oQ=!#NAd`bKiBHi)Wu z#OJT>UQA}7a;jc{Fa=ALoq++L&*Lt6)eN*UM3!*0Gw=>>M!wb6 z7wgf;2r!7EOB8}vR##sr!?gby`RT#>BVw$7gdUchz#%+v#CZO;YX&$A!PV6|FJh1J z{OpFKIMWzU@8)5{@0rIQ*B&$2(BPzBmG}U{~?Zvxqq;JNRXlg8I}HH7b$%o!U;(2IgnH*Prl|q zx%?hgkIi7A<-RzizbCuo&(Dy-Z2TEqy^*g_)M36;_7z2^b4W;OlyU_ z6wEvD2Nj%RZePcpxR{DvWxJe0Gn)R3wBM8_Mw#2?7eU;)Amic3L}Qkh$R#Cz_mKCB zU#2(vN%k8jjnZR^|0WCP0&64Bkg}mGydes z;l{Ly0@Nw4xaEF0q;y{_cT32=Xyb@>V%uf1$t>_~AwZgCs)^-e>4r((_JrI!v-)(q zx&DaU>V{p-`g^$#lR23}bNvqa+x)mx*sg&=e-J**femXqGuXvbsF=<2Yi@smze3LF z{<|QpvgoC>I?r;i3fYnG&>=k^3>Q)$v+)L$4a=_KxGdEzHCzrlb>494nGKOEn%9$? zWsQ=XWy$S{=tG3IYq%mK@_++1O!a9QhKvzsk*kEBAb6ta(KX#PF1c9-z^xEYPCZL! zz7h{h-?UkwdDI_gxz|>uDT;{>JjnD?97^VHmX?H;hzl*@OsjXZrYKOHZlig>o?FA( zD1^nU(Fv$>a|qrJRq;`E$JU`lzSAVdZk3l9FSf18$kw6cK8T7QnGRzGY(hqCyFd&S z#RhKB_31G=^o6D?x(FD~6A0er&N>o#1^PnI7t;rcF)GAKRF#~v)gH}UscvQq2PI?T)5^P5b#Q7sjX6|` zkPgM&Dbl5*=?}wX21G-LLs@7VqGTU>O+M#*MN>B!RME{h#WiWM&!H>g(aW0%W0B05 zw9m}nsy65eIT5`G;_7^5X~5hd+mrCe?y=5erPo8EI12Qan~!Mt@Na&CJEQf}r>U&> z0|M?{jpb^CY+LoVYF)3vNIOKjW5Z68Ot-NAjvHlLl3S3!_OFa(!24oUKxCo4O79of zdg)5+N3v@&)dsySbdR0wWHdhm9phjYwOKyv7>YFiM0)W0Vf|bDTG)Mf!=sceLaLbk zDCj7q^9g6x*ppb&L(TG(lp>*;!yDvPlGg*BhxF@6fSNj`$A{NTEvJH*KtD@s&WH3K z1l3_cvo*u%4Z&90{F@))g{b?uaYx+0dEM|eHLX_eB6yVqyEYpd#hQ*h2aqp2T~} zaXUz9$vaZ+DSk&kF}Cb^Omz63l4Byti5DN!c{%XhpG~P3{nqTA{!W}bkVvN_Zk||Q zfh2ccGe$^sWS3g9=2O?HMQ$8Y?EgYgRi*mvKZ(FfYm4iU_rXkH9}ZRK?=sfBD0mk! z;9NHcm{sd>b)n8HMxCqEtk9$y4Xz=j>~VFW$lZ~5)DJ}_h3xOrCM*F$Ap0Bg8N?vA z#f3=bajXc~WYNP@Jyoa1#yySeqv8lOX#Y~*ARdvMZQN*;S^<>Y>>kXPwsaV?UqRSH zg4r$be-a5%I}+r|<_QeATfAA=KJ*EVLV9y?$PnWOqjff)IKwx^`n*+Fw;@l?s;MQj zk>q#s{9KT&@LH#v-W2Su+BJeEq*$5*ZEyNdLF1D;io3Q6mY>u=sk``CicLH<>0J;} z$k zmlHS-S&v7(R;&F#;t3COnyL`;F#ExD{qwa8&-kpK)g7z%Tpk=~2__SWgI0H~?vX}( zCl1tBg=mD!%i~($MIsnDZO`RFawY*d09u_XOC&X5zwAV{8$)CiB#mHWr!aH1T2<$5U%;8ANw}vU?J;G30<)4De1n z8e0EO)p^mb;`WmVi}$(+OA~K6*MD;9SpTn<=j>ztE==UEZcq69Cm$Hi4L%py2^$bh zbBkiFl)Z7pIpCth_6774aDxHi&N%^k1k&A6x9`ZR=JsJS}#c1?gMWSA#MAUTpzHl zMM;g-%w|zUyIupONqIuTNUV==X>NX0{%%;oU;7CnUF+%&<`dliHHvi9jK!waN1Yby zA^vhRpl{yguW9{+zonLZ!B{go;;?T93=$=5_M0 zS$bZqE1JzuaedFuA^0TyNGi~f*}O#G%G22QUgod1Yx)#RV0o`Lw?9XTUw=Zam)4BA z`o^@Daf4Zj)x)p3ew+MleuTejy>#2kzsmo*G52+ILqB&|F6R?gNhp&RJzP*~OYGvj>Qm2Tqie2_$w^2B~v#q zx%p+OF*A$6VO)glCE5vc^6F65VukI2e#zL<{3jlQrxWhW3V6c zG2I{K^!Hb;m*T(8%G48;xn8=hgI!2Hr{6|%8H=8pIz3%je(F{p;je3NvRPn=uU)2> zJf@eQl+G)p1qbXkz?W{2dPb{Dq=9;uDZK~PhHh!+71xG!{1)$3+kYZ&>e33eVF@>x z8#eJ*ZD{4Mt0QxRY%u@!7G0)4qhE2>_3Z8a6m^W&TZKqZ+jzgUkOgqC-L^s)cRTpm zvoKzu0P#00F$X>3N>O02=-k{YKBk&mKFZx3Ew8L~^|&~I3J<&mPRp$$BWgGsvE$}L z)Tk@&LdV6~OiuPb?#Vc@UK%x?J}v^Lg8~P8w`GjYNQ#GR?=J4OAc1{NEkS;dtd|qj zTY{*=So1F$Zgj5>s4kYwwEC$R``!`$f{Pj>YO`FjXZZ`qc!krD$T~O6_mi7t6v@rf zdmj5lyMhA3V{gIK1oS{LF%@MyA=sQ;PP`zjkn}V-O=1lAZ)`lO;Q*<>O(!Z`yPbac zPaCaE1WxoA`TCjfLadMYG|t_=)Q9gO3L?uA+fn532G`UNuM9~utw3K*$gVk84n-d~ z&PyTNkEw;2Sma{66+NGk%Qv;!P?GOuHUj;i<^U3~ zgAiBhW;7Z*14l_9pe6sG7i>_0y4P572bZNYJ;sVEE|S-Db8eEN3*1jC=E2N})M?f_ z!*Y>cjxL?=2^Z8EfrD6G$bIZVPe#NQ+k+K`=>3N8-8!$uIQ$p02WT=%m8@`ft^EbY zA`ak<6fkr$%0)8jqjien3vGAmoAF68MvpwggU66wZVq6l?o%rZaI=u4$=1 z-V!`z?-SkC4lcQBTy}sylbqjjVO3VhPWg1()oQ==**zWk7lx6Bm%H3lJUHkcUQ9O1~m5belE2+wf zIwsK>)7>CWQ1zheS4?xXR4py=?=j}=@uOlqh>I2-79#I7!|p-AZZo#j{1&IgZL}1~oj_vi(a$a#;Z**4)Hgmo^MW%d0Td zDtR?jTLV{QpE!pOI_!^6{H)ZRd<1mar3(up<4R}xqUWorx&HEks4>qj5_MQ$sLn(+ zJb1fUo+Yp8(;s>ZDGQ(R?~Gnj+Ay#zFV--a5j`h)jjf;Z8o`KM>Sp}>FqrBeh_&bf#MKGkB5dDReF7Ne8~PDBcjM0H7((?miS^f zXTY7s7wUy}!WPI3P#hW0Ow9(dn4ed<3VyCmBlSWo`ovFGq zUDcNelg2rE$;f)IqTPaz^LIo)qnq<2NcHSFyUy0(IydV&-o!^^r$xkOO8C0{LE3a5TjmU7>haL7%2EbNJtpQzAR`zFdcHiWE3K{+mpBT6rft&K=j_rv9 z@qid>`63s~LM5-s-~lglRD|p;+6zl&Hd$L9NXUS^} zsYXdm@C)GZYwT>+6P)7e5kTk{^ND(Il6obJ=e{s;_*metV6+@^ZC8UwOFt zioSAlwS+4d(I|&vom8oj%y*bH+c`=sEKrDY(11ezYks1EQ?!ANKt}9byN`-p{|2DPK+h^m4NHgg1WkpbT9dU$1ZZ}dF@M_i#+>0E^6)VG7wJTd@!M$xZ^_h zs?|6Jl(abp;zMNI?lf<8FC6w7X=Mm(viiQFntbt3_mlj*uy zc4cX-(S7295*E%b0-970jJ?PHBQ!31f;rb_Z0EC&Fvir69-`&+fijHgP{M-dXcKj^ zXs;K=K7};~ar;j^a9eusOM3eB-WMm7>zN2~tN>VKR2$9%Gd<>bHC2u*PM+Q$f^={pe}W&3vN&TP zOs_cv%1^)Swl5lfxzTxfCNV8ZwI=@b6P)uQUD=nI8XL@!(n9upy3~`nJT~Z&(#a!A zy$KxkM@KJDUUTD!(meaA(doV#Bl^k`f|w){jbjjM1^OLt7ATmKWNnSzk1$Vw0mSkd z5YU+WJ)G3Nrv#@4v8?*C3lak|q>>Esb)z+@0RbXpiF5rsO_B%&LRt3MZvMK{6pCkT zPZ{?)@!xTUaoY4my&9z!7KqtLIR>OdOt~MlbX|Cqh!tlrUtw4BS`nvRFQh{k{nF-k zk%`hhi6%;PgF!Xjr*4PJ5w8HDKM86U_CcSX!ov%BECIKNu+FNiu^*ntjJ%V1-*{tH z5l{uKo7$Or&8{H8v z^o`vC_O8PQ8UT<`sC2MASE!b3sUg<7W@8>i#E3B1`OadhMvq$PwcLK>eU|tP{}DY* zUD!8Y2c8>3O#AR^Ry27n{gmTG*J%^sk}xBj9s4*-5$<#DofaP z2Z2Wa%`69l_fMtcSZ}%pi+lVyJ2&6RqQ@HZGomJon^>neLLpd=WWpsU>~WKRFr=HJuWA z*l3nO($pMF%`qwbR53bzfh|9%tLap2pe$rGFQKX?pKS|G6jE9SZmd{9sn~VB<1-$f z!nL&s!R@Vld3yTG)6-ve>E`_7gv5yCI^Y@c`o{^AXEYyUS?LKVw<3*lE7B;p!a=#y zV!t_!6{XP?>gOD#ET;O^-lB0qfv8Cegbj;kPM65LU;TMy`$u;snPdhAW;W`Zk1gkG+6ZJ z8vBcK15R}HT!t~Bob4{E`Rn_8|B+o%YY*scNZoU4>{)_M!2je1Mejj^5UC!ZdX0T0 zk815}5GT>2;TIczR_41=z#!+NLZyD!VpxH~Z(Yk&#U?umQVLsAkO925Oxs7~%%1VWYT z_Jkm3cc~|uS*E6foS`evPk3vRlkGy?n#tyzI+E$pDv#QxcWXk|&nF%9>=G|H0mWC5Pp+`exik*yXVU$Q4$}>ekJ|`=F%F{B(g+)Y5xm%ZKYvE{1`Kb6HwQ@j{ zRS>fwyB&WII(4EWGm_moqlEZN6<%m1*++|9!%D|$eT4a9?K+7j z{s&)6&8YZ0o~o9b9R0z{zvP1@ySB+vlmj7MNq#@lMCk5GeeId4199Aj_T+1k>D?ntiH2ul?i zM^MFcCjd#8)R~LiL_&ukKCL^Z;)~3Shg~o{wBbwSlujn{y@vKb0e4pkw{6vm0_7uW zCS*_Kywaa?2Qe=W)1UL`AmyCRvXSH*5UE*#XbXhJl34)GhGgC zlwJ}swU6U^8Q+;D=UhvfhSsudtIR8aJZqGI)U2GHWga=((i0l9g%g5CxI+G1A|%5( zTyfM!vSV#|pqMryxpT{kq<(#=U;Nc{d2XsLV$;SR%*%+5R#OXrujAq|f!hQ-OjZW6 z9ICp(J0^0iaCNpTa=}dbgF-=6MUigMIQPPj3>%B#Y{4yeA zlV9@Mcgfcg!ly8Wj6;|@xI%A@{SD}tx)8FRk2yz$n4fxKDtR{~sO!6O6xGEVLE%#1 zvDc*vq;(45JEi$lz(-B0Ix_P~AV_EZi9*Q~qqP%JV0tzMRh6`bN5jxLdrHI!Fveq) zt8`{TB*&UxP&zhxEL_eKkaA>rDOrRp z%$01OZID00*>BRn9{WjttqKGomoau#TL5d2>XK@AI)y-7zQu}Zd4_mC0|KQtJGY|G zNA~AoA4^JPgilE2kTb2NTx8P1aEA+sZ@P%}g|J0n^nlQ!y4(}asjZ(eJ&h78F`oDtxiApzWS7?WM}G*& z>|xsEOuHQKN)I3PMK4c$T_kzo>>9h+X@N1vVkF&ZGy^opl88;d>9 z;%mn-Cf6(hAx#L6q5W0TJ|r7Uo2y18kh-2?U$+$?I1$|6uZax3K@%rv=bnI9P%B|h zHwhge8|(WHH6n!0m1yM&xzaegbUf5VS2A%ivS?{}QZV=A!Hag4{2%t-JwD3nTKt~L zOp<{N%zyy{B18$58mvgX00Wu?5}n91X`^i({y)mDr4 zXItA+YZVnS7fr&YT&;pqMM2$RP{TzMAZ6a~+Rsb~G5MX#=kvaw_m2ag%=0|^y7t~{ z@4fcg>r&IYe_Vp=*VsSs9|VJMh+JCEa&bc zflsZiIZn}ZD{{T+D`43V>_`pe{<;hc5z8Eb<5nF?`L0*rTea0<$+Q#)`zfv;xCeWL zU(LdvE0sq#DP8@(zrA7E{3OxZl!UQs_nDA=_qeg_1ycp3)9Y+4ELF$3`~7Iu=_g-@ z!0$C~oIjp5rqdap={xZ=OQOX$XyRdc^q=^-Jd!4UArHIsMzqPoxj$XDa*8jD?L^J- zU5`~r-&L|YrpeDG@*_(#H$2$%Sm?bje7E=7@b|qL;d$OM;XAz7gp0kS!-d{E!ZWhyXNR=8K4eqJ)# zz5NkEX2bXPgG>-yV-HYn^FWy;a9kcx(|ie~%?nA+f~fj3CPGu&SJ$}K)rPWINF=zG zeY#Wds^>^<#{9EO%x^kk>bt}|qhmC}J3?8zV7Ry*MR>y!Nn3OFr|T@MRygmXJH4Z4 zd*_#6FQc@ckP->GX14dv@KL^Qm#;Ciy?2E_;_D9i%9!o_es~vObL8vV+1>@=I=)Kf z>$=(Ah2fX^nk!$|&-Rvuf6LcA`MP1Y_wMkMe9f1yv9rD9;cC9_l&^8Ky+3GvNaiR& zEC95n{H^Bi-}!rnzd!M}iNCG;vOP3FfqE0aagU69XzOjvs0lkR_$^j|{H z$i&_#3C2yeGYU11iGqFpV;kimVSOd6MThAU=x?b5>S~KoJ8rGS`1-K1XH7f^V`uS~ z;XaxSY$Ke-A%0`&+FzPk0!N3Oztv>czGkt^7oNBX;0-_RIqe^sv86FL8FsBDINj~F zSM@b^lrP`+h6P>lKSsifsc-i<`#)ajz1iZMoW1JIHB8aPU#&tuEE9uWC`BPDJj_y+ zcUWvXobiV>JB2qu<_hc zAgCXS(1v*#f1j%+-^9!{ulhh;i2P%i=|VJUt~)q4S-o}Y#Yk}ONTZ=Kca&6GH8%yG zZk<~OqoBw;M9rB%cI_MpJvVnl4#qEbfXLyR0!69(zHtdYYprCv!2)U0UaqcFSerX=93g;_rU{``)fV zJKciy(oF6Eh5ndiH(VT+`vyz6S%yQG7@X}0533Zmx|2_r2leUTpl~08`N(qkZNUkH${x)%CS;ttm{0B9RA)g33nE$IgfARw$yIyY{+z4DJv_=YI#!yG^gWl>@-rP<`Jj_~U+vs85k8)-P$=JE z3Yd^g2dAiKxV9^Q?(y{&_3M!q%XUGI0y+u)K7g2;QRD_LpV=_qU}ln8djvERqua6* zkop@oPp;b)60IMy6c&Y-y~Y-$Zf zx{V}mKUef8gQTo{s1HefujPkFGnsSUD<(!$Tb_SaQhO3PkR*A?k%m?DPC4Sa#|hiy zsvKzhn9zo~I71ks&DdEeLLppqT7=qk1RbW?hUkPSFlt}2N|S_FEOu{BS7Br)%U=0l zAB+DgBcmElaNFurKF7F4Zr9Uw;RKuvyPm2e(ds?WKU9m+FG=j%XSCu@i_oh*V$>Guyk@DCLff$5VQJ*OngyY70Pp}JEzbIl%LDg!2neoJ(eg=723nwlofyl+R-Gp zn2gIP#6lAn6&ErEKKkr6_+g$Ke1q|lVr;`G{lY)Oe10&gBV+j5P>zf1GFU_H#?Jim zcVz*StHFFZr|ry#0R(XCGhUJLh2#o41iEN-4s*p27D5rVO;6nrVFZ$mzKp=~KCBLK zwQC!)?3VBqp*$D2XxOi5FVJ;RpOfO%g7dv@7R<6$XO=6r0j1SU-egQh3zO+$0W)8X z;4l%BWB@D{Wv7sUm@sSb^`(j_YR~JhM8^5s{l`09b+Zbpwy)^WyyX0{M&_3#l3wE0v z#X(zW37mH)mwmxooWV(4`fzE(%AZ)ZF;W=1B_)`k#*cU@QULYM_A&pL>nuh)!TD%nNwbQDdPQZ`921|yp11Yv^L@BE_jJt z$+8W7Bd=T#`+CXZ|B`w!QWDB*QA4SlF@_jUFs#fhckDhOI)3!GfrbsmQOg1D0lg`t zx?cUI^ zD3ERuRN}N+XO~ga>_Y@c9BSJ@&HGZXT*pX6V|Bguz&LzBMXphQr&^8}Rv%}pwUVk+ zF-Mb)T4Z#=zC~^hZPFiQmu^4}*WpR<#d~JESHu|!yxxh4NO~(UKUuiHu*AmEV(v`} zWv#PD@>yvJ{NQCedzsnUhu6QTJNqc}YeuxQi_3R0jQQ&FxBg0(J1q00&mHQul0yx)mTn6m(Zefles@8%nh z;CC(+jA&8Q*+b!<`#25lRBuA9fVF>)-iVl0#<~?s!=Zcwpkvo_;lgeWmbcT!Hgjlc}>>WL5QfaGKW9Y`Yt zZT=vlh&ZfbapEc+Ns;zJa?cJYb7!Q;Zo*$SMBrEI$CsP%4-=z%JBtd{2f7We)%P>J z;a-spnsp^he{}IOvE--;wQ;Q2nB)w?;bn-MR5G9Ft&xRMJC}yK`VJ(f!cQPcaj&5Q~h$mu^hY-T` z^qNx-<$L4Q&n|u`Qo>k__QsX}iZmJ_L!rrZl=_djmm)@AC}>9r4G1Jlm^0G!LAg$ATa0ns-wva z@p&pe@Vq#yL*#+_jr|;Cox!KYqg_zDF%14qwAR){Rt{tlx{SiSPtE2UZ8A=fns0_6 zM5YkZKI*7%r}{bg-F%sZi}Of?8y0SdJ+ld9-6ceGL(V3P+6JD;_0H-HAt=$NS)Ht3 zxF|}JoVPeavo_5%8|db-O&i?sG`QA$6UX+Gw@KX$E#CZwe1v98?>CBY&+~3+Mo2pr z%nz-R2-z!_0Z~33^SHkme>GC9Ox;?Z`G9wTd$sg%OnY%GZ zYi*RTz2SMPe>Yfq7$>6YuGSYL-rnU?b>OC8>Go(Ft4cSiT;f7G?=pa!@}n?{AQP}x z?^BO`BL|ds)oPxrKlJ4ry1Rw1@w7Pg3u)W51tIO>57aoqDkMm;L;YFS6Mg`nZf%SPne*XEg=bxL0AI(- zAJgkSx^UMcGwHa<-?Tr+o$3$ZjIBPD_f)=G&LG)z>rgs03(z?WDd&>@QjW|Oa}*3c zV`efc=5WYko4N&X^X1_O$CRP)4I{%A|zqD=E z3GnTy+2Qx)V=5ovZGnY{b?>iGjBrEFyOwYF`X)NScvFOa%;C-CEuRg~?Dsa*YXnKl zQ}nX6{k}g!0%?Dh$PmhyXt$eCG_YN7Vd8{BDdbl>>>nC4XTq1@q3 zKqhtU(l*FZ;l~?0iq)594wkST znhh%_+pZOK%KuE){5gP5jXM7!sxw^VWhlob`Bc#acvDs!9(BOW&?4eK}ZqpsIBHxHwnfyR3IcT(#4Y8H{snuC2=Z zWkB`veMcB;L*#Y@R^LUwivwz~&+fH{le{(@S8vG*Cwk*b;5u%*rvX2PhJDRcMmm^N z1xD(-{`3>B)pr6a#*AF6^J6b^-9B9h{afs9O{w579xq_CAiAOANB)%^>#>j+hINLf z&mp`LQtgS?BM6Y^&cPf-&dcD^gY-~7(dx* zb?Y%E?}~$N;*lnBP0HCWbmR4eHt!%Ua=AnuE+FDCDn%mua}vM9A$+H)wh>T%fRXod zzB>G_VB%A11Qc`gIx?0&HBQ#;!|KPq{up8DUsFjS`+2>~+|S3cpZ{7~zS9~CiC06t zu`>>;_RL=>>M;9yL3z8LA(y`+8+*Pw^S0jLbJo6qz#aFsX2xL7TJ?1MUobDTwlSv) z+_r=-Hu4?|O&bMgRG!eY2=|P%{gH<1))=!Mm-fhrrx^aK@aQ$C9vp?RY{ft^NYam+ zcuX6fOY~iV(5vrz;eK-N{UyuuVKtQIksG`j7srVwZ*}v>Z2f`LaY#3X?ZLsaAZ}Nw zUrT4atWxyzuyXTcp{cGnmzsi6=2GMCG^xN|bJm5jk~z;prer}v{$tK-^e{Jh9n;~o z`YC4jj1~y8tBmQ+LiI014rN|VcUJE^_2J+T&(*8@+4N+kUXARkP$zHUBaiEm=wbB& zW+7+h!<>EcID5T>5QHWJcc>o=zR=p)Uun37P4{$qY!%mj(J94i_yE z#?Pp6Id1TOA$80Bk(FO!4kte?G#b4JZ=P;5>j4uLc!^5eqG&~oV}M@|IZgpnZv zmRK=Xmy*v&5)KeFON22}^tE7r2 z)l@UtHzdn)gy#ec?1n8E=P7hxvf_Anu!do=2}AHk01alt4s--z0&?WCnh@pN!+qfq z0*5{51}H2jW9Kg0UVXE(dXlp$8$Va=Rkt`RA9f-?^s)3*oaaHiYxOQ(D_1(jeq7XD zc3-&BJ{Vq_M>tUP2e%eA!0S|Tm2mrTgF35Snq?{<7*?2nR<5eE=sza{OwkwEa@K+< zgAoB4HR_u;ByV-DvntC;X;#t!evu?mzgr1Ya++qLED=i=` z?T`cDX=AC~Gu7@|Ga4LenBug8#J9NBycQD^3svx-o+v^vX4%0*kl#L)WfDZuj3|?^ zh!!k0bq2l{@ELtO!EWsU{Wd@h{}_bT(?WBuDobCDgk~f|WTLZD;?572B&(l)%z86p zR48{;EaXugGC7nxITqrVkenn03)wVg%u!e0vl;El*qq_KrG7}s_$XdBCpaTbHp(d@ zt7aqzXG{oA$*h_&Dmde|;FQ@_GbYDaJ3qW}BVr*^M7?HF%ux#{GBka%y6gy5O&_HO z>1VR)$J5v`x48--A(?!v37oxGI6@D|{?#t~P0Ct!Fb5~b0fD>SxMm$0xI5WWz}mI> zBS@~k64*FJUtlyOTB3|HlXnw1nt%ROMSp8m8z)*ra@=LvHyE;f_PMFaf0R8iUu6%A z?plY{gUv6>oi;pG(!b5$_C||ri^17!aNA{9l>JclyaRgAYspuWSIZT`NfCON6L=Gn zS;!6~yNw;t(0v0dd28e?5%XO*$`l*+IW=5jhjKPH=4@0P5s)ZgL*3ArvkA(=!b#)! zP=N8Ms{;)w9)FYn{|Kw20v^^FP88eKR^B@8B1zwgt;mwBn8@&cdRNva zw0wY<=^jKiC@ZxwD^1^>WVyNSGFM1hgMUPp&~*FU=9Y(F)}-LkYdiO(_^vC;hv}8K zeWn_8)tkEaNUyfaJG;Yp$q!s(Ot@s1ST-UC6OdfE(Fo&HgtvBdXCwy5O{jOb(KpfAgbF2V@Z~zMtyD6$E?X@=PWo6H|wxwd?O5T zlg~zP!)4lDKJo+M4?MY+v0H{jT5@<%`BQ7xLs-3xyxk3(^$uh-g>qp?uBRHd`lpn? z3CcgN{JEXaQT|Uosdb|8%DB{nLLe&gIza|-|7E4)=-Hiz?Vu(-09~K znBRep0@m~GH>g49(|aoe65V+fE z2`7ZItOzhlmzo{#O;KMABcHx>6mic$nH#VIWyu!h{(xC1w~ay|bjVk*JbIH^DiJ$c z=(L~;p?*sN!fEdXv+73-m`EZ(uRGMF?6)G`H1%(t;z9ISJic^^*Y#;>{21q1ILQtR zYw9ueo%ydu8WSckSfL7pD@AyY#UK|23^!u&!Q2!P_HLNhn42n|V)fFkj?a4)imEZ; zsf_0>DydV|c|=4(bE+4z-ZBk27&{tsITpGt>T)=N@SkPoNIfnj8XL)- zG?E2|cxdMT7K8mifLJKhSzKy#Vz7&}SR!!W0S76@T^}P!qTF@!JWKcf00?3U`gKYG zG^>ujEDc22OC}j}Gw?9(t`av`^*PFzGQ>8?UF4aPTCtc@(3@~Bg`1LZEOCcIV$j7K z=Ur4@#ki^3FaLrNSE?~%h_E)N5@g#^Q2wHxe<>TIEY8~R{t2#3uh{36TmLKuZ@9qA zY3FbR-&4v||MvA?B4cX8GhkyPKz<{$3|7)Ir|gHPV1MX~hZxUto^XmLv5{G)3{eS3 zH{-JiO(&tq5^z}%ct~@JdLg*G!D=dWne#z*30XdjW1cgy#!3@T3#*jaQREA$-WjTPqyl?-nxn>KDQw%tfaZ z@)JQfHx@#3@wHSH(wuuD?0ed3ln%l%p<=wJx zW@D#3*80&Ur$Pmh;m19#OD^}?W_#LP*=@C7#bHd^*05%avCV~XqjRq8bH(aaIxR}e zp$?1!E;ihZ>|{@NiXUOYdU^~R-ClK`+XtU7J=7~&R}&(Uam=ij1e`$*%T zLED+J&n5bEQtWd9pRmnEQ2jzY-h5Q!u?yclb$HX5sSOQnuxbq$y490~%jz0^uwzh7 ziw#brz|M*;`vFQ+o{yKLa^1i+?PwD{f1a=25x!E+5QaVdY;bJ&=B3$2FZPjS&^2;B zNK2C6ND>Zad5-kGoFI9_md{$^z+tr}mS3!3+jepn55Ix(QZ1&wBmA@G>!7J+rP7=* za6sKcz_$j!K+dC%T%(~_%+;LESKmAQ7w(ALLNgplZ-Tw~1)*7O7~PLtQyjGwK153c ztlLj>ixFG5Id!wja=he}?Twoqo)cK^3zwy7^=)xj#dhFgYV zhC|k9eVx}16?2laX}$_jzA#n%y}36g*DJ7(MSI#Vr#&`-J47j%UZb&W(=j-&CKnVj zpL6x)?6={z-D}fuf5tsX2izU4YKq1-c8V=vAvhh%(dIc&QiZ+%wZ-Cy zUOYA@;_EL`Lp#;e)an8P?EOLyVa)tw_0`qem_1W!n$cU_TltB#>WAk7pSo(kOsx80Qk4Uieo%CWPSuZg ztx4r2t%i5psm_I zcFbgty~;jllINqvABWlMZbXr)^jEJ&(zzSOI+*{ctu=_f&YXy?CTwHP#%~0Jp^^FM z)K13~5DAuaX%p)cnlS88ZzB|(IHsmKkxo2+jEpQ}4#(eP6Mo*Oq*K>}GQ7VhCY4VF zOE(7nT!PiW^{zXPOcm2W=8R6Ey$@(`%|Gv0a!t>vi-`n)>Z2db~|4!AvyL6ff z|M&&C!7R&can;6O3ugES6>Wazjm@ZdJp=2M(|5_LbMrTCwk-c@F2_w7JXS463;_-< zI#kt_aTw!A$#{k9o|=?+$%%SBIb-A^V#l$fAL=OjhOR}|i`s*0^;AmhQr1mUR{aGx zE*+bQx{Ho%OmKXN_=_n)61Wpp6TOr+X4&0@H(DjOr~H@e{I_+R-zvd6qtwS*muqiK zP;B9BYJvH7u5v}g1albnxj-0eE@`!u7U?08K4?RV(i$p?Wfd>?b_<>#c4FH{XEMjK zhxR?fWNu6teI7n3-rPXh3Dr+JN1rd~eE*20s>X!0^Z9i>=i@Ke@e|I+Us(Rtouki} zAIh>fTBRrQ)jiS-b4GLbaZ;hs5-D&0#hb7bPUfq7iIv+gb|;DawL~8NWi)ce1(C9% z52L#Bdt>oee=B~T#J>=WcS*edw{cEvq|9&lj^Jke#uh*n*b3D@N5&x+>VSnI68Axy zQdh)T5DyijLcXCzC^AZdhwZObf)GYa<0P>^V-b&GVeAkR7x=zI(yKQl9h$t8M9Z=_ z4q*5$;R}uG=)xwN4Nj~p_+9G9lK4S~n#U9NbA=YG5SRU?8P_+8mFvQrRmeL%I zW@3^KKXy|`SSmRt4-jF}y(r&F=v(%wwaSHe8NhaVFL2^p_VWMtY+*Yd?`tJaTB1pvEIAMP)b6R+g7`Fgot$vdr;=gwO#(Y#p{ z*}T0`%MK0=RoGAbLCq8B&IJ?IZ>85c^7|!VDw{9XnI5mc}pKh#$7m}GX!^7n-2*-dv3lTzvKmhW`i-FL>i`$y64Ry}q1H{a{h z-Em#IJCPdxU+L~RQL4QIwiWhA{wv*GP%ZASS!>EihM%*rBp~_K(Vb86yFBoSdrNv^?l|=paO4V!YfHpE$>6?2g*{|27I!Nod+RCYap2^ zgvB@yHdH(opCgi?-q4wbW7W)eW#vr}vaP;^+)At=ok?%aEmE6^4%!40lZr4@@N|}p zhZ9>kOmgU6eV-5iL$2O6|D(4zwMgy0EV`ga53vPaL>LiPMUYBLavOc5!6*dY+u&$riQlx&u>A{#Nu?#Ki#$;26%xEjt-B40e-u@=6 z$r&k)Q`|Sv?WzwT1t*r1L556(PN!0u4B4|1xW0;?N+G%3vG|eEc;TBrDAhHpO9&EZ zHV8Ds`QU~p@2HBCSiFmJU@#tbhR1R-HUn>;EI%~wO2cBJ$i7tS!v*boW_W)CgJ&8^ z-ik%gj<+LApx)kNr}?SqNmoGxa*;KnO=LO?{6IL~EA2ISP=@ zaz35lKWRp(-lXZ^HU=KVwRW;GH4TE&7MeN|k#)5V9%zZ_%c}sLhby2jqGKfL1~4I? z5dKn#^jt|T{fKuNz5{t~v*arWw zoB8r`GS=cN1LYnAR0EuH$Ij2900OuX($W4aZ=oMQe2*+F-vcBMuEeyuX~)z z7)mrI;F)DxxiWziTYL!K&$-G?#08yeB#C67ejXYU{)G)bRU2=#=rdLW{bR`7xL@|-h+=M^Q$B2 z;rOFO1sriktsYmC8Zr5$f?CJaO9%rrCRBaiL9fctBM2_uL6dj?g5yY=uvpA-jzy$& zji9W^fDL@2Sv)KkzNjfsm)t#5pEN8)x{rdCmxY|><>>~B5oVyMH>Alew zT!i@q)SeAYmwo6f?f@T2r;iE9EdnSEuZgi785)aOIygD1xOm)(A^uD0Qqc*aJugZ( ziWJL5g$nj7h6^vkMnJ>l zFW%kFUi+-%lYX8B`AV~=t~U!xlY(^4pjn5x@I@y`QTf`#&r#iDy1Mdb6xKu|17`D; z5&sMYmcJ+=>vsX$1;H=t;CH(Q*XZDVU4ysl-~(NQl@31GHMm^|AMP6LY!*mV*Wgqg ze6(xuwK}+^Yw)c)_+;1M`8v3*YjC9wZtoiWqz<-h?$Re4bg;c^@Y@8hcMy7E$L`aq zon2F()WPnq!O2IY@yT6-N9*8}uECRa@Q|*-vvqK4*Whv;oYpnCN(YbZ8vL9N9@RDY zZ5=$iYw$rGd~Mg@HXS^+YjAQ{S~;O>@Ms;J*)@2w4xZdKc#aO9+BNt=9eiuo;I%q9 zziaS|I{3D(!Efu}*4qteO+U4z{^xV%g7`g;k$LWt}uMaFe9 zD>AN=nJHqdXwRIdNA`<=_nWPzd+gelS4~UGE`e};(2eRm=l5QQ{hbY8 zzQINT(2g(LfLPX!SGE8Wv9Ac-Q{|9P-qeXIql0Fp-F_)uw~T; zYU7Z$_4O%3PgydTd3O2gU9UD_*JoaOZ3p8v+(%lubE-Zdo7O9TycIg0e)=54D=Qq> zH`@y6&CM9mZZ0H>HD1Zt1j_p}q|N1`w{Q9U-KgVKC-cdLoHtRuOco)7HB}NgI1Fpi z=}l~Bdz;K1ptPO=ixN8J3S?Bjn5oC7e4leu$IiiNvfl+;2_3SsTrUddzEQ5{wy`hz zr56ALhrqJcu+M$yy8$vbgIre!M%drl%*MK{+`?1E0cvD#u_~eKi`F|NXu6C-$$BU6 z;ekjjprp!}ya27XUb505BK#(ed!NiPQcyp23rq^`*=X8C^4&q{o774(fo{hXiDW_m>HJ*tV44iOQDcY&(ry+p3`FALll z@qN{EA=v5c%fYERj|@=&g?g-yLg>e8s76|2N5*y1=)fn#_U_QV18wjrBO7^dZauAd zh8~DqC(Visc#ik_XkkKpO6vj>ba=SXUFiT)jk> zYm)-8@|}9zR370_e2qvl7s*!T32#p$>|?s)z2<_|fkUC{m8A-wSXI5{mjsb)p; z6yvruTqn1F5ZGr45*Fl>xFNB)l=E>zh)YST!QJ?+X(^IFV^8ZbeC$l7fMdqqa2D?p zb6Z-ngzXOR-oN|E?tMug`cD$y(z+mR2$#>3(^6VLx9wis*F(Bxj>U-{(k``5$H-a3 z41Z$l2d(=8A6V{~I}f#B6K=9NDA=9U#IKY4^~q`W)=!8oZ2d%6@1W>pn*icy{lvES z4pX7HwD}fJvJ~-}Q0%x#xoUQwO_uPG*W#j|^X0S8Ye*Dy#Fn`#YA|pRSqTnRu5<-% zCF==XXCc+?Poanb50aj+-mfF~Vo?)G!1p_@z-7FV;<|h@MT6@Rkya~n-QQH^ zT5`jZDp>nza&jFVLJ%> zhOlGw(!oHRrD8aRkm>993D`vqAK+-FVoy??FWNb&KuJgoQ6EXv@%q3^i zUb!kdz)S%BDZ@`wWjyu^I8CvUZegVFV${WX_v(HyP@<`#qb37ZuJc~Kb?McC({|s$ z*BM%i61^J}4X)=coNT^dDWN((l{d*88|@`m#75h-dNkFTBYZ~QG%|^gVql)bxZQt<2Arhtm%PhQ#la*v@n-%FI;$Y#A8o z7^Y9UD{E_;hv5Ur{`XYUumB2x^ipn5eatwLxROu&`AB9U0WY|E{#T8B)?9m zUE4*A=}2Z4M**E!00p62)9mR@m(<`msmXYIgauh?Pt)-oC92kVVp88wwGx1T~qWbCQe@dM5HKknLlrXFYCXNF0F zHn`@)jJgY$50n>}cx@e zYkheyyQL;FpbgrQo#tMmG*PwcXc}vn_hR+6(=Hn?7wIK`|L*#f8aBv2$?`kEEx(sK z<@Y*={7$s2`XTyhU!Teo z$&&S>n%#?n|hif>u% z%x^<)U%^}B+xV_M$e#b4?Dc$?KL;|ZPeA1uFVLYRU$h&BnBAa~%x-{*_5XD@9Htxo zdyNOkV3oArY+HP^ZRXBr{&K0rdKcYz_14<4@j9a$Z<8^HP1oGIox7WNf2cR!Eo{6e z^u~+y4rL^FY`pI1#_No3ymMvGjMXUy4SzT^&Z2JQG9zDwNAP;7TrRb!+E3n#V74|v z4bqHP=Um9ydq4bCEh1(4K?PO&GW-~|we;_Zc5S~b%ErD~-3a?fWsnH;Oe#OP>0Yd} zP(z7onS3^)!t(Pzmj&uh%FkCzwnAU40sq{KvY0Pkv*gqiVoYNBQFI?;pz5c3ldQzW z0@W&b+G?OKDt|N7dA&EeeAiQNTGSXIpmD>w(1Q^7CqkW$qqH%|u6!Ykef2JIR^=Rc zb}9=7x_hvK4{!jR7VIMdhmq&f_L ztfZtdUNQ@shU2UEQxm#%st^5FqOJmPc#PQC^9?Ri_nTn(TnN+^8`ncuR+B37o^tAB zB)SNjw9!PUwyI~pltPv>KE_yezdR8Br%rquT(2%^(Bk9-1&@jjm>)xTFOUIEuy~ct zi#9v|8!4_N+6Xj?CW@4eRqU1=L>lrdw%C%AdSjtdlg&bq5jm(XB6sDAFDw*vgy2~2 zoP+9OAgxz_rB9oy=oWKC3OQ@aLK!0|o##nPHzcLg#O@Ur>4mU^5=|ir3e|rJMBjO& zpPVKrUzf3G#zWJ?g___zkM|c6oJ~-LDL>Vup-F8D()WehbS`zIGZ`*n{pRW9>7MaW zjPRV-c_u{R2S9;D=w6|XoqGBSv8f>m=QFwH=>0&N;^;E{1dL<>!yP4hol!6x8Vonp zCj*9qr!z+UnglEy%g@hW3W_A_x9$al3tQM7H0sVh#(^yC*jWG3Itv?RC+?*1O5u>k zrbp-fmHqPw`)9@;**=xIzsfE-LhqP?qiNz~q}QbzSbx2})lU*+VRfxu40RJ&*utC( z^pPmc#}pL@FO@u@6$c7kzcEhS5ljp&!>BLz%YwyDlxB<-2azgU)jDP2eSWM}U-yIi z7EXirZR8xj?mpkbd%1#wIbmiEl^($8VNQEePFqrAa0zB)9Kk{-9({5SjA*$j;+j~K zV72&$Pn@3+XYmc0xJVuYCgvyD@Y_Nlk3<4(7Jolu;#goptu&}#kjXRyR-82e3 zeR&yMT-IIqWWr~sk%LlaOWm}q=eJWh+rc^Un zs8=0~cNB9N86dfL<=VS3VFMeYueTT5ruk649bz~gV=XU2e>u{d0-v~SwU=y3sx4{u za(~qknivbcjZjH1+l}D+$P4h@JYI2*GwKDI!TAOgsl!wLulO(LK7{8e)7`QC$P{of z6CF!?O$Yb&9LV^v%Pc@haIdjn>Y2-YD9@yaBLghLBoH7w{VOh-l@ZDK(u8`&fGIh$ z5uRUT{wqgXX{r!&7anQNrpn$aO--@wrm6pvBd#>nZ8kN9X+A_ZRW~}XW8FF5+Vh9t zQhf+!xZ#5o8B-_NU`J&ohYC_`aIvxy?r9lmJMMW8S2B1Uz1g|Aw}BLQwi97pXP|DR z=RN-sZPnPQ3!hd$V`F0{vyG{#U+^sVQI?|3x6+~979=*GO;IkJx93u}j^&raa6YNLGQ=Ww5N>uX7@d}ZURQY2bj9bsKD(~^$Bq$*;& z(-grKa_PSOvgoF`!5SVWQy*$#)mVzHaXntk^(Z@PG{Kk}^(iw~Grqp!g%-O+M8S^- znAc>89yQIYR!)>Lu=o`JiU_(AhhspB?@E1!;q8+b$%7AYuy#z;z1bdqTT*D=* z`Kbs7C7GT59`7aE&yn_Ks|jc+3kmXw8N6?5M_@*nw!xepF&V0+^TuNCECt8w^A|+q z=FSpgcT8W9hQajW;7CKo_A3ObX)Z;h$rlx?`A_rct*x7Eo$r(HdSC97H?jtHC;wPO zc%xNfFI+L0P@Ux&@e2m*vZ9ulD`^67cC4hb8=B&K&k$U`0Bq5+eQU`hEL-#NRmkb< zfrys4jn~HxuT2$!D~zFosL-!{1BF^=NFP?h|yTP?p&SIY0-mdo#( zVpgy0v31YsN9alYc-p5QYZmFp^Y`kOB#&j zjP`T&=CRbgwwH4$lU5rTpwV|yLW$m|%IAN9$xMBKy|DYG*O)qnW!2d4FZtm?|A@eY z2ulw`QDtIk{LcpYE}3|lJd!6~E{{GFEtx;J`Vz$Qh~1*zw8vStBN!rcK`&6^CJfb4 z)NmKJ$*FheSOw6_)o&LnvW{@h}cg+re?>_yeSS+;%;ZFwj z$+dNNP@h;4v)IV;01FsnHt=*A2G+@woO|eW`phca@z)rU?dsy!(LtJO4>;@yN2xW3 z&;pmQIKCjt#>Kx)^)PtrH@5FaRBB_J{1z5%egR3-H{{22Vo6G|aU<;eUWio}%2az_ z^de6zJ|bNBPMamKWZWPb<>$hTgS*XGzN^m@mgod$k8}rNeuVf-KNurP>DY{S@`DQ% zm-G;B(WOn$Ca1-eqC1WRcT0zKT*ta0Z97S0U~tzP10H8oqw5zdS4Q35CJlL!`b4^2 zBn0Fl-p?+?q3HO**f9`Ycpn6b921svny58)+ZsIQmO9XpdgO6tU*L4A>ybUIt*cH~ zf}Tq*a=ku6=q#)2kslM?qq2E|P-VLrdHL3oygT>{PCNbt+drJIb{OPP><1bi#E%J?0KArDZGW zF?U$GUjO9Vz57Xby^B;w@=;czgXTc_E~-wbN}LvGum&2fW|03&W4FeUKY=VLIbml1 zQ(Gi$oz9jPN+b7L`5DFESpIJ1FNz~;rLfNL)w$NHDb{EReJt^2Saoh()s(nc+R(Mv zgeHvBwTeH4^9c4hV-$rn*?1p7(zjOUMyjSnrq2+M6(@9-p=2?311j;jcMp7R|JRA< z+X1--(AMtaXCHrxzjpp&bynxvs;1aF!KS}2gv(50hF#E>)<&5MKG(GAGo(%Cr~jBa zr52a3`l^!XRbR_5!amsr<|x%}-e-KlkPHvvfW`6^l-|RwnW{gJdgW*A zz*$!0ajd=AAdU0+T(98!E-t;z*FR$mrVW2xJEkV&lv~Y+?{?QK6^PqsTf2>&KrF8H zvb)ba)b$EpfL_VAr8iNs2;2Xfaz$)e>L&4Mnz{itxzvEg<44 zD85G^(2>hd=r&e>5C@HkJp&;wr$j?C+Ytl8(E|{u9Ax+Ewi@Y)-o*CqHdcVZd0KW- z&p_O-fpB`VoiQMsJpj>%g8Fn@jR1jzu7HB9?m`;v$MRE^744|L^-Bu$&3?z17x3L1m z#l&9RGY}uk?8r?)YdZ!+N)JE`qM$+DRwF!;;#9q=f5Vva}hIq1v#DEym z0}z)|(52m0BS279_Rwx)1&Cq94(l0+e?U{oaeu$;kB zTgAY@HB1l7S~Ep8cN;5U93l2dx3K~S8n4;mp27GHgp84U)RTQQ2FB5Di;~{>lA^xs zHdes+irBBZjTJDyCid%|!MH?&(c;N&iGk75ZBYWoF^W3YZLENCoY>>t#tIlGh&|CW z7>^6JlzY;XebTp-lqV_gWVdAr9N&=Qn{HzTj#I>*>NZy3XeG9_XE>Z1jy6wrTdX_U zx-Ck;I89NfyNwkv&JcU1+gJhPEU{;M24f8*g^}Ct$!?E<(cW!Q0>-~6>R;W)3K-{z zJ=bllfDs`!(i0edF*#p5ulY}07#X>TJlTh0z#QtfKmq131$IBH1(=>^wE$zz>K^HU z2cQXz+%G)YU&O%pqDL@LLC@}fRtp$C&uRg~oYg&oaRkcB$PIh4!!a!-YftvqF)+UF5e$?rv%8%+m@;!nvK!b6_lYJxxM)&)=fMM?IJ%Q2llov3}Dc>U)KgQULk^7Y= z`>Plj-S6uHhPkiz1V+zOUcfM?e2-uxYA}v_vX95W=zd=pFwA|uCop=R@&blA<$DC9 zQVjOwp7La$(vzAcprZSI9XPUkp7J0^HdDT$`za3`*-ZKAr+c1FZK740d&ZM}Ce|I@ z@9WYX=DyxjceGPk_fuZF!<_OxcE^W3 z<1GG^%DbQAGJSfU;{uvF$9n|rJ+VZd`E#7#Q8t?gB>7w7Y=O^Bfm2 z%sJj87+D&OW1j3|8abHr72Ol>0!PopyTH-&Bo{c$N!}wIuc1(C?1mh1U zWoz!(-UoK&rny!JbqeM<#Cv)h4nUac-%j;?QZ=W@%9Mxo3>a+JVB!ZQ50ngkU4sEy zyXK*}R*Rsk>y-yg{#>^ycA6nv}^Jz+U?YMtemXVzI3@qIntbNIf9Z}qQrmOopcu)O=tI?H3H z*IDl5`wG7E_>SlMgLa%uTAr{poLpzAXj^9~IBfYtYd z8Y}RvYJ8pmjFOi_kbze=HYf+8Gw$s%wG0^A^ ze9@A=(=4Lm*4R~^d4acX55&t{k z4q1pLH+Ix1cdSFWdzIVSDegdHD)*{{Ejij+i{%!J@2=4DaR)o%qwu%Za$Z1CwkmN7 z*N^6x|9ERHHwYLV;`)`FNx6ZAs)+bfV=d74n}`Zeu?HF*2t}CjT*#Z9V)nAk-$LZ# zW+K<=$oQ~&4uaBky0(GUy#saDG248L#R<@cf%foH^IDE-G ztkwDY#&Tqm!+-padP)14(K}4aKC(8nmu@B z@OFFfM~>iPXYejJN`JxZ>-&B-1z&3AE8ambf8B=n<^fzt^~<6q-uPup@!uchOqslyWz9clNU9Vcp2y4lxDI3=h5ud5UYr|;zStWij zF}{8nBegY!f8*LzgR~ZJ|3I%D^D#(c8HYN=mgrBB9Yw7h3vz+Bb6iMIx7&7RILE5~ z?+E>m)l8@U#_V%*1m`Um_BZ+QKOm;roWgV-9F!7 z<2ng3c8IkXhkEoqhW$N254;T>>M(X80d*6lj;nC`?hVhb&Wjjl182`+<*Br-c?oHG z(mt`^^UOtYm)OYL1v-5II(=wy4g63h zz-uB-f&lOEt$Poq??%L-HyDK`tPhn{A6lnjp6_oR-h_5TQzTI54j*uBsDaMHeFjOrb77bWd8dh59knzd$Z zv$g0sA829PXEbz7eE(%5^!(o|53Ap?>T|%Y^uLW6Cp3-p+&8k@$JhI=M@8w#_(Q%c zRv-3#TC3ay4It=!f)WVY8UE?qj-`UkvR0Unc6n$-l_@O?UU6YjwCh}t>;OYukN%5F zU9a>rKB)cFk+j!z_Sd;1>9QIO`RU|5uR2{pd;h{rwLxN*@1~ z1WWI|A@g|nzEx-SRK9|qN0RG;p5IEI{rFL)xIL~-9|n}$R_}Txg->sw#yWnlf0MB* zG~KETTC>wXZuke$!mc)lQCCbMQn`;b0uGL>+#IQf+%}+kl!v-Qx$l)@b$H zIxCF`|DUOtSY~kLw-Q&kt;T5+=KaxXM7YQrzWfbo5oc5KK>MdQxX_5*XT8PO3pv5B z!k+^w&8@qjxl55KkaqlL{9a!Q3BsSyOfr8zv&FgWA4?2rYAw5Xi<#@AXocT3KV!`t zEX@owxM_{#o!;Vn;NKtmd$SnBcD*uKOg3flI)122`(6`CvpQ?|kJbI~x4p-AfAs@a z+-}b@T18;7I+5t{b-s&1nLgDC=0|TN>QB&m5X}r~@HdAlBGq@sflwnQC~o}Q{>{}{ zHgcs@mql1=$G`3SIE;G-vQ^hLE9kt?l!)}8(I~$cEQqq6vb122>+;`={IohRKdsZ9 zkB`&w2hPV6B`4@OV`{rmm!4%0JcQ+s`1ArtdYqOP58!t=2mPqaW}OUdiLm5my0M0d zlj~XSL7XQo(w6T1N40T0*J@FaH?IAaQJ-Gx$vL_7W{f4~rJ!>+M(lsrII7*_`}qgc zXZ@@5t>X)<{=R{lING{;kN+_HMEoT+fhG)k;;nsF`H$0CmCzm(*rq^tjX zB@GSbI z%1*YTpwxg3gq*hYeV)>j%dS2(B{|bC3Ka>YvHC~ggKM}kC57$Uus>OynVbg0qNa79 zR*P;7J4kNxvHwLEV0u~`(nZ9UPBikJnA8(1*6m<-E<2Rrd_;P*muIIhGgOR$cSrT0 z@q_8E59zKF>-gKHyD(}}7l*>%;fyVG*OtH*t8~>CU*Akm!{RqP>IzM@dUh;nk^R+P zeJV5Ajy)O+!q4NRV8$V(qu|-mf*FTs!RN;Tnq*dcmS@M}*Tc`#3*q0;1T@IN2aO8S zjEu-jR&lfZac~9O=*bv996;MJxZ)@l$g5^Wf_X}G%zmhGW3$mHxN&r8UJN(>nRd+s)V{$rr*>Vwi?$m6lYg;>zrzDjAB`AQh{0=1`=r~A z)%8w^DR4MD+OQY^w`l-a&Em)9D1WB$Q7}gd6gh2EJSz?^!Pt9?;Xly)Dw{Q(5byuo zXh0%6{3+!)$R)OH`#^7qCLFL~@bNt638|E^XIznexyvZhp39tZkXg25tC3)aE0r^QY^ls<@2G$LOJ{L zmAFX7-lz{PV*UM7xgF_NuSZc#&D#Rug$=MhzHu2fQ3>n;u2)>1t**%w<4c_qmBS7LQXS<9 zJu;;wGjyw~#g$#_|B?bWVr?TbyirI+$T3S4UeWW4?ERF=+lHUt^(s=ZIw?vNr2|}xNKXTL6InICa)o2}?=o2SAaYkc16-l>|xN@c4;+tx? z057}qxE2zq{fSXr6`&cMQ>mf*s}!5^v^NKN>K zFhRnB1GO37WRVvW}M6oBIG`OLe)m~B}x>tb}N3n;uz_^s$ z76UEmrl4&>P=AH-wi7L$-AQYQF_I{>%ZVJ65f4kdjd^Z-rs93~`g>}VS)Oh6fzuJ+ zG)SF*N}e|E!FCd^=*_2REN>O@#NudrR{M0F>!Ce#cNXTQX}a4}>|EydY+dH0q%6ch?cQo|6ncR*{lT^7Gmr}4vf)Zwq8-s0cZ%9+J#IWQ@Vor781^cP zEKSB6niT8Cd!LY@-~5n4emga~;pRC7`Gb8`j}9}8oU7$1@L@CRzn-($VhF4Gb# z^*F!%!(a7=rCV2qVd5NTV`iF_)`5xPd&6FAT<16=i&FHjoB$$=%y#Hk-IOcMrVt?d zv3~J1M)#>-v2}^fYxBQ0x-ZzSB6=Gi!qO}w^8F#kJ*km{)D}Y??D#My?Tn$=o@0(O z44upeVqio%j$K2#95Vx*?H{1@o6jz*(wO)RIUDQ4QLfAqt%~@=RSza>O~n4ZXkEl! zyoffUf2J{Y2n*XSc+g={zC!lrnY3G*oQrPG;qPVCjOD^mG}^G6;oNSuoU*!okasDD z82WeNuGTb<{i3)Teoq~0VlxLXSv#=z7)3dCXr9cuG=S?%1U9V&x7g3Vp%XgHDaz_N z3)OI|@qpb{$K2@yJH|*JXgGV@cGzm8cmr0WYdLe$q=UYptH$Qd;5jhb;LFs*)DxJW zVrl;VHmgPbP`(~au~azJUA#u7rbG=lYCmc#9L>)%=*F;+{b?WCa>i)-pB+3&{Oqg_ z5EWiw40-xVmfdoTLoAFGqIfAY1KmA8dY4mKKLc&Wa0wI3N4qvz3RUUbR#O|&cNt-s zI&4};Sf3)y2uDjmW#bg3^p^d-De|Z_Jdih|;Zbqvkce5=D(WGA0E}kO3a4vL5uMvX z(?ZpKBVCN|yW-H0HI)Lq%@`p3Ft{hi){I?Zd~d7geeG4QfU&h3b>V5y7J^jjtR}Fi z2qTwH+7UIFc*@tONaf&Ly5vzCH4M^wfj1Q$b<8*J-I*~_%74_usT||qdU}@6riJDC z@*`$`Q3ovpOreC_^dq)99dO$o7h_QGF?e%JBO?x@zzXC=hQ>R~d+ntFk$()DJ3N|ZuPQ>6f}yYqEX3N4~b zGfrup|BW(sdv|1PF>RiDc3rY3@afq=U3^w>bSTsA+3G)~Ef;7V`YVby3!aMoN4MC2 zgk~@i1)2dpsa5BsF#kd7Qj@@5t=_9JW*{~V#8iU%*Bt$xsB#Gmf4RXbqo|ASuaZm2 z@jb#BMQxK*H1IXdF$!lSjE(}HBsTh+nvm0|ZdoZje!1zkzL_F#-t(m&=uA&oLkJuPfFI#!ru*vbzq|0|p4#pPn4-I)AWhnhh> z`eh+6;a3IhsLC@Z9ohm@lfEF%vg#qbz~FZq1x{n8b6kM~Uk}o>dUQq$3*Okp!V&I! z{+*(nVg?6K>-RWk739w@DJ{7JefY>OkV;xcLv^2E#$?va{DOk=%qzM!5u=HY1;G(g zJxNDP6K_o$l`%*+^qkK_8P^8Rob%Z|$CrMOhKA<+)omn6J0GT*+s$T9!rTOtU0Ynl z1BQB-kMM>CKZ%!OqpkebaAoMRfRt!bcjDNA;Yxu(h%9nP7A312^)lxC)_56_SrK2F zL;YDF+U*qTFuogkU`XVFl*j`kRbn(7oiMAYxX{4X2{xDaU@AEh*^NV<()zW=5!?~h zvQi2QL`QESK_v1y{R&FcZC=aF^3!xwfl0tIL?YWW%eXhqF|&Z$lhreN!Hez6P^`y< zV3p;g3{P7ea*(N_<-(_~z=G+pYTNi6r|*^t^L!H~r1{29nBcp1!i~Ps6Rz@&nsDcG z`-C4=q)o`;d3(i>38Q(At4N+ux!6A8+)`(2{L3s7VkH2^+azmtFtKv1#sA_=@sRp8 zSZyR$JK+EH%M2!t&vW_)ndcr`*e%B)j?4JH3ETON6R&?bn{b$o)XwGR+Q*eTeCdT= z$7?lIqMjV1Ese->i^q?z1%da$xL#Ltt|`q{m1_^%s^;2*L(PJ;pB!2)Mx`9V1Uwi) z#-xn3`jRs%Ct#`MG#g_t?Z|bifN6Rnqk~x>$R!;WXp8gp3bffcE^gtt*aYZR_)5eh zU%!0y=qyOs1hM=g(6f=o{GbMojxuNGJ96^i^j(WFshk5xTE@e( zd!>81-E(?L@79kSat>K9+THp=VPS!{_srty>Z(__86Mq5%{RbQ{A#Q*6X zWAhIA?9&?(t_tOyPTx^r}Ao&QPzuBDEgWweF)^2iA^_;rs}3(g@Y3bsBtlAE>7QHZBMGQX2CD;e-n0SEWrC`XWSIz zFej4s$&=*exQ$O-8%B@MBf$lD2hJr%aZcmgzJ8sPp2s&ZSbHqaS63FskgJy<7gnCX z)2VRLOFq+U*>?lufY{S-B_`;8s@a{rIZ56uwm8C$QA{(sne8}O*AYw>#~nIr=QCP=lsM@~w|Gv-vdEe*F^GxQrUruzH=KyBqOxB-fZ)TDTqjGCTf|3f^DqSbLGXQRrGO=(34V)ljv|d zGt7QMsJ_aQi@*MuWR@$OO5$?_Jt-4Zcg^>BbS+k|J-)R0P@a+5HrDo*HW%iF57{Yg zW6RpJINIVN;IF!@ZIM%;`)4Gxynf zs+~M?1;}<+kQE#|D|9~l7=QKm@DLpv!U5i!e6Z# zK{NYIh?Tn`+&#m&n{%6I2aCLIxsK2!)k(au6+`tA?x^_=ICF6+FU_+jDFnt}sG z1z2b(xpCXhuL)&3gkh#r>jcS^QPEsN+XrD*desjF=z}#x*G;AVWN0yFInm*B=qU3M zo-BLENwRm02a_fQ)pEG3I_a5MUfAhDl_D!<_<+rMBf^Dxo2FS9^u!n+0}rg7P|-{) z5E*G*>Wf?~!+ez#e>|N#A}+tnC-ljU)6{&MFBMaha({cNuf*Gw+LoY+gbOuA$vMMX zL|AZ9%%55#Dy+3yt@twW{M0TqI#_M!_p-C~bDs=@dsLR|Cp(`&T|&gE)@CFmBNb)3 zBOFSXb>MU9bCv_a56;%}l5LGK7iY$|c`{GpQtZXP$U47-=+Z$*^{xrSBb<;BqbsYK zj)<{4V)UsyDi|_Kfs)je6)wdO%A~fPCW)TFcByhQR(<2H~ECfMe?I}WWu2$ z^YUVR6}lC_`mMlNTf;=_^~+D?CA*P7A}28PC|W@}Hdh<|>}jU@MvTkvfMJJccx}TU zJje?h4v9(t>L`Xlr+Y9lPtzo_j}TVfr+bKdHCKKIS{CYJPWHdcdrC4dq(9J-L*BU_ zHjF^aXdbz(u@v#(N^7(Lnp-hO>4#m>Pj+!a6h613{5j&4(uxq>r-Pxqj>@g-7I6jY zRq1+&Piw{Lrbv08Jx;Qy*Re7ncjays6+ggb=$l@UffT>-tnO}NFsWUweSwx!z-D^R za09Jld8Ue*psJii9d*ou)F^!j-O*9LHK_i}AwBo-rCS(97j&arxll@PAayQ!_sHPg~`k4GSlL9p#(!1yH&K-Inmx4U2gpW4KVa01)nn1F3Vs z#PuO6byU|bC5Rbl`Lz#>dpXehOTMMAQjY*?uUg`?`g`%G9s88Mz_b|c27#SvqN#)pWp zGqsDew}{bC4CIK>D-iuxRyk^!wKDI}=(!R|$^aaDi8rD4=Yrnl93MYtae`dl=_da^ zkql5s-sC3tkc^08Po};zll39F7!%zbkCTImk{THUMHz!`$Z~3A`s*+P;}u{1R8yL) zhBXzQrPsIFe^tpeG#Y8y!5O8J4a}-I!7s`)i7ffpD4b!UKp5b+T?$uwm*q9|N5pSNlHJ zwY&skNV;IyB5E0GGdw3c2Ruqp;3;Pa<=GF#%!uSeZ-{c%Ln~DJcu?i*2CRH*oev&d z;seMsd+|6D&>d*WW?_-u`WC2>gukH0?GC=u!Ams0KdvrvI(W8VF6Sebhh$n7jEoqLn|g-!+SojM>9pxch1sv+Gz7roQcWM2fOO68^W zr{PMsFB?D7!1_0FBpbG9r7xRQ6}2Q*tWRnj-O%8!*}HVZNDoeT`je~tYs1Ryq*e{Z zN`NM_1d*906a6g+EfYQM_*T!7R`=*q&?F}AUY+B}vl{AM#!1Q12xddMP?3fZi4zxSMZrX>y5?xJCt;Rmf*d4u^N0`^$Y7=<=tmjThTHLt9>OQS& zu3W?y4)F5^=jTmK))-lAvd<|NryZK>xr)R~7&FBCeuz1()Uo23d?-p^=njG14`c;N z(r|o$s8^7#=`Ho~QhkJPm_1RTc?7iWGEPjibp~w-vGGSof-qM1uVvfVEZ~Q)NIH+2~MUrPu||z8y?vZ26v+0(Cg!$sH{7D>afZn zCc`VsXn2Uq?8R31KT%U(_<~_Iu`ds=DYs#Vi_*UWCe)TMP+`!FlmMDs!o^RfYOZG; z;C~0mSWqJV^$CCRC$xBy;d21e9j>unE9ivRfRnIZVG|Yx;ai=bXpk7=VMHX6E+rGg zQym)n^bkQC_kmt5hlFexPg{+f>})3w*!VsbGhafVB8`18Sk|%_K!K;ygE&WKZupFe z71P7up^LZNA}QPJRS>T)E)`xvo#SMv?04q~v!;P)r^3TQIj1K(eMCd^aaI3U-RbgV zr|FpRe=G&*UY@&g(r}MMlUg0d|Yva07QIcyi=84kpA z{xQTaq{E}F?t<-8J4;Hrq1PT~y@Ue*sJS63(<(?*2Dv#Q3HvNM5q&HHm(RrjB5DoQ z+D$6f zw5(JsJ|L4qXa+Dk00@L?%d~o{RgvIHEW+ie_9TK*f8TxEKFXDKB^tH0O^Z^ZL``*+ zsG>r4RH)`aj#w(-d2&%gU4_Cm(7H!vf3#>`YTME5IIaLCR|HzRcp(OM1$*p3Xa;}dju!>+^|Yft*CS7K{sR$WCb?kqq98F@+IOB+ve53t&el1R8?R5u}= zUF)h>5y~fgdGo<5pl6Qe%*@l8wCG(FEY(^~cd?!zi*?hJAO|NQPxGb6DQc$w6!M1A zu^*XzF~_nZwO{O%)muaiRWR3>U+@{#J^bloQr#m`ojuCQ&~RkzCS+p2Ix|YWNv)7O z#(cDB)ir^Z`4A1|5w3r*U{C7-V!(gQ;qq7%X`z)eUBnBI-bWr}_DnGyT6yG?MLr=F z;Xp(1@h2frG4(q-ZeMQoECm^>b^V1o;fpZ~tPZLRMFZ7>*G(NVcm4ZKfpdR4O^ zYx!V;C*2=f30JBLsL5flW9mI}G&dgcHvOn*a`=`+t4J_0>lNzT8B`@whhMCNOMP}_ ztrQeqaHnc>+Q`*y$Pl!x(m)7aaKC!xxRy0H%*?KFa$`z?Wg&`qnQpC5Tt5Zq0KaAX zM7HhU@S+S~&&8_fcbQ%>^*|+gmCo&SAj9dv_kbnljyOb}@-2G5@%1<2a1c3pk zIlR3V=n5+uQ`vu}U~-{`m$FESKPb!0RQcij#X@1mn<`b`{jN=49dx#r=p}dQSq{G% zQ)RSiPt>R;^>)k8k?6O1&Y|B8vp*IADyDuaT@*eCBu40ofZvWH)9D3nOYPq38lf4F z!u}Mz8hB=~47*|TrMS~AVo#%(HIFV`yOapjunHX&&zrH4fxFM*Iq*#L*DAz?w{;m` z4V$JtPMiDHj}_ki)x2-;jN9a~2O9RDz}KG|cCt$Bw;QI)uQ$x2mj+r!NF{f@4Vs%r zs{?n5Pl|bz_5U0Fuqx2n%|rXdvcNOlE|g+R19$%vFb7(`&wn$vXzlf8tm4*HtblSe zHZ?rS?0gPt6}WpZuN(SkQF=69dW6x37*ye471Z_?FlAtcFy&Lh8q9X1ay>7hcw{;# z#krne%H2abOibzf(`IZjfzEWpOV;2w_oX$NW~_4Utqn1G{UA1|eBIliK+0U2ns z8DpT$y3A$ao6T5t_!={|EL@G5N_e5!`2@XPJBv;&Au6=Ata8RM$ySzy5)R;3#)$ph zDpBN_Ml(-zb5Q|X!WcXLkW2CH3bZbzek~b{!h{?1!F>%Y@Bf}qND-X}f+}YU?Jv_-B(ED;E&&=)m&kIH z&?Dg1fL@tVF{{^T8U0YyS#O(vOtq2khlW?g`Sh{FGtQ3YNl(8F*krc8@*Y3>UUHBr z%2F$M)jS*zw9X?_`^vca*NejQi9j~}!|+*rPUka)&nf0#vyDr^6jPOlv!-{2Gx_-W z_@;Lm7dRu?$1#Y^&FJLM8NjKdazNejM>^Z9u3^G;;FkSJ^O_iF5_2k0*r%0L1M2ZV z>70e+ltk(9)4CKe*e{DL7F`as3BOW!pxcX2+-%*%esw|>UtfSjI-d{t9N_aQ zpAQ#)8^puGEF~p1H4TqU&Nz~rC&B~o0-Lv+(K2V};x6p9cj)a>>@9bx5TfuEC{z)L zFE`&kY992jJtK^>E@qh1Uj)W40^b*nqEM=RM#yKMdYL^rYiLwaC{lUrU&@FS|54j?BZqUW88sc{=sL@@_@Er@LuZVP2kabK-k+5Ao~MYes9<}$r=%>fxi9c= zS3!IUZX)Kp)4{l|6A7v_{mp{yQ!3T0&Pe6Hw(_HG<)0GCSNQ@hZ^(j%SR3+hmHb=6 zzd-A)pudJ-Lfbi-1SHX^q7_48+8tTer+y296Yb~{&_;G>beg-PoSSm68{NSdx1h8< z$rA4=|I{1(otyAIop96}eU5})L((Ly(+LV?HTCMC~Ym^3?qCoLzpE)z`sQ{1eGGSk5Cb} zcC-}xgQ`JlFBAnIzBc89b~ZV_;?_Q(?w5IN9MC{_@U6LUs*yKr!ccadIZ7sMhn}!N zYdd?AJ4uk4p?O-u6fr^5-?S?CMMJDMok`9o)8qQ|Q{UX$0O<9J-hTD)J1m#$_Ohr5 z5b3Ydth30Fh<=YO;)`9Dt&%+zmH@%2Lz99$gOMyw52| z9{~Ra8vMJ-E#U7{?>f0?Nn1ygw_jGXYCEpg1KnAHmbaZrZq>qbd6o=hokOB_2OGlr z;Pz?N_cr}O{t-%rQcCQO_vbmq0E_X<~y9s*BqC*z5FOHkf*{EGO-Q! zK)1mKS;Chc2e;25R7-*-%x?F)1RO=h~_f=+_82S`f zaVns|nV)RYLIQ3u`#C2S!}x4rl1~RV zJKQS&;7t7*@@pM3v-FWvzbrQDjpoKUiwIUbkKPG+W=li(iQX%{MSdn_XY@G^XvBZX z_&NjN7&W}&lM0`V%UIwxccIgq#8}@ zCwrP7;$}78tuZxdzvt`+sZw9Le@Kdl$;L*TrGW4N*EG#^|Z=7cV$%kRhTsID&B&dX9!X=uUH2+$$T z>!=bcv2S#9Blk3{gUwK9Na|(ID$zZ3`i3!va95IBL??BIbj}s0T=_@(+)SJ1)?7O$ zS*>C>OruWl;aNco=EpUjl+`7{^sowH;%bR0lYe@gEZSH{j+ltYlOB)9M`(KvtrW%{ zNoKQO7|L{(t6ul*e#RbX{S$NPbi2@RoL0ElYd|?5nGaBf&R1uryNe$SvcK6+$>LLI z&@`TgC_-1pO6xG)9gS{=n!_OD5!T`lYjVT_7~rruvT{(J$*^^8IM5PFkJF## z!crvYaHFp53MwOLk`PsQBOH*j<%4QH1(85ID%lx1fn%;?;*0+q4roaZ2@10WF z4}Kx+EMh5vy!TL@bWLz;wobCgv}`w?bXL{R`!qrgt*V58n8RUzb5WI%S+@B(faVA( zqGrM^TJvYOIwhmTO!Q!Kcu7go`o*GrQsj#0Q(Ycz5SH~y`4^ObIr2|JXc$*EgxS38%7zB{s(?UQ9|e_23c^J~x>`sVJF+FO z1HxXFFZ4(jizrTHouAxrm6XhE=--d{o7S*g=Z~oefRs2#H|__D2rf|TLA-BVYOTVo z%Q{UGD+krJx>BgqppdBjkSKeCE0_z(T|$*=`+w^xT$KPe6kRVCOgND#Dvz{lVj>#! zgeEj2aJOg$QCFOCIqHf_L=qg=aJhVCHe4xRX|4b#(!PLOLv^ni)PpD`+zH z|8)5;YHFe4VqZrEf*UiXU%e{ltz+RLxIIkP5vxCjrR`z-SkCK}be1zDA?jEVw^n~! zf9~O1K0oI3O+MdsKZ0Q6wdzRjo+&u6AfkU+Z`Zbu3~WAVZ3C|YEfV~Pjs{vLCLYpw zke%+Yz@mMD)))Vg$D)YbmEcO)K^~oNpk1QKd-;gSFMqS3yj0m5c$erb|nnGBv2TL>iPuM8*TWnl9dRF6kS8I-a84nfAj1bYtI zjkCn;$=h6bhLO3=E44V2AxURTQVE=;la!bk4ckcm5Qzn4^}zxT7a_m8PJ~$em@s5^ zj8?@VNq8f5$tOa&QOXB+a1@nL&g7B{$fFhDZ0*J% ze!2)fi+nQhZnHlHY7=M~0Ck&-U>E+K2ie{P>0Fsfs;+ZdoamI*E%rN5 zr`vXh3mSn|pyesL45!oj9lo`IREBAfvn_~$&(>i0W_7KYb|p9!NalfVv=2W@6mTRe z$r@<+7ZO#QqhN7|vO^tsRS%_IQ-0Z}NRtR0jFUuAtZqj#V2`QaNM2o-Ek5{3x05IwR2_>{7063rI0mnYoD) zMNWxZk_nGff&sF>?2mBsMvR;9n3`dB4xHsCW;7LIRuT3QgxuvmpNtyoCNW3; zdOPEJ1wX;#Zui--1D{?mR#Uig^~||%Y6({Qfz}^GlkjoFf5>_hque|E zR)$k^wp%kisf#k*17L?ZXnKqRMmHSv32@MuVQUWBp$6Rr zuiAOAj_<$&&wvM>*7XOUWZ3dT>dquZf%V-xjP*5Atu5U+vO2Ju#tHKrVHV`BBy49l zr&qumI{a8fzc6EEf&1jF0}D-dA`!N(2#o<^p&FBmG3sXc>+sO{Ixup}aCtMjQ@z6&{TD49p7=sfv#HL1dG z460h)au$=5%69HRp>UG6Elx0)(c73vgvAO66r5=GK@=W>^g;_CH{? zna1hPVEcoirjE)!)&4u(w@HG1mHixB3M0yONL-jCySKopUEVF@mIJtDlqsTF@zV5C zr(%acIqfC#Kutv!G-C?_Ez<OxF6<;Zg?v13ilm=o-#%nq;?DD{Uf7AF_9q2e9jVSiKyCp@q z+x1MoJhVPZiqqp5J^r%vcmf!xcYF~Ej1#neNhV_txD@?{9wBQjKhSoQu0JhceuW20 zdo&6Us@G*kv`951OqsEK#~_1sAy>VUzYuS^uq=WS*Ox#^G z8=9f9SHMv##2%C$K{7a^)aqm3U*Nuvf?fK3#j)=vxbL?o-pdjRo#oaK8s`rRd8CCO zCvx~CheH^ZdVtiZ1dDc%zF!|0_lY&4qBks7QPd5nv6Ml*0V1Hu)(7=mRmti7CW@12 zf9W`&|2t^nuA@5+GdFr2iRrKCz*s>!KkDv6-NI?PG&~HBz*5~CNBEn z5kaq-z`bJb&Y@}3@61?T;NFilrmr$y5adD9Nf5D7Yk$tM^uJxBkEOrCmy6E5g3c2d zrqfTw^h%QYmu)U`G#Abnm>E;l&j5k!$4c!+l3(rw5;T&YhdTF>xiLMJoWc@ z2XGis$_lL$`&(B#^DV7~QtF%C0HaskPUqzMx@DY+N%lOkt4d~mL=;%NlKXVM-l*+y zNucFW+5wsiGWS$nj-&-8Ek^B1&_0xXpij1-`~+#6%PS9X$52sz_(Y_d5n^5igpCo9 z6Yjm0B|<7Hl$fgLhjdARS?17ixPlhywy3W>rmqJA<+8Yz0d;OcXY;(XvDMUku#}m} zJaa{jy#T~nx$Lj->XXzkQ9%vQmwzS}Yo~gj*9Meu%85~Ysd#e^|td~W8MY)2y?g?-B zcGvAAruNewc9zpYPNB1?<4AyyT5KKu(%7-N%mGD5{@8i=dnMMK9_VxV@XVT(Z<=_?&Rn?Rz>oYHe8x@VD4oP z$YS|9OF((LsC1+N`sc`u`bb6VXEzKCGH`9sIcra?tI8>?_XS#Kz!4?+5L~(VDd!yH z`A!^ZjBcL$EKE8?dWEo0^E~0DobUA}6dKLywNAPW|NC2+kX{@!%Xi?IiQnZJsMnh(x+Zh-tdLqWv}84t89(p(kH)JL-B)k%St3LZqw z8EAP&C;0;{`x%_6{Na;oI$Cd{rC>*EgM6v4Lh$OM)2X8%J_YYjtu$q`2*LIBi7(X> zJi<71V&QP=FdrH9e31t#IawWaPg4ffVcp-s1kZ#*0G@@6u z5M;o_#u&9-<_@dWc)(f2n=~Y@5=iW4o`6If6bfIm1po4!*gfu3#k#$IfzCdl<8(TD zn+$d}hA55^YxJx9c3yR~E~n0#U}$AWYfy&G=vo)^AOmbbRuQt$tL92$y(*ipUwNaG zD6TumHK@%+tBgvh-F#ya04$}Xv)Ad03Z)`XP+bftor+%7z*#AnC+U|?FdBe3rPr(YkxM-d`zLpmlpO`f%r+$Z;AAL@b?SO;aKa(#<-;1($ zxMlS)doOGa^eIC(MeY2MoN^nJ9SWe=n17$(^EpD%J^-eil{@5ZP!LPph}_N2(G{hU zVCSGLf->sc#-v;^w8v2yC2j{n^Mk6T)-3jf&qt+_tL|XpYqa*HW1Y8F-Sk&Vh|+s9 zw;wlVa;LQQQfd#k2z?XG=|MQm;9V+?oqAAGD;g%@N>M=>6GFa*9Q>8(g0z04EL*JP zQt6tTQ>&vSKS{;qnYX65FY&ecOOJW0>%+$wp(K4}^kmxojPhW|n_T#siMooWL}Miv zX?_Z_N@B2UaWVU$QfTzLCx`rqCK>F5^sYW|(S>ajZTjr3>F?p9+x>p4Vx=_%9%A zrqB(Up}yqSF$fTpsZ;h+uq%_ z@{cXA23pEVZ9c>vT*5;O*VA+-Zm>N1(y4v35O=n?J``t(55?mSl&#T^P;XG>>NN=E z!dw9AT&}bNJW{!%`OsA3)I#nPKZVN_Qba^5H#t4b7p6rENmDWL4$t7Udbu&*<={0d zjUHQl^*8X%WuWp#E~`&#Gp1 z39~F-#{wgq9*oxTEH#SZQNvy>{C-PaxCtcbRa1oKit{O^X?@}`e#t$Ld9Z*}Q)KrL z{U6p7d+n>8@;Jsh43QWc6(b=mux#f4OcXh?2Qhv8R#k>v|i1H`R>z)!T zgtQ9X1`#d|O@9%Xf$a%gK+*w3&q?!efDR6`eg-`lQ#F*|?7@&YBzl2q%t5 z%`56unnSUV$AfyEF12uNYlAp@@TyjNqDyJiYI*Y0c)VWN$Ze|%e%F(x`L`A7&8x`e zSm$gQ_!e_8gr#~_%86~ezcjG<&9;v9092#8ps#uO;=p}-g_Iqx2y_VVF#YX7ONu1e zsGQ`~mbDaUdBSl4U|4!$h0Y~I?r!$r)_&VgzDL9&f ziT95r-#?Rl{}-MT@5RU1Y53dnz7dhGS)I;f^h`asRe_dq`r)#0wt2WZe0|_vIhZ#O z*97hpJw;;P3Z))*fjUt6At`!|zCP0H8CuZXd5pj7Xj!t6$`*+5X*!@zQ2j{Q^kprw zc(a1h4M>F?=dSfd#erhOdlIaJ+G-jewjbkCkf0hj`$_hGp$POisIGZhfOT28_Dcez zD*1Pz018_TX5K-rhH2s`>R`Yu@-y`lpG6-bYroc=%S%YG&l_GSlS20P;VFZn>fNY& z*RzO=LN0JtReizlR;b9zxv2`rb?3?|##n336&5z48QBhtytyyGtJl~jVGFlLi?!L zR26tbYzwr?*?dAP_f_yt{D1C!P;$ho!ta@}24k-M4vmiXG?VszqSgajyy3Lbo;=bH zR?tlo4IFqf0Os4slda9W4)#3AJWbD>4>;XO@AYt z%V*5=H;mn*JwEdOT=I&RDf*axV)W7PNX~7>FWsKPisavUHs_9K$gyJAuGB7v^?Dd; z0l($-M8%k%%ULN}FHgD?TWQ}s#QC6T0L(*kn(E9$Wr5Z!_%+&dzqCgNU1&-4As$D2 z_^(Zg&G#>Iouc0NhQlWR8qD`c2U;gnwCq=2hmmO?+k7bh&WoB4%~?MWfQf5QXPU%% z>KW~6^LU0qOb^GSUhW<90zs204G?=uC_X<^1W0 zdVrR+5G;zj-)O=yq%)A}{=nq9)s+TXe!(wiBrmHUQB=PXE!=(JrALD+B=Qh68F9UQ zz@bg}%3g(rNOk^#KJ==~rJ3?UTBI}56BH*$R0h=n4)J@Iek9s7ToOzp>(7JX2|v)V z6-Y+!0AnQWWXLoZqXD$FRG^{v{P5zZJ9N`Nr3N{lKIHyf_hF}yJ`T;eqd zWlVB3Pm?e<+ULwGIfmp-0Bcfo31u|{T!?0QAC@4cLG^oZDY}}Mo7S<5hsFhKI45+^ zY`DS9NHcrJ*^@WjBQHlgFV{kd*eziLHgr@jK*U$3Ko@I9k~>ICUuk6^{abU~%^Q@llF+(cdwlcIG$ z(*R%fluY`LgyYUmR|4r*tC$JwyzGl~4I-*-W{Qrhq`;}ynS9_ewz) zW);I9C5As*DADZG#qdCaH?E-%_m*ozpM22quGPFc#?D78LjtYr^_(hTiUXCY;*QVq zBj&nHPvh)rEIE!~c7BawBPV%b5k+2-u}O3$~>V@(50NMs10V-^Vi|(qoc)(-9U@WKJJRkvV(y|NZ*E zhnJ7-=JBz9`8Oc{V*J~dc7*?E&^`6$!PK=QukXrClWZ%yH_2#PlvM?G1go;U>A#zlts0YRnd6DM`U}HHqWOHQWD1JIB?@`zP6ddAv{F79Sz4kuG zvgjboG!cx44cKFCQ@J!vpdzc01{X<#Nh2vozXhI;nd=84;S8eK+(7slxv@`;ptMMI zr(MkD&*t2IE`E+1Vrf)e>)e+gpCf5jOy&POUFfUB43isH_ZW4dxbsR?@uCj-fidr~ z7u1BNv3F#!))6_x&Etd`H{V%_d?ys_sdm%G>onVEy^S%e+IT(Ps;A+F66nP0UeVnU zY{qZ3>`^3O=>}I#&^s)=8e}90-@MRGXDE!4@FM4i^hYHl`NCs@Y60)f(RxsIyh`f( z%mH6@m7F8$FdS@h%YZr|+pMo0QJ+4}R#F?^$r0A?SCY2OvNs&mr*LV{3i?&4J>=m2 z>+M@Ibr>VyD@VJ;v%9QV;@M3_=jdMJXkP8(`djmAzh_&SZwBexyz;g?RM^lb_%a1D zq@$(mGq2m~kx&yCVe-BkDji>o)_GG?!7DKF|sa8 z6-ZJgw#?b$NW)b<+z-Z*j2n4zBbPWYob6Ss?cV_$TPa6#M?6v4>j=N8SB%k(GOk7Z&@- z-gK&^pCyRN`V)zLVl6E6(GOzSa@!;XqTe1-M#l5)b)+gd=tasvRoM){h)YevyaTdpirvr24`977hR&vb7P7iw* zG4g`7YKfi&K(KOOcgVNNtG?qQ^a(nM=Z*ldb-5nn6oIJrPgPHlCL9z>%E;ne_1?dd zuN4MaE2bOsw8?V#1ZQSY8vE4#Ro}-3 z03(Rf20_QTF%1(!;_Jv==8_>xSN5n(;no@Tj3EQ_9*Ze=A{U8FL>vwcnDcd@k$l36 zD7MQgtC~M=No23ih_Y_Ju-@0qTnVm} z3a&`Fo*1hzaL-5xZSf*spu@`peBOq6(uF|lbF#lTWu*pMKcL`-CZ{VW@}Og$jOIaN zp0LsIx~M)k(7KHWbum3ETAmeX`5EO^3BRnHveaz8d&>K~gs+QWK!mTQEw(4~rVFPL+%X8KD8AV+kmSPL7 z#{QzofqT!UnAOc)+uZ2dkd2F-b&21n)>gg}=dizZth_DnzlgwA)KonA&Nri4cw?#J zaZ8v;B=T4SBx0TBfaKqKO7!JCkV3`*$ z+Z{09mJEcc6NN*6N8Mm#WiRWfsBF+t?G=~p58U@d@>oUKxLCIlflA^FH|7NHy-!jr za%F4wcLaUffq7?S*^Y=adT%j-Y_*>>?A3Y{ zy~->f%vuby*xK1N6CY7)*$#VS+~5s?t)}9qkM15q)k{1lV-PeZJjZ^5bG;<1YwHZ{ z+0oAs7MNYxxO*@X8QZ^{BOJ({=EhtPCJ99Cdh8*gmExlsXf>tx8K;wD@?62ETMTnO z%QW-AqC8*tt0v3PxK^HxugBNs)~Ia&RL|;C6^*f8_sPF^_!j}W-r(D8oC;gAzXsxB zT*dxuqtne|3f7!bxH8v3Ju#IL1f}a-6P;P3R?t4?73zDG1)q!z;c{Sc)E!^;ih+X9VCLjsyjh-&2w>;d!v8D zeBLw%S`O155Su}B*2)}n9dS|1IV2fBm7UZYRN2yvoBZLK8|Lc(JZEi~uLJT-aXL;| zWjA_Jt@3?KfSxOS_v11MZsX+%mH#8xz{%7jNmPU$IKVcJj3@m36Mn%B&Sa z@Go@Tn#V0l@ur)F2EN8+Nvvy)*O*#slS3uZ&jwkM5G_!&7$TdxMLaf_`Qx|b#%BiA zdwK!{#V3M@V8UWKXp!8M!r*cJZad{y65dpheM=UGy>j#X6RYam-SA)LHBR3&qv1qa z$`k<|$g^1p(Rf%_-Bacl|+%fHAh_m3Ss#kUz1a-z5!O@E9|~09ri}FGYMYuje21sJ4-b) zu-`p#%bvnIEIyE{JXR13e8XRaX6hq>wjYD5*6ld& z^kk-fB;an$ZrOg@REd8#`O%w%-<6o3AVjY^^9q_@wvXG`v(!~I$P69m@)J&caSlrA z0r*E18Pl=IAFQ&^JCNZG&yny@;oYR~jIYfm_En9#ldd5sn(GN1yGo2=u8{nM=ey!T z8Gj_*UQ)Cw$2h~O@;elLkfORyb%D;pf${}TCHADERAX(z!L7$rW zH)fTK<_6R^S&W*8bI^kujQ81(t1(x33FLF+D6Q$hG&E+sFBRS7SN4^{Q_-2&$H31C zy7dKY!zXRH@C*nM zmuY)X>n`4Q%g6&|dDvV3nEoGF;9DI&z365bGSo_r zbaN&*zfyxkv(t)h&NW6-+qKl@3$JwAGK$RGvr=y=#a=QSk8Y1w&y_9xPM9`gx}c7#6!K1A3BK9F=x$6~*P zSNZyZlx9p2!f9Z!akaI|S8$-1`v^NOlEB9~LxGQ%yMd28b>L&dawXzK>sXc34`dMK z;y?-(QsBn{4_e&=Dc72RP(dLiFsC;)wJ+o&>JWX3kX->e#hVPuYQ0E! zd^~M2@64VYb6bviH0PE*PkHSO#jUj-Ty=C9s_V=BIcZV>QNykzLfOi0G(l1bh~-`1 zlT+KVDTiN(Tu<>fK3doJL5}%XuVJrx%KLY9T&3#>Wi~t|MBy41uf{iFE$J~9ADw6};(Vze20^SD4&Kfdx&u}Vb0_#;NqUbYCj)nGM_T*H>AZ}z?&Ues+E2zv$6opW zV4wW|{%-mIUpwXh^E>#z`kn`4`m19=e|^7Kf33r#eG0eT?u#r z{&YvWa8`@Ru`fFzHi;h~p=`4Yepj!~c55fAHRlo02e7)b3+6~8M6RRkYb1!Z3RXOu z)wy8c4jmXV7*w}0E~=qtC~RuvPY0bN$@w89ZbxWBe7sK&GMpAlBZ?RId~BZJ^K{k_ zFHTFPTQdo=7u)$=!Q>kx%v(~w@o11<)PzzId5nxrq9U@>i+dU~te(f@O~@Bi>z2WE zc^@@SAKD^YsgmGSHUr3W{lWY(#35RSwfJ_p29^Njy^Pg zv&Z`3%S@M9Z7GN)08t|So8NptChzhS4)i3?fV;AA{sZDHWtCyJ;Kwyg14 z>7hT&&v#n z_Z=3mzHfJAKgfi8y53JI?m2nSC$F9MR`_yjSA3S09)#yq-{YNz*ah(8$XOkgaSMOv zes(OefLVa-twiF3r4@@)xQ=pYX;feMfs&c6UWb5rw`T-9sV^7YN*(X`N_o(K#y) zZ0QV_Sw&b_O^-#qqG^NA&#w(usRwVM9kzzcMRLk4j&Wge*7Cs->8xaXtd-uSQs_^5 z=+otcQ_>|+r`v=aMM1!IHiGJdyFe6C zfWE^rMj7l?KN~*D*`SP;6fomg;$Bf_&jGugD|ZAEqANa4&m@OQEEFaVL4=7De`uLJ zCeDzZ1K5I&`GSsrzHB%;UeD%{#Ol;cSkBMD#6uJjfW^+ooX=D%nm^2g+qYr_z=^N=5Y#P48AAb2GZ( z_`hMGg@cBntx~SAV#(t7kR54#1fd)F{CKE_Q=A&2<5~D}+cNmkFD!FzM~6u0>Nzy) z5ZaFCB{B)o|6ctWe?-=PUaFGo30fuY3TGKQL*)D4;#cHBiOFG%YtUOZ1|eLZiaD-kOjf85iX6nH$u#rjxZRzo$#^Dow7%_<$;5BeYx|#p z|CtMu`1yU|+QHAygFlf0|Bt}`5_GhhfI9I14cox~Q}EwQQ~wbDHx~Zi2>%~1NW%Y= z0}lL8{yh9o|33qNKkW{Ke{BN(9QXLaezVt;ME^BOR6G~-&jwvvRnTAgeQ3jaqwmo0!E55zJE`mJTC=`}7Y@1g~(a zWy><3^~oWtk*?Y2Zfk>wpS#rXbf(!&XXi}p8ogY;D;wq~2Wrj!qr@ePrQ8}&8*~%w zLWrSub#=j>)B{C7kOolxAC;Qd_=`8n_gWtU>&zN;@KP@-p(C=#o}{&m_epMbVj3t^ zeguOboja)hm3(z5)U#< zO+7<(NuU60v+naR+27^(H?_x3N!^AJuKUOa`eALy(o##qnfEEyL3KA-QQ<94jYXPf zTT7?4ZeQ;MCMSUR~yo~KLTRg{Uv7=;>x$WpNjm{(b#H-S%)km8h3-SXSd(DGI zYfe1A-LBOS@ruS*b2aelh~KQ3ebnAa7k0(z1iw;-_o9lp?VmC74q;}NWiDp)!v>#j zb&uK-E+K>|@?=L@{Icpu#WeNTGIqU{N1Q;W%?C9ovX23U^rp=(ppbqfK>@dfI#mPX zbGk9f=?1+x4kAuZEiji#BQ{5Ds;xRqC-u7Q>E64NMx#8;LXDa(qKWkfSmM3!8 zVrhxX%5gHw5+}3roJa*Hq1llN4!Uw971{du9rjIDf|R}fe^{2QUjT2=VtoVZ=3$al)g$IcT#N`5xV&zy0>Y8nqTHhK^caB;&GkqcFV9ydFVM>3j97;Zm~Qo$r%H%jmpE=1SVxf|rdC!X(sg02dI;@7o8~T&sOvg9 zgpEUvO%q6^JIo`X*6gKKfkfS**}@>wPdpzvJ${o<(uA2MP!@D$*q$qQhd7%fCr=kp zVe|9C-D)OLnsJ%L+W3D7bE~@P2_9rvBlX}SQLmmqk1ix;o@r(Vs?i5Di^O1g+H>r* z3%kP^W%^E>zhQmGTA5~#D7h{?s-!%T{-L#NNi$y5hYBYe-X-lRWeeK4Q_DEu2G|~G zhchqhFS%lEAh5YB@Jw4CRvG5I0j}xUPK$wOT6#-K=~6!Ny3%NLT#4ppDbX(_I|ac zA+nD6ojoXOGTX-t1Ca-hs`m7@G3~wW=@kt7bU%io1R`ZlUjbtg^Q<>u09@kssDw)*@?eO{z~Mq7P}UC7>aE-i#KJW4QfX{wDpYlnUP6}ypVbjp}8L)X#V6*A`By7%o z-+@i-1xRH7ytg3ap!P=U?e3D|sd)EB~rtcy4Y z5$IJ2w2lQ;aS~K}fWhqi6Ah|g zqk(dP^QC&T|-;7Gd~I0Yy_hJYj1dm1=DO8}?IMItc{6XdguPd%Tn@WHzip&~DQj<|E4Dz_p` z(Bj4@ejB;wk~}|*#F9LpoyC8zJ(B-<+=IO&F9lP@z{av!|Kq}HIS>F<$EgFelF+~5 zJ$>IEbt@zB`i-I2l|!$a6R$T7y*@Yj+To~cIHmef-K=wlPiwE3=@64PF*!V<4or~t z!)ft~97eP>C(co#v!y%be(JQ40V+q-#AqLpYYmBR8QT_ zx6M48TcgXS1=SVU=yaQ9*|3<|a#~n64OJ%iFb(K+uQqR+mB{#$FUr_nHnXHc4$;ki zKU$1Ht6cHBtt=N^ktcc%a4cDhDTFuVzv8ql`n@<>z=^Au@{=Ga(|znVZ=2yU{wyv( zu~6VXS+$Pmgc(~Bz7+qa@I3Ba1HEGnfmWNhRvED=8jP&cZDlj4)Pvj*eT{E^vh+OB zZO$_q8BbL9UeZz0d7{7IpH-FBo>Ed^NY$M>j zW9iB}+bH>RIJ@Ml;jEGy!YsQX4>M|Fp51f;P^$qV1gSBAv-M?cZ z11*Brg3*NBx+J_nFnVUF;fmrdfz~6u0SQ(YWf>>nG0M~@u=)?Y;itxGc0PI5SS?%= z&l;k{ejeAPaW|;@`y!zU3!6?M^jhHFW}T&)Kp4cJ zgijIP^#`QQ>WoS(x9U)qP0-9MB&1zNxJLFy1IPQ9)xQBA`&Awe3%9r3jNP=pGCbdm zeWi)UzbdQu>#}-pG@c>P&t;GQArJZT@UXcwFRLmvlHbjM(Y}X=I~c2N^3X|+=vvv> z)vbi9<3aDoJK2w&4ZkWX24Brh`8Y|mcSp~nlU5CeLA9&VPFgWSJXu?i30u0c#^NEJ zhjgw2KgT|?{4!eo^_bbsreuiCby%FkTPj4-A2l+J3j@SMyCO5#u{5WO>+3Mvbflp02@GgyUPn`ooX4hehIw*VG=*!1jd8V!8uEkc zTBinf_?OkS@ZpGccb;NZCgclb$~yEp%D;mbnS(?5$ZUuV5(e0d2B z{zv$NW3+=W9(fpsFF_WQ#+NS%dnovFKRN!tk1szHsrR$-Oj^oQ~uXkeB7I&?k7d{`#+#*+^n=u0YL2TA& zVsn?4Bw`M+xt*mi$n%6lY(8WihrCc5B3iiAW`(9Ue-wYqP9ZY8co-DTAb%=$Q}K9g6h;K zsLt;+)sdgo(X07iSf3wgEq5u-_FCf1uG|l;DO*kKmr&lSmagzLhvsyJM}*E<4n^8; zXSeJM`$E(04>i&03a78;a!TvXz{aJsLhF{VF76HcL(AnGlNzBtEO_73qN&+uLVq$t zWvf;fzmgz9q5M@X`!p4rDTN|;uG}v*kW1I(o3-8M=mSUO?NFn|W`DogxsGG2l?Tl3 z6su|K^rph;hm-WEc8DIW6^VEVzqkbpvj&GAtpQmCzv};<9#to5fF8|pYS8#~I&^{S zqK4C>WLD_WNGB_%i|7-zYvYY4GYe=F6O8uMp!yJh-eVZ;sW93ZB8q)dH+49#P2RZ> zxG&19H%K{JjE!155drnhjo-%N3_~h?G`Y6DZ-UszmcFE5)i1 zvE~#c#*(YUqf5%dBeqpclTO*E@E}~2oo$>TufGBxzevpGrm-qeOit@)Dy{wv_Mu!5 zliH0@A2*L7plYf!yb%+x@QubCFCqV7`|c#v=5)v?8i5k2|SucLFX$TPQ2 zV^OVORgE*7reU{6@%WnAY7V-xy1JnuOwfBLt1p>j3TTSTyJB{8;W=D+x-_q}lwMjj zvyp+miWsv5G3M(Ge6J|i`Su0-uXx7PYF^p(2M zA{WG00OLHNpJwc8;gyDgIWGa`3C4KIvAVb`oVL1n%NIa;3`2Jz{VH7a|8+<|OsUU; z^sHkb{VRbmkp4QkT}XfPYhMWImz2O!M#11^ApX!I`8NI@7N7nC;@rsR!CsQ ztj~qIp!2b7@J4zqbgrosMy?2qlSNzYj5@Hfl#AX4!(@E-_RIJx3c;iXJXR>Qf|Kvl zdn)q1_GC++ePf@QV!h&4(q4L`&CAl&%fLl&;yB5%v23KrD%oYxyXB;R81=$*aWoC`$XGK6je-X zN);m1HEN6DBl#U6w4BXi7i}K)8>4X9d0G9D*|+`j^zJ*X3Sp}=AR#B2OK^<|Kh;DE|r#Pz3n!Xfad(qN^igkAbM(mXaH+`dUb=<537cPn;XqHo9P!z|USN zP#=xztxn8Erpv!mwET$gmCtw?t?+ju8If8aF)1r@uooJ$nr|^2N^7skY0HoWB&)UC zs>(|+VOG8=P%BG2i0Vy8V(xd)WihV}wBTXpXY@sX4Jk87Y?7k6( zLf)t^ohk>ot6($)Q~$XphiKBx$tJ}t@$Z_zfOPwW$dW=k=&* zKelRT7p?R+O=?eJAUT0&dMzBK9qsVqM(=_JSV;Kq{6q52P|M4dk5ez6oSgE~SG2Au zsHOtoIuxO}m`>z>MtGchY$)4ACmSrI!vADJyR0=DrDXalxTD zH5@vMDyM(G_2TuN`CSLoQ+*xcB0!*_p5}FDd5lvf*96IRg0;o`!~E+%%I}J$r_OGb zTn8%7;T}gdb*TC8zN`^bG}Q_F=v~%Ge8Y;%u!+btvYT(?7BDfFPsLW=N@*|6v`>tC ztdw}E-%7Fk?dAS9FTc=cCdrHS4{Mk>tcKNazN;hDVS4DrP$l?bJ76G`pV!0$!4ONY z6XP=jo6G${l{X)#)?tl`fB1u)Nn-_bAnRB;u(r9W#1pQ!DhhGRgf!2_i?cKQ6*%0E z^(p3cgPve0Jz*uSPPx+Etc){@$_K-zY6S?Y5j={Ai5xdW1urVDFEoB_PnLrTdtx%* znnL%`0F=h4g2V44vS8(Uxw8XWh)C?T|9c$`Yu6IFUgV29`Z1XIPjqw#*@ks=!KZ-?7>ybSjF(#VvkN3F5k4nctu<`Rhavg*`Z|B{VOly|(=mI#+uA5; zO?;z3ZW{E~d%5h!JJezhEgnv^Sh!03z7tJ?Ic(qtj>|{zR5dcxGES$k+8Kip8jwis z7H{IQ<`fUn<(Y%xzVH%Ykrj9*l?H?A-yroc;!~Wm6P>c@CLsk+=6z_s;%0R+u;w#Z z^MUw9#Vcb5ckkkJJ-CY4(e*2^&v+I4jIqb`sSv9vnTloE;`59(l|;hBXJId0l8(p? zSN+;$=tmrIx!Ypyi)^oysVm8acV;r1_;((k=Q(z0j9$Mm&!fBlai0BfO1d8W zhHersiw#rgV!2@0CazjddRXLvsK@vX{eXN)zoFktR&mq_N)_`ar*cx-Jon3DFcxV2 zcZ#AKc=k$u-t8^eBi_+?J3$Nzt-0E>?hW$~lS6rR(_eh8w_uw!`YJM_h8b6Iu)4b1 zdhxYaxQuE1!vDru^NohRJ!~GF2zZTA4T@(qZZ1u`J+sn_a*VMJ17vO3%Rlws7syW9 zuwN1eC1I;h!2FAhqkGb%hw#{b!eFUglTtDF6=zPyE<(Av)u)}ppJO|A{4)zWH#GY7 zRUY3;xP%e0Qi6dPCn&km5Iof0n!n?j`#>{$%Hvr15+jJHdRf}PB_6_SX>d7+4#t5( zpoU-xQI+oyi!!RSAt$xM=g1SXIGK|rDe#YQX|yafj|C;?Q0!AL^Hp!RA?qqa1e0c{CMn2cs}I@Pw) z*4uKcRa?EX{B=c$kETncsKqb7m3{AHVzm{q;lUoPG9V z?X}lld+oK?T6_AubkAPz{qCVF{^i}MQ*F$k8>=`vi|ufaY{zp4CX$zzCLMhjgy zD8gbV6fVmoCE~%KbFnnqh4D7-+5>znm#TZwz!O>O@ZMt@Xa7^*lsM`3y+)!rB^0RMPDNL(*$q%uyZ}EvUg~xFKDxjP zkPiJx^pC}6ThZFohx4Pg>2tt6J#&{J_ zAv$qN<=)Rf|Rc2T^6=8R7G(rpPGxI0Xv|-zn+Ut5x+9BEt+(ArYvMR0~b#*!=u_ z?4YsNs*fAYZ1FZ)ozK}b(dV*ZY?GUpyg_Syg8I~Kbv|j&tT;?KsVx~x+e{+V2hT!5 zf{iH_4|%5-=Ic{&TEs37O^0DG$?WkSayb8VTc%x`ooSy~4dP~2j~7-XqQmYPna&sO znchy$8mpW>v05s1zSdyVS|OW&sB>Y1cZ;K`)cH1rW@K7C`NYPO zPxGW0C!H40)#2U1*y;3Ss-%fBik@_Nwi?gL@@!Gh?x$5v)$=nG9GgBBEp57UKp()jMATgIBEK?nK8w(G~{9lf+Q`jlkkW%eHmPd%NEkm zz3^u-Vm^QI>*Ckjklb~F<0VT59MO0iL|74w%2jA6eJ4FYm*Y=hsY!n+@~$AkETgxJ z9$tcSL>DzVS0*-(-f|vWNNM+c0m!5|(W#;zD$9wvjB~{h3<9!)&|`=bm9N53n!cR+ z%^Ch-P`u$diK$Gsdb(o{r>AkF96nb_m)I(&CtIqo{#VWJ{eM|!tvPXjm)E{(P}SC% zmg>3hR5TS}mA|a|7r(MV>}!T&A%<_jJ#BaS@!|9r+H;op7jP|SRH|UqIlT>3c0E^S z#r;maDfQdoLF`s#0ZBxD(b{n)miwT)Fm}btJ08RLg=*DNbYu2mg#J9MpxK8D>4Qi< z3o(W+^1c-@#%Fq=z8LmZNT|FNwhx7R8rD);>NtO)B^u}qD#is`v;J|qC9O9n8j=`7C+-j<`ep-qL&2nbKM6tZ2Vf&HGYk;Yl9euuX(7 zSiCTWK4|)=vv`KD_Xbt)QuSbKD0NPn>PxxlWy_{d;6hp3yrGn&t*{#l@s7N2a#$za z%Cf1d&qj0K+gj>86_jQi$DAKhcKDEIXrH#4 z-Dy5~keXl1zegT!dF`n4Hl3PJQfmiUgZ%p^|MrpI&hH1LH}kxWJU!H}@cUZOM$!)c zHIp<>ng^D*C2=SDKO}Dp&(wL_(Nbqxq@RyFz2|YVUGtvs^vPYBW+drdSqBvFEwv#p{8g1ON8;~WfvD8_#ebXJ3EOl<#PQxi-6X@f7l@9FT z-(iMt#2r6UT|aQtIk}0nBcu&kuF@7CDs?XZ@G#IG-c%K_0z`b|fE6Gn%a8XYSDH2h zt*up-rUTVA!D=#*yOZXqYVo)n)$!t8G#P!4@Z4l;F#e~hUscl-zgJcpdEWy0+h}$x z%@*&X7m-cXpn=**-ExwiELQz}TxI`W8@X6)_}jveADK+aw%JrS^AWz2_ur+?;@$kd z2AUgq?jmO=zdSGQ;}^m&W>H$+Bh698@~}J{zTw`#Y*qQ)Fg@hMc~2 z%(WfAFIbgAHZPv+@@+HjLB&l;; zzRGVfi_n$qUP*+IyE1s_MIM2ZRn1iWU-K{kIUhPM6OFDv6y_oHBhnN@ zU|btEc3r2av%yAnXD}qNzl93lqvoAbb0;;pZwAXIo4O_5?9u>sbvC>B5>8chwVlKM zQ?TxKa0V$6!+fgf0+!)JgwybwmU+~7Pk2CiaTjfPWvO$q4Lft2rQ}R&&A_ySG#c*e%Gf245$jng1fK ze|$an(WGK6Up}@%H)oBjq7OF{BgUGPECr};guLPLLJTIT@vZ&OQ9c&U?5v&62oC7i z=QE@a$iRd-$kf=f=`e&C;waX@8G{KnE4F9wu-!m@Qlp{>HBs(CLII{B8x0)Cckv4` zv~9vO#1fLD9KL2kdBd6WiZGC6FNu=Ld%_#Lu5s3iT24K`>QP;kAv?!t>@i0pH~`Q8 z37>8hg3QcRJ+C=Jm9HjkgC?A{zouTn+h{Uvv6)Q!8jGd;f_}W5@u31BV}uajV1fZ| zwu75Sg`4mq=|_JT6hUgONf6xdcmaIVd1k9D&8s^%apWOlxjD^Njw+9bTvj4mE9Mk0 z%dpiLePa;J8ZosXn`%% z{JUC!c(1zXRauk57tOT9osKwvvWpRk<}-8DG*+|L7rjb;;lG^&mjdl*&0$$0;Jg3( zC4ow1tsS@sYz025?b#DNndohdLoMH#VS~Q)}7`g880^ja`#X$b<#Fw$o;aNj3i#nj|4;%WjOZ zE1!!=5)xg8+P(4zhNb(558QaBGzFeg8(A&looU%Fy1&{T5{l`Zn{kixEWtW(SEd7H zAqBz~wz6!7SrSL2j8*asBRi=VnA=%(SA)G<;&ar8lhEaktQA)ZV~Ea^I!c|FHT;l8w=rm)89~xtb-~Oluz###GTahxp?-*n zhUuzN#qPt5W8=6fe6cci>Vd4|G88Cpqi;}+s7(|*tLz3>@@x5gb6=d}?Y*@8NMP2- z-riv=ug3=qu#MzCL<{R}vy%RD@k%yX*ojNop4e zuxa`?NH=$&kN;KeqDz&A!TkZ8$lY1ZdBPCoziVU)?-xb8{!t+tL%G0=k2;Y4X2r))R=74M#CGsR$Bf7a+Y#6LIi?S0%3vp0CDs{?3;@@TG2(VoO zYysJ#TmDMb6sH9i{n%d=uy>olX75Go;oe_5{d^!QjAaY&Q{YaMs;8G6_i0V!5;y!_i6!Aq5^V?{hQhK*XhmB&$7NOTC4B)#0^xQGz-)V=ZtD6R2^ zr)CMewa{ zz8xy=8sx}2MjVai9#2Z>Hc57bKT_kZG-9F(EW-lAp>7R8X{8ik~d)h&^Q`Y!J8FtjkSHl^%3 z$Vb#K7xI8eKTmPoWa zPQVx#>Pv1diK_3EC8iMr;88SgcoX0Qzse;9L|t}Y>a2T{53XK_y@h+8Ip=povi0w) z6FW5S$(LN`$m+G)tXxfckLzUly{i210{w4HTD1C3pPW%afm#bRI8^AH$1I{g_l9lM zN9dgLgt9(4oRX>w^js{eAns?eRi$>J-@7Fc^){^1+x6af(rp#gL=btyZJ7{;0uAhD0Wz`2x)k*h` zm&MiH_h}uU^21kiuZ7j(e8HK$y>xooyh=jTcTCUiM0Loxm&I|^$n^++#Hi93O@qz| z)ju~UJf_Tw+l-#C|75`D1|gT+&g{0i3m4{;!61o_cu4M&CL=}?t&tJW(-nX27P(I4 z=VZ=qBP{ACyLzf)cL!C=p1WFbs44stjo z0UM?2gJ+bS=B?akEx#&4_>DPsS7nED%>f7`dl3wP6>qd|_UOyZ(4*D!( z8Rk@U9&KZ1pn_~Dla``Gef_8J;<4jFMiaY>*dXMl$Pk@ohF#-)aeRUP1baG+Ynwci zymRbv-cy4;Bg%#>DbW4V^c30xHvE%Zm8Z*J?{8LFTE&#|>Rg~uKV3w15Se&DEiTgf zydPc@j3nICP2kkcV((PFYRV)_<#>J4MaV}v^Sv9N0jHcT_kYG>N(!rxQD$nyJtaLd z;t&JDD6EC^#9G~$l7=kO^+{i(|J+vY_6cHPt+o0B+~ol#36I*5(BxX=DK<{m9Kn% zz$f{#dIP@W{1TnG$Vh>1qC_!XQ{SwNYfJfgMnO$A=ISW_Wj`thjNsaT4;VqCd&9nF z_ZVk~**#27R5L{DQPBEFVZ-Pza)dpB4QB7MoG;pN^6>T!CQi*IvEC+1Z#fka6Rbak2KF{x26MvU zFBwc&j~Yts0c9+S!YdXoC;UDcKw&>YKcP1yOf&EPr4CoC(~C~dqHU0bfG;0@>gub& zYS;-udru7J>R;)13civO_o^X|i{D`QdkYGdEn?XX1cW9Q1_DwrE4ZyUUkm0JEDIr# z8Jt0woKGhYi`V=z@*mm-Y&3PA<03*V4x+k7S-NBE(C5ymO}9*GCY`w~iuDWLWe){I*!+s4w(4{;<^63EOgA z+0lkkfcGIm#{S?b2`Quk8guQ2W?!dF5obFlS>4|))Po$|7jvwIEF6)># z^B%f%;M7JCM7&_ZBLWoXkleLOu+q0#Qs6lm`qm=`68^=nxxn3M)EN3Jc?z^Gzv8di!fU@s#KZsIGhV zs7V=ar&w>4aVl4~PI}JKWT3M1xx(k3(+`SiJoYlzaKG5ZzSpT(E9rGU^fDMCxIdT3 zVVPGz9zj=E=(k2PS>#J$zV2p~roQm|hNYLe=vJ?agMsF9+aEc(i4@0R-73zuR?od= zt(1KQ88+P5|Na}~>F{6s-(RKK@b9$wap{4|om7M_( zgu=hDC>#m-d8D$2w5}eC6rr}F_bx>3lN^1!f*DRFF=;E>n(Sw#wK8^K4jti4a(!V_ z{ZLMbmQ!{@?yp@AqA+^Lx~&j1{c9IpZx$`XAOTCRuU+o`XgSRO9eNwG&e!W=P88H? z20)7bgkmUb#-WSCeZx62Pn6+0cXm;}d>#-{y`7`(JI|Rpwh1^BBeD}eyXJ{9 z7-rpwT8{3fbhpj>dWP176CK-$?xqypTjRQ$9P(@LZnDcSCiTa>A6n%xg`iuQHx0^7 z#+tBfe7-)1c%V>(uY0L`h@Nyv7|I1S5>DxE8tYEdPq0cFs)1xu`qn^o(Y!F@28RGmO7+o}|+03EbQo+Dxrwaf?G6`0WWss?Z&r zXJ#C(GA2t#Szu%Z-I$FYC#x}wm~byP5KUUX0 ziPaooNZ99_=t_I03gW<`+GE6)9e^WXCmGn!i5M}Qf^wJ47mG_2n%u*~f-5SysLc`z zU}le+f(vDyWH%tc5V!Lb224+MVCCz-&K|bTslGbHeX>3wyA3zm@iWSaf3wo*+sRyS zvB^by;bH!ymh0@iTf#$HY^bv>ymIztsoz$Y_gQ_27)f*L7WLKL7x@b&hPVya9^j)2 z_ES(*?k*wtl(TjtNnSmPuqa3lQ@wh+`(m#?SY!x05i_W>{=P`T!Ac9bj=RO9ut1;4%)r*tD5iUpGX81>i2AMJTfF)$?i{Z^6n8+{ zB3xFIdze>GaQeisp+LWYg5iq-xt~$VD^l}I#`7cc{Ko=)nfxXc=(G5(U({Dj=)?O^ zg5a#aw!zlLk8c#qPS_?bf9y8VSNpMNIBIjJ?>9i)e4WD@dXk4S+p>AkN}>Lr6V>vK z@KRNl;cd1p2JO=l+^4Fqp6R(yJ(a~To3FAS`DQe0lD9d&2E92q+h2nj`7P@6_JN-r z@;S~D&L~S@!x2-9jRON*%cqx zEjrCO{Y3_oS|mc6Qp+fXOha)7^&1KQuzU&!xd3dsW3?8 zB#Fi05|dO0xxSiGhEbwG?~%$(N_kYCHyM;tD$jo^(65$XC}kACF-md15bWs~(?DGQ z&l8J8*cANrLN2fyIK9*N`zXQu(IA++)Hpg1n^fTR$+3{PSt9tFh2dy3J>}6i2~p%ed8kP^u_i+|3F$~| z0CR`)-CvzeIxGh0MROzu1ct(`IevT;O&-oCLm6xJH5%WO8qfT!S)a8uaAKhf53y9^ z$ugjLZZdbd7~iN0r-Jp?n(OUyI2mo=TsiKvM>wH9SB^zehZaY$+%D|~^pAbW3f=>! zy=~l7py!Rv4utF2Ka7rp{oPM zZbw;MfxhYS^%3JXV~(YsBvXq7kFkVDaX+D>P!~fTHAwCR?M+YoZ45l9xES_r9#pVnk&V0PEJo;KsD|yHeo?Ht@SVi$&oz`46*FbK zE^6nK3H>)O8PHrPci4Ck8;+ym76rIRZd5UDR?&xng76r9^8uswR(=g&^{dyCM6lQx zljT0RN=K1?oh)GJ^I71#!wa4eZHPBw<;EIiZjU35HxlO=+nux6>K@6}RcT}|vvP=% zB;|@-&FIGV%hZ~>BT~PX7D78CDY?;$xu?!yEJZInF>e6?5>z3|EG=4*?>|F}W z>=N)=lt-I+nl7r9Zui83z<*04sBvA#IHEIeqH3AKB|}H?viO8@>eyVYn}xO}p?$`E z$dZAD(cl<~ml5pFUNo zi9MI=y%4qEP#QB+(#n#T4j?pqP%Po+RY`9{&XZEZ-0(lJe5U4XsoCfV^C^08fp4zq zn9CRqxZKK6l0$XhHL31SsBXVd-6@0Wlx|Es`&L=8xxcPRf8rFwQOQ}671!Rw7JPpX zTZ!Pt<$9?_WyiygqOwoJwxY7`$cTe-3SubNP-OV2fZ+{~)c@n%7)7S@$P^Hw>|gr7 z2yFBIt+C4<5o~WlQ%rY{e?)h^uVXTQkc*}&Pjezu6R8G2m9tItIVUn;@CN<&>}X>c zbzkI-7qsPQ?*`vz;e10jckJ4F6HFCrbIv3ybw*D!#ehO<(lr`w3e*W%h~}`XY|3K4 zXP@hc`;KlRCwRE6OCeWY+{1VgkkK5H&DItER~DB8H$PT3rMTxr@S}vl)I@{dylJTF zO@7lXT1NBPe;XR!{UOn3%ne=0U+(Ir&-v14V~Eum2Uo)0{~dGuIF{hpf$`(mp(A?i z&^HM&Tm!y2q%cu#@U{d|Yh(TL z**=4RIb!AY)sHCt6>VveT+li~|A>sHEKm~7;4O1l9~gAA{&yGbpZsz4jvRj+0+CW5 zw+sC!bu#K}<%^K6Kha;yD5I8;XwGG=DAYTDDhx`L!OA<~8LM#@bD*oTz@Z;OAZ9<){X)_^nfH$%ae(EL`Fz>BIWrdFWv{NgsN= zh0DajO}_(sMpnSkVhEy8?^2XI@VwkKaC!G5Q6d}O5ZTfJQw1UxA0za??2TdVV(MoG zs+(BQJMi(*{*Qx=kKr-0_69lBFV>TF_mfAZP^X8rspPCC9R5Q zk*Tn2y9v&~v2mJ_l0wQhQrca6+}UU3Gg5o25>_R+x)7;aUEAElaHYoW+&j-6**G#T zu{!L)#KnKP{{g$=0mxY?zhmIWqOw-DMI-dNyJO?F`NygY;kkzO(O_>Mcg1@9;yio2 zc}Vp1WCbG|H82sSu%yK?$wZlO4jMm&kCs8>IK@iQD2=DZ6?qZ~wQ&ZBmQ^?K!>R0b+z;oO%`NAJH|wiw zsr975)avR3Jr}#)ET4eXfC?`kXXD4RTF0C$Lf0)l(3ctFDb7-Zu4quVop27s1s_AR zf{(ctrBwZ!)pQjnq$>|d(dndg@Y=g_yX~#@R{v0@#U&3o5ROHEX+W=hv$)6j<6TkA znsgyI{Fe0;8(wqZ7z+gv`in%Q*WXicq(}_GH8OAdtO($w_h9^C>nKh=ncXd~%b-D; zDdtXW?;RWt%PE60kBB2!QLcj<2Tz*~5aB;3+1oj5#wRhJ$@6W|wmP+w1FWO4fy1Ur+oexeO;#S%Je`ugUWyt- zEU%d7U{A1p)u^h(nXr(m6+`vje?@y~47yTlA4*d=I8Wab`>N*)aIKM~c6C};AiG0- z(MhU@qBubAonGvywE2r2+)7(eP^3Rx14LWFEs+rfH-}uWR}FRkxCIDY$DC_k6@ZPo zgE*?5pz|)RdCXRATj;oaZ4nWl1^ullVgY5GRAYuyKii5moI`A~tXTwcxjy+ZtykOA z9kjU@akPVpoJ4Z)T-bj=HaX7CfoiWZOS@9Bw&c*yqy@w9#yA6<#(WcP<9`rtP5&SE z7%Yjl-qbze3!}6M!Q!>wx^n=&lG?-bDW~Nf;!>YQy%N$&+Y$a2%lb12Yz0L(Gie?A z0@`9j8NNWk!yp7TIS3lPm9>b1dnl;&+D@eI&{~MR5!*}=d1eM)i!}ic5 z5s-a*tFm5_X%GK8!LH2Y2?^jfHToh9B0(Y=g#jPNlCFqB%fk@rxVbazo^73EcMpXE z^e5q2w%%gz4vv@^Y)0Ydt%&{dtew=ljF=gE6=_+`V|LkclT#O^uqTU+$;Nahn*J8j zeg7%CVutfk$jC&{I=l}c4@FVQNsL8NDSXuOSXtc7`TB)auDy;O$tO%FhH32~9<*ck zoR|{qODMBw$s1(99C1(2P2Oe8(kwqqbIlv6bMj>z3&mPTv6#=9)b{ z)9KqK17ivJy7-pAOl$=)E|F&{#PDafio4*fU9YkkLr|c1R;m%i?2bt)R)453*QnKQ zodQtR=G(h!aMh2dE7(_7VA(^h+1qWsfq;7Ip1xLk#kHAx-7{QoRZOe5&KTlJ4a`NZ zt4QZ6f$C|4VZNZ>{)V0#l zuv|@()Q)0T&as#18=D85V{?-os}(cm3TDh@!jrn8=j`p-d$WSm^ODCzdUj3dbq}ka zKG>6BHhG=vUC$?6Brj86-D#A)J*zo;Z_YM-x+hv74V|Qv2nvvBCZ)_F=Tlp)wl*!; zzfCC#T?i{wYidboWB=pRCy?aO6$#H@ylGmW=;ujMD1I&lVEz5zP3kt)D%c|ue z-)JxqYJoIChOyAdJj_#W^MiO`z2{~$jKp|OR;#~%9xnL~5e8!SWP1-~kdu`{1<<+s zttgAt_pUJ(Ui|r4=B{?MDT-hEbM^sbC%TOqj?QYkMV5rS;l9o-F$(2x8x2Gw^=s3waLU8rY!O+r6+C#S#e0(U zDxO*_SjAa%H;;wdG=1-0S-@Mu3ti1s8(8%ASNxd@WsNM-Zyivf`_D!C{=;Ax<(tLO z&p)Vtv%kJ!JhGaZ2Cd;~gH(CC05!oMmZM~aNVF?|GMI(Oih?;62cy2r_;nnQZ- zF^OA!r?=PUnXs1$c_`(blH>2>9`6tLqTlzPVg{iK#xWLGrXxsXnRIfcP-;LC!o!R% zbA+xTZ+~Q&)OR}Yv?()SDlS$x49IDh0m?E0LSPaEvc)l??SUa1L11-O(AB=`*06J< z2(|L!d|1*0_Q5kP=op+2{||37h3~DN9B+X=o3$O5@Df{+&k0@Vzom?=I})j!xcl(_ zwsU5ZE~;J(53ibOJ5An;;w@}|%=&-w1@(uU%nbLDp@=Xz$MpxmF{l(d@hXYKqi`C( z5r0w|&|hi>oy6to$KTjY5E5;Dn10cI!F%Qa8wPaxW!8Ls(*8)~S8DKJmvO77NHRwE z!$>YJ=8)1YL3uXH%qaEc4s|>BO_WGLB~ANOM4*x;zLqo*@8aC?ah^gtJIgK4=@Wl! zGv0+b{S&Zyyb)udlLI;Bqi4L2%TT}KQ7NwVn;y_q%5wU zxA9wyWB#OxQ&jol-8@guQO^>1K|J9_7kI#qB#b!)0T0OV)8&{7Qm~U}DpL^%4vB9h zUYa=fjlgyE`&Tw70QVA^;QLp$tLL3OSM*#)0r4lLU?D*fMo6JxP2*~|2{k8Iu>h`2 zrYi9rWk>43`*--ScdyD!DaENhrL<L@9s-8wf1ejSwQstE7z;q-#r>H2OT(h z;#+9MBRE#mXeNpO{c+qE2^{i{iXGz4bl@-O*w?lnZ_Lz8N!{NDb>Qh~&)j{l_z@2; zb-vb$AG_GD)SQsN72gmS(Mts^BQ8k!=$aE*6CP|>nO>fxrDfKf{ABvczKSHtut}6i z_?I~OVZzeL?9X{H#{vu8Ii}xzIiqQ&xawD2F7cCiv{YB5ivMXHgCaOKDt=y)9*HJN zBjLw@Kowm%2^VkA1hafsmEk$QoXi546s+!l9&$g=;tVU_qzD>J<&phJj?-Jtv%(0Y z5uYC`L@*|O+|+^Yr;e!msl<@_0{SjK7k$r;(zk4ZfMb$wM7OB;7o+vsKP6?zdIjO6 zaVZ&!;5?^m{~-&+{KLVC5hlLA{T6T2WGN4J7~IW9iVFEKGx z#EdQEqtxPNViAJthn@hKnh@UK790N0-#7wL-N6HcZNZmV)hr5D@lT#D zQ)kE>23(Ncq!G*2vrMsK;upwlm^7lAG)9j1Ns~Jj%*CJb{6Ad={2!2ynX&jZWr)F1 zOg*X`Ay`J>XkAQ{g-P^rL>nU{bA^8r$fHF@QfRpdr{>01`uJKh?Fd(8{p?(?A zsd#y#$f~_*#yotRm0DfrEh;h7fd zG(P)EX?Mq)1I`G|Q-IwR6qObQM@vC7BvQV_hkA4|LvofpXtB-IHLphAjY%& zw;R-l0sh-v;S*;n*YNe?K^5M!9Mt^IL|yr{;F%eVe5*i-HkR+2mxrKaEY0x`LlA5W*_W|^X%}3 z?JLp(>mz-AecncUPy2-CXRGZtnODiW&x#Y3-)fMXFfJxG8S^Q9*9e?bSTwD(h<&R#}Rj5B2D>a=`Epsx+ zV+j$#1QAbP8T&Yvj}p;ROHjHh_j!eSGe)yAYvsCNTkdhQXxOG;>qTKWW6U0uRfP?G z5eZKBK$5p%hPP!48@(N9ugYfdZR-YRxG3u8*iqC;VyYCGAVucbDU)oLnPcxSv^G}A zVH8SNg$}|=4k^@%7CEbm!2fP;3rM#G%Mu^Ey(eN_knAr^ zw=NiqmG6}>R@6zKs@nlRA(OWuk?+y0XadQ~ZfcviVSLM+6yY!2v>d46HVcb&&e+I; zwD3ztZ~$9HG&n#>=pOd@hTW&A7J?{3Foi6$+{%_v)R!G&_S6KksNv>ikMK9O5#{6h zzl(~m>@E~_xaw*r_1_u^c1g(U8go+r2?@65)LmYE*zHTbdo2A*SULMj&fY8g*Mc%T zyTTo>^hHqf4lgLXi?`R*n_B{Rk142WxtGPmX!jT&pD{kZe}y>r#&ou``!$D3<|a3@RzjuJzM;qH}FIHaRZ;KlDwyK zoohDmNYX=pd_-TyWb>&0 z{*Zi1g==Hp+1aIX|OZjl@y?-nR09BBWX7;9gmS84OgpaiV(5M};d3O3et*N=~-pY2sZXmSts%y=buAWb*Z)@ZFtIt7sk%BA( z7_Sm|w^+)r03SaVII1Rr!!_UIDSSSVoF~w3u~ZBPmZ8pv3rXj@cLBd9Os8o1Oqj-+ zXuI5i$?40GQrn%rbbd7(aA{jj+~pa#%X?$hMJD2Cbk%I<~o_Or7W#skv_0n`pZ@0WzGlZrArRWkfewDF5je zhQbgE#YoYi|5>%e#@zf*qyrdCdbJ;t~f(D2axp%6a;teh^>3hqzAyVo0L~1dyVr z&-b-uvx)(9|E&O;&Gk+KXrl>eFM#%nO*+W{+86^AyKACSTvdwUV{14Y7v@0TaoFIf zi>(%(oG(hDz>+wU>?9#7<7N|Bp$gHvUiUwpFYY2KtNnIys$06`jOf6PG1a<>^g;qr zi?z@w-TPt;=_d#>qL3cGT7_(Q{}t)pbWh3({2%+XZ6_Pj=6Op?LivCaJv)@SfVxdU zi&_mK?293>v-Y>7Gk}-^h|gmFkEo#1p=zhkTqcmLaGaOodUM5a{m2V3h`vKp;RWC} zidrY8qxv3P>_zL?#eD~-5Vyx0sQLq}nkVSs1siDkm8@P{Qm*sfm%`aCL|}&owqxgV7lc)!Y<9x6FYHu@k!La*tA;D@UxWFVl#BaWL3R zY>D25oXX|vN1rwro*c1qn=9Ay5ig?T2xW?~*4w&)6Th|=%QsYIbtPT1>T-|B6&V4X zAGrE8_aOXfxueW>GjScdlzZlSI4r!DFiV4pAc&5Vlcw}(xrdC~W&0sl_Ge;7I8uOj zzL0y`oz>rg@ObA7#5;K*_p{)8j->X_^{=sCW@CyOO!DQ|V6Iz|#c83Z!<=e-TqbB0 z!l{Kt5153edtQpr78each8%RXhQ(qgFzZ!s@932_Z!kl{=1*}FlEqdZTx-f`AN?1% zyv(xW5Yrn$t?#gSxuRlL)MpXUanti8KNjp9Pw0{b_N0-b6NpqL1trEsV~q%HRFOa| zg&MgVvnvv%=&xUNXoPA+(eQs+RBJVx^d7K!+prRfmWK~Y>%bhizAAWN6s~!e>Z&9p zuM~7{RTgfn2rlO+vJYDYR5 znw^`LohQ{gEte0)9`N!xu=OY)Ux|ZK>38+H&{uOvR;PZk8)068>W|Pr!v)r4{S~E< z0*7WEZ)Lj0{Q;aftw{eRX9&f_@ERKkEMug^LS5DqPe#E0E&t~GdG!0>){#J7ZNSIc zfxU1wRz>LnpL{boeZHPOTsTCneiM4m>dj(%Yrz#$Q&mQ1r<`ZsuIqm=mV9G>vylA^ zvyvS!bvn30*`f~_Eda&X>cY=uvFiU$|B5UY{hR;s6a~*cs*^mMzCb;f3imYZKmQUNr`PWihmf4`g@HiVX$d8fmkif^9ykiklze?I)J3d&ZBgb@ zq87mf$0p@vc;f1K0?qoG-w(j@S2ew7eXQyHb2crZ_xqdP_vK9|4s6_GXd( z>2-1wh{u6$A~b`kugyu3Er>3cBXV-BpPo)yi6fAA0xR(VcgT455w9qmDEH&>sh}?R z1iZV$@ zeg3Yq_F46?z*+kf_3%Ast&fN7y>%s#>Jw8u*U9~YZ)&UA^4a+SmB6UITt zRRb~xu64M2J(&Xdc&+5P0sD=5FPH`VLx~Tnc0lx5a00TtNw+2A_hwQ!8m3*F9`T zKE`Huy9do!?n$c8i-Z&SQ+>pWTWIYNDxn4s+3Q=OBF54AXzpi_lF-v+MNf;>N4_wy zf}9cNsOCh|NpyemzZgJ5>QrRjvv;u6XX~grm7m7OeJJ332$M3#?%97VB=LV)w^a4( zSXG;BG znu*RL>Qv9^`lPGsmS0M=QO8wvZhk%A;ojAsUMWaL@0e4Ugjgp>{k!Cb-?y)(uX9u6 zQs5MAE)mo4(<5u0t=@LkgZCS?JXkHYOeXh@e40~d^Y+Di)NQW6qBNRq^kA}hi8y{I z`aXJmNS+t*oZW^Y@uR_jJ-|$5XKZZN4iP>N<1Bh0u#3+YfQx&3eZp1VI-^zZkEPWc zX!T!Hxel%_!F$SPw0hy^Vg4&w>Jny5a$kbbuJ04ufEN%B#jEu*nJ$mexO{2kOIc#5 znpY}bMX92~x&-~NyelExUKSsAqSgIQG+}sIg7bxu+FMI*)}Ldc*P6ofs;|Dpog;4J zZm#re4a{oy_6}MxIxy?Eh>|OY86xG1LEaO$JAI;Mrkykcx=TE5ly&-wN#&kw6Ke`1 z1%-w(Qae_kc-4cCn|OapFfbfhP2Zj^h)?wP***LJ#>IT~O;OF`nI#`FOa3ZW@>kK4 z@n@G5W3Apn&W9eOuiV~!)6`!gAd69oUeF^lvfMqTUh8=cevrgF*XZ-0GtC8PfKF^S&0`OC-EO- z(<|gNfr!|%=>H;BDmL&iu#$hMFDm@PSv7r|^2Nnvw(vnM@-Y4TZ~i^Uzb*XR&A-F^ zv(djH{5zk2)A(o3%-M)uD7mk4Dc*R2R(UDAYGS#@t%~ zahb#tSS)4(c`xgmQDzX|39~?!<1X&kLv^a!Ws|BQPYMci1CLfj3m2lKaA2<9G}ce=5r}M9OYdWhud>Q5^FCEO4fH zepKHS6)6ab+#bG=cT=R`{n_wv-c6B$_cjzMLC$Fgv45CVHu(1N45_+=s_SwOA_t`- z2c_}NR_3^!K)mvC9a2qrxJpa8T@t>jatjy*S_^In3m2j{^)KqsC;bm9)RN96{=9wJ zd+X&sLEXRTVE?MN&D+>MP~_qL*?}St@7RgsKfrZ_;z4$|YgfgcaB||qfC`uAVEH6$ z<5$MJ^7Qia`QsTznkU&+(pl~#bA?3m z&XjexH*^QH6e~DMd_hE{+|$oEJR^wXNJ_->hCUUZ;x9R*9Si4ZmB$N09LLe71i=-g_!E%gTtYL*=UOng@<-y^U=!s%l)U>eJF3Eb)Gcz?o^~XV8`0j_%^4%N z^acnTxnc@OMspRIX^|Dn^jp>Ar0Pnvkz?gTq*2wYFT-b_BOfOW2tITJe^hcixW zXNC?++UYvGop(yQ&S>Y|qk<0A&V66nPM5SZ^&IVtWq~}xnlNqYWuB|NbMCck3+~m5 zV9i%%s6%=kdU|4;!X<8B9Q34+Wn`Y8V-pfo(trgJ*kCH3mkgG zWMpQWMSuHAsYZ^C!Y_;dPMgCl>*5k_L`Z*$j*~3moH>q8z|b4&!Q`5&wz`tU<)9Y} zPxoLK?if(rA@|)z3>sOlbFch-uR zqiQl)@(`0CSI5FmuCf&grIAh=elTB#-dBDXL+?~hMDPwnG5KZaoe)Lu5W&Npmx{Dr z>bL10RgpsQrq3hzAVSYT1Ro!W;M4v^y#o+@k5ufS;wXZ3{W9J_aE|Kj`6^KLMaYnx zo^VD4 z)31CYHW1Ilbo#1!R(>H9-S<;Yw5gaHRC8CaBd2-JNGmVwv({WDR%!vG=@=3^#gW`+ooAL!CCfOdcExNZ@g?-=Ae~jckxHR<7Uq1B$LO?^mHs! zwPe~SnOu^|AcVYRRpW3S-il)m`sQ6B5yfy+=O7{?7cU|?8xpENswYEZB&1;4Be;&O z9LW@2In24a#b2_|9Uquy4X0_Zhf|!Jn@Ql+6Q{i{D(l>__4)R?MfmDWTZD3;F}vXg z?|b9Cjp%&vg4u1h#%X!128Yg zYk3DJv`lz2Dfkz9T>pAqUSwKHx*IRgPHoXXzL2%P$<5{KoKV!ZdF-&dEA?OR;mEkb zJ!Yny2DqKvs6*i7^Xp5}s*iCCJHO#!XrJ(?DCzUWPb>M%9rrg}3%jt&cw1lk-$2=` z9mSzSoZ?zik0v!si2kv9)dhHA9d)i*LZvHF6geMU$P+=6vq}zSl^nk@l*_BSojFZ+ zf@d%q7kU;hiKAU;G~YNN_v66BWjf*@=O0OqyQdYB zIu()*3X*jBdAcKEt!v+M)u&(*Pd%)(F&_CBjq#HaIZ zyxV@m{x?-CI#JWRi9K+;7d zA#n}dQw#e%G?uxMZ!ctWh^9fNM_Ep>w{aAXhu5$$5Uy@Ty!Hb-M|R!b=~kYvcktYn zU!R*c)hY*PY`C%;Y|S?#qM(tUFSBAxdT64I{#(IM;xVd3Wm^zf*~gN#fSAGW$J_Ay zblB$q)vnFhgwv9D7kbk)G;Vcyas~2eO!K@~Spqi;QZ8(jfGBK{()mbJU9=`1xW_~P z5W?7tHYa%Z>GcjdA!$#*kO4#uR9m6PFqz|n zCr##f;scX8K1Pbk9Aj*;=FlV*NCS=!@~{Ko;1_!0z!&WKH?LLJFC&Zu3ZYY5S#iS4@|VR zf0y5G{4eFV&F{OEDeT{{k2nA3E&N3bI7I6R-No57v8hS$o*3lxeM=@d3)#;ZG;N(x zHoN;(%hvyLX|)@sP)E;47&IA=_#4jAwz`ga4r;1OO*Mj5!hCOUMa4+}k9|_WNX;=I z2w(1f`Vfs-aQ>7wpBAtG%7#P7{$44 zR#l^!XvY27OmV)Dcu)6WTi2|)XCm9_gXcxW{^gJyp9HhFmkloNIpX)d0UETe{y+o2 zg8BPpZR@>gg{|zO#T=dc_Fsa1*b7sA@A4~w&pXH${3xy{V87h&6I2?Q6pxvgnxOyY zU}s#urm|sY;oC>C0G{dC`+{S^xveE%cVhUbsnR%YL)@;Q^P%Tu$Tvt1JkwGkA>WT7 zWnn5` zMtExWUIQrqI_XM*Ne0H~n8ff3C;9bFp>NWxF$zd%Spv>(=R-dcm{q&~5Xv!t6$BWy zn$;1D;Q=aP^s*b+L!Os!AkN5b<}3&`2qRR`nY>3LdO zviYPE2H9GxvPUxstfb}`jm$CH;F5{QIp3U08<0JX(ax}FJApY?vz^B5?a|s)pHsKb z3Ad^;8!4kHOlhj$b6qE$z6gY)1^odbAY-Tn?tDcp1{c9*Zjx-3&ziIdRhMgOzGbQD zVaz?J?RX?h}FFW_Em%uqT|ac%BYly^gl2%r*}E@bv9EK7HzWD1amOf3X>PYSwmN{ z+k{hU3dezdcAUyR5mI!Ps})YUJ<2H`{W4DZ)rd&FI68$s&nbQF0u>A{75-N?ID5O| zeu^Xqa6hpR{xa?-bL0!S-#>(>ncPpZeKGeNCaxxDalc1p*f%TgN6|z8(S)CNeAZ(4X9;m;eps=SC9(#Q-{4uPu_bWNaA80)~vS%>J-wT)9rC^i6 z`wA}ib1ZuXa=Fj-pdd688u}cU%Oz15f_(fcSY-)Ilu8t4gf7=yE5%H5?`PrCxWU2= zcCLS#DU3XZvyeoBhg~Y(Xt2u!gB|)61sl&WL{bg*DN7~nb1+e*l)OPCrc?fP22)jR zb2|dhTE#ZezaJnHndg5?Vgt`;b?8uh3vHL@Gv z#)@NTZwi(kA*1(1g}cDDRoJGg9JbjUWt*}>YirfIZeP>$w6tMsQ7ltsHP&Wfmb1)S zPihKi*yS_mhNn`uv-UKNP(SR_s2?4KS$|7*#9C|Aq>80RX2C9{jPxKXiAlfbxO$wv zAu?8t{B%IQQf^ zqrrb)IAHP^&4F2;tP$C5p?Fzr&p89nsN`v*5_CaAzb2!OvFPw!MD%n&%k=x>*CA;< z8v04PV)VHtW2ivr9J#1}S|MNvk2mEEQ(zeaT$*n^=z`WG8=m1IcDDBT;i!({s$t}+ zRg>MTXvE^&jCL(YOfCaAMuG?8*~chp-mjKmSKxW6$osDpLqh*2zuM-%la{>~vR`)_ zLxP;YK{%>wbF1X79gT3W#CnM!E~NXQLhvgh&Lh0lZoY#;Js&FJO&%diQ+U%#4sXRO^lq%Fo#<*7(gSPe~-0kuRC39&hCbw`)f|^ zp5=PoqmyI4_mu1-{=TmNW3*ZJ5i$(1g;{Dg_7MZx_0p~Zt#HNe?6!f@xgg4~5NM*y zCy^tBz3n@aN^X@0#@gJx8G^c0^2MX91a%>G;qOx15No3RT?*?X z#w$TRm1Yg3Bd9wC9F{QQ3z{M~a|x3YX9((2DS~?Y`HECxg1Rx+B)3Ue1)-;eu`A-s z5fS})leQ%}Hq*bLt06J{W6eH6o^6;X-=)(Vti%~)TAy?(v*Mde&8fNJMnUnGOMzNozC zT3^Iq>i>3q*{udq`Z~w8L7~B?Bmq{J{^1-bj7$IW_0PtNFs{~p$tLScgVbb-;xZ4S zqWIH%*8*yy$vl)?QBmAkyN*|Qy0dl*55mn}=J%^cT;{XdCC1oTF}z&>JClu7d<`}> zm5$I27Mv>vE;!ODSWnogs*pEhVxEf=9vL%`6RI5<(sz^-8d7>caH-o3PPjeF2_OC6 za>55_H^vE#Wkn09C2G2*GA_$10=f6;Exq()X%CEYmVd2`0%{48{DFh&`DJ-lf{?I5 zap@CLJ*n)XCC26zd91^)rBPPIzw?G43UsuXDTi7^#pNeQ$jneaNW6;72p12 zj1_LbR+JT7i2Gkc8tb|Mi*w|G;<~_SB3?14fKPgmuit;3f%t%AKwMW{($wG3tHPxA zAg(utKQ@wJiAPy4B3cvr4XFU>u2wy$CGsf3{lU;5fdSo;e1>NEJIk+r!jBu3xVD<2 z`#Q<;ilLy8d}r`I`G&b%$7lr~d~dH(P#An~KyL~|my3v^TF5cLcXc>x#gA8LTt0pk z#G*Yr#Tuviq+TVu&yZpRM0bJaOx7-0^{ar+Xd3!Q86#e7u3$h7fb(aKTpp4UP`xyi zAN~!(op6*Ij%(irk%ZB7Y>>LqbR6*qlpwzyk-Zhhie5yC>;T72pHWRmhku>HRR3`{ zQynKtfH%Q?RMSxu71m!8e$arfSxKo{kKjcK>*zQNTu0BT;}9u8JByh%G00JkL{#6A zgHA)`-D3*tL4@_arfwranCa1T={B0O_eN_ng!R2q-NtrB!O}-fVQ8+auU}a2rxL|Z z4I(y$sXvWUl!CCXXu%)_VX9*KXKXH_!n(nui(<@9Q=@Xh_glQetI zj?MwhFB0RsIipbrV^a}{OqQ`%T_%u$OfO5o=VkheNbtjWn}o5%B`{1rg}cw^TNnwx z7jMJgB&*qVbj{mNi@5u`8w?DB$ zjEJxs;??<37efJ^`E(iQljY@u%F1swa*O_2W;`}s&e~t_SvzV-iH7nn>uA8f-k3hF zt>yQ*juC%(8ZAcxa}dTVl8haumUCL5nV<%C!e#;0(8}%5wSaVQ$48oKB?%f(+lA|m zf(y9E$Y|eaLjtup3=$1LY;MFAp4d^~S769{*$o7PFgEpS5pXF*>WZYmt*CNj0K+bA zPx$y*^lUEmrVMP(h;eD3n-Q8CGEE)e7(4PTw5qa!BN$4=o#|>{G1k}_8WdK>0i9ue zSri)1x~g?$9d+$qIiozAt)TSh3dlv|0#~hCkv$35lj`}md>VD;rIKyK%KaIQE=tgUk;|M4HvoMSM_B-6!lwYIG+WDMT>Vc93n#YN(*sZ!CjK z&yd~VQu^UB-8mD~5r+B7Il_dsQ(66O&G26Rm(;IqP$vYfwzpDM1AKV3j<2sn6Dq=k`YeFF#3 zQb?&!n8VMJD;kLR%=bgeGE8|h$@wwHr?}?6yH9n}JkwWa$6`ymiJhdSX`{F)W^a#q z${P;z$_l6E&{*h0TqHCbhdhbd+m(BQa+7efk_^6GMp~s629`$xv$&i`3|M@Z%35&~ zXX+i^6IRbRwF>O9?C7))atz_O1$;WchCX|tUP9y@2opWbb~Cy&2Y}a05tU62XMbdG zQAL@t7RB|7lz+WNzksrw%s2OVI;bMM&9&7(YE0YGp558oZ}%rDz_KGPxyPj-0iERs zM=Nh%#C;vkyK{2<#6g|PQmVz?N!t92m1Wa&)m11VBFX6azQA2iHV8v-$FctHI z`#P-*n3jiO&T-FMAVp#bOHcZN%MVo84bT*rg?jZ+5P_`@{abVz_*(r}`>%6w%0H&9 zXZO-sQ6OE-E9Yu&V~~_Z_>NZXP1n&?S7^aGS&ahSjEC^p*AiU`o*~zJKe2lc+g)2L zKM4;L-?(5_qc;0NyKA;)udrT=;a<|x{xQ)iF-1t$rf$S^;WW0SV)o>D!#(IFG$od- z)^Pkw89Z#1KbTabpw4Y)=Wz)(h+1Ad%U<5T9d{qx@nI6d$=|?keT7q6%xl+XztX!y zAB3f1cT29Eky*Trm?CvL>n1}j40Is*r{kVDq}k(vWbB&$?#k_58L!O}qmTw~ zLjT#OQIG+?6P=CBDp95&pCBUN83YT2CRom z(w%4~+i5))&#~v!9(#JTZ%?beh-kg!0tC=PK&y!m3`%v6gAxIg5HR!mK5NfR0;PRV z`+I-Czh3xE_S$Q&^{i*zp7pG?p355_Af;)S9D(EO5Q*JwN03SI(!py?FEX-xphJ z@pJ>96Tq^}Ih6$=k>-ZJjiu`lj*o7ZW7?VDd0nXVO`)V4V=8UPz!6%$6N8zI$;4RhCS5!o!pBu#VweVqn<`w~z40R*h<#(w07h6?&TE$f}wt(ee9Z{ltpG0fv+hIk|a z0J|+UjNjc**IgS+);S9|?^u5`rCcZdiY}yyl?kIW^dHh6#^}%nw2P6hvEOlSLbLs~ z;BDvh4iP`aUFdtjp;r2e-Y7#EF`5A*upLRI6+LzgL;MEuBWwe_Wz)ZEI&Nd0=wZi_ z;O6ZN5yk-nLPWSeX5I)7hN$c>e)2E;#6EshHBIf6&7M z=h?l{)i-XzEuOam10oA5o*`DGArK17831^sP;_4Kj{QaPJ9&w2rUpLJwjE@Xw72CW zyM8qFU{C#`YZpaWy!)}zyy18HU^WX)1d+Q{N|<^Z~SX_%!DCa#n`1k}Yewh@Pr%$;BBNU|wVO z6^|0hV{lIYnwbrRguwg+V?&N`x#kW(bUxp_DHo2jon;67PzkU89$h?N7?-DP;A{nY$2nOI;^i9mXgkW1`xzkZ&^!t7SXA&6$gsn;Yp zOEe?YAeoR*j2N}Nl-52#cZy1clBNfIrO1yf`(5JTNM*T1+g37bxu?TFTE6`nCIN-< zeI`7*ZFOuQmSgGMEZofDcMY<{Z+P{2rT7DYJ(!KBHjxgV%v961RnGRb`X@=TUj>Tz zb4Ov~ZwWGbWf-nTAX+5B!NVxYT_WT7YWXum{-|~_@1&_19iQo2ibnZQD0%sCv}En7 zwpHPIbiu0d5}95~FJQAP2|xj-i8Q=w=1V|AAWe#ai(DcUQ_%Z0O&v*#zm?G7ObLZa z^y_OvU&l4#V25mX1@&J!ali8aDi4YhvfReLVvM7utlQjFxQM`%>_&y*r7m%V3o0Pztbg$gFmbk+IMNl7DyYV*vTz%lab>;fNmp9DR z2fm`!i#-K>;A>*-{qF-Faskd3*-c=S1YRY;__9T|VJuH#c&E2*kss^kdjEXY!Ff`H z4+{>(q`i>_zZQLqi;1&Gut1kf>X)i_WCp7d_8x# z{OQ4xEY46XrUvhDMK1p{SjXxW^G~tBRiSNj>w`Y+5jn!w>VL^!eehO)sXn;Wf0I6V z7gm4=*JurL(hw?5s=aYdK+~I(+ZSZ3K3w2h)katbL3l5Jig-b;5)&qTkQeDh^};@> zX=3eQK_IjC!Q^WNh@E&+NI$G;$MMf1h-jT_u zmEj;$xXjg*JZ~eqjBHuq{9N-E`W^Gi1CCt_a##t3P{?qB%cz(I>-q)2qzN`9xs4?` z!IJD?$y9o}v1B6N$TNZ^6d#s}TIs`C(jez2f*G>xwP#iZ97PmMMD5%fG$RPt-f=^= zvBgz;bB%vvd8`h8ujt~>_q3x;^lkWpByi)|!26NOO*Br&g$d-drOYAa|0A00)aV{cU5)qJ0AAE% z12KFVb5_tzHTIfMpbTtH9kqd6kd5_m)ilg^I}RRk=73E?*T~j_$v~WHynG*}mMi7@ z6_y$$=$Ph@@F4@EH%?|jy>u-Ls(er?ufAlKPgewUMUpa=Z)yC-@sn_7>?dLQO^!V! z-lFIW+|f9P#TubFtTZ^Rjnm*G%iJ3$;*E#3L7Nwadl-cW@KRGoX^fN$zqG*R!P~qC z*YKFib4C5|gbQ3k>6Js63Fc!Ew3xA(6fEJfpu;YR7xW2cVE9wyQuRsy23BZ3RQv=@ zLXzdfNp@RFC~2c9DbzSCD{rd79VWxAu?9m-pPQ*0WSqYt9&gi1H!FROMvl-@ZP~?r(?J9*G?&VvuOeY5vvL4QsKbI|0>M}25W3TU+8XFg=#bkgAEPdpw08(u> z9jq)+661arTVB;k8mr;juHA=<){DgA#73M7<6KnD9)8vwgj$;qu z`xVmh1!Vww`zcllBi@z=ztlnk=tAG&|rJ^KK-CP+njxnlsw-H|Xuj!Ob!_ zur{(RgLA3Ll#R<;pZjixxr>Y2hC^@}SVz>pxq^W2#wx<=$6zH9qdwvJL~VCRtps|O zyxq&HuaaNEo8F8a#@_YmB%duG!fBGEH=e|PK@#~84#VMW_tHoTN)K-%p~#2uE=lr1 zJju%!B#{r{A1Ek{Lj~pEFG%9$L%3E!i6_~3L6Q$7NsWTS%vMnDx*&;{4`Dq0fG(s% zCBZ=Y`RMW?JV}y#5Kl7pf+X@mInmqhO^-o|&Nnh)UvL~bwT*gzGu`+_9$L8)tQ z?}#V)(FIB5L)Z`~*_>4>DBm1TGFtjbK1A-{UgTEa*Lh<|sBaP(xpR9Dx1Qu(ciYHs z5*aDj?#{BlT^;*&g}{`^$fWI;SfgaUf+a&H#%f0c`Mw1Vs$CmhzPn{`Z5S0Q`A;t= zRvR;70ia;c&&(E^4lz=c&XI3%dvOMxWQ)wxp2w1?3}k)aL7edpRQV_K9lv=Q!Uvbi zr2hg#i$M-a+7qw`S7ao{zD1I7Yq*Hw(&@eS_|NkB5;?C+CPjSZj zSw>($f6e9jblsSM!_&IKslVokjMAP7WY}4RG5i{%FNbJY=QerXA(`**clyqHf%7<`9SM#I8+B20 zBeKgDQ*`K0F-7Ab0!^1LCUql*wT73z5ewcU(2T#1LBbAkV5x6(6&AN5B~7V|F*HLF z@JN@#BTXMcl4AB|d`vW1c}YGgMwe7BSbv4v2RKzMN2H+m&9YKo)Q8r0r}>M&JJ0eA zD%XFt<(cEcPTlKSk+B{_)*O`g>U+empID!nDR%~9dZzfIrf2qWpEeMgRKca5GCcFs z6=HbixEP-4op7p2Til4s^X9bheeg(VzRHN)LaV~HVRVN2cEF#|`@OJTn|p=1U+{C) za}1jTbNuS~xRmtbU2lI>xUZR*ni*BlY+0JY{7v)~;lPZ6NLpXPxZl)ADp!#>CS z7Zn;#iC3^vGiklJ3In&|E%1)XTdv3Vm*sWsXa5|HcCT<9&K$V?8QZ%()zy7Fk^-6C z&R$+SyWZ`Q*OZ#@hN_`xcc(AOyp98M1ZWBl#&$Fc{DC<55)1qdU4ZYxx!HVcp^wEC!5P(!y zpYJcN;80f&O|!7uxm}RmbJ)2%_I#FSSIc2%GtVPu2&J#-{-Leg`P8#Nv>kq}tF7}C zzt@knbhRG&^hn#`y8R-cs`( z(CIG5(cwr<_OcP)fuL+^yNj`9wrClqdu3u!KCB7-i>x(PWUyz%cq@ku@0N#FN400( zsjzoOmKpmGgqe)~8g76-ObXaTU+0Q4OMB*|y;t^>F+W2qvScUVp9z?6;Kn`8IFk2H z12(n?0%>avQmeq`rwOi&Ae~_N84G%!;D=I@7N!SHAgH4Rwh#iA&Y&d4<%iI>QLJNTS~IFV9-zR#o;FEb17PIT^1QAq+# zOMc^DxziA804j$VOK-O~oCXMkA5rh*b)9!=&kWhm1YdRm&uGW{ZA*V&=)ojC>e@IF zYxK`ae3@BG77m4!An$<_DobUV@mj2P->@2&K8QXixSF4;_{ByJLy5$84oDLJHq5LqQIP&Jm4x=fmS@y!id9(I9OEC-YpdeC=O9(+ElX zB?iUg@@Ap_hG%HwLMuZIv}$Sw%BLGIt*jWXsr6N5vXXB(WIQRQTcsG!3C!62vMS$r zBd;^~xWez<4VPAy54-46K(=-n>SL^Ig=$a%^c-1Nh6*X*7^A2BGxJUvov{%*krB#| z5sGVt2rA{0NM*9n^PJThK9RVg@Q3nHh=i}CH9UjsZ!lEVj3|N_7G7^}m{GZWL={!+ zh${Mj?-^WI6w9Uto|<2IZ^iOIE`7dX@}Gd=e>;YtHN;x;8YH=~KX0F>WmBP{-aM`A zvy708%iy9=eehpGa!Q75-O(OHHX%0YiaJ(8%Br3l~HQeib? ztSp|r>(hAILUa zE8=I1g`-KkOA&@u<`qk=`NrAZf8EY4OT$tS<#1^YMZ|cVYjMx!Um9vCl`PTB z2XF$5K|vNWF4>a<D!2JV(g@Fb2f_WqN z7r28c_Xh7sGq0dTV&py+&*e{4$Xi{Tt+wSV5O%Gp{nsaKb#GsG$KMWt-Qe<}=yz5J zQ(&ws9QTAHbcN-;sdyAtkHTmfM15InI>hP18j^1w$%lQm~?8wCg=L-`|ms#D(DqiM#Z^Mef`r|E5aw zt^kYyj2$8^#u1DlDZh3I{9vPjWZ1yzTja`xbup6?#hLHlr7(z0O`I=Rn&lKHQcY}y zI*oS##4#2%h?<<5*o-$KSA)M%bJz%ULYAb=HuJj{81pAQt%{h_AXFfOB*!lEse8q7 zo(w9vYY(_E9y?_tpZ75)r@gz=Y1-p zw!@!r0jCbEU9>!B*5wpYQF;GBeysgD6E&93&BDkGXWAU{rPbazI*?ksbZ)MLbK@_~ z%{_}JI@%EgPvV?cf0tHlvd_CjtKUXwUb=r&V@k|^6ybFYes@WN;|4=d78FmO^<mSQi3f}7Vw&ZXx-$M(NJ;kTjPsb{Xx6lMUvv%8`ZM!s2rQ&FT}m5|YTPRksXDx0DGrC+QA1yJAV} zAItuIMVeJ4iGk{=IjwzDmOnHB;(eqg`bf)-jPe>|yuq=g&O51pFm!%bm6eGb7T8NU zFfh-_Vjx%aqA-z114}oqkZx=lOp!Sd#NLwQaiK4AW3p-PmB?`6hDF${kYln)jy8?0 z-}7K9)^A1jtl%Ify>E$()dw9L$9qn#8+*qs$ivod&w>`){NbjteAZs6l~>N$-DV{; z-g3ASewge4VAZ#<2`>jS{OegE3DZvG5&G z^N)85iAAD{@q7;V>yNi2?=dng@QZGoo%8wV-66-6#-%sTj!Ca6qNliYIhW`UWh^$@ z;YG^JwdY;>nM?d%)X$^`CWoq$J@2d^&sC7O&_lvNDub0#nk++9I;z^<;%Qy?TI3RG z|J~C3%%6?~nOiz8H~F5t{#a+?YRSE(R~DQ1?q;!Jzdt04&A=T@X%-thb%-rCzo$)6 z-D-S}r)Q3}*vP_ziLSFL#xBaae>anqmF7unrD6Th>g7Bq=IUZYruqFC*#G8f-O5Ea zRhYZKCJnV8uOP?NGGqZ5u?B5c$z{niS6dJwu?x-$b1|`uIpoGSAB(R&axjf|_$#T7 zvH4hqIsNa|!ZX9lYhFDJ?uSX#b9dCtqw?0G!=0iCI^!t2qH_@=v3a_bLh^;wd3nHv|noSqzGnFnA5zzRveP`5Mb)E3+*sgrerlOO1ZM2uMr0ZuQVf~EV7l{ z9B1)|8n^U!Je}m9z)}N+4F9XNg^I#?;$;+ZS-v?tQIh!s_{^~QLqI}+y=?Jm&+c_j z?Ak2DXXrC46{+hrA5a1FJ{~kRLbb4VQ_K%x)hu(j<{lN4^ZxMH1Qz0YK3loDAEhQE zP1PSN#6~x`s4zQtS78ndJ&OW9lknh$>D$9Gwxe%RR_+oiqty#%!*?-XXK^G=i?Xib z%e>KA{m=O(jU!hqBv{;-d<#i$74bT`+muyJO|o5N8BHGl)(au!DM*iv4%~`VIYwuZpgmx!B}P&lws@QAaT0U&?bghx zF!$U|2}XPPE!A)cZo5PC7Duk!Rop{Q!~iA0#Q1=_NmaP)*v94d&Bp{WjM~N#bA#Cb z5=!z4qIPqSjp)PW{?Xa?of7mmw-X&jwDtKL}bt8 zeHyvem}Kk~kv%*wBrQ;p$g1tzFsXLlwethxpSJmwc}jc?7q z2g{Dw$F2Gdanqp=Orrh;a8?VbseM-}5}FyN?AeWuYDmzsKd$0};24r$M@=vDT^@JD zK+LOV3tepqm&~pi^q=W}=aPd+tR-Ykkn>iX+KJ}Ji{o|r5{k^m zuJGl8(uMAw$C*15>E@9xQh+LqkqV84l|}Y^>!?kW<`-dae4X2udbelqrc1V_&fk9& zFVEvlBc2oB!f}?zM2$JqgfMTHVOnz<)lY=vGPc)ZI+eLSP;P!QkDYJH)E6YCKm5X* zIF`*rPhemQHYlNv#RCE73*v3osKB6TQDK>5b4pQRM%|{tC5YAeYb=C(A0~e%{+9>&;N^qv%?3Ni{mt|8 zI@#+^A8EM~kF_vp%4%~8sV98RIn!ZCq0Oew!;h04Vo^>RLJSs>|S?N{!A1z_8NAKEcva6ne)(v ziHLlJ%A!pvO`{u=Z)3}bW!jTMvF?e@jWSVnJHOyG-|VWz*lZ8oo(uzxQ(aZM>;O98 zhDFHNsW*d#-kk3ZCgBKlF_Tas@+N92f{GY?ujg3DLgj3~LS;IMLuK3!rD)HO_6C#n zk77(OD1D?*O5Ewtw-ucGPB3p4Aj%W_HVeo+O9t!%Hp@x2xy4zcIpOKpILgda#YNsk zMlMt`qz_!au@z1q^*~|$|D936+BZy4V&Hog#=%!!2p-trn*hH}QeOTiz+-`8B=|CY zbH-?NgRlmVN4um=4)JS;4AptmKSNg0k=I!NlT0^VkO`B%>X=22$+1fuyaDDe!yFB+ zF}bClQu309SG|Q~+0UmkGxaUHg}v37>BWr(3nU_Mp`Zt;6+~ihlZ6 zw7Ix?%f3H4`d3Nzfx4)2^p-XZHS+UUQGfeu-Mozi^iuuD$XC9LVU=mLAR}&04^4y$ zV#==Kv$iIj`J83r5KOT?X357Drso}hRqa2BkGI<~XY(1ax5jY1;uUf6<{8>F^I}fk zVl~;~z{%TW&yaHN#*vIW@15Y>V3qRkmM#9>rc{QC&tj`a)HWhxVlT4gXCAJO>3FE) zW6KA?9{5@O?B0VPu(}RznDOFP_a@Ik1uf>r`e91rBn-XvET?)E?^1&lVct<5NNLmx z_DHVISgsz)b>(m_{S02)B-^EAgN(H)MPo4brQQP!ZJSoc$7F$7d=4&}^S&;{(c)c4 zNN(I)+n$l$+Um?$X~(6sTZ~kNV`}3>{S4mPmZOpP%Oe1UjdTl=sf}Z6&*b{A5?^cu z4C3>>wEciqkuPE}Uwmf%Gw()fd1XZ`t0}zYd4Ae9#v?}fX)BTf+agusr>#`^X}fyZ zPg`cpPg{D-Pn#1zZGj1(9Y^lU!0VE6lHl==KtB(|h@EqXk({CQnM=8DOEccUdEGZ{ zvsIUU)4`JyI)QtO)S6Slz`GZEZo43Fuho>_9FV3wFE1T8BCqHw;aZpjMf4Gu!&HrM z{;|q(k7DhfYQlTuNJB=Ku!c&${&`{;c^ss<);uAbw(l%vaVd61^UV&q#!^RG$l$z6 z-Qx#Ta#CVGPdagUQtT$_XOdJvY!?s}e2V95pzqGhw>6OuvTC!0Y)-VXWqeSwPDzx$ zJYM=MCO1Q`y0bWU4IHZ*I?fxS{Wtl?us{B%T`~aV?AQ@GdR{SEiDE#nLZO#%lVXdm zU23Ed-_JsYugqw^QIf_Vi5iPYEy{NACBY;y(De*;6?d8(()w?Hu>&kBy~bS5$Gn~! z1JlK=dZyQSFxl&QC|UH99GLSbGH{4pykko9m==-JPTlV3?(Gqm6d*l?fbP;#^R1mg zmLh+@LyBLFz5T8?k(|_*QFE z+vmU0NDYZsj~)!>qi}C5#?%9QIz;G>;~UaPTrYBJA~-GzC86RTYhU*w`;rmtkT8F; zKdxyj_pJ~Xw5*8IIuY49yJDSaa7+w2YB(6QA$4P?Y-6CBhI637*~aA%J3?1!rMa|O zoe;pFI5-l0KfcrMJkCzLp!o%9*P=&~;^Gz7<{SFNv;;v_i5QNUCz8GAzkp+cb*d1_ z85lz~5pKRgRUd`*=0Hj4ky;S*7UugWmaeHE_cNO>IhO3(Y_S;}b?r6=wzu#G|HR5Q z_a6JT3+enomU78b7cZ#G|BccLUr}Y`Mlp0Tk&o-w=x0~^ z|4w49wunsE&m;$y>jUof%e=^#IK8Zn3;FK0@G3RG&%K7iDlo%03vuX9t^SKJ>m=6d zuOJ|TsJoJ*#pl8t8ov8Kl(YFv^~i|l{u2Cr^~ELcw8688TR~A z=pEBE%d^X$QAx`i1E+qZ-^u$NlNXYsr808eJM& zNi>xCqNQ?*Y~8Hzaa>4=EtFQ6iyYE7Vn8A$P0*P)f}O8Be)_^P;N#UEC)kiN#PQ>k zS^Q-fWdvWIN{Iaqeg*(#i2@lhVCK2|7%VG7OV(IM-a|_s2!^srA8K4j0nVqGdBIRF z5zMqK@onK2u)&ZV9|S`={5AK#lo)4!Pady+)55@Y1yOI|mgK-J<2k`*O%>yftyP5? zEs(@)CA5bB1U5q?Iq2d1=WnI!hYAjc?o9R?B5UvEX6v)OGY6t|QE9LB8;k})!`SCF z++NQ(A*u(3sFsqlEJjpYAgTugM<5zbe7Npbl(`L*j0UOFU!1j(tmY+axuiQ(-)xyf zt|-L=wYh>zKs9d~nxre0A@>HPe`ZliX?dwX)m+xeOmmu_?Tgjc@3T^ss?Lu-Csi@O zcNV0cl-`jRVf-Vj$iNUOj!+rRASVW1PlGgd;M2Ul2hMQjS{j$~2xOIq|Aq9i84|9L zdMXSmOy}2VS!T7c>|EbANH>+Paky>S6=oxcy9~6^hKhxjq(w8|(T`t@&)I)O5Db?s&k54zTk&YEVFNgqS3tm@lks7`H2h_y%wp7Qr~C6>kdE}6 zS${eExYCNU=yTF5=40`+{!BHs!;g~6>M`XV&QK$nfdb0Xz_2QI<4H9Z)Yy{S*$VR~ zY{+BdidhXO7j_E`SFMY@;cFurbQj|))|j&7SQw9vW1-dmp59e7IpVC8f95}a0Ih** zDHYb^shflrBln}#OLcrsbH9g~su-C&M00NnB&AntNeYaw+v4b9rS*@BZg80Cw~#8% zdvH{3({Hl*=ldMyW0IW@^q(zyz4-~VsoF@Pi!$^F(@?0LFFcJuwbXQ>7M6f8mDCmH z_60nVS%9gq!+gXFt6c)CtW$gBloX2+B6n_t$}0;F`CJRj%|}TnSBprq zvb2sjPhBHjX5D&)ePfXGn+aWR-lU)@Q0eB=B#L>9 ztXd-#sW5-a^@_DhR+#PNV40+{S5-zgxXc}`pwEI7m?F2-`+}F!b)Bf4?#FWF5|{xt z9Fg%A=HB0eQ$e5Ehs^?<+#aelpD6+}Do|nmh*0&aO7ls1iteK#q48r79QRcirwVJ_ zTQ08*ZFYyYa{e1zvUhEZjiA7o5>LRr>3wzdXRS8hJ{DhXxH*+W2mQWYTGHj*kYVo3 zPb?@Nl0keb%^%+j*(@F~!}mi$o&;Ntr(rX6b)D*l9fC(fa2NYFDts8GL##7#l2Cjs zBuWT)WIPTl(#a1Yu)U`l$_RSIYXR$m(XGCcH9tn@2=xr}qnjy$1L$g@A`=)%m6(z8 z22+Ct42w`nel#C0Y)wb!Z*9>z8SF89_BCa8QkfqzSGG$GM@Tg8nl)WNw8cJc;|@GF zqXZ)5hnB$L%Kabm68~cw%#x!#YPY0e3~|}H%MkjJ%AStqTlid)z~vs9w;Y@9$eO9;#y}CFHQagMk;~ONlWUyOuI3g~D%X7RCc4-t$zk}oiJg0Afao0a2NJD&b2u4t z=-#Pfg#!Kh*v(qGS+8~Ppcy4ak)Oxe%&)%}A02haJ7}u& zmVQgR2X-#_@?0tiu9v|}xGUgVf1yTyT3DB7bF#hJaI}Xv@PZC~1GfZGU_qC!lXk&I z>mtbx*;z&k7TKj*!{3m=t8YnOs5J=rC+JwMHQY{cO{rq==07dtBKTxJS(#T1jxX>r zZ`Xl=pejJC7tKMR2gw<`RzHTY@v;>BTNx7V4MhZrLX7gf3RwzRsl(u-T#3{^U^M{01Do6&2f6lseXDM^c!-yoWU`pZ(NbL;Aga*GvG z>kxMmzmd`vGb=hRA;JjXoz(V4V4=#<0;Kt>@Pe3zYx@ zj_Mh@ZoTNlkM)bJ5l^k5jjs*O;rBrW9$Uy{DeO_h5~8iOJ5~bBv*@$$$dYxoRZ{N> zRc2#w_wjf))e(tdDaFsR7xa1xty%{Py!u?5{|j-}#T$J57N8p{BV09`L--i|Wr?%} zb|R|T5=m9;jPfrtD~>>=$tsV_9w|@N(eGS{Z>)65VD)Y!6+vd{&Jw-VZ6O8|s(ot} z^9mY^2`;uv0Eb?|iBu<;!>?Utahm2*R@wLoxNAA1&ey3Abwu6(5)rZ`if4O<(8EWQ?y3v zEVg{)=$1qY?u*IDYsgUya}M9X{zj=`E>UU|brbDsq}@b8Fw;aDkN)RVq=TWBmpc*P zpDMX6&OiE`fI@#5E%%I0Y@>kxLky z3dApZr4Oxd^{Qa~EJ8Ih!Hwsn7qI@N`hj(ot@?8U8TY7Gm7t=G8HrgemMaz;>hmoI zew_qO<5ov-y78nW2!>R$eR>Q2U>%0)ZwtN!DHsyK`k-^uZz3~b(JwU|Zz21)=q(5L zq=st0pyMqIlOVCA41A4i#f>idn4G1)t!p|U97H`Q^)&zCS!tT74b4`E`3qkVn&iFg z(PBwnqz`Oe_wkw`+BrHWi}Q^b6f@1k*xh3-U>N$m!x6Cy0@OT(Q+ z?36$Z{_BLTLa9`&pVQ{XhXDjl%?*Ws{ZPA@_r~h<+~Cr8bHhIop+z;^EeV9?L(Jt7 z|6W|nY7w5zX2pnF;eY=fN?3ck2L9vSp8xpXL;c-diL(>QW-QG~s}$*^=cSNMIj)L+ zWeBp|Kdy5$tp1ok>!(!G z=1=3n9&tZ5_af=~iR6e&KVfHEe!^k+b29q5w8bUsD5I+-oE%sgxx8tjzAFi{=kpsU zQKBAB@?RNC^9L)LwfiTigenoKQ%M;3xKZN-eNm2Ubz9>kp6+{At!@hf#vx#K zD}0TV7{&(W#Be?gfPM9S{;T>S_+UIRI_Q;mjuppVZvDz1sSYSzc{RD=%kWuw_fO9pPl&TDC`{ zskRxdvu$VXw)wxMr8RvIRXeFw@2TVZO+qWXPHJU`yxLuF>+hYb`^a`yvX4(&@zgJ+ z#ERd0wcMP?pQ2vC>p!Vg4U&bDst5Re%I_WG_Yr^Uq_%2^oX#Z{sU95)h%AF@;#mrueNe#2g8;y@m0Hcwo&A9G9CMbh@HH& z^V@;?O51FylNdkKvxRnO>)*bDKmGi9yVsKEol^ao zwX{l$ncB~r`z(#|24GGld$pZ!*sVtRS|?9dsny|l5}rF~+FjCG&fj_%ayH18rt4JLt7XtixpPWY z`56qP+{}AbICth+^{kffv!y${S~cIRd-*j}m~QqfHSDgldou3e~kHBYO zva+4P0SQopmA(8v;y1+agkY~a@Ej;%B}&sjR0vh}(SY+~qkZPn7BcCAAcdTZBM1Z< zE_a%R1d1EZQ3{039h!~jEvoECh?%m%jnkaHe2t_d97nwbaZ?CR3amX zj|WM0P*NSJTlF(GE%dn6f^ZjMn-kZi|{ixBn2QR zkg(ugIcdh5!aClSM1lts7f_-U0UNjx+kp?qkD?v38kx|zEv%XvJEN9maOTb!9&s! zU9hv=F3s;&Wvq=rvF@5CFBCvw=XHY&BU!r0UA^1t3OD^;EtIL5cc|1#>H3d(zAqK9 zDzmm*s8kOhAjoUa3TBc+o_`>spTH_fp1#(q@9bE;o$-2u$`R_!{I2d-WR2X?5JFTx zBI8@UL#wL?2s>ka{TAP#t!u+Tua=boUZLuD3|!ciwQozLtPH(^1Yg|H%^fE6Y2^_j z7+%6cRGs4;*lLM~%~&ZNr&bE*&@j=2iDi6jfoE9XkxiiWB1Cg74f($%nw!^w-Ngtd z7ij-`f?3QJ0;MDf=J@nl)tXRAwcS;!qde_;-`?r$m1j8+_dP< z4tw2uLc#Tq+;xLJ1lFa|HY~msGV}*5Vk;yx%=$5sgc|4Z|9^^}zQ9)WkNC|W%Kp^i zHx*mZ!KlpaP!+m5({?QfcTHD($Izx^kzR%jZ`vsMd1S{bZs=G-zt%FR=PG(2O!N}z8HU`^i}A5OT}4rk zgI2T}=i@VbtVUFkv6@V4R^#d}X7|-?4^5T*P>Xpf*`00x(F%^8l4}H*3g@$wIy~@; z+Rq>OkI63U;^RG_T`<;hmEh7EMAye+6=z1bdS~b7d*|UcYNj= z6`p+n#2DG*r`4+Wl`_gR*IMZq=^1YR= ze{(Guf4={E{!jE@?}+~E`2Vv1W_epohj;$xX@OA;3uh@cY@_+66{)ILvp1IAa`m(& z@*&ZgDHn7mc3J+a{uH05!vkn`_FV7$r(N13;zL2E2O}tbEd?_icc0W|v$4y~tX1za zCv&Ggroz&v<7YP$u4}bjnM&&1nNL}{y7c!h1^X~(%v$x)1B_W=E~?X?<+J@j%h6=J z%x|V%E;DE44&cn$&8L?493iLe9Vz&(*&Pa0Zl_G;l_bk#)~;gCtYqTlJ}6TX@-95l zO2KbQz938B-g^o303D*9%Sxc;osm3itr(R==GBs-SQ7clgqLoR zkJXKjsfDomeWov?S2!m(++a2AeWq}X@`P)wg6&^PnyT0N4sjX3-O88AaYfbkCxAg7 zXh+rdMis6)Lzukd=S%JR_5tC?o>pbuC0rlNLG`mwskAFU2livNR+#du+1sl_6?<+Y60c4s}or#M%}E5&w6 z)wW$ewr!W(ZQqx#meeG=S4d1{n%l7P71Jr0wF|wXiP)t6zGMt0S=Oi#tBj{@8cu6V zq!sWNNxNz|?VCH}a0Q7GY0J={5@YgWOa9AjpXFAf;T0xEVa+*Q_7M<4B-CaW8+T-Q z(x0YUfizG0Z+KcagN4%`1EN;Xh8rsa&YO0;Vk_l2FZR4K_M9tEZ{f6jo`Gp3xQ;-% zq`W?s;#zr@RYtIad0t$3d1+aBxj6?^`0^2j;WI)qngr$fLF{=$D~A;cp$$APxMkKF0AW82_v#2v;gT&4XH%(^D-!6aenCf|Z^Cf7u zUE$fk^>WYNEth-tZ=R0YM(oDfvwzb`&)%({c=m6>+U;f$Y5c?eC9ZjPr8Z_y`AV+| z>xMqi-oO~ooM)vko@|b^dgi<&!S6Olp0{KW#_Wh+z?GHh_YH_32a08gCI-GiRnN6^ z#9x!q@_sT3)1vm}GJf6h&o7B7mtTLEXJv``pCqaN%Kop?_V!)A)Vh}Izl%|%7O^;E zEX%sTB{i?rvtsI2w3W`-i>KOqYtg0yj4ldxfYC*#?j8{bzsl3QXybzI)MPEUng8W9hB*34TdVXVUU5jny70zh7B#w;RE-#+l zo5tqtjyfgEN*0_igB*JvR$uei{B3KzJ(W0xnNK-Nil4V%Uc=MqHUzbZbk^iPND>wjT(5vx78NQQYF=Qq(D#_f>|zk;t>ZLNYBk zpXUhAy7W>m0e$w>l?Z2Yeg6$aQFQA9UAD!wNFSw?h<~Hcnx?N7%ic*P73Q1I$Pn4B zv>nBG#JoJeYhM1Q)Om$l?In>DwKv@uxP@dtCmCHTH^%hCvU3q92~tZ)pTGGtNi>Z_ zjRNc9DJad^-$h1z`lO&ahBye%oq>@f91ZLqu2YQYrYE< zs8QyBTT1k4g*Clc7fETXx;f(Dkrhw7!9n8Q5s6nz8Il^m5e`Z2lxLPS>9v?>kR}~4 zr^Z63%`6qN8rPyeAj0^x9V#B;Ew+s*VDRMR1gKM{O!}tzrver`5F;NMrsi) z%c#{LSSxBHrHn;{lU|l=krMO}0}G;|U^Bbl*8!JTgt$wd;*KB~e_c4_Pdm*-q9r zvW(6ki|8v1h|u8u#3~i{6!ZIWSR(6Qf?CBzmGf%_j1f2nq-Mz=N)w#|=`ubLc~2aQ zxrPQg4};KN8-z+jjK5XV^APpMNdq@>{dn z=&^}d`6=fHrwRLW9NiQJ!~ND}Dlngm$yoXRal|Io4cc6sN`0~^xvPg{xiI-vl=D^+ z*gIZ4L8)Al1jdk-5)^Q>LN9vNktJ6h`bRFg?Py#HJE@ND zrdo`ietg!j?2Dz0>_!+5nZ013m-RR;xcNAZ&JbK?%BA|h32|T1S@s%zwKBq(-Wmc`>6d^nr)Naa;@+Nu&cZ9_}Wh|>t zOerSvis^`Pg@InJfze|NZHy{i1r_l#A}q5R`oKe4!*_X=`iZmx8h6y%xXl5JvBmCl zR)=bO%PY#zsDdRc9Ra?^ZFI;Y$cVNnpw9`EgIeRyc_L1tJ@P{Wcx3dnX^;Gbps@?F z%7%kmrqjSpi=3w$9fjh<`%(E+e5`0OUp=jx{-E3kCL@`N(Zp|l9rii$Rnts?&g`S# zt|BqEc8WU-pH{TZ|dI{9fr@b{1zA2KYaG{VSN-a7>8|R#5INcLzwVt z+WTsr$&D$Z%&TPT?M8dy=B$l4_sE(rSAZL`&8ZZI0~2I?{Rd4=y@>ykhhJdi?TXxw zR~2OZGb+r9P)MjVw!xLvQv0qHo7v-JCACG0izsG}r+vd0FcTZ~U&1FmxK1!z_-v`L z&$XaU^_3d!)mY+Mc5c@q#*7NZ5NjE!3a5+@#3XQ^6b?-6&#^_Sh^^@etY8v|vx27N z(aj9v)+Fs`jvTzEpir?VO1$2JWfJviSCaMvN6xxW435vUSM9N8YZo>Vj;D1aOo2gR zF)w^OSEevXai#vUgr(pen=DJgV%BUne5M(WN3@Ah*4f!t(4)ey@%5q zB~09d@@$D@cRNc7fll$cZs*ek5AW&Pd*mp;Jx5wPRk47LpzUSeaf!5pi+1ShsZNM0 z(-6L>vg`aP3srS>qTRbbfp&Jo=t$Kv3X0Qa$}lY`&R|@36Bn0tRyWjWuI%;BST@#+ zyO76~PbY?m*H|{zy1zDByfa!wVWa?S%$AMnvK6eF)p3JS_>H3@oovd`U`&p=klJp8 z{MNK-&+n-_Dt#>zcY1$unm7tpZkud=t-ou^9{uQJp*p^k7Vur4yb~4^*NYxXvp)8O z764Vkbw?rb(NLXmJh6H*y2OvrV+y)#8IpZF7Wk)jwRE+_t1)J~Rrz9!B6fFTTDmK)$OQ7h&b>J7aep!FE-_mjhmF2g z1$(9m7_dOBI}Pzs*uBXGc;rhq*JH2DvSsnnZ-h3Hr_vbAJE=YIxCx>5(AH$3yiSC* z0>@W#=z`BN$u>{2T^?!2XZLGLkq*mGB9jXI+0c-@x51MM!DrCF5#Ehh^d#RK6=MZK+>}M(JgY?M60yr{C5tG%2Cz6K zdas{Lra1TDMiI9X?mMPQTFPKSrxB{G)r)R(x%riR_8G+kcyU^?RBUK2S)$nbN;%v? z`o3Hp@0^4~SJKD+3Hrc9tzPyi!b6uRM=v5q-|Q$g4{8AKMDW{xwX8-gMdG1op`##* z`1vyl5SIf&;9Tw>TW)@dJV?8Te*{FO{}NVfXbR+3896{q{jT;L`tAy&1)0UZ*ltbybvTC5f>JK+XQkMfCAjbUudRygT-M zIL4i6pdB1zj5S8t_XJn&&xwT=?VlQ3PON>(AAS|zr(j$})MsRYahXN?g!n}KsI>~2 zVZp&+ISVLCrQg0s76j2j!42I+{|adaj9$`E=6X0yOGw@SMW3a#at;eVHHjR!gPDla zP}*IKOclFV=G(uMf{cL*b1GH9SebRGVJQ+VNg#&>RrB>i;h#|XIF4$F56^4peVnf` zD=HvtM%S?*C+H!=5SpQ`+G8Yu^)0c8MFYd;?ja)=Gk1R)-a^dXpT4NM`_mUSckf>h z31YKYU7a8n{xQH8bN36aRSk>xYNf#9JO|%iui=3NJ^_ zviQAjS;FVJ`$!v0Asw=`PA z*CFs1-05izD~VM1*DulzgmO8`murLdzh~>R^LG-H-T}fqGkdJ(w4yoceP*xqKF6ls z)y{%FNL3FRci3k3vQ;71Q$?p$>h1Zgh3r4rAgx5Ar<(oEO1U9JjHQ}u1KB)P?Lt6{ zDFX$nJM%f&wMWF@LtPjd2Adrjk*nAkW%RWi9c^!U!Oa(iGus$#kz5?4KW5=2+p)~2 zR9Nm2s*&DNmmQhU631~n@42(x)^~0pa{pJh3g3l@hhS5Mz?@u`R0GG#*KDQjAT1It znIgc!l|n8%Dfyn+%>61A5m^ioC2FS)ELjEa5n6Xs=bbIG*V?!g17QBYtvfSB%{Fpj zp%M+ZZjptB?9UM4Xzh@Ut&$OSj2$kLJ0B!P+lyfuBXTG2nUaH>6!03KzLxNdOi){d ze&ZfieL{xqbtZUtCd>w$A+1Z%7@_3v`gtP5LGC>-LXKln8%zJRnA^ASklq|2wINa> zxm@UMq4*Kvb(+nRzWcs~=TF#QB5?8aGw0tz#I7G=_TZIH9=8Am2SwGp#alSepU=)w zd;U_RU(}|jXwSRFjMN+6!WHNInJA}d&rcNH))NH>*~fVc-GR4O=e4XlFko5Z5P09e zt`+sVN`1h&=^?md<1Oy7eA!ibt^MyzIXDA@RB6~&Pc}M2^R6}adHV6ST8KID1)lwZ zJ`AwqhV3A&Vhq^#=5zm#iw{&WmE5Gc*F~LQ}{<0DI6=X zsDJO3FRkJ}dIVy7S7ZJzMkvdMn@D?9<{3TE*OG)sMch?<8geY~U@BP@mkW^-Z%Ov- z4xG;07yesWpbz{}V;=Y@)|}Usp_~{vN1Z)^bN+P6?ULNf&IL~8?K^NrnpUKa^IAh` zcj!Gm(ypP51rcrMXMyt?cCTvKkfS8xIv<4tXQXuxTdk`-DjJzF%)c;X8q$=b0O$ zmO*efe7VJ>Bj%K>w zkYU2zucRn8Sv#~xrVti00L8CE%QxiBt@*@%MQGWHCeiAdrfn;WV%sR<+U2-08%yO$ zo{lZ2nTK<$qk(P%73MpW%7Ls7#hi6C;_}kvW$Fqbx=q@&+??PQ++q81Ne(hb@!=Qb zU{i9b3}vNdVjf_PY|i6(-n}o8XS2$4OeL4fkdVKXz9ib~CG*aQBq6$DTD`c^#4a`} zV4Gi0GFBW8JtA8qd>99dw+o_;wY)Y~ZEd`JYa>QaIzmkn5nT3WN>&aOiodpYP`CQ$O-uTJ5{k`=ijaQW3E!QtkcG4@19F zZ-b|P#ETJVHohgNm26gTjawHeG9G@6sM%60tXNClhvnA#)mr}KwU?UTRZ$|iA#dN} zExJvBm^wj@**MEo)@f|Phb7u5ehJOE;_X2NRvf4)a7OW)!G{HiQT)0%Xubk}Y~}(1 z7C2@Ws%MXRjd~t7ujE;92-pjwf!*d5-l{RFHP285K#uIaQCIMLQX0pX-xKuPQ#$9O zX{?H>@<>R^>YPWY#6f-*x|qe1F2;XiqU*=;1H|RgvR?Dy=Z5GSEE^UNG%d@hUz$HT zFs0yN;R?5ZtbxirL)o!*MzK4RY_tjn1qW}b-F(irN)B3k;|Hy+3BXKS*)NI&fGnYM z7|A(6m7D|oWH8BQ{w^Do)`~Tl>FTa{U(7qvTM^Fsi`tC)%=lf5<4By!37^-DE4Vah zxIeY1b{+X5Rwc$s_Yc*a#3HA8e=nyWc(hnTOsRS7#84C)R&f$8>w`Yj zvoSxuAf$3DOAT2Nj^-s61e7BGXhFyT?1c-0Iwy$+#;`FqpOi%?k|U?gz~<@<>yJdZ zDQ&|{^DWRw(SYb`VEJdxj*gx-$~8Tws`I_@vc`sKigL*v|+yEzQwtkJf4p%Nf62 zpPJt$Q7!h8xUbUZXYA$HLTi{zIid8P`Rri0*|&x7;yv;492rJ@G(Y*Z&33oo=Q11l z)MdUKe#q$`yC8B6hrfSN8kzxDcV~BJmw9*Fk(RsL&;p-Wu!r+hwkC^m+<_e`?^5zg zjSbX~sDg;XYqt3k45W+!c;J^Dr8Vov{l@EM%r9x9l{v2e=>EFPY!&o&xU0MW#?_sq z@9+zKtpMD1nW15fs73{Fyg+1T<+8WClgJEpsw-Id=bKP|ThjwMTJy)L{flxY)$;0} zcxbl!%uBZV-}z~u?a)M9_!ODDKB@nmR)3P3clCrLJfwEv_vF3BoKC8)9&A!JJgLg* z?mRTxhUTG#4o8Mjjup;zcKy;u<9shL>2UfnT6(BOVvlsGxa6Uhw(d@g&*Mbp>1@Bl z=Zs8x+7&w_e%e7qawG*G15Sj8I3?cJtoLA|LFR3_aTpPtW4-zg#|qkWipfx4Yy3W7}X3zWjZhNq}nKYbt zCu){UHM(n_wJP@*y=$z`rE+o*EEU{LS4jn%*`8CutEk`=-3znh6{Ls@YWP)WqJ{+o z6E(c;CP65BxQ0LL8Bs$v#|&t>8pHOB{=ucVt@TgrD|X{?6DI9O@>c5~^oO6MkBm0f z3OZjdG%m9~oDJ9W0T1n3{l8Oh^5MEc)-IpR9Af@(#9RG>@Yge1{CCZ_!Rh&Lm@jwK z{!1{;_P1iZEpWK+CSSr#+Pk=(~3P&(A?0s z3Ttn}Cn4O994?N#v6A&1UtU?~*_3ANFjJ<+7GVfL!5%CFEyTtU;mTLRuQ|BHML4(w zul4S}7Po&4Z?Arv52LCan3vozmQw^3!4Zf=kiua_e9Ma9oWW&9Fmfb? zxRR6=)<|jTarAc-EWm}3`R4vNs@g|pg`4_9NF`Q=YOH3h6+^EoEku$(AmJ0~5M#dGD8Z=t<<0%O)C0 zEoQRblPWMKOZHLx30!j7#K=S=WkzedG%apcRgmV!)+x=j3V*Q+O1q{+oZSmbyQhfF zOzUEd#v9;3MQ_Ibd(y@%GYJc4mhEyFy3>D@xX$HHgH~pS8^xAQLOAi_Y_48p-;m4YmQkD&4D@i- zYkqsK+=BF!n*C5&Yeh+|F!9G1#kKChs>qahF7rN8!YP|_pw(T>BAJ$8+ef;(tuQx; z+?*0%SqMyHqOq6BT^ahO5N$bo;!co5x>0&d8V6*b8LxqQs__jMR7wPP(glyGGr)~t zu-a85j<0x!`hQA5Ooynuc=kg2Hyp4!JBSV4k`pR@0J*&?m)^`VYoO0q<=QT^pfG9U zo&H62h46?to~|nta^Szbu22Yxe_UOmP=mnVx0ks7AJ)zUKC0?o{FBTi8AxCTNgymr zB%oNtVgpJX&;Taj0v(J@h#0V~=Fzc>#Th_lNgRRi}9r8i-fqD~cnB;{(FUqudzHrxcZTm{5 zCu-ZrRYX*$hf-6zKNbnWyG%XVk#;$hHImB`sD4-q+iTb+0BohK(adoG_c%D~`y?YY zLS?)q8ug+Lv*rgPaqjK~OjYXTTQLZbYv`^=si_36V!WUo&fP=Lx1iTK{bl)E-ovFU zt8NCKz|k`b_n@zYCq2}b`fzx?NCb?+ua&qN$3&z!T8JPh$0Ej)r=oAtZr<|f4D$;j z>67yq?pMsU34NzY!i%1Gc#k~1ZeA(w;|KyBP@b*Si`QI) z2U$#=d5#1+dePWjdP#_2!>-w-Gs3;-f(?-xWCgz-Es#3=DvZ5DHFa>^lqaLvmZ@2D z!d`}MlF$L}stAE|)_EZoSG*$3!PLDgG z=(4tCZ_b$~vF6JAiR9&1-xo(kl+H{0T(PCR9|~|3F4H&e4gX;#^!Us{;m0VR(=reB zp^Sws5-H$Pu3NhS3Yx}N4z!X#)TzHB6>5jA?2eY=Kr0I0xI8~je7!lWn#_u_x=XJQ zos=$K_-ID>EZt7XLs+A_(($k--#2r`Tl-5~D()$d?^kB-eA;%kU`@tms}1#Oav*!57x@yoRTt8&-S>SE@bEeU9qTScD>b00_DC%*l ztsCVBR+f5%P6%pD1_i3={si*up{>j|0~ueM^?RPePV8CKaDc`{3{qcVjq}mextb%h zB(no%NnmUs!BQKJPO z0X1BHL=bMFjHG+xmy8oza?HY+vqBkj(0{K^>assq;neUBA0gU65H$u<0WfQEe;q|` z69@6>>hg7$&C=1RdP5frD4vqs+Dm0rb)SE~9<&{>W}8inC4cWcr#oDcXy7hlU{QsfZ4XUE%WegpV()q0w&f;kM$I z_vQuj<2{|UImb960h;;dfk0f_RMr?Pu(buRX0B*>CC}k^(k9Gug>P~vxJYX z1+Zx+4){!q04BFY8l8wbAht@wd1DTqI8fXX8Y|HfP_N?-&}JWxi*Zuzn&h$(XHZ(z8h4r_jZ47*LsRFgbW0!|&J)9s1h7BcpH>OeqD{)aa!3d=PBe$={BFYZ zs}N37n&}s_G0RcLrY)Z3sN-iWH`5FU{;tnS75+)0@D3?_SIQo35v4^C-79f4<2sI} z70_|ZQyBGFyO3SN{7&*z922X+`41(nQAxua4!t0mO5{@pXeex5d=9eB>y z?`eQj=a~GVR(EXb&-C@I=J1HkoC*?h28)*a`d6MAbP><&VAxsPi`w|JkW*{-z=f(uy8S2 zCbzQB*kryFV_rIeb^^){Aus#_nCRB_C+P1-U}nU2=+DjKic}fRQO5J^4x(k|8iR*9|7ZYB35f6PXw0f#_c@Fp!N}eh$}+PQHHh;^O=&}+*IR>?_%Qpv@PS0Ec7(LYM-|6-tGEEkX<= zlAlCtdhq0`6U`sekNk+D>!W|x`VV=GU>@|?h)q^VZm^I3C~_Dj6psMdQ`UeCm`^y4QgqECU=+vwWE!eIW^`7o+`H4}A?= z+<^K4xF?{_i^jSjiJNVkhFoO>&m~;&5M2 zUuXgp&k&(V)c5{d%15)+lm9Pqi7Ej~m=uhbn5yI(q`pBOxEfjNCY?EL+LO^gIPB7C zy2>gD!bV`i?Rvk_Qf?HB)q>%Vi*CdLU-0=pqwf z-me^UMNa^HAny=>J#+L}P#uVT-J5|R96jwc7_{=iv+ej~%!*O)L;89&A$@I0zj2DP z5BDlaQn||ww)DbBwq!a~&4I-7dU=y9F9e}lD}0OVQZ8Uz9<@UF`=St@yLqs>K(dcF zUql=HfJ7XUGx^AC;Jk8C;~sM;aUP@kMSvlrY<^EXX~`$kqCO?F9Pe6#+b8+O2(MS_ z`AM>#0|!s3Xa0P;UC8Oo4$KI9>QCwj06B})5aex1@BO*~sU_LKAEhE`pzskI@Fg2q znP`B^ophDH_p|(~2UfKxy{hjfs_Kxw_F(X6jrrU}RlwGO0;et`gZh5`+4?fl>$^{IBUB9Zdw($4lhFt6@-D zn$NbnGrsWUQ0d{{QNLOU@t!<&Y`y4SPM@Rt^s#iJC9@jEp4Df8)i)8PpCQbjp;Rxw zKO$5chZ*S3LS?jl)N3HZl|F|CFH*PZKyU8q_$@Ql*RALHEmPH(6OYqWRpN1mx;pVV zNzG0?p06%SJeH}+iO0)Tk^Q*!28OE6;0?K4YD`(DJ4+wnULvDS9k;{>(AK}!af{xw z*sdl~h2Y}I`l}tGN%2)zt8LeTD=Mz8_GQU27|OSzMhwv*B-otKFJaBFfT9&wFXJLZ z$}CBdgI<_gqG4e4Jk*YjJZ4{^LYP*FnE|__dAeY#qkRZd19nFP>O&|HIy%elC}BInMa?Q-dWLK`1`WbbT6gTl`2XRIXL5?I=g+dPSa10y!#w#IM=9$?IjR)egXc_6gC+5)InHm zv!$v{)25h`;~L^uB8QC(kzy&jOK-Q5y*1qrQ;ZAI48dvt2KP91!}`%H^xl#mT3D@G zT6nm`U1KZ~Q`ar?g|;p$1e0 zB03<cZBEcXy z-kVoEFNu5PPmlS8Y?{XtUtX3({aK!ZnObd2m+_YK#Vvp2Dd<*rCdy2b#3K3QI7)4~ zYDMD9G)X*P{>W2ss9Ko#aI@)R7Qp0~f~HDO0K>wZWkYh28Ae=h{AL2!~j zHgGN**t0RhCv%-K_I^#FiZ~3eSG=H1uLZ6bDB}vYiu6{6rw4OZO!Yj;UT8aDEo>Z$ zlUAnFexFPm5(p$~AR5eZYJvXf1Q*5Rkz8Anm^P!O65MT?W zLN2$MA0>_w2-L9+^I08+)4GDe7d4(OX=kwr7|9ZicNzPTfco`QpT?{2azZzc(koS8KjiZ9V#zF7rg!-uo0B5E^wqkeUEuw^ z{E?^NSS42-kurFxdKl~0*cbfR=3KpEW^JE{ph#Z>m#I6SPAp$*f^^d*&oCnaHCc`u zL9K)hPL_r#TxOT8u*zDyE4@Q1H&OCj#C;SFPl$($J}ZY$R(k3;z1dWi3)RMW!B_#3 zwb@?YW%YJ~b)rL#r1$qXAUWM%5%x=~HkqAlrr17T5z>6Z5lk2wC=U_4*p$bjPpH6Z zDQLIkwOUFa-HIOBvr7Ivs960@rSxzuaC0J)R(}TccC8X7@su?~cU7ulk6p3*v!GQ)%z#WDW0uLIo>SmC%vu^VGxgHQ zPc4ldPg+1Y-GrSlK+st8=kL(nA?o5(cTdyTv8ld(#jf=<6Q&+TPev~{h)&rd;e z6*FIYDS(I<>;a+p)owv}*2?nQRi0+}78+h5y?tKbdWQOrtVnw!7XTA!#;RA#ZeKBZ zvEFYK1ZlPK>nAKwaCy;u?({t}B+=2^6>;5_ZMcu&6eF)u~ld@Ztj{OssdB)Yf@J8rX^EO|_w zuu{$q?2;oja;XEe=1b!tcl;vjOpBa@&5NtPUn&hBUbZy@#b)n{B|@0(d(k4yATeAo z*i>223B%y9Z@M2gN@&SL*YabywsLS?VU*=HsUeRdHP@-}X{=Fcsk}x|5+eBS*2F-cCRI=tpg2-8;yS@70arqQ$du z3y+9>rpA`IVy+U-yzP!6R785#!q^F@I}y%5)FF{{@pncFVj=KR012Yu7Q@D}$jSbY zZ_98|v6_ZHRXBH1yx=em0j9HY-tl4tY0610O)2kl=Eph!JzUs1gsbNs&kqy8d;CWjXeJLhqCJyPO39+Gg@0JCe@2ZkXJN<&<)B6 z;yo((5e^QHFJaUnL1Z0~Phb`!P#gpiB;AvMcyw{B=kdnqGD5s&hNZqT^Snr}GdzJu zw|SN%v{n=X*tniB@((s#+gr=Lk~A+8cX}Fx$dJ1W{7z&ZvXVB!Qx4{+UC%NrB?mXx zyp6E7QeE-}%Y$o#NBb($xAxy<@G&v_2xlEznpKR#&0A{Trh*rwf&}xF{lO)bK!BSB zfOKRix6{M0TmMtuQQeefE$UAzyJSDmm;0nIy$Azfsfr1{Fnq3%PKcSF=J(7nUTyj~ z+h}EmZf=`uxbBszj$iJcgfSrT9?=G=27Jc=AN@X4y@+42gd#qS&I7!*I%Lt}8s@WC zkUg}Veg$cerW0Zutp7!Czdt-geLGnVK3R^hDfdm6#dhl~6g*y$rSoz2seKzS+yN~g zfR!SuA7LR}ECNP3nGSQfx+qzz`qiyKsV$yj55xWtDW@E(g+`5+H8Bk3365JG*fy(# zFlxe**K#x@=Qt+nQRi$Fj^eS%_D317BV3?`lA&zR*GZy2i( zxMjw=W04K6jP>XGmb=zYENLt)cO$R!%bB>^6$lO@;FA^gmW%*7muxF9s9TR1agwpY zWnP#lfvW<_(1Uq6vKtf^M>>z{Jr*9Su4Lz@xzFj-e8r?yN9*!#EaOsv%oFF3NUEV# zl0pvAa6wHLS2_p7XJ{d<28T0JgqezYy9FF)#2pXRQys2!hN=C#61>RyEBoUnAxH~j z3y!Lf@6_DalH;Wo|Fs7H9r@b4i73shE&|>j>L((3rMk@o>F&u>cS%j3L-XjfY*C1P zVfIien^Ma+8md)8FW-iqtR_S~7Sm}Y zYvUn_oZL|Fhc^_?Q9qk6eE&3)6`fhcAfeA@{@ud#%yhhDZ=h_s3)Na!bp-tMgSO+@Iih6uH#Jw*b7SKu2)0cj(T~!Do4XaT98<3t1==@ZXov zMh;w~ekD0^)IWhK&e?pHjs+RKDWJ|f$!$G$ZBu9oa66}ZpB)~LKFI2DcP*76?lwKm_fUcvM@(s(Yuu8ii~rt0w7 zn}-^6T*lyu8jNkhsny{uWQ=AWrNsMyiQlISE280Jv1J*eu7ay4(}OjbQMVaj8ICQE z&Dm6-i*t`!Jt%UC!?Q_j$Te4|3Fjv}5DOGL!1j%x*@&%{H=Ej$9ao3%!MOp7;ML277;e7Kw97!5ANAZqRAfHOX zGYgK?HC6Qpl8hSHF+C|5WF(GWp2h~GxtO%zf&TwI8MA4tIUip zK4N@K8=Es5j;}puyLdX?;PSPt98-xwMPQL?ldI#0OQVaAx~3Y7k8IA2-Jaq5IGjuF zvo~Z#PTsh3G&zGelJ$Not7|HmC2P(+JL6c%ICy1&WE@P!5E++BHpxTVnQfarE%P$a z-l|)7NF&qsgpfwKlu6dJ_Be8ky+77o%dzztC@#9I@Z8B+`!(cjNFi}gQ@X$_8y)dm zWZkhTfJjsU@GSQL4{~O(xAGQ=iKcvPvOhUrbT;|b&EKaI@evuyYRPe!sPIps1hBA} z32;=rRZ5@1dx|U{EBdm-5hpv=%an<55K<@7IH#OGU=!>BfIDPOF3ouZ_OuoboK_}DnCs!O>ic&veT(yv4Wh{n#=D|!T_GY5-@dRcv`h44 zHPyDdW=wVPX1vb)4&$r6*<1j)vpwuStB;TDlND z%yDWO1smlX^Vz|-ohL1VEt*br_*&MXK6>IcSd3EXVOXSr;M7WW-&+Fiu>x+k&OnH# zZ6pXX0dYxVY+X+R$UOsrd?vtRL7{(NgI|9-e_M7$fhnjD~eoMy%^HcliiNnYkp= z|D_F+@Q?NGY^3b(y3BF$@c9($(_CHQwpul|Qlq&z^6pK14qb%%i_oakAhqy6;Q>@z+bKyos=hc3sleTGVjjSxaDc#1`fm8NXLw90Ct3t6V1lz zLdtNRmLGhLWa49FX@V#gwoT}Kp`+2o)ohMIa5qK;)T|)g+P(o`*}RQH&E7~YrW+rc z%DBY!EZ5pHZ|N=WwH~n`PzO;9Lva%GBVxoOoD_7!wYWpB#cx1urKE8APp||uy=Du% zkY1EbKL!{M?ECD+)}(Cu#r7O2ZGoOGIA3@WQy|b-lxk3DY(!;Sda>OnmiAKToyA|U{Ordngelt z4OS!N&ca}Ig)H$MQooAAc9IuqTCKHTq&w=H_KWmJeVG@mpG*mp@5F|}(DYbETt+=!kNsTv8!k8VBmKFd(UE=+8>T;h z{j^B`hz*~|x4Pb8F7s0L3fKi*zM7X4`iJ7YH(r8hnJjuKouR(DHL36Or>}6u?4VC# zW$_kRFLKlKj*WXUf^@3N9hBIz;H}6_ha4^CZ(6i>c?VzfEvb}NH7xNSc$Q4)D|rpH z6c6DeNWUvwY~Y0t z&mdoMInWXJsTb%mJgxFJ)yz|?LNBCyyyh!<9XCiNLR~ZWq+47aehpNrV%m#CUmyIpuZ$``8 z>(;%6ff}8^Yr8DZz<}HX22&tDE#``{d#*b68UtC-hSg_DqsrQmVcR!(wv`W^=%`DY z!f6MfU2nX8xJo>L4(jSGiFf1a%Mrjk-cVG$ej(A=!fQptX0iK3liaPsF3ySIYn@Mv zm8|x^85T#RLYf{gALNcZjZdvouI?A;1yVLWSPYzbaiN>-m^&ZZ0jc#3*h><#k6T5Y2C(D9f)ES1EL%zO@F3o^I4)|M zwQts5U?E;jVO7gPqAX{vybaS{R&xY2jhrzq^99-7qFp6B?$RBgs9EC8EMx6bnt8M= zbY*1L%V-oiLbC-~d49dvZC)V$q8;@!P(MI1zkbG<@+%fAz*hWlL?-GIk(=C4OMZJv znS&#TpN_(cB1w&*AsYl;>-rA9>3N!KW&(XITJ+=2b)xJ}4^HgI`D|Ztd0wpsM{noX z@kf}J7cK(SvKRpmJ~*WV^X!8)eLoh9UoXxEtdy>rV?X9aEQ!f;gglZWX2OFy-|bYd zz2DWr8@9KdrhG_s6y3;RX7%Kz&>F#F!HCKViKi`3!;i_>T7J0W zQmxyC9a-25fkvW3ENAn&YL0Zl^E=d4bF?elPk-(0_$tSsr=gmB>Nmd>{B<@Zy073p zy5NvqU$@xP@%;Qd4?E1CS?TiJeU!X3!m^XkQ$O17=qCBBRa-huBJIL)R@pxfy9*&RS+tbMkhs-Gch1^WOJg_7}`3(9Y?bAa|TwfK2HVLB@hsNQkZ3e=Q!)d%yZ5T(KX@iRAHNGZgKI7I$GooM7`KvLNNH%yq^jz^O=Iz#6(Y1h8$kTf@3{{ zU`gkf?A2ZZ@}u*|@}|89DP4M z#9<0mSooiy+~VBKA(i2p!GUr@FX)#uj$GX54SL!$aM>OlK|AK?#1uhoo!xDyr zBg#H@D+9ZKCi^2#e?A)4Vrx^-v@T z0V_XVjlV*%uB@r=KkTT4{ngQ=ou-VP5X=p_&C8U@BJNt;OCFr63h5%0%Nc>L&dRP1 zHB486_NIB(@#dm%w^V?CB=IYwEAXlz>`N|Y7J#q0;~_!8Mf1>Shk*(E1Z;6}a#w*2UZ19lTUlA%%k-m^VN=(qgr9lNo-Hm!#fEw|MX(omk>ZtA zliL=-OF0U@NfSezp_+d#U(3g=7Ss#mH>R4G zl+ozyQv5bn|MfRHlVV=SpP-go9{aCi2Cr=k;3>MBIhgtjMGvw&mPaQ;a21 zM;Yj~MI@Xsz!GGuW;ThnKzIl`|3gX_L&yrtoEx{arB1v1gK8(__34mZ2UE=nz4B{KEeaF zJ(?X}&e^EGDn&%+<6?PRYQ6P`&ZE|<}I!5>4zy|EeXO)L+}G&_Z-IG%dk zTZYY!y5X~%XO--w-}g2Ff>_=QZh9?eH3a&XxOle3lYEz&ZX~zXYzT3n?t6v-3Ax{E zTmdPc9UiC52W4_Z#vl`$05FwwAF$GNhw>i9my3E@=M@Uge2Lrwsf^Ghp5(%7CE&5= zQ5bW1q2F8Zr_O#ofQnyBhs9$tuNaD3Z{b`b zX0ZT-AH|gCsQ{O?>Sa73*r?Q=)2fLM7#>E8=_4|oFl@zht6rX(TvD6%*br&g5P=hV zw+tIs1aUDRxo~n%nYii6Gv*gw!J!WSd;)JspC##*_QE(`HmN8?sE(?tYg8r1dd0hK1oWHqj>AiX zn~zcif$!#8EzTEZtgh0NaCW;NWLN@J^nORG<3CM) z{+ji&XTIv83&2!@I;)}m# zl}RwO5V*Kc%=g(Lb}`C$5@qI7rrLzI#C3ylLZZiI1XRak6mG3fH)NHid{Wd$7U+)3 z>NICG>|Ha#H$^On%*X(a8W)I}8OhnFQ5TX0An`x1ijxf$Bm>}uR* z9o9}bm!L_}99wX>sn-n)YmxAs)jcuB%u*!`NO{NR@}nh>N)uc{|V2l4tE9zFw;S+K*Qq;Sg|$&KI`SNFPg z=t-gWeJF99iYnhybthW3$q@;2KJxZB0%MiC&z@n945+)gSytgy;~V^f9o)q&%f#qD zu~ArzDC~)!YQ#8xHJ@C;%W!CS84u((E-da*3*`AlqvOQ>;uFQ4xvvpngF9B_t#Osg z3(Q&9C3}ffb#D{muBN5-d{pi%W7!Eq+i0mO-W|KL5zpS-jdGsQ?xIE^)h?44@S6#_ zOA{FHg))uTjg}pb8??KviL)F<+*(IjZUJ&BJp5?~_gFLUY3(d3>uI@SAysN=Qn|Ca zFTLVyYWZYC4>0JrCmRzNW*@rtX~F-A(VhBX49x{+uD)p{AxkXXUo! zA|1|cPV^nBy~e#$c-?_2&$ecx7vt{Yj|p}2cIHlLIp|nc|AzD=G|2aCC{GL%b70R% zZxas3@HEDdLL)4PW72moAwTK+Amalw3&xP{cr#(BrQ-*r<5{}nBsmiu=Q*>u$@BPg z^qd~=H*3FF zb&tS06HOE8-dHOZUC4t|DHpCkhCS_I(r_hSwjB0L8P7)3PU$wDEtm~DEwcdxLb>>e z8otYMgUrS*M;Sj1stCDq6JF@Xi?hkvro)5-XcWbVrdmAn?N^E9+*&53iLoUT2HOeF zM8Y6DA!~dyDic&T{<&Ibqv!FxwYg2yn^T+HQk%QG_H;w9)MF1+G5SW2gA0A5Be%`? zxaqyj?J}WF-9w9eW&YlDOl26>z+aOU$f(S$CuFdHXUqUn#w-h$F$2aeO%pP#0cQ;y za3a~27;qxNnHX>)Au}=H2^rRa>)yynjaWw8tVheJQ*+J!)RO}&yGJysp~cS@?}kI| zGGcmn(GHHUb9T?5as zul|iju;?NkQ?}Y@H`*d^UIs`Z|C-*+%-zpsdNUg=Z9QdLyCHXf)0;zccQ4PiNK%VV z1lhlF89hAgW~&|c<|gAl;YA1OyzoJUKe(-?ujF{-t;;HmX5%?_MR7}0cb2oUcpsCe zw?vEVW&NDVx5G|(-ftGS6u*Z1!Q8ec_Csgsbm6%&j+e~AjH8#^58akS`ji?`#Bxe4 zQX|ia8lk?5TlT+0g~hK><(pXyZ@2WkS$e)(Fhmm50$MGDtOthG!5q)Fc0dfEHIxBy zNqha90%dWkAW#<~^EweeTkz(F+_rq}7!B=m8`={u1HQR9$>@W*o8sfrlHeobK%nUz zFXO2)c9-DbX`bit9^={K6V?D;WC0epHvQQpNbZfS-1l>PH zyGcR2GF4Wx#=N}hCR-qvbK4=%id&qG%X8bUiCVUF?FbtH3@dWDF&9{!I(Bc`37yb# zjNdkrlP5{#Y`Q`dL617D^9Dkt7=H#JE1@CBsRLY#ThZf!Lvc_)3WL#{uV#{@b@b1S zRg?vZt3~W0{(KO;Kz@+d@%Okn#Cion@{ODKl!o|*eD&|TChgHCM>lUyE@`Z)#eaHv z55DyAH6;{>=!J|W#kvP_z9Q2lJzrc{;Kz2UdS*-d;Vp!jEGmpmECtbF3EJxDJ!Ms4p2IRnUyO48oUcw7NLde9Wu2FUUH}p^dp$cVUDbXwScI=>XEPpaQ1P+ zI2lmqQn-4V(VC>1BkQ~lR002>3+u5>o^O#@wl#=1**RaicjXXe=$zxFna*@la2Dy+ zW(&kc5)tL4<`LQimj0?URjDqnXJ)p3l$lZ6=5gP?nCi5U2}f7f~F72OB%Unh1Ze)X_mz2qg_;)!b4Nl(ZDQK^QQuAL)BnXIdQo5fB7$_@5cT;Wx*tjw+V$ z7%S^DR@PmTXEaS~pWex~iUzi&&ZA^f3XtN5vfb1w+$sG{e&{#e8o&>&u=4*6erTTN zhaQan4Sr~buH>)rL%A};CX@AV^F#F^t#3>)LTg3ET{BGBE5g|{uZ0VOl(J56D?3u0 z<;G?|4edT^^^n>~Q;}zz_;ji@a1J65=D3|gBnC5x`sBWq>!Mp7Ld#ie1Pqd^7xWR% z+RBf@A9fpcXjyW#!w0F5iM=L#zCI%5#um62UE^1SSZ8cgTFtXdN*))_eV<`0B0(Cs z-*A|Xjyh7|+`XX%atB$Lw{745utvogJ)N;w;aIQFZ-e0o!lEa}v@Q~y2m6<0xx#28ZZii+~ciJi#q_7GWLO$p= zU+wuR!}hgQ$8O0GTO4B@>d|5Gz>KF3L=fvHh;_guG0K+g*cHTF&j2|GN^JT*E}Y(8 z3D{CcYAk^isaz?jB{=FpYC1F&l(B|1BdqOe`jcYaA|LB%^5hf-`!7*XobZ?SG4Bnp|!dhm-woj zA;1N^9H_mC&R5a_PQWu|P^INX;Y<8}ZoQ%(n2Z@6zMx7K-;U~f$?-}xS{`sUcGFS0 zW9frsc*HtbEOTJ9u}Xb(8=2sliKQY;Z5F-otGB|Ourz)x^+Vv0&JD)brap!yoXSE@ z5|}pc;z9VU_sIrY&jFXY{z6HHbdQo;U5)B^XdF=tEsctX^1&hZp@||!F|!Y8af%h$ zFnI_UYGVMmHc9YotI8G<5mFmkRN}4{9pCK<4=*`bTe{pul=0H#nc=M3(s7}=C`5Fh z&ml*1;esmlm;q@;8Au{uljqxBz7U<1@YLfyPd82O@qMs?+x>=YM^~1E_<`&2h~700 zordmi7Mkbj_woDL;oH5gsMeU5?R<8p=xcBhm-x4$oAAYKVNdRotlQ>gUum>CF(vXm z;UE{@*^8g^Z0o3v&dZL?nNDQUXw9)m?=;U{^<*zO=-Ku`w5GQ<@^R0Gb)vsaUcoEW zBkK43WJ1<$$4ic*cJl68MqXQ{a~y@>ckVV8gO%`Kric>B$k==LHrD1s*tby^0ts|u zEYD{60HPV;p?9!HMI`V=e3zrmvf5>Y6`jjG@fw+F5_nlBtY_QB_thG&z^@eb@!A7# zf@v`-IEIo*pKhkT_Q1OcWj)(=Gc9xzl)Ah2z+w4bi=xbdclcNvz1XvDH3+aJ`K7%! zT1D`%s%(l=LNX03qI30du#wq^$Mr_cYYX0}F%jlh#uv@j>*{xX`d}$V6Ci0tto>uu={OtX+{O zH<-XKK+m*R!klPQIouNrz3#9-B!Wk6#ODZIAxrHBW>YV|Lf-lxmo0M2; z<7y*!WD>Jl!ZyoNBbc6o~KV5t$M|sS!>MAWW{aJD=sIo;;zc<1}D<5 zt1_>2zG}R$H&f(|4aGh6d&%h#3z9j7wb83GBfZ3~f1IR}I5UNOS+6ysx;dF_8UEbN z*c@+dG?!&{qQhE!vPG}o*wXDt9sDOfv+ z1<+fY+sgu|jrw4qMJqFF2i*!6ijHv*)*4r3*819+$^7HajF6``;>-vSLVZ`dV&d*= zpX^{C`n7npgCAKNy_MNP$0(g;B#h&oqFPmJRAlRIQOqi2W_D{Q`P!!Lcty4+ERwO( z3Rie2e>1~`_{$d4rG-qHc}2-f(ho$_ci&~r7#j#>P?4N#lRWcWseR{r91Os{zA2Nd z@Xo`R@dh6!T9Hjo^3lzNR;kr1U`@G9dL`3k_v*|OpqFPZm@b1X}WW#BiW72&ve7~!xql2>CR|J6eju=)oy-(~BFm+nS5 z?Qd;LG$(@D{!`DKfnrO#Dn8*@x1jOcGA{|A5$XNXO0I0TuOTXxHVleMS+H2_HeB;J@4JsAfgspe~iY&Hdyx|(`H2+KV;QN(qOZ1t0_sXBCc%ooc`pxgnbpVia&_|^X%|4fV3?cQ zQg`Tlmb+)$rEEfo1om#B@oKH_KxiaB?>yUvNr=)O0+h0BOWol=>YZZGu<){l?s-S1 zvm(!z_4@*>0C7Zhj7VG6Muitw!FI}evQozSvi8_1zp_$_ zd|7RF%8#s+3BIi7?Uc<{$_!uDVLN4&l`_+pb;M4&(Ml=9sL@Wj#!9)|mvz)mDYH`M z`?7lMlnbnst9@C=?3A&R!hVFbwuu{2mC#0woL$ixg&kX|@hiX)9$9K^m0yo>k~4AF zqtwuSF|5=e_ipuWOr{c56uif`eP1pgBB(-5wXC~Z@<^b;XC)7eS^T)GpWAs*#|)_d z;HBC;5P3q{L3?5o%S)HIFInQ4TA3_yMnK)f3#Xi4U9XGoHgr+$@cv*y6@ddq;Ife` zF$)F96iuj0sYStjlPE09}3T1ivx)#q-0cQIpvTSKQVaO^<~NK6udQ4O2V}AW&O%d z`J9#F_GN9gQwpt=slKcZJ0;snndZwnWTzYhRoi$XaSI=SFB$_?f-K69mPRy^7+D(8 zNW+6*t=vWy0S*IfJ%auKlg(7;i0o>MOj#(Jt#2dNF!w=@Zhd6;P9c8+1X6^{7kiVxEmK8#vngqL;El4V^zY zRHKCJE=pnwTpNNZJUV$U$@a!~`-9#pZWgk(!6E0RzD)H~iM`~{AUU;Kr}?SJ{?a>L zzQ}5wD4kybDIHmGEKWSqKJ~-zure3)E>d^PL-{dyLt&guCs*n>S*bUtR;sbChXqIh zaBCE6PS#S65vgNre{C(XfTmNmy{10LWBOW>k^|Nf8{ytlH$nqVJ|t@@n*ES0B$oR_ zvV2(T56PlonLi{;g(cqoC7RM}1JU?E1^^& z^J1%9)#y3)u$q&k7Alu{k(+wN^~u)X)5j`S4QuJBx)}u}k#ZCE;KFFVTqKqRbFO14 z5vI$`;)8J_n6o_6*iJBt6UN6e*A8y~sEHm8$kcsf8gm`)%k6+(h_sxHxwc0d$4Vd* zoLHhW=T{5Jpuh4dOB%LIlS9zj1!gEf|GQ&X|`JDk8S#iPChS@JjYJH8W<;XGswwy zvV^7f2d&&B=aWp6^nKHVx}I@~dOrSwj3Bm2Xj^}%o3e!HA1h}+sW5Ua;g!&+^DOXncIA#V>Fkg z{>GHxFF^*%RxvgRLLILkX9S6$F;YLSkjFfE)KHaG(9c;EfBZoTt0%X} zqYPaARzJ#M)qnCB+az-)RlZ2}*e0tjziQ$wvgh*Hrlaziy0_}jW9h%V{Y<~fj7UrO z@D_huAfc|&)ywGBJpCvmRx|aZY!Y=LkC8o-EMhM~?`fUb$kWmlM>uDf{|ch^Em(0Q z`61XwZDieAk|$&;?}M<-(df-BrBSV)1tBJu1OfF5pAcP@nG=Hq$K6U@RNzogOLBah ztSa?=7idO5g0+*HPZqBVBsLtCB2GXQz{J4`H+vWi%6of4+4HU`{c(MR0X@80a=fRTft>AsyzdN4KJ z5?sVSi_@Y9=vyjW$|GvE@)GR(i$n}5Txqc;uo=@yMKPS+Sb-#C z`3_jMXd&C|+bjPH`}RG#iXDUcn9!O%kbQgXF1?8OG^jOOvu|762<W8t}&VWw#ldbSG0ezLLrj|44GgSFKeGQ;BnVlwx`~jiGX>xXeh8 z#(g$9jDgX(hw3Cb93&dIL)Ru1sE-;1cX;EE>+zv#=co>5FNyv1L7q6`V(TZ>Z?J%L zrWhcH@})TsQI04VFHw*4BQ!@}WCMU3VayZt^*qS~`um}LlyA+hNUQh=qr&jkfU1}D zbo!P(%ao0%KPgx$G!%RTv0N|M2BksdTk#D8Zt;qLyS)s zU)!;HSNpAKSk(if#NHq-=hqvCzK=(?VP}sR!MF zg>atwv$)L98pWf0cFX5_`HT>MPmzS6z(o*i$c@7=?r+#>YCrhWDOZF(Q@d9_xQ#jU zQ6iR5DB1(R9V3kHPx-lk9s4_%n34}kGbMj0|DGou1RV5QKY7-VTmRVDT9}FWUk+Xj zhi_sYonw@+;QGU7v}VaG-G-009n}Z({7CPo1Cw8tELDK}=c%l}q_{~l z=&M!;t=K8YOb^2} znm2FE>SOVg`C3;V+tTnZxnnW;+tMJ(Mdmoq&>7mAk0Sw|mulaP_ui zpf283N%gUYK1#uh(dA%GRjSuXus?k&ok)DEia#!+tyB|{r$_dbQG}H$Ia7I7h|XXl z->1m(aq%ERr;Q7w8MNnz)?Gbxly}RP`m(&S@i9Dw__XUtaJLEtzR?UYM(hKo$EOIWIJTeMsMBj(F zAY6`HG0RZI_^?VfZeR~3`ObA%WQViV@QbOm+$$T&(^PmBJFnbZzea~*2;n$yzS<(C zT63sY6q3umCGqI|`TQQQ6BL&j{;%U%g7GrKKaF7@j&I}z@nBX=qPa?(2D~M6krQWw zqIeC1@Y}fTkfuEwZw8Tyu_Gb3Kuq1&^9oK~BFN}lP%oAn#&x!DxVtny9ag&fYG~5c z^Ffiz)T>Cv@J-yXh7O81i`DbRabr!M@59i!AV)i%MmF&@`mJ~x0rk{+$-8{M@gZ69 zbCy7DB3Cf~Tkx%2pWxdI=|!53L)|Q|;Dqq(z%KDcw?ap&*r#rQq1BotxXe9vm!maH zke*`AlZ^!*{8Z%#8s6h=$&wl}@T1xspDuN%-~E)mp|Th{!E|giRFu9~SsCDZ zbsbRC>I8CRHu3^>-~AYKB5prlBt++eBc=Cw&qQlqv&v^j8mE#pOSbaLKi7YvJ{4X} z8*lZWNN8Hm#wU43%^Fp%C$%bTz&-C@P}h{MSugxbu?_Wg{E(r4N3}4_B=jJkk&|)uz}vK!?)b! zCY$^65u@gK9-p1zYhU#z&=+=m;eAH=5qzy;cW@*UcdguB$$ z@e8Es-T73tyw=c{9zu;>Apw2D?*&wdUNd3KK?WKZ%>8m2E~q~$6jN%><*plR@XKyk z?5|(w7Lkqm{UbEko3VaoEGA#7VvA6?s3nGW6SBzG@JExM-G5Sh5Yh$xu}ywpNqM#6 zL%s5#wTKsF`5}JhOIGXXJyunzcg7`r6QPen)5JUuW?p9u#aK3WTP967amCOaK0f)y zl7stCMov17g)YxM&CzAv)Mp91#`i}39dn&%MLxG12_Ge-E2_+_mp~rTDxE9JRuVHJ z{4-YbLZX}Jc<$Zp+4;sG&-WU~xAWlUVPkvP$tp-EGzWAn)vVR4v{ps_p zsPUw?YyDBd!D+K6Hm&N=j~HN2tYNLpVwvAqc;kuAF?;LZ$m)s5k;8hSl&aJ;bi(NH zptCEMly$FVzACK(9Lm?K@BbDh(1X$Y!EK-hHe9}r zrc)xVXA5zMV*zg%9~in24@O`~>9QL_*VaEP7$6#068nJ+xwdq)r$LJuUyM~JK_h2N zJpBIT=dA5j6);bkk;b7Mdc)_?YTKgKvuUGGQ# z!&>io)EZpFdcVP1?=o4*xw`y8Jy+SX-pxR)K{B(}{p!DdZLiLYj2AIr{ktpko_7;C zZ9FT7~X>sjx5G5!Fe^?z|PaKq$%*RP9&iJRr~sP3GclUc5*JxE58L7o@VfyveMeKr~Q~c)Y-P zSZoLhl_2+z0j>`V(tFx-r5OIdw45U&dR9L|wLr_g5pBnAu@AK9 zLQz;DuBfm$w1_2oRy0Qx49=(uj#zQ`g9IkLf>k9H%3dQoAYbMgIzx^s736NcyO_~fsKQMVp--8|Wn5!sl) z4`!LomGx}=kcCv=Z;@MX>t~DH61`3I)6&Q-(b}|lo7mfH*Q1_|LI?n^*aJn>EbK*R z+FmH{4IfJ!^T+6-l<(2BC@58ziY&0}@L8aPbzl92dWtG94M1d_SATRM{;-&F>X)KF(4n;u0><{MIVe;CG?|&D>e=tfB0)q3ZN>R;3T0){Fvh}bHSu)AXFfwyq-d)fqsv{KVBuWB zotpJ$vcHrmy}ny2?IZ`lvjGy6p8~aLHnQY~&}gK0cCT^dDXyx!jF~LU@_Qo3={Me-vKN zBjDP&_WS5*c#PJAYwR4x+*7HnJXiN78YrE6eaMtP&(4fCxM(OrM<#k6lSHfcqmh^f)X$hIO(BLBQnSWw z=5IN@9zh|0?hWBmsc~9bM}F|1Hay2w5wt#_zML#S)G9B^($3RwoVAk^3><2{H=4)N;u5ap$!_OEh zW+S|3*EgNy-Lq|Pq^TWqMd$lgx$yJC3`&Sal628e0fbPR&_&lLYW@kjs3=A3 z2wkMT5EiZ93Y$Lr!opvl$P;t(?o)cP@mtt9g;0H1fE2sH-9C5{gGBA zbu00;tIiTFH~22-7eJ^P`}{a#XWL1>0B5bNJ+y~DYrdDXYvD%L- z?pgwCw}`wEihi|!^85Sy)w{w2z-K(yzC z9^$3Fp~__T+I5q!pg2Q8#Z8UeiP0hJuTSk5Z>5 z%l@d@W_j>!7DAQ@c}z7k>}noLRdXTLuq<>#!=xd+wo&^uq1epfgeDLkiWO7~b|g&6 z65VRJKwB~Vh+jjAgGFy2G|Ck}Lg1AjtSc9I8)8(_!W`^{75w6hjY0DK=4!kjZvq&&ZW$O1#g;=fp zapzOlll)`B~(C23XX$z7^O>A zz5TXzVEBt&_sXEQG~7Zru`e4vGagzxvp;kh&n2E+jZrPY@BSYO*BT8n?%K%VqHrO8 zHRU1XY1J7-xTUqmJ0H`qX(sbU)LT2TXG3jnV`xn6tey>_x#kn;>5??neAKD|yny+Q zVpCu!`Ds^YXJh9ZhtBNaou+$F2ddU-a_w{pv1y0Q+RlDpl`y(;_AkRF~<2f6=i zba`&{et;Z5-XI{waHKEBjqWL#m`5I|yCW|nnh*UJ&X*g8MUY5EIP(?BqqR~#4nPn?qokQ0b+Bt=U63HfkSJJ z4h8~AC_v+eltmY8U_ zwZGARvb_nH5S~{VWc?d1ro#B6vm?^%jTiqPG}F1)YNzv0cJm}WrW^iK`={;CYpX8ZS0)>*)YO?tY_gX~OZj{Wdj(`hR$`p1fAP+azm1%++uO{Gj4f^YpH~+Hf=%660$-q^Vvg#3qf>3^ z{=#09xI`N9?)z@$m+knv8JP7yi=u zar2VydAv!t2MegWI;bfZpqqA00)HM)Xux-$sq=1m!E~s-Ja(7!C(-AB!G62?x_{n& zJBzZm{dVRUHsJvK?Z-wZ?6<$3bkq7((q>^Pf7z{5I#ov#|K0>V9|NcllNQzc$g@*w ziVe9NuyjAi`|25D0&cWT)UkaopWqIki;odbgsu*Oy}7&dU2~TjPtJtZcEW{gVo_`d zcRP}81P8XEZXG37+X-ks|NOrI&#x}~=iymESsR}JLyrc+vxXGQ9zF%nQKVV$oIC)Y zDQMP_W9Lu}%?Eb?&2_x5zT{MBo|k~8wG=~*orldQ)k}r{C_G0GY(*7Q^8W~)Km77P z56^PS+VK1`JsJqlA*5LFyl9|rfligS8ga_!*y+*m+bZyzCH3qW31H6og?1sFzR+YF z|3a2!=xG4>#K1LooI+_esrZN#jQ)l7cEyeVJbXU-N)kSE=-oj0{DuBm@VVj?_{4>1 zxc$uJZW=2iJ43^$eLpZ7#rwf2x8o~;js20%+zZVSH(#(ocA@1_;d7_ooBL=ttv2;) zK?+WZ9r`c8Ywy1RuP|lp^>hZk90;$c=;!I-)qe`Sj*@ey&@!U$&{>F4Fsi0_CX9Gd!DG<;6Q=Ecfzw#3vkQPFZX|?ABQG+)i82A8((2WxE|X^6zSax*`*+5lz?HRmXV9SHMTU14BQJfk3TBj7w zx?Ok|S(Y0EG7_=DZQjwb-}*M>P{E^r__;$~W`_zTwX2iI@QluPt>Ux8pEq4X57tJ? z-5KFI+y(~MmPw1)U{8#1h{w?yI3M_ZO@?QVCnM~M9lAHpCh3rPCd{qPSTNYkf(WZ| zH`ELUJU9aPsu@y-fesM3{|or&tN#K%DoEj@JBOXRzow94;iJFrKj$cjI^{p-YD&h2 z6k$QX6RM7Q2fXWJE&PxA&$$ngPJ$Bq+x~M7i|{Aamg?rLP42`r<`8>Qd(u#Z&G4Kos8R3!hmBz zIK)42DaMp6+7KcqJ*^OZ3zo>oyi%WMVftKTD6tP$gGIwLt>)Cf*D?6Sz^)Smmmj2BXgjq9^<}b~ zkHGc(Je*UlIuU(J;D@X`UoIO(u)8lM4~-AmqQ7r;cIS}+ZLXvo?wncHG+F9NSAFtn z;sPdYhoj!eksdD4V>9Wz63tz;d$poP$H&Y858?~_XnQpnGL<1C=@(jKR6p}J(H$2c)!Trd=E4_d4Hta zoBM42NlMjuA_r-82ak^b&)b{8M^$Bs|5d4%q#zYu5fVTJNjKm`3p5&0V~K<%fY@Ng zKo(`2UNUs-1xXd)0wh+_Qar0=W@N_R=7+z={%LR0u85+kM3MkDn>34{2Bg~;iq?QM z2@t9O_uN;N1Vrtgna>|Sskhzb+;i_e_uO;OvT+6BZYuO2Y^~7GMWh<%r}|&Wn~}bO z`lWw_YUQ~ zGmP>Y`I?bz)iV1q_hai-*)&Hr3*nL~vfx{)?94j3k&-w2?vtCDn@{SqO-epXsryM9 z;qQ<99pe2?u7Boz6ZgAF(?R*)z&Dt_IpW~eJNz~AYN%At%f0e)59$9x+Gg%4bN0y! zJu`;njGdGG=)pnB9E=~4`_b*=Y&J*3#UJ{EA+Q^Q?WZ52l^CWr2+5q_c7gRs9K3Vq>UJ_g#4H?D};0U|ke*bWe*ktA1*_Q?@P8CoC(R8`6WfE`7$;}MS9(1OuTOBK+mgEsa5LC zbPL$3UDPL~XAEss(D#(CN_y4KNsgmMcH$cFx);r55~oS2L+7jX7VT)estXoW&v;mo zm2b=Ma!5zjzHDwfm53y^LSzCf^hXu}mHz1aGWBTxqvA)sZ7%N=iJ+(JH?&U_FyE?o zP~rt7ivDNw$=nH+CbF9LQk0r?Wzwc>USwQ7`w4g8`)Wmiyq z;3;F~2sfU1A!SnA^^wEr!y_A|DQP>wB{Qt59au8bh4yeIAkayD?pBLQ`4`%yGDx4- zt)mcxmn4cKuXGErAEG_$(&P5%ohKPT7q6A2l;=+N`pNg2Bwluz%yk9PtNTSycqt~paBq&`XyI$+CzA;md zG85j~_%WldZ4NIf3GC2sAg*dRNL#+!!gE@K>U=dZs#$MInBHQcGug(Doqpf4aR`lX z8)y}yMi_-bWEljVwg81$L*j@~#`bY~Z5zqe{hI;D0rO&{zZ*w-q!&78f$jzebyK=( zP0b04dNXYo{jS&kgz^MC%*M@cIpU;x9O~kO6do>kSLF~Hb@EO@A86PO8X6QDqU8c` z53FjG5kQAgl#wh0Nco18YH}sv#-Xai8HsA{EV*J4k)`o|3O%}z2GKy`FR6F#5NI*> z1RLZA8`HsD2x{yM5xVN@DCj`8u$dUrNF~d2C{}}T+{Q31G0ZNazUI=Y#Z<=qMtoc~h0toDXpY~IzEUJ6J z(8xHo-wJ#b+wpGXY$`^yMgzxE4#rezY=bNkkd96k2o{7)e*f1O1Sb6%da#2<<_EhO zM$F+)w*nz7LK*A)%xzquQl+Q)c9d^NSn61N+|r5`zP}B89gcatl{XFiH3rYyR?L_y z!1A|)H^N@9MoD>_>#f1I5gA{cIjD6rM>bx@Go7f{CJBdn@ra-_Rf?4OB_%a+Jl0dv z2A)1wk_^pGH5t`1TTk0%fh~!sd~LN-g22Ye^k+$8lf=}T+|IS_JA9Ux^1#dbHq6;;^0$6@hJHOFM^QbWX% z*U(L!>PAD@+lX}$TOB_$>HF7!S9Y4w^!N*oL5{t@#qaJCki_peXi|0d~7?%k97#-hK^YkBsD76uos=b zj1TNSa3X$Al_Ww)aqG%4P@uT+!0~93WZ~iWq-jf&YIlGZDVdl34t&ghE07XDp^4XW zaI{n@AO6aRHe|nles6!?;p7EWNCb04IjIDYFo8N4xA2b*?+kE9p_W+QbgDO10rV&Tz;VbQ2GQ4lXn!z zJAb+oT{mu^;kIa}@^~9PQ4&1vH%{>@vMuZPXYVa`ngK`}yUh10obROs-|`b;+MnE3 zO*489RMfF-E2b}Ol`*~|&ODk9(LUX;3DAj65TYwW&7t~%BPrxh#MY1_{Ks#X;#~-= zDr%NFS0woz2fpvT;I#Jbw*~Y=a^BW@pj`%%oN+h8O=xfvEQ!Iboc+!mk#gXBBT^cX zWDuY@MYXN*Q1U`rZru}2eWWlOY60*&-b-raP4IYMwuiA5p-CfBcr^Oz>srzxhtqi0 zLaq@9M~w)+)mMZgHoi7;uHx)fhF!gAjEgrN2S$y!hqHTaM8#N|aiu!q&jR1-#itA6v%bR}E&YiSVuq2^C2fsI16vz?>C-JN5BUB;0h0evvNI2#+UV(?o zgxwL&bdKjpIIm3e)teGNEOL*17Hj)81Q_)!EFnrmgN<{>w$L)1o*oL#Y0baVe-|2Q z6<94^GtL*gY2}>rX3E{DEh7F7WP}U%`-+P(e|m@l*vUop@bvvS1HQ=|s)&aO@JP1; zJBIu#1Fsm%_7m5}h~QV%(~MtD_@#PB5jd_+x@vlv+<6B3u^oT zw6C&{$FTPdp07O9+Y21xe;U<1^!q2ElJDIc*oUJe(Sho`+pL%+vM7iOBIkhwufy3* z+e-RM>gBdpZZQufV5ImWf*^?%<0y`FucSw}JN-YEv96I9Jf6QpL(tahH! zmO8FToau=;uqrJwccR3sglK^P02yS)Tb?UPEDvy5%RS%~9t!-H{-D7qWPMs}uAd|# zufjvpd{Y{4Cgm?Xbj228?nod8{}s5FHO_#)M@cwQ`9%64fLm#SztmhLx#!)Rhy|yt zWqx5It+M7O(!_9)J&rGo!rY#%M)UZNomfhETNWo*y2_$UaJ)Fr?l>Se(YN0om)ym$ zWkBwU*6U{|J6lb{m2#KogRpix(pkJr9_{{ct1&0j*k(rPa3q#u3WDQCbN@uj3Um<- zN#btj8XdujnpSE?c#UJ_x%bYKd9C6ei2dJ336N`!ivyuvBGKuV2U(GahF;phREb`; z%6{8*{z13R_7Ax2R=-|UY&PE|!_R2(ZVP<4s(ND2{`c!W^#-q)Dg)jD!1(Bo!|JV}6J7$dq74A^7 zRx3LM3nGRYGIPyP#d{heok`vnz4l)qOAF@z>Ped?QmOgE+A5!U$9~k$afbH|J{jUg zq10IJ%wMkg-E}q8G_y>y>>U(RR#8yg)#Ff(&in^AG*Hj4O`%${5dZFko=)9^5D-j|D#xB z*?O%As?4P%jNWt0oEVOZ4z~RluawKo@7&6m`K9DG3jmppu*%YFmy*OPDll9ny;UWZ zvdyeSQhCyAr<3$4DMOKPy>=|mMq#_B34!|M)C;4>B*b}r{nESgFZ16SyRpXHJx=;` z`YC}ZR~-B}jY+GtkhW@k{*YCHPb)RpzOjM`GMi767;3D@jsKfb0;qQy=R!BGjFymH zuiXi;?$}SlurJBGQ-5R=&oyW1&T)G158PL3c*YeYQ3~rc%T!^VsxZA)7Hq&!#f4_C z)D$iRkIQ>UI3)zZCOUyy2GFn5J7PT8qodlr`t;{yyOXZM=BO=_p}IWFnivTe<=MPH>#f?<+Rm_k3XJ zJ>=iBmFA7N)4VQo7O9!an%BIZ>SQI6W=cfix<_c(Ny_c349mU3#6w%Mv z7LPIi4voUSpwmle;iK{+2}gN5{8t5=x`NBQY&blV9O;#~07>L24}MIr84dgT_im_X zkjN?GJo86*oa<(ci+VtirsoHo65pb$)VLi(P$_IjcaZydVTI1X5wXNyZx?gh{N9DZ zG8mEKV5?gNMk|T5I!aGRoc^S=#?ukapPY_t%XT`FBzJ6MPDh9;n=avVlxLcbh}v=` zr8OD5RK&jF`~1Vad;J6Pvz+GL7Z{Lkn-76vU=>_Uu^)bpOC4>(6vU=wio{_Noo63;IP6@!cjp12*h;?`a=OZ zM$7Q+#3@kuw^;eNSoybD`M0b5JJPlqk$KVE#C3mO{prX!|MkR1Ax>7SCYU2Q8@>jl z@)n+@_Lij65vjf@j!xk1F+fEW^RolX@YpY53|fc*_$3fHf?Mo>kb+qVWfYf)5{Ha* zV=q{MxDJ2Ee-%<&Iu6{Pm2UI9yzc}uNY92Y+Ba=SRPsVOYyKi{_}UTZC#BhmCn47) zdWk-+sB5rl!8~!9i&#>HPPp?E!<*CEy(jeAUxEJ;Mb67nt>`-N{Vtk-t9l8+&@NFI z|6(C=yM@H<78187(Fu;=cB={7r3rKy0nWDhuVEwz)I+#hP;Uzitl6%h?#Gq30pE57 zx!V3?Cw5le0zCyO=(%11JBYDbkO@qE82~gNE;y+-OoxffVIW> ztO9{M?O6o`cS+zukp8UHoWQ%W^EDaVAp07C$W~yVwH0s`WDf+5f^0#n1-3$XWx+@p z)c1NC{a1{xUm=M-jVdwVtHewWs}F2RM)UAx&W@eKBWcaznczj6*wIdb0IDTx=|j-l za+<-oJ@xlB<5}s{OSR-p)slUeXvw}WYKdyc-`9*t+V;GrXF+-#ceZLH0uyyXkZ>VG zyCTQ5;1RpgAoC`LNlWa7o~eX*h`1m^fVgJIDUZym5@VN&xEUY(d;P=d59z3Z-hB|2 zy+VbU9YTc|R6>OqW5zByj&gv15|cWRlGYq$ZqA!4C2O`gm5UR7W+%&8UhK6G>4VTR zT%vcfM6e^C#k1I?x9mDoIes32N{k!-xZk!(q5xFhq!|ac8o`iBBhn zI!)iHzd~S+=0$1pIz_#%$960D{Vuy70m@02kIl2EU|vfH!MKdf%| z1I}=H3;?1j;Ro!%;ytJT_=l{$@R-q5L;K?)s_(7w1t`ESz6XK;8=qkh#b;QR7?82o z3TSnwSD>f0^qcWU(mZL`u3ep;%*`7R|M&+`b#k~&%;=Zez2}y{M}@F{*Be7Nzs`3t z4IhtO7)~1Z%*$Cwmkkts8khOXhy-)t3Qw`e?Y71GO~o5B-#?IGend{nCGo&j!)g!u9aEx7FXXNqTyRI-mKA>` zNs~DATbfZlZp_2!QAd+4cWU)5`Tmacw(4824k*e;A-CKU!umI*2OZj4p zW+sxPPJo@U-r9xB5ssj=GJ9UldGJuZC~b*WcW_a1<>)eoU9%BZ)vS>^Bsg%W$Z2es zb7>A@BY~TVOwz~!YE0*Vosb|3ro4j-a^G8rf!vV0LuHzoges0=iuKw9CUUEY1BcUMX!W2%+{h$0?eR zYu56@cxj#dZV%N}bB(lR8XP#{T`t(dtbN{|cQD%LhTX5(plt{bH%SgDPPaKaLz~v~ zG~m;``r6&0m!9DsPp34H%mp=(x7lqXOsad4_vXy~v6v;EJ2p>j9?jubGMZXK;V1bj z=)~GDw!-gZ-hft#X%MQDPsSR_o_Elwld9@Yhw5?}yZV~O&`URR6MT9$^xB3c6^>$K zM0;O(gjFH<^lJ7o`0kzCT=#_B0ek4B$GG#puh*Rdaj-PC>5|A>o30A1Q)m4VEqKNm zILek6|63SKGAbe;Cwp2#b-xuT>O(L6oNGZS{1_M0J(MPdrP))1PYVuh`lcEjLNIi-m7Zx}ly|`lBDy{@QxI?k`*`7nOT= zErM`|R4vBVPHfw0X_aQ+xlV8>*b7faZL=!b zn9wEfhAY5=$B<-5D~w-AlHtD)sNXS-umJSVhlZ*stua&^mV)n?5wH173=K1d>*yLo zwZ>4bF%)8$?it4R@FvM30bH#Vue}Yz<1I}SxnG_1RrJQt8g(5Nd|G22tF+@ zZ7L5tgs|#v#532utb{7Tr&WLEZK>4C#)ni6I)i+nunYv!OCen5^F+2zgux<<8Nrei zo@US6Eg{i|Ma*QYM~!ArBor0|gz5y94Dhh(Ve`f-=-bCsOE2hLL78-}psTxcJ)MRc zAXfi|GaaEdGFszZEX6O@{vchvMRoBB>EbPVUE76SELkq-VlmV<)Cl>~E|$@BaTg1C zs*BYC`Gq7I{tJO!x>x}E$GTX7rkco{LS&O+w0uD?tH$=~<-B+=6Vz4psV`Kgx=W3L z?%t9CLvKw(B1dl}IvLmdFG+VMvPchCYHfo_Tys|99_h8`KvDN>FYh(m)u8Ym(CZG6 zf^M(PvSxdhRHfH7O1=gyc$V4TJ$IY@L}6lv7`r^3;joYw?>kkx@uHerp_c>+(bVA6 za&bB1B2K|JE%Nb|gb2=S4_SGp;bFRazPwPGRPH?^rv;9PNA&?AUKAQ4 zpCntDKyx!JJs0^)lG+~6yHf~^ykT)=+`iKqsvRTkV4ZIp$*eMJ)d=lwL4CXh2~rb0 zR~6_JjM=La6y_WhhM;qb!U($}6y`uxlCjO$6=ZJT8{Q<-FMQkMU)}PXd$s%%T0YEC zf9Zz5XpsQ{BMoX8pZ`Bif5CIGvk8@p$I-r zVC(v6_?N5?el)DW*wKTjiBu>fPK~}$os1#6=yQZ(2hP;cI5E_sgG2DXsy#<~xJT7XqUNRelbtCl=y zY?2g+vIYp5f1NU{#{!GZOv?|}4j zfz+D)0!X}(ZGWSS6~Ld#O#)yMJpQ8qOHe5}f4A}lJFE0Z5Ir#{E>-Pu5_;9D5mu-a zFNLhTGAqKWQQz`crhcuAV2Eh(dP5 z+ABtFvb?d7k8EzF_oSr-{qRfZb?f-rQ`?8XQ?=btA6*@MS~9YPsA*D3uk}jW_7oFejm-bcO`^LKv;W7u z%RBvLvq(|~T4hjvvpc^G%AjcWTsW`Blb~aNZz3b3Mu?1f>-cXHne4*9m&hz0cPS#H zKWcFxaYCb}uZ3r!+~8Ai)h4R43P}$t+Mw7sz4rTx-pGT{8^J^zQ?mXldLuUpdeeic zG2QtTrrzQaOi9|9S}WT!yKAv8dDu{_=7rQJ4x40wrRexgoceISLKzCsT};oQTIe{1 zc}vlYe+iryWv5Z`z@r)r8CY651hae{b4h4Zg3W9RkAt3hj{k z{(H2euaMV&kambAoUuvTdcPCwVCrLA5W*SJk;f%l{uwc?{x?buUSUj^?4k;Nx-DyK*@=vge zfS_0Phi+S&Kx+a<3F7jlZK)IQYsAt#A66^_WI_NZrp}YH?*{;HgI*`+hcU%#g_qbZ z%G#8AeH>&uLwHnxZkK(!;!HY@RQ46z_pm8v?;$AbVGCf8Kf8O;uhK!jtezIn5}nWs zU?KC}*o!kLd+?A3z|qTDl>1l=;MC{gErdl9bZ!O77XgoXTYC&!N(!Q41Vo8#C z!W=Ty8(EZOL>x-QWJyy9;cbmJg#;O9n|rrRx__f>>rcIOiZo816-_)#+dk-STS3pj zlD0{zzq2zsak@s^F6xRw|0!KzwW88F56_3YJ6>8%ld2nX5g<5LX5M^PkhRMUp6LU3 z+o#-d!oq|1C26>>^i!KsY|;D$Zs#UjRGsT1ZH&%Z;FM?A0-Ict7j&j>63LbkmVsGh zj=Y`bDK&@f)ti>`N(8C?^n|GGu50DwP?`0ePGLbpp~X7Cy<#&W%u4ryC&i8YH6nEh z3|1NdGy5lmliS{swJus7?1vX9#GFTi%ZAweeL4y=SAea+pI`|JTk-nMIf@D(E&*^5 zo+1pzV7Jw04oqS8!~b`NmK{y_kHRGyjKR?}QWjaMU7!cS}ZT{O%7rF`p zHzE3z_rgk;4*y{Y$?O~R25hJ@&Eq!Kb=P8YIc ze}8@g11pml`%>uKXhx;PQ4nb6N_x?fLPevIcn@6;A`DR7q03c^XoOyia60DL@BMVe z!L~O@X-(U2M-nFwMqzeZ;RrUqgqc#aZisRW=8R>15ABX_?MdfG`pz~SLmSv(Z)8c1 z|7(6Q>YDFgcs28wsAocjfaRVGDKDz#`*rK4<4<5(N>K*kBP*ngR~!GD>VpWcnJ z=ju5k5LL~}sPS!TPdyPyiIpy)NC z_FNww-q9$7OBa(oM$HV|JlM3F8T13zlQUczMXIySJ~Q0hW`pKbD^b$v#%zBd>)si4oo;j| zz7U%Ly+oy!7(a?CreSeSO2N9(1Z6SyT0|vIQdUiJ<~%c1smkTm)<4jRMpsg049jqH z(JPGmPUBr;2UBkNHpEq&P8Fn`kJa1~1lYg~{1sbDKlp=$%+q+Rr%TL%o8l8MFsLH9 ztn2cCyO@wX4>GevPlp+Z!$8)q60<)QB<6GAd9$;x%(LiklzK#w1bGs4vTT?e?gOKu zohu5!(NQ#|3+>KqwXQI{Gv!oHCP*G&l^C7o(931n%Ql*Oxrh{fTGXHSGEtzE9mkcpnGYJg_(B$b(BLMIrECG zppww^{S;*=G*U>b=p)7pk^CMbP2}_ASWz!tPP3*$D17GVJ}gdcmr)#AhONpWV_=G9 zRd2MHnEmAQ1%;GeuqbDJLzKx*>vj7eQszKXH`~%_Zd)_YVk4irs&J31AlesV%v~VK zFl>2t(t|~llxWcj?ubkBXYN z-e7f-&%7^{5qYUP71xw!{uo4;D;a;UmUQ!0p_xv!@_Qe@e|{pZVu#c-kvMe3w@Mdw zGT6Z+h*71(N7xb?RIp$$oT{}9{W2RrHH}8PT!LrL2hz-4j5F&Qx$+q~+-!VGeT8a3 zI?faOIi`k`rIClszMHFzjgf@0thJ!YXs4@3CwxDo1io&*Ou?pDG(alc7PYuA1C%qd zN%720r{|T6We5x2z47q^Wxc=p0_*)8=m=(TSOu1Crwq&rXLBvbz&mGTy~oPS;TsMsEhNqY{3DYN$DVr_>JAkG%DFjM^D7@sQS zAm;8r95Y|t@8Q0x<61I^?IIaVu(Z#TOp%&~<*))ZXCH=XSaKOfHK0er2SDg;`yM== z@v{RDk8oFrk#q%)uN@WGnPMnp>_qzl@P0U^Kvng@$z*W}jLGDF>QqMVpVlbxrOLy(>*(&YN!dDD75!XZ4NknmlZ-7I5`a|R zC0B}#`DO6}a0-g?wT-k`4?E?u@fcWZE0M`U9V5AlCD`hMsyYP}rsieItzh_bkcIEC zefjv6m4*JuF)fz}Rez!bHvduHq~}sI*P*Me>&OD@I>x82GwG8OMqOE}SZ~@!wlhRX zy|&s=9vn8Teq63I+Zmgfua=+UiX#Q(X5lT;k*lnURSQHA(W>UmXJpqO{XM|cv|&kX zb6`t*%?W@y9XZ_B5qTBXNa1!$Wq~6d%t2ajk%q3Ihz;ABNne#GxzSom7R{@Zdwb}wi5Q+V7!%oTBAUVbM zzJ-sC8^w8V^e(ch#CQ~7GG(OK^KBzU!xp8tGSb)cNCP4p-)3O6p{yMXM(mc72+|WO zueudOWEwGd%SOs$l!%S^H%44+Bi=pQ?bskC48*B`QOYm2eh?n&w`}%z3CkgBHUjTj z3(#MMzdfQ`p&8Yr<-(}B&Eu(XbKa)%@Iw2;Nl2W88MIir9^!0%%NvU&C^D+DY>JCZ zDs}yp2`QZZ?w?#<^P%wGFiJKw$0|Y-Qpy8a75US&fX;7Hpif19U%hq|{52uTWw4Zr z8}S>+j}G26yo6n@ztS1}*v*ble`Q2ik}w*n2tAlm5t^1nb+H3TA7W%vX&+PtiSSL0%}#S5vkY} zjkHp2W5upE{gwSjvwCW&*!79gfP;GV)LgOaSS9Ltos)sSVewY0GF8##Rz0-wK~36O zsh3rJZ9>Ytiaz(GR3!Eg78|Y*FD~*YBuzHJ4-gmK9y4g2EA?4zz$cZ~|u1TEIud5Oj1c`io?>nx3S#OwxD{PWBBL zUV4(Y_G;*4+F9Ywk(U&h(Sv+}as*dOhWY1Fchki%TZ zvoiu+rMkouv;%%aNV84F z%vNy$Q7OQ5P-Wf2r&wUW1jcSfx<%BBM8Is$nfZo!S}bs=vQPXq>TJ_nMfme`zJ)XU zgcmuzd#|XkYw}O??!~7XMlDTaMYOTxvN)hu3ZRz^=sg?=)gGaDK=0|Th!j*n@1hb_ zGn>dbibPIg%sGl77O(>Ee!jz5?lCKGprFpEgO4TVznfjy%*cJQ`Ka7WJnxonXKK|a zx_Yc2SYTj1i5XyCi`avTi1^uimuqpZKJyy2E6u)CJX~yM&7VCcM}M5GKM^q^@X5u- zp`s%A)! z{rM>Itm@yJ><+em7;JI8H)nmQuwJr;Cp&#bM6s3Xk$P48%vbuWjRnU5yjp7Uj zi~`r8?dn?kSMIY+#XPuSD3lwt@P^U0a}L|s*H~Ef zpd7EU5^oWIHp(Lx9zTj;KxXa>9_gw%Wh***FZU+C7d$><_9=a#M~Ql7+h`k#x*z zl|=kql}8jSQ+kBkD16w+?Cwv((v;(zX0|x@I*PX|@n14q+>ybg_2zR%O9P4Us0T+g z+o??)v{iNRv#-8FpVdkZJeEi!%5mx?9!pBtdd&VnYUe%vvu5Kkt?1y$YEUFH51!oT zz>GL&`!os8=N)|R2u5UUu<#(xXX=rXI&hj(e%l(s7dI#QgD))S!6@Z8iw~bD+yQ7R!ZZ0qb~V1uXw_~MFxoIlv> zyUk3Nz9a`DKz!pYJj93Dhk^DW3E*7?%hHcJ}m? zR3NYLvsd;f{@&q_j{RH@b+P3bD=v@pMX%>BLRac9??&qG-{14JsOrc~D{*URaxI?;_zA|ew#;&wL z9lcb6_oei;S|w5R^^C%+MPDhIDOx6kQ1-jsboFn7LH;gHS10O0iK8xUV`RryjeX4G zs&>1~#)S&5s+~+7!5M3os$J-<&|Qn>a{m$cP^?Q))=LspnZX5CL%InoKwdylr-|7UGuOh5*dMYHzn$&Mm3sQxWFQlPWmC#RS1U@2F-I)-a zoUFC#K4;{5buG8tR|zdDXPpr2TtGJkOL4lXNTyKAGTL9pR=hXm9(`U>#w0y>*XKHC zb2Id9=GghF!i7;N-prx$Kvh(GK?liblSPrP6-k41lAEznE|jgFXQy%>MEYMH9&_C=sHJ zE6kj|Jd32Gll$ZX1$+5kzCoK8woy&_No)CmD=GUU^b5vl;XZjU%S^k#!58ta`j!bn zoBcj77< z5?vckO6bHdB)S>tI~C5MwAM9wszRSEF0(*!iN$gC9!sh?4J=xu^n{R7*^KqP2ic&L z&e*&&?z=2_4C~NV){I5?G!=KYB{H8#(YxS_=<%d&E7FhwZvRyJ+ug#j8 zzR9Mq`Vm`GJvfWs3jMmQTX4gS)SLAR?igpDj4-P-GZ zXRrHu?t!z7eD780O$Q-b!XK5xd(38R?FB5POB!S1x~yEOEzTBwzP9zfN?qIQes!<= z>R$H?d)?3Pb?@tSU%>s}10DE-c9g!Eb{wOp(rkPp7) zJS2VD`=fdhZ`e?`Lj6oS``X3_vqXFyF^9!dYnyZV+NkPTo!}`h8qc3QZxP0l!<35A zxw#c%H@o#mC#a#Ck-iqVz_cunSb|dAcw^(IBax<1X$y`r1VM>pX$Yc>DG3P&4 z;X?loS??8zhds+-b_+w1Q8pN;;6%mabNL<;!Jn5)Vme=)*^I8X3dv@YjhWBA6hvh} zQC23as_e9=p$t&U5NT&D;N@&)nA(XppOM~fH5#NMFz$AC+_w0q2#W4N=JVC(V_(=`zJ5LZRi^HH z`fH(jw)$(nl`h_2whQ~KfRA6$UrVhrzP!J(t-}9j{grDKqWa6t{r@lhb%*p&#MCOr ze&z}cWK<-tR#o?28)WELTfnj3mK}Kc(3PJ{)wcg9_`&>#=U?_M6=R=q>W}VI^Upd4 zU2nC%1^3}{Mw3;qp4GX^(4FdD`ZQxScAU1F2HVxC;3{WitCj0O@W?PAY%@qwes~uH zRQQJS^maZwc0~>+Ib=RF)pD3ABB00^^XGHZO6kz%90~2qsRi*Q@|6i*E@-ajy3*S1i}P?1& ztF3$LFGmKTgfX&k2@Mjl2|V}gX2pG6?9_b4xb8u=+!cTcQC{zd<|-s-49&6Xr@dur zXj$(E%+e37bi1t~NNHKw>Rt(OkWpCYlDWL2 zCwOMLQ81S?Ky!Y*)`B12{*vdCSp`;EJ4p*;a?u&36m6Z^(-_%jGC(e(1T52JP2Wj1 zf8RM}0^t^-6=LD#FFL2}q`1b7ZLl)dIi)0K$^j*d2lpFATf#c0Y*n8U=ahrK^qdm+ z0&zC|OU^0FZ~2GMDHWis3S?`%)yxDVqII6L=@CM!3Mkj8*N1NglN*mR;BRH z6>PHWztl!loxmO##hbZXEX5SjOHmqWqLzp-yj#c2ExOV;t8^XxETLZd$bX6zW%OS- zk`gD68D{&3-QOzs7EQ(<(jswXH<1$nIUdlT;Sgh1XYfJPu7{x8dPn|r=aRnq%l6Zg z+?Q$iR&4S_f~|H>`;5<>5j6EU=$Rwd(AM#+0xHW~(o^wY|0Ax!$%zDw8FRcubZg$m z5n#M2CFU$7KVSlPdLMCz)+JiJ2^E?m(KbXB|CktFE!NDBxdy+}i9%nesMh#Qgyr!= zf&oT~x3DwdGH?-9*rh^Gi$B92I61uNopU)kk@WkMMKSYg@v<^YoM&PrK;fbO!L7r5 zp;?`#?4{&D;DGsKbbl--tZGS9{3MPcIqq{A2lSUy$87$^kQ$>(`|i$vx7+Oc%Tw%m zJNZre?rwQj_m1ywm3yOja9+!IBkJ}}*YKU8SuR7{twb1njE(7z85=|avX!4$$QjM`@+^I^Os0F?mx^0&+ z(G_}lrxtyPVn}7Al3zEbXtXtUr_;F0B|)UaMH)(x?Rtbb-1Y#$itBdklUj<*7eDzu z7{+1cFZXZ)Lj10`w0WW2xlL$vi;8H23m1KXWNN|9$0VS)h4}S0(*j_S7X_NUF(x{V zJJApLLA^v}fmer?XqyYx{nCckn>nmPzlZhm2NC(${e_pLp4*~dm$vvD=-sfVtV)g? zc0?`fjbT+ujx9wv+#LVR`WU`7^KJgCsLklqhfQKYV&lEdxT!==gE#>5nRh}MaOd=q z0U`^XpYvJJo(!1@d+26p_#XEXAXb{l^9Ml4SqzlyBajbpOzZ= zob^w)aF!}K8_)CDlJH%l%+=GMi-qqRY&u_gfvelBhFHaxxXt+DbB7$iFaz|bsz#n=WvOu@LBq6nZS3TG&JY9`TZl$bA+bX{s&mH zV0Z`^1VHmh>+`DBXsh1o5;b(6Ic`1h;RAM}JMcq}3@hCX8`M-8D){8XP zey1pJ;@4_fC;j9Kmujz)!^VK`YfN>8mb!?$#5}l?d0;euej5DlxS9sRhlpsPG%CY) zjxsmU&p-?nSzHwQ&Z){=bH*-U-!HHq^nYVPb?iyof?WGg@M32^w&C}j#dd}7%xs?M zUaS4YX0D2YRMegC9D&PFpZUMM&u~>bna@8g~pf3f!@sy}Vwl?=IH0 zv8-U@mRyeo=2)==SakX6$gsfIjqzRHNYxb{Y`?WdnZYx|m*@sV=8f$Nk8>KFHgo*r zDE)W;Q}l@WF1{U&11L)+mb|ZC?|LnE_*))6ad0?uvoz9CZ`{~7gbV3nMX6jhp;^a` z4BSJ9hXhw+f~pw}=yXhEO<~=eWQ@yS?)0Y`HvvHOuz`2C?Zimre7-`_d+)m{eIJ?P zlblwbKHlX{-rf{F0v<5T(~PagNoEpWw!6IB{e2DFL>8|z^3*r*HSfv5P-FUWbGMM% z>74{iG@n`zy|cX7GI7XqLVtNY&Bw9N^y9`EYsv2e7~gHN7X1l*U?cJ{Cz;syyIa({ z-(oadclyf(Y2BEZ<{Ca>aCnG?hHd!|Xn~>m`GNj8)Mss;=925AG%f13R_UmdkJh?< z(egd*tCsJ-eH355kG{?Doi59_ce`GPgL2-gjlZsyx zGPzOS8{6{g+x0*6MLDN#D=%?{JXcD!rmW@mu#|axhrF~VxBtOr6a|^bcR8D@9{NAg<>fdAo8pU@pz=q@+w95Z=}HIt`UGkHq3l+rxK zn#s4WRWq6Ow|>%dLNa3^@%t&HaoD_jL#k;k;7XPJ^o7q0q;E8x%4okgp3J=c zvF<6r_%A9p4wP7n+kg3Fag&v$%g0h<{@~f}1x=6BTV+ARJVGZ*t<1s3Q7i*>Q=Ws{ zbs5{lzGT52JV2y``E(YAW;uNJIHC1_15S!r>(9tP6yQdb}}9F z3EpY31bq@f!4gbowd*GQ!m|kMSRdquut9(}HcwQ&;mz~kUTX16lU=w;t%nixX~8YR z2=*24`tH0f!U#ru=5PLNttRGAw<;Q8ba=giEdXdSEzNf4?5Ax#3{0~3QzAs{f&D5`mFS&yBM{ezBny5hyLylv1q>qpP@fv_UFE-a1fJR z-0Z*QgwGdCIhl+`#M4}WowL#sGv+#l#a<@nr(VpikUbZ+BGR_w9WFRobG3!Z;pw;G zH^2V%H63lc&KeDHvW^D)SC5@FYgU$C`(ycjC0+qllF+i_9nlT)g```tIdp8rjo>j) z10Lu#yQ0~WnLG$ii)u0BxIji4>?*2dsW6W|Z*gUgb z9mk4+>i{%Dy(uwHiff>g_*5FuajaBY2lp9o;3>#MAkBNH7D#C-jM<|ue#Jbe)=!TZ z#a0P0pq_ml$5d%#w~EUTbm~8PMeyRqZ-2)p7vjSc!S4FeTPOtAJH|HLdA6Gi?|g-j zmD|LX^;E{J;Nw)-Re(ue*!6gkkH(VFOeatEvKTa~)c>_um4@AoD7Rzrf(PM1d#PDQ zG4a{t=CzXq;$cc$gl=;*f!wh6s82F7c{nIgNduT^+{+8wwRrd+*M$c6U`F z>nq=O;t6V2JMJ~Fp!1UGFCwTACd-8lVX(=C<6jf}(xG@StI~W$9wHaK&??hOcKOk3 z!kIPR9sXhZumb6PJNc80@y=kx6;h>mcc}cKVhsadH_fK;J`+!Yale)gZky?MSsg6& zL8=n3>n>KV!SMoZ27{LZeK_6ZeZXW#<6=icdaQy(q1B~&tkgI|;D4f}w zPQ6a~Vc2Gk9Q~3*|7sZsrSK5`TS@}MXUMZrJ zo6S?q0O{l%G}kAealF~eJ9u%KSUUokRJ3f}pxz<+w-cSgDVi%f z$yf+YHYUPs>@74&G!f;fy$(Lp1u#*h3AVY4e4Ycv=8^YVz6dDtmWy;O)WWaDcwmNor`z^jb?7Ef92uPY|hOi z5yLb(455Oj#A)|wj(6oPuizwI_FEk1@(z-Q)ry(|KZi|$GfM}hXxiSdna^MrXw9)k zfls_{=GB*!7PI4FjM|zfW(qS<5pvKdW1(i;f`asmzx)GzAzoz7KG>a!O?)F|^x|YK zoKT*nxGEEL1(`$~*0vYh%kJ-BR1Nkf{}AY!XQ%Wf*w>Pbsm{UV#vXp;s_^*X!PeH$)Go>9Gw1M4b}aRQ4N=`( z@Q1FL`7Qa;YCnsav0yj*pzy(JeFlzh?6bfAbzeO=MyAM|!3Ciys(aycbvEbyLgm8g z4d$=R868%Q!&bkGN8M`=^bcJYP3JWaI9Vkxz^E-r$ph%&klFEL~s-n245v_{N?V&6W~ikiZiGhblLKk zx~r~%_mvtLn$-`a%YMWEZ&c=^2y+*E?_RYb{-BJivUnN8C((zza#Mmo*-Kfs8#8EM zW^tmRK?-aNT6s}HQa-J@|DxB^G~?uYdnn*uS$Imy2#gedYP{Px;Uz|yTmQGhQ{GO* zX?;*Yze9oRKfH=yL4kI-t1*x!Z&F~m;9z=ZF%^V~2yUiRhmlL4!FlHj>jBzC=A5+x z3!i8>264GjW7Hj);A$bl~a@I%Ow0QiCwm?{A7NC4O(pKdmP!WZ73E_B-G`TLZZA?rCl zs}L}yCV;j`v-$;o8J4BS1Ddf9BB+Q$X8uAq{%s4KQ4Nr6^3H!8?kU;3$c=N$ee>pe zi!}E96EcO`64i^}c$t(}WE5#7rC|y@$w~ybqsqM8TL1E=c9-1VUGhmvp5d;Vgg9s2 zCYl%DWZtJl;;FLE^26v5`C_<;8RiTnHBV4GrJ}p>H`4_!%zqQ(_dr*$DKktsF_GFA zx|$1>=*Q?6O6eJ?ESWtI%7uW4RgNuFJsQV{F{9VeCLTLbf!b~#>(&%GU%ecZ?v(|#2X%@55GGOjCtY|O$L=a-*ufS=f#y9XZ1Wu-#cL4#}!moy>yUdm2UWg^IBs+BBJaM6ZRLDS_ z3J9y2s2^<~P$wc}vFnlorci)vV6InSCmRnqqgTKHt8t+j=UFc}+j!9F-DSCZ6f_w3 zYpg9xG{cdvR+Xh%G%dd$OUmsmDa)O_b_TvK2?=qvH#*QrHTJ1t(w70JRwn;xHpFhp z4r418Xex1EV=oI*+e6ZdDb9GFH1bTap!pk_e9q|H5XUd}P?EPu1WhNSmn)DKSs;aO z2X;7j`DIm(0~lZS04uTV#h1mxu2s`qs|s8zC%7Q(E2p}Q78YW}Fn<;x9NwjxUMrR$ z*7&Yo!OFast*c%qOOVkIZ(xg92-Mo0rPl3jB~3^q%|}*))EQ1=uh4eAu3A#tSz_%t z%@W+Y?Ed@WH-Rj}UKC&VMQGho3ALW#Ts7IXa=eSe?4(0Pw|tsjho>Rw^QI}3UX%%SO*4`VLiEIBD_dla!UG&!j?f{d zQ@vlC8iMCxK+V0^VxOIf)<{*ofnW7F?e5nLc6$Q!Y(R_}@qyTTJdU`)x{tZxF7cTS z=5x$RXM9}98TOpS={FD6i z^CI&=Acn&s_oCa4=|>AJQS3E{VnG1OlsHxo=5Why;*6$0GL&1yvihT$@)^6;*Zk}vFy8&cmxA$I85bfI)`L%R8wW!L4G=Iy)*)d0 ze1ifb_#6bce)_+E2-9fkFv5aJvT&u4lnJ~;1S z9qw9Z^T-i^8%O@;fhvwU!%KN%Zs#_yzPWHM1u!QLc^=EB$GPtTa^;wkr& zEk>gb!F0l_{BPrgXi_7yNJujfT;b8P8ocfZ1HIGqDKv%a(5g@<@-3JNGg@h{ zv@KYAGhC_qAZ?3f<@^b6HuVpr-f*xjU1VD7Q+Ul~7&v3>dntXni&kXtIM@6$s{+({L`|nSbe2OCR$7EX|!6yvo-M&~6 z#8h8dMXqq2e3iv`4~DQw1QnF^yuz>tBS~V7{Ws6{U1vB{4Tler&ivN>&(TjiOwTjV z#)6MaZT9$=Holy0Oj3@3Nf}-v<*FL*R&ZuZjpF+4^EFni{=)h`T}XX$n!fS>B`Qpc zSGZJFsIh#-5qMFBIa1+j`pBx#7Y^gKFJ{&pmE-x`aGg969P{$vrv2PGV=wLDqEA%s zeWve&M13?}W!(Gzvoz58h4l@V`m%f1_gks2zp8I)xK5s|`ou7o`d+u{llMNemC`MQ zI>TX=u|n17_CJ_t-#QZBtuSgK*XqdvsrFeq_7ZsgqF(&P4;j`kNqOPB=KIXKze?2Y zws0F-vedi`%%5(Yuh)t%_X|L1u9KWH$`<&0k5Ta*YmB*((T#I4y|#`7xLcJ<)^I2r z!&dEXy?>qD8qNi^||+thUeHzPx2L?lsE2NXN!0I zn@8xuIvI|_kQYhQt-*QYd(Xxyf}5l~oJit~of}_lFTTA{X{}z1`kly@=-^y^6qkdw5Ecce1wFIZtKK zV1M5j#9l9Q1cw*>Ma`-rt)U`hUvCelB+cvDIFTRUmuHM&;fb1eij`k&g7h~W!WTqZ zQ909JzSEx85;^P)_0wN2PD$9f2}KF}0by8?{33}EEeMfvT+9ww@(wHi^|C4VnOpbAvmw0m z>;TM z_ief21!1HS8nubXt((nT@MNGc2EMu(k$Cw}<;r=WU;&*NPSSBJsXs1CK6>qy{01XG zl^1KMLa$xP@2lJR@kUnM;V%f9-^LFWlM!!voQii>|jJbN9Ps$k8UzIV$y11;1&AJq*%d5iG1I{@AO{1^n z_QG<2#VO@1wX!U*F0-x6OzTpsE~9UZXP(^+1ev9+8(OS%8?4K3t;>_v<&e6(dP)JI zKVB^@S(5xc_`YCgx~?LL#75LzHR30>4W^ajlyz}tsFn@3F1J{hsn%ttb(w8lzGq#k zt;^4?%Zt|KZR>K}y4VItnWH6Kg#Ttir$>H<$7K_0Oai%2dJ)Q?1L5)+NWf z3|5z=!+&C1!QYSg3-k8`e?Q~z|MK@Nf9v^sg}*oW+sxnF{Jp~;lO%XMQ6CYn{qW2_ z5xiYx6YbAbpSkTfxYG#FfWP?mb10cQ&5Xqybl+|(_lxG~@8s)T8HYkNqAr4nZZ}J( zZ;m1QlgOo?sF@!B%nN_EaL1nWMhfaF+Rao$yx4#0N&k@yb&?~?sk9ph%%6f3(Wt3% z83T~BXwL`#$tFVmJ6%(~ErFEaw_HSal<*A`U2!1}O^Gdb37}%y3y9wg{9Zup)x;C~ zFKnXuYt_UN=Du&SZqC3FCS+dlAuZe{ALA`N(VXH3&*s|WFT_N=M=WRaH}V|{5+^z` z<6XuH80}1B@?h`eA^uDuf1)m#0V})SZqYtD`zb9puN1Dd9~uhA9jNp9`+E))IX)n5 zvH55DQs}&wPS_UgJm+sBs>55>bf+bycBmGbyeR<}DqQBnD1!wnG}OUd=JBPkF^KK> zbLRVGC#uZ6yf>a8SmER>G!823Q5;(DS^u?0zr}sS+N*^6{#Rf0GBSs?8hJqeY7UhR z5oG;UpX@eu5#T5KRfKK_%q3K6+=*_fgT6Y^@%|O3!$q;-C%qk2U&oKFw^N_c8TmLV zJe~*%bz6*WdSScwyguQ4sW}sz#5=B1ThJoN#an4ihCq=-<*syd=4lRkmgO9uwkp`R zyBO|z@Ua(S&8gBEqR0Za`x1)mF0BB)413;bv_2|+J3+hbQOcw)mf!B>y$+Zy^_4$;Amo|XQJD~$VCD5yrap(;eVCZ zaoY1xrjZBcJSQD@W_r)llc(tO^mlX7hBSwDR0MV_*nz0(=A~Md8WW z;pv@4oT>af0~T#o+Fg!psj!pdoX~g|vi34JL-@P(`^2A8KXd~o-ZGD7Ugq}e6c1v5!6g_w=U*dkUgPS(3Mh40H`qI6NPz7- zv-oa^X!OqF5M(3D)y6coR6=-#_% z6GAf9bhN`#jU9N9UZ}-#O(Jmh3|dZxVZ{cE3iY4`C{4< z`3K98+7WWjjpBxE2$fpCxMhq`9!l~w>OsbdoKsI6?5`AcYx8@8w9e?9O1GKuD+mo^ zF)fw{ZU=pYco7d^p+b@R^+m-MMSU6l2;G&+)hlvZET^Nmn{t`e|Ma_9dGK5ClTDsx zr5WLrAWY&T*3s!bzv%y{NvKAw3^bu(DW1trZ!4&wSvAzegRp6J5LT6c@*hzM}9fj-GO3*O!_fF&H^phhLN()58&r85pwvM2>Rn zWI}P2HOJS3FeS$*U9c45BPW_?%w;eBTKKfrR`Q0`Q5s(Ef{OiCio46n62kP+R&oFf$^(5JXnLXU<&36Ucm3#~dGNk!F=5ECpqDtq znXAJSG~eCk@eUeKS2KbpYXMD`9b^04wp)1H!yl8&d=z{pR?;(R@AO_tC33eB$QGYz zZu8G~?`6f!%$6vzCH{PK)zLlTV|EB9Bg%ajr;(@j2yO`hx(xE?M4|oU9@VAOPZ{mz zFqub9(X50oYtbhvHFH#w!K#NFo9$9S+t@$v5g3`4)Y~l*{18&sqg-NrmkCP4IXbY% ze1l=zFXLVaRs69pr<`*Q`<&SPA(%m^1vB3GFUa4MAv?aA`||Vyset+f464iof_ON* zi|Ue6gpOVe?}hoL1^-xnUDdBDzmd%Bz0_z>Kwql9Ug>lH!SuIWB7N}q%pT!l@H;Px zuA>YY*2>WI4WT*f|3B)^2R^FmO8k?&2@DW@FA^ozXj4%eI&C*?Y#R)A^M?uXPcVQX zL=6N~3K81~8AVAVVF+e?j?&$=Te^0Ot!>@kvTNEZr1jrSf=NKD0Yt)|YEZNTlS)94 z1VZxrp8IAd6aLsgyZigYhs@l$@4kD_J@?#m&pr2?bA$1{kU+MrtgMdh^ud3C28g;o zFLSTHslblvZuzJm2Ko{>wTDc*YL}U==2B)^p(FS_Qi<2K0mhd=`OtK;_IYjym_^8P zq#@5+als=Kcd#fl`$}Fi%bRA+6mt$n;3|L|LwgU41~&dTah^X8`ifri);=FRn7CtT z^J)$=m?wy%;MQr&^Y0cy;t(MK^het{8)fcXz)ELnvU-uG)dN;>{|F&`zRzio7o<^7#{ac{~JTI zE92D?hUjvlydb26|Gt zM_6zyiYU?jVL=lf0!%vZl|CvoRmKyvZ|Gq~y7|23ZBS$CcV8tfTSH=%ES*UqXtg?F zs5miHI#g_gW~z4?Taf?Bs2xLRzak@CXlG2Vw=~|eW`cTi=mlvkc-_u7)%XpK*%2A+ zVpjpvHVhc1P_L_4*8{ir)MrE!?#0C2nC=SVrvQc=6)_w3}FdzZvx10UZJ5 zQ&MjmL}DE|{Ol*^Add+DCXl4?$KXW9_)Pvif`3GYS$N0u!aLeR5#FIfib`x7B(uu+ z+oqXYEe-;cIg5!bGF{KJZxJT)J>KxtHVY#WHc}Rv>THF52p1_1Hho?Q^m$M_1B0uwiO4bzR`w~*k`XQ4u1I;Zx7AWWGAa8f-LI86*=@* zI|C<$S)ynanUkvgRMn#2(n3|m!BeldaqjVE@UCCJEo)uWkRiN;F|#~9#lsve7T@sd z=Yz8kMer>b?}%ymFs~+Z?U~$q-Y~Zw1^szlO%ZN=eGHm!xI$1Ve0s?Jd<4y32F<=H zTJYA^oS5ykekKaRmRCL)QmGd~r!?8Pq2 zn2oL$!%gmG&oFN()Sl>~8|Ji|$3G&v^5Pjo4`h@E7i0S2*(~?-I1mdCz9xJ?d?nPw zEo0?jqUZIY%5@^_W4?$xXRV|7Ce5z9jzr7(5@la1W>LJRyFMumt_bI-id4>Ga;%FM zq?UA?p06?=c?>`%yKoe$TsOz;4P8VVTn?1Ty4B|(i=BD2jq8C$+8D0Usi0#Qpy0Zc z8ZSmT%vMVF>am}?22>SOhpRY=L%Aj83J716!mZV5yqB7-4&vNw+p`~e3YgCM`ir0O z`g&fnUVr9%uP+)0_RHlQ7l;$MR3v23bYk{TB=F&MCKOl zCo+PSw((EM0D4-lm@~eEVfLno*4KqapF^xHsDnFSEGbgfCD~T)5J5!W@Qwj(7;+)Z z=L3ffbY9aE2_3y5kiercT-WW{uip?jgjbZqY{iSm^U=fR*7`O%4yMpJ?*m*^GS0LA z^EemWLTz0Mp7%e`-N0Otp>4-5);mGAJ0ib(da7kPbZ`p&DK?ounse|*WEgY$9Bq1` zS#Zbrf}2ZcL4WsW%nlyBR63a~{+xccvC?(Wek#}ki}q|T^tskc zvDv{_!etbEs;vzw2O{#io>A|4UC&10e`5IIhVa8CpX+(6uDM|dnxhch9L{+unsXgF zv@c-!sla;i>Tt2m(PHDnIUUiQi_Zd7BgeBjqrnfXRK+F*2@>BNu4yX@O0eozp(e9L zta+|S4}taQ*v7;O=398m;nCNDJ`lx=2xOPem=c98Rvjk?+hcTnt>qU314qLf{4htNGD# z6Wy^`2=vvW>o;qg#SK}(+XVV5p-$!?q!*^oe^EGv_gMY+)b^t27lAf&%VbvAD<>B< zxi9y*Hds|$j>3~FhbMEF6nn;Kv7ql=<9`ee!eo8!wJSzJj$C1%=az z$3a*b=jlm@zlq;MWqdL7HjzVXdhm)I#1i|&)iukDacl!u3@TWv$8gc}_Jcwjl${l9 z;sL72t#WB0Q(?;k7cRADx1kg56|!+3TV#iA1>Y*iUZ*S5UxxS-5a+H+`#kitj~oOs z#2z2iJ@2Urv`;)@OS*6=s&BXPqNfvS>j1Ohf(Pu`gLupgdW#O20h1`_@6Z+JE^o=c z%V6L^l**_~wq7RA=}VIyaMbrpyZ4WNMZQAu&ZDyNAD9^y9ycY2d*gn92`v%I6Njo& zhj0W0k!|h;zJk-C%gv6$l~YoR-N`GbTzZrH!j&~C@d@tHd}*VqM>Y5#elL`?PIK+U zWovxN0LP~#Js8Qm4$wQ(eT>ennv59pz$J8Um00%UQ6hyo-s|F(S;40ee#IfDqz8r6 z@L*(ET;DJI97aOMr1V7@3wX|KZ#nUH#=AO$pN=0n9G_>Cz=7jL`ehA9mkRK%2BVe1 z;3xMS_F99HN6P>r(nw3@mP-4a?4kkvkz>|SwCbKiYAD|JmK-okh}9896Ph4{LBs;j zHk-F-U-s6e2IJ9s|5(0 zL((@Bu+t;Gao34+U+FMWx4M`3@=tRW;ba_@%}xfyp$25E8W2bPC>aokHaa{Y;~5aK z>2U?em-LO}=7t0AFPlaCM3oDS<-OTk^;KW9Mx|9>^~Lb0ybXz&E-t1Bif5GlcE+XT zKpEs^2IL~ee_iM(#)8OED9@;d{fmox{0hCInh;Cc9{gJ zK`x2hFE?Ag%tq|r!J_Q%aTSnbvhD5(N{F>~Y09jcYa@BoN!*ie$GF}zN{FI?*HwwY zeq)@}@Wq%KZkFd#H~G4><1zyKQ?xg|!Z}@rC(UMBo}MwVp$>^a$Hfy0x?Zkp+nl&g zuH{3XiUlzQ62kycXr2B{iOSlyelU8d-2$ z*BLDexx}<6V4YdyD`yrlRFS`n!5|mtDVKE#k~9HBYn%z!Wo{RUc8zOQrYoVb7A8Fv zc3bo+#29==$C_Ia#S`Ojs#t3PrCoJPfEoc4L@3ehC_3NQxw&);!Y=2=*X7g4-4`?GG|M!i%f_Ar(} zKF8;J7XEbA8Fx#l%R(K&!ebzyOSWfw-HSO?L=;@W2Hz}tmV-TZqhc5DdfqFx?#`xSRQ-P17+U4YfYE` zlb?I@QcPFJJa1lVI97uNA4(kLEzz9;xw`gIxepZeddIRTVbB;}@e%rvM80al_(e0f zVqETBZhPfZEP1(eIE>7_LmT~LR^g7Bmxaq_UJkA# zQVODp9o!tVU^ye^Etq2#)Rf9UZ^0eDHL?XOE%vG5^44*qrMK?ZpyLy{e#2XLm)hZS z35R!j1?NsNRjOUk8X1*>ig5)N$RAUEeI3UT40Xcfx+&G4GYg8%>9>0PapT|0F356^ z&7M95aG#ok()V#W?9m?IAXTi9Eh7MV{9i5A0&xX%!eAxU-Qg)Hjw?;7yEP19@$BG| zqvwUq)AMC@DEE1|rO)+taqz1g!J*Y7DMK+OUUBP?E+?vz;Zzxk;i0esrb#}crYtRC zQcLvIreLig+rB0i3Ja&z9KWcJtNec^pUzKK(?@0x=XKb1xVR65=ua~LX9t~!Wd|nG zpX}og-pMPo7RkaC{PwLPkRgt-xBTIpgM~a&5+bZMdI@_v~`Ac-Rxi4yu<6T>5toLi7QSEVT$86@Rf0ECm-W65e6^pzp zmiS(jH@*4Q;c7k2@;ooY>v^6; zJp#ToXs-GppU_gzWv9$QZ%B)3GH)6_(Vg8D%DvuOp_cbJvEDkPYFJFc+{u6n;NWR- zY$4tCZgFq}r;74aeAdr?`lUYWY2P`Y-hn5yynF7a-{z@j^VCQIX)U((;^5c9O%I&2 z^6}xP#4kSwVBZfvwV(6pGM-wxf(9u-)7cGDk2}p&Xvl6TlwTKlUY53P?lGR1r4P1h zt#aM%)@i^Quzta6&$W6)zQW)r)fk&-esPZUf{058e+>FZ_BI&?R#sL?lp1sE+;IV~ zPY6Jt`Y!xuMtJOy;v+--Lw4rpAG8w?LIkg81N2%LH|NIdFT+pIO%7hw83xTllvkmR zj(L7A7_*&&ii(3J>K*if);q)4=1%G`rj5xB0*%`-SrJPZ&u4*v*@x;`r12U-5m;q6 zyz-n)f6R&>Y1ivo9WLAGYmh-0ff>Y$PlYJ13XhXnv|3Z=XQr!hylbWTqzp%P=K~k8 zckW*{8m^2s_jdNmms-O(^g=oXhMr90qpa-U`~l|sTi%!DoW@zS+H6_W%Y3`c)#y}} zdVRO@;4;@rZ^IlC-Y1vKr@IIL>e1S)xrYY=bzPnPC}Ps_N9 zxp3}0-laU^krdxjt>FQCMs@O>cn)IUj_}r-`Ds*)<1j9GJp_n!I2n7}D<-=KsxO5! zFp4?GS1)=k!R5tE)CJD7gO@X<%g$;4uJ-OCIsocdWiK>I1XURdb+!99hc2EC@)flHAl=?J^Y3j$|OQBfR{|yf1tBGgz_JTZ5jcWV(F!bO;-xL9xxy_dEUuhc3F1r{eF?KEJa!NO3e0V42Z6+$xjnli*?keuX9#VGZZjQTR^AHzMe5*zXE~vv zs#2>*V?0n+R^E!mi)Sk`Ne-*29=g)aTnWe{GWdF4kh z+Cqu^a5OJ(d4`LS1CxsqtMNLlzCid=u*0NNWo8HQhoY0->ObhlQ=1w2q>n()g3$<5 zQ0=8~cFeBkQkem|e8^c#D1CSum~D~SMl;F3rj9LAjm7Rp@EEJTU`6u?d`H{gMX<^< z+lR1IxB#^P8lO}`s1?Gzz~-ELoF^xhr0N?JC+HjF@%=$=-)JAN63ke>`Du(pi=OID zG<-Ado{!_)+veSV2Ezj$Iyc#!T$fG#(aKLc_k?S%-y%{>w0^B5CENtnHWg&MlWX2l zl|G%pee>A~i^jfUtNzB*^3|U3!#7{C6$^zV{1d4rQjEoTSVgC3sS|?T-(m+OMSmtQ zE1U~FmGBm8Nc0t8#?wt_hyL6atv^rt(sR35IuDOjlz-Rvh$+m|c$dWf81`OP@zFa*ItXovNKH&rCmv9 zD29^#^Yipqrxxv7m)YWM3G`_Q6}PkxtyUH1a@A+eeybLRrsqx7j@4`_4jZXTs~-`} zR@Yd9S%mPy-$H+41Wk0VO2=(5&OYC@aUOr#&-uqydhWw#pg_v2S?Am~yArcT`&e(B z?}ju%*e8N4p3D8wY&OLR4>UWwi1p^~)7pqQgyIWs5bxmu;FzA7MQF=6BYt+Nv%_1`>{}l1V`MWsSW#lQ^q-Wn?=pO-AUT^;c*5eW|*$pE2-V8}ID&*{^WE%Q*S$69^gR zJc$wt#6M{F99k(@r8gkl%klE>%%Tk=F}=^M0n@iCO!xRwCrhQxzH14trYhaWMd!J_ z)VuA}wmwkm&4tFF-!=rYCNHEdJjks<179^w(Y@5R<*|Dydd3NbzOnGMzHvDenW1l- z134B05ePebeIL<67&sAX_-5RpYcP8yU!f9IdTjTd;9jUgNYh zD%IKuG$p?mG)~K52srbarnU2?`KoAQ;~`P4gAR`RsWxPOVjC#QO^3 zsoZCuqXj&z@hWd(<1`9Q50}Vqoc0ClEl(Rp>8iw?jni^zh^oW&&L2K#iguJvRt?b0 zQ}psQ0O8-IwE)#kdqLy8`C6cHUWIBf zPC=00I4@6YX`GiI=!*v!0Ha6uv}yp+$FJPRX%o+&F-2c@oyk9-uV*}g6rXD|R)Q9N zH4DRlzHr+8K%e34UECri z%#tR4X&vx?nWX6Z`=AMU2$$452fcX%-s?OqO!($FZ%GqPy8jub?W^snwBHVA@a1aW z@@EMkVY;4yj}<-TgD6U#U;IF~s{58sa~c~wbHd_>yTh&fQXS3?3l?wr`oIw0RZW%l z7=Q#CXtY^-FK|kOxt-QHr`3PxAMB`qU)F20E zZE2o+pM^g^uQzJN06}#2=*3lkqj9@89s*5LZeyo%@e8T^&fnx|6J8uaMKMP~@+`ECn zd6p5R(b^tw?X&H!4MID;E`v^xR`>&)WO3X;DML&6Yx zi==tr84APmR}EnKGXTRF`ckhDp$=r9f#&FNo8`~^Z6o+B!>5M(yd$UvuHCLi@mV#3 zAWBB?gy;q$V$93SES~7OKI``cbaH1AcpG|b*gJweqqNy*e(UvDZ29%41{wUi-R%kT zmh90++)ply74tkap>D#ZR~ommG5w19F1X0nI`Xsk)Eq~cL9eEpuq6BEwT@}oCu@#} zxL1RPA<&-?y3%@n$%yB^#3F;1Lht@|C10Wj+l{*8(N-zsr-O_Aas2yt{)wRVM?^@r zVD+sc@&H1mZLaLq%og($PPwg?K*r{nJwCSUTg_9=5A%-)s)B=Y?mt1zfRSMEJ}M!= z{SwyE?miSJ0G(nETJ6!WydmoVPqJHT-lxJ8F+bU3_BYq_&l9lf3`v~;g|?yv4RIO^X z-V1&Ar+Gj_5WK!3{jG1YQwq-_d{;N-BNF=Z2T_qav18&j8?K|Zy&~WqHM?l=YmeGf z8b=j)4ht4s;)ZIvd%!}W=ia`!O5!aI%yVy{YJKA}SX(|Ubez^E0Tz7rLfF5@uU1oF zvoF;G#9+{5C3Brtt6Q$MZn~hQe7n}d8=~S<4>P2vnMs6C^ zTJ()80C?Fc#y7Sx2-6x5uP2c@e0B~w;aRjR9S%PO;#uDMFRSNuh>^kg=p%3a&1B!x zra`j)c&&ZJvo%ZPl{E&R#lf*Eoy_MfB9kyrd}~syAAV$9-87W=Kdq^>D(7hrZ+@#9mwAB(gcmKg-_i(XGQYqx&9C^WJhGOg4^JWtO7Z_L(-$ zYB}A9M-cB-_Dm+X7vvrg>i9UMn{D37-}X77MCdk4_m6IHNR zHo*2QbE^i$xPq8wx(|>s?ooSIV_dE^i(S1!zs%xLTBRdrE-z)b)oclU&Rb5=bHXJG zrM;oADlRrC(fVR}ok3f7z@KJId z%iO}A@K;qRk@QW;OU*s{tJ?!19dsf9#GlxMSfg)x=>b2~t(}AqWxw=mq4fK|qi;%G zs&Be=X`24rF7bLVA9!&{R1&vt$_X4w%HE;hvcoJVG;gnYGF(&nz=`+t=k`!iqypE# zLa!ZP$wW$_DwtZ^yU?3lCRre1y)Q}3B!1nL8_DKtsi>{=$GE|6Xx@p= zxm*q~Y{SaV(;}EG=!JEvinXnnHEWIr6M$^uSaaTEnc>Qteog z7Grjn>WfjODH4y?Cpur?vxnic z|5xD)*XIb=$L%41Ykx5{$9NpCi7vt*iov*;-3OITv@G<#s?)+bmTL{4ny#z#!Xt&m z8M%ecYl^SNW%VbNnZHK(a_~=a>H6J8`VV zuB+lodJxsG66*L*u4MyilUa#HCbQ6;rj>IYfn6&~MvwqNIzl&OrZf~Y$$YM^;^0c; zh!NJ}SsbbgKO1^+rF5&dLzG6f;*cToYxx0FBKS&0-OjGxsv;#pxyk8kfZt80P?cXK zK)0bIu=>DZGLi$vx{;oMe|8>ktNvgQ7VQ$cCPDNu?Wnh?ORTd?f^2W|&`^2Z`)C8h z@%sKB0#)7jVFz)trNPSD@U-G0k?gH~1L(XiqyCf>(I20sy4X=1yc?l$L>K48sBB8G zTlRbI-hfh7gJ+^akyx8b!wc^e)x|@w8CIv6gJFdry1Vlz1e-)5$ov$AV3VZ~Y(^o- zl{=qug&zA=QN!H)!annk7hW=_zR+Xd`obH&DQI=j&?tqV*uFP8Th=MRo6J2(UYl|p z`g2`oyR&T_XGgB)%&pF?WE%Q&=!3qETgp0=CE9MY1843&_3$~0HEFJA(R6FOoh|w% zouv=Vduy9D*9NV%0QD!Jur}$BeGe2xch3*s6{As%^4mFfeIuti#jMd)U|~7hBw3#m zto51bZ#ko(b)|i?mT5L8sNOWCh9i;BA}qX7YnLCayYb*7$NI&J8(qhRmFB~7S;1w$ z38QOMJDhx0>o551577xxMp`R4tM!#40LUJqQ5I=y;m#HAD|-%BZ5Eq(>|RDL+)rmk z&x!Qavegf^T-QGod;^=tX4@h;E6QTMU0Jfu_A^;{e>R1W@Nv>=l2x}$5jla$D3w$V zsm?i)T29I+lT%B2_$3QcEQ7PDw2y)wEbr6{OZzO6o3Bcp8$rgH*9f&5=CS z#;sCrwmdB+RrMW7<&g5L)Xk(;s;7mdib-*{b#>&BYeMj!bE#Szx>(M+tYfdkcXB+X zj=cmItxsPY#Ypwvhr9Y1RrM+`){@FuB26|*3cQRwL;DleTa`&QmR*l>{Xu1tZ$Hru z$)4oa(i8aci1&`GPdg$qyWCeZz8!|`{v4+`wjA5Ci@3i!A>+u;xSu%5)pc;caM656 z=Fo{d3FBqx&%EV;rE~TtCow_pV!iC-?_~H+yzdm>sP4<~#>h`*6^Z7eu|UGTto&HR z(8I|!_J%FXF64+`PWZXK@|al!kL;-r*lbrI*9SejY%~$4ZP7RMI|7Ftu*9)8&vx6) z;?fzxZ!H)Y!h%1JoAx?_58cfiDRO8<-567kFCUO9rYN8fcy{29x!Vy4IqKVNwq)@$ zDxN)SM(_ltRlJ$Qn{=}105>pm2YXUc*B@M6!xFKl$MVuCH813p@t#03d#HN?Q)C$_ z5Jcj?B#~0UWVvj?TnDsM;@8wN-i147VE?FWoKM8x3FD`Jebr9EAEg(H9sye+wzwy* zk->0c*)!_0+P)JD6P>b5?z@a?iAL0QVj(wt93a$#>%e6tFxu|yQ-Zhb*Q0prG;7~B zi#X33K)kllr4=0;e@bv8c+>n~PQ!C)heDgp>h=x7REVz9s^Mf+(mUSOtrhK)LGHv2 z4EI$Bp&PY##+UbKCBgCKj#)E_hV)v6!q|npDj4gGV5~EAK`fbc{=wBbjKJBMTPz>z z0#?-IM;f-*jmh4|4rlr{b88NPQ0orCcO+;Q!IhMKfZTKv*@VE{B0?qdW$|fmIfo>3 z5GD~MIXqDu4>19)SZ$xyE+-~(0)p~NhiqG{m-Bz~RQ zn|aiE6gsNRpOf8-RyAHkFVtk45(}xty+x#@Ghs&D{3|51 zfii6y6^e>vgIOCywn6tqik$<8(KMm4-yNt-JT)6_KW()N1nch z7)_Vl)A}z{3XKSrEqLofwEhs zSI_S9KAvDXD5BVHe(lIn{SL*Udblq-`l3(0n8W^4Uff;I)nNvExJl+{n#$68&)Y_% zsA`Kg252MN0)6qc+dT(4ryS6gZEpRk;WmG)+T?1R5p9-z0{a+X;fTWaf>jPnxmegJ zH%DF1sT!Q)>ap&^PI4XF4Gqccko}DW0K+SCOC@K1gM!Mwvg{*uUuRG`m@xy}`t;}G z*|x{rx}6)nT$@Bk_M0`k)oXun^_^kPX4Q|f*|6$wwd%hudruusHymfn=CsOi_L+&_ zGF!9@F>{dSI`U#}@$SgpQPVw7H87VJM$({y9~53M&Iik?v8Bn}USM`?BRJuw)_4%< z{<|&u?OXvqhoOhi_1j>lNhN&@Eqc|Z*Aga7TALWS$3MZkRou?4iey0nbL_vD%f-pw zVzJ;kTO&Q)UGCWJB1+v?C`siX`Pr;T(GuMJ4+JiD^yCPl4!j$e%lVxw=i9P!h2ikfPVXyiCE*P9?VJfNjC#Q`zLx? zhd^ibz5^JF1cp#1{fqXE{%|K^vVzwr>I3KtETGE*=Kwr{Z%z=Pnq&kDGlhX<98)Ss zX({+3fAa61>B&QxL(`~uly|nnJ3Eo+bd%AuJT4bD!Yw9oHVb1=aUsmaI1TpLm;JgG zf7g7A!vb#T*jqh2ZhE5Zms&Axjw^7)Oo~KnQjCvIiUB4f%#f-DjjFc-ym8_1JiBo6 zTw|H$ovRcsTR09YPtl(YV5M+U(|_WRvzrLYakqN7q6K{o_FL1~Gy-8ZU_VyE7Qrc6 zo>_5(erx{>kcQ`}LqKwr0Z;p%gC_;MTx>}Mm>~<8M+KOgRU+-2#Z!zh--7&v{W!|# zBa>s!C_(qx3|ftsSdid}jtxoX_EPgQ8MNBu%2DSXszm+q^)ghDtG$_Z5Xs64!mb7f z%a^}taJUTd&kv4V6wBZwpMP+sW!EO^k5&B7j!E+0I3~$5Cdr>MCNdt@aOB7oH=jwg z*>-d{Y+(W!L>po%)wiX<)iE_~*H^#DC?L{figzU%m2qbBS|kK5xt=8ieKR*$ZsUbK zN^n;5uK9_t(N1-h>D(aN>+GCIzPYE;ew%5(P>b{0$7x%wqc+3@Vy$2p8sKt_L|H?8 z9y_Nt&i7b7eUFGEISO{v2&VmO^5SF^4DyCu)9OX{?;Q=-HtTJ?qHT>U!BL#2aV6Ma zB*u9kkrKS_ZV4>_Zr#+dV79M~vwvR>l#T%0C%z{HOy`Mt7Hn~G7GP{iINlXN0PIx( z3&7*zOpgu6j5yV@scCyisfML5@17-+g!z+FC>9QIF(39ch;jq+jeyoA-|Xd)-Ppn_ z*8n!lWcUg9S>!-u3LJD~9_5kzPIMj(95irmmfzx+nR(KAQq1QDoh>X`Qnk}HpzP_K zs*I~I{DY~Z+Vk^TxkF{53&J8O`hvy_t_1pI~;>@3-N-S$|NLlgy5*`7u<#pAR`^ z8;Z;9kn^yxO{y{kjFFEChE`WYt3s#F)=A~bvr7q|sj?LaW}WdD$vX?B*GgI7y+ z^?#Ih2vwmP9750crfO%X{%{-*oE^>5^u%7aiTs?{nb{9_{jI#|JUX#oJCZr*osxq3 z%5$$F+XnX!8PXW3o&I?~6P|Hm{qX-1JpYg3C;R_6JRNBTYGSPks%y!%1`acRchOs9nneFCLi>^NsK4)%q_F9Bxw%30wj8IW|m>WiU z;SuO*ml{h}P;J}9BkTlaL>Xd~`G)uFLOrx!B7>?oJcQ80z{c(&!u(NxyukwgTr`hy zQ(xwafrNr>AbX(#LqzGCf4}{+w;5bNZnzRh zinPNEG=NJSPps1sLGH{X!uB-r+#IUZcKk7O%k3D97a6zU2E=l(?YHt^;x7Dx%-46k z&+v#`CZTcc4j(tKmkjLaHs2fvT^Tz##S>k&7g3k95F=NP9*YudUJP9+F~<_?E@Ogl z!po~)BQOO1F7LhghtE|8Q&h|n+AN}6QPDE=OQMdM4O(u*Goi`a-(j#xUjj? z^jFZprHUTr70%$8);}?k4h{VkKZi$;ZVep5VkY5B9r`OA>bVB2^hSIX`iAUl^0Uj0 zn%}b}7Cjw7ZXSLbx189SYE22j7qFw7oymX-V2;2C@ueIkWe(lQCKW5rfiTC zU$F#MfdHqXgILuH02^^N@GyEt%^$eVK>MU&`@{Zlx1Y|5s@n9`M-ZaXk_CVAFa1N! zy(>l8_GOf9hPlr6YQ`Flc#`?`O3uTi-bSU>+*`NK=Dprd=8J0^B)OT~dERe0$oX9- z#eQ2sCEjmzko~hR`Pj#YI{xrpZljR*az7dE3F)LOXr(>jDpE$Hq|!*OSE;)w)BAwr ziL$C`xujN;%20VLNv&0>8dBXT202n9Wvr0Ya#9r!N~(&~`Wi_sA=Rr|TSThr5y|V8 zJi61KaDddxdPxOI*;YxaNAgsvmz3d=ykn%+t5hGUjMb7iK&qFN_u@q9-311p?FlJ- zT6L#JQ|qOqYVR3RR(sEqvfA4qd8)l8QdWD_H%NIe=;U**Ty7F` zpf%?2&pgoDbVEc{DuW+Ul`4XR-ry+0K&A)-nQdPCqKOGQ*SH2wGV?g>cW!eA0`D7Y zQ5eE{o#l(|(74WV?|746R2<^#;=4aE*=5u%6%8!f-zoJb$B@{H>aX;o zKyf*gbTbqPF?9;#^;cTa=#i_xk`u?FI0nJE{`4h?V-PcVD{_+licKDn*Tn`m@PSeP zfxt2D^>J@`6IXG%KalM*YGideb4JlW;Rr_E=cq*<$w|NI%O8$8`Cx@>__1*O*AeFi2f`2`_6t0*~zO-cJ_;jp@D*hHNQCxkuz68VPXDW}5TVW+}3v3GV6 z3oG98flLiP`+&M*A{?$?c>$(9w$7r9S?0bOGdu_I1hbcz_t?EluClYkoMm7{A_foU z2@hoP*q;O;`3~RGZf+3LOSe}V^Ylq2-FoS#x{;+Dld@0LEZ5%B+I1rZ+b&;Dnx6j0 zg?iVA{2iv}AL{9^>*;SV)E9lUP_KArp?-Wje+P6!3;}gxIpOxYP)v4#sSw|TlpLh? z^Z;+X$s28y-ol?>Hx^TNP|9o*0I~<`9@Ep`;?>`WoBI98w>aLEH`N&iq8>c25w*d>IIboXOzD*1=3-z z8b}=B^T;IO>W|=fSUD=ieai7sH%fZcS#Ccl`?$kOLUZ@+*ZAGJP(O5mZE`b#ChvP+ zL+QJZjEf}$wRey5n2dFj{8+h1dM#JUsC(pw4I` zoq&u@qFsD66L4h|KgK^`P)5&2_%XhCrtuXV2Yg!YjN-)jg=lT6D&a}zq-Rf0j(HO& zM0+_V=d#<}G(OOl)+H^}=Xdg*lSTq{cwKG<)V71a*B9#j+sG))5i%n&BPUW8FS$;l z2KeO_i6J0w6w50h66|YMMus2B_@b-5QF<4K3 zZJ}P-!_Nhq>54wd#jIedY9mn z8Jw{G8!y}VzP$Ir7x})YOL5ub2{~lLT6l8tT2*2&p_}s+=KIB+>U(MTn1%Y%_xZSo z*)X357V|D0ThOW}q0dgHi@aVHn9k3Ld%dW`F_}!iI8CZIU{GHJ4mj8834n3(j#{K<#^dj^v12Q8h5#XWDVqg7AQpLeK^_$_U7Y%B0 z@Vn|aLs-93{hrHjJ>Avm*_@`Qm-p)FC5-(bm_LbGNInNBf^C;yp?R=VvUz?FiGF%^ zdWXX1eecJC0MNRGzx%r5^dv)1$}!FuZwM3`OyRFE2h?>bf`kHOV4#A9`k$D22Y0Kn zT>u>~*h7VUA5Ul!ti}wG!4NCHeVRm_f1&6^CboBUdf1}Lv}X#CU& zFJRG}ZYW;Q$Dkw3{AEBWSw~boCC{95K7t1^jkqaUPyfbxND#=g_**2Cvyfd?T}29Z zazQJCPS`g<4p>I zPU-3ILh}c~?k-jRlB2x&jU3ftC2RH)n!A@OgxtGHG6ww+1tSxI7??gx5G*K?`0xTr zQV8&b_we*IvmpX)g4LJPVTd8>(`~BL_jPNeA@+U%xbFjg^wW>~KGO8`5Z?#Lm><;B znMpEZPxI>y)xctoZx{6Q*Cy+4=>aeG^5AnvpJ)hdjOpCLx(V$d&xRwx8m zoWsYQiqLqDp8)*3g=u^g=kPJ70^UgfD+I9&N(FMrX@rZ@B~(-atl#nTgWi1yk>Wdu zFyGlr%4B#JK` zmzMlgCS|D~KZ4tIL)VR@h5Dx*{B;ViiVu@4WLwoDKcEF9m#uimZ)HJcr$}G?rgVVR zeEzEZGJO!suqtpLr@4bqO9KXc@l&kFn1RE!`Z3GI59Hjn$cc_sllxex0`R5^cw$8M zU#KTVPfy7BrAXO;65E1rjrjI~;$$SnGoFPm;jJq8!WsGaOYsgH1lg2GeC}_`8P?;H zslQ@p3W6CI44}fF6N4L(Ln()M-yX0-Jf&1>UrFss*~USZLAOWY-G;xTTVe@N@k0PM zouQ%odOFi&5rb3Fg@l+TE<+13Qh${ZlIFngd}*$#1Hf2V$Ue;dJ@m&EY1 zH8=Af9x}=lHua1Ttg?g!#8C~OWh?HL1<(le%qD4Szqp*}oBdSH@-N_YvpNY#UHtBb#Or=^EtO-jNAjoQi|Dg2 z*97IK1gsxblVgJPWdri_r?<+_k{+;w?OtQO{KPX8GBJ->R?2JS1wb7OL5v>81^wUb zrz_ntNKwcTtO$1Meju)oVFXB1YqExa3v6rV@EbTRgeSjuh86B=Z6zRuj@*J-p0e4$)`M)UBJ=!G`r=u@l> zMWtC7&z93N4`1_BsZjZMs{PVHf!IV!dAUO)sthxPu^Eg{OZXuV&M-z=_XI? zFWo&VW(9W}ilKPDN3yN36)4RItif8fO65`*W6kBviS~FYyy|CUH?FFehvGSgsk_Q< zRoPGTiBAy2uAG2S@u~(skcagFdFUd{M>wWM{eG1JhhUG*1QlNcsFE}l5RcR1F?BR?nI_{bxC-V@LopJq}Li0L0ys3Ocb4#rKx-9T9%dmM?6M z@Ol#C>9I&iE;E@%*GB)>Na)~ds{89HAyiEBvI~mHe}4@HMo9?5j?%IS zB}E7&BPd7)mI)^j07g*IhgHY2Jx<%fN z(ztOZa1k00eUT=UXp+gGNN9wp7n3*4fWjNyu-+Px%*d(G4b)ho$0$zI(}V1;I$7uU zvdtP~hs9!b-!}P;L^{ao$7(kyWws+{v7+r|%XZ(}k>~P|Or=g`4_Oz~H+8VhevMtX zUsI`g@7Qo2Tkmk5ouK&P%!Fv>DB@m)Ge@gT?~TM=JfD6e3k4I}W_alexYm$vR2sft z`-O0g+tN@^b?e4x-M9rz-rdU|JLz}ybX3oW5g85xsi;r>4UnSp^q|C|4COC)y;CUy9CX>4!-Q(K`d^`=|lkz@dw+ z*AMRk=v~s?B*Y^~Xea8qq-iJ|sy06*ED9A$RmXOeL>xD?uqP!)4jz_^@K2ddtQ7X`d&W+9tC2I)+*+TDxoDRIfUzZ?SA=5&nAoZ_ACK?LCx`j-0 z7Ne!`-Y@wOGqkxAD8cC&m=vW}KSv5lblJjWC+UoNXQA@Ow7F*?GcQBmbmKJ(xr9N` zXdy7~8UnXvW%@zfmU^O~Ly1rN@jr+4j8O5OQ=cTtqu-J zDQXUP0rtDPaU+9N!5|4?3snn6ABHzT$#GCHh|M)DO3nfG&@NQ8b6*VVq4gY4kF**^ z{cf_LV+WX{6-CE66(l|o+7DW3O4 zv-O@5vUeidCgm9n+gWHI3({LhP;ed;d?OT`mm)}4>r-_HIOpfCEepMQqcZ(byvLyY zJoruv<6BMv{saJ^6O_j3#tnSI7L7R>U^l2wx*I~d`-s{E9PZX9xqB_d4blnr1&6^u zl-$qHo$!PMY$%uoJK4}3Kog2;YW@+>$@neaudtg==a+s2q6VpU{vPrK!v`coPIt#UcB4pB!!ZwNB47^+MhFswdZ6kQY ze;Z~k9fDe4*yxMPpD^S~hp#xz8JLSQ30E42?*^z0>g;09cQF$~OiJ*!2%@cEjvhy| zE$4n^Fwu*AGbzjRG6<9HVrA)qTZXJdxKTEq5>ROFq03mhpl*@Oi{xx0JHMo;C?X8`g8mMSZ4OaN$a`=sj%2O z!~%XRWG~yt>7!(+&;94bufTUews56;vFLURAjxqegrkDY;p^r&YF3I?RtHhG9uzH4 zPB>G}h7SUjI=2O~!QEK1ykzatfjm0o(7ZL|d&5JnAliKfMCarOM5N{HWB5c?H!k*b z79(eb=?OU;_zV1U_OY`Cz{Y4DdiqzoQFEKKk_F(|_z3Egiu^q9K+D`jnJYBZ*rFod zc}Sn+%i%Crk@imMdz?r{6`S=*4F>rXd5xD>^58=C(i^<69;0QR%grK4WP17qhLRt4 zqJG%9RiE_ZCY}$sLdhyhj;LCK3{p5i;kBx=yVp}JO;y+$c~#cNihUGWX|>lYU-VdM z@Ks-v6s&LS=|}ZRPj;)v%*vge{Pm7#uR>~`^kgSR$iIYod8u2}O_QFiB2!@DZ$Ciz ztumAG_@Y?9c2pO(xbqLZH;N2EZm6){c#W(tJIF&RBP&=*6X;z_rv2-xU^?hlVH))G z2Ej2)o@+fH3UTr+{pA~Ou(PO%1XQautw81CfWozs-_{#~Kz=j`3glZlBHse66k5v% zkQFuQ=`zsAtudYCT2Ir~Fdh%LItX<%*i?1L!vLr(!5%Mi-0^}S3qqzKkR1o8<1bk4 zNS3fUk-bSW+{Y2~j^7LHs*XrY0xe`B^@QOmqARLMq-CokDl6P_xKE0AzA5y|t84Xi zw{)kUw>dN!Jg%qz$9e$e?2z35Q0=7ue5D2Y&jl%Z`j4yB*OL`i?vMTQbCR2?UTCti z+yHYNO{K5cLPJqgak%caR)PQMRo{cGV}mSqgP-ungc&@dPkKS#2~Ip9cTvBsj*lm( zbeFF|x?3E~RX_LnTx*Mi-%#mppCW?d;5F*!0Xg^#{-a;TZ6FGe*eA4Isq7Qvto@uE zKuKVVjoy^V)&dgC;4hB9iZnjv2%9RbfISM;=ca|ZXl@P(VX%s?%B)5R5SCiOvc-O? z0@B_F;lS2Tf6VF(PwoE%oue9eMU2Qs{UD(K5VDv$-J0KxV8F_@SmXglqm=_Z8i7tK zd3ym9frpix*)5^DdxMG*%c1DKyxyrBOA%kLqcyByih7l7a+>n}J$kxGkg!WJ1~?4> z5S<*Qix6`f{v%Hj6YuR+x&v9F@9k1D))IOoM~?R%!f*rwpY1C5_($Y2pFakO{vB2p zOSGK!eN6X14l@4l@kgfz0ecW!oW$sddj7ISBrL#%V@*6RmUdNG(yjl2q?VAX`d3Lw zAPHlgq^6Qu`3p%&;D@H4NlGG9^!`#(t4U@2lcZKk-V>6Nz!dA(N=gD#bpC^+7Lh9c zH%Z+^%J^TBsvuSM?~;isEJR8}B}G@rb(mQ34*uxXW& zJCHX#J+bk$F(#LTKJ!~y%&n#Kd}o)?VPjf4;WKoLW!Z@aAmyvo)>feOc?&ws{8i+N<@AYsBgN9!~64 zRan?PbI%rh?@`o6T+X+N?XP8j^wAZ=_D3L$T_h7>Z0t^f4ed8%TUI?*f7#F3p4k!7 zxCH>Qg!@gr#W-rwTLh|FOXp zH3z2j4n5K(**=Uo_(2Z2|6w3kj zN{-Z+DNLwA%shyknWHDo?&KG9eejQZQfeF~&mMn{$CaET2W6tpO1g?G1_#8&g$ZMU z3Y>NGff1+(?et&v6T6n07m~qj&=9##9IJEbAT3R;~lvWy>{9*==*X0d`Yjy*(Naidq>f&ZAM# zYFnv+da~cD+jKCAilqU$JwzJ7avayj+5toh<7T~AJ4r+pM1Tvrp=ByTi* z;6?zcv?H_x6H=)WiINz&b7CumU1Jm}Fi#D`tYEExBo=ilSm%qClG0Z!eqCy%0djI! zju!90E+_-?kXC*pceDx?vQJcx$LP~=4*KjDa;3rdI_35kV^}+A`8V`r4U4`oBUdWG zfpT`nDB>1kLV#}FEJ@?gHSL$!2&P}ZvU!t@L%Hra`OxGeK|YA`fte{ z8JYWzN?F#Z4}qZ%6ffOQp+27MWg)v~H>?hBHr3rTWM4&)LPyO}t^)P6b4(s&ED7>L z5Gx6!RuUwb%;PFZRLMT>5e0DV9Vp&{URU?}0ix-C!>r|E6HoW(`#;Bh*s0DA>lT?} zpZ#%0#{HIzOlpLkP54}xohkp5*zvKpQDzB64L$v8Ye2pt10vzWV(|}`!bL(b+$H#z zWAV*$9J#q`6bp`nA>i`E$7O<=ytylkdX5j@Hfv*%zmgKZhm3aD0o-aiT4C@&emsUA znFxcOAdF@GLsk+CgBGRk1^Y`o!RUvqDSMIK`Tz}uo-&6%LilhNCV{WYt|z(Q(2cn;sR?S!c|U#F zjBHn5og8^v zU-bvZJsLT|8jypEE3qgI!eL>>&cs5i8+X6N8jD?%Zn)p@v}5qZjp!@~4M%Xb$IAQ-<$kZ2uB8!b38!JIQ9F9O z26Mm=O+Gt#=_SNMS#hm5*axfh$Txb`8}cbe_q(isJWpD&Yi6DmyN19d*(a{DbVNx~uxe(^;3SFHUlHHdpC(KCdp z=45VH;qhk=WtvY!LO1AKLcrmFi-c_;Bvf{5b@@;Rx2HYLy_d7)eioi`RIjdU2|lJW zJrZL<@)K0Tin+l09exNSwjN4?hw>Gi$wSZPoKOx`ABj{gSHJ{6h^aGD)mt%DMQV6a z)sQjS?Wjw^nH3>2xyc+uOoilMd6VTXDF-3nx#_5{GTqsAn-xsLwCgH%gzpCKc_GI9 znLdMJPf+~%`4N{464Hwz{cbv=$xh%&LE2_pL|d~iKIh~>oSpj8Py%Np3)xnr_&7;RXWPxX+Kpbj z8{U7ogFjS#d*9@bb)b*@z8$)eh&ckQMK^20VOGGs969!p?!)hAth&)cyoD#14AlLD z5_s_KanRuu`smzNOjjSLt548Xai)t(ZRgQmEYI97T1bvVlLgDY`eRM>mOTh+OTv=+ z_*zr}O=8N=v6G)~%=|@}@;1|6bTOh? z!LGkJ*eZ9S79C@W#Xy{^K(JoxS*R~8S*w=7y0@ilo@I>0 z{v_O8Q7_o_7WHPosXxA4mh=_L+3!?e;j{m<^Jp<(&-U5Z@=a{wwID&<-6BYc^_Z~e zD>B}40uejpYe9mHwZvjm!yO)Jc4@I=T@f8?hc(n+9xdZ+q%wl=ex|)RDODg@_IDzT zf277W;)x_$okb`*PV-0%v%ez(Q>1-iQN=Gy8X7xPS5bW2W@4 zG}6C!oV(~BmaW|61r@v4xkAD5=%;M_rP3$qp8QT01ubHmvSj+!qqK?&u^ zCdGsw03rOK1!@#0yi!1<2Y8B1TVWK-=A2tVTRYE*3dOw;#aVV}j4#G6wx5Xrb7Q@8kez(SKzOmhP{Xb? zt5K6sXt@vRqD42ZfbC?!abe8eY)XU`MYwL_w|w`jmE||^h>;_y*e%GH1!m}C@w`22 zBrPmP@ORewQuE!vfYGFmjw~vMFdAVpXn0vE!pj6e@4Z<1J`D88rQ)T}o@?SLJQB~q z8^v#U0lrBg)|vqdv9pKqnwp^)xM1!u$I}-A&*fow$WqfWg2eVeGabZL`D`S{!V?~E z3mz*rk%DLLFgzEkO;sl@m=j1E6mly-?|FP}xq4 zvyvSPalzI%1r`QQCSb#c55qK39$-gLNfNtpu2L!<$3HcK-SuO zf%st4?QMDzMgzuVm!s}i^x9Cpe!RFe_&`8J;Y86>HdnnW`do=>u)af55_!P3MN%sA zz$QsaSe`b*F-c6VYn=pSyaL3>^oOi+RG{(vPrlMT{YT1wAIFlA`*Ev zdu#2*PIsbj$`hvj+u5Vtj$Eb&=D0`ZnSqguueILQ_lPV!tm1^t%M?hlu9;=FDX(j9 zgWNJ3bLp%)hdg~filc}JcI}F@E}b>iTling?X%X+n?ytDQBK$k^{mU;_qx~`D8K8h z%l(+^L>#ZX#qk=M`A~x8c+ClmTvdCvvWvq*o%pc6Z;m%`3A%HeLusb8#B^MIlSax;@g%zX4d6sX|pa5 z>c;#GE+WFj4Q3=JZh4S~7;EO{m@6>Wd|iyj(efj;iXE2N3xM7O$nPJZALr;ZVy&55 zthV}5D>pg3jkR){PYs7S;8Z4AShwX?g`a1Q`6IbOWp65$qLx{qn76U(%Nm2S88(H< zg`A^h*)GVDBZj0=Y6Zg@OY$yHQ+WmSouXN`1cTp_xH>~6Ldd&18zxBRPAaK>OHZ1| zEGy%$AWcvsNRTXrGhC5zZcEFYzYw=M&>!ns zl>U?r;CZYpv&O^_VosGZLQ=FEwQg01{7~B&lq6=vVs3d))cR5e>%B0Vd&TZjrJ+Hg z(r5NV^WanLE5&?@V`kjtK`WF?0Cb};L!u#A zSQRH?5Xv0wR7Qb2A)lNaW)S+51N#*+7eiw6*?D5dVt_W8)Jykc04cbe|2BCQVX{<4 zz&&JC(Pd`Np$mkyP!KA#DXe9UK|Q04gTofV!epe|3UgRZ@*>qoY^}4#VCRfnqHI)i z!4>HkTwN>^S>Y<(n%N05fi0||D$W5@BM+a4je^6r4d+1|geXx)#Jt@AeORO}HPA=W zf3Z5r$~XuP!R2+~yd25Ha@R85V-qj)Fe^ias;E$=)nd>mYKg227!&FKL;MCq{je*J z{9of2lD(LyDD#w%GEc!~WWJ!7!C&0TANC{kf5B^tmoC_kMwC-D9^$H`>`bVy667sm zs4%@3gU@@hF)8U)B&G~qXjR#pV5ZU~B!KM^WFXGd{b*m25i-OuG))nyo&m=7f9 zAcPkow3Nw(Duw3joaj?m^*Fo(Mq}JEI5lI)^RUBKmzwEs*z&*GdmH$wt1I6-AyH!+ z`wup?bcUzJHk~=SGBYSl3x&4efMQ21XcEsU2?$phrOF8@@uflnMrMe|SoPKp`qW-@ z#twR?Q>0S`TWu0T2nfhqAP|M{YGNX<5fUKD{r=WI|C5{$5PRpD=RVKp`jMRf%l@yu z_IlfE@4fcgq~xRDA6LVR#i^Iy)b;%oy(>PZ`+=9U@v!vf^yZ|ln^SyLM1+!})V8_F z?99FnVx--f)3}F-GOO-O9OjX9Q#uF4rA};o>o3oBB^ITVI=d=$w8jG(|M2;&D}&eF zlsa)%LQdmGCd^7^rgC+SW+87%)1cMQ5HWP!+JsKfQ;f*?l(nN%$@bS(IzF8Z6Q$z^ zmX2p)D)oV@tg1XiAa6B{u&=>OJF?Qc9!zTtUJq$!rG$o-pZp)B%8DYvu_YztSFlBI zVou|CsKn6!znc3;ZcBaq^2Ldy@T>UCl#-j0+e(U(6N;NkW+v;z5{H|h4=uMG-Ba_L z_&C9MWKRE0sn^|<61goc(stc##12s|X@2U&AAG)YL>DM{~?PDv@fEwwCl zWa({b&Hp6n(c)T6db){`()hRf2+X^Qp#TzA^PVi@3qR}Kosptsj#0mcNRE=WLG$uv z4f?@#J0tIAGEaxtMb=-*GBT7}^HUS%Ud4vg>y9Vhn0#C54b5zNiu9XO(pEhG zYu@XN?^4h3`ho_2woOk?{9bCwk5dy$`xRYrd*eSt^APsJiJS6@ULV=9w(xml4uYIZkfiQ-Jo@iNiBI8P>DrXOll0pgGwWN_)TTEbZt9~&T*dR*T$u? zIG)n@Q{;Eckx;0xC8i9iDB&qQCVM~E*V?Z_j?ohroqG5)r}reCD%q5n(@aw7Z&;z{ zDTG2f2n$;RaJqYVB?gu)ItRt0L(uelr2NWi^+F3z8($g1kcA`3s#3?7wDt3zypy+O zf7?}3-cedsM}e}`?{bDo*+E@C(v`G{Q)GUtn;%@at+Y&>99{ZsBR{2!-s7+LdjHaA z+qj6>!;&r_9zl-E{^nfLmMx8xZMCwBI3;@QTb#50CptIuM(wy}9bk1*=XHzpy(Qr$ z)5Y4y40%a!Wc76wL)SewhK$~%rb;e-!i96J=A^OiNAn;?ZM4zWck^RaohWAp#h7zdNMXj$QP7Rr5ouKS?M4u8tUuwB^`hWD`s69dz&(eMbPT z%@HGmqe|p0(ag60I_gBpvgiPhhnAN;D^9%4r^RG%+r#jm5Y9ABDl)TE!R!mGHdozc zGmc~hp*Owk*cnZ(D2YftQ%!s6(wp%dHgoReyy|F(edlH`jrSIMFVCxJ%g9ZUk~xT0R- zT-^0d9nI0dY&&H}ydeC%$F5CENEpFcM^6s03(lOyK>*-kLvSB}qe2x?^KP^wRk|WP>(rWTp4ye^vGG5Cu3^yZmPFy>2aS zV&pMvwm%W_o{B^T1_eM%K(bQ1bg{MaqPtTOyCymG^7p(jB+r zz`3u0<(kF??_F7-m%GkrvF03K8BSjku4_aF=m|~xa|10YH+p2nJcUVXpU%4@JBvp|9xD@g;Zmj+aItPo zlruoh1u9=U)`&g9%_BDzt#>t=08`Zq5=_dXp?|gO!J8wCOjZKxM^m$vDYYjhZI^pb zOzQ0FYR-r}W~_8*8vNj8OP6cfb#VFO$G$B~!3oesbrBOWJcTb|RH=jaU=QVG2{#bm!Bgf-S)!yp=INKKWjAUdEdGR z-XL_@{{^N0B3(-9v-k1D6d*0~AU$RB=ejVnlIN49dB5lErx(m%zmqigs^2G_DxG`P z0*qiu`|zS8r7x)SQ=IQoYK+{RJoHrQZ?!T_w=tl!>~6t*tV~~*+J2kSrS1+oO^Q6L zf@O2MB5&n$F)OX&NWaN9Mb?&Z09b=paWq-yzc084i?XfZvzxVP?LfqEk65Lp_IbqN zZgt{E&q@njXSHrSGP878@NXP`BX_&QO=2W&J|45LoRG&s%R}pNO37AE*P>N~QIFFX zCVFF6kBQVN|M8L1yzOK&f2@S}^w4P)4arH>9N<8L;j)`jNbs{+V~lk~`EkTsB>hRI zlD;r*~PK`$p&)~>Yq&k_yNa(z_-bluh z5!tClpSRP)Z{X0}2^BX+YDQ+K&O17CLVD3>2)In@YI+uRiu#!JjjU2nAbvw*hKK&N z?B=er(pq;t$he&_U z2d>8rM&QS#j9{Ao$p)B5^zdI11hin(=ip;n;n#2^ucBjJFz@m%I_Z?ct0T#;aS*FK zAuUzS=UK_wEb$*<82P$~F)WcARkQ4Bbdmvb<)&k@Gd<~=b8u9CGl z8a9v1njUpl({T3}l|MA-ZzO|c19!v7Itjr8_!Mc9uENyjU9f!dz$^R_sixdH{behF z2(fA9)Eq*x2=+P`NkZ^7v^mHN!w@VUHfgtd(8X%%(aPE7ypHhQRZNrw#4~+ zn&(z0UOo7;&6iat_8*+Icnk;TG*5%|d6cw5@V&M9`y=yG=U%(`OVwi%IYFo2_~tJN za)#vOY6_+$@vx-vazQ-Y{FT8;)ro0<;$idE!1`S5LrKvI4t!*BNT*?msLVAONvBS^ zZbIvp_DF^0VMeNLp(XOo9FAKpOl$mg27{Es6fScbuk3)P4<<8o?kY^r(a>b%*{-fT z8?U4{EU6lzv3l3nleaye(Dn7!torP&HvvXOk*EVzwK~Kl-{wKXEozX~;gs$$CGh#iF}OOV^NOXUCIuJ?o*c)u9Gly-NNClp_F?+t%y{t zj#ynPt{%1b2d){89;+t&fJo#KDVhYJZM2xg9$Gyo^F=Tfi% zaINn8YoQVun~_Gs=d?2ZUDwb}fOA9F5b8dWrgteRucAbRluWu$mJ^(Qba3d#6ODPz zXS+@`wIpJ6vof%+sgdus4y|dtiN`Dd_2(RXIdJ&7uCfWonm*W0x8)aUq{!D)WTJ|+ ze^W(TnyPviNl=jt71=?N*w<}*edt5Kg5ULg)xxXwdNt?;zFOM*)vxtx*nj8MB3_9g zId{Iz7$o5jqy8Hy$GjE%;boD;u8GNuP8Bk7 z*S-9@VeMt99d9K(^~@X5HQBY7rS!T_i@SeuE)^joe~t+)`drsvKg4b0H$UEm=p?f> zjXV9vR=4O?*~5z4b#={bv1;m zrWIUm*buoY$jwFI-KDZSp4=0KSMu$uuD22ri@x+?4Zk3s)|I0E>B@&v@wFOC5Z$?d z`r;sd!T;)#(O96=NDVZI;S4}rOe-Ip2Eq@WJ{XOtk{j09#>1r8QO$A(SfZz8} zc>H%(M)|#J)XS90QK{j&x>Z-hxN5r5%F`YOj0tZKN{VaG*Lg{MzRZu>a}B?Jx5uZ) zfXm{(KeX1q-@}i--@)$%zqk4yivRv)_x&%T-~a3rzpsn`eun#gO7#1j3x2=qJw9yw z2Jcr1MB`vxZRe`#t6WL{9DVANd} ze!uFy6tMak?^o67>Iq$K=c?&Zt_(jXk35onh|1#(UIKp#KcasQzZb;M=r7#ztuesRwR)6ryxbF|Gas21U_|Naf>t7lF{mbtAUqrwE*#*B}^?N>Se1P|>1fuai zUHv;(P1CtTU*6Nx96hbm)vdbPuJ<>(_vb{_Z|G^8t_JI>m8+(&y7xJ>SORW=zb{g zk(&SW-~aC^kX?G{jyrR7z(q?wgPD=z(!G*@qt%N4<-DoF0g>-;5&^pzN^i|b8G(PI z&7`;D7mdwGRu^9tIq_VLYgEXO&NrI(JR<|<=<;+YdttrdRNPF-){70MZvDwx; z>vQht+DQcrA0mL#*|vCEr1u-K<$>DLEtwT_uce9sy+5LgffHjNQvYaSyXfz5y~<{^ zPMONO+-jPWGqF(!1+`y830r6PvuuT&D(eLo?0g5;&zt={rg`(%C2$I`7hL=S&&uW` zYa%$4lslQX(}LS+!R>6DNbv$so#s8MT5@jh>R(cou2~o=DQU@IOMsScS*~UAce7Q> z+J$Ny1oVTNG=A|JSKmFVuY)H?iA)K<_L4mfv$0ZpBnplbDHvW@=^nEFU*E{Xk3qYc zh2#2GZcg#NwiR}k^N?xGaOnywT~D5hdX}FHwySgl{|+gCEZIN`cCvuq{DC*Q$_p*r zN?|X!a6dmBPW3sjnx=>5p1visYyy~sG2&H<}^$BI; z1!R(jJQD#hz(~oH7{iF9vs#wiv|co4eozv_X2ulJ{=(%KT%+=&KOyHspzgf#hF>h5 zm7<11LoS319F*iJTEy#5Ua|g&LjNBODVrqJZ=cu&hTVt&xQrdx@zQPWL%8G7{eh4m z^G{&fXfIUd1z!ETb)cL}e8HSFFZ8h&toB0ecb+rIZZ>%#*8b-Vv6~%U=shpg;sxI? zgKS_isq4bv?;Y(Rl2_xU6szKp>I1yN=7{SJUXbts!RBVW7X*B>7dqet4>|B&;Jsco z#G?)XJ`26qCo+CfLPSF3>frdA5P38vQQ0;x6dK*QPXFxrKH%dBG1=Ct5dk ziJ!Zi0Cl@0FlTZ>}Up4ZMxt3U6&`t$m%KQCJUTUD1@KW(UqCxJ+feKZnO zd%+4Xv{AB_M^n~$xvay!>jg1KXx3RT4~iW0a%Dsz#9=SE-wUCrl-}V5w|cqc9)0Fp zh6|>s)(h_TX|es22;mEuV*>jBk(Y~5Qw1D2?gdYIx$J@KCjWZFj@(3#|NH7_+i$^K zT!i?+s57z5g3ufvoDP$kHgFHV)ct5+g{nnp??8->={66m-sI)->b1XCO#vj4tX$)2 zqWT%gYxIHyInuqO7r~ly{5a7!uP(5--BBan7?~dJG2x|ihSdv{{F4u+VKlWwZN?G5^oe56VF$G>$rI)?U z%h~J&TXp_QWfRap_Od_pa?s9k%iO2Jtj4QsqZI&~2n(sN(hGt69rae(J}(cmya&!% zE$B4$Rc@gowRxqnUM+KZKoWSZW0ZID9+$Lqh(9--jOBBoB=cF zzG+i~S9us@k==KU+WSOpj4yspV1Au7J!`MWIe9r}y-Xei@S~|E)F!my6#^H)-9(V@ zIOv5MtPZ4|3NYgA^{T9P&^LHlo4xD`FQ-!02p6hy7X&}xVZC#(Q+Vi=H3`n9Pgp5| z3vKqn&tK-{eh>wZs*&>pI}?~s4d)0VbTwdFk9t`RUiKO<2W!n%caX|D<7IF5a&~$_ zo%G;aez>7DT6->yz)bjbHN_8=viR~t{pd%R54J2QI; ztXy_p#~*kx;SVBZt9ANx6C35!m^5maok=9#KNQPt14+=bZdz1FYDG)>ktXbpqa}g> zUDWjTG`-x*s_?QmdO4`sJ0}0~4$x$D&!{PxbW~n%#Kgfw6y_tmZ9YvAy#--V*aFh>(_q!*5&@eAR&2+sf1Zgkx?y`2o$tLC_Y2IQH$ULgxXlZNZ z>O`J^6oxra>rL4vg+nx{i~qqebP7FiwnK^;C~bI4Fw3+$Z@n1Gyei+Gi6&>f+fR6R zU_p?@7mwNF8MGef2e5QH<@#Sn3DaF!-LG4{<&YsVR2=|c_3=1l@ER$mpF}S4$8d8v z*o54@q*KZz&taJ@;Rg!gIPQ@|f-CwolIv~qDz_n{Cwpi!iSwQvFRaZNHF#5Itn{+P z4;(bt+Ff3#-jgKp#5GVJznXQ0I7oV-1!OEYU5T(KgR;Ii|6j zYiZ@Um9)_}Fac`RFn~7QkATr}Lr_=}at*=ESH2I@AA4D6&BE<9WH560c;u zku~#Tf8}_9ri#QLc(=dn-GM8iw+J)bp{Y1(Tjj2ah;S9WF|)riVUWDmn)!#K@||(X z8lWNM6&)MQ({%hoqbt|akQy%=S;@h70WP@Hv(Rs8KvrfT{f2DtDnFzl`^_xL3N)G( zzz|A1*W%pvklsa(DNwpr<29V?g;g~OZciBw(2W2Dc?^)JBE<`+3!_iT9Jd%PWtKyB zYO^<$ZgC&YU*b*OukM_uc$1kkmiYqwzJxG@8-ZI1Q9uxQ~5xY0SK-PoW*5tHmgzv_uto0LUx_6WQPxVQ#3r3 z2arwQyJ!7L#YXd87){|FSbhFdV06K4QR`SWFM$o8Y0y zBf@J%Q0Wff9(_J?k%!Ii@baL`Zf`2rAA3{zLIOvtcQZR8n;l$jHSR^UH_L}IgT(wp zn+*SyGp0V<F9WJ~G(um$@O(K_=Hb|BdMHAcy8wC`;+GX-xH?~|cK z3u?U#D+~|t1=Um03b@$pkzY-Z@qlx{?nB)>cX0|MxCYY%o|{0#eVX--1V4wSA2?<;*fYGhT#3C7{5$jz^Bmtv>vISkwnj)C#Gb9TA)a`jg**W$1tGi`LLW4RY2V}ORC4GEF&sTXWbO2_&w4r7lI>CtJl)Xz zI&VscI<+i@h-YLHRHSprM-2x7R1$Dl(l&gX|FZZw5%8)JUR@3y(_P`9ma zz`AaPooXd=ZNA7cC{Xv^F0a?d?wBbja`d){T${%AS$K3fo>)xmF6e@XBwa$f%#jjf zOeK|jkwC`lQjnE46qba_Cug+q z+M7~{2}kZuS_eD59U#=S8MBPZu8`|F1;Zd|r)#e?xoa}HL%96z8tbrjcJyO0L-7FX@^{C}mN7 zQz?+OwWHuSa zr>74#&t$ocf3~Ja-OV-JaQ;cb3F@BA2F`+G19(bAelwwYh4hxi$t%hxx`j2y_mB+t z`h8|2wK_J+Ry0fN7LPl*V8+R$1@liP&Yj2--BzwR@i2An7r03B7IhJO#+qZ+3Tn*X zI&P+Sb^3~?4|%xYK+=Ma!U`u#B|NuBkmewYEr6Ex83K8n|##^ub}3liT4mJbq9<Iy!63-@q_Zhk2NIO|{g}xr$}oN1!t`~# zEZ`Q?W98NOBH^!gji+52ota^yOX@wXOn=F=!i$Ig2e@h+KqFrpr{=1GNXRRHts70$ z0)ADty`gc>&CpflJD{^gqpcjecn$A0%&#$`S(6|E#$wecVF=1yLD5!4HSLO z-j0JyE9GGW5;&UC!H(Yn_Yf222sV0^C;4EL$A)|618--@9%ZY3x=SOaN4?6k6g}z@ zl%CTO&*x2MsPk6(eD+%&m0#R3w}ON4uJxv3Bp4||thMG=U>79^v=Lvj0t)bE@sD1i zF;gJsTALdNTk8Li`j?%2l{ccuYCH^t;G|c1nvQF`CQ4u{%nB?{5-Bw6u=Mk~%G%*& z<5Qk6=2eS%I!uF^pvwKpnk3Xfd)a?gjhb+@#W1UDqx{tz=9}Q`6b2{@zGl#>ysQm9 z+TUBe7q-;cz~luRG_VfiECB4jXBkz{_UJ&RayJgraiz`G0+9S-d{Rszeu(sqW9pX; zca1&iP2Q;395k=8A`u0DNRTwp&0>M8#$52I->QiZWQ65C#_TJ{>-)^NY|v8K(a+6` zKvkyJHd6W0fW3EqVC5m6EN>GTLPrp|0rpO#AoQJ;0NA$M(|Qd2KkH?+d)bgBhXFsX z7t(>Zn6<%H%-{f0jFygO1epbfWn~4`FEJ8Tl0Ynq zTjf6HwGppnhK(lHtR|Ex3lEY7m$hb|XfpOGpz#zsz24R}SWSY<*gYIgIkmwhL0Z%s z8OEMqqMNuZR@m8pN}Z8ltblMi~K zmyZ041L+^WyZt$N*iJ@-4rU(F^xO#Z=f-W$WH zWA+j1X{4S;b{8IMe#U#@U> zm&SrIZ8+>rW@+S^EV~Q8dbfLe#GCw)7kYKByIb)Xzw&HDD}JggP1`WP!@MNp5Qa8f zS9(+FQOk%0_B12;9^;WdVzw?xPG$eMtjP|Ay!NR}?)FptO$ltqO_8BjS z^`S=RfhmHARxwBq;c>7kmb*uDaSEjA4oi#@cV16Tl{9|TEsXoeZLDU72r1|Xvl&U-SiKmU?B7KdQe%MQYR|!76Fr(9gS_Y!^43YC|1?*!1 zJ0)Ptx!9qvbb;l{|46{n?T(AVT%>RC(mTC$vKpmpNV|=}FToDaKl4w-3Ug*qW!a75 z#KcJ!8tSZNM$)LnxnG9^^`kJAqp$|MY?L{B?C&&It_PCsQDe?l z6ylIaK=6tW`a$z=h~`_hgA1}f0^x6cByA?kBZx0K?e2||ZCVZ2JS&>8nVKpNaW!r` z>7aCs+cc4Vi`t(39#`uiMbU&hUQQ4YJ}k;>;Q2OvlzmVsI2)B%6y>l#;b)#UCX2yG z5Ap>={`^MK^O#^BbBrGL4_xzIH>2BPjBXR99ixwU>1)L(YFVdR)~Oc#sfXoCHw#uU$1sdP(pCsPNR^Mk9X|(L7ppbn#s*LwYyx;$F)H5 z%3g9aYpK~#$qfl8RAqjHxZ5bXX>@X9cA)_Vo28JX9*fBhXYHj8b8>UYORw%*X0REb zT4oTED%vqad}=^|oWL9u`Ulk{{i)y2OL;ikh4Onsc@OvuT+W3|huM(BDjYK%ht-Vb zQ6cowPkQNORZHI?_E)pD-hy$T|I9DgUplEP2On#&S#C_Pq@Zf-Bgy@s)K-L{@G3{L zqwAU`m{iQZ^${3Xb?YOai55vJxSH>BAHmR7nHzztvh0XRgeh?W!_ew6~qGq-xf2HC;%9SToK#Z-9zG-Bq@)e~2z493KmPeE@ zwu<3$;MI*dYK%bvO0u^6;{wWDq|@M2tc=DOZv~zX-|8Uw24Pxp^0m!vzu% zn_UCEO^H}N{2E|wrQiu4)(H{+JXk8S)rYmSCoJGq?EqFPZV|AMy&_Cy{sG#Pf6@n9 zZyfE7;C^yFqyUSo2q{;B(`-~gMo-D|r&Vc`6I#O^&7HPEBeu{+?m(Digp;>2T|v!z z5_v?uQ48?CW)a3%U!e&vh10vry17*(cI+30jcup6*eVLcm|@rR=?LL;ng@qLv_Dk7zG7d>l~|wI{QD#dS7~!c zPcru!6U7MXkE0^}NhWd&!1sYil%5zZ%~tm?K~3oE;K#vfpA=UY7{RFh(cN*W`Qu)? zjE_u4uUcbq`Hq2oR7vfV5f$gkG>IJNS7}-!6O!7i%1u{JE5q@aeGhX z7xj~~BJm&j3BLN8?gDR;WE&uz3d#wtAnBu??bFYcP5@nRb?`2P<1ram1XtVO+6 z^cS2g=4{&ZjEJ7#tH<5Ix^nR%p+~Rh23nR2+jNI5a|-(` z@Nk0`-&uIi+vNCTE1fo*MficuCun3Eh)zj%Q_jst+KA{sf^0unq6V&*rJtM?>!0N( z`09^!7kKk={rF^i-aUI&Kc7gp-GUQOwm04P>kVd6r6aP{k{ACX9hD$vtR1QX!g2+jnb@|oAYT#v`MX(v)x3EFrghiM2)HbzG=oZ z>!qmYfgUttO85OwpxFtNh!y=faTS_P|8M*RU%gs)fj7UZAD?D7xMw%&=M!mGAUN?f zyWM?1-C#y(R-hZB*`o$FO0#FUIiF@MTfeU`bEzkr3itG&8S0sRzHSDvYRqN21>d0N zPD2YSjG0Te=qG2%_0RAVT(D1f%w&g_9@iCn5rRt+MVG+R{`w(MF1HHrBGMn)e#@)w zf-1xs%*TzLT&K|oVIY+Um|a*pMgUoMS6m27@C&XrD9gv_CzlwOW!LM9LSTf1p z9`IbW&}7zUqWCR#_$`jZkLZr&4nJ0u7CZcwJNyW@Wj%-dbCYXqcKeuDc^q_>J9L-} zIi~4wADxvB9YP#F)^|)EPkGlPq=PkQAAzSF0#C&u;A$trl#hZ>#UWtN2%G?e&GOHv zu<}GV22AOJ0TDNjAk2z0!4-JQ;jzP;Lih-bS}@Is)1VcW5bmHYdDCl8X6e@X^m%o* zmMPb6_yr7b&&3sz4-T>8~GqGmjL6djj{)+BHPpz__#p~=Xi$6--wEbnrs|}SC*{F#&TR_ z{?$L4`4k8vv7zTfkS03AbtkU~_+c~b1?Hp6WAo9!^QRCsz%2LYqj8^fa_+PmM%fk3 z|A-q(rL(J>%i{cQrdra-x%y*f&L2)r`W7?i&KoUOn*HKwgY+kDQN8n}3%>z`48}>_ z6YAMN5$>8$U!+!KPGiTXgrYC3|1yU08ZiDQBf0Jwbb$7nL4Q#$K2Hxf|05XRnPW~S ziarTHW@`e6Vlb@fB&Q%7mx&Wom&ACdx|}zigdlEJ#A)7UnTE-X4`$!O2!IXX{Mr2R zOs{nd{~%6&MI(RK^JjVm1#wk%{&bOCQcWS{Z^5H0!YRyOC$En2+OQjN<-g^-@{A2r zKZ84eL&g4-E7wyCHC3%mG-8FIBXI7*qn=h_+8dE&+X2DL&1%15U^31RZ1^8*D>@R()Yz~-D!l>C*KAo)Ly zN&e%Pit8=l8owU!_d?3V{B>bXECm0U@t(%)_Dj_fdvp=Wzd=eBlm376vDWO$1=f!q zk79kedBOj8q`#-&qX*s650e*8g@jSt7I-fFI3zPB+unV-?tRFAZ)xhWj!`&``KxrM z?KM9ael!E%2yCU3r(t#%etfKZy51%#9?x=j&)m(gO;$WJm#diEWq?v&68Bfq(irca z@z=IwYd4RRP-|_gTx(mKo95VZgRLg)Xi~n+i%VS3_ROI@8EOwo9DX$mk)k~+x@$jp2=}ZQ)D#oQda3F$)?)ZEt`+}?Q^n8`v$9hAE|wZ znx=KP?{Jfj3!;7gl*50fY4+Z*$s(+{%~(|2<{ngSLFU|(5Bw(>v!V*!m~j4p#+GBG zwLU**bobf4e)4+#k|GwvoudUyi8 zLmCse647|Q7xfY{t`v=jKcD~;HPJhmtEBETly1J-)rKL|( zWVa9>wpMj7eI8V^dn)s7-OWDSG{!ai|3ziqg?QmC<;RqH*LljkE2hk-@UEm-cY{Wo zd@W2{Y>MjSYvCZf3zrUYPn~>~j&@I;clTUAzb0SLE#S(j_#dI$pXXy! zYL>lQd_^W&mce37$5YVjk8Rg&tVD9mtCO1Nu)6ZUxvEzj?$_<&&D5&++X(bCx0i?y zVYJP4$$^(1eGIy4>7~aSx9K}RcaN27i!H$Q^p~5-Idh@W#MgWcw@~L&gnR7UkTkl= z{C1OaS@Uq<+ZH}?af=n#j0b2&hMMtei;L0I}XZu-jCiF8EiN?>II6L=7c6 z`he?*3t9)Dz%;e_FrDrIV*4|qvHg9GeFv&9GD&6Fn%|;v<$V^EpRuADnicU=`6*;H zrfQFVP;6vm6}X@NQ^RP8>qO})pN z6^D~zy_&b^SA>-)_K3Bw@U5MQS6u87vnCpXTI^9a7x|T#1Q&Z`p-7c-#dQQ~ex;Ot zoZ^mVU;tfA$!aT1%u(97289z-Y_)xWOOU_XK4_#vkb{HeJ&Jc8el-`x;P<#X82&we zpSyo_p8XO7hyt7f%`mmh#M~C=E#}E_LMoa!0f%wKQ98!(cD`k~KK#7f`7lz(S= z`>~4Wf!oZzLWzrl)A|5#;pd+))H^X^ouJVP_)fkF3-P_QAUpwd_F}&FQcrjW-|qdu zIR@NPIP3@Q&a;3LsF_UFgcT9c|Jbb-7;??nPBP*XR`hLd!4XC_-OwXaWFA|yZMPu7 zl;FpPw#;$MEOE?^_B^=}UpeVb6 zXS*dFc?vjEbXWdv2}Yg-W2*!sTU16M6wMTV^SdZCzf@emli%mRZ};_3H2l(3yEf*A z`FtiLOD7Kc@|m!`EzX9jojlmf3VqQ8U>9rDVinMBhk0PE6txj~$4(HR3AT>&Yj|_N zfN-&wr^TT`d|wWN$9O~hKs^#ve?r9p9M-pcxH%;uphPFKyq5>Xp&@)mCpk@BT08$h z%7ks^J}yj*-=+9Qiu0h@pKvB7e;EPpODt|QV7#<`cwrTjJPCcsg-(Q->BZ#Y#%{Uz zrjv`3mf(NhoO4g73I?Rp=pv@1i;{KWoGR`H+8r0E>rFO8kP1c9k&yREPf#AsAITVn zQDa4%-OIBg9nnePDOVHx__h4a5~pm5Q@OJ9v1)#N-c-)H7t@Ct;x!vq>^EwAI<9r(K<4l&@Pl%`Snl1#r@a z`qTVd<*G7kITN*U771YC7q=PSogml=i8>)>CtrmNL47ZlH#`Ak_DTlpxB;KNN13RP z*(9W0S`zlRcDhVs+V6T7i=QjC5rDT_jE6z4mVD*MMn0M@4C;yXQluzc=rK;E0!tg)aQqx<6d|bMo>g3+bwG_3#max zinEvSN~Qx+&&23=7V@$C5QhE`uv%VFglgE3_aRZVpjFr@m{3QNS{=d)g`NrIu%akC zRZMFXd)0s$EBOOS3y$eS1yR;x4$SNeEQFp(w^7ib^1S>ZP=3how2x!!A^oF!JzP)y za0>7kf=sVo)Kxgd>z|Aq&Dw-Ve(R1j$CDn`p@y=4f03^>7wwGQ!I?L6=@Gv;c1KD{ zS5g5QHw$|006_CwzF$5#T7CC|Sz?zhnK69ym&m+DpN;ki56WG5kR}8+gSy`%pupnT33a95UG*!|+^h%$2_K1mG)J4Oo8hVJ zjE<=M{W2!^ODvkb$=ZVvH(KwG@qLgMxXxG+_AMLuCMar&2Xk(GG*B--*pc?U*T=nH4PtC1-rApI!J2+UMd z`ro|*3G9F03b5`!cLjUd&zo4305n=bAxJY-x_JlWWm??z)qb?mSD8$kMX)6Sl_5pf z*aTqZ5h6#H{kQwE5+n(>piHuGRP_pejz!I07$PosPl#iBLELarh&oO;k_LWJ97#i< zn9$s6ay7kDEE5*PxB`!)ojIm^_`%=v0cq$yMC(hB`b5_l_&IBFUG&}b3G)zF1%NQV1lu#6hxP`_5xWK z2<(lC01;lZ^96Hpk$#B!3N3lku69M6MR=Ws1D)46u{#BJU(3IH5lLc!sn|k&H(rQ< z{x{Qzr8%e|;!OT2qEqs$&6eCo;tPYLi=7UBtYT4Wv_wG-a&J%YYSLguAhC6t>xZLwE48Iw(PCa{YwAu%F!s*& zT0cT*E=IEneuM!B~qc@?@e`iE1{W>*4QbeBNb)(atHoxZ1e^*sed z3EYjP-H1|b4h?XOqG8>lO9P@Iuzg|QExJIEh?OV!(n$3pDmnL9Gm7e<L ztXrt1TVFU072fiSY%n_QBWTyOgli?p*rcSV%5T)35*k%pZRx=k{@S^f}0i=i# zdHycVBJ2gxfh+kl>?!W(CD=B`h3K2QgpFg7F>D@7OIL}3Pw^*tIe$j+23I@%u$R7@ zU6gE<^2-cUnN(MX0*vUCtT+9H+ljU*GG>5ZG9H@1_~q-^F4bL%Ds0nCUO2VsXCq_MxV3f-e#%R4){P1zQ-DES`umYFgLEqhDuCnQS~iRV z)f8A`Tcs@v4IKc99!NkTF(!>HGN@=&KjOA37I1s3O>On^Q3%>Co~7=Dv=$3~61)2E zv8!LluKvK4-*YPHj@j+_F2>1)Om14_Gd7TG?^kebq#)xK&I!^zt+>W?xpH&AnckW8 zJieunv1XBErknYDxwA0JcOo|?^G)g!{ur^0_glD2U+kstirgsP+uLDADPsa}7(}HX zfVE^uOF!h_ z0zlnP0B$q^@C$Sc00o=?+-L%z0)s&^CIG`IfIEo*+$aGUtOCO*AXOeLTrw!Y2rB)E zXUUHnEH{lMv_Sw!REGeN^W=S)P+DeX6Aby&m&clWZoO# z&$Pj~z=xby)}SzSg@BMO{8*z#G(X_wM`p@%B@1J)-Q_g=r62trZ3sPDVn1vJXi+h8 zBTV|pwpEd#_@%GSR5NX37rmJ}gI9-6(^stO9`dGM&|m)#z^+zRhaNp-KYe4jXvTTi zJ$qLSySxixXHymvqZrbYa$c~y^?3u#t5ll%|W9tdpGV}c$F%ivgQKv2@_*k zMxwwCu#MG7J<%dbl7LkxIrI!p_~|jr^f0P=PW2a_7N|*j{>bq$3aRtOPb-{ z95#-6{S&?Z^!@!wLDGNPU9rjN=stz$ki3U5M-RP9duai3=%u~7R6okob;wd=-NgW( zf4U<(*j>ym@K1N747!UkKmU}hnB*&&_l)i%?@ITfY$2Yw`cySvB{4oTX;vj#{hrIMjJ&+@@ z^cS(K&RqZ5zv2m825?#XWMCj^KE3ZX(93p-SVr$l=VT1@5t-V+vS0Y1 zmws75jo^P7yLwV@?b&zq>{EzLVCmQOtupTOQ8BqNx-PgmQkbHn#=oNcH35=H?9(i6db9V13hxW-joN@av(csv z<@)0J_y5~u@9NE7{~xAvJvqbcf5)&z<*SktsB~P7`q4YOKCc5JONbPt>1ga|W>7h) zC2gXcKV@!_`P22@7aD9{vXA-Gn>D33F{kU!UO5I9whT-JX66fZ%y{GAn#CmHKv@A3 z;j{6)^UDePEVnIU4P>utvl(*j=E*wDE3R*tqOGj2@?GBC^KQP?@lP1uXs_4p%Q+dMKwTZp-GEt;g|j$ z8^e3chX;@vLFI#1n3cazXx0c#?utYd%c8>o$=0Te0FYmy!CQIcO1kCbh5X5Q&P#95 z%_{y3evKgwyvC7zfO&M)dIsS64fLZ$4Z6@6kV)hs!7LZ3)%x~10peQ$8YMu<3%&F< z0BOPX(P1G&+49lR3|i~(D%XVof~n=jG2CJRQvp~5tYJRDV*q4!_|bp1{(gWyhl^3kR*V-DsJ= zTE)355>IUf9%wEpFEWx}BPzTLo~gn!9i%l5N`0C?1EB(-q&iAr^8le9XY{Q`R7FC^ zHmC8_##wHInqUY}>eDESZeHV027ok)kMwm$$>=Zzh zctUxSLQN*Uy^cP~MN{+>&An#p+T{DUsV_gHypj#t&qOy$4bdFo>f9ca2$_jwXTGOZxkv>bawMJx;Uag4= zN&Xtqy1RAI+C*2hPN#K{RAh3e-+&YLMOzHdAorquFEQTVn`9X#XppQ5co`zuFn}WM z>4<*#g?pT^5Y&)wm`S({Gf=c7H1XIC1JE&G4EAYH(=@E@e9K8){#vPSJO7|S{xRO> zuT|@%43Lf-9$cKzg<8*gnafpWiNu8HC|a+{x?yU4Du^PC8Y?T<;EcZO6aYc$6o4~P zAg4saZXh5jASPvMEf!BBfI7HIj3UdQe?SO-AY4`7Fr=_mH@+0o z^GFgE$8-j@$!`_Xg48OcB|rjlFb+sEt(MM>k^srp(QT;v2-|5HAPzPz?oK*qady%< zwcf(-VisW_fUx^u#UC+)ikXUv9<=3)p-w*|i>jT{$8o7T4U{ueL=#0xc8-JX#kvYB zj<8d#tJF&iNP|%Dv{gN+I$H9DK`dm;%=xG49K>CWX8MPk>7t@f(?htfhQ@B8oyKYz zfEctI&{nr?_;7QvE<*i`dRen~A{k869IaXQ&a$Y)R6qbZE!J>LtG7iBhc>1p7BCA- zT!1VVEZ<^gV|?+u@_~{PRRaAiTOx{O7Fzz$E=dZeBR0_--z!?1#o%4QuntWWBs3$P zk2~$a0=~6?O99y}ag!3CuVeyZbHkDnU&-)yIo(6a6Uc0#NmtF})_A$3HX!>l2k~LK zIC_JVCT1WzjGx>wKq|=^A!o)?ij`0D5>RS~H~EDWXV%P1A!CKo`*MP>mIYQvQ|Q{^ zZ`e2Tl9{vO}p@J z8J1Ehnm=2LeKrA^wvH$Az0~sxa$b))%venS^{AToiVI}&R%0MitTtEUTjd! z>dP>Dtx|r0a}GGIk!>k{dAzHc<%!nyk?&ciEU@rBd-?|jt>y1h6?w~O8RA(S^PQsN zEc_$I*)T*$OA=ScOqc&Aj2;PvgGIHza!uv zZ7z9}0KdbZ=}4+sEE99u<-{EK#I2{)MXp8~2R_Q5Vb5clNw+%Q&vN-Fh&^W~va zxj8}>mf4EsXg$r7!=jqZ%=88*J!2UdLTP7)qhxO7fd)R#b22l`*Jg${s}WNB&1wV! z>;h%AG?i`*c$0-C-K^kGD%8LVS)YYDJ5x*X6FwFEJa7iYa=~>2fusgRR2U2pK9u*= zxiCt~MgdVf{3M0F#!SLwFhCml9VH;c0MZE%!YkZ?hw85|NS1A0`FAlzI8mHU=1vC+ zm_zR6lJ6OpN~e5LhVzu#I8_PCmWj$#zYB2;FOrf$FjPWu;H`8O`D=uni6;G5akPX* zhN{m~>}_Y>5*4|yJe!88ozibxAKa@8b?!0Q8w|Czj518rPNt2pDSeF`q#9}g5$gbO zQ}RFd$^Nk~d`Efuk)R2{U{Nd?iYc^Vm``?)Q!gKrU>ot4^W6nTmOaUyAs|8tDNCnv z4b3~XQ6XRbUHECI(5*bxz}=;jl|oPFpY?k-4xl}59I#dw!d63AQE@ zlWBsYuoycdK;{{l5GhGBemO^8F{NbF>Ar*R&Zoj9&vaJ-Gp6Q`bBcldaXH?ALJH|Y zIS@?F_&s{2L~|^PAH~sGiDcRsP{ZfGw$Vrm4*2e67~ zWL@H24K$z+D=`q>37ScotOQafXfZ2MCz+QT)k)?Bo;|;FcBb`r@g`^W-R=U$_(N_0MQImSO*Gm z%~+<2x@OhZqewzozu=%AJb4cFJVSkoYwxrvJ#Nrhh3$6Qo-E}I3i~2L`^;UjZhy1L z1vzcb!8}=Mv~BegFU*s*NvY>)p~xj(B#T^XDYhs5B-YH_0c!Lo9P&Sbv(_)mnhCV2 zwxB^3sdubjmPcbK$)XubQg3x>@o0%|nrw)(5dbp>C3~65tNo=>6#;DbtV3MiX)}F? zDQ`1<@W!P=*N`$p?H@+_ZM>)UtMBy3dzet0--6)1#(e0Dl3BPhUpF8y79bO9=^6cb zT>tq=bB@AB&XHz-tT&Kp6gOCw=2)0qCfw;i)njt?vizJLvk$B|GUU_95W&L#cFu_k zbHf>gq{qh`a%eEIZWKJtG=-dE<{8bWF)L_S0XKco!{RwBc%E@ILukhFn8g4c-;Wypl<`v59^|%(f79%N)EHY} zb6-zKyR1)RJB_*OJefR@syVZ#=^Hb9QU;sWJ%8F}6R&LAMi$GaZDM9G9XZzEd6b$g z@k2so>NO&;*_tzIrpS3l&Fti#RYWn1aWY486ykS=?@fj!ez3r1&wR5dKG}Xjsjtmj zNPWcso41Hr6#;4kP@MYi^#X56GIVN?iE@L-8Bfs@5n~dn6RKjJHXD;@!m}wRPd)9R zvw=2a`-&48tt@CX-+BOS4k9h)NKbDCKOtMK=F1LNtNCknp{B<$mdMC+H9IK!q5tMW z@lDJGUWyCsH$BcVISQAL`&bw{!a}q=eI6!0fH)gKu}g90tfz#@)>E$ao4nR<@>;*i z7kB2M&i}eIw<@X`hJ~7JSg6VBC1aSxIdj%aO73VvI>%TtIU$pW-rwE`w_ah@P&BI5jU7OLAwt22&uh$)}z_)5vvq5)2}5F)J4J&^TDj9i}Ytu|wTCsaxLKhoJ4tP;AJ#1T@rp)q!V?!rR`CKet~dyN zGSeQLHbH9+nkyKv^>R6dny1AfBmy-yqdWNp4KVq1nK_9}n?|Q&yQgdKF|^$I zlbWuT=hi)4o1N-{pE%y}9_G<(y7u5`iEH9mxku@SKgYD}nrF%NCh{VO*l#9tx!pR^d*gv? zc(jKn^?Fi2v8(`U%o8={iW>Kc8h2-;8Pc~#kxtIAbB!kUOv;+uBOWa+QV2%lz-R&( zWrI=Pcvw?5HQCF|73eI1zBNi{=#W~P<%leL1eQ$wP7gYFeX)eCnNufs=YRbVtZG5) zx2eiQwUkY{PBny`$spY@JG9_ z*`-_dWBAyIhzJphNEDH)d*NZx*M>xPR64rlHBy*bR&+j8)DX$&2~}tF1-5rx(+jq* z73n^pKEx~@(1k&qC%IAFK0U}@DgmXJ-a1m0mdhd!St~v5birX{Co_MDElKfXH#74+%4z3cuGy)ODN~#7OiG}VtKps=sso>-_6WbC0S-}Z1K0d(mo(z5)aDJ~0iqbr z3-G6nCrnp$sA2PmbAzCEG{zbP&%1?_EA5@0vpofY!jqnxF`B>gGKTOs7mE`kU%WT~ z8JAamxN>bkzTWL~yyVpkVN?iywTzgDw1a=` zvdM-wu0<^h*0F(K8q`tSs~tTxjdpBPJ23C#Wrjy{FQ~8Sjhrzw`Y5_Y=qn8mnU>DgiVR z4X=Fv8-|)Buuf$_NvMFL9OBvu!VO$CIa7<^n~MDrBsEHQ3*{w|^e&I>_*5;E5j`QA ztHswkjL}B325lfVe*l=ZqYOJ!xR8qRU9DuLg8{MWdxx}E21xcnQAo9DWCy0zQgeh= zk!T;2^$y@$r`AEhYqV2xeTU&5wHa88-c~oB4?twd7~Uvxxhv`pb$7Z`EjnMFF6NwK zGlZLo%o~&b`obbZq4Q;ihcY@2XIN;Ru~=tmGddU@+lhl6@6&A0M40xa`}ngAijyXg0em7GeMq6*RM`Wgx> z@47(+_QJqs3UyewMW3?^4i?h(dVnhHQ8Ujv%=R*V*X&Lq`c;oO?LEv(&D&;=rv&rV zN{_iq^%NeZ1e2V5>A{o+$)kc|dqsh`TGpUOJVp#v_Jh2K9O_ibkGc(0a!{yopqpr9W=~(Uu=RYP`lq!8IcZJ zT1$&N==4mh+WT&$=@wS+Q#7%sO9pF;^BQAHxBSnqkJ$v@TTq6fcCgW$vU7@L!6mx( zAOMas!Vlh<Zk}p$}bmS`GQBOcm}|wO?xr&rbPm5q-v*&F-K1%4=dn8{%dU|Hv%Zc<;&tv9)(*+ z+kiy}ri5gB8P+v(A6EXdSg+QOP?`ryZ)p9VF998ZykJMgAdI%%C+>VgM@4~^)PRzp8D(adW*Lt}t_kCTrFL2u@ycIbkU=QpUYe>LT;T z=v1tJ*)a)uw%r`@Od3Ze8XR1lLloEx$C}|%j9l>ylH{4r%a~n|JE+lKIMWP=F2Egl zXxtGPFO z2q8?bmWfsY{`9F=HIV5-dexI_+SM~>GqqU4yLjG7a4$)@;@Ag3r(6OmQy9~*|L1rp zTEsL=Op9q46L-9e=UGpUszph{E5CW2$Zk&E7Eyfp-`RtDU|P2(k2kJw`v9tKR|Dzf ztba4lAB$wN4u9mb%-O0Ebad9o@t_@N-#Nk>jaZ2kE_V0q5qb`u&Awbh9~bYlEo@m1 z1(4Py)F$2U_VHJK`@fic&9C9H5Ry6-XD{OpovM{b4T|lkVX-*pJW+hLjy6}KT_y7P zMq`+Es8d_RwcI{B?P4?L+;pttftrm;?KsHwf;_ACD5Bv^4IaT!zMP>hbjARPL`h}R zZN_YO2s!f!g_p)gZZ1Ly*<^%_gaTou2G-5CGybpLAFWIE(g}Bb#7p>b6k(sCAXCi? zn0LiPc~`C)_-Nq=VXI5*k)Ks7Zgyx;WA*U3qaIN7D>KZPtBYv2`4DjF!1-%GO<8-u zc(0xwYAoJybL(^*EmHP1Z zHh!U>F;HS(JOif4Lnv0S+%CyOJIu+{tdfLZ+^hvg$5vh(;hAU*td4SipBm|Em6bgT zyrY%S8-XjHv6!zA70H$CpLIEOfJVx&k{WhMZm6_aH?}#(-wRSJLSzT{182;&v=Wqc ziap*TQQHUri3~hz7ibXE{n7hDW(Lklt!hyHy!5@Ejy!!u{~5l234gRZrdHoh7|tJ2 z2D2mkDQ2jJMVL9#AK;SH<-_+wFD?*zhfq|S z5Q?+~HXw>3YCuF(z$ncEY?cnP5UPL*LFocUP(Vb82rMW<=m@Bxm!$-$vMQ0fAjtFm zW?>o7e|g^P|6Xsoo^!7IbME`joH;X@Uox2_XXXnmS00kwZ~l2MpFGodPrHKg@Fsu! z;0-2C*`7BI*@$a*Zzzb2T5%U)^pJ^O#*MuD0*x!Z8o!BcJ9Mx0}Qf#qB>n z?V^u7Ids^M?M2hi40DCi7p)%AWmL0wZaCh!{r$t>-fcL@ zST4lv{0PCeLcp852IC3-%{theclU5?_iX=l{QkRj zi|ZpHNhc1)?2P#q9vAhrX%-@=_mKX8;ufH|(j64U9`4(I|WvS`iF|!U6=bUBuG5gFsq0Y<| zjGxMy;y#`jCSSeclEa8)GiAaZTx#-h>rHE%{E6Y`rM>E~A_?_(+IA%LGJ`S3;nr7o;o)ymeGus^R z+6GyKJIO(SU`1kEVoSnx^f+SrdiuYfcf;nN^X`dhTO6odGM%)7mqcaIJ8Zuz~2 zdG`eKWv9J{dAG`5%)2Ltc{i;)%)6cT8s^!N_%QEyx}9*3 z^X}p|rZujai@QesIuq`8-toNWfsF|-JMZps-tqK2o(+`=ek#F)`7zggd#dQ|_H-g?(1=L3n!$+|kQuerFqe*h-kV$bJhk`)9i9_~)7Z zZ}Ot$;5&9XX3SpB{6iKPX8w)0&bZ4lTkOT$IGDzAd=lrav)UMAHjCMuW_&v57JG5~ z?p!2|eYm}~f$N!S!*IKN%$f|h2c~?HH^^UtG`oMwXXd$li#2($eVhFo z9+;7(*^BVvEc5*Eho`LObQalZ(`U7E$$elJGiKBc55OL)cxBJ#_IFiYMQh6~pxDv*NMov*NLL&59?P73ZzVy7%#-q3J)8pTJ znS*%?D)w<5GiIGBAM;|faxuovjknE0!mzpVwwXyd(}dI6`QS~~QvY%d{uSRko)=Bt zr(yZxWy*Wb6#Umw^zM1K0C&OHiH@I%#NGsN4j%9>VDF5bY0K62%ro{ouJEaM=GnB@ z@&7WG-un!AGgme|171F6EX%;P!&sV`G;4;jG}gtcVJuziSn?uoFIG1WV`;35)iB+$ zG}guHTF25@hS3ez4r9qHbFsRSv2@ha3yv;U9xfY>d2;&JzkfFK^335|h<0T5{QqLP zn#?0SJUd-%=5u@Uzqw?U|HXV5&ahzCO@E8{;q*+;IprAhu+`+&(>|Va%8skzTigtO z9{ru+r#tBGIrWFr@&|aL;tZ?JIMePu+aVsQ-kXgOPfXqPtuyQ#5zqaOPi^o-(a|Hh z)835nJ?DvjkaIoH{Q!T5lRM8{cKEpp&+&Ua#}eYQ=u;!h(Yl=B`B!dV{@0Wn#%S_b zz_5qXU3wRNb$)OB8}#3x?`bY?JUs2W_`Qd0xgQhQo*K>_8cx9)p6z({ANJ&UKRn_1 z-<=`K-(gMS&hwG;_r5^2`>^1-zhn*W%rCd)ws2>Dx%KdK74~uO@jSQwWpDk<-1_l{ zo;cqytJzyJ%w{ezoa)E!s5jW~zvn4_cI;rhiOcrXY~^_1e#rM(fr4KczYnkF-Q>K- zJ^t)29Y6h0XgB?Q8XmT{PDULbKwv-O{;td4-f!~GPDGl#yqW%BPCs3e{cFSdes}Tn zp`yrja|Ikr1Y`%&Is3Y*@n%cqZ=xA&O*>-v29{F=5q z@U3mh|7v?+Hy(%W@BeRa6uh;4wE4Sd=6_@Rh+RyX|GE0mI~xU)S!q8oeWTz#+eg#3 zFj$d4PH}J>T#?Kn1>H`oM%NoA8^`xYjM)|fBBko`lx^FfqM1r2Wrxoy;v_iFuZPBV%qB_ z=l^!oUN?>Lb<+dG>!xYl;dRq?(_S}iH|=%P5?p~t_J&bA`S{D`9&RM_aKfFl@EDzP zm7}{=Ad; z?Ri$*=L#NSUZXw79ay1@}nfy1dglz>6!#>A!4;y*j z!Emg6XD>u!GJnO-zw;BzhJzrUaWI*c-lM!Y^79-WQ#*T{YBGQ7(Z^}hn9Q(wl$$Yy z*Uk5Ae?AO{PFYCr84f)S|0VeCeTF;j+SE0xYg3Pk4reJ13-)lX6R*~XXW);rRR8A( zR{nJqO}h)jnvoU8_(vI4hu+{o8Fr8EGCVi0Mfo4U?*1PgSD%>itycyAoxbXu_VR2vuyM>?|9WWS z^1Jq1lKVFKJ4c-GDaR-?{JEFk^qFU^NpByeA`7?U5XXkB5jUMQJDW-UN7<>i)}(2N z3@0r@=lp4p0yI^eUv5b%##I+4=ZEXQxS*G8_vnetgsL9#0B^I4d>$igURkj9L{+d-sNlf9}t%_|7GJ1{)}f4 zO?a7N_>kpcRmszYXK@T4Q^>k-+OaG45VpVI|@H9H*5sp6X7tZwE6TZ$v zGQ4b_dD4`Gok%l#w8@8JO=fxfY4##*?c;GTlb4}$*R;+eru-2mE`VHq_*I6)@X-6)I=RO*>M}lcxVN=o?Uw_^%bbW|(&5l-CU${AQDzspoSyc>3o=*DYC}I`H0F zpR)7sKRlNDGoDm$A%06tA)X{2B>qTzZzqmS4!b)Wc6mk#M`4L!_our+--?2tqrpIB zA~PqLi7+3HnW;y^%Z&!twZXgN^{azmG>U7OJ`!CL1n>IS2+`%lYpqw)GR;YOoz{x44*I~qaIaQ{ampdO8a`knas1uJdz?zn(@G*%kN z^pUvWYNk(*LyKbUXarOFYa=oHGDoa48r^I>IwP^n>@%)E8cXx*qcQt3GjBK=Z}RB) z{q|Q86zhxzeK!@R$D3~+5{$-vdriG=H1@gXnsKA?>ZX@&G#cmp`Jr*6vE_H4-()nt zch%M7Mq}zrrzfNF&pRL9cr>_epL}=RvI$GvNCfVc9EoCM9>|B@dv8cgEyqwyxQY9!t~WHbKY^k{$eg^fnz3k$C^ZZuAP_y-$~ z#>h1d*UD}A>}YVq?i!5`h4VI}G2i~{C8H6Y_{EJzW9BoL+GsR_MSi^AXpCR^>EDdT zkM6s5gVDHqr>%cG8b9lo-DotJH~jDNXao(ne(Fm?#`bae7@5G)<+`Q3feC~56 zT{9Y7cHC&JcifH}j>ev^9x`q;e2yB8x7Rms|NLk0?r%oIyT1Q9!@IwyvN9a~9>>$< z==ajB?MA=fbzy$7d-L7jYX|TCo)oDLy&nizbQ_y%z>aU5|raRqTZ(Ghk@xRvOL*N8E{;kt=6h)s!Yi9Lveh*OD6iR*|viH>-Y znEfh#hggf4@1}{tti+2q@;DH;5LXcA5+!jIu`jU;u`Tg&Vl84>Vm@M4;@KOx&%|}a zxx}%=p2RN1*2Jd78pN{1d_+K8$NZ^@(}`n=1Bso8t%*&EwTbnaUkea35^FJUB65R95t|Y_5U&&a5{D5baW-)|aVzm4al_S&aiSth;$Y$%#5TmH z#Ja>P#N5QQT;8wsS%$ZMYdL;~{%gdX*G!vs6Sw6+;%uTO9wPjTnZ60J>|2-n20v%u ziMQkDUx+!$x8vumT<>1wGZGvDE@mOvd@s&m8b<*No+}GBlZsi1xd?V<7aVCUIH$4T zJjUWcE_W<(6LBf=I>CXdVp*nBikHc>K{33Ba zxnEnnbzidRgrROGpACpWUk~5%|=u9Zif=YS`e*~EnQc5kI1V4sUinF2o8MKo8+@5q&UkK^N z(A;QG+S}~i4*3ISlcAUJVTd2Gl;Tl)9h8#(3G$~PdK#K%p?waD9;&}X_Po6pAb$zU zfh}38+U=m1aC?X)m0ZFMqOU@?Bh)+F+f~NflO%^+Dk&#GEv=+`La{$o(nxv$q~C@1dr%%{c|3%r~@eB~n z3e^sfWl&2iy>#D%D2GC7>4eX1XXZ#Qm9!G<39+P-ODT<12S9cNL`Oj_`L`iB8aj!N zh2*=Ce-E zbPzuV>7O8Z5*q2Ag5uARJqyVcdy@YZ(jLO+p`U8@D#X&f2A#yOo4o(W?MWqZ1mUvKtpvf!kVz@ckgY}*uMX83 zkgpBN`cQrxip`;tM!KQ=Bw4Tpgwjg$Dd;|J?=ui=1-(R{g+eOHw}y6G=yri{SF_#C z_JDdKw9-p@Fyzu43atc(LwSUhP)jT231-qu_mLNo<}7omF@ znpe#ve+^1WW?-YHniU%9B$~tCToBF!iKHRq(##9ld{9WdpyeV^E(+0NkS-3%GLSE4 zxxD2H5UmK!O7>QPUcwJSv??T0tY#TQD!D|fo2_Nv6wH`E5Z2;Lgh(7_T zvNWXF%~IsLr-`v89w!OM3%^H<~?a?{83jitXg!(@;zG8R#V50a8hh zh2T4oN%TDkkAqU0@tmM=p)^X&9yfmqu2 zK|cnPxh+Ge=7n04`7AeqR=Oekn7xlf{0!88hep!Zpp@bt(9g=zzU+OF&kbz|!F-S| z2$^(4wm4ZO`4Uh{Ev}_w7j| z-6>F1P)qS+GwCHh8*-_ok?}b0&`EYalovpM5!6pYBf&G4&q6*${sOI(e}(8d z=w5(i$@g(BE6azVSsTK2AeCZZJ+gd#Xe1sBr34#5k=WbVavL*AJ`b7X+d}b0Xe8O* zo>UTN5Pb#OogmrOY&QsYx0F(hrA(w1VDE5L@qP-!OLK=zofm{j+3ppIx%gio^ zL`rF-mu!;R6%bzusbo@1@*7KuuY&Hk5MFIhD(U|ycUV3I%|J&MJ`Rb5PeJuOl&?T5 z)vTN}(n~fQq_aaV-5gNQWp8dMrIBzRC_;$mg<5)v=7VGbNEd`cI>{G?co9pf7lmqZ zOX;Or7HVlFSPshfLod|_pj!dr6(NyKx|PjVf%ZdYt3o0Dy7tx+PvMC-f+B%R;*HHd z3!Q{pL;g94J`b@JL-s|oT7oY@zJsN75`G!t4035C`3jWMecj&PknIog0gxOGwe%7n z1Ld*MN?t;Bf~73UD5RCebO$y|_0I=7iL z(n~rI4(n_!_lu}D0t#r~$ zupERENxnQ}?}uVdsHBm8EJPbXBAFD@d<^2vAesQdd1jJcV0i^35?=}VZy>z}iUumF zrIAj039f}uB8erDR5B@~luBypCB6=FDW#HH8fm4IUV`f(lt^MpB$Z5RX{41-q8lNR zLb_Y+-3F<2w?qAVNd5rXA1$Sm=CAU1NMC^ZB}*w^hF~frQcCnHWYS6a8YHuDre!b5 zY!EB~(LiKR$`3#tLnG1ZkVv)$q-&b34c$6WuM6e+5RQdP(hZ=HQfdh|gnlEl1d5Fz z+ssTVVG$tP5t^MK+8I*Gq}Uz${UJO6+6y7N2ok9zy%_ReLVO7%zk*WgOXYHCCqZ-t z^jAXiYs=q2CWTbeNGHKn5J@7L6p~*nH(TBUja0vbUgF!#TFCBzTJk#~z6)BZJkz(8 zPJ(+Ol3ePcywBeKkVqzlRMJQ%!2=LUD!G)>J_Ny|5dR4(2_J_{`qwP~0ZGV74w)2E zNj)D#3qrFHq)VAC4Z(7dNwuOq$ySG4N~tAW10u;k0fp4kNw_&Al1U-e(EFr4DJ0$k za%n#U<(3d^1F>XMO7M9IC6ZWDskenrvM)g?!FFa6ZV$PX(o6hhXr$a3qCM36{5%L^3I) zl193r_kK$WKLD}hQV-b*WQAlann@+SL@Pli?U1cZ)=0RD6IO*nDrqEH4Km4Nduu?q zE(GgAD3PR6488TqV#%bHU}Fd+-UJd!H-lW7k6V5My3Nf#3Aw~uK(I3u6Cm4H_JiMjQA(31vX(f0KA}J;Q z2P6{Cz)`{E$j7)dJ8;uplIoNxYDyWRgoQ!NO*eF9n5E(k>01M9V-d*>X@V z5B2+@kyfG)LAZ{Yw34g~nG{kKzOD-Y0t7J{Z)|u*4`5kJPC!APgy<<^|R1Q^E|{aKrh{k5WE8E8$dg!|f)cz?(xJ`f72q(2U#5*kTPfJ{nhrITKglcA7W!c#4! zI}@s(KqH+bKeZ?Ix%Q;|r9G*o_>JYQ&`NL{WYS4^J4BKWv`&!V4oD=t6Jp6FybB`9 zq`ez@3Gb16p?Uy1$sdGxG9*$+DV6jRJ_NDk!fJq0!snrQ6Osiv=^eJAD#xjLe!Yv`#-b@lHrIsLrNID5}GimmORyye=+zTQ} zB;Om-eWBP-4uV?BL!gm%pm4&WPB;vr!y!2WvLm68T7skGXh@_w23qMQJQiX}rSu=B z8wtJ#@o|tyD$U7Ion|KK>5xe&mH%KJp8>hlXF@k{7FqgJCrEG}gi=W((fN=_CY3Z& zTwo@h1V4vL8c8pN?3YkTEv@uJc?ntbD~K+ILc+@+k@j*3CYebu;S~@|FU^$@T?2_! z5;XQCkygs!Fe821um15rUiSNi4PWH$(C}Xr-6pJ_sJN_b`NySUv&uGmtzB zt@J}Sg{+hCFOW$7S7;^w8j=l1L`;OZHxdMuJzMlV+-!1g}CQ>Fbb7 zDajjVQcLnr=%olaC#jN7f*Bx^L^A25S`Zq^7J_(DC?#ABB1t5dQsNcuNhYoI(yau+ z%8;)OrSuy>w;{9}*&7G-rVxD;63L|57Fy|~m+%WvZ3o4dq1_phT_KZP3Mr+MTEeeE zB(3CMhgv!bzX7du5`Pnt-5`@(YKeD;LW1#-OOZn>y_6H|?Fq@=knRJO)ROIIZ-2-o zJs8SEpqJcJ#)3oTFlZ$_5|X1K{w`#ae-FA-Avg_UNhBT0A6gFl%${@-TmX?|7eXP; zFYR3dxs*~%^DAg2yBu=qC)vBw@;8uN1<^GSH&94BaIM*O5MFO4o%91YkYzVQCCNl&e7ZAqZB5LK;b92v@h1b}i^XEMuYC5VDORmr8Bpdx_7jk84%H_i`ZV-gLHJpSw}(o4iFdG+GJ{%r$-ZJw!mmOqr8GN1 zwu{-WP<#z)X?BBncPRI;C%r`DA(bSDYJ%CGknIJXq5T0iyozxeYN$_(hrI+kNsHFP^1Q$VkIiv&E zljRcJ0HvfiLUKROC?bUsT9&lFVSO=Nbn?tQc5HJ(0ht3 zmQ=!5Ad*BfDI}bklT%X(W`RV4Ss{~XHmD_-9daopoC6{$q?c??h{u>oE$v)T%?-gk zkj)F_eD_`W^KegN@_5S|2$L?=Tl z@hMOa{E#d=1Hv<%aF%5S-H)L<8*0hUf%c~mpKB)7c@Um&?`P0R`*X-Igi`v8ApE60 zX)d=X(IiNvkXkwkuYg2ysicu!!Yd(`RN4ojlVCDLQcC!crQ`#Tkk!&W3SkF{WKu}@ z7{t;`{Wt_qLGm@C#59Mne|XfEz$Gx0_0Li{UWrIy=*4IR0v;# z_#cqJZs|Mlg<~L=VnIk2f=o)OrIA)T=_ObgB1t4(#7uH2rIJ>%MWK;aI_V`?3_^({ zmPAqsSA<9s$)u1Q@`QEk{EvskDEA@~;rQ3gK+LkzqAE#P5SrDv8HHI9prIcD)=_R@t63L{HN*d{eQ%Lw-X(YHDk}Dv-8nT&ra=2w=q3Ie z6jDhm<#U#Qheqlbp_Skzh$N9za_J;^8A=JJLL`Z_61)c8oAv_U?zNI^R!C=qT*@Jv zo2;D&f`uWLV#t;tOQl){>gCPeZ}tJ`KWMoEG?J|d<;qY?C&4NZNg|~*(n<6o$fTEO zRY(U`BWu^Nw>Y0=<>}C#0pVFtUt%fA zr4U>O=_IHnz7k3aehrZ%Qb{MxRnSZFTga}4;2LNoz8z92q?S&q-$VKkiBlYTx3=a&Vbm0)3r zB#}mnMa?8!OqPafImlLoW+muj2v>(vTInTS!&1UEq1*s!X{D21(v2-8-2_T$q?h<3 zkbfL1=_LGwJ?W+RBs4ofavY?`LwqviEtJnd{SQmuNxG6odP(Nwjb(~?A(;x%)Scoj+RpF1li8eNwN!6yPACsdP#OO+XIU6kmb;sXcl1nMUzEDXg$$n5vv_GU09B3w`1mA*OqJyB3PSS}`4;)Mu9RlS*;RJ~ewI{)0 zW=F`8ay+!sOXx?##F9!br8M7%@CQ&!bfTFgCqXO8$q=0)r$TTVgr`F*@ej?UJ_E8d zAv_C8Nq+>jR6mB`Y-oN8>A8?ea~@RZL-I3wl1p>}v=aRs3h5-h5Nc^8`UMmh*^^Gf ziy@Kr5_{51{3}SMkm^!MF1IJekWI3@654?~$m)A7rM}NhI_V|6A7ZJck#;DbG?Pw( zry!O@GAX5!S{msjcp4&!C6P>WDWsGB83_Ii=@iJNe%|s0$fTA=T1j7oTuSLBm-y4`9g)|b( zYflPkB$&^h6jCh=jpU0#DYY~bE^cpN39?SIC83a3I_V`?3POn_mPAs?q+9`-)gW9O zS_wCXNE*pM0@Y^FO1}eyUxru`N%w?I3aO-#`Y`AZhxiDnq?S&4366wNB8jCw8d~X3 zhUgSXPKEMJh|jl_ObSV_vUjaq2jvY=N&N?CrEVd(A0kO4m0E%aAs%>&ER#YS=_Gg> zB1t5ZTuP~>m*g49q?2C4KSL~uWKu}?EaX$nBzPV|i6oI!aw(*eMp_A8fLKbYrIk*4 z315U*5~*K;{$)sCf%Y}%B=`q}5=$bP6jDkn!RwGoA*EE(NGHA2!BYH&Br`xbli8dy z22v^KhjszT7KG}9&`2lY3J^=WBJ>ii0*Qnlv-|?I(tHt$9nE%va5sqegj9mPp*{dw zNe_bNaC=AD8#vbT6iewPJQYgmBstyk9B6-Pb{-VxoBa%G=`V%&3Mj6G^w*FzP+n_x z9VEAzNg?Hs-ER4NsHBnTZiw%(l=@ys?t|=cvp+-CLo3PO&0d9U=B2sevqHtY_41z) z5G?@Nn)cR$U|mSZLa~uOX{3{297K{xCWTbeNGEv$=_U|u3h~FFl5jIfB$Mz{&~Ih7 zHAJ5``!d9mN-m|;(n>F32C<})ODXlh&SdRwPS_oS2~Zve$>ESmFU7IY91oo&r$Tuy zgcm?8r6fOx_7@Ob1d${X*N|QY;nik$K`x!NcSA4n{ZL5$0CW#RH5tN(AeK~u$1Nq3 z;7O>Sf<`*2o`(1t$R+zTB+r^jDUI|JPJvj$zd-Z~bTda>%Pi1IJO@N`Lij$&rIk+7 zF%ZuMiKNRx^8tuH2-#<#-5PpHKW8c3Hu6QtzXXl+5^e{Pl+sJGJ)}}fwgXfWec4_H z`B$Oe5t^OMq}&zauR|;KH=y4Q@;xA!0HJh}?+Lx6ds#{)?Y_`Uv!CVu&>aE6k&qn) z#rG|L0MRLOJ`@*1C5?0v`~pHLE`jtiv&*5DWD;ajU14@5=*rI+w#h$WR=g4-dKSaNBkljshJC6!WI=_R}qaw(*fUV^(V zrM|~ZdP(kuR66M;yboeYq?F)(Xdg5C6GT!y0qN6b&q5=~^UzB1GE}cXIMv=iA%7E+ zU>PPzG6VFI%xG_Ri03eqaDGdv7K2)X#UWb)aw(UBM(POSWuTXKStwS4T3YF(m*7K? zO1K*2QmhWa8W2mpCUjD-WhTLgA(U8BsU%s)OoH{HkV@LIkbV-9uRt!fbdr1(njIk= z4|NHx1Si;&NP<(KIu#m8e+apBXFz+VH&9&#o%9m?77{6> zkxrtkp_Kl2kl$k|>Ag@%^B}ZRJq+0+kUR#dWD-6ti!RG8SOU6Fo9znG*PxW(>(EK| z4Jf3QUXpJ@CbhH@?FNaIQcJKqM3PG>$-a;t48_@yodeBJpgtGE^PrRDe5j=T88jC_ z^m8br9=Mh)y9p}EZZ?xnqFd}qBb@}lgIbb5L-eMZWKu{at#GaiQzf4fiaDT?Mmh=R zgh&#}q>xG)36_LdY6(9C&AMjmK_uyrC1jc8pM!FD%L#HI6ceF69Ks`@lvb)EAwLS5 zZ$o*s+3q!l8y(ML7;9o|#+y^090jibER)%yHh&}}Is+N*V zCBbTtNh$3>OjfN9y_9Rnnovt8!CH_=E~V5`eHgN}Eu~rq(sd!1Qfg@>S`UKtA(mFU zvCvESQAnhe=Hr%IKrWTE5_}3`$)uDA$oGJFyyed!y%tJIuY+8&>!Ft9254@C{3d86x*2K- zZh=IC-?;u73E5rHN-yEv&`EUcy(Du&CguC=g^~{-SIT@mI_w-x(@trQ8J?=_K4063L|<_!?RE4X7pf zCPceIx;qq7ODpLfkV_@4q~q;LFHsJq%+Bf&wCNFj}66QPp& z5XcKCrIuEbL!mhu!eh+7E8m0oILM@wMq245JRTCMq$@2?fI@0%CH%gn^iuo)Dv3@s zI~f}3Bs~R!(;=2j3aO-#PJ$moB=uR4o(&|MAjHBd==10=WFyA4vwrIJQ^32%o) zGAX5zPQu?qEUDzuN%#jyr1_&gDer>dZYT!sA#0_V^j@eQgWz#Uq?3LqpCHSmmGDWZ zBz_7KDI|N^@)@Y6K>Zvve}_(b$)1P!1*l$xZr~-d=4A+8fpn^D_(ATG^cz7u4pPab zlyGy1CHxcwDI}6hu@#itLM7e64rIxfA(v7b=_Je`kxX(4c7jMMiFbwco3a~pyF)Mm zB5C)w+!wL~p_5*MZ$T-w6bC^i&A>#m^k8TQ4z)ZCio>Ci;0TB%m0p4)%_Kbv@?)Tu z?mN&+{(T5fh3GU$Plrf?FN_abz zFGBDVq_06Ey@da;C*6>}NtQ`2&5SE>Et1X#;p~=@&H;rq?}Kh&3|TT4WYW(I@%;8A zlYC*QrIlb2SrkgCq?Sg~#UNZ963L{LN}?qomO`>6&7_iSDd?7kU^xgSl5}~<4a#pqyBj3qA(u+p9GVFb?g^3P1N)O@2S6#cw9-p>AjFbNJ}{B2mb8FO znq#1s{0C4;`(p^shDZtt&Vg9kiy*uhs!4K%R`GpYu0^*CHsUf%oa%m*I)bcW@CP8!s#F9uV zndDMPDU~$8hFl1e6pRMJQ*y#&97SW>B^kxqiE?M;PVvR9$}hrKtTmPXb3&`P`m^qJXLpp$4vNTvNc1mA?>AP5hEOsYd6I09lx zC6{u@jwCCjlwP8vEWZuO(Q*uQ5*`b&lu}Fa9jGMwE+mo#6LM(}-5}XE^G?JVSxs*~%E1e`ig!C+^ zrIq|gz>Xg#`~*4)e`+Sdxe!Srsbo^0XLddm68sDj$u6+G5DMuf`UNDCNg<_FL+>K8 zR(eS-B4T3YF(m*6(2B)A=t-$O37G}21Z zLU0Gfl1eU>)Y3>N<(&}R1(9_3nLPlBWKu{ajdW5z2)$Gf*^}sDNIEDa{S)+0LHINz ze}m`+h$WF)vKP%>g7|ea=_Gsu3Q2>Nxo;B90G(trLMh$A%w)+dP)INfx#8M2|9AuTGb3!J~ToBD|DV@agKrdlvDWx>hN++oQc17@lmi=) zCF3BIG=X>%C_W}zKrh9oAxfcg)4%s-ed}GKy3FQ`0 zd9D6^pC&5o4lVTF&S3o7L)W3o5D(EHoEo2g04QT^~)Y3|PEu@l5Exi=C*}ETt z7cE~ldj(?2UbpG9^y5ilzbhtu@HS6QYoa7Y#Ru-g?>AG+e5sA**Bn*;+xP) zwL3J@OSlKbl1U-GDTi!td;3BvrBqT&z8^&Un@K0(0gz0DTEc@NmR8b3 zAd_5rX$t71m+(-t!^{qcSPJPSJOZ*KA(uibX(T!dYUw3D2C}mum+~C5pO~EowY1U= zTtJpy2)(4&LM@GS5?lw7q_>*g2Bn0zLnf8968|1*$^KwZ!aqVH`JGTmDYZm*K_cPZ zP}~FMy%5|7i9`?Blk`ETIw&4DllTdF5;94jg5p`rsnE@}D&^eJN;ePGp`}FgLM*8? z1M`vf63!2?B$6%wl_U#6E|t_0Eewfdl1m|##EU>C!J-gJD!C+!K_#tp(o3|snM6xK zEQ!=hLMzEqkVzqxG}1}BjF|+>LMHWcmhYDjK=?r@w}e)btss+LiqAuHAavh?@*wDi zcNt(p4MhXVwNTvxog}wIEB)^w`~$?2N+Ydw68_OrvKD%Y?|@puJIy4$3)*|3f6?+K zsHJ(uo$+Z=_EK6 z;(^o2Qi;!iOj-%gg#M>coD0EuP)l|`R1*En?B@{t0>X=+mh56Eq`L&dUqLLX=JYsHK(S zF6bn@8)B)Yk^COW?uA04`yiI$5y&1hlXSM23ri`rw9-pFJLHngY4$#7q?Jy33C2Ju zv80koE~V7cN-yDD5KAV7)Y3{X(c(}_FV)IWuL|vI_9TrVmvSv=CHOGJ(n+>9RAZr) zU;{`cmu^FdH?k*% z@pZ^{hh_rwdqTXIJt-vJ59)70cMt>$p>yBEAO`V07Q?-6OcU#t)x#`J`Lq;tCPJCx_O{oS=NN= zQm7@m9Fku{d=2zcH_%CSEu_~&F3}D4Zi4t0sDB6TZ4mq(@;^ZHN3#~H2Oyhl?;)rk zF_Z35$o>TJ6Oc+SrL+<}3E5MYPn$gh{hy)y3&ekeTxv;rC|-c*C1|HY{5mvmK=vl| z!5Wk^KrkaD($56dEYL|g8zgf;KPOaUpqUH0xq){H=C2LROIFSY)%;K_0MUZbNVpJW zQcJKfBvK98B4nK;i$Wot#EY3N3E5H*ENyR9Xr)>W@)*L^?Mbr+6#t8~`v8#JD)2up z0!J}$2o5+p@`gCO_Uu~j_HH&-Vy8H9VqFS>*iNRdcjGO}&aNHDHYgmuirzsSfzT1X z1yCULCXRM=(LxAKK8urX}k`c^5K6KrEt@z#9eoWXK*3)yIM_B9RK~V(^5y8yt~}Xb)8PLf8Pi35lq_24Z3S z7x*8AM1v;9PU_K0N;R;U#A`*$nM0Gs`4)~WUB-pLbv3Lqy4zb9DGb`F+ zPRv6hvYdm2tSiA5!4U{Wb`?~g2+5Nn73R~x7S(4%5`go3gn;j(RU#HE(G5fKLF#0;E6<-KLY#5Q2hxQH$W)NpDIlxH!5_KLc;ku1R@dX zFTnVfq9Xh?m>E<>@;gXxhV1tc{sGKCg7Lo)2_#=MJkN@fiFT~{u|iB z5s9$w53xu^CX5GwCjt=(_kmzM1hR*M^)RIg^ATVRN4TOY%uPxYu82gMM~4XoB6T1; z4U)4U+NtQ(V7(69*Ml#NHz+ECH-h;V$b|b=h~5U?+aVO@JHdDt*dh|vyTKK)@ZSsG z`xF(4u-*@$Fh2mU2t}HQK1e7Q=I6zi!T4`TzXJAG!T*k;!uuWs!u&pjKLGoOkO=!n z5D4qX5DW7s;0y1k3jGYyUqJO&3jG@54BX#}<2LdEA{F+Xp(=dg-9;f`-WAfjfpd3= z?yIQCgnNIe3jYC0v&9CmHbNkrVeo`80X#wGQyNfub*0=oR3KSXi%w;MI_d zBveS4uK`b_{{@+FUkjnIuU1q9A{5T+lqRazKrGBRK=ww3-UOBih4W@`Mf5g>-UH$L z#0M3<7W@xG{1Nd{uwrno15aevL-+|WJ_%9Irw9dK*9$*_Sok+Vnt}NnrQLlqXDOm( z5R2%3U_AhA5k3^$6QQ~i(zS}NgGkuxArQs}a77}5O^S{vBx2#6q_nNzI0}hCWWqcZ z(rw^g0?wsS6~1t4VAjPxa3{bM=`18|F%QlG@Psd7VIEYP2t^`{E0p#wrF{(IUn-hG z@Eb^lb+gj`0Pdf_7lFv~=${E$e*ss-e+B!0p(;FK{T*Cm3qK*ug0T_F|r-5|UN zSoc&&B*M5CnD>T2gd)8U@E8ssFUyptdn#>wIou!JLQ7kpv;2Y4d75E79Ihg7q4RMe<*ez81Wz#p}R%J=oVkD1tYD`zDBm z{bq=S{Z@rU_I7Y1@ZSOEJ0W=&c<+YrJ>b6=jQ2q-!uKof1LA{_3hzVUUMoHf)sH~< zQAkBKhFCb)DNQ&ZQ%F=l4w(qA2lEpUd=i{bK`i`FgZ&wBKMTg^peiEaeIBeYKq{Os zDorFJ{1RAS2IIdW74cUf{3>`~Q&c!#heWvFfK*if2ZC>jZ$l>h?}G6?r3w4{N)y!- zj2|c@V&VJ{%pZ%NKqjIaAo!`$Zd95GZc_B;;0x~;5DWX45DN2G;0q@MPo%>74aCCz zt@xd|S!u%hBUFX?7s&nw_Wwa3LJn(*(T z&^;j$#=XE6fyjjMuV4yG*uoWoFzy3Y;fYYhdFXzG(g#5%tOtYf5QT&zjE90L!iRzV zaPUQDfx8@>J}{35Ph@#$C80!ktH7>+GYFXohM>9{JR5uwh(wrcz!UDtU~h#~nA;!` z?&;v20oj=lp9SVlh0amvTu6m~9@rOvdm&UG1D?o4_*jKRd@)$N6&3Lwg>v>1axMY) zQb@$}XU%~tvR7E1ZdyVpfh(s)$osgUZ=DA=Aw+)^MMEYEa zpAYs6z z5>jCvhN`fRfGv!pkUdV($Ac>(VfqkX1=VLlAY$P@OKBo`wg|v}E_lLvzCt1pkw`=; zvOM$xrM(cG7wZLKzf@^21M5}by;^CXg{p|Z0Ol7J73NpL`3AV6Dv~_0z!a9S^XPvN3eJP{e5G9o)yF`#8Am}ET{%xJ`Y@BzXY6|ml85w0oJR*6V926yXT#e<1xP7~ck4IKul5_}_;t1>*;b{s^3(fSG|M z%-=xzC-C{23vLB~dna*c2u1QQVBQt%yMrTK5ibMp-Vi<*Qei&~vWJW1Q0)Ux1R@gI z@nEljK%~Mt5u8CVR)Z@-kqW+-p8t!g@I?A}Fn!3L1ksZfeF}IvPbCxx_Zg5r2kaMt zC#o+NF9GwV5QGqm;5Cp4^S{Jv!MGY6kqPT{ii+&@;9dh&;fX*vZxruP^j#2&NF*Z7 zL+?>YWFmPlnC}Bu1R@rRu-^~q2f+J~(ymq7N5F}}7lEi=2iC_R6~^`82w#|=09T~K z`Xp3EBr;)t3Otbt=hG01OgNu`>Sw_dfrvybQek`!0uc)TOCk|pg+OG&{TdiwSM*zo zeis5^ejhAR6|u;Kn?mwK@gp#Q48~8u6`8Pa08d21{3$rX{3ZAz60u10=&uO5zlK1> z!pguFj&OyS^GBuq392Fy&YvL?_KH(DY2lm*k#PH=x)Q8akcp@Q?x3O~90JP*XAJ}* zS_{T{NQJi%+)avZhIk7k!%!VjNO+@Qoecg~upLED0dpI~qPiV25uOJA=}J2T+%py3 z0oGaKY(<5)6XJ6q%Xti;XcEjR@PzL{AR=L24pk9|P(;F<1y5LQuth8~Va$OuuQXvF zfJ9ga!58jT5Q+FnkUbfyPX+U75DD+;U_AqD;fN@YK9f)?{AWSMOx}6$D>`L>LL!A{N0{!ThE|BFy;~A@@7r3+so9{uJz+ApSWd!uW;K zehYzceg}y#Z&sQJ{|NS<6&0z7{sQq|75ZPW{|2F`{-4rBCaQmjP(;g4%CX9>3B@hUs29~geTZd{JB4HjBSAZ+3 zF9u(PBF;mvBV@*q2>&{;KL*Cf!4>}X5PbryPl5AksD4Iip9TMO;C>#GuY&z8NJaQ< zu)YV8Fn_G5aD*$;8x;L1gc(@B0b6*&`7MMZ7O60P2d1!uaWe$M`aQTJ5}B}!ZM^x; zkcd>+cLC?_5IsyG3$i|Nj~D&mi|PPat01gEBw}F>f+rGT4=F0l)ewtdErg=F5j>F& zD>MRu2t{=(B-_E;0oK_{6Xr!=kAov3kqKi0%r^LQ5DVvO@ZJpBTOfKX*l$x*L~jQ# zQrbJfc_$d}g6Q3l3iCbS2v1}pd@tDV1NQ@visXafdffG2zrh)^WI z0`u44i%^(1gCpYKLn5L-fcZ!8|D@<&Aowf9!u?-Jh4XjtMJN)%KiR;~3QM@cxDzD8 zI}V&XEA1|j{R_nR1oK{y{wq}P2mZf-bAK=%q%;xap+^vkL@bg#w1SX-BBUZ%sTV}N z9{kM;34a)j5eS5Tl0sXddO9R$LVOljXM=ez1Q$S52cx017Ffa-zDV-u7@<%Y`ydm> z1UQ$0FOo?}g)s%D@Ma*)@d(*%h=nl+j_`#y4}mZaf^!J$!%#f}k;p{#agYk%heV{p zxeBWPDV_+iFrNh8(;yI`$b|iLh@J_?vlM+1cp?<`iy;xgOCWkVWWsobLLs=X0bjUR zEA)DBt^wms3JF(KMJlW}gZX~(0Z4@XL9jjq#PNu)C}hHjA^n)R9)eFm^^@R# z3arm4Bm$9rSJCf5BC5YrR9H7dCj8$+C}NR_RAj=w(`lqFgH+fLg!n<=Jp?ifoa4b5 z0DC2PA`*!W<{GesExh%R2!De@!q^C|$ToqwSy53H&Im-JdJ4c2?WeJ|MWgGgBK2lE3;6KNj$AR+f!h(!2daIS;wV_<$9 zY!L|KdZh_VIKt0EpCA+p?=uj87L3n9`bDt51h#NQD2#7FRoMRnsW86{(H|fa#$O>2 zp)ij-ov29f4CY;{;V3LSt@M28_3?&FjuGT}ZRQsMYuT&1XR zo&d2hpA7a>AQ07OLMk%hKSu=MJ`c`+E=w;|E|0S6Dw%=mv;{ z{Znvm1Wy<@DedPF+zgS3MfeA${YCs0%=@0f3l9Wi2&(HK*bY$xVvz}}3BE`!1A9L> zBApb|V0nff6sx)Cd4LlJ(T|5gC;lD_sk3sfvh&~18XO;F9aK8%n*T55r zaK53Cu)YbN$V8kf^aHSd2;of-{Sv$kvOk0K7pMwPgd!5g!*}qiuq^OJDyqxHT1D4^ zKMLMfg+!9$5DK;_DzY=cIa6sO6p@HUB2tm*bR=T?uAIWmp~vw5ef5BNJLgsvOgu4%7VN570s=^bQa4r-3 zAri?n_?JW0hG0(7c}0bB0IVy(Jp|E{!F-B%Duho1F92Vd&xKUj&j%xl1SgF?c8Gh}a9TBI})(QN39qk^B+D zV;~mZ9x(SRbP4z(tU*=>^G0xlFT7tVBtnsi=+{uqz!Sa*MI@@fflRo+g+N4q0P}C) z{U7)u`a8tNPEO`d5dI6qcLncmkO<>m;0W*DO1nR#!hHbvA`r0%9|+dJDtHp&5q=9I zVeC`dB)B3J))ZtpGlW<#=P-mNY!Qo0nDbCQ0KwxS6p`RNc6hT$g#R>%MJkM^gCl$q zh)~4Ofb=>rJ`UCEAxj|qGI;;3w6B2qRft9Mb@0EbwC{lXT}8hSfe1w;Vvz_x1?LBf z3ipSQ3j0Uk3-ia22`#|t2yLhuO2Ei4+NQ5y2kqB+D zHz;jXAra)ElL>`e^@0PAsESw^r+_7@B5Q!tRA>ymecPHK_b$pf&FwvMJlS# zfbdxgy#VYNgD+Cyy#(TyDf)77UZK#d!F>%>U#rm73W@MdV7(clcZ2zH@P&OnxWf1( zM8f@)Lc;nqWWxR|1j76rq{8_;cp??n7r+h0^#4F=uZ_D{*6%m z8H6Gh)tev^#&Is6cQ>$>LGl3b9sz-+wB=A0;qhP(fG@&4w31LD5)rNfs{-yI_(R~V zhD^jZBT@7|zM?Mz@1@|p2CApV^D*gt} z-yt~eKls@@gL4xp1L6_Tfc^Gxub1=h166V>NH8YuK4@LsOyYaqG?jJGTL9zfdN7mV*g_I;@S2+SKGyb;`AfhR(d2;R7E7Lo52&YNQL=($VBo7h3<16Z@wSIE5JArynYCTI{@}dh=fy7NZ5m5 z3@Iv%)sTtAR`eVQ&jo)!1V@ziIH-zHWWs#B(nKuSl*+FZo=8P<6&OzdUqm8)qIj~R zPY3ha5DM=(;08*2E;zz`p3+1l%;$qAf)_z1te1i-eBr$eLSeof9Fe?Ip%AjG!FnSY zZ&6gZZ-r1~B7GZJZ-+?4?*QZ7kh~ZC4}g6wSRYl|br4<;)lWh6B}Kmh@%O>KQDhMO z3C!cp=V$K>&RwATFA&@nqPszIcZHULe@}4l1NJRKJ z@O=oL1l6a2_e^k}qv%V)el1vU1^<0YyAGVsLGm^5z7FO$AQJBXK=5ryzXx6l@ejcL z5!gS5Ohi9X^ae0~3Z5`;gyiQC`~vJ>Dk|(>K_oKa{2F`_iA-1-xFXK^4WZ<>VB8G8 zFnJs%u>Yu#u>S z`UpfK7S_kX`ve%D0#|sSRVab#m%;cpL?RZ>cOgv0PaqZ5pDJ`C1V01kUXM2Jl-wKA z`#qWu_%}!&1er)53C}$NoD(6w7!r|+OxU}@nF3D)A`-?lgpX5HxV}PHf&E-CpQq5( z7r|%2ya7C6-w5%a75zH|!aVLVeBNEb5{__1AVOi>3!M9aCjt>a2#g1V|4>LpxKTU? zl06XA!JY2d;?Mi(QZj(*;k&!uk(LM0B3gMD=_{MIx*Vz!t8EgmWSI!hN(t zA{53&V2k82U_KVS-QZpdR!uaNwhv-qj6*b`&}HC?P-McH1Zxhwc}RtQ5CV~j=nAMF z0`oA0N5FU-Bq9^e;}sQEUunX>3XCTxB+UPWP}om|OaxC-^vU2o1HD9mR-Rb;|? zrg#?k&xY!AAQ71e14W+)_6rn!5tuIp?^Tff7eucG|MiMq1MVBad=n(Xdovhs0sozl zz6;#bVrH5**K18{a;8z6Y+2K_sg^NTn{2m8pPQZ6U&gS-!dh#(H9OHT zCT7}mv#r{c(mP?RNU~b9voo_r`la<+yEQz_C)X$DtafXze1DlfR-2eyc!AF;(_1rR z3&|{%oXTp)sSI>a<$HbF`Tw1-SB;^e)%>q9K07njT0Pfl&z0fk?8JfA?CN%FR(}<* z7ipIkX+w>Mj$?A7J=dDHW~Qwj?t%4|4yM(tSaY+7CZ_i(ZDa3y>N9iW#T#qW&HUBw zPwbmGpr4rc*!eU$ljqsCnd#|PqsZ9vThq<+T5WG;y4~6}y=|&_!8lphD20zts(2QD<Cffa0as7%9A0F-`7pdoPz_op?oij7u@bCqXbx*r=$F7QH4-D{`=gm)_pXWc} zas9tFN$yZ*IKEML*LjQx@~|~GV|A|sX%v*f-uDov*yuu9N;W2E_6>Tqx$)7{ckE=p zM*ipE?8IEF^Df??&m7}gS`*V;U<&oj7)7&5v8<5PAn)6)HYI(ZHQ74Qn$+8OoO}8% zgI`kD)zd3wc=8axfpA+j#G9R%p0no0TY6O~*7W>Tog-6$Xpzahx6SXJCZNyYGK`b& z#{BH$pmIzHtG}%a&)aF~BrI>XH8ydDH8wMAHD;!!_?&jdY7OlhvJN&^^J7IG4Hg+d z-ZW=bMszwwmT=^and!M&V=n&;UL{>cu~y_3H*3eqn>>S?gA-m`hhXHtiVyW_v$Z*j zUiUrv*{A!hP1$&DXH%kWxPZ(Thw@+v< z)9<@brDWJTp>6HnzD^lh`reCbv(seGaQ;DMrsj2JV#=FrO>x~gFI@{RTic@Y%@LWR((q?B z|F7`>yoM-;mmIKK5go5}!hHVzUDK0?C}K3Gxq3fJ?@yQ2VYv>FHifo9mu_O3)`9%JvZX4qk8@j^Z@s6= zj~XXXlXuSZ|0d;}zbE;-MP>9@t>Qb4jfwJl(H$tKyqPw?f%;R%=Vqw#Gt`TT_NDoS zy_BEH+wwiC9jogT)6GlOUQo$~)OH-8kj>1Vbiv6SZuz66=6|e9!{gYbUHtib@#pcK zzx!(gTWdpYZ*pR;zprm#xK?S6+9R!#8Y8V$s|M6OSj`nH>O)+l$^HW~lrX!}+}+w+ zX;o?iN5|%;)qeBQ{Hv5JT3at~^w%o&%2;LJ!0reX}$3USH?BSbYN{%f|BK(FGVC9jzZZ zvb?@x#qxb*acyW{YwpyU`ROJlY1`xkb@V(+!@%L%@L~GtJln>}rrviM7q9B)GwgxA zMpM<;KupmAnJL7KM864ay7)QJZUw_fP7B4o|km=7#Oc9Nn;8nN>;QZ-y&#GgHI%(UCeG z-hQigv^F|^RHeWu^P^sC?C;HwA_E2oJLg}%tu^J%9qN5wrxY8j1}KpKpc)Mn?_O?~ zrDge=qsuzifIg61<$K@76Rm^BkOrgM7-#U#N`16wDf4=&Y#_kzoS=`Jy@2-(*KhqT6yaNK zXFCOCO{aj^3$^ZY%15`Jo-#XIJEZDtP))2oV|(WI98e8eyE%7DUQhPS+jh-XTi?kA z)v4~g^J-+M&F?usH6Gh$ro4H&|MTY#P14$P8E^kBl-p^eZ@6BR%c5iJTRy6GhA~uK z6@x6Nn5tN)k}5_vbu#(1V!Sb2(-D;wjeeY3Jyi3&$wU3S_f~4N`|^v^?)F8~)@+_5 zoz9|Yfpo#_lj;LTPhPC*l#{+j&6}9ZyLU=QbL*nw)PD*6#z6m`^Ht5p=*f#eT-1R9 z3Xk$&g6^|+=*W?}a><>Yp;Mkals8)aedUXN1JuU8vYDwLt&bM16@B{H#B6(R+xWy} zb7Y}H(8rE)cD$``q&7kaGh?k;-cvf2`>V=0zlcNXsZDty=&uj(8TLr?r20scp1iTU zxp%Y%ogS%CR`uO`7s^t*X5{_(v>NgX*Q9L5>Z=;G4i|cy*fvHVG_3=}ee;Soh<5X= z`xcI;?`Y8&O}Dt@>S}0s8uPQWRFAy;aGiUjolG27Z6U81lFVsZVa&HUkKGNroYC3{ zgS<%^Ax?ZD*9P)z8=+lU&MVE`gM*E|c{g_cM4b`FzJZZ}k)ubAC1xRyLxKG3T?zwX@bVzeEJC#~w(7;H8lHtvG{l$f!to1kO zs_DARafND7ev(W+%Q7-RJEn2YNQ)%}N>=&uh)VLlg>qIICwyR{JyD;SoG|p>d{ETw zD9a1n*SD(P(~V5kJ2}90DVn6wdfBchpYvAZR!^LAa5O)LIl56QNuyP#J09*ke#{=* zJT}%>sZGyKFvaHL@HvyU_S}x?X6uSw^hH)*#pbN@>}k)}X#)D!3=E8rG4t*5{>Cas zNDCd^KKiC&kfr09J5-s>bFdf}^D~`Orlai}pJ+B))6^%jxOl^8U#;F|>@?R>YM!I| z7=un#V<1j?c|HOc%$rw*K|9zgx`w{+FWsVd6WuVjq1hll(WW#gx5irQ8{|Zt zVcY&ZyKMgC@#)5Rt67_zV!~7YSttjyWPn$A0yH&29{16!L#xOL=+##N{FmgJdkR`ET!MMl&cO`Uk2FUkcK8$}OH z%uKfCc+ckA+Inj(iL(qkh}Sl(t*x!~8QWAEI5YmP^ljU9?ggivdqE!^kNS!+n#8do zRw!sx&t;4?GB7r}C_cu-sy$azCX)q4OR2M*;>U`9k#aW0&$P!U#^(AdfCHTujvVO> zVMbe9_mA%1J+*hmiv7C{UHrVCD|_emsfW&G9dyMCW{G`T5zWU}`PhK+wD?VATV<}F z=^@8csk3x*=-|wZGN{?AZ{AG3YSfyoxiXhFjBRN#N~tu)S#Fzc&9g*WR4x^v#<=F3 z`qR)@;{5SibLQZAGc$8rnXRcHZ)e%EsOL@POuK(zValfAQg0cfGn+D|_AVbC-BrJg ziPOS#h?Cx`GanYChmRJ2w?;--R_M-Bhb}FLBPuJMc?>n`aBXNx6A*rRo%-AwVx@@C z(Sd>CB^kJlMzg(;i;YP}JdGKaR&>hEwHvprX>rOkv$aX$V`H1fHYf{bW~ayUeyGf_ zjqA5;Xi>`a0xN7q_89qz4jj$9iB2&(|IAai@4Dy?m!gUMdUd-?y3_K64^P()Ozf+% z?l4>q>JG9jF>`SF=!r~5S+$#PHBa1Hqzx7CHQMdlC?MTT=$4XlN~o-)Hg@ue0osZc z{Oh@SR*Y>{i$iUmYR{=ju-&6TE*ZYkAPTg2ifb!mIY+yk3 zOTGHcBx|Az6Mffvo7hRVC(Vg$1vD#%&jtT3Lzn13i7K z*KJ&=ic3q<1x7{Z+CBZvbsBt>hx+~~FxT0QD^{jHvH(xL*8 z_XC=QEDVT8>Ld019@L!1D4XlH-6;bzlic&^WZQ-f8|!Q7g_LVFEz?CGKDN1`yd<%_ zUd!!D-UkY;XU!BXXZPgPH@5NxzkC+m7}Xm!(O;PMZ)FX@Xv|UXS+VLXZU+!4n~csH z(ZWch)iZzVyeS{l>X0~9txYy9vDpI@5z?{jk0oW9;-Jtm!+hw9;s|b*Kc0e z>=dg!eP7XztQ}j=f6ApYf41M|x%Us0V~`_9%I>%*M=TZR(~Wjx^zhlk<>?zNKbO4@ zD^~O}y)*xXvE#mOw$RrtuMKd^Zic~`?zQ%78G?C*7O-~aS+bCuvw533P|gyj%Bg`> z*SM2qrfxzlKQJw6(f*XDowqj&r#-u$fx+eTGZXoE#kL!*=9;3=bccFdXs(*;%KTxf z-Dv}sYl_0qdG^rxt;u{jpBosAS(hXZ9IecEvL&CW>$r{nwI_9Z=rUhBE7rF+uk9?K zFxoGw*wlzx69$OoB5pI!Dphe76DZL2k%30Opht1c|K8f)8f`GOA(eW`l0{xYnHMx$ zEzg^nE;{Np>$j{clG^(Zb-UtvK7DFVOqHc);}-qL`zG>x=E|altEgf2f&O)CD}Cp3 zM^D3n{0_X;_F9dJu?dDgTJf7w%)2T_+4>ib*(L0hc10##x zWy}o>+b2DS*?fNTl_C!YlnM3Dx$~Aqc`{JxZ&BnlXUOwtw8fHE*->@Rc&53JJFCS6 zVNGjGK0%;OZ`IjIpe(Gf)t|l!Lq5iV#avtYQ%ti5%96g2M_R1YErFh#BEPuj&7#fJ z#2m|bWEa`gZWQ-9So@!!&ZhxoHB+OS7YR)n%QTwWfuo(-aZh%ZeHd>uhNebaEId(O zR;|hl5v7Bbu@NRGc_#2$Cl~YPh$IR^JJHu!rUvRAVwmJ*V$9T8Z8Ly3=UiR(_vxvOCTCqX}@^mAgHq?%u z*7I_i@1xxerA4TX>QY{=7MeWCo8-LZnkw4pd4r*@{$tp)Z=7u=`Rz~T#O7j6M#H^4 zW15@Pll6}Nnl9 z`?~jUdQMBNG>c;A=QlWM?DLwa;;NqTK#N&TVCBvA>JBr1{VrQ8(MVXi?vTnX8Ew_<-MwuJq+=)EYZ0Xcl#-sl9RmNxL zy3O^*Ep--dxMCBv>0(UOXl`h1pt$Lr^ryFfT_`fg*fR4uodwozN3^D!#ohW)9| zCSQ`JCofhIyR8zV)o%I7i$&*0t#&@fDe8VcpPSO{ZVh*eYt~zQPNDD^I_G_~AIGoP zz?oKN;=s(TrW9mSo=u(U#F*XMxS0%@tQ}zMQfrpCv^MJBH7fpe7C>*&GB4}9gH3bs zIi1@Z3+1l3_o2E$aXh-v3V9k4vM|({T{P(DjyB2)*;&``j5YH6>q8fG$HUxyUYt{T z#tm%M?Y!Z>zOudIkj5AScTSn^sy$w0jXkzO=?AAf)ofE^ET2hm4~JVeEH91a6LeNW zi$Cgk{z2Q!=;yYZ=kj9=ZYD9}=-$AlvGi(76FPUd^ES1iw{%j5xSzyA(R{-wZhx~6 zi0wWzvy0l|vgc4KpRf1l8PAGv?~PHC^SqxMCx5ikH>n%UWp7Taw7IphOzW=Vl=U!w zV>w-K<;%(Ci4AmaU;lqK%(`zjOM}TeMy=mJuZ8ueKb)tbVuiVE=tiN>FH}t z>Ra)0F`H7(Tx3#JfD$I2czZp%ToKB}x=<&Zhw^uqR* z!L@rA?hmosrBnNQPHH!|nTo1dW2B^YgmPS2%<{=_4X>0J3`09J3PtldM7?Ob$*qMf zRmn1r-(t5I{w`mt3wKCHNp&?sxf;F^X0{PMCt zFDK$!bts0MOrcbc$kooaJwB&sm^-cSLY+NBRW>hGlijAKC}pRQE?-mp)P)PnA@pAw z*z{GV*pAAk*}QizCRg0yoXPuejh~fGQ?2I2{FLs6c5i-e+*qta@s)+$x%h2QzSO~Y zE8VU3b9~M}wo49k zaFnmHV%F3-wlm+M3rc~Xg_!gC|?8oMN zm%_B>!#e0cw-2#ryWRn1kkK<1n&@qE%W9sNoYQ+6vjgQ&r#5tY?|P)MZj;?)alJTe zt&f%s^SVZT-6p!J@`auy#7*^$n_ILvm|9D_64xtIh32 zt&dS|@|E$TnYitWv$S;4_Vn)6^WOEs^_!b(v=&|DNwH#B&c8Ml1!&0>vpB(ghFZ1?jiGH?b1v_^o_c79wv-Ha zX4qD9t6S@DR*YNO&0BU%x4sRL4J^grlPyTG(JWf>!>!R+lui zw^LqNC%(nrJwEI9Gp5KFw(9ic%oUvyw~)1bPK!FUY-*;#hN}tP_0r~wIyuH|)!Jn< z-Q}OLCeL!@sTwz`iPGA~%%o9d2g`Q@x3O5E5l3g7x_hq%AoKYQjcv?5>t}|xeRm4V zt!+ol*Izq1yJ+c@6~=|#d&cdQ7A99ir?AV4zk6!Zp*&l(Dea6Rqt!H3jHdPkD?gfJ z8`N**_qd2_(MO$B9&gUp>ZEO~Z*HxnY3{k*)wxY!SW8BO`Q-EXzExzxw1&N%v0=B^ zuy3y3yErsmYz@5aZHf8E}jm>JnQFv@Z>jX#nl}v2RN(HkSA7M_hYy zaUX}Q8NHI5imb-x=bLB5dbTYMao>c!cKP2_%(MCj7z^^2GOu_GgKoWr`DlLLWpA~G z`(0Z$7iqoia&3&ZFrLAGh+7 zM;$p~g;PCzbkE?P)q8gD*}JEI&%j=OUVj#*n`P0sL)#H=v1?EFM|IDrp>t-_WnM-u z9A&2lBiuZZ;yl%=xWjc?f<>?9+0=QJe`u77;?=y`p&E^gry4fa8f((xc&%Dv+?yX8 z%hQ^*I`a%}D$EmYG&gTp$0{mQ)Z(n@hl};}N3H2&ttub3U(80D$^k|+M@KH^nSzC0 zl>SB6xSV@h&CxloUw^rh-`$6)TM+r@u+H-jwj(atvzH%IgJS9RAF5Z*&?6O{wX##n z#--SErh8c3PK~=Dy1CUGKR~T0ZfiB{27?}t=QlX}X0v8DX?(qzgRBR3=T)tIJl!1# zs#)4>8}wj|REj4Q*izN(HYKOfdTXVaS36@cb=aLlrITfA=ww5ktxo7zHzM+D7wy;U zT&HrEU7hi%c8uklO-|$f^`dyO-?_6$MsuUPgnIZzlX{}f5$aQ?nNjCMY^Hsvv!_kB zl65nAcIHs6Gw)o#X5$w1ZEcpxCb`?yJ)Ux6RNObA-j;hxYn19b{k!fGUp&lHjg)U^J{EUj1mzz^xz&Zb zqx%tWv2Cw&Jo)A79XfLAiwhGS($d1TD4yR#HCmhN8`ufBjB{@Dd|R>Ojjo->x6PAH zbST`cu{W$;OGRUs8xNVP-Ldr_3H#|^I%807R_m7AZ55sQMGa4PFsLSpp{a4K+Yy)U z*X!g9yu~$vgdWryA2_VX39QZ*q2bBVRoi)dt9WW+q78wrq ztTr3RxF0d!eN^5D(1xweo${mS(#likMg=FLGw;cj@);ev@`ar)eLKo~wVXNk`n4_J z(EU8xb@HXTw!U6Bu6XKOwM)H`<_H=K%;ifJZ0s3pG6>?)IPQhyIk_>v|45&7m}=d} zRwS0Rmn@NB9_i)r=o;UgP&~q8ae>FV<)q_acZc@r-O=rcOZWM8@`W47+8fq+ zESycy6J+^NAHBMsJZUk)WBssyk{RHUBgAM8)Cls>PEpX8+jOsd*t+$!HoZf=^>)i{ zk{{jeIt+u?s`)uM-l}P*HoM$gb=vM?&eb^{J=d9UZM6FOPVBZpOE&s;w>S=P(>UK= z!1m9cyT*JNO<$frcXS_PXO*tp=a=s<;Q7I_Hn+C+bt+7E!yV7!+%l2puKJfRr_e8N z=$i>Rj^c(VH6=gK_SDS&e4523f8FX^w1ldDzDVe-aBS($8}hd0|EtiDvm8%eYL00G zRSv#()>hc)ii{w6xKiz~>xGp(zK@SJ2LMw?hxN8~Hu?qFNPWuRFAVv7GUA zHu&Wy1w9K~ogr^e``7Iz^O?g$ZRlVz!f`%&+pN}84j1;D^yyq1?e_2-%QgJX7d#Z}?tMyOFXw!N zrTgjq`4g5GSNasT=JIcp(E4q;W3L>S|KkmeOLzDcInN}O~p0kJe zQW2gyZR=YwhFNPa^NhXIeAJfO;MggHr|%umiQal-b>$#Aamn%hTZhZ{>^;2h=)mDM zm9!lmku^u`Jwtn%E4lBaiBj1L7RwUKqkL&l3llw!Zr(!OT2|#}bgcUpX#utJ*4@`v zW{bh4EZ1%(J4-hQN1I1a?YX1ey%o`0pvqIo%g&iRx;3z8K-ZoHpw(p-nx4)Frn`cK^4q)qYZE|O)j_Er|j(Oi=F)3fz*w;B8tz>Vj zYgJ%jTD~(MiE1aJ#vR-0L*upfu7lH^M{Kn$w`knMXD!NxJg*kY+m+=ScAlBqe%84o z#*BBaH9Eh$MyGrVH{|&onwau*`Rbj#9Z^j?&|naick{ysc?V%D&mzUH(6`kL_bmSB zXLhXn7MJepE3?NaTNFK8tPLuB#SA0E<{?YV;%w$r`=YIa`4*R+deyni+v>Y@tBda# zVk5^?@ts8a5(zzDT-*-K^I+j#en0h3Pd=|2xaBQ<9g}s42LTq=Ej87%YWaM3=|y7y zWm$;poukQjh~$en98Xao?&!Y7CHwmLt{DxA`v>;2B(PJDTOa7FY^3&ROVD*l?Q|EC8eq<_tl&pJWkj<{$=a}`d??RSb!lK@uD{A)M{K0Y7vzVE5S8@k8 zEt-tS5?OyF}kf5c?@8gW{g&mah{E{E*hQ)Fe-`&^O zDK|`$|6z8V(3>4AZ}|iIERM@QnF6zLE59$_R2CZsA^{R~)o9|WS z@=yg__5% z>S5#9H!LpM(N|_rPwnj~N~|L0Bz+WLQqbxULbjB{nxM8u}Wz?C`m-(XtaEy6$a&I1yMJH*T%=aC2$_iO9 z%U2vx3);$nHSE#rW>4omc`w$-hO*u3IxiOo)U!HrM{C!pwsv=`n4Wv!qnZmd-#fTr zamkLpGJncCa*SDY5_=F9%F#|5AbsascOFEpY@ir*b7j#Bo%~q(6U71L&n4vj^1$sp z-rTc){nnoX=3dybZdhErqp!>!qwnO=e=dto?#UuPY|SR}<1%iNxASNIi|^f3@mX(g z;1!;|=(e=Q*ow)TUS6llr+tW4aYXrd*8IcAoB!d{z|8l{iT54fvAB3kUztHg-*IJq zl!`)5t@|hH+ocugHi_eaM$<^Zsi2v1bP##mQ~%IpeWe%@#>qyRIj-xc+&v z-dq-`IkpRuf5q_}^M=AD8}5ov;l7?8yJBEfR`-R|;|5V57yCAw*L?ekzH5d6AC{M8 zodaLzS$rKQJ#IN^&}(bxZTe_6`JTg08_M@>w)jekMsfaYiX+OGfsbh;;F2A4<%unf zD>NElDdV=fiSj&-93fEtP^Uw&_$-dP%=i3q6m>cOl0Ckzk#7g&@gjAY`HLHQ^E|gG zc~DRzs=PGw)g}2K&P(^dj$tF;lAUhF#~9noT|0Ecb?shRv10vlO%4`MP+b<}wJ^l7 zlnX<}j^55vo4!XeZ+_Nr$@0;Fdil-}D*sMWF8|1ty^k>5av4g8)NN<(_y)Wsw@Hc< zv&c?u(pHvEjOi<5c|^iu9gz6w zl@ropIdvPehT<#Pw)3-W81H<^#E5QW{1Y4JmTWC6&P(&)vCfjr>0GIv-7`Eb!6nTSTon3E1GV)WZ zkDgH*S^A|YOXl~*#tgRoY*@Ql-*VPp-<=2ds&}FNIo6$Oi#K%fy#c*XR`i{om%rh@ z&MM;-3um^l$~e}$$ap#xljC60ogbj?>2a}GY1GZ(Z9UW3b7~E?8P2rF*(JE+mM`;< z3h2+V?=V}u1FQHHeg93qrlr0A+G@xa_ye6=YQ>DX@APtPnD0_Najh2%^bHSvr<6~TlJ!lB8eLbXgmfzrUs|m-2gbVj?c;Ncu8p3EW7xBu0~%V{sW4-- zX1h7^&j0p~jCYQD$vejfjwmnm=h$~VE#47Se2QVLs(hR$pzy&ieAOw^MA`rCF45EirCWLQl%VNf~3bTID;p+QY2-v|Br-=lYdgSz`}W zIOg$Ne~Xg!7OpB^uyxEkixzLd$)ES@T{E8Hl#VX*`cKbC4X5A!sG<9Ve7{A0Io5X0 zsW|>_G(T2OZtdR6IB5IO*zR>Ih~xZqlw0$BA10qrqud?yjv$(lg)K9k>r^}#{FtGG z<-?8nUc`CbILQYUE$xIJS#)~6!-j5eZFF}p+9ws8^}03j|B-g?eNi6EzJLDqRSfJL zGlXH(B z=L+hCfZwNC2t9ub#X7j$ z&*>mi_~ogkIvGEO-1v*(4=$2wEG&f|Eml$mIDJTNo%)ichP*f5zP84;kj#dCUoDM7 z{vfq&elQ!}SZR~b_Wp7;7aSu_mh!OTjyoo{+L1VBpIkw*_=_1ULunoK9S*!___2Ma zTn~kDpT#h4q^v0ukF#(taTH6Q$&Zsk{Nza5ha-{9J`s`ySvNOMG&w<2wnUSm{0q^G zIP2L3vMDJ$reGwUZ&dhodJ=7J?lFJn3vhLwV;^Z9_P zT0EN!VW#wmY>|7U3tyKYLcK^#67W0<))P*=j@iV6M32j7^^_BaONLMQzbLU?UI#jx zHwHM!YOU^q+*T*lbSw0+ZBI3ne1V~1AMiCIz)|@4M(j0Dsg;uOEN-3J5fUIsx&k-Z zyO#}GhOmB}b>&CmRJvyUrc;|(P{>NR8IOZc9*pg@gaEftsLlWMT@*kU-ywlAj?WDF z4NER4ENkVKDH)ZV1=gbf3?plHF6Ztw2ysuH^V3=Xl#+133BuxB!!jZk`!*>9-{M|t zBl9F(cc&FYsT3a#+W`D(D#f{_Qk;kVEAtH$S4@qTYn|z*q-2VMlSI?uJ1HAZOAYLy z5<#BME4bVKaLKac#$kq=-?Wa|)$4Zj?RE~Nzm@@!6gbNk(1PTm{M>2L(gcK1pPy1w zn0yn%dFbF8(EM<8mN6`FL?=v_Px01ujIOh2TTQ1E0(wRVq&Th?&CZjgM7R?ud6gA!wzbn_W(PsqK+5Nm<+$?k8V5Kuh>)75c zaPptuI^-XM;^!6=7gqEI>r%dksa($EutTQP7Mv#cNLIS%VX;2L6XrCxr@X>E{*62g z`j?A9BV@Mbk?hB{9j~i+OHdciGy)6N+aK43>d&)KeKndbysngL&rQ(v6QhZ_9;&q^ zdEL9^BPQu{-aI8Mr2ZR{Ma0`RJ!2VE&7U}YZy5#B-Q~EAzrZ#n(u*>}etvy~9qdO& zl!X-kp~I(>gLlrFUmFTRhU~^`dqC^iTv+4>6F4SUBPhl|A!XHtQr0PLx0cj~xjs;D zb{e2sDx9)^<<;T6S+XsHU$B5$V?yJ6FcJ}-s05DDbw{kQsLzWMqYW>y&joAvHt_{xHm<8{i8Oq6a|5mPUn1&w`SkhNo(CL z-krse_WAW8ZRnLk+SQ=1A!aR7lYLwhX361PpF*zp)<$W3uz%Lto?8r8v7P863yw!gU%Man}js^n=um2 z+hq*bms3dY-Oor&(;Uta6)?@8A3=W-{D12m;F=b#$EOl4XVZTR{hc);hBj zahwKiRd@@23`$IB@?+#H_L*L3p=A*Jf!JOQvB%IdZ(j{93*jI1ZGyM~uU=n^!>N!B z9Z{pU#{F;;L!U^QF?(Q;;HQ}4LNT=^_{DXj0}BzZn9$3;9Nr`34wZEE$Oa+->1u45 z<8y6n8BCR{lA^ed80YJH!e|@6hB}~*&Yp+KAXW4xCX6!K;>&N!YI*QauWFrB`OrkG zV3p%z%X~OGwro*cHUOHPdnt@lmDmt{g30cyNp%iVDF(<7v?|Shp z?F2bqSx&8`)C#i-Kb0hj>mFjb@(ZHb_wx_bQwm;%?wpEIk>x0yYZ&!kbw9G6nC8nI zu}pu~1VR4)H!5nE$--eXrIClt1H*2qJ1q7l4w8%LAc5Ys&b%wUvlNSpyGp9W z*+8bvR}Wimz^&B-@SzcO~ zX~GuFO2JHgJ2g}9(KkcyBtM_L+aOrtHe`4^yD62V^l&A~#`#pP(aG8Aj4DE_N5;Nftjj!=4Ojs-eEY4K^SSq_$ue zwnO^eBqc^Gnl=Pzq@r1%FWFhA!EqZ)GFtedW;eKSMxH8ha1f8+^^TeY8Pdwub%i!! z0HIKHx~|-EHQ$j;1cmrSxCew7-P4oi`}Y*hV)#rsLNgw#i+nj6uX+V9M4!zlCH=`~ zAJob1G2EKlI}2Mo|J~XA@AAeYxbiYlA+T;TRNu7=(|jr9*`1oFq0UuBb0Hi)lfAP6!;a?t0LnImzO-_3?iP@=Gge+P1r?;2(=N$`~yZD?_*M#V|yGZ13j<-Jod z3Zf!NlK=&#u8tciWvmC*W+exV6WYK6`toJ%h%r1&8^gT+@?|D_6@GvMAUd)mLgk2? z4WA2+35b#uLE2fK1!XS^Q&bf8Io1BCF-L&Q28bcQdaoOLUsuYCixMqWbZ3~*Sl?M6 zRJwV%pgYAPWG46hT^ssBT4mN_QNrSLI5>Df%6skl@t>Ew_z`4T1}*WXO4(w`oUW7= z#V7d4j(hMNhQ*YGVjN{N@noHmKb4n_?zH(Z;@l~@Uy-N~d)ERTbc}V)R9;IVv>!(`m zkaUtDR);cBlI277;!~z9j@8Zn6d|tF&5F*nn!Zrr76c&) z@G-Ukize$}9B(SR)KTWC(*MY{vvd_w7R)smaLq7G!rzgreorZc^eNPmtD4sBb+bZq zNZ>M%4}l@SmpuN(4NQ7tB$Wp3?3Ru}hNR#iV+G7XTsSMPAQk8TM=eOZ z&)Vm&=w`)zGc41iE15ThLeyZV5?ueoBjAe2dccqN=Pruol-; zP6X7LQWXx5F73O%5tPNMZYE)IW8F-7@7^E^okb%D=?S8Qvc=ZFEA6Ashz_KWeyDt8 zV!lv30YzANJAr}|x3$Hr)ezB$J|vB^3z`UN%*rQK36-W(au234<|Uoff56CkQ{4cZhpiNrm4OKI(27ZoX*(P6Pl{q1cfp9|>J6My}5IA8nk{4y& z;K<~hq5!H;@?}n)V{xe|6jGGi_Y<%A8PAN zi*D4`j=D|L##oQkOjj6vXU5_@-b4nDiG z_6OhBR*#SOsME4l->E&41JkZsm594Pw zF|?0h$0JwQ{0jotJyBNGm2q9Sh^DBY>qsXG;kDTr!-*;$E& zDIoE_$DMs6-R!Y{uPBA^6B7%oUVkL+)1_=&_@@kuWNp?TkQwiG?+mRE-_@UxqK#kT z-9@8zc-%YK)xUk?$afz)gM-ukMveLLV5>3l4Ju%H($f zpj3`TDym!=-KxwLuk%E|+QE16q%>IbLfD_gcm!AXNk z;lLSj&i9WGt2}scdWWJ3@Cs3M=XC@yQg%O&x|b_6Uc9QC*|&>PZs2umfH_DkDP+>! z`qWaAgLOsbFXwHYb8&J6VK`!-(WAig*yy5Z-Fio-Xcu4TF;Ub#=)w#yvEu1$xE0zR z6>@i#AcOiiv~s+^QZ8GFWecC@e985ZsvKIXpFDN2NFqw%s0diWUid}ugEMl0B*)M+j z*o%XsI~22u5y`{Nv_;Dj2u?AA(LrTnC%tu1)RY#UKVM(onVfaKX<=(w>tRT-=B8BR z%I(XiIddM4xC|t3)D1_M8iAnVoiQS9OFne)_#dfnR81XCM3!L&ZHi2fmuuUbD?7ik zj@sIG?fKT`%Qe=s5ZAZ3u)UoA-im)MZLXJpK6|#X@hHArezqutEFy&(jav3S|6A?~ zMPh`DQkcII^T)>~JajDtVOTs`epH)W*k);D#Q(as^LX>cPL0KGEo|((s%@^+7B*hh zp044*t}Xxed~11oySBM?r?&R&`TE*2Z?0`DiH(c2zLl+oX9=Ol38A%Ts}X~>jpr{C zdDirOo`=0A0;^G^Wh@6;ReH@&&_yM&WV<~-ao@FJh}*JiNb&<8t!=E<7C~ZT6P0NV z#R&{|HjNMgueD{6SgAc*-dcJLnhT3->uWo&8h2_dYdaglaHS{`3TxXSzx-QV{L|%E ztIHel)%x1T)A;wsrlG#A*W`UGU~4ht7h7xC2>Ht@R@a>>=AdrX7HZFlBdjgGSYOzx zJ%6$Fd~^gc!V6TYkxl+Vtx=r?&8dJO(c7jm_<) zt+nTA@1HI2BsSb!e6qZhKH&!!o<+oXs32|}=6QDkUr zZ@$=CO7z;^d9|Ki>})M8B?A4r2sgSC9Q`Pz$c)#}qz*^YEb7-vJkTk$VrQS)uaB3t zI#FSP|6AHw+uRVJEp2XS9Xk!!aBC-F@$1_5a-+7eB?en1pC{_y_jMutRTH#`0-Mu; zyVed;n_5i@X1v-3s-!Dv{feeR)Iaol;4o}$viA}P;K0^{7MN_nCBjRhqAJ|@iiF(@ zm@^UzI`#U=Ca#*G+(Xd>MRiMST5!X?VuEU)B@q_Uf6#N*trTrNm)y})c$J>qq4wnE zoIQZNTj0>HZX?1rD(i3F`R-onlji1hpS_Es=s?hkpDvv6yQW&rGWTP8fN0tZ>+ajK+*~#>g}*UPUZ6^J(d?>&x|DopN_iyIu zOjw_vP)pRA-vyDzVQKi8}2sab|`=bwss_%BEDyk?X!m{j`T5T?V4vox~R zGEBqVMfCUQ)IGCPm(J;ChkC7?#6Rjwo79Qqi~hnukb7TfUE2IIJNxDL-n5WXBh#sQ zz1y4qGWq)dCf|HFX=iFI?q3C?d|C!yY+f%DU;$U>lfT`0k^{~W-?A#zIttpy*WMo=5ns` zRHt3+faa5c=9|mao5I|2m`@BQPtnIV?%m|pF@@`o`vc6ltg~?5Oyv1UW_zxV)!jdG zG<@MRGehg{AHE|~Ao6bdWxpF<=}5~T8Ma0(uk-I3%qN0b!FDvvLTvc_R%{pv`!OeG zq23uT12;2iPS#4|VZ1}MSV)#hUqX{891c-QuTS)(#$!evnXP{($gKeL$!%d4cPdB? zvsXq<`&lM>jv%Nc&CwZcEIuAnFrbtt?-kDx7? z%4+iw_>7~n;nWm&g zzNUMrf?w@9ru!V%VkF0Gb8(-lCuL;5WO!bmp;)i+XtJUV%fAj1IO@_guFI5MCi-c5 zIyG^%hkijXhY*nVpgvm^x>%b5X$6r01EwNbw26Z>!7biDcgG1hJ?5;xT`RtcNtUZNFWz2AJ?+_a;>&=t+Y;*E*c z7A#k!tq-~nGx$1LuElcHK_P!|mnPoV6@#Gf~!%5uj_K&?=UrG${e~AtvcT>n4O0jwQv^Pm&xBzjyCp_o9w8Xqt~6+ z*uC^z-bbrdZr9_!e61oLHOhl5?k(Oxh zkhOuZxQtg;t!;X~lJpu()e1U7CyZtUQ{r+}0AB~m97(frDj>-V$o5}s{#gVn7e5EF z;v668vlFEq_vK6ZcQLSbo>sxsH8rv^AZu#A=YLauqMuozwMas-Q$f)uj9_1rB8V^0 znAJd9u4({zcopPo4st!Bs5s#i%Vopz`i?B!et+ujziB_h1(Q)H-wgFhCGRh#mB>#( zLb$Tg_>1eJJI~e(4Mx$IG$rdjj1UoJC7cVRbBLQfr}a{% zWO>6eol}w!g8P&8(e238PC}4VQ{;TXT4g@X5;at$VMgq2jzvHpI2o3I1EkygCs=6+ z6}!D&1_dUnKU8D+`{ll7v7?%|2Dxl#Zs6$Ek08ru*drp>YC+m^PsoEl9Yf=^A2)!= z{l0zHf2aN>a~7Ophr?mct@<513c+mOjRx~3oisWo64>WqA}OIm4rv>3w>sa=57RIO zLq?Qt>mtMPT9A+DX--zki(!yHhngmQ!EGX;K?7@yAsd6f8>na3nm!Xd_H^;;ZtItK z+ZB3+wc^r-jCP!+hK>^&v2Ha@Q;2*^=fMoeVHUU%NZo3HEKcgo)&&C9;OgCi|3UIT zq?`@#KiDPx9#l5xcV`B(gXsr+qc?n=73vHXDBUl`dWB3TX(d8RZDfvV@4Qj!ALM(6 zv)R_!909UIrm-N4`hMemLzzq*uq*kr`%~{*?`b$SXL^plp|By^ZOR7OcP|)qzEjJ{ zHsAd6xa6$Vs34gc9xJiq%W><>@6)Jbt$Yn+1<4HLD*a!=AhmL-ATu#h;gy$s}|+-0`G z>AD7FQ48G@pU3W`iNgqCtI4$*z%m`4HH3DsG8?1@zn6OG{$%j-GUQr6NEm2~8uT{k zKDCb6VWLyM;e85aX1+B}d~514gF;W6=Ml#M((0_y?;PabFv#>q336|)!~R48*ty)v zjjT~)$nQTiT106w@2}M4t&lj8#;4XV98&amlGnZRAM?^I5)EQx(31KAKq#~@KUh<< z_a9PK=-)N@6L9=HAPdIS#$>AsT9sk+Q4-SJajsp(jq3r~qJEmTcAS4m$!yIPT&5am z*^ej~nC}^Gtv(9n+g2ZQjqRA8p4%<%KO{-talAQ5CizrA?zJrcqT{^0`?_r-E-*}F zgJ9*72C3o0`ZsFR8b>GgL@%GqHbVUzpawHf=lXL~ws;mBSFbg5E4ZAUqirqCuy8xk z|0-RUA#;U#{Dk8WNEUw$$hQXaQ3Of8%tG$;3BOZew+aHI^JPv7J9Ttl-#^$rD*&Hu!DYm#bOg#CVVfElnor zA`PXKtH=!#hqfKZQQWJ@R!N`xmuwEbiE;6qXtUc)~vY zVc08A(Yj++^d4j z$#&=}dFxzs+8{pI$9ox{eUrz-i|Ga(`y-z}%~1Xb4Zu%T=nz z0Xcrrfg*mkhI9Ebe^l~&&D%O846XR61ex&DeQI}(Up?XCVMYmpR+P~+<>wSZ^1rG= zv+wS<2-$E)I(coh6n_>K?8CBxC9ZEa@M2^KQVtR`cMJ*>!vnLo3-0`guc z+a*ZucN6LcAK%gob7yv1<{j9mzw9*3en)kLktT@{C3S>tPb*-5+AYU)71J8NJJ!YI zochxBhyDE0x6={%4Asf4Ru)klBphD^hzkz!t$ZgA@wr3Xx+W-rz5z%1#gF$!7jSSB zo>Q=9EgF;CDf^y!dEm_n%|iJq`_pcVjG`&7;;8ND<(xCGZQaX6nea2KY{Da!EKIr0 zydQb^?8OZLK92xj__7vZi_yD zD1lgz za+AoOhWjanAl3gS4 zqGyz**PO#lp4(^kRPv@UncOb<1aD;s-c!M2?k6)oCl@{)oTdbf$1K_2HUPcMNwq6G zGG1Ou=W22sir`kO6#3R5+_o{(eL&j-oHWJ zm0++V;y$^MkB2CB)~zUhV_j3=arNF@$oBalTuW`VX?Imw>h#<6Hl1z_y`tGI z4{RixU+u>kyx8qUtee4$Mcc$*NX-7#p!<2-A(ig#+ROj$nA5`x>WBTdKgb z&bXuC70*vJj%q{;S{*U6eo30YGX0bOZ)oj_%oD0VD;Kab@Aweu$}k$c0=tmFNC1G7 zzl_dP$EOO<_IDIU0stHWhv7{9W{q+Qx^31c<&Ql@@(qv0jD~+VG`f>7f+i5c%N)2X z7Pb0_4*|U|W0XGvt51D?oYe;qI}buMHPA0av~rJD4c_4uc;1LY!Mn8zJQM;uN!!Ss z&fP%$gGHM01@(h!@sZ&@b9^#GO#uSXI{F*Tw^V&PbYw(xU#^3${_*z^5ON~W zKh9tO)@lu8`0$3_CGPL8=|j#JUY($ z(%B+42y0)1tVfL_#ccgQ68&i&nCrv-#e=p~r_rv~98lyd_(_6ygnuWx`U<$tvBLS)1)#PPy6sG<<4k#!tJWqtkdy50|jH=mUn|N&?3!{eh(tT>R9~ zjGsEV7wyIx;FK@7jQy8I0i=V82nm~0o6?(e{mR|DuAcMUBFP+#&&GZ{OxJ}%sREH? zIEPs7!ThzhZP$LQ0=cxWpGU#_m!K(Mw`XQZPd>m_=XLMRTo2b@H{^YpVvdbsVJyWz zdTZ1p5^5q4kiK(L6uhb|&@qdqAjd%>rw176<-F`soE=}-@5@#_ppIX)o~uL9R&Nb0 z_?^Uj52hL~jPJT?YFXtuU0B+;ZYvAxva%4^gyH$Bd!)+j z7{8+!rEv8AHZ-&M=WtEBCu!NXRXlV}%w}&2mK%zZ6cu7|@++^|?#gR-{^C}k zvlWPN5V(xB2M2|tmw$V82%3mj`Fs?#qJLV6`^L+xF9JrXPG$}DVm+!}CL2ec_<>25 zm!h!b2KhNs^#jA{^q^>a1#z!|Gbr-k;avG*>T@XN*^ebW^zk$Fu0q3O7@;w&AwnC> zl`j&sJ)jkn<)Y(dbd?2NW$%Z}cm%cN=Q-@q+hz7pZ5$56#O66KF^VB4KAf1i@@WX2 z&1!eB*HnlRfei$V%xJG{9s)KnU_+k*%;Aio*HJFqBJCPmcK%W&S=s;hav`u4%s^XkQ%3V85fYPg6S-h<5!DmjIzKu4=u48B1AF#wdag*PmA$ zQ9Dg-KlojRHW-4&Bw~MdB8zxLXu#?2Los!{^~?&oOMse)Wy?kehHNy~E3Vw)@f?zW z(mpD~uq04k4S14cSSM2emm%^Z@>&XqDruJg48gwx%)wCKiAIq)Yvz;|*J6bs?JCkP zYFNTj7g3-eus|f7inLPUG2Lk}6?|5mA?zQ2efdXj!Nu#EEHUV1y$Wsz?M3b|6g1%A z@v9`n_+4AtKz_3cdFe@^S!hxzqxT#?MCkjRd=qZO{f0(ono&Ra6yM?s!rfCrEE@Tk zq{Rmcu}jl*2-K1 z<;oN316s-3v&aBz27oT70ielU@|#WSS&Qf<#S|Bc;8Y4}^?Q_^jt91Fz@7$dBP`%} z3+d>FwZZY<`)Y?i@x&%iqYp_Y2F%owxu+(EIN;vy?kYK4s)nO5;@;|8SwZ@3}+4A(P(cIYBc2b`7yNoc+ zPNDWWKQS3&B{~LKWlK86<`gN8hX&qk6vapRPxABfHCTfH>$iN?;W#-@?4Azy685=y znOj_?WHgy#eQ1)~<2brK#(Eh7XZc8MZm{5RP@jz2FC}5%bqXJt2D^EFbQ@UakKJ!Q zAWlyj}=fK4B zrvYj`f&z`j3e|`I@e~!vc;# zl3#ix1J2}FJe*|2$kS;5EnH`In9E)pU0VnA5qXm0;6MciqSWS3P$*uw!jAX+# zR-gx0NFPo_`ymbI?A{R(?r^q#9*>$f8n^HB8-aqL<3I_HmNs$>^*2_r_f38+m5N+K zA)W=TM>>A`Kx`dx`#HxA)E>6R;Kq8q59m15Dv-cz3?$&p1V!P!t6CL2#$Smvg{o*t zaXn*Edq_B;q?^b#3OCjhH)9-TRX`%z2tdF&nyt;GDb(*PnoGMo%zHlu-s_0>;<#3Z zno>hvO0luH{anFKhj`Fwfg%h0!4Dnl$;9C})ULvL*=~Vh1&;WzQyrWW*~c$ae zHSKO0_Di13ishi4_K=Du>^Q1L*zr-z8jIeJ^{a@=)=b6*^GoMF<8R;`{N-QlO}dUH&ZIP;j6EHV@Jx>@w^53K+$Q1ZFdW0gEb_ zV}*%|WFL9%K@@o^UE3g)X4^~GLhX>7SSry7V8ZY*0F&17qfw>3| zacK1)Dl?rA4kavaQ0-Sc*i~0D)dr%o=Y$Kj=Anxw7T1c?igfUO!)fgR1?S4=;&RU<0K!Kfn0!4S!@hHTLxux%+7?dpXvyO zTt!8e9OOPP(8o|CqFRV*CbNrzP6ab2pQ-yE{ieLb;J&)kogVc1>Tc9=D?gEhbI}|S z^?7GepLbuq%tJ=bK^8aXG{fP=K2Tm+u;*27UB>fK5nusI=L!_&Ihd!e)9UH2G8Ryw{XXwu;9PdNgl-d_x&Q-7*#p?oy^J2vq zk<6DhImD0X?hs_GL8)MO6DV>b07ok)P$FDZpbjqPG`2Zl^zrpRa2PWW8Al&q&M;CO zWH8C(^SS5{L@kUl4t&!smOo9)e|vK`_jp*cTRiO!oVFW#?U+NQeBe$6N^o{i(3EMb zxy(pVzKK9I+V9=*JEi0`{a;jj{`_#dj}#^QNer5htKc#GSTQu`3!}Mt$h=9fh9I#Z zWOnKOJ^JC)QomZwfhJJPRbl^~)XQOE`trdTAm5CFaYWUAfFq{X{$_H(B84VEMMdi$ zK(lWK;X!l2-mWob*eouakjuvrzW|5F9$siGP-r*bhkdS)IKkMu5sbHF0z^3OX35G?cTL+J#+6aw6J&elM4JrQ`ho-!=8aS| zKGvPdl}r4;`rtxn3(If!STHJpKPE_HVT21e-f!bzaA(0XXU1J_8{Y3Io~f?^8GW~{S^9?%J3b{} zll(ctje}YUu_eEN#GSR#%;>pqSiA1aWd})qQ7FXk#2s!*a@QmW>E*NV<;$@m4vC1R zyWMVM72c837QTH9$tNTaHvmGyT73J(X>8%k`+{LosJ=w5D_tqwv97|a zba`p*+*bCv)=%=J1+(-<6ek2exZL?KN(PO9I1+RNFKKceas!ridFNgI#P0JGHpril z(5%83i`#wx@r_;PbZ1g$74)bH71T~Po8gcD4gab`5+6+53(bw*OwsY^%{}kwM3zJF z=oeozYJ#}cel|CnAJoxvaN$+s?{y2=2Rl>b`N6ZJ?V=pSTJvKL;xK{OP{Yt~+J%Kt zHap}hh}rm~qB<$IRZ|Z}OMg72w{-v$VkT&OjxIUq1hkV}ZMse+2+j|kG{;k1 zpud2V?aysMtVIxPn%#kz99H$;p2g@2yrz1Ft~Io;;{^?|dh)A1VEv8S%$<~a`%BAX zYsQW?#SimXe;qjszB ze|?}%&RA}*O;xb{^(%cw52xl2XTxj!j}sFgUB4tK7C`X*0D{^gfAE`DDA(8m!eDBC zFdOUD1mWbet>ZvFRmh5nX#}vkPk$mFtfZd_+NaCl9wRuAHHO>e>DNwIe(VoD?sYa4 z_uAyX3EiPa9j+Y0fkWsFLD+KEKn}M2R5k8AK*m?(d$;wtLpi)#A_V*r>q!k(nd{<=I!`Un@a|guoa6HLDvDr@3i=TL>2xsFFR&tu<^x#tSrQ+uYcv)|;p2 z0LQ;l-xYCj9SUr?1+(;M8S(r+0-R*nV5sq_};*fhm=F; zBna6F3lN0*CGMgSaoQWU=gV9)0<^2--T_j)ow2O@II<*FbQY%X%P|M}t;4MzXa`>hqQgn9Q`K0M%-V{A=_I zMg5B`IdwVt8cr5or4WCH@NDY0>k6T$vv$OYa+)?dW243{*%bgBGnPsS3Yc{U272V!PAM^{D=|XXFMnieifhixpg7NF|DV-y1(${* ziHwO9GEd{>)!~NGlsT?1d_%YmwTB`l%PCMKZvx@jC z82A|gw(qwEfJ-!ubOO$^4irTniJ8zxHN(JNDv*w?BlsJZjlqob=Ay0eRFW^&SxZu!%&sy06+eZRgnm=7{`r! zP|E-e36T*1%!#fx3*--}60MYQk-fT-6f#>9YGI)+Pd4hW5^{!GfGDL`=kAmfsix7;GR1_(Vx9O7ppeP zZjzmZ(*KqiS($B*&b2xI<*78h0>Hl1koPDbCGq4C>Saxq7BAM+uyjsiO7A~x9ce0D zTbY-VP~>6X7Qi1B0Q-Q($ADdcPcJlst0@H!(QDV0aGRZt$Z-RiUNg$RG`s>l%?Ca? zt8cSz?fkBZ)fF&B#|SDDKm2(&WaYDhzy`a1$77c)1G~%wM;CxZ{jC7d-ypvY1?Ttgq7x>~y}OS$MyHF&daz;Q;ldQ_53%Xmk*cNX zAF9MvDf!sar|JNZCR3PaioH@%%kV^mNgG@o>kb6R0AMZN9srx+`zSC)dqC@1Bas|I zfxE)7aUK;{jz-9y)nmZ9C26i~gO;#?gTr;=Ylu5Un{popn(LkuC+%a!wD6E;lP`rsc65Al z2u=U&&xHK#Yl$ImG5T{AncG2__j_7!`l&G}xaIsu3M_R!VF0h@HZ(MRcX!IsVTusa z&}=p62%I=#opvXjuPGXRy&JS?e}C`w@29_iYTth|P51Iis>;hx=wm*u#^&GX6Rk!6 z%?bcT4CU8u2tX#!{YF8V4_Bau;@Esr7}|Bh@1T}D@CF(u608 z0k#eY=NA($x)Ik;rY%lnmb0X$RS*~$^~D#neHB7xIZJGY8U(Sc!wG2w8-v z`ebQC*aPDsxW4NU@M-AO*)Eh2?CA-)Hstg$eW`N&rof#f$(>SXlr5;!6wT>IPyL6r zLjht%OA4wHdC6@SVMy56?6C%!)|0DQ3BaKPfH2ns@K~$n2!%&Or>6~!FtpEx_wmLY zi@#DcuRxgrVcs>lG?0rzE9429G2tV>hkP1TkDr{K&PY!g&7(?O1CD$m4q(U{xeZ0Hv}M18#oGs5D=+4)5f9WKJ7Qih(KnGt^=jQKe>%x6_4ei z^7YJkz%%mYec*UrRk9{KL1YK}XY|AO1X zH3%9bq1?tk(Vf=o4sPl%AX}n0H&xM(1qFIZ7FK-#UdGXFJ#m*2yXFr6F2>{9(Jn(Y z8RDQGZZqYpq5Nxk<+`o)TL9>KfU&TM-3QC{N^!e)I=o!K!MA1+WH&`Z3XTg!@?w!J z#*xZhcWE#sy3HccfH{nBhSYczVwE=O_SJ{|f-REt6Xg2RCk+kn@Km zL9Dig{m=^Kln9}`2Vpu^?QOe0Ft?or!hYiIBEWP})}3OqvGmBk|I%Um6I+g?m&edt zhv9riyeV==bBCphuL5wsjOO(f0DkW3?k^TP!{Zb}^zOj}4|F}a@BjWYy!<}mc-Yk_ z;Ud86n|%^l9;?4QoymUU(DLgthciD}Gwof{4|F`(>6-$`PgV&a90uUDKMc;|5{aFs z(YEu3Yx#O=_OP4H5zgYxh0942`7C>;6gH~~62&RsOJb!sR{teDqee%=cfYF_# zLB(yZQHk8eX(u=Vk{qDi;LBB^YG3sGI zsNDfvg$-YF;N81FkqVW)k;KWoNbDaFXG%K6hr@W$R^`4Nh`IZr>>sEsN7`bjuGa|j zmjMt!6)iU04P8dr9(%JE&;XpVyZK((*Cls z8+8EDlaB~FW198p0LKXTMS5oLrU2NA1i-l)ysCO%yQP*}c2}p=psJ${|BSgaEaf3; zjldakT#Pk!vnJ;3#=wx@0UrM1zWdBoV;kf5d)(X@s}_X7om?k=Nrzj+Zn+$Se6XT? zP-HvveSB2hnG{YQ$Xi8x;*SsSl39kVfT+wWC=-Qqd5B%$@E*q8*g0AZqr0TU77Fs) z$^+@~6TR2%H`sC^uyP9~jtHS5M2jHacSm77*JONYArT&FPaw8cGI4V1I*!9a) zJMeOd4`aSpz>79Pp0ER6T}JX4YV$&DwjJ+Qs^|PhQ%{M%4#3#)gTy* zP;2vbll1ASD*quvg|?-g*(1s4smm;yXT`#HiK*YUb)jL8(*%ZPlCFPD&W>RIusuZt zs4%B9-1;G3Ej6>pv_Vr%!Hl-(1X2#c)+YR5+PF*1c<1yPksJjLJ{PNx{h|nc2y~FcQ4w^69O8eDCZA!2-tt$Umx;*l1Te)32|LPw*2wcy zC}Y}(b(&!x?VvbuWUgRwhU3DKH3EI_Y=fd1z{;}GpOqf!ha={DN2$YkYH<`urffde zni7D#8RrcF&}+;9Ey6&iXTFpQWkR^5)clz?AMf~dJ3lNB91}l%@j2ELKt2Yiq-Qaa zFiZOk^HD}zfVLR*VW5v%%o^a7==rh^XYuI)DFR zkz+6_w@&&2MKw>cQEEH%Qj}vd;A7*#jA-o7nEJD^kN4Z<izf8vc^B=377GrALh#9%EP^mI{o!-@-VSdTVbz# z8S0r_nWZzHH6PnPL$y|4->k3JznykJ1wp}GH0aALbG|%P{59-3idnvhQB3JVV{+Zg z4-!lM0smAnxW&UDlN1`@h^}G%V=kOOjz}YMdt}S*Et8hIyleol6ixAS3AILnbE)N! zl3b0t;=Cb16J+4wJb(LSdVug>niyldL^AR<4YaI?6Bh4OmpI$L zJkJR$VUGSh;^C(wAMOu7Oh>P{dh~g&FH2fDKRH(IWJwVS5-yqDpGlPQ12b>tbni7* z2t#&lQ*_?wmrw#Fl_>U-E@i$n6ITGxPomdEtd6S6X{6*}Afrfq)c*3rS(Lqy1mIkS zF%Bq6g3B8IX@vUM6+%U+p=V-S^>YTBW-y6UJ3d-y*c-TQ!f)ThyLW9n4gp;y;JiX| z*FSs^9zGcH@PpaF-hmHm*HEfmQi>#|pWBgK?Kju}zcd#%Uj29H)$?T_C8!Ae=kpWy zUA{bTwV+1s$-@1azpP>g93Fp~9)Ehf$Nik@L~y^~pZle`@#5Ly@|GIN* zjjR@RwpC^vS4wx}qZy*>*93nuF@`$yAR|xrnZ)9!0Jq#bCb}$(3Hv~{po60F?G0#(-DZ}4vQ4Tb)Il=C^3I^9P zm9-ezmRvyN$r>?m)oR|lvEX{R z(Xk=V{n1T5dOFeCkB>fU*cEAU zg$?MH#bqK=HTe;PAG^e2V;f2x4?gx!qOxLFcu+}-3@SoSZ9UxHh%LVT2koQAnmf%& z1LV|P*okuzv!2Ssv7vYV@KXNpo*%iGrAg^+pf7RQ^P0(qOLA;wOl`@lyw$`OitNO9 z-K_h(*&cOGeSe=oKHi)KLCsn2N3DCo*1eFQm5hJOZk_sxPOBJriLO0*V5>g3;iJN2 z6{T9N@>6mD-s#7^Ns2u^RVCp9V~4leuR9?z_VN-->&_Nq($d$Ae>FE)P*)7<=^TmW zrDBM>%ZN0DDlsAZqnc%&lu-J}fPC>6AFUvdjPdzJz19LhY_g)4L`Q6{8PJo$Ym>K2 zGqe{D8Z26N#% z*f8=$v3L>3-*WP&Y@qFc`KNA`%uP>I1}M&d-`amYc+(36 z$JT|nQl+ZnyLzJBm#b~2c^!n1X9X*T{7aoh`Y?7UEfXLst! z>)qEc-n?nOz_C*b4`5Ybf5aat7fJbzXe-)<)+PQFz7mghJ+zRgF6G)se;xaz4>nm1 zY2xJZ2eLmQCgss(?BJ7&_;xlynS>IO__|(JcS$8-cfUSxD-?S9yp*BrbML_u!+%8Lz*U7H!mBhZD$q_v!-clTD7}N2*ncj9Q`EaYS%wWHg9vm z4i1sfdND%iaYG^X#t{l-Oicj>ZK5EFX2^}^Vv{a)$dSI!e&LOY)+39c^5or6*eTa`im9H~gfnohLWdrerT<@|KS@I?}_{Zl}}lwm&d(fcT!)of@^* z`f4~d%j~gfjuIq7#iHE56bNYCCV~1H1+>%=7+84iv#3*|I|rrW_DiQMhMzPH$|uXU z4?j7v*Ni2rU%u=WpJk9BaPfhax=-*GCL(^j1FpdZ7cd{9STRAVa;Sv;@}>Nna4*Xx zdTx^q`q6fK9&)gu?cIMf-@T*66zv6b%mS3JJ-MeRnV%P*bUA8#z+RvyOnwW+zEyjj z+1j_$^r&jq*3N2Wy=BRVl384qTg@jq#f)6kw^TXtvP_koyK|A>0;8^1*Q*tjL&wjb ztlUl4JZWtg)7=Lg_{h$2W!#&7rrScnRkC2?r=$XCbfLn;nQJ~I9u-xG!6}n6?h|8U?cTs~o zYG%g0@;uBrvkb5DWqoqn9^*<{w|c)Jz@ZI_YJk-OMU(jKt@z7H)m3|5GmC{d`%GRR zrmGEIj1SsdBOcr?A8dA_`Mf~y4cslru{}~bCPOC_QeTJBL?Z~vQ`{g@>bd5~$(8u< zj2@Cj`LCG1Ge= zu2eS-#%$<1^nB5-otkI)sks4v{>%7;bbciO3GQwQH%_~;TbCMg^`pQAD^VXpY=KvUZy4z`=u(^x?rleDH(^7kF?mJD7gJH?kY|i2NTNCPne0 z=Y8Gcbu8%h8>|u5^01FyzdyAbIs~LI%0+LN6+BX~&HiQ}O6w83u?a@KzdqsMDO(pAk>sP-B} zsJKHuz+NHqEv~xu&N3@Kx!b(EZeqa~>;n0)Y*^@Lgir%wig@h-g zDDi3So!9q^s{7ic@FJlaD0@RQVFEA5pZ{ui4Q7@?r?YU@oBDJ z$U(i6qZQ`8D$rIoXl-+h+rq6V-e?qHd@#qVa=}LNnI5EDXB4k(=CEh9_La~n`Y)Cf=|IBSrG{kL#jL-KkhD=$hqHk~hI3 zWrP^!EBRpWn4tvSch7!ydlETTK3lHFnRK_5G^SZZ)gks~OM>N;xP$fU32IW_DN*-n zdN3#@*@KfXRoutg4*RUdDKcUtdg!aPzx5_$3=8Kkz2S5VU-K8ll0W_2Dk^}pNiJ3Y zuSWGpXFnJP48aka0-6{!I31mBUg{xQLF7UbLsci?=GMZCEf)sy}_K0SsXxU}}H`U&%NW zd(f1MY%5Vl3fme*eEhHK!@`#cOd>D!GxSLr|KJkEdkkhB`5<+<0ff0kY&}8RwZb~P ztW(PrRx|NUN}Qr2Rv((Qp_NzM`l9(F!8K`a5b)frnE$2IGDG&4`l@%sSykz^wbaR? zYi$Wv&y2)zbCf^0Q$O|xnYBLZ!P23HdDW7gqU+Jt06n}2%{q_8x57y@NizJgy&1kx z3_%Xcx7i;dnD+q{%$npSuZ~KdTuH|_LxV#snj*fTn>Rf8@oNv_y$OtzzFIh~hL`N` zhBb?B!(T8C%?MaHiOaPIP0=eBS6po*HWfOYZxbHXAXcWUWlhh~;qe2+?@FIpjW3>t zrsmJe2eUrsD*iY1KJ7#SMRpc?!S!wveT!v)#eg2>h&S^8WOn=rW)F;aYL(Wz?6*Hv9kdbfLIbCdSI4Gvv zS-D*#Xq757>zgA9X;j3FIPB1aIaTbz9LG`0owr>u0u}- zZ`8B$NplFqC!>zl%(X1&!wg#6;Zho8OCCwJR5Vsn4!O14yoKI3#v=t@U)B2@Rh(2& zJIoY8pHR|Ji#frmsIY$qwL&QAe*RRsdedv@tWPie(++VVt8jQ6yiHP4Y`aK%^?g&f zZhL1n8h9V+V|Mwt>LR5-YIrd9-(8CjrjEHd&U=^FkB2Dri;Jj81ca*SG>%XsqBdtZ zbpl4NpcLb*G0&6>{cG2(`)ty)L-Sdof^M*;7O(VOjB2`V0%=@2`0uL^z9_X}9(+Hd zH*A4JJBeOFGBJNj7HVb^Ba>A6C)B8=3i~hgzl+4cj=XNtq7Gc>SX=E6D`&dyr9fu* zrSx&9Fyk-7`|2ET z@Va7~i!HYOS`os2ia^)@Fl7BtM>RM*it8r`u4p!C7$TS^_GQS%Nu_Q_x(IhVuHNv; zd|zS6vFDxkUZD;~a&a>GF(fl4Ycuh7QtGw+Hw4$Skiy>D7~nrUEfFX7R2=3?Ne2PC z`rv-2CE{H7VAui+V3QmpIPlu^w;6lB&(QD zu8Zgc&}*lh@t{5$;SEq;UI`cPUrR%Z=6bl;d_*KcTWQ$X8Xe^uY56^K=wrw!=42^g ztmm&jnuMWv|E1PdBxbSyMHjC zy=#=A@!G*6p`FWsI(pisidgxoSdF53B$RL31!)iVe91m+Ij2t@Ta_mhUs(bOSqjxzc`WJI*bvP z>GqF$Z8cqPcdWM$_1Pv@R>S=@;z7hl{@~Mgozb{|KDNrN$VL)J++UUQtU-OBk2 z588En?Sm`T2km_AmglRq`*XI+sA$$$X=%k;heSoU*8F^xaB0^-8kdX~TQ*xh7j=q} zH+VdSg*|Ary4{0Qa~!fnN6{;2h!wUbmY(3*>`;ZuX=ryO~@?+s!pg;Wa`wWNRKtMLbqjqZ$8G6>zv|%X8+}Wu?(+JXIFb zv)d26#yto%U@YE+KCLF%@6z zX?u#P6Yr=R8q$x3sn%F_l;eo^gf;8YV!wAZhZbw9R>!mLL)te^>S60E{JzDzl38iT zC%u9=$;fne9B*W*zEhq)+4SW-vtn5vvNU#cOKP+Pv9ovm-0{YtQ}W7&4E;L$^FH)X za?V&#-f*O5GZZktJm{ZGHO*d1bzLIW?gQN)w$Cn@Kn45kw;qs0lfugT4-e<|V`%xK z8g**rq!+&4f8)D6JjwoJ^Mm3i@>kz_L-_qYejl9~8y+v;DcHhbMDOpxJ4Ce7*FhF|2BYdmTA8 zxA$-`w--0$B;Sy|F&lD{bA!{JfIPK;G(?UfrgmZ#d7>XlVa?;+U9#AIm3mCXCBA-a zim%Q>eL~gl$g!ws#Cyw_QmR5Aziud6L`xmyMtB!lDVOVl!_PipL(Wls>B)=IyuKm%n36pvzwFbeq zK1=zVWy_A=@xSJ;;$Qbp&ECKC<^i?#rJR$27FaxILsAdAXcL~A zoY`>;g!!Nsckh1me+Ypd^{Iy!-OIhY7E#CtKTWQ(n)1X9m5jxDfCKbu6>TWp8@c!(#xUH5TX#~<{OsN}zy|pI1PMceqdnT!)#+ms%RA2wtZ>N5} zHSaw&D#>P@?TB+!Kl)CV8Qj`K_Ph{lu||+#yypeYYMaU)MP95k(eY%70geRUX8#oN zga|GyP;_*{qsm@WA3m#QeP+k$*;m;|jP4-^4Tmu*+rC)7stsA!X2ij+<5sWE2JD>w z^atbI5B}2yW9+SQ)d+Ni1oWdjAmz!u&7;AEox26jUFE=SJ_j!gf8qbae^wS~vl+U( zC+giiQFUdgc*;`kNj{>00y$>eI#RThd!acuwig+lsy|)qtZr?-cwXClzO#m8$fd#X z$tx#jnK%@+wO^+ez9`h${Aw|mRQzo(<_hIB+!09w?Oe`PD0_yba%^*p(=%2`GxSU# z$#qq!+=C0_>qEr?T znwp*X23<`5jeu@}*^Q3tR>n3YqIfL!1b23+k#6!GPl9zjx29HELcaPCrQz8_YI0O& z&Y~+;P}I7FjJ!s8YcBm!0WlTZwR^vR0xoIKP{o& zZ;{J(teAw~F6>Z`u(C-PX{W@O?e8nk{MN2ML!%5yBs~Kzp|86A&ZQR4e1Pg=XJ1NP zjEF=G<`mx>A!ijPnG?UU|)?W{kjeK;A^`iJd< zLG4}p^z{7rq*wFKfUc{6*C^n&b7`S*O%*)SV?icRXCpR=I}o24jYoJUJ9Ii+oXdk< z>Xo3dSY%XZT=uq< z8jQZQ#UNCg@ZpV~i498ZnUKmSzHCpB-=GT70!?YqpT`%lD3yXd2L6`|d6rhpw5qLQ zVBd{ai_Tp{PJHNzgB9TCvG_QRUumee6pPPi%cziZ@7P)&ayBo4LSLoZJ(JPHC;*}c zrsy5mYNzJ4&V$pXM27J8h&N{g?&X#*c8l@{w&D*2+2oSIMi;lM*%=94B~yj<-14EE z@C)IG4KcBqSXva#G8M>qu2hbOCg#dH-9dlk)5^zl__0egw?|_3{m(L6ZBF@6OV}_P zctH6X`Gzj3eK&6M49RhWTBwZ*stlNsZ(2bpoW(`(oo{GZ96d3eB;O7`fqd2TTWNj$3hv<1R^bpc#$sdX?g=|L{ z6~_^x)y-u0^mIil3@=aR6HIR)T+1(Tr3IhkmoH1%9P=iIGqv%P{~P{QV>w=r8UT4l zL^xiQ=Kfyj%=N$tVcZMjO>EE9s6pA=nJ8hY@rRfVTKPo)2nHLkhhvffbh7|#ArNk|AE6E(PwCjLPPunv}m_+wqRjm%}a^ z^jZBJw=w&Bn|(N7AMA(u!}KQ8QVg%pooGFF=}Hkbg_v3X`ujI>#HE)%@UmOJ{E-Jh z3*3v{{z;z%DC#DcxzUtYlp4}NZ8-e}m3NFy_s76Xn-K16k&nO_@83{C|PPb@X*2+nH)y-B3ep@_!`K<5YtCN(AMt=}zNE(wxHm zX>0GL350)w!~cBqfdBVB|L+IiA3H=PQ7%m`zKCaTJgTOZAR;ABGPFi`;mSWS#|1iQX}h}UfMj?gJbDr?}K$K8KSZssgla!Hg>60 z!n{P@3$Myzf2b_B^3gxyM-Sc*Y3R&Pp6qq#kvQFHzCD&IZyWx+{<4EYpu0f(PtvWB zosv-MioZ&YVhV}uB_2Vs39kxyD}rDhPvk%KD}l&3Ag=7F_NT5~$*F11Dh+|dkF-l2 z4^_f+CRt<>3*8SVTvTTkoV1>NDw^iMaM`L zwlu~9(T3IEM@CC4D~S1UHN(J6)jGd}dB+V!%}KQLqFME=%2aB{@3Q_YEQbGTbYB}H zbBWjxnM>7aSW7{VFHK@K?KAza(^_W5$!&R`nJk_MAibmGX>Z9Z|9oLbg9<>Rc6?G3 z4rm*kCG^rL5~8Lp;`~y7I$WAZ^r~G%?GfVI=2IM)(94NS7tTQ3kicVY&}3ckn_7oh zt6Z^0zlRl57us%F*a&0h_>Vp_GYKj~;)w~YvHK5`Y&5wO?c;d-B_k$Lu@g@513PoS z)SnDvWz#ZkUv5L(;cYA$4;Xh%cgcfZuYUx47y>jEIKhBA7qWzckPgb~l&kc#;#TxE zie2P)a*Lmo5TWwFB_>Am9^FAjh=_MZ&ky;_g5z{`DUj23r+zwIIhlityQOUun48P669Ubp0;>lL)B}uU*%7srC(n#=%LRvNH6IyO3NbgLD_F8Mw zFr2mluee&H?N0q<7&D?g@%gl!h86z&(KL`#6mPZgAuS-F$zIs|)uk_RZx+Shm`-n_ z;6*I!-n2n2fV~h$I*+bEy@(tyLW90}5Kr{`M-p3W$;l`}!=NaB&`n~Er#E3Ik)hwx z(s|E!$eFPuEuD-^CkFhtww`!Q(7lX%o!!QB?^QlAF!<&4yH#5%M7K6Jx0kloo)i9w zRC+*uv0Vfo4^9s{2RQaFSh25XXga;y^rH}TOC;o{F=>>R({|u}J+hXor>i@j+D4+Q zoFYhmN*L-i7%;{~*(AFqE$oGOkUJZ%+x>~wW4#I&!Tf~8>AayU zR?eG_hM)I}HcQa)-7$1ph)%l-2sKBJ>6$}x(g#!>bujVs+FW`uyT{5BlJ<$ zQxO4{QNm#h(Y(MTYAf17@}(y2@!sxug4;_S)zS?y4jsSVhKJO9Il4vHfx;Zf{*h1` z!M(w>hkF;|p4YrPQEjKfDF!EAuXAP8M+&eFPyypf$&<71nM>1>;CGJdkvlBv5LioxFPjM5m)LeL+Z&sgfu}Irr8{v)2xfJf=GVlj^Tr2dsAAp|ms zJxWROTj3E)BghEu#o`&ky-Hpi;+5hOp)P{Zb?{RwVW!Z-r}@eDhqGhNO#g(B>!SMU zg@3C4$+sMK{+k%C#2LwpA5#8^9Sn;ROuI6IX@$m>!5QKa>}{5s?tv^T##}Uk|DyZQ zns9YGn3Yq_t+_jJGDT7+#{-DPZqFsb{2zWUxbAK+>^#d_lf3vU)2vmUn^yMr?uu93D{t7yE`;gV~$8H7GqwS5&kCxP9WI}{O9og?U>hC z<#Em`?2p_r3joK#ush6aRs|+LY`o`I-YZo>Xg5} z@Na+gIE2AzdIpk}u~jD+ugnt@z)x_43C2MB!o9W6@)%Kh{KtoP8?naq#nu`GXJ}C? zN~fVaA{+q}EFA%>!(=-@x;M(Y$$ku;sHn5Pv`3yGCoB{9p-SvHV=s8a>xy`%s8q|Y z%uhQmx13c~UxQT27!B)pssREW_6W0gYPf3r$PVzdgYi z{;7Y!efZnp0sp{%~c4)KFmC6UT7~O{R}fp zypZlLiC7LTp1aiqi*Esf2u3kNqdH?V>AAdh52dy&|OZ_y27iVf1)lVhOIxP#Q z*sd8~EgPCRloe7r{x6QcI_Vck_}psj*_A%+TJeLVm|ksuuFrq)&uu+a4|E9j%)gwS zbiqD(sgtA=^s^PK(!C}ezPXQl0KN1+|M0eZgy$6Z|Jp3vYbUI}2oqL;Gqe>kEjEtw zQU03``p{j@252g-<#_VHKiJH``C((S?@)3#MfS;29^hD1kd{L67bsb zA-De=Mre4#sQendCi{=XTzmi@Psyj0wX+i(b z?%_+3p*Y&P289T=h_#WojY$$DjT6_lzBXa?8{N)cDs%PDZJCixD*4pxE$_TlYVJrM z9J*qP^%NzkwOyfVx9U{!DeiiXqJDfnmDDR71d~hK+YeOvZ>he@kmpY!rg$gHbQlIG zHTlM)NMBH&5%o#>xYd629LsJp#qEv4zP)5`zSi+{(m_c@vQKZyY;Pk}pNgru*oK1xs zK3vy+n3y82nceG_k&gdY<0tHsgCpe1ftrNTbya@nZQ>s|Yh07!Uzgr|I~2w%W$8*` ze5DSZI+mjfVi76JrVdu-jYg3Yf89Ql&Y@A}WuolAooGJ=L4nPfjRtBx7kgE&&LZrp zEx-{3$>jKwmaZY_Amw8WY8rs;_4$D}XYA&R3&UuqQT%jSPdlwDt@7XQ!D zlSrut9=gE3dY9i1)G{*JzTX^o5p!Gknw^WWDPNs>C z;{N^HPa=KU9O|MBsE`GOvW{f>(JtD5@V`~d#ZQ9{lCm+ zJ8ZwJwQ7_9^X;^Mn;BqlzHKZJ#gvmRP468wC-5qYv#=*I+AD)d3y;zK(+KsiD};)( zgM`IsO8LHUUw}+s_F<1iG0ex{p2Q!F@xR}`8cN4O`b36kqvPGn4iAo$xp6u)h*VRP z4)Z~zhtU?@e|`9-v4oDPoCOPRVl#@uOLu`|IRk-G*XoqN2A$FrxL>OZ9B{0g++iE; zap7>EItG`F%3AeLS$Xy~2@m^LkelMfesPyUq)TZKDON&0h;+$0(+80*w3b2^{?H&& zRzts`Ux#$cUx#(dUx!t&s*d&}5H`1{6WgwLrWH}e1n%;OmYvXv!atxo)0xUYbHvz( z{eD5KnuYm=>LAjkG>CLv9JgaGksW3D?@p~Vh;)ZRq&wVI(Hs=rA1!Y!Kl<;+=A-5R zR@eIv);pwrRduv~8baauLhWg1I3mdc{e0Ss{D*_1__+f=>Bsb7hnYSByGDxN@W+QT>Us{En;>a+qDv zPYPeo9>xxN^q~&T_@_FDbP=xurzhH>x0pl9arvoq9IsugQ<^jW@{aPq&-ZNLBGGnY zaq>T-@3@BB)_`+V3s@=l9l)h@vuaatGJ}7dx(F*$mi7DE4EK-5&oru*VV&zGmd^#6QTI`6~(kDES)lx{{=Bb z!3Jnpz=?<==o&^3^w0O-+5a~&Ko^z4h0_kae3?=?{%rrPIiymc?fxs3VLZ}wt+SDS zTm4fcdF$6qRW6UGYo>cr;)?H4@&j5~1UDld_iqQ0NB09fBE;g;_j%F!9u zRm~f7NMAO;sjNuE(*95|ZK|^QqlZ*wQcyt1C+jY!!OKHnj5>v`A2Haj)j1_`-V1MK zqF&qxUVN_~ikE2t&QCykF0i@f1>vDx)TR! zYjR*o-lqs{ecdISA}K*Wlr}B*pgTCWsmlr+)S-PM$qq`yX=>K~@r)M3ZQ)GQSh zeW`QIM3ea+g0#c>`X2iF9+|)foAubZfTUL@xf)JbC`3u%+DG4d3`ji{{c(?mw^lsYz^&&LnsDf z&>DIRvs1Yd^_rfLulL@d2oJ89A}3_F^k1I@z5fZ{sObGC_(_IL2Y4i?*TZa*LMoYH zu=HFl!u#&Y{S!^Lb#wGUt=o)y{ZItiBS|oMY?~xi#1dLep{=+t7fw#vG4M3m){99V z6dPJRZsLjM9;$caVf(DRPp!&#_v*j@em*^QZ~hyCrB7OC^Jls3puK86xm4d1gF^h2 zFa>I%m)X2)cRjUQRrjelnM;2z)qLrL??T$L&V8Wn4a;mY|72itwy1s5Sz5M(x-8SEKlSN#|MfDa(K3a+k?l&sU;8x54k524 zezo?L>r3as{11DrKT7B1@L_fr#j58Xi-o%d0h9IijmOWvN9M%eMTCEr6zW)g3vBb+ z`KG2kjN|h+@J~1FP~<4%uJ|=$BKsC@1Ixt~>5=8hX=}GJuvsYDhVLSDW6nx!n&%%t8cWt$t&^sI5%cta9<8{U!Ec=G# zQ*7I|>E3YHz)Akcu2m-d!Z;z9XN8Rf%r5yPohNBV+TSI0u}4@bssMJ?b^kwWZ{85c zk*s^y-})3yUmv?MO-so3j7_VDix85q1jqte`<&Ywi^L++NCHc|pZ)zk5t&t4y<*Sk z%rR7Tb&(Mn85tSN6C`RRpZdZW-HhmwKD=e&(Jc0I-|?1jpvQC8QU{_x)z~NmF1H(8 zj1u{RaVB4Qe~H=9w3-~sPQ9vH9p!U7H>Jm|8*bYfXYVii!xZkp#Q21Vk#$)@JA9`T z*!ktgU>&0e?=(m|26H#=1KLG%0`5{Nf~>(JuyrxHa-m^xI__<8l5nV0#HTn~eVTN% z$})p7qt>WX$a`*!Rm_!Il=Xx<(;za=+2`h^CC}I>wB5~rb$RgLZS$MiRd+!fycAlY zYKz5oKX5iKq_NT@_2c5h`syE}7J)kF(d+!k7UvwLC3E1Jx+KLQ9iDtP7XS&iyK^m4KcDCadhBnsv272vu>~i( zv{e4CFhSQD{pa4CR2Q~%_$;gd0mV+SIWVaaySP(})xq&CZSt|Ubh}<%7dEQb==Dzf zg97M;c=ZvH4#K2V>h~k66PcG?%~?R-m)9Y7j4@%-jWK;<M_NsvEMw3foj>YdE>nTz((?^l=eIxdqVuz(^aJomoy>)Z zP4aiTnBsYsl~ade`r(qO> z1z`qzO0s{#;p@16-X8tn=lS~QgMR<$UjOL4y`23wx@*#gG9!g7H-F6(4#ri`MR1SZ zyD%7G<*x5fJm-v}jy4k2p*+e7S&I`-<81 z1w#RfMSe(-I5}TF;-y#3gVq5*fqrlu)C9QgH~uC+p7P_MlDT-90*>aQ9+f&8->D-% z-z7~V01hRW)sIt!K=cxp#SJ}jE#;K60wY8$8mET8TWAyfq11P|LNI8d+Nf-tCjbQP zT$k%a>}8@E7Ud30wYAd)4&TG1w6cF9mermKod^ozq8v{TlF1UbP0_?2g zn5G7p;FDv=1DoXO23W9D$SaSz1dW}-_z7<+?_x)jcd-NVO-l!Y&wr~cCH7?+z*X05 ztD617LYXUrP^33lH^cTTI}?;KVNS%o8urGwl97)y`E)+tHw6^@Lg?kqYukh zERG!sF8Dac%r}SG7n&1>g(gHC<6O2-J( z$+RIsUEG`awXCF3$EKvsvr1nAcXsd#iSmQN$FshA7O);%j>ADpOFA5*?0fOB;a|4n z#`8in($j{{{S^C{Ho-t84?Aq!iF|}R#bf#6;_>htIG=>93aKd001|69l$DYi*d$@W zC>Uz?cSim!=77j`sQir{!O8Q(BWxi$Ht_Rh@tL;5<$nEe@Z{|97<~KXy{ov9JqS47 zrB(dA*vnkP^X2SrY+KpRGHMz3P1ZRF?C08MzumeY?D>M5rh>oyc99)=!iRd1t*bk} z%jR||e?QRAZ!%O}e!^pZLBdqp5iwgS_9x%9_M2>Ba!Imx*>Cf>M@S$`4)uPVpuXpM z$oBZ7mHo$EB)bN;keT16HeZwntIGP55--)pex=`D-fKslvmZssBs`HK^o7X(JBIrK z-fRr_;1N=sGdNz889E+-S8nCrLb(6H5wYK#@mxlL;WILt@;)7+t!on)lO26D_LPy} zyOPDvu2ojI#U?vWD-l5mtmAx>wuqBe06dWWeMDywpMNgPu9UcAzoe>M9jvm*fL4BH zliiBowBMR^UV%nd*gNEWMSG|D2O<`^hJODqbbtKFd8?8r8f`=!xoEX@VFr6yXs(?K zfr$bY<>~w&^VQj)MFFgl8&~!EKs(2J&xRPcVGZjpd`byBf!Y$PYgN_lyS&y+yCUQVk{>P5z8|KgL^TkT-bD$P~Ni#&bp3!G}*4VV5d%ZKUho zId&mPuJt{Kbk_3fxt&+b*Ak0F5X_65r28t-7_pq2eR@gtSnnnf&KW0n#)Zu(Fi*m82sVbO%eAjjAJST6R62FR8gk=jh`ZED`Wjj?u(^F}8c( zgwq9cJHC4#{l#AQ7jM69vaKCUpZ}AFija3}0p=hYZ`NtcRBJRcjs|uJ@1~;gKXj4jM$v3vz?7I37@g)P^z!?!^Ed^Xl!SSx?HAx4H zI7u{aMi3PEle0&PNZiTE>=jb`$+yqRau(#rMJ6hLWMQllE_YomDXXj){5O$PEEnE% zH%6t72yeLv9%Bk!eUr+Q2aph|Ec)VR0pU-;oyT`$xbxKYPFg_dz;q3b5wzfQox8>Q zDwa#aoiS>dBm7zWWFSv^X>9~QO_+B^M^@7+KVo*6yz(_w(L6Q>JlpoIdfox`W5~CT;X!q8P__^CFT5%_Qfi?11ntbRaAs54k+VlE1 zM3-+QK8YY^k!kqTTRj64?~P#blHiZXRCAbT6meCDmakuXwxVH)hN7Lf%OTrygE`JQ5I)Rl0Q zZAWEN^g42ndnMoDFW5K)Vu2{DX_aLC+*rt z{eiqULV;O-fy_#$FpYU?NFTi+^KWH%8KuWjUbj5`bD)AvTrh65S=#Tec1QNkd=;BY zC>(TlSR>9!^B%9CrBW4@)5vq!q>Qi?@oXSEYR(qYR$Vb|iZf9&Y2JyTvIIP><`Q2% zl;>3U46Xl0-e93;aQ!)Yf3HBt$3L4G7@vLajJ%7MZ~Me(@NF%J>Z8lzZUgN&7F(~l)d#qM8rSwiStMTvmXHMKjVrK zpuJZi**PWZ|J*}C%uzwM!8byFV8U|Yz zUP5}Xya;Eb%i+Uz0p+9BCw|$fAnq3@%9pow=_dO^^&oe-PxMTeJkpmOWyGP$o7M~4 zw36jHv}c{z!An^*gp9Ij=<8-S&#wfA4WqC3bGuaIv6o_=A_-zuauyomRr1Lwv(B>r z)R8%mhmi~$vNWdcQJXu#&+6)XApOlr#B3Ue`^W4SUHLwc;DqhzI1zX00uy}*#U0bR zUKNVFfoZ8nbuI-%%t|cbA!a3?II}Vx0bF+6t*&)-$Bd}Ga}d1su`M@0cawzho40OwPF@LK&G&vE_eamUq5Enbc5zPq$wz%E=I{??Q*dAy z6<$kFss2+@;p~%vWPQo^)6a?Tb&kq>d7AUfj2#jrPja5^`PYm;C6IaJM?_u|crx8|Q9#o`=D~Bf z_gt1dL(m+&!W3SnHZPAw6E|mQY6xb2h?Iy7t1jIOY7O=bf6A@!p$Qc@D^(->7;BsY&C)-0Gee$qO#$?1J>esJ2ZB7TP-`CP>wO)SvEiKOy)`7biJ#E7l?nQ3i zUQV|1E`rIF4byGZ2FiWi4L{*`bA8}KoSo&AzbI4w@k9PeCl@bcrP)RKhlZAbJQseL z{4hBuK8*vt*Zp#Z_NpHZ$a6Coe2?iJ0@P-yuSs_u0f*&VR z{&AL*zIpnmnSW1!z&xVb1IVrV>&_+xp`=S8ZP45mZ7MGZWFO!6-ctrZg^zuQ%g2$(WVIIWCp1Y74 zr^3#5k8Cgb)h)4C>94lF>~aKzUrkrX2wFuvGxd{ID;LA2%M^RiCCw~>!r5*w%26nS zU&NQoBp+fSRmo1Mn^~f64-*yz+Bb8pgcg4`%A0M#b^={R+HXMfH@hZ9^FOfdp5sM| z=HJ707?JYzrb$y;kUv&W3@@h`PsufKLibpyN#Ov~y{JTb z3)a2IGRF1dhQ&QaI!p&12+jQ5^W3l7rQlF2Em#1tOTiK#M*JIcTbZ2X8@uyp^6q{l z^(LR*7q<^*7)g_D2{Fq4s_mznxFy{ST6o~xPo)L1bcesk&+h-+F7L_DPUJGOM$cK2 zckxcd+o=>0oY?K)1(^et4EV`rN^!1 z^BUoRz4;Z~*2*uR7HKM4+E0iy`J3rO)Klqsz*-Flm3FVUYIS9Wr<|!nD2@%?Gwhh0 zTa+R|^nieBCb#o{+kU{32#f;+|R&deUx<-Um2~T%XAAr|=AWNJFl}ra3AAY{T zGVogdW~6BqLh}yCInDjtRDa-cu&sWm(JZz3#qzhsOf&_?X2I(peiwgMYCVcJ&im$6Xxt-h z%+31E#l>LX2SNGQ?e9$qZGQVL%S^x0P2-k&zvCDH-!ycHOX}_I4EiOXNbzRqs*n`A zFWg$zc$yGJrbdo&6`9$=FP}Ik(LLPXMHR2 z!Sv`wk_6sH9^tLZ^#M-ji$$yoIW*nk+m82KYd1E@Z9&QSR^|aY(%snXx`2Sh`?PmJ z?Prvmn@#igx;QBF$N!BNkzAOj$(1dOfL!W6N)uJ0jFb)~f;Pm5Jmlm_V z{)OyN)?}KZAc zy8xf8u{)qHK8}upz zXoY*K0$r}DJhhOKi)DHgm8N2U!% z^ANwrF^cv6A9Ty8F4HF(jk8Suzl7i`nwlb)M7Mk4MDbLy1ah*-iMCQnJ6-4r^tLsq zBmdPTCto0CIZ8w)Z{0pBI;??gvMIwF@{N39A@1-WJ`N5TXmH<(cgUJ5DZ$kl-*v;x zZD}*u78jnuQa#rRV7{@Lblsqzh3eDgM`(|50)Z(w!3F~!Z9E0rH-d>E1{pFgA&JMQ zpOyDNFh;gM{Iw9b;=qz*KSLyv;kE=xjsUfJYSH^%q|8niO+Q`4<5^cgBfU(WIf_Ic z2$cKxGro_%(By&y3HlV?Rp^Vd7jw-GYVR8+ETA8*J_Wpa`+wKBWQZ2JJgh|1dP?Lp zn<=A)U9IHfA#NzfeKt16Jt$(_5-?^9KY}ue3f;pgl*}7%PQxDlTHAN;Ex`%_`=Va(_csjeWm7w4#z znqWersyoVK3zfI(i3@be7sJ1SE;h? zc@jwVKwHKUf^Yr;hD)H$8oZj3ZxOFfy#O>}-JXl+Zl2ul=|t@)92YAuhSk zqN6=tY+xUufa3IQz1^kFNRr8$X0x%_{B$8fV*fK5eI=e*E05CtKBaxfYRd!AHl8Hk zP&zqon!lvx5XWk2D?Xp}&mz!aio0zqkGkjN6cViBdh5Q21F{-J2VqKInruF%VW6e0 z-C0HWNW|IYhUau~2md2S(hBYySR=JQTF;&reA@$7>m8&gb!U0LAhtZdB7@C}=V@!4 zBEw%$W7sgI`1Xz~zraekOmu$RJ*oq?v}eCp@C}0`Ad!kV3O9q)$67?-3jXxyYZ8Q52xm zXK4iedqoVf#hKGEdW#BFz=B@qf83xv5L6)84kVQ~*78*~l1(pApum54c{Byp3X1^E7;Ano*8FI! z`O%p0qdobfJ^AC$_3EuEn8d~^y(SygJge8$JiavTEy#1QaU5jK_NBt?9BnNDFUGW% z;9V-R{`ys`Z+ZfW_3du8UeVGK4v%my`;n}%B}kn!Qh&NtuiobB|N7NZz4`-J|HrQY z0s4_E0PvbGv#%n5NYNkxYb;!E&IQc2i%)EO@?4mt-lZj|oPR+FQMRcaDWXAR*%%^V zd{+vu!;PEFocJ;>VMO=K!Ksii64ENj>-*`4di5vB{2wR!$9nZ2T>aaxeyUgh$XRf~IDx22bWmu7nthHF(4?nQv);4jJ$a44JN-1zgE9bK|7s5Kn~NG#8Tuh7j3YM(r8f9hK}nC_Yh{bu+A z3sLw_=g+c8nn!%U{T8O|HAqHRN<>^MW3xSqgox~slgPRtrK?H@Au)q>am>}GUm-r^ zO;)%33h6nmdcx7{)-+Kfr3sxe274Xk)bA4a70@0b%e>w2d3#^Y35kQ?X{l6KpFDZI zzFYM&@v5~`3BTW6-C5_pFFWGd?wPSYh5>KytUcX$vYU%Be`3!!XWImd><$C^lj{fB z*fuhMW?7J7Q&lq;j5C(SA6)(BS4a-2gVm>gh2#u8&&>}v(^}e$=^$fzCFmIG5oj@@ z?>>zLuWdgre%;($-MSYq*EjF3=NI>%u5Q8%egDItj~N0YU_5x(g%lWD9i|RYZ_jjk z5BqSD#v#l1Rf})Yt9{4GV=0h{RE3LT1WSR;;_5TMLTWy7^}AmoHJ@!Jyj_e$(3;?w zc1)V!ko0Qt4gE2S(>VF^MB+w4@PvV;nSYowVPo?_q}oL~NWexQ+n?Xq+1R?b{vybO znPW*%(Cmt#Fkn=l6$=pt!Njw;FXNum?MvPTiO-!xmcj*BFZ_z7aLLt6yZQx*`IDs#^a@y6Dp z`1{tjv16yW4oiS#FW7Klm<6o|5d7+>$|Iw((SvyuCL`f;>jwDA%0Y_KwsL~ ze)e?D1;lm1grMI`ajW=D(p(DqNoNE(6M;WmEl28aQdMEk=AV5wa0SmX0*u3q!MlU?CidLoL}rdU0urs<+;>LFrb#=8Cf`V zWO-(lUqh^K-NF5Uv6o=VnHaC!_&0d znfnKZV|`~K*0(>S6TKfmBsw~&1kNnol4$T>`0!(KQwweB7OoS_`}|2QsHI!CuY42c zJqNK((&XMjqpf;+!>xLr(}&OmQie##8)}`jn>W9|aig*e8tvxBZsjp(IwylZch*in zT$)p_!iufjzIE%Lm9U|xi=37m4p6S-x#D#m?EtFD2k)5aj{Zue>^`` ztNDvMfv@tXm&K=-^Vu&2vHvh)wa9d$vjw$uORJ3ka+89DDjYT#S5~(ZeVY zt|c93(xWXa&PDLDvJVabnJ)Fp-dW#HZruYc+kRb%|Lv2@3fR&Em~h%rHX4r0N*hqG z50^I_=osD%PN_hTFHbNllUQHq0MKb!tna?Z`W}{JeQIZq+(e?6Y*8&~Q8kL2wy2i0 zsBYTLC3mJQErDo=V@m!v=MZ>R(|aLJZ#)ESApIeD)%j;aMDU?kX%7ac-9tkjj@~!} zsjKWA9)VAchgmz+>7IQ9(0=%LqtffQk186G+<1y&TLA`K3@2kmMv)rpd0+03*(~yz zqVI-~A^Z5!lKGF8mdt^)qzo_JG-uP&k~`wu6Sw59xTV`<8uQ3)=h1C>;s0xBpikKu-so4uFzrJ(;f40x7GQ zejR8LQITG^B~zzxzjwHI$(8vV^s|v)uio*6Bb&DY;r|Mk9FuNxxe_ip zC;dMz|3AsD{v9+#wpP`|o=*7){A_5MD#I<5vXkD;)3X~Dg7-(_$ssF8&Z0zwpqkYN z-%vaVNzgyW$EA(BOd!a!$REWyc;r9SdhP#VxNea6uOan zdx_(~Ysme=C8o{o+c4+N8*Y5{&u_z>w_IM?B_gK&ugRe}H=Zo;`~^TU^Ed_bMEp?y z1NpB*3zyh4Da#km;ot@scxNZbgLkR!ouXMy9MpnE3=x+KSb6sOo@Im%bZ*p%(00W0 zak0+x27RvcJqx&Z#c3oO7a>%Fh3pllKiOXMvv#E>1TP2r5r^-p_3x_R`2p$Ni(20I zn&&+dG0us8e;^@`3(1Q9L8rX+#QUxLbRauL?>#m{Gg@$YIsMIlzy9}|oi`V4Q@>fT zU)mie(iV~1EwuG!jku(cQtGneyLI>os{j$h7m4y=JT0p5tf;|aofku~&R2HqThC*i z7w!(&Dq@`%B8SfGBK9`X4^njW zLBo!$u!flWaJ`~=+N-S>t_EV25|pj-ojk_*N(U)DUijh9x55)oSGRUw zR<`d~=rvh+gbSixS%2~5>H5x2Wt;cFjvL}fN-}F_-D8}?0DSq8=B7-ud)DaY~{=PP2I=E{k?6=6WJNBIaW7Eo~l1jQ4<9QQ5d*Vyt7gWka@ z;wRRK>@HvEdxH+Up8;gQVo5J~!Zgk1>&GrW)PK@1ok)!dQ;s$jZw!dFKi=4VS-(-a zzp=X|5xBqow6a>kC9%7)_U!TM)5?=)PoHe>tRpS=;MCT}*8Qh2ZhdooYqtR-xmQ{L zeLc%wt-LB?n^G(uoN|F!2)d|w5o4RCUbyYrGORQ4C1JrMSdh}nN1;gz31@*xb_guV zk$b(f%cH)PH=xhw_Sg%~KAtQdo{(n%eyhh$$ZGxi747?GV9NLVZ*Dq*N$0iFjx-ki z+uE({JY0SJSaNZrvigj5^c1OhT3OqE^784%gNM77hue?oGP_f`yN(>K-hI68Tx5Bz zJzm||tXJ->vhU_;6(%r}q2$hVmBX66P%l&cqdUe+PF>Nr&jmmZ#sJpK94>civDSpR zurauIie=Te3xDFJJwg4(`lrmmFPF$}M-j^!4~o{eyH71E9;1u0_)7;f{b+vTEV$-^ z_4(j14h!U0{vb_*SSWe0Q}~T4>Goi!u`&ibTS~*kuTEMPJ%PF$@odH9GW6}Y$>PCl z7yCWs52VtS^%t#mG^+T_NfuVcq5(;en03tN)ck|BI00+Hw=>O`IPiR9XT4roeJYRd z1J>HpZG=MV7-qmZ_ybF}a0!Y*Qq`t}a*fU-WMS$v*b#kBGo%`+21-p;xbeBjx4wEl`ARTZPA4ZuLkXe{GUr|Ir88r}|p` zOq(2Lr7f65pqkpMs^{vqR*%MQoPh8*l4Oe6B)$8Xx#n+KTyfEm@SB&a-fMM)An*0hhOs7}6BN~vBO^2M)$4cA zY|P>JL(#vuRFD7D=f4~Ee8TU~;_ve?t8ZUKv@+R!ad4nI+d^R<^aT?wB%5377&ZUJ z{1(bKQAP%3;wyg`kj_bEz((&GEyvbGP{k!m4FO53|i|p`(%v4$V`mxwKI_vL8VTx*~b6gw)Pw_7*ge6vzpS+1?jy}q^h%i^2H+j%bEeE;?Jo6ovhm|yngkj;!C zznB?AmSvo^o*9W+Snqnxk4Y_NW2o{_fp*OysBB1uz#7-})5RZr@m#IMUr&!d9^+Q= z`*yLoPr>_#YJ?co`YSZYAJpM%asqb749AeEx0Y#?t>IL~eY(&yL&=F-!OBDeZsr?Y#|^QYQu^9GBI|) zaitE+00>iEH>H^+Rt>gx0Ij3F=-Hc-uW!!2zB!o}_4IJF!~<->v*Y#=h9P>Di_d56 z54sS3tw=(3Hg-wl|8>EF(erPw){1;Yv$l!=O+Njuj$hl4U&(E!EXeqS%t&JFPkULtq&7JOBGva@-26;J3xd3<6B~k+ z$Fx?mQtWDWteHN0-`(u>2lxwnocfoSLwq)?Z+Fq0W}k5Oj`Z*K{8qT{%S;DLqK73N zsA|FlR87C9+MYQX;rHKhrV9cyOcg(Z@;VmiGLvkoH1~EL|c*BP*%gV z4TXkmK*g47X*pyG3^i>cC1g`sY|a6K9qb>AfA-H#4N$^i7qIo=$S-dfqNLC)@B{wr zqr*QXF1-~~BvGJh|3+oZ*WT=Cq2+(y*^|*V(MnvXy|NrqQ&!<{T%{-{vElAV6OW^S z7{zjT3r??EBWPUX7L*f#NNR<#4A>W#a8y%ltnbhE=6(k!*r# z+J-2ioR8ww3F3ugHCUrT|96CUU?!BrlV1;Ptf16`Bz?S?yX-!V3ISLReVc!3s?Di-iu^#3V?16zQ?#RWg2 zQxt0H#&wU@!@7&M)?I?r>?X8b$USDriv!Vgi5i}3zNxK zSoljrO2*frSrSS7*`u|ZFIopu^NIu*qhPr=gSFx9B~^OiV-x#Y2aC4yDzXW*g0|%Y zolfoZ?dYN~k3QcH{1bg{QK@J=CIp>w;=Jh=kdXw?kIU@ha}Jk@z?hihR4G~TWJfIPpm6%=&dsJ=Df2s6~-Kr!uCZ%HJ-r?Ec+;X~_9c4;n*NscNy6FwarOgJ= z{xxX4jPl_O;JiuUWSo-9rS18_!*mfnOq^439$xn9f6h1eTbG1ELoN8uK@=q0#VB#t zI@4xN7f$@XH&0bknXLOJc^ zY7=W#lGHb-b|MTUHB9)E17pCG9a%Uykw#eK z269|c#V*Vp^jIGHus^q-MAGgTZodq)Nmpoy@o zv|l36pN%EOg8I|+u$_KnJjNq;M_c0@YB}C$H{I*RGtEwRrlVF9$@Pj;H!D05J?=O_ zKTxz<{oiV$z(j?=W~;NJb8_Rt;h-)8?7d&%zE^QFdq=@0l%GqGpcF6ssOl)q{K3qq zlfQk6tJMFn*q~!%QGP+Y=k~H&0okoPKtg#-ZBq9n8Z=bww>s)eW@`_45@iIb(}aX& zzFy-X0Q%5M&%GUe+1stW?ihNt!^`Q&{$)v$c_cD7bDOMK|dqnUMPNJTENRi4acUMr!t(^Tq@|i(Jqn9H#ollqM!ytH*!uxAt5*GD(;1 z`IG;4FwuOQobZ_KUzgu^TzW3P4_#I++&6gfeP_{R<}!Y839Lgfh@7cGk(>S*qMh!g z?xXnnH7p``x#MhZZmJ`e{U_fEk1A)ty0XE(1A2xy zCMHEw6;D0}78q;cb-Y{@m?11w%12^=#myy3)-A^KCp%P-lO{%o8Mg@vouW;wg%olC zpHq5CmZ9pzef53L0Y~=@a8xc>6l>HC5q~m_TC-fjd3V^qhUPGgD}5joI1l; z>79mUbXesTD_y<`MZ~VI1{t)QHfDv+x&{Wt)#@1lomrGb~B(wM$@C=^Sc$lhd(wxOB@`1o3N)}mW>{!`d;+S9rHy>A(L>7%(+rlERkiSoD*4LE@cIbOUdzdA1Wm zDkw#J~{mG@rXzh^AGky*G829hQ>cy;Ug&sd^)UL zZ95nnQudKNKZ@c%Ce&|}_)HIJI&N&WDZ|{c|{rc7WhiPCu9?$9Tz>|J!sZRyq zW2D#tLk(ARU(iwG;Oa)u-Li}GsD|A7Wfv|@wO3CStH*gBczVDZF;1Di5JLt66>}qo zT|@YAaB)&|O9k#@cUYD1q8EqA#nBS2>ByD&4h8z}E1f(@vDeyghLHh!m*02~6BhwP z_fx>ot3pH~uI7;3NTzaJ&8+c6GXprYx84mq{uU>J9PB{;W&Ch$sv7!jB1fq5K8eS$ zqt9-lXg+cBy#48DcUW3^<9#G?R(~0oqoxEUN)0LZv~3REVUKF8vxBA)c@Xlwk6H)y zKa>)1;-{q+eGoYv;i94T<#Vgc)jJ4etu8L6>Ltr!^IVkO#O|;hfOVdnCTFboPbI>i zs(P-V{EYg@lrOudAL56X;R91+nE*qh;G}?|j6E{!I=GryvZpZoU{uS`>N|_;nNy|q z+KmT8hxNz$4%<~WX#pXee91Z>-oj4o|N<8U<%|LM(1h2AIfFa@Zd`KT|HmC$&1%F&ht1sf> zF+}d_zc)VVNApwbD5M49=SM)VrFoq#?AV-J?00Nj$JN{?`83Cm9nSG{OEUwKjE)J*fd`=9!iYPQ6NOBtXrhpsb}{77B0lSqLN& zay?tDMdnD{vJ@~>Lcz!d7jmZm;B~m$n7b8WHKd706J%1GJ`D5{u9=r-$ z+m)RQ%(lrlHwO&m$SqvWsC&w|nlKV&mEvmV=N%Fl5|6>dl?9y%mKPFi=dE#kiH8&X z&%u+_^bXcTfRKUN$?Lp2QO+fC}E zLx}$7ZTN`y%>&I@|I2v5(7%YQ2_9paFUA%UE)q(%r!mI9k3Kc<6SLA{-F2y7!!_F) zfb-S^%vZL8{n2Qv&JlZUybHF6ScF+kg34O^MCLRpNrM6LKkSV2gEl3)C)hm`07J1~ zP0Oe>=Nh=0S?*+dxS}-r;~G%abM&~*)yxwOR94F$No7mBu@@2(cYKS>NXqQtUJ0j2 z98EKT=!uCUG;{2}>67UB5aFzxV$tJtJHiC)QJm~$B1!lYekn(#@d(a^T*13Ic=^?e z$`k8>)09{e+h0fMTU%OYi%r4RQx7xpX*bFJ znp>*7#Wg>#Ol`7C;F~NTg&)TOhK>#L-~u%cUYQN}xm)0Bk|!%Z7@{!cCiZ@Q5?}aO zqdT@}53J%5!g=;l-de~HLOdByZkA;bu9dF>e@H8M6(zsVh8nX|I!YJR3cb+5w3*{-e#Yl+xSF54uM=F&>_H13 z%W;3%sI`=~`Wglj&2Z$ziJuy~;-_64(I0A0(%fCf(=~+1RECm%4GF6Fl&%Jvcl9fq zufOaP=84LO1dJ)lhX%o%b|}G&3zPPWyhlxibHGq&Ccn9iB{~6D)7bXKh*!a2_M0== zlav&T$@gq32NjG-uXO^k)D9)e6q<`E&XSf6NvOroT3vN9D8fRVRws2eP~PjwX{1#3 zrmlAy9Dllv2lN+$afHq+$jc2jwEd3VsY?>jpY%;R{J;U1W&28ip|1oO`YHzuz3jHQ z09W%*`vqLhRr|%BR5kyrnu_`PFLnN}YCmKpLX`+i*R+9>ac5ny^T`n@o+o%h!o>bA^u)aticHN+RKEsHoY=1+ z^pjaug%7u_tpWE&+8Sg^H15`4q&m14RdCF2bS*5!1S_=o9=V)8i*Q&9euvruKXVefw=(N?nrYe(Tns!3y8XZh^w*+gSF0 zOlW>Wd?IEjv|}noXicsXXicshT9dxx5|rH7#{KU8?w%nDg!OaO6s&+>%zp_`cVL<* zf3s3O`FKoRdm{e#Uuome$8PU7s5drgp}Zu~PZQ}||>{*p8cujXrLjFTcg>A0i&wu~BZ$@KoDgwCArlQ@ zxS__Mf3kuiv?iaif+DmgS3lO}@4KNuG)hq|#cG5_(B)jA7uz*fO`%L9G+CaF-Cw~Q zi4;jb{tJB>P|2O_zY?{=^PFRbLT11W6}%=_3A`p(3A`p(Ka=N$yFTa)c6ui;y-9DI z+8le~+#HHjxV{Tlt55s>YN(G2gfg1{$EQ?e2kZof~ z3a^PNgY-mrO|G&L3PnG?MHZl5`=b5u>#HY;FE5&N=E;E{N#BLED}^rx5}=88Xp6?y z&W(NSh_p;dl?hjwqEd)-#QbE4i1Ywr1d+*A0+Gp80+DG}1aeA_41Xkqn?1z3)A-~r zyBF@T>$Ej{&6J$z%8ZVwSa)hGv^YeQ3MhvmD=Bsb;KU!L34=;=A73TwD9e6Ma61{W za62JJ5SLsf5SLsrYZ2n|Ri-epm`6?1T~dF}E-UL7X2e3@a_l_4qx8Fl$AP%$1FEza zT7HkeAEHJ00?f}*SkH{sP2B(h%ea$z4;|gEayUBPQya$IyeoUxkrs1|%7;@hD#QFV zI;FU+!73wVikRAA;yo1k!TXzdUZ*Xo-}!{EWZmPM*|iYzW`M{+Ru(9Tz?mfqhHxfx za)pm45K4d8a3;wkWFN`rK8n$Bu>U0ls`? z0Fc74%W)$8Rv9PK?+GVT+@apU*6n?8fl6&NwT??0YY@^?lKEw#z2C-3Tdd``90Z@%NX7w# z_aAs4I%%Mc;bs|>G2ARb8TAhRbNyEe8_1E~oxizh z+8lEOGQc$}$Qb(e7xb=c;<(L#Ju@7#FxUj_F(+#X4AGw?!2(#w0EQUp0_?8-Q;?_8i3mh2 zBt%pfhreL2B1h#qKx{MM%gFC%Vhp5_9|CFA4?Ec#jG?aV#BMN#y0X)~!5HeweI$53 zh^xuh9KsDgcZ(?%cdGRtf#`_tY1e=G7k+a{E-1SmpxO-7G2SCWgsZ3@PL^;LQ+X@F z5As-q9}Lfg2{ZFTHb9J|-056#sui^?tsAVZf6b&!uM%V)p2HbHXtPkm(1((#5-K7? zPoV?3OrZmHi3xZ!Iv7s80LRRlNYcMjlA!1gpo~)|3wo}DUzQ`njK}!GhF!50wDb!W zprIMsWf|=cms$z!@0CwXDoDxX5Uwm{N0T#^6kc^bps`tKT-ZyuQw&0rp)pW>A_iJh zsJ=Bt$|wze*&@n7Bt-NKL?*^sOr|DBg2DT(DUvTF5J|it}!BO&u)-A9#rq zC|ume37TL0h$A$=__=Y(d-xL&i+ud>XHY!7Eb z-XAqf*(DOip-nL! z+JI3fx{22+u9!+F93@D?0Y5`G1L2Z2;jYmU3}?^x2XQ}Oj{PDLDg z<$=48?aZoRDiyMGoL2YBMlV1g*TcV>g%ZVlDX}3WRjE6mQd&H-8QjfIo>N23UIF1C z+_!*ea24P+GW=RPEcWxmqNlyZx6@jV@x-wWZ^|&n6MUYTp?$qXX8Ezk2d>-sfswbmNXG*&KKJLBtx?A@ZD-i*xZ>m?wo-&dZd8z-qa zJ=zeA)A%3b#|$jW#zW7BZgjF?xTx6cwf#DUi^7FlFQY1n4~D9A209M&6_dm#W<-a? zVe_CoNJk&fO2z1N55|2Hv*l`ZRkQ;I{Jm=cIZc5(VjW{dVUDHM{-%maJB(9}D15m} zlJw0#7gD3~XAclv<%JY(lZJdB`PVm6Rp41yB=)>2Yl8d!$FQHL129d2DS{dNE5w1J z<)UGcYUN?(cW}cKIX(N>Rjz!SPnf?rWR@uLPi5#GE>xuo2=EQ^d{^Cn#r-_Tz0RYt zQ!V%R@rs{B^Dv9xNpNWhJc&kosU6(ddEIVo&S^V)uF81PX_#~7R-`jX4-gVtTi z-&S}ZaUk#sRU)MVpJ-+miu~WNiEEJlP)w+Qr6O#{gEo|D!c+N#P0GWEo0F9jI83ToU@jdEmKa*OX=(4L;RF_ zJF);ysd8Yah&RRdTxijzD*PvF)l@HujL0E*LcR)>JF&+N>JeF|gpY;x$bYq!>IzEZ z&Jt=(NHI^q0pb=5ZV@Kj>$i$G6S!46L~0?C1ytYH7L@OVwB3&SJ~-)%S5e-O5z@(r zIFYskD8p3PV0*f;kt*A`^(tSu1-OsG8Q{H_$`xf_s`Odrm7zkBsP>we2A;!aC~)Lc zqm>yma4krjE@)!nl!@g%g%T?!$<+E#*s_YtTV=8PSIV9I~*ec$0bXiOD&y(Pvl8Z~;u4!r7Ru8?EtgKXjVjf|6 z)T>b~4nXq{5gwL)T!CmX#-sDgwUD$(2Bm^L2jSu`sKg`QDew=}!@}2?boyUPuO^Wu zx2t~*+;EI77U@wP_;s6~!>IoD3PU|acG%@XJI0jDD9uFk3?X2F{VEQZ5U|d%@pWdh zoj@NS*dfq?q7EF7!TzkbefE<9*)$;PoRi1?_3KB!bxclfd*3R%w6MLv!=5u}Nwit3 z?@xZBINsj)sugPOo(4sYEpoJSv>fgpw#m4-y!tg&AQ`z!p$&LMu3AlztIiX)$>qQV z1^q~yXkpD5zLVA$<)%ot$$f= z9+j<*HfF_LRiqWuBA$OqXwaek(aeC={kUDk)MSrTSzL(mJo=lm4h-PK9$ zeYq(m24vQR;uVwz`t-<3!*1S47<9{s1VZa zQ@l==5?-YeA?5FYt-*VeJkq->^m8l}#xQi%RD>t=VZ{@k1jox?UP?yHXR%4bRrCDy z4@+-bD3RAc-148de|)P_@=rz=ecc#+O(739#GE248<(ec3PB%XWz9}!yvdrgsLA^9@taWW_3ZO?cFBn*Oj{-6ibu))OQk+iTANE0BJEk>Qm7#-)X+yS8G3?mph%9ZKm3=mPe+)#e&nF5G`rsW4M z9aYl+gH42%np}F0ak}a-`kqPQZ4pdL_dvyD{A+_}CSe+ywcWIO=OBVvk?9z@a9?Voc34rtxSTGq|m zKg7El4F4hl6@v`2!4E5uL!t#g4igSJZX@eZ%zHY`c}Gd&cxguxr3V+VNE~B)Va+e! zx9eKa2q5p!4uE-m z+DeyNic%7;Ei$Rg;K;v;b#v2qlfGfus8C!|c0GuvsYpnfMhpOOKh6-9-+T0oq!io; zm6}K>yzPrhdxE?a@}9dGW`!bTO(=b~u-xumZV1}P0xK?BCIidSIK)~Eo|l!;%#WbMCJ9*MMt zr`ee1kd>3GiUd+=D)LZPZN5+K=~?Ehtfz%)en@l+OLS4w17!h`pw0fWxO4>(cL>X2 zT=u<>jCRnblI1~nI}J0qXI9rkT7t3YKW0?Phdi}=28EQ)NC^sQg!mLN2z%b`>`%?M zLrhRL@V-E3k=1*|8>DiMX;Iv6(46pWb)Q{WA06wX)-hycF^-Qv%OE|Cgs?5|Mf2mR zEo*AB(u6<2KV1{T$cBX|DBG$)5!Ap?!7r33o}d>nT&#$?3FC+p{n)B!@P3 zZA0L*`bKt3x-b4oy$(*u6B998q8lL3Pt&}gA%;lw5cE(wYY}>A1fl0%GJfjhbm;6* zsBoLqCV_LkwqNn`)chXa6;0QNHlj7x`joGo>Snu3flBzt+NtJ85RsPq>1*@Y`C;aO zUx@n{jWXIti<0YTKH8h^MUESR;{W`L{G@^mN~w#*M#XtA%oL7b4eI=KaDcbrkC9P( zGt&W|owe%&(owPGi3L3GcOD&{zo9R|&cgi7hUJKBK(~^a(U#90y?;?v6#o$u9cc+9ygo@k!Pg z{ds%ky#0FVE$o5G?bg6i6HkYZxfpFUb)i1U4vC^mxt&SJaIx149b_aSoawwwVu4;` z{-146{J%&QnyJKGsC|h9XT+|Sy37qJt{@oX9Wuh`;%wtBrGl+p^H7O`m2nf*sS!sx zpSg6#Ah~P={hKl`VJc=*uJ>qszSFr4xLwSPO;iERGX}vX=Y;a=*a^+{5deJj*;4fB zJB&ID-fB{K#eDYf^qPI@q)j^lS^`pwj-qwJEoFUcf3^7WjB*H0TVBukrk$qZm*AMs)d7MI@aFH^FXHyd4^z2+&URwFs=sR=N4x1O_IRsLF z6dmR`v17Z%))eXU@(ssO5mEeW?jue=Xki@iBOpggAIujxb);&i0etTYU}l2Q1P$RL ztI}afX;)JZ#-@kt!QnF)XNNPnogBZsavAodA!wHf-HS64`!XeV7y%{t^QA#lVRxe5 z?SsFLOo9EjsFvNM3&x!glRX+0c!;*e5K$>8dLjmhQ+&evF6A<$@{PPx7%OQx>gvjZ zOcVNq|2GgN=<7;*i8iN?=xGT-(BMg%xTs1xQME-SC>86hp~J~_=n*+=`$8PyJtI~8 ze+vnMc%rE}Z9Y!XqVIE2Fvk;CD=T}+Vf1D{{3}y5iWEZLNaC$&BNNf$_-hCb85@vO zQfLit2x1Q1asE&9>wW3AHr>(2N;rfrxfC{{@E*JMZC0U@@%#w#G@2UEV_b=xupxwx ztbgx6M_v%0=^%k85H-1Rf@B}k5lSKM#pEh5j9?N+dbGM6qRa7fEpSU|maP{1UfZgBUTp7?_88Am>0#0Xxx;Q><{fxb2LKs?_;_F2 zz)u=YcY)m&u}XQ_a!pBfxW{dUP_Vxe_KamA6tG1_go3bV7(xNJmF2L)y&;4G)t&S1 z+%FTA@FISj?uv3nl1ZZPPBfoQeVVrUXztJKde9uJfE<*xyEc*(!6M*x%tROfZ=#sb z`784Y`k`+ZOM9ga-hoY!!!cfehE&Lvumd|mXQKi|V+y3kROE>aX)ie`bw-UDEPnwh zfcf%;r3q>ePY}2W#m4sWI4b|LV0whpp)f84g>f+*3Ih`bZzfLk)gk1FRVEKy+y6$z zKl$_GdoJSmZlj|CkOnyi;}O+zwQ&1!y9?jk2S_xFlo`y+ZdQ`6sZbVE5g;<^poS{< z-_I)Ck5-zWb~u#tj(olg~#5 zmVir)j5ye4fJ-DFje%njT^8@nm1nf0H5A0>`i1lvV*;3VrS}@#%63?5mF`v0{3Oaw zjTYUqgNp3BTJ?Gm5uA=E;wp%)O4{Q%qElbDZaj>Cj`u{n&TOD?c1|Gikk`AFb(Fw-otUnW~mzS##ZKTE&H8~ttZcDxwT>r zb5vA7pHD>wmpr22hX$9i}3f(+P%Y5{SGi7vU&6SP%}w^SmiOfU-T8> z&f4jROT)vgVB}WlyKBthKhQWB_xIc{={}3QAOhjAZQSLr0z>*q zbYT>KBsxLI03c-9KPzjOof-B0vuf!@TgaiiJV7hM%|%<=${#rEcV^Z1&n%`V-XY|ON7#pzU7E+_fv{fNTFVdv zGxA;%z+h+rLE>eRHsZ*U@Mq9?mus6>@qAT6WVoBUvB%A#_?ZnVgVViP<^7!XrWMm` zzHA8*9G4CnHa+51P=d0)JNhjAHt1N)b@m8`fpOq9Ff5iRD?*4 zH)d7$&#tBCJqiFv3aXFIIy}n7QN-lC!>(8!wm5P{lYk53kw0pUa*f5Qz*Db7v~2M2ih$ygv+eQ-LvmL5EdWM^A$U+pG> z#^yA#3&@I$t&nwslYfJ#XD8Y%zKY`f2P(c#shEa;09{l$EzhX#pIu7Nd%pelHp2?O z8PMBfjfIsF{{RA;!xxX*1TFPRuu0ThkF4CXrU4Ac(G=oyzvC zs{h%w_Tcg~(-`Z&b+NFUEtJ?}BCF$0-l5^2hI5iA09?XKS4m{t8hyVgFb6OU`X zN)*4J8y~gln$eV~*qr6sZ8}l|Znn5@_^uJwTHD|ecu!^hcN*nZ=ydw{aRs5gQCWSq z`*8cIrm?cN{p97-jR&)9?PdQwlDEcJ3>ih$dAIYJnmB;U)`&GiOKOJtFM*PA1oEDG<=*P7>i^lb_F49!wuLFQl^PPG$BKL~ftaiE z7Z69QnVHj)RsVw_b8|*1zNC;kIQ8Ku z))!oI6Hxdt53z{hOS6m`+zI)Jgd|9e#N?1a9eHlx-*YWFD!fPut z!ENOr0T;;x4=2EdZP2yGYx}Xau#ioby(nH3oP_VHRZWSioZ-l^B`n`*H(r)Y((lIw zszUrp@Ch$fpl@u>-d;6RD#kzr3>sUi$WNadt;jEMcH+iUwF-9HmYIM}n$D-DsGQ!a z&HKJ(CJe@cI+Vc^o|M27o)mo0dmMYlxgR!=01>d2O!BJKWKaNOEAq3O!TosCe!04_ zJx0pL&8hw6=eC}V(WQLZF>{lHCp?(|o?vfbU!PIJT&@?s8+Krcaqx6Ojp~1cqvQQu98=%+b=Nn-64p{oO=L*5s#X)t~lMx-J zV<*IYOjIdv8?e-&N?(V2@=D*M(Zbq$X<_Ysv+a=QR$HC&C_OGBlw|lfR&5HYd{z$= zZp^iI+E#U++}RC6j$NtzT`ZMoh&_zv%qDvo!7E8EAA_IpM>>mqKd2-FCZar#b53ZL zkra%irM}mxtNj3fVti57Ne8h1XvEjFA>SpVH1-m&G5YW@YhZuq(X2@nG>l&O4GCHT zxly{2+?hz*0sXL2;l+e%1h0{r<$T*W3xI8cJ1m1|e0@v{CgMYF52b8EVKXHz-{f*7k_S@a<`$1ZjEDRl_0OI( zOA4#znr(f>VbOx@rc-EjKJ-)hnf%O-BLCwi=PIUXYGW>K1aZvB^Fygr)Bc+=X~j2~ z58-a19L>Op3yUlQ1gq}g3D_Gfrm2;_V+w0aGsl`m`zQDsITxR_&kqvos(`g3+!Mzh z4_#3mTEFH9=b({B8znu57AVBAp1c0J@Q2G*mVabMrLPj^O4DSkL9z6-u$F$J;A7a? zYZ5;L7{$(c|AT-inieO5#gXBd0m#pwF^c8@WP+nPpgBgs6JAE}geOJp`e+6GGDavH zFjo5BWf?iG zco0?lS8ENY=I%w>jqPz1@d^)sOb%)Kn1h1-T!J0nDz^WCA0R_#HrTiHh7JGTP;PpH zl}2IhyO=u~3v2TmUUfqn5PlYM>Jm~`SN0ZbB8ga;8k0lNJB)xNry{+*M7+O?Ie7B8$d%>gZ%#Gqtc<7K(GqH^nwE5op> zdX;BK^)K}Ab3aw{MoLyvkfFLP<J+SHH{O}+^CrA)aV|D4h zR@=Sm0sjCekPrD?{N-0GtW6n^7uL!@8`U7iZ_Rd@HukD;5DBGO9ag^fW{fG>`M5@{ zcj2v;^LZ?sgI3Ws!4sfMVQ!Rnc{=X-T$~2Nob*$lrSa5LkH_J{rEKn25I5!Pq!Tl- zQZ<&#T{Xc+2q)AbJO`-SyB>DJmKC0{NW#3>bVQp{QP8M*%vJkNm7LnOT$0jR)AGpD z@keW~5ajqOU|C&ACmAK#G(3m=Ev7;oJ7GwN2s=Sy7}sh372l1c86g|0M4-r>Us>h9 zs{D-9@t$BM<(f{WQu3DPafcmty17UM|2glO4(M<_^aK{1)hk9@px|#lR}~!#fesS6 z!-chuDC7nRcAbv2J{eM|`rhwApoPHJHv3eMozfqW20{BAb5111(WlTo^r{~VC8xu1 z4%)t=IEmNOz!TV)DU1(-_%c-bKH#K*(47*ff9E58=H^HVdCOE{{&%uIrxpd2)xEQ^ zMm)|a2$q?t2mJ6D@;9C*ig)C^$a*)wPXgy~;BXEHkPAaI?DY_ zd8Mx|&6*6%epax-hW-E++*?*3>fngOF+;(xea5t~{pk&Cd-fy1m5>>a9UwNSv*a43 zqv}|QaA(uu9IlO?z`iWT$5W0&kZ|fNP0iH0+9OPJknqE(v1(wA5w$J%jQwW1+ZvqdjGlnr1U(`6`JZVp z<12lyS6{3BlnSXRS4>`Nz^k%D+#@|+n_Li%Pwb*S8LPQRN1Xzu;yDEH1RMKg@C2#D z4D1~_`@|ak`Fk+m2hr?;tZs{_qlJc2Q2NrnR#%k~lv!aw#d_Okj3*zt`j1;?y-iRt z_+Tf7jna)qnF#jSCf-PBoUdoo5glY)<`(~C^aSXV{3QCAkY@QrJ!l;HTKU`}E64^B z`tn7cq4G2Gr(4)q_Axf8=0J|7Nnrli%039Y2`w?1Q zSu0^DKv!@mPN)DLUv2v^S82gsao?|0uTcheaGVA|7susWCY}b3Q9WXZO@(ooh8+M4 zq=CYI+^0k~a=frvZCIa^`FmtXcKH=Q6PAx(s3=KXM~L>6K3o!Q0$K8Bn9HWR9eP#C z8|HLxuT*ae1f73gp?K{XDcB%&qtqAARAS#^oCV|iBuB?l50UvOA=8S;G%v9*H6!!n zCOX3<)Y82?aksj9aX5(nyvBeh%ui#C!|fSWCH{G*tADme6I2ZT6#F1d#kC+4{56?i zItwROdL+EJvLM^3RA_72v?)FD>zq&Gz7De(DZ-4fMKV^qT0-|8^=PfWsuvEL&r%E+jER+`$lDvzQYOS?#4kkt< zxV*%iP5c?16+eS4FZe`;f@pX!0;9lte3&-=A1UQ*9De;uWxo9+0&|yiPNO7{$RoJ^ z>=FA(=V2Zpdj`3|I+q2MOB@D!zF=RNE39*M<3+8iD!~Cokkz5#@12U#$<6$%)Natn zQ1E)ta4i@G-ec47C@=YClx}}+EO)NvV?t`IuuVSg0_AX0+pIsd8e8Il*8Qa$z_?_j zs9Y~p$IX{r#ob20MoUx`C1HZ>AZz1B{&FV!rZG+&%qG7*cXXN#n!)A2X19A6i1n`urT0wM#xMjEs+S{aYxwb9?= zKBN+`LkUKK=?kTLLof=whkW>ZLq)&$oU(YjWNpbhonB*0ymXHy1@i#`y*yvJIEG2N zAqtMNo5pOt6RW$3*{ujVYNJj$28#n$0mHno~2dSLd^Sx|jEBjEf6shZ1E& zFbX0tRi`MZ^SV{2^pv&se;2-wU*$!k#1WtrnWJBO&H68iRa z@2z!J>V~{7vxGUMSU^{nPj7?qq@wHFUAJ|=Kz6t;j6%i?6%&>_u`S@ zu7j{4)LuJ*gTQ<4e~9maZ6US8Tk!8%A9^eLJ#HsKLQSinm@oDCC>ck@PixrqfXyB&|@%*lP>&_Ca0svor82 z6kRZQh;(6%z(eq!Giwab3At4DdyMIjc2hqtbVcF24T9ER(Tw>}P1F5uB3BG~yx#Z4 z<8$J=|GwT63{fe?@!t09z(eq!w7}Pw)KJy0-<(`vtHJQ^nzLnyJ0giC6(_E~V~p54 zrLDW?Z`Vc;D@xNd3mih@QB|-g8E)V{rM-EYMB&>t?>YT!fHlJ!!4EAs)#7d(qY;XR z?}hA+u(q1>%-Co+L>hA}en)#EJOtwzO1=%UW!Ba6#+n~vsjjsfdtPOm(iIK&thP6@ zy7thHo}ojHf1d@9pCe4w#O+)0$-zX#3J$Q>0*8RE^i(Wi=cFDA7}xVwcKI>)xfR(4 zXGLr#My8nfqe8)wPLN#LEG`ZXJB}xx&SnuvDvV0rQ$SRV;#FLrC!_kIHXy=7z=|Pw z2;ReKJdAUX=xmW5tD2GMezC~{f-?BGDen)5n!|XeSqpx(T%v}JKV?=I=W*ZDnkYnh zSi%Vyq8ZO{*wxibE}h+IJi5a1h~yY}h>TY3rQ(q&Sm`{b!g&bTHrs>F+rW)MDFYn8~0&UJ9E4ve8UrooWz?GllRdi{~gY7c`9>S*0;URd>NkvT| zee2PokTj*g(fOSGHOpfn6P|4rkC193V>U!rX5sCzpLl+pBhFa=k6~Q;XeJUH)V3T2 znQS?;L`{-Z0`14#7kP?J*6v+a(v%2o>0)*whf$=rN6T!tt;|+@J~;voHcc^I$ai({WeyazuZ-fjI{GLkf&sV%_eMx*o>;8}hU>w%1M zb+&rXY%Nb-&1)=QdX%NdO7H9x&o$D|z(2&{{!kk31UQKJ@IUj1H6Gj5!vboPsT;{%6@B!w4l9^1kl{SbJQd&!WYw}2-HSKdgAN-w?4~f{ZEId)bGn+ zMUX+3GBb6oUH6PQL4+G01@jPDW+#NHm{$3FVmMme`Gu6|P-biI8RV+)GM$dN4POcp zchG5FMnW&!cLqw)g;wsqzHGm(%feKCmJ-S0x+)`#TnEgDGi&%Tn#{4c6AAI$N=bL?B>LuDt_~LH?1Fas1@FWqgs8xETet!W+23^Nhy~g-N6p zwZE=4Ce+zNmzBh`_3B_b(c7er@0F>)@qQigIW#2A@ePXk@x_TjGz#a@EyH>6o-aWt zCQ%kke{+R6uFh8DAq?oo?RAuUu@QY^izzQK%3e6aNT?cmL3|<%F!evP<<5VJdH>2x zh-e-iIoRd!P+jmW(ndR@Z?;>AWl?7fUA#ON=l&kI$uae3A8Oxl*!?E;c}EYPO-wka zl;K6**S6VXlBHJqN(l)AxCT|gwH?pIEsmK4VltE~Q6X+l)Ipa6U&L1|Zu&{!caH2= zWilokYSm{Lh*u>7raU|h<gF~shb-^9riQLtkV;~V%|jf_tczjcO*i& z*fGmL2G{>%X8A7m*ptLUDx-^B6Uqak_&2NaSAiilMkg;QUt+^$w)P&Ip!z4Dr^gAi z;vC}O9qP3?=HYA%z{sx-FfxSX@g$MU;5aT+4Eu6$B!t!JWPJUalMyEq|Ex1o4oBtv zgwE)PUOtx8P1AK7?+VRDIhVAh&!dJLT@_57RHO$i)MDeD_(izoS!J@HWi|_2q~L1c$vbuTRx! z8xEb%%+wF@=44Xs2o<*{k2Yr$!F5`gmcxd0D7^2wx3a>z_#Z=9y$f2#Ryh63x zPD(TDXla#rBs#H_aM(c+>J`SqT(ZINO0p$nA2trLgi->=@z!}U3CY9cu#}0Ty3At= z8vPVdZaLm13x8bCaeE8r9qI3Ay`wsH6rsuPOQ@-C9vX2<2Od(13FI&Gno&W#)cL2yGpWrZfH6FdoeX5oN)e} zG|)VqR!;<)2SgDf&yFL4CZ*8}od+bz{T2Z=3Ke>^ve2JIz4jX4fE!#gkD>)5AV|vF zexrDMs(#J4l=Ez8dh)W_-^b5Ri4C#@g=wLG8aPoAk)oPsNU?L_m8P&6u|w6PgT@!} za*=ik-!wUY$*_Dv%HfAo)2jm6O9_}Jie(rNebfC~-~n@#p7W_@pwFf;=y>dpYA|630+cE6wQAA`W4T^cteQISUoLC z^9m2Y4>hWp4hZRL5?o7(jOyLC5YXQDf#7q!)Hm$AjtZ|&g^VcnfDh)oPK5bRqPQuF z$NSpT#Ot<$<1(GwAL)0XK4{{=yP=}liL@QbOuBJWduqG+Q`^n6YyoX?RiKLRnSLB5 zwmOf|kn9dpK{>h0Mi=T~2k`T$>LItav@Tb143cj&1mY3*)3LT&*fMR)*=($hZ#%vN zmCdInSTk0tCjs?~LDc`ly;nsz!6$i-Mxk+EPNDeWVgg*@fLFdg}n>5b+^h_~e- zh)t<(qj-nz^58&Ljx0`nR0$~+`Cc!k8eU~God-s>+q`Uayo#;=p5n{7E4*5ui%bH4 z*c}l+W_x$OxyyS@4nrsOKf*whwWYP6TRI!~FJk4a`n$$DRmJgHT_ivl8x#`Bmzu`j zYta*f&ozFs6G>B&GAPsu9;gNa%3H8E3O0|GA?Jk);CLht0inr%m@_sxa8`EAa`I>u zg^vgI?d2nRj-gIyuvIn9E zpJ5tN{3jl2#>q}FpJoGj@E+d)-jnj@zhSY3_RnjvU>3jrfq(dW?$>V}uN*IjyW|Vb zWtC?{YsAK9&64e;4DO0jj&&$NM*AORmvmc)QtX7YIG|~x!@4K2S#+ILRLmKr#HLp+ z#fanabmoLQhvxpg+L^V+QvGr4VIqPBX{9RiOw&w`TtVPezR>mf4sOqYa!nSWM-9G_ z1OBW?+xxwJcBs~!8j&3{ZQcG}8!1_`Ku>InW{!({)F$KRNA_yfqzHF zyhM#HtCZ>TUG=+VC+@rIGJWcdB1}nt3;XgAvdHyuJbq1aJmilWty7HB4R}~yJPRdh z@ocG1l|hlA6GI z?HJaNA3@4E9;Lox-ZR+xjw|4R;Pninfd+K-us+=QmK?&*LAP0b57>b+3T#m=Jj7W zA>XPqZ@%SS5js6m){`mRmWyTs(&~;Ytm=}Tv-)H69S|aC=ZpkR8!dJ!FT|$$M3_4A%2wB3F{^67aj0ORAD&O14WUC&K-CAEo)Sz zt{?=Rh8j-1J#RQ=3k``a5dcKdHjfOltsb(wdA4)ia@It&gk9BlQEdhLSV7V#Zoz<3}$D#tk(4~rx9 zT<2^L$@>MJv-w8Vgqfx+qR`*xpKG!<*h_dHrf;>Iya%I~^Ro0qt~pd~RSDz3GHj0W zasBv<(K{SnAO*iU8-RZ4j@i(ldW=N}?q??20$;TxBjmHBYYK9~_T0ra2gQ(Il_zsWoNxs41bp-K8X}|Kr684v$H?HTg zW`%;v?XWTn-6_YBZJOk147lR$ zbyl5oRbGE>p$@%u>?Z|iL!#rdh`0rBjAT*VR3E!-I`YMwzjB@jbY(yqgUfIJR&b|q zUBc$V1M3X1>C)~y8bRB5*J8uGztjkzak-Y#$ow!AF;^lR$9cI=I{e+gj7#;-M(^;7 zoD=?lwh2#o=F06FG3AK$SQbERFjLTdLb*eV$o)7(yP5&M<9P<(u{;dEqesLV|Kv+s zXPxadGf(7?_G269&GXo1aUOpOkKbgtB!*tH9-VWN6I~zC$zCl@S#D2iRm6D*1M}3= zvgi@;9dAn*@Hrr(&bz2SFG%{-LGnS~tqRSg;`*$XNft?nlD_N1L)Ec_X5!MdbfWsj z4Y=0tDjv}kbJo)>5%H+kyM)qyiEikE#OY!l!zkoDHP>aZgxWRt*~o$%JO_wdNCcOM z|GcOXwLDA>V5n$@X1DCfvc`sYzPZ>*Mk(cD+{fXX&*lX|d)eU|`?MMPbeO#oqBgL{l`iYbVtJQrP#zXS5}o6~c+P~ol9@K4Ilu=i zDs90e`-cS!irXY^>pW&1hS$=lM=byD3RRYS4QN z^ZWY^)hVCf=nOmgtlWUfG|*Mdx}1Y3C>Ja#OLh>LNZH$BH(8mAML@H-6ZI;hp~#cw zg*@(y!NY~N62FC*dl9JU_#u!uB4%=u3Eas8&2VrC4Jj=YZ}V>^Jf&A?t-1)~zn?Vc za(X&6OsA9?+A!@3$WqazbtxP|u}97)W2ZTo$FvToZ&fcY2IGy+g7 z0;S(opXIY2=aI!(MH~2u{>4SIL1jX=t^i51EJ&K+;4ctk82F2eV%kmktFgD&J0Y4( zVlVu<^r3^cqS7>cEafXc9zIvtVs5aKYxQrxyn#FPOMj~XJq z;dW6*ZWU9`N^I6GVQ$faPp)2LlKCJ(fm@0wXr17KoDU=8BcihTU zoZE#Ks60|}px(XJy$0N7TX9e}k$Xc7-7zk2*G!=ljm8faLe7Is7HqFwlE?3e_nN^l z*KN#f2Hg&e#8n>=7pa6r&vUk++$$*mSb=)rky9s{ZZ)hsQl8milI5`Xr2Mf4y<{;C zasIh4NOKKtRED1oEn{a+rZ_tw3w~iUBej!~OY}1OIxhjdN=!P5Hz;_9%5Ch9NNy*c zN^9Ig?~Wyu5^#;_vEVt=nC@9N*b{p1B<|lT!|*Z8e$M(2U3$DW<9{#Px~D9mOD^9D zr}gbg;Y6qVKLW9Yw=eF9%wTem&(eHhZ?>GIRfG0veQh{zDB)dAWhDSEIgX-s2FWW z4V5@lr&nI)&~~&fl1R*ATZ@NMvg4P0Jf#3J6wYIZr#};idXI!iPb6C|^`^jOx?3hL zYLp)!s-9;TWsr4t&KWag$K{!wX7t26O&-y6lPvm7Wdysg<=#M^m{K4A)NJRB={(yZPtjiQOiXRmO<1eXIHDU16tzN-9dQzQguK40 z)hW1F8Unx8C!hF9x8YJekY*XZQ7XRQ=`qr^INl6zpg`3af`Pu#?e2D`4cesWd`@3o zzTGx7x8`YSjpL6R^_Pmzs-BHNZy%Qzc==<#e?jL8;kFjn{$_%S4 zH^&9nG86y+ZW#ao7|62P`|2GDnT6egV#{{c)vI^#hocjz*q#&1MHk?{ncXChkQ7&Q zL>uiQG$NkID}L$pP$!3j3ChGfWY(uoZ+&YFOnuPUWY7RSU1TSjwO}7qz>oW2MPX2X zOeG4XBhFaV<8(N{{43{y1O%wRc{db?TN`pCkrc^jznks0G)R??W-RXP9iF%{smS|a zUD}{A;L*LGfosINdKU02F;(u@pBTSZUT;i%*eDbC%XUjD0yUia`5vf}_YGpvLZSBc zUz2Z03)Tq9=)nqYIwRW9As?aeg1=u*IX@x4TS?EOZ>(ysLk#-JB_QdYv6ayP|tM41XpcxwJvBdP6N}9zo*K z0D?q>*6_#$YEwDys2?<7#v`Wv0h`Q}qeys<{g^5=P9zzuQ?c^FN)OeaFJVYiGAqxn z57+nbo~=tm>Iu86d=)c%tqktM9011)5NBibrvC(=zani*c;PGG}nC62IK@=uo>2 z9o{tFH4a+)+k4bhoAiM|H>x+eLMYLZC25>4M&8Jo#_GTsyE$x)M__9xzy2r%vLNn5 zlF4;9U$>vf^5)B6FEL5&BZXpAk)^&c>Ys3h)EAT4l&L_<$=sBk&PU^5ZAW{1{ryAA zYWjwf&ASkLT$f1M0V}=$N-DNPp?_p8X-%OA+OC=s;dc9lgCi>+QQgPsY)qojjk1$l zbah;bKW~i{_&FVW8m1v1ZgmQ&w_w?Gj2a`SW0p03C9yNF2=HXAynM=Fc2tk29pj2G zog=EaS;|kB0=tl7u~lgFcq9=eTQR-VPA}>7bV`V=LU$j1u9H*O!&%Qi1Jla&a45aA zNFQ5yq>rXG*M%-(?u8Q7;U_ce|tn++s2lRH&TQlBvQ@c4!N|Z{~GtP z$`W&6BWV+ikAey72%ZbDR&<%;xbS(mu+|o(GjgPC)uM&pNr&4z9k@oPuZtK5>f2?f zi-|ozm9EvQ?ml#vW{NfL_<3PsH|}~2pdp)TU`vA_CBx`QVprhN+_;e>Pmt@5AYKd) zC1mw(TF(-55u)i!fxZ&0{16rj9Fz5d7{MflBT7v*T#f8 zgJAaa0K*c~=thcLkRqDPW!p|t$plgj7BZ_x3O|^NviWEdHwFrn7}1|Kh-4z71n;gu zM>yU;e$GZ3@=$4kPlI*H9fyOmZy}%_!DxH1+t{OI_VBT_;=z)dkw%=QT=~xJ8bd<6 z5O-{T2<{lqQ=E-TG14?dW~S!fv)l<<-Z9Dc-Eo`kfaUi(3JkgZ_H9B~Xn2e#ST>^o z%#Kq4GjMFgk-bLtCU;C==xpSn)`DA71sF-LOX{W;a8X&;H6PHj^{os=R*75JhZz9; zO8Jv`#-otaoR?z``>Gi|rrPANpX!-4xJRze8DzE$2<~;(|+S)g0nk~ zyY1#|QpQxb8}Byi&rEehVuRzIxv&LN>sFy*U7=B9CR|L6m?|NW+LgQir3ft!5XJhz zojB<%qmW}p=B65def8>1MGSIAWAu$ei{7~;*>MPO$Ll*Fyj|o~5FO1q6h4lKxuo~y zYY(ljg(rEzbZo9;6hls5W>vYL9_T0#hnb zl&T&?@aWSlOUn!G32^vhN{rC)%P7FY8gnkB14{#%OdG5^`@`h&^C$NfSKU%;96wuI zU0QzVj;A=jx3cnhaempIxXy{^%PXr3i>r$ZKQ6BqI(L9W}_5H}A-)Jc-n`Lz{Knj5TqaNW`6n`a60Yl+DQ z*2_sj0k?4;u%%y`EuEWrGt!n$v^{PO5++->F5l*|w$cFC*v^{f+JmLlXA%Cxb3-(xjmf}8ZKjv7*7JVmUw?2s;Z;GA`)7Pz_;q*#_P+h2V|Bg`iiHC#n_!i$q zvMJRyDTp4k=PsY2Q>M0LkYf(# z=X=j(u{(+w_Z$DK5SCAC^3MXym5Rrk@2#Z8M#A)Z!JQ5zitr`rIJ0Wi*SO&87-X}C zpOrYBJckMf#s_*0W~hUh@eQ(PxtjMtOmvs*9bBR5F1Z~>)X{+1(%4cviUcbyC9RNd zHsX&dV9;Z4n+PMsX3d|khsi^VVxNdS15 zxME%6KKC4cHc|{cwB&~AQk;!Q`rbrR%9g8?US#Z+&XM8$YzF4HQJ9uO1)v~XmbKwS z7#D5H1dIs8yn}#~W&P0sSd9S98Egr;Z7DXOwf6^XK-Lu`u{U$Zs$OT)V3#i8aFAWj z5;YN!CyQTIXyanc5jLoMy$krSD8>}U$kk~%?(|luVp%@Fe40{Y`5Devzelvu*d-t+ zre8@kUI5s`+#Wh#9)^afh{=Um$M`=gg!oaWG-W#N84LY0O#Y`|6TSWQ%4-P>- z$c1#T>cKM`Bi5?)-J1wLC4rm1pFPXIyF7#O=wW{^h_e0d&8@?<#i)OH*x%8xf-tu{ zG**oUD|BEYUheb4oSn3-j7(scYQ`={o?QTfNd?SVj)@7&eFpkFFM+D`LnF7d#DLsK z;f-F0;p^?wt@>V6Ml!oKNxkoGC*zl}{VZAv4Fl;kl!H8XwxBf@lnG1H&6fr}boxCt z^dg=)k7cOL=(qqxp>f)*V>%m8C+sb{q1jwNjE)*c&;IjkIThvn;N4UWwP2&gm zvxtVZvK4dN;7cj_xRl;k4Cm;|$eXk+N)|iy8`Zx``kw($yf5%X)v-}`;QSbG1GQX{ z1=TZ+_2x$Q7T(!g@H>34bd&qAX|CjmbN+TO-Ur)5KueE0J<=vANGI!J>x>r?w zICCcpmFbsO?|S7fd?=nPl@t#3+tKh0R1|X+Q|+B|cg94))Dl zu8wD~iN_<_eB+D={Yc*;Sw#u-B}0`QfMdK6#4-Dp)zkUT2^@2jdv&&bm*P*{DQk-p zcX`=VX!(lz^@y9^Lpmx)QvWR@q=|vAQUZvh#lX=JK$0~J`R-NX2yS29b&EB&k;w-; z`StUYPB{MYA9DwUp56x{G50RTwDi=C1d-~Sr`MVUt;|5zOE+IxyB69U8$H8j_JT` zX7(j<5%Y7w$1&It^Fm1R5fh#LWwhHMEQ6!p5bK`#wKp(3#iI!S#LR9I9t!yHo>;x2Fw&^4zj!Rpl6kP|R=sc*cL=)3mGclQRBw98% zR|3M`TC-2zbgr3>&7El&d5342Y6!+9^idKwlZ9ck(dzCpH}4sm5_HJPI7F6m5aL(* z9iuY&hKvey_-+lQ0jOMnEj26Dj$4sR_7$!;q9roy#_N8)Ex%q-XCj=WRUrsO5#!7Q zVNHR^P0e2^YmFL(m8oG6kx%)`h^P0ebd2I7e&blTgn^y86W-ZAagz(P3nynD4{)YL z-P7hDIc`WhZ893ns&3FH`sAgJL1?e6K79&5D?Y;h8T_4`@{eO%Y4Eb0^dE5Cm&o)( z((pdsQSD23*zt0VmE;W|cU>PgO&eowLLbWDgH|3Ol|fSZ?UbigbR`fg**$=}SvK}$ ze@6-a;7mO2A8eajv{k-3J-bCzmQuiBJIwmclEJ0B<@(<*J{tUh?YulgUD*OZL=vqy z2|5wd@QaZ`$J@mK@%GAQmbzEojdk)u~7# z8fl5id#_O5`}=%lYRGOGqCUZ#^s%~gQTH7dt@F3eZWG5W5pB+4r}Pux&StQt9z)b` zpfA7>g+5dyPX;ZdpHIqOJG@V&W20Q5i!=@BoQ$(K24zoTovfiR&lc<7UtDzXEV2-~ z!7Y9WW{0=gcpm4C4&L64w9a0Y7nUhkMeOakih8Kx3lEQ)m7rKL&ZVJ9c^dfnfKWx` z1RIlJlbba&<30QLUx&qfj*F&X8l6PW(h%E-=P|1fYfvD^cqdZrz8Yl*s+a}z0g^nN+nm^$*%`0# ziS`)-NO~)izR}W$h~H5{AOR)B%$tGY2DDQi8&yDuY>gb?P=>6W&8?Cc^Kt!2qmi?) z9EDQz?>sAsxX1_MpC*3J)Z1>AKh!_e!B9>say=+OTAK=Rd(o^6@*bIVJND8|q>03U z@lkZlhBCnrOhU7qz?Cd_j3gk}zYj*BBg{}sFzA2BYEK*| z`Xb|O$q;31EThR*EY}yfSiQTYF+cf=UFuLG5$Fk%vyg!oiDaSCrkSIR6OIWA-OJ;F zVIRSYNoR%(Lbckav^TAlsTnx4`E1GF$ncwMz+ChUm6t)pSySf^T6%9 zA=Kj|iI>^U(->C&UVLN!iRxXGb3tU!xg#<@llLezgnyjF3uj0b*i|QX&(RDB(4Pk5 z(Lj2aNloG~AfzQZo*0_yMbNRo8bpqTLbxaP4CnBLNyvDW_Th+pUW6vr20MEtrp{LU zy`Z%s*t;{^{I!bV3c0;~r%>jYiKIZ3o2| zb7F^&jbs@BZRCMu0JP2?J8xG->SHMRFe5$xBRA~XyXy^ecbYCzQKPtHa+}f<`!`J) z`S6;8H8DMfjwm|;`Q~{|uO8;GTWc3NK?7^KAMCl^kN)}6c(mWA9%#2!HIC^!n8F?ZgTlgpH#8($&-tMsnNVm3ohT&`;;x*~g9JzdaEl-DGUWX^hPw1~v zVFZ)dStLQ?xmcJ8I>jE>qz3jphQ?W#iNQev@RD~XGI|Bk%FE$iD)By17{oszHAcL& z4~-H9cr@Yll=}sU!JUliH|8^2P$c%aL*0;n-*qNcxaqhbWswSSS=zz2>(JdcO84;6?V$nvS!m1(tMga>Wgo~!aNLGI~5?0p{TJ&jSB7MZ4C%Hlw>2CY} z)^@K=u^7FFlrc~|de~XRm9swTR(Zy=q#VtT8i~|Oo2Uu*kxLtjbx2-0X)zzf$!ZWL z-GB@DEW-s{3%Gzuw{XlaP2f>gvj#V|;M|pU4b&nCw>?+i$f39Aw-laXr*P_m~IW==!x~EHXWHdPH zR?IKxN(Iqw`4hEel$AQU@tx1VdwjtqQmIQML){|1)RMF!VYXIzlql-sLUL|9yLx8P zFKgxfnLpIjwXI`{xvWdPRd)LfL$-cp_xOEf~jL4%qfaAIM3j zM5+%bO#h%S{PH1_2*N+viI{Gphe*lX40D3aT1o?&#BF$PC^Q^3IA)%9{n0t7!A75K zl+uDp6syA=L+Xr$vO?4+mQi_l|!~rwMJoL^-kFEy_r17cdvtz6i6>#5X)D$epO;X<1~xS-0@&8aPhIsGwE(cNvwUtNLUd^lw2lcBkIS<D*za!F9~-Q)V>B%&x5*$5e|))Kh@OY_Yqy=tLsN4#6-g`7f6zbL zZ*`U=f6|yA5yMzi-_P6(i=N36@MM{v^z)!sf!!k!NFUPAad$GVN-h4xgGQeR&zu)N z1c8RYGaG$`4ngB_0f~%yO1X*fiC=p9f#_<;k>Ec_!|6srlhtD`F{HtmR>MqZAFvnF zAomIJ)w~2w*KJv!U>#T}&*BTwb;nh%KiybHqVqhQ=i!90?sa{Q=Wz`-Xj$`>f>IK1 zpp4oXJ4Mu*Xii2)vt}nIAnz>2Ac_HJaP17v;QS>0DW!&bOjDde>avU=PRcsz9Ibgk z`0Ask&(9vrQ*YbiP#L#S@ErF)2PMz}E_m*N6F@U#&Ebw z_SFm!n%Pl#qSU6MFgi2SwY*njsC(ro)=W#M<3xrV8=6)S^1gz(jZhwz9|?hik?u5v z0xvJjlHwhCHEp^K9vA@^{WJ#`&GW>|ET6X352j#J+xuIqOt8>=cmS$s?QS{WOP@e) z_j)vVc1i#>%r=l0>72nQ!NYo}ib#cOeiFi9CkoPF^18;UOlCXJILRV_CP31l0rX1a zWNw=c47sBy4zy!&)t=mUp}8+fBlc%4D&+p9`{od@rDvE4Zq zo>+7!kfZx(*(2Z#o*ka_I`Cj3Jcm+IZ9zW|EgD9u;O1cWoILGsQvy|LP`EB`p>1e> zl~$LP9~YMw*ln3x=4Fldbz?O*n>auq6SN=;;On0QFqrPB7+|p5B%VfPsh$UKWYpRb zPck*jgcPWPl(L07fzH;1i`fsvv$t)|HT*r_{UVm<1l#R zI6V~vH!@rD3JNAyp69R=bMhg?R9*aFfqI1a{vdWUxB9TPB{iDR_XN&R%6Nya?_~eP zUW%$6A&0Rn0kr$QZHn7g+4i{oR86)71NG6y&zL*}3R|Y?3nDVnn~;h(l~Ep2zYQAEk5D7kvfQxpyR$d@^d!9!z zhk|zcN55W>7P4ptg>#L3t$W-alD+18>{H*TxG?L%6U7ljs5ZR&Jct=^Bz@fc7@>;f z=e6L^03Q8;7cdhVQ_5+J%Ax}V2?iSAm38r40w=j5jprA^MLX+g2wb$-CovAwLyQX`Lya!lJYrOLq>oU6qMU=V;G zYu|30x341NM!mVNdR4#HnKosI?UPTR+Jl?|O#zZHQTWmTRO~aIZUY=7DK|(5VW~I# zL^#G1g`1ljY~tgxSkZc0_@xYJFzRHzp3$u6W>PRD z?5yf(04>@$#Km26Xwmdi#+IzfF}Op*EoD94WlRcHO&pmB|ku?5K1Oig=+Qe ze{k<)t+6TVtL`)i@d$0N?)Lt{p`|@$o2JI4KLWzwJ;B&tfH25>If)%QG>s7m8$&1F zGX!gG$vSJV^^YX@l~Ku^ATv#wl9%(lNkL>uR~4lACDEc=DOxmg%sGVa#w7x*#t-+) zL#a`6UV*p`$2nE5_sB0|KxZ&s$ma||uvodD0~iGDBX>Qhd)x1xI4v`6zK1^Ur&s(w z?dIcVJys4O-urB;0hE&_(i`7!rvQu{?}Ry{S!UUhqKeU?Tg@nA>o-b@v#D4Wh^URp z`}Q2va-q;PkG(nPY0@n7E+cqV>^RfD>Uve3M4(pKSxIOID|_?OB_eW+c>_hN7eeJyq)kF5ET&8V&L#c0t< z^3zdg|KwRmzGr`bzSmQ#Eq4yl44yCzo+=g2UE$NE&N#k)5fbed?gzqDI$(thITeJ# zhVe=Y33mY%p>q=q#m>HD@k@ohD16hpJAU2n>Z+>Q!sS-(5`y}ry{~JvJ9q8`a2-cq zGbQGO*|AKR^#ZhLd+*~d7=gG=DC#1-V>ikq&3(olGN*f|BbDtfmfTg{M^<6*BWSCb zWh|GK)uqUA_ZVI}D18`|e6?dL4^ZC@q3Q;GOCnbVEqD}oa%10rCPm4XwqF$+`-Bek?@ z2(Rx*=dU-_7Ej2TxU*KzP0oR5@`5ubqEfaB05hzM_)D}>1YLZjRs!uSI9Y0(pHF;) zN)XK6<-kv2f4c7IOp`g^*k|^*gHp!%WX~X4H1@Oq9Iu=W&ow(%;}4L(ny(QPHAvK3@ydWpA(Zmx^)n0)CO4O-Wd$8kcWyF1kkuJf3S>@ zLHvle!$vyZP8_PS^b7Y2s®9;osSmHx&p@-x5T{i(e3+96o}tmmA8_|Z*vO7 zK;)V&P zZhhU;$7q9v;-eoLif9gH7;T)GBY_%*S| z?Av%JoepI<_Qe2-Vz3*WXq3uX5Oqi63=YtTP3`x(lGan-u-Dn-5`ycS8{ahfi=M_! z0LbUM{4=hz*QO?P{#wYRm_cilv?^#lhi}?8hPntXTJgiMbz7&@fqBdU=M;O}PfJbR zduJWxKUaE&-5XLK!H#YHETq9?YDQ~y-jZlb;}plXXd}RE^=^-`hESz9Q~gHQczbrN zpNWb&^`Go2cR?V+V$MDhG^AKUR>T>wXeJ6E=p-@O?j|4?t6rnRe$y+6*{!=fv-GhM5tL~%dyIkFjEki+8ySuf z6}I{ZnFl>cZ+7$Q)y=Vb zchHIQXBGaKE%)l!+5+LJwE0II^S&gNk{A?rTBR-|?Joz77JUpK!^;dRd{Q^}(7B)9 z%Pr17efoHDt?0lhi}S0C^WkTFFa0@b);|PJc;C2t(wu$okOn`jzXxgXBKN{shagHS zqHKm><%-s+!$(&51jQ^hZ}h|B>ebDUM|}%`C=I3|DF~)XpR$9daF0f!M$d=5iBB(> zJsF`!Q?K)EFwaY3acO=;E!y5CD<==Me_c@TuSl24G$Q z1uIGPjlzSoRPGHj4Sem$V;99c>6z2nMx#{xQMcwk4hQ=;MT-{R*^`tok5a-cJ$V=? zv9$d3dCD+L58}^LrUA}SZ26tpK_Mj(tiSWZ_Mslwj6ax_Fsi#R#vhgs{(IlTWR9i6 zk>{xLtQnFmBqVyzG^-1MIBq`d^K-?68s@l^9}-uCA~=g&z|~)e%x)m z+um#tL74Fcd=8s?tWH0hFYf#0oI6KRBcG-IcYdyVmsju`p+e&qJzIIcdOzJt&(>Z& zP7l^r=kKQs^YR|M%)KQF{{0WtWU@!W?RHZLHQUleBMVdAw zEBhV54FqBaMdB$q3bBJh+WL-+R$nsgpIs9{(&bQ{p|cO` zQHLC@Rws$k%|~QOf4vWANZuWmu1{5p%Y9+Nlf_YSI)26Di>bhedwi6g^~QGAn{;P+ zzwa`&(4#7bc^(6-R`H7iDEWD)&YHh1Uysc%5OZc6#7iHM^rJax~yFXpD%>wOsXLsSj(kRo#7t~oR>h3z*|poykAcW zwEOkzNtneUYi0EvdFB!C=npbF#X2M{sv=tKia^NI*=!4qlE%b!No>E(#L0+S=#dq} z$tCc>FGh7{U6tbeE?z8-0f?ym{la#y*V%0JB5o=iHx6=}@3c|BR{~nSESOHraH9|1 znNI6QyT@c^P-dZaa1Zl+en*2*g%W+)Pjsl1{k-zaIf{Y1CuziU7Q!)C5a|QkoZhwfIC(@L8FrRZB-E zK`@?kS>JOChLgm>RY$PRKM&P8i5VrG%JYR1TJKAfAPQD#R3I(OP^xXJ>?uxYGO!Et zC6hXAS%MNwo<;S_eo%lu#NntwxqKF#XRvZOad6eYF{*PiRk`vTi)hhDrpFnq zLz*_))bNQH$wW~~(vYMd8vzaI^*aeWN}@Fp1CF$kXiS_?5-rtgr>Pv~v{epsPRakY zayW5t)fb>Tca5Em;fJ6)D_fl8lAEK%^f>}rw9y}z?I9g^m(IX2Q*@%XA({|8l7go> z+=JkSf7#pv*no+;EF@YkE{Ptj9L^P{Q9pTw@spPVb#6FASozx^`egYpSU&>>-j@q# zFLQ&G7JW*r)T8ToKSOQsqv5Pci7`Jr9&7+t5T9w-mu&9*nmk| z5`KkxhJhmT!P042j!_Z0r@czcu@7UH(7^lhu+En2ycpIw2`+*w+D5?-6VkE?U7~4# zR0vt^JNSo)aE5SKkvzt*>a>*wITsnw5QRy9ID&}_na?60)(ULDq;lGeB>#{&!m^_x zt56*3$*1?}6Tz2&bxx@1rB5nv^PRWlQW_3gM6ApD#9#-ofX1lOjoB!po8^pRrV_%k z5=2HJqfcfPbF-gcIh_ct!~lp*1`F0%FPJQ9@!s>bwUy<9#V-phPuCutHRpi_Y|=&&NH7raHX}w((;NSyhg;qSF4>?22G$d+l?|5>IYn(A!`}}dw6MV zK=F@LMA^RdO3X?hhi5DJrDrOqlVZS$#$U`T2)68f_$B{T+H7Vagp9*z--O>z%Qi=u zn~#OpZKCAT8_xe0?KswD*rPG-p}InJ)VHdT1o z?=ybPRt<5U%3*d;wA%-Tt24QSYxi&)O-9!8P^YZcE9o{m&Gv29{L@i`wN|TL{YmL8u>pzGZG*niX2h^FTpCv1*WK=Q z4hs0aokH=Mrv)WJ(CpGuTQz=FU%+q zY1a~4@6GPbc8fW6+Xt|P7^T~}(SjgNrj@-ls#W=8$Ga50wi~^j{%+eo80fRDt`;<) z0oN73D&_;2FD?ZQsC#v6JekJ9GKH0*2CILpK!8^7NTmnq<=!??DMvm?bH(|52V%LS z19n(6e+%4Nm}xkpgakqD6!)ciIxAb76yO#no3$Y%oo1`8g&SQ&1#yoK-)%Ey`4AdR zH>R4MDNYiw-Q~D(bE+}b;P`02cOu9d`%|#kEjq#xs8mE2rsf}o+mh0@qXv-y&0aJS zX!ohu)~OVB`t9xR3IBF%r|lgzd)o(Fl>*Y%qc~KUoy$oR*`yqH+t>R0S2U!VpbUD# ztBt`#))(e|n6D{5Xm^^^)9kWVqun|5#JbtN(`mpo5(bC+9o`Bb)K(KGwYK`$tZaoD zPah}~O?Qlu4?zYr^X4LCz~^?S{@ylQ$plNfUywu+EU<=)WqN^R%yPWd---7Y6IKqc z6q4k;gw_}4e-dajb?Z)zq3f;wexnBoy4~B|n<7Dfe-~(g^T?(5d=A?V>##>pS-~e*BMEfwA>O_+ie?2 z@4<{W0~$>YZRSqaQj%uZeHe?x)?ogpJ1xn=@ar8^fH1MH_Q!Uq2#P4&_i5TEUBAzO|jaf65y}->vT&9(R`g9K_0!Z;V%Z1oBo5OL2l#ua8 zIzw2O4z|ehXdOTg74NayvQ%B%`jzVX_ z|4famd(7?weQX2a;2kvu%zLwnvUWG4P$z5c9QYPts9aVSHuyld5{cmw;FG^ z`CPNzynV}4YlrTh-NVLA(m&v}g;$gEXG$t_Ez#v>*|5iG3mJy`mn1Ki78Vx@#rbC} z5x}#TOKXo-p05>H^y>Wb+N;9Kg90XpLMlc$fD7CE`J zECRQlu^0AeN3s?Aqf${MAhQ4gvW}=W+#bSFR&Rc=wcVwK6fX$+{$jdWtp=v)_qN}4 zj2)oE&6~HHQ)nrX3z6VD-PPUjJ%2wBHk6_{ zv+r5yK&mQqFFrMzajW}}pD!@vuz*)sSYE+bSi)m~VrwhLAf8T3ixA~O;mP9a{YQ{( z{@&8#rL|X;D}@J3Ys*lK{83o*r%%ql(ZI$zl4nFH=}YBr44##yZbLaY03t6Kz(<{mu(JWBmz^oWfcJAD{bsL4Pj~#Rxj*Ol>;Ov}YJhWs% zM1E6-Xz1`cQ`|q-wvplfF%t*#ked}AtgII13)F6`E!}_qcz(6;^!e)3m1m2v%>oo# zURr*jDUpj$7MIs1VHVC67GH2sc=l-i@nca@dPxh6`(-g$Qui(-63x5m8;y8@t~S!F z(3(|m^Fh2fP;BfYI$e*CTfh5^W1^5;ZF(tWXL+7OZ6`^Z zc-aI)emd%Jn!)o0kYCo z`?!mh3i*$_$nO*d+;%Cve6*<5ic9AC-+c?Yu&?f~EUOk~t-`ijT}!F*a_QM(r7*v` z#QutQO4sw2HG0?!+$Vfnw#;(oki1b=2oEaGJi=R-leqqI5 zq$}>XH&Yw0*12OI1PzLvCfJEFd5WQD^hCX4{rmEHyQWB{$G&Bm;g5<8W zOalD2m)>?OxMg8+p31t1&(KNBIXX;U`TAPKebUjSrCoxt7ZQwb8@99{V@!XyXzs}^ zKD|nT753EO$G~`eXW^3zUTOPao z1^HZ?#10PV3+r>P-D=~)*dJ7pMRVIUYsXBI6FF(OwUsp#or*6Y(u*@QMfb*NsI0k6 z>Kox%68cJw29?=6Vmu4PSgJ?!^D;uc*UEkO^u7Z^#Sl+7M^Thchq zuS-_*l}(j?hcFGX8;jn^Ks36vZ%dWM_F}t%^Qm+DiPPJo;Q9`I6mU`w+WcW@2%;U& zBDa1I(I5dYBZXeC*(UXTJ_kf!SNSKJV|j(@^4cIm<4n6&hsX_OhMsM)--k1bM9(Fe z$h~jLgJLImQq&wQk2Jc)0yz&NkZJuIwO_H{na3yovmuw|v>UFT%zNO^Df6 zBG?5e%DISk=o>bn801vM*=y9Vz5Z&hG&fV48(XhV+?jYixl!iu_1DaKKi1KBd4{n` z(N+II13Tml8;MRC69wKZI`hpD+3rN_f+2z@?T#owz>n>tQ-`UzzICTbWC!n7}`b7{Owpf*JB-s2eAym&QPiC8r5MbyddGKKWx4VDZn{L|}eudjW2J^6a_ z)6C4L*X?m#pM2f^x;&?|?eR~=^avzC{8?uxUD%69{DA9%_gJBTvYIdi}P>!!F)@R;(nL8M)vfoj0ky0jgzLu+ZwDi zYV$tj#O$pkx4Y=zgpGn}nhqTtQt2DwUP0w0*m>EKC3JFRNTqS}Rtq1($d&q|Y_IC= z;9rpk8$joCAq&?(xJa>0n7W1lh_{vcf5IE)eF66p{AnbK$RWR4^{%^}eKi2iG>3l# zpsS|y45%8z9w1aEZzXb9eCJruNre{h45!q?gc^J6{POkoC=dF(n#lLc6}Rf(aN}uJ zn^O&Bt~;Ol64SR^pw@)ba#W46^f3Ivgu}&};B9Wwb}nuFs~j|+#@bjU%laefQ+I3m z8XnpzOK0ym`_K9(vtnFxnyJK*DJTyJ^G-()EM#tcMujkb1U7;^Oqb14)1U3Zz--FS zP@I7)zJH_=ZLCUAyc^lpr52J<`R(cHJ9tcv9B$p_k>)QPb~-&TrJB{&4R)~mh9gfx zX=U1j4zeI!8B8s#jP2wr3)H87K7O5U73{wj&3THt!YtrsP!si$Aadybvy8qrmCz}* z)2u;=p1gIiZ8qxSX&WmZZq}~bo+=HhsEH}TAkf8lMtK=>dwac;WFiN7+p)cdf#L$n zGK)zMr2#RbK<(=$m3GZsl;h#alVH+p0s4?~NojK&t2O1M%8qvy&M(BcVz=^e28wKE z{NT)H!F-PaV$@!rm}qUpXb@zkW>1|7r$$dGmP|}RryxxPP4DG!T3Nr>A(S6%9fd1h z#nNV@?)q*lj+Z}2=_8S!nohbxGecBd8!jS$+|tv41@RnmFYaW2A8SWWR8cNJ-0a$td^Ro#-( zhNgleQ)_MvmpcBc`Zv<*^k1*PK6w4UQQa8F`|v+~rGj-l;LP3xuG5s9rwD^nbt>*RH=qrCA3L4&S-kRF-2QM`?) zjhBjlIaNj`pN3bjxgb{ICU}v+1pCf8@a9V;Y20lB*E`c-sCNwr!i)?6w@K9p(Ii{J z`M8KX1;-HmK4oFa*v()h6P+L<6ILEa2yaZcYYIO*nz$ID_qcA?ZcaP;xY6X!@Ed~7 zN7;mxC~F58e4TScJcsbIDW$YO&5A%JeKi$7x65;F*QW-+i1y}(T!hiv#|{R>(A7+z zfydN9@>bJ{@XCD^C=F@47@;#Ekmnu7!OX(XyLr{Cew;|EqD(O!p;*0 zE4Od9QDn_8|2Pn0<`A%Ot$>=Ly%AK$+@a6I@!2Si|(FAcHY!k zn_E~2HIRp9X7!?HjUDZbP^v?qj~4r9r{AI&U|RtUt+@%w=$UN1>8BB&F2x@RCCcBKfL(T)i>^Ob7qmmP_Z@m`+S4C=1gcrUG4+NX?2}Sq7<<410l=oNVyb-CandUV z<_LQyNcpN)iU{{~H>o}+6=AX8k%$PE({qxf+r4qq2op3`yK%ePhH`sM(Mf|)yrh0GvFdH5sq zz+konCr~Ca3eVd%n3$;@6v-La^CV-zzsLOe_{7%j!-986aow4Aw1@?BqYE`qR{Cr# zmdPJi?_78Esa4$qZ@GVJQvs;%U5d#U&S2H2)wXj+v+Ov>KLPT|^q6E3x!k;%;ibzM za`<45v=Sq#dld-PT+9lhSiae`d~q`>a%Zox*Ene)WA<7Vc0eBLwTocv1y_wBDe_<(-T1yiS&6R|am_bFKggQ56kCi{(@1Hb+2YRD+>rMv)@qmC?j|3ML zac(;?cj5vNzRLjBaj#7m53;o`#95d_6Pb2i@;khI3nbdvWBaD(w*cUQugMt zdc%SNIB`=(M)ez*CF&1ebPI!1rkgiz)=)%Q0H-lsy^X(lK-F1FuI`P-ja!f~GN-3H z(?mktpGbzJF{(N3q38nK?Fy|jo*6`NYc7_v5;$l8TA zt>ArgHWE&wixyHYy4@pASInaB;><=}zoVpe?Xpg4WjCn`yuz9( zIqSLVH#9r4_W;D2UFG*0)tggO>@zCfKwFW#sp>yYC<2sRjJ+2l)Y-r?t+SCssN*># zoG@9{O^!Rx7$w(&KoHExJxA=UMW&v!7@Pz*-1wyOO!Y1r$9*0wmpWU4DhpsNRu3R`1{*LDuncW1bFkVLA?!&3eaOr;C!m#R?`v?%KQUgKb?n zojqE=UfZa@)4x^zwdeUox@PDHSIAG0r*I(GGIqYGrsQlC1-o%;da8LN(5K&jd$hM4 ziDq~j^R}MKy}bJJRUnkk$!GGdwm2DyB7t}ovt=U!iw;!K+HslO@NBsM4M=q~-POC^ ztSdB5KV-p*ghfu>*r?NV>sqB-Jm7YRO3WSd+eKZy6I~6ogqcWAK+YI(YCjG#k)!=bWa-R`aHHxgxwa(g6Yq=7+Z&H)>a zOb3wzf>%aRY#3*5n?#m8U`IKvwCOg^8#lyv6LxA)Cl0p5W^%M%Bl4A!B`n+&SaJ3W ztPx)h9aJLNO?Zdz`4^73iA}v5)lRhyJ<pW`jYV2T0vKt@k`a z)NVtFH+Ybs?NMUrWsYMPtG8ee`Gp?rko>mQ{ z!1gYLq|>V+;O$A|cw*D>#2d#gfh`88n3B_|s4WcN+^F7U-2h)5?Ws(aa!-|>SZ9FP zIF zr{bQt$}$P=UzAh~Vetm)3Z5enT-Rs8L#YVNf+`>;6HJl`gisd%((z0OlM9jgD*zqu z5JD)Ctvsjf-waAQrjo;uA>-o2KlfRmx*jdsh0sNcDbd1jq(gEEtWT$}>(d9$!;<9waV1#SJ$>HPj$5fUe+L53KHN* zx!I#$+kWFEkm*=g4h&V|>Ya!4Az~aye>t6bO(YRKoWxq)p>QM`7Tng#Yp7;+HY`*K z!WpNI<~H1YBbdZ+M5!saEA`UnX7)FmL{MLsO0U~2m}OU9AIyz7sD7$_s=C?`zOO%C z0XZ&N!}lf5=L0tQeAZNR5j5Sx+{02bk3GvKdL!e-NuCww7rcv;bEdK)6G35XKLc@1 z{JEQ8xu{=)$r8L8sc@sgEog9*vA69vi6hhOHF!rxjugD?LR;7CvR?kL?ByGsj7-%} z>$QnH8&InXdpK&HbI$I9JiQ2W?<_#w!rb^n?U4+ij(b^RI7|n!G=rH$O(%(0GX60A zHV-L}A*JXQbfX#6iHu(GjCOE=@ES4$D6K!pbY9rGuDV0^^>|SQ5o#AtVlo)5GT(<8 z8^*da)(`uS)k$-ouomGyr={UmhIIM*KE=B(z}{o)8B`r3`exWAaX-=x7X`XGlXTGD zIaYDlYw>C#X4&KcJ>|qU%m{XQMCKY}^?0Aj>7CMso#$2~l;<`fY-jsDZ_L@m%YWG1UQcY5YJm&KGu$4i42mqu4lV zxj}~tjv(3>k->TH(?RS@H%sih-wFIS=%(t=E`L0(@A$WX5q)}0!Z{N8B(gnOn)QBT z*6OxnKGWnk$In)px5f@zpWUG5td0bh5VlgY@<+DU*Y@*Q6zZkdRH_xO{Zf3WWtN#5 zqxx-X;EekNwA5n@&OvZE$6YxW>W=s2HcM;H5wG4fH;O4Gj7mJNw>Y8zRUX8|L{2_s ze80oOlWeG+OFhsgdvj{K2ntoHxo$s_M=rT@$a@i&>O@sM9lNR!Es8%IUx#(C|GHG( z`1*Cp|63MWbmpsaRGcPWbIeF?Wn)%InPkPd4+)*OE_^)g_R1Y+*{cn!XV8Q%OaeXN z`vaYPacVvJXq4>+IkV+IC*CB)oeL+)YMuI=!Ik0wI1mHaEzJf5-ZE0?=4FkC2K2h10PeZ=mEtV(WFf*{^ z7G6HxiNtIxmPnF^A_{+AUn{+SHeS9qNq<$VbPT_0C=<&+Y|I@tfa}I&LVz~v2QEC+ zw^%qb0PbYh&c8N0yx_k9P530dW+LB(T?f~aa1Hr`r5OE zuu!R+^{qx2t+S7f88X6%FJebrv;Ai4axX@tbStD>W|oW@St3_$P29z##zd_=*PH?R zWVRTURNZ$)ZQN-j_}a@!dd>nu*~`i0=b$RDy5rjHO9n`)qe#cY`W4-FipaI-)TuN_ zfH*{Bgax?dPLf-5+fDA>X}nh)$=1XC2={|3c&f9wi||+HE`u-vGB{IFw5|$fn`ZN< zT^U4qy1G;dD96m_gffl~&wx_)pb)5|7{|#*ZH*l&-g~;QpPOO?2*OUNzt$(wR2sB%3=3ej3C)=o+Ze$ z<@u*EG}!<_(#y%5kwb9K89}fbFHI1uP~nMK;>PUOIb_(1$zY$vw1IUtB}rU-a_g`_ zeZx6WBbNl_5MkI1i}l+OL_24IOYGV-*B&gbJ{t{5mUuklX!|@8Rg{?AaT;0s3q{cN zCc$b@X)p0yZ0|LQF}b|n)vGLa%NA>!C^YHTsm(DmfIsG?V|9k);sMxVhowyk)EdK= z_((DmaOCo!97#blt3vP3nc%6-e4~&=Na@F$?`;^KwG`5vkm*X%*)0*dJ4rdHx?TCl zokQqOZt2XHJ6@#)Oge}Y{&Sx`-JmpMva5>sEfzUs?K-WsbL&8(sqi_`V{1J|>>56xzt; zF*&Fo!fFU~pumXYZ3yG1*}NxBZU6*10tMn23YX9KohHrfE^TTu;HLDh9LwDAYNff! zA|Gg=jyqsKls^iWl#daQ$T}Fk9@gqFiAT(PAB8q@c}x!O6R5HLY_)UHS57dZMvfLH zsf0*I!qfki@SpGy262tR+amjecWch+eef0h=67EC4j^U*a?J- zhNF#K9+M+UzIVFUHpM#))v}*#DvjSL)gYHb6|onede61H=qLVd5l`#RYQnuEh>g!F zy;EJ&yHd9tniZ+Ob>=IzNoSY|VO`ix8j;l+>}@`(4HWXsRsH7C+(dqMlW@^+w2{k0 zcEE?fHI=VyC)i9=7lEvuW@le<|FozG+dM=vG+4KNx5en$y1p)K1d8*6O^2PD+chpt zN?#aZ7G;fLC2j>RGX_fUEWhO3rHh9y1xU>Ej6x&1JZ6XD=7cP>f_vZuvNEgn_Bi93 zTs=A(+4za<)Vwu^XXf7rEClK>yqIWL7=0D?RgZBq;UJv_3*e+hmqG{iOs_uvt^}B$ z`~bzJ)&S{_H37ezfL2P zPTp#=T^Yqg(xeaT9vgED&!Q#4|KVbE$)*6<^XzrBdx$aoTtH&nElNm|QMe?R$L?_b zKa&q!R3?nHq6`OW3^t(!JGAD`T^P8!!na9qA5v)Ge!^;;$ zL@$%d8ETo2E_CKnF3bGrPmFg;Ql#Ze0}^iz0upQdbTSH+JW2Kgxu`opQS4!5Be_KptW;#MREEQfbaAjg2)cV`B*BAZuc3jeQeKHE zodfu~Eo7wd{w-#%s#ruogs(dckT(H{<6Kmd%VT#KK5ny4lhtgCCi}2rnn*+rn;}Z~ z&+uS(j_(pQod`1Ctc*hrF}eNYj!z$DaxAqQhnZQ2)XAlkK+BO4$dSUcp9nMzkoWE6 zs^Etv!5tZeN^*JZjwF#TntW#^lKimg2FuC-rPQG(a z)l0Yk8Vz>o>1<4#5QNHz<6Z^f;(OHN5KjQm=f|~`AHkp0ms11O%Nl!c3L0l6!6wf$ z^JtrHOoYzN>*g zLzy=a#y!suA->aPvG%C%>h04Hae6u9D)UnUNM|}D8s2TnZ+E{A4)MP?>JX4nPQ9T! zb?eKWd=eMLg67316t$%A3lxvNM!v1q>l0tJop~!I5 zu>i0v1HBRtX_8fk+h^Z2Tqd#R&x1uttD1EV41Gsd~+-wlhW z@zSMdlF{%aDv&Tvv0UNzq=AOQc(A{Gv-734QA(&Zctfe6o!m@3J`S%a@2^Ozu=iXE z6UI-YhppH?DYy`U;iU5(U4b3ji#n=oce(eg&9A;(F_CWXc}MlS@rO-f`fIyK$q0lJ zlBMz0GcX^?EDuv4gwg7%Z^MHKjA1i+C7WZH>idvVWIZV-1g4*FkXs8o zhJ+*`tZz%j_V&AC@k*5(DV|4? z$XP1SI-er!K22l6Yn0EKi5#5Iaf*^18D$-!+}ayN^@tLmcH~DYKhr8-TQprx*aIqn z0((9c(y#nh_zLS8$e{eZbOZNM$(BzT1qPdZ$wNPJNF~5|yoe>9!VDP;q=M@(p)&5H zrIMY2M==gEEncmgK3l%4Qz%Q4egHHLkGbzL6id_>ZL z`!FRVd%pCkY(X!5z{(?fJc%~)12&WM46F>G(jtEOG22#bHr)Zh0T<8-kuPm6`x@aI zMLY;zh;rz6)pB6dHi*kk#I(3utlX$f4HYhItEDVK9GeA7jeh~i`G~YbPVddu%m>6I zkcv*BO2|fEjOZbIxk)o>$MlZC0u;6YA!-Qmr3Als1aw;ZUej!4sq*A*^OO-?@*d^v?6Ps05#2Xa0l>!AA#TYCgm5|YY3NHrABL$@(G_R8rT$0F?z*lNs{0tl5g zbgC|4tWGka7>s=K`E3fS>^_L2Z(9yO;zS z7m10!j6`~0mj^i?k#=C8y742bH8=;XiUHO3Hp#^Fd%E2+epal=cOHzI|8*qqyiW}Q{uDpwZmhuh`K1N*^9P%|1#RYi%Z+xlC>NHtA`pP&qXtCK5}3v)S;^ATwW?ju!-87rY6gyN81jNwY+^2>025YmJA6AQd) zf8Vmd9SMvy*Nrqcj5IfH=;{soCPNhg!X>rVsZdNNrx+{yn z?T%`dBK9E^L`BNJkz)6~woe0BYhiu#chR4Hl@|9cWb;>=*GqJ!t`^&?f zk4P&p4=RiIHc%=VZVL^nG3J6=_s)at5M43)#UVFuSBkW(7lobos&oqy&?{J+=jaND z(4fiTJ$I3hwi2sN4k>d91(lSknt!`nU>wUK$wFcfg%qQwbWm3IVW75$_#gPemjpK- zkw(B@?d%BJ(P5M*4|@#%h4;ly`IyI(h+!9EiqYR+yziEYcwnCw8H*!|u!HD&D=ym6 zZFUf?V8sXSh#eIAE4~U*EP`~-lkdYAQSA<)8EP)RE6;v6G=!Xd0hsxSv;ldP2ySCI z=t#^ZIb@EEa`49{%Y5jTiD=m3=#e{O2W@k-OR^p132pXP2X8cXWsReC#pEE+GW|z&6TEF+_yFO6k%_Bf_dz41CP{_yVx< z5orPRuRxwI02PTjWGME=af!ObKFeIOWlpm#_BeX#j@TAIar7&91oxmgimUD@DLjru zsH@E*nDZ(xK_B=is8ywJj~D&8!vo(6A^G(M;N&CH0K$z3M3#$e_Saby5zn-pNcaZE zaC#|8*cJyY^O;*F+v1QTCT}4_rje>g96fhOa1SB4;tM-U4h|_1oqWX_(*lbM%MRfR z&To>`-Q~mHY8oTJJ^56~QjU7xh#J)M=E2B4q?eE29|Y-?i~08l0lV*WA9*)QG-P0W zv-DW_q8}eu?? zCD-p`!p46nIU#AqM>Tqi6hCk+ja(P`6=lBm#>CBXUIAKWOQ0`FZ z|LWB|_7*Qlwl+2j?=zyRCW0X0{VYM;EL3$m5@Fm(;3;=C{5 zf>3Sv0vjc4apM)q6VSOa({0?9swI@L#)eVzoN8+>3qd|K!0*^Exh!Ca9()A8MuHgz zHSXNf;%}YGa}h~&>b6eZ=2R^`HLX+AoSI5c`NzRdfjk3Nn9n&p3a{=7whOgrdU+IJ z_dk95DYm8HVn#3$)V~OZ{JaqV13k+Kz>vilFoZWU3Rfe!qov+qsn^3&YgO?Ce{=Fi zc2Ya7Rwbx{;qOUTtFog!Va(kzOHCmNa;JXvUFE=nj8#c%M<=2)dDsD z1}Eu(bBtB1-qcA?pDb{I0ZR+g+tOovgU3US*pRz4PBFro9C$PdG>PI6>AmdqD;MQo zwkUs&9z&!2%Zl>fPX+-)9>stm52MEd*g)~L%=+S~Trf@&IjP=c&3CdjYlGFQ+F{Ny zVu#hL+G708$?@!y;=Ee*j;BwI@=YUC!{sTTK&jc7NFfiGJ&uc-${2)fmX8d$&kkNB z{-kFjN49*Fe>u`g_gI(0@|g%81P-~E0*AOrehLhc;%q!JoDKZU3b2`hBWkv@YT8+H z=1l(7YPPd#+F8tP;$+RmT57c^9fkeHi?^m^B@Q0Rh_O{X@vAT>>1KV;pN)*MN))pi zSAC&uX9mejUaBxeI!D>EWlJF zSZ60K7*(seK%I-!)m*5qHU&&F-|7JyJd~_DI#K=6r`u?K-Ce&_*(4C5T zL0#i;jzjc+?G8Sa-%iQXYMTd!;RFE(S_sby2&xz_M;(+p; z@{7U@iRlxnx-&ARykadGn=a{Cp*xYq{chI#du;hrHQa-B4nMlXDTwp>HOHU)G1S@M z@RURJ%E9Ee%epNL)W$p++$d&wE~GUwaV3fKd%gs4d{`7;?Nsq7Xi<@p+NGr{(w=^{9y3n-_QPFCF-@x zLbE*kL*SRVR#=+G@NtF}$Bdh3U!Z7Y!|s;}8oO2aDs7DtKR-8!pQO&-eHz-JO$>lB$0)@ncBAUP6#o~}IP=P0zFY7eDqK_a&55-FRc zGFFrMEkRm7eUc#!5$NU$|4W~cbq868_h*4CO|9TNB9N7eeF5M&;(b^UpFV@Nj8BXh z3-HK2J}a#r!e_4YiZUTsC8KCoNlw3%UNlj0LSNRnU`hK{nS#@H$0eh^ETC1a^aEA{ zorw%^&Q_~8%(_~gZSaYR1{yKWqsNoR;nt)+T2e6p65-U7#`OSjA4KqJxVgXwf)2|_ zs&axjrr(QV`n?d-_v^}W%TL_Q=_|vS84F+`BOo=%&#Kyu8E6p(y4MpcXYovkwFUkRM zADQV(1A!Z=OarH;SRui>01Y;etD!~l$LHn(=M#SLo)T@i9-?Q)7nwNlu(A5E(cwwh zAyMCEqpaK;5=O)z$$JIrbQ=`J4dEnvZaq)AGRP!9D<_adupvv4=sg1)LK4;3=O{7; zx4b=|=ShiR4ow)2a|x29AJrF6RUe{?5y&7a^uW73herY-O;pv1u z=j8~9-yV@VPbEFG2TX5bb#XeT*l}hT2Ig`UTN1_Si%q2_yaS$Ig9!s!FK zg>?UzouB%LjCN>Ef~wWoUyw-Z94a#^0P!3@z~HiMMuh&;B^i|xZ%O%tu;R!eDH=O& zaWd)Q+_-rIIgE_Nb-kMqkmB^4=^9wm*PNE=sD@KD9N_`98P!UYse*eIW&HsnANObaG3?U_2fY=7#1Ljz0~G8oxLUvF-B4W06lIz!;zq%5T2@g_P`__ zr6HZX#d_&)ny4`+uib{Cl^kzIdulPn;rqd5HAB(%-nUsCo;hBZT@+$`^1wlvMZd>E z+E$WyNQNeQc6=big6S;H>bp>toplPkWWF}lvseI+3mm0W`Uh0Y)%-+X#*z#Wr(=f4 z&j%r!zP0V?Ocv0tEPhUX!p9|NIBCfdZpMpXMz$KkciyHX+WE)q(LBCH@~IOl(a}}_ zvC2AKWEQb}*pehOxzE1uJ# zvNVq`Ex&FM@Zv?i-V?~pP{0e+vA`b)&>qLQ5X7;Zkc+hK_dfuB5en&93s}Un+ei;##=G;9CJ@VW< za||%uH-PDHi43K7*@W9N2uOodgw)%9Zd}pe` zv8lyX-vpekhhGAs5Md3_HDM1ToHlpgh^w^43H2SQMNZ%Lk`Cz`I!om^N{Ik|(wAnXz;>KKaPS zC;JF1FJE5Nskhr~^eFGUJla5`^p;3R+>!s5l{vg`@6HaF=7r{*izdwgd!hGfa?psd z*FOO4Kyt&ppeMt#sV?VuskkC@uiUm6t6ml);7ljIy{}z!zjAUwN;;^V$+wN5)C?zm zsI#UUS+dJsOlrve;4Iun=#2;G#RGGcAYGqWH~SZ~_YdiRw{>N)Pjevc;WG!)u_n+j z`-cY;ntMK+MY)quYhwWsy`3zM_rhF;5pg{H`I*q9fBH6#fd-Qz`yCne9XTiaF8tn7 zuGZ?&eVpk`D5hXgVltVQLO2GmBm`vqR+iXjU0(>+`(Swd&E+#(JAH0hA>5KJD}+Fc zzVmf4MZuaW@H`5Q47HKiRXHK)Hi@}-PCIMBK`Y(Xi9$4IrnlTKIZ$sSd zg^LtraWes9e>6I$sk@%oHt~({FD$wFZFmEju{Tb$hWlPlMA?8x=d0?rN%DE|bMi+X zd`|xO!_PRGpOeD3pOfGI?sM|HAAe4M?~~8T?_d6${Na_)$?rV}-&p#*cUvT{;*T3ibE3W^*_19eA;QFt*{v+3aH`g0nZ+=exWb1SCr*}Rl)$Zry z>E`ETZ|igN`?fzPf9TEU#zkLy2ieV^+GTtDRc5!a8o{+{b6pOdW* zpOe4f^KwhlS|2(e$`CR`C zS>s>C8vkO}_?NK8zw~qR`7eV8e>pVxebC^q;QC+5^}mYie>H3PYgofy%Nl+^YxwJU zhQFR?_#1eJzmaG7n|Q{*nP>dWGyVa7$KS&5_*28(e~{<=hq%W-%su`Qp7RfL{U7D}KgRWcoa_Gt z*Z)bb|5IH5r@8*maQ&a<`aj3@f1d0A0@wdVuK!D1|D#<0m%0A0@C^Sd&+xDD4F5Xo z_%~R`A7dT=CeQe9@r?gA*Z&=^|GQlO_qhH$T>tmE{vYs+{~^!#AF;DVa|5u*xe}mrtJLmcTANo_=_y6F&|0mb}FYfz)b6@`dNB$qa|NpYa z|Bv&@A4q=JpY{im-{JrNKXLZ~A4T1@4}a_tTkNQ)0Tn|JR$A!2h9)SW2_X=qMS9gJ zDA=(_(-TYVYhU}?*S>b_*s){B{{QZ75`yC0KA-1(d7g6%bDg=a>-=W3*`0G{re@2^ zpm3|oVC>eFLB=+=Z(A9x72)kFgViaOLH_oYLH9dsdWzC@@e zU%mM1%~v13`tl_r{rKunV}SgDctm87+`+hq&>YH(s2N5t%eLY4M&KQZSA<5%9gX)G zykmGD%ZI2qR{nAF$H^Zre}a4wI$r(>^0VdV@G+4O5y|CalJ&{6K9jA_6kbFupY~KW zov5a1JWi)EgC`N5X?)AKyVczS`S7kLtqmw0*^*DJQaO5-*8qGk<0uk-T;?Kf?Ii?#^A zP5T}B@6uk2=RG_k@;;sq)b^p;KH}+P+ePFP+t=CtsqLSs`Exak=oh?x$?I3Ve$DH8 zUca#xqT*ZIzq9>&+kdeAN1jCJCpBzP!_PeZ!qcxjiSTbc{cigow*P5+P!+5Zp)IO{ zRa;gCW4EdbGPbS?QnslI){5}9Rl(}*s)GEKs-XM!RYBuMRl#}@-JvR|*s&^DxKmY- zwR2UFzDrdQq~a2xU2*MJ6=d&T6?E96DoEY4Dp)5XdsPKRdshVojjMwG`&0#K`&I=T zL~OsRpr%PxP`E$+1Lz+}KaIW!H>KZ<{z3E)rhf>15p7QYQ2OcgThMPwzZHEEYE8cl z{kHVm(a)eSBJJrPM*nd7N6n5+eydLs; z%IhVsH=iQhhtIxz_T#fZp9A<5(SfuF(H=~D2<@S?htbZ0i|BB5j8Ml&b&R4pn&vSy zMQDsV#;W63bsVRTakxZeJk1I6PLL-;+46FDo5))(ZFR>;fwiMqox+l{;g>E6e zQ|XD&X?!imwZit(X`Mk!gjU+V%Jws9oJHeoKF_h=xp>dRD;lqcT>!h#z89(GVmX)4 zzEsX-up-#yyor=zydqqphEg?@;V;KuA+M6JDjd}~uH^qJ99PS^Mx8Zsu9b5guIq7$ z$PMbeQQl4RZl)EIcMCtaI$k36c3gMRypx~1cn+&oY`9y_y>dkA{kTNr0bCE_ir{(( z*TeEexW`JkGnQc|u;4mnY>uW&6{(MD!UP&%&PL<9XX-wu|Tsw!dgCU$XWu ztML`SUghgGd?LKYTD-2#H|+PO{ob;lh`#Oh_Kw%vyY^qpzdwm)+vdMX{QY!G@|(lP zujzB<-{{-;n=Be>q_XkB3dvp3L;vrP_<_>Ten4B=54B z4Zja=?u(Nz4qry)}Fe5U-sah>9G>4(<-BWwS$wg1HHL4?;i zCZF2=neCt3{)J;AqF*{DUpXdU+jqU!)i;jIw_aBw^qtqr_g<$zcy0Vh<0o1oyaCtG zxPHO)E3V&giRkaR{=oGouAn+d-=aDQwyX};h>ESMgMzKAgZ|r82aUI_4%Un4cDAQf z2Mf2a4ze1_-$DM4@R{E*)j{?y)j@~U>L7L3>R_FS>{cBV?T%}Y>Y)3c@V%;o z!oBe{hV4@wtlbw!lju6V;2q!{;hlKs%tIF*GI{9ALpL6J@X(XT zUOe>Xp$`vzdFZFU{?);T0oGvfyGJ;Bh1^5g7#=t>$CsjlnzC z{_&{&ZV^3}_Hj6BzgsLEXFbRBH-V4ian*jeSmW=Z6V#H;bB^s3Y2?xnkx4Z2XiTOt zg|~d$#qCq8gB2(8IL&%ZSN9C{iSSH5XIYy9HJ)VqY;}py9Qx+Z6HxviKO~pal&GJI>Zh_wlzpXe3-(DQ7xuZDPaA$GQI9wcbxSQ5J#lgaR@!SW$ zAN~OR!QvqGq2eIp;o>0c5ndiG_WiTi_s?SAKWRj1JcZ+F9M9l*R?c($KF@DV&I@v0 zl=Ctluki6IAFt6_L+5omZ>Z@_HNB;#chvN5anOHlaghHWo%iW{fa60sANl*o{C`4Y z9Y3GS{|vVXeJ=M4ykGM0mF-{iE^5}(`3B#&w7*k}h<&gAA8h|oJwMUgz}wHZi<)2X z|BC-N{J-P*1HTCWsh*%D$lszQ=)Pr1(0HqoV7-WLT@qAmQxYuPwj{{ft|UlLDG4@+ z*!CqsO{0>aaEFp$?2aWt#!e+c%FZRhS`pr*Bv_q_Ygb&m;o2RSi0*-FPh5N9+8bBn zk|5ZpBv>Ot`<4W&_A3dpo0J3{_Ad!i4=4%NiO7K^K~Y*sP|&m_=-;d)NIM9Zh#XAg z5c$n%A4)r&wg|Vdy(R5dv|HnEgI|Q&;%_HE1Alw`hv65I!|@-1|495t;Xhh^BGy5D z9o5%KeVu7^p^-^LguBw{Mx#589_s7KlZf_GUvKsGQD0y6^`qaPz6cGVKM>a-8iQ$w z*bo{+X$-SHi^gyoBWQ^5NE)MPjHYo6jWIMtbS#ZyX&gsm9F6fbCeRR}<7u3r#%wj_ zsBxkiMI={^lhl}}#>w=j&=;|M`cvtjNPimr>GWsN7vY)oXVEX9e-i!K^hIT8e8KE)hN%*D1IPah;0mG+ZLO9M=l9oUWEL)Ur}7tJESw zXW}{w*V(wv!F4V!5k3#s`M6f&x&YUOxJ2|KTo>cI1lOgwF2hxXON1`BE>~EWV(U_3 zT}rKsh?H5EabrBW?bY7wz&wOmR6D*9K`zlMGdeG$Hv{&n=Pr+)+e8|jPaP4sW3 zAEJK?{afkZMqh+(r+)|iJL%s=KTKal?xuea{d?)(NB@5MBK83N2kA%XKScjw`j5~T z;YaB|M*ng8PtcFj7ttr_KSlp(`p?+@tnDKDobAus9<%)gzFy?(CB8)HWxihF>s7v9 z<7*9HBJw(4Z}9adUvKgCHeVw44qxx`wU)2<_#xYBSn#nlYgL8ZZ35k9!o`&Vg@-@G*FerRdXIK4DjFQP3< zgNl}=!NOK*X|0wvYH5qJoxBX%?eQHZ=Wx15;5rh1G`s`6BfJy5Ge2EuWb)mWmu~ob z@Z6J+UVQeZ-A6rrdF)5Gzghjz*;P{ zzKg8cV#i^LwOwkxmN^C|!wcc3!cT)Qw|*;1gB7Qj1{a?pZ)It4`>N95(KAbfXU?)F zXIr;(tjoD{&!@YZ?gjR{5bs6uFUEU`oJ-|ghWm2dS6JU->sw-dORaC2^)1I$A*a&% zR^z!6&sF?iE$14?s7B7UYPgQa>+#%(=O!L+rWK-f3$0se-3GrMekc4cco=>+{2utd z@cZER!ykl4;19tc_TNYR_fdI|$$MPh6Y`>74^MeLJk9Sj{65RebG$t7^%7Il3-FiV zFT-DfziO>s!?8w9uj6@x=QnY^rM9=_*8ZvM_iuW^Lt;p9Np5DJ#+LG(`{~8Yp;gAy4wElT=%ct_`vx8 z;+C}y`e4SF_)$x4@+or3R;>FlwognbSXp`+qtr*{55p#280>pfxc!kv41MIF|^_8kxAhFnP<_q5tNVvkr57hSvRA2c=Ks z$LwX@NdrTo+T0EP>1NXnn$MHsSD75v+I5EU)@9vJZE_~N2a$Q^x{0^MEt3DU+0Q=R zlJ(RNwDOa@Rz?;7?v}C1Dh^Ra{Vpw&_f^FbIR9Q2G(6wX|Ln5=xNn(%PMP!dWkJn( zWkK}(vS8invLNNcvLOAUvY`LPWkLQW@Jr#B!HeLR!;9f1@KSggyc}KuuY^~@uY_O4 z!_{R$_BCZeVNF?3acx-;xvnf&dwp3D+*lT*-2}fG9)jNjzZHHP{C4=A@Vnq)_}%b( z;P=AsgWnH-5FRNDIy_VsjD5H)Sola;Q1ob75PqyISo3&Uu;Gcapz)K|=OYoQBufSi0zXo3ee;xiN{4My~@OR+v!q>vzgTJrF z57qdQHTc*Xd}0mOS%Xil!DrUsbNH9=ui#(9*TcVoe+&N({yqFh_)qW+@Sowoz<-7R z2LB!YCp;(*`fpJlWN%p>EZnL*SiN<5P_s>W5ZTs$w<`~#DdoYs?aPCd9m<3B9p&y+ z9^~&_9<160o(kU;z8icG_@3~+;CsUx!}r0nZ+WnGzw#j1zdT4gpgib)Agwgfv^*$m zRvuIwRPM7zd9db?@?b;ra-TEGgAOgqgRw37X;mH+wJr}rZOVgKTRiRLWXL&8&f#*7 zkaMJ*qi`IJqXWDnyfeHDJQLnkP2F&G$I+wQ_aI(-^U{ZxzI^nP(;vqG90TPHQqN#H zL)9}(Jz3?!q~W}d;B};WM)5IPJ!9yMrE@Hu<8X|lGhWRTtjX~>PQa0aV&7CcvuEM8GZ_m zLOG}6IZfVjTr1?Bj_(ZlD{-#Ec^1yI?Q@QO&Xs?j-1FtFmUDsixlqo6XCDtUQDY6=Ywasy*YS3} zHN64pKq#PF2c>6zdT5P`{0V8`yuviuMghQ{+;aK z+5TPZFCv+^yTZHa`FE$)LoZ##dg}Z4!rdEpAN}^e@|=SW_t#e+AZMU{`(Ru{;6v>{ zj9!+0`*8b?(C0VLkvf{EWAypQz{kRmg&zkW2OkeV9)1Em8=eE7NHf>0!6e@D)Z!d$ zdOlxM)o~*K)8NzLGvG7f1@M#Lv*BhrR?Wq6i0?-8@E+=W%6xeXZ8n zjW3~jsah^mOA#NJ^LhoZ#XOYoP{wOHuNAyj(x{?QjpIt|ah3JB+IrOBxK_?}a;{g; z4LEMZaTA|6^LY!OxAJMGBil?z;T<^cg z{y6*zcohC5{3#yHb)-Ja!*l9*UL7%Yyx^F<$m2_Ja~-L#!e4{0fxixa1O6tDZ>jTb zb-t_4wQ6`z4e!(Xz}kFhUlIL?-pAJO6YIB5?VsZP3}&t)^-H{8;r$x#dc5D@{TBWm z++4@nALRdN`%ic`;QblzFEA1P74L6&f4Bc1YW&l75ef83x2W`I3gq8Fb%WzjqHk zXc660|8_6^+r9N~8|&ZhQyB#N>fegcez=<8+8@^exDLc6!fCjg;%bKLAY2FI6466& zHOF-*u5?^2aJ9rGLap?ITdSpwTH30momxaBLoMyqa+q2USIZG<5wRoHauofe>35*t zk$xxoBGegI7hIXRy5j1FOGLW!)q}5|eD&h1H(w&!hp)bT_2a8QjREpSXrOI_E3`#L~g`& z6Rw+ag>c=1OGIzQbsMhRaovIIPF#245}`1zyK&uv>t0;<;S!PiaXn!D9^^M-{T{MU z?Vo@89$SAkaf2z(-1v1Gb(5WSUy$0w?-t^Fqv7GiH62bF zPkFsR?O2QOGhPGFTJz_u`SaF1X3a(P1#AAIHGj#Pzl`e@+ePG6`L9{;HP-ue>-~oH z7Lhk;zeW3P+V9AJm$rzl#q%DX_wjt-*nQ|YeB{`PijQso#P)Tze`@<@wu{i`j_DV? ze#z@synfBA2(P#O8{5CN{X5&gw_SvP;OR#-{G^5rYWSH~5&4CuUwQhCr{8({!*&t* z)Am5`a|^xCE%iRP(q9#kt@X6G(JS9p4}H6;AT33|UBtH6UvH#OzJosbj{4*~>67oQ zk1E2u=%c3M+7;JsxOUe^712HPQTNnG-Af;JZ#~(@Rr(xyvLdvvp6q^A`W$+)`|HUb zKwm@-q@PB=Dg9>j527z(2h%@7B;c za$GBH7m?Fxok44*?W=4*lZJ?%#pl`fI|uK%c+azb=fhURF0k)~YPndB2riW))?WrI z;_Y(0SKuwiTcU(DZ4IzGRalCGocN?zTY2Lxlojl*A)-ca^%ehC+y>jlubw92La6O1Cg6kn%BJ{BB zkMQ>>Kabf*6g_SYpO6>jMFdaTE^3~3oSwn)EbKYkpSNAq#B6`T_7|=3OV<8nHNL`^ zh`fsLHEXfPTD-2#H~1H^H|_V9{oeL^d&leTUHh-KkBGcypZD$afqg!-&qwwVv5(d9 ziS6rb|J3%+Y!|W5aeaa7OI%;!`dTgPt%nGIV?Dm*>pL}mZ+(AIlZby#jsA%5Cx737 z?`M3!;1jW5@%@JHcYJ@~`xBp;i?t%Wg&z8rdgWW00ob}a2)5B@7d6}Jvv21;AVn{K zdp-L`@nE-K7jM2?1cfOq1fGap^}Fn6)AD<9qX=*~wEK6~=f zn?@f#`ts3Fjs49h46qgh`80cxIs|U+B5N4j+(mzL7fnXs_NQC?p(PDY4(7UxZgTu6 zd4WdadWQOwf)n#x7GHnyX!0C)f~NL<#7@~Q>9@&c)KhD3jybk&*l6Qr)NZy_dl|Je z!EN*7m+t1quX|4ZPH)xlcly76G*EJfHXC)GS2H`ytNi#b0n*e_xd=&@yNFBIo3}^C*sP*H3?T9uF1HjSYJ_*Z%wDlKhZjy z9a$$L=0}Rmjue<3=|9WyH9N9FJZgTVXto^t)XkgZnZ*wHsCwo1d!gpcv7{-r4;xRI*DX8=C zZKpdVZKo&yJvK8l%e^~Yo1NI2I9@Kn_T2KNOI_fT_^->xdnGO#4?KS6Up{?i#>57< zmD+gaaavBp2mSDqeyTM*P0h=#$qMUty5n?)^;l_5S6R2Std}{NNRj!B%guF|l}R-x zlWtC?f0@}4b26*U$<&yWiB!okE3@HBGb-j}I+&BmGAC1DPNwe9%qi&^&hpn^oHWlp z$v1ni7`JxVH{`jrama> z+{iiefBmeZe_YDC2Li=w8*2`z;d%4_>UtmZLq+C?!Z(_wF+;S$3{hkALmkWyjWs`1 zV18(|`Js^cq1avKcgzr_njgwAKa^#DsKETt>IdNFhoX_Bx{A1W|E)ITT*(zY-wAYxlOAGVdA{MKd#wlOQPtyzKX%nFE5 zik|&n&hf9>-n>EWIsWWM<^gul^Z$o){HZ&d6A+P|%qi?_zg^5Jq|)A%wutRUdw1G< z(B6~wUbOe7Ey9h>7VKlTVBeCU`+jB%n$Qu^{mm8}V7A~uvju5p3!0W_qVXw02jM!{ zcIWugn#&gv=lP1#aWwLsV+Y?Y#Q%CtPC*O)TjFlTzj(AYk8OBti@zO@88k(-J&%X+ zcsMUd@OUJTNAV~^N1LVSV3wkzwd-V-qO&y;kuH2@TBEKsy3y!PL&SPmqn_&OWsQ1U zqdwNCuQd|ke)Rj(A3%Q~u0gho&|n%vXbhz>%=RoAA~KxD2pS`4jG{4`hKL)Zl9F1|fM0h-n2{ewUae^AN)hMDlYMiLXTs2NoW1bo(t5Jle(9fqomHvtJr_mRY z>GWsNpGkif{Q~+Tb`t&B^yko@i)$XP`M5-A0j`C(7U5cqYY8q9S&C~Ju9I<{f~ydh zh@Fb-G+fJZtx(J9YB@tKBD_*9tJHF)TF%0CHZBo42iLi{&ck&+uGP3i>;haD;<^ae z#kelPbtx_pz6@6puFG*Hs( zxrTlX{cGu8NB?^IB6b7)8|mLf|7Q9j`nS**;aln7M*nvDchJ9+zKGsMKTQ8_`uEVk zm;Qb9Md*I|572**euVx*^hM-h`j60ml>TG%AEz&3PtcFjf0F)F^q;2x3@%agtnJU) z{=Drm+h5>IgkR+ACB9zf>lMCU)q4cG3t z_Q18Lzi&~QI49kBFPtK}H_pa5_rbX@&i!yU!6`!f<2(T8fjHA}HpM9-&CH1$WX9!S z^CyRtdOtM(B4US{9Z5H9(!z{UOS3So%&W9klL)uL*;ZaV^|Z%#n4H7u9)asf_)+kq z;T_{_2sc2-TrDBz~4ZcgViwvJ`_F-o&_Hc z9|0c;9}PbSJ_bG(ek}Yr_&E4@`0?-);MwpT_(XUvd=fklJ_Vi+p9((_J`Fw{J_9}z zUI0G{J{vv}W;b0d#8^BAIa3$0se-3GrMeh2(c zco=>+{2utd@cZER!ykY@2!9CvF#HjJul*B$a`wi1D<|(}>JxjeDVDl_wD3ehcY4UJ zI}@Ac5o~q$_%q@$cXrN9mt47j;EX(9{Th7ijNfi(X8PdP{TkkFsKM=jlXv8)yE8!i zRzB`~6u)bgkEs9VVUz#(88z`pMz#Haab7m{J#6JDWQZpzq?QHQyV|~+ z8Is-2a)`(t=2P~hu@{ZKX*8xGV*Ak8m&SfHn$Xyv#sM@$_&^$IG@6zL-J6+bImq0J zh#qVf<`6S4&CRA9YDOfTehc~{)RKNH`mO1=q2HFih_u6%fvY{P!*CsrOGJ;rbtJB% za2<`S1Fnv^M5q(4&bYeZ%EZ+bmxy#zOLw*OP)kp>^iqq6^;SzCwe(d>KehB%%K){A z@IYLHa1F*a1lLepB0P+*EWU>GHG;2^e2M5NzDDzP3}0jT8q3$Qe2LI;xW?fck86T` zebz}m9-oMuz*{zNIlN8eEtfYDo5WilZ0H=(_C24U)if^P`$G7|@JryA!Y_jt!7qnj0WXG^ z!pq?0@CtY(yb4|ozml)3)Orog8f$W`I zUGTf%_rULk-v_@R{s8!`Au{H9u-i9<$DmtM>`(5rseL7(8t)p0QTXTL0&) z!}HcDX6;|F1~0;2hQ9)T75*B04g7WZ8}K*bZ^Pe#zYAXre-Hk?8b46uht}X@Yw(FR zSZ57BwFaMAgU{h#z`ull4POuc2L3JlJNWnTAK*X2H^6^}{{sIN{u}&v_#f~;;aixs z+0u;6R%TwdE)TM|F)OpJ|88e~CdEwB_U2+5nMvBAJP39w57Krn54!IHPlcP!s@M&_ zJA4oLUhuu)jp6&?+1Gr|er9T#n6WXRwc!9-X=ZSm%B}q~XS%z`{Zmsieh29Ko6qEC z*4_s=eoLG@|A^l<*}&=&-9*2yoTzH}8!VnQB|f^EykA+)%-lS;?&(I>X(LrXD4mP)Sh#98l=8_II|CDa#sHOF8Rc^lB zOjR4RO>M28eq>QQc^S4f=tsud+vhO*9AQ26BQwmSWgUh0XuKWdcf{LCPG>ph(K5O^ zj@@u{$J@gkR8PmJm-X*${rgz|escQb7=UA-oI#G^U^zp080xrWIfla>qY?a%q&dnl zG>;ZO2FDmWW9b}+V;m0iX!+*R3XjKe0*-7PIXH50O!7L&^E#Lep90T^PlcZdpAMe^ zp9wdQR#*T(2|k;~92#?J%%`z{#zH>Lqpe=7)+K6P3OAFMdJ2w0Ij7<|P2O@`E99Pz z?+p1XajwF7W_j?|S!zGqKIh6mPp)~ig4J>^us#>cxd`vYc+I4xUM8nVj(N0#E94Z@ zErFL>12bu>%hg;#v(j2t*+)dHXuF{#=%9)q?O-!gBE5ZuYb9`W!Xcua?cc@znfSZH zyHx~1cX}e!!#q^aiXgie?%ufj_)geYUO&A3%>@mRGtj)yAYA6sQis}q7`-g>Lc{Gl z!YtKD8l!j`&F>iaSopE<F_h)E8(luc%~Z9QsdcbG>?{go;5h%8mzVk7r-xsUj)Bc4VS3lGBp&b;c_0X;Gvj@ z5*|uM)CzeIt&W_`I3V5TCd3c`Ki{ zO~%3g1-!Z1#TWKWexmw_#5yyd3;NqZ>#eib-t^H_tfw{EfM>`z8}i@ zh~CH6?-T2{PVJxK{S5Xw-Y@WeiT7)~>+ybr_gnaP@b7W|Am1!n|DW(~z$;=u!+yd0 zE8gGm{%-$2)F^8HR99gB!T0{gTRKN6qFb50*xKyHHfArjHG8pLWe}v8y%3@8%~&{} zneAL=haJs#>}0+}MD+QJb}>tlifdQ16uX)45V76Omh54+WKVp~VU69(`}5vrGa8%C z5aE5yX6$P=V?TUN@a>OJL=M1rAigwwP4P9uCt?TTI~d;~<~*9?IuutrE)i~lt0k^h zdXBBt(?&fa+EzX7=x3;>y?PE)&*AD3p(E6DqD9L^hKm2{Z6<#%~`ZzWVUhm#=<&_2*06FhKr5JcDc-ELRi_p*fV7VU@ubB9dj> zaP^MBI}-0GydpLl?=g7C@IIE0WBC)2`Nzu_u@mHH%g^CsqB{NYIL`R5 z`pNOH&t0^z@@B@L+&I~j8+9Su=H}eNVHmh%D!01s|u|{|r7>@*$$D z_&Ae~v-mh0*EwDzB6hCV$a!8P=i9!T?gh4s=!ITW7kN!xjOP;km*N-U%jg!-y`1h9 z{1o#eDoSvd;wZyijzh#Ma9854;=kI@!If&e%6f_L)qGyVXAS;q`Mi!#5xpMQ4Y+Q^ zbrU}~;}WqDu3K>3it9F9x8u44mk8g9>n>bjTzBKT2bYN6%eUTl#eMkh$M=AG^uOcx zR7igi?^wN4@2BzmwFMD%h=mWS+xuzO!|HfMeUI8MLXWBYadkhT?kL_Tt%ry_CI4x> z&-mGUmfz>_irDk~#`t}K-xv9PiQkv`6`@ybf0duttEuQ!AypQJtJR8GR8ti2lL!524?j{-N|mB%OW>`Yq|VqTianh_#{LmVP_>8T8xJKa9QzA5Q-W z`bW|~ivH2`MYIF`j`Ta>?2NMu&P;h-<#m(SU7m>ckk?aQFFt$o*@w@*e2P#%KKt`I zfX{)n2hko(dkAe29!h%{&Mf$Fb&ODlh>WB;isopV$EahBIz()&I*wJxak$3e8c%bA zyyNAaATL{kTnD!-dF6HquSP^fR0Y=)-O2*BKk64ukiIM zzSpeD8f)^pIz{LW`@Lzux9s<}*WEi_cOqr2eZ<1|?DM{TKCsV+_7S0v?DMfYKCykB z?Vs8%LZ8|GIj%2oeTnNUTq5$d^;mB`zOf$P^7Wk>MeKVu{a{Ug#Pt)d4Y+>BB|^X8 z`W4r2xPHg=2QCr$6IWpNXbbQ6TbhsA%50MeZ*6vH8*?<$rJ0S}AYwb4WiuOBXf|%F*|?0|%p2{FON7kE#r8C>v=^Snuzk!b?TceS^HWXi zXErW+0DkjvDNX&(X;$qz3fc$bJH+p$=5!A=!;?x#Jjr&mV`+2biyI z%u{u*D0W{;Ip(Q~%u|KTQ^l?_FJq=E#XMEId8*X-ypg$~EOSEz=7v_A8w!~liiPBv z9ZEGflx}XQzqz4&b3?1{GPh%HD0(+7vqLHO!OaczH#d}TZm2L~_Q%{%XvqOQop)_+t9n1}lH8)gXZfLc+p^&+u*sFA2 zqw_i)b3^^j4Q0PY$J|hnxuNj8=6u%DF+0@Q+)xK|L!-)Njq z9tl(bbt1P_X7U?FxA^yoPC0c~kLNB+TyU+O;nZVJde8X77J8;nX|eJ4>9v_2O7*vs zlYe>GLj2@p{qwzYJYc2vn??MgUda=bP5;BM6^e`Z2j@A_`nPAv)m?Jo#_sXU;p?vp z?~%OFJ#mi#vz>`s%He7F#HK!*eb_?$%h1LXs`X9H{LI?NnN4avBXdgN;fuZ|)rqI& zG~G;jIWs-Z>M;LTXX-B(iJZvK>bCk~?euRm^v~Msi5;$&cZA;Ak$QMX>Bk)n?*Q)z z?*#9nrLQ(eN?wvG8Nz$HB+J$HOPUkB4W&bKn!}GF-vT|&h5Cex^fVXiCoa_^T&5R! zGW-;HA^cSMY3f`qM}Ix#40$W9$11sJT9dO%gTZIxJf}36ey+7SkM8+&SJS<~J{QWr zSneg(_fqS38SWz7ms{g2tZ}h5F2P%dvm9TAoJu@Zc&hPSiRY@);J2$ChZ;H8s^K~w zulM&fpT(Q{EH2{rTwZts-Wz$oiRYVXhwyYTb8;*F+w5~Y?K|Y$Dd#RZVS3$s&bgb% zd*$3G=YBa4$azpsM9xEa9`@fy{P$6LkIQ>PUR2(bUMo+j<7ss~qmE~JeBNs*rq&m{ zmR^Lv1b-R+iZy%{$7^bR9nTy5zlrND9^Urvcho7u@7iarHF!^*@7w+XUJ?D!dgvD~ z{8;`cbk@li;ZNm%CjWE!U&#MbzKDM1HSjeb>mB!R=!)34Ubo-b{yqOc@cAPzKj9JK z4S0UW^9!C|@%)BIM1QCI2i-q$1^P}~l)1m5UY7`MrT4UTnf{M{*tYs!+v!h!K0?!0!vfi%--Hr1;Wv1WQ>2kBuQtY3GCzFc$t zvqSZaUF&0Xj~%P0ar&{ zop5!=)diP`X5#9KtDAmccXjnpS5I|`P%m}$R#zW&^|gNe)FdMP)iOXW191()H5iwO z4#73l_F;Tw@im+;5gWnRNWMn#HJYzu_!`5P2#@9KSiX+KH4fK!Tp~IF*YSLvz*jb3 zIebmzON4Uyn#5NgUz7Qo!k38T^EH+JiS(z@pH5%IX3(EWe-`}$`X|w!O<#oP(4R|x z9{u_B7tj~ch4dHEUrc`q{iXDm(HEhU>7PQskp8LkPs1g`%W^%FP&(CTa7w~-{{37_p@JryA!HeLR!>@oB!%N_$@G^J>yb@jouZCaA z*Hvo0n&ve;U8~OPc)#9y+`!k3@SET_!$a^};kUtWhu;Ce6Mh#w48I$GFZ@3E{qP6i z55gmAdB|EnZ2ca!CXZR?$JP6U^@v*ICmn;Qti{vT>RIdmoOO8KI>oI03)bL8_)GAY z;jhA9gRgVa+N-?e|{v>m(giR_+}k$4_b^1_3jiQC+Eu6>}9TihleT9i9$#*93Va_yA(=+QH? zL+6RO5>IDxvUNshpB`%eQU5Tc{JMQ-CLf#AX+~zNp6N6G`Y@!prTFtUb3IkjV;DEy zh$i_^(0~4%k=$wN(z>1S#GhK&Ica#V2T#|#J-l<`frhn^XHVzm&6(o?(QT%Biq`CT ziN{XYCdcgrv!>_e%xuPR)24rOoV+)19Bcq>=3z*2o(7-X3gUKsw2FVej6bQddGjMY z|E}$1_j_t^ccmet3!&u^Y(h5jr5&& z&~x2UFLWpU+nv3>QuR=Gh3^L69li&APxxN&z2Wzy9pHF}^v zYno`P|9X)A?7@2Ehv?%r*PA_54>(=lwT0JlOZO&eT^^*hDG$20Ef2=)$LD9rX)ot6 zIfu(RLe5b*j>e(?p5GDP3Emmr1)k}(-wj8196ic|?4G>#;-xn)eR%0Bryq_1I0niY zq@KZYhNx$#dWNYdi`U`2j#SSm_2|DB9D`#F9sT#{u{e&yF`mu@Yoh-?_5>W+IC5}I z#F1-FCRvlo@G0RAtLM;|OJg35`84$3(-*0Av09g? zbt!xq{A3)b$SK5gs=Vd6R>(aa-x=~(;#`IEOqyq@{cQW3BmZ2v`tRwhHW^xqd= zg!f{+m&mzPjvjo<<#Mi&Q%tu6UTO`>{JUJu6*NVx(mqxC{nfOtv{qNy?`nN?5xzz( zHTJ#M8ehlT_108GZ_sPMk;dKjf5QGz`#)*_r}%u;-`}CJ*1qrI`+|q>aQupIJAK|1 zy~SPiHbtzl{^CCRj{E96?x*kAL~nS1JhKT?Dawr_^M zWe59rw0|f2ceZ~Q`)A_r3K!vSw7Tnk_NWND_jEqL7j6;ltv}jFUO&A3^+5;78K^%x z2-jfv5c})D2U!(9PuO=vMUXv`#weaf>&qSk9|J!YejI!pd^~&t{CM~Y@ND=*c&^^? zB;NAWGFfkU3Sar^n9Bc&JWYqsfa|?4oCPm{p9G%`p97xR+txC2Co! zhkmk}Pq9XYdb+2=PlGRquYjKpUkP8O#xvD;mKx7i<2hwRH7r-xsUj)Bc z4VS3lQZ-zrhRZ90CRgxK%tHwer977LSk7YwjY=BTIIgq~S6PRvt;01qYUEri=Q?#< zuZ|mW=)Gs%%x8$tTll<{&)aa^j^j=~?}CTncf;?2-wVGFen0#{cm)0s{9*Vb@JIR4 zFOEGX=W#hvIZw)YijSxHc!p*ZeUAP0P@YxO0eTwGsq1-lz2Mlq$n#5bUzYm{&#%gP z4Za5c2K-I?zoqWC>Aa)vch$63P48K^b!z_9{-4?ZbNhc`|1a(TmHofA|2Ovk7XBUl z`-))c54QQ!GxO+8ezV0N#_0;v#IM24{7Oo1HhQMtEP1(e^Cs0lsXES+-fY11|K%BZ zGa5W2FU}KxOl$44N7LrcN{ic>lQ%bQ>g2S^Q>VMbU7Fh+dJJFQq^Y^_$CJ)!(bkhw z|Mnzc?G#VXURHO0A+1kNgIn#_eGu`K;-yQQC4S2%|GLR<^|%>-a*U(R*m#!be|bn= zf+z8z#}%}-xA6C<)Z~Yyd47ZE)?LDx?;rV|AX|`lf^0#<`}x-{iuI}cu#xnfI9~p` ztVe@qy3WX%o133EXXA|+>z^}_7JqJFvaa~Yq>T@g8{A;`x&yGe{S$SJZQHx{NoGNV zhuRUzNj|DCzrjPaH{OBqq>0I$;&)|S)_Ifa=6cR>a@U?qm)3qhjL*kA`lA*VTS{f4E)z8Oq6L$u+F1?*5Do_lr03b29(_C^?_sk~eeQOmg4E z>#$R^R<#dq%imaGPW{u|CMKRYX`y+^bzhW54GZ`eP6oLzOWLTsIdeOu)jl~cH>Y#_ zc-8-VY~o3B{Wtd{x!R2kZM+dn+Hf!Zx*LYh_1wtBC)Kps4L?gJhby}HD4DbAXUV>G zH35y`5KY>|FM~&VldeoVtEOwthn40nU#f=-gMD zbJ%(c8=5(-ZJ#oAe%?&)gT61st7z(7qV4GB&ErQe@w%Mo-KfEx1loIu zdh(UfrhSWL)6$2!PUK&{Da3#5g1q!D#)9i zGk2D^jOl(qPFj?f>py-G#`p6kkdt^^e1o62_z&*CJvupUXS+&&fp4vKzpeb$e6*wH z>)pio*SmOS@oMT4(uO6!2qxa?Ja2N-2WRuqtYx#>x6`TJ{Jm4N{JC=r;wxZwHmt$xGV#04 z=Z}rw`v2V>Ym-$RGN8dOE#r5rO&IcFBYrq1`uMP!&lQOkA6)lKe1sq3{Nyh+KRff5 zE}fHuGhTZT{N=ZA{1?r{2EWnbKa`$cKe2i9!~AdEGkDu~p1AR(il4?=xt?cQx0cDb z@%rC&$tqeltl}T-1n3?G@%<;?b5>E&pJz{|J8~(GtGJX=**8R&nX$<-IH`2gUcjN5%?~TE2XSK~K zD44z|@jl*qe*8CjVp&J1vhya@{q;>Q$eE+ECsM?Wc?Sx81?k2XIQeSEj+>$^?AivRvO zR{Grk>HRT^^xwm$`s|^{y+$8?y*_-(={{$i;d6!_e7+w1Dn0mAJ@^bg_$)p6f-Cg4 z_24V?;KQZ%(}&-n58qf1zJnfomL7b89{egj_!>R<=r#J^`tVVG_;vd5DSGhfdhq@A z;Pdt1SLwmm=)p&Ch3mrydhls_@ZI&`v-RK$_24V`i`dla?0q`=@Tnik`Pkn@)crdu*75VH z{LgTIPDjMP!22Z+U)lb3anNMFd=dEupL=)Yf2UUW?r8jj`bFeN_54I{18+au{)>DO z{T2Uj_O(ei z?YoHX;M(^cUHiV1>+g4V{rxT_fg9C$mLslRaqWg{cU*hm+7p+E?1gJ@*WWjmA2{E% zh4WxrIuEv$^G;hkC$)`j`;>Ubqkg7{?Pq4IiR*x=39etYX=ta1x>*$;D zbr6k%Z9jyzsAIG!W$i|~>7 zkHUYny5s%Vj_MZCPU`MVqYI5p8eM7VzpfFX?lgL+yC+Y*)ZJU%BGO0QebwEMet-G{ z=!@t;T!Ux~rZI%ZP#PjS%=RoA!)c75F_Ok88X`2B#xXR;&=^bOSQ;X79F1`_#?zQU z<9He(c7htS)tIBkiE7MM<0LhTaGn|`)1N{=pZ-+(B6=eIY4oSlpFw{n{aN%ysDS=S z^k>tbLw_zV5uS%@KCT707UEijOGFprT7qjSu4TAR#&rrV5h}!WDz4LTEyuM&Eh2Kd zTFy|*O0}#~%b98s(X()!jq4m-=i)jK*ZH_aXf>`2a9xP&B3u{a5|K-AU5e{6Tt&Dp z$0cG{SeIh!Qes_7txK78DOZaKSE!{@Emdl%R?C%Y5z(vYUrqlS`Ze^grGFiL5xSoK z4fJoMe-r(i>5E8+{w?%xrGFd!+v$tg9rW*{e;55Q{k!SkLtljNrGFp&`{_SG|3Ug9 z8lnFX{fFs4LjO_vkI@&Q$LT*oKT7{e`cKgpk*DcDWBaqVKWF>%wu?y2_80hik*}Bd zdYLZ~dxfu8`Ff47HGI9!*Bg9^@SA+S#n;<>y+eBfZ}0LZqHB43kGJ=E`+&C(;UDoP zLLc+?2@mUd_>_mwco31#dH8~dFM0Tihp%}MvGqKB!^5{ce8uO%` zN1Q+5+<^0EoWI}{kzaBChVyrvf5`n4r-%mTA+|7cFvwiumgWz(@?CaoGX)~HjhTXN z%@k~BrXa;k!S-ef8ks2&;T_Br>}aN7Co=^*nMrZ1Hy1t$cOHB)d}BxkmqIdbOVm`{I!ZRT+c7OH2FniqRLEOGpnIvyumms8{v;yV?7n)O*O zXN6;Qy1X;|_g(9|QvNE(^(@EbY~1HKHs@OZ^XQ*Xe>MFJ?02DkE|Pn(yi3)48U7;t zm*c;}Iu<*|C5~~a*I6093OSW{svM(gJXhkmN*!0rxyI|DM$UEguE%o&o*VJp#OKYl zLbPt7b*nmVhu;Ce6Mh#w48I$G5By&E{qP6i55gnxhu{zU?<4;EsJzGIJuWXQ?@6z( zryS3x`F)1pXL)&!m*>^=g1TRXzXX37{tEn6YxEk9HEMbt&l^0yh3oCo;4M+}4$XJ% zvsSI|IW{8pzU?1)&3$P7KBDw*T1?GmvO4x|Li^^|MZn1ahs7GJb#@hbk^0m)z;1G z&N|Eue^Q`Y-g5b^7_L*F=l-+JAB=jY^m$Lj~j zSVVsG8vIGl2FKuM$KV&oK*WA^41RMAes>K1aLoR6%mT9?BD{rplP%4aY-RpqYjYag zm`M@QZOw>mXI3M{T*~(5Pa2g4!4Bp*L}*7dBs-Z$+1cF4F6KK#EY(cPuD0*yJ$ZNY zEPI$+*^`C{??q#88jWe}Lt|eWBDx=qCN%b^aR7}2X{6B*p{C|snwdvA$lS=mW@HXA z3nL=U&5j&uP9~jx3;HeTi&!iAt?9R+-!KF9 zcIgP*OZ3W)#4jR8;XfLG2mBrJcfv1Xo$+_UpNYRK{%-iYt51Y`sIRB`da19s`ueC( zMEk0*pZfZ%Z-Dv+s&5c3Q8O6V5L`oTA7*&F730d6>q7 z2uJRU@BJ`W3cSjfX79v1Vkga;8`%EK}qPUhhh z9twF7(Nl4qhHE*l6}V2vC1PjbT8V2Ft}}T&%l>EcbPnuX`<}dio!9byy<>6%UpMl76Z~d) z2!0FvR`~7kJK%T1?}CTncf;?2-wVGV{s8JtpBst;W_IRv-U4ogBRg1!C!{I0)G|$8vJ$m8}K*bZ^7S&zXN|4z83yI z`~x+9sK$@1!N=C%6Kk-}8hmOEKDP#6z`ull1^*hp9{vsdTln|zAK*X2e}Zp-{|x^H z{ww@<_#f~;;l6{e@*T9ochIo!pfTS;*ZB^bvYnX;k-EKEh(_j6b})mnqwlCYc@Hy> z6Waxz3OA3Fu{(SZxOtq_d%^dHH-_(nXFqckO?;=_-z>!ev<~zgH%&A(kI~G$#zEyi zx0&l`ZdT(^--Xk~R{Ab2cxvhX46V$Xv^Mk6#vDgGc^UHB%Q2Hvc(|M+F^ownebWgli;&y&7oyBr*Iy>^Jy&L*L+T3HYaTf?WOQ#@RQ-E z;3$-HDxTBiEyuM&?iu)2%3p=^Oqyp|gR|{(j(yIRf1cd)LbE&<$uXOgeTke) z8|UgRYqqF(q4?t@Bz>Zat;-wAS-lEJ-TWotvLr*I=7h*I+Bi$()pI zD$L5s%&YxdP}kwi`fJ;+eeG?PC;4!p8TVepZ&B#D~HE z$gAfcx|W;k6}D;?pIVvgsgV=(46($|uO})?On`LuD3-*(`qiEWcNg#4$%=mCGA8IX z4UP9_<}}UhYk~!o({^y{c+(}$)4ch{`>Llm`!^G?$vd$xU0T0Oa#isxNQ-}PuKg)% z+P?mHEE|^IY~rlsbnD+QI%;_7kD*#Tyw&y-;sdM6)A)UBZ)Vs4YTYX_K&)*OZ#@rh zF!egZD`!Sq-viP{CMFqb=U+W>rgr{y>ZS|7+4lQ?(R$;4mU&RQ@tZ+7olxruIX{q)1cWt-HVcxMS}=bY-_h8HNf!L905@79$g zbK>`|9NBQ{;V*Bj-p3N%@Y-WBvDJ{o?ZJEjY!<)gd+YdMLtW)_bIf9I=1MqKnRl2u zrQs}3?YGtuvoxjq=S}xBoYtp)V7gg@cbAcgmtXDC#uNWOT0iGBWwUcmqiVZVlM{1J zn^af-u3LLQvLzEUha_H9UJyf)&l*lTYZGq{H+Td<;{NvWm+Y*0M(FGAa38O0PVxmf z(mMV(FTlD(YW3oZ8=u#-u{~Ee=TtjZG-Z=Hr`nB^^$zRbiAVEO_fp#QGQdsmyl-}W z;~h>LscLf0^f?W#VMG&uu7uZBqlPurFJ7Hs{qK}!y=Kjf&++~BP~vI$o>4#Nl=rXZ zoMsqdNX|Lc&DzBM{7ut^p7HA{hvB3{bh zs)_&3j^DV})MjSK_%kGu?-i(OKSynRpG*7#J7(j(`@DK|cblefa^JqifBCKHRBKM# zF`K@j_pSSg7M~^g%fYFi{~5D!4k}q!L0-4qPPv=DVk1m5gNullAWEKdrw zsMAUwvn|i>nCisRltnJom+R^bALl`%-8xr2)L#9vhkCCRjN_B=1z$gCwt>o#I9A?s z;k)HXB_44u^XaK%@k!7Yhm=T0JzlG`IK3R@&A&`@YvZB9DnFc4El<^ze`UQ>mClW^ zpzZe&*=d(}8>SAMb&`#_}nICFSX*tHjTS&6mx`X?4_Jnkn0Swp1Ne z;?g7wLc>JShZ43}%jFBFs>q71GgCcIQl{`y)1D#2^_ha`574>N+3D`K+Dky$@&ib< z{7o_LX8SK{sf#_HyY}RgKF^%_lbQh22VZ@apY131E4ArXqpb171re*PUdAe`t)Lvl zgLdn0=bdeh%LwnWtkBhh@_iQa9!i5Ri_+kZ*+1^rhefC1RR_i#mSWogH%zVN0i!~6 z4V%B)Ze%kZ{N&(coj6LKj#Hwl!yN8d4rzFUauL-T@x~PgNk$yenq{ly0Y1`)B z2{NVkoG3H4Y~|_@8+1rQ!?uf?7y~Iyb@7K)VoU8}gP_j0an$(YgKJ0Ose=$q`E*rq z?Qw`;^;lnDdUIAi8GO?zny9_v{Gp{Mlw8tx(>(2+9Oj)~?U$YRDjUt{(K#DPR9L94 zMZ=ZaJM*%-;{>PjmOhHXr(Fc76By}5YS}URp`XFJ>1CECCKSd{-VElknL|;Jp}N|# ziF&C`gx?I-rZMnsQMY@vaJf`D;M*#N^j(c5I>t2Yt{DD4f zL1L^ZN#r9J>U%rV6_AGd_8N$p zt?{?z?tsLvD7LE^YuCoQ6)Uuhdm6o0JT6(H%h@!xcXxU}{y0Ls{}kb}Xx{p8jdxP) z-#+A7)VcqF_o!qVUXQYMul}j^sfECssiP-G?WsK`!vbd-4fetR6f%5E*}g)CpDJh| z_Z}&*_KFKlEzP=RQ;5ll-%lsoia{&zri+wjMvsHk=~YAHTcU-cm<3DAOPY-afBU$w zpTv}znSv*KL4iwwec{9T2Ycpu7}L^@3*M849-Vw#KlJFhVR5?Vd2ZGoVsc9C1kZNz z>42UU=BL|(sZ$JXlLba`p=%41aj5z#^e)DAQ*pmr4VA~0^P;`dv>ZAdf1rmRJQ{qY zl-o2pZ*p4TpGGiMIByY5`??0CeQS7@pPmipJ{_FxCpsm1^p>)j8mX#qmL%^PSt%pp zBt8|w6#S2>a||5$RgK2SeYOj$sCiyil%`kaAGlr1>#`Mhh2`1QLFDqiG9qQy2!;M# z`@lXhArk7sj*N%x07qgyoR&_=Cxqhs0&h&Q23;AA+s}B9231|Y5!FNF0VYmKf)Y(F zu7%x8ywM+GVkvhzDR;tdm7}`zGK(+-ymQ}HYJnq4y}-9AoY8>`|0tqri?eRyAv!#& za~xyloZTPR+qhQNOx7ZQ!tNY~RoEci#6~oG(Hmr5C&527tG;gI8M063yVBA47K&4l zOQDI%jyzQ}m3u#+X#R(V%jJ}xN1mS<@=m1@j3K7;+dq%YI?Iz0MgG*iuzKCBeQOxb z=?z9vId~}Z5&)Fea}m}#lQE2>jP5+a*C-g)Gln_(s)d{xdlbJ8W~j@=1$(E=hsjoo zEj}}@Ga_Nmehd>9)fq7bEyF7#ylzw)kz*~>buiq>H#h|A+qd;&tdfJX3v9P<-{z95 zuokME4$@`IliV)pbKcW3(I}YEPoyS#7M>?w){LJnP@}MG|6Joie!k;1LAf}Y*gdmKUyG#5PD zgGWxe`$;4-ipufcG!`#LbR%j<8mf3tnr6M_la|Ba7rY35L0eNNGiAHBLpZ?n^9Hs+ zciGg>u&I8%Vk4@4KjJ(rN1R=Fm+>@@^3TW+k$7cLY{7bB3c=|T#fWRI)>C97xomW1 zU*<7x2);mI3S6HlCko8=TYL~%68vWiEOuKM-s~61zM>v9&#_#cBN`H(ZEG7N*U2$% z1U8K=1DEPGZABvS4JPfICUli@ZKi}o+?2@m31bc`T`@gM9V||)e0kHEGhHPv7lmS( zYM!~g52(U4{i9QK#8mj4UnG0-P{yJ6yW-}#7(L}U66cS1#2Ekm#D5F1Ca-Z_$jXHR zU|*x-_yRYXd96}>FZ)Lro}H{50k^MdnUG&-F==pMiK{~yk(%#zNuccvY=cV2 zW_@KZU)qmAy$5+33{Iqoprc0gsq!UIdEu7M3m8wmk*dfE3fUS${2Ejcd2ZOPkHn)6 z153d@_-BciY1s+YMcMJ6Eb^!X+J)(awCMQH?;WNFT^`rNqTiG@NqkeiJ6$~~h~ift z>(SSH5jRhy?_;8(gNftiY}oXL05AOMDE?i<#bK-ouVftw?UJgTmxYIOE%}z}f9l6q|oeF^oObPNNDQL98b0|qk7YmU6 zdORvwu+05VKpD2qdM6f|7hPD-Bwe19AWPSTnI>aNm#Kku-gB*EaJ~nA&3jTcD{BH7 z3hKGS=JNHjQxM5Ijs#=sJl4YYH?r!c2gy*r!S7NlDrs1vzJcJG+oPHX>~j{IuC9JQ z7{=VhkUGlirdx`P#26O~zI3j{^S0%61$s8`Iq5-Rq}DcsPI^aKI~-mBAP1+I!Flsx zUQ9h`8R!v3m=!lPdX4@U#TIVi)*zNXZ_%FagJiN@B_LB}VvKLjj|lOFj5uXl2&xO8Fi4|(eo``qA@Ss={A*4ZhwYp(9~ zS@5q`L*9i4x|c5!2@Qt8glaeW`|?X|aXXby{KZ8%mL9Ud4M*}VQ*shUSEb6Ln2v$^ zOZZ-b3Wl0p;48l=}J)xi2>t-{Map zAyibc9NCHpZ>i)D+ADJlOX_{oAJel_fQwvFYFtsc>Cq&3X$gn+<&EEKE!pGA2ws;C!huPiLhU&i@9 zh6|AgZtZZRNF%^%?aBx2t3Lpq`|9!7arD#yk#F&qCiMg;Q?ozruSNtj5vp4aAd_Yq7k?^H#nUe z_73}_Ty*B>F_cYMIF%%DRZdV$%S`YdOOA{q)dX7oE{1VdNKBD3jy$#azSXC&r3Uw+ z?LFrZPN#;?GQ%#QZFynX)RE&%kVmC*@CQHi%W`*6Da%8NYoGQH4tsd7sQ|@==6UJu zc&D@!ewiGER?_9F%!K?3^8qkB#~}p|bE{7a64Ygd$r$r^hFzxL?^f_Rf>TvG{w868 zuy87WyUnEFREV$;vymJr@Mfi!*$s)nle{HiIYXbf&viU>c#(UJmlCm3MUzG2fQ9p2 z96_652v<$cDUb~Hrt_3o>{9deY3Wk=u7*xFHnpu|;helEpn~IMZaMs7fT8VB-Ts$L*gby_3l)j)G zLdL9jF;*lfak9-Q)|s3o2FX?ye}eE;x&^Dw(Lb&i!JKmWPC+`l>u0?qj^ja3#b<)T zLqE~n@S90pht=0*AB>UTAVrDA7)^yvYyGOk1pJX4j&ouRNl;7)bXPthX4+GNy-JwZ z;y$hh#Yz9P1vD;a=%65Kyr;aDWbhEuAbGS;V1Y_#$q&BrK8#xFx~pER=VJ6o8(E?a4fh3&TO^ENoJM?EnNWv7-h-_`KvawG?nQ5IQvWk|z~l>lkDAxJ};FYkfw&{bGO+@r>#RVZvZhZ^A8js zil*`EDR!o59BEt$QsbG)N`G*8IKZD}%MR}p7i_heAO|L5Iq^D1WKo^#YLKk3;%rAEzv~8EQa^75fZro?w4?DZXjs;kz5$dgP z7bj6ST;G>{d*!o?_UVslpFXFAC%$xhS`84Oy2r*44aYffqc zx>Th_M6o!;!T|{YKj2&=k?DMQgozqqJ zF}k-xweoo8GWuA?(<3&0 z|Aj2cluGWAN$C!dpubY`+v&9r&wESNfA#14_xgBEDBXj<&wFs<%x>qscK5FFIc8Cc zRp-=?_U&Xd8}&$?O%(Sq`VtJnSdni;x_BABqvgkzJM3!V!cr3tC#5EQzH@q+NOdE2 zkw=~c6;QeGh7goN^WWz=ESR6~^T%CsfDLu2+`P-J?k#S9IY0G$vWMEegFUqObai7{rmM{O_LF#Tknyz$r4;@8Qw6h2ue6b8B7fI2GPlsXYb8#*mVKAsAo zu@=vey0%f^|Je5ZTk|lx-M`)KR2%JsA@U#z>Gy7R;6$5h=nuxOdH&e-FQv0-_h2)n0!KCCrYF%T<;(_# z*3ZrlW6k61G>^k)7-4)77bG^i{CGfL`WZa9moK(^i`*mzcg%Hudof?kxjsKVy!bR2 zz$cq@{wip8#-6LY@C|nLM#qfBB;ZrF5aa5~&aCaL)50ngha7i8ZPl{l4pvv>&cwt7 z<00>l4HKzuJT+t8`r=P(7p9BiGFolpf~5jSEBa||RS#wV>h{|A?%l06I(fHu=9zW7 zf4`R_G#bX)Y43a()|e!zvp?tz4(VxxVco?$oRjZy42rs&pMFRd;k|aXpNQd?6SEUGqKE%zc?A>!j^y)-LQVS*+gWz!mUPMuNdz>Hvf;yi{^3B}>bCFR z@!UGf_lT;?6u8%(pZDwubtp3bXr{tLRVIR7Y^Q)m?7t~SlHQdZS5!{Dyvya{c(Dkn z7xcwwcES%R<{u_RlVd<^8XiGt{^wmmb_R!3vIMEPefv&(kc8>fG-BVM|j zgs~)M_wW1h_>9EpiW=RfrUvh24s6n&H8Gdx*btL1PZHuMMJ6;Pcf8Ca^BFu-M{x}< zt`;#z*v-WbDn~TaFX3e(aA9c14mW%E@87x0zOKiHy*#k-UccSB=lO%QT#=A42Y!@S z3N%K8+3ZW+<;6SAysY}n%WAs2TrQ_v8gn_-&nuSuGT6KfAcEC30+8@@1R%k~5fEqb zRBOZbTKLwzo82H*Rx#xD&tm@;|0U1cg7o~smy7nqTdjn&z}Go?!{(b{y*ltDU&Y~0 ztNKuTTVH;gg(ajUv-UF7K+1?odyM!{&QCC=e+IPhTQo;K(1PDw@hkq7l1(=9@AJWd z**o*|=#B-)j%YF7M_qMqa`px8_P+-Y9^*{5JWLCp`0~ zIsG*`_2P@DlGIBnKk`9V7%JZbZ1~uGY;`6P#Q+2QvGvpTn((LJU$}MO zlRW%z5x4TTd05?pBQHL8?(08TqdTU_bshLKDG2`NSO<_6csfg!Ip2|tD8Zj7aPPdp z@iL`KBsww?O@t_foSu0(uKi&>@PDM051OCMV^cutnlFP(dhVSa60iq+JNcWugxKK1 zGnr95=RaG`hK9F6|LX|H{HU`|+jQGf8T4rNG2uf5;T`(Xo%bcJI1=d7hq9_7Gy zTt82OV{skD6I#G(A{u_qIxoV&@hQ)$%jFU$CapH7!0=PZ?u{chI3@th&;*unQK zjA7RoJw=OQRNn3PWe0hEqp#>o`vVV_$B5`3EyDyE2EtXlhw3%9dS^|{KaWg;I?eLS z6curjRpYkn!hf8YmQY__$*!5S1pS6Lj@IBa?_%^tw>o?!{brB21PE0`;Im9{oA7Z z({WgBcRPJ^C1{?ZI~FLGzB%~tFehZ#I6TtFwX zE7g|=b{cx+RIjM)=bU0WJkS|$#i3bc4lP{`CySMktV_nj;h`{J)lAyN|989wZ{}d* z-|OA+B*!q2*E7ZkAIIqVu(aKi;$|%RqoeHT$|#?-?sUs*G0MXHDq;z-bkogU*Ir{E z_F4)Uhfv?Ny&d#~8wn?1qAO}EKd(9+9SJWiT*YMxxB77Y2Z9RbaVXyW7~F;rOCKiT zHb_x7&KtyMiDN`Xj3JYES#OSdw?%bt>c4o;>GAvXJ?tahbnMAmtICj3U_jvk$*gYk zPh$Wz31Uf`AhuEvDxqn?=B!>%J6Nq>-+=~!zzblpa5S4WMP6yw@_!Zq$me;)8)EnIP!^!3rc3}ze9_{YWXz@B3 zoG^dkU;Iyg6pCA0wZSD8rQgb$n@QRZVTrc&pTTE{7HIJ1RMQ0b=AULk|0xTaLG{YO z4d>H=8=k^30XN74u@0Fen1nt&OC0gV`SxNi-7Bq7_!#%@c6z3g?Y2BvZ~ff8d+(n2 zEXLU3b#ux4 zwN1{pRJM^G=3T&MKlF|p9vO`~l%!F4G-p>TUi!iBev_c=7?Z(}lx(R_Wff%w!P9{o zJ~`k9^GnHfnJOU_;=;``nhy_-Vw{ZNQ1_;(rDKbx%HNVUKgx;oshOk=|RgJ**%{C_`FVHi!tGI{A0j|bU*ZmoM%TdenET(TgI_t zaO&fw?fmv_ZCdX3$@%HYp@i%H&Aanm;?Lan{3%uKcMbYhXo5g|L(T$-0Puo{3j=(*qM)xK|Xqk>4)A0zV=+o z7fS8EDhHwllDE@sxzBCuRUEjZ^`W}Qz!1rr^RUFtHA~nHCnW5qRLseURF!M`oWoBo7?*49l=l!SMUz*(BQrx5IEc*FI62nfD zeGDq?RVYJWn0_>^*o{(q)>Kh}G~E@WM{>DLDWu+MxUalN&W@L65BoSPdU%*w>vV>GyAW zn*EN|&DomZ+(~}eO9O_zUhkeZb-Pa#%`+&f-A>CK^<}N8pO`MUg;i_SpM>pt@@E)zL z`y}-4-*Y6VdO7dI4E8FqBGt+ymFJb&ILS})fNNN({!|5l)r=cYJ?Mw|`Qe#>LL9oz zY^SbCnpw+PfbgYRKA5R>;<4aKA0_sViq z4PE8ZKm9KH=cJc+_D|0HeY@Aq+xQiE642lc;L+RXg*Y7%z1CnGLJPE^Rue zabtmPy|krwT94K42)GGWbMbFgjR0a~z^UDD5N- z9TsJVp<~{GSHmOWu3*JfLh&@V;?P3OUFW@PEs8Cfz(avEP65>)HlLX&^>i?XT*Zf2 z20lMm-0Ar=)_!Y`m`(;PMTlCKt%E_~ZdssAjnSU_ADb@%_goBZ`II=SG%OqTMJSRZ zXHK?4_b&3_fZkfTb6-38ka*c4X)jk!cdvcx_JUCr@h}@$HI79-!c_>zrS0x-f+m{4 zGQCRJEWS=?BtLgi+b4FTIMPh3=D1)$F3a`(2qW%Oc^9>SC*De>!$2CoXG!_syn!?@ z9@Iw>zsc{--^JY=64s3D>fg$5-GPOPRlV4|*S<~3-3^qf7X$M*FkO391fy;>Q#+n4#L7Bo>H%qmHQ2xh{nDLQZIPGCli?!b6D|F^3T83CSWscjbSr< z4A=}jAF&x&kHdYkGp1D7(NVg?gWmD6@_hOH?ZrhF7WHu-E#i(^;XiJ~q%r{?FD~Fr zRCj`gLC2ys#G37zmEjQovdibjsrn^)wj+(4_!(*@(^gd%fVx(M$pSB$*-rq}i=UO0 zyCQdG{=-M)E06t;uZlg}VyeN?30aDX=nPq}hZ~tXQg`y(7F16wG47&U6eacdT=2); z3;YoPk6+*rsw=a6*|vetka-2Swi=kViVb2YT4b=`&vIP~o0qX@08rnb2%v5&s>sO^ zp(t(ii6t2Du`MUjC_-QXTY6fq;+c=uO9`Q*8Bb$)Y^gnY3-T9+iD&78Ja^GOSo<;f zb?eT(MJ2q*WFlpOKVfAwzV9<2O!y2ktP6fQ<;lyuo$Mx;DwOf0oUh4fyZzp_nh@j( zBEfsW9SA;E3==&L=nNl)&hRYtK@#4^5oo%zF0?9hb=I?rRP93AhxBXDEL1^hPrr*1 zbT%MKsazik!JD_xHqIgn{5h^jLjFyk9$BQKCC(V(f~5!&fkAe9Kv_m3gg>GF+?#xI z{>3!c+9Re*T?S#WTgB#tqUTlA{Tk~IT;s#K9rzaafY(fq)i7EZcRil-Hg>8S`c&@H zt@+-37q-N@9gN{cX`@g3y|5-T~C)GbOW2Fk<%zHD^uvelo z#FdnyGOR0PMsAKV8KJ`?g1SaM?l?wZk-vd>?ep$NNCVzSF%dp>Gveurc6n;n1w|x9 ztVl-WQ24;q(VN?hbZsfilMtEl~?ur$qJt7M!tQR+oeMQa+lla*P&BzM!I?t?bPmEgg}H+aHBc zM?E*bP=n*-aun}%zy3vr_K=ND9nVt>I}`qu`!owcHuar5UcBh_J?$Oi(BS-x&e)z2 zUkwMI08HONqy6%)n&MXZTz_@$$!?tsQ5F)wv5mbVx0w97?O~FirKP|nAjfRIkHo+&(Bk5k#wR%OpMTX> zmOL|dzuvs8e_d!SUjFdQLF2PN<-^lG_Ky`tM1W5&ma~zINY04cSdPj^F$-r@@t*w@ z7+?*`=O64FOE7i z)4z#sK)rBs2!b6Q{qv0*mIq?JN-Lg;Vng zh~w0E?(q)&i85dTomgj~n(WdF>*6CU_gXi+p9&d8_(Jaq#WX$x7rIa!bb4RV>5n{g zI_6-?p8bS9U$e{sO+=&xNgZ*Fe}KmDMAC*m2pdccii|Z7i_-39E(qE&?5otWQTzCb zE$`d6FFqwlS;>%o0sQLspWgqh@VQo(Z!$Zp%@b*s{wRVOLFEwJ0TVVAD{;rgW1I^Z zvC{*OMzGU|Y-a&s+}w1UYVqqG!Z^6|0vRapSiVVvSjrJ5dx6Fv*orYUhNpPJjK@&T zt08`3EGR&XYG{`K=va{Y1T3Qv+^ksOp}KxdSuAIonZyV+$1fV#Tga9c+c;;!cg3IP zfe+o6pwm-9nFQ2ta~b%kV?r}E0s%B}6&wSV3(h9I0*@gh;gw(+6|5<+viylD#5$qW zr7q`g%ha3ym5e2DKO&2G6)Z`WiHnieh+WyPEsZSJ=`rp}MEX9`;kCHECc!nHX5wQB zd!xEPV$TGddG=Y&;cphr&M4*rZ=p&%ROo`XCf28>xr+zfMsEZ1FveB0GwFP+%hboo z^*3BPNLw_kEN?k$)Mm@CET>iRBkAP_2Uo!gSVye5)dEbPU@HGoM(pCLlQ`ufAN2P- z{@{&__>W1g%2we9loL5_m=A*{;8mm8Qr0?eMwf#UcuEz=HN+>gsJ%<*hzsr)vCKLj zkQVzFDyx?#wT}&Bj+^=~Sd-_+A8=&>O;*{AaGzFz2M&ka!J~9xkphTN(^x931~+;)+WL;FZmkLImHhTX}JtJMg-VF8liu}Mqpogddx z&aHJ*#$kGRQLV2Fx0k9t2exf_7Mf{5c2xofjNgUwXCDvLj^D$v__TA=2MBFyRF9T+ zW@|Wy0goCaw?4fS!tiMN=Ml==fNaN3t!8{)NQ} z^xLM!nJ92E{n$yEfq_65You}Ly@+(zu9i&Y8^vD6(nv#!jc#*Q@*@p~B1;l-+p-W$ z<=HN7KM{fNr+KTb+Mdf>J#qdqawx>0^3s{?kjk5l4X&dtX4D(NmD>vmR|47g!6bed zAMf&wzeq6;LqIjA1N?ytZ;1Q=Ge)>j;8=osX_t?FGDiWPgZe}JCuvkH%W z+6t-k!TAo3>3H)TEJr%Ddi?=#VMMWA(n3~G3vdRFM<-08Vx@-Q)UEm35RR{VesaQb zw&ZzrP?uE*=;NDOd^#TqV2x9H?kf1N6EJEqQIyeNfidK z72%wU&A@o5KGtzowz?K26~}|h@Vv86FsXNXCZ?n}y~@$;d;VE5hd&{Z?6?xMG}GAP ztfO80dT+E)k7@78TWt8o5%>^6UqKI>FCEKXm%-C3WoBCX${mD`99q<8(kg4LImrsW(PiN( z*-6ml53@cVoK;lH!;%u|3v6cs-K4xC>{7AJ!Z;?4nvPvACVxSaAndB&W66x|3S64S(V0t{V@!jdG@QYb=RHO()c*pkzW? z!iolE(#67fr$yeyP7w5Sil6?lNmq>^JK;vm(Ww*Vq040X)WvI?8@DK%cKQKzqz^t6 zs1xVc0cSW*V~k<@$ej5jvnJTX>YXP+T3!B_^y^KUP_F-_^xk3l-ukl@iP#7S)fSdNpr7 z;^Y~1g&-D}T;hTi0U{z4vE+yV`=<6~tKbP+N`lP1VmvE=dq8PzCxF|ziU$4HWW8jU z``1a+g>05T)AXR6&EiB|;hlyZT!9W4Lar)-IvKSDr^N5G^4ZYM{d~Cj>G+k;i#hbh zcB6WG@m`hEky?Ale%x*4HFvMB+>rhh_8+oq@ilm@vMzZTG7uy0qJ{S6^*X-q{@K|{ zY!(&XlG{P}_QCWtor@z(#TsWkZdZJ6Th-OT41o8P&^RO3604m)cx?+$a}Ft*q17lt z-Bn-a9ja3YLu&toK{)#HTUsRtpN4$6ZsD=4*E#4P^tvk@>Og^za-~fa3l@^|@4gqfib%b z!V`gHn5)6?$6(G0A2}GRVl7g28>ETzabssd;?AzAA;;BWR*XyV4vFC7Y4)gB3-g$zP@yY6Yja^&dmD3&>8GonXsrqGb=LWz~9%uqG1BlxeA+| zfQUFnEU$Sy`E?53T~Z7?s^m4~Edi<9wi}DVOTp$4QuTcC--geLU`$QdMcuMC1!Zrb5d9STH(zFLWc&x#op{EpUE$UO7tr z;WzV*<@QQ)5~a>+Y@6C@aZDp`AY5{O62l+p9|W$xMAN;qzV#lORnPd+)gX}`MBQSe zdAlW^rdch$$K{bLFUM9?z-QQGMX`ppx+wT^g0q^9+J~HZV2-EC4}8n92^7n0QjePj zLIPcGO%`tC+DOI@?X9I3xiXgBQoTk*o;dg}8|-OAYB;UEv^DwCt;wv`XM%TNM)=<@ ziSCJvpi-%L65MFo)2t^c)OI;VH(_}rBwqzN7(TL7;i#&`1}3imBuUeO)H5kf_uX6; z^E0h`Fd8D7rl-rF#ssB|&OjY%wQ4;xAop9k&8?Onf8=^!={LW6Tw!+J;xrF?k~UHI z$;!N8(gd4@-}o ztpgEo9SwG(GKyPdWs%qnLV+KCkGoiFH)w5dN!8WCK)jYOo_zb)!g%$ej)SwwipIaXwWhGyl zcY5T4Ydg+r{&KJNx$sn%_nNdy9MebGJDtdpSz}3=AvYaEd__w7HO`?jusW&YJzGiz z>67>OQh7Qq-jo`Ci%u@R=j&ynl zAa{l$G+(3e*;zsQ3?^!__=8Re?qp%?b>^fpR)vA6!9nOgkV!R#%TYq?X2QEt&~IPqYR)HY5RP*vsXH&rC*WP@nE+ zKgx>|-F$EnwV9|8zW~JIIJ^lA%TynTH-+Rll6}gILp%(Zddq4(1UjQ2fKxm7oGjh< zN{jpp^^>4gj2_vrM`+Z6rjt4B5qc*M?L}v**@#~<4SGTd4e-Q6G<;}ZiP4bB9yY4| zdMfiO`DC0~R+;FTm1(zdisYfB)UhFSDwPsoZ+srwI^ACPhO{zSF$3l{ayYJg)BM~u zvRHD`cn`s6iCARP)%@@ZJJCv(+NYk=U1M4LBuop@2v@g8K! ztWxgN>EL*erh+IT_+x&e`oB_q>g`LpA4}bx{_N~7!6OHcAGcsxxobs+uJV_uVCTY@ z6Adm5YmPqb$&!FT%-9C>iSJ-FytWO^g=wr$M>eGy&rb`w%~K{W)5kc7$2t3T~Td zNLN~>A6b3WuB}N|O#*8`k1_eq26Ph`8*%`GT5x+i~pyI_oe0Qu2Q=vo3r#eQpnMu9!Atd{p594+q$Xsa(p8f$N7zl1UF z;>6vSqg+dt&W`{?5!E)~fdJDmg4d8aqtNl>N^8&yODYz@3?yYT-=M_yOJLM${@_V_dDUTyf7w|DTU?%7 z_9Fq2DL@pi6*y+MC0(l|k*unQAGD*J)ot@_%fc@z+td^{p1fCl>|kn@=2aIw^jj&TY6JY`PEAPs(7iudk}gdKwVL_0SqL9@ieG?K(As z3u`f9Ut$-Iu`lE3wm@g0)m7#j(x&Fz6v4u8-zbM|Cbo0yPeRze?2N-yzMF-RLi%9a z)Z`QvbX|!=5!#1n3^uRb*3>9igSdk|=Tu5Udr2+=`!F9TnLEKM$g+7ol8yTXlfkVs*TmXnc2fwJHf@VxKx0m z@L&yQ-i)|FXmAhK;P|uT?H!YdX!AH8O*ect%N(2*Fa6r#h37t>27jHW^w4xIBpo_s)vS9b2vGNMf_3ai8CAwJrRn+>1YqvU^-_U zuE7|@QKY=#D>a{l{W<*ixcf*A3Y_vwgp)|W)&6YbGHAQy-jeSrmWcOS3p&+QTS=&c z!t(Y}xw&;`66GqyxLhvLF}>;o{PNaW`w9$+fVbfFX#H#4ZlsZ&IEgT|8R`sqpLw`K*itw>OKKF9{BcRhWs*%qvWtQkPWj?$w79_U zXZdCSJbQ(~i!WEM7xNgU=Bjy^gHuFy1m^&{ zeBMoX7>evlw%Mg-Lj3^|A8sL!1C9V;U$aA}#}B5;4G%5KAgL}BO}(p`eR;E@X4bm3__1L#%lcZq>RDu6EXEZSwlxbeZv$fPur0*hm+ z>SkJM9RV#?4;{&44*S%r!SF!Mn04ja74Y@&%gH>IlSn;&v29}|i0?{@J;QrW9RCaS zgv9VS^n^(e17^}-8as#q#$)F&R&pb6X2xb_;^5_lFWhl<`Z5U@#WNHmVkVT|S3K19 z)=y9VjHE~m>!O?@G5$PkH+X3Zdr%POU=PB!+9>G^#a%1jieo>Oo(m>voBT-PGpTIT z3#SMVr7`nCGz$jcmj*p(dxP1emt=Khp8a>!AdBm!M zCBk82^=lqG%G;;J{k?r!uq)6jA?NJ95o`c^+}5P#{rIeqOD_b|1XpvvxU#S`XN$Kw z9Gsta$l-N+pNU5RT0o&05`paa+BaAlMuLt)GPKDMgI^{Lo)m+0iAja)ET<{z%G{4@ z$Ul}z4h?2dqZ@sgCwB=F=#t-uXikScxEdfJqqn0XvpSBf+v8mc$@W0EP(qfTATTAwDx_#5_@jJ*DnKV5Fv8QoALmn`dVA9!K`Twxqzy zBIol4Zd@lbLLIq7KJc58?WV3s=ijyGqmW%zq3Y8ZVQ4@DXgJwPk5U6@Ep)c1!0ZUe zC8PfmZp{I$QizLZ3Ctx=PVxmN$k)~z6jo}ribC)jr+`-1d_xkwz*fL)i%FPp`B~+} zhLe@ba@sAF;z-VCdSc{tfn05MFv30X{0UT>FZ}P?Z=)QV01e=VLtP*%OS*^RWUm`b zs)+gSuUK_GwN^9mjh(WGM6b*({Oph0A1Mya4gSaUsE zKqjoJC`vyKD@B4t%Vy$8TcIF`fzlWX1@6Cm1GDXxBjH4tWuq_d$%MOocxv-d|d7$H;-LG`&Z9 zV_2iq+;~Ksdi6D-$j$$*Z9JC$7EKhdYy3u#Zg-~7vkB@%OD=GN_y<>G1h^L!_8!)Z6o|lB zqtc$C2EH(AONtwvEq&!VnE6d8sOi~iv$DxL!kPAa)|B<<1P%*wxniZa)1x9+Y zScvlF{R%VF{_D@4*A}0gKEHhF?}NnayCRmn3*}n3W?Da;LsxW5CuMvD^C4^3M@^%6 zpBeLHfsqywT{s7*P6n<}%QU{|*V{_+d~v}mVFYNw={3R!DqMo{d9yj?N6#0Yem zZkAk#2M{dQ_5GG#>{VAm1Q>g=ulxq07-Q#e#M*H^K;Q<~+6hfsFYKm2qjEonb6q`p zBL-bSHnx@r!avh;IoC*eWSNUOnjX~>Oel9T4%cw~?CO?($%BE&N1M z|1EQN>YE@)D$xw?DIPw&*v|Jf|E;haNO!kvJDr+j@L_m*=dTRIt1mYZ2-{?$SFY@| zb=rH|q|}U_T5KYW8F94Nh%4GQ`LaHdiqMRL#9D=-8Ni;_R$ujuEjbF!d^|D0T)w>u z$Jxc;jm??X$rTOqE`1f_axOU>cjoY2UX{dP{oFd@LT1TXM-zz(*$K^CMz@#kX!vs_ zEg0rBZV01D%qG2VqZ4JL{r+xCFE_UPF;}c$RQr?le!E$;pe^rlbyCIFU!p3Ee1xnd z4-;fDQ)a+XHl7(ULL*bBQ)+a%1s`1k>qw`6%xG}iH;GFLsCFRh+x7$zD+_(wyvVxM zO;VGj5kkI9rqPW*4BbCTvVrl}>0}StfuWiZ&7eo%w2avyMl%DG!tiv}jfCMDk4o)# zCbg2M3&>^cr!`xPJsCQolOI3hd_ePLh{_~%*d|a)wD{eC^h9h*K9d$v+`~;*%nZD) zSq)CWFveOIu|*g@F~(vTKHx9dgiPoFr%ef-`vsHs?Y=b?6URi|I(562L#?j9di7#$ z8?bvj`C#?++G_au;p)~}{P}hG>Cxs3@z=$ABj&JK4>2L|snQ;cz8Cbw=sWMhQryN; z^n-~V+ras}lbcj@Y@3{ljHt)G^0H^>cX#7|wE6Po>c-=6xkkBFym<0@^<^aJStMxv zCF3x=zEM&U6AdN8<=#-55H8nyD&Os}{=+(~r#2!RjoH&c!TQFlH*t2>OC+pst#3SD zdl#O3zV^q{wGF#s9G@yQmXAd4ZR9T4^8N5O#PFx^Y3oaWq#e^0Ku@ajdUak*h#R znT)N?H?JQ>k=xq-(3~Q=@&-EmQ4@@g=)&6os8A+jEaf8>@s-KSz zkAYWKxHo)9ps&M|tJ{`&6Z5nEdi7D9ptlcMAMPDk?f!>(Q|G6g2Kuq5UszIwj>AtP zFz|%fc2t5c*+D9&6#R9o&%H;lzoL^`GM2VeXJ$ob!IMb_56n!Kl?ZdVFDqqNEbt4*}2 z*OpUKNU{!Mq7ltayU72O*7cp`-PzhotG1Hhpmtky(~pIKlTzU6aZ<(;9l)_Jz5~mqj85EaNyxwdsqX$d%KUbw`KpB`@sIRn_INfu( znna!+I{QS)eb2TTwJzBo0Orf+rF(?rgkHMG@iET#pG2W^TP)b;-t&gV!>%jnIlpqK z+^M*x8fkPW{BFnbQyQ}Zb5t0i83`31LYDKp@(i0>QZ;bGzFC{GDkF0}j(U8F{&qq? z;Y1jId73378an}XbkC!XzAD0fkXGKYOa;3hXv?f~QUaAtR5*%mAh47Xj4Io@%^=-+ z9}_TMrBW`JfBE^wjmkF9zg*w0ykL194}08sG&s3%t(rtsDvR^;cPo!B+Ji6W6?q}l z)tpl5Uq%ZBGfwjJGn2M&XrV`?U>}G@&0!9TKx5{}sIm7@f9@tn-Uyzpca=~l=2v{L z1N!MoAA18l%)C8pRMw9>&GDfxELNTl1~enO&u>&-^-ehkQB|Z$dXe<$wJ$0hZL9%> zkYzP)KxqUrjrQ%kw4=jIt?d;kpRZIPIJGBxO5^g=m03qg+PTboj+xO02zkApI%T!Y z_IeFXaejPJ0b6kh5rejB@ytv@3{Ea?=urhYD#Jnl>=W5B_MOJj^!VfSV4ruE3HCj+ z_6Y3N>CMyuQ^0zTDPy>z=U6!K-AXQy54=a>IVjgdK8mM`L z?i*yfIpUQnAJ@w36{JVi+$sei5$|ZOna^)2F=w)cSRdP)raeRXc}T9YCTNn3*KHM+ zJs-wvO??8mM7}XzEdbSE;GM&B)%M4aIWYNvZdyqr^xmjw)v;gTgO>u3B^Nma>_($w zqAdh~3HCu3`f6(PvhVTL0pS)7yQ0T8I~z*qKmu!+h&3ulgYH59f`5A^ktgT$st)%X zmF|J4m8sqU=#rbJQAhwCcYgsa*5wo2ZWTji)5vkV+i0-Q=Ig4aV;Qc$8(Kn7%3&mE zobF+qp9x&x;h|_cK;mrO6jNxU7Tqi~CdsciPb zMUR_vrmWR+TeC?iE-ov6tx!s@=`}CN3aoYk-YQup| zi(tz{m{wS9IMyE0wNlsNk~Re~+Uaz`MtW+J@Z;22UrAQ=mMpun&G)*^u)K%y=4~O! zO3}FuiqbNK%oK_#J)112-u*|zecEhwoRC|6Fe9@d)3gYrGuA8zJt5dfeR&A>vED5{ zHmyI`mp2|exPU9VShIuU8$iMqf_SRMBbb)61Js?sbWspv0@~CxJzJ}6Z9dt4yDC0Y z{g{-(lX${OEy9m1j7d>H^0}YOQ9t7MBmLNETkUn5PZ`hawaWTd<<;xW-`5|nJ+4$& zx45Qw@a_8cv&}c#mA9*}U$1U#|54d|QlXQs@|@6Gqq6qy)$6sbt;*)>8x;!^y8M{P znHYw=M)dE(qJPlKRp`8U>^}I3%Dd%5r9F zcpclLZLHg&jWskTj&^%)k9K>a51*`WZ;1C#HeXj(D+JlL*B`xkvHH65>dos{n_Fv4 z(_<*zSl@V}9@@2+Ya8257{R^D+V5Ocww|SUhE(g1g(a^W4J6)|bf?~i!jVqPay#Z7 z9w_xB#*eer7cVp)H!7=d5WLqCt;(a#SAV=-fBI~@@@(@3&AwZehilB=>cbanj(X(r z(TmmfmyOEf)t9SJ*S1*i|1UU%VucHUW!5cum+?+)AGI#a?Q3*dW};&g!dNI8xf83( z+h=RKr&(F$e~-4;H#a1Ik2W_HZQO1kp0Bs#ci;MYdwlcJaNd_<_6Vmq54-G(q|r0# zDSqG!J|jKe_SsU9o%8Ol?v9imTi;r1R90Ur)czEie7(seNMAq%6hjxJY!D0Xq%07@XhfB6MNwdS)Y5Wc0`iF*@y{)xAxLOdE71w2WJd?|=SAfu^oz>r3?&>w=5uyV@N_}f`b`l_4zx?O@Fp2*H zfQBLug5ccS?D}E7=@B$hb{5A+HLL2G z`TFim?Do?&PW-!d&&n2Q>C{+~ydboybE1>*d0c;4LYcqdajB&N~*sJDh^Jj2N-+ux- zdF2Nt=kM0)%BsO7`%JQEZ2f&{TJA*%JnPW0Gvtk~iZeQYzz_a7;1o9LE4Oy}fvlx< z4k&rIM194CN3!!NalN&bSw~A6*P9+h%aFOZR@eSkF|L07#ZG_c?e1>tEm@_g?g};k zVn?U#S)HRTMz0vV*-Ev##9pOPM2xljc)tOTQu?gTnZK2|(G^sNAe^i4&~ncrQs|mR z^*9Okim2YyAR6l;*b=J3=YWw;LxZmS`o^bFq@l_=HEeQX$gQWYQXnWC^b6xTqeweB zl`beB%2nxW+u3DuK=Y;N=_|30QiYJ>_`=_kMDiYi_+LA$H$8}!`MS75zfDznWevk_ z@Q$de=Sr6SE^S0t?+)dwyYxjm{2&<~1+~6=mvuBlvbMW3H`m#s1EdS28Z?W_A0`GbA2CLXJWn4 z>GyA9 zuD(4QV%ohYx4p(>UGFEh$&#pB`UyO_D z>A){ju!ei*0%FC2x79H{gvNMu0@Kp_;W4mOMb@Bgav}iGst^@ z2`$lrX~l|5sY5Up>x}&}sH2J!7n(So9OOyO1QYp>Anx`Gpt68bw#SCr_-UINaw(!P z6XWys6BG7Rm4N3`ZKl2pO{cztD2VdoDDZjHTut613(iIJ1Dgr>xEt7!wm9z# zKhiVZ4tDj0c~np`Z)LrW!hP>EGF|C@(6p#|UtwhtKLvl(5 z_4rFSeoupXzmEjM)XsurcNp>H zpq`JRxd~2);vJcto<6!_?wUb_#S_d1LHve=>~>B&lM1tcetGXfZ+SM0-3Y!8pd@X+ zQGr+zw0sx;_Qc;;Wbf1LuAH;S!BIGk>af>8YjrOHlcq~QxcJNahT`69fqU&pd19m# zHpO4I;fAWszk(CcHl|Y`6>j)oY_=BTyd}Z{QPyPYW7!22h1DLu6ze;a^oqh`9S6+> z$qsze2zEa@a^24&mYSOVrto6_a;046%}G@POoUO3?;})XjCk;O02tTwu&DI!3e`a! z3f&#-IIc{)ss4@<4W=3t(~E-gP^lne{12_Y!iOt6bHpFFNXsAZ1wxA|$_Nn(akJI4 z2&!%*&Q?$T4O?BDXYG`PhK6rAQ?ErFvjKeMwoY0L(TT9_0zcs}!^w?{y!>=`kXk`G#4{{D@AE+@uR zjXm;*vZO^Q+_Q}{Z~nky;ZUANb@P={7*&+hLp7+oLBi{NrL<}0a?eHAuWq^MM={7I z$;V>sXWe8X{bOg*9?LJ+iscs&Nef{>$lO_mra7R+VsIu^e`!?<7rYQe9o$geT6>{l zeAL%vU~T2G=^d}l>?yK{FL`G9Ja_ib;6x*IbLPkGF5v&?5#m0N5_S>D8ZhsJ6*oNO zDtD0ce>vU^f>!z~{O}tsq02W?25>N^h*y0BBTH7(noUtmwycI%9IEcYe&G>yu9s_R z1P_&%8Ce%)ig5RqZ|pZoK~emY@Y?xGSO)TAJx(}tHrFCn8~fDC)A7WU=7#W>BYogz zX%h9sH_GuMTV;7YwDEl;)>W$tk!DRla?l!cP7T?aUApDCsybr{Q=;+|K^fD1x;d%^ zA;#oYXy>dl?H6%gY&xRMfY=`;%WBa765ye9ipxc&)Alj5DLC|}`W_V)Dpe1qIhn5S zERJb(F~$;U9<&@s#D0rcECI`$nq&9NS$cEfW>!pVRMYmZ)`N9KqIsbP4&tf?lODY2CBv=BDBw*kpxWy)ie#CCBMxStZ{UcJDt?a8Y z>zu%vV_PS0Ica}JtO>arXdiGNy>q&}1pH=dQHn$1Ud1CKJ*=SMRdk`Y`=GPjoo$IA zL?5@d7N6uekI;LWWg|3ckRua_1~IhZRMPCFaSHo~L2o#R#~)kVG1MsM)CH^$3q09W zw4FwImoS32Qs=kRon6@VwW4go_N!2rtAtLN;W)w1Y}u~s?;vovLE3KFo@+W+-tje+ zsyK-WeDbtebdR9tpD`;>m=&=;{3d5}pj}Io(7fGuD8@ zbsCi7T5i#|n@^%;xU9&KEu*%XTsUk1ggt3>xT0V{X4Kpq^R-gz5?;}vV_HBT$#XdM z`*d#3{SYSR*TtXhk*7cYh&1X)D$M6eQ?UC|FUXfu<&cbd$}A>N6tn2{m{$pfntQ6f z%YOYqSV)I%PFGtrBikp>6W1my$~tW6IAfO+7*KzC^QmI9fi4%NXt#vK(V@&B+$Xp3 zk$De@()<7HJQ9(l{n{T%qP%-$T|~I;srvr7Lik%Yr1KYQ{she$pH%Cucd)k1d_$N(N7e9x%Cd8T` z7)|XmMPuiopzg;J!ij4H&*6~4JS`Mi^YJt?pC@Gg=D*#_#P!Z@<62XNH>6gl3(XOh2rRnnD<)U)#{4etm|Q`8v998;vLcochw*|J);fd*x*Pz0#}TA7%u3*#QDy6%jBX~dd1Y*lkkKdixYGR$x($6%VC}oa5y7X`&c~-)2#cL5$9%GSuvEkS` z*^xkG&VGJ6JL`V$p6{N+wsj9dJ9E6u0XE(_G48vEJ?_3N-=M?__5@83gC3?vWPcy{ zcmEmYb}xE-_o=XPRQyVGtCUA7(r=xe)^3>* zwd{b3&sciXVgNQz@RzX@b7jmyNS?RApF8R;*-fi$X{@s@ z>MkS@J~cAKr=80>`L{af>S_Dwfo0`KtP_znVjYpn1Kk~v>q*9IZzJDsP{?jK4tTFE3b8{NHB3Q^&zs%kc^*jo)ejfzz=Y8I z29PI0_@}rL>CI%=v{Tt%BaK$N)=q-J`GW-&i(v-3+>(*VWtaJBXL6{5%P0{v!-)W$ zoT)u;spDjUkOqdR(!89AL8#RTA{{Pse{f8^85cx!Xik6tHLYktnu#YziUFfOrS6e< z^`on6u*xD8<0ri9;({WD<6gssbrRPeE4TNUV+~wi(3E)dTQ?IfB=B3?Y>cq=y>n9G zIMDTds@^_@tkLmu%PT6kLyb6`cGEuqJJ|myYjBGb1A1)oP$Z+1SGsmlVCOpl>7p>o?voWjJLoH&Q}c@~;`NZ&Xh9_u(itu7t4 zW*^s%Li3yZEVOp>;ml0@)c8!>P?(pB&B0ewSskS(^2>L%d-dgawfp*O;ihxzUbI_W z+^IKS+7EZ@jSbq=-OfECRg?VwDYIza7jg6t4uL2XuQB2{-Ve(Y&)HnZL*7%b)TtUO z1)40v7@`e*!N$G_KKr}cB6;9MZ=~3#pbu zGmN>5#6Q)tmJR-v4gS`>Ms=Qo1fl)CtKGWas4j3dV^_E5y}n3PLNd^4vzI&) zW-mKN;Qe0STNy7hW*v{;B$rW}nQ0R;WK~wF@u@B{wEydd25kIIuKwk&C@QOHQ0c2{>B)%#otyWw3e3kJ6HdVSP9 zI=SOs=f({j+)Q*6N-Qf)i9%1lK4TWOo>P&hS#)JB+=} zXExb(z;wd)`7Ok?~^xkrIToKHql8W-#z`9b*bvSRegAH3>0{!Nc;-) z*OAu1iJIlyBjy9%-a+po@DR1V88;Yxpcpflc?cT+HP&`57@UbHhV^ju;-9L6L?09CNkdu9&R>SDSWq zkJ&omDkBLyLV#cSbUWzSc$pVT<%$_e62Ac})s;cBUos!(W=s`E_KSk=Xy9{vpps|G z%ga$&lRDn>$_)?k`J3VW+g%|(r(C^uSIpLst1WlMY>~?$E`W}aRs;;{$>AVg8bVaO zL1RquKuDB#kOLxr?$1SKK%cX!m}wgZQ?z?gag`ZeEdvD3nNx{eg;>OS8>h|B7yagB zaG8U9h|f8LedDeWpO0Mq?yi`vPh7oqSIpMus*C%Dz7<+JdVO`W{(jK=qysCGONC(` zvDX0z(A^R$7RHeh>F$wi5BMSsj2E?P_kdq{r?F7f$k>Vq9(zSGtWN!x-%RsT0Kr$l zAmA(PAMf1I5S?d>db*)1+_a@lKb zpjVNjxoglcmlFM;+PKwNEUGoKZ0Y`84f8I;T=2tOx_?i%?s01|-ny?__qla5+*+8| z+%AYH{+Jn3>+RfPd`txP;NtDuzv^GEum|mmf4Rb`vMc`ON*eoD4&af}+i6?9hBlPA ze269l179jH-p?PjFRdKfj`F$zH+~JoX*~1ujP+JAR;`?cd7K<9F*h4rN)-8JZrYY9U!R6=w;kwo4T+RScf z7K1erT#yKI4jyDJIOk_!VbQMSpK^1-JfejKbBPvo^xZqr#&#oJVYv5b#eZox4(Mg` z0xjbfHoe73U1P5zs04UUdnboE;B#OK>(6Ps1HO0#0a2`tCXDYgGU1=I@?8)2Kdh zmm()ypvk16=)(9Y;rO(VZikN+Xep&}Pq?#Qk_xgY#;P)DL4A)+n`L4IBhL@gphSza zOx8pbN`7@?#DYNj8r2mpagP@6WBUDnT>t;<Qd`8?foghJJUp;HCQ{`M`7yYNH=f7MV#&5dsnYTmzR zfZzNz9Wus54{#Y&?Vye>UIvzFU4g&h}Sk=9eBJ)YVt3+s{-#TPwy*e#?)0pE{Bp zyPxN1gB^V6%~{Za2AvscDd(SmC^D`I8|Z2HdM+zg1ePwJ7=Tw2&xO0aKrCT~DHxQf72P zO7Q|(CXnn7OM^eHKgfEG&%p?}GotU?H_=1>(vzv*qWk(K8KaE_f+}PWWO9FxSoSeP z<#}!4GvXY-H9YYvS2j+Y_h~Z_=*?SCSzdMs37ebib+0d14~E;P=bTL2Me9}cqT)Ea z)zdv|U6#f@7;f!zL{=ZP z5=RJn945t8q&Av>4W7sabXCg|p&C{7GG~}xrL`$XWZj>4h?7{^1N&d-&b8x$ZLFaN z-^7r})2r>LuQ%Ti;fYNqt#vI=r={F@oNbuQj&QMm{IS&h)h3QF$3~62qx+k%L9eZRHO4HK)r zBUIx#VtZ#Qx=_Y^JBle03oFXWy*1)$-c9H9&J=P&MKe~mHoZmr@^y}f12f%D-=2Dk z8u^8pezR>_v5yVjISaXGof>b~VXJ~XJ!u|>)`~H~o#McFloFOY2RAxYdTfRW>l*@V z6oUDWSHFEbXK4h|VNp;)Y<-#U2>Z^lZr?uv4N(nRUF%t^DD|6E-(Uo6Z2FT8f-q85 z*tc!K*o;4;q$2Q0e)MOsilPoDo@S!yMsjB|Z8}eS2wHpGmy04HqF(->zZ`icmoAk_ zP}-e)XICHcu!CpSj|anp_5pC?7ia?~xYcl|CmUG5pxZ7af~;C1qVqGY1Fjrd z-Zq#JdOcJIDS7tW)5?sLxYE2u4EZk+;Vr3lXC+FGt7_-OiDR{3ljPyg;e~5J|62;h z?29)#7^+0wxOq|R=5C9FE^4A;jXpy>Dt>J$u=)fMS&CyyKg6Y_50tDKYVkSBJhu&~rQPxc;ct?q1*_xY z!a%`6F(3Pv|LnXUzWc+`|`5llGKER!~)DqgxiyMiJz}yO`jHZ7CgwW_W_8Uiy z3zY{;eqsROm-lnEoqX=gZXJTcSNUEMs_UQ$5}a-a+d%tM zRZ$hNNpyf|$IHT8aegX*D8`hGuN4XayJ*5<^X{a7$qbebV#J*LK?!X{@$N4pnX8Ra zS+gnla%BdK^Gm2#ax4$J5cgg4#`L&TB3NTov#1oVM-K}XaCH^%RfsZszwD#(XsEmf zN4(SBsJH#m3Y*z-p%%?z{~9E`BBIJyqKn~Fp9H&oQYH&94>po7B&~MMiAvTOzhBEt zugQej1bR+yms>C|{#G&>HW3r)rqB{PDcFh($i9YU&B+6DF)5TZpDWH=6BLHC^{`tU z93LK_-H~TfKw!`h4t>OiwO_y7C{9x#Y{PK*Ul^Gimj7)Qv0>Ok<>N~#Mx$3(bm`m< zHzN*{ptHQ^gmF)k(s$bJL#w~DN1)ajkj|)Ye4qf%_SWtW?>RFR5IcDR#oe*}2yr|a z3=QzPT3?x2Sfakf$%c_!e1=BXSoB8`s4EC5s>_rvK^sJptS?C6(iuy2SY;(gVtNKp zTp5JGc1FuwXe>H{O=~H9tR8y6ofNc{NyquZ9CL-+La|KHJdax#xw+;~dSq$O>bt@s zGxG>ZR65zBI9g`VHFauEYjUx}4!{HzLoxf_6VRT0PNhzsdFFSCqgvn~sH;jhF&Iv- z5=zOU;R~fDS&4;VU0u%1vLlAht*{VsfBf+SdE*Z;kCzihvi*xq6Y(>pYSQI9q7?)k zpGxgR?bdUfJ(9@JYtEp*LOr13#xz8EIff01@w7hpi?5%TA`y*?;^)g{^xWsAcMPB! z0v&Uo*?2GP9KeCOS>-dQC5(M zAP92knCMcW)jv{c}(D{iBvl#V7U^_Xy z$S{i}@@qtOFoYe9M6OC#jfdfD^uU=|5PMwi0s)nzm2O0b=sh|m!B0=Vbp07BvxE0E zA1&V?LqM<1>EQ7H&)SM|A(Wg%GC~H=1}hve*e1b11CEon>Ao6)7!W~V zz&7`{-{)O>s9iz~&bg%9NTpJ-*IsL{c@VSpE)0AI!K=yp7Bim(sF#x2s2YIwNu&Ob0qp_ zw(2}N1HzOiQcjX18W#Pr*6ZOhHapQaVug%2=<*1EregtKDY#F&(fiJC&{eiPL#1*) zh+Icslz#0uap7WFBr%JNRnAE_8VIf8Lu)%H8tU$I?S20ExOtISG_H))+nuV1V6lG= zFLsNBO4nU3K!pyIgAv~7wxCSOkA%sG&MGwlk6frM!FRzl8`|twHdwfD*R!2k0#uX? zFPyYutMDNI#d*c>Q0E%YX9G!JR&3NOkDLp<(J41EU{Q~2G&F3Q#O*ddiNpK9tF#)D z+Iz#~M!!)!9FSt|6r}`fDDX$)fJ>yLNvv(*;8;FaP>OGZu`FC2ULyJ6t6 zHIX}xH~y}lqePki0Ko?B=*Jj11@NijWQwkgf`EfyXF6}KHIPiS%6-{{=E79fpzNo) zVREy%VvaS6^UqxSdB!R+>4ajswFMwh66c*?$|`H-efT6OB!3!SS4cXyvbY!X*p)au zgLk^36kU%wYG5x>CXLmrhvNREHE=VvNxr+V@7i?RABwVV`<+{ctii8Mb)0T#L|^%b z-c;{dk8DSck@)+xi$!%}mz&*Ihs4z8->1zPdrYQt|DF}P@;sJEwz3TQmE2#`a2R@D zymAqtv^I78Y7zIc_m6vzJEXW;{fhP=lBL^(G3`Qn4Wd|S7}Fcx zMYq2c#*u-N zV)Pag0BCn7PmlLph+6(@9+LDZ%eA;Ww}@p$whtm3f%|!{PboTk@T~cu)g@WIMKjbx z-ZvjVXg(lKx^;TIe{t6DYo9vZ*0X0%!~PtW{-krSnZn_Wli2^~+@CXLC#uSqVhqYe z{{<#u8R?#v%+B)x$M6^F@!|kQHW;X6n5>Au!2-T?Cv9h(#bvC+mc&{6|D)9`e7W81 zbWc2=dE9&6Z9+7X^(V(&x~8%bI%A@w_HG{sFbLM>Jb3ba8vWHr39`%>%|zgsqdCs} zbsWdtZg52bEydk2(@Ja3=`b^kgpLN)#03|fit;IzsB2etkK3Q)=05A}^`7<~Ywi8x zLxozq#~#urkDfoq+_Vn{d;2;ufcZ?kqK&V0Am507irfL>7Z5`XgJZJ@pZnYRMlBG* zj@Mxr%E6CPj?~|MLJi-83sh{x^l755BgDHznBRkO^_J0(MUejQ9c%IPg2eXpqlW_c zqN%rm!FHO*pZqR~g*>BPK$qfO&sxt~=*xKDP11Xg@k=8B{Kj$)`0ye+5wANts)ui( zz?u3Yv&fffcx$gHC&ONpT64~zn4vOC1fhL#YuxGY6JI~J^ULXdGUeCKP(V!6ADYkg zpTCt+d=Ba-kDzWnLqG8}UwS3UdHoXQ(6j~99GJZuG>149n^If*F%e<7jqVo{8N(V- z)E6$ArZBJvR-S{tWY4LMY43NADNQS`|I=>s(;nAaoz~MQ9?S!@>%$X1E#FpJL>7Y$i_Gyyn1 z8IZGaLRrQG8MXk`-zOjrWQK;vkDs(2z@`Ol{}^@G$+Tx}aUOS(>aRRu1a6YxMwVzpxZo-aIl z_OKK9f?f9q>_P7l|9R+izb9N>cYwJlFNLbUL7*QAzkriR(-dDCd>are4incOFm~Ox zHdPM5smvgnbY?(s4vl6PSH*|>mH?#A%deK|v%gRKdnWLvrrO;ORd&KrR2iPbB|22J zb-LZ7qrF2XFs2_p_xKX}{V|YX{=2I6rHd;Dbi}`AF-*pbPCe&6pC*g8Y*J9#avEdq(uth1N1sX zJ@P-ANxfdP2OB|y>>4ri9L`c65v77jKt<-a3Wu;{KwLh8hUkI;MZP}nA50tzEWQ(~ z50Fp-?a&V>ZCAVPIAOa=fJ}B~*Ihkmo`W<@!{C`go#Z(uffGD<@C+ze>}h*L2&H)@kd%a&2s9mz)~_|iX;%-s9%zi4p>&7)GI zRQ}=T3AcWltZ)BZ`(hczz(U`tw(8kc&jh>IgRB}eAc6vK_9oIK)%nuzHP=vl1;0vr zBH{hCu9KgdBJCE^|2Ph<%9c?J7theTg9AbYXk4W= z;nYiZ+-!=BR0me*NN-YOK+LL4kkcj|%P~A*Wr({>wz@s1>EdC4&dRmj{z>F+PoB3h zC~-gTH4mLgYj+;EA47J!wj(-xBs~Lajr3QG-~=Jmb)Zh-Crdtaav(xDsoeGe$JbU9 zedT*FBoA;NImovoBaU+{%?aQPyr4Dprn*m_0my!noV-r=m|MC}x=(sY=5PtVIoS1H z73zXIHK|ZDeyD&KLm=rgQ4Nh2J+B-|vH0bh!w5oLJIqK>pHfaaI?^E!UAl~skbyMS zql|jLd3G46@@czg3KNqth||%?px2j<3+zpq{QHa~_NHE-L)eh?qW*D*?uJJe3sIUs zoVP4^6*eHTTL;h+Q2_75)HcMciTCy>GyBtK44SHzo9wRbpGr$OP2o+oHKFDP;3FR1bYb)j^_F;8*o@TGAnm$Ymq#(ps0O3N>7&blIm1P5}!OkVBIc z3_2M~?6n;g+DADzhO`Uju}A9?i?Q?2j@_YIo6-lxWTL@L|1qa7AT6!3fVT)?-g!ag zK222h(t$ww>fxuGvg*pvGhAD!g~l@%<@4=N?42ISrE}OyZ7NqFT5zFJZY1b;M7o!R%+^0vi8ZJnOir6MQs9n`K8z<&S zkK$2na^+*jK7x;igCT*%P493BCJVtR4W3Hmv25scFa7>Fe(|u~diWH!=a-vU%uicS zo^?4;{u7$p9PR|Eje3t?$~_3f&O&!h3*9L(u!Pl7p~u;F;{ZOaWEmgzS6naZOd`in zo2DmSp(?9n@XI%ZvHZ(dNvQTf3HaT#yPKX9R-D?$kDhg=@xXXkoQ3T5!>7}apP`c+ z>~#){(6hu}r#|-&3PQKkZfn$~8AGev4W~#f~2~KR5sC=N4~=RuXnq+OHUgtSQVd<>d6fG~VTrt!#6W?srI6+YX{V*2o5Gt40}_;xuqm1Znd z+9gI5#6g;Q%Mc8h>g$YrxzAdsEGRKO^A&cEo2u)5(t6f?0INvcgw4lxllcuDCHig7 z_FDU#G(opBXR-E}07x8X^89Y7mYxE4S(}c5ufuknvt`fI(x7&RtUT)XDbM!gxK@X6v(8@Jm zxkb;8_h3lJr-w)njyKt3Ay4(ww{Lj@_PrnPtB9ET35|&k$6=TX55PrX<)f%j95H)N z2P7>qP)|JvVMooQ=0y`4Jpzj!o)cJG(90&L>C3_4Qm%_Nrqn?b z&7U?bHJ_=c=8gH=DFdhQ#YGTkPdYvS+J;V21hPWjlmE zYNzp~hB8TvNi!hOM-O0Xj1j`{Dir+rVl!I@sB}x6E8nAR_v#eo>F3X%-}e(y?amFn zZE4NE+hEl5PIIaQFF5L-VdzHvu4@WV6tp^KViE52$mOIHbqwEiJo&V?So>S4Dd^3^ z2qQfmsyorl$jLUY5XwU^la&B{0CR90kG2AoO214`#Z`e5a?WyQE<;p#fwair-|BJJ zA6$f>tvu%PnIHErnn7=UH2vhcc=iA@av!-3N_J$gJ10m=|@+mgYJ5;(@DwLm|O4}oty+_SQPryYIEqKs<)_P3d#~9ZJyX^Q(mYL5+&KQ2TkwG68+XK6s*NOx}FNUz77dX)&X>mDE~Da00zvF}{s zHfj=VzB}0h0iVJf2ogIktgHypEhmc1&y-YwCsE~|G#{HcB@KK$4qOqOL$4j`GJxm?G)LY$sJtCN9CZfiaeF0X3tTUUaHt!;pC_jDF}e? zDr*X?-{T3V1WO;*NeP{EH8BbwJ$d#(9>Eg}7k7C5EXMzhca=QGEIJ`6DYCaTg}iF! z!^cwwz_;w*uKnBFwu&IPKNjCE3o_Gi#LO!E|k#^0Yje8h1|WEpWYtv@siVIcMK$HQ+QkH399RJo5e(KjdAp`~eX zGze@Uc+ZZTM;4kK)Hf#J+f~=ej#`v(`21|8w08h8A3IKc{v-;-qA3uIoM>SA;n7rg zs>AwYAPW89fzH+0Znvpi780DgEtp%b`^ilA??bpFV}ZCl5{Nz?di`6n5B<%9z^h3E zLayZGcE7FpJejMddqst|kMtD`d2w4xfY|{x{I+;BZ^UiE#URP!E(8ndIR_5=-6h9e zuwYY%K9oN8KAwF1EGl~N%>I3DwDj?GYKk-#MJXZ%KYUE?Ccc3=8&&YK>;4lp2dzEg z%T1C(DNR&CUwq1@kZh$>df0i{C+1WlJcE$k>K~7Zz-?UV0^q>z@c{DYu(P zdnc9x1a1hxq}Z$chdh#M<>O{3J`4DPe|Ndl5!4Dsu~F7M-z~O#m?c(VAFX(k8D+}P zn_0mTm#q*waSLo4VExk*aag;Qa-`aqX5;=3l@C*s&zqCI`N>z?)%ZqhvVE4k!Km}T zk`_Uzp~ASC^63%UmAczTSd&|L4odd#N-}&o-grfrinTWDTk63%&I`{A)q})UEQWUB z$wzb(7w0T2P;c(n=7HcpKUC&sJP_MoA6{0!(xBz?$NPJ=1%1kg>i<%m`&g-b?0n@p zN@BBoqOfM$zah2Kg^rH;M=Arx6^S~eel(<+qAECpA8VGvU)c>ycI+eBz1BFul;$4k zrq^~8rT_W4vV%yU9Tr{t$aGNFcg>rrZ`0qVKGr{W?o~fl1>4IA8+okDp%$uC#)ap> zaZ$6%H2NxkQ^qgxq|^(hQs1Dqu`QaHkV}~Oi9CKw#!&~efcMESbj8f(PYE65h&#S{VGTB_u@%7@-Xk}_a0ShC=s}pAGC0csZ-G{)l?EYTPSw1HwiEGg8PAl0m z?BW@Y=x^T^{ZU568j#&%Ehi;lBAuK#CCSf^mRi)4U@GW!gsrPyG;36EtSow2$&$XS zu-EuhTGEW5zBfjFZ>~@uqzrP6o!HuQu3O>ch*eEgN0iD&j-X>>g|g6(b&NyXqbu#& z>ekZg7PgYrhxFiTjLdDSanUMz#cZ`l8h!G`&T zM^Wdo8up6hwncQk2Ho zDWH}~2)JXDzPw@g$}gz{!@Be&b`3(^lp@E0wVtwN*OT#Dm0g8n#$Rw0D3zY=ZZ=#F zzG2o=Ac~P`{PY0QkBn+pyAfP=n{Vb9*XS{NN38KRB^=O&%lT99+l$Mw!W6)(%0^@@ zwze*ve{4C{r&p_wC#n4jb^}?oafgs%OVw=6fO4LNMRbYN!%rw~jB!6cR#DTLJt)#r z0dd9^sf1EYNfJnYo8ug>R7X^cW_|YAIb7gyB8~B(8495>joW75<7Y&#EaJvrrytLh zy99P2f7gwNH*GT)2pMCarJsca)yvtl4-coe8*q^`RgWS^!x0zT9wIQ+#1DhyaH~Lo z5FJWnz`Oa8T=y<0w`)y!f&!5QewC}O*opjOjK9KB&{8p+m11lD)x#;jx(AQ8WzDf) z)Ep9!{!EEM6KM@)qKKgZZPEaSKH1phH95cSmNz74>QJvgh2=*UaHXY zsUwokKQ=472tE1N#v7IVZVGI7lY6rSoWgpq17!Ls-}npXG+FX{M-}Jg^1~T5r|rhq-}3ezDZW5fz@5~x@q8BYw{Q7tb-A+Aew#wCc*~d=( zo_U^e^j0sC%j>>U9di5W+3YUD2LU<~J0Sy`3RQ;wrb-8*=b)>#K6scc)+GSjWx?PH z?u0NfSkmQ(x_h8lE7hllE%@PlzUg9dc6!^53oGk${RG;aeQ>?xc(1RC%;WK$Ic8{Q zsd4LVOPxr>%X;%lXYk@-zn1oheG*9O*zoa?ip$|7f4FMY)UkZ+%nTJ@bEpqKPS6EyZ3Eh zRuT!K{qjbg`t*Zf+N7U!kJMmg)`C4;;s&0jLnYUiB!)UGIu38hdIAWi3~5o1Hw9xw zpE`DS;-5)d)ltM+~%s%j<+QFG zs*0M}viL)}(L+9TL>J|ot;RydNEM7)xw!9l(u)$8OcyOyv?xK`lVrn+$R!(uz*|JJ z+T0L&7Pmj_lE;AO&6eo(zQi~Hui$fL;K~o4MZP!OX$LG)wMW6=t;y8ceukC|^|4 z(0a~u9nG|M%X1e*E@7 zKmG6j^Y!xM`9;1q4m7zP znESG5QfqiSr=xqo;e}e&j-DZHPa!^EwLV6y{zv+r`|e=>CNr$|8Od}>uTENp<+`JD z=!7KxPUAO94eVz;2W2quA}iW_r&B|O#PcQh8D6v`&%QoG>ky>+>k6I^|f^WcJfKIzGWNc@>I>abRXG5Mqb zWIDeQg=x5V1`$*^zjTX#%N=+<-bUDyrKuOTlE6dUn93ebL5=HkJa=|11xp9rcHJDI z`Clsn>C)jx0hxS~K}g?+GC0Z*%8U*p$a%qj6Ykb5!iJFY9K}y??%{Ni#Gw08K)ZL%R%%4`)n+iZUbuK@u&C0jrmKGt({l?a zr*W2r-wL4Jhpat=X-cyskKHOMqIwiLophu`rmoxHvA|i;=_|1cMeAdKo-98xs3S4;6!;JEL?24TToiyXe?I__@F}a9O5S-c);XJv@=a1 ztuJGH+oI+JAg~AA@$2enIkukfdrZ;iIR*>;SFa3sy-pN|?|AXXYFLkJYi}8G{|s5| z49^+q55+Ztd)xp6F~wph)Ixgafh0ALw2e^jMdoRFVQkR(UGYR{nasJk_6Q7k(4UE- zIs0B@d5z?pbJeEF3Ds^S`vTW8Rg3NVvdYFxmiHKIEe38t{Vw;6y)tfYuW;L}nA@h+ zFyFy?jdmXET3g1OL=9D0&B*2TRy@?Y&IxW7$QSDKT4I;`2|<-@?bv2rK^V< zo*UmsHLf0sW16BXe_aZ1dg_sD_2(m~FIn?Qu!p9yb1rnihV2kToor`WBE#n86;K71 z_IV3IsPGDI)THM;R!CU6M~+UNp(nB^3{lTR{Jfv5a?9`%WtW5PdI5H!y!vqPZnn8n zST9M@J3iTK?yoqS1TNEVX&IX6Bd++=`+8s2*W3x)^23M1UoCEe`Wk%=vT#lu|8=vX zvh(W9CuN2*G{Id=Y6spp*^9j!{(7mCoy>g3Md6oO(s}We$z{*|XU@2T*Zu_Z?wkVf z-I;f^q@!)Wp(~@|XpwP`(lxvXM=lL>+mzS*tTq|P?m5<2(`-_tpBgWZchoBlTR^|$ zsl<23Dc(}Bv%{sClL}49d(}CbO!2OVV}^{a?7yn`Oiz^WispKiT5G`Jk#>YG-4vMS zY;gXfCm50aK367=GNZvd{*b(^AHd7aCsUq3-y1~p{v~(VW&7e*$WIPQ@V|ltr$S$u zH0US!`Ltl4DIC#nu>$g@Y&H})bRLNFHVz2!X9597l}>#>Rt@vIVt#jmXMg3@`PEC) zO{{;9t*|E(a>yseOzffE3#1mjQeN%y^9xG98EKhNRhlBBtK1i8%FWtT5JwvYqKUro zZ9t&E3$Gq=Q$>p^<#&mz*mNb5KnUugGwobxk11|LcetkYyUtg4*jYC0nOgN;Cl#03 z4#a-HYeDgP!~7~mM1#g7&J{v6hozMqSQ`5UP)pV~U!c++;n@3&>92)79Q$$o^XBha z=s-+zMdxz0;Jh8-D)kF@;5mmlWBzbE5RdWUUUO3=(O&-*n(*}I-Z}_pGz|*Wc42;V zlhgNB!{yFT+1`$3EIJ(_bbj~;&ENC5`@eF99gr`XW zIToo7C^HqMTMhcB$8Bag(ZhU3ZS3N^>SU#(mWKJ2nV#OUKcRo!?4>wTad;%w53Dv) z5UO~T3TxJhm+Xdr;UU4BJdjpmr$~>YMU6eqBH)VgS0_mF)PvnzR0L-j>j`;8xj9d;3)q&hEugMQ zCNL#8e2!?k8dtaL1amae+gaaPpQ4XJrP-_-6!p!m`HijrZms=yX>}1STm~Lo^0Z@1 zRK;rY7eIF#JKX!{l6l)m7qhDrM)gHTbsR&EIX4NXV{xdS2ZqzGch9@>ESYskNuPEs z!Ng?$c#_>EjW4XoJ=!yR1H99xxxOV)^PK!(`+nTY*NM9_&T*t{GQAX-1!qU}=ONEF zElkIFcw3-*M{_?+T1H2(elnzkI~haHg|y5_0A$-{#EE3csO=|1alcD6D_usUN52PS z`cto34ef>O79utNbX%OxVS7mANIJ^j<=JyS6d>>8P5;Ueesk4R>ia#13!fS)h=hN~ z8;vy^bDtY?T%FTLGx`T^#BcQ-QNG3vc(H&t@uF1}Wlo8$jg*rU|IL9`OMh4?KS3iZ zrbIPKTP(B{RW?cBSviGjlu0#XVVvPWB&D`48qs2MI|s7sGu$`Wu=dUN;T~4e^bT6K zISa4b@=Cw@=_l#%at+iM@IT+-Fu?2r~DGm~|ppSDLO&wqsX2AUjBMYp z(#0x1I7F3P*Vk?SOz4MQ_9&#uEI(4hu{FN7iMOb#(IgwC+{u75`qlYv1xt2lb?}mY zdM%x$%ogvx)wmCHN?HrdOlo6+0p={AEoztrrPx3ClET^zZMJl_>pDV!Mu?fau`w!! zFsSH@fn)t7RGoDd&X-S&Ui}5G-Zi?*O`NU}7K$;zzdiH?9&qQ{=F`G|MGx!?(<5lIPAJ~t#qEC zD3*|N*sEw`@@ zVJ?#-7;9B9*1K}TWVgB#MrQ;Z>Oz*?rQA^`#IrQ_L#MNl4+6`8^I)G!b1Hm7rbwkb zfv#JwV;iv~_ya4S9Wzglm`GeZqN;$ggy9NW&+#2p^bs7bRTLOQMC9bam4y}&T2)>* zJ0JW`tOk3+5;d1x?gvNdWpF-9j4PsEIB5P;!4VZshxhl5O+o3S&y!%+0zw)Mrp zpxTM$YU2GLS`!o7^n*8b&*n=7Wf9%X2X?UU*$%QU(x|QpG}?~@3&m?-c4nCOAjgw$ zZ5nW%8wsY`n^c}PHo0ym(J8bZYYy|uE99&}XpYt~Q=GeP6ncX1AL8Wv;Xd`-!K28I zFtL@$=d_u0fI%IUJVuj6JDo${&;9l8nln*Y3o0J|PVWc`+Dco8{K2SC4DW`W6gQsP z?$G$pyTEIo^oUQ5^w@a45Bm|g(q`;`f`QE*c(@hHxvN#}h$Xk(hn3E!k%m=4)T#V0I?B-=jq4#`Er^Tk*b% zNrK>?>O~gOYc^haxtoxtScHrEU-O~m2aLA2!r9+#Oq1{vqWrVFFAipRLp1zC5bDNk z$I00Ml>!yA_iqI&-00xi$)dJPB4o&nhXtHa=1(q|q8xLb=1ezsx#7<1<{KE?N#nvZpV>DrPG;XsOvoRN`mig?Kr?%(I_v}{97yC5 zC!g`e{O;t&?1aGqf#OO#UT4nv!EMJ+{eMNJ8P@s5hd1PA-KIhXfgH6bPvnwxG_=&p zah$u3u8Aj4t8X_C-_Y;OfW@trfMM)A9nYn>YyitUYFdQJb?@&F&4A|D*H@Od$}_6SDwVA#rGLFJ zzqzD`@T0TG9;IE|DBKPv^Fi*0Y6JEqWAj2p-3Ts3*NJ~e6>6B}75q)9dq-69FXJ@9 zv%`AAa%ptp7yEK;C4c$$?fmLuc)Rp=VJW_OwK4ye@2eQ2u(ZSsFb7#1xgCL!V;lR` z=BN_B*U}vo6!HR6(KQU+NcAF6N@*io3X6Rc0a||hI$U&PJUyVx0wLbNyt%vzJTBgC z!=VC2c*&d(Z}Mk(lJW6f8iaMPs2H*k_i(QJH2oNqT&gJ&F?fLmU1Kb|i5T zf1dn!&bX<&a2461F$i2Zxb8`lzq-Irrzv0FY+S#-mPWQRzxQvKw&ufX*A{+VdKu5n z`aD<(A9*nRmp0dk-+uK=k5*V-8+G@Ah+fV`eUC7ThQu$ObK)&Md!{rQCtY_0QQVEq z1hde~yN#ETgf_SST#0YCHs)VO1ijbsatp`F;a^N)KKlADWy;0Bu;;lrij{oPL0Q{H z23$J`(Z$_rk9@Rk6B-MXXiptxHWTA9ZlV!jI`}o)^(lnc30X2{IM30stG+z(jsL3n zdqxRoaWdmS8-$qMyn5BHa%eW~&}=5uJWQ*Z)p(k#MS{qO*GL=9w|(7jyF`1jIg7&= zjyIYh=EC++R#X}e2-+eJSm90Kl-TL3I0zBCQCdyl`c6sz`wE^g5AYC2Q22tB?QxqQ z=?V?|nQI?8_b(PtmD$BU{RamFDL+JXG)dKrYqp`6*TOR=FS+p zBn&pF6aFx}JyDr!P|vAK>Hn0sF`&LulY7rz|5!~v`+57`&-#qVWW_OmVO|+7hvBJu z0ff@uqwtz3-#>EA%h>|0r3@~l*Lp7H(*)z;%d}qB7uNgXKb7kCy^j_DyQ+_M<;Uv% zoHB*nKr86QCraR!-FZ8qK`u8TR?l(J`sKzn!FPwMQAzk=Az5%s9vNug3<;===LBMB z>Qzn+e%12AM4elu8I(_%SN8+olG~4_@i+%8g&Xk^G_6r1^^^}8x!17e$gw6_(4<)A zMC=*5Nlv=&jCBXG4iU@BzAjKM&1LRG^e*~f|SHm9nKwxpN#M5M0q5*$yXx>O=Vf9YxQ0f zc_FXzQ&neITaDiZp!xXZ8A3IK54aEzfmhcbQOBu^W6&&^zlcU!H#z^8TMd>hcR<_E zS__)aw7OxoCipaX=s~&t1ohM*(uWeDjq68Wk!E2G#D&>W05xeU!MDWR-S$KbvG zfV0g3Z=>yf&}+(2bg zMd19`!21@u6ssS%;%;wxKzYf4XE28zasS@fSZRy=#<$B`r4>#WqqVv6(zV*7=gD1X zR*f3%lwGs_KtTCn)1d+ja3Eo?dvJ7eLEcR8&t*p!?x5inEYXkWY3b!ftN-PcWRcdO zR$4x6*R|y0UDFRrulxNSin#1^>x=L`v!<*M;m|B5k0#Y$%4*No|K9UB3DNW$fv=ToOE_NxEYh9G+Do>4kr&j9GQBMb02W+QXllW^M zUX+N@44~Y8OIbfqY>EC=cb^ee9x+2Hzy*u2vNq)caezxZ{S&=}O@x!o-~GcF<1nO@ z?2H?4*Rz^J#TYpcGazuqf{C#bO)K|_?OG}~%XI*1 zXpG8i(O=*uCf{q^)ZRapudbwzdCqsuc2XzLq2WgXF8DS9zOuW- z(*obJ^mS`n84;>yX~lFPrh$(#R|L_R6Kw<093vTOhR|B+px@c+UGTeW1bK8y!^**K ztwf*76a1XtGn9!@9!xArn@KVQ$pdy+`nO?1@~0)a3uB-s1iZSA#CO__^n`fSbffh) z<#XMv1`RyRvL9+x60=NWZ8cHg{r>Toa+~)B)E*>fWZEqSB-%{^oP)-ml(OtQMl+2X zfkb|pG?<*T;nA;iT-1oL9$x&fzo1YXAB^9x%#EwZ&vx}g=1#mJ<7~HoP$ap%!5H4J z<3kVu;#oG%-a+4>{)^MBD>_mdonTuYrV89Li%Fx6uFgDi2>N)o?aQRePzWZcyD1j$){Z zwb722k`}AiPhzqyaD5~5kw*?H{9DM@#*gCVc=x@|hAwY~_oTSC)jd}frYZxk_24n| zE@nD(cQCfeu zvA(vsRKk-Bq^rxTuQrJ5lG=C2QA{I89%(K5ftRJM1NK+Jg0MqX8>4L(C#-hR|4gxwii2#`5boTctN^ zD~n59Tv!5s^9w8ZF}`CI)5w`ewi@&TYzH+`M2}0g~N@~8h}BRTDe1F>HV7}UDF=S^S_r{%WJFdh<(Q>rcoo0 zGG|}dQF7w6hEVd-*I9-+nl6pcN5vz8sI5^`EIgZAH4e(gR)pgH^5#;lG`}G)`fF%$ zV+~NnC?HiJ1s=Y*iknvey(Ag{&C!P(`DiLl3nMVA6Zn! z?YTs%hdXk#Ua*7@ciSR)J6msx+>b?z8@}V*1Wc6{m*(-hzutt8tQPLBkKMbEL9aE% zMv~22M=^~Yc@*HPF!~|z!0KiBLpW5h187pf(J`WpxvwHDz5VQ9wZSrNaSyaB9_C6q zN}JKiU_P6e!hec`gfe62E%{6Jla%mAgm3XJ=jF-1V-(ZKkw*b8PjXdx4h;p~a`f-K ztXAO&-YvoPrlmRZ*7?ty#>=29tG^Fnl(&tk+-iGgE0!f=iOH4U5$)08L$+WmALT+? zN%g(@1mATOleH8c9(fet3YzS!s1Xi)`a+Xe4`(KoHM_uX_u29rHB1+_fbrvM;>{=!qx}hr%?pvsj}X%*ejoYqff>CZ}f?*f18PYi+jF}t__6o zqhPO_z%+W+kpn1EnSNGX6^&j>1MIu~jEopUuDf^S2MsP*8tI<5NNtJUSl!F`uKi#@Hm2!+W-fz4f+ zyfl2H^?mo~$?S}*SN=r}DVTW`OE!aWl^hF4%w|quop|{i)O>qXJo8J=Z{xqytiQ)e z`*uP}kyF*}%dIq+D+{0zzUX3U)_41kqnAdGI0|s7mly!8SJsCi!%rNKmnATj|2K!o zGL$;BXa#<3->s4;Ckoi3s+wKHsR{8#MGS~eweulOIUAr z8NGz?)l?%0Qf>jsVm!C*C+MgJeb6!c+^)*~e?`Zcd2Q;JppJ-!BeF|ARZV?@WooO* zrAmNbs@de>2_4l!9R-vr!H)BjP}bhzVfUEu7x{+aJl#5bY2>IQ50=XZ$8l+1bvpA! z+QVX`gsB^JS*h!tqUUB6-=2!DtYN{)403GLn&}$ea;(NXcF0A?(~AScDkaF>E{TNhQ&X$7F#*MUw(3ewRlP6z+VOoFv&J$>ODC ziosK+j_I65IKAX3<2p`+{U2J{tQp=(bv*B z0fs@djd8p@CX19DOzknR*QEU_It zJA@R0e;JbA;|}ngyN_lXISI+>@7|QJb=2e69|zycXdP3F!JIXjBo^Nd`nFB5^yx>e z!{=zj4!#n;4=bf?QprAM3;T-L6gh>W%QtgB(nl0I%)k$gX1i@P)5u9k>R)W(oy227 zhDE;pMZFgabba^IR0g3({a$@}Rv@8(F<(SsI^oc{3iTDn5RF!|?-|WBat4yE#^MM% z`N108cFRWb?57Q;WSihf&e<^E25UdFt?x^?4fnJs?< zTo0f@v7laK?3$JJm$R;RoQSteN8Wvr{u}gpm*xMrO(*@c#ocGdBKNfmb@*0!9d9&Xeo5& zJUh}nLSzs=ArtT}6PiX&LbCZrV&J6H;zEi*Od+Dq-*LhbVrxoMwGo3(`8 zari)3S!hPXVlBsMC;I>JCz|>YI*YaN)wx|j^xl0m)98sv0Z%0|)Y>+7+aib0{W?nm zXV^rtC|tKh^L)E^ddmHN!Y}Mj0G>myYGV$wOpuMu9pgV-GI3y4S3FA&C`ObGo5xA3P;@BV5!z zXf%Q_7pYqZs?5zia$}q}ZlBw9-I%0oV;MW+=BbTNo|&vHrU;kM5B7=M+Xj`IO4|UI zoJH*TXn||Yx&s=UZXDl^_n~kyN*=R?^-87D9t`^gMC9{3{w^_vy;BaoIkd_TY8?NkO5x$BO@h^!1cgnUTuC1>}p-%@#1mEaT->}0t)*&)y7&U#4 z#v!Vrcv2Grv-+aQHnA7 z&Gp|QZOK=Vs9*!ngYS^LmE*;BW)Yk$fD;pIp6;B&0sk!QgmoUzvOFeulAoE|+P>vG z;5UlCIgg@$C1i2OBh8P`F-*Ot{kds8p z^}*@jL{UN1G49us((RzU+bR*F5NHt`w|Q-`%W0pF@GM740XJ?HeVM$7aq z)f3=_8eVfEetguk;WOi%5{@Ru`@Ek3a2+Z?_H^GeU)TmsOQu-O{(WfwauSO~SKM$D z-8=`okv?+^jW+8eA3;jgF?<- z;{xKcHT&b5nyt-LvbM?zU3TLGr@guGlf^e0MO4l0OMoJpCYnBD&Dkr`5X;rNt0J+r zS1*?n=Gacpo?o%;!RG{tezN>O>OPn@33NToGJC$`2qQt6aIh31dFXb)A4+}C_dBOH zE-fJ1@iL6ENiL_LCLQGiHZAO&d9#%PB{wuxBVFm1=7#XGA)HK+$wDX68N_Uglt<2n ze4Lw-aGa+zjulWbK`ZfGk^IdG21T!;oI?rls4D!y*K-r5M$JrE!@+F0+v1qDTckMW zq#OD(a^$+PKO>J72Tl4j>aU=;B<-Z_AX>s*2p6j5w?q%lk1ihH@TS^vX(>4E4c~*q z%*}s(`#k_Tctq8gUV=l1MRP1T~#YW=QF8~u^{NiqI?FCbA zseZy7z2NB4+CSd3QJe4vmxE{L>Y2mca}gzcbvF>*ov@_%5OW+w773#FGPy2O4kuaF z&W+i-Hf^Nu{($O({q8D+?GD%{F$cf?kjXkE!rXjA)0H<&O2|(Kb5haUva1;r9?9$= z)M6O@J?J6rCM?u0?V*mjSDeW@HoKZcW}a59$2at7L-U7b+$fVk1{!IiKbz=e1aESV@mbe=rqQ^K+YcA-j zt^W~$hB^U3)H3^xA8Wossa<_HJ50MsUSHD{lIcg4QJK7;^Q*HV37aKLLc_v=U{_7(2FK%Z;ycip&Os%DNVkn&4Y z_yS>wl*D+Uhms_KP3CQ-YS?RBD24ax{GLqb%I;p=b$un3@CCY>+ZZLAbu#n+yY=V# z5=U&azWR=yA{*}gH19XJHpsAb?;r4fVQp)pRlEl;hSOE%E%D>^rKvZYZV7vd#Lt)wKLX62P)i?3+R9+LA&UT|lUQ~>TMA`eC~guD#B^sdESHN! zseNi-HzhSTszJQIxa+3Us?1}_V0p%3UoCHJZvD4_BKz!lt|j$ww|P4wdUCQb5p(v_ zEXjjjNr~}_9j{sk+jQnrW8ziiQxKCT=F1lEFWtG;>-x$nov-LxYFOapa!jKJ&US3_ z0Ld5_`?NXCWA-K+(fhDY^MHw-)9+(Z9+p|~`1q9-`wTTcOg_3Q^YxtXsP?*{v?|LM zeLbnd*x_|Kl;W*t40ZxmXm!? zwb%8vRpfajI)zt~exLo z=m}=NivQ#x;*Did-5ZjEdo)^fYq!Rb79Co*T)fH~N17*=X85J?#+NZ6Ph%3V%b4}& z#!UxDf`!Q*#rYdu6b({F{{EsN=Ip|F;E)wdtCIsD`UK@J!Q zl6XG132&@c%ALK><=T_lbU}4Vn&rrar9RH`VY!m8a}H+kAJJWSxa8~N#tN&f_hD;$ zyRn6{X#~fAiw)!X-fWoUjKe6I{)=~&biH;htKQedXX_dT6f{}59g6Dzq+hvLw*7H^ zT_tLS7~9QrLa)OWUssB#@)9e1jLks~LuePBU0mKm{jvBgxlataHv2d5z>yq=N8O5x z>b(>SW&l6Fiaeg9{$1DAN?j$tHHVHb1yC=6o69OPSTFF?jsa z4-OX2oL5b>@VUa2Of@a^6U|3X$+W?XYFh>Yz9`oo)gD}Ti12O1)fG1SMe9yLeHCFpgR!5>*se3BpC_6V<$7uP zBq^iJr?twQ61uV%1WXFB{qhfB<2meUhzDO=C`I7@=9(m)L-_h#{mU@MgziGr%3VO2 zRNSogJgR((qv8m+cmW=`6gGY3uT}%f1j2`RI&`eZnj%NJHM&e{92uuH81e0qHAy@t zbt=;YF@{Xsp`wXgHEDef!3jSdZ~6Y2h&?FsymnOCp-$II_5@I7#-G9hs-5 z&=ThfDw*7~!CUXbW4LH32;45{d5WB>IRyjnUj~;r8Ya&1Bg%svM zhKi4oYIfZ@Q=dXhF9{aE5(;#-Igcc@sBsz|(b8^npeh|#BT*St#ZJ?Jnfyr1OT@_B zB?9E9F!8!rEQP}GC9O^RVzDt_UO~CY4wYF6AGq5&GXU*~eb|;0;BQfn;<+J&w;N4M zA_~rs_zb3!02yI)0xgFYXgN&n%{usTO zy<(T4#a>^JGgQtJ3yy|slYnbbw=P;?XIuS~lm0<4-1ob^6KwaL#!k{eepX{U`iF^O z!$HmvCDG{0p>v84+0(C#4jDe{9UQwkgw5#nkbY?O9|hw*uKo&I*n{h8l>8hEsYf6q z;J|s73}E-tf$LriSP~6)3SeYu>fuq!Go1T?QCjdb16Y!6Xlay@Gu#O6XoN0!2vqqVg+n-X31a-^7NTs$`QuJ}jY@mMY=@@sJ1& z6Xku)mWR+ngY9s%q)U5cLP*82K9{GLXg$sPJN49c*r7Y)yCOrsiky5S4*F!ku@QO< zev(4%RQUU)0-8)1Db9Iq!4mO72$1AQf%S_^D$`4aAq+|0V6fM^2qOJ$ywU}Sxvc)~ z4#?q|^i?m^g|!Gfd`vz9#mXj7xEvDY4 z1@ku9k|iC3M@l(C?we;Woi6kHJ%ds*JGN6NX%Yo4XJ`_U+PbfrY(uS#JrPVzB9ZtN z7z}<|lWSdTlG?)BEXvzlx~+tzY`}tTB)sLXeE#Tny$X(S)&%3wdqY5b|%1phL1y+%Z&it*;CDl}y&n zO@&lupxjWmL{>0aT>Z>JG|^bKIi0da61t3+=?ZR_1=VD@mj;zy<1U?Kw%wzF+Xb}C zvE#~-DHumV1WV!ttt$|S@?dW+q(W;I(OKQn+4Xfx8QW+Ku)DV(9TVa$3iL=pB7S$tXo=4 z>z2Mqb;hyX;dsW9b z{HXd|QSs6{25VOID7QhLoXw}+YW&^wmx+Sl-{^}Mg~3fZ%GiD9JU0$R?qbezhU=fs zD7cYd-Hu+QOd|w1QIDK~l^NwFb?uwZKw9BcIr1{ zFYr=Lt+YS)IcT!feRbR=>czS^Y6CjXJZSF2ydq12;hJ)^xD7z>=L6*QnJjq(9(U@; z$_2fO#!M|_J?Y-qLiVP9t)gh5tIx4B@EN-1iR>K%bw5?-KF#>|lwFOFpI-i*GPC5k zAL7@FVwYtF782{aj6J(DsucT4&Yb&7hT&tZ%HWRld6gQH&qqwDLPD%#?F`;>^;GFr{?7NEzfG-OG3f$_PytXQ$N}&tcVA7<-ev>s{!>y7#MpDB` zHds45430DX;ez`iYOAB7a(GM8$B$bs0v529gJQW6i;hW=_kcp1qm;|+kv}#>Y<+-k zt3f}ML+ieqlc?R8E7@pW=U(p-NYWq9gWBVj4BltWZR@MSl!AZ^rUm;0TfJPX#Jmwa zN}3~F49t0YW1k(#%;WMZR&}j8eT`_-orFPy9^N7_>(d|=NkY*`YD1N=ZP|X z(i)eRVpUfGHLjQ_C#oQC4Xzzl|u?p5u~$ ze-Ed^A3?zxzyz=W*V$f&sjxnaVz;X@Zga={UeDxWbPrLc?OTWnrKib@#Q8g^x~bSf zNdPnTRV0fHIuXIL9&R|hwyet)QJp14REwdA%Adc$QnGjoN4kgd==1OSNpnOCxbB4k zo8{XcAPlkx$_nZ>Oin&q2v(;~lNo`k*QAioFeiNB78NTr`Wmk4>c=9gS3^Zqi#hvL z5f#sIYjb-K2Q7Ms44GG*F~&w{a_&7ET25AEaRDZ*%o@wr>ZRV@#zc6I92C(*mDY6) z7f>A}j4=sC*<$!de4|{N3~RK_pD5GnI9zccPn37B@x=HCiLW`GM~p4uB71~A9wnzJ zM`uvn53nB;UsL(}P`*t+kyT4xR$)UDUI}up^eSFf4OM_v^H9GAMK;Z8K8JT+=c6!u z8Ku}Z$So4Qs-v=n(@(9k8jc|ax;=X&N2#8zL#*Q`l}R7 zon{#ei5oaq%Cph#6ZssR1JI$%l}8Ak7v6@)9VAsLfC!)GPo(Kl3m40pX*a6~v!7-R zaAc~w*opjLv$Qc|{y=4g+l0Jc^!iQ!+4p%)-66zeuT+GT1R_QXCauSkSB-&+PgU0+=vlnNsT_3WGWN}! zT-ap_Fw#?50zoPVgO&Asv5tQSS1P*R2rA`49k|Gp)|S*yZ3LcUQ4UD!=! zSlklIuwI2SEcQn%q(GdJ^M|AAKTT*M!sCy5HKVPHOFmF!fU~>8RFUJC3`c=7F}G?{ zUZR7aL+%*035GAi!c|vj^)jyu3(IY#pQ;S&lM*8Hv`q@WorM_m%#=ElHD7~8v+9ai zw0YHc!Hm4m*MbgYGzhcGsi^9Z*m$=RtS@N^R`4Ua19!y?4H&!fF>I%RMd>Y0K@m2r z?a1Wm@t&cj$bAA~4kOXJ43I|zR~@PebLo|N)zw`}u(Dxi!gV|*0eKV_v*QD%1%ByH z8c3t4EIDeeIj3LGAk#Qs)qGMgd|t*FVe6zO%$Hz&R=o1_9ZRq>1shKO55~8opoXk{ z_&E4@-kjQ=pjUjkgi?6iJ=$+F8dI5&6KW&>qdt-0!%;KUlURzEgwWrYp;|B@ttjfP zKiF-hSJ_pgIyIwhwO7p4o%$6kRrbIr_BU>+DKcq*LCoBjZ-{${WD8#s!*KcTNi7%> zIpA)8Hh*({>D7K?g6Ama9L?qtMyk={NF&vep*K=h{GP93|@5-m4@@l`4f28fPydNi}q~Yzh8|AR=O6rwwn-jdb z+wAnuHv0XO+8%ezle51xugOPSOk=UJ=c;>e)=!%zWI>A^!`sZ7+?VEU2-XuD!xaqg z?<>6$Ty5Q{>w2L{ zMmN!BP+Q#o6yU0Q1>eIbJ{bE=2bosnpBB8=!eoyxtwi6Wx@7kV-f2%#BZ@uKHd%8R3uLobL)7#!WA4L!irt zJqDRFog2SCZzd4-5g<|a_CtfnPMSWT6VQzp{_*_Y}C!06Agc@DY(V<*dNq1 z`VNWo@@_sB^w@$DfBMPDG+?pJLc;~H3E^r_R7FJHpa(#XO$V0BKodxa0lPf{ly<6* zwX3vl&@OAtvibW;Z_MZ65)ce!e?`~*zk|;(R$YC@Rrn@#j|+=g4h_9M-syRP&x`Tt z~NewWrw{pteFo${;YrIp3ar7cyIm>zb}JO^j!hjKic2hyWEKuzChFdk`=?&zRA zd0Qi&@^B|VE0L#o=v;tjnYu>|>9Eiet&W`fZbsrV>3{f-l=Txx%NdV`l9i>`ORI~_ z&vq*#V^#^IEcg=`A|>+kUjKC9a|Abmt38oum}CgZKm5?tq`2(KW{;f8>&}<-1D?~o zF|c#TswL{`&1XO%h3v z)W#>{_@ydgEvl2yVKA(hn^&r?e!aHpisvL4$xDr8Ys`#K86!VL!O)ec{$)4eXJ|8cOse~JCF@(G~0t?J5s z<$soxxq3{GFH1!!r}{-syC!(O4R1ob92Ju4-1yYYf)>LM6q>s369hGf5i})!?OpqW z(}N(@Gz|rPH9~Rk#>z1V!@U&jP;+I^NyV~r6CM(27$KLdGkpmJ!Ggyso>{x7_2}%{ z`829!Za|*Sj^-Gx%y&07p2bcMPj=7KZUxcHUr!o$%&K-TB#qldAZM_(;kNMT#I?ds z1;n`Bm`Hcyrs^%=`Wn_#0>bc|^4=kXyZ25^g;6de6Ni=RSty8DU4edinco#n&`iOi5F76FphMnU%mV6fjUIL)7wP5PKXnPhmOP*2{N1xMwn!Ya0oslt)`prdPLy)nY%pp_!Ia#N>IOFk}9|FVo zSFKEL{zS;qr@PH0_xTgt1vUA`OC6MRwYs6vO#DQiAhZO1-$4};>^xM;pAHnTq=sa~!<9Uu>IZ=S73)N_|>}dfYPi_k-Tx}c_2HKnen`s7`Y+rf_ zYa~(#y;{(SDq*v`{WF`z5-=g{<`S?RG@ipzqlcbsq+}k#d&fjD?8&)wxnp<%n>x2L zYTARrtNbkw;U_hZ+xiyxYBhFwbwiupz-$74;5k7pF@rhs5cA51*l^VGI!&^8EMTwo zJLiLoV9pNJSzWCpd)=hBz%7+zs)VH|?qa_i!KIsM4*o2It{rD;nPQsvK%hTBx7VZ> z$?tpJGi^^68t#V%HgrZgfct6KG=Yv+jb{a?g#>;4=%N3}o^yqlnBk&Eu*FI%fV;ks zj3-h0kgidj^(D<(PU*q9DTs09t1Wy2#+6$j68Zybj(3@8ce~4s@xz@-g~5(b%_@oz zJS_kxmoF+6X6h&NY8YGwMoyWI00V`OkAQAe9T`tj>Vi#2W|9~+bEx4)4-$YNJl3GP5mlH-sxj1BQ593`Ruz9zM&g3iz@z$}*J;ZVd( zWn`}tUFw!9GWQjpgZ?Ta$M@8Pw-~*LK#@~FPPKNFZAX%7yL!+(p&O~n_W809O7UdI zR^He@_SI0zmAd|@KWnjBD{|0;I6G;i%BpyI4HdW#4ePwTbcVF{MnB)a#odUfUA5v) zCu-G+(A}XF4ZI(;y2q6+of0(p)%$q5A0F_wlfQk)+iw2$5pUT&cI3h1$MA@se#%_h zs%>32X@VYA7_?c#f;+a~zWL*u$O3Z}WE_TnUWyiDkIYGbp_E-)9=~}<*I9eVZ{Eo$ z|E0ksI;^Y@(3-02wmogPE?tGSx-Mn0vo;4^@s{gs%zfHhj$P~PfDY4W=#L>98Y|KI zY(x?xR3+M{%5T-#--cX58A(l$Dl6+mO1(h$;{sIbkl8V0jzw&CirDOYc)0ES0EC3a zhAFH1ZSSyC+G5aeOjq7-szg=i#xT`^PAhmgeA!ipKZ)3d4o_*Yn(qnd_El&!INj}7hv6r++5i{IiqVGuRM3}}5arWutbd|i8 zO>23a!xlFy)}VQJ&yP_nW`q1ST&Q?}*dGw%P-X)|(=a7U*a?k`ir&a=@tkoemP*a? z57HZ?w(%Ul=I?CRdZjyRMuFpr)gPRsDZ9bsNul-3*KZX~71A&Ge7Mp|!gAc^QOWk_ zHQA@3?j{7(0V|WPI;Gq}pruWgbs%*QvOQ?WxYK9+xj+0k&3_O0@8ORRvHWY}XPAz9 z%t(AW2+Av#Z@V8!`%~J9_7w6E(=;%7PFl$J=N(F=K$p%5b!^T0x>bzXa_E0|g2Xib zVnWBnc1f(|1N!=)yL`y!-aAsE9J*Sg(LQ5EhCa&vS>M;;F00TX>nr%ZaSW92L0|^> z-W;#h5Nx>p*7Wn|&+l6Y9S2rs4TPzOTfZZY+0Rf9S6{dNbPuY~iQpQTE04oR)7xkm zt+}#hmQbPC@~yqeh^tP>dC1Q{>K}WhSu6Ug;|Z($xuGLD)4V)QNq>}#6C2e5r{BS; z)YI##9^vaGdlZTolft@C!zQ?@W&Uo^;}R3YD_dTFMrfQKAM*!I_f$%RsojX~_6Mej zX@6pQcz(9w(va;9ZD`|nLep3D7L-pJaN)1SjReO&L{xQ!a z?xFU(qu?{d_5iPVViah|kIbq(Q-N#HM-MpAfk|?UN=QNEzX>A$Ee>{45%o<3P9OCd ztv0A|@G;iW!Cw(8=4W#Mj>rA5)p>0Cx4cgIW3tso1AL@zFffw7Ey8xq**81)Yal~u zC@Rk*WzsLdH(Z|AEtcm+;IfjE1C451je*=%K_{4cK|++JBugy;ep4-cV41BB@v$G9=hga;a5p^)tDcUC#j zgGjf+t>2V~l7x<1Xg#j`nin&xayi?XS)D-KR9(s`xCw+?`g}!ObMEIXmcvIe{zk0G z9`-iG6&xEr@>i49Ny4)})^kMS*aFMNj^|%ey5gViCP18sLK}@ge){Q%-5UXM_D}lR zhSXmr2J5x<$LnxLna?fDyJ$``7jaH;n5n`pzE zKNP{So}|umT>C@qYS&nK@yd7 zN+O+{i_2!#KTYR1%5s%Sa;p z!jlMXwFxNPTvT^d`2@X%?0r%jb5ZCD*r@+G)1tjXw%eWye;T9pD@Ut*NM|1C?mb~K zdY&@%sR_DrTz2|jKO0;|hF`vm3F5Jcop@-Cj~hR;e$k^Kyb#Zq%=_o`eVZyaUg}Rre)=ihbIH+(sjn-2S5x zq?rYZ%#SqNet|o_r5emx8Z(A-*dzpH6YoNyJhPe4>WeNO<0chxVZ5p(v8_Y!GW<%=!xCEB8(CpRr* zi7V{hA{-wSdmE^**{tkfSvyx^Wv4;i&f&>WNgcCWyP$DoN!>|aQirJjGJEJN*fP(# z3z@k%KS&0nCT2<@y=IFU2gEO70Qj9TTVXYAWBt%#oGZe#cgA6lTC}QuTQIpDUxJl` z$|vC)@qAuaO2;`HSxQ%^TVsD?GCP?;(;>&J?GTWECRK{0-}7!qPCzY}U}d5uVSi@VPH#9{a;NB2 zDKWybK5{EA(qtmYo042PogE%#n!*t;B^!0ouexr6_*-Xx^K<6vU zrBPB@rw!NkIt)2cuB>CA){`)RTz+BIwB{DB*1+u-+?Z*_Sr%7#$v(2;_nd%o@RUrR z-I&$SD&3}NyX2b5hvgLAH(G}>C z<1grp*JP=agRP%N1Wd7~^SN^K^rWvu&U5-vT@*jP$UnXCA}*_yH&41pY6vt-G|bi( z*kz)6tjq1-t$O_C&iB5E)$0ngS;zJG2(IMYAr?I7Cb^5pe2@^Nun_jw*uZ<{ky4NK zc9yY`h@N`r`guH&C$V^aS*A6cd6t()D3l(H`{EQ;MdBG_~6zRuKnn0NKqlM zV&KG}O1zx7{s{;>RiEd8fRl#pe=4|$4b{)lm4YDC`wPcGzW8tkx1$Jt!S}>dWJiSP zUF&i^@#D?sVYs-dQ!kA32PQJ--r;Di%vL88&RZV)Q=C`pWi?zd0lUe53 z`qo2Cjj<#SU;1xz$>VrZzZ^;v+`2F_XVZNgWanw+93)H>2|;u-cjZ(Txa%blX(NWH z^=(7)Z*~~9lW*%6+MOZ=aP?dR=0=cffmn;{AEl5Pq?xM{jsV@Ya;^YZmGu;%0)xYV zp64ji^~vvVojbBqE&4@J(DEp*Q*J!vc?FG7X5esAjuKtyU*;M1 zUL4Q6#E)a0P(Xfk2g!~#w=GGrjV0$+0)fVO%1*|VFLk6vp1*M9jZDRw-~zK>_y9`R zbrF1E2;qSEcx3nkMNha>)Mzm2UaW^WM@y=Zq}+Pt!?q7;Z6cjI*Tf;cy8pA|$~-40=(vd_5!}#&cVx%g45iAS1Evkr zj`K5?8c7i@^cZ3e^e{v5Cfv}fza}%lzVJDGPr>x#OxyDhD*3FqESAl&Kls!!u)JJi z)0pd3p~;uDhd>9rUjKM6GMKcj^k@E;hW`vbw|}7Cc8>SELQYZ74Xu2g;D{}9Th<~s ztNhEx75^&{eZk?8U?3>r#3jf+wf$i`aX!fuMsG$Q2M4M@PJu9Ptq3d@;AQ)7EK(2H z7r}*9`h%%jqc}u7LuLx2gE((EyNo@dg{f*nIePLm8;0dOeoc1={*@x)Z^AVICJd@g z*}eA4d_yPr(R@W893l4BxuqrW$PT>L9}(BwV#}qZnsxQB%2KN)?(jy&3`y(+-lCcZg$CnDwutHp zt&bP!k=GQi-BelV%J|%#3M}|@(QqQ}u$OPa6T3B}f>17}X;}UaE|rirudPrt1m_isMc0VK`-!nR!q-~h z;fXu`3=m-5zgMPEM|_7cetV7BM(D``^A&Rov^UIf*4nWh)l4?``P(hmkb{K}GMdym zBnP$NayI3SwAu|tJy9(AZ8@v2xFxJphn0O5{sJd0o*hKe4Hb$>A>ZdpJL{lTzOR`5QpiM@{MA%qA}yHstOJxp-t{BdPqPSCoRP;VUF3c6vk1?q4U;(vG@?` zaYAJwSiY^Y(3kOfBIh}Dfh1>G9WE#1Dji~Y4|hxF&KQ&Q4AYq6+xc}2OH&oF%5%J@ z<@EVge}{Yem0R59%-mt-eJrmL?`@tiI*wF9FBRq#Z=0dPIF1T?@L7EixniEP^87g~ zX@|I>a}Bug=v^ukl{cOj0%l4>$CqqiTHBH+1tqM^2!!uY(#9R0M=HguR<=DczG>%* z32VL`VJ; zf8_a44y5mg~rYGiLn$=kYN@ii*K}Kg%lZFUdzat1u6@sM=LIA}2k0b|0Lfsp>|>Euks_%#sWJ~m(GqQm z(jh6!vZSM1PqL1RESg1{q9g|Q56GZ1Ndlw?7r4_#&<$kJNbaBq8D!X_AcG{hK&C-* zkz61dWRTDI_gic2UBx0L`!sEewI8+j`mOa_zxQLG2&lO(}HBHA-jO<0r6k5_&UlWLc zO=ilXpTkTANe}-P(-8zuO`B$hY2y#$QDirm!E=PB37UcVNy`>}6nZf=C9=+Z3*}et zPRkUDmiXW&;@_J@)?O+DFkTqTviYwYReo(m*w1?>jsf#Hxgr9@{UyK>5-`UN=oCep zYV!*4sNT2bu~_lprSafTnXY!>XrV_S63s3=ZK>rnzg@Gf&vVX6PizjSC;sT!i6Qy! z$3#oWQ&vzN&*@y5OCV6@pf->9IT0i+NXIf>{S@Vhh(fbdC6*z)rhch#)Odx{E{|sy z9-mVxd2D53@?ajAQ$(wNZr3kl^eGCkxvg((m#t6-eqA)GoOlv*9O(fJDLQJnx=5l~ zTt;#n$uM1~8MAGF&5z~yrU@X_AM%{c;1F$sfMBvtwQXo zRA1EN1>4B0hAG7jtQLI7+&odyDYT~dp*quuu{^nRigBnUe(dgA^ z(HN==4Y7JOv!&HWLri@`Y~{7ujyW)prpje!Ng=@>R#5gJjECx zpj+#;AL^6Ku9&V%xBKd=Wp8oep^E@q)&L(D{bZvf9iS2 zz%3au-;}Ir*KE-Zd=`Dt<2#21xQHsl^u-YZy(t;- zw*pt2LSL+G`T~c;#O|C7$5KAw6Vi7@e_R@ypkRo!J+^`TLo+hqMfDc_U%deV9C^=!X)MZO&tbT?D)` zMHpg*$Wi^{yt#M^D99Vc2MvHFd}8dR1=f*5?VmW&`HJmyh1MI=-ILc3yG>JcWd7`E zx#H{S85@DLpmdKaU_xt;2aQWv(Z2k2e&bLs;diPQ>wU^-$`<;x{Y*ic(-p%1lLewl zxtucyS%J-L0(fXK_j#JyjFnR~hjWG9pcYubK z=1zTY8x_wwRoD!9{P_0Ww~O0FkQ(r5^$^!`wpGttzeGVq;#sAG|${wrQX zB^fydN?hn1Prd95WjWg$urkl-rq#e74U%J3kh4$Q*3(5%CJ(UEi#DJ<#|)jITCuT0 zeQ|ouR)4M?#q;;?{=7(&Kvb5am-k;+FP05K;%eLca6d#p{e!qa&X$=8`G^cFybKv9 zI36CL-DQ(=cReGh`MddHn-Z22_D-l$sV2G!91u1lPzzvNq~T@G*iDm>G#8dzDgqVB zQ4wU&VX=I3ox?GC3~^pF>lO((QCqi~Gzd74&dW!nKG+9w1lW8^RjjToNFQu2wxk5w z+7Mh=WJ|qlk@FZA=4DH2k+&9s5!l`Es^uQV4ooJ>##@_4v993cPGOGr20Psj4VL4! zRsAhe>!p+Zp;ShE1H>$&8@Y&YCpTb?B?>pR8-qUhEl4=^;eq~5bYaGV)^YPd@3(8K zB_e69wy2I;Vl7!L!lsFnbMV&|I0GKQ`HNJM5_)l3u^FAuvFM8tfk*HqQyn*y`rlkAEz~8;zAT5feSc;rTo2NYT2jU?#v6+=6ru+oqJZ?|x)Eu%HnPdIL!Z5xOaFdu`4PI=&Y+SkW8WXBA&rXX8 z!?{r4O`OH4qOLO*d1EM5d_DLe)AUTOYJhR})7}lK#eVLGD z96QJp@6V)Xes(e>^ziV+m%Pn_%Q~DEyxNAv*T{)x-4U$g60`27+v0Ww7ev~lzkE;S zU&Kgl?we(s{DYAZTGG+DWKH}s^8PplOTtk~&m2mIBzyMUWJtwnjc}rojXaF+_Ch24 z{t1Flmn%4&)$Plv)*+YJX8Ul4@gXlaWNQYyOJwN#^2&~qA@mCzaD)yIW|nP&Qtsnm zqV}{dCr0_qAK0nFgHo2A%j<3OB!(w`>cd57n^rdg$P()_^W()EOSK$-Rl&7Tm#ow; zF9rCP>67$;un;N0_t~Cugo=dz1r-n|cCS$XU~(wSGvybKNv^b8F}tkD^0b}JJh*bj zS@d>ns2FW+EGo#W#!oJqmJrx27zN5^*|;KepILCtOOlDG@>3@Bk0A4!5L*n?Sl4(4 zXyvDgGe0&~5Y+;(O#09wbk&9H0wYREqaiKPC+*@C&8(BJLPMO$nDo2o(r+ z1>d6H58c)LU|%^WXY|*kXlC0GD8G6x}&UMy;Jtg*2}gaSJF7s)H*eoO$v$$ zHAYSiIi=}YN}lcph3TZ&KUl3dce46h`{H6O@Q&4w3bHTbA>|YV3mUk#akoLF?|y$@ z@v7l3nw$_x@swv%PlI3b2P2U-kOx7mjVK#xRy}YLh}yTrG4>22jVT3(`IDQ$K8)G#0A@y-44cfNEA1 zHh^}rU|BQOd;*)gy5jL&EXzE8QvQo_YIx;dy#J{NiUu36&%mifJXxHVOMWFPF#Io+BW zTN?#zo&u>MT4HE1pY4I)12P(k{UH{#mxt^w#uF30iu6umJR1FeuU+3G1Vi3%OI$rZ zKj%|mWs~z5(_T!@-_pO=<}H0ypMZ#eQNQ^2hW&ff{`LC|plb&Eb-vGY(kcpDt%h<5 z$uGz zuiN0S+u*O?u2yChLWS_k^*hzd97hv&bYr$!ndj*Dl_{GS=UEzBi);RmOLSFc_SVX1_NdNAjgs&ZNC zf$&59psQXzAa|!t#B!6S)sz6!f>>Oej9BG~CzU#810)V;v?@w8!?zr|tp!`QkFWlgOOj3oo;F!ch zY2z;nnJzOxr)AP|u+NSU^vi=_Q+A$9o{20XR;&z!0Q-Jr&4&l-|B1nV=SSerTaLc> zBbKYj5eZBJgyq`JCM%cet|r_ua^PaA0dcuZ^$AF*20Kd4aePk`L0hQ3kk=L3l#t`YFY zq&-NYGF8QdfUvQrhP5vN5|rG29Jq{cZzrFz7oU{~Zd4_TeG@DViht=TFu!ud@Sgeb zK%ZYY`oWJtpJR@m`w^@4j-wy_=uQ@mQANwzl*9dNDwP%f!RT8;1{j#xrR9Xqww5y` zcvv8HLA?s|rup!BVEK^$rDZ8LTz|%=GnhSU4stx`*U3g%J^YhpJIFlF2ROKYoM3R;KfC<8fy7=O}gg5)RxDk5b_+@!@{hOO(2EQ&+E+m$mp+~ zrkm$6b)}oHaWnZgn$Fba#zYn$Ii-n-1dIqgby|5DH=nD{8r{>$Ey2oo#$+{`2vSb{ zBM&QPh3TaeHJU!K`}{to{;kxrJB-%nUeL|j(C=uZ`i6~Ot8`Ov-lX#HtSzWc-O{OB zobm$7N`BA?_k8{>a=EFAFG+5w|1P5i>Ku*&PexV(E~ud`P%-wD#HYuzt%th|4zb8>$2o zBn1(b#R8zksUU{hj8=y%J1%~RzSt56+pHB3iE9#h)ahcG)KFD8^5(=CsGSr>sqHd1 zi-Lp{mxeAZoSU8J!zA2L2f}fUTbKTB! zd>73;jLYDPZ2T%syn@q(&}VJOVRD+xE%+HU_uBOQ%UEw00Nk*XH#m8xI4MM&n-wOy z82CXsQTh?n2iriR31t*0?~M;by5D7)67v3jKG?CgNevogU9IH(1O8m~rxbA(!2pE0 zMc*R9?*8PM1Um|j4=31Vj7~d)e;MPIV&Fo#xmn@dbUHa_I5#Jpn@K0bKqPJmo|!}h zqT-`v`NQPeXvTAy`59*UgRq=;rGKb%j57X;{JMc+FjGSr>e5FlY0aI63`aa_&M*1mq8s z4@W^GCL@wXd0h=K=^39X^ts68u!73Pwo@LQ574!8S8eC!ai;^yyaP6GfEk+F!rs=x z(#S6??%b@PvV4}`7Z90_+M=R$c~yq!L(0U+6+lA44r)s2C+z)vE7*qEJZ|?+d2tV8 zu+4JJi|ffOxm7R8D~Ir31XaMWfgAGOcI2y8-uU|6MikM1cl}UIdWOSqY#6F5CG=ZZ zh(J+@(015()zAg3LS->ynVvMJ%~4nYqaa-m#d>B{yd&WwfjW^s2JuYs@nMjNuvZ!6 zQaD6p{0k2M6FZ!rL->8k;Rg;O{`2#IdHeah!>-3h{Kb8($cMwoTys^6iwhl6>HX6fKMhO=~VTb77oTYP1kC<5FRm8B%#(ef|3C3{(QcaT$YciWK8l)Owy84IVlZXa#w*c(W4Rq-4<7n(>u- zL`L!|Vh(^mPnu7u2vEQ#45BJ-%naI1!bzEE6b)_4LMw}V5=D+)b3+Tcwuft(+W%T0 zvn>ftSxD>Bo@FDMecEtk2J>EloEHEa!aAX!WoPcxO9@J}{th8MKQJU#_0Le~P#!Oeru>+l5uViEli()a;>qMAeoY$uZ zMHwua5*YFlzY7|=R_!MWbJ8^GO*v5438Ym%|M+oYSF(v2GtA1ah0xg9gi?Y!K?N%? zuDb2I0r0a2YBj2QRW4VQe8&$KPrda$VyU5oBAU^$xmRJRiJP3w>sv16_1*g@J2{U{ z)z>j+?DxBb!5mC0+VYTK;DAPY+b?jzY9&xk8gC@4lKe;1>vda)(F0M#5`?ajd1UZI zY6ZvQy^Oa+8i8v#(U5{}HF@}g<5Xe$*n=cNtAwhyg5Ykg9k!LthhF3%;XEhwsp_3z zX_D=`Y0axC?bph8>nApFRzPSLBO zLn(5Yak*1NOx9sZ>jV|nTTk|SCui1A!^x1BaZyZZ&~Me4&D9cS;4M!as5*3Y;_Wa6 z(NtSYtT_~1SS z(Q*bLxt=~Wg`sq?b-+Y`mGY(QXGprZR8Yt0;0u<3YD;y?gG3c-r2PSvjqFO7eTK&T zdC7tA7l+sCP;?AWBAFd&oHY_?5X)6cUUgkObAZ$qmG{8Jy8iSTraI-9v1ONI3bo`O ztN)J_o|uFgG?M?>{5>Vh2jPVU>`qG`YkIPnO)@sd)Yztyjn~jH!59s$ZLlm%*ZN+J?~*eE&;#+iKou z8F65GVXcW8?gNbP6rpcjUh;FKZpC{sZAsopif4ggW&$L>+F)=#O-#9&7X{EqYzi(z zs&3Yz1Yh=7!mD%A3KDV$7Op@zv%;mM5uQUwgiuv^;nSd`Tg^yUO%~C?R2DB$3hTEQ z-qLtN!Fo0%jUItqoF}OOQ^PudTx~}dot7MKkcAzs{HP2$Oj|=}JCi6?`;E#wC|)7WPcrbO9M6}78=FcR^pOuF}y z8B!*l#-n)KM9X&de1Gv7e|zaR_ISEYR7cODHWsssh`0qJ2S4B3LI8r!3_loSF+bCt zcv|p`R8Y(8>)~sEMkXC{eF4_KXc9pxaUPY0d`dJ@3=IXH(`S|g0Xv<@4uh+2ZqA)# zbF=>UW;mRWz&yvB?4|PJ84Map^U4m_nHwHX1(8o>(*41gGA8?!1a#(^4x=SQiOB`c z@)`6jB7_f)n#7&rdL#JWzL|GuMz9S^f^6DQ`4fl`f)0bDbt8h3B%V}o!%w!g|Sg8`b^}u~Zhsu(OkZH2=Znw9GH&%UB zqG8z0Fp;joNVpv{%2|Z7lXwh?=u6d!)dO zic|2y%%>YdFcnMnK-u673^`mvnkrw4FKl_*JGEIE4fve4$X8$8A=;_5XA(JC63&$_ zfPNtyBh8)ijjRBGiM}}fhUBO)JEd$oC^n+bNH(3u!;5^yq0%8liKopjQW~5%nD*V) zBGHt-Mjc`*Wfem#-a+g0kJugbnC!=5n@q$<4yz}tipukNf)QcM`x2sx@tne>;xsG> zQDs&PAis3`M}x$UN2!eP@I$9|b@El~>#50C_xWe$>#3_V?RRb3>!EzT1cdni>&2as zI}IM~_Hl89m1w82z=#n*8cX}EizM&bjuNYRQpCTAu&^)!s>H#b8`--!`;DA7QBa-} zhre@X_z)%*t3z^TSU|FN=x0$J%W0g^v+C{9eo_&k4PX^b^$KD+O#cF9zzZ$T8zQ># zvweb?7sezCgbYVW#H6=pijW|_mRNv(-G@#vt>fO(>;fCayP}%lL*p(Vm$)YF};s=HU1Z+)YgL5P*9;r0kt|FPJ3E%`h@^nHk2}q zpD6=x2#Vy;iv%Tczsk5gHRdO@RufrBvRbp?pFnH-HK2L@ZewYBZlV57V`&a2b)xz5 zyYL7r23*H#kaBw-Kzy$!8^>8;jLY-sGQ-L6@0mm58IVOF@*hWW4)2!T^*uNjn{5B= zU;N%EO_r;nZ$kY<<+0At;!w=&)%4`c`t%q1muu@)YoXD767JF&aZR&l8hz ziGgeJ$4_k{(L@iYSGzJ_wqnMaZzY6TKZFKFoED~OAexwi=Q#SvExMlpS)Ky{O$zO& zN?MYTn%X+ZDQKUg`C4Wm$eZSERzMzhF2qaPU1RByY3p#OohNBSMtb7)^qq4P!bVfp zEES+g74Z(lJi_`}P0tnk2}c6-xul6ko{BwL>qcplP%*GFMIg2~cKfdEJ~CI^-1*{2 zy+HE~0f{`(G?IBQQZ_IV@&^FG#yhkd(I*AenS?M)J{m~~D=+LQU18lNKH!_AzN>X1 zlW)PzXjKw5=!GQO6!%q*oe;RSxr7ahKhZ>RIa_KWV9*|&AaD=H@rcAZhr~DEI7pVR z_!sSK%umrjE`}mHA@HrFIgdLph9aI#kwFpNRxyTbumo0 z<(19aVuUIcdd(pTA>Ly_nI%<;20jZ^ET|mi5~3H z8hEFF_{j7pUaD40cBSi{J)9s`?s=1jif#0p0Hp+&Gig(6_2IOspG09N&SXv1-{Q9z zPYOoYXJQ0LH=x(49%|!!DYwMh5nFPc7d~ zYTq!vl>+#!9jW3aeYI?v+UwZJYVoy(Kj-93jRhkNu)N`XPi9tT4bN(PbpDG$79!zr(tg?=S-*mpd2sWdQ=m2Yrm*&KjJ5@emp0 z#tG1<*~Kuw3>#xKwWaRw&aehS=#^=PmWV?z%s?~P^Ca7s4^56u9Wz?{0$J6GU>2r>CaA?QtJq4yndK|H!Qs) zl!w5BW}C8Q?S;x0o!QRq4k-f^MDPB5)FyD?&`#IejTXrr^`DRG+%-F^U@U&T4sX3! zD!Ph&Q}@=TEi#eOO15T}*I&HZdhv7>)ZLm{fA;v^>V_ZBalE;;vF80erOT*tX^9>i zr7>Y3W)@N3;YcVul38RSog^xCZ0rnjmmG^djra;QJU*l*Y88*LJ_8l=hWaa_MKU!NyMsBv`AJ2~$61z)S(xP2QO zY}P%7Ne?QG_ZH(7rj4wQA>M7SeY>`?x%DP3jUcjXcTgaSKax`BsFiE(^qYM}H3+Ern|J2OAZqqW0JIVT zHa}hnEq`G<))>=S3r@`(B&U}Y*K)l5PA(jjHgxJ<&y47L&?MHT-}f|&jAZ> zb#7?v{ewLUbRM@40;D&u-?@P!+%62dJz*$d-qx0C9&~pHeJy7z#{Ih7Z1O3rggA(L zur$$7G&t1chK`>L?yiuD=q$rh_*v;mCgmFLmC}iCOX4&PrY5W9+5FP|Tp<-fcMn42t1j-u6{AhMMO6Pw%eaZGzIejU}$>ybiuakH@ zJpQ*k^|xKlHCl~ZHv^cvw1V9`6r;M`n4OJ_)$etGi3DD|8n0u5Vto^-u-`-1FF`Q` zgKfoAlsb|0XUgq!#j7b%{Reaog|7OAYw6k*P-F=C(OfHFVH;P;p*U*?aFDC)#7-NzVW|= zl6NU-C#XBNrOe=i34J0kw&AoSr2+|18&Oz-IQoGxD^9lW+_`xR`mWIr+Vu$j?M|b4 zJAgkBg*0a?PfANs$G`3KeR_(9McUVBucT-^c#kL{mOIf(gabR>vzVtC!A;)y1gZ&u zn5WJ1T}n^l3}PsIkMX#$bp7_VR>UqFZrES*o$LG;pc5FtC%i44x7o>JTvfEg*$Y%g zw$O)LVV@Nkx^(uG>HZJ%o-;EwEp3m3}xSaFR+O z?Za?kaPMTRzAe|pB+|u{HJyG-ui~Ees*=NsED0gp8m~sx~3VzdcD5 zz2QW@yBk*P<{kY9L^@;Zl+N^9+kw#qxYYAv@yeCAj$}u*?U!#~SMO7rv+Q;i*4-y7 zyF+zOztM_!nhWNsd2F-c9Hj!TksPHVf^k+v0iVB^Yu|xw!SK5W?Z!dZM8pO`fIb5#Ych5ZuEnnkDdv$ze>gp0H=~N+I zURuU8vrzHsyNiOc_VZ~7_po@6W-SO!G4ccPDd=>eBp{Aa{IwN;MG$UCKX=mf?^WZ1%7JkhYj$gEg=!e>a9*kd@F3A2*nQNTTWVS-GO4s z0!DlTsy0->MTiSY+c-)B)&G%DN(e+P!WBnr#P8YU52KKcBqafo@_$4T9j+?2yF|`z z-f5t4;Q;B@_Y|gD`J&mn(Yyhk>D;yu@45sF(6jqX|KMaH)rA{cA1q3i^3q=w!9cagdl~F4`oegnUwz%)=8qQc6*eMIB4 zv zyWI=qp)uRMPBUT$Br!Ho(Kc8a7RsO0jwsYOG1 zJj}HTdf0ILM$IL02t0C$x<|XRK_~O>&6`amsCX&K_)*YU+`ijJUf-VT1c^J1T#f@P zzZq7m6GMHVXF z{hrqJ&b3>!EesldIw{GHh`#O9w)!o*%pSxDQ;_Ej1vA}JC*rYNpCSROY#unmUKNG?>iRN6pn zA8j(QvgBQFmcma%C44Xk;-A7(n(SAqKF2ba4GMz+%reTSTHU zMPgB4)I*6yLvlyT;nA2HEC87!^*{BKF4$?2X=i68QHYR8zd{33fS15&b#90*md%62 z!JjhSqwy?7^axzWyZ!;(mC9l2SZN?$sT@>upP`a~EQ!S_tJ|enS+7&#-jQUOO7Nub z@+ihBflx%y#@RZkH#m2*al1Va=_r{B>o@EsvmH8Ob~@K@_-NRtK5C!-E0snXxG?TY zr8k8=a7RJ)hf=ajtSc$W{-pk%z;T8|@Z zU+=Y(d<&HAcKfzyyqyo`>N}VU@7#8!lt&5Ca2zZR#WDRv18dt#-*}lM!6@&7Ez(^- zXPQq@?(ep_I!557xUb2;m6IxnPfTzy(wd_*y#+Z8}$ZV`-x>4@{1w>FV zl&J<*>si^(_UrrglR8LC@e=K@pn=5=q!Id}g>m}?b zklB^SIF<2ewU4N{m?BP9!7lCXo=1`hycQ1#4PTJ+Bl< zo6P&1iTo>9dUP;0osDrlRh>=dW}21aPl;q+;mjG@sgomA^iW?Fl22vrJY^$o!_vhu zJMtPa#5BewdC@x>0yLm^PVSrlQ!}92N-fmpKF$X$F z{l_M!G(Y*aIbJY=fCye{)j1w+OZsx{m<8^wpCZF-fPSD(bCn9|A&P@vNGt_dho)$q z%&az>aH`B;uGGTmW;m_cnXav8L$PUdDXVGc!mOqxo3kQ?V`>4vX#Mu=Eu`!LSPMS* zEOf5duipemlF)`))xO=hf%Ezj=LS2N&1~}|JBy~nrl5#Co}64-_~XY{gDX>G0+1sb z5%hc5Pr<&#QP?D4GmlD$CfZ1PyIaykLXjHKY_$I-rx3cbopN^6&bir9G`%pT8?vZ0 ztux6;*$vUWLASlPCkt+U_Qw1?`wc%ao;FTE9{7(F$viJTvkl2`?@v@G>2F$0Op#v{ zl8Tgw6Jw{QZ-_?Eeq-$kQ(XW|NREk`XWL4naNEfcvFF=r^bSAkw`65=|7T`dolR+C zNEUN*vwp*jRb>~_El7^6A>o|4CDJ)!*&Ka>HG;Z52gFKDDZZ$FrB-n(u&ck*+;SZCL=uFdUC>#<^Bf@fesi^bf+Ig6& zBCkN`e`@JG^tT9rCpr{xri4_b7N_T7RhH7gl2vg@d+Fk=uRj&LEhJew*6$#IDgIWKB-yh95} zP09@dieOcRq99vOI3Da$WSwvvV&pxybQ@4hsikzh4ymP<Qnx~|7l#)gik+wN}i?BD@(uWLP zl56}#)X(ogm@p!Ftl$Yr>JquO8IwIF%XaUMg1oqEfuOt7^Mrz?#(BFbB(#K27{o)g zZicOK4Dl_&ehxO3?hrO*za_~HbxhiFh?_S|%Jy0-eVnH`Zbl@-t^R)ba6{^S`NX~c zA$zTS<`IM882c`PmZwt~GNk%Z%H?R!BazMbpiIgSb2k<$(YvCo6E}g%Cse7DhV2u5 zhMymz;2CcyFw3K=%84BBg1oG$k-YdW`}33Ku-q~vrlx5V)IU0;nQ_}-uf(JjN>)_g z*K1e5n0z@qeWyO%S)Ts(_0;HrARB`Gm+pYp$Ze^hFR#tLuD#XYS^qnK{dJ9ME5BHg ztR}AXE_K47Z(U zmUHg>j1=BkOnn8^SF6j+#2>#vnhTTh`op!;sSk72`O`12cB}Vvm5T@44fLB=lVq)O zjXTWbTwx04@037~n8Fks(0CT1d7yjd*llTg;yor%I{xfv{i}P>0>VFx-P_zWhG&M9 z&|z{6n;#J49KGfE@y_P%z5g}2d&-m3h+bh?O@N*`nEg2SarV`W@^@cNX_8ioNzxpF zH$sgv%)V<7gSc=5+)0yBT)4!Q_!XZO@Hn(FA@hv6S!yf<+nf;N>mfs3I%49!9=6(j zUCU5CAhxpU<8J%)xqoJV)R-n`KfauszVn*7nFT?ns+yb6IA_x&i6sE0QgQ|4;Kwbd zQj!!w$;3*ZLgmX2tuL2Bbk8uo=%2&wjt~gO1^VQQO}*) z4~0A=JK6>9Yku%;sEMl{(idY`-hs{?Df>`<&(BIllrM=f{j1O-C$aQIm;)&h)VE7h z(K$e%*2(#6rL$h4!cO0Q?Gq$n27GWbW7yyyeab%5$jYN^p539n#U=y4eq~PM`=u3V zc=qRNk*W=;pIRksq(eMzppAgOrnwkkv`})a7R{quTDmp|8^h!S3dKkYe~t;pS1QR2 zE2><{r|~}+#5QABD#!V|c*ZC0N@d3^waEX!G9&W+(iKg_LOG9;q5S#UW8LUFK?k9w zg`t56acPF;oz}#77Yb&A;$r1?^G$A!a^;04=piHTJ8Zn?*+6^P!9JN-`F=@>l{BOo zmslC{7_)P=$NkBps%h3P;oV0>9ue_qE-Vqx*SnyCMolPh-8ND*2kuDR5vz~iZ}xX7 zfC&1Ol`LEmdXfaX0z=H48tlMeP}#aFgenm!Pv{fTxr<=b!>;nlL`Jphu_ug6WDI$O zSrj?O2(agfc*iE@ZOFlKU?(bDy8kpIfk&rixrM z-*Yth>$VPe!d*<0Cd4Ms9`5sIbt;sedvQYKJt?5WJw%2ai^S!;JYRsVFa@8M@s2e; zS@gk|(sYTVq9~M+ou_wE4v9bvBlMR%C_YNWgohXVezRsc_LHoZ)G4%+d`O zKlI1^~*Y^3#snWH}ufM(=ukqQg=|K=3pP4h}u1Hw0PGjaz)V-dp zM7_(jinAm*0X`^b@Cd0Y-LlipioD$$%+yHg=x9Fd$i$Q`XCA;^7HEOp1lsWuA2SIK zne-DyKAWLre`(YJp0YJDCNP#~o1T-Ef_|TicrKDU9_q!AtPti|3Tb+lNRILKUu!fZ zzjn2Di-|cuulA=4^J+sH>s$Ge5%q&SdsHaNth^UpDkFQz(`5dsAoB^d=r*57#ui|< zYS!^VNVI|ZP$z|oL<)R}k=xv=9;-aZ&7rP~O8nubGe*I)*0S{I+^2NM`+XWoACsSJ zkq77J=f+%E!6iL8$+I#Qzgwimp+2m_pyj3u)o|tAR2G3QeT%26KBH3H%gT4;68!zp zbE%lv<8pt~gCJ&+eDu$+f=djI_iYf}l)cIpG*O2w`z z^Ua#eU^hy9$f<9>ZS>zMWCjP}LA}-O>ofWxeHpb_{MeE^SCTQXgt6`_`I7w`=bJA_ z%V5zqF4*d<&eGX@;h%`={+xW_St_7Qi? zq@N3=AJ*!%X%ZXWd8IFhOK9~=?L&q7?1KSx*#54|*hBbBz162+{X!*{uCJU{k873s z;AF3v*N+bSoqkO74tBb_wbhl*qRB2Cyo=hH6GI#G&hX)!U#4$*nup(zcN`q1r&X&P zR(V`+67JX^(9p8_T^V@m9q=4Z-9M(ILiPK4l`^uGO7$^j=jZLl_o_hbKSu+Dl;UtF zxgiSnOz7G^4Gior)eNj?*x^CHH^@Vsd;WInluC0L@a_VWjXE6)ANTDhSX|c)Wv3QH~Sgxo-M(YK4GHaf_BFk@+BtPP>D3bYZ zYVk2kG|4PHt}i_nFUHU`wfKF#_Q(_V9}af_TBpFjO_0IqhG%95xM>PN)p=QbI6SCt zZ=3N)8AvUXgAR80`sUI>zR1aICMynQmHDAecduVR6bEDvqOE*eIy4m~oxuH2+z_ay z*RcvsCN`zoseXWckF-$ruwL|PU2ILtY?QYu4%4O-BDNC{eSoaQeT=pmmS^^^mH;&I z{WMfzk6g|)@rL$oReq(a5TUk$vO7?8CFGjWVsCoU9qiWk>6p;otd+`$g@J@}jOf@qfmCP=0-$~D67TKWD_qov7=G>H#C zACUk{UWH+xrs53j>>f*-w9cq4%iFg+{Y_~0obY!o71`(qV z))=4(N9HAGCTZ+x+f~Xlqv~y&(x|v~ge3Cr)OULroB7awt8BKk>(JVJJ)<=_(F>Gm zZ*%)`x7R~&Cy>tUR4~w{_$QuDxDR9+!XnWkWV6(vOZu2{1Hkxxeey)N*@(*2`V0}n z)^t`*<0QRg#BD>BO)FK=ecER-me@2`R}Q*QHlaiElFqz_7ELYKX>urc+e7DVNhljW z$Eb+!(||CKfDdH{bV29dIoZ^%QA5okT|+Rt?Z+n?>gr;b+TIX7L!I|~zRfiLMhqux zgYU|l57C8fRd9u{q{A#o1VDTyeUN_PvaO7j(hdj6CR}A$MON5)9FFs&0 z$h+EG=M|xT*$Kzy$ecahuDy@)kK%uuVfO+>Acf%OM2ou(GBk}~6RI{eD@+SUT{-OZ zU5Kzv&^6#}7jRzZkVQZSpTBYA8~x=771xgV%Ms+&j`+(FpwE3%YpegGbGNfynFN{_ zPJU@Zes`m0Vjw)+X)2=R;jwi&9@FJ(;)%bb3g4<%=bJddUcN0 z)2ksDHgs6>d4jJoCcdUHaMg&fQr+G6TH_R!&2CaB#fiog7{&(`CUgW_;boji$klo| zhux4F|1_T~u>;y16p9YAgNFu2mX-1q-j$q9Cp5f7gk}QA*?Zra6(-EH>`Cz1gc42_ zd7~s~L+3M+v~4Y$R}-fFLEy`!v~60$+ona~K8+ zMS?lu#H~+7_~S`bD1+9weKzzlt07<{RiSMnNx-P68>n!}Qbh#060NAp{4@P)Ib-wC zIWnQn-1(@Z-8)RenzeU4+)ic^b&R18O~J2bg|6Q?29!;82!=*=!W^+Rk?sA=nMsnN z1^y>AFd)|+(|2B+;h^ahrNe=wnqk@`Lp|k&j3(8i*)dD@`qz5igsf=ruP^v&vXIQm zFv6)Tjp}tMR>5exMqv8GT* zgV^{%f>oI2tYGoya>7d&u)+gpg{sqRBF<=7*1Ke2Iyqx@iE3KDfd&@jqfB+eQ-YQT z+QTv0yIZvXz(2}N_2eQ&d7=TxYbA55+IZ3Ro!VovXCsO(5Ct9AMx5OC97%;u z+MZ~`EwtmP9fKM)Z!WaGLg+cEy{x>cyso~t49vw7G5Ln$vkcHHJgo9`dF!F11=T?g z6M%=0&o&hD0P8hb!=z>ss6TCIH6W7M$fLdtfVL@EuzC1E;i6A9@b!b)NP zVj!^TVnH~sxQ{WtCx3O9NBCEHSCwENyR8r-%VFrrA7%Bjh9a$&W8F&1X>|viJMufm zp0z53gqE5I_1#qyQ5)85eA~%i-Q_VG2_v_aOfrkZcD~?Zt$jWSak9$2C-+||!X3+fZYYS= zvd5z8QdeJtioR&~7)2?!VQZ2%wK&njF~Ke+t4n=aHNfcQUTSd)KkhSKTB5-KM;!`~ z(C;vdoqi+N5P>}F1P#cw{$z7yW9=!+7^j1#J5J!pw6u_XCr#mU?yiaU8G@C>fKV{s z4SO$fu*AM7KY(0bVd#u+FqoG|y1oVSS~sx@xyYEGB@lIc-NO?$x8G4AO{qs~jy4R^ z3=ZaG@&jQY3S#Ib;mfX?xunWFyETvt; zJ`m=qbG*g`C|YJErzFD&fyTH?)O45WNLSTYsEG|}^r}N9yCgd))CX}dK{8_mprYdLJ7oYHEXftu*wJ+la89z1vO;Gug^21rex3bo(}J zmWXj?O>JeS$=1WLpY%8LJtY0QOh=WgOo$t`8}Vt#YPe z5!eu(1IwCdef)@9zm@Qs=%le@{*}uojcV_(gipSB7p>Vmedw?RXh#hCM+eRJ8mKS7 ztl|uc0ixYe8X5I>>XfYD9=mNMP9ahif!08qJzek(M|^HC;Zvdgd5x(+i1gf|*j8~< zt#+wVTvFX2=~*&=LR#8@s|r z#()Dsf;w4z0JvhPGqnFpv_t3>RycCCgkFWHKu?s=XGG&vB=!=6R1uPe$)+OJi#1qi zmyf2VCtGNZT z!0!ZolyKVY5TB{tJxO5JMtyI)O)%;525mE*yjfkpuekF_hV!sCMh0X<8lh;^y|NL8 zy~jS>mI^#Ox^6Rs;~W~!J^_WhdrG;jV7i0v_<#;~ig#LDYX>w^^$2X>Vg{fq=?ZZQ zqt%lNLJ%74sqsZBRxm*-Uy0h45ft3CvTSibG^nOe)B)26vZAI#v1Rr*bleZDKmliS z3-ou=V4K6&!aVQsorZ^0?G+wfqKiR-R4h!sT8}D~MFx`q?(ovO=}}~4h23M{!fF9r zBO--6;Ry8d)nEd`vJ{Q^f2)Be!LXG#OT#Eq2RmzTAFY-5$a%rK07_Lhvw%GcLgMy<`Qp zASIF)m-a(mYJ6T2EnJR`3EI^2(qswVufBQRHDzglch31tj(bz6jDi+H7QmHurG7}N<}oI?*8>^k%DWBi1by&>|^KkSRZVr5?|-c)QyYt-qmWm3YXW>yw2;by^>L3AJ_ zd^^mNINr!9)~eBOoxqjT`?=Zj)l=Zdh&^`1-B?&Ei|Nx~PFdhiCV4cx{ocu%<`N$d zfE1^TwhSfMgz8Rgq&1P>BpZVhQ)3d*lEA17O9F_g07TlV!%DW>KR)Sn2$Yu|;ZQ%K z*qt27#e0T9ELjalU@Tp6AZ4H0m>LU3?9sA(}^ZW+PZJ!rF}mDq1+sKy|Pe_Ng)4 zcCBmNN#wd?(S)#}P8r>_xU}QIumLJok6_T-P9BLz8}IeM1Tpv=fA69Dd!f(1KSpgc zzI{a|$y=cCPGQU`0VQOF-f)e)NHcj??+3nX+*YL3NUd?CpKAs!6eAJGiQ3OI?~s3- zSlW)C8Sy}$=chd*9U?J?DUsV+^<&KRgs94{^6`%h9ebLXHx-ssnHhLR@xZ6vhjE4tCQZ3A|X;sy-sz&MHu0*BEsqw?NdQut&70+G-3r zS<8R|*Fk%)1cq_5p+N4y)@a_D3ND5~x6pgIvi$VvBjOB}k=Uqw@SGufX&=szh#_g= z5dvdyYSes%o)4cnvA5WInMngj6LmWR=)T(`;rCJzRa&Q}GtDtJ!fbV`;w1qq%Nwi9 z@$|;fL@n0`tmte^O5E3E|#G;aM)L8Jz z8vW}f__p2`+tggqSM{DcfhtI^3n2q2CmH$majL3po{bK3Gf>Qk8$dyy= z7~$nN>?r-c5;oc5vLaWRmqM-Rg!#5TAaESg{h_>%pnr8tnuXFxH_0mNPYjC9IMQTi z4U6!2bt|FZlY8IEkRGl)UEXj!QL$RvFpSW*e#E}vowGb{=Qy(3gUX7Mk21vvvjkBy zlos~ZKs*axmMuSy!wcr(Fxbr}&o)*Px@~T~c$5ydHkMby;y66M>&v?Yq|)Har`R|Q z>OPeAXWKv3xL9%zIlf`w90B8WpBe?HKTqy29RLA_a24b_P1N8QNN^Bo@<_0Yd_R1cHFk7BuaRG@6TlEH3+nSp8JG+`%wQ?mhc?V;t|bMYi8 z1Y>bDL(Ei6=jSMN$AZWRIhw`Ck2{H@Bfw%elhO`FDHJ9g8v@7q6>^|y9f}-@MWCP8 z3w0+nWX;N(<}}QX8Jo*li5AHa)WPKLiH1gB_t5hZ738=iP$NeCDnV3!Z6YTsQ|Ggi*w&?KzYObJlaevXm*u{TaO_;#*=*hKSL6Y zJ&=MxH-bX08m1y+v&DjtRVRjR1dY)60>hN&P`lrJmfOF!>im(HBfg~D%I#&|Sram*5{-S(yEm)W~c81BQ zE|Y(YNdqO8s!6>^brYAyk#g=oIJ%?kAr|)G=43x?qFBkQ))Q6FdFq&!#fnK1?}X5e1u) zIr!Hk*6DQ8r9+On8oS29&;M13p{qrF>4iDx(N-)HGn|y2snnB^wm{~LXgprVA1@Lz zfmWbsimFSMiNaGYBB!d_**x{O%tIgvSY7`}c-za`&MUqe;<>w}Ig!TGz^*y?Q#hz1Cr^$Y* zV&yOk`vvkqD=<*e>C)CpdvQn}i2iObN*{Ks)~8a=!L}17ien--`=$g*c7O`k*m?)^ z3UV1lWv8AlhN?C=vg)-zHMOrBp3Xq_;iMUicI)q0VcT(3|NU%v0D=(Zfr502dnTpFx4 z`H=k2fA#B2mvZ&Nd%U)l zKO&|9*F0xd`uiuwVsiF+P8;M~`N~P7|Nba{RBsHbIYB%8v~kJHFmGj6DXQqc8k%$4 zBne)&9<-B8lgRHPtFIHsspYrl#Qn~mi`R|YI@TUa2C+wCyPs?<{Q}4fQQ9ixv(;X< z*PJ;!^tt)`LBCJ8xO`35FXc~_W$g6_$xS2hy4^U*X)LN_WA8{q-eMrAhS)#g@StTG zd05kU@5sLb+vMA?G`j~)uZQ*3R~AL-Jl)MZnjhH)qYtC4tn1GgQ)qZj_P8j}Le`<3 zi%M=bcT|D1sxFxIy_1}v4I0Pi{f64mz_9W<+4cJ;m%Obcunqd1!((uUyIVO^jUN@~ z(fsQm+G!08qB;GU|Jr_i?e_b<6JNXeyT#I37#MKPQZ#*kVYX@*!e5s@@R207n2cFc zXIU&E`!TW;qWQue1b5E}5g8XVIGzTBezS{#nWXoi;#kN^-XW@BkYg!q=atO>18yeZ zzC^Zs-SQB0QP+e(Mphz5v3RguN{`p*iA7cM&Xu_Y0tdBuHfbUxT2BJ^`2wdhqO^l$ zy5x2^dupL+a`eZK&7>Rz37dY{#N%W(=f~Z{9hFK|8(}&QE8L}u)3Vt+l3;2rLUoyD zbY!^eDjGxkQf_lP&=OPcgxtq>w5RehmPoy@5x5w5JHWzy?Rat&cRg+*dL0;a$?HJw z2rES1)3Dbe`dS{j%;`q{42hs>C|1pP`>k&0guiXWNK(yv-N8;(Wek9}fksxP9xNw~ zq7YiS*Sgw2xTO4R;=Zaa5U#ClG$M)znwVIi8Q<9mL*f1!v3i(g!9@}WyCru*8^@k= zZW46fad;vgL-87%WpQHKX4(%C_TW!XKy^Vm1-}No(i+;ZwG`|$Rw-;aTb$#a{_fDd z1k##45S>JumQsNh1<9da9u<{vHHzq3^|um0K7@Iog$<$$LH|2M{Qp^D@!A)c=&y6I z$GWh?fTBf--o7o1s=nxqfVJkcD7)KC0y>j0aj+1WLcL)HjtM@a3fI*?zWn2>%~$X0 zv#+mwEIxi2`irDB>lr}K>(S_lx3lDP#uMakq~GCi_87tb@nfnt@ouSzTOSSY&ZtE! zLgx&MVwxbCkvOT`zE-KctS%w?^?GWI>bsB0=4%PjuMB& z!WbngHft6s3t4b>2VCah9E~^kxbt_Pj5>!!4CvB|)|@fQh=>Q;Jp_d89d@C2Dmtxo z8AVXBv#p1#`R0>vx1OUIPQ<&N(;=;418&7^%yT5uruPkpeL<;#nU)y^4 zV1W3XBD~-!#PM( zb%Ycy3j1;#`$e#4-9dWePc~Os=KIXp z`r7)p8%*Hp0VCf0A>gb zirDF*MixV9wd`ElJUHN+mC31s4uAh$|;gGKe#vs4` z@+!t6uN*OiG)3$TZ#kRaRK%m$JgJZX^CA!41Bk}P6Oce;lSu#vm=~sE9nY60MkIBZ z8E}i3!!tIWFeb)t7xXg?7k(ZFekHQ=0<(HxmTVY>KC49e2E`Oy-67PODG^>ky40*w zgh({#sAh5Z)%$J)``L|PN3fy$^8RCQA5L&8fDgMR%4^y|wsR7qSxigBvdpmL{^~N$ z%m;n7Q=z)q*?FrVVJs9c*9z68kY|JTlwY?=}b*UZ{W5AR2o1H0`fl+h0LU zbJPM$in)9>JsCRCWtm}(bxfKbQ1lGbNA+jlLWktlOk41W%6h?-%;4P&*@vY>GYyCQ z?z0$DisnfuGBS^)TWlh;HMq*hk8>ascOI!u4K?}_WL+~e*|k5R&HG(H)k?6dLLBO7 zwp}vFYX-w?G!b!2WfX@BeNh3-kOx+*cxR7E(9@hrA64&He^&8QMmUO4gvPVGtoqk< zlVVNSW3is7QVlPu2RZ&j5CG%DY`@cptcppcl;-Suv!t`FD<3N_|HyYm5i~nyl0pfi zXH;z9bXnIfa}A+mcb~hg8v@4&ex2^YZuX2c8Z_>DufL6QhyJR@0y~67VF}WAY0UMG zr%~7rlS;csMY}B9(s|rgxvEr3DH@=FNEdXmUhI;0g{Kbm4c^;qw)K950u3|kZmSX< z^LIjjL6p0gJ6h+3{a(Ai$9IZzG6?K#>p8quBjlxR-f>dgv&Se8+uLoz6XN$g{QVa* zShOD4K@O&gd)#AAF7NjFZhMtdgl5Gl zf44kZe}amH@}1(KxSfY$q*GAw`0MpNO{9PQahr*4s$Oe&UN})aa&*27t#!YBDBV|@ ze`mei;~&P}v`=7vZ$sd6UvW^n7j(q(u{)*Me9ld8v1k@+niBC2ug&XtQh33y@ig9!~`>*0ItJSZlR( z&SM;62}k0a?K=AlBf2a*1rjyrqHyzi-riFmCL5LQ2=>~$lP$DB!ITch!_?}^o{mh= zpSC-vnGcW`Sev2`?@pG9UN^$9{pCALI zmC9q)}Xa``{0>+KX0_nKD4*J1`$1gVDUA4|H|)NZyz4_ z58kHZr`#T|ZPAoTDN^jw1BBESZIu22G;jo7N@XCcDwSD7+Looz$*j@VK+|ze(Ex_` zXv!QGkWr3_oB>f^lS{sToX>cXfjA*0+J>R{px3Ds$v_DRpV9+rn}eao6N^9`)>0I7DaM5N3V?t0n5I> zrsD>?JaXc)XsM*M(w@9W$9C9FdbVWEy~~HZ-*7#@9BzgL@d5kxXxkq+Jt&xpqc5eRK^&2;D-M&+AH1WPI-&?uA z`fZl|lmGm$v;Uso|B2tf=l37{7k@1oTZDUhzrTO9Kiz;NsBUqj+0$aizQ=*VWn7eF zyaS!C1mS7xm@C4!>(b%0cE5U{Zcj_#hX#e`2T-R6-Bx=#*!UT5w!;|ylHY&K??2)9 zZ}|P6`Tcu-|HJ?Cue0Ct`y;#Xjoqj(x|3AWcbnM{t}@lc}Ot1Rgsb_O#LLY2(qgS?J+l0PAf{ z510hZ{PjUsEI_&gQ`3Aq{kDD5+<`xGPAbW?yel=JaHYg~1XF?9hL}$=%i1Q%o@*ow z4^#NTRmh(T>GPbwV-5bl(mD_~5XUH?1oUujs+kM@^XMIq_G0cq7gDLlkNju#`yJ2n z#9@&|kT3S?y_xr2<8{S%kEwk={!4kdH-1-hP<-!bkIUm<#(hDyp!!BD58FJleefjg z?%Yr1^~3yky#cv5!+^4p4uoh@8KznII>;cTbUw{YRx*Qin8B{iatZ zmW7ZKQzJ9IZlRjs@ca}s^WFWNL6{(?m*=`qXBZazwceU8rd+4uJOt4K-cY_Jj+l<^ zWZy={PX`8s+{D+?Gscc#5AolsqZePt_t#cSKeAl;_p*d`Bp^zqpXBvzVQt(}jU$Q& zOKhv?)BB*4PG_dXIsbc(jmDr>$9f&P@K)Urr|txQu88@-f^5 z&-)I`T$mBKbkJ`dH9=s7TbS)C&PNc#XPCcX7EwsrwOqVJvKjyx0Wc`^GBt zwQR-hB!yP-Y%_;kH2U>}R!$)p#f?nk%inG5^Z-@IEIGEtkOyTCfi?FJq%n%-KQgS; zn)vwirZCcC6gZo;QQGg=$!ev5$lv43;ke#NXP6UYp|_OEZzBdZ59*39DD7$A0|tlB z#>hJy&MlI6#wOp#Y?Go)j87LxUJ^F#o6pbi4JYxco)~o!L3urKf%A zSyE(*W4kHLf3efSvg{J?ipcF21E`lUi`KY{;T;jOd}DLjzP(>}+B7nT;t|F8M(B%p+wML|5Go@RVQ^-lATQ3P zb$*ks8&lBzD4pF7ym97F#JLsUS3e7>_jXP9MVQLxfI7R(KghFKV#3W)wjH*|WD#Jx zZb$l=WAy7Ft`uM8S;C=mL{jfW8?&ZVqLwG^X4N z&A{n-rt?R}ZW@R&Hzbs{ZBz^72i_^0S8>H;2TG6x4}_`4 zCUzLj4ub*dJAEM)fk987tmD$=8Dq!K`M-R(lKsPfyqeAO`*;7OuIl+c*?kKK@e3UG(0eUi+89aRt(ig~j zmVK-3FPnrJZSw^a^m#^X|HQ{kTPv(f4xh5yclteanDcbdietP^#MQ%z-9YTp0{W{ z*3X6uHTq%Phaocx_0CG&6~}3vy+MO%1E!ERDGLh z)C>s}>#F-_ihby&GFvw7=C#c?;XQ9w9<8l>zf3?9-w*v47e-@vMb#b9EVA24sCz?GuH30oI<_g$Rp%gc7 z6%(Utp!$MG-9wgN6zDLdh5SRsX_MVn;9?11W1Qk}DWUx1#}rF%LF$H-sDff!={fmi zc#)omeIBx9iC*Ds$ZT76Dz})6HcxWLIcPsolka8!@)V+sm|fq~fmRO=XnS&5`%>?Z zh$1}=0j923UY_FN;q}@dlh;NQ;K61uf8?jl+UlF|1H1&9lw9UuLxL!-zLA3 zQ$U5R!>{NzF11X>+Wy3^e4T&8FJUQ}bVfoHF8q-p^Jjj=dl3OM5o_s0iiAaUtH!A@YJ5H~-#{lnsSgEPyDMa9Smb`ZX;Sv{uKHrWIs9hQo;3xr zoz$6rXVMZkHu?Op-9r+aeEUdV^sT;;Qfsf6z5LzGwO;4-%ij%NBU=uLLjX_V9CC&e zCxx!V0v?%%k=P(CqL}v{;g6ThiYp%3iYEf=As%(cv@4u)PlW8b+tb?pnh@dBw`so} z(A!iRE!crvf^sNB6~-^b)R{}!*XPG8eO(g8Hj7#$6qEAz{2qp`QY-&IdtU~>^r3FODSP1dkK3>`Dmalr7ZdW|8wqr zi}Y+y(!y81A4)XVdv`zg+;h)4_ndP9k3};t23-_R05~8guLx}^ujr3H7&w^OFx|Bi zLW7~F3yy24lU-m}>{-7BiPwJwTL|~PR<8&9{>i&%pZ9^MK6sb03#s8|Xjykg2a|;y zA#a*n?G_ALxZPR(jFZ9XtI?fs?V6uWo6fB+@IDpN9+~?4N6n86He4!=OqmtX*cxeB zcfNi#tvM(yhtpx4&WGwkZ}zRLU-PrW`{prq?vqCh+w=@XjdUXFk>ikZd#7JdFLF5I z#s1qAyOlXyk`dLmHOFtb6gSiOWuAcRmFfdI*&=sdG#j6?pCYaw@zc68e&%JEu#gx>^w~t5qi(KROsl3KDxVSHLivRDMAT{WHc6Mn7SBeW-KXCs zf4>G(Mke+}BDC2KMUU5(8!Z?6&F}8A`_PhzvP~yNecH9RDY`O_DTQP1#?vW>>@1gU zufrYPFStJ}`#DC)bI6WzfU7A)FM#NEpi?R3WTh{Hi?l5r(vDUAI!kq)xKe8y*# zKwm^q4LmPuq$2e9koH6&knwyuOCCRXNI4sS2K3#GEMPZyNLkPP&npY!&&yfJBpp%~ z^xfukoGF?bSil}W)-7g7wg8-_sWTL1%OUNGV9$*H{M)jb>N1Vs4sYMqktjWdyT=qZsL;XB|P zLjCZb1NF}2FC!|-m6B$RgneW?h?XMd&^3nwnr?))mV@fq@N%~hzKei2 zW|YT(LMw~R=C26^iUeaM2S10Gg(r3YXz)0Q?Ex+sh`r@Pxka;>sP?IDfGJS3zicw* zXbz)gmDQnOjU22mqW@lbVOVm2mT*VXwpa3iavZP8*YtR@`=JPlC}a7nCeu-FvQ)Dq zB{IL42sniD;@PMYAXFN&?|sH+>_l_EY=?|!JF;s=iH+M;1z{b0c@DN}ht^A&qn};ngjWi_)wvA55z2OGzYRe{ z-?D1T5FB+RE}AO4N3P?JtcGI`C&=iprG6QIxU9^G;TOXx-R=Yu}#9~m{kR7gvWjJ zBh;EH5vZSS9a6uuh*(AudBg+M&h{exLie9P&1>dQ@H8Lel|5-@+x9-So`M>VW(+>#ys$pqQBU_@SvxU!D(r0g2Lnh`8W1WhwfMQH|Xh! zrIC1tJpDWv5E*=46~{y!gc6EulNcarhNrcUJpYh7%+@6OK^m21n$wW|pvBw=Pnu9s z+jQvH;LhT?FGj(L9vf-^j`~1z!UgPH&O@_|6PA5p46Q2Dv%Kt9t=yvWdiy$D;)~ch z#T*Vz1j{9>MNmvVi@oMLa$u!lFWkxj6=)7}h(2GelNEW&v(Hkq<5_Y<-)Ylki zqr z70v8dz{d-x&G5zQ(G>qZBp|@dbIoHJ2k|&zJ(L$~qhKBCvuLU?{*^^<>>e!L9y6ys zPEc_2(wnj1YqaQn&gicp^LJJMKGrbLn(CZ+Nm72jBC9ejeis3ZDvWARZ2KrmQ zMRj)e9ry{cs0SyDfW>N$V$-C4UL0&Kx?nH?65`b#k&dm|PcJkIUS8V{7%P#jZ5t$i z)&=W`Lt< z;1%%%ss|9aq8k?zDe_4EyAC6Nr14|8KG<)CeO07lGy>eCM>Faa+YultVp`Jx!#WH} zz+G{E1vuy&WBCO2vxm=~vM+So2J_O7Hu-my92)rdoyv(&I{Rdf>*-%bk_F!(Dk^+@ z)@PWZp{=O>)*6V$mKLVD;rjfh>u zA)A{`X{j!s%PtK6BGPZQFUwH#Hde%H-=m~$EYwPS}@K8w^29) z)nrJ(cQOc;$$?vr=O+Y?A@cnLA^~BGK$toTv&7#X{1eD+wprE9Lsz3m={d+%JGyaz%TPr zC7D2;kJ3K;qcsrk6om0&GaJG2$b9t6yf8DJm2giud~Ec>n%+Jv+N+i<`4!IzSavf|0b=DK z@`CDA2ov?V3oumZy6POs#)7`Ms#Oy$4hg8|0GPPd5mnYf82~4VTZzBG|2#O{$aPfM zDPn(=O-ndt#v`F}Solwk@MB*YKWT53dh5%B6Exca6h79x8!zrvET)SK72j|vK(K#^ zO6v83S6J)N6vs;&N>?uJ~ASm3o|1Y>rf1phOzpgmDd z1NPo~!qi_`lzR}i1M6p&w`M>A)`FzH$-&sqnYW(d&+FgyGnBKw@k?L5GnR-A4#tM# zCkGO7xZDkvh6jfRPYn*8Oq@Phh_4qC#YC|%lFtu~3=FU5PY)DF;)%fx;O%2Kq@9P~ z|7C}MpFqARUXgYldpUfaUD)5hIPE<8lC*Qw+Bt*w^;e~xWN{tav(f?zH$|5b zM3fgl23Z9{akYpAIpO;zz?VMnmjZ!h>=lTHc&F-Vy4y4C-CYEKw(`Wa3KoUUVi9?Q6=0g@ZxPG=H!R`cy37z}6? zAF^#&>p~s~X7T%}*+gC=iADbW4kn_d0iF7w>_sRYn46fGCCK3RA!;pUkrSGi=J;;k zirZIp9duqDDo~H#hA>C0nsuXUdLcx;NkK;@`exAV2kc^OTfI zgTMqxgO7st-x3|&HC!I3AQ^f$%!V~8!n4|$Cnad)6St%t=T>~Dv7Tqs&g1y|*bLS& zpU>hqzV{)WaSR@2J~)BhIEVN6O(P>YwC7NQ@s@yUIILnUO$V_X7UnYJ&cpqn69Wgg z^GE_T<7C=-D2JtG+Bq|tmiSpYB2*4uOSu@9KreOn-mAVl7Xjv8ai}^(KW)~!{>ecz zu?;i}Ec-xA7_Tje0~%GA%?H~eY_%pA(G*$$fpxyFfTzIfx$03o5PDwSbSv57CPtOLLQ zp;$oqe7#z}xCw!(vQ^!xz}c&?fmivhopr>uE3Nk*7Jta#J{Kv^P@%P<_R9k!b*BuZ z$KZ92qH0z!ew}e~G4(i0GZ?IIfXLpmWS{+XSt(2oBghCtjSkl7&=~%b54LBu)1{aMB_VH{F1rEmWsf;Ddpd=77A6{!BvOT!Tkz1>UXqI4StGHt@V7 zPf6&bsgW)_h*t|Q)iP4(@Z;wyLub8%a{J{3UI%K7q1Maz^79br%eC+uop~NXxkt_& zOix&bbcAuO3Uwj9_-)|Z^mq=da;UYn-DqCj&N!7al|OAe-x4i~)k4iNWP zag-`f{8fK%-?9KaI@P~Ov$9E0CXzHT^82PiZqQmbU7C@Z~z-tCf`ulUIhP%r3GfRGQp!Y(9?*zgUM0pRDDIg4|dtW(~clAzk=Lk ziRcG4Us!jDw?+LrU}6soFndw$BfpKX0G`N`82|<7`CFQ#$2@Q{@$g_A!LQ2*&?)un z&xpQw*|8qH{JxGGxFJEv*fa2@jIs;&1!FrcHvI*h zF3VWSNhs|lqB+-HFe`)*@%V>D5{VDS9PGdJPxJRl)#0Ip>q1!!G)B7$kQQ{BEGKR= ztV0na=ZCQw9zGZ<+tn~4UVsH7q1BTSQGKz`{YHvF{o7Sg5QtYIRk;#NdKvTXvJq_P z5=F}^Cz_a$Tmu#;B|U+swwV*0@E{7Qob3ffGSi~e;3?I-7^)0F!+wfO3Gv%@NYpRb zGelM1F~A(@8>Lzd;~MuP6%b*nQN`{imS2m!q*x-Wg6q*_#w8GvYW`9zc9Kvn+GMzj zklg{U()%CsAhsU%-W20GkBFgsZ>^v-KXdc*pF7$v@v^Fe5`c_vhu2X89KGSY0UU`5s|SlP z)gxi`c^jJyEP{Rn;UBpD1lqS;s%uFksf+}YvPYAgp=*<~fDyXZVP#5U;WIkK2h$VK z8}tQ8vB+rksQb7Joau#jAHT=b%Zqb!(^*_M=LG`v$3kmKpMnMlWJdv~v5i{aoyzJW zkkPgk_EGmu^jXP41fy}Jm~#c~Ka5oERWFua9>gSU2kM{`it4m9KP5g((nBRMKVt~R z=+BzTh4<_GycfG7^x1~F939<;`h;h}3#Pv_x_K;y$@C`}{=zdT4e&?O_oWO-w6YE|7f*8yi&3yH zWYv*+{V^uNR4N4C>5{_Bz&kM=Hm4x8-G#mq%1Vv{SH+MJ=@B4p0vg;Ta`rtgQiidF z_b7TA#)D^BYknDMhjA5wc|iz{2K!;st-?%iu<*(kA+M7_nPWV29P5|o_LIj-My8N? z0>W1__ET3qCin>VpncPXn?IneaO93N|D)JHehhmFzBaz7J^wS?Y~DuD8lRh?-eBCs z^>X+OeSx^CGfWqeplbehrFrBZHz6S_<(2L{A`MQM*37CFSl59t#qIQvk4C-jj&16cm74@b%8 zGldcpr;DdRSzpd%OkD62DK5v$t&~{u@$6F`56kC`m%sN5VcZRB;|4%g?Uc)7#r23lU~KK&7M%^vVnMmc%_T*kqJG-~3ej&&P` z8Ry3XL{E1r5n(@gH&Z;p5Y*E6QPOoAC90_NZX!yuoyUF=JlQXS-}+^L&Sg)-q6j#8 z&S6(*Ag-?SB=U(Y_A7pVPxgX}$e5u!j9uZ{*cG4&yq!ivQiHdE_LKAGl{4EN%|qtZ z8U%c{MrxYOH`YlGLunDVB%yRf-{!N8vys{Y%|m+y^Y_raGWlRMd!&S{yBpt~cIF=k ztnjro#@dcSPQg7Yi@*9Z$*phx@I$+L))brC#l%z48b-hlOL)#I>GfY73sK^bvI z4D!5C(>Rl5Ev(>h$n{dEKtJZsgtMiBwg|| z6XZ!k9IuYf)UF_4TE2fchC_0;dz+h@UvlTN?nrI`6OXgInS6oI7mm9)FRPSRO6%v! zt^Skof!IK7=%m|wZfbF68izg1J6S4h*N(f(Y8Ko-f?8+fdddEQ!Lfm%K{uP<$T!Mb z`sh`3ZW`A3hk-KiBr-j6 z#~8W4e|mK-aXQ^S`oU=2Qe{&Av1Y`O2Tv+aO}ca?0ugejPwhXe1F^(`Bk!2l(_C3k zcjQa{;D=&EvBYgKeC}&EZ*!+7XR?EdK?8$xbBjYGnV7s9h!?II7cFK>mfyjJrrKvBfN($>vA423pv%vXTc+uR|>DFFCW*Vbs~DjN}sVmH>OxyU-`3sAw*ms3GRJKu?D zr(%b0tA<4*3t{%tS-70!-Pw_S$9W(%`KajVOsO zr(@)9yI0S^piZKUZo0jLF%BmVViykN7KR5&VeE7cCW07brapu~AwCHQW3XRjxX0Vv znQSHvMxKOnMQmZ3?)(-mrgu;C)gt9`s7z%?$)qiJE!mR`GlrK0#OBUrl3+9Ju#N{1 zc3}TOhL%Yu#twve?9-uDa_AWMN7;e+#~x>A$}skC)?ojnAb>!yFZz zH}uGh-3kt%g9m~^2X2?VQpIaVfoDPohyR=CAda4A%GL5SLyitn>3@L2jY>Wjy5VOy z-ocY61C+oF|C;gO|AmIph}{?VA8_pC!HS@dr3&o7MH3K|h(B(~9(Wz2`vTdUJvHEw zy|W8*@xj!`mh72r{v!E+hsPJLmf_9`_)H?>Wdx2vjlwM-g{w{D75y5TlW3FDHN@B5N)RfBO6Y;1~mP*@Sc zE_jSGa}DZ{ki>2k9R4xVL4uym9g=2`UcHK=E64dG*k!yIevtUubJGpPP!>5B$+Qt* z5J3cJ5sRq}*a-wr-|SiRxSTA`=)t0Q8V#R+gc=cF8d`BI^0>%*leRIO)RxHj2Nl~p zJG=&3O_H5F+-X{)>y+k`Gsn*sVe16w#f6P~@e7u(4%VlGWG zXVJ8$g6l-}8tojbdNUPFL2~r}ge4O#q|`nwCLY&pzfr5TVsuzV{1ormGg{Gi!8u|c zxyDiATH?q#a08^=bd(hrA6N*&ctqVQdrTk_TPsY&aU+tSPfQ8LD6Q0U8zZEYP2J)v z&&JdUCeV_`r%G##0bDXE8T6h>B9??-Gne`y4vD13nvH`0%Igb*JkUBDmTO{z)GL`8 zy<}IGh@ds>DS@TEp3l8>%!O4>0jBO%z>k%v`+Y|xI8cpCYy{d4;Py4oor-RfG*Y&8 z60Wk=q7Xr zOC${~_;nZqmuzHJ#=fOY)2jXZ9MgayIxlKOw(t0240dAdrDR?Ys#m#@@g#Q5oVSbzj=8BC6*WC_?f*pjdVqVZtZ*dbskf<3`pz~kFT*s_umE@@(;b>}q! z6vDY9>@&Q&VR5QK`SvN&Wy4}h64mf|_{)`<1&zkn?sYaq0^P1m$UhVFFZjms z?)`(kx^7^l*;0#!o+&?ggm2^RTNUe`+{9#8J&BHrplk8FlGwa8RL^9sR*b4-sH2jB;XoyW zo1r>vUk1DTa;meMU|$BK`Vvve!0;d>$PjRc0=*fE?#)nlZ-(L{ofRbl6&0J6(7494 z)7`+058+56)R$o&y1V6#a;S=x@`Sz!;>lqAR03xgp-K{dCF(B|s%ADA0;H=?ePnEX z#ED1a6C~DPI0#F?CKyYYwksoLpN);Nmo9V| zWo#YBxrsiAkVULTvUjDkW8cs^(q7!c zi{yi>@ngl9FgrGs9mZ_^{Eef7 zaEbyub$l?-a<>WQyNde)ctQ*7ND1%={>HIm)C-}+^bR)f0&}q-Rj#Y(dX9qVyX~K6 zB}=kLp#o`!HWEBw`QYcRA(CNR2~TG62U0s(7%#4u;ap2z1ORjk#<#=PZDR=e^cS)Q z+Ocu>ZZ{KtC(0iY2N(QxC3d27=DG>^)W+=p&LhvAct*b6oxa}x70-{MZ}YF8aPGSc ze{Y;{9=m12agR?pH}*|95B1|+e8Q>Y``8G6zh=UDEm`%j&4;x9+pS7Lmx zLjIRcIA?Ccd(`s;>V4$)3FpZZDEHhw$BiM4UzBqPkjDCk@%z;i&ZDO%oX1a1I1avN zdQpA|?Y(pYakU{`O6-1}GkIRX3V`T9W>21Z-vAy&`G|$n020V=bqmqo=FWi~On3#W zzfp!mD#}}0fXG$j^pD10+;D*O{O&pP3izb=y$SyWPTFT;4GV?*CelELS4-p3F>Dqc z>=5{ze3oaS8_Ehc9#M>&2j#a}4$DJUIw}v#BMKNUw>9yt$@%*9U=(ZE#FK?s1)Jtp z4K~=U3t>nRa#_NbEAQASk;4r6ZP2gXxQ2wr1-V^Z*kB7>4CL{~Vu7Na^PEq`&w%j> zIk%DqV|61DnIe!H3){WNZ?pbBG5a3NnRi=C66Ig`UtvHHByjsMoazwnV}Q}C`WV{S zVSrQ0UzNSyD#FQ}aPQVXh_a8sXZ+qPzMNJXldv^0IrMP*t&HYJc|>o5euchRUWZ9D z=p8o#wHro0L=nN32+LUfmMbSx41h{sGem}tfl9#wps*!3p$Iq6y30+VV_iaRW4=rc zMYTQGJ~o%jjTUZML%tMzO<1@7>8Ka!rdHsA_&!JD34|#e9`@vw}+pI&bTtkB%j{*o-AM)3y0(!OKjp$nza7d4U&w z5`ic#1#kZL*J+a`@V*aY%*BO7dJnLlN3vLaWKzesZik_#VPRt%@70DoC*Mey?F3s7f&F z*1Xa9e%Slyt;1TKY-}%bSc7XgTuJ;6(Oz|)ESq+Ov05$V&z^Q2Zhb!+HK_93;fpgeVSp)h;tP)g&AXcH9n!wU@z6z9~^JjM<75Ff~SR3)-qjJFi zH$d9_m_T!9~YkKeiz%RIctZ3p#j=Bujd=&+#N7IJU01HZ_hDyuUrD>71#aUkI zL`O-}u9lTpqQYO=hGaN)aRj|l;4{WsgG2c=wgVb~-!UV)wCd9@|@n`jj{Z zg{X<9!ZiBb!l@Vt04NEzcIsOhsSsfjJoc6A)YH1!P1)CkxIJ2_=+|oN7qO2?H~cao z?;x9_$M+30dR}kCw{*lf5_R>@_Mu1Av(heuqPP}OEWCVY9>2GQRb*bnY;?l)puBbp=WS9jE{XZ0Amp@k*5!dvhC#|`^qw|` zp~OJ+JB~ljcydu<{*TWgs2o1=fyCg@@X1rBN0MWy@idrT$9WK6 z6H*WHQcoNs-boY_Hh|xmIV+*T2hd))0u)C`0lG^e^qwp7#eK(S9QR7od2DsUdFXEN z<>vVjJRh=eRuNwq-yGaHHSps^NiRA<7@ducasiQ0AW{iMmMs)l7`0B=`(7kWirnss z=q*j&Km%HiANr}7&Vj{CS=D-^i+ z2XO*(QjoF7aWJ9}LEcQlXizGZXp`*U6Zc2UW{=^$+lD;S!W1)P| z9GT7DD6wj|07>x~;Un+bZ4-oVV*?>AK-fe$-Q7Z<_wx29U3o#cnH=Mfhfd7o_A+bu;6H0w-?h? zuYnLiJh++nYf(U;WPv~22Wk~ap?uiFSP_zuYzphecuWoOn9B+hOz^Y_?x@JtYi`v* zojVA!3KlZA%`nV2+ge(UyW{tsFu53D&AW0-+V2&`4Vw+efReB$+PTT}BIFr&YH@MC zA8uDS9GL=5!PN%M8;&g1Hyh~1C}T1xe%^4zpe44lQP-s3a3otQ^m*OygAAeN!>^4K z61)!wZ#XiK>q&R=qhKfd3Jkb`iutDx)x!fCJgJ{>!x1Mjd^(++NDlX$GmKwgluy^`WCOvzpFjd*huM}&=RI;|Zx4k)YF?o4rZ)_<)xwLsc zv9-6J7^oLl;+y9$EXVVcBYTCtq0RFvmz$ZXv-P#aR=lt`wzqa+wo<6BRn}5N=ce~g zZ!Y6GGdZ%8nOdmjFU)Kf5+ehJ9lo2rw1#^5ZY?pASi5kxy|!|GbG5p?xtbkIEyd5b z3WE#7>&UY{S-H5jGJIt%JBD^A;wZbdULGs2ov&S*-W%J|ag5dR4(Usqi|NYv!qV{K zLUwE?zjC=Uy;(zFYUeVk8plytO|-6LCf6<%%44jjQkq(*tXF62>xrRF^aF6oY!)ZC zwu-5-ORI_5fkO2x#xu5Eyl}R@zEfZt`agk-riU-)r_Nql-@%yn#xAY`7HDhpTzTy5 znyDLQ*^a4a2CypD*C%&3^DD!N^+c;exL{m>ndFl?WPbM0x1IBB3;iinAyULGn=F1HH_yx&IKsOMZqAI@dRPN5FKVRiG|)WUFKa{1C)c}wBBved>{ z(1pZ;DQ;?_GV@=zIm3oJGqSc9md=g>Y1q~<`?~(TH6A=4Lp+=`*5YWH)hIS zOZ~$w;P92zm15=GqN%g9?|kN%Y&zx;&x00bbGtS4BYtkkv|R$*!ZxW5eC z!@^9=?yap5Mq8JNXTTT1-QrFKV?Ns?uCK0S1kPH1YdHU@cabLNMG4;PbAm>kzF1W4qz^t+1i|dJn3hSL&OkSDWOKy_x3mw?OzAy>e3Oc1@m328z zI;k{n%ha(gv_SGqovjq70N0ClJ;!xjqn~S_T??3(g#c|Z@Trk*2j|=NQ^$UGtB?S; zq(Bc+g;Qwz%G%;;d>X%X9+Y;QK5egFSlC*=aJD&JogG-M&c+MnE&tt4g>+|VF|k^+ z^_LaPm+NE=4-Gdeq%iJq5k84EF{_&^OteZIIY@jf?u!Vj3tl-_m@-Ar@_5#I2?hnMT!5Q!zr+u0P z8A9-IaHd@}eLHwRAiojVchY9h!Cq1X{JmcNtrWa&)-ye#0`UQ_(Pl-lv}ATwp)v~1VoRtS#Mso?xx z!@jdWPL80iz`EYD^Xk*`XGjCR{Uu^9&v|%0TwhD=ZrVB4^%maqil*s%*dwF4C_U!7#+4R!Va_ao@#Pa#2 zbbKK`JhqUYP34y-rqAyb7Z#>6jip8W-I-k~TwJ)YzA`jiK)Lhr)`ivTR(oaXaxJ?Q z-(6TfTgKkGyRto-20o1C6P48R%GUhS)cHm>(OO%tENm|?tu<%Ut)ZFfR$^xS>})Y! zxl~MSUYXrqtF2$Dr1Mh~wb{h%`Q>==?9$ZiOm<>2sK zEbWa<&!z{O>y_j{Aw7Jqw9=X=O`aZ_*x$8H|53bMZ1| z_6_hY&BB$TGU0pSJb1~<*mUxIW+{0Mx*qC#^pi?#ifU-AtG`$yW67=aP-p39d#HLk zo0)6w-hX8vi88WQl5vx2{!Hh`7I&dnnjC-8SA`$Wj!%`KD)a#skt)Aejn}`pbauK##LjoaGxeK2QoE9`=ZW8A^l8K?a zMay1{9YNtG1bwS*s9s&e^TXl^2f{dO0LxvHP@?O5P&1EZ$8j;y9t;~Q2u_N~mM8-S zGc8irORPz*JK(7`ZzY<}q|&q5w8Z+39XZl}%PmLTTU;F0imgM5_nU6uZ~*F5THI+! zJEPBTLMMt=G({A!F_dNTGjfZb`#@DL4!G)Gb}t}Ax_AGj3?oz!Lxo8o@41C$lySm& zRKS|}K~GcJtXnT%E>)UrqO1NrclE!dem$SN>hgR}Lx33w@CB~njcvws_)t+dTI^c? z5$|jchwB2vMR9^bc<)v(?|sGb7zzU;V3Ec%SaZscLs(Wmg2{6 zGv&%W{8ulWRKA{HFIQmafcd%u=`M8JyRICacjxGR0C(M&{9eKIflf+Sy_$7GsUP3f zLHDw+m)ki&4H<{Eumk{J zrS&i=rZ1*(OO9WbHC=nz#adm9;#8^th5CR#LAzdVH_?sIGpaVvXc%?_;cl9DT7f=< z`(oZPgAYz!GXZdll~1ptkU~}Txg@8!PhzVnXl?85b=Yni%+Xh%FYtP!NoS~CI{hG)HVzjh zY=`!x*2Yu>v33-TJQAH*w}R5F2G0yjp(wxw=3YH=8)%4_U39OzeM~jnt4BzsaXzyz zo$f`TH_+`d<`#Y34S zOp2BpO&lR}e=x>_73?gG8}6G;W8Yb?@DvfIB``k0)na%PKH1dDSWCDEF?R*``Ou(= z=bktQMcb?^cuy>^G^9}(Vo~CvGOcO7g!@WlKSNVHc?4{iM~<=vb7@KOdd!|TX;21N zM!DNdH$1J$B9lJhoC>ZPybo;`)`0tf&46ZctK5*R7<2c?2m_E!KufB@u_FTE^Cc`D zaa5{U&Stb>nk^e3hq{XGny)c8c0#aXT3e=vIIJsd6XwiABHcYR-93xB8M&UrfD!|R z@kI>8$M?tr@sX{Mxp8pDzl~9Vo`Ac5p|4U-RzPp3T$e zuGZRQxrpLgFV6pAi-dZJ@Zf;*VBc_ljt2zP7dHWbq-YR>@LoQxQ$*xh1j~@-G@%i| zg?0tBX$1ac(M@487v$D7b~cZSs(r*a+a2;yAg@5Ytup;4WY}WT+g*dX<|qdG(Qu8$ zeq!X-6X=g$o!|~T1{0sOy>UqG9E2&&RAI4HE@pXhFa0KZk=p?dfzvUdjlru}|g^)mvB)bs<`yl8Zse=Io zsTFnt#IN4U!xxa9k&OBioP4MS{}Kj4g;aAO!}(x#Y)()S+{riz5s?(83V#WaU~2 z?1uu#dqSI;sRADMLC#xn^8jYsGOXSDkpCHcHVoa;N>1TK3NtKAaup?k zCMlh1s$0ZZpE4d7s)cxXfyS7JRFzxSfRepVu$z()cjY#EvJ>Rkv=;VTe$g=`BRY4@z+mhJ`!*T*z-2z&L&ccp}SHYy@8ZJrTma79yoBbbG zY2=lA+QEGmw6|`;V$ZbVmy{vMZL{dP|61$Pi{013L2bKKH@MV}ff?SR9*#bukYzln zAu$p^HF(-EPUemrNx(XtgWXKxZyd*LK&I z=*+iXYvHEp?g|Hk8LjJvfulmRhyBGJLeg#3w`hXv_MneQVNW{}#3>F*rh9#nr8S}u za@o%HNmX9!S1sJGVvS;rU(37}%8f#$bok5;{#VQ_L@byFch5%G+-k<|+322LQ5ANf zL1=mpoVA&JYbyo=_+EI?+wS$bs)0P-F=;xR-6d8b5k{Brrdhjr3+^BBW{*hH<4v)a zhyFa_Wq2mjTd!624w>BB-Nb*z+`@0*8YULGu3=U&AFPX2S`=5(fCLt2Eq(&!>fSP5 z<9>*;dpouXsL+~*YV*~tNV3#emnLcQL~T^^n)p&w+?9o%FJ@fT30dZU>fHG?sbk zlks-s@bFk>NV2SYm3JcY171oeOVuOW(H%X2v0;pKg9`Fkp5L{yMh`fQFx z0wWE+u|vd8tscw%0R2VEL>;M&K*nWgua4Ga5h-|DlNuPf=XZn>mT%hzBSr z?(<HUjU^RA8=y5>=9f z^K&_Pivg$D)X(05fGzBnxuwtaP8SYPQ*(7ZqL9817qWQIF_`rIIeZPf64+@C*)atX z6slE*)19`=)xd8TwbQ;^Qm1Mo9z;+k0UXGIhlKcjC*fe+`yYIcW^5kPuvU<{hbz-~ z14muZfQkDwHhZYWx!JjuSt>T? z7U+LPnsPR|oXn;cGV_bx`%`>x-YsTk(sN6TxJd5wi6fx@zEOrK`ty+9aRMP-jf&nQ zzTDDTD0rH*qUb-uPA0Rfv#DHWc497fE=@k6XCH6!9@FG4?t-4EQlw(7yeE>9E>AD$ zJlPR8$P4)sJ95hrz{>8D>gRj=U3XrENy5{rC16bfN|&X5c4Hlt?BfB*|}6?K5lW-a!V++9?&An_3b$RXZR$lPny)# zmZ91R0ZRSH6+9VeekK0^v=`Mfe2kHK1EPz0oe;&5wt*v7(Z`qqP#J1XIB|jc0#-e@ z;N%ri6L6|);|plk1hSeu(j}-mWoke|^1x$j-(otxh>?W)Yu@vC77BFJ7iu^dI)!6J z!~6v9Ze*Yugtzit)Fl?Co54x1_SM~OFuW#j83zfnDnSCxREDTiHQvar7Y=&B^+GH# z>j^4V2zY=FN)?-i*K#(-NHnH4uK^4~Yv##aqeKHEsUb9AZ-P7%qnnbAMt<-1TY$W1 zrRgS3yf0C)0V?%;6V?r^lig9M0LWf>UM*S5SFd6=VZqhNwh`Kc^ZU8-(F@n03StOrzNlzZD-@LlEl^zS;=d{`y*rQJOhlt zpcgSv^9H5_Rj~eiEobuZ=tYefTmT5{rpc~Lq=55VjGkR)8V^T_0OrzIT=5P=9y9ku z96gOPeGjiAT_aM{Mw>BAq!>=g4Al!&@2@>B0gcJT^%WpmX2}EySFd6Sx&dUuXhTSW zgYr(`D2)@&9HbM(DvA!00}!fTF5Y@8A0lFN;H}ic0KF!!=vKY;p-ZAyw>%RqB*?Dd zx^Xa8rl=L}m0BtX66%5JkO41ftk#Q2p0ZVX(MaT2QV1`ZmyXUXGplV1%sd;&VvEz)fL>wS_8$U24P+3<3d)D0_f-8gPbe3*NAIZ~rI0J; z9r8x2Ba9d#h9nT0&mt@tO-0fnCKEej^>%ZsSF_1XNUChNVYF3b=qwTdI|`ys{}h|* z+X-uPr3<1foDL%CpiJ};we~5{fI>$~*w{CU45)$~<~a<4Ek~>_$_j17hQmHmDtfH8 z4K9WV<`JQuQ7J#yh(2Ma?i!E>e4xip#zOd_)2A)Vtj;tyfiWg5jf9Zk0TI;dCGaD% z!&1x9HEaY*!`%*X_f|6!9gp{K4+I0Sj>RSzL46s*72C1_HzHbhHK21B6lA+8;Q``= zB?J4O6DDNONZB)+k1yNlkEI*|tB7e>MNFq>(zA=Xh4e(4eivy75~5cMVTVc=0eQje zh<6rwpb#?)N+73^D#DmXjX~`ATxyAZ7H}$Us%{}nxMNYgDKYt<-mQ3tOCoy=%y??=C!puSTOez zU?qvYtS@lcW{iCSVygxo^lWl$njuZZ0vt?QR!mUTz=B75 z7ViTioh-pZ3Pw~sLPT627%?yc9KdXhv0;|!9S3WVF4f8~RSSq;mdS^K7)Ai|Jlrg< zms6Mt2{0@+X=y1lZsaSHxjcDb^qYix36|)mg(>bGI4KL=P|HGN4;O{=1Xo*XwX;h59aM83Kiui_hlY^OEb=|DETVzxnM17Tvv*iTe<^e8Enr?&|x zF$YdUndvJnS%v{cP)2(Ltz@f~MX1l}rX7yiGLXxtJ)!RRPBTp5qjB!6d{7c8{lG5l zzu~rne%#>>k^_)m!``n`-mekMN!c2X_Q_bd2^&$ADG)n-v`m7eU9H9RI#sf(@lraX;u~ie2pd_fD&L}Q= ziHMKjB+*%wvl06TD^bl86cptB6vmMT>N*a|+C&$XdW@Ox9o;^?XLrW5M+eJ9|H7ODap z3>f3?fP{iT)-I=sc!Q4xi3cNAAZ!q72-qT!`NBL3T>lXNX!V5S{=+UFbQ+OG!O%=gXQ^ZWlr5(^WNF;PlK2|v_U^)?>NQ|TWd;>if z#}13d7L+~)3%eNrr_G^+T3C>Mz^zDrlawtt$%ZW0=-|0t77Un#8p$@$&fVqWy$UrV zeh6W?3)Z2@#r`QX>1$-2*TI)WWtPU2q4rOoKHgWo}rJQVWM^-~ojx zLU47CAh7ghETXjZfnv-nv1_tRd|Cus3q#Rlbx-+&rouqSXi!mJ8OFhzc-cKcRR7!e z3Sl>dsoQrm*mo1)i3P|WqSYgqCU=Gb4pecWi1^|g<;#34XVDGeV0w@HTQ-Jlcae_W z1C@AW>zQpI(Im{HKthy>JM!acZywRK@8fIh=$Hi_koQrb49=LMrMwZkm*aZGgb^x% zG&8@dp7JT`|86q>yU9Rd`oEiu`@sLKO(r0YEXX0DvV;vf3s`0a(gv9m?s_p7?nKbD zxjffs;B2fRlDnQ{bK`45x`kJgiX<$d$3Jiq(>&a5#cv%oEn>sa9UFhS?Lanx8=^GE z4uFXIJN;d(Jz}SqXtV5IsLNnyw6xi0A27v9=Ov>ICM@g(wr<_2WrsH&5i%55!bmxP zxRyDRWblv#k)KMs84v)O>YY1cXx9Sp6YjeNkgg|2kHLX}eSt3?!h~5;ZwGwRoz!s52 zV(xfpBM-X_o(>Yc{1C~E7p=#tg^}#06uJ4U(gay~9NGrE$;=@gO^X*5NEuOSqgSef zg)U2>#wlT+#d0ObU(i9=&J(+s0l7^E{z3+${nAug7(noNeW6%DwE5!2jY__WYeDN9 zTbBxJ(>sNYN=^g~%1U0lhLi7QVF*HK(PQ25`)<4@Ye0!fdhcrplv6N^&SsTmpjO8Z zpwCaUa%<}zRjED1#|*9DG+Jqw3a)b6M7av5ni4)7-T-vXv5FB=Fwh)OFy1O5OQ_Bx z??xF?hM6|bepnSl1r4W>`K=n_maCWs9B|3Bd(HB6Jd7R4NAhEj%_V0CN-!;WP6i*2 zByea0Hz&b80q0OV{R4voCr1WxyBe;LH^(8z1^?*~Ye}{-7Eq7@JdGdSZV7LVx|V>4^97<5)NoqMOE(SV zd4@~5%2S&(aRSC@8@HEs)=R}Zc|@!IyIuQpr#FP-;*m?U4AhJcGVTdGjzeVkK?QSw z-pq-n>_J3vZdjjeIC-!%_7?B<8#?;xh9vQcoBevhC=PHb|CTQ28T?%PqZwdW8MEt6 zZUe<~fUJ$0F)7+6b%V0vB%}x$B#G8K%>3+A)p2qEu+xANT!Qw9O9mLqK|4$xHqN>@ zCC9PWQHr04QdUpZHTOaZy#UCSDKgz2OxT_=V{i0c(>3{l&BpFFhBO)z71dKJtfIHM?u}7rKnWTy zjn$g&4jgHa1cGPqX*hQ+xMq6?5yxYm-q0*+TbrR}rc!+i`IjAJ_ka`nj?gqnB;7HJ zY{d&z!g*(%E{mZ{cbl1r)}sfjQH{C>a1@6&5;gc#h}uchyCD6xO;P!)K=sr|B%$0g z6nde$nbc9eys|AwW&;@mfdKO)6$W{Nr7HW`P4Yu@U6o;|4fc_uTn9myeO%OTq~e-( zjYPdIZ7Nv@n@7_tv*j09q0o2z6<{VT?s$|%Z2iO~g67bgo>SK<^p>_n3 zJDPf$_?*I4=^u?)@+~$@Iul^^!H;@~LF6SrArT>jQ{mwWuCG9V2;mus=Uz3|XwSzm z<~9U~RpDHQ7rMdTfYC{C$q`IaT)AdBk#_J}*xinJQUmMSGFme3Xt_cDk87htB= zaaS(QwFGCuHL}4m~a8d z5Z7N!h_<6 zXAUXC6mQSU%eg+oM^(xUnPRmH-V{YuX5=*wTNl)T*{eN(+G0d20i$GT*kSq8AzmY1 zP1>5FZ4Ut8N!UT_{s3`+p%ge+9H*+uIB`_!HTJMAEDnTj0bn$PZ4OHU1C25`mldp4 zAQPczR-IYOJdA)zrTGZwhPDFGO8IxL52C}ykks6}8K z;ewg4=RYCz2OEs{)}|5Dsp6>DC!Ga<&k4wjKGy>Vg3)}G-Ujy<|M;u#Wc=jGzJY<# zP+xvHQR*AoI5jvtbn;}ORM?=+glbK=m*{5N!Ds13l75TAK*-RytTGi=v`A~R(MWY9g@$TrtD=`74U|tLG}-akZfSkH z-13_Xv9XrPiw3bymT<4+C}>00i7?W?JFAO z$TY2RSwwHcv|dx?f-cbpiC%Mo(_Y9S*#qtPy89A3_GQNdeCz{eF0?7nj@G=D^$JgK zS^F|HDIJK47hJs|IC?byIGUpukK;&NM`=U73B_Txn8UTEyi4Bp;b=)spzum0Sat#j zulV<96StBFGD7=+%Y1OA3gQ@e&zuo;uo|h0`Wdeu2vUf+JJ7D=1U@-x$eMx5qG~d| zAp?M$FGF35XxHRkM?5sx+Xt(bzUN>bN~K=T&(Jw+cwd0eUB?Y=wQ8_DZbjo|Y1rzv zck+#Gc3X-Hum}Z{0o0jS5$~7W#0h+1D~FH>FjMWyw1fDpfHIEnOI}w&k#f*@a4_Kp zvA^x&(z6OS){=m-JI8jpo|CX0Ij~E)b{RQHnFF(2tTuB9r?tU*=)yC5z+`~eaZ6Vs({~V9Ess#R zIHli-%D_DNcClPT;!&fxJ!)r$E!fY|OE_T&TATNhqTitesJRfHRSOYbp~QNv-mZ7Qt>^3IJ|OnC;L3m**rDCc z3B?Id%F&KKchyB-8K}}gPx4hP;sy|!O1>hx+PR>b`Hhk+w`)c(T_dQ(p~6O^KL zKr5o)t$?%yi$!%x2@+Ph^tW$)ug^?lA1;w|uIu>k#+SVKh8Ml?$P1qTyyrgW+1Eeo zI`?&-^2x7#&8uJa%2#~S%RliGUiQ-4TvFMGPT`-s@OSPy{0M$ug6H7(b$AYbLk~!J z>Z$NIocndoQyu@II+O@~oyWfhcL(BA|EdY+sk@LE_}=J*|6{&qLomTW|2Ma|Rg#--qx!_^rCp6idc#J>v{fOhd53k~F$GPus9Oo->X=(ixj&t)B z$9XfeI{*A0sl)lLK6(26yN>*50_&b*V;d}n#BV(6u7=laAuiM!u0e$#)vvtBu?jNGlufrXs+$9)2 ziGj{HDhS&L5xI^V8LxnItrd7J;6UtTERk@WBpv9C$JTngT%q3~&Lb-2b>s)MTx`-V z_B9dLB#C#BdbiSFK}IV=(P%H2#!$K7lBd_eUUE-y?Df2O6S{X-DhXT+yAGc`QTvs! zor!GC9Joh2zXLK@4AhAG{kKAfsgzz$MGUx}Y>7Kwy@&$?KPKFSx>< z4>(2P$vnc^VI0DoP!S^`%8`cM12&)?ukl_uy^67|w2Wg{KEp}4ybu|VyUrHAulNSX zxiRZFU+_G~dB^8D&b_a=&UtGLs|sXj@U@OJ)4a}WmxIP6!|g}>9@%V_7vc&qI{V(4 z4>#y~;}r0@bbPa}(Z&rBcP~#Z%%J0K#2AYLx#QgrjP~e|S%TsSCtx1#R?0YdL|Y~f zR!1EM0@7E7rRL*3?TFL{rkz2R5fmBReaRbl=TJ~wV2;d~N}5r?b5J~?{5iFA)x^l) zobD#)sobBWMd?T_A(i^95ReAedUIVNOxuJdS%!_vC_i zcYb!#aVF_ma9{z}C|SL6WKt=rRme>Si+bsDMo5>?H?j4LW1T&`-HRop9EjHo794+|4~B`goR$2h^-ICqfm;FwIP!le8I^WIs($<=do$Qcci&yF&LW9HV+miD(bGp_KlP0^44F#L-!Mn zf4yEJrZh^jZzJvRxBmPsKltIlxD!9|d4fD2{?yLMpQk>EzmI{-`je#N4Bh-s+b;so zCMoZXy2stS+8tRs)2D?wa4+uEbL(w{WsvaL!dd918{{dxOuR(e+`^#kcH;A>(W`@1 zAd`YjbGl!eUEOiG#`2_X2xCwI4%%M;a--3%bBo8RBtnH`GI&Ls6M`LkSsCyLqy&ye z-=4u`_UwmEo5$stSeT-Vw`q%51Q5OUaEg*#H1>2X6Pg#ZkwoxZph665K^WmUM#^>Z zDr!;^$i*?1s$za-Q3u1)$)BxBPvi;SQlZ_Smp{Y*PWc`W>r7EWOdT-qkoGZBG(=u% z`ZB2h0cFGK^zmoEyyCcT90yIsJc9o)@UkMc$i3(rNav=k10*qyzU54jOga_k3s>Ae8~p~6|>uVR~p8yE>`+0Z`?WfIj%-UbjgBEn618H2X0ol8P5T$gYT zveR$`j$uqazQ}OJuF#WPeck1)jm`C3tCl0%p>t!}@U)v+M2w=4VIF=i&^nQ{3%D>! z+^odR&k`rA$D?);CB~hvtX1E#~A0kf^=RzD)E5P;N~xM&+t3sJxtpkE#_JeQWD+U zAlu?S>=voEvi(zuQl?#YfNBY|P3}n;UUX8~emRo>ZH=Nn+ zcXz_ZOB0d8G7j2(pGa6D3#?s5>m>+EtBQOyLY= zZgXMS#?a10X<4 z5uC^Pp`MC$u&yVio+lmt$A9>-bukaiQ>VlCd=~ARd1gM=!TOoUKHEHe_UJ!1hDvR- zT=13_U}0ojrtPyIgz_lsYc>iWmNLbnzohV~R6-d=>?0T-zt1+`XW=iu+*vyJngw)& zJiNC?*7xXbj^!>~3q=KBw6{!HgR_2aa$E#lXEQmIbha|tMW>uf%{%4A3oWNMG0}AD zspPa%pIU7?&9Tg))8u0lJc-j>OfRUQ-AW^K3$f0eD=daj#?b$|p}|(B?Rf9yW1FGH zVixToYfg(1ZKcfv*Qew)WMjXzEY^Cml2M-rN4f9EEDpX05e)Ygdk1%!4th-x8UjKg z&{OuH3R4F=K5C136C-p`7Z|4#wNlg*)eN_2EMxWKhA@CbBFGb{Pj+Xl=kQX-&a(@f zR$BGYIKikF%vprDmhIsLu_L;k04z)cIxf-*L+7H0;`J+n&hVlz?GY0LV~ETPqO2f6 zJSkw9?Pp|OZ{qwpGjyM)U!MNWzB_tm0EY&$Yiz-yuRwvPCw}=%f=a1}&OGKma^Dj- zK0N<;{L%W8&wtC*FZF)g*85)hl^1^R^p9Nr@U!1M{&TN?d+{$m@kC2bjbMl8S{qu{zaQ5A?cU1rGQ@-xg-h1ayz2QHv z`}E{HZ~BJ(pT6{q&i}^1_ul{aFZi6yFCYK*^7~))w$g5fBx7vm;UnQ zU$*o+!#~*mryIUt=GXeZd*}ar^4H$`$9MeX)&IEuO{t&#)Nd;M`6qly_O}MVzxkmT ze%`rXz4be{Kk%BbzWWbv`|$_CXq7-~XZKO@8(-zGCGoez#}yTmSmh?hpUV3(tMtufFE)ul~bZ zx4-iPw>|LV|Mrr(xBmL;a$o-^{k8A;;9YP0>8G3<-T0aL`|1xp{K%t^J^sX#*S+*6 z+%KBH|I@$d8@~6QzwxJk|E!lCO^hw9H$LNwzw!Hi<~RTBAFls|PaRBU3(Yru$v1uf z&;Hh*f9Tnt`1+yo#bWEtU;6eR__^Qyi+_C1%a0AGmrCu={IYNU!Jq$~zx=1?e$ve+ zCzdxZeb$$M%Mbm+d;aR5pZAKMQ$k#O>4fR37~NulcT@c-J5O?Z4mf$$fXs+`Du23%>Td zfAZJ<`2YOJi$5iH=j^9d-|&TB_l}=>_j~{DKVR~?{=4RKwKu-?>%ZrxfBjEB_>^5| z5Sc1i79etV(PFQ{h6sk((`pEh3u*=HLvMX*IWBc*L_OaMU)zBd7M5vt!E*RUi_VHX zs!+q<NCpJ5d9$yF}g%iiGxmxmW$^Ete1sl7XVkx=z7S%EZS?kOYv$MT&M}5 zih_-9T}D^{qq!tUoZL^flV)$H@C6o$y8`t9Mj~ex=%O)jlVJRg=>eCoch`>M- zCjb`;0u}N7Y${eb9uJ|-`kX=sKeA+KG1(C#;&L2DwG$7{2}m65jOP23%ai@{$@JnB z`XCpak@GG}2tJKpNfjpN$kvT}2w{k6tGArBrP(Gq$F zfqt8I?9@i=m&f2mXR_CC!8Oqvc4hJMsMi4{Q|S*$f?X_5hVmV!#@y26uNG*>sK?Sx z93?!MP%+@F<>t=e_8E6AH<6jmWT#XxQ(~ghm_JTg)13z(zJ(;$pd|yG>@bfQIBy_c z!G=ZFI*(e| z2IiSoex2!2M_<1|A7%z5bHj6;!) zFqJbl{QZ%4e3SDSzSF<>c4rY^3G|Hj6G?<_!(S7k%_%x1XWeN#n@-HBI5qrroO|%S zX)|{TBw46CZK^KeT`bm*|JNaR_ag~5Uz@Q4^~W?|t+yIZ%*FmES4}Ay#PO$dPe1mh z^upL&Htih0*L8Z4-|dZGK32IPcqhA|eZkOCI6H&6Al+8E@`OajY&y#J;Xi)v!1u&2 zz1k55Mhu{tb)|oOP~JtJP(I zSR0r37Hf<7=Jo>bf2EH3e7oF&`F1r^q=p=4udoB(q!P66P70{IIbNNH5#*5e__L=% z?XWH9Ia5v?-!m_savp!-l=I|^rkqD!iszS2IgjG+<2Oz@XlxpN7#+%Dn)G@ zo#4Qkr}KP*?;f8(zsIJW``j;b9yfmjeSwQNItV!Q>o0+47M;k}sO1IS!On?Qy`v+U zhB#M2as$nej&ihx#p!JC%~&VlF?QCA!J;G-&r(#;@@dpfGitQKNU{fY2z_CU@*JX| z=jJ95vwS>#A)R$@I;hMff^|-3!I~jttPaCzR%)#r+uAleViqqX2j)T2Zg;o40g^RK z+>tdis*WqdZs|ROVD=~&^9ZI=>Qe{_7Xj4{g#6xe4Dk-AytZE7EzGMp%8FhED6j5i zc{eLnXb*g>KMu16$CM4?Ti0B$UfO74rQ}rmrV~Os!8tG1+AyyJk0sJ?2zMbvw-F;z z$cj^L=9q=(&EK?Tk>9>iOW&Qr_h;Vqc4r*lDSW5#-Gp5d{&&`|B=E(#4c<{d6}#93 zwR4>#&JE5BkbY15SbXRL{(|qjX9Hhg<~>;C_kdfx2gL9m5R!Y^(D$YIHxW;qHh)J@ z7$4}GjUhe43Eh4N&&r``%;E02*6pOrxz?SCUtAm=#pVdpjsiwSBZ}L>pA06DI64Z} zviCTL8HDS_X06(fx=BTFMKA9vQ@F%`4RjCR)A-(w?-_i@@pZ>Q_qN9zcLrbB&$x^D z&W}0AVgr?pV@>>x%U{b3T!Jd4*0_D~PN;L%HQpY(U_SGAS$<6$#{mq&Ji=9&Xy9b` z;9PRq&}Td^`L;?e7;RRWX|Vy*e)JyOKMj3^^-uy9a~7%lZo|^Y&`IVG)FHgGp4CX8 z1>uKAU7AN{nv%Ya44CNWUm;hIE8+H8sZ5VD9V@}g4V8^Rt z2P`@{e9I0gyW_0Ljq=S{3bdf{s`$6!3_1zm z7tVt4A3weLjIYcsjJwAXP11a(kGsbavnY;#;a9wpFSjOY4PAJ1;=j|Y>&mVmoJI(t zG|#=qPax*xg!vo~;*Gx^y)vdMM8qTtxjbkvpNHNYOX|-j-}qH;g&O@K%xYxPQa<6xv?LNnSuKPUq`R)tcBW^F|zTeHc4q*3;${cy&i*9hCC%BMt z9>SL&>QDIrIdjhJW`yrJ^Pc-0ez`}_U(Ps>zAYoq_T9tZm~raJ8^_n}NK<5&eL2lx zj+sMtaQ8f;G241h;EMHL0M{V0txey_m#aBGl(0o3MPXHi*-{S79zuGWJwRo-9Lxze z%9}A@PqML@Y+|+b9*rt;^n`o!EnWqnoPl}L)}&Ow*D~?m%Kh@viv55S0)N1I@^$M9$j2xFf0FRoZ?rZLj-!^!x2n~SaJm>XF3{0Z{N!Qb@b|qK z_a7qvZ=&quczz$spq@v2_MAAL@B4MUH+A1Qb?IYLcl-~~ChC4TQ1=rbY=6w_wlJyx z=jT1`x*tLxqhNBQfk|KuLYW3er`azKM9_}xaQ)SPKI1&{+e&-9gdBA<2&H(3>%Ho` z6YGBpgaM{3`JF|i3n_NISFy1?j2@x)q;&^2V9*Nn4|bf}=NHm6%({KOA@*6f_v?#e z&HiKUPZcu7v-6zS81l+#6jlSg#39yVb(n)G%5Ginz;aUHT5p3cv~pTh_BP#pygrV) z#~6qcCR5Zv0zpls|Chb@0Bb7w!iTQ~ETDqD8&MQj1F<7TLAtaEhy`70C=y5@G%MKa zDz1&SVqw*_p@N_yVAr)_?}BCR1qB7A<{*^8>`*1xZr>TNsWA`E+4xp^%$$S;YilS;JTdiNt0z3~v3=BpO%tzUj5FZJ2^Nf1sw=ORrBVD%%%>@Z@4c_7En zsgNh4**_NrG$m1-BUOm`L80sfS*kw@^5Gnhp-LaZvLQG=21yU2Ed+S7i%Tp-BDvL2 z6<&o9XMbtEigc9YlyuN2mfu76Z2a~bjPIgw)534zuu)9Th*3DT13EL<0ctx!qftz< zVWpoG?gE8hGQzNzJc#gJDp(~bUrYvR4nQ0-dRK*~5JiT${TMqVBgHpRc-V@>5J88i z$4I1Uf%pL}OXLG4+kPpMiYK3wGi7?3aZcko(`-3sE1)p5nR{m~ zYl<#kCX?rxSRboJ=2evKP%^i!>KFpk?4J#StuW)ep3b-pQz5?^mp63EDRT=Z@$S5_ zgQ6^$^G*RFCw5yfrYpRjk9%Tawlp=S%li&6M9K#K&%qcz&Bm&OJYiGb{eaDSpM# zSt4xyv29w(EbxOT$B_c-iFkpqQ~N+$sA#OzWLC&34$FVatM3P=a{?dmtR?DHs(PJHUwmA3`;LeX==VBnFV9s&peULIt}9Mn+(KV_Bdw%CX4LlD(Bo=|S&KeHwQnonjDHWUOX)eMj#pY~0Kk z@S@yD>rU@()%#)Kf=9tD73NIJ5Cg)J`6xBI~G{`p? zYTq&0#zWkiiR^9&H=jWj2VaW*lKFrBQ|&nJ57zqC9#(J@f9Q;`8cp8t#L=I|^rs%v z27fmL+__~fS_3zrb@0cm;|z{si7=%Pf=&+!PMC#qzrj?c=N0A+#SV;q1SfNsx`%w(-xL?fD;{g`N3c0nAv;bUoSTIh-Kyd@Ra2$=SoGLRclNh=1(#4FQ_$n> z9iUMHl7L)X-~m;))9q&{dCnj77znA~Qf|YLyS{?i!_G%#`eV6eiZYC~7WH%&&(2ZE-TY-`salt@7RFH!98yxULVXx-9i(vRVAnr(n@l|j`$FR8whYv)7 z;Z9t7nuoZt`3uIId$V!au^etO8&42&XpS_bDD^;;QaJ3sh&2Ln(UU#Io)MVaGjYT0 z88h&~h_|FQ)SeLnabyy2%-EjEHUb^YI5T@NB|r<_m=ta_zt54y{J_)t8Agao|Doiw zV6hx76IF6G*bzX_8M}SqeP|!XSEOLvs{FQ4h#GVLEO!@WLbU8}y)mKKEc3&t#=7}& z8gCfN>a*Peb={#eZNw^ma6Fdmks+3a%<&FQw8tpmFbUpW)kVRR~g zGCCyYAdVpt_RI~L({!XkP%MIhL?@!+2lSOtoc(m9fjUMyy1qL7bbP%d=%)-niFd0* zeSSY39GeC$#iQei&2H>J(a7P66sD0I0lxioaC0sfC4NU#THp_Rgd#ccp>*(tp++0` zS9`L~{o&6JM_k%0J>|0UP5S8s`3=x9nx;da8VZb*K44WLtiq4eX+>u$T<}cetVFeHx0np#TIkrnxAn;`x$RBhykhu#E?MQiUP2B5Xm4<9_S5@n8?qV+Z_a(0gDtIED3h>j}-Am?@C8;uZ$T2IJ|8W{3lMba0fbRuwxFBszobYD5IOxC!VF0IiKOh8SA#WDkpn zt5BIuvS$(jDbVokcBUrXE?lJr_XL`lDg9pnftP)4^<7cN{lJD$YPjL*xg*PaBR&PS zC{$cT#~$6oh6m0^2Ki61MJ~}p`?K4)R-9HG2gQyEWIx3A6?_&Yzooj#gy3DIc<%^% zc3vxuL>Rcm$?$F9mMFoug54|J9%r`zxW&Otgj)`1;$UYG{$9+j>qGh+wo2SAc-Fg3 zA)ns69%gP0=?C}3DNSwnEu4K2gb7k*2tm={YZacFF@GIKJq`*uE zvVo;Z+nCcZF9B{BwljG!p92lwZ)f@eLcj-W$UxGch4g%|(M=}JyhTxdth`i!6r+$R zg5CGxMEt*e|^mM6{-(vq*KcJ=u=ZdTI8V45BJ+OLL}wcLE=~8$J&L|uX6qr8vPmslUR-DsuBF?&JtIn zRVK{{iI>Z>MkW;*KzJ25N?6s-#>M$NRLePMkrmCwA_qL>1sg=KQTk&aj#udd9!Qb`bdkG6Izrgo;89-(fz!ee>gh2$sZj~ zhcsGVI9WP4$@lfP)qa}>EPT*>d-}sEU0>hITX^sK+P)5ln;f5hU}htJ`pXqvvf}-; z(z<-+B~P{uJ5uo2Jag`hoA*1uef}t9bn4B*bMtP@aZeDp%HA35H}#uO*}Ds(#m*D! zwZ11-_w_Yx@%>A)#=o8Cg&O~=73A>T-0N0&Sish6&l{N7+-zuHHm}+B;MAr`-*=`C z7AG7WdHce#2WH_NQ@-t~lEv~GP|H19xIx75SxNzb!354@TFYU_nYF@wG_Etc(UvZj4P^C!oeO^)T8 zhBRI)_FGYJqVJ2s(ZRvE8>91GfoPr+IcXYVD8gs;1*3d3UA+-{5r^@^j_#7>xBV(bJD%;%lHi~|LM|Tpr=FAzb;H~_Q)hmP5762{oYzy z8kzHXniq6a1IHekC*d`@>3?MNbMGt7zdimn;ljN>Ite++DLe0+YiD|B{H$gv`o(Z!40g~J!-@bj!TxOA(*6!A_WUp7-Zr`4{^4gZuC+`}% ze9m?L6maZXz}SpGAE~E~upe^J_I}@HcO5!4-T!q|gCSm18=9Z`=#@JrH(=+-Wug72 zWCmF;J>-3{;~f8t#Oo5>Ax{HcR!3`IYG9*r>`2@CItIPe#$*~FJ)@^_{NV2sQu;QW zd}!hh`JI#fujZsK*>ta8mwk^tl27`r@AcXD-G*(GBb%-aslQ9T$%YX_n!lYF&?vms zSVnF3sI1kkr=~yM*Z06Q!%l}a*Dt&Nd$Y`2|D=6VF)0S@%Ef3n~Q+z`n>}_>b z+&1QE)5H(go857n)6nVUp$5aedj;$$YU`EbXcJ`jAUbsTsL9v%J)Cg+p1($}S-$bz zp|1NfcAeRD>~ZYXgEp__se;a*j~`!r^61}!m4{sa+?LW)ZAi}1mFjmc_Zj=xEi2$& z5B;hBhtfxRpRV62aMG&2l3#{qYNTvgrg^GUuG)m(KGx^!%J{l=m@$rVG*`$H2}xA~ zrW>J^+nf3>tn3Q)6V`3)8$5jqY93Wlmzz8znwgz&nY2cL| zsSIoOAHrxMP65K^r2c$5dB;JUjxinS2ocr`ad^QrLmsQ_i$WMyVQ2R(Assgy7wNHc zXqCBn#Ttg~tUWoYG@7BPhE;})V)dgUn(7I$JF$8KV#0AWCbf{L##(J37y0F)34s=< zzP$d(FLzkG%HE|izu3D`d`!&$Xa2rI15f)26%%w0ZSTPuvvz~0#Id( zNgJz_Cv;;Wkh*YMl*Ay~6}f;&K51R2)r0r;iL>7e(vhPWY$7^eupXJ*%*thg(;Ma}6>Vh=+> zgAuoF$CrS8s@TFtc$K^pUrs?p+zf01aK*2Z1}zjYAE+fVP9lwD;c!#*bRIFaFm+ELW(Z->(* z9Iu`~oQkqao~tsLD+-;SF8GUXG2Zq<$%$)42X zs3DhIC5}oO_WA>oQk5a59(a$w$hSVeCC*VO-;c~3I#B6r$#3wsqW<)BG1DBQ|`Uu%qriH+yuk%-f&9<1m;j4pb*Me@SoUmj^bg}6~N@& zA$#p-#PXCl)`$VEAAG$@G>C{*9;|6u*%XpLNpwZIxgou=Xcr!+r>bNB1mpo@zjO@B z8FW0*B*RSrljaRH=WwDEDbNwbt%78jX?R1VoSTnS_p>9$2Mt6>x2CWaa!v4;{)#jK zsTaz|yK26&;YRt=@L-{fTjR5YHFGvFgQW`a_Yl)AM7sQn}@kk&$gz*%660C{- zm}9bdf=|JYnQX;|m_2qeS*EP3;(#ZeFF{nyo>Hveftx@n(70?nqX(D(;{Y)*7l;QE zfIWa0crF<*&jWXX=RhH#S-zcV4YUXP0fvAXAOz?E?>k%)1Q~x!=OmHgz9L6Xm#`g{ zjpRR)_yaZ;jD?sqXj*b#pBBzsN5QdR6k&)S7jh`h!H^s~TUTnO2A{#mh~w{8#K5|_ zh)9iH>w&RouS&pPlTy%MqIPt7TK|eonfhbQ7U~Y*mM{=g0 z56hTU(xDwyoZKN=?u9Jq+c1uj$r5fu%Z=WFwJYNiVrv!WUm?TCeQU)=gQ7e*DME_R zH8_anb-9L#nK3R7)MUYV05_UDs?4|>+CdzNDS$0rXB{u_1^dK_K)FBB=0!Sc3t(oMMmGi43eNob@fe z!T1B?PTv{#BkE(9mX15h47lL`IlK#Gf0Tj$bJ{p>B~m2(AH%Yt{zDi=|G_2pAHuPH zrGAyrY(H!eAU5FoXPE)JE`&ljEaclI4 z*HAIogQ2vIL7!Doo}8PHfx@IMiwH?IzYz5A3Mc4Iz!>4@W1w_1@WBus%nj01FBN0C zVx_EFE8&NDSQ?6t^5H2Bf^0aJsWLh^$NH)Pb z@Ct>IENvvGaH4`Hnxv1}=_B#*4d_w_oav3A`6^Cgu!=?%O{GqM157P_X{!#3xjp?M z{L2kRb%&AB7E1&>!KeJxmA-*Y>Nlk#L);z!)&~cvZ_M&FJ<-vtx8$c)$Z#GSG^4XZ^u)u@%~h~R5pX3FV`v9 zw!`6`TH|N^xq|$6nyLl(pXh5Sxc?TuT7lJ7M=IWl%P-QYQVDBIS2>mb7k{>}euAb- zVf{Dy9}DY0hX0|kemXn|s}vT>8Mjh$3n2qLQrV69GRG<;=4GXyg{vzxh)lt9I8a0< zOe={hXouGC({<8mL&J zD&3UDu3Wjw!o(!H&O`=bJNs!Rs6ty@D>x(ms%Ws8g?P66zRqOjY>Q} z&?>kYD8njr%JsiWv{cUjMx&ZEiQBQm5VojDQG11*zq2_R&PR?$2)^--=Zg$R2bS5m!H+dDuzgte86m6HWZ zqNccoE_P0=YWN!J8T^p0+j!L3ib!gT!^O(n5}&5dHtGtkC>FM!R!%lhkW$OHc7>z} z)vB7(a2=0Vu&mn5f0E7<{R-C@YDpJ@)Q+{~$!)xlYKaRq?3&W!nyIIwm76&(#xbv% z20fFf1!@FZlpXfe!GNau2W`|riiJCi8OWZMXFG80pOWl8$-(>#9S&alutW6E(qq_x zybl*dDfiC}=vaV46dnVda;L?B-L+)*p(~HP)DlL)`K}>^;%q^+G^)>FY6yrjrx8z8 zW<=$ji(+vv6?q3^U?ur8ge0&$eqn(oUY z!;JfyF^nxjf48XAGwJQ)3+2j0W3~{o1U&+o{11>jD1dAM;gbXIJ)=t}A;Hcb`g4OC zS^7beV6+udMV5#@oy-6XTrL2qe1Z}xI+3W5*Q**A#ly*fvr=2g!;k(JtPGgaAHpAE zx*!J^C2+D~q}3J^59ptxv}y=XTW4J8%CI;L3YEuIL)Mfwdwx=xbX8r_{ct}QZp&a_ z4%>L9$h(NHQsVj3xkr{U@Z-BcSO5o&lo3|u2is3@ubv||bxtIVQOX>#Zb&O}MWxIP z$pop&t&pAMLs(fM&`I@#Og!0FL*|A6Hvvo`+`M3t%!o7Y3>5U|4G{Dn$`cGW5(w}g z$uRj@kR>_?S(7x#mSrMLHtNU)$jiV^@>M+e=bS}7In3EfzAEPn0RMQHQhqn-6(qpM<-|D zXct$vG45k=VI{|olAf zn%7d;bAX$`UEm>*2RsK}0q=l(pb$_ESN%7nFF!cPoHfe0W5m=44NbAg4xQXn2! z1tb6)fJ9(BuoKt=Bm*fxI*ai_fjA%@NCc9BY#;~71M(F*`?O&4 z00CeI2mvoZ3d8~NwdbK;BK(tqY#;~71M)eU>iSwRd4K>g1B8GVAO+%pcpwo-2C{)1 zAP>mLdozF*zyk!er(eB1{%5bObN?%g|NoQ)(;}|Q7{;_fg>QyR-pmY$17L3sdvn;E z!`>YB7O=N4s}ipIHw6VAGawGgM&pCQHe%SRQPzjOz8Me)WGfmL>`h>A0(%qKo5J1{ z_NK5mgM#_bqJj?s z1_MKYp@1PU3?P*=q(RICFs%}fvf=rn3lgH{8m;ZmcdhDeQ%8XPq;YFO0q zP-jCO3! z-9688$#YsdGFq(=56omB9}vJ!=OF2Ysg-a%)XI0o3$V9F5KB_=*6hVTAZ3JIxI787 zD)UD9lfs?Rfg8Z<;mG8{%m=dJp3@a+cgJra9uNXK00X)l&}hM=v&E!GlXU+R4_N^J zWJ(K2#BVx_noRKlPNE2XH(#ksM1;OMdo)i1{;e~jq~4_Wk2AT?7B{eJxlmar!i~z5kd5EuMvs?CRa(`uBU(o2R8c4C%xCte z+UZrpR{zaII%aB4OdQN?Yt$8E)Poh?EV9$1Se;u;Oblx((CcRs?RvgrTEr-RTqY#d#Cx((;tN|kG)82RYBV!6k*8xMd9H3 zLq>^{C5@CqRU;VxiHI`=0K1%zx`$ivaNQMm^pdMf)m(3aHV=3Q$V3rHT@oCGv?_lO zV0^_Q?{Gdz(D13xWEvXcoEtz&?tCNoY<6hljt_OsP{7RUeU{=Hu^?YQZdKz;aSLvh z_gCgowHziQK0hD=z**t|s-H1@oF)zt@fA9JVULl?_-GNdYsr=v_=KQO1oi;zIT(~V z7q-$C!-sTUa1iT(JnKU%LYfEp^v8hy(0kEcH_G3(6puikCV>q5djQ?^r1*{aRerPXNKe3XhMpRj9KqkFvg=%DDjW2$zz zAA=9+F2)?NRMbP#w!wEq&4mUPdMT?IDcz4(QAd<%V{9f>v)ntQpHmb)qqu{YbYF7q zz^bwxc>DU|rh2|FR6L*xA;YV>tO9 zx+4hhkG(nN`_rA8Q~0bhX{ITr-n~)&VF=S-ADdh-Sw)vzv%cOChp4v8+3!^62@;~m#?lbsWLz)SdqlM;HK zgDbAhHJ9Nosmfb!iO!caC3Ek=Adgm<^P$PpHnSCFl&(!v_TP$Y*Nk`+4(ek(?VLS@ zR!$^ZM0#ezX*-sY$UNDte)>I$D?T;=W^j}WZRO*IJ;I~l>dF=$v_kmV`O{x&T-4tP z>Dn50$QT1{zKZM4u)GkVwBzzz?Pr5aPENkVoMFE&PrLvhkaNnFz!IW0q51;+qfX1i$f!SRBV)qKd=6*K5J%o6gzst1D z@nC%?pLlLNlQJCV-+@cOO&||=4!i>L0oU=aZdS-HXY#DgA>`vSLVV&&-NmA)B@3Q-zWn&TEO+mK$+#Q;rDJ zAPg9_&?%fpl6Xx8aV@k;m60_3)D~Z53F1CU43W^aR0FMrcPJ;jfx9K5ym4;@Hwh3H zRQ9nnr=+z`@)xuhfVE@&V~eo|a|gPqCmec2*gKUdKk;83aThdKIi0NBAR=k+X<=*b z1es3;YK(*qc2=&?L1pggYC-B#N$)p=6P?G{*m5ppw}kvCUC5>&fgWZ%2UY~p(+$$G z4&x~uoX>_LS#Emh6G{37=x#e)T0njgI981Fv_akwjDaw>cLaA|9_5|px4h0y+L=h-;{g|l0P4oTANrtc z3d)XeY(D!tG07&#E6g~U|#(1nQ~=E8UlaAHWH9-S;MJEZiZ zD}GnBeZ>ly)^jum4h3E17|8Yxba`eBo&9DdB-uAadnO$?B#=is^20Gl2o(|)cVNU) zNN+LSaUTPv%Ivo#4O3Wu((HtLY^{=5eb3urW&n8rW6ilugee79 z0m%wCO&hEo0879N@IW*fFmD2-Kzm!xEdu6JAQ{L}xb?Gx-VMMHhyy6>Lzsm?`%%#4 z0g&4&nA?GDAWz|DVh_C>fE0)ai0&QCh7QmX0@woNwjE|Na0z&&aIdwe7G z16UGoX%H4Pk`M!LjuH(|@k{>)8swjzI`ZvwJtON-qOZbXT9$F8?p=AcKYkvtvkEo zPB|I4m?YHGweG2_*CU#*cG7HWMSfk_Ii^UYtQocE88=Ko=>;g+d{@|N$a@{-+)_Nh z`PX&_T8fA2Uf;XGw0Zw`-S-~2oY~suaG3kNsq4~A7sXFIJHV*;{*@*5%14xjt?00< zb?Bn0lTvoieB#t~`ksn>y9Q73!%RS#?Kux?miRl zu6S$M(`?Tx=m-l4vcQ1IbC3k^T-kn9CC~l!{oqeyF&~YMS|OS#Th2=Nn(|ynIbWJI z%)me0A@+oRgDr!$y;?lK{=QM#XN!7G9=bl?uy|6F-+W*751#LTb;==KldicjDLc;u zeNW4uJ;lf3>!tEp{&Q=}FAqx$l{^pl*E|oXDbsbA^O`q%I$LXY8uPGOY3i!p)?-IX zje^=g%`!gyV0U8SVR5$W2*;6H1M|nNT^^hnUiizq&LjV7V9;@<-r%S|8k=@+J)d!% zf)NY6p&I(RXc;d4;e6R5##slYt$HU&wV}@X@MiU<`tlE-28P%#$hchAp`DL>)s39- zjYibxcaASVZzC}N^r%_7w&tWR^B?WL(bw9)Bvh1UTsA&%Pwt<^SFX2rtjuR`cTB*m z_HR*e(f=X0SYs&i%V!CG?3L@N58LYd&DA-k`>xrujFT4@&3I&$^WjCCdCTv;Y}ct( z+?)3Y=MCLE`OID2jo%AX3PRiJ=?;CfZK&VDa~fr%|2d&n*gRDwzpg>yLCPMvvOdUI z*B^6Tk!J^p;OJsEODK$2H zYtGic#u{5kxi0J7d+OmaO(Nck?N`keWjt^5>CJ?@)0+>ya&&~a$^Dmo*4(fXN*;Gj z>3n_8LU|v9E4$>mgC0k=$iCFR*(&|gq4gMd2ypuc@oYq)19%p0HRO{Y055%v&iddt zfK-uT&Qfy=6U?rsBWR}H1QUt*Ma^*SmKxJwcD)u1+?&>)U9TRKmD<>QU7rCBZ|M5I zzB}*9{Jd_re_dBJ&^WHs%frJx`CI(It{ye_&+hJ1UKP#zFzMO!mf3lWbeiZ4KiYP+ z`thAd4(vKO^|rVE0_`I)W{V;pXg-Y3+dk#?tzSd0{qkT?;U6PJi;S&L_UYHAQRfTx z9o>q>UH5zS_Gv1*weE;;NZZh`uifeuwcJsf^|kx9KJoMU(T|Tg+`L+L{p##~jyFG_ zZBL(Fno*BlT9K1+{GX&m8aaK}_b?u*K)z3V(k!zP!zf zw`Zl*K1>+08sLd`5(Rn>L4E zAM3HCq+jZjb8!haC1yc^rFMJ0o#xn>bWHm#S3XUUa#U_`F|qZty|?C#upGa1sn?P_ z=?Aj*Ee)v1x1)DRh$JGgBIn9{hj8vcK1XKd$wHW39Gc3XnE68Jy7YTc_OgXVI6NpKtb1i#c{LH>2C)u+){SdaV8H_h~kU zV^=rb?eeN){2IR@%er2h$9%9qo)&q<>*$k_LEUyg+2p^i#Z1rS@Vj%E)6*7B-C1_= zU&guKe#12R4~6ZEyE9vxzwh^Ec;wN|EB%@<+NZVK?VfnGMZ})ewec$%kMy@iy-n{O zY&y%+pjo8hs-b^${n{uh??WbIH&qlW6;;ot7fVpers|5*NROMm0Y7TYe6XTcc=8IO|DadPhYn>$Pc8{nb&OQFP=%%-KX&Zad_$c#H8~!XhWIXdglHK-p zqs4I#e~A~`FYNg`spWu`4Q=D=fA?%ISg>qNl-h@19IkAe9MmLKckk?|7IT09Zg_jX zQ_tn=lfy4=dKx_9Nyr7o=M@3jFFP81lld-3MF$E#VF z%YF}hS)iW(I(+VjdPxWF4!nP5PSS&OS8unS86Vj`tL?)9#v#A$p53n7BHnLZ*1d4- z(Kt6oa#k(NbKk194?O*DerUU7+gx#2-%q<^Cp8=Jq2bf`cjlW*hMiFKcZ#uwT>&cV zw=Z3P^W*TsC zeo>>x#d$sn-nI>8Z`~#pJ`B5`@zHoS^6Ya0e(I7#ruX&kw!?2 zjDlTl%?At~qTKhR!uWw!kAg}3^~}S=y{EY1H>c=UFBlxaFtA(LO(6?62T1_kF6bec zq|Zgsr%xXqpU3X${g^)@QN9hwY?{eN;a+h`CEbBY`C(m}f zXF#2Z7phO?tKbW=j9i>{#s1k8ec~l58G-*o=d9RH`?vUHxOKxqWedD|*@r}mBZ8>l zJ@FM(-w^umiO-oFhya}NMVv>9=SD9nDm<-rKxnU%_NCF z)$mHX`U-cF1|@A+IbWEJR zw~{MH?3iI^PKIxaFUCFAw3o``;*xQ!P32{TBJQXzHu`zQmzL4}9Mn+hyR-YxM!adX zXJ*=4SJt~9&rd=+&=eN%(gWF_GpeMc>&H`xoqG}X+6meQRs@a4Wx_ufv8CeHL=g`M zNWuKael?C4SHy}JqZ?_dl(_uzf@H9Vhet}eoyqS0^zxpSfx&6!q%XiL7D0hFSx{tP z%Hn=oh8b(_;)D%FBVOfY8sOMMhYGH`z&3;g6IO3A7ph8l_SCaj;^Twf0A)wrC40Gs zB5yc*%nELxyt&Lm+Y8EC;YQawgoqfPuP^(}RPzPljvw48E&4c=kn%o0?6s2$e?|2A z3`&KK3??r46R~$D;xaQRTk#gtW>$nq`Rd%qQ`SMU(QksX-YWgbPLGXuxDVtFEa=#~ zFM4yHB9oSoqv0t$A#1_7s-j|6`qS>iNZKe6;fiVpXcC}u6F&co83zOcUO@hL^kpUJkBZzGVHx&D>S3p; zi7RyKyD)jMo57^VOv{=ty)E zkhSEb3fT8k?pv{aet&013M2!xFUNbjkloAT4RB_(057=HV`k62o9Ys zB4;MY8DS7U9^s{c0PX_V%|a0db_Tx%_{{?t#FdyH#0U|G6nW4O2#^M{t2%s3UwzWt z73srH>|y7YM5McdUGPzPD%{ZI!?B-5(oVDpU>KerCy3DpG~DVN`wwEaKcFizl)Grm z@ixQnBwIKK&Ob2i%96~v?+0my4Y*T(XW{q$%OgWC-Y%dt)cOX7HF`Jqm8`*REB%vO zBSuF|ikO!)Lt^dJY{!BY}wFVE;;!&y5WHx<|)Tl8qJCN@?^!tKNE=NoKdO%(dcHH8C{=u z)9vf>YL{utH2$S`4Z8d`XG7Mk#oRvXz5VNL4yZfYZD~F&_Ll#H^M7yq!)kr0UY|2z zdzXe5jG}m$kZCW+OuEbKW!cZUWAB~K7i~${kUnjY<+AG?9NKpX`ISgs{=MQ@$$I zgH7Lq^_z!Vo*HUMI{^=jn0~h!%enB+u#wPoh zmKQkm82tAauN}L_tG}|H>+?2p&-fTyLGC6G62NDAe10z<{y1KD-6la{)8cO}lm0mr z

      CR*}(j(dh>eD--*U__2tKIW*0y58}1rn+;!fE0lJ%wzWNSJ-gWuH=H7P_Nr<1B zuyBoyPII^0#}~Jq72eZDBlX;}aS8Ufq(a|?M;^CmS-05zA9% zycpkZKa=+;cjSXBdw3_N*N^5MH(zAToK7^m=UllPvLV#k zJK%C=uO=&8yDv>_wDVGnS$2_Q&Ap~iV*4$vpzk(`e>pEL((crG-!{>Qeb+SP1--l; zf6eo@|NgRZB*n8}|DfBFL!ZkELYruJU3b(#VtKGp!Tb@X8g2)LJ>u6T5ly?u2^0Hx zn)1V6z(PWfZ{&i$;eXTaqVDs*8qB_sI@M=-O_!g2?`yw3AFNrB3n%xO@ zE>U|wz1#nJ`QS4G+nBBs+qJ)cGUel|q`%IVC%U1W(l)s8+TwCPb^9T{X*=J5P zeXqP4*JkM#YtIXJB+b6}H~6T#{ozhwmt85r0oO{tcVf$MaqrYI)9l|(&lY%QnYvyp z>U^WXPV3C=UwglMl+KGjYD)1)gAdf3K5ydqw(Iv!Y&Yxb_}G@$|Gxg!wBx945i8?b zl*AFuFU$Fh^WU~KOek`gKl#*m|9H2jChan&u0CFWPzV0m!8t@T;IO@a_*9ZQqleHc6W*DGbK2mWzvVT7#9>IFo@E9j)z_~MxEJ5qep#+65VmOfpj8xZ;Ko7cw7 zjP*}?WrKuy7v3l6q93p6Vc+F}dt8^9?cVLt;ZIw4?}oo1zJV`z4Z?64v$(5*yiAlzte7*$@*gLY-Hwz}jY{WzVsD}n)y@;mG z?akAj%D$$0JYE`iv}II6o2-c&8r(?j_}lUMua~xDRSz&%cjzBtj9Pi*wKd!3a`v>( zZyK>t%k!_cH!AJ9wfiAWwx5r?03|25ao(8IJ;rvqY`f zeuL8cx5s_Jy=mX0Jqj*te4J!(a?BvD`DSgyH@G|!^*q1pREq6p3LmnxOjq!{;8xLJ z?{jBgQvWU#9$Y5rVG$W?8TPcP;fA9`b4Ge#-q3&#@5XL?>Jq~Im8kK-BPwL%q+QM2 za_^r@w!cI)O~=l@y{EO!N$0p30lyY*x;Oe$vk$R-3dBWQ^be$6AIA2pPw%eym}cm| zLhY8|@vnFE`~GsO@K0$>>Y()_?*DBk`8A#5IqvN6>|{ZU{CT-c8$K_{eJYjO{L=5D z)7l3v5tBC$uwPF!X7x*NXy?fKyUz^ExEJ=^%l7=kSJy;qwIhv9|N5oZIyNo-&Tnr9 zxn0+`wjMQNWBuPwpDRh7*4gEpNnf?_tzZ7wdV}I|G<&(xn;JA8}|PGKPSg(=h~j2hJRYDbXpk5@AT>vErA)GMxhfvS{_?xK3OmA+Gz`& zJ8GM~%H>Iae?5~q*Je>GHlF)&8gU1A&KS1I|9gi!2Dx?##x{4a4(K<1iqJ@Nre67e zibtxxZI1Ro%MYxy9XYW3Y^}52x{1$s_S$!A*dF&TB_;RRcLf(hxT+|l7)osV4}+-Onp{I@_=)ep1*`TgRNpzo8>iO5u>m`XzG_gd zAEkzvl=<+Uswg?m_^~$B5jF%o6<-L*Mf`_^mFfOWU8*7J%JO4Bl0K^p%)r+#lUV#hWZ>R4VE(7LEjVMC@xEHE{qAndI3ve--Ed5q3;2?=^DEk zu&@;!jpt;#SaB!9&IOctr2J<5io4D{A)g3H0cD&dmtAw2vDstuKzVD8d>R7uOoXXS z<00aTgFRgl=XnLqC8ST`v_$9+fN_8_3>yjlxcTEwwE)Nw0*!$f*t3D>zy?4Fw*-L7 zAsH}3S@;1r@w*u4jNhv7n20p!8_>6)Z^8pj1l~IVp!d%M8X}(#KtA#}9rUMxSAZtc z699n-L*=v(aZ}mn0Q4xzU#uSy9Tb8N2AxWf0TmH6gi;?&H2+V$&(Ee!bW~Ns;j|Q{-o7KL4U!KYXsA|Sz0tQ#FcKV@Dty&j6GkNKcTX|{D^I}Pw^u5{^o$iZ`y2KW1t^D+D z^W`;#(xjlPO9P9(rELsKOe>U0N*_te`{lYgWzWu)?>O#t(PWU}(+RT=tr%|NJ7Vq% zt^89-<<1`;m9Duc`y$zq6`8hjealu^<+*>fnwDL1Vv$74Fr{b2)3m?UlVXp&d$r(b zuDrBmx3Ij2!#CunT{Pi8Y9^7(OFr&waCC$E_67IKEedu$62A@n=TCz<&9Y7mJ9hq_ zgUv@b!koAiQ^E`P}VAf%^{K?s2X}JaKX6Kfj%OC&h+o!$qp?l0e{v(lpyZmm> z@Umy|ypbMX?}|SKYinH^EARhp_SFuL`Q;Kr{)p9Cxy|(rP4>p6E|`Bd^_LX~`d=HY zksE(d+t{-xquu=uXR^L!Xx;5U`nT88Ka&JwhnDK@v7cTZ zc_u5TU;g+rdraS}A81zoe97l29^dA5TDN+a>4A2+^0K|dXWc2d)V=6io=cisQ{JzU zU1pm6RjbJ57h0ElrJlA`pA{7*87N-0M85g-k)dAYZRN{K-%gF5Fnf@6rMIc})OoS; z9o{p|&kcS5`Km^&d`9y6j2F4FtowGJ#$-*l#jawO^O(wezjCkK-z=Fo= z)1vJp4`VxYO_P@l9^T-_v~@Su8%V@iGbBah-m71~x#`%dU-M>6m@OA< z(M{3mykPX}jRv2#9jMnleDJbU7f*M$;AP1*bp|$fXr2)8%>Ba`iG0Chje-lsFPFrY z=AOKrto3%|WY?y%KW&}kn6me~o>SU{yZ0?SMSqf9ANk^K>}Ac8W&M}L%5S_J%qtj{ z9rneV9CX`{~%#-JdTmH=gsmTGrQg)+e8@ODofz|HATO?2fCZ zAI(zrwtdTWGu zTfS+>-ZO4wxtG>Mdw8$W`&QQReh&@#!(MBy$$uG{Ib%@U!lDI3yLHTZr~OhR!=q*H z!tq!3juOkGbvJd;%n>}0m+3w-S^F}m^z_Bp?3bQ1a(Bm`b_q=>cbCsJxH6|@Zu!Fr zAxlhxic|I8oti(i!^V@VcR0C@-nQb_ACmt61m75Co+f|duYKf6iJ{O#zWH6*j3J-X z79l5oJ;H*Um7i+;df|ZE<;pXTOx69Ub{+`m~TTZl^$seAF zf{gc;?HaCqyZphhuY)C@Ms%K~w)dLzR`XTg`W-3qC@RRglD7Qq-m*WR1>8=^KRbA$ zrRRiw3171AozE<@ZlD7b{x1`l;O1|Nj9SUxcq;D#-2Es`|kGUQ{uF;SD8az zw7hmTap}H0x65XK8sTyEsYaA~ntax!%LN`AygUkHHB2Y03h~;uGB9LblV0)>1^zQ` z%ipK=x)3#B>1=cl8Ew1sOT$V>in6Ycyo7oZJUmY~bLhP{4?a(Ea*aLYc`{**{7~%k zXixi*!)F_0Wm@<~d6Zvz8M}T|Zh6VVgvZ`@HDb#P);GB*^C`T_`n;&xec*x}={GOjJ zD-kSiwfA;;tW(!NB=2%FF5i|H3YHq@4K|&y^0Uw1t2|rx-e3Og+eg7a!`(~84S#i) zKiwSgam#_*8@{*S`f<*a>d@}U`L?IC>pczZ!J>JXEJ=iu_DVjZ0{zATG&gQ_Ez3Sh& z_SLa;NY;}jgVWA+O)HpE`r@r{c(`#^iHmsEdxI~TGd0)9OP_AOH0;9S7A*+`1 zKVB}8%?NIxr(PtVQF1j?^C)`JEyLdqNf^F)No=v_#;_7Y4}MX`+`V=M0|t)@kaj;^ zf8MQPO@pVong3+D7mtg%wQKl+mc#h+_YvX_(a!?;MJKmt2~&H&U(}}G(tBgtM@*(m8*Mfvg#Xn^5&+lFNT(x#tct+ z8~e1^Ak(0@w9>10ZbD|{>Vk`}zufDbmUsT3>15~W*Li35%kTEfFWbB( z+9j>TQV@|OZs%dcw|hO+v$JmOv2}$X&m8~u^kEoZo@MeOc8_jWc}cq|ySmwx@|$RP z>XMsTK0tTxRsDvm`~2m-WNFHSNf+v!%UE;({TG{NGP1gVY==QaO@4gLfcL|d38fF>HpuKor16Tgon0rt3 zB3$--{(Y->`UCrk4MRS**PN<3`qbp%htA&lmUDQ1x8#zgeOkX+-e>2=4QZVNyK0)8 zTsFke>*YM(Exlvq1)X)jY`KC!~J`qu^LmSojHDDv(2v8{hQwOTefzd)nyDbFT^K3cDx-YxiWrcuYxQ5a{pmR z&;PT_`qw^zaf|jZc&MAT<8h;H?j`;qzpse7_cS+m(|MD<8ztsf(&XEVEtZ|^W|U%c z>e~83!3O(r%NKO~<~uZEzFg~mgSPx{=N%8;elsi2bnCOT7N=v?igGXe+#e<>-?(H* zdCcz<78YLVA)X-f8eshHVcCRL((=|l&1YN*a4%eQaeD6Ny)Uo!jlH^S#_*)j&U>GI zc2DY1vi#k^uBKbI4s5@%jF&t6O>Rcp21|sdz58V?^q3j#@nBlg9+TPq4!@0^vCw>$ zM4oWNNW5y`hsa%)77JEP8a3Fa>5>BVenxi(AN9R`bc%&;ez%DFyJN1sOPkl*)7#5E=d_dOJRXp6bw&!6x9sUO;)`)Xr_G{W4!gVW8K_Zu z`9}T67#H&|{5J5<3l_s)dK8>_J2fqJ#qOC`o9*NW<}VCSNw{{o{NUxGx%0y$g{#zx zjB@2gvLpMQayE_V+{Ghd&Bvp+U#u}1b)e0*xmG@Y*2_P4T3Z%(cYVEsxp`v8xO`UlF`*Gs-p`V7jf1R-=ZAe#ZgT+z}ml)HY8NKrlH)(o!sd>brrO`2# zBLxR6a&>v{J9av&)>_}WL(xBDQ-aFlS54mVoAH7D#dF^U2TJ3Ybw8fcJgvo&>A``w zP~N`{k$2DRRq!PKcFnd4mN zT-WP*J+}*D{2)}p4=ph8$KD{;qMt4Aq+suWysQyXyjnyL|rhW^1 zj=<|F2~Gwt*j2oqN*C%syT>za^^bi=*bCwkN=GoWpLJFx$%E<|THb{Ky!$0H(q4RPgq+R>C8YBX&th2U=PxqKmo54!F8eZ zQK)mq|0vlp^_l)nVDpjaX$(70^SipOV|0{SS&P~}6sR{X*wRW411m1;a}K{dH=yz< zb3N9n-L>7JvL7z^_^|Z!?K93ybayD{1E-3i;;{eC*Hpb`8j+~i?G0TXbwG3td;v-EG6eS_AKNa8><`UJIJ4M!Z4Rjp+2lq5AoPnzw2e( zqZb9Dhq4ulHEdRvsc$(xns2R4lg@io{A|&GV;Bz$HSwiR6DUV6PA@70Q*FSn=d~Bl z!QYl4)AqioF@3z!+*j)~?4e3JVBy3+&*Hf;W;o)J6 z`kzUM=Vv%^fe+E^Mith@23=9=*di=}H)TlBa)SGAkZzSAd->aM!hA`8PR1XpJFuv# z*SYz|W2-7YA@MKY`$1`tQjInyn5JXZ}J&B6=M)SLJ zVR7OFR0aGGdu>W7Vd`Et#NuB_raH^H(QTUB`q9V%0y_dTW|{hu5) zrCvK6a)o*AeS0jANpId6A=Xr#`f{P=@k8{|eS5`Qkyy?oAB&AwV3{hoy|yw#bKBK( z_#1Yso6;U%zIaS^V7c!E$V=miELW0o=ETck5T{l7W0W9K_VsCx)s1@MJNN7Zoh8O`j{?^?Pf(nNY(+GDw|q)1e)4cM zPQ4{CPqqB~yFMYt$>`0X+4!kgG)yNoX`dqdmgcgHw{u5SXvUdxnbN8nXNgh~t3>*y zuWo)CX1$0_2VnZ*gBb4rhLi4OwDNcS?T1ThoXqf>RIz%kxw@gUtOl(DIKACKu^lyps8~kjMJZM>BTKWNy_ZNTA`d@p7QaHXn5;PLTrqop;A&y za>^&-3YKb76c~(-Kf65q=;1L=vSHU66@+UCzJzC3c2+uw`RKSxMr(X*o2 z+bO`zHsM8dM;flx_;Kh1C;0QCQelw=hQGBFif_GenWq}45H(%ynmQ_=6+`m*2~FBC z$K$8>x#s)~QL+o8P4P@PQsS5%a6k^6GL}`px z$+$QZ5q}#cpXrfptHrInP}qe=_J+MhVNl0RDt3NM&B5*UXj!r!3eqcKIn@*}6KLtZ4lTRB(qbk|V+4iKzLCBK|eScCTjrzp z5o!zdPRA9@8689#)7i>1eFvYpEdZcuV>m!kxwTXp|BOwXJuM=PW7hKJZ|oKkj(*pLk&DoFru_0mnZ`IzaU^90;5+CeloWsHG`;1BmRRa+r`<&o$v4JYVQHb}W zx#xkyyAoj>D|Tr!??%`B_gCI4^z<3@x)6a4R7ZU;=$3_e!xxV1#12M)lfNq%=U&Rs zYLKJ+P`3Z#kMiEd7Vf^x96UTdG?zcQknQ@!=A*`!)%_VksiWRXBQDmKINv5pu@g+1 zTKLhlAcR3+3-LMJBWHefE;}jjx+_a3O%jHT(_kGmd0*qQQhqC5ncVMAf$6qXuzc|Znk`#%2 zTi%ke4~3M~-~pG92F}d!3DN7x{;1}2gLZybzw}(FkG9NZmX48e;W_Qy=pw&;byjA= zACQ$CvvIN*4P%OLZy9d4ppkpBCt-uU0j~N$<$|!A*?;oHmD%crX$-TukStwsXIk%# z$=VT)M5GQx$&5QFll$u;QLu6p8WNRVYxOzbGasb{F%D@?F=A9(5>|y{b(<8Th(iNi z^%bE87y~)u8oF${UOm+_V@GT=fp{bNF`P z1MGE9>J;<->ZBgFCFh36O(I=}zle?JX)e_ix=PM^o%QW~b>ZZa`m!7q5pdjV=9^<-ypfl=L`q1VXb^YJFR-+!se$FK7fy`PVk)I~T zib7*Ym&a*>jlqG5csT$6ZHo)DxdXM+ftx=uDfE#^Tlb>j?#kefah2g>0j5}{OqNn3 z7l=m_U~@e2O9gIoB~HEY2%0k{xYw41>%Yl#-x% z_pn9*Adeh+C{XFJZ?hES70#$8m2Rv~>kEq1yLFw`So@PAbq9n8$5Ghr9T75aVv?fB zY?yFrNz-`~VGIRtTI070-CX15@8)vfQF*8>`!L8LI^R`d)5zk$^}_%gFKU}*bmasVSSmI8&YJpw>hD26 zC3~8qaOs->Sj7is&ER2kGaj-Dv%LuOUiz4`XTbHHuvH>YsoX~fDVwg6r+4&I7Zy&d zy}J~yA^}klY8YAazesRiXf{H*E(P@R?;zE=a&eGD+T}-Fd*JqCm7sQW>7!~4_0b28 z2svS3Z$+#cO$~2DtN+D~7qJV2cp9?tv3pAc(e#KR*Y>qrlT%7hAy8C5eY6RoBpi-^ z6MiB2$L&=<{-b^Z%1LV0^L{%+@Ap=+{)39k+Hq6y$iyb!U3Y%O zzqIosrha}~6xg3zhl#q18$T!yaQtzzO<@K?f21j^<6F2ok!1iM~y6`eA@H_bnw=D zdpc8`{fJyyzCASBLoZpzC^Q|Spqq}{nd?rHND$%p*eDz7vv+E}#*ax;cfNf=&oavz z+(FWbFN9XZ2OpkMD?U&86mjEtZni;ZjsaBMvyrJeytOwz;XhlPJMtTGOzGzqxU-Lm zMGxm)$Fw3Jw6K_S|3!5?m~>VZqPlGu{({V$+FbX)Qc%`?;y;-k)_l+rr1kD50Q()J z1ju(SP59ZEp2J}1Xl>tKvOkiUN5hLS3VH@V?YRS^aW?Eov9 zxv%2Na+0z4-VdIKeD9pmt z&|abRu==gq)gS%BLd1jJ9pFk}9ctk=W`$Wah_}iPeaA@{QC6WIiwb8EH~l0mw)tDK zLec^^C5dBNr1#*6VK*wi=f{15{6}ei&QmwK+l=;+RU(OA%;EyI+kuh5YhHdlszuC^ z|D82Y!Fa6qgjjm)x6nwy!p}j4-#HiFAwJ8DAUr&e=FyvYhPjjYz*MgKqs%5eE9~7g zhGx?){nKCUNusfBtdF95t?~EL;kn}*GmqU23({k}Lv5qA$&OKzVpbN|^}Q95FVk^4 z0dIqS_H|k9m4U`$CcRlR2^JV(Aq=rcP}n{-A|qCJIK7U)W$ozqb2|vhKj#pwnLt(gP1l?=M@&eApNK(sY^?$rCeeF^@eJ{W{2KMNgda>$ zq>R!zyBQoUTfb`CNp?iuak>82tK;inR3h z+@c3HkmkStn>hVupNSB%hh-?edB)xwfXxCaa{^&4tzCOAY)5%m98186M6VfUfiNqY zBk{36~TBlWeHJp3vlw0FNnXQe-`0S>+N6zN(`m~ySxP^S73XZ6msukY{j$E|6u z7ZNk?gh49`o;g#-MCzE_(ER*&F-}5VC~jJ9^T)oYb+Z85_^LXVN&*@LKFT%L=;>>i-+9=_KDQwDA>T5EtG?e==64)%-lKQxPmymW@OXZKX!Rx4ivlBZ>mr(UAf8z~W61aqe;So!- z@()$%n;9sKCK|zjo3wOYv|j2e6coZHr!Eu)v*uMpZ@h_;^5G1XmMce^~qM_IMmqkKhfS z;e|4I6s*9p|KFW{EADAuy(-zEuJT<)3obq;kis;z9GS8QKPO1en9u^$ifuZY6(Kod z&rfJ4(r}7#1J9M>Zc7q(K&3j1qJTL+htXcq(3qcO{Qv9+FCtiq&h zl2~O(zXC8cdCw?p)bOp=W^~&;k2=J`%2+3(j|m)en1L5s>?+xp$A z#4fTF$#+t>4P9__0ier(=sk@|Bc;bK?!@42=I-C)bcLS+V9v1sT(2UO#5zyr5=#qOdz zAdlS2(=8$}3VQ4+_DTJB*5?~KX;;L8x9qLhQyGc6e*zq0aWAVzF`!H0|JneqHtL=% zT#c&6E?&jGxLVi-)OXg;f{iJ_A^!vB)_0_il`kIsZ25|KPH>fh$cRk{T^pVMwC)hV zh^`kQJ7RhqS)NO(&8kRe%)-VITKq4ZO3b4QT#q^eKMIrEsT^&=sUoVJeURn-WdE?1 z=d%|c@zegx9=dqz_JMz=|GHPELxdO3Mh@Ni`Hs9c@A~9|NGGhWop!+ zq;TrkAvWGBuYBOE1m`fsVLL>4Z+6551`t}JJDx`Em7G~KMf0$hZ2A}4^L zIbA8n+y0^VEPgayK*1|~$_f5K17K-oZY6K(jt>aR_=j%$_D6PWnX*9ceG}mgTiji< z9Jv}kJI?*&nEV?IRyF95RQjwX(bcJv=}b&C7{s5PGTg4a43yj2BJ~Oi*$!-*nr2C0 zzopLx9cV^GfvoWvO;O;S7F=9N3UNeBZMZeS*hi{eJ1 z7agW7LN;;b$AdFq|69I9yDZtTsfInTbb7wlCJ74u%|yacT2dzF!zX^!Q_%GW2mUh=gJXxOiQ=+U>Dx@gYopbc*U2l>6f3jbDYZlD|Yn$ z*?Q0X(THVfX&|(&B$B+}iTgiZlO*jU)iHIl+|rUgK#6ybsqpAgHh7UWn{9*t~luDCCms z9BXTYg=lKv#~JuRV%h>!=jrtGpOL2v(747+E;;Fw_$f5w!qY=U7T=_ zb~S+}?l*n3z;p=~knN&4C*S`Su?{Dui|4!`et_vzhrSa5bmh-zn9Aa=J?FHIV+P+W zUq<9mV!xlouHX8Kuz{#Bj-53*n??JCKsd5O>p<|=Z~&!z?VSOyf77zPHTQqYU<`MN zKs~@B$iGp7xF0}a6FNeuGs=zbQ>f*m&}$hjPr{fA<7mb3bf)XwR&(JcwU%s7KH>>F zS1?=Evt1AygC1`fA&M|msTbaz^N}e{(c&#nR;8Hi#&CD1_3P$O`+PrR%n$R{7@AAJ z3K!%N50Qn=A$AkuLuzLcyPk8lbEj2WWy)^Ge2^^_&wK+fY0`guOBjWylc96`XJ3Xv z@K&D7T&i2q!EE1b0FH}~^}}hqI+^aj^({>}ZEq6tI%B)LsUUSssRSW@P88f2uLf7J z=1woZSV@k*YdqL=Q%7ofZ4H-^nYsV(4=UNeC$@qKRV9gCky-l*C8U1F4XlkT8~ z_gK;Sqf?T|pq&k;936#Ld}LGH(J*tnjyu?rWXS(kStS|ViSV&PFs0F}0dDUo#I__& zNMPxJp~PFOm=i19i?Q+#VvQQt7FdXYl0POkqn?F0JK*uIY+WdF?m6DO*F;@cZ>SR? z{8CTLL-ekg9O!4jrx9ZKW+%SigwIK_t{f4uXgHs!{`Lnqfk>&`0x1z*LKupnvnWCu zbiNs@>MBXMk1ai34+3)sTmAmNaLdd6RA}be;8f3ZTAYZNCiKUC(~o+iy(Op4w!6>& zsE>E`Y+w1C*=IJ44$Q7idL%y8g)eo=%{bv{<)<<{9I&%-7J%6apMyTK)xRU=4~o$V z(H(mb+1=vR?o4B93J@06fz-MPBA+@vck9wR!npvj=w0V|Wc2M6LC>|Lqs?8a5NzMf zVLZ6SX+^`h&3V~(z>Jb@Y>#;t$ZhL^6iL809S@G2!N^6HPsYEOKR}FtdXE9tJYki~ zXZ~RFa6QK=%D}i)fhP9xzev409W+mEE1wTpK2@$hvL&+5=_jDH5n^NUKrU&mRE>Y& zS2RK-Qb^G{=)j1sOd`eT^8nZNDd~NoH0St)d^=9$@mvHjnW6teUL6I&$Y4@*`Miad zT*h^umqANfk?}t0g@Ih2R~CKTb&9sog%QaFHut(T5W3*uiZz6mD|c!5(Z3?*#%Si< zePa)9>0;e;^O&CduIZvJ{#qAT6c=IGHM`RUFMkRAOn~ifd_*Lbmu9(K#h)|i&vPl6 z;#^;8?}Oga*2rtK`)86e(-bmEPI(@?p@zZ3-;BV>#i)Jaw{fpC?~J=SK6zyWSO80h&$$0J=8wXi-S9h*w2fS!&>(|g|-AV z@6n6_*x`Oi%#+rDtjt=Et&Oea(HH+V*=3JD>z0*Huw})z#Ub~IIHb~DPk;IoS-$K( zRN?TTuJ3^+G#ug~aB>d-k4-NLUR_6~8e$;BH$(JC$2WJq2xDEF3zG!8!u1ibv$f?Wk6^`qQvK#(Qc1EZ zURfqX3pvjwcc}wp3!XiO_)^m{MbZs^+p5aMJx@U6&;qduU<(L_R(LMcdq$WGx5&7` ze4mXRyuvom5(jh5BD8w6U5cZ;Y1;*OwrHdzv0xFQ-V%t9XV;1_-61mmIJ#`@?+xIk zy7b3`4&6tYDvH!x7%q=N`ClD`)P0SKymW^#qYpycnEE&I-%2cx64|B2p+|%O&h*0F z5ODTxXaf<}5#D_D=$8)JKDJosKP42qYmadB`(XLYoyR3mz0#YO8`k*cv!^k?d^zs9 zuQ!736-nMA;gBb&yZS6I;oGN-#)s7q`?=T`vBIb2=f2GNT`SzUY+I$*a=fM!DmR|p zs8NH@K7+Xj%~%7pRH|A3}$1xF)&@j?`SG8|vAv+vzV7nPva|%_B{>s2FA8*&3AMMdFhBKZD zAV;e8JD}M4&w(YfQc4oC_D;#%f4LiXAdX1|*=iaGK!Ca+?t>N*?{JpQgz1~1M)5tU zL;lhdwTB-_x~dr!$g)n^DrDj+>$9{WdWdb4CKVi{kNb=HW>LHaZr)bPP#)5W%)S?F zKkGK$dXS0O5=}ax$qoC@s}qt@bv8I&BxPdHF(%^6+c7W8p4;lh%?||7vtrSA3SM8n z&oubU^spPU6ZR|}!M*_d6a#DiEDABX_m|w?@Hl;zesT}8)x4NFI!N+5fEaUk=2jMM zaol2UH~Ao=9~F+7;Q;eCY`3=`ameu!^Wgvj+$>>dKIpWh?|;{|zANLxJY2<1mP*60 zJx%hzMS&u=XG}+oUK;E*(s(h7PdcML|7hWn<#DU?NhDJ9=|mexGsC2@t`t#o^|&?x zn9b3oY$ye9V`$+exg#^*)@n4Kb__lvu4tgVE22VeV+L;EqXJTIQW}U&Sz!&sDfJsl z%Hi-wc8NR7KOf{_!c>WiD7YC}``V~N1b!fk}@X+ePn5yrnOxBjZq+0O1T|(K}PvTxN|K zDlw+dcI5z!P3jAwf}6Et06Je~R>hy;INy%v?wlYISTe{Ojfp!@SCd*2lJ~&*9z1u; z{HP8NwN)&P&+W`42_>oEvzX=y?lX!Slmd`6mpy#h62WC;i{AX#;UtW=uzVBEq@#eD6uXcp6 zp$~RAs#Zr4Cmw6A667DH&IEoU^fV2XPwhS2h&Wxw2hnBFq{AXCM=Xf#Lv77fIAd8l z$^dM0_oU|>f%%dHl&9m$?*wC!XTi;ZaK~|Rq^t2^|0hWh@v6&)CD>yDtzxg$Wt?sjxYk4{SiBogymel&|!N8q6KNR;Y{`3TQb~*3w78Un21wb{BJX<``=_9#~^{fTp%*toW>MWZbpW zVF8=oLFDi%wfFH_gZS=MBHV-u6+4QVu?N{Vx@z-;adj?le9$-1vbM?31`sZI$DF{v z@%;GN(*qJ2Hz}WpFs3Ottd+ETw7wtUrsU-0gH;=~t3#RE0-E|QMvG+Uyxz2q5}Nhj zbAs(3>Y3Y^C6lf%1la#uwaDtkX@4>CZzem<?4mHr(}pDt>aoq;FnXIrP?VYgSRnf zq5x9Lo?v;2gF*KV{GM!w7)(6<$L(nt&fgfBJ1|U3Dk|J(*Mn13&^|dp)x|S3GW#!% z{fRpNm)BnsZH|nBCSb76#s2_l--oSR(wPGv(bT`tkH|RdXwt(0ur;XZ77Ab=$g@sz zf>EKOTvxz5Awc1JtgKY4&!2B!YY9G#+vRvq;ty-(&vaR%vVkhw7-=>?0dY;(!{f76dEu)w>w#djXw+?ViscHtz73>YFyex4n`Cpnhffu^CjP%+1@7Jq;ej0kTud?-z z8-i_l{Q+{|x@T@LF5M_47GIT8Hv2e!H9Ni|xIp}@T%1Kp+0pLkONf8rCCqG?mg8^i z3mN+pl$S#YUl9>;Y9`;&=J{#j@d(Oj3)Q9lK&JR^r-ES8z zeZMF1zV_vDSrMNwn7=;Jc@q8H=g){2hIQiryvficoq9|mqPG5d+JZW0`y1Ln>!xt0 zIN{cU!G3}~<7Zb@QnjeYf=IUq+np6R3xRi@*w!RzAh!-t-d^>O; zFXnNMW0rx|;t|TU!V($yptX3@x~mm)|` zy!~gFxU6dFTc4B4UwRsP@u?K<7orlYPZ6U|<#2NOH}{bU25B+jI?q^2E^Z?yVBb<7EE&6I3AE zE}ts6T|e)d6PgIhc7lY$;f~|D z^xb;`2-Rs?m+LICl?bm(^MYfLaeJ9zbJ=^_ow%(ZqpEM74(h(CmH+7cg%hdd*g^h6 zV9qPjb@-R~+gsIlgQA7yr*KZpuMssVpMRRmK_fV_oGP>v=r3$FgSbBp4M78^71M(I zUogoN@iUvGugYVoLVC5!+2za6NQfj{C9$;i3Wisv21G50bDL#m?Bh7z_vcCVlS^3S zX|*iLb%pAm25u4_{XKf&d%;AG)0WHVOL_ZDXIr12FV&MCWmXyXSc*b$=f@%vt+T)@ za~qTHz3q2}Z|&M(qp#mJHYj-iMcJc#pj50eT2wi^v~q-M8O!9m^07Dcro?D(s^)kK;(GgT2ea4ASiKjfJY;#? z3U^aMT;2YjOIeO}H~{|IVL>TqoRrAeb_6E!3pLv3!?xUHdKydol zwBObHde0}qgpv=-jB;Ey5XbcVK08wR09pns^LK0!l7fIYbElRcSkT)5DvSM70MxF?3nw}?8TTG9{IwhthoWBdu3V6B&-M=GO zNMO(JYEAor^c&JeW^#XUDd$el6FHUxIWbkXj#xXF=wC7jpDinOii|DF%jM1n4WQvQ z=HpAHc138oSVdjX?P+tL`-niJoo94mX*OIqs8jilpA;CFC!m`SsRS+yl>`LPWZE503kZndvi1 z#}*c$C+K1#X@MHKBVe(OpTjfZyT^tmgu%8ekGGC=XoSwYye_alEI6$A5UV5>Q5Lc4 z7`K4q#G19Ew9j1m5+Z#)_6?|94l{_i?Q6-n2<4I!ZkS@_G= z?hX&H0p;JCNogGXx1g%G`GgmK=&rYEO#^CBfr<8-{{S~0J@Mu%M*tFFdzb(MCeX zdn)>m#{R+Q-E;n)!nKU#FXf%=%){|Bnj6&~Evb(w5!Fj`scX^zHsD453z3Vt@EUpP z=jl*<#ulwd8Lsm>n5EO%Ak>BO-Au>9K5c`tZ)KHz>S}KzOf1twMyaJKgvc%S%rY>O zMw*0Ko3eOzhqtykA=34(%VYh(qIKzxy4EroRSwO1sSLAXz%Ta)z(WPb=+px1S>Zr} zF|pvEU^K%bfv;xoS7lqac}h|47|1cNN_gxylr1(_qfr?rTuUr*SU|lfanC56T|AUw zX4t?o&_9lIFjpOgh_W9N{fL8H#G6%_k-D>xfq|=Do zmoF`->>v9vERiyac==EPbWIs!&&YPCO-d)Ub7vAh)dq~$5ny=MlF|KpjtDE8;G6QE z^R#1pvJLfP6*y%W*k38sNUJf-=lqYva2c|7!Sz(ka?o%O3Z6{g{C4XFIHndqBq4fo zP#w%t?8Q-!6!88@I&Q5m}e1CwpabyJ(vFz_y_w?aL#NT=<5Ag*(8GrU6H%~bk)mKvHtri{4+zJ^MsV4PCcw>Z=PxI|$+o>Csd~x^5@uWnRt(zl zM)Mhu;jS-d3|BPJyG=GyvgI2rgJ(gw9FSkv*`weZw@!6r>#GBu#UiGAlp%N>CB(^d zIrL+eWb1l~{E)a(20yT4BYFe&eMBzIEm&CYI?4e5azl5h-zoM+(5NyhDgJTBepL5o7ST)DyZr$!n^1#DEhfz8U-W9>V z7-nfNKQj5|-Ou9?e&?Ghc8nZA;C;5B=CVABTti2PA`kxc=5{>pluA~cB$B8=g<+x)Dl%8|E{_><^RPNHqcy5D_snB=#jjk&(K3jgosPOsW@}yVC z``^mEeXm*Y=ZQ1HZqFV`EA90umG29BH`P6&D)Qu{z`iUmRkVGtq7<>%*(d5C^q<^a z!w?dMTRxq2MiyO4mFM9d*8}t#bxu#13r%MFCIO`IeZ1|xYOhSp`XnX)NgLYY}cWGGftVtMY0 z+_?bcUo_7pt@iCDazjs3caK|4cCc zUNRs}WM=BV@9-i!mMBU$X+Xkf4@1$&(%%eE52Cxq{WsK)@ONI))0me#@!yNz$bG-? zl#PFI^}w2OASa55D19?FvLD58v(;VUCEd~hbsMuOj^m^So)X3l+czSSN_gE~_J1O6 zJ9nk#^G59kc*i|coBwS`n~~6wQX;X{e-{|1hU_U5Ip&Y1i|)8gi-^xpbB>vuoP zO}nl|!A=$O4l8z=l!+i7erNTq?)qCayrXoAG|uccCbqcDpech+I}&f?$I^}sM;TfX z;e-+s?BIRf-J?*!^C7ycj<{C^Q5Jme8n>vByC(VlznwE6f9rnfjD;(c3MtfKpGc7h z@J_yf&OJ>6nsKB&$B9eqU90vb-F?G&-hxOfVtAuOkqu{4eV_A8+Qf)or_hbFv9Kj` zpf;BY7og#8-K<+mzn`XzC;b~Uo|rNch!>>RDnjLg1HL{T&b?}>l&!6aNN_{DGFZq42*03th!;0J^S$X56U2Zw7vmk4CLI4 z0=avS4p4*1;fvqahLbpg=3QYBl%fbCCb57F16tWLGqSbvzpf1~uJ%=nEzpxwS~CER z-wCd?zWZadv(|^%gmU9;XbrS5T;?!5HQhDNLJ=nAs2}nQqX)6r{o%R{7IusjRw`j? zNoQ6&Dwb4te9o-;^&rK89HdL2&=w_Dk7qT65jA z`NFuJl$o>v!C-&VT-#(>gvZFB|7W-f4XN5kA(*u*mdlj5LdNWiO&I7?NV!pECV`K0F!mSpWWu^1WzND z?>VcQtt(P!xTeLM@6tBp%RKD*WHdxB%c?tk{<9_GZ1^RS0}t-&gc!lH+2yABpk-F- zpd)6s`f@A{6J&-CjP%xSzyh>zrUJNJH=&O)D6%1WoQB7&Jy!6LP22t>VRrTI$!zMfan6JYr8CLp=&x4J2qzpE@^%QbxHU#cim2<6+{D=%h zD;(sV875no91TWayzLxB?Srzv#Tx!>nX}L3*7^jK&zs&;gqCR{4IyFgtdmVLlHqAA zB0qG#)smEp6?8WFZWVRYsN|>JL3iv4h(c2}EH;wOUhWf+5JR`NwnJ5%tD8J!V?6aW-!rF$%YE13Y_%RfMu7fiKOmHiD12$ua zfMpR7u*UbroH9KOWo~`spaY|2uHk5R``tgLSHx0;`Kr5n^n|(X$|R($mXBxgg8fvM zR7~JF(LEvp2$11Xw0{i8ZS$76gtCaM5iW~?0?&Sl&7zugY6QI!4SNzSpvt_(u)68o zT7wA<2%ese(LKV%M%{}i()K8)9 zRxLSt_vpK8eT7TJ+nj^d7edV+P#4N>TvfT=ei(}JS|Z1`7iED;qooq_8W)yJMr^U8r0Tjx zuFleVq>rwYXkdLacMXb?2f z31xtdLI9UTHY~aWD4JXQ4hI=t`0I^dXL0+3T%LT|7eZHkrQtbd{Z2fweRvCV*1dTQzH)FFtx`JwwX)fFW>O;aZgb^f##KPzr3jC`=?%P;sZs^ z%3ifD1mu{Z!m~TUH^ml01m&2b4_!g!wlUmefXAS4BDm?NVNReN2EI{H!%=qxU3o;x zg0gE4LG~O+30D0?JXn&BE%C(ni7K79-K+TSTG~T;gf})bjVUbArp8S|^j0clELDWz zTrcqq-96e^2;4-D$>C~d=~}0JE`!%dL?+%FIZ7xRaXrv^9M{klHz{e9XuJ4s zUV;uYsseYSd(usx9|?nYMsOsZFMe0d5rG~?PRKy0k29Bu)wVbft3UQ95s){$)c&-k zM5+v$Ta98P5eRV5h~A18QXIpSYCQ~^V4Ds1Vv*{~(b0+Wm_@SZh^cLM3bAD(X+TOr z?AJur4KoH?TDow2 z&Y$}UW!l|A%tJ8j{uzUp)^*mJ{fr3vnM|+e4n_Ex*qDwuVS^2L<#!T{j%WqZu z4tv(PW^eC?xz8xHaNt{{<_1W6UX2)CZ>_cB1-F`yLo01@IrC1L=UWmlN;IoL{(M8O zPiAlE)Sj(IkysOVeGrnX3l*U`PegD!;iJFU0~LAr_iTPFy@UX;h+n_^1W}a(9$lEN zj@em8&FfH}I9IDw$zej*M6kn4!sM%T;+sbfWw&r%z56D@WhC=vLhk)}CboPy+lZe@ zQ*++Y-zd^pT!wwM_GV;v#G3tWnP_*{!=UmI0MqVx|J)))j2q7^#s&5hc!_~hay9j{ z_Z`_y2)2^O9vdMpZFma(c46>2&)D5ub9s-vWHV`dqZ1@0K}TC0kJK%ZR5a%)SG%+f zk`L|HE$&jnaoQH7?b6s}G|eFbWN*rux8!n*7K;KYBIZ}bB#JKLIY)-CT92KxOg^-{ z_clb^zK=4J1JgP{gB&q?mByDyTGG5|&cLY~fQ|$ChZ5d)oOiE44s%GO>rktF*5?Q` z((NX(#q-2fJj@B_Gj!JK3-oh>dHrLJU&h*tdT&E7dtT}w0`shE;{jkq5DixanCA#+ zpxa1;HA#YAWwK}?VM=`zICRW-=9uyCZ069B_5;=XKJc_FWe0QRs`+fJN^$>d(jB7` zZEP`kKH-4)6T~ni3LoEBP%kU_A6i~hXiRUK;a08Qtgo>eWoJ0Rk&jdrapfhDgIOSq zfI2>;75Yl_kXHn0_EQ`@>mKPR23zMrdi3}2qpXNa<*g|S!Fhu2y)$Uz+a6fWM)jcZt|o)eI^MTrv32Fd_LM_N)Lb(r6}6zT1t5*HRWU z7oM=dfa5ochgIC@#UyIJuw%5yxyyFmOR6I2+~nsb9*C7+By;_>;)WARlAx?7aO1UG zciUPZnpqdA+G0v_s$^gIq?g5{3-a0CUGrGmYU8SY;{&%!v=K$cz>YWACrNDZezEO4 z?7QJ~O!ikY$mQrJaJunC?4XJ}nekdY#1-I{Xi}zq&NrPqBnYkd868v)tG#L3Dme4Z z4Q6|Y1$}8WYf>shV&-Ft3RSF8r~=r{7;fz~^4uKFvA(xt`ojG73C(TDDTeYRAk; z{lqZn2E$SJ;^O7~1j70hxaqgwUxVMy8YzDMs>M~q_7&ynLoiIqPKxhl7GM`z%us<{ za(;xhP7g~f@zDo*0hWT)9gg8wgTMg=fu{;s+)gE&W4hlQ0fpX$Q*N?%T!?kZ&nyKs z118lbDPaIMc#8P`3M&VjiV#AKBN)_&yH$Bey8Ea9+fQ-`U&zR-`rLAI!labXh_jZ4 zLBixDqNs;A?jdrJLSnXbB9e6B!rXmx-r0+8k5hlc9+)NdW_fX- zAcG%*i6!;#L+hW@+woTEfkK^*{Q*I*q@!ps67= zheS5RVInHuAg^up>U2o+`Mrp8X8rsfmAfRzLTq|4cZ%tqpnLVlc*m`+*W#{HM-6TT zY5ScV?9y;7j=+ywzs&E}{i}9X%P#VedLSY^8R$&`@PLZw(uMpJXyllIZD`Zu>m)*Z z74>N%mLI4;msiq)m^{Ok6_6uRUMO2BcA2VX{Rv^&DF7_IS z9*1nDE!~J}{+}8JJ$d9{$1|8JC=;sMt5RAr`v39t=J8Oj|NnSJA-g(b&6?C&%$t{$9@e^ZWhbpB|4C zbKlqXdOcS{TPC<6`u+;?JK~fRaJ%3pfii5arxS#N$9mfC7yIpCW=Mh7cMdQlonmNM=+bYRqH6Vj$NxbYLk|L3;^$0T(^w70Gu2p1C4<1Xssv5ni zkAwFPKXmQDsI?9thFkS;laRR63iuEmW=3Tiqb z*uFE*K1s0H>v&p|jV2;5diDG-Pr`0 zgK#3xs=0!ipww<6yo!+c8ZUeN$U?{ri8U*jbTd&S(YGaUF#Q(-`}Zuso0t@kPr_3_ z^RqZ^K#vu1HVG`5@VcS!J1|8o#t;^pcD^S4{u{KGs4tR`_d975H)#e|7mtDim8VX* zYYAm|qqXo4=e-_&V#cYn51d(4a^2QgrDv<-%%+Wjr?MkX-`p?cskF{kNh5eFqB&0?^y1l8Tr(iQlUp*23E5^L;9 znD(|*-6u@Y+OzrAk#Kl;hMwmRXXAj7*HO8;AOqvnvUtCiYP|F8uGR!_JmYVHZdr@*%8x(pl2H`1E;;Ozov#1IHpv1t>Da>Mn&-|faO?=6^7ctPw}5WIJZ zXLC@)C@XXNl20pW*qI^;w#~cK7~Z%jERm+x@^9~q>X0% zZ+M5Ian--z#K2w&iAN~<7TXbJ$r=#svKNvLO&QNRG=vyPy^$SBrIy&gM3A@Ndq^}w zze$Fj%nv<>FRhaB(%KN5=*0p3Dt*ow)5rkkkY*+Ao&@Te0r zR&p!P^5M$t^}@`|?M$RAR>0hfym@T97Xkl=gTb>a*A}<-CBlZ2jOvsL!F}JjBaUqa z)oNE3dWrHD^Y8qqg;QKT_rWedvitte@~5#hZWEg~mo9`1iGyGqKne|>Yypt4ic|g> zOn!c^L$djw#zip?xV+ltB+j2f2&Ng#K8w-emb*Hl`o_8Q5;K!WyS+|?7;k5Z{9~!g;3mB7c#J8u}pCI!Yho zHkk&TlV90AHQv4@SYcjQ;F;r-A^WZMvd`<=;#;83h$HNR(Jq`ixYFlG_H?+Hy5u-5 zydzdkpiq?^c28^<^zuz_Nn{&4*g-ijsC_CkT)|GwCf2D%ZhBveOEIgL(uZK%DwSf~ zZo|5;Lv-XApINA55;1xnV}P>NZ`;HM8_o+2{T8SP%O7e#;Wx*SQ*<-Le+}gkPw@DyjokHdymjB6uGZxWW(F;dVx6>$p6oiE z#P7i)K0WcNeE1%pT-3n0*Dj%`mLW9p!RgsW1~$6?t=68U=)+&&w*~U;23El10Ne2d zz-s5|o9i8aJrF1iBwNmTsE6r_2-E61WOSj)m-DF4 z3c8~@zVoQn?LnDez_cBJ)y9M9NoI96_-$`wvJo1=)X{Geym&z>a2K`iTP|4gNBW(y zXv^nbzE3dvzc38Xho))Bb*&P!(3>g*db3xL(d{aT6q3oJPkY8xs0#8VG?u^&<;Aep zD#M(ud&As-fO#anm3^%#MAtU?HbO zfX4(VDy16_mpz}?Y5@!c;f+`q-HvE_cIo@7!Y8;vd%agzlkYx$rh8X0fYWlNReV}h zb;Z8^O?uhn)yEcM+P24_NX&^42;R{d8Fx9@zONcR6e2CFl(%8--bHPSo>sagwuM6~ ze*61z&6x!3SyJgYvZ;hBc4R?8c?tn1DQy_V;&z-Pk$z!JEyCo1BdnGSWrBgmvyhyd z{+HPP9zPL=-#$Q7S^uG-!9305(|;ZQ?N)=snb~6d*jAYK&DN7cx>1!#pR`=9{5>^K z$3k5!8Ag8$9>kzV+T3w|;bI!KA1m6%qJuZkAUcBD%L*|Bw>#}{+JEVsL>Lj8vW@{W z6>YoL$eNcPtfeN)u0sOqD+Br|)Vk;X0uDyc#`mgDL9qadkLC0ia1l|iCNfh%5J9k^ zN9yda3VGXprKLggvuTCPvv#v@#Q#uK+Wx(O*|ijos{z5h6K5z{RU=-5KMn=6)%=Ae z!^gACipG4TEO`7gWW^zW#WB^Hk@(WbrTEpW0M=RxC7^U0tUhQZ3|U z1&R=Jy1cTXkxmhe4{foJZ1bp>36JYND$uEH|ETwkK%VI$VK(oO`#k`)gp?xI$8 zc&niCW*bY}PQJ&3-f(=x1wL66F8`l2@*6Cc6Fg5{Hzn~-&v(1OZMIGmwq|0A?|4#E z+B>h_`J1i8Yrc^8Y>YCkZbfV2F=U2kL_S-lw-)PL@Dms)O)5ocI~(VhQWqI`9D=Fs z-IkGVN(aK}5y6~%Al~&De-2*f;E$15t?o#(Z3+A(9y5oyC94t_QyfbK=@Du0#NRRReciiIHO!x_gUB}R2)(zU| z;ECTZOi^Y=yLz&koR%3p`+Y56LwV_wyub=QayD6_rNVV(Cv5)$=TVdISPH4f$0K?l z!0mgqa1GX?Qr1|`*0{>$SOaaD?R!YlZFBEBUY-4bB6305c!dsgR<7692qRw zOti?r!kj(&J}(GO?fWDaIGM09sk`-YDru&z|3bEq=NhIycxSYT-_?4W2}5<23uLzP@1_} zm*CB>bd;i<*?x_;m=gsjmU)!+vJ8j z7qXK4U#I+8C$W#G`{sAVy)Ddp#5<|K?1v#15qCV`jn-r5Jt`G%<#P!@fSLP0+xgJP zqqmFNqf1N(MF7;?xf@088gfqz4#BhhL{*Kz0};F?;OPWmyywf=fqE(18s&1gLIJ&B zB{bfr(tqrnUnc|ed%>0DR0Gqqw@9$0G3~z(WM4t$N&sMYe$dP<^{eW39ShlacR;$E4n`y}8seK=0PUk-#?kjLU$ zX)ZOC32<82)0qd1A}O7uLzVF4H$a8eqQ zNl~i{djFS3da|3$Qa8*}TX*#gQ`^?e!%b@;;1T?!9w8*NXz!8--lDU#xfxV6s19`MwIwgut#wRS{#4r zb$VO(CYIGDXT$%AqP33i1x`(PjQPcLWPhf$p{JL)SuRA*RYtfx9T zz(ta+AYK{D(`vqVJc`{~=v}4BeM^(ihC>Y zM&yrwnup{*t+t)tM765)-~{J^6qT&oTIzB^P>94ph3oEg!#~QAmpz`|Z$eoAGN6on z!Ot9s5qkS}jlki)Jh-mC&3Qu7-8>1uBaW8agDkw=API}d>}#zbG*hm)@KuC>;>0AK_ELEf>1`ngQr{pTWLZ1BJbdKbze|dI4_G)sSPp)5}6Z-npJ$k^(9l~ht ze%Cz`tLNFOtEZs`q31er;Q**&P-x<95QECOrh*s|I#&Tnq+;6+a%OEN7t~v=geIyH z@eOWQ*Ot2}IttK6Z-Ns#vUykWmw1c2fLACS4tDN~FkV6fka#IU5@CJHx}AXhO#K z_)cyd1G3u&Dw!(!{ccZ3Zm78U=|o`c4bi`7yYG)o9uvdwp}y?aj6qVKot*c8Bw-0S zB&y!j8TViRe{6zzr!iFpIF!BB3&ufK@1DuUNbyE zaL*vH8yh_9J__o+4PeArFb8M~G=mYtM>OZP+j^hi_wsjMl@S@+y!Y3a>5^KO>M`lF zy&-m3*vRPB(7J~JK@nRTlUGIr)(;M{KrVuZG18?;$No?)-YvL|h28)$lkh~lPE5981sx|O$H;Sr;aH1M7t<@tITDYl^RYMpk!B-; zX92OcUf!c!3&a-yfEo{rv#MVlbIK)FS@yi)$7(0VsRLX|lyX5i>1UG$ikW+Erwh1m zSV_fm`{4Og*?+Cr$k&UJH6B z|G|JzNMh|pa{8C|Z-N;;PkB)zTa?n&do&892h3zV{s=||Xl7UqKv6exy$#8ajlKD+ zJ5cMQ1Au;^Y+aV^+05*F?%noO*Y>FqCw$3DAr%wzPlsG0s@T_!w69m*@p^Ou71Rw$ zG>>sglPIBvASbny8VjMRP~lgw`D1(LGzh)566-Fh(fy9o;jrsFv@EsTDGF;6yYPnH z`UOjplyUg*I-a4Os7alH@(k{ArnYdVpr&@0Nr~8v5KpqxSLC7n@hZ6ge=s9VagGp- z^SVoM$FU|-uKfd2QU<4AwV2oZxa>;fNdyswa9fV2M6eWg?yA>3VfbPkAbglz<84~& zd?^liqxBag7Lt&+Z*-u8*YJr`OC$ci!|uUn_s{63dXEHO#c*ykuV0IB(gMiJIxybj zQq|f1hQG$~s0X@)CuPEGqQY(7(_)qJwSlVdN!guwe3fyfM^?y8m3?S4xy+5kOcu<4 zF?q#F_q0gi00d9u@@zEg0GJrBjuw0xi-fC5(|hR}D7Zqqu;MH6cw}XK&n{bWMQ34( zYB-Cy-7rgB!NS^lBRcs{!*fBlE5lI<`;wwoJG)fgM56XCw2Uo$zpoJgacdgOYP#Su zcbk%YlmMT6<=Vyor*9@RTKOA^UKhyDGnF~OHWjGH`bmm)Pe3tlJO3wNh2QCaH34iP zh@6{Idz>tpStgoqB-YBJuS77c0oknS+cn$P89qFde&9r#Nbl|fZ-mEr9gRLe; zC;TmYS`i+5*_+g}o$;2iqfj{969ho2?dq63arh~CS=dtZY*@iBtFvaDgpg&1@Pz-x zqK>spcqga4(KBfXQ6|X#2)mBie*KsUaF#`tN3mtqI;2S~X(={I3OflNwm0 zvXi+eHeP5iq-n%^@lj*Rw#_vmQmM1l^Fn@=1n=9I%qFn(YO)=-ffS;ME&_C@4chV8 z3ugTRsI^ORu{c+_<}HIQ#kvIRNpikJ05*Lmm2Llb!|FD);P=j3O;cy|4P;{+-bzLa z`I!7s5qN?b)6J}SfmOu96IdWhcg{udh2Rn6X2F*~Eh{5gNNPB?6q`PT< zR_6AcwZ9`b7OMx8je^&AC3$w-V9yNBQf@4~UiJ=w{q#!3S!n__c-V?aqeZDo)#jC@ zI&HvJRJwfjv)&TyBQC9t#E{;bsLlMZ5AIi1vkoSXQo`bJOI? zdR4O1qmooH!kCeY1sBSv5!3|$(BMpA;e*}+yKg^WY7u~{FSx@B5DRFqZFKJJaly!n`CG&Z6h}*R~Si=Jhzi+{9VRr?l@F zJ*zIu^POgQ?K{6uRG5kWPX2*QkqsO2Ek1k4ErxKp@U7}C4Iq?!y?DV2rEXz0SNa2{ zi!6wJWns5}d@$2Y+Sn`Z%+W?HZs99WBH&@Zmz{J=97DzYy@uDNoW`5HWEQ;0uI-ZF zl7KqmPK0+_d!qQs#>8ZEQ(2xsy5S@OCdArAzLF=r$?uhb=;MbU&h({uma$vj%5)}o z9q_$GskW!eu;;kBo(S0FSX8PfiO_8qLkI+b-2rH~;n>_ZtwB$Hs5{vm;AQnFoXhV8 z^)#XKF(Vh{5r%i+(ZBHf2lFzMGgK*nPc!G*n|d1rWLn=FoslMN)6}l<*_D`uGo=Zh zU7MeWXKtZ7yu|sgSm3vWQt71>QC`+~b5hn1!d|l4+w3yrWtU{Gi(TtPBs`k0+G+@B zxVNZ$o1^#}KggQV2`|uu1!TkGIS4*sev&diLoxy5sKI9g0_z-U>!9xnFQHLkZEX)N z85V7gf8L|b`}N{jf*AtY-^Lo_+T~IduzU5%J+L|hVoiIDsfOWM`pjy8f;vX}p=`6z z;(@}#@clr~W2PBki0DC$%5es?xyU?L4yow)0uH*xxX?U}yiFi4Pr922eIvoE!{CPn zjPt^GAEDDM5SK*_1aNuWAyZv^uYAp5-ly)R! z;7_lh{b2f3W*I_SVGzV3iYO;_25`J3Fl5E=ql>$dx~Gr5z*6V)ddp0LY9FI~mRivys297ih9^n!w0t$< zr31pe(AJjI-wE)5a6p?J?-_yZ1#=-1$cC8|W!}DuHDHM{Rx|x7PS401&-4v%!0=3? z-8+w#aUw9OFO-*n^gYzV_sCw1J8q*vBy3dWzXuU-(LDeyFn?kKoCH`(ss+86Rf3{#( z(fLm&M;)c*^27c@6ux0FO6;k}K~n9hlM<)vnvbhjs44=|YpPAYzH0>47vPHQIa*KK z?~falGm!(;9uH&rnz!oKL)COhr^cIQ&`LDPQ)?{!p=UqMktAnMf=a z0hHAEFOxX`&6?|2hC$a0*5ESW-@U@Csvvlkm_5NfGyFzYMhEDP&MzyVVpq2tCez@(`QD{cz9gelZF9 zT1twgUnfEgMnKz9#jtS2(1w+(HkWM0WR@t8wfhrES(!jIbnVw<;D~Qcf43=5Uuy5K z-~ql1Bu{5h^+b}L+Worg*ND{lC;7K}h3Dls&Vd~_<}5o{jfKuXZP5ZBPnO1~SCc#> zIw7JF5$e=D9w@%1EsbAR;&5og!8X?^KSxkjVUKk)MXg5Obn#D}EzPdDH;2+ym;LNI3=*iWxGrd)|H z;5#$<>{jey-+8a*?F7ZgniDAVSIuAD#RL5EafkX^PNBKH&VS@Ip>f;&9WMEFh#}}a zt4jm31 z6e5-HFp&GwH0_GTtQKM_v`qBFFZ3TKQhU#YLd7Naer{*p|M~KWezaUAraGR}vT*hW z(9#JFd3fE{r3`0Abr=7cw844FblCpkXQ9~kYZWSoE^X$ue{AKeH_aheF;E|JSB$L- zX9;)E)ENGBXfJAP@i`&<NDFeu_!ga^k zV@eFaIV#qxXreFi8)2~GYOY^J1>3j|r$;coPR%G9SZv#btH%NJuB0;-8)$}~XdCfT z!fvU>Q|Rkhkb}!=>h@(&62s03kyJ_6;oQI|i;4Thq@5eP7F}_=O`_Q{sc=BCJqyXq z?!>hcz(~95aYPhkQqmK4!Q62oRPCsO@EkWL+XVqLz9JGpUi*3&o-I}(?VPM=Q+-B( z;(oB@hPj~wbD(R0#1v?_(D4RD{L&6I_B+*@$cpNc0$3- zLEPa|7y=!}#i-P(P@WS&f_DeGet8xi9Z{K7LUxGBf0ntn=V7lhTl4;Fp{N zh2b|}iO94PyhDjAk%3Dfqo!*oZ$~FFlKbRhiIcvR1&S{B1Q;VB@?PMtNl$qKpKJzh zWUe{1F?^5n9e0F^X`*eUld{e!c+t?msXIIk$zneSZ74?i=7r!#Ud@cfN)>n2pRUsc zc~bqax0AvJmzKzbv|!f|(fWO7(^P0Sx29?f-Nus#??fH**M6fr;U|MbR=5T?>TN!J zNP$>mQrjPNhYEz)=l*bfCG)MFuNJ25co+&2A`C(M-NU%UhnG<>Bhr^PEFcr#4qVlM z>HB5Z*qQNO7=&9S{q$>C2o)pkWUu;@3!uH|F8Mc-tWzZVe;OY}i#&#z#<@pzS{o-G zp|D&&9^!mS&KvwAO;HnUr+3MDWln=7zf|nnF7?LtF_ZXMU9nZE|Xv0}0ZV z;F0Wx(@5zmpU=8H;sST??Eu%|+Gd4sLm!`V7Rv>Pct+~kYlyePHRuWpL?{GLl1+V0 zH-OqpKib{Fg!8zH_LC&)wLS89c3VPY>V?`{8j)`LarC>f=rm z7w`eHX)gwgf9n|ZYPBtW_A=5)A`F7jhdKJ$5O9AmN1=!*1Y*D?@kLdT6hA$#S%E}&KN%6zY2ZU;G^v=&fowxtfVzPbe|tL2qty8+X8YUE{&UUHTGvSrJe<`S8T4UO z8Va;)4h)B_E`FUYdR-y^?ez)0XXg8JUrm!&R_VJr(@CtLYoY90Nne z{~qC$$&;A7s3uNtn0p{ZBF`m7c3D5DSE2Smm{|_cGRf`@yece(M9@1(g4eLRRA|dT zhUOG?T7(E+yaO;;uyJEU87CHbK(pobnlWqa?cf`DsK#Sq_3J3Dl~q@J0tIIJNKMaFnCEg+sbo<}!7=R*1+{wlOdGO$BzCirB{%2Qn2{85; z`oFBaO2v*Wm%9Qoae~6#V!z#baZ*F?_W|u!F#NT|g=FY(!)D-F7jQl8!5KQ6AOUU> z7y+4Q7DMn=bX)|f47t{@5+X1iyBvR(b9m_7-9a4*H?7g9rvQG$>EHW31L*BX=~FVT z6{q1`UATA>0qPCkoq^ybqo^Lye3!5axuwSJ3nbRqtP+-g_$>-y?8_!7wam{JmVuq( zp7le3P=Q105R7+Ib3*%P!r9|;R|28@CQ`Xg9|WTB(@Na4LPzD^$f}8Ktf~_?5Ol){ zC~HCT55%3tMV+WQ!w5<;yL2NNRo2bB4{zqO zb2M`R17Ec&zcmJY-Pd-V^?$__+i!NjTV9lr6U4x^%^ImRp`rXdaS{cVR_ok@_SU#k zA-W#!HiE@(ZWvO5U!{3`zxAq#v)JOcxy0|kx>?Iw4XKI1a#UZef!gC@1nuB8S04Dc zpriTSyHYMR-&B3~=f^)N&ZG=<9kiKR8wA3>b#AU=760>QF>~oO&}G5!O4tB`!wPio z)=m4=@z`#<8*l+KGZtw-fszLv2cZF%lB7M;8>dS!fHy7^IzNvFWy13P%C1=##3sfv zpWKKew+PoNqm>A zv6fl=?nv0``_bYF6imrax#&@;mjT8ShNHfwB<{j#Mwv6S!RWib;mdp1phpi(rEkB0 z@oHPlxs4pi5@)q$Q8cM}9}f?Bjx}bXdy*kaan~=>tVX_40&25s*@{{j*Rr4yUwqaS zuxj`^6#%@c0Np)}Vb`?|>MCJ!597jFo*K^uK1XmDl+*CW9NhpU|Cnku3YWhGHeevu zsPUKpH@V+2o_i|45+JFzCsGn;RwIRB2AfgbG0^D(LVp^XJ-EZH?*OLkSSnFY#6Pzj z*O==yXy!l0jNy9)#y^JRxecDx06Pw8sPso6|A6D~eeSnA_pI-#PG$fnsBbeg1XiA_bA8B_LIsy1Y#_#|^Hw z^Ty|_T)G((#3DwBXamHM5rXE#DD62c><{s$HpQ%a5__tMlGlX7)Ua)sa#WHvmYK`q z#LST+pnd-;5GG!u)7`8~qHmcd>U2VuOo{p{JRh~c0RXu-6nK9Bif9f;TO{4T`}ZRd zPpY|kGr1R+zxcMl1T33-f*BN|F$#_!)JC2N?fNyjQ3$!`|Dix)>90+CmOqRliP3dO zMKGr>Rqr`v1V>Zg?5ktzNNtJ}=ipMBUDMMyPgUt_n*|VaWQ1WyWM;1%!n3ePbJRY1 zNLGtFgP#T2H8#swAuV2h08#3}zYM=SbKuHIycy?g{@cA&-|-L!xgV!~x@$@~zPlmbkcQ z@>jw|kBCUg?(C%2xKFd_hxtI@i+R2iZB~T|zfm2{!>;3fYe?HuMmcWKS_9*V%uYmr z_iW@Mv}0@fyk1XKG*3>zS&&o$It;Q?@Dyy`QAPW3$tOH+aLd;r&?kzb_P~--fbQI; ztHRhhg-PSR44luC3z~#I+J80D%!U)E8Y<7G1gi8Z=bL?pKA)djm-l`1ajRe^mha8g z5DV2#J%2)36;-*q4z~t4%~#yMMI&DKXwe45WHWT(QeOWn(p2!ZpMdJ^UqEmcgQMbZ z{}DAshD9&tEAp}q%w-`<7@uoc8ycK}zf8L4b6R6P1D?n?^w?&$F*ZBi^*uwolBW-2 zjPf1&ZV6MOjT~TB*0vP4Ar)XNu%#i}MxxshS&Sp0>sBtA8#_S{3uQ;JdbZc^kW9~gW0X8ja9M2PX;@fKv;{s2{K6^+YN1eU66ProSUNJ_SJ`!ex z4x1xuhF9*dR*mtyc0cAL9B3u7tsOCGVms;NK%h3)j_n zuP=33xqA>4b(aEy%$3kXe#dQ}jS$p7>lpvULJcbreeEb=Or%dimnhkP5^x**v7VoH z2}xObZV(G4+lvput9aWd`$!+AA$TU~kqs+Y2B&uIi9{oi#`e@SHi*b1>H!UGLK)X! zeA^6Aeli=mG0BG)C#lgQ2xgwmr~{nSyRZr&$vfj2@c84mzqLf{A?{bT zzD}y7n(J)(@Adt!FpvgFE1;w5ir>2bm;IMta$T{LeKF|F)a)X;zX{Y4WD@2s0|!6i zpOX2R;CBvM9oI%$mCGn@5E>jdeH9}aD_RiTDn0A91qAd5EOWoee^z4QNqJmaQ=oI< zjhhfWo)rvwKx>BbniD{Pe8P5T&awxiZGXHS=mQss}KU; zsdMp!_R$~t6(iFu!Qe94O4-R0aB^~Qo8A?PU-bnD)5z|pS1C_OwUdj_-|NT85E%Uk z?P4l~yd3dWv~PMEy?VMM3V6|KL26xX`vZW*t_C2#;1ND|AF4(Mw5K9qQo5SGxDbg+ zL^d8+XIX>7k$sKoi0x_Qpb)9p$!oV*%l#xFAM{`Qi zqz^74sO7P)AE$!g<)80d$+hB%_PA>gI1xU!Z1vKogrD4ufuqUYtKYFZe~@|>i@h?b zi;*}B@ANH=^pS5T-FbN>nN_Fu@$l?nE?RyMsE8UDCBlU44lV}Hb-~}EBIR*9{kS5d zbvX|W1hDSt4Fy*ujOkT{yNQ|OD&%0Df8_j=+F&dUPukFZV}U0%PU(q=w22v>elULw zTVK>l1Eb(~avx!Bi+>7e3caO4rPl4^ws_%pk{(aM$JMvUVG!VI=IQ}tz#s$r5ua)S9;k+g#hmaVGhg7&6*#+kD^L^{`N`~;B; zgj+m{-Lgb6t}b{F#(4?m5+fpuy)${TxOJBQEvA{q2;gd4g4g&9k-}l5@`DB{%8&7(@rOX-> zI>3APZaAWKWT6`Q8hvXlJx3zy*r_^E!IGu7I|?ICEhdj%0hD)^sx;G|@P5vq!5oWD zf=;1=d7a`n!~Tv`q6c|#HV%$-YzSOj!6qbwCx!Ad0d+~vVb5F+}Y7K)nXkB zWmJO))}oWf0B|#{!*|dqb<5rPn$TbYDmJ)x7WAmqDS>xr0}XJ%lsi67+#k_hg~KA8 z!Q2xB^Y&PLN6pAw)ZQ2kBA2%`qLMHG)0=CYwfZyyf^_R&Jtrg@=r^K3+%t}IJK{N1 z5;@-3WesX?V8*p2nZ{mgcG^FgZ^d*^yR4tQZ=Vz)GV+YSuC&9X$o}zG`WYV|y2W|U zwp$Kn5og_=X}mXXPm$X$pPoJB5sXE!^jAH3p&g0(8B);(4Wbhw7rtYL zjbc9Nw<%VC1$GmNaqT2$IBp>hQABOIpeCkjc=q&Ej`^tk8J0lMD03Y=@UT^v@LX?K z*d*Q9Pa<$Azv5Dh8W!Hnj&O;lDUps1E08M$Zc@{N4WEd_88bfa1)jY^t^sc-6f*M_ zx$mOM3ka*q?FcjcG?u&Ms{SRgd(EA7A?@YsQ$ASx^FletBps7K0W*BRnlUKF)cL#< zIf)p5#By^^7l%g{^l0NdYeJ;YLHrJH^{?ot{~kYl7eo>t&F#HpjdIA@n$ah)7S)(& zo3u80)M696b`>p-Qu7>+RGyNF#?xtKF0(|smXyO=L1|4ny(Pof_|!#WP94(J+fV7R4pfR9)3#l&&SET-tqkFm9lLkMWz@V0YI)k2hx#3e0@}KfH zPfq5C;MJ}Dsg-O^0{zDwGeJ`8JE6($Fg$QsmH41BfF-A|-$fN~1-*{K(xZ4G zVl(WxB2L&(7$^53O1||loCDBE=cmgCW3>M)Lq7il29VM@@e-N zal8U_D7-jElb#G{T+Qs>LfH&UfP!+;>xUhKQq4G@6#MA6JwXjBZ1RMWxz0TdnD`$b zYWn|t!?R^XR->Q`0&hX)6)lSOI$k%EOr4ixpMAr`HuCLu2+WWyVL9T?LM97H9(r-0 zvj*2I;?%ql-=H3qbaRr^BqPK$eoQ|8RZaU1`Q%8#WNv}rXFQ$CHw(~*Yzz4C;oG@> z8Cj82D(@{CP5uSpTx}!s;86DuWHX9VDfM{Si;2WBX=<+RNU>zHSZH_yF$5t>5pwGYC{9fIWO-8+v(CiYk3OkhCumAev^l0u|Kf z-23~t&wnO1+xYj^vA&VMwCF<&SC2efe7pw^u9)~Q+KCeYc7*!^7^Lf>|2w=*4V$c7 zJi+uj}RYYY#|$5DH?{v9uBaFF0o_S>kc`)0B;6wKqTC+S4v7+s7Mv!F4IlEaACC&BkZeAtFJA{1Is-_m}yCsW(HTeOH0* zTJj|53(mN)=^pDhg!}*LW!ettCs<_37!^4$4^yY2h6ni{dI;0i6?!(kEz7~YLZ*6- zbnbEj5=6eX*s1w?X)8;XG_>fqE!LM zGK)H!f5_FNsyzjw%q6Q_dNw=?A{wT(u&N^0DH|N6^QdqI$TdENQ`d1gZU1WD``esz z?^R5UXT7}UIV4ZPg!1j94WS_a{WDO7iCl<0V7My_H$>$rkt`hCHqB4yJ@Wj6p{6te z9#HPt#A;-7Zvn{=NLM&YJDfANK}iSbl_9OXwH24a$;NR5wWh5p5lGs!ZSxO2S|t`S zq5Q#uV_MbU5tL+iQDVKLW=LxuBmm6qp-(3}T@$Pp&4@?yH{8Jj9qs?zA23T$i^Y|4 zPA4u2DO7jsTMM~(-jEK2urTb}Go>=th!4r(lnq$Mx5tO!~b zi^C)d3&ar#v;(k}>=tiPEw(`p$$<#9M|mnO_48k_nP@hM zGrbNDfbw9o}19VgnMdY@CV@k-7s80@EJ39 z0UK!rYrnnh3Oy@rcfE$$W8k`vmg5>+8>l;8x$qbFg+hWV(v_jpx-91aTfR&q<>B`5 z-I=9(5|a%Hl3#`zj^84uo&5A6&tCKTWM3Bh?BKxRg5>Y^Ybk%x+TSH_58r%##^~9X z$#3ftUVoHQQ(}^t3R)nhZa*Tv=rHd+V6!{@H?}p;y|6YPV%YeBj2%FzcJZCe9H@-{ zF&w@4!FlN|68+l5p$|8X4codj+Mij!>jaMQ6+ zB}uW0-yD4FeN%=+rK73%KzeC7z>fJ z8L1W-r>BS8(bmpnY%jP${bnl{4HabEyqR&nECb@ET?sbcCzSXdLj(Z!hSS-ZgNR&~ z(hleybH8F_S9H}_(#GX##>aQj60X6oU9N-Bm^ffM0O7PD9$B{}x%_^Xpo8vqTOI}J ztE)4UjFt+E3b*?Lw{O^d;hokzqa-yF!LDi|H;)r9etWyM$@X>9<0jtqAYvvA40d28 zPt@Nb&P>D}qRyz+hGgzkWimqP7?irIH~N=A6_0=VD70?-r2gi4|@ z3f%>;^U0in{`mCqo#`%3lS~cZgD6nP^4A1-wd@=f4aL>S5|~Fa`0P>6K?KToz4vNy z(7sJ-8|bM0SMJ*p4Lxo}`kG|K3`taFU{dMGSP-85?!Kx!Zk9=`xZ8Hh5yP-0P=fN% zfxU{DO;;pqHIpl)GA^rm$nE!Ug7@9X>PZQonJpTq8!L7 z@#52dv@}V}Ex93h9SYr)Kf42UU406%xSGfE#a5a^MCQZTPv$7y_KR$u#fntwV*L6;D-eWSPc~Rq{FXvIsa%$g* zlGty`7vK6}MEowAM&^NXJj$Fv4{m9BV2J-8vq#SzGSCb~J+5#T>H0~DWQdi%p5MlG zH?>B6X5rUFCsbbIm5JAX#Ko|QUi$spcTUmoh89OQJI#6vP83J9zI}XBq5Tw(&+n!_ z!2Ja(WwEL6T=E|-jU|Sg?vr9Cb~BUA&%dnEz;2*zEW#{s&8>uS?)&0KL{^8uSfYs~ zUlPV}DL=!TNg(O9J2_+T2H`;gl}Ezy(wr&ez7`#4ziZn{SE}*uD#w+;2oN=A-%=`H(HZ8{n2uPt3`a zC%`P<6Qb?O=@h$%paZ^Y_FZNmHX&)_Yw@%2?3IwPC=wwz-(hoZq8qmO1c=uKA5gB$ zhNQ)4TL*ux0u?6hxtHaxh%gf3jf2B-3#FKj-JjylHo=#*< zr%iOk2~B)NHpfcFdsea!!kmH8KQ@pxBg7mkD`;t+dL5)#epaplq67gjw=NH@#pS+c zh!P9WcvrM5*U6X}rzK@`a~8%9q2Oez#3!1D>U)1Y9G|`XF(DHU-U{r_WTyM159Z}1 zDZ`Y`Hr@lmwe1KE4LOpyN9=)IhmHjxhTeVae@a@^yi{I-73)8d z>jOqrx?Dm2;$=5A?!z2F@l5hcx!?}G@Bu6K$t2S+v(8tt5^F`w;e-lTmr!tv3WvDp zW%o)sR-SEXcFhHqW%!9H=_;Vql{!{0{Ur>dJEDP58z%4E%~k(-KFcw9sp31z#$2-X zFCpz+?r_F`c@+m~F0T$!R9XL}$qHI+?O9h?M|cZ^w)8{)moVGd+!4i6LKqQKQc+Eh zV}5!f$mGobvSTD%S*>{pxKv>Fk~AJ3Z|l$4+{yY;Sil_%Ci}q)00PQy2W39Dr+3Z- zq&9oSZ?HsUdaIt;;%Cvxl6ZQ?yT?r5LjGH_iL|OmR>U!!Ycu5>%WCxdGW8bud=xJE$QQn zsw)>lsB;B4lEyt(yBl0ADz{UW?p}_lNDAYV9OXsKA7d>mr_NiqP&r=u2UOs{E_bC3 z&1d8HNwue0I6C{a&!k?$#A|%wn+x#~ztI$|&P!NhK>P&jgkNZaFG$iL&kW_>?LG8( zqhR)w_kDj(2Yu{X9;foiDH*08GIMIbGPXD>GpPP+r{4l{qo?e*fU{{FY+)K$f-XQ` zSxTF$E%<~6{0L*@9%qJNWNX8*|HspLMm4d%U0+cUq?Z$EQU&B_1f(NHilBmEIifNu z0!ooGARsk_CPg|bB3)6@gAtGtq(wR^9f{P0CPhj>N&+eK+?@Y<-?jXpOU*Ll%-mPm z`?pnCD@A(*gw=|%bylIqljt3rZJ~j@K8f4Mr^cz!NEdNOOnQ)DbOaAo9`izbxnhI~ z8=K!Bc&))rKz(;PP9?2uaOWXFrjF~V@pvc+5aS3u4^9w(SaB?D(&{Fo1@SG-m<0r- zWnt&slI6J^40_9R4d=iti}(w0WJf7ocTg;rv}S@?=(qu)Y)TfC89kt0Sl!}!wqk5b zksaC3`O;|HF(>-@S*OSE6keP=Nxhw_U<1DgSspR2bNpu`b!eXxB6PcAx`NbNaMgNyP8;z+ktKEa&u$jU9Cf)IY^X&nA z51UAyb&CBNNg7pf_x&o*jZChfwOWCG#IE^I-(L-QgeRwHC3Na1zp4XKk38Ysa~uL} z-Ap~E63{BJWO?lJ8$kQyM*Z%7T^!5=GQq8XIpLx*>PfA){49pxX z$E{i2v}_!U=m<%bnTvrT#~{2n`}WIKyfrVo$lq%eTcL(0p|H>#+7V6Ja`}%%MP-WcT{`)bjiEq%$)7rWP#183>LiC z07I*As)MYYQDh>>t`&xi!evO^`E;PJlB$Z31Lw_DB z8lm1CHj0)Pv1gLK?Hjp(?2aTn$9J<=yp;wD8VeDj@8u7WZFILk>&9gUJYZ80ZW)s9(w$X1aeLV zF^aI>M|lr+wrkqKyg3@jV{18*M0GKJv%V;lzpc7 zPHL@=^VvIzM?3y#E*GBOn{)Bm4_BpVi|MF)gv;{#kN9@9gh;r=o!)*F=e_a23~_8P z*Z;zROV_2UxLVGYVFf5;F3@`=|2h^%>>O2)WA!p@p5Pcax|?hf=1ArYNK`l4={I$n;g66m(l)2b!!dgr? zs8FA$24bQfm#pzW$=ZY^(iVe~xSG2(n#Q=!$ZCvZdc- zDe2^Xv9>X&ZqtkNm+Mi3w7+uf=6n3him~LpRh5p;42FPg1uF7gDktx0BPaTfC7}b2 zu!)++_;_{vdavJ*MNB*P(^80R)%M7?yDGBx=DJC0Z^5%>7-8Rg+8*Gj8Zv0d0}&8< z(=>^7>>p7-m@j(sEz)?s^KU`+@)iH8MPGlfwFDR4cd{U{6;nvu%1?kKZu8lXE0MY2 zuAi}}@SujLB=CQ!hK`406jSUXCaRzBgUt}A7IYgvytl^ed|gjUu#^u-N_-nvLo-5$ zvJ7CSl`39${%dCn#Y!_)i~em{L<)2&cja2`P?10WQQfVnfvmK+e+sSkcSjqK8`MvD zL*#DIU6^MVYM1`06gzSC%a~b#=|kEdos3PceW{^8lME7#nsi(*wP+7<`omMH#$Vy3 z12!k{-KQhLVg+JAnC8A>sL=W+3_ke3AAqKAvB-lTU?Q_y1s_VQO}*%`m-x zJlt;eR$KI~8Osnypn@L3K-(jSF+`GIkiAR=Ds#;5--aYx)KMF9K*X9SpcqZd67T?_ z03jYDaHQDaE5q>bDqvzU?Y;i#M?Rk*k2AdmK#fQfI#M~b-5fT9!%}4YC`IVUD~jaJ z$MmqhMCy@6-*oa0A6CbNfn#P3q}+Qa-LXG82s;vvX?97t9J*w0>_01Zr=uzN$;F*h zhbH?k&QHQ;5AbKNbLuJ(Vx_l%>W$HquKwo&39JWLv=fBwg7HobVkDVrsyNDhuYSsj zxN@@ZZF}GEez~u&SeYW!1aRjC4!%n|*Fqu0)R33f9)%2hL4P2YUjRT^r;B|R15M}TKLfG30(JWQugIwqqJ9b zW5LFqi;YC*g1ro;v~G!kJ&M-XvnAOa!k+<0ZJKff-^*wL>!a(KmE$chQ~xPCT*K-d ziN?@NfGKLk@%QLpk%57*1;2ee>>mr!mq}lV+du}@HzWBkB?+z;Glo}l#Um@JtI3=*#?*z!-p?cR9tt7`ydp z_Y3BeUmtKlufth(PnstcSceKJ2c+=U-~9l$>18YkfHKHnHA%S+Ru@zrCHcaSRZA|$ zT*dlwb_C-$X6vcN7Y&jURMxn!aP*Uibe!(5GR#J#q}_NX2#JkLkiA6Lir$EU7ZDBSXE~(yxOr>($J@3$au{M)Y&aWt zZ|3GpMfS%W)n*s4^!l!CJy#^W7PoA=r7euDG7Y-#o`JxCfjkk?`TQ7^!DN(#hk50iJC7nbZ*!?3xaG5 zPcQeJU?leQod$JV!1tZ%8p?R%$Kss**W=Q*`!c7a(q#J?m;flOaLOAz3YpkPq)0}v zH=uMfSYAC_{vXUP$p%Uh*rcU0GMdMJN@gJo-40yLbg1weMas~0yC-X&Iv(}B<+$?|Iu_3U8FCv}k`LcbQfv@# z2t@Co!F;lL6DBQF6Vc&#LLP2jKbZVw?$-{83(6to{JZY58y%7J+VXOck?6!5*5+o> zf#N`*9V+s#0PK!OYkiMzD~|(@h3!ZRo-{e>9+_cWQxrF9$5bqRac)y`% z2Bkoesh|2upi79u0C_^hH-EW~qD3hGMC`KAs6Xydi!@aDqDhSAs$J!UZj5l}#kPIS z=MMC2eJM_1s{)lRMR)kXvpSX&cgS|l@P=2IQSe#Ikn&$}cF(AjOJhPDnEmW^m9sVA z{IZ4{cqQKpkDYUgy(P?}h4ieNo(lg>rcAC?){uw!zxuwY-#ew zb^VfCz|p3L?Hvt-Vk}*oMw@;VSB!JZAAcAZuPJJ&xMS4F7f%xcxexZw@WdUbxxunx z40*0Nj4mL9FRFt)m1X5pb0&Erb5rfcQq_ z#JyLajuieyv%2eO(S&#Ecajo*HyIUn;4?@`d>8UUXiSxel-BJADAZiW>)#*I_2_qN zLt~k}9@}$&uCIZ}@Y5=U$Y%r#{LJDVAkA4}QrC{`%7;SPl*G`~5)yhW9%hQNf=2(W z6^9tFx&LLGb))nhuV2`M%Za9s#$`lHqJb*$^G2m&{?zkMc-##Z(QznppaYCQw8bW5 z>1q}jEJLW2W6+>2Kj8Pu!+u8}Gr90Y@XKO*%8>xXNY(yNYhCd8Gzuiu=$FCdNpu3g z@2jd|_>7F5?`2gw^Cx532pY@7ZR}&O(9=BUNBGSU_n6_eoKrLg+?}Ki{!);|aU(>UCajHO!#9hfoeTl9+n)DEGE z2El5d&baUC@AMYM(yxaXIR`<=juH5pI6@M;yeN9o`w>s_C>==E0^2)5hj4p@oI}SwkTKOyqPJ9? z%2MQfZ-~+-Y_Un_No?CaTbWmmzavl)c*D%;om~!n>CIsP%N??47qAC5YrC-|m6&rnFkkFb7u+u*Z*R4rU()_!Alf54PChvqY zA8n(Fuc>~efEthYZ);lKOZ_`KsVeA{yt~Iicv5n8}CL2@dat9vh!dpP>6-i$8?TrcaL>r@C32Mxpp}L^vm(iB;CppCQ z8Q_U6G*wlfpFGt78ti5V2ksSoH67==8JauBiKZI@r60|+G1TKenQ3??-|M#-KJX8| zur|S`>7iD#nsw%(uV=@!-BXTXTc_DSI6{+rVffkMHp?(qM4pX=6~!~lv~_fc-Gw=P z48(J=Gr50@4pRN!LrA~(w=nv-aW8uKwxcxRMNEuA zv=XaF?T<2a*xh_Bp=553bPGmWU*Ko;%d1&9N!HM-xg=;+DM_lTIlCW4SREyb&<$}+ z8S1IlhR4`rc4kIBXFsy~>S+^rr0&j}NyZPF9aL)Ryf5;d*T30oKNADG#vH8Y1?{Wxf1?&!r5?G4W=LqAd=8d@F!S`oQJjqPg zhy?VQiy#)>?^77f@=~_uN4tO{B96o2QoS94YlV{rf*jfWT!a#hV+OIhrrN1fOO8&l zdt83fqg-Sg;Q^cma3a|#P?7EKUE9Vkmlvj8Dc$8J^opXWqTCpsqv#biG@?~Xkx;T5 zmN>2F^DZV(UoC<55)kA=(k5}|X3B2SlP|NEp|_K@cwJ||PvWOQVH_%JgeqPAa_%93 z)MeYuFb<(Ag64!9biDoFpUKeC{fl~60NQ3IDQ$Z7*y0Tj^QZamNV^6?Yo~ia0_UB( z)c9ZUSW*|LRKLvEv(~mEUTxmDvF9vVofb98C9Y2SgV&eu?c4(VR=|>yT^|y9Ut?uW zVzYJyj{z7qW^{%8_Y`4Sy%tg)%IdBb1O$UQDzFZrs%}sjyd3RJw(uID}wx{p|Knip`6RX`1`grpKkvTT1CPQ z37uK^w%A>h`T5b0x7rWbrevnz#PQDGt=xj;gSD(HKi7d9N9`rD&JG?enJ*Or|8O1C zIlUV1YHXesa}P_Ih@Jpa`RV-14`kIU#)*2H%ewC`QaA@pvKA-jb}q?ln(# zf|(VFa3FgJJz?GE#?C#-v(FSK(_TwHDb=gEf3Ivli*H*+pziQ(&2AuBy0A(UHk4k( zBBZY#WJT(gDtBxAKvpC-g~@xlvnx8hOWy(f>_F9fV6I;Y3R^6eCg8;Tjc zfxCdN?{lk^M~Bu95P2cla4A8drkCGin!1YgzFz$qEG@j-;@y7IT|;smI8eNH|!An?DgV89S=^qGx=%CAxmiCj6I1#qjxTYXaNt zkZzOq<`revnq0j83}Io3_pH^H&nq>~2d^6+Wd9nmEcn$Bm=x7{x9`)FsC>`lXI$9G z)bfD!K`@#jtJ#2(%G-JQ4V>-P|HGnaCQ|1zQ>J}q9B{w28dxV42sU8(czTn0lF-c$ zfxJal5M^i#hzZtR+ZJ*;x-B8a{uv)F*Ob{XKFaVafXBVQ!}x7mWnhy|{)}?V*nWHm zKTv*>L^SsD#p%gwocAH6Sn!Z*PlTb7ewoaIU&FvE_Bvk0<|BTiSu+Rde9AWoht7uJ zI2oC*fyJltW%CW0C@|8eu)iGzJO!$~<@J!auWkwB9JTU963>9UOlD>+5Q+jhiEo-m z0VQ0vXD-l+568f`pK2vct_TCWrYD!-?PsK6kg+Wl(gkGb^VZ+7z;BY-!FTuhB0>5 z^PwpTGd%gBLV+SG@JuMS-z$ZTU}((atI7$BSmxKg5u0>|FplNR{0#gsHisjAxm(mO zJX;_yh6ah?ketI^URpxE*O{vB(?6G_P~XD!r7Mux_S{xE%epN=x1 z#Qdupd$EL-`}qk91|n2ly#bot7^5NTdZO*4zYr7uB@lRxuwvNQXhT(xfu3;zJNeCa z9HKYRms?)mj?=EHBb(J_8p*wj^ zL}BCZL%6y18Aj&lysm_cgYrbOriP9q==Z3j{_m2oXW)&Cp70uu3JMp8g>7}hILmPE z8G)c8z5^|-jzDYH7%+O?*w8Zus*#rVz#K`4^|O9%tpzV-`}$7~sS^)II#qP)v@4q3 z=Jwut;i^TSlceYf&vdV7X@O_R{NoD@YVs{8(=ssIzy8Ii@jTQ5m>3QSj#{awPr-|pZ+m3(vvlOzJ09V*{!wy7qFKpv~JAOe6QW2iRFJ|0QTuii|d5u zosk|<1wymuW-Qmv-v-i?SNG%pg2W9p9Nrr!h_;6Bj^cZ767Tpk1QLg0g+>>Bjo}UH z_2H>8sf_TzSd}v3+R&o4+mIgOOwI=#A2gfn24yb>AKxJ-<;!cjrSLdit?@JA^AAk- zGi=*`xS#*;pQkMYgU7wF$GlyjC5k+;z?1Qq95h>Y-$pQQQSkZNr|3rmt>w66e0$Io zxv1=;f2n(b9=_E6iMcABCEH|;JZlg;i%PP(JB8)FL$QcI79+0#v>ydP;D_Ji+M%~K zyh%7*(}xBeV*cDb^yx7(rH~|{(S*zQIW$AoH*0h4p4h2nPw0H9RDL@#@Ui8oUtg+y ztJ3reKEc#3V)FCV3J@q*IWxdMued=1#`+raNyhS4sKpXcV31 z>h1=Ob)kdZswF~6s+OJ^_%pLD$tep09V!zh#}U-RpDIvj8Gq+E2IHt>lF(~zKPLPN zT!@&lk2N#&(Gr$r32|UU*Ghi(_m6gF9N;8mhYn=nYsgR* zx3xQ;x|1!U7NTYiG7mZ819q_lNj zs=xM44^uOLbjjpU>e!Of0kK1|Mv9kSPd1TsBawtpbJND~YYNz{=XagZC3b_6QDlY? zaFuHZaRD2a`T+rdgi>7um4OJl2e!zLL%Y^(>8>{(mj7=vb&TIQ3SR$T&V?`Mm=-wV z=BG0XLQYBCoP)XwZ5iX!5ip~5<>5J|ojfV&NU2q^MI=hyG4u9KGic$CZ>x88F^Dwe(A>FMy_2s>-^X(LQsmHGUs`spC3$MNV))DA-zJ8Tm}*%9lF8Uhr)4bB?_0 zKwB4<-K2LEOlK|(7JQy(%&z#ujeJjntH8i7@<7~!v>0;Zoj?sdG=UHIfw}qch=2Q+ z9-MA*5I7)2@v8uI!kX#T8OTo96r(wbI`u>FZ#kp=RMw(Ya3kIpkn)Xu!3#0) z6k&luc@J7jj9Wr6_JK7(?hzF9APmfL30)gg)Vo;j|K7|{QP2RXo`IEe{OiX22^;xO z`ZHJ2uA65aLC`w2uSWx9vqN+GEtNG>og8NIkrW;S6WL;M-uqy7MV$C;2sx@zs7ZJj&diRGjP3-ImtwVcHK_xK-IY9BaS4 z1+|})uU33HE)n&BSKQunY#26Aw#_K*7x?Ay#~+2f9>X}S!C`)QN<+hUEPb8e`wKX( zrYADmA?B$B{Z++FSEJN~PO3U-vYWi%S{7hQ{B+J(11{G!?K%-^5)kE&$r>h-!q#9{ zAN2Cjj#jQ1fh9FH;BjNxrnMn<-_(z{0!vxyzaMP{Wa8KNSVK5g2UB-uu=Y0UjgX$y z_BEd6*7}}!xN)OsurTjHMDcbdAvp;y`uv;R=WUNcdti-DIM9(+HJ2N^T`zSmC<@0C z)8b;F-?*D^B&x6|(&@l(*-vJ9YEO0d+_l6El}G9?N2+Y)jL{oCx-mZO0UPb%l)>sd z&}3L3zPb%JnbGMLXk>TB;XCF+bs(O(xRDK%`;49LfbHpJA=2?3;{m70v{NC((whA+QMa}xPW!U2HP&ATL znq7+J#&&&eI`j+fk^-YJYH-^e7y(mfb`4$34+p*$QlUF3?`E}T&Xu?>&U#p1EPQ3- zlGbF8fU&04O+Y99;oMR5bScMpM1;b_E2#0(QJFA6a(xT_nJ#>-Bx%5P1f^3>J+vCM z1={jluT)~YFC@@40OWb929qwavZBC`WTDplvj_xK-E933~>jch9t zjoxm2Ll!n3?B< zHLXw^jbGITv3xYT1N!`@rP$g`H?BgiBYgacRwrv9rk>uM{u715T~%6;Pe_@!9t*UGzjVNcJv5Kltw?sL%kHxn!`;eJ=oDR=Aa~ zYGPSoozl1IYM%>jOIbtdNX-{20VGjkOsnscAB(j^Zt(1`NXcQv!{W;#Qgxi1PRHA_ zlw-GlllgBqdd{b)KYFM@II!h|*3FiJU`DjDS#F^G5$a)SAZp%XuQx4yjE>0 zU3E+lmRyWUTi&d@FrM_21E!VNcVsEl3$XBFJ%CIO~bR5Qw~A&&*+b?T(aRx zf`HWM!sku`m&$?L*Gi@$0MT(3L>}6{-jsaHQrCB@#xI@dK`r~k;$u)|wR?>+MkE!8 zi3`s!vp4L%Q~A?q?1ZwE_j*5z3Y#9s3*}W4jyK- zqdz_-%ml?Wz3ecw>&-su|K~3%7PTR9uVHs1jJT^xh3Osu(#tp1LH-5O?_B-v>+Mlm zdmG(KXD2H`0AW@;4J~g0bYYtr!)}Zv>GO!g6x-w#3zA^B@_`0>YwH5=^<4B>qj;Zi3bUiW;++Rty?G zsg2~wm1&*h7sNj7=V^MPn}dypUp>8-{({$S}D) ztK1Z3-SRNtqR;0*lcZ>x&z6Nr!vdJU;<^S24#LK;aFAU@-Q-`hd(Nh*2)u0B$;SqU zt@A?Drmmas4FogDTO3!)Y;2i(Kn4ytO@hLOUt2O_V_rVJcz#OkJYLe}T7eFl$w5TK z$)62lYewY^tWowoLqEY(UJ95&BsV#r(8-33?P<%wdeUB)`7?^)athbP73pW<)!vh) zif~4W6Ebz;3-AtT57_!zs1b&Zyfmi-YOl4K*W4Ij!tw$yk)$-$G<81PzJH-|k|A=)c?$T93jf?Sk4HtD`i?U?}NK-m+V zuGaTpje002V{!?HZ%-_lakyp}ntz+2H1Y3`cy1vw8gcAjdbj3n!^7}8zS_VGzvCNLty8%^Ihn*- zq~?3)n9be(_XeTFYD`j7rQ0y&9-;5QuO9g9gMO?!Fc44)qV6GedgLarKh~8>opOre z-~ifkSLF`;!(QwC!dmpgr~ro2-!CF|7-5Aa;ki1({4>pQZsKKN;DJ}iN;DoB(rFVm8YMg{vQW%sUHYHM4B4)^(NIKT^pg?QQv0Tj?GM15yD(>sw}|ir zvj>Qqrh=vP6uJ85*{+{fyi(PKSbkMWeaTaW^pv|50E_#`aQ5BTxAwd+tkW-iE7CiP zC(iDW`@QFG@-o(k63if`zQO)d&So}O zELoW#?Eea4W;J!JptoAoZ4v(t?{4%6*VEZgsE^?f%++{eBCj3GGkp6Le?|A_V*UI= z6W#^&$$aSzMnd;RMaiL}Qx@&pA|H~@YZxA-VQ+d>>QjaXBHwa8APsHhH|bspQ|8y2 zB3G6Ju?=DUw36oTPfE|GaYwYP5E^xH|5b>c%G|isi+>$t!aYD95+?RF2?8+93FG_n zv_6%u=9&-n#!ld9YW#H&QXsiK@Kpi~NXyMO{Or8XdWRF3ViL1PKKpsp*NQROJem!= z*V7)+(7BS$4HPrTmKc8Qa5Gp0tBnGVx+}9S4N`P?C8Ru~rqcU(pC(MrJ97Xaoxa9I zyN6BFp5P`-{om_LDmHZW48AwtYRkVb$ITQA>JZ>%Alpgm zZ+Ej9?0mQ7YFcjb318dtk`8B}8}R*{CkL`RqCOhg?%3dqgSF0iWoG33jM2t2d8d^V zsiV8|xAzyGAIgcHN_@G%OSdVfL929`NHX*7tlKV9{f-`<&b>V>M82!zkH5Q}`&qJWCj{S- z(Epp|-xQX>1~Rc(i-Ed-@Kk!|epIfYr1XM7yGoncWrZ35+FI}UJZJQNyb{EX zPoUlijEMZkO-xEv2&$JvM#eunvAP!V(L(CJRA1DdwaI%@=R}Td9=y`*zSefKF>;ER1 zchaOHnp7TbZ+d~8s#Cb_F2_xGr;wKkBqbm;5wBDvn|eqD#AWQ9mxKU{Vs>fX`$wY} ze?rJ7|GFEKp1%jOGQ@rGEr|Bnp`ei2D25N<3lHQ+pvay;)g^*1_Mgu2`^ISNm^6=XPPvTT0nC}74g^A%3TGogSzx$-V@x&#C#g&Xa z=|Hi5F-xh;b~M z$w_x+WSGOQ;FK{Jw)5TIuu5g(8J+zRd%fY*km5DNGTb+fbAPHHS(NWvjgk#^a(IXrEONklbP$1v`q{I)WAt5kHDa=^&XhUu#n}yw25) z(tp*QKUvy59b59>3*DZKaVx0eY95}%G;(&q?2(OE>m+mk_p-NlUSr`HqYFTOlUkz{ z+5G83)Gd{yBZQW5Y#9+L%6UT7g8plrJwkT02!)7J=4M?lSM$IFJ-=3dKJM&A?D*pE zAQ>q89!|>U3ADBTm5mI-V;>di_oR~&jZiGih;b{yvaRmH_>3ag$En$FKGQYg--M0S zbIzk+#0%#B*S{3}eb@Ofh_y=2b?e3>6+kSSF1Y|ByL>yzSGkqp5O71S`d+w4&??u! zH}%NM3O)E#U--acs<#JSLq?kKIM}4_tbXx#=P!()vgq^|DCb4&@XFmA**Mx8<}-qS z<(`}~RV_yX#VT3YQa$Nn>|8pzVE8NCqtKfv4R@BXHY2{|39#+GN6-#Zf*5i@zw6Ot za6-tw97Jx10DpA=om zG(qeD_0X)O-Q@2;X@W?r+TulvWPW`)y>mbmMg{-zHg(?U91djq8eOvv^lU&`C0n)A zjAI(D7(HshSTB0${tErbdNS|XT38q`bu)OuV4)G1A&6}_a^U)U9=G}XTm|Sw*Od@OX z35b+4=zBr(nEH{OmP+>XY_0xNph8(VU_NHo+^O++NpHAgq%F;Ubmf;SG%9f{?37yp zzNax44!eUN&AU^n_$vmkZTvP&j3fGm?dVy86G};jpdM9?pP0Msj~nobkjc>GB%jr> z2%0Ot_z&*Uo@0U2`Xyvna8ex_wY(gE;IadKZfOCo9sW&r}kgoGri@&nW?+24mI@W-9I19RtC6JwH#Rtj$!eZ##Vl@B5|R zBZx;oNNi_VJ$Oa{DeY`d8q?9rWzQ$gTaGBr%&P%e1R9?{H>EwdLTVDrWs@QMSUZ)QUl~L0Z}Q?R;;AtebSx%-yWtaHktpuaWRKx)Gzzy zM~VI2hXv+80&hN@zUcL}RVq{d8RKOA>7%o!?Cg6jLr$qR)dw8LlABL$$=hxq30Nec zod5f8%Q{J%8D>YUK|hik>vAKam9UcHJq5I@*$ilZyw=S}+OO{#_2(-EFl3v~7Wor~ zly$*mC2t~wB^nYIirY#ahYA58ow8Z?E5X>wX>W1s5SpcQ0K_{ne)WO%C5w9Uco#?u zT>yaAtBLSz3MFP3UYOUJ#ewkzSu@oxV$JX4^0>R-U5z94av=PX6TNUWgPF?;u2gDs zQ{jNYW89$p1ua-Rzd0KHZQ=*7nSIoXy_AvA?fC01{ePmhW&4J#Vg^laIsKU7U66Eu zM@A_iI#Df|JnF{KN3DQm3eBWN22GeY>=|-F(Ill70}LR9E?L`7&yR`{uM{ifk@5V@ z&kn=le?jYBSJ(-|6Xkiiu5v~xX@UydEC6(h@vX27^LF;C>dCtn>0W439H<A!8kt%#<-*5X974-|5XMN34cr^b1mlukv`HvqnmwN|kHC~eVO%md}ytvg}@T6<=17Jg|lCBgfqJhb5=M!k$LU&1%j7hF$d`Z=E$d}(f$dbo+!m#}*A z&@9NDIN5doA@sSGuq1!x6@1Lt?`kx6lf0w|A#$9f`~JAZF)WPd9KcO)a2xwsJW4cS z8#zH>H))?N_FV&%^b^6*p%|sWRls}mLZ7bNp9@B+`QF&(V6CSD)q zoR;};*IDtJp#1S9JESl3x{P47gLn1iLlCmx_+kNCESgO)^%l$&Gk4fidRj(sKieX< z@$}832cy~c3fzKeGJ?Psa{V~)vzohB9Yj$!oCVvA?^FZM1??zjWO%8$2s<&7^L64= zm?kR*Rz%gO|2|~LnZ_f6vR}O@$X+N@pq$tQKJsGt&7+A;so~%w|3+~~8wYkA1t015 zc)xpJ`Z)Nfc!!@6V{dBoC(L)BJZKVLeI5MvenB5G^q8^i)e+TN)f-vri5~Jvw@)VR zKN{Ogp9;5PyH=^If64fv<;5GW@~`dfBio%72$3&gn*-2}ef<+$Q;OZeR~{#P*kCjY22~~ij^506ggrR7w~s) zPaDk2?bMGV_n?sGCt`G-DPjsEO(o<`+y#7PwcWFVlVkd(3a8Qt-VjWDL)BOg=@GjtltDkNqBabt7ZP$im8K$eX;~ zNw3hO;}EZ)*rH4{aKM(KkiVT8b8dQ|=)K<*O0vTqlM4U{7O8g8O^wFs0__w_u`5v< zH3scG#0+I1?aKc-k`c9%_tENk^kdiK(ofX@qSLHkv9mnfcM55_F>oX^_87Lk?Zo=! zN+n8Mz{Z^YG(^9`KZA$eK8G;{fC{HhYs=a2ZP_H#y4Y(NK%;&%jW8!}@=W9c}sh%NoZ<>3(PinURG z|If(|>-(RL7wz1e(Ht0>zd|0#^Pxg>G#5y3ycQkWyP*ZF+ZXWU=EE@S8QX{Up zzgJM}Y_2JRG5aF=%jDZnKZ=aYpn?h&&W80c5C>m<;;vE7EP4;M!x4$iI!+mf=S3eb z;ShvR^2u)ti5!7VeY;4taJN^r2#ArjAv^bvXI3iX^>v4uzo9oYfgrG;Wpv%n8%?K7 zCq*gDM#OHcOpsZo7k%L1d!U5!)Vb$2O#OPHWE434EY z+8%fJN|?yMb&?^_OrLi*0EM2BK9qm2It)iA__U!4;8I(xH+WgB*ixaNHfB$M1@sk#fH>39iQ7*R#7K z3}o)dYI!pwIPXa?=o%f#MK%S*H`+yt8=>ieNkp|2ds?G|Q5~?-Mo%6DNg%%yrR)Q) zD>MuU7KdDXR_$%~WYJ+Qg(g<7-b$ENy+Kk%;q_N|?CINw$m{Q+B_&NSz!?C#&#pGw zcmI<7Nq#>oCqF0u%tIn1!P2DCi}f9M#7)ZuWKXPr@>zZNSQTSF6v!|->OSQ3)GsFm z`4kD%I|6CzoCO`zFW~?V{9BE`tNO_zl8a%1hHqfRbe*bo^SXbHA3i}INF@U&{@}Z0 zBFFQgtq8tvq#n`A7)HEn3%TiKzd>|}yy^?y)hdlZ&0|ZaHt%0m`*P({&z8_N;E=?5 zxF#!O(sYSHlBR{;Gca#UJDd)+j6*F9s5KlaSpJQ?pC)D>YX~@6rx^I+mtUbLh=fJrJeCVQI`Vamnz6Rxx zWyz{!yJiS=2*=e-kbA$}|Lt^r7u<$|ZV4FDm+1x5FvM+fF{s~{7m{CUzJ z9?t)QS2}O{;?BzqJJJp3pj99@10G9-Md3)v+=sT?kHVo&{wwCAnPU zbMs_+UC*)8+Df8tstYQ94K=BZV%Gf$%MKyktK4BTm%*%6J4s)MF6>8IOC5)4`BxsT z;ph?j2&gr30!AqfO-llb*&Q%&HDLZG&uuL8DAa-+0%l~>mjIX$y9Tx>n-txIi)O5Y zK4DDibUdt|>-kQiC*58f0tW(ogo=0$RNU;^6;>vD;g=goYw*&3B|Ur{zB+in&E>~A z{)7h@u-IX)E#3H!8;ne*xrA-=&%R)w5!EA^*Y6J$y8OsHVSD1T_?6P{DQ4$h?`uA_ zTIP5%)`c@flow$xM&y2f_Y=moHG!RHBdWGTHG`I=&mEHVX&^uLg1ISnGJ#^KA&m;peE8Dj%+HlD z%VMnH+n^rY{21UtfBvd>D@^}JHhSftE#lm7>WZH4115y!(!=!Mc2cuu759}--!`qd ze=6(H;NMXXM7(b5w4z(9(7FMVheO9V+=2SzF@^ymdssPiDz1h+8s*Z{f^pI+JFj}< zH?0U*JzY|VD(GNm8JjThI9_1~|g#(*gh_Gqu zI_Ps57gkW)bDFj5+e2e^Em!=ycO)M`l;u-s+Ao<+c=!;x*mLGjTm~{KjEMkWI#b#K zZLBUJsI#t_nE!QrsRtJYH7I;8s3OPYcf3I=)Srl>%~2pP3#+?+-S8=$(KHM*6-WoR zD8N9jXS{fC$q6SOxTEs^AB%)NqQ1^a_h~hA(17Yqm6C-S7AON*J^aK|eh-{?jRd2H z--B4+!(5HpD%w_KRAPz!wC{c z>bdY)YxivKFUR%0#FJ9~^p4oRuom+veGsnyG{!hAOkf93S~aqr1ppTJJEw+w_&~w`XrR3A7oe}?q5@aNF)f9|Pvljmot@vGdvV z#TSjb)5+vUktIC+k8;yEz?j@UbM@%!fLf$A8wGc(dEj$u@Ks%C3h$>M*&gDA_TvZ6 z+in1ujDE^<`>x3;>@f=~fhRTHV!SLVygq1XKZ8)7DhMU5`&OHNrEUMFThEPn3Np9) zYk@cFu_z}RZ`ZdeG>!oNfue?Lh(fu4#P7bxKbzYl?Y1d$4(l^|S-besTiQuW>b~6I3g6CcG$nQt=Dqlr@$PU(P(jS#hd0t&sd;s|f;(<#i{po}69);AUhv+ABW?bmfWt^1N?Z?Q;jf zHgJCMoz%7S@T7w&4UZt@`CaE!Ww$AJrJvx=tK5wHrA?^;j9+kl(AoG-#J}a7!s1sAYAnUcUn7 zq^z0d?oh+0JL4NCBY%A4qKMVWM$aF2TGBb2@RmwRdTfiVJ=6xf5})&Au%yy~7G@3L z-9Jm7w}BX#l*V*e-2yH6$6pcADV+qu9Ba4DQ$XQ?UYQ9V$g+;M?*&j_{PubseTtl* z{R3CTzy9miiT4*0W~H954wU8)4yq&@xE|Oze`x!gF&K-qnWs?RygXLlq@9QD9RY)P*$dYwt$}Xf*QnnQAq=rZ%U-kv#)&1i4KBotO(~fPp_ZOL_Nh1qpOqp zs()?4LxLyf2wScUaoQ{ys#JH;`g=ty!t}_P+VcvnD?%^$@k(PGZZJ|Ag$ip)!nVfa zAOC2Xw8kAo$r4#MdX2mDL7C#@`th?DZ(is}E`Q?wcdn~5mQ;U)uPlJ{m{PRQ{n~}w z4_e-uYu0Srql!8KC2Po7B>$9Odz~BwU?sARBUbf)<)5?)3k_}w(ZXlfWnBk*amT=5 z`{WV*$2<=G$AF@`XzAow0Vmc1ceKmiHql@c|*_){-I4knP?zc z32mrWe_X?`b`Bd#iQoqKz7zoFR+!ZmZ)e%pLp z`$;^sB{A08mz^1V7r@^ZZ`o@pWbM84RWI5KA1VhdG6-eFW`$Ohf;1?znbCLP`Mo8x z%U-pLF8g{VE_B~$t^8{Uxf?_>&0NNCe*`kR0T~ft?U#V+;nveQ0Xf88!gay0AoKi4vur|X&$RHg`rFFs@KU2c@X z4KEBpOR3QTB&1>175~g{^rJYDt5{y@aRKC0kO=zpi0y9=zn?q2nAPwce(G@(+&m$8 zIm}$S!lvZ#ij(?_`(D|?7o*1ZB1qbgJYbT)1)2}QsPFcHr*ZVHU}zZNpdwSa?(qA9_d|StW9&|7U_{Jr!;c*aer< zTg=pKo4BXaQb^tj%B0`gDA8XK2dF`4 zWMe>EUV$jLv#)4|d*&^3at=Cp$UnAT#r$CP^mXEo$;X)4%`#ztk*VI5EaKm_u3khy zT>Yn*I)Hc0uY({G7=s>jJ#7FuLuQZAVM8_SDU54^{Y&RlfwQYTQ)~P-qU@YGwwPGuoqA>8~^EuigUrEV_g`&)tK za?Tbt$-K+4!7JWc;X=(EsuiEUc=%V;JB7z0ROQ2OF_{v%W!+FcsB`+|c9}yi@-9^+ zZA90$ej|Jz+JW=5{xQ_Z_h(pyP(?U9S~mCBZJale5s{^ciVPyj)@u*fO4**b~sTIZ>D%(Hi77jn) z^-fBZcqpms3u2?mW?I(B)X?HXi9kj}ZjCNA&J&XT6s~~`z>_CTUFSLXDWgv`Lfe3Y zDP%K82Q<2bXngx!PwZ;n4{`Dmyf#;e(GZ#iEz;}?m&mg3l-HX5*YIz}u(f@pg*2$6 zKY;j(RAdHhQHRh-yuk%}&UkNTXdK)wjJpFN?bGE9!M&O2b54c9cXp|hSXpu>?R`#p zwuayvzL-2x((^*{oHai@c#7syu*v2I-~vq2py}@t#QXYPw+`#f0HQkQsf&W?PmQ$P zF*p8YH_JqEWKmPUO#|%3I4y}Cbu!?EEoj&@t(N2U82LQbWQ*4b z6O_a=isKnHG-GYFSarBP;p78J=ZYwqR@|dYFIIc%-5x({Lf_`e@UDXfCQvmV{O58g zug{dI&teSMyI#?xRH#V*MIO`0?Ob9!0ltnnOPTFw}Xf2R!twnhwrJ|0Z({vuod$lHS$JZ?65_Bru2g%jxsY zox)VCfKmIrai`+HUk&c+(j-Yy5~44?u#vC04EBb0JbsDEirRMObP3%o63;RkVaq!N?Tv#z}|9DFNV4#YG7Y~wu2wrFUG_73_0 zVU=a_F9$g&e^SwYmS3aiYwb)&Z#^&e(zcp5xkTx zd+gpvqI`S+h#H3VqvN#E`jYa^Z-M9N9sGg!NZo@-inub}dCVoiU|6p zV;4e_OvpBy>pf_e>+}d_3(H;t<;@=fk>vAfQNHHaAAfzQASS6nor-oJ1`=FyU-4Eh zWveH##COSeT$0T8GXJpjjICa6f9Ra=v7=;-+F|!wAQWYrxFLy=iCPm2`Kp5)CXYK{pbb96o#!`&T*=**p|X7=F@Gyoak-$ZeTplq{NUwdztn{l9cDY z^k5DjZvdhUtIsw{Vn234QcD%wN&2HdgT@|vCm-Bm**hA*zW(mLnfnEfGV1?8sI4P_ zSIjUlozx*(%*bIL?MNXB+09i5Sp)IQ_Rk$xsGazMtXm*=;l zl+GkNf|v$JPnsqP?@s!KrXuTj!72*xe*0HGg|a(lJ4^+pZmhn{3jIri$K=*gAM}hL zYW20dYOTAKnX|dKM*#6Zy)_ZWXb=+&D{M34ReE;lBJA3a)l{I#QX+S%?=0*;z zQ)hkgYoRug+jjoVbu8(c06IxYUVBn&0h%PGEkdkdjNsKWazAbS09NbP^lX3Oc>evMX~A`TFyAJQNn|J z6r5P?FuM;yO2Q|s%1kH%QjP9IeT3vOw-3hn-?ZR*TMWb}ix$FF0An%f0-2Le6M8b$#b<=>?80Nc`G&E@B4o7w9 zQ#5)kfJYpO!^5&*DNZ;ZlKPbbbKy05Fcx zDF7ye=qAWJf1oi|Zc)(-rqp+dkN@&KK4C9%FuvOiqJvJ}2C#`sc>3cMrgYjEfKjS{ zop9%SH+iY<^%)Q7qnc=AOn+#S)<<2$wuq4|$Ao}cx+Fuyghqe^Dus*he@vA4Vj=Mr zMx5l{(!!>fQaGx=AC<)XUL6XC5Xmc1HM{firnMlr!X1sPQ4HxEhnHQWW8|$bDd*&# z`tYyBfaHO7C8u36`?h@E3gSzsJ(fRdch=l`TKj);`-}MdYNj0ma%|OeuO52tGRI{v zm~7|qd^2mZa)3S_W}%pGrsF8_*}_A|f%XQ}haoWs8tbpnQIT(7kHuOTtCM&me*^gr zQgR5sZ!i)LB+ZP2%oVH~?)7)#>W>icC2N2a-vz2x*JfV&Y8K`o^p!mft|EgE7SrR0 zMEoZmSc;7(fp_Wg4AK4K2hJ?zwV+qmamA(HZ{5cJh`TpMeKVx_{e&0lg7Y#7J-oS< zPl=%D#JUu%z<-!Fy(GC_!s8;Lf+}MNMaO?4%FXYLxy6aMyN?JMR_l+>EdC zGPr3Vc+P9>Vm7ClS#eVTM`s`Ux3^+c6>_gKtLv+i$7bcsJzmmA&G3=qfTy&Xv{{SZ zxFM0@A$H(Q#Njdx8N!xNWkVGsmuNQyKE!PKz)7sMkO82uPZ<@CzWStWc3|!tEwYK= z^x1K!z7855Nl72rqZR78MD+IvE%>Y>tp8vHGb^$29L@TE1w!@Y$Fq2lQDZ=Jq$a(Lrn}@~76kVS%>@=h0G9`> zw`@kgtSYI-`E(Xk&mx=(mh5iN4&!gnG}&invGjUVP$%niio=hEWb)ml!(jAi23v<~GKWRw1>`!LLs?SY^#8d<@Y9Flc{i7c zqkfy;d&Lx^z6OV}&QjNntS{;+DptQxCFM2Z0giaef^;H~_5J!mFuc*103iC$|w7wh-2S?Pz_1$+DYetA5- z{t|iSH^e#M8R!QpU3U`Nz}p6iwdDIXp)V|WIX1?y#)~`W_+RJi!UvG^MKi52Ey*Lr zZNB0$y3S8!n__P@K8rTRgB~-Aun?aeavZ0a5m04(3d4Sg$|Hft{6CE-ExYkMAmA}_ zNo_Q&_cCw_ni=8WI0zr!MQe)lc1z*T&2@$l8RkZsDPuMYP1eA5dm5BDW6_j~#T)R4 zSXangg#PjIi-h5PJPR>wz>nX>V*#&L{Y;a0S{ z!+G-a7?=?+48(>iw+hg-Im*0#xF@2oMt6a?TBJFtqz8jAx36J^M!&4qiqL1*mO~JR zpl0H~1Z;;Yk!X_Lw)1bUt=%hIJwRxOHh$Fm5)f^O=v8zl`| z9U<l#ir=5ekN>% zIeQD+pMNe@KC2-0tYZs-eCWROSqkfNXBR!J0$I>a(7v*Wb-$`?cHAm*e~0?{ceYi& zCln}~FybC4R75s^s#;yF>S5LG&l2!X3a3t`?EF>3wuipk&8ik$xa)TE&ecP2A4^@r ztov#JG#nyA3X|Nvd9H)a1UxS_S!d9jW3ng6z0SfKXVMR$k<=$nG}l*oCi^5Dbl5<1 z;EO!&>{Q8b|Cij!r@XVL34-Af$Hw@Q~#CP&0K?hEZv#i!EM z>L3>5>r|_m@zWG|aZ9@cc=^uXwYygV(m3xNhvt>)i4+i(A_6AxCgB{6l#PtJ9#CNF z74x{JhsElh=(gq#Ee`p8B_c!2veSmZR1o?&!?Vr;piz!3Sdyoo{C3%@-_L z=1b(LigMvsB<C=m(qARpJAX1>DS?lX`fQa}y zg+HyM*nQh~)aA7CIg&073xHofgVAU4>+K>nlGCqh=$a`tp_38#CF34VC7@jOhQ7UY~fZ~~gO_Tp`n*}jYwHfz&Ufxl3QmYrPzP*DCYDaXNOnoI;>R~jM zH}@%(X9L@h27Go=tkZTf3+uO1@U}i*BN;EHA>T;o0(br>{elQ}D>Ndb?CT|4@@-;ECG^==m)znD2QJep)1}&Q8N-GJ z$VHMUgj45@SIWX-QxMr32*qyd#C?ibf<{q6Lym;-&Z+D}7E=9t*=Wvm@_;yP-pW3? zsjih%t2JGT1|6Q`G#7*Z>ll->CoSIS&_+4XozA^hk1ONveb$+`!oPFX{4R+1FAD7L zQRsA$(o0zoaKE500OPPgUL6u>#reybjzf{WWu@fbCoDH}3R4)%)X1mQNK?UzQ+Su2 zO@rP7l}YrElgs(DLJMd?Q>R_FMrY-nGB08{N?UrTYED$Ay2EDJ@y^5!p%DTw3%hk| z61)=&4Zo{0Ey0IrqTw_5p(Bk~J*W+2L|8oRAO7=}h<5rbQn#fkkTs;HyTII2`p(<` zLMUiVL(4U4V#%C^`K)(#f0rT@DMEq>matvz8` zza_hs4;&4u!aLQm{C6iOzV?Pkc_>P)h=U~aCN7*C?M#BV`d>S;FUQ5?(I zxFPn(EhI9b+Du^(xUD#WHN_;D}5CBndp~ltmDXfL@B$awF(%SoeFL7%_^G^ z4#(%1Hd12XlEd06UlW(W9_6 z4CT{lb^QE6U3xzN`iBZ+0+sTU_J7?5H4mDtdOr??W58uwj~N79AjrBKWjbU?LYBz3 zjQIipC_|tx^0Z){SUb0)yw!lnwAK%Yv?vZyeX#_2r7v^#Hgn5l%Ve;%3-a5G1*fk~ zB8$P(1Uho`v<3z78*xdGCTBiO&!2sblnQ}mhmDBc8_9{AB-_@#(1KG)@pS8o68I0S zzgLSVkvVZ}Jc{j^JWrgBr{|JvN=)n!4@~)a6o+P8NjN)~P{(zN-u#VmcO)XPA1ABe zvl|+zW4-D0MB==fEP}c}KhN&}_qOL2jA*~E$SMK_E^7)-tI# zyU3nbc0OBxaQ2Uq_KVr30=XB3a5HNIcMFSq6=uPSuR6g8GPR4Auv| zVEZa3vsR%;xzHz`#I~iMDw@$3hsVPPLmNo+XeDOm&))Y9-Pdc7EzPYF<`h2`OpAK^ zudtW*bG?Zb;0p69_Rvyc8TD4&?W^_Yw>*swaZgfIg>B3+h5a&^sQtZkBqVq&#tC;8 zLj%3d1FP7{=XgO(VubzX?6(t}@rnWETw>Zy`^VGlr1ydE2BD=%aBB+#XJ$y4iG+fq zB5Ld$TI3WMrx;8s`yOe$zhnIrZ#DRFGvnm# z?NYjZdjY4zq<-K#oJVqd9bH31aqCH~&{u0IBwid-?+ca|k&3%!hzm z;C%!${&L9m3x2`C6_Wh=h2R5>1=nuA_idgqi2-UR4g=?>MVF>h1BsHuyV(u5SJrdw z*ut1hJA`sDl>^!>5tfPL_d`0w4Jz%d_`Z{$tt8CGb1(AzRmhq;f9F!nPyopZ{B3sA zc5(}0oyfY=v0T}<=E}lCXa4-Pc(} z)Y2UR!H<=@ZeHyFHBluud*<%zo=4%GuQ;dW@Dro!VnkM8zi8_38hQp3LUd`nsUHNP z_gD5lJWzuGWP;|0yuKQo$H_^{2K1 zF$DJ3D!n1+Z`H-CJ2@{W+HKTV*2P!9WE&jQ>zr!>Z$0D(@QJfEuvwtD3~as^57%W9 zwGlsH%el*-PT@h^pH;BDng-wScJqAdgWmHxa6fTmH`e_M?ZJ!0YcbW5psE(}+ew{2 zKWH!Z$KM7)#=W+5_#B$CzVcvI6Z-s&-nOq1LvsZlOr)?>n}>@+oZ7%U-oYd@-C;`Q z0H}2XA9*guluXQI7{zsz@LY2H5#`;S0t$qU?KdlCasi6Lua7h~`*t6N!0I$}PT{uS zz3dKFX6G;ncY1nd`~JACKLcUg6$6>h&&tbvu>tgb7~4GbSlWVHRb3cNC>I zrpvfaWDZI+qlbV{J}kenL8Oe{gw}Vv?&^K7&HGSGS$06dq;Bw0hD|ii^HQoq=R|yJ z$v=s{Mvt?BZ1-^rWWD0^@hsSZ?M2cW2c2S%iZ1~80{aSI&k8UBPVt==`3m|Oyo%nR zbh|d}I)d>7b5*4(QP~AX5lyQUrTc2#Qh?`T{u}tj>P<*1#{EF=;Ba(EoGcf8oy?$O zzo{iFJQw48kmrP9X{kMV)7N@^xmy^G(3lCn6b^M>l_Zb`5vs+Aqp!{#k{Rcc@ASx) z@V0-kIdNRHG3c^9X_@$Kr@30BP8`Mwgd=ly)7N{1Ig!MLCq8}PO3yOATeL|`--0uB zkGsP`N5x5?MLVnk}h7!Z!8m{8KO4HrJ zg#_>aJotV%zrXUO=(SwP8`)X^3`{WNw-~-&M?^XK)7jil%6wK*??ebQSwCqT9Ej64 zKcfwH1vV!{r!DC-(p|!;1z9%~hVFg7uvM41@zFaEmJAp%8Js zpDR6g89RJHdW|jA zR%yAsFGEzmRO8q)a)Jr6Fdc!qpB<0qP7CU=;$lU|M?gF;>%t#+3>SE07ftH7hkwKV za9)*!EmN`}i}yE49QL@eMygrvBA>ua^)P|We76mzJrBb(g|tk`8HQD2>VTmPno z;?31ZG3CNf$qLBA8NJJ4KqzC^wW*jNM#I)VTf{Ud&v#3jU(J^(e|ET%@^aCx`DtuY zuELqma*vX0iv%39N#0O?q_89$vb05j{R8RO*C(r z4Y8&(*=+yZ%rF>ewL&xbee9FY|62O8+VnwpOXJv1TT~%8L!lGeFo)*@$`YXwkQQKC z+%#SqT=nIs9e!&6c=ov$SWNkBE%~)(VA^*&q1oF(QN#k7;fxP+paAb*A7!N^s>g$f zZ5rdlTIexQ0dFL1hrpTTXQ$%>*FpA6I{nejk5@Izx~gMRFGdHQ)J`3PwseiK?}%HP zzsrW=A@w=m=4}1<5+AvSCT3yxnAOe%5S=?D`F38GRMK-(-adJ#j>U}|&I3in0LKCH z2ZX&fqmk2gRariFe^qALL#6nfciE@wu6LzzR5N^np+#Vr$_gM*p0^pC3Uw6+)Rth3 z9qU9IVU-;MAzZ!9n&5VCHus?}imeG`Do(dt$b3Nc`XB0S^N*@7Li`;?J!CNTbu^Lu z%+dq<0(@#&D*e?*rWEvAj%E>ZL9216oZlkxO%4^QW2Xdr$rk(duX-bSe#IuRy}#EV z(OW8{>E&p-FW^K*amJFeAZ|y5>o4GpN{s7M(e8B2i zY<`q{3(p+nO_#}ADL%mc;Tv@ArJ8{&&WNcCHHd()d_3s3Pu?joFerHWOOmQoMRv>e zyIT1}&7g|5au!_s%S)8c4YOrTI0ZIrXyaIni7NR5J}|QgbY{Db!+T43zfn6%A0_sh zvxP}Wz3?BO{~b3#APy{~aI)pnM>m1YRjCZcG+LbTE@etctjoVT%=Nw&kCr_R-iFIR zvCg2LBpzf%fpdlQrpGLpy#}NQ<<@tqpzi}_$hv&cQ3Y!00Fe9r;S14+_}@z^Wu|RP zRKHmxoxhlMNow%m3Q;N_$7%`iQYdAmoq7(BU`@b(_NLRGmYvBCTQ-`0E4LtoxjaTT zWQ(#IKB+w~Y|L(AEM|;o&EeL5%G>K#&XiEZ;q6YnV!yDum%EWQT&)?*BGrmiJ+bQ` za>_I z;P~>?(xsC4VvR!sIf92z?mn8RT-gS&+Fx&NqwL{!Rs%r+>A)c6ZAMLViYuzs`^S4l zvd;c0dO$emTDH^~r>qVl(^O<8uIkV2y$u9KC33$F`^JnTgk%QL843L83MU5p?RNPq z>a@VF-b}?k9%6FTpRX_SR`eczXtuuvf3Q)OzfR%uk&7)oiqm`E%G7+2%)!|fJ~YU# zd#ZCx9a-?;X=3?*RINE^njdls9G&KOT${jRQ^Y(rjpnzvb~eiN6^S!IKcNawZf|3` zFM-hzp6rAkc!=F~*J-RiOiI`1d5l4}jvW)tT;aOhn<^iTjp8O7DQUx4fBOx3k7 zBbY92Ogt_N#|0GH;6;4-(l~fN&2jYd+Q*nW_A@FS7?LVQgh(dlVEGj-y3Tb zlfQ?9uP@mPoM&E2xM`}6)fxxdpQ3f>#9sFcy*?ba=EjCKP&W9)d)|JO{FFp_k}~3c z;q@8%_Urh*16q|e-1+o6iuo=WXs55mJClDLf6ytcx&b}M*cRyj_69=3 z47N#HyIcI{xDlctKR&TJKD?zR<#;hRBI+6<_6C`t zA0*7QB|=?2xu4obqD?Pnx{g(~+`{ITuNF&6;rR=%V!TJ}|N5R6zQ^gL&+}v2d@nD2 z%pw-M-4p(*_E1#iWz?8o%b`2hki{0$GT~Wv{T$BIXr35X4Q&!Z+O%! zE$qEHS^A2^rX|bX0B2SD>Z%+bPG5@+BDRANic7cC?DO1n_b-|}bf~yJ>_lKUdG)7& zUTys_B}zW7`5kzQ-?p}b&gKWj)R_oN-2QRO{lG)FnEL%jZyeau2X(VRG3->&U7G;X zBIV1HH<|^2knjkuc|Va4Tx`}|(}!00WrryeZy{ETYYtfP>n>B2!6_-i*OGDWz^#hS z1X0v%cW>VQ`~R9%#L%0=o;h%&UvM9WCCp(*98-|DvdMwd)Qu|w$-g!@=T01x054F# zd5%I_>Xn__A|;4|?#wLIyHRd4chS;WhbC53%Eu2agdHS?)E>JWU@ycO z$V>NO4ZkPKvIN?p4ed9N!0WjEi{b7oznBTU#GqK46kzjTRRbBEDO}s0BY^kbS@*zc zg&qD4RUJ$sA8*lqO5{#(C}}Zc?pGClntjw7?{3_$hN=FM70iCPh z>)BBCmiTU%+$Tg$v^1={yc{JBAs-&Z>VE{)L0sKM$C}!yIsCrt+KTS3_GkD0op~cy z4Tgg%MJTDS7_~m3S}ipB_7OS%u1(_C=@sJAP{H%ohYvhW)7FpF99ddc{MDy{aM%*e zzhpYdV8pTyFIW)4$^91OnuX?FLzafHG5-f>_SdCB1#Me$OZJ&7@ob0r z+36_h-k_=Y@%csqO%($~QWH5OAh*mmCSjV|-TVFus$IQuKaq>qTQ*nx3Cke&Fo48> zFt0CkwVpyW$%HMf0Y1Aef7o99Xsn|L?k~)`=Z&#?A}sU!{(aA;BYI-Ej21S5oPcJ6 zTkj$ugsr=Y&J%hR#4^t~ul{|_L9=AIX4f5)ATRc2!Wq(soP$eR@?DP4zTj(XgRs20 zT9&>^W@0a*H2e9pb;P={&WC)XM0#!o(XHj84sTqoKL}y3xTcrp(RZbT0(ZAfTd^zH zHJcO0rq1gnGM`Bb-MgH{I{x+;X>E{Q`0v*~=d|&EDQ|9Q6&H%m#iq`7c&y&*#@KQB zc?`f+%rrU)O6{wu#o4XS^}W}XS0H%@?>KXH-}5*B3iT(&y=;9Ik*;4}K_owwBv^Ri z)WUwx5fC=51I9g+fQwNKMUb<5EE05sH1p7Q(+j<^vGD&^drtGofEzX=)DXMLq%Wlu zKXG{Z{3?=HFi)-$BrG_3U<+HQT#9*52=VRCW9jSWYNxsHd^~cPh_zev56XA=9V_7k zDT}JRNJK`Q<2QxDnb(|<+Ml<2e0uAtD7Hot6(Ukv}ar6-6t+3>d z*8d}oaWdv!@LTx>K|DXv7V1%V9b}!a9AfSc9{FT0r=(K+F*ZlV$T6#+@oku1$<9XK zz@)-y8Qa*}0%RL|^Y(vKEK8pbLRa?H!hiq4v>za)7EWx@So=K12)v1o7TVadHQwBJ z<)8UQ;SmZbbVvzrr0SKzAY*@7`?kz!mVTQ7%!x>FG@wQEzBj26cknVE@4UX`6Fm%_ z^8PF8>1`ha#A#5LqK-9HNC}^b6qFT9>{PALPK3gD-g}oYY-#=)S+a1EnA5A@Hdb=j zJjX}Dl8dV^TN(~enJT)16&jOVz&!7#qy|-w4^Wp~?HUPZ^PHae&FB@h9|@>ojcuFy zr*FSGIJY}Oq4ILcZg}k&QsmlIz8{)sjq@fy|Kl^r@b|!ZC*3BjqfWVhM_mWq61bn44t5Od4;h9;o}GDwwC=ya=^_ zfd+t|($uxeo;Hp^-j!l=<-r;f9@q|e;6+^x zn+O@0JT6ahQ~7M5xrZ3dk{o%p^Iqi(;=ovOvC~A5gpdu#7{qHUzlir+D#*WZpvX_9 z#k=)=(H(nzeGV^GFaSoj4!(bLBIeolBxHa+q-XBcYRH7h11SjGX~(@R^#5>VTfv&t zGsZ8#Zzx3HCH%`*<9hczkp_xcZQa24n@U!Yb6Brllr)X^Mr)1l@xo>T zKG=N-8H{LX9^Q1ByZlM=^bNtD8Zjw;%fonj5g0k#;Z;+kiKM<9ktX4S{ z;Jw?eHA{J(53jU7I0r^4m?8rMd&uCCrAC)-Ys>eJyR3wrJ@Tw^FLZUG$KV3xRNtJk zJUWM)R-~X1P!eG)MjpUSgo1cUqA8yRsbBcbKtmOX*PAT#l~<)=g`8^N);mio7Yxw& zz;?q{UyU76v<}EH-#FlMF@5ee+o#nKEZ?Ul%uyeZo3XA^T(zNvBQ4*FszH2T;NsYjyca6s-MSJ8Pu$8ocPop^xetzS=>&) zgg+;Gl5tv%=tF_4#XgUg%zYg0k(L{`a6qtN>-I2!wdU87(}w)w@_Inc9M>*EcegC5 zu@q3U@rdq6$Al)6zns+Z;~ml?i&(c_CpS`E!$v4bA|Ug#Z#a1*XM+Al*n6&DDA?a~ zCm1hWJPe8tScS#pz6KX>CY3&p`3#r#_M)S4~a2a3n;;S0BDl(&U0M7s?D7iyaiWq=41P3Tr#vZ-e^DSrO$UT zQi<3U&WN=qk$wHf$a%0WWrr(vjA<3+61v(~UPz2-T+k?^R1BdwpWbN$%IaQ4pP@SW z5E$&2#(m{+=9`=PuKA$^-t6~^tpV_>Pbz*&XMxhCSWp3PVYR>eI@=A8E$^|m#x4Hk zSUTWVk3FxNn)i730TR<%mr^4>JPck1$K|G6CcqOzkkyyc8;5(oG3Xs&o|-@6mz>6g z;7oL(RYA|6krR56Te;)XOwOYiZ7(Kt-(&izcG{|5R~eD5BQ=>Fk4rvq5dz%7E1BTJ ziloo09H{GH2w*%1Ar=+5+TX=p`S;`rd}mfGn4OWSG1oG^TA*0XFUn-dPt7@4Tsi>H z@~Byb!wA#x*M?G^f~-d|swN(Prot&S$h#!wt+pJ(@b`6m5|9V(Ko$C$3e!QQWHE)G zx(gA55A7e%u-|XlhTFetPHb6!7-V1X{ApQMQ(T$!j&rAhlxbTN3|f8w`n9Ikz^Er> zj~aedWy!_aopta-BSw+rO}GhA{tW@ z8?|V}v1a^mlKtkg*sY#iLb4T)atVJHk1jGhI(<_yFIBb`|6^4YV_52BzP|`>Wkec2+rvOL@ zbD62FM=1x!IOH3%gB!fwyX;nf1#6e9nGmCju=Km=M4Cp&1`%njJXzO7eF&7nHt#oI zmcbPg35)hTZ5Yl2a*Hv$4Ws>Y-7l5R+F$*oX6H_HRwJ=?ijeRT3Fy_?vf`567Yf(T zt$vFAt|%f+R(~$y{I7h-ZQ

      B(_W7#ua)|ZdnEfSq|KAF~d&D2MP?QToY|1L&O?#Bf35Rno}OJF)^OWgK2SBBdsKZsy*A{S_SC{Cv0guUka znGVjExiyT*8;|G}y%(HlF#011Ioi)aht9xMIb%>wQ|H z*U1-cF;c~6EQTM-tI+v1fk7zgo9nXIfe?8)kXf>PdNW#;1hbd?a%<>ImWn8uf8Xa0 zYYZqf{27MOCr8SSrOTUCG$RFnUSa>UDa8Hi;4YC%VmzB@1E&F=d*t!+p4xBbJlpQX z=46XoiZqi4u zFw5?mvAgt1^ZlNe2G&Shp`h)2lee1PPu@_8-zd6oNT^-L4C3nS5ZCR)?~c~Zp3_JE zv3Q;S3)(vMo7C_w|I1ja#o~y7_jqESin5Nx&^ex6eoZoxDkb{=2H${R8_yd&2}^o0 z&N6V|B8p1>Ag@VZ_R zkFc`H$%{^n=P|8@U%&$&=34o?V3&%Tw*RR4eCU_`E9x3@TQ@p%A!|Id z(c7J8DS?XYJ}?>sFjG$gn|dRP)~eCFMdqfY5XM`_kmI$In+Jhw>%~~c^z!$SiF+WP zT=bw7;RYZ56Ux>H@7w?q;(}f0O84JC29Gfoc61Qe@tUO&LixeWXf;+uAuU^N0*M5-<<~v^;YS)-r1C-k#Y)1*XW#tOa4f~Xsq=jCM9)wC7 zh&LJj$E7)3W)`Rb0ON%GgS0U0i}p=oSkYPl-Z$(Lh>9aVQJeU{$- zbCp?lxe>jt$r|+Dj_`ldYv;;4Ul9_g9W3!QC zr4jE&{~tkZW5c%Zi;3$2Cl+VlqsU^^av*pz>$~NoBVc=5;TO~_$Ytx^S{^lZ|etk4*Ymxqy)zs0Vn2Z zvTl4p)s;2kGiBE4%I5MqvuZFJn6K46DX1u`LA)B!u_qZfbMD1Um zPFP1a9>mPQ{$c~l>{tpS0~*)UMWJz@Q<%|{!3-^_EZe&*1kqpJ*rn(?6@+V0zZ_5d zY^ToOuebZC=b4*PuFh#ST7$+I1Vkn0jrl()9vK0c6eP{lxWt$pE@)=S726w*C@xSz z|C&tE(!K96qHD5QaDLk>QV7a8sm=LaX=K82N6cw($4e*lIW%_h8YJnkOZ-bAh|032kw`qqrLdG zo{v0(n8}lI7!=mq4b9)TbSITveW|)lwHTFf??oFnT(8CXQKJ5D75C#;vWk_0PLJN< zj=8h}Pi+T*ld%D&b=R1Aj;E7C!C(3Q7uGu1u;%5G!_kvk24}-=C&gob@x21A7S&CW z=^qpbPE4O@=FOBgBC-Saaf~r)A~2XX;DX^5)9^_-es|ETt~qXp_M*=Qpj9Kd5YS%2 zoiLdeiO0gEsG12$RHxRyi@KtjQsuAty{A#!30H@@;VA-B&=`_qxYWI>IOuq&^;fVs zJi=lGLv7lG9m^)y@QvHhW@wDFTB@7(S=Ix;ZuL+vFXtJW-2IE<5!>7RXg>1L5jE!Dl`Lr-;;1)GN9tFEo#Z-9Gtn8IsuecHjgb)rop%&kee_CCxL=U_ z%K_2O;>`*+6u=+}(g}$Ql0xn1QwG}qt{>gOJ}axZlnmJOTmG2PGy;-&6z5=`1ewQ7 z^r$0<+k>e

      _|xP5oue=Gqsxas}dG$Fg_o8VSkbZ;5!GOgoO6Um?zezO#yl!y{pK z$n<{m?JuqcmVK0j*z72x8?#!d#H)+^X5|(a2K5s}mY_mp$vikl8oC1)T6997b%XD% zQYRUcH=#-@`pz$a;SOKFEbM4d@?F{A==3!%Wlva91ptX@oEO>o+bs#sBaX~xV3?*w z3?Aa@pAar;Yaj5r0Nx0x+3yV#WCD?O#jN1DmzhB&hX{K^06EG?3n_jMcm@9|n5B11 z$8_9jxFTfQy z7MKthS3W-R0!9Wq7z;Z)9-abnDfi&K#4|=heEfo^yoZ394TDuQn8V5&%jC4rlmKr?yYn2g zXh6KT)aVU5#tmasqS0vIv#b?+UGkqjr-DpEh&_A6hw5O@%K(bFE=qzk0k}65EEABx z)Q1xO7_^tO61JwMu%d!!AKmF?m8!)E`-jK57IFR*lg?Pc6qX9)E!#8|cF zd7~;O%cUD$Jy1Osp_)soSOV>UWcm&)?gE(~%(xP*KkoS1F{cFYtH6Iw%+3?M(>?j4 z_`lXA)t=xw`6W%q<82%HA9yRY0x#O;06S25l3pP9ld8y#!f>Y#iu$5Xc>`~&OL^P) zK%4HQy3La-V5BrQuaHMTg%z$jWqNVC_50pcV2j%Fum69Tdh>WF_y7ODjuu4-XY6~( zsRWKT)i5>iJ~_RBumRdzLYW6P3l7|e`WuHVZ!@7w41 z{UfPc8RojK*X#LuJ|BK8bL8%c`|nE zlH=dB@?mgl1CnmIDA(a-6sdyy^Z9~h+~uzqevwv2Zx<|wYG2Yv2iYxs@fCe?&w#|r zEIn6_`AT93o()!faR5=O&l_FgU~);Fi`0xtxA&M$iJ3}PJw1HYT}(w%Qirx3n^1W) zzeQ}L@Yx>$b|dEo@+MzFi3LS-- zIKJ;9_gbOY$kA``NWPZ#J_;LOirJ}*WN$nK0ZV|B7Lz*KK}{XKhg?7sS(!LJpu~x{ z&N$7jqG?xkLnbwiRADf`jD01DXLq015~&@FmUF!sn;9|G*EKUR&P37uE(pz^nFh;* zH77$ovcn*m1Rx@HM=&FT!dx!n+pi6TpTCBt40_~??p#Vf`(2mk%0PWXl-02ap1N~r z+6Bf6n8F>2QijK~3#@VFJN%GJI(+EXtvQW4`;}+-ZR*3QP)1^=_&F=tA;j2P2 z$TtQVW+JvLV|%IWYe(1>W(8`x@MsQYlQp*nZCuekjHZ=`K1c`df$oKW4;+}Wm-J+m z4_mZwo{2v{z7-7u<`V=q0pb`p(vIzsLX6=l;%j!Zstqt>m0L~?(>Z40G;#bckMaiF zfFcd?Xt?pp&1=;9)+T`SAPh5^B3-9N-nvs6U;J;7riqN{4lfM*fOf7Q2-oRY;MfG< zI(4q$&nSM?N>0)VO@`vt!@Hz50skWy3Vn{1PuywBcDqz$zxFKJ1vkO00Sdl#-HM>^ zIfJhz51AoZ1}{tbhkB)BPA$eQU+k?V4F}}up;~ZF7Stx9JONDO806rWR3OTQ_bf=T zcN%`C6FI_hJh(0A?VoRTX`Uoz|NOlKTum{$O!I(oEJH9{Tv_swnP{RTd6MZUZolG` zf3mI~R5KRN{j=Gaky$R_!;KEHSL?4pu(~#=sAt}sHx|0Ces^0ndIYU}SG2ep@F1B~ z-OeJy`E46yzWWfF+HQdxVA$1qAdiUka!RI+`PLNxIWLmdk{$#t3?jZ=2Rbp=^oM7x z?@8(s6W^-1d}hZbJ{_p2tZ@s2W_v1@Lo+T`;?>Fz9D_Q~v$M%L<@s(pK=N zz<`Z_sZe!2Jo9K7rqk3YE37oaPY?&^(Z77nMC$iXxgDVVVnmFua_C0oGUtLuXtALw zwu!uH@wi5Egz=sz-YTlPWWKl`)oN7MJ=>UGsEeKc^QUOk%}#)lO^Ex(V~D3Sm?M~? zj{xiq2#D~O$8U%H)hA|m?F@kqOS#9tS_$-AaT5^?Fx-a0Rh(ocRn|TT7}wzIUWeny z&%oLp;26=?GpA?~%=M$lq+HRn5xg#YoOpWu#Ij|O%##T~1yhEndHOT;PE;y+{>qJ1 zH7)9N-DaLWMU^}k1oevPgN<AcqQ1O|K%Tt2@!9dN@GMY^woV4;s+j=?S=6VoZb4GvgE=z4+cFx`_FB`E zViwjx!~Qt$P|qFkecRd9b5~Ww;y&IXmyu>NDBAVl$$cEHJQ4|1)4W$(bP3P#lGID< za8a~CXE{o8*%Hg<{O7OpbB1@i^Cp7nKfr+k-yPSE0q+x@m1+crMS%roq1u*(&Mhs? zT)RFWc~4;tD2VhOe`%L3LtI#k;!!TN+}|c<)(&EDZCkbUjV$y?7Mk3tRSf~Qp&B8V z1)=D)M>*`R`yKoMtlP^D&>rX$_$!Ws9J?eGUdQTiKP-eGFEoQG`RtYBB~t(y2cU7A zPFzy!9pcBq@>a@{W^wt(Y zx?<7rdie&^)!+Rg#Q0P+kyPP&f_73A%Lb$*QEjwc%z)`%1^rCZ3%K|`cxS?m7yC_l z%Ck8T4eq%`aD;|8qB3JR_U`9B>A|Qb@8A>PT4h!wp5dd~TB(#ar!o9bW40WhpsOaE zIsbY>9KU9V9NlUea422?_0@{F9b1FIqXLVP>LbdRVm?KEuT*?q@W%@?e7(Um_kLrB zlA=QUk+O&$|BGD5OnvCKE2}G>Kb4bHXLrzx)4WslTDD`wIC!Qv?V(-!PaUFvJZ_7X zTfWHwjHk(Gd1Ns!ABSBgR$Y<0%8kXr<=)w3Nhn~B6KRqyV|q&5Ayjv(5JL^^Q&Gb+ zR(b44v4(Htma@SO-{_K;*#DI@Beu`dmGqjW=1XWG7BJD~#Khk4Z!JUMCCdpuYM)wE z0LZjZph!-pZV@Da!!^3m7n6AK58ufQ%BnC8FV#f~t)2r~&#rBclbobf4HzU@vn`=< z#pmx0XU&I4*~jwQCp^HcVN|H&!x*ii@?=zVhhYCIeXAcNm`)ALd5a`7nQv|DC= zrPqK89tPex?U%gYmVwTtA~qt~wo*de(1wx0iR@mJbmDS5uC+>KTI1?}+3fO+qR_Ad zWBhwK*WDbE12&yi`(LUIgT{O(_VsULpM9yO6X>o{^xEC3@s z&>k?mV!ROf_vLlfAm~B*Yd1Y^64$JT>vfkTZnNP1KLE&=)aBL*e7$oFQN1lJYC@oN z_JrC%@s4{JKdB*C*dj3g$A^oGeZtQii8CbHREz;2mOKo!l)%BhjNY1vh5JoyAX3*t zbB3?ti&=F0InLI}vz+O^N0i&&^$l$c=a0>~Peh*VtUo=u{0hqbSYcN-^#cZ(Qsi#7 zMQBeoXnIm5LquMw-6H-r&cGizJ}#g17k-eV)A_C+85qo}7r^cTAfJtx2xR(}qHj$r zL^WP;0$c|0i#vm;*Y^!mK5Pzjst10*f5ovxiH|5%GZ!$Za=fo&owEn*lVhGtuo|sk z9T5roT3s>IJHYS7orpP@uTo3uH{6avPtmoY9iI^xF=;btlhx;Gw77y&)jxS`PDxhA z9%tT(i^ED2x_F$-ZD6S*l?DiQv%6IkbVWZu1Eq~A@)ji(0Z_CvnPwQ=G)qip@P0sz zZ}>?`$4_H>K$$j{@$j`Fh6}gOe@86>h(gSIUh$yupSL}lklOFar>qmW4F(UIzwH;C z$r~AokCKayVvo^yqJ0UL(^=BcdQb8}$c9z@G7-&n>~+hh*a3c$-W71fqB_=fTeMK9 z>S8V!*pg1oA(S5^jC$;u+RH&JWlQVUj73>xT=vTM&Q?d&W%gzp;dB2oj`ixmS%1(E z^*Bs0QI(kFehsyi`z9+6FyIy~d%<1MOK5m@;dnP$_c16AlQWSkayA=tgSACM^u}XlS;$T1l1yvZcx!0cGo^ZK^3 zQI*Qm5$;`6Hu6~t>Nsa&m^d*n$dA;5jb}N_o)PjB$XD3x7gfVC=w0OA&rJaD5&A6m zrhXRq38C>7mqJeEJgl)wV8&qUt92@G>aDqz9^=&Ge-xHb5?p5tIUJA!j#JJ^A7 zWbb{QrA)B)j`feZgeQs#)15=r2f3AH*UE?82%Vh~~DCKs^$lVW$ zxs;RiLM#v*tZ`CcI=(MkY%+lq&R7G1WaFM_mMmD!Q2mRK!kMEySTx)Hd{>ek^74AZ zE7+K8ya~yEx^$Ta(Jb#MZG+W`EyV_{b(*7-UFynR`~{T_p_SV|H;#t<1GhmWbk1eW zdY3U!&QRms(^-eriRc|cwRp=weT96hIX9ujD;q?%cUmuE07#sdq@Ko)CHoS@u& z&uha&5HX2&-n6{Z{9=+T3-zqov#mn}8dzqO?~g~&u6#z*KQk`5dG4SdnW$dp_527p z*$t|r=yBfo^XKNYag=3URXhmQig^A(Km8)%0q!HTrEQpNGtI)xq)60OD)xDo2@+`{74xY`$__Hs!#bL?d**r*ASS4YmY&-A5D2V87L)6B^cg+p{^Nr5<; zweU2Mn7-2jfN+?ukKmDldcGJIUo%rMd}uTS!5Gje^ppVZ&7zK)a5PI$45&^+Cy~6q z6&4mDZR?KE=iO(WUI!L9)Dq9vJI8q}UU~3s`bDYHVL25ICx^}_y+;f?IQ#mxeyO~% z(tE}++#iwXr+pUe|0NQVjfaxgCj%gOW=$%bxp-yLhIa3$)5~}Gyh0%{^eEDRRk`gDvNOF{MmM?RDX?N=i;v_>?_&z+9R`Hw9ztKu?lcMv1 z`F}&EW_#Xhdnln=e3tYnFFyXy^9U~O`Q3Ap(@5qO{?H(3(aG*0VN!8kun7aZH)2cn z@P3Sczfg$=A*1SXKCvReSP%>uin5~xp8S@KX7^iW@Xbs*A80xkVzJ#3dEp;hcAzfT z4HC#e(d7W!D7`_|%^VTXV z6`sXlHmvadUx#>g^QrU(?m8xT3Cn;8)e3aAEGG?vd$~z%$%7TBxbg;vnB&6Z_JxW;kfh3xO3%t8pGbGVSKzJAh6+ zqQQ5XaN&)-X%v{4GXMq{K|0CY-AwWi|0bI#0`S) z2ffma??Ezg>Hi6p82gu-JRV=k?cqeEZP5N6prT_Pq?Q_7I7()>>_?NC`86m zs!jsMZ&&}f&}g%@Z$X|4azk20ri=30L(#X44A@6?yEa`(s$`4MUW4R#2Rz*U&NYak z1+YtxsL>KX55a`+P_I^KVs;6$wX9K66pB*5GmlmEr!F$ldL6rv7z?U7ltcbLihX*}?I3LyOS&F3XHu+)%b|HF{fjETT2mt)r zh8J;|VV*BU#-T|(bKmZbU!>0~>0Yi@e|2f|g8MBQv$wI#V}gv3POZ zXOZcJWJp{45@yEfAEJ?$S5zgYtG ze*D~{>}O}RYy+e>HN?0)r{(+t(JYCmTn}XLuSw@>Xdw}6KT&PD_-fw=QyoE>eMx2ZRPuB6zUnJ#ChP_iBbxXFvG2Cmb391c7i}*IpFf%>DOz zdE&MUhi@gf)g?eRrz<%|o2dc>L0jNIpQO~3O;AxSbFz04wk7C==hf3%?|J9D0xb1{ zS5AZ=`piEadba+bOpvXJ$n`C;l>GLB#2Ctngr$}PP9`43lW!{>{Vl2yS3?9_S@`3E zlSdIdZ{-QtH$DJ+uk~YWKZe1x+jH?$aLsm}r2kb6HE4APfGueuY)%#0^fsN(%{tCT zwE-kcu2EM)i1mpdJexgCcaeKS>D`#&6hyy<+3??@eL{mDQ~)Perz;=!%CRXI#F^_FUN5 z)L1!DZ!~`P6rGN6wHd?1YlMy+Pw%T}im2327w1cnpLfg>73!R~|Bd^+6N84ab?qEN z#W+uGkY8eu{CdIfw^6QZ%KIez?_-*K2nbq`2Qn*}x8OOyPmr*-)#M0of#mO>>R0)0 zd4M4zErekd1gK|ldB-HMK#sEpq^py!FSaq|*O>xLMnLF(43%U>jC1L2KEcIgg)+e@ zmrVWs(%`UwYY38>FPXk;^%kUIJMTzE5e7*WruL+fp=A?@ooywB3Pm#eoni*Q=YpA& z!0)kx(fW~5ChvJo%v81=V}nJqcP6^iK~^eJtecNC5XugyjCp1vd?|CE!` zd|IQ(m13sHig!a{M}OfElSN&7eA~wNQr6yRc&zo0IB8lRtReU4A~W)=$o1E7DANJqA&XA z;o*xayd<-OgeO5aKxgtCGab0K2(W*W^r0E=aTVkRl@)|T*~w$SZGj;BKq7KChKPnvXD@rh1ie5ZdLH< z)pLsc#Y#1pJ?0*NFQwQ^T1bIQq}`$Ed_m8Zb?)Ovb#fybxz2v|_{F^Lcc`qo%~!Af z)GSFpd2jP9yWL*vnrUP7eQ`97c4GB^YYMz57}<5x82JAlxIazx14SLziwUW{6q%zo zOxVZKG$V2yb_9@YJF5U_fw&HE@QVNXfHB9x0PV@Ke<1;D8yLyZ3TUVMtqgwB=w7Zu za%jL8gEW5LLprglR&p|twq#4}c7Iu)`Nx=NM>=h8bN;Lw0`rzMd`KTzr@z=9HQuO| zIQA7turjZ$cwn8A57-Tj?d4uhhR{uJrtVirXSO7SxS>p@2Wu^Ggy@QJZIAABHsi}! z{5|CBO8MEtD4W-=EXl^hWfmX~{^|>}bvUNFVhj;52y)|EOoZNK6GXA(C@m$}=$KQMjne|x{u5w>DF9fIk>hE`<-hDc1L(33H zwTw;27-Isvk+oI7k({Cj#!d`5>%h6U>RJv!jJwptHKdN#mL{cLUIf44;e}^!S1_~? zeLns6T=73%i+xJ7H4CxBFP6!d2!|>-r9!dhyd9jZ^rIc$H6^baz9bZvz9~0w}{`UXKqERXk zQ(@Fk1dLvD#FJ?|-Cc-unB9}I<4h-y3M^r0SEY0W%=}eAr$}-qVcQT7C61bE3F`OWuus0*G;mpM}<{u-+>v%<0$ud zJr^1@I!H%XFT41-yb)ve@LaA(k98u_OZrVTa4R?`q6`Ro@S1I_$xol@6eFdLlh6mE zUX;vVuUhRhKCWQQH=rLY5iXz2mvh`!{=TftZ1vZ5*w0ULT2{=J3rDv2Up6y=C)fZ_ zO;|@zS_KpnBca_OfpBLe=mn$MPP5Bb4-%Zf2zm`5`??lHL@Q$wRKM-K>Dq)u1^Dlg zq~t6$qK&OrXZ+L6IE|+-SGN20FYdpq%o?o0jN4QWtK2tk`5os;axx6n}~5Pd?v>AlQV{L zbQ$Eo>wEC4&&6vm@WH8>@I^x&-?c#WSyD+< zCZ5#{3=zx+VX|O*GaSg=_3L&+uoU2PsI81Cr?2 zzJLWW!VX`-=lG6~&}F3Oc8ClqHyaeOFuQMu;jgK3D~d>-WPC_mxMqj)Czml>YPUwnl_yi1iE4zsjd-3SWEhU)!oiL0>Bbapx`PMQ z{^cR4b8wAs?6=k+#?>>RsD=kvv(HRD>3GBEA51XcFbt>R?lnEX}))9OM0 z>3aQo40o!}lG{R9^B4>-9U`?DW@6#U_Jz3LNRS$vhMKr7{i6GJY(&bB6}!8f5m>@_ z29peCG*#VTbc(BDFsM5H{bx;cxYtXHzLE^}+ZvMxMIopOY1iPb6DNR@`t{R3??r-d z-ir|6XsI(suh4=}VZX8>qm-F45}P3WGR=VwR~pbwAKKpI+gN@dpWG^Aieju4;ePr4s8n zc!Tn$VpWz&lwY7FpPOoV97xY`5{tggV1(o!MzKE49!BFYZ{5qLvpf1+krsZZ{|A5`wyDLo?8kP;r(ImFQn*U2?@~@$O6=Q>A>s!yb)P4{s z%T@#c`e$f=85otXX@p4j{1d83yRxmI1e2b*6y9xsV(Q#c4unW_`5(1c(UVf3a9K~5uYR4FO7B1qjb)FQooJf@S#gqiH?C` zE>4kKhqXR0j$Q|X;d+P$LBejJg;!zee#skdkAagtw_GP>UP1L$%ecXRouRh+M&j=+ zExhe`?W^MAc=5y|TsmF>-6nF<8H1XU55?NV4J;323g7Kt3m4%Tl)NM8u9NVXJkMOa zVPrVm{uL!9zqsRf+A}io4v(JL1&>J$3|#(cgOw$oW<&or^k1;``Hd}o9J`N-$h7Yj z1^n=Tn?T*eKN>z9`@hPFVR(#4Ij?y9sW)tH#$1(&%@VlWMyKOfFr+l2tE49r%A;TGL1z1&t7G8_<4lCiSNH> z23vZ>k`u6FJJUmN;FzO1UAJ)^2Fs5g0jOQx8uDCQj{0586(p$a@NA7dNjBoHh_A;yakW> z&fMiWg9IkGXs?^uxR_TUTbD3h>Ug5Iveua_-jD0<9E!?TB~0%b&nzB*zylr(u5kkk zsBA@W3X-{Q@IbyE)YS1h<82@G4hs_k6M0vlRgx3P-iiIXDvatc7db||p7p>KPYw8t zI+_!baeEVr$;5LKoz2;?;+|fZeO+j#{!HXD5Z8{Sl-eD;^ASJqg`ZOQCaHsO(qH|w ze4eDC*+19068zVCO41kYNnPLx$G~=95>IdS${hS~(WM|rKsFOD$+~&-A%H!8o*t_g zN4&1^N~ zk=N`+v9D5;YJ1-)GP+X~QZ|P*Q#`U7fK-cmu7FZ?!cxsUzS4 z&VT2ZOBAtJ=mRr;8$vk(kulA8lMe;s^4TzWBmq;t$ErB^>NbHw$v~?HRSte9tKqQJ z@euT)lOKA_g~*Wg!885WqQOtpt1x%A4hD_DB%Bv!r?(3+1+v?alnfCf0pQ&bDRc0}P_t;90EG5&p(owA|>O1d3Gv`DWZ#fi!}O=*&2?4^lLT1&Ug*g?Vy=^`Ft1(0?eL64}V%inoFDB z7IEJ%awiguu&{308x;sDsTj9wOK8$2I3q`Yk>1RL#OsuIs^NzJz=yf^+)g zfHk#HM#LnNwZjQI#@G+{kj`5=_k#@t{+OLIl37U*vyV-Abhfj#tvz6XZ{j0H=G2Gm ztUN-v3c&$Dn}y0HJJ8IBs_cF+5zuyL&?~YrmjQjzDtbt3FTi$*ZWsW5e`6vQsS9)m zb={ONXtS$06wwaKMH75$*<&i{kbuFha)ylYJ?t+8s4e6 zh&%T9^uS>Li)$Iv5&$h6TL^8Ern7R8@a}&0G2)ivp_fDYwTY~9 z3Q!V`tauns(;2TSIJRX0H(g5Aqd8X`HE}L2J|rZOal{I^T>5f$AK-2+&H(0~$?{F- zVFNgzhtkS&JzTWGVA1zPi1rRv+)g9+j~J0awb@E;n(NLQZ%jpB@DHEnQz0D z^TU3(B2p7A7kCH*z=sCDDZAxpTk9-IW0AaLxYr&Rz)&7w!fe_UKhA3oPQO9ZyjJ_a zg1m@*WQTZ6kJbjT!z*odpdEQF=BP7Es>K#J-Q+GSGYwf3utp!zVeywA*WIuxcm&OF z=p>=~OSLY-S+}O>`z~O*+m&tDI6l2r0MVA~oqeV4dU)i`7`tV@d@n)EDrtkkOqv3j>KP8S8^!PV}v-WU&c+SG8q1j5h`YQobh+#Qk6Xv-k`s!RDwMqct}66(>P8|LtW zOp7*n56uhkU*5!6O;-+_8a;pyH&U2Bci(QEv)V{m&U3hrn^%H)z5drZj!$gKt71Z> zPoMeSeuf>f+$h2G+?exjU(ddW{Qd8r?v=@_~O zX4m#Y8;E2%NT%J)ndd?>Z9ntge_gtB{F*(LCd;-nj`zH)fsx23hRb0VC&)KJ-Ba`P z;0Y>BQ({&>F@w_g{DB9J+5zn5cazU|p3;=IM$oZb*sz}T@WUm70({wU*6|nWdkxT8 z(EB9qbvC!C_uoG`viR6xJS0Pyo_;vssEH3VAB zB&&ph?~X4WnhA3zy8X)xz3P%>&usTok3^gk4;y0!@#+ZbzU9Drd*Xa=geJX`x8n=3 z^lZ^7hqKZ%)t#TR>e>h}^Yl@JJMWDlJ9TJZy^S~h^ljrO1OM+wjHSCCp4-ZYwqdB8=D+X zvtaTDkUD?7*Uyp%yYd+7Gm??E`1i7Dal>$sqWf7%N!+cISkH*JP+a4lR<5^fQYygi zAf-Rbq?96s&{pNI?Sq*YW3TFCB(rS|@Ibx7YL-0H-rzGqf9`YL$d!(RpWQzQ3K38NafxF0a*Y zlXLbI?2~GwvUkb*((nhZA}n^U=d;GYFT=4R4Xok zfp))t@@sVq;Ku9XY|gX#*=ns{52mE3XImVq=~u341N*F|62pfM6S1X;aTQoN0&_TY(zR7_cHgyO77?7424<1Fd;`HtJ__BpvMQauL6;gQV1%(jHF#H-#8i) z1W?LZqd*@Z-5m9v2pkBhomp2K`8B?PYW?eR;J_Od!j@vzi-}suR4$!qXnzL3QT__O*nj~&fZL%{ z=0MemC-nyI#235UkrOOoRxWd$ebg9)kC8%~8o}M<5W0N9_tAiHjdVhp_+!0f-9FN& zDBlT74VAB-wywEjHt>tQzK!01yx?J=iDQ+!`80CCX?V7jLEoWtmg*=#5~HcruH#L> zsOltK#aP13$CXH+`(a;vzjAo4zQ|wZ`Fd`{@s~SP?L&=ucCxtqJfQh;%)yG(8bE`j zx~w5-;$lng+j*HPUp$1}Y_FVnR{t~_62FLJI}1|wm!1P$Xturk*Yh(<6PQ&oF_6CE z&P+nHx1yV<=g^G(D+lAx8yIHULg27Kb-3?(LwJ91vq)^TMKIv-j^HiFb-tTDGuEW~ zOt-a_T>9%rcGUE3gmS|4IG-A4p6l@zp0knS9i{d6t|dBNZ=9QoD@|Jc;~A&2czuY5 zY(k86ell-z`&R#W@KM?H;xD0hp08+)*Pjf$o|qV`WzlimHaySMbNNv_zW*(rCZ6r( zd>UgU6VE!lu6PsLa>Vs!q2ab6!=GO&TuFUi+@+ZL6`*#Yfb_!)m;iA^skmkQo2Mtq zb~q6|K$c>eJW9nh zR!rhy#yPB;E)@i%S;tA`lC~IKSeJCx_(~XNb>V|EF)dq{(3Wwm$d@qMp$SyX?Cc;X zLq&TuTgr9~K!cX3dY97SRiAbJWq@`ox&YIEeHReoN3{3c+7e?V4~Qc+K&)!5aX3*7 z5^r42jg}QifVM=rK@{K((Iz~znY*s7umaCnDIM?SdKCkj$xcq4!4zKAWgKTwXQ>OO zyQ=qBe>cuZc|JP#8-C+b1;idoj{$tohKegVdBTn^ z($OJiL4RnQja`a}Yd|H+@QD4*5}tRHv;FZ-Ic3F!;|{;1pS0(6W3S8&Jky#30;bz^ zp*e}%ilC9L&|D<~t*&d6C$Snj+*XGrMq)o3$J)TIw!}r?NpTft7*ytkZH=Qwj<={Z zQo44>wU7W$g(sF!Gh)KC1qt;p4a9%~pvX{P2}sRsvoB!azIjBKVu1EfP+5N-`CM7x z?YVg0Kv0>>0Al65n&_LVvue_u$?l99p@e$om=bf%T8C@A$yo(>R2ls~YtTRW_jkS>S_KTCqT^^p9 zNfMw|hR(f!yEr{16xbZakHD%w?jrESRp_C?XH5(|yF~#hO)1oU?iHUF#u>KmID7Vq~g+CYKMQ>RKmmALbO@b>>JAE!E4n zFi;vEKGT9{wk>Jeum_ESty3~+RH?8QD4M53UUXiBLkt>o0iBiRsTk%Is3N$HNxBID z*b(5->O-@@?w@1B7T~D%$@O%4F`BD~CUvF*;aA2&(-p;Iq)RUS)mrEO{D&I(2f3+x z1f5!8%L>o1+#6|86T({ACoFK}9>18qsQ|otfyZgQU^itLtc`~Ks7vaPzGuKCD>dQw zD}GH1^+oa}m8q)P$y6vdiM2ex$mwowrZe=jqv8+NpC|3T4JE(n^637-aBu&sn8oT? z;sGt+lqpCmTGIdMr=?z>169j8O+us?hywf~o7a)dJ0N75Me1~f;4tpP#(X7-=(k+X z=6{qFez~jwPhhjIn0^HZ1NgEp$P9HhOPjJzhc9FD0NTm}$bugG4AB!0_Vb?FR{Cd7 zM&oGR*f}sC2{3e|@q8gmSl%Bgn;dGiflIt%;>hXn7`P%@`sfW_Pcyt7Wowryd*F!k z>8wYI9*r_rB%H0t(Qwnf-8n5M#QH54=RbnO9_=eBY{GGQvY{te(JKsJ=lStyOn1%+ z3+$I6#Or{^@~_Ke!WAr5Bq8)vRZZLLnwbNf%8Q+Ft`>CQw{Ib{k$Be7_i5zLZ^NR_5g7`GNikN zS&E3LuHs9!xCo$Rn+MJjMw*r zL5IjRaw-NK&3=AY=&XWA<}VC^q{@2;MiUR0m-$#{ve<#yP7Hu4O2h}LOo3c4sy3;2 zfBAfrG$1fWdwl~!5k%j}?&7$*?t=|p#T!|DBPf{I&cieRbY2AUCR%l@f1V7;r zW60x0o2s_J{9_Am#nX7waKr^MG?K}CS5qBg;K{~1m5TLkLrI4CUHd)L7ll6K$z>gy zCAuV!6}}T$xJc9h8Ld9(jWJqzeHxyX;etO{wS3c~;_quV9Vsp9akG)Tp9=0c5C{rA zE*>lRYPsOjzZk>g8?~efUX)0&PfxOQyfP(wyVIN~=R*!(x*S>gocXFx+f=7uy5ohe?^<9s=oj%DW>#!7)T1*@0<*~4iwLyKjgY&s+ zT(|L0h4#^F67VeQGL#J(og-l0D2hFh7)ss+2o0(MbDeC}CI7+jc$zI-&74br6q^0I z!fatcjCnObI1_n!$?n(=;4tlg8*oz0v!!*Br4uTZc<-fhHx2O(S3q0H*e3KD?xi>; zN6U#ZckQW1Fx1;6e9s9Cl(T0EkPz_J181_Gmy9jk{6JIJ&}l*O2LXO96_^t`uWGV@ zW(Ocbz0X)Dau_|5bd!3Y>6)!M8Yfl!ME3f%QVuDDIy@Dk_H~!icV|z{6 ze&zSaJO2*ff2|C}Ym`%UkGP)Ihtq7?Qv}1bWven`$7Cy&(IN$+fZ=-%B=FmmaR%1p zKJHQ1lY0gPMfhgkC<=j{PW->!0T8=fsW_`&Dm2?!7YnT{`Pn@PaHvK`;IyPMjM zD3#DNC98|vXJluAZbx=hB*eHy03ofj=#1c3e>AQ;S=`Z=?)r7))jqgO{S)hDZ%N}Q z8s6b7y0_5dli*5%IkEF@{vQvMJ>e)`6@VjY! z09F_x*kLQ_TK3E^%&yeabKn7A5SqY{UrEdcRVwC2d_V9fJ@P6mtJkTS#8%prGRFcW z-;Uc)>G1K-Ewp0_?C)$e@X32`JPCQ{S-@Qd!(A7pV~YX|wNGem6UZe$vl&q!OT)O* z7I1z0fTIP&Yn+t+3y3B-oe&FI=_5A$DBFFA}bB=n&vWR_7C|fAflBe(M1QRAdmQb8-!! zeO8V9dzbnBh&zCsueU(P*9||$)3z%>1csjHUI^-}VTxOQVEwOFx%G4bHu}bG%jZYLt6J0u?yK4n8|5ck|CkMBxs#Q zJ-flZ$>{AU8~#Bcd|3ft9Usnd1DN8!-UA=SqMpI3(s^-1)9JP_FRr@$(0(QqPp9gwRMES8P1a!sI(bmHYw6`kb2v#&4Qc*I zR@Or*V^t!8xQwHS?X1{l2SG*qW5}j2;4#Po0+MvRDYyh&h#EP=+S6kUY>(I{@OL4;lC3!E0Xh!oTLLf6Bca$;|} ztY04DtK~2{8T%>u?F?yYu`18B_t<(Ak;0LGp#KSe&cI_$vvB_fq*h?Ng zHS{z11)vazyR_PiR#;DQfmF~Nh4cTkcZM&@o-vw#{SS$M%aC?G>0B^#6fA)rf#}TT zYwAV(getFtFwh!>AHH0_0ik@h=!x)5hMO_R640iPw^-rGQ_85se9V-_ejsXX=f^0XM+_KM<(dAVTl~r@2tQ zX2bgg!Q^_B3QJ#c=_>5aOENx*WQ;7C;XUH`gvm1-W5uC8Ov6)mbB=J6W*h>+0d!<4 zrY%ph`hofZONn`S+NJ9BM$rrj7M)O_hIaw5?i&+M-#Ch%T}xCU8%M)A+O+WO(8kO_bna%*6*FAxWUkB# z9;PQU>&5H1iAWg6@ka61wC@J=e;v$!msp!;jThn^A2KRD#x@%EdO~90<`IK{$FQOd zaUIi?Bf`|-Tljm@3+RzdBs|lzX+{5js4})NPOLwZopL@H#2Ukwbl5mWRO{xB-gn(b zhpBmxGm8N1*syUK>PYy6D2Tntm$cn^?b%ttBdQ) z;!r+d#Ah;_+!YgAsAO{T8K^1^v;^;(E4RQ8bqJ^9{AvovdoXWlh6)3$uj7_Nb99-(EwYA%5wh=a690fTbPA-s|DY>5!AD$ z$OrQ}8g$#jA;yilO(ir#uJvjmAO=j39dHl!LUyVYy3-j>$Swf+stB4;LB~`dQ#5gN zY<|qN7^1|2|G`pB0l}9b^7PMZlL5PdBI^!~iK_Qzt>j*Z3RW4?J9qNq*=cM%-5XeVa;k9At%~{}9b2HAI z!(zrLr2C*!qHjd|<8qUd0UFKkNwG8Vw8%ilgV}Hr zmH;xKW%5XrO*eH+{XM!2jUCPk` zVWBp(1U-Ny(@ z3(W#~tMokT;aWRnb255@h-?N!kd+Pj!5%(v(u8Zl!ArLp9q(}blPn`)@ur3tg(3gb zC7Dqy_^V;d)E5znDKIh7n!`ZZ9*`EI!kt5gp#4Y6lH;mLT)E24VPrGMwCqXieZm&qTKg>R@F@qgbuL81!nub<8?@|Dp*=66&syhF!-vD(ErKiGRx-<96!S{wXVuYEsmtkOG6pIvJ2Fz}v z+McKcS1qg?^SnZZqN9nUHvN_bVvT@1%<0f)g#Rp%0!UtL0ms0IO}uqRs6d6v^6&V1 z*~%lh=F|Bhz=oHX?sjWIj$8z6obzoBC8Zb^6_K$Y-1Dtd3q_!y_@a5Mb~4(ZH~#Gq zylW{;kR}3TFWBtis%B5m^7>AJz{95F=(Qb7C|>&j%hST{wGnRq?k9Rs`O}ZQ{2A+( z{3K{+-!D)aO|?-wU(Sy6firqJQQ7wcC8q=thiE_(U| z@aXs4u+&S4T}jh}^*73h^DAfnm=M@lf40bQcC}^kIL7UDUg5rGHEHeX+}>N5(JY`( zqw*2H2wn+o8; zn>(N}=4~o8_q-~y3bTYm*}g@GDO~s8oee#3KYabzgz+Nz zIn!^l{q^Bu)AJ-oaFh@smDKUwt_ z4zZc3b$ZVbJM06M9K&*TljyIcodksyVT;f{`)s7@8uuv7_C}OrdMT(h0JBRq$c%p! zkj?}y`teP5hig~3=H!oZG0#wRbsjyXxY6X z_2OA!^I7SUu`6QzPGQUNqVJ3fszZ|o!7x=@XADz+W%TnSv173k097O8t?zs!!o{#8 zj<7-jSt2xu&FtuT#k&m>z#zi}UBYZhMAFl6(oReAEWI1Kw2olU3zb$^m?bv7dgk%a zXP)nGnDNxZE57;$*gj#VHpl@h4KAM{)xckfut4Bi$TH5-Realn(Hfkq+CbMKv z9@$1GmS>3|&9~X6aTTX>R87;J<_6#%ng5TmHxGw$kN^KqMaY)r*s_GAP9|jEPZSl= za+1vHShHjqlI*7JvbRWCCJA+FLY9$mXQwchn#eK+84Si4j4{jod+U6@*Z1?s@A_T8 zKU|lqaLwHJd*1i!{dzs0&j;gyLmJv=G8jOUjA_sEa$hp~k!bF4RxH=W`PPL0mnaor zK>Mw#EPD(TQhjug$%)wsT^oIoeKOF!ZHROp-gc1CpPJbK3T^zP+lXx}b)*To&}Yf_ zs)GSj(-mg+_>7aaQOwK<7Vu9nYkWe;MxA;-=Q@FJ_I$B|mrC`nDxyZ z={^oFHKxV8WL7EO=q*S~!MOVFuQv2=f|V5Xbc=};xua<*ke|Ls z0(&@g>+HiA1`?>+az4BU&gAac(u-c?QMq_?7Z||jYjiFIfshv_%fg$2hFjg&t3x34 zv!lDemOKwi0?@FCXGLClitYoTWFOW#&-?aN{0SEr6ZkMH-yxPOwTUkU`FWcGOs?Oh zo5X7HLD<4fo@M!1%wOeft}pMMCe9@sJ^+IF3%tH_vRPIY4Mf&&-ebPXh=Ioq;yD&WagbEq?yiB;f`+jt#)bsj}**M*VeH8+tt<^)~ z86{<5a6Y;*_tbVM1Sf2}3Z9w_HMEVH1btPS=(9YFzn|BNt%WPSw%KdBQaZ|GDLwt< z&7)xtHxQe)OWfrMEhpao&eON)OK zl@MBHVUHyO0oLEFU{F&=`@4O@ajAPKkK%yoarYreDy9L)O~@t9C-Z_9_-HA_b#pT` zRQwqS$lg;Gr>HMLH1xDvq^M(+{??jI3M?pooW#q%pn-RUmm^KT%FB{a+j6e4A!$)o zy9X7~!Z$BA{6q+tz;!Wb6&5A5xf>`%U;sL@qyF4PvZzu809UYTi|+S{+yU2#P5Dao zT>QN=+ocI0Z34LnpUH4Atf?Mfo!g!OBs3$+{ugpPwH1+lc||ZUVsyW_&#|w_&^vI< z>ZR+>alXmP-{Wk#3{>N3bL>{~==QK8)&Axc@!0^X0CJvMnaiOXnPY2{AIx5bH?5Y1 zlsC9mdZ?|vJKhGMZVi-|s$_};qXQTZK(mmMFyXNszVZ50?*6Ll+^-v(!H8`!FMk}( zI~G*v@~%LcgJW)Q2mB0Rnmg)4ZIgdHh1TW9ExhbWk}y^6&eIWu1?k5{k!dlYs*&G} zE+jHO-{}T#cttnzD`rmIs21qo>?xOelkbU~Q_$D>Bx~x0dF(k5zn)ieel~C-z4ykG zdbc+qZXa(UWE&N+J(xV+mJl2ZhZ}Bu?7n`}L5SCYnL+&(vijlPMt4xZcgR1W3wY)^ zDP!B!DYQvKd@_XQC;Y_Pk4*Un0s{a5^^T11ehzYL8LzWAnB0@ZmFT z9ua=|a_FH|Mxp%>0HEBy6XLG0=7t{ri20BV{MX>oJpou(w9hB!vs4AB0J)B@(a-9D zI8|;4`Fo5Q$CWK_E7k1Ev22~d9TU-zbiWKiP-eY#ro?&R>QKB>Y7@D3 zEPGMAq%_u`HB0Gz4s{sdg<_hSKLf{YFPME-6UvNR{jwye(CKlK-zOn(*U7)|4OByA zfw0{efzK1!BlNm5`MAj78O^Le?g!^zrY0AtaSX)D_00+{{BZ$=cpT=7SIw~flI~x1 zaG_;zuxt`=QF#8%im(p@7@%q_3Dv@Zj>X1T111RE@8 zu=Qvr5_ZUD%qe;hYBD@tvO`K4aBl?Rhin7baK&VF#spBCbqDxCHE17CVQi^`fF`b> z5sujCs;iBn?HQl3!LFO83&uX^N)1r@FwMRXsMheZVog`;=_kW+yT3|=c2L{ATXTSVB^_`moa z_$5w*ss&0`Qfk^b0PlePx}8hEh9fhvXF-FI7`BpZjyM};4-NSSC zu3;Cxz9&3C4ZW~(Q$%PL6h*a>0zydtM1`;*C*3bs67x^Nu(=Q>Yt1kkN4 z7sZ&ipfcl6&M!6M*ixe)%rTa^y&_>c`PI=5WYNu_2iU(r-&0?}vK5KTa zJCv%Wtw(Kha>bps3jBX0gcwfOEPg7q{OZn^skA<8;qmhiJI1k;<{w|G<|LGWxdNZ0 zL?E^Jq7s>FwTH`hYp&Q`2+tivFq=R~p>60*2d(%mTlB=QsDybCaXLn#B>ADWqeelG z@se&?=>?0j*{Bw7BcE_urC@AtLLh=mGfw^?81Pd-cmq=~fft#g}j-S8~x!4R{dz#V!7k1?1WO|1rpJ{>o#3iD(Vv zO@MuCir*$C4|W`jl?D3Vxqj@QME+--F69jrTp2|NYFZaij8BFL4oXBg-}Wm=o=qr> za*`u*HNCT5FBrT*b3F=+i1~}O>pxgj5@9OXADk1-={!W| zwoTpm>3HGFGu9tcRSrB8*dw8@IfUwT)`9GqqW!I%@M$5coLZB4192b^@YHxduzWrn zdcoWW^S0q`u6avp?_OMP`SzbM8{Ygs4n&mq+qzLB$(qji!L&SzYk^H}8uxA2A*&by z-y1Z`oV4>8L~!vB!`|ak;smq+D%MrtT%Uy2X1BXiw>&#z#>J zuHHbWz~_YH*%y+AUXH>|s$d*nSVNz?Q+&g=fh~XjB#I{L(O-w00OFvJ0=hj^^>0;f zD_R``0{beCC8jcbyF>2%IGnM+5V?BK3xAP6D<|dlx)-U{xXz`-ci|1G?l}(TkeF;; z0uX&bpk`U?-L|M+p%pWO!Rw%#gKHL1fFzNud{XNn58>)VnHPZk{$c zM6mRRfGk8M-WSC{?y#&FKiPnt(AUUWUkinX-ySCumINMOn^w71k{^4Z_xeJF=4P)?2zfqvWHk2Tiru1J~Df;h4V z<}8AFgmh?cVk8Z~Evwz#Z=c&7Iim`dPx6&Gwj%e|CeF82)E(GcmxUY|LlpX0=a=ZI zS0yoixo4>l_u}*sXR8J{Z9@}xo#SrD*|uyI-TpJQ?4YtOClkpq$C1BJn)&*Z^=K~{ zK!;gN?@`GIJ2&}1spTfI?Y!_!RSM}Rr#_P48@TYs7TqVA4Wfjesm2VXfz^0Yf4_yc zQt8XG6H(hIA>MDz$LpnFZ72dkc#d{*vic6U{U6(B?=^X_M;j-?+*Yd4R7iz~3zLMJ zUP)F*vX(4`1kvoyr^BAb7+~aQ=UhK`L+G>NMdBnb;xLwLA~;NT+#2|DqYlvCf_hiDu5s z9`Ly;nOFW&H;VeP0UxveL-AgnrN*q%B_EsB1b2cs@%<5PM6>Vv`A|AL61jbn8ISdk zkXM2f$QO{ci<6q+wTGKJP#=Y+C$m^sw~sO$cmLmlZdtsh-K3dHkydK=Ac3i01L!_k z*FeJHtlRlG%UrzN35&cIMsmAIhoFC!%y;2pds@qBVFk9Ee`7f4Q#yeyamaPg|{v`=H<&u7vRJYqWZ1E42C z!(i}sbAlpM_s%wB+2_e0Hl8;eQ%MlsI`%ezF!QWN%DghY?!?iix1*@)cbEwUGLVVTmE3cEKdikSQV*=onZvg0V(DlbaN5{}V;k&h!X@BQ+6#qKB& zp8@qY&8}B>Z5vQOiW51Ew44=?Xaak$p_xdo*Z3*z2gKonCfhY3L{%i6f9>YiGD^IO zih^`@hO96=Or06$%*6 zY@Xu-XbBWGd;;k7t@7&*XgN=4?QwEizY+EcnEMt|=#vQTpFy!>h$R+Qet6Zq70FiT zG2V6#iEjDMsjyXvZ^v!1!*^l{aWT!)QW4IN{vx$Kz3|k@(9(y{eOEHV)j3IEriATN zl>NwiJi+0Tsb-gz3cMV^m_NvwCeB;z4Yu~PM;lu~F|!R|r(p?z?(Oo%v6yrub{&17 zmBErhM}h6;r4Z1a_3>xz;_;6HV4bs~$C%$0IiF%! z7%+_tct5#*Y~%UM??L8V0xPD3z+D|6l%hhmYLoAu_`+e1&A1Y{-h79?HNrAkA#;B% zz>8ApcJ@s%(6)*GymBJATbvxYC1!eN>%oMd*ePAmV=8ELP0jDL*)#*;HiN$G)!@-c1Nj`$BaevQo>~P0N)78}(JI!K6GIB-72Frj!BNN~CL3?dI z<%HbCB`K@pD(`)00#WehC}~4(tdnBV@%D6yhRX{RN*bCN8z%}>?(kqo##D9JYSsFu zWND88boHH>%G@d`b7fxikO=i4u;rMK*haJ55cO_TRSGbx-RaYu5$dTtj^WOxe5+S_ zbn<=eIeod`!(ixOU$+N{wPbFx07>yCEh@NwslOLm2 zFVH&!aWKuhi2TLa!hQfbjz5up<{9PpX(Rg*`y)LpQ9({Mv-_Eu-iYVrNnns< z4=b6l+vdI?F;5;G*lf*Jdu^KYfXJQeoz%->0_{TgG@iGp$hG$Up%-UfTX$Oab2X?s zpNWlClGvoWdr4msa$QxVZE@@lkvhz`SAEs|c`>suGKwc@P}l4BE3e&LidaWjHv1qo z>9fGEZiwI?jkbqz==K3Lmb2hRYC$z+C^=TH-$n*`Bk5_(4qUu2z9W#)N^CGn15Lm- z89`GSjU^q}2LUT#`X3ddq(bIL+-@Dt@G3iR)$V!~u6<23jZ=`xWodzMAEOU^D5cQy z)5jlh&A_D3xxdY@R{eV-V@_YM&-w8Uyu#HP6BR-Bb$$bzV`#u{2j~NPOw(h?JoPzl zMCASCOk~}?1DRPatqbogogekl%11IR4i4;xj@LjS@;G0hx6+6$sCe#fJRKf(6nXq+9b19cnCRAOx8e7p*c!1cA%KQ@b9T*&Xqs4T>4SO<>EJ0IqV4@&P z!lpJK1Pze&ER{V!ubw@rrPy|E+Zf$Za+x`j`oK(a$s?yTjQxX1eU^&idTB=F&~y;% zZD9TYQ@cKRN13FQ#Vl!o%hRQ?S~LG#{-7q@aCz={0E2Z3x2aG=Lsa3Z|LUc5AGzrG zIrW9XwvtB@lq_?UD#b?l_SdSH$%cYIYoy&6OjjjTuK%si<`-_LQSDgZCCz_(ZBVY# z^lSp9eX5r3)pqr1-MP~+x5d66Nk`QKN!1(ym}m_0X2b;FZ_K~^)?_w4u|%p-{`jK^ z%TZmhNQ6H2>TQTk`*`90idHjA(c6bcwxOVa{<&P1a13HR19`hGpoKMnb_64P=Nr(= z5r$0er}a(aD`<<@cJM@cK*^ERd9n{B6bbaD$XZG3FY#bTknVy}>YtGsQELK6GOsWZ z9M?6d`WYGg?=(qiZQF4d}ck{KP(9#@oAEy&8RNplXCJM1b6 zdi_@#(+YGuhN21iy|)NiordqYv_A6LuNjfwNJ zY#?;}<#2BnF)+lfc1`L6+K<*y-&oa&iAkAMiJbNKoPrg99LXCC7Vq3w!)ZX7XGQg@ zL6C9V=SfOCZglFBYFleQJ8(a#z?r$8KKHy}ulVZ2s{3F6T@8^++?r{E0`IsZKlyAl zPAZ`8F==#vt0$9g;H(1AoXs+8n|g0iTEx;0MKQ8Sfovpa#R4>4&(f+MpSx3EL)NhB z4kE4x2D!up;--`51T6vm2ok;5(E)MsW~O9x9ufhEn+Sr>A*a51pdWG0q9FOF&@)YK>U(^Hhfb)>g+f6kWjMxt4pZ8#Yn+bIA0ZF`a)u z=_ndH$lmIJ5{G(6QD^;C$J!2Xm4g#LsX<(xeNGN_F~G;koqGc7SGss4AFA6xfh+~E zS&StexFw5KLS1~FQ)K8kCIzoTCpa_N2kT_A&cyqNLi4{Ac8zWdejY<>!A>cTt`Jvm z<1TgFND|v?8}UU79%o}35AU5T+kKVGm(>NGv#(7}yf^wdaDu?4H%GJ}&XT4|&&?`Y zwvU8;>@Rj2%$0b|ktTl;|F63P6Q5dO*&38I5!|NV`8lJT7e9V*P3^}8KSy#lEoR1Z zVb*M~NJjIPt)&HY7_4j_yGf%Qjz-@pkj|ff>s0N_Gof*`*>BKUJ09HhLh=ME=?)m< zVQ%4-V&lXwBF-I7aGmw_mU8L7!Jp8&TCqA%8p6XXR%_O@ z&oM|aAv_h+bP0m_?ZLh`OEEyg+fm&m<1YP=n3>M)&c2sm*z`%LMW9qve*=-eY0r_z za`R**qaKVI#wh4Qt0VGYfQV!=7*@L{F?=BZ&p|Ol2?25VzGKJli++PbXF@_7rS~NQ z+TNPS?dm&fHCSf5Lj%ZZ;9z1!Lth)PC7Z*?Cjwn%o=JLM{GgRxX^9T;!NoyR^G;GWzk8y2@tZZ3BqagXG5e})E&8$nhe4H5WFlJw2z6#!{egJLALHYZ zXVKx_Q(jmS?s4

      0{w9DZb7rLj~?I$N1sWc?I?=D4>I%gqtCFAD{ix z(9X%+H@EoEElr!At38r8YgtPXYW06eV%NifYa4-{H!+~j<{2Hk%Rl4%>bwes9~QruJ6Yj^YLNC9<^3+68=7TvIbWo z_O5neN+@m%MB}|a|3&%1QoJf;JvXb@JPLsC%d$kA1h@vY|X8`yc|97g-8SbF3 z6m6TMlo00pXnOKQt|&A(0woVKXo5%Q6Bm~Vo&nG1$0Cp{sN3orM2d|L@)$+Y^~oT`a-<`N5)0}l z`HfgNr}VXim~-LNf3%q;ooVYer_yx7ld~LQ)iz{U6EPk-TH>QTw0WFQ0Y@&{# ziz4A7L=&=I8*%p4Cl(QHeA?|m=Np%;{UommS;VK+I+LPoye8v>1;Hm5#xQ67uOk^b zGaM8{b-cPQnqe4#W`F7rIHA%78tc`K(O+3ztF`yLHdXJ-mM1_xOaYOy&a&%T$mxl7 zTycT3*w3lFE@}s08D~abKMpbI?NRAYYB_$$SozbEJ)Mv$eP3eA;h{7 zCA7A+KMUw+CXmE_EF2V>)IRtn*fqY+BF4a>+HhSzj~uwMifo`QgQ5R2ZHMZ_&$Kt)6}dI{>>QYxF3C|L5IgsU@nI z+t<(9y3t3DgpbnzPU?rQsbuNM@P(W|9G<|_Pj?k8oPo@cbPG?wE<<1Zz{SC21D-np z8%3;RVQlQQD`9gkuy&7so576zC0^)uKqHpbNLi^>pW5xH2IWuqHX*qvdnMt4+=S?H zjb_3i*KuwQSFD2cubC?;(bv_8dLM;GE0aq7#A*iO7jD4pOR=zM;Zeq@^KH_7r2?JT zf7^7Q>&o%5TTIWpkS$-F&t-2>WlIPga5k6#384lSs!cCiR4%s_(jyWgCw&-5m~Z&+ z(bmVnLV+hU`(r%_FunRTan_tG#bwQhEE0hq2g@?)r6*%rKLTYXE$c11JGWGSIlg3I zpE$0w7Yk0jn}Myt%jI+l?1=59`;97t7GIASBAAJrYH#(sBtRq`gZP*!Dd#%x0tt~O>y}&3({qL7zxRZ9LUF4~7 zzm_1~Y&PmiA_P}glZ`LW0qkqOibu*-m_b}7W5Solm}zKgFC%B=A1P*D0i=w_Xx)c~cV7QPv%GY!TVfnb_9^+z|I6<#`^n>UR=j#1 zt|>l&fg_6*p);C-pObOYta@4$3B*hI2*sZy)YBB(h|XP#Bs>+iX$)>?k!9$3_Ao_l zK{OkS)A)3$-J33?AwANIHv{A!@5ZcKtGM2FwZ@s>vVzDA_zd)P3cQoU4&9M1Fz0{& zFqhTkMeId_w>R5mp9VtPk7^@(VhQ7wk))dH2R4mg>z zs0#ULZPd=&6T8}F!VSK=)D8@fn63}tb$M(~|Nj5`I+Nyn{^t@)evXaxc>cd{APoMi z;J=#PpfyY-RU-|ui z|2BBf(*La*G!Vz>Y^hqD@LpA1v;(W_uwmk*?(03XTU%olFn7~khnXZLxa8$sgoXcG zmSE+rx&N_6MuSV>@|3DN-iUw~zP||W+POb=!TU<5+vUQSi1q7ks)#!NOteEE``GS%#PS5cPsp{ps>NFPu`O#{yjBYd!FQrURpRi z9shvHGWd#jSpy#Ldb?H@mVFHmtg{6QI`N8MV)I}RZtaoowpVMIg73qTs_(3M(K9Zk z*&s}D(}FvOU1iAIMtypjrIY9w|AJO5hFXp5k3%!5Ql(=3 z@o3Wg>4WhPCdXrtuzZl4?C^H2dTo4Iqj@fni)WzVag8*m))o(coSjqZ9_#J1=xrq* z|MLn8K#-BrYuW_zy)f6kMp2u$$K5x4@t;lIRo=jT@=nKlpM=-`!PTl9@m{jpIw$E} zkbtqP;B5uULm?-t_%t);w&`03;H0hvub+33TtZ7n7vE!O=|}9EB@%>2*kp0-DQ+vV zQ@XFMXIlGlcQRWapUtlS5u7tLooRdVn?lEiv#mle+kB!;2QjPr6e?&>oqzb^-GyT#P5p5Yy1Ch%AzKO<>Z0-rV=0NK#JK=aWFm zzf~P|Hy{>$W-YvA+!hUg%)*Vb%t&4l07ra=Co)doS;`<<4{F}_Ud1g@z0|6T_Y5$v zBj(442Fo7ks+3NCzW@7&fW!LfEu=R}`%tfRD<5PWOPIMKY)u1C4Y;_#oxwDl-NrRq zII?xpop6~0&LN{)V_*)Y5n}*$XSaR}PTn{nG?0~-BCgq#{1~EXrSUSSK_o`oY;ab= zWD*d32y9&=^`I8Mzg(+R6{Ya)(SwFAV`30zX+i{UYxfdB^2QOD3@{HC2Xc;9iI#e5 z1G3T(amfU|Ymqq9-*EZYiLncK4v?7J)_jr>CIi5H{P)~J5=CuqZ`aECwH;`BJxx&g z`8np&0s{V^r6D~|iJ7*&0R&Ukldh0Sfu|a@XJm?vT?QmC29~|^m%kRx2!lP?h;m9J z0D3B=d)vNd;d69i?mjWqgOEj(7Lqf(2V^1LzK41yOY*y8<+-N+bAWj^63)DBGfq7N?6GGAV-I5D)S24DhrWw-2Py4HINR}yRheMpQF;nvrWH{KM zV%Sm~@w^~8xb9^=` z9taPBFqu5oBNU6>r8`o*>*a&v^~a@=Wbnk#bO%a834Kar$hVrr9MDWv7ztGQxEUJ_ zI;_(zH&1sR&T@Xt9Z%;a3BIx{k{3o~jRZV+{uy=PJ2LB7Y+J5?Ux>f5@x!%HL1EMa zfsQ3`ALvwuLSQsU=hH9+K0uLvzsuTRP}(Z;IRWCtWqL2$vsOKhw88V^)V1s?)(sZ3 z4n)--CV`GlH33jIgo)Yc?8 zey2VOhd56c=8g+4Hw>32zH;D7AF>Jp4AMTdO6P=+&67&(`ZX{~gt>0J<%8W=ciCI| z=s4iwT=KyM5bD#4TJ>>ueA%N=7K4_9V1HtH<>HgycHrg)f`d^z$hKJ)1YecMYxjGc!kjGoOn&kI@)s$4uQzs+r#^bWI;w@+9i+4%*PW?w6378xKh^BfzJ3s`e_0NIeffX44$=r=J9T zE336D`}0C5Jlxvm0t4H}*j&w29C4+KE}u}F+^KWmt{OB=T)XuNk*xlp^$ANf=Ohia zZN|>R_#kYxW^M(aQ}`jSDSIgTph|khg-Rn)Qe*pgqW6vc!Vc|68*BHTmv@OtI!hoa zpsYc44tqN_fmp1ka%PB`q|jGN!_^K@jrcz`n!}FM34VM8J zUR*&#w+(sk83o099vo+eSISKe2YVf0FW3Qzk7We&I2Uj-&U_+uIZ(H~8#O>$$Jwpz zA_#1opnk=XyWTo!HrmE!p=-d#z3rv3po7Z48D#;IGhldqs!XZHBj7DQ8~_uu5$7U| zO<6{g!u=V4rH*i^9Ie?F7-Y~dNfSro)7E&Qa(CBI6o^D6P2t-0L3WLkH(w#RoD4ma zx;i8~`tZT++LRZ!rA|PVgoSforGsd`q;jRB{VIJ53OYak)?U)ugMb{u@W+58Zi*oV zM8l3OC>AlSSeK>sgB@Eav9y4W4IO$6wU5;(fwDxUD|2T!h=Rw=F{Ws(r;Uhv?{#8b zzBUZKuzL9D*tVr%luN%EQwzD3-;)nc&XPoQ}kIB?>7B`Cv?6boz-FpM@ikg&EJFHz(Ov&{?+1*dYg{cGEu zH{w_$y&BTaA%lYo=U!=>yNP`1j~jgGGI{7@5g@rzqVA|c9$RQZ)Q72PuWgI?Oe7Ts z_MrQ--HIK%OY^It0LAeij|2jn_9&q&RgA zV4Fg{y{`_gEBE`_k^GBcGmJbgFBlzYM?LGB$a?k_D=ZtUfMUXZMrR3}?lcu7*JtNp zOQb&m{1xX%Hg38RSoasw>4#09thPd7OV(I!rgE0I9*Vqn2k2o%gVFmOOT|s(a&EvA z?&JH90{vDrT~a<5-gZ!=tGx}GCeCEhKQ~qXDDSz&A9A`x ziPsj|Wsa(R+0UW5?;&oYq1f*siAOcXHxnxbX9iTXjjzdWYPs+*z*IUedM~~lFWX&p z_u7D^BW!Wc;UES1f}WiQO^BNJ+B!uET|ODgiD^9%_B?oo$S}4Sk^KhgY-HlR;`nOm zV90Az71bQE)(#ZC?``!p=Er~*-KA%b#U4Er;Buy!8aT3OE1^w%3(27FI5Ko!f-zPX zgMxAH)V7+d$@8N8LHC+n%>j4k&IctSJ8}^ya?7 zgo>PWBP-EIZsV5FP7*PWv)~QZDSCBHBPPuv4RtD&bH96tHX?|IPj+DX=0y8FBMCWI z79eZDyM{@`w4gpD2O~X;Lkg19W*u2u>dp_lNmt;R(~2w@bOmdVKe#29dEcm@=&uOp z;Ki!n7Y#3W_Azhu9n~3Hd%0)r_rly2!)10}ve1#~1DrUb6$Z582;3-&pD7xQd?)vJ z@&~zefsGz0v#g#nzK{ByeJJ1k$haKM2-O)UDt#sn>=3{nUEyEnzY4ccFX_DFmjrUl z{tMHSAl+j)PL!a_UUK zAB0G5UrZRtA2}e^#OuaKL*K^vK1KmmidL}!jS@d3eI_PXSQein9Il&n334Z%Ipde4 zcfUYBnYIboh^WaqNvY|32L?J(Q$au$#);FxJbryjBG=~~+^4{f@lHp=HBOrNOh2jA z{d>$IoGG=)k(FqIg>QQSnnP{LH)R&Q9_*boLjs(kx`Yy{^4?j4!bZeGEAnM7oMyHG zlJNMsHM+sE0xkz$8xzYk`f^wQI`}&hMq4n5bW$Mx7&-x%chZnW$M*rDicCIFQQ)7x zM|v7tMRf1O1>hsIiUZVKno8r88+m*=U(-$w>Ck5wEKMG8=G3 zz~`1xq0luNSXi}RPFwl@gnphSPw{p1*4A-$YP3`mw{d(lI7w7 zNpavhI(-y43+Z@U6E-mi)B}X@E@_~tNL?4bgo44a?y&2#-2?@{-_;t<&O|OG!ubN?WMU(?)Ylsl6^p9{~2=$Y=Y zOWFvo+v$UsRWSi?&+kt+5dp$b2Xfb(X(t6dZ*3wY(%zW`qd1yEjC^~FQ_6W&P=IMj z?35E*!7)t5S=^@E9RrZHYinbArsX<3zSQ580z8LN6oJ4`2q}l%|ll?&0K<*uC3R^30EsG!w1yDo5-PgYu*PR&L_Vc zc*o;Wapas?mvy-on>=<-dLz1A_JhfN!zEJ;5j+^cB~v8#)4?VO#X6W{0pu#X2X(J! z_rOVcaSNFQvHdRd7A-=HlXzO-cgL5E+ioq-kZ{3`=6%XpwiisHgn#xWw!R5V*{F;w zgM0M0)rr61Y77y-ts0+4%MLxHp{k$$L@nJ?26~97%7{+s0C$yR3&3FnmPqMN67yzl z&Rm{W8Voy>g0-!>wG}%hRi&u$LdS0lWRPI#D>~R|yyH-f?@Z*$!TkI;&ZZ7|lZC;k zsDsW%)$3l{v2)m#1=JX%)Jj}1+F4th)yxlB9j_g#mAw`lRJK_AatwPl*OdxDtXtk1 z1ueJ?q=OWuv-qJGTI*pwS7460e3K9-X=h;GsyK(@5MWMAOa@nn4ovXC`vEaVeijKD z;#T_id>%|0-d$j|Z2}b}gFljd9puEt(oxV!KG5uReF=7^p16uZv94Q-a!Ns@zk zbPr8!2)sxPr6L+8)SW{XnBV#SxO)A0oLXc0q2X1@_7kBF?{Z+is3VSp6m&r0VLeo{ z=^}BaDNJ$|dekdG_}mdYsndvOoGo5z5-teXPq~ClL!j zTQuvd(`X}}YTzxP!^^QznBtLF4r};~$XDeG}xKLwaK(rXM zwn)nsebZ*J&|l(6>N-9#3@-kZO?L@@9{Nf}hEMP14`*G!E#@R&M}48saa4vzGYd?Q zYz%>%aR|sAHWx<_NA9)2x!Fx@G3$WwOk{}?5+-L#u)DPl6j0oUkDf}ZBLS>!U^89Y=5=;el1B$!aP852|woLTZbCCz9o0u4HrpfJmd>jVM-IMMGu zA>k@US6a|aJ&vIbn>mlL6%?6uqMyGO9ZC6@f0nI9okxR5_KwV+9U{}@JhCQ#pOq(q z1$Gr~O!Wm67B1N$@A&BEfVIF{#a75L2GyYd?03hY!?v%YCqeQ94J!mDYI`z><|Xa5 zytnW&8WGk7kerc0_(8~1X$INx9XxI5_>haizIZ1OX}IVJNxz!wWrji#9p?nvD7RTz zB)|EABi2F;uS!Btehai@QU`xepwH8cPacfJop9j<1zGf zfSt8hAqxK!I)=8VR>nFq8G)d8o93|87*w6+V*Wtsm1@*%V?qaP7dEGogP;N?yvb<{ z2vwZ9%3W(8XGL{1lMhkQ)#oQ22&H2FQG+a?cq@MNxAVl`x;!oXIEnk(g>r?&)qhE$ z971M7m=sGj?aghb^ZHnXGSsG#i9U`SZls~=JKlfCca;UVF}51!9x9*~G(DyTlM0Yr@OPB9)L!-dC0{+O_K#e!xR0HWK_mq|d8k2xY+eUq zx&B8%UaMZIwfM+$s;u}ZXvTUvgF!5ntRDUoVjnd+n`0T;FfpGCCmUW{qM`mXk3be7 zA*h}c135M&_L4-e5nh}WTv_f=349x$Z^fPM{yVyDkjv+S16v2M#oeG3%CvbQ6b8@3b*m4cLEKhewXZ&-p}nvQUWPW%A*TQd-g z+C?1-wf^H=ry0impj%u3N!pDs>>YrkpzT8d=N-Te7`A5MVXqyK{7B}TT>A39$Rh?O z+o6rXP_-wIKlgd$bq%Q4XjmI%gLk|eKKb~cA9tJ|UG}gNo19%hy*F%fPMIk1+Ef68 zPkPX=a76kuV4=XB3lg+EmH9wK4`BJAwCZw@?XhiU03@bo*Q(A>ghGZhT_8Bg&(yV& z{(kIWjQPWfMz@<+j`61{U-C^R=H12Yy%;==q*`A@&==~Em>aLn&ZKzQP{aEXtICDQ z==PflHKd0b#E#vdWL^f94l=TC;->AAX!Db=SVZ*D`kis3wNQ~#rFWMG-a@A-lD07_ zg}KwAugx-gHkF|1hhKn>s1GDO@9#shp5^K1zA$yLt{@)?S;3JrrGNUXHCTH7NGXC{ zH`x>^xYpd3XB#vO;8B(urZ2b3C8w&`RON*hGhciAjP3Yw*#zHOKwq?#FFUNU`qd~k>Cm?8|pPg{D_0gZ{lip{FkDj@}>}fB#ekbF|{&x{~a%?5P zdM6j$Vpkk~?6Tz3Aq%Ow+_}9PT+K|<@TZ%82>hQnRl-a>k)@qL$Sl&jd4*bv#D?eXUvxn=OyQ~P;;r}ds zdQ0+pWQJbzzC_F7D~-SJOLSyl%pIr7PFxn|<#qU~k?{*&)^NMFBw{E(5V!4cT*G*h z^0evbu+<_kuH(3n)cu%g;twTY zO>I{2M9a)NB0v z_#cVrw^t3#yv2^V+PAMkJ-a2AUiVBPBgNI}e- zOTOzzgST*V$u6N#NMaE%oscWriyw^B-UJ}X8NRylQUDV2i(=X~J$Y1oGAKB(J9pc4 z!ue6ir(TF*bm^^Ji5_fN3=R|?;y@Fdv1``|v_cyg4VQ~b}~a`&ur zDe*Sm2U#B0AxntQy8l=`tjZI<{ONm6-q%kgLHR;7+fJg}VT3yChn~A@|BL+ST9~61 zDhTWT4;0%PE58|;6U;{Z&_kUbN3!<|CY<#7tRsl!z4)8d@B6GPxKkSo=~j5q_9 zdFaZSdajyI7(?)0@#p=in&4+~wEn0d794>ai0_Z`NyWwcuCm6uY!F*(5yGfyy`98` z-xUO3CLZdw0y8S!XF$NzKx|3kU)cp5AOlzS-wXM4FJt};=tI`AI+&_D%M4)Jh$AU} zLZ0+Fp4#1$bH4)PYfQA#0lBF(wei&-&JVYL<0e<^{D^Zp-u=XJX!Evf!lP{*TyGZX z>eN=T|Juk>a@%S z>ua)BBS#Ddey%?QRvs2}#!v}e6ot9b+?SWjyeHtS8ZjFQ$N#E-rs{1frPfs=Yks#I z*A%#0CFvQkaAoS%DKT*60|(!nynJOBlB*$HyFmNzElf4DH&A_$^-W^kpq*6Q>z9dN z<9MoaDlc4l;iV33TCG`;Cjx~)hM>1CrkIP6(hZ0zTIr%vgyr7-=U|0pIdZdn=5c*#z{Wc{QI)GL;k*nagZ^F(^1P4@ zWHkz(d5vC)g35B|bWE`q;j`l6F8d(-%&{o&6{(ZnN(pk(!11^Nvd9PiuA_nJGkWPgl6Cw?{>%xw zu-}%Bik;^5ka3GyT7uf4+?5^dY$BZ z{_?HL4gSxqafP4%yDeR@*b+keRUc`QeK%}6FSNCmq)*7o;TXw#y(o9Yzj{W==(T=X z_mt)bL#-D6UV0&N>o^SxZzYbFQ$=bd6=C6kjk+($CodJk*Zv=t&O9Ef{r}@_LS#$! zB_wrgLb7jJBH2p!s!S!6oynGUW=cYKDJlC_xtb!&RF=t3ma#S2k9~*?1~X&EoZrX& z{{Bmkc;w7E=kxiz-mlm5B{43CTS#ufC1N?0TcEF`ZMiZpyO0kSSa#YPtl!HJq~mQx zvKT!jA(@SkTgG^!W)}JS!1^-OJo<>)w5tD9M-o zq#vm%FEu+?wy!Lmr^y?k#VZhf!_IB@IQ;yD)v>^g*PC1cDJ+kax=?u==}qr@*B9D} zfMN#=(-M@wK^%?xk3h{zlf|KBBbI8^zE%4IF(51X>e_<&sa!K+xvZzZn`8kyezjp#uB{{<~nvu@w4 zN4Ig*0ZbcNSwaE@eK%k|h%lV>3izC}Dw02JqFM}?r?K4wJbL)j8{r=; zfg5(iXSXogLFj(Q?e~{9BH0nM^XZXKJuA4x1n!*(G+F$mVE_B*4sFrOGQgSCO1*d; zu+cYq?q-D}XiB$`jX*}t@IR?3GUm{H_wlKi9r3BektF0}p)p~ONiQws2xbyb;B&~d zn*)~^|ICruyfc6D-ThiH3GI>V$-~E~4ZHtU#}<|0u|y|KMGKlFoD53yzUqG@w~QEB zy25`47g-vydr$ZNJz-{iedP%lko@-+<&jCaXB$$+g9fdu|J@p4F3t`r3>Ue{qjvxa zXXq62faTppA8|zF(@NL3vUIx(g4|KgekmDOl>F#b;sv(BOg2|Q2A2Wo@M#r(F>z?& zXMIBC-bUO-Iv?vvLE5syhWBbJ=IK4nz|GqSFh~euWaAV%pbj1!U^Zf5&c2c zS-oMBfzNzFTq+YtFf=N3Lkg7U+SW(|S%W;DROxa;>aTC2;XFrMQTbfIBQqL}Pg&+m z+`7+ORv<)A+86MQb@iFneTm2aUD6SK&vTk?e-X-9DPee{bXa%a0RVTbt*&gH0+rx~ zM_xI?6v7E{+OJX0TqOL*5}-xqMN99NKdXuTB*)c!3rXPU0+)Kc1IeCA(YY3H^tU?) z>8?v;@W9j4|NG4BLi$qX=>NSX|Nq_Ju%}2K8M*dmNd1dEPsx#mv)G1xk77Unk-#s; zK=I*zt>E>0yXD4nm@L5T=(_~CL6HZpq`63f{>S7*@OVDl2fefEbvR@zua~}hOP@qO z?0HTjwOMqB_6x+0pyiE-*TcS(SMZdYFk!^^$kBK^_YAwp()q`s*5z69ksOaLQZ7n= zF++>%aqtY;nT@F~bot+>Sv|Umnoix-A73{ctQ!9BU1RjO+0#x1g>X8eZAt<^`86kk z;czH-&#n5^8z*_du3-9<$o~J`n}eJ`%0&LVaU!+aPl9XGC9imh z8&#-M8(|sVng{gbxjJ%3shM&phtoaLsD&HqETToN%zYS*}Xy}XsIEqx*_UB< z;9}|vmwZ#TV)^}IRxPSeWGWBq{BK_{Jnnf;??T?c|J&Gb0J_^>M;#K9Gfw_RXz;~c z4hD;@_&3z)2gW@A-T4zta|B0fy!acA6MiYJNAGY&?)|5pXtJ-@F7$vcTHNM4GV)O* zgo&8$HI2BMda4Z-tci@A;;0{8k$}vccApV&{Sv^#HF0QPYzK;?X&mg-b~hS<_r*^| zM}kdc;z~TFQ01-R&l)qZW3Cqb%5k9gEJzmUzEO8?vEJ*KS2pWvEc`mkygc>NRsL#A z!Z>Pj^BYt!V)T=c;9KUm%UC=kJfBY91n=Jz(Wn=0`~q>psW0UBJ^Nexkeh03ZhyZv z0ghBq$-UXCu-iWd4Ji}9K``Z@NC4#{HDLFzV7k#Qu1NuU7x8c*_}bS+Rg$#L7&)zzq_PI%Mz zby{ES#0;?Sv6}hrD$HAeW7DKFNg`O7;6ZaKI7^)qyb;2_{Nelsi^4kAu=|-3t5bJh z)x{eqEyc(QiK{cRq+1C07KHF-M#dy^hm3iF?&{3FyGV9>jBvA>JxIgu7!n^ix+B&q zI*_azN`nm^$>&{YaW3g=R$&8@&XR=g`jDPARDUQb9rkzR?!otFBvtKSYcxlc{7s4W zy($xwZ_+6DvOVHKA%UCKL4tEm`0>{ww-5TY6%!U`JeXY|$iF=W5-k zh<*jX?$kdQRJ)1Vky?Y}T!uiuM#;fKa|B;gG$@zt1vl=R(_UCotyYPB!lnNIygZDkH00e+Gf zf51_j3cUMl+-1bA_-JY6{L|gr+UD^?Q=i&gCev9ryq=+$HE2M$v%`M5)cgwG;MLlY z@)FPycZRm8yJg$J9cqW+yWpF7zr<8m%CWH#1U#(#2S0uIo+(FPhY7q7&z$s6h-vr- z7XDB9-*#$M2Y!)s5hIpJz}^WRX!!`8Tm!th6-`^>6dwJ-l@Z{8lRoG8{4;!5*%gG) zhgX7=Cjoh-rnYHbE|co@dI|-Tbrb5D9A}o;#04gP;EHhP;o&xU6F>6DRan#4!kf<{^5-{5}vZ$0WQO_Gu|RoXd^ESa{v*y1lL!^Yde><09H(G(N;&4HeV(2H$gy1DDEQFfBQC zn6)DtdOF-Ls7zi@|EObI7R`*Ky4$o! zy$+EIg>6ZaRDllV?K3bakEoAH7OGPE-1rTD3I{!E3j!| z5Ka|-OnS@^AZj@^ZT8@apXOx9stv9H z6?zu4k{tkF95KO7nU2rRLBK^)xyNSc$RJ|rT<~_V+@wx5Z}Z3rfn+Wy4H}rSiEw!7 z&fo$w)ng;tLNb*YseHYaEKYKjAxQYpUa1h)26j9cIfdfz~SmGsAi;8R*SX=UNEHrsK#h zFX+BcQs}MYwY{KV@S%?Ah?X^WEW@^z$b)g-I*7YKtChMPgQQpBc##ubmZl--lZ38` zi@-x>L1OdQLV7s!9FeG%k=>D@L8iANPV!?cG*24R_r>qLA=cM-Vtaj$NUT?9_oZ-`NZ`l;voH3e&@G+*;n-ou=?|vxtN6u%Mbt8d^L_eICH`4$hQp)}Jn-I!7MuA4 z+Ic(Xm=lO~cqXcM?ziGft!01*YK))fJ}$A#IOue8q+HuIiwoKBZ?h%pp9|3BHU|U- zDRAZ$K3O86u%GnmA-{IwRxhWUrnYMs15vXaI(HMYPYi;rj5kx0~NI)p<_Cj0#_L zZkg1J1{5r4@s9PRV)LCXcmDQ81$%;(VHCbcauGF98_8o60V_B$0axrnMXM0BkySC! zB?7m0To5?5iK=Pnkw?wlRwq!mzt5X8anfo+PlK<1`u-?l(`U1+Y*h6kY&$CuwNm}^ z>qhmc*^?>!MyM+&hrg!ZS|{|m?1yr&0epsbJLLc9~kzwoym1u=0pI`^8A!r{$ms}k38uY#~+V96sEoD6~G8wf^#1)IJN=g)CQIA?@QG{vIn=s zw<1Xkb;-s$>OCBUiDZ3UBi{~($4if_=Knd>HLE!y7!2>@yWJ+jjhYO4auO7s30-Tz zgv@dwEOx%$7EAop_#5`L1iw0#Hrs9CM!iqicwKUa4Tb|U((?nTt>y0gMJoZ zARpi$!xjO(3?go|4h-7HJe>O#$B*T4R@q`-w0greBVKarbjM|@m+ix!Xb)yJKww~) z__&a?x@u_^TK@KBO;|QpTg#>7c5{io%7PI3wcmdaPmMF&x`uyWy{tLANU^ImfEInQ zo!q|d2(mDaizctCmCfoS$Ibw2jnd#VaP(ooI0L}LO~uL<{vLeGUH;_N&fYjm6K`we zXz6W@dJ9T!Mo@h=c?mm3mVM0{_A;+Dq5YB0umsq)*A4AzwH?DKn*vZc%1U`bF$NAI zdPT*s(D3)r6*a#gl*AZv;FJBp*O?6~)l#?%*|DkEu?@Kvw16g>pY^=G-AJ%n*YSW@yhPh*Zk6jRGIv-<#ex4Ymh2rlZHo##Ra$d>uMwr79 z0^=!z6w+;klAZ);5E_Ul;PtwrQC&}cJd z?oH;J*$C{czrGmKR+xV(e7JwG)T@2$j#lg61g6e4{6+m~=rdqe0U^67sQ+|kJO&FY z0$A&IlaUjRV7bd3ik4G--X^kJ@x<0k5SokL6?E6A9<1EuomWo+(i({jU^Mb!n6afD z!Sgrun3fc}i5d{qSu#6!>x7D46teMLb^c+dz1Gp4r4cdQeA$d+K--0ab;TBw|`<_nW&LKm~1yuoi zST`5^Ik$lD@Ay8da-QdMMk`Esx@1-0uRNT$#y98rp;^US*`^qZq}cY6>065 za#FnfZ_JC6-T3KN1aR%>Fk`h<-dVR0SmO`G7lx{*p)dX0$VWl>@_V>dXM@fZ;)XxV z)+p{hIwRH3b6MwN+2h z1hbR<(_XhtU>T7U?!_ny&_jT9edDaa`hKT?^OeUheErAc%IkImlIae=IP|n^N<9MP zuxH9di#NxIQMq^4y!eAJN*^Vx^hno$@1)Ays&Hs?8%BjMLbCY&BgB@Mr6F96unghOl>7Y<&vc-q7rh4aSqew5NHB?kgnwP zg<$3Z*7^vtukmHcz4ADjui`ST$%s`7AqHvYdnI;Js|&TJF&Wi{Xn2O2=-J1EUF3w5 z0L7A0hRr~jMvUnaMk6Bh*1Q6L9CIssFDEKtjwL89UJ~g;3{QC-KG8s%c6S10F*l0| zutm9z$TTZn(?NkYB|R;}EqXhu8)lg-?_|9*EEz{J`ExjBqwxJ);Nej*R9*`7!otOq zW3y9MD$5)=`N3IzUBXs)7m1l1RASS0`77T_#@|PA&Y32t)XfPs5C&WuwdO|ao#Vl< znqg!PkFn+f%kVTI2=yp(1aOkFBzPlX>G<=q_H6I5FwkOwvDpq;WaF{p@JSPopleh2RRRVl6f| zCEyF0Wmuk&TP-DeA5?3lwn24U5Mf7bMylI|ZCdrM*iY?ERLB+drzmMju|G7dDrm(9 z5FL62G^r2Hl*G4>5rXS<<6^?3NtVA4sSjZ>{k4i))jR5ZsB8)Tt&TkmCpCM#<~&c@ zJ$1oU!LR@S$3@bcL(a-JomjtooqZ6zO7o{kIc8`(&3Orm%w4aw6@e3i%o=^W)j|l+v8!sjt1?Q|Lo#cdfLKYoP_%Sa7Rej-4~VC_wZ4nC z5HY;5or7Sf3TK0$vd!AJsmp_JIa0dCkM8ul2Z%8Fz9TJ&Qs**Zo9ac^WlQuDQDns# zVpC4+Lp`uaglxv+q?veuUG^ z!wS=QzA$MSwf}|MoIGp$L0Dzg2|PEdM;UAp3uZyMs9L8tIqR8@7k1Crj!jfkF8C$S zSuv&E&GQQ^*(^r(J~VQLs)vhNT;7;wxk&+b1l42%lm!3V{A&4E{SOEPXJSrfsu<7!43f-Ca>V&|Cr|pGWBQviTf3L7PE%U zr`MR0xk$R*$c7izWM(S_KfUpXqXvnv_~wj6qXa;>BfF_IFnrIaiz~fmNzc#vB=l^@W&7tW*GoAuC{@68$wCKA1vbb7%cJm-Rx9d2tRK)ACC<4Og)W)rzb(v9X9UyD(jEUh_ZnO-Kr z1M*KHh3sYDU|@UzMqt2n8FU01CHzLuF$-<$w&ZBIA_lDJzR8HEdk-ZFI+{Ns>%b_`+(D-=lax~sx zZuCN{=m_QNPD~63138_w4fWfuWqSp*CQE<2kE&>T=6SVsAE%eLX7i^u=K~@jOd4Mf zQ0e;f$HlT?xWRF+>3#7y9ph(IfiJsl^F;D}0y{fHO{wi3wWU@#>gt<`2Iq;TZTuyX z!oI5fruPx=3T4bbeFGKD$^7%3XjNNM5kmz#`)e@{+d`1BJcfsJpG(o5oy-yJ>{-M1 zbhrRBiA}>X8n_Rmo<@0+$h7i$Fh++PAIiH-YU`YmYe?z^*iNK_i+%ags7*kMdpC0z zygogM%8!3#0pR9snT)ZEy!$P0y_m&bcDMJJtn&uRSti8rB^WCH1gt5lfUvj`ZcRAzH(~HsB1ga73ylm(%=M`?xe;j8|$_N&f_N`SOyej2mbi=Om z>5y^j-h+?cs-)z-y^o|I!j7=yi?80Bv>%9@eDQ5_c`)L=dok_zi~6wpN{ewgS<%l+ zGu#|EQ0ozzmH4%`faxpOGrDG+tfYS53Y^r>2C=n-P4_0RJrmrwgj+3raU6+Gg}*o& zpAz5(?(fM)T%FA!SJZ(12@s>A7ay7G3Lit2+0LPuT&hl>=(iV(x0vO@3?!+Z4tRs7 z)y5WCVkcBCEV==eB#MPh*Fxp^z+|Fd<89fG%s(Q=w_0r51Pjbot8pBv|}}bZ03xi*$Ah!FF-X za&u61JfHQwQ10!l-(j>zZk*(p>SA)_Qbzg~IvuXgy;ma{|IoYAX??Ouiqu&?d2Dd9 zZ_4RcI56Bxj%`nTH$wIH#EVP>Yvzf6okmK#H#=VXc((a(v0@lbU}J9+(}P!b?@7pg zjaPM%RBXEBh30lE*Ky-d75rTj_+*( zC*Y{@h6k-Tk8oNM+~Y#}Ju$mox&LbKQpNob8g+7oN4y7Buv|4TJVrM*e!Oy2c;6>s z72r?9&nO^49All!kB|z~(X}TCI2H2gVhaEF*;Eymn7x%+7oY*d56F6?_5@Qt$W`Z6 zD$pnYP{7oEI@I*Q8=fpnG<;66Fw=$`g4t@T&~pRrq4kCgw;6l96-P#s906mr90uL9 z196m#oP%o1cv1T#G(lDzgpl^yEQORU8C%K9A=bD4BFv*I)VNXb%tJ135v~~*K@KY* z`d?jGy(jbfPWxpjqfQtHZ^)KC-+a~pHi@!NWGs|HhBu*5@@eDA_ERafZhPL-5Kjcm zWyK?Qe>b=_-WvZ22h8j__OyGJcG%pjPN(DV6OzOT@(xYky5(1+8M#R6u8x)F%&l`OTpqe@>AdWzbNAdh{F8#{GP!xqYmzWEBsp0bK`vlVp;b z9zH_>?IO+2h^7i&Z@t89e^BkW5T=NYsA%%8ipgtE{|#+SIxV~tVH&t1RM!N8({|nX zmJa7JiKF)koFBx}%Qna2A8$BMf2f$+`}VAhK+ZG17Mh6VNyl}8+fS{jtOrQK=?GYg zSL23Z$Qkew!7?fH02Q{IFP#^GLY~#el)E)eLt|(k7T618cbeJ_Zt$g{eIoT&op13d(sW&_?rg1% zVwuR0$oYu`$I)aUJ3*RyMj*`~;iD%oD6XEDg&M4*I3XMBKZ8&b89Ai&vrt;=!A;+D z(Um=9lvtO7fN*J6&f^fW0#QB+lfNDE5Bt2vi)+hgT@GH9ph%iqbgxcmcW><|V|3WKT&g{LYK6Lv}0;Tez_Im`aLNXrv z#Nd!6a4Z>gVh8s1tlI#fr3uXhpq;NDBh+dg6WBzp`uVjBAlc}yC&Jm@&1f0k58$hw zBRv&Cc`}-*f4#K#b&;_yyp|fylas=Cb)?%q`S_)@#1cB-S3CU$Yc`S}As6o+ccP1K+I38R+!Qw<2pmvolWigz^+ zF0#|T+gkw1aoQ+gjECFI*=Vmy(d7i2tdqLWpIBB)YZ2x4Ka}=~k7y`MFHnDSm{60- zD}$r(0Sk!&4{DJp{>DL7<_qSJgFHbPRHFe6Vbl)KIwR%8ZbQzbn||>{^)|XAEEdXx zXzURrTa>IqIUP!SS-0Yc%HZ7BN3`tAN&LIummE*XHNb~%XeJ{eENrTH5#(a(#EUy@Pr(|7&$z+$W2-bp0Gte5#4s_?l~U@h0O_#mpG^k5zZ{) zBYC#C3`6i!;;=Ka>xu(oa`i0?!sCI)&=oG(Dz5%Az@6 zDlsk8zI7Y;NweY+3>C@moa{1~Mp-eBd|d_T|l!&12U2a_Bdyh;3WovMgYm z;_2ZVfMPKGK~;z#<9wwZC4~`Tx9=1GiNE{I%7#7%Gr1E78`xZK_GDlmdze=h{j|v^ z{)&2(VVI7dC3Z!7s15)wrzlbLxKSO523hj~m4>O2GTJs_37Q$$AwAURAP3E2W*6GG zsp_mgJ}BV*aL)Ur*_g%eAoO+fe-&QHSw@@$t2OVEsjrSj1Q(iA1eJ5_oS;2XB-DU3 zngamdKI99fJ0rvJRMe6{O7!Uf!O(ISuGCt0G{*o*7j9$ng`4AsTL>VycjF9b3Gh!r zbo1vdxTYJl=gd5XGpzX1#DZ$Off&-inuZylcP|n^0<4m+@{=bE8 zpCVX!vApd5jlIM;1i$n@$Co`Ck72bX@!0uf=rC$PNd4(CX8et+g9FW1mKqhD(klJ8 z6E@Z&*|%pjnTOXCgP*sBYu}$fB3QWAEDFP+$`RNHacca&4+T_+tvFa)oY8Gs^;<=k z3jlUR$(XM_1_&pH#I?}Q`;{V0fE&L+j%zwD9VR^vN-3Eg4}mABCAW2S-2@<}w~R8M zWx5KH+7mZLs?F~{Xe+T!F$+tOVV`YMkH@$|+`ftT-x{2K5p5nZ>Lmi^*HX^i=XX<5 zRRsQDg*2*bK9JfLGFbeM#3PT8k)sGUz#4)rIi-DnJ1DT<@`iG8aBowYItY8whkDta zc4(W&SFGX`lyig?mEroi*R)YaEf|w5K4Ba28u;k5=)yP_(hUPXZL0`DHxO*=+DW7M zmx79RUr^5NJv~lyU@V3h5)8qB*ZHs8kDe*dQ*`X`?v}y1r?05zTvWECgFTDxjw0_? z1cI$Zd%fjwo-Wn;XALzBI;HJ=FWDvBKG)u}Wzz39Roe@SD3hh5QoMq{i1HwI6v4*u z&*gE@Ux@ws_D65>{(?&KZ;5OVF{!A{wZl&wUT!}YowDp{cqp9T6sJ`{O-E3(3y@!b z*3NeNkcRhL8Pi6_X~?geU*?^v77tUwmfkLO2l4(ypd318rYG*GCR?t|)m5-G#K;*r zc>!Zjo41F9bEVRkLOTF|B(*$oTDBD1U2ihuL#opk>nm+@M=&`QKli=em^tqpzSpHq zT3d8TYgJO3<;QpFXWgzpOn#p=g31UI*r**bg|ba>5d63IDFU%^U)=0!%B`}5 z#=rfi(sqhF{Rpnot+|;3rmRK zg)gD#H_UwXjeMb{2si*|QK5w!7DF=UJ;?D!*U^teVs5!!Jy(rSwh^SnX?PbaM~YD# zids&2U7gE0B3pFg{KK3dr%!&@mJD_pQ6nD4T-q;Mb`$kRO!2+sJ|P0kVJ+MC3Ljh(N6b4r@JL=uzO&klFN|ra+dB<0b-&YSx-E4_ zK=3cWwNe+DLn%zA-gao@5D*wEsGm%`@doR+9X7V<(pY$i#p;RME!Gr)SGMQ)P%}yR zEgt{@n*gzpW!l)LyZJ;*vpPnYeHXvwc{v2ndN}X#7zAnMwlH{_TEit3x)#bVnfLgz zyz&ToXbH1`McLyGS!#O`+}G%G?pJ&6C{0g9jH9M$*^?sh#0@h}$|ouO)MgzZ7&*@6 z6oA209ceFWO-uI?z(jmkkX*%V?>O{p{1B2>sBQTTg2{FF>qzk1+{oYx4F@3w)qM)O zY!^a9hY&=sJ9WVB4sQEw@PR6&X7M@LmS0Klv3twb;VDyjy_dD*Trv0Qo#?${{z6l! zjtP2Xd$>xkTSX7otN20hll4;IrH1-#&7m=5#nM&Dw6r@*XcYH%{K|{mc+AXxzAB~7 zC&$DW70FGz`(||Nr{5z&z8h+{4D!b;bJZItfx+nOgWxhoOed61K=MDU^s~w~LqWysY)2k^9Yl4S)Iu z)zNnV8ts5?X24hQR^Gv}4ZKujOlZS<0zTOnOMUsf4Ns2W?N)Xd32}d?+frilQ1CIU z>KRS~zhwf{y`rD>N3_z}a+{CmfX}iycI8@RCjT9vw4q5fv;;(D#CDL%Q7kciBH!)l z!NNU#?~cTxVlQ75tcleP>0J^jqUj$iF+bZ{?*#muB!i0}g;%sa zNFlk{FRoWQE9k2qKMhZ{YIoO9u2h}IhM?~js@G$B(kI#YovgO8KT>$CNM2}!R*6-b zFx$DQ>27W4Fp7~+M7DDK5~mg;JOP-aKjW^hpzUK}B8J*Rn8$P-JcC?b2***EW*EO$ z`*+@rC*ecatDknf<4jD|n_Bz$y2p z^5-||6V|+yi5++(Z76HWE_@{vS#2v26;jyLaUt9|@BoUty|8ysBUubPqr4?{U*eM+ z7t3TsNAMThb#z8xNS!d{R{vF8q7uIqzVyNq8faU*JkbQw;N@xM2O_@2DgUtnJUF_+ z6So!uKq}xxpVqtIO;0ct<~eU>jIU?gv*jp^aW8%;)f$*z*Fd)HWxY4Q$d*VaHdy|Y zj{n&ti4nULp-^+RZx^aXiGQ7+Sl#d>El^L|x4wk>%|ML@3>PtoQ>wTMk35iY0Q{;q zUID1D;Vt(Vc& zVY#n1UC(c_XLG7hLD{Z&V>ZHRiGd*Sn)~A5iv~fN;6#ev?ggNir9W+hxIA-0e+_#D zr3&QKWdLZ|a`N6kJkOQ6cR)v& z@K;V4pH#;m2+2UYsh=w|(Y&g zI<@?Q&aUIAyzlEkU@tP&WI7NdrI2fSzj-h|^lb+f_Jg+BV3?_;anMP!$0;}-+v`tR z7c508@N$rEfxbYamKdamuVy2(l@%U+VjNU;p~2P~@{@JzK{3B&?XeRy^8#q%RzL>W z3OASsCkK&jY${^j3E@7Pg@M0mcQ>ZQsUbsEuTGj>I`$|3;6A7T4D_4i^760mzijnQ zz#;u+z2#q_PCD1ze;vA!Y^7Yq8b|f@_46T|<`w|qTS^3eyrLVDjR0u`Zcp2Q!<44P z?lAnHu!oVP6JpKB8I5~>_;T8h;&$*S_V+^xpmP)();o?zE*=zu^5&LsaI(r7?Y0&I zR*oC_c)ZW(N&WM{6}HTZiOyhdiK3${bqYldD4GOSx1fPJta|UeruFR?|5P6P1kYnY zd(ZPHqNUi3ieeQc+?1y9jYXFPu>*9?yM2SDQDYU{Ip+~3%CpU-jlBaXy5rr~fK@gh za}!iWKO&356=t5dDh9qmBUx+^4Wyq_r<9XkocWeo;_nt?VQgM>eJ65311$k`m%Pvr zKaA4QJ-lGK%-L8JC~4~#C+z?z@H^A9@jd5Fu7k*gUyw&)h|4SKbn>`Iw_!5{X0G3L z2B*e^9%2X{)(fZTXB6=mUqp?dwzNN<(3x0TM16|@srOy2RxI90a4MWP+9(Vig!?Hf zkrFb=D!xMn25`&u@D3IZ7Vj7^0`IS~wT5AxVLJMW1|hI)8NaBx_h*e}TD!cC`uY8h zFEp6T0DgqIP*skf+=R!TFZiLEE%n{DPxEADudGaxV6D%}_30Z*p?bD)j^Mg?N6oz% z@k4C~E!=;SfT(^Z%6=VP7$M;MqxZ<;lN}*J*lHB==I_3rn&j%AiQ`FYXcx=4>q|eVflF)bz@()S{31JWx^LH}^9LG-??&}25q#|3@ zPE5B)9{!KV^fa`V|KwZNzCl5bs3dEw2HnQ9*XTT#XoO|i`^2*~Kvj!S-|T-`m}AbN zOrL-c%>5+98MT6y5KIl2v?qY*!d8m^Gf~OG-~;EsZcY%1B|E=={_J_;-^fa(jf?Z= zmV^MHPIQe^hIR)Q+t1_iVvxm*GF~m!T2MZX`MLcpD%!* zx}eP&<$=ot5}=!w#@W}PX+XTCR%!(gdG|x3oVa^{KG-Nj*pliRx%?2U^1RX85msT) ze!_i16%fZpw0#Fwd<#wysIG$f8_vkORXp|Csx-Kjec89Jfr0&2Fj8BV^C}8p(-`%P zD9-_f(UfP4Dy=BfM!&EK0odzI0t!M|4;Jt;DbMcs^WiUyEBz;5C9^jE-bk>U1GjQ*K#4Yrf>hYhFARn?l zlW^CtxWx95JcxHE%ViGmyo+}*V4ro|=EG_kgKuil?;?GEh-CSC0q7aqO@P^wr{GAA z!cP8RGlr|afvqKQdB8-HZlJ&GZX?MUOYhLFNhG6TCByPYgr5-0hW2cFM6sUp+lz}6 z5e0wQ@^m1wK{52w!fPc7C!BNa2}RPJH5<%w7|n zs-l)3GMZm^d({_0$4>5Xbgvh9&1K$td-u?6srV}3&(W%5Ud1v8Q8j=Oq)%dAo%b#8NE$@S$9;97|cP7$^TImC|;CB9gK81n@y% zdiYa=ASq!GSxP9TT?mui~~-eYjQb% zKsP5K@}!gJE4z?QtPRRzZvAbEzu4^;?{(~G(T*x@e5yC5|3dm!ihu%btj2)kBZtQe ztmi;jV`7DlCaoE`Ao2vG6jYKQ9I%_Zv6|-!3La}k4!I~2;K`3uVrIezT)P4z?wNtV zCgf7f&q35#rIj0?w)MSi%#X19F7`VThV|*}Tpg+Hs;|E{3SeO^Wx~t48fjFSRSk3#MbSARrQ0xr1A(=^?O7p6Q%!xaS`20XS7u^)7 z$sN>;f-^=v{=6kNhDO?7iVc?0T(6#rZG28SkXrB<1kW0Q*G;0N@XFGb>^)pxJd+cS$P%HCQIXEYpdves#ZyM;Qx8dIBH1$O& z9$Vot_U=Bx8(30U-_MMvPvEw~OOWOnabv3IU;ef1j+>-c7F60ZmurgSIlCSd2UplUV~4U-r6gu_aTt32iS;2 zmF?Bs{u-v9Mz795uAC&an!uC_Xd$S!={YowGU{k!>(yXt+w)vj;TO$-&c;cEyQmU^ zlB4jA--E!9I@V5M)QZW5ry{t+I%X~pqTHV1XDm;4==>1B2!DN=+g+9pAR}DgH$~iD z5?E(nhOSwDCGpxX7Idg2bLT(s}F$DU|qCRaq(uTtz*5$O!&_!5RKdkoy% zulqh-QHJ?0W^bH}S@ZBY-FUGWwIfc{&Sn~+;F^vFB{=s;OWtRN@_k$3636e(p7_m8 zjD>#gi=Kng&DY3aiUw#{b!xh8gSBcCuIW1;qI|vMvL&FI2(Ixd4k{ghdV~~f^i{T+jiN-U@i!une|GD_*r9`*T2+O=A|OFEro1 zcTC3w3zQNDHz4tDux-Jm{-XfU*%O+;<{nUr-3~yuKTFiGCyTy+o@7~gwPRZ3I*VN% zl)1EvU}z`67$dGRHZcl_nnW@+r<`A8__Jbtse`$ZG5b#)GK%Bt*8`*es!eGrRhMU0 zO#T#RO9cp5R*&6}a=*wX-w^!h2?G0a2#aO+{uR(x2%|kstCZr5U!IL|I7GMGhcAAC z$x&&W(@Fd})ySm*R!$OxT-=bst*DY>#~(zqu*4YTmT}N;s6X@wsK|7z&8EgbG{fN; zbE&v~2`JM)L;f#?@HI==rf#0YIA7p4YH`uF7WiO>2erP0is1wdRv;a z*baOtUU#^EG(=|T9*x~&JDLy78?S43l2}MMs562S(}|@njMu|*E7dI}<_k%yqXS8dB9*@<}jViM8=G#>1 zpRrXjo4!svU#T2&KeW=pYz0pE<_6tDmvqLao`dQ?-l@-iiQbAaF_bxZbuGE*YTNXT9Vn%8AFO8)jXrTrL${Ki6N8XIVi)=KtHutJ6|HOOBfrmf>o&@WUCD8QB0VZTc(kX5o7!l*o``~L zSIeZGp}ju|wPL-|z)(LO1k)=DH~#D)O3dTnhemxMWs_-%fjE?qqZX{pN6m}A?QQG&U|` z!z>hw?$!uKuK9I}FbnSjL+aO~tO!vm2=7^;^eIN5jeA_}+e-pq0kf8U5nF%s9bSaL zu|M!Jjdu&ob&zdhB5g>F^@Y~bpm7tI+@S=4zGUS%k#F)$KQm>Cmr{wC0Y-d0cEON9 z6a$vAx!3~snfZ6|ArD##`BP)-PSt~r)dbE7x2}(7oJ24Utc50W{oKu&QKtHhmm{6C zqJQq_?*`KHiIrg!y==T2X{nf+nm{o=llxs~cy(+{1xP}JdHVFl+NgX`3r%W2jw29!fpBEa;9FO}1vov^b zPKOS2hT=!#v00hr;JMVh;)k$Ua!Q0N^j3wgwGaw?2w6x*A)KICcog5IP~PNxMM&z? za{%Kr7m!3gL?A>zktaL)!Cszv zC9|BgGd6-oR&i7`hw@4{di7#?u#BB~i8kP;b6PDMhy6xmfqRYhUB%BGhET2|SRN()tzNG?S8WZ3bT^hCp9{-^?@A z7Cx7^4ZO^yn%&DcOOQ2PhM!*lU6|KLirS>j0*+8xhWOnXo(MW04n7hpQVs%Uz^FX1 zm?~2vNjkyZz|M|d!om>xZU+7KDQfogi2Xo0ZM!AlP4%im_qz8*&MWs% zco%TlX^Z6NJcJvs4>5n7yJO}zY}BN%zAVncQZ5Vq28E4GL$sjGt$=t8+iMRV9z7f@ z%`}v49A87sv+QE;3i;{OnNu?EIIg+H$Q=y&N^?-vWt|yxsXe_|N7uqwBUi9m_-VO? zpI`7`caf#K-5jB(e9HIN(+|oS^6)mA-|!b_7AHVXw?^~dtKRi#k2;Zdj-65m!I?{d z-LL$cGo|$NpbM6}rlG;}nnAl)bf~*fsA~BS2X)l^;3f+JkEKK# zF&o-&dqqah$;ljrV5URL1u0+w;kT7Xu1U!3MRC*dlg8+m^NwYJM=gSyo(Pt;^>ijc3F; z4S*J{0wc@fVZk-@>wT7zM(t))1Noej(fZh?QK{X2Lb!M_hzWL4OuzQiYJqQL%#1D11*z+LG z6hBZgJtoQp>Y8J|o1|daHqF)Au_-*s0&|x=!PvC?OE~Vem&?U9WXw;3xvOX?^0V_X zW5vT+7hcPF2-@T~hg`;J$=V${w{q;E3RbX_@lT?Bl5o8YI|6+AH^%1!U*o&ezhK4{ z30V1zO+v+OAn7%oX~L}$|Bt0NkB4&q|NmP_w!|4bp{P?6LiUk8OSGKh$W*pMiLoT> zn6j5OBw3TB-Ze#NBxbTxjD3*h%90_w!R&MWUOwO7`QzOD(ao9W%v{&&dOjbI`(1O< zN)cz9U>!}JxweSyrhT8>k(~No1rImloW*`mCz!|_HJQMa3KzIcpw63JBfnISsO62b^zH;66CG3r7oik9wGO19J-l3y=>4RGETk4=w|A-t&%?D1fJq zCQ88~7NW+#y(Sc=6!3~~^}xrnd`Hv`gy9_!`I2i{!_Z`}X2t6(7N?7IHD zDE8SL7^canlgnvPWpi>qYSA5OD$!!no{t;4)RKG$-bE79KolGB+`^ z>!v?wZ_$T`%fIV9*3{HH{R@^qZkt4|Hp8Y)!%LgFli)-Xt;uGhmyQQwP?Z>jsc$e% z>~!;lRGkCiu>)aFVhU*+5c$#wd4L_`DMjL3t=|+cnOh7k%-QZ~t=gZO-nuydQZ1Pg z(On)wTB7&Sz?lQ54WeNCA`A6Mu=xSkf)gOK{nkEz*7CrEAL_r%KTaYUCZ8FfgB>j% zuWm;j0{gn&Q{9whe**Uq`h$`?l8yE8!rQ8@J!!QH!R20AVopQ#)JKPbcg!#0l9|JR z04(&`Ks9-#`86nHrDjq`x61Xfd}J^ax^E~lX4lBhL$kD1z$m3$84m6JuGlhr!_QRz zuf#g7uXzF;M2~&qPjJN;D)D=ey1szE#8JnB;8~u?(w!jnI}rts9W3XExAY}#2C^ko zh8rbSiNTLSObh=hNS$+GS23~s)vPOLLSf}P+f-jtBkKw7Q9Ui|PmnsM3 zzTfxiU^>)5mM+gKSLXI-n4XY~JkcSbQ(cg}ULBGEcRNz>xW$9hJW!Ga z(WwuO6dD{ZULAN6?5{G(viu4DvU96);Ej>f0)M)=B7M z^$gUhh?wl*SC^HX;z;H7nqON0eyEj%h?GsfQN(YB=`;P>+F;0VnYg;EAT{lrkoA9? zX?l6EDeE@4rwoi926}TDXz%dC@K0k5Grfyae2dhIr0~DPN~s>E%zsdh&KDwbqQvDf z?0B`g0T4f9#^>YLw?N^33RHN&2rDSs7ZJ+b_2aD4hUlcjPSj^RApf}nL2wZVcJSEm zrlT=~McW5mR}1qDbzQP)YY+An$J>}0ojLf_X~c%+o*0&1$2J0x*nlymmmBrGGTd}G zk;l@@fm=nZHljSBkbFB_Q?s2RK;(4aR5}^eD~*IlMA7v@`w+y)S>uZrW<}Ms92;eoaboWB_(#R=Y3inA+C^}Raw({S;gwPR-q}5GOzbh9oRoXlxHgs^H zjKBaBTsRti{RI8$gAH>}r*VsYr7;)7d@sLwrciYD9fzCMDS#>d@@b;z8!h5Gj>!A+ z@i(|Qx-@quky~n18#+ERqMvit3tU2QYT5I>G24Gxn1CSr(PJcT{#;bT1P|H#2U;5G zGFl=qYmJkI(JcLv2Y*1DY?aS5;_#jEFeIV*dgD9VA*EK*GPNwf63MM^w>EiqIr)@Y zkd@B+f86Ft60=7Qr9zl6NcF89ojiYpislZV7>FR4rzB0Q2yMVC_heCZlj}bGJnK;A z3-wNa0&`Q5*n!}1PZ;z*5xSk&wORraR3p9%{;L|Ca~?sma82SqJy8GcH63c`DiQw8 zZn`8@rZRo|mEjecbJsS=%0Yv(&DOC?({GX6mpf)WL^P9T-u(irzrK%upwSOtOR$#j zZ;GL+2gsvMd(3Bt2P(YLu-3L6sROwNngj*|GGx)dN3T35AMwm70Nr1;z(tQ1fm;Tq zmNlD=yGy`t$sEc!iX;-r)z<{gJJtHWYx*zBdM5NKUUtk$v#= zxTw=)!4~!$k(^jJ`3t;2C@V|0r!&OA_@r|*S@*CGEaPkbu^m0x3AF0>FgRVU7AE>9 zNF{)&+0}P3e#p!V@%`3A_u8Q4CKM(D0N~r!IRrvMq zJOG>T0Ke3|RnHDrA-`yzjO*IV*GOE%#TFYB9IMmZPtq)Vg5-V-wztF4iY^Q;ozVf! z7|Vb6-OBhDkXe5j7zXmC-?9U$hH4KvSaKy4>u-HYMK95en{gX;F)uHguXjgl*vMTY z$|8P*R-j?=dsxZwp|2?G(nj=7x^#N#797{hjsU6|$D2Up;Si47zJJfebptp)`3*q9 z5`0@ZdK-7yd{<`#QXlW78dVT^;VH*TR6Xv93S)38IaC((s9u)>$4V?Zs-bxrcLTRA zK2Ih7Y#U0dlRNsRrA1h7Rtq!7v1fxj38B$uEwL}Z_wMhyzSQ`o@BJOq-y&$SVsf`{ z&Iz9g9cqgIsPI)LX~t|LK>9jQ^yAwmG=n1a`y`I1ETtij$d#^xs_Kf6`s~9`Y1u&N zgLJRhyw6kJS8wM>$(eUZ#+k2bYu-_5(Z98suZHdw$J6cw)zrOUn8h6wF@Iwwmy$S> zfPt{s9ByKvOif~@#j_Psdfixp!r4QvFpPlqS|=8(u6nOdy5%sz=Mi2=E2hd_zVZiJ zK|}%SgUE`3nly~5A#W}Az5%Vbkx_8DEhBjf)P3GFES#Qc z2;?lAU7Y121SfQ~ngE|G*8@)mXtt6O_;o}`b9Yg`jXX%*Pq&q<{E4Q zfzM=QGkEwcSv&&h`t;(cIK2L9O3sVaRPpV@lI0+XyzX<#cjOLlCIWDlm=8rv8GwFH ztGvGH8kPgM<^8VA=M23^=_-Mk4t;5%z`V#Ik)IMlfWuBv14;_eGaam&#BUwCy#s}q zdtUfQslDy1>k<#NzE6U4)I=C^8l&g8SC&+~OrM4vMyD_#)z!f>Ovm$>QAsK|q-^r3 zs@us8E3q6;;(*hv(@|~F`OWQ44^JOEF`P|(6$Fn;ss;5ROTmR`0(>wlIqr%McR+`( zK0pHeeh;)}GCNqHE3wNyFV1y}uVue5%J$ykfAJ(0r6Oy2NVIB;BwQiyqM7Tik=+qp zH@u)+CNh~0ZMG-VKyE`K7R(F2qBfi=Xb#3<_90(>`wF|3>hex={6y1}J#!;VGJth& z)7cJd0)lnyyZPAlQRR1)X6cq3KqKLx{hb&x}Uu;{=+x$kAw$k;ZqWvN3dPlq%USMdifr{EIg z<4uw*t<3?+_-3@?!I0u`Ljg?024U48iltm8Ayf-4s{T9Kp;fYfwRK?=d&P)F;EwVK z(6+uB;hFVwfqn?tmwyps7n5=8nop{z&-3x@LNH$A2{A|4xN&&e_B{fJA=1j%53SoU z+}0K`W(PKcTuUG9$Hq}3kOcNgDZ0&=%1DJk~3=K2RHNMS^Z zt4gMPdkYjdCK{ua7|&NCMnfnmeK@?We|&yeok#8=wfD|Ycr^geR z9U=w06ydicKvS9RU9yF#Wli{;#@3oQ{rHKca5fwdgVk2$?ViY)>nf=d_<`RKI%HL* zj)tAT(enwK(Q4j4OsF11vO*sG8Ox34dk#Wh7C^XzfW1g4I|RH$r||0^`}9-LBErc0 zjjAZk)!xXA53cykW)vYOrpKFH9Wsn<`!FLV z(pL$MLoS;4PJ5<@UDnpa#y_)56nfF&2XGQ~r`B3mKM~j(xSqo`iE}dYVEWJB?Fe#5 z@XKHNaksx;5OoANtYNJmK11aeJvp+UZvjB2Fa}|y8Ce4*8bc&J@n0rvEf z1m%p)4Lj$zhh|+9#tuuIiZG7|24C-o6(hOwAU3d{h+VV8)&DXaHJAkIxYnZdWE>p# zd(!TlOD5S!P2Ri12S{6WDK5vq+Ta}R-|Zmc+@v`8W_B<2`tfPYEt zUDUK3zAx?g#V8r^1#I^a@v%5?Fpt%bRE3aA3cV*Va$b12;?QD?T;}9Kv)%hiSP~eu z`sDwhn*&CaNR6ALV;^W*F2ry(XDGgx_Y>82h@6Uzx4}4Uuy<=atO?XH zqCKZV{KH)y&iXjM3WcjM9Y++fX`lqm)d7JU=HSxrPm?;e67P;=1|Gio_kE>ZuS-pm222Api<1qG8O!>T<_?fE_Th|kdMLTo=qW19p+#b0Xmnz>s7{gAg*&J;lV zRA!aEQJ%3^lV_B{+k3~^Cj5AVNkDCHMhW-`jMf`DL~eFWy(T!4q@T_D zx6AM+{iJbzCvFLL+65ek193HkfUr9dNJNu}(~NHPy1m2x&j;Asia|ft?Sq-0l>X z3{dDX^}BDg2vwmj*%#emT|DR8~;oSlL^$p zEecnoV0seMQls`Q2=xSNHN?&UD!1!pLMotSc}L6vYzoV?3rrVRKbQS5HpFw)qU#Yo zrSmH6m24L1B*vwEY_f}+P$UV(OSk!k{UwM$Kl1}_IDE4n-+AG%; zA{q35zW~X~tF18ir~{f57?j=kuHwB5(p|E)MxvRGLTGq90_6pcxnR=Jf3drLKXG*P zhgDIS&}lFPPrj`WObv5lK9P8vm8AcrTu;ti{^4e;^gbo=<`Hx6i#szyWu=v-l$-8f z20w-cg&|&a{?XAm^fPJ3u{>@7aX%_(eMF~T=rCZ&%aGW+d+(t@1+(xQ0d7(Z&zqok z^-p9h(D*bjr{bDkbHaiJFtpVpbU-Q?S~$j0KK^w8` zF_7maUVW$U(f_)Rz3`b1+=tzx9nCxLz1Lt;I>c90JU(=WM!EH&NaLpNx-^IXDQP6Y zEEqt7i*lfW9f_(BtwEV&(S^oyOzcN^_>#o`SrDdstXoOU#?Hs*gUj$ko=pl&pugYFo}eU_e}x|Vxuq}Y+>75-&^*I5N|C^tVLj);M%olkVoXHE);TzKQ3B4 z>xl5h!IHQHZ`UsiS!JX(=A;8y*hD5hJ(dqQX0KH>!vG;Tt?11*(NU^Iw(b?vN}{u$ zzsxZ8S9c;9omGGR&zXy@avD*!U=jZ+b>jR?Z~^C; z6FWGumDIZ#sC64NQ!SM8i@*wy@3y5Zyx!INQ`>Uki4;U{p7O>e<7$L}lIs=o+E4Cw z&@IwU%9UT@t&6MQ33tR(bKS<^unX!w1tfkN} zk?Mu~?2eo`RxNCCzx~EV-}z;qs}$AmdOaW4Q0y#I3{TMnq<}4I5~t@R6`U6K4CG-R zLF|iQKY;`?r1EkMP!e zlNhC`)G2|S&1?jBaw_8UX!pFQ#J+zEs-OPv-*Zz7BQAz^%Ze{taza(D&TZ5w+YAiP zJoXtgj$g2iomH(%(f>!O#1&4B&N(Nq2F0ScLw^r zn~p&1m3J^6pZPJbFGFDDjy#%nN!rvii4d# z+u`W1dNlx>vQG1)bCMG>l$SPE1IP;n$CA+KdEPX=8x0nl>4^Euz))C6#s;; zb?3kj01R>CP`d%=u8O{@VHY`m?7d~Rg?VJTBlKhjBHvi9!q3sg{@Ty`Wkyssw%Qf; z(?q(btW5Cq_Y-SZWUfZ;9wI&gm4ssHB4ISUYcF8wInLzpsE}7bRG;{I4-{Xnu!sd5 z{Rx+57a#6IYU`IY0<)W)_~F}dfIl4G)FWC(+71c@=xLx7*4o#L?h!z9F06(ZqQ^i` zfu|s`xIZs$0TUrjSquKun{{bqLq#+t!o87PW|ijJ`T&p~;rbcIDR2dZoBhme2!$XU z>kY6kTr^xYReZL%lQOQUA*L|>NMJJphNT?PMg?7l%WsNvL2E0~0 zdfM(;ctN4WR=boZP(O2|a>@|h0(V+QwxxR;XM~7Z&w+#Pqe|jEJ8-|_Dd*k^yE?_w zsV&6twvX$ApK}Vfl5D~F_qlRf7T&|H`(V%!(sL$2p|0HbkkYH6jY(fvugXJHfwr#L z@IVE*i2+^Xu9+djYdu0TBcJq_QYtI^CfC-#pL( z9s>2LEH#W1R}&P(n(vry9i9%Kk>&(?#t$dHps33;2;9>bCiM_7`NHt=U<9YH|2kSA zJu*>py&zZA&PpXqNu|=5yFDt%b9NGx&2OjN=ol9*aOkWs~Wn&vZ{-{7Rhs*bU?zq6@CBl z9?{{M2m*B#HK%q=waI3rJmKN{e{A2Nj{j&#o7+B=!`%_W*^nBOL;O#m{Z()k9Md5r z(Q2*b0a?^&<)4c)oR^e>*sc1~%-NT`HlDuoRI>=2@7g4{fSGQLj>0oKXB#m*$gsFD z(g4lU9B}PHR7b~}km(2x)~M(W=w5ne={PrRpz%?NTCr`^}6 zpR9w{lA^jnkl|Zz2Mt_FKPmQf{s6Tcb0!mj9-?OTXril!)EypS;KtYiopgw*p9}^n zrCEAcKS2W!xd9DNcDfmi&lY0p)@`9S`K@lsE1E_$Y_DVh*t1~%0UJDCvJZnWN zzrF%07rbBw8xQE@gW=(FVs1z}sTi;S$0yf)*fAbIDsoX#9Q+CE-tTYVH)**w%^gDjgM0ncLI54*@Z_W$C~hPNzKa7!NKg(M z?sha&*A(y-{*eKl%N+s}6Dc{38C+$^CRYZ6wdmlpx^W%NJFed~0vc5(cJv1>hwnO@ z9D;vdJ*5>9^La{mcaO#0C`*nKO`(;$gBgT>v1K@`6W~p%i5cA54n*>{a-~G@t*4`n zOutluHRtb8xWYbapVs){iEZ>tkY#Dks2Jo^!%2@*k6|k0pOTn03B;=A+rHGsUlD-y z!`3NBfi!4|YK-*IOO$^e#O;#v6oI;PxN>8O`x}@5W$ieH?8jy#?^aW&Gt+jSezyeB zl>lA>-KQTk1!>^+3~StKLOfqMSDG zg0SnDC^X%%v^IygJr!NwynVv@rV@itC66!SluL`lr*02}$I{w_ zU@&!U+SEwyqqf$aBhVIz?JiUG^M$;yhob32)j@-z;zFxcq;RV>gz~M|7tWO)BrV^5 z;r$34vuB%<+rwR+TCSx}Bps(XxG62X{b#>4UCD5?DY8Er$&4?))ld{+MJv@^0%@4} zFf_ZkDH=(YMRF^!zgnt;+mw>om{XPjEBGR5^Hle&`8`hr3zR09anckfuoqV)D86yN zu}|^HmlrjsC{f`Njvq?y_GM+ON2y-3Mo+ujLOh-Xx9;i;xN~Hi{wlWie1d@!-%I{x zw;xAx~a1f!qD2Kuci@}*=FxxWWu)xLDUGW2tK7<09`KVD^~_;Hw>Q>De$6aHoOeB1ZiAsP6a z)+dcce#)))Uk4JJXwTiLD3LRag@DkQM*EwD#zWVX0p~B-FDY`vjW96$2P&`V!Pn55 zlook?!m(sw%ouJ%2H;j|PNd&FB2|!D=jc}E4{TmBe58&-E=mfjn{2vOnH%Pn;~ECS zo1>oxz}Jb_v0i}9%v@OVJeX@uy z*6lhSji;kG2rsTyR_-d?G}J)XF5;F`{cj%q?6R9a9~HM+0Rr}Pm(9_85tX_De;XaQ zi2)^A?Z5v@J%}%L;%wXp7aS(I^wicjgHDrR>-*M0GeYGO-Td7LEnOxUz;d#^($fRGceG zlX0x9I%$~Y=$w{B`8I@EP--v3gxl0 zW7EPx*a%tc;iH`3-*QeLKk#|U@7`b6@wq-TCtjsXS6Lm_V`0pJyT?qp^)pheGVLho z73u&#pnYZOnft60oIYE0ifw-4Hdpx*0Mf4-eC{dowgB?iU+e7x5ufdYyYx=;emED-SZzz++Kf#j2v8Vu8OU`n|IZH- zUra}VZI{hE`-lRaddvi-e^#2pV=(mhK+1KfT4UnB*~D(%`Qq$LC(IyksdfhJvK zrt#p?1b3(506yB))d=k|QCGMaLz?dPSMPBeA%FsUczY&#Qy)^m%S4^iCxY0(mzJ7l zZyD3D2mmY>wt43nu!hn#bI2XKu3PB*TpjFxz(3{9;{IN9_Sb;VN|uTDr?czL88=TYCmksBcA}Ilh+qM+TF&ak`2Z|a<#M=d-It* zrjcIC>PvbSxFN9?iBlvMA13h9wJ<~==T62rF>Z7sm-w9s7DY!ipoi=w{#S%eHIfff zY<4pmo{)x5+aDwGdQ=704o#h1#2(Of0>?Y5_1hf^7Qz1JJ`;nRuyw~u6I$4RY!MTB z)HhcHEArSU{XpJp$=M*7Gr}KcfFR!BnhsPKz27Xpg2I#4_eL;Q-&pw7%Hvw+iH)FO z(b%Sy>=31>M{L5K#I3(?T@ZdC>9Tv{5El-8zGILcSd@GhEoH!Sf~T;>1;yTW{<$f~ zW!AE9ZavD%)>~y%nQ_283|_$*d53}LEYJDCMcjH@)BM?>4Fb0Ec^{N(jKQrfr= znMHs|&}y#Go?)rWVN%pBr2(e&Cbu|UNZqMt)3kDETfT+B>%~&3K{EZ&T)Ot?Dq>ty zT+g`qSJUx@nEO(aoS#YMlVI4LkEUU24e_>vFY7H0WudRJr|~Q~5l_lMVqVL$O(8J= z4u6!YRm47t8<^ym;4do`?MTDG4Vhz@+Oyy^yf*SVZiT=SB|E$z5EN^Z75~xmw0f=n z=JsHD{rb;qC?wC%Q9~XLX2`U)3RykyBWxd)>^KUx`uv-|W(R5kYwKa>X}r&7G}`*Y z*XdO0R?{1}W4pKYePKU(`q+jB@KZ5g`118F;-c@fTh-zkhkG+eeXQG)o&g4kiGtK= zo~ujH1SZ+YgEC*PFPakxvy9A9zTsk;uR*QVeBaFIolEk`1dKGEvu)j6E=F|$_gbn3xIb}Rfs|csI56S^FqF!QYUy+ zLh;pE;X6lN=NI4VZc2Z5BQTcuGeYh-x*j|=_VVSSBoa$8Q#b9(pUG8F0Kc8#|I?}A zY@8`hEBqiJAVQl$vsdHyld8Dk>FDsoYR-$Vw~lZ5xVo~U)=rJN8PuF?yqF-;_2KKA z%TZ;eCC8T{F5ndGzI=jy{ZgnoN?>1^4Amx784w^@GnEczJS-X6t!IRXx2s~^Ect(t zYmO&0Kc3c$GT*~e?54m473;OX&@iX{)V@W>nX8mNy-(DdePPDMxvKXEa`jgMLxo&n zLN9`iKx+*ieLqHPqX;f>f?*0lm zJ`2^90~~Me4SO1KG1$MRZhQ9NC!LDFj6V69^_A?ikkeUk%^HLJkq-#;ABHHr&3w|W z*pEMfR|=XT91Iw$puhbI9~;>kDoS?03-(y6wedwBXtD^B zZFEyb(5gtW&2L2|_$KPBEC2Q%O8T`qIy^}uk+~(raF;9^C@u8p(}zbfZH@`7Nsm$g zRm9H;F=sz9{Wi?RjMzJ8Eb7vUI~T5YtkS$8%=F;LbM^1JXQK@>Q`nvR$EP7lkUoO> zKUNl;8fS!%Ldd=7hs~lr;;Ss_YFcJUx%F2w`&+|U%7jb5FRx9qS)*ljxoc-7HjX37 zf&9gb( z?Y3*WfQIR_hfbleo8VJE-Lt3AUeT+6@U`%sK&23~&Di8<_w#zy)GZpMqDvDLU=haK zkCi$~?3YaW3AiMCR7eblNKwGoRwBJVW@6?YZp=owgoE}c(7l_Vy+h~Mi;`IPyS*XT zTckMV+ea8?w_#{(%!Hce+1x|Fs%m}WGYtN{PjESEnp#(R`QGJZb=Y@ge6X=`9LatVVBbkick+X$iObu=$yvlDlY9UY ze8o(0z_szLG*51H#57?B)061;-+rB!z8?MZU z&1gX3!WEP>SLE>Go~s!^)$1u>GB5 zCNS0C-?2I^ToQwZNru>IcI-Qx_j@TL{7m(}XcP0-R-qO7Z@n2eUsF>;FW10wd&OB% z7df+w7iVM}$aN6BnZY)ZoYe@u@&FA#oN(B4J{rGI41^>`R^j-!AfewZ`OdrlND^h< z7Mk42Br(bvASd@=5y6ZDZG-Z0_Co!Z&y)QvX#b<08xqwEPb7?1d8-1{daUiBcz#E> za}f_AR`-h%aM5=Eah5vH>Ax%+e?VK$tFTYcz>q;T3ko@ zSn5;L>hf<6s@BD=fYeUk`=f`mg{%CXJ^S&P(*26EbwyI{TImJz6a~G^ZRimO3LEa9 z9FKPTY-9yQs8EJE=2s4HY~uhHv)MS)cHnn)5ClC*n8NEb+k{KwKwh~g8AlISf6eO; z0so6Y&u*uBcgOL(DScEtp=Q73OJ!}wq2l1{d>QSzHVNjq)}oMn90G3FOgM(pOL z%dBV8@)v~^HbAue78ni(0L|ON=r(Y}@&}V-#(7Q^8`ZwJy&pmipk>j}hb;v5^Ad4W zpY!jV zl1zvtI?f-SS(DV_<$w4FFM?2_xp*6J#-5jS>XD9pn&dpf%$wK-VqjKe*Wgr?@y^=G z)}-L<(Fvi=m&;c89vK2Wsdy1v_38Tb*hW+uGHm%1L|-e%Od(;>yF1KzqPn@kg#0IH z+fslJ+#?CNJ>aowlnfwq{n7XGCy_ihp>7cGp0N^=?4@m z?K=)V{ud7QbxW=GAC{UmHu!<#5@rw0&`k0HDBnK-*}b3W5rFg$ixg;4ix3|oM(ZM2 z(Z6Z>>3x^|5wEtqzemh!iXHBUL+u zRd%ida*b$A;rV#Y9Q(SjS|zgbU-)K}t0xHozs9oV88xLVD*0?jD&Qx4K{-sIX-vbd z+Yz@vGLxO*C&;Svom1ZblqMj*JWfA~ldKUCZT=sbV5Ny!;Ip8j;R*%9jthpp1m7xs zsrR@x7Pn39=$mgEjG$0ATDKkzE(FF}OKrjRChn^Dtv-WNDA;IDRo)dbxkf;5`oQ_f z_GyaBCzY8*mhNC+HZ(B2?FL+tbN!Tb)5o=HxV`t|+VL+6lDjTCSc=vDYFJC-qTx7q zZ?MhJDU)MYY3>%C1P1Z&r=^Nx2mW>j7DAW5vJ|{F(%dXFK5DalT@ihTwk9OlXxvtkom190?-|_?R)pBVPZ(F;g}rau*-& zP)6gr>!3b&-F1v6;PhspYcG$71gHRf8>v9la*8^u{;yS`5X(-jLI2k(E+>kDDWF$2YkoYdH+O88lh)E*!I?c zvUtvd+GcYDenps5@T72HZ*V8@Mxh*LPM|S+=N6FM31V{$wCW`reU1Q^wI~o-jkZwr zj>?NSKre1r{uY`>fFbYI_gCXJ(C1p30%a}g|E-HAY*SgixRv;`q%8>GZXumV!5D>*Ab%Pei?M*wrnhe=`}6-(6rG~JlH<<; z3%KN=w?

      T{S#MG1fMeO6|EgQCXI`oVi=fBs+o7#A)>P3^I30K@I>aiKc*SWp}U> z%e?^2!zev*J5rOB*T>)K9I<(!m85IV!Shb7$M_%@kU527iZWBD0^^xg0K!#4DWuRN zPrB-M*K)hSc|NvF8G6%iGj=eE=>OrGkWLE&Oc zb%Gusy%mSN*X?W3r9-Bzt)G8fj$~NReg>!JHB{)574^{uVSKTL5EfGU(&iZ;hxNRj zsQENeZD*x^Jnqh!oZ|tr8r>$Nk4Em@V%VN}ZpO}NT!_1!>Up&HH!)`$_X*zqd}{5g z0k~eiI`nI&<;+}@n$G4h$ka9(EnR?#{6*4Z(QL_ZNvXySs4ufY~*!reo zqqo*-V+LHEN=}*hmYUNe1ntWcOh4uZb z?T)0SEGa31saghPVZkYO*pJw!0L@{{7-2TK2@3d}|6dcFG2GX5@l(STkuX{K;`5)e zTW{4bh`cpvVH zF>6ev`gIJW!=zl)o&awaua@VovDd2+j}8~=12};GC#f6*2(0YM!VmHKlrk~0m&Rg# z2q|m_k;Kzw$Q6(YdLX9#1-T@JfNcbq=Z=wo%b$PIYV+QzJ`W_ zmzx@+o!~nWye>ozOLP^HVw@($Cl=;cM*JBZQm$(tP4ecU@GF~wxV5vm=kmqD_=qTZ znc4{S!cSd9rQ**cvr3-lnk$(Y5faJLx^6lw+UK5Z0BE=#7b8`-A zYt6T@yH1;)S>4Er-q^w+r%LUQZ|KXkdkb1i55ciPXUtGN2p+ptU=OsgGi}9viE8&Zbwqj3|zRW1{1G@w56SU%tK+O4Xpm&I6(~HA_ zSqMJ+!ci3l0&8`t2}gzwFJ*-CY| zd)7O;saL}ZCnK|dWBd^Z5j64-Ty*FYz=(gep1+w++*Q4|lld16mm0^&GLugBOZ>m< z;M$BVHevr;tEB_6aY%0Cw^xf;O(DTc3Qmvl()dbD_oU4`kMYsFve;t=X!dRaG9Lap z5Lpb8(!DN%s{4=EUNo;iADqxTS49emiEIhlkAp#*&Apf~6V< z1&g$!LC6>>mHh3XML-~&t5L{hPHdgTv1urpvw0!1ny^HB05E)uv>7rBsA^0ank(|+ z(rE6nkt-o26tys?0^0N{L-WlZx+r11?L6pd;`8+-u*^x1VmMs~g6_LfIKO7HixH3T zTW`|;)(DUG3H3*=P~%B!&+B7fLFm;C;H6M=&X2_!5o7-d;vyv!FFGf)Nhh)SXMbRi z<)KLlMTsp8)8LhwO6ulH>IEOchy(yuD6Sf1L2_5X=E&iKI;O}8_7gAgYbAnHW1S}@ zF6o?z+>cqwSAmO>t3!C%i|y*?;|Mo{pa^NxyDfe!WHit$x@>MF<&=eWSGXmzc zGt=@!-*J`K*!R{kD|gTPBAm6Zwn)@b z)o5RZ?ZYBzY!i@AFli-)Iv7*RE?$~B#d@O3lqO9VieeIF2-@x#m}EpI=LsD^a{E~K zV*o;no6fI2?vmBaD1AeeCp$SEJgrH{{hnnqpe6KmEat73Pc% z&oQa>WWaAXvk3kEaeOfLT_m&YJxVHxXNMy+o!Je3-<%(2dlkBf-j1g~!c1qFc4DIM zz0^T$9Ch_Tbq<}te~C2jhjXhMaK_-g3fsvXBTe}pJp_g>+j1USS+8TcJ}qeX5*g?V zRS-NMu#W5B$EGdjzt1oQi}asG@+mhg=ns1-WzRJ;2qVnj*gsdO-7;GJ*=u^Nz2``e zBba(@QLLPj1+_@>#71W@fVb3GO=wn8x!;g=l8kOeDCo zQp2`LHZwrYE{G%zqEy)v7=Ql!^C%Z}cn#(k3 zOaq~IgyIPyFM3F6~tTrOC7EOU%5e1dob#fr2! zJ(H6Gn>9%ond8k zf>>L7#@WTlt7W9+lnmzLzIFoj9I$>lpbu0*@V=;HcOHRXIc> z=Q5DIXX#_hp9YH`cA_-V|2wu%Y5GXtRdP~REXw^l?rZycIS>IP&nO|&s%zq__+3L+ z0sZ~Occ7Ggy60fbnU?t9FR3w;s*ild(P7a~GCV?I6ROUx4hO>Wc@UDJc_%Ju3fo(rCx)C{k({P4;qO&H}JuE(k>4Pj$(P`mH+=zGrgM1I-J2 zt(5)HSJXw$NtKo6z{MK}>@QdEZA-Em!%Mv_vI%s&_1`U~xUq1- z8ADhXd>jsKTx_Mgn!J}tv zaPDo<2czFU8w?h~5}8k>hZbv7AfJbSk&nB7!e zY4Qv=7+?U>iIt-6;3_YO+}V}3K157YTB-K%7;F05C}n<_(aG~wq40``;R! zuiC>?0xme&ve`(3@WXxvh~K60nN$ zq?nKcM>Ao4@!mar>!-oIas)9c>JK#a#akbkT#l7h9q4UOq0HCrVs=ESO`x1$;0sH| z5I+G(3_Ac`&m-i@xdeA?5|;p7;4AZ2YjSjl&0PYtRri@SATyQWI!*54FMFZ(uY_8f zg;}A_TA7?_^j6w8G%U|#VnvKG020l=JxfBBN*;KvQFT$la69o|`ncSVvtVQ_B^rj$ zAMhK0L|0vu$Bg3+AA6ykHEZz&H~Hm$mez>udVY3p#P;^1_FApJbDbCgF503-;Z9VlYp%UCP-c|Jt&6+H^7bYJxq{Fn-vtaF z<{FKya@NxgQ|xds*I0FwDZY4{dh@VCAZFan7Xb(Bpn&adFh7-HAwqJ&_T}e5 z?EAJk3sg^rEi_K%rYDt64RK9IYZtKytLb4!ja&a=b6z@7Gd7ow8i`$7L-Y6rddAby zRd$!daeAb>3oD1A8o)%I(a2f%TEq!m*fs!XqE|ztrL~{kz~?eKg|xt$NT@_;>e!rk zcqG9?TKNOp>a0u%DOXf(8V$yB{=6_} z7Wq46zVcyW%nye9GCds)V_8y-l>QxpJLn@13%6$qb{Fr^?%`<9M5Xn(8rteY{M-y4 zrWHhGjMF5TE*nu(Dc3;1?X#b5qtKth|M@g)NEx{;A1K~e^7zJ+hnOHY!lo3b7|$ri ze;QB-`2OzZ#RuM$NbWcD2HnOC*W&9SeN{zUA*?9|g9+5a zLhk*9s_*0X(cDpFsfk0)@!H+4y=`hZt~$68GeH_3xCbXUz?SEH>nm6UgCjfG}cHe{Ik{Qdlc z*@dKz>|0Mymg)`7^+b-c?g6h(W9+6ulIz*D?>_cq# zvGJtD$1THS6`h!VQDRP+2Dik1w#y{Cm#zR%^<)&j=OnILE1ECeWqf`6@LP+tvyj3K z9n9vlvA&j?6FJe6DoSZeFRB*C;x!tdw>11NFmnkjv%UEy*mLZs{H_9OXb1C>*yS4` zMls>nNd-|pWaDg{l>gt>xMOqMVQ+$(jBJ%Rp35E=((5fP_51(Plk`-E1V%c3ODuHX zj{B?SubAG;j}@B^!|BIRa{`$8FN#P0jJ#qrYd0t|wn(s1K>me8Bm)mLmjKnfA(w{Z zYmXd4uN>kL#*A93C5`Ll+}Vv5UXtjYf4K-2J-B=+`bl&cp<(rD!;5Kj`d0Z_IXTjN z!E0qO(TTYK&@rrf@1hF23c<$I`i5#(Bd)zmnaa}05JMf3c{8WE(r3nR>3x*tYj#@0 zOe#B2cmZ16@eD}$?`i&T{J6*F}}^(MJoh&gSPw*nJ_fb_*|#&`OeMkLQJg# zIO&^IEoogQ%$=qU5jq$uX{%oWqleq1XbT4a9n*%qv?*;%HMH$uv2$mv-cGAd6!V=T zTO*rj$GehrNZ#dEx z8{q4thA}Uc_8V39vH#y?ueAd+I$^)96Mh5ipg%|C@k6s&4+QbL?;>s}6+AxG9|jvq zoUP~|7)|7?w}Qvoy*F?egNPnoLg9!Ju~>>4;#KY87m3;*HK!r2^=cAW_Ypd#7eSMt zZXhgRULxZco4BXoVAgvA99=1SOb_N}B01X~JOULEei5BF&>Kx32nB}obqkF~_2oF? z#;Y2EG1hs{dp&t8*WsNK30E`-CpLi-5X&%`Pdk7lfz)GmZDO--;}qAhC{owh?b&cT zamRs!Z~Y|8)z=>sM|5Yj+1v_aPPu>-+xBUHukH*j0$cpXim5{=WN{#1Wjjr2ed&9R z?miVOkJv;OI7{02VegT5?}4x{uK!JA+zbpRa`7BMckG@u6FD!hmi9~G#>U5O2vmW>`B;@OSc%1st*Kl~0!0~T$M6-KA4s10_Bx9$om zgQc1=($~ShZs;bSe_Z381%z1tv5>acEf`@>N%h6JPPn* zN10>gGao$Y5yG4Hm}-ed!Wk9>AmfLZ?qNn)@to9<1JHkYdtxid!=Wn_&URWM|E$MEAR{vnhJTYd&uwV~8OcXPbA`Zj+3Zs>dc46R7V zP=dtvIuw@k?Dr_xJbg6s3;-P%NxwVo~HWWH6scHdgtIT)b}zT7-AY2`|OcB!iJ2qMFsu`&}d zgXG*87!M_+nwr0WrgD?Y2&p@kg50F|3YV7kK%O87D~J<&ey5^P4D?ji8e=a6{Aw$h_M)S>Qxdn<-N_;&68tx+T=Hl7E4zUcy_9s!#T18*rU@qv*a!Qb9_OUND~gf0H+T7Mwi;2@-9O@2 zu$E!2AByqQ@R^`%+uz-)RtIg!M;DGXRxiXY>&bt5dYZJ!m{+;l2%5#o)pOuNf`3fo zxw+fV;@iW5CFc2icf#lfWz_*(ra6{*OA^TrGD?tzUvO5fMIcIo<}2W`4f@9SoCG^1 zb}03FdfcdHNEP6UoV4a9*gaP5)#l}i>ir~0kLwYdE$qFq4$Ys~V8(IUg#Br5q)>aO zmQ+mmi&u4ti`@dKLPVd!G>$f$=EOc6h(NuQlrWCssA&Zo8`hDheb2r$Jrsh_sZ}Fj z4dQZbaH~2-zlH`COXW7rt3TH1`KCADIZaFGM)C^uqi^O^uG`0OFVdGGGDFI_;+mQA zV|UY)@AY*^%4%fo;l77Q$@85@>CV;4IIyTYtOv~u^kZ`hB;7S<(IRF+hK15GU?eFU zzNKIW@jg?Io27mylr-vCr(RG`dQ<59VUVSCS(pGPDpncU_z5Cj$J-@*3?#& zFsFD5Y~C`^rY8u$jkc5)96hjbpm}oOTLk<9*Iu<#G$MUb<*A)q$ZY~4NgVAK(z=A* z`WuyZ8^1tyu6s@G{jqRgt4gj6-l^`l$SY~n<(gwFI&7dddgIm0cM}@rvGrwj%lYq=Be-Zk5WwSv(n{Ts#8F?^PPY& zgKG)|_)hE}tflG?bgTofN{{y-LEzfG7&-+9`-K&TSeVQ5i;N~FP>3l`yEUOa_x{e&!#ck6 zZO?y>@$-+x!=?zhgUGmwqlvm%3>3IeNPG^3z5@Shn(36*w)1tG(*yP|yY(=Riy+1T z&C)?KN$txJ$JE}WwE*RH-)vRpLh=vK#|eLmSj-p{JSb*j@RI|>vrsLyqvqg9yGeH@ z*l+qUin^(q(Q_m+O@(hZ3g2}kWQ~?7oL8F5Ja-4GKL(mD%2u07Meuu%U$cLnQSZNw zSMGBRwgp0o#o4;AJU)4H!5qL7ehUw!@N1U%>|Vv}hnyDQV2JK)3D9Ev*3cRD`YJ9- z7C~QM#3s}&CpHNqCd}!jNZH&U;hKcOJ_Hx2P;zgA@i`&R+zFt2WrUX&2s%gZ-j^I> zlH+9&oEvqKxJ^5Y8=`0yDL2ynFoF5AX!Smj=37ErX7@qJ(?q(NMB4D{j$)Z;E)a(R zisv%KUnSk$&Lgeb{NrEt{cr@m*CZ*yCTu_rw3{C9Z_pywL!?PQ$O^PBb=H?0C%-XN zj^vy!JP}He1&PQE!9yOYqVJtEV9>PJbL5}Dm`vW8q- zn#zn}?*+l*7JA}hvne>Y_O1PT0rdg2fjgHvMe;VsBj$(g$2@oKjAZPf3`v87lZp zkm1H_i_E){H$+ij{6;0bN^<{B=oA7@ub6%z9pp^F0*)3&H?!y zNQL$k(wr9t0MJ4+=m`0={f<&Hz~4NoKLw6m2J`nH`5XZv$V9`;A4-g1n7T=OkWE>! zC;s`Lb`ST%+<;$r-CEs>V$m6>*gO`3ee!ACV@A^u%;#pYm{eNR8VFITw?eMBvP0jh z=l<@{!o21tzchnjhK08Twwn@w5*dZzy!I_M+VN~Opc=t*?YMA5?>2z6NR&y1bTNu1oL8@G-+=~~KVFT6m@MMTGS=F#nM)3A?s%1>9H=a~y z@HGfr+NXP?qov=mnW-h0`P@~N82vb6mgh)OpAE*mIf6}c8V|*jiz&59IC@t1GN>Vf z(d)Vyxb}DvNX8P9ktW%{iqM-)yYM!V9SUQ15NAZ7_3js&z~DNqwKBWkT$Vfmd6z*1 z?#}6?bp6@1e`F4|Up~PW(U>lD9a{0t>2|xj5x){Ld-9*3V=&i4_supBa{!3O#a5!P zW3U`E;94CB7L_HoDq(y*td!F=2&=H6k2_diQB?q#6vV#o+!cW~Af$WI0d%19_#{WY zUu3k*AjyTR-;)SiU|tr91|X^Ed=`E=9p+ED=Qil{mlH6e7;)X6iC-hHFO2{1!qoYG z!o-3kg@xoOX!k{q6iK{!&Y3okjz*rDR!sHL8JY>)>Un`f!txhqs&gHo2D(@w>?FG- zj(y;53aSTE%Eq_bU-Z&VZmrX9rY(1BV_LgM$ovdrIpB_8GzNVbb*P*Aa%AEQ1Dx(c>^;6ywx(`;@uTWD=%`fspX6-LJl#8$^b3ZSn(pdlvY zI<0H;LT%rXb-UKWH;HWZynjEn&%xIiK-hVS z8VDii>Dl$Nf@cyZfWmSNfh9%1`panc?RH}B)}igV&0AXg|9El<6PgiWOv(c`+y9Dy zsKKJ6QIGvp4}Enn2OUz*CG%Srn|F3-e@TAw&hmwOCzq-L!LPoa_)T)^Y#deTIIXAr zZ_iqJl!OV)8~U6l$>c|^_yKE;_}TF!0)vD+kIbc{iC2-ja1Jd@DYw1SJWz0=A z5n~ePiW)k-AHic<95zE4I7a;zGgU{tIgL^IAj8JZ-#Q!m&S2mKhNyCuq1=1#@u>3U zC#lSjfONutOwtEW6AmQjj;#KefcV^2PSFpi+M|yYy99(Sg_G2(H+SDrH55+Dd9bu<8#_K%p79d`Y)hj)HjyK8<8yw?XLC5d*0(bIM%sjo`~|#|6Scx8G-3 zIY7Yb3I29aTBBKiFT|Umo&c>R!4x^M+5T;|e=^qB{-c1;8-uOB@jQLxZ#WODyDZiP z`0HS-l|oLADDF5PpRQJ4=6mq^{M5garTg?ZEp}{78rE# z$qWF5&YJ#%_Zvgjd6NN+!rid8$(;wxbvxbyx>gloD;BVd|QZ zq%`!_VarRr6Ma@(@z2Jx*H2|Iw3 zIvRb@ELFatc!sESGYnwJr<8LR!Tv1c5s7eU|0q06#bj}|+yF5UL30aZlV*Z9aCE4= zL6E>kFW$@re)v`TgEet1pZS|esKD?8gR0w~@;Z;&Bx~=!3{we7YIpB#0d`7aD2PJl z6&`95ZX^9J$~|H$O9Kp;iHAA~9?)DqK&|o%V%*o9aMrm6iyaSKhA{nCMiLuuFT8=5 zgFQ%%`$riDu4!hOuiQJ6f-IqJ5UP*GF2Q%^@KX|Xz$yeNfv-p))60b_tSnG+BXUP9 zwFbw7H>GcQXrlqX30_SV8vN`rx-}1A`EX1Oun`2gdpIB%r*(Vp6+r0XM#L_Q&7JDS zhuh|PNo9jSAri=m-HvtY7SWd2Rb!v{E8vcxW!6P0@f2|{`eOd<5jsn>2@d(sn+6P( z>1NtOI1OaOSS#NBJ8~+c$NrcqEwfhWKwaiH#!qfn$0K#8gbxmn|B~PM$fO z&>7EUI<&MQ1x3T(h+-&YkHnlv+#D2?L#xb5v%PYq)G9!CxM$9|(^^}!s%u9y40H$_ zkd%}tgmv2H1Gf~?2HMTi+XdrtM&;g0y7P<7^y)p>0vXLHqlsf3)k zF&OUSQP?#b*XrmmIwGbG*9-jji52eWPE^7Km|l<=rI;uxhm}qxtWp&cPwakD)T@ zIxqHaoIk1XY~qGfI%!(b-vzhyiakf_esuEc_xfA7rshb}VxU6juc4%T>+f2z9v7cP z6VeQRlRrq4gg$o?gbsjO^f#WYwM(|{w7f`*%Is-SO)@i?L*9$G3Lu=g6X2u=g>o6< z@*+?@z%&u6>5$(k+kp z(cTR(sqL&rrOuqt?T$6sz7cnMD0$;bR5RPYx}dAFXy-vNxGWEA@Ud1Pyp7pMWY>6c zo(U!$9)3$z%qmWL_H=*MTtJSnON(mxr8=nzeA>vPL62&AZ>@_;1z#z*=by4>$NCHo zdUz_11Piua>4ya4az8^RfNsuo!8HSXN^{4dQx0YLejitSiuMIVj~ER86^?)N%e5=u zP%i>5((^W!r7w+}!AU{(MZgs5m2}jT$l4?CLsT-dI+q8)2Q52S*qN#WvzX8^3JX}* zG56)2GzeRP#ni)z*O7yAf1sPS2z2i?VJq;$h+zu9F$+KziFe7ZR?%``Cdm!W0?SDPlMyudFnh%%{hHQz=DW*j`g#yZ z1Skn^l9B;P(gC38nqeFi2)8DSf`jS@Sr(7#zU0+_Bw5%T6yF)9ynW9 z&2F&gW@uCoH|RU7_We%4s-14>-*ZM3v$b1b0t83ies{W1T3T=Bizo_Fo>)?Hxh@>R zFRZJ5;0A2ZdNJDe(MUM(WjC4JMjQs}7o6vMKYot03SL*8T!j!oznKKh9INucHhT@N zqnyK6^aCO?nD4U!`y7|p+>VpKj|TBKZ_}MSmh2Z;URG`(`6&{|w){*<@gE*h2g_}) zVg0dR|IOH7CVfMqeiJx9>Q%(f`KU=%$tbTsPN*+SxT%q8_Vx2f%>C2XEGT8Y4TAMY z0K8$=!I{tp;QEV8WhuT|HWxG4sZqgnpy-8-3@}M4aoYX%Y(fRw$}xW28xw=mahj#MAIG&3o?aR1eW1IFl8hqa6Cq?Wt3` z(+h=b436AU z)n5JDfgQVS6_S=^)}+xcYrgvtTyYQ53R;Ywih=!G&_LS0aIuU)${DQ`y^@@9jA(*} z?n~Dm?(s4ZY!i*53KHP2t8(E!MlS)hIbB!Q@~()|AN^-yCiWzyDR793D~`Y^`dlsH zdV$-MRim*U2xgXePWCNTN>XB>R6;0W>(J?glK?RM+d!7GR;#&q=!O`{(LXhc@C-k| z8!gj4n~>R?8=eTQt1!fj$B%&BCnt}Iq#QgeS}5-sMy(1Qu~0lh1n4x8Fp>x{@Sv(|2^| zv@wfOwO?X<%9h%}Z94wY->>$0hu$onLLE`@IyfP2T^rNj70vJI}P zszASdg2hQK1~u~brMyOV0XGC-jqi@;v<8x#W#aXclR{TG)q8Q<3u4JOodkxDKP zYBY}IQM26P!1tt*K(gC2!r<2pi)Z++Mn^*|QCYMJKsV^SKInDJ3JfG?^G!#~+jX5t zxj8kD3e|uWU@6I@M-{iOrxS?aG>a;JuNp0#n!Ua{_^gGtUMmnd)HDs;P7=1&bS{__ z7HrijM78F-^Mok*xunL)VTqRxZ$;ww89?Qpx8Iwh_PI~$A9w)N)%=xZwqCK~H<|Y~ zCMTxz0X-fqz8g&ba4@qRb4*KUJAw!E`{t{eB_HIZEaHrL@PRS;&E=g$fcmH61u8IL zVpQZC$Xw!?Sesh7b56?Q>~@RP4@sYYZv5$g;ggs>iE2mMP2~Gw>Sz1gs#(EzP#%b3 z!Kyq3R0?S+g!PUFhF_)h=>0cVBXP{bN5mYFCGLtX2gUq2`Cw$gZ_{ho#5k+Qk+{LX z&h`fy;wC1HM@pPMlCkp5k9g9j#gIEIGA{81{auzyfp4@9T4qz-D^ zHZB&&Q>i`kyG0;Ss>gg4J6DefUN;MmLR$6rcLA4Y3J)JkEH1ri6*02J?8y$5*PfTw zB8eN{d+Mz$`yomdSt{z}k5(YGax@er1%C@_Wv-ocNZ!>?+k1|VuDWBfs`xi^L*kj_&X)EK_zZMonDsz6wd`fuIyPEm1 zuuM{UAN=jchzm^hesU*a-*U?1Fqx94)S>#bexw6nmBp(T zvdBVx0#3G)cqZoqxj7KQ>nEsYAVGFkb#(L175;2|N=c$0iSNt9FPOLTknq$JQzt+h zn5q8K$hCWr(pQtykq~*ZX`&U&?IfD7#LQ=@;+8Q3IXD}z;QaFX5aHutPcT1;9auqw zpJCx1b0DhV0B%95*Y===;#4CnTPgV%Ij>s+auUq`CT!uSj-3PoIwrRV`1SPQGzk!= z>ZbY5PFCuq=7(r+EDL{i*4HkU-o!H=X~pBr5nIRkJ5XqZrA(BRFJb8K$E1drn_#>; zIAJdEF=(BLodc?>Z)TMTM8F&zqe*Yg3}n8^J<4` zkG!19ES2MZ9=mnO3CAk#GwsGsXSmHSB;LN)NGeAT^dkTDI#qfem#LaOc0SHXV)BuJ zll*;2bK!ZL512JvjBDknPCv{mIw1}}G3wKHg~=oB3@NeiA6`SL20Yz;jKiXs)tmE@ zxogs+WJ-wR8x25WO?>X*__YARg?vCJmQO=Af`5z(0D4ltKsD+VZ8W-qd3fM+awKvl z%n(QIx!pJ-A*;sOR5~aum;>A~J0L*bc4+OEqxU1hV~|3Q$O9pFMM!J_+SK{oxob9< z>t*}6Y7hZUcPu=EL zc4nWA94XA*PA7`(iyX~7b<2SFGc^WyJQ%a0Yq)9`fMkkQxPT$UJ66Gb1t@Bzeo-)( z*BpN*jrV4@2MK+Dtdlzlxj2(h-%S5RxlNf=5eNXV;p%3u72vsgtN!Qb9&Zir#G0ry!-fX)|y4d7@n}Fx(JNQcs->Rq-jSTI4rv2Dx z({OBM{xzJN*U)}JxHIp?XA^-6mzSGAcQm6XAD)w>5LUfXC`saH;&9zkx2>{%0I?` zG5`0>{$EFCBW6GJdD6>cyM9K8_o%0huF~%eimP*4Z@xK>?fo8rg1n$BTZ|lo7L|K3* z-xkg1fEU2)(8A)Zj^Um6b?rsIZQ4I%!EqJxf;j`^C$a*iB(ary6c1K3ackP(8G%72 zcU!2swG%Vd39-fTmB`=wI&jQsfe0zUBNG0|rfyQ=mCzX7XZtQ+_1EYA!W>0|X5qr& zmEyIBa(j#~|J=*Tlm{Mr{9u=(BSv7$^c#o(2~k-I3SNm(vRmwp zp|GQoT$*yNDiRR6I$r^HW~4_@j4Z>y;>O+t-xk3qg;{BTjW^Bj-6J_hB|OLgvG4Hs z>7v%?U<4x!P@}KWEHPNUYf@Q3bD8{V+y|YVCme6v9PSv2`(V^a(2;CU@bUxp^ zv<%{Bdv_LaVj)gUCi;XWL>Xle5mNN^xiY<_!wo{cZu`REaZMnkFgcJzq2YKqnjPAc z)W8Do$wu^ODcu%C`SpLJU3LzG`RV;WYmS62PFOC^Dd!swTohg2G6IP&d+%dHW>qKQ zv+mCi4^?1%ooBg-aleuBz3G44Qy(hmdhYJen1xv7aMnq1+;v3kWhTwY!k_q|9MYGO z*E>>nTgUJh)^IaxYL)?hqvTqtLwC#=PcN)QgLH6RcI2IJM^_ofIGEM?M=19g^_H0GXfGG&KA+^Vj5e0&UGA9oPpw7A4V3Eyg3S zTc*b2cuX1q4t%nH@x4;tO#7+(1B6F~O9bWOl?udc(rY;Nu0ly-C{Lq-Xa@0i)3?td z49qnPnwVU@3W65GQ5mkV;Rcruwk?e_u?_{%8FHY9cIY*g4ez(~m$GrZ%xRW@K>+Ib z?pTLWrh974&;udaN}7^4Ps%nb9fF5Wn=>C~3$_)XZ=5D!1&5p;rVV1I`4JR5tjuok zN?k#>8xi2p8FeqG;{fXxnsR6G-P4Nuti-)-&ksI+*q?NNXlCa>GHt6z$a)G6^KD#j z<#t*LX`u=~uy-qMzE8ueST6k92893lYi#eBEftQ8h`ou|35B@FhVtk4$-=rXgdkB& zN|WJvx0B3zuLvOUF$gzAOdO5+APB13`9qFFN2@~{wUE-&ZxQmo(YvP$&zh4?3y;F( zJLIMgAbB&@@f!fPG}X3>zB8Dc_Ti<2hqFhE881q1rHxKt3+_Ee{`t@`9{>m4=wxV^!Ztt`)L0+ zE1%7HFTeJGBQ47@TAmReDI>W^I>8fUWC|Vo@EViJTqXE827}{A$lR5#TY;HU6wqm` zIoRKt2N&*rPurU>>XL3Y$+q^8$J^zOJZdOjO2s4RxZ$@`vqK>T zzFoGq&csa>*@#)`DF5`Q|>L*;tee z;^rk7`iPpT$ns}S@3*DraK(Y3x0&mIe_x^K<4K^s5%`NB;8BGj?uTGJ1JEX9z*g?` zDjpcy2GO~@Sd5=iAeV3SWaQ|<=~2F3=bmZ9>Esy4@%F#Huy9`GV=CAJ(W^QlN;Q#3 zi;e956+FVJeA04AqiU3*C*^X7X3Wr$Wqd}oAj#YU)S?6Sq&dz`Cv#3^tNQ|CqtV*! z$>~2)Z<449h@bw_4UnNd9nu&%$wJdjTM}0U|_BLh_LeVec1;rVr1d zUR?GPz@LnvLjz}rdV}|B$*mVgyhko>0VAG@IdA5tZzi%7%))bZU)}`K-2IL@_nm5Y z^{XpwaBmsF_Gz3NV-6OcnbRq9>mN*YN^UK_Cj7IdrT|qiCR#y}>jI;N=lilBZYQR2 ze~kB03OL2sP?;MSwPEfF%b`k-mH0r32t9}o9+!cLL9Bdwy7ZHW#>LLL*>VT73HNW_ z8Qt<^0z>`e&C)q;EYx3Tn1eIFo^=NT#1-M6<@)Wy&BqjoTES80YknS&G*8jgt8mMzw$)Rs9Y}gdsD8z}4 z6Y!k4Gk8sx)>e~>;r|ii%Awd|`AU`zVtVhK4_$af3Hug4%YldPyYtpOwjgQjfXu%%n@4>Ul*(l(V~Gq*US{GN=hOiW6u znK=Tkwvy}zk|T_n4!h&}y=ZJeM1X%xE4pM9ZacA^U;yoL!Y#+=ARalBB$T}QlT-zr z(KJ*@i7xB8N3#zNwJ)MUNv$kOYNuZAmiOr+lP+MLIZ02b3AxespyY3gr&m&DoVHG3 zx-MZ@Y3}$zz?zc)suOD&ly<}D`V5Ft2gg@zJaPNJ@WJB_t1Slvt5@$ndCGQ-8UAVT zD5k?4Hr?ZzvsnZHWm54$ZQ9f)P#2P8ZU&-57PV`Pz*zjX`KK>$J3?n)ROS$Z=LQgP z4XU=#>(+|PyOZ|XicyNYL2@$+Fy4Hy#6}{g6(#R~XM7WXbqJ&}Uw>AE-2~B-sD=-! zlk97_6S7=J(*cNXP^>hD_4Al^?_kVYdqR5E=;_9&E>E8t*`Ma zgtkFvvpEvm9Ug#H>yDYX$dmZ}r9UnD_hI2$VU>(ifVzUSF0h0;Re?>U>T}cJaYq;6 z5PYjnIG^$U?78AGOdxAW1e!ugq`DNnN+Bo^M7l0VvkS5C?>pq^^#H(%WQr`vkOrEL zdOmg7tG;Dq9~eAYXhqq~@4NA(JK=BU|W%D+v<46HCeJyQ4Au@!Rn8*hlWp zv0KRTE42bYSVHzxVAkHk!Ss8W*5DFGkuTzm>eL%P^@pH5k}?zN_GCbPCH5DoyD*Z2 zSarY`N(e&StIR^+jfVv$j-h>SL%h6Mbp8w9jw>DmnbczAX=p-;Aw6Q3VI$Yj1BO)W zg<8$n_>hzVGX8#m_`z#-SilHayI;_{UGb36hK1?8Ts9z?hEXMrsRC!Sh{fEM16`vK` zLRR;$3of)of?-WjE zh#pQHlDd1+qbo36n~6-?Aiz{<&BH^b16P-}aQv<4{(%0EF4{znrXKX$^j@JWC*uaz z=x6>%j^`8XmXFD)_D^k!Fz!jnbqZNFA&;01iypTiOyBj<26+vmlsTg8{-o+}OGA&I zUCvad%^G0Zy+T?Bu|!>ea!%J6yid=73(JPycI z^>ikwYhKtOUY7?3#9pU@DCceDM@i1eOJ62(n4D^NI{wIG4bIyBGsFcR#5WP8#@*dO z?FTj+$Gdj>4~fD!^!|4yd{@|LU@^%5N=%fRJMS2>$5SO7$BO;5u?fu5y^&r*GNFO3 z>f{l1T>=9`wE$c7Byix6wK%J_f>U%WMd2H=?1YKgvaOr@j+yKw>>et=&>;th<@MaQ z05UCydm#LUUtsM6GDaHOMX61ZHTE+Ln(Wgtv-x1CvMJ|&gAVn@oCH8{sgHLZ`G)<+ zK+GRJi_z~7Iv}4W{Cpa7bw8Rk0c9F}$B%swYyz&S)iAN?9^`p_^i~5WuUFY-Bd(r#; z0-H=vPv+Loe9q!)But@QCDp5{fEkRR-PAg;R&m6e6r``0+F5c^k!@gcsjuuDVQ&< z<2bmfJTTycfvwN`6={S*+$BohdRSiAAE`X&PZ8V~`)nOIjfnnb6Z7c+DL3qiCQOLlgGQd%I z)FnM@Ulnh)*%1>({2W=Unbv+e>S)Z(u2yU$Dp4ycT6zRTa)0glpl^xtM0$?(!aFY| zKMIjG0KwDqz<;#XhJ;`4_6cEpaGhaqYl?Lw`{FLy$U5^a1}lk=_8I za{*&fCRpYVqa4m%FYLro^k&BGatnR6bQQ5PTguJYGpM;kcb(epPpojV(cBG)sUo`L zCj@VXVP9vRGK&nG8&%<zVSmsm4DklI6mjaAf7mO^=50mnqU-0fa&F_B89JB(TB| zbKUucw5a`?TF)v+c}p=hviQJUW439}76P7=qwT1=mr$2b0LaFfD+ zEh7W55XUs6P4Ds_E$S?WjCso$8h#gab>ASVrH= zOxShs_rCY08JfO!aerp|%Fd;iU+7ada?YtKbN70FgdbtwMWLxAyG7`yC&=F(`r1q& z-A@7ni%L>&0krA?Y89tQ?q7J#jAu1|BL021VlG1n z_|?=}8*s6Y-{_hfvHRRUsep@*L z@7&2KFyZC+s?7LqytCLm^Hy`u!ICq!>2q?=*V}<`wi#9+QIQjwxd`54VWUw##JB8h z5$abi`U0(+nA^5u`Oo8nPGEU)THpYP4{YD}OCM+(I69=dcp!=xKRzg5v+L_UABMQh zh9O7*Dbul18J_~A^&f#beKiN~`aa+NfloZ*gxmJhv;(0L$E?V;#nkE$cBrwFmvH+G z-P;cJD_FMXO>5V?sFx|IgRU?gb<63>G4P8-ozH#D3N+C`cBsPFp>l>tFS$8NdeYtI z&zj#_SPA=x<0?Hm;t=Y0uy>{m4$rb3sLa{480F>FaovQ~{e}4zdN@V-MQ;MqqGQcQ6c&LNr!}kp>H-Pu+g04e@^%d zx-xI+5ylbv(;Lw4IphFQmY1OY<*TJ^y$1cw@pb>6?-QM6Wp7i(6I@32o{iXhifeY3 zP{&>O!1A&KS!=aN`ei!^r+Pjs0aLnpB*|1!yJ=OtZg(B!YdE_ zAp}?dEa1$Tbh~v#D5X{=5>UcEu1jZr=t1SC8<2{+n+~(mNlnH6i2de4r#9)bE7oU5 z8XX`H6poU;TdKjA*qC@TUxV3MZ?J+(&U!rBwuPZ7s29pO(d+o&KpSMYVMv>a4i`;hnZ>eR= zyBVxE-w4PW7-c;pOrjsz3KGQh!F2)k9L!m7j+`=VBMnW)*b26kG)`_sh`EOwWg>s$ zC;#sQN(PS{SJ2f9YB;-l^X9D11l7osL<;XFhrU(TZ)47ICN>~0Lnxg~a7{=Klwv!h zHBks6kU6i>$)SXy`LUlJH6EORzkfb!oUIW_NUeHsFgpAT-fR4f`+ArlYgl>;sDCHO zI_XI6padDn4aXK6m-j;Y!BBrwhG@tcB6Gqm7FN1AFLuW2GK~#dBCap8cL%Bnc)xC# zdgmVRCs(+e-w+|T>G@r|j2HQmgr~ z{c>N#1QeC;Hq@ZTfq#6y+e+!ss3*HkZHlL$XR1?O!o%&tB|}^0ci}i6W;r4@S5~4? zr5b~hC;X%}MPkYnSfa>E;2w)yNH`s_fA`nd;Q<}-%*CrmuCFQ6OUK~6j+vMHnQOT1 zzByL#oqma0i^kFDw%m=DH#FSr_UQcNHgccf0Kv&OkDq=S_{H^AfpU?P57Y7ze#IhzuhKU1=0Zvu?YQEW!&wve%_RAzi-|^Z z8T)X*|7#t1x#y3qM*~%cd*=t|s3ccEZn(T@cn6-y=<+JEhG?)@}}CTVjSRMB^;UtgM`6B+uEvM>!TcJIa&U| zZ`MxY@NV2ory5V62$2>kZtSBTKZ+idp9F-z4pUcb`M}k%F;i|2Rjw&~eKsFZ@YXAz zFxQ-JQTdhT4pO9R{3cf}lx=w$z||i#rVeTX`Y&rt#cW`90t)^Nbr7wMN$@P0*3w3$ z16AsxP%y+LGS;qpVOcFp6TX@8N%wb7^f_O#&v-7`Dno}p5bgagU3wY3#s61ymp_I> zD0Kb_w*0f*2)=Upu#VCs_|j@k;Gd>og1rh`8qZ2dkt22 zLnUK;bR%+~$xYrjhS?cnyahrNoieYb;FaR-*KNkv7A#F)9^N>A!}Qlg|Cm zOo=UHSk&M69V2Fe&O+djWJaND{`itPygnaD+3c51`GF+hWl(I(ODD>)OS#%T-W z>aS>oh@4M?i3o@pWurma84fy(okE4+F&E2Vp8~&u11w(tv?w|bT#W4OKRHlk2X5d9 z+3o4d=E>yCl;0wdee)A{LY~D#!YdG)*36C@DHPkIT@9Kqsf(L&YJ?bYJm5X7L-Fh7 zUx>?1Sl9=Xbodvk9Uugej3pW68oRQYe>vSr(nBc;t5#}#2|Bkz*NI<_=Y2{3yJsgiG1ZeVDE1PPMGDYy5|7`I_#Jn@)pq-S|YJWa6{{Vv+>6F@&lMt`$M7D zrxvMB;f0yg_!Y?YTV1DAL?s&Lt=x0Z;WmS@S$;;X=Cl$P`EljuH7#Ov#17fwU16k> zeZ>Q9I=60!l@#lS1BDca=;70xyFoY!Ait|luWCGIX^+Ws)6|FW^sdPitK1p(yLhzq zO%j@>O2m?$z0(h{#5`nCZ>_kSuBi~dU94tQL~Hg>#$)$#` zel`*_lp=p<05QgEi`#Ol^5|s?SuUpf0K~Q&Tol*ANmPL4=@hc52+_RDoniC!aW+CB zrF`FzmMp1I65~plxD)AiK{-hrDy3-P_lJEah;Z$QhJ^S$}(dBVx0TE zr3r-_R~@KrSdYH_&~z_x6^*)!{LNm(mib-!y^4-M{Mhv5hN88Vp$~DlwRDCW!G=_X z1*_Y2;HO~~8G-iz*#FSQjidS~vw^L?AUI+I%N%q~v)xpof1yg_*4g(H5tjPF)-#K{ zj-p95vV7Bc?8hk%c3TL?$oeRHul1(y^5FC2%ir$Kjl2;ohM&4L0ts@KDzP%60V;)mU@v0v|pc%Nj%*DdC*ww zFzTU|fG3;NyEz6*vajBi-113Cv$0TFZ_bJm`EZD7mjZc<-06=FYGG}eg3s#`$d9J* zP+%3v_T+p<$AP64Y1ssfY9O|ZoJFA_uAB&nW!y#BDK~X5ayhN!$Y)=Xkw&rb_h+sp zXxe+Fe&7{&QaY26T=rw2er=aouEF(#U{B)e*W3*}5JHEbp{}zR{~u9j9uMXE|No;1 z5osAaA=J@?RCYp7`z+SCsnye*qO3y+j?`%}h2k zP9H4sKfC`gVnTj7wsqa%xBZvDzHCc0poxGl{mM%%f8L&LG0gP*?+gFF!7H1;oSysN zEA2nQue@n;s_{oNoBw+ZYX4pSa{k|^-T$(R|DBK5hw*U^;0?aCY5(u_2KQf^%Xj}x zo;(xzI3v?FX6}D4{_ks;|NOmp}=(RlmK{@ftWr;sUM3#osejso+m;%P4BOjhnCBpb4TNB%; zS=WaL2NZJN51#E;cyTNjzXU#naOUNVp^%RFX>79hL8N#1 z(Tjr4dyXz|Ls+JW9eX6D723*={8EaSk>%Ml$CQWu)xhuOdTrDv)10b3#b2RyN!H2d zuHDPfp^(W4(|#w%VcCNmo8lr#ER*Yi3z$TDgGs@7Wx#;?B#J=^JsYZY1iiZ6)d~$} z*u(^9|89IuM&v0Qwww7r#76gD5#fq*Aymn0}#!1hv;#0!P@)O@Sv*6u8haJEv^qyaLVymt@lgHc{5uq50#7KF*cf+mn_%B#c3rEwVy;Vsj3Wa+@mly_*`SjfVf8WpY7ZdEyJ367qjNlvJQ?Y6 zx>l!ej#&hsBCNgxGP?hdD)u*K3s#y17fGDaYHl}POy1x;DLz% z0x7Ra3}e1axdAU}tg^C=vN#6U6zj<}8c(kETkO_iqHd=bsq}>8$@FSwC28BuTl5KW z$k?bk1XP3bC#bXC7J;Sc)K^iX&YtB~dzYQ{T{~vOQ+iz8ukquJuP+$l4vOyGFp@%0 zN<3aW5n#vMnsU%$fH9F&@@F79OU0$qblGf+mRdq_?q9^8);Ox#mj)i?w-UNoPvF-B zYm4ogvp98kYkbej@xLBnTaTyZ5NV#O1Hg~cHaCPTru>8}v$fhJSx{5vJ3~yozTq2B zZcVkQwHyD8k8!^jtW7dd8sH3AKhp}64W1Vwns9ePb9P4PWwF5mIr0N|dun-Fvk3rajCQmAL++~(2!HjivmFLWKHu4Mo~Q0^UYeFdb~`lsDiP0%t) z)rQ&FkJp~5ILT<~JTNMT9SD`TQdKml4|>9ZUiGb9P%9iM-;$t-wM&9W3_}$uG05xe|}1Z_QcLV!-wx= zcf!&3e!}W2VO*dd^4d&u=fpudBz!m6OlcU7SN=wl@yS0 zl#{l70p7qKc3cVpRotQZOD(+#p@fmB0OFFi3(*n3oTK>8Y^0bX8C`s-DwG^*tpcg6 zaKAj>`RWt5LWE#ZdXGiWI4ILjKlmImz^9c3_px-bTt9$C<0p&vE!xr$q5H;?m;0L- z0p?EywnVAWNp0vOjZR+uw-ag$9b^`rF)Z_L8dF8)g8c)2yD6&i%&;l61hsllZ$O}yX)!296) zDZv#}g=Z8`+|b)s0)T&d_L93bb!2Q-mt%(z`1u{Z%8}SZsTW*RPi;N^;PCS&*7FzK zdW3BhczDFD6&`@h$ie1oFQ>@mm+xyd1 z3XIuH^Po_wiSuxE6HH*u%sNbO6hg2g$7n4m(K57M6YKwAjURYoE+XKTcBj}0YXH+< zwYgv+K_C_&;=cGBz!Wa^B38BlmW~&4GCb{0?%G#LlrX0b!`h9YCOT3)$l%d&g-@j< z9Y~6?%YLBba+01U%fB*fUAFK;(pARP7D=1U7)-l^NX|T~X_{{mW zL-T2du63H!OSH&l$d%*}p_3a!17y1HMwOh(J_QeO!UA`z5PDrQTkbFnvs+_slfAOf zBMPrcOvDI&^LLBgIsRh`jDxLh$D;;Q4;p`ENzt;!=n$vCPq%l<12-++$9zw}+@knBe!;VQetzGE?UxO8vOKJwbO!AND-=HH&58eO~e{ zXZGD)uy{1Nq=IFp$kh~e@!GJyjc~d1e*G@9>%hdbSGNiiF?5hb-6=Tl9?I0pB14Z9 zwg;J~e-o9sAgO!2-68ld%ugKV(wVF48O0oXL+tg!-h7ZwEXJySshb1*z`M9~{nbR^ z;%>v$&H!mP7rFU(4uSpg&HhgVT>D_&utm=TTQ}$l$D`r;c?CaWCo(JM@7F?Ae&2<( z`T;g?s8JjVm&aoN(2jSvj*wTGDnRbYL=ZS@WvlE$JkoqtCacs zqScd;D*yEf0hIfZf z-akhekN_%|qqG%lbzSGJIWoLKi}~0;FwXe2jkYdEWiaDo;T>$LL90tjb$mj^$&zcg zZoW^?otgt(p$@RyB(FKb^OrnEJ}>v}@P8zTyuIU@7s_}k=5g!lKbaAR`>0fVJ3ahv z7-oy0XMxE*6wq)4@;?`EuE@|h>=V0hvw>QfcuxAk5+>fBUZ>`$8Kst@@h?DZU7MbI z_XyA9YH@kvJ3-pbIAFG%&n2q_0{N#y|esgbjVrzwf>G1LTMw?|Rawx9n3z{$gz8FSLVKiOVid4Ml*XjO{t0!6yyv840FD zk*js95EU|~6o%dm?LpX$^($*-zXTBH+WNSi%GV;MGJH$midB>#zT4zmxpE}Ebs zmmaqQ+!fbzn^IlEb=U6TYhkIgXrBtSSP;YtVr(m_D@R$ zj5r`Ivx3bHXCBSk(9D({I27uL)w@<8?mdrpCHwpX7iORPhJm&Y9`~-USgWXB9M57i zVvmtJfqr^uF<6l}cB@~L1T(ciQKhoA0fnH)`@y_*2eITq86YVRF3~By3N}^2jq=UM z)k%};L4VqRR5)iawtMtd!tqdGeNYX(Hhh10W_CmBnxA(~W)loh_O`8%huI(YP-5A6$b|0f|GJv&Un@YC*TL!Bt`L!UJb~@B^B{v3$KC5 zY{XgaLxd?%g%8n8@7J;6<>hw07OsoRP;nMxGR-~$1ppJ@BTgZkvrwu z(X}U5J6EL?i6eQff-BfzA7D5`DJ)Phb7+-Yn&EOyUoW8<)m$D@Ux*P#EqIDo*5afo z^J+Est;*6}OmaUSY^{CzYmSj5p=g^D+StpTrX!%^NOS#y z@AExu%VHPMR$+edu7hnio~>>IU`{ zx+%J0wZ%g?+=b3Ez)jDF5;*pqLanT)Uk4`2L`!6B*hTsA9>Ta16UpXTa}ra}Ad9If zBoO8@R2Fqrv@354O$+-7Ht1BIQ&8i!$C1jk-(Ef9pudKqml!jxL!ikxn@Ws@5PN#J3m?f!C+E3|ye?`z z059>D=5tGBWmScU#0YGmX(Z?yxc~5ixeO^)bf`Y_8ddVsr@w2KkC83;R>DEvpYrvs zw^-fr5`Tt*Raqy$Cc;aJmtOcyvbI*eIb zsIOZ3N$a`NzIZz2pq;pXbXtY2y}0T5E4?lZKAUGxoPqOTXoZI`t>i_bQB|;smj)Jl zAQ|iQTsToXD&aUD$Z`!2{&^gu*c_b&GQbhYtLRWeEVISsfN_zRA3uoXN8A-(`I#Gwvfy*S0khUu=z;+PqN+c$tq%-g@s&V7xzN4xW zK%(OS!6Stj8K8xHr!NvaByaoASGvYt8<>Rjm2LV6Bt{s9XjS8SyYI1;5oH779!u|s z!KapwDJ*~5mI^{tvz>}=Xhs#8TjPV9zb=-Or%DK9rduLt(O-!1O|(L2C$wWNRkHZ^ z6895|9!|r$;zw%K!w%U?r^kCbQ*hEOrEg-B@~hgcbY7VNt~B|(%bN8O_+4-7j#rwE z5=2dXXK1njPot9{PeR=r?SJfH%)C%dtsaa*mG~#|Nf7iJ@YdU@2CuhUs zOVhhe0=Ra68xgTqv%rdIX6+3copg{G^NMNHZeEQNFg0*rM;$dX%ImMA3M}iybtz8$ z6iCz2qrD4v-^+9lK_9W`-6{O-ZgzMww&Hn8ZsDBzd$o~d>whnywPZZKXaMXKV4}hV zy89zxQQ_ua#6f20<*2bcp}iJZcxTqHgCP)pi`&UQR($tM<4L}#o>1-{Y=bfYyM$4H zkjWTOmY%2zU3FjnHRY^wOI(sxVrVFk;T)SNzkFXENO&$o6!I8y?^G3an`j;U4O(5@ z_BI5*88cuZhxatS!_w1kNj(wC@=-{8{o92TPWFY#D1q~VJUqu#>P{T|a4a_Cz-0n< zNb{2;_vw2buEVN5}NFZVH_ege=Pwmi3CeIM*6U&LE^sYkLD%SFl|2PGgjacQdh^Porf$C}W*WCy>nm&y ziz~vtLSFQl!JIQ%2x|Srsjz%=qEDS6#D0eh z$;GoQ(S8B7H7E$ywjQ6EgO)e}ZmAINqzJs%bU!gLCf`jXBbzDoYk-+fgoAHqgKO6A zH8oTQ6iHvzTLIc01!3|k4L&DMS_IJCPYMuSuN(;)w!xH%^_y3X+Z*0}O zu)CPcf-|TEHq+o}=WnL`?ijgOs(h0G20t3@&x3)9rBoLBJKQkoD`%lL!H$Ect+j)| zZq22-s5D=XrO#s9tpQCyEHrgu7Wr)oo$LT^b+0=>n)Sxz^%Ob%BNzv*D41{#2g)YQ z{jh0}h6RSO2)wtcG3jkzTfsC8rX?j$Pzeh%kVUA4qcE*Rw4??kFtGy+-nwbz?7-WI zR&H%vQL#tVBsAG(vj|2rqQx?Y-m`~x@j#8X?zlrfU|#}9MlHI{Ds6_PwL(;Yu7)|{{{K@v-q4aRT(~#43DN>TyN1d= z0zIpmkgDI{EQCx~jN~fl9*<1wOgkSS8#QzkNe0KNIMRRM9nhBW4-sS3dRZ%g#)hAX zTnXC$|H1y_XM8G~(7;_WVzO$S<^gV7Fc0H9Xz2pp;=|Q^Z{`zg0`3diup1FzAmOi*c4bB$!uV+g`z)kWsUVgWKvFA>3j2Sk; zUUVs-!3E+xN(dxzxuvQ^Jv(g`u*OojDTc`2>@>p;ckBy>ciRS-sh|z}wODt@pZbM3 zCuCjN3RV9Y6jn@DIVqPbrrWA<)p7zmGD+&4P?YDmoB$9;xPF%_JiIT7IZI-KJ`p_T z+wvsW8d1J$VCY}yG;DxvEokMy+0%wn(f~ebZU8eK4OPo@J3o;)GpEZE0Wj}3)ysq% z*XEtRR3ICaUN{DAc=bDllIhJp(traH0wBZB>u{!Or$>k69h2^XKntgn;=F1Rey+`C zib3(|hZ*Zhnl~%i{Z*%Zj@uqq4GcnM8fy!>B=ILwSr1A7LdFfFb*7bvho^EMZ$wx~ zsYmSp3dDOH$^P_y_zF&RF{;#0MNYFqvXpbXLE-rBtOAxof08=`qE0xSb5xfjM;m?7t6xL+P?0|w>UAuT>dy%~ zUJ>U33vVD)oAWBKfqr_(Yc~m6!JL(Y!~L{Vmq|Sl11u*3q8D3I2{cQmuB_Y%OM2ih z?OlLpY}c|QUu{{z&PmZx0@y8PT12Y_fL7L7watybOkF$|eal8kQR?1~x`9HV)N@Y0 zQIC)me*DKbeUBrmJgU|eD_BO6KDK+l+XBncR)5u1cR-4X_e^XON|vV=<)dMtn|&^{ z`#eNW$ZS4G_Ocf;hc9F9($7NBN0V)BN>I(lC0e*`4R;BVIcIUwMWC?8(N6K^M=vT^ zE|K7pqfE*RLM_Mz-3>2K)bfDNAGk_4*~?X453Vm zu!>pu(kx-#an!_N!j?A5K?72@(5eYIMI9w56WVaWY`o zH4n5QrvI4UiWsXtljj`q>`$Td$T5l0TtTVkl&4Xn?|-!VFh!;i@_1vnqTg=8bL) zn(xBJ3_@EsSG|$uYwDoeZC4433mtiRAizhWc5To<26&AKcO5>%*QaG<90-dBt7Az0 z1mH^(T}Vbf``y08l=sL?K8LCnpA4oY;Vw^q4E4R?2cvS2BLgL(G6GjjpUdek#BzW^ zz6Zm2O!^5R&ugo9eD~TN8WmNS^nhQD=6V!bJeye;8B3j~vvGZ4AVa?+fC35evOM5E zBP{AA*fb|LOZmTZCTxHM6$D(!XWH!Me(!sGNUTzug~KW1j``=K;j&6f-fh_~6&*o4 zi|T+d6L_rv0rQVNVW8Ttv_r!la8b7*R@nh!=Wcu=ptyE@55SSU3IGAIQ$nTdkYr_V zs_q^NH1C_6l2o}9@((%?G}ZxmQR-Y=A5mBG73hn;+OAPvul_Z6^Mo*;jW^|&_BP)p zMm+i(SdK!HI}*gcNMNeKPGbCH2T@xL9a}6X!j709z6gAFF!SPrej&?q2}fRM!G<)n z*h)lS)kg?4zmwegX1X8R!lHpp#;i;69Jylt4-4#8=S+`Ad!+mAM~VkCY<(U|kf*o% zT2YbTm!meMNhMQ)31A}_18jufm&>Jmf6}Q^7MK=$r1S|+?7HK-=j@z55SW+-=?6F( z#8L~`ONp-PG#}?uF)#ie*iW)sfAlGN9XG9c{|k_1XcXAqqy{8Im8LQWk3URDYR_!d zFdONAHGWKi7!9BLNTp#!Ie`i>1&v@(uT2(wl*Ah|m2}$4fUhwH;3Rj<(eRZr?HKVf z3v8ke_%rxu2azd%cFPdf2h{=jhO z3eQ1y)e6*g*k!HkY0_k~-XiWJT;3FPX$_ zZSdKKTSE6!Z;1#Yf)=S+2gsd?haE{(p-wlkKhaSGumTAde4)Idf^E_@s!VhQl#!0+ z4K1FAMv;0!_Y(FeCHUKHTc2KgHLm`G0OkA!x`Fj$T6xM-v5BSF*wI+9j@#83{E=xr zX1uiO*xho-8OoJi;D}2>c%p$@Sgp)={v-xu%;=zeoiKuG?g-u3W7@kc8 z*v0B&N}N0~wnM;%u=~+T1)6{dSq!mTG6&Hx2|$p_-}RmrolH1IfQxjvwLsMt+RZ-N zk0%EZE5|`W0tv5Qj=*deoUX4HS@D;jHa{^LBki4?`0UwvG`MU>T-t+C8Lhq(^cVAH z_^|-uSRkl$?>-y=V-one?VeH0ydG%B#(s|Zw2C7eQFavN-lJZU&pP3u;G;4zL`ih3&`Ezi>b#*@PVwid2zGvPa$ zHyPGkvSNHK{WR*3N>vuJJH{`qYpAe8%Y4j)Atxjo#M!aUAb)xr_P&1N^Jt;^fWAa+ z7?OD~KeUFoZ~XA+KdlQ*Uz6;-?!m#754Q&DNK+7)t@VwkV5Ynd>7lQk$06Y1@6&>| z0R$;p)mf;x{cwI@13!8Pllu4vIhbi|&8@D&K{jt_7`b_^Nv=u$_DV6ul7=}n3JkK8 zdIP`=M#V8A46%d(B~bF*69c_nH0Stb@__g>(nwrc!O_}+0z57O9OW~7=ew$wZqCX=Hwd-%m4bl#Bt}uJ+h!QG!K@UbjaJt0~iQ-;OyCqpvZhQ zKMTp`C6)bE=^fmz>3@4ATxf|zxV)f_R=I;$3ASF)-Z>M9O|LrD*(6~S@yjC!x$!9( z%6$vvB5_n|mCureCkoI)YT&Tmv%Cm4uoh-ntff3S_dM*Z9kIQ0C*a3@RXR{ZuVq=3 zn>#fOJlnKUGCi=QtVI=Sln#+1-0tQ#2tDv3StKOo$9k+q1oK(E*9UUla5r)%!2#87 zc2(o0p~-x_>Wm+VX}|e{s{{A!^I*3`0L&bz(q?Q##=odWmic6Ecn+(HHF}_eSU*)1 zPn39D-3@$n)t$iZg%^&<5GEHGP?<$UMh3>U-K?&qJ3={PU{;5;L=^eS5?ZhV(0h&iNt|UI%v4dT+SUyIdyyYBDU&p<9-Z!s@k6H;21hA>KYrH>3WbW}&;T+k& zBQ^kEb^IMf*XULty~wtDZea4`p6PjSVd}FK)TA>g+-1uB0J~h+??wj^Mz+Hb@|5zrIBDeI5ZFe$*lL3T_A1kxQ2PyH z9tH?)iVm6YE;rvl{bFw=Ea(yn{ zOM@;0)(60gB(52w)HS4)*#U`K%Gim2r95ti!j9-458((CgJ4Wn#c$C!WM?~;hTekj zT_hZb$>(*fU`SzD~-wZJY?D>9RwNLq?EhVz!triogVJ#_Avmc3(P3r z#CbWv0Em?DrCM>>lQ8w@l6Pyz4b&6!@rY3K#@|xRnhJtzI^JE9kSxAu5GgiYq_8Rc zmsa5MuWK8TAIQ#mUz(P{yf_CampR#M28e^7$#zfb$s9@an0<-KHX8QORP)ORR=exz z>lxUs4#w(QIA{#9b+$Us&x&_~b%ZNeI4LW|V%&yqmQs^#=}UJhf0q*3f^u|fS_b|` z{eA7YT;7kmBI*MMS65b-F1oH2JMjZfhiJbHasUc_ilzAw%L>J%c>C1@nV<=e6xYq)&6)Mz1>`8 zR-!hs3?j&CS@dtmJnIdyy>m)2is%M#=D?xKwyyy5P1}-_jLmFSp>5fhtw8lcd+~6$ z$b46`_r(@13l>-z-S_w`IFdkaOUvqri}I~eB`!ZQTdeUE+$F9}$4_<|N(4gz)wZPsdxo zbsdX{z0yxnFb&q4f zpvvXwcXZW;uXl@BaHv8pAZ~8;bHXTH_FOadbQ;*Pfah4T_t^~9xbynC!k@0z(=DKz z*kbs2(!w_cVok?hI|Wt#6WnyN=E9jz({Ogf&SMv7Db2{+ae3Ro%lMk%^m{}Iv>ZT( zx(*)zQ!>j_%}jL?gGfgygv^ApZY6t>N;aeAYwLl)EKiclD_T$WK!8eLT9%sINN1mj z?AN9zn&PVPmi?A$KZf;0I(QNwx;cE|YX2D$k^`E3T}Ygf6!m=6gG*l;oF&e*`#c`I z;(7Hz@a99a1Hq>3o5lWT?mW`%AJ#MD!ydW)jw``T=}%!$LQIar3Pf<+?Fj2~1B)xh z`od3bX%Wh*Gl-Jy^#pKmYM@`w_CbD}^7=8@r<@LP==uALts&#Ej)nqYG=r-vWM2(| z(gSBU$))Y6xq6g_{wOHF$q}LtDd-jgQ%{SZfGmhqEm*&92I+wv(b|U`u?X4oM4-(z zFLVK1K+rv{2-55W2o890W9M;4VMz1|FpP;vCgdYM-zcp2p60we58za7 zRulMgopsbN#^11SeNqauwN#f5jSm8I2J?MGlqTZw|CKN3om+j>eAL8-xGI)ZV2RkR zhf!+VV&4{Z$m?^=j!!xx1%Jl;xc6oAcha+*`-bH;D_#^ZS}S~_pN%XQxEl6{1SNn& zzcegs!)d{Es02&>RnH6c>m$wQU0tG{uesc?NqVw4_*>rja|kHuvr@Un^c_9nYmy{e z{Ou2UH8I@^I-yp*;cgYCH(%RwjvaZ>8YXek&a|opPQyvatmc z$OY>EQH1^Sps0SruoN53CeZSG4H3;@PKLoCt+hygs@w_=ve#{8hHi|$JTrgVEmY(J znT<>9_BjXE3a+vLu<+Vdlq0YxHiLhT%-K+^_;y4x59*u&1C@o0!`3SIL%lCyVFB*` zyF0-~K!91ST{f$CL105jyo0zZx9r51yQBJZkRR@aar$HK8bT~pUE0; znC>gj9`1}HGwN>+5E>yiP7M4Lu7iQi`)>W{D<^rqn6P91B@RKH^|_}Ry$G1C9<&?2uqMur9xSXQ z$p_{XGYc)={W)=bU)-|>q2S+JMWd2)g;R zm-UV_KNw=@znmFn$+6eyU_!kW1l>jsrIY9yZv#ucK1}Buxhss?7hdf)fQf34rEf)sEYue6_>XzU>^pJ034Q#)^eV+m zD|qI7Gc!dESVaOcu8W0H&&!jc9VsdRYVFKg7kvzc;2BTGLb-I_CA7ic=zIKGcNpQ7ZV$7F>1))l4M)*X{`rk`MQ{!NUhTZNXZZSZUZW> zp6?h{wcvOAfQPVnaPxPp`4a61nFh|+osnW;oCp zY2Mw580gWZL%U^OmI(O81**Z|t-jxTXH1{li$)wzHN}r?6DJT@+0Ub8xTuudy8#u? zqwLzL?2mg3S}urLU-!d!$9WdhT*j6&FFGBzQ9)u&G4s7Y+HY+j*h0Tl5oWgEfFRVa zbUtUpJ$$iYydUX?U?~E{UC-;k$MKUJU9Lvjk~dn<+!vAxGC*>uyt1S{AdmZ)Ik)g= zg3?>l<9%gBt*HXt20#n!oNvA!eqT-vep21Xtdujro{qp_<$hJBCx+!x&?ng5USggL z-i+;BBrHkq3k`vWA+boiLFu*vQ2-$a$yXOTU*=_;VWtWIWJbWVR;xst*T_sto*}5W; z4F|iD4U1pCE8@EI_b+_kB)-~{;NAMZ%>r6K#!H4UCdYP5#&M&U$41s6aFlAP{Iz>n zU{6=gHw9=!Hak8{;o7FgIyr(j-+^Ec_uxL-rqSF8twHfB7SWP#)MoGmsC}Hxz^+*p zF(&xYQ)dkku%$c@ND)&k(UWZ?iXzOOcH&r$W?{kj7YtdKi2#^reVPE(9h;sv=4D3j zDQ=oyv5Z?ECGO;oYhTxgs2n>28?47KB}P!Eg9+;9%w=rsb9hX3;1p}&hXC~Q*u^=R ztQGdiP9KN?DyI>cC88@b-~G1M5`2qDp+`x&gJ5Y!dSGA03%i6Uxr^_^zxCtoXVz2T zl#i~yGX!Aq-W{l)=2l0`*i|{Gmg7v{d9~yQqcXAr7TM~dzk8p9 za=*MWc%>jO6A%4`mobtWeebm3xprqLcT>#1N2chqv}w-jG{0Gnik>0%OxIXPf=Hy)8Z&c9YvQ`Oy|gzw}il`LAJ$3 zEqlfH21zD;P<4luQLaPaM6^+X!7d+1kdkrJ~?y)|u?<)>Z2O zDnu6pnkT>|%=us_fBVf3?J=!9|VxnIU{YOPv3)1&FhC~I{D#Z2ugb+ zM2!d+&vC&VoxoDVE3J0~L?4>ZH5%Yx>Y76-9s<#&Cex=6+L7SN ztj9W+!GfnC!gfC)Tp#yK|FU_EJy8z2b#tlLHS^c^`M;OS01Np6)_P@+>z5{Q+`rnI zjjU7JilwAGj+y>eBOB$}?a+A6|7rl-|LS6SRKBK^HWkCdb0+&NB@?l&-4Wr3ZPx$z zRTSzF5(_I5Z`!jU2D~wYTJ=-VEY8flkZnhUDPDvUi@}IqP$Y)wcW>99gXaH`f*5_5 zE#BIzQ@8G1jN&YUT?u-1jU1fC`48B`RyzmZzyM&qf(7RsZ=>fpn(hZ_cs@&Hm!02e zuT~!Jy4T9eA&faGx+TLUqVP_+ZJNp5=|iAEvCh`LVmbZj?C^y2$*Bj#4VO?Bpk2c- zR(Su+pgNUtLWlq-8pdqO^{-%;BAss8`Fc3QKNQD5ewfu0;NgFF>f7-p+cPffg=O|_ z%@zK7WumX2`!rhhpuqLq&kxG81O3;pV-SY95eXnEOE|TWnYjR%$aq>f3uyU*F*GUi zdNrc&)8#tOS`8a{ecS)^~wy zshx<;IV*gVr{N&Vv12w_B3Guz&|q8PT@ZaCFC1di>F7qVhVvxlh>ued@P=liUUL=4 zhFQ|pZniDMm=U&_DLF?doJ8>@SMj3ZfEUgY{z5=<=*1xU#13A{f?3moOXEy^PJsL2 z=QXh+{rWZ(wV}3~#OhwK{{~6Qpne*nR3d5e+CBETA+6IFt<8@v1G!O(p(5QIZ*&5Z zTz4$~%9)Ck%vV|`Y#ovx5WvEgiY;s9cY*T;+t8*zky5>7dc*;yJ2mvS-2}u0Z6s$A z(F-gC3qB6Jf9XLpE$Tg3zRHpM(E^Y3=~(}E8!6mRK-gRR6aQ25BPLzWM!9Bagv@3s zgnR`*A&kV@3qMAM+eTGjAwzWY3n>H#5p=iXeWAjPyhlSi#^=^emwMpD{lqgrJ#*+|x)lo&`&ktNY@n1@N*T z1b3T>^$~w7cxg#$X64gcE6lmu#y1@;3u8;ysu0ZkLn~PNg`;_6fTF*5zw%-46q>DN z%;E&s%%t|8D6e7 z5WJKmbY6U)x3t&hXo`|;N=mz+!tR=l1hG#tRzLCX7b0ydgk-Sq)miTkjI8&nL}8`+ zx2wQeoRONB6lf-vP0yNW5m@I|H6C=-jv*`zk;74Ofs(=UEK`F>nQ0IVtp!oW(YIPmZ#sYgkF7sO$h0FihAal zKNSC-NC(F>)QSUKtv3Y2kC6w2)4;JEE)OftulUB4mUgW6FK~p}!C1tw!A#(OXrU1i z{0hvwB`OeP5wKu!8<_UevVzv8@t)zZ29f^9A1$kD$h|XGwS;9oZwz|p=xpCO8YsdXNH}(oxeh>L z6mA|IHy#f1UGHYvbW#$$b-jFBNVkf!P{NVG6w6 z_;&nD!#uQ$&DR8x7&_|N6>Yf=g&Y5nkg!!PW45YVIb%bYGn%sx&NI`R7l_CRFGsND zK^cbQ63wdoQY16@313h44opUkjcZ}V3cHJhUm`BadmHoq-!sA>i{h?vaaSbVtuTPt zkTc3ajjILk-dKLVpb4K~C}}ok*swuSjj-c2Hn}$mko>2A=Mr9c_YiBRI}Ud1m7h;8 z2aw|S_Sad29n61I_L+;c{5-l1yc-p7>h=Im+C<%iT_xP1=gx5 zZ*J(#0EJM#D3}0yO#&IY@o)WntcXNxQ#2h6huEDs4L4o9E3@7OJAq;E1ORIgwSMw| z+D`dmY3Pc=!{EuB-)3elCBMT5{@8sWL#UrX!pnX%W>Vo3v$;d-y1UtNz#E~ zrk<1FXmU-6hQVeaxO6R-{c`f~6JxOSYaNhv1 z)q8N64}5CP+ZgJr0=tsAtJR6^s>rV^Kc&=Vw@<6*lEt#%2IT}XK4hJ8arC{7i4nqE zY`KV0PrwU#;bDh!MA)9UOfN^gUyZ~9NpjFJ*hT?D)YHNT9k^DM--f(y^0CRG71X8h zlSFC{J>?b@Jxqq{j}$U7pK?v{Mxr0(hKf4SutCz&QtEJKW6&^}Wq^ST0K16eLdvV3 z#Lu_~x*nuF0g#5GLYD4^n&XYY}G-EV7BQg6P8*-;$PvNp>JYFP#zF5`J)2$tJz zOW!2Xr9@ajqgy-1)4B{btPt#HeDk-Tm{@(7ol5n)zYe$<;8JQAKd~85*IZ2-qHMEy zsd%0SaG`9q+p<=|Z_WC*?FyWX`x7QA`R&KShAxIgf*K8)QTPO>i|0SN>$_zE!zc2vid|OvAre=7rvX4O=gh48e?soawL~gR9f{#W4>z zbs5VBiYNjNw*Ln&zZ8L0ipvvXsMN|A{J^D8t~XNED6`V9@8?Cvn!jY{*o8nlUf^nj75F?-p!yUt zLc?}d^OLq<<<0!rC7*_DOlNP%mm(hU<-!zL!```(FbB*!O-lHYZ%WOk&#_yqenY39 zUz&RN!!?a`0|GI3-`n|8mFiS3eU&>0rH=4@WmHJMyb5m1rh*e|axNL5m*&df5+R;{ zNoeX)Y|3g*&4N5*U)vlScK2~`CdqY$$7l}k65!i%+`j^BZtkpOZ}VzJIlO~o<|2ly}9os zRNuI$e@>XTfR|9MNI9uI@^qu&y1vwh0TB)kSY@=mJ3tb2%nmC1^3LG$#pNlu6Zdu2 z1$T_x5ycFFn00vJ0KB~Ca=r=?-f-M=nP`$({ zfr=COp2O1;+dfk1@~-5}WJz3NWoPcpAHyR3XjzkZ}{Pf)0G1nJ$%vbL2YhBZ+DE3bkv6wlN3~TZTkU>P1OII5GF3d;CA$; zXnrcX{TwUH7Ca{%*mJ6u=Ui{u0$~d{QKMGUzn<|E0HB*VvkwKvNfy4Uo5?H3rFLB{h_|=*)(_;6N`D z=ln+H3RYlVs{+0LP3dERJ1;@%9+slPn5x`B!cAk9zEM)BG587wJ0^571VE#(T%d63 zzgFGWK}nvO_uUW8$;q5RDYy(=e?R_;{xJX+QpZ(bAU4IIaYveu=|{T)0+y33mH ziWNW_r_3LX05XLiT5H4AXEU^g`*V&zJY5C8(-=3#PQ=GYcX{ewqWoC9Xd4QeouBWw z`OxZG&5bMOvt;KQuhglh)a$^pVTRM>$hSd4?S$ZC(;Ldb8BiNgHwTqurMN|(Xy(+EJQulY8@Kxxm1XO*5DGw37G#Xi^(Wu)|1i-!VPUN2d7<$fD553vkvRR8CW(PQr$QEP-buvCDTTq#&9a3R-UOIJ{dQhs z^=2-B)DTlutM;m8(Dll9#`xEo<)!p4c{sc&#tvzC*F;U{hgK=vn*Ev!;l&be^Rpd4@hlg9CKq1I1wHlfM{5`~ zGq{kQH|1eALE%4aTdfOP9bWXo7%ilO{8-}!i=Ci<0*KD7`B}{&4^I=BQOcA0C+5gg z!Ui9q$?dGi390GFgl|x-Y9PRU+NtQ9SOetOZ(Fz@(<@wFwduTZcFN5R;kUuKF9bnN zS=rYa=gwFJ)Wbnfy@B8kkq6O}T?+6NZbVGjnAU|{X3t@x4!pwaBDvNTCfAg^%@*w~ zcFwz^Eq?<|@BC$~zRE!^SYxFAn3ne8z09zWdci|E7q~jlhAIzFZ-D-1?5O(N*&U!v zk$fUbC$~o@hIhPyW+Q^DX(2O#OUK4mu>Q7^z9!1hUvKpCQ~nX~B+!1T3934UT`bB`7G~StKgOl^6U>0XHUYOkk&`jqXI~dqyPx#Z@46(ro?>3 z1NbxqRyXpXEg)n0I&k8`;i;2HW00$$5Va3$bW5#G2-XNIU_kRXgR|%gAiKDh7X)~i z^sMDYajF=|bd7up@N}OPwqZ1ARVzo$!Y7FYAKz$*X$=P1;e(N+^3Aw^mK2FEtbgez zuur=d92}nbJebZ~q>vfwWfAHZ&_JaWol4y5;0H5*w?5sV=qU0~#I;;x8)$!WC#rhi zsUlED#Vl+ulBbrd=ho)}G_ZB+uwvvnI-2sJ3? zbQ{|&#k;nn&36;j-lVvVd}BSj$JS%6+~j$uKXZzTe;D_t)t>YI;oW`@Zh$dc9w-=SwQ`=$+J?E)0|4t3=IsF|*q^ zd;V;Q4@zao9yfieTIGJ?n%OC=?)~(|Qd(5LOZSTq9-ezD<|%jskK?4Pq$=FiD`38DU_irlH~^AUKtp&#I9` z7|K6^GkH0XW7NILEz)+f!=-lGo;`rSb@VzBCK&^ZFdAkvbAp`%&+YD85y8DC_-p${ zvd&mLbQ^yM7)dq{dsnn-elqatiw15c(bNl0Vf@$;k9Hd{JmXRd&aWhTkB_1p1%@)^ zbl?Ca{ASw}FINP|oiZ4u>$c<)s2+-TI2zN$B5RT||HaRKw!?zm+plJO0*mBtf~+Fg zo%VDo4$gZZ5(N?0aJ8EWA9lSnJFY^CSS=5!iE@6>uyzGU2;j(p{m&!IIP(;9nJ}(YTT+W$|99V+Bi%mNdYTR5kDW2~FaQQ4788IG zND#&w)Y7aQO3v=LO2)zP2&N~L(G=x}@{Aw9l`*Scw;SK1{_d3WAB``ck~|H-fY;Ax z1OUi&H}4lYHKO3++#a{{h6MBP)*2RvC1sm&*&)021gU@f2}w9`m3INpL2NQ(*PF9a zYGWh{T+9m#sz!yOioDGl{xGWI$+2gm39~&3b>peqvR^-0eH_>A9ftO~a%I37HE({8 z_Vu3kDL^zPK|mn}jibG78a|=^ewAum&|;r#aD0m&Qh3p9De+SU=#ZS-GRFAcJI(8O z#e|7mJ0^o>4#wHMQNVAP^yc@hb)*e^}L7 zuvRr!Ey{NxZxuJMw>$?%x>U2V16QGZMg`vJ1M3{Wg93pG^tjOu5nPTkV3F7^XJYt; zoG&rZ%J3$}4LRu^WPr)~V#zuywMRs2Bsg8VFEwSlN4{CHRtt827H9qHwvma=p83z# zo}EtOm$m%~Q`15~%t{>IV?ElOzXoEw-sI9p|G*=&1Z>NxH!-7NBqASAejP*Hxew+j*L*`PJZs8sY0_ih1Yam?q^8%f8x#r~#0A#cV4ZnJDr zcz%cm0y-@{RUj_nvnQ2d!nqK!`VcJlwWJ5P>yN}LhzaIDDBl#p!4^iQLwVsxlaq0B zgz4wreZDO!A6ym@OMBCuV`eClxdoMnzSytEdNn0H(q3)}ZNhNr^0WBO2mu22wYMfv zxRA|nN@u=mnq<6NlvxOcqX_-1H^uW!JLAl{4a`*r_lFN%MN?$Y4w z-m-4L5)Ov_gYiP|&p0+^eEg;TkH)|;vq0*Bz@PjR8fhV(Vb{&z*vYZN zAW2P~)MF%5-Ekz(VcR`5=d6JT;C(8TJAh{evwu+12jg_wWj2QtgDue=*iA34BJJcq$p&B0&vE&#!ooKjW*(`j$^BO;=Jv`?Q0r@Tol(l06AX1;r3 zqkP~aVfkF;iESggP+F_XGPoOmV`GnH%yX0SyxWLc?k!y-&i;S^W!ei@}4$MXj&M z4rvIC*mjeD5(73J;gUExe?ZYbIyqczX0C8!6GhdDkhCH0^FuRbo6g;eQZ`WZl7Uw$ zhDNy-Hg7NH=JTC3T+f!K)WLh`PHU}84&@IqwAn9uIMb~G3j ze&KL{QDtStF7i@~%-;raAFa4vz1w`H-W2z(#mC7>TEF?Le9jH|w3}Gd`&w~zETX4x z$tWA{2gTU=KSqJ6&I>eaXXmflAC2<;ErRo1yCyxLuyaMq%+$tOGj7j$t3!3tz;giV z4nvb8G>v=HQ4(7D!^Y6;-~})v;qJUdGHlybzwgSyGPVq5Zf^0|d{%^_j{#rGp$;rzC*?1))nWQ>PnWCa&5j+;!GmHNa75H- zM9e4{NdrLrxfTi_$ zwLcvSi~w~c+mruupP2{cEQI9&kg?%4Y|*AGp_lBg-eA7+=R5HWCl#Z$fi0bwVg1+z zHX8c3+0|DZjQ*b;Xm;d@ryN8%l$Pt7%$vXVvTejln>|#HNd`)!_q3ghzS|?njh~KU zR=!Tvy=FuWKLwPC1(gSiINxuc8P{ei$Wi`aZ5f@8Tf z+0-h0NJ9yr}?0doKWDneYEZ;5w$vS?Wn!OwV4nGC96n;^WD*+zvaB<=CxiC@V793}{PuSW`?lIhW)_v(4&QBaaNB_{`K9A4secJdO zpb`FSh>76nm73CahrF{0zMvIUfHrvL%q~|+Ua5!$9Q~Z5C)y{+&G-7K^}0u{#C3@@;C>-rawxir0rZ|34+~HPPai2rfU8yV!wr`#pz+LqC0-{qF7DM_h5o zv8#&nMjwg&hL(wWiy<|J+0=QEd$q_zHXvn--d+tbqJsKy`mxB`(YkKK!GW23veRdD9(LAuU)b;KYh_iR#v#s z@#u`R-s|++pEnQ0rZQU9(Sjb)u6{xgnodO*I>uoNPLsGKvMh3cI0~@Px-S|=Se>n> zpeh#r)#D!kJ0Gs+>|WpCkX01CocdsJP1rsJjZ@1e*qDFEsIC>@a-0OR3pl}uaM3AM z?tZ)%9PfsM1;I3Jz*l_W@ZYP4NfalHV3?@DmZ%m2zp{h&uaYD0=-uA~f2=0;t6dz> z5}X^lnNsw1tSPV<&5|tK%BrPriy-`p16Unco7#yM1fVUtV^eRxD#}E-h?|0t>5KMj%4dt0g06OXJ!Z%8<>xb_s9Vi;sZ8WzC{Aa zhEcLA`-lr1Cyn(7{dX8V$aIO>}ij}I{&6*^6FD~E(cq(4K_8Z#s zE(S7(S|qOO{osvrV4$pYMD(1~M7>cq56E(ye=Cqw-)FKpc4`yFUDT=uaZ0Cy8YueL zdo4o`{yupkTv$ZVgOe>c3jnrfy6K|!4;2n!_0vK1U8NR>`p~S;TcHoG1a&I=vo2l% zE7^6{IuvF_(jZdHY%vIm86>S#4V)H>fQwM+{YF1YJa3)aJ@h?F1SSM$;W@jE+G+?x zjMIN#O}QV}W~uj4YExT*RW@!wf!nkP*7JT6g9GitMy1CRv`1_B2jvd`J!k@Vw78rr z0BZyMGH&@IdY@}$b&-Qrl8ivYykn~=8UotUSK*>4%~QVj?3(1^*o6#gK1vW6?00wA zzcyibzUt(OZ_h?zq==HT1@7a!K^DxElPNA8ew+dI$p;rllZgK)B(*ePa{$*AF6k*TOs`d5@@*$6& zZpQVbnIngOoS623HrG_$FFhrZhuq#wQqo^FHG(mbD0@)rSlFWa2MfmI-48EcBn;u4 zPQ5cY{x_)UG;hA7Jk9z-o7pf6A=SA7Gb8+EflV7#ng?f0=F9pPHOEVd8l`PFoMn{)gt2 z_Ou5kE^JDdG^)F|xQ*Bp_LM{oKGj5Utc+;2#BEj;MwJl-jxa}jTn&z90{xx!MghY& zZ9;d`Kkj;~A(Y4gB;a+ELOhYc++s}Px(^aY8ReApyqPDJRi9lgWx!Yu(`h|9ZrbGI z;3Dzq0FVYj{Ac32f#1EM@AkAqqCT%J^3$AO2g*@J`!Wx_@@4pe%Ir1H10O_LwW(|%(G601hLW)D2*kiexr z2If*2c8$9>rKdmo6|sQh#$+QoJe-L2EBA+dHxhf~-`t?~7@McHclTHKW!DbDp|(-iI%)8hS7VQHx3Sa{wgLWg?_sC;&dNRZnb^VSl|K zd~Pec4*W2`4q`wCwoZQ!rb&*80(*V8f?J!BswlqMtY{s9JaLTytBVNyao>TV59Xq4 z$?6p{HFf|GWi(yA)wAUmaZB_5RT9kRcIh^F$q`1KgTQEoYvyjklVOa?jG_R0lD~k3!pj*3Njfu!p{+(uXU^?=PF(NYMh|4XOVdhs)fq zkxe(hBC}-=BIN~P!xH!ERh}PME0TYR9d4ED+ph70SpTOm8VZX4?$$;%Dja2>zHL@!HNrEWGjyU#h;}RN$3g`-_xpFAM$O0iRWZJ))`M=* z@p~0TSXiO}tVqqvqrYEXYb4iro`@zz-8E&A&V6aJM*k%Tra!P-29NsW(9dD4fr)5O9lm@+1A50ml*+IU zjp9F3gw$HNXZ`&9wIQw2#SoI9z_chIX9~El%3cYdcp$5)8kS8hA0%6pK3lnbeWnpL z9%y&(KQM_DuDQUK+J(ydcIfbCSvK*}UH=B_I0Vb-3`#I=*>M~oWUq!M2DMC%$8suZ zJ6m)t+U zQlG6=?+g0|-;`%{){|_Abt`s( z+oI=2a>NS~e-fMY5WQ^9=NA0K&SgL^6>E8 zdtYMt=wIM)6A^jv6kbiV*wPO9s6^y$_L|SfZzo1xy1dkT8xt2zrQvwvnoIoBh8*Nl zUI-{U^-lfZH3rv{6H0;oDPjhU{8@>t@USfxa?FC|wLqz?n+ki;#A|iX{iszmaS4DO zHvq#PsyQjT5U^7UxkEN#$n)jKF30Dx!g7MYtjr$b;rW3|8#gS#8>IE>s<1J@>;!q; zX*5~&8o0wr9{A4rZ}&bH43z85@a}+epXKH6IP;RAB-A{wz^niJQ1z_z=or|S<~(m- zkkoG%dMsJMT@u>xF_VJ4NkiUvVL(iA1DZ(lEvAHD%K!d$^1unji3z&Y?)l;2@VN+b zbvDn7xo^kA#+gb2VEIR^?bvE4*FbL4Eh5mlKbWxZUK{?r%@bZ6Bw2WqnS4N0DOz6m{Dlh ztNnd4)a~nLLDUC^KJf>Z68=Ya6fGGR&BYAoQ$-h;VU)K7P6@x=LH zt);+2PMS1uI_Pi67S={?(&Q+cWp-BsqOGtXR&@Bh$-{M87=dRsu*4hlFU$J3(<7hd z{`1dAK`K)@q&u(d)yu32{QgVm3{Ium_iY7xrE6$7AA9&Ii4zQY76G0}!q1m^P*~<4 zC7uV=3~g{-;?q`r@BQ<+yS=yQXGZTa@0wA9$J!RWNIdPABabs0g(|XhHd9Mk&z)E& zRGLu$kMc9X8j^xWV^R z0nOSBkMfo$Zg-^z(*Stt8f|Ykc)oD;#f&8(iC`4&$+X;v$#LZfTPO=^v2+ zg=xjd?@FXpYMH43EB-rjY(~Isn>|f<$u*i?iGi84d|dolLnO=#U(BFdWMzX}1KuG)WAs=| z#)cKV2muMpvS|vIGz!)AzcNXyoS#r64`ADEqu?S(K&p=BhT03Ez@LU=ihv~FO@k$@ zD>ekPe9G&CV!{dnUY7hg0A#>ihpFex?RYj#8E)FL3XDitm`(})-P*uRW>K{by+2eX zz6u$E*Imnk9?;(fi91$1_}W;caRrR#gfo`b;9_OixE&> z+HsVCQcC~ECq#t6WXh4~v zxl`_%L34c)Cu30&7dTKYRmVII#%`M8f*9S}? z9~l49;H;;MdeV*zct`FtfnP>{FY5*eWF87L8TTyYUCheLCzv){P^AUYfKeUnuxkj` z-^SiOpc>s4e2ray?YsXk6HOH@`Rlk%nF|i&^yHf_WfBPt%NMZo(}-Gmg$w5Z2m;*Z zig^tZ4yvf)w#uEDfKND>4TQ^URGuWeW9kWlU(lZms7{)ZaGrHXsMSu;uQ{ix0FSS@ zczJ?4)+aMcC#zLRE0KQfM8*u7<&vR48Z(}3T(xdnE_3PkjnXJ}`gC2z?ZF+F)xKLi zI`At&W?p0IXzWnn(>wlOZH2bXg@fiY;TkIdP(HMacn1`v2C&I^Dh|O_p2f@KNXoa+ z*64Z23fvG}{l@_-R{oa0_xddN3a8s&$B=0Vfy^P=)5c*?9jWltMWB?c9B}p$0D*0~ z{t6(alMw|v7#+n2ne-xHPEU4ydrl4y@9iKMg6ULhH<4D5{rW(SSNrDE#=$YPz@L_f zfoB~F=4HEC@a z0R4Ll#18YU$j=M1NcT>W1S-tuWyW1tqyX$(b4&&hR36|@*7m~88D&E`b#QSHCM+L3NN9 zjiI})ca(6ppLkYiD>C7|)B9TL>z7&$Pc#jo{yaw8Y5^LakB4wiW{KnKz7nkIK{}Fc zJpL<;(2J0Uc#679Ov-CCyM8Ma7P{)2klBv{he%J*fvoQ1@ah&){;xOuxUN%kE7Yk7 zS-}34d5>dr%nT0k3Mggl9PH=)Fs`vI5L^(*<75$WA+k^>pa6-HDlr-`?5pRtX7>S_ z0J@Voj4lO3g_o=3PSQgrbq=Z<1+MpHp8s|%Zl_veE9A9C}4oCJD`nWUd1Jr_j(T1fL!`%WQu98-jgJ z4hM*=p^%?_Z7QfIc}o+zcz6*U6bl*41THE67X}5}ClLxRBIXYI{C&Wkky$}1iF0U0 zYp4|5_=;LxDL3=qo|n-&|FcMNm3?LsP~LDPv0#fc|2w8_?*;cdmOL`@^ zt7yTzIZr|95^6L9DR7l5HU}v`XSo-uwNyFWJhH_C1fQ0Gy2-s+=pKZwo0;)b|GYA& zv#acUar3spBeqFv3WM;2;q@*>H^Hf5O}EaTh9^)gM)W5MJka3Hx1}J;BjhO^lX5pU zi^z^IO>aoMAEp*T3uFuWd|{r$4JA|mZ*gHaNiYG3uv zS$kDTp2QVz6*d@JKou$5p6~)OW>)Fv^Vw|1739P>b<&+wE-;tX>@y7g)~KASKoaEK zsT3Ga`6EG|m8KcB$8khjtuF6s?Xp^a{BqZ6odNY+1;zM4YQMD&_rxFCB4XCJr7{L6 znF{@9+?=QORqB5qZ`Z$^Hjwbex^UycbkvKv_eM7y^%Fikfqi^)KmTvD{I6qoH@@{- zRa5;!%8C*PO@ElT6uqiBnv&h&EF%9^sUiF~8P?4Ql{M!pL<@?jlSn>W8mkpgHi|r!rj7`Q_0a9;u2876nu7d<9Nd@C`l?6i{YZwR1G?*(0ex?$v+8)4L*|)E0b>)Zqq3yAhZ!jb!kSuGq8#g8pev^|3}~3Wypt8BnTC-P52Qaz9C@ zyCe|o8emcSVc7b}{%Yl|BPH0K&4&OcxZBiuh$8u#Hh|}BUkmaTTM%`D)11WF9jkA= zkhKhk8yBt{`RsGQ8_5joaMos-zJMg0LrByFbselDaD%hsKSyr;a(Jgr)UO}F(>OT2 z+VVJubPUIFC>6hOiw8)U2jKJM^%t@3PfsXi6YhjHU-8PhD~rk=0 zY&A%tF)!Sz=BlLCjaxu_!daSgFsj&uH7X}@n+OuWIQ}OGof=Q$F1si*0|d-eUgTr+ z*D4QtPrwI^Ey5hAXpRf1hwvW5PM3ysc8H*q_H=%#NT>RJ$MJq?W(2eDuT|A9uIT@N zp9FopI%a!Jdq<2jm6alFz%G2*HE#ji1f~?L=wtV#2c-UpiGOTl@gR@9h;I&Q=nZMq z7N*4cC*ESyE~6kX*+<(&Cv7{CiUbz98Z>Axjv4}dv{dS?L#&Q_VV4P>h@}gI-3Djr ztdeD?a8&7S5}5+nZ*b*mFwpeDIV1kkknQ`+=ggDq(2?|AwKHfobBo*Pb|Fgkp_Ig% ze;+~@O;b9+yn8k}qGz_z#0tMrYP0vuKKRQ6+t^3p0t7-$1YPtMv*2S7)i)m8%6 zT&zfsu<0Z2R7oq-6)918`Kl}dukpCOO^mx89pzEI1B&x3GIyMazK(`i@@BsGuDRZC z(V_Ms;*D@kU6wt$>Wu|$H4S(=vTh_NTu0Q)k@g$X1=RlF>g@I}>&6{Fe`W5Z9Elsg z$EE9f9@2IrC3hUZ{=^Uj&bbj^CVMl5ckEBd*bsCW_V7^fsDfAI*Wzc60!4lQ0D{5O zccvQ1V%3UPHLW=}?bqmob(J=;Kayc7&um~WAwr+(`imHnDQf^&MT7$H2NF=cn@(57 zk?@aTq2&^NbrSqwJ`ck)EDdT&zI@4K=0m=84{mc2IikGX-9MhRYbJ4GB=n<~E>3(BN%# z=D@rdzaYEseI#gnB^Mow;(R$``{GlPo#J&0om1)kQWQLbfx{D?WU<$;WMX4FbdR1C z-f^_^yx+f*nbWJHUVj%$p5w*k`^b8P!f$r(8B}R8B)n*LR-?+F;~6IOwGtN9T#|1V zW_VT)uh<*~V{FcK}>nkM-m>y#GYq_x7ZdmSE+;puP_(3nVOSK zT^4=gXq~>|vPvqGivF4HgWY`_0TUDfYoxFM&5YoD2?>Zr_NdqPxV;&&U)=CLpTqeq z;{whg2bN4xA^tzBOBwl(nd<6=Se0M7r3j7r#HUb9UUpAFFPUM2c`8YDW3^L?1MHle3e-`ev ziyisHI3Q8nfEn-qo8`{jjBhH-ejWVXy)@zd1&;Xs!O^220d$`$oCn|w?<62Nyt}p_ zS?u^mKmp~mWRF#wf@Y)KI4}nB({%iCsGs7GyTR@!BXhttBqMC0eL-5(FYN}q-=I&f&m}wT?=A{#j3oWC8-mSfcfoCKvfG${wR)1 zml-{HeC2y2<7b0L5|~KhPL-}yX_l_Ohp7wKh181QF%$`)P4x_unlKAasm`ymO716Fsz z7A4vZ*{?)kH?yu40$%mbYm4V;E(qeRjN|&fdG9{quU1MmQ6Q)r*>W%-6UnSO9(<#( zE=j8BfQQ1E*9I|q=oD$ogU$&lx=mc246C#moPKiBguA?d!MIPYG$VOFmCueIu?u?T ztOw2gueEZv!Q(GUPZc}jYV@P4v(_5EH(R66Csmx)Ow(M=(Iu2M9--8Ve9RHob{e|k z0+VNv#L1{$(jn9$Xlw1<_@JLD;Ubur-j#;{(~cqWwmm<3C8iRY&Ha9aSz3*qb)ib< zi4+#0@C4G&k1t2mR-EiBO`1r9E#p?elDgcBYW70f5}FoPJ)Z9(r3UEfc&D3`Jgd$` zMpwGM9rdACN|YbYeKI{^w_u@CarHe)F5yVEfY&l54b^G~DB>o367f}FlhwlOdAum3Gh;lxh)cUCv#&?VB(O1|LA0W?{TapVb5YF zR?M3m+$TT$2Pe)SZWJSk0=69N8Of96wvnI!hR9FSitEXXi6x-r?1ZWp60V&2d0qC_DS1<m&HCt9PvuK_Dg3@EBO9n6>yoiNhke$K+;2(4Zuh!hq_cq{_L zZF7GelUvV&Y+Anhwf%;CtkoN*SXCMed*(A6J6)h*`j!mLe>ksG%cKKQ$t!bzbA8LW zBVVG2;2b>3-VgL*nCb>LM{e4O?XTgrW1?e5XYm(~TI?0+ev4e^ZaPzI=DIn@k4r<0 z#a~;)=gAzLb~OqX$Y4ji4N?T?cFstdb#!XGH*S4T%bxvPV%+Qzp-(h)E$#MORgbx+ zN7fW|>F|7PZh-9dN`XDl>gIVxC0otzJlY4VHj;qZ$GFrnuLpL-HX6Z8#h;Oa1?IJU zRHB{#%1W#j$^L~5=t*>VXaMWboHKl)ke1h!z8hl>FIxpSiNP0j;rw(|F%``)FH`yk zG01i%yx=xg6)aTvd7la%HvM;P6oYJ=K?}NDqANbFg2eFD&Rd7|0?$;=C+nTmT0B9r zCgj%w=wifKrqC_A8wk9-HC@6iv5@uLZI>N6(0SFyL<X{AT*APWTWiKwdAxMX^8FHIsy$C4@O4M+BkhWf2iuu+~}+Kt>Yh9X}va}TKgU8MlU^B(TjlSJpfVG z_+k>}A%Xl(?*`7WD9r*&|EpFxq@ZihhZ`uCOV$%SC(zz5tRgu$vDG%P;kLOjURYyq z=f4C0lM(8-9=kev@wUf>wVC1QyO|%ukV_Vh{JuN#m1cbOmr{xD<1QwFYKMuSbH#=7f54k1k|q-txnusvFoy;BsGsZl>&qb@3_Ps7 zQJcVb_EO(WjPy%mP1Y1Y&O&iNh%dE~LZ?Q3&zyz3!%m$1zUo=~dt4=#K&GY<_)NCF zF9JSY0T`U)lZQ4Bxtp*X{XGF~@yp3VV*WzZ2w=g zCvrG=zwGq`hwJz21F(+~aaA@bOP;Wv*Rvu5!Y9wM)C5qVl2RZMuIE8u=S9Wk68P$s z%%YIGi-~M|x66Q_W@GNNAxDy7@`7Z_9-HF?LFehHKD2!PqhW0`DZW)A6OQVpU0MTr?udEa_zL-G zCy5AiIZu-}BixABGVh1F)7Y5Qglf>>Fx-R z>0VQW!k)C);o@nxcJ9x_E#hRIG-B?G2Wato^ukk_>CXE#)jZ6sPOrYuv3R#j$wjSV z(NFCm;h}|gl9)aH_R;M}CTpvmvqOg-1`c{%kGxbn|J09MmT2;XkyorpIAa7dVEm@Q zg8KPiirq+CzH8%!;}@h))%!l!sd9#Vd)pa4`Ih>CFDWkejKVK$l2!BKj`8CwRr0=8 z`$@{40^|s2uUrJlZxS9@R`~p)997S)?rX0onDsZVf&|2|UiPw-KkqUPcMJzF(tqvf zHV>0<2@DAcc7z{l1hpL|lz|m+S3ZiR7(hmF^-b_?qUO&IvH!mC`K`8x`Dp%(i?7@H z{>#)|p;MG84uQMKo90vokFLAK5I9(Yr8tranyjpSal)7hPvU|`<63kMK}B$ zb-6lTA%|Lb?^?yic12wLA22yz*9p!q-|kU)761x6tY z2M_=fd=GnAa#JI_pSv^-WVHW|B7M9|VDO9!t zMP*Ioha_f*p{QI4+LA+n>i~q%jDEWMkZOS1i*_{kbp|FM95tpTRbs$Iky|mp;_|pN zsbO8gJe#ZPl?~T?NmT}Cku7&ZfU@YNSHYJRF;IzAseTMJycna1l2yBFIVkf!;@<^# z$KiOo+a*yK{#5HKQP|V*_08-v&=8Hi?+E2k7oFOs-m#@aY&%JB??r8Tl`Pz9SrAhd zC|`&Kb$H6QOUEwX+EQtE3q78_YQNVKL#os%7Yap zpM?EYxq6z~z18lTH@bfny>bW!igz&x!Q`{sidEhBMZ31jOr1LpV4j}i;>V34boCHn z&LN&dng4nQVR+wLBQ56l%l~0HWOFBg!1I*_ zo*ie@7&j-(Jb&~LVdQ#KDoS3`AVTrO*(pPpsWMTSFv7zG=a%nAPn%rpen2#~r{~Yc z)!o79-ekebvU~qhp>-Q)w3eGt$nX_>E++I59I}0IHmt!Hc=l#70Xn1V-oapEmTL%QZUx?@dqN}wBbOXWv z&Tmib;*?(Wx#qoLSWLoZBc7uH_x2(|P-M|>MStD!OaJiMOxfE8d{JgP1iEUJ%xZx4 zHm~L@c$^c;vU7@vIz*b?qZ~|fgn8FLOJrczLVk~4`>krFPlA){vUFQEWxZ<%%)0=P zjXD{)?b$nTo48PFS?hSm&dbDU3+}$+XKWOSz3!yB()N3N4MI%@tOCh)i&|H0-D7AaOdqSQ3bJ_W7fx{9v|$FyO9yUJ>^`k zsv)^c_C*GF%e!n?Qu?!Yo$w>L9LlNxisJq&$FTEs4i0P!9r9cC5+?MnQaZ6O>VEG< z|9VL8HjDq8na@S8*5Qs}$4EL0K{M#d9I%`y2t~$(3epr43iq8R)T*NTYJXNw=r_u} zsPhgxyZFK00L6kjO_Fip9jkE!R+&rDVM4`K0=+D}4uSzlbmcm^Qm7|T=VWgta?K}3 zFLK}SClhMl)}5|IL-3LV&AEWn6(IEf>Uh!ZLkH*WS6BMHN6`O#)BoI&BafUSIKuqS zWYgyfUcRRID4ww{ZbZAHJv2G$N-%;i3Y8OB3{aU0aSe30_!DoH(ceG8^K+5OCg#e- zE(Ad9U)n`@@81&;_BXCs$|2JuVxUO!+p&A?`;?gcuh80Vbt0F5$gcj|o+c$BkUl3j zxGze+J>6yGtB^5aL`S}=cE;~-95=tfPhVz+!ZA2?3=2t^AT6c()H21m24hL+<}PG5 z510-B|B_(VDIH-O8di0zboiJ$HMh51ZF}=hT?LrCh}F|x>f!?4S)b^^<6EC<-g>=? zOpP&|zwT6Az~!ncUvT7qnR5EssQ!}_ryL=0oJ<0?^L%cO>+SJfS|fYEhmfMdPGamW zlBBWm4Gp@V8lMuw&5=mnR!K*1YVl4Ncs}SrdcbURL9FrEBK`+(P=`JaTvI2Fl1Y2& z#%SME;bc=i!%631b4~f);sLDX!cN!A4-L`NtvVy)QS7r$bJ1CL!GOz_Rz?Mba@y6E z05H0d-o+os1}Ed-Msx)aSC9|d;^|!ocrqtgU!yzwiA}lHspLWvoi^l)MB~2{k@S2A zs?R^*y2b2nec{xHqiXlRZuBINx~sd_$xvs3Yqqhm zt8q1#APBbz=F*dOjubeqmN&;}(4X zPm*gIAJnwfN+=h(;|2b{2Br~|`B>q9JY148H7^JBQn>jz$C6(GM{x*w&l`RrZ~qkU z{JJ3wWvqXM(W8`vI;c@190WCky6EeQWmBBdi-Z^Ec*yfqzBFkbvt`U}cC|$BFa?-( z#xj^<+0IXF!1VOo$H_~J_#t&7crY)7fevSU%GXX0C26%d`qI{iD#q~>WmX}L6Dm}% z7DzQv>ON=XB$jEu{gPD%F1UF=^S`HJRh zQ#))e0|F^8^1~8VK2x1r|2>*!NFu2;ELX=++G(#tli~=FkPW`e2kJ5-nWCU9yf-32 zb)w_^t8+rf8f!R&v_7O;m0LYrsHUjsI=X;;gafimpQ(f7kfbY+M2wJUQ>7oKu2^J# zkFacOJV<{^EYg)8D4Ix&J~=JJ9D!UG?pdMAM68uwAtdpYggSAg+gsP)Pv*xDqzX?u zHbjZ}gGFoIDtc3wKHjMrJ~>cSzX#%zCsguz^XS$-E)eMVtcYNY1A)l)4zzdzB^P+K*q-CoH8UzBy&Zwp=DHn+hy-7Q)yYB=6T#jwSqf^u!(DGw}4FkBJ2YBH`9C z4A!CD*?Hd;GZoG$*`h420QtPt9GL8sLUkAULARi)%unFu$7R&CE1dl@@ym#jj4{o^ z^ZLX<#h@(MPUh@(>u6fdhDWfMM%IL9UP<+DUq*-q80}+8;_$#5wGd917YWa6{z|>} z@^}u~kBbLkb^mc~1U0uxgI+QSwU42x1PsW-f=VXckH=+b#xpZ$+6bWAj-hJ%FZF)c zIv7o8g7>1=NxyEMLNgTPEr{7EmtLssT|5z#t*o~1>9AOLs?E>~srMZ%o@bBi+m0TZ zV+DP?8F-e!6USPDfPl65f>T7S0VzGdfJor)$;oF(kMmlq1C`>ef7Tu8VdA(D^io+htdq-a7Ek`lGbC6mu?yCTu)r3TBUh=UIQ&1H28_!=?mgV%cT9cwbzd zc@_ylOLtCOwbFX=Ki`)pn#`Ne`wfnOnb9xJ4X~*(N7&$jFa=moWe(jr?(5Z~cgSCF zT+r^=o5ySFy4G-~Dyht954G(_WCY>PcVHY`uTlzwCDyO<2}2R6m6q@%^!y&(cI0}j zK57MRdi%rKS6Mnv9rU`HW0?9*#C*E*_Id3&cc#TdQnTB9ygG>`skEf2a1hN1rq_cB ztAET#xAkKq3A@S=IX^}3#`I)(s7Tm8wP-kAtStK~taC{$rS#T{P44RZj^;B*uX3Io z54(?*>o#dx)N&VVQzWZpEZ%pIvx&9Pu1k$`4V+24-C#92F0xDKF|?=&PS7>SrSNT_ zhY=ljKc+u#d*Zl1kQeuMF8~1&lOE%&b5gq&*I~OqPDpOeKb$EKh4GrueCoR4ESTlK zMz;WI@@kTwiii2`@qG`Q-(wbH5uiZ9zVzoiGuZ_G{)XXlXqK^Q4tNRQdb{D?o`gZ} zGsme^G#@{Lo<)4eKq=YzOxaETkZlBkzZidwIp+Tp^gSb9xF{OWPeQYI0|*pin9%-L ze>{0;|9W)rg;brysBG*Hr>0s&Pz*PA@I7uRslt2J6a@$I3oNGXqM8#$yfjrycmxww zkuJk#5P?5F9pK{__f}T&<6Y^8IJ?+`|A(gY4y1bj6uymV`T&PY-l_Q4 z%@5Da2O>DEr=lTMu9ABh@4;ubJ#IAb|3~JiZTbv|u`$kCr@g{5;s^S!&ECXJ185tR z*Gx5-PYfiw{X{HXoxd;Ip@?0XZKD~(t|)cbVprE|3pIXWo8|@g*NT@GsB(1MRf%1j z-@Gx4Q%16Nx};?3ZRTsf;W2UqFQ4Rk9>Det@oBN0)%AWwP?E(7RM*%zc`(y$6T8nC zN7y_EN~b>~g|V^W2k*;=`w@y={U2dsu&WVK2yDg8;5B8GK7va1BxMf^Qb-@`QsJ>S zHx@I^bQ^^5Wd_rIN~Y-zD#~wSFZ-{6i0x?it>aebHHc2HQ%(zoTxj)_=txx+;+KC@ zRvab}87rmGbS&H_y+yOE{wqG!Gsl_DvAPJzM+aQgfKX(qh>Wt$)z~E*uz6}|E9B@p zCV1EA!GNasW3q1ty!{1ym><>@+ZC(XM$6nTH*6ILj$R4a$^hDJCiF52x(rbtd22KlM~Jqt`RnvMQ=w&Z6jqI>!vEtUK691zQ=uLnJzeIUDQR4DXz=j}Gyb zo++SuN=-dKz_!gSlvPO1#9pGzSEj|HS3T@8hUTv(+X?G_NJy{(#h&@L31tHpKtuO2 z7!*B7&UpL-1^FAZ6evv+I6PGQkx*S?-xdFjIOste$sI?KM!A6+a+*n_1NUL+Xi`!D z)l+0>U@UiW+H1DULSLAWyK8*CIOS9`)YW=w7QbvT-Qz%fw^Xom`ALnl($|DxIp{$V za62R+wSkJM*lB%z4QeRJY%Q)m`N~X`tNOcVnm0@RyZF81Ep?^{f{a}Z);CeS21C_# zQb%8AujiFIMLR}{KViTr+8h`BJQaaCbKwzoI=DqW5_oWI7-Sf`no{%#YmyIw#Wrd; zpIVGIX~CBz0-vDre7X@Jh!4NC@UX4 zY2*z9iIhkrXeu^62O>PJvpO*hQUf5rKo9&sI|36mEfh$BH5cCr-Y>i?3yt5EdF%Al~7>W0c%)jCx-S6DuDMxGZO_a;OK@GEBxyBD*9a#Tm z1n!`weQ|t`$WXa}w*-2thfltC)6eYbI)*aek%U@zGE%4I7u}Fz7W`ze&{z%Da&}4~ zjA_u341;1aaD7W*Xa-bm3gQ-4pY(t6)AR#9;CmRv=03Y}XGS-q0ANv_Dsn)Y@01u< z2=VanftTd|i#umd&f&Cw1O;PEDz5A7I|P2>fQx4wFCmzYZhMQlxp8;gMc3@UKG~^V z_)N1TO;!-aC~9pm&$$nlTHde}Rnwsp`?Tae=TG&6)$M1DA~5MgP^EE$uuR{Y=SYoY z)nS%Z>r@WeUz|`nMqKs=v6wR|QCZ+lWA|*SZM+a~{Ylww_~zc9-K&{o=sb8QVq)LE z7)go0Ja3Q-r4*6Qiq?s;;c@>sMG;rd2try2lU|^ekOF+S^VQt~h)EFpS|WD42bnH* zZzr0xx2Y_yRWH<+afKU<&+spuXM zo*X1}O?|785{_mY6@J5$cJYfFDtT-n+f|UrwXzlNHB~BTrCRoLEIIijaD6`r!^{9i zF%CWNSP_=;3tJSjlHhUU`SW)bf4RqcZDSi13N31!8Xk~oQvjg?^!qvMjhDj*+hFp9 z3?Y!YIJR*=;QVwZvEv6AipYVO7dr5Npi~^DpT654to`LlFv~17=FPl1%a|Q4V8z$& zofUkdNkJ{Z=pgY|1DJf*me@I z_y&aa%k(Ld*`%m2O4%Eg3fI(RLhEfdyp$ZKlLVKoP9V^xe4o+4x`wmwNN`qhL~G&S z@3;~=q9d3FyIoDXa3MFVB(v;YpQc`dAnGb=x){@r`%YMPlY6sL)AOe7kHNW1BcHR` zO3!UQ1OwJP=9eQ_Ga=u$JxO(zqvx|0!Ea@;a}b9q6>RFQ}xEOLstnw0ET|KVUV_R^jGV%gbAQ3qx=8N z%on(&AS{n{{Ta7B^pv-Btu(AVk$fSwL|z< zloWu3=Lp%ZKR@$)y1c2tDrbm!2gDLk;I)_iQt=z`x2(!5iqBZ^nM5%JDY;{MNnOZ zz@O_H4bLJ+#q?)s-(u){Sn-4b3<=h;Z)PDEv$;0cn-v`qp`I%H*79?XDPG;Ts>IxT zCs@e)j3DBqg?liVY0PELRyzz_P~_2oudRo{W`b+KXdKCI6B_Jl;9yK*YCu3qB^pHC zWag-(Uj!!={Yl8E{96a{llkGVG!=z0%@4BZzqMhcJ!t@)?Zl8R3-9SbvlgZm?HM?2 zvj0-YQpU=0;P1V|2V3~{;eS84l?4{`<(sZ2u>j*`_N^M$)z}#3L)h|QF(sa0Qoq7i zTRUrGXSsEIoV&1|Ed_Xb^-aJW8}@8TbC{aS5CVo8B4MNUc-`@Sz0X z_YajnJFZCvqf!vGkHS_Y$s9(o%hMh>yKm@{5{9za(FHJIu|NbzbM4p>$AAF<4~Qa# z_JVWSgSdgktSzH;%t%onRsv+V=_MNtA6Z(RU;J@9?{nWJQaVQF*L2z*@4EnrV$Ww~ zvDmZo_zC?=y5(A*WM9o`1UBFjOXIt^a-EFucvD{vM(_Xn2NC z+byNXdJQ3nvUSIGVPeV+DT!6rD5MG$X>>A{+ytY&!AY{%g;cSK8d`i(GsEI18N?TYB}1)s$^Xx&9d|FAsXvtlUmPp*IQx(Nq0DHD z;b!%fl<1%4$*gNx2A5|GsX$0yuL(+cN;CP_`?QLoPp_tFaNImFkne>^&_>4rIb+>t z0BmYFahuK^bCcTAu2+Q)yuF%j79P90MQ5Q|l6&zAVoN@eY=+-7!c4sGXWrCNY*at@ z3k+n^ElNVJ{u#pclm)p;R!*=Ip~^kq9Plcw6LF1&dk@7^?D&XHj!lrOi|58kXa-(@ zYL(q}aCl{<5_{jg{CD#u^rSSG&G8AjPv#0IC5%fLhAs*}7LR>vki|HOEdCuqThz(o zFzKh}W@c#)nWV93o*=A>!_5? zv<{JxbbS>EvDw+*6rc&SlLv8XhN>xlzdf8oxujILff=&SuDG9P8-GhNM18uz;g!8y z#vgG$WoPlYuS8{8Q`DgjhgVpl-JY zuYNH9bV}Cb3hJ*bAFQL~gvF({IH(Kgwcadf;A>p4tp{OzZ-`PH!Bz0{ZKg6eykuB( z0F0k=>Nbwt3_plMP0P<>&tRb0pj*$BD<5{F&nQQo!;U>Yyymt8Hyl`;0{n@%Brq_mZ>+JZbkSW3_b+Ry?|@T4a3JSD zbuG3inctZZybipTOqD1L?RQQu2~v*akS!0w$Z#frC(V#v;AFPTjeTF@PY82yzu-tE z=PgmqcsWtou0YJ^FZN~YUv?A-0rc*z@zlECuD7A9PiqyRxUND zjmnTn68zP&?@_DwB01o>_i?y_o&WrPlc5WnYk1GL3QLr(1uk zdmwS+3?N2CW=HvYPmvvTHL*l=mO#&aqvzhOr*lyj(Vt$pEqaQl412%_T zSaId?J0&UJFg$HDu*QSHh?)psub`baD~I^UbTF^pX?823I=svcSnxqF7#N5jc@qib z>q`YhNRsiq7Z!^tD8>+g$vSp2N^(F^H`-=pO+XCQXGPQv#`Gat?b)%k^A3^6jIFHl zRa;*icbNWLDQ-?@_<3)H%rUba8RbI9{@;z==ru(f|CQS1PqV+A=U#tCoHV(f^5+-C z{Bn;pSrjprwaJ*90({BRi_dL+J>xQm;LxyNdT6KNE+MWayCQ5L0#U4J)X_%NftVLe zTuBnWb&6^q>%dCt`GsR6JD|3p1VZwQI-#B~~0>aJn zbnlmM$$>#kF5yNVO%`T(}B&M9(w|$=lEsY2n1~%pPd3{=l4RrS&MthX4;|} zcKCN57<}#z8#_*|;P@pyO?1J7P|e3`Zu`o?~QRjr~0*y3O-QuY6lwX3HgG z>;C#Ke5k*x**n6$A7ia4@qI>5&5P&5xm}sP5G*5R9?-)#eS7xb`k%otLVd&2z23vd zY*0x$b%uU~u5l(6F_(c1f&)f454I}<83_8|MAMKpZ>k6Sy80bk{Uwt$|T1!OhLcyGU~Q&W^9w zkY0Aw5fftLDb9M)V|Mu5mrHm57tJRp%#YD?!7RUF}R*CPb@)Uoy7TDpJfDE0Hsb_>5h7|#Y(Ck3% zNZ&dFRijVi0#qxGG!!yc4#;ptIe-XZl7S2{X|n_K(G?$Xje-AYcEK_a+}|9I{NC4p zw9vRgSuHXJcOo%6gduh=bP%*h*{sf6b=(!ftK5fke+a0zH`NF9kzdvW4XH|o*y zU1Rjn7tBr=NJU{Ucg%)?bcG%G=8+_jDVDUMP@4gx9(wM6x8-wDoaCpkFfQ%*O%ZFR zz@_1nP_FtGu8NR^qU&#Jn^SxN4WM&oIi_lNUFO$(2t`9vCD$nb!&Fcb7`t`F-5*lpu9 za8^MOP&Qy)$w!)Ki4u(jN$xK>N{KRAfN94%Gs(anL74m7vsdW-_+4=%Z1|vIaH8hi z0JX*8lzV&kMUcC!j zIrEv;-Mte8XERXn5_p%E1DwJ9Hd^ndBHe6GjDHy!!|s1P(g^(5l;*6!w%?xq+s_|u zMOBe+23M+LiIAZ!0DriK0o)+u7g%XGB^W!7G^5tqQMs?@UpH(g1wz`f+9$bwHK9u{g}y@BIl78Z=fPU*lHE3i|JJsF zu#udwNFYPeuWEL?jGyaO#HS;md@BssIQXnJyouXx|3Np}o!!7h6X2|NkivoAkz7>7 zOKm-_yU&|=WH&AX6=vv_pvEmB?&A&-vK9n ztL%euxCVA7m>GGb=w!sgOax-WIZhJN?=log3b*BlK@EB9doW06opaV3c2`4#Tk&(cTpwcKi?Xd3FUDr!i56KvMz%zW!1Oh{0tFa`B*X{~irvbMNOI z1w**2(PVK)M%!NuvN0L8UjD%R0%+j2u6u!cXXgm`clqBWgO%e>B70le;F)??8o{B( z^T!9ifgIeQB3sF)UC_{&)kBkXVB&*Vq+Vp`?`O;;{_uQ&*=DgbTunf>HXnR5z&7xm z3HAgHsv%{D#DQ>4)Wv^JJjrVAK$S9C#8YHJ0r zX~YMU3e-q@CRqhI$Eh6L=m_E@Ds|8W3Fu*IJIL0&5cr_CbTW6@Ry&8hcRQwBDv9FFmr?-h1L0AKxmA|SrVUK1*hWHJ~%L*EH=9amApwT&n0j{k|c z;zN-|Q^6-6K=l^*k#}z~BB!)qlVI_<2ZWIhmOWf<<^HSw18NQ^a3?M!AZjbzDtc4N z+#5{d*4UF%ry(Ukbl={=KbZzC)LKY8<>=-iHUf%ZXhp^6kx?GOpb_N^Z290Y!L@N? zmOn0^U@h?K*|NJk(DXbv%Zyweh!%mVjxC3rcmd1$B>sHLn?c)DR zQsBu3wgWN(U6QrxUB{7i75iv`>>iT6X9Q=f%!6zMvAF=-9Wd-SCKRGalEUWI&^UAF z+tHuP{bccJ){Flr*w3Kr7Zai>Ou=wy6zw!WU&iPBH>Zbg4rrW8Kak{ zJZ}dVo%sAVSDPQsfyL>W1AzNDUg{38nKktPEA*0?)#>!Xto#@YOSu011*ucGR9IU? zG#48^2>fHMvp@%cGop|EE?`o4u&(Dg_FF_}?YAfBbPrmgF9H&?D{3zK+&H75gWxEz zaUiY_bDkasKlro6(C1C-E5Q%WiGQ#Yynumr6q|915v|0uz>gN?{S-f6gm&0S zfXrdGx`KZN{2gw^=|*=D)Up^+x0tZw@XAbI-bKN2$NJkIVQ0K4uo2?}tVyK%=;i(` z@5YliXC6NEq1?fH=$pUe$oJWii8jZGpKW=+MdXvw?EFQ~K&+b?P@yq9XW?;O?^R08 z$Ns6(|ArtY)n9iQV;fz;vUBNO49XPP1(#?IK>Yq?jp48>$9}6o7cXyX|DKozD<@9Dww4!6e?|VExgZE@a_ZdeTMC%DbNb+8s2;Zo zasvpQlFy2QTBU=`o5$kp@Bz+M~LkF=S;LSb#L??Od_VaYtr z*GSgrk;zIjio{BqPX|sVioh)_n;OQ!fk}5(*9`x1=tF`QeXGdRa zBrL9IgqUNQ_J=?(-R%X_V8C%$++*M*hy|b9yyfQ|5#$|F7>0kep=|?0CQMs z-CthRfo45s-eRg*ur zBQny78As%PN1D~N@rbslYr(EcB`+UUK43a{>&hMe50XyuQ1YWotp|?tS0_H6UbRiu zha4s(QkMQ|1)wl#k&YwRjk?v9NwH6Qdg7#w`pv}^QBxgh5Jp*U}UbW{K zZqv!PL#~=5`}t;Ik!D9bbPv%dMM6(q4OeObc_|}x?g*yPMti=&Os3gGR)8**xti#U zm>AD{Sn4O{Y2mF+X7{kD)%io(_US3L=RJ7un>#v(yUYPx>Bg%Q`?wHCmwExLZdi$93Mm zH3ui#{DQFRPGoH(hIT{LTAy7s!m}yxM_5lz<4v@S~Sxc|Xdd2U+V`!(i3X zSKMyLyf^FScexa$&^$B`->G{%eq3s3e!m}qryPZ58P#mqgcM6OYOeeKm{Vt{RUsl8 zYdfw=dvQb%^|2sL^?mQ>IBDw1h~GJaK45QO2lR@hBGoiFXOg0bSw0l3Ka$Sd!`Wz*Bmk@$KG@!YWbIb zVZY7>-{L7ZdaRCJHu=p0YB@jiq$HG04=_>gRC1e0vP+Q0Faup@J%&ly^H(zkR|wo? zCvV4VT$S$X-)>e^wV!=|2T?S>k1!Dn^3|C`e)f#oRH};5U1q zkS4!yiq||sv``I85SXOUe`ANQpTgPGs(&MPjNi~UFqm{a>#Gn3giQKGkHl|KQpM7E zDg8Ua?SyVG2A?EJ2mwM2-kv{r+}!fmL+TGqa3rBSt_Ojpv}WZ{t?oF(SJVw=fMJ5R zZ<-gkT_QpnoDtr74B2kL7yPCO4i0eNeuZed7z$e6S`}V@G=sFbrhwT(9s)!j_Gwrv zdl7&}XrGXM*cry}Gz`X$Ue0$BJW6%m0UBs6BOh3#1%fU6=H!8WP3;e;b%&HSA9iA*a<nW9+3kcxK8SpDhALV=B<^>3bWcTc zQ*#{GE4dpOT_@17&Ior`n|*uk1ZK7pWJ^Gc2jzS7<^ABa`{I?x0`Q@U2)NBuLxjn3U zXAjt!%|$*(;D!3YFF#(^0#--*lkJ11l4DBlsWCZrLm;Ef7>qY5@AdXWeteR};h&D9 z*5~Eb6UDE?q5LqPoFnpRNY5@xYlR29#4G&AM=&7h)rYIrm$0TTUv#lpW8PD6+T3yR z882YnrM-aDoR5nWI9v0Qt`T})Ype;waL732!9}lMAQ+%fLRf1TK5`Jg8!XywKo~Ge zbOwrY9M&m%4n8H6#oX9+he4&_UdX4*hMj(gp zVW}LTmXV~vV;kldn)fmJ0U{&yHA6jp-8%gm;(oj~9{Lgd=odE6imX>ts}3Zue?fHB zpFf7c$bO7JNH-NuZ@e`FV`~W8JZcQU^c~;#Q_Md$_c-x(CnYr~0f9a0L4ZVj-Rn+K z%jc#bxVr~$Oeb0FjTmoS_k2XINRqFq_XF50*hMeyb03s#*BA1Z> z)v22TP(TppYxANuVL)90@Sn z06y!xbFZ+S>q(o9GvKs5%sn#J4aE)R0i|RAv!7>t200XMVUPGVs0nuP+yQ@BJ}Mvx-x~mcs`y zaFQXwOY;uR1GL7%@K+H>_OmEj+Pi&(G&NyZt;V-To-3MX#IvW1_Kfkn@V&0noat32o-8_}Zv z_zh@LnfZa4foJEAbYcd{ZEpP0N4Z`QHccF_HKR9oj>AoGc5P)>N|IyY9fIkR4GDwq2x8e2m~i-1<46Li-tDcfpO6P4wwr+?G1t=22PP7S2)n2j(^&YKLRhW zFtb>=bW}s$)AS#+bE4|6%_h5j`5z~qJ@qQ*iT+Nqyl7LJW}<9k@H8F-9k^lHPRVwQM3OVJ^In^rRs_ZwDFJdJN359G?%*;D1}*qQ;_W6GKV>WJnh8? zeJfBUXZ98jZPHeU9S#((Job#hOg_T4ZR%itBf!)RK}EC96O_oe!?0(utzDXB&Bj*< zoDlMILk>s_7cD-foX7H%1d}61tvnbY7?Oi4MR77f)VPKHtQAc7v5nY_l$dkD)5lPf zPzbYzCb>gI2nPGf5;og7XAAJfA#B;oOaJrrJ{!$?_|H+5Xrx)rFgv-`;(P16^}&Y< z2f2N)Z6+=Y32thcqaQ*QTn$~Es6fB^;vQ*zJRR_;?##e;&Y9{V3AeGJW_pnkpyqwf zCRl6Up0nl@loS@FR%xp;@5~n1J=w;2Ntjc#F+4+HO)FFSK)M-|-|!owtb5`-*{9i*i8v#0WeIMR-aBA?0jp)f>HJll;J&Bl~|^N(*t_ky7>= zx2{nOM8N8x{fqxqM@x;z)j5Mc6|JVxOx4J>4E>zdgRw6;(v~1FW&eu+MULN zZ#iaunO?eFp4_Pu|I_V;<81zar8oP(>N){Y;#v=0!v8<{2#jKh-2ZCzsrG?0!;=-J zeq)iRBoaQ!-X}IH8&n_l*@d{%-btXR)v$f)l%wPa>B+1Ij?@cmSiQaqoP*G3Igh)g z<^P`m{L)Ye*Dj68;$0{8li{@x_PpBK}mWkApmCHv>r zazC04h3Yj2TEU$b$>lQeCXI-IEnsoM2B|cflL=J0` z`V9~DapRb2L{E{V=uzmMV%E}+PihU#u&sh`h)oKR20Rg$yyu&F1ZQzPQBLgH^pM>V z9PvPB_^lOXUi06Q=j`>K0zmItn3ljn`tj(5oL^`{j_u)<;xfU78le*GeqDuMMSo;n z2pr^E62zYntQRQ&xn1dhOkiyHq?l{Fzo!6l+CZ%yPTrde3f^x@`gN|hGxbbJE++pq{XZIwGGu&GB9YVP92 zL$XsqCJq4Z%&CoOKm#zdD+&g@qp`iQf#y=#6;Cs@Hbg;sG11Z;-X{PODS*`Kz{T2< z(WOpb9nxq;$ZlX096jfc=HcIYYWG@n)XM54YHS}a!VT6lj+ji9X(S8?3ko1+A8OnO zIq2HgXc~9n5N39qh^vtt<|ZmL>;C*K=iz>Gc!WUQ*EtH7GGyc+4Tok^xIp?E5d(x= zwHnQq+2K0a`BVvZDcQzB7t+PpmyX8AzCPp%I85!#nnuuoR8b=*t4?=U3A=tY z2Oyw+7EX%6zyFtaM+rL_<_H8jM=`*kJ|WXC$BW?}H>~3SyM#FMdV{S1W(>@!pEjtx zW|7P!6tlVCR%#OuAC|X45)5%Mp9?j3|J<-&PiPr87)lx+zRYiSKsvbBowwtLS=9Bf zhMFkp4$0l?7DlmCzB-)#5L|2^b}QT8uIUKEl!|z~Qn%l#Gxo%dME5)$LK<1BB79H> zpZ%N7Ipe=(l$BzbX1OL9lf}sz&DsTNpL=OQo3tbc!#SO1Mp;ucJV)@hd+*JGqv7rg z3nnI5_arq0QO3#C ze3}F(l-^0IMYnc{t`)Y4;%YKSAjN0`(-g7mkHE$bj}$q{{wz1*_j@Yw&p{omysxf3 zC$#{p0YBpQc>N6dtsuH1l0dC)?=9a`zXuN>g8c%q#kUCGr*<8t_2dsH#4p@Welf~# zaCY|H7G)b7v8@81?>T3Kic^&81_G<|#4Mkvt|# z?StKj!rinR&$RhA4I2@#8W2H$FjCAG!6wB#O8y~1N`cr8-a@;i@C`Vcqx<41pM7h{iVDXJ@N7zfDN6*Mjte{sxmI&0GAHho1s?}(T)`i?#6(lXe)OA;}eM6yj zBM@6uAF@jr!OWb7v9*|8U04zgh2!hO4ti6++mDniswVF9XuPa%CwM_XZdbktR}rjN zU#pR78MK*Rc?1sS4R|s3tNMD9W-N8BzYzFsZBSJ0=7Db}6}Dj=3Rug5Rx%P0IWRro zS&oG73;uAWE zt?Y<{K;;C!6}=P+uCGf5N`A_etzO5n+tKY_Ta49R3&m)o=(@S-YGTOxANZ5{OZCXN zr=Mj(U1NBi=Lf+eQKW`@iKGjMSQBm!Sw^kxz!csJs`0c9UCHZ#x$<+_f$H(beY>cH2HABai?^acp1N( z>M-;>A0Npd^Y}v3pP97?MD^Esd^7@iHe3@Z;sPXhas?v_I?!&DmHogdGw3iy?N?IH zqwm2(;N^UYw&rhnqu=*wwsiw0;Z8)wbyb(a5r zq7&bn`RC1V@v{1442aNiPj-59wD0{T;#>t+bL%s$t>q0IS<;%HW zZSDU1=6u7Y{*}4)c?4BXH|LI3&rSJ{6^vOn0zIF0DXF0gyZQghghrRFRp*HS4;&poP+ScoPfU&P#eU-MLZ#(Tx8-f<1C2<6S8GDFnM{y|` z&j|B6g@E3y&9S*48q?Nu)dtnT(DN@VZuk?k|K(xJocm%@EU8psT@e8|4@fw&kLJ}d8qYB0tCl)!ib0!(uV z^vW`)7(*dcjDNc{ALgA<&malpm7 z{{T4CI_uw=BvaAFqi`q6CQPj+A}*Q7;H1eN4K8|D;R| z1c`XLCY)XhH@YG?QL7qone@AE+r z?#0n~{=BP)4?wZOz$-^z2a#sjg&rE+e=noPa+wDb-R)EYO^=z~p6}-*Ajh3G=+Y(t zSz=*8ZKM7(uTr~mM~)ogqY3DmN8U=Oef~OcE=dpVhp_?eG6|{Y%tBw>lKz(y>pvJ; zdyF`hk=JdGBrMFJ=@boF!U&7m1A{iX2PEf49vIXf>-0lh=DmaJAU-e(2L0uF-)UkI z7}f3sCIMYMXCO=1rouKgEzkG-x$hi2dp;D*va3Zm$tYK&K9EQbx%PT-Ygh%Xgewa@ ztLYt6HGSn+w#9acI`QCo_j%bSGtvDxAt5V8`q~w((^gz#-*{1TTDRxO%p23-R%14w zS_e6e#-`bh0bleHdYu^Pl1ZNJb77$M9#u|LmhOkTMy%EHY_oQ?zzLDkzK>uW>oHQK zkYJcL-Ry*bIQ`K^9qKE)>&Tb8weg8d{SYL{UzM^5_>Fbmwa4EWo{qIdQl#Zz1zza> zqS8^QhnhP=pHHc&JyC^KJbO0z9cS$jBLxmE4>-y6q`cVn#+`f`5d`xTbF=Jl!BVwZ zm8J4 zW)t3}1!|Nh0Nf)7k0{B4xC>Yu`(aF9xEfeAs?&(gN3ak?-=|y?ym0kCbRmu@tesBL zMyxDu+yur)XAsDIAn&4M$=Os^cWdE^iNE+07O+{?UNPR0FKSA58czw<18XTgqlp5h7z*LqDu_KI&h$%Tv~% z+iG)(3fm=Ymf@4S~ydcr^&^h<1V-{Y)Ok2xm{f%R*nCB_4*l2sJtv0JxT95j^F${lc>^vi**_1WA+ODG3cG201OubTc5IJkZrBr(v;xgv7NsITNCLE#$i zKk*a0VqZWARaiGKz+(3D9{Q)+2e|B)~CPn55C!uN1qm4vvCTFKKbjli;v=H@9Mgm1Q44H=rs_w%vWCchyu#S z<>!SyM^*|v#a_M9ye6;@tX~d&86#i+JEC&4y*Iu=2wBMc4~nhUkcWJ#d+oQ!KXV&5 zAAe7iO&gf_dv@w{oINoXb50W1@LmtSYyMOS!KR6P7SZ3vmXF{B5Gw>hB@DP@IH?QE z9gGZH%&V3$gQ;%x73G#Y%6U5%;~Ibd%lCXXpFCT>$&TWC`h**x$#s=?&&aq zSuFT(6Wh=%WD4e0iP#IC;vr2Ata>kO2g5vza|XOYWQ%FJ)kUHm%EZYiutsvdEeTaK zPna=9&=wZ`=itn}RBz;q{d!oPz+)M*t1RD0`84=4(;EFoqu7#Wo)pF?E0!fBI zn17U%3*N-@Y1~R6Tw|#&jmBHu6S3bJ179pN3g6mf{2?GO{lXTr7YY#An3E`N2FbX# zQFp&h)iJ)U{|!y<)X)RVuy)yn=%y+(-O`EmCFKhBlTD$aI_JdTw*0xzsbBw0(|=*Z zBYvVUH&5M%I2R(`+ulKhmIS|2_34IX8C$9+R)M@Qb=eaAw`2I{| zC0ji^WU;Gua+X?f)?%J9{QI<)L!jBviRGf@0-tqDS$BEQP@%?|v;JsC4#t46xlaVD z2_?`vM6a$Eg3&DyMHIUD=PODwEsgDI8*1gcrs>x+h*e~>E6n{f=-r^>({7}A^PNA0 z$*dqFIEQxtp_p3J(>2@#$ql#?qNd$0;d;10=nX&^o_*a`07g96fyeP)e+Z4BgKmug zjaeR&22xn#J~}WKed?g)4TW{of?kcNW7VtXm)?9B*?518qU1M)R}|zmS726CGKZOV zV9dBUOlYTv_ru<33{}}A5U$>8Bv6A^xw#EMo8w_;VJ*c`mm>9yWpR#4x>kgXw8GY8 zwm%r3I_^Y<2HTf7)FHqw?gT3@)}6L=fFkB(_=Ij%Gi`s|j5pK4LOY%WYq0DnLfpMs z*PkKnCufbOO}98?I1_~nai*x8#DyKmP?P(0^0S7HQ^RhvdhvgQgk>8 zz;=kZ3Y6qNF)GY$!&v8bLU$+@V$DVu-QuHsM!SM6aJHIIj*X)QbPoY-T`&&mgYM33 z>cYk6lrLI`RYp#6w5Z{Sr@6=Sb&{1FK_Y7=R0d2}eVZ-J1 z7IUi zt%fa{*PljQa)ld;i2nY^)qX9+;nn|~wR^ncYi?|*#PIPq_RHEz7xc?xuyJr`L?J}X zHMFzFdUeQ+n3sR_^e#s`U%j2r^y+alU3zb!s}e13S1jtl^`|%cg#^VoeY+gm@TN=2TA|Ki~2G0fX+0w(mC+UqH0BFOIc<*Qmij&c^O6xs+?J$l9Bgiuljf*(CkIi?s0FCq#FuS zg21!dhE9Qd*Q%{|P&^)Bx(caJgm8}LD`#)!;^)n-w`&~`7R?5445a{3+v<)eG6!^o z_IAN_W&FPB{;b7UHE4k&w{^E4E2-Q+uyth&(-&kwnDw|X)YaOa17kEX5xrzxFGxm5J7sFL+FcygLYs0Aw61p*a!GvI;;f$R>$J(Q?4gAUi$xs zrZW$Oa{b?bofINlHFiRgk0xZ_vnQf*j^wG3ifj|IFLSacTPP{ZSaUj>ld_C#lby2D zAj=qJX)I%%8M8dU+d1Fg|1Hei&;7iY>v~-Uu6h<&=FK^~c5Lrry7)oQYw{~{r<+Dj zllNnEQk)KA2X?D5tu#+{`EL8-xwu!+(z344?_>}BO=L8?b7+nrV1Vgg zpF+hkX9-d{V$MCj+yzxjKbWVvqM7FTq9~fA@RLI{0b6%744M0%TdQ0q-*)7Xm?U8SJcsGQItLP|O}(R8pG zRRyF}Wt-IsRr5wNjeH@{#ykjo&W|%8hkm<{S7q%wuudp6I8AQpUWw#Bi)62?fxJqz z7ay0Or@iN-KS#7ekmJ)m1Bv?~DSO0KUPms!hd%9vh)%9|W_-tV4M0S+nTqFrp4q~0 zL}J%7GaQTCNX@<-n-+2S2H>lL*vozq8_&TqY>_y(r@fC*(r2}#8>ot7 zhw)9ol7m{)o|6vzORDwd4MF8mFJP<%lfWfPxvcI~UKv;9QH{y7>U#HQRO(9XoKkO5 zc9{X@l16g+E0J!Y8zQ|Rz+}t&0e3;o8T=c;!PY61n-DQ3{jdzkZqPcs)`v{=jSU<4 z+>OR%o14#CM>v#WNrhn}jv9wJB#OX}ulH%vgaMPxF0EC;f2;y2s z<=$N>TRUAj%6R55GlOf~byykqO@B1H?F&n1D-y_I)?jy;)AhO#=QZ2K_m@=5cYS~t*UAi6)CYcwvT`Q_=j4h(&Itgb+@BOUWqOMG ztl1z~%;62+$OF^c57;AzgnvHtyi&lUT+d8}b}^Zt!_rHKS_W?VpLdnynyOfyp4AUgd zIksxKJM3y_ZGaTnXfzLcob09VlC^9o9mAV`nC6@jO)MNWa-bdoWIO(@d!X?lDW}&H zpAcvUTIG(uyG%p8;f=rV8?-NHkFt4l$jXjVWI~pb(3HCfwPA}22 zhHb4@f67yyj`(1VT#I5=dSj$(iy$#v$8rO<0j!3WuEw;=*6xAA+C2nEQxP5q3X0)J zYCM6cY=QQ78o7LRrcmPx^XZ5p#a>)`4oE%+>_>CJR1X5cuNyOW2g|RTjlHh33Yx~U z-R>pn;ucSkkQ;$iKyU(hjQ+A;BbZYOleRLKUwTsX1m1EUG#|FTI2g0%VlsJNLgoXI zv{BVfp(pKicb(j>ij*RUcN#b1t6O~ro|5zy1ZY*bOIaoL0_Kd&f4+`b?pfZF#t)O& zKiix5SHI&qhd|l$yXe7>a!+oPZnvu3OK8Kt3dueu;fB3&b|CGA`O){jO!;XRv0(S?eF1X?GQ3FoVrwlzWh*yF& zmW+6OO;C9IJF|Pd2FHu+il0AQxj$-$=)nPc{}rq)w-2i96C!tSQngPwk|rZ;#l z&D>%M<<_`d|Jz$@Dg@Xl^#vx$hY%YgE<)4}6&f1twJZ@Hp7%rUKI{dP#w_Y2d7m;J zkmq61Gk;QHBJtIr8SDf-^bY(-O8Jt7;EXQK<_kpqP^RI#=&&L*G`$h+q(0%TAR*}H zP%4=Hq9Zta9Fp`}$csm@SOl0*m>>k3JS}24u#oxBl00{Q9n}|Jj6oF7&65 z)Z%uY^ZyInQwLC8QdF>0>+OobmBDhf@FUDu;?#oVUd_YE&<}^=!^<3x zW$CO8Xq=Qq-|oOt;e2d~<@&~g7;n@B_HvZA$(&`-J&dcJh%vtY&)8;P59DrSij&T# zrMv_1ZGR@e$=vKTc*Er*nfp5>qWg1j5+ZvY1f8emR%3B%4|2a3%1s_pokcsy`o47J zc^qL4SXfjub~kdBO%Coj)OPo8C+Cd+V(rTwZLM%zv?|4`{w4t}J-|WQX#yNCPCG>j z;+7`^Nl=R)UC3-nKrCpWJOz#8B`XGhu$zjc!7_1FjG>z~tWzhtS5 zdIUdt^1UdwCaLz}*w={HcQWgyw~TZj4K++4yB;fo>xj?bOIG#F2R!U=;BZ{w~m zAqtZd;-CRk@Gr!V%-}Yb{Wur`?sWatWx#MTM(C2#=P%JB3=<+;3DP%zV&W zv~x2ud1o38RZ%QD2ag^wC;lr4dQ@hC-Ii{E;1nN^2Mfc$hzr_JK#%`PXZG3v91GFL z3IR5{aJrkoq|7Bg>>p2xJcGCGc=Iia`J|WtDgwBy0TIa72VT|Mtb+Hsm-LS5-_woz z{H@7u*~na9-g&M&kWEILX3}?1Cw6@Mu~uZR_wmS5{GveQk-k8Dr3({{V59Ws_o_Lp zNX^0!89j9S+zK56(U<+;*KHzx-g#%xBOrPoDVAc%H*(sshTR*SdAN}Pst@6#|A-(M zd{f|1Q52(+hUcx(%Q6pWj)&_vt3NJ0UMLlIwCH=q$AgY?3jn;q`8}M6mx&?ox#h#P zHG$Z{Fx!~(o09094xWfj99(ul`c?w(?6k}p&b=IM1^hGw@wKCOa;JQvEtY4C<2}<9wf8N8%ay>6!i#@@r=KPLm)umJx{4oMb%)lCTGuvVVr#49 z0*dON@m%*2iJ#T*?E>clGyC!!=#^s*9W+rpQzFidi#;9ceYJ4J#WGfUj?W`7Eb3a^ zrts}#F2BMMt1T{5dU}4sI#L0JW%uLJxzH3Dxtm~!*b*)>Gfc?F z7i&>@0IJbD%?M);xR!J6+~={45QR!!tCs(9kjiTv0tU&=FAnKWG63w~MsbN~wQd|+ zomkM;N;7}73wtv`)>GJFrASHLsekut{q9E$keQlIBz- zAw~u`|26vm2spbtCs|ux)aWr-GQaHinp-REzIY&tXA`$n(0-WrGdN-jxbom!Cwhqs zV+AgD%DR$2uaf+`d8pV^foVaf0A`5K(cfaFT|zTB5iCVDUtf*+X3UnMSd6B=o zSe56P_2WcTk)rN^}dcH#&PL;5sj%b0zYG%jCK1kIN6*8mt5v*kU)PR%u zSHjvP5RL_+s^+FpWscS+T7}OYzwb*)yfv`>31-gx%O}|=gCqT=6<#QZtUrt{h8Wi> zRJ68OTB1*S+)7{SnKNAv7bGwM!>%}B-XHEgK*hXRtEw(;Pc^_l^TJl4~espIZg3E$Lm+M zf0a*+8#!nL29>)1$T7RN^&cZ7XLzQ;Z4Zn*fHmmsrs`oSjd2Rfu?(t;fGhhi(KSX+>2ZBd49UAbTY zJn0ltu5iaB1fx0jy+zLEPb4Utd#;DD3rR_~ksQv0j5j>jo2=^1L_VFAZy6JKnP_^o zg3fKJHZ~!b&QC^2(dL(j?UH zt>=K^W>NxC;MFLKXV0-PpFh|RK#YR1fSrmsuT6(^? z-rYnLF(4IigN>e$ujAPIs~9xjnMUkof>dQbar=b|jStHdH3|7=`sMG$6^_i;3<`WNGw;xSYp!9MyO!{^1d|#2kH_dSxZaReR zfHRBIyxj+kwD?XS9J~TipSb!~a~Qi67f%Y$61U!XMYerItE&~R;U?6)UnIeCyP9V) zF}lPbjBd~ld>%xNvoJ|$6mwt~g4xO-TuN=omsJG*=7By+?)P^V)>$c8jMwL@1pnvx z=a-bKn>6cmPMN78G7QJ{e|*qp(0^);>my3X8-%q&+@9BNr%dqfsez`h0@0|>K7y)Q z^TsW%#RtCE2egI_RV2HM?RDilzAT6#i5gxS(|B)j=y{vY)&;;&cOFk#lZX5~?UWW@ zEyyH+WcYDfwZe0=;Dl);&H3&xqIrCxhb2Dd_G$cfmmY>~R$aVI3WROpKC~QxRRewm zhNdDl183VI^?@73=v1Q_18XXVhrImkg#n5(FAWySyIzw|4Us7jyPGIGyn$L2UO10L z4mac&o*XX9I0aV`VO)M!wUI9(499-1j_xi7uX5YQ&fdpf*OS-Z`5ghygZ`SZ(4m2s zb}LsG1WlcvvzH^=&fv?M0UrjQN{{gN9sBu-$iVd9C20|8Yge5f|K3^lXty-b?hM(x zdqXq66lQZ168=wtV@!^$yK|4=6Ouw9XfEdRi0yE3IDNi7f` zGC^8K&5`W@60oHHc?OW9F?p1I@*PS=22B*^wXy+AVc?Tg{u?5QP-1A-bOJ<5HqFL( z$JfoFE>!Ss7H|;Q518r#2dr5;{vSS{R0s*;Me8Mfsn@-3+0wRhp|wo0>f$g{!q7;O zvzTKvY&bJd23$>@p?*nnA_`0ZKYGO%7Y818xygOw%+rg>IwDkSi@V~t3vg>37z{w@ z43HW6k3mEOEug3$>IxtJ-3OLc} z8Q)WJjo_tAl(6Z*a_y?<#D7@5R8j;{c^P>=Korsa`JbKb>N@$m|D&sNUcFg2l{^^D z;cDHMyUugaYG#_s$zU z#5uJty6H{yee=68cG~jIykP5Np})EOGZcMY{+>L^gN-(M+oygf#jr!Ku@wZmI5}5< zhjD9Xd%B!!H>PF*FS2c}&dV-tM3! zV-$Ty(7kw;*wLexgPmT%Rh04b#JyVM1$Ya5g47sT>g?n(UTX&^WFE%5zOBs~|8%N5 zX!+N0aT(m#!^w;}Xr$D1~6oV{yF97f1aW~`TU+0YzweD#poCpnVH{5FF z>yS{hZB>5b2Qh1 zdlJmuQbXrm(QqFZ=lZ9EQDN7kko!KQO#xjQc`vx{A$D48U;A$)t9Sye?Pp9Lui3wy z1tj{tpeK23X-y0e+QNYF>yqp*&GiU^7tg1ycM;aOy^jB}Cv#yZj2+nnbh-fauR>6^ z>7vVPpkTwkb0mJSqA*u>R0h}AvrMr3g%9={`4C{8y57Zdn~2k{pgEOaittYWIT@n0 zEXZ(?ToS%#?ak=`7h?cm4e(9$-qVQd-MYjlmCIRcl+#SzSJzXr;>=+da-6v_&HrAA zNX-0}=*iREVihuXSAXPgXRI_yY1w!mF#5MMOSHSmhO)1;r57lFCcyX171ZumKBemZ zVSHHwf0RM=A#6WxtCpX1yTOhTcH;BKvId){c^o5B11-%JNZjc09E-H|Qapo>m$sJx zvH@D;0I6^r1SzfI+_2tB*G(zS;Z0zQ^FY+`JWkkwQSt>6mv3)dXN~KqmV$zTLegk- zN))?))b_bE124*+pM=;lHu*XQfN42q?U?AUM`~ofI{`*+$H@o47M~q_4uD&`zh#%) z!;N>J!87-AX+)4y4+m_{D?+U2|0+@ve(o>VEMWxAbe-erIaS`4+56aGAAvPF{d3&1 zv;{i^2)k$?2jcf6L?2)>NvI{Ox9W&oMqL~_=dFib={w6zlRxiiQgHqIaK%EpoHeL) zgF>Kf2|!{p>V4h?wi?!%k0YC{+Ua0xuU+swPf5MaiIovyuy0|0H{(`8E=4rI@Q z`~l`(dh=vuaatq+xRbLdN6S2rOar`bdjnsj7yrp;Qn|}Utha&s;*5qHZ3%v_|$ zGRyXC+h@h$Pwx^GlUhb!ER9)n9(_7X9*@VeROa@v-8FsP!5H@yd?Hk$aH)XSb^pdR zwE*h)<-i)5H@=0#ry}xY8&xad2 zc6ag)qEt-8W$BG#suaHGEC%`n6geBVU&g-#$vw)J3SzX`Mj>fVKt9Q@M7^b!n3Z; zhn?XMY|0M*iTa#YM@V}Vzh@qm66sp*7}j<>I0`&{Ik{aX=sy$g{MT!vVSar7Zy67S zExy^NwEmNB01xXF$^}u(f3?l*FZ#GYv^y4t`M`^C8ni& zsA2J~fN9-n{S{oh!YpB7uK4$daNTNuJO0aDC({*c7Rsv-c5nk#wiZ}JO4*z2gh;-7&@u-AtTOK*z%6s=M0PYBU6%b_UuF3M?~Z=ieC) ztFAluajFZY2`Za?(MPqYl5V=T*i-c3W6A-m0(sPV8*Ph*_)FhfMVk_HtivU&BUC`7 z*JA3>M zSIn8BTjw^ALzJtaV1oN+qqa`iezZh z4qy&TOaFdg%_w<*mTw}V%h7oK%+xbY$Fl?Rix-UfKs~W79yHby^7ag#D$0W@OImxZ}ybSEaY7! zeET4e_?Jmjn%l<%$BN?l3jYbfS08ugIuf}csM<|s3tW>H^=LH`!_7!$XGM1|Xz*-F z-39&w+=84!<#?j^@vXJH*6{4MHzcxEf23MrE6(8;@yi8&PH4v8tVV1)YqAwuVzGTp zfV9#!xtCMuORsVnzP*V<4K#vtSA1;8i%)MJNsMuNVWG`}8AyOQ6J@$qYtIpgJ!}@@Q1@*xPg;S`KgKj z-1=;d=9YfsujvKQ(p`y_R2JQVXCC$Zxb@5y$I`Q!uWT8Vp7+<_DE1+t!gQKyqKT}o z*ErI#7$>*Er9c*6jQi}clt&k8d7>FS9-5VHuN+vs`YY8Re=W7J=6eB_vTD$suylC@ zBM#`v@bGbM?FS63ZzGQD4{jpYt!SB5lY8sLG}UL%gm248oQg0J)2<<9fEteLEl-q+ zAD@BuhE#tBIn?Q~ePqS`8^C0uHoMMO{c#2`r&|d}-I^Fk*Nuo&7z3esL!nToCtH+w z^&c=>B9yy@1zeTjD}jshl0|@|9|0eWdD^psT1s9Fu)Zc+nHZ^#hqbjk|ND;NseBQ` zpu33#n6|pnuE(F(2LgzyBxvy%G+SCP52JQGKMKcq$cRbC#ZO=XJZUpP?U)8Yp=Y-q z5yLY$9uPzDr*XTFy2lA@;LriFQOI4eIVZLk=NLV|!w5v>8>Ci$u1ghtYj%LJo+cVs zhg*K8IPQzd4&$@G_GX2*L+*3x|9(4}KEGjFX@O|Z zozLg?K^W-CwB*M9BdV)g6nBO-t=U`pvE0VD_6E9yDIxOxFR4U$5thfF z7GJILu-J2b%!kWa!!g~s7vz5t7V`w!FVFr}82LOa5RrEEWqdmtW_>I>`|VLJO6FMf zThVxM!+b=h;sgoBM`~k2B*VqYJ|dyIs!f?Bq}80nTSn7N*23(-vFtA83NSCxx9O4hTT?4gi)xEsAA7|bfXo)tsEu;Q5d2VY&yJ2aC z6fo5&_;~~N(x<)$b7!&a_hw>ZbN$ggMBuIpj)`4YLN9LhfYQ;ab!|BXbbUBVua|yD zHyDK8lEE)_CA%hk$K&-?dz~ifvf53P;PCzcxyTcnq36xfYQISY)@eGxsv>;6WXF&d zB)T!1zLJQd%uVcbkUIzq2gui?6?@j(+`6(@qoQKCJv$l02)a|ibn2PL&O}f9@Gcu2 zaTBh4uU@C(Sh<)BGoT}VJj#i{8GYn^`~!%C6^#&Essu2p__E>~iGo$VT@nj-qlb&n z>$jTnp1qI+0}fBpu+FdP{!he2);v}OrE(X3Qc0HKh89*p`!jsJ%`GNbJkL{~Q6!CL z(E(;6ZRO0n`&uo>=@S2R&m?n`jve<+OeN74eu(C`u4K@;q@Jgqc#?U`vC2(_OaA3Q z8_C2XMof965idF7{30Rx3R~b746*w`)RPdg^_f*IZh2-F@U_Q|Tmq)?A@SVq8BlqE zj67n|^GUL^KF~%OU5gK(ZxtBgC0hkiYYSv-cE( zWDXQ(t4YfwM7RJc{jnk^x$qV}swDyh1=nw^GQn7n!6hqS--cixH`AOYvQ+IdjnY*R zG_7Sc|1WQ+K8v7>>-ZPz4lHuk%%e8;&&%I6##9Qoth=28pxe7e44YNjT zj@f!nB{(_JgGBPyL4yj$6$yHv!kF!4wEz0@?&hh(GpXA)ZZ8`SEzyiR=!KOl5^_trPF6fXbR8}{pLZpNd^M!O(+iW2jm!(n{DJ=&($SGWKz#1{=a{E{1R;?|X zTbw)=e*J_m_;npYIw<+WN^5c*u6J@1$9AFb8f_(6^xE#mBH3BEQ51Xe<9pAYT0z2<6TPM8`EipE0h+ zcK~sFXwr~=U+(X3uM}adbgzhWiF3q_pHEMhT8NIdH4(q7b$>)L)pWBa-l!t&Y=HmC zMi~j2h}KW)+1g8Ic^k75j2^1LTIb`h18p)}X3;gDcOgi$|MP1?Kg1H(+U%0XwK*Q;5ZVgemO6Is@QIaI3s}U(OjYO5M+R+}28dt48z@0Zgre zsQko9AR`C#D6l=oA#nN$y0ziRNTJyJ7Nv3UJ&%vJu!GES?Em<1a7speWFHRvYps;! zDf;YABe=3CiS>OpS3|N`ADlO<9(zZSOXjZQANj$7_-w*CAZPNr0B8;5rU9|8K(X+O z;fywoV!3p-D3%9p-Q}L%`gm8p;KH~6t5H4vgC`)kTd6vc-g#b~oM`3*$9jIK0mx+A zP_a`Of7!&ym4^tK)@YQ;96m}k3Fb3e-eUOc?$vDiz!SgviqJwSRDEpMCk)r zQ=PNKUB7zfMpBe3nm?g>^YWB|h-v0gxk5qo_|LCqL>CYhm zl|8L)v|m5c5%rtQZTP?j+SY7Cw1i6LQ_7^;a(+%0`Dj zHIJ~8f_;%@q!z{P@i{5%_%EX7iZ!}(MGf{qMn7WIsf+9|C%MmG9=Pl-jxiDXp^c|b z3S@$!0}i(D%*3wO+Ddy#L*;1p2u(4@dtUxbQ^a}f0Y+1CI22o_@OqPBAWhi2(uHK7 zZ#7szu91*ELY^|Sr(D@0_VOpLHZ?_#0Sz*i`ba_DC&UPyNO8_1{0F1YoZ@X_^Qi9V zLvZt>zo6`a2m+FckY9O&gQH1TajFIM_YmA)fAm%*Xc<|CRVr8B+%GN?PzTv-Jm2xH zIz~^x9BIhkEsCby8Vmw5lxSAN;_#|9kFHu@2^rn!dhay(Iy&T)ZE~N7;i|p%^)mo?66Ml?1+I2<{p2t;$=a=(@mc9usLDIrhePZa18sO( zESzo={tyK(rh2$EROsxdOZ~_a?g;!)r1zb?8}M2Q{Z=~9mh5a`C`jDe8mF*c;+Nb* zCQ^Aqs|F0$bBLW%i(o{{iI7B@>pEqU{RyYRbZ3ID>k$Cd#&2$}BzAo-kUh0D%J>v| zJkZn5nrofita|B9fHj(FV29RU;NkW>TC*FQK+?Sy^C((-7hWnftid$2^--eV z@pDxo;AUVMEY^KN_7)5FmndK58iG3&W67YGUbVAog!UryZ4mHMfWqp=FCgO!#Ito& zKT$GYys1un(-vCv_J2DE+-@{cpb7P`v5E3N z;|M;Ls--_=Cg3H003eUIJKQLt==8#j#5JrukoSNbWbApRS%|ouIGZsIqOURe{qN_e zF$frbfXRTm@;Rnn;$gIo{#=wXRhQV&tqFwCY~7T(S9bCUvwU`W+zO(0n&b0`fw*Z=&WG@j+$^jjU0+= z$B&bJ-T|Ag4D&b*Fz<(tN!ppmUQknFRV_2Xq-W+~VKmAv56TH_@<~Eeu%psuuETsn zAR&c4jaJEYfXCmBFy9z}SEGOIXNo;{hHvdh6#VdWL-$u>;OjjT@`p!rQdeg}j0e8% zCJEHE!Qi!!y*o5j^_lkZHk`nl(ha<|%jfi)y;+9NoH$lPQd;-@rrt&CATNGFhe4uE?{mxbFh@lS}99!b!$8AhC%JJ`ak;ON&tbW<=50g zkS0+Szvk&Oo8iPGrzG0p?1NlNP0@`~XX&i8{V4X)=U zhyn=b;=Bcpq{C-`0szF#+bQjZ3YpLIL#}`1>RxAY`)7d2f)#xbTvoaK9p*`?Of0}r z!Vzc$?8n?c@U*o%J>d`c5Ec4lrrrptUT25aN$Z;BUY1&X}Qp2(cw2S`}fCk@t zj;9!06dx%*{iyKW@4sZvB^#MbCt%r%uHc7bMChnwmFzxhf;T?dud8K%t}nd^Vz=fM z=DTUUGZ!B0iUPi+e4x6YP{)ya!qzIiQ~xCPEYFA{F}h+;N(Am%cNm8hl{=6T*p{cnUy*^xU2zF2r##D)g+|7l54 z2~!1C3sbS{`#bb0Uo4CCZ4iJDMLRt0B|Ci*wg*9=dk!Au0DsBYcUWDI;zfm7gLoJ4 zZ)WX+YiL$@F}L?J(RI=qoo!FmbXX0;@$q(Z5V#N!^5hSS2% zbNGq%_IH+jCRVA+iy-6*IV)l9_^#M|MQwSI-(N#y`0Q+b_|5hy)o!#F9%)Pm4V$u2yt%fjDaek+_ zWqTD=_q(1@3@S81UW2WHw=H}FO@Jf{Vr1DkwB!z$1&QDIa8ols0YdjHvfKRWQFiZD z8~%#EcfUW3gB0~lE$ku>fqLmFvEmd1yQ-1}V0EC*FWdSp6a24(U$N`fuP(2Xh4r-c+S~k-_*a(82dy8>d)!Vd@vA4Q@{-X^<;7eAhPw}E1jbXlT8RD< z(>%4JV3?^KaPW&C=)0Zne<*sG0;bZTIrkfE0&B=Y!2#a|%6U6^?-0OLX>;R$>;OCf zu@6%f!H}HN-@R*FT|7_EqZEVRY;m&%+_r2#E4y;^a(r1^XH6E{tzVwUdwY+IJq=g{ zy!o)<8(m#16!Ruo|1qPz;Y!_T%xJ11e%3cYryClAkU9&wL+}dQw_nl_r~$Vm>3PiO ziw!N1OS-}Kd!vFD`U3KuNJufv<|aruUdp6`i?w2@d75N&%ofJ|%zFb(*}uRX!zeaW;DiQ>IosOKz3u?3 zygj^cpQ2Lwt}JhOSuUB6!rKyr$%y<#z|DsH>Fx|b7XXPcEkNj0BN4uaqbF{G)p*(J znNNdKIBPFK6YYz4+%-_E{VIcm^_jGj;8kE*Q&~wW0zk&dueR55E7HWIiw2Si;$uu( z5vx$|>W%W}75>Mu5wyY&gyzl(bRf%o9?b8n5|?!VFdByK8WucC1SZx6-F`*b zAjYba-YqSo4<%b&foDv z5e#4#6}M~xhJ{cgR9eTYk>lrN*Gx9yA%T=WZh(zv_a#qCxb6WY<(CBU@+i=PIZYi; zE&HSFE(?yl`#jgYk}&w*(PwGS|r7*M6+m#VcJ zg@iZU6aM`OQDqPJh-+5kdt@~5-@X?l4@WD*1FDizjE>+fgnYZ%Ti{xPVa@FINq0qtzJxWp9=WWJV9#9)3B*cue_P)ROyM(%dvA~` z=)873IP({w`_rzf@pB>!j?$46%S`0uciBjic&Bn}61*3#eP!B;h!4bvpAgAnBdydC z6w%8CX4xV`N!dNir}>PqRY;_v$?@1C47S&P-S11 zM}S!(k4)3f-yGK^(&LQIO@k74A%Ej5@BW|8^&nEpBmyI@kdYC)x`F8F{E(qRaL+jg z#UHYt6e5DO#?Qe0V2!SPxJV(RiT`r50s9|TF!U913Nl}pLczwDzmffOI(6si*SX&95;tGqF94?Z4ta`aEVsEfG9eg_6er^;>x8%~(a z(x*X&X|<_}!>8sAKY${tweKTrNcnVD9kK6pG_el+OZN4IGCX$M)qPqwC=+Y7_xU7? zy6YT>U!kiXnS@;U(WSvKT-ng9Qj#s*XQvI?E{uQHiB0gm!J0<{^Ciap^V}^Dmt7G^ z+?!Qnz)O5CE%NIM-|=rlPYsP=KD>L?3%s^0JyP&0|LpW!#z-hbfGVKOv^_W6as~L` zOXD_xZM0tq)W4vNhXJ^6in+xxd>BtP%CR#_fJl5HxVfl-W~pf@2f6k_cQhrtQT|8; z`TAcB-p7GkcataY5nkfysZ$bUQw{I=P}VU#=}pH1y>6t&PUYoSMT>CJXf1^oN`JZM zt4nvpUn6ZI3|?YqPx_UNG6Ur9tuU}-V#MBKUi#Q!q3J0ma<~+To&#)6g7vMTqO)<@ z34;u{Vw1oBau{wy2QQ77c9_N@MbdW*lnJoyho`%d!^z$v%U{UC6WikbApH{i<3LJMkI1Dq}!! zaO@^=fpcF|#E{};Jb1%{o>E+wyYh>09^j8wZ?1*XSmXYK0EoD|C zhK;gIJFx3yBPdcnQ+H4>rC&A^A4QYtM--snoWhql+9{!PC7xz$;Nd=gS>}?swqDO> zb;<2?BO4SecjoI^n=m3Zh_Q6D4n&y_OFfae)q&kW1PlHwf?EvLqv3^}xaf3!1nW

      1Ds7kvWW;{C6?N*o+dC--x z=kfzu0s((6RVc?WHc($Fp;^EAR+OcNMvq|fPY_`isVrN5%;lA$GJh$4c_)s1D9QGj zuhz)%_!A2Cyk3p7BcF7&Zgo#kV<#-z)aqeL-0-G#AbyTiN$f|kf7ng#jbM0koZ+$u z!;(*WQl+xsjUOWZZq9QMyeF3JZ?^xgMYa9#KsGIIYIwo@?-BmtJ<-Hv9yW4Q zX$pEg;9`s#WX|RJD1jFVN1y#}h;~+uLFci*hQZwJFZd z$EN}$>Yl2?BfmduLS%Cn4{0_{-fb^!$`1P$ex*q)hzs9fnDPJ|s^9;d!9g~UU;IbA0||FjwGuGLb{b66p!Lw$>ICMJx6bvy@H|oy z7@2wX5AfEmRa%0Ff4HpE)N^Al+ov)2ubQyta+vq;d9_7-b)l4@w={`SnIN(T?onh= zQ?Kr)+HXnOvOvrBL*d+dKoVNAJ5A|&gm!?FIgW&kn)(xkp#B5Wg*b=8nFiTTQe?E) zK5qg3|MwBY$M#z=Q84Ra{oFLEd}_{Vd<Y-Y!-mU&nFru_#e~DSE z*-r=rQx(L@9sm*)wkZwquv>PWJ2!mZ7)ePEzill3(7Fr5q^wP1CdsP1zI(@$_nC}^ z)T(aE(~VqaZt1CAZI3yKMdbuG05of*nE~3Y2{21w=xE7{u7MYu=N&zex=hTeK=VWl z;(H7)7!b%VCSc82A$0+6#Du=Y0{=B?R>E+g_12sg)Aw;%sS=tp zW5>PB#}nCa_x)pen5}ihT=IjCd=+W*v&iP~_S&sw+RksK5_Fy%m}Yb5BR_%s>teOy zicZ;_f~baZ#MreL(IOwD5QQH8d`i1ldut%}_zV(wlUFH{5L_bp-2Il6LkX?G7`^2s zvELpR8S-;zD5ilI<*Ijk6&A*iYRdeIs#X||3xHj_UOf21M<@C`DYbK^2iM&JVRhr>2Rm548Zq&zifN4`8 zy zrufFd2uK6aLt51xJk0zu@9PI7=20XXklbf@OeBGXE|lIkS|swa&&v8TCr?=5%zG6w z9KaoS{;E^r%?BxHMK?k?+cTlceEj5|KVk$P#&xlA?-d z{j5G8aiYaxPiLoYgujIA``LdyEPnrV(52*z#H*v;=l>j`lrc|VdX=8z+$sR}DRY_J zD8r37yiRw)zBxaqJfLr(GDZsyrq8W`z;+OQ&8^m{lqNMm9UiMlUk`o=G1l zBo%~g7ZU?p*rj5%7ax{$9y{8MrPuH7fDtyQ;p0+IyHBU!(^bHOw^cV${&-D5D}n2- z7hF5D6%8g)#FY~*kwcS%-_RiSYbScnn2|7N45B>pT|bmI{QUmTE+=R#%{FQI2~S`u zP)0np7bAkMy)duWN4sW^$lAbgitM}7`MR>AXm)|Y5l4cq ziKcV#M86bxTIc1H@{^;*sM-3|*Zx~$9W}{JfyvPBC0gt33;f@9PZm$ZIxoKe?Oxd} z7(Y}Rxj9%Al)m`sl}~W<*!6|cOr6@@jU1H!{R9)B`{q! zehc_WTLEj+*cBP%hT1{YlhMs;dD>hJw@?6`S1ohW$&Id+q02eI!v``z z;+@l!igcCG6wF4MnC5MLvRgY;9yLdUG0!<)fx0d#p8{m1yU zvtWv*|H#g+AJXrHfm0P?_oBRgf{tD1xWe=HO-nSj%!8w=0_U`cjGuEX?~{}IiuqXX z7wvTP&BcmH_;B%~(dEm;XF)AcN9*^3C-|dWD;o9cI3T;mNup*W%eZ}Z3jUUfZXV3e zzSwYInBrIo{Ld6KL9|wnoC8UBdZ!K;_$B~|4&^YjUDfg2l}d7@WM$=kPnX;{A`A8M zA@__y!q%GWgPihkAQRRJtNx|XN8$z|2tG`mS5Jm>L>(eT{XOOp6Ac1uRhnM+J|}WUWl0ERTYl zm+Q;jSM0&plT7k=JiKK%W?`x`$$S+>c6WO0$lQ6oZd3*hz*s7Q^1)$8tI>)(AJ4vDhq7NSVv6Xo22-bp8U)O!2%fW#j6mA z6j=*4Izy}@vR1N)Eo(OFx2V*I>@>{*YJ)29=FK)o zc!lF%RxV9{Jabp^vGFbs+;FKrgO!~{BQBPswQ^U$K=_TBRtkEnp(U_J1(bIQzlF!r6V2jF#5>Lc>)xV;fsL?ta}7yw~jx!H@f3?kdme zSHRZsSHF+0nY7~ve_I^Ano|ZyHvb9vCO?0ZXHX8atJk&qm7LA`W4)MQ1Pp|DaJE@Tz*gpaTh!$rXhTDv-RU`H-I zHkXg2r|Qg(4f8XOHn}=md^CxMH(c=^=x<=-!GgQ9mHW0z-MUo9=!>iLgFY4!xu;8;nzd5#r0JhA&=H^(jQ_;uVUla z(zhExOIu0Aml%Q}H^^uO>oTK{jk-i0uJ4tPw;MzURp?{+@l-|xD9{dG>~ zy1E>h`+nWe*Yo*!qF}v|+U~I+!c=3|PC+ZxeXTSny~Gfr!vF+DzWwf>XBuLs4b^mT z;`0|Rb7$YPHM_v>9@$+)Fa@QSRiPO5{}7KeJJ?Wo73O9&Zvqp0e!GEtu~+}dvftAs zVYyrxwdf&uopJo0JAaof_;R~zaqYoE-Cpez`SztUYL`A<(3$A&q{4kd%+)Jj(@Ui)|Gi5oVlvG${1XVInZ&r; z|NTwtH2PrKB-3${O*u!3)&htJNSzB!?V3QeeC?RN%qN4gd3wRz#HNVwV5}NZVp-9A z6dq-r=n_vc#XJYCiKx|p#F$jNICz~J;K4@Hxl4u81I{xnXG>`0aWJ<49mSCsVy&8k zxtlkr6Bsoa6ULiB5XsfX{9W2e^!``)&OozB`-jsv&@J@1ciOaPcXN(bl(11ufr?^> z!0%i8U;yuP?>`L`DGXhnzGh53?`(+TL@(Wy@a}zD)iK)_Ztgq0S)g7oGlw__$qb!i z8dkuPN&{b&A^5K{5On;6aAqB=a4C8bx2AGd|H3U$%gC9Zt?e<*L->Vd$r4yMn?>8p zS}n%YnEhmFaD0%+M;^^f=;&~K20m!xi9-Q&R8$NFHh2rVrx-jViQFOF9 zlI;1nxTQ~ou_LH>#nc!u!G(Ypcz^llLR9oc=1CV_zjVCc!c&!_Vj4KxJYr*mHWDvuXawE2 zRI6$INjknf38H%Q!)rBtagST*Wvi9Lb4w>4!&8;4jg8kEpr2QCtz6i2 zf6M8d$L)(4(z#*4#iHL5LQnV<$IBG4S7jq7d<~^UX=<8aRJ%Qlc=u1Mv{sG!qK>w-!Ramv1xP$YC`}LbL@t}D%HwQe0sa-uK%GzeWau7W*u%{FC z{>(#;u$;moKnYl!zmPH)9 zZ0BhKJKMf-velvz}4arN7RKz!*@=jT{bUy87YD??V_9 z5kc(q*IK~XL9+ryCUn^Sm z=8t5Ys%J>bKKiOD#X2IIuIG?yoGWp&dzk%>FTnd^=VLM_y0IH6!gC0_m+Omli10?0 z0;)FA&Z|)i%Pu2EtoN`}pvSH_)-ULn_eGd@dGF?E2-j+|xaAY1*~l5vng~=rjcO&~ z3+6h(7&oS6<`K?owQSN{V*f38Ew(Pi-z+v)QtAW2Css| zOF35aA`fBYu))~SOC@wM#3uQuGP59-)=X-qB4lihk-x}O^}u1PVoLbDsejVEVos38 z^fuWWKn!5GrAIdBE?tn&qMOP$T3(s{>TTRwH*YMWd#DPG$W{McsRbQb$9&iiS8ad! zJwY(sVKv+semk)2%lIW%cWovtDB?B`Ct~4lxH^M*GJ7&M$VWWwSA@tKOqUNxt5-qM2PFFp;z9QCbC+xoU4At?e>>GVaRi7G0aY*@XOVM}TXO++_9y_4ES$%;c-& zHW_&OPn|J(@3^(`ChCqhXb_VM$)5vvQKf~J;;ju1w5c%T2E^4-(4QO>L^8JCdwf@|L`u4#I z!2vAzaWMQzMSW)6)UB3ON3Y8K9K<_QV*{|Pc^&z(oU{ovTsyj;!csFgBoB;hq@rjh zARCU(vnOSQnCxEWVAs&sWWG?EE!L zD5EkE)0fpcA&)hWlRRi8oJC_iCj@?Mg?^(AC(u1Ng_i9?^U_I!x#+mMCZBt^&Fa5a z>0py}Y(%EX6n`C%pCJD}5v#RLrjHNo0#*Iq>_l>m2bH zEYHUg*K5e@rIb2gpp*~%y;T9vgZWlx{j)u@Ms}E)fx@q6N21y%aUI&@RcwZ@5a4iJ z-#eUs_&}c6eaYa=0_eAa&2mJ_s?>7$(Mqs)Ui>MZ0YampNr<+@h;=H6$tBi(HQnhZ zdsQUqr`w(lw&i=5`N|{!8e-x}OV45jtGDl?bp#S{o|#Q&rCw7hd4(t18)_FlFJ8t7P{B2%+$&kNKmX%&&MUimRPP!(q{`_lN-Qy!OovwD%@x zOi%db3)+3{{zm>Dg+}*gqkW)hzn5Wculz^llo8wG0)XPxa`J;+t zK9*uvn=fi3Z4iF>BsF9278Qbc2}=s*>>NEt52I3Vmwi{}&w}^P4UiBVJxj&fo2o1z9xa202C#J&PlMoYMR&}GHUI>@?n=2r#hsg$X*!YcW za@_j0AOc)+9dC=l5Lp zH_oSAwb0z_IqL^_PA(HA3MiIGpaTXs8RX5ET>2d5_^$K!J}I%9;n}b0aIZZ@!>06g zFl`=)tIUt0_T`~>u14rzQ^`WDrx=Goa8RQEsbYPo$4>ygKN2<3lHqqFV&?%=!5#K6 zm*jGsz%EYPA7+ddbOKSPNMc>&-Xg-vQU6+&pkgZbXU@acwl&@flzaMNmWE-G-3K+b z1MShKY zCKgqH9ACLa{(dpD1Rv5jeYKzO*W!r)#pZ)W_x@-jTPSxLoWo^@IEU9j$t9!2qBA0b z-3oD{cFUHG;L5{R&Rw#^$#{$Dwd6^FFuti#(hX+(8&mK@&C-70?oRf70QL3rBVdY( zQRdcNU%3j+spzX7F|{cm>&Nxsz8?e&X1*eZW;tvhymmDbb3mqud2&Da-9pi|@pUEE zgwO4(lZpxXmugws=MK32pq?r-LA^ZWf2VTRGBj=vkV@N3>d^b z9pKW=i};mG6b$$R!SPOqF}_>VKea0gNB$&ZIp|r z3E=Zl;J!1S>!jS83T8m8i;F+^ON^bga!-A*jx9l^1P0;LsX=?&11EpN{Wjs?8N7*U zEe{-`k&5i|&hPWQNbb5aybTyUFwux_lMj0+B-VQZ*fjR}9~66i)=CZnE5f*+ydJKO zS9snbg~aOGra&E`b)rZ`^{;JR4^-KAl9YmjY^RZ5w`MmBGdAwv)Z})J)W2tBpx~q1{O*Dy^1OoCOHC@Km(yhQs zEbI815<|VJ8AVh$WEXMCT))U#cT7DrTO>}ouX@U4%j35Q+WFe${y!&>I1!0p*fS9C zL>77E+OHLbIC^SKYUM`H}2P#o0!3JewdPNB#pyd-(dUf@4n-;u9~$ZHd0-*~5{h zJy_pLKyNj$CdY;dE6UqHiGrsstVQnqY*M-QPX*8S)5L(B!@C8Y#XT*PBn7&*Y^Zam z?I^|9|MX$@ABpoq|Mgt#&qtT%=iV)wchcC#)Z!GAXCGu7{=S%c=u^bNM8}aIts1N{ z%g#ZOTPN1j9uR)!{{=L4foZwW*Vq;dkKx_q0TQ6vo~t=w$Wg3c-i4lDXKmoN zF%jUUMWd%(S>ap=$yp^WhI4dwY#fhb`C!++k&M3ZBbY|41m8Ev<46L0tf%)sk$~iS zAGH}F+xG5am-(8&T6%!h*NJ(-^W^+oZ~{zu6#CTy8YHJ>Ws;sz>8zUY4Vj8<_$>ld z^a$ri)8uZ_8M=e`($jw(ydyLZSm@Qc0i?6? zOsXOx@*1s556kGy!2U&+^{ez$D&6NuyZ4N7TniO&XWBR~m%LyD0Y4RsL;PqCT1&!@ z6R3N_EjYk4zcn_X>HH+N;$YM^Pvq@@^}E;h%(yoHR5j7cQ&2)5v;u=BXV0##6nA4h z)oDf$%T=}s%2kXz+|1@bM4;zNy)R4s`WTEYr03qZfhY#~>3H_bwr@*h))-EqwyDYc zxNY7g!k%HoV!`)9>!TbxzlP%aef5H8DC-!OrV?1uw~qCc_oB9X*ev|k*F5zG(d3O1 z8%3F~Yj3o6|LF5s_So|o{;4=UaA${`O(19*nW5Lwh683^M9;^c|5rVaT(QQkJhpMq zR~zP_!$9^SL+3V{{ghax<8Ygh!%V$|;{JZ;n%N(Y=sni$JbpFXPp)_~3FQcaO+ybf zun>m#3#n5hl&wi_pjV|HAQ2qZ?wQxPCY67QnSXx`@@y-*Of7uv`nS+0-2aL-;jI7b zuaC6AGQ{pO|G#h*RZr)GQ+ht?fFpMknET7V+FtZCy^W?!9k^0Mt})3@ytjzvq^F{E zKut1o{)1SqfSkus=EP>#n7S(MH?YH*{xR^e`gu1mW&AK|o)`k1?7SmhmZDV4h04B- zmwWWsk=DF}VW|t2Ag@G$S*9WmXRfy$auL{Dz)bqKc$-)f-g2!zErW2#@l3((A9FLC z_V61mtwccKW_YQHla+STzEctA0*iWev)l3SOj)XRy#mjhjiXo2Y+G(v#E0@9X@9wY z&lp@bWujZfeok1wv$tb15d8TpW;EfhYQ%kW%o$S@_iBA(=s-_%S@VIr!WZspWKU1O z7ymlDdcEph$IsjpfmJ?SvE%}MMtW27#@{Op1(=>2IfZtWOZqRH3@@xkbNfHiw;E|L z)BzNPAAO6z-otC1i!=KHW*26tp4cU3A+6SK38Hxfx|)brY{UtT%Y@RS;%nfLx#!#s zg3ZxH){3-Xn9QKNGl22@F9bBdVwQjg-W$r?5kkxxV?QA>lxzFpT8c^Hw6E%ZxVA(2 zlt%D&?|J2vFs%E3Dct|6yN~4K`=<0mZV4`^@4NFGvk8)$H95P4%2LS2nm~jLqTsQ)1Jhdiw2e0EWB?@77qXLwLVAS4O29capX$bF7yCN?}M4^ zKwr=%rUqgv-P%SXB3mEGD-z(HSc^j_OON|{ZA+Tg)` z_prkV7ga_SHnk%eIMQhyw&SmtuVJ`vqdr|cRXTHZ5ZU8QM~dCwN9}!Fh93`VXz7w7 z-9y(4s~E9MY)nDr*dx{;!=cssSV=dct-k*`^u?=60V}jV#X_*Z0oKM1lav?#yow=% zzc+!&?ePfsWO^N=iH$D#Jyf5p2+f370$^;5bImghW-0>>&Ot^Tu^OaO{@)GFJJXdD zRVYOG&r%*vI(=(KYHJfrfX(?9-Lu!ML%|(lzYrzH`Fizr4aCXk$!QM6&;J;wWw>y5 z9%tZIU_>y$um`;5Oh2k zl|A&%1e3&X19S2y9;0kPK(zccCO9(~6@5nVRyojTs>~O{bfh~_ksKY z2}hX1eA(;-zBN-eI2gW{-xAE2&sgihHKf=n??+Hu52IK!Xt#n2&Fx>?N(3v`gXaWz zt)Zc{IS&`sB|!qX6vlPYo=)tXIf19F9ftH+;Mie(0eJFwLAU-Ld*Y^RN9Uxr6(~w?@@LZ2?r#%5*$d3Bnu*c@Y zolW4)rqEVE%p_8)YX1Kfl{8LJ8dB6iQKpNgqi4^mj1MMG$(~qUE`|pMyxte{z)q^9 zKE0s;T2!0*fQ8wncYEd|o%QK=*MPj9pQ7Jb*^7-djhDW?u}TN_6WyPE-`$I{o7Rr^}G( zxCNIS^#;Ft%Mp207J~BFsd6w+V=th4FmsvmcA5;Ju(5lpN(vy_YO^2S%wR>euX==Y zaaezvNy|r{Lubz1Mki@RlCzQX4hiCX8dH3am?bzC^W225>PfN$=+&EPLI;XeXwADB zP5e|vpQ+Kp&Y$SY6LEq#O`BmcEBKe|n`)iRs{5GXEif|Yq-qvjgwql>!EZ!% zYkX}z6)_zkn?o(MIrx2Pw z1o}n(l&ewhzI;09zSI*b(j6rdJu&0_R$jmGrAbI!4S9aiBVzfoqFMWAHk~zB5VAplS;52i z&(&*01+QEL-ZQ^O0Fee|p^<`E)5sp~Y4`o&rBr?4lT@%{Evo}Z4F$=t270&c2fNTa zR(1(@gX?BeQIm9eXK%ikzD`53Eq(}}?B?kUp}POd9l%K*4oDuTOCxWFWlFg(hq9m7 z-F;qquGBf3-jMp}KzzyQ8t3pvVsCo&aC!WvLdP!$ML$Gf=xM0B=%>GES*-2J9*C*~ z>qF!S?ws`yYrDky{I!lKW+Hao7g?EIa=YG$yK$?*8q1Ium;&X1ATI(NYe!n2JWP(s zT?R{b(zCdNut;_Pu|`QedBZC?m=~}eIk|2MwUGfU@l{R^ zsisHcBw{L2v=&f3^55ld`~0J+eiZHE zemxIbO+;dj5x^~|UArT=(xS5R1tXec13c&R`#Z@Y2$F)I;<6v2TVjHNtMRtfx)7$I z_s()tT>IOe{%u2%NK1^p&!`ggv zuc&;&XB`DJDEC_A3qY4uFHK~%{9yEnI%Z=XKVYP0fKhE$-vgL7u7xY85o!%LT^w+M z<FV=N0oLOI6wWAcmI_IIc~U2&g@7L8OwP>Xjp%jw6$@Z{S| zVA>OScv(q6F#bPq5B03d)-bDS1uRL{Y1t$herq!{Y}zEiE&oFo4Sx}xEQ|FR2hW^B za=4M=J*c?%spena!|5SUPAtQVh{#ZYqSP;!sLDUqCi(JK3Atpd>jAlbZpAucc3W}z zTIjgOTUAGe&vX>3GXcFyu{}^e|D|1;wzY_FBfQ>uS^W0M!(;YZnDvu+UNEt9pzIPp zXCCLG3s|#nuAargvEgH<(1$J|Nn$h`m<%>nA4&Kch?X5ahd;;c$X_sox3aNy&y;?* z5nkfYF(7vN!?N~W=x(sU<@CC+nmnxvW?v}UN2lC5+KLHmWhH0!LQF$oe~nmZ3nwt@U9p;3lPDljei! zNT)5{=_xjv7Y;l*Mla;v=>O}x_nxIa*L45C#}}B-%31(#DEbk4H9OKD(JZhb#_c?b zgP9C76L&sgU0kVzi5UTzUx-@JpAmG$vsO;CTJM;vRbfD@RCQsKHH=|*?ErOG=*JIt zgQw%(4hd3<;&N!sUaiiAtFo0UYDA5`wtEtv3|+5#uA+Z$WCFCAkL|o_Abu0L7+TE? zuFE_AR|O79!PdbJ83@ozC!8ZIKu@$wF-91K^6@%iPZh5OH2@wd+Zce}tEaL|!n{Cj z{o2-=0-7~0epY!F+Vr{BfuiJJY&uC@b$sw>&RdA)z3_UR!F7Vtu zWMno=ZYxzq_{Z1jJp%tS(=yiBBBnN>phD(}Ie6AB8u1_C8yM&$g>IBw_Yn^0INAeB zoYAzvya*W_FtK3tPoo;PPj<)>2J)!+L7<=38Lf94J+r|9mRTZs-oN+@Xg`|!o3LiG zq74+WDc(`EC^rBdn&|Bg{wGaU=-}vk)ovO2L`tlSNOt?vfe*1>SEb>#^4)<~N(=#b z<@K*8sGnf_9w_JzTFlt_5zlgZz}`3%&Z83;hL@$;W3vj9aY@z*wm>3cxE{v{ifi@+Vc*ian@ zVx+u7`cfm49hU>Hw{9}Pqby2sy@5Ut)xJFb_JRfDqB!Xp%zs*W%HQpo1YY*nbyAND zX&4Ob5#h%7+K!C?LUY8rvY#18_dhYpF?Cg{GtkSI2RcBdYslo@$$A|!cuwx(a?C?$ zZG$aG=HzZqHv^5y29vKrfIY(!FP3^Fn@X|zK(ID4BorkvC>$#8_&=eAIl2)a0`Y+| zq?5{mKXY^9nn@d$wLIL$~OtIpW@eljR%k@uk z>uyoebHh8uQB&m>q#%$yrr+qzc)EY#$N4qOfQ;+t&A@b^S*-6dlA^BzQpWXYZxGM* z0=a_aCXP<-aN&t>+?PvpEHve&&fdPt+#U4vllNHfv&-$3KZaB#Us}f%HH^ZEmri;} z5*XoAuFFP;uxmUy%x`|sHWzU%&mP__TL$LSIX+d5b=mJE;t{BhqH*PhxQNn2Y7+Zc z^68KN_)#YuSxoNVbY@f{mcv04zjf~F0LLv^rE5#4(XLT8b#BobEj}7_VpcBT`9%9Pi(= zQ$B*7e0WN04IEkxg1-e&O=6eC5mit*Not*WC=}!~6OA@0&;Y=)hsaA69&lPwcv+V8 zgm|7MN`Aasc6eopOfm;$Hog*r`Hczwwyyh2hH3*4j2PB#a*zBC8L8jg;AcjkV44e} zT*=4w=zsnuQyzQt_XQcn9Sci`?$ggp!>M(NN9V`SsNkLF#D!tzE!cpy!#g3cyzp~D z@L?1ljvZe;!?!e87%=$lBrIgM3Zn31b09+o!Dpx)^dAQU{?qoDt@&4$hCA|RudYUU z0E%UuPF|%2#B}KSV^cmq*m1SM7}Xqs=j6)`b0u0CHzZ9E@w@h3_p9F!CNzjbX0xIT@L;1T>R_JpvlJ;A5J#p%TKrmCVSs!`Ju$IBNA`;8=M zIG~JT#(Gcr4wY?(-V_1*exV`4_I(}En2~YtOkjOI*AP76x$t;N{k-lisjHi4ys7=~ z^6~>Cz-OZ|b(3?LFAS)c-Q!FjBke)F0ZXW6Zh9PvSO6I$(e!>r0h--!AltFZ!0JNq z%8$`js8-XVg}7KjdnW4_GDKkN%8!RU4uJ#{FI|{Z!5HPlY8##&H?IYzh$9SN97|(h z7n(CD)OfGu;_Y`9DSJ!R*#cC<-DJ4C?ouv##4Swv!{sa=N{ppc>1~PuQfiU`O~4B1 z5#?FIh_4MDD6aWuvWW8sa^FzhtgmHAS{TNdenqcBU6T04L2FE(0We^uO}F5k=e5~D z?ucl}4nnB(Dq>Q0GGUE z$f*;$tQU^R8DVq-D{>+Zwa(h9{Hx<$^=u|*cg#1BH#$TbcB=$=Hi-+;Ua@0V?%})J z>P}Aoxai~(>?Vbaubs?o8>(aG`Uv|)uQAGEk5NDpF!lhETe^<;AuRg~X_SRHHKsju z-ak`#RZjT)0+1Dewm&CrkRKr$f!#F<3|$}ju$lAKRRlxSZ*61zdF7jt@IYyXd2E2U zz=t-`!Y5?n?1bKP2!Oe|9RF7v^V({9Fz;$)EmI%)4FNdz@H{ya-*8gM@u?SXUHU@= zqC~;rQA1NU%!w!+sUKT=%O?clsD&zLTcy`z!6`&Ig2ERLGkLc9DyG!8t;)cTt}U;9 zR-U01jbG4~q7V}AJ>>ls>uHV8-0$A=X-Hi5J64wb#tmwTNJ|j|?wttRAG^tIx%9uF ztwd7${O~wxKGzJ5DVQsn8d6LU{XAG0r4keXs96Xm5TVBzldUMEYijnFt4&ioaaouhy@HJ|=Y)o) ze0?Cjwn|YTKDlx!T_v%~&ilO%E#F37yreJWgTlr$ZGRVBwL7T2KMVa z6Y#DHo85dgpKF=UC;X${N{^PWLhFAyVh>#l%~CG-Pz(#oTDmsvJ{9kM{M;S^4Fyz7 zig?@}?UkHUCv|)a7r0%C`^zuSdY_1DPv5$MkaPTSMvR{?{JV8LtGvktwd>B|BQ3%WYjWzZjGexHYD6%< zxzC`+6_@QoF4)>c)cpIu89`=-zGfRjzxG$5VWRE;J#;`YDZmnR9tIc+?x3# zbV1^x$`=v~jGPSiVZN75=o+AP!=eFRm4~Ut(-UO-Qn4&0bwQZNOx7xPN2+CO&hHp$ zO|9O59<43fvE-I%a^P>pay4J7HJN%SA`o2cEsYBk+cxCqb-_#I_4^WN#~{2?=GU+8 z>^P=?_f_{8f$*5pH-81(U7(J{RtV|5h>#ZgJS;Y)C4UpUDaZi9c^sfqhBWpZ+bO-p z%BC>5&5%x11eqd}`&zH(X!!6Q3X^ zi-(d2vPO?XFSV6c6vX?9R`kONs^#*IxdoFSOg9@`YZ|$kn(M_Om~7T#b^`xl3`_6|%BD?|-G0m`o>vWOnCLYy9O9Q=+- zGiV2gN?9@(adA?LB>udQQj(1O4>rk3g_;FbA4B|n{_@a`rnp#@G3@@P{r=PX-XoCS zFfhgk8a=hG8=K+Q{N_FfRC)YUH?z{_;73W&1*yo3j*k+_z_`6PduI_l4!A}NjIG@h zzi>rzyEU4g?63OqeQjZfB+Ow#4WJzFbAKni(j#-Ur}FRw`q3_+1=M+QOO1GIJj|KZ zgV}LU%u~E_l#0_5&|@1JI4US16#w8qiaz;LGa-swCotD%AODgxL3c*~r&=l+ZgqB@ z>NKM7Cd<326W)mKbPNo!&J}@bYItVeG&W${&TaWR2{GgGo#Z~MC0*%@;6!O> z)&U9NlpKCQPM6@^ai?Kz|4;)nOSfvb1HWQHyi6pUp0-3n0&^`jevNitY+J`ZXG11( zbEln}(%QDVznC{TCJ_q{NPA@EHT0+nYdAbZTj*Ouu&HTmRy)6-UG;~W&_br8RJ3c)6H@`3}KLypOI zeVWx%V$cMibZEVj^r<0JP3)Qe9c!$Q(T^qaOL`05FSP65`^hL6xnikzZD^;7pg$w& zM5gaC#jB^ap2qcEZk8)LmS>Kmo|T$6B=1(00BwORQdqu&>;2Q^;_uC({UQ%CI=Hu? zkSjIgWE7hk$(4&>=d>e+qr)7I)df64ueY&g04jJ+<)bex@$1kQEKkC-jj}GN6QY$k z;F$a&dou-M=-b8tK2J2`?uPGd3t6ZqIw8lGusJ6coZkXwPeTnheZ(qO#b6MjrCTbwi7vb?MmkEP!9SpZ+ z4RpwAM{sOf-2n8;Yd~|`>fevn*l^-xDKIfD=i5G1*^KarTd^zunzMM5o^Apx@N;L@ zJ{R+Sh|nA^MN{1w6Vn5EProi*uHAhjx_)zeK?*(=_LBI)?!h&4Y&iw|X$9p&G06%|K{x;IS z_nCzkzw1?a(It`4LIYqPn40#BBodVCgb0$n^$!|mZndi!ZK)7L!Hw5)SCooxGg7tD zkem3Y>am$1Uo62n088wW3ITR`SkLs~qG`G&zvFX41;y57!YL3gfcufFmecyTp0WdCB5O8!vP}$Y-y>?6JZNM`^HX6nLH{>R&^fst*wu zC1R8LtqDFsq^FiLULx%xK5s9`$5B>k@yX2n`aQ-n9jfH~G7D*%#_+!EaHi!Xp=?0V z1O*e6hXrM7Af?+cRk?m8VXFpHi%CHze(>@;nC& zSmYBG@vja%N+vT`Z^glt%Mtl19Q()*HD8`rALfY>?uxm0W;@2}yTe{&#$+dh&%Jx!tWnjOsA`$luYrua1p&$<;&&ql0cS}VS2-E@2- z6-g!^7C%1d?wesahJZQ8Phc^!S!<4#=SOgmsk|GZrSZXqpu)m)FLyN`qS;oppym@E zLc2k(As@9ebe{y zU`}^ojkbBt3UDJ(1OdM_Ky2nF;XWt}Tm+f&-SSgY_tHxDs@*RB$C=@}dE&vIh7-o_ zNn$Z|oj8&XzvT_BtC@!0cY>JbL%55tCg0M!Rg=?e9F(6|r}`u^jr|I$OhW zc&7p?L2hSR&wU2wgq$3uYwXBZ5gyTrK&Uh=h3i)f_Pt^I}~UZlrvU9CLLu zxc9qYxW0$fBq%=g>0`EzAr^jYp!HnsH%*5pP(7C%XaoL+R52V=yQXr~S7Jb#WWGkA z8xH1iJ(>6`cj%DWDGQlqFRrAV;F-L9acN#dy4m3u`ZnJpum21C7UZ4D{6e1FyK|~0 z^04~JB{^oMCMnWn*8Tshhr55Aym^Lq7?zt@@gC7Qj#Lq_%5h{Vr|suGS`B!k9Cd=H z3wWy1!cqCR8?^K<u{-AP}4GH8&WQr=lpe*+r50BjpPxG>}zg;(<+Q_YZmn0p7UfL z`W%8;BhNs=`wa@UA54IV6_Z~<5Kjtr*i$%r#8~P;QoXQH z^_mcfTN&bOE2#0BvKF(PufE1Ly?3FFvLlmnVt308hqYB#L0ga7Ri???vT(V=H}3O>D8;I^rqcnpA^tJd!~~hJ$)Ic`ao^^_EcrC|aDVTl^OYP%Lqt$iw`R595!3 zf6yh25`JwRvV4{QS$gHML{P!|0B2tR_-M75Ubh#FqlRNEL3NUM?O~ogmDouK!Mp-H z6Rgh_@b~r;{Fk?1X>OldP^_P`&$7zJHG0LHHI9eh^^0?)xk>LS-vj=CKDtT9yh8nM zn8G)mx>PQuH+4>UqOIV)N%J%1myU zX7PHqKxbf=R8727_ra%aBaZeO`jn0Om2Kb{uoh-o;Wz#I5YF3A#sh|CL=_=g$2qI> zB(7X^Kahg94^xdD(!aYHjf*Ct3O|^Wk7yvDIF1j_hg8Z9W+(k!xf}@inbKTqz~mn7 zE@LMded(a(W%DNRm7*s(lyp1=lYx7^&U^LJh3D}GBG%o~Qk=)vu33j%2l0imlOAhwQ(j zNmWH{+w_9ZX#f3Hu7S7>0=qJ`y8ZhnF5#8$}xFlo0R5E;Ki?W@0**L+aE^hbI9QNzB4V0h`q98zu)y zO2J!%hjb2#8t!8g9=DfJPO9`mFQ(**;i4b3{)_cEa2%A%U!M=yh(c8bz0|z&BqJF6 zr1UHin4=YZVk7lWF0A4U1<`JUNw=877{m-@-xLJO%NKzu9^p)TaQyTQ2?Dddq=(vt zK7^&_Z6p6HO5yOWr}u!@=jgyS2MrKU?gQWy8g)*c0FJI}ykON>oOoGj^c$DOyMIp3 zdsw+O8!awOox`5|b7iUj>3hPqrb@A0uJ`3#iNS4o-~0B% z+^Q3E z1c9!@b7c$N+sY6)5@==VMFcLe5%yf~`4`L1{#v%C0E%?_D+YV4;awR3@_*Q}J@Mhc6n1f!pG9<-uoxQk3w*77&$%m&*Jtw)0 zqVE-<sW&Yu`T3xq=$UT&#{AoNt_FJ%Wo4Ry8sDG9P)WqkVnNPf~Z zojYF3HVsXvfl885eP?mdNjDvTLx}v?0*Y*TUXO2uMi(%sP2k&qsq_~wTcv@f*yMfn zFAL_=MY(G$m&HnoUvpt7&Jil%`a^_ux4?zI`C&#eH*{7i`J|Ep;asOGYKs!Hg;KZ^ zRCCTJ&}`O_{zv_#>Ws_TKPl4p(r|DqISmaqnCF65)$5K*K#MB#!>`GnekQ+Man)eKpUo&?^!m!^N6?4!xlmrDPWv4~;Ko+5k7+Z79qncr0R7HMOdpjPUMLU-0&UBW5B`(R??wz^ za&wD+i8Xdjr_UIBU>S?qwgVa64W!h=_&=wnE^bae!EM!cgIJpge)9~{p7{rbXOpJD z?SJCk!>_<8i|#GdVoFxQ^}4>DoEX(FR~zBPmwUc!m9xmi^LzJZR4Xp zK|%gUzq(nyXf=N&n)*z$>gI?GLp9}O)if$e7kv^!%?$u}m%sT{)0lb?S>X7|vQk`h z(H^6IDRSiC!X=XQ?A%1m+Q1f{ef-7)SG%mY@hCrswwyAS?NaXRsei(e;~?^PatV;o3Dhr_L=4Xh`i5`S*kVS;x5=an zYdYV_W}Scr5xVF+>J!)}bRP!YDA$fA5xaDa@aMfoF3n!#7f-usieenk?*eJC6J>pr zucq@Zw+VM$H^5!Zn7;Gx(hw2UxBomCadwDMsk34Oy=FV8v1B{aYGJnkk4LU|ppj6} zs7%^ouZCM=K`=4EC$O#Q1J(JbAQoP|ixFaltF##WdRXqQ#(GM^)(jSRK1sPB8mLP5Rf1gGPQv|S>SRk=j-%}RX=~f535bePai>J zG&}I0bldy4|D~yKSdC`J?o#Vq`9)jYGAqNM>l(W`bWPI^+9U(a35%Q~F*YDB8fSc{fes8}wNK5y`8Fzo#MM=1nnO>h&h0UcQrBCoa!iWv?`v`y6JSIdclrA3-I?}%#~yYqT{R%-DSbCT7)}B= z(Y7c_ZxhA3;3x3Sn{QoFceb6gc9Q9Z4qPp_N^I^7K*J$T5#fsGqEHqUn#4yf=c{ZW zI=Sl!Zqpsd&H{$n7S@Puk#o|`Jo|zNjwTJcgv78bLk)3?g3g}f+TG{hL7{`Ha!PI% zx?xi1t);&*+ucOcq!Ft^m} ziEw14%~vj}nAg{r0`j#F#2f56Kf(;!%J9w*?fn>n{X>(UcvBBpnaCKA*zIv7oLr--la|y-|7WnElNOS7a2NL_ZI4v_^)zO+SFlB;}Z!=B*waXAW838Sa4xrZ~^w zUAzaK3@chz7KQz?q*6_6SJcsMc{=03-;%|~9A_K+G6?Aq#P17SG9w?VO3V0qB@ z+2Q5A2SXZ<5|mR=Js^WJrm}qzwKkwDm0sqFFn6Boea68wph+fkYtq0 z)lgI;hAcH|2pZ;?0(qoXA1bbMXu1B_@w!qU9*Hb+vyak9; zB5k>GvtBWb+HdNFZEN>sIp;4>Wj>xQ0FPK>w}={44#M<#oyh|TzULmellCmk=MpCO z`vfJU;@av*g?&WbRVyVw+OG7QJZaQ@_1W3Z_UaTpbEuYzU?BfIfB;qyPC{pHajjir;xV{;cs=Y;nDa`7*4s$2!#6DI&dPKz zR3~C5R`RuzQLStgXEnTx5L8c|6+N!+0w*MkgmyVdI8DkOJVp7rN=0w=s1U!~vnHam zD!6_#UdlPH&~`ozT{q)E>%_&*SXZo$ATWeF&EQD(bJOJMwVz5s^~#Yyb%|<48;bF_ z5M)|J@#nGxFJidc5716gAFW<|@eqaPqNE0GpPl%Bn0oVgDEI&W|3pG|IfHB=Ni`wa zw@OhIrIR#M*$UZ)WH%-|*;8_|C8FM%QkKg;*(qye$uhQ#eK43Avs}NI^ZEYq`|q5a z&JovK*Y$ioo{z`U+P}gS3}bo%tQDM%YCi`ZHw0=J~lZB zrN#yR7-^1nsImJ^1!-m+{2L?Tf{X2W!C1k=R$=Y)k1*t95GSg$Rw9&ApaL`@O;(=Y zZsX%#OFb^|)VwG$oVy9t+}(eRZInGSv<~HpRyqk0cmh35i>}dvY%|y$L$XOI(YN^Q zio<#D?g zF$Lq(iNy2UCqtD1yCR@*>BZKObF8V3 zZ#S*}n`_N5x0TlZT-LV>QO690N?g~g=cfg>bmk!7pq8YM$5zpxfn^!5SS69SvPyjQ z+kgb~xn`0=`mVsr;yWA1dlq61BLObEMp|)`f2R+8dfbE7+fgs3vKMB$`PNwj@WCV!jG2{PW;0ev@4`7Y-5f!0-&S3y|?A0h;l=!|(jYoX$3znm4+h zL33$D{7R=d92ZC;f#EtG6&-Z!$SGpkKlTuE31 zzyrn)&dgBm2encOxIXz^=k{$7t3TJr7jUH{5KJqD#Ut1uN~t@J0S6i%2<5hkile+L z?S{*mnT}H62om3`j$CV4#*Gd?m)eIhu7cR%0@Wao_U(nqx84J;gKp)=F|Zp>DQ9Y% z>%*<2>bPiGu{pbe{nYnluQW@U z&c}s%u6QBgV!lT!k>82mVjrJIj*^P|B>#MI_YG-2C~6oapg+H%hu(P``MMlx*FW#c zG$5xZD(vuQWWZ}>PmIPQc{)Hy7D%+R>{_CiIMv~3U zsN0RC)YQi(4t~1b<)A9D^GvcTN%x>v^XoO>{_Y*sRVVlly>lgXN{BV&&M#wyz!vbQ zi*NSJdL4^Ud1`_~uxGP)xf^kDnf81XQ+!Y`@UBR~&C7qWpfw9hp5KDgeGb|G3>o$Q-( z(sQ3I2BEufIRwA`!NBSzaaFrfDhKuAZtd|0nx|Q1e($ZMpP^;VMYOKB{e;7h-}$3# zR?&J~@#aVFS1;)+mC=N+DdxUr=})mar=<1k%)>Vy9cD{PKXD3hvuV5q_Ew2aIzc?4 zr^G@^r$=Z%_BM>Qde9*x+3sQ8O)jtE8;B1K>6$h_(aS=ms6 zmWV8!>&mm08TE$ANklg2s$6~sav~IJj`@&Wqymw%qZ6}U=D+X<(>?`&khxV|s=YH7 zC8nnc7KE*wM zS-0s|&8{f8eOMjGUM$EKr#y{fxvE?%0g5(kBXK7%kL)}N%X!oE-197AZs2XV-2zc}z#kktN3_o&B_vn}Dk~GAlmtS`Q%QgVvNUsjAoFNV@vwFZ0ySe1hQO%S~#zA#nysj2KS-ekQAMdU> zSkM%?&Ny!6GyCO(X`Wp}J0Rjy_#{Nmg+7|V6!SeSHfks$p0C^;>gbzOY%{U$sBaU` zeFb{3m@}tFN<;8;cDr9WzH!^_ns`2xS--cSPQ2Kouwv4fHK}G1*2|TRK2WJQAf6vP zSS(kksbD1kCI8-v1fezz*{rBuq084x&!C!tjbe4Q2BK!m zhuI{0aLntn`l6gt)BTac?B|(3QxD1%9N`b!4avgOT%rt+-8JL9s5nMk=tJ2{sjM|dIk6jAzX77ktK0-6Wyl&leOov4c&D97&G?x#Hlq@cC(6 z8mDeypZNdq_C~Ky>whO+IpBvM;A;<1)M@83QTk{V`=w=qjG#5;WY7t~u(lL>yOC>) z-iYisC&K)~Qv|&|?@HlrUpG1;Uv%(66_;8}=Q%G%!GR<4mc=o50+W|<-5F_C=_01)}W9-?;qoXNQ*hQUViHY4lG!z6rqITV0Ux)P2O6YSIcS zF_KW}mnE=pf}Wwa_R9}fVV-+waXO)Ar223t1C%^&99~Nz4m<_9D7H|}fo6NZJyIh} z7a{_W8}t}(4p1*z%B?nwjOEj^+EPX=ETWccCD2<`^0eC>gR#5|-UNA>()MmFMnTZb zedLdUZrihVe$XnN^_>_TFf(X6d;waG6?+c)RlUzQwh|7^^&`E4R&HH=W_d{9@!~o} zYO+T9?;_%Pi=$3=D6j*;>F(pjld|4nj2Jf? zdNinq?AhSgd?WYIMLAhem`E;{!K{|fl5F0I^w>8=$`be;>VhYuHoO$^=Z1Kk*TJ_2 zs3=o~hFf=|W5^t#_*DZpB1`6JERjnY&Ct(j0;I^dQaYqQvQ-9}EXuRpke*WFh4*j| zO&O9ac~7MIfErcMZbMAJq!%B~_12i3Ysb{+z&%g(akEO8(-QFVL9X{O(X7rU@jn>K z(xK>+)**rSupR11QX|qU<&;pI75VOwg>8D{sNPr!ZsX~qrQ}o4nqAZq9&1OgYZY68 z3Iu?T^0e!7CK)s>zV218@k-;EzHn~j8pqjo^_0WU5Qn4lXOA)UP*M$fVv2MLA*Vyq z8U`0QI|bluQn$xdw{Z=85^99H71)%Kh@{u@a}3FyvagH!OlfHWy@i0Wa9Sif3h}KF zI%xlQo*Ex{=Ja+X!Ee>Mxf>G7t6i24*MBWdFQSX_%Kq9L2XanV-8-fbZ|*u_RIhe-Wk+xjK~!H98hJpU!f(;a=`<^{|1?pV}5^OcyL1j%9G-=_ses1r|#vowEcj zdq;Q@fXX9}OeARK3vc7lE9fPh@_Ix_$zA*PKD6Ep-Gz+ z(f)3^a6TfA@5xp(HY$KkB;=7|BK~WqU!XyIjT2AKwunz%+Tob&njr$+xONg4VxCI$ zvCQ4Acq)-nFDcq}=*(Z$P~0e(=SdnD*vM%Eix5idCn=+(>uEgx`s`DiT1*<6LE~{i zUJNy|R1JFq1#>||8ElpK)|#=bEG?cI%gSxcmNaF(1%iutWV(%3{AzoLi0X$+l}D_? zS?Ze!H(q3F1dKQ)hZ=Oj zGc0lq2mm7UB3xtv0FUUL2s6Qr3QcPzp;P|29^IUB$9B)_y0$exJ$)Y$^N+Kpdj19U zxqPm)E(2AC(*wn`F)n9b<#lw#P^2xe<+(PjH&&*VO9Q#-LNuj@PHr3aknx-a7ExSs z&fvKUVME(&KpXKRgew7ORTT<)e)%HBS!EPJQ5si4Z`olUdUYU~kEOl8K|4Li!8&l~ zkWTDL+qmM>bSzArn-4=@P>C4)+na|VIUcnhPCq0C;I6g2{jctY;~6VAWg&tAnmOTd zh=wNP6wnOvT%kqawQYi>cwi+}V7d)6y5owx^2aro$`mD1HF`(DnTu7H6HTW(l!SGA z86nMaX#VP`i*nHk!s{N+Y!NbuMRYr{FG4%L4S)sgeZCW8yn$K!(hH2ae?}5H#Y=0- z%iVN@cx7MFB?!}N&HUV3j>UD;j%R;a zUcP&jfQcMh4nqcc4#BuKzRbge#p$W=lMH1^Lwer3lVR}yL%c)GI~mrq(F5@V>B&nU z9|f%)^tM3f_B5rFQd_y%tET_aVLyL(C)X;*g(wL1 zPf9O)W)zM-ea_@vdxyz;{=-z!Svlg!v=Y1Nn?ECA$H2M4iujP@VQ zjH}L(3Q8lt;{uB#tQKj-bscjbsGG`|8(XOUyf;`&wLEB&Iu5f?cX8_3Ea z1YMsK@?lZC#5#1v5a*$qR8`qZppNeDdj9bWN1Dq=*-qE!5uj7xFY%v`2vaFk2bxjJ zK3^qCFXIp);PFH|*x)$76nfGx_zUNZ~C{pxk1#qhq&#)bDf~dIKA< z9?K7AH_u%<+{?=pu&c*vBi^N*Or->3mxQ^G(0`crT>mzw606dpRhv-aeOHsfv_)QS zXq;aTo1XM_RCxc=Xo5s(bGuzvJb zu*fW5`$?t-V+2rKIrWCSO9bq)e3K0^kxxOPgPg4)a@r^Zj^AM}TLbo(sZsOr0SC~@ zQ*#Xkz(K!XZgeQlgcs^x;1P+ev;QLNCfuIbyk?Z@U0kSmVqHV#pnH=sVggOY{ee*Z zmHc{*4+{SgSnT*b79pzCpu8W!j;E>TxC^Poer9`yg<_c*NEUtL4GpTzLKZu9Y~BmG zlK=>Q`;vr5v~%%XH%kJ9QpFT#|EMQ4c3A`#{~|Q0?3d1*SQ()R?^@{kB~+~6)e=KYxY@iHGgEd*DJ5~ZC<6Et9pHIk(Evk`9%-X3aTg0|2+!conS zM)_$63D1(r1p7yXD7r;e}m{|Gg4vSHpVrB!gYOtHQtqno)AFnG(JllHlLNYy6s-Zfr@w0x7RLo#tsr{->4SiWZF?$ptw z&a*Y{{VYj=K+<|*JCC1sZz7H!iOlgD^Q(XV2Kv^R^9cAJ$nfEB8tFxmEO((dKlx_7 zHe5;JQ_tvc1(iM+I3KN^LBr1TVUFJCF^gv}9YJS<_R?UZ^;=jaedJ<)30f*bw&8iR z4fW`+`W+79qYevP*1kz-hy+O0bGuH`YY@zT=R@Q(P%3xT%iR`etu-Dm5U>^ne-@Fw zeK~_Ycl~(;kqWqA5i*Yv0Q7P@+A;xK zGzkJ;nfKdfh)ibWo_o;y8Y#6JkV0D4Fvt(B8FQUc}8g(nbO!HK#FT(G<;29203 zx-7&zkYe=A9x4Oj-8FWoch(os4M@q;Oh1(4F2Yw>^YV&R1y6LZf?hwSNNY`KXBCOh~HmIVX^l z%g@Qf|1~P?N18|0qjw-FUO-vnZ2Pv}`T1%9VqR~s!1pod?Ml_YKMYg{Eu$Gtwn{^0 zCgDszA&{feASIPl%}YnTDfwu?7vDwys3??!G1N+07CTWcXoEV7+VzjHdc)+gP@N5=B#{chz_ORXyzhp^m3g;*? z1G?70;h1>x;tt2?P~zzkJ*urmXh1Tk$tjYolQ$=h?kryf8{wyz;9I`&n5`9~^kB$M z2`{T5F?38}j{oCDgFA%gQ;Pta0GF-G6peq?rF6)*R)Z^i>+PDR-R!@Ofc`bxdDX%; zxa*;7#?~tvDh22&66@?lyS1yzK@(oUXxyGtSZW7+tT8M)b3=#ggIRMXvo)G$=_k}B zO$YYIEccs}*dcIL-tzCOmlrs=>NqiP!_@ILKr$$w^d^T#T}`*nn2X96{Ht2#tW$vsqyet@&&_)lZj|VmBpp5Rw-4kko^UKXN%yH;0%482br~T> zcsl(lpn;4qbkYL+(OY_57FaMmVg-4Y!w|f0${m%D-s%{63OWQ`5)s0{MZHrz4IuD6 z9a`G}*2aoptX1ap$~SjdGk&-r*kZf3T!aOg{K+dN0TXUFRHFEA4TSteBYSHGUlS9F zwDI*j-?BHMsyT2zS+J}y0?KElhQKi2Nwc*p+W+THrx%oFFcP^@EgdM4Ig@7K6k=}~ z)ydt@p;erUzO2OKB5(JFvw6+%^Y!NjXI}r!E`Om;>;1W}t$kW+0qZr%7m^l_?xmtr zPI~_Xu39Qc7@C=?A6CZgFtE-2Rf2$YWQUa$Z*!kM46&u{QhiNEF{Q#U3FC2v=W{T| ze=q`774e@QNh}eK7pRd(+Eo1jH{SQb%~>M|Y=_tZd)dNgTG!BUEkvyAmGk>(gz5E0fPVRC z*mRUIKQzxF`HO&o&nOX0!?HE-B1`LUS)FmgDBpHTf$1p(`&&p3i1~&Ks&?P=$ihs2 z_$l(%ZWcD)V0mFP3OB->LaO{4e8ZMK(tS2whr@o(Osv~QV1+KoX*iH#&`{0>Rm!8Y zt4!c8+>6HoezRH)5!KT9)S}4Pil>Mv2!6h?lmy(9ve9iUh(-em0oc zFL84c=|HPN_K8kBMKxP3ykpPpePQzX(qOUUQE#CoQFg&rY~#EBuMm}+Q!OKVJs9b~ z4+AfFe^u0Cu6SjApKPD-%K3)dPq>V0RN`yn7D>|)(|%^o!Bw3dploz|EVE* zXNI})C}qD>Kt&=%{TeU`KJSj{LD8?)0Kv}g>eEb`$*;>Z7I6Jgac9oF7qqgS@auz7 z?+r3A8wn`@a|oci#eUuI4wJ;^gijf9mf#BC$lR!M~|F*Y72ckR$LxH)5 z+H1v1#MUQx1ElG`2pK_4)#-qJzv^GVgz5}N22fAz&K`aL>zA4Y+c+XxS@F(_J$1?( zkQbBqUPBr{RdOL0D7YeFb=}6!c#KasdQrX&LEGd(jy8+r*Zd_Arn&gHxwq~07B0b) zK#=2JlZq4yPvFm|)2cE&wQ!=4^8n5; z2|Xiq0P1)4fJP4ifxSK-zWm=pdV~k*;l;jW9XF{-bPH)EOvqA3MJI;Qr5U9^w=Ai@ z4LyHV_mrE)<_}Ld1MPf@^WQMHG z7jYBw1}qSKsU%=C>fDr1xqk|H-p4{8K8;*2Ya$YieQo9wVoB0DL0fKvMM5IDX{p0b zI5@9SDCU5*YPm+j_1l||ICB>w=ek_Y3}3`fA7%-HN{;9csPxblXyqBdML^u2Dq6+q z7*7AtPbvaQ^jVF#1d~;r-0Q6i%tuF@v}co5mL~0eJbqXLr--*RYw`68zFz zASxKpBA)1SF1ik$1BFJvy@MkQ?&+xf_IST~%kC9i(Cp$g}A81He>?f!IOc_O{Mpx~Ow;!g>f%FjH+ch{gngtG2JWqUUBTI03 ztL3Q~Ie+(y3ik?sUUgS2en_ZZ2+l;#ru?cL3G2GI=*eCP?iF}P*gfYY?%3@(`1W15 zr3-c%4Ee0LL5MHiDx(;twQA=NEp*R4bo5Ew;Sqn1zND4F97m^~^P+Y=|Jtx;VVV*+ z&WbcBl)zTJZ(KAi!lEuIpzFXwU=22qa}j&NAQ_b}3_B67n4Sznh_&OHcZ51J$ama* zXGJt#Odk75gt0rh>s>0Fegt@?ht;)}Eez0sXm|#5bt6KJn@7OY_|otl)qh{>V(68f z8o+-5!wgMORF~iLK>k=@qXcKv0VpLIg4rt#*#j;`ki;7jP{F5KVVITjUgD0}(HfUJ zjaXNyUj$Z8&yU4!Et`fU*$by(@`D~&eNeEVg~(`75_@0%=dY;x$#Io*qW6*o?vm=!6(P32@0 z!HtB@Qw15)23dbwonG?7 z75>i@RVoV%$x}kAbAK0J(YQ4r4NO`zjna&7aid$7zfsK|XA;=RMDhb+Gq?hXegxgV*kxe;ae&b4(O(! z{PeIX#!+Y?ATkC0a|{{7*|b#zXZh#+4nQ;g|8j9ak_jbXEmUtjLktIv*(?Gw8G>1 zgXJg8MYL&$Uq$+0$d6U@@w8IkR$zo7Las%I7;htq&`)NKuOB?}7Zqn`BOCT8$hD2% z)QxRm4P4GxLO|ZhU|)+cNkSO1%S*Q0ydrJ=H3aITO((hCCc>*d5yrB8C#dsSyVNtqBsAajAV zjUgzepq`xfE;>62N6mSF8xly8I_@zO%UL)vRWj$qAs zeL`C|Y3@z;;~? zdA$`2a%Zuh{TZ}e2VzOsb~q<~b?hObZ_&kQ**b-l>}b=kAuut7rsbcuhBnme_MTd} zwFi50eMMZJu5m;OJc>Wd&!i?owSmCvg^w zVSd{(%2MJgzI3~1*9qr>(*v8C#6>4c<{e_q;8&MRr+ek8U)|fDJ}G)Jd1>}U159d~ zoa#msaVK%jWTW5Bc$ktC-L+S&eBmN@_h(QvI>3#hf0Zxkx`CWJKa}hd=S<=lkTSlk zN@Tn5`GN($b$(v3itAs*>~+QFN6bEAvk|-I(x{iHOq0^FCX6{DO662yWaCr!SFPY> zz4AMRx?b5R8x^?C(jDf0Szjc8f#Z71sQqbY5nsfEPdGLR*ujiDVtHCVVIj?aX+Ll) zQ(fXCH0bGfsSPbP;LpPZn~E zl#6GTM}p|zA~Lg{4-mzqzh*EL?ZD(9tcl_wEK*T<3LHeTGP4>CH?M_0?%yjrhZzIq z8qE~?iWe4iUN!tHpa7GOnB>ge`Be)vr8$Wjde_ zlqXmVnGsbT9?iHQ+2MHJ;E2(y#aJiAhQ!rJ*B{=t8iK3)BlovJFnr-E;*jqunICMb zDnwO+-NDjgwg*g_E5mB&l2M_((Fs2S(bWUwaz>*B@#nU$odF;-gMU7+J|O8% zKkKWKc7wKFh4rCV>p`IhnL=;{t>h?`t(XkPN;{gtr>lqRpFLoRYvojDst>XG9?j7p z*Iys5dL7WoZh7D(={XC%Burh<{PESVzFEfIceSx0`<_0Yu_l{@UdT6!n^;l7Rbm7F z{eu}T{%yl{Ei7C{=VBr($iB8vv@&X6l{|y>@r*h(g2+BiA&Xr3&1Z{q(j-)<9+(-| zLOaB)KXYA(T(8AxR~?HOEE-Eo(M3}05+iLx@Ee6a0yBR%HStaWul(mDOWb72NWXOB-{h}&CklOwND|FXyFKQ^BL#gu2o~X_RmORt8w(!TLxRa|=5&nZ4VWa_HR)@bn%P36K`S zfj;^$zUKgF6A~80oCVV$GfENzmocz2$0*~wLnl@JT{Fw)9v|~noD|y;-Y9&v!-tYU zuzDQ8o5q4l-vQ{atvUyiRo7Pwq0$Y@a~4iEFlQ8afWXGt!-d8+P3a4CtfTR_ zsM!@VmLq3~!6^%>7OOls|=)?LN|xIBF0xE{4Yk^Y~o(o6{I}6IJ8x3g}AF ze~lek4l!^XexIVqma^+h4f%lHT0Ii)6^4hu#d3Yvv{m|G<;?f*L3@c%e0-cGoIr4u zkQ~}_6oh_W<7$`+`9A5m)jZZm=EhKeA8@yZn5}Dp@{MkWe;c1)Ok%3U0;oi$wIGsb z%OJy!R@)^4$^gytnTZ?I2hLdR^!sc(ES3 zm<`1}0jEovj`xztfFt*ihv>}ZfG^0^5erjAQ%?QAs|tfEqiD#GM2oOQqdZXVw44ws zTexheJudtH#6tLA|uPKkBUffviC-`-5U^9N(}&O@on8yw>k6taH~kIi=JO6M$rtp zZ;ihi`mYS_h8ZHO5Es$0%xeie!Ml=mhTbQr@|O zseG*IC0BCQ)9JG6JURabf?hX`l*nPPzYUM$-Xd%oTd2aV%3zK>wL(Wz6PFh;Gu=JL z_*mrv4tJ(=C{_bOom6U=vs5B1j&U7{MbJBPFs<3?c#mi60wUbk>ICoS&JZ`+{wOAz z6Pc_SY`u>;v4UJM9lJqEV0*eGZYZFd8QX#|LqM~Yny@B_ANxL(o@(Im;L@}aEV&bI z{E`5}as2`nf8|zgtX649h2mz_ku3Q*tFMD4(j8QpzY}A5$AGtrGrhoO2b3c2(9C+) zjrJt>N2rkj+TjM^S*;2@|J-heIZJvjIzEA>vp{DPx>&iixHHpz3{@9`*i-=TvIwZs)4vKrev!5-6(%G@levVs+Y8#G8bbBY)+0=-lovp#s2E zC6b)-kPt2?vs)2M{-SJRsvXuYKH&wD>v@GjT8dwWD4@EN{>Ft*zbggxg8KEWOrouh z)9oEECKC^bPwHBI^n3Twz?eG#vFyW!YWtAqhJ#hmZ{>J)qj55@d=6$Dcgzu3BjPdn zdgIL()XiILo_;!-z}9K(?exP?wztN<59XbevV(U5R*pOe9;w;L64X`9`pcvvrHGAr za18#aiIOf=dCMNufOxrNZ_1k^=A= z2t*qLr5$b^Ff*K6fqEDALxnQvZkbkm%I%ACl7t=32JdJ(YJ_pt!8+?^VYx9r0gEU4 z)l+|tW=~u+!Hvsu{&d1iJToq6OTU+cZdFF5-)_`r8MK4eXI9fU(tSJ}U$=B$pcUV* z%gK|7F;&Z;f_@E4e!f+{rZWqF$lsO&K#B%q`gx1|VetE4jk<(+w5XBAey#hZN;m2X zE@$~2)JSLBEt_?(7<{+6t*p+Fee>s3Tm6Ca*y2;^viNe6j-T zzDdQ(--V z0US{~hrmIl#ck4m9V%v`D{3aPMdpIfs%KRpfK`^wT{D)(men|`MmQq2prA2A0r#oWoC-#StfQxRyTrK<3ykQD}OtLb>mWdsYcbD^|Y2;Gy*L6FtyGpcbjmi=lJ^ zk8s_$nc-f!cf-@h@uI{4TR(hnp5yTucdX~qcz<+lD(VF}KwiY?;8|Vl*{J}NHdX96 z(~UUR`d18ujyV3SMixKcjqK*C)vKs3lGi6T6##>*bw9hei&kWN-RqBc(U=v&F>S)%o|7rV-3?l0J*m?1&J~U_bm6wB9k(Xyvx+U?crE+FS+)K*GtK!R7 ziR~%&57QIqiBm(VCtRb};~5y94;a(-cz37k-U(h{F`H3&dP^Cdi+*Y6)xF)Y*~&#& z)V0@{2bJF6Xyv5JHn8az^2dN#-LGL0tgh_qz3>vR?PIrg9t*{MIo`$;wu^j9N(kv= zLt4vE?xHg-tljiZqKl5Yzv0dFPEl>bi7G)h3lpGuugV@hlj`F+XBHpzYyaJ+S?9Z| z0W_5SvoKsbI(L2I~ zlOg^~{fYHQJ_uiTQ3Ec){gQ$jHnO)Qr_FYTUjB6>LQvb7=l&(&T;OAeB4PWeDUhkF zREZewy^)03BDt(6Ro5Zwkh2jqCK)%Dm&8ITHP z=<9PE%}l1AcYi{=XtJVQ&2uA%E}E>}&;`0^H!d5BldO&`5qtWU*C1wCv*Enx2aL+?10W!2r& zfsW&jXnGxEan@$_52mcjuL_tR+Z@iP{3Bw~p0LFOxWvpL?daD7jMjSk1ZJJF?^R%B zn(Q3`yLk20OK?U5R9n2<8SF@EXw^@dO+Zqh5J&-?Xiz_r~ zPM9Q=VC(Gsp!G?9F9xc6Xxal}1oS5&A_j8r90Zu~q;=2^3Xi8lCcUY@4c&O+7k_p6 zHFUi3BUG_-?JHDXJ~-j8NXxsd3YQwX*~8!+<%@N*db$X)k7=(8>SVxd$)3Kw(8i`k z=si%HGoIxK{0Wul>1N$8bJD5Nu8Voh)r>2k_Ha@O1ZjyE+bEmg()1>BQ0Z`^_3bJR zyq*Kj;JDe7uk0RQ&6@xA%TdAmUXECxrG!N$rZd=stGVi!jS#%ST~zv{lD4@w;!~j{3Z?XLBfT#&n|FX0m zY?bTkyELSzImz=3c#@6`H38iuxS{~1wiH3wCq8F*&UINtM4IyFs@;gMX-15SbfkUi z$2aNU>M-(;Zm4GmJMdb{Uv&)^D=JO?C+eZB?Ty19hp%PzieGqPf1MmctC|;7zNYy$G$d`IuUzE z+{|)!LLa}XmBBD@8ERB87#5R%&HF;ZtnQQy$8kIO`dz};MKZ9UE2o{W{u6x!9Ky>D z{~x~^H~;@o681R?flI^xSAIcln&|iiDp$xqXsQ88$nKN4{C!(ReAqlM08SK%hU*#U zr>X1Z2*WjDJD4oGJKEFtxY3~mH{+80c=8(R#kH^7@Wir}?|L5lW(c}xJ z)PV&TG^>l@76@|jCWYE#dn$YKnS_n~tY-A0HYhJoz9i0|G=PXP+^4bTWHe?0&=p%` zz4R_Bd2wjV`<>g3$$7aOhhGBh`(A1=XJ$y&g%1N~L%oUPTdPaNOk56<&eXL`>21Qo z@Q#oNs4UKL=HOE9MmnD6cM~) z`1hVU#T&5O9;uDXv(iA*sw|z9ehUXVt`!5o)tft$R~TOh-@5R|IQfeb zw_Z6$tt|)8DmjR4pl$HoN9|8C*Dq;FnZ747f5&jX%awG!@^bF{4h;JBL8E@j@Jnv1IY1}z3tfK$QW~cX$m*?{|v{Z&Pfg*=ViOof>>i}?ewZf~Y zqrdR|YLCd5PuwhQ7RVP}uO`IIF98=}y-<2Wutft47P9?5M1E0>c!sz+@MWrky?TF8lOJqQ=qE>xWY4o#X_{8Gcvmt;1I$< z0xFjdh#K#m?1tE*dF*K6C$|mn}dO0>(k$6>hf#WfrA*_ z=NQ(z($mP!h&4C2j|B|{2_ z_g=K1(AH0C;QZl)biB(X_ynwit{RHV=xpI!8-Abo@B3TM z@aWvE?{qLUp5ueb%S85ib3^p}Vd5GDPK|JQr}kd^Dm%Rc#6)f0#A{0?pC{0cVFO*v zv8b1h9L61wJb8w7T^+W*v+_dqh!ygc;O2s{ zx{C7neNdx_MP4cQv4DA*I%PdTk-XqkuC#+52|}g+Y%T%ooK&ni(OvHcXzU$5HtDCz zt9u3PVfNZcTrbb}e-QGEn4iEf>YH=k&iu9y@>0RUvp)j9dIfA=n*?oY^pVVE9Gukc za@9woHCAp2?qXnL8*LDaSw%y6Ql3fDc?VHH%z|Z1+zI0dvyJ!v}R!c3gm)#chld@-$R~L zny_(Ipu@Ng$b_UZeWgjs)2DP_?@8!HT)73V5Xzeedy>3@0dE6j28<0~1OiKuT+R@4 zuYU|?3vUOxrob-5(a9KwFQqo)({Ul9r0c>lFO81{}f|KRQ!QDRp#r&4r1oQoWg&5tF zdV?am@2pk+fBbTIho{)dSU+`WYYIU@{0RLv9ie4ps>(7X-L<`rrqgr>EkfD)Cvoxh zv#)HDaTjm@uSQuXT@VuWQMuc%9)zDQVRCkpUX0Uz-Yxol?w zJSJC*H@$P475Avd<*mHi7+7akLR9XFF6bz3Tsf+G_A1z6HL4%(N$l@szC3Yrykm_l zrHmc}y-P%i{p_O_9^+fP+M#0y{OSewzfN%UT)%;f7^M!6V&I<_)Za0$?D2!>+f^*0 z0iG>)C0Px*YiaE^VT=lgM3k7Y?{o=n`ip($njc}Ek>k^L&<5T$4{!(zvvnhqR#^E7 z=lx7eZAVr|*(QrOq_-GN_ZE#yz-tSz*AY@XvCL8zFwC^;lDN9&fLCO_xL+d(A-YF8 z6;qrWJqQ~$Ove<~=n0lcwC`Vh-%sD-zT1sQEiKeY}R;svoX)7w{5B-#;0e zA(G|~o(7VUV4L=W1??q)+*7MSX{|k58J2tZQ7eq?@O@9gGx!E(h+0`dSUu#I0T+iG zW3#}>1D@%9B(VNvM!wJm#AZGDnn+x4lm{@Do4-4*!&BlE`8+h_=i_MRqrX?}-EsMP zlYTYCHP#Fh2n(Gtw_!7vVyxtBESgM6jUZCncYfP}H`4&1gmkX6o~!H`kTu>Sl3iobsB*{uQ+YW`ACvy?z$`=I~^EK}O>d zEz6TQazjP#(He-(=p^bu>sfW_;9{sp_bm|z1OotIRIb=ncto?(mA-omyW+Kf<#qcs za&ey_F$lPLo5Rx0kj%FEGO*4e%k>6rAenv4X=KZxLNDpaKT)@umnpuhT!dzFjkHch z!LWh_z2b0-+XUfdozed3%{2Z;p7kw5hKZK%d=wSKA6XB>K06F%@!85z%(IZzH-|?e z$$O6wgx*jR;dvIVRJINQi^bfTMf6AG$T z9h)1z==TMA`VeLo`Yll|e#-}0^>sbvVFYgT&f$v^c-qm^e; zC=aC6)aKY&v`6_o(^;I1#cgaie$RzuCmu2g5#Qt4OY4}{Ni9@7xtuR8yw3H2WUGYE9vX%Eq(?HesWDbIG#Txd+3 z95?_?Qs1E0<^nCG8U+6Nj+>b{Ec~MT!YSt_Dc7(F5miippK)E_C_zOjzkb!;`DRUM z-sXzKbX&X3!IA=YeEMmr|fAisB-8#kv-^ab!!;?{pV2LIY zT>=VmXj*~bQvx#!`T%2ZU`&!hNuVyI7!g zk8utKQhCfM1@Qi317Mg`_^U9jC`M~J9)@H3rXCvi!19wWFF(n(n_yU_BQn4g0RDd% ztQ;pG%63@R&!v(q&Y7yn+QIbjZxmD>f2)3&BYIa)cV-ShWB>0xCozY%G*2P9SHV@6 z#$#0-dgtP_YT-sP7l^1mRQ8?NXxnohKg1%=|Adltwh3*WE!}@GYds{)$q*lwo0TG; zmlNJ~G%+PakVv4NW!V-729i87ppmp#;MUX$LGs^; zTBRUGJ46GHAu7J{dtb`z?1U!xvacDS{*)eX42XX9jwxQl55^hXAvvqB#A%Hnpp-2l zF6p6KF0|a5Y6I#$YyeF0uuDi*r+S^iG%w~*P>Z=pE8u#INo24`TbaO+croOo6K?*v zgnZ>2s1(G&-rqeGcy&pF7!~_`WcCMKchL89H|0B#df=N78K7Fa4PIFo8Z>(O`UoGz z1kKD4Ta9u6R@VyjjE` z&LQy3-kk4ST|=aAe}w0Rf#{;|I{-BOTD{85B<&XRUKI?}UA(>*?}bAjs{Wfi{{x$w zlHkiJ&@XU5au-aanYBByLAi~LPV(F@0_f{-WJU;0TH%g?4_AV5gv#&#`xmAb(H46w zntK1tfU^CKPj>yuR^H2ig7kWv-PX~IH$WUn({m=n4bP=WM0S6H%H z2^Yg;fU|Pe=6U3S~2VYr4xBCdAis{{6!xk8K?F276B z5V-!-Bv7L*~KKdV(JU1p{ZN z9P!;&AD_yD@RTvRP&KEA(XTbDUcbM3sC7Vs5P8txg`?|pzi30iFRliSZ?i|d7(#;5 zMM3f`NG;fnWaaj{nZ9WF97I|7K#!cFXo7J%mwtrHYc!8y7!&DF`f5*DzLU{BXd6-y z*X7oQKIi(=fDCQzkqkS2FPbpAO@`dez3AGc<}7;95;{;-%FHLIeOE73?W~%xx7;!E z<9YOVetT3qb|crtFY8Udzk0OX_p??n-+*ft#@rQlCEqD`tJ@udW`t1P(NPD^-A@#p zA#?v%iCZZXO)>$AYQzX4c}&u(0mlzH4Y0Idl}MrGeDCTOK*Oi7Xyn#}@M@ ztaUDlysUIBl7}H#lj=Bl2`+Z%c^=aL445l1XZHPl))IO16GT_9Z5z(m8KgiE#7qy3 zJE||X_)x8{Zu#Fu3W9nUwRqX&g3PSF>G%3GWsYBQg^C+SW9g>VdB~XsF6>2_rO^R7 ztGY7H&xxO)*(t-V(RdPo1w+E__()P1B@~>r&lZ3Mc@FeK)Q#9hqwmz!B)%BD7d){M(Vr{R z%iU+Hrw{B#g+F29Fg$`|5=`xeL&7(m!5H0p+qx5KvZ9mH`$T5HE00Z2>Rhgv?$pq8v@mYaIYtS-8YS zhtF6-EllZ|a(WK&m|u7JO>bTzv<%0eX8ZACer#H-zQ2va4z6^GO%-+jfyDBU+hY;j zF6x!nF=TG{mYUh5{R7uyL$2j3q>40vr|CR6Y6~jHiW+JSxIb7zEiE~KX6ydD&?OS%`zZzY7bxD zA_|%TA&Ue{1zs?i?ybWatsvXFi`O)f01^pk?l@D`Q+%>Na9h>fqmRvjE9GbxpVb6{ zYWl1GsMkz>*NctcW7=Os%x5#kpnm^Aw4pnBvil7OVOOBhx61uan;-+|Cd8KaxiXzy ziu`UDw6u_S+aP9ftDSJLsBYa6>83a%83t8*qoQHq0pKTRU=P550A+~|zs*^^cEJuk zI%*gkScC6gC;_iQFJ!(ey62Vwc|$$ySwAf2&KqTkxN8ts$X!^wjQafw79cw3DgSCJ zm{|7w^wM?tn&Z@19~m;R8sIpuqcjz8vKWZXZr$G{iMq8}Pwp_>o&-m}9g5!F5qkPH zbYms5Y6YtcV=UifuQBeTp}tG=v-3NFoH3xE4aCJ)Cb+(}OUl@xr$+pF!A+RjdmO0#T7Dx~ax)e*#B=?lN!N)|&iHl<*(x>@cq2<68k+`;J zq~MwjeEs6|9?;`kqzn94I|uD8G4=OsAN@>Jj`YwKlD-3#Y^snzi>KqM&5Y+H(oKf8 zIo%6wS*j-IM73%AH7o5(U4@{*OJcfD{$B|L31?q~%=eJ#_0I_N-_TIb^;zEB|Go+0 zOAeys3{Vx}7_}@kFH@ALU@k^pYd~#W;l-iV1LEHqb7h9#J}g)T5A9l7x*Z;LX3p|ZW{sT`Gp`}%rQU4HEIlZ=_Tz4Zl)jzfhDq!jJ&}z8@h3Z z7>y;S3V3>^xZ!WpUAaonKqOBgjXKh z^#h~d54@N(%FD+={BsmUkvm(#H4SJ05a6#%THv}9K$8E*S)@jTV$)vuSVb( zcbA}(8-Xy)gEG?x&My4_fkuS39M~ZGc1LI_jb%*`y~45MbP!Hqxr<_T7(R1z?ovFp z@K5H~aVy)kmmQJ?zurXr$1y$9Mn?8@)RRO(pV1}wpIb2cn1asDR5F{e6TKAD%zo)a zksyR6ZV}#Y6e^-0wc5d!Lf_ORCesAi6VFyBkzFb2;AlzsH0O!}(mK#gJ5BLwKN30JYEo%u`TrkvaFCeRa^Zk{y@t1`Tl0j6s{W{R(c*4qZs-iv>4F zKw|iCxd*TVOYC|vAT^T66i#p3$BO+~9`wi?e>YB-JMR|ek`D;(J7Gr_sDBKa!K@7> zmabl{j0ZqMYNXfg2C#}lTM7aOruO{^a&L)9`%?fk`){?o1mcRB>5jY@CDrAh+*4dj zJ}@?cSflWq55htCErsZ{b}UJ~XXNe#(FoBxCMXU9;xK=Hc`t@%#(yR$ zLJLK|wYN3E?pGICq=kc)CkRzr7F~wtL~D}bl}>VV7riR$u$*ZY&|PDpt%#0=3R(1% zUYB6&ryaJxuPS;xX&g!Ai$LjDo{w*n$16d!+otK)0RU_Mq4nQeBoFONNyIy{t1>*w z{^B16OI2kgn+HEXI{vHgZ3g-BP~H&j%SG9rmE_Jtwhzi*EKRQ(ugaoZC=NwJmgvN#$En%yDpgRt+^vof&0bP4fI9k2drTwmG-ZJCD?JqS-tn~ew zip_h;_#3ak9DFmo7e{}RODqMjUTDE|?hu}mxcd17qOIkXrRt&6S%|`u_IJZoB0nDm z{mg7(Y1V^>HseBc?BhLQ%65KrD4 zvDc#@z}(d?aTC~(!GS10^{8>q1y(64t-Q*p5Kk_+MP)C}ft(^YMNMX%x_=u>=-`OU+9oil|Zqhj3 zZhoZhv_e+CX52nLh4S3;2QNbbrJi04*vY6wj2j}Ato1Ktl~}#ca@r4 zUnBKy-yui-ZsWfM@99Mklt;;`+M!#WVSB%vH1k+|n0&~U4Qn~;H<%5lUU_0bIso`r z3w;1V81J-YlEncsB0niOKW#%}&~7(!;rm42n)hGGq9aQXH(maVh8aX$J9_*Vj?MY+ z=#Vb^9RXExI#GVch)43+)i0Dg4MJ{>BR4^jpAb}vAQ9r5mzRFjJ0z?nszG6~nL4b_ z+NEJ%f169vX0ToBQesD$k$JYOF6d}~No8S1K?i5*jO`*P&7Fkyo+Loxf?rLtwtT=H{lH~)Hbg5=T4M3T5Az;xb z(a_rWQwxd|=7&B>fZK&0u;^(exCP*`Z_V=uQ+~~hb^#-D9t~0t3`%gpZD;`yDM~T~ z)rdo?noWZk!$pLf>z#n)YeTFW6EK{`ye9zXt)JxmR}PHF=!D6Qi?BPmnm8Ek^RN{& z*8jjJlHQoIiXqaN$-W`)(=K_u+_r~uRld~KB()mQt=TYgiq|Ow_ZY3$LzK*@xX$f9 zf`vxZu!eLsODPO1dN$d|x>A4Ogexm%KsOhxan#Q|IusfZl~>3SFtRLm(bXbIfOPmJ zgWR3(k;Prv>!tF}nDmN_ivdwlxQl-9V!muZj4svo4QU*Elu(oS`|?Y4$rS76uM+4D!CSvgJDpK&bh69w>2Ko_oj^O!Ht-Dh3F0EBy7oakp`n_Lojx z+$76Xp>5=^nlJRHx9_HLPmCL^f!}{U93!9c38P;Q&b@O0oQB=l`EpNL7!m*DL`GCg zRzeSY!M`Ks#Hc?zg3KT$xwH{ZqHA)tKs>@?`qXAcG+4s#g`V2+UVx2Mm!f%d-Y4bK z#oz%{Mzj0*Nh{ojsY&*OKFoL=tavkbYiqTnd8Bj+-S{d7aB?8wgMH~|Rmw~yv~lew z6!S@+;OJY#Ld8LWKh2s>JIEd~hqI}3Ds^Dd z7E;Is?#UX}(uF)oK#@s3foSx{0)Qd8H!IabAZJ^xH3v1&)?f5SRrme)D*G6_YH3%^ zU(fG9nC%z*4^&mP5Bvs{t7l`D5rddloKE~h^P%*oA=t7^T}J@0=7zG`YlbN6chPjc zU#j_i|H2@5AF{WRMWe%>Jpczf`nr_xv>VR*wh(qhZ$t>=UyyDk+WF64GKU$)_iT_g zWhzC&f@ctG_;Ib8FTdE&AWpu*tU6IMTOK||2`RHE6Ir{t?e-nPDO=rp91a-h#!(!C z000>87>hP6UzL0?hQZ4$$=yk@<+>2F#yDG2!Oqxy6ZuH+_XG_Z^84;`9t@qevjMu7<}}`oThh z#q9Y{K~E5j+ithAI6dq~NGP#vyw7wCHJh~op#MV0Hom*W9D93p!*c~3N2*pF@7w4w zR6dx%_mj06?~(1RLYm5`0F7Au)7u|vJ7X~w_l#T{jRJsg+RO8sWjfAsjwy%aI5%lA z0(O2${TrSP&ItsN)!p*=@z;ul)}Hr;sQ0$AiF2|Sm$j@4rAq^{v2RQ;gkRp2#5Mba zuH1>X)@Y9)N9;oI#2_ivs-Bo3dHZJ{Vg(B&S?v)G+6_F`og`5OB`IFc2XuE9%YXjc zeMU{fPYd0_%f48sxC+(uh#%RFwiF?pf^Hsv9wQL>?EwOCukX~=yG>2~X?xKC zD8<8V1Ihhj2N+#R?&K|DbTfXC{Q5NCG%`W$E9r#xJ-#+eBZcM!YZ&A&YoarW?3gUL zQ)c{5t0`Xv$-;R{5t4m|1{KQ(`QiN`W!FyZy^;EcPk4WJN;S35!g3&oBO&<~xB<@Y zSZQ7G3%k>LHybBHn%GpV|I#I+P)WrGM!^svzUdPPo=rdVEu#cCvr0WAYlki<{Ea>t zeQcx>31tr%_&(PJTD>lM%$y67% zGa!wOfPa7k5tbm|DoTxERQ4h$z(3ZyQTn6sn3hj#zk%^o1XO_7&$iA211VM|oS(@J zKts(log-D92h4=vP>o{jBToWm!4yXI4Z-2zy~jk!a#R6Vqb&^_B;u7Gg?a*efT#jP zCWpU|+iWdcEDap-_WENS_csJud~+pq<4W(at z@n+eXM^!3AC7H5TC{oH_-*caiSRP)+TDHnKJSNu+K7n&4?MFe)%Q0o$Csfgxiy%)B zw(Zu5V6CWv(;_8aC! z7Z2x+7HTf79eN-o2$aq=MggX>7j3?h2DTf?SG9gwG*FILwZC*uOoZ#7<{lg zYW2@Opev+z0zQJzg@d5x*jT8b$l4)$Hr+}%{hY0{STaos=)DQT?_4G}P>Q$$q3iXd z-LwcB^s--SZ*rPT@Ha@X?HEqK)E~ngW+s1w)kRFI;ONOZLRZQ_rR`&66WsC@bR<_{ z%zPau?y7)J4B4SH1V=$$AcANqki$&RfTpr4*0P=6q>wW}+e&nO7N4}&S`^T=crpGAZ*zE`L;LIlG`OQk+ zvxAs7U=g+iRh#%61#{N@5i;IC%=k-{2BycF%|?O+@$I)vZr~Fx1YBIpSKjGHErS(j zGOtUxamx~%=pgRwcYSsB3!T%zUX&iSUc+;4?Ivd-uMs};05SW=1QzG-d^6?)rYB)T zkmqFP%s#wZ&q(G-z(%SsECVtAJ%ap23ao)e#4Ukx`+L>OVZVTHZmmI}9 z_Ck4xI5{y~>GkPmEJ^x!7MBk=x66!vD&x%gFvJ#@%)4R;AHdTL(*PFw(UTus{BxOtOqD~nB4^TAddY87^lDt7I%KpUkW>yc})~(`bpk7kCqd7+s$0baM zG50Sgd;c{m_T2+f(mHjivFECxl@;~Z<1-$a+$%*#BF-yVN1ZAoZ%kZ2#T8jW5@6m#HG`G)sR~6K#?w0kKfB_A-#6euSMGa@$lQ^Z&D^}>;U9!1@36I+sul7)OIw67UAVoL9W|` zG(v;WRy$EE-($v8+?kE35;t4T{0W#98zOhfV*dUYutghq2Su9Z!C<=9*#_))RA8y?G8cuhi3OFr{uZr&jU?KKswk*+< zh&7#(b$XiJUxpc#qoze!Fy+cBV;WwLjGg(MNLMt{3%%ipCFk3c1f8*v{+M!xazaSM zBi{EJq3R%~O7GkS`tO8vL;rv|LL7W1w-LpR>x|T3k<={{jX(W<7H5J^wQo@7yUUAx#bbNNMIDUk)b0- zZepY($Wn_cby)Ea7E6=8#DBd5Ip6blC44xHU}={s;eD8SFdG# zCI>?EsP5Za9tEyE*0@lP>@P_NMoutgpK+4|y<)r_pTp?Cbraw-asxLsx1?6p zvj(jf*Y-C6g&W=YiAZ`FqL&Mg+IGIu^NS1r#%JV$ST#Qm&%fw!PA$bW1vP)#mXtX& zxs1{Ou;I=qsYT2N0SG}+1(xuN9E=U`C^PLkayydCL%ChBGqB6O(HCUGmR~{(TqLLY z`?nstaSgZFhx_sr&W5D=meADcT+L51IheC-{{OHP_I>cR z-94!a!Zu&Kx5Z-x8iWk}vFVfGo!%qM#_cQ?D}-`09-Hpy1RJYXMQ2NM-tTP#&#mqc z^Gop_e`10{9S@>xiVk;*!*?$;w{;j9tMe&65vKLVllWzgD#ES84GqlO{sv!ni!F6rj z2YNB6k3WFL{CNkt`aom*1@7IRA*M@v(4ySaqBl1&M!Y80LqAaWU1kdtV-+g#M`+&n!#z`ErAty@!^Bs;{oBNZk%`v#ulLyL}AXMW?)qB_OX9*aUUEd9%niHentTD;mw)P7Kl`O@t!uU+yK!>8el$xy;bGjn>dc) zW=A|9gSc^7lnj;LAOtG!q}}dfab!MReAFXUx(18Kq+=oM|3n-%%Yp_g`+cl_Bq4LY z{3dH?*`Z}4kEPE8opTgd`y`rXq4~-f{dHJ42~4_w@>s=bvp!$>O=gsiy4mgY zU^|Ri7BxfbQa|oW@Ws_YTw!OxN6juaE?$ZXcZ1vhrCyl*>0hxOJ|Vz=f3LimIGI_~ z{6_%BRf|M5uxy7xKTdY@HHfNh@RUw4^9@$lz`|5 z59gK|dx<62b$(s)ZcFsjpFKxSwYu|b59G^cZ4%ihmXndpZ<7uPfVdrbSk2?~C9#K} z2yOEkwQN2F3c8heJ#5i!0d(BN)>%M6dqmh;v>~ztl!>gmo0#2)$JF%!%%^m19ZNfK z-@XRlldf1{{r8uaZ1+|E>_d+=Ze+;ZwRSitSwtJw$&fxjo9Rt5j%&63IXC;$!&r(O z#~7HJej&&2g96W@zjw48nv;jlSe}}DjUC@nD}d*R{7W}2kGK`yQAwl>NIyz*g%ZXK zl+S+{-W&6CV4r1}%#UW_P7CbvsZ|&!7vxevkmkDEzB7h6@A!92+X-Q(=A_mJ(!wjG ztR{xtC46D$U}>bISWD?1_#%@A|Jkid_3nhCLXAj5 z9uXq6=E??!;I=}gmi?oA!ig$4PO92`jmg0m&Hpx{gNv7JYr%!=>(YSnI`<4HYsfbMxW4&g#G0ryS`ofb9Y@I3DH~m zx@QOq_{`T>ZlG2oVGh=goyeW(&&UxP(ODiO9=kCIC79YFr?KSycab1(-~jr*Bf z2^0h{mz_OZ{0w>bVa=(hlYO^Lls}|my)Adu9)BR`uvSv#P+TI(r|j^X|Lfj3i-34$ z-{cD%r%yw}6W~H-<65?z(_^kQbkD5D=#9)ev4l8?nB8|OuAcIbQT%=2vX+SEjl+A$ ztH~(*FcE^b4XKmS=4UYjEl%a4j3B2f;S-!WoO)#`bnH2OyL3eW}Mlw=P zslfSFOZEJb7`smMUIa;*2LkkD2tYFX3k2jI|(R5^Hq75-50jm^0a#SC;&m(Si z21zIkX_7NSFjD<1%N?UX-oU?P%pk)-{DWS_yj&cXJDoc(0mfOB^k*SW#xuhr-g`aX zh`{N4rZ3e`oN&oR%U*ZRRmNu{!#c2F(w8@kv6(&_y@4Y_1(_rVK$wtu{i6BF{T|~t zy(e!w$$f>ES0|Vxz7E`$Zq-41QL-mENvBLE%L$a~a)&HDjjo82)*u1r$aEAiZ?D)` zV29*ja9U4@k8p3iH5yF7kD_iCu$2F{doKXemaoa~IL8>5Y2mi}m2BO;;r?m>_ zt0LfRZZ=tZ=q*g&^UYT`5t9>*_n(@7r?#>~WupP1xFCeVZ_!RT0UmKbAWbXJXeYk^SQbU_n%%K59VAG=egmbl9`G)5j#SY!)HGXBr ziEayMYGWexOshJDR>Nr zt`-gwWj>Sq%soIb4m28{pB2XBEpv)|tI(y_Yhj@~GHclR9rmXgy9(G{2hmoa*ca}4 zHGoDB-DKV_MW{N6xwr|<;G_GYEWss5RJNu4Yt`AKVCi9R`kz3gypw4?>}-cNOD^mv zGr0(>2-(mJheI|dy+mzf&FW|D(4_6SGjbxKMB>;J!xG3Ln52B;NAnZP5;`>c`cAKT z9*97Jy_SV+beKkZqWl5#pnd>8Ii0w!v?3TTju{djx!fHa7XsC4#&G>!BRY;CI+PH> zR&9zYj7NL*zB#6j3C zeg4wz+yhd_@Hy^OxjJrLZ>`_YwM&(Em8)Ehve*|Y4k*-p7C2ZvBPy5H;=gd&1 z@>$&J9BVzS7)Cm>MM2*$8F|PHvE@^85}hysM4-hR&F9epy;L$#uP=L|Hci{aF&i)M zAnQHZE6rdQPf9HD~{N>&hI}(x`-H+U2-h{ zCMc`B9&6*%ng`iQ&;;((@4kcU_@eV#z%hIloM7`g>7IkXOki))^Nr6R0`^I^Cc$6{ zkuxKXV_zJlay+I$Vu2B0fOOiwGkT{|YI0hf>~mcf%RV8N3FtM(QA%Kk=FTmJs_UfW z%bYv4hL`JUFwKW^^Iw6yM-r;-n`2pQpk(1C2e~6@@xB2i)KtMGH2J}5XBWsYwUSr3 zh@6Ind&3P*OFh3ML64?*12+>RRd1U`xk$ilyQdf<0C;eVbHZhyPS7*?kg;nMP7ezq zffP$&76C#83qK!(%-CKdSi}Rw&}%Rhj_sT#zKJ|{XsUzJ642{1vH8&T?1dAB1Ryf$ z#+lUVulI34a4x+cr}CLBpr?%k!{cLNI*1v9+)ny?wHt2#k!DR$19S45W6=3Wv)<(F zldEHrxORgwY<`=a^(}(q60_7S;p;>lNlN+SC*>v{Xt-9s&n?;yNYPhz2;zLDMz5=b z`jzY;>szx+$QiO1FfI_5TU?)w-rN6Twy--oa$tO0S7`2AXo){qhO4iIgR~ORI)yJ2 z;r>aQSsVAXo@G(T%kTfXx38*53)?cfft6Ji-q@F@xL~=(A6KI~F#Q)*J0+STS?iLC ziq&QR!#e9LJqg-2q*s0RYxv}Qf4{lyhLqCDc1E{ipCUv_!@-zIbtP?$eI&0*A7QN_ zJMelz{E?Mfde{XDbqtYY=LPV`5w5{H#oTsBE8W!8S#4Yu;@`p!$+|wIh?DbwLX5dA z_vIa*NXND+aTyEsnLl=4GoIa#oK?&l!nkoF3V=E>`(egcagp|G4I<^ykMf02dc)Z! z&*>@l{>DPM+=@Ft%C3D^IwckE-0m_kz5Uoc_Ex$gjyj`x9mGgQS}kMUi1a{xKSOD5 z^04r?;RX=1)e7I}N_X0DR%sFkQAKY$%Y!Fs1jL?hU+F+3NRy2mLmCI(0l_8y;sa$q zIhF5}_-5q%H~Xa18sw_HAg71fKRZwgbE<3+S1tgk#}Xu$PyX2y{6hqR|ovrV0dRy28n5<-AE{oD@bvc)tkaXtMji_ z8IP^Nq*>vET2D9vQZIH51cQt>6B@1iW`HEmGh{Ob-TP6OX$XpZo(EH7+%&uv3A2Ho zTZ+zC2LRSIll{O=G>I(uaF3LZBBmO5Cz+U{68Vc%$}VKMA5+;n^p6HEu@=M~Lk^}Y zLrUXo@cW#o!n0QBfI;0Zfn~vl4;!hxl093^q@NpI|!>^y_#d1o z37$GaRXX}!sV46~e|x)mq%AZq9OOqkBuCvJ#)U8>sMw9A2SgB=TXntTz5M$WH65UG zStc?^e}bUPG81H)E2~j{wFp4z_C`m+>D?%o%#J`GCNst_i*Y;5Wn|st@8~vk8j?-Q z`%b{Uz_G_RCuC)#MSl)lwLqEF#bMdEJ3fG|mvHiJu!_CEx%d(8z=$W~L306csV%ta zrS70>@}cvedI?e;^>>iC*hzo?Y~O6#nDX2qe!&-8{p}m6J`yBw+E^pVF0-_Ia(Oi%vtdVw#lD^!*8$gO`e0;2Mf-QwweOQK4dZ&q_6ta zmb@C=0o=x1|JKyUz-96#rB`{|BYHMe5WDdTMozwWeLw3-QjW4x_+<-^_cwB})LL)E zcEqKvIZXo>z4pBt=|`(!YkFC&3q!#M(Bmiz@HyEE=k>wk#3`6XOdN;LWIDY`PduJP zw#+-Zt{F{`dJl)srG_48JfE=(j(+P?Ujz<{(NT{{{!dc zQM?qIe9xgemEnL;wG=-ZY|e0-;D?W|`TNTbQyn2r)syIIO(alh&?E|39k}2e5`0B2 z3lb@WW@iT8=kNBlD3Zc4qFCpwuW#ZS3ITir;xp+0xhZI|VEs{V%GdMPI##$~tw~8& zRtlsJ=$=1`-ksj@d-xsx$+JM1lFVUlo*iEFlc!E)Jnb6jexO$f3BpwzpjDT4pu?9~VJf4sr1iYyXl7d7~fV~XtY z(8#n=WH=JTLiSbqls?pGmbNpq8rxMOH7U-{aXjMKT|9%=fRkVuu>-jxhiTN3j zoPgE-vs6frjS zZaGjaKPqj}hJhU|19<}p*jjgXsP|QJ{df-?4v%oYuT;DleivQe zi@oiG<}d|Si%GQ1-%7Iq$n7YdiV1DxymrHkQ(P+T?~UWNqSHSZa_C-HQ8lx>%6QhM@jR1nmTqz&H9W?eJ575A%K3Zw>$=R?vk`mJ3vIk z)|U^MB3cpTrlewkP$zofW_ml=fCIC_y*R$2==I_Y18Cxh8@SX7F>wy^k3%x}-o{gh zf`7|q&XYDx+99xg>7qc3qVkNY4%4+PE*_0lw}jV|J)V|3HpMrdSeK7H)PCiCr!ap( zTXoWd{U)6WTG_KF@tSQU!(?x~Uu^YZ^a8cp_9*aU*4UgkjFywOr{ejN*9nQdce{bKIXRT% zaV_n6y4(?Y0}Vr{wMCVQC3A0KnfYQQcXB1&JF7VYb-FoQHy%gW;xpewf)|J3dwu_D z%-QvA4fNy*(s64TcR_DX1$Q7^0S5iKrL#j(z&U7{Ij04|y!`=T7{(nJFrv zm^tEo$(9rF%QyXgI%_=&v8|;Z*@Gz7#$+USrMpF5G9cH94yxcDl8zgL6X10c*E<1Jl8>!QEbLtGvjS`7A=k@9D+yg z#M=M&co}5{wpQ4E&`vh_^{R1s?!VnYn)hVSz5UPKKelU#EbcAQU9Ed9fOZIK?}9JF z;OFyo?LI+c@-sue*JmAoQK(IvYc_GrfTXxwquSY{yW=bZQNIb;(p}hWFdgF)6scU- zKto{)Hx^AB^Vf)5A;hean&WW>xP8j!)WY-Nw3RM|&_!axvY6EAahrugfu|pRKmT!2 zF*+S>wnR`wOViLXLH|~>5YOd&a|U&0k`Dp#o-3%@lIkd_f~H5mB4${H%LU{UGbDvfRU|xVaxiwW)ma&)vHs;YT$wzESd7)FW~0f9{GBQOx!7XBN3fE@}tcD;PhW18MaBZVqIw36de;K<_|V%5x2UV zzyZK+ImLJT2M#zbPuG)6!2ocu3j@;Dl~Mj{{==|hs^sSq1EWi~_ry7msjaO+^id?_ zfiLK$EVUxpogF=^rYBu3P8@aBI--JOTU9F>V!;A5A*S)A9!$^Tkg{?vnae>kP(g0@ zIdl1?XkEo2C#*@SInX{BhA{$K;~%b&1JE##B2D8jjznd>d7vN$F#SdMEUx`=KrGpZ zr^hW8f znxZACKLOIH__Q$)0p=fvIXfYX=te<>4-;*{)3_m%YCf))gyR(SHjh>cr$n*zvhu{+ z9}P!BtW`2aK*$932D|M>WbH?;bU)sU2=MpssnhyTiAL(_!3NFoC3N=0@ldCggFffq znoX$TSlW4vt+q{n;MvSB-gH0LRCO23k%mpELBRJ5He=STN4RmHv6jH@r7+-MC5x+P zahLN$!2ZB%03<*l*75rh1=9noIZ#O9vGFJA$Ipcu;~)x5q7*VQ5#J5+~l?XFrf8IFIb+VQNY{vw^eL3m(boa5C5{XMfS}$)= zj&9ULUBjG$s?FN0@7VTJ+DIgyOJ-2)7BH7V-w}TFq?~RP-Ydpa``#5J{Cnzb(IG}V z{G=WFam02I22@LC_s92%L}>^LpgCRR0*=n$FL3>kuUBQ|ozgSp6@z2H{sV0ZEK?Ig zQhwn20%(7D2Y!+1Bfs(r0BFx-$v$F2r%-9O;$_2f?Vgbz6~v^bDb)UJBrETMLXq=4 z+tjP`G}fpj#FZ;;pam1SO_O5C0Y@Nx(O@&jj8YR3v0-T2a}QpDg;HE8ek123$u z=fM(eUBvCbFIkvmpSnkyN^_YE6So_crHbc{86_Oym~ure%}WPx`G%^VhO=-eAg4Z< z_-PQ)Tyn_O9oI?V`F@W~FrH%6iVhBC;e{Gm1OhrqVw7A@-j?dMYpqMdWCVNsgcwyV zrK@bkyRE>jbL7&KX*u_ZPjb9w&Njs=2S{JV8g4x)$2?CR@KDr${-RNDT8>e~?HS8- zYpC`=n<_V=q&|#Rjr01&)iN?pzf@AT9*z4v+}SV#BVF~dHh-!4|1+yYuXpQXUe(%K z#snwNmb;Q~;YLnlrz&oo7K!sgQ_r5@56b2@$>OFK9sjl>O|D>pg4WBRKV#SJpY=fI zKcEZCom>dqb}zuN$2MrcNyFP%?s6s)pn`3F>-}IjJ~)W911*Zxp1VV@l7r_I6xR56 z{X|yvjbN#)J|jC&geu>^zLc(!f_6ZxgN2vu%R*Hx1Nu)FzV<$ zFt=PXC;Dr+$M3@d5$rKQ(gq_V+gp*5AoaM`tscLn5(yZav=nsPGtI$*lfZionWpJ* zq{`1(=Df(AZK>h*QH?1f_3FI1(WehU^}6D-}0@Fvj?xF=iy zSzDm~;iuX!u47rqFChGzG0_HuK%a{KdVXH>4k@0hc}M(Imc% zssd_tQfSiPNnfns(m9|py!E8P#QD^1@q8;A+VLx)f@#CVmvM0yrH>d=rd#@lHn!D0 z?Q_#-E639h%exgxpOe+~cyUkosb*q*Ub~T|3vprn>ZiMmYYmzDtkY&b7Lckjlv;LGLFbKCMuk>GR}*ayE)ufHs- ziC&`^wp8Rs!p-DHmglcl12zgV`)%ygoR@p}8I}+*Uz!A(?*O5fFi?Da{`1(B=u>NP z*hxS!E|%}~2_38j?}h^J@%E*ujwr`v>hfnr)0&;Tt0&F`{9RV1q)&52qt^%tiMPiBBPSdj=HRRwx$oua2 zn>o*p#6pP?VApKwXG&V-P^|1~}KO$`AL5l=-!E%N;T?)cM~ zmYCDwSsd)>EbzIhKC5;=t#qxwNc{g@?6Vbmmh795@tuYiBCC;rd3^Dsz)kie@AmNe zB6X{0&UPpQbJI7ZZsbQ}Z~d@m^d6zzGKuOP|9wt0vbZ9T9J_xtF;(hqkVxQ_8U2Nv ze1>+Kp$7%U)Fe)HYq@(5#we?$sz3KtLXLr4hzY%{HW&O?rTZPeq7wc~d%87V@mu(c zq{JT-lQ~VH#vLg-(#^RTce=ld=Xm}Z@4~Y8Eg1(3x}pbqS(4w~juy?$z5Up^t=Go3 zLdzVW&OS?zzsUOc^Q8tUP`saf`73 zy^01If0J=aHV;WyJ);krh}S_ZHKjiw;GXgbGmU*g48z58_Ita1Drqw0_yNzE!`wX( zCIaFA&+t$AR*0Y~(m|tc$Zvr;%J-r!4e@7Z+hfmXg?D@~Njnhrjy*;u1ES?m8sQ)0 z)OoiNfw0e5QzAr}Wv~>kbl_ILb^T$k*Cai0(+7!YkZ$)@22w?+=xh#}R(}#md z_P}R^SM*Z!?6wA+i&pp!&w3L99jhc}ZQr-YO57M+P|BqzcsW0oKevZVpiKP0g+`gi zH}>y;@y$%^_Q~4QyX{_q24S)H#cd1o8>v5wxd%Q4&4QEk2W^tor^V9&eKm<$bJsvb zB6SXHm4|EuZ5U`;&zgm$;aUQa8fM7p1#&fvGnl()<=a~+EW@9)A3$!)Go!0?;*OFc^*UPLi*^T>+mNnOFNf$baa!Cz z@KMn=M$rHh8EY^m;0=eTcVNvw&ce6q8PzojueBmpW=8(1-5(SBFy7~ByH=osjWwlJ z);o{&NHJvzE#VOetaMz$zpMyIJ$%A|yn+)_R;icO!NS9N7XB$)MTXF(y1+eQJ%_zx-{jE`yk5A(x% zFrGO<1OZI94}>9BU9^7S78Z@-n6zI$!mpCmdNDOAXnJP=-RM>ymdWg5ulWRD;D5gG zvgQ$H6{K0rcnc3z!$y<`7?Th*@oX$gw?ir11gik_I6xk%lSMmwRQaE%Y+{&woHF&% zw~b7OrPgUL~k7Ua-f4*bpvLi*IpEz!5ca2mKgjv`B^8T)l-Cw!J0L~zHI+8BQdlfJ zhkjDHZZ7?oR8+v!O2|g1xZ>UzNxiW$F3Y$ zTF0ZN)nN<$PmfK;2_e@#C67j*7_N=0crN_pneiF&vxM0@%4E*FUDltEfdKJ=Czm9M zRXt}&VxU*gJz@CrOG8-9ch=soNOBLI zGV5-OJfKeURdv04cR_|bo7=LPvx6s;_Yy+FLhdOCTU^_^%VHv!-v->^TRR;tE=mKK zOZ{mo$lS-kr+^V>7e9^?A+O>n+8|Ou#TY^NVi}NP8Tf8@L+Ja>S8N_&fuz#YUlcif zKAOW;KfC%KOrZ-`;5r@oT5OQr(&&ZY{tpoBi1NLRK43@ds9n0?|Nrs!<$+LkU%*cy zq(VwNBT>CImQ()py$)o z`rAwI+DG`jkKk}`X7t{B)54KwpTDRbu_)4KR<_2rwT`|O2L@HS?N$TEzO&)_jL4yB zpLEg=hdp=tE8*6*vV(HF$y+iVu90Qp)QWCwP*G88o$OoOlG~R*ukVKS4)vxb1FF{f zZ?$rJ^)A;1(m4t_2C-!V3+~mVedTty-=&dDIPJWg4RGBD< z&suRTJtWEulNN@j+B#hLGWVjg0k>w(3*?or#@f=_J6s+)I`a_+?aWO6fUkqQ=7bBT z>oi)%YE916o%E;{uNPetx!}DD?uKb0fC@S+ zYPO7zIc3S(nKjMN;Qq7{$-fnRKWe`#`jqj_@Nz`BcWYzh1L@}W*AL5!HsyDE?uPwL zA0mxhn{q-2U~^u-LC==ORq<$#LbwbJ(JpGD{L)FQd4o;KB^A=A4btxw3uL+$YYd$R zar>wP$qw_+-RE@2j`4}fbUaAzq)j6>HR#{94+C?N-r>FFCsfkhKYp$FQWKBH6?LKp zD>FiAJ!acsDbnlta+cP39-H52?)dgaZQ@egs?A?dc}o+xTmJ7e<*cg#l70oF+Y);XUX+3*Q5qZ2)VUt|QUOB>XRPBv-WB3a+qa)9QGnn?p z>ezi=8JyDMKHxI+gcoWo8Lzs*c8s-(+V|9P1hYT*D$7gB$+t54SY-u&CB{a9-YrGd zM|vKJP2PjpJDbs2F*v1QC87Vh$v!xWK}%_CL0 zdg+Z9FH_T|^PVX^ce+em`4N`|BiN)aAtH_4En)>`hP>C{3eMHOa$(A!tZhY?O3($N zHsOud$2rx@bO=3bs_iN=`zsIbL91rXDW3);y(p2;9uH>e?V-!#u1taxTn7#n5r)$0 z^u|b?O;dzpLlQRDsn@lATDa+GRk5P%EcGStr=3#Ukh=a{80xBH@Uxn3f)&cYOnag=(5pzC3ldHhZou*b#oHq-6FZPRsM{ zI~^_@JW%;|e-8(ap~)63EFo10l!GJp&6g*W`gUJNi~Nc=R(h;M?}PPH?4<0cJ2uue z{(1!92PLzBnVf;XH118Q3oB_dJVUz*!Fb!7`h>XYgtw1w$8yUP24AE*mce!1o{a~1 zO$$pL!Q3>iY2fDlquk|Li3Knj-QE+;Qkk-)E+MjL@5GFuWm(42F|S`1Kd)`kR62WP z&e1)qVS7x|;@Hj8ZySAnZ2yTXkoQP#ZfQT0?q1u(8QA_MY{79Mk%~AzZ|1>-|c}y zcpdMwmY>|6qxWSk4_aTlRMGxIH)2QG)sBwyrrQr5FkF4`25jq(_6uvi&%1qd`D0r+ zz~yA^%#^Z|E7QTyzOK2YF)Z;uuc3Oe@whv(<1a+1-(9A-gLEzWVE+1Ba0t#)@uI&r zejpLaCwS_^ac$uO?$keW$&`(Lo)4KuUGVscjOGUlpF7ojrU!! z>hYY1(@ZW$%JqEOR&BWYEj~YQ!r%4r=zyZ$9)_zFw|4%uORbZ6A6xH!OaTM_UcTo^ ztC+9V14S7_wL@B&$z8#4b5l%j{Se8fGyPYvvo=juyA{$Vmt|CaNP>5N#uN8jp~R_b34%eTZR$%V zTcowiQp=|oyb)NeFo}gjYz61Cl5)Lw-sw>sQv=7OrZ`$>yaZ*#S2JlNUQh}l;EWTo3ep?Hp{bb7WtKi^MBipZSubGR||qJH-y{*0{3LH|ko} z%G__c#hVt2@iL*GL=VFlUWw`pWm zw1Cap?ki?43BhoeXQ+YGhlK4mc)QvYg$+hkwaOh~GjD9-r5>(Tj!tiK?s^$i9J-c& z^}JiQV!hh=aa%5JlDngsdLpNCZB(t{xfN4)hS#j0^6~1~kd=$LGwUwIsF;x6ecZU2 zF$az@Yu5$M$iBMPKDc?^hZj|a4#jnNvEFVs|L~FhQtJ9 zs8%sVZy0!yYGUno^xtVDoat{`xr$p-RRoux3f|HO^y%#d*PLo&;Sf4v8vdo!>G_ur zJPUR^s5<^y4*JkOa)sa9N`j!!>DeT0rfX-$+^}=k3xuZ+^9Htl(wzV11}B2vH~o13 zb-T-+ieDyN?I3mBD%!IoOmIE-`SUuk5~~i&Ez00Oy&RHTaBJtgzGXY!N0a=f&RIzb zRr8ump0R33HNy2cp*3tEiO}j@(?e*gG?5FIAj>b_tG#RXqucZUDhv|DU66E6CleDQ zhk87ktFjVL0v}phZZH)gaqH-)~H3xShpTzKt0aMTwqQwVc=&kM=K9-CZ(mdXOdE(=k;bS502kErrYjDGk!)_L*dDz}0T6V6ieV*+jSL-UHxogawTbc$|*)=Af z)Y-3b4{V^~N^ecz-*4Pe*{xjnJ!#K@=AouX^F611MhAR$4Q&Q`c}~DFy|PCAd&&6A zY_xk>5*(wI*lcl4P+q3TWgf%qkh^X*?$F-X=#t>C#?IZx%ad%#;Z%V+l9|GDmeqPe zNk(65?*l8{#xV8I+ti!Co^OSV;_Pbf%@Lft_+>)ejp{u;9Qh~JvjWkJ-|q7SzOG$+ z$^AeUrr1aJAA2Jpx_;C+o7P;QJ@E`!7P=%g#q6+jSQe4KVKyPB6m~q9hiRT0yM9Q? zvQKiXM%K(nw-?0beNU^N---4(Y|V^Q;oOAd02*`CX7dKj_b1@`;5-y<=@yRe<;aeM z7aRxEXKzYcmA-d6mWu<^3s-y{W8s>4taZktz*Swf zN*My#gtF%@x94X>PZK!tGQ$IU34-u`=?dP_ER{+f0cBk8p0!US6L3CXR-rwCH3Jum zl$$iT%E6^_oAlKuKit6nOEXZ#pP_oJ_075EMlTK;4L<)Gd}}PboG|mYW`4AO*E!g> z+;6gbKinNZiT$8@dc^gqzG;HW^qH_RnsXnl!7!qpJ=;}{=wqo1`UDTb(``U{!F%Bu9f+?iDuevh$jYPQ(~#TN*QC(3n`8L^zwx zX;CZ0;a3Z;s9ijqcujSOZK#rAuxIxq4Q~CuS5Q|j{|TlB{K#}~)xV&!eda6M=W1K? zW(o?b1#lXZzs9ANS5|V<-+h>Lo8MMzt4%(M*7SV>wqH*$gV#T@xlpLabv%>uIXmI%wz8yod+}1-%rLu9 zPR%!suODJn_D_9vM)k>{Abn^Sw%Z~a&YpO#mJA2IbBj%CPNEhPWe5MNyRM)(XLVT8 z_+9xQ>z1M4tYYSaS~;Kf89T_YC#>Q5;HSpCSMuE!pB6@RfqmRiNw2QFefT~&TIKcG z)X6FthtC94>hH$iEn?}SmHKNw({jLI4YY?TJ7>u5A6k)@&W$-ex8E~SwrGM2Z&u9f zEY$0HkbTatM8(prhwCkOydg_+<>}Au@D0JcJq-wQRH1*s4>ekeZmJ*Ot2DLt| zh6BRlvjUR)w=CS0U*H)w_$f7$gfG8(Cy7A2rDr-lF}H`n?@rH9{6AR% zR~-pb0=3Q8YIn@zE*N0`UTeErBH9iv~~m^WoH=^ni0fQ6(3r@|l8rpRaHf#=ZL*NRj zH_VxRns#4$OA-sXQBB`X34(9g<xCe*u3z|>DNde_WC%*D7 z-u&w`x5qfovfw0K2xQpFE#)f|*W*16KF%*+p{CIJmd$;!pnS07_M&$B)F}bIGhXJ) zS;tWaR?OHDZ$NpeSh%VNr@NwqnHGF!H_vwd<*;Q1H!TAOGzL`c)8F^U^a9wBhn}9N!I_{> zTd^TU?JRFy%WI}A+QU$dZHfo0i&ndy+ltrgPY&($!WF;HegnLl;Du{LQjgOHduz>| zYI>VYEeiu51@$IY1gE>#U#FrEy5bX_k0*A7O}pwhW}8#~#O8rI`Q}RC&a0y;EAV~9 zYf@a&g}cdjRvuF4TEp!_*{VEyYn7E$tA^(p*_?~co5)T%ja_~gRRIm#5VjNLFkqvP@+)rp8R>g{XN*t-MRM~90{Y$i}-|{o0(nk-G+a$kuZ1N zt7`(oXX(e__K~x$Z}(1%j5)2yi-99n&$`!V5gPV{WstgNAB+yghnh%o!fw2S(~oB5 zlgml5)hAx?eCUnl%b)3n)qbq_QvX7(o9Ehj(S~e(#489$lAsE8z)r8KTDVEQqAff! zL3JZ`O)LBy(4f6_DFqFq0T~8CR`JwD9ESryAE}tdHKc3C1*P{&!(}HeJf-VE zYXzZsdL|kV886SM+UmnCpAD$K1*Y6V&KFi|jen z8O;&ol}`LCDvG_I;}!bqEK%m9$?9pnC9MZvc5(}fNgm33dh(ZXL8T_`t1GWOG!zu| zf;Uv+W7!1P+jL)q4S18(RX^|Cv`opvvSYX4#yGpjC7X^^&6#m}pSAlkv<_p@;11!v z9;7dBuJRuZ-dZJ#clJT21H z^p?8%5|1bu%S}_pukrl+@NE5R&y#SW8TPX^`fW17ra z_kQ(@mm{7J_S`v~wori=Vf&gZXbu|RKLed1rTZu!JM^#Pn+c(#_t4R^7iPUc)ob#U z4Ia))voCq7Rt~TNa9plx#RP6r>Kvc(F5rT%<|ta zIgnlB&{7tEW+%3(H*8lf+TXOr*W|L<%%BhXCThmDK?1?u41I9iURp@iBRs3#`{#_2ZfVR2yd(WQUL z?C$NJ?iUfjI!}wh*T-&qW&O}IsOx2+^ySEJ*?oY(=yA=juasuJjn$Ytw`IeOs`4|S z#_(I!J(vG+p%HI7Pu8$YA**M$-mZ+^(=P+jn>*TW)&EV-TaXC15@t_Zqmtaw=6<3* zJ79;5)6tA1IWTp6@T|344|V|dMwKcRT(QhoOwM91UXTN?<(0xt?Qa-Ry7c#n(`4HJCp{YROrWHtr`qPxll2}6-z9=v%`QPej^ zU#WNM&;*NS_3S${%j`ayzAwM*62Q^m?lqI&ks&B;9Xv7nu=~5~-K;x;)@xT@%@;(v zH^-xb4wIPJ!Bak}hn}+H(Vc;2XisXj)wmZt!GpO63zw~m^p=af-%@cxE;vO~Hj{tx zO}J8nbQJydwVr?hrR7f}+k5p=TCZ*)2;QGSoJhteEACj&pBS1DIq-s>=H+7WCu8Mcd~nOy10!WZ-i9 z`j;Jl_piPA`ax;Mxk}R1`sU-HJB~12tQAFiraVyiJkU?R>PYkTU2te{^$ZR#zX25} z^mbPSAA<8NGI_UV@NX~J^(gd6;L!B-?Mbw{iq=`M<K>`NW=$aKfHY_4J<5!P=M#R)-#qy|>d$5+c7ekI#qs#Q%ziIv{%!1I^0~n7y+5E!q2g#Za`i<*L^`qzSv3zS!!`p=*jbl)S=Wsb(+ytS1^qEYAdo*m> zxvy8FlDnibIZrt+I$}z|99wmhVDEzQs}xRdymU3YaI0lyOdMre@A^r~`oEfaaq~Uj zHZR&SxlH!aCSUGrzsf+7da?!XPfb$ztS|T`A4t8kxb-4XF0o))GFNxsmU5*<#E-Pr z&ID#*#_k%$k9KVSIUL;et#Rs7XSDY$MPAER`7WFpt^IzPTZg)Os-*IeYNYx;e6BBE zrps|&LHF)KxLnsdZy>obatF@(dGhY!sPQ&@zeq3}>)G*37YmnoY6W&~xdrs*!)gb#2Sdiez@@%H&w_^G#-QzBA>N1pzC*OmiQoQsEHZ z)hgeLP)V^qyfv~gqsQR3v2u3sIm58C6s}W*PDSsD*#wX|Ug$_3tS^RjPxq?D&F$xx zuwfQ|t2|!4?t0r4YqRNm=Y415qTqV$H?ER1w+t zTnGgsVeABqUf>Zz#04(4;&ll5$kF1-=V&v(tD)evLC`Ob>< zb7dZy&c*n(e)EMAWzLCjVoC%i=`}?e6+8lLu=VvY0(-@ZFXL1Wcz5n8Y$$%KT{+{y z4PKLy>X_Gmsa#j$-CQw1Xz0woJ-?_;MUhv}+~oPSk^oYeEkla>UJqs^xWxPG1g_RS zI7x9bjWVvr98Q6ZxmuPrCTw4UOon+~Ya&BsOPtLfPvSkeu_E&B#_VkxH>ZaVYCeGD zetZnzfGMyCYDF{KRc>ut+_j*L^R&l4(s)W#LYO0)E0bEP+<$|RF*7(zlbd9)>)wimt$ z%jmqdtt#WwYfHWG>cgVRY%-o{OJ~j8XtVxcubn@)@Os|3 zE(y6nS@f<<;I=i#WUI%`K^<%e&j|SDVn3I}>6%D{T3TYr46gOSoOraJ+~oaoK z=1kn?TD?m}dFGbP9N9BE<+;ViIhOi@xWA_4g$-ytoGQ1PcW<6CKIdyyFUX`x7bm!M z9IJO|LK>Md?cuZ*Nb&UkOVeP?u@Vcjj|T5xE(#sgV}jza_5MfdPS zi&xUNxepEOR$0F3h=rw7`z#P}51F)>!)eRf``L?J!Zwg1d54NG5;6uhXoIQGsrS5E z*gCyt`JSr+?(q+8TQ(i8pK(+m_z+Dpb)B_~y01lT$|@|U0pvO?oOjDSZqn2qfQzM1 zrYw6n=}E;RjWJR8zUsQ>UrHDk9+??a?Q}W#h6Z<=Q*6eE?{}1Eap!TmCwLZrzGVG; z`jS&mw9B39E{D`Qa?;jp8gqO9?7QPKhH9S4NR@z1@cD9rEc))R9exo}w(7~XMx5^h zz#FEYD#6Q6TOo}k&t>i%I4&qrt?vPJ>T%8K;mF9@=v!!Jwe|4^RxO>RyTgkUx02A^ z?g^)9z_k-ja9yM$Lz|nHAxJR!%xO>GWVAA3$)gji8VdSU4=qEVzdxB=tj&%H1MKR9<~ zo%@LvBbDh^0>>;`VV(OoPo6OtgnYaC^66vR?e_Q6J6mQe5TZc#w52#p^}(du_s@FF zePne(`_Ddx^P`q6bhm|s%*L>-#+;^?w#hBC8qM4+Z5w3|@Qc6a5&G#C&9AcqmNLqc zA|=l(&Yo>Fv-&-Y)9+e0H>LBz$_&8-LC6X)ZFP)6CCC+m2@*XY5+cuiK5z(*5Tq9l zo$PTv&wXx9;$03OP;Mk#tp21sk=p-hRp^XqyZ`#w-*W?umHWTR5?T%W6NoD(t7HK` zJ?1wzDio;`w^?g&`$?G(J$4^TBGe7^Y+_l}M_&3fr`v_o zTX(O!ugd7~^Kz-dOTqfef>wtKN~N$_qfaTVC}VI%NI)PObwCys)O05{*Gcy6Y(--X z;3l@~721P>o2>&R(7arqI%av)ksX}OcJ4Qymc1Zk>lpA1*-MP_tt50cU)Wu7(381j zEVvwGLpM}?8DlmE^VD%)g`riVR2)%%0Ya6npf&R{%z2h&a5VdEorvtz*Ib#fSh)00&~t9{td*+OFywtA_`56W z)Q9lg z$`yfVx#h;ses#q*f1ZQ6zX#vUaX&x%ZhM=`KB%dT)ELvXvpM^9@h@LLG$YE{EZ?HU zy=k};>}WghaR@Z^SBCa-y!*j>?894XH~QjIE7Ls5MhE|TeDx6FJ8WtYgy(*7>J7%v zj0lw75z#$PN=Qryy(Pt6Mz3sco_YE*4#b}Ww+x@XIaYqzlhFGByT5IS|4E^?@XL7= zELJU&YNLFjdI(Vy{iaTS$?`%8v{hdrSPFW0egN`~}R-7_cFuEcRS4|W+JEPOKObBoRDlb3FVsSqj- z9JsAve#gx4Ue%F+kls6Idvm;L_q#f^j5lrG_`KY2#iRCi`PtkZUjj}f&gbOYO+TlZ z%%sgO$njzOzLH;YjX3S_j4y9=tt%d${*WZol)G#}J?%W=h#-godLEf`a312fe;y*~ zdmfoUJ&)}CkcG&BANI2hp^*ZpWUF90h0L;WLmVkAEoZi;Kb34x32~;`3OGJO%us5TTKUx|(dS06lUzEv$)G1g#R2tcz?M1;e z*`8i#0EtRtA_xs-QM~X!LNO_f?EoNC7%Zwcl}ut$@MK>IipAef@~3(MA*`wvf@o=J!+#ourR~dN(Y09&5{-$q0+C4}vl&!Y2$9KxqG*xH2!fRf&!P$| zN%8iEMx<`1;3>g$Dnpnm9t!~F|4|mGB^4?YO8M9P9i7~W7PeLv_Ewh28ar24J4YMD z*~Q7-&JqCdvvP59av{1{xjH*Jx>_NKxtS#q{4Lj6SXmOypbwphYs}m%Y$4vLPzYk@ z=x*j*|?0z9$ z36Veq!~;%XSVIGR5#y&34ohP(4$1;Z!^EL93J#Da0A)~co+K}vFNq0YER+_`eHc4& z!h`|%Bk$klD#`=mF2(__Kq)C+qWr|;ggAPfFj-9E@8EPl`fuR@sF!fe39&E)+D|mb ziA=g5l_)AU@jv(>!rs7RxX(nGEC!X#f;1@JB(^^b!P*E~6pzyUA!X=a1_c|H5ROSi zJw+oJgJWeI{Vf_?co;qiBC0VFOZLb6NQp+nexxuGhe#1&%TIAdsS|~%gGa3sV*1<( z@u+e_bl~YWJb+!r;}?Sb_c2bVFql*(3lIw%=l@8#3Pr!JH2{`6G91w7mP4g0Bs4z{4imamvsT=MeWpTyG z5n!el1&8$)lw%aV@uK{oI6}H5M6^@Ve_28 z#O2t_avh@XQh0$sL_HlH1RQZW1OZ3XT_OyEU{B(bWmqr-dk~lDLP!L`9z;8uHESyH{dwZKEe3;sg*AN@-Uq+ql> z2xa&Y1KBW8fqqj&(NR&~I-)S&gg_%QSi+_y0ntEV)&Y8j#ab(hB+e3L7#WEoh{z7p zg+iu4!GJnBuC>xKBf}IyB8O<%!til%a}$<*G<>AvNaPwuLY#(2k zwCp`$6#kO7)$l}Pfda)6mewtVE@~&p%PJVKmPYa)ZX}?o+o>3Zge*r2C~VXJSU(p^ zAR8LW0_IMC3O2^EvRa@FpuobZP0NMCMA<;N9e^Oa!4#;aWA6!wU|{blD(}CQ14CDs zDun5+f%)B<0Zf9ha4@LIfbKADF9W2(@*A#$*>;%Bu~|Utrx?GaF}iWJeoE}Wr8PR{ zaG(9i3G0OayY$4}_DlKxz2mU*nOizzjm?JU0sI?XA}uGHm4(|VPhq-0hZmOd-@@5@ zQd!J@rXp_R-=ov-f(!G-(C8l-iE;Elms*tH?@KE36Q(U3)51n@6(X28ZOqSw6eJq* zA{4~B3b7P2l;#-0v;cO4sbxc9{Q?72#b&S3bb-nA*M`{|29Q6I>IJ+VV>^{BWa?bl zLY5Oj<~bt=8jk)?4hLZ~HJy>1Mb5}h4S0g%1B?zZXB8(T$1x01SPb6_oRL!iFZ%<+ zz|#Z5o5HhYA-uyA2k@O39D8cP6Wl3qSUEE1hX~(u;9KX*X2et*(w=9Hc)*jc1L-Y+ zv?@G=&I5N)$Rn+DaTpoLG!`Y8rRBtC!89P`=fyrk`T~6a{}fhBL}_q80xw`L)WTU) z8B7)igxSS`Lh=JXY7`A-GyI7R5joKw^-d(CqB3DKEUX8BbZA8XSWE8A{Lq*2Xi01x#@e1-N01=b+OmURxl%5WEVn;qUJye#c(%qu+&oTK*`R zwEE@fVUWk?#3Y} zQE8rNusGsyzQR(Ds>i5eBO_H_j*NO2wS;Ivu>1#nG+5lOFkIL)sI4z07`R|EuzOxa zVS9r=Gy{>sV4w_mhee*d6>ilkoImg-G;D#_#L>c0%gNi@pGu=xl2{~QptcKP&Zs}Ye17#pY$yMXYz9XMw-ej}aHqg!g3AGC z;pFHD)1#e}BXOOhy`$55N8q!6z^vSCty~3Q`rw+u6z04J(5) zCIo?}khA|WU;X;M-j_myA}~-o2xc&0jSB@9aZZe3#&~ygo`_@tUvif z4gLXx^_K-E$@9|sDe}LE1DZHoE;ly^tW`wcn3V9xyCZ5%^7r>7k^M%uw-=46Eo^S+ zMigqqAW~sLgbhRzi-if6h%|P9Cj|&E$`sK*5D#LDa0FtG&}8wTBzl9i6_cDmMraU` zEUX2vMk4%$vcM=}j&2aZNf>6rB{M>$Z(mL%4KIX1_9BdpAT7}D{AbQ0ymmlQKQ`S= zR5Xk?76Gt&0;ZAONK8K?BPW^&I*j5!+ITpOmROL6brBYKxNS%L#j@aGf2_~MnF?9K zVL9BdaB(zb6nr@7XxMPD(J(A4R}!qW%|nDEbhMu(l}RQsU_!*oIx20^kQK`gN5RE; zTEbdgwALTxhvhxu@dIx#A(BWkFkHCb`3+a*Kll;Npp5^~-^>gP@*|8;vgw9mqZa7A z14yNQ__@LyFkGO~aWMFBVKBHTF0ceZUqs?ik~fG6a4yysdP@zK;+UejqzrH=2OIA& zrujS=`|v&7_p4FQwQLHTA{@51b~d(FB0Bq9|20;YcI(#sKCXk)daQoGjR$^MvcL7S zvvjcfw|H*0E>1AEF+SyYasMqpGprFTU>WE`(HgGO@8XXRC$8FW^BElutLA@8OI+Rm z8ctmG{~B&oGyJ!(KX7Q6?2W>g;c{Ejm>9{>63rf?aB?^fhI^y>WH`JSC57bS*R;gh z{N(2%BCeyoM#}$BKP@|F_oe^EfBAp%U+3uRY-KU3+`q}=w{wd)-0154n$IY|-_K9t zG%SE=@IgUb%ov_nw0tNmV4p^4gDp@yXi(sRys19Gm#{IiO~)oEAj6&%7>@{eucJW% z82?WkTp#6kY6Q(BWYsk`BQzFWG{)aG#khk+;0PhD&EEMNYV)#&g zEh|<(I#gMx3&3gyY$gus@Vj)erV*DBfo4ZA<{O$G!PfE`;MBpbU1w)ObhmPG#a2jq z%YOOR|K;1@mv6(LznAL%^1bBeZx~tYoSmIq+%QTkTKiE^1lh1m#}E_Fi50s>M#2`Q zSToQ7ODh-52Z%5*qfC~Uk&%dhGBTpkQ6^4p74)nROk0c)qCbV^!}7(_{n4KomT3n= z^2Aa2ChX83G8Qcajs?f#&8=+g9B~#_E^e^=vj8oq5IP=9Pxxl#X!$$eGB*zdw|p&P z3Qpmq5S0-(b6uTZWrGUTwTKQlO!lU*e=U*;?=4Adkpl++b{M`7g7by@0IfJQSMntqA!`zA>$JhQN z4%WNwp!N2qQW!w9K!+gGCi{Z=gNVUQq86+?u@$Qtl?D^gl#KK z%373?kr5Qz$VkXb(-FkU9xEMVJ60YnAu5A{Niw~u3`}n=qL;t6o0uL8*#mP1>PG>p zYDU9h4CQu^pow}CbishdC9UC?x0E8cIr%~ZX+DM!Zv?bP(;t<1$kA(X7{)9~N#?Yw? z7XI9;03Yd}-{t#{w)97t6f=K+S8=_D@!p9BAu)}exUq#gIq_H#`(W#Yk1ZQmhdNd>GF6XYl`&=8po2)-EGy{o-Nf52)=G zg7Xxrg@w|&AWTAsRTt}LNAwq5g5Dk(?KrOy3kpY+h7S-@0c?U74+n^EMPm4ej6^_? z^|0uqh#MA5+h3?s1TC{TPmz8a_yUkjQCMJLgRv;$)fCPfctWU-8%%HkBw7eglp%}^ z=I_RqXeJPMrm!x*(l@NXy`U$cKg9G01U)|@K&J@lp_y(8vO#GSkojx>Os%1OfMggQ8WwXSAWNr> z2GB>^aU=**_7(bz2mRCpb1yti!Q}wVmF@-YE2MkQDC$4VZ;Yss#eNw7Awpqs`;3YQ zaxzg}F_@h*mW)WNxCXNbg76|b$P`nd9|Z8n9L0o~KjtXxYnT{=>=qSCa}mS>@EcGY z2bKd2U}lGB116CD5kIOIHd@75fyZzhpzou>AiHF;1At2(-D4Qx$J+bX>;XJH2Z&St z(XO6sPzp1MOiZFGoFK%y2jROAiqUyYsS30lup8rB#Phj&^cZVKsm9+56IPkpJ`EYK~7C^LCU}( zQ(X`baHi8XAg0PL2pt?U4ayHs4{$o*GU0ot3e-;(;=wah1L~#*{_5Zl&r|atEr6AQ zKOOvY;GH#Wp9HEHj3Nnf1Ih~;>YpIOMGGCH96y0U?oajuvEhG;O9bAIh((3v1cJju zz6LJH0Yh+N{r1is=Ey04?OXxnTm@y;hcW{ni#aTe2l(;9(ZPQhj+j6_Al#336&6lA z0I-5egf7GE@<2-=EHN~+P4GRgd9Zde($)^5le~m~w7>=v3u8^CVbb>C5DM-i~V6#8vO)&q=&c)@oNKsO^62pd9R;b{=p9i9w;Q^B7G zzIH+=2BU!w3&BAy*pnqp#Ro#dT#q;*)`%OVY=*cXRuBtxK#0FEZz_bwa{2#L66h}~ z%@(>DXtbS`uup{(yASlNg@}s6N}M5PM1Izv2zyRj)PF#@fNdGJ{TNnTu2_td9X}Ct z-?QD3Qv_&#aC~t8hF3pu1EY@rSc{5uv|_x60*{ziWBMQrH^5%P8++P;stZ$aiL_84 z?*Ri?430>E8w*Yn+&FNU;AH|h1#mcUrU-Ht9y#Fn;2OXoV-RE(xSimRfs=(aR)BN0 zHPdwfeHA%mjnGPTc>E(Y5iPi){Wo$8++A=F!94<33{I^3MO<9X5KC}Y7T90Fb6emY zEwI0sewfLoV@fHY!7#jmC#7Kz!~$AHyza-0N0tcf^uSaP!zm2+NBL{HIk;Mbs0FOd zG3zmqX`!_Bprm$YP`ATcQ`92=_i=1VOeYIhY@BP6{ZY1;H^^N^Obd|7O6neGR}2>B zbHgGpYo7MCWz{X7OwR4Bb|>6QYteU|9DXJ=&8lVh0y$l-iu+WYL3%Rfz~LLz9i~IE zh`RqirSY%$B^fPEYS?r{qmpF*g2A*VF}u;b$htkB^d*J9_?@ z@AI~$LHZ%QwYy3c`n=dnA5dm?`lrB=Nxh321#ZtDtf>gqxPR1tSEO;k%iPaex1)1a z&F4KYc6xl`+aA@ffk9)no`M+#Hh*v1^0Im!Q{uUE`Ql^yw<~(&X9n!gWvOw&AO(z`{GFUPS1Q@92v*_-A3?eDe|PSPwf;2Md&@Y+b+ei1pXjDbWUQLuA^!hqqm73zfZBJaTxv zsnp$hOn~ub#$t~AO~p2qiKptywI1%5>XJ@=Xji&+y4~xCo@2-E-s;-s<TpWfu1WI{q!2xV>bE5vWe1rF7xZ>t*nQ|&W zj$gUv(+S(hXO2wW8^77|%&Z9dhOf&qEH+ZiHvVbiJ|?a;U`D}|dxiy4?u_ym=cive z`~+{|e>Kwg#Vrm0)9lAF&kYX+JnsH}wW+P=Px*Vn636b_ME7RKOg^BMnO_{x(j=L7 zC6&@0ntEfWXkD& z57&JTk76QQ|0*8qbPX*yBx^!CcH~B}(hKLiUMF7@3z(hOPq!K9mMh}p6fSi1;EN-P zS5F$vlt_F@v%fU<+CJ$A2Q%N*wx694;HsBikY)3^BJ0-nje9(Dd{520IbCbP@!B=K zMPDo~hvZr6C`jodkMTWgT5i35j5FI>_RML^!$>#H<=eG(zW3H>H(9i; z;)8G2{Ts(~nJu1P?oVQz+Ag+S*SlD{MndtkOPjs1UPgUE`gn7PM+V_m%UA1~aO+Yg z-z4nXVjlBH=8AExQ{%}y)r#AmS{9B`cU*K>qw-Mg*ZaB2Nan3$Hm}Oo>^t^SZN8oH zsRcbH-_!M^*8kxXG1Gr{rHaH^g5r}e7ozp{rRxvPEPmgl{?cB9pj}sfD%t(%WiQ$8 zl_9jEif!G?U7PZc_XaOyDpZ_~ws>j#;h585hm!r|Em21Euc)~9T)Vd8&!0;cYj1gqV9qB^_en9TI#EKFAuI7!%lSy$=vcudtTNW z{f@u2-0y|FU8O=%OXoM#p51-==2P#-hU==?Uuu>Ylib=D8{2j481U0eYO5qYpEAIX zzj=Gx6lbORW9sfLxf+pLNuLum2Q{p};A)xn)gtRw*gJ)}M<*T(c^mOnrufwsmnR!n zeV*5{cI5@L#7i;hVKU81f|GB!B>Xo0mZe?hPv)fUX=wgBaDDTR!=b0sBr|umF_+c6 zrx?M}O%W2r328L`uLrA{@5QZmJ3uX9>3g=0p`JrH8 z4-5pDqhTIGBe78-piDxGx1T`6nT|Xu!6ZyTJ8aT60{`_THrHsWOx4Vb5%qVD>==7A zj?t+*Z=dq~?Eb}0_L60m$ui6TMk2PA#H_qhcvvfSZTkE2?Auen{eed`N?)erUs0X- zfNd|M|2JZOQ8rre^4O!VEp-y-?3@31doeYk!z;<}hC+?{p!E8~SeO$XbSLA_=TnYc z_iLFj#C*Ny{YPr&oG;t#FS4w^FDmcG!t76-l0L@D;d^!8R;KB4wfpZ>zw?b*8vYwQ zP_ETjVqyw}QP?fwbNHrgq-7VZJz`+J11=NZ%c3xD1?(h}f!|AmZ*X9WLk#d*CVnmv zKbK;58dN5eEwsQR3b$nt85q0v6C8{_Kw6GsCQ>X0EGocgiwxG4SRSxK4M1r`Y^*q$f9v$B*#>QNJs)dI`S?he3z1v))@orDza$OSc#eN^oX?`Lm4Y6 zfx#@yU5T)iBQ4Mb+fWK)A#UX=+z%LROad4L8?{yw)|t$Lok-YDFtEl6hP5`P91wEj zzsAKa5+(;qrUja!)PBxEoa?AiA_$hJs1Ze$ro(-QSy*BU9jv2>B!AHL0w)Xfhe`FJ z30d4xz#lNIh7bmdi=|5e(;_cy6)gr}5280nt%%r8yC0TAKj18XVLe5>GlBzaTQ;OK zYK;O0LLdduCX;9=&>6r@vJfI#psY7@afE$?MmXU{CEEPq{Y#=S&xE4oIr*!5>vF(6BNWCNA#u!;~1dM z7RuPLL1={2VB)}jku7=?nd1t9m?l>EBC0A%gAdHQ89|6d;f68_Uigk#?%`p77gl$W z3S$qDp+ZK#gPDUZFxbdLMEDt-=9_0aO)%%1UpM!(jdT29aoNUcxCQZ8BH+hnz^f<}!lP6AC`_Y4aXmeCbr$h|1 zo}UWip@Dy7Uk5+wB>k!f^TmgvW{<-kAD?OB?^{W2k>sC0*}^|BS1%D80^*L|SStLb zw(*nbK4_aH|5$b?rHOwe_Om4aTrKQP>*Nz#Y9@}GE+Zo~-ec|Wm@{eBZRWMy+S|KU9*uyoxZdp`UwCCLxI`k8MM zQ6tHx->vh|y2oc2eUpfxcJSF5ANj5?{h=T$V;aY*?P(q-slYex?c;BG*DlHTzwJx) zB>7VPYWQ1@`jWo!ZJ1CTay_50xklQ<=M&!`hD!FOe&nOK8YKCfH+JwnbG%T`8omRg zk$-l{XMQrp6TK=mPDUn<#i-$*y~`w1Dc||?rZd3y;WPj6ZrFU-!9OAmgQA0fHmyc+ z(lng3oasR+1=&fG%KQXE5R`a}HLJ$M+?&7ddxu04vr{6D=?iF(%5LPNN$59zdQ`iV z0^g^nQ(Dp^T`9-4neU5y;@iFUg%SllY~!arZ1&h<$G5_Nm*m?_s`1d0c=_a;B;WmY zjjWWUhP0~GxRlUlzWsw9e)PKzK+I152EXR9(s3*j)Y{P54+SLMYIqg;7HRZ2xhBsB zvj5HxlKU=^&@2(%$)E52k?+5uMj{^IS3MHQ6)z!P5Fr5V;AQziwbHlNN%BwMfr^}z zW09_U94j_gFnw(?n7hpjzJk0w)LL`={5$wDd5seB>;UwtN7}~x1Ejk09;g6eLkItu zQN5&O)x`$BjWp>afAw)n`|Ck+y(Itmw+4wlArSrqpTH^7T4SJR>L9COy3WMZPAP}jCz1R`BARji@sLi9 zMD+Har#N)^(i(oGv1hQ(jglq3Qi@Z?$6?wNJQFs>!-M^mzvxt*#2!!T62KvbA!Z3l z!?zR%0I^(3UC!a3)}S!(eNa{L#CmYLNs&nI+9Ww+Am{|z?EWY&#iVtaca`f}qiD^vMcApSD zHJEgVe|$S5zz3!{u)8I7K)1qnOQsZMonA;inF85DE5K@Wht~s{PI+&V2N!k4hsOY2rGxaY(&% z#NW=Z|4&vF|KzWzrax1^jUN3LQ^PhWkIa_O$_Ff+Qm{*~b`Y-*UHupFhffNg+ z-Sqm`8gIS8jc1RG!`jX=%iHQl%Z*L^%c%KTEO~eaQ!`EIN^H0~qBA5sXrNFc688y- z4m{e+t3>}@>&3}XMo4=u&n;9&sUziv)AV++pSQ1zS1Ff1q9bdhU(r#U&eU8RWj6UQ z*-VADgbQ@kV=Rd|dF5M!h5L@DjkgmJ0+(sObQ+&sE5gQ>bzXi!E6>5bv1uY4UH|BT*xSWuXF4jW_ATcz!ExKjtCEzGk?BTqVQY5+@^WY5JBO?**h zi8RuCNuNdsh(1TU(;9^(vWecxR#+3`&(m8|qg?A7Y2zP0QBa^T zbeEr3QDXMhX}fA?qI#?`tE8U#dm2TD)2f1%RusfE)cr@_eEFrAM*fv?CB>(%1VqUj zQ`Udz4HN~x7#I$#-(FHsa_VwXq0NMW9Maq;bfQleZ#OV>iBwVIqBsBW^R^d6#W&+U z@uo;^!PAQ$;yWdJ`B^$XxS%lp5qxWbB{EXoPH+C(N5+lD;ux&^o2LzG>}jD*ZP3DK zl?`7Ei~ul$*oddyo>VQ!IGmb;48}e*2m}V?E1%Z>v2=T51qUnT4{mB zMW!INPAz?0Ke!G1Vo~dRs;jipE{b-^t$5OWgQxD}R=&8>Y>PchZ@dwuu$`&95-ERL zb3f0B!vF(0SNE>=DX%gi@gyDoIWplC9loV$2$2lvFA5Nb_v<6e+Fl&1RDDI0T3|4h z#i!`V=A48_^hR)u3h*kRKwlEy$g3!H(TPtZ<XIk{uE`Jw6SOke@bt>sj*$C z`%Z1nkCn%%ViBTVZ@O^N)X3W|k5^$uhDOR0<)w}E=D-GCWp0%Ge9gVY97Vp5jtp{% z!~;d)J4$k~DX;fv6J5L=rJ90#c)lfZ>Oy(sS9I8~h;E?Q%U}V9cvtN>oibk4Lx;oT zm5~aCw=N;Z#XA`Lh_|h?ENU7)`Hipa#9Cw2kLmT_66Hk=bm&pEs)-JscJp>{38S?2 z;ty>XyJM8Ok$I=<>)S&4!TsRmL<5FMBz?=fYnr-vcF-7=^Tla%{>r%( zKOJzG-Uv)L!S8%0hEYbW`nE_+evnZBs6ai8zqw$#f&iRhKS3 z>HMQLXqaTyh|m!M!QzS@eqe=>^L$2WYxQ`o)n9AN$ur?&y|s1=&abq)_V-Rfc);E~ zQ!YL!w@9vtO~hL8)VXqlQQB0y0}>Gg6P46(fnM_iZWuMWu&xH@z31MPOshJ0`v9!1 zr|HD(_^5Mq@MFZolDPA9;%`MK>n@n|Hj@rE9A6?o>pa`WJJux-3AdHRJ*5-diod24 zt2@f#6VBHyRCGIk`|q83YS$~x#qsf~sNyqpLZdJj;9AS&=Jwh-@g>Hu>qL)*l7NAg zh32S)uj%+}=6q;-jZF?M{2MoxLfSya+Jb3Ow#1_Ibnwx%qNuMgeiDV9j%aJA6a74b zK+z6Uq&(g;Hl#=YZL}^T-0egu8vYnQ$)$9$xqRVAuXZ(B*JiH5~1Oe!2XrJ zyj`51S6iiLYqoI<+WBFzH6iK@9rxixIoA4kJN2lx8>KBZ%N1=k7mey1lf@z}I7vtT zWiXg?pi#ssSkBZ0Yk*CkM@G$QI`SUpYcLbX&PKaPU5U9bHk01Otyaug8r`Tc;DMf2 z--uD#N_9~x&&8F|3K&^lVxw#m9p9wZ!~p9$qvURyGDRAVNU)?iAWSS04h`q;H2lu1 zD2j7ApGC$+dYoN)i&WiKy-yc|$h9l4(Bq8s@OJ;N=et0LgL(|a(CMX`ujokd{~2CF zi9Gf^!9v~hZK3cHj8E;RCB|$YU(N@?@#{|k~ zWup2N9oyOoCsQJqw$R>h;9Z|M|D|#}f5}&x^S-Wqw+%?QC?@VC9s9~;mOiGv$E2km zI(!JxvmpLd^&!qg+i34r5ATiN1wvt2>DP30g9S0I@SNk<=;#DxTnin|GkU8da~tk_ zsI&@iIyj78tJtPZ9%@#PB}tNYy)lgD0R__)3oni zj3p|zosI@XE6nHV=!GbGVRMp&UYper5;8(82^cVN*s$QxT~^C~4`SjoI`nr~o6R6C z^wGf{qp=r9jB`$g3y!(cqHc%Gq>`SZy?+>Bvdy&nHc*0E@1l{DAM6 zH18=LC9Hdl_L+-Ryg9va6upzZ!d|I zN1k)$P#i8gl3!Ttr^7e3UA*n_iSey;xGrki z1;=X|MJLTJJj<&rhyqkNpy=c~vf`AzbeI>dj8=V3hd(_n5r^^uB$A!^#kLD{=&q?C zDxpxHkZ+7RM~8Q}*wvAW_{j5g_%oFyHWvPHtir-A_Mz{h3-e7x;OV@lj25cv9qPM=Ah_^$8swu8UTm zq}>mr8~K4dO_9nNMXb8ebs$HZped!5x^N?}#ZzS#*XD{T`)=Ri36p$&prb zL41C^(MyMZeoW;nkQN`3wa}jJImp9xCqV#dK0-2%zHl(vrQNjYenh@m(@wUj4W!xs zWQaIeB)2s+eVM%J(l^TV86=c9VQfQ4whEX~R65=^4ovbg^A| z^^JaskR{BcHP>~WB#(2E9H?TusZpk*@(yTEE!JGEp9&^)P{wCIag4AZ9h}k$uF2x2 z@>6YeaCfUPgbsc07qJ76osV-(IDtVPF6jcjWF2MHpvR({Ha;>n(c~3v&#^ANzU>K> zrGnF_5UWbH7M$Q6;h-uG^@Sdwfwuk!q+FYT_Rp0U;X_7vLWlAP58w+0j3tuvoi5(t z79J=rj3sEGiW2nrH`C;`O~gukwP(CRY}`MRbS&?*qpXQn?xP|;xFTan8*i^(E5~P) zx^g{K5v0<4ezmn;pQLRemh_0&OswvK+xl)QFKofnTZ&rfV2QkqHkZ2tg8PewgJl`J zEMTk3Pv+pOTTY@-pawoFMLLC5tq5m+h#kKL$=z-N|fm_a{X((7^;(7$)Qn?K@&j zFiYs6w7`fw879R5(d!z(Uxbltq6;__b;sBL~K=hikDY`{oUCD?&rXd8Xp}v z(I)1L1hjQs`>i^?$xG7?x#`vI3Ug@*=(N4IRuNx7E0=U%PIuFu#V+2i61f2`b4P0Z z8y5U&xPA3ho`+Z7PK#!?(zF6Q8=24aE0YeD_Y4;V2FVtQ#>wm=*;`1SWpA;y`m{&$ zS1uTIC$xw5r-D&Dunb(OwKU(DueVtux@gBS@Oj)5G?Q z-vnlCpnY%R#8gNxU$O!z?te4CleC9Bd9PXV5Zg^K#_c+_9^|*$Lq(rxv|d(z>B<>U z#rrV}&FG^2GrYnu+P?zqMv2wpA+u52NM^0d1v*%-cd-qh+#1{}VwKnHe}V5X_tuY zwL6!f^kqbMyPKw;w{%HFOtyp;9Vo;SRb-phRc!3Xj%S^LVIaTRj(LtIST?v)b?49j zl6z?5woZzAMQhPE)7~N_E?UBCpweEi7#m1?cXZL{1f$wdW6ya={j-~88)-_f#wB8V zo;m!Wj@-0keU6`Y{?yCa2drdv%sHahWNuof`IT4VQ5GQ+fa2gxtk?TxY5-`hG@(l(HfhnV0#O%!seoF zTM$+XN?NZzguE84w6!F{P1XT05MyGafOdK~8NIoe@++_ln+xhcv9rxDUK?&_YhPf} zLCHa~24_`OfQ03^1U%k0RLrGC?w=aDWTOgxP#Y6oW(G)*^>^S;##&6kQ}G=_KJD^$T-)cP zH79&5?x!_PG@W^aL_wm#VrIDf;C3l!c3X?hg4u8!-<$KR5mk=ue|g}4ccu35wnNwN zq5NxhDm&jumDezR%}*m=l$U~4Uw^M%6dV>a9y*Q zt!|_!mxsntP9s(yM>=)_SI#KEjmpU+NfWN0p`htfA0FN)0d@I%Tu zx7tqg#PTMZ7u!k;s_{#6CpL&!e&D^IaIIY_ombCwy)?A{B-s+N?9-%~g5>_Agu|wf z3Xs)^B*{^1(x+_typ*p}_svg!yH^y%r-~2Ya9;iE^3)#M9PPdSCA{&b0Z&A1gXcyZ zH!R1_RFm1bzRuhp9HyOx&VA}8TAFVU5Q^C1i8Ni(#ddB!<6%2ra~x@4+y0vOspD*S zV4xsqWB}W_=8fX#^Avh%$I~9#`3n|n*Ip$St870q55dk7i?x^X!0f-e1NXjh0d}Ye z78OGg<58^Ga<-LrINE6E`&}&YIA#3l7s-y(4p(=mP!u#GNIX&yB%-u-n8tFfu$M9i zpaQ`K4a@Jhwwb#{0zPR!=%Sbi-}j?&JXh?2N7Zac6>7H9%Q@>L)M?fT401%L1s7XE z9tZ`r`F1-k8{0rjXTph>AWTUoY2;nBbE1dR8Z@}Tme0-Iv}T|Z#yb0}2JG}+d~x>Q z+9|qFjo~;ZMENbpI>SUEWBVk?K4QhA(*CMGSOQxsUu?6$Z|?ZJv(8PG@B1V|F+Q(Y zj5zx0e++(BHplrZswEY?W|9v@(aqbcZsK2xsJbL|30YagRuops9=HOB2xOV!px_@L!GVhd zm?8B3Bv?F4tfzFWc*T=yYX@!n#2Yx2O)q3~18cjnRTIu(G>n}utT18^`lxaGf*Z(? z~Y(}5e=e!@32NVe{U{$XQ>iNxb331k_elLX>0R@!v+ z-_HazZJY&uX~*1Nk!&_q{=*kCSiqOS%y z-9757-S1@u4XNucPj02uzvrUrH~L){y*k;2gSs7~py1RZFU@PES5H3S9rhwnE<>uV zF0yb$a5HK1aLJ2@FV`MoZsU_vYihVQ&J!$P zqu*WoR+fP#?(L;Dms&~jJ$LQBI;=_Y{Wi*NZj}fIgo$bWPra1*Cn|~nTPQn){qOlH z>r*55f$v8$FtWu6^tUO5*)CylBqLZRrMx09_tK%=k1 z$!tB|OdCHlxcQgf)2Y=RWcfVj5tXe)^w{{bQU{2-+eH<+7O{ktf8kthwgJFU>3gW4 zpzWoV(gw)8Sbo;+OYkohJ|9I(-C+U!1`ZxFc_7OzOkZ6y_$hqO7hM#w*AM(`XJdb% zh!;>#hBcMn?Gy%5(M8 z)v9ac?M30VVy+R~UNe;y+S#l6+IKm-ybWk(k(MBy+M8I}IcGs5+mt@9$~n$8I4Ced zGEVs7L|MIfCO@=a7%Q1R=U+8Fc(U^U@vySboJ)$ph@jp}ivzm^!ob%dHz>~pKZDZj z)--3n8@0;+qWKNCFZF-EqbC&dUWz8}gDnOWtUvYh?;L9(!_!VduwXl|?k2lIizH=p zvzMkTo7tGHv^2`a685p#=PwR5HIUrS74ErU2oNyYE0lDhmzF)^P#zo{Ud%MXn%8l9vkkLjTEs1NX*SSJPq5b?BnnAN?(RzGUrNmLQ0b!_ zScmG}mb!mwAZwV=K%?vOe6(VJ6H5FL4G1}PNzrw=kM#e*G3Av5@D7nf&oJ+Y1|ZID z9X2HWTW`us;3`%Qj?u^DN8;qW{gX$?Qbh5iWc5j}z7W($wpP|Orr$`}MjYDRqNG#7 zNg;vBAF>sHu4B#<&qPSLwtd)231Ns4+wzppP*dxoWy{o!WPR2fC>nzkSm?TnA(n2+ z8wHH`I@DXekaJv>B8DiNv=$wFv{maP=8-m$@<%kHby3byovuXRLxqW`gik#9lvxJf zh@2myN7h|U6q5@$l22-DzB<2yW@iEcbVP8#fS{nT;85BcflxKC0LHvw zV=J3Ejb@i{YL3nS(6`dalgO)0Mjw@2gaIwP*2z77v8R(PXRtXNM``f+isR_V1-#43 z&F|pfsA^+#!)QjLm%UudUjE@?ZaXq>-71q6hit?7>L^coFpYc81@*4IJ&uGdREgY8O7on5VL8%_guHqmjvMe!HvBh3(^F=4D)@CXy&3ObbhPiMq+E6Qvm0FN4+L^}pQ$$nd2P|h$ZAT|x zfSh{cJmi%(0Akq21vS0-7*32dw#+Ap3MlUkl=Ky`mr^NhbY4UbaPgLXxQ8vL?X2LY zU`}jO+q}Kbx0~387i(KlCZG)i(0dtyUEOk^l~%7&>T+?TrK|I}P-y0g?^w|LT>0Hk z*5$ZR-f9ml(ke6R9#i2%e5`y#Ba3-PsoAc;0GVtApC1}r*@K5JbCY>zmsl`ZM4RFD z*0y6&iYgniQtYgsBI2ZS%)ZA(t8#G{mfLQapX%*<@0xN{__v(T-TABUcLqrKqP5pZ zH3)^2BAoNkmdkDpzO}K)byL_;{l53w=r+(sMe-_&i&MC6x-iAah`t{Dh{D#yN^W1A zh1Nh2KI#bkw~;m<2kv_Hm>$AmZggLSQe}*fmqJL_O~$Iur8AkXCs4NCaTRm2&3M{P z=i+g+MY622j-bH60Es9_Ko%2D#iq9akk(?OBVddc9iSNydeFYCYsROMca= zn`r|sZ?QA8VPS{!Vgqgb8pM;B&o-@f*0t8AK;;10MTX5c{Kb&rq9LN8Vu3hVC{8() zqGn?su{nPwk4*~swwrg*iVPBjoB{LB(01*){T8aXMpYr$!NPdIm@Pa^QShf^xYsEW z2vQD_Hnxkblg;j5cU1}39uia*Vm0(V`G_9{fAdPjY{6KHo!ZRC@1s@yRX|#K_uaoL z+nKG%@o^hJr~(J7q>wx41>J~Y(lo$_XvgQRZ0S}SbMi5jhHJd6_+f2p4&1h)n@hb` z`jN9N{79vSU@ZPjqe#RjYoUkDJM^=$!1ji%FZ@6m*ZC=ZUge< zKW+^Q4HE>72oI-C+FmhR^gBiUqSE$I!3RDh`HOyju)c{_$Qv);)4T5&9>bzPhgJjR zs7E3SU>j4Nv-7PzG)I7qF75{gm}H7PRO)dE>RO5py&!?PXX$;c4i}-M@`# z<5jk@4Jv2dkZe<;Jpg(`XC(X7r+wUr|E;AAUc;eIv-oXI=G@&H@JYzuk{oIU_APs}XK-I(AK9XQGNY_yLJ(+nHu^`l>`Bey(ryGv z9WH0Bs87;$Q~V<&BXd9S1^~EQopQW)W z9*X@8j7flCpA}9xy#jM-S!8fS3!-tzsC0A6BZH80|e@{vpSnGr)?@QRys?Wjiz%`WQw+mzocKQMX z`C(wmL=V0|ROa6~(Mr=r{@Z>qei*{gO7m|aiL~x)Wz))N#t)CFIFOSo&iyS1czb@B z3Kz7bBZS&s(w5?rEc5FVToOqzn-%oKF;Ld5@VA;1fKEQj5@AhBvymddbf^^^5+%YL zuGxdxh05G+N?hm)6tbi@l7FVim#ltL34K%=m52I6ksMbq6+;p!yNl6nDi3Atc@FL8 z1N2((t7E4(@B?>s^Bu40Kqgxr!p4dg;ucHlpsTjC#V^oA&h89H%nAthTdAlB_)aVW z3Es&{zJJ@OfgCYwoethYdQzz~!n=+8>JclM>iFC}I7BpD_O57Pm`oNT=r0%?BwB+(J8dyT=tc7um5X#W`9l0#I>-RSu!wil>+oU`0K%jTB$IR%uvjD40csQn+eOUkcCPiZ!d;H* zXi~MbT>V~WLZK?>tlFqB14f(H7_?1PG*plC5?dx$Bb{W0b`F)N%w(AsS@MFDSOu!ASA&m&S*RWG6>X zlx0i%hJYgZz1`L zZZ`Q_l1}Ur34&?KKf5Th8^b7|DKw%$P>{zZ?=e&SVnLt~zXP~frF;HrohP&`R^34J z&O*rq(jmD-(|yy@86ZLov+Z%D*#IgnyYnr;&P)G7ig2WfSMDJt=wmf?h*;rV$3fJy zeI)%JV72{Hf;Uh&SOOk6(2))27xl8$1;_e`Ec=y6Z1S#yL*jgY!6hHdoiSHjYeit2 z_b!5q(;^`X~nyN+ovN@SrIuG*B49l8(}3G1Q6J?mUbwHnrETM)g2IHmCo7 zJ9O480Be#r+%6nKvX{A{w*jh3l-<#)VBz#p1qBUcJ6?#IW)3XXvIK1+elixwH6~@t zeL=fG5P}eEK8zB1H>o<5C|K`gI>&d?gp)$G96V+p@-)!0Ej~ZA${m;nbFX z^V}#5%6c@cbCr&~$yk|J7P(0F$zzJy-%K;FYB(z9mDf=Njr|oL?X5qYgC(*}vGy{H z%=x&9%##%m^DJE}@4R!#E(u`fUj@#=p!I>%uQ-P`GRt?)!BWusIF;q6c_;0{!C^xy zRAAeYg(-D*k#NQ+N4m{Y<#4ziZ#44G8Kp*u8giv437Yl@$IdG8@KHlT`W!D(D=??b z&HLOA=AeT6g;cezito@DxgB$q@+yZ~o?nH^8_K#Z4g+_Mmd~mLLO~gRbg0|P?(i1_`4sCo5SUcx4>V-eq8)WJ7Qc)OJ}NjrG6%v(|!Q zL@U!;E=h9T7&1ajCc_^Z$MefP%skQYHkd1x)_ZSqH<`Y|bw6)s1vj=nrezB~{YApT z;RA)?!T>&7K6&2N<$rU0U5GHX?n4AdJRhC?rC$^k$uAh>(;36(le zZd4@BtO_7@RzG3+ z2b}x-f?x=e@oQlaX}f6YJdA*I(aI-kKmlB0oSkLo-2Aiyq>HGWdx079i9fKc1%nl) zCQ93gtsW53N(E6~alq;?kka5%1+^&kj5fO2&j2;~6Vh8yLB`_%mx5Ey@)yF;@(iFN^sjhDA|dG~mcp59s&ohyQHVRKm-QY}9n+zz{~5r> z>^z#>h)_FwFm^$84yh$Pa-NaXd&_%B_c=(ub<3M@d#2xfEGN3=nup|9ke#ewuEX(k zQ*td#Qqg?9giDI$kg3KCN$6-h2RikP41muU6gqN891mWlLr>1 z-lkADGNS^}fkwr3koq&d$}VIEPr1g_Lk3R^v7eL?jm)&#u^E8O^gpM_bX5w$WJSj) zLAWS5uFrs^@G#jUWJW7xyJgC-K-mI8h=iq;-{1L+j7}U&(GBxK|M#m0P3<1T}nn~9QrqB-rmdZ^_P&`+?nXfi?vFKeOq1wr4 z%>y&1?Z?f|_mjTv5nGT(<30wgGPc+-=FQ|~`lpU{$`)s$eaTxa{^)`SE3%T;$(Br+ zAv-Bs;VAcr$Fh})x9fX&N3kBIYRHH6P!wT834(hgDPOU(m9sNPB!4W+{v5#`yyenQ z)qdefTA=g`gUDEf$oGnbjkk}fdxl;$=3l6Hj&EoBPo0ARzmfxyi;oFrN%p#DE!FfDc;Yw=-=CKPkN04)mUR)1L7cTRbDF;;PseE*1rjj0zkRGerX_oJKAv=*ohkm2G@`x`kv#h)GmJ6!9x9ZDuz_WBjS$rV8_YZu4QDq~)x;NXN1$?3O1)l= z^kC+cT-U|pb~dAcB5z?|W=wP3YiIHS*CN^i0A1D|qb23=p1Su84YaP0$?o`5X&0p? z(wdgW`!9lc4hkV{HkLGf)SsW_YIbjT{m^HoX=`{QG7vbb{ACD2HDX(`b^z%s zwt^99rmW44l>Ve8Ks0O&%RA#-&DCIa-}&I1*66K1Xs5n%?!yepd_XP}M`+CZ4#MpU zEmE>KT}URt@~KCw)cX8fEe?8K8u&KS#L6*2l>4yh=;9NQHr-E(%w|NrY}+*?b_<8Q zt_DBCO1e?tTL*<$-{C@*_mcxEjk3m{Ka`uf+Kmk&A9fc!>8@@{uCgHYSH{gvcl-vo zwRp=Nqn~u28lO>~-Oh4u@n@@Ls~xO~^0p&Z;84VP=&lwF5uUtY>Fbq0is1R=qs-30!V zX+Lz#_0p=ZkyW1s+@)pzY^R*jsM^6h!Y8S{)h}uRrFDI9L-T6{Sd3|3D06LHl>NX9 zHV#<^H`%(2R`15?%8bGHa{?^B>ahm63$;oKsg7cJ8!95}ga!*o+!(h`r?on7BTVX51*lsm^&U^hw5PU z3_y(RUTCibeTW_ZzYaZs=gkP!F=-mtPvI{9gO3b&2v$=n*C8u>5Ya|U#uw-KC}++S z-Yz5NQWe6%EV|`F(}WgCt~T3Caj*1<7T%=nJhd5AG%ROXw;)JdZnZ$*pf-RWIo!_T zJ1L^Li6RbQjb}Q$0tO8dqeSSKW9b$Klll{!Ywh2`Of4OAdsril8{!KP@LA+^8owKb zvRj@9t8$PmEj^4D2s^Q>t^iTCoy9mE7dlx^ALsm5{{8>pm*x3$A378K0iy*214fWy zH;%-Vo=)CjpJ?v;H2XLdM5~q->2)2@V?)#Jqp81|dLP_u;nJF!zrxvgY37GqVJYV~ z=LGDLYGW5A{9E42+k=qv@~dF2AbLoF{wH^lzyXrLfgmfxf>QEh zS;U^Sjk4wQf8zHYCsQn+UgPLynvnq$WN$jY@H6(_-0Y-5BlzJWSzhQ6;jmE0Havd2 z>~)9I%W`^SN6CsEU$isD+S!|u`2G2!0sTa>;t|6_WhvjZF{Z*V^M_C1%M4$5SlX`D z(y9D`Wi2e{N(6rGKr_qvu^*p5Lbhf|*ht5=MwatMglL59h+{kTG~@{X;Ii$oqL|enlhYbl3-oQtq;;Z>4UV{n--R!oQMM%90%U@LOvg zm)c2lq=O%@8*xYRGLFRuXrFDP_AR}< zqFqHu{xjx2rxWnERlmsdty)DJL@@0Vp>UL#a%#Jm86Ms2b@KwSs1=zW)#S^-}p zp5|iWJ0v+?Qv4X~-UHPm;?p-qgHJ;Ysu)&f!Su9}^ zjmzy82!1_?+Q)USkUW)ZCSJD1%PaHMZbl0_Hc*C;>Z^X;&A$&}&!yWgfiQGODNNc{ zg72#S&Yc5!UCjp^1-$O7+Gow*PtLmz3)LwMi41)x$Ng0GN&=;M|7A1>^qi3$&cB!AK&S74xsMg7nGAFl7rr@;X>~9P`A#9wF?hXMxZJ#7)7wfu#TntADlA;xd?m z>dgjHwlxI=vU%rH7GJ%>F()a}eoBc#Abmn(K@`PhApW#a{1`QcQgBg|6KkaFey5f3 z4M=b$DT`YgOQljPhr<3b-Xr4!pJq|3)IUILZKd z2U?Cea$b4W`=Use`BK0Bk|gxWCQTdgLjR<5LBf^aWR6-Mp7Oou-Dhmg$SVcC5~w30 ziT&Ni3H%atenc)WWfdFjAreubAmtuglp5h!>u1Z$=X`v5UOQVe`pVcgmZ_0-EDmxs zwNmCU4J`B6zZ>z`vm)BrO5@d_?f?)x840w^WmdPp=A-mu1{eSSLvCNQlIw=!RjmpT zs`XtsKFXJYFTRFh+!rJj_us)~55=w8e`5{`$lMr!_^a4c#SxA~nh@717$V}-3adI=#7yR* zk!L}7Am=w4Y+aW=+D;JHD()wohQg7XD z$P{b_81kBbHRAu+w)ilbl#iCp=c5a}YTxBhY~?P9%N|Pc`+;mhI>&EAM-QJc-A5By zJ53o1H>j9`pHs|v;fNB@7-S25mw*(M4He zgSHohtik>B4xNjCV==dP3oP&uaW_4`V1N+kA=cijE`W2ARKPh+@)XHA2a+`z%*X1n zKucMx;eGmCLi7NsG%cJP${?Wem$>U@xgQhzs#OdD3@iT*UuJ=N*S*0w1AV~;#~p$! zKp-f4MsX?aC}ZeccY0c`zlS%a;WM+RRwuc6d(9~J;6^PS-e=EOx-g~s{-(6^okvZA4nQ7I(KCjHo^5lSwSo4B?xFk4S6dKq+Ko}Gf5Xxr! zEHn25D2bmUOSwCtn`Q3}nBaJ`i)E|F3?9Ol6%TpO&sGWM9p;D2@;PAQIMB(m^^UR* zmYqI)0AK}vL8Sw>?r5hcDDNb|Hmk@R{>ERDXlC!K1wvgIrcGIKWLu^(1}AR z{C;K4Ec@l>mzV%t;$~}VX8S@NR~p#L!$2i343TXBCULP97v?9A7&uCnDq8`#Bh7(E zqvk`uNE}2fez3SRswpMUq(XYWYzkC06YRWQ3Y!I-3fL4S2Ctj_SD?tHHK$ein0k%u za(!PzH!VkZ90o*q?!Tdczg{z1Zk59JR)1?pGff4X{B`OI$H{J%rFZVdLCWs1vrIw# z)CQJ4eVc2zAUsI6HGFEY1S2%EM6yyrpiCnO31DmcJHvWud3sMEcdzoXp5p*Bv!*(xep?T!$&%Jb{LVMw$-%2El@drY@IrJl8rM zr|Fxp4zGs*rH7+1pBrS8S%ZUW;wllD|Lhb?P!h>BK{F6}l*Y~M=9P8bZ}ZaxAM&1w z-yjpf&mszm!CB;Atnc8M#*}Ein-+Y}6@}Yr=>Zfyg3(hV<_mVfUZXalSsQT{m~_!nb9~i!Lu}cWMz7 z&n1og#Ld>(99LXuGeEK8hwNq@Zg|O!H=m{-<&(NV(0Us%!)H|PR};?>0Kwxc*0mUCq8a=^GWlOdvu z7DYd=Mb1q^iTB#$N5T+^LuY&b3YzB~FN?mjB6=pT{i&ZBh8yWoV}yJoEqEDuwrIPb z7L=Kxtc-jebMrt;rE=P!t654FP+}?&o5kk8fAaYY98?^y%vBDie}f}G%h^>W5{d%r zGKw%R$iQ{=O+UuHZ?g!s^p`WZQ&l8y`{f=S_?qi>S_RH?LNhubpq7&*j}-R7Xe?pI z23l|oM*;#)J$Lvfp^!G7`O!qMM+?`o>IOPtCl7b?e;aCR7YDK>zg&6;Ewt#VZl?L* z%NOlguyxKmrywtYnJn*Vr!jY7Q-?2Z>Es7O{Q(Yb%z@79+uA9G=Mo6+&WCj1v`*gs zbGFG(i%xp^{0h&*^@wpRgQ0mCzX5MO#*I8|T^UT%1=`l1+tFLI{7yu3uZJ$IOxXecL zf}cyYmya|nOO((oto-+d1{&vAH~;q3A1D;E$-UY3tKZ@frlmuupZT-W^n|T^!&%pf zRtdq!R=A4<5T(G?t{JN#(&QhF{WqsOjgqm8NiO;3oOD1b< zjWk-VLNG|>bPG1%wF1l0LL}+B5$5 z%bxqK)J<2)i(L0B@nfAdC5X$D7SD8;T6r8rVD#NsVP{ibrcu8)QPSVKL<0h8r3%^~ zVL9~andMmCX9_K9_bXC;qHM558NIbGWNu!1>Gjr(5tLky@>)RP4qNm0A0xAqR-?`8 z;(r@u(o_%~wxzbN6zVm?*iKri2lGk*Q8C$xwgRMvd=f8Za6 zB>j9bLyAr?B;;=Zs%Dhqmhb++@q9~1b={xbhWv~z=3g42#mA+gn+wNxt9`gA5P?5H zg2xq0Ru!gwlvyE5PW@uerun}+KI&o1CpuPiu}sBCFhh>BewO*E?9~$;EOUQ9*)iB% zrdGBb^w9wrcS_QrC?^13=86}FIOlrUjF8oeqs=U{XULasmf7I=xsheA9^yEK%v8;n zodBB4oHAmd%-~o7R&c4v#jio=%lsIn%LP+hygi6;OBhTfHM7>inM(Be)mLQyn6s`X zB*z8@J^d48gqfeWvGD_c%WM(_2GH#3+$=H;a=9r}pDW83>n?W5tsEep^$A)6z)P1~ ze6>FS`%WH=HKV9GTp_R)Lsnoguk7lg1)12vb~{_L6rGG~n^|1Z!~O1lf#Lmy!2|mP zL}#;9^ZY@Mg8=9ezv41Ug_wy1!hNw-4oBTYOHOqP0&mT?pf_3_0oBfJrLO&_Kd?w; z|HS#rjK*ELX#PiS0YbJ=loVdegHUYAdw7>pCnev+ls67GEPB0qm{D2?;T**#Xz-nk za5tOv^!7JRB55FHf^k5hA~m{HYkZFXI&TU&x*bt9U)w~p7h|t8)9?hrNh`-XcjAQ* z$X*s6NAV~a1-HdxWQS(=cZ&UN>21ds9c zaPoi`hloS^(UNbWZpQ=6tuhrsBrs-AmpDwel9oKd@}*zHm?gP6?=j6CWa;MUus-~7 zfHJPpV9~J>*Z0-<#hIaya-kpa{{Mj2PglrWzyHa5^BmVVz#Xo|r>l>``D$9PL;8{) z+{DuFS08HNmD~K+HsgF>cT?Tx6m3p}j z!#6q~&gU@6oN9UNz5jHE1cix&!q9LwL-(Vs1o?8ri`b`_2bj8p8rH3K8o9xZU4$IF z?dohKs7w19A#v!ZgFP--(#4X_rtfp^!){suK^Km`_$rKbP7p$B+8j`#OTU5~++x-D zvdLR%{Ap9?4?b_0P#_Euvnfy4dy^*BW&sV2t?*O)Fen=4zk-&VC9NfvTtt+#@6o-2 zO}Hc1sBsI?9~f+Stv4u<@%`FR6BqGm>`c}8<4JmsKN^jfU@k~MJ65gjzM1}%>usjqQ2 z^tr-K30GTb-YE@SK-BO?1k9PBiST5Bjg&gBfo5;-5{{#cr%fW3p>a0vgZ!$%at`$6@nxj(4$)G5dhz-4yA-Od~hFf?=*WR#QGf)|Vdld+wNxL=hMW`f!`l1eHWWK zsw_PPD0^C!3xOI2o3t|G*-s*=5=bAVzVuJ|K-+-->2K<>Y>V^2!ue_LK+G7upUxea z^!HFL#t2|AewosaA2OQp2v9xK!iwB3dPSGx#-61Yas9K4H*gMUq7&N2nJ?Zv+eC{) z6!yVEi!A+Egd#{R;0uNY^3drE_joha%cj4`=kxmp^(kvgT1^Svs4PqpLsHW~i#1@Q z2i#S<`$GW;d7dC(aF{4;0Gn7(W40ep)AtlM5NtmWDDYIRSi(i!cEYaX;^nzjM~ybDSc3v^O zm`$OsqA3qtgGAv$eI;o9e>oKJL?RXku?4BMv!Ai)@80_S|Izjya7~@<8*s|WVB_Al zVXH`3?s)(e+}2TNYXS)nfdol{VwbJrY;EoCzkOS~r|I6~%^_j$4Gug30z@)s5>R~m zzVCNEL94a3Z@=&N`}*rKA!j}3InQ%H_qguszCwC$^$@$nj&)>4;gflI?+HTa^{W@T z@TS&9!8^6afmGF%(+p}SrF#*%O8vC=KcN&zK2oQ87* znNWS#KE4M&*^t@D@L`iqNdb87V-pKgCGxB6nky-Gab#ax2fQ;XF!+J^f*+~MFs11jzy zm=n0hjuf&vUSuszF4i-^cG!W()qMl94a7xy%BLbN%mNHRVDuF(yYz$p#A7Yr41(8X zju|rBMU{wT&eq59u7zGUMh#qmm@Xlq|wmo9Ko7mua_z7(G7{($_Q@_~~E5R5Iz>kvK&n|84^bD(HL7w%E`Jd|9uvtbhq7zJ2zIVx?< z_YPm)IA3w>gn3(=fmN`wvrpJPPLh;1*i(aSk_TbGbFjg8!L=oqD4b%tujqsk1h+?2 z$R~muWz{2@O5jNU2|hS>*$`xCFB=lk?-~E2IQc#%5u<05ee@{qqzR#ZJYF2V&TI5o zpz)4F55ZZhJ&nj#ZbMpMoO6gxXc+)l`3Pjqig(~fDSA!;t$LO|L)lk!FNF210D?Xn zFw7vf%F=J}tiLi}IRQRAq`~vfSk%j>FR}~XGgD3fC3((CDpO;ead|zv*xLbq&4wO1 zam~bk1X6~JTQIkmNNg~Me9)u$NT9c~tCR?AfLGGh%490{VRkHOOUGLeI|B&Qyn5nt zUh%|npcQ>aAI;NTWf$KC-4*Q^tFTv#k>d(YqY^NCWp0WFqH|FvzICvRE*SX%E034c z7({$=qNR8{Mu@ehG+hD>BzaPn5-c<(Hq5(^!1Yr!w&ov^nrHYAWPlKo(Zt3HFtTuH zQju0nzoTCT!1MIY5ZD%W;Z-EVWFRVuO4Jf_(@*X|=JJR1-*ixdL*QIJFw}O|q-#WG zq^h^D*2eetVOM^!9|>K#dARHasDE-b0SqkW$$?eOQOXr4*GE7DR(NBqd~w{P&69Fe z{ViXCrtXMRdH`$oD))%(GqQ<3=CQmn-t^O9c=aap6v&}f+!BUSe?i4`o?mCOY35>g0BWO~W-MwULA z4mwOCXBNL*Tt$wdpJcX5QFjewCJ(|i%``V{hLHfxVeuo$gUlW$HRhNd3)+eT6+jo2 zFCsLpQT0|8WXSg+<32VHagb~0n+Tgr%!$%PAWn<_K$%D4kl2}mJP00?Wr$9CGEh^A zUv`P-dsd5y|1o)+on2-#Q|F(zwZ7fwfvgj~9d1rGp}=1K%Vjq7xePm184km8*(cB% z1Eeagcv%i}1%SXv31Dr(M^nI9Ghi6s>p9L-9Me?#X0|K~JiDOQ0gyMQRgO9B+RY|~nY_Gt_wWTshsuX{g*c1D3)BuadQ5Ka z5ao3Ypb`SEtB6ESE8HLP+u`{G0BOaj{%!ZNfj!wNaK$9@uxHjkr6B&08YhhB(*GAg z$I}uz17>E?n9zItr?GR3t|8`Kq_Lg<3LFC%eUVaSmW`diBHvi`>pr7D#pC-?Q$~ye zG2Dn_*BaJnOf0=h4HYo@XY{*VOPzaVPd_{Vb4SB|8|8bHL}vlAn~20Dt1JUgxO4*Y zlM^<<`3M~kSdfK97*~tgK99q47xNBsnnVhtn9ecWzsFn;EX&SgY{+@Uu#9X}aSsfh z)ZU_KC187t>vTgz^htUQmJW6)%!lJ@6kJB9&~$er>!JcrzzHazhFJ-MTL&s9xg~nS zq+AK12Us$XX+%u?O7p!?;S-F&_bfk&1JJ%_kXXYUfiSxJ^#dRQo40lV#1Kb^>OVlb zl|!BRU(gkCz{;pvCm8(u&G0s+=@uged>(uhh|Yp$_#&*vD~*#B7BMY~{S zEZS=3at-edv7&ZhlG(7Sc&E!6ja=^$MVbIkIII$PZM~5$5rr(||>8rU0$3m)pqUi>8 z)*`XNl`e7CO*Qg2^s&+X2t6CwB`zz^pMK^^JC~}xYO1h6<@>cX8Cm1wxB+}2&xg-D z0=+c6hJx92X(fh=!S!h4@=WHT4xgu ziX}bTZ4=M_H|UXf{G&}QdW0zGQw{+^Av#UHVG%FA&yaX|+-$*kS_WY5C@#H@&tE@Z z9KO7w5F|H9271Z~!w8;|iweLOXZa!x>}RY_J#08)r7GChi`8A|PUI!GV{{5DA?22u zn1X(&htXdpo~^FVRsxDiufWVoGiTwVh4g8xg>=qg}+CXTVQa~m|d@NRI~ z_^EQIcwwAjl#`uv2EM5Hcl*oBvf!_tuS6o7vAG%f4cFL&_hjzLV(Or{$6<^TO*jGm z{{)Wmatp$C@iVOA*~yhn7I9p`+BV%GD1r%70gT9$LvMn{H9xPLUHFs9KLGY4PzL<< zTQIM#K=P=1#q%5`wK7Z7<~#+QBJ+mS*Pu^8;LiO9HGCupyDfM@X%o-rDagWg<~)ZW zhohQnV&gxNg4}JfXQz0<_L4P5PoDq!dN#xg7<7G~l}oir%~kCw`4%>QR{B8wC*~kJ zkw>o!qSqw`PZ$?pL$4Ih59f{Id(Na+Px0gLK6!4&HSU6D-2imz`2z~%MWW4DtR7F0 zdHlQ^JGjJb2A=mQ@!ZUQ5Yc(st|VPTUxt_&p>L7d8X^!2Tr%ql$gJpQbHfFr=V(uG zC6`ZjaRtqRAdrB{Qy|mcN3%2Dgk}?W_dtc8l`4B3YSlaq%&gf#1629PwkjldLOYo^ zMvAdKc@R#99(K_olXy-^;nNZ_NkN)Q??y-%<)_SSV5G~7H*&goiK6f{qDs@-p=7i3 z=UMCD!W%=2O|A7efgmj21jU zy_;z3i+%>z6kKP=k%BB!rdcmA#&iFIhs*P6lKq-#ZuB6byrtztsaW(N{d3{}rK4LH zN16n{1Mv*&iQd4@e-_^Juffds83sW}8YVou$Oy`sBN+%qO+SZ8{j%;FGJG;fZI^so zQ+f|mq+PcI{AKzd&ieX?^8LBqUZ{t0cpvHjk^H$7tc?rK6Smf~pp8LPZlCFVI{Ng;w-#O09m8c zT;Mt-`JI9A*K?Vda$U^pogOD#6f+i}Aa-e(JBQR*t2-MoZtU2I5&US+F=GR!EPWRN zNI*v={a|D9I6_pQ*lm)|AK|1`Yr1MrLwH?fL;jU2msptf4!9Aa0l^b4w8`A%tU8&A z{ami^lUYXHZfGWM09Y?8tRZ?2YG)B3r0xwPg5tU%GYBZ5zaud{=8A+oo9-e)@bb=A zEZivu2?(ten*B({GO-ckQ)J-hR!eftx*rfYgvMB~Z-^Bh05y54QTKhOLJkuqET9)x z0~lBczmGK1&AB7o+C!v2Ooz~1^k>vrGQ6U^+W?+~j} z=D5V7Y#Tv%MTT{7y*-a>vcO}V2GvHCt0DfE;Ga-YC=(1qm%f1#*K_GJ%$;0lIS`Wf zI6NtVc=puN_XbKY%bhzVY~a_DU)Y7e_Io@Hrxm6pGV(kLS9c+472}sr6Gs%RtY!8B{}Z+;53hN)Q$y7Cuw%e)b3@q0s|Mihg%Q5c}CPf1v^^~dD;@?e*E;j6kDhj`(4 z%%XmF(Qb=);a56Cr+DGNbk9M*IP)dq)g-rf(Fu6=n%_~&)kwIn>47Km3PTOY5f**h z&862If$&?@s~yevgk{R(?|yjQG=G2ZHLD9bgW`ox>vXu$rdgB@6ut|yY~oqGq`W}g z{$BAytL|x&cwyVAPI0WN>;v2~GJfetawrj^m0I{2BA=@I)XFXl1dd=+7uR$0VU%iv zdpY(cxx@zXyWo8Y6okU&6hK5Qc#9+($IM5-FH^gwdFSAU`x#TG$D!W#HKJZNQh~Hf zM07m8;84H9hOXG>jyAFLrVwTzGdrF9*~f;ykPSUEE>!msoXqnp0oyD9uMist`28%u z_zwNQwO)Mj^aE=@H;fw)FUZmv;a01m_kRxxGy;=NAu1dQR-{r#o7(C_kRM#}f;X7} zWUUWQzUR3nd~_{SYJZ(A>DG9h?E-c1MEQmV2S4Zzi0 z_^8FxhcBLat@>eQ9=N!(AmT(-U^8`HLJWG&S;nsq=o0>uSONRkkaJ4wyK?Pzd-;$I zMRvA5zq58(eSG{GBcDP}`8!uiS}?ok{*bFdTzJ+`W}Xj^4~>X8h(pfwl{^TiO2~_9 zjPU2eXo_1A0%Llp0&!6>anzs1~EgWTYJ((9Q;(7C!WC-hrJH6?lr1RpK2Xw>_G=3ry z6_FL8G8JcK!%2XL`dIImVXBGGM4^Oz0NDU8Dsk0#V8_+M_hEO1K)@F-1Vh0bafg6Q zr?B(hm-py@gu#Iv1y6zpnU%17$p_@Gk=YVNrL8sQ*tjp*X|Et*XnIiMnW}tPJ12T4 zP*bTnV0?_fA8j8sA|ZgH|0x*LviRDCcZc|XJa$eV0vvdw!S|uNM0M!-I;@lP=ML5# z8o+28$ph!3Lp<|eB>=c8m0=x-2r=4U#%`jp{#rWnB z2UYk>HFY*GKVE=1s-o!PWq4+)9>dQuQTj)*{zM_i=14v`T_Ucf!TB?1Je+m2pU5`( zaVPta;Pbo$_l_;P0<`+4c!qgbp=;XMh=`4%3Y=gy%%M(vuw(g6^)W)JZ zM092zMAeBNcJ5t$9!~=vO`bq_t+^b0q_ao&iNkX0)^>BDp+YRJhEHAOjc6BE(F-a0 z;0;iNhtwvXeoxJ8Bw>7^djlNYV|1DuGRq3{V8(ITh-c8LVvXZc0|YI0$8IHS3g)@nX*9cq;K1=P^&t?B z!o~0{#DdcNkg0qVK+(?PI=CF*!-ian9ZNjH6!RKsVVMQ)C{3;guWeQYZW2i#itz)2zHtNa6LTIY82`80&4XMH6?^e*n-SyH#o9d^t(4k zf%Ag>7Sh{BgnI{g`cGz~{&lTgls}AZw6f9P9>=r2f1z8mqC(n0kNx}deW0JG%wEuRMp6~TIjcH(|YUe6lMFAwI z$WVd>GhGDl);|and(cR8yT}1DLte#ILdgK+kgTJXmcu&`{T~o>#C&cPN8D8+?FZ+I za-caCgJs5`jYoO;9UE$&Y@fvndqAqTO03~Zd#7yG9a+^AF zTP1y^Muh6dc)bICGU|Kmk)cA0la2hhgj7m#vQfuKo}xH*15<3|`tgq;(-L}G^#4Kq zig?!{o}nqVxnmP-#IJ}aM!g=13N>H zDvL%($~!K`K=Zb-(=wr0Uiex z1?1F!iCq>=K?I>X2x5sC*2bp$l;CK&$EMG{%!(WxIDh&j7-TJSs5Y^Cd&0Sskd{Vo zgwOEPgt@+BK=MZK^PwM|%pE~Lygnjv>An9=`eou%KqNSZFqY!R!>V<$5x&Uq>*4Nv zwgB-m;r&8&aO1*_gDYMud=WF00E42A zJJ{G)m3dOc=26M9;VM8}A6?dankjufdEj`YCxGbtM}&-fQnYNyvrzN_&-@mNq0`ot zuhov=@%*^{a8yIDh^W+$8w_D1>s;b#|2^#Fjb&#p0%dsz8@UaZpOqvy&1CVOuXaNO z+r%^H>fQznv~3US)Mdj242$a(Pb)ESy4h(A5f>l!vN3Nue7Ibi9_;!frjh4@=)5D|)q`jk(WSwgPb@JZ+Q^5$>Z#FE8F$v5+wgL0pHv1b@wRq@hMg z;mH=q2p&VEBa$aYl8wBJjre{KxB*04001jb{DI!4J8B6dr zxSm`$U4Y~|A<3=tf2~g(rI4dJ7yZGbiRq6lx@%2A;OJb;+_j4DAHViuC}brqOr5;^gwmQeXnl zcoH&s`VW|mG}x#w9Lgf9+RQ$9S0V!YS0=Gx7wi~e(G(Vy=+Rjw=w8uYo#jGF4u5gR>YsEIIY=SZa_Q5oR1-TJX@z6!0I?~`%Y;FYHBB~|FURK>ll{zIDHX*0? zD6>sjQCO_|NJj;3?qY+8wjjD<(j9=t;@tIZZ7!Z91KOmW$v1HY%sB^DysE4G zbqLFPvo9}noF~sWX*L@^ckurAOX6G<|2b0EBiu7XgFA)&2laq+0Y@Ydo3P7~xw0I4 zt-sCV6xI`%z7Yw8<2zyz{t17c)QIY1r(MIl3VaIPJrfZrarmRfi=d0DoEN8q_XCA| zu0$Eo4itI%6ced#HM&9SN7=LAiL%ksrvh{?C-^ zYO`eoGAG*)i!EZ0jmrbE&aQ#FDbP-)Q-kbuc%ztKwL7wt-&;1Bc{AJ1rW;x(S7CXY z{xEdstUS4`X*()Lq{AO^wdyp+#=BtWc;Jb(4kj^Q0kE5JEF_Q+1=&Cb3eZg?pGfOS zm^CwjY>AB1EeD+jFy+w`#nZYI&*0X#-Ze4Bs38VMwMa1z{? zO}suzmptIj1t*O_z=n*-Hx?5z|1gkH5QqP?af$1X0~HbyoQ*J_24{_zYgevegM5*; zfUEw1g_mlJa-*_^-x7r#qph`v4Z5($><9Mm@mzku7(N?($ju8VHC6=em*H}u{{*vC z1jwKf+jLwK4~I$V-E4Tf+Ftb%ZU@yKX2i$Y2$5iY4>|%Gi&u&+p#uQMOh-DFJkws@ zqTTds%`cg!M?;$0QD# z0$o4sm%;!nJ=3p%c@&l2oQ5Q4-H#4mx(z1J?hlh&m|b>waJ=bHF8zR269F|g>|wdB zdYr;VHS492Sq(to!ksexyR%~e4dapjr;Gwn&V%de-?sS5Tzb{2ds;spr1ROJ4+q%b zsjgl8k}xN|iw%tfh#{(<7FWjEr>@!Ce9?yGmm7Wm(WH+J<%8^uN386O1DDwudA;n6 zT&v&A?FSRaCyfqF*kQP0XJ?4}R;{@7Z*$Pj7gruU)yoET_q^E6hR%d`ceIn8kw9Qx zK_5c*aw1c1mQk=K{Jx8Yf@|#bPDp{!vxVo47a6n1KQvip_%8-2pT|s;;4y{lfIFW! zT@F^g&}k|5`tuN7K3cG%A&8Y?=4~u){*t&NH1oNkjf3;Cz5uW!eU0o^pQ z;r%u~<>jvrw6#BlyfBwID9SJuGCS;J1+1s=N6n==?V35Q&w`Tn2s$PF7o;^t09c$Z zGnSkMVbaCObd9NDn~BSYEXCXMMDK<#l4Y6CErQb~=&JsQPB!d7FOTv(7d?1x0j5~^ zn7(tdDB`7Uon=CCh!K1?EX%d!xw>q?K_bl;6(EUu8&23z6lW3#J*H=6(iCG2w~IfK z%Lb28=E73TktuU5&49)u)H4i54F&yH*w1J~;4%jrnu1#{NpX)+XRQjJ&{4v%V~XV( zB0OJqdOQJ<5I!R-ANq9IXT2BBI(S<~)qZ0I>LN6WDF*TO`7pd5M`PVyjXcL%-VLoV zG?O`{mZ9@~M*uDyaI|z{Ma;I7~Q(#33IrmzB<{ z`w;`dOE{#8M9Nc+T9RTppQ$j_FsRdRzF2I!SWDP6(@o-#1I%R+rVPyIG^GgZZP}p5 zlf%i+8A>2sgOT5Q$Wh*6<2~@U;VFXG5c&;x3HW2gA*gXeNIsnBKT?PQ3!0>bk0&I8 zISZXYhN%(SVlIw93t8vkQUBIHQ~Q%&9{J)h;fIr9R4bHSt^al*XNQY7RRp76xW!9%U2T+TZs7dV#iK`_Jy%zGoS){;$ z-v%i&NO~|CCL&akBT+k=e~_RcG`O{(>6n|fa%c00Do~~eYl%K_5gy!+;2V31qVy>a zzVF(n%2z1WW{=1F9*18bbhH_Oh4YQ6&S%LhB=lF};El}XelB&cz&86#s z{QSavzPShM-(iwr5a^G1736Y{%(3Z<^|8!l#8N=L5Ukey1e*vhkl?)luwOVJRd#zk z0q;4YW3UKKm1Bm#$iP7p^dpl&(w+d4>8ieBy!gBo>am~Sb684HRxWrtXk&~JykK)Q zHULCQRaj7F7S;cP@(4Y>(3Go`cb$Jtg2LodV`&Op7(sm&zWpAt zX4>1IMmVeeWDm^dU{Lj{<;L^(${cmgrtN#m_jd8w@1>eNi-(#JCSa`>4BYz3+S)h7Fw4$@E?+PCXvx zLox1HL{g8DuJRhe+_$Spw0FLi&)YJoN`RA|e*>D)@=iW?^Tg^;FdhydZA+#Q5yu-F z_)Z6PX*HN<4rt3x*r-d<_LdwYZvq?GLg1P~FDq^5%b_tw0yGQPI`YvbsxU{6rrK*y zOVW_cd-09PObLSR87f!Hq%X@VKJz#>XO;*id0=X+mK8>K-A&hx3a9Q~3d@vUjhucp z7DBoo|0wPizFbDEWqM=PKET$#ug-8F-O%I_SzIEdq1^P_ zREf3mQzILA{{XZyuM?OPOFP9#(@8D0jbt zA*ygYurOPt2)4coA$)#YwzctR?G|fkWPka0;8)}E`QyF0)JX2`Gj#c5`xIG9wer1Y?~&fY zNLmYM-<(Hi*CftHfdl|;Wmn5X>eLKEy<@)gwUZlg=^ldKMGRJ2jA2b!gfzW&um8&?s{qZ3j?Q#a5Bm+rA*Z zvvN+FcE>*tnF2=hM+!!IMX~>PGB^I8@nRS9uUofe+o_Tr2#mLG0fGih`U@EoaoIs9excC$7k@FYQ9p}@#x!xCF!E1rdw3RMdgj9Xg z`Oo2TXo&?8FCIV7RF{OMN^NWFx2(@uTgRNz^0r@N{8H^y`)Pag;x2yBHl1Oa!illL zD^O{7)i6bPMLq4RbeXATWm+zLCE7LSy7`zGDs6jS=jPI)M~(i1QB#oa?m5=ech@^l zACSn?1}fgkgET*)lFPf=8WejZxjk)_5F%bxQL2H9qtUM$v^(PU>y1=9G5^jBbF$>7 z%BOAT)YXPi-ft?qa;*OSbiKyrN z&x1)1HcuK5Eb-#{U5rt=Jf2ZnJx)TymnoE(5KSdoL$Q|f1WbY0*FC2(e7l|i)E6t|%mqXJ2~7amq?x9=&` zI(Low+Tr8l={0JC&(1jJ6c#llu}wQ$9@NNHrkxt*l$|OA_TAQU*bJvpw#-=El-gG< z&~E)+-wtmX)hN1h&S`B{O64xzhV7O6G`9NfMylc8;K^3nn^^6N_nLfusXCHlybx?3 z8Rs|3GmKszFJDS=y+@w&278m>`CMoH7dcoay%>NRPPwS2Cjpnea1<22McY!%t*xmU zIZDhiC6)qH#U(eI#oD$)rnuH3CZ%ZeWUitZmHGUKDErv(K@LG`_f+_S&HG$aKXrlD z`m9Y}zC39|yg+xj|J-FV>Zl7di2i76O}6oPcTYSH^3rCJi}HTLLA9n!fF~(CEz1U* zwIp|FV^&G6r1N}?)8n)TH9n9ZvEJD9HAoG#bxYN`19e&5RQ+OEuBmm2)P646>W##V zN!%T4nGq_}Ia@!a0~xQ0@;l?;k!&K8v1qUVRg3ronaQT}Zy-g0kPYusA+_I1oqtM{ zYCHc#*AjoAMU;dVBf=tj=5cQsK{6+CCrLe(i3;7y`v&`*$&fWX-kxG&BphLwHl{P1ORN zCiH{PJGQ?_AEHxF{c>)5|HhOx_ikSi0Z>TK_RXLN1rL;2V) zoJ?2i9_-vcc>-}N6GFC)FAY10uj?Q8{+N_NO&&+MPhJC2q~M;@n(U5**Q!R^DW4}1 zk5T4ip-U^J3V?(5$+IBHtc3$TrTeo0l}$HM=jNtKY^_^6>yC9XT|Esu(z=^ZcTo*N zGUvvWlAnycrpas-YqS%1USPc9`+(OAC>LMBs&`iACF&UE;I<0gn**yX zYxj=vVsc#DlF{(zUUqI1>ppR8OM0>Y-g}e0zO>!DnyyByV7y*KUVD5Z8UECo+xoP z0p(43wLRc!4ONNuDD$DBw@G_iCukGb-n+rgcI2k8#;B2{++eSE52$QWXQkTWJ(4~X zz}uRF9I6g3w{2#&sijFvwJdeDd}`;?&mGou31UY2k7@k^g4df8fJk7?J>~rat>%8J zwAfL%Np4%Sp%U=3f-Fr(tEscKBgI^X`Wogkb2rLZDBLWtRav=8TX7rl>Y~ID)%sGF zso^-{$o=1_Fdaa+Q0qUN(QG z?k!Pt*1ZivbQ@(jVNRM_d$hAfAd}ciwgP>x5WxaTm0O!z`w~``zG?QKKyMp|!rxoA z$1g|iTDb*S)P2VKJj|DCH7_}9o|ojAn^(IqH4BEgRBME(WS5rj86apW&sSyw&1!uf zGKH|?zekE|=i1*;zY=nYpMwqso3Hp|Bn^Rb)nTXt+|!G9c&KK!)8p~p$7SZ`dl6M`UXwP^ z*aK9N#MQ{pvNykF9^vKX6T|Zq_)YWm6L6bU2Q=WbQoCw8!G$H!ZkTR(mV`o8rsjpl z1`n{AzL`Hze@&B{4hkMsB&dYdkZ4fQ8fQkz6mIA#upr${n2WiRP9`=dXP{w=jjGs* znC0`?nHacDKV`uPvr&zm&gE$}4`mMUDIc!Kv1|HD0OSGge@hN*|f4rU9vi@D2=A&6o64ePrVL zgdS5#a%5Nr;Xhg8@OTk;Ic1*f1uSBR@=!GSsSNWWgzkb2F zCB~*bM!qk9L}@x4p&TT!DV05ScLU7oX!N#G^&=HB3)R%Cl7dkkEA)vRD1T6F`x~q& zl5~e|XZL0e{ju&WDpZX0IE@f5%IUw%y3YR88E7|dzc|PY=?%=pxin( zH8RBnhuBaF=dYvmOc!tU=<>bpvQR2ZlV>NFYEqf&O8~k<{2$4lyz#@?o&;_lJDH%( z>1=-WxB)u7$l}7XbG44|r0M4z)vA7a$5ZwR^x7jfZ-O}Y8A&xRAFS=Q)|xKYcJ$U> zvW}xhVvldNx8>75k8g)+tIS*~@EKceQCDqYZ*^Rc$4djX-*vx>oHkSKXPvd$PKr9@ zs(sI1`?j(64FYGQ4qdASQPA^_+Gi}aPxaM4(c!((Mz5e(&(fvz6bBebO`T0|m^f}; zI3Y&zqr4h65RI+zQUxfCc@WVie}=&j){$za_*{Xh?>C6DsKpOu-VS^$3GuR?{d!p|jLHFsG(??FiX6(*pcC-86h2ANeV zXZ<%ok^-2GJIkcz`VSQ7{j1}?@;T@9F1q&>BdSqSmO#t?cfkz0z)ESb3;WC{wo z%30Yj$8fQgR!cgn_hqD-s`x}VcU1Ou*IT5Ybfx%quDF}#v zKjGgc%dc&`i@sm?`49#fx@ z2WDjEP<3>=9TF5XT52?WPBQY&W&-h7_pCgti_5Ej2*acHTbZNQf&#q;A!4br%T*^O zIi?bw>)x$Qfb-ssOn}47D{#RyzmU2Y08F#hePOJ6V}Q%|J-i=^Zsq+d73OPgu5-g) zRCzU(j|Po*SLNHFh~|2q*ax#)B}tR1k+7B9S1wie7Jd%z-Vjxn?X0|-X`)KzM#^1v z$0Qj2S1M~z6sVGC<_7RkhDOy()lP*hg%(mW9eQ2a_ka#ND^^R138A#r0SjN3*+t}go;fJL?Z7hRi;s^q20tVMPgRkr~X zseFwb>$L=Tdng?^3sdRGPPaJ-?}WKV*IE0JozGkORLSY=EMx82KB{ht+*UWymVBgS zo^{om#W{!+V&ywvEGc)@7At$opO>k!B>UvD&Z;k^S^4QmUrbjh_W@{bsuA>6(%rQ& zvJ5hfnSEX5Qe)XtEtg;O6*$vPrN^L|bQOo%Jb8(8*G$o^%@tXg&vQ_BTn?c;$tv() z?}5TiN{Jd8K?Y1wwX^!Gu9_tlJ{2Ecy>_711EiP&#&>_JwKhhX4c}XBZjXSzw(f4` zUU=kmrhJz^54M4JEJX=?P`M2xGZfO^C;^Y&d2&#{Z=hNZVffLN+DIq8Dn1}#uT{tbRdY)P-{>a4W<9{TfT@0QkD0@wWu45HO%_Vm|WF(=Mi^NIJ7 z-uNkN^K^MV)hD~D>H>4krLK6N>hexsdi7LVMb|F>q%_;^p|w&q2Cb(DHn5EH~3(IE2w%q}5h5m`Bqqy{DjdC`Ium`mP;A zuVMm_PFOQmW-I?mI}*Le<3gl!spP4NT1I}Y>Mf12+U{B_p*QOu>|c9m>8(3bzp#9%HS>f!U^t12E(kqlIZNvxHvIXN1Uy(|@COl{FWBpWP$2fz?Yx66X~ znBkNxZ=n1QQ-wmJ5%pIthv+UFXX0`z({i*$k+3q5FO#J)mo-Zd$Zh4jj9j0hYnaaa zB@RQet8$rxVz`p5JV{1h$u7t|k+bs39jS1k{=*{B;$BmEWthh5L=8L0&nX zel3`{fa@8+_xJUy_-8&4LIME2GmK?NWe$VZg(cd_@a_7R-jemm%@+tNxtTJ&ElWiS zyy~gO;)0A!lw>J?)kGP7!ArEPUJg<*e=15i9%U4l4=s1GU|6B^jd1%}6t;m@Lau zDvYb%V~TBD-}0U=E>*e9UQA2OrK^n|Cy|TcPGvDysIpDP3$jxz6@WePy+x;H3ca!L zp8&MQSDny8?BL`VCV%sPaeU5>z6} zHI^RKu7D={vzDru*|AE&EH_Sz3-lTt1s3}?@iFnflj!_8bUpnxZKMn6bDp$1XeqrS z-iJQ*>NS2)(qyC#dc2GxpxzbP#7PV};4Hs}RUe53rt)7%W%#nC;LVqyXt}Li3{GpV z=TViZqz=eOiKwrnDn%yB94dN@z$zryil$uUtvaYXYc5)Oh3~oYN#>LkZlhFV#YD;F zlB0v%5uPW3!qLc_r4PW%piSOhI7x1#3OC!z*O3Sclbw}iX1>x=Wfxs#Zx48*9s$>L zG#?Yp<0-o!>2&-T%qb8f$OlV4fKM^Gow@AvcmXB&4uL2;!^Fgb6Q-!eTzHR(xhF^I zEV~FeR@r|D%Oxlfvy4S2G9ASnB%(vvDp`%h9tDybEJa2$Z>3pxx})p>EKPe^w6^Fy zmyf^)Le`JVD~Gj$C{o!NlzTa3Et994i(Bla|FM?%;8nPa_MomzmdsUlT9kUVd@mLq7e*|Wo(yG79$&W)` z*b{b-Q%F35atZf~VT`GChc*DRo}z@y+7qV0yK=}@`m42csHbdZSLw#i(ziQGXDURN z(hYKzxnvMLj-4f*FkX=|U}LC`;&@SCX_Ad9eoaf2cUU4`9RFL%A6OeRjzT?$Z67J_!nmnN$8tW-msSoY_ovQ&HVdFZRI!cv?E zv==hCip#ZL6n8}!{frLUBb{R@&FM<=(3yWJ3A5>0D^(IIvz4f!BSL~&^xv5&>PfZn zH0I)A_n6;j)L$XKPn2v}1Dl~F!dCb#(d|lJO9g#_nJSG^%Q}mA5*a~rQB05=g_Vl8 zg0BU^heTL2T>lgH!qwTGCHn~+3H|)FN+NgZ-<6AC;~mi0OU8DT*tE-{z>s$77v73m zCIEs~ZYgY%I509a)?y!-rMSAE8|8JXpEp@h@)~>#D0*9RLhErn3#8s6xxM7|v=mj! z)slS{s^o6D?J!>60dt8Q>5@=^T*V$*Ucz^JhNM(1TgLPwlktwV%3uSL)RPos5E0*1 zUrC7FdvpM`yqFjih@mmnM($n3k)Rqw=MNQ!0}q1y|KdCe=$;+L{(VIr>BjghX1>jD z6xUbCrFZd`S#_B>FE}IDP8BTyix$dn7tPx{VDJNoC_^qvhY!AZu8s0ME+d(yeMM8C zxr;#8S6Cm3l731Q9y1r7++#0n?BXx>`nCB!ajWWw#)R3yQF;ZOd357Oc6>|ke zGxaeab4zp3=1UyPIl zOzH4A0U{Gcs!W?`eH*K-4-WA^nr&uAg55$Q%0%f!kbtA7iL0V8P#Z7N?a>PIY#}(6iJ5xtf7U=(ooYm+hjN_BRmDR!r7o=l!B~JKLGC?ngg&U%~Z6?N+ksO2QxGhkSe0uiAfi%AQ9RLlzKLgF6%e%V0b9i_~K1iT6!q+Wd`#GC+GqgqN|j+9@95IQ-9@@Y0Uh$PerGv*4GL=eE zKhtRjtqfkG$i@5u$b_p9X-UU4hzjMJnEOT73UlGbXor`aD6&o_ypt(%ca5$aTB^)h zC^J$X#}!JELXLb2SK+wK3?uVFw?M#;&u4aFq8JmjpYDO3SGWjMB`co*b|g0DF_R}Z zlKw3I!eeS%;fP$jz!RNT_yYW^YEd_nCMDxd_d_b2%DS&ouo`sgv|5TO&K@j$dJiyl z_AVda(cToTr(1O2+R=2aO71W}mY#6+ex%>bf;qE~;>wsFyiuWjrLE zRN)#3DsYVqfwA0stT&xJIzAGll@xW@uCvMqnUA&bB1knNBXb!C61Sp_Nri{a=M5M0 zD49jj9q5OcQ-EG75X?V{nU4q&>d2Bj74!j#_KGAXW{b(=qzc*3*+3xmFy#t_*_aJR zikUB!We?$5M97Jj4d^7=QCL7o<|v!m~f8J61ULssSi z3$wF}+1BInv@%cBaU73Ay*9)oJDBA*1|#N2BfVFb+~G6M$CpASRm%V60gt1|a!4^V zAtK^uCWuqB4hz^}&4B}8`_m;r4NRAG>C~cr-DZpKL9Dh1;I~i>=(^xk&ozFWsT5%~ z=s1qhqzG~COygUfx>kf2bX9p~-5Pk1K{@Vm8WSfM0~#6A61h|%d1@kPkn6LFv|M)UasOa+&j`&nfCB`PFx$qoYL`1K)qf z_40cq6Ape7Y5PZ9+*}b9BTNCA^Xb@(94#y)sp&{+?;(l$@TZ8+WoHwz?IWU;^n)8Z zKjdu2whh}ZY+`IuY#G?Hu;pM=W807IA#BJ);iSn@IM6yc2x;ImpR-4!z?Q|4Xwo?< zSq=wD>l}qLj{^;e<0T9X3JwVk3!gT9M#RiWQPjdkiW9ri{bMP=jhpk(E!51sNKYD>Z)Q za1fG!8lZOn?(N6n2)#I*h4_8pVh%?nio*Yp6;Y{3beGFiQE=9%WYXQke~MC5Ih=J$ zwUGP@H;{1n=b1vaQYnO+HC?tq$bs)uj>9-uuP|RY98{;xCihjyfLoOVpn>nI9BDpY z?0(V+R&;^iO|))9>8K`SkKej?RJm;FERTcAqO7Ing*K zIwm%5*6cZR=gpU-q#`6p+D9}j(so4SQ^}_?M*aBg2g6`c0bGiJ`M`O{u~g@;}mqPTBCBG`FGBf zDpNJYSNQugIh>Wq7C?&tJKIEN07iHs$uilmzO8Y8Wc+GTHSfPSAi3C-=6C|Hb}0Ui4F+O&p=`CQdCrpZ3|# z$qCxT>Bo06H_zbjXl&~^n>lMZYsqlqtlPZC{Y5x(6Gx1V^HKumAU-!>qp?L#-o#=tYN%>KsFZW# zJ88om$MOx?@S7kS9@HChl_^=WY#~%*savKY;HQB8pCu&IPzX&{rR`hLuqvf~Wf7XrmMT>Ce^?flSoW{UdGLS z2LDv%ZuhTIH@~_&7lHz3B$5*nFzOLxUzweg#o;`6`9pGP&imItzr6nG{t^Gk(;_tr z#I_J1l}VA^Pb4mWgI=2IUi$ye;(!vHgPVF(_q7IbhDU4U918e3hM5H1-JZxzWDQF9{JrtH^+y2 zq>+Dy2gz<2LN_jaeO>wU>n&3fnY$d;644Xxbj*4{zW(+xiLg%KYakDLr|T_KDzpFB z^?p0%Z(MJ94h&!MPWQa!nBT5=r(;1vx>f%xuzRcoL_ZI)-tlp6K$f}DHj=ev3S zZ@0SH7b5qC$>p|!$n)m!x4hW}3zjL}H{A#az((1yy73qN`G;d~-uADrzgd}%nEVz6 zG$QFHA_6vm4&A1QB1pF}={&#HWCP=i6GN^%2 zbnkS{TaNjy0e3uB5k|8 z_B3}MYk$_hTTZ)UJJ*AaZ69goZIAZ9+jw(8{{3Tbw&+ghY=-9vKI`kvSq3NFouB#l z$F2q1jX3rG-yZ+J+vM&VG6!$o;*S0KhhuME{*LEheSq69licC&9P`^1@6?CCwPCpX z?s(1L9rxQ+@7#axkGpx{zihAjx;NhF&Do-ct}z1h(uGeCeELFXxC@^N z`OuHtnu$snzit_5ac+nZA#s-iYyv$J+O`PCu7wLuj>Sj_1rx+o&@;1P(%kusl?wMh zVajj!xOuG=q&}FG=xFd&4c}8njC5iU31!0zDAAFlptA~NqoalESKsV^5qZVSb90rs zm^^BnMD)E|`upbobxOtW4uL(GD$7wvZX~)GF?fILOVK7`ExQ*J(S6q&Bo)OIjqQIQ zvl2RqOqGEeL#hn`h$*Gy(tm#5bul)4<^O%mpIw=li0~j}LoL1K9vc8kfgyfVLrUJf zcFisOuRjzPheQb$sN0UaV|#CZF!#E)22q?XSmgeAk(+&Wqdj;9zbS3*CjCX5{&?*F z$9DbULhe3G9rkhjv5kqFHvO(IZ||$y_un#B{N zvt$1D{coQ9yXU**-Q04-&3?K4`O%$!dfeY`$L}t1^FBA)@xS`u_WghRzQZTt*=4Cf zQ>Nz1bKu|mZ?fr14g+(+VPq z_uFmH`n!F9_g=S-okWoRz`G@dkB_j?!prBDyT7|GS&dYx&B|pk^>01**55@$(B9H7 zzuO0;TYW>FzvY+&fRS?HRa8iEyIX$8;zYoKcD`_$|lZa$Pv$ z-8v0gb@RS|Xp`uc!)`h5mg`)9Rp^#m_W$uZw;XoMakpIO`da)y`bc!+urqJNr|}Ma z5eT;K*5s1qm-Fdo`1=BWZ^P#~_%86dp%(s*X81aUr#ZFd@P}05H*DnZ5%}a(4EsLB z_++t-Xu|pD;WNQ?p2p`vZ2j0q;O}UBp20Pq#(l&M_`MP5;QB&*=hWez^*9C_jqfAy zTP^mV!LdZMy6&%shUK>R+zvs~<^&XY&4lvhj%Q%+ut6*&?9w+}+qd}2GKklY{IeTT z7NTGO!5c#SGMkAHG-22wDcVE;cDZiZ_J@7RZmrVoKES*nE&z^D3gTWGC?a)QZGm-m{F$HbU9Zg77N@cs(?ccxq zH{FB7ar>GT>d57aRJhv|={L^X2&@w+9lI4B0NzK zXQ?AM<)ymsdoP@)_?tvQkXQ<%A7LWQTC%LW_utq@_5k^$%=)W+3Av;v;m;Vh<3m-# zVTUp98LFBoydFCfhDOhlMutYm4*!EcW2Fmz`v=EH_hWouyUnMC6h~Zrx8!DPcay#a z;tC0UBnF1!KZrDE$%dQphnBBJJQ6*pT24ZE!!3kAIYSaVdrlNbqadJ31y&Zs?Bt5b z;osrQR3K^&tdu5YI0C4`e&8N4LL%|vNjz^c3FmQSh%Z1saXc11R@vKAy#9lP24+KY z&i}*Qo5#mlRgeF-&;`mC7TIKZ3KUw%)(xR-nI_XFHp`HibcacrOw!OKGiH)D0ffl* zfv+h2s30O>*jFVg3JPch!R-S^L{UVH8!9TF3WzL1fA4edeV%z{k`(;DzJL4zw|Abq zFXx_n?z!ij`_U!8d}#fDz4p(l$G`o-$J>^^^49L3`}Vdye)i~RFFSkAZ|{Dg>-C40 zeK{_&;3OP1aGyEpbf=EyyMz3y9|+4Jsu{`{4P?!37A?evFl{hv!J)0gk@w-+~8 zKXTXpzc}!&@%?^!^!!&Y`tly%Uj4n%`;Y(gKIi-(QF{OG4*T}x$1eWhjk{fXa^1r3-Sq8Wo%Zly^L{t-=aY~8@{(&0e|Y^}CmuDcXWjo+J#<~< zoOuuYF{;f+^T(SSIbMOCPtf!{@>Ul@s{?{)YzTkz|qc5Fw z+Y?XR)%}sHFF2`g`4oDe zzgqOs?6L#Ts_1&N|H;9x_WYzRR=xeK3txZ9T=R$H9{ANI%TIgg^Rtir`>_X}d|umv zxoXLum^xF%MOO>p<^u8-%^*5h<_uVz?uKDKX zFAf|t>ygGo%{QM)o%hwIrn6T*@WugMA9?7u3(kFNefD z@!0E{zW1HtJx;yjjQ>4;UELceTyek=mmJzv_lJ(>8y3D*^rx{y2ZytF?|I`c`~9u# z-=}T8arPZ=j&A?$qu>AZ=F48V=JqwWZSrn?^{j2b>N@?MpY=WUnQ!d=qrEQt$N8ro ze8a_=nYUcL?;o%F@~5kpEt+#t(Gx9mhyQTrv0wVx$@i{0{Oz}Yx$D4@hb=v4+3)}I zful<9zh>($H~(?#mqrenmAvIUYcDVMP}ZQb@kI33Gnm=nn@{~L7Uh(y7Kl|)HXZ+WFi+`T}>MQTO+Ozw=$ z_)6^PZP(p)bvBWGq~n%vtouZA+v7JM`qUA74X#)?v+tREE*b3o#s{jNzUI6=e|g4J z|9a*8-#r@La_(P7)@|K9v*yif)^FT)%_W_iHuYZfxuZ6m^~cgxPyV#zmA`Z!_U>(W zpE~?d&uIO^|zOQSNqv#Px`Mb??3w0M~^#s*JTZ7 z9ohY}+yC+AxBt)V8=l{7pZh<5#J^8F^swTE&+oneIqS_2vIo9$%k%r*bJCW_o;z#& z2S4sO@v=|;@xhP3`OU+3Tz^CF)9IK2ANcE|Yrec+WZ7*u-FEZkhkS3z;=OlVd1KkfHog1%ZytQ%+*7`D%cq|G z-B(`t=ZVMv^sOhSKQe#%xs{hRY{@KssrplI?7iw+FK#>L^trn{{C3sd-}vG#MIXp) zj?8&!%V8h;!Jn__Si4X9Ghgbf`~JrV-X8tPlGpEVJo%!wTeo&UGW(qJ^P6u;Uvu8m zt#h7#@E{EQf9!|%U-abZ7wx&>PsiW#^>@B??Z+Ryb$i7HKYZuPPxYL5QT;ui`t{Rq z9yd>B~k(&;ME34<9Qz zsp`?@8T%%m8`@*&D|deMj>i;)}K8mDi0cfRwH z=V#xz{JG~3z5npW!9DI8y5rG*o_f@bYY+PMHLsb}fhRxx#_Hb{Wp2CfTfdz38S~56 zua0$^*S~iCCy%@0rgzR-Klek+-u>bepW5(^)1O~_cKpDe{T@Hz=G&+3ST*!y_O{Gv z!_@~3_rJ4z?#w%u%>3?yhkoGV|4n>m;OVw4OJy_VZ`EHu@zUtbJLcba^WO*G{KFx? z>3r?XW9DA-^xdyq^1TmVdiIji-YZ7C|NfKBAGzcCAGWW)wD)(v-TljlXTCW7(dG|! zR6g83cHY;1e9e&lg$FaFXlC$FBrGK%`qXOH>)S3WqnxW`Di)s!jLCKUs0lJ?js-y?Ry4^y72ud4j=1*TSI<1|>MPzjrMrCEcP?4>hlt0Lp5Ec;N*H%*Q1AHua|aJ2qwd z`;wbCW*}Hn$R}{IxFv;PQBRNjO!p-F1~WnoUiZ1rodJVG=|Vp3U+v#3zQ5Z&W(@ZX z?s?pHoZ0;zb1<$PC-kZ$PPAr_qfil~+&QH!is&AA_`? zZYVWve9Hl7HL{>`pJ^}g?02-MzqqjDlapbd+s`a&T#Ok_UlQiy$X zfhzebyVBW|D?CTb_IxB&7MdbNO}hrq#qfxdup;l(**@rw#Xj4dv*O5-gwo?ayX6LWv~lO?Q<3QzYizW0Uh9AfloJGHJMYs{1xtwoY?30B3 zpM)vLdCdtkjvG3kG&nDtFxz_*X7obR5x@Nk@{nHIUM~5F&-76i{gW^mi=nN2XDA0( zLHro`V_PT#e;j8nbB;D3x0d9AdzE(y`J7Y02i1{9CoNWg$pVoh!3e8#DwWxU*nMw{ zz_mLS8I*fe$e=Tu zPg1Kf(KWG##zeHSL=WaA?qp8*fFOvKsX_8gWmBe8URYzQbqo0;wY5v&nB!@NnIq=mD;J53+ch~Xz zMsOs*hY8=tcg#7q(WC%Bpd>64cqZ60&8Ctq?W{>5V)#oysPy$g`gCyVsSR==f~eeI zyZ*g?26PI4zdWOz9lVRZeW@wa|0LO5cKIdh%kM>InG0Klf3*HyWR~Nffh*f!j361o z$^PC~bO$(@Z{LmHL*MRn_`GoMBiv8-pX_}V`um{Fie_wkEB8z!_ZvL|ENBM)+AN>Y<($^>Nv)@nYckugb?1k^K z-xrZ)sy>?sa(&)T8~lB;=!UEjH$?m1XTO6!mv;52Y

      TOUJqNSN=p!U=|Lsd$R{_ zFWf%3eR2Ea4#0f?cOdQ{+#$HRI3XQQz%9XvkZl8QHBMkh2r3a$@4(6CD}=4^d)Y$G zM{ok%{kW~T^Kk!#`#A0@+*fgz(x{(E!w_behT8?VD{gPxez^T{2jC9F72_7+R^ry; z&d2?BS7UyUo3%7-48WpHf|5xp18em^Km+ZxNS9@Qkgk=jTymwzo8}t-->|y8TwB#f#+uTw&a<$`l*6}dUx`Q*JY?i23 zv>*!O%i5Yo z5IHv>OH+$1O}|`rU^);R);v3{5{S?OB1P>VD<~Rj%AK6`H^!^_O5{936mg=xlM8pp zGE+?(CBCM;q|TR-RuL2%Cdcj)=vWo9CXLGVNP2sG5t^f=qq{|XE@evcTWG_=tun?h zpb^1M-l(!?YJP?Q7tm#y0bFidM z=HH=nD(wyWLimtrGUL;ljNnbb4>7{GzYE?WyaHd+OI&WwLiC=}ek$M#JqD4cH;+jb z1NGaJ)4>6@g_jZOX%jv|UurphfR_V&SIRnBx)gRu=v!!9=BTPZUK*q+)g%RB_I8>z z+?6WTYq?b0vca9Cfnt_hTsdY~5xAYC)l#c@Xk;g8kj|#-*;-CxbWG$%^V>XW`;s-P zjs-rN(8qB4{I-TOy`MT7Q=Ao8#X<>BoxY%sP^PK#1mm0(x!vJq3LTWy;TEkDgRr&|Vw9a~KMz$**r>c~M?TNEOtfVTDypou;6Q{CY5eR64+F~ zvc6$;eKOWq)6iIxSS#rT?+t&T$uu9>WJdAJ4{0*n4s9|;xC&hCzGY?`VIIGmu-W5l z`L%g1cCApx*nHCBnsMbgC#zA@P@h~~v%Dr5sjsYw)+Z)}pH#lEbism_DZ)2S5#BLH zc#j!BzDaou!hd#5k5Z+B-1$0(_e4dk%%{4_+IgBQVmVlF9w52G)`4)0n=Nj-})+>=PV5*PnDxduNC4B$VL_6#?f- zi-FG^swXQFH~AIKXQ!Tz@)`E|`n-)P68CwqRuN=&6p>~Of0#CHr|f3p zhmw>}{&B*`h;JruM)IReT|qm{=={{sL-qcq$7La0@Nj z*|yZU>XMv^Hl}))=E`P~qFCLd#nDR9im??fWsK8~yw9C!nnG#aI@T=N6sAaNySF9l zNgry(?f_$umNztHp2Zl!rp^w5mC$rZ+cdp3R6qtP$O^tO3QHN+R4=ovW(=}@$)Gqp zdf=B<0E2-OoHuEmAQ^4f)=izQo8-_Uhzc$uDi{o@D>rDSHb&|shQc`uC!Bey&Qa50uFl$pfQ#*t{4hp&eGkU zW8{0>s-_q_3rE_COrHy6oZ_jjc7K~@4R=@}H-Bt$tD=QGEFPUeIn=rGEC_kR7f-i) zV&SMQtL=5?00(N`l<5Mty1(}2PSRf=ewdFB+?w!|A-vRt#zfB`t}>Z^zkL$Ux!Z4` z(#P69W%IlHkdSPp&N+C-U#LE4rCG-UEEb*gpt0jGl8vg#uVvcAr9oWM#(AfmM*q9I zGJUz#}R&=ECjg*lRI~SO0T~3OwIb1DP)L+cd_Jsrh}X;6&gp+ zV7ViIX*~^D#S;@;^Regn7eh%`!&1`;A13#u_)lP_r%&#gBHV$x z0Brq0(b(!q)8wt899bdJ1cZ<(WrF}-LAO0E9wy^G!sO;baIxb|*kHoZF!!=xZ5sf; z#0MsHP+J9udos=qJt-A4j%bmr7W%6D;0DG`sVxk)_;eRcoFvbQF)Z4GQeg-Of1_uZ z&#|9h3(fF(_ImgV6?~WTyBy!2SD$uOIJQ897(inRi)N}D2IwWb0Q^%=gCL`!a=9v1 z6z~HxSzbl`n^J%#M)HioCrlZhJk22OjZ#Leytv~h+XsyTW@66Zv&E0~;3mrB_ zcr#(mkJE;)Kx^SfaO0Bx3Fs|}zn3z<%2^4w{Q=TEWXqB=wtshG+dbMbM4pO=$@67s zLCUM3k3-V7@8Ixbd=FD+2l3n=+ge{#ssi0h1(LmM0pquo?DnV^_8wDP> z`a7ySdZ^W;wA{%^92nXS998SlBp08{R;2ps`@5?K;ckOS`uo&?w;kl{y!qYZp7>fZkI3xsWuNI<2@cl zIheEbTON$Mjf?}S41!`^KeHQlEl)%(u!OGVhw{7NsWW?R{?@FsX&Zz&3h4_wZ4Sn0 zw}V@F*TgPoBSgAi2EyWL<+n0x1H)d%CGb=c8zLljGAuGQYDnb%IKQ7j9Zw7DU9>^F^Od>W0KY{ z!yS{Aha%xRAAWre%W7b|39e##k#dj&fPeDz^zdaDAD14?9};WUfDQsA!KacbWR1g)$Rafx6Yq~G!_LMXlplO7J;6;5HC8zSK=K$!Vol*bm-(gB%e z>2Fv%GDC4;?F4mgZnX30;AxXAM861kVzEF*rIV)NFuoP!Ls~J+=S`SH<&D@`v)p=n zrq{#3=6GdO%!AWbs(dB0`zjMVY?aym!Br-6PQx^HHR8bjH|X$~%QH${jw9-_RN6=v8J2=go5t zIwST~WG_Q>#qxcOx_{lw-r$01d2Bsz4D3EjnA$7y^Kn{bk*$xc&eXNFF-y9XCJ+Ap`pxOpfZBa21 z5fKeLn|@ni`YI&Frbs^` zu`wBzBu0Kx=oOKLOJe&OZc|s6k{zr;EfxgQ3s)E+bo%7?-G>7Rq6Am^T|NZ(@q}}F z?h9?16X!jKzN%m>KaXFg4d+6#5x#Vv`!B0z=Je`9lj*962#Skv# zDn@L3$fi=*rU_|fm@&%Q)8Qab$<|x}6Y^VOM|8>S`uZm+-x3t@DdWin%H5dC%BW6~ z-=4`DeSSor*!!r%BC-HtVO#222Hb5T&6m^O`$`XpQ3Q0opR z1$7Fn=qghKYT23|+nJ!Af_QpnlLrYWsgpd8y=&9DRUxdIpj;o`NSlYm3dbvvPS>^c z4CbYYE8E&y8-u=7_OLq{*a~H*7fUiqc?)@Lk(a=Gz$12hEE`!?G@J#|cu;uKMhg$l zP#{c@wl>F`qez=_Vn6aaoE5WUcAyLU6W~J!x~aA)(jf!Tn95>NT#jTpbX$;Z!gw~O zczm$Wmz0^&F~$=YoSyCqm47^ggN#jL^nOOFz93!Rdr#S+eIu3t`PpF%1hgQ z&T3<#At%!=d^>-wzK^_#+Sq@VR}buh|8-U;wzptR3&$u}PJY{5F%$YdNjc%YGY23A z1r?58VL3qq++M$om(Mm=^9Z+cmL0=yl6iQqa-0rZUMYobk-1rAuLJcQ*OgKZR8XmY zab^N*^+Nz62@W48#~lt1Ee$>OX?QmjFU;$SbC4@FH%zqOa&RW=o3PRx&@}Ye=Jcev zMH0&llcbNR_4Kwp6q>hZgmt&F4ehROU!>3|w>{;kMSxx|E0Y07d}4o~QrrANf_z0U zY&k`sUe?g=T5b79wH%tIy_R>LN~Ep6L;zc)YTaBK-<;ZNc}gTT+Z&o zM-K0tMimi4Hypy3oQ%Yr(`z*Yk{i=)qEe)UHti?eiL7hC zI2>lZFzBafdVaVt_gy(`b#hzGcB;a7jwIsj;gjB!xvdBK|6I&6o*wKb>81zi!?*$mo{2-t90xp2|rzh2$>G>P!3 zHp(5Z5la}8iuPk#XFwLtr+}M8Sm+f85_*}->7FWUVkxQl?56AZs{tOCE9N_}NAQfvc+@Xgpr>8vH zaAs3Yr6)ou7H26(K^V#~f^rNR(hYx_b%7facRh1;9qkgHNJ#%}s(EtlDoE}NE!nmK zn!c*u1Xu>&GEPc7$xdOmZrvIN{r5`m(&qDg;M)Z98lXu**r94vsCQ$kgU1*6lWoTG z#I%*LrUK3tJR#N)!EVg*_)1gOAcAD<0i5E-#eqZp z{WD-Pm%2@xr2$8}lv&M4FH>1wTfo$hh~P>+<97q|_fR%&gx|yWT09=RYWK$pG` zR@l~Q=@q>#-DMQW;^;Y}cW1`GnBQjI9|#)*-;d%(a1v&|L|+!5Pw~6Ul}90bidqpL zkMisk@Cau^33s9SVvo_@Ke8t9V~s24b51_l`EsL)$4eG}sy&}hHVnx#hzLkRyX=8W48m>+1 zza^);4I9yldB+Oxa(($(#h`cOL`2+T-h8>D4D~}_aZnkGO~M~7(|@Jyz=#lO))qox z9dLaDab(MVlu}1`>?PjFjvWV?X~uhZ$Bx5LtSeW4SM(s{d%B6KKf_>*itm{wqy8*2 zq&|vtFYVZIFj|7!ckI}4gqdx&Y4{#ySp7ZCYZ|_n8PV^(&8YhOm@)N>%((jdqJJUf z?F0?BcXHqA7P#qXMFmWZF3X-*WsZ>IT>_yaSIXs4R8e{+^<0Go$rnM(Qo)-0@p@HaZk zM8$t}mTCi=@6IxMt@Xq#Q!U}&pM?z({(d;ia3N*P|I9Kg#eZs+sTF^0mTH2Ur)Obr zguiEInFjHHKFjE};V)*HGv)iaS*B6^=VzI?_%F;d3Gv5g8SZh6`Q0qTK4;7yW~oN0 z`S)&SjeNg2%gC*-d1p7X4(}KAYd!wEJNCzh3EBBR3xE5Lz0KM9=JJ`Ujrtbj(=6Wy z&oDx1n=5CUjpBPV3>zUwhM8DA;cwmy)m$~7nW@^V=GvL6!D_CbsamY2d4Aq1+ z)ibch!r%Qfjc~Qi%d^ZD@wd-X4O#QbEHfbAug$`83xBWAGUwv`n|_^#KLi|}kN+C| z{wV&R8HWp4^#cDF0)_AHIKT{{^sr;cf#zdCmwaC&V2yvVF|`tY39Cf>OIZctUuMi# z1Ye+;yGFh*r*-mug)v_j|Nj7m;(r`y68}nL9v1%-#{5-K%My4GQIEa_<;Ew{gM3F0fiF&c~+5p zUk^0O_YFX!_%|B!zf$fOSX~l7%&F#1Rihs9&8Rg$&%o~#KURI}se-UVx^j{M2#J`XE*g^aVt6%&t%XE?M zD_{Zn{wk|M(%sMMl<=>yD&+g?tP1fT0J@~T4+6~+{|%s5{BP0^@gEYfC*8w5Vk6&= z@Wzq&-(nR>__t}_jva@ZQB$G*cR&wP-lIUjteeM-xn9zLm(?ceAE!R~egY`lvEvZ) zJu{^FzHdg=|A8@YN_jstqi^rn@j>$=Gp_#smS^?xPP2An@{ znl<0A&5-&pm|^vQ1Dr{J$BlVa%KI(zEZ@Jwh^CbHdt+{u{{F$3ljQr4g7)!W1l!1X z{E0__B>vCF+$;WHjQN+0%S+HS;{R2a9p(Pbn171@cQd5zdRdks`Ty69>i2dts_pp) zSXi^3$tN(^fGyQzi4C(hD&X~sU@SB8LBYM@lD&M(b!SmHdq zRH#wp7BSC{TZ}u=EW%&R_hS4d_#NkVW{O4CMWj-IbgOz$f@LSGGwi;5ePu-X&Su?< zqg^GiHLyiw4=e_`2i~qDfO3RJgUN*EH;f*{cOj~SFoZP%`>uYvpu$jISb70p(NCuh zA&rQP;~7L?6@kmUO6^uGA}is3Iv#j|MYhR|d(fnz^Jw93GiS9K!;RyHaNbd?QR0QB z#ck(1lTLRfDK|%_+5Adu{6yEzcK2(!62nDAtTIHUQV4&5?1dF`IXBNoJ_DKH^5Zw?x!+s0+KfK9 z#f)VKb~+!0^Ru&WLz&Ijb56MncO&!sdFtSI(VficJ-FKm#|_^>I?nIS!}zxle*jd$r+hHv^M~Lrm`NOXMa2d7t4Z zk`ma*NHMXDEaFjJoZYv`8q;$-dgl_q9wm~w{ocH}+4)wHjjyu^XPEmqZYnIhc!QF9 zUkh&%Se&vec8Zaz`k+m2(#bgm?A{Z0Gli zMc5-Nv$KyQznn+g@O|Dsf~hR8;8V)BA3IMYXU{n8)@%H@78dDga~$~P;KxdPfQ>u3 z%H<#l89`44X+2(vA2f*2Vj4>1Fy|dBCduRmU_SNBZ3u9|^*Ham&|Js9&}HYtqDa%$ z)zsJ2HPz+m#Rl;R+1EwZOo;c}9o!Wtx6yVWH1-BxMqy8SDj_6uD*L?5glcj1^`bo}S%lvs9pNu1Cog~gAkIaXZetn)_b#}p zu~wPyp~gv&jebSM@oK}Qg|%p( zUup>D1pSi~{vtzrZd+^68C|%#>6rNJMAME>7vRs|W0$Z*(ow3qWV* zLhv;fT-nR4{R~0cbuEJ%Q!#{N^itZk$MH4cmSqK1r3AOyb>(w9r^KPmDVmlg3UKK_<&+d!5SLTHX-*2lIk0ufr4vi|;iXY*t@p26<6ZRS={X)MgV z_9U=3m}=b|V;W=|fJzVUV#I*I!eC(vSJx)qPX=DFFozCAQZ%LtMyFtpPL|3;wDW9k zI}5t6O-N>ULTGoI%o_GL?!5f-Wec5NtL)0(p}jb|5jqLiVO6Y7amg`4Km)$10fd3k! zTunF9C!sKGVyRr1_}sScv<#OB((Z;wA$%Gn$xn_H?Bzfzgr`E1y zAAnOJXe@xGkT?QkDWJ|O5Pe!X-1B#q9d|c_IaKN96jB{4Xdy(L^wzs`fThiYHs_D) zdL2lTI7Ky?7oj-Nwd(N@6{n?Hv^iV1tX3Q^n^G|%rA{qAOmm6Wcdwm1kM>TSAOMzd zf0)phI(22SmpI+oN8RZ;^H-b|pMx*(qCH2J|CY1h?>R?455EAH!EGar$PP7+KXemi&Ww%0t zPQaKSHCZu!oR#bXzacNGw$o(%X@noIB4JXjVk#jr%2j?yD_w@XSR=HYe~}K^F37Dv zD<{D6smj=C9N8v?n@T6ZM7MH%o~&cU2XtYh9h-u@J009POhW<7Y{FU*ec$k%>L%bD ztG@Q0*74ptWvH@)-5b+grNW634oPw&tEesMu4}#1UA!_(3Sp%Dx%SbqG{E#(f3|DdJ8f4!?&9Zm&Y|o!eR_vPzlmG85vn25eTHW3_K!&pea!Za2wZ7-?(4wC5K4R+!^> zuosG$SsE#Dt{AY3Ra8nFPoS-0FAF!$ckFoD$nOz;4@;Vp2rnbPoPL~)zi5rg@I6Al z48MnP+axWn{6mZZ;pLQ3BxT@oHs|#n46!ZBc~nJV4W@X+tUYoSp_5;qZ6X^nf%ctS z;m5t7bVJm~6S+eA3xijVB&LG)RnRWMz1#RbwvhhtE&a{l4-@9$!u`$A=k2)n(_imI z+uu>jmHrya%2ZHhBV*aXI7Ap9zK8g3=68(W8Geu8$Kv?7@&xU|jS^PQcLn*z_&tsr zdTNVlCVdfZl<*45*nS3%IFGajUu>{jrk08(Ri*7wc4Bxgp{1ANwX3Yiw|yo9Q-=Dc zJnBiX#yT)Eo};UBFeCyh@;-p0-?5pWi%aGr8GAi*1a$=8$x40SAg<3FxHL(`$D&RH zw-jUj)zMu3$;xk3k(s0r0oE?RU(O_L5zX^Z%1}E3_G8d)|7ha3eX_c3n&gBgypKE+ znzFMziQ4#rMNuSMdsz~4@}8uRdae>UpDNBBwx*7sP)ktOB(Pztb9GG;?@oisiG`K} zr-HS(agZw_`&N!!)EZDk{3tkNd_AyDe~PC8+Wa1C#cjm#Th{EhcHn*kj_)FVH{(}y zu#RyRoAAXE=J7pBz7c+piu)t-BBURsykVT74Cx1UA7v(;Zd8&Jb}~^Jn`GKK;Y#|+ zBX<^;tch(|oP_SrCL3E?B1VQl=0uz!?lE6e;#A!Gp`pg-`N2(mc~DiH2uVL?J>o)=u>{$P(mp9!Y5q3|2*$1wHr!4tXz2UM5DeZHATM@%i^K>Xwr1D&eV2$RC8eO+hXKxOV95>l*Y{Er5S#twUm@6b)N3Ya@4o1!V)Dn1Mra5hIBc z;`{+4TVWiM`~6B#7L><*K8iF5n-ui5Fx>AOifwXVG@*PK9_vSjx)nM_E;ao!{k*mf z7~|!{q|EYyIw!>EY$d>fl=l01a~F537K-VORamOa0k{lXVco8MegQ$ezdk0!hw3hf zd+*8%#u%CL6f29R7J`{j`JwpWqH{uz;C(XjzRf~7K$vafbgHrj6XJM=O*XO#;aI_k zU=_1AJ>J4{FU`fD81S2rt_RaJzQjjOeImLd+9+cR!jWg%Ow-}};P%Dsk2?bA;f}%0 z^>NfRi>u0aasIS|xn7|dxT_xXONe+4++%v%TTfcJP`-uREDeZY38%)i)yF3W(iY?( z;I*QLl}-1^>a$^V}J8rqZQ9PUq7LHAad9Ff)ip?`-LqZVlcw)#nlG!KmfDrXp|W=4w?F2=yIi4}YryhR8b*%mFQW;{R4ypiw|YA_ z_V=YMJ{Jo`1PHUmrDYSwWNGKQ!ZP)vLi?{^2R27l73eCXRCLPVwsmj;q_QxUFpIHS zrUDek+nt&&uE`wB)bw>_OR{TrC*V@Eh4odti@2hvL_4ZSuKX1RNqob zD>uB6W%4u}uRYeUiqzIrB_oY1n(D;ZIDdXvHCH>eQTkX@D=H|7X4AC_+n(r} zns_2^f5#$;>ZCNVwxOODy1pdiu?Q51`(9Pk*d({L%WcD#)k@)2$z^Mkm9=Vt9h>91 zut=2%zOb1`5)F!%Tw7}5$y`(X^wIjphT2-`aI&>Dda!s$|eFN{UA67y!Ah&>qE` zV)}9)gGPyo=$ZuY7&0haBG=PqziisasKpxUuM4*_90vIm9-6V9lTH& znX9UayK*!fwg+-V4T*-zhT0^;gEF#_sw#5I#3+mg-%a%l7=W-0;FNrJlISxtT^Vhp ztI=o`r6!u{>!UuTb4 zkwj%Rdlm7G(fa6$25$DXOt~!Nl>qY6{xxfDGn(qdb0}@nKG7AeHm?M;4B(!uA53+4 zT*J%GR5!#Ex@H*H#w0ChidraVAq!j!Oa|~6>iUFmEhs#qjC*aYo-xdI(G8olk#Wm! zJaqxLQfxA}_LHl5Cm|87X9*=_McZ+!idHt%#biqT1~oNClaX46N5@shp^-F=Rmr+Y zrHdeMXk2rH?aEvojjT+@qm42OQRb>H+K9kKRdsS@R8WV@I}rrxz-_XA*9z1zYou6S zv!aPL?YB+AlKeDC;fFS@NxG$8Tf;J%0DHU-u}ZY{s5)7Q`zD)T8O%@~zpV@huRl~u zNj~I*J7q2DI%>*mAxmj>L*vQ`^(CTpppZyoP3_ub_`M62sB(RF>w{7)4k>J7yk@o4`$V!VS1U_n` zvX-PR0uQk$6B}z;aqSR0E1ouMUZ8X9X> z(2ixYquJ~$Sk-R&HGTe?2X-6R#{6Y$VU|AnLpxywN;@4`DoP6WEy88BRW_`sM;r)z zFB9w5fZfx;ys`|UHLIe@Wo(cPfJhGcSkbO+(nz{EZxm0O$N}nPDSig@7#e^l52=Hvb0~terM8z*8Op|!2)W%mLo z6Kiu3uAKS=aLo=So1)@U4Oc|GssS`12&*nCbILA7^|p@OfLXeuG3qC_@$wCk6QnO} zqeZL%28h(Ikk(a81+IQpaeWOtkM=PrNAp?aYtvbfs26&Pfl98bX{gmUyK;1Emu}~1 zG|A^Ev+&WK6w~v@9qvc3c5g1vxdWvatr#6(Di9i6$A^6&CNt znUVPN8pQ~-F;Xk5nwHlnPSZ+C%m! zFhrQR^yl6ZjZCd{G*YYUE3{KsYR*AX(Do{jMgc*|ZlOqQ^74YYjYlh+bdlHAEMs?O z`_%bj%#|Eg5`=NrQlj;oOB(9!sf=x^p;Aw1L{C|Y;4QnEv$N4@cQ6yQStZLa6z{`N zT~lqMhD}!{L}$1*TE8Lzr7L6XBVdk8l;*N1oVks+s=6|kt8>aSS(UMdIKr^HDFkht zke)-9!wrtMP`a)$ss|6o3TzAl(m05K00?Poe(Q4td#Dc+mZR98DTIp&ZA&z=6@ssU zT}_`OSbVUx?Ww6}-#D{LFuTQBV25C$T$`7Jm~@;u6T0nO`?9=IkYwH_ui-NMG)T#1 zcP7ehbSx@&@IbzpZIlgxL2xIXiL#7>AC%IaAmwQBhQ$$VWE^g7cLUs}IsAbMjdg$v zM9$eq2*hjKkirIJXDbMLF;c+CV>5|+hiPdmb``(#05m54Hu?BQqE<{46$Llc3nS` zk>!l2mPnoK;qzh!ZV(#$xN}SMdeth^ICAP9M zzF?uScLeU0a*xF098Fj^`Eh>h84sJdGU86{OlM_8#>s^X8C7ts2;y9xpfHywOmYWt z`StslpCcx9O&%wsR2Uc9704%NywHguS665EDg_#KQZDH1~Lz^ekSXrG^vV(5g za- z{=$<>7jcDes-nvy>`JDROjSJ1qioQ|)D~Y=w>S8y+AFHpaM-qcOgXL^x1e-U>4~Ka zC~-;YhxomKGX1c{gfCjKpmaew5sM7!$YQ@r?vb?GP=@m#aYAdRpQ_ll`x%1)cL~kB1(qbV|Ru? z(dxzoDi3;FePl`3)iQv*DR%k$FoiH{t;+ZbocZwP%L9%r{+jN2BB)osCvR5cMvpt& z6wN!^l;dhtd2)b&4aew5*b9dWn3krodk$BVG z=*4LE0FI|Fp9eK4JCR-|Gt;i-+$bBvt-MJTQf!p#87p|s1&^!6bB$yo7$d#6$+Zcs z_su96AY5N2_QXXdzO^gW($k+2=?DVUa?u6LY+R*{Li$2tL^d5&e#UC-NX821kK@k# z<^}Ny=|pB)-U7-{#_-~`W&}6(Va9&$T2oX;SSi18+i|fuYmJnVIbp3CI+5SiYxUh_ zzl@w5Rb^VOFVVhur`YeRlx`yLrcVW%vE|if8}*62$=I@L^=*nxa@U(w%h&d4Wpq$@ z;7Sxr8<4f+3UuDamMrS(7|9|fYU_ES?qLNH%_E60jcOW-y>hX-H2JuTLC|*eB!d}{ z)+%1}$6ZW}(GA|0=xG(9WBKi-#B+0E#HO!UglM zO}9Af=(GjxA9f&KVWAa(n0;YX;GmZ`9&MNak-sp|ZP>*9Hv&!~>A(}a=^%=J@dm37 ziigowvZHn;E6vY~&ZdpE*jd!ILs{&av1%d22zQY4O;veQjxOCL)>(|1o1L2lwJ(zK%i(sk-srt&8{SS@2#zWCNllaFWdpl6 zPF_Z7sBG*(qnVGYK3xu15UyYMj&P(WZDmec&=aea;q>>{3TTd^lUwyo_KE@MlPq*e zKeS5US~HFt;&-MOAD7`nG?K~e zENNc3be6KIS)VJcocR}&?C_k)@a^60&!yX#skC5l zTz_r6=Kypm>YTD8E8gO;)!*7DPkyn{2@bL2FBCbLr=-@&;Q8N;?maf)5tea=_7*QV z(Q`U^?B5#gf%m;Q#8y5{k4&E(8!Ni13zZn z;QQr|J-Jrp|6L#T6)84s3!-eeV?VL+GS_167a8K+S#z4OPbpG#Q;zo`eR3~HQ$IIDhPYFL&<|Otr*ABib2M+k zgE>e==%8fy?mLMouv_Y zm@Hm!W{v2_$Z1Q=NQnHoC(>FzI#K5gKe9f zI2}^}IqiPor-a&#hH{#cqy^#vQX87uKA-B>qiyj5nqMTDQ+=N8Y#y_hcAs&^86v;q zEi5fpe-Xa$fENV*0{6Yp`HS?9l&q#4K2Z5V>(Jd^r|UI#*gAC4*C96#W4S*Ansx91DSO2_v+cv{OsovQf$!pVW_tf>CK&~QclMxSg{i*i#HWV-yqJy za|9FpojhHo7)8rVSSV1^0)lWOb)-)xDR zqoJp3&rx7dFCs@jAKz2K>ymtl<>2($nCVcnTU^i%$|Y0@2XnaRJ!>5i6S-c?tAsEym&vV}PL*L`by?eBq- z?!_%eTqn%GR9Q!7J89)#`+ZI(MZxlK@i`g2FSX$rwcjHD+HZQ#iPioqZ-t0u4(6t; z7cLi^M`4SGgtzX0*i-I=f=*SV%~x-ZpBo0I9;Z#-H6Kz+uWM{P)Rq~6#Fe7>MqWF zs1v!L(2ZS4wq_<4DIvsoL?JcZk}rKhbFHT7O} z&r0PP7a*pjrMGpHXjismHcv>~oj#YFu9nh)ehcCFd1-w9Mz{_j5@>@Spsn4D`cIOv z%a2F>w{2T|mU&T0}!H;7b27u(>V*bg6%ZPP%imBIhdtYe)qgvlUNpAfNlniX_ z?BiC-41i3KG|0+ow7Q)tZ=;Gu8*4>iA8uesJFabSV6$;X&}<`QXDF z`Mw?+^g80Mg1-F3I_3XZj8~BwKvcp#yJ+B$2QnKWeO`2@F$&8~0c!#=1#E1BjFWli z1+i>|OZM2U$C^{Hbe}!y7?;1-L?HS(`UcZ=J1kKZZ}h98Z^(KOYv z)o+X@w0^azN_ge!Do^4?P}nQ!vi|X<$DdNJa+}%)*)x~-W#nuQt>vs*D>YXQD5FU0 z_Vmfq_*_1ChF@WRc4FuMKZzTotcv^BneuP2AATFy_!?#NyZKw}h2P|xunPRx1HcDv z`@^KeRXhT0NchTx@gyCt{C_64OTuEfA>0UV94CLV=WW_vdqsy`LCX6B`|_{Xh0YH) zmLm;2j?m@&N^rWt?&}11X~JY-uFv{yOfXh zYS%OfIM1C&3fto!<~&S;bYkXnOJ^ElgkeC599acDH)1ATL&~aB8F;2HI^0M)h9bIc z5oR5|cq-+!^b4oWYHU_Fv^3@(X|$gN<$J)Kae@flg>J=N}DzVP8cCBn(Hb zdL-tZgf7^)Ddc$S8-nBlW%>XEElX@d2frOr9JzRDw}BX zmj(9(+k=$JbE(*^fL>6UJ-_^*jdCxa|b=YxWc~rX_uw2ERk|& z@?3wY&-F&PtPi)erm==3#CcF>IKG;5UAm)JsN_lG{rpXW=%z>$lwlJUmJ?^)^!epX z(hiLe$_UkA$J+0&uw0nST!({t^3&-U`l;Z7vIPlo0_>LO!6oCqa1nbWIOq{Q(jO;99DkkKpaML>n7!m z`L_2dD})m#}=+PF`UTlH(}$WY5GhYuK`Zq4YxaPHf|5I`=^e* z;?u7bw@o_)y09Kzn>Z-I75Kh9jl*nUtnNfn?crAU_ zKTBG{Jre)uehv2#x(hz0l)rUT8XCZr;M;&xB{j<3F1+75O~W$oxnPxRZJKkC!e2hQX$gE^ZtqayM? zrNXmS!(J-=1Ia>TX}h1a)C>qD_aJ1J=>w~|dQ~1u`CfiP&P078`owryUIMq&I#9>i z;bAON!scak)pq_;?>I?o!vwWRVwo$s(@ADF^}1S6`lm z^iZ^4wr^@ADAMI~HcNtFKYav!s30&%+Yn2xj-dS~8hd`n7<<3ZQ-s$gnyi%&^hCo= zHx-}E;d^r)khjRzDr&+DF7%mcs!{$!aWUXodE>T?CUY*h>Jf$cg=E zc-u>LY$ObL7g~_xIF|LeT@Z*@5gb`*Eeh#8vBEkk^-M$#v28KM5!GVt+ zO8{lU-7XA|StPVv3X+2T^tSglI4H`M6=~h95s{v@iN(4!T!dv-+xw}4LTq~){Rda_ zVr^WG22<1Vc`5w%tw=|B$f_X9)oqn2>;W=Ag)LvDm{V=}QC7#(R}oWSO^P;_QJZC( zp(yR}>NGoatf)}tO7uhhckFt2DvGxw?8Qnu_-IfLYw{eGkHjsS6(p6DhXmGmAgMni zbUBbn5h_Cp=EdAv8u<=6fCw0d^0e`C!5|XWnU+B(ylI;V9H(s^(zb#+*!Q{ibqp~n zu!h5!im&^D9#*}GD98uLsWl}%NwDS+D2`^L=@)LMdQrdNxW@^3&65k za3tdyl2yo7O;q-^=13n=Z3KfSWyv4Z-0XiJy4n7iyD(Ukkljrp& zw6O!l1twBx|6EPdnOs|gu?QN#o({uvY=0)v`S~O>GAIU#PMnk4(G_N2)!CkT~Ou}X&qHJaa=oiYLp!%ugJnaDa9!S zp5HUBZ3@$Lq_r643i@!8K3JBw4u_)wNtB~4T68D(ER|)kgnbqWoZ*(buHM`{*fEvo zLNJj@S^hc4LXa~v?4pHs_2UD?F?C#C(UMn$#*{gyw2{0ysD}YdAW*j-Z!_jc`f;{i z*EL7c_!NepCWoLLy+YZnIh6{rhGp)aTP#OC6htbUKwCeOO|+Es66D5Jgg@*Q zx=|rMH{Z4&S^}p|AFiYfcP`dlh8^2IL+9~Og9IUx$9|+|D?Q`n&Q<_ECY*&_5TnsN zp3_w(k2?rOoRx!5W(*qo&tZOFF0azXdTHdK$0@tY(X2Oxa%oRiw45lLH=eS6rErQ> z$%{F$+6`X6+_S-V6cSpfZ^2)|ym8wG5=wjZAlsPbyf)^Qij0gRZ!2c!GiL)@Sa|cE zixZqgheY2h+%8zrU4kbEJ(ZPfTWTVTylj6&+tCvnwH7A{K9pk{0^8wZvy8s16NWF_ zsmKdh>ur&ZU* zrjd=Kftye<&gc;po=C1LPdM{nb8VDJ7ERNx-%2yKMz5?Wi! zm6Vi4$NJQDMTczL*g zypwabh@@sMPymX$O-bKbI(lxlzkvgO$X!Im>h^wvCoH^k;1| zc~8<(fP`_4#o^ENbHk>}Q}%=?RkM}{m;|}+7LJ^KA}@^cg?;6SYX6BlH$cG~iGH|j zx=GpR;4Ypqv@h>Ay^lAagg5?v-h7fLqyz8>uJ~Nfl$vZ&!~Xt2$P)D*LGq40)|+FO z^weW*2>=C%<&eBSzP50rqD{OVq01@IQMPr-C~r&+^6-#{oKR<%vU{}p5Ga{!rln`H z_T<1qFhEN$D#pC41!bxwa4+6i;~np*RtI9wd(GZ!cDzphl~G>v%spmJ{2tSW>%tA; zF2{`?bXIWJmouq`jrl_{T9-=_0V#||(1dF|Wrk`tU796FV%L2Zid+wqT;2|}72BNBY% z-no^$Vvb9E%VM@(;>_syEY6Vf^ zBDIP5DwzF#Jc6fwd4)*h}Bjq!R`_^1bvfK@m%~QZ}d*c zZ}~u4VP3hmlWLsKH78fDGdL(^`S!2mcYzr?Y(j}WWK7mN`#O`D2+NfjSel}L39*G{ z8NOANn`@$95_45xHw_b=mC;%m^9g3fd^^KI=4d^php;QPwxJ0dRFT>`>Ij)Q^DWQ? zb``CGFKh$qtd3V)ymY^1V1BEv|y7 z^zjYyNd75AjGaODTfu3;{f_Vq)hpVKh%p-R5ra}+BuSNDxH-jcIsmp3dfJ6mMiZ+n zQ^BTTgV-vl3JOx>0}8U3=2Pe|PX4CvQf|r*pSde%#9I_4!Jf*wKq9v`pT?Ij6eGK8Vcaa*N zPPd_wr`1%J(lD2A`hn9AxWBZcE4`8HCcovq<$FlA`%LE*fob7VX>R$)ez;%{ZPxUe z`|r{eUrfQc+n&DyyO*N*R@kl$jLe z|2(gIFBg=HhWQ;JhSTP`%rP=m~e zCyCy<7OfXwCoY(?His{PmsC#}AoHu|<{XF@kwD2vgO;3(nSEB_Cp7fu;RK^ZTuL1K zvxZSADK0H8Ps%7xo*+UjB~V;mT$c2mTwD`j!@WpJToFvr65!_I3zn(CEROAWD#8m%bMvA#P!`0=m;UG_D z(CpA4L0C(3tXZ^LoH>T^`vpgdG%u~EuRiUzKU)4SB+LE&J8^*oAyN?u;>2HpEt;^0 zz1oXQB?Fb$O+YJxuE;Qa^V5bs5yCuIAUI7hw#GyaNNxj%0&a9vhC`}v0H)r9GXoI| z+8?xlY$hHkuy-N@2F}BBdIg^p<{fR`%d7Yn2*aF-0>3(|V@^5w=jO>mII&?9o3pdOl_ED738U>4~Z z6a)ufOk@l934y98Zq7w3<^mZ<^apPUR3LJcxyjJTa-N4!pog$aKET~2il3GJkvx(9 z5^o4zDv5rtHxiTlF~8Afxbh40{Ydab`lm7wJvW!+XFPzw(*>{io3*r&AM?#~UPgbx z=ht*3q@W#$ejy3 z=Cpu&q_@C&1fj*@cOHa;3#5f$Z0j(4@3gAxf4g^D74i(*fG-{hs_sDJdI1jhaPPgH z1I}+N#Q6ZN?`DG=hPb(NFJWDB2g5pWBuP*%!i*>2ZPut86I@^?VIvsjl)sEc*Of~HG^I;hSeDP{?T+3~9%zl9T7U9`a zW{#t)CH(fg2EW0k0NEEH_$~0=0lqohHOHl1F~|8qz=Z(5DE&Qi+%Ss205Gqbk9_P~1%;KdE~GTs4sVj(~LRt+WO(|n0O@=#!(`a zWeze4l4=fI_2-4j{t2wY*<6Go=HZ4IV}B?Y!;8Qy`z;oW`-yS(TausnXc(Vk7Bx{q zTap-Qzh?zm9Kk09p}8?Fy!l;$vqqvZqB_y6vIF$duWKx5sT0;$jKLTPx=pZ@5c!MP z>W8dZ9D!j0@>XbBAO^VwLG}P#MOYIEL?}{w#c6=63*f*Kq$Wtc6XV$b%qcYTF-9vo zI4{K%Y4m}oLz37asTEL%0UqG97z{YTXE6aDNqqoEWKVdbqZty{V&I7^8*s9Lh93zB zEX|+dTT%$~Vi=z2-s9ArfjI6RfjGL-C925dh~hbd8$n2ec;1-Ousy-18TtDAHI0u;=x^UJ9W8sLu?5Q-K|PK526obz zBnSCy{#lfYaKdEkgaUt!#xNj~`6Q)hkTd_J1&!rIJTy#B1L91Os{wD$d)D6y_8nUn zz_xHsvleiHv_EU(0_=HOy8!biEdY4O+QtLjAUj(}R5W}?CMovVxnzEO6ZG4_DHiC| z&Hs+!MBFdIgoGdmwI?dw0X$b2(Qr95GQYqPFL}kvL3WBJpmJ_XoKeP@V%=s09z=Uk zOrQbLX@taYbMj}pXI4|j9^7(+O&DQvBG@1`B^p5LV=<_Hzm{th9AxBbgbt9#1R3dO zVyFCTT7A^}zh(FpHj=Aj`i66e=xTyb2STs^jtkQ3!kQ9Dl;5HMo__W`{2L~}r=70} z8YueDIQ*Q>6lT!xunatWKoa=-cT;a)Bt&*bk-xTuDK?Zb>B}tI&ZfwL>RjXesek^M zPahON=4Jb}tj#2iTa4`001Yd`>iZ}7b6}7(5Z;g)39%9Wl%9yse@Z(C8z~PXHyEa{ ziv8YhgznRJ^qcFJ-`a0(oc?>d-(VSnbqsi+fu-y>n7_9ZVHf#Ry$M>#Bm_6Y1?sbt z%fJJe6o|t9Q@*)mq&6_d7K2~=jDWX3xBvoIvo7{HqGkyrU*7(y}e8x{}eHM$NP!u~xcE+f1Xx(Ra>iOIx}g`|&*moAKCA}uGP%uU#RQClJ( z`RJ+xv~RlmBmE~B?|2DGDQOv5Ie9g84RE@E(kbveW4@LYfdEzFcg87lqa9fZo*_yo zqPP#}r*}YGLGXj%fPTX_ad>h=7=9159lTeAugM+=st|G@AismD5F8*BL%=~$h4iTI zG4RCo1H2Fa|Mk!RrJoT#$VVc=5uMRcAEMv$-{+rWN#9A|&^sv)qJPnE6gNMRzM**1 zcTyhoPKrmci~*nFacCn5eh`cyh<}ClhI3>KJd5F(It9PSp#34xeS@}#;4ls8zQb>L za>H{No-L3LrKf|ZF$4$rZ45yi!Z4(9fc(Y~icuJayzngsf**tyfQf^2Bt95Xu8xM@ z>^I;tnxPxJFc~|1C%qf1Sz#AbV>cHP@7=YAi`{_VIG^>4?hl;3mX3Jm9o%t4lERZ% zatJO#ESDeg#_w^Yx)6=YX6u2D-o(`4ltkMU!6Bt3)rp`- zK!~1qCn2foke;ZofPH~GcL`TD{{tL?j)oCdX>{2svBjWV5(k%*e{Nl!(_2Au5D9`_ z9q8tw<6Hoc*K%K*hjOr>V7==o*O zLI+fThOVoLL^q)ShEA*VbPeVm*ire&h6eQ;Nq>e|8c}Hxd`A*>6wm<|&V(2@lBABj zfm=daCK&Wl2u4Y|K44ykQJ~;*!8x4J=mCV&mAw+=hYb_i4uBB>hze0#!8sdgykaN` zAfqOd^$}@rLz;cuI8#s9+E98ww9|r5G193WRSiz=Zg3a_E+N2zRzLuM<~t}t7Q+1j z^NJRPZ@=RWTZASyNWj_|T$L**coJSQLU&GI1L-P)=>*bq#l{rY@1%;5T6|ucLwZcT z8yFYZ@sgOt6mAlNhQffW`8XS5Y+^u6$1xE5CJ3AjQ^HWug^QE|0e#qfKnsO1Trurq zpe~TxASAMymliQgQRAQ_pjtSW6Jsic5NwaYMXQkyffa)F8q_%;2+9Ee5umb#nFSII zVCV2b)~YBPDh%cQFM9~K_Aj!<#X!LN8}u53K*bpJwC8v>(5M6!FAn1$X@Hg}(B&|y z2sgT*CO{5j5#i+&>;b$pA}#fcKF-|e18205jG&1FV+!&k_pS4X3i!tN@CG9!P^S*` zKt`XS-w<`Qrh3~3R zXQZRoA_V&g;yVL>74e?YH*R<@{^eT_r1P8iEeFySvjPmnqlTwAC**^m3L%vp0vo{Q zu*D5S=z)NP?{p9x;CD5o?}0Q9=o_Sqfp2IZ^&`SFhVNjX4{eFY3pj=YN)-*tSxG*j z@`Pami@?mx3=Xr@Q05kgsXvdFMXfGIl9GsFeLz&`Mbs;nXM++qGJizy2_p`)PtiCM z1e{fIxTUCV)c|KPz!};HEw%PY*Bvo4?bUS&SGj`p5mem>dn|H4@N=r!dud5`nEq2j zj5SDzgkt}_9)$H8qrypKr#-i_5;t6PscQhYJ(BpO0B0^9DhtB0U*mZ&GYwGAN5Y^0 zd$(ZF$wCg0d4RbEhK}fHh66Xu$i{+LcevaYB+8olTBx#rh|+-@{fIhz_UP_YbT_z$ zz8Z*yHUA+8-28_wyVnE(o`Dhg6@zt1lUO=#mW;ON=I53`jgNKnpK$t@f-znlsXBkk zi|T_TdVmLJ7_u`Cw8u6_sQ)}1uu(R99{ZV}y_INd!|!a1?UaOU=wcqk%0>2jfk5zs z`aDtb8`E{>-b(cD5022$VF@^5exUphw^tF6fK?rv380?r6%3jI3aBSQ2^)FDT)Dj}uYG@)7*D0I>kOJS>;sM(;nS z#gfkPVK8BYt4n|ga`%O~10jr9fM*U&4|Kl|%wX`^05=l?A&Bgzi1QhvcVM1?s}Def zprDIH^8dcx6V_|zyVnv=Wy^~1MXvB89~=J*^`VCpdO?sFb8o7 zo3-FVQWumseAZM8&NiR~hvW+|dPNClWRM+)WaKdcbG8Qy(R2=wc6b*Au&)u1x5eea zdo={{-9VE-pyRc~<-qr12src(VHke*Krn`Mhz=}{v&CtFbNX;@Qw?)tWJX0Kx&W7X zHh#0>4w5?ogfD@EimXapJ>1}GH<%qRq>~To?78+vd>Vr70{Uf7l%Wv0YqPM4;tZg< zNj7FMc06EjhC>>FhP4R(M~pw9e77UFd8D-ya3Oxe z@w0U{gf*S$1rAkAl;F$506G+`O9OS$%??-vTK2;D&4h6a&*2QhQ}u`~&L0?6b}(2T zd#GrVt39kO%$@xRaKWvTv#&SOk-^TGNP2_%1eHxlVD1A8DIAiJkPLPJ7f|XX9KZe{ z4al&Zi3tFXped-IX_*NLMu`g{J2WCHKjSc4I%)=}s1e)=d*Z*ZLI1Qyp?Wx+Bd*i1 z&Y*NL@UDu&ZTNl%)+zYy7T^mP+!CCE&8-&%OvOm-cR~~T`TBazvfxpDP#Ff$kzn+R zgpY77B?x9<;epA3WTDta0)&G+iKI4i)d0skaL*kk!2wzk1_jJIU_2uqs6H?fF+xC1 zU)Ms5aAz@`3sAW~t@Auc4xpd_#egp9DyY;IHliS`sxCJjtMq4^_|NScZ$!&rhjf(_QWJfx2z$}pIT_UJ%) zA)*rgHX~;iAY;V30Nz32fHK1npK3+U z7{V`X5@2nPML<1xKu|=&+@AQ60Og-Bnyot`u!wcQ+6a!w1bncz0;8q5HAWPcWnE}N zLKmY3o7bKMM~lSj{9zoEx`;IJkdZqYpx8je#wOwC9|xByVsfE7>w?jxAB2g>4Oi3$h+qPaxnRRKJD&;`4T#IK=lrItO@S zG7Iz$ajK9e20bA!Hv|WG$M|9J4F|Bq;pqVRis3sq1k_IGumO8&Shy&0WkLF(KHI`Y zb%BsW22-Ng^8N2=3Hv`WC1H(U819^-#(%|w2%D68ZXHD&cQN#zJ@6*O!e{kmiF*>^ zekY8V0vjK(a)f^P*YalTjnX;;TX2E;5b>K!4VRIUfe+{bXzwvXzp9P{-wb~DK=Atj zPY5xiK+{4{g+K?P8p1Hd7ef$-^qBk!p4{-=7y=FgNj~KVzfr$}jTO+@;N=qz!Z5U9 zY(TncLYc$xjDe5}VR!<*eSthv00ROJLd!RZhi4ANJ3#0`Pmq&Uqu&rmhtka}Qykt= znIvWPjcNwE`c|MXZXtyZ<*?*ogIiP^hz!h4C9HsReMOkA*vbRu;;XJ#|Q;S$F%$+N2w2l}(tV#_w|FnR^N;{kblO53?u^q|p0OH%g z8pS3=K|^gF4)nb%_*TO18Ttd9d4^TM&Id~-bi?s4u!!!pe{Q5d zr-8AGgig?kzr=g^xO;%w3`hsT@dxIv8;}uROh!pbMX?m&wOCp2+ns~mPb9{c9NVql zzj0MZTKkW~hIIL9QLj#9q*dcZB}HXK@uE@?@UoH;@LOCIFC{7g?-G#zpW`L4_?6qF zHPWQ=Jz|)1p73=A2pUqIh}g_skx~^D#{B7KdE+1R%ZcLu6+RYEfbSlC)&fxVYFZI=%3(A{#W3TuFC)W#PiHI%}$S;cf90}EshMoI4K`hGFX1xE`DzuN;~-v@9$rqG;^|#Q&GkkHdZZ@}ctd zj&*VdauJcLboX3eeJqJr))y)%;@Fxd@%D(QuM<2zpm0Y?o zTyS(tY1^Dx9~HlyK&q4w^;L&*5yL$t!G+@p*E2bu%_TUdK8GE7=J0E{3SvffXFCqRv z6yY?gDzM)|-=O1G%ySe%tzy&@fVkXg$}LH|CxjctO?OD zV!PLNaeV9Ykaq%tJCplDm}}m?Wn>jzUm1Bo|8L=IbXx`$D@PC6zgd>X8u4+YLex_| zaKE9qoEn{yLjIWi-@+&Vxctg~#^+khHWqFN{gyeKv`<+KUn%5JJW%Y{=hOZ9Z{aTy z+M%l5d0Hl>4&Uj64>4^F)9Jlgr9eX#o=^34{YcpS{>4j4%A&@XnKwQb`dNIdO}M!I zS=FIiwgxpyr_HO^n~BNpav4aJr~hncKDq(JUly7PE<+|90!058@(L&0Mz{Db!$6^v zGtbE2{zGIccPH2NALx_(u#x3PS4oT4-{NoAx#NyvT+a4Aj_=!V>V|(9b>xa{KlYWK z-P2+_Pj>rH>*xQaeM-V^Fz_#%4BKY2E`KnR$*#c3?!6H6s|P|Fj(fcxO|||l{*CG{ z)q?C>Zg7^7%dG#}am)Y2sVX+k>BGKT^|Qv;vt`eRFNK%FwwHzabbkDYRyx%;70Pw$ z4XhExzY56 z$L*>t(#vCim~DUa^ZFo#2f9iWh@k&WCTcO#NN9gJUVpb_xV=>T;1`KQOR{~ex4jBF z@#MmJmIKfK7Je?Ce|0hsT|ves^1AEyo=Z@yT5`B=%713c)vfJqEVa!1_W8fi&-~)| z4;+zTA}@dDdyK1`ZE3cMQ1%Kfor;4-GK$r$rd;#k; zR%ecrIbWHyN~+qGKsz75Kk+XXEP*-U!D_Bur!MnEif@&%QG2aT9d_zT#7ey*56mJC zJ-_<5@I8+&dGAyF#jW|G%Y!4=cy#-8_1r$k+eJM3NOn@-hUZhl{sQzlQ2kOc@})%O z7DRb|g55bUBip$zUZ0_yR5BChK2bNLCHUoO=;d9BKXUu-WGBqWUrt;?3U)Cl5}ok= zTTi6CnWFxxV6e=sljg$}W!XBmG5!~oFZq_|7+l&?617_OZ{d&Blv4MdUe-aeykVk} zFHY%+TPeS#RmnRx$LanrvbKT0%wKWrfC^QB=lo{)$KUF>&x;i5t(I48j^xgMWGpT; z)zr#d!8cJ{KX`+#^+Dgu-SVv6_in#*=!m#3^SG2pNAK*824bb z^@sABeFI)4trXG_JCT&S<4%+9#Tsj@{iPAvjM@gR{t}|HzqG->z1F#&zd71U#h##m zFVN+Fzw*kXBM$qoUvGXzuW>`Bd+EUZ@hKq*2Y6J_e{X&qqsupL)65$o-|~jfrynp+ zeY4_zbb-{bir2nU!-U-`P+qayD8HnAf|fIPY|i9j%v+NXOvIBL0J@9Eth-p9ep5 z{4@K34QD^Sc&Fd)6FlwBHL+fkYsIwn-qpm9~`CnICy zZ&o05`}Rp&wS&xx%21N*TZOeEW5+y%9jTAFi7o$$KQARNCxb~EL?vL+TcF{I(YHEM zdg<8Jij-s6CU06uFYhmZlvh?|V)w$vd+Q$h3!3xShyM%w?}5*susa)#lqe3-K6swt zPjmd)9=paUyx)$oe(%k~RrBG?%Ey8h2>hbUfktt;%Ujh91>r!XH&C z4UDP^5_-13czpiij`{HaFZ`=_X${3<9R(|2vEzA@?ia_hI4cGnPfT>a9OS*RwzcW; z-@^CF)mCd+A{&!5IW@RtblckX=gYy7Y4>pOP~si6xK zM<1pg_2l0gVN^Jzp0?Haw9AFkCI^8xhJHWgpB?`I|35MzJYKdBq*hoqD6h1wx67Mu z)1h&YkgvL9HXXcg-P-2p@V|wBw7D=!qrM}i#dGbt!(E@=l(=Li*0wZ`9J}O9`G)m+ z_us-_lVw3Kkn7LiwSQ>9aap%mPFQLE;%LLTxYS!W9Nupt@J~qmz5he|};G|7~%AR1Y7#NHxytc;0>Y z^5dn~Wt(2r?4MdsS3N`1yi6itn)US0@TLA|`t!H_bAj^)E=o(Rt$A1CMi1{FvZp&m z$Fdk@9!E44Y8~P>t+C#74p*qDSLNAxM(JFa#nC&1T@v1Gy?Ko4ZJ%m0t!epG7A?e& zqtM#7{pR3p#&o4j#-rn=2R%6YzdpFXRy#pK$*sYLPjMl6EJfHA^81D5S*JuTj>2iI zle1G^hug8v78gi);%I5&K7*p23*i&*U(|%Ri{cLToclpTM7UeeW$~N9OQnkE@ z#iW_;M_q#p)z;}o5%VG+>7exzms%PRoNd_hW9YU7Usk$WwdB*|$yEM_X!qX;YP);( z#j@=tr(4sX>^FGzVC$~OIlcvyEYcGT@lzL)m($pNG>mtqXg2S0iH}$PxGpYu-{-Od zE`FtrE1Pp-W>jcSuI+Ag*Iz&VO4-n$&8ne?Ny{7DSCZhAxf zqxj09MyF5h?dSW3Zx#KoIy!8xT}U3ZY^9IJN$P9;(F)|bs?Sd@Rx2RF$6v19L~d^U z$S-D_DvwdWrW9;|9#M64)Aj>Xc5(~J0~tJr+35~H9&QwsUK4Y*j!#Hysj~mlb2N3FMML#AYRL$Ah|;uPf8mTO`_#DkvP;XInEY^_a1{V@pT&`-S)|3(1ogl7}tC zZ(K;8zj|akn%j2r;>!=wJyb6(Utf~7K5md4Xy!RS^5ao&vNTKKgBgV&Rk3r!johAJ zz7==Rj1>u2`KQM}rb|65EkU)AJdl;2;Xz)I-px~t5~sg6Ojhshv_4Xwy;7P#=)s$3 z?`dByq|dOByp+R;GGqF*BgfK7{jkvi3%k*QvgX?Xr~LOlk$KxwM9#{|>JeY^&a-`K z(d+((X8h`b>Wt@Q_qkv2e=BqoipsF&)V*MPFFT>d!uE8HxQ$wxc=7evTZ6`ZdTi2{ zqF=U=aheJwJ68c!JfvE#*_p-L| zbaFGuI8=zXuI9Eq#rf`>wacqYAM?^nQDIs2r(K_k@*cm>;w{k-&vTzXJ50yt!;pi* zU>pCv8~d~iud8|pXYih``BL@KPrv3JS?TzaTDrX}`YlSk*6C?}J-$bQKfj*0=MhH( zcNBAjuxRi8?^ka3t2()BAL6f+JjS@pw@07dzb`>e!uYT_M`iEy89jVDQePlzi_nkl!Av!`-s^n56T)%Xi`Pns zKVp2@lEb6f=gLO~rLx#3LN|KzmS0fBnfH~^KRe%Nzjb#x`3noTxZ34OLgH0RbNts< z)dcKq9laRuY}cUU5KeVI!mg#bcuV+@hmeu^kYYQZzVBpS()G;#)jqd_EX0ox(bkCU4L9MjW*EDBz@$znH)ib+*L`aHtIuAL zi8(A|5pm5YFN!UvxU_%9ybz!C?O>|>voSUUXSsx!$(8iitVQmvSMj24Ag3u0?Y&EH zLdRF8@yTkh#dB-kSG?B+c5sVyouH*oeRoyZx{_>sRaUEL`l;8o?27WTiZ>WJb2a@% zrpp_#Jau7+y~f= z%-vd~R#hy%??CmOErb0KO;X82m5Xu9_0G^7ZMu_hSoN^dMXExo*QluFiM*KD9kuGg zw(ol{?xjy2eN-OuV32cw?uK;H)|VY$iniIzlv~7|8>UGgk9Vr0JJ6rgCnQXzcj=0Z znSt0tihFg!ejiw4oYxxEn5=TY-SK7nzLQ+SRZNPJ3&}I(yCd9%Bhpgh{mo+UcO^S? zjEdepvL}+dphnngwJ-&P`~<~@Jm-gK5;uHJ?Rx`icDH<& zPuL>cEVDW~Z(MMLee93iZ#ULE-#R@oc2hQ0jVhIwV_h<%ho5^}rPcnhFWjkeQlM=Y_onQn^=BS0_S$6m z8V9F z<737@vdU^-7+ICZ{6MFP@@`nXG;`9&BMtjsTw_veSd*~5r19zXinItv(8_q|N=k=U46b4X-yCes-Sbw&jf zR)y)8F>U5u6>0|uJ+JKk}&PV#)IbdIJoHT7}> z+=?no1K}j9s**?D9~HIA3-f)$EW_%^SR6G=wF;8>-&zMYGQAL(mU*ntUY4$~*hT&_ zQ``%k2p!3VEr#+N7vr>NN zYsPQJv(;bgJS~vxk?*&>T%-HND9%Wf@?`({s-ct4TaLZSBF^7fZ z5eC^6f^jw(8ih=4hV~hZBO9*v+rDl#ypXw)Y>fLWua7|mnPuL=Z-H@wCtRu}MLIc} zoM}`q(hbv{RpuVM^pVprDCVNyI@uF<6EBv0%j18Wo29a6XiadNM)VKG@SBDi3-R-e z!`13E9db(i5_p#xW=UACD}7X2(Ucfd$bLD*CY@DNwgx5ZAR&K|fs+|kz zo0)cZpM8}%{e#NNaKBUAjl#uO*9Ys4B{7R1{_ZT)_FQ8jd9Yc@v_`Am*~XLA8}j=P zpDcgnmgC$aa(eYX{rA$F13HJ@1*XDWUcr`leNKKz(mfa))<2_14|Vde$=yM*h~_r;S(MeB!?ZZzDs~)RLibLSHp`Rfie&Ds94Gj?sDGThx;00SU75cnc76BGjr?8IiI+~ksd!Yu zw2;2*Li(z<7P`mYJnq@o+}M(&EEk|;Y^>Pj=b`gP%-lhorBATPPTGG=MJvCXNj7hv z{Zux^_OFjWSL$c3TDk0wl7DbP-9q|M_B2idrLRo~TzFiVw@h6#wHntDq}H2yw5UCj z?(48Vm3_wY5ADpIO$JF}Wf^Z{2Klu$IXz0=7#_(@Hx?DlA$Ks4Xpu>@{;2rl+lPRi zxa{iDs}H`ZpQ>9W{x*NTVt=cH)0$_UG2Qa=4xB;P-wVEqp?#x)GTS>3LlS;0ZMJO639JD=kVT8e`n`YxMsHO6+84R2mC zSK@Q;vdYj4O0B8s$d+{~TN~iYBPen1l}KTl(!n}1hM)^yR#AMtpSercB(L9SA$i?-Q9NL3!79jno|lY^q}+zaYVC(!gygKt{B~_^=$en`IkQHtz7Q6i6!mg^ zUVFN07;o&^Bl9@#hbqhAsYgm*>swu|4h7xWIC#XX+F0$arX5_at3TB+xx!2_s<1+{ z!19Arv}>GV-H*Uby1RUKl7mTn3T)hq zQX1OEH}B5kk<+SiZdr8Wn%mcf^nDl7mk!!QuU&FJ@3=&mUAAnkgoN6V(1dcxh=Y=w zWB#s=oF73=3WoUyFBPADlyg~kzf|iI?0Dq@Joe?=@{i-2D+D?6e+zyMIYUM8PJX^_4 z8FY$8@ENW07`t7JGB`fy(LWl@9yqGJZlw&pXnh-#lH58bv5$%Ert9(KpE4 z+A~qxAN%p@Arr-Oo`|3u=i}W?=tjb$OeS}|H*ewTtMjvPJ(P8rD$zV`jqT9p9QrTJ zlhPHzlfep{e#f2~(0oYP zN&o(Kdae&&UXM1T)r$uOOj{yYncDk$#qWl{1w#Ii<)mzB&EAnKSMm?`yWQV=-$gKj zEBU~TZJ_Rt&Zwfq+ea_lS+!`ySmAa3?GLBO`CC4_M^b*c7AJXf|6!9)OASB#_!e$@ zit*!>aa~<4vBF5Pn%$AYV>;QDN1tf!+qXo(-+IHX*KKQFmu^31U-S6%b2088k%}9w z9T@x8R$rR_#3S$+ze?a@Ec@Dc5#08%z{U4tsv`Hl=j9bnt-h?GUU!bsmWxlC%Yc=u z=i_(0=sT5SGTkWIrhWR_OKA&b%-QnBZEvW$uPA5Uo-T43=O3*>sd77-;emaWozU{S z4wLY<>+895Zw4=!>D)TWTIQ}7-7w)68~W&+a4y-Umz;-pU5q@>@QL$e(>m+LTxaft ze~Zz7TOQXca`ma@$YDd5nnRagZs|;(REtPt-nz)%X1m|r$+YZU0+stucpQ#UdVM>X z-Za4N^KqWCZxN0vmnt8aUME+@?RvO@LC8JHN=e5)Hgm&@gXtQa&t>o1$!IJOuRFJQ z+rIe7iTwD?!zu#P0Uy%7=E+J>lb1TSoM&75en%M9$DNM5UAJ3^_T04T=dbBVr1lLt z7gghJ5NR(o5X92V&7kP9kiOmSp6()L^K%+3_WPF9OQjmWaZd}F=#{*+Mmyaa+RPUB zJhFD*_hM$Lu-qT&ePMok?uFgDam8NlOMirCEw-dv&A9 z9K`TueA{2`H?SU}8|jFu2yyb&>$(1QYktO_ti85x^`(|8=P%we%t^2H)pGi|K*7xc z*0OKszZcVqsD|zxitXYSEncl9sxj#tU^8G}#dZ7HW6D6PrFT1Sc&yl%sQ>n5F+-C| zpof`j@>>-RhnRl*RoBn4J>&bpbF=@AYNBB!&6?-yjH_3BMyK!(ad`?!Uy?Yl6+aYH zFd2F#$0sSl_tBM*(kROVhuB@>l7v5Q=^q{4OQ|MxePsMr!~LLrDxFNMU##xBGAdIw z7=L{8^?hA)OuXq6#ip>nb*j`~_h~(6U;O3Z2in3>&%V8%r`9mrh&pbX+-)JU?4j|M zW90h{yIVAL#&|QbqlC^rFlfYWG+)fl+*=%?E;^=uaoh5R^l_5&?Nj@% zvXb8=nD^d{4%3dINt-zQm_ufNwGV}Ibm5{3yRs8`*Kr5-``ikB5!k6L*RP^O@mAQ= zO7dnY=Nl$5_x1utbx-_4_LwQ04=xE+w)wn#TH3aqYWjk3P;2F*@Kpyjb7X7;UW{x? zacU3r&FXxj+_Rjn?zNEQ@gqrFwTJk}mk4bbRrfT|OxdP1%)+V``M_u!ez<>mnKsk@ zB<0*=KVsE!YIwT~UMWXAy%TKV2V`1DDrp#% z7qP9P$h0!h7nHB2=mW&4;Tkq~Du;%D`!}=ZW=i}=avbW0I|IBstTTVoNK|1bP zwdje^(FYgvE_&wcjhC^zT5T}SoG{ycys9tZdn%qYZZMquwp>%r(>@^!{o{MbbtyqkRN2)&NVkJ^1d>b<~rbaRAudzmyGLUX3f#vaD1q^DI(~tdK$mPF3x53<4==X z8P{^vjt5;&f47d=(DFo?cz)$aYpWA^fh`pbcka~{ZdKVkcAW1M_i1hBtKr=zh6go2 zZBd`bh5Mhvc{gM) z)tB-XIF{D@r6^~Okz)Pkow-g224gSUdL-KBx-Vlhm{SeebJZzle>bsZ&UY4F}%h zVB6SK#&AmVgrp!VjYXg3lPALL@4m`J6(6p$&tDg1yr{mbz46DXE1e&l-z~n!oV`J9 z^%cc}rDRF*0Pgp;q(&I_g% zZx+%wJZsmbSTTG&sn;f8s5-#?Y1(P_EZ;Uxw??YN4&S}^2A;ikHOu$**y5|-6Jo2j zsVVI@UV7i?jL_}-!>_)vF;Y-2WN)#MK2W~&w)a*|&8GsJC3bh+;t%`SYpZ?c=Ih-F ztk=&@c}MuJ9dJ8|MB|QDm&|2{9Lf48jo;e;Z3+bC)B=b#=G46Ty#0GMUvw(Jd=cpqb}?AK??J=vZ|Quh=I6OZwryPAz_T%uLjU{CJ%ir3 zA1{i;2ICH{KCNZ_^eof6)oVT+i|~;S%Vn+4W!yN>S)6&iNYk=pS@!b`w}@pM4z)#? zgci16pp#ACW$~!zu*tr@(V|2B;QW>~yONI0?^>;b)8||T^YU1`*e9%2-4w>rwwJt@ zd>U)K)4N5la$Eg*?R9sBE@h28z_K5tC4$atuEbl>Bu zl`D4acw-q7ZL_9h^3pyxr&E1`ys?hwZEei6U%3jT1h;4JB1_DrFy3C}sekD`b>;v) z)4|k!ft~}m-_ly0rL@vfQ2DegX}1KM!obC11HTm39xW%Amu#-7JJudNoe*=wvZ$iv*JK1an`(+lD?2(Js^G3Duw7HSQENr#akCq8j&5y2R~ww3sIpAS6`t(B zw5Rwr{+D76neX%2U1MQ2ZmG?Tjy!+tK|%d?-pHadx9mEaGsO+hc>Qbq zo?O#>WH5oaX5?n&&%PgGkz4gG#CWc1_n_n|gVyox6_JZg22 zcO1`law#WM5Tl^F)^cOfLjD4-*E-?-d}68g%j~?7!IHu$vE=0;58an3mP^mlec9@C z=tf1~np=&E^ld8wzl_i**AJ#AoqCZl;hnCQ8a;A~Zm8^Legbud=ov?j!puVNGq2d` z+{+@(E$v!*8NzGW6D2C?jF`^ud$;sOu6llNYgxB1rIx^Z@`3XrR%V*~Nk9B6*L+RF zZzvOaT`{d-eNxl$g1oN2Uaxibi4lDNu|Tq;l`oUW1-7}i&unr}u4lq^^v7+k)~%o6 z+#feuK6t{0c_DutH@yr_SCo}oT^mcwbeC1%SX)h*rE)%nd>O~bo2^N)Z8t0XBAa$k zP^aC>CClz)71}h>!4>zc7!A{@=_L!<1KwKkX)0S`3v1ig{?6dUBbFME9hcY` z;EjB31FQqzHc>`#dL7ol0I7(edexYx&5k_x@7%{L(;=GH)~bC85j)Il*DBf=5nX> zZ=-%_-sqmA{M_2)_+IjyCwYN4Qx2F%)-=;>Ug|9UdgMAs!JwA)8v1%wBlBJ7U#+}% zVt3?WNy?fI+BZSD^n%x;!u5_6h&bi&+MXF_>8tw~*nP`&x&PAJOo2{4yCkUeB=a+6$oTAFmi!2tuK4R6vP1|?>^HGGuFk+@^UotNhK z?)WvEMXez(3!M^r>3{BMgcp}XXat4OXNOf|g13x3-`>fZczECT>{BkrkBcY;XgBM& zyvtxJey;A4{kVN*C`tA14uz)o)t;x0B<<4KI<|IHb5F4B5#27bMh#2WG0S(G7P6Fsx`^hS}moPUO$xWB<#p|0=iWWE%m;BZ1+O;z>PcX z-0v!_H~AvwxzSd+-Sl&+a$PEW@(S|~cgdZxnbu7knyx$G`+8QUBtJR2=4+SsOs$

      hQ= z?IJyUs^hT%K59|#i_cD;^x-g2>pSqYONo5<0~*D3r-DlDSJxSfZBPgqWr+=bsI@K7 zuh~ea?Dj*WTMxJyEPmL0q?wuQwz8j*xvb`Gy7GM1XNe)bET-;^uAYaHEgALSU){3N zIM8Xi>8X~+Zb`%UGjv`n(%LB5-j>%cq_5m;F|+aPsRX(c&s^e5Kb0n#(5eR)_kA@| zttd*cW0?qil!H$_LSd*d7;u!v22am>;>6n5Z`ZuP`!-%B$LIa4H;-!N2L$3j>{*d! zba$Jf-ua8>lw{6iqs}f*c35uQCVleBQ>ybbe5caaTzh_Ez4PIXlVSVIyiYz7&lF{# zUFjAo-n#sF!h@7I?lqwvR^!?ELEp?0;;-FVJeGRMas0(AOPf}Xxa|GRR&ndTsyuYM zHQlw=sNQg2I<5U^aLZ=tjp=7v6~10I3kQi@N9J;`gyws1bnW^PSZTJx#X_^ef*Nu~q4KLONl>^~ya19@*m^D~1kIzaCi>pt#6pP=xHHCi`0+g>ELd zgYRfprP5R5J9>Upa$I?xj61wS_Hm?|ltGqq;HIoL7w^ol)(%D)zJ=_WUV6y<;F%l_ ztyyy_m#2o8?+dT_b!CeDwTsi&{m)$kw zOm$j!>qz3u8Pmb`AVr6Y2!Zq&ONnn`_D31J>A9y=&+MPnKb`B^ZMO9*%V~|{GDj56 z9!#eyeKV4MlI5KoUsB6C=(~Ygxuz~biPz3Yl%Q>CoeTLqAb=XcBmj0IV@+m@ek zx%Ns)kHR~`um5xUWp(cG$7P(|6{Xj9v2_K)5nR-_|lrM`Knrv@?iIg;VRE8424IGkI0EFyZ?9vEAR4- zqqWrPOX^Kb@dL?|GunkFCX}d+&3@zNnNSdMp=?h2$I;5hp;v2~D)y0^Zb+ZI6`!xz zEuXO3Q~bu*4WsAjQPx~=;&-Wi(o`v5GF&IND}U$BT@Hn&M~{UI?vXz9Z30h9ev3>g z?Mm}-!4!Jom?feo58BI%bX&VTd{`TCd{abe`~9t1r|)GqpZdNyVC8qg;$;~JWg@K= z1uOGSKbk0h8|{)2clvH-N%O0sIq%OUu6x2$zG`|r)|P`&s_9ALuo!PDnl8TIU}} z+ugMaO{9Oc0~Oq=tP|#?+?BGi2^D?4tHYeWcuAIzM%IJqMcWhY9xCb0wK97z^-xQu zXVRT(ua9M@PfPwf#lbS@!WdzH#Y#W@DL$GiE5|(w4VYQIX8P;P`$K&^_I=)CFt2kR zJw)HXU`@QX&dsrn3{54qx^tdymr}KE*v8un@0nU7T=wJmRHgvy`zD_lT9nUaBmcX( zZ;SjccFhbu{O*uDK|F6~{bn;%>ZEOPLjaprBMlIXmh?=OuSXGmV9IV>{X zIqZ8!ORS>jQT&Gb|9W%=<;%Xdo! z_ItEc=&V-N_?{Z6+g_=!r!gnu^*o-SX}^A*>GAl}c@yv2E7ez}AMH+@GiLLB|5CMK z4<&DmSRn4UdUebT4_Z*m`>HopX3>0S8#DKB);8B$|9#E=)G0~bL%~i zk_da1>&a3h)GFO1GwqGcKOLPuFGnYU?@0UDvx~Q0A6_R3hBsJ;o2)c~eqq zb=fXc)gL1wX+s&1u zNEUckpX(XDx7~8v`2*fw!Y#9gU6`_gWY5F@#s5-O)2QYtStl&kYt$7LFDdMN`%t4+ zuP1BDlZ5c`wqM=%=(d)X&zCNwMUS?7JBu0wR^g(~)Du=IR$p!BH+*B2)9E|MUfQtg z+<1q#^#MF1JXT$wT<_pGcCYjFCO5NAhH^($%XYyy>+B4#FB^s}&TBKi7BK&IwB0e8 znh9n%I-3)9!{(6GD_t+^@M;D=-PQ8)*C*jyv=7w!GbQ3Tk9C!Q8I$mInbqnlBb~dd zX5$}EQ2819Hcl&~)HY)MoX*;=duGXUU5!r`Cp@Dw^U}JezP6iIuQ4SxC+N2D0f*!X z-8K)^w+{d5Sah~>lA)`qqQ2CP2R3GL8QZ&z$2~W>yy!(F`PrlYw4bwQk<_g?sTj|6#rAkdmvj$=S4@WYA?~J82dy+lmO>qfxJlzNR9AR!XvH< z_kqCU1owiVyFt*|`{=LPHH$Ir*h%LD&78|f@VSfLg)|6sU*0?y8jqGQ)W zLnb@?VTJ|GRwBN>nedyD&}*~7&=sK`On(SG*9 z;L%YhgQcUb%j|P%;dVR*oRLl@SwmA`ca5;%%;7LH$&P*fBx)iuT#<#&5k}W+gwulH z;9zw33cB+F-L4lHvV?v86b8$M6P+Xt1;7>64)hpy&k$+CTN0;5heQs9D;}^*8L{rd z?$PR_GXQIKKux^&1w)CBmxg3G7heTV(1&aFtYIus;jUHB1tc;&=s0k=tq^q|ISj7y zLNNFR8+e*3mV^GI)|=0%Ka&;_ica>$&JzZT{xGgM;MkzT?+<}XG(zF-OnMahfgKXe zzT<%ocYH;#(CPfpw4AYJ4L2OHg4q-Yn_!ehVSf&;L@S_ISmL+wK%LRkaqOp1VeJ@8Zp+-wTBXodmDv)joIZc$=OfGD!P^IW_vxbp)s z9UBgzLanN{FoE6b$- z2#B48e%eLR!s4>z0%j^lS?u+W8dv{-ro0w?eTdc|^BXgr`d^B_8$kso7)E<<8p zL4$5$MOnT5gI+Ki-E{iXh@C9NO(VbnJWiudAC361XH$sdW+&lgqL0`KsHzl6=CbIhLh#R?5!3r(3s-Y+Uf7>uP!uM}V|b7({=*m#iSP*wgJPn5 zLKs-TIY!tya>g{mcO-TJ=@xoY7vS}=bHu9g*X5#1FrY5I<%5L6It9wc0py4IVwmf&n|9EZJE$#aKxh~aWao(F0}U?AWH9?uKo%}K zNRo#~6&^i!%;0f?#}}S3c$UDE0?#IR3gI~d&nb8=!gC9rMtIub`2mj*6Uu^z0uO2% zGTc>Ga!~Tusz+E=cOpr%Wa5)SDWanWj1^NyRdANZ9I1g_#uHXKs zdExG8_MF59!||dQtjFQ59oiD?GxUlE923e#Z9+y$1^mX^l>LIy%#qfR2klEHyu$p5 zt{=w9vqx76GwG2GW)z9=n;gZ)fyNq=wLnTQ{^*EkxP6v5*P%fNH;P2DFgbzVR46*w zTm(X%Vg#B6;=TXMb1Q2B=?FY%&hx#1&v_dPK;Oz<0CyTeUJ>v$diH|ebqek~sD$(~ zcs~z3x*NXBf!_e@bQ<(AD5tFibToM9^bsZx?IK8Ukq{!AlWv8jL)+nU#1>i_YjXBG zKCn^yb7UCS{_GcgjP~W??|l&Ftk?*Dw%oveBT!IgB56_n!R#`ybnFxEjHMW5h~Z$? z2KxGR2o`NI9bF5|F$vQN;VtqoOC|pg1;}K8_RyLX}q3a?+)`AiQ%1|KaM}Q7w z9@z%5-`1kb|0nX&j{B>7udl? zc!7|_(uTV=Sz%g1cp8??Nyq+j?DG#0`cqsRPr|!dA2L75ofV5h85G>ri;-nBwGK1f6@0SIVT3XonMA9z|laHVT z2GOB;OjJTh{!Fxz2_U(k@kPhLVcZ1LVT7aW?LZ`4;Uq!~fd^CCtsJd?)4%;d zxZ0u*SAVFX@S&Rt`^GAfZce>0{bmq)2)MWkA(qkGerO`GHP_KM_&u)vV8pWe@b!lp zqHc&!EJFe~3kl?K&i+u`WnuN46HSk%b1vdS@R*DmfO7~iE;zidLqQIL z8wpK>l8t__y7mVdSkL|tgW%yJ3D*|zT5`jpw*3w0pX$n0Fp*BIoe`NhL~m`0FbMY` zAcNo>2t_QX7Z=91y{Nd#;o#~A!Uco(CBnrGH2@bYkv@8891K) z5ZwKO)rkON&tS2fKqEl24zVm$uOYy=;0E9%7TAw|3^z7d@XiY`j|jl;sn&4}4~at4 zB3IdnhChIF!Q-_2{tIFqd;1p?aKG>0ejtP3#l{kngS`a}z{Q!nox*5Qpg4vjI~jgW zA6I#(-oF9mg2n4RH1yxoK%9*S_QQ}E2%iyg{edpRSKPR;KKVVe-kF++@3(E%PkSJK z_cwI*A{=Zyb7;ke9d3LfmQSRM0P>qY?1Lhf)7vgM>kKl2xZ9C~cPMaT*?ny=6f}3) zf1-uhxkNmFpo#d|5bZMreS|NG`2LDcLgx~{{To^dpZ*uQxqrH1*=+1{n$;7ZkCaL2(T+mIlK~0R0QxMCiY$GX_5R7#Wh5KJdS#r}v9UGapi( zo)1af#s^#Xn!(>ZYj~gSLpnl-zpg%{$Z#JL*%H!Eh4ij_eRX}faA9rg40fAA)(ePk zLKfF|`1l~^4$?-1~S!9}TlD|Ctsp@V}ym_yw{2e(hpO z|Lb-c0Qy@x215U~T{z%GvboCV9t(qlbHVrTr@_AXO}kjYRn>p!n_iIL;^jaMz-1H0 z@S}zGE>x%kqFfbwv-dBS`kw}OZ3+w`94n2d=!I@TZZ!D~kGxQB*DImjD9sCu98jgW|y(CdTi%fMy|+(E%r%mANU z-zUBP#8^VwfcD0^2kR*a0q9k4xa!tBM*4vf%OZ@Aeo%w7KNn8ikwPqM06vbthF}*S z1Rn;46%8zd5BWZiFtL1WoS}xcV>!{7z|M5I;TkzL2az*FfN`}CPRrns1Mp%UX-NlV zIsgSUxw7wEC&Hon4+chr!Ep`-h1xrgJ{xTPA(0>;zyXPWhf=vr`Xm(CH1$OVNp;;p zVtp|G1q=pcX2*1o4aw;vZB1TbP*{n~;6^}9AeEab{?fhZ?`EaCunY7@)l!aX?n@7iF{FNo!Hw*fXR z0iPd>PpJH<+7mh*u6bIviBaA6xpRyqbsXvAr%f>XY z#k4T38L)B)VuDofw{GaAVQBE7Xc_VgV&C?)1vfZ^YSI4%Jw))oqlfTC2vQI<142M0 zK`|hjOgb%06HA15dUzz~w^^|dX~Q0P_Jf`0>>&0WtX+|_0$W-+Mxe;#esZO^JqLmf zMfU*6!P~EQ(9vhpqkJc={zF3(>({R>=0wA+7zJ815r!LgF9;V*f1DgBasbT3 z5QM}P%SaBUv4Y8=bci|z#)_bY)5$TxD58u>XGJlXDAXEbRV+Y$h?r{D!1VyOzkwaM zh60&U;U+MCIk?d~nFXrIZ?JLbg^>^zK#pKUk^Mn*MA6AK$U*U(42YG6`0ro_WP@Pg z5DG<;@NXD?QM8Zs_DAtiWZc|Hh|!BdQL$K2NG>s$G(f}^OWg!6A~B5ZIUc7eDc?8Af0nLt`7QD$Lfqpl(2HH&7_A;6Z-!XzI^FaKan zGNHC$%P;m`1-#t}du4Fx#->3F;?Vt~L&A^=nEhQqG`4$+-W%vi_UG95*#vV`vH`M@ zMvkDzzy=i#9jOLF^P;Qt$yL&K1RcfRE_|RaVA8HvgI0e8M2Mz|T2?+bU z*zz822(+a|1cbqUA~MXSQPC^}>BM9#iPc1z^azL@#;on`?(Y3k0PfX(k_SA#@C3sX z1y2$@A$Ux`4-4i3Bxsx={uTBKFg2YRVIi>R5bZ~t>um2#Ula|aQHzs}=i)9eFd?%5 zxg!|7@F@wJ1NJn5ii;OT{H+-SbZQ1LVj{3X2655M5ZKCuC;KxY07?^2L1jck^mHIy zGnxqobrwv@oGcg`5P!^hgFNE$)e&kI9G%3-Mtgp9Vk>cmN~?tk|_V z0E}n|;sQ9Bsl(ax{|xL~7})@a6es9D5?7i{Tu3C|o|drv(H{k1apfa(E;KaS2gqI# za_3{QOBS$`4C+F}H5YVA2!;kVVb%`V05suCsFFbm;8`u97}%73C8hf%ax$O-)h>1D($=1ojHB$g21Yg4brLf&ACf2_&od z_vW%+d-DM`iGKaMIc2!-ANRZ zE5aC96b)M&{6VA9_GiXMMlrM_z%=3$0M2H31Ev5W2>+mcBSAOyiw*={C5J=&B}|6o zFtm?@38J4CfysZ6up!`UTM~stFN_x^G(8$WAs~lHq{HY#?aZI64zH&j1h&_LU=q zND0Ds7iy8fzlOq2ov;j40MbRF!ayf5VIL&>Qx@tB_IyGPKoiDPS5q=8+K=VW42gt( zq11YjeBEb}oRob@l@nnMP4a~=l1xb?v+3{y{=J`WVQcRQb%kyZWTJIg6!?fx1;|ib zG(ErvOJ!-1L4RZR2SVOps58Fp7pEF*Rep4)J>J1F;M5^QSwprxyUno~mw}H+d`yvp z>0x0EattG45)c-GwGs`MZV|AFhh2N9JQ*h*LxyA_*@B~>0af^Hz^)ZO;xL%mA>jH! z6NNRZFR~+}WVEM=iMF+&zQObHPbZVH-6+;fIu3^^yg&zZAQuL#t`Q7u*Am({9vBjV zx`)ITJ!s^@<|EAJOeZ5@6w9s$z_5S$XtCP^BoZ{D51VMnXVSqk5W!*(yP?2Hm?*$;wJ|zj{8@nlByECVc`?7(fankT!1j_sJz;lQs2AfEP1BfG|y5S{a!;k>qS4{*1 zdo~d}0~hsn38u`W_CkwdcIm)PTCgV)TUukA*6=2RiPQzuB206{iooR*&^P3m!g~d= zZGaCO8c8}|M_-b#6CEfw4+ub08ua>~%K#>TEvFn=IT-|46s8%|BN)*^!I)@bk!hTL zs#;`d6Qtn63IX~XDaWvT78_o@YZ?%&kcMOfgFKtY3`Ij05(3a*5hkOxh(C&>#wHwi z$6jEIdLRo#1!s1Gbi9|*nuHG1AU-{z@4>Lbriv{p5q3z&KIKq^z>bDU*JOTnFiUU=IGJF`{ zT>fE_ymMWs;*^o-MOaeM3glNHZ3$JAqJdIGBqy*_$S&Z!g$0KN?D7u@#FS|=(yT!v zjf$lxj2=PJq3G*SDSAjv@ESdWYD6*WeWlFc#wSCO!tsr;p)*{WXd;8SFfHm>${3W+ zCpoG&9gor>TbNUp^C%Ik!6QK8Th1c}mE{rUT@HtFJgSxTr~K>~tt{uZ)ce`gFr!zC zN|$8TmFL&nf8S?ulJCvz@q$8Wk36&kjnygymaNG&dM!}8aOtAL=8L|2j(kjdm98qb zL*@R5743)iWL9TinIWq$m3t`LdZU)()laJ|&dY3e*L3=ru9+0)e&}7|MWL@cdHHxqJO#;Zl;jT- zMQFxx%KWkvnItLO=HO0^JI6LZu&Gxji#zIOZ`fH!8HWHy^2_i`RmNopXQX!@5C{;J zNZg-DKXtX%fg*;oC3$#$@e5G+;14!F#)+W>IQ)cX7{vquDDvx4s1)ry%{+}%HMC+g z(FXkm_GQu;u=Iu%5!$y237~ahgU6qy1#c7w^evg+hGIpr7{(7jNt7uR<6%M?!(eO* z^76=NqOw>}SWHX|cVQq5u=N8=8&;AGRtU225eEf~ZNB7W(&Fc%A{=JPj7p^pJC-bT zvrVYFdePFr)(ao%rYQbuYpZd%Z(($#jFKpOYwn6&3$GbSY=3PVSP;JKlw_Sv&l<0J ztRKY>$LfqRI*_F&wSUW{i<6l!!^K%9c(@v5#iU5*8e4ZXh5av7~;x$FCS73sBrbW z7scc6_z*f3`Uv^LQ@YZYgp2qU*By!-T-p;_Ak8?VX7`qazu2P@d{Hs|`j zFv#M0c0+&Tv$H|f;W3_5*5}^eAib%4hMxF&Y}Wx>Y*vd4Y5US$xT8*2OemXd3hFz@+)0YNZZVJ#m?k#kdWPx zdqQ8x(~>gtF0Cr)zEUtcvvZ$z@f)#cTbN?eqm$+@;hDWtF+9Hh%M2rBxvl?ntT;PG zKdQx0Qa|os$;l1N!zL9rzTcr=ajr=%-)5(`&W|@+6E%zxKi&g=tYGsaufgqpRQ^Zi zDVPhX6p9YjSVu=spP~;usDoaO*sqkS+&nm%B8_-WSaKwX*CykWp%i5l&V(Y)w8)SE z7Z>}#nFXsCeRr!?cvySl(ASczg6{lg5hov~{U(pZeoRxFU~ySo?fj3qX3W-#x6gK- zH1DvTRTI(U=ss$Vch|4>Hlauq{)Z*GBrY%34UEe3-PFGnSow7~ug0GbJiIT;wtL<33p*xnofoe;e_Oe?`;G*YILSkw3uL`D zJjJfhGkF)Rds%hd^4m^p*nIYol6?O+d=?rqZK3RpnNQdA(v5%WPe@&oDMR7nvq5J? z)F1e)C`1_sb0IGe>EBL-K~X_i95Xf%>T$S=hlgL4GLbTY^G@MOm1T1o1J1|gngja{ zSV_s^DOe`=j7fBk0rgbDMu@J;ggVNkqFd;O=LM;g3U zx)n7~ZIv{9#dh%*2H$DeO)$dRs3ibUrweZECy^}`d7+-IK6SZ8P9zdOuf z(khjA-r+sFmKmuw8XP!eynDCb#nO2mllRZ(@!jJWR8U#%r`*vJX5D(?Zqh;}$vc|U zqa5EJUh7k0wEc1Mjl(Gld%o(;@r=FuGWtpRgLc-ljqmS}JsI1(H-F!_SXMYeZ1SF~ z4Xgd)>)UVm1Xrv#Js)*OnrR}lqDZ89_SWt7?(g^U%&BI$>n%7ibMlO@j`HbC8YVh? zVfU+( z)zO9j>l^DEdr|DT`CF1Af%CVp4R)>tVs5GmMH%O9`QAh@^F+Y9p;xCS+vxmJ<=w8% zA2YAsDbr+F!Scp>C)@J$>7T|#%B5K^ZCropQ~HhZtzJE}5v4ko>3LBiE{<~xZ!GuQ z-1^Sb=kjxbq)`_aY?@x~ZEMuw@@+zMcjg=Ei#I!5Ms&>lvD397@oZiwV^!rXCq-2X zpV=cJ)|{|qzf7j?H5|6CVwME|yTl0%&7D7}i@G=6^KI9fd3eU1Yi}F`( z8pWD1G{x(=`%L{cQuIUUDK%p*Su1^a*?jh8(oFHo>hDiyktM2)w~F)Uwb9}>tE_c! zj(&0SgV0r}A2*a19(TBD&6kzMx3uzTL;PVY-J7RP7nL@2sHj{Rp`V_c+dWbuHeJE+ z(&2T?5H_>7P?BH$nS1+Y*_ls=$&4-k8hm2$m*kUY{Nzr1C2J257Frx;1m;wtkSPkB zcVNy@Y~~EoV#S902OvEc6W0BOgFX@%iu_uX$rSZG)x3$R6SzL~>r;@q|Fyn zrLeFg`ZK~d44?MTn}Fd;BUcXFd4V?AzUzvEUv!vewfK%29&FHH za{qQMBkMpOe`1F8{QAE)ZVt3K7xi{eEf%g%~AiXx7aHGBpQ!nDCLL8r3i zhlr%GMK3W_7?3#fF};A~zHBmv`%fBq0sk4L1KHEuUr%J_oQSPcd-44B=A@%XUV5+7 zP|FE;mOuZ)k>LX2k5#p9`0euRDM@=Y>YdTM@wt`e8a&SNX)$-@*H@n|OFOY}cnj;b zgxTKPwO9QzG@I6o>~XrYlF?Uw^8t5)Z1kuM55HC^=Hw@znC?F(b?MMk!*uN-xC z*tMMJ53lOR#oYh?zU))5FzoZKVuqvWZeCvTmnY_|WG-TsXmL=)#9 z8y45T^6k4izTyQbrar%UuD z`<94QlhCXvf8B~;S!&yojK$}E>{vHnJ$3Kw4NoS?8RNoZIgbs9S&Ko~mya?N+8FrI zf?`gY&Q^sDDf%2a01MULMK9_Ze96lQj|c(dB);|~EK-qyg}8uDPDcsK{K?6bW%;p% zG5GL>SIXOw4o~UUcm5FWCPPdCNZ#!VXqWR0=1SN+MF zWE;IdssuTS*})QK=Y5#(=N>=m->##?%)Bfka7Ji3wd8ASovg8hw$>w?o;lPA@6ScT z@3hZ+p?T8Xd9Nq^s*cogP5=40cq_BcQFLONmOmx2LCSmK1Lq~1sOpYV-XyfY%H+%K%WIczy(^n{ zC|CBT-63(lZ(DUIrdsD{=ba9Vs7d23jp&Nokv+3DhnhG>%2)LLdb0A=M_Ch3zD){S z?Y@KD${4LOQ|AzSoxPlA9JJJ!f1?x})cN3brLlpseS^o`iT+=idt7~94k8su0~Ce- z;w1lX^$UB%q-1`unNiG#3Hzqn@}z#Z;t@2U{C8L9F#a)3f@XGTycpk^%}>&Q6kHQn z^hVw@OaDSws6e62WjAZXsIg-|nNEIfIHq*d9kG#@&PfSs=w0_N$*6YA9rJ^?WXA?- zSE1$Q=%-H=Ra^@w_6HyLTul2$ohWNlY)>8|S6ytHEi5zb&V@bmM`)=f9?PvZ*BN~^ zx7hexW_Cl1<%`YRH_Z#1G1l`+e6ZxcEyJT)&7=zNJ-8CDTOj5YvR$r=G0H~%nSyteh~?G1j5#8tdxx$qD?GV)J)$0%@d}oEY6}9>CA70xJO$6}o>E6^C87 zJ@lBbFxl<$z1Pb+5@q;)-CE=IYTe$au3B~cmGiT=XKWBF7pMC?%DHcuP`UHOo0)4x zhFS2R>DcmO;#V3^W*}9mN>9&c`t(d~OP?pzQYZO#rp_8!@GCEgcSY4*#SrKFxdCEV zRP<5*!ELs z@7lGG_pbY-;Q!<}kM^>|?p0H5_pS&YzgN3u@AS44qCdW*+;%A+$#nD;opCDr(3mv$ z2mJ3>om;xfp3)&)9xes|mPW>uT$==5Q%p;hdVT+Cw#8+wZ?J%iTSi z^tH}}ob==<0RLK4RBdnnao1W%@5~MBWqAqS?JtC`dHz2oDhfOlE?ejvJgEK8lG3-u zu4XoxOP6Fgef=JI@V+DKzU9ZmBDLPuk~b73d}J(*u-YV( zQt{sI)5Vb;hxt8MtP-0%C9BG7)V6qj{rG~-xvX z5&J%_U}lt?qugAx$Y_;4x>~1a?Vj(FGlKFw!-qEcaP7w^T1^;J48XdG{qv%jaTnjWnwVwf>0o8yYUe`j(=IIR z&0Soe{NB93u`XUd+heKBU-waaO6q=nkL26WbM7Cln`EW>D^63;Cvtjb~;-FHr?DLnD^%`sQEx_77CP0XCV7FbUzh^J@@ zO2D#u8L)2(FI+KXeEj_YV#;Ckw7GdH&Uxh6uePKZOD|hdi)3q)sH@0Ut3o$}luY zefLLWOb1im`>#*>tR*A~^Ji0Xr(8R=>%8v9eaW>=i7i{X6swmk&1cs}s){x|JzjV< z_SCvFuPN!oi4!^Hkd;y>tw(X!)$1?vK4~Qc*>ykJba0vZh$TFyso%DBQ)Oec164Mi z3YUpW{#02UbXm$Oj_0;y+K(3*O5-XNM5~LI!p)0c4ZY151Z`S(AcS|c?3dX_7wlAr zM|f@9GwE@q&w9)48|Yi>k87RZ*eaJR#E zuln@SiD4@o?vAUAK%)ldPlXd&S1-Ug9a|wY)L5lImcyMLMG8)#A1b z8%E?W=`bQ?YS0s6CHI+TN2lCOd;SoxSO5TD_3 z;<{zQCVP3;4YMigbtNs zr=U>vb@g-%{(n2g{|OSW1?;_pt4p zmLNYS_pVQt5DERyuTPN264@--b`1QL5=hW8{%pq(k(9Dzgwr5$(hYX2K{y$N`++@! z+P8e^HFH?H{VPkyGxJSxkG{R4TAX~#Gj`q$|F>P?1rHatYUV_D-rMe7q4%s_{z`Z~ zf7+vn6Qw8GD8**?=XYInIbWxg%kLnuXY)O)1akq8M*F9ot#d1Ute+f`6w00a>f7>W zL5&?F*XrfpxR~FV9GOZQHeK^=!Zy|7v8ro~hu>{!vno7#S|Vt}-1zkkAB^VZKYzL6 zVihyfF}qd%Lel<#-KH!2Ri#l-w(*wR+65$`ykc5a!^>I)C9YiydQs5evS@Vnyl zeYVkaH;+40nZr}o!KY+e*X&Fg5mZ*0`BT%LvaVw7ZvMk#vspLQrxzdL_HUJ{Hb$Ls(MEHJBCyTPLv)N^otUtw#P- zaC)PXL?jit!-`PQIz*DP$d)0CLs0ZKbv&kVf>l(OT@Y-n2@i=5hp9L1;pZD?pe*d^`|6YGA!5(P`EyjgO>#68fz40j)zmmfrNw`2w)3cSS(c$i`0X9 z%itgME(ei|=WkYQ2lLvxlRWFTR~O#Q&G%#t7q=1}F*zdmQ<%4Hu$`yj4-wrl7h;yx zifeAxlW%@Ed-z`YJEyK>8Ss{-*G=#lR#|JgX;TKTALE_ZQ;7`KoOvl5#N$R(L4mTJ>le{S6wHZlEx)7WJEF`x z_u1(mbG$_kXCHf`^@jho->L?UngJ_mjF&ZsEyx>v!(9P82hQOOfB00xqOH-8^b4w#SVf zF-a)e6&o1r;f;@O3-clTD=GWzub8Tr=e($0FLF#J<{~XU-QTOOK-#RXd%^S)i?{xx zHA1&W?HIoAX`P$2R$MIA$A62{g z^7F6vfBPp{VE@Jv#nPNg!O>r?T`sX7`M~YTB65_`{iw_L*M}ZnlaUvuCPHiMvxCeA zd7_WY6A^xt%wy@$WD2s#%&>>v=Cn@_J57I&$VhE78y+I^}Vo-t6*9Eb6mzFp7*cb zvwXXku3uPsdGyPT0XlUDNe_34m3?RpU7dP$W6;B>2lH)sr>-}A?JP>&=cEulcC3B2nqq%OaB2dzYJjV^&(K+E-4x7C-X6cmPSf zP@p!CdDc9P>TUb#==(C|cXMaoO7xq#yJUBv=gLbenR|Nn4Bt6SJbZn!Xn@%Q7AdDu zi=OQ&PKwN~dHzAqr+$0&h|2rQo>o74=EkMAZt_+7RD8R6uJzZgm&OW3`5ZhFkg`7A zNIrk>hVhQP5fzQJpt|ofR*4CJyTTu?UZnkT#_nfN3tS#&D}WSZXW47F_q}iKW|T-;BFVM(OLg#DW|rc|8)A>&MLFp9M;gZF@MMo&4>X#der@NdX zCX7vAm~Kh`{Luc6hx}TH%FX$8AA_`w$gj12ZJE<{x_;WmNE^ER4i>Y-S9IQs+pNWn zhaFxt8Sb{yUaf4ps+!VFHA?7s>U_1`gEVvO{cWlp1 zv!j;#OjnIr@aFq?8Bdo!x#9?N#jtn1!|2yo|G9WBaM*&~L)So`;J3wJ|090eKRaVy zo?R-OT5vNoe40jn)*-tIvmeBi>BS1|-mz;(gUzUo)0Vy+lX~>E<20XdxAw;5cqIV1AZSf_I~t_RNi+u zx&3xTT9C{8QH5&JtM`6(pSEj7cGhR%#JU!X2+9&aB~Q;&izZp^7Yn>RcY2r3XbtLm z>%6WIsf65}UN7G1I*9K%{vpP{zG_Fu(`T_cadoW?PjhOkN{i;#N|*?qVPqBZDBEmS zEQsmy*m$}6R>jSKWM`Bv{kDVt_TH4M9}ZrM%00tU z&Ew^Z^A+eEkueiQhBX({3>u2rCok?WzHRAPIh{F`lBoP><&td$30?_*wVFXH8BEB) z&=ie4wY*8GoWSNFDi+o?RCJa$hyOtyKoAhn$`(T)4L?&DqG^GQk1Te{aU#>dWVd{Q*_d}(); zo#(t0F@lzLSwHMZ>5O3xJdtA#YD-kUXcp5>os|(^Rkl~FBDqXV-lZzS%Zz?qk}og??$jfAh$fF9i~J$S#t4h60lbw6RA|ZbpNbRJfoKpz2mpcq_1RJI*Z+uI`LilgHmTFG{%fi9^!3+o+|Q5?{kiOs z>v#vg`m48?&eEr@Ecf<^P5Cu}$@mkxCb^ zkvS+VI7=&XLFll(p(bI61x8&wCZTfQG)t{*MVPyM{qB#o?|A4rcYQb|+!7}3t-pc!w0`#ZIy2>Y>synkG6#a^c8r|j`UZ@2 zwGPP(-Y}d)9M0~M37_$0&aXxhx2f5Vto0)qa>}2s)I5Av{@(ckN3OVnTygq0az$e1 zEtc^;?+~GRr>C6@$l13>es1|+$(4V(`GPC*^S>4m{+|^v>bQUb(N+knPlDR*1{+V2 zhCUlf7#&R=eZ78cgGrdFP1C%_?lM$=X?@dRi|o|+Pbrt&Q)A3>_1i|ZEs^b3Ds0G} zwIsQDcIwMau^BJRp5)#CRrLL6Y}VG>RbexBZ`{;4UsP9C<%-5;m&T?d(L|e`Wpk*O z3%;o<=BvZ~{=8||Hk*B^%N}MoeQR1A6;Pj9o+6`KuVP7Ay1f42(N~qPq{AMc zoG^)3ooCd_)6_H%o2Zwk?gZ?q((%+%n`QOMJKauedCp~7Y0Fz$0X)*dMx9?f1NlVf zj?FzsGAnMgon+sbv_P{=T{^Bj@Vh=p7?3aiAYW$nUk{m*i4FEYx*qcV>-CTUMGv1~ zGzrTtZj&zB35Ero{F^mW(bL+I$6x3eKebcZCmHh3svn|1h<~z2R!b`(Zf?)$_(UFPn2a z%2;UUfp-s5C8e{94XRuNM|yqEW38mVJQg6e@Yn8L>n5D3Sm`XiE4H=mMC-Iu9f?Wh z4>#!3PmL}*bUb@!-qOT~?&*gTE{ydw*z(9wXV$Fw`n>+@9`C*B*IKJpmvNcULs zE~ULpP4exotA>wcvzuimEK-?uu_->?c{uM+PYwQvtAfdO#~(d<{IWJ_pPS&Yge^jb zxsQ!b`sro*2}bc4)iWtC-fdVk(XZ0IogvM5tJ{RwZb$h9!t zm3pc>$j6RmJqZ^PKR@-l&)fMAvZwW2EdQHhGhJw*&w~24eKTf-T zaI2%|On1#$iN)1v-S@Mnd}(TXot|E{hVPn}vSQ)SQ*XPqa*G$ThL``imv_Q)`2ovJ zEhjDa^A`1){A=DwX!(>(kA0@lJ)J^YpS5=6@SGLv$AX-rxhV$GDu)CCC{^W)Llceey5If%IRJHq|4;rYrxmtTu9Y zF1c!?%k-s{4i~cRuG-vF{>Z1dGODJ4SIc^yNaB^WT*ozS-?xXYovZ)&+~?zOyI;Ds z%(Q+esdUxg-nR4mUT(4Y=d);eb7%AGtu_9(OP0ACgvgB<=XJX-@xu1HWzUmF7010z zd+T0*Ran?$l-(}BF>xa%d^3Dk!rB-wpuBC=i5u_Ko)t>*mhtSa+q2ywAg$s1(w>)J z6q{CG3T*Daqm27UyPO@^eAfoB0|Q$3Fdc zq|KHF+NTP688sLA%G$&!D@bO|atZ(MNgHeR)&&*CJidlhiPS|=C#~&j#ASN4{gg)^ zP+awW`G>2|MoxYf5WTKRmbrJW$(kz%cgHw=`?#a9F>k$;dx5&o`=#OH&8IVt2(4N? z(*D@PIcFqzKhJwAU(r5yi&)*T${#P3S5Jt%d!{W`ZZ9oz#p=VuE|Kf={cnX8JL)_r zPLQ>V7Ep_MHp46+AoZ;J;^9=rxCtFwZ>{Y4JYJ~t^4CwdJU`rbn<}Kr7j(L<^V0?y zo8qA6@+8|gGZyP*%?+6_a>e~T&5|$ev8(M=qvXuHZmws0gxE3t ze3B#ZWVSyWX87M9U9t7mO7F#XiP{47mk!p{6y1H2-TXjrkGAM%rHSYARt$I>HM(WNr%sjvkP_BORMs1`51a}lKEPVz;U-43$n7u=*=>}mwm5V;LxsD z4?c(kG&1Vqg(s_DXZ^aev6yGIn{c+y5t8!z4RXF! zAI_Lu6Z79W!t#pqbCoUUJ~(YoU*;xtw3IeZUU03+LkJ9#Rp$^=_)-?!R$PdTxDEd8B2s;CqRez5WsLg*yNVZkRU-fuBv zOgK?v@2(YR^sLOL{kTVQ993qT&$ILEW3H9wp#GtLyJwa|z+942Qe#-nW|;@>6IZn} z^&Velx=k{@yXC8vO6G1;-K@Q{nzXxB614?sU5ph`_VzAJa$(%fIdj~S(~g8I8ceRy zIGVQge2?V;+c^pKpDhE_>lf|qmecMWlc9G^`P@bOx#QMZzTQ7S=jqO$eATBXSY&A0 zSU&z*pIvjT^U=o-YV$%yb=_9pB6e>3h|jTBE`~X7+OOTkBfqw$i`u2vTC}q)fAJ^YiHuk zTyL+LmCwAx|E7^C_m4!J_NN26+p|52C%=vH(bigZ_*Cf27cZvYpVqj=@|nb3e`oEE ziAyeuk!K5621iP#8nu=#PCFpG-cetnZta!FOQ%`Z8LT~Tc*4_rRp*;eb(d5t#yzRs z!n_@qzn6UC)ZyASD*E_f-=@7o<>;J9$9sJiO;_Wd3s!)}ZdteRQ5J)Xz}tkx#yh@Y8BQE zrQgVOuAX$8G^ObZcki(hlhqR1pn zUQ$ z;Tzi`-CxxB6U-+NAi|DL5k}D|bg~VDY)K0Uh$Y*=eGZXq)qs7ZjtCs7!^!4E_;bg; z^d10!1?B32Lz@aA1Mm+F$RKp|bt&vuO7aSBD%dV_AxS}VW=I?(g2vf9EGQ}L;?IbR zVgy>DZ$$QFD{ zvh#SOv_f*vC9(z2l$1}+EA4hpdiynHtV3SOa)cwP1s=>AU#}H3{8EG+YWd`i0C<5unLg zCa;}bWU)p0*+G-!oRMmm6S^vry6Fb(_SKSu!P3 zeR{;v*W1&05_i^hK6VNB%{@1{#pA#!AL}1CE{^4!I{cj-bzX?|@kSet$QlhIOLAZc zN`HCP=h!mISt%$Uq*9rmi2=e(&kHi|dnEKAeBX=_E>?IZ*r(K(t-}7|e!n&6r zb=cl0P@jH(rU)Yd4N}ZU4oVlMEP<*-0aYnax!19cImQW)K>@vf@xMDL2-%y^z5|w4 z5TO{NQ+^OJ>oJxM&(Z$XHlr_@z9ftinsm|4c8D-NQ4?GV|r$kVz$8D$7htb*?{6 z`K4~8rd#+l=-A4h{4}z>Q+mx4^{+Gd4DFlKp4~e<;q%d|XSFBZH*Q@}YUfIxx=B{F zTHaaKt}y)haSxFz_3s}R%j>LDjU4f!XV2&zDPk4wk;lE>DCVWQocWmWD@3HxwyN|W zks4vwiwEaR1sR52-K|X(GTa}*SX;jBh5P&o$%nJDwx=8lJ7{Ph*iOroAip|G*%?=; zHvGtQJ)eLWS+hCM)>8Hy#=KP6dTTw%p%}LQGi=AW(q%Wtbr;2bX}Yq@%#bLQ(0Yr; zEe`tDD3)-HG!in{(If1b8xcuybbwO;WTEas!+;Qz+xrD>i@^>QK+$HHA_R($5u9p( zizEn}>wBfx{uK#*AvV2u*ryBjM)Un~$#lm3)%c=&+k6d|uFIz_OMW4DAv)k;rjy7k z1Iq~!lsntvCUsp{SiCTDxKSBdxP~r1GwmSt^OKFA{qyH1`Fkd9RF-f4xOk?M{+0Sg zMr9w`nr9T>HJTVp=~UWu`SG6V=1VrzH_TfalK6dtw8^dfyt7@$j*ZE$*SLM-T55;|_I$hcvH3AwTgB*ocQZNAV~gIHJJL7C-NCCGq<{h zaZ*fft=(C*&!@d|k|!EYU_7uL6{h9+WxMQ|hhKwVJhS466)$Khx4+PYQvY5u5XS^1 z9+wPJ6eh(m4+7UxseQ{RU9RDy&FM^h%%FLLy{H=Sq26D9I1M2u^MeZlBouy9AVltP zBpjHu<^MnS-a4R)MT;7zTS5@&knTgLbax{N(%mg69fE*>paKHYAYDp>(kLJ$oeF}q zw1DuNLkOt%Uhj+Vd++{du{N+oTjwTA2*YTqRKgf6k$KYx!~Bk zGWwqA@=LZ#I<2IPi@s{mkycWqvCGEnd#8?Z3R&$`9DxZft)OMqUH6LZ@F-@X^?;H|Rhm+?cETS{) z9UU3<-p6%UT$2koQYh962p*c^%xu8HtVC2yLrjnHyudw#s@&jPo(x&w3|ZV5$X(l7 zy!vHV>0tA3b*8)k- z@Ql#~sBj+%0Kxh_J41ceU$#d6Jyg1|O>kUz#_+s)jWg@V7OPf4i0dNUyHEwJKnI@n zDZD|V!03Z?lXa4Af;2%IAT?}6pb^;An90=K1gts&!NbAQp+ZC9!C-~Y^x_5PhCQ%s zc;{`=Cy7IU2bU2SpgRBDF@(RPb-nB=TF zn=C|x^K+$i_1D(b2b(I_KF6fw#(CNil|0}T`xy9$dDvQZk4@40aR>RD-~^1o2jfn* zYx-B_P3(+%zSyk4!O^r368H2S$1SvDRyV(d@`*6P{>EtgxWVR>J37>$`zY_OMoru2 zaB))ZXG+Gh4|r;+h3p8yzy#n@G=NKYPjCtHTk3+%8|T&_kq`%&chwjA8o>FY{{X%u zcM+KWfU=!lEn z7uhwU@a|j2Ns(JM=|Xa}!HD6wYE;0P@NHMfzo4Zc^Z?IM?j7rsh?K|oRQ%{FGMptD z2-P|73^TLf4dmv)ZDi}nlu3w>(MB~yFuHkruVBJhVDY|q`mnYh-dKKrc>mBne^lF3 zjTvQ*8$NBImZ=xnqNiv=_dvr*g_qrXEdPOMOvy9U-r>oC4NICF(M*{e{?-p=d>V!w zLoPp&jDQhy#v9{ge)4dxL-i8x^lJg`Ta4xF+MehS0)-&L#7ra#lZ`u*vS|?I*PkrR zG3KB-WP(t4TQMYwS8qcX~Q+QM(YC;6nD)w&H6e)(|I+cIpdwPEQ}zM~KGT;hE7{5^MtZyhemJX-+-so4(D64k~s%te8$ z)*DB-Y8JS}D8#mMH(imij^}IdYXp=}OGNi?P)wJ*<}ui8Dvy;qh37~yCh$hFQ4`

      20$n7}sW52XHA4z$M=kTtX%+dXBp$%O}78!remNs_q9g{Ws^a!IDHEhjbdg zffrd$t6cwh1|1l32p(K+biPRcy>;R@vP6l^q#cacyQ*mA((Vvv;nhQD9Eup+tc&b6 zQGV_dVa6PYT}2ph;qerKvXyHy25t|o=?2`r z#?D0+=FOMe&ai)DjlIs~=E7_89XoF)mapRDEV$mGWwUt6*+wy8Z#q#&Ew?{JAXyQl zZ$z*t&wPOpW{#8;4$ji?G7Mub?w8aS6T8;dq=e*vBTD(4M^CPyLNL)Xt5Z3~TJwr#RD9uSx9(?4<_VERj0%}UvC z(zm?gs7JW5?&sX(Fc@}w!+1XQ{l|3F=XnbslgaX<$_AaCr8VEKC5{Nz$p;@i5~g9h zvoU6I$w{{b1CwzK!>0M;&60N+VKdvNcPdLt%tjoMTyAn*o6wI=5gFh3t9JDHAR7!6YkO*R3S#`3Jkuu-ylVehWwTL8s33U?;MV9f^O+6lIG`9 zm((0B5Zw<`V(SL0B1b{o`P4F7O|Il~{mq$4@@pBf&K+YKV@MJY-&U1L?vk#WlOE2X zWTO<#kHHe)KIo=(GlRO-&h?3=(RCA-;D|RR0r(Vjj8D+qSpMfB2~3sDF7lKU`&uMS z0$^H~gNeB@FmOlJ*wDMSLv-BEze=B?+s>t@{Gs&R@w+|_0(E92)4H7R0-dtyA3>Mi=Hh(&PAMYC`Nqni4 zD+`VKw~EEkv1_{yqg47&mbbM07j1AWg6T*7Z@zchv(#-0PDfV`7FXLScP9AcHLaR2 zv!mvq0foDB)n0Rfh#KChDM7N zG5SvLD18MD*NYu2a4*Ha=|gpH=iCbkey#b%z)QD8*BG>uStjSAMdWge?bY04_1OC* zt6pgxHKQ!dcO&0T>SF9zW=m;z$3}Ojd^Eg?=<-6{U`ob`@Npky9|DYKR}3oZr}6!U zMdFC>(jyuG+9-Yw$bLkFv+(FH3JY=O5Xh_1!z|SxE4ecV{wCFhC%jI#th;lJIB?^p zTJGoodOhm%pjkjgc9sA?GTuF12J{0&Cs=g^nZV?;<69T#nE=KN0ukR)a1R8BM_pb? zKvPH{)w$sC=k*F>-%LsH-6VY>6&3;;Idi zRn4^lq#({MkA+yF6{@$PdX}<~p2mvE3gwUD;%wNyIr6Z6iG05<&)_t-(i_441>Cy<`R!EPk)*fs;6_M|pI15XT7*JL(Mq76D7Z6A$sfEhzZ42jE}Zg}zGU zL5nM{?Clx7ve*Su)da~2D&-5?+xLX2IQkrvPc}Yodf-|ArOZ(JT_%x0)@-Lr(k{bx z|EEqnjEvW~A(~F;*NABt zA}G(dg;FcS$`pHhrb}b~PMZFx>*IDNVbjW7+bUX|n5M}5RarO67?%#qZeci9xQZ#8 zisv_ulKTX^AiYVpGI50Q&EB-L(#4O1a1-zMa;LlsddDq8?=%!F>Vn?2v>j3v4C^e1 ze5qvkbKMsU4_b^7qGzEW8{y2S2!q79yKU44v&){^&Tow8Ud4E*Bly(sPTYs>=cl}j z2LLAy(BJjs{1wrX0uv+>7-0|~#D;@2^+ADzf;`G!pTN>jLhSQY>7s(*k2}=Py33eO zZ&g4*z#ws)usVWJ3K;PHezH?&$nXDx`blekhPdl5)KMA{3rpV-XMY_dQ(twROa6KR zaU0#--cCXVYWrH5v zmRzZcFHG88HQ7JVq?~eFX)V(;$_kN~XPWej9TvhJXsU(XU5mh2MLM(^g)JR~vrV%N zt0kdR9r>Cf<`+klP8!Tkc$Y-`>NglhvBBcz9pTu0RRnn%Z(VNA%181UoJfgLx9;8i z9MPZk(ikC3UuwaRD7*SoPDNzuLVT+GaCGO^KArrCuvT zK#O@Zz;E}m75Pg@ywXlHx>b*gfIl(I(hdovok}X*W?~%`! zeGV;txNxBVCfkX>Qbhe=c6^rDI#%AD5JaGX5sbXhm{*QJCb=Mo`s=3I#yt zB)?Y~9=gU1->AwRQFoA^_o-8w$C$En8{O#iwT+4H4xfzZUs98akr_bOWP`$=Rbp0Z zc4L4q~2=owV)Q;8*3m{9_6 zs%~l4q|gOOiDZ@tqdSe0{%tIu$JmJPo0+cXp&KqN-;XPz#iw*irY#IVP>vCQ@-9`K zz}6=ANf;&S^Tm1S}vozB?NA2qK!oo`8P#oui!Bsn@;a=KE1!dQPKvyTU zPJ2A7YZrj)uOyeJsj6hgX#S_z8#nN5U+=#56p1Qs*bZL6G|(Aq*Tvj zi5~_Vpa;<2Bii{;a1aF*^=9p}IJ9LlUhexWqV|=1F=vjs*<1{wbf>1fjLrCJk6r+&2Zn+{BqwwrEvc% zevkrmDTVv(aYhfCZssH40&uGcz^&L5+=7{!O&ir-Tep5iCtR*`<=Kz8Wp$BeojvQ{ zv(?~{Cx4!D~1x?+}*1qT|tcpX}?5?3OMFrMf4w3dtT3?U=GfB$Gx zu%MN2NiJSjqbyL-EOzt$a8C;?an_Tz(X=98e}?9~^!OHB-;4mXTcS5;Im5rPe?dl| zV$s^H3Q0_>QR<@lFvcs)nhHzZSVi3)mrF->>2~v-Pq*yLr1=r{e9Ew~lM~1;%gqct zM96hci?8gsT1+I$ZtSH(!QD-O6laK!`_Rb@iL<_5S@JEnR?5pMo!4VYB;}+jQIxh= z(xgHyOV&@=eodCr2nKM*8<|K#6qLNWDol7{Qxjr}W>2})*%5d~22&V21d#zqDym&-LB zcrPGV5r2a@^iG`wWM2#=9s<;gp%Gof4^Q9`<-)oDC>Z*a^@R35q1n82xL>~#Q<$YF zc4DsKW{-`Pe{4v$kG=oRB{uoOGPj2`?F`-)s}D$~+|mx9B{1hV1K()cdu+fww(Qls zas8l|nL-(fpZ#74dH6j?avgz^p3miu&W+5a99TlfCJSbd&wVa zz$TC{1vJp@WjJT$GGMQGxKR}^)F&Xr&u0hpLZ*^X3u%f__xOCw-deoF>-tjAz#CRb z407cv9RK($)~BYu`iu_urp@;+Lud#R*=-WFl^)msiUHh;JHajNd;LMyA3$&cWY_C3 z>WrWKaMk{w;#)$0gnAeF*4cd36TbC#QuM|9aC zcTlLSDmwMJ1bPNBgz+Quq?W^5#;wLVZNG((@LA6~^^U$L4-)bYUgoH6d|w-;f|)&? zULJ*1yExpz*T!;#O8zA{C$32ACe~_;o=i|M)1y6 z_<>x{B<`?vCU-x{a~XVAMmgf<%^|tg#JMxXl7BZ%#iu1US(S@P!8xf)E4`{C7wRT1 z)O$>v%+6dVwac&}Pg5R=8#!=wXyNl6t`OlcxZ=1EgZcp<7xqk7DBeDF1G<; zKI7l|VSfB3{}vxSPxKors-kv3JUx4=o;s*aBGF#S_Zht|q!97DF-8klIRqB)`S>%6 zhHk*2It-cBe#s;mP@Yb6CAPOqP-73^oFbHquDA1gBxob!QCvzx3+>igA#17+lN3UA zs0p#4=G9!r%Fb|0KDT`Sa?{*)MNX~LL;A8Ixi|hy1of*9cZ->A-g(ai!E-3xsnjp9 z4kNqCminkVh1qLubGB@5rSSz7%jfMx^A@_f+A2VuGp~1fp7Q?fqx}0z0JjoPa0|ul zxoBZ1#v_u4`nn%134a=5_n*bLeweKF_t_s<+jqpb=q~cDUzQY4-5!Bw@XuT722|2u zly+h>uq9gXoCOp7s=lUoI@^nGGT)Ug2_8Rnhf!6JW&4&LWbbyOdLASixTA zfmN+3God8ill%eYLxk@=i~RWkqy8ARxo-t{idL%C7;E38*Al9{P&eM!KEMvXtTy<{ zo^5$+lwq;)9z|f-AnA0W97^ygH|5o_t%2x(K^RiI1Y6rf?MmD!vA60P)Sd*Fgfz0t z%BiY~rgv#qNXeY>@)({5vWLdIzHrPNjAoc#M@d+IEpOm?^_6`h{rH!!=+wBZr)c#* z(sh*DzbFU2-m942pOm+}F0F@T+)LWGv(t}u0lR*ebS1p(iU^zvgj#A!T4f_}dL8D{ z9*C5+Dt%wLU!e85T;5%TyiYF`%Tw^=g5Zm2NJnRfoB2p5KVnGP<+>9>roF-7(a7=8 zpcQob)=LAIkHJ#|0et zrF=~cO>Mt)tK|ASnA_o4Sa(?BTOcyD8($==g=wjqrCqbj=JT;1O2`u9-I&=*Q5tKx zV=!ln;H+-9KEW>zwnUt^cuMn^ z>Wo%1dG;(n@vi*eA}iqc*HK#jFU?_pvRCE$U3*n z&dDagi{E7vBENM$XQMYx$rqsEV(0kX9^q6&y1q&suKdDx6|!6tBpzSrBjtnaL97c)eRqG@M^*ppHasQa-S&G*ULXPaC8yiX)ema<@iZpC#h* zSN407dWAL-rlOExvu&3Q%^VzZ4EX}fi9PayC^9XAX!bOlZ`?ls zSoI}oH11KeWV5b*s*IVKsh5v;s=F^)zlOi+DkuaGQ_S;TwvpyJhM)kH_-f?)9v{Cz z%o64$@tmxCF3)2rn8iUoDBB$g#;YXAq9a~##tWgpXn0*7qBOA@d$`3 ze;&C37D62VsgEE?_1M_;EKUDo<@0xS5NyCK_p_WmT^xHpBn}s7%FZ2j62m36vnB%T z0+!`jWk>79FHIlr@*_FX8A5Nr)Vv@$I!%2!WvI^;L_Nmcqx^cQP&B>cv%4g;6QmWU zec7aMM63bX$Nt!Y)fS?}EF992(r5uTb^KU0rU$EHtSn^?uQ6}3^=|6TFyeG;H(9*S zzNd&nkYGf2h(G$CQ6G7>;$@^t;1D!z_w_r{!*uXKTZ5kP^GG~YM!s&3bWAL$-Q|$5 zm#yXe>OLBztEHJTIs&^+_u}?!I;^|%p=)M__AoXg_-*)G;Bnm zdCd(qM|rIs-;L@Wc1izwGl#dxVpH_$SVY)Pv$DAQf|EpT#yW1kz3i*0*}iv6eQ?yY z7<`pOLN*YyKAch0!v@WSrnZKqSb;+s2CGLrtQp9CF`eKT`xEAS>-TuzSv)&$pgi>) zK96Jn)3txMsQ#a>{r{-0Jrcmbu%BfV|M9x^qjqQtupa{);_>uCVHn7>fED4aLV5Nt zsQ*?qJQ_v5fGo<3`hf$vem`niA!9uVWLHUh-vh4^EmV^Bo_UFCBVm0}HYbpe z59NL7ZBZRhHt(!*zYmB5)?{PBOVkK8hFTaJ2#txuAIzu=#uWJ$eMtu)>eWOQ?S%6D zuDVqstkaDzu@QjHRL`7xeB!k-5)u&V1nqk$M) zN(B0vfi}YPZO-2pK|ZAy>D6y4zD|r$f7#{?z6p=0<>@@`KkZNjk3~9WiL~FlqEDpv zXB|n#7bPBl-4|Uk`4+vez@?@y%3uLxRPKXd)c`YOaPH(af!4Tk)_$WZT79=YvKQQw!)0y!8{@G#cMAZU}(*bR_oUu&Wz59}6ix zz>rbhp|0%;tz89i5v>0{fskR@=wuKlO=>YM# zDd@^d>=3TptZz)v<1H!{i5yI0m7g!^r&7qHxS!s<@xCh~-wD=8Bj|;wS|0-~5C2Yi z&1V)QsA!``Y#zlg()qJ)tOY0}@LqEhFx>U#P*#S@yRNVCTb=H;Rz%?_sSHA2p-_-0tTA?nffma}CYMebEen?=M&l_IqO6Gd0-xeg1_G48hYX3cZ!9{PFV$ znZsmV1(+2p{`ercHpTD^$88N}{Mzbirjeb>-kX!9v!C1yP*G9_EDRl)Uu(dH~es$${eIY-*_rs+@PoDx8tEG)LEY#(NMJl#nf{}by@Vv5K?~T zeb%KS1{V&>QJ95i+xo;;M(^1!i$A8$OQ!TdLd;}@Ne!#ssfGbTf{_j2XyXgxcSVLDw3qo#rUEAPlHK%FdNfU_J|h=Ug$6{-S}n#kM{v3g zVZZ8nIm{D>Qge#-Zei4$?+Lt8^lXZh@kXMUs*o=ksbIe)KqP-ebFK6~4n*+5HnBtN zoHi34ehN(jcy-_vb9swW^(nPat4G;I^$QoH+%e<%FRxL46n*6 zDxyVf;A#&itxHLV?{kG$(08V;yL;X&4_Mp0vS;_aW>e7^JK^I?OMRPU_r$qN1lzO^ z%soXw4{moZ8x!$9y+E)4Mdy|6I+=qcUO8EI%vXTc9gF!y-?wsC}_hs$eVy#)?wQcl6l*pR#5bIINtF+ zR2D;K?*7yae3#N3*f#hC*I>9$;!g^cxk->d<1@P8ZCJUxJKxUJxBtbT|BFBW@AOqa z1+eeQ&wTAaKK}f#=&R-j=MpJkz)lFiQ0{*J4Ehg3=pPUQJhu`PYHVjN5MoVhXNLqu zGspnGvvXViYn5hl%*+(mn0&PfPH)}<&f29mYkuiyk_NuY8e`Sw0?`umJbFw1oB{Zk zY;89 zF+|^ETc-|2jL%kR+>jNL5rW)ujVY~e7U^*{k)p<~s(FVLy34|QB~WPdI__h5s)+-R z!cW`XberTh%8+rmN!-U2A$8cqbY(G6H}6qWmKLsi+9xsFD+Zfs8Q#Y-m1Af=i1H-k^KtWJG{q~a_dO4KLyA6$sEYG^^o}wKdI%~28BfMBV3BWk+DvsRiXQ=dezm5#lj#LH_98G2W53opcpHiufmag>Iz1drE$ z$)e1Do_jcNpD`OMw0o7ks^lK?^QijP8&gQ~kNn~*mUz=w5GI|zHsF7PPhEx|5WeO{ znv~o}NZH%fpP@r1^vdmsuT2BE)_#I(3Lifhlfvhaa0=N-+I9BSpT{*YU$Z@z$5Ihv z#yYwaf#G+^LPkc%HZwxP%s?^gI5kE1{Znw<=3t|5MWU*z_}z)-%tPzv^?+Fn;QHn9 zRBxbA$$l0`g1`oX%pf){RxT}&<+%d_;>eS%7!oG=(b0eh^&T5c{4&dRx;pgltqweT ze=gYYMiy>{vwC-}1TPVTQP_sNZtijcpD^j=M}j&mMb-qQ-E1=oS=}Njl=2`CM^Spm z>?S!ANZg)zMNQ)_vjo_ryUA`UU8E73sGK82qYpDfE;VlMd^&u=jyIh3@+nDxabt?y z#Co)xq33cie8Is~CBzkmX4eO)2YK%(RkbGed&cYYwu;HVW%h(yw?t1?cAPvjC~77nuTxB3&GlaOS@Sn`;ed#kkZux>2=lC}-uqotd6iot!RaaUBkBan6x&ERmV2B@Z^4n-t= zcw054*ynR!=8M1RTQ6^Do{p?*WBcaWrD>y|Oe|@rTI?ZS*SgzKCwU`g%iKQ`+Z=%^ z?b_QE`ql}X=gT`n6ZlzW>mTzwQxAry^b`ePJlsX+U4*rJ)x=k*nk=NfXW5e?oAEOO z68M*psQi;NaSs28up%5LDY5OD(<5fT))~ ztGl1eyND9`Y-ib`vY7ANBab-vjY4CQl&uMma#AUOnB|&Im2fnmaTjI{z`5aLoP*&q z{Jj6eWdbMZ&+tsl=J@^q#wap_yWqg7b}UX;z;4j^>>IE{n=UXKi;KkE#?aQmj*-N` zjl{v&gpq{W%G}!A$&tj$T;G6^hWVs*8yS-T+@8tI&CN}6ZU-c?;FXPy&L!#3e|rX9 z7rQX2!F#3wBP58MnFZ({0I{*MvjLel=Ho?XX7D1&r|2R?p0$vk?Bs;Nowbnuc$N-! z`XuI#C+BGEa5Vq?_(Y8zjDgmM(+R(T=h#X2>G#t+**1`T246vFOp23zlKjz0F_6eI zgPoE89B7}UGVmpi!wzHCV}vC<_~_LlJ|Hc;ry&_kQ2W|ZIb&-HW;2Kvp zZa#X@ZR%m?hU-wiQ1KP7ja^;HWn;FjnYs2x4n{bkT#|8~WVDZyAWCtNn+tDEa~gcn zw0_RF#1^0WU}ThMU>nJHg>mqGl$QGvf|S_@p^sV-uLITgl|&LIiyKW#-?A`Mtg1ef z>9!r|8{03qWpz8^(fAu4$qF~Vr?~yjut{Ho242slBTnN1Ib^czV&_mpihF}Q*E8zd zO%Bsd%+yYS78$rw@IL`18W{R8At4W8U_sEp|A3jHXBj-ehzUe?x(xJ_Up)^a#%K5T zA1i;sb%S#&GJ$VHL;WMT{Jpf_i9^TvZ2-5}xz_>Fmz-d@9Vs+OR@Y@L_hsC>QPgr5 zUMFhPKHV7JwS&PG2&v3plgSaWE9`!FoR3fseoNQa-^*LDC4x;{m>jy3DW}pek;3uP zQZB4{^Sz~1?KO?pMN%$ta%%!()2Ii?{1q`nERP6THXxVdTU%!YCRJPv_Q!IpuSZ9$ zy(;00q2jnj{p8v{zF;rirMwp!))QzSWmX)a(2aNTyK)Gf&hKHXYQ^ntM1o9MfY z9F+ly9odby_*82TnC8tB2#9E&J|1j6P>T3Mo)H08vPzS3c$?8xTa0u_6oPrZmPKI` ziRIG%ekHbxI^g#5a4jT*zbseVd>&cAM6BY7-|YjqH+{nIup=61Ufza-S0aWjWRnzs z`@=>1zs2v^m^uD{-}wZeLoW&8(@|~+n3p9Si~%HaAdv&QtIUpuxHF%WRpBw=RrIY) zY#ofw8AXdI$SH^_fMQ(YYXM%fD>^>40aWY zWoxZ#*UF7dnxu+yb6AeI#ltsJk)89dhg|a|;kOHnC8$t%=b8qOM`qZ~rS8927v3bl zf%Et&-dxmTSizNe@>MO~Ikbu_El9A(bX&YK%-F-s1C-nkVqwtw)ozonjQ522Zs@+< zY;s+@(JDvX6}P+YhzJy&t4U-B=?k;xhUBf+LdkohbRtht$rV5)#|zJE-k;Myf%h-E z`bFIorLU$w4V4}(FT7@C`4g)BivD4Mk&Xlg34{QGJ26-NAMXp?z61$*>I{S#K&U~7HT$Co4jSwCr9EECzytH z*$-I@re!+i2(WnSajG-{n>6y?ypOu>s656{e+|_;U+ncJJl;+kD@>~bThF<_gNg{d z<0k6^H^Fz*lCz`s*z!)1&K0zwU+i)z$6zW1>jTCKq6E9zZ5p0tujm<1=v`aYN_S6T znznOX=If)RGlPFk;yxFn#ee4+REWW=03UBXcF%M|l%Dtr1F=gZ`<#256xRUWcL?C$ z>J|KH=7vw~#Kv$1o6tE=EeAS`BOW@iOBU+wRm(wRP4#n_nSN8V>;Y^ra?0AQ@OBl8(M{58b` zRK@_{lIS}-nb`u){XpRTy|{5=p#&Hb{m!|8<;s7Z4y^Ql=`fOrV)-HVGYB%%WuB${ zkq}|y=A;k;QGEVAk2=mw1j0gB;|b|H&ju1k3{Emn^Yrj=J=kfheqw{ zoK3x3F%PoZ2gMj{7EEoX+v>0Dqf6Gbrm5ndkq#mHMp0o<&?X$+_@SF^iZsP0LX6ZV5C=`?4(~ zvgco8eV)&pih|8q{r0KdZ9P^J)E1if-4mQk+8ekyhS*Z5&2Z+4%zJBQyIhCMA^hZ} z-`RG5d3{a5X?iR_S!pqjqSG!G-BW40KOVRQqe zRnK2+#VxCuGAgaCgRR`W33Ds5q)p7x<>kXI7o?k0&=O^zX=Ec=$T+3r*#~cbBP5>o z3nur@EBpFxS|`2FzA@mY9r1_&0ptRn7$q}SyK$ZA_?vcC;~AmI0nS<>yvGTj?mtNY z`v2tPuGc^&Sqv#$g9s6QZ*FjhaiP6(_MwNl>Gl2cyW>Lly3FS*k#OAc9*LB=*;Bh% zC+}%UFUqx|qJzs9KwTEd-uXh$9pm6Hbael5o@9TiscXK7alfgl`%M?M6TKWVChcj4 z27qEm#y|DEVm@mFQ#m!}I%Sb(@$TPN+08_l$Si&pw|`FJSNqwjPP$Ff+{anontbc+ zRm`12drg0LOS*tGwinnlZ`(f$+0myl_V2QIOl6HnqvtZeel=)us7aOM(!Y=FWLch> zFVLvEQOYbj7Ns7VCVT5?@LO^}V61~j+2Cd3wgBsmZtpLOPw(aTA)~|YQB_h~U;T{Q zFIT~>26u==4(rL(Oz2?M7eW)N;W0e4V1n1HkU8O{+z4t)Z$pJ@QmJ$0GJ_*;FlpuV z1QChZld&I04ALfq%@#hC}7B}A3^AB;6iKKGGdN?`19F9F7hRW}9waz2h z+gns*mSIu^(Rr9-E^j25XH)0$12P!DQ>>#0u#WoYs_l&heJ=sNUlt$MPma^+cKvx|ohlAyaI7lECAB6>WH$vZ0-LXfBUs*P@HxB1 z=@mg^kq5@SX{m0t!E#ewg&VC`QIH;E-9;?3nyMdE>%&RP7BaUZPpw$_tToEN5G}o0 zHm-~6vb(ou4lO3Axa@$Eb~(_e1G8Jck?)QCr5?&J5M`wqDN{D?KHosO?!+ycM~Y$q z2cZERT=>oh^_G8lXZ-h*Copod9r=j>MR;a#Mvw)(2#AweSy@;Bc3624Isb_8{^RVB zndKtC{S$Wh_fms000#VdYH(QKahF^Llj!US_pPUj%i8Js!$PJih}jTv4>Y`JEJs?V zNXfH#y22#LdX^lpS0hP#bjr$Qvi!o!B3aDdby7sp7kfNuJ$PMuwGuHAIwI=MT`9k7 zX7`_tOEfUYxHEbPBKNHD_ZEj{hf6*`gqWkb0k{1!N-Nrtk}~fG>Wpyt`*}w za{qVH?)h+HD5;imUCp)gIB6WK4~r`ag2H)}y|!;z`w=9p63;aBkEP#!c)ie?e!lHp zv=FYns9B{1AIxW+O8!;$?JF-6*BGx52}rcIa%DP->BtrG7CpF1!wGnxLSCzi=AaF` z$$p@M%Y-2QnzjVbfKZ-p2>%o<5rHcO`x7%fP7T5U;WCgHgo1?l$7mtg5*4Ve0E3o5 zz@Vih(m>+Vm*fwrK~t80ZDP1XG0t9$B z4+XCghO?tEWXDqFyux6y8{nWePY)}iiWRPHj9QS?5V0p~oRQDV7qNZl(uBM6rrK6m z7CSERISf~e@#-eZr1V6}ZYLf_R=hbA{>1zTmi12AYH^fT!QS2XEK}ZD_IZ8V)KfOq zNV4uW62h`(GgyMNB42~6riLnjW~gU{-FpiRx-&)>*)-Sw=yM~s!?L%$8`_aZ`+z;`h!a#DG`QvhYPB$LK>+(l7A)x$8*VRN}j%8K1dA2 z#_%UN2v3z}`6CW$okIyJG3Lu4bZ`zI2@_FR-^$6{+Sb9C850D~z`!75B8j*e7&{!* zT$#_xy5CnMIs5votjh+r6l7*&1(YXXhyp6QM~m$2V2BDkw{v;f)1AX(A_`eM0uiZ^ zzV&HQ1#s|H2WDOX!{Wf0W9(oD%)c-uQL(jhb^_`pjz1pbQCWxi40TR_D`cr}t#3}E z;_P7jJ>y3r!OX@0Hct9W)ETo$gffSEks8a0V8mjfx!#DGA|MC$1ONO zq7xQZnKNj&m=M%mW3V-{m~e|7(gm7q#Zo1mR5^29o+Kx!;$f2f>sGmh^C?Jr~eDBXVK?yHLrqw(b(HbBVicO^V6%z9c z7V)P!tfi(NTSICahft|}1c#QWN2SOp`QdS<{+k;3BR&IH6NE5CaBHlk1D3+=C~{14 zwsx%v_;Qx6)~NeWjX1LwQ_I9Y_$uSes`%`o%F=Eg+N1c?wYPe!u7qunA-W8KwRIfj zDV;ON@ig8x-U4kNRhwV=QOig9T z!q*`8jg8R}x1DHSpgvrVi0KYWF)r(fN6ie3p{~xq;`b77fN&9a*!_Xv*VrrXJ<=<4 zzEQ^5#0&Ah^ubxQlN_+|%9wJc=pQqfQ(h0n<~IFs?UF0w9){KQ7*{EkE_Bv)(GP3> zGXCGxGZN+Qq+lz+Z?cg)q^Im+o6x37qqbh65{-B5yNrIX2ZG+c>Os)8$Sbuens3-9 z3G|}_Nmx5(Wp#KT^1tn8m{;B1D^T6cYC?V!au4Fuvrmue${JHOH?ggB`OVe5xwo7Z zvG`d|<7PSlCozw465Vr3+SYbut=CH+&sdIUxb%nX2Ks+$OcR(#f@cJuCQ1iENI}=mX0DE9dnGn{3#UV+vmP2zErtFdyt;42o*u*gw$2rhNGH+g0Q# zdpqHSx?O@-*{PW??B@<~{I(|0kuVKfug7POGYXzaF1(RQ}RdEKiUl!dv%($?Mn z$UaG)TETyaeeYwSZM4cKhx>-6jJ4)l+cpp4^kTtrTPI9e80<84I8 zb(ahArpXq=Blo~!HpYO&2vprNoirr}aXZX9)3ukGa#%!G6)MYQc=BPAY9c~K!Oj+f z)J+~^JvKd1xJ-A*qh%Jp;5~o(kt}Y0mo*28zHCDeVeA<}#~1^oiFZK>6Ad9*`TeP6 zJ9rc}v{N+J0nk|UxBN04&--Qms?uT%h9DA{TOe(a)=8yB88EjvsVf7>jdudM;3Tpm z@b?E2!AIg6@VKb6ad%K40=z$36I=uSLuToC-fa^+){4RO7}tIb|9?|Z$j*9x5Cf!U z&g>WuvSx;nVgEZ4c#ZdwvlbU%`Ilp^e!(k+A=U15VdLrCn5%l4B{#4>uz(pI*zZM( zEK#lT^r4Od>@%)3^t?Rt9M7c`aOsV zzEf1V5jpnY)3g1;+kr~f-Si2~kM{z6t6-S64ZK$jhP}2>b0f;tYup6Zylqm4D$sOz z;0Yt60%d4qr$%2)O|mAGyyb|LIY=&DUi}K@m0SQ`lAPeBl0bzMmt7f~pimen3NH5W z|JQiw`LD&xv-TQD&`F`o4Xu3b{g2)KN%5}1KvP`}Au!XALPJ&ZW+g0r(YfH+ zWstjEatG3B#hiWN&HL-mm!HJE3Ck8mrHGZj@;I&28cLOz)`Ic_9FL)7ZmDdybClvC zCR6|LR5Q-zvo;EybqJnuO1V-R#16FUWVYDSKG=I}e&`M5{ex;O*T2-D)r2ZPlE!}G zu1sp^%!K{5(WG|s1>)c#6-0;VU0WG}!tGPoGz4H%_ZK7<;$HwyzvGQ}0gNq=f!7FR z0Ma|N8i3~j{X5|Ix54v#|D3MgJN*c?34al+`+Bs+o9-JTI4l1Uc;1Ruml}J(V7&R7 zL+K^-$Kgar+%;m&oEx52l(6)>J_FihSFh1?Mr{W!27D?^{YLzOB}>e9YG|*bpvNwW zMcBB`{{WjdT%akVKQ+oj6gt58q^@-K@Q&yAbK^MXYiW>;_W}iAzK4Fc^E0Z&Pn{mTbnZ3ot zAct=)ctx3R`(E(v%RV+ka@h>G`|9bhBk10XOe97v90w^I1qNp)n8c&Hpm?u24btwE z^K=gMqhZuq=3s5s2qj%J4E|DyW=mse!XS_v>d>^;GTn!^#;XuY({fU$2?X%d=6hTo z_xwl9{CCIYtbmx18%SVtva$e_52!F7FLJQ6195rCMGQMh03cu@Y3MtencJ8;0Zi{q zhNEn3WNm9>#C+2IfrNQQ&fL(!*3s6)=>j)A=_x_RL^=CjO7-+-fVcYjkB{7@j-zs@ zpL2mwXuvxN3JK8dK|*xTab~*Qx0AtLCE-LQ=k%K2yZs5a(jrfu>e9Z0#gG+gqY=g< zM|31@iaSA8(JBXJd!hMyhxLLz-A=Z}?EbY zF5SS>i{5IC8XN1>})A%_yI%&cxn98dcDi_4`o>)YyY>_1KYS>EZpMk&$o(;(Jb0bhrp%gH znh6Kdc3c`V9ILG?V>#3C8EcyAU12}7^7M(i#R@zfOx~e9vu`9wYLTQyUk5NDlMr+? zgYiWR(sEm1(RYQUv%dE_lK_BD@Jm2fIYw7mkTggV?t4}O0xTLo$8Eo>w82TP<2d_5 zQsFEy!Dwh={X=~JmsZfk;A0?z!2w}=WBnfp|CI{JDdRWHu4#Bv((#HLT)9Kkp8f;G z9EJZb0ZnAg#HEh&N!95~6JjD3UgjkD-o<+aW7%Foz05)!+k1PKc`>24i4!nPc{*ek zv#JxW;5PCiXGV3-?I+xvBYvx%?;=9if~n*xlw~5To7p{(?c9VIq3YtLL14EKGJ;?QJSE>qbdflJQUJ}cgcN-aGH&GQC=Va}kp6t+gV_)d; z8QaxpPV-5{d&ch4$YEFeb!jxo9=2G$N1VCDkR9j=bF}FsEs9S|tfX$!-FRpeT>gk7 zi!FOqsOOOux#|-+8`#E2d5!L=+x3UpR1ojM_PP6p=qCKh&^QF*mh2 zFFyoN0YB12lb+RvFABVEO-PP^cC7IR#?^5FeJ?=!%TYz=+#*Qf_jh|{7kGL|R{D;P zB&;L~>Oig90T_`B93=3({EV!SU}S{^kQEXVqB^)%UrD8v?y+-;Rxc{sfpq<|R2;vQ z+>ea6qTG-%rEWzPhx?;1MTYxU=9x~g;^+IXsTJPbC`qjT1cOGn0;83Mym;AK9oNWC z3QgnTx-MykTxri^IzEiM#qyO;T51ioe{B z#SSH~Va_-2TxuqNXqWufBl1_Qi}`GXM&_f47{RuL=5q2%e>7D z`J*PrktrtexxQc0uD%!$@oNZ5G8%v5AU4YN9a$WKD`NY@0}pqsWWMPA4s{AA(2&0b zqCX6L0kt&{`?}hGpXq!mv#~$jB9H+!1{s2=PM3lFC;qwo=Z`-ICWM_t?LY$y{mF{@ z=74zT;!YS0!8ZmggX7Un!3g9;&ndJG7=4C53cF#Yb_}WBx7itglpP*(f%8q7yhH8& zQX*3ZM}l>5@ACVtgFSwb*fHAjgZO|EXUE+-zE71Pp`k$F@d;b-FVh@MJ!vUx$yV{?W=PoT zyHyr?#lokD6Hf&7?I#eah@Uyyie(4-SAV^C!JmWBAqx=KC9B{Oogw{qi-?qP!<*Xz zjInhm)jiAV1nc{{V2Ps)+sF}kBa7Lm(!$wC$Zt4vPmiJF6;5DYc1*OMHRT&2AQ(d* zYu|uJtYDmRwtiBkcQe?|r-yQ|8Ii6S)~m4`ONa=5RZ__CElReSr~g;hk{kD`i~8%0 zTQr&<%>_gh8YpfqU;Z-a>G<|lLlVVRGS0|K!y5mB_25aRdPjC^!$8tC$C`SHNjXn( zPMNN4ecG02MGB6&{9#7oa)e^FyOt&*;ZTHQnF}!xnG{Z&QTW!BRfIET`=k_<-LCjq zHrWj_MoM0hs6yJfe#u$H(Xk?Eu_HL6q_!^IiSwy0ldFi;6{XuER>Zxuffh`YR$u(M z2kb^tB6C!0Hza~WSJ8W>^Alri`Z?xU#pkHfpydxYli(>1?laz=E}eQ$xP`~_kpPmGC^=9yQEIeJ z^W!CJEldtDPEP^6x$Qe|&XzcTpMZO^|J}Tq4KM)XWab1a8r)#s%yqH|B%1!moBzj~ z{~LMp9pLTe`pegq-Z7GEf;9exyczj~f%|gOLIO3fllKAedILrj{zK)xi@D)I;1vll zZ3-9?5Yg$z&kvRR{u$zhH`#v>B{w(N@{fdQwDrA1J|&!z9^$K=*(CaQR@ud{*Cp}x z2Xpo!uFAs4&BVEPnv0EHLp;LrjVjVZ|3CKL0xqg`Z66-GTe?A{1cnZ!ySuwXx5x)V5G6$#=?(=!{nikIZufETbIyC-_<#I<56oJ#)|$o4JlAu_bze7r zmzH^JanRn2`+HD0cVGI6eP}cO3{$Dm>^$8;_rjVow#fdAzi2R5b<3h5xkj`rGswrUykn#l0zr-shT`uT-reKpqk6+SMIEhcS zi$D9Ggcn`|b9uSK75}=zxL-VSA&MtL0jn4y>tlit4D5`BiIA&Hc6Y^}7d8uWya!Bj z0OwZ$oF6!~$L)K(^9x`okg9v@cb8NK;xA%8#2)`YmyZJj)IuJ>2LOH`UI1j1`%F_U zu;PLn03_t_!MG3)0~rS$LUMrkAE(s@+fbMq(~Gf4PXVcp2wxXU;QkP_p7+{?_1(JOa&efi8TNZu8IBxMa}KvJAx^h%zK;-;?%g%$S_SA9|j+MLRj8tKYovuji{ z_PVZ8Km2kDev#l=+TwNlz%O&JIJwG|-&(I?*J{{1q-(y2y0n1ap0OsQX45JE;yKpS z5)#Y6ZZUQCRR7EAf~w;FVMIIEKil~S?p4dY-3#R=sd(@jX^y~$N8$7LblxNY$7A5X ztO9xQrW2XlO7Q(Vrg+ zN$(vC=#oPObiwr5wAnOa)Tfp{q^9)Z{j&U{6yJYX1_|P(lVZVAg30rM6!%#ZI2atv zv#+(Au7Au3xHihY>utCCn!s0DrYp6bknVoth{xqmp;yA}!r_F3E&FNt z*4|5zQoTY!iK^dy>htAUYT=SQ!!!|7xV`J!h;cHimy>vvj6s)>6ZE!~R!e)onQ)^O zo4)KQ^Dms2#QyISs_D02wYQG8`=-og`GX7rxO;dIKpNN{>=tmWlJW5SB@ zR~0B%;BL3tw{^HxOZ3eUz#BX)DGW@L#G62+v!$V}nWzfUdP&YhmeI z!k^gBCoSC}VaM}G%b&wF1lo^JCqFU2vw?z!@8KeGjgys}>2KjS)_2J_z@~?Vfrf(r zPiv$9X@2wg3(GDFFg-bVm{^%OczzGo{AX_?@Xr7`wLr(sv#=Ue80G1*_WgZ27HPS- zz@03Ge_Kob0_Egvg`jnPz_Co4IjuTGl8IWNEBDZHdy}mS3gb|OfM;TEUAhCO6J-^) zRmh3J*ZyskhYRnGB-b)r*E05?7=dkH9F4PVqaYmTv!)X zUxbPNbt>r*)4|IR8aDK1dnm3^Egy-!Ec`$|9rg-UKK8EasQ-EnVnI1LN!rmq*Ovda z=?0C3Y0sl70(^yKNB57lA`b$%kreJ(L@?iAx9Dhc$`fAEnLWD1EF1Bq#9r5YiFWS! z+!N~NGGAR2nqdLVfwMS0JfQIchjqG6m=P~h^g<)z>@dkQB@X#n{$F1wfV99r@C)ky zNB9K*3PGF-7#yZQtP|1@;TQTkJ(niwVf{Q6x9hi3wvYKP*(~lUE>)s;g*oAMMeAUoTgu zV3@#-aq3pz^IiNnvcJRpW z&9rRvdy&s#vWEKv70lpWe(aRDCU7ol4>InPHmU^kAxN}cgVvyYzOAhI`avr1Qc1pG zWO|10S9v1@8j4SK!`8u!L3c&DM}vilZ=gJuu?SI=xjo^>k$T%|sEZdqU9LP$N*+hz znHD8%+hMkR5wolb_Uxhj$4+Gs6!{UEO&|l$RE^>glla*xfeWk>Sif8b{_}?ZkCB)E zIL=>a)Nu;RKLmPy-Mr(U^sN3lpXRSR6&Kr84yWH7p~}YnG+u1jOP{XQS}y^r`29Nd zizUOU!q-JbW_(zlgORy3K_XvT30iTV1>bQS=RG-P*rOK3o7~q2Bs@#>JstXMb?Px6 zYjM4ZHo+A)!l#@W6e;w`Q6CY7RsLvSD>bh#S0(mVAa8JpJ?$Ra{IEijSfY;YP%fS- zdWvXoUUjR5H=Ldc<{~lnm@l)t(znUs8^k@gdYnF&3u)YB_x4E8-9u45L^rIrIxJ;a z2XlMj-KFuD$NZ*w_}u;)JLQDe`!IZMCQ-Ah2NvPW^+^(hL}5`5!&TBC-Lc%~^l9s# z-m;hE?qC&^a)1mWWj2~pm{Llb+7 zrWPK@k>CMB94yJndI3fB^8(>}0WziKE@(nPDtlc;9qcINT+NtSPuqT@;82~0HX!{U zT>%U`&*=iSC_v-|pvJHQ^-?DQNb&t5=ZF1}`aMqgasxGc9Bg1t?vs4N#Z7Qv^nbzq zog4D!_jjBeW}`UkDR&IicIIZ*fb`BeP6Kg?f1EC!QRHRGiB1bGMnp#x(ANa$JDA&+3H9OY*RJvL4b zA-7e5}=-ZzDb!D!d`&7ri}v=UX37 z<+ScCRnp#~XYMQ`pM*>Y*R6NNeX~uPja%K;%6#ODC~3h8+7dQ*@w+;BnV?+Eb(e(G zvG4&^GntJXcO#~fyWda;*>UbE;`EM(Z5{1%s^J#uE`<7h=0^G!Rn01$g=RnT>kR;5U`T(Z~X*Vf#7IlFdOLp<{C!%gFVV;xW1srGJFX~Dv(QewU3-?N|-+4CtZ z&G?QYOG0HzyXTaNtf=qxiJ`P-m^nfjvJCI5Uk_w`*$VL_M%RqBRui%ESY!$7zn z?UMRfeGdWYO(_qIO&km=OYF>|XbbC-Lvi?rm8sgCS2Nxb zB-)elToIx5G(w#8w_{rzX>uT6x#D*3?vW4iSI)Tis<{Xc1cTL)85K-|XnHNc`d6n8 z2#MWlGE+1j1k-x=$Hr*iJrZ;oW`1@xaU|+fr(gR~W|1>2`I{d6-8BxQ^emZV*stTx z=$dNE@Q(5uk4W-@rr6tefq0Y_;AaS(`WeWESn@Es`0@B}HU?m#1+V?QjQq#@90S23 zNEs!N7&u7~Knm>6dVYc}E-V^Ae&Afm`+L`7X?xSN04E9#CS*pL0Sg+y{Ww-iJuA6{ z!6Es621GQC;#@QhXbt)Mfc|r1WO__;gRdOi%82`9hg56EjVNf2a!RIG+;D4zBa$mO zvvKPXjiy8v;pj2Lxo**!7jCd3xY}_gv(QOcz_v4ZUGYvGyxnT2m~Bv8&mZ5S?PI`Y z+oakDLSz%bG}FSwv2I6Q&k#`t9l(jLU+(oLUyH_Sz%Jau-6ip6wT2=tnAdMgv-LyD zT2K*_!Q`W!ORt0}EzEePdv8Ft_)c_h1s202Zi1L+E!87>@X`C?3>Xmsa5b-po4nNTGi_GHbz;n%liog4hm$YgJl z$fa^+@vp2FSQ(H`TG|_&v4@~P0~Y(opV&hH`xolv3GxL&H2@nmz^FJ4&wsInf&oDT zJMsVm&3P1u`2wO{{JdBI$YufpIZPJ_idL?6!1-q1&xTx0gDeP21tbiz2YG=gKyDxx zkU8+z0b~LEb_H31tbsigAW>kiGq7z9?6(G)f{cO3kmF2&Bkh4BAkVl0XG8WvjyDFL zF$Eqw0(*>sBOs42UKO$>2ApFFjI(P)UPTGSa{OEM_!{;gGvF`eE+EIN0KaX4yR-(b zX9;X80au3H6Xd>yfj!Q^^X4EsVAunDDL@{_cW(;(rU1^f2A+Z30K8yF4_3;_#e3uIpp<2(J-fi;xKrPNp9NN#F$&n1lBH!5GfvqKzzlNHf%hP$R& zx3D1>1$0P+`vs<0%jQM<&ML+>jI!~q{3`UzZCB`G zygc?;HZ^N+A`DC)y#hK}`GsLhjvAKh`O)G*iJ^^aOYe3@KC0yKzV3u$=(OVW4i{w7J)R5eqixH+27ou9%|g zcwCKSpBsAKEfY6JbDp$fQhzSUDeGbVEHL_j-T{w)>c)Pxkl`3_A;>!_TVBn#h062j zHd1wA=x|SBvaIV!mft354n49&nof)eGnEa4CPFn2tsDaz5f25%iI&8FdhE>?ORF|G zePncf$KjFW?0Qwxwr>b(744I=71^B*Cx#yX(I@PRK?3nuWH9#`{LwzBs)dih*M#zG>e%#x@sSJ5N8 zQUBYK28yV&M_gCd!8Y$6+QZ%D;e~Qc7O)66We?b~Gb{z8M@v4q&i4aRK6gxI5nD2d z&(!HMSr&KOH`f8~rkSr15=L0#h=NL7kE^}&5>0IEpLE$!>R9jW9FjWnChip2KM0J> ziFk3%sVi4yJ-F^mw#V+A!-B||olNR24yk(l_j3V=RF&JTO@gojEB7e8hN|Js%%E9^ zAHGsK3=y|R0x`T-k7|RLkZqD7MbhP^`||K{FX(_-O7_Y;ST0|y>zP=P;zB$bd+U?C z->{AX-*k~X(T}?;-k~Wa4XnaoiEf4OVWG{HnL|&ly-6lc?*E8TJn733|CyJC04!-R zzW`t8pO)HFqAoft9_*!G@>MTl+%Fw1>$7DPaJ2Nnx_{l#0-v1-aB$BWcmf>UAAKQ+ z+2z7=>T9u`EC4{j;jg<;7yOrFF+9M3skGa7Je)z3ODRW?#@&N$v+e5Iv&u&Nifxwx z3*T9s7Ox`U*`~LCPmOeacFO?VDLu_Q^&peWR`c^bhobsoc;VG?xGgR0_{FYXI?vci zgixsb_u@%#0|8}>aB1CX`B77Rmh&!>jWSGAvs-oz^E7zxPSuUeu(SqHw={|$WrQKQi3e=T$Y!a z6Eo^7EbrWPK2#(PA-;;;7Aw?>1C>|nnfob6o(o!%u_P{9*6feJjZfab4CRqR$oIs; zt9}|W7hSO#wtNSwW96+j3Fn);WRB)R{$qWI9jVwxtzr&*0kXr5l#ecXn{|(Ki;C;A zF^g}GYLnj}*u1%<&P8Z!SmC=B(-1M|CYv%&`(!RejKMfW6D|mg{1K?jgWuVq&^Y%nKhWI~ z9+vG@u=#GiuK-T{n?(oHM-|uJ#e}g1d1j9Ge0#2G=DJ45FJ^*kEc+?p2^xbX$!2$Y z{+;Lh!aB|TMr-%#s_oKyAKKsv`Ypq60qe^=;J@^q`Y$ltHFO*|jUJS|D1J)m&tr6P zp@HzH{`39|H;~~57Lzmog%$XLJO+Mrz}Ek&|8g!daAqP={N%p?N&|ok!wMkCKaOba zB$R5NRaDm{Fpy#JJE0r*)h~$}T@aA!k z8qD2WRvR&Oxjlo8+{9ltxIU`9m&XUCgx|(%U9+XQ5!BqZBQw^MrKBh?l*<>l5N1)o zDd0{ARJsOa*>GOsgvlC1jc%bURx0cL7@ymkkE|vA(M`;@_Mms^F(34l{7%t~_mmM8 z-1VThDl^Zqcr1kz#SjXhJ>?wg-z7Rdlr45dq(PiX*iK$u8w>KXDw$7AQEy zT9{CvI41BXTnz&s>)_Eqbnwn_?uYpMSxg@0`?Ij$9|5^;sJ1izrw-USmXtZo9DlI| zqCfway&rLq2H;CTe4ziE-cMlg*#`}*m_S?)=oECGH77WAXpWQRKe#{g-;aV06aF)2 zS5z1hO?UaN_X9L5{~zZ~ojXf%THQ38!ip-pbRB`B=?@CC=kI*@A>#W>XY0aBf5r=t z^TrRS)5otbV{>`_ig{0qm2~r|lUl}5y5-$578n6M2QrvW)sS2bBQnnf;`@aTxp`44 z@x$YKiFF$lc+yMxB8nW_lHW=K{c+T)DB2uxy91E}yInQkXG~tsqems!B$+EgU|-#m z7EtfAS430udE2>&D>d+9eoFL(g2e z=HDE^l+EVteW(_Il?K%^Kag<_cFz2S68$i8p?uhkd}!9F8>a1j#8M^=6v(L?<{7;a zP3(b0zmHSND^+aWklQU7?Q3@lM>{{qYH_%;v6M_JT{0dh)XMDu<4|wBq>1K=B?*9d zQy>s#Q4uJmv5oocm2m~G|0tJi|fkxf~ zkEe@3aUY66`%6V2t94-Cb`ePF6Y%%22nYofgAn10LD@*fAR+W(&?0s*CYqsEX5!Kj$+UzPcf*2A2?p5800Bg3^I}{25Bh+Lj!oMTMV)?Dh4^4 z1J|$tj&lI6;RZbR2Cf}Y45AAIt`QA9z5^VSQVc500-nzY&Usu63WNcHVu3LVj9p+5 z!h%3ofI$xo7GPWlh7>TQfuRfxRbc1?!x9*Fz;FbHGcW>yaTgc~z(@f`7BKRF@dy~@ zz^DL5B`|7%@e&waz!U~B?| z3LXSv0tOE-^nhUmjAdW|%ZV=#6`Mb?Phha?=6^Ox6n-=UPK(WvaS+6v+^j8(J^LUeoALtqO2vWrhmq~WJKdEJ(0&Z){XexN>QL~g%O zv=U}Xo)Q5u;++&Rlh`*t2LA*d=5 znl~N={VNZ1KPg<=M|lAU3Y zf10Nbfh)u$!)qB2yldFRxaf3a?%>3l2;2k*uKj>@Qu9^^jBm;khb2d-DKHh;Q{wIo zT;Rbqd8b&#L>@kdGegDledKFi-PNP;`|KLui6;f=A;*%e&5++kt@~ z_i1c<1z9}oFfe>sAY$JpVtc!jpT&C1+Q2pPZ=0JP3PYkiPinxv1h3VD@7r{9VPz~z zS>)RJSK|ywevQ)6b2%y*C1xY!d7R8~=~2>~m0Xfbh|-mHAL2KHxmHLu9J=1syO_q! z`TGb^b@L;v8S=Ph%)%%s& zAt-H|3^AudsXd}+fp$ce`b56)Knc^2h241u9<;KleQxj zr)I>htwiMD;d)jVD2}xa38$$W(1o1NH)z-;C{cuFhaH+0MGMOkUm+xrvgb199!(@TNHl@3S4=eKh-QD2EYn-kN+&G-xMb9eZ zf^2E?rdG2!8=ill&yl>R%XYMs>dVLrSr<2f`8aYqAEEi~T)az2O!(iiPC*p^IDw4e zx#Ay0{^dNdEB)gfJXL=|#zB^JaImyBr+}mnPX+dY9O3t!5OSZnE5-LU_pfyL$Y6l= z&>K;T=Y!7;ni^4(s*e=hB6K8*kno#|eX$kUOS!J|)flacO)N6o6-8B1J+C*&ByoL3 z+wkQyTmW{PL4shtt`yI%>Zi-|hw)3eZGF3{XuC2;_tYkQ8?$dXgg3obBBukx2)#pe zQMUE}#&^Ad8~%2KEEepF@8ya4gCka_!-PSj9cGzQkvHATZ8k(@J*wllvQgw6gvR8r zG7AMv8ACX&%|ki}Ur12xt0p$i2FPH(WLT|Drod|FO~r)G-Zb`3q={Bgahs`JL+rYA z)JtVkuFxj|lbj6W*YtG4r&OH1uU5dRYGRj$rUi{NGBfiK9m^|{jQd6DZD;G#Nw)wF zocm!G{c_DacOPWN;qi#;KU!6|?*&%YnGn_L1hV{L(tc-808SX7)_YzK2}lQEpH30W z3w?cmB?!oQvWfyix?qNEy6h|8!F)-Jf)4;J<_sSN$UyDBOD@Pw*1CrtVB5}Q|YBt zeG2ZLuMF18c!{zPC!~X#FdcWV?yS~dzWiFDD1X#|%zQltp#Xv3y;B~_Ioy>b!1lrqc7vCyKjLz-HNeSr40PitS^@ky;CjNuU z5}?)%c?JcC?D(1Qip}R@$*1*!)L=@;fiO5kKOJ~#(Lxf5$32Jub^$97E06+WAyd{ZkudRuwut8dIS;P`5= zi}FC}O`%dN-SXaJn($j`NhA*~s|8U9KOLyxu(S{lIy!E~Heq+ccc)E{b^+wZq5ajG zEh{k*DV#S=EqNsdMqeu*z#TmsN6>~I&?ZPR-OD$fibM6)FN62q30+iR1`5?6KrXHcvKJ7{>(@;19~lrk2)B zCf4>W5Cvs6Fe?v>shQ(3Z2i$9xJ&vqszhS7`ys~T4;x)&R(Mt;v7d1smX>!jEy&v6 zwq|Hy#6*tySmIJyb9m{CpchArE{@6v|EZZ_SkSdxiGfft3X+fACe^3fP7-h!2?m4m}jP%xfF%;KDxddHY;I z3Qpa-d>9iI<|zFOVnKBDSi$WrGSm0vP%QqXnyuHR3WBXD3s@Ek1UD;CkM=_PRqN56 z6^&3us#A&yBQ%F$SHqwCg)8Jz9;kldN|A~g+OLz^rtdK8?@^OdjVi4&CworMPCrU- zB(?u7zFt%711EExb*1*%#3ltMHsRl~3tBUFj^0Wja@6%o_-EhL-I+n`*8T-Bfc`L< z|H*a!@0u7tG`~UqUW?2Hkk|e-1O7Pi2`Eir5qx5m# zqG(9bWk_tJ6s1SEc~>zlR@%>~w1u`EZ|m@GVBEu-8xDT<;t6;m4Xe^yZRoqDu-d`l z7+0?)x9VW0`@nMgYx~S=Ln(Ft3E^~(*tSiMdbG8vkbLI*gj~r ziW_$cS2uhWjB{_hXK43DCp-;F{zO!RP+j&?5yxxnxuP<$zcrdNL-P>sH*RGPbLCyK zMjo40^vBQneR$z~c6Sbma$a}%DVW8)iZ)h{`^wj)PlK^fnk(a~p-7}IF44 z&qTyO!;4czaTGwo*a2wHU{9f8Y-??H+d?-g$+g%iBr zeVStxtz3p8*6TH0{%n^!YO~Ii=5{ccq1(VQIYQEDHv${+&c33mViQ~p|k6_)TFrttq+jgLU-=Ly7mrIEa~7=RO6^BQR#6M|0%#w&hF(I);JZ1(}v_ zrqh)W(?#(jyIhsX zew!*v#`39QM;E&W!C+0G|6zEKhcoTKsM~#0*}Gf~AM}Qw8+xIYvlXC}nNt7LaDt+= z>aoF){%sW|2l-p^%Q*&uc7gw=;Dr71VB8~mRL&Zf)^?G*O)oKJVG!LzFz-(-sAAJ@ zBfsvt^mj~8Ft=NN15Pkb0puy*|_HmLo%za|7xj&E0BaOh9Key16CA;0H&;URDt4Ix*G!S3`4|0Bho$#| zg`gvRMm@TzxP_r`j0Lo58fvzrYKnEIo zOA1p{*7GJ+KZf@pMT7ux*@Z&P+8t0S0c2?b0f!UogW&W+O3vnX)^2v^bu7mhLt+S% zg0#>@g2E$oJUQZ215e2H_y!=w631BsAX*8?eI5Tm5DpAPO1}3-2z+?qAO3-BeR7dg zPwTJW{b_Ly3J%L@16D4Ii&p~7Cy77lzj~_n0)vBha>Dmw9*7(FSF#gD*_(#}+5;Kw zd3~8V+Ac_#;;3j>?X9+Kb)~GNwYiT_*a=%a{ChB&5;;ibSLBfjNZwR;CUZeoMGjmx zgm3B*OGt=;HgQ#)A`MFE9=Paq^4 zYAfUMK8ass-eS&(lQ~+hvd?<`8!98T8r{sv+9PFMl+u*4CFUjAMU(Ie#*SfyW;rvm z@xE}aS{cPID+E%KOqrL1Eb%=zot#NtG+C~&ed)ZTm+&sMDgC*sFC)@!bY?txvW-gj z1QJ)C$B0k3lGvbtJ-ziIuk;l%r2GIMA*Pi@+R)Cg#$WvAZzhutW}b#(TEKzN|Cn7k zraDlZwER1Dq#z&adCc*+-N9K#;QSlJ0tqz!Tqb!Q$MMk>?DH%4X`uaVr||wb z!5~ts$6*h6VLM}>8Pr)B1EAA#vg5e%6vQ%MJq}%PLK@_qPhMaX=y7~9m%$Rhx%9bQ z^?9i>s|f4qEx_QM-U48w|6>wSivphIcyGN;2e-~DANUFBd_VRgHl0+@B7Jj>z3O1@ z3Jfn%k4N}NsG3p7p1vC~v$HTxVX1cA4-yy@aE1yRU{{gxt|PDTK5eVe%B^hIpjj1A z@h+UD$3v*GSL!=7WZfsNg^@9dgeeh_+{U1dpS?s8y8n6U7U!N}R;v8M4epIRB>}P3 z&pM$N2pN9(HtIY0w>Zhxmx@~56tvWRRc|2QNWUa9{GkXcvV1xBYhM#1YDmk7DsH#s z=Ie+qzJ7d{J;Stt7tUmUP+KWrQ-(*|-b^oMpozjhunC|yU_I-*es=?32{TKy1)gCF z&8qQjM3jtqw9G&&vs}9RZrF!2^Wz%uPI3PQ^WjuV`IxY&oo4~BlI@dt=X!1e0&SA3 z?g9Vn9~`0(f}T*0)q2!~1ZG6-jP^221!P39&)LKTBA*UmyYt>CK;-jGi|Cks0%;Eg zQCbC>f&pKq?=y0ESP^hGSy<8T z+8J~EXl))Tr^M4iE5f-~z1<{knKyWC5sHPu9QYD5kp3%$k<`xiW(ba|IVUdGjUZ(q zbxlKpiYHV8#oGqCP_wP&2i?Lt^D6Omb6nwyOb_!AtT<~EoL`|Yqx))ZdmVAV@G;6N zTWMm7^FWivq|N6kZo|%fmfIm!j*CJzGeh{k&0VFV{+6((-5V?F{<>%n! zWIgwDPB#DkYy2@T@>>w8(`v?sVoo0MC3w`)@*#8v-`0q^Glmt8mk2&ZV_a<*D_UEZ z|EXGuEM+Jgo}pUU{OHpWqsSXtjn40~K_c!?X|?5E&DIX+jXvPqZXFfM z$Bf&z)Jfb$-8X0KHzy0}-4;6X!lP`q>JU4*2+Y@&M630k2kCgHRRw6SzGGAzzm=t= zH06-iHb{6S63Wd5DgD|Rh{yo%l*A7R@S9Xgatp0eR!iq9Y6M%y&ElB{P>Syy{sIWW zgSk%TF(CN@X3Pe3%)-vnik26f6#X&x@mG3(SYB+z^zRLd{HgfOS^F4>j2SBvCl~Ke zQ{^}r!?`jYMWK;U>)qh>@Z;=Pd!A=(&ADS*8WaM)?R-xytp~j>5r6!=YP9Y33K`Yt zmaAOuU54yUW&c-82Y0?CJr>_H;TJTLP{QG-z#(8xkSH0X{3@E$N&Qu|?K#m%5ntDY zMKX2C+esOD7jg&I`^vC*HlUS*7}3B@r5y4HU3@!q*A116hLOcRWYJYjh(~yov+pno z#@ToH3EiWRz}25px;gD$YOsd&mIbG#nkKJQ3#pXznTcBHtkgvPn>cUpyb!cpk!|Is zfnrs2ecOFOa` zz3w_1Ik!_T;0g+a^#pp@0hUxOuEtg7&U9_H*SS>-LV{X9oCnGz8)(ylx276 zRqH!?-U19bWUKoYL}YDcQSMqF9_y3F3YGIlZIA`~QoWvi2x4AU?K2?^6{C}DqV4uU zU&S;7Vdla0WIHzs+p_9P%{^VMpnC1S6`glKy#hiI1r-h!I^4i=LQ; z#76RvgOc`4a?2CkBAb;wFwPSe5vLTW`Ii9OJmO>VIkml^8GodKpe_tzm z2EW+y41TBq_#yv;LI11F>A8`=_iFGuqSAqlB41VVJB{FZ>o-=PeiTVR$;<$D>Y3dF z)UO}ci<~(W#*h#0tTO++%##IZ?0al%0NGhEke$uG9ClVF5AhXF60*nIoj_v#*ho1} zbNm%et7G%%!UZ5iDTtNh%=!cP8u?fdiK8WVMJloQ!oK1t{C4z3_NOUwj4MV$R(O&N zcrjyoIT{SzyL#zQ$nMMTbwdm8qvUKChzwN8t;|{k?9hmMG85x#AgB;@_ZP0tAG!$S znM4OXd-DR@CHL)TXr4w>{*da_=B?UK_gaPewFp$3O~y+JMEp4vUWg7lJpqH-XX8o) zHN%p7mr=2AQ#sCB6sY+#({&H1y)Gv+u|zzeo$j8ssJ=`bX%i`CzC9}UMvEj`p(!zE zV8fDyhhmZWTaxl-?Fj!JM@e&%EEnfzMyPr-{VwiPr3y12xbwwXZcz(_w}atk1(-Qds|DmtdA<(Cal&_MlJbsaT;vIHAGPJ|&*E>N&0`0`>~` zcYDR*r#I{G+Y;Y{qNiC~psmA6M@Lo&+mW4%^H@RlERO@(1dCmO4j^dpo470t&ZY0K z@f|xPe_#GR+vtZJmfLs3j-N3nxmfzL{IEw2hZkag*8QvrN$flPe#?YmPZt&W4L`ju z@JQ1oM~0~&R2|EwOt3c1w2_NP#guHs`fM9UQ}r0uN`wc=eDl&f!mQ7LhLXufOu>e! zBXwbE;7-4Ngr({#b{@Ukt%7Y${`tljZRuQcz0^@;Jcp4O^|`aM{D2z3t0c~I1n ziR8H+pSAA1Y=7O*cb7n<%I{N_`SRekuC<~UjyYckFw-`%Va1AwbUl^CHRT){0=fhB zn9A$jbI8okAmeXaEN>h>CGCa^I$sC-QojrJOwYZkbMybVSeQ83e`&E~4}7|M=!)WR zw)INX=AMZv3G~gBxclphRs$47F4zJdKv&jc=@z zd`%nPGZvD+#tCu!`jIm+^5B8T6N!$xDxAGeBkLi#uWxQ|yftbL2$)_tjB=p#l9_t{ zkhr<(uvJ=HufhXCY#{ka8WiaOuK?vpSj2+WG&7IE5+)nt(^^x&yt`F|C%`MMoP{r| zh{>m$UwFsi%jY2!7lP`XFkENy#$9PeC;*O6RU#>M4cV_o`E~Z$O8C5Kto{| z;qSO&dJ$J3^pSrTZw%0%W8;R%O>kVmm6OeX3$Fa$6se&-P#pPKg)12Qs&^=cBomFtFJA-t!yh6TRc6Qjd_ODMGP4jLQc-W^zg@YbOIJPLg5j8&~x&6gO z9I+&}$e?mR>*goSZ+Ap3Hb@56b0i|LBBi~&X?kUCHit>viRiC)&V3;ZeLux&4kw9M zgp44|>}YTUzTgI*Z7CdfTNxJ3kU%p1X0WX$$w>Z2&+3;U>@C4Dp=Tu+1aDuI3f<91 zFi`kvg3lef6yhO8eobj{jeDS#uLJldF{eG zsB4X=SIht0EUhq#M7{nm;mY46YyQ9l`^!QImKP}5KeiG7m-EC75F-f-7T`PO0a5Y` zX7`yw;i!>mLfR}#T>pRJG=nqeM7nVg&0o1O%RRCyCA zvYvtS@?o>_7$UPZ@3V)#J=}llm7Ln&YAcd|Ct*q-m7Rd5lQB_s>cc}+U&*ij%B*4r zpBTtE?RfNCe3@1>kxFSpoy}vmp4%4T!gfum_j&PKH?jx2O9vu1jLOEvzvycs z_A)8WW3%Dm+}cjKpDtM#=0BS9;nN3qSF@4$`Vc(25gIYDU(iU=)48TOT-&kA%e2r8 zP}rfhtPxt0uCvu|%pSC|X*1Kyif`#gN;3zgy(GXDd(CVHg=@ug@bSO`234In^EpVU zWK)V(ZYsclsfGd9yWV1-6F?XMUx0R*FtR83a_$caP+WY&AUu@+Hh;+If>HC29kFwT z$_qZ)kEv&fOxtmG`S18h5664Z%V*el$EB$Xajfr#M@*xxJNY)mg(vB2Z}*hH(bCjB zkl3)jGQuTt+YemMk|v<)LvCMrUrwC-`di$)B#~>^cQq%v8dl-cY#6c$Rs5CvU3n4j zJzg0O!@*51;c8X0K-byMb_r#jEi=1h^DY1W?aOryp(?odz1BA?*7>VCQX_u+H*p=uYyQY-9zGMurpG!e>jEp1xKnL$XLCN7+UwmY-Go?Y6mi&ZH+5S!W;aric%G|Wi**& zeM{OS4u?{%?S0r>jEt;_g6YT_G0qSS+4diCME*bR-@& zY6*+k@R^|3B-x=L7!;*CTXmK6ntaszIWtmNE%s7k^@Yc%&%v;+b35oPVBQ#6*l030 z3k&I~Mj?)NJssscwb<8H24RELnJn`ss}gUn3$`NG!ZtQZKybzyz!~MAaYp11ZJz$y zaOR@A)<4D>Nc*#69vu4xoKbYPG`6?)J{G|}Bf9)kXw!~vD@c9UzsE5@lcE(}RnV_V zp(RDSOLCBU1BN5iwIdgrSwauRw=*JBF=}%^!!}x-bL{zc`SRhc#)6E*C=OK@*I;^c z;cSxV-EGwR`Gfhz)DBZAPk&7=Ya&8Yo&EvemW%=a=>Y5!@8yVP&5?%tKR5Be*Q-Gd7fM{VQmbG-15eK!QiFO48Khdo36w zG*5K%|2?#kU|2V3D1kEKX2l9~a;=n*?!d(R%3?x||Cl^{KWMFM68-9=ncM9T1kMG~ zd{Lc6`5sE2HnQ@jvSTl4<}w(r`q^R5*Ty_S40lJDD;rg=!-C${8z*VlQBT4cfNwgQ zp}uw5@on9v7g2$+WALp~_!kr-Ii{~|OBC6LOKuW~yTQ?WOo|AZnT0hnxFfMTkY3(R zeI5FBn-cNh<;Shp+G|4^*AeMpENeFpw&L(4ODyN>1EiKj+&PlftuLbo4`nkw+uQNF zB~9l_B%IUo_HqO#*eC)2*)%K_EB`eXeE72J%rHhB>y6+&*|tZ|81`@GJPl2V-bD>Z z-7ON@*OrEG!AYoW_P=aL`V6pYra275*RRyi?~wb={?XS>Q%q6m@hweEU9SewgC{ z3+gu2m66=eOLDPrdE$$gP_^RVh^k&R!{-N-){#ozP~nJZ)n3@R(MBsA&1gaTdMYW-$WRpu+z@|jGw2hwg5(h?1s^6keMROSI+1;oQsrU33Je5Dlf2`7e=3arsEf3Fw z<4uB?qSq!R)2)&XnERQxeY~Dfuv||n#4?ctrUDEU2r4)55FEIFu8sj@qpyG=omtPt z5b#c^9mnC;b8g2k-LiiuL4AHM%gHCDbjk(!nSAnBC8>EYRNxle53b`77vet}1S?|K z2;@NB`#AQ4=lM$>%Y{q{FnNw$sQ{{gDcg=jykX5N;XBS8V=tXGXa(LTePpJI&lg}% zE|C4ea!BLLf?)jFA=p(;PSu$r&$~}qStBswi5)rD)egp|5vk2z#U4v3-yGQ%Gh-NW zDmWx!IUtPTD5HMfCZ|q%TWs->e%koGFEH)3mqlZkB*n%)j-+&y9lYCEqt~;>{@hQU zgz-EBZQDy+l{-y?WlZ)U!amb>``c9i?;&D9TIW1U{CjTh=rg!&9!m_Qg`0b(3?FI? z3b9JuoJQqBEQ=%ckLdUrp5zY>%!83b2IdI5L%Cl_IIWQQSdW=oM}y%65T+fjH=`KO z^N1bQN3$rnY3?PZ-V_KY$B2`4Y!&1czs7f?yUs^Qtv^aO$N3HH(v&mNT`X^wt;d-e zDOx30mpu$wn8Qn}Z_Lij2oCX2C5cU9shg^>>|XI~!=R8yZnAR34dYp_a*udS5Ua>Z zHW1x8=EpBKz!lxhU7@WTez3GP@Pe*^^nFi~bH8^^0Yyc1>Arowkq=`G`T8#7koBw5 zt^h6iML7_~Eoo%?+tG#nAncIJ7c+_Xo37>E*bI7|q)&5Z#)txtD)`H3|MLX?+xg|c z=|)|M!vHnxXVvTw9^0P+&<`2$vv0x~0R7d3G&|1)#F^;RQ>rR~Cdb8pgtv%RL6>Qx zv-1Pu{IU-D0^*#JWS-q_K&VLzUA<=6fM8@iAJRXtu|iyn5+s{wR%xM1-B1-WKIapI z^scXLZ>#lrcu1qdgTj^tY+gE!sXPraA=G;jxwvl^-x|!4z#1J|b1B;Rp)$}l?>y2% zx9ufGXq9Qoh-r0wS`xHLG<~2z-yktjMS9>nHi{9_eMh{9q@3VmcAt|2Ds%c9rt;Lg z!D2ys-)%owaAi zS>i=xKy}_p>-k7aAM$oXt~~_Hoc!f%Ak0{JkLRa~%p?ID|9Y%YZ?}12U$nl1524mH zvF$MkO#9Xt-NG00P7VO>XrAB>3^d;l)z1*9`FF*KIUv2PfUGqeC!{^@Sv|n<=6|Rj z;P;uSaxp&JCnepN4x$NNIrJV{&qk<*V z^~5YpE4d8Dk2ZW!0fFK0nlwZjDhcCpE0)(LK9_J=y*07^Xd84{Ofg(91uN0)#v*F} z_&jZLNzY8YjWBlQ;}1RdJ=E2vx5!!VGQqcfTIAPym5eB1>*LzAf5dvNz<)UQNhhwU zk~g;e9yVF7pZcs@)iT*K>s3UBk#14f$jkL_(8)H(;4Xi>^&FEnM40F!f$DnvYc>40 zz5;$_zJ<@nYA6{tBWn=tb;=EvgR1>#QF=670^t;AlbDE&4qH2oVGJNJ{g(wVqCG_Idx3CaGr=@M#y)0&C zgR#d$BnoW;)mJ^koG?pbUN}C_JBXZrwzep{b`yyK2@zgkV0t3x4l2-r8oAlXt*cV~ z#v_nOx8Nb>^kHZ-Wt=mkebZv*XoZf_Z4R|#px3_$o3U04P@xa zy)UiD?CB{S(|l0u`Xk$Z-T!`TuO_SpDdXoQew|+nQ0RnVVYKJJ>o{ zTARC^Iwugq1Q1|B!J$7t?4&0h+XWRMNOa}9Cc!bIpBKyv^ieva)vyDQ#m2+R&Cbip z1+?%^`SDgxSv!b02*S?R07ulA^;8Z40S8&t)WOx&#mv~&{7eqvcXxc+aTNxK?fj0v zmoS_#e*keaYYS^rNav03cMYkU{C#3<5S6cu;Xq+#uaPj>@OFgiQ*y!XzIzlncJzE5 z7{1p(-EikI9py4AOgGR21(dO9`+p2Spb-sQuqIYXi<@?u9brOKaQN6EJzBX#q*20H z>3V6U@9@ejQ7vf_v&}WFgh)w^Z#3C=9aV$hg}7d7wakLG;+woJq(dsB&?g#yZ9!uQ z>gIE zb1>JU!Bn$PO0GP;5koVY-W%92F2R=M7(M}wE-e~bY3ovFwrnh1)H$Fw8P3v9Rd%K4 zp0=9Ry`x43mNs<~Hz6bZP-u1DD1W$9pX*p&=nsM;KO)jaigAV^Xz~%%Fqn}i;(oQA zOvW}=eDDvT_}s9nzjvHGY*$yk=>0He3;M%|1+e0o69+hTkn(Dhvu%K4jCtnNF}t|1 zF}u020EPBvE+2Fl?&-6hXU}>vLukWSAi-{OSRg?KCe9|z#{Yht%h_?x$K)NXlb|@j z4F2_`JshI}xZbTm#OCn=w`4_v8oP;4cjFOj{e-TrH80n>XR*V3 zkfI^_tBwPttnR%W(IS zT3({T|Hs~2$5qj{+rxB=lyoWGn=Ylhq(eZuyGu%1I+R8l1O%i(0i{7g36T;|NslAOD~2vr@53gSLoy{7?YhH7jrp;@ zl9&gpHsP_%$jriiMRy7&;S547_z)uvYCZriYFi z#^Xwy=|aTQJcNHxn(xgfIjQ<+r&MQ!btO!^8U(Gq2_1HXK1ceF8-PE0$M^%}Dr7qU z2tBvXJ@1mDr@cu?n217pK=+ZAjlI$76OW9EBz%^p!2I1+ceW$x_kTWWLpbyBaRSpb zxmh@m+J^vJI1s4~jQ8Ze7@i;{&wLWdfP{&Ebf6(F2x(i|I+`|tn zlB-ZWY)avZvmdyPN#)@;p_geb{w~aK}njgwQ%_7#(w>cXxy>_P9 z1YsVi>*lL}P_U6kfYA#tdIVxp6wJEzf>oo?Lt`)2M7lG?NpY1%k}Z}nCDtJYuU8AV zM+TAV1^<@h^5*+V>5|CPg%{A@1}XT2?6>=6c{in+u*ke z3XBHER{sS9@8K?h)qlerdxv}kC7PNm2Z=tjt(I0*$#3?`as&rj z*0)5(`h*(Fpi)w!%n=!@ISk3Gp1hYZ>BSLCCUbH{-)=+X64HMV5AslOnPjbmP@owi z|5lxlS!9`k>D{$aovYY{eQBAeF^kjXX0e9~k=RGH(dG(REzNC-s}LcZPq`w9SvMr( zeVHw>9TB2&o)1uzKYMYdGP}oLwzgxbRYM33i^6Sptm@U=KsweP970m!mBc8c=Yn?4 zh5R&vCVTH+Cw$nQdHp}n1xP-mTHN+0kV~%^vrTAcfqVi8 zL~@@t_ir+3fUeCK;;CA^_ksVif$ikOt>7`c$6n=1dj;BWS<<%!Yec%)Q?s zH&@|d!FDY+=flMDirrzkv;kp!ts~sbiX#jiw|bzAP`83>A1bVOU_uQ39TMM?_MMJ9 z2c>jM*)jTN3KXz<_#(bx^pAuekWCix_$Hy!v=To0s7+jzmIgxN?)@C>b0DqV&9WSz zFHFG(rAh@EUBPQh%WwT;Ate~n^Wos$n39!lY9sx;dSQ)@*q7cG0_f|AOOni5W@6=2 z;-`p(10WXW&n=1<8P564HlCyacr+90s@3g!SV3#j7jdJP-(3KW{+81I=s_8DyK=pk zH!{9Wu?Yg`hcQ=7J}OO32rrG*5O{E>9)iu9j3Ly&i{) z(oU#|E17LIU9OJY`F44vn2;rc+V;}>Z@D;W{+H|3Y|C$bBuNicdb)b&&qPaR2 zxdTbLrAQmggwwJshlv@1v%uOW>{;@AHEnX=lKA)(|Hqa^oHE86deP{lGYz1J?%6bm zrPFLWhAy}Q3X@@=+>-A+2*`Pab~wf%RI#WKMF06grWJ|O=iFBh< z2D4>yO<(!YkR>)uh%2mrg-?G8PqHvydBxrqCi)wS5 zmN#g1v`Kulv1p0P&_hOPiEWxGnN(I8!@`rg{uEi10A#uOlXK^&lYs&TTnao{#hj0M z|0Q+$-u&>0E@--!T%4Dnu`hrVN+tDDoci1a?D=H}!N1s{@TY#C)24!sD!Gr=_u4h5_|A6`E7pRm;WOffJq6N#3mKH;nn<`3fExf4zfxbA$ z?U>j5t+ADy@J2NKn@aK)otxj-wkB$b_P>l{6{*Hir3e+k$X2hYk0ka>&XF<=zE_O*>PyUHrn>9t66)f&zmlrnCw*a0RA`)-J><$M zLGZ9lhSS9Tt5E-dYT5u%L<@@PgDPlJ7D~N_$dus;R3^yjpgm_{Nx(iEgs=>8? z!&1@jr9#J>-V|E72C`tsmxA@lHk#~yY4ZwPcaH+_Xzv)0&II)fg z7s6`5b$6YM^aKZV<(PM%o*Fn$NC!CE>_`w|JZ40!q$f+F-(|xB z0H+Zj8H%o-zJ>H3`<`GOi5+;x|Gsu#LXLny3c4;UFP|ngt5z}4VmpDV0H;0SXx7Tiz zOgKfe;t>%FymTbTyBa%!^{t3ju|0AKMsgK#%nZT7INvH^7G=g#nDH0HPc>e*uR(MOOe@2*HOuH8x&2 zCb$mw9bLT#jPjZ$mY=SH5I2Om_n}HynOQ+rrw4*Wfzbo$WN4>rf;2#CAQfyxGb=q4 zBPJ6wV-T>=0Kvn-(xE~_;lp4>&JN%Q7KKMxH23+K4@%(Dd*CsGD6mg^$>ywmO!E-|mlCIb=W^hhB`^@Y{5Z(B;&J_2jO zBrjXy@(5nh4}tfYN3CQI*yMd4^pLL$Ov3QLH|k}(rgvr0*w(QBv-L(7u7`5)W^Hu>2FQDqd~oOALrdytMB|6DR!0np@NZ21WyCCpe+%YDgn3@ z1K^VT2`(W)3JL*@pGpA^=Ewodc?jpv8qAdVnZa(3qa_dlc+?DdBs92*Q_m3`M1TC? z1Ii8a31C5EqKYUfpCweNvmOaVK=>IDzsmu1RDegU0g3eAH$hStVds0NmW+`jl>@1$ zwSm2xt>dY11SEN0c>SD!41Ct_9{ZF5l(k#4jN;Yy+MIsnrUszJVRlM9is||W_RqF4 zOw~2gg0O{;(%2Eym!HtKm7AC*Z$Gbr<$M#WGw*x~q0{G(tOG?M_S1m5x$M$TYOE)S@gyC@Vu_%(- zAc&H5Wy*YTla`c%2ByvN`77q0NM^44*me1=HNu~tkTiq5Gu@amZ!mD|e)zJ^YF^9D z+*;BSeu>Bso3&uypQdUM`T1MV=GfE69$2tLy8V*XTzrfJLEdK%8YGMZ$nHBk05squ zYcjB6F>|mtVLVdu%nTWiTs~%oM(2_ycu$W3Bu$*=yy)55Ixt???WpzAfyvOp5xi(J z&~s&FwBY$2g3CO>CPeG#q$R4 zcg34Gm4yY>S%I|8BQX4qUinhy1~8rzb#t$|t8+z-RyXpOGk$o)j)bHM)?xGw19h$m z+$#r&DhnMpKp;!VbE}rJ1P+Bo7VK)w>6pF$$lnBtGSPDZ#&c?x=dNI4e+C#=OXkw}pN+d6+q?t{#0)U{4xCGA4k)oyQ z+1PI?rh^3LSJt+){czp>lj~Su?-4uDoXUPS|BLk~e*C!8{T3jPBZCmZs0xP(1xRB5 zNaWA&Fs{ti$F9qD=!0E}xR1P}r}f+6VCT(5(;fAzx_gfPkW58T41ojb!tQcq*{?Y2 zAREHRBs$=6IAk_I1(UV&EpcvD;_XVBmcARVb>{dyhwR2`0>mjZuQ-|p+|cXCZGqO;#_argk&i^2L&2u zh#J=^FJ(1H?@5dwzFq(^crrNJvJVH7@1(V8SU+_L!dYh#qplI&uO=$!s#t$Wj>;gt zW2bf7>~Qfu)Jv{=#qwM>V+RcS1g-7F%F`}WCLNbkg2>+R3y^w~`n34S@bQvUM!*zX zCUq2CI>k8fCZ6cIELrv-H$*Lco|$xJ7QQQ#|$eSl+JkW?Z+WJfAe-Ag6GeQZ2Fu+ zTF=lb`9kSGq9j|2zK4f!-)mJzu0;srTPdfwUTGsg)5C6_7t8j5fUir~)KU%m*$^rzH^7#eB8@Pm+;auhp=r2SNm3^ha^Hp1$(@@3>RHi~Ml*&=6or2@5 z_ql5i4T`*Q>5^k~xQ8f>Ja=$eZU{RCF_yVF88ees(*ENlRDFeP+D9#WY^hgqk8mjt z;7fN-_!8vTtR?F%r;cFZPKU`D@w^^VqT`ev)K^xl~#pveavx*60j>TJ<9MjMQZzT6+ z^vj`p@wk?k3Ny+AH+=SR1JeMqdH<71oo{N6O1$ho6U7lC3FQw_2S%rcH!WxiMe?N8 z{jFl8eVa!eLNVecqF_Xw@FzH#<6{_;az6EAtvhia51h5`sucj_ZLVW^gDTW)z>mljn}f?6A(1Vm)&@+^20Cx5o03b zo0RTn7Rsse64JsK={9?9TA?jH1#{I>`n^^6ld1T~TqVSw0$QV4?wiDZIo4VUndFpn z2N^4|?Tk=uvQmwuLX)ne<@tM7hgSoXICN#4dzZP!-zfO3wZ54hl%+B(Om641JCKO4 zVYTYSg#Yv)lK}V1ww8>*N_o@rq1}rQ;)jE^5EYz4qokdS*7rVP!4-REY9s{b6WB0p zu6JVTQ1;P>d#!Lje>B8hd$$n}Ws$7};;QK`5G~rtGRj4PtTK>9v}PK(!YIhLdM8Jo zsF7!H-~|H8+zRnMb&8o9m&Xj&TZ$7Ej**3ujH$e_Y}6#Ky>W}}^#h$&gzvOiHUPeq z4&YMoF)l%KWBLDZl|cWkj-$UXzC~Vyq(3aa{bL>}=<^;a@I8OdAoUL$jp|okK!4ee z`~vmFM)RS>NUGcW%xY*oRorIrs^P91?2IA8I~iul@9yD$#UxFskaS_8QT>5OM>gGHM4SAvQS>IcyT*nBsn^!ICe2dumHrw-s2datp%GbQJd+NtonD0dQ zP3fTTS`?`WBJA(iY{qXH61 zPd^%1DIP8Qz8B?w{_x+F<^l{}j7-!XKB~{f8*jwqLFc-r{GBfV05{N@F^H4pOPDlmkgQT{7QiTq&mV{xqtPe2u{GqaJN+!#!^d1Xwkkog0*fgPB zu)_r?SWBN-#t*}~ABF|=+N3K%;8+t|)?XV&3g+DQTuKyNrFt2rYas*aWh9S$v*vzM zk~P~`2OieX(L)<@42}z{15xas;Y>jcFx9NQj*AqeBwK9{T5XGP9Snac1fLj|3J;4waruv+^`klQyB>6E zx(Cl@Vgw3ooZ$5nGA8ImWac8hu*2VI%;%cpjckq;tlx;|U{U#4$zlg_0G@&~1s&J~ zMoF-;a|2fJf7k4Y-#3&zPvg0qR8}|8KYnHT6-ZeFBrBj$EM#ZbAFkx!`>kfG8eY?XbP585m+Hua~8gtD}k(2L~oA6aJ1G{-_)8Y>mTb6uEYkZgFCo zAoD%VSFdJVIjp{o?ojI@s%Ros+%it?8{&-Am0@Y@0CTrs%hpndAPK@v?2WfOB@U>M zTbkZ+Bt*m+?bXUo=+h8bCt2i6<)a@PKbw2fqK^?j4ExXmXEsd~EXw`bTIFp)b+XOk z=DQ*s^cZb{WIvCj_dAbH85a)#P8{D?TmW|bvooM1!5BgcBLo5(@z3%||E?DH*BvB( zovC;|Ze9}DP53(>zWL0(+9o=4n`N>!8=#L|jBl7hVnGSxMgg^axm zh}+`U6_FtaO++|uF~+PJ$Hx!yX87T;J7QGLUT^)RVPsTjXm4VrCRx9WvVDr=-uyyqy;)g2-@;XOto=sFBBFPRZfkbz@$43 zJ!?ZFS5g@n;d3W+^5S2e&`GR4G$!Kdj)K2kALhc6JL}b^3F%%l2+){K4ZbwFde!h2 zWt<&Pwl|$pbCE~geIYAz%{N}IC?*04Oy&%)s&RR|5_KVGsTvO@w|ZLCn`NeLhrS}@ zyWMvtM1>XHulM1i4Z8WlM5q8K_fuY2#43ZgI}t2Sq!(`t`9Y1QdZ<=o#*(nb+a)?fiLqnd8Sj#~hh#79YIT?G z0j6jl6q7tAw{XbwX~$t|yQ{MW@u;7~mScCwJWtVz54ci1KU1mi0u-m#2fV4Wh>U!> z{=ULj;~$W<*kvy~$Oz6oFX0c#w_AHwo<==;@6RdbwDXgdf$5kI9od=Euceco@h5QY z&fw^NW3;toGH|p$nFMQbN_YVL)B$OKFVX?r>!?TvNc;{?`oP{`2F7r52=M5Dvw1dv zc6FK@`<)T}{9%A-#eEF4;Cqwtq%3&Ob_Gzb)6wZJE-vQ|0A54>!ejt-JHlhiIHRpF z6qf|Gwx!2zOhgOX(`d0qypp(=+&0~NVA5DREb4vEN^%@WMSjDYV;E(OQ>vqdgS-iwRc-=K!> zM3S9S%ermt)qSg@#T8P`)SZi0iDN#->K;AQaA*}<{_CpU+q{J~=4GjxnV-d(mh|Q}`1RaTgM_zKQ;3hAQUsOw@y2iFOjA%H@P#l>m4Zf5NY{ z?GIR;Nw;O}ea1dw_#T@7aM}LH_4k8YcK@n__lJ5&vQL>j2OOB)i|K;B0m~br8G-0Vdpkf@4ai25cfKAD(cOO zigbeXFq#G%6v4a#vqB43)3Y&Xt*+@i<2N0BWzrd~v=0DK4;J#24fswGWMoA zzRipM7hb}#Wz9PwOPKoF6Ww~4bVPE&Zs_`0oFK8o5Ph@&+92ZH_a)zAp<=t%KZ-$H zWZ)MKt@#in*wpaI?<(8DLC^blN9gtI$fCqU8C8Z+K7&oz9B(U`QS<&Vo-s@%PCG@< zkLWmlYqs*v{@tW2`;K(}j21am*rSOXL~d4o0uxNKHsVa zi;CA(BE(ISM|FD&38$u5yfEhTJ(x+*)YF^y_6UM+LRV0@yS`)eq{&^#s7J z#1q_tnV!!c*IM7OdQK-)qkZM!kGN%dj%HoR@;Fnk!6SR|KsexM9T^i1{QGfUhGYip zy2mhZ?d%;AW+tYjf({N&_IlO^MqpexmW@v1Wr1kw@1%+gJZ9sRRN4NkX9H*z$7e%% zb~Z=q`wyq|=PG>F6jKv9T!$5m&hRRdAzYc~HA*AwVj+R#-tmVIo#FYKK`KFbwKwBX zZ^e($&3zoX&DRp;J5gpkj*EWy2+jiAbdsbmX3&_0Ng)(!gI85Tisuz)~`uFa3HT&v!BE zFSK^>pZx456jeQ^*8kf?cLmeKs1hi6r|aD#Muz&C7&RL9ycdw`3171r^lqa#)9|ApRHL3N5$aGOE((jD|Q@Di)c3P3aR=>5Se`08Xubsc< z3Y%PMwOb5LH-nG)S_J8|TlP0-am>Z7z%C6t&rO&I76TgUH@*!pQ)uCG`De{Ny!$mw zGl5yI$2ATAYrsp%f_19UMEfs%1w(?!qeC1SjfB?XlHRvRB)cq!Zl24tf)8^&SKlKz5@Mz0oNChpYDg6yFm3E7ZHd zw+KLZ$Iymx!neL>rTo6Zx9kht0ZeTFq6R6iNI<+I_dME~`&4P1z^K?R3iZ?4UR^H! z{4$_qkV36dC9O!z>WVH_EM zfhl3v>vduwre!wHJDcq*Tc03Fcnr81;#@OOg3&nksb}@&%97?vVD!U0` zHtXNbHLSko|s=^+?IZY%R*JSH`U%*=0v#f%K7TT?&R>njRCOwqu zPy=E~#k;MVm7U?XTv5#;M(e^(ZDE6B41M*8Y?nV1VbhxZoib+YKA+iOcn$@RI=vFB za57D{tozS0nZ4Jy=BpQ0TPmqoKJKKMwbLy$JO$j%i@F$#l=obZaH|5qt&~$;D>f!T z0Mf`#C(fHXa0KU$OO51x! zlcD@pyMj((HcPHvP?h!NzB|jb!I89JN+>I($ov2I=t|i z-Lej28^t%ywppO}{dHEeW1CBOH zjr{A|czI^;;904=lox%pCwYoQ7673#`8(O_m#UN^7%<3Sq(PDyLfL?* z{;%CkcY&xm(w~$r`eWn+s>GnH=_Khyfdt>V);aCyMCLL*U4#OQQY~OY#F-cUw=&n6 zcNCDhPAy%(mbvu6ANz0CxWebY3K(a}q~sN5jQURyg5c-I+8LJpGE`@Xu2W{@Akr;( z>Nk`*#Z4frds7R}_?SS+-HU8ye>L=oih8ksvk)#&xH#;?Ua;rXSiO+14-|$|*#eGT z;nn-hVnUaK(YOa}mYIYW1(fs~m%3cj3NwcoVHa5oKfZ~N6S@tvLce03;(p%~mKN3< zLEHGT-k@`l(}Q>igL-^H4Vs+W*Zi78HTIJ-x9dTT_C$n-5ZF)aqU0C)_-{Y5S$$a zmg#~2z)C%^38W_cd+Ue4Cs{4`4X9tqfkaC}nQdC$waa;{d}v{p+#DkPiZi7ocx6SPWm=gH}(UtHJi6Z<+d z2OX4M8lQ8!%oby`y57PQ9TdbHxU*%GXfYi6i~%uK8cpx{sA6-;HQ}};PA>yT&?R%b zhfFa!wXJ=^Ze+a8v6dvmJole5&j|N;^00{ zxnwpQ7kC?*$TtYYc`L0YBCrcfFfLH8KP@M^D^+YOs!adlzKU+;K_#Tlvm=IS5sYS4)Y-8iH z5SE^!?}yQ#TS>B^1D%l}#+WqdGl%adBOajK$|$f%{`v))SLIS}CWQnJiBSHirI(p? z`lLy})h4PrhTGPijvN-k7Ur_Kr}-ALhJ_$JS5y$s#n+QNilc4dRm<8mT+y;ud{SK0}Fp}0K~DGfuvPa31A z^WK8U???Rl&(gV^&i!uxQ>q)dhJGZz(_PfLL|q+?fbyf^`F!v{7rTa)vSAc<6LYa8 zq)n&_VkKX3ub`BcLIiy_p$-fPi!c~{_C$c|{lM084lHiX4ZhYy9F}F=u>H>{xrSE* zUc#fXl`00)k(eg;KZ(RBE$^QXCLvkna#2>&@p0p4#4pGvmZrN@SZz?tUhRqXOhbB7 zL8?FFJ<9v2yFuo~i^GO*5>ytxmf*`fr9~o68pf>`%q6)T&oefzyFd zE3N5kY=n+4!kxPVk@DB1?g_o&?|3Bp_zuG3xhnaZOnlj3_$M@1$LB}eu3w${fG%lU zlA&}-LmLWCf`{tF|XI9-?98mKR8|Q;?D`)%Tn2q zYUiRz^n|s$#Tldg#YOK0EuSDIEQsAdI4T~ zc8)*I63;TA8?4jjDlYA-mEoEs_54gHZbuYqx}mz4GFmX}Px&s#4)kn;nJjgI*Qdi+ z&8bQabu4y^GQzgbP|^4vZLpRIu55nhoqAP0mMDxp_8HV`SHIFkP+XfSRR%b#1OLVRE)fF2%9& zo0Zjy0YzlmDG6Wdezmg{YZ&0nkCPP5a2iyuE`gGcK>a(Utu$$uePkrP$Lv4d@&DZV91FVlRfo;t?5%DqdaA~`)D-6fzMAuTcOs;BNoCF+xXc#~MN z)=r$3k9&2jB95O;l^{`tDPm2Om8IJL1*Rt3z?SYTBkpUhR`VAHLGmbssfKii1mi=D zddTy&Rnba;Bha+3Z+J+J(!n>-tm_IripED}y#CrV2NMfw|5IpqRYwhCXimos)| zRKJbL#KxckD{v%Nf9**BY6ozvwm#a`HsjYq#5#VirqLyH zd7*1WB9KUUT`7a1MAI2jSuZpzhBeJYzo1GIH|f)S^SQzu>Pt&id4Q1*dkwjjerqIQ z0-K4~cwRqKn58JPGN3~dj$Z4z%f88u-@z3f~=gUVDn)Lr;=c%c&slg;_S7y4noNc>+o*B@}!1u*;5l_eV5;yT(J1hMxoBKbHpI_NHclU@F> zTcyhEN-^lXjxe#x-xEscRp9*vIiJi>p*-jf;{LV$b|i&`-kNP_+bM!uwNJ`o(b4we zVc}^kt<)%#7xs*kQ4hu*etKYI^pfPQN-y(%AJpb6Z+YWGCb#6ArpY&b9asDw_$QQ! z4eDU#^X0Lnz;ccDy)nE0h%(3-a=1+4vagvKC1GNfpZW)0^~muGyXUoyLMepMX)|K^ zi?uI$wlyDJe{kTI&FYYs=2~kzZtvK_(g8uxxhgSmz>~cH%{@uLjId*rniF{-tJdp5 zHyw4es-?}xF~ukQNeA;KmGQaPnp^W@pFniNmwBH0Ctd+~R&$JJknleN*ndRe9k>x1 z$l(Lp6VJ!;oo#}AD=vc7A9e=)T`b>8a27J=(Rk_KC8_~oBH*+W7-&q|v#i0B7Rc|+ z^dD{?s-1d?Hdx|ZKNzdO1Tw7gMX+p!8PUgyU^?V8>Wl2vpS!L|IEpPQty1V}Vc@49 z)qB~@GO+_6D^#Xilyxz9JT0q)?wgNZs+(F%ALAxJ=(@J}mn7_G&72Pe6(Z23m3OHd zUWGNRfw+h_N-1}Z#SN_9*-?r|a)~Rw79*? zXjQYRB~_RANttl;+iX_3#qu{)Hy=~n%W2yjdX-!32y3VoTq&Y5$Uw`(w_8*Hkp&4V z&aefWNB*-^@w^*r2?{B^_rfF$cas^ErGetU%L{@I$DoedSX_B!c4;%YXS@TFj3nbP z`V|jOp%EW|M(m%92S4J;cfupkR8JMr&E^NnWF0=REMKdj_vyWW5x)%j`(v-h`B=T9 zASHm?9rYWf1Ea+Q&u$p-VDWQ_f5$m~4B)-1JdVGKb9#9GEM&@+Go)5g0PHqlPQ) zP~1dU1+`R(qzS=4J; zC)|7d_XMNJJT;}iWkahciiX?^$_w^3WkfYUU4>%mzoPs}av_(h~_Wj}ay-{Mqg^7!V{F*nssWfNL<^Cp?V;Wnl`W z$M}#gWCvFE&hFRqF!z7CSxyc{q&C);Zp{CeoAuwCo0SaUTKvzr_J6rqHdajka&8tM zc+E`#15Ud8MHu7RYtV3rx`7gqfxAL5kl#Hi2#`M@1UPpK6KZ02ArNBy*6uDT3efQZ z-`l$*xA#;dBVl%$YeMdsG48*|e^+e$>r(H_%V@D&cjSJn6$ zwC>$zoTWAC?O{cs9S%{2CL<|tSl~g>s8|+d-?^uGXxt}X(q^R=j^|okoB3L8kt9jF zq^>gp!>g_S@C4WT0lrpuf@}0<(@f?j$Rnx!m!s3x(iG00H8@A&f7%?rzbkD15CHub zKK&C34H*;b;-F%nNB}HInSZkJi=3ar_4}gdVjO%xhamm7ABJU&P9X`z-~$`S9!B(! zmY2C9YbBxtxMf>1JKW53lIo*Hj9io-A5!Ri5;`b{y1c0EK7p^CHtZmj-0h~*D!W;Y zjLS{xJ|PdO%_gcNgO0itL`hjuy5VJ)&TJ|x1l?4@Vd8^k6hd#F%3B4>o?oMlThU4^8eAT3gTFvC z|I}Beq`WSk4>i16!0y^0g>WefSK2C#R*CMTGLDNQjn^wqc-Wem{hA7c1d;K!o4#;i zJPqw2wKm%?Z({KtHmeNtk=Wl$1>ItgXL)Hb(`G+;VA^HIG}a@}#YgwFkoRu;SLx*X zJAw(TkVhWM%PAz3R_4lD8MLFBq-o51X3h zCe~{*@4J4xNak67p}EzS_bGC>MhtwO?FcO;iL`}Tz;RTBvV^>A`kYT$@Tll;(JpsB zOmH8E{b_j+^P||N4)tjyx%+-8wJW?is|Zt$d(8xM@L8YWhlQ@WT}{szB%&O6^(I%F zPVl+g5nnq5aBcn=*I*O|1b&+F=UaMlk@sDZ5XQ8RaHuj`?PL8HFz?dH30-TXQK+-v0!qWW7cLSF_eh-&*{#Ev4 zX($%&6F-6=^PCr1YVHf-caG}GsoVE`+rI18=%5FOltcBlTxUR3j?n&%9Lu`>y~{g( zc(2TTd>}-LOWWs@8Zp$U2(wI?kb>&XEl_V8Z4kN)4F-hUUacr+nGekz3gm`*QqwQq zJJTuI!khQ*K-p8RVQs;>$*qhBS>?Ta0yYb#7L%*$i>A2p^;G?Q{4T~ z-P9u58W!&kXF-ep@DY-=1h385AUdAVP9%KemXb~i-zE5m?&06)@UdP{mpKMa)w;7&OqAw#mrCwynh5@}>6&`0mo^5vumzM#! zME;?i3ik{6gajtApRg4`00cUGL1d@ffB=YdBDNhVe?}+Sh`^2g_hZ}7?RXUYWuV7= z1bKhfE(ItbKi+Q_qj=2iDcxTYuX@h&nkfughChtLFfP0Rf~HY3CfT`4KJ9_V*`If$ zg%AAet$yGsN5us*R=+RQ?lzvQsVYmYeD0}E<=xF(93yO*)TX$L#AXBa^RHY+YasmO zr21@Le|~X|-*ILqK{745Ds6f!!G%GU?MeRik+08t+8be^2ccR&&$f*s|umw^7DsSNE{hn6+YVN0)bsIyhIwY&#=qPD6`Vf25I#W+CI0N@0KN`jv=e z#xI22=W+F3-;8$7pj}IVrY*@BKOy82z9=O#R<}{3$-Ay@R-;+L=wZ$VLHq})bNAv? z0sppK(v5n^bn}s$*C0YghRpOm7?-;1=3_j~Om2Lsx${mi=#|-G9TKiP{(a$cH#=%) ztBeCRsb$#?RJ0R44q$C}p%?yAkNc0y!1=8<*LD%({!p9y!_=M=-3=M@Oo#@c7#IZg zQ^3o2t0fZz?^KVY1JXZ2eQlFk6D&DTDk<&%So2a(ZW52)&>t#Ce~zLBlv zR)IT2B8T;2Y9q3@91NuiQ}Y}hSu(~SxS2QUt=Ix;&FMsiYE^1<;WC9IZ#M4W^a2r! z+L5szM!ls?4WBQKk-hFsixfNFgDqyXqw62)EFDedfE6>f_$d;5F&vf88K==R#K%WO zc%ETO7}05zW8v{w2+x)_Mg$p*-znD716W7>^Q!hoQukf0qY(8qm8ayo!OKA3&|^MQ zb)($)Vq)tr(}4b!u%EvzWBh#Y9Ebg!Dt8wuD*qLEKdMGu-!}M>@?%4B+usSBVX~1n z$mzJ|TcnJc%L;1%5FJ5;n}ZhxtzAW!gQr^%`qRRbqdfVtIcMnUXd7P)Af+pr0@EZ zpg=pET3%n!u_(G+Te-kZ$`Y?S#Av>veU0h zH#=}pkRD*&L9Di%ZhEUSh?`y@Xl6^ERlEA});Ql%oYY$NI~`Q#{euHDXi)+APxdI; z7=gY$n6Kqpu6M~@>Zkk+QC*RnIc@Fk`xR8=PSUR7alFojg$8hN>5LERe){1z<9|MR z0wX8eQEvkvQZTa}IeCFipvb|>%EAJ$!@7&e`B#MZpJ#{6EPu=n0e${xx!7JHXCXx9u?%T=opR{uHMg>ij5DOrZBGkNTEXLZWuaXz= zyb2d5>tC_QUW>lkuMGri=lexgN3)pr^-{#rmwCo_e0x!WQ-_!a9Tn?wN7C<_>AmE4 z;?2wn?u?!S$o;E)17%?akrIy%Ar@%V;dZKGZ^b!KQa)BkofWDXT6AzTG*zOg@$ZXs zFNPCE$+D1r)z+|xo6WHnQ&vY99Lb~Ty>r{jk1%zOWVZRuM2>6BjZ!Q6#m>GsK|DJV z(>n3%Fdwz+_}18Wu2iM1GhQL)7w_oc%5xCamM!Id5`ja*xi|p}dF^Q&2W_|}`!^*# zCIqn;wB`8vL~?W^1gB_;2wW-HpP1qCRK{~oynl)og84kK4yFMCL^7Q${pwi-8EiW_ zPYX?0PTCv(X-;Tw3vev($DzVt!(iRbv~`?#ro`XpF}Ty?ou}J|B-40-6aJDk{vw)# zpAcX3P~aL-Bs&U2K_XS*b95HlVGe4uobV@9i9!u6u}cza!ggdWvvQA%g>7P-Tk%%A zp4kY=U?&AWg5hd6TH8XIlA6ri@5M*YPcdU6m|T3%ve7H^Obq3Dh|lXFi_AWYLGQ0y zx{4-h=~k}|1+lEy^jF|4$=BhYQA3qLGc>Wn9=rqwYa5{nZ<%R*@KsOju^6an_rO!> z6zFwRsc{JTs3l-5jNuJmW28D1-ki7fq{=AmxgUo&w&-<7>DYVMKhtfo+d6p61AXea z38;f9Huzt@Y9FHWfDR|ul zxF9SlfP>q|IEaG!@pxXW!hlP_|C4yg4)is!GjlVuvV$}J0d~g%-ed!B{vRIxZ@@zo z01pvDInzV! znGUhmW#8e>ySQ3@y>@S(H5Mg8#g4@#`1hyeR({iZx+Ya}wWx_-lHBACV?k*LUC`xgXt}Wd-d81F!F#%iNxpnQkAu8FKdSGqh&G}7fFEnF8m2Ugr~~3_z@5P>*v)1>qurcR-hFNOx=Kv)T2#y zb})4dKS$lU%}AAic`9ce5TxSFYz$yG-f!91gmoH}8B}FfA|rw! zi@C-|TUstDe80r&{MhzI@kl>zfnieZ@T9uJx3LzB(g^p}XS zYuwU$olo{+=_Bc&_5JIKP7AZrS6&wQ72@m4ntr=BS#JS1I#-w0&iKqkf8PEi`8vCWn z)0rqoLf?gB=%3D71|JpZ5j~AWf(m2+i-Sigvw8-A26FMEFT4#<|NiN>8UmfE7gzFa z7l_?|!&Kef`u!3Im$r6-J!x6=yw|KHCHCk)Jo`s_qR)u?iaji6q+Wr;oh0)w-yq-P z`P#x$u#~RZ@V1*%-#fN*_Ngj)j;fdSzsbs_+W&((&` z{`old_jF+0$ub-oljLlN)1h7Q3?oOf1va-F@FKU5@&u{|NiRhd`S+r8)b11}2ORX4^Z~5h=PbOEmi} z;zIqd2_Ke`b7ID;lj?m8>A3E2A!-_LGu(F%EMsE~NQ*+%sn*U`uott%Y&2P~%9F(+ zwyah9M20UHE}p`bv7_FGhq8jv&qkyb8=G7FB3W^wXP4URsiYnSq^^_1tw%LHQt-z+y9Iiz}y6dxU_dJxi* z|1^eyz@fCQkYn?KB`Lxx60tG4=uHy{fev_OM^@h4$4|)~8n0xE*s>jS(^u*C^|M! znnq@NymESqHMRUDN3`^}jEYZddthG41>hy=30^Aj*E(|9RNVWljxAfPd##uj6g z7<;h97%Qm3u81{8jXlN|TZ}!%{u=xJ&)Ho-G;i{L-}Srq{(kqsvvX#iHuFq9Gjrx} zM(F!rspB44KdZ)S4C~9hXWO5SnCm{)chk5F{oF@?#~JZemg}va4n5L;X!QJZM_r$P zJ$-dHqWIht3@3%gdw%HtzgBG>}&_Gp>DrwMilg1y*}l5^^A-+CjLL4 zyYju|lZ6Ld2R@=AF1n?z_v9TmjB=Kn_ZnmV;^8>{p3Og>$q9^l&}!KFS?0`M=Cem+ zIu=y>n?Kt-WXF>Yyfbgysly2$$&+K&K2M^f?61=b5qyZ|_aE-!2@dMksqqx&AC*kcx%5fA>8JT#-#r=eINtK!f2r{t^ktu< z3!nQ+pX>_hy^(YE+yaHwLx;RoeLpUB)9`sd=JWt(3n!n@8BZttKK}aJC9fQQ4O}jg zUpf0?%bF7vivr`MZJ)e0_nH>7@7tf3%or7atIDw<*yC}*Ex)@@p9~nCJZ}SiOQ-d+ zh_7e*<-CDQuO>I#beZ2HR{Gef^6=b0CmB6?H2Qkb*z3#pef;{E_OGsewTBg7Km7G| z(~D`DF21j>)tO}7807DpYEu?#mg)U;;^bQ6G394dSNhiewA&|2TRgF0frG)?i-OF; z36obg4*AMpxL*Cksxw}HZjLx|`e#F<9VM$wpR@`WITcKPu+>oRSun&mX7y*4`(Et- z?I**Bk?Eg#?pLkbkh4|-RPCp1;+IxuuMV!LYTS0M@%!RI@3fz-Z;!$L@`J@4J9Eeb zFZp!n-+eAPj8;>&?|kX;7du~6F9&l>{M9Tpj;9(ftyJJMrOMZQ|IG%UAUp$xlcQLa zhp`ZEnEJKfF`vAhzW?qR6R*IaKH)VJpTB7{|Fd`Sc7&Pto>G7Qwn6IeH)96u{pjm~ zcO%y<{doaD*yrlLYs)WwHo?N}`bFK|y?lz+OP92O zZ)`0)IEmIC+p?~7vSGP>u$zxn_w=IOtSY{CC%d-_jbHx3HzJQ_Ven0_&eJ^7;(k@Ee&1(s@L+BL0v zt3lmZ^IX<5abcG6sol4=0*7lIpRHxprDb5A;H`d~`K$lPq+>m&XFb+hM<)bVn4U@q z4Y+r&;<#_hE#I|S4Xl*x8>8l*i+Ho?kZF^^P-g9QfBWI!J3W8dGV#^Xb^ZROajtve zb?@uHC^Y46l{4>Azh-fqpV&LkH*?apsk$x8CC`%Q=lpzb-4~H}Z4ieg!L zQ5Bw?RXcvPOtdnkg=O;cLiH|e9TT%uSwW>-As>RzY;}6pR_*Q9HPP$9CuOVIIGx#& zvYFEnl(U@dch{WRhOi-9hdmbOnH;|vx@`ET70Fij=}?|a=;+%oYOiZ-9om%UuK%)f z=-E=oy@f_I6?~lmt|KRve#w2c|9tbvUwUb`M4LZ2)^uJ_cG}uLb3@eqL@Um(qrPp; zHHpc-9kFCx&C9s^1xZ62>iq;sJ3qbSz2_qE){AhF+hGt9LY?uMV8PprEy??Xu3nKfBE;`sDEO zxUky&b2sW8*=Tsn=FsE39YzL+d;))XKF+hSuKSea`+-%Zk7jJ1RWdNQU-7OV_3A#g zy7(lCJxIHrHCZq4@QI&iol0Kx==Zi&k4LpE-ty78wA0r%t={s`Rm?i{*{tOr&AWp7 z{VPU$`Y(6hgr9Ny!MM?O-pUm_%|D-TwRsX}|uuc|~z3Z*Tb3@tY? zjVs=~^itdJTdW6~M4oLbenso#G&mMMJ8i;Rq&+ZivQ5I8Z&vTu;6E4kTHgLXA&q9< z_Pxz~mU6V3BIqUPso6fuO9>)7rdlyqz)ZE0w!dyL#sy?^?c1}h9TUBN1w+cZwEcg3 zicaT`#r_XWr}kds;`Y_!VyE1CH}A+EgUv?T|G2bE6T>vd!^iJ)4scknxV>om(z};L z@k2+;Xq)=)Uf5n(IeOB`0Aa|}7cWYh=6qJ`&}dW?aX9(+<=Y$0toBCgE}L=W=F7(Z zHysZ3X&xT$z2BsFjd1yp6!Eg-r&m_*v++zh@VIR8pvB{7nD0Imxyp1@!mD$xo)f%Y z7tjY!=9d*mRrtoIo>@BDK zj<0VxS2OHUFT8M@kmb(r6H(`zZcKVyDNX;Q6s-!BR$Z=M;lyxYqA!V@$5 zxn$2yE!WsPvuW>$CE+jXG(VmHZTeZK=Lu;cj}91q8-AnyyFqQO;m3Pi%Sk-Hy}W(h zX$jWjr>Mra)w6a-KcAc@DzAHLvGr)-qb`OMR6Dp4rt zAUYi{#z-qM2*&4u{>fJFpQ|RWnY%N0*4*8btGa)YGq=q_iwf3on`Pdgvnwt%Xh)2G z`kQTEx;30OHLtaKYVvh*%C!N@__4uxg5x!FuQqz_-Vrdf^$SV=wazb!`ku=CZKVHw zg{|VtoUK0;=dtmQGtlY2KL{i$OwkH!nOU$mr7{i^R23&%6REZ)?tsQq;B##^I3KA(5WZ$bF2b9q%) zf0)e={L(7#C&S6P3D>WATL=bc&KbQ*e<|xWS9tKbi9zH<&8@A80jCQ%tj9YRhZ-%k zXU$AAjLEkD;@gFS&tA{D*=N=e?v>!zd8>2PW5^0LF7J-_n7uJ?9}~}35BWH(_qIiU zIhTkbC#Dl?z zCmNsn*XtM2Z@&Vq$1JIho!?uN!)6J{XBIl1sk96Dlbp}`{EhYRLy{oY&NCu05J+*KbnNjq-y3_mo?}gb9tS9&Cxi~c@VAS5aFOwf!Ts3Zu zc*2fZwk^@NH@46E?q?A;*>#kAI;J0Lwjg{e=B`T|9IQWqUf3Qu${JZ%smE8s6$T#3 z_x0v1h`4iP!o}SLHe{ZoN*sxy^3(>{U8j?uG=~q%QuE^KE0xS=&=ZzfMDQ;Z?P+PsXJz zv(t`0-+A<+;41B-Qx&SaYjN<$mL)j-S0J@Vh4~n+}W~w{Voq-i(Z!uVCDKpncrDGO(E;T%@`T}SuKd#fw^zi3D<8~m?N8mPVUu_Ils#C^SV z%Gd$R_9Yy;kvY8J79s>wAaQBftMnS~F$T)aJr1OFy$X*jKuzY3!4I zUq4})%=rG}gll^x&p8|W?5e!-gU3FZBUH-&W$ zrso$gbo^y!+DHp0i**~jpPc`z&XSMkuHCiz%;O1{x}O_m`c>?%k4{+1AEdj9cr(8o zaPHWgKOd)zoyEVnT5!m_`Pmn@+v+$k?PFH+zKM~(YDk~uvh2wEw4t*+Et+>OzhvR` z*y8Fhw&9w6__uFwsIusucH!d&o#nc^%TjmJ%qI6 z)L(hhHE~j{M3G}>t1ubdF*L^(EeyXf!x4b()yjc8-7chq?5(Zw%CBr<{v-t7FTl_p z-2&O++U^z9{S*sddT?-}5uV!u0e!Xi^AEKHrSSk#&#TlqE7 z<@sKb&Wg>igzm^NF9RPa`%5y#73N!Sj`;mh?9_-enctZTze~J5IL5Kb|T# zZxw9SdUdo}IK!^4Zr!gBf? zaXb3ajB3vjI;&o6<%Q8kxmp89CoS~qRb;=Q@2&l#pY6H(TAaFOb9&n0~gnx_-xh2k}W+BSW)3y+P*jOR#ZAXj1Jv=bBn2TQtGb{ zY|bpTi&T&93t^G`E>HBD%8~GYHo7NopkZ(RyB}O36UyWjq$-61U)sdBF~tytYIpt+ zb>oCKu%DnWvR1wQi#0+0#Y<+=xHCT%{nS+K_OppFxPMy-#`9GQe@0JLr-A*t7~3yK zezCTnYfIRRue82#%Lu&M`>ob6P4}MlH?jSfTF52}4t6V!KPGH`D2O3xqq$gC!IOpZ z4JjWSUD+|9SAUG1*=*4{t;!*Nms-n==*K_2X?oIT*J5+KZyu*^?LB2c=DO@`V{?nI zX4T41wq1%3d15?SQkihcc0MmX->rDp^&uG*EkhqHAF5~XH{-z{TG6}<0?~JUKL5pM zz^bI@TezH9vk@Bvm+cy+efzWAVeX<&W`?(}t{GjKe8IQ*&GNo>J=}j9w_jGc&}tk1 zPj1}Ayn*a>KVSRdT)be(&CsPMdg^{XF0CA0n)>Tw-`j$KON(O<1-}`)@X6fnyeK* zHXI-1^4YY5Rk^dLPwBVm_0*;_H+O4p*Y4xUHqQEf;RJ5qgT8-q^mBD>LtF3n3x4=I z^5<_t&2Igv{l%=PsvkBCD3@yAxFl12_4`#pzi%%M*l}(&^~ch4-UIBthVER_Z2v$x z{elKb69*-76O`?}meua@f?JUxT?&lg|9mq~zQ_;|8W@PL)Q}e$@J2%*=FwH3X!t<0 zLSz4C`n&bu)YY3C%=*k8Su$Y6?u#X77q8vJcYeNX@pnH4JdZy6t*6{P>T=1Sn`6c2 z!f;3=Lq>euXV-M`^>xK`$Ty$4 z`1mC1<_#Yr*s$Z`-D!U|p4`R~Tz~k;;Ihvb^^e9s^Z0aqw%@$FPlvxWD>lE=tMrba z@wA_gzSi46z)tsLjldm)*7CgKP8~>_-jb)kZN$fiPigmCKl+TV%;=fB;YiIj+2brn zUb&DxqIYq5&CBoGGJ6f_vG}_p>upQYYZmPo_~vCF-T2Cy=?51)dl>#if5qe5r*E|I z{RMHMjz0=24osM1_+#JHaoa{+vtAlHb>r&5*;GWqFc!mFwRyxhGY1bXUwd$5OR{rgn$%`lLiyU@vN#-Bpw!K<=&Uw*6CcG~zbU}p?B`p!bS?&r;#g@x>Z(<=^VzW78W<56C}(K#jpA)b6T{L z%${)fmL5F#q-KEjMfFM^W!n1m!O0xU)yIM=CY9~w4Kw}LJAKla z8@g2J3bRokpJvU9@n17?aI;RYw&ZZXVE&ZX-0DC% z=Vk4UzKPRp6@6tvtKM9=^tlVGW{y?F+97q@uV^nZNZ-Y6dBpnR&dEI6;1e_KE2Lvb zpFjHIhq=c2dlKXk^~tAqIIc7uQF!P=XuPO@pr7de**u35%ljYQ$_cTOh&POSFtv5k zZ`H|jF1WA#?UMvA$tSrQV~reE2KRkL8?4E@_dKVvQs3>^{H&zaM?(Fik~jbQ-RAbc z9(;T9_=b@?f*(8W+CG)lT0Cf+zW?t(pDWOFKb{@^+wzk~k^?t4eEH@@|0LgP%jH{# z&5LY4yK_bQ#D=?5MwZZXCWntpuiq>C(c-`lX*+&fv2@Jv3Qca{;c?Q(+eby4Y(H^R zUa)dQ{=ip8fGnTW(?1U5}`Q!Df==r(dqs_bRfze`x;FFWUYT_S+See|O=w z&1LhCtQcw@^YLxX2iohKsOg)UD0*8HW!ct5h3#pgiuX5BYY#P1)UhTiZoH zG2Kk@U7M+$p3PK+Uo+(q)J$CtZKmdQZ>BPY!1VxKFZk0zo83&s<~386gCK8kGxcXt zGewm_W@R%)*ECZ-KZ1@i&D7=z2>T2?4WOS5nT_CC(oBuvP}DTQV}KQxqC5dT0ZD*V zKyMXf!5s)F0+azN0F?j*pbjt!Fa|IU@FifD3g*E52Cx#a8qfmR0N4oF4A=tL3iuvy z2=J2%eum4@peQat3t$Xz2KWQI15yE>0+s=;0d4{EH7P0t3HBo{V*c%t?=9v61 zzOcU84fnMxV2_os53Y~z)=&7_Y;1!Xul66y&Znl|n%NG-pOKSK-G_S&Zce$Px&mhd zk)wemrA0U+r>eLtf~NfZ{P9l?5gJx4EAYnwLQ-t~sH>=wGXdg4DdUq?`V|xq{k?ON z;^`7;9bL%mBWnLN0m1#9EF48dB)7}ruWqIyhRDis$d7!;5QVe~GA{Sarvw%Qs0zyg zR6X1b^8wV({zwNPV_-f-!5<4CY2{nt-gp3Y473@zrvL&c;1EWSP*C}F0~HIN`vdYR zK43av(V%>a7Uxs>a4R5ldOrLF2fFM^iL4Zxqv!%jdAYob9xSC5c$=7(3_+Y}3Ed+p z%?Ia6(u%4|sif@vwj)*)D=G@>#7Zh+wv0-78F}}qSSrD5CJLO(R3L@*m@}G`>kd?h zZly9x2{*mG zC!;m4R9;ZRJSrn~rKM0_hO8#viYP~t3Z#yZ`M&&P(xZ&HxKxG(VWekzQ9iYHD0GzO zx98DX6WHAhfV@!Wkw6B!zbB6>%3*JkZ@`m0q9p|-(n4{m6x%9_Q6^DViP=?VE|gSB z$mv!Lksn=M-i7*a_akGSyzfH5FLN! zm(&$GGFU7rl(d&}g`}*aR7yuh(WK^xg$W6nqO2@&YEo9JFgw1dI8K-)g6TWSR@TE} zQf8{ll$B6YSXe1lD8wiXWs<4_Y~W|=;(gCS)UjH`b2#caU}sG}r7kZO$}(4|vf?}P zNj+!swxCo7V~f@FVp;hRxk^6WGdnxOKfo_QUx&K0FiKc7$J%w2BF)B*Re$C4*tIXj%X| zg=Dx?EGd&$qd<7mFocY}Jt!#^cSdxNqDxXGwQ9nR)03%qIbMV*ukuZhDJrnwNQ6=;@&XBS1HG<&k!V~AOr9pl%aLg1eNs8< za}mjp4!o$cQeKI&RZ=dmDW{cmsBBf$3K~Qm<%XCj&|g(fR4z zLk}sH6e-9p?yDdzic(fOCWvAo{C&VC47kv>F?bH#`qilWfSmxU3H5{cKmCll43_{2 z=XVN61y;5@esqd-NR^zdzbkc%N#&-pP@|Yc##PHoQHkh6xl~c^UPTw90HEzHD3zk6 zBBsJQamCVdI!;<7D^HWwFif3o+)+1~W_Sp(97-P}RcU0RuvA`N1T9Sa$B@tp6dk&h zY+CR``WUgQ7}7M-`<=3_s^5roH7Y1olUNSn>igl6(rTt^C|g{b;OH`JqM=otiL|Vu zst&?46w>NKxvD$ppco=AEtS`xcPOeZl~k&G3(zN(L$s`rE-02%N(x9{gpNTO0Y(Xl zuSzFrqUkERoQ8xVDG;h~CT<<73Q+nb5E7s1ozjD_Q?Z-!so0;9M!17f+X}^1axsPl zHS)?5g0E-={(H2GZK+hnezZ5ZzYmy>aDE$LANp;;+P!E$3E-X&y0wG{E@|flaHj)z z89+T8sO+DilL9T#ok4I!58)?#2tS5<{*SmPc<7#f8hX@#@XLUT6DWIt>Bm6>xQu(E zkLmwGOWez`)zszfrPO`kJL~3ymgp8ByaKXl!VmwV%`)m3xj%(80H~jE40)3a*!TYja(igBO`GY%o+Jh7@atI{$f#;xMrPJh9vH~e-XEVrN0vQ@YNJ0f- zgtd$Bj8_#21zlKO0TxovAew387#Vd*=ol)|{h*~prBo;fBV=eo+H|T189Eixq}?ZB z?<5JTlyRx+txhHpNTQ|gvf9)CSG4bHr6_MrmWGBFo27Eun4hI`>_PyJ)Uhl16!k0e z6p$%FeHXhbB3w&LYndO4I`$Cx{9ETdER-oq#08RqVyXXNGGH2lMENV2&P+@UR4K>Q zHPiPdNK2(v()eODD>!14qGb47ADUYVyXMM?@kkn&9teCDGBPrwr~*PwhB>%LOIC^O zr>ZbwAd||8WkLZ!4iH2wcvi79mUke#%BdO$RSUEsCM2SU~-IAuC&$nVpkC zC1eVd(mX(gegs6^5X71W`5N23N4l2Dvoimsa?eRPpj!4$X}AmuecdN78ouJEMe)Y555 z6`DJ=dzD1TTQrPT1zm%O9eH&XT?A#or^?Ei_#xIrU1vXCB`bqU4BCLHLnO-O6qQ1R zs|IqU8dX&IGW~>SH*!6WsrP|x10~euAmqrf&z&&KGg{-x}RS+4z2m_=^Ne_w>UonQlqeT^(k@(!S z1k~P2QvdLXLAqGd+bFM&c1k(EWS;Zd?W-=_{#6AP;)3eI%SHc|B6jdk_rW{m>6NK49v9Jg5VnAwAnlL*l9R**- z*GHI=lpxN)$V-$hR*t(=IE?DElF|}^%S%ZYCJnlDSuh0DrL&k*Mdld?%7iPgK7 z;_rm3%0hNJz9S>dOcbf}H$#LXl$cIZM-14Ww~X|3akelqOPrpQEl%$tPS3>fUCpP) zLtd&dEl(^;%g#&^Wxd0%#%GFpAq(HZtFssxor9y;MQMrIJ-f6s{;UHCgRpjXKjrI3eVW%S?H zgX*dh(IwAS@leM*J1?Unj_L$=p~(SXvd4w5c3}CIcW)RrR#lkVpaX@ zY9BQ%YK5q8S9v*U?Pd|9<3zS6h>*eUHd4o5Ro|0mJ`$+fKpd#Ms}XMW$Zx;2y#n|DZVbYQaxC!DV431isn5yH!937ga^IrOLhb)2bm~l0HpuNZ>(ss{Wr#D<(^ER? zq_PaE7*%Of)t!W#3^a|TNk=QCwy_G=sToWW^%13rlhWeTGm$1_24hlC5hu`LnSS)aP@ z<@QWMnPa*)WjTsZNg_t59_OHEh>(r;HXYtfBJL+Rj zHk!Az1g7&Qs+FZsT{quL*Ip*xrtOq}@j^TjrgX}`IFxBs`9{}`h7|dwj!WnIpM`u! zAJ?8bH4W+9m_i7nW+q`+(@&)C2pPM!$5Yq`l)^YzRoOIUDec~Q4AOOML*ka2laigp zbmBcyP>L9tD1_=sP?GhD$V6oxc8o(*4FKuD(Y`UQ!MnOU*`Bd+D$K(J6{$lx%y=$U zl$xHIr-~05ffjqAaG%5%o>VQrE>UG^B?UVz}1_1?BBL zR>I%c4Zyr%kaEZCBt$E6BD|s29qa{SBNLU%IX600E%hxLNX~L zuY~p}8arOP1&0uw*~NGwln)*%Eg(~s3alAnZc@#N$No(9T90z(MYX1(oN-h?mZH;P zp3~y1D>0Wq9#e7N8I9*(rN5MX$wReb#4r-1C-YEC50O>k*)$+9O!>^Ld>+NDDAtR} z>|-UF^`QGBp3HP9+15$pZL4;1%-RZhP%MQ?r9`D^FqK1ae#{&=Nv8-;@BbO+yRm4u z1*3Mbv<|P#(j622Ok{~6vN3;&gR1HnL(t?2m#kWn&wEr6Yb$LCLS=Tf7aXP#&^1`u z#C$KAy%CpV5<*!tsNPtY%VO5;vecyj%LOQ0w3N)M2WvmT<9OlL}Q>>-n3?RicoDhmdk zi!_p~#KeaxHWaOpS63D=3r$3BMU`rPJ}Vj@FX3&~7NDX|DC{+Rt&NDHxO@jh$)toFez;BUZuL<{EAzC#$o^KoAfSo;?=mpjqK4#qstM(}Kc3pwdgq6+ED%&Hd5j4B4%#Ku^!!%N1>)viKSa7iaJ5GxqEOsS%}Oi9>TfO<_tSXz}e zydXnTS1OkjD#cYsM5z2(WVuM$CjM2LE0mn-v?}~@4y9sv0TwVBiRy6127j;1gX*fe zgp~ITNnr}JxQ%ox{fuxXeOV>43g8QoIO12Qi!?(jS^p+gf1Q_I;;-;0ZSH$hg>}up z(M8rA-_FM#vRY|j51F*IkYrLxPfW#@N;?G-!&j^GPg0m(Awkbe)R6Rd&d*Lf9cfRL z3u`2G|0MPQLHdj25(s^-1^!;2N0;n!0uqbWPVg1nPWMuE#0L5?yx+$GO4-XVaDe;nTmaI1G4yf4y_r5di&u8Ph( z5Gc%fSNX+}j$K-qU0q%-Ek#+Xz)`|dzn)lES0K{0_~P2%(J9GPTN?y)kRXumK^6{l z)XV=7P^^Qs2WEeOvff6}0uoY=Q62_^5m=3uE2KJPaI|(h+V;_96u$xU)%MklOV$X< z`XQOuSFb&ibr%B1Ku_?3>)5-baw+hVdo_@CN*ZC*Z1gwt(KpP2Y`BZyUj7PU3*f#S zNF8gGQ0=QAS3Ni-k$j@ON`@-H`FKA!l!F~*~(M7%GO;+XJF&w~(k#dn9@ysUuHc0}JRw*4WlUFOi*Ev08 zti>#ctCsr-DbwAn*a}p`Ze?VU_@JPmn0a&aVyOC!32VRWM^&uAIt|t|I=i$=C1^%Ddv8GsF zDiteNkd*^8r7@LbMZ;>HXZQOOY#W=9h#XL3@8=&meGTssFUH<-LD=-#ikTQ|bZ%O|pLKSw7I&lq>_kDQ|^m)QOTKOQuyJC1JMbF6;sxUVE5l5bY5Z2E4)maW@bckKQCx0|Y`9JPI zeDvnfk0*cn`NG9Z4<0}H*V8|rzj*oTHJiiL(A3h_)iW^U8yTCJnps#{S=-p!**lE> z<(ZDYxzc{B9lkgR5M8lsI0~;AdwNOfh=<9^?gddT*({t4(HkH{0LE`u}4sWYsu!+YNOk*(HXP83Xhj_4OMOKxWg()p&PD>e{zb&&LKodgD>;uuse+k{z#NbaeVwu{k(XtOtOTY7BR+Aaj zrG4aIxm~Bnr=m&b4cpfp92vCTDE}*stTcx;aTERM6UFY&qe3QfYkQ6SDt^%ND#P&e z<9?C9UblSD*PA1_<6ibMn;SH4{A!E4Da#`#Z_St6E!@$ox@GdHyiW=*J_~xp-SDQ% z)hV&8E~wX?{IAz*=#1Cnwyb(04D6GUuy)hwwliDZb;IMGbKb1qWT4ktvc7F}pvm+t zy*Rs0_StRZ)Ge_7XQKgjj;)~ulQukcev#sI>H6XL>P7vu5(^VfjhQ>1`nX#s`M5Rz z`ts)c(Iyu>MFR$SMG+k0#_AM5>TUXei+|bg``|MxBWB!axzn06e9naJQajDHKW44{ zSLBiI(e5YmlS?d)KfK}-m-y%Q>(>gtiG5hZ88ycDPSB#qi^D}{=Iox8el_mb*Vd!w ze}3amua68Dn0p@y$}I^PbmY*+*y7N(-cMBVYmd|R>(85(SuFVE(Uya|UlzFb?i$xF ze#W-yv~|I~&)b#$WlMnnvR|Wb{5I!vjgqT>`dV4qeO3N?jL?{4sy!{kWMaSX`-D&Z z)bDts*Z3dqp8VbG-pYvwopwyo2>pEBe)~ssQ&qWL4+bb-G{cvDg zj%R5^_MouJ;X0c_EH3t%<>n(FxL{7(7hnA1`R8N1R*!k6AKf|^V6x%<=AAnE>yFrc zJf?9(yxm9BZySi;7iki$!H>h~Iy=8v5ftPes?l_E-FW9sb{z z@RI61GkS~UbK7|iU(9n{v~hgwA77uV>_4}~?9t}+lN&yNz`N4ND!ljaAI}(Rp1HF% za$TENu;S9BD4%W*?ui_JD#^g+q3_3kuDOZJy>)m&^r0cnGuOv`RX8SGBW8o+pB`)S zOH!k@E>0d)bMHo;$7{P??q9!Iele(L%dYW5i zc)iako3nGCBqZg|Pbjun(`w-!J;Z1BAC+?lJ$8%Tm$8Kv)1)N{?p`tB>&o4+lXiSL zeBtpS8Gmbs=e;LP9M|SQt7P<#te#JKOOHivIIwy0SBcHrdIDkB%bHx|$WJxy)UO?ax$*3h81d_oorFf|l73V50t-Ub}D zH4vr*folmiBiot?e94=!`4f7wq#Q0A@7i!}fm;L|ZGs~RI^kHr(ZDSRPGBMscE+)R zBYVuh1}@e_(7Q7Z@9=PAf&1@X(ue_r2Qa&j2PjGY zFaXorm4$dHuB@sXFc=dIm;+Ok4p0E2?05$ZkyR+l45IJcddNtLP@D2s)Q<|hEb!banxjL z3N@3OO*K+WsAW_W)k1Bc+NfRBK59R8lDb4)rLIx8sC(1{>IKDOX|eQKhAcCd70ZU@ z$_iqIvcg$WtYlViR)5w&mV{NrlC!E=BUz(a<5^Q#4XnAWC9I{aHLP{4O{{IKU91DF z!>psMldMau8>~C5N35r;S1cY|mu<&(X8W>(*x~F*wve67?#<3+=ds0XDL&>^!meSD zVUJ@^WKU(!V9#VPW-n#0Vz;nc+56Z>*{9hT*jL#%*!S2^*w5H3jt0ksW5@C2cyod| zp`1ug6ep3B!^z|H=ZHCFoM9XVr-n0yGmSHwvzW7j)5K}vY~k$Z9O4}3oaS8OT;n|8 zJmI|Hyy9qad0a!T71xIA%5~@Za$~shToE^ko6gPQ4&)YaW!%x+G2AKK8Qezh67CA_ zI&Ld>7k5ARF!w0;6!!}E4)+!J4VR(0HWrLPJYaU(-m_LeoLh zS<_q7Uo%QmsF|plq?xLjrJ1AIUsI}Cr#V`4oaT7VM$N^VOEjA_w`gwD+^2b1^Q7ik z%}bgOG@oj|(0rxI!^y=CTJBn*S|Y7vt#qy4S~*&|S`w`?ErnK{))cL&T8&x@wKiyN z)7qnTKu6q7@0eV8c{(53PiC&qWLa#<| zoZe);2ECbjje0G58}zp5ZPVMYcUAA2-W|OMdQbIU=&|%U`iA-@`VRVz`ri7!`ce8g zM^ryYU#4HDKSqDN{zUyL`cw6n=&#b>q~EH)U;lvqVf~Z(r}WS3U(>&#|49Fp{u_Os zfrWvcfun)DfxkhpL8L*lL9Rib!9ar&gJA~M2BQon8cZ{oX)xbloxvu9Ee3lGjvJgZ zIB#&*;GV%V11&>cLw!RFLsvsj!vMp0!$iYW!*s(e!#u8+oA{c9 zn#7xkOp;8}O>#{JniQGHOv+3~nv5}-Xfnm5!DNO>qsc;(H746k_L!V9IcsvsQESw$)s#B~~k}R#~mH+F-Tc>ZsLutGiaOtT@&h z)<)JA){fTB*1p#M*1^^>)~VLLt!36F)+4P)Sx>Z{Y(2wzne{5`ChK+9TdWUQAGJPZ zecJk}^&{&S)^DseY@BUeZTxKlY(i}!ZG<+7Ht9AwHhDHun-Uv^&1jo(HVrn7Hp^_< zZ1&k4w>fQd*5;ngQyZSGiLI5byREmauWgWRl%**4ua$5vrG#&(MBRNJ|>OKg|g zZm`{Cd%*UJ?IYV~wmdrmFrsZ}JKCN0#3zP==tMe| z?oEs70vbyxbPYXW3Z#pG08FAG0(BT zqu5d5ILdLn<4nidj*A`FIJP)$aNOm%-|@8L1;=ZSw;UfhK5=~E$Z_I189LcGIXbyI zc{>F-g*zoXr8^Zk6*(!Ks+~qVjdz;p)ZoerNpJqWt7Wkm+>z1T^75naoOOq&1IjLdxx0C~1-nJM#keKAWx3_KN!?^_a<`FgW8B8M zO>>*?w$QD~t;KDR+X1&jZl~NXxZQJm;%4D)YnPJ<(}g%b}w-+b62?6xQ}+9 z=|11R(S4cw8uu3WE$+MA_qiW;zv_O^o#Ub9q3>bhVdLT8;ph?I5#t_aqrb;M z4~a*SN43WokJ%mzJ+^tYdhGHz<#E>IyvHSvyB<$HIG!4wMxKtI&Ym%ziJk*JrJgcR zxo5TKIM0cm(>&*UF7{mJxyrN6bC2gK&(oe)J#Ts5^?c;X@-p$V^K$j__e%H5@e+GU zy-K{wycAyJye4~1@tW<`=(WXbo7Xu6o_^df@fK%f#E=JHR{0JIXu8JJ~zk zJI7n*UFI$K9_c;Rd$#vn?QN{0{q_^t<7A$4|qb=dbH;R3l0g63r-6z39bq530??Z z2{-|~0ILAU0QUf2oTn8ZAPPth7#JW4C<-VGPy~z)Xb6}aurOdnz`B4v0s8|^1)LAK z8}KyXO#m;@EYKp*F3>YDI5018U|>ODNuWHiI#& z@Mz%iz*~WL10MxG3)Bj74e}214+;(v1|97l7SHiA_y$NH5+l4!ayM}v)`-ew`3&T^x`-hi=*M*M?9~V9)ydivM z`26t2;mg9;gtvrm3vUZQ9DX7ETKJvtd*Ls_IT0oiW)Th%?h)P*0TIa&y(9WZ6hst7 zltt7u_9tq#Nmij5mzFvMcj#a6!9v86KND_6X_V~9O)Yw9w~~@Qv?C#6DZ|L6EeSi1k-7j>%)cryCr`>y=2py|m)fzu|=_Eu@hq(Vwc3Oh+P-EDYiBCeC(yzJF!n=pT+Wox z{Nv)|vf^^$`o~G)6mg^C#>I_~n;h2=H#@E|ZbRI@xI=L#<1WNqje8KM6>k{t5bqlA z9v>7R8Xq2?9-kX8i=PrdHGW3?()bneYvMP=x5n>}KN^1}{zm+r_`C5B;-AIy5_A(R z5}Xq}6Cx90a9TrhLhppEguDc4f;?ed!nB0N2}=`JB{U_pCbT6SNI0EvKH*uyiv$gk zk;p{kEea3`MR*xZlp~UeYDA+%qeat1OGHhgHKJ{z{h|*!uYoncGOWilQ-L2+4>kf9 z%F90d{0TnfGXyW>fAI7uhT*f-su`LOX14-aMKN|zkPRI~*N4`lRHshWhu4QgV5E4P zm&q$;kpNTuaA~rdzz4vEpG8yJSXThRrQyO4JOD2IESd(2%=yD5=gYv)f}aIH3w{<& zgI556OT&d9cmQ1ZSzyzKJ`hma(5DSQ4}Ko}JotIg2Rr~S^Z~C8JOD2IJm}MgJ_rUc zT=;qL^Wf*f4?K7U0JzWxJa`2FxbQ>1@?wJlk)+6q2f2YCE={w^x(a|z7Civ))9@o4 zcmSJOc;SN21%xhem4xtv!3A_+2C%un1K7bhudL2SQj( zVlWNK1aaYVStNoS07)nZ06zqEcg)) zegHVN@q-NJ!sWuHc<>{Gxp28Wuxdk}HuS;e!liidBb*DD%Y!~`=+lNixZr1l9{@jG z@B;^Z+Rz6V{J_DFaPR}54;M^MV!~3DMEIFV!B0>WA3sKLjS!AoZTPj}*M=XLGK+}u zSbUNI09=w7_`wf=YXsK_;qZf>3w{8}TBHcsMl4FPj7dTOa7m)zr}zlx!!?3ygmCz^ z;n#*=8-B*{$X3SqEMsB-09;}W_`wf=YXsK_;qZeWy5Yi45`YT{Q5t{*bWRYwG(Z46 zT$TVh8UU9CmxXX*gAN0AO)zlasDvg4Nz{d^b<;s9`AK=^^7 z0ia{Sg?{(}aG@W5Ml~P$`N$AH42oL-To@RB;K2v|eCX#xKl}i=&<{T%PcF0&_#yvF z188f*1t5sz4;y%rFKpo9=fV#cK#B>m99k5n&}y^52hirh1pv=f2H=@O2|WDZ#=4|?zcfQKJ0bTbKHQqLmML2}3+i8>1<7y(SyAoYCU;b*~*aNvNaC>kLE$^$Nd zqJafa9&kNC2eY#P!1IBJAAA7d;V0%%H89Z40T6R>0K~K$=m4IN3eQLC`M|@^f*;|) z0Z*}M@B!G+%>l5Xn*(4&HU~O@=L63No)0|y-~#{;KjO(;$SwS%WhT)9z-2N5O)Uaw zcxd2h;Nb_r1s;ASnzZ_al*@GjIRGwMvj-jo0Jy+|-U)sHT;Sn{S&8Z4LcTWS6BCe9 zrYrzlVpafL;5~pRNraybKY&Yv9sn2e!S4h=050UiPlFx+7kJP+!4H57Jp3s6NG>Ve zq=1oo#)ZE<3}}Xi6hIO;h6Z#Djfz+4kXq7-mWUw4aES~;PsB1Zn0tc5#qcn+K&s=z z@DP3_kCI;*Tqd6z^%Gyif$Ha|^C!>@|CxQqcQBRtG!l;f1%2Pc*mJm?&Oi7Q$ zZ!Eu__^DVX4EJb6NH`OQdqNwFP-Pgwf|k&LhsYz8z%zVG90>yten~ih;UTmLQ^_MT z>PfgVOhpTFReT7KN{2Fx&@ypk^b$hC17Kuyq=$(sp+y`RSqu%Rz{iaA(2S!Tuuy$j zq(etJL-{55q#;8%en=P>I6?!L(2{$E!BLWQ$Y5v)4`_%yaswWv3`QnlA~;6AO1CnI z#6c;K=woyP!N_LBbc$bld>B0{dCIsl`Z~v78CO-jReFg+F8ab)COeqorp{8B3H>yN zy99@OLIGgLc$usqVT2QxS{5)wE@Z_L8WPUPRo)Y9EYU`E z;$m=02}G7sC&NSH1v+vuvY2!bdCK@IWstZK9wJknCN&R30U1QB%7QePrA<>Tv>uc; z?t#KRa5U}!2**9aF*F2+i=kt}2o8QVuabvG5W}OC4Id+4MN96XQz=u4drKdQn_90@ zpE6z~jL28Uhuo73xc0a~CN89b#JN39gomLcIM7nsu@qGw%Y+gHt-J>!mZs_nHCzB) z4;+OHE}>^|^$150LqquL;UQismT?(bgr**W0PxZ6I3knKGGPR#yeDA{AA)cJk6(g= zOdKP$y(4k-D!YJH002rt^ zfbvoeS>TCfXb6tQ+=Gt`KHM{#y9h7Cf-oYB$bc*&li@)aMea!$^pQ)6BQyj^SS&z| zQ--Pefl%U@cq;E1eM}rkJmMf*B|{Y#5=P?E9zRvQl<|)x#;T_&YAju^QVQj`uLnmx zToTS)G-wdY1~4uOM;PH%harUFWq1%yuCe5Y1|8uA523F|5Q(H(w$hJZ;7J(45gu|8 zT_hgLQ3sKt=2PAinPX|COhQNanD~K`@GxPNl81>4?ui}}4`sYb0J&Iy0e^@4VDln{ zGICa(ztZ_1m=}>26e=YC%rDWFh7%v?4Bz0ufcE>Kux{=5f#kFT6%9V#@d4*+qy>o7 z|490wNBPzQ$@34EuS|Nx?`*aDkox2W?bC%HG+hev8iQ&=_d}+qrd%?Fl!z?DPhad8 zg=|?-u>Qf`Ly9R!mc>S;=9iRfrR_Vp^--f`Wj^O%=(k=~$G?8^d9`Nn=N~j*@$L)G z_$0@A;C-ip4`*khr$YIDH?hG7vop~HP}jT%!-Us@pGQ|=_c>p6g z)}xS`?q2wx@GF~l@%kZbuW^sW~6l5Tmnw%{XvR3Q8QTe07L68k{tYffS> z{P(wFU%)FT?gd%{A*yIlsq$i7xf1JPiTc^0dJDsy0a|ONsiLPn z;>-o(?HAtCu*{f|v}721+Mp#2DRp(wP&H-hWMaYj_*3O`Zv=_cx7-0Hz#KX<9WCXKz*P8ADA__<5jnC@e7O9Es4+{M3%LflpYwhlLj zFaAyU&A3&A^|*_@>1Oh;#qBV-*3aEPd~3{3)fsH|8{QdJc4YzWk@pJdj-_5w~27~?h`};o-u~QuZ zPCs{l|Mp0DgAs1(YhYTx*os>=*mjx3OIlj;wl1Q5(BN=Uc zB4e0Fo;WOMHhMAJqE={|jZ`#RgRhJ@^f5(iyoEw<=Y)4F^nUz>g0}L6QJBOZ`&LF@ z^xL{0yf=-!PVnOw4$(IA#~3Y2$gQNs7%2*ckru;`_Gzz;&zhxQ!ZG{^MLcKTnhEj` zOyXx2gVeGB$Fz1eXz4$qqBx9NPsz>G9&eN~*+ftk^4tTURMjG+BT z&n@as3;z=Bw*5;2nyP8@@q1&9)yqN;zgg}!3tbNzcZqpp$gTQq7IKStpHQduu=#Bz z?J#SZcSa1F>cvTU_{Bmf^>`R*@Qa1i58Z!j>6aLo<<~q9gl{YUTZC@<*V1X0zkfCL zgU?Cx!!I_iq)F<8UrfyNNm~CFWkc^^u)vg`VoE^C zF{|d;?EO-vr%ddBYCgtE91HVH1_S*&`BdN55_WkZ*NA0v9R^Zj61F_fk}TyZ&Qjit zEalA1QfeW{&rix|Uzshd(vEX#lCwW_#zfemYXT2EbyJRfP%*xIYUV)bdTxPkf z{fhRh0t2}>Hc-a$KR5UqMCD<}pr%>_bk#0ncb*Wdt~yRP4(#qOU_=*jZ zNb$G|7HX=6!I5cKZQ3y)GVLl04LVzsohmZyATsGZhMfpcnRen=#%4A@JMk-aL4J1P zSL{T_Y@=v+%(%!0h}hi;%(!q4foAt2^k!TF2~_9~U}wf9m@ppE>!`+4eom)sr99*; zALIBRIkQ2|Vqk@nJR}VBYz8qCJ*Az;Ak2xE3&lKx!4j%e74b36BHVMApE(fo-F{|~ zWV;8mgps~zp>mwbHvo_@YBA@1x?Lp!2}ANnzVrLxE`A*3wG;hlAYn>g$#=aAvxF)6 zB;WH>FiV({M^iAnF_+>j^0qr3^qtPcCW{KZC^m!mTakwhV8m`LnGUT&czQwim8qAHVbiSCi z&JA_MkfEH9mN-HNKboJStPydhf0>VyK@p2Z7jg@dHa;@!G}NmLRO@|V9GfWBZWJCr{W88-hKat9$G15i<-71ZlX4F<`wEWQXis?YOElUJHytm)|n>1pMiuf3dpYz=pzg1T!mRV}JKRcm$Ca|M0jmAJ1n%vYJ` zR<%AhFv6C(Z_fh1xqOZBzxk6A|8IKq^Y-YnIli@}udBVq9ewS>7ODO<7Paxna^Ie@ zRleI6zwA?wecZ4sa*D6IDyrf2=dbYH(fN9{Du0AZkJzjJ_|{LpJCnQ(i?ToR^*C-- zH%2_D=6w55L)fSH`7U|??1moE2UV&!ko)((S4)?>d_zCk>{G>mvE+8E)MC)}jXu|> z$IW{Fp+EMyIsLB#^XI+y=FdYu-cr*rqxhxQN9Lb7JE!d@;O?)EUSAMC?(ZYIzH!;R z%hWAbSM7QwecHh{{uTGsy1l6i_WJCZ=hyyiV^#l@kJg+M zck{sSCyw>)?3+|@-w)Hy*!%e0JN9k4pvRN7m18zPbJn9hzPCdiz^67`KzW(sK0W&|%D&ADP^OCHyNA$6${^gF@XPh%~ z;sv|Ux#{@ri=LeQ;+A$7j2&%z;r&&=b!scKJVJs-uY|dn=9Tu>(cJKKl_b7CXv%ZQRO>JCE+M^RL~8O&Ox* z{NuY9+V$<0+5WPC?o(^#FTe7ei&qTpnKScH=-U~i^QwdIIeuWReN|F+_QOB^c<+po zcgvGzO$z+@jTQZ4p9|PC=R0dfX3d(x>9M&>e$Kq&`yZcr@3pwf8}<&{_GwPUI|+SX zIGXd!mp4XV7?fF?+%f3y`Lm}l{mV6ft-tQ8tg45{<}7|L?wzp622bCtV|{=8#{%cQ zk%jMkxA5X+lV8tKu|Lo1Ie&b~(WFB^NA-Pv-he$dTR!X6Kj6+GZ+`yPEl2Av4v*^a z_1Ms_zB_Np4bN`5^}&Nz*3SP&=gB?0=YID}X4MUSkKHt}qSyFWzkQ(B`&l>L67N~{ z&mXp3b@%YeA$Z&qfFpMBnqbKdRn?(E{Qy2oxf zKg99ops^F5zb0n+XMe4{ZA|ArYtLP8+52s8-?2W=TGHPer5;Nf=X*BcJT)|Fi{+y& zNxr1>?(tQO>!~id!R1>LAEoXtd(#(m^&qwKZ%2J$S6{D&cYQ|fKANOfU*F&ICwQopJ5I)LHH%-;*;d)U3nX)#gLBmSK*BE>(lx z*{C)R__kqFRi1Cy6ZfhB=JXTNsx1E;(?j)&AJH)J%coS_6+c++x#WH2D310GkGWSp z{^n%$d3Cz_?wgU8bLL#lSuAP3byZnv-gV0w@>V{n9{JNa-;e!gs*S%t+me3#AL`ay z$2WYlcARpI-mK#OxYu{x+J`Nd&w5=w@$fATKW>lmy>?HE>NEUSm6_aCeZBb&-y1cr zTBZ(4Q_=DLEhAr^uAaaA#)j=Boqc~gb7;f;XT9i4`DeL$_5It_TJJ-aF$24(=lh;( z+1uf`8uICDmWn4T)FTh?wy4r~mGk18)DQhft4kvfG#q_ksT%mcqap2!X!WnE=PX}d z_Jwb7=GKPoAK&K7dH9g}_}Ue|6$!UBJo>{G>XXA=EN`Ckci*80M*AN5>@~I2d%JJ- zf_1*)%Z90dZIAhaf4{I{V)ezoa_c9Sx4*l=_re1`E%}zdzCk-Ds>6fF_};3U*zn5e zi9UP7HNKcv4*Fh*zRb7ajdWjV^_gnF?G@j*XL}oZomt~M_US&$>NA$9pK@>Y1rPW5 z){jo`_51h--`kV=H0*dY)Hh|q6_y)o-t-MT%cBx^PxHNe(NF5;zhA2!**->hI+YuLqo{p!M@8vgDoXzPf;bqzidb!f33RdsZ|XxrPTPM7JX%T z;@u>*^ZO?n^5;CDW_Folx%>MKDqzX04QJjFs;;?bkZ=B^eyZ^7>l#XqU+3HOVWk@O z=^uSlk8ko_Tpr=uSoMx?^VfZR4}bBB?=R|M-ygPIt3KM7r^0%5X?XSEcfO3DKWNyU z{i*t({VL0rbyxa&yt2OG#*FXP>YA<%&!?T~D+x>S-E_f2KC88}y6fw=d_mWqsYbjN z^%q)(%mVJ_gXSpJ7Pxqf!JEMe>OB7Q>|P3wrT z%N7Au8J(q>>kZZ3k$H|7-OluL`f=whRWs=fs?F4&uK#5VbK;=*{91LTw3e*9G z*#$h{7lrFrnPu#+e-m3Q+BfeA_`@%KBw>$2kLn&x7(mkN|5Rf4i^Am_;Fs1TEuXTp zhK?996Mh~ zZ_h7JbBi{B8BVHqZ+mYMH_#qe67!T3vsBF#>I16zxX=$*O>~}<(7Ds7GtfEhPKW8Q z>LhgHrt$L&x3&$sM89xV@`>>?!*%(E>pTga8Lr#za+>i=Z-Z`NNNi)iRJK7kTs6_v zoP^GdU$lyDmO*xw!T6l=#$P=bx|DZP59r zudWR`|Mb~so*1sAPr^M_`bf#(vSAArmXy=IWh#qtC1EO;1Wrf%LQS5S<`7($)q+O)^Qv|1`Qj?1bHcQ^o|M4 zxpQiGCWoHu$AROwkw$0RHq8WL!Br%Vsfni*XIiHrP1QhgI%A9yIj7(dj#Op0WuVO# zVzC8+&__Mj)D~7gO@H+a zb|4*^7@b_zLgV-=^&Y7GS*n*|??SJh*VlwxsF8-f7rh%^>IL16X=3g1iupx&gDOxi z!bLoe1FSoN>X!)T#+Pz~yU^I(>W zg5HB#3EXes{wCqPmBqQ3`eQ#tK7blf5BeGQweRZjmo+FsoMG>LTeq)575lRdd)GVg z08adQ!2rX)?)~O`1{(I>51QMHteiZK4|TqEhDv9ct*y~G#%PNxmVm$jsh3UFjmt0m z4x8sHoQfik+)l%|_IuK8+$C0P=sl>l{~)bE>}rpaU#NAM>;9?RInkd^-I6r}InrapF@NXQa+bmHeHMl#(W@@k-}#wO(0Xc9t@l zfkv~OSzD^#<%Ejy!>Yh_wI2(z)dlKXc2-HkZ3>TdYY@OZe4 zK|4#gB?s06^yaKhnzkI}vIf2Wv|K?{sxfoOKR-H8S%G7rT&q$lH_+hL*lwafo%*1+ zg^f#?Du0QTlXg|_#Q4;tISbNK<0nnx+TR)6$IdO*<~6>Jmz1|~H|`s5yymtQ|IK|Z za4N&!3HEZUHgb>)@-v1F&CKweGEL@pS+OycU0B>S4wmng+URVhI%X>;aK`{td1?(+ zGnhY}vXvK{Dj)s6%RCE=jW^~xptMu|Pc31}5-?tYe(Mw%E^56)IIuMH}YMhMH)o zQw%i(RhCSX40D>Hw&d5+-3(V$O(xn<>-%42R0lLZOk_4N? z%;3SIaA?XY9))BF-@)2rwXn0=d{~%(kie=S>8y^)RlNe&w^pt~eT zIo^iuoorQGl%uMFr#MHs-iP+HMaqr2?p=7IdV%x3Y*n)yy039xk)vu>;{PZ-F;~G$ zVfKO=^e$AlsNdlR&stD!q&@`&Vic)QaX=t3T#HeQ)Iw}aDeYqJ8xZ;|^tqs%5|4wnRI@3j4saWn=3aqa z2JZQ|imY0u+{wADJWW0!xDC8W(xZwIKHphb-{39T$!Jxm9vyRx5+Xs$Q*%QoXRXMZV6R-9pk%O>QJ0k ziKH#!*1=2_U*s-g3}1iR=!=a0aX;pC!@TRfy~+!n zxYa=`ZIK62X;Et@A_Rkbwc&2>jD2{Hs=~eAPXD(vPwmIO)^K->%~3`9S;cbuu%xB9 zL=!P4ze|hhL8PcvMvmk<4w$l+WH;Jtp0G1$rTR6|VlrqodyN)d%e>Mr^37a6gPVK_ zPc6)*l(Hvi*ZXENL7|1+WK<@7az=S(9^sWiDK|mm*R)dlWyJ~E zF3saGSeyr&Wwu3a5mFU9Zm)8m&)5KPqiTLp2IG+I(o9NNE{r74iYv-A9dnk2joQZe z@vW!%X}V8I^PikwsDDf47t0Jyxpwz;F>i&LuF0fEKBmel2u=TpB54ziTbW1;@p2F+ zDf{{~#vPdJr|Ra~)EqT;Od&VZW|xkcuh1hBnO`p2roLYS!fa$|zPww}9r%w2 z-HedT@t~yB91n_K#)DcO7~{ce#(bW|yko752OZd(qFXic-giJJWgLH7R zCl7ls*bIc$d_>>8E;rS61|()vY1ZFKS{I9Fv#yyIM!hzTsw`7hW@Lq>(aM|yp)NMr z)sdFE9Ma+~QqIeYR6Td9*P?n*-6ga)*dKQ>j*|2)!mXf4d4aPSegApNTVA9bR}`u0 zCHPr}9@MYNRrQx+_e7zpE-6w~;s!4-erncY240X3>}!e`7d4Gj9rU3xCN;-6nN;Vh zguSX#;wbM6e5BmWwle+F92J6ljp6R_PzQ*sw3W4adRsZ8#mG37@ML@@4SxwEsXX-Z zK7~x+9rEh@)6mzVuUVg?c1if??N?F9R`G4HTCZ0%>-e_lkf%JjZJe%;uePAdvkO(m zP5V$~+;k9C##4t;t*FOPW&D*{QaGc$G`l#rJWuoqTu{9ZNs$VpQpFJ$`wp5}$HZiJuo$;=3NT z9cuON2eq}I9jIqu-iUoPY87fnaYvQ)v)!m&Q00vBjMC-Ihtn%EUXVtSsBs6Krd9N{ zT1>@6S5MVsWC4wK7C3!9^9ymb$t9(7>ooRqAGnlBg@>Arx`py^Ue{FilIKznyf^5o z{d!%kH)v{6U51^|nW%=o?iT7IY7MGsFKQKLm%-29z7{*jh9+9ME8BY$@5YVPGt{HR zEuHY>9jYQs|98l~n)d!;8(P2Nd^N%iZHE&Z=aIF)NE#xr2q?9V>nEj>;6ERKOvuApuLs%>lMtv zdysdEyi=%J86pTQW$1kaTIdz<{tY)&vkcP@c-@2yz5*Q+FXfgUxj_uIr+*l znQ?;=x4H!UC+DmB#C+wNlCQke@|AN^KAStyW2f<$kgwdp^k0sDWrUx;Ge=FJDryZy zLPdU|EGOmUXBTFbIb=|i-`I*c^eIEi`~><|2#fOBXI7l+C@n$IAln#HYm!`#;;%d}+d*B;E_ZlJ%7}`LW}BN?EAx~&%1ih!L0`PwL0!|+ z(iC7n#S#Z38ROh#w=x<6jh*jQ3+KN^Z6M?C5|Kq$(hw6 zubcVj%eHObNdsE?Z%Ufc<2kgio2INTYY`xEZt~OA3mV?c!fVq%HxK9MESH#`Sj#0( zTFuu+VFteA8s!@F%ye)xn!G`$`T9Ufcfm`vw3HXJm6$Z8vou>ub_s7^iG$a#qBw)s zDz`X0ixgyK^IEfK^u&D1$>w`dm}?Ekgo$NZh19v?wXqiXucw#fIOa+#!aGzp!M|?I zrTv&czp?R}%Y0-CW6MOffLWLcoJ%7!lv)+{8=Lsm+}sS0mOW*Rr|7U73#uuREhy+O z&9P7GY|L>|s}zUmW1L1CUH2q?7k$Zo+HL2H`uL;zhhioBwU138B3RAN5_Xwm|2`uk=~7v3H6e^wR%ST}xlFhCX8*{;$bbo-6W|eXY@V&Lc|JZ^5Dub8!_u$_JO%49k)x-n8m6*-`s}8?jKmXSA`OY={(|@_>zp4|ZU&G(| znCZKu|8ip|JgVut9Kh_q=HcJ%7k}?v#PImLlD6tf{OktT;~$v*tMTt5 zU(EEo@m~jR<;{eBJAB~f0A9nt2fy{#HTe&j#+Xg~XEo)y{bj}&OV_Dr^4TM4^K+{s zt}fiAI?H=H5C0w`{!&&u{LJ;=!Y7F`HR31c*_ciG^zU-i4$SF>dyUX1H@VkgPQzSd zic$GwjbZ?8Tq>oHq|y zc~A(-!Ah_OtOpywX0Qe90P@J3ee+cf`Oa%@W3Gp}n7uFYTLBaQvPP1va^NE0iCWS5 zt;e>$Fc~*=2)DG29yW6LXw|4?vNi6Up+koa8#UB9Y~<(>!$*x8G1{rg51eQ{O2sj$ zq{U&tkU?iN7?)*XpYNMhV#njvepS6s=3!)FZ!$BsX{Zy4XC^BGGf7W@mZqiJy2LTc z-#tE88*A2&%T@MdU2nD({;G28ZuawYl{qnc5%cWwabPY$$s9OQEEzc*S=kiY6L>qJ z_edC`Kg@Uir+f#^#th^;-TO(AV%$@p@yX7WuABK@?wVR!X0m4u*OSIntFYI;MVwAa zo&I=k+Ys+R53S838xi!MlNM?lkQ~!}p7<-@xbofI8jXCLx8*KtCvCY4|MsWg-=H8n9 ze{ZV(_k{ji{{8os)n>-TH4B=?*mW1@Dz%nzaC)vv2ldzFa&AqoaxBIk$oRWzWv&J< zsz6<$qY_o1mgK71a-BAPMXsv3G*`K=fERq7x%kb>Rn=GN?$zQ4p5Du$1ER0J4Eo;_ z=56@Fzgx^bm}5roG5nd|0X2m0xe=bz`Bo;r@~te-`b9g{Mz94`gI!<`H~_`R$z;xpBY#RfqHEH}A&OF-9mkRfYcgde zqet?ck(E)L%glqxH?D#ypT)@Ii9a*!@`Z)X%%!m<%6S(|EWz1Kn7 z%(bc7)zsxy)_W)LWv$Dg>N0hb&(d!FS3WXM69gM*88+71W73&sk$Ll%dyBy=FrRbL z2+XIY`7;K00`*$q&l(2Z6yW{WD6!EV@7E)hpk;i_c(f7U)i4mqT!A@XpnP-BvI#Wi z{Fri8q=xSyPC z?Sr&2pz6=iv?3>4bq{?FGO!{iTe$@uE#zd~FVaT%$;mn~s~_Nd6x>U=po;L*@mq^q z9jg5RDt7*PCS~KFH&PB}*|bc%q+8M|W!o~J&HOa;PV&dB{}P@&rdc;NnN9nDM-^Ve z|8)GCZSG*`2lL`&%WRdOEMud4W9N1wn=3cDHm6u63qxGMn ziq!ug(KJ4tUAi{KP&?O%T&LJ+b8o29eux=)NR?Mop}QeZSDtOIgD{L?hVoKq+!rwK z|0ClHAN3B^{gY9rF)Qk+$Y|AJR~wM0YCtV@^Owqg+e7l2)#+L>hvp$;nWyaVPA9Cs z{K+G~vJTixrhTxvX2qO2@vR}A(xX_iOY$1SO} zFEM#44Yd|k(rAwTT2o!!NLv@;`ewRvcg@r2>+!ET>;66PQMgxwDgpG4Sm;olsOg4( zFM2!rN@zs(qw)EdEncseEdJ^H9ke;%mU40C-b3V_SX*RGt~4V{6AwU=2uaKg213Zm zm1PQFagx=G#ygA{2C^o}=n&cU8LXr9AkMvr|L=$+^>iq5)5DRF9*K1HXic`7byfXc zQ5&Fl_a@%J0}f-ZM|JffouFkr&2WB+{NCs^!Wcl^A4j}Ut2s^AU%s(!40R2tvBU$U z1E;9xQqO?{)PgGD0h)Z{WcYxpR8-^_MZPiJjUIR}0H`ih=XCf2k#DRc{K_Qq1>Sb} zDB&e>8i+kKl^fiuiuk3YuZC|u{%cSbs6(IbA|B{HsP(9>@$e@ch1rhTftrq5n}B`> zamU>*JTTj#a|0*#9_;D~qZZWU>Zl_QRUjQWfE_n~`Ms8_HkIUQWdS@qfH8M%A^r-f zcLm5Aksl|M8LcXTud#>7h2E4I^`MtLtyzrw3RLz9nR)6jGiom-4B&>pzszVKTG%1f zE~)i>SWz2Bjmt9hBdK|!_fJccUiQ>z)s`I|x+*JH<g@+=dR$XjaPR``-#B)Nu6Wce)Ccvg_-Udm)yo*F)r?+45W zQLC5dseQQDq8^d@i@g{7ddzOL6(0)k!C}SAOvm-JHAp*kuezssd}|-f zQ+tT7x?6X5;_g5%@%5rgeDxhCr4qF2(`SMyy_Aqo5jTZ7*lhAtMP^2peEuOvhy(+2 z;p`oeHA-36ln5cCo}DQNxnwwWaUx`2kbux+HP9jyBpVw{c^;9y${|dIEVCR7musGM zSsaOv#=sOOLh3@3PIVxI!q+A;8Kosfj{I^onlzN&ZE711PVTRHIIv^W4zgw~{b@2h zY>@Ml`I5Ng7d!gu;z29%+IOHsHy~A_34}O`I3wMW&FOQxFpw?@gvd$CqzMkTLYtzf z$olItX(BRInw=GA25(B0v|{hb*X4PT0fA*AtFy?oYI($*L3U%DH9;ig=Cnwhj6MC4 zKRtp+ZBk4BCGatBbOo!fR{k(D|J_HEsKmkx~XCV^k7tqeiYKZG4)3G~utr zfw~abL=ng`#KFw+Xju-6D@vpm7v_`Tj6#Qu(Htf%R&3dz^DoYIWFV)8~{gv^)lwZz;KWV(m)m{2W!9vumu>Bfrg}XlNgxPF-_vGQShiyn9uOjByH5> zV)!|^li|;lTWj*Ag>#~{L2pX*8oZl~hC7?WDhjoa1C39U(Qr3K1`YpBM#J5diZs(} z2uYHDkzAI2G)+4z7i#lHjz$-eeJiJ8E0{_n$ygw!>oAJkufIR7TK@BF@oRO(4QI>?Va#ys}-^f8Tn4zlQnb-gDD`MKka z*FR_61C7hD7a76&VC3p-`KlJ0YV>t2WZY{l$PePLCXkV8KtAIdk<-j-l+8>h9CvU0 zF)rLC`sv8$x$~9vBF3fY&2LsWW)Eij?PaPSclYJHE%H5=#QbEHx{Ha$>4EM*PvEw| z?SUT$eiAs?>a<>NU1uF)8*013_N478TaE2$+q1TPw&!erwe7dn+FrHUgSrLv3+f*< zEhs(66SO$!&7k*#J`DOa=(C{DgT4s*I>;W}KG+#NEqHzKwZVsi-wytJ@X=ruVhQOK z(lw-8Nbit7A^k%7hYSjFg~W%<37Hr2Nr(!yg$9L=4LvV3IW#5og3y_vH;3L5x+ipR z=#!yOg}xN}a_C#3heA7sbqX6Bc3xO=SW4KwcE@I&DpBRWMSN2El|jJPo3=7?J&_C)NBcqZc6 zh?gQ>j(8*Dt%#11og&9Yj*m=^Oo_ZOa(3j}$SWdWhSJalMd!z1)`eW4A zsO?cZq8^Ca8TC-q!%@4V9*^1|bs*}!sJf`m?Yg!b(QahBQSC;zJEz^4cCL2u?H0FN z(r!h&%i4L{t!;NjyLIiJYxmc7%5Jd_vJbY8vX8c(V?Wn^t^GRt>-K~8s`huapWh+9 z!@drG=};5>boBL|Dmztmx~o%Qj5Q`YrejR6nBFnNV@AYGh)ImejLC}e#;lHcE#~!@ z_hUYYIjeKu&f7X~@2t95x}4KxY!`Qz3%Yo_?C7GpTDrz`?b6lJ^~|p6T{F5?biK6e zs;=Iy)m@+LYU>u%ZFskl-4eS^>{igNyxZm7)^yw6ZAZ77ZclgnTer`;eb?=1Hx+A% z9Tht|_M+Iiv9+<_WWVtHd%I$GfW@v5xMJ9gYVa zwT|~4A2~jDeCqhtG3Kmu&r$;|1HT#g-N1|E7R0TJ^TyT1sX=Euoz7{_BFv*K|Ht-!Zm+rj>HELB|LgnJ4$BU8DELswq0mDS zhawN1aj5;Fu7_d|4L;;NH2lzrLt_q|dq};f>U#Xt^QYRMU;Ww9;B1iZDeVvy^)s`L z4ZzDO!K=YzU^l1(AAyiS3nv9xloJdA1)vZt0ha(TSPiPcT_Bp1f;s{>xBz&;YM^X{ z2S$O>U~-T}O#!@x$^u*<9+ZJ{a0|E<90flB6$%}2fHQ#?tOix!E}+722azBOv;%f9 z8k`Hp0~bgK8Q^Ac3wRnl13m?x0Tm7(-~#a=9b|y(K_yTTxP!aE-N42<*+F0um<(0{ zFSs160e=QhfLib>P-k$G66g#1fni_-NCh)M87K#rgEgQAJPlp|FM^Qvlm{3AMuF== zC3q4%1wIFV2OT?DR3|VNoCn5%@gNzbfD6HFkOPW<2ULJH(H6B9RD(Z($H5a|FL)9> z1NMRIIubV6397+U;As%miM$8nfeU!SYVau74Ps&}+y-k=1HeGAtFuKt0&2SAA1DX; z3uX+ls5GDwF@x!gs8ir?;4@GUegLrr7S$a%!6=|gpa+gU)Dv(AxD#Z*YEg?o5hw$f zfXl&JupVp&4}yf(ENUVMIAT$OpccG!gx5uzlMO>q; ztLPKmTj_t1g|E4fKA3%ro+r>hL_fK!sqb_=(4?3CRAlcH=OXKm-^y0}swe5&_v9<_ zTeFS68?zg;_}z$K2Y%D>TS>Szj}r&KaNT>6sRvrP_^pT5W%&IPzx98F7k=G_-+KHj z;_Lwme@@`pfxF??iC>ZTcg1=z8D|%M>-@s4C$B2;>%_0aKd-9c{TRS+ z4XDMR_^rjSge&RYK)C7nb+i(0I&@wj>2(<4ntqSq*8?vvex2|z%gFPH9&Qb3t&=oA z$oL7rb_w4ImwHKi+k6ho&eu%U6}%-0?UeVHjY@s=gH65ghjSGNnObc@!6Bhx;SrHh z?d)f??-1RwQ%vVBUAx70@6pq7=I?s-?sHb(e*MoLFfeY=U=hEjzACm-t4pGp-nX)3 zO;}S?CQVJ5nl=Zm=$W5^K#oq?4P9EsOdr2+fe@n9kexqz(uO+odQ+)6ZE*%yjq~@@o!g) zICG>pdxrLHU#4=4${RPiqrWJ-w4~82>s6+~l$$@59KC#f$%0o)`Fh=-xgx{VJ?Fvb ztKk0nG1~WoeW>Nj0gOo*ONAkEAc^$n-)pjB;ng6cs0>)zBZISZ!TcrA344ur$LM!z`E~>LD zhjJ+|6{RI~0;!vUMqsk`L={ptAakqb@N>hfabL6)9&R<*+xsk{^lgJZ>6kzL0uFUG&T+&GQHw$a+_OI{A>lNI5cDqs$;LW-e0ov!I_tJ-t}3i?!G} zag(}Oi+^S`ipvnr8ODTxrY9WTjyWqV<*e=LIXTQl@Li5RnKMph{YpCx3|d{Eu~g!x z>F4N+um10o|9d8M+SB<5mz;%UZmKZPMViWf4RLR|$AZ&i(+FM@1Ce;d7v^V3tuf;y zXWtmbV(wcrSu5F}VeUa0LJb^+DNb8S(|;YB>lp1jvqp;{wlm?5;ts!H}VIh7_JshRy@8N_f?ywk1Pn zznZ#-44rEoVWY1EuB%Y5BurFOhR$&X=gj%Z&`JN}hQ9}xGIU>{oXP)WGIc72w7 z z^RrK2roUzAr*dye-_lH$@Yr3NQoBS~>uy2aIx=$1eb4Nn&blgT4?sjZZQBjh7vL53 z*Q~$rYpecN-e}ZcRI~oN(YLI>3cHr|w+h}h0z(G0W&L%TLN4buNor=1R;a_CE($f_(uY_JF`JOJtzM z5)~NI;jBPg`?CW>JB$vr*b)LQ%u5AD&Iq)|&I%0gF()vf@NyP`m=y#oF6Kx?<( z2U@$X4GeC#DbN~z5BlwawoVTRT089x4D0rEV1RvJU~t&}z>vrn0t36e6c`a*8yFn< zT3~qhx8USZhG=csxzA zMzot^jW}bfHN4|AYe=jcw^XY&G|d_kI19dWz{OT;V7k>BmW7&QwR9@5TDlinL&8g} z)@~Kn;IJiDYwR*>K+JM$aHmyPOV{69!(!LqcBR!Cz0PV0yUH4By~Y~Y{aR~~?K*2n zw;Q;%;U?mGt2H?GHfxCWc586d9adYnDy!9gmo+5nKC3l+C;tCr4T#)j4Tyde{bSa! zE>BnkL-$%Ef}XWnBc3BY`>o;8&lARr)`+l|tbw*#t2N+NtF_&0)^OYF*3b@bTEk=B zBAth8_C?>{77#Pg77;qgX6-t}7Ser~ zEhKcL&C-3eEui~Y+!JgOAs5+#JI}LOEemY6Zke{gPT97Ausq!IYysU0Y#}j4wt&!L zTVU5xTd-||&D!l|Td3_WTfiAxYyq}yw&2(uw%{&1!JllQvAb*$9Ur#^#6DpQ4BQKk zS8T!EU$upFJZKB<@IGPI*#dfe3(sS=km%#MbqETJ=@b+Y`@0}(OrN0O*wH}|A!CEW zx=jxXj+`A7(4#OY!tMzQXjdK-+J0$}HF8BzaLlDa)-G2Cg?79lD75>Apn#4WgF<_3 z4GN6hiT$pipicXPtg$Zz1$3*$?O;%F#9Qz?926ArWl*^NhahXf&q0y5uHIl^9RPHzynUTzuHd)nC>p$xG98*2^w;2iFL(pXeBTgv>?IF`?@Yp&3coC{7>NHzuoL?}(BDXTm}MgQP+<7G zN&Mly1qk0iV}2Zd{&{yc{AL0vr@gqHN4VYbFZp^t_7{O7+$2xW#eS2-hrE%pP9uLL zorSoYb)Y}y8-afvxCnR2znf8~;wKAihvpH3?=0MsNkbp(q)ddTRzC=HFk#+Gn9~SP z>cfdG`SRBuuFvhrt*4`vE(%erS14SZ4kBg7Bn%X#Sv; z^h^DCNcdv^CVp?lelq5p;3sL3yp#G-fW6d@YfvW5cf2 z`tcfcTK&M@tXKVUlXrSMkTgpDI2XTC&hqX_9=!o1Pv_%)G4_Kn|AF^lCVn1*=bwT2 zn~!}Qyru3)Ic^2Jz@H_)_`eAMlBZH1UnM?A@F!(0^=pLq!z}OCR&Wr!gLy9Yw@coj z?+C51+7k4qapYz~9LpvQ+z4a!pH80`q}wv+pjZ0{GTF@jJ@& z-yJvq@2-V7WP+C8A*PuqHqND(cK;o!8GkeVE#q)1_m=c6&Ex=o^60;!G8ZpwwR~?< zwan6Og;XaIXVYYQ6xCp3xRT2nTZ2|S35|A&gs#FvqtR83pgBA7V6tuWXfiU`i6ZQT zRA>zkO{%yxkDcZw323BkjH|>>XJ@!-Bu(FF=FT;9*Bn&d^IZI*=D3zD?iN|s$M}x* z>ZpI8AD|IO1>{-ty80s^5j63SKFc!IwF~_}4;|@Fen#UP8Y{%{w&dHeL z4mUj88h4~`)yEyxf8=`_z1r4%+@W?bud{-=A^5cX&QsVqfI05a((m_Ev+H4>z^uQf z6U~6O=SRv(An&fswYIFErn|hqvd6_VXP{XPTGE^5|0(Zp%k-P^Gu2bMn{=(IJ$m%$ z-n~b6`Q=9*UDM*1oRg=A_IEC`zGFEdeGYTK6-Xj2RX3>(>Sp7&TK!2qq+V99s9N=R z^`-iXMcgnJSI@Hawe(|AZ=z+ACBw4NBCV(Sw9QxeJ#26keqS3Lg!+TUuef2&-y#&AJ_`MQ-ZM{de59;qx zI%+*|?`-}andA2=__TbFT*4bPy+=J+bDXbMs!i%~bx8d~MO%hi+?Jl&qZhQFUS5r6 zPs@5`I=1XLhvOjY9WCpZ`JT1xH(Q&pH0l4Zymw7?)Z9hQ?Bzo0UN!CKLzLs6e%-of zhi6-Lub%HjnOAqC+8?3*gOhzbs)tXkdv(OM9yHZGv$iy;zgB%R_h*{*rM3EG*2n*Q z^=YcH%f2b^S?P6Yrg~#M;a;kn)pA`uc#Ecb-}p#V*S%qhSByg3iDNYN0#wOI$y1b* zKC+I;CrPU`d@{7@&Sy`X?!v$QDfqYLF8tea=ToB9xZ}j0AYBHewLECeUi|(VkEFk? zFeHE5a+mbC<=zkXw#rZ3+sePTc;oed{qz5O`u?XEP!@e-CEqdbC;7&CqN#7J#ZJC& z)L;Mo?;8(1+v*$BYxKUc8agj}Ik!cj`p>JTiyLS;E^}b#1ZLmp-Os%2KI~AP&%#6a zJVW@T$@v%5=N2IcGKC$8DJq_wWEUZ~pTg;p=41AIYbPSb228V@@Ts5jsZ+Kbrwzq= z6p(uC|Cs)N`##chMbEva@5H8Ynt6(iNuiW$=_S%X^3*-GoBHW`fwBZ1@N0fI)Wff> z`e{eLLdI_O!Q9zL-IV%S^H9U_zZ&?pmA?P#_fMC}8lcT5Ow;zd$SrWi%7ILb>^+zF=w$Yzk+2b28~who6KTX{ zC^Yg+LOJIoWRU~Q|6}SxmCYp zU8x3sZRNjuU2p&V>sRG#C)Tez__VBFZtOh3tY6jWo9b872~hrbAxi$p$wT^1E##fF zeLvY^jnrK8TNK4k-xnskuk}6BS z2f<-b59EmK` z2$%Vi_o<)nVFr}}$bG(p9d32_twireLbDcB!^Z{EkHQoG)nGI6NQcfLVURBO$G911 z6{o|?e_y&x^~-ozRO!Fuq4i!>50CmF!ZY$kp-&fc6!NIZM*72*LmuGf4K7el;Iiqo z4rpD-jS1Xg1sXO$>xI?>ogLI!b=sOp%pnD;3Olc;p#|y)w6)MyV&@ingKs)~ozT=` z=Y%dD-urTqrL<#5K8q})tS=uj>?*N$o`DwN%@& zDDR8BANrm|IX!>AmN!B>2su94yVVwDTkgWBUmo=?TF+m5j{=2&q;Z!Vdo1PtI%qPe z_$#5S@1WCFcQ0tVlMmrVkNzqsk%QKrLj&7i&cyAeJ4-67yvKdn)g!0Pi3(KxrGWVc zee1Z^FR!u~biTKA`gI*NcV(#FrC;iFnoPAg{qu&UEIX-g!`|NC6{k->2$-^8_aeVu zjhZ@RG3b2%(CN)JB182)#oRN`s{gF`n)R2HAAT3}vPC|@bQ{(!&CRKsOpSDA{(2`B{=~AK+Vn|7VmBg}eSN=uC(GZ}2Hh${ zZ7qKr`9Ag0pQPM2ExPJDDYxuS4@aJquR*uUP+Q}xYVyy19)1_eLM6{1uSnIh^4^q< zn%VeiOy69CZjPa?CE?W!@HIU3o*G^jJbZZBtnUs) z-1X8+5%uBnozKIYqCKlD2A%IIonGc?dVkj$1H$Jz8tvuHt5>7$m@ zYGl!h$Qp{s6q|DTBBLzlPmRqk@{}(hr^aSg6cwS$Q_Fi^*}s6Z<2h>tRoY#J>K#nm zH=1@7RE`DX3SdB+H=Z`^T-vWLoI^4R`*Y|EMq+$d=6{wH`+E@5G@GEii4k3J_PjR@3X9{h)ocY1|_pzkGnLv9BeGPiI z!KWTR(eQO+&n=^6*{Q|>`J{gy{M{~i;#R&QYoU22{|>QF!@f87cmQXwLUkNF2X>Xf zBW~E4_c%JZNm0LPk@a#z=ilF(dk4((y8fN>jEuV|m$P-a-0xU4&X}a^W)iOprB4~8 zdOHG~?Hf`XqI?-X={@Gs%R~ef1X-N+hBF%64Hq;-__8z?ahu1OxUZ^Gg+a;@r@|ba z9bFuQ9SaaH5B8&pQ+7vtM+Zmy-ZMfJlROso-I&(KyQSEM!|sVtUPWyyjyTJ99F*vesuQONcIw<5=4parujx5e zup5%v-D6ev9;&B9ov9tJC$1+xy-u|9v+3Pi41IK)vrvqFkM6UdwsEKT*>*Oy4Aeg> z1`XB;E&9bCy20;vh)e_gXFkJVJ{&Z4Yi4LH68+NsbEend)ZcR8w;cE{&w){l1!U`* z_RxayoIOUJ%PiyA^E8thH{PXdv_{X+{-*qAlcMYH8r$(~!Kv|YDCC_8Ua`k$=^3`Fp85W=c-v2pDD zjFT=^c7W3LiCNRr1&*M%8^vjrOc?UgXp{5edg5ceOD8&LHsiFR_ITaZg(A`5iB~E? z+b}vVu@3|LNo*wLnKD&=>3+|bx-iXRNlLb)Ot-i%NY(9Uq_M$N&AJfTor~tqn}4x( zRGsehZ~f|XnSNf=(Pw}Y`~QWRT=AZj<460O_O~4PEeHPR<^ZR(9xXHpB5ZW7sEe&Kc8t2 z^!dgUWna&aeRQo}ZE)jN$Awr0DQ~?D5NaeipAR<%?s7wd-U;9Sw4_2fJ|eO6+GT3c zB{o{(eV2`U%6Hk5KHqWQc;B~|9sBlsRNtyVFTU%1AHL!nB4n@B_}VGoD$%kc`4(=+ z!OG6+8jqF&frITEO3|Os(|rS@4L8rg8v*bM~ZS-r+H!v zYnzlpG&vU&8jl{j`c!BCy!uls_Icj|a{Lt@1UuWor&lxv<=e_gd zE5`MIc|*{_530s}+OA!%zfVaSpJ%b(KJncJ<8N5KApfGeobgv3-*SI-<)ZNq^_n%~ z!;Qt`Ym45zDz9wC_!pku^~K9qUOE2rY4dh{b=TG7pNrnHcx3k*#s};;^wOr=Zy0~h z?WuQ9`tXMFSKf8jw#EBy8Gmc{bAvAa`O)zotowt*)@9H5YxmS1*j4h<_>~J+kA8RB z;qm*P*|7M$YwE|F>3Z$VVXIcY-QHFA_4~uFS>3^P_f=o7-?_Jg>*I>eRd=7$$(0s) z{Enq#JGpfFF0OxN{l!z^8Re3+Rq1k^HK7kA#AEah+?5b-(A6kc)(gS^`s^7q--KQz zedQW(#r=VGuP$&xcZ%=nt}24ePq zEExPD>qh3&|)e(*EFI?xgTv7a<$fnzxX@0BYMkYBTCqAZN7hLUj(>qV}Nf2eshn()-oH zpSGy?&>se0g5LMuqmH3k5A9SLnVH#z9BVB{4-0Qjt}V<)<%I1_4rkX!VCc&#SPB!8 zto+>ka_+XkQzpk+Ws09{4j|9vh~J!2{V;m8oa-YiRIGh-oVzgLi1ad!>K4}ATVKQm zfQ)i6E-5LjDAH`{vp(RQS&#)hU?o@s)`N|p3Ty>?zhZm(D-<@h7*bfeXT5u2?0`Gx3a2Ol`UxIpY6dVJ`0T&P{D+mD* zzz(88XAlbcC-e1bhkV!BKDw90%$n z(hovF1h9i>&>6%62j~s@fq}pYhJ(>yEO3EDFa;z5H%J4s!90)-vOpdv1RhWhmVuSP z3)X;jU_Gb=8^A`e8B~ESU@O=Gs=+R>8|(o!U?12I4uD#45F7&UfjV#)906Z~dT;`*44cG_vg9D%z90Z5Jd!P;+21me` zpdK6r$G~x*J|X=e1VjKkhz6ZOEO3C{pdT0roM1Q@4aNc&NCZ*aEhK9iSTQ0=vN;Py_aX1K=R214qD7a2$jj zCQTp~%q}HPpf`Fa$U;8_j749F>IN>c!|Vq0Ksv|+9`UL>cA0j6sRMV1&9W*pdZMM%PA?%M52S+GfU&>QsVSW2I9&VS7dN; zg7h^RrI~SD(4gG`CVHI$al&kFu%O?OJDD=*`AV~;C(?Vtj7+_s%A<>ekJ8!2Nq@-c zbGpozVV6@xCv^LwlEQ4wUbjO&qg*p;p7cIkbI~k^IGv3#;T{^fz(TWcv=p8?yIekC z@ZQ24$MN;qrCeYjc^RMRR`C-PRs5uQfUJHp`jp8kemdsqn5Upq!K0zpqYZ(RO|>NAq7lN0JBs=DzvE+ z0d%R*rKYNc8MvpRztF7`=0GmdFYeM2AHDSsGFcFCULNy@?HOZ|eq|8wh zrlU@usV2aC0=y>7n5HJoL_ZVzS@@ZQdeJnMn3${*CxY`Qsl;iR@s~DQ07v(&_i z)6~StZZ(m3O`H)A5&-5j)S0Pj($r)%>HI`BX_{M2N@e*X!L26aXEN!YO#CKK!8~P# znmiSibWi3i)5#Z1RFhNDr(K{XlfKDw64jJxASH=2`B77+sVQlb)s&f&)YQaOHFcs} zO--7?IjHC_NK{kFpQ)s0YFd&yAD-t=2ktp)+Qb=Z+GH>#RZUBtq^7wqRMS$yg^6k! zVNAOyO(n%oQ%S@zXot!*PC8wmRWb!OIb-GH1PcnIujKAayahsh2W~pS#Etz_fOg%|~R|<6@Wh(nY zk|wK^>C;q-J5{BS=hKr@m74`Z_r$3n1ISWz*|7%(m-R8|zT7y%VCD>R>xHNhG&E9j@In7{L{ zf1SA%Zgq9ffbRajuJ?EAJ~pGjJm9Q5e@ zl7k<5NOH)d_7BH_$su8l4>@d~aD==g_Dv2AWrv2nc<94|e|Yc@-!C~dtjnSMg>>LM z^pP8qL&JI>y8r&kp^rK=IW)}0p@)PzVQmlH5YmS~EIBmnkwcH#KiTkzeUc694+%&3 z#n}T62*-wGL)gC?!nijav@ZOQyHMwlM<*LXyA5HkHym|na@a#35sum9u>Foq4hyjz zcIbiO2>FkGWH=5>4hwY-U$;*<_Dv2CT!$ZacydJev(}Lh-8UTjh2yZ~$ndiF$bI$+ z$HT($@Z`vcg(K{TBiDtpM}>L^1$+=bv^zB91#KRASZH%(_`6sb^P|@tl05pb1Hy4& za@0fj562$TI;0UJjJ!r;Xmue z?BrO^Q6Y+Ec?+C&(o=YC!Ra&!KM{D^87GJTOm*66$H(-OP7D8iCzKIe%p={N|Mc*m zEOu=DBT2>;{`xPTMNoVfpf4z)(&G~5o&fToydB5&c?PUHX!u|nR{ zLQBdZVBT4W0K@50zA6Po`b zsBLa`Jnh6CpK`(($FcKT@iecOt*d%#Q8uqhv&;<={+miO#^$`*=7jLNxp@!LTn}zf zT6-zH;(pr6XFV;vXLwThKV~PLzy^8p38$RR|5-aW+ePSZdJoX8voba^M zPh$_AdBU-+R48aY!rRN?jc@;=FcJJrIJOOMH0=`$?@3Y0x1#j&JurNPP%Iz+mr*Pq-@+2h7o*v^#kX^dk6$mQ-p(z)ox?kMV)=G% z{wgx%^6eZx?nHSU6~BQjwufC>CHyB+^X1#672hr`zFk^;yR`V??5u9_t!~A)y2ZD; z#mE1{fp>L_Z*_}rb&GFxi_cm+h1$lqYm0B!7T>NdzFk{<{MS@?cWv?Q+T!DPoym`@ zwWh_lrp33W#mE1@w4Ob$X|>>gv6}Dvt!eSaRo|_}w_A&Ew-(=SExz4a@$J^)+pWdN ze|Uv=w-%p>UF3Mzw)obz_|~@g*0%W8w)obz_|~@g`0gIOKI7%vy~VeCi*NT9-|j8G z-CKPAiZ<3J)J%K2l)y!Lxi1Z1JfN^5s(> zVENPsSUz_zEHLBcQy*aCQy*aCQy*aCQy)eFkNUvNr#`^)?b3=*eUNW_>H}Yr z@bak-uzczRET8%S%cnkQi^-uU&B6TP;lne3c=+(lA09qD>ye)2+2LZ!$d`|uAeN7n z5X;Ai#q!Y_EHhp{^#PJkeSqatA7J^^M|#y!A7J^^2UtG!0hUjFfaOyk>D5bpfaOyk zVENPsSU&XumQQ`8S3&gwmQQ_vjFn{U;FQ57V%cnlT@~IE7eCi{; zDyt8$eCh)%pZWmHr#`^)sgLyPu0Fu>sSmJx>H{pF`T)zPKH^;h-uH{pF`T)zPKGM5G^#PVoeSqatA7J^^2UtG!k=|vh53qdd z11z8V0L!O7!1Ae&^lnvsfaOykVENPsSU&XumQQ`eyI#EOt3JT)7xe*lzo-we`$c_# z*)Q~s;o-v*pE2o4bHIluK0JJQ;={`a3s`;Nf+_|`T>^D>jzjqT2tTa2VOq) z0hW(5r}d1FGnLr*I3s}72j20jKrkhE`PgY<`B+)8e9R!2+Isoa2l?_@gJ=2F2UtG! z0hW(i@Tm{H<5eGE<5M4C<5M4C<5M5@2A}%C%cnlT@~IE7eCh)%pZYLr_|ykpKJ@{X zPkn&pQy*aY)Q6*oPkrF!Qy*aY)CX8T^#PVoeK?EosSmt->H{pF`T)zPKEU#+4_707 zZ2^W4&-&uw!^Zlg%3sR;*pcftOExfaOykVENPs zSU&Y(wD749ynN~dET8%S%cnlT@~IC;4WIhJ%cnlT@~IE7eCh)%pZcH-!?PZE`0%U; z9zHzlfsY64K^i_h>)|TsH{pF`T)zPKEU#+4|f-Q>H{yI`T)zPKEU#+53qdd!(9p=X9~T1C{rw- z`k^#fmW2M2A>g8ib#PSh=*!8dl&+@4cuzciFUwz=^Qy*aY)Cbu3)Cbu3)Q9Zw zsSmt->H{pF`T)zPKEU#+52J)nec7123QY z0L!O7z{aOOz{aOOWQ9+C;N?>vVENPsSU&XumQQ^co!0=y3x*HRc=7Pz8803_Jmba3 zgYh~_y?p9}eEHM|SU&XumQQ_vH{pF`f&B&Qy+Nw)CX8T^#PVoeSqatAMOJ9)CXQZ^#PVoeSqatA7J^^hr0XMv3x`% zcE8BLvwS>Lu0HVcsSmJx>H{pF`T!fB`jE|YKkgMK6WMh6Lb3bVh~Qx_!sROup2hA&^dWZT(TCWXMjv8FMjznxkPm&BCm;F{ z%ZEP1@}Up0e2fkZi(WqTA(jt)h~+~cV)@Vqm|4=xhd#vep%1Zq=tC?Y`Vh;$Mr)jpZZ8=M}2_hQy*aY)CX8T^#PVoeRvk4AFdyI`M7?F<>UGxmXGU)SU&ZU zu9o@$%cnlT@~IE7eCh)%pZf5uNI%?P>E+}8N-Q7uS7Q0Neu(8$A945K<>SgvJ@tW? zPkn&pQy*aX*nRBhbQh`*FnoC8!^4LsK0JJQ;={|QK8%U{^pMY;M815k99TYQ3M?PY zaFC-X1(r{JfaOykVENPsSU#^Gsk+n$SU&XumQQ_vQ!`P2tkKJ@{XPkn&pQy=kchI3Y4Rv+vZ z_Mf{(4W+86s1LCFMSXzXFX{vAeo-H+F8d|DOYr&u zCO$lTc;dsuhbKNfe0bucu6*hPOnkH{pF`T)zP zKGM5P^#PVoeSqatA7J^^2UtG!;cOD0`oPPlKEU#+53qdd0}LOl!TP!?de#>VAD;b! zhY!zw!NZ4Vzu@IlAJoP0@^Q`<%V(N$`P2tkKJ~%wFg{plqdxHRsShx1@$#t;uzc!+ zT_zu`sqggzFQ57V%g341dXASfmDusBkMvc6`T)zPKEU#^(`e5Q(aXn*fSF0X@i79i zeD*{=`P2tUKJ@{XPkmSm9`%8jPkn&pQy*aY)CX8T^H{pF`T)zPKEU#+ z52J=pecVsV& zAETpx^?`T1>H}I3X})d$$|stVs93 zkJgl{54?Qp11z8V0L!O7z>ZgaxGUgOA9(rH2UtG!0hUjFfaOyk?k@P$2VOq)0hUjF zfaOykVENRCyA(do7<&0os#retK|T4{d6vt^N`ooY%g2m}uU?1H{pF`T)zPKHLrPsSmt->H{pF`T)zPKEU#+ z4|f%O>H{yI`T)zPKEU#+53qdd!`%rVXCS?NC|xX{%A}rr>}1R3W9NX$)yu~Wi{)cP zV)vgB&`v(}!Lxj@Q(t}H>MyFj%TIt%rKsr!80PfeCPvA zbb8MCVENF8SU&V2mJfZ15X*-?#PXpJv3%$Q%0=B z%ZEP1@}Up0eCR_gpZZ`o!{=FF4<8slJbZZg@bKZ`!^4LsK2#x}`taF&`P2vb@~IE7 zeCh)%A2HKDJ&cd*hk3@w^+RlYTtCFd$MplOKD?TVp?Dj>H}|l>I3ZjsSmL6sSkD^>x+la-KZx%uq&=Uz|OGx06QY}K_v2}%7BG@`O+Q4 zc*&0|7H2xnkRwYYGCtXOme1=4SU#^GVEMd$faOyk-kr6xs1NcTulfKRpZWkBpZcJ8 z$E!ZlXt=+EUwz<>Pkn%mPkn%mPknf|Nc%V{uODFJ^ZEfcKCd5OzI69^{QxswJbZY@i-!--i16~M z5AI&%bJSqs!^`KH5iFl)BCvcYnfmGjFCSwzUp{u0*!WmUvGFl;V)=*^Oiz0G)CbS< zsSmJx>H{pF`k=Oa>LXQ``T)zPKEU#+53qddgI?wH{wh_e`T)zPKEU#+53qddgXrZ` zAF0~a2UtG!0hUjFfaOyk%z}L0U!`Xa^#PVoeSqatA7J^^2eT=k`bf_{>H{pF`T)zP zKEU#+4^~A!uOIO&hIhZH53u`1eSqCB>I2MvVRhldvtQD)q51$5A09qD@!{da6CYka z^}%kDk7vr&2VOq)0hUjFfaOyk)HOc!0hZ4_FBkltY4P%TW&_K|8G(B0!&lE@`P2vb za=J6Y^0^bh@-c(7XXJXvOKUOfLAiYD10f$ALJXK`e2tiUaueNU5okv z%cnlT@~IE7eCmVUDj&)w23qTlPkoSYjP6jd<8?=X9WOIUduBi{pOKPpeCmT|<5M4C z<5M4$%BMc84X^sZ%cnlT@~IE7eCmT<H{pF`k+taQy*aY)Q4lFpY)JVeULAo`e1j+2McY~ z2j20j53ro-1MGO!2fNGhstvVENd2 z){~Ew2D37H$4hOo@fk7oTo3iZvwZ3UET8(IR6c6Kr#|q;r#`^Or#`^Or#@geKJ{U5 z@Tm{HeCh)%pZWmHr#^^MKJ{VL@Tm{HeCh)%pZWmHr#=`he0av|==IDW7(P7nhldZ( z%;4d}Gk?sQeCoqlG+#dTLB4$I11z8V0L!O7C^J6w0hUjFfaPN@=r28tPkpe8#-~19 zRqCn_yyI0LVENPsSU&Z^ZjeuXxI5reA9(rH2UtG!0hUjFu&d-#AMP^v)CXQZ^#PVo zeSqatAM8%~JX5(_;X~VrOvPkn&pQy*aY)CX8T`u31deK7m- z!9uzEz&l>`0d~CV11z8VVD%iY`fxSjQy+Nw)CX8T^#PVoeXtAUQy=aM_|ykpKJ@{X zPkn&pQy=Um`P7HI3qJLMmrs3wVvfLsSmJx>H{pF`T)zv+|YkK)CaRA zA1suq54_`5A7IC;KEU#+4`$o(st;!$KJ|f@Pkn&pQy*aY)Ca33pZahW;Zq-Y`P2tk zKJ@{XPkpfZ@~IDZ1AOWOFQ57V%cnlT@~IDYk$mdIT?L=|z{{sT!1AdNuzc!+-6)@D zQg>C+b~aa>ep7<6`+3q1gRm1n{udsDpQ^c;*$fYSFV} zz^pW$6~Z&KcxD98NbvHZ4>0=Bvy)}l%ZEP1@}Up0eCPv=KJ@Z2TCwq=53zjcLo6Tq z5X(o}Lq29rEFbz1%ZEP1@}Up0eCPv=KJ@azB9;$*h~+~cV)@Vq7=7sFV->~np%1Zq z=tC?Y`Vh;9KEUWhFCVSM@}Up0eCR_gANl~J550WsDzSX%LoAOS!0N-Rh*&r#?7)$frI$n@~@E;N?>v zVENPsSU&Z^EX&8)5+0(^8=v|h-}uxA*!a{3XEEoG>j&-Chi5mjd|W@o@~IE%$;b7B za`l0ikE?f4YSU&Er#Ew^e&|W_E!P!+l_2Jo;cIpE!pZWmHr#`^&vHKV=9zHzr zxhwU=2Zj$%e0ccqj2ADT`d~N9=T3HaQ%`;1<#VOL@~IE7d@$3F9KG@JEH*y%K|SMB zA7JBCAGDH>xuSh~$frKYH$L?NHa_(MHa_)%O6B9~4JT3QjnC@``Nrq<18jU=KNyAa zsSocO;UOBmeCmUI`P2tkKJ~$D$frKQ#z!moxWCdnUiCq~<5eGE$E!Y=UB|0FoNai# ze&FTv`T>?teSqatAFPsm>cdroPkrF!Qy*aY)CX8T^}%Y(r#@VL_|ykpKJ@{XPkn&l zW4ADWc=+(lpSwu!N~;g@omuq(WMs&r#`^)sSmJx>Vr|pr#{kAsSmJx>H{pF`T)zPK9~*p)JHly z>H{pF`T)zPKEU#+4`x+9^^wl9`T)zPKEU#+53qddgVm8weZI3Zh zst;C!^~J-7XTP{gdiRR@ARj(F@!{da6CbN8pZWmH2fO9+sSnEKQy*aY)CapmKJ@{X zk7xMQ2cG%E%cnlT@~IE%$frKQ@~IEk0G{-aPkoRtpZZ|8%BMcS@-a#{)CXQpcP7~R zb0>hEKW374%!FP(T8o`O^})08sSmL6sSir!Qy*aYXa%48z#E_X02`nB02`nBpf}@F zAL-RgeSqatA7J^^2UtG!LDcf8kMt_2KEU#+53qdd11z8VVD$2-k9al3JAdi}?EI+@ zu=A%rm_6nX4vVENd2 z){~Ew2D3tX)CXQZ^#PX8I$-(K2dgNb`fydL zt3L4ZsSmJx>H{pF`d~N6r#{>r@Tm{HeCh)%pZWmHr#{$K@~IDZ8GPykFQ57V%cnlT z@~IDYr+l1w;GwqO{h~g|cfY6)Fms2OkDUW%#r5)0ODrEF63b_gw3APL@GPJD0Lw>j zv{xT^`P2v4@v09nEntHWPkeaz>_ty}VEFLFhldaEUQr)JC7=2L%LhC4)dyZa^#PVo zeSnQmeK1PnQy-2RKJ|f@Pkn&pQy*aY)CXz#)Cbu3)CX8T^#PWTIi}xus1IgcKK0=$ zP)B{>H{pF`e0Ye$C-@w>H{yI`T)EC)Cbu0U`NxA9jTX( zl^46d%(U3}7@64k>=_0=B%g3n2@}Up0eCR_gANl~J550WoLo6T9V)@XASU&V2mXEZD zeCR_gA8caz(1%z)^dXiHeSp!2UOrY+EFbz1%ZEP1@}Unf`q0aVKE(3TS}Y&>5X*-? z#PXpJF#6ET$Lhd#jQLoXlt5X(nxv3%%5EFbz1%ZEO|o{91Dp&s+) z;|#J*k}T+07V0e>cm5mIb1%)kCU;5hZMk>nK9u`-?sK^tayRC_o%=!V=ehrz`|sRe zbNPHdKbhY)zdV1p{C)Bd%&*DsmESjiVE&N&QTZq2pOil%|IGZ^`SbJ7&2P%TJpbDK zTk`M7Uy;8m|LOd7`7h?bp8r<<`}v>cf0O@1{_pv}%wC>4i`Q^llsuj2iRtBczeA6|T9@!;Yf#bb*n6;Cfdy7;I3ImKrePtCoscv11< z;NM)ly!ig&hl`&mey(^!z*psOEZ$tarTEL@zWKite^}A8rKB_#{BSsC zN_Q>YyR>f@`%a~`0S~r4OY55T4k#T~I=Xa1=_vu7RXVS9Vd>Q&^~TbhN^dW{B&6P1 zx~BAj($%GFL;8!Q8%sBrZV9R1mHtx7m48`cmL|&6<-3$?>9@^$4`m%m^B zS@|pFZcURuf!dJBAQ})ryCqvGERKD1ie{(7J_w~^4e^qYj z>ivLF|Cg2DR{l`=Yh|cft&UXp&EK^;Q@wZ9QSMZ|HMh2URerDPfz^G3P38};KCXIV zHOyR?mH_ zisO?1A@Rh~y{-11+7+#suKXVr+dIP@#kF@(MAy`AE`70fK)4_2w6E1}s$G)%MeT>p zetui~bFEsxBsWr@sc%<5H8)hhSN;C=a353OxBkfbUiE|P!-YrJkEx$jKfG{G{q*{? zL)i=K7u7Eg{>}Bv>+i2$S^rf1bM+hQx8`o;-Yw)W+0qRBZ=8Xf>p!et(!8hVzJ5#X z7xk^P-`1Dxf6@%NlmELx##fY@U~5~IzhwAvxmORrarn~VYf9%0UpTyVyXP16D@U&!y?u1;*g0eG zAN%##PU9zyUp{{0_{7A9iQ^~UI`PeknaM{?zHssjli!@IO+9?-c~hU8%1y7GK7RVG z(>G7wKD~D4*_BUKlInx2=T`Twd@LOQ6%K9N+D+Tsw9V1AH`Zd#f7SllOz&Agul|Yp zU+a4gpEvx8;ol8YZ>F(-_O6`MmQHh*QcE-N zzhwrl+{zuCg!j(2+-@J)^0u_RePm0odv{d3cMe}MeAO`T17eruuN(gK@b`wlGW^Zq zpAJ8%`s+}lofOWQwq%qN06;j(bPR;F`KPZ2{klv}Ww(*F@-XV2RIF1M< zTIabLbYS(JrTsVaKC$um#*-RnG_ENFr*4(N-^SOPW{8MwQM{djSF>=3=2b3Q^ zvj4~-BTpJRYUBwcrv`lf$k`*$A9>BlOPg)qIC9y@XyH90pBVW-;qxOO-pqGZ{{M{p zXFylw|7+w&n{&ax8u{;L{$EG(qxI3N^4pG1j-Hy^arB3$VtoM4DQ)e ze(30tqw7Ww7(Hq9n4Yrk_F1@hRTh@R6&O2b^x2~?96ddZDz%Fi5lPx=OH&swqPMIW zh&z7%{$DpwFY~vgbkEUiN|!bn_8ER>n5(NtKQns$=m+NE%#PGt7{5CDjnVHm+yA6v z?gz(mN7uM*k^TQ+3rF35M*e<>GxqN*tHc>Cj@8B{#<;8d5_2-3m)>n<)T)M~D zzl=RF_}#*BbLk;%%;57Y`)$rSV(f8a$Bmsl_SCUwj9oDHn6Vd)y?pGoW0#DbK1Rt= zq2z62M~=NClw2`()!3)UzA*Nov5${^ZftJsqhntidsLIZGlotyng8L~Wd7%4zZtt} zbDx98w3zbS$CB~I)W4(awkx6(BH1@TGd^+$Ms)A-oyOOW?>+vA@q+^EU3-{sE*&|} zjGt9Kdi>b&^QtG0pBgZEYr=e=J%0Z9bH+Eewd!1*S2Wvp=JiMaT6tZozJCF_H1N{X zJHzpT@qgv-L%FNRKQn%P$Ui@zpKiWB-_f(4@_luj75G;3`KtW)ga278-M%t+Ui$IP zcjSJP+2JH}X7q|HbhCMugjXR@sMaLL-3iqo2 zOv}DL#)$6T5o^rlK0a0Gosrsk;=WCb+>_xG6{$UFBIe&&{-66^*FF=CWb3S!OgC+L z%TFYeAvF_@@n+5=lNTk|CFN}%xy_5Vxo(^CvPUj^(K1@hG>z0YTVNBR-DI*NnF`0U zEwG8u`(!v8txx6r^W4_Wej{Q2m$z(XNUum%Ci!Gl7~4olfo77~p-n@~6SKV{sSf3n zZIijxv#aO!SnTZ2bgk85=YFPVt+oj{|Hz}ax89sPHlB7i=8OFv`!r>aC9$-#ByE+p zP4i?;apZ_O%fgPJ9hPs|HsQaaP~QFw?tkXNsl4_4+VeQ+w7L#^#KF3~ZAA9W= zOMAOJBb{%?uz2QN_;unzwj!t*>sK$9XZf^EXKAj<*O`}v3duj$;@%)$(mZmlx#p}E zAH=>*IPbas@qaSe+PwbH)b6&$tz_JRu-MX`c>`M!|x+A-DaO{6e{bI+P zRexpMUgOR2tU7mI-h9l1*KfYo3n|OmgM(LEHF#&{Gyh?0Yb*&G8gGhfWw@tU9#VIn z{>KCNbdx`Qj(UzhUdI;aW9y`K6=ZI*A0y%ZDO!53>Rm1~kUje8(1w|s-h7>1TzqNm zTqZ+yuUWbM?z>}bg-rgm|9@19nd*$6`_}dxu2kSOm)Nq#XUwclzPSeO{NCpztP;I$ z%^2Gw?4M?DZA~wWYnvTMK6`_=a{JHY;`;8a-5Uw3$meQBQ=+NQr%~ZEN&QhWQ~XVyk4H$ZEn}Ohs=f7z_VqqXU-!0^pic? zwC0i3Ys~8|1^Y;Auy69se$w$$$DZ}n=zb8F4AkE4e5Mz&XJ1k9&hJJ>?QWw?Ym3G z?YZ>dyS|Kz$myGPcAVYO(YF0T@AHk9Yn|`qxTD+Kn!Ypkb6klyZ*jczMYJ*E&i&jS zn{#0L*sj~l6IV5k zIqvu9v(`J+bL4=wQ^!8;*_W9ZxY5nfheCO-fR~%Wk&mM1kE`6%!IJ?fUD6V_=c&*bOuRDDH z^>u%@D;kBTMkHIezA0C4ifDVUORjLbkMnJclcSV`ujO4oJ6FAKcFpW{)m`HrarFK6 zF}(d=f6+2~oV`)U-m*%v^4ixnmXpULVtq3!%y@h_6X`yWb7DTvo$a%b*W;*>$Yl@9 zJKD#4;|Sc7F)=%!v~FbLKEJbGKaHpC z>@BSQF26TTx%J?WR|0(2UYlJ#yT|OqXZN4oF#Fiq<7ZEqJ#+ScoGIhM->f*Y)~`LX zIA`;FW|v3%$h*_&RWiQQk#cs|70=I?-KH})>6j+ha`Ao!o&Fd|v_Mq}k#>Lf7xw~2B$3*Jtw(kYg)gk_VIX6_z z&E_`c=5p11xJFjyYO{^G(biWoZ2h@O4Y^A4pTN8A1EisV`=!~KC{%DT?A z#~NQ3%oa8k<_gu~Y;jYuy}UC@BW3O4qqn>>$GCj6R5KswyXRGgebTmc;?taABv*NO@tXbu;KYaVHAsy!+`j{tY z>~$e`8122}!(RbXgQfkx$8`4y=f`Ozrn+kzf4ri^(X{*SvBr4Qv%g~}zxP_+8^1Z} zD7Plnk9}E~#r|c3OVXIyXJSw~o!hkLLOy#C>vYFOez&Ff%6?jiKCPpVL`n1H)_QZUA%AM9~FDIRrn3}H~zV`AgeqXE6x5r}myX$804~0+SwOeDMzE_3Mv`&QQ=sV+?PU^{UTO9FI%k8yj8Szvy zx2*SdXBr=$HS1^0Xwv)}WBgq1;=LU6J*P_UPQ|Ye7g}Eh?k+_Yu`ohNW3x$>9`r^jo^~FkQed+qq z_1jf0UVqM@^7ZGezj)(0^l*LQ`q7OSUw_VQGp0Ce>G)!djLz|;IsH><`|cEN#s+MQVo62+LYGt<4d%l}1W}OA+iVJO>RWB=^`SRN5t#{AN*OIcV zU6GYHh^M=JFh|rwmd~2$h30if5^*|D^q8W>q_SdNSo^G&{qh#Z*j+2Kb>}Y>)1JC< zzWVvWe6(z@)sHDVALVA3^v~UrHn92V$J-l6t3jrVESZIEneo1I%Y5g3c)Z6*eSA&P zpPehV^}R~~#UtjEV_wR`-CSpR95Fs}c<%&CAMu`Xb~UM#kvi@5OvhKL{d~$xiub4H zd!(;*r7Gp$Bbi7hUnTu)LUYEbS+CI)hw<6kW4@%21 zs21h!kWI}`X3Z9|)+UXoGc|}ki)-O|NfKj9|0*znFx_3H3o?%Cl@!*j#c#%yC#W3EvhnH||QGB;8kogLjYIyaim z$AyJ7z1Y;}^NVfKUVo827u(zROJ8V2t-2SU6Y6cn_~_-rdHe020mig$D|-xmKI8NA z_S$dsF@GK7?zBb6w6N7#w_R61oxO&U%wIlV>4ndnue4toE3z)k-scxMVrF{XIqNE) zueCF-YqXufP`Tx%=Zza=v!_RoZvWv;W?hetOSQ_P%$#K2IO;{l=c4oGHsEj;wx_IGv-+0?@)l|?=QaMZ+|~P&h8Pj zBJovl^l8qZT^Y;cU&%}16^s`9>HH)<-xQ1Qt5_p44DxYrMBeD>Irbj&qNh!kZelr} zwuAbfuRQkO?c;01`FuOC`bQ?3=W<{EQmCNJyJ-j4D?xRay3Hsk2V z?e8xxJe~eVOnaNoo<;5DS!v^O|D?~;n`fin{)m0W@kHG1WBL3(wwk|Id+AuRbvBx8 zowdi(mTtTABsYB}G5EeWvT*0QC3l~j+Yfy8z--6b{r${5b=upL7Pmk5=gltZ+?#Pf zbo;bcTC(uFgF$y|DQCY_cI*qy3+33XTM*qn7`24)*Dot)rrhmp7QW-FRz?EXZG2%FPyz- z_Tt$$&t5+J{@E)xowMoLn_jr-qD>cXdh@2sH@$z;mDJ7pdz7ndY4*GRz2Bj#KD+wD z>P6Lyt8cDeetr17RLg4DhhK@u!Y8L*Sh+Y_^Al3xvr*yOmEludb9;C%m-RfGpIdEy zR;01SSg&8be)YzD_|(>D_>|Vg8!ry2V*Jcjz-?&bIpI@T#ZWic^)1^N{?@W}kF59? zmgn7I)_Qj4%^zPO^Di{>uN8YGvTn+Uzw8v}MkDU_ov~!0>sNN?RyMQGzi+$SrRVZA zitaj#!JL(2{m2+`^wZ5x{_)q#_1ncd?S9ZXD)MZJr=LOhzww=oetuAV{mSDQ`|)ZLcYeMVsNEWj9g>-NtH(KTb53%@5~ zJgMILx9TlP$1xYi4(yTfJ%Z+`i$ri4WwO zGP|yqeg2%-_uS)VS5q_2c>CYG+s~%dpWUwg%GY`2ji1YlJ0kK&?{&8QIhN?-yI_U@YSZU1maj(VK`*8qC-yqfdMrnN!qn}0E2_MAc2>dq)Ye#38J?^O2A zG&xcC`nb0G*x!6(%w|nfEdCe=p1C>z@mEuUgYQ%3|wu zcVy2WYvek`7X5s0uk>TC(fCYz?pC@V+5M-r`t@smXYaJ??KvImLQ=86xI-fD=Q|^a zyNO(80c@|mBX^90#@|2YbdKgr4dS1#EoIr`c5IF^j@i6!zV^V_bKBHwsjAHMUdr7_uxdK(#4=!Kk( zjC38(*N0zj)Y1_xE*0Bn`^9llJ8K_D7WU|%M|K?P7}H&l%{5F}u9C*Q|Q5@N1Fm&-e=rDf8k|oqtP_ zxifDNO0WFZY~N`yy6EG+iJlfQtsm4|dwFcxp4UIU_<4yDEv}`t7jkW%kC*?;mvt^# zXkPaFK=bEjzxR`!J0DYLi|p@+&ey(QStswpkiQP&Z`8!+)YDV@XIkw!GW&hei1gW` z;j^&wTV(0%ksZ+8t~;k+kC8FkclVR_0>6(m&)V5c=62SdAI-zq_b`}Q#Y2YyN%yzUdTCO{=4q@u1Ra7WVm?lU6_w& z<@svII?-qS=3V@a<_tZ@n_e{Tf zS!*3Rm?id2v54Diq_tv-HtmlT+1_$FviM_p z^s$w7V=uOEXXz|STesKjtkYeR;xvBq(!Px*t(l#Q?W3By{h;#B`qb{s=|+Rf=ayyt zcFk;lwzW9jeA#$VFP*Q+vN;x#8)v82FQj!=oygQ%7EAP$&-dtUzmS~tle7J6r~RjO zdLv282Bmu2lGEL)yH>2_ zSzzGj!?Vu_=C14dg!_DTyUVtwZTN2bR`eVr>HMxWxr4rMJzx0(Kc&B=ac^0>Eo&8K zqG|KAUhL|1?`&~giGF_2cc0@s0bAKAZPTIM@eEIv6z31NF z%vu{h9s0Y6B+1^DE89LNI-1=3;Pw`#zm)q%?z_34OYx8f(zaxJ|{;K?^^Vj9SlK)oz`}v>df1STQ zeDtAI7%9vY?pnBKVaLMi!XAZ(7xph~C_J`seBqSB(+cMno*RCv{*{H-7yiBQuEGZk zA1iz|{Br%#%imsq+3?p2x8?pmTx|Se#r|W*k8K!x?AVuz|5^O6;*W~ID*m?k=i*SQ zS{f}aFWs$lpV9+LyOkbN+OPDe(h;S{l};?3QaZErtkUyJ8%wV!y{>d=>FUxuOCKnG zrgUBDE2VFhzF+!L=~t!SmHtx7m22gR@+p&NPOd6%U%p>?b$O5S!^&Ts{LJL_lW(56 zeCEut+43o4ADQ^b#FY~-9DC8&v&POJd-mA3CvToSw0!gAW6H;rPbzmrOr@`Zd!poxcCfy=HEmeq8P4W7?~l z{taWFE5CK@3*|3|=Wmw3SN>`FLu2nA`}o+e%eR-4N~tnZ`P|qIV>gc7JT_CgW$YJY zza9JY*wA=&e0+T6_}$0vJHGSygU0t6UpKzr`2D6vr>CdyT6xs?y(>FaPM$b*;;9qQ zm^fnmf{6_`i+6Y5eWucbPtW`u#JvF8}EGHRIQge{uYM z<6j@&Vfy~ltEW0`&GhcmYl1y=`VrIXrw^Wf^z_lej%hxh7@prY{kWMcXTDJVV)e%A z&DHN$3o|dRy`uKCncq)iC)WNp{ruX#GdI;vt(_h0FEeXqJ~i`&@QXETD|<}sF|~K) z;ZvzSqVnCsB@>^TIH>Z4i6bjtp7`d(_a=_1oKX4c#BCE#s+>_deCF`lGb{T}9x(Zb ziNhuzJNfsC=Tv4UXC_xn7AG6QMkbG++<$7x{%6j>He>Ide(&_%Czot#29{=EX$F>N zpmPT9GdVg|9@{W=)E#0QD^HkuMdhsJ;U=xaa?5AyGs{PouULLwuT|y?#{VO~Y>=e%#8*k)c&XtKPA^IQ*f>4^Mt%@}rYiPF^*6_2d#-nu-4{ zyWn+|#_-tiZMm(p7f)`Ty=Y>|{wK}A11CFe&E#H_r%o>)J8@$rw3|7CoSiDylGeBv(? zdrY1a&cwG&Za;PW)LW-+nc9B(_~|!Ke{cG(Gsn!lDxCL6mLIhIqUAR%udUdB#fw+m zu%fo|*_BUKlInx2=T`Twd@LL%4DVgh{#^ZYc=dVN@Q*g#zeaqU#R!i;UOl+C| z-#>qEtiNX~_RzNVkBx4PJ$UrbTV>~tZr#;y>s$Y<`s?cL)ui^3X{=Nmsg2iuJpG;N zeQQsvKfQi#J@)Y2`nu(t>hEhjX=bgQGaE#&p)qt zLgPt|TUWlW_LkZ^YF8|O>B`%3r>@*{qvEFW917P?+I_K=SPag z+j51`;nBla)<=HO_-W(UjoTYB{>Q93bk#>juNnRN$}g_Gar3Bd%U!eb)gx~lxoqV5 zE6-nfz{q%t~eqHgB;&kzC#qEmsDt=_;g+1kG zjy_}bg3%X_zIpU*%@N|FNI_$(I?-Pn2&9qauu-D#k$DF-ZVxMe$u5tDjalc@y-L|j(+tmH4 z7f-!x>djMcn|klm>gw00zdn6_8}qf(*G}(M+hz0FnTcpF!i&k-%NdP>L*h_oO)XIBU9H*eSYeOsjH?wJ@tjDFHN0W{l?TT ztLC?Rth(2#d#u`V)$yaxZ;K+1e(U{3qc6Qvco!boD~cZ;xpw8p!tvRWFO1v}>|Uey zA6+xL*XX{Z`;TrIeeCFai+85IulU^RAE&TS7PT)xT~-{@d~+hkw8PnBn7xpFI4u;b#s%XZQu1?NKX^Sn>E3$E|qsik((G zZN<4E{oECsR=i@x>sG7{={K&}d&Pb$E?e=g6+5iF|H`|p{NRd@t@!MUxfQQj`Lz`{ zt@z3CZNv9of&F3lz?BECys`1^#@Q=VTNlpYv#TDq>Xbg$r-iS3TC>rZZrr7@L*oIB z-5Pr}_St+zN^2}G_4}3m?a!^U-;Mmf=UNndId0WI({3Dn@~Xwy&3E8RI0M^E|Ksd_ zW4DYJR&?4QN4Lg)IeN=K*~-)N+v+gpJI{V~Cvq<&>R*jMc-243{(Gx-%GT_%*tT=$ z{v*&HV?SJx+QY~GQFEQ$&s!(|nf9v5cmGrE4gb{9GxPu4@xOcWA9tn5?&%+)xcU0X zR>eOq_n&#ELf>D^eQsH|{l~H|FS|b2|LG~|t_l9{;%&tni*v=#g!}A|6u(mZc<~DX z{WyGP?2ETj{|!@l=lzF`P#B*KiHg#IScV$Up8B)l|#frX>OCjj>->{IyGvPTrwh4MWLlAjz27eJs$AI zbi4mki<7)t%D0q%QvQCqy?mi*+Hu@c{!Y{Xd-bv!>4;-_x4*20T~f#15-dLBe>D8l zmXYc_YD4E2YD4qcpz`_J)`lAMa<{krc{$qUwaaTe40YRfL+uvc;2W9=_PoMO$bUiM zZsEZ2)Z19tzFAHk?1F+e8B#MttEwsc*if|JmVaCRb@^A}cvo$Zy`=EZwTlWD6&_LM zdA59)YPTI-JGI_v?;h6PH~iE(_R8?d=(|@ht@X24HZE##>@u{+5PpYbhh(3jUkqdS z9s2167<J#FFf=>#`|`W1@2DOaeEYHc(3+us2kmEv)(t(TdSvx&)hlZ6t$nD*^IPk0Z(6=` zS>d>$6Nip#TJ+@PE1*jY-F8_|PIrxV{Dwley{RXsy9W60eWBHHe4^-b*T~_%^nIo(I9h(=UqF0#P{jI~4#v1Lu zJHH#}D}OJ?yy)Lke`lTaZ-#Fjj>mSj@Rzvxj>gKycHtNu86KJMID7PIqX&&2Fn+hm z?Izog`zB`%E#B^%+&4LA=;WrI(tN&ea@x?=+ZjXmO|B`GD)9ee;ujOSi5-)3%7g6v z_5L-^9qP5;4V(9ZP*0kcp ztrKr(V6P4K$@=F?*VaB8?CLgqO(WW;OFx*{DfxK)KT6Z%mk+&bvt2&4Fnd!Y+V!QZ z77re{DjpQv3`PiFhlS@>gznQpsqS-TBl zx_|Zl)dvQ{x7(W%?XpR&vMkFkogBo!=dyNt{8YCMYX8V(-FER*yA5i8;#jv`wN1MX zYJZny^V^{I*G%+UZdq!B+7BhQq!FwZ{_odN_%B1ny zQ_}hmW3|xdmOox}hoNw2lnc=@z;{IYCoubY+L zI5wYsCjL}VR?}wQ`l(*qZJBn^)In2y8@3AGFgd?He`loMHrnLQ+ zWm~M*&o3WdK0MX5<-?=f^jg1mG5=Z1-Z4F&#d`hxeP`}F^TK86GbwVS^=r3~{Ikku zm9ur9rK9=sQVmUpGY2}-#=3sVXFiVXvXy;*%VFUqjB{&tA#JzcN_%?vbmV+Ci2rvJ zUmE&Ou-%hehB|Hc#JuP`OH@$%g#A2N{8Yh-}tupbQW?9NmpMFG=+H6wItq3-o+%?x}vx#}p zcb2B8yJc*3OD)!cVK}f?gRN*jS99-bkh>zcZRmM6**5smW(pLI`Z0Zv+&wnO_^yVn zr*pkFk-MdKkMY!E`{)l$4ovQq+c|e&vU7NjMsCc}@7k;rbICJ5t(m4yE2rtmxO48b z@)znNOX>H1Iga}UE{qiE2jsB(G;`nEh_&(eYSnDdJ23gd@G0ePJGqSgq?X#xLpp8u zhlz*hu!EERa-9})qVFtCQFi&CCfaKpoE)5dw6Qja*&jWE9^CS4b9;qUyHQH3k2Xf8 z(|lO3Xk5`C=b^b?OKY0?P@~iS&-7m>4$U2!+mJju*J&{)`p(i6WtX?-Zb&vHzpDMZ zc4%&W?(opp`f$)A=_`C zpN8k^2Ca`so{;OcPc%}q<)<2-ZL=6h>hCq4rn6J`8b2yID*0^Vu_4-{lcSThm9>?l zlf5c~joJ&V30GE4@_ISs-MLvp`T-%LwUq}n4P=ZD4tWo58ab&AP4*h4aO~PqGi`HB z^8DP^*;7ON=jNW;W>3!@lW3>rUcA|!pLvKFGmvpDeiAJqhGp5_I44o|2ds%3AaqeYpc3c9o?pt%wj!WJWVt7R^+RK^|y*k%x z#B@pSl3abFJ`v;FQh!Am`%v?l)QO2X?RjZwRw~wy{zK&hDqm`Rsc~YWonJn`d_nWL zpu91pHimSxcQx~$SAJgk1?7vv^Yb>xvGe%-nr2PfpI?4x<@^v|Y-=8ujrvn7&#au0e#JEGtZQ+F41vT~$f#_09Apm2P`W$a#OT4^}=NzFqzH zka|x@{kC>aa!&G*O0SV0?f11_i)Hw^%3S4<;afgmsq9<*Vo2Xu`C;W7;rrOwXDa6= z->&r9xk+mORau;+Elu^d{(R-vjkMOkkIrvj$aUIWuG88}&ri-z+DpOh<)o?6esq_& zw-9kfjVjV=R@D; zC)ZRz-LyY8E=Ybfq1~8E?JoJRRiBqUFS)63m+;$s+C9VX^W8K5!2G}Dzf)M1|7Jm3 zm5+A!{ObJO^Y_o+JO8}ohxKS{$2$$y=OugQ+wDR5z4M0`_sm~izN!4*73}NPuUCIu z*Pb}~q+kyo|L#P2vKDOB^b3+fwr{?lJuI*7o4>tsd*xfz?*_ZMWk0Jo-`o#x@IPpD zV=|we9e$he?EE&>a^vqUd(GHgrtdQSl0?fFweTUu&Gwx9bMpV%vPSb!YeYMJlwUN! z_G;QE#~&K(ljHo}8#dN7zTbykl)NMS8luJ@E?=1}*4~}ZvezUFwR=_an|m*? z^}VaFO|tD@stdO_B)xWNvS;``$L?dd(t|?oLXO=+z0UUL#N3D;RJx#cLG9Ay(&XUs z!R3{~_AWiFbbjr!B-&x6Ewg)%ULH8!l^j_bZ0}0855GOR!#uWIb#XQ~j=eXDc5G=& z?YZ^m)~`sOSlSx9BH6Rr&pwo3533HcjWuiFKbmyg^`rCKf0nhYlWcp)*!))Lczhzs zw%_HWrR7uAKjiy#e@@FuCE@o~$C}4vVP&RYKfZqaQ^_EM zB{D?DnI_+$mXpnv=`9yLW34>A7V{{@qMt0lA6wh5vrTMotFdPN_Lv@5o!=P68D*YR zYZMxV$=d7d@I0fmsr16;@uu3FYA>t5xc;p0>#^8NoA$QSJ4#oUKAXI|^uE%^g8h5= zP1#p%KK`xrZ{fFPKT!H`^Z5gz-Umu=F1<12em2pzFYHvW@jljX^4&yN^?ZE|gLx5Cql&n&*I_=@6FgMVi6hUC%3$F}Uz#YYExU5_oVV&5zu zTHK|uOW}s(EyZUyTR%NKKeu>h@zmg7R(yW(yzrX~Pc6Pa!(Lo`QK*5vrTB#6g=5i>V{ zvUhjc$9s40KA@OafkH!F4U-CMQB*L>6;a73_mSOYAK6_VBfTmr78)8V85Jcd86_DN zB^DML6%`e~qN3UoiwcVhlaliP{+@@K+1OiwE74~a2+tj`@B_veQ38x`JiT5>ymD(U*%-zdrZ8zrgv3{tbFf6ZKcsYy_q zM84RAZRcgu{xSM*JMX?Fy848@O??B)U?sYU>C^t@gyWgxKecka0+%M}A?5a*m3LO&#Joc)9V+rpj&t+Q%{wpe!{Cpq zKiFw#Q!}T_PC-Xj`hW3#Cqs0yRBf+c6VMD$k z;u$=Uf2uI~9?b8L1^FXK)O%Nc!zdvCv9vaSAVUA))T?Gi#G%lXA0XGu^_ud9rv{Tl za-00}*>XzY=F<=33)11-l51}Mn6_C zH0Blzg$ulE3Pytqy!wLq8W(wzUgS9#>wH!|GPnp&flHnJWT}gHeSyGjy}RJO{owYv zw5A|HV?iU{ZjVX3S&ykd*093e#hyX1Z)t%*w#{d-$0?Ub($0c`xYI^$D`+cNWiib& zaN90j;d`tqa6aMmO(kzDnO?HG{I_Lq^&H;fjUJB{2sVL-!KQ+bSk4aarjr! zzl#11H+TWUz3}yk*C%FrVSJ`wL2-DyzkXM7UEa|68SB?QTkz9@eFfhGzbM#U@PmS@ zyZ|>9-c)!6d{1F@AH2gem{&Lu3kw$(zP<2TJ{K0g6EzUC3j1TAkBMK)-(cy_3lncI z5&XWa%9HfMGQsOLtGxdom{l@0F*QNSF^46E!$VhLSK)GSo!1w)6%HToD>S%2et-N1 zPjE}&J4;R#Q_J4vjUFE;6wE70j|JY{g$CD_Eb!9d-olgPW^ZuZ6EnCg))&iSeIa|_ zA6pr#^#p5UYhx*mJ7NQ2d`#RA#RlSmSb)v3fp|Rjc&x!29)1`z*b{r9tjX(({jvSA z@25f7>mRW&{t!zCRw9kHcmsy$NN2p()jp6kn#-9 zj1LcYcpdCY zfn|sO4DS)&0J3LmKdklEdY_4ZDGg+g!^!qP6%XUt_-+faN{r8z42~@&u}F6DAB!Tz zVf?wsAX4nq(W0Lv4kmt)_-Wz+Pu79@kQd+=@u9IVzAygM_`&$kG!Die^!nnr@spvT z_=R{J8vH&kcp?7gvP;W8>V4GvzoL=i}sQ8HnF& zii(O}Q?%JTHJn~_deK>Y1zukCMvaQ1ilWy+_xYxxHx!*)^tku9cV5vzh~1&@w{TB* z2Gfg13KwBk(eUv(?~0^+jFLaPVc%p}MFq znu|t*o!;F=cNcxb8yrt1hQ=3)(xJ7awdC8LAl=@9w(UiN4;Ovg`*QI!MPDvX2eCg> z^u^+VxIA%r!j$%H@2kaM?dS0|@_emGKEGPLtEjGgFt`Y#Pg{yl9ltBuU;N|ZJ>FpW zRnb8FCXKDHm+{zN?C@i&7M8nm4ixo=+hbBM;U)T7Mz+;ce5ze9pHyvU%bEA;K$xQ#Q}cooqSt-0t9(Q_028Y*`-5cZE=7P6@L;u z=wrWU@Idj<*ibwWE^qp@qhxdOsp98e7{4t3dGRm3(c^LcCg|Y!wfAdp@V$>0ca;pi z|JTJs@0SR}ht#G&UMYUb$K53kA1FCq`hgO`vt=FS9p$~=U@%_h)8zgDQC=#2snq0< zt-FaMQ98<>_nz+;>51au;SXMVT$5N=a!n!~)|CXfvh2#TKY4#I>x(~m!^dCC(&PGs z!4c1?Q%g-g`8?v8&vf~N=*~yH9ZcRJzw?nuCa1ADd;ipUnf#`7lPjo6u-#V$TY;}D zGi({CUEN&-mx^at56o#SLH?1cxrw>D#Rtp1C=tf|ghM0h-N0AzKD_Fr_t6GKbPW;2`kJ}TchL=2p*=4iKB&Vc9LA;0B ze_z7kxR(z1B|iB70qG)#ZEF$+_w$#+(&N#@V~Njz#}Zq?!-+={*OblCc&OwR?-lQ3 ziGlcV$@OLP%jTB78w`Ak{GS)blZk-{@BdPwFYFhH?u*1oly}2u@r(8yF`KPy{*JYL zijEY2Cy@?263_D2zn|5gJ5UC@6Hh0Cl}U^mYL$tsNLJ({B@Uk`k?sD-D0`)JB*>2# z#3G}^SNNNm1EHHnzf=$0=PZGbC}$0)V&7i!`I0a27dfBl2mT0pAGmdN21|F93>V`f z|3C2FvTv1qwu3eK9^_Y%cA)H`wZ*)8z_#jE`iM{iH-n5*kQcQIhU0*<11> zt!k)AfNyD=+5SJjelFK@C1Dt^z!F3Wt3Q{V9A`!b_c_F0`#V%}K*Oj%mi&sX7s2oJ z=Wj}mm7N(mQ6e}R!aqy?RdRO3;ol_#;r2;d&tDQ0WS2%uCq)M0KK|zYP$)2qo(%JI za-=^_C4c|CvfV#_I-j9zL*Mn>-gs$(|9*8^>FXo?aZahj8Kq~Go*ywtmO8w)G{6LZ zzw#*7nJtLl+rN7r!Oupy$ZagbY|()NIJZ=bRfch?~@W%Wq0;LO=Prq zxNJCRjEGlb#9@7z!y{#3EQ&l*CNv0?v-C~V@BbJP0=!x>G#)D(4%#Av;nA|;pl|L? z{0(D=&PaN6M-0AG))(I^TV8Ikgmgt@NqKhhJ#?&ed$*Pud`72FmOWMW zB-mQEDl!y;74qDFL;7!-;N`OaXxticu*>0>hf}wYrRU1e8i3m)18pa>yrw*_4{ncy zw_j6UNGTIRd3g!AJu(odmk$JA0}cTbqoVu`4SX8k|+X;ubwTj^6-DKOaczViDb z9~=dSs+;V)KXQNMyz;?uf8>q*_L^<;DY^S%dih{j9~lnjmCq}`qWo=OUioF^H(K0O zeiMHm{_W+n%CAj>ha>MSe>gG=jvhn(W;wj?k%+;2%0~v5|CaK>@Uh5na9jCsuqiSa z9*v9+kBu_FlrHN%?k?M1_H1NuJQf)p-kdvpd?qpwPe#&VYh<{1ecWJgQD1y7@ujl< zNLSLmdFk+@BEeIUry^f3ICV(A(c)vdr-Cm<`eRe>$gv}`BXX!{xOh5}4*x42IldnG zdgSu>*T#Hp%yVOYl=s~+Bf)dz?u+M$CfGIR%J><@-yL(=*ek|9Gv=8wm&Z>lKCO7~ zn7)uQCI1hy_hr9l>_B{L%%=-KRhTSx_%6z$ahUC}^|azM zil4ztYB}^ONB#Fco%?j|5A%PR|I_Rr=f@I)U=^j2scjj8_r@JQmoa+0J09SRI=(4o zG@m;&zML^yewi48uV#E@>^}?tS@-g(%s*s& zC38FYLS`%)i~caf;ZHeV%lt>iPcr{6Gb{SF%$G7=%J@Tu7xkiBGV`N3(a&f0X8aud z(#Nl@`f6*1{w?PpIY%tMlWXvU+!J~K&ii$KZ~pgkd-)W|R&W09+&R%X(fa72%-PZ3WzLD# zL}#PljYaToVAPB3uaEwb&-vCO_SxVX^8H!wogF=@)49<_(SK&j{_Ac2M)bR*@3r_} z&MP^u=KU@IFS&mOhjU-B_-pQ8EPjvWNdB0@%)%3eZE?ZBGyj#@7VY%$ugrgge`R(? zU(HO96;Xo|nFG-s4dB*^ap|h)oxp6}9$lr?DpG-1<%=GtU7o(_?W{gy)}M)H-5M2! zAyHgB7iSewjm<9lDhs+={5>~4azZ_HcB)-X|W$%lV4G(I3Q5 z=n&7kkFEQn_xX9u9uvWoWV9*SeTGX8e4QGY7TCJGa>YaRn&=0k1z82u$wls)x=6BL z{KKi+*EcmsD$jaA|Z`ugK~*3{*!N~D<`nsuggD{J2)PRX5~H-4e(g>(Wo%6 zJQ7W0g|{Awj>{gG?JS$3oBH^EEP7`4cz>_+8flu9`yYEkKjW{PG%|HY)<8TNt6vqC29_|R@QY|)l$887`j_Z$f!X(0w)Pb7DgJx(?|8nTz2(y}$Zhty z?SYYH&kHt!^OE!(S>dgq1Y?yrK`dA2?-rT8zmFPRReTkG2cw6hf7LboMYM>8*9PO& zSp(sYEnJtd4(brLI{oe9qRhciV%I7%>FKPm6o#z2G?tE7J_;1F4w1uPwK$pGt=crw zG+6D)tRv;NPZqELic$UjW&hQzJvA6yIWCUNAGU{e3GFPaMmhhJwM*aqeb1$Ao&3D@ zjnIEfVwknAg0-#sZyO)UX?#qKu4!A3bEvu+brWO$@Emm-CuTgY1|< zPdCeyv&PwFXP4cYeJ8jd+@8H64bRi-V};kn>c3u=TU#q^cQ%&}mf!6^_4Kr?;h`*R z^hjo<$Am%b;yv(bsjtO7my9&6${HOO=Dm>p+w6nczt8?fc0*Rv0Q?2(XmL3EaCS@9 zf3p9ZJ!b5r>c#-9H3lI)FnbF#0@?$0Z;XJZ{cC4boa zO12GVTf5oY|I>Me%Xcn&>rs|#;T#|BGhM( z40q+RlVMSIfP3-{-Z<7F*f(+|G2607hyF*=nLT)M+M~|i1ONnAAp99fR?7d?@0tKsqQRZ{Y z*ntS|cUu0sgya@}V(dejpC9}AvCoVWyT*>WFDJU8~au|FCGzB~52qbS|f zdo<-s-k;d@jNQ7%!%at;uQsPP=fy(#tj%fg^`XKAIaL-nlm4VoP?d9C&Vrm9at;*! z5s2l*!s~MfqA8~-=Uo;iviZC@M`Be`o`FON?;nX?*5~hI4EOJ4^vyMJ>*R5U`&Tjs z^SdKwFr;$s8nCZE-XAsb!SbJ)J^kO?7`}BUe>r1k&NqNjgMDt!+00+#_-G%j42J0r;3U-gbS5??`#0RLg0+@LsjbZ{&Ek2D?r>i+3HhySaR^qzyQ zCO^<#Iq1ss1APa#$lCKC$a8DZ5589YU>^0kqrvGVZMgyB`SJWkxu=eT{DSpN7`zWe&->l<_6*2!0} z9@?XC*~8l!Sc}0e!;9G0Yw&1;?{N_x&K(_23TqyIN^vYnmZ7svCTDmb413OJtslI8LINbDm;A1TTxaLD232xk=4l@8synYt3_<6hAwDTC6N~S>DjNB5!nYW^W$g41XcN?!$?+J z59c}AbK%MMx17@Y;RC&w<&O^I3Py)B3xzt1tcJ9GS`E9{(3oZn*mUw`3Vh-We z$=eetXLygFuV&4pK^1@DMevG2ZkM`1@{Lu^58FfJHkpX3?ds@;QotuFlk zfs?P@{QvRb76r0!}rgHze$7n z@%i!V<8$M`D*RO;{~bWXJe_SU`V{XL1{;gMS^O!U*u?TFp52^vqgL)S=&jP1gRNxD z{2d+l+;K+iCqckVd5CQ zIQHhmB|xIKq`{?$0B#-jk*2|l>cdkH#snMm=SO27jeUHSkTu)W;fdHMW7}e%OS>uf{49eevbkm$803ZN7A|2D9B%a$||`J>ZhE%ES*@ zcmBttfaFhy-dKR2#~gkc6HJXi-)FV@f27&^b!;Glh$mMA*Rwx0%gI)AKiPh_9{YuZ ztjq5950(yZwf4ciHpPbzS=s#&;MR7R?Y=9rpZeDD)@mQzYv{jvJM`Y~#D8#-)y{`r z3tjde)_6Jo-%;T&@t1*#b=YdLyc{1}G&J)1>>pDk7|V}i>q-`uGy_?gd?*yMw@_nZ z(L|e`j+&_LMMLHtDz4jS)pf?m_&!DYX}e!$?>44g@BH&c20twRT=7?mepoyZ!5ZhXlDb<_ z-KAeCa@dw;t@QBv>R%i7|0W;of1L-bc8^Sbly$Q|TKw@5BUp9Ys8d}HyTAVv!(4}X zFu&)E4gSzCb@m|bE$+2GVslzjN9X$|-_PuEzHa~X#eV>1OQHq{JkqPcGf?8`qJ@>z zD?OH!EGg+9KZwwO&tTiPlq?6g48V>uK{(ef{YpFavcl2AI$fk&O8S-`oQ-f!qyJFs zj=>#?w2d5-?EjO-ky24+dv(cbz1JM0d=5N*V;NYMSfswL&ZguerP7Y3&O6GU_K`mS zaII4RTS}zO6u}a=T-8kxrgUs~brB>?pf3VIb$n z;C+6p?I^44)8Aaqa4M}GK+chAe|JX3(pnyP$T=}Iw%bCv1N$w0ZA`xjO5B(DTk+6v z9+HMBx!gVzVP7KHHlBUA)0gv)(tnhGz3l5{|0ot1AEV`Sap}-F?ys&Nth3)=o!lq9 zN`L>{X8V<5!N7eZU-iV~{7czi$_|%ZUN$EYV0I!vU`?m)Et#)ZN)NB4ero#8#OQFJ zzYh7x)cVBw#3oh;A00LkV-u13V^iAIyVI@cJ($g0eeOC8Uw2NManxPyE;Ux?<5G7u z2YXlh*X!R(|5ob!g0#8ZQ-SMX*!b?n1{lQQo+UjU~Dr= zrwy5RsJL!lQ|U<2P%0SuuF-ezvQj~hhTC)3N!CAJSsKP#)>}@6R#1NbNphbo`dy_D zoDx1%+8?L73Uhz|!Pih8-kx;p{GN(U*6|$*vfl6h(rj95!>w{%$`m8FPF3M1A=?`b${bi%Wa8~IZ%IC3RtrI-BSFnQX zXjHIz?BG$Hk4w!;vu2B7G91X^nk4^s{_=jng{G)+e+4SV8tcW^KuZSwEqB@*B z-_Ra|tvWhf`*2nr9m+@9f7NgQf;zDH3wmpMu~O^bt5jvqPL%r>S9=#b9i#=Raj9(e zE*MeSY8q)K>A2Jwm6wXBv(+U1IZv%n?^BP9hGHA1GE|N#R54Y8K24peCa8((9`$f4 ztvzHF-?Oy$oAJM2eMEg+ZA!bpLWMnY)N=fC)b*77X0?mP%IYhVzJ`78!H?*|RQ`MPpapq1+N?Mgi#=nWTnrmSq0 zq{zl>Td?Sykj@S1ypYZh>4K1srPE2(=5h=@4C!vI zlk(Z!f@(`npmzen{K(N8`GXzCWZN2-W<}O4(Z22`tgw764IXu=_j1-RgIqw>8(!FR-X&$&xiDr z1GOIKzYwxN71Cb}>Fpu?rI7wgNbd;guZHy3LV9ONKNHel59x1&^sbP8Hl)89(%*8L zHrXB0&pAz-d?%#$g!Feq`gqA^m?L{j-oh z5YoR0>0gHQuR{7@NdG#de-qNb4e8#H{#{7_KBS*_n&Um>G{^EnNdFIWzUF$lGGxChoyO;yko~pIlTAxi@N<9?`BUdqih~3+j70Ec;XvHgwO2)*V zt@UD^SC_Tzr`|a0@8KWlNow2}6Gz*vmYB}2GQvLS4CAlF$7-F|YMs~jnc(~AIKF=n zCnE9XRfS{GF?~Hj@%k3$1t~*X&gn=rCE!@u5Bv6MLbwTegbF zXiqOei=(A1PvUEPD$|P@E&d*Pv&6^NGtiS%fz2!RbXw}EbyVqdq_xfKw6vSk(r!*m zTRH7nowVm#>_$&g*<+~>^_OzBw(*^o_)beqrzPf?oFH$YUuWz#j<(x!ot8LS>$aVs zigSs>OSC*|X>IG{YueD)w4vyT_Nmlb+F$CgeWcuJbrD{4_4QJH&si!W`YaP)>xm(4 z^J=^3^%r@*=Dp9?s>Z!G@r`BF7Q=Vsx=6EUBX{kd-EQqPKjj6SbskMz6=qgWZ8{g>}lx4Ij%V{Yq z77xnO+LooYElX<~(`XaNX^B%<6vWZm#?jiw(b~o_+Qd1tILNED&8xM|tF=8|qs@8L z+QxKRj@Rf=e0zQ;B!aTEw(+&Lah#SoMw>WJ%kfSu3F0_iL;u&>#?)GwdTMRs8*O5i zlm>CMwt2O-d9}8AotC;8ZQ`6(7R1ro#?jiw(b~pwTH+XO;xM&i$CGOBwW9TPcbCx< zr9WF;6Vmp)h`+g(E0xY`%hlRTWnJdoVdBVjr>q_u(q6B&m!B4ttF16Z`R`1CYJ?^!}N8j(P*7rN#&ba+L zeC&P1X?-v7?N!D{_esWlv1>g^smW-0XJ2!Fpi|F!#$N8*J=)xp=Lh^nM?zXZ8|XOn zz46??&`D`GtGQoHRE)PKrkbelr`liaxA}IZX4rDYUghhE)r{fTE46q0dZFsfpSyI+B_gx5rhP+*W7nlU*ro;^}(QJ~uoT(K?x}ORGw$Vj*if`15LlO_9*x6 zaS{g~{XAy1JP)YzOnovHXTjG=HBPjS$@8Ao`Z>zCllOd`m;ONA(0umMUSE4mT@doI zTKib7+rjrassjINPc%nLd~`*q+(5^~?$^QBx2eF+IlVBH_o9$~gVq^iq#dR@dsq|s zVrNIcF|Ce?-LJzXAs=7&D&^~BEYQ8a-gHIk0kQjWrs+8J2kK+AX=h(=3)zY9+j$r8 zHD&pFTS!x`v(F8*)L~2&<=Q?_EZRNqp{ZL&l=G|Y_;@_OIUNbS%GT!={ ze(vie?{|@SGL+ZoYTob2OZyjQ6!Cs%w0@tmTHmvLJLABZkdM{c$7=Hq=zIcy{l2Ds z_UZSUaT&%(=Z!jluFy=hYX_^%`x~ApTYP;2XtQPI5j4{+f`)Exae0xbuO%27lIHcd$SNrwEZZ%_a z$j8^cjN!gLg;*Xt3Y2DQI}@wXUMobL*AIFlQGd|eE7MJsmFxrj0xDat~8osG|$r5wT?0A>U6?r+R$8g z*p05#F^#tM$q4y`G%Q!;^8M7-(em|hKygxD*T_kpUZ%VusEyswD(_Tm`bzMZ;^}FW; z&uLFh@Jioi^U5`7wHMMV@4AS#OWr)|kM_{fN}E@%>lsEze7%Qz@$;M=>|8sFV=1y) zj?w8c=u&GRlSeyTVf^#O?lkuJRoKVu&eH90jcDp1ZKAcYtLseOn6$aox;=e6@qNv? zKyy!I`st6_E@OhrYqar^>nyuv*SFJ`d`(|MOSyScE}Fib zktgGi(|zno?XP`gEW#(L^O~|=+c!>L-qw_hlb6T!l9y8{@$=OB46h(hYtF?s^QLC1nIYYI20oOlR8l=~snfmc?i*+FEUL$RPqegQ4($`@8QLz# zlB4d{cBxxVYPDL2znYX9vuNULJ*{~L%c1Yxed*Qqnj(&`iGwEoM42B5w6PNtJMr;B zGj6O__nN#^uh(gOj5g0jNl$!??v06d@dG`>TPJb!weVpT=;vt%?Djfc_f~WUbL@FZ z@9wu;H4_t=UZP=@vE~GvW%rtiCw@%A764J2;t_b;9E!RuV*pxpe zl;xrA9JSVyQu-bLjKaX@oRC&oxBGduw*DW!^aH+q-CF~lF?N@4&kpI+^RSzHlQ+LG z(C>)_x+WgzhN3_>Cq$cmWwgG>d0Oi+e1batT71y*PShwJkP|Hbn5$1JJ05Cn>;Jmb zvDms$z$JR&NwXQUIwXO>3+d_JquVoG@$UDOmO_k|~#>Z&q zV~$t*>v_>DP2P-@o}V{%`VYtMw9Nf72bh#Lk@pMcd6F~-@%b&&+qLFno!2-gq~8(J zZD`wujqM@b7LhpmUt@cqi>}VmWj&kmPtWP!WsHfa8`N1iQ*I}9h*-@#Ugs^NxnL-+e@#o$B)4lOLb&k}5Fic`dDNxlWt+FXykn zd$RS>-yc=Tv!c8Q@qJ2#IhLf+I?e=jcD}YN`3^{H+pn~?eMxKE_pCoLliJ^$Yokq@ zn3&iZdnc+%1;n>`wYKG+RgT@3rM2y=TI)K~#l^?Yr8_Ni=|=l~#*ah)sZh4gTH82* z*8SYJ?F2P`ysN`qp4K|A)w(`b+c?^X`Y7h-ovxhZH1%OV+}PzlZnSBKnJV{8%Cd1p zyLJn7rS%~`ZL9rlTUj67o|#E$6FK%tYVuh@9MQ%;!P&L{8E3n4Z&QJu;feNieP$ZF zEsGzw+PYP$B-+I+n~2uu>n=}g+g4iJw$eJeMt^^ywLRWISE@i)>o}$zjNP`0iEqbS z?XUZQEm!JE+ZsFH6{1g{B*!T8`Ohk?ZND;l*BF@xHa>DKB(*lzMU~dB4&r0c%k z^_;eU?Q_Ss_N3hX^?6|~I>ubF-yfJ04&w8)?w568NWU?pFA4PdZwhpA6`Es|IY!1n ziDSMK$&A>st4c9nxneon>ToP&Ra`ty8iwcPjPZ!vcL>^dEtl4I;uO0@Ef|D|Z2 zHzGU(M=wX~cIJ8bO0k>g;d5pMcCAhOd*{r?uG_6wEuB>9_u)W)#o6^a;@QUc=UKuZ zL)yph!fx(ajKdcuse}E^fYp;!{gGx$?3CIpm|?= zcaT>t5G{T9exH< zdCy{OwDn{hz6Nct+0qu{FYj($b(I&ss}H<+WE({Hf=8NdKd97nW1XzE3&w#;(`R@#js}|N-b!-n=U&DH-zU&|+|YLU?t^ilQt{9JHmTC}F>SZw zq1N`<()#P`&ezNXXl?rp&#tyy{aYYkGeP2OesANKrL}$j*3dl)|s zzhja5>-q$`+T-^mmCDv%Ynzwn8Eev@6zvd zqD{ZruBLX{a^?ALv96nLpX{!nJ_Y?X??(mHN88adK939eXszF&tlj!MyB^QGby=oO z0v%I5K^-n!;_5I#UAQ#R7cbZKr=FEcwCURu)Eia=`l6L+`^=!VJ*OAEFYr;T#K-gp z#t?h1_4jU8>+vM;c|Shx8S;`Gu}l3cm}|AVw}NY2bcW26F!!jnJYP92*FJNPz7KPK zTHEDvSd>^jy8U8iyYkmFtcCKry^*gC==U(sInbVk|>^)R# z+uyX-ZM99tff=qJY8|#~UFGq+J{wd2uFuz8cfRHwaE3De@_QuT?sOq@4!mdiWofPb z^}Cqw&-EyAOkeVKCEp2}n9^5yhPP!^%kNTVB!lM!Yfs8^!VGtX8(db^SFI}tS=q-^a`JM|q z@51<0syBZKe|zj&+hf<-9=q1|*tNFj)M#@~r>_g@>9ky5jC+3kKr`-Ll4JU|8Q-k# ztzaC}{XxbtzAKsGzjs_C+PrtD`;AXbrBtAA3+cNi7D$ zewg^S-)e2^ptUV4(3MKGE|>mq?513;ZQpiU<{q`4nbPmt#%}t&(=vB0nwa`odfa;I zqw7z9@HOrBAa?saeA7c{UAHQwwLMc;)r>Pd3Xz1Fp%)~0UqEPX9~CPT)5ZMWspS8ZPXTz#!O*E~P_ zad-wERQx>D{<)=s&;u9W+fwNnRQ z>-*QW5m#riN2x#8p!me3#h8!fy7Q0MX?ad_THix`AAM~~S^8a->(sCFIMKR~k=JUS z*SGV%m9HnM#UI7rjzwDAKBKiATeP<0iLui+sQ=uJL0+wG8)`j8`s72}hhyY=tTg^M zzV@;4jSgbsug9gfj}hPcYi+L`t?d}Awf+BGqFvtXj|X+D`-HaZI*4{LwYD*}wqv#R z*L4W=c9p$}ymTfxF0JkHYHhD~t!?`UdV=xScJ5OW$JW2&lW2YYKBTm^$E&q%AEQnC zh<3+#&8Ns~&z;t`K3dy2TH9k3?eexi8syd5)?aH|uGaRv8@s8)Wt)S%THCxvn=wag z8^`D%ud9RlG;wTR^;n=i(e~PGc^qx)-?Syrt)B_}wYEO$31{zBEL39SqZejh%c-+t zh0`a;5*0%p^ zZR;SKKF0A{f7>@Ef6m36pcZ`|t@GaHX>Icc+S;pA`rfMTI%dlF+v`i)?YVGT?x#j` zE;uf&Wo)t9^#9e~9ot+zE0t(>UaVb@KevAYyRDnn_P9iwW2{u#ZjaI0b>5sW26?r% zd9}9w@BET$hliBbwk)l!zi3yMv72jLYukslwqu2{bG-C1(dKw(s_|c@EZc@!+kUIH z)Q9%b+P2lLUvYK2%hOud&1xG*?51uh<74A!e;H$msdYG}{r_d%J6!ySl-BifuC2D` zSKI9|YE7Nx|7;q&IY!a$7>mA2OsRuhgI3Em*z+}a>`5iswWqe*b8+X>fsfYKzGSDf zS1QpiueMvC_dnx&l1gi9U-|XGuC=w#{|0ueBfA2h<I$A*0$Y@Hf`m!yn~2#?RM2SgZc#e4i)IjJ@qY9&oNxr{Qg|`CH?#JOSER(Aeygx zLpsKMl=ERe%IZz>e`;o$I67~)^C8Z+LUyb5@64^%zcaTwU&#b1JoQ_p+51Q-lL3|H_wsQ#GfltwPH0Mso*{$u&v2(mu%Uo+n zS0qCA__rmd`JQ_Dla>13A^llv+aFeFyBR;Vw&!ufQ~2BS`>C|L%KP${@UhQP{B}Cb&}m+$`t(XOxNscLr*<^8VO*|~@McCBrljW&Ic_q%FW z|I^BXyiQlM{uu9KejKg!@$NEqTLl*EsD)JDBTQYkQ45JLft_{N)@~1e$C7l8}AcK+Rb66u&32=jD0opnYibSOwRz ztpoih&=raATYtV|Ep6Z!#ssZxOs(xR zsfl+zF*_6 z7w-FLd*A;dT9?&Z!9CjV58Rj0DLt0n-p8Ku+mm;?T9dch<80QM-y_{G^L4&vPPJ3% z(v*9nL;MzE8Aq^mm1}+@#!F z{W@!H&ne@E?;q$&8ACeF7-Dp`uA80%?2Kt`?C2@-+ZDzTzixrn^KyPYnJ2ee&y!0W zuKh}xGxzO`Eq-&4B8>0$7jgRfCyj$6}Vh%xc@cw1uFy1moS^t>ai#y$O1@}s8 z?^WstPA5aUk3AOnaL;o7@_)&#<{t5Y`jLx6-ay9~1O4{b+V(51P5;AEjumW<7jQi3S&28h1PbA{n!gZOs#E9t!+I;Q#XC@ z&~{sv);7MeoA}mWkN@}oA&9TFjjwfmO1F>J_PW;E#y8r;CEBz}rPiiC6V%$j1bMZ#d9}9j zA3cJPJ&#)3cF@}T8*T1ETH7`;+O&yi*JmDlk(jm(wYFu6c0S|(>gvYzE86;NE&g1; zTHCpf5B*JiXmdKa);8vSM+3Xo*8Z-)W4FhpwY95%1pXoI1$wdf_J0O>wYKGorv7^D zGIrA@THE+q+x~3*b>CZeEGSoN>;LJOuv`7Ue+53GO<75$?bhe9<3ZiDwtY!!d+xN> z^{i5&O`L67^VODaL+xYFqtkMo8g0(0&8zEw*1vc3a3UznXp>iK-6m(NK=Xa8_-i}Q)j!CweWq957qr&T{67rYe>6~w z&ojTRw0V>2*_TDjcY^mT-uM0M_nF@Y`WuIK`F5@Caq%vYa_5)l3SaXq;p@z#(`Tzd zQ~z_ZoAW61*j6)lJr`};nctuLcAf!5Pn2tfd$EnLzdQ5G3ha|q!v^Q0ztc&%>xDU0 z8?#DjZTlYgJ8SQi=lqoW?S$6Whi7B!la%LAzn)s#J`iaAeCwB`?KY0+n0;>N9^uzb zYwN>!>mMV1)%Vfb`iORMKKWngbC;*J?w?lcx}}WWjz!u>pGWH>F&US{?qY8IpR2jI)l=?SoomF_M_(^m_r7CY7w^k~{YQb0tK1-O6s_Zv*J`Z?r#qnyFD-3 zZqJM8SV$||54DdSPmHD?^1f{S^?A%5OIfxK({h4xKa-bel?53=3TD$iz?Qh%X z^nCJK|0fE9I9l8G(b^uD*4jU*0$r)KJ1%24?WVOoE~CwHiN;?a*JleU*B)1(C&|2) zts9=ZbF|iT#Xm4wF+W3p)^G z1D$zarTEitD@pXfc~d(+_UviM|GvuE>wHG-ThXd|cebi^e|oSF)orb6A57iVs;cfr zhkScet!f+lj^5d-D%iIUU4472ilKYqlAi9VZ={S@Pvsx(ri$`uGkSymGY&z9{z~r` zRSoTYHQl9DeFOi^qerPlHA=N~D7CUlsVkX1pLvB+v*#&wb(K?z&7uH4u-QW=k93e{597tsqeY?O|9qEcC|G3 zbg9~oCGGV!UCj;M{Ew}!XVfOj?M=0*id)*$(OaoIX(wsrGsMB(gU>$kS;W4UHkE=E z?dWs3k@xT)sqbo2+m@1NIT{{a-KdVRopHgy>- z(Lf8eFqY1yMH<+yA?+ZQe~n!=olOmGoFS!_b#&EB+FHx>K~Gn69p|jIqoZ4Pb~m*5 zG_==gKk<=&sa@0orfzIk`$#LEZB=_Yo=(zqeSA3WJHGoFRb}(w3s$w zJ4G6UDQx>nInHrxm*4|qY)_grW6tau*O6A$bW!Ko-E%uSI1aZh^`3Lh z8~cvFT7cP8o}9~@-N`(Efj+l4&zt>@D{i{xombp^gN_s<~HOasAwDl>Q*k%|Sjr=D8SEtxLLU zTD#R1EKo?Zs~L0Op)R{-j=F5_W$GO>u2k=weYv{sdih#e>DB6G;5khD#a^e>rn@{< zd0C-KJ;WdX_}xoU^}R>lvS3L?Ma{+hx7#HP7dDV`lNH_Y#y1&T#Z*Zzs;HS}(pqgN z&l{|r{XN`!7@f&!{v~HIZa^8oQlz_J^Lh0R3u~6NGGwTX%}=Rpm)Ot6&PQhHKzjxDKv| z8{kH`32ug4;8wT|ZihSIPPhy1hI`;%xDW1!2jD^23lG7=@CZB#kHO>c1XQ1XN@c)o zmX%TnE>~4R9me1UJJia4Xyfx5FK9C)@=Of0%Y4-2?Z+eQ-ZK01v`mcnBVb zN8nL-3?7Fkpn8mUfY~q)#$W=L!|||}_({@RPd+zhwCt#BLM4tKzva2MPS_rSey zAKVWQz=N z6Wk29z^!l_+zxlZop2Z24fnvka3938=Qv9xxjoqi%Vm zF_?hma6C-HiEuKU0xRHDI1NsRm2f7U1?Rxj+$U8P={z_eE`Zgr9yY-Z57Hi_ov;Tk zhpS);u7+#iTDT6bha2EVxCw5CJr8|UZ6VzXx54dj2iysF!QF5V+za=?{qO)h2z%in zco-gmN8vGe9G-ycGqeZHhIuds6R;ePhZ#TLtdgV?;bb@kR=}xn8k`O*;Y_&ZM~|vm zq;p^uoCoK_1+W^{!zS1YJ7Ev3e*2SZIq52xf~(;gxE8L1>){5t5pIH;;TE_RZWHeK zyxLB>11^953AK}S7u*f^z`bxE+z$`HgRmDKf`{P|coZIkP4w;Kq$i+yf@6o-Fb~FH z0+z$^FbOBZ$#4p+fK%Z#I2~5PnQ#`I1FPUXI3F&6)vz8m!B*G_d*E`o3Z~#{xCX9; z>)?900d9nw;AXf5ZiU<6cDMuXguCEwxCicq``~_9`OK5*0O>*43lG7=@CZB#kHO>c z1XQ1;4PZ9RgE5$Z<#0Sq!ijJ)oB}K0R5%Szhm~+9oCW8=DmV|$htsLY0@7+&51U{s z?1VjVIa~!(a5Y>5*TQvhJ=_3$-~4H{k#rN>47b3oa2wnXcfg%+7u*f^z`bxE+z$`H zgRmENK0;fN9)?HYQFsg>>7a(n>fJ z&VqAb6`Tj>!v(M!*25;)3OivBTn<;k6kHA0z_oB4Tn{(Ejc^m(47b3oa2wnXcfg%+ z7u*f^z`bxE+z*d44jv#q2z%inDE|(V9)U;UF}Uif&uV)OPo6crZ`SZ?SyR`fYU*p? z3RT0KW=%t_s#!?75PRcdRny$AYFgNCX@M(MO)Gg?vGKH4(}umh5q7GYE_7ENWM5YY z6dU=wy5TZN{4VnI2wl@ndA#A)bQ5DK+e?YP4BHCyN~LP4Uu{h*Y=^wxlc~05xvH(L zgNsxx^{j1>v<)tUD^=~ndbn8CHnOjgd`%sywi(^r0@+>!dC#wHtx>hqyOw#9TAod7 zJ6EXM#m%ag`qy@`ud4}C7WJ&{rragimNY{0t{}#WrK+x`9(KVMs*d)PH}pE%t*)_A zu?f*lqFZ1aY=<4N6Oylqd@cA;eq9H)&Tdsl`E`_CN4a&~>{~)g+tkq}oF3Q$yWmph zc3NS(s&8bQW2;}(pz1rCRXzFYdpcD;b*`tr_2jQ#(E*pJdfK&qWut1SU7{MOZ^Oc7 z)zHX%QR52L&{Cra377M()}|V$m%QpUbmPlIc>{H6Sk|E$miMTI)MX*(Wnm4PenJ@7 z3fW$SChx)y_R|*@cD2C{*a^E}w_3P_lw)cnP9q($v8EBW!xgHL6W>_7QZ@3r(8xJ$ zBra8iEvm7tNpV_LV+Sd7FpZSa*wF=hm`|yNb^P7PW%}<$HZDO^PU8|{&<2gmnpG3! zHPuMk0+*>K+MtQLH#IMWt*}QmwY4iwlj0PqCfc&8n{AH2iQ{it(y2IYs)=@NCRQ_b zZLY0V&BSS@&ovW^uBMt>J5+OflWL~@n#tG9#M>e+ltpy5MUAknPA%%}Qj4hbq9r|Q z5%r__A@fCClr1%Na1m^S%T!BkJ#1Aib&aZpNxhZ^{5bb5G;|B)wlsFC77nh3inlZ^ zhUB3xEfn6u`QWmJ#G@TsxNf-wAmz}OE%cd|juzOhS~`i%aktQpEnV2V$kRo+UBuy7 zT4;}!?uD>PwQyW5^sg4`-?9u%yKq^-de{h?V4G^?9JVfOSFO~ul{&RHFM>-|YfF!6 zZR=1}hq*3cE5w(w$GQngWD8-rCFWwvo{ z+c>vv^rbe&i#FP-t)6}LO|VPx)(uG)Vy8ZBbilSo_Hj<=TB?ouwKdm4^3rB)v=`k0 zVrwTh{jQC6YNL(XXqz_b*+w1Pmb60b%Se|If7w#iMtiiapd7}Eww3LwowjM`eZIYB zv1(`BmDl0+`fk-u-)U$3VhC03bgFjFS^J_6)lS*%RI;7&+v!W~9ccP{`(pM{etS15 zWwz56?aS&^JLR>nXoL80y|=GyRvmRpb#VTR`<6V2YuWx^&WBos6%YoTE>+GZ(Z@={LrQm$QY>#zZ~!Yh@%()I8FdL!vU(#@p3q=(>Pcm(diwiE7xN7>#@x(Dus``~_f03L+B@DMxg98C){5t5pIH0*|&vsE1ZVjPPzk5NADsX zYQCuwpYVLsOtz1aXBO!RQuR2;3g@t01!L$0EQjOaJZ$sfWb_oc09_5Iq3cPTU@M%( z_8i!W?t#nUDwu-R;tN-!*TA)K9qh!mp0tN_Ia~!(a5Y>5*TN0#-v~FLH^NPDGu#5V z!fkLn+yQsOU2r$t12>UxAL)L003L+Ba5MJ9q+3Y0!ei)dq$fzXlV&i_vV(Ld%tOau z0+z#F*pj3Z;bb@kR>0lZr;$#Fm2eN+vq#KRf^zV5^4pun8W-)=Jt5d(nsB zDs&32hHKzqY)9aF^ai*Q9%Xwo=`qqRq+8)OxE=0*JK=Hm?Izs=_riT}KRf^r!d`d? z9)?HYQFsg zL07?fvJWnR)o?ufnn+t=Crq*(o^P7S_GGw*eN#x+kyemyAl(Qz!KrL-A)Q9LjdVKc zcG4Zt%{NtIbMs9z(fimpi}V2LLFne2=3uLW^Wc2A03K)m30RHJV9q5Q=D`?Dz;ZYq zCgDUl8BT%q_&336=;^Q$&V;jIEA~#<1Lw2709M0#*aTZ)CtS|{RWK!Fdo^4mDckEv z*TW5BV|x?nTGB0~Tj4gi9qxcT;V!rv?t$y@+ef+|u16mrJqS0T50M^*N8nL-3~t1J zf>bfjk^!?}9^8aILAsfA3rwOX!ma2jq!n-~oCddHt0dh{I*W7%=}tHgJs<8uFCg7b zT2H!%w3W0I_Q1Vt?}I7yYPbfjh3nvc>>EfAkZvU11UJJi@F2EccnI!bdnY`M-c7m( z9zpLT-474IgYYP}DVjbL3A%X1m#~R0&?cVRgI<)bSEu$GdNxY-6wEIlqo)`no3OXoywMyI?(&7xg?h z*RN#$Vp#)o9P%3(=0Q4nXW(V1fd}>mp3xWbT)L3*7V?g|kY~_^)N3JgR*lSeHS%)X z$V+S^&-sl@7NM6ihp>b>1m*~M&}`yewuxu#ChFA0GiVdylbD@1h(-8}C$Y zyx+IA$h$M|td!Tr3s)O2-fb&*2PJ-cM=kHC4ZNH3&PrX|TkClbC8ex(p1a$L)sAmR z9q*YuV0Z9>*Fnq<=F2*%XD9C?oxIa`(ypE4SuF2(ygzr*HeHn0g}sIPb>rL3&tJM} zqi%i<)6IKnx7eBQ>86dlY1eMru$$xTW{$3#d8BS$qPls%=q6S-=d+s^j2`+&5B;U5 zv4!^~wrP(ZURrvXJnG@4t%tVi;iavIHtJz6sE0OK!u!+`-l3LI{*sloyvMZj9@D_P z3-2jROe`Z^&Ya2$-VIl93@eGdlI@lBkwwhQEO>@78P>xl*a|yg&*rVFhjcky1ygV} zTm#p_b#Oi005`%-a5LNjx5903JKOmgkZSHToq4cEZ6aNYl7>`VaUrtX8U(Hby>keNN~ zHJ5E{gN=<@-v`F*eP7G#^O} zrU^}H!k3Vi5R%fAq$HtVotCzwUsAr`dy-~n)~5Z|{^=c(o}QlG@qhn!46G+!4`4n5 zhv9KJ0#CwI@C-Z)UxVl17`zBC!OQRpyb7nMJLhXL&xb{@6qds(sDt&e8MZ+^G($UdLq80`F4znEAOR^zLl*Kd1=qtt zI0U!BU2rcv0FS_7cpQ$vlaO8VwDJ_@Gw>{Y4W5Hz@cV5~D=%Wc1TVuY@G86pZ@`=I z7Q7AbzzN8bXWzwq4}K5IG13F(!r2gpYN&rcn40vyCDAF!~DIlKTn!KHTJofXG2)Hp%%nnLo>8M zE3`oebVDDovroeS48jl$!%o-*dlaRy0UCiY8VRG3Fd7M?u^kAfu@eZZu?KpAFdGT8 zk?gJUQ-hgRukbg5l$1~G!afy7Z6Sp;WQCO6LD%HE=}Cu#Qjagr-?9{ z2&0*2HgkP5*EVx)Gkz_E+d}+W2(yJSTe!c4IJ6LlR>E)Po>uN@<(^jVY2&@xh({au zv=Ns!?rY<|Hm+?W9&KFL#$41k-ldJO+6b$Su-b@I8}Vr)F71TZ&UNj)cRSa#bH1JP z9faFKxE+Mk!TAo(cks*(!V>e&ItZ(i^PQaQ#J>xB7tinF`CUA}3;!f#-{iE}sKqMLW^=DKd4-%WVkgvWF&rJHAWlV06i-@~;%T-QTfdI-OVckJOAJv^g_ z`+A6556|i0IX%RohiCN=zaGNtA-o>K>mj@z!s{UpJ*0n+2$y*D5^gVH_7Y|m&Sr;?d8w{aoA6wf#K5pXc{;eLv6c=lXu0*U$6%c}_pi*ugym z+{4r|Wq@-7gg3ysLHq}K|3RKV$a@WP%^+b866PRr7~~rd680cr5Ay6m?jI!lLBbg1 zJqCG)LBby-ZbO7IL>NQFYltw02xEx*hq!-;`-ixHi1-Z=#t>l)5x*hA7~z%`9r)5Q5! z5kKrhq~mVlwj28%o-O`L%X^A)od!|vvyg`=2+IHU*bl<&dO(EJOt{U&xt(|E<(&s$ zn0Fq*U;G{Z3+gX80#CwI@C>~3DD@ZS*Wfug1~0-(@G`stufl8aF4w++8GiF=EZWU%7tcT684eFs8 z+MyfzVF;e&`dyfNVIL$Q1!>4a9;V=WI0%Q}E$+Du^Dej-9)L&SFgy-N;7M5i_q2PM z&%m?rHFyq=!He(`ybQ0vtMD4U0dK-v@HV^yC*WOp4}K5IcSsYM3ui+Zs-YInhefay zmcuHjgY~c(wn05KLpyXsKMcVx*bDn00VzmB7VIma4$RnkHBGg9Ny#m z9l?AO-V*76`3yV@UxVl17`zBC!OQRpyb7tQo&gL-I&cIbwF7=m4}7xqB{Qjmr$;?)WLe#4BMa{nnC=vV|GJ748bng3;Q4eDLDKOPs?i? zdYhF7D&&UNHe>|oXh42wM3(5ojeP(=D%^(QAsAE|Xz&|otQz*TAS1LRFEk@JG++)O zH$Za-vP3U(1M`4sWEyFx8wWVwjyW=fynvmCt+9KL(nJN>gmBQ**NnXtvkiG+1QWmZ zZsdglOs-)*annEtGDD-%)X(|hoyZKFBM!|i!^jLBN^@@)GD8D0Lk}`T12V%fGQtot z!*0xWWQGppg?8kHUgU)irIiM@mG^3;A!;RlZ4HgANf|(9=tB-@MP}HI%z%Ff{sY~} z44B;8*4?kP_3ps0iS}s_xuJ*ap_lVC80|Fn?KI5oq-*=Y2y#OQazih20}xIJjaCN@ za|h=;`iAh^0k~<{I!N!%mfcEcLl3gU0PAIXksqLK5As6~@&oV8`*rm;(6)9dU0l<( za|qc9KLomNguZSBweF?{WQZ1I2u$9oo5r$xXc!q{7czwK+l>q{fDF-x4AFp`(1O{9 z{Lqc;(1Gm0IU4_-h9=B@(N-y#5MbPU- zKqQXj?QT|jiDxfDK`)JcZwKt@Mtx4<%hxarhPYfYX0M8#` zA=C)pb)>fkd16S}+1-jf(StnEL%I$jPqZRWG$Kz>MtdngJZBK$x^>qs-k-RN=Of_l zCeQ5_f(w7w-1}*z|7EW(5bnL$OWpfsxl_2s*hlb}$9)ijzq_zMQsO>>{aM(?99Gee zK8Ib*y{Hb4#2MbwRioqTt63kt?xcYyRry-o$nUy?Pl!lzWZ#h z@5jE+cMowsg?;%G-t(rgAA$$`^CCWnu|HMfeir+SzWW5{U&j81?-t>|h5cRM{d?TM z$A0$ry!eXvRbyZ3yT$WY3A^tW&uhkhHt8qc|HZqR>x_G!e?BeZi~V|dYW!*Ck+G+h zL)h+2uzCYs*V=q0w2={sr z&p*QRw_)#w;BVI~cLH~|=5HJ%Ya@xW)Xy;O`l6ZAt!m4!0On z3I1NfEp)}f-z&IRm0bS@ZlN0v{^Z)8Xn)^e$1Wv~XV%IYQ<$2ak9PNUHVV00I}mNy z6K&c}l`HH`jOF7I_;)u5`5*soEpJNyxE5vUP_XKSIdH;FmJCFw0-K@gFrBc{0M8(3c7OG8j*wK#CbeC?f z8PlSj{becO`*F^UMSJ_Az4VT-o7jb!E`Jy4_WXOhOWqxS(FJDSQMAAGxzde)&W;ZD z`*{t!%xj`=>-l?m4ZF;1zW?rFaeYU3H_M~YA4iAUXT@9k5q9A~bXewN|61HKe97hw+fiC(F9uAvLz!L#>t^hSIA zYjzHE1=sHCXb{=~Y2Q6e=9~M9SAV@j{T0S8>cU#gMZSGGX0Vp5zoU1z(3@lpa~jn< zZSO#z(37wh)f(3oxn5*0<^LJV{Jkah!1?G+^XLj|g>Fpf+Jv5&dPeB6gGp9HgUbsPX~Vq*3TVd9d7Ab++fY>$u^LyOezkCRhYjN*|mqa*RH+v228~BI0=U%Qqf%zuudF!#)6eBg;61 zh+D7*IDDTb*8n#YR+u%${j4#bz2&%y`&Wsea4=ZO=%0{6POzerj> z<=t~HekZV>?gt>&g^Ir)!AON?rhW59-+b6N9p60en?Ll;pZn$s->jbFg|pH(n|yPR zZyLTi<(s$r=EJ`E1>ZdGn?Li-fA!7qXcKN2}o3?M>2aZNZt~4u-;DX@lyBbUn~rZj=bNwk<_X_?&o|iuK!!ipH^aWUz&9`U z%`Lt;;+r|&yw^9s?3*w9<_X{YgKsXK>piE*HQ#?;?_RQs&oACbuW)G&QNB3dAjd=i5S;X>TSlG%h zj0krfZuk;z`B$$f=fF37_qToXP2c>jZ>nwH<+Z-K*f+QP=3d`C;G2*5=9hi*1>bzl zHwE_f84fUm+a_-hd1|0BE$ zArj~uI1iS?251D4U-yCm6Tl9M%DwOz_#*rnya@jreg?mR|AaGD(h4qtjnD!^5QmS# zeQ*?x!S~@ccpFZ@?_h2P-vJiGT4;i=@bL&*{)umK9qzl}Gw{do61)lj0%!1%FNAf_ z1jAs%-S9Yk1AYwu24|hcw}UM(1eR|G&#J`oFn&ki&*1Oi4{#nCXdPS&x54A^Rrogi z2;PE!1(i&;04{|qp&zb+F_?xs;Ir@y{4aPBegwaS-@%8-pcld#$iheA4tN-zf;Zsb zVLq9-5p*~XzlPJu)YWhW#Nk%>0{jr(fe(@4SA*DyUWXgt3-CPr3MwfK%V0Bffekmp z=ivMBPjDWEWfKg*I2?kb@FRE^=24J3VG^E$pTZdwtmUu+67Vp58NLDEgWo}zg4X~R zdP8D#-_Aqpnk44;E%;XCj%_`h)a z#iTc^fmRrYo8U|EZTJbi3pJOJKjCV)3!Z`J;dS^0R4!MP^$>#x;RyT*`~a#~P`02Q zu7Mlj^YAA87HTdfz2P$02KSK%LW=iC(NG@7@AL3=_%6H-zk=VvhgR~gPzUwU4^c4T zV{j*Y3cd_|zVPw?*`WSFxc0_VaqSPgB^ z57$5nrr{7g3eUiw!wc{e_$B-^yayjyL!4j}w8J3mfh6SNbMU9|EqERN02i)Rl&c^C zcfwQfeK-O0*HN#*HE=zA8omyH3-7^#^?WnX;2?Y!j=?{|*&8T7&a7{<-8jvW_x>UktKv1KbUd!P9UYUW5Mwp-tp>SO%+M3v_@E zlW+?>0FT3;z+b`}@N4)lID0c~1uTd4&mGOenye@DzL#egtpAKSMipMDUJt zi2Ipa$g{8rE(NpX{L`Foz^@nLkcAuI6L1*51mA#{;dS^8{3o2bm3YEMumgW$r`@J)CbUWZ@8 zzd^+|@-$osmq9!1gcMA}UGNzE5qt~22d~2~K(r_Sg82uSdnN4&TnJmB8Tw!kWZ*`) z3qB2Bgg=2}@YnDL{2KlZ!rLiduoAXG7wm;3*zi%f4L%8v!584G@J;w0{22Zb-i7z! zoU3SCU^#4pW*CMfOu|j@AUp+Mhws1-;P2oBoL$d1gUg^3_J9F-xB)~Pc_-#W@MZWW z{5AXpeg*Hs`%u+DUV=to_)m#}4Tsg+djbm!IE$*O0NGp_k8KUIrn_YIq^I(r-Y$OWe;eOhW#)FH^6Q13Ai5|2+H!8 zv5WHjO-xay$3*?_$NwXKxW5qR;CC>m#j97&!8{i(f)%h1f@h28UWxm+C1K6;!(u2{ zhBJzpgBwBAQ+HvC`#*yz?tcpN>mcGO>Yi_7|636C&+IshHYSL(NW;@x$-giUM4Ll( zDbK5zb6_r<17TPMWOt<=4uZJwmr_ zFM6+TwoD-Ahy`+in4ecF8(fRKR6Z!+E|n1;!#!J0*oxo(kF4+j*9G#z4cO&hP3HKL z-1Gl25uHd)-a8da^c&$sC|;L~RplAOiSL_dnR&x3=vtMLH1aoww52)YLfg>9SO$x0 z^?07C-xaar)v2{sW3DR8rV`QlMqX!fJ+^svf*JeT`0?tT(~&=NMWG`8c?57(#YmtIBNl0Cg^5PBo%(4Yi@D=sI#gKp<4;-k84JYp}paD)t?oK z$B#!yh+P+ou(Jg-o-fGHwflnE?{QY9(QMB;ukSx{rd`7TRa{FCS8DlG-|5yCYi<7c znT4T=AJ-|BW<0f!l^Sv45$8K(EyK+3sAfIA5fA0pPE={>f-bI`&g#d{)SSt)kW=Y%840QhAZVGnzd<@-xjXB><&xswM8^23` z#BfF|Rqsl6PeydRTju5NnY=tFBEJwDeCoD771y&O#ID!s=ZFs!uGJDB_!YzR7}u0p zVs0qWoD*5Q!kWjY7JCO`SK|ludvo=n*g(EDq}AK!^P%l&i=3@d8rvdvzM;9?uVs5s zj;{(^jq_xYGU82Y^7!f2#rflBL<}<&?=&K2GL&4Mm*4S>D%&b#kDuONLk(bC>5kD` zlTK%{#y6g&Vee95aN1CrRz9o`PU0=x-i50PH<8^ww=Xox7kn_A0 zsjL=7DzT}O^0*-~mEZKjX`$Hh%FK`XO;fTIB|^*V><3pKz_B_q7b!tj2KCb6qtN(D7Ov;+2p>&;9 zEmMCP@0&ZWTwHC~wq=L(&Bi=4nM_Y-Q$MZ`g%g*k+S>8sAuB@B3PsHE>%!D!q0>{> zr-qDMEXSIh6R#WJnErVF&cf}X(NARViNr_mt7Y>ZJvYgBoD*+Or_GP$A1TxZ^<(08 zk;0+Tx=b~dv!1x8nkrIHe4;j}9}^!xe{?)9szp(G>WTYmgK9EyCsnRKwN6_dciO2E z)sSiD!g@vG=FzQ2XKucz5oJYJ6V$ru{3MHuL>{`O>eLmR8jc@VE3`U&z2P+Ek5@!; zsTFE`>*%iRs(Ch*GZp=17m&~VY$nsMqDEs=Nh7(?54%`(t-Lg>t*(jN#3Fuq#prr- zd%kh{qKKYbvWTiIr!QUU4pyKmX<+j&*X$F9#;vtg5- z2x;46ReIW*biP}a79qV<6|*LE=WnWQ8J*XhzX{v!YtDDWY4@c{apsp~CEJVZ+w$3O zId7=?s?PUAXfWV4gl5?sZsZwr5@6`W>gQo4YQ)Uf+=1Xw+S^Cc0J&uXl%3&HZ)E{gqW!AU}k(I`2*0 zU&&W=fBhlz*mv!y-I{aSCqt>FxphTpW8Fm|qb{xLR~lW`RkeJUyd@InB9+q8Zq1v} zZ5w&ws`;6io)E45l{GmlP0s16yHHPxsx_x)Y2~Ow*O*R&@r;Xl zKud>4*BbtPJ=Lsy)A9`qZB16F#oI3rjW!rPA!~UqoM}4G6rvE16OBnz$lQ=$z~Vqt zFEAw}y+OZCe`M4dOD_uPb+)Q+GCHg+wWGvbe#k}TQQuOG`X)aL9Tn!X+$H%Hg&Ldc zUo%y6Tdp-<>&X=avZ9)eJ9K;5{NT+l2^qx7Xj^FKkSth@mo&UYXw!OQhvFe?Y3{P~ zGpq_MzRYE6`U-QUU8Tin?9+9o7vjol9pTEpVs*%DvCfzKZ%_O0)S}d6zH?*l_?;7n zC+?qg?wk%A>ex0rm7DLk6FIk?%0B7jFQn=eNtek@XJS@5=jP{mLP*Z-P-$ll=1W&b*-E-cxI9EMv^F^wfPlq^;Gf;|77d zBbDTgg~^QHy3mG_sJY8jq_Tzua_-Q?JQ81{ z)Vf2V%*MhzQaDAKaz7_Oie|b`g|q>y%4SLELNg)qgqDwcvP{nXkC453f{$dn)0OOh z=l+|@7PVR2Iyot*o-szgf5xbMx;Qo3_T%K3!hJZPWK1RmD5=1E6- z63+MM1zGs}bCSD^kBvLKGR_{eGFiwU2`>-=5TXxJJsMH9OJi$u?mp_=q#LV3?9g1j zB0Z2FnYeapUO_X*MA5ju7~b_^-OVD(X524V8hYOSvk2Mgjfj!%sA8>ep({+nFEs`u zrgo(oTR*zZu1Xd1n)`pN*ihQsSuOHk%Dp#p$b4eG^+YE7#u;CoL zfEN{lQ}71Is>UcJu6w$5tChALt>DC_t2H4D?-H4wFZZW0_y6csh)*;`(h*7wm^Dc& zO?r-rym{oqLEb$2VIJ{Ll@Ogm>23K1B!i#H-8*Xh+#a^ve+s3Wb41A5TRRhxy>x<1 z<7kEEd|E%U!U$>3J-KlFv}|qG*`M2(pRcpAp2##e)_B#&J(@GBw`LZQq5O9tdZRJd zn2&sF>Q*7AX13w895H`wPRbcb zJ1Nu2*v?1u;S>U<-f7MEh4I`C^U~RrMiRT%&^3^mJfv+bIUh-97s?AnZz}i(*U-X` zRZ=@UU#!lvemv)XQG6A{{Z)-NO(xCsg%azH8uBTXzWeJ+va9>;DntYG=-H}1YCd9D zTcTnL#kZvvkoJ}o6?5+2))edZuCH@?lPFVu==MAoa<@zVEK$I@1Oe6iLXTdapCL)y`EkW37Ef$p92Vr*?LV)f6b zWxKMi_JJI2c!rEVt+@vxN&VULI3vB=(V|6Qw3-IQLSF`X_M*X%^jeOXOyPIne+sOs4^ z!2P%R+GL7711MwvT9cV(`*+=aH>BNdh4j2RPxKhX_n?@r%0+1VK2hT-5FER-wZj)t zl6QMJl-zDqd}d7>&|I?Gt`H(f77ahPgH|cb!<{*@=h`SFY+y`~%A7v?@qirmDx&L@^Ez*-G3}u#z z(!Mk(?8`#gMp`XIV`E(Rv+{H$AKE>vW>%Z)bK!#fOe9uttxB2<()I0F$k^=51@vIu z!hBEPL+d?p?qrU=@vS5+OwR40n#-)6pc4p5T1>>e;(2f(k9!ID zn#f7oaQBzVa~Ww^JKIa0;ybbsX--}o05#%8lVe|Wlzk7l?|rMU2U(G%@Yj+mlB z=#fqAUj=XG{#B%4x{Z-3-SMR3 zrj8666^ZVQGi*AsY?VgLFAYlD%251KeZJR7Q(O}xIltmL@}Uc;c}lc5M?X}h(=S*^ z$AE$&N{=i&xkt~ZszI2*oe|Z**F%X|?mXFnkOFH~3#HcD)x06ObwHxxo+b#`^8FrG4+stGl3w1mvNtWc)cu1XTf9+@;BFDA{$&(*~b zm*i4fR?pofE0ceao$G}A4;PAtrQ{{{&(}mVK|(pV$%f*rAef_PRT0IwyE~-q)g$_N zT}az3vZLt*Wz9De?3K!mYpP6&vHO;)IqkaheIt}4wi(A6|%P# zC^p4>)EzM<7J4#Esjr$|Ykn$UiEwyS4UekYu1t2aTBrl0IS^D+IcR*1YW+2 zI$%8K4xlzERGOCM#v_Ha)2YU{ja^$J@OCal1Ry121}{I&hM<<)P|0y`QL6Owaur&R z$xWK`tJo7O;!pfn;;HNO(=txxR`a2JP0Fy4=&lXv^`c^MZVi&oy_IxwZXtx1yjIz{ zC5(L@(kJpx&i!6ZJk2l4Bvfrr{4wMFK&8qjBa|15p}ZKhRJR6I&+#hpU2m-|{%(bP zJTf-!G%xgCA(Q>Q%1%!w7EYUN@N2~51yeUfVjT^Irx88L zL8+1!>4h`QW4|!B+s-vP=e3Dy_G2N0=R(^3@hXE>Ae3AmlnD1IYEpeXlv!`q_@dbj zRp^r9&c_yLY13EPxgQJX7fMN_^eO*^ek9}Uw<{4nKUzsoW^;w!nHkMGO)@DD78Bth zNl8NfKu09jkqdty)S=D~YXc!cTPT`ysn-eG>K}$i8|@2cbVV{_5XO#}J51)~eK#QG z8%q+8=}u$H>7faWW#{{WWJ9Aavh=LG-TrxqC8CybUMW^xuT;|RA3fvTB#mnzn@&co zjQfW(to>HPb{Y!KuIcj*AQBs<&ZeZK%+)30)YYNv`l)#dTbrb1y1m-USfkeCvbZ++ z#kGlAHdSv_rqlZU^U1E%(tC7%~tg{SK(p zS1P_lt7I2_kWV%{`~`mVN>~pBU--dLzJIz}>IgnH>#aUrEfy-|+?(h#+lj&jC?qLy zTAIznG2NeCAba%1ZhTydJWqzSeqG+E?~@tx{oqON`=RlRGwzW{Msr`S(6<{Ovz%)R zHQBT^O=y1~%JtLjq)&zDxLuZ=uli-@t5st@qUinL=cUy3vgy*Sa_J z%I=%BGnuD~At1~7k}u|eX>KN(*=n}u4oo;*la+jurih+cORUrDRINU?$qL1mn_+#i z95UJzw%1qEo!+2kHt%mOgko1_w;6~jCbVgt3-{`5Z|TW zFTS0*k^W0vwa|bi)@w9$P#Ef5}8e6Sq zJFKm$mO8P^!shabmR=Dt^DF0QTSvQ7*P7YMOGVsQUWCTVNEYaNExCAp(2icRR1^W( zq%K=Tdg;|t7q)nLl~4_=_^^5G|FYfgRORjjrQ8AOG0LSR!B-hVeNS>nU6{x^@^TYY~EoxZP~e_ z)uUG%yRANZX|AIv<~M1p;ysBrz3U`3-<4`&U3!DHu}s5vStxsbz7h>zMS8Q@nC;G0 z%g*UePhYmu)1GZAQEv2|ubU+jQpf0HqqiAOSK8T|nWOECuhB0zFSBaA(FgQzet5Jj zqIzC2Kj`c32pOwUcF@IaxPa_m65`ciDjAyHQor4&XKFJmtmXMj3QI0M-yiYxl4Y5` zoDtMz3uNst+u050iYnh%jb0INPB{DY^GqRAP$P<(?DEsiEoQ6Ln`*$XtbZWu>oLC&`-jS(02 zE%WNQbxLLC`FC=k%k}1+kx9p%c5(+8@JrDhHt(cIbIWP@i}IT%yQk+NAjc=QNeeZc zP>^GFhilLmjcZiJtM$#aZRU755sRc4e$`iJs@RJyWrP_H(|Yw#YB~M-NxJWL4Bbk; zDrsryD?_RMlevgCIZZY!L=vfk+$cFt# zHi)qsi%~~2IZf|7^~q2wI>9(F;u-o|mAE*+F~XU_`4l?Yxo7ZoBDW*AJ->JI@oA^= zK$YlNxi)_Sj72TnHN{F#sOh-XJqM0sKXQF?!5*@>5L+MMWN!N!f^=#_FN z%$9oj5t~A(D>COE&@3~hr{q^fdy{H5QQT4~;@1@#ZR5Ee;w5j_R>$s0I6L$;>gYBj zn+|Eq_3-E=3|TH?*ah9OI$CFL+#k_K-CYqqg>KifOm}D4ToTed3t@XECEL%VraSd_MOfFHX%ww}F!R+!v-Sp0(O6F7y2bJw$jX7>wljh>k*frLCJ0U{W?Q6nQi_LwO z(~x!g_d6yTd#Pbvn3SDPDb$FO6l;#YJ$<#+O4ZQnO&DmanPS6oQ@?t?=}&EF31{19 zRe~XFyWM>*KT~tHt42k29?~zhC{>qKAqwg%&&ce^th1J94SPc%)7W>BI@(Xr@lb4Qc0ro4c6w(Bayx2eE)rGsI&Ca=`Pg{6 zu1eIn^sx)I#rYv?YDI=h={X~3P>&m0QiwDK+uWeWwr5(WHr67j3mv9qZpw<$;r(_n zES?J`8qJWkws5ick&zSh#Z;umQc;I5yNKZqYV9RTt$F;x{PUZse{Y*|+NYg?1E)<@ zP1Q|rJPz)eP`rrgoU^z>q5b7or(sb6=$oN;fAn5iYAt~p5MZbj0%`{{_SIrr1{ z%b}e6Ls_9Jn{v?`Sf36XcEm7p`Obp#^$Bh;BDt)aKnooY8*coxOi-i8AG`~PJ`rJJ<0@$M^8^LPOr^uHk&8H zdH05petY3z#)i{;{$x1md@54NyPsk}b6`AdJCE{AQR~I1x6$-pC$#<73_c(( z-VoMrm&*MyDoZoWh(NfIiX;nYHP)Kdve1z#ntex=(3#x1|JXn8cb>PMZ|6=oGKOtA z-J;7EO1Ii`;=1leja6grK9imhr8jInFprLn7=C(CO>9eclYiX%Qn5-@Me%ULc|tz- ziTT0slA9HY`pCRsnCg*;nQ->|8n^x0-lWr%3TcItoBX&OIe8ed(fqiY zske7g$vKv2R>d%k71A!Y-H%ZcFl-wx!0J^&6e|g_O$ec>1Mk#SFUQkE@CI#y%9$9KB`@>J40vzx2Jo} zYb~^Eo_6$Vz6km%^r3rH!#$97ubXhM4^O#QtEuhjex{E(NBQ1DD|>WCE87*$IQLe2 zirIUaNaa#9ZjO!Ud&l#+NUGpI6pE1yF-F6DP4_*FBe?enJ-GWtUk{F2cD3c~L|49( zD-Ts9_oNw1xh+SbPj1VEwL_KY!*4+y?tY0D_e&&fiuUa4aOP?h+`}liSE1k@3KZP5 zCn&gANd@<(g?@W?nST40ll9wo7xmk2x2NB}CX~8(+|5)99d|}GR*l!u=0?%1M-dTr zrC#{z`15a!JHJXF8OzMITCH|FpFdc*b(&T#6Sj9(iSeJ^YGSpymNwe8$=7Z;Il`n6 zzCN$%Jjkm)7|{(k7fI)xBMh4u?h(dtoo>UqCmos249`hzOm~~R?3;M5J525vb07Bx zH6Hf|HHJfp&4x1_3~Nj~G()`X5TEG_h}5S01r?3NAv+XzKVdl|vP{e#;TQ= z|6|T)B4VfkUAum-@i<*fl=ACEC52RDx@j!q!ZNO!jaF;E0v%D(-C-;>2gCf=+_CcR(oD>C6?}o5Qh#;lhn*JqBYp>(m?MNNl1rdnaRM&dp;8*4cqV#74m% z%50tpYm8z@g-$QukAZE|HBL{TOZ&Cet}lpU*c~ZMx`&0WD>9z{1cO_58B`SQRpMU}gWTPapoh>>|d()g8O{+rJ2d~(gb zUDdZU3>3+xosU;ZHNeN2IY`p2ukjQC8)Vmi9n~)|J+t>_p)J3a{<9YFwILgL1V>=)KmUjJ5JN zgfey6aDFwhy}T0T>tddI1JebihSk-zwJE28?~`|%D#p9betY61jmT%i8JBi(X>R`o z{#*xts>6PA9hH#jQq8Z|!}h8w6f62=QXkSNve3losm@fp*=tWsAgAPL{R#{`aYI39 zAwMSuQ%_R79%djjqw1F$Zr;44N~mNm3CETa`(=r`(dJ|%6>~ouMwCY9@_8cmd7(J` zcoR9xb5UPlXcG%t>Yz$=x!i-V-r$pNnLzORIzeb0uwbYPE5_&{=-eX%M=~ z22_)WMN>6SR(Z0nrE^b6Zw0uM-hXT(~5p zEw-4?g$|J30g~k6i_fL|iR>#+qmfwUPda0^S(!u4)R|kob4%&(#q?!jLfWZ)KV)y2 zID2B<)TIX^lVeSY<$w(X03)9=I&TJ^V$*$I!o08bH zJT$s;VpTYQIfF5}y*S>jC+GriO)p>qxDZeeOpY~#4>YLe5^Jfw%$u6Hgn0*<-l>bL zP#7jI*-H8*uZ-mMt(8gbz?IB9^;8#EooRNO>#gS8zQO}jL^E8t)Dsm~GF?V0Ocr}8 zjms+H8}-)gn*3UHR+)9%f{CkFt`27}4`fU1wn6b`yU#z~c{&0|$ zL_@jXvBr%#?0I>%#+wZPzPPfe4o3G;AeiGKNUtMZg~9Y zv5>LWQxpD#MN{R9Lixg{P!`IxJbVTk!v-{lYYNNum1_)F#IHnW*qB~XC3J>|MQ$Wf zzND0@4aqt2)`as=x#G}0NCKTdL?sYt}< zBvqpLd<(qQ5TdJl^q96Q&UK@_>1+j~_`u}KgjX)EWOPvPm+HpPE9Lq|azm-c@$;mv z{8JmmIG`erax_qx)2sAaN~_W;)KJQt-O6r$j$%j|62EY#_6~3|9~}s01S@Lah|si|pA9h-EDqjap1jy0ZRt#qvQ z9P6ZGo#$9D9qT>E2I<(~IW|hiM$fTHIyQNZ&C;>ib8L~0Ez+@8#(<-U!CDyuj?y7x zu-1#gS{Vb5@{EkZS}z7`WehmVGcpEiy%?;OG2kfA$QZ2kVz5@mfTK9GPR4+vbjTR2 z^J1`0#(<+dBV(}6i@`b>1CH{HjKMlD2J2)DIEpiy__<9kCsFQU;RHV}JGzba>IhV8T0rwChvsaog0<5ycj5 z7VAielaVl@O^RoDGdO+E9?!E!u8PnTJOu57A`dFN-!|)`VhKRBBUoM#ZDRRSv>*K? z!8Y^zCg3k0z-?#>c%ycT+QQG>f?OuTw_(^b+A^iIGKxhg#gzv5`72r!wT%t=P>U&T z`~oK9_q@4q32zZr(bo%9`gb$zFmpn>RFMQFFW=4@58YIJL+xm8Vgp-Z;4RBj@E{qR zql03Z7%m1}6>(r%b(Z-w@_Zu~3`QGK2HDfmKIA8%AeCp>^p-P2_Uu!gq!20Y89|D7 z_py(yl@z0a(LS-NNxZwatVvP3#kvqq`(sIp+Ji=0kq5Q6iP=h2fHSj}%D%&n9%^f4 z2ZEN=Ek>nN9q`71mB3WR&al>KKH4mm^NKoztfzaa|PVQ*MFT1*a3 zh~+JcJc@xprDEq`7G0ULQ!E3EdUmu$_^7)?N^>YlYFvZT%TMgVU?q#vL}1Ywr#dJj zhX>h*#fd>Ism}+M5i#vhC{ek=TR*9&<|w@ehG^NVw>jD&ZTO8BJ-bSLnMUYc*;I06 z(X*@Qo70n0AFK>|s~fy5!t1O3T0T0+kHuoo?3#TudnPwUOG9YM zh@U$0j;b`G{Ur;;yffuq{$)LW56Hiy=$v)ht1P^bgKPW>Bo_DUKC#A=q9&{4=#Uju zwSL_!e7wq<&5TP-^UTnMNxVWMYu(7mkv4T`74QimfZ`R3~p!%EH0o%&b_7vCr zL|f(J0R%O6gQgl2H3YqQzoKenhjq(a0WEA)QQsjOQiVo{ugET>?C)72jp!QM+^kY! z_g9hxUc^#dE}E?iE?U$++u$eFyrVj#WsJ1q9ckypLJwLxX{huMSf!+ieu6Y< zXz4^ihSoN)se@uvBdsZcDI#x(s2k$zS&Bd%GU&RH9)YR$Fv*FolM8CywqZ75D%Ck6Z* z?&s>6GhUwZWj2wod?}EYqEyOgW8yxuo698+$`uuw$cRX_igbC4Idg%h?<9vZEg9)x znirQd+mw?$DoXNuPEJ>vVSHBqUDZEs#0g-iJj()1>+xrg6 zi&)D=d69+``HJ#oP6~g)yx9_OwTD#-h(!MC9Yr|#Sw?S#PKiGvw_N%h?f0ibQW4DZ zQ2Y4(syQ%KfPEklQateHOP|krDg{9oXd*$Fem%nh}OP%K}ccBmBThvCOFXq=HeKYDy zX2i9rvn%RL#yMG;&-MsvbWvX4TDX+hkgbwT_Vz_tNe|PROK2ST;Pks4eMz$#Nl%>nd0{(MPegh#A zl5Yl?){^!wnz2V^ACL8(NT!}xN`(0#AK!j*gpryCv$|Xpj8x=Xym*SXL@FJ;CyHpw zsk1WsiW8p8k56AZ5$%xc*_0Bi+GdHxHHvQ_y5z*v9^@9!R2!%LWdqS3v2H+_<)(HG zssPoyKpxAy>F&=|v7+B!tonnBS5&hz;fN#^Ws2Vs`k%@asWbBdO7aeQHT&OYE^$Gz zA{^3^Ibj4Hr5Bf8;0J*21c?cGk10GN7-@>KSzy_ZD4fz%8w)9ZGS)ka z%bADHPt+DIUP~a7CrAl0Yk7lEmUhM3mJCwJM!lAnTV`I2k5Ke2y@uc3DZc#7H6*2M ze#>Ie`2Q0FkwuAtyfM%rA;OnFqb%k#*A$xpSycy3L9}1|dpVMmNY!UGWblMfLU~@rLk8^9W&h> zA?Em^QTZ1xepHHfAUo|g#KLbXeqjjZr-p(hGxI!jgRGg1HsT|i50M*B;l=y-m-&qo zb<`=m)COIwBJ#WT2yo?2by)OjL^rBvQ4wt>L`NVn)xKOttm#z(lO7kUAO<;RB6zZo zOyXUva*uY3w-qT}bj`f$$e=8kCo9UNs8cM^4Q5;{5sP}AKd)Xog&&!pu@|HXetKFh zKkrGiynk6pfp1WEllOwEdnUUhE*97!f(n$v?ptInCHng;NRjnYU@z;>dX>(9BfytF z#P7}qz1pCMB}-DNLv~^icKxoHd`79Gm}o&qPF_*!n7JYytkG23W~`J3&0kVWQ7Bqx zI`u=8=0LQf^W}~DqkJjxReSZxs4QKKiIv(_(N^`N5)e78)LvH1WRy=))P#RA_SnmM zWHaZ;2W9dq`IHrs(OwFgK_9=wLC1Jh%$!WoGxja&2s&5U&F~u9Sx$!VEJdI;()agr zMPMoEem2eSbvBjiQkrLEwbp_Eu@ai+CYv|Dt0e2Y4ui)}3w z-#|lwIzb+abwVKG1hqln79W8L#a2#y1ZhDLl|#qWJuQ~tE53o|8+DP1_Cgw*6&eoC zN`uaEY7FHBy<%xbhs3rH3_4k2{TCx+!U#MEHMB5d-YhQ_*i@lFk>x(vAr>n7xh4>cJ$>*g&Xj1! z4dmO>^dRqv2q`^VM4BN zRsxeWEq1y^^~4aKSf;OhfcHt4%N-|9y4v%VF&dH^WXP!aR&-|>1JzlEn$IiEGwp7d z#=0d@W~8CEB&X$a?P&YVdTr&Do+m3=yas5t>c#5;l+@P6PI|E~ExHJ_w;yz(SkDLD zho=9z`#>ezqfuS)-2#)GjY5K)Esis-rk59s?Pjr}AtR!KNs(~A;gt*-Q&~F7njkb3 zVo*CPR29-vjC4QxSy8c4MI@+A%3PjYE_7Y~irHC0d8yD?dX*SPqGe)KLJTnZHg!m@ z5Msv@Ps^cYnTX=#;R910WdFkGAZjbr{)|(XIA+>PnJJ3xWm%pX(#DZOyd#+_ zmtzi)mJ(w(zKzzU5SMG4>1BJ1n`voI@?ul$^(!q_!CMWj6fJ5CF=86C5|}5cMCDhStrjf_lerOMR}V22LYhdM78|u7X-WfU z!Q0pcpTJfkS21c>uFY=|Jv-SGV)!bsh$dJQyC_i&_!dzy1Pd)otYiv?x}sg)E=XjW zQkN8YrG!iVvdIuo)+o`P_Qp|)FDN9HUOH`ZV4u`f|st5NPFFG4tGKZrm! z7FI@##CFJHqa?%;Ut@eKKZg5L>^Kx{XXrM`aBYc$Q>=_*6hg;8u;E#VHZl6wuJQYN zC3dwxCwDrco${KP*=|aO++#^-tmKHPoIAm?U-SeYc!r^>gxFw>p(@V|#;!;bq{*Vl zK^Wec)=B=d!|&@r__g6;^CH`8F*3nS7DRemY>b9P@0sdO3b3e(>E|k?cC{hJ@BGOF zk|8r?#0r8nsLcg{GdjrEKxt`B0^x}N~Q;}sD7u=ABdXpWG}TL zAqFeGquR(PmfL+OGq!TcpBDZk$)688(>Ij~UhXWmxMgyMKhAavzmq#bjF-_8np72@ zIWw{-A6Fb*Ec?LpX*JQYrH$&#v3wHch&UpFGh8afQEB*2ImkfwSg47;Go?OiJRTPV zq2BHb;*38A-sDXJNeJz2yks8Q5W6oc70gbcYb_4kiJK5+LgANmnF2siqNZnjMd5y> z0#Qq8GQ{o<{K{=ysc2=M0BC7`c$Ujs86i>RVN}>ET5U~%xYVbN;;86g?>2-`J~;QV z(v*vsnxOd86B3GnqoRk2HXtrxr8p54Gr}}6aHudX4R?%a%Vn+nKCDtPm`N*ApRVMv zRSfR8mBIZ5Ry->?tQFqiYD{4dOX0|hQqLf84qJujnkzy7T$vEAik$|tMC1W&IUj^^ zixze#iZ%$1LzEK;BWf?7PVPj35Ti5%8&@z~K!Ng=?uyC;-$3Us>h$0p)SX`NY7#BG zKQP?H&KhDTYI?FJBj3Sp6EsbQnJH+#$^_5!% zfBA4eesna0&*W8^_ywT_9{om8a%Mf2H$Qn^<5*Ho$rN9!O>B?ASFxgElID!hNgiqg zrC7i~o5qYi?}$Sm#m<2lD+ro^g<>EN%%e?{qI?1l;zbA8n?QIJ?P`lc8`a8f0@aJ` zptt{mAN9bcwrQh^01NpFt2okFr6^e3JEW&XZWMcKMB6M*wQHFJTC|T=mow5wZP%Hk z!#zApAT0j1fdwyOFAu1HM(KRY(R3OM3x7pMPLJ!9L0Zi2hS5=;hFM)&MAe$iLeHA>LKPuqU6M5#*Y3ffsTin zB^*+^uyRxfby^;Iz$&-2z~!09SbR%)PzNVPo)<4VWAi61MR#hG{=_9|rOiQ`DN~yh zLr|LROfD*Z0&#+blm~>QNrWRV-pyMGgoRm&VpkL44y@99Cu#$s-c8FhGcI*^f%KFI zY2_10moU{m8m}V{WG3?8OdWtWJb%`Uw{xJxgP<*DQXuY8qwP^v_N zpX^f_N;48NJCc-L<$IN0)++nBGx3$~(hJ(eCN8C+cpjyf$Rbn{8?Q)}dZ7Dd|CiEG z5F@2mX*jajmE7hP!x9e)+N@XdeM&>=5ruH(g@m*8v?zfkr)7aGarYqu&2pCBO=&DS zD@t*Ra|gTNl%AIE(hCOII;Zpk=`Ov%E6pWA`o+7H zDm^dVrT6a<3bN8GJP(zTG`Vw=SFe>i)P_;!6(GflcBs@|JR$4r;EY#!2QE=zm)g~_ ze6fX<0<}6U#HgT+MGW!RM0oq@&^)3AK~(bFVA>ExPEjtpgQ?j?53wSwxOoptDr25_ z)W}pC#Iaqw5ESLMA2in;r9!Bf;auE$lBRkssz`2$HZrpVXM^u-5UX@?v!2I0%@lZq zX0@?PB&xSFPSk%`6JsjKTgVP#6gBWMU_&D^0{H=QM?G)cJ z*pr#ra^7Y@GwVItyZsr?#V!PM&sxwP=fi=s4xkkIP<$NiAd~Ew-yu1q_)VP zS%&IyX0AH3uHm{mad|_ zU>*gpCq__9rivql8iv7K8D!ODx_mZP`Bbd3nOHpDpN=Ib)>2Zv*|lm@mhbORRw2!p z5=12<<^>5QvR6TisW(EY!|+3K!V9{8WNd$43<5SamKb^LrfiFOGbNK}+U@at@msNW z4t1ipT?`d7lSfKskO(!_Nz*RMCR~V_3bUsx@cU~*?Nppwp$?7mZD%Gg?8>q#uxwt1 zn5Mw!LYkULEKy`2tT-Chm^O0EapoWgy+ksJkuMb;5ve2&qWth-#6b)aCd8m1wK2z( zu+koJWDM_A zyTrTA4E&S*M@1Q+YsN7ttVyiQRiLew6Bfj0X4*o@IDsjpTRCKibV6pA2RT-xoO*1i zcbqcEflOi}zKO&RMqGvNK1hA3xfgRel+p8BBCZNfv_)uum%K@5J(^-F$+sXMZ^&i5s+OJ zL_|PDL_|PjyMTxY$mWOv5iuenA{P-+$@`z0B?|%J-uvD6-uH9*S9PlD)Tyddefo6w z>6vLlLP~LQars3EPVrg%JkOs>3mtG`VT6!LWUT!A1pF%yq3=QPZ#;y)_RuvOKT9hA z0!a5^h$;9T4E~J`^eFTV4j~yYyTSZXzI;s2&Ty&?e%S=8usB^15<267K6XZh=lc94 zf%TNC59{&Ry`ZrCnR_cdL<~Jj?8vW<2nii4KKtg^to({8_;3i{0l}cE`dmKnq#bow z(yH=sgtr)p-3lZm;k!fEG!8uL$9~1UTj6^iJyJ*VrQ*O>7=)A&xWFSMq!eHVCq&Pm zas2YHX9!(}55?jsM|_N=(NL@M#RL8vvEsu-{^+jC^ScTU@Axx>@+Wb5xMA$b5f&LS z{Sl%EWJrGH=VJJG-SVR&_{0^9q=A^KJl5)xhIPFP&%*c-~p$51$#46gXNk3XcT z@}y=6u9;hMBy=c(Z$kW;T(1A2T$h4O%!?dh)dYuBrH8du9@6qhugE%o3QOzrp#6*W zz3~z;T&VHO(RSHIqwrn9>YfSF14~5fe_Y8QGGY1+JZWkAzmcT4awM%RM! z#}b%t)A*!|fzu%szv?2yM_C3RW$17wjvLhTpL+Sf)rnv82d?^B;>sKA=b=A0!sx(s ziZeCVCjEALv0nT?lL8#w_t2jo1q7XXu}-~0X3@M?4+wfxknrC^<9*9i6yeRG_!1dj z9g6V|*SG}0Dih{@{7^Tb#mh=+ZCd%8qo^qF%qR0S^p1YxOAhc`-%2Xk>3I0UdxLLk z{-dk6aCi6nYQCo)4X=?okOIT(ukUJh4RNHi1h7=YhAGdu7!p?_pvB|Hfnc&a{mM(CJ1pn>38%Y zLj^-{16F{>fy!!Z6cmPP%b$LQJQQFm47BaZ|IPv5ipePVkEYeM$w|G3|Mrx>0Te%e zrT_()siu8eURrhgo8P*Q4&1x?zt-XZh7qoVh87{61^8DW|D7!^jQLk)^Rq}6`XLbN zJ7$dGYK+gIoJbEmG2*ho(<5qxUvj5rXW%QQdAL_g^8ZHz*TEB8jFuecUo7Ffmf>Qy z+<#Vj(cr@S9>}hrPq+3g#AibZx{tDk>@il4)c|!5DE{%wcD&XqR_j1RJzx z1gluTe=n{B(6+`wlt)Lf7AP(IPy&*6L;eZ;eSvn+W1oWuJ@v>4*6`C2Y!$!)do3Uz z2ivOvQvv%S8;qD%!LH@d2)6J9>JOt1wiZIZ@S717U$9>dPr?4TunFLO%EN=QanM-< z-K0{qJu`wm$R4H~)(?~|yY%({cMYU11Fsg~3jLs&%7(HG7SHZw4OpX4OGfXcU)PZ_ z<3zx-*TNQV0581HQ8V_Pjj_7X;IG2Ij#n_YR9Gdf6SfF@g(Jdop;S00ToSGdvS=3V zqFbyb))O0x9|`+}2gH_CwimmJeZ^EUOMFBeBR(lUD^3&Vim!^x#COE?;#Sh(`n$ya zqE9>_o)XWB7sM+h7bLx8mh4irR7c`EwWNB|JyKIC4jkWFNgY8YOZ|vXmxfbWAU#Uu zQ_^z*`E-=?q=nK_;y)7Jrt&@MLn;?a+XM35R34DNpt3~z24$)Aqx6gPr=(V!)HXHu z>LMIN_#@#?9hcn$e7~+a(f-&f;yMA{in5!f8>kzES~m_+ymefFYhFp(hPW=ky@(p1 zPFD|CKLUCb;BmlHB&9j9w14)+*)oAs+-(bPL;FdN8~Z!o&-EY_2sSpd(@=A^gKPFF*{H$ z_{$a_32(?N<+buAd8fQrK5`TK|GobH?dk6f{GEZnGw^o?{?5Sv-x)YAm(rQ_+%@Od zUn)rckR{DWf?i_={z#ahwo@7GxlVzcLx4{%s>~qyXd8RShrLd z4EWc!;L-7S`M)Cr^)>ft;x&ny&YGT@hcy|R5t<^+W16Qm&ueCCUdHUVShGU2rphdM z^DD{;v_?=y5Y^BLnRp{}=6)M{<42tDW*cX#M(rgEi9w-sk=oqj*)jO#6;@y>_ei zW9?_!FSK84zt{e({Y|UV>2%?`DBbPXS-lI!{O^`;2z>LeqW<@>z$7Mw4+>>Skb-yuWUsE=@OAy;%JgxT`{jE>kyLw_2S; zE9Q^r3UwcTj|^A+v__8WOvI=)+F_(|@3s@g(Bk`(()Z{$XFOnJ47Qm1?y&@V807Rli;T zk$$)SQ~iGZLH+0Y68+cuQvDD5^ZH-(SJ1mMy=2fC%!UXK>8_uhBQNlA=5D2kYjknP-qxs zC^kH17-x9O;59sJm~42#Fx@cIFvswc;T6NHhQ)?A49m&ZTZUBu>;BHZCNGuWl2^-X z4C@V>4F52^FK?8089p_9W;j$yuiDf=sJ}rruGi*f<)v3cTUm(m%gRc*BnVeemz4yz z(`CM^LAs=DH@1?i{%!Zw-Q_i0=C46JRd5T{!!owhwjXSzSI^mgww;GBzg2$?rx`1! zIS+l(DJ}cH>}Xw)E6ijI~t%)2Fg<3q+~A$E5zIXANLKU3G%*x@=+aetkSNycPj zFVg61>~C~RZfT$~&6r`#G!8fBko*y2p>dS4*!Y-noH1IeAw6aE8lN>zHojn-Zk%bH zV|>Z@it$zBV$yxXxcmm*D)x{cZT>At9j7BOC=DL1<;SdF?|9iMw9}Uv%8X^EGILp2 znWZeeETYVc%~lp!X2((O04QZqbbRxpJOc3F{gn5@PeqsAR#u}*6mQ|K_+8^#<9cIE zU|imOjIn4@S8|oP%RFU%+qaj+&WAjH|>n|eoYh4fX(Zr(&V*hL(#QykrT}AN6dOeH(6Y^l5%Hz2e zFTvL3`Q|eAR+qP{<(aM@+3=>LPQczcR%P5&=lw5bp}pqUY%R5;{d~gsjj^=4 zc&iy1yk!Tp`aTp-)&0|>tX~yBe;HQ=1^@o&B%S5<19rMdKN&B8KPg`VuIdk3*YVdw z>O=jzV*Jy{OxLvIUaM`XE0>m2p%_yn(S+}&$r_WvRDJu9YBj{rvY}+Li#5WLeeGa~A+TB~t7;h4iJrJVeLR9k*Rn=uem6|8Z z#+S8;oKV&wvNLLu0OKLy8*e$jtVblDoq4W#S=E}K?_I?vm!^bd4~M8hAu2sYRkb+e znwne9q~GEo$&B$;>2u8}-rj$1E9Y-aRX3)u*P?pe>+Pdc*V%X1 zvmTTmr*n9aySb8|V=HS`A8TbDKUaP&P@cJ})~;<=-pYTS;m2HBwQZUdZW=7vOhY7x zDN}NqhDjb8C)rYss^jHaHz5f|PG~gcNHtA)QXNyiR4CnPs%IK0-Cg}G8EXAkMDQA= zyjM4B@mC|bYTN6bt8di~uDYu1<*J^7SEY=pupfe(f3F1h5U;Da1#MK`Z^2Q`+Xgjw z>9Z+mvf6FpV}nW*Tqunw~XHHoaha(KN?2-?YHA$n?5tsp(DAO4B>0HKzAX z8%!UXwwV55+G+aO^r`89>4@nIQ;F#-(@E2}rnB&+&!#cVa(%~58z`8IQmxwiREa|83e=BDO&bAq|8xsy4`oNVr8?rZLE9%#NK|1PJS zGtJrNTyws;$jmfq%^36J=BLaP&Ci>sn`fEln&+Drm=~E}H!n56Xp z8fFiR3Ui0u78Vm$J1jQrF1*pZ0e`DEee{}e%{^g_!CR;N~^ORW`Sl2p3c9kSz>w9vdZ!vwcDWC zs@Y)KY}s!4nD||qgPN~2rJ5f#7d5|Y1g%zU)!wG9qph!PtbItEplzq^rrm2fXz^K& zSx#EMv!rO#wP!6qTP|6Cx3F+^c(%4cs}Bzgw}nTA^Pq~gPimvXYlg>$*C&3WcAB

      +bGux%zr#+%Qru_y_->=}AnN}C3v+F#% znz~_;1HyA6V|DqFso^6d2Zt9&4h?@ivc7ISosWly=Y@|7eAEv>DsZLJ-xU9H`%J*|r)`&j!~mqxxx?FL%YtwXJh z#p$xGdDfMY1=iJ(Bdza6J`V3&|J?d#XfXT>1fPTWEEk-M{4*Zsg2sZBUyIK=oGPC) zgL>C5-=|(Mwmx!WfV#eJux0}K<^@ay1V3Y}W08gHf1bEuZLr;V>(kbW)=98C88D@S z{h&s9IaPWtU~{@O1=I{_+D-WgT9_rxu+EWY-$I*tp?Kz@)qLq?>no5fv@Voh3s_kc z(g=E~u3TbWEGzK?^)MbmrE<853HN4E2UM^R_k`_YH5wMR$52; zA6a)>H%J?$Pp$i{o1`t$LFq)Y;SK2Qf zkPcPQD!1^h^|bW|>$yrkf3{w<{%XBaNmkyXDz!Os>rIcgs%;tj$4#~MA2rvuzEz1X zbo>R6!&@z@^LP|1)~Cykmz}^?U42#Ak{S8A-97m0Y%SQZ$}7otJL6U65+oE=qS)c=~ins%xunyCOBT-D|rlHL*Ql z6V!3G<~CWKU`wo^S2dDr`F0^~?Nu#Z;p){LLo&a<5zn{%AG5lP&7$sRi%|El+0?yl zc6EwPQ9o>Rst4KJ>U3MQdWfxtI?EQL&bHN3=fX}Mb-pcDU1Y1P9$mp|J@uou$88PO zPueEf8mphNO|msrKX03Ai&MX7n^i$C=(lRwLY<&)t!{(3=92b&+XCAn+v`NPQ!o8X z3&FWJc)ePAR8;kLt30>%S8Z-a=jQLB%Dw$7ZFuX-8K|Bs_i{bTfA+dw?X~jjM|=I6 zYpql#;d_Ah!hcs$Iop2julG@Pb}P!Ni*aYFx7Z`> zHoM)f*qwH_J=$Kw9%HX%uVat3*R|KPH?TLfH?lXjH?cRhKWLA$H?y~}C)iut+t}OL zJJ>tfyV#TL-R(W>z3hGLDfa&M0ro-mH2Yxt5PPP5m_6H`W6!ha+Y9X@?W66*_Op>= z?T_2X*~i-_*uD0N_DS~1_9^zM_UZN+_F48h_IdXC_E+o+?ThS-?Mv)S?aS>e>?`f7 z?5pi->}&1o>>KPG?VIdd?Az?y?K|ze?7QuI?0fC|?Fa0K>__ZA`%!y|{kZ*v{iOYr zz0`i%e#U;*e$Ia0e!+gxe#w5>e#QQW{i>Zg1jjm{JgkzlD=CC^y zhtuJ9L_2CYVjQ&`bsVvdx{i8|29Ab~MvlggCXS|#2OVc4;~dQ#EgT7s){Zugc8(5? zPL3{)Bu95g4@WOYA4iI#zhi)7kR#18*fGSB=@{n7cH}tn924yMjzY&s$7n~fW31zG z$2iA$#{`GhG0`!}G1)Q2G1W2MF~c#-F~>2_G2iiuW1(Y_W3gk2W2s}gV})a-W0hmI zV~u02W1VAzW20k}V~b;(W4mLgW0zyMV~=C6W545osbr}_(yi&Wx!U5?9+D~>-LR~<|d6iJa4t)f?qidnHJ5sFQ*D~jS& z+)A`kLy1vpDRq=srLIy>X`nPz8YzvHCQ4J~K_yOUrnFEJl-5ccrJd42>7;Z~&e@Zc z?n)1(m(oW`!PZ|HpbS#dl)=gnB~uxuTySJ7IZB?AuM{ey6dwN=Cq%IC@#i1th6 z7$W`((SEIbqkOA;r+klSe^AaleniY;?LQ&zpAq*zm0y%!mEV-#m2Bm-<4^RU41G{V z9f}mATa>dbrdk`dqhh1#Mcos1UsThmhoYKA zwTx;V)i$a_RA*=>MI}e|is~EHAM`*#T2uybX4G)toTx{l3Zq6v6-PZ5H7@F@C@*Ax z^{G5#2k#<+YcBuJT<4!bE3eM{RW#Mtm&aIrytwHkk8*H25KUv*Nef^cZikS%d z{OeV`pe8TTk7}=GG=H&LM#&V-2?8W%;<_l)t82R#CGu9rRFr z{FQaD;VNaC*A7&(t9xw+ZS1Nqu-C7bnQLraUvQ0=O#JHqnC;|$&I5d3Kh9u=t{-5q z#=m~SaZqyOvV8xP@3R}XxPI-;`n;ZnXQQS>&52qZwJK_3)UGIBnU7Xlf>uw04{lX0 zRGvru^GkWpcx}}dH{ydWudlN&>QL12s54QQq6FvlwQjb?@9$={E9(Vg4ce&8SI6=8 zmF0fEqO`J)8*!C0f30RkPq%V>>zoFs$rxX;)^^_E zywh3F*}&P**~odH^M2<8&WD_jD)G)1&ID&`XB%fbX9s5|XBX$wbQSiDlH}~}oM`Xi zG%CHEeVi%I{w z51b!5H#@gF|KZ%>{0Q5}&OOe(&T;nr&I8WF&d;4+IKOlrbAIJ?DqlOlaenJO?L6cB z(fO0}XXihizc_z&{^tDM`KPnYsd9-f*`;;qT}GG9Zgz#ctk~=>1)J05cHQQRan*9w zamBjoy6U+axEi_|xf;9NN)y)uu7_OluGf@!S94blrKPKtE78@~6{8%FZ13vm>g?+3 z>gGyz^>p=drMUXL2Dk>f(p(v?p{^{~aMuV|uImw3fvd<>OBv-F;~MLF+%?WM-W97% zaCu!5U6WjsT~l0BUDI9sT5*PJmTQh{p6g}T0@tgq*Iad#*Ii3p%Uvs6#;BF9Rj$>p zHLkU;^{x+GAG$WXwz;;ucDi=C7TI^Z_PF-B4!91xK6f2;mAH<(PPk6G>M2Q%Q?63i zY1bLokFK9wKfC_v`at=`^{eZO>krpem&z@8|aLb=P&*bKmW51pLj^tAJI^mO(#w0HG%^CWwEdU|{MdcIZqc^>u*^rU*y zJsF;%o-EIB&j?SRC*M=(8R;4ADfT?(8Rr@Anc(>eSMXlXM9*`c=RGfYrg>iU%<|0j zyySV=v%s^+^G{{5=MB$t&kD~<&nnNmp7%WOd)9kC@O@@%-UYMU{C}(PFeZ zS`)2{Hb$GH!=r7{j_9apSF|Vkw&>fVYev_Oz9X8?LaLkEuAQ$cNXppFZWS7Z$eV3j zSufQ5R*4+-zqj40zo7n|$hIGXRIujyCD*+1r(7dQ-MsbdTlS9(e|;G~dES!NdEPC6 zdJd;nM zegk}-MefdHybPAivKxBmg$Vg9bWfxH0{T+}Z7#w06~taEKFu48wp$SIHniP=cy}V7 z0^-%cPgmsgW5nDBF@J(FJ|FQ4h*w6QT49U}7~^{A$r$5$^xce{nc*V>GCO=YF~;{{ zKiZM2X!vs?w=o#wb)XxKKJAC!1Mqtoev1+F9q?NhZ5tq0N8ooP##j^V8$EoQ;j;i^ zJQ-uW5%SXr`Dudv*bF|;V2nSAJSSj`H$(db_}+^#-UhLB0N(~>XF!WbVQ4DzPLN%Am3@t(j~ zN`u`4*mpx@P=tR>JRcv{?-wtC7nX=+!}A-iNQ1h<6j}-$$M{KxZ3t{((3?!kBJ^alQ$% zBgkC?Ao2MZ|asF&;$zK1Ym4k-y&%-(HNH;~48F5#v(C zSQow>Z$wPU8L z?|77#MXh(cD0u%s&aQyo3HqvN_BM%Eyd|RIJuWi25PC+9R?cs3l=GU`k;9wC%GPF+ zyrY|Au11|jQ%An1S*-WoW=x&|J_39<=p;jD4s_N)W<&ecXuqntMec$6N1$H-{qv|( zz)u7JBESdzLy)wOox7a@;^?q{%l5VkKv_v>bY+!wlO&>e)>RHzf1 zO^`=4pX42a`ctS+L7UrQyC!UW5B_2BEuq&6de1}83%#?D4}hITu(J?8XF?|xI_b?O zcvqnQJnH8__9W~))vS)Zt9h(OE&z@KR%)ZYX94G+y9WGPz#+g9-4gunY^kx0arxv9 z#-)?n0XhLDn3hgn0vKl+J-vIx=;>*I%!skpS=N;=&asZgQ<@ccUbAx69Q(@Iv3QCx z!?AMq9LLz%vm7htOjVZ89TznrYG%}Otc9$YJ2h%7?lM=-o8ufiZ{MgeT4R%8Yb^j9KmoV`wE!al#ei{u@c?fVCeOounBRPY_Z94?4WKuI-qbwL z+qhMpw+Wy>U>@KVziUS&;u-h2*7s0PCy?(3ZOq=0N@bd2*3w8n%L;;*wjW}&l%L{>-m6%fW?5N zfE9pMfHi=1fQ^7HfbD?YfW3eNgBqot7}WUdlPF73o+Oiyi;x-hlz*NadtLAey=3Y05Ru12{A zf>I56`LdTw|f$ z=sTZlJifumJD*#VaQ9f?ZNm%i;&|j;_&sZBOD140>x6l+UA!#!h>!3l#dE0^v))FL zQ+mvO7sZ&}t=Ju)EO9ZViPUBs+Kfe;iD)wcZQ7%a;O&q4u2jDm^$StI0`*H#-<64& zP3OdEEpmmX3~X-~9e@>KCDYCF+->9`C7z?|FzV z1+l$CdOWsXh^>fXTZj5ph;0R8TSIxlZ{p=au+txQGGS*h#m1#+kPd)!7^FiWO~k(m zFgZ3(@YbUUIae2418`lbZXvkES&N!&sM&;? zov7(aHHT2MA2lVY@uB7fYKo}l2x<P=66IJq#8&KkcL4jG-tP^`?Zk;skw?cXn~VM zbv#4bP#x#=p}GWc#!wyS%La~*Mh z|MpNF_o#&GIOh!2agXj$9p|Fq={@patC`@9ZN@q7w+^_v;AT=?V{lE0<8@8IJqYf7 zs!K$K?Ga&TL|6mX-lz6$A?*lhS4d-;*FdDC4Ue^&-%gxA?mD459%*c-j&pTGbv)8~ zp*qerfT!8yzb8EPg{Oz%sUb;ujJ+Z42kAga8#RxGN76>i#?9{}&hNiTsE&JV8mi;m zgP}U^F)mccxn}URp8OAnr%YT;Wg{c&sqaG|83suXBy&lp5R%c5j3o(=ZzLqekUS2_ zX408}tWG43*L%TD0=IzbW`LVR9Iu-NZXUQDRJRzGmcr5slJNQ^kSvE}B_yv?L~9}0 z0LdmuKBiVXAo&>i`4stSfxdi9dLKdh38ecVO=vy{c_MA}w{`PW;$RNwX0o|cjS!|?P4JRO6lB$D#TKZo>7NWX%#d-F_qByF_p(L9SdzyDsL zI_|MgsE%_fp*rrdf2fXg1K{Z$>cL=8?-Mlv)W<}fqFSz(L$#cmLbaSa2dX9h37%sW zVG%fyB#9(R#QBMzeYsA1lC;M;E~c~#&INov!tRzhF9^F+fn!Qr zkxn|{R%99Pi6FTKI2~sJu45#cKERngBX%Yr+{z|!iA*YgER{X_arYxgnQz; zkY8_b+><;O0Smi(QU;1B1HH*UULp;hzJ$jFXg*?7D8gdGDU|j+$?0d)tcRHB5^oqSZ6meP1=OYsaP+>!8b;4`XLI0|FY?gvo(x`?-UUu6WIE^s`I zblXxsh7#^V$5RgQ4vIvN>zQvU5>9ci9G4RI5xz|ATCyVX`CL&M2kc?9ekaK>8D2aE2;#Y`#PU%Z|A4B_KDdk}r>HNlIL+Qt{(-Qxj250G}Z%u0u6p;$u%|;-a+_40CVj~i4o?s zRpOem#Azqd3f0z>Fh7(kgqsq+kL34}=DnoZi|7Z5Zc4SSNV8B1L)#+4c9Jw9Y$4n* zKy!}`$wDMa?j!6Y$rps}gqsj{5Wb(VBJr`~3wN?S=B-$9bLgzqBU5jdvw4mnxoxQ8s1w&S?u4!I}j4kS5Dcq`!p9BX2A zaXLZMknp`6vyXI}2!9UT7XRACaWlfbfu|cj2i}SQ+=3?Iom|qd4gOC@V4IDHfp-S* z5#w%SE4okM(l+>=AZ!tCgI@^>x-U$-@%z43DEEO9a3Ap%aBWKii@?;b`&M;*3@n=$0e=NBBo?8;nrx!X|&$mnr8OFd}fDEeUjG~BUI`BdsNX1 zDg(z63&~U=8GPX0hPTNeoX8py-B64bTA}?NqAcDCir>revEGLFpmYdD)s~LXp@iF! zB$MK7M-gUnjM;#XiA-Q&cRPwRlj3a08o*B`;r8S+3wR&q1is>+5`O~4@9%jII@0_% zoa2&?WP3Q_j+BGpz)hmlOZlCjB;F5--}zw%!Mz~QQ8wXD)VpksOFNUj5rjKa+#`U6 zlFn!+l#JlEah=8YR}S^33zwAS5bi?OatL=Jn>oP2Sxpt1)l?ywHYC%Eov7e+XF}Kiz>=bfb(gU)Xl0w2g$X6lZ z9+Znh!aZ3n=oAs|N&B{la8If&0?vd-zP_Onvq16n4V5^IWD;iO;Uwc!OldE=G8+jj zl=OmEp=2cYUD}(@qN51+Mt@>TM-lE#<82h--W2yJV4Yo;-LU9I#970+5rrUOm|-iEQv zSL9UUNl<+KOBIr_kc@?7x{$2Atr(Jt;zH~jzE&ZKuY%(16o?WzYl&+(6;jD%oC?Z# zdi^q-(E@t9kW3eni6L3J4>{z6Uy~p!iCiDkNhe z84JmDAz67_F(ebY9z1c6u!rN7eB&tK_m*RTg_6F!&n06hj=mJf7{YyN-;V*d+}6s! z<|Bp^#qX(uGF3>X5*5_a`i~ez6xR#NR3Vv4Y=~M~3lZ-jit7bss*tQ)FCipL5SyX} zt&xZi5XIXDWvY-&6_O={WC>ymw4k*Uu_aNwZBV8P$y8!H)Y3YN*q$h^7nG?&GL@Kw zT3S;PyAj3pf-+S|R<4&2k|l_J(Sp`mLX;{*C18Ge54HqkiQ~w<}5 z%@FVRSu4c*ebx@~exG$hyx->?A>Qv3YkueXnqQ)b^*&JCXWf8~e=RUkyeq`}ebx){ zexLP2yx(Vo5byVScZm1<#ERK@zG9XrVzmqu_n8*Z@vo#Mis>QV?{jd7_xsEU@qV8} zLcHJS&=BwUiB+=me3dLw#0nWG?sHf`$G>`(C=L(texKPP-tTini1+)<3GsfPxgp-~ zQ@|=3zp{J>*DrauwZd5CBQpkNqPRljJRg~BsfLe10jt(re;V{T#%zU=$K^}$udRj9 z<7;u;!u!B0VSztiNECNcjo-pdXb4!ve_r8Kg!mVm-X-xyr1+R zbqOJ!Yt1FCxfIJ>vU-&)T_sCb$d@se@J*U;jM(X6W&R97vX&Y%%eI$^a1jInCQbq z`-t`t{Uy;~61{}zp9r5P{4?PTg#QGVG?H&_iR9Z*!l{=+)a!nVNxplINxnOdNuU~q zsJ358zGh!>8K-)KQv24IsJWE@wJJn?NYuJxYTw(i0zINiOJ6NzBF8GiR^UaY{N7Q; z)(a~35WWrkJ`*&Nw8mg3>>%tWd^_P7!gmqAoA9gnFL*(-i16El8|mZpf~F~9J7EW5 zH{rVo-)@LA2$~p$ z7xjGB@Pg;-YPYlX;zZDVb?sS{e0^;y@)ul5n*lnYZKz_phJxx?-KOB$O;)jsLsV?{6cyVA z`ZK%|p-~qV`!-p{<}XmOZhaw}ree?Zgf8eysVbH=QpKKrLdBYURcymEDt39IioGyZ z#e`uh<{F`5U*xIS@d6c#pP*vH(DvuKDmETAi(pe44xM}ztBeL}Q!(F@Ds~%e?jE3Gj-jvtn}49qUik2K#dzul``uM+`(PD22%i?zeTSG- z<5YOyregg8KRu6r%vQ17msIS^%PKZ`w2D13M#UCB1|Lr$ju*kh|B*>5_EjJ71Chb8 zD)u;Rq`}^9=x;+lew~GQP@mRc#jNmk6tRRM-n(Jv{>N3UBkB(zmgmr}1aa*FxQkV6 z6Y774pCZ(cdrrmnpjC89yM8JbF$g(Dj`E7oN95&q_}h%WEkhh8=vC$bS z76Uu~K>Yy3pcvu(JVqT=jyAO@!W6*#34r`j)O@8L+n!?XwWa$ABj@;Sc@F zMg0M^+c!wsK4VCOZ!hw!@#<6|54 z@5iw93;O#g;$8{+%@Ai1a&ijs|JDnAd>FYzo>oJa1^e?b=Gwq^%J=11CW-2%wbO*z#jPmkcAQU7Qly0bU_BRfI)!9 z*sI%d6uEIkb_euAR$Le%y#QlyWPOROd;*BhQ?WNNi`<9IybX8+*^!G7F~Bntvo7FE zz(qg@=(PasLH6E3W*)^J?uVnG8M4wHqv|KXm}ihFWWx*CjJ^H|;77nDWTq)Hl8?PT zcbbZgoQ@-I7HlIs24pAVC4qJDbtvJuHE<{2;jggoA40ZTAg?V1*2CBSxWIb*_M>*7 z?;!HnY614t0>S)+dW~8Lzo33!Ehyisx2lDx@73GX?SF3tZXkO`5W5k5fpAmKxV4--B@*hlya!bb^zNw|dYal$7Ee@*xs!lwwA68?_xX~H}f zA@U5z*2C)cYQgcDdNc5sgiirWzQ(@Z#~S-Ga9!5e*N3RazJVxnaHZ9zf-DCzF3+tZ z&ke})s>t&K@<*!39|_3wtH{B_+j`XcW7$AdW8ViTgR%H)Ip5f~v4T9P%jH}@7-LYM z$H?`A@}Pe1FJ0b>DQ15N_&Zi+Jj z%Gd$e&wwmIT2q0w^F4J8ny6g`$-98H0|b`on-0HMLACSU14@P2GX~y2LW@qmb?8+e z-%+$ngKRk98?>K?@>9U)fZqU5Vs?D+0nCOE2&}#D&~dbeq#fqTPJm*-YQSQ^+koQ$ z3+7K3;9;q0gV>-s;OaQ}dJs)*%jl*o;O2uvmKLC(Clw0@* z{Iy4mE08=5=$4CFC7fA9^E&zN$HP0izZGDDgT*mu!J`UVW;_id(?miphEiS+@16a{a#a>6b z4rSXy+#3L%2J8m7nyXl?B7r6QnxI89qNd|~)6Ta5ek~(;&8x7O>{|!i17|9X1GLf7 z`RSj~?BTmWI0_l-;ky^DqDNt00GK#8+7Jl<%c*y*H4pzP|T>JNaHDJRkbfc+8Br zCKwLgX`r72ybO33v+g^*1bhf69WSsHUmRL^o;aTKC9r1H6FGq5CyTysDM`26_<6^oas{*f$ip{2bhIzPr*TOG^wBj9XQAnc2H*pX1^o6R&TumXmgc(x zjpt@!Z@0(w_)LMN`$oY^DY$>k!hU@i8K2G1mx=H&*ylvAaysBT4sZhU44ThYci_}4 zM04jHPOXK7lXGz7cZ6gvt~3GL09OHfI|^)wuOYm)n2+-TU~eZ}D*}eT%xC?*uyVN* zr_}J6=`&-DX8NYV?+35oI<_-nM|l;XUVytQfF1DA0)b`u*m3^L;w?XkPkfcP@0pK= z3~4jC^^kt}TU`FHlC5e8cdp#FrL1gA{${R*PYX6~;&ooo;8*w`#Bx$qyhDtCqV;fZWj?Q0E5qd#O@B68S?joEDK_cJR2 z8#R$NwC1perTr_(E9&(?`}2YJrz+U0;mTpFJUPsQ_6u#G?K!Lk=p@iBoPcQf1dMZl z2GoekVf!Jk;f4(IJm|-bDUa<&_VRdJ_~Q2RxGeyKY$5EOM;wD7ZvlHVZqi=G_!h#} zAV3oAoq)ZDh;Je6Erh+Z73`hoeL@`vp0|p*YjL?hJ5fB8Z9%(LcZ>-^i{cO2iQAzc z10R5?;8)cIUmLzavpUG%9pLd9#}WR)n*YNB|BKiKfHM5MPFa}+P$mMN$j%y`kv%54 zD6KGcXaVX|ii?X;u#^t+tql_)qcNCIssy6^9DM!YtJu%z*TG=E_^1qi5FKJ< z41F%({ij?7>~o!>oWX1~%7IB;liT;fae^=Q=j9e;aan3%VSZLxQ6awB&$36R=4Ykm z6oO=9G74B0z8sZ_iedPY{}@0P4&ki9yp}P`Ki_4e-&oDuC}RO}fOdc$fc}6%fJ{I( zU^HMNU6UY%{HQ(GjlcDj&cv6gqO=!v(qTg118K|UuN{K%n&#HVMXgS>v|P*$8-e`rze7;cWG zkI3OXIxrj~5AQh0L4ABWMH;uZ1IxU*hcK9?SNf?J%Igy;*5Oi zTW(GUD;$-}hGdLlBT{pCcUXhLsWgtW(u)Qc-uD0xlNDx-$S8(#k1=@|-HeUMC`?TO z&*`9EebDV&^=#d;M@vq!xUo35z0lTwUC}s??SCkbt|4YrkT2YY^ETvz_T#+zDD=Ve z>yY!G;=H#PGC&fb#UAMGgAA~6T^8E{*$KdY4yZei_NzWa{Q;DKhM>>G&-q{d_9|Yl z+zj2~u@6~|%l@|GCQW9REAaCh;*fJ$Lzc_($`FSxmyH834*FbH<0@i>d;&A)`f}d4) z=Q0j0YWsmT1K%>2od8%8{Celx`pf;`{}XmvwENH4@%I7iq__sZve3bD%~2z4tyDf`yR%^YA|*P^lQhWSjK6*nf^D773g}qJ6Wqb z$YTTibMDC~cHvAEt9ym9yRYI{Pj<4R-cI&)9Nu8lf-(2yC^q%?DCTN{xBotXYm}d( zSig%=Y+ZZIC!HAkQgX7n8Ydgn5^o1>h3ln1qFCNi^S#PYHaC8%2_YNQ~|OOq5Sd8FD>ed#{@iB+Q1QA(EjN$JvXsX!VdJt;jaO_SzI zuS#!8%cS?D52f3rPo=}s4(XWmmGqtTlk}@}8DHzssx9ivlA`udSzBFS{i}4JI$r&g zl%Sp@c2IXw_fq#(4^$6@JXbvm@+Z_!su{{ji0oPDOcGyE&!+Mv^=l~KP_G1DtKOvE zp>9d?Pt}Lj$JE~v&Gr9!`w_ao1oZ#B$#!blZ`UN7WJxWdl~s1hzo_q#YhrsqZXw?p z&}b(o1*qIOMV1+3`w7qC&&rv$+AkC0sbYxLXvaqOXQUyn)5z!Z6&^P&o;?B z<=yg0`LujMJ}RG=FUx<(yVR1#sIh4#iEd2_yr;tWJn%0{3c(YbtO)X8TCJVK> znvsF}6nTVtEa(Z4P7-@l8-L5Hcyg#kiaed@d74Gks$yKhR;xAZ@rJJDn$I*}Xuj5* z)|}T|)|6>J4%pCWO?W?-OIt%*vF#-BjsSmmp!A9NYnyAc;Uz)KEk9f-zV_O#+JV~M zq&rm0_vAa3_I`@oK)V@|Tw=se*@+u z@tAZ7_!6$;O0=i6mrwrWJM1;{N%1 zn>AGH(%q)JLwC3CUfn|hS#w=mU9s3z*IVb$%fLYSuV*RN9E&$tF9j~&PMB-pz0rAL ztMEo>F8zaWthuqJ(6YvI(NZrwJA4J+M_emna6}9JIQq5sAh{=c99sx!|} z%t-vcJy*xqW6sk$Ub)Vwzd zdF2+>aa*pd`>XVUc9(9SP9+_nJ{^;eqC5fqTU{7kDgPMi>)qO4Aipg2QvVT>O%gxQ zN_yTKt=>XquxB>CoA_G#Ug~)P; z%eQ`IUG z8BemXr#T&F)5N}+eGj`f_EcjB0ZY}!7JjNtwy%43weKV3;-6Y~MHb3F2r$gPm+;QF zzJ0KLl)cVoDDD&^?ajUama6*uT#89Q|9-@>MM$xqVV@?PGwsEbeq|?}^9@?w`ae&j zl$Dt2X~%5w<+K{uv_&r4qFuDpFb%`sz~dxN(_Hh52LIBeYr6K;i{!*mUb4Aw(@4Golan0$uPRh$Q5-r|SwA;r1cTZkFRbzU{HDbG5V`}}M zlPza89=rcs1?D4*b>%7_9B^NE5UvmN z{dHiQ>>Oa>!1@4Y8O}bSBJ=^JQ)=NFQ|fN8KI9r2eUc?D`I&ni7AxknMby%{NysYN zQ#A49Jr--{61VCDD-j6GE40j0esj?%<}Be9qg%pc!`q0HWQh~oE%o$u^yd3hd?a&M zvp4&@XVFS14_&`>)|TBtxFx@jaY}k~wH2o`jYV>rtS@PTB-cp&B&`@*jKcF2KY9)& z)=1H;OS$TJ{c_4zk(|;RnpL<$`HFHdthiZ)E3c&5KmLxdxqg^dQu_EM^@H}z#)n)k$=leos3iC2JW*ahr$s&Gnv(6sn4+Cz zEgwmFJafFB{0NcO{9(DJsJ*;L^8OUHEM6nll4)clmr7exMT@;M3SELg>(laK zI&M@O=}h(JBZyX_569fn^jhKVoN~M3XwmrMHDca}M<)6@N7?--j|jqNK=>S}ba~~K zn)1?JK#VN!i>a+B%RS6nl%y@GYVL2GNtDQ!+RJ{(y~GS9#gOW-WGU7mk4%;&Raa8G zrEFYZy6TPZFQUXF5dAy%9P(EaD)T`rxAab>>#1=(aW+Ixj*Tt&4DnWDYHUmQ6>+}2 z@P8Tp-nk9_r9X`4uP5e9!x{@~e;YnGF8L^Htwkf!xRf=Dm!U!)jbao%jCJDpb1S|s zslR{sFdoC#lgd^D@2_zWONv3(;wW$|t~xOa*KsP3#&vQ^?Iq`zdlcoRdgR&4!W;Lg zq>9W{U^yGNCJW+uwU#}MTeyd)EXx{K$YVop)Q zk6MbX9Jz+`mMD)YQPGmimi!9!G+UN{Dx-p%N0=(0lSklGj4S$5yA*|U+)~WMV^b?{kyGx)DShuwz~z!?(Hbmz^R-uY zTIy<0t#s8E^(uX4Q{SR@EAtwj!PKA2#Z|{`1j^^Z95pv5;!2>I6~|wkcR#F<99dkx zqNE7o3KM0%E=rqIib5P!K=H*&I5oB*i@Ac0SfA;uow>{-H7zthYqkshlDCUF#f+A* zY5uvg(V#Y}gS>e?Vn0ML>FN{hNXsh_d&%wSs-24{qD)wf%Vpj|THeBS+(x37dn0e* zqbJE@bAvlos++_W!xxsSDYJ*JfFtac8UzD3F+_K#bUUYr@Oc^%55%YFZDWYJ$9u{fSrz$w{^JuAA}xu&>y zrft%w@eE>pq%V4K8~K_qYGp~ozcu8)?c&suy*a(P80O+sG~;aE*Nma;*O77`F^{=y z=3?-%5~+N|XlyghxfIbE$1s-2*i=KZs4Wu8j6&Wwv6)6q>ZR09+Oi%}ZKd;+?8ROb z@5QYxTk-E^EnAePMa)ywl1Jy1*TX4!aNbgkqEWeqdvdurN>{yTFYUpLvo~$yca73f zQ}5Es8v1v#r98@F%R`#?G2WrRp2X*(bd=XqoHe)Ml&;yLhk0#LJ5eL$GhKI5i^y4u z!1c!VB}F4^I?Q>=wLE&sl!&d9-Fy)3i`BwTmuF5a#1hHT0v$>t ztP`YoQ72XLvQDPruR4bndmE*)UmJO`+l@2X*NyYp{laH>z2ugjCUIMj7 zJsJMaQaHMG>f66Faew@YXZHo{WMcuSDl)aOU_ao~_;Jiw=d`hn8?u}0C%BMWh|@oW@; z>jBgR@Y{(T(9him*bg1R3y=>TgIy5GXcL~Lgg8OaZ-wp(VmlgQdmxS%AZJ%R3m+RA zo{)^EUEpap{^4=S;c=niofE@_=Vti__z&#bXK0sEiHT_G5|4)i#mD%ECl58SLkHsF zQ1mdU9&z+!k6;ReM`N&ofjyXiav1aP=R0tS_kgZL`$UB%#wW!`Bo7@D6&DsiCdsw$ zKpu9m_^=HjmaFh&DGI@OXgq7EZ*Xilf3}fNaB?v5eS#D4Y$`nL$lLI6p^(r7dIS*{ z3!hs>vAXp0>FU?7N8f?|j1B18Z-7tN0XouA+kkGmUR?upgS~qX66BC1U6+)^7+q&? zJbz5&S!ALh674ALhKIY}oxv?wZB*QGnjqjX(@ z zW8!taQ7Vf`*7X+jqjkLpLynEo^`&}Zqji0H5seY!$6^X757Br$_RK(q!2mCe2~iqb z-bN0waZy5m*!W0cY+@4)@sf0%g?LH2J^>UrS=Wc^h)vP;q4AFk7wtg%Qvc&H9sP*L z%c!m|xw5#VcwHbm6CbMcr7?<+)peyi^*P2-dlt@9UX zjLu((8!wJ8hTWfPPa3K7rZG!O7N&tEjW*;TZOA(Y*FCkTB06R~mn!G^feYx`DJla7*Y+;{r-k&yo{$0|mPzgPbgmWAeCI;Ua_y zU)j*N@f}^!*Kbe@+ed18IKH9w6j5+;@Ww_nP2D-28A6;Fcq-2T)-h zfO=DXA;IE$3<=kDrg$O4b)Bi+kf=Ce0fb;Z)AbK3T-PD-y3VxTL4|b@hTDuFCyMvD z&|qCxe|jnH+P6y&6dD?D(Bp-35MC2QqeFznix7o8jZ7$ppXv!s(RHKo2n*Kv(7Fl> z7w<=)z3CbU_30{`ri4iBJwoE?k(+2U-w-xh*N0w1u;jhz9tPT(a)HuIAW6T9R-GzSOH4Trk zCAqIqUy{yG=szf}9q9cG@%(5lK=v2LElHR|gAMj?HK+b0Va{bkpPU#R7DXGu z;25-7XrTDXx~>!_0{30Y3o5*}MMQ{e)IfzB6L{f%6cL3NLJU>}))n9$=XlPE60v^hdP z2cMv8@yzu)>_9z0b0);Hgb!m`5Wuh2DCQd+6B7~~N|%#xc(CTI1#8LPVy#$f)`qoZ zp7701IUG(vbTu z@&f2k7?7WBg21OjCf=I#IOfXutp*#sy%lT(U;K|x?u(}?OT0>EV<++;!tulq2ZE~5 z*HvckCGlVjV=qWZG2?o6@_`*1j5>I_7 z)Z@2E#GCrUTxO#(YeQov#YvU%US{oKZYS9@N87?_;XLj`xFV+G^0L1uyZQz;)b?VsIU|lk2!0<<2q5LAoaf9r@&=VCp09hfrT? z1y;dSH=e#b_5)B;Qc~3L zIC`-9sDy;@#L(cRaMze{dU!OtgZI{Bis+J~l4HV6>|*1?q9UTg6S-@Aa-<|6PF#GP zYf?gRC?1~f8XKG_yjI{dqZmBzwNMipAB!y{$;Osp;h|Bn!7;93QNyE>UE@Z@h8SuS zs+1IBPN|)ugu6;l$i~CmSRE%7K*!0>F69bBk@iN>L6ZuVp2BCz5?gI^!&6I7Fos@l)gOtOR;mTO$ zDCKzNWaY=oPn64)tA%IXW-E^>zffLM<|*$fzf=CAe6F-oX;hU|&Z;{2I;VxIovO2{ zr)q#IP!*zjPZc3NyLOyvqH3mUzA8iYnd)=Zc9pNPuX2y-km|VVoa&0|mg=VJYt=*5 z6Fk56FO`+GuhLi9Kv~IJW9@8R!@8bzQ)>_F=GLBg@@x;#{&;#V(f1&GSch1T0F8&w z7{E$A3HL*TeyTuymE=beKNj$O>vVyBYP|+@gY{P6J=TY;Pg3}Em`YPRQ+~M5{&;iihx{D!JF9Q|*20#k1 z2?mZ5^doJOZN}S7w3%r$A96ZiIbgNTM&PYBduTS1`*{kHZ#am?A9<)7b`vrPN=Ox=b+k2?tTSFa>LEB+uET7G+e-~{360nV(Wy^nC z{vCmTN8sNP_;&>U9fALMMxgvZ`ii%@$ZKt7#IIpj+pdw2r@5V{owr@A($}u9-9Tsp z?LzFj3%e;A(I~r-(2ceG5ZKvzvfal*+kCqWyXDZV#ea+14Z7d%u-$398+JM1^8x>! z|Bk@FBk=DC{Qofm4-4;jc*b{;yKT`i_|@*EokGp^jqq+?t*)r9rv6HJr|VkS!Y#^5 zYdF+!c*`N#VW-0r2aoazc*5<&@(n9QR#;!*VTFc{k&f#fA38Ry7+G;Fo@D#5V#7+2 zmDX3P=5VW$qt;Iwqs`RbRaeAAwLaENSD2o=%;tfAoeudk_2+_SOJU4L%019Gw?3pkS*Y_>j#r-- zq)X~Nnbuc%Tm3+ge^Rd$?uNe!(hIdpBW3qhmeW)=lI3m1@ihdmCwBE-%eyhWJTxOs zX0Nz>mfBhi`NbYuvMGzcjH+G$7 zvnEPIEyK|=LKCjpjh2I&lbZ9ItC}O4GkEIj4b5>)elc;yOrCZRHJ)~lHNR>8D$%xR zZ6#}L?91DiZ1tbBsD$j!_I2zV{SQ_Vq-k#7+`dhzGA=f{2480!JghzOKGL&rCnQQ7 zxBHLGs=Utn%KG%x$v=4TZ?MIX#*&oASTFpqMA`o%bY|J?x%eLx3$^1E##T~%6;nSk zJ_{6$o}^nD>ztIvvQ*3eHb-M2e$_>sG%_ldj=2&4SB?CuFlii~DlhgF*9Qdtpp32chV@Bx&~jT&(-g0ay9Mjm)bj(8&~dTxd4YkA47Cg zdBzP>jX62XA-jC_3h5PuwhNm3=4{HM(;TuqbMiRiU+IeYxtM)(JI55qEJwj=`OG>q z>x%XpjMiO&qi4mGit5GcbOoD{J_A_26kJADMKRWl^a5}*mMEBKrIbnvwqfy%MOl>! zDtT(Dea0dMOVQ3)NW5CWq8H&T!9u-2XcMr46=>B9W_&ec0nS^J<&60>Ly|0Vo|RK7 zo9c?n^xt>f0Mbd`|>tWNlWsTAszo+vlJoi^7iG!pkP1tLmF&6xcqx-P0 zD)Ss-3*}Q8D&x5&3$78V6w8$3Ymml;c)Gry6qqTG&*g6D_W|CS7K_ zq*T#3I=?~p)C>VTSIe#z=%jJX1JD`hoaf9~V0Gg21RPj{c=eAngfq8>`bkPHy1Nz# zIK{=uHOp1~#Iv?|$IYtkStqNGQ(cnM1?*H$Xvv>}Q=>|+S5Qy2BPTE0=Gm3(rR22;?V?L*SdaZ+W( zLDMWV{xH@2(=t|iwX&ad)ku37@fuP;{QGA>GclGNhZW8a=jfW3U+40B0qMn7(MsNC z%Hx+?xqs3#>eTSc1C#Uj$ihUF7wG>b8TN>Vc9Mh5FnWbvNgc+bQ zEB+|iqNu-=g*d8^YbYy?7RfYoM9Y$aVwJ_-Tx~q7n43n5Y7jB$NHPYh^?&l<>&ck@ zCo2&9%`x?#a`QvtxTbi@uXs*HvT`7)Am@#qAI3_BcWW`%ZE6RjR zdq^I}oH$3Njbh%8##ic*7*WF9hgmXG4vEPL@5UWNFc*IXvag8Nva=DaQ0 z7S;bfZ~mTLjLTyY<@J|toVaJv*Hd0GS%{}`PM(L`m5qwtRHGE#I6~3*Wc|8_W#6KC z%;k{#%SS^RZ|+6cr}@J;h9#?_zNVH^{-U-;HDXpi%2b`Xc%nY6aHfmKG1U}}YrH-r zd$N?rms(2C6|K4?U+N`?l5DA+GN=SF9xKvPtIBW>7Iy<7;%uSgshF&?#-{g8W!8A^&F)nUm}tV14|EX67<`B1Ou2=vJC$n$V+9@spid0unp z7J)4?TI98GZW-7zqh(%8=eGji%6Kd9E$3E&tuk8WwQ_D9*gB(iUTfzzfo(F{z5zoijQ=?;O}AyNk2WIG;S9 zc3m^NKJOano9*k|ZCtm!Ztc2fbbsDGut#=Uv#d%O0S@V(O zb%q)ArY**i$y!|h5~hgcEkBICs7105gEc=%8)j6GJW5%3v3}kw;}t~J1eGON5nHNK z>H%?<4yxeq9#SvF*$5KGsPu8eP=Hhi`H2yOiWvo-lT+%03VF+VaDSq76L5`UthEAX<%!UGqW?CB}DCyQ!NP&KBwxYA>8^ zaduL7qI?0do^ej`1@XBFStHXEQP_3TpJl6~U=QZc~y_VY3HxzuHzHx>!eN*~oq5ZVx^voBcKlv4GDcG8e zf4H2xJ$HxZFwP^IBkgzbJ11F~9-^-~3sW5?1P905&oo|9nOl;l#7i8*w~v+&`Cpuy zx03E0rkr_uQ!T$U@Oy!DkKi@>80w}L9|MS1qQ*30QCax=dOQbQXYAG*}ro#=Yjj?-}=@`{6;imPu?Eqy#agE_sU-d^7cAs1!iSr ziLVVD(;U<3hCM)DmUA}ukk$wFl553PU)<~jWT$86W;^W**q6R9cc0V#fc@$FbN4$P z2sn^_AoqaN!GMG52XhZP9SS&4$R8T)w;$&L;y;W}M7BiPxA@fu}M~<(=Yw zC5@wLJB`2by@u}^ zz9jHb2ohQ>A#P=#VPx?x)<(z3=%=`ZopN1f0)0?{p#MLhc36ob;T6oPdj27o9Gp zT*|%Vc{%-Z!R3G}Sy!B{rd-Xv>Uk~wTEVq|>si;GZlv7Ez2TXgo?DPB)hv#$G|HtJ zJ-knQ5b$ll!+=Lw-#Psd@S_yXm`ndD{c-w}^q

      cCe+(V0;D0uLe0U=98*7&M*J` zQCyvTuRzpzm701=vKZY`4&&dfl}?hXF8X_PG7|v!wPmF|y4>&YMi%|$5sTw_1)P#?aU(`;;wW$r zqO@{e{}3aQKaVMKrH@;>eSl>v^RN4**Ot_O-Z$P`xlAibE)y>w53x-g6^={FM^~wM zmSicmOV<-|B^{>K7L`kiV7XmovYO~qCV5Xt=BH_1-e*oJi_|mHmgV4{rS%c*OKWXx zCw;nIdQSeHhJVtR= z+=f%}HHS-_n%DAHQ!3??Uc)7woHO+_mHEAw-&2ica}q@`){C-SYnsKf%wIu7TGUQc z@$aAN$FG0Nds>!PHNGC@RNgze-V!gjFD>tVI12YK4@Gl@!fOPc5D|@6s>ZdwSrX`n z3Ln27hE^XuDS}#j@Pr6zv0?l1|DnCvH;|gtR(Sou6kb2F!;oC-B*EKXIFs1&T0ZQA z!KM*%G*fgzMh}G*o<7lB;R9^NNKS>{eycdP->RgnN znWeN-Dxi_@WfyO@9Tqtlxm}>Yg6>sXv5U%Q;IhDVRUU**Hrk#*vmbO9X5}#GHONOm ze^z>X9RocI`6TF7&@-U*Yl~S=2>I5?@YgOrY(6YTnM>^O2JZVc(b=a(?C0dP6YJ^odnuhWyL1fm;$aR zG*fH%uu7n*pp`+>Kx=_c1g#A^3AB#E!-qA7W-2^GL8qZ5M4+@X!mTG-x3V4pm}rf= zy*pk909F7cKn1V{*Z^z+b^tX%1F#2_12_Q611bO<0Tlt209rt0Kovk$z#D*S04IPm zpgN!ipeCRezy;t6s12wCs0*kEa04^|xVtM^f<9BLWFz$}ffMzg0VnBK0VnHM1CP?L z0UoVi3p_@@4tT77J#dPC1MoQg=fLml^}yrx8-YL2Zvvj6-wgbrehYA_ek*XAejD&a z{dV9<`W?WN^*e#5=yw56)$azLrr!fRUB4H2hCT~;ral|^BmF+$kM;Y3XXy_B&(t zv%t&r=YT)ee+j%?e;#;+{sM5OJ_mTE{vz;a`b)s8^p}BG>#qQ>(O(5#tG@=kPJbPE zz5WL927NB@=lVQgz5XWfM*S_|P5Q5ZH|uW$Z_(cY-m1?B-lo3`yj_0}c!&OL;GO#W zz`OL{0Pog60N$hj7I?4zA#j%d5pcHtJK%l#?}7L0e*iw9{}K40{wLr=`p3Y3XrBNV zXnzKNuKfl0Pwi9S7usjQFSWmFZP*jo*sz~rW5a%djSYJW8yofvHa6^6!KMZNE58k{ zq{_e@RkeVxydzba5XhXdno>AzYXiPw&z+E`vCW`(5BujxR!z~ z#eF+SpmeoFvgXR}1|T_^*(nDafaEbuqa0!Yl2gD37=YwpcF@Y(05*spR4a|$VXnBx zCoyV2q0}nZ7$6mQPLi3R;h1X`f|g^h?JQ_Hp3J7ZxLPq6+<#rtm6O>FND4@5L7EB4 z3X(>UK7yo#WG_e`LsCI1CrGm(SwnIVq}h;cAe9%SIgo52Re+SnQX%ntX)FyA&zHs~ zLgM+-*d$0iUmBYXiRVjWQy}qtX>2Mao-d6}gT(VqW=kNsB6~xjmUKw9AvF@D3`lh# zH5R0$km^EeB1p?1)q~VjkUoXv2FYEJmP4u!=}kde0jU9`W{}d@Tu3}$8k+}+=SySr zA@O`^Yyl*mFO7WyiRVjW3nB4*X>1WBo-d6phQ#wtX6qpZA$z1y%LYinkfH?Xb4VeO zMhKD~QYfToLD~o@3{s3BZGsdIDOQj+LyCYDCrDc$4TlsDDUD@9;`!3pN=Q6k8v6_q z&zHtlLE`z+*lI{TUm9BjiRVjWYa#J`X>1)No{v_10&-^~ceYDctkC^v-KNY^&ckkj zS~r593Vy1xs~~Svc1D{BwB|`B>&~zt+!cM;A&cRQy#(z389h}L@$Z?OR=7s+Hzxd>CPV@5H=oeo309j;mtTiOB575bAUM5BnEA&dSb z*$H~W;+0MDXeYz5r5(;zA?gv_HC7scM)3sVtT6zOM;eMRVzL^K(Rq&1c`l633-s&^ z`nv(uQ0sZ{bHL9rjLsSOZZH7FB$=$Kdcrh1Ph~O0z1arrb7*JX3wt@*G1HDX+DgGb zs0pxAv37utkoyBh0{j320G$9{Xv=g|v6X<&0ILA20c!wj0qX$k0UH3H1N4B6fK7nS zfGvQnfNg;7fE|FHfL(yyfIWb{fGj{ZU>{&V-~iwt;1J+2;0WL-;27XI-~`|l;7dnu zynZOybnLHs3Kah%2>l92?Gb>XfM7rjU<6<}U>e|4fWIE~tg~U6_)oAlY^8Q3@Mqf3 zfLCc(0k77s2416G1H4wd7I>X@9q@YXdf*M(4ZxpkKL^%p^}rjo8-X`zHvw z-2%K-yA^nwb{p_^?RMZD+8w|llsy$F0sdkOfm_A>Al?G@mw z+N;3VwAX;IYp(;}(B1&f)#d`{Y4d<@YHtGH(%u68O8XV?ZS8H~JK8(I`PzKoyV|?J z_q6wbzt(;Yd|!JX_#5pvzz?(!fWOs#3;a;~5crYy5%71~?|{G8eh>VE_6Oh}wLb#? zr2Pr_vG%c+uA>MRfu|1A86mvlN8nwbFW&w6f{N`i;ClmNAbYeVd$JI1i04|e6D=cP zOLqi%$C)fVxzHcf=Fg%!>pv++vh`?dA8TL0Xlqdp2j2=1ZjhtFw+BQE@&wrRg?-;b z`&hJf0K{7Nz%O8w!kcW`+c1_<3(uIuiQ`X^i(*Ox7sFHn7llTJz~O;S%nBUss~B4Z z-zYqyhv9uNWAvUC&p!i4yCa5u((+o=Km4DiKW+Y`ofl(^;X!*YJmwx8?Y8h2mf+|e zG-EyBORpe|?Q~&`?(d8p2S=|OjO{jXS;{>EN3A#Y1%(2<=V=ad5s zoI*L!z;#v*7C4Ih036+E8T-w^Whs9bII8cd%L^B}Pc!xmI(lcv*fc;g=9RI^80Tcn zC}ULwE*9Jy0yi3*797npV^zU1^oe0NH{C@caA__xT&x6cBK~)kQs5@JeB`1MxXCUb zyI2d{6qi|euoL-Cb(!sAD{#|XutyZQxh_jwXurg;b4quiy%NK&DZ_>KNenxtr7pBb zV%RM$bD{ka!%pc_7up+PZMZCVp?wkN++~Fe?NJzZE9+fof5Na++2BHZ6NX*N=PtA_ zVc4PQU1(3jushl4Li-VhoyjH_+KVvkN;bRDK7?UMvc-jVA&hOusL>vQv7_MV^^mb& z!0{so&!}_!awqG43p5Gz-IHbsEC-O_f#);=Tv=WNdX^)7%P=s$iytoWQXP}={MP(A-B|wq z7?$%EV!e%LJa$ZAH)ML&DuHFTM;r7B6D4~O=o#!&p+7Ct=R=U{&$@`glU+iaF1N|@QLaEB+ zm$|9&*8T~MAb)@eTR}~a!-GX#(4Yk2o8un-{oLEOZRP3S+|;sUxg`~%R4DLI2eFf| zd{Dc&BOkR0V5m3souc)!Kv9>2wlD-4T35KFj4Wpe3ZGvCJt6597>ZzWjL&H*w{$HQi&BFLaPw&EBxL<>Qq98He%_JkEN&) zu}Ut;_=NYcE_Ap*V(uM>;+ed`Mc2jQ(ecbHG(iAiT@3VfZ!3#Y7IrTcqEaXyA39*z zmzwv!4>j-Wk_Y1b#m_*^d;Irl|H7-pAdF@6)}6aH9UY#Sgh$$UFx(rk(JMSWlEgWA zl9<4PVns-e!s{L2@JO*O$Y4WGG++GS^F=wht}Jvb&6l;6)vK4%?*~l%U;V}V(Yr`L zWJ{UJ`{6eRuj7DJ)J?GUeX$?;$^1O>Xl0{2 zX&!5qJdY*TYq)+&UvJSdDNW_P-r}wwiX&fl-5-kUj&WL=ME@l=@_sr#68m}j|M7m_ z_)hHSTm$_tnX12AX5ltfWm}V3RdcS+lyAsi4utsDc501%IfwEU94l7RR(8Vw!LMS- zTlMee{~z(EPSyd`12h1%0nk4&dmGRJ&=vQq?tmVEo`7C}-he)UzJPuJKR|!L0Kg!? zM8FilbifS25wT54UP%#Fe13{^-CBS+FQSJ6n5AGiw`_ORW>R?QdkMp)>@E?N8&is+f$lLEKOm5 zMf+E}*s(l?wY7F5^mU&a6Lg^ub~g|LTkN-U8q%j+bO(F!Y66`eR$p4 zgKH0|U8i>a+KFzp-RiozxixTW$uf(tMAs(t+87ZH+Q#YZq40V zy0vm^>*Lnft)JTfw?S_2xV`K4o}11s$Sv3{ z#4XG%!Y$G*%58*Ov|Ef@tXsTWl3SD7O>5(NLCyTg#~#Nk74Mk<7LPQ%w*nlVh|ikl zNOoax;B#crx0r?pG_V?lvZT)gEY*-f$UM5DPuqmnD`v^$u zjpF7%6|d_h23n?E{}&rO;X?5;sV`>%-Vc3(H3B#c$X|&0StP9&SLo!2ssEG3_)K#N z)>=B|bE&Z{`E5m;xx>pu>9-tqpW?Fsz*gc-j{IfDx~4Y*-{L05EnNH0(y{m)H}!M8 zXWWRsg0fAhb1Ob82INDx6*@1_AV8`fIzTFHTmkvpFvfr&=yG5;7e1L=;0s+2_$To3 zgPaN5x!`+GKEV8TfCoI;UNlz%^#4SzOvG7Fxpt#gK=&yJ*xWtHYxq3+6UbW)az6Mc z;B&GtM|;s1P>-nxSORpJB=1L^*$M0g#goNIg-s6Rpl{*l8Om}XdqDPkfN{ZR-(gXq z$@usoI58?biDt}o+5zTzP^y8~!s%Njv~#-zLkz!SVsTqbv^#P+o@(I@1SJ6 z1o{LMz3c4+_5<{OCVIbI%++*^!Aavdr2hnZ4-@;jR}$Dm=%1L_C!9`T@8WF72I5=M zV0~R0Y`*66_rmzUZvL|Q7R^7Djl$@MG7p^YjHEE^{DWCbtOX{lh3=5z zgs~x+)=MvFk^#{|OR&&Jp7d?JC)SI^M+i}PoG6TOFdHuO5|)xHV>hrV!UM3_6DZCB zUI6ejah43o2hc%;whBSQM$8YJF-KO}E{RpLbpelig`Effnbu+EXp5bKT@b((awaI8 z>{0<Oo!)O7@chK9C>6pW+P#)PTH%Rkp=W*ls-F zZOAv!pEtnA0GdMH3tA5FF`zf(Kj4qSvKs)Xg#4?Jzb^Ph0JhQUsQ_QdKfqrN{yhMGKA~QQ{Gs3{06Idxh5XgQ z<5v}SZ$jP=S{^VP&=>Lx!~FM$ToL`BWSIYvknwgweH8Jj-e5p&$e)2?<=CYGydmF1 zJJk~aaDqJFF#jo#@orar$uR#>kQ+hX4odaT0Q7+T3;bz52LY-uM>{KpIRB#{w?g|D zhWQVN><0OBP#Ui(fUc0ggFnqbt}eTpkTVSP{{iFnU|0?17KZ5u)|3Ls(*sla-fK-4N(4an(+`5zDYZOFNX`Hz9z6mk}5Il#w&-jEC6PxEQ%`afZq{}9;Jf&Cg# zE5JlRXUN~cpXMVF;0$@8VgAQKZU_0QVg5%zZVY)BD2?Y#Ku^fO!k^~f()ItPVg4gv zQy=!5Kxw?E0(>F=2!ERY_W-pZe`=Wj36MKN{>m`_agg7Hd;qjOU^bvHJ0|ehW#o~1t1OJ4f$)dQ#}CyC&&v-uK&x1`Hw<-Bed@TrFv%odO&^(f0|EA*Z*0= z{D;HF4fc9a8m}pUu8_ZnKh6IzKuyR?4fFp2*AJ)ri0j{vl z2l*9q#9t4+VXaVTtt+zX)(Xdp*4E6)TA`|9?agXhE4&=7m8=?mtyI~%HmhN+aIIvm zX3o|MyQWag58K3pA2d6yF`0@T2v0-0z2Rnqw?6Ppkfvk7aE_K7#^DJ8W|oO7M|!D z8W|oM&Df~8=(zYXajv29u?dOcN%U2zYixLOWPBL;j1G>83UeJ36&Dsi#x*HwTzH|q zAxcC{@bDzpq;PCF@M}gx%x;V#rdHE_F_sO0d(;FxBH@`SGPHeM7@ z%=N}T7}~J#!g$2?={L)--g_&h)}yQW({nE^Zqj?V`oQ>Y6Kvi0 zemk$`p}Ap>dusmTx^+bNky%e~dmo(q!IeDc@9%#V+ke-UXQ!rIo-}w#jP~&Q=&*4G zAuoS86F#%wP(|h37@N@04i%pN>R>nPv};`Z_Z*{o-}er>nmBU!XBY1)-|lur)$8RH zhfC4BG;5x(-_jj5vw*op`)Nl02t>2E_?w{KK z`su2{Ifr&V+gZEr@g0NH7iM3mu;#$t<$J9f+D*6CZO<)tvfd;6ZPUibH>=n?@*RE6 z;3FN}BX-aAzBSrrP6L-l)t;rVZ?{-9b)Yk$AryO3=MtotbcTLNN`Mz8y?|P`m&H;eq3l1^Zpt|^&`*h zCJs4X;n$P7Tf_Yx?Wy$L-h&^FpPu#NPR*}EdbsCRc{={`$Kk!N{P|As_CDwP?`oIK z_OH6 zHJ_gu@9@>zBdz^D_qJ-_=xBd%s%yD3Zo49f?3fbos=gADwc>v8`SJy~-&=Afw^5xX zIa_zGzkceC4m$$U9Cp6he&~Tcn_{vLyH48sG8xr#S+2P@-BU{HfeQOgPH@f@@3>!5Ke?_-aH?hLv!eEs9uam`Z>M)`icBlxWIq=@~Qm*U-8--{fua7?*#%5L`i zvZ`9uX;$BQ(82cECmPxx*gijSXA{+k9Yfc>x_-3zg`8aU(sD(lfaJ@O8ge z4a(`$Evm=OF>xJxj<~q_R^YYV2>Ux;PukyTr}n&&JO8ejGgL`sOz) zKiJjg`mQB47EPXH9k8VO#A+MZ(wooSw`QDeyGrYk?I-d+-#l#C_bYsT8lH=ek9wIfdUJGh z&&Pp{U7M2Fxqt3o z@kaKn$>mdSZ*Xh-c>CM0Ql2Iq?EY}X2h~q_zuoxuJJ$VDp7=}%c{I(v-_esb2HsT6 ztn!K1zVfpsJ*>O-Xl~m>4kt3(_I|dn_MCN#H0Kx1(&8`2hjwp%z3WFI&*Q%EzdL5& zuzlH8Vlr1<>ojZn;_{2;`7ODAyW)m(r!GCe`@@2>&wm|yJtVQ_gOupoy9Ro#nA|Vm zol51aI@PUGAupkAy`|oDJFJU-8U7&f!FV_I*&$(VbNa5@JWp|N#ms88&#h}2^m2dW zEqCi}`YET=PWMTbR>W*qPu17!e&)L>{yB|&C;S;XCj8!SDV>__>0YmOa&>jhR*fsE ze%bHeYsaka0}^hBr!;>&A?UBC557Hg^yOdU=jB}Oka_mp^VTyb?X#ViF?QhoZJy!l z*7sU6sl8^yk~(Le?@~`cyV6{(O+!ro^Uz7`mjIVZ0vjYZtL3-nYJfB3?2AzV4d)%eZG0R-D>sG4b_Lwo9t0P zb48=Qn@`*?SaJJhyK_&kz5nvzh5gYRQeOscPw%K+vHiogll5Ec)oA*2728%Vd>hwF z8q?f%=iP+vzve{uZ#~I(+?egdLi=8SezwAcyO+-GI#)1j^7Z_ll@@KWuRCk^>4eNr zXL#?M>^rQk(l(~8^YKnqnolWTzG3Gj{e~+y44iQIdCH))vmw1*PP9#X?^)d?pROyv zmJiA(|^>%)|J|AuvOO`F|eLplkiRz@29L=w5I$1IT6+8 zt!~hG=7IeEXMb5aE9d)=+b<8-ef%Kzz}@|oU*xQF=rn0&{R!LWb;_!jlki8Cvr+AR zA9Nl!=HN{?(Ls^I@wR2+HpX; z!*7TCS#@~ljrUr|f3U1g>tlJX6dS6&HTlqx<~yz~^!P6Na*MAN6DPaB;?Hj+cU^jQ)Yw}yCiL6g z>%*#c4jM})V!WALT~pwtFF;^{+__zYrb02XGz9!-z`sUy8YJItLu?^6McMIeCeI^ zP6e;V4|;U2`SC|x{33rIINYk`ppN@T4N+g)Gx+1ffB5hFyxo9%mB;&Cop7-KL(hAG zcl=%7o%&-$z_w|t-+61^_rsKbHX0h(HU7QWW}9@W)mz=&GxGQRpDt{>m%AqE>!CZ| zeh{7e*S9T(@BPNwVch+;J?lTN;Clb3!OK7UA^2I)kN592dw6;JkB?@y)_;FsXw-L4 z_G(|Ax^(fy@|eYcZLk^is;Q&%^XlVn{Mq^V@`6#DhyKz15qtXKq@%yo?=bmE#UZ{w zf8wovwyMe5U!O0W_4}8v`u!F(Y;5k3HrY4I&v=pN`E|#e`+psI`=b>*?p&(<>sR0O zYIEyGx#;VUBQ{*yedF}>o%*Ho<--@; zv#id0E!r|~%!}B$Z+31n->KoF1MT5wn*Yfkr}nS7uxY~bMcTH@ zR;E1vv|jwKC0gq-={@%~U;4qtrx_ltX3VnH_4@d|yAHFXKDsdHhfh;y-u%7uM-zLf zX6&kaa{BbJj7f*ezccZ{)>^3-^KPXLJhxzS=-U2M+EsgFnnU8%shK(VHZ0C|U4LE` z@p(bqYW?`J-*4_!snM278{;>*o!qpsTH4R+ntk7L?dUn{=DkqG4R5c>Vbiupwe@ROPWQv&drtzUOk4a-hl|suhVRU8 z_f=rOITt!LY&mAC1AY2kX49Ry+J6wr|dgR!#QQopqwxq7|7RHg4e5?Pd0OS8uENbDlZ={;>P{4)0W6 z`c9|yb$8FL+5GbFD`$+jFuHPu^V&BB&Cb3b-F?il&nh^aJr%hvsnID_aPQ2$xxX%n_nG_Z@{0+65kFOLlQ+0e zgRJrmy{vbie7tq_s_ErwIB&g~_Tly6p7X|DYVyn_Zh`Xm`t2j;W=xvisoA_A-&xRT zV35zw=C*&7yR*Jet?Uawul?c9{J&=GebaaN8%qaTB{cY9U-u^?Z#V0G#v`@h=Adu8 zhAzwO6kTv?(&aZITOUcRFf-+Bn_>4i``sPt^=e>WwsSdGg+wEF?*XzKMsV}UXHR|z3 z&%VEIc{;jIi$xWe&m4QO$&#A6i(Px2c{cXV&D{?lR=m8lCc=9}jrSJ)p5ocK-{M6p zhW+w$-EXX&qWc6*xc=+xiy_~Bzx%dsz-;x=Hjj3V%k^cE`)lvd`L6k$>2n5$dIT3- ztD{;zBICf?1GYDgC=Rub+qubKZC53uZ(_|?jn1#BIQ9KK$#+jx_%hdV{`!L(8~avt zYFl^on$%GdCvP|^#s&Sg`9k8-Gf7|6`FZt_Zi}it-r%|E<+=ANcD4Db&*;z@KcAmf z-{;mt??1x&r!*^gtJVVVylwUU4_(Xn{?W;T9UrgkY9CVmiIZ(q@0ADpFMa!F>jsls zrO#jF_t%?mre_VT|Kj$;<&{Pb`*=*%yKkL;v-JjjkC_#_KIo)$O`EiD^t}A9wZ9F0 z_hrDN9!ok7`nk5v#2BC8j#oZE|Ix_{8`?~0>;2)iVfBy2?U*ro{I#FHI39nkW`Jhf z%DeY#ReqY5vcA{#sI%Jb<;UoUt~{FMd2)gx^{)-fzDciA&%SkL>$v_kX0NLnG4<%k zypBz8$2aYfb@`JgX)5)?2Ya`@-@{>5tv9z-@80oJ7x#d;Kac%(^U>OQ!~45z*m`c< z`Etph1ZPG3Y-4?!uKzK%9*ce|AKWxu-9Otl_PA5Rh-Y&ig|2C}JZ#~r@;9fqNV&Cl zb^g^ywH9B>ovz;9yUB!Y;}3kh*WGsRp_=n*?r{tovDNjLr&%MrPd?~<+d1#b2eDt> z|NhyPUHvCro^nbXvt)2s^!mduLkh;t3_tTjWyR2bp*AtO&nt8Yon`0nYx_9Y)4ih{ z-@6**egCuJBNN|N-oMyOb*0-Shbb@DXm&-n+O__9=j}^kZtgpCZR7p|uNF6AzV3Qw z=%`!Q94_cDb_l4S>#?!_ZPxDe_5P`ca)PVY-uZ0T;2p>7UdUdUzW2bI3JtCHF4tL4 zw>w!bcl$Q`NA;S;kDvBVWbcYcf@|t`N4R$weam~U;^s)3C6`?HKfdbNc;vPzGi-M6 za#?Zc{+fq-ue2O%d*-tWtl+Ih>h-hlmS0ls!x0Yq>|#5(&kKuL{2+9wB09SNvl=nM zAydLVZu}C$`o`ES{IR-X&HEGWo*ntM!to*DTXRoV+VjZoql0_DdyzGLe8^Wd?^MZi z@A2{F|3lrI2Siox5C6lW0wS5ElA29uDk%u4Xrh>=q-|PSnPoM@%)r1fGtMH8si7z! ziny;RxZ(=#A_#W1<(4hlrncB}nT1!uDr_TcN=Pib6lHza*}&qq5)kG!$fcdij?FStS|oJzaNxY|?iSZHtbaG`$`9x~{qM$typ_#9w}S{lW9=<6gSB`{-jwMs`g++F|~Q#wXIAtG68Z zqOMT8@$`}7VaGp>b{%?i<6qyo`;N_T=GTV5->0+lgD!=C$!y}gpa-t+2DCqJ?+Yr6VV*Aq>5J$-Q5JMX@`J+Sq{s(HgMoq2xZ zM_)g5p&{$5U8f$+8g;DghvN^Y-g~J-|MzO6y5E-?cF*^t!)HJJ(bHGY?#}w?;biNw zs~P4d&pF+ZrKe1V-EOnJS@lr%r>U<-=dWpKe|K11XqS@@x9KzRh5EFn!;S6x^*=go z^2*&w@|uX5aYCq5d_|$GZ<(`R1}s-glZh%=zHziT3Y*bZgODZ@&H2+nE_ijV0(kuKM$-ZC<Y|CG*S_@U%cT()&NNK;`D&o_FW+81xBuA0=wmhW z?%z_Fu&j7}k2mf))9JymS>s z*%Ny(;pg}Fq@LU8%bz~I)ne)K_UKU`y*4do%bJC~w=J#g{Fmy(8QP{j`MR$HpX>^J zbKZaUN@4H!UN~%=KD}n|*o?~0Y`L%Yn`!^md`EI_jrR6wSKGIX9MGx9u)L2lQong| zdb`74*r&|+HrJTcaQinuY)d|Kd~uHz?&a;O26wGI_4k;CW%al1x#Agd`06m{H=fp< z!1$)oFLa+f^~&udzVu9N)1sd@_RPeD;`gWYcyV>-(vY&4hC6rl3KX6mcKOV(suw!k z+VJgtQERKqZzx;)`V+5eBF9}!9&i0wza;;Y$*<=aFpl!)ZXJy+#K2672fIgA@@!`_4PyJ%Z_-ASL{#EyPE9x zee>IIzn(e$&iNH{UOiVevamGu=Z!1cH5@uMW!CO$;~i;*>+g+Qzb7j4*v~I_tT|Wm z)Ya(|GrqON19y6dl_dxieVV*k^n{LuyLQZL@UEWy`yr{>rTr@Aj( zIAe5ax9n*RkKdIaSU=5j`Euuki9MrJ=RMW8dqPFJrpJdT*K0ae6(&z!QlnqK^4R1H zAAb8nm*=m3`{>m()vLe1y!M@%cBfiS^eEe1k$fe05ea}-ay?(XWgox)$LZZ|pJd#g zXu6X6$+IuCt0Mf*y#E_xT0r2s~g=MvCJKb}pRf_JOmu-FS*DLzV zzN@`%JoQOqhwAgc^eHVIHEPA-dG_iBkl2D^Jjlx%suwPylLP5ZF1z$ zAI1-xSr=JzXltj+FH1+gI%rkzUmYU?~o{%&9BHpTAy=*&&#W8ZZe^7Wr@_+fqP^@sZG>gc?0MduOIZoKigq+VU> zmd)-uyZQcM_h)>3NBMw@X)mu_HoX0hCr6F_+lcg{h3!W?H~gWIp_7cMPj;O;v|_Gp z$a`l~2gmLSNq+S7!lX6t97%aA_pgJl5Bacnu6Oxud&;Z(UQPb3Pr~Cb_tM{gUtCq+ zXSBWzakuvVrt|Hyj`r(cf900=U!KnBmmW1EVMdQ{2OODsHu1YZZyY#u+X4H=vgc+@ z_5a}P`B;tPgFzeeSKZcQ=7SUaySjemaKE!@+`Ppf%zF0T;}hq0i0Crs4gIa20@sdN zV|uQd9bWayGcUgKtL0SU!Mu56i*3VxzGD4(c}woGB1=yG=Z|M6KNM>IX4nvY?XwY? zd7Ve;`tLJ6-SVdgjk_+sZ7?+c#S|A-pY^f1Z2ZM@+6kSvcD;A5VbYu%KYg%i-aFGiy(93rcJfD$nZ78Rx}*5e z^v_ldej@(wVNcq|O?&FVz`Rd}bT9b$hZ!e6J@m%k{^Hzu**D_I6aL>W=X&e1QkrLX zXmhpCJ;VOitiA5@ZCf7s;^}X7fq|bkw|r6Z)@S=tOaE$qqVd-o>c0Ht!kaJsw$8Gp z_2IUAe(u(Bz~3*;?*7x3=g0i`M2-6!P0RSN&lEoU<-(DDzRGy?`fnpgum0{_|Ls4N zt@-);iLI|)o;CgHOZ7t^eeajWG4H4U<&G;ezB~2Nk;)|>es}Ae9}KG(Sdhv%Qy?+Cw8_4=TD94zSF%2Z2LRyKk(vh)nCnz-8Ja5fjis}&)j)p)aa@oEAeBo%nt8*hJmf9LWHe4hDaL>D^>%Pvp^x?-J$W~?4m@j5xIVV?s2wN%UL1RVOSd-yeYZKw#~gf7 zyFX&~-7i@WNOxOM!x%IBxWCEfn%mPaQ(JHht-OW#GT zdgspSxp}`l7dxc#`~zjZPV}!_8~Z}v+n=qf|Ml*hLPu-obo{n_8#-%OL{J@Ver?lC9( z-haH!o&9zky!v8~=#uU8-#^&xj;xE%_J4EMidEKIzD?`%Ls;R)<)#$_N0r2{n)=1j zu}@El{;^$h&--_OwCk%k>VI4L(dQY7b&IEL>YDX=Uwi0`FUL2$eBZz;@BdVglsV4- zaPFw8inj`1`sq)p*|1m zck`_+xAfld@T}2GKE7Bx=!t``eDT=vw1>SHp1ga~yo0Tu-}H_??N-Zs#Tk)*PHFMm zmn~b+?~5&OFMsf-LkpT8d20C7N+8Q zVC{Dg+>;VF^PAEw*RNgQziF0s-Q}BSef#pg&yBB1eDl|k=W<4ycK)#T$sQALzr!=V za_u^AudlwoKli3K-(8&dv|oQ=*;7}Je|9Ev*+a9BwG7SHWL!Q^0-)rh^H<=1ZC-?V$! zP1k1>?3~%_(u*ed)3ZZ5I^L-H?G@+Cn;zZqRovCswRit|;Ep}xu7C2?nfL##?dxAH z&ir6(pEARbqXRz;^gK9vRnNhb`y6`jvyJbbKJwFxE$zo`U3$}(G5W3dncI!n^kCD% zzNzo8UAbXMV&ZR;`b;^wVN2l3FH5J-=rs6~F8O;>6JNi+bi%%{QND2vh4Zz4`FO?5 z$DjEAh6yc?{rc6z>FX^E+TQwhx^C=?OJ3hQZ|I&k-hFoTFzeYq)91`weB}98{`T%; zH@|E9Wb2`*Z*J__eD7}0{2R`hFYe2aIehZW)+a*dy?95(p5F?3ci!Mltx9dbtjB}a zB2$;@^!H|*8DP6IVD(!kCq#zN|MF0sZ_V}&6Q1dQD6!{VZ>Ep`yY;bzmiNCu`(W0J zU9TS8bBinb_1UJAy46?OwEYV4SB~ZFX0Qt+oP8m@2c*4xZlmeQnfke{M$4c2Ih^l1 zYCgVh23I>O-(UM&peYD`ujP{_M820#Jh&}f{mdhJc=)Y+wi?;V@sG{!9*xuGFzWJT zTLn+UGFyyVqr+jtJGu6~ddBmEWLHD*n%-?Pu`?xjrtWdbv+G=DJ@mof@k{5X_C2P_ z2Bt6Hq;Y`@faSo_Jv%fN;QfGH3sZXCmYp#X?2U~E zi_IGhg#3et$P#o^%uz5+2evBqAg_q+>{Ih&CiC&9Pq{(A6tGkl9_R$<2 zIAS=i{N20v_z#bp|HDIM=-(Y8>c59j&VLW=Rz!aP3E_PHJ+Orj&H7K^!q_U%ThEdtJK+yFvf)`%ZQ$qPbLHmm>N@{hcH`O3`I1up5`Xei}533ZVb!koHO2 zq;5H)X~9z9KHybg0I(mh0G|UrfC}IV-~(U;a0-|M`~rjm3xF}e86XbW2IzrLflk0m z;342mAO$!KIDoH#D4-O$2Y3az9oP%x0DlF#0ULp7zdha0N&Qnt*x0ZvfAZ zN6$x~?<3Im5$OI1%~n7Md;(k#tN$%;5Wbn!2`jy;99T^ zYy)2fUj^R+z6D$ft^_{?ehT~%_#^Nr@F?(U@M-X~;Ag?D;8w6`f;#~%@HEg7m;@vN zc0l$Wj|chz*+48X6&ME00>Xi@KySbR+z3no1_Lf2j5`zpcL8UCUch!B6Zi`tnzf_C z#cjBE8^xo$5gZNl078LIfb4tj2DAmb05L#MfcH2cV{PaS`?3M~>kM=NZU(}D8-Vse zcc2~66-Y`rrunk}G5j-)hR5J5d#Dd4<980=HwYX(0ohkA$H&3%Zs4=%O)M_k%p==I zwP_z79o8WMyU-bPoJuiA)bUD8;pwB$H6yR4O^i#w5YZzmm5DW0j z5axtuPXJE?cAx;L0-ggt27Z71v0kZDMpo*QdZZ35Aoso#cp4}Go&y*_O~L=<215IP zIOZ=XT)3#HxMXqZlBH$K$~AvD4f)rrA))_L7+?1HwBp+S?pBJY`_DV8j_*GzQcv4m zt2cNW5p2e_(@3>d|2U0O8u`!D_R{9xoksuRw8Ot%?GUp?v-edQhV$!ga?3DYJMXP~ zEmO|#>=N>Wf@RY(=hvPI!N-3b*S-_HwsZ4~Qts{kW2XrI|9tjgI2c*>f4MIF@*n-l z(_a6Rzdv;Me?R@hvrzu|IKkkBe}3`DPilcbJYVp4r*i#&ukZizH-Bu@AJ2dHKo_OG zf4u%*o&T;s|D%uBp11fv#qylS|IQ(C-R}+z(!Ub|>fA?JbA0GYwn@7^W z9>e}cIbD1FQ|B&SV{hu#y~oWxZ_(Zw*NZ2)^z9dad;b9mi35|8Qw9wlk~(zQ9mCT` zj7%T(|2#eNCX6q9E(|PuDEuTmaxMOs&|kuS3H2qmm-t;`bcwTtPb3v0X%I<){621$ zm|6HiVq}SnCH9r@RzlRC9Jg@D^xw)6$I*+UHwO>XxvdXJUk;hxc#hjS`g4f-P2fo6 z7|0>hnaq*GF^B_gJa`C4D#uWcVH|gG4ChGWKpT%3$&t=6isS#Xy7_aXEf1vkXmRrrwNuoaaucnN+iK1HCqGluL`4$fl4{kA z|J@p8p4y@}D}EKI%$3y}i1Xf%DI<+L}?)7KD)(fKe+4$=@r z;=+oj%WpVGg$Q{PC4^cW;qe-xaRM1)ZoJRynJU#&nXV)?4CH+^gx5I5Ax;f31mT!? zrgOy|?xZ@*kIM@W#DiVPgWM!W!jq2Fgz#ll@2-S+?Rirh?U~O{GgrzLeiliM>ouCP zuCyWwa+*^WLSU}h6+&Un-Vn*Blxy1e))64Xr(|a z1#lGwLI8OHSv%l5;1*yM@GQ^@`>W&0@G(Z}ajj7@eg8O=6Rybo%EStxoCu*{g%~V7 zk#m_F!7{ZnOe(!F07odx2ZF;SHdC=m&%5@5=PEt#+>>*tReH&!%V}tkUL>7^_X(=> zp+Wl4VEv*6lmbC|USJ`op|UQ(5hk&pidFisAic_4a$Thl57LJR>1AC-=wwYr#VWnT zy6U;w{_r5Z=p&Ah;2T3iC5n}D5{s%>rI+YaJy+=^YL)3|3q2UEq=;W=Tj*snB-T}N z+aPWi#FBTC>ngou;eJ!8~g9AE5E{Iin-kYf0hxa8abi5}qh*f&tC#lefkc|`i&>(%N=qBoy zUp1>(r4J3#he}jV{h>kn&>%g6soW@9A?629rYrQS{I@dCYW=GG%eh*=D*tk>)*lw6S6G$$RrzlX%D-T>epUYET&-V~e^HZa z{S1v#zbgN&LHQS~(yQ_>=PJD_|E;uArB~&@H7NhB%(L2l$y&*Hsq!yarB~&@m8&AZ zts$!Xw+7|Em3bEV6)f^ASmal*$gg0L|5naadR6{gLsj{2Wu8@f$&yQXRsIF5^s4;J zJPQ8`7XB41{3}@aSFrG}VBufEeS%ozSLRctS9}ZTRQVUI(yQ_>=PJD_|8lOR%#asY{iiiNooy^QY4}^OmeQA zgM~u{w+mw7I5`(Dyp`6f^f5vDm>|96Xr)|CkUl0zAER)rd>;u#E3FjCZw=|h|KQM0 z(1XJy@2g^w3^|v4vS8tK!76>XAbmH!<@?ZXL3+s-OSx{;uVR(HTadmR^x@PW2R%3> zj#A*zIQ|ER#X+xPvB+{R`EJ1?VS-iqlpuXdkUoX0ay=zTpF;iWxk{fBq)&mq4fT(K z9vm_TdT{6%N`u43@V|;h6Uez_uLX-_3s&j%L3(|VULT~_Q%cI|sb9q^y*@~KD3hLHcggFLd34 z^xddm=(`2!yHS5Q^~XW4;%H4c^l{Lu7*2#f4tf>$)PzGH2fd0_`jjAj3iS(JN{~K< z`h_kfNS{LeLYESxPoe%c)ISD#6|?FA{TS#~j08YG26`2<;sN~_=vA!J>x1-q>K8hF zkX}#yLZ=VX>#1Mp^g(((^=sOQKF($ikUlg>9~z|Rxk2(sp$9AUV1+(BNFN@g4-e9Z2kE)4(1R6vutE=3=-UM8+XU&`1nJuZ z>A9}ZgB5zPLJy7zVf@-cuVNEHfSea;LKy$H(1$SoTn`Ch{K26ij6XO$gz*O}^s@Rb z^s?$L^s*u@^s*u@^jufy!3sTCp$GG{tX9_V#lvb1S%Cfkhb};WfWsD`HB>Afh@7_z zV(}>CT-HxpHD{m)hn#^P9C`+NaM&5>RV<#1oVN>N@kHc25>3>q851HN9r_O^6&yMS z=M)?^hKNeV;_=A2tVaqK4@Ph#cYr=LRB*@`JU?*g7~ZG~4jY3freg7w5{ZMJXP$vW#_;SbaOfDG!3GW+ z!?UP7a($|-sS0iz#Ik-X=Mh1S{)ca(;2#y6G@r02Rq4_4^G3OzU?4Ej#ctJp+vBj-h$ zFzW9FeHis~JtU0!!J%Q)4-OBbey~E{ElA&u`h~t*kiJ`xp6d!dSfK|i^x%ka>W_n7 z#U@QS^l{LKQ-2)v;ndIdkZ|e;hlW!>I6R#C!3up!kUoX_g+3)npAw|!xpkAYsrCQTdY$3WkP`o}=uhWfc4(uVrMp>3!i9Nvcd!3w=TNUx`Uq1OlL^+9^B zEA(K69<0!VBidqr7QoFaj^JG(5sl;IAZ_sJXIXc;{)X!4^hE*dSd@Vx&(1g9&ae; zeS$cZG$!YGtSXMyL<(Ifo~45E5QRRpOAzp70NmJUlm7dqJ%CSk4C|G zCPE+HC5U@!qJ%!YPY|bSqJ^Gk7OFT}6D@Q+Lr}$?c-O0(cM0O2nrNZtS%oT2)x-#W zEFPDFqct%?ABzX2U_2qAkL?n~JvA{xAKNF0Q#G+dH#I7VqcyQYH#H`RJ85EterlH> z?x~3t`l)?_I91aY{#yY5sMw@w3;!&Df7-%-3*eu&@E_Mh+QNU}(6;a&IJ_mlu+2Zy$U9vt2ddT>O9@P9}Kk1Z5z;_;1wi`ZWw z_(hiclF7pNtmzh!-`{LLZS45-s!*8KKcaACVCrE%Xr?5ivp^o1sy$ zNfRUVu|=8~p^tr06C?Do86h!3ADa;xBlNKu;W0uVn-LK!^iwl)@P#sj{w%El;ny%uY$!ll zSHUC|R)!o6c{}9WkS?LAp^t>l3|$*~JoMer??bzUrG`BcHZyE}SY6nquph%>!-pxU zP@ef`&NK3mL94}VGFpr#m!8Mp$%FG`f4DQ-mT$9KJWig)muYr+Y<8nH$L(}k%(+IB z!)VO6IdWabSuT%J=diI)TyHaYEPP4G z{2;Uji%lLqXv~{wHs+gn)}dXOMZF#;t0oqCrXf!N%rojTvvq7~mvtJK!)?sdIdXOE zOLyCC)@*ZDHtjT8So*OV^PR?-Myr+fWa^woz0H+vw>e#Ir_qqdgBPM2kAD3{Cq%~og}edD$Lvuzdw8|j_0RP+G%rx}KP?%_0NSzVOP z*3C3#aWALQXyv6O7PiduC@HYT?aVV;-R!?-8@4S_*=DDOhbd;+Y_!#A$fuwA zEC=P-^v*o`uCq98G{@#JXJ%8s)1q^_Tl* zQ#NyAFdGfynIDJSV$5dTbUC_NW~<4TX>sc1~kwceh)LY!lzuS>-H0GK(&xUET7$+u?`KImJMk`~In`^YY>^dhmHQOCFTi*C7 z_umJa4@_` z>pi)Qm8|udm=~SfWrH^yvQp>LS#sfP`%K2f!2R>!b!OD%ayzVg8vvgm2^NRVX>>a* z{hSQE!)7r;3M;yt3^#LYWF9Ss#2kATqLDXK=kP$|f|spM7{=hR*&l(YGi`QHa$-{4 zh=ICvp1El^T9^&qN8n<7?8sSSmf6G@xH6s2QCSY1hZ?MXvRr8n=7To6EcDZUG&evJtA&W4R;qj#DX?C64lFxWM-40{#etmo8>&&h^<_6w#X4#C+EM$VI z$+FXyTX}Y;JW|wcHM^KMxlb;9n3s?Kn3ZRVbBavU#grubEQXG@=hI)C#bmQ`PqW3T zGjWwW>+DXRunEt=Wfoh$UZ?js?K-Oyxfo1)QvpQB3Gd4+TsKZv?=n0pt`Z{<0uPI$|L@VRnP zU{-i{1OuGKpxrZh;sXY^%kzNf7hZVevAG#{7ei#W=ICb6&ZI7*$LKVfo!R;M`H2p* zlY8o&JWO_GGX3D(m_oc4sg4U(gP8qrro`JLA)Mb7QuB6uR4jTwC%nFtf9Vdv71uAxevK zLSI=DqoPI+y&HVXS-F=oLtb|zymW7;9ALsX{lH##Aa#*ENA(v1jc9&?@LHlwF4Oq7$V z5fbc!&c$v4b6!@TUc*u>Zfq_0Whm2NDo+;tmhH+DEnzV@+*uh9jT>i0KUo>WQ7|iG zh*hyzW{M3!wirJx{LkZsEgn5K$O*3)+_^@p&Z*1P*^T+|MwZ)RnvybTcs9HS-@CHV zDJXwzpWA`H@+8y$zJ24<;?v^N^PDIxGxB407@X)Ay%EVlk55S+Hk_%KpO8uaEvXD5 zkIK#av|xi%Z}T|OA&J}~ZqmfbQ}nbam${2in>!cdXf(A(gnn@(CB>)ZnJu~6goJdn!)C?LG4PDw+44C26?Mpvz;ds4FEs2PN2dfVM9t)-@$1dAOGTU}sVFW?de-WyC;x zy3^*i+&AHYamXY7ii0s2JbXlUa{4gF78Nk!4)}CR(%|8F_*%mUr%rgaElE^ z9^fBrm5Z@U)We4c_%$0}1bu;zWOWT6lsawvlqr)EQj(HQHY_#w827+f?JN||@F9bz zjhQ(1F@Ca`n-(=U$~enR`61J=Z%%l})pu@u8or1NQBTw1&CQ)VV&LQE>52DYe{%EA z9L}d67d)pk7@TMe3*tB{Eh=&@D$8bNE)y{fNl8QE84FJis@@4xA+hLLn~AZA*QO*T z!Q;pMrXwy&Vo-e;rl29HaF8^w#TD6U=twoP?-blaf;6pka4;-k45UnWwZC1bdXQC*o z#cuYcdv=3chyByJ67QLGcRUk2!)i*PCxlemUsIB zg8<58%DWdlp995VU!z2xnYzW zM!8{>8%nvMlp9L9p_Cg+xuKLBO1Ytw8%nvMluM;tD&`oh>H54r=hMCUp1S#5b|w-Qabm_^|{ z2hwP;W#gA;qOf#l583o)6!h5xI-T?Efth9lb_4GR?TKEpNkqbDT_$sDFz48a-E8=& zR&23E6lhZ<){E`}4LfqA{FlyA8>~2I+M;`Rsb5c>7Aat{8O%21f^+V2{>1r%=No~h^QSHpoIiM>;6mYr z15Chb8A%URZKrK35O( z`7n4h&~*OL`AYt8;7(ATuR6bj?~k3YpzH$5ZBf2G#r+SSUk9uPHeV>@`$N=z?EHG_ zKX(4)`9{7w#ospQ3eO+EJpXd(rR|rCE-$)N4V=7OczGe`C6^9es^v;G*B4(dzFcy7 z;pIg@A>YX7;!C?P9pUrBOFN-0R_;-Hc>y%Ve7BD~?UqkU*-}0)q^#h=OGlNvE~1V_ zmy0g#<-1bK6Or((WaM2V71NAcaAE+*b+vk*Ltn0pl1-gurG}G9D(3gh}nD!?Fl3M->VR)&;9w#ht;@R|mZ6CfQTnHPLh{48vw z&f*}zc1T3)oZ-ek6Y$%O*=|w>SZPUJ5JzxRtTWc$K-R>ZNobQPs)Z59N6#jMfnUWG zI`dIAI3)xIl1*_M(M3{LWa|w=OUgE zrQ#rA;Ba~FLNnw_1m}?45)(?KN}>s3A~XUHo5SN)!gLv?Oa_+3m7DiEn7NHxQV+kriA&#l1z{T1;x~gBFt4@+CkIA;l?#^x*@ZR zVztt|Y~d}dWL>PnG?F_q8m0)dO2eIZiv*zBtoR3139sp_q$e02Ce5RB!-O(hPP%U~ zD!YoMg9bF8krap7;vp)tNU)@H<+ur7d0B|C0FJ#?8m*T!L8eXe3Cy-bI%t%Ph%?gz z(>nnuYE}-l;E;R>_QOHaj~?lW#px;;D{2!ZLx>^n?qpFJ_%dcIylVH@GBXJ^Nn;Mj zZ+B+H#V#2GLP`-F$-9x`z}+!PmBPSGw2T!AqBLg5WlWU#D^G-kU{7axOgM+Uoq?|6 z-7>`ad`rC&_FB<`BtaxY`HCgw$gc*$mL|wT;h0pazqdD5vMI5!AX(`e6pxbvLX0 z^@xBGlQa2v5wi#)sZyldnneITC|#y3OPub3d2WkKQZx?3BoR)^Sq&~5+6OnnZ0IKm zP`zYCB;zM{F%hJZbdpoy~DfddJ_bZ`gGy2tJshg7*FT1^`#%qqFy zxJ-%e(2iD@lFB8#h)WkC#^WcQ#Sjw-lizh_;dr=c?%;HXO%lUgMU}dZ0~FgKE{!1* z|5r)uI?1FG^T|tZ7!ap1T{1F8>r)R;?$c|~9clQC_E}E}Q)38dnl%T`Cs&%t8CfGl zCRMx@B0i%S?d@KH&DGPpuP;@CM!gqU8svc=|EB{?yQ zY$EeZSPu*0e2Ip`*bo{qGo-gzP}V%0>Snn@G!i5wZK**Ht*G&zuVNskPeGe-$j>~XY} z$&<81oK4aTBxeSulWnv)m>OL!*#Le6qOJfSrkSGUWwpVTBGQPC$wHb?(D~9TX>A(H zWn>(c=VG$x(f#yX%MXZ1@M6NU(CucD$OaET0`=J zBr*#|ye1^ffC}LyQ1nY#C>Sx2^n|2;oYHu$4h|6oB%v;^9HOV0F3cjciW5UdhcT60 zGcQQOY~!j~mDI3P+Ye5aB)Z`#@gXGjDN4}l5*8vO2mdL;C~|HXBz;41J0*?aH1;Ex zqa7pe5v1-}IdsNpM<-e&$&((RMs6@cl&nFA5 zeP(W&Bw5l}1F>ci!bV2wPzVNGUA}>>vSoQo%eWAE;G{Y;aINAzx@?;*UXtab#RHYq zDkp-NoK6hn&XNSP5~Yunn8i6ao)JuztUGfj^DH7sUeuX1D>W%eRt@6dU|2;=hfBwR z<(W}s;=NfAun_|#xlE6+>IpJ=!cvL!BPtTEv%0jz`*)Bh7%|Xc%Q8AJ+t%E>L}pSX zVJeF}WTBGNM5-Lskb(E~zu_#5QqTonT z5C6*orx~suA(?w}I~JBF$VE^;?k@vImIOO9Ms#Pq_STVFxY#MaggWglSxiBIY|scnk?686H^lN%(93UCuwh74W{QV@wxPxQ;9JnGYP8%oVcmEWdeT=Nw#j$!}@r-3oax-URct!nN#8(y}8Io?& z&4^2%ot=m5>}4pC(@TNLek!zOhCly2L5Tq%=lv#I5k5(W1pa(qim7D6_B4 zkyt_`o)_g=-HAwUhbWexM3EtWZc#U+YEi=o4eQcO9&!}N1I)5?_|G&=k|4Bxv2kgST+dG-h^u^zX9WiJ?4$%fzP~dH{sAr z{i?&>2W42JvOJ3w$b5qvYegeU`ZX1Gux)H0kvT>aLvi(kdU-uYc1lM;Wpwf zvY26%r8OcJ%sQ$h)2uV$TFUZ~8F!C?wWBF)dNtTOxld}ND7u*vN)r}omeu5lVxvlAQ@F$ z=d(wwXs+2T2RZQRG4f7s=hEryHV-YOmrS5bsvzD$oE^&Y5it^N5ha2LKxb$GODZsq zFpc%>RtieGm|hY)!A7jt&|G{zR*8i-=sR%$&0sX}u4xO_pH(S5K0G0Y5#=JW25JrO zmMIe+%EE?8-^9scmQcyuK;lc9W;Mgrm_Vt6m0c`irY&2NdNa+s9F#8}^w~WO5#c?R z5EH{UIXc)IekT0VvC87WlHnSXizC2R<`8Gq=CrV6=#)w3RztsjTRtJYWI5OPe^5N-|Z#3Op1tZA$miU2ry? zK;ern!JlVX;cO*fljwzkAWK7-!CfWZz%eHc%hyIp-{gqrXw*qc*4am5)ieVFDZHA8 z!DlRG*Ni9yc!>FPILWHee8pTaO|S=RPU42+v{)=|y9BN z)`(EHq!$S=$lx(xbU;KQAG^ZF79}!wFk2p@LHXZdoJDwMVD-_Q$^IOA;gTp{M3e|i z)h5_oGzrlhzC;!yPB@_?y3pTr5l_m@Oy?`%I++l%H6nOf9yBCtddv@FN1lSu>@(sH zc-U|fxf9%A#E=F`0udAI*25lTzZeZA$x2d6cK_g`u>(djH8z8i;Ke;-&@Cpna{p{N zH6Ny-r*JSMKT)5Qh#)X+L45MA>LwG9}noE3t{ZF7`grIdliLF8dW= zDpt(IgEyj^QB@2tnT4z@MqAR*@U^TS3*VYE*{8-18}3F-~kQMXPia5MeWN7Ft4;n z@*vy=GmqOwN?cMLbd~v{Z5Rja6T*QdoGF}Xd`KBF5px(!gi@RfvBR141ZRR>cDT>N zt8uu(BjeB>x$HVpGCU$vlyYOZ@y-|_^3$kL6278nU_0gvT9FH@vfqv&FgorMB}D#1 zW?9MSqE!rJO2)|wq^QGuNnmE_GReD%j5FEptZa0eQQQt(Tb?6pCebD{t-~@QH6nG~ zjmszyWvzgDkyT(c3BzF`lMj`$o~rPVM+p%T1=*bdGr}3{c7xAJYQs6q8N7tV@)2Pq z-Jb{7I6P)0GpWcL=Xku%2Nd06aEpFWvx&;u0UI^Y#RhRH)Wi~@kl8|lkI|#$P@)vs z)xbDNDv#Dnj?;O!qPrv~E0K|8R#EU$M#-|`#ga^g512j7DY-C|hwwQror|2TlEt<7_T6+@*{m0ty|zBFPH&OOd%FIbe&^65pUVWK4+N zpOLH$4P+evD}`nrPg_~lm+dkA$iC1>DnL4L*BA)4&M`v|DVmVnG(Cco;Vbf<=pghy z-;7Zto#=zzO0*MI0Y_%pT$2?I2B#_xt-{f0C26f{5tN9S+?Gha=&SoBSd={uqHV~> zTRf8$TcD_UTnkjCp^udn@if|rWGaC;59lD}VHhE4TVCyK%Y`c?^om1R@hyZ~9QaD2 zA7pJ@mp)uOg-3jlkz;U_bt&hVad%I6KzlzTA$A!%EU9v|1vx5|Aj>JVaDq~cC?1z{ zTpp8coUG_lp|x zFl*dlqM{|RWs<@ZCU#;480X1y5&b4f8%f{t(2;(|#H>U;`_0fuHsKRG0^?v!;Ca~v z2*|3FlG-Jo3hODo;(x`$lI$VCpCc|EE5Nw)nWT7S+GHPz*-Ah^TXyM*wpaKkUC-V# zUeb-s!oX-JHY!M-8V+af$ovojh|7zTP!b|hPl?Koqbv@BXkDi>PCJkoPIf!SY2h8_ zTEOU-IE$i4sN!Rw&CD|u$+enjiN!cpO~*<+8b@wltQo=+m#!=>k`f~8LAEms4Z~eB zC1Z=Vff;D6aWqC9FHwd~oM7g2l44;=0MZsVHB&pe88I5_E004ap{sQ6YC(mMG1zGZ)FLI+#?CJG{x$P6^Kh8 zL8PEax8xKO5@cs98j5}7bcQytQxKh@WW&hTNsh+GDhb|`EbPL7lIj|uonXyO6pdgY z{e%Q*E$phy#1Ue05=EmkFH+F+lrU>zhT_pl;@W7qU$K}huW8MuN#eOVm}`TvA##ZT) z!U^KDDRRk5@c{g4_)zh_l)dN@0n^NWigY+8D}JExuH4z+A^Uy1D7z`BxvXp~4?QJ% zb{ajhmwm)Q%%a)k!H?w@>?w6SJjxR8$h#CRswCpHI%S3BDaDPGWmug-^wLax7xKF< zWxXY8vJxF=$Ks@t?S`Fk4{-O`i7F|@(UQK_LTMq#^N;mq_8Kz&(oRu$%4$0LB@Zj4 z>_?C!B`JJ~CUl7`(K9mm2c&M477oY8VGAZ=Y#dry)`%myC;1;`k_i!HF^rK#^Rf2XrM%l;#$4O>XS^CyS zMT!ij%jU31zBjN?BUj1OlWZeZB$LE`1hPQ*+-zIK_oI(ahn@eG9Wy1(bq9QFi~ThP z&5f)4C+D~9Titwmt8acS-+MPT`bt(bH|%e&D`>9U>s_?pTVCg{+3H_j6sW29Zr8mL7mTvW}JKnPHD8-uV>znJVy{qO2iuZa?9BMu_zqxLsuX3lqVu|;}&gRC7 z!2H$zBMrX8TYVLa{f#U9`!@I%7w|byyO7&Ty{8MMN&Bk&t9ScKPPFV=+p_hT5Ed-* zl~S^{WnE3nw)Or^b>2lsn(LMX8XJAfEBr^dH8-AyB+y8!j(aP1`|D3P*ELWwaBQJ( z?S?>gQOmX!-c4J)JIZ`Vc6*DKO6?65zSYMA>&m@Fi@Y@_eam(S%9eZU7I-V_eaA}} z2mhXW`sFQO;jJrdZYXFzS>oN<=q+F3UtQ@t+Th*PDYR}Zc6?pom6QsG;?#0Tx# zgDvYCd=&+J@U1=RJyq^qx~{o?zps3GbJHeicKtHnrlZ~+8v~~|FlY>jzoF7!xwB>d zDqmflucX|2^0aqFsdv%w=7zQ0Kd^PTw`Q?-(Qf~KWjao6^sZPRIK3&bb*X>BNpEq3 ze{qR#bD@9rG4Fxp&2?-2YnBFTngTUjy^G2MM^F0JYzQnk>@BVGF4`&0F5S&-nOX0e zB4)~4w$WR&&A;p*gVtPE>N|FVzBD(k@t!#BZz%UeySpGzyUX8DsvY>wrSb0sAW}?Z`n>hduxt+8|rC{4+bb-(z1S0 zptiwxWR16JNpoYFzp;iYe8-lx6fE{F*~4h~s!n(tS9uqgc}t4?hZ=m#R?}j$-ff5}3!kqneh` z{^nB~{Z*^|dyY5Pt)e_b+ETc?W$Q`*rW$H*DP9^lz23LJ)_bbJTfM|rxX4>{j8P3N zTmerCU#*(&U%b>?SK}?+!#CcgYlXY&m&^SR?BZYZ$trKfLGR`Q-?8#Qb&0QZ4F%wQ z|L!FWl<&|2U%@iC2zl`qZ19#=(oVRPOEiF9Q#epl>#bY{6T&$Rl+0=4A>Wcsf%)sb z+YkEIFKcdSklC5P(_4SSx8|U)tj6E8Or-TtW1w+YbHfsULs@fU5xtNRJ2oF)MI@0j zq*eM-yV9YrsSnC^Q2vRd!9!j@ede08@6-*s#_MQ-tH|rLJJvKMW-#{{@(J^ zz|rjtsjp-$8U{f?=QKC)7SP@P>RJZGyAx@xXPl*{s|&oVYrMrYOcSPmy|1O9(z|juqbgH>a3h+Wj`&v}3DgRg`l_}v zBZ1nT-epDJ^26Tpy+}de^lH?8;OK$olLx)a%ly>`6=hNcM~MK|9u=8FE!VI19@wMk z&sAbyb}#YPm%}H4lKsAlLhq`rayOa8 zT73oc{iVm{|HUW0CHn$3JE+ckdQr>P26R3a!F#Y=DlJ*zEf6l1t9w^sf4xf=`IhW& zS+E`bK)s>~(Vs<&L>(=sYbQn0k>BbfdfKvK8-giz^K>yy^{+mJO%X;#a~9Vt<6Ooi z-+}FDbvo!> z1KSr-010hbP$M=1HCVr^WqTzO5!le^UwAywxL>@K(w%a*nuFrWpxd`n?@|O`X6+z@ zwwvwWv1&;Xcw(OS%M%~DaY;+d?)(qTzkwiS76 zPl=aBf0s7EA?OYH*HG?VR41dlsmgouh_@UmScp`5w{1aAeVdo#9SK`*+tPe;33UbL zizW4~DPhKiw@)6$F~isi$HI_^ZS7+G4a`>a=^EealiuLWn-ioJ$DiePL9k`>i zWz(X-hGo80n6rwO?aS~nL>`Zwz{(4MHm<^}@mC%Ymv!@2M&5V0!M}E0;52f*8R5(D8a zLQc8WX`D~E*SEG&+?(=sftuY6j>s$?a(P+Ht`hOGPSuP0EvODGE%YMtc*sjOG@n}0 zvhFbB2@{HysVECn7l>jnUjPZhf|3*&WPVR?4%FgDH8r2yg@DUM99x2A^jC}LhJef9 zV907V1{Q4f?-aY^TYCUc4DUj05Ug0b1=(RX@m*Vri=|)7cVfK68)5D?)rh#29K!PY zRxA|nqGGYw-yOw)?TzBqphzp~89J<<_rN;Xn~6q$ijprvU{{FOw0WCI1m2_Q!!0Nl zx!b{`Fc{pcNK+|3OyJ-){`of4AWfoG>R_AF=2KOo4NCU;4lMO;I_z75^}&v861RC# znMhFiUa^?#@P4;57lGZSfu<(p3rUd~tl1`RWWjvyhT~0LgbWgu96gHm_8&itUn-tI z7OHqJ;)AeL7gh#W2X<}QyhrA%UM#HWVfgkG2539>-CI)CvSEh|eo0-RbO8f}-@=Ue z_HXsAsl#M@53UePTCx&94a?|Tth5SwT)s>^z(vdj^&UgFG&df>==cw;#xxM5FsCgW zD^Pk=j!q*jjg3C&bQ*zK(u-R7#6CyPyyk+G`0hWlaiT}K_5$Rwg zeM=XkDuor%U?&NeDulsK?Sp5SZV6r%qdgYFicGg}^J#b$Ck>T_ph>v2eigkFm#-8_ z*(55On4+wh0T(k}j|HiRXGEsf9K{i(c`XH1qB(`f*0ogbL7xPU*2#V7AXB-iu4P?? zXk)BH;~}whL{;c>{F$1QGQtd3sS+h^-ikhyP!aF3My3XaSDc*V-b0HJ95iR(^cI8^ z1LQ3uPHciuLW2|4-km#95fa5<^$1`$?^Hutco^Ojp23)6bkO#tTV(JN>RlyRG$si7 zYFWL3iIy%bFTvkKrF#ob!C=zaO)LDHw_}%4O%jFG@5MZ|tQT`88g=n$-;zbB*_Jh@ z6^W}CFM@~(D@<(Ca1<#+Ir~mFc~9)}mLEa7n;RNoAuI(VMpT9MN7tdxg*R4LdRGu$ zZAY4LUnK^Ie@?*_Cj*NQ!*cYCc}I#xn$Q>o_zU45bj3mMBBG&_Vo6bqr0rKQs(4o znLbQFd3oUUL2vnbq9hUd1_p2`93`@_VNam8NnEU@qOrwqB!Z*TWesA37MBr~Gdq|b zxX8D80d0c^n(G?jUNPSrux>@ZioMcD^sNLb#JStiFyad>F7a+&7pULIEYM$XeG$#Z zZx_Z>V-YBVJI==D^X-XjE}pwlAaazGX_Z zPJ~sv(pyu7jG%VJ-P*Gzuy3t@ZIgf9A_5c9473EryKjS7(uJq}`*!+j%N3P!z`H}0 z=pw!m>$78z@90j%ieAG-{`uSCD1219{J*HWvoE`=D^KvwtgOLNMa}bg9ocO}wFcwr z?p3WRmk?lZGA)GDU0v17E2IcX0ig(W+z=3C=2{G9G@dd&4~enC3~2_LSzvfj)w}(a zc=ZbpNW#6k|Ay|*ckgo}+{Th3?)?pC*k_+TeE0Vxe)8t?_M;0gen(H^GO+x=|7N!7 zN4|6En;gk+#OZ#QTla_yK79AR7}DQ=fds}6edN6hXTNmuM_-LP;v^bvV)O8;m!7{b z5_KQzkszOawIz?c_E-pNH)+)R3-gg*Ix)vw&O(H?%epzQPefJ&e zg7)A^WgE@T9!rdyNz!NxK81O=Htl78_B7r~xu{Rrqhs*L+Dr^8Rtihthfmn5%(Ybz zJ@#N?6b2`o(L3L{^vu16k>O`dsLQ55eIrr3sm#Gf7|B!oL9)yK_ zzgI`M#HLD!?7~^s{2<%q7oV_NFTVI#B%()+aFM8vxpL2`!E-LPk=PrH!v3Stm{kl(nW4%BAAgylezxc@O@dRJ9 zy*?aA;7i{xh4Z+^M5le{rAt3}=h6?&1rz1f3(wjhz8_2Si6<_6`7bFMy}tOskBH@k zpFA98_~6-(9(^f6um>O1>`OoUsTu#xciG9W>r1Q`7Krf6m(F^fT{4jeo(u0XKFGU? z82tDh&-w73Z!>x?e*3G5gYgzkiitDPq9|W`iRAp|-ut6qzw(5+W^_djdWgW_yI)~i zUwZpJTJF-bv4SqW{fH6MRO^Tzml%t9;FlPI-#6nQzWH>N-pg-(^xh9HJoMdk`3H~k zWH0@taekEl^3mBRiJ5^)%b)(mrMG|R!wX+#13dKMdk+Xx=oCl5ew3ioJKwqRn2qww zEP;zZ`^iVIiPZ5>wC&N@2^QDaVja=3QPk`%fv<1Ty+6)dM2dd&PFBs2Uj5DYzIy40 z_eMKC^^C@wg^MqJGZOOMbJ5k0e=Do(#mBR7><&+Sh4PI1L;c$HAN_Os_R=?g%=)_c z)B7tz#oYZ0sS~VYijSWi{KZFw z+AcEu&ORy#R$A`++&5Y!A<&_gOF8@DJa5^f%vm z<-&uHnteO_#dq%i@Z5_R9%2}L>C#u8%O3acQ|3K3J72Ng#};Ksi{{LE1xc<#|UcdO_Yac!P_JxNYyY$}MAHDQ-F%1jn!hPS1 zMfA=)AHF3H$;f{xQzm5hrF$okn1sPcPG+9n9*V`3fIVBp}382{MTvaBLsDYX*ieH04l=Kg7 zM^6fbTiDTp<{ky(TXtzdRHqr+jkUt|K*j)7!5Tq5<#YY5QBs`&fU93Xx~s(sAgh$R z)a0RpW=@tJ4(j}qFh$9+719$@2&!c*l@lNh0cWO@K>qc%&f_yzy+FR zV=L7p>jQ95_|GYngVvq`#(`8>Ths_Mk~}MESk5fV@Kld7?%FTAcX}D#6&%EDYENbg zlIWDT1mvGKYqF88@~S1pFA`%JZPgC?1%{d@EUf7syq_nKoLxzrXJm|Xa^*%_jtu7Z zcIfOpKWI?pT&Sz^ZK1BGIt#gBjzCrmMlElB56muX8&No|%nQa%P2!?7?yC6(BR_vG zz)JmfpQ@$cnzT0~BR}mYP~;~Um+vXur@UCCqN=?XGW+*L!Vxx@#k4shzkdEXG#2FH zmD5Z2NbP#godDoVSf`S^l>Kv`1;1eP#84l)Yk3*vmw!ucoVNDIEY=$Y;Y zdOfWd1%}1Q0;OgSA*aDv0rsqdARf}5AUscH#sl@8R=I9^s_*bLM;E033^vS_RS7qj z_P{ccUKQ+b|LUv1dRW!^yT3fAiv65wcUAAd`f`2pbCvO_m4C&z@2R$b)2F%SwO>8z zkBWBReXl+_>!&xWrv7c$re^-n>fTi3zxvA;^0a#5JHL9^mG8LXHNU@|zf;BU-rV)F zH@!OhURAxe{ql*tH{W?)Rq(qnPdHc4OUqtO-M;6fZSVZ@$zMME%dh$OW%oW)*ZjQh z^|w#msog*J^SQdOxdh&+{#LJj`)9e*ov&dFNU!tka15k*AN$)Th`1>7yzg6vQ{(^UZb)Tob z`oUA*{NU+_KX~e`51xLce!lmEr{1hjzWKpZ@75<@`rxT=eDKuEA3XJZ{rzlx`_+7v z|G)RaQ!jk*w7Wdy&HBWZPkr#TyFAn157mu+cFjxqFn@dUQ+4sve!d;BW?{9i{J{rL z{h;o8@Pns*_Q6v>t)IXB!Bg7iD|h+Xt3Bk!dgHSnJoVamW_s~-wawq&^_^<1yZSjk z(b{@WzJ0B(bh}Ud-OtqWN2?bv&PKpnT&Wj7uTON)(|qVIZS%%Iuea!<4}Il=7wQu~ zd+hgeW4`jUYc$^2db_9Hi?iX2zkU=CgTH_M@cS>n|IGV8e*Z<;=(pZ~$$!txKKI>g z#p`em1H;*3a(L+1xEx#`4u*$ZfA;;?-+$Tl4`5<=D2xrhe-NvKXVhE52a(TnMHm~N z_s09(jpxB{&v}yfVvM-|{Wm=AS#S3qS3aFq`3c8_|6cI9*7^kZ#IGNA-COU!?%T(H zeV?CSz#fserfm;!;_d75FWD^Q3DY_D!zI)vsl4yzLnycE5jrl2LN^ z3;vkLYR6CNdgE;F@Mie*5pRCX*gRX~^{`LP$@@S1^~2iyiaVe4?eo5Spn7rc{h#~f zA$@qo9r@;q{(IP;jBvN^e&dt*OiPTgC*cC|Sy(%s^m}+gFn8!}=I#O4hA$*C_q=b? zs%JAQp8BA-WMp!UadCadU`{WsEv!iL30UK`Ju0FuhKJeH#B#WQf$4Gm??q<%T&Y!FgiJb{Uz zx?4tbYKs)MC|fwgG-XoQpuIiD z5QBjAb$1#;QLDvd)NClAIt5Q$W6eBhO#UJS6!fSvg;ZSt4A*OcR|6!EvBoHbyb5?L zM!bPc$+(tvNk~fS0(v@TN@1D0mSpGc9_AKr57Zn?Fg&26&;;BprDLPELd8e`W7njo z)02nO>QyY70L~{)-coSs2^+C#9|DcvfGG|7E)IgeSGm!Nr6WYa?eIdO;sR9+1}?>_ zTE;}o{Dt?!5QjVg{!kwRUSy{QK^OTTm~5w98T^)iiXS5!6~I$)a=^9BYv`vefG)~l z#nyPH(BF$9V1S{)0JHCOGorBwFV8ZEh|lmGQaxefv^=F|%*KFz^)k0dvY>d&BT~rb zhTz_-;9yS-Lk%ljC!>*^d03FL=^s$rMBz`Nk*9yu(t0Mv1}mGUX39HAy^1RX@b}N! z(L0yHJ>%K-=0O|(xYPQqg5G}^nz<~(-6QFxHCo<{0;ya%qV zH(l3CU~*srB{w;oH3;`srA>=RA|VSaH?{7G4hi5}v6QQ<>#T>vsczFQ^);&98%mAj zr)o(G3%;~?^%9D?l=Q4d<_o{S-aI=Yli2|8?&5wW@ZCQml};b&)s{S$%||Ada#bQFev zY4J0We*D9bn)F$qwd<$gtrhSir9D}kGF=I>c%)|xB}0Jvhk6g_nj%nql@eCN>T>Qc zZG&hOKH110PIcgkHH$J(+|Tq1PsI?S-P!u7M2d^5Xi@{S7{OF?iQlUBir_~9t!%>Y z-=*1ta7R{LS-8FRZ$~+bhVoybrfevc2Q**fy}A9s?z*A{%8oL>ltH$6r8UGe=eizgJH!@}pi6Yg z+NsT3+pI8VwKqm5N5Ofr_vwOn?d~A}t&dW_2HC;-BG!x(S;e=m*%~({UCuGRMHHY_ zb7}+5oUXHCyBuWiT}zYDejlPiOjTEDOux|8deo*t6GJEkAwV%T?{Sp~`(6_bS)QHU zZ%4E1P7$oGs>Im{E?NVR1h^kA2!#x$acNzBsQ6Cl7m}7fpv6%!#_Wh)k}!a>{f!9? zU@_NLN1)jQzP9_O6e07Ve_`#;h$6G9N{^^621|IV!Z(JAf{(h}TN1VNq!nW)y;p#QH~=ELIo!YmyrCM~R2rD4SwS zKB{p%bjznh*rS^bnzt>h&WV{~2vi^onwhFphwAO&HW?$KZipGAcq&7#lUG%39z)8a zTv+*2HnXDNTiTq&e-mvL%6cR#*Afhhexb?}6VOayfC4RTR>XEZyFH1F!6VFQXXF)B zUv~8WMZjy+ckv#`W>Om+VQC?_INgS3Zs;|=v&*3ID)qbg-r?w zmR2W-{Nq#LI^dEd1$Ri z{X`3gBtz2@Ftx@Ai>eDAN{!NCYE1YL(B4LbjG<)dGwKBKja(Iy9CbuRO>_`nSeB|i zOkoDT#d5Z&KOD|WlP;s6q@s^cpAO@`8c zs)2dCB8+;w;H@FFZ1-nbprK(QG9=1!xNNTL^P*8DM#WBQJGCz;R$1J?P=&qPq^N6ka)|z2U#>mwo$bi zP!_sOqsu@h*V4tBA8ST$NnOM(y9MLK9))k92mw@5wbR5HNgIas#3vL}x1HVG-N(=t6lI7-h_x&E(zRrBLJgRIu)+B$52&I;8?xN#;rSNwSM z2lX=J+-0&1NF_0=2Xib2AIScgNnMzf);g7{r1i}`sSyjyeQlqM=EQauavD2Z?GGnZ z>_tCO7ghJUOt_S;tez>A^w}^aoy;nZqKfI~*Bn<6t4qtR(ilI8hFYOakZ7g35mJ6f zG@lI`RZvE&hAxzuRqr0+);MH+*}R`@Jy~k(T`Pm>tKF3aBFxm)^aV|~K?mtijgB`(Ep-yAwD~=DysTp5$%Qtf77nAL4Z&NA zN@L>fi<9Nm&l;=KC+p2IFpGp>O7Y^xJh)(0$G}EMvU+(PDYCwEa!p5gQ1;{;n2OM? ztzT!R=!rwiTttS?Qgwycic1SZ6k(-iJFp1J*js0l@|gE!U> zH(SY#XH?9cntom*UCE(}hndCY(b=ty=k;WAX>q4bn;O{M6F>J0@?sb}=-$K#mUbMn zfib4DMD4O2-P)r(LPp-RSXVvh^s*wvg$d{rUCcV!jBDI}IK zw`9uhxktJBx^(ra9Zena$Gw1rjPmF!Y8%_pRgZI5AG+<(f1dpN*oo|ls)LPFv7z-< zxNe!HQrYJAg`+&bJ1#FZ!!WH<&M9`jm<`w4kTv&{IfQ24Wd7i7eD83ktdf_To036v zfyfL0tYokv2!4wl&pT8IZ0kEwX2tPMiXp?&9_=Q|gh_}{`I4--RQVClTBxfhGGV?u zNi7oLd6l0S6U87TsZaMC#A1^_I@J}jDB}!06C67wo(sehao(}$heNN61sB*5(etS% zSDhP8WP3f-(N{_P4cT&Xm>81zrDhjx2(gKBHcdKK+e~OlSOG*M!y23bnvU=+%VVcIjW}Fnnn5pRVnk9K$kaFIWh{;5=eMN@!i(wA#pN$n4@| z$1w;GQ8}7!O;zw@y0bzQWh)+-VB1gYF)gOF_SW{;Yq!`?tY5aqEeRBany08M{s=L$ zq3Mu9oV!?mMd4~ZO4sc>9So=6QI%yu0=^@n3&Kv0ceR6AucCIniymGoI zV@(A|%1t^+X;Ul#l=6CZ2^%qyZfbk5YC##9qcNNlR;;CB1l6IkI&)A#$by&!G~dz9 z?6*cK(KHiBJ_)26_X;8AI}fLfqt9|+l!=?0J7S}BHiux~9hXPzbHr7JdxA&_Rp$5? zjdW!()?TsiP`suIGcBT24L3ibAjSh{yV>S{^Z7nEoqXKXezNz%=sR-OL&*Ln^F|zIAo#c=^A6`j&wRf;3_X# z37zxCrr1Q*QItHR1|%kal{`>_2zGlLp8l0w-&zzWxE(xjx^ZYF;gnz|(p#IBN4D*Y z2eiyk+!bYK9q$1V3(KlXJVX}d>fZ4Vcj&k|Z>CrDW}^vN&!#FT!o^C^2Q5iV?)r8# zk7LiY_gX7CjBWQOM9g)Wmq87e@)D!>8Csv?-T~{yuhKa-)~;CiRil-sUHe z8d2#BvFreX*kgtu4ECCv{awcr@U@%-Fb!mOe{(zuSAs9SHnu+VI%uA3bgL)AppZ8Z za*d_{*D&`<5Jl)T!MdDWnPitsOk-UCt2#U!tKVi?rcp@yYu(1EQPo|A`g~u9JL?cU!H+0hpI%i} z*;lYEDMnhDO>}JOGdAPo&P;&fcF|=VUg9*^Iz)z0PEH65apNk4W>W`iZ!{7MVtGhy zN+M&1vb(Z#p)@&D19{R6G7toe!c24gOh=$5O?q+gT2?heZNn2@nPM+kTKrt6J_?oixOq^lq;vsd z8_jJlCVN2n_y$d6p;^4Sy2bM{%^D-nV@IJNM0zbU4EAQG+z4R}Cl`qqEUd;d>&kjd zRG|3y#udBmnmewjpwSikqOT1>7M{14w1UtDL}fc#Uk)!Hv(Qp-l2gutLBW}6w1-Wo zuGPb3ZOd?&BjE-C6tmgdbn&(%7v>LIz9ruX4aLDutV!@pr?)Mfh7= z6%{Cdln7l;prnwR`rwl{*q)sPCG46dQNf3$_0K{NveMgMNoXZrWMw8MH2ySgq2dx# zx+bdj@|`7oys5PqMJsc)Lxzqv{3P)<;uQ`v!B$}eZ4YiN{uz4i`=TyM#Tg zE4Ly0mmL(fvh79)+fmtXIUSMQh<&El?dI-oZ*b!<+m=&VD`y_Zj>AbEDR71tdo*W` zoiSTS?Za!QIVw34U`LZ78mOZ7DxR1%r*K+a3oD1SS8=^LrtG`C-GC%!&sE>mAs(Dx zas2o1Sy{#yjMb-hmenwM34H|iIK5`X#Ea)^0>YVAvywqwSBPFBdsua|m~Bo8#w8O< zoMIH%LvlEY`6CY;Dvm}>l${4!h;|sM(9BevRq&2T-I3ti9>ZsMqHQOCm~&PgSpoYY zUXbHj^DuJizN@HCE4|qJ5pD_cc}E+;anqBB1uyZLy>iNevu%WR67zDYL!Yyu(SC1Q z#%t5v_U1h@KoxutzKT`S^0n7VjrzQKL(#cS#n!SEuEW|^Yjhon_f#kdrP*}%pnELx zzmfVr4eWrjm}bnPHYOE@NsNVC3)_e9>AYfpb`L6+0#jn?rs>ol9o+w4_E3ol0eLU`y6_1hWJT@Mo3O1_ zE2bjdm(%7Ja@1ig3?tE8FnbRnFBL9|7S{JDMd2dWZ?s}(0e3ZH;7+2HeIxA4zRQ+r zsU0SC1|d{xKD6NcEjVYA6Dh0+-RY5wEcU^Pu7`{JaC?}QH(Z+@Y`3+hFHt|X=TQLi zY*k^e^ZR0Z1-nmA_s&oLfC*m5&jFsa$T*sD~f9Mj@qpaoVQk05drv%=FV z&?7K!BeG;F&9bm^m9t1$vYj6rYNo;sBs@Y(T^?dwvh|qKrh)L$aL&dIKc?S!bL8hb zK{X>$X9?(olS#C?NkS)~<2NwZwwZQCouaox7K&<~PHrxz%QE{cUTnjNc_|i%*2$?jl+#Wx{~s zcEcle<&IFcSqKpqE`~+RBwE}(sk|E0jyN-oZ#Iu^?& zer+Bgp`RcdznveozPYWo$Y-`DhRD+D?tUg7@(2~{ zAl$7xI`v>;unernIEBD7$`O-0q?e}0H$9ejNg~-VbPvA*b=_g z1k5b|Q!$&2O+6(Q0Tt91rVr|>BXc|ADo|Y!Opj@thrr`qF+pYG{x^so{U=&Q-0#6>1Kf?-a_P{Vn2DG2irZnMe46@MJ; z7#&vzR%v_kYiZiiuC4#cz$NF6n~!UaV8x4^9LtK5>QUi zBKt%IfbCZHPc!`qp)IBl16OEuHCD6TMH7;aNXUd(?U=v%<{J;oLkDnJ>s+4_Um_uY zsH+mG`XD-xByxhBdYh=mw5HXL*2Bmu}z7oFugs63v2-BI!;>l;w;T% zDkiZLy##hZ<%YG@13Bd`w^K`Y%mWThplT|kxwJl4bfd{-Wvaa* zZ|K?3qO#|+vD-d(cMOq4#`29GbVo8rHX+JCOmvnnI9)P0X}qt`oSN>A9yIjx2MeKf zxTE!WG{Xd(M(a&n11p+&kZ@nC`^;TLI0m>-X4boB8rV<~M|PQiMPV4|NttPyWRLoS zr4=6?XJd|fxW0|`M20q|I~PKhCj#PjLm~Z?)glfiY`%UQ#iHf)XaS-GEO2zMRor|> zlNi^?L%&cp`s&PzEI{$d$Y+MuASaaOpZ1cRtrR)gSvZS=onnXH8TgY+YzQ4!%lyGC z6s2_RVFaDYH&TFy8i=CbT+7Wn+SVvKK6n(HzFEP}p4|%|HV*jVgsKueGFFW1v_&OR zOhQXHTZmI|R~L8sP>dz#l{H1)uEsS_Zx%mdayqObPFk-3nvco2yjo#pDk4F>SS(VB zE~d|df|4{NHyl5|9$4o0+?L(8FnmobsI8G&dNDC1XS(3HO-3bD;k#+*?7s)v_3C}| z3v!a@kl0&_jlaMGg>u+r)F`pI57tpp}vMRn#^LZi$gk(el! zowXRVdnGy=PYujBQmJ#t5So&S>%z4hO=Of;94%D5l9FGE7X(LVibehMdj`aY5&)K# zo$9xXo3h##uTJS4*d;#^KC$=GG~g83IAV3N@;@gzEK!u*$?z1j{PJ`c4M9^7n@k)x zCoPNj>7RVUd}WWsG!{vZFOyw6{!(QzR3Q{%srHby)vFvZ1&kVNfS#=2JAKVG)rZ5K zGBBGFX!}_FjvDLUJ{jJ;+dFv#&5l3$(;T9e44aW7Iyq5Cc8YN>4%B*Z&xT3`_c66? z|G2PM0Qx*S)VY&g6X=nXjMn5wY}S*TZoUnOBN(`yQIIsP^iR5}EeX??2ro>^mAq`O zH~Zb$My!t7;AuA!tQ+%LoY+hq)nM&MV&W%FrBTb$v9##v$+R?HS{g&+4~UD?xw>9rY}fLsb#`TK zu(F6$Y(wVr)f-qXetZG*x6Fq_Z8hX@Z z>K+?b(qQkP7f9DP6|)4Bfp%4Sg63lJ}ZFjzqEP}pkv!-5rESF zf80qd-*Wk-XKGy~vZL`Gv!7#bBtz=E#M1xE8D~=;cKk_f0d>J9>*F79v}&zPnson> z!?#|4%WbzdfW@P|bx(oL*Y3V*^ZLad^LJMP=yYeDMoX=();i<(*r1kWe!vZn}O*b#OR1-HNrSfH8A^ot%v=e z=mgMo(vXm=mX>cfOocr^|D(l*?N>#%^W)A;@1UbkEG!|YU7Avte(%7W*Qlw!-4)PQ z3g-I|m{TbYmKiz!q)DfBxg5-5<}LqRSpSStbH^Ca*Gpn|(w!{YTtL-%9Mi1Il}1H8 znNU~!T+ZkqXTaK zJAV!=z*$Z)Af3L%eO|s(VkbpHeT0)2rNAP{&Ez82G)N*=ms8_jXN(Ic=~0->>sYPS zy%;L$oXQd8^rYBoj*L=c6IueDuX*sW<1wrqBhQ!4Lp(#-9vvfmp2kmL+VRDbtxqyNzsJZogv3Ya^F%a5%yjZ*Y?Bd{=}OSWRIeo6>8qH7@c}D- z0`@|soB+KNkvAU+qQ*+jR0()U<=K&QezUuTYa|b=%c&v@2x@xIE>|qwz1I+CVXzaN zZ%Y_6q}g!DJ^NCBJhb#1O%PP(sMc|I=$(}1YM)M8{nbw6lK4}gEykhb+19UcNyS*D z>;%a;_pv@3bOfi;QCZd_o@(K4?GwI-j}3O;_RHt0sBe^Awo|d)YHyNJnFpReYuvv_ zvv#XcFv3t#=~%#=c?U4Sjz#`t9$i#v`Y46uGZ}`_Z4>CO$|ZY02^SQXeh3iFxj3Z? zM^TQ@NTSie4P2La8e`r>W7cHa95hjYS~=n|&mG+%_?n&gaT*!ZJNh;l32CbW&ddr6 zdcziXimT!}o>Me&mIXH}i$Z?Z-cE2Ud|Rkc<6AZ+uvN;8(zcLQBu>}KSZ5;83z18v zO5w6}zsjHV*RY=gQe?9+SN$F^5f^QN<%A+U!E{zhr%>h(vU>?0cwFL)@l~qOfSks_ zcR#hmx#FAij$#%u@?~iQjv<fQzu5 z9o2x9qM$5&o-{VBaL|H*m}CJ2PL(PGYtUH}_JNZLaWh5xY?y=lDJ5WM@9Tnrd7!7# z(lSU{nXHS7bxrq-82o0z)Wx0)Wo^FskKEe8u?eJcXr!3;o><-m4!36%oXyr@i<|MR zltARF+s!!0WVklGU6g;2-g1dZP4d$!EnXtO?UXk0x@goz_3>t%2|AFnThy9u*_9>pQiw5Yjoc z7{%*pgx&|4JtwOO>&xtG4rLW5ipEsf!I_dbsf%zMPCeJ!_UsOeH)|{-X zhhB@<6T5i?`sPNBFBlg4oP`*@8HHVTt9_|YCNOldg}Eb*jt|bV+_s$FRq5e4_6(_& zTMKlWQlYAo$v9EKats+)`oKYjghqZv>+Fb)wbEb8DNt@+y23cm8T*WNE)u}r5hjVD zmMY}Zk5nc5tydS>TI};t_8c5_-n?7~qKelJ$eOwq+m3M3tn!Wi2!fm?VH@+@=o7X{ zFw7O@w8}*F=`U|fA6st78{;73Bk3IQ&p~rm`jOKUcg6psF@ z*NJr`06jlRbVH(YN3T2mU(EYPR2FvI{teb+&<)mdS-kOz^s zn(mG3NeTe5K(i}slhf3L1)uyrq4gH|g`6B!dfvLI{>a<%qxQGvnGDQ9KvcC4m!IVM z`&X7Lx>{vTtfznr0ym6pn0C@r7IG^&AxYI1EmFZv+p?3 zJRYWZ4;Xy81CIKPomWuk?&9^m=<*R%`Z`*uvHsO|`PQcXD~<058u9JH2sv_13&V zmbr|cEi77U%9wfLuf4Ax-@KL&lRdwJz-DMx#iKoppVjFh6KMZTU7=J-0RDHDd_aF_ z$EjIi*SfH31SIV=YgR0pHRMg4_FuXf{(qYmWJ6V1w`^FMXZ`ym%Dj+#^!d1;T z2Yjn!HtUJg8Zkb2WZ1>B`hmi%_WlEO7snzyfQE|fiUxF0U{AI~25{3^MDIWgs$A?a z%lv%FpYJGF~ zb)D1|-{B@2pz&Sc|A&K`W5?GMx*a?Z!jeXNO_kUPk$ik`iny${ zX91=&9Jx(GQ2LZKWTj{o6{Tc&jK8FRqP?{a=)VOZ^oH+TGe9!wwI#u(&gq%+lcn|6 zSAlzG0@b>nmZ%VspkJ*A_NQDw(a0umT5Pd3Fr>UL7y6>bHbG4q{4weH(t#l!Ra=z# zRQq?tRwpWIWqNLseVJhUHGj}?MawND_Izde}|npz7~#<%qWlf00IGxN`h()}=~2CYcc1!s;~^ zThN|mQ_&J2|G&AGWljPCV111Wl}f=BElvdaUS z;WgoI$$IuBdW!408Q?YtaC-7~n|gw11veE-eRvDT$AGAt0P&EIR{M*q{J?xR$(SRz4!N~u zCeX1c49FZgIoYikC;c-ZNd$7b69?d+H?S-v(S}}>cIW|3O@YO{_{6asLpbaO#NmupoHav3l;1(m>>TnpL(m8Bl~gr z8?}V{I|O*y+!sO_b9(wGgF0k7$RlQA2?dxGMnZ|DXYgc1G3*sW?D*u$D2FP;D)!J} zh8Sah)Gtr>cPzE)7VX!GNJR&mTqR;AIDT5}s?u$u?NYRlJUbIhikuewQV8bYb6c-8D^neJnoL1@D8EM6XT(~5mh zNUIAT4n$Q(EqYx1?Nc(U0e$b9+|thW*oaspWqb`%Vu`Tl73#|0W$@=*TOf%#86N?oeT`G7X`#Eoiv9oDc0r61+5NO`BoxTIeMs0jeg@B!F-7V)HVYCKF?@yYdH)nc*oPz( zyfzLb?QA^n;T&}lCMY+5(S2o4>W`X)qn*w-9in2m`!j zta*NVIF0oyza&voy@u>hTq)x@k`?Si5?~zRI@S_qH+}TLG6q<$*RGM`psUj&$q}tK zBgu!>_q-3w(&r}IJ6Ibte?tq67ln|IGe1Ua4I5DWrJBc#p%7D9H1UrrS1+?7ONp$$2Qq)XytG+k`Z{6Id>zrukr-rAXQBVhre znnkNDai3=ArIBi!YCepU>d+eh$|D$e?GLzIaJ{&6Mf(VW=XnCICGy&F!A$E|R|Sw= zklTrvx=I?yI4qujC1sR@A0z9oGAiMuKL5g6Qs0K3k}$bc8h;`Fi3C%|2Y;~sV|F5i z^=0-$`()-nepklPI_Bb^;DbdHrBw_ikclR|vf3>)PaRvA9xwaU4vF7^sEiL)tU?C32u4nojb1(+p{`W0C zcm-dtHv2T(#?5~mKHo45f2Ej_9~u35Gwi^w3u`h?U{|Nz=~H-y!}I%cwf$_pvv`Ny z5k}yzy6)!~g&*|Xupnbx_Uu>voBoAAx$n<+)vwV$?dfZZLpkjaOY@uI8_p-5T+GPY z|B(BB;a{^+t@yd$U)AnrPR?_%CRaZ_-*-Rv^CP)uv^`IK51(A|*~t30dZ zqCR^(a#M2DOwq;Jti5mIJS|q${EJf+J1hRx@WM7@Y`A3cr4}P9zF4fMm~H)5JiYJ# zI83a*X92vA%N4gOj#_-J&H1{`LYq6WuVQ9>2#YEXR=lpwrQ4jdVPnN;%a(W&zv=_; z|D`9s=(%}z{=9&twYYQr9FE>c!qtlV_Z))4r8^&7WQGB(J4UXgI!X%q}i)}Y|{!A~^ z_Ma3-F`nRDpLTdF&f##;y5e=e=~2Do75C)XnG-y|b@xl2gz-0H?wZH6WAO04A9mi? zU4t{Z=JdXPe_fy6{X}nGujgj;^0c0pXFVLijgS3JTS3LOY!J+aRG`rBOs{N1_UzLg zD?W896+oLdA3+QDWKdV-(OrGp)qCzP4yMA7a}-jhDUKMI3Z5>hZd+PHymD+6^U9;o zsK2(c^5lkF&kIXdCzgI3dJZ!`qhihni<-kezaTl8LOe0#WrPK3Vka#%tg{&2)nN#7Z9+wH+%yA0ic7CkSi*}I6Rlj<`P1zS0tt3$)JYIak4=W z{&WVsoTcBUg=vceeTY%A$-;?QTu2I061_~eL9i>qS<%H=a&#~auxJZs#h74sGOj@S zIkv`|vGvJj!`i>6xjr?uV|0>ZjKD6EF=GtIq<`~CEYyZh-6OFYMw(=TJ(*#mBjm}^ z@7gMcbL!|S(YdLIYh?o94jB*r7W=*80ZzqW&Sp-zVr-!qMIV>38B=`4jI3&!Q1iw8 zyfbilKoMU7=Exs{_7kC)!RwnHPxRG@l!tec^dvS-^y2JIPw7R^Mc}QKW<4Za&ukY9 z5PpkKgTgWn700h|+X+o&Nq8=n~N{m6# z*=&{zs0|&Spg23!UDq1k^Ur`+UMGy8c#rvbHw(KH)Y=DZAQRXGKXX;hkQQCdmW}T% z=F=z!HE$3@DW(Z$Tpm2VYT$el_ycEl7k-hF?1MAcGVcoCQL5Fzx0B7Os1R45v>1)} zGNLFQCzk+V{A>9vQ-N(Fj;NeYRoO&V&6{@{#IkyWOzO4m?H0YiQN;{UJ_>``vJwKD zE?vL6vBLssBrZdo@)2(Jt}Mob`kpi;jdGJ!NsvrN0?l!4G%4aCb#d3)B#aHyBZ3OK zr~opNouxr_tUNC@C{>J^s%T+nq z3>|+Gq_Jf3;4D$@UWt^1l4td(`??_9bMWT%dgoQ-Xp}Hkg|x&ErA33DoB^YDE8-=P zBr^g~7@)&qRHdJdM!-uLkw&(Bny*6s$M0>t6KFdSeS&(=eK+amv7X1Nu;Hy6elQ53VUF%?kduh5zSMIPWeDdW_S&AX0zhP`Kz3Q21|e0> zwY-zs78F>Tes%;4Cxx_64>LXqzhYLBy@au#+P%WlMGz7{_rT1cg>4ncjSz7nMG!25 zS@tCZ9(^682RV(SEFqcsivHP=WJo9%8=B_gY>{@~rA3@CovrYRAS7y$U5WlCk9I9M zXjlyskF8B_GRq_eBG}5#0<2s&&^+>QMu6xdpv3}p(~?P|i)bN2a;RCXgHlhPPi&nU z)Dd%Wonv>z#E)$yWLCgYcanIny=fMi{P+m5N1ZlSX*ZeeY@8Rv zHwzXR0l;Zh6f>OS2n>m%Wh+?@EUQzMh9xU5D98wa5}2-p!uD(E<{OZHU_QW};B!1MS_5vBf_KxB3jT+PurNwU=#oZ zl1Mo;lIBS|7-3DlX@r9lS1vlb{f;l79#~d1JC&~B5C*nx-KWJ2GtFST977w8{Gd>Ni}1(MrqULjamWZp zF-rG(Gkaz}W|S2Zh+rqZc1wQsE2_{_JRCozD6FR^+-7*KuOos~wdo3lRYGdVOhzzO z7CUeZ&c&(-D5$3PP`Z>vsrTf9qw}WM!%G+zqn5B**xl?G6)I7oTG!A~qO`??JBMbGmKKXjJ@uuLm-j$oznd zo>`w|-;75m_#jCoZ=y`-jaE&`-Dxw0Ygnp1RXvxq=hbEEd*;x+aVKo7LHgQdDG9o+ zA!!;v!)8spuuEf%ZJ~H&8(N+2&&dJR=5(2Xu_(6hucW{#L>+qMlFS%cC}vVtFgIr{ zZ=4L_iDx!6EEZp_)2Q^SKtjVKgogvrI=v$lPSAIQzRqCM%$8cpa!TQQ`%*DawJ)QC zSU{RJPMKwMpV#a}Dx(2bH{>dAa{h-+HYPL44)2^NQ*rtpTy4CQ^&K-LMeKR9fm8{c zvgEllwI0hOtF}*PXkM$lsLpI0l5QyW2*FY7ByA0XqGwrsie|6INK;E`$Od6&Dwx5L zW0NrJC6f~{tzFAChf-|STR)yEV(D zTk;&{P@9()5o6H9t|@9!3edoZhKj3LN8wl@(Jkdf+(K7nOjn8|J@X%(DbP*PNv$z) z?1Wt4!bdcv6UK%+pho4ZGUe-l09-mJYTUIUmuX}2m zVnv)m>xegoIlJ*kl-@nkE(<%#(3d684Fp;m#mENXriwLc5!Y1;56+~RDM*PDo6j%b zv5dqaIk{LDKAcgif!qco;YFrNykD0N4?}1G$joVgIyD-JIh1XKZcU{b+i=LLYJ}`$ zc9Gb1TzF2z=i*$ZW3hs)?gR4&XDLw=84Fk!Zi^}G{{`-dk{Sg{r#vKZ6C1|0(K-@! zMNCnGmla-mjU6ZLSrH`dn zW6TaS%B1sR3K6ryFGO7^1c-%rEVEDvPcWqj%i zR4|!g*=j4v0(n9iZgX=B<3;8p+pq z2tc`hFSU_%-{)p9g^r}q7#7Amq)dsQG7-fg z^iQ@I^Oe{ZeLy;9(3$=0h?Q_WbPMIiZ&fB;;G4O*>uU*C-Mr@tS%_5FTm`R2-NZD+ z{1rXOZdD(7q@0ElKRUu+4{M2!h34O%hI&3X`(Z0BCBD-Qo&OLuBo&}+XIJf zI!A>JndC!nSi+hJwkO(^>0sxMNX70^O1szFoV%L%#*yOWa>pRBpIjM(%0|47nG*gX zMaa!ztEpKsMffvJtYfwak0+6|sm(l19oWEq6jivYOq>O`Qlsk94h`At*AMAq0EQj* zVP;~G$4_ih+G}I4adI^@YBfa|JC8%bR*0z#hFBjnoYH>lO<$$D#KQcB_J$#mJ#+hTCO00`=djH1LWM zC7Q*k9m_I6x#9v;CY3&P3jxr6dK-|}>j`XDx*=>P1<{)8%3;O7ZEsKoGnDKc+rlWzn^^7LX-RN82%9R6LH|&`p1b!`QTVOiM~&Xj zv^llTu{0o^;?*$7i!RqDkctOFI0`CvRy;aQZQF+6&SJ28v$IKXtZZV6v3;^V^FT%$ zcYyC%V-)eLtu|kk`P~pfP0Mm9W{mLgR4;0}6K`1dK*+; z7XKg2JYfU|aICzH#=x_dJ~4liR|%f8x{e_a>6mA&a3(Z9+*p;dp+aUU8LM%&E`sj&Y7)}$c#Y2|W$soiJk=^C0BNDvNJpy=Xh=|_ zyMboPu7+1{jS>O?!GvfD&*8GKu&AS3h}Ia?mhcdhh`n2_X@jNT_h-DW*$>bC*+=(%3ZuUi$Fu?_7BChrfCL@sD1*@6wO%yYS36E`0qvAHMUwi{E_t;+J2%aPH49zW&HZ zufFxsy$@b^>@O}n__GTyKK0Ry&wljcxeJee&b#3x$yY6 zKRov{pImtAnF}xc^wKw;_~`Y=F8=Uoe_zs_uRWB9zxU+D`(D!K*7GSvUx&Wp-!eS1 z`xrVE@l3E}NJNIEVquf&&T}Uo zn73ega%>W7u)LcDV;en~O_@|HhMyU4jIrTlc_~wynGu8=vpahM(`p$Q3h1*x8T+!v z3^-$cNC+hWK}tt}OA)GwT;5K}=9qYAsCz4T<_inUr=S77ubSaH7W05t2^1#$&ug{p z8-XQFaQ-;~mblyWPh+wgMApT${R$ltOd+XHvR^`fRrTkT?f_7wg^8FgFHrx+2?GH8 zFdi&$RD-fABq#uDE19e_(1z(Fk}ajfC!5dq#4xaJ(|CC&n$o}&STz5i+OJtUwCM(N}AT71z9QD zQ!S0Er8qMd>1hi|N{u5L8H7R$PG>O5*~qU=a}4&=4$Qv4j>L9qcpbU@w1c#L;$ZAP z6x{jQ4*7N{xNjZo?JH+;J3HKs&M9{ex9k0I-v>{9e|(ke9k%W7pVkTAjt2L0ox`1z zw%zMuPwVISL^JxOuGfrbXSYAK$S;TBJEo~_cWAdJz5Kz`+Th@GmwBuY{p{p&KmTRj z?y(L>cfAk&zuuDLy){**`t45s?iTvCPYr*4_LY`=t9s{{aIfnoIj6ke)rXY3*Lmt% zUQNvpjuqF7$LozfVs7sf%D+_ys5`~nU0Umb{;y#X-Jr`gYIJ zLHD}2Pg{RtHc+0ah25U7r7?MF3sQACUuj!Ux=$XfW_yJp^0^=CuKe61?-MQ23;pWR zc9*g8BER~fC)z0a#Q%Nk-X2vWZxCFgc`nmh&vAh!b;I=i*=nJ0&88b$R$XIu44T$D z9^U8Gqx8jB+T&MU&^BLrtPgt(pRcF6pgU+1`(0Y1{XLaN)%9-tQ4P3X`(op%%evsP zn(ae>x3u`7o2Sd#+&}kpyIq?fuMQHDZch)LL2zZiw43TzlUpwuZN4`_lVtWNpd24V zEmW;jW!Ep8J3Pa&Om2t$31%nfHx2+xsJ+*l&0_!Q88(N@d~y}W{e+6sV|T=pR9iDR zdz?|pO5~={J)aCjX5Zw~pSm(nKGIK~fq-Bwr1`MYojS@y&ROKFYxK^crI!S75 zEX2uvgUjw+C0PJI<_P`V)FCbE)fQ0s#|i>a)bSxkz{^ivBbqSy3|FxK)U3_|>}Qt5 zj{ZzUpzol1tNy-EnP4UYJzTzXa{1>D?V{vI_G}A<#4BT(S0uaI65D+7^Eov=r4_Tb zC<|7qK8(a5^I72DmY~AX^<*?UznkpY@V0%s6%+pbSZ3K%|Lp*GFD04R#H%`M_@AS1h;L?;4SP>HHP|WyJ8(DVy*nYGKw;cgj_LeWTl`)R%DfUmMD;W^PxmPxM=Qc|S?y(NNi*p6E-@w%B8M74zm^L7;+FAi|J{apd;;tAEg2FrM zpq9{AZ)Kq7XDlnKxf;d5w%ao4_smkU4s@xMV`fXs*m+E=W0HBp)kHWT2R8fDE4hBbK%Ls;RaHXzeFsBsyO%z=}b-H+NlBb6|U-bfxAXB-&z#|W#&HC zb{_>5{g-cV+|p8jQw7XfJ|-vF^v?6is|Ee?TRCCK8K zBIYWZ2816Wf7%ylR%5A(1-WE0_>`8REmv{zu_fauNOW8#lk!T``u7wUFG?f%zr*)>#%oed6Fn z*(ZHo6|h<@B^5fNRGpH?g#8yz<&Fwp&f;1myEFLd?+lBE*?0@`F~egh`Kt(8gs8dp z^hOI#k8n{^P$u0N%s2~{R&NnLRaa@5SH`pw^#nYA4CgGMN<$UzsOVBy@alysutOOu znzJ3i68(OKLn=Y!DJjYnflS)2OREPe5tOn4j|ogz+Q}Fun9?&tw+Fwoen-$XX?H_T zPkwqP8?;3Q8xG9x*a~V}6STMq$qrV>$A^cg)DQ0T)Kj2N(YbsWX0I{EGa|a6{u1 z@Q4Rax{>#p0s4+P0wgQ(;sLYNR zSZB>;mcf5z7@a|owJgY=^_Znsm>1Xmh=_h&@Byjb@P>5_nw|69v#~!S|FN5 z2!{ZUl3FH6~+D|2Y!fY(fnu8^*KdJU$ zX6>*Z9^ln<30HH)?!DuNLW0Fo_?$Qp{#v&r4%*4axf$X)F{=aweS0{oq7tJ822jVi zvUE!Y@h01o^;XN*i)E5ab48b=eQLmr!*p#IfeH-ePsNlQ&ot`K zwVw7#MYZ+YasB86SGB>|T=A_>3qO@e+ogyqGHg_2Imm?(NN*rN8XRAxgCh(@YP1)z;$aK}vE zXzi_(w-|Ts%*J1<)=zB#WcxEh zHHt+-^YLw&OhBo04gkae(%T^i_NBtMl_Z&Ec$TJDZ|Sh?gXLfZRw++O+KLP_8&bk* zlaXD>I%kC$p_$D;_wfoS6bi=rjp^fCIx$wJpSF=qgX_Cyhe(|++b%Y6!MZz*pG*$h z+Ne@+_N~;EN3?G^b2r<~;3yev@e}2-m$qPaW+@rB`8I}~fs_^BtJLJ<158yPtEQ^W z56m}g;+jN_>)Y7bGtG$*uOVopQ&Y8v0_j73 z&H~kaPnk5mjt(_so+1~?msZP~0jBhKB+UM?-nw&cD>-Uovb;0)WGFB=?K}A&W*WG6 zx=2`Y5ZAW}Pg>`$D>Yqu9JOmx1nwZurJ+<0(+xGup(5@)jN_9<^a|0{TTt>O#h#KY z6FkiJND?g@SrF306Df1e+h(uGZk2_V@k>Uw+XA~X#x&WRu45P_DYO8SI>HxC6aMf@ zLr1fEI_OQwUjmmrxd9SN!hB;P81aoj)_bPb9KH0)<5l&v;!Bq zdds?YdcZ~}GY#JG5n~Hvi-;|sog}&`(vbZxFw54!8p8@}K*PP;FV@afh701Zv3DP7&w*YXA22(j<;!4dW`Fr}l-p5}+PbiK zL#midt|}SdPyryG9{V&eAUL90%7TtxJhZiHw=%q^ZfGzkFyI#4_0wBLE7R+@?3{R- zOLewrkA05io7v?_&WB?otEXUzAo9>}^3#3N(2*_selYn_JbO@^4Hk;Qj^Tt0J7VVv zX!OmIlx{SWQH(=S@S&aKoV1ceViIu2T&C~LDQjV~Z8$dFCK2v@I9ZE@73|2CVHxs_ zn0<1OjYJFbynHiAnh;K~Q^n-`rkgrY%iX#|8eAKtQpW)R}}gIiC&Y>(}J zKnnUKCi1rH_UUx-j?1sOf@fE!t{4#GJgiZ$OzSfdoAF8BF$1Pdw=l@IddoYA;y$`O z*h-dpz*~_iYi7iP>?a-cax~>ER?tj>6;rS>N{>1tvY;+{-scHt47Py9TX^=Y_#*vr zL}o}x*CyCSX!e;0NfTyo^2m%C$sV1 zpO&smDB#3aF$&faIwOzEk?Gg8$2`1~B;*ZXy)1{*G-k{BPQ_2@DQpn2iL{C=j1^xv zYtPdpK%$t%3w+5+_J@l-v%xILAx63JjMX#v@5~I*NK}C*qB(;GZ_$y#g_xciZrRa@ zc`P!^P#lyk#iFhC;g&v*E5@wYi0f|4R^x)Dok?f4{e0_S>tr_?lo%%JrM9dB$KZH9 z0SyAI*QKmr;dU}=c}MQx@gU6>+&UvxYH!aX3lEwN&K_ROlqyve&@=~XcH)e(m794> zn-|M+n_-8?3dqA-^XGxwk5h>wVYV9{eXNm$IE!b-gx=+5|tY&ZQ$YLeV^=G1Vbyj9@ z!!ka3SZpzwE##eH1;8mZLQk{z7W6^!P5~h!Hzbh}4-}T41b-q~feJeR8m@+{%zz@7 zoAc1mwx_u+BoUh?Mv$|s#AG7}iO`e{Sy2d(l59R!rU*f3&C5@L__)4NWLK3KdR_Z| zb+GtWRV4;vHB99}4qRsTU!yDhg%* zN;(ptsM#82A1sCF5)F+Mt8AdB^~h1~gN>A6XKgP!=bb8Q~NV{N<4u0^Sv5qNFSCI7oyStySKdHOqMenM^W`ox}-8S zrKwrP(FX;uE9`gP(Z_ymRcIr|=fzhE%GIrRJ+SLrCRcvyQw5!_m;a#-IWWV7bH=1Tf6!nI6J{30ar8~csumrq9)MRlqdDQM zHCy2Bjl1oWOX4GL)!6Q~i!T7?GoR8vTaHbuG;qagge5D#p=v1@{HPbFd99M;xSH`L zTT{nkjtdmA&YVZ@=6Q``4xTjkmPUgo%FeWfO!b8J!0)V>QQMeM;OGkN3pmgdFS*uU zl64Znj7=qXQn6tE$~)kj8e#1MZ7D&;kyt?L>@$^%scMKV>!uG* z)UOj=q(TDkTsjJ8U#ieP8iOM1fYu9{rl)klRK!Wm_JFP%lf+pKW64X&Jqw^bv|uWg zVD(et-j!95`Dw6Oq}?t;Y|Ej6yTTn1ym848VWAY#~K`>xuG$#j?~0S^0q zd^9+oyrDA^R_%z^?$(613+up{(p)sB^qEkBb4G`ae%XvScE@qMd2p@U1t%%Nj@9ZI9w#5f z)HyRf{!sU z3_WVE#bhy#y2Rl&WUA3$EHlsJ111gXAQreJ-Uptli~}AoPaajT;m{+quDu7WDc|~W zHZD|Gnt%QkCDGv=YjTO4_kyO2t#eN{RSM2Ov~a`5?Dfeu2VfONQ{nUQvk4;PGb^+% zOdkiW0xt%9AOf&dd_}JpBhlGrm%>pL4kO%8e)>5!qVP6-)z2?uCCaA{`}y7Cox0&;3s=-z!U~nqc-OsJRUA{=Q7z0}qs`hfV|mKk z9x!rYn0jyY_f0)U0Yx&E6Y6v$SQ*RCAIUzj}UJ7?!ZFdRourSAX@;U=O?B zo%s{iwJ@wNA(zu3C2}aj^^RXZJnLKf;7?e*o-KB< zV#g}}ExcxVQkc}LZyBMmXq~P0g{4bd@;vXvh~^1l2peOdzxVqjoMJE4yTVNthOS)q znm6J{d;ce%rAIXm#RBL1>WwF368rTd-lkPJzP{-5{G7MF;`+1he${VS$MTkZ{_98U z+n;!I&q6rXo~!u}7g*1)k%)8Iig8MUW-t(3_ z@XAfE+PrPyL|Bn_^id;~Aq>;+04?l3v3z`Riub;p9a!+IOp*9*BOa3<=eZLj3uZ?a zqA5bCq#JGCvHco9Rj*h=T_IkU&Dj22Ph&@Wm{b7MU}LFpMW;}+p4_)pRi3hl*q*B= z1il$HGfy%xvjp<_(Ifev=f=kt3r))^vLBB(36WVg8dJ!~F3ul>0GI)M$~l2}3kAB(_ITd2w0*!)^mqV6g8vv%a!p99_>8 z0&(=*W8waWzS+e*-&;;drDRg9R`D#)y<$6(wVh|5?*8m8pZSyG*!q(#D`{h?lXv?= zroEl%*_UHZMte`PlnhtguDQAEW@VEZvjIn{aMRu-m7zAakcZnN(D$V)FC13 z^|pUIxX`716_AgpxGwU$4a<=MHZC3XhyJ*HEHZ7Ft)aLrS&fpV!7yev0Du~3+6c|U zL8t9BR;3^#Q<;FE!o0B(YaIs~@qJwrGs?kBb;06Vk)|c(a^vzMz>x!UryKjX5=MhRG8e75T^J z8x(fWssdhg4D_yc5tHn5mc>jH)T(Hxc1B<30Bv6?D>62b!~#<$d*NW%U~?PbeJf!B z5sbhr3|f5G4oFzkLZ)z}_oE3y7NcqASlXW-ytZDD6oCNsX8X6{jqPTSp-xI$Y(Y@H zvCYBP!1|2RXPkAEN_=Yi!7@zG(}s%9R*YvU8&zxYan^4pi+Ih#=DW+K+_)*Vz$eru z^XBa$)W=NkL{B8%WyCuPR+DvONA)7rB@Z3d+%apWjmr2|@bSR>AlVUv{O=P(8JrjU zw;>PNHY+oBVE&5T{QbjWDumzDhOGIu)thS?^0LY7z&_n9FF(jY0cb)J{EknR8_pJ4 zuCK^h&LgDuTYk5}6w~XsxAEHCTg%NncF7ikSel(YL}p|FoV~DrTX9{v9sPG<2hX+l z3P<|(irXdxktL*e995#EHc1GpG(p^?=M(MGwhCY*FNEKVpbngV1z*SUO}Sy<8$PiW zZ`lW#2w_uu=io}JNaM(*R6IA}zltJl=LMWzzfC$B8S60B{*(XXY+XcGOCe?gh9QvW zZdV^{(d-#@12s$j3!|ocnXRBo;b;d;8($KL1)csSWYuJ0abrs%=z ze@mHfOlF*qwI7oJGe0Wwg>(uCL7kL#4AwEHl`Nlj?KYy@RCd9Eg*VHcWxe?=J4hyL zBzH3aBaf8Oc;q-zO)v%=WpmXKImN}vohzs$)5tm&Zi`H;x=XW*1Tw#plJbwbfmCqB4CA%^|q?RZFEKTBAMh` zEi=3hc}jXNLNHPWDLEbqoQTo>sM=FiLO(n6$EUHZXxJJD$x(W6Xvr|Y{iAy1YPETbZL95n;Ws|SPB$V=@0)7SnzET00t*6hrHNt zv&5W%5}vIcXRDe)inA02=?VrVxra=xBNhVEsm|qL|^ga3B;y9Q!ox%$MENr-4`s9VRVWU*jJky^rTZ zQ%8EolxA&g?GP&?Q*CeCUlyw=?iKI)?Nvfm1AdF4z zR2Jok%)l7+K4l~(f^+XE0Vb_)4qF;ycbe74=tU>0WK@>cZ%qENJD*L;ml@*i&GOUH z=;MN6z2>)5%Xi1*$d8y~@3KE`gdq+|>vsdVkuo^|Ka z9^~AU|23=t#yKl25+QVN+2BU>V`-z-p3QMl&IBo$+3VX0eNeS_f;4pZ7TZAJh9TrJ zG1Eia##3}uCDz!(80iLMTux~U!#m;TlXIAQ>owxk|A_A_CkvW~Qfs)+q zvINI)s}{U-q@@W}=axI0SJS=ijhE~MfnuO$U=%H587)(}S@VIT1njLx+k5bp)@JQ^ zZtLY=sxR59aqMa<`VtgHP$U|xeSKI8-gXq=#RT|?R@%mxZ>3ocUoS}Z#>z^}q=LE~ zWhgf~A$o7^GdJFLq`Z|w+tzmIsfIsaQeGj0otc0(D4BA#!v?;CQ1`@1dx!CDDM{hj z$s%hZ1 z1zo>wPiDi8CO0NTj#mkBv0>Pltex*EdVUvB9n!vJxY9MQ$3rGNzB z0Fv8)GjBuv1~gVFS?#S?^wMj)gyWV|^#(C|N{JIS)M{D3Q4iKSL%>1}TfmVW<@CrKBNaZ##6AQH@qz}(cdq_UvWq8&}* zzVrXxlA*RE2K|+Z9cL)#$W(jXfQ0_R7B()+(Tnps9K^$0;;3YG57~)%8z+T$X3WBE z;kh?f4!LZU8J)0C^PCafG6c=RNNC+S${BBqLi7Jf`F7FippA;(%>gM6Lt~a@TJjS- zBhF+|IDvx#t@Szy&7DWZb8qLQ=IxfGe2D>YS8+#;y39Brv?L`_OFGNI?5}C01hj_) zURB_Lly)=A<1hgXGJ}K{VslX|qarA&Aj)y5SnSp_n!%Q1Kvn-5-$=#<`R;PQ{)G;31E^{9mIe|xFKildDj5xy< zlwxQa$#a)e6)3p^uFg2*X_rE^33+jvGkla9PNPHYXQ&QBRlufJgB?{P)klFXi;h&0 zUWmD3!9>$n46nzx%w}S#SJ`kzwO!+-5~|qO(1Db*)rL~u4;K72XOAyo6&G#Ts&q#6 z&mgHY(Cs3T_AYZZjHn@petoZt+oTV(`o_i_1EFPPd$79zfeag{+) zo4cRL&?p)A-eC3j z6=!h+gd$3Q14-@S3q{yiew?dQ&iGDZBDTzkM2>YFu0Y{s(NR4qARrdQVhP-?$cXIB z_N*Cgo@-}CK|8MatvF5Kd!cJfbGCXmx4+I-=n9T)1`TRvmmjT&*9VLkAribC;X!RN=z9TLP z79~dPH!lwBV(j0X;p3Kch;dMv7r)MuL-v4}0eY|tiQixs$aI^b+92K5s92MW%VRrb z);?LUV`geKCW!DGeEbN-7<*CwLc{_TdU>&W9?1g z>#VB%?{m_LrW6oCP*e^9Yzs}&0xBdqCvDSKico3?Kt&;K(l#_SB}rS#AjKkrC{z$Z zMJXVn%rj*Ylnc&S#|syga%B*&S8?__T;A_*t-bg2oRhTW{y*;nr+LnE_Opkz*Is+g zJNde^06ac;V37USK*MWVg|?$2?s%*&&=ajeXy=#Gud!I|m7@jjPDC zYE8EEJdk*f2MtRz4@S8gz6YyFHZ?at4YstXX#p9^Z3EW##JOO6Py&1GJW@+?Iuy3jRv<61Yb>|FuD%;#Fh$=M%{l1t} zfIxI6dAej(rr$bGrlf9=KE?1(l7;}rBX=HNs<1*pVkZdmi|`=;)^OfO0Y=UCEMr8- z4#GGQOagnVb?FN-Dg@n<8u?xta(c5mn7#=xVTY6ejc@_}svl0GBzFgC#VIYo;m1gr zG@IlT6tY{_{Uita8!g=IT>>g|w-{rh@dRRz;l_-!F%~db5LJUObhNBJD`T!|l4-iF zi_OTh>%#+g3gsktN~_gP%6q^AT%^VeBzf^5QXc!c11fq@Q?I12&|i~>z(towQkyV*tT^noD`!P_a4rd<-&$Ms? zho##PVUcw4vIoc+)eupBm@C|WUK}1cMJi!KW%KBsfY`MX^$83vD?<#ek#L0!vN4q# zn2SungQc*Ocm#D29A3qmP_koDJ_de#${A$YL*Z)`!U3MCWtBjECdD>e?O0lqQc+J0 zxjeIh#>L*ES(miq`S@r}^%$Os1wejc)FBQ~otf-J*EGB`U&guMI0%oqVD{4#1h!7| z9Je|gU$sNhfT~x#KCZ&ey*(9BL5Qfc#*G<)>q8-j7YSR-@jd9@z&E& zYFzC&=<=wNo@nL+1s5?7^Cmt#^fzp^sw}8Vxs%Xi!i~O}31tWyYIu;sZW&h9& zPe}mV8IFoD?%z+1;D?a0YBJsnKoYBhNE@Q3lNI)ssLV72N1z(ontjeK#-+Q1IVYh_ zV4D{c`;cTvQ&l<@fjWTV+OH>z9)@8mde?J3kuTpSRs9un80ZK= zXF^a3(5jEug6f3$9F8Lk*|oL%TVhAl!DMg{e%p$*MaKER#!rU9_ZX8C_!2Frz^!;1mk%kO zW%?-M7U+LufdBxy-l(APG&4p9*_u&a0c>`%QVO`hQjDF_qyst$Qz|Qubj5H}W|%TP zfupjF0W268NV#1^UW1dxP{^8Lj&*9E@{fQ*dHz&P8Z2 zi`v1RL&>@+>tw_Prif&`W~kvBWq1t*oLbi*>Q36DvzDHQeMPrpv(+MA*;2zO_eCGE zi|AMEI6?tnf9D2E2yp&0p?j;*P~^eZMFg(k#T6F{mR zM{r=rky>7uq}C81*mYp02_u3dPyyh}V9jBxlT;3pe~qjNbu=L7ylhPx(bY4TECbJ# ztR-v3hMJ!UMS`>nA}A3-z&|!iss4;_Wpc#q3GFE!XmwKvn1az&b_0PmR26} z)>l%x9`(Y!qaYA85hY=s+Pd(18Kw-+!UOsML4Y_8Vl5xQ%!PL3SlN$#V*o%pIK!#D zS_8#7v_nss1AziQRq+xv_lj?7j{inIf`An1e3z)^~j&Rf*gwu zhy=W9EwJv`sth{TMDhp$oFNzoSr$AteKwsBtR?VKRZ9?w)P&h?eQfNO&`0!GxcrzP zZ1qCkLTn7Y1!>)VY^(>4j8I*S!rTQU8gff!BYTZiPD20AQ(%YVFbU0JU74-a;2Vso zN|R#VkxLnya)elRW=4Ui2REb&yk@>{N{z^;CCE|7{j8{L4_Nl9jL}We8(aH}4td21Vb>71$eKEpfw? zOO`w;kf55IQ=+E&V@YnqIb)_pkfkYF)Rea_c-gkNMUn~;jd0oJtOEjqSxu&23(`Vc z&cQT7P`gRa3Q`{w=caCic~*9HfU%SFu2Q2buG_PH|wrN>k-!k+Bxjt(K z1Z3p_3wm-v&~?w)sHKSV+>@?l6k1^jbx+bYvjow-`4}^~C6Rc7^Er0Xx>Jq(e`LP{goyZkhN`{{~kF@&We&mkU$=j2>vfYEzW3n&J zQSf78-wQcy;eZ1ht6iW}jsiEDKoQ>PV%po(HOT1`@^|5=te8Qvv$sQgX7KPNRcv}Y zxJ=q^oB1Hh*q?PG=M)LCKDVy`nc1_3~c)lCW!d^~5Ev?{_b z|2OW+6BjL*BsqFzm&rF1q3kQk4S=$a!8Vn00!H)}Sb}{s^D=T@b~6*Sc9`yPEwj&d z3RVaQ#D%ckIWNg1CD{Zlgx^ilk~a4UpVkbZQ%@mp08ZLA7URM64-919yfX()N$^LR z%!U}J{b1%xTc@vC<_L%wPO_H=trqLTED}&-+&0u7Q=!sv;WLY8xm@AHQ>!P7;{~3g z55ee=WiOVmBpU*U28lkvj^j_Ig{HIHnS2s(^!CDh#wc6yH(HwjK%$XbRZ8G`ck2Qu z^^(En=2>%rxaP&DRDJ>Cdf_T;fQeS*yhqKg%A9AxpN?D~QtlF-vqLcNJxf18svgUr zXOOGZC(#2fhQx@FaAWd3KURrWW$x5IV$*_d+z!@c4R)Gn8MT7=xWk{qY>H|rPegZz zInt832sH0oCnBzOJDqJ8L=KBfHs!vhxqZa*C+R42_)*DKQG1mW@+t1V5`qb|5v8ot zI<_vbMfwBsbubO)b$}exma{UyOIbYw&6ErQciSt~v?X{HrzqA=5`{QNmfPg|CM-c@ zBoy~e7D?NJs9O{~c$e0bwl})%Ho0o4rKBjHoQYzp5~rF!A>+-(yG+IYlbh4%pp4p1 zET2I^%!$nHZbnB6&|YABqO%>45c+>q%H)mxO%`DWg1y%)f7Sp)n$gcG$;1b0L@ugJF&tE=9$qC{oH7N5N?O z5Z@0$CIcx@N8)9=BmyCF!r?I=Axkf`2#arv??Ez%c~%W&wUzl&QwHkA9h_H zZUBYEGgre2}a^4hZDa)ey+Mk2?9S?Wx`8Z_tD2We#8zemSunFE?- z=7~yX!HUh)`luJi<|5Rb2lEBF09lxWu@>pD6!h(p`{)X4X=`2FxET8Bo$HlcwR=c@oA>f(3qm&|s{t}on|4!&LG(YgLlaysU)i%=-dqXcYpa_2izDY$RghLR3>uoXU`v@#f~Me>uiv zQs~L8!eqCoPz^|KZpz@lgi^!*oZgq66dI^xn9vQc$J|uN;{cokjg<*38US@49nJ}6 zL?jCPg@rkwQN#rv{9ysm6cxz(&X;@VAQPJW%b6FUg}Ff(?_rD#c+9pf<(qiC1ppd( z9;fO~A~4B*#Y5Oi_Bu|BrQ;#q$H)ZL zEtc%7L0bJLtMqnfnPexOiD^67^L20~N?u%7jRK+D(h>)&Im}lf1nyz143kj?51xh= zCXox=Qo8O>mEG1;g^5!xNl%Em??O+yH`k#YpBwG#-4$nEWFHB<)X7$DobG#(yUbH;j?s3y29?y9JXzYi~8!1b*ARwOD1gAXyeM7S)KRS*8MoV8-1s6d0ff z$9}{UDvsNT+LH@Mq>Yu_<`fMp+UK;VhY(pDaZ)(_0CGyAh`v8kJ?SjjN0R&-_CZEN zPA&ksG1n8uY&4Z7{15f7R7NFE>axXRcN_!jf1q7Qlx z2ok;GCx{p?nv3i~e+q@8ZUG(Gnk-=U0Eegb6LOzo`ivfiP(YK>g5JYJgRoBlNo!<>X-3*1{U;EzFb$shvA^`&_NgE*n+-Xv zP4xZjP~^N7H3@o6*#Tr(QW5b%QI65tbVqiNVm5<}b>AB*S=ZM;FZ!zbYdTFhX7yrr6@BciXfOnKRFw-(V}p z5e`l(=m*Ot83h=+p2UC-tQdjsx!42Ic$rR&b;MRB&P`vTRzhQ@3I$9E{}*3vn{6;N z2XmgWBU-c0!PxmEmQ+l$EuIA3oOz5H%mNNz%1Zl`>)h~Ul3RILvr<5-yvywnW~3C; zp3n#MjTYRjWLz1Sz#hP10KSm}=jh^0B|^ctHe6?jNgGheZ-bgF5IqS^WFwSeL}S$) z1=!l+PX~GP+mXhX&NsdkY&OHP%I6#qWmaMCr3=u(xCmNsfTCB)imUSAgKY%dyPLT4 z1cDpC8BGyBL?*`97ky(7;uY4o_cbS~YBM!wC-uiIj}!z5IWjEkC0HrUgmbn0+Rpt^ zGHrR_9z$?eRT1MCxP|RZYp~2omb698yUB- zVx_VfE7dvMm+?kn))}+OyhJcDU-UCNxlP6gFzJ7wlgOdIo`bIv-?XaDsfl}J8A&J# zLuMd>E_vi(pcUfBlvqVIY0+y&Aj4+m#;SyZ6KEnhb5KE|#G3xW|_Yg~2^Wib{1nalk%wfTc54jgLD9Str)0lNwn+R=TBTMoH!|e?rgagvI!~h`i&oF{H{>KBI#T(19SM!S>xC}<6 ziHqJnDZ5`VY0Fj0xMtb*9^7&b`Pm*J^O|zwDMQ`R`>&FhDrMw)@s{gezUfoXZ@%Tl zPk+=;g%0=kpZom7m-+pRS6%q>XEy5a7p{QTwzpTGaY7ccw7^ABJ3(p?X}^x)N$eCd`?zj)W>zq;YPu??Ijcl;D60u$Hy?*fl8fP`9DTg&w-ee+j4P zDU^-@u)4qu3ltBzJO_|~%~^msQyxsb1#)BTjGh_j0_dBD#`tN_*1m?ryTTJxTy{^y zRk~MY(RN0D6{r{df)=T%4a7pQbwuxz9>K)So>ot0A7p1-y*Rjn^mLNjkDQw13{>X6 zO_tg4Tr%`+275wYNU{xD-c52vS~f|3QT{{E1sU^pk_*xD7AnIcSs9f9QW**@51?{d zdbYxtjZ--~Q(I(N1cwc4?^I63SP%Eg+iAH5DX(mT%1fz|djDba3|>Sw!MoLe<=Uj5 zF>|4^6{b2VrHqPqSf0xJv*-ETh?cKWSutaqF(;;SJbL|PM9k&3Bnu^FEwd)D`vRqu z<5Dn8c`_-T!Egh=s`vK*nM-Ue%4m8a-($v3&r#|*6YZWB$oom{n-fgP|C!5fc@LvE z_%JUKHp<=zl=<%>#_O3EmDBWYzTZ!~5BjJnb(cZq5qfnI&tq0mWq6EZR|ZPepv;{Q zhAg6%dy>&Ij?g>ZlZREgHA9)rHl{oHt~{#B1gSZ*455@&u2;)1$@m^%ULFBsG|C8P zWu#OeEN>(u)OTT$@`!HYujeYgeap3c4|uB~6vAmw)U5!O8sU(>%g`Ys> z4rSuhQ{GX}G@rs$LDBoG9Hlm=>NoSH8a$7zGH+_Gg)l&1^@K4Cv`e6!#9G1L4@nQQFaYVJAEoUdLF zhgNftG-p7kI%$Y=qWvUsj*8|vmGi_8t@eYYQ-65(9y=jAmRHUG#QMg0(|Y2kb$h!E z@S->t>Zh2O;Y@9Q;vngCL^Us7Z4W8$XMA%CHvM-v_|e;(vQ3%TmVWhnKf;^iwz&Zs zRAuK@s{l>VF3tIY-9E1StY!|vX82y71GNn%diP%Im>&esSL?Q(UunSMlymOW82w;w z8<(G*tzZ4HY=@Hf5E$NIP4G3sQ{}0gp>e}tsgvG*-s-0q52@$62onIs6P`1(57|7X zG1`;~&H#sjaEkZMh7wG49G5qt*}uo2=bbanc}{1jf0K1S*01N(PbHu()8R8twLDB^7!mzsUi`T8h!5%& za05#L9Ye4ib&uB*4p6_Z8hXNWK;dms37Ei>&&K{!l^5V94q3=)c&oPj9=xT_t86Te zOI{cV@FLZMdk#;BlHYru9adKwJn0p~;kk_~K$V*54@2+`l>A+K zmDZ8+~EPv(=|ptbp3}GCnQ}^PKK61WG!-QGot~U{q+W zhe-k190$D5tR3sH&wGZe35MPfHGmS-<|obr6DG(z8R6`$1U#X<;{Y9tAXU4mKa7Rb z>V53gV|~_;oo@KM2|t0huX>=wPy7#HeZHuKwtS4NQ^%R>tx=lhCqorM%uCV-p8Fc% zEr7;YXcV|{@AWwT^CJD>e?UP8{44KznJ?Mwdmng64T*Zt=uH9lR4p}7Gf-k488xp^ z*gM837*VR9&ie{_D1(EV22cDaI`1>?eem_dL{N#h?(p=Hdf#Z>k(r*vwWijY6yD;7 z=aD{yuRa(2L|Y%XiRK1hU9WXi_}1`)C8H1@8UylW6O|CE@#Vp9J4;(Mdsv? zv6(!~WS1rvva&(nYZ;NVT+N=V`y)@?$#Zg3o3yH|-~OCT%Cr%4EZ;^AWM-xv@@Z4X zGJ}(4S^1*9EzcuuS-;gDIhgH9l7LnJUA(WX%(}l>ed4b^w?FM!$8~=TC2k0H-a=+* z)x>i$JM*scO;bivHQB%UMn-Dt*&NC%L-+YsO8KonN{{0h?|ACEaQ|W6z1Bu?9yy~K zpFY+u{jqxKoAPZ3m|Uk`hx(NhoLuM{zri$S#=gVyn+r1J8&`il`!{bY|Fl2fz?&a? z%5!Dkre0dhma+P&8=q$U^g+;Jo+#x|@GRyx3I_b*?^=%Tr!Tbfnvc*=%jT__v3jiT z`|SR1GIQTUsk`{t_(DCF&D?XE^Sd%=`#j!aWA|V0)Eotv+{)NK7Uo@}kMpS6{K(VZ zf1X>L>Vxuo10SA*xd>(MAnP~1v2wSOk3D1@XC4I;pD$%pkMknTGq_OaZQNa8H4FbA z;G6QKD{H&wL|40C7QFR7_xC@wS=fNEj-MWyKZ)%Y7-yO^89K^2H#5%-9(+$x7A)lu z6L)&@l-}VNOE(?OT*oN+Fh)gGc@rl|hY|9%tdkdyGsipjJo?;D)= z$sh2;=Ys_eYl(be-L{RsTbf@bvr-HbN>SQ0eO@r0pkzQhW0t9CW|29Aw>)3ZacO!=ut%Dcx!44kM>ko#jIxerss1pb&&uOY z(_r7xvf*~1OPiQ^ATcq)OezJLW$z`X7MvnX<|^>XtOZ}m=c)zc^A6D!IHA_(rZgg6OE>_r(k@B zngA}dqyH;4n zB%!$CYWP1yzH2c-Is5xO^cuIDbSyJ#!E7%wmgpw$EYzCw9981dl=iN7oqMmHm3L(e z=5w3v=oS!Cv%9}VUp}}2h+-IF=?vgnM9(mC4X!IU^et;?KD`ms^^z59F)KD^@hG-V zJx4u|Tg)i{yvzzPw_hzLEl=|&F-n1H*GTa67-O%W<#FbRF{?Ju%i`8I^}u}`!Cv1> zg2zZC)mA_6^ovMX_8~2jM4sFzAcH1d@zqFr9|aM!7kHXH%|h^_V1nGw%sfneowD>- zo0l;?Aofmq;oas0ZNObm&i0rsWdXB53Qe$?I#o(}RhM&cIC^!;;0_?a<5jk2YCO@g zK^_Dd?UiZXTGCU%XbPJ#5;Blc`Tge z9prxfEW|9IMJ0292lIvK1bjwe@zGiA30CkHQ9EY9EcuuG z;Ba1y!C(;lrhJ%*=U@+@N`6`*(Yd&n@%3}u8sZ)a5Fz~QfF$?=(aZcmo3vgT78?nR zHmo0aTLXw8L#D7(+2BABv(GOyrv!c%jnV>?2fdL_H#LUYE?EXPd~7&cMMhkVT{z6C zwKzFG!REFS#*_0W?Oi7tkL}XwTTB>kyNl7cn6-i0mRkA=Eet2aA)P}2Z-|0-GpJjd z83NP8Dv}kPpikVdL;&c8TTzKVuqu7=dLn_4@x$V@a2k=*g>650geW2cmnRE}NG?CJ zw`SQfsoIUm@-zU#5GuLfhrU@%qS0FUn&8|bF4nfTT8mT5NGu{|~@ zR3ICj9f~7n+dVank}EMm3M1pJV8xxX9L*Uk?PRikPsj3{sDI|PM-MzAA?z5@3D;J8 zK9Y1G296jF5mA+GS8=Xgjud|0PGBtYC=%lgUSvsq1cSsXI#wB9gvT0g7e?rWNE8eF zEPcz-2~sM0qB`vi?21|TK4>my(l0^kuvj!O9tIn?AmNT2QLGhtqNqE}u;=mf{Xh7_ zTj(-JSlc_AQxJ##(}Otd(!@!nGf8f;BIFf<?6nz3yYYxvitw0wN9%wt%L@^!i z02$$i7g*20%n+?8PZ#{JK|S%0+5lNhU`_Dk5(8*_ELFF3@N49VC(jWdpNTKNP8=%o z~w(kuQrZbI%@p)Hno z%=6g#OeG>*F=QN$YLybDy91nuSA})}5DW`GfvO-Mwy8sN0w-j%9}sReo_N|M7HSo0 z0Y>+9!;rLvDwH5Ny||c40`*f_&zRw{vNz)G0k}QDSKOc&L8C}9kkUkiocAKTzNHj` zrm3TmR++O6w_cm{^S2vTXq_3N-3j8GOaqZ}9@Bn7ebSYGDY8 zHZ}7sZx{+m5&Xb;nhaUpw!L6%J`_>=Y4Q~ly(ZA#gH}@{E;W~?=a;i#BA~Zr7Sd+; z&V)vQ9Y{^GJg5!kI)!{iyk^Fse6Sws41G&U1k~@8K}xPHRlKKRu40x%2h=6Y${}w) zPa~uW1u=q)mCZZ8R|Kp_=c@>Ka{v?)_IN1dU?0(3*(qLRED?h>G}xYXD)(OX623}3 zCzXM(4bc!Gt?jnTGvsuW?l3;>GuN;Cu=Ic>f6W03+sniHU4%wn1=CEJMk z^DLk(=qW7GKuH-3f}|+dTtD=fhB}F{Pq8`!IRC;RM)iz)N{1c8H={78B6i7jDOtgM7hO&f(U|a3zIfR8Kn!8Ov3RMlGhNQ}F>&}iLQ)ix3ISto#LvsOCVM@rL zA=2f^XtiWgXk~EmbbL#?01;wQHrt1_8uA$&aFn!(DEW9BR<9m>h*G=aV-a6Vgjj0!JU6^sKp23yx?(*`{4A&iturM`4^`w2>N9 z6lgv6xf5%ceqf%ZO(#v5conB&svUx7I*)a;;|`-n=jWX$vkXbRXKNuaHWrSR7CTIE z@b0Eq=F&}f@@!GXWHY2KWEwX1bWj+umT)NlTJZ+`F3$=4q&nAqs zN8&hAlI2#n)>f{fC|5|K>06jxKNT@x6b9wgybfLA-rsXL2ylGQr7t+(c4 zGTL&SLpOmE;@y}K7Brg$-Lfzla(X+J;1@vO37=wm77G$cWDq@oMO;Z7vRQRiW-_7l)B?imBg@(NEsvvQM;;Rzu9JiPv4wB>mAf4}HlL%f1$<+`Vz=zZi z=txwXLkN<^NHqeuRRoHVdeG57pMQqbk)BK17>nc)FC{ZQaPN2NL|gOGi@xARkwKhR z1`toCAia?!*C5=5_2LUqbVqPBG8Oh0-^(4L!aIvQfkJ2L7+g#73MHj3QAea|eeC*P z|FUwO{q-DPk6&Y1yhJJBMU(8R_lXYPb$?*hG$WD$iBtlOF zXC^#F&&s(l%VevW(AkAZ3MuoIL*4--Ft<^_a-iCVRY#ws_iWKcc_JEATt)ye=9?Yl zn0!VMRzW4tL?|-L;+m{ZI1j}+_$luY)ga{CZ?1Z33@wDb?XH}wlqDM;cr>$_#Y&r2MjM0;i@&HPXcCRgfqX$F#OI9V5g#1sPQ7da8Du)fWk$H>x<(qBkxSJir@Ji#yngI4$81o8}M1Bg-`*&o>3qO}OMN-j+%I~oMUg}F6y zYL6*JA#`ZV5p7(}P^ouI5jz-sa6_rSN`bD;%#Lj}=+YWtmKHn2IgK{cdSt)lwms&( z$vWK>23@LBR(Lvzn3q47Yo4_lEf^#&=~^cXV5Y~$QWcLxp#e}wGZi}%V~AZ z{RKY8YECnj$5v(qa$zh6n-J%3OWnf^0ty3J86 zSY|+W(Z|4x3Z5CyK(C`N36_IYQ>9Y|ntHlW0rhZ#L$HhJC<-zq<;ZEt+Wwl#X@Ss(qZKBpjQpc zX?N(X#b|cVa=JBfZ4=xM7UNk8kDutKA5z_rY`njc@;E3cyK_$7mOGg>Y;m`)HR(75 zjdN*!IBU*z5~X*uO~BV>RwoH%poghVwIOy6`Vkx+;8Si$3*1y-i~(LM#?7(fVtzkH zRAp%Q^YBtswbA2=q_mdtZGuJw)rJDqLxx~MI94gjtCgy1!nuh-pz%1gXm^o;E+b)) zt%wSI+wR#p)mPI2Nbvwa!Q!K~6rNl$4N@`=1~skir8?NNe=#eHT-T>VO2eUX0h7ZY zw-huwgC7;fnXy~yIAG?RsMZy+q++|3nIYJK%*tnI(6X@Sxd$FWRywZdxd%Tw2wov| zN(>Q7hP_JZL;73xCks<%H{q!2pmNlP&}Iyy%*6n zMmIAfV;tjc*ywnMO3Zd4c(zr^Gb&?Qn@p!=YsFY_g?ZEWuyIR@snRykYjrms#iw3p z)Gg@J!}6CP>#IO-RH@%g+=2NFGmRuGD2Ml;FW9;oMa1QMAz@!_m~9~l5P`l#rwaGp zu)WH2?NF0ZMc4-CQ9KVyv;_yzQOQ@(7cESJnK(6vps2PuYNS48HVIAx_M@pYBrRra zrZ6;0+wO0WS!{#_xkPt-lhlE+Q(05d@lDU0o*1gh^nwK9Y}!f0y@wo>aW_mJAGS%F zW;jO2dGuXMcVHAVgnKJzI*hNeq|#+(6h$(1k^_vQg!N{?ZIGRjgA$@(CZ5Een0}2- zj&za8Z??$e80Zt|QN@RhuUf^d5sz>3^RY5otx8#HpiP8oIPE#?Cbls~W3zB$2|Q5X zq?Kg`td+tJm}R@UiISkToDC!cqgE6b%U35cLA(gHAfnm|_l296()!7X5l1T4Eb>%N z!Neu^B=VXRLZ)E}x`lx09g?^Z!yJ{-%j8x-sg&o8XNk{`K3kXa_G18 z3#MaXRz!P{vzP_pU^D}JwkI@q;^HJ;G6sX7b{VsgA4lHUQWDF>lSCZ|{4NFx6S*vp zioKU4*~}4TDoOHC;>A1~v_N+pgD~@<9>DZ~{v}ZFu~lP7l*{y_B9LTjq9VhkpycyY z)dzz72>T`{pDIBQ$_Htpqpq|IafM;-{UDc!yQEZ*Bu}q|$(a^L--0wAwzH~k4o*BK z?}=xsOjvB73P>Hx}&{iXtI?x+;VIrB~E_zv0a+cHtuRuvm*$(wH6YrL*%%# zCIJ#LLY3BIqM-o!%r1-PPHw$3vGG_!N+ye)nO?jvqPe1FK?M__B&u)QiftP~Y7Da( zmo!P#`&$-6U!ruRd`n=Y^Ayst*xq4h+iC@zB=%G!2l$m6$moRPF0NZ%&HRm^*E$#> z&RFo~;Ajoa=;_BCeI&B!e3{`)7iRiIH_Ea9;YsAD&wkSvjo3luHZ&r zdnW3r@!>I;oA>G2QCYMio>2^;^Mi4>cPe0TN&Cvgs^!l-n_b9Trx9iYv^Q5EKiFE& zw4$sRrtH@cnvLgn>lMNC5`ztLZy6?q8b?|7gBgZwoSo6d%1d%z~n8a=41r5yfpDo z=2wNuH&fc^)Vy4tCuokXKWk9Ews}Yf>0CcqGnvZWAVD|T9U=7MIE~H=9Hw&zTXk=i zI@vkl4y{fd!WR53gTF=Ms6`H_&S+ND*oUJJ%MB}Ws-{lgoGID2bk3Z~Bzk6OCdl)f zg2jV%+S;RiPU9ohL);qyE6?E1oGVhNjn*fC;({j{sGV9GXW)Y4t`rY~Zc5^2>s^G~ zO@XRY?`1}=kR8BxUmS|brHq%JLnJAb!H80)%Q2E%<2BZ?XrK-JnNgjzD5{j_OT?~-3TPuxg07r@zP#J%zi0@nrmsqVZ%cM# z*;CP*tr}R-w_G`c2UZ{i{|+H$mLnUoN3>b5rEid;?ap> zR;<6W5D<&bv&~h%Dau~}6Ioi{&k&lO8v^PVyQWOWijv z5(UmvMU0cHz`iNM+oIihFGRbC7OtZQiU%hO-m(M4>;j5pPa~qH`>8XZ3xIg|7z0nV zxH6C^pM!d>yasoK7<0z92Gez z@hh!ah6+Yb$!jcvJ&sS2`k$a?wawg7r+T)5H$Kd_kmW$}?pDTP+$npfMytqm`U8aW zE%1IG63i{X-eocN;XT#FGeKmNl~$DgLtAcF6cDjN=MxWf+tU}OJ4HfSgb+_IATI8L z5R*ncm12oJ%E^8s$}IeLhs7OzN%bkBiP$5LkW-w|b(Fc6XV+NNQH@9}KcQ8xSS zhWr?4iO4yA_xEl9N)``@Ckxit7SE~GPmU~02o-mtc+yMQ@G&51+lsqg?nq&g({TKX z@xJihB6lKaA#1s8E@x#2=C$pI)kj-n$$WE>D0EZ-ie=<~cFAgmag}8b&bOMBR~vUM zO(>QD=rF+%s2r<&fa}ePg!8CNiul6SwvX5|_@E}q`Ep(KpsZx9%*>1kmQk}4)Yw5C z=5}xNv!1Y3++NyT5X_Kx#7=OsXnymHRfXLsr$#X0xk|NdvS?0To77q*ss_hHXZ;&0 zld7$7xqVf=O5^1K;T1hK8pP(a1*5 zq?*i`OkpU4<~b_bbLKa75;V*C7BpmW8wOaImcZ%QSN9T3XP>#mmei6QrJe_S(y%+H zJqHal4dO72SM|W;Xss=Is0|2$ybuL@?b~^mZwX*IZjD~8#o1AI2@QeGAMGB9&h4QEI=a0@C~FEP%LGCB_-)P~nDRhBTqrrlR#E>LtUZRhz2XN^_(t z3>Gf)@POS-+{?T0GG{fTvhoAzqCUhW#16N2pxT@VV~PKT#G#zs$l0wE1bP?`?^b^f;&JI^aR~lPxJZhNlBvfS@ft=hEr0n3>n3G&w5r&jy z2T{50gau1<5++V$IR=S5gep`{oF?N&>Bi6uzmNP3HB{W`JE4lDLOn^z%T;yR?V1U6 zG1+pEW__5_g_}<}jA_g%sVTI{$r8Eev`P9Egw0l&`JtKTGOaQ(#3s5H-tBCNGUmq^ zeT+0^MwEQ`)oMtVq^XW<0L-Y1bH-9hRZ`ViOk}2gMTsGhN8FI$gvg*Yp<1-L zbL4G+ww!JH1OvBSQ_x9+^(yEnapX$t*qs>cbapnK5OqZCya7dkpuh24%=|CY*mgZja9QNx_w}GUi3+O#Z5eu11SyH(=NsMtC9H@n-R*+-m zm*rmdRsJjnk(|DNcFrqC{jT=zaeZ!br?UvC5bVML1zgjexUeiS^_Wha$t(&vasyf#xifb>^I>VC=R};O zHdqFx%Ol@jwxybgXHyoPzc9*V@u(nfx25|aVaRQkRD?_;G0TVYZ;)Zbla`P}gY+Pt ze}mj3WUb*}GHj6ChIA#K!Gppnw~6OS@f06q>af>UGlfa$!LR)E>5#@m)ml|5Msxg1 zGLTzB+MMv~y;e!g1X9&2GM{+r7&=b^5E3h;q#~Z@gxnys>)BK+<%otxSIKk2EB@Sj zMOXRiec%cGq0bwX$VjhjvYM||nkMCGq1(4u8CnN`6!s(}sVXu`@s`645RtTmp?S48 zDPM}RrqCZ=#ElP=R{%9tIbeaLx9c;QhopDXQrQRs{Qp@S zf~S1(v@pERD^y7RH0Swh=&FN`cWLNzu~*)%=XfFSig%vWNeq+PfF~_-PyPJlX|Jf9 z&R<|PgELg?m_uPIX9$#J%D6YchUre}Uud1$0GEMIl>-^C8T|2f$tMFIa!)@Q#pf*d z%hlEyaKi@(#&SoO=hIPY`8j2oO2K@Gkh^^*Gw|gsw7hpA^RHhygA!BEU45{(*sm^Ji={iX!La7!!wc z--AWnqL1VmQ_XPKw_*KcH<9$o)`a+(B#v-wZ;ezu7-B}7u*Or|}PZG3i3?{>B$muRH)x-^m#WwE1;w5W@b?_s!@1jymYYhP0 zPa$Jf;c&ywF20OF2JlN~LPhB?C;WI^rnAJRSQi%*Ma?K{Mg{~wrR>)VIUoNOa>I+a{P(xhl;h-WS)Fi5}3EQmB+>tUJT}2f9PPdL<4zYmn2U z7M~^fowWwPw7h7TlM)SR)skXEC7TKJ^BBm2Sr%K6(*n0T9UqUhkwGyAj|xVS9SeRT zEgBCvBtwa{mnn}F;zOMXr;^&-_o$&FMLwz@vvlYMmW>n!m;qdJGlo6q4_b{~Q>KLV z(Fl9ksRKVGbgo7wcjLp7;18(dH5fT~sQ%^8*3((6OSD#(xEP-BCs;Ve^;&eCte1T& zC)X^8u>&*KE$m!27nQ-pfl2S5@_`!GwynDS`1;Jo>k6_7)~yK>g3fOOYtCK20|0HA zm~iIs%>4Tt^O_MUkUh|T`Av-sLPU_MGc;_&-w^kZ=u65mjvR|EZqk#NKlvd4-S_0f zPu~CJ15e&emgn`B3)c1LX3apm{fKG6rJGllW92$F4Lg57g(mzCe!Y|5q-U?PcbN8G z`Dg7{d;3ak53&TTH~ssEw|s$b%4v%QB;=*_jLMetnNqS<wx>Z2Bd-{%D#q;ob*64>QFWZJ^wf6pp@nPox0*p`jpULp6QfT|lI*`G` zpdpJ4`hWGn+Ra->qE$dz32@YBm1S`=cqZ$)|>npR8qQs=pkx z&v%iVkDPg4A6jX$lv(DpEH|0eoZ7pG(#rQ1f4BD0y32Oqdj0A=XV=pM)7R^rsy>?b z8(p}Mi26t~&^MSrti=#iRy?=mHdyFo@DZ`iVIWIA7WOEkapvR}C|&KMYKuB?s3!-# zqiZ0T<<$Jzrw26(#oC2L=t_1{hy{PU#=x9j{MMrfv=h1CNl?n6$&J!zLk)S$eCHxP zS8#H9D@dlo2rs8lNtgWDY=X}}#uceXDs5RHNjQ~d;G3*t(Ab4+FR>V)A%=6K>< zTYOV3>nPR$X3f18tRJSz#g!x~;pQ!eDbiLuJ)D>uPw>!wZ)P1~qxfa#6&TBm?v@;88jrfU$^5?&*qGo1LL#J~Cns(8QS&*1PyZ zax@}_^NDcO_2{M{*9!T0;qj771*Q_HtmK{2+Y_yIG%L4B8VRwqQRGMn9PlP{!Hmu! zX+5MR)?hltf#w*Rmf(S{L1DS#u}u3oV3VCfp_sv-w9V9*mO^5+G8TfmS#|wb4*yBXPNpxlBhO<}M>!!w1EN2QUWup4Bvx0; z2;{OOuq__?RA7qkb})q% z3C&ZRG80u}@cDFQb576Q94vo1{f65#MdceU5lOiLdcLM}$-2@!Fk#6$ZGYVp8xB0Q zBkXnxWScOg&y{0cJaUtpq6?5rk|gN7(jmT;=OqHW4gL&}B~) zRG;us<^Zy*?|?Abrk#(b_W_H#BR+G!!rP_M4YUO4Rhus0#Qt(GJ$q> z>4+>PuTwNywJAvc?@6tZSk=<(yg^0%2RaB|tbDmb1J7gkHG8-M) zi6dQqS8fMZqV6zQI2IXm`rV4r`f6x;|`bgwgC0ai?aaBeB8o**fN_{^o2 zX`(k5L!8HO7vV8g+Yyx++g=@$Ar#235#MN%!Z7XL)v*+Mivz!LVh5!nV#EG~Eih&M z5KkzR_G+aEFcwb!=iEZ+BhwQ%HL3)Ww@SyPai^G_#9kyHReMbvNQ!xd>otaP zNwv4ADq?-*PB_=Rce*QbmZq0Yt+vm#jBIHz^DmYniu5QjC1!eMBko~ z`+_z}Ot@uI^Yql98hjFvVS0S19do9aT-`JqA!adtG#Y=kv6=0L7WxN5O%w>&k|W9% z_S$`FwmJ+Crw_v2iUqY3W2MVlq8W_pqsehD{DfFREKROa0d0xu&#}tLhK|Zljm)LX z4r_4wN^Qe=Q@a>4i#|!wBp@cHOL7ixu$$U|QlYlukIGppAP{xTs(AjkgDrFo{5{^Mmg^Tn&DuiM3Z69Ti z4a|XA_EA6^b{l=cdw|*JO$C)hbI5~9MPlhfhH^wBQ=l5p71gc8&JZXg?sa~M#ZGB~ zwW#3klzkljr7BWMGKmFOraX?$L<-t5^ob$h>EQiyhDP;-+C7Ifd84Vu5g7Dfk08Y_ zF85lb7T+dJNJ2qcR!Q5)222XVuI@hf`2oM8!k&6-Ij{_);=D(!v&B!Io34Ru!;7bi z2Y;uWhsumTQC>zgGi1*j$kQSpds${3jV-jF*t5vIfs(4 zd0=zN^1hp#P#yiNdXnlO$(d_7v>`zCacf0LM{QhMk?X;q}D`N6-TH52aiDs ziV=5rvrRRqe>}sy6i>KmXjz2ZYExQEkSOUiqKjsAeiGH}JFLliWNns4*g#k1Qy1mS zOq|cpvTMT|G^jVRWcEGwu=jeWRO| zXF6KbpxfO{xd($bR@!2F~PyB4a+*yYVgAov|HLgPYek1=F@n z;dDM(nKAyFC0ec18Enn;fe~?&T2JFj-ZE(vZlh<&pR`xp&4d2)I!17Vm1?FB^o{zl zr1KSM&^@zF>xLmv&n;H|COZy{G7J+VHLv8~a>%6qBpCV=UZDUGGZTNXj8lf%c#_Qe zj0?j(|0d53?QPpFWpD8opZorhx0 z35MAH{Y5-Xtg9-IKZZk$eqxvBIbIDE15h?P-2+U@@B~QW>EXi!ofr;fco7d1iZSDU zfSUKmQ49A8_a5P2p9^`p;|h_3qBlS_=h<=vwIt$>FK z&b-KQ7?;-o=09Y;0xT5s<--jD&{aCQ2qa`wUt=D(v`7XDCAtsm;;; zdV9jSlGBKzBACgzC>H9evC+iXjToDf>^?+Dd_?gLvIeCnig=ol-nyUo20yJSp3aj! zxdVF>HYc+e38R?XsFU!j1Rwl)2@SHP_a!+JuGFy|EAzDRI zGDMwV@$z$gZphi9V(f*V%Y%jLsT*?wr5id3B0aQ;oZZb+k2vCp=F_E1FbTR=DP&@= zer+|emEi93P%TW%+JuL8FadEO47p;(7b@#F=P@khtd*P$8`Ai-B03YJJt!8za%eB+ z;FOf!E+~{r``5&WNL;ghKBw8il$N+G$_L%QT>Rq!K7sFZ{-#R&BRtujCT5icWX-eY zHk2B|J8BSvm5yv)G=EM9qe6jCuBF(oQ{cM2ik3W6Vyr&752}MdCeT{a>JTy=^l>>o zS8O(V738?Pq4IbYLl%ZTbZSe)^ww&$qM<^}T2Mqa4>Pwz6;B2UgqCO&YOmBIKi7EB zwAYy4Ot%6=BFqA4;~2A9ZyBm@sYgfLX*LKrNk83Vuqt*#nAK2;9({9jH~Fj*~A z%*2+e@!Kq2E~%x+SS15;4SNVUw|rs9w)qqWVr5Oft5*0Yy@MwFm;C0T;SB~Rxx z@a|Jh>9#;A6zH;y4?)ZTV`Oq_VH%TE8N}Zv>_S0^n6Yk7*TkN#Nyyg}JcV>K#(zuY z7R8L1+6%Wa*96PHl;(CQi(X%)dh}4+%217Q^i@W46r)^%n>g6oOVVJ=f#HL3TedGP z&dZUtx9Z=al%pqr!QXVfan2Dw#^jLT2g6im-2y;B;&@5_E0=L3)a264rjDiv(hTn# zJr9GcvavCs*qEF@nk)c1ClyN5Z{ic!gOMTAve074<(N}-h6pkGmYk7FLluym3TB!E ziM!@)*0*$_^l?(GO)f1bO)R8(vVpK#yV-$RfsA#XITa}J_EbU_KxKDd>t3z2=cW`% zi7J93knu8>VEt7#fTUfp$DQQ#Ad9dpNl|xezULtVJuIutK`bd3nAKVpcvP$iqI0AN zU)cq5^aX~OT3BhB6)stpLFdfti$Ss8kF{JQ0CjEmV$3JX4j|2`ti&iVqiV{nC-glt zy2;Nd>O#ZRrZAXDvbwuGhj4Gw1yM4%G67KeVhOPoG==8Sv#Ex<<|2n@^JO5+LUbI^ zjGjmv&)K1z$F37{HBD07YK#fx6q@2Fx0Hk3*s{S0zIyNIQAXG;~7aqUnvRmaiL-5+QB_^q3CoXfTp`kiXNhFX^V((9t<4 zLG#3jFF3pfACQgQ_NZ7X!u^G{_zZxjLFna16cd|$+(6& z!{!lFYA?}0B#K}O^dETWENoc;$N17Pi5#vq_6qHgrmd}cF0?wSChpO;xSW5j+$?K| zw7FgmwX>bjs64VWSxFNoiD)mx-a}%Wp(+?$VRG9_;4Gp#uiTLFJT(Eib}C&OTUM;4 zu~GgsVRePAHzrxT?6Q(nb&is@K{w|lOHtndHOWy?^d_0FyYvCVz;17 zeQVK;5m*JaBPzArV5ldCkKGZU8na-!c@*qf-m@z1=NbLThUl(UF?WaeqSntD{1-x_ zqT{3pC}4!Iy<39^S$&ze1@@yXYi?kv3`RA`5ILQEri$teI?mAKwxh(OR@pBC`vVMc z9IBbAcT_mxLcSoGu_0!Z%P(hH=<&j+io~u_uZ!xGSZ-$4&s&m{T{PFxVYoMWxiXi= z*rd6vLWwpZ8?4&eImk7R;}o73xwtd&4Ym~zL&9*M5a$s#%3#~;B2l6rW8y||Z3MEP z)NWOV7&ZQHc>fKtgog-MZH<-}SI9ez;E5t%YH;cEHR6nQgK)bYAcWfvC(-#)YKsR} zwPtsWIvw2iWp@MDK@8A#mz;ns~af_Np5SHS;Ra*7Q>Zm1YKK!{2LX(7n za7l!KP$nWl-m=HO;BH1a`U28LC$Q)rgiRC6>$264-8fL1=(hFMleUC>I6t@oJHokS z%aJBuHUwEia?iGGGOGbuX)H62Y$NyA+Aes8hdK3}XI21NHq4$vebEY%*$~J)L-{+R z^?|y+I`my^4f2(*s*h*noRJlUdga3||9tn+cY8?mdmpYoJlbXHk&S}8Xsfu}#`a>zqtPTMhMsMeghe^m8`<1v6 zh4n;zn{Dm2%g;|ks8I(6Pd(3%962ykH5qFWGl9WzrF|v8v>-MX!ItMkTP8-%HpkeW z9dkvHFf^)e8cOr*Kp761%Zq|T7(#)rmeDqDzKWDanpd-R`3_b~+l>l)$(n!nSKd!8 z$1`CB8$;Mu##iLLRXk};r8;?yZ(cR(h~`kVK3}$mrKoS)ud(s{IBDb(cuemht7HEl zvTzLx3PgtEOxJGRylLy^JGXBBivGR-ysewB*t+@J=Qdpb+=h+MZP@hOhAW=iaNTno zKKtB;D_^|jx|eVIR0=u2|6IOJG6g5O86`d7m+?}}O=D&OaqCZLg4g+# z9`X|vM#zMrVQb?#|I|9Ok{q;;wH!nX$yRdB1i7losGCbZnRnlCyFSr8H7tlrvBT))31Q8Z zjZ_>Dj1=GtQ>O-C;Q-v!=0x1>8-5k#zWuz!+mm7}4db1#yg@%LUzzmc3tm&NmSE`xf zAko@@s`q5hu!!BZCT|B2M=R`Vq#))-W*Wt6@G+YPrt&3 z;UT$&M=*KDSH)D?u^&PJaC-0%BWBPf0S zzBY3?%5U%XN^f~etH+_|*rPLZg1@15OG%lL6fG43Q8MMja@>IO%80OzJMn^JMb-3V zs6I&B|FEMd4ZE*~9KCKyNMI=Aa5qeI-R0q!l{`1z)rWEu{ci6h<4HZ&qC9b;N0PjO z?lT_wUU}uX|Bms`?g=E$+v7hkfwz?(4jClz@evpAK25{a0M{%I{1R&iz8HTaWy`$1 zntGPzEt+xkoQ_fhUf&Br;vB6sW^|}dr9)O{Y1S;lptCn`Up1vh2|~DXfTX7AeVuj; zPYxDB9o$?!wb9f&sX|RxAg~MPha%0xaLBC2R_~y%h1}L+s-nTUn0avnSKP`BOKv_a z{aD#ajPnqjg^VO|c9J4$y4D5ct=4-cmfdhT2fr|W6y6=xT1VUQs_gI{ktgXkBLY=S zeU3QfcZ;O4N!+E;tlS=A*{y<4AS__5Pk>SR;VEUF(h3zqUfj+mH8Dh38HOxtPO62a zG|aBSF6G&?eLIIOc|5UQ+;V_C)q%u`qf3 z)sA05Gu7D}qDk_Q7Fxzg9b3y` z|6x~+lNEpJJUh&9k^tb2DQ{wm*mL-9XL#L1&AIyRy>pUzoRo?^Umfwh(A?t|~xvoHW>Xk|iZ6a5XhG^S?#Oog|&zy5=(o4{Ki5*N45m z`HY@bCy54fw%L*;h1(xJt+4Us%k6LB+Wx|-EvFT>eCM>nqu)QRaQnATE3A5wK78}E zLg9O-6*fJ=-$LQ=LScO?pLg+@s|Q@`^PjE#rx$L&ZFXVHOQ#j${mH+|?l=A>yPxvg z?0!}5{`TDc`afo6ru;LzfAnA3{mHLp_pcQCQ@f8Av-?6_c0Vn5|H_E$`KD3X{np(5 z#xdFRX=AhdSL(C-O*?1zkB-mox9*a=e@k|M@>}}_wj<76FL)NFanI+RjzZz?j#poO zbuOPLd0v=5=ku-k&)cr~;f(y}vQ^C;`Om?x96Kxj+3>;>U(0_^es6zaJ)hh8Y~@pW zU-f4d-?#VK?fw0QX?(VZ&&eO?FXTVBpGe)?`D|L!UzpO>U)aK@v9YnVU8= zzwzIp-*@AuS6@BnoE?33rQG`uJiO_!rKQ}zA9!t#toikg^ykpG|NY`N{ytJD*42$1 zS=^~mC~{XAp(3yHZ~jxgx~vk`pw^*(4jh&K{$ zyBn@P;_ilhTXwm7WefK$o&WU&_rGoVKxJGj&s*!q9NPNCFJ`x1{GRu>Uh?}@txr6+ zq4fs{G|13N4(H_+5>-Xy?0;nT-WxM`VDPY-*#c! z&pxuT?TJrZ(f0Lke4*{o!@ksZ_K$99tNYSDZTsE)a9hiZkGI{t@X5BH{Pm}8yKQ;4 z?SY^Fs;zOqKeRpe*?+X1a(!L-=U0v?zj(vW<=cMvx^mYW_bN|0>&@l1f9zMj^V1W` z56*2YpS%B|<%9P;qWt{+?d2aHJFEPb&%C?*n^)gcUVh#Q<$K?DQu$vmc9)kt-do<~ z>jUKjett%|d)&F@%kDd`+%#}O`N+!0%YWK?V|nI?PnGBV>x%N8W3DPcP})>J>ZmW4 zf4bqz<-YITT%IuDj`FUbyr+ElxChF2UH;Yb#wm}Lw?6ZY^4(W_xBQl_ACwQC{?qbr zo1Q7JY1~@=aoY>!y+82l@_R1+U3ue{Kb2qD|L^4wUhryp^f`5vb7qXHT)WFom9@XD zuZ;ZK_{xGCcB`E7>DO1@bMYH0yI%6f%FS24xiaOZeJj^I(NG!lUk6rB*?UrD%iPJ8 z85cKK9{=efmBka^QQ3FH5tR`ywN>_7IIVK>w>v5?&UshmwjUld``OsSjD;Mp3dgahJpH+EekM)%! zN*}IVH08X?=2_=g9y{rR%IzQeSmoSnKVE75&c&5y|F*HxfAD3MzbwAI(s%V0m91Mp zQ#pFVRh4`Dzfjrlu}zhYdtX->GjM(7f*;;cdBZzztlYcl=F0M2Z>t=#;f~6l|GcZR z#~Jrl4*S>U%9@WnSoy{7U#+aX{?W=o<;N;}{Kw;!DQA7NvVQ;XRCe0(y~?-G-BS71 z;XkVE^yi;cK6dX@mHB5sQ&}?S7nMie^jxLq_rI)kfA7W0J-5DGdH?0VshoK3?<$-7 z|4oG-}%n=1KxB*`x&pcwBPwsTl@EaSZV*^qtn_Sx?@KB#n;bl zpL5mh_TOE8Wc&I{k7|GQlSjArerj&}w>~qk{SDX7Z$Ivqh3ywScwGB!-#wxIyIbGa z{_I~*Z2$G^PHO*MQ)l~c=Pqe~`Lyo#tye5-|H-30?ce^*iuOnLS=oNiF{|2d{cwN# zO%DvV-}>h@?e`wKuKkI@GuwZ$`E0F!KE*;^VPs)cVRT_kVQitkFs`t3VVA{r;oaA09#;h;ieVM^hU!rLKXt%XWqMqyUr$imTuV+#uk z#~0pTIH|Ctu&l76u&OXvSXcN^VMF19!Y2xs7Op5#6@$BOH#f`$@}na^GxDa950Cu*$md4>apdSxdyhJJRAtnAMs<%m zebmQCZ5nmgsBez?*{D}WjT-%?(M_W}M!$FT%F*YI{>eRAAwR-yi?V_}zCoY?tG9S+~pQ zcKPZq&+RgD*9p76d)Jk_Ub^eOyFRn)tGj9s8!>X!=+R?#8e3mKZs+miciDB<-FAE3 z?z_MK^?U5G=bmqP!(MyswfEj{eB&G6^rn6G+2_q~e#=|l^47P$b>DsWEtN|9?YCb8 z*Z%wOf4~6;9LV)Ht_c$+Oyruxbr9FVx+ZhMEi^XiYUY}vYpSk8bRDYeFkNrg^$uO{ zwCiwPc+_*X*wt!Rn_XqQDt5KoHO;T-cFpjs!>^fs&GKuuU+?nk$Z*Z^>!@(OJ6uQm zbxgSC#_QN{%?sCi;x#{93*xmfUW?*&T)d8t*9qx*Z@k`@uJ@N$EN{ zyE@agIJ=f)S66m*XBS6}#cNsaTAp1!x$BhNwIX-*=B`t7*UH@0m%mo!uG8{YfBqWC zUxWE;b=9>de<1+puG6cob@}Uz>g&v^>#VBl?CR@7Ro6My*ZS(~-0JJY)z^la>%8jg zBQ@9gHP=ULt_y0e3u~^A)m#_VULUW$K2dvJTzg$odu^<}J~`yNwD!7e$n~iq*X2X5 zPY=DW7;;@X^!m(@>$5|z&ken<8s_@^(CZ6Bud9c-HVt!KGt71EFxPd%TwfgSx_-Fp zOT%0@40nBb*y}69T{jMQ-8AfV^RU+~!(O)zd)+qdb^Gww9m8IC4u9P>{B`&6*FD2u z_ip35Z}@BTHm>`(aXqk&>%nbZ4{hUmcw5(3w{<I4zEA$@cQ$PufOd0`sdz*KqyoHC+Gu8ZL|ywU_k2 z@j9^S@MXGhp7m^{Wy0f?n>OrTIsB<5mG^(-o$aU2IlcU!9bIkr|Kf@AZa;oU`(O5c zbNiZu=2se@+`Dq~yRWYN??I*Zh3n2O|M=5aw-uMKD?fTmrG5P)*b=ZM$woEYXX~`p zRnPl&-_TP3@B6nsJpT>l&n?=w{Nk+#mfv*YqVfZCK3@LhhA))I%|5VldG`gCea25~ zzva^Rw9h`UyS?v*{`PZrKBxVIpZ{?C@4mI6{cj7NY5(4Lcb@jy&%AM(#?o=u$o5NL zm{b1CgX13huMr27KY7zx?aMBI!&f`Lw|`~d<9}XJ`Pd%qJghp^25o(nc9M=i+QK&d zOm?5$rt_I`(~Sp}`BHx6%>#wo`E22{kkYAv|aGsfEIkcp|A^ zN0U@ve>*U%cT?qjc_{IH#_BQ7+-TKyH> z@$dANUEv2jqNl!t-}!s!A^d$8iKmv&nORt1x#bE4lJK6|Ne#1Cdp&Jk1R8Y>Ru-(7 zM@GFt1@I2?fLw?C!29}bHa3Kr98o0iBHZEe^B^T6*(}d+NBO0lJp}03i&^>7Y_jZP z51NY`LRKliH(T9aX-T~pQlzHLyalx-td7vPh4@A+AUd(C4f<@)G4XewkpIQ|XTPoJ zUYq|(yg;69~UO6+f5kmjeZgt_ZthItNxTHB4ewg034} ziM8zOALd8(Wj@Iqfbto`y*IPJbM4W6it`>?=Nz3Kwv9Tiz3i1Kr-yzxE|Eo-d}!Iv z-pBBpp<(TBvwJ(24P*}|YFyI^pq);9@c{QTi476*&L$7-jK1D3!ChsJCP!#zzkge> zdhx2B)4O})Z!^2syc-8<`+9W8%=sLw*d2-%W^s^47h%wD+4480lO2N)Z$e-Sh2yZ6 z$*m*S^{(!f(+{7`NoQ1~b|;02F`TwJIa;eK8v$kXo8D&(%U0%o(esYZRdUkGJ@xWO zk?^+m2bEtS&yZZ{SobU?z`)-l_mj1IB;%-g9M(d!R;m7>hwEGTV29K-ZyF}(8GP4= zG43`i+9ppv44QNjvvBf2Ve2aXo;FZ8`62#3JWzO)`&S->cJW#N0MARGEX;fBYWu7E zX+J&LJ{zY|mftt=d1W>AoKKy%@_iF@?mF)8=5sH!?hbyxg1;A1hQF`eFim;M32C_P6jU zQP2N%Y_FVg!4Ai^W#IHeiM~C$d5!(meg6Ayv@5viZ~W+Y-Rm8_zmYM-@9|yz7VC`n z+Z)^ZpRKmNbL&IB*4~sCPfUGR8}Xxd)F17ouP~px9l6H7s}23O{)N@{cjGVo@0R~u zZT*OSQ2(azY}0eA3sZi{Z_lqTl=y7qUcYU+ugBV&w$qxzs+Xuk^*y`Vo~e%YFRw0a z{SEI^?&RNsJA6vN|8PP5UbW`*g8DrToYF`4Q(n(~=&#BM&-8bZoj$0*FOoZSDH@AY z2z3l25xnbgcM+EF*w)?Axst>&(RTo!C}PvPyBZg-&&eBOIDfKjz zq8C2~f48Nj3#vME{(PwaL}J58rDFlB6tHKdx9Ldu9X_>9wDh(~J7~v>)ije{RX2C= zey*3EKSbT6=RzJ`7ti$8g&_5YuK<_5m~=}7~(UhW8< z^Pu2^0~5RP&B|efJw1laee!DjZ8PDr>zJc^Z8wYy+Nd|W!{H8-{W@rkplX+w{; zgIn9L&$yhL3hfy^wtO<--{IhL&})E;)in&R#WuX&gaTDdZ}_Ki8XYYXTqE&W(7!~L zbcn?CixIa@?r{FBKXYNHwgHQpe$M&7cl7_zkE1!E0pk7Ix)KK-UP_qonxIFgwvQjq zA=dQ7AJWom!I0Nd|1b!W+Ngp2{~hpg`Hm*wz|faDwFsNrb){Q`6)8R-s)%JH|HXb#)B~4ZDFjwb~KB zPv^J{KhY=Pe09}{cUex1y?V;12iWLHUej6H5j|X`^CU=|BmU?l@(ys)3ckooY8F=& zIZv%iQkCS~x0VH9JJR;&Ly}jh*a{w0z4Pv9;qI94>KoWW6E*90hnxHM$1~5{J90Z? z@&;{Wni?OXKaA6qXC=1Zo(6a9%G_={929FSA7&qR-(EJ;+OlA?GZs7U$9!KfI~;mK zmheKxN@c%@wcSo~Q>AhZ2b<#<$~xAyADo|JwHb>HU!or2dDUF27VcbD?)zn6!O7n&+v;Yo;wc z-Dcm1Z7UK|-xly2_p8WveWKnZ{SD9S_$vqRk$gt+(KVWnIZ*Rg@79*lZ#akNuUFB} zoWp}fcz5G_SvZvM2R(D|sRtAaTld8^?9F_C<8>D`?S(#P&!;c^{Oeaf^N!sq_qsyi z6}hkPiq3hLeZIY7Jn!#3=h6dq{=uv(#(i_f8^#q1o9gkQtN+cvJvsKx-#BgTeW&g- z_QyMYhvwJsH2CBZ{QcXQk2gI)m)4KD^nf{I7A@Ly%$Nnwj~@TRJ)^(y)P)S?g8*{GwP-rZyeRN-$kRo^1EJ!Ja5#UmBU7%SJ&`Ity%oi$jx_t zf8@o#+&uDuUtK%$nR`Dm@`D}gMxJtB_sA`)<^!f_BmXw3X=KYwZyx#Bl%4th&k>K$ z{mqEkd;NUGt_z<8l#h<+c*C6|=3M&45l{48G2*5hKQ^M&{-F^YCiRcN>ukhF|M0#M zPk#H@5y$>!=7{MFTPQze#Mu8naKzvDe)EWn&fR^)r3Z}Fbd31f>;78zt`mM+H~51W z>TWyp=XHw~{iN=vCw{N)&W(@Po%Oqi>wdiU-n!n2w=p$et~>Exo9f=X?`P|t?z*h* zd*A(dUDI*r^L%~X{BNzRYrSKjj(Mm%@#$rC|Gn4Zx^J9zV%78|N|N0?y&;FsYZu#Mp>X--WDb?+I?ml(@++(l0_dK|J z-RB2(sXMJ)U$=Pg(RDkGtmF6pE&giU-;0YU{H3_Z{67@0yXd#Y2Y>YI;!X#>R6OG1 zUxGeci?2K9XT|--Jzf0ubw4Q{IOm7Oi~s&)@t5~~r})D9Zx$CVdc648!@geJxbGvy z7x#Fm`1L*RFaGyi?=2pB=v~Fm_uO9WSa(a2`6@1Z;fCT-lddmLSaWUhhu^unSUTwQ z#b0gwEcIVmoWAz*;z#~+Y4Q5AHx|#{`QqZs*Irb7eApvOValy9 z?)$Z~i@&|#%;MbR*A@4lytX)R%id&Z! zzr4At_}*_WE-wH1$;Ge!^@GLPdwrnz>(=)dKi&P_;yXTdeDR)dETZ0p#gXOt#all# zulSpPn_Ikj*JFx5|KPier`|cI`0n~6i%XZzF5dpc%;H`LcN9N<*>uWJD|W4_6uYTYDA{yK0Z(iql@tJnUY4@BXi&Kf4uoe|DGR zM;{$uJmHHw7eDl|am82q>x*Ccz}VuZqjoAjdBm7v)4`*Qo8LOBxO9(^#i=`wDDFPG zt~j!;$h(k-5G&H%a^m6>7q2Fj;fZ93UDJKy63zi3(p{$&_n$=Ozjwx8`^-Sl2kILwnqePE(ew{bF1Uq2xu8-Ikp z7n_{)yoI$F6dwI|^nXvGYvr%>avS+8o!t7Lpi6w3-_X~ooOE~d{-gTcyiHH<-u^Rx zSI<>P{@snwx=u90;gvlG3me}ySa|i>a}Ljcz&~ti`40}}h5Tnd-*cY;*Hsg!k9PIh zw7JK}!o75hTWM$G!N(P*H4YYT=krR_V4=jPz-O^V$3Q(pnJN4p-`|bjU*Y?yJ*$YI zfdWlEYQ_Q$)Fkg!uwsbyYVm>#0jKBKu{gsan7IwRUG4hdKcpl$3@zK5PqOzI( zf7HDPd{kBbxP1~(0YL*|L)423gb>1zP$Xq$Aap4s0Yybg2mvA~Lna{!b->=Eu6@RLI)v8h2g0YwTTT)m3!^xlumtIC|J%(3Du z{gZi9!dB{~-}r@nNp5v#88@i2&C?mzb>h19+(db)aUBaN7Zo!~)fT9Amd~f_SLJJ&`7R&q}INhlWNlSjPqQ@`hc`JZ=j5 z#Gckak`CW$T#xD9vM?_MJ`meVktL+mKR}8XLgF8*uTa=q01p!u3-N3 z$ZD7#+6fg(p!5kX1AQS?6y7d2>IpVYUSan z{#316zBA9jx8@oC#XK!rzBOXRjsLXecbI43S6lqOd4~UO%m2$fBR`m@=V$Xw`H3gx z+IKzwM1BkBs~yp~lp*XHZS~tU^K5p?v|w-YF=ciNPmz)u)h1wMK1yK{R z^;z$e9?;il>x=A(I(bK57=2BAD@1Q#A2Yug-UIu0Gjm)P@_x)~M4bmc%`Ug7c5YGf z9a_abm=WoRJMdcy?~=D82N?66aFe+xc`qdF969$>=B3NzewSBid-lesp_)+gbv=es1nK&#tS9yeF1Y`dP&XA@evd2HifmYvPC19SbwOUg>i zORGbI8%7EB?U$0^3(--^QYud{{+GgbbjTTV!yZY48Y)wIXQPu zFUrg7bDC4GH{N>doAU0@%Ie{t|KQw74cR6h#P3ojw#*`2r^dsjX*O~B=&3q=N!k*1 z@(kR%CL!zsR=pOByzZ>GOfHkvuBt>`nT&y z8QCy(r0l$vj=;i@EqAL=8dr5rV9R9eefqab#gpR^zR{@LiSV7E5IWsZ}#3s!M6V0FE{48=+n{{-)f$CbGA|B|LVNo&~WxtIJ0jSu1P z`$!+)JR7$X-!8cn)HI>idJy#xe1LR{oDhH(#H}K}hqB^+^ooAu7$K<%$`L-)fzIK{ za-gTIvk`y)b~@2Z?<} zg`8RHe3mwjtvBA7(8ed|D=!MI5~b?*t~2N=ZOJ+V{p}y-DeDZ{tLZ?>kQ=k z|7x8-N{%$5_6bGWlo(xYt0m#~!I0y$NgLxXffM>jTVtBQhF zk-mT1manW}LEKVqHX(*^h@9W7S31ab;nsAyMP81zX6XY5lj?!G|4F-VMX+YE%W#@S zt;weRZtA~A1$x!$_>y-C@7CQC%XZdhnK8rinh<9?kQl4De}L0B@op&%*Ja3XaexGe zmXm`r%k7ncIKR8RY8*DLs%V8IyHfhE)9z~K862}-S;NC>av6sr zlq{RNjMZ-KO_2C-%H0V1opQIc_I|i0YgzUt9PIXfA$At5nqE{x6c<&vn(Y>K4Tp*A zf`gn%^cCwvsyVcnHDS7r?Is=7RF{^8IOM`ihAb43NlgLbLa&wO8KBLTvg?{yKeQFM zOPhkTVnUqWr_Xsd6EKtnp;avAV)U-Z8cmpI5WiT1)~oQDXG?$2d--LTd0%|t1)lr+ zva&+HZP88nNl86=B=ty2o@rN@QbdS3|Fd?uSv4Y8%9w~0!(BhRfSa_??!QMow*T$= z%jt{hv}m_uanh;Al?%|tf9{LK&g8|-=>vX+X5#P|$ z#Iv(DJxC-F2p^pxW_N<#{FT$4Tu|f*KtZZkp4>{dh|SFbtTtG zm9CKT<-bd}3FB&HUwf{Tj4JlbFIleBuv3=k_PyPPle8iG26OwpSef^s}vpufJx(#Fq{}V`Ap|=7~!VNXp)N#PI9~ zznPzX?tm@XO($KM-ShQ_v)3Q+PWH{WtDHUN4$S#}&4`>s)BQPVRf}?p=TzlHTTji2 zmR^)|&EwbS{P~;va?&GD<}^O_TF#5rpXV(6bw|#M(Y2$cVDm}Z^_+T@_xMK)VwkGo|(7Ti|6Lu_QM5vJ+dyz8@}m^ zyhGl;Ixjl&`n;!~xjFB&MR(-Q{ORtzeQvuy@2B#I^V%jg=cNySGOyvl=khX#zLa;M z_m#Y3SH6+={dNDy`!4c9UeUbI@@8!RI`3}(_jxz`?Weqqx@g|WOOn0)*X`nMS<%b8 z>iFHgpB%S`cSdo4?}ed(-sjKW*Zc1~2YL5>^FVLb9z(oyk2uU*cK&eh`K@W*KOdgq zO}c!HcR|l_-tD!Ad#8S%3!bwBCD2McBLWIbKLGy9(9{rALkylcwN^WJ;i`QD~?FZ7mM7kj@dxzszR>2hyQ^pD-szuwn-eXDNtdjEQ}cMtDv-aGHS!+XeKP2SS0?(v>>;GewfuX(^bD{ZUyy9XZe z*3H`Pee1nHdk1fP!s|QuX>b0M&wA5?FL-}G_$BY1ue|J?b?z(PmuJ7`ot*NfxAFD2 zyis>lBAUHr&T-u#Du^`>r* zdUsux%ZSpU-O7%z7+3rUyp?=eV139=zHbNGT%M7 zRQSd{AM~B@O_eWwpBmpazFOa-tLlB>%h&n7eBPYD(mL@0Rk-N^6`^eKUrrr<1?7nI z`y=HEG+xQKoA`E*dA8ndo)MnCEY^XCH|DG6O;bWe+{di-3ZtaT9fVGjh`Bb>s_CU-+_7*TB0|r#B6+SIwByfcgOD4qaO_v>1QR z&(G#S61hCk8aggy4IPsiw78?w8tOT`&f=Uh)3M`Ix_va6K8>u~cBxb6axYd*RdGo^ zt#i}#7rQvqk4EtCv#Z744;B90gp1=>{j}RG(q2jVf;dA>1Y``(sdqe)H7dW1Efe^c zWngMbh_UagV(I$HyM7{`S;2S2`YGRQ7;2R7@|v6$Ho2xs?47~Y@mh_T!5R9_`;<~P z)W{uBsGnL#i&<_bMU8z&ysi#s)Rd?KR~pvlqGomtC-_%#(k-f($W{!)>;9JX4N?xG zt+ijRidgGaV90uva_D*$9CeZk^3?jXEl-^!0`x@=IZ4;gGFG>;sBHPzRL;Yu7cAy@ zFh}<>2GZ`^r&jq7#%$C{dJ7QQ<|_O8nR3D^MrpIuAfskzh=W*%hU6STH8hlg^Q<(H z$SBIuW(RGvBYV?M#I1!^-0X!F+%DhFbnVUqj2dw#;}mNql?7K8X=^fyWC*~+N!~vF zH(Q_TJ=(S}Zoi|+xS`N?Lkn(b*%x=AXFrPFgGD={I5h~7f(QSkKsTw&|neri-E2H_|qT0by-j zx|NwRR!miTj!H~5<|`+i>#-i4<|+ON%~*of>5Eh3k1eUHbkdj%HfvQGMdAT{RFjzQ z=rno9sF1`yT5iUR86X8LHe?iO2PNv^v_o6l2>M=*V1-+-6oJctME$nr6-(2tF(U|M zTOn@K=~WALFsS_>I4$(}4W&L7#>9R-cyr3qhB3r5ZTLc-VGr?5xhpgxmifOXns}-j(`Sv1ZLj9rMhK&J6X8T1 zE#Va4-9l}cZww5T%VC{W+~QP3=~!MW$5<+*SJ1{rs+oW#%12nN{3$0)(JSR`^Q`q| zOlJ<`71kLlW$t=aAXj;o$k=U7Rf*Y%$(YNkippAUXJwD64re^j%{Yq;k8oQk9XOXG zoIZ1cB<^+=QpnJgajsHLgpKs;WuKL_og8F5Kn_tw>u-W<0^uAm$|53?D&XlXQK z5Y2z=dJH0B`_bvE?(~?)sU~cGuRg~<>(uqCW%GK~c-DGVc*c4?#u7ely=p#hy=n^c z?G)04YmCLMFT(fE^fhln-^q#koVKi!=Ylt{*Kr!TrB=tM|2D!%`s)&>w{{&)O?Oh~ zbfUKrJ^!g*YbW#uaG&#Y$`BFDyCCZed)x2QE^>adE>Yy2pQw}Xj(X?2h#j*;t+N(G z%E@l>mfbF%G|4><<&2*-Zzmid!QG65MV=s>w~^+%83&V70hz5cs{**+SXTJ52~gGt z*u&#;3#_=#{K7mE_}q@ecH=Hi+SK{f9wQ5*wl!jqF+s`4DgQ()`IYfKLHsUt1`9D| zai;RaL^urOoZ(%-9Ty07xJmf#10z8n3ShsBoP3k8b^pW+F-y!8v&9ZSh@E1$xIx_V z|C)PnlKwgA#))@DITNJp30y~Bx`wzXPc>W(lx6O5(}oFksxYmNy~L&r382r@K$(ZW zAo^M_fbR4$=k3I;%z3wFA|8u*ya%$VhR2!rCf)<~yNB;Byz5_E^eJVS#&eqE4l&ay z<9BA1fs2@@$$LojIeB6S+yBjYK*!m)Vmp;3!?oOW{^+Es|!0E>;Wlb_3OZ+RN z>jHD!vVJc1V~wacku)D`ier!p{fQ`<(-5``PWwsnjMR-zzH!St^q%=AB>Pzz9-H6le_|j{ZG|xzVMHvC)&9Ip0d`%`k5#14d7nu5&j8%)Wrp>X0wL0 z%xnwLZ7Tb436>x@W)}Wx%=GYV{sr?m{Wr+FUOy5gzG*k=b`SE#%ubC{`WhP9WJPys zC}*{I{(nTgEpM0o;pBQV-gM|n<=L%XrS!v|J%O}Zct}{a?2da<>Q%UZy|Q?39Do{I zPheNnf$EDq`Wl3cMXC{X3Oy<4Y3yCEB0QaTg_GtR_c8WL8RFm9yf+QPJX>Dz-Z&WX z0rh77f;kMyBT@&69(`gvO?I|ZnW3i8Xyf-s)ru0?wy`8+X6fwuOvWaJmP2_S z!Z-!%Z)Dxk^s0Qh9jK1E)Y3KC+4^pYf|{!3^rg*;V9e}lZ+r&s5IftMA(u|HH-eIf za0CT@dAH{rowoXjCBkT?+yJyZ&K_^`8=k6p5?_m=`otv(0C3R1Fdagh}Kf;*xYJ zG+s-bZZ+b<_ct;o$btvP4vw=Jlf#G1pNiLch{t(|w;5PDKHUu2I74r;P)5vFwpn6! z_&UU_yOnqKaJ?DVEMR1@xU@{#m1v3E$2(?ngA_{+C}?9I?-&t+ZzQX|8=QG%#clNU8<2IEvkrzF3c#lhmbq}Zpw_Jr6DuY z+^HExP50*5{*gWG5|{b0rN4|zvQ&hX3vz9UUPINX9Y+6r`UBm$Q@g>PY&tc|xHl9} z4qb#zf;w$=cXrE0SQcj4wj1T0tIy6}&T(C$VnL;?E>Xhi>*!kzOJsqcC0jPi>`=<+ z)0Mg621ySLluTOA$tk+9?KBMHZaA9bm|T^)QjS~NeMoQ=*NvC3ik`J6?OoPISep1d zN*~3-@*8TVaa5KJk8s)=^9nk7S*%WqyF7!VtvKpM)}J#I z!T6BHb=}ph))GC8!Lg92xVo%0XUl{nEV}ITWQkd)QRjtvhrp%-$8> zl{ri<$Q^vsDyyc}u^ocD$Y##d{n0M`S6fud#^Hhz_PeZPk5L!#X7Y)|ofN5^+Z|UE z&m&rOmwuw8&@PuvXOF`2@+6K^YA#(scopwzN?}EsyqvG-yncGEuVJ|GvcN-;a*pj)2@O#+9 z7^r7hSdW3W@^sdIZLLblSgWjwJnePg z0p!GO3VHEka1?H9H)h+CZrtNRU+ZZ59e<_pZlNy%O(WLoy=R5!mvE8xPDIS29cuQT zjgs=GMCNqu{mhP2j~lu?+xdUI#dk)~W!6N`nsRL=0>2o~vuAlg9y_h~DU;dh3v!ARIqsE?B2$ihReU)zP zvBy275Svp{L^%^%2+RzU8BxY}m$^Gw-JeA<1l2E;=1qr?wSN4^oU&;rV(z6CWxK-9YAmHIiCHKTdT zKi8`YZ}h6x_hn2Z|0mXtD)kJ6w}H<_mlaOGj|9!#q^2d^O?aAiG^su43djiawL#YR zO4^X0o}Z-WDhH0{St61dR%TN5!2;xnjM@<+a{Bl~G@V#IEtjcT>-w+~gw_jNLOj{} zUBroo(CSY$Mwq{&?9XYoI+n`||$%u&#dsADO4rOA?L>amt5bGZtgljm@?>vR^2|yNr{@=2X8%A9};b;s!Cp zHb>T;`$Y~jO(Rv794+f^T+l9)q&>7mx>f8>Fbm2HRxPM1ZC5RNmY8rXw4bfT#;?KI zn^lDO<~cl}u$=I#T=##oS2)%N(b-%6j18;sgkD2Vo^ZzLrwbF+e%DMK(knT;azKxq ziLY5X?6b~6KIi7UFXjEZoXU}(($SC%cvn|N+< z9%}P0edofwJEy;w7YO(8qSm|c$rNwTD-ZJC5;=tN?=)}Ay~lX1KOF1*Y07=xs=-fF zw*BhO>$9(K@p+lPWA>fk`?tTqckpX#d{sYf^1XIlgKy!&i+txivdveseY@|v&))Wp zO6l((P&d*4Kajsb@?Xl& zggyBti4Tz-ol!eNuC#TOYm@Ow3CvLV7d$j5KY_P&6n$`1V$C0GPcGjrKBGO4Rd4~3D zOO!O*1GgfUJQL)p5a+X1q_W&{jz-r03gaijMwjopVB=33jhY+@2js(;W&e66`?-Kl zrKBeNgSpB60lCR4d2q5S9GvWzCvvI^`K5^EnS$8j-IJS?+`sPtf69Swy#v&M1A8X- zA3VT6;6O+3WdFA@y}R&D^kR3X_8PO22kY4^ZC@Hg5iQa1Txt&qOS4&eZNs$#wKb`Vwxv*XuY**~5;L-AO-` zISq&l_vD>tqda9hU6nPZX8CgEs#sX%qnGO#IcinT1Jkjh)!0?8NK3sav1Q~IQ)%QT^*aosKTi$8U#7s>Z?M-oylJ?|+cI(t!UZuSlCg z(xqjGff9MbK;dsmmy+Mwg@I)n+sv5QdCp0j4TzO(PJ~lxPPLVdi-dsPCovN!wgVFSFoaNIzr~3483!@-u6>|dy=zD(rY50BftelV zTaaTwsDXi++N^4r6`?X5a4vwdHr?l*_o6U?aOPCdoHfdeob#Dil&WQ|> zlhL${Wg5$4rG?BIJ=V*a99~DM&yvGp@r!=PwemiCG-LKUf$8$vVlA-tzl@hixCIF( zKj9W6+=3%X7l>2rJ$Sapc{2Lw=wk|CC5PPTAnY>CV!>2dQDTBgueof!Z0OTRvGA4sc6wkn*6k)0Ncl#%(Jd8){CXGb#g4KJk`3RL_!@*Snd zkue1(4n~;hpulylbL^vf+Y3OoYAQqh>isY8-0+5gwr5a^&X{$EmE9z3e3YD_#Cx`QD0wTN|}E`bbkq&i}PRvc~O z*OAP@4q0Wb4 zB3&a&{6-3JK8>0ff2Tv~`hqCoo9okZN5)z)d3$CY@FCt#2j`{S}>Y}vI5 zvYEDQZGvnT&QYng_1fT&M~ti2#)Zb1cQGWCY2HO^C~HKlPaIiH*-xLinP>YxapXAa zQTnfeCFbe$W&J0RmyRdj(Xa2My~D~5sY~@;DwgCg%e02FwLm27UzBG8(Ik$^iPO50 z@`v%ZU@7ei2%g9jWF1x`V%`4hWZ$l%ud}tNEv!$KwWz@`?U;6JQ3GYhz5r?(xA6UJ z)ShANvrg~YJ{irFP5umL>i(2{3W079chk19`}dQ}N~>wMFPX&9bylV`&&)syBPps! z^M%Gu4cAasUyXZiLVSa9QxkH!A8-}n!n?#@Y^`!9Yg*NdYv_Q&G+Hf z-&kAicCRFfq%g4$&iXd%1>^Vj>$K%Qitg6aIc?bX&pa{)6mPE0Rq;AzAOr1vz>z|4ycdg5sizCERf> zW6>rxG_-TK6Ry7%4o$eT1^0R&_#=LNnS0xj`)|x^{F!w26Y1!exOw3h$t%zRE#UM4 zoUy=^xr7(A%-NtUp0V#LJeFu52jdxEIb6~JJrqha{bT%DwX*JQx`-m5ouL{+8&m*- z(0cv`J*H<}yg@}S+Mo(~rd*2Ocm@&6d4&O@Z}F9Kgs+h`>K=&j60?OBz;sF|BD>O9V!r5 zxP|@qTT}`JK^@Ir$ptWfi?aCcPQU+uIfErohku|cg#VU;#X6o^&UI)P4&gnRf8EJ& zu-+h!-yt5qCJjZ1!@m>%50fW9Cp|p3L51JsTQh2Y;@jiIGc-R&diV?Pea$Tb_1>t$d-2?g8GX@5 z{5AF4s2Xv9Cy7$tA?O>+8qN0Pmy}F@;yk4!)i8*?eLMQSC`eHivf|@lc9n7=W0(6is z2v%{`T}Ss8ur+|Qn(#`;Zzc@oQ^#+N0xYX3E~%2s54!vAETm|!rj~9LE!Xmr*ix2` zcEmq*{3eYYR-|C@n5}e zt^Ic9xLMPyIND})P00~#oSsry&e|>AukLQGXhyNjQLu)H?ZV<_YC7q%>ou*`(i-*$ zGk0FX_UVf1B{daNM$%2?`*b!8%Z^}DJm=JMFu1j_f<-4mIY7vKp9PkwC*C9%PspSWND9?ITP)>v7wN%SCq$ZHVXj`)Y}V%5Cd3|u zzh1vpA=f^JWV;jxNAp$Imj{SbeLjx8zC4mn`vAE{TfTMFmj7}cwrl+`MTxV1*sO?V z41FDGa4mKABF5m?n{?NTSogs;kpAdQN}#j!&_z0N*1Nb4a>G-$hZrof#4R%TC4&w!{*^B|!g293Hr?UMeSxtl_fXG~&>xf_te&&)UIc_dNmo}1JKV5*)OYdIHv z)DIHxEe)iT^G%u%v6Ft>X~MeDsBirP>FW~euB*rw$hBN#(wpop@FU-HIc8mkT2T+O zwy*`9{!fs1q4`_tB)9z4-KR;%E&rSS0y4Zxxulm@Ny9}NA*Oulu&#SeX-O@E9M0Nq z&vUeWU&C)w2fc{jse=j;2VN(Sy+IvRT2;)UBUR1F^7yQOIeQvkieyu86R$3F1 zlS*b#2~bbyab_krWQ@ed!~gk z9?BrGqMoryZsC(`kT1iR$Vdk?rfv-C+I`pap&4sy6V#zh&Q=h_^mMUfjImxuM8!Na zCZO#Vt#LbSylL)X?O#zl2yup4LDni2yuAsxi@r;%hGFaB0IN-Aj|V0b;j!M4@4 z?ZUChK4`{eZ)Xvx-MFm2L&|qd?JV7!IF^(zWAaWe$iVX$Wargb8g|^#iRH%bx(;@W zmn8<5!Rz`L3cPEi; z``am%+S^^%wcWDoFnJpS+3MjEk={6dF(p+-(T<=P* zHsOfd67DgeRYY@01~`kB(g4uwGDE*L&MAGP_?)<|91*FQ&s#rwRGURAjZdy0SX;SZ%y4$sxvwDXnG&HRuw)qK0*?IK)7BC8NyYLfRbq=o~w;gfRgzDrR#U&05-Np_0(*s_K|_W42q132U8H z6YC69P0^#2Bo?`qVcGul*N(55(JlWD_$PI^IX9l=`TnI|c02J(oT zzuKszJFc5K^htEvFxx&qEZveV*G#ROgX7}u9@_45yH1IP_x1Wq-3I-Q_Pgv!H$w}y zWlo=@`Fr|nKhkEp*SNLm-=t~8j$2!H+oT$P!2LfPw;p9%D!XBvwexzx3~}1M8`zFA zy-GLY*s4=5T~6^^x;3XHv=ZM{RBO>u`qg}y8GC1aM8;_TGpA9tYzaGzs_RGVUCd7Z zB<{bs1GN`B2{$h6kY%fVlxLSs1J|Ml#Bt5>n3!?`zH?SLjcT>C4=kKlh@wXpiUwt?oWKaI?srJyb z2)pukS9JA+-u&&2x?Rz=JAZdaU2oWfzk8s27v%czS7gPmUfP6S+OA&M*Ap2rrP4s6Au||#_$y|KTX*NL*e9m++3qx)ZsD@Y$Ka0GdS{+I`Kp1e&eeA*@z z1Q`=?>usVOaP-TVgr0XnZy_}GJWHhjyQrjo`suO^NyOifE&adYbIv-Nw@9H zX-PwUJ2#Y8u)UXq!{y+^Qgf!bJm~?ImB<0+61s?~xVXKB(dyEQnIUQeBhcR%o~^8i ziQPK&vWc-)am+AE^|-*4n^`PSvdz|IeoTbfQnqKYUDB~n6vRc&_nMgf@;xqM{I{%< znQd9UV0WzImQ#V6dO+77QgIY<4CI1JmNb`CiNDe0QY|YH><*p1PDJY~LE$93ZEDK> zPE1OyE!x>PQ?7yP!oFqHIxaWVY6olmx)a)!#W5ojERH*s+AgkNhq*RW0$x0=`>-x+ z#p_ZnyQHM85Q`@XNrqkH;`O}EV-ndiiiST`bVXDy2- z7~3+JL_5n8!cc4>^mKbu0&r|MgPla1Y4nce1-WF@-NwWKRQ(rhEgVp!MhH|@?? zh{qBxZM9M2`ZQxiVp4QFE9Pr693uA^{2njswrLl>)h2f8g?1hmAIH5A%OLn+WS4$$ z(p3uSs&ElyJ?W~|RrW_H`&&9G`&)lIU4=YSzB*~kB#zJ+vQ>DTG#1k# zannf}BY&ASZj58qtXU?@=9W!cR>$-W0b%rryexl1zTU`7`C-1<=}QYzC6!5%P17bZ zurN|5Jf!MvDaxo0zXV;f?yQ|ImY+$Sh!s{mVw{4Dj!V~RE3P~ikEriD9y_E(9Xj;k zI)sdo>liAge?(yYhas|aff1%{(M$7Zhr5qFQWIJEh2FwfEWAmon8yvMsrQmkQFD+BaI|Ye; ziQpH{x=pb(EuOKL4LIGb#6B34-E@w3%3s!^m?zS$V_fgr!|sn-BCdj#ek1ujLOeMA z5dReXF+c8h>4P;(Jk)K9=T|!_{?mB)kKLPY(OH?Y$caA@9AgB!&oa}#-^J|4uG zSc@x-wN56Uj*Rb*l~|_8fQ4&L|^MRyH6hX z(awc|?#RbA*}=dauh@Y-h4xrL%8k6=8n?F*JA-2H9qsH5#HYn2(MetoJ`s0+$|LAO z?6_a@a?7Leq=cs_eI$@1Jmr^=pVO^*I~{-=F~!wUoVx!zbj zi={U4;qT8My>;*3HW)F zFTVFhB&VLr_=1cs7?<_as>O{mcHoR)$hd=;Wpb~v*W_q1b9bG$Weh^hl$erQiGOQJjIi_eak@ z{M%c<$@q?p?Z|jf3L`oL5$&baU&uEt@pRaVSkA|Ar$Z&*L1zhfY~lWP>F{?X6l2iQ zrOV{-GpXcvek`klLrm_pUdJzQx%~15?}#10NSUAz2jAYrnk91-lH|n>V{}p;t&lBC z`rIq_K2(wOb_)+ZW zBXI<2@&C2)F-4l+AD8W~_Tz1UI)J|iAR0ir9K_#2h@}49kH7mN5Jqd;m!L-iMSet5GG_%2=c1{Jr=q zW1R!|Ci$X2`un0kiNCT8O58tyzvAAVsw2(%Nj)v%6kFjBsFNb`c=Ufn+C%K5KRuo& zYd-$T8Gw5EWxjirfo_W=@}*TpCSRpn?Hki_Ibp2n*@y7uq*uk+ z5xqDo!X7_N*)^;JJ;EKv55uCa-T0xbyx`QC4ujJYs!m_EasRMt?h`iSahVniH}r}H zdRj{M4QheBv;Igv&RoV+jCrzV(>_DRh}jK^x?(v+MKZ1)eBmf(`?wP^!0>N8Hy*nWVMhV5wX=;j*M|rwdy> zMPwb9YPwSLm#Mv-6>(T7zn#hxvA{3|Ung@atC_1}M8}?35rgfYoImVFa;M~8v!^Oi zBw8B3dBE1G)XA>*M_ljU^WOTEQI{Txzt485aqD%P`MOJQic9Yd*ZWGBImU%jiuGn1 zB2gqImi^;fqA0GC&Al#tagpeh9BNcLq7T20`(Na4x5dx2lW(xaQewt`i6UdNg!S%y z&AMe1@^Mk0gl~zW4PyVl$6|~=PtYM#v?h2%EL1_tRh3g`Yh+BLns#@a%fmJ z$n!v8j=y18IJS1#VpyW4B&UxaW2$23H}5-fP?T25SP#paJXsSn$BY|)`1s5TW5;u(1WHuUjx z1+Ofg$}b9rGGu`|E7c3k-Pz7@SaO-XCF6kd(r%%Zed?4}B7#X} zG>ct>X+5KQ?akaBg!kIsHKc(HJ+ux&T->_CzerqbZ+hfTR+5E_S zMww+6J#{0GCE8FL|cVtA|dOxl)ss${gZdU-w~PjW|y3t!ztfIUD!7>KYvMJ{=8{3XHS*#F}Y{Yq+YF?C%t;MokB~;BW6FJPnHVg9uh)h{~Bki%9 zFdGWNe+y+UPbq8tcN53=a;CoUC+rcP!|vz#&U-WOO;8Ap$hD%bfv3#HH}KvlVt+_A z@I4644`609>Yk?k_Y~@&@fpklKZKtEzWaGb_~t>K;=KiZO^92c5_(x%)_^zyfxm~P ze{QZ<)18QdAm{4ar(!5w2ZdX3+pA%@YjFX2E5x$)X%$M}!I&U+9q*wyhGmJl_keBQ z%PY9YtvEp}WsWt8vT$hVI1iiowRo}-k8#BLMx5!0rx>wp{@3cK8nK*BpvBXSc$_1i zZp7mqu@sq-LsIKxszyoe!NK5KWFJ=|i~r716Mk0}v<>wZo;}81V)|oH(>OVVSyNHL6d1l*_R$%+r z>vz-NKO2_h7hTV;IkQXsyKer-_oP*)_1`}D*lkT!y|$mQ^)j!RmppPet^d8X4IT9B zHq<+$^>^V-@&`}J2La?HA6SSBp&5=@c$5?&bj0lODV-I}8B^juSGcK+s&rV9F7niX zv7p&p?FtuYvb4 z$o`6Ep6%-&x$A9(eJoaX_9PC(u4j~1cJ-CY*(6dgm`cDo7|R+q0&8RY17#mc5W8aQ zedOKVKNR@JxTo+(+dV%Ke%u{s*=mA6P|nzDTH2}c*lPU9H`{9b=-2*gXO5_Gep0X4 z@Um%>k+=LUOE^z(2_aU<8M{HAt8q7X>ZnIU>;>eUw1>Id6s%dB>2I@NCYAI2D4QFH zZRR}c&B{NVGoGP&YluC|l#8P_b5i4G)i{;!e)LR2{dDxr*sQ|SHmjDL&8n5}g*=<{ zc}_ttoAV^mmx4I#gPG{h*vvVdFdlUi(Q`OvOu#%3_GNBX4P&qyBIu8dL>>y$_?C`& zl+TtIckq)vK2qmN+LWh0hfOJjEHrPTQS{bmYkgHHYes! z?KVtLG}Sn{gEVG}HQd;%LqRtowIXftXe*Tqnz=Jtd(0KC%bY;{otBCFwaM?&WVMyF?c_n z8Qsk>vU0lONO!Cn=Ml7ah^3{D(vFF(v(TTUtd+2Kg@;-GZM@{p4yH{orC_z4Oq^I7 zT8sfY%%*UA7ICYUxH5|QRut3dBpk8V{$^{`YP8NGI{_GH{HQ=4IES^ zcVWx=NeSDU60XbUF5#N;e0v+C3GZcGwym>zs`Ck78r9+_iIXggli{>36q-+XLNwZK zLq2owwlT#~ie??3I6-P{K1wzh92HdaF@rPYUf^IjB<<=Cpi|yBy%>{$;a_xj@)mtq|B90 zNGiIVkB6Ua3XasF!Mt0D;inw)$dHrP31LSl4eJn#d&xcJrOUK8;~~N@jLS{2aI#I3 z(gLlR#3Vq4V~ta<+Oj4>7!;BJ1hF{R$rDmS3#P420x>U=vdr638T7zfoeH~ACB=>H zI-c4W$_@n`UbwP`+ie(WSiVQOJ>>xQgI3BVz5X?BK2rRxY(W zRBk(n0Jji3+(KO7wlcv7ORG9DuATmNrpJu?Prb0B%I^EMbEI3?&d%Qmwcm`W6-&+4 z>Io6mF=pDipzBau(TQ>GLam+Yc*q#%Z&u7p{8R zBtpq+9hK>}t(d|KQ(msdr)j3Rze^RQj8bft+}*wUoib0-cf3s;Yu{t9@t)WzznH!D zi>|oEb)!sMUc6_2GVK)IfE5KsD30&i47)?%HUO;&{_V=IUCDQ1mXtkX<(Odxn4Fyn zdKd$>9pXzL9NXSYF1-?CBhuXxjA*!p@?E!AB@p5(|HUrTi#Hvc&LiCkc6XTJnACO_ zv=8Lpc8>`I1_-8vV%xsmVPFTFDV^i0O!{eTW`WQvX;vzbh?EmoSbt? zTxZ`q$A16T+^*|v{>d!KH`lxBWJkJ{+E@Eo(uvf0G*2Zx+sRUYcjY?vQN_<+*QT*M zjt#Z!50N8^P5m{NqjYqoEA=jBX@N}OyMFy#?>%^zFqS|yX`1{Sca+vALOn(^pJ8=r zm&uxQJCN<5))vInu|`5R0Cl2JkKx7CP3M3q*{0BmLX$rEW+wnC$l}g2VWq6?m5%h=5%aUC)o6r4p=+;`1)6EGpSZ3BG%&)ASQ*>fw6{jm{ zJvHS;T8;Ut%~?<>%O2daVonwNn&db&vqM_+PALkloXMtO{m#q_bwP<+g~*F|%oMjQ z?qu<3W;;1i(Ozy!X&F0SUDp7Mou#2*8AIW6X7Ze(pzRpsIpoHy!bwy=m4n$5jKB=7 z!UVMmH@O7Sgppgb{uYokbP{Co6Ejq@+N7M5g<`>mxeH3m+DXb;_$w+(mzS1QC8&1J z$d?12D$8o5LD=rQ*?QrYjE!NsCAAyplyE(0f~+0y#&HQ>3$L<*H8+^i zRA%m4Ygo;=7-#Sn@@xt+_61>(ajz!iVs3~>s2)po^f$Wnr||C9pHe0I3u?;S>FvbK z_UdAHxJ5$7ea$>&49?=Is?EEH_vRYhTg!MJIA;X6tU(X*9-ayJOG|R$s5LnwxQq2L z&UslJ7Py9#=$x4)mkye9Xc&hr1xO24wOxz7E)>9v93Ag^NC>gp;L~^dZ=Pbt7 z&tRPVRPq^fGfjv+XEVmm8TR(fxH-iU_n4QRyR{nSs%bNM74r&DC-0tO%=e3Z%zw0E z2lMzPYuL80r+ggCN+_+Jv%+Fq=YOBwmMLCwD9eFOaumPdeA#;{Z5MOp0ZSNk!)rgGP5!wl@|(Ou_{)aUw}Wv-G&sY!2oU5w<141F+#PIs0pgwb;PU=U~S zQ^p&a@6;odbt6WjAVbbo;=#118JENsr9`*Pm1_0QDL+QN9HoSMw(`2vi@Pi`dWE!_ z^g0q+bLNm7&Z^-gD@-L{n)Z)zz8<_1FQ*%gx?Lq{m|HSTSg>%zej~WhTUHVZE#Tzw zco=Fuj+(W#s9B*;ovd;zBaF45wEdhpD&t~eugv&%8P?4IN;t?`8}ykFa-z%;+T*5m z^-2XuZ^1K3yXR7;@!mwb4xh7G>Aid0Agd?NrO|BcE;92+DSwb>_;D49Mt}W=HIeW=MBq#K6h4GjcpF}aSD*!6fM?(d*bWcF z18^_g1-HRXa4lQ~m&3(y0h|M8z$vg9)&)}ec7|w&! zAPn_T1t&r=EQSRz2d04+CV&T0VF>IG1E3G|fL}f%oZw6N5Z-~m!;A1FY=isZPPh@S zhD+c)I1M&IEmXn^SOQ1GJeUqXm;j?;I2;W7z#gzGw0%mRfUn>qcpF}U7vOPt818{v z;TpIM8sIe81Z$uIN?f=XBd0q}zdEJy*lJtFch;SMd(3{7w~oCh1B0*;3{kP9PW5cGy0|3P@btMDY; z3)jN=un8()G0cL)VL0p!J>Z}3M5F(J7ho&g1Q)>;2*U9&3nsu}&>z~~ruc=|;R(1K zu7WdR4J?IukORYE0JObD7{ROXXSf|Mg_EEHj)5sK8V12G@Xec~8F&KjgiGNhD2JoK z4{5L$?0ADT1}*RqTnlGGH7tgyFbej8w%1V$e}VhqDmWF&VIkzgq0k5Z`5OL&?QkQU z4IwxNd@vMthsdk=4IY7O;8a)z0T>7SL)+g;Yw#4@2IoQ*90e2MKv3|(E2x2+;VdYJ z0A#{I_}Aa4kKrM>9M-{N$b$o+?XScsY=f&{BODKTFc^M$nQ(;%;S#8U0vH2(z?UuL zeYg=$fS01Spto}}!94KN-0!&^__Rw#pUu;X#kC!7WIVL$lCW3+`} zC5(c9{y7@`6VyRA>}V!#APjy`(7c_z3SRhi8+j3GVJt)*CA?ud41u>EiAMhbb6^*E zcZ^BOa*NwD;;FlZdtH3YUBZhxnM;Qg5T}$~4uU$ji7q&Oz zerUX!^bBjS!Yx-uqjTZDKav+=!xi}Ta?&nbei>$6%6GWo650(HV-8$-5#`(;s5c;d zA$jrw@;b~pAGbHq|2mJp3`{(iGVC16>$53S&Z0gzGa5Yvrk{adPbX|oBh8#jJe@+` zIhktbB+9lesM{RHVB#OzHd2mnARVtK4%ZRhYe_Tpw1w&j*ILrn8tTCs)P!g=Rbl38 z;y6edUP-zwCvBAB*Hx6orMP`1b}T1sN~qI|Nk>buuaJDagnWHG>0~i+e=P0!MWolG zDSsAHb{7yfM^X>YBi!c@9!J1T!ghKz`q!zHzxk9SlSr>V%79$z$85@@!)Zs2BaLQ} z4m{-lQG~@v@-}j5>`h;00CnD;xM_FVM!S(Wdf-Pr7dmIcb{vEe)U9Kbo;ip===xU zqSxNtM*3-suDq@-`pOk;(a$ezi(YqDTlAMLZP8Eb+oH>YZP69W+oB&I*A{&}&=wst zwJrML;cd|mMz%!{KBz5v@}6zj-$oyJ2le2NXz%BDkRNtLJ=g4rzH!Em==H%JgwKxX zO%rxRr|r8V+Vb76lvlq-o38ma`poKIqj|Z%qW@R&;4j3(FVTDU`UUs=96dYZXVTSA zv~7Om`;YkH-*JykM~fApW8zPPUxYsvbd?aZx6Ng(`0qb zGs&2ftQMb_tcI^i=G>lSb=b^g^~2a?b;u#f>g1GU^e3zJktFrrdr9iRSCZ7=r<2r6 zTa#4kT}f)t^-1co%aYU|&r4GKoyr*q8+#`lCygfY*rICJH5r5^iOsdGP2D%i^TNAED4|0Y-My{6RDuPD{;udMTY zNfB0@QS}_h8$8We`IGGWdz?^hR%**O&a!=kaq6u~?fW469Pfwwl-lPW<{6umntdnZ z%eO1SN2yP5W_!&|?3TGfsn@PkYQnWjH8v{M|7zTHB|AO;s8qw{N*#QeQukfL2AYeN z`t}b>U49{Fo?f8Tjs~S3Jdgbe=PH$V4l#DNQm>z>)SYK2b^7VJ{WLCLKb7Unrzkb# zWcHq)gqkgcydDA~1U4zfbx*24OOFm-&)%1Hj9IQ#YBA$dbu5{_q*kei)+qIl8q`5% zwNgcl!Cp{BSga-mGm&sOR97l>Z-r9-VyrS7!i*+Aw@RtKq4-4HUdm2KIBum<_pp9_ zcVJ3ZJzk>JA#f6-?Vl7AHgL~Uu1bbei|}h9%ebLsiBgl`z7v!h0aqVS*h0f%%!1R7 zV>dpWd@N5m?HJ_YyhVgNTzRxo!=ULX_Ho103mK<|4;SEe*aa?OoIDM-&*zRI_~J<1 z1qZ;N0*uqam-7f$7zR(wB^^LdxN(kBGvJHa*a>6d%_9g07!ED77#D>@;KiAQEgS|f z&mit$6udoMsk0y#zM7`gRd6Kqga@ZGcL77-H3t08fhq7yKH&~!FcjXMOxl12kOD7E zA|1gr=n0ScmD&t`P|)ndjW8K{z*AoQ2S>o3@V7jrE`{Ua5co8gv;{Sg3q9cZ9P$P% zhN19HHfaV3oOl;S^X7(_sYc4quL>Jc1^;5Nco%WW#}=;Da>MKimrELKQ58 zY&Zy#;gb=BIW)mVuojlU6i9;<_*W`Noxq>rCO8MG;aHdisjw&fd$>~Xz!PvATnKAn zDa?XQ7zD}i`7qKPJPg;v*-!%~z;y7yAm{;K4P~ntG{dcMA#8w^FduSZ81#o<4pZu5 zco`mno8SW204reu_#h4Tfn@mlP|^%M33tO)a3-vQr7#b2Ar+;V0Si(<@h* zI+#2LAHnPJJZyuz;d;0P&Vr4w8cJXh%myE1!7vyEdq5KW>j3-+@4(CO1Uv}0!!>Xb zoB09)vsLI=BqZgHvD~1YtQWhWRi9yf7Bhz=D0DAM}8q z_9Okk$M81%4W5PVa6jA**TH4b0H?wRsD=}v2o}LSmdY8R{VjD_{v61#@94;t4*7 z_uvh98J>kd!$WX4+yd9YWpF;60h^&7RzoQi!LcwOX2E30fh-sahr(bO2>oCe*s(X| zCwvW`z`O7|w7|3Q7;J@m;dZzlu7r!>TsRHFP!Fr&L@0*EAWi zAJ`LmK@$8tkh}_C!bk8fybdqJbMQDk3ircZa0^@uSHMMZE}RaVVJ%ccIjn#}I2HA79NL3;Q_cCZi5@(YPbw8 zgmd6D*bM8S1}dQxis5)T8s@`nm-g3D^b?!F_Ni+yd9ZRd6X>2<#^) zFYE?Ape=>;4gZ3F!k6$Vdv;YPR?u7u0rB4~iK z;dD3|Ho-cmg%DK0iLe}&!U=E;EQBLr4$Oq9FbQ(ua2N|7NQYE73@jK7`@uj+fxgfS zdcvg1`BSD&n?7UatRrU6nL96Vwl{h5-iW-cHFVCCl_fvc)QVzOq*biIr`@b+3bJr2G`e8b zw91O=8I_!Kz;&u-VH5W0J6Dfbpgf;r_bd2W!p$v@e_IHvNE=~9I7x@RiFa8;=x0B( zJX>naQ?D!BfjYhiYwNgEx=uABZu(W?BK)+(55-Ob;}N@g0I{2cRpP&2RpLL>b3~K= zg?&Fp6aQIhTT}}a+BkPi1`&HkZqd3H*t#jc8Exvth@43D?8yvQf=EtOGT(YIa+fG_ zuVZAvuC<(lW$8+F7cb`iSy}TrpJhj^Oy=NPa|mq)cXP9^zGVzgX#ZnfD2L$B3tA;r zRh3-L*iGCQS5}n}^`f4|YsIUy1q~+<9_%%j-_eui&z(7UI+wSggk{;GRqPU5UBjiz zasW(8MR92v%bRMr63Gaxnu?+|MJzvNtyG55?=pw&yGuE(j_st*&R8)tZtrjtj14 ze<15lanf(bgX?rxy)x8$Gx#oirYboOQx6A2UqI#rHwb> z#>cqhn5TN&Je!{T|9CqSz`Bm=?q6rMjR_)zkOY(57(2+8o~$iS;#IQbEnXsGC4@M^ zTApkx+FtY|TXsTukj+U_dhdp z-+fQAlTyC#*;i+lGiT16*|#$e7C!7?#gv279=3hf`+vs4wh->)-u+_^#-DVsELxZgp0i}oji}3m?_?l$)WzEW= z`|}0B7ue0%qi0?r{TXHYc{`&C%+ga4V;9T;oBrM5#y_Wx;!V@GU$}ay zx+(n`!iydyPTa?VGvMpf8>JCp0xuJ|>6_xKNV(4vZqn0~Svna+JC5#%rcdXMo-^(+ zT@4kOgC5oy%q^)0t~t=`^f9)sHFbU<$Mc=X;zW>I0W7e?q83&`DgIQd>&OQCt(P@HC6!^s46wD9H?7}u-4t$zfcKw7C%$sCR(M<8_kR^j}ykn>3 z_4Rl3Z#o+t`11MOSb1oBZT1T!oRlXo!~FWtUlhaZkzy_#X=R z(0Mq}QGO~8;p6sjh!@<413!{+;8SMdx}UjQ8SwbTm(Y1w{CN5n#>Z>!o*#4fe40DK z3n31lu7I!f20D_1xqJDTyV9gM9^&tw zMDpyj&%)`9GtQP)$+ONrWAVa8OBO%roFz}LIOi$nRy_5*bDwtpc~4(>{xcRXUb5tz zii&g3JMa933zt+>oVV~~m=}P0!QuA+Pe*VJ6i(s^a@oa~KIf8U&$)DY z<+2Mam#@6=qE#y|dgiK&s+K;hy6RaMS3fIrNnDeOFRh7JFMD?F>Sr&nefBe#u3ELU z>f%ePt1ro1x~!&V+3MvN*4AFQa^US6#X8sLv!<%9Xoc{)m_!xyrYh_*P<#%yRB$;9=Z(gi>ox4 zn-1VRH6Et_05|kAaC`DLVYuI!!2neI(X{Z6XmTn2QtbMs>5nkZ_#|Tt|5l{>#MzHB z7Wwq?D0vS1njHIhmu)(5;0>Ett!-ijcJubm-eD<;vw=9TN9cLM;^PrDQQNbLrc?EXeYhJKMRSED|V=QPLKhWd}PZoTjb?-)4THjg`nJqK~X?vFz&+(zREAFCHx65_%1g6g>ls#(G+D!?=0nuvX|8f%-m!pucfty8)RJ7 zK^cTDXO)SNOVVkXa0P^?o`c*y4R^6e7AqkBd2XLK9>>5&DJCh;hIIZ3%ZU3dEl+YZ zPm)yxk{{j5i_)L!-gv#Md(&S&ZuPYGE61Z;-R)5hD9!S`-gw}EuWwdYJ$}>I9De)_ zj}Hv5dxZc&Z+pk4JEDno)afe5=zUJg(Zk$wQ--ActrhPb+@<@#DINAj?CDnbW@q|s2hBG^yDfA0 z!jrUcKiZ$QiFy~WQ!`iZ=7Lc+<|3wUh}kohdXpk7j)m6eep_|LpU@VTdKQC?`9MRSD&O8e> zanGPuK-^*nH?QrEDA%%btdwwf7#X^YtSETp!Z_hgXTDi@r2wovZhI6y@9Z=Pf7#ewfh6EwzdVC}krDWl5`KHg!!pZhJslbz za96qaugFG;QxCd$hK93wIr6hSr$|!F+%;0n)@1lM+suEiHzkMtt)YCqparal0m{3| z;;0^S+Fj~?iYP>#w?JT|aqKqNDi%HXZJ;dv}ezP2QOuVs&D;a{$?1F>Q&$#e)v^DeS)~x;EO(nWDbDz2+n*AIyfBPL# z0jRZ)+*@&b8{wPK!--x^>DH|MTiX41gY!}H<3scV58r_v;yciT%vkPY_hLBe3KAWYjQ?_lGFe*1%je-CuthZ|q*dx`&D;1a%qZwB)W;V0h#t-rya zFE-DvMB2YVyufJr$c}A8LkIh{ zMBLlCdZ2%_TV;r!rqoM%2Cv%-yn$~i8!|DF-!H#vzR{O6(Y9!ae+Q%fs3(e}9noOa z9o1l}k7}d3Xw6CJ#Sq~{!)ffO^OrrKfx(esTFJN=hkRJ#?at?%Y2Lr^nBrw#lv6q` zl5e&ruQbo{jSRy8Nmn~~-a%&`lex>8Pslvner*dl6PPOxrp#R_^O2F<2sob-es@mS z*B5*X^ZH+2uyoVmRo8CJeEx!sZ`=7-8~=M%ys7=@i#I&-$A7hc!J(rYrry4B)BC@D z`lj6NuiW_FAIBSS`SszAoonhgJ>#b18}^;J_x(*Lsy00K+3lOYaIkvQ;@7U+c*RB0 z##_GqhZ}$X{pwAv|G0L;gO~l+`)~S_U#$Paxw|$=lSt=q?3($WVfVt5`l8shUPtvc z^(Xg)+2-s}R}bhIBMVkaskLQCrmex#nm4WzjCpBLG&7sqGxfFgwVn`h%}Z+@Oh=ym z-j?io4h^y9ecgtE9b+4!$-mg}zVCcu!&~n-cjJ{`@7}ofIUnD+ddqh=Ry?w1)4sc| z*c43;Z(6`wMd42`Y^wbi>O$4^QSQgo*@t?a-dfBBzN4duGpJJ;)Bt=!{y(LT{)Bq_ zoTE_za|NH~qB9M*Nkqv{6({@{$3CWY5&yA%Qh2!HQPuseQN^!l6VN9z`Ag{j0zPu= z`SF=Pk^iI}!L9J?JJ8Fab?CI77*op;b!HDs3nkq=uiV7BL-tG%M#UZ0=r!I_9EHc= z^|z&QOfR_8bO}s7blB3}7TuYIV^`S1O%Se$FU?!-w9;@9bjE+<)8xZV&l6wM=`LI> zoUe97iVw|#dfU;b!4mTLe>n3uS5Ji6i%==m+NdE@a(K{fn9C*~Cgm@^z$87scsDD^?0dQw4SQBFQ`4g{Gs*MI%X z&&f`2`rhZif8>rczet&kI(~EMg-x9BX-#Bu!JX06#iW_JPxP#Noxbt--l)Jg!`H0m z-?cf1E{^`}TtyQdgjd;~gof$L0nTngX3x1ZnigGT8UNkgi7cls3$iSuY`UC+{-jdB zl*CO6y?Ruh1Rs#j1!pRj<8H^tWEW)*J>XMUyL_Cw^3JHRo^reCPUa`Tb=Yx>dNH?y zy9a((;n(A3fxq;76tGY8O&qv0qDf+(Y1H;3XIb}|-cDK%-s#3)PCb`1oALt&S(TM; zHOvM)mou1^`WFp;yjc&bq{7vsa+8j`8h>(+c@K)^a(Yio5o5>97IV*D)LDgb;c)i` zN5Fs%hMpUKl`OgI5xvp_s;ER-Hg&IvP}Lh)#T{ z2i-k-Kpc;tOT&lZCF}v_ajm@rVTrK5(vcBu7ARa$S&Sz?zk-(2{>RK=Xqc(NYFVpd z9$E29IuiOv4vFz35~ofUVc9&b+5ru6j~uE|-%Y2UN;6Jqk?B3QpJ@6~+DPi=yh zX+xe{3sh3OOES9(Tq>U{AME+t%7WNUDq$#otK)=}lJGx!16TOkBh-tt`JsMOl4Y&G z%9;8DpzAk_ngP|DsKfAmW|SW}+OLi>A8TELwHM!~?yy5F?m3z5v~&JU$-MN4hF?=N zr%1Op-QxPbXu$P3GySgbo5)emaSMH4ZixPavE~GD8XW0(V`XrTK02{uUAX6KC5sPQ zL8Q^QZcZ^L*4_qhv@-?VXK%-y zHP)u1uCHstO?_Pl?zTn&G!A38cBFXC?yV{F^)yC9lD*sVNWUIK8IZh86$$k)rfbTIA?xd&mMP4n17+DP$lG!6q@L3I zxHbkQ3d2$jp2GNWy5M9yeKq45%pG@Pe=)Mc9L6-t*N!`Iv+-f-!8p0|nWS{b#||7;NH?Jw0G8pXfy|#qR|6 zKM_6YsMOrTt(}V+%dvwT(O~dcoKG;0q`dJ`nXe#$-`PKR^e2JiuPWs?dbQD?qxVvA zKQy3-a?MEXfZRj-!2KLUSw61rO39|xO6nV#l;f=3vZw-e-L@U6&Yi%c*vD= z$-DObPVUKAwqhag?=rEUpnQX?F>TxHz){&&*!NNY_{y|qN-p#1(KKP3E-d&w5VLNO z!jh-2pN3bs_IBQ6htCfn2Nuk=n9eFI)t5DWx7r%j^<;GH(eJA@sv+6{S=$q`3gG(l zPI?Co6rG~41}Rlr$^KW+#OA9?Qm_2ZjnOGxg|#YUZy_+Wz`u(xV+}PldAn{M&v}Nj zKKrmQJHU<)k+&a5?o-H+@%zk2iZY-1n3FjwMmvwVWjYSPZDsxG;4nogOB7Mc@0vk2 zQ%|Cg)Z~`c(IAAI)!87RwbkCu%-%he!NT7=K4aj_PpOxmbi7S1Gb>ScfhLoBxEdb&sZJ2lsM)ubcmMR!VJ9Fr2?k248lb@4IqbmmOJ^l%jF8)l?5)vu_J9${K zN#R>6w9&b*o^5L%o8^bb(PV@@F(QeOgp$|@qUZNcPPZ0w#ZfszzcOGJ~E^uFFJC|G3{iZ6;0I4|Ml{?^fa^cS)jeL@8_)jU{21IVxExw zQToZ0dk1*>W^tcMxr;~pu>h(y&@=cnMwdnQvx7b5cBahwfgpU@L)%_acbBapP1oLK zV_LO;wg$(VYa45twX1Mn9XB3E)ptvATpg=DO8f11BR}HP*f%Du z+S42~)t=^1R4~m~xcsgt9V!IU*m)A%Y5dvjwb&qKc@*>TixiyeScc`cJC(t>))wis zP)EMI_qWX7=Vqgx3Sw}a{;RoEDNY?7y!)>@X@0&g#0MB)LrcSKbJt5iMGKEqIM*&0 zwd3^wXNnYtHy4Uw63hHyv<6aXkyR0A@1WML>ixS!hdj))Z$~|LEb)A>p{dSk@kX=B z2(tz}!L0HeYuD0(WGuuwkJHZ_TB~H6u`1X$F0KX^wnqU6UIr zlsNN3I2c4*!<#ItiLWXazwVddtPcWZY_>*6l3YEE1c>Oi$6s7Pyu`q?^#n%9+aJfi0$ z>g>s!5roVm&^R&q4^Hdjy47oHaP?1_-ek6S-}w>o!UPVnG#POdt>mD)_`IweZw(`Rgne<%me zPi=oHECY-X*5b6Myv3OY`IKvoFl=Pvc^a~Z#47FZ+p2f~M2$9Jt|*5AShl$E1RXzT zE9rBruhBZN<4P@*CJn)^J}UHK?g^9se(XisBe37GHJ{mpo&78O#sB*KADZ7gZ+mc4 zSodhV(zVwWz}YMAiaOTwVb+|XX`LItYMeWX+0Bn_CEvX@;K$l5n_{AY4F6Z^A(V0_ z%CPi(%Q;)UBCFN$ix~TFCjJe?r@b|q=_AIQ?}}o~6HUawh4#GVu86Bp?29rl**k1| z-F>`YqEyL#4U4&E#w{`9zGG1HnEZ%A;h`~Jc7xcP+lOo|S#F8>23rb=`r7(!@wRU_ z4}A6Jbexp9=!Sa+qdrA~GI$qf=Ww6gc4=`PgYa6^g|!ZGrp}u;^NJVl+dGG|h9_EF zVF~6|o{#I{yi_;%TgJMHnTd@0zOpwlB)XMrW5ux|%R9k($$@7!+-ROLHwT?`Ck9u} z6|qhRp6=D`?dv&m1LoqY0e3+=^W1#$Z*SOS!H?a&;|(x`4r-B*F6yx47Ew|;s^l`B zWs;HhutW%3Bf~sN0{#J39b~B8=JIuVyUW)caE32B?A$f?vHbpX${zboVLlYr+-%%H z*^|50Xu@1Aj5Pv&^cQy}VS}6CE^YJ88z=wP`A@zP$T+B} z;Ko7I*kk;f_*Aq;^F3D5bmLU?rabpTXXNfBX>UVdnGHZ|%EJyqNk-`rAH;3|>o|$S(#?zoUq!ap5$0P2}q& zculV(o_X-Jb`ZUU^nf??D4KvTN&2lh2Gp&8hBx&6Ju{$8mm4o5~8FN%{N;cV&C{)9jd z-36U5P=0ingH}DZMitHkpOlY=6d!B;Kl9<1b=}{AeU1|+7srVbI*&vGszY)CgqkK- z9&8?&kZnawr{dAmQ@J5qg4oG#@{j_6B~Qa83;{msT(*AD5)x zD?g6p{~*8S=O-<<-)nxIiZC@Q?H%&Vl_Hm4%JSclpZW7E9bq|P_zC&t1nPwQd*!D* zzkWx4P8DpP`qf4|KYb@{?Ymtc73?$bqTL>+jraa-@1YHUIqh+(*-~A|^7ZhkAr1Ak zGNbntHNDbN0!GN#oGBY;da!U_hT*?f=WSmoKh)L3ZQCR~SJ^pa!08Hm$*iF=GZxUf z(Q>qC4worxIkbIfj|GFy0AD((SXtZmYx1^OV?%I@+uyAj*mu>84rGiiB+~r-rr@i!3_~7 zP#>sTVM?7iLj-4{qj`gv+}Vo0KMhrFj7t1Aow3=4btlFeJZl}q$+A2ezyIg^8wF<# zB%w%9TfTGiZ6ldl)Ajot;)7M-y`eKz`kWZ_x3xE1xM=V!C_76NMnSLu{v|$gGxUR& zRc>NclAzqsk;-(Ud`xz2BZPH4m@tsT6HSyW3nlU}6133%wLG(GVaFNLukb2r%kmbt z&tzsK;5IXKu9Cdc^$qQ9Ag5yaCRf9w%w-3HtaLEH+A@~oA_9{Eel0`!9ok}Nm93|F zkfX!Sjj2$%+n^g);ID=HP(Jb&2&rTw#L~>L_(;bhEmCw3c~rLnb{l!UC{%8rWlHm+ z7xKyO>N13tK_PIUm<>N(%NSQcpCFp;8x4mgx&W2Ip<1f_ttr4WGG|D@IpRnl@d`a z3te6mS2x}LC3}ohf^_@)LQ1`Mso=h@ggwXj3od;#pLcVbif=L&$E|!0SNnCw_somJ z9Iol(@D1M7r|*h#e~%yQw@uiiuQ6}nOI{g-7tLW=_15;C$szg-_|Ut?=A!5{8a#aC z5D#4ecMLK+B}lQ&K8DZ!V#7_tVI|46hAF&kPydKyL($^=o|P-zyRf2F!)r)Zjsucb zUd`-QiR<;asB7B@XdYI^7X^F=)e|^6R`8F6^LUK?t*|b#3S_u7+DcKs$I&Y1pzS6c zSWR=~d{IJN#On26R<%R$92iOD;A)v}eULhTyTnLZPU7#q)L1D-f`e;~w$E#D5?(Fk zqD2>BXyMGpqOk5sy-qqzi)VkHt6M0TQNc4I6I9Trxs-My*$}FRXS_vpOyogX-8N#wE^)$6o&8+$|w>Scl#>A!D>DGWI}yf?~YS{}!fO z8_CaI6XWcNEuGlJaq^ec5$43>zj5^^0%}cQ=JdOx3CyZL6{i)?+>T>TuYsKUy-m*p z{bsV<7WegV4#mz=X^;LOt3)=V?c!pb8EE6e+D;g{kaqS-cmnZok2NFUF_cNp8;qZQ zx3z5rpm>j-0*{!}bzeN!F1g#U9hSfA>G;%IR{G42)?3tOPCpyEm)vb@JB8(r?(E8< zOeU)wUEzoJC;~4Xwxj0m=u}~~))2y0l!cvqoUo?n#h*v#TteBqtS(L3`X1E+onQ1+ zKcu6)Et(T&tfmP6xSNY<_cFe=FctEzlMN?T>ZvT*_88E4CQE|&XvI&aJrWAx`uqkta_1aESBHg<*xkh?Q=a@N}yJFiuKW76d+AuT+z1K z#Ze2KZ(K3C@$P7I!_{+$FKerehsJaYYcuBt;mP=Jl^8+Wfr@&iQCC<+|q5L z#zD2)TzjtjE)>x6tdDYgku&S1Q!hc5Z(}d!s~wT_7AlU3!#?kUqLn_6H2Hku;~Y}O z-IR+LJF~`|DhK0lCSJ^HKPvj60qxmq?~bN!b9p=4pU(_}CkMkti=#)6*k$L%sYpcIl>^6zCXOX^6gTP{7`Z0wc$0SD zi|6gdm%Z7l@V>+b-izUl({%I+RgGH%3yu)^ybfBHzPWK7vH7y|AG5;&rMw^`mlg}J zF6<=q{p5Kbe{P`LI6G(Ufz@2%OBdo$F_Kx6x?tg?1|!r^OGi2!)yv^Y^zezGoG7ED z_a5pVK}7%_bm89Y`thnNXSJ?DaVavoZSEj*@K5o(q9z}_5UM0$(qI?ncXnevVLrOr z*-6uUTsw5E;#<8o-dU$}B~X>#%SCCzom%1WeEoKEm7fJ+ny$XcH9*ed!<$ImqFm`o zd&vim&EKVm@?l2`)Dm=da;!RG;a)Fr406mc7fKej?P~RsB@)+wx2Vs;?alo`Y9@1Z62c?aV?0Os)AQD z3_%-1aOaNg>r_~E2Xn*MsXceSqYq@I_>^h$KNMA5J}02vVe7 zis)!3F{o=d;{0V1p^Q(TwmA_cu@StOhIz1)c!KV%kQA40OUFFH68cH7l&pfp(_E!f zC39J_NZc`3hJ3woxkDbiR@>)wl4ryp^4|t#WFtgXXsrFUf??Aq9Lpw9;CM1NRif-t zDUFDNQ_g9&Xvk!7q*L}Dmh=YW$`Ia_SE{r_cf4L>?Y@>AtbC^4F1Kb+J%_QU6&u9s z3X~fZS{siT%>Us0{$vIhnn-{8Y^6W=RZeSOT+LbLiMJd#)xfd`!12tkYHKe})i5(J zD7K#NG=I1X7fGkh+Bk}qSxd<6R?FCB(K1BZHOdlSch54(Y}x2w-{8=ZL0MuA-s1yd z^ltOZmGR){Ko?3ThPZ|8L@lzBUFN~WA#@G!?S48-7|ajn<%tl5EhyODilOw!`C$Ir zw%jZ*t2i#l;9(%jBT3j}x z>K-1-X%!}YNKI_y9Cn#kah{!for{0=wamkG7yUKBS1@Nf$z7GnH!|n)cU9D9&i)zp zH!zQ44qbqj=Fo*#x_Q<(_F2BR*WVr4P2&8v&e43nw{vg{N5{6di9eOYdcSVEA=ap- zY_o^Hhfdli2UgZ?izM4Rce!`9;iSr(hL|h5afU=O6m6unNNQNth4{6Q<4GDr>J$m( z1{IDDR$Hc}@rGoINcAajkCx%Ob}PlB3+q>{0~cj1x;j4Q`J2NHO_Cd8I=rLv<1wEp z#S4*9#a%MBB4v@F4^lKrxiHz=05hZ!= zZ?kJ3vNW_01rJ7q32RB{z9`T6#@QuES|CmFQ4AxNgk9oYjvdMt zlr4R}KR+-uI^5g>fyPzcFzk5PtFz;(ab2tEUmc1oCgx8(J)vrXWNjQXCMZ{Cy2!`; zt-~XgT@Yd5Z{&5P!1g~vFjZ%(rmF%i+6?h;2vu1sZCT-kK=6jQa4y2(r&>tK+}b?N zyFj(G4y(=YE~EDs9C#i{f3R3noj=E&Ayv%e!>2Z zlRtNJ+wCv>gBKNE{E|EFyzB0Jj^BIV{U=`fhYyUu?B##-idX*epS({>S^>29No8J7Ex4!M|fAfyXzkTqX?|S!p-uuw|-v5CQ{@sTjp8D`dKKikb zf8vv$`uk6R=Chys{1>Lb_@ysD@|CZC?d#w8Ki~Y;x4-kyQ8KCqJG2*}wn%(O>-XSHJ#`|NPBw|LeaWn|X^HM>W06jboO;@Q3?Rx9MSH{;)S|BYG;3%2nxwEbSs_zu8LMNfj5c zEF9DpcwF6t)GmKQ^9d*~aO+=wdq~yUD9|t+p!GNzYs5#xrFjBnR!Ckykn}0Y!^*N( zao})m_qi08NdvgUhHLaRpDClqtOA^aMI5!sWjHj8;B*ynY`w#lZ*4Pvp8SRaznP!9 zb1n?#&%mlNz58|e^DiFGdOTp*3#&kHl=fq1KFFAvukaDeV`Okp|FGG9LrI#-M zF5RU%$i~0pXx9QYN6Gz&^!)?0zUR^z(pdXX_)p{ZS$M#&;wzZH=;}rV_O>5VU-+7b zdq)lp^svvtIk`IOnpDN@tPh5UU}$s(+s`RLtBH8C{sN`=?Bk=6=dgwqPg8FcO1$nA zrCq~Zx>3TU=*VvEG9|{2P?~Ba`PpuYoutIcEK)t1_;A}eHGVId38)6CAlt=SKN!a1 zYr;C@T}*j-3D~*sW}Bm_y4in9G3ygvV*y^IwTp+6oCX7DpO>2J8j?N#$wyt@jRTc; z)=znw7>!aFzV06Ods zI%*SOMX&f|%(Y*-y4dqe9B;Fg+4^`t7m(WRF1vHk)NhP=llFx8d(@1S^SStLZYBC9 zG|*w@?OFhJ%{6004b`~3$HY5~zF^OyYz+8TM-;uU9@U->Qv@5j9&_$&)Ub3(-Lo}( z#Xm1mjf+LhrGryw9D#C9N1fBLBN{P*J zB=_*e*?XeezI&pXm)sN0@^!q9x2yW0&DnuChdX1v>09vYCLj0;;Ojhr&JWBCf=5`r zEjEeY>?q#|Vd#^$acY=4$mLBG5^%?G@SucVe0NJ~WaN_PJ&)vFx&u5m*OQe-_Mjj> z?nbFDmlk01E&h-Sw_7CE2}~Id@L>S zN;LWw`}^ar9@E({=w8uFz0Y?tIdqQncji5@e9bATg)={T18(BY*)YbT^j}LAI-L?O$YcMIT8Czw%(ZI9LDK51yU-~P-Jepu0Wv^*n2_MG25rr7E z%l+MqS&I{yqKH_Y^mFKgTT7RhK!L*CR%a+%}x{E!Oq)8+-H%H0#pocN%Rhk4EuV?W){dTk2X_t?!?S zn_697mBM_wwOO_AyC)j|3gzm@@Jkz&`!H?R*NVK(K8pKCXs5m8pc8wE3r7)Ae=g z*VLI`xcb`mGunF0A-#p4WByfXdM8P9#c!0}tvWc;!)?=prMaZkl%>Bq-a9fp)YtPo zuSl8sf}EVDM6MxS&ES!_0;b))-1pekJJ8D&ZcQuP+#PyPP(G4PCz@DGxGE8p@y7EY z(qiMa)^x^VPyDd+wc%0xxAh~wK8@}f^&pB(Hx!4yHdW-8o!kL6c@YqEoaX< z9!V#5#cIkoebxkcF@9~lf2p$7aUuSf;O6VW>@$x?9Ty$vVdvw~Ua6&3rc$(Qt{2J` zJU$`0Bm_z&!8?_Ka_}fi(aSe)8O8kONWyrmV zcZP?~b|yAA4mqtPT&XQkahRnxQC^UYUxF>viOF5$2VZmF7aJtyE&cCc6JW^Ca}`)4T&)(MMf)9{F&P`lU1I^zCh3$D_hNSD(^-d+vJb zU0L70dv9~IdZDC#lNR4MYxzJuXz}DA%gWuT!qCEV@8EUUE8PWX7Kl6aTTPwtbEsGj z)NeJt5uW;wM~W*Hf*l%3_Sk}?wjyUsf=b82?kh7k;7q z&mKe8+yk3DO!{u4eaiC|FXl6O>af#o%nH(gTZ{PLzu&@eTF(b10|yeq^DTuxKJM4xP$4p; z^r3qjW~!=qSY&+^ZRB;*OR-;eSrpxVdldZv<`?j7fa6Q~K#A4^H}X~SW%!gDO{iD! zt;cgCo|j?1o$m#5r#h7MWA4Qe*W*{)YT~t{gZUuNsHJmIk8ZR4!n7zp%%e|Eldfd_ zgz8i3K}TPe=tsj7VafDQ%X0`ND6wOkZ8)}Bkm8x;tVG)*l%cO6FMAsfM}BVXpBwHu z>~=xdEtU&fsCy1;+iTPog${Vv?7GEG*66UZFP%`g-%g25_Tb$f?3v@-G(w~g@-J%e27n1h!n65Ox&?SiF zL?xrHBt=Q;8q=vWF5C>lk;w>TPe1MNKEcTH9YRvt?5{-|CZ$(}^;N?{0+^Cvxz<>VAX7X`wJGtIChNypNS(8`hyA31X79Jnh~z33Y6?e5j`x0c&(WYx{* zx<}9f(EWIUz#CW+hC{m%3MoI4wzD5jsKLkOgSMhVgq=BQQ{S&$R!BPRz=X~U0S2|#h_b3l~%4yf1g!Wu|3ClWB#Q0wG z{gaYyI0@Mz%jlu7M&y6Qa@LJLi^Rh?h{9Q{U_O_qW9Ft44cbLfp-NrF4rdmpW~hVT zqYwQT`e3~g|9!?3|9*co&R0==B5LBBc*conhOg;I_eTZ3rX?q$+>=j4(<@FywU?b> zxbAcyPyQQy^?$lM>bg^DdapEA@ou`yIr|^<@vQUYaFbnU;?$>`+pL4apWy58;VNF% zX={vXGn#mxrsL9k8TaW_PI#+=yQfk_kg{8H()7Ix4)gcBJUNUnq)ZF z#`(9v%5A#W<_0qj?v0@WcHIG-2DVtAt(SGS zvQRvL)`{XwK>1$SaBno-bg%E*-JLP@BT863ud(PjkeTfiZ)MpjN80(2XwDawbd&VV zu5y%x(GwU+n4@#TARd!xN!#m(1aJdBIy2o8TtbB&nMOIWs^2J9+jK!QlzM-cOEI_| zq?IbCsAIMcl&77P{*oWdWm+ZEH{Nouy>T|a{a&kQnh#84p5z-I=3G}sTFj$p+T%^6 z@MbVi2@kZq$E)GKT>N~(vvxAwey{Dxj{{Ag`E#k0KVc6*>n51({^0Y#y`Jwn?B}Cz z0T}d|Pv^&?j*ro%5MFb|slBc|%wlf?Px{Q=x(*9J4AP{6L}j1?|J+5U-@=xWf~Pib zO?R{H@Up9QU?p!j4Kj*Np2$jgAAf=4y$vYdqkTo*n=p&_>HQ7{UF;Ru#k<~so4FBu zc%LA=c<;E`@ji(?@UDR+r>X;c#``3A;@uY!_GukfK+=vgJF+xlZtr;|=iuGV@1oq> zdL8c(P`poOi@eWb7Qd5yrMx%YQslit`0(CAc=6tL(D9zbF5YK>rm4Niy74{*UK4c9 zZ|h$71Sw_A9oggh=3u2;heju>z41V^s)3It?HbILU=*Dr-LIrVaP{-@tLiRqysELG z_Nuxo-IBWPccP|DHOAC>LkJx!X+82Ls8A+nN1bd6K$XMUd{H*zBTgpqSgCBH!$sK? zZY6yu(@XEN#ODtODkyIuf3SIX&R3+|u|*a4kmuu0))mK{tP9vHUWS>^Jw~F{*`fYX z9m+#ilXp{J?}g7lx;NTs8W%XjVbI<21|{0YjbFjds9q3ML&W>Aqv3FGNjJ|TiEB=1 z%H5GAgsx05!DEv?8)Io z`KE?myi*HTT<*}jSbd7X8az2FTP>5<;bteC+~`Oa+nd%26XE;w9*J);2B8WmgcnC; z_{3!4lh{(Em0bJH{LzEfX8r)E9fuzQwg2#Ap!QE+_vQ!LbBLm`w>}u11+09-gVEW* zcfI~W+lOd-%Y)G(>;>@DHZOeRgRH1B$059SWN&!ggSPkDM!0jZUjTdx@DO+v!0m*4 zD)7h9KNq+h_oo4)>4&280PElOVDxn065P)RPJ;Ig;G@vjTPG85dN8^W*a#mN34-@b zU@h@11y14rEZ_|O7Xv$RzXaF>jDaU`zZAHT_?7{c-e&`kFx zKL>aL?iBfGDNyx%5Ck)5j6rC zlyH9R9T9_)XbI_P0-k`+X5j0<-wbTR-U3{Re=D#6zgvJa$YU!o0&g4OQSi0{D}g(J z3!#5C@D=d06F9T>_0cY11@_&*EO>i>5qQ@C#({0XcI5C};LKmYHo6x0S@8D)8%aky za6Rxk;4b*kV&}W?e;#ladN%-Du|FSpJMc!}tKn}Sa13}8@DcEC2A%=b+R$>+Q2;xCr=a;9}tG zfKLLx3%CUMLEw{tAM;T4`5f$@#V)A&^%USE*eihF0zMV^1K_#99|NBTd=z*d@VCIH z1JC&4L(%!bCBSC@&jVfnTnfApxEy#9up0PGU?XrTa6Rx@z*gYJz+J#gfbGB-coXna zU>3Lx*bjU*a0Iv(%0rvnWf!6>Z0=5CG$-n0Ur?6iO{1k96a2nVS{5tS@;0*A2z#jo`1kM8Y z0e=m=85n)}q38v`CBRPLdB85gkm#lSZKUjm#2-T{0FcqecQco*KI1H1_MBj7sVqrg7k zZ-EQw;LrF9bbw2MX9LdzE&?tEE(R_KE&)~pF9J3K*8$f97cc;51)c%i1w0$r4qODh z3Ah-T1ug;h11|!OcvvZUU@u@7tfhZgz<}X6_C>&P;9}sbfJ=ZAz>9!y09#5!UHw|7gSOYfQx`_z{S8DfENKf(1Mif7E$Nm& z@Ky2$PRJklCiyp#ZutX0D1YF`*iL$Z#|~w-cQWsFFduau%d{LF?iXwx?(9ORK4)78 zGrNb-$qqEXfqZ6H=g43LG@M%wJ9~cALBg7U=Wu4P#yedHGn+Mz>F&&I(RhQn+BL4| z&SzRQj>vXqS~ZTz_GDT${^{w@Y}5FpXE1Y}@O$!v+s`vN*};CS+!4xb)i~(DaAvFU z4)tVqki6*7XlA>{FTMH94u$I-$?PDR(Jh^st4Vg$HeV4-IFw%Rk?j*(-kYw`Q6ZE`K<)SA36RAi00wm%=H@E9Xgt6)>zNWI@63Gdq$mn59PZ|kOO_0-HLx?Fmt2g9XsUU zu~7#*4>;J@nc1fJ4-93tD!qq#GdmQ=z({7d_{jG-Ig#JH#dlv{W~cJ4?`USH@-=@X zv(wVwmuVMIqb~n5*MT%L;$+t~=xF9hhiD%hb#Q3d!4dC1LSD+h&*KmDJ9{U2YCL)T zyvOev%CyM6`)FpH#?*ZSnVrgm{-Mk+rTJjLlS$uDpApC(rBITHd~ar#<;`e@ZAA(q z$ejb3ElTeo=~a0-aMYEP9OYc&arDJy+8~}ioY}2>I@D?9JhKNO933(c-Adv&BgDb{ zkO{Y|)1|+^E3->wsE@L(GShp|;rI4B{yT@MTzCu&9Wq|JeAynQ3|P8*GkYZSp>9{^ zyU8n+hl2=ThJ5ECi|E$Tk<2y{F?=L*t?Jm3q0C-|&kego9Lzd7Q8#yJE}1eFg`*x=z4UE}mC39xiI-11~>1dXm zt<3;iGCXWEc$u$@6n^tFQZ>X{~7&9^qc6nQ5;W3e;vIxdSkRKeoyq>=x?GoN6RjK zSM;W+W7#L7uSXXz``akHtY_KlqjyKAEqm&+r!1Q~y=vK8qW4E{KK+N$ucL>f*F2XMwd}3Y2cpa3iD)YNX!Mon+68+TJS{#iUK&3uz97CZ{#Eqp6^}(@3tHp1 z#aFSpxZpRZ{pQm6y^NVIj%(wOM4yg69DOGGRP?#%^U)Wg&qiO49*G|N^_Qam6MZxK zMpU=p6Q_Oaw0A^bKkXZ*{h!kwioSi?H&6TIX^3FvF)m-EU=;n$y-|U0@`tSV{?ok@ zQxq?HX;kqqxZQFe>o?9V`Z@6Ym-22dYn9;YcLv|-d?I`{AG9BP3UD#sllYeKoyjNn z1s=+*-y&~+GVm-u(a|qWXCZdcIY%DJZ*u)Bvq!)8qW^lOmT&k?ZT#(Ax>34BQvB_1%YFL#t%MEcaBU^*t6X&H!Gn_q2-HWiJUL0%c5>59j_%bF~ zpd6Oi(|+<#+dZzr=oiA4*wcQ(Pum}sz3uhn+ndNof5x)njmYl}$ca6V^cl-0@XF6v zIvMJOS#fWbceuNxGB*!LiMjD|#FyGGw5!!EEJ=yOrS}P^GBe7pf z9v~9VgcjaPd4o@f%YDO9_ud-YoVE|4aBg2>tUlhu9z(Eb?})`)zh^Prb0DX)EtR@^ zv4{O2>31}U!WDbXa8t~ZKUx_%ji$3WTK9E<*mV%1HX3*wFHNuUa#7sFTRt2rJqZz` z0V2Ea31{5o(-9dxVvECNgwYGz3We*cT>eA?d3a*^{w_n%JtvQt#7mM zm|NeheS*+9G&;&?Ow2P)nl3H7S&;rpT-w2XGk5PG%qR{!i86nNRb{sHN> zHAqvMJs_JwY|KlTFdf{wJ325r*e$!|eet@K-3ASA{+d+L&29LqO!%UK#IPlIRL!Q_ z+;Y@jT(Jf?HAXIv%-s&9sTO!2yv$wH(|4O>MpdBq3_&- zpnsB-`S^?Hx0KS7ea>Q9wW+O>K<+}=-a|Ubs>>_~d$>o>D~*raH<710c)@kW%{|9@ zdxp1|-FHqFkE;t9C21#9Q}NQoXDdQyH*Eo3U^677cCsqd zs^=6m)7hMaE6Huw=UJVDwz8u#K`dr|d0r(bq`r5sJV)HvSmihTG(HYLjlaWB<7bVd z!%z0leRkKT=-+8)9xb+2xu4Tk@s*DaW`8!fooRP(q*(h|Pj|zu2%K7UWI(l8Net?h zRk4nHkQA(KWvvgCpf+%ILUvtrd>L5IXfry@Mra zq2Ah^hsGRSrSdwo*VDhEy(UkZHD=Pq_#K0XK{Yuy>L`1Q&LpnmeJ^K{pV8(Is%{g1 zb1PaYKkY8Zl9apolfvsaeH!OCpLBn5oVbX)AZOn{rz}i>SKjBea^g%^pSJe)^k%aweBoSrQ;$ba!%z6joqm55r|B(*);#=8J|4YYEv?2NG=t2iF64|VwEfs* z^e|ba1Y#bOQ%dOc(Lk^Ki*9pBHXC=mVGD39jHEA!Avg(|H#-UCur zlPay-*6~24MPo|cY);Z zqV@`oj5?^mX`IANeP-_D51@O>AiH+p>hw)*i$A!hZfU37CCP+=Bnk!#5b|w;Pgl)R z+~|<1$)~vdR~}M2_=;{Wq-)+%d2IRX^G|#jTdpjj9z}BXxe#-*opbHUA#rP8l5*#8 zUH6h?6!H5)p!2x)gwm?SrKH!fGU#aJ?WF^bG3R*j(3MJVI0ZxC1~#qTP{77YLOQ#Oy_@lVz&p zBU4qZId!UDZ=Iv!GARkEFboxwzTcH4@2L!OxBgS*DWS6>zsj&Hlj4IWr5Afac^M64^Xlc`(@?TSKJ^X6HoFKs8$gI3m3;^N|#3{&-G zZasA=3bj?$)w#IIMsQEnSyOOm#8Y%rb=L(CH5kT9V{i?$Z{2BAifoG2C_N@@y6k>7 z`0tO}_R{xh9j%)F8hf}aIZ<sG;qw>y=fB4Pcx!b|w}NBZWDUq3aNncq|nm1~n8x)&GvsW(Wxw()jz*mOX$0*`Hh;FE2 zP;;&fw46FB%YBFMPKqZ59HM9w2~$qThpGVxzM=8~V5TG{SD-|bCdP*47R=^oPM@uJ zc2g`_sQ-o^u6VgxBA-;br=HrAOst+k7)Ep##X4zSi74+Mdj}=?q8ypaS{4Ks54K%HU1&_@9qW|WGQ|$`Ej?p)BCl)u*g$%^>2>{u!?%Tgt# zC~(7N5zwoo_r*g{a7IVEMPi#@7%I@~KWH~ke6uXp< zsD~#5d><#|^88JONYj##k~}_{h;-2}GdIVJ;Yja%(jpwXljj8N9aOGGQL+BJif;pZ z_|g7S_!Vy84jXsS!o7IyE6A?4Q83(#p8_xU0@?Y`(LHDYn%6M+u{)8mTRut)4rFs6(*%jMZEgE)7(eSBrEK3-yYQU z?$=DIU90Z8W!{eFy(h4*;oC~DQ0tnUwU^=Exia&Jg*51?;9GheTsk5f0O`5WyXiP<0M z92BNClEChs-hSET+?jXx96EW{S8iA}b&RkY1jisR|3*DyInMnIQ#znEEE{J{Sj4c6 zB7Z-zg1d{8Kc(&e32nzuxg!G9UQ_w~#Ex0Y1a}X$Zc=hTQQ^3|*zq&yfK%X`5U$Ml zEhNqzEiL=ouDxdKj$K=#S>ZiKTlHVy{5Lp!6K9@aSC4y>=x>`k>%^(=L;Cop&*r|7 zzYm$iJjLni$zR@28`hcK&et={o&a^@2x}@zKRT9rxj~ngn&-V?Qw(=TZ?_B}5Fqb1 zqejuz9!#&gyFb;60%zXdL6rh;;mX+GGtv|H4xkGx&XQ9`dv9NFjw{xK{oKLI6W6w$ zk>_7`{grL~owC#0a>Rauuh#Ef;S~LgH~(Z)#NE+wM^v&bza!fAbSIPP^SEP5noo8| zbR4`OlLF=$@J$aLc_y0rrf?5;Q)BM0#>)tEeldRK?JRETGBEY*6Hx_j;w{AAggwXC zfnSb0suTa!Yh|Wl`H852oAOe3R4106h{jhG>32K_e7-dO@ygOXFE3-W+^1FCQ{aX4 zO<-=~YZI+-*LLdGD7OWks_?sG4lZ+z<==We|6>)jjo-F3yLfgNKTzTc8v|Gw{hVnf9vYc@@6 zFUp{B)y}Bt#v(7GIfK3F`K2;0sb{Hsz-{~B3H-pz)U~A5=da-Z>$nPS$fyf`uR+%T zkJB|p9J8IowdVx$kbNuiT)9&1(c7*~{m4OkzL@oXW*hbizIfmS_rct&AL*N9x-S_W zgdYB>xrd%ga{n3n`Sr1Gt==*w0gVwz^0I2Ok7@pUJJlK#7hpt1qsKB&vubRRcIVbA z`9{REggWuqPoO1)ky_tE0KIi6ganFWPT&YZyuWohPr(L(?{32!hq27F) zw~Zs~o;hUEjTRI;*l-H|c#)w;5A1S%-R@D_E4raSo?N!e+7-1eYICB(iOB6u#e+R` z_BzQCA`x!IsBbfJlsoJbFQVS@sU4{$tlT;dQx>5$<#8tQZ`;{!IMd)1f1ORvoNIP) zwz+UGZPfj)E{FF?r{u;L-G@70e9`Su0XT!3z9!5QDfc3MnRHenoR`2PTF{R^O4tt* zmhl|thd#s~`lczq2y@{@c9-|Nu5RVN1TJ-}>3gJu`>@kLI1#mTP_s?ClVjU)O#}A5{ zsV^GQH?Wzg!wqiU=<1BOsM7FD2LiLy4)yfwd`u9lQ=d_As_(6WrZ!`(idh6H|BQAv z#fbviQ}fuh18EgeE1#@TpyeQvOsBj|D;{w&ZTmiL_&?BJ{^KcSx|I=Pf6VA4-h}Xu=}TzFAi3>n zC*=8Yc(y`Mey|p-j0p0e=|K!?d9s?s1d*VdKQg&YdbxCb*~w+vm$jxRB9|SE=@5(E zh5r`eDQENZRu$&`F0Ol zq`Xy}y8b4mO!A!mDt+Y-gFLg0d-afl6#bke_LK3ekgiCSrY97aw7)tnN~7zpj##0w zh*JgU8Sj1Wm6GifIj32uejpm(@Brh#2TcE7E#`^Z2j=Yg<-jZ7^IMTe7X|T5);thZ zJnxREqZyoy4lJre}g0z0@fhYoo^hITIh>=IYYXi69 zqYp#{zRu45U8rEP)kYMP275A>mrT2OrkVpCjB)g2(*Axw3r6q#eixi@4yVM4_1e;v|$>3;g2LK(ju^Msov%p`ozz`xEznDQ#)p_ISu z4bN}2b4-HtmThIUn>_8dFFe4z=J4{lQdw{eDv^TBY3e#6g$U-*jOL*^{dssLjS+IU zyqB1Z_!8 zMd9(*xKd}ALo=3$$cEUwq-Iq~v_fOJe}rY2{C;aHHG<>;yS|=mYL9QosC zVs^?h!Elb1mFa-%*VnCKeRN}7w}wYu(-h53bFvhX`QL}&-3xmJ%w~e_e8U!0I$v*E z?JI3lpeL~>ymd)qnF{LxdPQx{YQUt!fu8q)-mJYcV&xeWb6(Ml4jyoVr_yS&KmlW~ zod8e|NQd6LGG4I)P|bW~Y$WZ)83gk&N%^?Y_37R_)+~9Q2=@0J@S)VB+Ah45Jc`iT zK++J0_4J;jpJ0Y4*P4DoJkxPm087-q5Z2|I=jGPCh6?%KgM*b0RS%l=E78S#MIn%T zM0TG`ZoQ?c@nm#7p-UmFgl>u*;k9h0bRLvyog{+5L%*64HF4?WLY1?vbp|HrvX2GdjI()P9h30!XNPsVxO`Kp5p8~-*<80nnWMS}smVQpR%%5~uUqZUYUnQ~WWSHj@)p`grJ50Gd zCFhD^UZxd;lv$#f8D-=bv z#LILnv)*5s#02xVAt}O_g~|4NaxP4N{}Tw~)1S%qYlD)%yv*%*+A@f$XX%k=JfarI zFdO31Awh9i;{5BmE5KGo&gRFC_Lxp3QXzr>Ztb_%&S+6mF3{I(It1ouxgV{%iKJ$W zo~)Z$P+uJNIICivt#kQ-T1zUqErJmZrHwqVl}c6FIFEtN>b!>a9@T`I<%IbLA*mkL zYoW)Pg?DKR5t%zS?52P-CcNTCGL$dYUWU|VDMcAqB)wlz7TJ2YNH-@8?k5eSQ(dlX zd0uo!p`4dG^W z+97D)-l<|N=7VP(EqQc~YKOc@Z!Rg`Ap1FZRW8Iy@VxKi(ktT4p;yyM3hc1F?G2~O zyh6vnE{O9O&cRZ6}J@|jYsi~_DH38=O0%oQb088K0cl_4Qjjip#u@)%2PiBr`T z1T4j>Qou6u!n#rcYgVRY7ey~$d{z_di|y_!xR8VPs)PHur>|w(A zZwi?H*apO*_%&fJemXOeJIGv%Jp--L&K`Jxcbk}tuzssG;5Odak-PSQlaVaMbbhZX z%iNZ*$>wtpYU0@=*uR2lliz=ucyDjiHsI!-QzOiMFgJ}dPkJo6?k$f+%XbXC{5{`% zEPCp)hSuv296A1{Z~4Gyzx|WPqJ8~C`UCfe-^DbB#FR#p?6mUcHmL0pFd)@PI?(FFuxOMdC3tw{geSi4!KmN17 z{OdQoH*&-*|0kxzX3^I!VfH^2K2|Magv{rRtc^BC%&&RV#5$vGA0o_GEQ7cIRw zUbg(Q%2m}hwe^i_u3Wo*W7Fo=t=q5OwWsac_UmuB@unAabY%}5x}|?GH#~B9?AYyp z@Zvk}y64{eU;4ny{^*r|@~40P7k~Ad*S`LZZ+`3B-|@HaeD{0b_kq8A_`@Il_$UAV zGoSmy7r*?KuYKd2-~R6R{^1}0>7W1g-+ubDpa0@l|M8pudW=g$_aX=O&upJdYwh=|-b@I`IR!Tj+R-YN zX^~dnH7HQqr~#4O^t12{j7M0+VK5Qi7YxqQKifM<=Td_qy!r>N>ezX3^>BWV`f?A~ z_0e9F9_wRmZIYu#Y!mnP{M5bM)fdC7qRWd{#0?0`%U5W*5m87HXU^tlXr78RY6pT$iAusMhEs*r;ln_N zur9(n4{HOhZd>#yBUP3tn~b@*$yb#4jtmV;>cNTqMXleJ30FCtKG{NP(c~^}KTx0@8Q|hlE)y! zIvcoYELcxDAB@q3>d@3gP*2Gk4JvV!L&}~}S{X~aQlahZn#(PW2Edi%HyN(%a^X{JB(y02&;U#Vrs?~N*0i~9MzN@ zl+^)6H^zmLIJh+*$5YRkz2e|mW-e(f_)u$id8#>FWqpb*j0&U7S`~QJ^)&L|a0C0` zQQ4Vp3Rwt}-v(b0Y{J9VW3dbJbxkS`I{j**O-Qv%RNe)2*=14Y#;yY>TGjj)ZPxe~ ztyE3xVKf)5hcOlMbZok1@6Qld7DLS?LQvR0Cgtk4xq3jJSbtSQO(L{~T2~qHa zwN41(ic~v^3x2y4Z%XhE(b$P|y<2-P|$lP%jJ< zEcu)2L6{mtI_Xf{z{Ig4>4kYJ3l&MfS&RizZe6pUqFYOKbaXtf`pJ24)o#~=tEhBk zL~~`&fesfKoA_A1hy_sG=By1?#BZ`B65?Z>TOE2aG8=Fdtzs>OTgq5j$*D`>vP7&7 z2-3xVNO5Vsv&1FUcd6!wa4EqWiWwnO%7%Y`t(r>r2P(~YbwW-e}~O9S#Tk2)k@;!$s1K033~QKidjz12xqOjxlY zyhfrf9cmwKXlt&tWVTeo0jH$wy7LKiI?89VQVF#3=#sDV)jUR8Ogw(HYvB}oSO+2+ zS9q+3k8x|k;;#>*n{-Ji9}Ce(TG-0-BHLwr-cJf2@4 zcInrpB_|n`YfR9ROfV%pjy1%#X~(W+V4?B!7`6WU7{TO|>yCiwJONclK>W&JAH zak=1J7uPZJNSVpJ4du!M&CRhw_j7cThh|bX?oStQhAHD zkcl5FpsBv_cj@2Ch=gYdQvI9puXZAdDijnPe}DZ~m@hWWH!XC+Rr?qA-HOck#;~!n zrmmjlw3>!1ihpsj@~SfDXpA++Ek*ttS$ttVOiONj>gvqQ>X)D`vI%;#?1m#~pPC>$ z0Kq`Rt}Qzvwi z_#C3k&v<8byo*sGaD#vA&VTk*G+R}0Jy zs4O6e+ET}ld=;7+SIJ+U^kHOrEA=9Ct1$X&Y;&X7-?%+T(C325em)tJG&0L&cq_SAN6SXGJEIVGat9?0C&!y zTde{ARjV;1WP^hiSybOW3Wib?9E9S2YMV-aiGwQ=CQ|Fe;U$cb>40_`^_?Z8cN*PY z=CiBBXP5cxHlN)kKD+TrGS0Gs%k0B?-N?>fk$jsknNI_nu3W3Gfob5zja_WI!LW$Y zV?s{-G4n_l7M@dd;e_yM2W@qccK1K+AwkdU;Z}ZZ>;{{D4CfEoYDB1UC2ToAjoZro z81`E@mN!fNTzLr#c!uO>ISr*_h56@1A)uxak(a4o0)$r59qwzOVVjHF5OWj^JTG!L z9YR=cx!2LNF{P$NB}g`&cIgh`8!I8k5Y**K619_!EeJJ08XT7)CPa;+oZK?# zoRyT=mc$LonVU&9jQzC(>c+mBnYgj95~8thG7A2`?7atkR7Kl1KBw)b0SSa2U)Ne=`FgcLf$CfO87cEfH$7eZ4&6hTz%C@2aR5R|5Z0%8Fb5m5oDA}Ue@>9GIn zK4r6sK0fdFyx;rx_kPYS7uS8}%$YOiIy3jooSdS*3r{Vzg$8otTjPgJi&|5Urfa2* zMAa>^8!a+?ygnIH+k*F8fo}ZKo2X}QQFTnK)*x*zrHv73K0%WVO&5K?`jr*$Q}oBV zLsX@?Lv*FNgJ*I;TB(=ywMm3pW_2ecHC;YBK~tRwL_vBQFT&4r6dQhia_33pA~re zB>kW~1;RV+D2_*qkzf4)4*3iK=c;Y97qI8fE~aQz^4=9fdN1%@HDUv z_y{-xTmG5J+K`32sj4>$KY6jVZd}?8L$~R4x9y=$3l0Y9C#R52Ydls z1Ono=uyCLVco{ej1ji!|hy@COSAnxYNCM)35?~Rq3%Ce`B;t4w;vM;AE(>nkbkW`H zIk-g>kHjH9!{KzI{#u=dr3J+{{JD?T(OvC$RIAE8?<{UWN}qvaGKZ%n(b`E)e4_!k zY8Kh(Be{8nlUZuqurYB11`J9Vlh8M7VE;c)&XH z`M9|iPwC=eaeJvHB@rcsd$wc@%D^{65;Cz4kE`K>#IzRQN5yMk@KHf~zWQ8E3MD`! zo&u&nXylB?;A1Kst9mq^=i_ue`l1YYEF4$2=p7sQ4sD@by@AxwtI$sQsGt9I;ht3N zLDR8cT2h}%(T2WO=Xe~Gc43(fC50?%+M>d2r`4%Geol`scefZ35Rx95S07Px;_^A& z+e=Z9f~n6Y(z(d9YJan%r`U_EPMkoxG=jgT*_=>+BJSM6?K^glcEz@02liD$-;FlT zwD+@tYKiE%XSypir;rMy?$OX5w-V#xhs%Xq*l;JV(~5e5w_RB>T)iM;hK>G@D^UM0 z!v7WL>|bn$n`^0f_|I90m)_#6p>VXFrlsn$y^gXXKku!OiD$zUJj+ebH>#@P(f-O3 zqo&}NWjx=lil`o|=OC~~eLTOo5bvok%_*oj52bk6Z9JY%q{>3)r0kF91P>P)Wu92* zETy{_txl(Pip83Pzs%#|gLth*msnjcoRUA3%cZ`B06Q)!!nrMT;SO?DdTM5fb4WefJ5>nDTM|RM9Gg78XL$pk>sqX{GG+t_;R#2R3y~((`8IODZlYouZu} z?Rop~#DN1Uw?(>zUVY{tZvk->Tar>U^p|#1{7^V18)@kkornwSc=4##Sl~GDp6pUw zrL(|aXbl0|rKl|zU(mp-bMPtwi_PhD(5=FFIEtFIx?+-=x4Om>5rNl9X}$zga(E4D z?lE{LhZAiNI^kq{D(at|4#ShE?M!{I`U@2d zU!v8wO1Y7zx8&f2k;fj0!qBJPjpwSUYNu;e63rnGmtg5QCRtq;2X;V@J-`!CO{X(U z&mrJ=FUCb4OL#5&J3-!LqP3~>^ND?j#N+`zD@PD9-jygVY3!v7nr`{;RjSz z?F?W)ga4?>zs!)1%c|9TIxXGFC()Zn@QL{XYD82Fji|1=;5qaTO?TemIn=A-H6_@u ze$I3eZC*7#j5% z?v~O?4)n~)@HW)-(IZ%YogS`NZ3O7e^=&FWx32kX?OB%YYR08_tj;6VU+1lrCFQ?d z7Aixw4SlJN_T=^c9sT`Vr8am}wcl2cIt)jbPR>OCrU1NW~fT_(5V<)`XM(t8?a#g>ly}5**5vuSW+G$Z=jN=h;NTuFOAAsSq zmO4B{o@IEKN{ae&6dG{gRuOHyfiBWj(N@)>7npRI$JUeY&0esS7OVLK$FjQSaA2|I1GkxGf*y0sC|mXQHtJ?Dp==ii=|_i zh*W%U1sQZjJyyRm-2G3Smi83|I*c5L6>scR2Ts{&TBMcQJgLGW#N|5hrhvG#v<}gF z_32LU3ev|$^amenzDrdwT5Gt`n4N1Ug8sIv`bOh@M93vl&%{FaF9DhuQQ_V6Ax(VV=}GTAg2oFQ~CVSv8cWryQh&-)qT?OqQB3v718^H95naR z<_6kHtCX47Gkuj3RnjcF%o6smVf0PZ4Z@A1Jh*6<+gkmnbrEPd`pK_IqxKyx_^cxB zi9&3qMXAk1?{Bn*9*2wHl@9<@2O8Ya@K^Op+Brzi$W)CC^+m3{U@VFmz`t7eFX|(8j}dgtG(V$lE7$Z&)k_!;IB4 zHbng>!?c6;r#9*ADWwm!It%>(`1AGXCgt2``Mr{FGIKD|6kr0MU(@L zMr+;1*q(+@o~gA<6;xBVv=F@o?FjwqUyNJSUY#cS`oP7=HwUwO?|CU6&QJt3kV<+G zL`hamW*=Wae|&jMTaEvX)p(x6YrQB)k|;}xBFo4OU#_CnOb$|NHti5+sx{bZ4xJF( zan_ROeVWCuf4_G6{)^3{vYoSi{p!@MSHD46i~yYK$_3l=VYWZ9#SJ-+;jCtp~(>cy8LY zH#cm2>+MaOw`~1j=dRr!?)m8BPrf|x)xob1ee>;iCr+L^{ll3b&;IoDrQa@J`Tgp( z>o;!Fk%)pQ%aUxSatoq5iA2GJWTj~bQ_Z-+X6uAnp&e)W1jjFVe*OEt&7#sT*3NeB z_p8%9`b5|zD!N+o|60Lk|3@YF6ueTo84E<|abnc(sF7U{2nV77`si7Jj_TlAKm(vV z&=cqaP&~c&(tBGxWW;v@Q&w^oc+*Krb{(1*kmD z0NPh9K;NdM7imlYMgbjwSYRMP`OXZVZqOlmOJ;C|wRfWur3Ce%b>R z=M7p{8=&Kkudz}Nn^_1tIZRfp@zth&fkmq(wD5qf)(=ys1Gnni@1Eq~M z;VCgXnF#Z#lIVdNxeq{f!xs<%%8%YxM7oo97N9;rI#WHQeJB9cJEOieg-vxb5})yRr**58IyPA33Ama~Zc?amAV0&t+_gi;JjPH@<&%L1y-h zVe$Q&_ShP}Gq~#ZDIK>bZHQ~yBc*f71)Sf9&D$UaVr)3J%hK+V?bmHF2Rkx)y-uck7H;nv@ zIAghLJ{0erkC6`1YM|}Ow@^FsZ10o&R90m5>ucwnx*|u%ib{ZGvbV8N{ytRZ7JS6A0r*5p+MVH z87Q8Dv25hSc0^tb*xU2Av@_~*jn8A;<+1BZ77ci3`kaIfuEm44&$Jv5{G#o-kR#1b z)jH7rLX%@F#y*_(YSGi9R^~jC@rL8MF+Lx4y)N&HzT*FBk6Y$FU9QdVyLs~5#Eqp7 z^xrn^{yv)~g`chWP4m;iU$yzA;o+7));;uc!SZ3Na+hVU9sktG)%lMP6+h_sTlLR+ z-xc2PaH-n9UUz24zv+Bv;CnM>#jT(4VCuW~hMuhXWxMl@zi)aXXn(}7jgG#My)^xG z`?L2vZ(TC@wc=++`+d^=rs>1ZSA9S3c0<|S>Gy^Gwobh-`R$1dQnpN)m-JRy>z^BZ z*Wyf_uUq|8|J$%1Y9CxP?#U4^H@Eh%@vw&LgFxIAhsJ zYivvU8aA|BdY^4F%f%U!7O)@>Q+NMxK<1VH49b1!F(P z@fmT(vXR!X-kw`E@3gC#%PS=jSB^Sr1B;VEQ+~{ND^de{=BthX+3%{?Q8f^S~A03jAXg z2;hM$z!l&Ma0R#mT!DX_0@Zln3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSK$A71*-GF z72pbR1-JrS0j>a7fGfZi;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#m zTmi1Y|9S;#@W2(|3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSAZ+P72pbR1-JrS0j>a7 zfGfZi;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSAZ+P72pbR z1-JrS0j>a7fGfZi;0kaBxB^@OuE5`}Kp+oX0j>a7fGfZi;0kaBxB^@Ot^iknE5H@t z3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSAZ+P72pbR1-JrS0j>a7fGfZi;0kaBxB^@O zt^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSAZ+P72pbR1-JrS0j>a7fGfZi z;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSAZ+P72pbR1-JrS z0j>a7fGfZi;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSAZ+P z72pa4e)Yh@n0w}&iz(~XGM1IIgs&d(gS|SYUq(u5;+W(?=?O`xslyoaT8>H_IA|zC z@QTaGNUFNr(R=;CK?9TY<$;6xW+f*l4NRacJmG->$wLV38?jizzOSOz659W=e;L6& zvz!r7MioYSgN^MBHnum|$j4wKKZA{Y4X&E65pNXOSZ}bgUxPjA_459dr~O{ot^Lld zZkIw3nD+Ce*LPr~H`v(DU}JlOjeHFDgmlbH51GwtWYw4ZT&MtXyd?F=@y zH`vI>U?V?+s~$(ya(l}AKXm+`w;CKo7#tM&HQ~sa=feokhlSNAynin06d~$V?^=X) z7w)`9xbxcJKmwCdFhZ;bLkBFW!N}iWV?PEP`!m?suffLt4K~VQuu&d^jdB_6DPNUx zRxPhl?$`+JS6)y1?FiL=si%$W$c#0Ul5FZNhu0O{stTM++bsW1{?L1@0~|+hZy5O+$7kegu#vC9M!p7n=S?=1)f-0s z1~WkvB?MUyN|j*xH^Kbh3_gEz@coAeKOX+k3i$KD72pc|V-*PCfh)ij;0kaBxB^^( zf1Coa7fGfZi;0kaBxB^@Ot^ily|9J(f^S~A03UCFu0$c&E09Sx3 zz!l&Ma0R#mTmh~CSAZ+P72pbR1-JrS0j>a7fGfZi;0kaBxB^@OuE76#1#0lX72pbR z1-JrS0j>a7fGfZi;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~C zSAZ+P72pbR1-JrS0j>a7fGfZi;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&M za0R#mTmi1Y->yI)4_pDR09Sx3z!l&Ma0R#mTmh~CSAZ+P72pbR1-JrS0j>a7fGfZi z;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSAZ+P72pbR1-JrS z0j>a7fGfZi;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#mTmh~CSAZ+P z72pbR1-JrS0j>a7fGfZi;0kaBxB^@Ot^iknE5H@t3UCFu0$c&E09Sx3z!l&Ma0R#m zTmh~CSAZ+P72pbR1-JrS0j>a7fGfZi;0kaBxB^@Ot^iknE5H@t3Is}wF&QwJY*7c< z1}IL@F(j?41txoK*&?>?sYUmbz44g`@0$(2d-w90UF)A%G;j7SW-lu$vLJDa!%|{( zxoo+XQU@*fv6c3>?ZDbF6lXL|PZND9kA>bK3N5S-dsZlH&WTxPvi*U20!{;d;joz?&?#X- zHJKnvvJz-A`}q3#2UM$GgVi(Ftsib`*{V*17OlG~UAon7*tvUHo4#_Nl;Ds~J(Bx1 zZ#yihe{@f2=^)hSG$mtnP?OxE z_<<9rHf>)vtwT&sar!;1bb8#NKufkg(sl3PF|p1WR!7=|nPW>9qL7P#hk&KPlfW9_ z6TmM3>j>3=8bB?^ew-XR+%;kH@{;8nVrQ(G*e-d@8%c}PveNrLmEX0y-`elq4XU=> z*&t|T+nu%jUYk-cZD)htZDX?@?&H^D?ZJmb8?0&9rPllvO+V`s6YS%3ei7h%a&Wl+ z*tatq1vbBL)9?k^ws9{m>$@#?_A?Gk|FrnL)j9oohyPsOs*~@VmmX~3GrnJ&21`?3 z>QMKYxE6&gqN1C)$_oYsH2l^*G{`(Ou}@oPRE@25+qbH2e|uBypbz3B>gVl#w{Fck z!-hTbSnGBXyY{uQZYs-a(QHGnmYqHt+MsruvunGCMin^o8jVhE8IrZO`->y8V?*nd zepWZM%}XicJ6jq=34_}-NvuDvPVCy|C!C?RYUj;;Cvd>@-Zck~$?DcIGU|O>v*!*u zhPQL{T-M~(!>4Q4bd*d;&D!8@G1(d3TG;jbe!u#~!`d`j^wPnwHc$47Y5Y_|M53@i zH_fNblR{L3J`W8X80an!-MzL|xRQ5ZlPnyK>KOF${vCDer!Q>Md~L&*TD1KkVQBYP z(p?RDY>4SGVq=e&MyEU(9$ve2@&3@3Z?vxwxGD5lhlow>f|_nJW!JE5>ejAKy>g** zP*|KL#T8Osw|rl?C_61$qe&^e{)9jP6Ba-)px2oHqTjy>i zo0V2AUOLz~w86aPrGA$CTGr}xw1Lx-;%?#__p?|-n3&Sv5)ie+y`oLjuqMqC^0K;Y z&FWgauA|4kh_D@9S|m?T$rD1e@6B#KtRSoGjr1{@orag^POwGvA2h9fRQcewLbo8L zPhPi9tva-5T5U?Vlms8;gQtS-Hi!`g&B znY%J;g%IOAYJNzp<>RdWHGF+z-J2%`4l#u&vF`fUg|0q9a~HU~l$Lj|5uAR1w+2(f zS9NT%;K_OQn|&9R-*(QNX-!Pe4hfIFf7$VfP33hO1kJhlWOZSGL}2ZavEQ48-Cb+9 ze5&Wdx_JjP0;+Z1;ZAHHlGPw9tGwK@bZt$4bIikQW%+8ehJH(5UmMV%{JpehIUCbv zbdJcH(SGQ4&+6K$#=3J^VZOclG!B|H(H&HCp{+&FgaM|Mz1=n6#QY)a>&hkjP9uwT+T}d|GQEuP5X};le z{TgHC|1R8_f7gBbu$t=KS--hY9dy&exEZHzf4$%BhACuUcb_|{ns3cJfA{Fm?k5pD z@V-y3eYjCgD{Q&pzDz00%QruE&3*2;YNp!1ai2S*nu6_?`;wMm%>$QipVRUUE8TVZ zv|HQ7-n;JKwFIB9xamHxZdIO_|D*fBS}lj=x7`=D1ncj=?Ed+L8k;ujfct~vS^_~^ zi-oHdrYEkv{KICy9(#Y=3oDj9)q76FheuyscjTGdM}@@pOTTz@_0bpH$I69AFS(B% zSBtax!JqGZf5g29nGMc)>$i39-S`CY!mP7*zTW-YE|@t}zP$PIhwe|1pzg?(zpdGJ z?Mq7V(N*`)+AfRVyyX7zcQv!Nvp>GGZ-;6Mb1&RFyx;vIHoIs3iCf>jr^eRFef{^X z&#QYA-oD{J`wLc=mrq}O$$jc))ohmf)~)vsxc6Z}cn13ZsBSjp!C%}bPN`-@&O5hu ze(OF?34~kjgIXCr6|Spm5xYQG?>?@@-toPD>+>(%I}rOuwd0rH-*V$aq)G`|d-VAY z=T^IaE*HjJyYtm1b;}DQuG~DJovf!)cV2&Iry48NyKw8f!)kFpjymk#wG~;FmnXG* z@50C5xlh9sw%;;#eC)*=MsXgT?kSEC=rP}Ge#U)HE7_wJ=S?`NMIp0mJ3Qvaa*rw8 zciY&-!QM9wv&(2t0xHs9hEM7p{AKI*BP%Yx;hxdr?X$0JKK;6TTY0Z`3lBg3=EXJc zZ_0&|GdK5azxEt5f2sKN?E{D0uOq{jsV|&;b>r`EB36h#a`nSKH;%xZ-f#QmP4C}4 z3bS6H*@vH8bNOvb@b-xthcBw9<_TEp`b1^M% z|Fw5^xqm`};4x2JUiF&$Q<%c{*WKS7gi&7p@*7ug|FRDom6x|KJ>)*{m1+u8&fWRy zYt?)(^Wg1|KT#WG>$DXYU)Z8mm1 zw-qZ++`fd;s~i7(^U}>b`ra#YJ62JK^LHxjilewuk+vdR9EE4$+P_HPiS|h9*+exe zc2<#Br4-OX4`>xe@Z@Sl`~`2l<=OD(TUU%NZ{50#Q=lzXoQrc6=B+ywLR1v;ZiVT+ zOCwi^>}7hV@YogWJyHMv81PU=xOw-sQH<+%Z+HZ*XaQF%%-eS>D(GF$NxWWhT2N1o z%-pv;*6$T2gfw>SzUA53ZLiph^={7|+&7F$PaAus@Z{h*t)ASg7+xEBtx=~Z_|KTf zm|)XfQUS>RE6|+BJJ5DM0HzMC9GDBt2NnS|DU|^qAOI)_<^uD9MF10h)NLtGqYRWE zmCFDn^G1TBtSHx_&Mj@~e9>A|Qed^@T1&0!+)bN%x@@IoC6+vEVUaDDvC;x3=B}1P zJ0_FXqQa?Gbxx_RrH$+kOR=rk;hbX0Epryy^R=m9mGnp`E9xXpo5ckN1=Xw-99+A0 zojP^v)~jE?LBo(njhk4ShBj*+7S^I=c&pZJ+D5c%*FLgC$EfH|ox61H*1bp1UcF;t zr%sQgHR*h9>HCP}EVl`PU7R+k1I;<|M$Lg~NtRV|w zjaXyWgjrZq7Rs8j<}8f0U@ciVYsFf#Hmog+VC`6Y7RfrWjx35rvreot>%zLSZmc`& z$$GO`7S9q{GV9Cwu>ou#OJnIQlMP|R*a$X?-NVMRY?jONSOFWyikO|1FefWzlh{;t zFKWXab{|`Sny{EHWskDu>?!svd!DUgtJxa%8e7laVq4g|?0vSIea!Z;{p=w7mK|j$ z*bnSyc7grQZm_#d5`2VeLQSEr5F&Kxmm1QdC9X+K*v398+s0xhZDT`=wlVkJI~W|_ zxPI;G?^iDWcIo1U^S_?^<>#Ny{&?nx)2B|JIDYK=qel*Z_w6@_zCQTXfiL%e@%d-_ z_I~=w#~E|`D+ee>qdnLVp~=8Su%Pn$Yr@}!An zr7q`$5{JFGX#BXsg8V#NZces!?3jB-j~Y2*_^_cvvNAK$2d51hm^z?;zm&dxl9Lh> z;^SgtdiUztqkFfmT{?G)j_TMUvVFUVwryIs3UApWta-E0rj{m+8-+A%P`_T?I<O8#|?tW+UKj2t!ko-t#s z**U0{`2~gJ#upXaG3|A_O3NlrnmlFdwCVTGm{~q+_MEx%?z?~ff`tz(dhnse4=-8z z$g)Qtdwls5Pd@eZGtWM^;`tX=u6psM)i1xYX6>u5z5d3!^>1$2_}1H-HgDOw?VWeu z+rH!d4|eX_{o$UEKK|s>z571<{EPix9{B3u*N49O_PfJJj(&ga_=%IJPXBP`$Fo2E z{L8st&tJHB>9@;Qe!qI{`i+~n$cHkFpLpO3a0UJj1^({F|2I3onLKa>xB`ER0vNih z;o|>vs5;=N;&W>J4+rBo|LI&s_J7(q*J}pn0?hWC$^2Vw&+FcFtID&UqX|7z8*{A01f^}P{N zB{ZoLW!*y{d$!Ee^{>jM3s$Jp~tD@))zE(GjE<%Uirt6fj4N8g2CQ4#hI&ws@;IG zZ#5GwA8e)tCi?{ZJKJnBDF{X_u2Q=t@!tg8f$-l7Z05}EGoRajZ06$U-q`;6u?sWr zU;OxUtKZnPeb48Ij{SJy+RQokKd|_b$Dev`Y}mAI`_4U|etzK4;bW(M{N=*s zYqw_3nltbI1rI#9c*!G=KK{g0&ph}1$`@C^vi7w%)^B)g)0S=TZhwF0?mZuWy6^M- z2M!+k_VCeTCr==cb!R5&M%Vs~do6HV02o828wuP<;6?&B61b7TjRepiIWQKPexlla^)^VKzB*>oxa|2M zS);lZgm2yueEsgce*HHeO?mwC?c4=o)+okW_51Gq8P(QqiXDFM(50EqPwEdWTy&tT z?Ys~$rtJBS=~ugCc5J(C#QLFYYWx`WyX(92V+v00%_*Bx{R#W8t0Vh-`0b8CJ!_9o zxhVw?3b@rEv!nkLu8>a;wJ>$r>-c8UwzjR?Pb@pSH!RnhxuJRO`|tI8Iam(O-`+TQ zPVJ3DPKiIb9P2+xj8AP5e(UwEu3vvi^Skx-xJLe8b+1;?<8Y@rjeXiYI{vds7k`*F z_?;f}CNEp|9P9b(4=w3_ppv@FSb6~D*Z=Sb!E0@jdmsW zi6;b>l_jvH&9$qs51nFc?_S2*ZN)t#YZzPb4DJhBifg-c@wc3@$&(q|GXeLOjAtw_ zkFoo#jMW{D`(%bQ#3k8-o#dT_6wgvkKW;Mb6J;0L2j5P*cZ^T#} z@J$F~6M*W#s|^_&2>jN7vE@JrIHV_9`09;UJ$I+H{051S@fIOft&<3ah{8pW@L%=p*1#llw z1f&C9fhK?%IFI{@z6Ra{Rs#0MHq*0RF&L{1M>;-lJ8-Z7VXMiQZeZVxJ1jq$O0E2); zpc~L0Xbv<0Y5)pw3r+D7@FQ>(H~@SC>;N_auK}xoCxIovd|)Op5hw<7fssH4&<}_Q zx&a-4aKHl80|Egb0D~5G9scwpa27ZYd;{zUJ_ge+X9GC() zf$=~tFd7&NqyZ^F0?-ra473MY0ii$$PzR_1_yQ7e2Y(>C23!Ju0e%3E0p9`#fPKJ6 zzz4uPz}vujU@hU=%PENC#4ZzCZ%d8|Vf^ z1MPt}KntKL&FcugE3&=F`4v;o3_Fd!6Y3^WAl0l`2JP#y3Gd;kRyfV(p4HgFyI z9rz8n0GtDU0?q)ZfaAbX;5*X51Qr7K1M`5{Ksj(PFb$XtOaxrO1i%gy0fj(5U<0y& zvA}3xBrqHp0%QW|z#t$M=nwP-l7U1Z4u}DI0X=|jKxZHt=m9S8vY03W~v$bbki;I72jZQv$w9k>cy0e%B60_TBqz|X*0 z;0$mYI0+mFjsZu3!@#$|A>bfz0QeI40{9Hr3w#264D11R13Q8DfgQkmz&pTJU<0yF^{10g^|paD=Hs0-8q zY6HPQEubb42-EtFf64(!X0elX82J8d&0-pk(03QP%0egTCf!)9^U?=ba@IJ5u*bcl0 zybHVoY}2t7yam_{Yy#c}-U2oP8-O=~^}sqEZ-8G1UIShQ)&ex-e+771$7=9Pz>B~t zU?uPZ@Vt%{;OBs6foFiHfv0pl34Q`t4m=J#20W@`8Tb)kDX>Jx!{EihL%@T;A{`Ha z7Xk}_`8w_g-v`VC=IWROo(;?b%5}^H&j9Y#F&#V&mb?>ncxf^>EOXS(!hgs3aBxc< zEx?2@pt+7_U_z*lreKSXCSXEi9gV<*5TK!s24F&c9reJ3x$Ol zJ@~kNX^ggZMNA+Q@NY%T=;GaX-<Jw_D7qWW<7c-#u>6_LdYH=R?EMp#@82X zeD@8FcMMb6vg1N*`M(SNzIT4#JHPLp-}i1@Sg*?bzIT4#yPMzlt~HB)-hJ=pkWgbRT6m1^ytv(+~jKx))IN*KR zq?mpDeEnryWB;?~?FD^%keXLe?fQ+X;Xhyer{F(|r^}x7rw{x|iIoF$f%(89fFXmw ze2xVh(=}BpY#;Sha#7iQfB+y62nOiy1R+2V0%3{pgs?(* zSy(4*7RK7g7TH~>-;H~Yz`qgrrv|F})Evrzxq#8GjP}$R>eRyXOAVnE)$m&QKLDxx zVf#>HQA2r5lo}4iWU1kx&Ohkw|E#|LmzaI(^@ejXbw`)(PpbQ?wtmMLT+I0IJs3mV ztIyS_uk8q`8C<(=y#@^%HMTTu*1Sc_R;}Acw2$l<)v0sWZasSTj`?G#w0&Sut>8L! z>o*8#)Wj0nEUZO%t2S-hweQd|x>J{~-Fx7{us;Ux?P~Cz4{G98aHVg+B~df zc8vjA@D{udQUVN|Z|D)o^ zICqVh?#C|1kpDNsiPwOGu7S21gMzm92r6e`2c~>;hSd4+f3=^E?H#H3~y=xjHU69%c&E&IkraWD2D@T|{nr+fV zxwbG=-YKRlaqUZh+SFN#6RXG*GRudqpeS?D39E1!#RD{sng$h(v`r0l+OX-H~by(3;9h`rm3|#)U?RtP_77jgwKUj%1V={gqXgT;(g+MR)}-N zQA&TIlWC6WHD#&!v{WR0BGizo$&00v;z!bh@_A*XFCJ#0RDNB@m#a~<~v=aSA+!0_pDD^c>lxLgf`79P+7bXdFlqB;m z`9YII-f9jqy(yN9zq1$2b$r&y*OjlOjpofh?ZtTM2Qfz)FMlO{EN4oIa-j64I9`&) z?b7q&49OzDgtU3`X>pTOF5Hoykk1KiOmpPU=AV=V!7R0qFPg6U-;^VyRq`lhv3OSa zR5~sEX!=FDU>Yf36C~4H%4zYubVk}OW=NmO-IQSLZ@=g#c946CwdHtal2k{YDsPat zh=pvd^n!9pddM7UzMzzw7ns_Z>WCeLSLC%~ky7g8XU;QUl$XjK1d~`SWy(vH#Q{r{ za5-H04k?a^_nQR)_e1!^n*&WvDDyDYg zPjZZDpn0gzQXxi86JHe<$gc~D^0&%PWxvu#?kt^V7P*-`Ot~n2EuB@)D~F}4rt^X* zc9dS1c1zQxex?CRJvjsQbiO!9tSR3Rk4dk}uPcp|P0CuF^IGyMF-0m>ie;z#khm80 zAXUzjPfCSCC+O5dDVBE1lh9U%OHR`R;!y$rD?O#9avSjwV!J3^0(vOXQk2q3eoeS8 zIHVGBqB2FAB9$oN(lluX_7QLLRrX8q;vtDCubLhcvgO5sReC~cCr8S+QG0hQd*qkI zRN=a~TFNv1CIyLh(`;pjvet)*=Y{j)e0jT^EeJ@J_Z06F&j}BiH_Ic%wx<5_ zMCDU+O{q4HHc7lGZIWV4o8-eHL%q5ttq?oQ$>Me48Pl^$raai6Ntfjw;z9Fa`3j5k z&sA=sHSH4SNY#}4r6x*9z{ zT2EK}>|$53i#Y`Q2$$>O4E`*}C{c0;rL%lqun3D~MR`olH|3k+q|bcnDR(fo`doC2 z{me&ASLN^J7UGwte4kUogW}ub56T8*w(@~|OPFf@O+G99E^ZfA`qwsJktdoOirvh; zeEh@|xtE+FWhq1P|2*k^X|%Xo+>3hljd)yKFTEz+BQ^5JogiWx_`9x35BU{%qkUqc zDVfd(+IErosPbJv7h#<=)BL3Lh;R`#DAQ-R>4R#~a7?9BnyJiG%B68qd--0$V%lnYMtRuhxZp3B<)d<*bXUIRFXBv^6+iJY;d^PgcuBe> zUy?7&*Tfsr9r+{aS)7GnG8UAZh?79F@-BwKl2 ze$ZTEnvNc0u(_e~nDDG%lHJlo^K_-D;xPT7)R%?`o09otTqf}|<(47q_6s8l!YlbXt3 z;7*)&N{o_hN~qRedP7M!eI%Y{E2OFLq-(3aVLB=Gk~W)KC`|fF3`MVcOp20QDs7bl zv76KZ^=hCpM~X5?9TrlvdO(d@jaqc-Gt!=u9v|7PalJbAn>6o`kdf;ux@SOa z$F||2tsGd;>%VUT4Zj}tS9Qf?ZJ=20;?{i}6#u$xv>Ers(V%A)uKPaA# z$y37_Ex!DWzI;B0whDgzf}Z|{#yf6nyh4se{@9aW?9KR(rr@6MSalk4xeww$jHgxW zpRdyz`|qR8FHXg%#RxvH&nKkVPku|8K9|7N_MArW&bGqYiCN!Jnb@HPiO za6V?5{@?=4Hv_!^QH3y*VW>$7y*^DucrQgPu7{Y_ae7m5G~Qwn3hsnibu(~h zyoI7UxC`dkVc@QKvqcMVH;igqf+I2SZVR^H7Xgl7V=xCdvtF2uw+D}8(~!oD+4a5H zrx|axn2vp!Sr5DcBO2Tid+P)q%VuC-X5`fq`!XYs-q@EJdBi|tv--A-j$qn;0r*95 zrnaSx`2GZJ;4&V7gz@O1}oqgun8OsHiP59KHzw;FPK`QA2<>04^9FHfD6FYz=h!I z;Bnv@;PK!1fX&bcj{-0g^ueP7 z%nU9=ybt30flWAmx>o6f_^~+dFdTOZZ3n&PgX=-ZhrvPMCE%LirQinON5FN!%fO9@ z1)N8JtOpBVJmSErgEwJW0Y3y5!4HB1z|Vmbu)oK^zF1xemcWZpj%wibST=+21N(rV z)t8?JD>#1-pgxGG4-3E&coA3zZ@~6#k?$OE1b7{|J$N5j!TLABkyzdc?m+2~pN#xB zVcCrJZ-ITlZ-afo0`m0(KY-(`hU3ft`$4a5V5-JO_QBKgtt9`^A3RfvbZ%f(N2}MiAg@DTsnr_ayKMEX!a#!lJfS+Ba$V zFqkwN38rIM0;V!kog^)*fvIf1VDd%bVDd#_VDd#R!Q_itfT=Av15=%D4koQb!K8Il zVipS^9~@%mWnRWSLS(O~iwc>IT%u-pbr zZK^$(&Ly=qKk!X3os(9y9@@19lW)S~L(BxGzjye9n}Dfq;SnP|_dw?if6D;lF(9?g z;c+5X3(M4|YJ)F>scq8w`e0fg0=@#Kwn$9As{~BGYXX>jmlI6Bi!R%e?lgCf_v!OulO-n0!|`n0(hPF!`?8 zVDepaz~sB;g2{Ky1C#H%4@|!6elWGw4Pa`MZ-S{!t^-q>To0x;(i%*4^>r}S)z`pO zSKk1W584DKpRy55ZTu}T`KY&PeSn3%1g5@eEtvYI)nMwIUIkO%^fH+GrZr&dn_dBv zFQM~Fb^aE3HrmA)u#9#R2UfuGU=uh2j8+fdkMe_)z`o#QuphV&*dN>%4DSQqOZDCi z-wa*B{lPR28vqUjr-FmP1Hm=HgTS@GY2aY+U@(ot(!n$i%K+B}XM$-QmIbD9*bp#{ z!-j$zf@vU2gy66?ESeG70m za7%C`I2>FJto5@@A3reN|KR>jthZo2jnm!*(>QG#n8s;`!I9vj;11v;;Ep;+fwy8g z8vH$&#%nvkG+uiL+y(p|n8s_{!8E=I22=k|?SuMvY9G|UQ~RL)o!STW@1H4X zf~kE_|4!|L`gdv{)W1{vp#GiO2lemNKFEK!1(SbX0wzCS3rziM1ep5Y=3wd%nt}&_ z$q&)Eg!~xw7olJpceMnkfy2Oq!Q=z{BB zF_x`Z9s$kWd>7;rv#EVuw{1s8&|!DGQWU^_S$d=hK}j|LZj z$v+f=$v@EehWx{LF!_ffa5bG74mxIXs~-O{#9u)?9sgZ0o%bT}O7Jx>9e*I0wmk-T z2a2cg#qMqDda}QPP5Y&A95%HL3a4RH`=oFVHk~61S76uCOm-V~UEP*H+@|^9%k^X zcfqE9f!fht*wi=BdHf1?L)hf6j=-iqg3iZj*wjyue>(@8`U(;D71-2YNU(3iw!oHQ z%X_w|{e}WN0Cp(iO|XMuH-k-QDFk+NSU#|u!w!S(3%f1s7O?$bN5gIj+aGpM*x|6L z%_hQb1zUhU0CsEG)nRACZUegp?6I(^kD)#(7dG`X)Q*c_Q(sdJb}4M?ZyLa!4m%Qd zL)i0ScYsa)W;tx?dnl}eP5n@Q$be-sV-8`xc8 zcY=K!HuX#0VV{LfeNzwES77&m-4ph8*wjb$f_)n{^;5lJvyZl^eN_xh88-D-v9Nt$ z$HI<-9RNEHc0BAr*zvFvUGNrc@Gb|2USVE2ce0y`5n^>G=nN5Q6kZV>FTzphgIy1}q>5l{VH zD(n*2X|Vglo(_93>@?W(VN>7N7xpsP)c+;Hej0Wr>`t&(!KQw&3qzfUO?_cM*t=j; ze>f2KSFne{4ng|ku&G}hg!pr?sc%e!eFgSN*n?r;hE08Bf7tTJ+thw?0PFzR)K{j$ z4u(zrWgplfu*bsg3%faNE9?~5ZDD7_PKO;0I|p_K?4Gc5VGn^l0JaVG=;P1|b{_0| zU>Cs7hdmr=N?;ej&V@Z4b|GvV>~h%SVCTV}3wu25eAx40Q=eM^dl78vcMD-Z44eAi zaj=)crv7(4?B%daU>CuD8ukR(#jsbvroPw?dlhWzk0-)@8Fndb3P)DHs`kr0j>G>T zp894A8(~k;?RQ{Lh3$hhyI@a)T^IIV*wbOxgZ%~Udtv**{s#68*c6V#rheXn__MIf zVMoHg4to~tcCdXu*{1gSH0G!W`+mf`U^j<7A9e}swy+n#rtwKv*b8A#fgKC`0oc=E z_l5m1Y$xnY*h^qffISNKQrI*G%!U03>`AbTU@wDBp%nI0x;-8CO5L6d`)%D`1bdTi zKMi}EZm)y=g>LVFyS%=*09rHpM>2N_9)n=V2?bGV}yO0(!(x+{R8aINK+2`45df>BG^B|9tC?j z?6IncMIr>cZf69#Mo3{5($IB73L9ZNz0$b6>{2hg%*&>0JVv1FMn<4(CPtv^c}AdX ziAJF7i$ViwNoR|IIs9P&IQuUg>3}7{$&Ij0~Q^}IYJt`j%Eb9 zwq^txA2vOXbB8oEMjQ{j05)A`GXh;hGXh;#GXhjn@hE3zzaj@Q%`__hG{ao9A*&4+ysHjQ)hVBdyK*Q|^{*R6~|V_*t_`{0+n;^~?qg%HHkbw&!| zu<05jg=pA)rUXp1MF{>hg%wbf&J3mZ^Iprml%NQ|Bz5shgtsp*qu0ftIOjA|64U zSeRc}+Ck@zI%6QD#$ynqG6p~@!*4BbvGw3m^uPnu9>Eds|oke; znJmLrT$tl1a!@}vxXe*X`=I?z(Cq|Aaj_L~X*Oq}1D$Y&o=1YU#HG~&)CU}UGLAbL z$DEAgO~$b%<2aLXjLA5@WE@*^he)6U(2=F#1@xsEIZm6+&OnZ$A}yyhYnhAopJI2} zoG5i)2h}R<+nTS|n?zd?KEI|dCpsokky)J6>6oM+rE053ugB|&)Ob|9fn~+&j=&|> z+{D6(g}G|}+Hz`HQE6dG5jsX~IioDQ6oR50+HzbjjX^Y9J42e?L67UGbCk}}I(O2! zv(8;~?y7S)og;NlwB-~QtLKx>lX~tA%^j#1lS@-=_A-{{n55Pby*z3SNbV2?eWQU+ zKxd!}&=u&0^8@`mLjR5(0i^2~&HCDks9B;86yZa6&@A6tNTO!hbEz4#gtAhW;3$D2 zq`6D28_9)e@Cb2bxrL4)jv_St)H1B`TBauMy{w)Et(;nIqT@=(9{OAD)>M2CkMg6q z;iwM@4*Ntp`2!tx!-PMv=c9_LjB2Jbs+!8EZYrb7vAAppRU6bVM+vnHZJ%jYr_HX` z3a@2PyU^k)T9~$+s(vaVqtxM~!gZp$ycDfMEptXeVV>5aaePIZm1--s>eZa|qO_jlQPUgkp{UdoPumy^@lNsz zcALwko+|hXV_9o3skYogYZ|_3h+|T195j8gP_>g$5t1FwNmfKute-^HLS3IpPG}&i zslKhcoaVGmEOd~wQqw?Ksv}9`)M}^2(f)J?prz3&rPi0E;wu+)p4EP(qy&|~W20hd zwys2))ow#ttxjiJUFfH@^_s)Uu%dcl-|=u8@G==Vb2;P_^<~xN=r&afBi?hw#&&cB zx}9#zbK1zU>dVR2i4JFBsg0^28{u#iXFBrpi%^m1DAH}Ji&1SOQ;N@^juauw4yR-< zEzB#lY3(d0hYp9%J)w`&T0+G&&O5X#CHKtK^G-aaINL$Tud?1xYjtR%t*8@gXJj(K zT1p3=00}7nB&XG7OLEY3iX~0f;?ixJABaO4O2|Kyma0BC!D?3vl{DFwLv3HLD(bPO zAO#)sAoz{}j{HG+$WirGss*23m~C^~@v%)RD@F&o*;8;_MaVL@5Fa>EMT?`)o!H@7 zoP{}5o&@-a6nhDBB)ho8fnEZB$XcX3k3LRESxIsszSw~4&}0ul9YtEz)~cdrS5!kr zn-G(-&Ek=>>s3&Twe`$|~%nLRT5GWmrGn zI=&1VIIa2ceQKO;_s7Rw#_MtLi{lFQWAlzrcNAO4VKO_yrsbovkuA$` zOn#C$T4(Z;v`ljvVsz0e(>#duK;u!JfNrY}LT!%;MI^i4R<(|Lply=Yms1{SS0Ic{ zY&e?*HX0vde1slfV=9l@N5or;sQMWG%RA2SPkNlo74LAkN;RKUInHQNo;>xmnm<$1 zCesIAlbvvn+J4pLbk$L->odwQawxOslFoV^QR6e6Hhjrd-Kp2Irb8hHDso zQ6aT$hT5`q=SSuC#3fkiQi`#RE(AR@wIYX;p|ly33RM@x64V|Q_0NhXk5-{^vLgo_ zMv^^OUERl_jRxt%z4-D`Ux#Bn@^zJ>|Aa$8UJ%pp;UdJ|)rL*g*7vfHf*^buc-v4^N%9YC4MZO4m0r zHHDHG+tD(u_Fg9U;Jr+4!dM>CC$0l*t@YD^P@kSTWT34S-!Det z6DaNcBfb!|h{X*_H@Xb6jo~u-k0OUNIT96y`Vz7`^id}wD2uk-aX5Fc7Ac8YFyq8hLDhvXVjP1UNRmpZYqn2Le9o%(g?j7ioKmN+CGeQTlGwv9o8I`WIe z{74@(sLMEOm6mbVDlOxz8Oz#u6k~gRduz#+bo6u`nOCn#MbZt#>1yWf}t+>kLV-OLe?q=&$#)YFriuq|gCh^|rA= z_C#AT21S%U&00vGY-4GK_B5k^Av@Kf^|@pljfHILYsi69|BPc6OKh$3;ra z{T1(0KR?$`eHG?UeU;`+F)4IL#<_;g{pk#Zd;Vy831z`c0iqqb1itVYfx8J2jPdXj!Pe2~J{0}hv}ud~ z@ewI)QAwCWw2e+lNetrVHeq3sCsaD&QJ?4IWfjg@2}usBq%;a6DPlw_&S3cdJG&y- z@UOk&gY*fi(3mJyLXs*qet0}iC=M!$j@{!k0u>><3gvV?m`TXJB1B)9%llF6$d3Vp zR>#R)2|{jUr-V;-iklK1*^$t3Uy5>EdAi|Ri%-pC6d4{Hp;B^;t9-O7F)1M>0qaaG zcg?*p2KMvwZQHI*J5}>=RrBO(l@W!c+OFR z1$5QnMN)94tE8IcD(#qE7M3)p%uID(4YCJP6JiE2h0uxG60!+m0+}n=7bO3GqH)l% zF9cr-l3#MC`2>X%Zp@FL2XjkE6*Sg5Af0pRUbZiU;-&UV(gH&ERUs5k4G4upZQKe% z?U0VAdsW275IUwna56~t50M@^p4ugaRU1+TLUGlC&;^^)A0pCs5B@QwV)xO>KU9_; z+8;swE~BH+@%4nR0x5jzKjx5z5b{T9CHsa*6j2R^gDzkMD1(t;M=%Pk2O9PltK_8In(-owXr#ncK zQ8zFR><-dc#{s0W^#bW$Vkb}oI)RhGuHbaA3zz|VgEPSn;B1ic7F|U5cHs_Ep0hwo z(+lFMV>$vr~;`>tidQy4N}Rq}^`#aDcKq?Ch&Ay8E*lpjP07QXZ4*6 zo$CAqNbRctq_VybQW?Jhsf_jS{mjbP45Tu)0xN^|AYE9!K@^|l2d0D3;Al_-QeDgj zsZV5sW5L~ECGZ4D?d?8Dedh&8?bhTz-&3RlHPCIraiAKcI`svqjR%7h!4#0%{uGef zR2HZQ?f|LIPk>anMc`Dh6r{GT|KMl7hZUR--3p}sq6V9Rfgtsnbg&7S1x^6BfHS}& z;4H8Jq&9RPtP7Ta)OJlC(*7FU#|3dYmF&PNpdUzWFB}XB566rk8Q;H+i-{e@K9-xD znwW?MV7_jqxW~k+*i8jRrwdd_8W!C6R8IKf_Q&h1Sn6gVW z?vJ1$ezH$UO;II8sxW9`3+C(`&(p)t(HOv~!o}UA|jEs&yRs8HZ7O1Qi0M5$Fgf!1oFWK+DH<{ zVf@R$N_o&#IwpyinedIV2!csSO~R3(smY_HaCivAS~xG}h`7X*QBnk3`=dfsMJ6Q0 zg{1J|jzoi3Tntfg$=pmM9Cp#hIRb9+nB$i#Qt8w6j4GyF4Mt<-2SXxMPFS?4D(Tb8 zC?zlsgJ0x5CN?%ADkN4FItmx?WEx~)aS3e%`AkHqC1T15hnNI5@WMj5DgpN~#kDvF zL$Rc!)I=)ynD{h&HaQ$YM9`^5!Vzrz#>~m85Y?wbzH((~&+^F-C;6Qcdlo z%`E1#1mF{)DiwR60j~a!-x_)E-p0pQOS{ za||wWaL1HLCC*$)Y~dTTar6yJ0Qxt&Q-Cx@L5BytF+pb#&0 zZ_HD9a+6gko_KszT=gm4UvV!xhFUkyX`lQgvzrz%VXWD!Vk2N-K6xn`z4cGZc?yn9+T{+ZW2ji z(EurUZJd<<9BzNQNxm=Kq@v&5BwdM{q=H>hUaX|P5-dd{t--auq~Hc#QZ~e-p_gRa z$cr7X!AFBsP2i>+4||;o{u+BpC6IgzFUbn=Q#y2@2Gk&pMHHSG|7YjMNG6_XOcLRr zWCtV@Quf*QkbnI8HHsg<#k$qH9V4JkpLX&|bVu9Ee9)I~Y}61mmv zC)t7~kYLndx7cLdZb}HFT*2H8Yk$P<5h?wtm5~|C72NCbFJ$r+z7+M11bkU zQdd0|~l0Kzo?n{$|VfHlbmC z&57@S`kM<|?k*QszrF$9{957?#>QmA!XrHlWshZ1$uDWtKRIC!7B(RyNBr#=w)g69 zal_lEvM<*r__99sb%o+8_;>p++XZ>2n-Zt~li8dz88a;# z%ob^2mdwH-7aAqtI>Ta(VKLIGpAC+t*i$h3v|)eA91rto_#`u>mHv`B1!j699nGJI z!<@?eq%uE=Y<`-GMZpresKC4V@a&G$;)@_A$_Nb^YP9iR6afd){`L7I1} zKts?9r1`ZiXbjqeG_O^IH1G2SX`bl|(tI%xtPTc)w5}5k(tJG;r1^O|Nb`9OXbNV4 zW?&{r^Xn{-=HJ;M%@1=xnxF3g>w~!<&F^&}&6iJrv@Vkm(!8_~r1@kKr~-?@#$X9Z z^V3qWDJZ??^H(FVIaCvn)(gx*ny0J4mY@|#>jbu7YtSCF2GyVq=n1w3eZfv(AlMlU z2JOLUunU+7I)mw;3~E3%m;t(gnV=h(1-gUTU^g%a><;b#y}(?s2dD#kf+xV1&>)Ca9W1JE9<1iFKU zpf5<@SsDx)gVA6WFa@OVFloSQ;B1h-&6EY!0M~=`ZqXfJO)w9nZ#bO*O~C??zUx#3 z)&`$~^sT2-kiPq*{}Js0Gy&;bP!?bV&fq|e3304DdKx?oVv;mPLsV!I)r0-gpgY=E7 zW?)Cq7NqZ9If9)*PtYFp1L>Ps!Jq>e3(|M8(m`i%3P|72$^_Nm3eW}20o}mepgVX5 z^Z*ONZs2{eJ6HmGf$zW`ppjl4`$m@;=nY*3_6Ds%AJ8831>M2EpfA`T91I44(cnNZ z9gF}oz~NvP7z^fr6T#h}9!?-SP#-)48iIwOF?b)W43>aZ!FM40ZeN8wJYS9W2%3Q^ zunuSq)(7puhM+HK4Gspof+?Ugr~%!;+2C++JxE))cZ2$%4m1SMfW}}USQ)$z(svk3 z!1~}juq$X*5#fL;P!A_GTTmZ#1Pwt?&=~XsD}%vcRWKH;52k}%!6~2~PIwDJeJ~p| z1h;_3U@ll0JOWk)^TGPy4X`Wt0@TBaQC}baK@+etXaQCQt-$)A9oQB02K8{F91I$R z(O_jT1*{Khz^-5xsHZ}`fyUr&urjD4ckm3kH$yte9V{ky@CCVpk^$VUkRH$&v;ZrE zR%CCD^pHKMCVSAE>}}C6$sP0AYGgCz#qU9;AW7nF?4M!fIbVf zMRh?j`hr)$!C*cZ z4fX_6Kpm(7FM(>rXAI7UegVt^Z-VQ=tKbgs6qpD82%Z2Bf(2j!SOl&IpMqP#Qt&pY zZ=8o`rO@`lBG3Y)7GnjT1MR>&pc=dmdV{yXK=2wE4juzdP>)T)MCcKqCv+NnjD;Qx zT0yr2GoVM4JMvQ*TnL?-b~N1EfZ5QKL0`C60k=S32W#i1e!yi2IfQW3O0j21x$x-3)(_o z2|9u!K~FFh^aK6D45Ygj7z}+e7z_G=>EIGD6Yi$q6zFrn9E976?4gebv*2z9u7KVj z%!XbY%z+*N?gq0!9XK1z2UmkdU=ElA|8>9;=z-u4=ykz&&j)M?9}AYkT?O8U z9tsvi{{}399t>u|za97v`YO=uH-0bC7WOTmTSJcl?ZE`l9jplYfp@`hFcVA!*MMWe zU0?>d30w$v1GB+IFog9cdQS$mdU{_1^-^VC>V|6s^&YZMW(*hZ;e5t{zjPL(d*qaR zBKOB<_HX3-o$lFle=%ZCJWPZ;oaGAlBt*FJLQfQWqVS(2?D>qI!sqcM z^Q$L9AHm|KwFUao8UZKwNArIA#jw`M*91rp73oa=lrK8_p&yEHVnzIsBE7T*K)-0Q zMiIhV6O{w?YT5%ZoH2x*MQD!zFW*R!{%CQ0oG6ds!vAm)9<7JakJcdQN9!2$OBCTm ziFjyjgnoQC6ve~qBkohVaQ8T2A0_ffJBrt z4;zdys8#TF2|spTq4r^eke`(HGs+_7Uu5kd`|7f24_49huVq_ zTBR2=Q@q`nA8Io;uw~alWBHnsFFTgnAEnOx6BwFhoaE*B>CF-kw>k=7BZ99&_hKBtr|?{~`4lpk6%rCO$3EB%l{ zq1vUrK|GhPtQ4soQyKBHj$>uoo0Spow_a=v#rvllO9!2=segJREZ+Bcn&^B@vCy@i z&ehcBsLpu5;{JL6;r8(?Z%Y56Hs>qqkEh-jHr^ar?4TQsVYzwZ_Z4A4><1+grp(?SaR^ zxlHK|N*wO2et8`9^UZ6O58{l!cvHs8V$I}tY>YC#CvW|Fsyatr`da<C4=dme5tRs+1;z8)_1G~Qa2aQ#@_@^E?k<>9)sJe3dY^E!xQJ?!%|`k>`1 z?YW0AQ+w{u(wmGk3~9XPl=ugTyzn}qeyNlfl_?!VE}tL6dnHe^E2{^kEU2&WKG%b# zpZoC>ZH{7hVfDcMc(e0>l6M-9^Kf`e=6-sz>nZo+EBY&i48_gZ55@e@HIbjC!pil3Zo~hUzyCvHMYEUA}K8oho8h&qz z_qo5{FXQ7VDtSJ(ru#!Q!lQU?P&$-fK8^~wW~Nan zAJf^OeE3+HkHex^4f1vtf~$+tk3v~GxILc@C}v6%H}mvya}0}{n}@MF;O6*p;Uu!O za(h04<>pkDe{SY&NHNo>m$yr*A;lcZ+6T7}!_`!=5Bto%%s=)4ee#3-dgaVi?mV0* zR;Jt>jlQqg$FX$mj1r<9EwdFwCJ6IqEWa~(dL=5rlBqvqpT z9xorC@%G2fJe}N3f9ZNa<8(gz=JSS<#`simpLgZ1bclWMq&$Id{hdZ z1|;(ZWq!iTndw<4Y&6E(9b);$VjFBIRQ2`q^J0(FG^S(m-T>M(j6H)PD%z}vZMN7w z9iJK-o0yWMN=#t;aN*N6Bpf>t@kdyxz7iJs2_F@YUEg6rVR-(RA_z;4D-s!|=-7Ie z%3wh~rr=Leqs7wt>R5+|Sk$0(uG9=-4N*hfA-?OkNV#x70@e$#)2bkGXLa2LFdaz}gy;OQd-m50Ki>AlwY$1s_31DL5f6J_h^lV`GzJsK$fK3WK+_auxSCw?RY7x#C!CEXVH8 z@P8}3Fa3SB04Z(d>*0%1Dl6&F{3&JqkG_M&#R!|;l})2b^hAt`@~*gHS1=y?FW0OU zAMo?3VfA>qSPli^P0&+4&U>yO3@-XiD>3qMNQ zmD4j`wiH5-(BSPUpY`tl^q8+iBToF1aw?>F@c>pDs)bb)J@bMpj0lI8m>P<=)i7&m zP)al&ejkEb#P}y2RTr;n;)Z62C%=+ZuuI17`4kv1P9#;Lr}4;;8jo`fE^K5@OTefS z#Ff;+K@2T};QezQ_s!`&B#C%4C9ZMSZQ8WKA(C}DOBK37!bmGAED`&A<1klZPyW$$ z6tQEJ&4_pFF?MLr$*#F@Z`YoU!ztbEIt9_xjpd<3du|>{4lo7N%u221?0#GkO( z7zc+C>Tr(SoEQ^NLj_0pX*meb{YIkaj3c6d!!8+riZRAF=@KU84_quI#x0iY7UH?` zyBU)0pv9PME|xUVv&S!%ir}6J_cOv>2VD)_e9?Ys2i!}b?|`n7WeQpfhkg0EM)~LF z$-NT&$Dr0ks#r;?RKY~w!^6XXejRPGl8B#`%HB5+y9GPj+6MR=E_$wI&M+f7F zjSh+F_!$|(7H?fP!n6lwiT=~kQYDRMnr5N~5mcO}nKnsdW?+CArcRw|fV~yA8edHY zW=d8q?0o|?I0BLQ`eslpR+CB9H97FJbep$@1KzlRoa(o|B(-dGo=w4g20;DIJ4A)ZJ_UrRDRdk_jwW=@ZGF zej4^yDiV5;@TbgAOBH|I8`8xMB{I!F>8FruC0b5fkxwOjN%N6c6L-d6N>?2S&2dO7 z3R1A<5L6r6KZJI}_HohSRUxQ%Mq@$R6Gd)SAc`A>TMa^_890ScIU+mS`%_B@**Aue zeMboCE<&dakWOurj_C^_fBgglKnkDk%2C`j#wYhUhzgPjv4GIPo6@R*P+BJnP6Ek( zGK9jJ0-@vQL8z6{9uLyjKqwvSAr#N|5VGF`p>&;tko#2#xtpUfsGR!a-ENCwL(dv{x(fk=+Jdl-m${mDe){dbxgHMzfis1a2meoB9(md$^3G}ebEaE)3urP0>$RCs_siSQ<# zo2>DPHP~6^YV6EBxFQ>7s6gpTbY| zF@f3+G}I#mivvKmbG;0NtyZ-(yV3p zRDS<-KH|RU@0aHv;i8f5SMj4Zj59=-&Cuh+>AZuV`q$r5y5+C1Ud<{ZUqD2OqEMZtyayPTqyS+xNU}Ip^Epg{@eE8&{qAbKUiG zxA)(;x_hNgyLt{O3c8`Gyy-)U`r6!_d`!>6&=TA5sWi119NelsYTr>5huT^ z^SH-ct2Rb;6XLz<$Je9MR=2lQZ`Jor`sVfJ3kzHRe0EUe;x=8^ULW@+VoSeUBbTpL z?dbPfdu(&_g*|)S)0ZaN9De&Eze!(Ts~UU$d~OkC;mew0kYGFTLx?=Xj zw7nxYj1Kv*r`E6#oCWXKY&a+CaDP>!g$}bi880`AN!))RB2D$=h~@H?#Zk56jcc!L z{k;7M(>|UD&aHjm(RV_9%D~U*3;(L1OKC7$8d9<&_1N`|W_z#Qy`5Ae!n>!{$T~%@ z;ttJo>vR6(q89#}?_O!~FlWVgJ6ShT_sDiKkFsm8V`|2v1$E@J!yR_dxHWy1 zQ8$lX(N({@{(jzqX17hBM%%V<-@WvAmx(_eK2;&`k3P}Y);3QYH)lj|w4m^}4<`?N zUSn&(!kRy7q{tszs?J|LdUaf!yuqT^p0l?SSN`JUQfE)^Q~4vZOz&UKbWr=;l{ddm z7}?A6;r7bZ%1qk%Z#KRdSoOQpmLdJ8Pqr9#@Wu4hv|@Mb^WC#uRv8$bbgr~7yZFTU zNB+7ucXqk!J=-x})hxMr(uIkybMJ36sBNeY?K;|L$og{~T<-eB#nov1yhHy7{Y?)x zUvl+{)s!cTFOBT#_02Y$M%`8RTNhtA_h#nxv$uLr(?$EQ84|N=hGVT}BRt081m5ci$x<||+ z?KdqgjvU`~@p56>@lF@2`v0;ZbLH`6Ij4IzH%}|6W}K1pSBgm^hj%qSA8ef)Ho)Z3 z=_SQ6S1p~B?(d$qDRWShE*(~+8jkKc?{RmVk+0*IJyKVxbEI^BRg;pS=QU#wH+P-& z`sB)aRg$-l{b(@N#%)JTYHJ(oDFNS^JZqFMsYf4w5Sm*&EThomLDtz5NBw7*`2RE@ zzu>^zz;=^zE7tSyuGr;duXj~-HY`t-G92&MrLZOS`~s6d^baJ3n^!&9Y5LpE z>1Hjr_j%W4$&==_ZCiU+sa|nSSH}-l``%@Y40KzSyZ*jY@}cM5#%6`4d|RV&z3bb4 zTGwWmneV1Ko4fq#YPWdF#@n~`K3w|qqNc*A?9K>XZ}|$}KepaDZoSpXzH_f*$@x)n zzgEgw-lz0=#UpF)^v!l?YI1dB@>KVI*J_=wXg)o0xx4{?VcYL|9k_FK zb7i03LT8V8y7ydTb!34wx%QfesrSx2Z`pRrL`wesx+BBizPvQTDJ}bPTeESI-Y+_| z`6Ktwxz%cz#w_$s&Z%J;tTxqitei38Ok=!u`w6m=3#qaE=XYFeawOokky9)w0fu%Cgs==fB%9 za$VB{>n9Cbd!}uYNyiE9D-YzF9?I$6-uvX%4y*F^eb|!LzOi?k_Ge9>vEgb>+Y`H6>|4RSgSmJ%Z1A?Cx$F;e(%uU)GB6;ts6E99%h=m zw(G?i$>aVAzJ2x7vDUX^Ds`To+w8YW3nHJyd(}(0K4(Gdq?DnZmc<`!wj3kO_n8IDSCGPl)=^Y zbN0td;rD*H(R)L@QO=rG9^a;%@SFQC;8@C;g2TD4@nP2j&J6moKCW)U!kD3VtmlS%c3HEi zW>F2hK*zef7rydru|L3aY@1(ZrDkVpx|;rU-6qrXeB5~b`^}cpBnLxzRAEJofAo#< zlxQ`4IkuLhSIJzeQ0W_~f?;#1f{~3>(Ws+T(b!q4h{vq-EBD1$Nr&JGyBNu!YN}*V zZIWbAJySBMv0AEBW1CdT$zlTYM^IiYOZHg+eXi*j+>rwodJ5r zbrbcB%`@~Wn`i4)uD4gOa{Wtsl^gu7SEYe*g(?=!D^zJn=Z|nmF|Jr9EwDd*nx3R~ zts!X^XW{z!(m*=3tScp+?$yVCb|-EyW)n%c=a!7;0#b!}F!L1#8)g2^{RA<4+S^I@ z@#wB`5RRk0xhc34oQ^quG)0165dJC0l=tC)r%WPoTmp_xVWCCAXCib;7uJTb$A-d9 zMI7We1mOoEX9=(gg?$7IoAy6^Y0IL8?f=bq%Th|AH%8e16tkYBr$?s{2w2VxBmIQ! z|DKrz$Nx~cJckrG|52D;y}MyuFcS3gqd7J$!_$7M-Y&hR_z-+w1O}QXCqp56^>%NG zZxxU+2qL{UlkU~C+bs_}IP1V9yYq7Nwo9HpA6$^TJ;@n1Dd%_j|1^AGn>-4hz2_wu z=6v%5%$zRFw#7@N*}|M1m?fxP8V-f(Xg9@lAJOE$DO)#EdJ zKddw;drP@r+UwaHzWm_3FI$J;_PsGj?gjh4*sJGOE(|~DWY2$k6)Nf*R5CO&u3V*R zwdyrYYSuC}t6itAdA<4#EE;~(NY%JW(`L;rTUfPh)!N#oP1~|pz&LbubaIx}F0O9w z9^JZodiCh(-K)2cZ=b&X{QUa|1P&NDXz-AsLBaq0=9w{L$BmzWXQEiQWho3o|FRb8 zQlK9hmq7iV{VLRv`v15@>M%V^Ix{Ux!c6klYk^BL9`m?+pi=b+G(y zo};;qyWiW!uVt>U$>X}QPUynjSS)&Y~ubtIqU-4pD*vrR9Sm6I^S@@TIo*wD_^vFC}_?Md{Vf8a-y1Z;D{btKzI?m%m z#5`7I9$qAK{omFVl(d%6PzS$%E+6hLX#@#Mz7?|kE9qDArKJD=+x-5=`4sh2GC?Un zg-SaR)b?c=xh%>N_aQcQo8JuU6ImXUu$=~|Au=F zk2`bwH_nq!oQ$&#YNqDLQ#%Z!8YdB-Yc|uWWr$xeuW5 z^YE1V5VitUxB2029lkAX=}*+$YLUY9hT|p>vt3n}SbdthGpY_Py2kV|r>_%Lf>NOW z1JZTk{zowGdyrm4*MG97>p!Tb>pvJw*Z(im4}17z;WC=Av)Z?=3gN23F%v#9eYG#8 zEAWR}joLkHB+6AO7altOrC`f`pV}j(<10U9omAmJua~|)x8#`FjE-uji7ms87Z~aM zr*s^qIoVuyvE$+!6^6Z&|5|E3e)Z-$>W(`{-grLxxz@;~jW%}lz;f}bq%Z$j;R$X2 z?@O1j>7F7xj#vG^RoP$3t!Cn+$y26Io1QUa z=B(Ls=6;(wZ~lUXixw}*TDolcij}KYXRleiZvBSuzR%gXY4et?+qUo6x$B4BKmN2Q zckjNR^Y$Om>JA<{eB|h{<0np@I(_Esx%2rKE?z3QeC2B4wO_8^xOwY#(Ve^Z?mu|= zsQB@(PoDnv`?Hcip8xsc<*UC+U%z?#?)`_47@+<4CSw0Q(fW@jV*k_m|DTTkzg_Mko8PV zy$mH_ZLk=}(S6?%kT(Cj!yoN^D1~kgN;2LT1{i^KPrwoGO+XXqO+hoT8E6hR2Q5Il zVbl!7H>dCgTP!Ez3r6k1$dJ%vK*H)nBoPlIFpHq*QHcrI`K2sN1dXzlf=0E2#7jX4 zB$WKdW0zY8d*{z zMAINkDuS3);K$g;D{CxNuQAMjHvE%W4XT7WOO5v`;dzZh(8L9M_aV6ueOLY*hZ@vC z@*t%UPdB`83sMZRcjwP}c!PnEY{Cjslm$q18D$KOg&{`n+U0slexiCE*Nl+sgv zw4O~*>_s5G;n0+{@~58uJl*YfeZl&}nzv1l82R)gkJR3!+Ql6gsdij!VB66MpfBdOr zdis!#`+F~@-bn9A;pMNyVFEjsqzHQXvrA%3vP638cb7nm5-q^HG zVPkvGXKD0G#yiVn!awt*#6{N>ipSf{%iS;GGcTXgQ)UYv@CWbgnv2iw`6ghe_9!Gq zY*_W9k0kKVh~VqP*t|}D>3$2uO1a;H+bvegJr}a4`!3{~jPR382Kd7VteF-0PZCBtj#=W^)FkdK z^}xr3@osXdTSRCQGa$}h;=9i-*q|N@9pCF^<=P{az5tIlks5{V_4FQbJh(`kj{{SKILLwxihb;rLmrdf}%c!zlbDPfv%qI0y0FJl0N;4z%5P zgzX2N5)gpDRG@x1!={4WSYN08q||$e)V}Fz#i9|%m+3s5+Co^C8V zj>l7`^Z4jYQ)br#u~J&QAv7At^ny<1;(|U%B%M;#L*$J}W$OY)f&Fk?BIv`;QD`&B zdm40i*oT2Ue0r~T5(|gNLp@rtQR3v!eDiqu^W{8FR)s8n{+0(NZtC?^dP*Aj`I0~5 zsicRllXPZQ(nV)f#YRcv=XU%}NVNC27Yn-=*cRm#j=!Ts{g6igtTA#WclxLLWJA8V zPfxrV!vQhI;V)fbm7iTVjAtN@5H-Xd;tBDF_(B39!H{T33Pc0RfLJ(fmsF5u5G#l^ z#1>))v4=Q9)DU-wCuAXxSpms`?0}H}Tu=u&0m+BlfZT_aKvM8LXd>ht%tqZ2AB4_@ z^s|E57Ge)kLp&kAkU&T)mHz4;RPa!WL?;!e~c;*sf2C;xNgIGiC zAdV1kNH8Q8LjKdiDUeJ^He@&C2&5456!HS{4r1bk^g-wy)nz|r-I^`xVpUezKPzd3 zAB_plj3S>J8n7gfNa78PdEo1|8lAYmFo{#+&Z#pL_Gf-)>#OQ{f&rY;H=Mc$zcF{s zHcs70K^MWQoa(}-%%5((;0R8Q%qdmpRNs8U{7G9mHRA+(bE;KBfBq|v_b8{dR4|TH z=OS2#Q}gsOkN*&-W+|sMLfCr>y|K_=7xQ#n;?!*s`gBfBh@hjeHy3>Ih#jZS7u+g1 zlT#NZ=ppQzaY_{h?>^-DI>@PBBlL-!QYfd+Rp`xxy8);A5xZ|7X-;zDLuNeRbA_J7 zspj_=@R2-W-%!}=3H{-He%vX+?VRdGoYEL!A1w6loEjUUn+d+X$IIg`r{<*4cXCQg zg+5WZ#|Znrf?Wlh30C9Oyt>Q7E#j0;3GNp5t2lKTLQfVPD(EF>$Ej;1^eUXvUw2se z(mlcRoa&!Bb>9npp>Url7%wLmz{rsJrc)d%?(53LN865UQ?=7SK63@zFCgX})AcAIB4ZK0R?L`VE2Z7x#fM2KiAil$I26&&4NA}p+=h9#|gui8&|J;+Z$?yFy zWLVfaNky$I+MYipN6gdS>d+a_8w77NZC~w-{M+4GJM(Jygns49Yp=6%OPe)^0)C|Y z*~~mS`JDXRyxN7At=w_^;(P9S=jG0RkyfvN=nlP;aY1^%Twy>hqgQ{}J4utpHitnj(hjE=bGi+oUrj{O~JAPdBd3s$(_$q zdDXl-$mX)#(>bF?_+$sD5qUJH9Oa!4$5Ogpu^lk`Syr5 z0UwvBklvV87aClXqmI40@BB0B!{or`K{?mtE4xA}FUuhPbkM~PzsOhSSYJyGM12IG zoZI%mFY@FwcQf0KM1J#~TSRzXmxCLvGVbvs@@JA>eSH3PS#`de#i5y&(Bt<754a(J zn0R{e{@tiQ+j+C<+_@p&tvAGA-PX2nZ>m}vbyL<)Ene*Vn>p(DW3{_aZ_1ly{$?F} z7ye5+ZhbQ1mV9T?+#=&TdMF?FOFz82CBHGNV>9RnHS(9T%5L;+SvBw4#Kd@NkF!_B zzP~N6jG5NPBkGN#R5EJ(M!87-eU{IoT0>hnNmhPyQZz;K^~&ecyUy;4@;dKZ=U|b% zp>NG6ee0q=G&?Pg^zO)k7Y%2gT!->4?s4;s`i^|?;`n;MoWlKC&lIOH%^lfgbdh0Q z|0YgS*4%hk?H$=a$RPIPu+C0W_76jzy}u)mDAb#J%N6a*M0FzC@vc02L(6$7RS~~t zV0P2dcjfQQcG>>A!yEbOXtDC!U$p(Qe0*N&cf&)G_qJ84{fkyJd)M^^AKmv$wi{;N zUv^FV^1YLEHNH9?vb-J8rSUcG1i683n7K3D^=CHOSg4&`IOn`7&uhP=>!XdgEz~YH z@Qk-S;jv%JoM7OPdsXYv*?sk2FFN9(%y*r?bGfRmW?r)TMRWCjNxkXO($iP8t)%ZS z4{YtSU&`-S{L=4=_WPtBv!&yRUwvub$J>{+i}qz+>g^{ZypbK24!^8TdbF>du3?w` zc=Bw>>Q@EYZrgfZjQi6b$GbHSo?M`9H>&-z0V|3yz^gWMuStQnm4306r^$)t$nSk&Ue=MzSeM#GHe#4@>@zwTACG(6d_FdGr|IR7aa8YOEFMI2AuZvor z#Xo*9PH%&Qj8j)G|G?+r`(}6}eNEP@E+5xAZ7|ArABOx$6Au2Qe_Z?fmHu%W2h@-Hrxn2+ zj%h6pj<4JNj}CAj{&8#AQSIR-3k^FP^+NmjIBCP8Bia|M5=|HENBhWb+5D$thqZ&X zizn^4=!*1R9G3q2khW3P~E2d7tT*b(hb{p!uEr~9<-)qmZ5+LX#S#%tHmz1r?qm+pGg0`;rOc3DucN9(`o zue{RVd*k>8n;d)pq&?;QO~s3w+QI$Ti`|dy*6#5cT=R(A6SSwb3tPMXpf$f2<>1u- z`B4u%pPIK*yJYez(_Q0`9?gx?9ETlRE5GfJ8@EGy(|r44Zv0kl-jK9DjxEtXrRb{% z5;kd@T^)Np(t_%9(!uxX-)r0V+x~oJXFIt2H)%6rz4mO}(FNUH(cUzjHh4{1qwU%6 zc2KnjXs?p$_l^x#YI{B3ZL_BlwWrbT#_TLvq<@>cCpC_n4^7(-JgW!9?cY<#P-w3`I zEEW7q@Ri_8!54ym3O*P7L$E~fnc(k&zX?7Sd?NU(;A6pJ!AF7*1s@3B7rZBUSMZKt zk>G8?TY@(QZwOu&{6+AZV4>hu!7GB71q%c(acV9KUJ%R|JTG`o@T}k&!PA1L1WyW{ z5Iin;Oz^1S5y8WPhXfCDN+!Jibv49%QBW-?3F@i~cR{tFB&e$<+y&KwlAx}ta2Hey zN`ks7!d*};C<*E+3wJ@apd_d>7Vd&-K}k?&B-{nnf|8)lP`C@K1tmdUCE+fp7L){a z2EtuXEhq`<^o6^iT2K^{cOb-}9-$a3edRRi))Vmu@Tuj{B}YF#V`%M)JQo_@M_7jiE; zXB;Ho-s%zBeuxY7(kJ_01IJ>%&Fbh-*{6MGUC-bS(6d+0`6Wz_Xuo7n z$cJ{&OA4lWN676DOwv~9i}9zFwPx0VNZI98hx&7ZFdoL2tX9}Y%Y*VJw~vYNfxhGY zp0zRZEsJ(Z*#?x}?76qihRahl>!zGrX9Hcgr`GgXIq&}KGZ}+0o|p1R^?4m9JMa8v zY=AwbFXQs^;R*5~=UO9f?!tHvUmY)vPn1Wi^y0=;qxe&{wX_-`o5Wea?DqlVIV|@F z-x(p#TR1MFQAH}Rf{iPdCCS<2#ydn_^MLMq^H#rPS$pC3Wy`q~e*SICYALd{Wy!Kh zHz@ucJ5!FO$PXee?Cw2RP5%3xn2;(DO_USt=F|Md=xF0EY4Yzi1By4wlpaUJiOeO?Ld~xOTUpPyYceaCP%iv?L+OU znPI&rr>`oQ`L@`}3qLMQuE`^%hf*H$C9n$t7rv|}sij?1p3XynV4 z&df=#LhYk^`<)jw^2h<_`!{!K4gKBjxosxO>5W<^cRobrYu_|s)tAP z>A~wsQ)IId+DCRRX#UV<{FU=lgR<9P{3NaDe!fqdHlo?A*f$Mmyiqjw;>%QR{-{+2-@fyNK0B&l zX{vVY?A+t)ntMTCc%i^4ReNBUT(MHOp3qCqT)LB@?bl+%2;;^o@;~6h)D&$kZ~L*? zwdnZpk!M?`Xg4iSTi(==#;38CC(b5oC+clb#{YG^^HeM7g`M}- zPS(y|+{s{Fst0tdW!v{AX;ahMd~?Uc8hXl{^+S@h54~p{PMhchJ+Ee#UXpg*iDg%- zB-V#sY&mno2(6nmwMoafl%E%8MthCWCOo=y^N|txFQ_=|w?wUePK~!Y&q*J9I$$33 zYA3eo+S2&3sHuC$M6J)q&F9;8AibpC&|L{yvq@FG4s2@-J-AxCH}P71v$gI!-6(xV zP4ryjwKG!dRUX=y^!$KxGvc&2UmvisIg9bIl(jAELacU5@7+(HC(?M&*D|*SN6RjQY_~#|HJ=KTjy8Po&+HsvH|1$q+bLd7NC)bG5 z#zhshv)oMMeQAtcK&1A=%AdSU-_v;3yzbpq5!!Kkeb(>Gae;1sY4*c#?Vmw|^JY)# z1>JYMU7K)iox?xm)bB*~rQUokHB7tomi}MuA5(iMJvL^4sP^8Eeuo0~V>~SdS7=}m zsx4}>FzL^6b)W|h+2b9eJ=>|*(N#&9FG=}VeHR96|2W(A*oNwKeB!-xdxEqZ)2jdK zsIeh;|5x3HYA?Uoy?9m^ihoBX^DBe3`)3)fJF}M6&&v)GgR~hpfBt^BGv|YiaCz z3NO81#>N#pPUz1nrPA6m_7Kjczf(!c!C z`*>)bROi8|cITAbI5jRpR}0;lQ|-j5>nd~yq1$t6I&(^$gl;GF4nl9oskY_RwGq0F z&|7nAT5(D(h2BEwmYlj~oa&}RZ!C0`(7)l-G~|>lgkE3h^*D8PIn{N9ZYFe7q1WWp zm~cupgkDYPRXKH)In~BOHxzm$PRW2%Q&H#@gf0pFqZzM{_nhi?LVqLl*PK!*r{*rKjoC3aB3b4y;$fEIn@t1b@zmRSLj8Yn%kVxEur5K`gNgS z<5U-N>aGa=vd}MaYA$k07leLZ=;t_fXE@cTg?>`#Cxm{CQ*)FP?@(pss5vC`gPb}o zr}}`<^Mw90r?ih#lPmN+LjO_dyE%2cIMq9azFp|sIHj$en$1GrB=j6k_4k~*4MJZp z^tD1?!zpERYE}t-rO=mis+V!S1s9wf(%~Ii>CENwoON9GkVK1m&BJ|uhLG^s$ zK2Nx33U@)xx59p|uoqO%;kstFaGxdI1=TZ!`wU?(sLl}f(>Zn1gu9@6s&Jno+$Rfn zLCqv#KT+5Vsx@5KOc3tlg}b17oUk7&>;=_hxULy3+(!v_L3O%tA1U0^IMsrhRAHaO zDG92RxvohP?jwY|pgK|5CkT5%bv)NKal$=TxC^R>3-@8dUQit)?4vn#QNmqN9Vy%+ zgnPJf7u19a`%qyos1D(}CRn%!33oyDP~kpA*bAx$3;RKwx`D!7P(47n2MYH9;V!7@ zFYNt=y`b8U>zaPTy{~W=RQD0~zQSHm?Zb6VZ{glcxC^Sig?mro-h)#usPPi^o}7}P za{d2uT%hPWd|l9az~kjoNfVmyNZESQ3FkI9eu@ovNb@7oFE|goK5JvBA`tX0euOPc>k(G@j!oTDDzT3U@4>?Jh+lRS;3-<aT*)>nqJ9im# zpKYRf>wIX~3d_mwS$t--bnl#t^fhPOtfToWX3Xjj&IZA;3zBxT@-wQV`{>+w?z7_9 zWLlq)%&KNf^5!%42hZ27MEZxSYCUQV)HPOg8-q(05aJ+OwZg6tdP zI(N)a7JrtBrlQ}v9^YCqpG zc*y)0v`|-<&p#=sJ7pznKLstN8gdKY5`zh+UQ+sQwbs>;BVXDb+8M_3_qLAOL>>`P z@k0Ct>qB&!XH^t72&VM0#ajVj`Q@47}EJJ`3NhzHd#rd)J-Si~BYq_s$J= z)ReRB&rR&$=uLWvg-I>B+Qy`A7c+X2KD1$QE%{lHf&a-ytiBe0qpKw!>N>%1=ABOD zp5I7iDijW>14|9(T+vt^2F*}Bfg)4`|EgAp|iT4Ja*8SN#k3w@~qw^yPo`EL%oOB z_Okj+aVV)LcOP=)?)w?6{#rQt)|bzWiTgRVF)QyoPCM$$n#yT|&+AxtYh;rK@`lHk z9{%#b`1%sKnx6On6YYw$SX-_ZDQ(Dp@?0b$6v?iYiZ+r;QBo06Dzqw8vb7MRt6M@z zv}%*~RNA-OuK%2K&;5LTmft_GF*ENo=b2}od1lVsv%JTSo0PxaVLptztxQ_*jnwDo zhRpdeG5_(;=s_Xk_$zIiB)rga%BOuH$7g_!rzGTCFMQaiO5EQY+5KDxih& z*OUI#s*y{BCn@ow$v&ih#Y=i<5GecRb-fsw?^;S*0E|vg*Eo6fJRj|7tBLLh_Zy1} zv`7>F<*ByZa{(N_I^fj2iMU_tDZ3(J0oYuTlm5ZA9ObdCD=QX&%A^tidqf@ z(RWdRi>?_mI(=$HUezE*0S>JedcRge1?92Zy9yOx>ATej#w|$y;Woq;!ukE%++~FM zi1LnmG#0|%_vvrj7Ln~uFxs~e`ggtS@Y5yrmELz59hb_SAs|Nj@9q6*3t_6aWv-$q zp&ur8uyr8_i);7E9wGf-q@%9rPw_Ax9IrS;@VlvmDOfGwy%l%b=dY2<}79! zGb*B9Y!Q(cC=Hm!{2SR^q5+Z-6JX(Tz(sW*q{=g83Tz+NH2| zHIbiE2@*`v7UQcLkICcCl`;}cO-qFpEpcRh3#+=tncIUR*PggcC(4&pF~ymy9xa(% z@4bP@dwdTNXD)f~G;70WaU!o&Z7j~bmYz6m|JX1C<%_D-#hLxV*YB&ytRarO{FoGD z7O8!^c;uZbk(a6|5M%aVi0OX$jkw>0U8zYDWAZWkN~0=tiM(p9hZr+eY|UY}%~#F{Yfe@$t$4vVOZd88K#Dpzor^n`p#wq55u7rs^-F^X|q{L_VRODave@+Hmf@ z@p>Y^u^~W|xotspg8zO}pXvrkGin~CG68`VXb^&3a8Uy>*5t7x1d%Iq1D z>zaJJg*a~8R6CP-OSMC=?gD9luI8kf%oL-r?jLrfeS(`kW-<--h#X;^ChL>`xpO9S zrr0aqZ0|n89?yQt%w%R~bknO#?P=5+ zAi}&EU$$c2Y|04PV%v|8ErYT-9LL67FiWX+pz4Sikb(uUa{T+mvn`MvN z3a&%%FQ5ko)wM!QU*+1Y#Gsu-e!SX4h^Zk=ySFBq%(woK5n@J1JYBlYk1StU!<@!6 zFnM2G!9(hwT5CLwDe-_-I_-cqasI8kNkQg}hjlBsLP-Bru4f7|(|wcr;*)iV%nOB&+-{nY?Vr+JJCzyJC%@_G8Pb2^yFI2d zb=#a*-PlEz*Xfa&%G^9`eEgY;5^;V*4|57Laq;nv4OOK5-FuCvFsGTE;Ay%*`nPD` zBo|Xb@zevM4Wz#DebHP@0fu47>v?4RdHapIm@`E`j!xN3_V=y+NsQSjCvDBlmm}oU z2BI5Ai z=eI*0@H@jG;TivQCaIrcr^iIb58Oz*Zj7{tb{BIzV|&4~6KnR6cXA}-bl|0_^j5O|eSI*JF{l6L z&6onxKjr&9hBJKY{LIVxN%3kaLQ6)^W1`=8R1CW*9WNO!7(3CeBY7f!++(+sn!#g2eLyOmozu zCnKS$?W(}23Xyjh^ytnwU!AdMKaI549F|8{Mrn4@=kQl#dqjpNJ2Jd{A|@TuNdF!l z@@UVn{jo}9YzZl^aCovUL-F2~_@B0<{xKsStr=lIn<9IvNPn;zo&1@xt*vXnMkYDG z(Z)QQGxDQPzAyYGL)4!;Hrbf*^i11^V@JvHpfNt#kfAX5S=7=TvVFPZ9`zYt<7RJq ze22Wg#f(nYW|W)6X-%&suNN_6lhqlY$7XKQau+1zd5%w3W;oS~ZNKcvN95@flVurU ziL0CLXOjNkGcj3`!S!`CeRb9fvi$GK!i*EMalxN1WPf14CqHNOUEFxma2GirdH$Zv z$w(h=@Ts>T?LnKI%*u!t-CU7rNw$wZIr%EX*s4%ifrr!w@y9&K5So5{_wEowPWWSd{q?a!nd#E+52VQ+i z3s*9Yz)d}!*M+O}z+wJ_yDtWwWcYa4wMuO40lQDmb0zNwGEVzQlqB!(fupHTu?>#b z@EX<+r4tT4una(;_Nkae16IAq+??} z;P!UM`_70H41jN(^eqHllHFBjFPRzJnBqwr% z;q=+Q{owsxXtL6E(>r(_FFnNVU6Qt-Zl0^EbP^mbVW=ytiI(%DIN$sy=r^SEdg-<3d8tKlH*^nK{{=UDXGt zcyeBzPY%N&{@Kp227M4aFp#k)>k9tEz2WGl6MazGMh{!|)(gL2K3HGt-3RA{!GDcj zIHSHsW-#hbAM6o*n$#-liw9O#6?&xg!Touw%Bls|Gp0>#iuWn*gVOci4L45-#EsO~ zJxuE8gNt(CHqFR8iA%g%BKVuPADXv2L^W- ze(mNR#!z&#=JyBv&@gCPwxY?2(VQTbt(x5r*-D334o}`;$ZCq}#n<#h`kkJc0##RV zNzW(Tn@0Pgf5d1+uJATPS#4;6;H&{~3DS_X?mxn~ouFSixMToAU5y)mQ#&%6pXW4}eid zQNP*eFkDf2#kVTv05ojqNV>i894`E0BJ5f904#Gk&iLLDia$_^I`eE~02=r1FBW(n z!q{-E;9k|NLFfv8YwdF;fZ??>%4o6XAUwfSq%zKWGG+uF&Wkk|gz)Ch?ntX^j4H(! zD>mDs{0Ym(2)v*1=L{e0HN zU*D1O7~n~fyKHZ?Zj0k_?NXF z$L_?iV2{N!G0h(l3})3dC(%q62u+)`H1a#eP@i`ce^$$aN0)J{H5n%u-XR7f=O$Ue zn(nJG1Ha5TZQRl7Br^nIXD|D1w!6SMeIag3I1ItsZ%1t^69O5ZEH@an8xKK=?UKFw zzOxVxMsyctWgG`KpmhTz-wSw(uH(YV=; zf))J@LvY?z;?0!94!G#Nb%u)E!=QZI*38#Eh#~e>FU(J27|NGQluGGEF`nkg>CD?a z3}au`-}f%N%;*f#j;OR6hBvIzh~baXjId)@Ds!$3!GO?7jld(88dd}e%3xP0;_xCZnz46xZ1|zWNzSoWSBaqQ|GFivn9Y?>p=bE>UfSuk?mppkF{AlxGw_`%1 zu=JbcVcq?~jAg1@J0dhj;qi*k zkazxb1kRjr-E-p3C@h&6n*M1t5I@^r!aR{Z3WYW;d7421jHe|B!lGM8;X?jl%`bOv z9r>#8Jmxc z^_}q;gEdbK&+pvl#MsJvS0g!Y4Ahhirq{bzpZj?bSGZ*KI5MJk<#w%|5(mTJ1QTit^gMw&EJY z-H&gpD&GV|o^{>0k`c-1^AqO3q&@-8K2ay#wnQ;5#g0|a**5{aD-V`W>GZ-wFMgWU z=s5wcwVhY9q;D{MmVTf5^Wg+6ePL^j$wlHOsa*XFN+#gloF13GRYACMgxj*);}dXj z+nk+W;%+dM?hcCUEc^|(#Lr$(e0iI}f~zfR`oAF{|DmVfos0NIy__+Fv%jJKnoyqX zw;;SKF!o+j>~9EO6ggWi@(!cd^1AAlg5Ti(bY^OQa3n+VfN9tK(ch5#GS+t>Ckns) z=ETay3X`z$x-c{DZZJ;YWOwk4{v=$vTcKKC5{8RsL_VExn*@R7yoI9aQH+YfI~TGZ zOoDW9T>tJZm+;<`0gK<2OhSw6(Oak6&2SBG^j#zhhA23o;E6&c3dtzsqfm#!01Es* z=zB^O=qMPXV1>eI6ueOgK_Lc(WE3({C`6$Sg#i@AebN4(C=g}!P<)6;qu`A~BnnSZ zNJAkP1)@wf6%V6W=n~qi69pUveH4h}JM3xXPBO$=WhdIKjJ=7h9omHkWo)g{&aoCm z8Am5`E7~#ikvY=v&Wq5%uf^BW}%Pv ziSLkg?Hrs=tJ^!BMiHl0&iNKc&sdw2(oHQa&_k?Yf0VEo@nN$tR2vmuc8D}bS4Y&)|2~f7m^u)eoU%sj z2sB;wox~<|r%&125JK2qz}B0zJ*o{^hv+K@Vv{qQqsLCuNNW(C_LokMM~@OsLUuN_ zP_?&1#wB~@-+B;jNByzkl>G^$u!FV3QB2$3))eXdmoFk4I@wS?&#wKC{A_9KS|eC?hXGTPC|= zx;8dPElq7`X0FIgjz>>A9koL(#<0aiL;vG%yVKO^Ot+`F3AxTkHxpTw%Xby~3C>=}qnqn)7Z1mW-=@~>=w@4_x`S56I%=JcZl*KLrR@yvLo8lPuEV*om$1uhx4}dFEV=IH!kD|oz~ApG&R%D8VaDof)(v%p zUVFX$6`Z|}o`QuWBs5N3zeTN^r(k_8GNFq%ds6G{QHFPx--?Xdj%tZk>wp1Vt(6q$S`=zckN$lN7bVwa{8%kluDH0&O}v9# zhw)>nzk0INUtOctUHq7~asU2{EH|9J&f>@LMZA%3Ozz`NN62-BFjjJTjS2V5(>Qw_F&$f| zD-fh;e*>>1*A3G#e%hn;jO^<;dz~;H>+&gD^3dW6wJw-}MSZ!keXXA}&Rz%1Ab83C zV;122{-piXi8(w3oY;su&WWX|JSYB1@d$9@WGc^z&r*3#tV88FF^7kM6H`0{7$<&4@d|Ka zFDlQ8IXncMn8QQBi76fej1zNs2skmtLx6GO(-gk|C*DfsIWdjObK+r&Cx89BA;35>#Y2E`Vv2_Vw{RR$Z^YG`4erS5miGoeY>#alKNJ?}R$5h@9L2bKKQ zuGn@Y&(r?Y)t&DlHDd9`SQg61w46!i`UuUrwWZ~|Q2qJ_vjmcJ;6Crq5>GR6q#t)o zxc(>jxP1FTOKH%;3Pp_kSb1QvnEOrp!Iel}_~)T(`Cun~eQ-k;(ua29>?P%|FpvL| z^94EdyjP>kuHsbzY#fuDTOfnVC%d(A#}$IMkoC_H4Ww`A=S0b4MR4^vpAaUgs)f09 zk6lnIhOqI6=gub0M)K+z4Q<8nPU@PdkOpf1mUJV@2PJUPJK=@>dwwl!U*x-KrlpYc zW$nf7#;88JNU)UDH@F@td~Y-vJ+JSHelJz{4N8uT`ah;CYGK2A@^gI3U~cc#Vf9ms zv@rf^Yz|%ynP&`#zSEW=ePZEqTRHgkZL}OoLhaS?yHXNb0ejV@`Hr!WeN3h<;@(;b z+9&*z87)YEE9QV)Zzagk`y^<7=y|y3_s8R5RWS4ZCF97}nOfLoarfKW-{Jeh7od3@ z^~W5=J70c%2ZM-9-|dL+`}xz$UIkUdJDW?B(Z5B|`PqTfSNwpo8QS~4tDyHiGV8e? zmHvQ7jZ>)$w*tY$Mqq!udrS4KI1RYCfPN9I1M1)H4d zBEsutq5k?5=cP~w{`H|dY*b{muxk3D>8I)-1Cp`R4ai=rmbdI;)m{t`Rw&C95Iu(}uPv(IudvZuXe?az96 zbn*3tH~Z#kVT_E5WQ_)JJGRA+cO0FMf0DlA+yJf-%N>{PLiUmL9#LX8K*y^R(^Xd{ za7<{Y=3c%=(CjfYYK$Pm(s%Wn}5)Q8sYiASHHdoBYPOmI}u*d z22mRf)~E_oLv90^%CQQc);Dp$`QS zL~x{z!gdsFP~e^6_q0R+APryQtTKN`Bxc&pVAgFoe{ba zyr67GxBo6j$Rbz_?U8N%t3G0HDYnKOR!5?Z=%qo#ibiltS|M)6f41}QR#Zjj|J}}n z&i^h$*zn&tTQN@(}*!OZc}8!mb31s5P=AVP6{JVWXjQ2^Kh0)F<};QLhu~_5Z4u zZMlEfLEwb`geF8A|GT&Td7N$0KfUzt=M#H_xgdE2I~~#9Q%Ku?%5WsvML9fjmZ){|BVsjz#jDw(N1E7Ag;-Ookwu6x>C3!*_-Tzq7VLEKQY77kXD4viJj~IuX2QS+041@{`oIkvFBD|W+SXm%trsNkC@3^kTuw& zPzimz&|KIs+9?pN-+X3lGFjxMU4us8# zqr_~(=`~`$`KJuR4s5?<^J@O{_!%UHxKf=Z<=K$h661!r-f(=Bxc=Coz9IaUxNrRD zxZ=!PoO$Z+*9r6`Gpe6GF4^Os?W=4*Hz%(M1oFRmk5h*wI*;InK8;%UPZ>lX+x(#q z=X$F8#}$=m6Tyj0TyqG&;>hL9`vlu4jhv$hz1V$3V54ug_h)~ zBJQLU{KbDB=ddah^A`JWP6z|--AC;0hhZvzr1k$upQh65Q5k=f-hp-!+kzmhO7B4IxVuo=>W{QPmEM8yWR%uNs z;#7JkN}Et=LbuCQ8qt{|?tb>UIw)O7r8l88e>fW_Y^6e_34hS1(gf?R1C=Ip3#8IS zyHcq%VUtoSP4vq!l_uIK9>JDR*dM3T#BY*ARN4roJyCi$W`z0!eb|K3gq?}@4v(jk zHY9X=LY8OyeCi)*qHYGt??Gn}>3o#lj4VggU5(O&UlMw^lIa6T9%3W-qYQWC|H{)) zn($r1UK%L91>1&XAzok-KY)%Pz5hsCpfpFm%O7cfl-4Kr+{Cb0lqTA?4V{~c(g%>1 zL^}&ndK={jt$*O$QUAjwQQ8pwBl?xF1*ctfgmcm+D9vd*VIxkO*!yBV(oP@6JE>Sm zXr2(C$O>*DepT+N+(IHE{8IerF!|f>e>}J%1cd%VGsy@GrL$uWZ!SBB{?DA8T>j2# z!M&;(pC*Bm`pstl{EG#LpU%(C&rbvl)k_A9hqJ*3A!>>U7I`TYn{%1HpXVS-a{{ry zCz1Z=ex5{GPI-NF+|=CO@h`1VV&B~#jrpTZIJTr&kRh84vlRz@$Jc(qvFxOUKg^OL zOhx*H<#-p4Ets=)@?J8$_d060q^lmsqL#SIHYUTU$XWmK*)2FGC6cBimjXuDW<|d< z?Z7elTtOT26cD~2TxpV#Z0o?~!-XYo@`y9?Mj^MBEL-OX# z7N#{n2PKVlNgJMi#<2&ATXrd=!sEG_7jzds$FU=8a(#}b!ny@{*G2PMam>-?#+$fQ zIGSy4cK&1mj(z|Bpr<(%P6a=z&hvbSV>%CJEJF8;4zR-Qxa*5?OtCB9x@g?lH8vo!Yj_T92 zIbmS=5?E^&-`VpH*>~9t(Hjq5LUm!JfbFVg97`WvSlsdw+OPMAJ|4-(vHabM;)`Cv zJn{XNTD7NfYz_U%KC4%t(qu>1G(q3RCI6Jalkf_@7fE*a@*sIH?IfF9U%~H?)jidT zwK(<^yRE8}hW2xP6qU|=k7H#YLY=MCpzdy4^GvO79NX2Zko_hW{2K5w z^@|DBsQjAgv4-uhLFaTp#_R_Vag3k;%frQQV278r*;#$m|3T4rFq=1!JWiu2>_hTQ zd8PJ0c>{;(9dC@!MdBFCPVafg8yI6mhHn;N;8>o}k{PP$U|QYgad#2YcaM01jcqzu z8wzy74dh=l)0Oj|rh`#qfpYoiOB{1vxka@r9iGm*w(p=$Dvt4HEe=#;z`pA=i4%6H z{HDOl0XqhKH+;D0+G1qyk2QM^CNZGQZ+QNoWPoDel#in&TsWrt?8Tu|8Bo-jsGZMkj{GlpUGcLF$Z30AR-A?U(^;9J z+n)i?;)3lIU!%^xR8gWP-{Qg^J3nsJ*9t z7fpYX3F5mqii6+}9NTiIE3zXK4!Bt6A8STDLOr}D>Z)15KQw%~Uk>$ejo-?Twpozl z%zNR9F!HaTUcRP@Szs(%w=wfKs^4bc5w7kmxSkYA=Xp4SV}Wjkaq90tK4I0Iz9Z;6 z$-`D%I~?ADnIvPMa=;{x^~Zf0PksjvCC}Y9F37;KHy<67df&m&8-9np(*ro>XZ8Eo z(rkEjPyPj$5t^@RG~MJJvtds_?uexzYCli?Skv=t2zw>tobnv$w^c3Z@jy1{#>_n+ z#6s;?{1;u~y*mWHH~aRZ@shT{Px{q+XyiH0e8K9+vGFsD zMu*-*Qs~*PS+b}E@A1!z$z-QTxgpG`}QC z-MgLf5i0X0Oz9VqJ$Slb#!P;Mcu9@8pj%lu7L%W!M9+b{;=(OUq)`10%UJI(S!eW-G>{{uJEj{3TD*y4Ined*^aQ{%tS-A^CX#Sr2>DsN&u!J#P>~;p~@01;vBq}~bqqC{c z>@;Mbk@)1;x%n{ht9Sm6)u_Fub^F#H%!lx|f%_E?H{uvQKe#e7ALc#HmF(Jt&NtfW zPRJW(d{ybO(x zx*GfDM_+;Vz3OY29qQlJ&kug?_zGSR5&K%L04}bxpLhHT8n0@}#>ox^ zuw-}7^RO(`{|(tLUB6N`w=SGf26;KB1Z`ZowXii!Im>pJ!P%Kp z1uq?+K=VP`l!Ld+ASF!kLUSeZzqJc^qP~{_pOtrX@JA%iBNrc)LC?7&`qzj>qT^3f z<~UlE!}R;JJC-FQ`)7dw|HE={i(Fuvz5&hG_&U$mo#hZdO?gh}Qq;c%Z9SKkR)G2T zFRu2RXJ}zYBL$Am6|icX^sB4#Xg=b85PXhN0UKMU+9XUO|1Nm_JdUdpdIN5$PL2JJ zu6F?sJ9H}H(@p=!^=@eXZI$oY zc{ad0s{S1&HmrzTpo8>v(r|v^^c^m54{N^_i2C>O36n*P?{K4f@_C0S8ef{;TFfcc zu+8D>)G1k0wXn^yk!N+QK|bT0q4RPy|CNde9Sp37+DD#=v(1<|c4eE4X?ZowH`ST4 z@-?!rk?`?r(mx=?FiA4p70m~`YQ5@?{($X=RXYlgqV<4$!jywgf55WFJHMU|q4}&n z-Fsr-2Sg4S9I$Uf_P6VZ&&6wCiK?J3%cUB}j)e=n^{xRP-KQ@PKS28WeBAjxzXm!# zSGh=EM(uwtCnGOW3s>zt&iYlL@fM;)3q4#554^&DT75wN&Q$!pGQJjE4_jrS6zZC88EsrLUzH z69yByr=#P^Rr`NQv_gYNN&#~!nt%AXyoKyq!Rbq3C_G2@ zPzX9PH>VX2Y}&4>cm(MqqHQ=I?HjV@z`Hy)u4uydmHc-?yMPqfZj`(c#*1H z(FV5Xboq+ikbIBfqx#E#!Q#<#2Xtqke1k!1MDQ;dJYqk`d@UM}Qxs>;@BamYPO0jr z>XALi3y^EIgO7Dy;g2O~{^R+4a_~hvsQW&CSw2%*3v**QI?n9?Bcp|bvptZ#tKVPvFq=d&Fe8aI7tjluSJE1RlX3v5uG=B(6i-^DKgpPRlRH%6sLsU+tq}|lUIt^lfW)GF;^=|W+SRk^wox&ST~4Vt}~9zL-Uc- zhvMv0-O%S+E*=n%+OO^W$_()>k1tYjnQ4do8JC@Jpxy(SlUXOnPbz6)ZT|L$YP0ABi?7Z0PO>-QT(B-O6&#Ve-8Cg z&r?J3x)n<2;t>zD3N2AZ62&32V=Dp>AN2NXJ)T@BetF$R;UwaPj{ZRVSc7<>)m^@r zZAEeJWwWv8h#$JsDLY_3iWeOyk-30)qC478KW;*LyPdnTR0qYM#s^d55MQ)$f9TSw zC|>7l`1lCojeh4OAd`l8qc2E>UYmhp&C_)(3&bCNecHPNX^201k%;7L0Tl1m{W5bu z;*l1gn`#k{c%&=b5>t8+kF+~~`0yGO&+gg1+6(bX*G!~2<{&=lDYxSu2%`Afo59j; zh*ui8e8#RIUTK>swfVV-SGxSbmt|8?9B^mtCLHlg=N;R<(-HAYzu($rkbwB5gU&YV zeMkJ#+{~GDAr!m0Zd<$-@l0pmKR(?G@l1CY=(GhPo@v!ZuhP>I&-6XJAfE=rGfkgJ z)Zs&M^oNGuN{DZ|M1N}H)`D)>$ZXzi{k0oBa*y=*Aiimd^bHqd5Z|=5`%$6Sh;Q2W za`@E(#5XOPZ4*!;fdGwf3zb!2>&4DSXZv$jkAx4Xe8I<>z)q#O7ZW(w~PLivZkiXH}ZL+vdE`mjI3xuf^2 zyV4CyAE}7AU+RX!>PXuZZ&c3n<%yaL-N4JWnt!SX@?YI*x{P}_WWClGTjtsg{*rKR z-I;EUS^x`6I_rKYp92DKba?E4@tV zo=G?4&k`H5KHLq@y)hl71Kn_SsgYQnQ8&cbA3Jn?H)=1Olh)MlhK7poMn!taFGSu> zIi}kUP9nQy`ZghdWad0{+RzP4Qt{}Xb=?rP=<~SQTGYRt7n%7hyW#R-`zBS*ZkVor z&B|8;*+b~tmNJ!Y2wStF5bSr~r9#TO4tMaw~#)5A6m7J!)lujyZOzjeX!Ika9wv`^LZsZ%xZ z>@JX5%71+Fbr)ngJUo9VxeI2iyw;ohpbO|N#?S1dx?ttqx!3LncR{q`^Vf-fT@Y-v zS^Ty~7qn>OE(e^tz~m4;bNF}{C>`GX@uW!?Ow+q${$WoSByM$b=-=7}8~49^KL%aU zj_q4nquB-Xe;VEiSL%Xo8w3h8(EF$hwfm!DM7zLdPkK!oZx_7Uq+ua6)(PA8Z^Zb! zJ7HuEw|8|zC(sKcnSN!R5Z$HcH6yPRW+rI4t8C9Kc_mexJU)yjp<$fo8-8?7Z zfF0@O{7PRtAUvqS=ypa2*vM}_UzykemFTK-qSjo71ujJB)?cC1YKud#9b+t zwd(*0JhJTK;SO-GjcI+Uht69O{4#xQ2dq&3&~Zb#1KzrSTfQ1yr}C!8tx4hQfGxh; z?u`t#gX2meQPHM$=>4p#I$G2YUh-#erZC%~bM>L?t@qpEdf7U6we#)3)1Z3e(cX3l zJaWi!zeYQ(+2wG5C4W2E-ZeYBzV;Vv9@SKIeDMo(i(Q}OUik$IQy%@$GX4eKJR1*v zUHS`hcP4~5@%(}^+pITgJ z$H~&_TcP*%!<-`YzO8T7xfM3ftso^exu%tl-n(6SVAVQ-R*?63OFM?%uRW@$WV82H z3!K%aPZv1Y0wE8EkDruofiit;t8d*;(0TnZ7r*-x@(mQX`kDL$m&($k#?n7QnYO+p zrK%YsWFvQ}ZA)O@;E4Jk20@aku)z^d@+F-_^z4z6td2te{yeXo8ss zTuPg|4LuN|#}%$xbn8-wZ~Z|mljDGSm2Y>G2^oa|~LCB;ig{8A0rvf?9L zZ~cJLsjnj#5!LYMntMs^&F`Qho6%x$u?pJNL#Mwps|0&~ zp|kboH!!+j`X*7f6yD4*w2=%b2K|%m$0dskf&cfkqWy2az)S~`o>-Mn5GHCPTjrMy z=KG)f4Tir2Q%7s|gK_GnIB~n3N~Z0Zh=wTV4GJmSI??)p_=_R#*ry&GOoBz9SM2Dv z9HH=J0+*lD^$LuFO-^5)jjba}qbG#~9{T1R6GC&B+PRtXPF;%1FR1EM*FA#iTXCqLj*?G;w){8?0a@_k+YAM{!%K6WT0CPtaU$@hpu&ZFNo391i==N_9+ z;pF?wp@$XfL0jO(=9@J@;pBVP3DfH8;o_l)=)s|N6i&Xsz3=+X2Dq}ML%5M&j>5_J z!Xj_6b`8~t+wrSnDI51B@l`vgw!`gHvzrzu3Q*(P|^teE)HDzZ{5;t^z(gBKx=J&bFaqNs3PtbU5 zn2xS%=bl*{zs%8}#Pj!}>sk3_vF%1K96JmWN9yxvT8wsZjcmxb_eEE)Xz( ztNuoi;}0yNJe}s=1tEhjE8P>8P~}P7y|S5yM=g#q7k;9~ktd0(h@t&Hn3s;FC&#a+%8wA` zt(eL^aHf~|Q%#a7Pv9Vg0H#PuOwjeTFt zr%Y1g(UZinc9CA-FDy+w_f>|HKS7iqKC0FW-MaHF_THr0g}zfpc&XI3UU*nsGyQ8I zXIzs{PWR2V?1hjQn##dkobn{jZS2(xUI)MA_;PKfNH)e6cc@>pQ%eDv!}oc@^ctUZ^x^brEc#+Dj*Khtk$wIC|p3u0*vRlpRR?Ni)_5 zUrRFDlI`ehJd?zG%;xmLhv_$-^_K0VM)@r^m5w2v z&1a>35LDqdJ+X+3lF!EXw)8=5j;hyIOByAg#4m@8^a10ytZ9`#<%gLh?qWNwA5?bx z`BcSn<`Zs0{&Awm7w-({~R`+N#goHKO+654z}|r0nKN;xP^j2EZw&xrp9Kjk`<|r#q+)z^j=? zq8%gDJc$@?k^IT-6w=p>GR)*gVNmtr41%Q^l@;#Nxf1Hiw_L_2RM zH7+tq+|%&j0IXIhz^;XJ^cN)L7j8c`0CS%=hN#zZ{GY@_W}O@WMs|=?4f;8Q%AuEP zNSr&_Z2&ZXUM*X?nJS-2;(GHDze={(!{7Dp>XiMb(a~A{`vV7{b}ZAe_b>k;@wyY? z15nwM9aL<}u@8yw+Z~H|UKTBzh;ZWg4~dV9BqBbSteq;>W}NGb5FtM|?$rRy|GiM} zOVCEjJ|vzdnl%7nMd#);j_FbQlX&L7yaCX&zjxXH6}3LeWaBO+s2@w`7sP~d)+fS* z{1`{X1G7R$S9?BCIGw~-ZEYR^|FFjymW~|xByKU$IRG;yLStM-sP$nciML*34ZynS zh3OirDLt|2g#3{4-vhuc7&3-`;P@wrFWSmC2qL-xvy23&@}4Aa;yhyz(!Gyx)8jbv z4~Y+Z&mM$Ja<9KAJfiH0%^>7QI?4>fRP5IFF=?vb=_HP6D-Ocf#McJRrK*&DNc=rZ zZ4g#ZTacR2#ql2!5Ak0y2=moqKNYlb{8NOG&(FJV5Y(3N-PmDH`9F=sGtD;*f<%L3 zPRJ#yJe|b#;`Ih$$|bwjEgqEqCM3S)>+V5#xK}K+gP&T@c#`<4>H~uynCtc6uWFu|;I%a+&RHIoM1> z|1I;*41)fvk80xgZ2Q}XE~?x}on5IW^Fz0;TKvdf#0cu1h% zAlT0j_|{}kjcZRfUKcP3JwxABA9_>rV@SMp-mO6>wYndoAVgg^GfAAA9ytioyB@n7 z@z7?=uOo4N{dPI?> z>+z=!!b!{PYZmfTdYX{Ge+ z?}r@!A#v}oRfF*2yjo^&Eu{~g#H~c@2BBfpDcrr5njcI^JZ)3+Agq^K<*GN2@)J)I z&$RkA2$@ebmrSH{^e6Frx9&ku9l2Pt*q&p55|{TF7zCG);9*g2YQ0fM;^K}YgYfxV zl&y~;b)7?UXb5NcmwV ziMM*sV?o$C|BK~P8kGN#_x#Sco1;I8i_olC=)UO}nUVo&zM_-3 z#-|f3IMFp-^2Rx8+?kMgq?J7jqF#ig9a~BHttW|l{yxQm(1_tF=f){KhQzU}XIQY< zXHeMs7RP@`oId?53);8wjEFxX)z@Ti0GHxm+fnRAr|WqX%#o40YUrz9?9 zd7TB#ix=Iwa*xH96GP(KPj9f`xm(X8jX9NpA(*`phPf-0%BXMn~J1pqF)n{#Ym?}>v@yOu2EKmr!9-Os| znm0^HT>nul3yxf8=*SvTcJL%|&({xF;BziwnZ`L)wmvZ=PS1M8f=lOh1Y85Dagj;l z$yrZXU?U*COJ>ReUr?B(S$>VD^2(*|CvYVk3D^k#;Jv6YS<7ZheqP!p)Xlb zzjpVTWIEL@I*H@%uaQ6e%9R=Nrt~x+@sRz9rON%>?U`$toZrPHuA;$YK|Fp&Xsm&{ zj>M3-JoXNa)1(XP4%xD7eKJYh|I>RG1dmM~S|rJte@NWjKZgYe9pxYU4^no+<`eph z=;pEDvBjm55F=_`MPc^a#sq{msekhoP+0Sktd0+w&i<;*`MzHfgq3$D0V z&C5H>x&D$keWH{FdtcOKMCeiL*ccMmh$v^lwW^V}s1?-j!AugzmsPPK=CVQ1D+cAC zbtLZcp_&CN?VmKOKc?)4NfP>x8z5f12iwf64kS?RrIC1PMLi3~&Z^#C&&64{leqYS zCKkwU;OW&i=d2&t<-h%8LAi8|iEg;sIwTjZw@I9)*M{aLnSm)5Z3=8WhQx*5wj(*^ zHnPsN0rt4aB=LkrT`ZWF4CRu23)toBNSr&MhXnyX$B#_TqwIr8(NQg{div1)n1VZ7 zMtwN?lenJVAPd619w=P$pst&A5;wd*#Dcpr*;@-1bJlMpZZSB*g0+%1taTHV98VJW z-Z0LBgd=WeJZ@6!mKYMxz49CRGkyQ(n;w*%GfABO6&nJ>OE%B026Fs|#D|5Z4uP|@ zrrq4Bocll0g#OrOo*}qpzav~LlH>m*ZspE51i$r)-DI9p^EREt@uvbqutDsqowO6j ze@NWFa@r6~JS#QvRawlonpl`Bi`Gdur`IC|_KLlE#2Ga~abLLMPeU7R& zx-U9{-iH=Pw?=Q^M1K%}|9E|#4gR11_rMZc+u3Tb9hoYrN{sl~uK^XUo1?gn!9Jx2 z#;nD;c%KF{r^Q?2X~X1w{>-_yW`7+&AR86@Yg#;$H~O0zZwPt+KIU4n(_hC6Zl3VH z>;9Z+{xC7V;T(BizOGZn@~`8rqN9$8*pj)H#k=b8V)A}F%}@9U&Z+;j>xYAuK_8g8 zR*9?E=F}7V(S9gg{pyh`(X~+4j{yM(2dpyk5D-YN_o8*0R zn&yxH$KJbu$8^1K!!tQflF1x0Gs$F<5QL@`1SwIGy~#$@p=kwCT0ue(qy(W+wS8!`x(Y$7F*WEgRdT#RaZWD{`D2xCvN7xT&sF{ z#7fILct!Z%9c=m)T%T3hGs9kAZQiyw^WJxnmUZvUZ55O2;wQb`HF*+#kG)?l{mJPG4 zhX?x&n^adG*J_|TdF@Jbv!{l-xhu5{N?Q4J|L@q z`v84|eUK_A`?WTW~TaWwi>y((!${{g*W^=Y0%HZzxjw;>DA{`Znt93l#ixQ;u=i~+0h_!8>jSZJn-{AleiYK-R91o zxt|LkhKEr|;rJ|f!V`j_0bpKo|ykq_tGjs`XSwqOgluEn7Fd)n>d)<4YZ<2oau zt{*SHv!vj+UuM_kA?Ew#7caf-9U^hercdrVujXpkhy8SM%29l; z`;hI)>y~kk6WYYQdFle^adFZ2*RmFIHv^~0mNRIYkY3%`ZOc5n%;`&B%cbcEAaaRbjhXjzwU+<{-6 zox9}Mp z&06cHcHaF9cQ&;7kb7^f=f;}u58PxZ=RTjYzww+KdECZ>Yp$jaDCgo{4qKFqZzvDD zzrA!=&H=6{f3`7jM-In-Jew<0{lHxwKKNC|=rdfWexJx*`GH@Jig4r}-EPQ}mMpRWo%yPVm@E#`al+^fCFl_ZS#{!r!j+~jBL zmV8!v2Jf$Z>1WOI@3`hyoZFUsa@sb({LGEi&)?B%URquIwvSQf`u~m3TiI>$-<^-E z?_H_e-?b`V=(yvTI)BYKDedzoT;h%fmUr6q>~~HZ8uZn76E1RI-*oN&2=C9@v|U&J z<^1!U{*jmYvwM|X_#b_HC*u3aWZCn$w#zFyMXRFUUTJfdd$pk5z^i!Q)5^eu+n#Ly zk#qgH``s^+uX48|6#hF+SGk)_cbw?ie_>twUh|u<^sfZavmyFM zr=^zHu`K@E_c!GH)?UpY8#=7#9IPw*Tv+|~){R=;DElFO{e#EcwW_e0^ZwECkK-5q z6EX1_w_vFENab2zJ|S&aZ=VVo|BG-XWXLLi{^YnBcw?3`KWpC0vwJ@c+e6` zm5&Rpd_@*>le-?gP+K&1nyr0hd{Ni7*P8u))-2{J;)sDulLszs#EZUl{%uz0H)(%j zc9+>Q?XTC%X?qf3_#%`tloFLX_6dm?(n zH!JRhbV%ox&3b+6uAMtemOV67Jm~z6x&P~?$|vu98U5zE{gs>6_26U`kKR7nwBD@dZww)Rt8;~>Wye$uFeQNPVXxSIu?i;+Md0oB@uPl-W{p4GhZ^^xZ&XpbH z=CRXT=lgx|m08_l7e5Gp75%bWS zO{R=$^4eZ8-{(uGTbiW3dwES=JoN99gWW!z zQ)*gge*9|Ew%cc}Mz<+2y>j!tRova>KRz@4a-?L-?giZNwo}bF53ULS$xs;mp3C); z-LuDV%f8CX(SEzSWc$d$(eIbPVUCVov|`fUkE8Q9(I;m&e|COj61QdI`@^Tl&Mq+x zZ2bFYrJT9ADq-!nuZ@d-+^XvLR;$|}-*!LE?7quf{Nw)pkKWbQ<=bT2v-=~y7w@O) z$8XXxQ`rK+wJzWBowi>3aoQ8xIu?E`Z)uk=)_;4h-j#XjwX=)kg)=yT&fuemnOJV7<-PC)h#(GOzIF4jF< z%B40K(avMsl9CUXjE}2o{HB>ZJN6iU7%2Mrcex`DZ5_%rzc*&Ur*97{xqKt<_tia` zn17k$tPKks6uqO<*_7o)VHm$h$LY)R%=6F9IH8WybrSP>2kPp+Z+qy19%`KIn$S~qUQ@?ncB%Dx-BAbO-hUOc-0(0`Q={(Ne~ zK0gnL_PQIfWXj&=|0)-CUcA4q9}l+nt;^3r`$pT^mvhj*(YE&G9JFt=t$jHM?aSHP zw{AQ*YG2#;5T^8@E#eu%cs51fPffwRpIb@@7)A8hk)UA_+H-)P(X%Q={Tqiypq=V1Pg zw#~nsgZY=U&A)Z|I+}lN*SETS9bDg{ZPz!>!SyZLc75XEZWe^!^TgZnei zc7Mh>xIc@w-Jfv|?$4ra_h+1g`!mjVf3{bg&m7&K+3tT!MV^EEU$MN@!ToQk?f$pa z!ToQk?f$pa!TqmUJiZNiJHO7gJztcHI~+V;l-iyz%nqI}N^Q>9X-F< zo{#JDb?|&_wml!49XubKZO_MM2hYc5+w-y6!Sk`%_Izw>-)hd$^RaFHp)Ows>knqz z`h(fQ`h(fF{$O^n{$RGPKbRe?KbURn4|VP9X#K&qzEhX4gY_M=ZGFe=V137ITi-D| zSl=<*)_2Sf)_2Ud^_{x*b+o=?TR*GI*TMRk*|vUWcCdbCwymF;9ju?3ZR=-d2kU2M z+xl5u`#M@bv#n3o({i|=tBaKxPdlJIdST0-S8%4ZabKJc!1w8w4t#jwn>=nUeh2-{SMa?8vf&3G zKK_#99(;IjSUY_0Md{sv4g5CXd#+A#roH(7dD$VS?C6c$$7jk95BRYWz6a%p7H!*n z!!;Bx)?S*1_`ILew4qzM$#Gjk=lumg@!su*tG01x`}J+WRUp68^RKw! z)a+(4ckEcpSudZ)_b}z9?knt4!rkb-;4k&>O>z9u+gulzxeZfxu3NwG75qLy)Pa>_ zOS!I(uijbkA->~lXdid>`I3A7UUK+vxc>9zey(&% zDDSZu-z!m36Bzz*Ki7G<$@|cQaQyzlRCQX;4_wj&(^T#TzK0>Nuy6XyWn4th;sYKh zsXhLA9CEabdo$&Fmzdy|_pz8puLZ6M_$MC*t{G1;L$gyujz57armcv|XGMCP)49PL5c|9p=_F znfvj+gTeUyg#Jp^@x$Deyi;onuc5ul|G0Z);1TZkis#dug7JF{r9XCWc;g5c9CANZ z)fVG}cb=C&?kG2NQ1e}zZ{hb8s^2=WQ+AA-xG|~Ms2UtE?a}n>S;x2uc^QqHJV$%+ zEq7mYJI+nt+wX+o7`0#O+0~1Wa}zdS&*`=U-)oYs8~Q|hg7aGX?cz%j_?`yMvrPln zoZu#=o-c0lKJrWa;H^%+C%MWcE$@$7jo)X;bGjV1;v_fs-iO%_ZlOFoXL3TrQ&?~H zyLoF1z85I%Qp3#Ur?`}*_aDxfi0|(&_vkvvvz(jRv~QC^W6<7JPuge3mU9PvcI{d+ z8so8`QUBI+%eim=GSB#VDDo>B9rWJ8at^<{x#0C1sBgiKCoVoO=Q3B{`&;!Y#(T#8 zl2$x^&tiAuF2PaACwr9tvT3Ke<%3%^ntC7OKVftDwC_)IAIy0^Ecz7Mqv$omrRvk% z6_v6{%LM#BMQoQhRLy?m9yQDl)qG%pp7yI@!|**u{>ql7tv;P(7h+1^%l(m?+Ww2p zqdGLl`1P8+@7#}^S)nfZ_2z3B4|_IjSDxY8T-f2i{4<=-8EfKn!Wk}MyHCT`cTqpu zN-uFQ;F~tzhSgP;&t1wytjM(bB9=C^`Xc6)T(szknE8&?7ctJ+>WdiswdH*!G7&5K zS$z>hpIg@jMNHgc^+n7bV)aEVS6h7%Gk>tIBZ*ir&FYI--rDMmn0DK`&LE;@gVh%? zG}-El$TzY2B9>QLKJO|MG4U&_FJj6Vt1n`0nAI0Cyp6B4+(y^+iluYV}1- z7-jWEEaI%bhWnrOm9qh`BPWFJeU@ z<^yaZW{$V|A_l)=^+hbLJZa&Jn7GF3izs{B>Wi2iVD&`||LKG!Uc}O6R$s)pfmUC{ z3X|0rG4Y!9^)eBw^R2#!X=AOvh_Y5zU&PFZ$1KMeQC4d8>rfUML+ydLIL6R#kvxB{ zwtX+H+Pb^$^#=SdxpkWx$?f)!a-c@mqGId28M8+U1m6Y7NQdtti&X>QQ~GpX`x20c(NIv>V?m>;g~# zU4cfR8!#B?4h#h^AhlQ;Pz%fe`T#S5 zI$#!156lJ{fVn_lU>?v2ECBigw*pPTB47Zp6c`9R3=9I60~-J@02=};fWg2jU?X5P zuraU}*aRqhwnr8MPym|(HNa*-Bk(0)Fz{tyDDV|vIIuY|5*P;Lfh~Zsz*fLGU^`#} zustvl7zs=Pb^xXUX#q9^$N@8fJTME`8JG>E6Cf8T0P}#|fCa$rz^%X@z#`!5z*1mO z;9+1NU^(y&;00hDumad0SOpvatOmXftOX_mW%#`w8axr@`7${MfC9b~P!Dtl1_NDy z^t(Q;z(}AQPyo6E1#1A!61ARrHH0PF>92uuJ51CxM_ zfN8+S!0Esyz${=0FbCKamy zXaq(8Lx8UW!-4I9QNZ@VSYRYD9@qhx2z(8g3hW5X07e7n06AbbkO!^;b_NyzV}OM~ z0eBqP6?g&I4Oj{64y*?D06qo24phkTJ>x(i~|b5w}5fL{=mV& z0l*aC+rSK9GB67`2AB&>1r`851Qr72m_SN_EQ&eEC-r^mw_FDH9$EgMi&?Gff}GEFc7E& zh5}8%2w+EGFQ6O~^76LtirBn_)PURuUgUW$b zR1U16a-hr=<)O$2=m87_dICdfe;D$i{Xm}f1AEc_aGaO4ADBe@foZfq0_P>|2WHWJ zU=Hn%M0=4B+)REH+KYT(8TmZgi+tc^LIHUa#v)I`UdYo87>Dx{=rSGWC(r~81=3vD z1(XELkw{S%j(zU|>6%Gf6#NUoSm4jVc;Gf*A}|k_3S0!t0G3NJ2;T*m4xg?ynZUWgVC;7V&WDdCwA>5Oy+JPg zb-;Y!V&GOFU7L!5+kuCHn}BqUp=;Y&`163_&~pb?!l!FkBzy(18vd8Sr@#|Hg#y1Z z57YyX0E2;_0mFd1fsw!iKmk|?j064z91JW6rT}{a(}AVHOyC(HkK=g&=fgh@%mw}e z%m%0u~cOhwfEs;Aa8p-h=LGWS+&A zdxiw)D&Z>O)4fL;%IO}+2tOTIgmO$hvJm)NfZ;&8_ejKkZ(tPsH-M3d3kAl)9}T2? zw1&WV_(Opy@KwM>_&8-P_mFB}D*VrZ8NfFQ!P5Zez<&#v2;COIZ1@v^nebZ!SHaH! z9)|xKumJunDo4B)NcTt_uoU}00Tu%L0<*Bc4X_;kRA4atrohYaM*@xTLx5HAM*wSp z3xRRi-yA6OD#q_jp}l~!ffd+Kiy%h$9|OzbcLavOp99Q*9}WzMzZw_?oC1smP6EaQ z`vJ3%w+}E8{!(BnFdmozTn5ZWxeho7{sLeDblcH>_#XgsQLYEBg5MvQ2j2iJfIk3O z2+ReR0_OwEfop&jzye?a_`bku_zA$R@cn>K;SU5}!11Dh3T3hEBcL9*0T>LN3=9LV z0+u4q9~cRL5Kw`*#y|mn5-<)}0!#${089gJ1!e+^fZ4!fz&zj~;9=;QfLq}Y2GZPq z4Ok3+KQQ?A9@$=CB=9R>9B?_X9B~1_6!A-h@*~q6YFcbbXU@d$eI3NC}z#{mO zz*X=wfu-;}01M!M2)qE@Kwu&Kcc~mW4p@QxLBQkihXC^s_bTuL{OQ12lm`PV;SU2= z!EXSphMx$`1wR7#6#f@L{hxbe?*qfJ|0Q4;{87M2;CP?_bOy!)e*-1~vw>;AwZQ4X z?|@mrjldjWH((wx4cNL#k3QtLZt`ZI&N%T~H|cA`9(@GtkHJ|@zireHqc8-%-Ii(d zZCL%>>Q_H6wLX*656W2fmD)-~wDRiL2dsX0l!*V#YM$KPFn||PCZp&5k2w)v>-a_S ziid%nMEqTGdRw~YL+o;Holx_h=)LOna%I5Rdc+06{`zIDxto0L- z#s=Ew#m)MDrvv7;mTkLv=h#a-#$Ni$d}H0bmb=5i~R(>9-@V`H-(4+pj$RczM^&g%d7wM<^O&C zZS}3Imze+m-unJOuBWYks%KhS5A7$SI1X%Re#oJy<+pxaXark&}`$D=XUh$ux-0p_SLmkJt{YHDLwTreu3YbOH7|6 zt!=oTi)?+aUyxscdEL6e*hbx#amVgwH8~lw*1W!`B7C}L1h=>6wzv9^``COdo)WOG zpHmJW^w4M1@r@&wS&pxc?eb+u9ACA~e5VY@S1eG!e`Dph+`)|6**~q=ZkE$R$-lO0 zvvrp^PJ(%>FQWDJ1sDrB1zV=cPtebh0!L&Nu6h3bXZn*&o`*?|ROZ zC&z!Un62+8>~D@Z)PMc8phMBt{g0z(A3icRd`O7x_%!YkO+yQ_JJlnP&jIh^CZ;*J z{M3Iq-Fje4wB?Z*W$m}SwmijgDb}mnEcUB4PA2>Rd%j|Oh-l3_!&YCk4^N+q-i7+w zkRLg6*B@eu~0)B3Oa zcD4F>w(FMt^`rj!VBs;Zk7;bz3lUMCi3858L#fx-P-yF?IA!J19J{Hxoh zT)sc;zFE<^r8#xl+jYkc)-IPl(mPoWTWUQxzP8i)57EE1aBSB7`Q3yCPA7H;?LD=; zUuds2Q`dCpSx|oUY>TVs{&EG~ejh#i#Ec)8K5E>gWK!!pWmNj`lu_eG2FFbppFV#0 z_|%EAm4)02~Aore!kPNRQd>oa~_i_VkMQ^rpil|D3m)a2yg9^*!gpD-5x9#8je zeZ~iqZ1Olf?7WpcF*&{7mBkI6kUnZ?YTcgRlTy=1rKKhZ$E1uOH9VOf%VfRBPfkt> zj!TB(IEbW9#lCLiCyk?n_f1X?ej`04nVwtvj86~lJw9pFh*8$O`b|ux%rl4|pFB2g z{Dh$srUt*2oHS}e@^Iu*r^xKT<*r_@Kqp=#sDC5@t{5AHT}R4NWE>U70X z(x(Q;j~^f0Yv_cLmUvrPi+*qQuojFTM~`Tz`@~6UXfbqgaBsBO(BSx~X^61#vG=W^ z<3=W1D%cm9PaHAIQmL*PX=qz(Rcwcs^+4ZG7>7>on>=B1@`T{76DEuo`>V%TbT+jr z@}#!!j?pz`=v4IUgvsdtVD!Oc)WV`|E30dd*!cLk;Qq-ICQ@Cgar=rXeQcM1+iom#eRh5yDSr?;AtJZ$3l;bW51C)WRS$SAZfjy|E~@ZtEKY%w;f zQ!r@^p+>vhtk{A-AkpW5SlHVVH8J5zD-IdbGQ7t$=ots`@72USL(9DCDWz9ON0y7 z_VHKYeAs!X^Css-&Y8~RoJTtMckbpK;oRKWpUOX$XX0An&Kl+k_|l^;nh5!xR51JPqe!g&_y4aM@Vdn1`p{xp<zGwFrI#c@PzJ<)g@o7 zROqn!p~0(+-WYYBSlM%zxuJ7uG+5g}Cf_O_?KIix68bIEDa!dH=R)Ua&b?ihx*Tv( zx%#+tav9|EvCDTZzqmYcY3AC&HOY0B>o=|!U0vK7yY+UHxvE{8x<iB1*n> z-RpYB^*7h2u3m19+``>DyT!SUaGT_|$n6WaLbo5>?z;Wsrgv}R-pRd}`!M(S+|6zW z+)lckb-UvByW1VN8aIWz%H7XB$UW4(rF(m@`nwNyPj(;UKG}V``$z8c+}F6TcmLMC z(B15Q!2P8AS@&D+_uL=5%M@M;t-_=TRzxUXQ^Y8GDB=}wD~2mZDP}3M6pIzh6zdcP zifxLWierk?ik}q~id%|%ipL6>M~319#azV#MXurt#RkPUihYVhigLwIimQr06xE8q z6>1NIM+1)#k5(S9dPI8&9tj@rdW`fK>yhE{fyZ2r1s?ex8$Gsr?D8n{IO=i6Fg^_SAU>dN%g#=-JuxbhL=qxqdw$~inP;x&m!4mHe&<=_dEE0y&r6C0t=B(Z?n-Z^QQ1KGlCp(zz1JqMLa*Ik2fU7Xo%QyB5A*E26?rAnz+1}U2; zqm*5gJ(X`N2P=mu$0*-Zex#hI%u%jTu2*hS7AkiuPb<$WE0ouj_mmHnGH*9;lXtN9 z%igWLU-Ra@dw9R$o#H*tdy4lA?=0_y-pjmKdvEjJ>0Ro5(EGIadG8AE>)tXiH!ro9 z!7JFSnO7^XSG{_8z2TMM^{&?_ukl_PULSZZ^IGlomDgskonCvr4tgE;s_?q*b=T{G z7halBs+9(1n6izsqq4KIm+~#;AmvcyB<1_cIm%C!pDR}?^OYNwKPZnVe^g#jUQ^ys z-dENtmEJzy0p5+g!@S#gcl7S;y-R6U9#)=IUQ}LDRw?f&oxBy^T5mt^#@?act-afO z$9ebn9^#$so#s8+d#3kC-pjq$co%qo>%Gg{?0wk#r1$UMx4dh-AA7s1yi|IXN!3yn zq3WcHQT0*9tKLx!S4~&VQq5B>R;^O4Q*BahQyowpQ=L`)tomJbOI4$KtZJcZtBO)} zQT0~!RSi}RQ%y$1M~GO8i1mmlQyo>EQC(D3s&1Le%?^N$sA6B1MpI29_|5iU&yJ|EVUrj?zQ%wgAr-{|{ z(G1iK(WGd`X|Ahps~@PJsNFP5jX@KjX{C8p6Ri<6Z)o~y-qj>&W@u(>=4(FFtk!&~ z*{u0ab5L_!b53(fb6s;=^FZ@ND+sv4=9pvq8vsG6%Z!_I z?XC7j%Y>`jsX295b)33CS|(ZjfqIU5fqIGh3w6Hw8})YeA@vFMPwLC+Kh%GsWuB_j z)zj3o)t{(y)GO3qs=rq6RsWzquKrQ|i~1T`=DylXqt%!+!J6ip)|%Heye3}rwr03y zlqOv>4K4GDCQtK~W{c)~O(|OD6k6tn=B}nz^N+?ut47N-(6-lh(stAK(hktRqaC45 z)n;lx)-KY1uFcbag_ikVTcx?9d8m1&QD{|KKW&h2(LU5Z)9QUpK23aH_KEO$%_qjEhtE4c!+lbHCiu+one8** z=QE#8KHGeD`;__|^EvJFvrmOjjn88rXPt*muQTbI=w8;X_1WOF)n|v#KA%HApig6;=02@`y886=iT8QiC)sC=PrA=EpCvxaeb)ID_-yyt z<+I=Cu+L?m-+XTQ-1B+r8l6I~();Oy^r8Be`u6%x`tNmnbY;4ux^ucqx=P(m-9I`P zy|-ScZ=es+x6rrM_tL+mAEY0uPt{M*zpwvL|G9ppK3~64|Gj>XzD$2qe^vj7zFPmc zUT$zVXbirFR}A5X4hGKfx*^Um&@jZ1Vfer>*Ra5lYxu&j!SIb?pW%?9-0+j(s^Jeq zwc&5W%Z65lNJF%thv5xFg5h1m1Vns@h|dtQ77?X}gN9RvbA}4Tb;Di51A~XJ+SlmY z!1ra}R=$zG(Z2nB2l*!Xj`p48`@ZiS-%owN@Xh!A#&^4KiEo+j3Ewlmw|(#XKJk_N zDgAu>0{j~Jz3SJ|Pw;!)ub&3Dx=;QWNcz=X^b#- zGR7DO7~e6DFs2%(7-twiHqJM$H*PW(8h0BH7>^mx8h1!=&$Q<>tzNvgW6y)1RI)RW_;Dq#}IFL$1vP5 z&X8`HVVG@LW>{_b%COn6)36sa<8i|^!wtiIL#@Ht*TdHbGh>)<8{dw;oqc=xzJ-}_ zsP8o2Oy5s@7x}L6&GY@*cZ=^2zDIn2^u6GF&G!ao##-Mr-^so+eLwQe_Fd|`#&^B% zE?=|nVc(O!7k#f_X1wF;?&t02>lf(vl3xqIc79QQaen>%hWI7>rTI<9%=nStD!+Ap zoBX!<6=P;RhMDnqzgvDaevkcJjb4};O~$sy4#qCVSYuz~K;tlDigCJemT{hOv2m4g z9cIRD#!A1Net-Er@^dkI8g)j0V+%w?A)+@T1|#Bqv3{zLpz{KxrE^`GgV<-gE>ga0@FJN%3N z5BZ<)|H=Qdf3^SL{?GkgO&XK0siCQ3^WW?Lga2{=AN{ZU-}Zmt|HR+T zq%;{!0j3DkYo-`e4^zD9ZPRemDANqnY}0(xXQtJrFHM_G-PMI#4el^`N-8I#k z{xSIk7y}vwycEzTATpqHK=**efDr-X111Gz27DZ_DB$yeuLHIO6a|z790@oTa3SE= zfLh}}Mt6U2f1`f`|Cjt*_;>d2?jPsh-+!q8NdGkd$^MJ{KllH_Ki_|g|M&hS{$>6b z{D1ZT!~akJTK|9i-A&%65YsEBwx$jy!SuSRuW6uZtZAZYx@neafoX|pm1&)6k7=Lj zsHxm^$#m6p(^PG83GfWi1^5Sq1iTW^HlRbmHq%a1sp+8UwCTL5!gSsA*dz<^2v7%@ z0)hix4rmn+8_*|UK)^czDFNdGrUc9gSRAk{ATQvnfNcRg14;u92K*9mE#P**{eWiy z&VkB6pTK5;VS%p(b`0zm*ekGK;Gn?tz-fWA13wAO30x8QW#HF=djo$6JRbOC;4gvK z0&fT24{RFPJTM~gwZN`{Jp?34~htSE$Gdl0YQmDBZA%wni7;5^l{LNpuC{3gSG_i4k`^g5_Br4D(Fto z!=PtDiUz6%ehq>ev~JM80pFlogEt$<g zH*R0ZyY9>8or^w0Yz{9Uy_EM1&EEs@hj?nh41s_71Y0i ze>A89ZBW6V&|XD5T;(guuA(h|$=(*FX8G zRez#w@9=M>-9h`_;q(5!gEqd)k9q$t+W9WO_n*6H>uP>=W;NQon%B$kq0R5{FK6CE zyWit0pWQ>--{*TxyN~w2&!;@Nk3RT|=g0qre)x;O_{U%9iyFS;kQ($y4L|x^4f^B( zKmPRx=$8k4?~(`Tn+LqI_21~9zxl1}{zf1D&2zek=%dk@iHwfx$5 zYtd)5yy{pj`t1=vv)v=~-6Q@{-XruMe9y<|!^gbu#K-8z$Nc`EAEPgy@N+vqL4Q8s zM{jt7K7GQERX#<(KINCDJw@L><^MSI6#e^*PiprJef*5q_3Lte)aWia|GRX5^l2CO21~n~AG5a0yo$|T z+Dt0~x2($)Lpk`Dy9{n!g_xQyhlk2y8m@GU*>F`Eb1Om@lbPcmBa;Qkcui>*)BRCc zOyb9FW853O7IV+c$DAM2J!Vp)J~8tu;$wa-7!=cH+OU|u@uOlq+o#1eYdj@pis6Hp zl&o1XPM#mfOkVU!%(un`F}drrV}je|#I!rQEavdgl`#jOeu3kyiz$ox3dj69rs$Jz zaNKP%ZLSsK*hMi%VvBM7(iqe3ACSYLn8WRkA&-+WGfI9$E$iDA&ZGIlZp}iWMd%{oCYLSzHDIyOE$uVmx2z??;k7x!!`+_? z<}_Y`_FO4E7_dt4ow!<i3no+dIQ{k!Vb9E?!Y}#9gmy=d3y1HX5EdIwA+8+#by{eb^`mg<+cU!V=gtZT zpPmzxA?Jmxo)?4;6EC9weil0Xa7p;&)@4Dd|5Yf9x*}{zt`JTwyec#*`VIYgO&H?! zyU_F1>q5$qKZK%Bs)UY(H-x*t-W1My+(!TYDMTdR5x$vsS4h}dEws6IPl#6kB~0yD zBm6${0s8xIq1V2LLbp4$LR!FM;YjQg;myfU1^4`C!k?%ALI2YW15S8_z(wvNcg3HZ zll9Nt$@-^oe(}%4`Ncm^m;d_D%jLiRQ@Z|Vf8MVD*`Lbo|LmXI?f>kb#{GZxpVs|< z@}KqUZ+Ust$(bG!$nc!tZjTBNPcNmnN-gepVT$EZ%x+<&M4zdN4q+$Bcn+O2zRkJo$l z>fPs!xHsSG8{e=0fP{f>4;uW=yF(I(4jZ17JYr60c;$(TCr z{pmA4nE9XP{~sRT`u^aDob4Kb>wpuk2Qt~$c*&SGJ)Rg@i#&w)P%~E1QjYgM)SKlk z15gwHtZzT4|NnFM7yqjCUn^KM-uha>+KZ)C`k8jyhj!bG(Z*W}ynU86%ZRtUB>w!l z9PjyXvfEl9DV8mpF03XHpM?)wS26`vhP3r-_*-z29gH7PiF)y zYUvDFROSrYB@@f&vq5+Rhb$ju`6w$~u~$|M)0j(S<+j}LK6YZ&ZRrh5WI2(0>wMDB zhrbne+_s-M;(LSW&5%UqVHB5xGTLxh%ljqi-#o0!7E3UG(yIaQww>Nn_{yjk^@t~>$HtOgY@-rc6k^4V z^6LeEu$><9r1aQW(nteuzMbAG_?zwYh$p4T#*&^9yvvLp^~r7WJN>&2i7VA7Y&>b^ zf)|c>aig)z!%u*v!<2Tp5?^ZUl17DtV`igF+$c8BfwssYBrP_M_JuS?{q3}FlOO%> zHYKiP{h4^uOaLz&@#01?Jp4EqJ0^)I)kkbBY0LpHlhLF4X2Z{i+4nnfrE+BBNwWyN zvv!)5@M|SBi7Tba#*?O|Nr^0!d$Hb;@MB?Yy@@APZ#I_nXx?Gx7}}SB*!j#cs4Z5J zKFt1{C$3c9Y&>bE;W+GENc%DoTf-d34f|a9y|Q3f6f6@~3S;XS~1JE+epMuU#A8NO70E+NwGewm4<_PPz+F!sXj_WnYdAGCVVOFOb2z^%EXg?DSZ39@(?R^e{`FPrE&Tc zK3g9#FT%sn2<%dyEA?R*d;yjSv!CmTFVz;Lp=>JM7SmBCZWKG;fwssYBrP_M_N8Ip zVLPo0@NdKHuiM0x>K8ViG;_cUjH%C$+A9oxBuwmo;z+eK8%J7)!AoJZ==d4%v+VSU zCpCYtv7{G3`H zb$$w8(`~OT494b2T&X%+;$Mm~Iq{`*Sq;*S1uu=!rI<|kIWYS+Ag)v!u<@js z4qh3fNx7bdf7^jB@uhNQHApufyuhCIZ9p+$@Oha1m?y4Ou53JMUIs6X(WID6_}Q=* z=3nrn&J#A4^pvll{~0~Xu^fJ-geGyNa%AI4lLt@VtG?dUo+0p~U{boomugQ|gLE^% zOJ#H^W;*aJf~W6YUw_Io1b!sUK2PFG zX|nO8X>5-BKRe9~`12(+i7Tba#*=0oc*Tq+#T9Mh-mk-`xMvvMt6@Dhn{@#qZQgvqIN%JsxTNzD?DTQASV{;^)RE}&c z>8%RGTJan8b*8bdfgcK!x;G`h)L3UVNVg2U1V)$cr&Hk1fjPRLrWiUtZS364>QGq* zc!i8MX#0?hu}M_j3PW#dV+8azeZi|t^99}epUvwzkjzEnGqMtBS9W2T@?+$c7~ zfwssYBrP_M_N8K9A)`fYRtEnvOloa__)@vD8l;;Gp7PE597#72egsTv9hdl0x~vB2 zmV%dLr<)Fcz5`w2OX;#2q+11EF{4W{$KhAN?AOkSD>V+-c+w1RiS>`SUTlM4_>nNF zHXy!KuB-;>#)6l^=u$2j@Uvj-c}qO0^OlVzy6l3oPX+iDp-s<&%ZExP2x(`nT;pSURb;6g?MqJ^Jg&pbePm@FT|G`JFEt2 z)uN5^?Q{#_A9tWjd?{U4gLGqCmB^kly3}sUetTs`m^g-rBQ=KDIMPZ1FBWm)Mp_B* zlNc@HNNKTg6rT-V4x>eN$%kJAv%hWdJ8|5d!Pk`B9e~2rU9~)0PmEdJDniP`@zW~ObFT|4?-)t=DDZ)!+7Z^Q?se)ev z6Z@7pQuSryNGlw?kOB4erEwhrzZWb8W`AuYzSQ_5jdYYrwZ|Nki5tb{IM5b3grvpB z(Y~$NSI%frt`+cWVfuuB=SqC3TuGzGL9XG@5jTqE;Y(?Y9757!<7i(*Ypnm+Y0Zb9 z2eThX#Fc6{Hl8#GgI8{+SpmNWX8(LiTq#X9o;0(;3mI5nXNrk{FTmKbNj#~s$;Ogi zF?i{W9<|{d__;9qdJ|VFM>d``E5SR=Xj04t_*F1AN8(B4$i|YMz73xL->$DS#e~9- zfQjc1aiq>4HjcDsgKlJcJVfLEDmFf>Ro;1tBOR&>Sfj?bBlekivY&>Z`1#h#RW-!2|Ex)WDQlZ_`$C7z4o5HD^t|0crEfaSpKpQVW}HUE-Eg@a>m zMVYu!Y^einkwfSbf$P6rTrGU%yZ?TDjJQ&DW#dUR6ucY}5`@SNsR9~_2q?rTWbUV%Y@be@zi7Tba#*=0dc;$AQ74T~$ zG>I#v$;Ojr1$ZIDUaWfr{8*TM-H9uu$;OkWOFQ(xon{vNRT7%SmC|J6Niz(*yi7%BGt3kRs z;1%2H9*18Elgf$sQo5`L=|;52`gc-&J*n+O;77pNIfQspa|jztdhy^TF?y6kI{YjN zP2x)RH5*TwbHFRI(>x6SGR*${9>kT>WaCM*06b;#i}enK9|ntzslTQXPpaN*Ea?@a zy$3UTRPR*ynK1hti7S;O8&8^*IQCXM%~JShVfJeS#Ff%y<4IE!iE%OF#d_=EhrrnW zCZ1Hi*;vwx056`=qk1R7&ydh0u2ha}JZUC^S74`E1pl~%CUK=S*?7{-0`IAvrg9|i z|6ulYC$5wx8&8^r;KdW^>Y!%9+?sE!ICTX5t0VW zr+xYkc>f2ZLAgDJuS|I{H{wa<#>SGK0A3Vg#f|#87yLw+{rWR;rP_~;C!I9#vh6hU z;1^105?4x-jVH}K@G2Qis#^{Dqw4#EI8trS#*tPTc;Sc>H#$BKKMuy;TM|#I4cS=I zxD8$=qepF+4L=`dzxGUAsrs_G~>Vv9bI2b^f_K{+Xneq&S&%^BJTH;D+vhk!@4PF|fNimu5vtjJ`A)eIuVPi=zup?gow$m$zUjbw1 zZsJMlv9YAbgQrP-vChHpBVhKL#FeTu8&8@^;3YAd6q62r4vfu_cv3mCv7|R2yh1y@ zGWcih^oS>=$HtOgA$Trh>+4MU>EVaK*!+kmrN_pS-UaaD?evo1r`zcfPfCxCB|SwH zUjMMuD}-NWr$;;~JvNr~XkCF_L!f6k{&$|vClrVFC1%EQEBz{r{|hp@RMLt>mtObIg~c`{SB-JmBk{b97dPgA|HMs zj6ENTCzU%JOL|G*RWf>%Lk)bzd;iuXE*+0HHb*v|$}+)=M7+3BOf38a7@H&Uq;h0q zNn;gwS&Sa#mG(KT&Wz{c+xBb?=quFF}LAAg|RsjPbx42=ug*!E;~sLU9R`ZL-TlM8<*)lQX5p0Kk>yj zAf8kku(70<3SKy3#f@^{;m6ZHJ5AzB^%EOUIyvCYVKgZw2Y$Yt9`U4dWMfIM7`(HL z9_3gGzg9w%xKcT?@uXP+UTAuKy(uOVek_a~OT?4Pk&Pui`g{ueSrppWi^J!i?2fSt z{${&l5KrnDY%J-~XM)(z|IofP#8xxMu#BNec>NM)|G6OIO0^9ePnz^O9riOhw2wZ| zw2H59FWN_+lVU#;Mf>P8LhR>(XkQMFn}dABjdIL~Uj(zC3y3R~BO6aT#o$#jniNwD zUorW`{v)1L+p@8wR{>rmV#SU0V&Ny)=@Cy#kBub_7ar%oO^>dZG`Hl!FNBrDSY7=T z>v1VYYHlH&5R_T^7CP*_a~ox}(J?6Y>3^Xg3k}*xht&wT9iPfbhld|)+b70QnN*CJ z6I);6(nhhYHtnN&h&hu_8+`_b{k#k9O9k&RlNa^J1^87k_WUHCRDZCsq?ZGpG2_Ml z4TT>GWA%t9rN_pSUL|-bc6u4`v+VSUC#A>6QX3W`?l874~H-%hU( zewm#f@uc+FSkkKjuf|T#<$YWOU~GQGlhR{jNl)LUL?$3s+^7xX;itgn*l7}1stqYV z3T0Bq%R`yCQS4R;UADX&nRv>f47@nRi<@Qq z!_RP_OMIzu%4(3-Q}7BHUAjIL!9V+7Xj2RwpEmZKWp$`5G6p%!sLz?&SPwr0#S4xwOC!KKc@)=EvDTH4JWBZ4AQvJim zl3o&cHH;qR=rR-U`-Iuw&k|QEM>d``=YSWBcyXgV65uDn#B~MYNUa61aTH$+UJj#0 z`Q^heg4wqrai#KO<4Lm?yed1*TKLM$f43uXr8L=i(hTp4=YPbD8^!d3KN$8xzknyz zFKjGn#Dh1V(W82=A}yHxGXQa=a%AI4GabANMw8})YWRu|r9Ue`d^#>|?3}@BP+1;$ zk1{+EAb?hWw#XY<}mvxuN?TBVN$xpm&%LPApJb> zF5BtehVL?4T9^1zx~vB2UH~rw8sbLz3h)QRq^_OBm(pc5NK4Zl z#q)~zQo5uOg)*rzaT{ggMzK#FXeS|F>YNQj4&p}oQSj~a63Yp5pp(eN&~-Zv{(P9D zdQl9uDQ)aI$m&p88F zY#eDRV)6RFomMLR3`UDMQd(>rX+?lnV5e0Czl_l$j+7P~M_P&C)i7GrE-oKq9)PjA z5l?Ciu(70<1)hLdaU;EW_(?D}KjKO0v9Y941YVAvUOxOn7~2oTlhR{jNv{gLN;|z8 z_%3r_)FYmh9ve$~bZ)Tc0qvvnjXk$$pS}nBAIA_kYL`^_(_w5o6Hn^6Y%FQ;;B98~ zXuKE0FPG3HuGDyE<4H3GJXuzKj-;u99|E(_lekivY&>bs2QS`EGYNi%geGyNG}(C4 zECjE>PO}L9aS2W0N@=q3qG_&Jy|BHBWqw_Hleu`}$ zm5UoYx3Mu)o(^6vqeJ7P0Dd8(MI5Q~osA={&EQqqY1NSbX?9Mh-r+gFde`NG1rUL$LnAiuzk*X^j zM_OUv1LR+qMY&O?eTP${4+9UyfqHUiT zLuLO}%zW^3Y%#{Sq}yb=t(>%It3^I#%s$HdEc{9s+wa7asxuo)dKbXcFR1T#s%HrN zNSM7Qai!Xrji+NKAvO&r)-4KklNvYi;QTN4&Id56>dOB&e;@%-qf$j>WlCvFTfj*& zNhTU0ApwI1j3hu*S~8h=Lq;c=IGJEjkkryHZCRxiEp6Qv6)mfDr7o>(MWvRtw563= z-BOpX68M8+m7B= zO(wQ>!ta3&*>cfIWlQSqvvVl#U)J+}%&sfG%yD!(*Mg92P951#S4YZvv0Y);5nl38 z2frNB;}gA9dDrVo{Yee1e>Hm&*FEstY?+ihn;w@_N7^WT)rj8nnjMk74Brn;yo2AT zLv@gBqMNG!q`n@v=!%_sNaEIW?vz!slbmzCOwYNk$0QkTX|_PAXeYJ#!pjt6&r7e<=C5KaeI@3SHTp`t|Uk6!nj$sb6W= zH;wS$ghtkXnoYSD*ap7`N@Z8{rEg@@$Ax3VD&hAk=pEI3NxvV5pYSR7u_=0~#;aae zY_`hyr>?U}oOSRaDAimc`l;g7ZHTQ#X}@h(a%#38eh-wYUqnBZUB`yll&weFui2G4 z$KeY;J-n|)H`Q_B)Heg{)Z2xuqnE!Y&!K#Bm8#^z0I~w$L==x9kxu$ zoz2zXS{*5$u!QS>O(wpN!XJn9b(H9(>TkWS*lR*>#+^g`Ep;m3Ya!I-ow7~n9oJ;yXToOggF=oi z(Mi=Fy`I?Hj$SSGoK0*s!G|xnHN zdiyk6a$G+Te*{YY3{P}Z9fNv(v3c+k6;u`f2&`#*P z(9fZ)BiE?K4K)oFx!-tf)~fYaeW~eV2hRKJ`=S!}yi1n1EN|(GL_^Cvqk&b%@?dK` z)@Fp_kyS=~#Z8g+GN&{iTpsI6EUz)bfv#x6r8mpyHfD8%S|ljh3RwRv%~rD#Mt1^s zXEtQNmIBs!|^8rAx|QY*xE zaS=(lR@I13Bos&lrj>|F%?sC>bL}jzHyB>YJzs~fUfejXsk%yZ>XKw4tVcE(oMq`% zi(V9&tXXVXoyZc%W(>)eh-|Cd-nAmz=8`Qi{ccZ^iEu}fOdRh-HVL%+E-+)+@76PY z9B|3%Odki`vbmU1&%0%&y+dx9Y45O0R&UztMK+X!`X;e=#I4sPibvft(_WuT)@a&0 z=9Zay{m7<&o%XH_M?#&9k4@L9+U@UDv*OaPoX7oZt$djLv_^@c2ic|%Qpb|TMOJY4 zTB~m?S!cIZ-F)vsD+ised-KgVhgujKYTM`5T4N=i2u@p2WyZJNCA-#)Z-*{xwDfkm zWR~78N0x}v3ht9>{51GII)ANIXD_nK3B+awJFQ#lsV}WnlIU56)qp1W$}D(moHOwG z?#=eKYNF^^vSN|#K&BlJK9Ti(d96CYV6yc}MWzm}RrQOI+4-rz=vL+R+x)b+>REcL z+HebeOQ+cm)qAVzU=YlTcgBO$yoF+-;|O)09+a6ei9E&DBeGXH(FyLiQTWxrs8wqr z*_`s{wep?+b*0(^$>w?TE)yqw{t5GZI|=kbOgHAe7%8Nx>4S8tt$Qqe=YEb}R`7&X zwu5^X$@TWyWsbi!_{c$NBUo?ylsa<%L^j=SPg338cHR9+b>&`3a^2pfy2q%)w8;gQ z)lS)!dl|CnK6`1W@Y{d!Sv7Uco#!)5)MVYPvY66#Us}% zvWZPW$$R~`?lR*LKHVnkWv9On*mZ^f>*2f9SwFc;RcaNV_^H)C5jlRGVrh@iQDTy| zOMJ)K7uke=bmu^P%I5ezr1`CX`7RZNWOLe^puY6`de9kbQZ8#z*_>F+vG(704cgVm z_w-43t4kr-9KU*dpQP*ucDdvCsO|T-`2E6A-^)5vHr;RU*_Lft(DblFg}qFsXiYqg7rAUJ5yS+mrMr zeZpYIP+uGx69w#x+ym;H$Q=KAoL~Cn-RfaTHYb1U zsVn*01j@W4o2>t2b7GLOu=B(2_UrT6p4;zM&qA^}e)ar`e9oOCm*19DuG^RTFPxx! z#odwWq{@}>vpZV#?<<&2_%ai^8 z`9DW4zv5@^^5pn(f9)<$w*QAeyUX|4d35r1`GC7T*?#D+BbRq)eMZtWnEzz|7v+px zzC3s2@`uN|%ah}~D9>G9xmak1JPmXW-cz6Be@}|>9E`Q<#_4AYJC&zzw zf!luaIQ!oD?(*dN-??z)^1CKmv-CrTw@xyCXt0v2TVy)VPY@;SS z{3LBbc3hK9dW!3|=dV@MG#`tRbtCg>vRQkH4_Tj9w;fpxvLjl1Klk)nRYA-hnqK8M z*Q$N^J)+rbM^-^QCTOx_$eOX2YLjcu{C{4nrb9JQ6VwXb3~hk!hPFdbL(f4!hyDb~ z_9$`wJJb)I`;E2g5~vAU18ssHg$~F*!SQ{T|Bx+FEr1^nR!Us)JggTcNw5`=GBu&p^*Xy-*)C{xNa_RYJ?5ZfHH! z`zXG^hoEPmm!Vgo3wEzney9do3@wM^(8r){&@N~nbO?GL8$SpC1WowYwdx{hI=QF= zTcO*ad!U`r_n}_sw~+e!T2%l|g=Rr>p=+Ty^a86$DviwZO|s@KIm)Ecc2%ceavN#LR+Ct(5=w* z&{C)d@p{*B zJ-y&jXgvGN!Liuo##Rs4b3Nxl+#Bf0gYKd1ERgH|9&Q)*@Lk9r-jCYDJ*J*_K<7d+ z=w|dj0X+llf{sJni|d(+-HCS0lb9c-LzPfH6oR@T*={Arw?muhhbVY0w4Hs~>g=|B zQdP%|K*Fex$AU&@XI1BtP9wfdsoS#_v_}$=Ks0i*(O?9-;*rGa8ly89k8~troY7v+ zZZHzV3u*$vsG5?~u(~s0w9W5o4<;h9c5iX1@?_0hWwa+28!ICe#nn`cU(z0TB=52$ z%kX3d;jiv8;#Rp-Rv&liRH?g@b*hxAs##i9zo58iRwx=(>R(mE>Nc8uRfn{wQ{5mu zXZpHGyD^_nGpa(Ncqw;6zaa9V)T#BhUV{;c2V3g{iPmN6DchDVyGCS=A;o>;RwLSB zx-PVPs5;ix5lBQ@qDBpO*5}&N`LXuIg7#1(ZUhs{)Y7aPBWff}jce@vt6Hw7OsUUh z&1>&!6aD#twn#K$bV@4x*))O-#(DksvPdY=+PO@9NMxc|Be%sP!d)I+-O+kgS0YMt z$=`aB*=!>pk}Nb5@ko%WD&*8%(jE!MLdIh08xDf-pcRRhp@!~*B9rR#x)Y3z`dEav zaQA~;iuZ*^+hU_L))fyL^SYJ#BYo5sTV)I{D$Qx2)xm_*(%JBdxi>7ty{eP_%j1EL zR^l@yhDgL~bu20)Iq2|J(a1_ZBii9aHQ1;&(O4FXM?;PAKznC67H?B!cK&M?%;hMM zF`?9#vuKD|CNs;_Lyn#KfuQ8SDng=5+@#$A@U@T0BP*_A#vHr5>RRzp7wAmPi^nCy?;1k`HGZNNgB|mNkh;#S6$=KU zjgdBH0F@)7BNDu!I@ZxE=rr5A(umh1 zB6VtdR!vt&G!kU$v|GI-cX1%n$xsa%<{Y8ax5g|BL^zP*4P+^5*u%4JOheQ#I@CGh z$LMF^xrBWY{#ALcwe-_Oo*&l~wRIAK2C&qds zE`vJI9yH8kGe1`iD>>XVtQNR<91)VzqkAka}aR z@#cmOBgmyu(Cinp=4Z#GkT%AKs;O|6_INWm1_L26q140d%Z#KSM`uVs4D;}cSZXxdI;<0bdPY0i z76v*x7$1zhALOvVG-BLzRoHZ}b@H&Ih%(byg=)>1 zMkC%9X&*YZD^)5{$V5@i%;*d`^<9xRBtrHuR#T(}79;bH99-t?_9PxUyV?wA9R8Qx z2HOzvKO&ZFR>tHsRn^(aoN9|2V^_ploH=@$=+;C!Z;+$1p@YDs6-7ChM`JC4C{sVv zQbQt;=;AD;)Q$9gd&rz))J^98{7Agh%(K~38%)_Ere3T0dC~@R!NE9?xCgl>?5NE` zV&*&_ys?WRGHgz5$Qe3~56;d@1Mx_JQ?NS7v3&zai#=-(%AYmmRnh41A{Dca{9z@y zR+pKxH1%RZRb%ciHY~2ns;*rzwo#)8R+2$NMx7a6F3F20MVoPL ztX&^ne5=z5T;>`?eNeP4UPcXCpA^ZWuC^8< zK3H>%$gHz{aP^?{OIgwncK+1_i9oKu?C(EmPSle0tyW9K_T@%Q+%HpSI95bbqtrLF zb4`_caIkj_PA#pmIJ3nsZH)#;M8E$mXCdFfip*V|FdAcA7#MPmpnf;T*=>vsmaEh4 z)nZa_s4M3!UNo=Hxq|u!RUPA^VDPGvSqjO}94n*w<477=05kua1N6P{);jj`t_Wi& z7By^hd6Wz;@fu@Q@s+EH`kJhUT5>Tz77ejfGcUGO(2`x*9=oZ1s6eTP+Ie+OaO;#P zFAOAtt+F)1QbTRsGA{qjE3o<5a+Gj6*%AxHLv?}GF^as1L-sNMLU1w2q7=4f7T| zqj9Wi2+F+-8D`aiV5`9$8B4N&I~Q_-J>TY;r#cL^q@ljhYmSD^DnXNp!aS2~GP$|5 zq@7iCBor=&6;aXCm)k4Wbuf3RL_&yHtuo?K)|W;|)^1VG@Rvx* zf>Nw0Lu#41$0a7YR_Y2%FSttXPw>kJTdOg~UeO9Cqd9ipX(zS0 ztY&Ud+z+$+a9EM_$h<{M&FpXu8DHJOg{2$?)*xeyJ#0xAw09-~(dbnRYMh%&gI8w@ zRJ9Rj`b#Y6?Bp(wFmh=j(>CEYaJR}(?>2P?uh=vl7GnvPjePGzgyv`%GT;=ds9DOY zVt7qPcn39Bb7xKpW!c2}PScY^pR0eX9jrOzj@6Kh2G+-{a^td&;hq8oveM-~g3&Hl z{%Us0xLN~|_Id4$IV{gJHE6$PmB~8Nt}aVkmup(HY*;vE#rhZ*wyTwzpUSe8ufbMd zW9rE5HY?L-o4h%UEdk%^l)&h&dF|4(AuUWUZ3_oGJ?g?bL{?u6VR9)@}}e<{PH9+C-v5 zhVncT+`XFc!jYA%7VO&uvNljt9X(09%5yj~<<1JZ*pV`1Wt!rI#XNC=BgKPhAInSP zQN;{Z+t^rdhH+5V64olUadn5>VR=96GwC>I0XUYkz0QAD&crh2tyZ^;?)kF# zsOD#1{TgrHP*e?Kdwy3mDvJpFOn<4Yo3*RzT2qH>63MCxvI+}uiDeokAMcaW8u>oF zmGplWA64QlDkbi_Ufkn)&Wd4h0aV2bVnHX@Tal2JXEokg1v+cVYFP``oA-dN3m8jL z&cwGlb*rVD8JKF5c)e=gLWy8i^7S_UKjymLu2O}fug&gO*PHiv%@uB{qFl+4R^VLc zRH<=e0fQJm$H}dZ%h(w3R<|` zDu3o|rOrhDOmWDRe^=dTVlOgTPkJDIYb|@g^uPX7pEt$Lmsxxwuxsl*f4QvcM^|67 z?7CU27Hpfh{kfaQ?L4sbiqLJ3{krOYQQm*`1L`_(+TsV47pjHcF5CL7hs<{M4m^}H zq=M)JY64UNEw}e?N4LY?Uk~oI_YZ-`?S0WHXtV0d{tRv3r|mb{`?>88sOgaS>H)Xg z`%-r~F%}d&q$Wc%AU{+Gc|P=j@LFUJU0Jf6GgA7;bC*EeQ=Z2?;&`;Gp8nA`hYo39KLDdLrTVal=3m)^1D87 z+Hm*;^3#y_*!4T^xZl)w`1SBoZ-ZUF36yc@@SBtPElK=6N&MC%ep?d1-R8Gk@_;%6 zKTi9$!^?58gL1wDsP=%uJLLy#xx?>2e!t@Tf`jFUDZfzT`{AV>j{b3YX{W<)KJy{d zkHhaPf564(Ha@J*(ex+5(@lf*XC(2gJlpN#|gZy~cW7FX; zKg@UkALe)CjIV!wSWSdxKow9eR1YnOnxQDP2HF5^grwdUa2vE8+6C=~_CW`s!%#1D z6gmdwKk~5h{ple!5mbLPzRKNHbR@B9ndalKXec}0v(0& zcM>-=4Vn&BLUm9p6ouA9o1ksbc4!Z@7diqRg(iH3wnJif8dw3TChbi;lZsBs!E;i-z-w_!kY{~MTySG>c_WzZq zTZ-N>)?eWm>#t~x^%odp{RPKZf5sT=FEYmZi;c1VI>%Uli80onXRK%JyZM{R-z@$v z=C7DPAAcqMmGW1{pP#>S{x0LMioX^7weT0>FU;Rc{#yBq^4G>+JAWPg#rf;v?~=T^ zdDVF}dGqq-=Utvxo3|kEio7fH>hc!mEy}wpuRibUyv2D9d5w8X@|NZ;%eyA;`n((R zZp>SicT-+>-s-%Y z0RDXVlA=Phd>3i{JJnQFQc_qhg6Xp#;k{0esD7xHeP#1rP-GrZbo71EnF!TDQb+3d zE_g&8g^oe$ibvE0XcFXsW9z!K55D4wM^q&=lb~+#DD_F`?5RrKP5eRD z`=>LJe}J-^k$(cZ3;Fy0!uK91JB_k!=AYtIS3ZfRTaX zRQaF^sM5w-upVlHnxR(c$e;hkJP-AOGD92(F937@@-K{Iu023W>_kw`HIr@LYx6ar zOkr|#OxyOTDuu}p?=t(S2|mkD{|H~faU(cUDUTp0>*<1=#Jz$ucu#~NhgGGZmuLS7 za?-08hHrwGF|iANEPOM(OteStd{pHT-x2)h;lEYnl&kN-)Bhd9)31|+ z&&^WZW_gy{3>v5%#h!uw4tT0_-Seo*hxejC4!#%rKCh=;P4u8*N+;I`(8fn@&5&<1d7KJaI+^i6l>EOF*hnIG|8+i@9%uzo0neaP^>wWN*@b81KqkJRSD2Uud zn_mfEhu+FHOzo7fB>s>f(g!d1=ie)t}E(xP5w+)TjE zVe}^;*dX$0%nvqh5hQP01!|Eyew`ez?Z|!^>K+_rCkp zJK=la2}?Cn-T}V>p6041_-^=3@Mpre!k-Dh1)gTBqm0J_;@B!Y@@C@xAo3`BAB5kI z{DTq)?lX$elvE;;15wgN6O*n!1uz(;QQfY z@JHYq;MMj=RReq<{FSiz@K?h3!^^ewG3=jB94Y{hJRjt14ypjXW$*>?H^NVbzY%^C zd^5ZczL|O+;gL@lg!h4!ls8gdiM$ei6?_x?D)?G>e*UGl-1Vqxhp&fkgx^GYBYYG5 zd*QdjzZbq4{yp$};ok$_3jbmFN&oby`Y?P4{KfFo;4g;nhOdL44qpe~178n61HK-9 zgYe{glOXYKv2mLq{jx)l@wW?XqMna>P1M^9Pc`L-Ujx4%ei3{n{37^+@U!7JJbS;I zjom}SBku(-L0*gACGbb!m%xYMm%#VI2jDlt2dLLCJaW~t%e=R-4f#39x6}XUAm0me z_^F+{|5;5WpdQL6BF{%(us{&~O`<35k#hJ+$T@t}KKLkl)8KD|KLURn{0#Uwd>?!q z-X}a*0oEcvhP)QO27W%gdgxI#AHGg_>^IuD99&It0p+VHZ-wV~y2=Ot4)_lEAbcHs z5WXA!T=;tUbK!f0$KE00zX5q8@*9wEKz;-AO@j2#7D41&ZTWUvz7xEYdQH^3lk(m0 z9|QLaB0pgB2Q~S5$P?(Fhu$INli=6DPlE3i9=}IG+16b5hhXffxi%b68wem>)}yXli{bqZ-l=Iz6Sm#_|3wD_ke_<>X1){-v;l6Z-)26?|_$U zkZ$3s{Z35_z@wp}p0Nm#rd)-!6z=hscR% zCwwvbwdfZk-z_}27koeRM&$2@-w(e5egpgl_=E61_|5P>_(SlQ!S95>3|{bh_+5hV zy_5rLJ$`eEr=RmrF7X@@IoK!2ct37qz5&m8EwFL2Ao-eRqgN1venHx?S?t2snDQJ; zo||LwDqGc=@@&;?;~E>c20^?6XlFvGfYS9P~V(nD^WACR^TW^P6mbtIhY=xZB44HXZ^=qdH>q z(|>9C@q@CSs|B;bNxyo+oX0$%#CycXeo*4c|FtFefD)J2=Id>2wy^`0bwrQN7aXy-0_I_FyUq97*k_~av)cnoJEq&{x8=1qHiKfP+b-W}<6gV`pv@lv&G>D8 z((i1$Hu^zncP%LPnr(iIjXOb!W53NG0%g4Q*?hlUUhsQM&tsz(6u*_AtlOJy`9T|d zZR`WZzxsn!f0B*UL6Q4yzTU=WTi#*w8*F}y&F{4Ny*7Wy=8xFCI%fGPu+am`aqR`g zU$ZUmw)qWq`Bs}hXqO+cvERo0KicuzI31LAkl*HyfU2i*uV-s>Z^5SegWjDTefb+| z_fOy6dSud;rbGVS-Tk@iYxYgs7J7N&=EmoJyAsDHY^*ylV@LGpTka5{@{O|b7#X3i~ptb52t>6d z-8eUx3zbH2BeVlL2=znL7>ROIwH^8d^jYZMEY{G_91Z<3`o{(v52CkKvJ3_T8vFf4os0?7va%EQqU}XT{Z~v*T*( zIdSE^Ag+4PXT?1wuKIq7{yXBTXJTA=z=Ct*su|h|sq^Bh651*_i8@dv^?IZ(Hi>v} z8yHx}H;paYoX=-iS3jm|p?atZYKB^&4yYUIfi~Fto4_s5R%km^$Nk3L;9h7yB=!!1 zhoD|aJ(*BjpGc@)=$=mMK)WD`r*R$SY?YtBMRk1t7F7uyWWVRmTa1kbfN+wCNYr`_e6{c`tRK`iE{& z>M{1AzW>JF1GlKHUq%0Gx2OW)x1sX{`cG1Rg!H8+~Z=myQY_Q+^G(6OctN>ZhPtf@fY(WSA1=*v>zJi@Eu>VDLp&qEY zmpK0ug!V$-yRq>->X4(Y&r?P_J-=iBv*71I=-}tszn9n^#@;Su&tmH(_%CDU5M^8N z@o)I}8D;yBeHS}W<+tzwdB2VRe%kXL_#fi$Im#i=57@t-y5xH6Z_tDG(hv1Ju`Tug z9UWq;{}KFM_&z`^$eM45?w~HX7u@>^_>W_ABX$0P{ZC>O*;e?2@S9%5#s=hD(R~O% z50fi$vG*8qp+7*sho{|}p1}^bn(6!IPvHaK-Y?@@@&pyUjNJ1n*SME4rymE&W8ass z#-lkXPvXD2FIex8n6~jT-V64a@oeJx^^Dy6mVLQKmixuBFXsWd7b^Sbfh>p3eJ=CNdqg5XpM5z`%D$}Y z~j9UPoW{WfL7IE@$77 z3p)C;FPrE{o*cRCpLok+o_kDrw(^ccXgj3te7WxD}c7k+V7Nb@(>}>tnlB z6Vwc~LJ6n`+5l~Wwm@5<9nfxQFSH+e9y$yif%>51P=3d5H4*YaGax^dZX4}(rSp5L zcIr@m7+9lq7}KeP4Y*Ij$&M^69tisq81f0_568>g+jXx{Dl z!FTt)WBhqfj@|tKx_@=0y5Qetf9Uvse7Eaer+Lc1^3JB;+~r^P&lA^fczAowBUe0d z`Nux#z3{<>pZ>xx8e;!_bHxuo`t!q)Q^tV8t+eo(jm@q^c# z{ZIS%{rzo;Jzre9E!6hRm%pA<>HG1|{=DXvG2eO5ovUsgSiI!zrt&;QA1jn9AS13Sij_}usY^_-Sy`&Bpg9(nX%J6d1-Q{d&l zO#S^ge*4^}2~YjYeZRZ9_*1|BpEF*$p>XfNPxZBCN5K%gD%OwKc|EapkFwFY)eDNY)ly%nism+O+1=Dmwm2)d3}-ZfFhE z1FeTPKpUa0r)^dTp}ml2!e-S6dck~EsT#laIBT~`)eN2v)_@m+b>KR1`Toagu18gV z56tqYdN3Po0&~FSU@mwB{V`xG{8+H}-yTcn};1c2GVZya&4zKreVY*p2)Q z@DO@uf<5pB;0Ew4a5H!|xE0LGK~BAFa1EFPc7VCyW^fGH{F`lRELaDh2Zq3Wuo2A4 z^{7oBWvvSy{5JK$o!HF<55SKBcf*eb_knp}jnoGZQ9celfPB1^!)J~0sORCc!98LR zJPe-;z6_25mm?nw9)-^Xd*SoJ9pE^y0{i2^W0ao;uKy1C0e4Y;I(QuU8DQ@B@i!Lv zcku^q19QO{2k-+|6yz(z0^ zYzD`GmBcd^Y=zGQ6JS2r1C9eXg5$w0;A!A?a00jsJRPj1{u$st_%p#nU;)?*o(1-S zXM@MVbHMy(A6FB>iQqfH$>6!*H1Iso3r+%OVE25m2L1xD9=s4-4o(I`;NO8!Fe{(@ zGETF>elQ0-4(5W2{EPu}!LeXImN`?Mn)To2}e8^K&~ zGdKpk2OJA-1M|QgU_Q7D9Dh3F6Fd#v4`z*LeBQr9WrNchUpe4pFcy%m(Ygv8Qo-h#X9a9NYj-0JnfSU_I^5 z1-HYG0r!BXg9pJpaI@qIJPbb$>;uPxxzCX&a3Xky@EoUSf(i7qCXjzH8$1r?fCs@` za5p#xJPM8lw}W|LFPK$8KVvT&^np1X{}qDpHDE4S4~_vhKE`iKz$W-Suo=t;qu@BO z2OJM>0#5_)0T)QV_wqf^v+xU_4ekPSz)>;91~7@NBRbJO?}qUWuRM;6(V`=Q-}c ziQu`Q2Rsk-f|I~X@O-clyZ~$kF9dtQeC%uh$AO!{3E)=nbZ`fF2Dk@26FdMGfQP`d zz?Z?Z!DHY#VEzll0~UZ+fs?^^fFAH%a5{J%=m#f(wcz<+6LC1`;1qB-=mGbG?*tElQ^6zPyTCqh8mRvLarJI+BKRI~GWcF_1~?t`f$sw=!S{o8 z;0M4)upVp%XM!Ez)!-U%F}MjV0=Iz;;7+g++y^cJ4}nX;Bj7Ud7}x~n{^)Ua4Ojpc zgVR7C=m$%{TJT!15iA9lgJobV=m!&EIoJbU0&V~=1-F0|;CApba2Gfm+y~A9p9d?! zm%%Eq51b3;9(r6=gA>6T&;!l`ec*hs61*I&18c!1unr7?3&8}q2rOWpmGzu#vZj-5 zyahb5rDJtGva&VdnI3$fr)9OLe%2MUJoV8)7tcMK;o$*OJmAU*Nl8tl{f4f#n|OlI z3{PDmG|N*}SLa#0;PTqW2G8PoJRxl9yqa0I*`7r|uYCL~=RZ}`wZ)P+e(mzX^`*mm zcwe8hFDS9SdpdB07$qBtmHGJDya=H&0CK>}?zRt>~wt z?Uc(l0m?V`tp7&Jm!|f%-?e^sn*RUnq%FtZoQ6GLvd7%5Z;%h+UjJ5K^Tz6X&U;cd zLwdjH`-l8{)N^*M5~W_2D(d9&9#%SX3_Igl>^b`miXDAlw|j7sHI5wF8|584&iE9* z>C!#wP{kfqzrgAfM@Pp3;^>8{5vGe(*MH;t1!*_SwkPfO#(lpXECgDDAtSu9HFEt8 z(YE$j$BjIoyKB`=-K%f5qT>Y#4A?*kTo_=~;AWv}wq z9uv2t|Bd@!yx(IL5BvYauUeu?8^3yz`c=06*U*3VzL)R2K>hc9NA9~Wz5QG7HEUcw zMyab`{LqUYwc^F=Uo0A~|HDH+?foC63U9R{bKb+~D9)MU>{*yx?!D+q<%9fC1yl*? z+s@OiIeJ!oY1N8FOXp0R8|aJ#t>**QM~t9RiL6CrD>}`$iB#4snKLcO!=_gx;ymNL zv$CeLGZCs3H68%VdpvkzD6*nTOI%4^qq5RlY0o0Mzot=kH|T3l)lyz2!xNbaEfVZn zQBq!6NfPw(#k{tJrpt5nhbiiMOROi~>SkPamRPSwNMCL}McPWRrltF^-xMM5G0-&J z@y?GJ(GU-eHs493Y3X)&zH%pz1szdmu-*Fe(9_sUqvC2mk1XX;>_Z0hcxnb8)t1nV};XF>CzZRx8aEAHG_c80w1=BAcdv{P4i#XORx?pvNMFK;{Ibul-%j3tew zIn%6XcRI0FE3$9!&sSZSWV00i(8v|zCbE>@ErN!k&IP5DNa_i0q zFMny{eLQAYrbwO^;}V`VJHL%rF0{EE6cq(VWHN2Lq zElU^jZY3ThJ7hE|?^eKx5sw?kcU7CbwP?tc7N6Z)sYko6x1f57t~5UoWP(|p+9tZr z@R{4y&dW!KX}jBMjUWd43G}erV8mB(xjtNRgjnr5X=AnA57TnTIOIF69rF!vykd1o zfj*N>k1gHtq9=FIz~D}@jpSqHM77=Z8OK9oK8=t1Xjj}hEHo8YTPz*xIq#fp(p4Fu zPF09^#*nepRrS1)f9Gs9tn<_84eL=|&pIi|1MH2s`BEXRkuE)%|18fu0$t7^=9$LT z$-4f6whrE2Lz7-Zo$7f!XPxII-<&jdbi38_c<{3M2HzpeG7Zh`ipcvVwCLS^Js3s` zMVEbZDL@l>1&!9t^`Ed9JDFZoD5=jb*E zUCVj#1iB6ML>e`HOxgpBwws5Q`RMJm`K&Wm8NBHz8g1c8>qA|EoAl@0C6cDWz(>y6 z{OXz$sq3*X75x)*iAx`4{|KSDbS>K>s=M_g-9{)m>C)@oP;uBF4*0dK>V3Lse$8M~ z(x|)qm<>LOO1cjxPbX0=*_Z#d*0J+;GS%F^Bnu}|E4f`KSk z%d3jCZgkmfy!OQNsk25)XXC19XRJMiBR!6Wh`cFmxRS0jxYi%8=8Adg3CgY2?C_{{ zUry<;6Hd~(-+uhPqdww!EZsW6sXUm!!5#O!KYTqsQcZVVt~Vki_d+9qY@t4uVHdV7W}jJ(dV^f>MD@*m!&l4=>{>K|T*Cht&?`zZRQh)ZY4 zw;sK_omX)pO<_is*)Ch@j-OOMv{WS7NM2`;TwBlMF#jX2GKL~>+ZgnJlC@nq7^=g| zEfNehJ*&DO4jX43InvU=m776Dt@2PS(!|jii13}r$g@JCA2IrQtP+^JTYbhQIDrqb&n%~gX(wT@P zy5#MYLuz{L^X&)%ym%#^II(^M^N;yX%G9dvc;)SPyx`Y}r&iYEFkjEo)tOo`sa^8U znU!4SrH|Ovk4vjsc<&4^FFe_}nYOHJi8RsZahvBHXW|@6u`3Tw@ksaGGdKr;+nWX!^d|~5N;c%zCr;{6vL(X*_^A(LDbG9GZ7B9tQhzGcqux>^T znM>Ig^Zj{AH#T*@bGt&JR$d&G!kpV)AaYYGr@E~x0=xl~_s^cl)`HF`Z)G1`0cb67 zkB3^LC2rg_+?wu_7teL3&W7980$yHwqWG&@dC6Gn@Ljp!`yRZ$bL6)e) zu3PJR-`HW?xBE_u*3Kkd^DVY+<)pEp&AWPcxbktWbgeZj4{Mp`+r9qg z_EA)`sOc?{IoTS#o$^vthMChT=E^;(rYjdq8?UXIYigyoZI-*NrPfHA79&^<4Ll zld`Pqnd=1Wpq4wLgR3}QXK>9oKhT+|;}Wrb_>D?kUoP>aUq(9aoqoIAXy+A|!Q^gs z4o}7sjmHCaDy4dkbn7RcWqVxmeQJ;49S%^?KHaBtwOI*+^G`y53ygJ9&dM z4-T1f#lU@jms*P349>-ER!l&r+%HEMaqt*2^m#%g! zS<1}=*Ijpa|C;aDmG?o)nAVKw`L)}gLd$Jy=(8+(E}bp&9^3Hjr|@^exy)WS)CUqw z18J_G$dSCr(|n_@o(A2Yt;5yqP|zvL=SQNh>BgOB%a6H`*AuDR;hpj^)B@2HjMYW5 zLNhb|-8J5=d0XDd9u2HcIuq(XhU*O*g1TM4Yta$m zE!dHpIc4*~ne|R$bA@U|DsBzDybK`;bVC#u1=|1J; z`FiR#aDVP(E9(9%U-DY$*A}Na0mvl4jZY&!d>H9IMo@E&f0pX}@+CBqx=Y_WTt-xP z>2rL^hvtJTSUtv?hZx;V7T?!xs;^qIA`)xq3RhOj_iG2s_`Yiew<}vhffWHG z;4AaCl$ZL-14ZGG-y06LgiFd>{Qi=%a9MHbY`zJbs$N;JEa-0uhYR^2z*iCumHNR_ zJ`pG_D=ca86{oAmPYgdV#{yV9?uwT4|}@U*s<=Dl7GRTZ+rPVP9!c zp)Xy%((;n>awFhvDGe5vm4v)Tncp97@%fFSPze^(<|SMj43`!b`9i+paG5ti%>Ht} z-&;~nl!2n6v~d>ujH1Gl(w4Ha(w0DBd125O@ERpyUs++9&+r;){S_9G&!S*Uu#^Z} z{JuhOpfDgqrzPYgPifm13VTC7pHWigD=iQE14aI#VsA-tIOHoYE)JF!rX6SH^lmYO ztA*wi7PbU@!9Yt{AV7`+MCuKu%V$w>aVX#|^0t&Pwp&`t!v69SpSQ3iR4${av@l)0 z(n6y=81e^XShe^ACE-A@#9LnI4-^*`mW9hp($x$4N{u3Kp;1`q z{AGnkuuKlhl0tt=QTl!;E%p_LTl~dEWeiI%UB)mC6omreV6m@+ZyBU(9~lXUiw)98 zg961ReuhkWC|F!vWQ2U-VETN9N{T||{=z^>xsMTP6c>gKUzpjYEW|g5i_+E$m$&#r z!NPLl_3|C#vJ&bS6&9A3m-@?$l9IIJB~*-JOVB7}jwmZ)z!Woj{PHDbqpZjmPCLH@ zjk5AmZ-5}ZysE3%>uV`0r}urup~6r}Ae^@Uf`tJ;Uw|$R1&v^cIij$*rMRRpSWZ7M zR~4ompZ-9wn3=G=rL-kjTpIEg`is0}C51%{^?>1R38m|Y(jeaj@p;R=h2GM#0A5N; zii1pV4DpZ=^rt=kyyU&b2p1Y9rNx{Pj4;P*c}pl*#-!R}ln={GOCYqu{GEsO^A6X! z!{`nge9FYf!R9YQTxHSNN`69O#N*t^uu9$MD?S)pnP_z@=;x(aS7Jphyn@y1O2aXr zm&f@wH@84t2J~`?JIt*}32z0rF`_AAT)}$CNUUg)pBAKwaRtl%NLxo`lwY~<35%oR zYA5pvw_@BHS{zGORL2u5+Kro5g!m2(-=J}fXgW(f&9A?>n&R@Y!uo!UOF^%1W|>Cv zNw$0+-ErZzVc!V0j0{)S?S=V@g89AsSf?vFx{l;G$n9#!n_d;Yidtu~&CpxzQI~ zo_qbpHaLp|FE4PO!A^2_=iSnA)3S;icbu2|Cg=&U8k8vTpK33Ivta4n}JA5UlRLB^RRQLM!UP@x~?OP%=W(~ z13Bhz=cg;xBhQ660?PAxxA16jcN5Mv^>!l9reHtF&s0?}m<#rU{0vnUWUHRB;B+t# ztOVspwoTwTumhB54{QKW1Gj?WcQ<%Ccn~}TJOZ8xsvOlLKdPPto&|bAc`k7+D9+coQhkA?7!_J%F}NR6lD~YA^Et0uO;NgMHwCgZa6t=jWgY`~~O-kAS>; zsppqqEBGsr#`gRg+yWj2cY?nG_k+I$d%;)0ey|TL7^8ZA2Tlin4_1PI0Gq&LUgKa@s(B#pd3jXYmE*R@%GC#8{3Pb2rIk=Le? zH>Hucrjd82k#9&N-;zeYJ&k;K8u|V-@9$ZONc zo6^Wz)5yEi$Ty^sZ%HHHo<_bqjeLI^`JpuOBWdLQY2^9&uH?hm`A;LCo<{CZBd<*% zAIAjSguLU(t;%P)GlSUsOE+KeYd7C~)Xnew&8_CU9Gw>A|JGez`O2+ohfK!yHtD## zy#BB5^6BH(sU7wcFQiJ}1#W)#2i$y5g`2Nk=;jMPP0yNug-zieFQf-HUVsA5K5l4>mg^7 zF*)+BgFjE@jZQu-rziYBuZQpGH08S*0RUsq6L4 zNte%TGq&+O4Q)Dm9;gy>#%B-vskQ;fT&lv8k=3J=L z;MFtp?Bg9=cL(lXa=ElZNzNzn+MA3|Ir?S9I^%Pw)RJ4H*&G{Ytse7#`A_Ux&x6l0 zR{+-H{&b$GeWGzMHk0iRnmw7FbttXtA*db>)x9bQ%6qC;oe7<>u9vc%O0{Y98+3)f z2We{&WpA#eorvi{fw_0UoP*~K9A`f6hx*i+14Llb?^GV;L-ZTo_gx3 z*JN$DGDeOaJ7yS0l6^F-o*G`|HAyhbgfJLCbuCB4f5#nnyuqVjvA$!aiwX|25e;8D(se?K94h&qXrZ|E>&ZmkuZ1 z9i{6Pxq{2)?nb3~6)5+S#@gH@^M0>$t9$r$ja+eZ$!z{_{r6^H56U%R)>FMEsdc?v z4{qgpu*ag4xSl$3QZ<1{Yv!(GWq95)*MpLm z%$CVOCIkO#GLX3*OxIP`y3tzZ4gdcQu7q(q+-8y_U0^3Ex2(PC*Mo!JSqzWH_28g= zcHZ*qK|Pq)w{P{r;PuGh4%bt!&tOt5?5DdPOwxQK>|oe$#7L%YCIkOBGmw1!Fd{!n z*DJ%X2lHLmgX8S3Dd082?#~B3|2I1=)9OqHG8xEZ;QvqtI4|98pPTM}E1E67Kk$JM z*dYvzS`0XF+9|#U{RkueM>7WTCl}q0AK4d~zVpvx#*7&dl6{d$ndpp00{Gh5o#Jc#`t<{c4<8=*%U}L7c(BU8$fQhk zMEA{#f%X*m{r;n3TlYEWJZVRCL|5ua-8T}4)R){o{q)mGUM!YhzYGYa+N6%ueIqf< zpFe-#M7~cHgXH1$a~u)xBB>dtLGmX zr*Gx_>l`O??s%)tKN17|@Rpu`ofzJ#^@r0Bf-)Xt4wG|<98dcEEc+spGSPXh=Ud&+ zNc(bJ$gwH&gUnIlOGx%bCS{^Cl8sDRCIfG$3=BJYiJ+I?2k+&f0<3L#jKn%2o)j^s zU#Tf4L!#@{6C0*2v6*7Ca*=!=L!Okyv!pWL$FS0q`9G6^Oa?L;$YkJeE(4qrozH#c z?08B)cNTx?zK?M#5-knZzwQT(`NgVeLB4OW*fEkOS{CrIB|SBC^EKD_3h+U{D`x+!gq2E z5(nEUX}9A$gP9Ectz^JDd|u=K@;uA_DQ*&(Y;wQCp+0^m-#^8A_9aEBHY<sayq!V519uH$82WXUm(7B9}6YX}EL zHd_9Y?ViX#N>0Rny8Ju7B`>li$NpyVjvv#B-S>{{E$WlOYfE_m-e|X9&tr1C zPi6bl`94+cm;QI!n~YMX=V>(dap4?m;x2g`mE&(T+L5uD$v`Fpr#=J86UIsLuKO61 zxK~lYy$TOi_d-38+-`M<-4Qmc#mVj#JSQ&oZPeR8 z8g0th%w!;wfwxBn^vUF;_x1Z2lco#|gQ!DeM4`96mAMv=_- zG2R|yBooEoZU#6!_4UOmT~9c^opqHxRh*I-l6{}b7}EJZRWV4O9bf5CbVh5`V_F|` z;wsg4O2)xxwee)_(r`T&r?k!DJM+5|>shMKaUcWnWc%)o>b=$Zm-rCIguaoQe!Eb?NK*P&b3l9O4(@l zQab-4XM0Q9Z@C_Q-**3-`Pc7FoQifk{VHvB`dx3g#9;FRqt*{%T>RUc>4*JOb{#Fg zbl-ZPIC*j6b8Si*K$v`FpZ=Vbd3=C|B z{wjE?qr&IM#rMpaGY5_xJI3yS^$@005Qy#j_obz!=5@2~pR$e6A0gS^^y^4$O1lSr z%eA`WU&?;=v!4z4e7=GAzyJLMKls595WTrEB>PVC?}}?Q?jyVn{EwLb-rn8;85g6K ze;MB7z!ihj|908!l>a|Swl{tJIfoav-?HORi{UMsf1DUHn8`pU1DOnDGVtbRz&v}M z?0X6PdaEBeK`f^ifeI3bvtqW+@*@JI9oc zQ#qrXPt(h5|F4JMb!Z*=cJ>8FB}uQrsMVU}d`>jQW7XJ{`Lu`WuteZ?nC#6E$gi;G z>{Y59THUKubF)RVFES~!eyQ~)j8C}=?T3B`{nx-i-?#XN7C$}fnPQP*UnfVtcMiH# zQRbGM&v%&8w_83XZ|i!8@+tcwd;90}TqWBpk3Us0r@JlcS!KjKBeC|&rWVffPW2e= z!B{BLzVfoEOB(0T^iTD4CIaoDKs45FTsC#J(K&U_?9<0r1Ufs7wwCB>4+h#hFPqvG zZ@;87*lM%|I%l>;g7H{qES#7bjI~`7=xm#{s&J~OEzlkb8=Z-zy0_UCA)~`+58-t6 z(0-!Iwmy5%&jM5uk;H0GVs!^`+!SdqE}H6T546E7bo|X)7HJQ~Zt9#>9cycgwa=`M zwI|}SXy??SCYH|f%HLE^M?4lZIy+dPf1rxG!nehSlt-A!5}N8 zCFLb8rM^O+FBl9LhQd=l(LnpkuE0uDeRjpgPA;4n5jm~WS~4h;mL}p|orwkQ;n+#$ zuXyV0icTZg6(gg ziU!4}db%Q2L23JCQ^SF1r-A8<2Q9iQ>m|Cci-%&lc(5t6E9mZyKqAr-iAqnMaAdgD zWsK0>9UbHz8?km8+||($i_^@j8axX^mrcFJDDoB-`bx@X7MA!*XZnhRB{KshVPmG( z>kk=*Q5-4`d)G>Hw3;c*6qghh`&-HbGfP6{mFDhZbt2TsC_ zFHjUN@*Bl7ONv{{XL7fvaAr%OJUBB{S|0KRe1TG<*nbjc3d5ykrNOe&nSQTPIMY{D zTt1WW)-uyy9P)-sL*7uJ>}1UN4R5$CP*^mxCEQX>qYVE{npiT^=MRTUyn(`!KzWKr zUF=Hu#jYM9kIu-RZB7`O|3)_h9;M_>e9e;WN^Af3e)j9F{h~SFo}-$r{p^bDIjY0j zf7**qkG20w3Hz)$#m+{NAGG!_5u2VYQ+|oaE3N%4i%cYS^H(vVerT>2EPcD7=(qCUXrJ}xKS;dDcjEZQ*LlxJ}ZkZjK-7)*l+52XH zclL9$e?0s6>^XDh&sjL9an5yf?wGT8&bQ`#f6fbY4$r}GbCx;;T;RR8aC_k+g3;#m&X1m7HC2eu<}~x+GC@ zOUZ2|A1~Qa@=D2{O8#1sTY6gQoYIccn@Vpj{b=dN((jaB?Qin0@Q3{$_kZ304gY@s zv;N=vOUnO0Rc{$)#l1xRZgd!I26uOF_wGHoyE`O!aJRrfNRSX51`okq5`xR%1a}LN zL4teGK;Ztm=e+mc_siMmIVZDs_g|`3t+lG+m=(<$W_|N}bBnp#JZK&_&zaHIRC~7l zv%TE@!~WM!;-qq-9LX8r40pbBCOA`_L(W_0KPS1H#?9!~bI*ELyuZAAUS!w`mk(D9 z*A4d#{~q2IJ`g?@KFj(i@s~Q3LeKFSPesVf}0U8@-=COkbh@r>8K|8Ci@xywO5q zxv}2ZV(c-}nXjyWt)zBpTeAn)-`d~XKiS*uC?}hf&nf1VbNVJYtRUBr8^|r> zAO7E`ja1qyot0k7AZ4VoPYJ21)Mzz3d(um7ptsP!(!1%i^o#lp{cruLp2O&63^GO< zV~xqiStHuaZss?On}Rvg{L1cT_qB(z=6~By?Kk#+b_r*sGuD~x#5q4Zx19WLaaV8+ zH^!ap<_s4ID`7j_JlrnaIXo#mGdw>Wnvx{6(my|90Z|ccvANhz>?}?aXNvR1=h9m# zQjV6(%Bt+hU(4O(KJp{wrIK7tqn1zwRae`n9o6pYUhS}URZGx5Ybo@!x~yAzd3~}m z%UES>G)@^8jq64-Gqst)Y-@G0hFG!ILTj0|);e!pvu;_Non6ia=em>BP0gvO4o?VA3m*)h2wwk}GMI!b)kS zfzm?xN|~X|SC%SGv^Ls6&hS!gt+rXar#;i&YW{v7=80Y#pN!{<3AXN9xg`JE>_;GA==I_cdkZb7#M>!`a`+}fM~J?w=mhiio!hQA7T z4KEBY3;!D49^A`I;Tz%5#w4MmJZrpoL_8&4~&IW-5!7Rmw(Xt8$nVyiwb#?a>ZtC$#h0ZSA3!S1+PVx~a$LRrMx% zYdzY`X67}En59kGtYB6*M{pabnRCoV=8E7}_O=JvBRI_y?dkSndzF2YGxEy*V27Lt zC##dkdEmZq-@73%l^5+5^h$a?y@B2j-Xw39x6s?@ZSz9$iD$zQW5jA=J+T>Qqpvtr z+#?9z4X@uVYyXIMU;|Dm7JFY70b3r1_RgL%t*U_LkBn*W)}tsktPtQpokYq7P;`b3;c>t=RyyM524FN-FEJ zC)ecGHz(ruk_XCj)J5tFb-nt#x=TH-o>L>V^ja>hpjJW?h`Cj?u10Te`3U2CW1=z7 zSZrK2ZW@n?wjYd;8D(ZQBkgEA8)vnMUD~$o3c>FFXiu}}uu2>3E%sH`>Aw5SedB&| z(|8%Zs$L!M|KyU9tXAkn;(iVhVui6h?@VF7utxY*xKE_|C?pjl#b_~~SX9g*=a-B9 z@7DXzKUSV3&yyF+tK^OHUiq+mR=uj;QXi@>)emYKEtA$%YpeAlV~o_sYIC$-v_9q# zbCfyWoXS~TWBz8oGryQoRyHf2Rm?K2@>T{nhg*RAB)X zNhd3D%FoIQWjirdyw; z@2oFY6f2z1E@qo{c{>!HH1vY!kf>2&)T(M7wXxbk{pNo=ctE|YK2~3`2I;jdT4Ak} z)J zz<6%FHU2X)nmLH<<;+{wL+d4oA&DJn=K?hhu}9hC?Wy)o`+$AiJ|D#T2=Z%rr@B+$ zY3}rMhB-euGaY~ZGJCnb!d_`l@f=P-6K}1z+1mw{c;>zJK6@#{`NPG@xfQ}A!atA& zW(6nuSomBxls|FZ{}Kv|qG*U=v9dHlijx*f%cKg*ROJ_9(6Y|RdMRa) zbI1kc67o;-Ob|dJy=N{ABBn=TvrTIX#^ItnO%M6DVM>a~KR05>ODm%CZDqLT>NU6t&Gc9@ z@@?ax@xsVrb~5*v-`ZK7LQY9XbXsr=ck$iF+~;luZ;018z?X@85hricu4(tRC)&SS z509)D`eFU7 zeo4Qj-_u{}Z@GUNi~>d}qdd2vqtVUiZ~SQd%xzc)$~0TguHX;)~@rs9qaF@jIi%lA; z#rNgn6c!OpF;4tVJS4V|8Y|x^dpUKj)SuLa;OF;hWi7v6T<^)7Ue%xIWsRmrYH&tP z^J_D$(+GV39e68gs1o1xov=+fP8|DL{#_oe%u|=EZS|%4Z~9Svtg*~^$KG@{&zM)t z6;`yJ-M(*swyQc_oUP6kr@q=KDE}&7kYki~$^hl4 zazVMPJO`__ROhQl)dy-itrqvT7pVScZLf9_WE=sCXbCPJt&b-|$LS08W%^p4VF!D4 zlt_6A^m$i*Ox#LlR5z}f_w60dV<*y`M4ov`hLOGT-ba7EHzo}g<|8DSf+vg=#t2)5 z5=tGlpEgsk;caIn`TydRh6eM|LL4Q2Q9@c)t%EijWOhh9rRCF$>Lc{;gJ1LG<2>Tw zU!2gDW+qFv>RaDfE3KGbAJpuxmDVyOEz23z=V; zz09s)>tob1VY`)m(7tZpvp-S~G;u~bXW6-IZdnkl=T-(~H*}A>kKIb%aB$u`FGO`Y zGkn>9))z?wy(c|2*H~eT&_-MVhD}06SwNDd&Qy{&q)c)@`I;Q5lu>u8ZM9#uJo<4N>tX3(og#GQt@!Rg5*v+GCvr-9_4^>}vKlFlbV0!M)B+C!=e-Biz!S>h<>) zdpkWl+%3G%e}?E}A%TxDHzI+Wt(dveyls9qvsh)U>Q*;vI5_bzS+G8D_Q*>`-bxnS z_vS)Naj|q+eg-P26Rcx`Qba2Y0~DiG*Xom-pKH;EVpKERn#0Tt;HPZPdFQ3`((UQ} z9@L_3!`;KT$v??L-TD1dMDnXbX0d^|L;NHbloo^QR5`U$Q0Y#M@r6?|AwWP2wPo64 zZ6L@p2U&e7`K7)&1w?t<%0{KXn6n|U1Npc&8OY0Fs{8LjttF^#_>q{z_39^t#iLSs zxr%&CZl!cpwkY?NBHZ1H)Z|Txyz$_J)R0#(=1?&HV5_^`hitUZsY*r-)k_xgsf-37 z-j1Rnxza#sn6z1XEEVBgXH(m&o7Fd}sl{pswIS9}BIg0`1=%;$E?K}$RENNJ?(#E>IKQ?lBAGl#9%gPa>q4R;-AFBF?B z)Qpd8;JqP298u9`&09;C$nv6GNp33llt;-~l(FhT^|o47TTkS=tb0bB@zLmPo-&JB zKXT?>c$F5;W!LlKKsimrdx*8kLJr@XQ)ndg1?e6ZG-{Zta!2`vfr+#K_$8nRI z>F@L+=4?}PZhMvd6A%h5N*1cdM>3(XP+6ELED`n#1wceY#o6Ln@rrnW-7m!cRMh&h zJI(Z;IjL26yWh=L)<~OY6TFbL?4eFIK;6ICLgiP!olOcEUX&hxAFxA#ak8$qlJ1p=LoGtJG&?tpC&o zS~K?cCRu$7kxevvnv2a<=1#ECYf!t*+bp3z3)wkfN4}-XI7J=#ggUZ3D5#;^-CgB| zz;8{%!>Eapg}Sh2HHDMH98r|2O5eahU6uY-DzH+0)pu%9Zek72;an}Ho=GnSR}j{l z>SI6&+rX0NIa`10|FRBQjh4o73q3TI#FLRsYo@^=Q!l5Be_sPq4;+WYw&uYYsMNnh)V2z6GIvZ^sjf zDm$N@(r#DxM{w0qkZCpQq)px>Vqy;J`%YlwYn+DUJ_Q(>CcJ`0o+xf(51+G(bzq|& z!>eVHMcAD=@>aQ^Qdb#H?eSLmsAK{U%_N7WHlnC<8^edpqvpH{!p~;bGaCn}=A3!i zEN->3+FPsHYmZue9WiOOlbNSU0dn8!MFsIN@%R6e1}Z-&vy^|7k?KtKXYx}^kj(;i zKN2j~l1k&O9%-~Oy1;F{F}@f&2xk`eqY!bkqqW02XnnHkb4xlBg|j;aLFXf3UhaWs ztGLVEjo_+uUJq}OH_E%!t=sGe$Ssgz~d=|DB&ya!3p7#P(mCpP8S!5FT{FM z3u&5kA3R<{9wCpD)6Ii;zxmKgR-si@ZGtX-p4%B}U$hH1ZPsq~B>(Vz8IAVJND zF$NnasdS^L#e15|Id%V;MaZi^SX-?Bh@VyA02UJM)4^9%b|yN@ol8z0vRG$#y}Jht zUWTmSkqT#*ch@TgxAirMd`A$&lLs732{1`}VI^oQK`18bVq4gwEpQh_;9^=!ONo-# z;Sy!JCH3vEWVHg|^XAGjWi{D1pIT0B3bI?TUQ+XDWwgfHe6YX;Ef*)ZzCM@idya@- z0{lALSZSOwvYExqx~%we);x<<#HtOOu+%zXWuktoPMyBkK4xcd3Q)04aTdWQM!EUi zs$_+Q?qOCwk5}27=*k4et+!Vv>jMa`qyH971_voG_ah5+PqNC+$@(wa!2I`Dhn3)9Sg_2!u3$GZb-VE-1X05f>10*q1 zyAGazt7Ycwe4`K0r*r=v>96&SMsuU9(a)G_T%j&~1>e{dG}_0UY+f?&nJ>)rR%6an zFJjaM>#p_8N^3W?zqWhWKicQ)+jeT|(e}=GxY7hCm0QyC9#xi{UEUTv>6neT*m z-Af*>36uRDOs{{tLiG~QS5l!m8DNxfRJa0fT2*W+jtrQl&teU!vGlEUP`W@It0*^= zhspcpb0DVjN_}OB60e-$#)Z|o>L7KGdI}!f1-13iw!ll?)5;NJ+QL0;)34|S43XWM zYpgbo8JWyNW)E|MIm0|;mbGf~PCr=Bi8A@@F7{w}>|6FrcB_Tc4er{1mk`*li967J z;>LK5$eqbU9eDKA+<~oPlvE95utEMqE~Zp~eN4g0S*OM$q?OkuaX*vldGx%*fL2Bi zW3=%bF~IceI@9EI{A1;{dxK@hITH6SS-2cL|MxKbe0lHWA%&0RoX2=xbbk~&Mh zNQC@`y}52wH^+jE-kDpiB;IPTr_VfwLb1t%Iy9?Lgsj&UUTO>MPPAA?tOyG|NSs0? zdISXgub5dXBh`@FaduWpx1~HXl9)VO?xqxjb&Q}MyKkg5o5SO*rS>Xm^{^&bf51lM zqb~lLTBN)4E4=MnCp+l-54Rifg5RE!xF#utl0r4|co8zy2I-hoQqHZ|pz1@M!_I0+ ztsA_^20hM*BU_#~Eo-^;h;R1n8g_GHQ-3?wo@~#vySXRa&YYJkUa@d>c-GZm!++s{ zlLxg}RzZblA0-?Ul8D8{qS8=llXOM8B$p)e3{X;O-SrwE&pFmT%i>#S*{MK!If)x< z-Lr6>6}+AP^KMKYcmd)L>9;**CO z@i9u;Dm|5o!wIgD`zblqfuMT}ekc`;Xlpp3MaFL9kx>9PWi0&Jb&&5!YqqtMyOz!t zsDP@%NE~xocvHO%aG!~5UW2NunD{mLWQ%xG{8M}?b|$**1hJ-pA@LE^NO`KInHm+ zek#~O>}?D*k$aFjcQ|AbuPYB8r&U+N~M zl8eAZW>?B^^EV*`FV;qZM2Eu>TreM-_pO}NKK<-X0V;iITTV~sh*OrDXB5m+YHvt* z2H&0{z`Y?Mqi|HZC*>ldi~;SoRK8b#rRGbkSz0Tt6P5CMxTAxh%)aIyW?icbE3_0& zuC1Lw6*I|MLZ;4zDsaMG?Va(mhf9)q68vY6P7&NeMQ9>)5f%&Y#Pm{OZdylh`Bvg| za#@nc%TvG$|A1|YyDZu=j%}A@I)zvcW z@9d0lYOAT}UOUCz1+b=P!3w_maNqy!{3!ygVv+S0vTm8hl428aw73NJESpq?Uw!=k0^V}V-IVoJ@ zb?1&_xMBCSd&kY=3Dmpeywl!8o+2cq2&yBNxB9(m27J=7UA7MSV5|{&)%8@kukmtO`C_!D(tu4n1tQrp`$3 zUU5b58&>_X7ZaWnK2M%Z5nz2oXh^m%DP2Jie66Haw-AGikkv|2DdYfGOtkJ>E9^a> ztiIIiZD5>Z!l8O8LNi#pfkeyfQbFlg>Ah48?tY(qo@(r6kV{J|LzN}Ud%m%Ox{dWJ z0_(kkox04oH`Ko+cP>NO2pQLme~p~n+`i^K*t?L`fIPX&N(Q4`gA6&res7m?zIQgG zD-|c7^mgaF@or(SJb8b+cb=*&67J%U@B_5y#Aiw>SP;-BAj%tAD6}QXBlF?MDaAMs-jd_PZ7PdfsSZt|$A9 zqb{#vH$z|9Vb^wIoqrtJUFLqE9{;iU*?4i^eb@B*#Fy~88ni5F1Mr3hkg1EGVk zmdf~@&_MiEOh(?Q1@}H&`CZuoHhoXs`h%KW-)6qz%pSJV!$2%_cEOfr09($a$`5M% z*c3snFo+X+O-x7S+gjc(pOtTOC$hqi#(`Q2!F=q5VJ`vdYNrp@C+l-KFWHQl=4nt! zB#OduVqzw{EHSGW?0A1?HB3-NuL0Unt8hP5x!2TyiRU7R@Ik1~4d_Q5)Kfk#zm+p7 zRh6%mG0HS$fug9tYJX~;UQK^sS4Z(HRgPNoOTX?x8f)--9D! zjCE#Fs{{EZt3BG@XV+r|?>Tv44^wgv;t3kkhtqByoT(HrrookNi z*Us@N06_`Y7U)lx?7-1a>F6T12g&eyxrn)*VB^ zkhO*|Be!6k)4>JC!OoTeBMm`mPHh$@|6Jrb$`N~p5YdaFi~s7J;^y3R=Ap^O;Z4Xv z>>fb9nRxG;Qjy(9p(!O+hdDYV=9LVoi?j!RtG?1wnGP?xNL{VA(&DtGXt7Cf5iEg8 z`(U=V23cdRUwGS7WTB6on&S3fWbJZJZ&Zz40sblsn*7GSfoiz}r1Ty5_!n|hiqJ%s zAySAY;tb(j?nEb2#oDaIQ!>UZw2OVx9CE!t{3s-=HH zWQEL@aKb;Bci~*m@TL{e)yLZp$b}WqR}!cb^P*#X>uz@cbW?dny}{mOFB37pC%5Bh z_%DB7U!(}?q++n3eTDCYMZ!Lim&?8^6!*eA=9VgRXHQ6(6;0`*{HEkmTd@Oo)dE^& zvdu7UI?U`EIGP7q6slDpPWwLnrY^zQVqF9AbsLcQD@J`6AUD*VBJ=1|Ju9)^SnA-#|V z<)Vl^!LG?f}*6zuRB{W%q_1Wp-%AEY)}cbQp>6Z#0wafH3z zxeexD4LkhKZQ!-=s)l=^-~a9ZPISu9B0dIzNB*Sr5L#Wk(yMSpe=$w&!LZFMXKV>*h-dcfR=K_%xVc%T`Ky4 z>{AN6Dave9aFpkEU{wyfZN2Zj{nS56!o~2sj77CL>aUHEGT^8O5eY=8Kb7=oDv5`3 zQlhHQ12NGWq`tXC^(wG3N`_N2g7YvKq6xG5C6PuQ3()CvP*kG-ZIT#tQ3%+~T*q z%Vhbo9DzPN2rQjXEv!mJoFGVpSBnCt@=x7Eb<)R0Vc0kJ4J1Lmqtq17BS| zsUGCJUTgcQ@!uFpaanBRbk(vNf+kwI4ZToo${B^aKbteaIIG;> z+<)DqUX+)Er~U|LYaAXN9*3XeG`|_({rHpt29pE}bkR@v7WLt@Pyy_i7VPXu-K7!4 z^7X`tcTyDYgm&^J`L0|Ax7R3GCJlYQ7EY56=r+UEaq0~4&suyI+o`PfsfWNqC)Km+ zMSKg7)B>E~mz>~qmgzKfw&Rtk?)~FMhqH$Z63rD5PdzG;6~20OCS|~@9~HLA3zP%O zHE>m5>cGZmFfE8Y*Y%&^pwHXWoQKYE&ek1vEh?OYoRs)?yM-y@&*Dy{E(%vu?$1fH z3cN`kRQx(l<3Lm1>1=i{!&c`bhqB+Hh`>V_CGuaRBSM+^aPegfmz$cC{r^9IM5r_$ zQ`Hjs2deWX)LVam&o z0xx+2hBOZxVJIddz=WyrldKamh`GfzVsf;iZ>YzkQRm0Xv*1N^#ZwMwqx77xo@>l& z)*GvwJ;siAPCFM_yAMu;JI2Q{^&)~8luxJuR~{)=5l>T{6+_wF3t!(;8Lg~PA8OU~ z9}L^91ebfsY;MKEI^ozNClB)0dAnh5Lty8`b!veJZ$6xGcS(ZVtIrPJ)c)4e82!zs z-b|bZLH_F<5!9Jwg*w77!Xa==HBlz|&6N&F*QDGqyS3$Z`1DpP8S%W0rYiZFHyA{X zzuUS5XFCyJ)iry(d!2O&d;M7bFJ5lgySe^;#YO}=mdU>{ODM zEy+IPT_Xm6fb~h||MOE4-@g^A>rpD7+jx_n5fL+3B|u=h)afZ5nRRe^}piMh;vO*A1$Q`RK3F(TkvhH|f$!BHF&|6*reh;zYb zdr`2*<1qRKZ_!EljhtS|uUOQlHIzn5KX(1Fa#{HcJ?yy>p%zdL@IY;~m^ML=wsL`o zPFXjp4U6G&n`_T@7U0>tf|DT>pLmx#Yg@U;5rL+8pRC>w4P>nHl{yLp`mMg(zrkic zQ1)tTt5wI2BcEM%R=B_N4iDYeZdtFh2NRbN5%4x+g-f98@zMh7uDeniylSOv+u7pm zbaZey1Z;09__bGB1Qk~cTQDPB|)sGoh`(Px;7r}%8sIGF6_N+kvj*|0$xmw|+ zHQ_7o;5QuvuP3^!95E+VC_5j6V4cT`Rn7aLW8YU85>f@RXpm5ss&tSvi%fS(y`ie) z0N=y5i5z*&&W_WFKaNQide27&VIFyGD6H;J)Qwxk?9y1WZ3BL{uRIh6=0`Y@g|dZz zVIGlcmvRJFMI*n#4N3=7^fipe@AgTY*a;}A!vdeLAC>Mn z$=paclbaWxS{=6;3ejNqq++F0Cpx9l@;wpX~X38=LXoF`67cd5G)PIMzx%{IJ0@i?>IxuMv^JU}i6bXpPA_O@DQ9Kq8# z3)hUImSIh|r+LeQbxT2}Z4tieug{{y=S?cq7X}M!sn}9T2CCV6eXudZFyJVTnK!8P zlUZ4bfOV~}tO3?^YZ3dm5|`OVYQ+ioobMA`63=`wDVw&{*~;Bd72u|-awjT@1@da1 zFrLWrPJO5K#}~aB?ksdBRlpY=(N^g9jU$}uI6Ka1=(R=vTgUEx#J^D;=3^y$xiP$% zs%aMt+rdPkLRra)1{->jD)fZss)qY4J2&jCxDph9ggo{i+E8ja zgIoxXp<&=h?Jf^TDe_s!6>>&=Vj7;~Ioz>kT01;K1K_%sXsb}`_Go{AeWUd3c)euM zdQ;p@zMt_=)Vqgz4RqQb_|hjE3*eO!@Of82D;m!et}_qAhrcy5P${%x#~$NmOmAla zrA$N5)13-bBh8%-VBW#-CIEH5=HJZ+BZb)bQq1_wZa6jKJxqZ;m z_ka~FRf zGiR;1f1^W;N^9g6%i$CtUK9zEOmjpl-1dRYyGkIpEjL*lEEl#R5e<_Wb7p#JT-oX**(CU zSFncSFKB_55o#A1^qLprq$*k+?LIDmlvaLRq;uS5{(kpPT-WzPl>EE05Z_Tcy;k5F z`%f>8_AuHyg3Bl=tW7m4nj!WTG>5D(N59cokjky;jX`Oc!#f9DL~P=^ZpJJA7O(4e z{9tpXE=q6S<~W!rHD2F#Y8R>pA1QxPzt+kcO<2K$Rx7$K7Se06$=*(_wh_m`Ik$?} z#mi6Sprh8FD&H-+52wIKZc`+#+8X8#)Av2e?i6<>r*{n=>6%Zl!n-X0{>xYFfDr zaWp?%a&9WuQed>-wKJTe;;af1!Cz1VHgl78+Iq@~8ROh_D-k;*1FU{cS*8A{ zE!Vrk>Xf4w;JTH|E`aVa5OjIhzJ~UYI#7^MeuKEN5@vBD5n>zhCtf}X6Y&NfKBJOP z>48H?P#e)9(^oBq%XNi00T)dQI}iHiI9QgT8&ig({b!F(9h{lFU}8a1U`-t< zMyezoz`K&l$OPkN8eyZB(S(RQi7IUY8ev;BspeK2wAr0_g}#7-qtR!}*(&&~6WIKi z)86d@JGh?e`>vZc{LKHI{HcSz`YhxV1+f9D)I=#K7$Yw%+G+Is+g2W&A%c_C8%9m> z9LG3XgpfL@Cpw_%-sQ|xln1~9Y{aivR~d}kY%MIa0VyQY180j zFX2_7-=l|jgj?2*ZkwU-X1qsC>LC740aLEUC7u~{E5NlL6)%fxIY}R-{%TXJtnJX* z(*(_Izx@js$L}P$hZ0d9pXd?qYoCp;mpZ6RW(aAelF~h@`(%1n{WeJQlTnb9Vp)~! zdaxwlzy=S(pED1=;o3a-)y>*2)@VLEo!w|)e2o`+2_9wtv^$*lqvlz1 zMN%sVHA)Jb@93R6@c-r)3!{CP=Dihh3@(+OD6&`3rXHwI)sJvKxj`8fwMOKJjyQk) zjy``^PH9(gd)*0eMj>6%J-sr1oTfOp!#I^&;R)}7dKC*^Txjkki(i9LOvP^(vPx2g zI#$J?bL$~2{3krOi@b{AP;Ba;mT`opLN8$>apw;Hjj-5D{GPriMM`ZJ#J5<-Y=+Oi z7YzF(P|RkWPYdALucOBOPHk!9<{pEJIMJH|FME`#k@uXEI^ac{iEHuwA7f|liZ5Z& ztAlCM;*@Mo-Ow9lV+FcXX04E>fTtR3PqlvJh0Juw3Aj7v;bpr-CH(>~Th5>ZMdl6q zf*=2ei7Cs??r*Qc+3)iZZ;5Rya5F^UVBGH2p*wMQV0Ix@9`=64$zI_W|+cV@Q_c4Ca=M$pKu%}r&BAfG z6QvZY>e^abys7hs4<0ph$HOKWn2eYiCUwmu>Jndm1MttaHpFP$;XVGbb*xL^6sJ%2*+6}tO zKwfN%&sl_r*h&TZ1kBMJl;!VBEFC`M=#8DCRn>>0(!9qXuXA7T7#+>IoQU*RQ|nKv zvdQ+ZxDZkkL0=};gZa~h9`JL?h1953*@S#}bV>_82~zs(^QfnPf zchej9tsDn$TatdqR`e%4RT|QN{2CYPCpDxc*HXb!M{Aj>kaANa6{c^aG@Wq@c**%+ zwRBW7^OwJT0^i?Qoc1e)bYg_u89cfePJAOi z<~?x1C)D%!5pNMC6FZ(Gv|{{Dm};z%)*SWiD4O6ITz*$@$0cZYQRANc?*`|>F>}u- z!kUgTH=_1DG&56^eorhpN*wzy=+cRyi?k2<{b&0kT5UF`I4o*+XOc4?uk#@I(^X{S zzhUh*;ax}@)~GQXgue+-r;8{dd>7sSN%#e-HQ2vinjla7Nr#=Gjn{q#7v81&;GLcl zG|AvlWQ*y4f29L)HP{K8s$JH=Q$&C)?R@{hxg5RHT zTe+lD(gZbr2vxM8APN=eYq>&Q9Sy@>1|O-%Z#5L#lb245_r;H>6j|Y03P|N7Tk1nk z&wcqnc+BkJz`{66%cFZArv6W36d_Vn!6{mf-s7%R${WbAC#VOj;uM)fMrumOz)(=e zGqO>7>adz{s*~Vma?#CsA;?E*g8WiLTWtKF=-0p7upCg!8;i8 z?BRT3dKv{chsxIE>x|zV!n5fn~!2tJgN#2X4=wjG6ScEjQMHcn_gZ-=nkb zLvSae%sfP~{zT}RusSP)ZofU8hLmVinc=p#xU+-#54-*Ke~~7@sSoL5%FYS&d$McL z|J8)v!cm;{#o{{gckcCJ>cFd@r2oW>QXZ)Y=TYNCR+mQO(e`_fmuSiLNIiXk`JUj6 zPf3n{Zsn#P8HszQ07$!BVqXda=54g@xcW5Q4=458um^9b8d4f*h&HP6x8XZ=e?lGJiso_@&F!Q2 zIQ*6#pv31*C!`WHiKWEhh}Y#fdqWcIrRei8cujaySUTY`N0_px3rqB zM>s?wZBUQa;uI|tT1!>s#(IBp`x$E3=0$ExqpM^#IiL4V?1VASP|Vov)xDU8jHbK6T-1^9Zp$ZNR&v7T!v0=lAk-s!=}<6`~Wg1ARq<{BKffqLp^RRdGOFt!*IZ`4w74 zy`J8VF1(#|^ZpG-GuFCdKevnd4K%T7gIX(s+mVUfJdX2x8D%Qk>Ife)7(BRzn_L_W zSRY5q8t03X6{pT)w-D!HFZl1eHy;1ke0Y(xfo70F$jUAaz?C=+WPe>etN1ao9^EsY z=)zrNUGRT%QQ9ERU6y_!mPXKLd57p#3vIuxIzw+{hBhYdcMO{M262V74OfWo$GD=O z#Xt27M^BWQle)v7jbIRK51X15=QMRQdbgN4LdRQt;=1Lg-@Oq&f+!+aDOPJIKB4o9 z1RhRDS9bv_sPeGc4e5Dqi=%uy?BYCbdn%@eq%hmSs13z87vW~b$KS+lPlo@_oz6ss zB3@>H|IZ}8@9)BHs_lmOfDVdfVeKmEW0<3o0k_dyyff>pkMpYK`Ik=WF1W62AG5wl8}JVq(GJeichXB4hdbr6dW88Fe($7) zFS$0Z{hoM7m&3;Hp^6moEOfMbg7>zen_WajEWjj_1u)xhc-nLU1|EwCIt^M;2QdaW z#B93#e7|j7xhpPM z&vF$R<|2&3U9TqiG+ltLdJE@ZG<|>8IwI#;+&&-Rp_^4xJ&zv?g>Zd^XOSo2+qg+5MfG;QI-#jAL^l{+7h`iV>Hf%B90$ zaYRkQp2Qe1u5?Zt)P61an@RAk^8;7(|LK%phdvgKOW-+oKk+-hMgiO`jzjf5$84FJ z%)>bV?vQWEzh1(#`E=;}B7cF6x8-+^it0r-9 z;j8JjIF0WmUBIcd5jqKjgk)kmvPfRCsz2+bm^4#54pNMiOL89nmh0lDjKvidOt4t1m}lRSPlA~*+Y;ZllGDI5X){D7lyDH*efTgIIS zTK|Y@+zakwk~aen&bq{T0`ZCKm5q5q58;gmD;LonI?&5qfW4Z+K(kKNbO-U+cC}=> zZYtofA4Cnb6-N4wTh-g;pQ|(Jg8Y%1Dzk>rUpl5`B@U+bnGeUoJzmOvTl``eks9h>vVPgfVsQs z`~|oF7k8$3xGb?EeNaQCqW3MUP#W$0wKS8pS)-`xX>Bl0yhxa(=X9!l4f-zR40K=N z=N|6;OQ&KeCVi0astBuu_0%ZCrM`4vq*4D?Z|D^`88SG`k|#e=dFG(r%nJh<4O5Dvx?TDpAEc(=raD~y z6Hrzj;?grZ5xc2o zvN(jg8tK2^l=Pvrd^DqbFSICe4^N5zNVm!EX&LC3g?;{@=e7@dEx3#6gLs}wxGL4c zxARze1w#$P8iTn8+KChZS*Bk-El!8e-RdJtJLRFva?n960=%x18FCp=t6-19n+n*b? zORk_y0fE=oUg??fYktD1kkLemCYL9^Z+kjzPr$S%?#*8hvw%=&+i~ ztc&~pcQaA8IR6<-FL1mVA)V2-Fwd%?S&Zs&o88MDO2v3K;I*QHTyz-s&rNBVJW<(1 z7v^d6JKU8wQDcYGXZ6`mM(5cc@N0XjE!=cGc&_Hd;y==s>LDR2 zxO*?rR{q1QD&U-~!I<0>8;MxQWB-^dJX-~ zN)|A29YtY@ZW)p}0F`>Py^px)D|^ZD<;_jh3#UW{cgv!Cdk(IpOz?7T=!25w%J^0) zD`<`&eoot$RO6YwW#{e=5xFZ#AouSO?cGTh9s%^94EQ>gtzomyyLBfVL;68Nr-Q2`Iq zLimlzGsp0lO_$@8H8>S}sI%#Qd7?V-{#)UneeY*1D$g`jn2q{&CSe^1Q9Z`b{SU0t zM{2BOMucIYRMkM8$%sSsw$Ho9M+I@IGo1Y^Q%0|uPyLjenFb#Iug-K=jmGgE|@O?Ijz^Vs72 z^+-rOE474SRGrU-GUS#&#YptDZgh}Nk;cg*>6u#344w0C=tWe}JCKzAKP&JYcIU5t zq{p@~Gw}Lz(hi7cz@r7JqAN?ync3#g)2UAlH4<0MClEkZwUl}Xh3h{p6O#q~DK;75 zIL_cL8fUM!e{$dAgDV6M8-n^AN2l8};%sElS<@P?&`c)RtPk%F-wW8`=m3*O(C1qi zuTTx4CH(jpVKcSEX}W*z2oeanBTqGq6}&9|0v5c3(_syspfbjI>zvPhMn?zty&!x* zEoq-zSM7l7bhLhnJC(&8KqYXTe#=g{D(1sP3Sc{G%>0SJyGUpPraFsW9EKOmAQ#5_ zP#LdCCt}xFc4vkBROy4K_ol6Q)#>7S>G`t+C(uQ}nhS~Fky7KBF~`r_A(rFXE?qGju;-rcla~@LNU=n%x}TGf<5>!H#7gCzMMrb ziKjtAi*0I7!gIOP8f4FMlls3|FFL3rKCrhc(^Q5q6>=i+J)LUNV>$!Z?;~|19c{mY z3u~h~jWYLhZX4mW*iPr(7N;E(oYv3>+9|vNU(e;loYyWoz?aGBxcZ2D-DM`m5hPOr}6&1#`~8CXHHeTvcJnoRT(Dg0Bm7|=F-0vM`zL- z95^NPih4Hl1MxZ<)lsL~u0#E~7&p^SCj;(W+pR!lF_${$ft$_y+FOCExfxwhaefyR zu`Y4FDhajVg8g%Kk-T1+ynYaFUSs`E$RQ;Kr+XS$FDH{7e`dm)pk33i2h*bbnO^Hr z>Y|z5cHNuGL`EE3Q=$WGl$-vjM#2=S0-f`nl>Zb%b=4S9SuFAEJ>IHw^oIEA={tM4 z(;L*W)-8`mH9Ek9Ik;Ihq_V`(9ddiM8`H4-sZAMRe_As`YJ}bn{Ja#tv<98^^UYYi zuUS!|me8}72?r|gwJ|z~PmMYAd&Q)v=544{3HbRw2IM*dU$-|-=|<=U=FI!0rK}C-Z*8UQkJ~s!IrjRj?oa5>=b%_y9JoN9H*up zKCy|3zV$QF!K|1N5oDHdP>6%i$cO809d3X)<~00`2Dk?A|7?9e{NH=J&imtPduIx` zlX`(44wG}T*&R5SE9h;^1d8A7{O!DQ_A!I&llv8#;tubyciC&iGlvqQLkYa{SHeS> z&E%pACi_<$Nv~H&D%CmiJ-HH-X@>B|U*S2}gckgO3aLC^j2z6ttAlbfJLpn;hGO+a zF9dJ@mC*;UW_|i*KLxB~UKBJBr(JWa9oo<^Yc4#&IV&Uc3k16&x2L^5)836*d&+)m zhn#jGhnYNYg7XN@C%v1C+O`q>NFCwArV(Qf()a&@j8KG1t3N!hKlSEUG}7xZFd;Yr zjT+$_`T(XgL-o1un|To(;D-qrO5e5P_l z*qOK;6P&qJ&-dB=&raC=#cR$yq(R}OxP?J0`7;FfrGS`H)^OR}3OJagO1gmCs|pJ- zR+&hwSOz~(9X)S2dcbRDF*L+Ex5ceX-}Cn{aP%|?8G@QHrMMVH>=b9@4z9$E%=USx zEre|?>ibV)G6dX)DzxBqEtUUJo~fC1)dNVz>J|J)A#^2BZeg3hT!pdm9W$*m> z<|B)S;P5f-babc;0l%3bBx7!BEBs5NrB&=&33)DOd6WJ-QxLYGxaMHqMnBwsFZd3> zBh&?zFSidd|0<{Rjq{_^i(dA^cu9;vTj++r?k^nELlW_HY=*!y<&t-<;j;TExZv8B z^bMTklsuMdb1t4SS8Ws=Z89}AGnr-t9Y%j^ugOgnjfO@C*ue6{s5n%uqU`uyoF`3* zQdiM&@-lU6FRp@b;bQ)xv&Y4I$2v{P5X7y#Of1bUmSC+6-fal(@*U*Ll=3pA0JZHy zkVWdC@Ab0Y$;@e$LNCjR4$t3jOx&ZN^~u&IyR|3bKdTvTMlFmLaGwhBH(8l(fOjYvsrD zZ;)}SIO)A?Oe)z2nmz4>5;6p_uOod_2Zft-^{My`zTnU($#+j;65$3ZJyYn?sabFu zln$oBe#O0+%WTF>_%(jPUmCC7W*XpUy3Whd174kJupN!k)@bfUe&;l&Ya7`401N`t z?t&WNu~b?87UecldqEe;(x5vtmKbyb-~JdP<#FGy6rC~1<2~rY4C91IAA))e@qdfWVZyBT6N|EGg~0Q_%p?wpxu0|bYHx}0 zMA!!_^=Gh;{pFNY3Vm=8?FTJa!S#8B+IAT%&;RX8bVjc_KdGLM*RaSYsK z7h2LKG8hFQ6VpC-!l2|LN7jYm47JM`#F|!uKd1SNB*X3HHBPvf=&dN~O`{i;bKE;) z5F4kW(LND-O3S4~@N9)qOPg^%a_WA6V0Cg=3*3At@I+HT=EP)?c%=4=W%4$HS z&Egit`+U!hq<3}(T~=3_eNrFC+vda`)%c7-4oE3HVeVsk*@fR&POeJ9#FGVJ-&AN8 zwpM}aZU@t}PU;=-T_%P9ENquxc2_HW2@~x!PAhyziEEyc`4{Jj(B1KaZp8K4kWRt9 z%$~RbtJ+GRKwYuH_+;mCO2Ooxa;CAP$C=2ohDkH5VM4|rX0D_@vGHzxP3)Q^Edho5 z{VY3B367(ymSIBPA=v9Ut(0zY&oiRobwtz170h-xZPv5CrlO3blcp9N%wpU`VQTp; zcy=?x)vo3Kr|_DCfgXA@{NH?$`2ISR-ov1~v2ey8l=^Du@5eIz@Wm(l`nU@>Q)Gsp`?X9~{Y3HXtBMpZgc z#>4ymit;j?s&J8YpX&WHdiN%L)w$^t3FXfe#LpCHq&-os1^Qv$N)K@6eZk$F3&gLZ z(>BDJ*A*>tBs(&bDcWm-S*pj;MPG6kKj05df*&K2x%L^DY@dVK_62YmlmOj{=%uFN zGDU>76EX#NI|Dw254h*rFkhi2noS!um)2MJ`{^2>7LBHEiL$a-d0D#(R%>RXwqklp z7B{Cm3~lq4JBzuff8bN$`(iQ$eEC-VyK9MYuW*=U!CSln=B*2{tuC|JyTBjMVYWgH zlas&3A9_c9q1Iy7UMFV5)`8*g3ig}>y01mgKu4;lsmzU8L!Hr?Y9SV+xsk5rXeTdG z<+k$-FJ%U|v^$f2stw*DuMjg8Tq5M}RBxyJC#shz@Em;)Z?zCEq$Hk|%4DGdQYF02 zZKz@o(WUYi?%ayFR$G$;4$>=pQ+cgagqvzj-7$i$?%7QAII2nTQZ>;+RorlOV5UZ( zz-2~DG|U^;YATQ0_6@pc-a2Wxts4W*DO2b*OVWhy-!@E0>qLJ~Pjb&d_H=|W8VAh; zx+AAiAI#<177NR9C$DF=@fP&jJPVYmn!VL1P0*h2z{!0E9{CbA$(unS{9E3?6b zo0t)JK`X(0p-M#0{xEE_z^5CC;m^!}n7tGi`1mT)b3YpZTVTsjIt@w8QYQ*I|k&xoEr2YQ^g{1?FfoXHQNUV{A4=tPAPxlOiYI2 zQ=0m}4(fSVSh`8n$ZP4e_C2?+_%~-{pg+xEmP2bgXolk%`31McOPKc(oThrWtSVRR;c`3|n5ctJkHA`~!75mnll-!PXnv1jc#)x!ho#3XneMQXA-+{VuIAgm>x zonS)7BfOUd{IfSDQ;L88`Yp{5~y|&75(Q36am#Y|Qmop>L%^d9PnF zPcT`dj?>!t79CQ-=N(#<7`KWFU!*%sM#;~Fju5!Bt^SVqRy<%9sx#}cg*Wi*oyC-7aU^=X z9MyR}to|0l>ySq>2RvRH;s2rRti!5I-+jMKY|#Ovq#I*(uLW3OW4D4a zVq>>rE5=~AVvLG|iis`OSg6>JI*Q$j-Q)Q@&zkF;z0W@TT<7e6=DPO$hPBrFK5^gQ zx@)qMhtWk%2HlvaTB=%wLU<%$k+{bj@GH-$9_T9b)^_5}?LdM+5(@4- zy2JIT1O=|@!h8r{lF-GRnFOkm%Q#h+QI`*fc|3@=<2O0S$3?DB3+KZG&Pk1W0xpO9 z>It|O4r<(RVyQt1&w&pf;=PI_bAR5%BXICS_$&&Uikpt(5Pf2agROsHGm%r)n@r41 z`!2DLl3nC}D-Az9Of{WzC00|L)!hn=Zjof6Ux4!TgI79k)}qmlw=@RFIRvwEpVW`q zj*R6L7kL-^qn8&`4a$P)W^;pnqf;)+{oEXn)oXn3%kaJ5(p2E-&n0`L7fG{ThCn96 zY&5JULokO)JojNW`A%srvYuH9MtPKc;*+HOID-Mrqb@p3H}OF4igGm?zf=+##b=C( zrl}yo+2#x6xR$k+MQ1k(FN%c>*O_1hJ3t$5IPlPP$8!`K$WGiy6;(S(-ZyB5u`Y&@ zeLfULSRuU=*h?lAW4O%s{go5U2Xx-W>OmJjjGX5a*4L;?!*PapBVqI((6b44c14zB z-I$f_)va-4*TdZ#Z7`5V_sJLp9`N4OkIFC~Z%B1H>!Oimzcq+FrO(_Cr-hm!$3F(&;z(Ul5lX{ERqAGgofv7+>!Mfiuso1ZId>6^R zZ08PqMa@@R)q(`(OqBP>QP0G~7)+v@cf!T~oZq*ZK1#Tmo{&N9ij$`awdxiSVt313 zYjJxudlP$m-a`Ny$3*mF@5H_=aJ*LoRm2hH9+2A4>Y4C}F=9Vzo9mmx=q@*`=GWF@ z`b!FVBDYP|K|$KXJv_1mQ#aX}z4XxPfdl2fZJ2#3`|XrernxGX@#iZj`=~l-R@2%2 zVt7xUmYZ2e#oV2Yfm9sv>)3IJ=}A7Bi%LcFd^|drEceM|@}(P@b_$({v#WfsKf&6{;wtna|2!PzpcxY##^A?$q&p6i)t;QXA~I3;l(7%*KD&}v-!?a}|a z%6Ivv@`k#w)(buK6m&he_!jOYi%chhXA?JR1c-cn^ocL@?)cnib4G~_+ay#T1x9Z) z_w)IL=cZ4jGCfAc+7sON7t%x)iuyF#ReD)$U?sbh-&7guJtR!zs+*IZ)|Yh8Y;6a6 z|Iwt@%%oXvQ*)qUrPoXjTiv;Wr z=zy=t-1iqGk|kRmb2Y?ttrj5Pig;IvT{vs=acaL}_m-xk7gHR*8+VxN@^0I4KC>_q z9RIuV)Tzxi*K{|jzEe5B@9<6)BS-Xgn;9@aA;a z^d=>y9yj+E?Ow2r5+pdif;s=8-%8fyQ+k*EWL#V}7035ljoAhZ!6Pc!D%+TEkm7ik z)$k4!hBHdy7TSsqGX_Of7t?-HL*AoX=*06KLWf)g6uCL5{y@;YDXb&DSDLFlUlm}; z?Wx6+@j~Xn1(qOh>LB&tb0#q@(0xOLvD&zUyps~#F_}!-xB9-SK^XQMZR#or|B~cj~_Fy0fT(Kk1tr5;<1~pw0gPi~7P;hFKkP;2{s;?Po;& zA-+$RtGqK#fCMQtWpLhvqNT~!jex;UG9=>Cn8*FL8T9%h@9sWWMJ)MhE!j!8;SWRk zb^MJSS9!nR;7Nz6s-gcKgNEN7XJ<9I%`xgKv`Mg0lma`x0C`~-?T zSB1!unG3S{m--*gV&imb9LH}ut<({g$riAP$h! zc+U2cTdF?yREMapU}KK{U@m8do7AE|RhCy9>4WmPpA=dr5PWyC`m5k=|DkORD>z6u zg$(5Nxbd&>q~3#jmq+1Q9d}71D!m@?B#+2HDT&uT7)S10^fvi)*{<}`CQ!Aj+_p|k zVG6`oRztE;{cw@yf-DEwE%rG32x>4l`JQXjfe0q`J>8JVDK&Cli}g}~_G1W{#BqjL zTyM2doO~l?B9N2+1e%ddZZ%GQrJLlWr;r|Zh`#27vWaRmne$zkys%E)l(efdWa-u? z5#=k`#1ycj(%@r@IfuR&%78^Tgnt-8HvjL&VCNrQP-rFUh5XW#4cH(_1EPYVw ztfML`$Gwot&F~JTi!V3OI{Z7g?e#e+dPL=kH5ctBamR+t-s`TONh;ZCcJu=#ACzHw zU?{G!1@NpQZ`q$jgI2hr>X8zcM0Y=vlWQ}XY`Hu^f$mmh?vB#fQ|9|Qp~q`ziKEl( zVaq@hdXIC-O=<+1V`B&1#;gB}uClH^lb(k0>rR0ROr@4R2oi4ri^(W(4@=k^kl~~Yz1<=9@e!G$%K2k$=jnQI1JD3CX-LT zYKoG~E3z|}lZ}{*+vg#_us>54wo*<0z@4&*H~7RQZ57UKXR;7yiF+g6 zO`f}xK$tFSoY+UPC`^8(*PV!(b2GPB0N$S(IMbS%>QN!DU^P}it=gNrWe+vOWqO}h zI1q+|@4OIyFUxTzl%;kLVg6te*+uJNz8-N}1>=b8qCJJuvMqkFSMV@9Kx8_D#n!XO ziQkvwCVQx{%If52{RtP_iu1Y|D6)|n^Ej!~G4M^@Eq(DbTF9^~B|b0Du@2oq6M8UV zFh&;y4xB-^1J6VcbpS`gaVqGuXwaG&>+{yb%qDK&$sohuK~~*iNlez7@bVpC=10Lg z&1XW*IPi|Y=_7uiJ&!~uxyhbErE^s9=lPD$o5eh#2254yscFQo>ZKiwo^dWKeGe6J zDm`2Yu(Aa5Z496)S>T$bQN$i(wW;tUr&5#oTSKh<;6RRmkWD8g;1T(YKbV8D813$D z`xARGJmND^TNSv;8mSc+(_`gxRaevpHe8OSsCIs!;I7WPSKz{k#ewNWVr&D{6BSHZ zV7_PQt9U+&O0w6jL*LSs)pA2=Q^#_T1>v4sPV&kl@xO7dBzv#vs0w^YZ1)D0T1U>c zGiXXj?L6Ig{a|K8?labaqu5CX-Z3&#)MpG!2ba=qo0GOJ5>Mt7uedJVBdraq&Hrm1J$wpJbWSU_-sQ z`zPX%X^L`d0{PW#QFJ78SBc#CfpF!!(58LX=}3N#A)oIex7J|Oew>oA=uU-SsW~0z z9l^UrJD$OLw5uVi4E-6yHQaI;XuS54yLJK;>k4@pmE_(Urz)l?Lngn2V{XrS?McQ& z8Qg~3xt}Z1b4t&AJjC>VT+4!r{v%Sx-DU3yp zC5&Z^&c*-`&S5ZNDV#e~sm;?!6Iui-pAOc%!I;TZ(jBB*yMj8m;|%Wt?%j)9av)mz zk?6)Ja9>WB>YYgXp+RK1A2K&Wb$5VY^UhjZ;-in)%Ss%1N%XQS>@Fns_lH-wAiCzX zO7i|LqV%EaT&3L4POAVe8B6ZgOjRywO%-~m!Q_BHV#jN#k{4>WOAg0?gX0!?iY?)n z|E8~wA+cg0?{71`bqUg&lekmgQK_#XRlYpu%OtXo&PYFjg>0%^l&9@EJJU(@R8bqH z3dShClGHu)1c6QiZ{AOW^k+0OW_3>(?Uht(W}Kfhxp_*Xb(u&-R176REV{!fbg6Ik z*}Ta>=5&ribsWpA-^=uu!ZZ95kH=&3XP1z4a2{+Yp0oQNm8u1#WF9-gOx2qu)@)WK z$q{u0+u4TpPep>*Y*ipG%Y@Mc!)-W2CN}LSujvM8eHhx^ zMmU%HgZ}*i(su%FQY5(?_tDLaw4CFel;D(D${BkSC4vH9PbGN=mBF9cmDvmjaC8{J zQ~rQ|Y|lBAP32UaoXEaZ%A-*|oWKuf0w?TCl9m(x`ua@%`(d%7XDMj|jpR;noH>6P z%uK)-#`>tqiGP@x7sb)Kw4r~@0xhp%SBbTq@A&N6C>qByS>ztyzY5BXzSxn~3McJ5{!zvj*} zfX)cV{s`&@kwUJfUtdjaeciSg46O({5yx5YF3i$Kzl)XEs@~ z#aZa=F3-7Oa?N7NdcUSDrI|&A@RM&9tWSc&a^n^eF22iTwLLWyhNW^P>%9f{St+#7 z1)Th&xWoRiZa|IsiprC}>E|vv&eE!Ils2)rYWi?Kt9VbZLD+&hU1~AASxibD1%BR} z71;_M)im=bdZsR{#%D}R8V$>!P`b;0-W%p+55M393QD1U@CTz*tL;=sH`RrxDu?Lj z(UE2vtHILwpdm4tqs(>87TDbic*eJshp6ja;3UnqHb5tpbGXq`o8l{Br7u$5Pd*$MMz!E#!AT*=TCZ zq@Klepsz{7cINX1FFN1660huQsw{6ZD)w1Ca9Pgcb`<_WciAhI!}X(TZ7eHCLg#aEK(bA?bbNpzH6qzX@>B-w!mV1VY+xL`khtyfIk|%=)ZcgDvyE& zePM-XOMRld!ks@^QKvH%SPPM9*4MT`te+fr$zy$in-Wt@kHSVi!L9KfwT!b~%p=wF zedbYhEF(jDEmdkJeCQ7J{rj0)b&OnzOK9*sNj?Z6f5S{3XCpLkoyi&)LK1x{IZZ39 z8<^3uAC+_-zKjQ8IG^Fw%ivY?vqiu(h!mx!bYZ{ZjvE0pH%p!anKD)BG`09`bfj;= zu8T7r+LO6;)zD7Wus5KBO#pcjdcLXbjb(I=S=2rb{_Y-i`$x2WrO-J0;Ga=5$y?;< zwxwV1i_&jAx8wr$&qh$@gJkJlgi90%#aA#2cQG1MQ53A%9mjnY^4OwLK{tm{O`_rv z`2}h4r)yzOcgworDifWa;i~xuT&E(g{1E&IW^~7m&>eTiCoqH+o(gNSf_`QjnCzcu zxo?ml^Ge=^#9!M$ zY6g44D~p*|bHM7?pdHvs4wRUXd=~w~O=cN9#l`mt2W~MYl>egjBqMPcJ1qrO;Z*WG z(wJ4gh)II!tkw;z^eoo;ZX9+w@OCG)xvYrGXee%>?0CT1cmZSop6c#9UiG3(i!TEk z=>j_WzvsAE;oEEBtZo3i-yEj0Jy~X5Q5f|Ga~ecfI|_IEL^6_RP+QGI!?=um!nLSw zGtmR?fTiD0#^^DS)?B*o%WzD$$QyltlJo_)&HqnUM+1F4Ra}yeCc&g7|Cjuf zc`)wF$WmWRf11fTu>+=UKbo-rTMCCGN2dgn=A8{L^qAgE<_u!$Y88W$G$SLpY_y>k zZl?zLnVX|FXb+R$mFlTCnCc*=NQ}Y-F_GJH2IuiSq00qhU5k1o6XswCQ=;~B#*_rx zcbC1!du28C6#Xb%A=gnLEWzQB3u03yO2ew|&isMx!XZ-NE;WjQN-OGW;UCz_$~;B3 zt*_=Zo?PKw@*-cvjI*K{w{sq-#a+&aN+`sCfQXsVRbPXN8HRiE3~Wgw>bYt78g|*! z*eM4=kDqd4c*t7nnlg$hE)C&`+L1Bdhg6Onk_sK?-tkrBn@peeF z2(;@W%8Nj%y74#$wt^==GBzi}*a&KThic#xh<;nLQ%b`<{?7D_mh9_ypjjwqojv4T z?8%v2!=W(6O%}vD_@SGle+@@tf|<_ZhI&uho{co^w)h&~gApcirdaItsYkPz#G&wW ze0LvC)BmVu@Wf%cf;^J4?8Lt6aq5$B@)cm?`=W!-K&|lr=lU+~Lvr9M8&u4uxo#Lm zEuW0az8I4+p27{CBZsRan%NDctIR}mTncTX9d{2}E2W3LpNrwAn1u4;0eXr!(h}Bj zQ+hM`Y79!t%P^h7=P(?H!#S9?TiRXdwWqKSzv&IAeYVi?SA(fp1NJu=oaY)z!D{m` z7=#>iV>(rnZ6HpZmvCAoaZ;ROmOv8o0!3}$A#t$#MBLq#%HZi<2FER^bgp7M;wn$=uFb_s6D45c#E1;sP-cHo!jY*{~m*r7zmQO_1k1fl4;@G6vWOW_W?Q

      !c<}hu}nF+A% ztV@}ucON#V8Vr;o#Y5Icp5Sf2qm!=+%eR~StD0!5&ZsN$CNema8}Q2;qr=E2z1Jzq zi{xxvgkWMG5+5;2#{D~;QWbS)I+Z}4+Bjx&i1e$wFl#lf|95{c;~%lbZ#) zLfzmYdvs@dzS647d}cAUo~>EUOX+2*ZhzqhxOO*lL{ftV)aTUkS9#U(H$MV8~YZdM6AY=qVi^+{jUKHv3K zQLrunr#nE^^cQuv6I|FM6o%oJuhs?BZky+cG0Qe?AlYi zk6?C00vyRWD!+=jWe%Dzk=HZ~eq$>0Cw{X}r`wndL$)+(C0c~_4!$Jc@w+xEm#S^x zOMg>kg;Qg-!XH`D5(Rs(k9G7F+-@}PvnrfhPryi;z$D@TD{!1yWvL%Jfe|$$9pwaR z#SKwK#F4!atNlU8HSmh1RVqN#6V>g{Q=b3n@#ol6tVV zZ{hwM$={kulFEIi5G=#vxJ7e9(*?v%qiX^V?o49DY1pJRvbH{%oLH&lS@W?VRDIzu zF4&gii@Snz%7;0XO_>KYih3wbJU?eo*{dv}PfjBJYb1J)*;ME2sayO>R2`{X#he%| zj+#x(%Pv8!`8W7VS(r^3Y&+&Ye zTA#R=vQdl0faJf>Bx%c2A#~tw7kld|GvcR$-S-6B9RLe_+T0z~CKbeTv`Fs&Q}dMP z%^+&AxugoUpw8+E4>g?xj(gyJp>(|yNto|}9(4j$aw%OUdH^kz$Ut2j$%A+F9pO=; z$>#Pz>G#MS!K(wE?J&Y%y-|;%$mQb6&2B* z64NLOZf#N4r#kF~x^6j4=|oqZ8U|7)PJ{H+fzK^y3N?S4+@JJAslFV`@k~8q}ruxobz&6VD*tQ+i-s zxM^cG-?WQiiCW`P%H`P?68}EIQ|^VQDkl`o{g@3LM}@Hp+$Iob*mN-CW_Uu(%*9(K zr$CHgW^!#?Ir0PBfqPG+qCSBR?g3S_2Q17u`YTU)CKV_%aidi4g^dSJXC?HcVE=mhEvAX7DbMy^r2gM?utB5$%ofg_EgPK*MwnF zfs@Qe`;f|Kf1335eo z67)hduTXf&wcw1tx2oi!)07(6+In~ahN9Wrr9MLK=0OH;2&mUCO;=q#{I1nW)1HrV zdyr|gX*~$Q5$Y=gIedJEvzNSUnX!kmX%Rhd5$0-N!@m&;d)uF`VkQXLEYRh@P$(?m zMt{s*8Dp7DO{uUs+jOK%DEz!+T{Kb|i9%&Py~;DqWbHQcbwoN?5juxHU`y-h`tQKl zt3V-pN-knN3c|I_ny-R})P{DY9emCqI_W$r+2_VNaA1>h0(>>Mftl(;e|n1E^s4oy zHINGMpj|}=2pgvKlIL7o<#&`PyGdkQi^i-mzg=iAH!-X11l-OixWCFw5RRh%dBOat za=0=YkbW`+7kVKO05KtRA?l~+aDC0qV=dLJBSFdYnJc4+_L6sh4bZ4IaBWBNd!sLSLJ^9lDLJ6s@sL{TN1@eI{0lUuIp|38HPM#6sW>` ziwkw4nDe1X_L6bJcP=I~c z7Seq}FDlg9_0fRrMgwvJ#gBn1dq*nkIWzB~3PZnWQ`R)aZvNiM!9`Ib#!iHf>nfs!!A^$Tgd~siApLIb!>HVoD8ssQA~`B z<<~c6#m&Mk_5<}uF>6U{S!)HWE1I*)AR@sMcX2$s_sp#r#R(&@u1uJQ-Q0es)p2wg zcTq{U;Fj8|jnwH;rzX-LyHkmE;u{r57c-m{e*oNQ8kLJHGoLa{ZfI|_S<`o@HXmD` zv#Z|GHx;&pp^QxdF&PpyQMwBhIgWKcLYd79e20p&5og{esu0n6#G#-|py#;AN?(Is z^|Q7qRbe)_?=Mt29bjs1qeE-}$|?B!JkotyG52#QIq7H2(VVB-z)HNN$7HEW%ygb? zawlDQFKNveB?j#!&#EjG;xEYnZVs=p&}1O-xVe27TKP+2%@#QJ$yQujc6Af>U~3fP zA2kzEIpv^GyRI)pzVuGx5h}m4%wKN;Co-Iqy*KEef=_PEpQx>FO+_7~tBUqu%WdGNNG3aC8F20kq zx8!T@lWEbOyplB4#pLupAzduoHkFD|;pZ)Lspry7eSynp z!u+qvU@9wNk9LEioCQ5O$+z+&Lv$8(@qOtz{0QD#)ZkD)`H>t{%^+r$)FcDB37Xk9 zyn#fzq8`!%Hkef~8qd=t6c!oadn)u-{$z?7zz!Rt2OQ11SZ$q*H)1~1Ewb!5t(D&L z%r8n_%nqLKdF6JHr+J)oThvz0x+$6^AVuDsZ)UB~XP?&|p&$5L*OxiEM>$^#(|s*O z^VrK`0?U5JndW#drm4&0Bnr zzvp*UInVWfz>m(rb=8S;tQA$^RH+Ct0Gc^{pMPzk<&mg@?Jp=Y1qk$%UkFE&WF`<^}eL*PcgC!*+bs7f|WE zw-rK9Sr>d}7#^6-^buleluJ|ydOXod+=}`xzEhgFtdAFxuT+^V$l~f)^>6TOgTW&e zB)tv>7cWmwF&X{%XS_eLE3b%rV|zUe%Rd#IJOV)R6;oUEc6Gd ztgdaWr(Cd}64bFnn2PXNCdp6Wn?1&5T}bCi%C`1@VwL}Al=2wo%{@A<`K+~FoSdOx ze~p=;kc@KX6O&UCrT%vwDuZq4`aN{Q;{K|LX67#J`W19f_3eGcGs|+EX=jw4 z5|7$Ls?KTYXY$51Qk9vVQ#2d#3AF(m+Mypurs)cEAgPc0t@-5JH6bmiz}A+jxuZyY zd5X%r9hiVf)Klbm%NleqYK3NaW8Cn@WN2&a6nWmVP8koYz7b8rHPsPydDKpYNFuHa zR{9&0h4-V%?P;7us_qGJ{$%TWJlsRX-^}-xoST-^tPx;Y&P+@gteJqj={C5AleQsR z)fKwOhF~%_+^Nz>f!`QO`q>CtlFQB20(R^Wzq}N)sruVjp$F#7D)5&0i#Iju9Q=Gw z;QL48op}c@-v&?c99}(R6P!mevdDi?d$L=?NLSI3&1*veP@DdyA*WIcw9_5b z|Cv!6MWyryTzPNpuex?3AA-r3!KMgt*E?61HPr!iHmA^e<}L)GW$6mv>dW3sgloNT z3PxYDU)0ckmE}ECS(!r~XarugzNF1{Mgg!6)TVo&&d#3!fa$ z8rsOs(HT5{1xWpUcx+$vHyv=Ne1PL>VVnz3uOK}(nteN%b8R29Y_;^8V#b2dmzJ`+ zkRH<6Isk|Ldc25l$e*iqt|MmJ;mgi$xnfP-a#1hpgyS^TZj90j8#^CDOK|ON; zlvMN!?_sk`f$MZ<0`5TcC#{Y9$wmrhuGn%p!E-vwoo6KEd-2O&fJv2vfyg58g}KBeyLr_HwY!S zqk}=D1Sc~wXDBs(Ik4EH%q#nW^3F^h)e()^F?f72y5LJ6PVqI4QxhKWR2ocYQz~IsueZING06f%>DVnvSmc z73$D+%!K)1h&TFyB($fh?Py7|2$h_dEg0|o6~1*Vl;yeb)TmcDKP$^xN)6Ie7maZ} zxaAeNi*BM*@n_AqW6c+b+v$t8;G;o<4)i5yQ9aS_q?45p1P*Z(?0KAR0Pda1;yL71 zmYi__UagMGTd0=8af;mq>wnK=8KD`iE$7acBt4=b3gs=9Lza2m6+OZ42HO6Sl6?YH%`YhcxHkr}SYckGo^`1m~L42}d9i&IBvQZ!S+!TN&WZPl&i>FzeB zqgi-s8jG7LpUfsPjkpzRKo|?^a>w6r;-tJo8tG${>aRJ4KdGWXd$LffrNhO$ff#pz z%gNQhGaNKVncAAmqgH9gUY5Db3LjbjTb2DmKKr8IT*Ks{<0yA?xe?x)lO&GdBcJO_ z>Nhh8bq!QVne^WOXr`l%d8M5VBwa&P!u`-S2EpXq zB6(&w`i)0;yK16;%OnM54j6L{Q10#2J>98xrogS-67NsxBXLY4Y|%4~4;aiDFpJ_; zoPjWVE7+aM^evlsCb9TfR#|tEYxjwJa~i6s0&spYG5nSIzR^Da-cbX=4j(G_!wlzh zBe|n@UCo+)%yTIM+glkX#Y8RH0$*)Ec;4B}0^5W~^aL{u?sMDzM2qdAZAKmPQ8$4e zwu@m1Si37(__=72{peVe>6}iHtG$Do+(+I~JvryT*ydW_SwB08Bbqzq`-*SG9? zaN!xkE0W+Nd#ofhEA7~8!>Gb_+PWxtPmt@@8-8jhYM9UZ;Z(7&QCA;F>FmrMa~h?h z@Y2tgbbNUtgfTBC=k`};`t@}$a_AK{M1fp(Vml)I24VG z?Q{-5)>YW{+uZn%R5d`&Zi92R(TF(%x2W<2UY^V>jSQ5vK_FiJn59x*BCmtN5l2%W zo0$-I1%hTa!%g*v;GKPB{XAdQQ_~O+Uq9VYnEJ(> zAG^o|(@J%oz)S|Ch5rp~R%sBrbiro{7s^1o)h#eSPpN^0)7Z*89bz1a{(mDbO2J7) zn46drxv%t=I_$P(?6<2piObW42t}w+YktR*P?2QUX8$TfW|EvEW+xpajX@|vzVIw7 zg8GD!j@g}T;a=2_K9Uz`OAb{(p2s*)tvRUp)}wpKr2D#wg2xwZ<3D~^yD@~hjuFgP zN&xLz2+w#I7jO=D=yw#bE$A<1fl!^Xj({Ut%>LcUP4*{R*oUyYouhh34U}4vxgbuN zoSmX_@|7NZW>v8wL+J)R>kLMJ)~&CqYmM%sWw`#F5UPpS=Xa|p_@ znw&a4q}Fa4b1IjhZr=_|{h6HnlHA$>mT)S-8kS_{9?YZ~6*F}YvQx!`b1}oUBFI&w zRm~jm`e=B@Nk!mt@Vd>`J-nS4usTlM$i847N;<^)wo~x)zH%=tQl5j4a^j@wN9KDf zHS$r7VCGjbMZ?X~f|Yw4o+Xj#?;ovIh3kU+m0;AO3O`?YCbdC<@{ax{l^ffOwRI3~ zxG@#}Q-hcYeb!i1p1r=ZPU}ohFa_=CcF@{m^tnRg@`Jv^h3@|!R002h$$TV!zhW#QbRyveuKAu#-81VLb0?&nsV{_ z3BO@+y5&ky{{O0y6!E@t7SCuh7S^B;>ZZ1UNgD71U8f=nWo}(5=9_r^JIx`Esa%Uu zj&0@s{u9jm8VUKYQP_oW##`_+w4weT0G6=BbcFd0mq5CnbH|H0J1TNC8Z!?liCTQL zc^1mmVb-=;gKV{VBt>mvHHf| z`d%RFEeo7c9{TX-?8hSZvUV3T)~drG^~Mo58ZX8ooR&hB#dA#Xl{Ne;bW*~z9EeKF z$c*b2cu>x8ZeD^vxT(GaqxqPmtJbWZnu_lTNkReQJh!j!Q~#1<6GEX%I?K^wUl!t0!^AC%~!FOue^=4 z;4|D*cUfI;;V(-wZ?74BXIJ$=^qUh&cwJ5%P>ef1kZFi^Z5+uVT~Je`qs_V{HPf*$ zn=5r&_$3wfzI5+)en&GoYi+Tyde4NYgeh(s89lT7WQk@6U z6VqEhbEB1oAKgnua8dIYorp+rD6VzJ`!kMn+(*}z4Bz8apy6=Qv*>p{IMrK`Y%v#= z?@N+sYLGQE28I1~;}hdAVD*jpJ{QPvzh`=9`e7 zlCT}8V-zz4Bf{PiiD5^%Pe?`T2 zfD_G`H9Lqmy`9P9Z%GO}PYQoaR2q|*YuS?Ob+TbC@6>}-nEED9ki!P-(us6^y||@< z(1uMyKa~w&3s z9r=nGhNYNV6RxQX^W#G;utGN!KYufldp{bC+%GHf@|7eFp%eL$+wmv7$I;P*9%UEY zOb7{}o0;Dj$ay!MeqNF9EBm;j$~dOPomB=fLnZ)ht2-!ZEY;X=)EHOkth6Zg`hbyo zQKKhtH$KMgRt2qWcbwCymfB3Yox&8*10a@#Npk6ls&fES$48)h8V_=iiZgf)3eP2^ zXso6)+K4iSwOrshgW8a|I6zZh*B8Bgrs1aX5-fXl-tl4PU!0_a4TpicfZntLIO`pz zJ!(NChVi$KioXGhAb1C7u%g=F)uX_wGrdJy>Y2CbJNfTWccFi3CZ40{W1 z$U#OcsYa_&*)L`G=o*WHd3AMoQ!}jTJg0+X=K4u|VxIO7(i=(}eT=1Wk&OU*y(!cN ze5~W&+o{-#ks7nw;LPqCODfKOdJ6u%(odeR$+$BwsqZmubRtfeBk&=cSt-q_#*P^F z;M8_C2e8+(QLKHi6d|d9qIH;kBkKdlCwHBnyvOgNW?f5mz!`~^9YWPtPtyvn=oB*t zzG%mz)m(`l`x|M8tQF5iW5o*rOf18r{2sy zuS@>LGE{B~)T7nlylSES=#4^0^Jm63z^h<01ZkzcCAG-1^sORTKQw- zG~6`i)0v2QgU^^LITR-dv#IkO>m?q=L>=`TZ30dZ8?1OYlpiPPS@JD+Y_)KdTbCwOO9-cN8qIn0V@o%WD-K zu)lgb+}RIxZizZ9I*I#{-BZ8zN{W`8U(Rx*!cPIsiOA$(9Ld}#gY!`6!5;peaL z;~yWWXsb}0HU$^Bg63|jbv$#M`4>umMe{-mMKDO+Mbxg1%pLK~^n?=`#ssj*@?SIPLGUqF&QK{IC|am8L)Rz(o*BvZ+p1UG=zkT65!yxe|j=5R6B^ zoJQX$rbA{@)9*#!b&`7Qs&vANs`ZOVlCYPvyE5T7kdzP=?t&A@> zJer;~4kSGuS3_%(DH6~}B=O#pm4oP0M}e+S#8rC*jovonOV(#BRZgg1UmBGbmZf~u3l*(w3%p9 zc7v6lMIlty;Asef`|i%Uw;s;I$rys_xD}^gEj?oy?W#R0pV85vD1iUfbf zF_us`{lfs(=5ElPvaHNF&XVowt<;UVn!0!nx}u~Q4G(oeSKTlSwa#4Jm%o$xn9Xj# zAafK7I7ted%A@ZJH|bGyG%_Aig=c92X)RfNgVX4(AIK?@rJ3&<@LB8tKePom$-5SZ@3%h!DM)%d7O5u>6SdH^!%AuQJwqN2BYv%*OIrH2^04S z@7)vb6gOt4YN>hpqqE$>jdBFEGmq2ewmn^-;A#G{_v+4HT*<9jNdH(cgY=R=(BdXi zNt`6V&0p%+e9?h_!39=YcUaBp=wn8u7ldj?@w{Qcp zF$Rz~|C95vim@Z}J6nTtY(Wv(8Z}%t84BIO6yI3l`Q}Tg(h^9SFG;rPM)c1<;+f_+ zK7X}DxZIhd}=(zJ2X*r7m3>D+;N-e z>3=XEq!qtW%(+>De{m2Q8!ndVa)x;?QiP;VJKtYocwS_n)&YB)L=N0x=EGeU3DO0Q zf45E50Nrd0DgqDVH&aXVN9sw1B0xUNo|-PHMdtun z*PJDPs~QTe8QjX7HDk$FJ*iDGWLf5*q*?>Nvxge^7|tq%Uw}MsCz&Qv*?j|Zs6Yb1 zQ(H9Wl}bDtWq_hR=WTsv5%r?d7zlPTQa2Vw`4o1@Z@RfCc$QMvtwB4XAWO@Gska7L z;CP-ws(v;p0NbefFQFs7t1m}VS*Sq|-Y2GYcf-4~68tm=PUSAyg0BtUq-^L&cx;BA zzc>1+b#$JG$W!?ntl}dn5)sr2HBnP0q6r$oM1&o5qGx$$&t-2`nr!JPat0IdQ%WtF z%oVx`yY&T+N=1;0Iv}C#;qOK>H)a7E%sjLJPc5J6%RH=pWI{DZi{BHhVk)z1)`A+} zCVT3WwYbgo-BTVSTS$C(jfb!V%8HPG&;H>|W}3rEpY`t^_yN-F78T4X zUI&MDbJBfgaW-#ZALqdk-R9g4P=xVpOOs<8MD}kD&eeA0Z_dZFx|v!dmt3xgXuyTC zUCjv@4|m%G{plJyul-cnBIDv63Hm}2BQi5OqKX}=9s}CGo4(>Nx|Od?#44fDX{<~t zYs*PGhLo@w(&2TT?)W45F6Eh@TT@$)bb}=3f`}Q-OVAx%CfWIewkY#KD#JxLq0a8f z?5wH0>lHYyZo(M6!{IH`XTosl*MxIB##?%Ty2yv~um(s{HFULK%&X~*E>i1+qms^p zr)>_Gn9doIgXZoY8k!fJYah`jiyN?1R5^M7`9uZC+fPltzPS6Q;TH{%{PlEv2|=X& z%;5=~VJ^{XvRY?>a>r?_!+P!m!&#a#}Hx}H?pt>};Tk?D5$uFX$TLe z8f2?34yq2E>D@`J?{6J!9f=1-pm3|L+av~j7L4N>`op{ItLIFsDr758B^Cf8tg+d^ zgk$Bj;1+UrZ-4m8@$!~h!!+ov=$Q6VgB>R+ZBIn z4n4UUv?8}WB|zS_#X#g6gL`yWSwOHBku{P68(I|Z^`?Fmu5~T%dK0>ZY*R2d{63P* zim=84aMv$pZQbIWC}yup6+Y4)!hIMZ`|TJwnyK{U-l&)dfkakB(V3$0V=pGdomXI{ z{jYq6FOHaO++#xx3(y9=juaJ7Jg6- zi8STPWJ!qm)+%FdPSp;$VZ>S-FHhH~9l^RePA1#m z=EtxaAD9g;X61_Y5^T}P*#u4KGdsh6_a^Ij2rJ?Pj9nObT|+dbF67aTwa0+jalY|A z7pm5p{NUljK=hQTdW|5%(J=pK$yNMK-0L}xJIhQ>Ia;|DoT55Ye1@pS48Pj={wl!> zZRb~Mj7>q~_}}LR$oq4Iu_6_c8~502ZuLDjUvXdM2S^=shVqEEKYa5!U1_}@mF{@G z6BwV>7{}ghMW#kMFwBD%H~VuYlZ+DoT|t24vyP&KE5z&sFLEn-u;UeqKzZj@UjgZ zURU1ZURYkCPdkNkoX_!?`Da1*0rXox93>%F>)nhioQztzuHcUGA7b$(cS@x#9-ft!@LC zJqZm(d2Kk|af<$ku{H|VhE%XEU;#RCw{~Nf^uf(vlr)LaASN01vFx{_=zA3Lj=vR5 z2at#=x(Ezr4c4y@bB|lWyNm__F9wgd8AVbBPNc9r6NC2t|dz_- z^e6c!pGsr6E!|#6tVQP_siBHjtwlNYNNr~pat>Iw7ao`OxPIp1DLbQUgZp<6>~n39 z`2gynT~tFZ{5?BowSm6(ckr%K_VRe&gUM|&(Vf_YCls%3s4$C@ zlbA^rya?4#Q@xKt&C}?O;y8<(5I3s$WU94iWORC)ZDtQJkTBf*tKohs2n<0PB-f}- znWao7Nva2VK!Y^J=)pFiWeUY#SlKXz6sa(F%`jHFffVUS=2oa%N>i~FN6B*7cFb;c z%u|mJlDNir`i*{a7>j^3e`eyZeof~ZStmi@r!Tkrt7~Ne+Aviv$(Q^EbhE$IdK6A1egNiC<*PtaFJ|1r$c zlnVH|t(eePra9iveD2zCoCr@;qfvkxsTnV${%;PlwE@?CES82O5Rf%y5dDPf9{tcd4@!hX?cWSG!<3JcQlNH$yln!x_f|&B!H** zJGm-vtU9#5*H9s28Nm5IU+lA-AbIwdgiYwIS_J;PNav}qqn~K_lNl31at~KQ&-XVy zT`hel!#8so=FJAlnqWRCa356?8W_PX-Ntv8sLKSIIIW+_9N*@~9;}8W}zwa_lQ|2lrqF#MW z?v9D~9Ylp4OZwOWQv-A+yVyy7B#gOnd+?hS!Sb1uMIX{w*^gd+Hw@e>r5_WjTaqcU z9(_wKbtK$(XKMW`ObTy@&u=6htJdIS`e{`-2g^Ih6{UR@vYt%p`snMovF=mxSk%F3 zHCfl4JeWWbAf@C%k}eS|s_WllfsDm*I3VH{hcU|*`= zjJ~4=707aW{6!Lloon`|((e@Yw|FPYV7c#{@Ou8Ee4{Q+5dQ%#I3HIP=k|q)(M0*+P*LEI9}RIBiQ5 zQ0wukF3=|FnxQ{=f~R~CsLUJdN!w9Q_BTwHjTg@|Em-zW&G6)|LT~+2H3$`AhB}sH zpE>9(Zo!b2Aj4xj@8=Vkf{AB68a(L}-j%)joyH-|ouA7*u9sARt??8V;bwVaoq%S( zu*?;@jdR(9`=h1!tn^@cS1utT-~|4pXK>HHOjo~VUScW1cT!|I{{3}j0*d+`bdx)D zx0!y;d;!v8`R{Wazi+Fu4BggJ<^&{IGMLPZf&l)a1Pb-lBrEzy^<(;T2s92df^zBnk_bm$N5cxS@m5I{ZaF2eo4GBP{$$DCdSFy8Y8MjMKbb&Xxr$ZDE z_?d;Mp|9cfexR(Vsss+-kjY$a@u|*K&Bsx75~bij(sgMfH>Qrd1^t6q!8ver=h)rX zILRL9{84CLVsBpSS=lLD_{czYW4ajGA(_E=2z7IQ4 zV5$oW(^4jVE;LuAn_NH#nT}HED&1ol@Fh1;mVO|ASI}!cVfO}rue1ey@5);~K#%83 zT2B@3i%IwqK7bAsW&(Rna&r~R5Lt@^^Ar=gmzOB_k;w5{S&BsAn(XdZsvy>ON7xdT z_BAfOrl3x-WTi}_Tc3{Z`8r&%+VrdGvpE9f>xxwm8nGJos}z5K0BkQ$5iT=Co}Z=A zSAS7Ga#?Okp;n79e1?bBaA&3Oa6#E6NHbEk1Cjztsp0lsY`;uwi<$*Y_(0NMhlLL0M+O3 zC4@+9_7AYw3%pm6o4l2kG6JVlHma8=xbduH`6P1!?FG@P$SmI>xX5PXBFoY)!ZGGf zmdp)fH2$Da>RO@EtPS7&R?N#v4v`wjXgJNCxLr<>$>@%v`v8tBH{33}rO)M#`VBh4 z>hNnH@p#rnRq#75-7DHLx=Z?o+}qtq9ZbP1wU~)4kI*fP`K+s%O)C2J6Qr_zw#C5j ztg=@n6@DOVmEV*SBJY^}N*~-=$JDc#2;mOqK7{I|81r2c=pF*dSG~dM{tnexC|OUf zr~$UqqbH#aBH4v=EkvGcYPg5TFvX4WU@zx(^Q3c3V*=fId|uUg21hyF)uiF}(v8#A zB5}SO)3N%Ke7=w!RSrbv95uQgoOu(NN(m6ek(R2Y*z9G^MMO11uPOBw=^?Ur=m^WP z90aN*DZi~?%l}cIMm<)HOr%S=TR-YH>VGk5>82A{?=P);s81YwzlkbPW6)SgcCLx% zzCJFxX7J+eNG|Qd4bn@q=-=M-9Q)xjj+{wCL!0AxMupYy)Ni%D`Sv$-Va#lu1eW?% zAA+vFCR6*y8DEgCn}(9VoOu}NOaQ8qMeM0zwsTeG(~=hydPIl;Wma5@k2u##?7zf95UjvJHk2M5NtOFUsXM-`D-L=|6|%{ zQ8R7+3CiI2xU#*)`zQ#Jchg!;du;-Fhe>$-l36Rmw56E(x`QOQM7+vfsPCGSzx5in zng2!+DnEM)`5kxp^fsyku(^SnWt>AXr~Nzm!ik(H8Y;bL znatD-U+e;u@7M82R@8*i?@ZQgW1WB1RO6kl}&%{`8M?FalA>=M>+38 z<@xDOQraJQk4vijQ8@pv3^XOV6-G|HXu7aCQq1Bt&FRJ>@S|3tY8hn6!L7O5(iWEE z8l7P~YN$}jZT`PZteVfPoE>QRo}eG9P7iSfg>3<>dwEzTftC62%ifq@S}eTj|67lu zNO7#|zRDY_woGFX6EsFi*V7ra#Fue>2&_O%zBpotBv*U_F1b)t4<0r>oljrTmJCN8 zPg{GAJJDA+ z69w3F(gXT|(j3-%f*Qmd`+z~WB+X+ED28g;bFw+=DPd|k^dAGF%Q?Ryj);ac7NtDa;nC|z9J5Ng{{SC5j#*tOC(S%Dn zCsdyMMiQ-l15NEsO*$Q|!&=Ur1FBW9jR!hGoWAJ34p7sDN{!n)k`@Zc6ZuS1qC#6#TY}^}XVk&&T5qkNHi!hgD(FJB zbiY<@w6+$S$_Cna-fwH}-T!>&KCs0wR=)cj4Z)H7zlujOQV zVVi32FS0G^3dA^^8p?7c0sf9+s5^Jr4Rsf~2(9ioOqU0F&dZp?_ZUx4HD)$;g~2?` z`4=YfU|%^?tP#^Mg=YMY(n8PIKr%*4acaJyI;w#>v_B~z-KqRvYXa%tE5mnpCNpCU ze4fzh3nkTdyidpRzFXNPc_&#wA5}`6d{#QAsU+|{fLks? zqTU@tFLLMIxocXZ6HnkdC7~@&CiQU`F4q)tYNn#gNF(ic5w%u2z19X4MpF|5tE81fj zfl~M@bz5n$sS(UXe`>Es4Fxxm942cwcM!P?%qrHY29Wf%oSH2UPgD~ovMkV8Nof4W zrzC=F>}UUfLLI*yl;%B5tPfq6jrTbPzo$s0<~B3kfZGY=Opav!sfLr;Vv9nNELfSn zvL@Zc>>@=YRWaw@@LKesnb27JFfyIt;=`VXbk;jo1ChLkGu$on5huuj( zlysS4q_8H?V{B*gSVLk}}oIPpWTHDZUi%Eda=xw^fWn~d4xq&wBbIkOv9cDwc{jw}NzjL)2}Ve-uFtJ$LeX@~)5sR#QJF7W~_(+yVO z4y;LDa(&)MHDhC=M({j-;qvdMk~DM$UgZ-N_e%P0@HxWtI@H zHc%n22YLKp?a!o_;oLvtP*qRkcApLUxHxJ#>6^cE(+i%_@f>1M;B|zT7^-o@2R%eo zd!(XVC(9;W;y|tFiH3@acj@8s9BoGSMGsWAU({;Y{Yjb#x}4vb2K^T&XATQOboPpXX%x(YatJ@l2) z2?V3LuS)-HGH{S;pE{6uR z6I!vEJdu`U(=0>%e$b?Zo$^Hy@{lv9nKc&&V`Eaw6a|ho)q^Afft+MgAE#Ysm@3(}Z8t;2YlQ+R__@LV)P z(Ph9h@ZaI$%g}YLrE1FL)NTXUbHhGfOib~Mko&}kX~Bt13eF+Tp@a4`xBL`P>rYf^ z4M9p$!AI`FOEohqlo9eSnhH{phOS}}zdc>%+@8?4BTe+X)o9xTcVuL3E21MLHadwL z;2MsTCool`c}n|8Z`{ZX<|p(D^G%0LYTRS>VMY=;o5rHODU3eznza_F{t??X`^u<2 z;(NwNNW9ES{zfVA>N_eGoN6*NwU;uRNrQg80==)NDaL#qcDf1-vf17Oo=WDKBsji@ ztLg))n4aWP?Gag-y03Z-T52~-7|OcVQvWj(&(acZnp0$9_NLmM4)->})Hc_1y^v zltU)zRoJkXD29rtORCGOeL=Bx=!RObgZFTPSjdCiNJ2viZ4;cji7-Y(NO~Tp+X;vM zMmJ7B4Q0(wy${`d?L1iulTzzHtan;Xi-gY}kUmRCGP{gP6zk2i4za{be6Baq9^+-oA zVlIo`!j(1o*fJi+_(oL9pGkG818$HgovY*U4ZBDui5`4%gh;T=a-0_taIm#FGfsdX z6jE2f>-AIn2mC+|&utND61(WS?tv+}qkOMLQs`P#OUDewNbDa^rzsK_ahT(6+KqlF z8YSi;^A=kLIwy<0HdSUK9DN@7su7BlJfnW(0yRxiCSeMyzeS1o*i-q zpb-sYH}Zi8vO_cAl`e7%G-d5f)UM$!*vcth0OqL$9iOIOgJz<(RA40H`1%tq?FV#y zML-eMAO)MjiI|1RIhPNL{Ej4c1@2ygU)2)iV}NQXto|yH@w2K3@_f32bi4yU zZpu3JrXoosqo*%UXfHChjvLyNbF|PlL*6?P5~t|F^QppQkcOnA-B1k%x&MXirlxc< zxgcQUH&(_n*S-f;5Dvrw#~sp8)rS4(uTk+W z>gZPJa}7_8sc76&IU|eE$<77E>W^b-B=-mGJpUId&r26_qKh&UXasNJAndT79XyFQ za7w#D-=7YAwqb!KiBqmWr|cFNY$T!RdYIour@?)6!?1$N*%tw()03A|(lQ#`t| z(g%SAiS)gtWEo}SB)Y(UeQ&yDZpKuAU&&$cq$@jz>LnB%`&5UY$S+d9v;NEtolf@k z5oY`qXfEL*3)IC(-(WSSJnbTpRqzwOcxY;%IvFdc1>Z-D*Av%No-v=~y)g0w4#J9e zuy(f}qHm0pJyV>rJ6SLXxNVEU8HzuXVeF8W2D3>3gg*$!YYo$A!Sq5Wi_`aiFCC}q(qn2c!8qEpfYI3is(;0IS+m(3{GGT z8i1GDce*R+bn37s_R?3sB4Owuxn4Fhc-M1F-+=o(VBSP8_|?+Wy2`rOn$5JJwlF2n zV9rM{U00D1Dc62ku)`P_>kdqXK24_DE0i%>5+`bcZ}&pMF`4yqp0!vF-BdikFIRsH zhQ2Il!WE-4pEm{#@>6>idf7s{Xq6ii1GmGjn&^)C-={~)p5hXzg$5?g&O~Ezko@{fdbLTo>=jv#|ISs} zQuAG3+T4@+4J9r;SEQ`5^DXlo*;jdyvKCd*=RV;c6EjNMllyvFeB^CM;7xtlwsBK|}pt4lbQJA%RV!`(0r=jtEm9@f(<96-7Lj$ir}9id*o zkQ&#OT~yXs9R{JkDW09v1J&nvaH2T#cvQ6aZTs!DNaj)$M9TjAC`y@^s+RCSlQj=< z#QoGQ;M9N1)AePR&OFjEs!Od~S7UpWqc70#6~~`j2=>jx+FoijC!pdlVAW>9x*Y^# z%O`QiiORGlr^^`XsYi~i5vssZJRXrlUynS3{veUN(Zc-XndreIGgZH!6qrux-d1jd zCv<=AXcl_o<6lmvb{^EY4B6gV<}@X0$Kpplh#OUpR?(5!7EkugRD&;fK!4C;fkh7E z*XCO~qao!(ovX+mthBm`>8Lr#5+vS}UlsXYrZ92(D^vAU;Bd83q9ka4)fOeQHs4sm z9EvvJe~|Vj@HL%l-~XlvF~t~SXpAugYwc<6z4nkGBw`AsF^e%8YSxfaq2?+vMoo>W zW!V@a z&*%e~jTzo7tXY%L8Ro2vUdj3{TyYl~o`3&Ev`+%1}R=~eOM*(#3SJ!49T8*`9|GmJdfA1KWCuG2RsM< zQWOObq+CFB3&8fhA9+H$4iDrv=r)cl8~8`v!^B z8d3u#2I-47vpJgmuav)F)^k%=m#1=!1-G3+l{*qXwhUO`9WteISSrAq+`%mxPwL6< z%ut=eF8dnY><$?4LAcEf?hzi3Pnzfc*CWGt6fD+tYk$1>KcHoQ%Jo)f&30sW2-Lr4 z-teF36uYBX?#&FmiDG@G2g<#9nG!&H|6tO6x{-{YVqHen_sZ6j`uK$oV}-{0B*^o5 zGI5%Mk)Obk_8Xnz6;%1r_+vBSi(Y!T&&)tsD+_N}Ips2yus7#cerCZ~QN)V3dMKIK zbI>K`WIlrl7Izfq@+qcuW~c5guBlYM5jf7H$s-l%E)&tzu7LMABT+Dslv~199R>A| z%zRx+uNcX0C8im#hmSqUc`Fi1yivH9Ly24+?Qt+1U>f@Kdd>(Oj*ZDm_=?U=0Gw&Z>8>rz$>~CmKAGNaCn()yq3u?fA%$%7da++*8>>KIZYZwCghE&Cu7nnT z519uSQU|2;8aSGX+}2JwfOdneWLa8R@1iRR2Xnka-_n8F=SQ%dX*f-HfqfSh&mf|P z#P6;txy?&KI*+0F`it}EE3&v^ojNNPZDCXmiJwLCjLxewz^Z281|A8sFb&sES1`LB zJnbMno>QH_O7CVU+Q5GJGY@g)4))IS)DNEfG6EgLIxycbHCp`w^tCm~#D&QN&ZM#m z1wq=(G{CXA;$GPcF)O~D)VZHP-6Liqj=>YQ9_I86sU$DJ6fU}((NQm@kFFuljsbKI zKQrIp8d$)O^or+r1_R0Y+kqFmDK%9;W~+CiN8Q6c&tZ$P%@TU1gc|bfIBK1w#X3KC z8Io$q{Wk<(RslGYaC$A_8CuLeD@Z2n5Zpl<#C=PyA#tH!l@3f@?7?~wv&a)r8km^z zTaDzqam+qii+U=EUb8#Z>RfzQ>!_}Zfa{C=@==cQ=nePa|2_>mzR4+4TANB|>ut`R zr>-i}kF*Rgk|DK*tgi~7?VM_i)Q_KKH;rg3Psa$xz=$?_C6CtsB(2J={w?e2c)=JnzFW<(S%(Y{>q` zaWE8*q=%+I&n6Xb%vIYCG9WL&cctT?yn{wClaApfNozHjOx_9XDBbY~6B`YNni6;G zsXjD^!C*bGm{6{t=g<1--EG4jc42?Wa1}vO# z?ByP3;8T7F{w)$y+mZCT3Kahj6#N;?nOI5(+XyfFe0*-JEh$zv{AnD#?Q~nLeZRdw z2>TD>x%qpprwVELU&x;Md-%;MpdY(QX9*-fxd(k=Hk?XVL9u>iihNldZ~JTprKVgb z6Vy|d83Jbxt|>GA7wY`q5jADKF_&zUqRf*^v(%*@HKF-E>ue%ewWyl%9Sbn3C?&Hq zse2h2?h#}mEd|@^!;0oJ`qq?n)IN6Q>5gsAsqP`HYtP?n2vgXXJS351J{^|pl|7C0 zobFD$c-9Fu<$BGpM1mMjHO*&sWf*Cy^GMeJnpDS|_P_N>qE1Wle3r;d?L*>UHgZW< z(zRaJU!rr}?a@;wd+vF6<%#-$JMkrZS0~PlU{qT3nOfe0bKwpy{iQtp1l;+znI)K? z48*VSG0i5$?+AX;8{ocSR8Rw88(*XD^bV@Q`t{uN5%h_3Wo?>DCR#cAqJ~^ed)}S_ z>Iu_b&7VZ_)_7k6@U~oWoJZg5xhEQRq%XC~U=zP1-E-eZiajN>raVWlpvsKo1YJQ5 z@ry*%6Uln(&HUnhk}r3GDK@}WSc$|Vl__=?(X&-RoqQjrvK@6pK6a7Ova78n_mPt5 z$_BHO1d^JW0h%(B>OI`L4JXkUK7TJ$VgCjp-$DPUQMaA8cO)^|;8RPkk6p~}I`4u@ z@vkNKhupZZW8jDqP?Eeu-x@$p`xm(Ge?(81NG{MNkmQFTS~;jnN|9h}0=H~xY-8*O zvh^+V&}U0@OJEI7G8FrP-yek)4ns91IG?+4!`u_4mRx@U+D&%t2Phwka2hp0o!tk2 z7LNSjTC#T=Ms7#}G~|!T3tNdwXO-OlYsqyNsWbv%DXH}o>p7~HJUd^(c)55t*OFo~ z6bAKg&LA<3=Vyst?!>WvoPE8PtcUX`Zn(x5Xy0?H`S3!Dgpp>Ta?j{Db@U%`oKhD0 zfRbRZGjZC~0e5fY2yofZsQUBP4?@$wmw7*DsZ;NQzQ1q%3FTR#Md%gk<7=ZKW z0GxCh-{h@UrK@fR-kVD0y$DWkAGO?dTq7^gTC6q)XyuvoJRfF<&q(n6{${Ax*Koex zcU%R>%gH_B|Ci*scg@tfaMNeuA>Pp;Or?fgN!N*2H@TLq4NBnr3}C0<3IA4#ZmK$% zY+F>TI!^(VTx@dXi7>=6mG$-r>6m{PGuFj-_o<)7j1eP-fT;MyrlYiJs z;(uT z8R4MU!OF$ao%(=`j>WfMPP?L4A=m7pb1OPDmz@-eMc|fsNKyEZn_%!!;Jw_taa#*oYdZxi7eD1Jq zvm5$)?oTx8(QT#-(11Fy{llrPCZXcEf%3K_x|upSmwUoqPA5-dOVBPbenY(C*%PQs zTB8O{GxxB50Sfaacoh`|?}Q@X`?1DdWE*v6%^flsl01KBySb_5AlTt{X4vP^i{f_~ z!OG(ABrEb=Z^5~H$~c8A*DoF(J;h;}@AJxs4POC{Nb>r3<8-zLV{<~H_fZbQ1~_dJJX%wsK%)6|7Z zF%eHfCUt8s&JRW6G&fNI7et%70CcQ4IC&f1wTVooEM+Z8mD5!}MJ>Lc`P0WiV9t?H z`3LpqExNh~sR>ifXx-C>!E)qo~Cu>lpX5gjT z3P$1vO8&0A)3NAAXOq22&4Rk>0-1FWIlBwu_^CwxaD7sP+A%?R7#yFNa+_k^%NzOt zeTbOJ%=9#wgE&-M>UhLkUyN)N?t_mipM6c`CCE=%l5BTd6z5S_3XZa2;@SJFa@|c= z&TmgwdlI9j3b?n$y8e@0Q|d+9>I*O6TCO?W19fWKBTpQnZ`hFYSj){F#) zWKvtBxf8GGD&~uNBv_U2{UJ*$P~Ed2ln>~Xayjkv!7l28!%VWzLiI>UoIGQS(3`Ji zda^HAc7{2YoPuBAl}6isvY%oGrkIS}lJ`WFm|ZbB8?~xwfw>Cv?G^eu8!FFWd_Q4K z?}HnpDFf;K6dZR! zsHVg5f4;D-0Oj_e)hAW{|`7m8jdUNsVs?_LWq)GKcL1=}Nz_gYR}^<7rNJ8!|oDSQZ}XvAL$@ifz7275B(sl+X5r@-wq} zD;oEi2IBVZispHrJ`l`LM=9DH_u52UL~ZDTM7HHBy5phL0m-EEu$%Hu8RdC%)p*}j z2c7gtc9DJPWpj}w7zS59fdrUitn~sU??>Qg6P@r`s*l3(UyZ;&{wH_bzf=IpWZ!Nk z>pK+>%OOtOG|;Vj;EsNrlYFHhLX$YZs8|vXS$oGnkM- zg>h&pM#C}jtEtKAb1#N7AL$xit>^fG7vQeih-OX)S)73uZ3$>mGgEuX4sHRXECUi; z!#s?Yam9QaMyWAs!!;m)J1u3b{h2p4hD^p?B&l^^UH0d+D@>YQW&AilqF;GP0?1q2 zM5YPV(CvC{QW*Q-4?2qz;|@NpDV*s`aO)g%j38-f2KgO-f=M)H`dxd{VzaS(7Gvl9 zieBV66Ab@AeJ<yif?`iIErB~ZM_rsqO?;5F z9dYe-*+(njm#o9&gsyZ4ZW4%oMenee8Q(KVba)OmtbIW8qFsx+QBLxfS{GCAR@zfpdX6G4Ae z=b7fy|DOPn`V;NrOzS*rJj#~oaLg|9Q$(lJgHt{pw8PJShGgPB&i!;@O;~l)1S=Y4 zl>NhE*vb(kE3IJmP*vWbx1c2rNp0B-rc5 zlM}oDZZdcunTmiUMw>5kYKdAj&a#XXe?KT<2{AEUvyfdd1Rn09T}OG)1m#E^a~&6; zh5U_L#3=X0_P9Vw;f3i$HjPM$w(48RB=3USV*p43HdekRYr(qtF#rLZ_3?Nnaj+ zoM$ibQs(1_cN(KOB?@sq-e>CPD^iiXakzg;#!4e5Vu`$lXtHhEFdeTYSZ)xz$z^fB zQ;m}2^isC*Hdg=@45MO=N1LK@{_Vj-G8<%YzjlvYw-(HkZztzD{{h4KnCG0+?u{~F zA#NBOYLxAIBCFGfnPe5{ZS6Sf!@*qpGPU%3`hlPD)vmyAJl`EAzBkQt?PcLD#JtfF z@a!w){W&dXR6JISt2ObVr1HF*SpKjtcGUW}95X&6-6+rZ&Bj`m1=c*QIbDx)wBs&y z<$HVa%>y|z_;Z;?d1lA($u8B3hUH6E`g!&TUoul>z;+w}E%Me2Grx2?8R36`AZC$> zSBB(?iS%v1uzOZSQ&WUm>I=7p4k`>@b0pp8hwL=b-I!$m-;MryA!$5Ym;`qoCNN8S zbRThgc+pkQHa0*f*&fwhBC6^0;5s_94SG^j3GK&0W*a<1<2^*wEIK8^kAAZM#xg{t$kD(5{O>(bDX4t_gp5cn6tNw!X zz$Evl&zNI6O|eoF_Q5++9aOz1?{g1y*_U~XOKaCa&a2}U3_%Srf+PS1%%rR1qH{ie zmGe{qKH#CvQEJ=7S_-CJ;2(+XcCT=N81cI+?i>VzVg{m`C7b9U>?xMFXZ_`MT5=s*ni6_g2V;-C^54h4rGR_Ng z(k>^Z_b^%JUg*Kb;4w;ZUMG`5q&tO?-7*sYPBdwluf+95n4~r=k76XJ^gKC1k=*ZC z>WUQ98!^-v>+d6+%oPco3JqKlag<8>Mj zb_1;qliQ|pnv^8z(T>Aw2p4e(Qbh2C%}=@))<3(Zl$9|qI@Q_ku!M42RJ!>kY0+Zbo|)11u6K1okr zgLyV451t4b+6Fea4Xj8T=8rAJJMv1?^%dg%i#N%dAz0}G>Na2bRk=rniQ>+D*Q(nW z!JNJUsV|9=sWtc?e?Gw^>${6eI7r4TEk+NZrsuy;^8EKJ6rDNque543X)e1O@LR~#Zgcb023{o_^AVOsr< ziHi&VBTbR(N;AoGp$te>Jo{2@98=rPT}gZG1ur&`xwJzqDwC*!=_rO!r;bBcdBmE; ze8?zp>jUU6b8}T~xt4>dQUe`p(A&2X+Mslk>?LdBeCmy=aRbcyAEp6RQgiwI17y+| zV5%&Z2~+?lP_XM%^c}&c%h&_#^+|N;YoBP}&gWkz(Y-twKM(1VtD}kOM`Gq|c0!eD z>|Lo+C!iWVLI(=4BD2s(puXA3j#rDyxd+pTe*`UG%cLQJ+W&|KY$M*3n|O~Zq55b{ zwe%zUd^?`KZ>gm3a~&0I4e;ytCv9gD&cRb87uAL6aDrw-?rb<3 z(dIQkY1R`&Hji2vH?8QrrjnYm1IE1+F1yxnkl*9MS%GHe1$VDBEJ{bvxu3XuhfsYL zqYoC0_;Xa;pIN=p6_y~Mqq@}y8WPO>j3y+_x1$T~BRls|Xw#i~_7I)?Yk1f^nh!duPiI9Q*P7WBCP5_Wi*e_zLMgF#Y zjlto+W+K~IxR6)qE6c#JXq-mtIVnzpOZ|xwrWq$uZ}REJ!82S#g__-57(}2lzN)Xx z-?D2i!*g5@R%3=dWmltaxQDW`kv5d-unF0m&+TR52{ORjYB8f>IJI?8G>zrp)@E`> zndN?0!SW-TuBF-}_EQ5%h`d>xHD-yU1(>6)qulK75oQlI!717Teai^go4z163AhVq zak}5NTS1g}z?O%+&tyHp3gC01%yLiMO-=FyA8G_SFZYeU=u%>shV_;#?JT<=lQw7Z zj&0#y8v2@LJ@Crdi#(? zU)M6L@Vrp*#hWGWn_bqSEnz!^)Bk52%5BNVTMpBmViXyw{WvLG;!*3w_1veTTy#BIjk$FkhAHzP!7~1BY7hJ#xo#uMI2>d>1$GXjG(7J#A#p9 z`88SQ%bdILUcUm9_9J29IGQvUy>15e7HkXWky&a90;#y7$>3SYWK=PaJqtCF1x@hx zq-fkU&-3Kkr5R{uU(I%`zd3RCVi*&Q(vEHh2UBynifwQa( zs`ha><-)1Mqfp`WC4u)L_raitGjH0EX_nf>5@_SjqAa~Z=hqq4-L1&XR17_JAxhm3@g|bHN$LD2kN=I zF+U^;Pu?Z>Q+IKA1uF@X^@5uHla_2SSS07t0#4*dkm&f_ev!JLeR^rQPw{9eIh`wB0+ucIv5?>5djmp{A|_toDbair_iyxVbS?Bgsr zh8yy%NpSmnaj~Cf?%F8cqiJ-Ir%0Jfhh2Csd2J)pk;BDjC>HtN%z+7BhYI)_h;|l8 zdQNmLrNCY^lyc3OVD&XS>R9gjDJq9-q_fAsolgf(NMVxiLy+&vpr13q6gI^Z5ZVo{Qx=hqc-Omy`V*Ar}!IBb@3 zp1hewxb4MzQVbj@2An<1veX)_`Rbvl?zS?&++r~ESA4+;b{Z2&dd|nRp~2)Rrh@ZU zaYiyVCEB?fKg3Pa{$gEi`mU%#|no; zJsL03zmmNT2^RUD&4q*92cCKi??i^`YuXM^C%X11dV?OMrfnRi!ysrD~CeQF)jAmVIF-;a6DK*4=G;kD4S$zr+7GbsNB*}-> zQTo{}9VNp!kSvvSGTR?p!cmMo1xwz`te9Bgd}Uv;$lCdovI6{YHje(Wti>|$6b(=W z#*;DIn0l;(Z2~NdLY*>~J=KGBd!E5vXK`04nI)>=0Pta=Pzmr$J~z`MF@@?%ZRG|G z?h~Ht1alX%MvB?u@HutY%i?XNMle|AIogNpkf!J~CYbt>4U}fij^@1!ex9k+k89YU z4pBi~pn`k?);tQ$&35*xbX?MY>{cC7TW*u}<5MyP!)=qufPQ7`51RBPPv}o_@1`@$ zrU*FHL44b!Gx=EMJD-m}@+NNW2Gok3&@T03`r>H1_g&I0<3+c=hQz_KmJ!rzKe8KN zM1SxMmRTfD82qjBSp=Xe{uRzOuPISGFF6*g?91nq9km|~=}U4Jqs_%pSddLdYFD7$ z%V8z)I1X-ijB_%l?=tkjA2SG^`})LL4NlM()&P4Zo`L0@JO_iuN#M614T-VapfuOs;k{o)DbmlDQ4)F6h?Mygx&(D zSYG;OLxNSF`T0n;sEtBTWZaBHo0v$-%?dmW*T`B7#A&-AJiSJ7=61IGUbQqykR{ zJzT_Yp2EbTqdd#2;Pp@8#=WQjOEF8emdj4>(HPHLCpg1Fl9QfBuIWZxJ|Y45Dh%mU zxKS@y(NgfCwO~T)k~t8GqE4i&dwP?3py=yJo8FK1ugLoDMnsd)gTi!UI?jD z&Eemp@RIh%$v6~m{RI5ELWlATjJ!y}+=DjTlh=KVdhn@0fKsiJH^|1cgo31EmH|g@ ziS}>_Y~wYskmpJfYSsW%a89k!b$pE`>Mt-jU-+i#s84?a^;=C{z8kN`x%d6g-$pM} zA+#EmNLmsOipJEHqfL|P3Kzl42v5=hcAgik=(6~3YN6HWhG+d7GG)aaz(yoVB~lYC zL*3}An2SIcu6c(^hPwf_nADD z&E{>ZNd4ED(`6vJ)hlsnr86n&3+lNix=4t=0TPxZW~HZFB~H+utcvT*pDIgoOc`@G z^Fqn+XqI7M_}NL0aA+s#0ygVrbRTV40RmmijtZi!t24?=;Z^;2hAKBZczJNEmdwx? z%|5<`9aA_SGf>OFz<)0k6JO!*iiMLJO~%bMv?B{p4y{E)u>;2SDCofNOdrU=!|?pQ zj@c^D)6bZ%ScvHspQFS22{*<8G7BDo)zp)d)1sNobQJB{CEF&j{}d3jEO;`5L6bdg z7z*3=Oi=4*{vKaRqPZpg_E_%F0`}8&REg!8ETfTyHVEIwSSIP6M8$ZM+P47Hto`u~ zjV7UYK3Uwq)2BWI?da&}#yb=Tmwk-x?uw%r8T3xxly1%ebPJ>Dz=f~qCcAtA-U@%$ zSorDzC^2RVU8;{JpKqKp4*Yk%lETUhC6y>z`x3-rGpx;d$(i|(&oi1G>o8i%qPmG* zXf3QkZ}zHPys4r?R;eC6u0J1Aha*5&61b13lc-5GIg_#=6F{26-%M6w)e@-rhf%xV zrbo{~kM2(ziq729a8fP0;`h60_TjW2U>OP5zJVT1Ogm0TFZ_=AOub-qE|bx5pSr9x z7+s)dhU*{1G_3_F``5vpotBBpd1P{RHBhW5YMf!X&zF#|?FP&0NkObHDj z<)St$YD*BN#o{+BnygtCfC#@eEWY< zvv@HhbebMH5WWDh4&^y{M`smo^AEjU{rZw#zy2Q zw;%;&g++rWPqno|!I}d-`B0o+L&f_XrODpOmz8VeeLkc-RA-Vsk!9?P&nkyCH%^K_gih2Rh`TQard z_I^5(%D{;=S%>CgqD(Q|1EKV|oj}IECAsekGdC47IM&PT)NgUG7D3A#Zymt-{Fkjg z*Y_(p!9z5>UxLS9cjiOiVMy>in+#(C^8_+F_LAZKhN*mYIk#Wy%{hVRI4aXu%ln(; z`R-8GtQUTarBqP&%wA+Ce}z+UKGm6n9Zh&nEwIUL*qttM#(nMhn>w-xIYOT%!(_qD zX@+Ee(oHy^`!FrfsHonMmzP7$jV94YElP4;X|#zI$s!CyJ!pm%bbi!Zw4lrWnTl?c z@#X(>vd~ZF<@9bBz;QB}D=((Am`TfyvD~(Vfd(E&1zt)wq%!Ki~ z26}!`pG0P+O|H3%#!%2g&3aLbrP|wts{D5HM z=hx3D950YdR?!v6wRc4;8V%oOlkfO!HO@GJsYJ`soxZ_$mSU=EK7wy5fsD4@IMdIA zQ)Jk^VZsAov^Id3rnwA?=kGREQ^|XoO=gM{B;W~C;}0?^EROG6?W~EjzX7_8G-{gL zXr1b~+kkEJ^MgHqH;lR>j=4KWt)sxvci?jpItU90LoEJiGp9%i@Xkjh(EUzFpu5(K zdlzAo*kV5ALkgJ4Obci7Y-y_*Ovh;t1~m%fE}YX#I~AUh&F#cB9fHd<1fFpe=gR|u zd_~!0JsnO5>u0RW3E2a$`RAshASCUzI2>8av=;b#6YV`wRWD&@*-QOyU@B}s5ZH-m zv#Npa4R_9Sp&RMzc`loj5}>~>(p*ZDQKo`@e+4%AEp^UP^v7FF-BGV+kOtI?6Z9Cn zyO_pPgLA949?o0d2L5~pGs8NehqB3x^dRzCvh(((;D{T=-+yNc!MiQ?qgk*cN0>KW z!_o$R?EvS_E4s9*U>U-JbecY`B$E+D=dy`ht`2hYZf`z6g}jac&J2wiq^-zp_m$jt zZIZ^TQI#g6q$$mLITF1q$kY+< z<74nUCp%;TTyEc54^eMj!UOOMrlgha8Yo#dJulryXU?wu_|YbViSBe>W!9L&_iYku zG07(TMS&D9Qk-h{{_P`@#9Hkq};f9TaYdx>+w%ui#ds(^(F-amA?0UFkjAMnfpX(NBU?tHU)kW*u z4Ls5&Ij#KE%qQRpp5u*<0jnwn=3f?!KN7?|2G84koSNG~6jSY2smOAXG%cP?5dBtD zvY8(_T2oCXG8v#bZl=R1qw~PpZKdMBjFYt*lXskC+T;8NU$Du3xD_+YR?rjo!1+H@ z#XpKy*~l56X>p)G@}(m2vVF&#yCe3=;HSmuKz<>?@tCU>nw*?WM0BEuZ5Gr99GuV0 zw8>gQQS;)}kF{oMBd7+m@EBNepEltw??iuHk=`VLKW&%$-fLwv`1~?@wmoVI=GRV# z{itYq4CdxV<-US>o_5(AE(QDZGiyvwoJr=%GIUY*P`>&zCGtz0bcyV0Vq(}B<`*@i z%Y4jaJ2R`3?$X~b*GM~N!_Ht2KgblJ3!j` zUAaIJ1irnWnbg7y__thJ70^f=cTA+Gdrr2R-7uGr{gUeRGQ8`z>{Um=yz-G=+Lm*F zEIGL|Nvn8*7VRxPRuk0R9l&?KCa)*~_iT!(3J8^pq=#lCp?5b`{9dN!427VL3R)@2LkgNHj~nXgKgTojgD zuFZ?zI*t^}>0H}gW}MX}eL4yqW0G+zyXir)j^2^*XNR#oNGeVI2Uqw+D!F55V-|CE-Qk-nF}LTIV=EbP4kp;NBH?R}TjsFzwaXr% zARTI;5{c&I9qKC${Z&7*;&P($aFJdprarZYw|KyBEky0u-r5g#I*yagk3R4QNk=O| zpD);7v7$*shd1tuYAG*j-U!mE4Dp`tc#1BjAk(=8e^Cct%a`U9b10uQ98KRAGMtuh zM*cy6>5Ec+E6R%ic<2zlKWKJoc8DJwvp`D@Qj_aAd?Im{B)Vqs-X8a8ni4$g(F@JX zMsf`wP4>XgG}GL#nl73jSvImuJfJ2FVE5V2?(jEx(;9W{bKG||IBBDq zBH+ax8Vz%~5T55cSgBp^-CpQsg7D7_A;&I@rxL`;6vdQ=<(w%Z&;55(AU@u^WS_>d zE(%a(SEt*Gv*xh*pt0)(L$Vq)MeKe3o!>d%l090$6-QR#eDYVfi7Bedp8Mpjc=Ogz zrH)xg=Wj4IwXC$*@m335u05!f=VWd~0zeBmlym=^Z|hOz-v)8@VqRM+Ne!prkaKGJwQ`)8F1oa~706V)g+Vx$H;PMM_SA*xxRgHs5+Q#)EsZ^34H1|$r@|HT(Nd= z^IbntNW|kL3Z++E1{0GH=DMi1$#xvB;XdE!%Z^~A$Bx9&+Kba^kN!|E2oiMx-G4g1 z);subGEp#lk&gQ-UX`29C$M@sTml*-X9YImNy<6a;V-7~n+usp*`PbD74q7_aIom?0P5gH?1ZO{o&1 z>E2WL)~ev>k?yhboUqG!%o{JVlRb1gj-zMsMjrE3w+vm8$NbJyRcq zo@YO5oMLDW+B1(OLnsXRk1o%KBJk<{oE(qn{$k9-n0mF&5(rlpjGH>S+S6z;pvW~k0 zzVz?ilbJ0u2Z1OS6-iD&yRdiXSD@tn|x(BI>{#LItTQMAMTV6|9 z%XRBUO#_X&N{{f+z72oKBiCT+gcEMGu)(^A|5pm(5SRi!t-r6GV{rG*Htjb5OZC4P zJgYV*a0F?N^T1Otb3bl!N3t`cZ3flaM)a@uS#jB1-Y!FwE^C9MY8D(@E=yrD@iKTy zPpmsg!`;DpE<*~e)%CS_u6;evwJE&ZMYGU()SwQTix;vMb%+}d@swVhYWlTv0GMYE z+#rSjso9sJ5;nx^^2{HKs&*8)n-fVNn2t)`hb)e2RQ}O0=379}-=KzxM)%@D!l$Ez zxXj62#Wr1dsuFa`zr8jk!f~0&qK{_XKgCH~p6a^`lWA`2wZO%%Qe)-Bhw`Vm?@79> zsW!{Cbdfv~Gpden`2K>X0CdHh;2;~oI5q-(pF{G~IhcVDZ_rBnYOv*|=$;FqRU3*Q zqdI#spP5Yb9RJA8Nzxo#`zVR*F;ub3&?U`+*S)}M$`({8s2r}I^J2besxG}o(PV!A zZJutaf%?FZ=D8oGNt)=2{`R4k-Ifn@eHJ-u&GpHw+vS{_579t5$OW4KMt_P`dyijc zU|!EwGPgL_(ml^)B^ewadV3w8irbP5=QElaSvUX_q&y?T6C{3s0v0Xv_%OMim&of`?1t+o2 znVAGT`ABVq+Of4Mz&sHb#Q>Y%Kfm-5GZv?#eEAo$wAGbMe22e7KI;SM_yk@Oha0vW zPK@zd4Oo}@FcU9GX358-r=>1tMDm_Hq&D#w3}H)fFB^MbqScPR_oXA+S47~5{2Xhkl|E1Yg{q(#}4^y8Y^yc0@`yP_cl%?H|q>D4VGC7qOn?s zLhTS$&u{i>a;n-N`a#zg`eBFE&HJKj&PEo?HPcoyMq^;jFH${S(Tdp0k=r?dohmOU z#4Y=`jyybz+5gNm8t7_{9wSv|1z$ro-3YX`1?<&m5Z7PWA2%_h`4klo3W9fQAzfp_p6FV_c92pP)>Y?w<`p0AR1<10=lr4?B#>C>hM?fb=6VI*#u2j z339ZLlTG~ET_z|nC^QHSZ@fd|+hyS&_mC2J3m-%&u#UB)WL(2#8$g28M42mg%Cv?= zu^PC*hoB~3XbGm1KB4ute*=M#;*C=Hjo6Nmh!WQ!4~`|?q`xi>f*msYN#jF-{}zU zk019Dskvv1Est(AvaL}E30S^ZH_)yHwx%UXx(YY;r%9CqwCxMHfKWsU&3SP!F@ zmp7#iyyRvOFrlYR*2_>Ou4C59XRN(W%(7iaI>B3~A=M#k2cfBMsSe?UNJ1B~!Muxn zz5sfkujzZn;1zsmiPqnc88H%$?jeX$Co0W9+;8aD9rApr1AEw!lVJp?&jWIEQuL~@ zd#%vt4EJ&-7{D&TBct?={u@}!xUAn?A<(u{s`jQ-45V%qtQ>iAw zK`hm0Ieu}ZP^o*dvJ1Lf(+mE_mE1%@_XH%}5ah+I+hXwHLfNl^DFpx53GXt`n(C$^ zd~Y-S{_V+5U#0A32R=@2rHh2IW;mBt(v|OJ4}L;kQz2t4{en{FQrce9$h?m0bSpu>p{xG`*F2S;BzpTRI8@#LDUp~@}` z!``3t-5BaW!C>8!`dg>eBo=|&tEg0^($?{(HKglp$BcTBq&Vbt z&|IW}JNnZtW^uMJAh|x-yb*nWQ*v_pp!QBiF>(}NM>?wGJE%r7Ezj6bYU3$wjH9$Q z4uw~&o&qG|4J0pjGWzXhO#k}eM63teTaO;=dvH84A1N08yC9C0#ndP1@St8?-vpT0 z9iX)a#VPl2GYM@Y*kN{2lf6??nBdXV6k=IQ$669qS6wD@uc3;)K(bbOnAu2@RoAe4 z9@373-Ce_L^@MpBf0GrO*H+x-j|V}a%89o{f{3kvZ)rrwz7%w_EWWB!bX$R(DBn0| zfsIAu-yaFWzZ8$SV9Zg8g7r8h{!x^E)C7ar79`5WJwG9`GReUgYp@;)-_GXVOd?1m zH>WKslD%kVs!(&*L66Y}?Hq}4`dDUE{DMmPk?!m44o+|f2CoTsWGJ}#BW8zu0Uz88 z56?K5`-NP?`k(`xrG^NnJg*DVV|>n((9TpUb5(`OSCM33Ov91=oIO7;Q!`4VV7Jj3 zcQp3~33U)IQi&!ZI~*R`Uy7QA*RjHw~PDQoZ*B#ia88 zHk79}3N7Yp+bFoLmt^vE#2<3o+3J(IiU&cL2YxaWArWPgA;~Gvit3;&DXJH5e{;)d zT;!>^7Z$%?p$9d8kh!U1ZW0QgIC7?Ip`;k*!CI4@vaWlDALuL8Ok>c$?WV5C!`@UG zyqf7C=1A^yI4;j6;@+h?Wv?`WlW8;)0uC@4yMX;J8j>o^e(TFbqa`?LUpdF2!Z&0( zWxbzG%L_J8TGK^chzu$p|NDjbEFYJw5uJDz`hn#v2ZzWG<`se7try;q5}YFjf0w+U z({YtAf}Oem4wQjjw2Aop3J@&+NM^qrjpxM>?2@>xP%R1^qylfkCK&rrW|)v?G4svV69QJUv5{OY$%IndBCw`hoJ#K^I>DSKk=3&N;Ler*UPN-h=S!F0`_4 zDzI1f@p=fSzm95P5*2qbQUV5u-__S8@9_@PcPOEpAgu@3iOYba_&Q?2N$!&{JJq$( z9mm^ah<8c+ccH|O4X7k5sozs+Z8 zadtESt@@Lh&>Nf@xcr}-$30MR3<;V2YiiMW%L=gCgDCR6z%S~srp{>R z?FX5z;s>AI0e$xz=XPez{^1IzHoHqT;1y(~?j<`Z)g^1180Cm5##)K2x)V6|63`f* z)o-9;t&H-t3!2DEOv9){`oT!l;f6Gq)G1a|wyNQ{mJFnKhA?4#1T!&*li#{s>qA{u zjp;apSt&E9Eq+ zCvV~^yQxN^QBL99J_|xz)NG-T&oCFo>!VUH#q*noaela{@F&7(AHzAY(YDyWf_l{3 zQ34LDC6l=qJ5~6j7&OtpQGYyTdSV?=7``ae^L-7_@c%~D(9k%Dx@RhRW~Wg}#xWn} zFDixNOt|T04kM32c#D40mIxggxmyGa9ysOB*`I8FF=u})om&)hw3H({EzR8@Lb-acFU7H$JuH)TRE;Ul1|+~;`D@GQFw(ilerhds5pT(9xW{Ys z7V+#umC4)vY`{ACzQ5F3iQ&=1qZ`Vzs* zceE$_vX@d8cDN}MRoilPgV9f~1kd{$hPQ($$)1eYau+z(TiljDWS&=KhJg)NMkBp7 z?uf7Tfp}g=^M=g)$Az>VE%RIQ+rmK=lUY}X<@MyiF;Wf>ayq-!9rmkC=QC%2vWV`Y zFYO5r!T)eQ+sW&HLk8gI(lr``=V%4b;2e1mB}i7PAziSd=Z`kp$kq{=1Wuh@mtpuTvY65R6K zX=bd+4z`)>?`vd^xGbT(Ihy^f^OE>8Np5+TJXa1{guZ?)`mqz>><@6D-GfEjYimU( z2Z*2Smgku!aJf{^x@xX<(yoIws^HR%>F0ak7@P_UeF2=|8PhZhlBHv#TGHr;{G7YM zzCC!$F#4e1>B)+sd9;Bxd`m^UG3bOR|2xfXxWiWzpgs$xv-l2PIhj?PiF2(yJ$4lJ z(hM-T)2RDi%eB{n=Q|Aj;&$GU8|WZP@Rqa$xBcb4SK$I@UOF28JLvB-KboRdg9%xE zVZhI#_PIfq;RDLsjE--r%%#aLvtQegLz84Z3eS~Ss{jh!jGcTs{{I}dSN1aca1sqC zQ5`*p(+MVLEljGFTF`m6`@|nUn0%y?#01o(}bb#^bO;tWl8-+6Hlw&CP(jb(E8(>?mc`%wx z#zk@e$}82Byr?^?({sIM5A!1@%1mt=LT%f@T%R<)mh=M`Sy>Bg&A8qbAjNXuF$Bpy zF%hNBO*)d#RTDmhflO1nM^}*-Eoe4+wNDjx7p>i?)2oq>y49}YWMAv7CpD}ixw5%( z7FdwfiFH8nIiFeggX#YgnIXLs7xHB$c(#LoIZCg0kEw?ja2)4kwGUxu{Q|$wa74mRkjf=-C0y8IbC^Og*hL;pt2m{ zDoclJ@aLH4zGO%DRgS!+7UbRxp!>Q`20$xv&0;}amas>xr^kNEDk{g-O*JoM*WS(C zn1^JG<|j$cg&T93ta7iwMZD2`=pPS(OgkkboCnQv6_gMb`<2yt3pOf zD7eKtPT2?UWjw9@^hT64T+ds)1vha*l*NPDiFCD@#(GT3>OftwhCSe&B_HRw7v7fU zbgQdm=6fV4_-Zi7a;Q&ynOqXfI=F|{CO=hG5ZGzNf1M=u0ZZK{_V3^zx&A~~b_2DF zNJ%VC_TD#m?Q`%BJR-Zhyqt^B32pu`((~t%2Ndf#!!Dekdp*#Z0LQ}ET7V&qCQqfXt0sHi*JQjVqh~Klx>iGX zG;hSOXk<5txh+vavX;t$61t-jr1n5UDv$!vP z`D^^6z3GYNFR;t}*23%r4R{KzNLBd?oNX}7!IyCCTX+UVIVW_~IF)dy{_Kn(*`*p4 z&0CUF%LG-z=@o`5I69~wxjKoUsK1H*Hl7xce+(j9*4OH0Z#i%Mg|)sB#g?z_Ab8p5 zD5!!^Ds)EoGfv+IMtKQ*A#A2kw9YV7 zHG?&5!{<50T*+D!?4vjxhG0v7)KuFBPQDu`fD7?W0i1id3-BIRCx;^3+1VLOg7!?; z946%+qB_lVT>+K-n;BGwq#$`tY@yn#IN^Ex+9zjAg1Np*M8dK}^z@WYaWWX<7J z!l*`7^*M)qC{d=Fc3$*TO~2!3%d6tj`&bGC}~0M4>6 z`1Ut$|DYOZr}^yEAc>d$%+3}9{yQ85sh>Ft<@h-=`~_xF9Ih}_B9mj-rx(EQoY0O_ z$wZ?7StI8>h?6NdJ4q-REF*CVtaN-qJzkQ0xkNPIo6*RLL_?8C8|-fDZtAH^(>!~k z3L_8%$}*pN@CX>?pXQgO5R`=(9)L>pC;IYveB*Yi-rrDB-9|-au>H-f^8Mh=vGhK9 zT)(?-xu1Hp-|3$FR6r>U9<+hXmNQh?kCi6i-M#4%3z4mwA6>KX*SnZ1+K$QY2l0?M zH$SsSZl+|cZYEiYTAwVEJqHJmyj7GF@{1^S#wYf-%&fT!_}pBY(~0Q z6emhsD(Dy{JxsLNtyVhydgz*GqH|e-W}Jk0x+QOvGCfctPQux@Oh4q9K*u{5EzmZU z#u+4?=EmbtQ>v4L<@5Fi-?y5ITk+$9-A&F@8 zkAo}x!K@2EIJ<>RDQ|`rz6Ad2b|e{PIqc4&I7p6&8Nm_3vhOYq{^7t;JqC331pWp$ zik%g_4c$RhXW$OA}x%qGip_zBr2f zrevifnVz%Znew2257%00{pk9C#sTBQ%-~2eF>|Bhsq2>dvc8_*(N67W+(c$)1rW1n z@}FzK5QoDIgYbq2OFc+Q?$cJKE%S}OLce;D zS;i$yvzX*-!~1!bXLR{JJ{hNdhq9wJNNW~30LyWMy>^}jUwaKN>g}#T&!lo~b?`8^ zr)xdJe(}`(*(b>LBlgH(dDb=L8;_CB;iRwppiB419o_=XObj{0e(Vf!)Kxt|Hz$+Q zvjF$dVbV7)pk(^XVQ_j$7u6x>D!d;%MY3R0u;jRV;X@cmg6>fE^qQzr{cw7Pqw^&b z8RcFbr>s|PJUQ;Do$U7d2#&r`(VtLHIcyYzVVk?=oq0*7t2^@X|-Th(nU~)mG zl3=$2_w6B6IOj>de8K)xO>1lqcWl9jUkZQI1p4cH?n0<3n~L`#J=k!ce-r|Dv{S_o zQlsz;J~f^Ja*} zwEvR9ZP0V*xnX5}IFbK7S*0^m);`wZymY+bS>|x&cILxp@V_zC!h7(a)qDcDcZRDP zzta}SyyZczgYGfZ z-oJ?FV5lwMx24nvPf<&jpl4zl{U?6IRk(9D;Lq8P$73J$>@iTdvma?m?xQ|>Mve9c zwR#Tp>iO(G7>gQ97)!&6dgC_@#oe@(*@Hp>HS+)JzP#ZC&hgPKbg_R|bX7rD zuei*hU!BR097iVNzv}{$|HBD(maJiq_wf#OLZ<5(jM^Laqa5zs?tJfkzIFb8&-eXT zRsP?n^_Kr+M{DX=@LBW#Ir-OaHVP-#MAT^0m06tUNz6ZA2Gf^Jy|S4pb*UtL9b!jK zg9pE$c!B7|;wM=HpSlC3PgUlt*qDfZm~7_@^xv`UCS#aMn8AEo)`(JD;t2t=7pX0A z3I{!JIEYQO-Vb&q8pZxt_War88t~^MYRj4?P1&Y?jc4YP#cCY_lW+-iIfQ;Ip4orD zk!0{0(=KczB6KC=Smdl-0H=B9@FCA|D>&yZXLa%yd%M2Dx48t=?Ht;roJ^Ukk0z}n zs<7GcpcOeEYa4p7eoN3phj4$o!1qt#m+ykze89V%7jI4J|G`Z&5+!m9`|bm#uH-V7 zWRhW1<0Sa=<0uvkrq7vS)|70}?j&B%1wj?FwyNV%yTBcJ0^ePaetb9##0BP$ELAw871$q}=G1~g1;R+)hyaTmhKFDk6RB@$`N#=!;7yNX zO6MZp?7h6ruQ-Eh;n3&{LbC#VCbwPzO+-iP?Q!~a)JJ0aTPl_6DemHRynruoFID1R zTJhF~Qe(Apw1)-gP3p@?nN__8FVrqh_B0Y%uHi9$E>mywaypf!L#shDpPPQ7DYbPM zXCLY_;T@d9?1Lvx6V8qhG{N-beQO(>+~@50+7`ga9Kc)t1_eoF6kF}+$Td`&p{O!L zL6tRY0G_-RI3x<&e97Rfgl5;oi4lZOwGADrP)RPOLtYO*c@(|mO?Ir;>{og0rRY&q zy90koBj!0xV}{G8GaO34&*7>Avd{#-aXXY{F|5GB`fzG4oW+_-wa15gAxaAnj?$(_Nv~xI1KnoLUOKhkBem^Vd$q#V;zj3ZS2iq*e+aH9!H(DK} zE=95P5@yE9Q;Y(g>%p^3A&o~&KJ_y1wToV_3SR2gGH=bZ4}`)&7?M4opP!!Sm7|@CM`^|ib)IWH<2Yb7I7i6`EeXZ;;-!fom^E6JmgbTjGn!#?1BeZduub2=0un<^gEb2F~* zRn%;rYbru^k6@sC;S-ogrdd%EcAny%QSb=_k+W~2V{4AHbu{Yet*AZg2+EO)0Ex}(oP<`YQLd1g(q-9>v}0|od=oND>l zIdY&X@kY-cNW^IWDW#KdT<`*?#Z~xXf5(QTliRFjn@3_PK zj)tgMzOks(L<8aeSFnd&A`A4fmWMv^2i{>X-r+WQukfq2jKQxglh12<+fTDEHarK z{dK5Js>9X&WRC-T+Kg9stW#qyOC8yFjb%Dn3OiCcv~@p_jk$te@()WYyYoBdzLjaAU+jTN68T*na1KYU5`(v5YDi6-rRUg%lNQr@Eo z(CSwFiVT~kd(lPyi3=)_yorM-(FTdXA5lkgi#I{`|2L;6n?;AjJK%8`6i9FTkP9G4#x$vueUsN60Q{~1}(Z=XD-3CE9 zVxI|XKHIqx#Bh(>3=8=M*@kiW0_(_q?gvh#_3C{RiF2C@)1Q_%1@g@yoZUJ+%>b0q zt5B=m!SR|XRd0UO!fnu9KgAOi$_}wxPel7)1J~(n`rbN{|4LH7eb{CR?1Xg?%3RSEJ$O z0?0_5;*vhPggO#aj#bX1AsuH-Ha>>$YDT^Bt7(O$C+Fu%-mSaZWl~4~vMmE2*oji` zI!PLl^t{PbO1aR^jB;**%~D|%gTXg`fUiH`x(FjM;5& z%0$ev;Ih${Rru_xqg-o-pX?pllM0RqaD?vE9h2$Df0enpBgFGet|ReCo%d)29Oe|z zzBt=j`$oM1fBy3Oj_;MjkXlFLqhWAKIZOpiMX1B3l0~%}-r+6o)3aoLS0EAS3HW4r zYX>G*361Iy6iA!2nN$*Iz$ah86PCw4xQD9ftv(q<_9R-)>2zjCaPB91@Vqq7K9P&F zQ7~6wGI2Oj?ZI4|@%X(~z$_dEn{8-z^IZ;W1fJAX*4{7dR0m)Ui@}KZ1iSDP??!qZ zi4h-EtFYsbH9yCp8G;sam`o=B8zv$dmM&cD!_!>DbPwS>NzfnS5})cS9JG~6|95nR znIFx|^Q?We$~YUZQ^A&iTVDp|lZ||j08jugp1~W-I6L2Ms4Fqnf#948IA(s3$+p{= z3~&T~O=J~Cll^hZG@6M#$>yD;q@Cpr$iW=mAWq{BWGW3rg}2Dk1Z1rr2=8n(2qJa* zG`UVM!D#oPQ@ufo_up{l`Ozi^pc)Mo&(o)_#6j-j`-tS^T_*r4|GF~Mww%%pZeH{l zm*I{*ZufUM=nKMceU5A8B*?;R6d+4jRbqF0Zu-nDygf1OaC@kyv!j#^m)f>&%v`++ z!}Qi#fi$H2)R7hbQ9Ffze(sQopcSYW-M9^g@P?ho@0&*^lm_90?Z=6eM8^9|GDq5j z5~Z>pZ*u;HGfi^=s@634*mC4I)OSh#RjDie`M)YBNkT4*uC|5RjU1&->TR-Da#81+ zWyd4DP=bG&f+ujhQI~$e4Pd7CO(JJ<6wdPRId87P$r#8}@FRJ%8q7fm>Xu0RQ{Is& ztoQr$I8Hc7F-Nrrs;brOe$_bZBRS^{V6`g!%_MY1Cvc(Og?oL5);e2IzM$gl>Xp%Z zMh9I7qpbVhn`gt3I+i{!lbYiir;$jGFXJpgIz?F!+CZ{d!@y}HU?lpIxH-u^gI#tJ z(>5-mmCnx8xXd8;2|> z!6k3=42r^KtwZ&Z#%_F<$(^rAW-Uq&lFF2@$2KEAupRI#x%8^^5b$CTwv|8^u$HW~V!SU#xY|ar3weSHqd=|_ zWZ^81z^C{Nx`1;Y-DbMy85UxW-FNV|tI-5JQ1X-7*qAJ%AJvZR0ToOdC(3hnvqDUs z4W_s54979ayaqM#UAm!g*!>O6s%s3BC%Ws&oU^}5r9+bK1UUR<+{TSyJoe~SKpxie zc27a!H;^}m`;qC{7d6)FIIOPOYa2UYNi|+=K_#8jRxmZ^4|F0$ zs2s<_E9|8kcth5X5f5}MJ#DgHh#ozh9Fq?8m#>}Q)2B=&QJ6}}Cq(W6ca*pV-oS_Z9xCI7tZZERZ6058ntAq zen_{HWf6iOe7j5V#TVh?J>PN5*h26Y<_r?;+QQ8Iz`TmR@an&_mTdNV8>rByrGDhK$sWv2C}9j3o|CeLNsU~U}8b8ySw z0mG?8CD(+Ldl*R-%h^TF(dlHfl_&L~KK_A`u4jk0nK_Ob<*Q%=4*q3R|Xf zB3}f*FV8&0L3CSTHgR9Q@o5Et)1*4DIh~~1ETrap$XZ@wf5OcT;=x^P$LQhDwH z%g+bO*9~W)pXe3)dcI>h8j&+(W>!GY{)8&FH4cK2>fc8JLcft|#*pZifBQd>V0M3?) zbk571BH{WVHRWx%P}P+|nuj4NME1~cl~(A+t{We+zhz^#t`B|*v)KmYcbMFrY?eIa z9vnu;KNc?h4tQY}KGnsnuYGjUfi@Lfz-<$Gl|$*M6TmdK$f>3$WX5t{CJ>ag2Z4^Q z#_@3Tlj)|lVI&9WGgxQz(8(dP=lhzc{+DSn6=-LzE^gd!aJ@_=72~w+qAdx3Sq1V2 z8{(-N%fzQ>{8KwQub;YcETo3Wv)^0EZ7PVesS|U;mz#2v*yTcVA4#U^&*WOoVQR$* zrV!*HIm(3QJ&a7b{noMIGAh#t0zj(fFe~9GPM?D47c^2WJ|xgqbSfkPxX>-+#|=7? zx`bz*79zRMjY?sd##_cr;|4m$?eEiUUz&DUD}$l75pSE`6L-EJ`u(@AADA(84gG6~ zJOh7)_u7Z==Nxa&ZM;9rwQrf4UIwkl4pzch_@5A&IrmcS!Q_Vxe7Xw`tqIc~x{xV5 zk`8~0+1uhrUA#=Dk6j~=xxOvQz6liNyuARLp@uk@$DkP6pr?@zCQ=*RV2C}*AlL{4 zc@E!HWmZZj=U`U#N))^4?Ag9_|J~WO_kO}fG!l7^q|%>sm%zc(i!=0N^q>1-s3&{d zHSFlmm{oBXMciMwt_GObf)|ceDr)%^yiu)j2H(bU-5PG_GLuz*llKBa z{}x}hk;z5WS3dRReQIe+VB%Z@@RMKgVD&=NIt%T{M}3HYJ;Oe63C!(|QJRx=ku0nA zeC!&vnCQ@hbE6gz6TowSk*Q<*VWVz>JJsRM9L|oMM#@tOQhn}{SC^muFjV%3 z10B;Gn_!u*gTfWSZ>oa?iCF?OxL>ObI#Riw@cV=DAOPTM4Ad|sljeM@$HL3dfa z%i-=QeCgAuyV9s#ywUGCNL7iJ*>)+U_hoqM5T%~f2W3-4f|wslvg#z!SwZqb!17wt zsl+IKO>o1lo;J8F{9To7-kH=_jN6% zJ+q%@zxLUC|MuC(`R93^Ju@V0-S>5Uzn>~^;KIy5OzPk&zVhrA9f>7C%-VCl9@aG` z?{%m=QIDdidPfGW35K8xDYPR%cE2QD|0>zFKO3!hE%LI%+&3LzCpac%&tPAvM;-)& zkqqK>mK|y>*xM;4y26H1hK_V=j_2;)Pe*iaaJH&UaUv%>FOz-^p0L*Rp>kt`pZLnT zK#Mm}pu96R^ECDGYK4-pH=Qi}?&yK0pdbATO!61n>??4ih49>5!iV@8M}A$a*1D3j ztqy&H8q(^!I6egt9go-eh@-dnKoA5RD{;PZPA|?5t!CDlhc7Ba>V==;>aDABXxgDe zyv;dV9;KXMR*q{09@7~o=rOjXFnxRda(=fTxD%$}8!XHx?WdH2sjLqBUIH{`1IeCO z&<@zp_N0K2s>_ z2QxrB@XiF3xbs0g)6fjPWG61m1o8!J>|s+)b5HX;5a(As?N#9=mNB#K0a5x!;)}OQ zKz+*R`VLjSo7KZAm>M;_mjmu04EVd3(NaHZiCvd%{B}f}<_~XWV4l&17(x&+ZJ`%A0sFe@4sbLZU!P zkiBZCj}^KO{qf9q=iM5H3VE7+9@FG<@a4^9f*c^L=sc&?oxkBpC$jBiqS|mpXm-bh|m7b3^cxP2t;Fs6IxH@Dm)kW##nMo?T!N zeXrwCP|b&nT!GSh3u@tmcs(znj{AY0!>8nrI^U@n=7$Sp$P~x@=YwuwGH=&1p7X~f z<3z)t4Ad1ztvHM6ehY1A9!4*EH`E64r)iinQTiY@^A6t!i4G*Ga6OpB9LHGk zOsD!v{I{{Llm1hDF$%Zc4&?|_i5?~31C(B+m@GSS$EWZ-<)Mk7E}q6q)*ndwC`1Rs z7;pq{Ty2xsOMLN$oT44JADpr(!&j9lzn4g6-|_6#`%nyDU}q>sE8;ZGMy9uh^cY67 zV~-KeUJ$TNWDA|to`r!4qG56=IMPAgx1@IFVqXg;cX1+#=3B`hIga!5E}v#@Lw-D; zHQ6>>;1=92`&Q4O5Wa~Xy8!74H%v>+w=EUm+}fiKP2=R(^X&FROSXxW(r0XzCeE*s zc)1Vp>{XzjG?Ej3A?T$ih=)iO z6mlM~aCp?5R)oPyG2ru15!=9BkCDpgZ? z7u;tzF>~LJVfJ0d#Ffg1uQkxNuFS-#XP{fL4*Pcu%7U>dR~LG(lbw*?l5O!l-sCsj z_f1tz`0nfDp!6nfy#;x9W66H=Av-ZjI}AtIF#Q5}og;=|<9_8X&Z7-@n3h|P*+d4* zC~%vf;6j?pxi%Q}<37?WKV(A2alX#t%}v80aUP$_9gs4WHb3s+W;lVqWYfN`&8;iP z8`_OYdxLy-JlXZz^WBNe1Ch>N12?)BcJsWcp*e~>b`d#%7JCagueLN$J+=4c=1F2I z&EhA?FWwP#Q^^tf@cb^N(@TdJqYGTaO8&kt_e^}53}_d z{Fi!DBh=Y#q}M-z+_Ix20!<>_+>0WzPupi|t=Em#3&xF4tR1?htCOef?Xwk;2m z76;K2ah?nnk*U{*^uC3{JM7a`K393ky6CGu%1@@{^Id><&_!Dk=S~OqOm`fj$6yhD zfhFHT=BC9kRVmCaInXo$&&FbY2GMl!qq#b5l+BrvX29I91J@|UiQSRuZ5?;<19%yW zxZi`DN(?F&c~(up?vwGXJjNM275?QCyy+(>b3{!e)vjDGRQS=6EVbD9Or~ z(!F{K?7{`Fv8UvL+mf9zn)h_MsU&Kr`cg^YOM_+vGtvOkPNwonFJMoHdEmBo<`h0< zW6X=bx-=Qfp5TC=ust^64iD#9?2oEo3cLG!w)a%aHuy_{kenoc`3IcDB7ylGn%1It z<*MR0*K)SCe6PG1it=JAxA`Kz!4JB`@4iC(C<$DLT~kOk2)dtSRsk z$-D>Of)w8(yY2}s5^s1y%W$8Ib5{>j=pavSfaIE!!4K9;_TnOn;Kw*Ss-UNCr1K-q zJQOufTR72f-17rq6Gz}|oJDWjBJ$1G&}O_9#X^?sgn3NX`CC|p^7<-xXd-3*(>i@R zt=31$DY%Lf{4uBeYxZz)V^x%QmSPBi(dq=ZJph%$B*Qdr@MNCGRU~8W=4?F9yeQfk zZ=sI=nQga_(cQR|H|q>})GzRSb;ac}gQUVGXpA4ED@X69=nZ+HFA8HLFq&j$)^hYC zHI?rFSmPMu3Vw!c*wLRrG3P4XO(oFI7vOnZjqB|On94DdL^v;!oM&bQkdI_`ilHcy z#hmr6<_h1*E7DrTH&T_%2cbOe#pm}**MiUMxPGl6j$Ylf#`&-<=S|g6cCIFk(TFD0T6Ph2zZ+37Mf+HnODNW9*gUqzO=o#*r z-BCrU!Px>WE%EvH#Rs?;muw*#uew4Vz9?^ z(7Rs1N!o%8sz9+1W;B(1*K*R-Cu%0cb-9tB)fiTHE}!QKIPVT5<*#Orc!hqsABmLD z%&s^X*U*;m5NAgZo)^(n6UObgmKpAu{hj?28rlQl;?FR_yp$M8Q#m90l2w_X#+eIJ zzg7m6uO*YkK`n_W`tE3K*5hD(VsIzTsujCUGK!G-U`*B6tr~&sO+z~{!uFDT%$FMq)Cv`meW*nlRs#qd5(wZ72>>Ae_Erb`wXthGt0SG=EzS;E!NIU6wxWx`PwW1r}zJ4E*V zMbh{cb7xvRs`6}Iv^Y@C&{$6H&?{S6oIQ{2XJFNR#h>BfCp{Hr&3ydp=af;n;P&$0 z=Qq2P>(vHSe4KeJX;5cSy_B=n#)lCNcF~9Xbu?_;3^0tZ=_Gi;Y}0_#*`GOg2q_d> zMJg~CtDp2lt=DXoc|(=7HQ>R9YRhv{%`^zD^BeEI<@YCZj!zW4EP6M zz(ekHk$CgmT*juu4cr{>(r8;xy9d9sH@nv7;&+Yple2vh_#zE6WpP-VxjGx&ivgfp zj|>{HqXg?A-s|JCF-ZlFSRUL*VfqahJ=by0@4YUkNmKo0^rqwS`uXq~6-S-gk9&9r z=hZvwr#xe-1V1^isYz4Z#YXs;DZD&qteIS@Hio|7vOB;=zD3XR7JX)UQcU!qnN3Jp zZimWeIp6Og_@^r7nli~~7}J}Pe7%;|Se$QVZB69%a5=xV`?;9JPUQ-h zxd;79FsZT8xKLuruV2Ht?2!7d={PXNyYm`HYXc^{QjRL({7Chax)0Ipdr-5Dd9(@{ zt|Ro5P&Tcie_;oweik}`i>N&6^659{+>0Zv=L^FfX0Y<8SsN>HV8}B}OL)>Zf=!ET zO&2;U>hl>~uo{>@X3*wnB~e9{;e1wdgUfuuHa{FKO?`a?{bA$5!Y`tw5o(UUOn%4E z1a9LNtF8=z0h>*N^*PHUuvH&6ttp^|=V`alf)n;NdHqHY^Dz>^2hPgvdD-a0?&b@HHj!OBFn9WC~^XgeO_A$x>uZ4EH>5+MHO`=3@H68%2TI_e97%IUD%#ij zXuHR-Px?!3-hK6TnmEUyKYXhnPR`9-a}~=rtEWTZ>8=5nABf-LcV#<2fQP?4%SNkr zfa(;|U1J9O%+P?g;-PFN&&a;3hPSObo7r}5`NrIM{5NWUdDg_hq1J(+^T7q)o4Z7) zK{v7oi&V9SXhm%Jpjwl@G>A<3@uW;F!KD(2mTi#b&;E?YoVoeLXX4}U^ueKEh{i{| znaqlk%v^~~khgV(@J!bNEe+OBpqKC{`V&`kWtv$8XZ~l-sWUG6{^nL_)oU@^%ohk4 zyP3b#>sR_M_wbJj{T(RiT+pKnUsxarX&ha3N0@bAXvMjFhZLw>`g}ZDHBg&}pg0`B zrhJ08(Z%47=E{p1wE_J*&B@6spcIFf0}y301o6E84bFyi;c9GC76vyq=Xj$U0h`=56;Z* z80RmwGPP)}pU(txKzof0tLnPiXztW93CX7O0qZ@h>&1;SLh5%{@b_#0y{K=PiavEV z6Ujm*=rW2Kgk=Dmcr$!NTjfr+5C!*cHm$SVyH{u_ya|7N1oX2M*&uc_yRj(LC)kcL zVHRd~@xo7bgv{|+oV%mFr-0clU_agVn}6bp=sZtwz5~H{%ATm*(LeXpbkHV}Kyw>~ z=ulGQrppAfH7MFr4L+bSC1A>achU?8-Cb?z&4l|M-!#8}lE1`tN~+7Css2H|S7J!M zMSVeMP*5wR`b$5>Np&%tfd(?w z+{hRb?g58#k$l*7wgApie>tbzQ`dy8_Tl7oHgMdP4IWj|M6V&chV~O~i4WPV$x3-k zJQ<3o$v1Y;f1=9rmzaSC*XJ8`UNR8>*fU~cN)5%g+LP=F(V#2v)9r9$KkNFigSbhK z*kttO$y*L=Ec0cFD=beY0^0b`mM4a zA^)VZ{U^IB+xh#>!k2PPy+xy-HjmP^C;j)OEgdh^C{7Jkj=##Ek2(2Ix$}N(hb}t0 zba3*!naY|f;?=7TPa0^-{LO8)$66iD(a(+q-bVfaRe-#A_p_UBBb&2^$ir|AknjFN zFwX*Lw-dGN3=2U?0-27}l{UC++OMcw)tHlrJ z^%>^C){b~b3Oc@{;_veaP~GHz1RnB^+-wCrbpd%WduW4vhAveoVZ)?G{605`hV3+# zCuIh?Z<*Y=-{ZM0VWsTgO- z_;`qNv;h9Es$lh6w)!A#KG68$oM0;SE**?RxK*ASEAzB8;>3PTU&Igm21S{ayVEkX zh$;Cjz23Pj?kFfUY<2T3R@9^e*qxt&&eyZ~fD5*#t92r1)qeXV9HiGk>zncuipD8E zc%J~de_bYr(EtKb4BntM+J~oF6F9*Ja&sP%7}-wWjjn}V?9G0l@uxwie>FvuD6pJu zaS#3F7g4S~<4Mi!C{4z#LK6QybaJIpSIB27*!ldd)?CrvrYqz$+?RpK@jZAqR+3@d%Is&2r_1>$-1khJ1{vH+--(R(*Z?^v z6a%Y`21!gt_r3-1)-lwScX2BIMD{~z&UA%)t0yVoOTa&W*6cv(SscYo8U0WCHspgn zC(E=mvsnnustM>Tmcv6`B%9zU$poc%Hik15)*_M054?RE={EsF<-?gCAm;=Zbs`w< zW%5kgqWyhpC=O<5X6_wpTEor!9SZ*%s6$$_KMDu*GCU}kWq;vS>k`xkrb76@Kzc`xhtt!TSx(TjS{N?YM%;lQmUi?l?OjU zfBK)dsYQb2L?s?va1HLNJEn`b4!m=y72fj&NNR$nk#ODGiM3R~BzNqjuQx zgMfMo-XS$Wp7*WPn{m*cRnvH^^+Q9p1r(_(8nV93NR!wUPJxl!M*%d|Qi4SNR4O9Il~9yVI6{>^b3*!uG&>u0dkkM zYFp`w>W3N@n;VcD7lnH2CeNsFGj;>#E6cmdFPrWBd)l&3tVTIpMdM1(Tp2c*DAX8! zsN0U16w={$pdh+r@v`c{Cuj3%;uJzJ7a+BNUU1=SXu#OQa}~lSm#p(8S<#Iw)%GAB z5$MojnE?prgR41iKMPA!%`pUQ{yHsp3T)tI@4NhIf%4CCS2rPxW*<*yK6Ge>kAR|9Vq7UhmaUj3#R>o_TY3m+^22B*vLZ{74Fv`+HB#DQz+tj3Uw1 zIZufezYB)8%2rb*-uMf!l`q)CUEs2F(9*w>EwnCnRZ5^!e~s?`vQ~o|HH<93)o5;u zGWUOqkL(A07kRiLD;uhzuRkXh*2N@yU!TdOy-^^Q6Yv8pF@6V&mWw|3cH}Fs;M6*V z%Hk$IieK?nR!6PZgk-&Rv?+J^RLX+yOtmb9^*L+}BHbbeh5rSVGkG~vvbiB&(m|%9 zfoCl&$U&Oyw(+)|MYFF;4OFG`QIKJ&MzA zAK0^sR9vx7k2B05rRXF{#V#Pn`PuNxg12;p7e318TZ3lop7bSb=U#F#8^Mp3plW zAydAcs*FInhm}BI9SffCiK1>N2yY8xkh%+Ouoigu2xtCwPN3xd+NF<7X^IFMX~9XRkF(+l5)^LjbT zW;eLUaB@zUgPZS!5&D^43I#;D3n;Q^8tp|&)lSqDdF@7S%V0j^@?@R##6y$7yeE*I zW^xuP#2n;@GkXvjF2W!189fTu!Nf|DrZN>~qKdx0K8z`-FAUd0!%ldFCnPPECQr8^ zZoPe|n!U&>n#H$Yk#B!F8OJ5?sA_O3ivAf-(9q2=MrUA*ilN--j-G2e-^xLfZ=61@ zL442a$dS8GXO#zv{xB37D%WO`^RGvaaRB(pUN)7hU=22OF@0%vS-_`v64inmnRa0? z|8emCTY2{`qN^yS6K?P@nsF9`7v9tflu!W$9|0DBke#U@EPqSGSef>npUfgZ^bIPu zfO=pn;eoxeA1z?QN3xW5

      D$VteL-sg};s7~)P z3%Rq2)`KM)iH2(f6PjRlx|2^{mwWII{+phl?T0}$PBAHalS{SOo+hz|X1{5-J;^L8 zOJ86J*(1|nuq&|B2J@#az~}KjjDS0Db$1%#mg*1ltcB9G^aTopbF%%W5_?!zp7L3= zqi;eBd7pXrS9YUr%;=qL&3T_Lk{ZtM<QMBqU08bh}JUpEIG z{Ud!T8~|Qqr8{xMiegdak>>@GO&`?7Y;X&mk!Tn z(!*deJu@YsCY{9Ton)C~jg+3YX7UdDYoq2J-Z!DNk7n{3$!~ufr171xj?6$lORLm2 z^Kx4|*|F42?&c}>>U10MyJR?j7d#f)-r9D$AUvc^6uYSr`)qG(JDbUo3KrQ+&Io#T zjw{+E8fYHtyBeR+U(p*4W~#Lk=xYxLxg*)lByM(IZ9#eDfxn_QZ;@IyZ`#)u1w!(4gup<@tV2u<2GsZL*6g;jZ9rnY?`X zPYRIlRGas{5_$}+b_9Byr^Y$-4XmgVtIGz3W^PqeFh?@B94vj5%0b)d5xoKn~T!cW`Y&-*9N9J zk&pa66Z13Ji6VT;jd5MZu(|d`1r$r)Rkk5N*%Iy0BW9Bg(3r069;N}NVITvWz~i5q zL@Is+>{ADni4)Ds$y3WhTjEBqU>h2auUoV<)e6t^D4UKnjUKR3LrEfZCkan0o`bj` z`Ai4?))S!PbUClf*6%V+22)B#50NSEzl0#kC5RsLqIA>^VteBUEJ|sJp2g|u@p2}z76ip!i=!AYf-)~>eI3pN&8WYAHC7A~D zt=vF0L34VbE;`OOJPD>`x%IHM9E@Tglorua@iNE34xSS9-t*QIUSW~iAB9{ucI{1c zT{R#RWC{q}K3%xPZT65!aD`O1)+k5k89RX{%s^>$K{*9e?rUDk?)|O#Guh~nht$EQ z=<`kB1u$!))JVIx0$AR&(ahQEal6@K+3kX3MHGRJLxRWzVTGl zBd6G<-8ALt`)f)5(kS#xGr7l)X$ql6FvDnv<0zSjvg;>szfagt0{Q$C`Oa66(sTwz zr%-z6VXtCglxFaTuLE&?#4KCKP(bEbs+3CL%PyuWaCaTiJdv+h#w&8TK> za;^u-bGS1m3a(}y>{;=VfirjKT{?=ANZwsO%_WX|Ox*}awU1OHq@iam&-7q7^&wGoIo|fXWK)^g$Z`u` zGHxf)U8+BnRzR}B;F5n0E ztU8jys)8`~;_glse^x?s`3yZ&H-)3SMhjYZGWNQHS-$0@nFMDt!LZj*nH^>gO1_^= zQJ{JC>i430atHlz_e!dFoMjb$=EW0g>hk~8i6bMLF$bMlFVqylUQ$sl+t=9~Na_UPyT z`ZwG$wLx9?_kY7>5-HXRMMJ9d_Z-e{DA=#MXuk@Pn|U7=dKceoBArl!*nT)0@oJu z&nrP!*b&WiaMk;|L}Oj^F>6n-tQHcdEX3awXuNMS+ZvPUK=UJrgF_@?s9VV2yPUe3 zx&b-+1!*y_jJLlzT`}3PGWB`K=NOBT-qBlTQ#Ronm;gGk8TD71?Iox+Kc-I$i5=x8 zyLvf#kZ`uY;cU>$K>3ccqrTEsXIl_xY#+lOo)x_kL{ir_dSlwi9%(&l?ZG(Zmy%+; zLhJ&;&Oh%qc=R*$t)IhhG~u4=Ns9L@rk9ZsyG{;P1FRqR|WD!}C&m9frJL&whjNqRgG`%#PwW6nV59+;E>^+6?b81kK#=tpG zCVeX1bkiJ6PC$3QyLh(z=e8o8@`L!?NfqOrbpBa3W`LE_-H1Qo!rFGV?C!a|q z$F}08EX(3Qu!A)XBX#<>N`-D^JGAH)xAW_T&o-a>I1q+>(~0!r*|-=(lQv9+eFw ztA*TO3bEH8#`SpvUvoix6+z$=3{|leH(!8a?r1_mn$KAJnY;KH1LS zrw@~8C-B!!U@@I|GPT?nQ$e>}*vePXh8C`r1P2Ud@0|q}am*}IND{3D;l~2)M`1(Q zRJfm8$enjG=|jiV0qh=$T9M2is6UEwy^wJ-v-dG202Ltru4_xV^RCxU!u|2su+R8d zDT80Iyrq_Hj=iL#l6VF@TFUwLEv}2Qq)Uup+L=pcO+2^RkL1Y&qCDzEqTErGD)-P! z2}fmRV>Qr~Mz|{DVE5qAPKb+;UtMKexK2Dj5B4 zUevp8=y(5hTHsc+DEZ*a?08mx(40p#=ck*?8M_?5{vY?NpTO3N(rwoXhs!2VkE7_! zOB(CL5d`7j>cSknmEGzLeOLl(drjU_X*5I4ND?1S|Jn|iv0J2hxSA^AIkSMibw*1x z&s3Srq?_olg@4MAo3bC-ZFkYM6hK+sz}gUgq!nExNhox-kz#k9{I0i59F<54G=tf8 zBFicnNA3aCPJ)AS<=l5Vnl{mRwOgiUo!~^i1fqKj&er7**^d=vi)9bTW}fDoWB53`OJFjK!(=AY*a-<(}M46 zJ)R=r9q*=SnVQ<+dh7 zw2O8an$F80ay8g@n&H4X2Y2yY_mh4%+01*DRMU9$W=&vZ_S>ZvF}9`jwvGpjP}o}f zqolpY3IC3qxd8ZmF*j$BP4*qLzY49_QT;7_w4pzH%P!?K*%&qPa~1**UuOx#;oJsZ z?HlmeJ1|X8WrnZNntP(Otj9bYfiGhvsN*J?ubYWG;}%IJ!lhS*pAg(|M4?0qhRFSCk7^;(hp-kH;5w0Z(wv86DdJJ>(J#{2yc zw@xYc1Us98AG<;fvx8_*8;AQU2^Mq}eS|6Rb3jtH86+TN;x_!Z6pAXHi>`pK2(4Xi z*At5#Ab3Ftn}=^NH>K&%4n%_BBwPoWfCan z27GauY*5$88hDKo)K#LpgHd{<@KkIE)jZ8DUV=2a+MwvZ+{9gAXGfwyUkR6U9Mq#Q z`&E7EYW)IbMRDxv%vAl;C=c~=DI+X^Madc2J{*?n?sCeZi}aQ0u~ zSot2tL-hF7p;MtH+(EqK3sm*D=(2G`bN&hWHiOXztOtL&Dl)CJTB=s?(dOlBw4xo1 z#|^iI+3FcAb#2-Z+u=$af@gFc+(I_fW@$9HLG0rRq!F$M1$hVd;LRo)p^JmnJSY_f z1`x2(oR)jJnKYoS-sl0kp_&}RXExrDZFC2VxU1wLL&*ca!xwGQXEMQk>-!{=Tqqza zqU7*FUEP9>Tb12X&Wxqal{o3^p(Ad@SwGFvLvVLFE#=JkoXkeyeEJj~a2%;s!aK2C z5vXObyo)|%)84P?LL$XYKI3PkBGi=%RYg3LuE7%LoTsa*zaa8mJ%Z)m*9m;7Kj_^k zu#{=~Wt`#sGj*`s;Ud97tgtMBY~^ji;dmLJEgHc&8Z3YAqQ?HX=NDVf$Ze=M37gB|1o?Y{oj*e~3c#7B`}k_yQ8MPS zy%X<2tn+u;uKCFjZu-We#RVnO^I}LB>f;!I;*ftQE?DYmJJBcXL)XC+1Y zc|B+35tPF)=kodaiAK}Z9q(d_9HvdN)lmx4^)1gJyWjRPS~uJg;d-8piQfOeNW2Hop0VB>AsE znQ+QF5)Re*8T}oDT~t5atV#)%c&Mx9L!8E z#aqxIRcf%rL*vwINg8p1G1HP~6`{4_ujxr@<(HfYWl=WCitcteu@l8MYe&kmLvfN}8T4HN@-adGst&i}?sJCb|%Bz*NDQ#bn@ zyiBJ=D;xhW|)Itx?7?^kO%P2v@kA|2|vH{@_W!6KDPYb_uWFi zGa(YYp7g%=N}#^StgZ7h)U>g6G%VW$xm?tSKt*K zE>GAcD)OZ0@DB&!AMS)sX^UYvjL{TSk?YAd^-_#5u!}fD%b2d3huABLEs6IqM84O- z>ayqxzSb^+=h;gKK!jLrexnUkmkA}32qgHo&2a*23 zdln+!!`EtG6!us3b&P|Q{idQIR4Z*y?RNGt=RcpUKBw_S{kPMQm;8f8=6e={Z8VI7 zD$e=O%c;9)HshNOFw8ODpl^E^{CNp`Tf9sm@{aUje;$FxvItK@L#E~seVSpp=`wi} z{jIee^YNZ-q3iLQx6Hjv3X$j0eRWUcaB&u-y#N1eb}4cePYscK_kBZMyDB3@J`ddt z>p=PETZfC^DJw+I>brDxNrD@Rrbff=OsGJ6$0YB7&y4q2yI8V^=ZgL@%;u)}JvA+rS;>twpw3|OX-ow-P&IkM;EZ7M zzsZbKNA~wxNDym^av{_ZLuz0b_VWHP>mto}B@L39Oaxhf>Va^f4Xqdsx$<<#)RYc* zGZ}ckjN`q4GJ&s~Bx6*HHPsj00;Dv*SMQ^YPjc!%mA4Ot%Dh zS3J0Bs64;UbFZtIkfU^iaTT`3Z+0F}NFE%~y>Ot8N3k#yoF$XAj*8L=(imlio+g|h zE&IV}LglmfIr*9EaY0vvC-224m}97h;vkX#($#bT{f4_G!LITNmCvrfAq>51Kl^?8 zK8DJ>_ldfWCX$=g9mUH)@(B{n<*lk%=g)TuG~=zt!JSr`dF-{}m~p()jH&82Ia_Wh zC8vTFe~ni9HCkT{dbys=POGfH*u2qzsNzB;wpa`$cte__+VHF_hA}=yo5urOZ&hIW zQgsjYHf0m~(MQ&j>=WH>*>uK+O1;Hy?S6Qu{CIe4F(vw;F=_*wJBvy28@P{O*!`;F zs}SsJKY51HkwjW#RXp9oY26W4Dgiun6Z=o9`8?^I`Ec6SgokQOj?Ms@d8dQ0?j`@^ zNACKPcxTjPT8Ko8Cg>bSaU(D0UD|5D%y;$z?l)BK&~3nEmZQYGLiSW5s&jR?yIgJS0 zQ1;vw-nEoal?U(SB=t&i&TrEFSAhHS6BGgAIL#-4c^%L_L6=lTuaW)3J;68@qix?! zpJ-z`nFn*0FQZ{-zw~CR$Zu#Y)t@7oY?49ZkCS9w>|NZ1 z&+woMM@T+vA*(C7Bjv4?t<}jrZ-7tPL^pOLPCCH`N3vPRg1PtP)EfvNFcLI$lJqWr zA=A%S;X+Tv?YWD@gNr1QJQU}1YN+Iir;sL=Oi#%&nZUS3yB(!-hW2X^O0j!gX4Vnj zFc)1x5~SSOvufgoRO<}*PQ2N(0$_6@*h$*!x`3+nXPW+ubl7=lPE@Kesa3xSqjC!k z_)A<0UpYU*n$1W65tRiU+(59&jxRpfC^!J57-)*D#4kg~Q8r z!T&6>f`-vOIu_m3G_<92c@CGNwp@=cbQ^5eHM{^DHO=rsoYz&;zaRJJ^m83Lo0s-1d{>MRbbWY&gy#RZ3!+47< zt|y%Bzi_tamuGt!-qWhmJD}!tx5$2kKrj>GZfb`ft~;$O1C+r^k}?O>a2uHR0qZf) zpR;&eu94(=7d`WHazx&;ABujMsF!<`uztyAfab_b`Po$jvH+TA?lP z>OGp<5+%3uH4O?it!D3$sN>-GeZu6-mP=iM#8WN0sXppN=C=-fmIe4sw7lEBz)3oi z#&Q=OMmU{hUvYLlz}r~{4P0Gj;_W0*-XU+!Ri5o(65|+zL!_m44*O#^97-N?e1mjL z4F|yZ1im-fIDq?PFiOhhv@-4`E$y~hWDo2oW#By7J@aY5C`Gn+KJP*@H?=%o{_1R1 z4d9PW-ZpTSrl{nCL0VeLu92Q7aR-tIG7`6zn5k!x)+Aa+R*?;o3JSA}gmcj_a+1uR zi{4kr3Av3&CWo{TrXzN(Fx5r=M@8;eAtn+xu;I#l8nxB+`9zF3CVkXRnM!u6EAT!W zc%nP;)~295+R7|`Q1=b0$Lnw$&vb>kF)XC2MAOW;k?!wIp0VxV)OyiuS)Yp zL)hjvWQdKDnRM&OxjT(+<|yvJJ0vW;<-2KMjloqp*!mEiXiX9$ecAlGqko%60_P?+ zwXf`_>=$TtaRC9S;h2h_c0S+1H#h@wX!i5s6N>SszK#7bOy*V9VuuYS6>}ByO$pwO z^Qg`{k}|P|#JI6a2iVP@$*o(>*-(#Gi52MEA6UkN$?S)fY=finl})tJXjzGDWNtSF zF%Gte!wj~^liY*(?^DzSBS=-6$j>;7{c9o9;41qo=Hf89M|Z<}mrZkkr?x)%D8=~% zr?SD^)w$~58T@E;%fL;Ui`Jf{WJSA^6}^$!G{VK>pTgJbz)JAN;NrUK9YAl(Ao%>h14o!g~_wODyi9h)E22+5~oiXx}~|Nqw@W3)0^2oGn62n5-JCdic9_)R zjZiz!@p<5T%Sn*<61CzvO$?rd*QCSV1aHf26n*G_f6BZz#w%l$Yo^wCGq0kZZB08! zGVgi`x|S7N04}mQG%76N9Z=FG~m8eKt$s(R@o2 zY5`hEN?J=>D_T8h2p3skdNKkc7|}d_vhjcEX*C~ zF7Lom)?JC?!4iFZC+YDRbA5HrBJbmM+k>qqgHtmpkb&u5+s1hOSl@n}x^ z4V>#QNVTelI=l~0St6a44lR5YW9Fmp$wL57U z8<|&bg7&#sy}+WK{s+4&%@i~f z`_Z6YfX#Ra(pAV-fgMvv#(+O*h|#t#B#nM1UGgLCGF^9emV4w;^j6NAV_`MVprh;QxaeSOPY9QH?PuhEoKnBy zZBLfzQ32YH+BuwT$93PqaO5ZtOl~wG#h9m)#4rP0c8WDGtszfr9q1cv4f?mj@fE4l zeA!9i^3K;Wsr837c&aXf%XWx%pKd58q?f4-Pu92aymPrV9+SUohQTODcC{)cT%LDn z>NVPU-4NxfsS|#NpUoYuMlxObb5q0RdHYgh()yqrP~$}y#V5F)blzdgcGC`f7clm4 zxx;xGmm3q|xN`A6PeVmmk?ucLmh;cAq+X>NMaok{8bBJ8$+HSP`jkka$PSn1=|Rmc ze2|0af3U#!y&|`Cx6%Ly7&-^hE#zk_xInF=7A*@w4`_gnxS6XA%;COz;u5^-q*igeFeD{6vtvy%T z(8E*!_f>`^+v>xXG?BEc{rJ?bal^i`=c6yJDh*ssWX{l7nD>o*LJ{(N6kRP1>8R{P zO8ho_Y87E<%EO1Qq=DlAY*S%&$3&j9$|#Y$a(+L-MbMEh>QlJna>J0l;QfiPe#zMs zAZaS#^a zVf+;}V;%1nq!5fo1NWt~uiPg>YWviv>;~iIpQ&B|x1S3CS(uIZ2|Gby^cA&1M(t#I z-lva4jSjvUTS|K{(y8F1foL$h@&=7%a!=;{aRV8N;NBa=eK#3Z%yu#*JJSY|YMLP0 z4<)W0A^oNmz;W`CZqtVQY%AFCNzFwRl8^8%R6rwLOkW%o`6$UGtzcT(NoQJq(iW=1 zm*&C+{LC~E_23e;6Ya=`nuh;zr^Ll0#A`*Fp(Fr#OI*GK3N8n%LX_CW)&*<6loRnJCR57)ywTmjuc z3~_j-M96!vk$Mm+h4%VqXz$0e-8?q#wHD;W%+C`$l8NvdxLY}xpvxrYxO#g!J1$cr zQcO|Wn|_TtQ*K4fo=;GNh^Mkb$eMuh4vyI&frpB(nh5L$f) zYsa!L@8CV}&b~WLH-o7;15Woc_{vmN60W##gv)=FAyKAIokRyv3KXq3DAWsBqzXzE zJpW#bmTf7P&1eRhAjjyMxkY+>iYX2@?KZbg9!o(>W$svkAw-j6HbAzcO#mgD$(_51 zY(Fulq=6fJg%9Ez*&=sEq6Uw+uSBMqi^L2{TPtvL)#7dzh=G_-0$`9LP*=su>12S+ zEFFt8b2?|;d`{+-WLcsr=l(uGi|k20#f$P&ypJncbUx*xm9?m?6#3S}lAI}wc@Vm>#4^E4(as3oXuD_j>{Wv1E?Ih#*nHlNMOwnTPwZ^p5@huqUl z($$1U;5t*reZJF|aNfBb`5i?aCD91f#EX%_d6&lN`i6vy7T)c=JCmQL%8F2_`JOwH z3pyPa*aq0dz2xzoY{~uI9;RX-9ZF+SSgj@5=@MJQPv8m;JhbceTS1$|dEr!yxPh$Bpr8B+ zQ%W&d5(nqTV`VCLc?wN?M`T9JB|0y}obn?ZPA-~3ib3ngH~0-o9$&W$b9=|v}TCsYly{!M^_|YyV=U|-Fkx| zhS;XS1MXvXC@HtFx(mgO#gnO>Wo8gBCd%3a~ZPq#RsbAyp zvZ4L`9F}dF)W-i{x{KGV0ohx_P-fmlmnl-jPLpm?oS(fcX=Wa_!7@SjkW3olJQ{W^-pO1UbEl-`O1(<7t`V@geVFFgJb% zIhC3G^j&yob1biHPdNGd;m^N}TD%cj!bo`!j!@@lU3F&W?*6zu3zOg6*c8Sd-G}*Y z4fE(ZQ!wiPi(susQGYc+Q<%)TwT=ABYGiuCxOhaWj`Q2pfURtyX(buUB=o-DqhqZK zV-QFeUi^PP*xlQ&pQX6_ZGEgaa0pl6hc9q+oPGMr-Rq6LHl~0d|f*(g>X`{ z-APmOWulB{2NW60T|vTU;DtJkF6xCc4D@p<+Nc@qO(~$58%b8&M}ymO@XN~}m*vP( zG~i7b1jn+~wwDR#37W`UXnGo;oCsjs?g+>7#POE=EifB(q|94st?og(-9q&t(u1dy z!f{6XKx@Uld`e#xd@KUQt0fIbDQM%uNRMoc8rl`@){iIv*I1TtURAe^gd?iL-_Z`d z`M%wY?7AVG=WEGPyg=r0N$-X@|N3z=jsZ#8$?bTIdG|7@i7(kVB4t*(4@}Jfyh5&g zf}Pl{SJNW(Ev~eCq+|WWr)Ok)oy2ao6>Z5Srsq3k{P{{}M<*2QD{$Q2K;2dbZ%{l= z!N)WRxxt_a#I3Ed1KO${X#Z#9EAyejBU@?2oW7d&a~GcHFqB0NP_r-QlRUyA>l6Iz4CsPXs0mfS|!XF^dD!!s}e&SW+_=NgdBbGn-FzYS2$7{PuVG_N(o zx3Y)1&l8-oCCS^nNqV}7OZfqMydrGy-_V=ZQ5i!5&|AeFrG8URsDbQHZ|Ju?WGznf zNiclCP;P=_Xc$L=r|bqP2!X#@$v5+YtY$C1mx0VH+iA`vfhRUn;#b$zk@Rc#027{w zt6(GjFQ@3<%nvtKiw3+<6xOqNy62-ye=MKsYD{>^_>GV8B$v=v=Xda-6(AZWXBdj= zz4~J~{c@8QSqFtj6A%uO(2<40?Pv0h%Yj-(fLCtf{e8okQ;D`y(cN&H9MUk(((P=6 z#krB^F^QdIXZtbga4I4h2Wpgq@@(s)JeRs`7f*1=H(6BmHiC2E43s zky6Lw3PhqF*Ab>L6B@RaSM!_F0*{z@DzpEH;3 zrvafR?P?9c$&DnX3bvvt&z-mf7Ngy{LVA2F7}SB>{+B>#i*lw0l336ebZHGY_+ikV zUvSUY1@RGS&l^cK{gG3tKHYzB9YyJcs?H{_A=S<9-I&I@7P959t#>DO`*^ z%HJ144qpe(*1^0Hq7iGQqnK0so)oDH=i|;tzDZMc7+8M_fATAJ1x;1j2%B+QcITN& z;Im%L9Dj@nKDX8b53QA3JDe83Lo^7tAc6cb8G9bak;+@sNQ){ZQs$DZ1jX7$Ps%{v znN^^rS7DKMqy6D-3G%BaHo2x$&VS&8{45H{ZiSf=uKT=(loMns0-eaqvl(dl5kwL*zwDQ zqI{0de7kKQ{=Gt^-3QZ0wh*nQ^!a8xzl))`thRDHJm!AbX}H9kZGqv4;Q7zP)@350 zrh_ty8LAAaWbH`%%gZSn$o`&-C%*;gP zgnRI!#dvG3+bZzRn3!eT!dp%Q``*Py{)=6xaGG;ZC6eFsCCc@m95rDDI@60OdfZg1 zD5*^QsH`O!OhLgQQVv`k=VUw*7 z>gq()bUw@;QO-UX{)Ba!yV^Er1~!7F?bCgYN3o<{N4|3>Zm`u%q<3)ezBAM&-)k)_ z=uV#K>qe2>+yR_$7{BWiv@)LPe{JAPzmULfHAnJn&0^mC(L97bWe%V29-&b8h>}=< zRiA2zFzGC3tu1XTb(DPX{o%5wk52mUKWVWv&!6Q}dYd%pD2P&oa=Uto#Bk+~EDR}I7Fqg;T zp9e=tjORYNQFZ853N++W3c@p6m6aA%tnQ6}cQP3ZHbCUb1hoUyVB=+ZoC^=uwW{z3GM7*8spK|!(PSb)=i>%G@ zs8X-%Z2VTc*nGdh=cpnD&X2P?9Q5V^lb{x);0=8gQ((9}Ih`kyF4LX-wzcrL$E{wr zS?tr_GY9HGRfW5zD0^!(o`>y@4*1JeNl|jY9>=|Mh}@oHV9TNGD#>Kz3cSKyt6_IP ztKF#+2_tEiVx%I8ri3kQ|EiQId9Lgy|6CxHeKniOgA#g_Qm9TcWin_9IN;h~DjwuN zt|G-g6jjARG~&w?A9FV_^lO&Y)>`D9izMtF_S5zx@(e=3vDmV};i9B&XApT31^9+L zu`f47ld>76u@Fj;%49E1R<<$wXM-p$Ay4HSypeZspL8>SDp9mo@a+XGZm{is_&`6$ z0lJlazb>hA4$@}V;`Y5t21P91lvMV?E2y4dvHx|$8~Yhvm51~f>bZw{d4I~R!OxQs zr7Fwbw;6TUe)Sj>WX>4jFa&Vih_7Hg=9Gi9zlVd3)M|1JfV#nBHGv))O{kVv;FLNB}uTDNaC|A ziqiU|=Ql-lmLNL{M$%{a02IK;%^V^X1l?se@^C!0C)n;qDs?kBhFEUtIQah2I3Gmo z$SUT=gEB$vJGfQRHl?Q1GNhEZV~0*eGm&oJi>mM>%Ht<^*z!8cg2z|q z78SfFpG%hW8Sa3R`%~ERNhs#$q1H%)F}%kvTv}6^yFhq7=WvcRW6$kL>g7Tv%BoCY zGj#0RobW4`P*ZEYrt#oD)yMfh&_gY^3co5bs7CvuOE_wyn2M;N(q)-~5vK zkH0_Lc}|7U@6&;upg({AT<)Q~a3(dl!9#HJ?%@8p$291|$x%n|4hP#BEOL<4>m-5r zZ=w06q=G5YyoZ*DEK)&7pdLNJDO?Fo;tTGQEhL1kbL?P>KI_=Wc^@Tx(0R~qO;N{a zR%;KCqw$#jvmV^#BXFRa*skN)ILDK`yo&UTGv@C&>&n6=^@iykLPPyCOFjC@MV?C_ z&2{5QY5US~9Q>*Q>~1{#?f0AyPsOgm=_k02TFFH5%m zH68{XH=!?{M$$P+<66j$R>m67^P;vDwY$O1_``ZmCAniW7~Lhj6**+j7*Ni(;=M_t zS8_WZ&ig2_i_;WoWZ!58i#UewO6*P-WbZAL9D3wvl@ISyEiw!In7LYmXHFy)cP8oz zku<-XS>mw7Q?5(>q;Lg^UeIbNw!PlF0-``xJK%U2jORh5&d*`aI0w4&1T3;R8t!JC zT%)x+wWsAfsM6)t6{1Zy2<^!P{Px#)`#ec7=qKm>*{FGTp@Kigd~jd?99&NHXx3nM z4g|aIkM`{|!#rk_ufVZi!ykK~hOf)?Aega4-q3w~iYJX{P{g~y8QIu4`=RJO%p6t; zjcBxKzv*lI)!DdctDx>Svxj!T7c!0P_9b|etHM@JVK2U6DGNK;4z}nH$;HL-!bhRZ z%4CAx$(vUM1;7~C{Y~tmDvxM6v+mL-&?5J>oZ=qJUW7WPCvX`?6h$rI(wl(atpKCj zV%^DeU5=hI!8b+mcF%@i+lH3@xxFgx-Lt~itd5p?>e5UOOVGE7q}u$23H0ZW>lF3*;pwGL8hP3V4|I zn%0B29^o7r!Gw{c5XvyupbOJ3!aK3yVz(s_pH!%;m%T%;IxPAo*U#v4g_f` zh{`RR+=ZvKCU&IlZUwCUOB6*eAh2F2iA0k`JEpnEmV(wwyxEDI9&5N+v<@qHadWni zC|In4^Z?AqTb`dp>kUG!5a;~)^RtOhR}W%?2?DEjCHMa%e>03NpI6Inw3bV>>Qj+17KzHb8^LyLNx|&ZDa7h&zQ~DqS^bFd3zYo<{a?e6QI1$ z$Y-8MzQInkb|M8izr89r%~7-&_jszxGiNB^53^t(3i3VIWV4ImE}bnV2e`XvsWqf; z0$1uYO22!7;D1dzXQ)9|=RB3EF+dQU&GPda(Ux*1n*9`)O~C1@CEypP&Ox zgohncL!J^XwT886H^Y1h`>|PbmwBd~wz{@I9SOa;tEaJ7uf#9&LLX_^Y^Z|9wG2JT zKhQ)ph_tl{%Fce4CamTkjSx+1X#mtu)E$7Y(>gbdK+#Fu#E+BUTM{^RC=^=Zl8%o9D^uE1D@zM~UcL6G}@8Erq$&!d2#_m6Wb1R9HYd4=~X=bUK zN&^_d;mQKelW*w8twU}=cTm%0a#5eM`Q@@yq0dodLaYV7+s{eW2>)}p_uTecM~nAa zV9^p&>VR+VIU1;M!4Plb77mdasB2IQ4FnfWK{>gH(>6ddX+78;p1^zLL4{^y>RF*| zz?*i7r%@ystbmuk3W{C8JczCDFewgC`B{pBON*ank);@%MJ+TQv*06^!L8@B7ehy| z3v~ZH-oLkK2Sg`q3+aFz#|^cR_U1I{(tV4*suoOEBrSq*=%!|KOKspB{82axa-wB! zOD?H}`h;()IWx^lc+UN3{%$f|R7S_&k0gfx=9w-$AJfrUucbdrG}zAv$Ij4ILRW1D z?F-{=o5pvsSU-i|v9PfM8oJR^VLXp~vai4=y=2Qx44YC08KTcPtE!+ju%PyRXnw&x z(AYl5epV*6w&f>HXX-fxwk~z_su;=ZJ>azd1-7w-W+G@~NB+i2!7CIa=kOBD zwQ;dTS4_*eX}DV%EyJb01lswWw4!Gg__ZOqlkfh{9&Aa#uN4%AY| zX`*yT^eUei$=5$p)TRR9Nr89}qv;3eipqB&sT~)^c@rEX@5>M}#Fl`bwPF^0r@72z zaF_Psm!Kgox_)FUP9%3jMN3RkQU}X0185BjbLqF-W{Pst^peeWh_w)C727eoxfpq0 zCX(}M(EIDp(8XECG?bgEB~$b*vIy$ht8!-xT+5H0NjM|hpx5gPdKt%0HXOa)IG(%d z==GAB_m+V&Z$PiNof9$xg!UL(rL+9>*ErShf-yW}7JMWA-nf|eSVMVr9Z~}H%uo%P zqME@sM=(jXhw1(dZTf9(J6P+Z`U(akO3}H7MQF0tfk338$r5ep)tLg@qRgL!mh&_d z;A^s-dn;AYaF6AQ_>Pw42B0msx!;CKgy5ECESqsrTWK=#WN&&xjGRk24<=Y zdtN`<@`hPPfT>KxK_?i{1#ChqL1H&?a_xizJ!m<~E&9OnGt6g0TPb@Pdm_4`g51Tb zq!_9H{hICfDyM%AT{$*9T*G<07t-_@LJobJz9wF&C__g>f?+kdn-%=}s5uHJ6IgUg zj6A#NsOPg6)`JOntsTOBaR_AJ8^yvpw0;$Bwb?)eY&*y@P^HF59$^#6;!YF^2jPxS zFwbA0TkQs3vIk7FFHp${ZoQzksASeF!5Y?rH`FkPS@B`{O7>86F$-`f zSq<*%YepSY;6YHvFnVL>bA~^Kh5Ln5Jg=oN45PcH9Cu4Knz+13Ia4flR3J^^vV+mX zw?Yr!89jVo^zcKu&&SC0w^^1iWLx_xe9Nhl*WQO7K9g#_WzqeG)o>YPNc|5}e2Uf!Q&tJ^arI_!IGlmFAT9l4&Jfj3u~P z<7p^3z_ap-y{a}IiLOjqgXt5WfIlDwe?U44$s5d+zkoWHBweBr8*gXs-vMA`U!V+4 z=QGP~DI`;}tvvCed^R1}&j#^%Wa63kXRDvWWVVKH%afnVfTnB`n?nIMwq{_69l%2e zkpw=4n?&qx`@vdnpqUUZT2)pnspo0(TN+&(gGd}h!-b>u&#f9sC|;6DwEU3sD%71B zID&*5D4SFAuJD#7wU)SOyx;%m z_lcQ2sah3*Xh**d2va9O+g=;e!*n zi6;Gx$2Rp(PQl~GEO4rewC`pADaY{*h`7u9)+D$0JsQ?Hj1LgVCzd z;G1APe9)u#lkyu(_DM9Fjac}#?l>UgXaXGyYn*_l_^)i=8q$hV*#*;aCuESNkcr|r z%XF5Ou`8fRH_^2G-c_P9yD)hbL6_@B0$D|RFsqwulP#cT1~ak6`7nj~lk69a|1}yE zHCEm%y_v-ZlIRvsGQ;mlu*v3y_+wZ61J{`OTi?bN6hgv%mI*SLCH-etq~2XP&~l{W z{S6*87pZx7MG0M2s@|*PL#r=!?t(`jWZ?|Dh#MzcdV?OKITP-nH@{`my8fo{sm{z*AE%+- zX2R3!gIdWS1zIo~zi3o`vA=ad4Fvs;M~OC$+jFWdi5)u`rXa<(0xo-lEfqdH-L{A1 zs6$dKl!e3iBD%C}G6wFFW1sVfbn^oCBBau|(F|3Q9=qzKfYir{sE5(B;UZ}Qjv6F= zB+(>!$FkXUN39k|Kle~l{t`fgCxNmifzl;|J*U9_ts(0>6-9hHOhpEb$(jGIG!Qqi z`ie5|rZx+I;xh8zbjHS~YO%?wx5UKO72yjA|o_r0w4s`?-Iy^s5z{^OnUpRw=7$==Bi zipP)pR}y*6$^WkX>n2$Q56wAfj9;N1R9Rep>jN!osVK8WYLj%Xmgyokd>c(MR}2aS~IFN6R_xeW%83nKP0iea#!*cUSF^StB2}z2mZj`hVZH7yVy>jDm-^ zSEc_u_AigWw37aNu*&ZE3FAIuhwnRA#{I=<^btE;Lr%d*>@e+rD0cYq?z&6*!#_hR zKO%=kWa?2_6r>(9_o)7VAE%e|amV|g$myv*?pz-^Hd7Ik>mPdHYyYq2*#2+7CqHs* z|LZw6++QE@&^I6P(2sZX|H`|$yZQe_Bl3Uy{q<3i@==k}`#(=B>KdzZarysWkMdDZ z`B6`qA)6QeU)NLqccW~)`yR2XCVA-?AQLI+y^j8))^-I6!XLG^sej1z`Lovc;~e#` z@bcOpmA(J(D0|hhD!2dUIqIVaW)E)WL$t*mC%5-3?!GG|8QvtD^dSws&*|uWL)!C4 zP1JveCMt=v$K*fs%zfms{}qqTT$R*G_RszPx&3qR&t1GTs+3MLyGnT2{_Yt*i{J1j zUc=}34E6uQO&I?VPC|aB)J`(v!Bu+lga_}>&O22`Cz&z323LzJyOYeXOeHZXo&2v1 zlDIPeiQg}Uw5WgEANJ3kU>^TrZ_q#2kO>!VIxQF(mft-ls+>+TfBQe;AN<`b^}8Z& zDs9lSNq$-Q2M5saejGk?*UmBr;CE%*UmZtc2Jfs&=YM|pQ6|ZZ-iOBj$v!fEV0CBd zOOO4FcQIL}3;$csgVVLwMs&KSbe5S3F8K6<$(>YXbe8#59*XeF*<=%wzv4m5MeVa>9(GAF9Lx;AR;0V5r_zqkYt9; zWFaCD5r_!tRO%LWi+zjQi_?p{JEs<1o3#rOfrvmvAR-V51OkDGh(JUj5QvBf1R??v zfj~qc&hvfqhsoq8$~z>=Q!qGkXn3+ zJL?sm&=q`UYdC5&aFEb%qDbfnzlGx$_%F}=vjWpT@v5o1a2w6`!dB z7Wd9?vaXyv^!Bs)?UO(rH!^X$=y&lI{!p(!uS>X7lpP!Fw=)uJ?RD(>srWnl-n!UF zZ;=kr!DU>Tvr%4<$>KuW-&Aa1V^cUNnEnYq!#yFey-pr_Xj_v>cYKc6Z%T;%r7c}fo}bWO;zrP!yTR@z z-*Q~<`u_U7{qvt~`<(AA@td;7cji*vhH7iRKY{a8iayfZ$v5x&=}$hwxz}~zp4hQp zckI{4KVY~1xzlufD^?eJ+3+1Hzso-C6hD@X^kRuiH~1t;hGsWdG(0Ip^^d>H6jhI+qErMcfKYc*d1+ z{gmF+!QZ71U=I&iF~Mb~yhTbR;*`~>@Fws5u8hQ2wY7#f_d4#}Au`W2%O_|0CZ0VT zt>Q#2=EZgEURvyLaz^iZZf%p9^MHq}>d*29;X@C8SCae)@p+H7vUq*GtIG#&fBfOf zSLx|ib$Ga_AGT+gdw0JS#rst`W}b>Ve5>@Tnuk&qKEy>T_dyO(@7Z;(SiVcA&w8gh zyVEBAX*yDKM@~-H@KH1S)7H+UV^QqgTzmwxxXhMlex^^`t>Mjf{ES-~<>3FS1n32{ zCD5PqPj(`k+@baUQ~ipR;8&TG=0v+%KMn8F!{N`1%a`uxr9{5UJcI(i?L{2vOG|mz zMP|6cjs4ihjFNLEJ0&M4Y59g-@7(M(=jvEIyWU-&;RP1@AP+22J!7PKyo1gA9{Z|X z@#E6Sew#PTx;N$JN~e`mkVdHwy{pTYZS00jHe57kJ1Y2ZqIBfVtj_d>Hzps|AN zy*(M7PJ6uM^{TdSPsP2E;ecd^rvuWnn%w<-9p?6ncT;#8@;`L+vmkEsneE~j zJ3c>V&z$BvX<~S9{r<-9#PzEjJOx_y;BXsOdS8_$&p!R`&ap3LA0O~pHs^!cHSzD^ z@s@d4hZ<$@RXO7<_fO%`N1x=6T>n5`va$8A$%((^m7H+Z*zhj>aOQBdTE(^q0G?_ z1ZVK2DYD@*!81}}a=|>gHqXzDqC*w9?7iVQ&X<@-%WQ?n3_s(V;SJoA9`WnaFG9(r z2>Pnm}m|3vS0 zrTjOEEo5KiPd$F)m-R383PG*8U$b6Nd%mZ=BG!Wm$3fVTT&9?l$?wL;e z%%%g>aTmDSU*T!5`^)zZ9uE5C6AqZ`MhA+a9GvG0-*IHIj1I>bR2eR^A)asWn{vVP zHE;V13m2~Qd+Wb-hg2Bz_H|jgB|;&p87#qxl~R(kSfz@Ekcjh7%#{x$kqkGEjC>Js zLzy>Wo>Y-bQm?Nz%Tir(V`v%gHuKx(+XZH4Qz>M2peF7hP;N0_JsH^+UL)7S>^61u z``AivPuj993Pz4ad8b0UYHi2FsXIn?g>{D;nH4L$tK@~Q?Iw3qWN&5WIHC&Oq)R3$ z_#{`FhD$z|9%6B_15)G$WXTLDkQY!QE1*hFz%>~G;>jwJZ%Ue(NAzl;pFEA_y-||^ zPf$VG@Ka-c1dk4*jscaJcp_qviFVvqkx7_cN9O5yOxpX~g)JoYaJ5Lc2Hfw^-$vdgX>hsvOTV8tR{fi@`oDQrl22%UO4?|7 z;m*nUJRdBDvyHXWi+c^fwZoz_L6HyHV@=qydreivxOSik22`k-x`|w26Q9mdI{Zt$p-GJi#v~=zsU#(!|?8 zVsd>+-}a%6u+S7T>o|k)HY&8AKJzlYSfCL?T znX!YDgZKyRW-2z{i&?c{ZY{_DeRGe?e<%g3m-c|f`y|WgH+aV23~i2J8xscK_%e-7 zJJ@+6&n;9wcCBbe?!o3Z@*C%$yb1Jf${%YUbZ>dK1V_Chb@OX8cP$ss3l|Gra9WPN zpz-d^lcsM+dw=DRqd`~}QF_OT7M;!?((6^9X@AwB&~mJ7u3EbwL3ADJrndPRxXfqQ zVgHve;`YGUL{N5IOM9!FS{r`Rz2m*-aQ^4iubsVV{p<5goAxU$RXZ~DTqj!G^5K~8 zyj9jJT2-rQ(+(Xk(LBuR5S8X1$_c%U{~5i0!O{nfS)ID26uR9ITA_|jN!;If+!&x5 zdfG6zS3H})&L`btXV#n-wVZZ7kBJbvJk@aE88fD)mRYFvvfH_BQ^_Sz_srheUViUf zs^Z0-QyoX`=HBhzzrs1--(Q>Sfsxox?q~MT_VYH6hcXU&_5H?vbN_a~gM*Mz9}V`0 z(mBM7N0`to2hl4>sAb1KW9JXKi!b^Ta~5!VJfs|2{o=%K_vdkK?>_1a8QWo*NtjZIzjcQw*j-!3IJQ>$fW*_kloZ=^XrseVfDbc~ywHs>c zPU~rp+LPwORcsaKr4Y4p3{sUuVVgr=dx^TX28(kGhtowhJwz|obn`U&YMdG%bKhlyWHKjPat zzO^5r7g7BGCHMULV%KfggOAJFZV*l|%FfWOwU>6k+uiN$KJ4~)mEeEL_d0;zoIn&# zHhHgu-{qdZ-a}qZIfCk3g8eDFKh=%pVaMDAc$(7Lz0cDZHwNEB?7Q5>(9mJ)+a6*g5^>H<83KS9}>R zg|94k%Z~KC?}mHf2b-rtsRjP_vr)FmN_XLg`<%y-KK0Ey z4?0t-q~XLypmRGSco;fV54FR{p?P}D-j}eSBOd9nw3w0MoXme$+UR-{mR>)%m3O2< zH0R_I1#CVGFICqa%T3Vuf{pnrNBTi~N9dZIce&pAMRq5ZZfCn$QXZWBi~b%v-{7Dc zQdRX-O{hsLIUqYnv(QvUZ)Wd<$35BXw{T=^6LuwTw0JAz#DM{u%;K_dT6`|cKl@ht zjJHs~&BTmWV>`FOq$cLHMR(gW@9oJ<4}GQhU5WE92ZHMs-sbGY%E5}<=^Z0$?I~W} zzqz(4`rG&A&3cAo)k_pX(HFS5c@5`w|BH05*Gu|dgYTNawDLzLC3l zZoAqY&t}3`(ey#CsdcrXzGP;4nBgNC4IhVN;S(JFPs53Dl6$2*G1GEJmcJ_=xDkEh zTahl-qLbIRzWr00iUJ&ovgz7%Z@wqj@nGzf4_~2qnC@kobI$a^3o_=+iG2}&U}p_p zirr;)&Y1DX&%UvH{VIPk^L-KLyrzzI`_41}pEsAc=P)P7`!NGeN$yYfGb`Gv!!5-` z8q?(V%s%hShO4=L4%_#UrzZ^a6keC^KI)gDiILU6E2qzDo~EZ?=P6s18^q2U$>2PZ z-JI2DuaHUM4>d!#My`aelkQ86<7mpSe|$!m&%CUTm4`1mF}!=ey_LPynSQDjD~;w3O~^g9+il|eg^468=lR}~I`-&H4=bPLkrc3{Vm#Lq z>d1lf6pc-A7V~g}Q!Sw-r;_n>R!SgzVoKLQ_f8HIhe?^&Ca}G8Fgq{GNYW|>-<2-k z|HVuP_u2isdyaphi2~i=;`?NH=lmR~x{eDE_J(^VZsQJn!rrjhpmFxrH(~cXDfk7Z z^WOK@tfyU&873vkksQr3dGzc(Y1^f8W1^ zR=ng$=6rHwK%3{a;KKw;axXGSgIT4il)Ir+xw2X1Id5?UV~>9$;!;LflNqqx>GtavUBOD zRkU`WYf=ZHBeaTRmpr%^nn+|w>?QY}ziX>Az4=-P?Wt|bk>O$H#cypf(l{HjnN=;- zC45f!&SLueeT?6cL0NgY~KiWs#ns|m(k>{3wV~*cN&&&SxZ*$ z9rY_Zua~oH70F-UN{z~R3eivE>I_!Oe3w@b{YxZQ3eClsuUhov#QD~@yU`@FN`|w@ zu7iu%7}DZ|=1uS0o`R#`G}5ATrxBYMtJr60Y+P^LY@`=B$v(dqGP`r`ZuPciO`{$w zC(%UP5)PL;TWfKGS5eb z6Zh$qzgPYz*a#{~H^GXf7i=5eie1b5|NW5E2i2ThCZCV8aK|k+bF-}{U6CIhjIEBR z_#JL5ahU|GPPwN9ar9J;1kfnTWL=XyT+ngGjZ{T@ zPm;I14Rj7iKi>qCqw6vByK6RzGe+x9)c6!jGrP{Jjx4y@d;@h-%qm5GM7EE%=jjid z3-iK8b5nW>6KuYn{}8x=B3XPBV_P+R|CF-+9?U!Uf@r1+3-$L8ICMTPskhh9%dsx3 zVI{t|j9oXMNOiK|?PqFMUG5uisdh}gg(_?@J0|d{Ect+W?OdDe$kwb(M)g4SW=B#@ zYxW(U!+A`pURlX6DXIHAlLz7Zzl5E?>EO48gyhl>J>SA zzSCs7uBa^?(bOm2=T!sl9evK~NkyI=X`B8I#hlX6uC<$)u6+Fo16%&;{RzZgwWr#adndDziRV<#1$61f&A^O&&gs+C zc}nWjSeh+~9A38<^yOE0&DF@*x#8?+Z{LwJ_<+OhkSX1T?#)MD%ojB?t;QSqR$)cxWM0hxY(|ta}1%qI%2jv**(S4 zHjSHYZucBL<0UE96?BXZxRP7atnbk7J?uWB;24otDs-KzFlg(r-Wm=@$La~EYEn&; zVVXmkc%fe6I9=fcZJ-j*#*Y?(#EHvh~V;tg6nJRSMv`~az z(zR6Z$<+1IZ8pQY_%A+!2aNVyAOXJcYIrTYjtiz1K7xBYfp<%W)1Y`FvGgK*2})35 z0%?SA!nd3pci}F&j>qsYJPNx&3w-;lY;dfjLe@y15Ngv?wl>lzJ%ms1#r`E~Oq&h%Erbz8ygzhI<;yD^y@L=EfVe%Wae% zUA%!G(Jzkk=zELJ4+qcq-ANGl>;lplH6L=c~b$-{5B5hAZ#VQ9Ppm z8XdaOHTzIDuW@69aEU$oa*SjB>6av@+!+~V=O7Q4B-K`!p&BThZ$TaIKpYW#sBtngI* z^0@}3zv)ppI>D><yB3pV`gxs^CCVCg;ORRApl70PoByeU5iA zcX*B6{D|RAHrdz2EIo8mrkk6$euN5*Qll}O|Ma-CDN?KR5#dSfe1y8zWy8vx*@z3}-4S*3&S!OlsWy}sGwM`rpFrKi%BPDr{s zeL4gN_j{E28q;FXxkqiR#rW3iclo4_n38dd_o2~ayfQY`;d3I(# z#5Ys%|3fK=SHm$mIVb9f-1nJvUWyrD_5@H{nB(cVQ-c4HdE??vaX;g${M@c*;YC@# zlb!OS8Bty6uF7{9`%`8dncTmU(Em9~Hzk-bCG)4;@yN=Kq##x4O8rmep8u*PsWovThtwW#HmwT}uZAI?HYV5Y3z?r4BES*)6zDmp?O?s+(&XNKBl$&nK zPcNm?NyX@+Qgl&ydZ-c|RGt2*MfcRBcY308^3pd2xE&+(OmRA<48L80ZmCSKbj`Wa zp-<}5B`KULD|ARf`lBe_QG(tmOJ`K1FRIcNHR*}&>4*k;Kh*qFY4W+;^ap-)gDSXW z43C}^lT4oHQ$jCTCxf(w_fC%#ji;as<<}}Z93iqZj?sQ4IeBu-<(Ie|*FYj~nM1lV zDMLa3wStx~$fit`dQ6a)an77^1*X+tdTejrqX`^r`bc`Mkfw42{&EN6__+17p^Cm>fA4a? zMAuxVZ~iHI)ZU-UnZPfpFP}_pS;t99o=k=X3dV( z7_-ze7}ZZX84UhZT+He=n)La*o{}JWmh`RHjqg_QqyAJlL;Te0(Y;YP% z;=gxBHJ+naxWvJ;LR~hv(QiX-GLG)af9sQT^hC0p8wdK8ZU1(Fyd#kx8%60Jr*2c+ z=2=`63iuY6*paKk+g($|t?kbC{dSKOocS3laok!`a7S789SiJeme9sm;f}6R+O{O) z+XGDaGWk23qob*83fxCOR&&+bPb#`p=fy_*|q zg@n1lesEvqmWpzx#o1L(aqeYtb|`S(l{o9F?1EgQ8EE0^aF05_&(?O11W84yOzd#o z+uUO>4|P5JJM=EJjlWeBKM8=0=?IGU z26rSrbUr8bCC*)*MR@-`=ist@r&7#OE%Z%>vg=d3wz6KQvwOB8w^Nn7smaZB&%HF@ zR&sME`MHr)?xPsDQHr}L&rMX?u+K>;E6;2^7b=6C^tAtvz5lcKfA{{M^nhsp!Zd#_ zOjG%xxWT_%bNj_by~{m)eV@1F3B7@v-hPEQB|u7rN`D{aZHdEyd9mQ-bcO5S1|WlIX2F3VnC0guWOd#P2Xg=;4G z7Ws?!)NCJ(@6(oo&e9uNK_?#oiBMsdqD<#;5-n0p5?PRm0=bN(P#G_lI#WdxEq&+T zrgz~m^8S!Hzp>z%%%xm(o+-f}N|_m>ZFD~=0|&pLyD7_Efx2{Ic#xV6g^nfw=b_Qh z97%-yL?Yt_U84ctAvOTS{n<0JriObSiHMtL`4KEfnhqv!`5j-vb2R8+I<~#lr?8jK zWlj21MPN5hEGLaL+=iIa%$fZLUgLqD z!Be=k1I*rIRyBtEN`?vi!lt!v!eQLupx>9?`9mgg1rL@0{Do$0ql!&-ffQU=+v^pZ z8%tmAu0I`mzX+rzWVoS-oYD-8#W`BZ5_5SO#-a)e(~?-=qew1|{7^E?Ba{7+$S~EI z0h2biQRJCc4M&x0PW^j}Q51d)t5mazg{v}aCe0LL>RT?ELT;$zTUp6{!==tg4cqts zjwFtjwPo1VsNW{D#~szH^S+Nv9ztcLbBHQ+n_%WJ_2mU>Rw#^2?oep*6?D-)s&&=! z`wlT{2!(|mLAzkms8XpNgC8EC5p-F3GOIYZ9Wh~;n0*=s@{;MIYPciaz&<`OS&S9J zUb)A2Wbqkd!)iQBmzgMp3Qg$G1~86Kl5<>@SbW6Vv5hlH|)c>X^6&4xVIU$XbciMdk&w#_kLU zrasex&=re*)a;rf%nB(gEoW8QC0wH5R_qFdN0>yRE)BpV2Bn`-gi1@nBIXS5w<47$ zG{tS{`F1Zk#L>P-^Gz`ok)9EGCXp)0mx-y14B#giLV>9J3@v7W zjEfiun8_IFDu{FHtwyaiEmg8i3Xc6yQbxV`Y%bP8nUb5dc>Qz9>kExu(@K}UWBwm9 z`MYHbu32v(CV!zU%h+6|FPQrq+?*}TC9+4&xtaOxZnY}6W`c?Tj5||wVg+u@I@A8G z+~T-n(jReGdM&r-05_%J>66@(g3-!yONu_%RJ63XAqPzNW6XY)+5U*zQTISfO3v?$ z$^MGFvCdq79n!J-Hv0!drh2zj;jb{!N2oWQBTK^fUogv;EkypBNxnzD>G~)aJpVdw zMPm*z&IB*CP$p|wWqR*eJMF_AkIbjlbsZX$`w zX~W7!jdhLGW`V8gH5RnIprh1Sh8jD!?zJnU#>_jdFEKR_l@_om3{Sb)GS=vqjO)=!kE^sI)7ibF6W@>6JE^**(ULn@!Z1uJWxox<`S8 zd8M8r1O}#|lW}&BCD1QXX?I{>UD-jt{7&o9J-X=}SFJlOM5Ud=*ktG)#hrEzXH(Pa zmTv40{&&Ocm;=3m);OfSYgpIj-*1;V|0vBDl3NL!`Q!1bc`b7zGL|JiH`B~D@I`qVulA-67>3l&8xEE0MRh&%G92T>CZ3I36Bh2bey{@4`O}E%y%U-ENgU% zcT9YJLuEPI@JX+TNqt$Iy2{%U(JOM^Ysp^m5x!?AXFa`F)VRBjnDYcmotC?ZMeym8 zM5u3MMfEHN`qP$PQKoh!YV?Zd%ylIrRjLLeeaB2EHls(N(R#1wqnb4Ct{8WhV3x&R z!lJuN!AIOLo%W6l{fqPNs>sCkhTK>%b-XUAZ}HJBirXtnHDyqxol{LEG-);P=BCjn zirWh>Ign^--(G(FFU3SAYD)BpX)0^__G(F$+2YF5Z?Ce^C+as? z+qk{lsLFI5tlzl3PUqB@P?UA$M5b6g`U-bg1lIgSda5K*kzK%*>JwRwKJl6=6WHod zcL2!$P*kH&^q|hLSJ|m?dzGvm+&Z_{J-62*_{tE3WfXK)*$KQ*jw&lsWfgFh8pw*^ zh3;U4%z4Zuoiu!gluCGtlKMV^ob1^pBwJ3F89{J z(vJJ+6E*roQ)QM!33_4NTUDt9oj;MC!0n_^e~L=WF_Bf^b;PYDDy_xcrQcf~S!pX$ z`Kif!OH^7)Vjfuo@n~31Ds42yL%5vTm6oDI6!%s|x*s$^J-VPC1G(?1z}y6w#Z2rv zMs;PG#V+7%E+uPoEqlXRHAR8mhJHs)c7Q^ec_!Hl!TLBmzyb4?msx9_`Vlvjz4t2_ z^VOZiGaiJ}pr~V%9!rV129h!VcB)Hu^-gwudffNBb}srE~uXJ!s_vY zXNWuMn91ry>VlF~kI+1qC6lTn8D`y#P$aBbJzv!5_s)%-x)Ml6Q}U({(kn)109HU8 zBg|AMa;8eclwN=}mL+;or%LWaT_cZd6!OvC1q{deD9mUE?ew|aYP49A+JEF%KTHKxw{fS`qj+rD(PVZc@dKE+UD<+AyWb_6SA9L~6_)+{Gqjt-(W1zn; zRjFrt(uDVLP|gYB&B#jMi2_}Wn8yY3)dTw)$SFaQ+T9>$Y(&loqJt^O{j8Ssv=VQG zn81bdKp}WE^rFAIQ!f@ zvna@Mf$pJ&_m7(=5@o_YW4f(_Zw}}Ng5bO2Tq=g@AVdSyWI^uu45v+dcytpgR2JogdN%K+O621R|9D$Cl=0XxrS@+16WQgTuV{3h1nhHq}Vgx(CM< z+j*7qW<>f#7ntx$%y?CL&ugl>MP1*cKgW(-YHg6Ek5%gpmsi{L9|5SBXHq9&Tf z4xMR_-c&qe1qV(q7>l3%yC8^Wg!&i#X#!<#MykvT+@K}dql){p$qd+$3}s*MQ+q#@ zzPv--oCYg&s{!Uf71!9P4cE+}KRUO~f>&1OD$a&$v=>bq0wZqO@r-ERwE~mz*qo}? zc*oXXkidOzn<=j*&X{WpH*GJG_n|8}#&@e{YJW25*ffhd6xkWn7kShdMVX)~&Xt;D zV@BXKBRXDlehf~eTDa(FGty5gCovd1=2@LkQat?HwfMDb@jkm2gC9x)U*6a8lHLE& znyNecg$Fu@AvNs+ef5C~2}~%&9DB5V%p7~lB%A)Vbp=Cm{>rT@mnP636K54&b$~7@ zD0xK9wuy7%@Fmr;p}gUkQGHb&mAJjv3_c{p9j@872Tp$FmCC*Fq-}e3%#x0kPKxrE zqN00H&^@d$iwBt~qM%&~GKI4A4!RPiPOs3U!|X7L_Z&)xEa+AdY^%!5-Gr05XX+lH z!nCuW!s9}K1QFs-7n1E?6VDcV(@e(dtm3qOA?Ez{MrHhs2xD>U(#>j*S$2> z`c`M;3F#B)12d>VYlg7sE7FNpU@Km@Hi1`WKq^ayw`2>{KWOdm#h4q`!3ECP$ZXL4 zg8}&elA2FH(^du*b)A|V23MH+G9b*ojWz1*99__0(~EXFj^3w+BF}{qIZp3eW{UQ3 z^JQT8TTI0P=DI8>Y!}V13f5YHujuc(;U-SOPH)iTu7Hl7fzxzBJ|o~THFgA6Kv~Y= z+*z+ho9VZ#gl1=zud|NVn*GSHWVF%%BaFyKe5RI8%KY zean;PXBJGdLvjVf*FRX1pX3sjyvNkG#?#2~G;Y8%mB?R8gU{mP+>CNwUUEu41U+zS z3C_eC_~Vezq`^WLK@~@vDkw-1t(A+JJINe!!{-Uog`C0v-tcaO;G4=g_jtj+li+Z- zAl%|vh);4YKS>1E=K@^1i)vw&t>+6q$tWB`b5KED-~*jF2f-R@>-_##AP*kA-gBG) zkNCWt@>{pRD6zkkg#4W~zW*Ycmo~_%hlwu68+6GTeh-_z!f&0DIcv8l%T{<6MX=3B l__zQwRi3G7$a@q*Ga^vQDrid=4$a3tI)C)9|Ge@W_-|p+cMkvn literal 0 HcmV?d00001 diff --git a/capstone_project/data preparation/add_row_number_to_existing_query.sql b/capstone_project/data preparation/add_row_number_to_existing_query.sql new file mode 100644 index 0000000..34d53d4 --- /dev/null +++ b/capstone_project/data preparation/add_row_number_to_existing_query.sql @@ -0,0 +1,12 @@ + +--update const set row_num = row_number() over (order by snaptime asc) +--from kai_dw.dbo.fx_spot_data_features const +WITH upd AS +( + SELECT + row_num + ,ROW_NUMBER() over (order by snaptime asc) seq + FROM kai_dw.dbo.fx_spot_data_features const +) +UPDATE upd +SET row_num = Seq diff --git a/capstone_project/data preparation/convert types to datetime.sql b/capstone_project/data preparation/convert types to datetime.sql new file mode 100644 index 0000000000000000000000000000000000000000..4eed40c1b3041a836e16fb65156248271a2a1db2 GIT binary patch literal 1162 zcmb`H+fKqj5QhKTn)nXA^8_f0ns{sU%2UKULkx0|MrjE})R$MknQavlNDP|Ew%gg+ zZ)SJ@?Z^AJHfJnWQyqodjLqiR)~Z(UpXiKs3^P_0yV0et=&!4;9k&g>EH;|+44G3+sccMT>tt{9?$HwJ z>8bKHJM#Mb9(7CADUr6u5ZCg^hAi6_ZH-#iij0waay{#wc@y8AR1aiZ#My_oTd)Et ztZvAzq!0#6lMjE8tedTXUb8WY6ufD53`osF`aQ>6l_*dG2)Asy)Oj$u)k$bK3 zx{u5|+cMIW8tJXDs%yW>37GZ=*b$zDXO7i;bXa7unRXW{bG2i98!gSE?jdz`hgR)Y zcF=UoS!Im9Ev`+j$6v%v(clwWw%ZX%3@Z0Tb)0?pN g5rnSSa>~Epl6xLg$0Os3$G*U?;R&?RUqo!_6ZdYV!vFvP literal 0 HcmV?d00001 diff --git a/capstone_project/data preparation/feature creation.sql b/capstone_project/data preparation/feature creation.sql new file mode 100644 index 0000000..22f4178 --- /dev/null +++ b/capstone_project/data preparation/feature creation.sql @@ -0,0 +1,68 @@ + + +select + + const.snaptime + , const.bid_price + , const.ask_price + , datepart(month, const.snaptime) 'month' + , datepart(year, const.snaptime) 'year' + , datepart(WEEK, const.snaptime) 'week' + , datepart(HOUR, const.snaptime) 'hour' + , datepart(day, const.snaptime) 'day' + , datepart(WEEKDAY, const.snaptime) 'weekday' + , datepart(MINUTE, const.snaptime) 'minute' + , datepart(QUARTER, const.snaptime) 'quarter' + , ROW_NUMBER() over (order by snaptime asc) 'row_num' + + + --, count(*) +into kai_dw.dbo.fx_spot_data_features + +--drop table kai_dw.dbo.fx_spot_data_features +from kai_dw.dbo.fx_spot_data_typed const + +--group by const.snaptime +--order by 2 desc + + + +/* +select top 100 + + const.year, const.month, const.day, const.hour, round(const.minute/15,0) * 15 + , max(const.bid_price) 'high' + , min(const.bid_price) 'low' + , min(const.snaptime) 'open_datetime' + , max(const.snaptime) 'close_datetime' + , count(*) + --, max(constMin.bid_price) + +from kai_dw.dbo.fx_spot_data_features const +--left join kai_dw.dbo.fx_spot_data_features constMin +-- on constMin.snaptime = max(const.snaptime) + +group by const.year, const.month, const.day, const.hour, round(const.minute/15,0) +order by const.year, const.month, const.day, const.hour, round(const.minute/15,0) +*/ + +--select round(datepart(minute, '2000-05-30 20:57:47.000') /15, 0) * 15 + +USE [kai_dw] + +GO + +CREATE NONCLUSTERED INDEX [NonClusteredIndex-20171112-181301] ON [dbo].[fx_spot_data_features] +( + [snaptime] ASC, + [row_num] ASC +)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) + +GO + + +select count(*) from kai_dw.dbo.fx_spot_data_features +select count(*) from kai_dw.dbo.fx_spot_data_typed +select count(*) from kai_dw.dbo.fx_spot_data + + diff --git a/capstone_project/data preparation/get_data.sql b/capstone_project/data preparation/get_data.sql new file mode 100644 index 0000000..bbd8a85 --- /dev/null +++ b/capstone_project/data preparation/get_data.sql @@ -0,0 +1,89 @@ + + +declare @min_date datetime = '1Jan16' +declare @max_date datetime = '1Jan17' + +/* +set @min_date = ? -- '1Jan16' +set @max_date = ? -- '1Jan17' +*/ + +set nocount on +drop table kai_dw.dbo.fx_spot_data_15_min + +--insert into kai_dw.dbo.fx_spot_data_15_min +select + --distinct + const.year, const.month, const.day, const.hour, const.weekday, round(const.minute/15,0) * 15 '15_min' + , DATETIMEFROMPARTS(const.year, const.month, const.day, const.hour, round(const.minute/15,0) * 15, 0, 0) 'datestamp' + + --, const.snaptime 'date' + --, const.bid_price + --, const.ask_price + --, const.ask_price - const.bid_price 'bo_spread' + , max(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0))'high_bid' + , min(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'low_bid' + , avg(const.ask_price - const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'avg_bo_spread' + --, min(const.snaptime) 'open_datetime' + --, max(const.snaptime) 'close_datetime' + , count(*) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'nb_ticks' + , first_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime asc rows between unbounded preceding and unbounded following) 'open_bid' + , last_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime asc rows between unbounded preceding and unbounded following) 'close_bid' + + -- this is current bid price + , const.bid_price + , constPrev.bid_price 'bid_price_prev' + , const.ask_price + , const.snaptime + , constPrev.snaptime 'snaptime_prev' + + , row_number() over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime desc) row_num_window + --, max(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime asc) 'close' + +into kai_dw.dbo.fx_spot_data_15_min +from kai_dw.dbo.fx_spot_data_features const +left join kai_dw.dbo.fx_spot_data_features constPrev + on const.row_num = constPrev.row_num - 1 + +where + const.snaptime >= @min_date + and const.snaptime <= @max_date + +--group by const.year, const.month, const.day, const.hour, round(const.minute/15,0) +order by const.year, const.month, const.day, const.hour, 6 +--order by const.snaptime + + + +--select * from #tmp1 +select +distinct + const.[year] + , const.[month] + , const.[day] + , const.[hour] + , const.[weekday] + , const.[15_min] + , const.datestamp + + + , const.high_bid + , const.low_bid + , const.avg_bo_spread + , const.nb_ticks + , const.[open_bid] + , const.[close_bid] + + -- last 5 ticks return average + + -- this is current bid price + --, const.bid_price + --, const.snaptime + + --, const.row_num_window + , avg(case when const.row_num_window <= 10 then const.bid_price / const.bid_price_prev-1 else NULL end) over (partition by const.datestamp) 'last_10_tick_avg_bid_return' + , avg(case when const.row_num_window <= 10 then const.ask_price - const.bid_price else NULL end) over (partition by const.datestamp) 'last_10_tick_avg_bo_spread' + + +from kai_dw.dbo.fx_spot_data_15_min const +order by const.datestamp diff --git a/capstone_project/data preparation/get_data_1y.sql b/capstone_project/data preparation/get_data_1y.sql new file mode 100644 index 0000000..7c8f6fd --- /dev/null +++ b/capstone_project/data preparation/get_data_1y.sql @@ -0,0 +1,54 @@ + + +declare @min_date datetime = '1Jan16' +declare @max_date datetime = '3Jan17' + +/* +set @min_date = ? -- '1Jan16' +set @max_date = ? -- '1Jan17' +*/ + +set nocount on +set ansi_warnings off -- to remove message when avg ignores the NULL + + +--select * from #tmp1 +select +distinct + const.[year] + , const.[month] + , const.[day] + , const.[hour] + , const.[weekday] + , const.[15_min] + , const.datestamp + + + , const.high_bid + , const.low_bid + , const.avg_bo_spread + , const.nb_ticks + , const.[open_bid] + , const.[close_bid] + + -- last 5 ticks return average + + -- this is current bid price + --, const.bid_price + --, const.snaptime + + --, const.row_num_window + , avg(case when const.row_num_window <= 10 then const.bid_price / const.bid_price_prev-1 else NULL end) over (partition by const.datestamp) 'last_10_tick_avg_bid_return' + , avg(case when const.row_num_window <= 10 then const.ask_price - const.bid_price else NULL end) over (partition by const.datestamp) 'last_10_tick_avg_bo_spread' + + +from kai_dw.dbo.fx_spot_data_15_min const + + +where + const.snaptime >= @min_date + and const.snaptime <= @max_date + +order by const.datestamp + + diff --git a/capstone_project/data preparation/import csv to sql server.sql b/capstone_project/data preparation/import csv to sql server.sql new file mode 100644 index 0000000..90b53ac --- /dev/null +++ b/capstone_project/data preparation/import csv to sql server.sql @@ -0,0 +1,71 @@ + + +--q1-2011 is the last file that has two description columns + +--declare @varDay as int = 1 +declare @varMonth as int = 1 +declare @varYear as int = 2000 +declare @file as nvarchar(max) +declare @sqlstring as nvarchar(max) + + + +while @varYear <> 2018 + +begin + + + set @file = 'D:\Python Projects\kai_code\capstone_project\data\DAT_ASCII_EURUSD_T_' + convert(nvarchar,@varYear) + format(@varMonth, '0#')+'.csv' + + if @file not in ('sds') + begin + + set @sqlstring = + + ' + BULK INSERT dbo.fx_spot_data FROM '+CHAR(39)+@file+char(39)+' + WITH + ( + FIELDTERMINATOR = '','', + ROWTERMINATOR = ''0x0A'', + MAXERRORS = 100, + DATAFILETYPE = ''char'', + KEEPIDENTITY + --FIRSTROW = 1 + ) + ' + print(@sqlstring) + exec(@sqlstring) + + + end + + + --set @varDay= @varDay + 1 + set @varMonth = @varMonth + 1 + if @varMonth = 13 + begin + set @varMonth = 1 + + set @varYear = @varYear + 1 + end + + + + end + + + + +--BULK INSERT dbo.fx_tick_data +--FROM 'D:\Python Projects\kai_code\capstone_project\data\DAT_ASCII_EURUSD_T_200005.csv' +----WITH (FORMAT = 'CSV'); +--WITH +--( +-- FIELDTERMINATOR = ',', +-- ROWTERMINATOR = '0x0A', +-- MAXERRORS = 100, +-- DATAFILETYPE = 'char', +-- KEEPIDENTITY +-- --FIRSTROW = 1 +--); \ No newline at end of file diff --git a/capstone_project/data preparation/screenscraper_fx_spot.py b/capstone_project/data preparation/screenscraper_fx_spot.py new file mode 100644 index 0000000..3559a0a --- /dev/null +++ b/capstone_project/data preparation/screenscraper_fx_spot.py @@ -0,0 +1,192 @@ +__author__ = 'kai.aeberli' + +from selenium import webdriver +from selenium.webdriver.common.by import By + +from selenium.webdriver.common.keys import Keys +import itertools +from collections import OrderedDict +import sys +import pandas as pd +import pymongo +import json, os + + +def Webscraping(): + + + webstr = "http://www.histdata.com/download-free-forex-historical-data/?/ascii/tick-data-quotes/EURUSD" + driver.get(webstr) + + + # get all hrefs that contain "historical" + from selenium.webdriver.common.by import By + all_links = driver.find_elements(By.CSS_SELECTOR, 'a[href*="eurusd"') + + listHref = [] + for link in all_links: + #print(link.get_attribute("href")) + listHref.append(link.get_attribute("href")) + + # travel down each of them + listHRefMonth = [] + # append months to each of them + for strLink in listHref: + for month in range(12): + listHRefMonth.append(strLink + '/' + str(month+1)) + + + + #liElements=driver.find_element_by_id("listed-islamic-securities").find_element_by_class_name("listed-securities").find_elements_by_xpath(".//li") + #lisElementsDeep = liElements.copy() + + + + + # listHref = [] + # for li in lisElementsDeep: + # href = li.find_element_by_tag_name("a").get_attribute("href") + # listHref.append(href) + + + all_values = [] + for href in listHRefMonth[1:]: + + try: + + + driver.get(href) + import time + time.sleep(2) # give time to load - need this else animations are still running + + zip_file = driver.find_element(By.CSS_SELECTOR, 'a[id="a_file"') + zip_file.click() + + + # go through months + #each_year_month_links = driver.find_elements(By.CSS_SELECTOR, 'a[href*="eurusd"') + + # securityTable = driver.find_element_by_id("currencies-all").find_element_by_tag_name("tbody").find_elements_by_xpath(".//tr") + # + # #dailyValues = [] + # + # for htmlRow in securityTable: + # #if len(htmlRow.find_elements(By.XPATH, "th")) == 0: + # + # # read out all the td elements - each is one column of that row + # + # # can i do it in one go??? + # #htmlRow.find_elements(By.CSS_SELECTOR, "td")[2].text but each needs special treatment + # row = OrderedDict() + # row["Link"] = href + # row["hash"] = htmlRow.find_element_by_xpath("td[1]").text # # + # row["name"] = htmlRow.find_element_by_xpath("td[2]").find_element_by_tag_name('a').text # name + # row["symbol"] = htmlRow.find_element_by_xpath("td[3]").text # symbol + # row["market_cap"] = htmlRow.find_element_by_xpath("td[4]").get_attribute("data-usd") # market cap + # row["price"] = htmlRow.find_element_by_xpath("td[5]").find_element_by_tag_name("a").get_attribute("data-usd") # price + # row["available_supply"] = htmlRow.find_element_by_xpath("td[6]").text # available supply + # row["volume_24h"] = htmlRow.find_element_by_xpath("td[7]").find_element_by_tag_name("a").text # low vol??? + # row["percent_change_1h"] = htmlRow.find_element_by_xpath("td[8]").get_attribute("data-usd") # % 1h + # row["percent_change_24h"] = htmlRow.find_element_by_xpath("td[9]").text # % 24h + # row["percent_change_7d"] = htmlRow.find_element_by_xpath("td[10]").text # % 7d + # row["date"] = href[-9:-1] + # + # all_values.append(row) + + + #all_values.append(dailyValues) + + except: + print("exc") + + + + + return all_values + + +def zip_extract(path): + + + import zipfile + archive = zipfile.ZipFile(path) + archive.extractall() + + + + + +def get_zipfiles(): + + global driver + #driver=webdriver.Firefox() + chromedriver_path = os.path.dirname(__file__) + driver=webdriver.Chrome(chromedriver_path+"/chromedriver.exe") + webstr = "http://www.histdata.com/download-free-forex-historical-data/?/ascii/tick-data-quotes/EURUSD" + driver.get(webstr) + + import time + time.sleep(15) + + listSecurities=Webscraping() + + import pandas as pd + df = pd.DataFrame.from_records(listSecurities) + df.to_csv("fx_spot_quotes.csv") + + for val in listSecurities: + print(val) + + + driver.quit() + + + +def run_function_on_all_files_in_dir(file_ending, file_function, dir = None): + + if dir == None: + foldername = os.path.join(os.path.dirname(__file__), "") + for base, dirs, files in os.walk(foldername): + for file in files: + if file[-3:] == file_ending: + longfilepath = os.path.join(base, file) + #zip_extract(longfilepath) + #import_content(longfilepath) + print("Processing "+longfilepath) + file_function(longfilepath) + + + + +def import_content(filepath): + + + mng_client = pymongo.MongoClient('localhost', 27017) + mng_db = mng_client['fx_prediction'] # Replace mongo db name + collection_name = 'fx_tick_data_typed' # Replace mongo db table name + db_cm = mng_db[collection_name] + + data = pd.read_csv(filepath) + + data.columns = ["date", "bid", "ask", "vol"] + #data.date = pd.to_datetime(data.date, format='%Y%m%d %H%M%S%f') + data.bid = data.bid.astype(float) + data.ask = data.ask.astype(float) + data.vol = data.vol.astype(float) + import datetime + data_json = json.loads(data.to_json(orient='records')) + for row in data_json: + row["date"] = datetime.datetime.strptime(row['date'], '%Y%m%d %H%M%S%f') + + #db_cm.remove() + db_cm.insert_many(data_json) + + +def main(): + #get_zipfiles() # goes to default download folder + #run_function_on_all_files_in_dir("zip", zip_extract) + run_function_on_all_files_in_dir("csv", import_content) + pass + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/capstone_project/kaggle_bm.ipynb b/capstone_project/kaggle_bm.ipynb new file mode 100644 index 0000000..55f379d --- /dev/null +++ b/capstone_project/kaggle_bm.ipynb @@ -0,0 +1,1864 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "I will use 1 year of data, from 1Jan16 to 1Jan17, also in 15 minute intervals, but with tick data features.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To run on EC2:\n", + "Enter the repo directory: cd aind2-cnn\n", + "Activate the new environment: source activate aind2\n", + "Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "Find this line in output and copy url to browser: \n", + "Copy/paste this URL into your browser when you connect for the first time to login with a token: \n", + "http://0.0.0.0:8888/?token=3156e...\n", + "\n", + "change the 0.0.0.0 with EC2 IP.\n", + "\n", + "you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd, numpy as np\n", + "import pypyodbc\n", + "import io, datetime\n", + "import matplotlib.colors as colors, matplotlib.cm as cm, pylab, matplotlib.pyplot as plt\n", + "\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hideCode": false + }, + "outputs": [], + "source": [ + "#kaggle dates: 2015-12-29 00:00:00 to 2016-05-31 23:45:00\n", + "min_date = \"29Dec15\"\n", + "max_date = \"31May16\"" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"mine\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29Dec15\n", + "31May16\n" + ] + } + ], + "source": [ + "print(min_date)\n", + "print(max_date)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "hideCode": true, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "\n", + "strConnDef = \"DRIVER={ODBC Driver 13 for SQL Server};SERVER=localhost,1433;DATABASE=kai_dw;uid=kai_ta;pwd=tenpen12\"\n", + "def getQueryRaw(strQuery, params=None, strConn=strConnDef, commitOn=None):\n", + "\n", + " if commitOn is None:\n", + " commitOn = False\n", + "\n", + " if params is None:\n", + " params = []\n", + "\n", + " pypyodbc.lowercase = False\n", + " conn = pypyodbc.connect(strConn)\n", + " cursor = conn.cursor()\n", + " cursor.execute(strQuery, params)\n", + "\n", + " if commitOn:\n", + " conn.commit()\n", + " return \"sql insert was successful.\", \"sql insert was successful.\"\n", + " try:\n", + " rows = cursor.fetchall()\n", + " #print(\"rows\", rows)\n", + " # print(\"PARAMS:\", params)\n", + " description = cursor.description\n", + " conn.close()\n", + " return rows, description\n", + " except:\n", + " # print(\"THE QUERY: \" + strQuery) TODO: add query\n", + " conn.close()\n", + " raise ValueError(\"There was an error fetching a sql query. Make sure the index exists for your selected dates. THE PARAMS: \", params)\n", + "\n", + "\n", + "\n", + "\n", + "def getQueryDataframe(strQuery, params=None, strConn=strConnDef, columnMustAlwaysExist=None, commitOn=None):\n", + "\n", + " rows, cursorDescription = getQueryRaw(strQuery, params, strConn, commitOn)\n", + " if commitOn:\n", + " return \"sql insert was successful.\"\n", + "\n", + " if len(rows) == 0:\n", + " print(\"No rows were returned.\")\n", + " print(\"THE PARAMS: \", params)\n", + " print(\"THE QUERY: \" + strQuery)\n", + " print(\"Rows length is zero. No records returned\")\n", + "\n", + " if columnMustAlwaysExist is None:\n", + " columnMustAlwaysExist = \"Empty\"\n", + "\n", + " columns = [\"Information\", columnMustAlwaysExist]\n", + " rows = [\n", + " [\"No results were returned.\", \"There is no data.\"]\n", + " , [\"No results were returned.\", \"There is no data.\"]\n", + " ]\n", + "\n", + " else:\n", + " # bytes conversion needed because of the linux pypyodbc bug\n", + " columns = [column[0].decode(\"cp1252\") if type(column[0]) == bytes else column[0] for column in\n", + " cursorDescription]\n", + "\n", + " results = pd.DataFrame(data=rows, columns=columns)\n", + "\n", + "\n", + " return results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# create 15 minute data - this fills the 15 minutes table\n", + "str_query = open(\"get_data.sql\", \"r\").read() # returns prepared data\n", + "str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "\n", + "df = getQueryDataframe(str_query, [min_date, max_date])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "

      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      yearmonthdayhourweekday15_mindatestamphigh_bidlow_bidavg_bo_spreadnb_ticksopen_bidclose_bidlast_10_tick_avg_bid_returnlast_10_tick_avg_bo_spread
      020161317102016-01-03 17:00:001.087231.086610.0001651421.087011.08664-2.760660e-060.000139
      1201613171152016-01-03 17:15:001.087141.086620.000149801.086661.086741.104220e-050.000154
      2201613171302016-01-03 17:30:001.086991.086710.0001411091.086741.08674-9.201579e-070.000153
      3201613171452016-01-03 17:45:001.086871.086550.000102931.086741.086627.362178e-060.000094
      420161318102016-01-03 18:00:001.086651.085230.0001134591.086621.085741.013142e-050.000093
      \n", + "
      " + ], + "text/plain": [ + " year month day hour weekday 15_min datestamp high_bid \\\n", + "0 2016 1 3 17 1 0 2016-01-03 17:00:00 1.08723 \n", + "1 2016 1 3 17 1 15 2016-01-03 17:15:00 1.08714 \n", + "2 2016 1 3 17 1 30 2016-01-03 17:30:00 1.08699 \n", + "3 2016 1 3 17 1 45 2016-01-03 17:45:00 1.08687 \n", + "4 2016 1 3 18 1 0 2016-01-03 18:00:00 1.08665 \n", + "\n", + " low_bid avg_bo_spread nb_ticks open_bid close_bid \\\n", + "0 1.08661 0.000165 142 1.08701 1.08664 \n", + "1 1.08662 0.000149 80 1.08666 1.08674 \n", + "2 1.08671 0.000141 109 1.08674 1.08674 \n", + "3 1.08655 0.000102 93 1.08674 1.08662 \n", + "4 1.08523 0.000113 459 1.08662 1.08574 \n", + "\n", + " last_10_tick_avg_bid_return last_10_tick_avg_bo_spread \n", + "0 -2.760660e-06 0.000139 \n", + "1 1.104220e-05 0.000154 \n", + "2 -9.201579e-07 0.000153 \n", + "3 7.362178e-06 0.000094 \n", + "4 1.013142e-05 0.000093 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# dates only have an effect if a subset of dates is needed.\n", + "str_query = open(\"get_data_1y.sql\", \"r\").read() # returns prepared data\n", + "str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "#print(str_query)\n", + "df = getQueryDataframe(str_query, [min_date, max_date])\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min date 2016-01-03 17:00:00\n", + "max date 2016-05-30 23:45:00\n" + ] + } + ], + "source": [ + "df.set_index('datestamp', inplace=True)\n", + "print(\"min date\", min(df.index))\n", + "print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(\"eurusd_features.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "df_res = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df_res.set_index('date', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min date 2015-12-29 00:00:00\n", + "max date 2016-05-31 23:45:00\n" + ] + } + ], + "source": [ + "# load kaggle reference dataset for comparison\n", + "df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + "#df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + "# Rename bid OHLC columns\n", + "df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open_bid', 'Close' : 'close_bid', \n", + " 'High' : 'high_bid', 'Low' : 'low_bid', 'Volume' : 'volume'}, inplace=True)\n", + "df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + "df_kaggle.set_index('date', inplace=True)\n", + "df_kaggle = df_kaggle.astype(float)\n", + "\n", + "simname = \"bm_kaggle\"\n", + "\n", + "df = df_kaggle\n", + "print(\"min date\", min(df.index))\n", + "print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# to include seasonality as a feature\n", + "if simname == \"bm_kaggle\":\n", + " df['hour'] = df.index.hour\n", + " df['day'] = df.index.weekday\n", + " df['week'] = df.index.week\n", + " df['month'] = df.index.month\n", + "\n", + " df['momentum'] = df['volume'] * (df['open_bid'] - df['close_bid'])\n", + "df['avg_price'] = (df['low_bid'] + df['high_bid'])/2\n", + "df['range'] = df['high_bid'] - df['low_bid']\n", + "df['ohlc_price'] = (df['low_bid'] + df['high_bid'] + df['open_bid'] + df['close_bid'])/4\n", + "df['oc_diff'] = df['open_bid'] - df['close_bid']\n", + "#df['bo_spread'] = df.ask - df.bid\n", + "df['period_return'] = df.close_bid / df.open_bid" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrwAAAKFCAYAAACeFkmkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUnWWZL+xfDamQpAqBzxz0QCeYSEJLiGQ40MoKCEdO\nFDQiSEKqV1AIdoM2CrLoMIW5GYXmEIki0keGlYQIdjegdLcggkabpVHEQMchDMugYpiaVIVUJdn7\n+yPZm1RSmYBK7eG61sKq/b5v7Xru2tub0l8999tQLBaLAQAAAAAAgCrV2N8LAAAAAAAAgLdC4AUA\nAAAAAEBVE3gBAAAAAABQ1QReAAAAAAAAVDWBFwAAAAAAAFVN4AUAAAAAAEBVE3gBAABlP/vZz/Lh\nD384BxxwQObPn9/fy6konZ2dGT16dB577LEkyYwZM3L11Vdv8+uKxWIWLlyYrq6uLV5zzjnn5Atf\n+EKS5Nvf/nYOPvjgt7TW733ve/njH/+YJHnssccyevTodHZ2vqXnBAAAqGTN/b0AAACgctx0003Z\nZ5998s1vfjO77bZbfy+nos2ZMyfNzdv+n1Q//elPM3v27Bx99NEZOHBgr9ecf/75KRaLb8u6nn/+\n+fzd3/1d7rvvvrz73e/OuHHj8qMf/SiDBw9+W54fAACgEgm8AACAstdeey2HHXZY9t577/5eSsXb\n3kBwe4Kstra2t7qcLX6/lpaWDB069G17fgAAgEpkpCEAAJAkOeKII7JkyZLcdNNNGT16dJJk9OjR\nueGGG/LBD34wU6ZMybp16/LMM89k5syZef/735/DDz8811xzTbq7u8vP88QTT2TatGl5//vfnxNO\nOCG33357jjjiiCS9j9ebM2dOjj322PLjrT3/8uXLM3r06Pzbv/1bPvKRj+SAAw7I9OnT8/TTT5e/\nfunSpfnMZz6TcePG5bDDDsvNN9+cJLn44ovT3t7eo+Z77rknRxxxRK+h1Ouvv57zzz8/EyZMyKRJ\nk/LAAw/0OL/xSMMXXnghp556aiZMmJCJEyfmC1/4Ql566aUsX748J554YpJk/Pjx+fa3v505c+bk\nlFNOycyZMzNhwoT88z//c4+RhiVf+9rXcvDBB+fggw/OFVdckbVr1ybpfeThxl//v//3/06SfPzj\nH8+cOXM2+5m/+OKLmTVrVj7wgQ9k/Pjx+eIXv5g///nP5ecaPXp0vv3tb+fYY4/NAQcckClTpuQX\nv/hF+fxdd92VI488MmPGjMlHPvKR/Mu//MtmPzsAAICdTeAFAAAkSe6+++7st99+Ofnkk/OjH/2o\nfPw73/lObr/99lx99dVZu3ZtZs6cmX322Sf//M//nGuuuSY//OEPc/nllydJXn755cycObMcmkyZ\nMiX/+I//uN1r6Orq2urzl9x00025/PLLc/fdd+eVV17JtddeW/7+n/70p/M//sf/yLe+9a1ceuml\n+frXv5677747U6ZMyc9//vP86U9/6lHbxz72sTQ0NGy2lksuuSSLFy/OLbfckq985Su5/fbbt7ju\nSy65JGvWrMnChQtz55135vnnn89VV12Vd7/73ZkzZ06S5MEHH8xRRx2VJPnhD3+Ygw46KAsXLsxh\nhx222fO9+uqr+dGPfpTbbrst11xzTe6///584xvf2K6f4be+9a0kyR133JGTTz65x7m1a9fmM5/5\nTJ5//vnccsstue222/LCCy/k85//fI/Q78Ybb8wXv/jF/Ou//mtaW1tz0UUXJUmeeuqpXHzxxTnr\nrLPy7//+7znxxBNzzjnn5Nlnn92utQEAAPQVgRcAAJAk2WOPPdLU1JTBgwf3GIF3/PHH573vfW/+\n8i//Mvfff38GDBiQ2bNnZ8SIEflf/+t/5ZJLLsm3vvWtdHR05Lvf/W4GDhyY2bNnZ+TIkWlvby+H\nPNtjW89fctppp2XixIkZPXp02tvb86tf/SpJ8sADD2TAgAG5/PLL8973vjeHHXZYLrroogwePDjj\nx4/P3nvvXd6p9eKLL+Y///M/M2XKlM3W0dHRkfvvvz/nnHNOxo8fn/e///259NJLt7ju5cuXp7W1\nNXvvvXf222+/XH/99TnppJPS1NSUd7zjHeWf7y677JIkGTRoUP7mb/4mI0eOzB577LHZ8zU1NeXL\nX/5y9ttvvxx22GE57bTTMm/evO36GZaeb7fddsuQIUN6nPvhD3+YZ599Ntddd13GjBmTAw44IDfc\ncEOeeuqp/PjHPy5f197ensMOOywjRozIzJkz8+tf/zrd3d15/vnn09DQkHe/+93Za6+90t7enltv\nvbXXGgAAAHYm9/ACAAC26i/+4i/Kn//ud7/L73//+4wbN658rFgsplAo5Nlnn83vfve7jB49OgMG\nDCifnzhxYn7yk59s1/fa1vOX7ps1fPjw8vnW1tbyuL/S929paSmf3zjQmjJlSr773e/mpJNOygMP\nPJBRo0blve9972brePrpp7NmzZq8733vKx8bM2ZMGht7/5vBU089NbNmzcrBBx+cv/qrv8qHP/zh\nXoO0kr322qvXXWUle+65Z971rneVH++///554YUX8tprr23xa7bH7373u/zP//k/s+eee5aPvetd\n78pee+2V3/72tznkkEOSJPvss0/5fGtra5L1u8MmTZqUsWPHZurUqRkxYkQ+9KEP5ZOf/GR23XXX\nt7QuAACAt0rgBQAAbFVpV1KyPvQ48MADc+WVV2523Z577plBgwalUCj0OL5x+NRbyFMKq7bn+V98\n8cUk6RGoJSmP4xswYECv9+MqmTJlSubOnZvly5fnO9/5zhZDqdI6N36upqamNDU19Xr9UUcdlb/6\nq7/Kww8/nB/+8If5h3/4h9x333257bbber1+4MCBW1xjks2CtdLPtLm5eZs/w63Z0vctFAo9XrdN\nf77J+p/FLrvskvnz5+cXv/hFHnnkkXz/+9/PnXfema997WvlsAwAAKA/GGkIAABst5EjR+a5557L\nu971rgwfPjzDhw/PK6+8kmuuuSZr1qzJvvvum6VLl2b16tXlr1myZEn581KQ0tnZWT62fPny7X7+\nbdlnn33ym9/8pse1X/nKV/LFL36xfP6AAw7IPffckyVLluToo4/u9Xne8573ZMCAAXniiSfKx379\n619vcQ033HBDli9fnuOOOy433HBDvvKVr+Q///M/8+KLL251J9eWvPDCC3n11VfLjx9//PHstdde\nGTx4cAYMGJDXX3+9Rxi38c9wa99v5MiR+cMf/pAXXnihfOxPf/pT/vjHP2bkyJHbXNcvfvGLzJkz\nJ+PHj8+ZZ56Z++67L/vvv3/+4z/+Y0dLBAAAeFsJvAAAgO02ZcqUNDY2ZtasWfnNb36Tn//85zn3\n3HOzZs2atLW15WMf+1gGDRqU888/P8uWLcv999+f+fPnl79+3333zS677JKbb745v//973P33Xfn\nBz/4wXY///asb926dbnkkkvy9NNP55FHHsltt92Www47rHzNJz7xidx6662ZOHFij9F+G2ttbc3x\nxx+fK6+8Mo899liefPLJXHjhhVsMk55++ulceuml+dWvfpXnnnsu999/f/baa6/sscceGTx4cJLk\nySef7BH0bc26dety1llnZenSpfne976Xm2++OZ/97GeTrB+t2NXVlVtuuSW///3v8/Wvfz1PPfVU\n+WtL3++//uu/snLlyh7P+8EPfjCjR4/OWWedlSVLluRXv/pVvvSlL2WfffbJBz7wgW2ua9CgQbn5\n5ptz++23Z/ny5fnRj36UZcuWZezYsdtVFwAAQF8ReAEAANtt8ODB+ad/+qe89tprOf744/O5z30u\nBx54YL785S8nWT++8JZbbsmf//znHHPMMfl//+//ZerUqeWvb21tzRVXXJEf/OAHOfroo/Pggw/m\n7/7u77b7+beltbU1t9xyS55++ul84hOfyMUXX5zPfe5zOfbYY8vXHHXUUVmzZk0+/vGPb/W5zj33\n3BxxxBE5/fTTM3PmzBxzzDG9jvpLkksuuSTDhw/PKaeckilTpuQPf/hDbr755jQ2NmbUqFE5/PDD\nc/LJJ2fhwoXbVcfIkSMzZsyY/PVf/3UuvPDCfOYzn8kJJ5yQZP0utXPPPTe33357pkyZkmXLluXT\nn/50+Wt33333HH/88bngggty44039njehoaGzJ07N3vssUdmzJiRk046Ke9617vyzW9+s8foyS3Z\nb7/9cu2112bhwoX56Ec/mvPPPz8nnXRSjjvuuO2qCwAAoK80FLc24B4AAOAtuvPOO/NP//RP+f73\nv9/fS0mS/Pa3v82nPvWpLFq0KK2trf29HAAAAN4Gzf29AAAAgJ3hpZdeyk9/+tPceeed+djHPibs\nAgAAqCFGGgIAAHVh1apVOe+887J69eqceeaZ/b0cAAAA3kZGGgIAAAAAAFDV7PACAAAAAACgqgm8\nAAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqa\nwAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACg\nqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAA\nAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAA\nAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAA\nAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvAC\nAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoC\nLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICq\nJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAA\nqGoCL4Aq8ctf/jIzZszY7Pj3v//9HHfccZk2bVoWLlzYDysDqB16LUDf0mcB+pY+C9Sz5v5eAADb\ndsstt+Tee+/NoEGDehxfs2ZNrrzyytx9990ZNGhQpk+fniOOOCLvfOc7+2mlANVLrwXoW/osQN/S\nZ4F6V5GB14oVK3fK99l998F55ZVVO+V77Sy1WFNSm3WpqTINHdrW30vo1bBhwzJnzpz8/d//fY/j\ny5Yty7Bhw/KOd7wjSTJhwoT89Kc/zUc/+tGtPl+xWExDQ0OfrRegGr2dvVafBdic32kB+pY+C9S7\nigy8dpbm5qb+XsLbrhZrSmqzLjWxIyZPnpzly5dvdryjoyNtbW+EdEOGDElHR8c2n6+hoWGn/XFB\nfxo6tK3m66yHGhN11ppK/eOCt7PX6rO1RZ21ox5qTOqjzyb10Wvr6T2rztpRD3Xqs7WlHt6zSX3U\nWQ81JvVV545yDy+AKtba2prOzs7y487Ozh6/xALw1um1AH1LnwXoW/osUC8EXgBVbOTIkXnuuefy\n6quvpru7Oz/72c8ybty4/l4WQE3RawH6lj4L0Lf0WaBe1PVIQ4Bqdd9992XVqlWZNm1azjnnnMyc\nOTPFYjHHHXdc9txzz/5eHkBN0GsB+pY+C9C39Fmg3jQUi8Vify9iUztr/mQtzrqsxZqS2qxLTZWp\nUudw94Vqf622Ry28J7elHmpM1Flr6qXX1strqc7aUQ911kONSf302aT2e209vWfVWTvqoU59trbU\nw3s2qY8666HGpL7q3FFGGgIAAAAAAFDVBF4AAAAAAABUNYEXAAAAAAAAVa15WxesW7cuF1xwQZ55\n5pk0NDTkkksuycCBA3POOeekoaEh++67by666KI0NjZm4cKFWbBgQZqbm3Paaafl8MMPz+rVq3P2\n2WfnpZdeypAhQ3L11Vdnjz322Bm1AQAAAAAAUAe2ucPr4YcfTpIsWLAgZ5xxRv7xH/8xV155Zc44\n44zMmzcvxWIxDz30UFasWJE77rgjCxYsyK233prrr78+3d3dmT9/fkaNGpV58+blmGOOydy5c/u8\nKAAAAAAAAOrHNnd4ffjDH86HPvShJMkf/vCH7Lrrrvnxj3+cgw46KEly6KGHZtGiRWlsbMy4cePS\n0tKSlpaWDBs2LEuXLs3ixYtzyimnlK/dnsBr990Hp7m56S2Utf2GDm3bKd9nZ6qlml7r7M6FX/9x\nZnz0LzNhvz37ezlvu1p6rUpqsSYAAAAAACrbNgOvJGlubs6sWbPyve99LzfeeGMWLVqUhoaGJMmQ\nIUOycuXKdHR0pK3tjf+je8iQIeno6OhxvHTttrzyyqo3U8sOGzq0LStWbHs91aTWavrN71/NsuX/\nnSXLXsqw/29wfy/nbVVrr1VSGzUJ7AAAAAAAqs82RxqWXH311fn3f//3zJ49O11dXeXjnZ2d2XXX\nXdPa2prOzs4ex9va2nocL10L26tYLPb4CAAAAAAAsKltBl7/8i//kptvvjlJMmjQoDQ0NGTMmDF5\n7LHHkiSPPvpoJk6cmLFjx2bx4sXp6urKypUrs2zZsowaNSrjx4/PI488Ur52woQJfVgOtaZQ7PkR\nAAAAAABgU9scafh//s//ybnnnpu//uu/ztq1a3Peeedl5MiRmT17dq6//vqMGDEikydPTlNTU2bM\nmJH29vYUi8WceeaZGThwYKZPn55Zs2Zl+vTpGTBgQK677rqdURc1orSzqyDxAgAAAAAAtmCbgdfg\nwYPzf//v/93s+J133rnZsalTp2bq1Kk9jg0aNCg33njjW1gi9axgpCEAAAAAALAN230PL+gPxfJI\nQ4EXAAAAAADQO4EXFa1Y3uHVzwsBAAAAAAAqlsCLilYolD5KvAAAAAAAgN4JvKhopR1eRhoCAAAA\nAABbIvCiohWMNAQAAAAAALZB4EVFKwVdRYkXAAAAAACwBQIvKlpph9c69/ACAAAAAAC2QOBFRXtj\npKHACwAAAAAA6J3Ai4r2xkjD/l0HAAAAAABQuQReVLTChlGGBYkXAAAAAACwBQIvKlop5yq4hxcA\nAAAAALAFAi8qWrF8D69+XggAAAAAAFCxBF5UtNIoQyMNAQAAAACALRF4UdFKOVdR4AUAAAAAAGyB\nwIuKVt7hVejnhQAAAAAAABVL4EVFK23sMtIQAAAAAADYEoEXFa0UdBlpCAAAAAAAbInAi4pWLJQC\nr35eCAAAAAAAULEEXlS0QmmkYUHiBQAAAAAA9E7gRUUrjTJ0Dy8AAAAAAGBLBF5UtDfu4dXPCwEA\nAAAAACqWwIuKVgq67PACAAAAAAC2ROBFRSsFXe7hBQAAAAAAbInAi4pW2thVtMMLAAAAAADYAoEX\nFa20s0veBQAAAAAAbInAi4pWzIaRhhIvAAAAAABgCwReVLRSziXwAgAAAAAAtkTgRUUrjzQs9PNC\nAAAAAACAiiXwoqLZ4QUAAAAAAGyLwIuKVgq6igIvAAAAAABgCwReVLRS4GWHF/WsUCjkwgsvzLRp\n0zJjxow899xzPc7fe++9+eQnP5njjjsu8+bN66dVAlQ3vRagb+mzAH1LnwVImrd2cs2aNTnvvPPy\n/PPPp7u7O6eddlre/e5352//9m+zzz77JEmmT5+eo446KgsXLsyCBQvS3Nyc0047LYcffnhWr16d\ns88+Oy+99FKGDBmSq6++OnvsscfOqIsaUR5p6B5e1LEHH3ww3d3dueuuu/L444/nqquuyle/+tXy\n+WuuuSb3339/Bg8enKOPPjpHH3103vGOd/TjigGqj14L0Lf0WYC+pc8CbCPwuvfee7Pbbrvl2muv\nzauvvppjjjkmn//853PSSSfl5JNPLl+3YsWK3HHHHbnnnnvS1dWV9vb2HHLIIZk/f35GjRqV008/\nPd/5zncyd+7cXHDBBX1eFLXDSENIFi9enEmTJiVJDjzwwCxZsqTH+dGjR2flypVpbm5OsVhMQ0ND\nfywToKrptQB9S58F6Fv6LMA2Aq+PfOQjmTx5cpL1gUNTU1OWLFmSZ555Jg899FCGDx+e8847L088\n8UTGjRuXlpaWtLS0ZNiwYVm6dGkWL16cU045JUly6KGHZu7cuX1fETWllHPJu6hnHR0daW1tLT9u\namrK2rVr09y8voXvu+++Oe644zJo0KAceeSR2XXXXbfreYcObeuT9VaaeqizHmpM1Enf6oteWy+v\npTprSz3UWQ81ViK/07559VBjos5aUy91VhJ99q1RZ+2ohxqT+qlzR2018BoyZEiS9Q3zC1/4Qs44\n44x0d3fn+OOPz5gxY/LVr341N910U/bbb7+0tbX1+LqOjo50dHSUjw8ZMiQrV67crkXtvvvgNDc3\nvdmadkgtvjFqqaaBA9e/RdcVizVVV4ma2B6tra3p7OwsPy4UCuVfWJcuXZof/OAHeeihhzJ48OCc\nffbZeeCBB/LRj350m8+7YsX29eRqNnRoW83XWQ81JuqsNZX474q+6LX18lqqs3bUQ531UGNSP302\nqf1eW0/vWXXWjnqoU5+tLfXwnk3qo856qDGprzp31FYDryT54x//mM9//vNpb2/Pxz/+8bz22mvl\nvwA48sgjc9lll2XixIk9GmpnZ2fa2tp6NNrOzs7t/suBV15ZtcOFvBm1+MaotZpWrepOsn6HYS3V\nldTea5XURk2V+Evr+PHj8/DDD+eoo47K448/nlGjRpXPtbW1ZZdddsnAgQPT1NSUPfbYI6+99lo/\nrhagOum1AH1LnwXoW/oswDYCrxdffDEnn3xyLrzwwnzgAx9IksycOTOzZ8/O2LFj85Of/CT7779/\nxo4dmxtuuCFdXV3p7u7OsmXLMmrUqIwfPz6PPPJIxo4dm0cffTQTJkzYKUVRO8ojDQtmGlK/jjzy\nyCxatCgnnHBCisVirrjiitx3331ZtWpVpk2blmnTpqW9vT0DBgzIsGHD8slPfrK/lwxQdfRagL6l\nzwL0LX0WIGkoFrd8d6TLL788DzzwQEaMGFE+dsYZZ+Taa6/NgAED8s53vjOXXXZZWltbs3Dhwtx1\n110pFov527/920yePDmvv/56Zs2alRUrVmTAgAG57rrrMnTo0G0uamftEKmF3SibqrWavnH/U/nx\nkj9lj113yZc/98H+Xs7bqtZeq6Q2aqrEHV59pdpfq+1RC+/JbamHGhN11pp66bX18lqqs3bUQ531\nUGNSP302qf1eW0/vWXXWjnqoU5+tLfXwnk3qo856qDGprzp31FZ3eF1wwQW54IILNju+YMGCzY5N\nnTo1U6dO7XFs0KBBufHGG3d4UVBSymMLW85lAQAAAACAOtfY3wuArSlNMtzKRkQAAAAAAKDOCbyo\naOUdXoV+XggAAAAAAFCxBF5UNDu8AAAAAACAbRF4UdGKBffwAgAAAAAAtk7gRUUrBV12eAEAAAAA\nAFsi8KKilXKugrwLAAAAAADYAoEXFa28w0viBQAAAAAAbIHAi4pmhxcAAAAAALAtAi8qWmmHV8E9\nvAAAAAAAgC0QeFHRiqWRhgIvAAAAAABgCwReVLRCoRR4Cb0AAAAAAIDeCbyoaBtnXOIuAAAAAACg\nNwIvKtrGu7pKu70AAAAAAAA2JvCiom2ccZloCAAAAAAA9EbgRUXbeIeXe3gBAAAAAAC9EXhR0Qo9\nAq9+XAgAAAAAAFCxBF5UtI1HGhYkXgAAAAAAQC8EXlQ0Iw0BAAAAAIBtEXhR0QqFjT6XdwEAAAAA\nAL0QeFHRirHDCwAAAAAA2DqBFxWtsNG2Lju8AAAAAACA3gi8qGgbb+qywwsAAAAAAOiNwIuKtnHI\nJe8CAAAAAAB6I/CiohWK7uEFAAAAAABsncCLirZxxlVwEy8AAAAAAKAXAi8q2sY7vAr9uA4AAAAA\nAKByCbyoaBvv8DLSEAAAAAAA6I3Ai4rW8x5e/bgQAAAAAACgYgm8qGjFje7b5R5eAAAAAABAbwRe\nVLSCkYYAAAAAAMA2CLyoaEUjDQEAAAAAgG1o3trJNWvW5Lzzzsvzzz+f7u7unHbaaXnve9+bc845\nJw0NDdl3331z0UUXpbGxMQsXLsyCBQvS3Nyc0047LYcffnhWr16ds88+Oy+99FKGDBmSq6++Onvs\nscfOqo0asPEOr4LECwAAAAAA6MVWd3jde++92W233TJv3rx84xvfyGWXXZYrr7wyZ5xxRubNm5di\nsZiHHnooK1asyB133JEFCxbk1ltvzfXXX5/u7u7Mnz8/o0aNyrx583LMMcdk7ty5O6suaoQdXgAA\nAAAAwLZsdYfXRz7ykUyePDnJ+uChqakpTz75ZA466KAkyaGHHppFixalsbEx48aNS0tLS1paWjJs\n2LAsXbo0ixcvzimnnFK+VuDFjtp4V5cdXgAAAAAAQG+2GngNGTIkSdLR0ZEvfOELOeOMM3L11Ven\noaGhfH7lypXp6OhIW1tbj6/r6Ojocbx07fbYfffBaW5uelMF7aihQ9u2fVGVqamaNsq4dtttcG3V\nlhp7rTaoxZoAAAAAAKhsWw28kuSPf/xjPv/5z6e9vT0f//jHc+2115bPdXZ2Ztddd01ra2s6Ozt7\nHG9ra+txvHTt9njllVU7WsebMnRoW1as2L4QrlrUWk3rNrqJ18svd2bFoG2+ZatGrb1WSW3UJLAD\nAAAAAKg+W72H14svvpiTTz45Z599dj71qU8lSd73vvflscceS5I8+uijmThxYsaOHZvFixenq6sr\nK1euzLJlyzJq1KiMHz8+jzzySPnaCRMm9HE51JqNpxgaaQgAAAAAAPRmq9tlvva1r+W1117L3Llz\ny/ffOv/883P55Zfn+uuvz4gRIzJ58uQ0NTVlxowZaW9vT7FYzJlnnpmBAwdm+vTpmTVrVqZPn54B\nAwbkuuuu2ylFUTuKG4Vc8i4AAAAAAKA3Ww28LrjgglxwwQWbHb/zzjs3OzZ16tRMnTq1x7FBgwbl\nxhtvfIsDR9vhAAAgAElEQVRLpF4Vi8WNb+HVI/wCAAAAAAAo2epIQ+hPm+ZbBXkXAAAAAADQC4EX\nFWvTe3a5hxcAAAAAANCbrY40hP606QhDIw2pV4VCIRdffHF+/etfp6WlJZdffnmGDx9ePv/EE0/k\nqquuSrFYzNChQ3Pttddm4MCB/bhigOqj1wL0LX0WoG/pswB2eFHBNh1hKO+iXj344IPp7u7OXXfd\nlbPOOitXXXVV+VyxWMzs2bNz5ZVXZv78+Zk0aVKef/75flwtQHXSawH6lj4L0Lf0WQA7vKhghYId\nXpAkixcvzqRJk5IkBx54YJYsWVI+98wzz2S33XbLN7/5zfz2t7/NYYcdlhEjRmzX8w4d2tYn6600\n9VBnPdSYqJO+1Re9tl5eS3XWlnqosx5qrER+p33z6qHGRJ21pl7qrCT67FujztpRDzUm9VPnjhJ4\nUbE2zbcKhf5ZB/S3jo6OtLa2lh83NTVl7dq1aW5uziuvvJJf/OIXufDCCzNs2LCceuqpGTNmTD7w\ngQ9s83lXrFjZl8uuCEOHttV8nfVQY6LOWlOJv5j3Ra+tl9dSnbWjHuqshxqT+umzSe332np6z6qz\ndtRDnfpsbamH92xSH3XWQ41JfdW5o4w0pGIV3MMLkiStra3p7OwsPy4UCmluXv/3CrvttluGDx+e\nkSNHZsCAAZk0aVKPv+ICYPvotQB9S58F6Fv6LIDAiwq2acC16T29oF6MHz8+jz76aJLk8ccfz6hR\no8rn/uIv/iKdnZ157rnnkiQ/+9nPsu+++/bLOgGqmV4L0Lf0WYC+pc8CGGlIBdt0Q5cdXtSrI488\nMosWLcoJJ5yQYrGYK664Ivfdd19WrVqVadOm5R/+4R9y1llnpVgsZty4cfnQhz7U30sGqDp6LUDf\n0mcB+pY+C5A0FCswRdhZ8ydrcdZlLdX0akdXvvSVReXHp35i/xz0l3v244reXrX0WpXUQk2VOIe7\nr1T7a7U9auE9uS31UGOizlpTL722Xl5LddaOeqizHmpM6qfPJrXfa+vpPavO2lEPdeqztaUe3rNJ\nfdRZDzUm9VXnjjLSkIq1+Q6v/lkHAAAAAABQ2QReVKzCJjftqsDNiAAAAAAAQAUQeFGxNg245F0A\nAAAAAEBvBF5UrMKmjyVeAAAAAABALwReVKzihpGGTY0NSQReAAAAAABA7wReVKxSwNW4IfCSdwEA\nAAAAAL0ReFGxNmzwKu/w2vSeXgAAAAAAAInAiwpWCrjeGGnYn6sBAAAAAAAqlcCLilXa0NXU1Ljh\nscQLAAAAAADYnMCLilUo9NzhJe8CAAAAAAB6I/CiYhWz6UhDiRcAAAAAALA5gRcVq1BY/7G8w8tN\nvAAAAAAAgF4IvKhYpXt2NZZ3ePXnagAAAAAAgEol8KJilSYYNjWuf5uWRhwCAAAAAABsTOBFxSrd\ns6s80lDeBQAAAAAA9ELgRcUqjTRsatow0tBMQwAAAAAAoBcCLypWKeB6Y4eXwAsAAAAAANicwIuK\nVdjw0UhDAAAAAABgawReVKziJvfwKki8AAAAAACAXgi8qFiFDVu8mprWv03dwgsAAAAAAOiNwIuK\nVdrh1djgHl4AAAAAAMCWCbyoWKURhk1N7uEFAAAAAABs2XYFXr/85S8zY8aMJMlTTz2VSZMmZcaM\nGZkxY0a++93vJkkWLlyYY489NlOnTs3DDz+cJFm9enVOP/30tLe357Of/WxefvnlPiqDWlQKuEr3\n8LLDCwAAAAAA6E3zti645ZZbcu+992bQoEFJkieffDInnXRSTj755PI1K1asyB133JF77rknXV1d\naW9vzyGHHJL58+dn1KhROf300/Od73wnc+fOzQUXXNB31VBTSgFXU2PpHl4CLwAAAAAAYHPbDLyG\nDRuWOXPm5O///u+TJEuWLMkzzzyThx56KMOHD895552XJ554IuPGjUtLS0taWloybNiwLF26NIsX\nL84pp5ySJDn00EMzd+7c7VrU7rsPTnNz01soa/sNHdq2U77PzlQrNbX+4bUkyZDBLUmSXXZpqZna\nSmqtnqQ2awIAAAAAoLJtM/CaPHlyli9fXn48duzYHH/88RkzZky++tWv5qabbsp+++2XtrY3/k/u\nIUOGpKOjIx0dHeXjQ4YMycqVK7drUa+8smpH63hThg5ty4oV27emalFLNf33f7+eJOnuXpsk6VzV\nVTO1JbX1WpXUQk0COwAAAACA6rNd9/Da2JFHHpkxY8aUP3/qqafS2tqazs7O8jWdnZ1pa2vrcbyz\nszO77rrr27Rs6kGhsGGkYVPpHl79uRoAAAAAAKBS7XDgNXPmzDzxxBNJkp/85CfZf//9M3bs2Cxe\nvDhdXV1ZuXJlli1bllGjRmX8+PF55JFHkiSPPvpoJkyY8PaunppWCriaGtcHXu7hBQAAAAAA9Gab\nIw03dfHFF+eyyy7LgAED8s53vjOXXXZZWltbM2PGjLS3t6dYLObMM8/MwIEDM3369MyaNSvTp0/P\ngAEDct111/VFDdSoUsBVCrzkXQAAAAAAQG+2K/Dae++9s3DhwiTJ/vvvnwULFmx2zdSpUzN16tQe\nxwYNGpQbb7zxbVgm9eiNwGv9RsSixAsAAAAAAOjFDo80hJ1l05GGAi8AAAAAAKA3Ai8qVnmHV9OG\ne3gV+nM1AAAAAABApRJ4UbHs8AIAAAAAALaHwIuKVQq4GjcEXgV5FwAAAAAA0AuBFxWrsCHhampc\n/zYtRuIFAAAAAABsTuBFxdp0pGHBFi8AAAAAAKAXAi8qVmmkYVNT6R5e/bkaAAAAAACgUgm8qFil\nDV1NDaXAS+IFAAAAAABsTuBFxbLDCwAAAAAA2B4CLypWoRR4NTb2eAwAAAAAALAxgRcVqzzSsNEO\nLwAAAAAAYMsEXlSs8kjDDYGXHV7Uq0KhkAsvvDDTpk3LjBkz8txzz/V63ezZs/PlL395J68OoDbo\ntQB9S58F6Fv6LIDAiwpW2LDFq9EOL+rcgw8+mO7u7tx1110566yzctVVV212zYIFC/Kb3/ymH1YH\nUBv0WoC+pc8C9C19FiBp7u8FwJaUAq6mJju8qG+LFy/OpEmTkiQHHnhglixZ0uP8z3/+8/zyl7/M\ntGnT8vTTT2/38w4d2va2rrNS1UOd9VBjok76Vl/02np5LdVZW+qhznqosRL5nfbNq4caE3XWmnqp\ns5Los2+NOmtHPdSY1E+dO0rgRcX5wePPJ0me/dNrSZIlT7+c5I0Rh1BvOjo60traWn7c1NSUtWvX\nprm5OX/+859z00035Stf+UoeeOCBHXreFStWvt1LrThDh7bVfJ31UGOizlpTib+Y90WvrZfXUp21\nox7qrIcak/rps0nt99p6es+qs3bUQ536bG2ph/dsUh911kONSX3VuaMEXlSsUr7V0NDzMdSb1tbW\ndHZ2lh8XCoU0N69v3//2b/+WV155JX/zN3+TFStWZPXq1RkxYkSOPfbY/louQFXSawH6lj4L0Lf0\nWQCBFxWslG+9cQ8viRf1afz48Xn44Ydz1FFH5fHHH8+oUaPK50488cSceOKJSZJvf/vbefrpp/3C\nCvAm6LUAfUufBehb+iyAwIsKVgq4GjZs8SoUBF7UpyOPPDKLFi3KCSeckGKxmCuuuCL33XdfVq1a\nlWnTpvX38gBqgl4L0Lf0WYC+pc8CCLyoYOWRhhv+KfTnYqAfNTY25tJLL+1xbOTIkZtd56+zAN48\nvRagb+mzAH1LnwVIGvt7AbAlxZR2eK3/x0hDAAAAAACgNwIvKlZ5h9eGxEveBQAAAAAA9EbgRcVr\naEgaG9zDCwAAAAAA6J3Ai4pVGmHYsOE/7fACAAAAAAB6I/CiYm080tA9vAAAAAAAgC0ReFGx3gi8\n1v9joiEAAAAAANAbgRcVq5g3Eq6GhgY7vAAAAAAAgF4JvKhYPUYaJikIvAAAAAAAgF4IvKhYpR1d\n60caNkTeBQAAAAAA9EbgRcUq5VsNaUhDQ4w0BAAAAAAAeiXwomK9MdJw/Q4vIw0BAAAAAIDeCLyo\nXBuPNHzjIQAAAAAAQA/bFXj98pe/zIwZM5Ikzz33XKZPn5729vZcdNFFKRQKSZKFCxfm2GOPzdSp\nU/Pwww8nSVavXp3TTz897e3t+exnP5uXX365j8qgFhlpCAAAAAAAbI9tBl633HJLLrjggnR1dSVJ\nrrzyypxxxhmZN29eisViHnrooaxYsSJ33HFHFixYkFtvvTXXX399uru7M3/+/IwaNSrz5s3LMccc\nk7lz5/Z5QdSOzUca9u96AAAAAACAyrTNwGvYsGGZM2dO+fGTTz6Zgw46KEly6KGH5sc//nGeeOKJ\njBs3Li0tLWlra8uwYcOydOnSLF68OJMmTSpf+5Of/KSPyqAWlXd0NawPvdzDCwAAAAAA6E3zti6Y\nPHlyli9fXn5cLBbT0NCQJBkyZEhWrlyZjo6OtLW1la8ZMmRIOjo6ehwvXbs9dt99cJqbm3aokDdr\n6NC2bV9UZaq9prbWXZIkTU3r89hdW3dJQ9bfyKvaa9tUrdWT1GZNAAAAAABUtm0GXptqbHxjU1hn\nZ2d23XXXtLa2prOzs8fxtra2HsdL126PV15ZtaPLelOGDm3LihXbF8JVi1qoaWXH6iTJmrXr7w/X\n0dmVhoZk7bpC1de2sVp4rTZVCzUJ7AAAAAAAqs82Rxpu6n3ve18ee+yxJMmjjz6aiRMnZuzYsVm8\neHG6urqycuXKLFu2LKNGjcr48ePzyCOPlK+dMGHC27t6alpppGFDw/rdXSYaAgAAAAAAvdnhHV6z\nZs3K7Nmzc/3112fEiBGZPHlympqaMmPGjLS3t6dYLObMM8/MwIEDM3369MyaNSvTp0/PgAEDct11\n1/VFDdSoUr7VkKSxoSGFgsQLAAAAAADY3HYFXnvvvXcWLlyYJHnPe96TO++8c7Nrpk6dmqlTp/Y4\nNmjQoNx4441vwzKpSxvyrQ23jEsxAi8AAAAAAGBzOzzSEHaWjUcaNjQ0xAYvAAAAAACgNwIvKlYx\n68cZJut3eRXdxAsAAAAAAOiFwIuKVSwWy4lXQxpSKPTvegAAAAAAgMok8KJiFYvrxxkmdngBAAAA\nAABbJvCiYm0+0rA/VwMAAAAAAFQqgRcVq1gspmGjkYZ2eAEAAAAAAL0ReFGxNhtpGGMNAQAAAACA\nzQm8qGhvjDRc/5m8CwAAAAAA2JTAi4q1fqThGzu8kqQg8QIAAAAAADYh8KJirR9puP7zho2OAQAA\nAAAAbEzgRcVav8Nr/eelnV52eAEAAAAAAJsSeFGx1kdbPUcaFgVeAAAAAADAJgReVKweIw03fCLv\nAgAAAAAANiXwomIVi8Xyvbs2PgYAAAAAALAxgRcVq5g3dnY1lu/h1Y8LAgAAAAAAKpLAi4rVc6Th\n+o8FO7wAAAAAAIBNCLyoYBuNNNzwibwLAAAAAADYlMCLirV+h9f6pKthQ+LlHl4AAAAAAMCmBF5U\nrN5GGsq7AAAAAACATQm8qFjFvJFulXZ6FQoSLwAAAAAAoCeBFxXl5ddW55HH/5COVWt6jjQs7/Aq\n5idL/pQ/vtTZj6sEAAAAAAAqSXN/LwA29uSzL+e5P63MnnsMSrFYfGOk4Ybz/93ZnVvufyof2H/P\nfPbj+/fbOmFnKhQKufjii/PrX/86LS0tufzyyzN8+PDy+fvvvz+33XZbmpqaMmrUqFx88cVpbPT3\nDAA7Qq8F6Fv6LEDf0mcB7PCiwnSvKSRJ1qxd/7EhpR1e6z92rl6bJFm14SPUgwcffDDd3d256667\nctZZZ+Wqq64qn1u9enVuuOGG3H777VmwYEE6Ojry8MMP9+NqAaqTXgvQt/RZgL6lzwIIvKgw3WvX\nJVkfeBWKb4wyLH1c3b12w3WF/lge9IvFixdn0qRJSZIDDzwwS5YsKZ9raWnJggULMmjQoCTJ2rVr\nM3DgwH5ZJ0A102sB+pY+C9C39FkAIw2pMD12eG080nDDJ13d6zZct65f1gf9oaOjI62treXHTU1N\nWbt2bZqbm9PY2Jh3vvOdSZI77rgjq1atyiGHHLJdzzt0aFufrLfS1EOd9VBjok76Vl/02np5LdVZ\nW+qhznqosRL5nfbNq4caE3XWmnqps5Los2+NOmtHPdSY1E+dO0rgRUUpBVlr1hZSLL4RdJXu4bV6\nw/muNXZ4UT9aW1vT2dlZflwoFNLc3Nzj8bXXXptnnnkmc+bMKf/3ZltWrFj5tq+10gwd2lbzddZD\njYk6a00l/mLeF722Xl5LddaOeqizHmpM6qfPJrXfa+vpPavO2lEPdeqztaUe3rNJfdRZDzUm9VXn\njjLSkIrStSHQ6l5bSDFvBF2lfweXd3ittcOL+jF+/Pg8+uijSZLHH388o0aN6nH+wgsvTFdXV+bO\nnVseTwDAjtFrAfqWPgvQt/RZADu8qDDlkYalkYWbjDRc3V3a4SXwon4ceeSRWbRoUU444YQUi8Vc\nccUVue+++7Jq1aqMGTMmd999dyZOnJhPf/rTSZITTzwxRx55ZD+vGqC66LUAfUufBehb+iyAwIsK\nU9q51b12ffC12UjD7rXrzxtpSB1pbGzMpZde2uPYyJEjy58vXbp0Zy8JoObotQB9S58F6Fv6LICR\nhlSYUpBVupdXeZrwhuCrPNLQDi8AAAAAAGADgRcVpXwPrzU9d3g1bki+Vm84v65QzNp1dnkBAAAA\nAABvYaThJz/5ybS2tiZJ9t5775x66qk555xz0tDQkH333TcXXXRRGhsbs3DhwixYsCDNzc057bTT\ncvjhh79ti6f2lEYarllXCrzS42PpHl5JsmZtIc1NMlsAAAAAAKh3byrw6urqSrFYzB133FE+duqp\np+aMM87IwQcfnAsvvDAPPfRQDjzwwNxxxx2555570tXVlfb29hxyyCFpaWl52wqgtmx6b66GTT7r\n2ijw6l6zLoMGug0dAAAAAADUuzeVFixdujSvv/56Tj755KxduzZf+tKX8uSTT+aggw5Kkhx66KFZ\ntGhRGhsbM27cuLS0tKSlpSXDhg3L0qVLM3bs2Le1CGpH1yb35iqNNHxjh9faLV4LAAAAAADUpzcV\neO2yyy6ZOXNmjj/++Dz77LP57Gc/m2KxWA4nhgwZkpUrV6ajoyNtbW3lrxsyZEg6Ojq2+fy77z44\nzc1Nb2ZpO2zo0LZtX1RlqrmmteuKPR4PaG5KW+su5ffWmo3OD2kbVNW1JtX9Wm1JLdYEAAAAAEBl\ne1OB13ve854MHz48DQ0Nec973pPddtstTz75ZPl8Z2dndt1117S2tqazs7PH8Y0DsC155ZVVb2ZZ\nO2zo0LasWLFyp3yvnaXaa1rdtbbH43Xr1mVlx+ryDq/O19eUz/3pz69lSHNDqlW1v1a9qYWaBHYA\nAAAAANWn8c180d13352rrroqSfLCCy+ko6MjhxxySB577LEkyaOPPpqJEydm7NixWbx4cbq6urJy\n5cosW7Yso0aNevtWT83pXrvJmMLSSMPSPbzWbHwPr573+wIAAAAAAOrTm9rh9alPfSrnnntupk+f\nnoaGhlxxxRXZfffdM3v27Fx//fUZMWJEJk+enKampsyYMSPt7e0pFos588wzM3DgwLe7BmrEukJh\ns5GGpf1bpR1ea9a+EXJ1u4cXAAAAAACQNxl4tbS05Lrrrtvs+J133rnZsalTp2bq1Klv5ttQZ3rb\nsVUKuhp6mVzYJfACAAAAAADyJkcaQl/oXttb4NXQ42OP6400BAAAAAAAIvCigpR2bO3S0lQ+1rDJ\nx41tdr8vAAAAAACgLgm8qBile3INGvjGpM2t7fD6r+de2TkLAwAA4P9n796j9Krre/G/Z5655DIh\nARLAKkFIiS0iJwR7sTS9aFPq5dAl+UEQDf39Vs+hnrVae1qOtqeVNL8fiGnRc1wipbWHKuWoSUQs\nhKOoCJaKiBANGBCQEIIg5AKZJDOTzGTy7N8fk4wJhAQy82RmP/v1WotFnvv3M3vznqz15rsfAAAY\n1xRejBt7L1G47w6vHOQ7vAZ3u6QhAAAAAACg8GIc2bvDa9I+O7xaD1B47f3z4O7iSC0NAAAAAAAY\nxxRejBt7v5Nr30sa7t3i1bLPt3h1tg/tALPDCwAAAAAASBRejCPDlzTs/NklDVsOsMOrc88lD3fb\n4QUAAAAAAEThxTjSv+eShu1ttbTV9uzsGi68ftZ4TbDDCwAAAAAA2IfCi3Fj73d4tdVa0t42dGru\nvZThgXZ4Ddbt8AIAAAAAABRejCP9ey5p2FZrTXvbUKm1b9G114ThSxra4QUAAAAAACi8GEcGBod2\neNVa99nhdYBLGra31dLa4pKGAAAAAADAEIUX48bAfju89p6aQ0VX6z47vdpqLanVWjO42yUNAQAA\nAAAAhRdj7LkX+vIvtz2SgV279/sOr449hddw0bXPDq9arTVttZbhHV73P7Ixjz615YiuGwAAAAAA\nGD8UXoypf3/wp/nW6p/m4fVbhi9p2FZrTXttz6m5p+ja96u82lpb0lZrze7dRer1Ip9e+VCWffPx\nI7xyAAAAAABgvFB4Maa6tw8kSbb29O9zScOWtLfv+Q6vPc9r2e+Shq2ptbZksF7P9r6BDO4usmX7\nziO5bAAAAAAAYBxReDGmtvb2D/27ZyD9ey5pWKu1pr2tluRnRVfLPo1XW21oh9fgYJHunqHCbHvf\nruyu14/gygEAAAAAgPFC4cWY2rqnsOruHdjvO7za93yH196i68U7vNpqrakXRbZsHyrMiiTbencd\nuYUDAAAAAADjhsKLMdXds3eHV3/6B+tpaUlaW1rSUXvRJQ33+RavWq0lbbWh2xu7d7zkvQAAAAAA\ngGppG+sFUF27Buvp3TmYJOnuGcjuej0d7bW0tOy7wyv7/TvZ8x1eewqxTVt+Vnjt3S0GAAAAAABU\nix1ejJm939+1988Du+rp3FN0dU1qT5JM6BjqZPf/Dq9WO7wAAAAAAIBhdngxZvbdkbW1ZyBHTe5I\nR3stSTJ96oS8+zdOTtfEoeJrnw1eaau1pG3PDq+NW/qG71d4AQAAAABANdnhxZjp3qfw2l0v0t3T\nn8Hd9SRDO7qmTOoY3tm17yUNa62tqbUO3bF5687h+7f2uqQhAAAAAABUkcKLMbP3koYd7UOnYVFk\n+Lu5Xmz/Sxr+bIfX7nqRiZ1Du8L27hgriiJFUTRs3QAAAAAAwPii8OKIemHbzqz+8eYkP9vhdcxR\nE4Yfb2ttOeDr9t3hte93eCXJCcdMTlutdfiShld/6Ye58oZVo710AAAAAABgnFJ4cUStuPPxfPJL\nD+bZ53uzdU9BdexRncOPt73cDq893+LV2pK0trbs97xpXR2Z1tUxfEnENeuez9qfbsv2Ppc4BAAA\nAACAKlB4cUStfWbb8L/3fufWvju8arWD7/Dae8nDfS99OLWrM9O6OrOtd1ee3tSTwd1DlzNcv2H7\nqK8fAAAAAAAYfxReHDHbegfy/LadSZJ1z21Ld09/2motOWpSx/BzXm6H154NXsOXMtz3kobd23dm\nYHB36kWRlXc/OXz/+ucUXgAAAAAAUAUKLxrqx09357sPP5ckWffstuH71/10W7b2DGRiZ1smdrYN\n39/2Mju8Wlv2Fl2t+/07yX7v8fSmnuH7128Y+vOadc9n5d3rUhTFaIwEAAAAAACMM22HfgocnqIo\n8k8rH87mrTtz6munDRdetdaW/GRjT+pFkRnTJmZCZy0tSYocZIfXHrXWl+7wmtjZlkkDu5Mkm7t3\nptbaks72WtY/ty1FUeRzX38sG7bsyOmnHJuTX3NUQ2YFAAAAAADGjh1ejKp71jyXex/ekCR54qfb\nsnnr0CUM73tkY9Y9O3SJwbmzZ2R3vUhRDJVVrS0tmdBZS7L/d3Ptq+XFO7xaD7zDq0jy2umTc/Jr\npmRT98488lR3NmzZMbyGJHn86a254WuPpn/X7tEcHQAAAAAAGCMKL0bkqQ3bs7V3IEmy4YW+XPd/\nfpT/devD2bx1x3DxlST3Prwh657dlulTJ+SMWccO3z9xT9G1t7Bqaz3wJQ1bhr/Da+iUrb1oh9e+\nl0WcecKUzDxhSpLkxm+tHb7/vh9tTL1e5LO3PZI7f/BM7vz+M0mSHf2Due+Rjdk1WD+8HwIAAAAA\nADCmFF68rKIo8twLfanXh777akf/YL5w+4/z8JMvJEkefWpL/t/P3pcrrr8/vTt35Za716VeFNld\nL3Lzt9flvkc2ZvKEtrzx5GOyfsP29OzYlckT27Np647hz9hbVA0XXofc4bX/Tq+WJBM6a5k0oTb8\n3NefMCWvP2Ho0oXrnt2Wzo5a3vwLx+X5bTuz/I7H89PNvUmSr967PjsHBvOPtzyUa/91TVbc8XiS\n5OmNPfnEFx/Ij/bMmSTrn9uenQODI/hpAgAAAAAAjdLw7/Cq1+tZsmRJHn300XR0dOSKK67ISSed\n1OiPHfeKPcXQ3uKmKIrsGqyno702fLtnx650TWxPS0tLiqLI81t3ZmpXZ9rbWlMURZ7Z3JujJnXk\nqMkdKYoiTz63PX2DRSa1taReL/LQky9k12A9Z8w6Nq0tLbn/0Y15YVt/3nL6CZk8oS3/tvqneWT9\nlpzzyzPz+tdMyS13P5l/f/Cn+d1fOjFvnfu6fO4bj+XbDz6bX5g5Lf/PO34x/7Ty4Tz+zNbc+YOn\n83+//Rdy47fWpiiS57ftzNU3PpgfP701r5vRld31eu7+4XNJkt+c83OZ/bppeWjdUHk0feqEHDW5\nI+211uzaXc+kFxVe++7c2tfee/de8nBv8TWhs5bWlpb9dng9v21nenfuGr79c8dOytmnn5D7H9mY\nb9z/k7S2tORXTjs+9zz0XD62bHWe+OnQd4t98/tP5/hjJub/3LM+W3sH8shTW3Lpwjn53o825pur\nns4Jx0zKn/5fZ2Tztp35319/LK85ZlIWnfOGFEWRf/33dWlra83vn/36TJ7Ynnsf3pAd/YP5tdNP\nyEqgsiEAACAASURBVMTOtjz+zNZs6t6ROT8/I5MmtKW7pz/PbNmR6V0d6WyvZdfg7vx0c19+bvqk\ntLfVUhRFNm3dmWOmdA6fI707d6WzvTZ8e+fAYGqtrWlvG7pdL4aKydaWA/8MKa9D5egdd9yRa665\nJm1tbVmwYEEuuOCCMVwtQDnJWoDGkrMAjSVnAY5A4XX77bdnYGAgy5cvz+rVq7N06dJce+21o/b+\n9aLINTf9MN09Aznu6IkZ2LU7m7p3pLWlJccdPTFpacnGF/qyu17kuKMnpr2tNRu27MjOgd153XFd\naW9tyYYtO7K9byAzpk3MtK6ObOremS3bd+aYoyZk+tQJeX7rzmzs3pFpXZ05/phJ2drTn2ef70vX\nxPb83PTJ6du5K09v6k1He2tOPG5Kdg3W89SG7SmSzDy+K22trVn37Lbs3LU7Jx0/JZMntGXtM1uz\nfceunHhcV6ZPnZh1z27Llu39OeGYSXnt9Ml5Ys/tqZM7cvJrjspTG7fnhW396Wyv5dQTp+bZzb15\nflt/WlqSU187NS9s7x/+vqzXzZic/l27s6l76PZRkzsyoaOWjXu+y+rL//7E8JxJsuqxTZnW1ZHu\nnqFLE37xzrW59TtPZkf/7kye0JZHnurOX/7jPSmK5LTXH50fP701/+vWHyVJzvuNU/Lwky/kkae6\nkyTvnndydu2u5x9ufihJ0tleS8/OXam1tmR3vcixUyektaUlx06dkOde6BsuqiYdcodX9jw+9Ie9\nxdfe13e219LakhRFcvSUztRaW9Le1ppdg/W8/jVH5Y0nH5PJE9rSu3OohFr4tp/P6sc354mfbkvX\nxPZccu5p+eSNP8znb/9xkuTs00/IPQ9tyNL//f0USaZO7shzL/RlyWfuG/7urw0v9OXRn3Rn9+56\nBvZcDvG7Dz2XiZ1t2bK9f/hnfexRE/L0pqFdZZ0dj+Wk47ry42e2piiSCR21zHrt1Dz+zNb0D+zO\nhI5aZp84LU9t2J7unoF0dtTyhhOn5fmtO/PM5t50dtQy+3XT0rNjIE8+tz1ttdb8/GunprUleeLZ\nbakXySmvOSqd7bWhc25gd046vitHTe7ITzb2ZFvfQF47oyvHTOnMs8/35YVtO3Pc0ZNy/NETs6l7\nRzZ178gxR03ICcdMSndPfzZs2ZEpk9rzmmMnp3fHrjz3Ql8mdNTymmMnZ9dgPRu29KW1pSUnHDMp\nLS3J5m396R8YzPFHT0pHe2s27vlvbca0iZk8sS2bu3dm+45dQ8XnpI5s2b4zW3oGcnRXR46eMiHb\nevvzwvb+TJnYnmOnTkjPjsFs3rojkzrbMmPaxOwc2J1NW3ekvdaa446emN27i2zqHjqvZ0ybmNbW\nlmzcsiMDg7tz/NGT8gsnHZ3f/aUTX22sjDsHy9Fdu3blox/9aG688cZMnDgx73nPe/LWt74106dP\nH+NVA5SLrAVoLDkL0FhyFuAIFF6rVq3KvHnzkiRz5szJmjVrDvmaGTOmvKrP+P/ef/ZhrY3Geedv\n/Px+ty96+2n73T5//i+86Pah3/O9v/eL+91+3zveuN/tC373Fw96e9lH3rnf7RVX7n/7t3/59Yde\nBIyBg+Xo2rVrM3PmzEydOjVJctZZZ+W+++7L29/+9kO+76vN2rKqwpxVmDExJ43ViKytyrE0Z3Op\nwpxVmHE88nfaw1eFGRNzNpuqzDmeyNmRMWfzqMKMSXXmfLUa/h1ePT096erqGr5dq9UyOOi7kABe\nqYPlaE9PT6ZM+dkvuMmTJ6enp+eIrxGg7GQtQGPJWYDGkrMAR6Dw6urqSm9v7/Dter2etraGbywD\naBoHy9EXP9bb27vfX2IBeGVkLUBjyVmAxpKzAEeg8Jo7d27uuuuuJMnq1asze/bsRn8kQFM5WI7O\nmjUr69evT3d3dwYGBnL//ffnzDPPHKulApSWrAVoLDkL0FhyFiBpKYqiaOQH1Ov1LFmyJI899liK\nosiVV16ZWbNmNfIjAZrKgXL04YcfTl9fXxYuXJg77rgj11xzTYqiyIIFC/Le9753rJcMUDqyFqCx\n5CxAY8lZgCNQeAEAAAAAAEAjNfyShgAAAAAAANBICi8AAAAAAABKrSkLr507d+ZP/uRPctFFF+U/\n/+f/nBdeeOElz1mxYkXOO++8XHDBBbnzzjv3e+wb3/hGLr300uHbq1evzvnnn58LL7wwn/rUpxq+\n/gM53Jle7nXf+MY38ju/8ztZtGhRFi1alO9973tHbJZ6vZ7Fixdn4cKFWbRoUdavX7/f43fccUcW\nLFiQhQsXZsWKFQd9zfr16/Oe97wnF110Uf7mb/4m9Xr9iM2xr9Gc6eGHH868efOGj81XvvKVIz7P\nXocz114PPPBAFi1aNHx7vByrKhnJ8SuTQ8156623Dmf44sWLS3vuHWrOvS677LJ87GMfO8KrGz2H\nmvPBBx/MRRddlPe85z35wAc+kP7+/jFa6eE71Iy33HJL3v3ud2fBggX5/Oc/P0arHD0v/n2wV1Uy\nqBnmlLP7k7PlUKWslbPVmFPWloecHSJny0PODpGz5VKFrK1SziajmLVFE/rnf/7n4pOf/GRRFEVx\n6623Fpdffvl+j2/cuLF417veVfT39xfbtm0b/nNRFMXll19enHPOOcV//a//dfj55557brF+/fqi\nXq8X/+k//afioYceOnLD7HG4M73c6/7H//gfxW233XZkh9jja1/7WvEXf/EXRVEUxQ9+8IPi/e9/\n//BjAwMDxe/8zu8U3d3dRX9/f3HeeecVmzZtetnX/NEf/VHx3e9+tyiKorjsssuKr3/960d4miGj\nOdOKFSuK66677sgPcQCHM1dRFMWnP/3p4l3veldx/vnnDz9/vByrKjnc41c2B5tzx44dxdve9rai\nr6+vKIqi+LM/+7Pi9ttvH5N1jtTB5tzrC1/4QnHBBRcUV1111ZFe3qg52Jz1er0499xziyeffLIo\niqG8XLt27ZiscyQOdSzPPvvsYsuWLUV/f//wf6dldaDfB0VRnQxqljnl7M/I2fKoStbK2WrMKWvL\nRc4OkbPlIWflbBlVIWurkrNFMbpZ25Q7vFatWpV58+YlSX7jN34j99xzz36PP/jggznzzDPT0dGR\nKVOmZObMmXnkkUeSJHPnzs2SJUuGn9vT05OBgYHMnDkzLS0t+fVf//V85zvfOWKz7HW4M73c6x56\n6KF86UtfykUXXZSlS5dmcHBwTGaZM2dO1qxZM/zY2rVrM3PmzEydOjUdHR0566yzct99973sax56\n6KH88i//8vB8Y3FsktGdac2aNfnWt76V9773vfmrv/qr9PT0HPmB9jicuZJk5syZufrqq/d7r/Fy\nrKrkcI9f2Rxszo6OjixbtiwTJ05MkgwODqazs3NM1jlSB5szSb7//e/ngQceyMKFC8dieaPmYHOu\nW7cu06ZNy2c/+9m8733vS3d3d0455ZSxWuphO9SxfMMb3pDt27dnYGAgRVGkpaVlLJY5Kg70+yCp\nTgY1y5xydoicLZeqZK2crcacsrZc5OwQOVseclbOllEVsrYqOZuMbtaWvvD64he/mHe96137/bN9\n+/ZMmTIlSTJ58uRs3759v9f09PQMP773OXtLhXe84x37nRw9PT3p6ura77kvfr/RNpoz7Xv/vq87\n++yzc9lll+Vzn/tc+vr6smzZsobO9OK17vszrdVqw4XbweY40Gv2/Y/5SByblzOaM51xxhn50Ic+\nlM997nM58cQTc8011xy5QV7kcOZKknPOOSdtbW37vdd4OVZVcrjHr2wONmdra2umT5+eJLnhhhvS\n19eXs88+e0zWOVIHm3Pjxo255pprsnjx4rFa3qg52JxbtmzJD37wg7zvfe/LZz7zmXz3u999yf8A\nUgYHmzFJTj311CxYsCDvfOc781u/9Vs56qijxmKZo+JAvw+S6mRQs8wpZ+VsGVUla+VsNeaUteUi\nZ4fI2fKQs3K2jKqQtVXJ2WR0s/al71Iy559/fs4///z97vvjP/7j9Pb2Jkl6e3tfcrC7urqGH9/7\nnH1/cId6bqNPntGcad/7933dggULhv/8tre9LV/72tcaNs+LvXit9Xp9+IR+JXPs+5rW1tb9njtW\n/2GP5kzz588fnmP+/Pm5/PLLj9AUL3U4c72c8XKsqmQ0j994drA5996+6qqrsm7dulx99dWl/T9e\nDjbnbbfdli1btuSSSy7Jpk2bsnPnzpxyyik577zzxmq5h+1gc06bNi0nnXRSZs2alSSZN29e1qxZ\nk7e85S1jstbDdbAZH3nkkXzrW9/KN7/5zUyaNCkf/OAH89WvfjVvf/vbx2q5DVGVDGqWOeWsnC1b\nziaytlnyJ6lGziayNmmerJWzcrZs5OzPbsvZ8qhC1lY9Z5PDy6DS7/A6kLlz5+bf/u3fkiR33XVX\nzjrrrP0eP+OMM7Jq1ar09/dn+/btWbt2bWbPnn3A9+rq6kp7e3ueeuqpFEWRb3/723nzm9/c8Ble\n7HBnOtDriqLIueeem+eeey5Jcs899+SNb3zjEZ3lrrvuSpKsXr16v5/9rFmzsn79+nR3d2dgYCD3\n339/zjzzzJd9zWmnnZZ77713eL6xODbJ6M70h3/4h3nwwQeTHPlj82KHM9fLGS/HqkpG8/iNZweb\nM0kWL16c/v7+/P3f//3w5QnK6GBzXnzxxbnppptyww035JJLLsm73vWuUv6FNTn4nCeeeGJ6e3uH\nv6j1/vvvz6mnnjom6xyJg804ZcqUTJgwIZ2dnanVajnmmGOybdu2sVpqw1Qlg5plTjkrZ8uo6lnb\nLPmTVCNnE1mbNE/Wylk5WzZydoicLZcqZG3VczY5vAxqKYqiOELrO2J27NiRv/iLv8imTZvS3t6e\nj3/845kxY0Y+85nPZObMmXnb296WFStWZPny5SmKIn/0R3+Uc845Z/j19957b5YtW5b/+T//Z5Kh\nE+rKK6/M7t278+u//uv5sz/7s9LM9HKv+/a3v51PfOITmTBhQmbNmpUPf/jDaW9vPyKz1Ov1LFmy\nJI899liKosiVV16Zhx9+OH19fVm4cGHuuOOOXHPNNSmKIgsWLMh73/veA75m1qxZWbduXS677LLs\n2rUrp5xySq644orUarUjMkejZnrooYdy+eWXp729PdOnT8/ll1++3/bV8T7XXk8//XT+/M//PCtW\nrEiScXOsqmQkx69MDjbn6aefngULFuTNb37z8P+ddfHFF2f+/PljvOpX71DHc6+bbropTzzxRP7b\nf/tvY7jaw3eoOe+55558/OMfT1EUOfPMM/PhD394rJf8qh1qxi984Qv50pe+lPb29sycOTOXX355\nOjo6xnrZh23f3wcrV66sVAY1y5xyVs6WUZWyVs42/5yytlzkrJwtGzkrZ8uoCllbpZxNRi9rm7Lw\nAgAAAAAAoDqa8pKGAAAAAAAAVIfCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8GFd++MMf5q//+q9f1Wve8IY3jMpnP/jgg7nqqqtG5b0AAAAAAIAjp22sFwD7etOb3pQ3velN\nY/LZjz/+eJ5//vkx+WwAAAAAAODwKbwYdffee2+uvvrqtLW15dlnn80ZZ5yRj3zkI/nKV76S66+/\nPvV6PW984xvzN3/zN+ns7Myv/uqv5o1vfGM2b96cD33oQ/mHf/iH3HDDDVm3bl0WL16c7u7uTJo0\nKX/913+dM844I08//XQ++MEPpq+vL//hP/yHQ67npptuype//OV0d3fnt3/7t3PxxRdn8eLFee65\n59LS0pJLL700p59+ej75yU+mr68v1157bY4//vh873vfy9KlS5MkixYtyh//8R8nSa666qrU6/Wc\neuqped3rXpcNGzZk/fr1eeaZZ3L++efnv/yX/9LQny8AAAAAALA/lzSkIR588MEsXrw4t912W/r7\n+3PddddlxYoVWbZsWW6++eYce+yxue6665IkW7ZsySWXXJKbb745bW0/62A/+MEPZtGiRVm5cmX+\n+3//7/nTP/3TDAwM5PLLL895552Xm2++OXPnzn1F69mwYUO+/OUv58///M/zkY98JAsWLMhNN92U\na6+9NosXL05ra2s+8IEP5K1vfeshC6snn3wy119/ff72b/82SfLoo4/muuuuyxe/+MV8+tOfzrZt\n2w7zpwYAAAAAABwOO7xoiF/6pV/KKaeckiT5/d///fzJn/xJjj766FxwwQVJkl27duW0004bfv6L\nd2r19vbmqaeeyu/+7u8mSebMmZOpU6fmiSeeyPe+9718/OMfT5Kce+65+fCHP3zI9Zx22mnDZdp3\nvvOdPPHEE/nkJz+ZJBkcHMxPfvKTVzzbySefnClTpgzf/pVf+ZV0dHTk2GOPzbRp07J9+/YcddRR\nr/j9AAAAAACAkVF40RC1Wm34z0VRZPfu3Xn7298+XE719vZm9+7dw8+ZMGHCfq8viiJFUbzkvr2v\n2ftYS0tLWlpaDrmefd+/Xq/n+uuvz7Rp05IM7f6aPn16fvSjHw0/p6WlZb/P37Vr18uutbOz82Vf\nBwAAAAAANJ5LGtIQq1atyoYNG1Kv1/Ov//qv+au/+qt84xvfyPPPP5+iKLJkyZJcf/31L/v6rq6u\nnHjiifn617+eJFm9enU2b96cU089Nb/2a7+WW265JUny9a9/PQMDA69qbb/6q7+az3/+80mSxx9/\nPOeee2527NiRWq2WwcHBJMnRRx+dtWvXpiiK/OQnP8mjjz56OD8GAAAAAADgCLDDi4Y47rjj8qEP\nfSgbNmzI2Wefnfe9732ZNGlS/uAP/iD1ej2/+Iu/mEsuueSg73HVVVdlyZIlufrqq9Pe3p6rr746\nHR0dWbx4cT74wQ9m2bJledOb3pTJkye/qrV9+MMfzuLFi/Mf/+N/TJL83d/9Xbq6unLGGWfkU5/6\nVD72sY/lAx/4QL70pS/l937v93LyySfnrLPOOuyfBQAAAAAA0FgtheuvMcruvffefOpTn8oNN9ww\n1ksBAAAAAAAqwA4vmsJXvvKV/OM//uMBH7v55puP8GoAAAAAAIAjyQ4vAAAAAAAASq11rBcAAAAA\nAAAAI6HwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAA\nAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEA\nAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqY1a4fXAAw9k0aJFL7n/jjvuyIIFC7Jw4cKsWLFitD4O\noHLkLEDjyVqAxpKzAI0lZ4EqaxuNN/mnf/qn3HLLLZk4ceJ+9+/atSsf/ehHc+ONN2bixIl5z3ve\nk7e+9a2ZPn36aHwsQGXIWYDGk7UAjSVnARpLzgJVNyo7vGbOnJmrr776JfevXbs2M2fOzNSpU9PR\n0ZGzzjor991332h8JEClyFmAxpO1AI0lZwEaS84CVTcqhdc555yTtraXbhbr6enJlClThm9Pnjw5\nPT09h3y/oihGY1kATUPOAjTeaGatnAV4KX+nBWgsOQtU3ahc0vDldHV1pbe3d/h2b2/vfuH6clpa\nWrJp0/ZGLm3MzZgxpelnTMzZbKow54wZh86o8UTOHlxVztlmnzExZ7OpQtbK2eZizuZRhRmTauRs\nUo2srdI5a87mUYU55WxzqcI5m1RjzirMmFRrzldrVHZ4vZxZs2Zl/fr16e7uzsDAQO6///6ceeaZ\njfxIgEqRswCNJ2sBGkvOAjSWnAWqoiE7vFauXJm+vr4sXLgwf/mXf5k//MM/TFEUWbBgQY4//vhG\nfCRApchZgMaTtQCNJWcBGkvOAlXTUozTi7E2+5a8Km07NGfzqMKcZbsswUg0+7FMqnPONvuMiTmb\nTVWytirH0pzNowpzVmHGpDo5mzR/1lbpnDVn86jCnHK2uVThnE2qMWcVZkyqNeer1dBLGgIAAAAA\nAECjKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAA\nAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAA\nAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAA\nAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUA\nAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gB\nAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BRe\nAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKLUR\nF171ej2LFy/OwoULs2jRoqxfv36/x2+55Za8+93vzoIFC/L5z39+pB8HUDlyFqDxZC1AY8lZgMaS\nswBJ20jf4Pbbb8/AwECWL1+e1atXZ+nSpbn22muHH/+7v/u73HrrrZk0aVLe+c535p3vfGemTp06\n0o8FqAw5C9B4shagseQsQGPJWYBRKLxWrVqVefPmJUnmzJmTNWvW7Pf4G97whmzfvj1tbW0piiIt\nLS2v6H1nzJgy0qWNe1WYMTFns6nKnOOJnB2ZKsxZhRkTc9JYjcjaqhxLczaXKsxZhRnHI3+nPXxV\nmDExZ7OpypzjiZwdGXM2jyrMmFRnzldrxIVXT09Purq6hm/XarUMDg6mrW3orU899dQsWLAgEydO\nzPz583PUUUe9ovfdtGn7SJc2rs2YMaXpZ0zM2WyqMOd4/GUhZw9fVc7ZZp8xMWezqUrWVuVYmrN5\nVGHOKsyYVCdnk+bP2iqds+ZsHlWYU842lyqcs0k15qzCjEm15ny1RvwdXl1dXent7R2+Xa/Xh4P0\nkUceybe+9a1885vfzB133JEXXnghX/3qV0f6kQCVImcBGk/WAjSWnAVoLDkLMAqF19y5c3PXXXcl\nSVavXp3Zs2cPPzZlypRMmDAhnZ2dqdVqOeaYY7Jt27aRfiRApchZgMaTtQCNJWcBGkvOAozCJQ3n\nz5+fu+++OxdeeGGKosiVV16ZlStXpq+vLwsXLszChQtz0UUXpb29PTNnzsy73/3u0Vg3QGXIWYDG\nk7UAjSVnARpLzgIkLUVRFGO9iANp9mtQVuk6m+ZsHlWYczxeh7tRmv1YJtU5Z5t9xsSczaYqWVuV\nY2nO5lGFOaswY1KdnE2aP2urdM6as3lUYU4521yqcM4m1ZizCjMm1Zrz1RrxJQ0BAAAAAABgLCm8\nAAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoK\nLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSa\nwgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAACl\npvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAA\nUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAA\nAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKm1jfQN6vV6lixZkkcffTQd\nHR254oorctJJJw0//uCDD2bp0qUpiiIzZszIVVddlc7OzpF+LEBlyFmAxpO1AI0lZwEaS84CjMIO\nr9tvvz0DAwNZvnx5Lr300ixdunT4saIoctlll+WjH/1ovvCFL2TevHl55plnRvqRAJUiZwEaT9YC\nNJacBWgsOQswCju8Vq1alXnz5iVJ5syZkzVr1gw/tm7dukybNi2f/exn8+Mf/zi/+Zu/mVNOOWWk\nHwlQKXIWoPFkLUBjyVmAxpKzAKNQePX09KSrq2v4dq1Wy+DgYNra2rJly5b84Ac/yOLFizNz5sy8\n//3vz+mnn563vOUth3zfGTOmjHRp414VZkzM2WyqMud4ImdHpgpzVmHGxJw0ViOytirH0pzNpQpz\nVmHG8cjfaQ9fFWZMzNlsqjLneCJnR8aczaMKMybVmfPVGnHh1dXVld7e3uHb9Xo9bW1Dbztt2rSc\ndNJJmTVrVpJk3rx5WbNmzSsK002bto90aePajBlTmn7GxJzNpgpzjsdfFnL28FXlnG32GRNzNpuq\nZG1VjqU5m0cV5qzCjEl1cjZp/qyt0jlrzuZRhTnlbHOpwjmbVGPOKsyYVGvOV2vE3+E1d+7c3HXX\nXUmS1atXZ/bs2cOPnXjiient7c369euTJPfff39OPfXUkX4kQKXIWYDGk7UAjSVnARpLzgKMwg6v\n+fPn5+67786FF16Yoihy5ZVXZuXKlenr68vChQvzkY98JJdeemmKosiZZ56Z3/qt3xqFZQNUh5wF\naDxZC9BYchagseQsQNJSFEUx1os4kGbfklelbYfmbB5VmHM8XpagUZr9WCbVOWebfcbEnM2mKllb\nlWNpzuZRhTmrMGNSnZxNmj9rq3TOmrN5VGFOOdtcqnDOJtWYswozJtWa89Ua8SUNAQAAAAAAYCwp\nvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAb0T6\nSwAAEYxJREFUAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAA\nAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAA\nAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAA\nAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAA\nAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIA\nAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpjbjw\nqtfrWbx4cRYuXJhFixZl/fr1B3zeZZddlo997GMj/TiAypGzAI0nawEaS84CNJacBRiFwuv222/P\nwMBAli9fnksvvTRLly59yXOWLVuWxx57bKQfBVBJchag8WQtQGPJWYDGkrMAo1B4rVq1KvPmzUuS\nzJkzJ2vWrNnv8e9///t54IEHsnDhwpF+FEAlyVmAxpO1AI0lZwEaS84CJG0jfYOenp50dXUN367V\nahkcHExbW1s2btyYa665Jp/61Kfy1a9+9VW974wZU0a6tHGvCjMm5mw2VZlzPJGzI1OFOaswY2JO\nGqsRWVuVY2nO5lKFOasw43jk77SHrwozJuZsNlWZczyRsyNjzuZRhRmT6sz5ao248Orq6kpvb+/w\n7Xq9nra2obe97bbbsmXLllxyySXZtGlTdu7cmVNOOSXnnXfeId9306btI13auDZjxpSmnzExZ7Op\nwpzj8ZeFnD18VTlnm33GxJzNpipZW5Vjac7mUYU5qzBjUp2cTZo/a6t0zpqzeVRhTjnbXKpwzibV\nmLMKMybVmvPVGnHhNXfu3Nx55515xzvekdWrV2f27NnDj1188cW5+OKLkyQ33XRTnnjiiVcUpAD8\njJwFaDxZC9BYchagseQswCgUXvPnz8/dd9+dCy+8MEVR5Morr8zKlSvT19fnmrAAo0DOAjSerAVo\nLDkL0FhyFiBpKYqiGOtFHEizb8mr0rZDczaPKsw5Hi9L0CjNfiyT6pyzzT5jYs5mU5WsrcqxNGfz\nqMKcVZgxqU7OJs2ftVU6Z83ZPKowp5xtLlU4Z5NqzFmFGZNqzflqtTZgHQAAAAAAAHDEKLwAAAAA\nAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAA\nAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAA\nAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIA\nAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwA\nAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagov\nAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrC\nCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKLW2kb5BvV7PkiVL\n8uijj6ajoyNXXHFFTjrppOHHb7311lx//fWp1WqZPXt2lixZktZWPRvAKyVnARpP1gI0lpwFaCw5\nCzAKO7xuv/32DAwMZPny5bn00kuzdOnS4cd27tyZT3ziE/mXf/mXLFu2LD09PbnzzjtH+pEAlSJn\nARpP1gI0lpwFaCw5CzAKO7xWrVqVefPmJUnmzJmTNWvWDD/W0dGRZcuWZeLEiUmSwcHBdHZ2vqL3\nnTFjykiXNu5VYcbEnM2mKnOOJ3J2ZKowZxVmTMxJYzUia6tyLM3ZXKowZxVmHI/8nfbwVWHGxJzN\npipzjidydmTM2TyqMGNSnTlfrREXXj09Penq6hq+XavVMjg4mLa2trS2tmb69OlJkhtuuCF9fX05\n++yzX9H7btq0faRLG9dmzJjS9DMm5mw2VZhzPP6ykLOHryrnbLPPmJiz2VQla6tyLM3ZPKowZxVm\nTKqTs0nzZ22VzllzNo8qzClnm0sVztmkGnNWYcakWnO+WiMuvLq6utLb2zt8u16vp62tbb/bV111\nVdatW5err746LS0tI/1IgEqRswCNJ2sBGkvOAjSWnAUYhe/wmjt3bu66664kyerVqzN79uz9Hl+8\neHH6+/vz93//98PbZgF45eQsQOPJWoDGkrMAjSVnAUZhh9f8+fNz991358ILL0xRFLnyyiuzcuXK\n9PX15fTTT8+NN96YN7/5zfmDP/iDJMnFF1+c+fPnj3jhAFUhZwEaT9YCNJacBWgsOQuQtBRFUYz1\nIg6k2a9BWaXrbJqzeVRhzvF4He5GafZjmVTnnG32GRNzNpuqZG1VjqU5m0cV5qzCjEl1cjZp/qyt\n0jlrzuZRhTnlbHOpwjmbVGPOKsyYVGvOV2vElzQEAAAAAACAsaTwAgAAAAAAoNQUXgAAAAAAAJSa\nwgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAACl\npvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAA\nUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAA\nAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAA\nAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAA\nAABAqSm8AAAAAAAAKDWFFwAAAAAAAKU24sKrXq9n8eLFWbhwYRYtWpT169fv9/gdd9yRBQsWZOHC\nhVmxYsVIPw6gcuQsQOPJWoDGkrMAjSVnAUah8Lr99tszMDCQ5cuX59JLL83SpUuHH9u1a1c++tGP\n5p//+Z9zww03ZPny5dm8efNIPxKgUuQsQOPJWoDGkrMAjSVnAUah8Fq1alXmzZuXJJkzZ07WrFkz\n/NjatWszc+bMTJ06NR0dHTnrrLNy3333jfQj4f9v7w5Cmn4fOI5/zKmFW0n0o1MGiXbpkNZNBKGk\nQxLosJlpHQLpFESHujS6JETdxA5eCoQKCQ8lVFASghRkqRERgZTXghy1LTZkz+8g7Uc//3z3//nd\n/Pbseb9u2zfs+TB6EzysAKfQWQAoPVoLAKVFZwGgtOgsAEghvz8gmUwqHA7nX1dWVmplZUWhUEjJ\nZFKRSCT/rLa2Vslk8v/6uX/9FSn8iyznwkaJneXGlZ1/Ejrrjws7XdgosROlVYrWuvJZsrO8uLDT\nhY1/Iv5Ou34ubJTYWW5c2fknobP+sLN8uLBRcmfnf+X7G17hcFipVCr/OpfLKRQK/c9nqVTqt7gC\nAAqjswBQerQWAEqLzgJAadFZACjChVdLS4ump6clSfPz82pqaso/a2ho0NLSkhKJhLLZrGZnZ9Xc\n3Oz3twQAp9BZACg9WgsApUVnAaC06CwASBXGGOPnB+RyOV25ckUfP36UMUZDQ0N6//690um0YrGY\npqamNDIyImOMotGoTp48WayzA4AT6CwAlB6tBYDSorMAUFp0FgCKcOEFAAAAAAAAAAAABMn3P2kI\nAAAAAAAAAAAABIkLLwAAAAAAAAAAAFiNCy8AAAAAAAAAAABYLbALr1wup3g8rlgspoGBAS0tLf32\nfGpqStFoVLFYTOPj4wGd0r9COycnJ9XT06Pe3l7F43HlcrmATupPoZ2/XL58WTdu3Njg0xVHoY1v\n375VX1+fTpw4oXPnzimTyQR0Un8K7Xzw4IG6uroUjUZ1586dgE5ZHAsLCxoYGFjzviv9cWUnnbWL\nC611qbMSrS2HnXT2d3TWDi61ls66sZPW2oPOrqKz9qCzq+isXVxorUudlYrYWhOQJ0+emIsXLxpj\njJmbmzNnz57NP8tms+bw4cMmkUiYTCZjuru7zdevX4M6qi9eO3/+/GkOHTpk0um0McaY8+fPm6dP\nnwZyTr+8dv5y9+5dc/z4cXP9+vWNPl5ReG3M5XLm2LFj5vPnz8YYY8bHx83i4mIg5/Sr0GfZ2tpq\nlpeXTSaTyf85tdHo6Kjp7Ow0PT09v73vSn9c2Uln7eNCa13prDG0tlx20tl/0Fl7uNJaOuvGTlpr\nFzq7is7ag87SWRu50FpXOmtMcVsb2De8Xr9+rba2NknS/v379e7du/yzxcVF1dfXa9u2baqurtaB\nAwf06tWroI7qi9fO6upq3bt3T1u2bJEkraysqKamJpBz+uW1U5LevHmjhYUFxWKxII5XFF4bP336\npLq6Ot2+fVv9/f1KJBLas2dPUEf1pdBnuXfvXv348UPZbFbGGFVUVARxTN/q6+s1PDy85n1X+uPK\nTjprHxda60pnJVpbLjvp7Co6axdXWktn3dhJa+1CZ1fRWXvQWTprIxda60pnpeK2NrALr2QyqXA4\nnH9dWVmplZWV/LNIJJJ/Vltbq2QyueFnLAavnZs2bdKOHTskSWNjY0qn02ptbQ3knH557fzy5YtG\nRkYUj8eDOl5ReG1cXl7W3Nyc+vv7devWLb18+VIvXrwI6qi+eO2UpMbGRkWjUR09elTt7e3aunVr\nEMf07ciRIwqFQmved6U/ruyks/ZxobWudFaiteWyk87SWRu50lo668ZOWmsXOruKztqDztJZG7nQ\nWlc6KxW3tYFdeIXDYaVSqfzrXC6XH/XvZ6lU6rdhNvHa+ev1tWvXNDMzo+HhYWtvYr12Pn78WMvL\nyxocHNTo6KgmJyc1MTER1FHXzWtjXV2ddu/erYaGBlVVVamtrW3NrbstvHZ++PBBz58/17NnzzQ1\nNaVv377p0aNHQR21JFzpjys7f72ms/ZwobWud1Zyp0HlspPO0lkbud7acumP5EZnJVorlU9r6Syd\ntQ2d/ec1nbWHC611vbPS+hoU2IVXS0uLpqenJUnz8/NqamrKP2toaNDS0pISiYSy2axmZ2fV3Nwc\n1FF98dopSfF4XJlMRjdv3sx/bdZGXjtPnTqliYkJjY2NaXBwUJ2dneru7g7qqOvmtXHXrl1KpVL5\n/zxwdnZWjY2NgZzTL6+dkUhEmzdvVk1NjSorK7V9+3Z9//49qKOWhCv9cWWnRGdt40JrXe+s5E6D\nymUnnaWzNnK9teXSH8mNzkq0Viqf1tJZOmsbOruKztrFhda63llpfQ1a+z2xDdLR0aGZmRn19vbK\nGKOhoSE9fPhQ6XRasVhMly5d0pkzZ2SMUTQa1c6dO4M6qi9eO/ft26f79+/r4MGDOn36tKTV8HR0\ndAR86v+u0OdZDgptvHr1qi5cuCBjjJqbm9Xe3h70kdel0M5YLKa+vj5VVVWpvr5eXV1dQR+5KFzr\njys76ax9XGitq52VaK2tO+ksnbWRq60tt/5IbnRWorXl1Fo6S2dtQ2fprI1caK2rnZX8tbbCGGM2\n6JwAAAAAAAAAAABA0QX2TxoCAAAAAAAAAAAAxcCFFwAAAAAAAAAAAKzGhRcAAAAAAAAAAACsxoUX\nAAAAAAAAAAAArMaFFwAAAAAAAAAAAKzGhRcAAAAAAAAAAACsxoUXAAAAAAAAAAAArPY37Py3bWHd\ngd8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb Rows: 14880\n" + ] + } + ], + "source": [ + "# create ohlc prices, analyse distribution, think about feature transformation and de-trending\n", + "\n", + "fig, axarr = plt.subplots(2, 5, figsize=(30,10)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "i_row, i_col = 0,0\n", + "fig.suptitle(\"frequency distributions\")\n", + "\n", + "\n", + "sns.distplot(df.period_return-1, ax=axarr[i_row, i_col])\n", + "#axarr[0, 0].set_title('Axis [0,0] Subtitle')\n", + "\n", + "# i_col += 1\n", + "# sns.distplot(df.bo_spread, ax=axarr[i_row, i_col])\n", + "\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " i_col += 1\n", + " sns.distplot(df.avg_bo_spread, ax=axarr[i_row, i_col])\n", + "\n", + " x_axis_col = \"ohlc_price\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + "\n", + " x_axis_col = \"period_return\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + " i_row, i_col = 1, 0 # move down one row\n", + "\n", + " x_axis_col = \"hour\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + " x_axis_col = \"hour\"\n", + " y_axis_col = \"nb_ticks\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + " x_axis_col = \"day\"\n", + " y_axis_col = \"nb_ticks\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + "#plt.tight_layout() # reduce overlap\n", + "plt.show()\n", + "\n", + "print(\"Nb Rows: \", df.high_bid.count())" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "hideCode": false, + "hideOutput": true + }, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# all at once\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpairplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"bo_spread\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mpairplot\u001b[0;34m(data, hue, hue_order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, size, aspect, dropna, plot_kws, diag_kws, grid_kws)\u001b[0m\n\u001b[1;32m 2071\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"scatter\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2072\u001b[0m \u001b[0mplot_kws\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"edgecolor\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"white\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2073\u001b[0;31m \u001b[0mplotter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mplot_kws\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2074\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"reg\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2075\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mregression\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mregplot\u001b[0m \u001b[0;31m# Avoid circular import\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mmap_offdiag\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 1491\u001b[0m \"\"\"\n\u001b[1;32m 1492\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1493\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_lower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1494\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_upper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1495\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mmap_lower\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 1423\u001b[0m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpalette\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkw_color\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mkw_color\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1424\u001b[0m func(data_k[x_var], data_k[y_var], label=label_k,\n\u001b[0;32m-> 1425\u001b[0;31m color=color, **kwargs)\n\u001b[0m\u001b[1;32m 1426\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1427\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_clean_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, hold, data, **kwargs)\u001b[0m\n\u001b[1;32m 3432\u001b[0m \u001b[0mvmin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvmax\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0malpha\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3433\u001b[0m \u001b[0mlinewidths\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlinewidths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverts\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverts\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3434\u001b[0;31m edgecolors=edgecolors, data=data, **kwargs)\n\u001b[0m\u001b[1;32m 3435\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3436\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1896\u001b[0m warnings.warn(msg % (label_namer, func.__name__),\n\u001b[1;32m 1897\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1898\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1899\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1900\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **kwargs)\u001b[0m\n\u001b[1;32m 4061\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ymargin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.05\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4062\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4063\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_collection\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4064\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautoscale_view\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4065\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36madd_collection\u001b[0;34m(self, collection, autolim)\u001b[0m\n\u001b[1;32m 1760\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1761\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mautolim\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1762\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_datalim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_datalim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1763\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1764\u001b[0m \u001b[0mcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_remove_method\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollections\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/collections.py\u001b[0m in \u001b[0;36mget_datalim\u001b[0;34m(self, transData)\u001b[0m\n\u001b[1;32m 227\u001b[0m result = mpath.get_path_collection_extents(\n\u001b[1;32m 228\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrozen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_transforms\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 229\u001b[0;31m offsets, transOffset.frozen())\n\u001b[0m\u001b[1;32m 230\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minverse_transformed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 231\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mget_path_collection_extents\u001b[0;34m(master_transform, paths, transforms, offsets, offset_transform)\u001b[0m\n\u001b[1;32m 1008\u001b[0m return Bbox.from_extents(*_path.get_path_collection_extents(\n\u001b[1;32m 1009\u001b[0m \u001b[0mmaster_transform\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_3d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransforms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1010\u001b[0;31m offsets, offset_transform))\n\u001b[0m\u001b[1;32m 1011\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1012\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mvertices\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_has_nonfinite\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_vertices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mvertices\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \"\"\"\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# all at once\n", + "#sns.pairplot(df, hue=\"bo_spread\")" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import dill as pickle\n", + "with open(simname+'_eurusd_features.pkl', 'wb') as file:\n", + " pickle.dump(df, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "dataset = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQpHV9P/D3c/fT9xw9187eF8rGIOb4eRAqlgajpCxA\nBDQLlMT8kZhDTEVNIlJlhDWS0hQVKY9UjMTERQIKhChRSYiKR5DFLAJ7zuzu7M5M90zfx3N9v78/\neqZnevrpc7qnu2c+r5Qpto/pb8/T08/n+X4/389H4JxzEEIIIYSQjhG7PQBCCCGEkM2OAi5CCCGE\nkA6jgIsQQgghpMMo4CKEEEII6TAKuAghhBBCOowCLkIIIYSQDqOAixDSER/5yEfwD//wD673HTx4\nEIuLix19/bm5Odx8880dfQ1CCGkUBVyEkE1pdHQUX/va17o9DEIIAQDI3R4AIaS/HT16FA8++CBE\nUcTw8DA+9rGPYffu3QCA559/HjfffDNisRj279+Pv/3bv4XX6y17/uc//3k8+uijkGUZO3fuxJEj\nRxAIBKq+3uHDh7F3714cP34c8Xgc73znO/HHf/zHuHDhAt773vdi7969mJmZwZEjR/C+970Pzz//\nPGzbxqc//Wn813/9FyRJwmtf+1p8/OMfh6qqeOCBB/DUU0+BMYZt27bh4x//OEZHR8te8+abb8bt\nt9+Ot73tbQCA++67D5xz3H777fjwhz+MeDwOALj66qvxp3/6pxVjfvWrX43bbrsNP/7xj5HL5XDn\nnXfit37rt6q+f0mScPfdd2NqagrJZBI+nw/33Xcf9uzZ0/qBIoR0Fc1wEUJa9uyzz+JLX/oSvvKV\nr+Cxxx7Dtddeiz/8wz/EcgOLubk5/OM//iO+/e1vY25uDk899VTZ87/73e/ikUcewdGjR/HEE09g\ncnIS//zP/1z3dS9evIh//dd/xaOPPoonn3wSTz/9NABgdnYWf/AHf4Bvf/vbiEQipcf/y7/8C158\n8UV885vfxBNPPIFsNosnn3wS3/jGN3DixAl8/etfxze/+U1cffXV+Ku/+quK17vxxhvx6KOPAgAc\nx8Fjjz2GG2+8EQ899BAmJyfx6KOP4qtf/Sqmp6eRTqcrnu84DkKhEB555BF89rOfxV/8xV9gcXGx\n6vt/5plnEAwG8dBDD+Hb3/42Dh06hK9+9auNHxhCSM/pmxmuF154Affddx8efPDBmo+bnp7GBz7w\nATz++OMAgMXFRfzZn/0ZCoUCRkZGcO+990LX9Y0YMiGb3v/8z//g7W9/OwYHBwEA119/PT75yU/i\nwoULAIC3vOUtpb+3/fv3V+RtPfvss3jb296GUCgEAPjoRz/a0OvedNNNUBQFiqLgbW97G77//e9j\n//79kGUZV1xxRcXjf/jDH+Kd73wnPB4PAOCzn/0sAOBP/uRP8H//93+44YYbAACMMeTz+Yrn//Zv\n/zb+5m/+BtFoFL/4xS+wc+dO7Nq1C1dddRV+//d/H5cuXcIb3vAGfOhDH6o6O/e7v/u7AIDLLrsM\nBw4cwE9/+lP89Kc/rfr+t2/fjgcffBDT09P4yU9+gte+9rUN/W4IIb2pLwKuL37xi3jsscfqBkrf\n+MY38JWvfKXsS/1zn/scrr32Wlx//fX4whe+gKNHj+L222/v8IgJ2RrcWrFyzmHbNgBAlle+YgRB\nqHi8JEkQBKH071QqhVQqhcnJyZqvu/rncs4hisXJelVVy+5zezwAxGIxMMbAGMPv/d7v4T3veQ8A\nwDRNJJPJiud7vV5cc801eOKJJ/D888/jxhtvBAC85jWvwXe/+108++yz+NGPfoQbb7wRf//3f48r\nr7yy4mdIklT6b8YYJEmq+v6feeYZPPTQQ3jve9+L3/md30E4HC4FsYSQ/tQXS4o7duzA/fffX/r3\nK6+8gsOHD+Pw4cP4oz/6o9IUfigUqliOeO6553DVVVcBAH7jN34DP/zhDzdu4IRscm9605vw5JNP\nli5y/u3f/g3hcBg7d+5s6PlveMMb8J//+Z/IZDIAgPvvvx9f/vKX6z7vscceA2MMyWQS//Ef/4E3\nv/nNNR//+te/Hk888QRM0wRjDHfffTf+/d//HW9605vw8MMPl17/7/7u7/Dnf/7nrj/j3e9+Nx55\n5BE8//zzuOaaawAUc7k+97nP4S1veQv+8i//Evv27cPU1JTr87/xjW8AAF588UWcPXsWv/qrv1r1\n/X//+9/HddddhxtvvBG7d+/G9773PTiOU/f3QgjpXX0xw3XNNdeUXd197GMfwz333IN9+/bh61//\nOr70pS/hgx/8IH7zN3+z4rmZTKY0xe/z+VzzKwghrXnjG9+I22+/HbfddhsYYxgcHMTnP//50oxT\nPVdffTVOnTqFW265BQCwb98+fOITn6j7vEKhgHe9613IZrN4z3veg9e//vU1Z4BuvvlmzMzM4Prr\nrwfnHL/2a7+Gw4cPQxRFzM3N4d3vfjcEQcD4+DiOHDni+jMOHToEWZZxzTXXQNM0AMBtt92Gj3zk\nI7j22muhqioOHjyIa6+91vX5P/vZz/DQQw+BMYbPfOYzCIVCVd//yy+/jLvuuguPPPIIJEnC5Zdf\njhMnTtT9vRBCepfA3dYEetCFCxdw55134qGHHsLrXvc6vPrVrwYAWJaFXbt2lX1JvvGNb8QPfvAD\nAMB1112HL33pSxgaGsLLL7+Mz3zmM/j85z/flfdACFm/w4cP473vfW9px2A/OHjwIJ599tlSrhsh\nZOvpixmutXbv3o1PfepTmJiYwHPPPYdoNFr1sVdeeSX++7//G9dffz2eeeYZvO51r9vAkRJCmvWj\nH/0I9957r+t9v/7rv77BoyGEkPboyxmu48eP41Of+hRs24YgCPjkJz9ZqvsDlM9wxWIxfPjDH0Y2\nm8XAwIBrHSBCCCGEkE7qm4CLEEIIIaRf9cUuRUIIIYSQfkYBFyGEEEJIh/V80nw0SmUcmjEw4EU8\nnuv2MMg60DHsb3T8+hsdv/7WC8cvEnHvNkEzXJuMLEv1H0R6Gh3D/kbHr7/R8etvvXz81hVwvfDC\nCzh8+HDF7V/+8pfxjne8o1QN/syZM2CM4a677sJNN92Ew4cPY3p6ej0vTQghhBDSN1peUqzV33C5\nbMOhQ4dKtz311FMwTRNHjx7FsWPHcOTIETzwwAOtvjwhhBBCSN9oeYZrbX/D1V588UV84QtfwC23\n3FKq6r66p+EVV1yB48ePt/rShBBCCCF9peUZrrX9DVd7xzvegfe85z3w+/34wAc+gKeffhqZTAZ+\nv7/0GEmSYNs2ZLnn8/YJIYQQQtal7dEO5xy33XZbqWH01VdfjV/84hfw+/3IZrOlxzHGGgq2Bga8\nPZ0E14uq7ZAg/YOOYX+j49ff6Pj1t149fm0PuDKZDK699lo8+eST8Hq9+PGPf4wbbrgBhUIBTz/9\nNN7+9rfj2LFjOHDgQEM/r9vbO/tNJBKgUhp9jo5hf6Pj19/o+PW3Xjh+1QK+tgVcjz/+OHK5HG66\n6SZ88IMfxK233gpVVfH6178eV199NRhj+MEPfoCbb74ZnHPcc8897XppQgghhJCe1vO9FLsdqfab\nXojuyfrQMexvdPz6Gx2//tYLx48KnxJCCCGEdAkFXISQjrIZQ49PpBNCSMdRwEUI6ai5dAbJgtHt\nYRBCSFdRESxCSEdtCwW7PQRCCOk6muEihBBCCOkwCrgIIYQQQjqMAi5CCCGEkA6jgIsQQgghpMMo\n4CKEEEII6TAKuAghhBBCOowCLkIIIYSQDqOAixBCCCGkwyjgIoQQQgjpMAq4CCGEEEI6jAIuQggh\nhJAOo4CLEEIIIaTDKOAihBBCCOkwCrhIX8hkCt0ewoZxGEPesLo9DEIIIW1EARfpC4lEDpzzbg9j\nQ5iWg0Q23+1hEEIIaSO52wMgpBGTk4PdHsKG0TUF44PBbg+DEEJIG9EMFyGkL/18bg5si8x6EkL6\nH81wEUL60i+NjEAQhG4PgxBCGkIzXISQvkTBFiGkn1DARQghhBDSYRRwEUIIIYR0GAVchBBCCCEd\nRgEXIX2Mc45XZqLdHgYhhJA6KOAipI8JgoDdo1unRlk/eTkRhcWcbg+DENIj1lUW4oUXXsB9992H\nBx98sOz2J554Av/0T/8ESZJw4MAB3H333RBFEddddx38fj8AYHJyEvfee+96Xp4QAkCVpW4PgbjY\nFxyELNKxIYQUtRxwffGLX8Rjjz0GXdfLbi8UCvjsZz+Lxx9/HLqu484778TTTz+NN73pTeCcVwRn\nhBCyGVGwRQhZreUlxR07duD++++vuF1VVXzta18rBWK2bUPTNLz88svI5/N43/veh1tvvRXHjh1r\nfdSEkJ5i2DZORhe6PQxCCOlZLc9wXXPNNbhw4ULF7aIoYnh4GADw4IMPIpfL4Y1vfCNOnDiBO+64\nAzfeeCOmpqbw/ve/H9/61rcgy7WHMDDghUxLJk2JRALdHsKGsW0HnAOKsrk+I/14DCdGwxDFrVWM\n9FImDZszbA+Eym7vx+NHVtDx62+9evw60tqHMYZPf/rTOHv2LO6///5iYu/u3di5c2fpv8PhMKLR\nKMbHx2v+rHg814khblqRSADRaLrbw9gwyVQOts0wNOjv9lCaMj27iMGgDwGvVnHfVjuG/UwGIENE\ntLByvOj49Tc6fv2tF45ftYCvI7sU77rrLhiGgc997nOlpcWHH34YR44cAQDMzc0hk8kgEol04uXJ\nFhIKevsu2AKAnWODrsEWIYSQzaltM1yPP/44crkcDh06hIcffhi/8iu/gttuuw0AcOutt+Jd73oX\nPvrRj+KWW26BIAi455576i4nEkIIIYRsBgLnnHd7ELV0e2qw3/TCdCpZHzqG/cNmDKdTizgYHi7d\nRsevv9Hx62+9cPw2dEmREEK2AlkUsTsw0LXXjxlZJK1C116fENI4WtMjhJB1UKXu7ZD1ySokYWvt\nDCWkX1HARQghfUqXlG4PgRDSIFpSJGQLmUumkTPMbg+DEEK2HAq4CNlCgroHmrJ1J7YLto25bKbb\nw9gyHM66PQRCegYFXIRsIbqqQBK37p+9LIrwKrQMt1FO5ma6PQRCesbW/eYlhGw5sigioFLB2Y1y\nmW97t4dASM+ggIuQVSzLQS5POU6EEELaiwIuQlaxbAcFw+r2MEgXzOUot6sXzBjzsJjd7WEQ0nZb\nN3uWEBdeXYVXV7s9DNIFDuvpphtbxpASgix0r7YZIZ1CM1ykZbbtIDqX7PYwthzHYZiej3d7GJvO\nhN+9HQfZWB5Rg0DFXMkmRAEXaZkoitA8tONro0mSiOGgr9vDIIQQ0gQKuEjLRFFAMOTt9jC2JJ+H\nlj1J/+Gclm3J1kUBFyGEkA0xVZhFgdEuYLI1UdI8IYSQDbFbH+/2EAjpGprhIoR0xXQ8gVSh0O1h\nEELIhqCAi5AGnJyOwrTKawMZJtUKWo8d4RCCHk+3h0EIIRuCAi5ScuFsFPms0fTzZs4tIJvZ3DMV\n+3dGoK5q+mw7DJdiqS6OqP/R1n9CyFZCOVykZGLHEESp+Rh8fNtAS8/rZ7IkYtfEYLeH0XOyhom8\nZWHYT2UrCCFkta11liQ1tRo0bUSwlUzmOv4aZP0USYKubK3abBZzuj2ErsvYBZhNtOMxmIkz+Ysd\nHBEhvYcCLtIXsjnaSt4PVFmCT2utRphh28hZ/dfH8kQi1u0hdJ3FbTicNfx4TVSxR5/o4IgI6T20\npEj6wsR4uNtDIB1m2DYczuHtsxmyywdHuz2ErhtQ/N0eAiE9jwIuQkhPoB2LpNdxzpFlKfilULeH\nQvoQLSkSQsgW8Upmbt05ZwkrB7vBn7H5Wvlw2JzSG0hrKOAiJbbtwLYoAZiQzWqvLwJFlNb1M2zu\ngKF+IJVzDJwrzK/rtXqNIIgIy5FuD4P0KQq4SEk2XUAqQbsBCdmsZGH9X/nDagCqWD8bxStp2KlT\nfhshyyiHi5SEBqh2EiGEENIJ67rceeGFF3D48OGK27/3ve/hhhtuwE033YSHHnoIAMAYw1133YWb\nbroJhw8fxvT09HpempBNwXEYGNtseS6EEELWanmG64tf/CIee+wx6LpedrtlWbj33nvx8MMPQ9d1\n3HLLLXjzm9+Mn/3sZzBNE0ePHsWxY8dw5MgRPPDAA+t+A4T0s2gyA4+qIOzX6z+YkC7inFM7JkLW\noeUZrh07duD++++vuP306dPYsWMHQqEQVFXF6173Ovz0pz/Fc889h6uuugoAcMUVV+D48eOtj5qQ\nTWJsMLjpgy3Drl+BPJ7Pb8BIWmMzBrbpdts172Rutqlq8oSQci0HXNdccw1kuXKCLJPJIBAIlP7t\n8/mQyWSQyWTg968Ux5MkCXYDX8SEkP7FOcfUYqLuYzJG7261n81lkDQ3d3P2RhzwjTeULE8Icdf2\nvx6/349sNlv6dzabRSAQqLidMeYasK01MOCFLK9vG/NWE4kE6j9oizhxeg67dwxDUfrrM9StY+gw\nBocxqA38bTZqZCTYlsd0SyvHIhIJ4Cez5/FrY9s7MKL2SVsFcHAElc09y9os+g7tb716/NoecO3d\nuxfT09NIJBLwer343//9X9xxxx0QBAFPP/003v72t+PYsWM4cOBAQz8vHqcyBc2IRAKIRtPdHkbP\nCHg1JPqs1EU3j2EyX0DetDAW6s0vrH6wfPx2S+Ge/1vM2gY4AEOm1YZl9B3a33rh+FUL+NoWcD3+\n+OPI5XK46aab8JGPfAR33HEHOOe44YYbMDo6ire+9a34wQ9+gJtvvhmcc9xzzz3temlCqqLZ0eaE\ndA9COrXY6ZTZfBphVYdH6o2lOZ+sdXsIhGwZAu/x3gvdjlT7Taej+3zOxPxsAjv3jHTsNba6XrhC\na4d4Pg+PLEOv0oz6UioNSRQx4t9c9d9qHb+UVYBXUiGLraXPOpxBakPxUlLdZvn726p64fhVm+Gi\nv1zSFN2rloKt+dkkCgWryyNqnGG6L5tYtoPzF+MbPJoVc/E0LLuzLZVmFpOwHdbR11hLhACxRhmB\n8WCgoWArYzaWUD+fzWIh35nl47OpOBLG+hPng4qn5WDLcGycSi+sewyEkO6ggIu0LBDUofZRMvpc\nNAXTqgy6ZEnE8KDf5Rkbw6MqEMXO1jcK6FrHX2OtkO6B1kDyvc0Yopls1fvns9mqZRl+PjdXum9Q\n1xHSOrMcujs4gHCHfnajNEnGwWB3+vj1+EJIXTPGDBjf2AsOQtbqjUQC0pd0r9rtITRlx7ZB19sF\nQYDucV/22gghX+dP5MEeycsybBucAx6l/KunVj3NPQMDVe97zehKr75WZ4664UI2CY+sYFjzdnso\ndSWsHDJ2AZO6+99PP4goEYi0FEu6jD6BpKMchyG+kOn2MKpKpvOYma1dJ6pfZA0Tl+K9nXtSsG3k\nrPIlQlkUMezbXHlc9Uz6Qn0RbAFAWPH2dbAFAKrYXxeHZHOiGS7Scb28GBEK6AgFNkcNIo8iQ/L3\n9jVUyNP5mTZqQUMI6UW9/e1M+p4kiRgc6l5+1FYiiWLFUt1WdDGTRizXX7XXusVw+mfTixuHOzhb\nONftYRDSEAq4CCGbyrZAEMPe/liua7fjyUtNJbhfNJJ93R9REiTs0nq7mj8hyyjgImAOw9xM98oi\nkPY5eSmGgstOTLI1XBYYbWo5dbd3uOP9EbNOAVmnc70oafmY9AsKuAgEUYDuK1aczmeNLo+GNMpx\nGE5fKtZlyhkm8qaF/ePD8CgyUvkCEtl8l0dYKW9ZMKhpfcf02k7NmJnEolW+kaNaiY9+YXMLjHe2\nbh7ZnHrrr5OsS/RiAtl081eSgiAgGPaCc47YfKrl1+ecg7H+/jKtJZnO91Q9IkkSsX04BACwHVZW\n2FSVZWhdzOdinMNyKk9KBcvGK9FYF0bU+2zmIGZUr0fWjwaVILZpw/BJxc0SNndwJn+xy6Nan5yT\ngsF772KG9D7KsN1EggNeeHQFuRarvwuCgO27Wy+smErmUcibGB0Pt/wzelmuYMHv0yD10BKGuhRU\nBb3lu/+6nTyfMQxkDAsTa5pgD3j1npuF6SU9FM+3xdpOA7IgYZ93W5dG0x5BeajbQyB9igKuTUTT\nVUgb2Kx5Yalf1dBS36hQ2ItQeHMlK+cKJryeYg2f8Uiw469ndrjFz0YJejwIVikBEfBQw2Q3sigh\n4tla9cg2M5ubMFgWPql64V6ytdClJmnZ4LAfg8Obu+TDXGxjC4lOzS5u6mVZQrYKASIkgeY0yAoK\nuEhdyXgWcxcrq7ELgrDpdwjtntzY5YMDk5EN73nYDqlC7dxBm1Efu1b0Us5gIxbMFGaN8u+KrFPA\nrBHHvLk5Ojo0ShJkJOxZSrAnJRRwkbpCAz6MjIeaek6vztJYFn35dUI8V4BTJajKGCYuJJIbPKLO\n2qhA6OeJ2Q15nXYZUoMY08pzOB3OEJB0DCuNfYdwzmGy/i7IumxM3Q9R2Lg0D9LbKODaouYvJmA3\nkS/U7EzW6RPNFWDcKBfnEjAbrFO1mMgik6MyGY3YORiGVCUZ3q+p2DW4ufJYTiQXkLc7HxT88sB4\nxW0Z20C+hyrEO5zV/FsPyl74ZE8pgX7OqF3zz+QWohbVBSSbDwVcWxBzGI4/dxbZZOe2Nu+/bGLD\nlhuzWQNWg8Hjzsmh0s6+ery6Ck2lHIxOO7O4CNOlhEQvOxgehi4rbf2ZNnNwKV+/LIvNGBze/SXa\npJVDwbEwZySQshv7Lnklex6iIIDVGL8mqhhXh9s1zI5j3EGeZbo9DNIHKODagkRJxJt/57UIufQ4\nPH8mCrvPlt0KhgXHaf8JyKMpUBrY9ck5x6nz0ba//laxLRiEKtGyiyAI8Ej1g7iwqsMvt3enZ8Y2\nMGc0X4NPEIAJzyBCSu3dyVFzZUlZ4gJeyk5XfSzjDGcKM02PxU3WydYM7tqBgcHiNBNO6qOAiwAo\nBg35rIGRiTBkpbWT3/SZKFgHAp/Vzl9YBFuTKzQ06IdHa+9sQzMEQcCOse4vmeXN3llmaoYmr8wi\n2owha5p1n3NyYaHvK5avJQkiBlS9K6+tSwpCsg6HM5zIzCFp1Z+xCileaOLK393apUXGOaw1fRoP\n+rbDr3ixUx+r+nNFQcQ+vT39EQvMgNPhpHVZUBCU+rc2F+c2HE4zdBuBAq5NgjGOmbOtz7I4DsNi\nLA3N03rgMjoRhih19iM1NOiH2IOFMxtdpuykS/FU3wchluMgbdQPuCaDwYqimqR1kiDCIyngnMMn\nqS3NoM2bSaTsXOnfeWYgZhVnzSLqSsK8KirwSxsTWA4pg1DE5r/TCiwHi9X/HPYai2eQcc429RwG\nCzbf2PI3W1X3zxKkLURRQNhlibBRsixh28715U141hGsNcrrVRt63NS5GMZGQ12d+doI8UwODucY\nDviwZ7R/r7KX6YoCXal/zBp5zGaQtU345MY+8+0gixK26a3N1o5r5c/zSZ5SS59+43CnL0veKIIf\nsthc8VxJ0CEJ3ZlZ3Wp6b6qAtMwXbP8fzcJ8ynUHEmO8qV2OG23H5NCmD7YAIKB7EPI2f1LjnGM+\n1dllhP+7NLfuGbefz85uyG5Xy3Hw4sJ8y8/vxBg557jYQBJ9o85kY8jZvTtrM2suIOPk6j8QQMbJ\n4pLZ+vGqxycFIELCvFmZS5Zz0jBY8z1rN0q7AkXeAxszNhsKuEhLctkCFuZ7dxq63cVDL0VTWEw2\ndjLYSLIkQmkg4fxiPLXhbYN+aXx03ct+rxkb25CZBkWScPnQSEvPtRnDi/GVk/9MJgXDaaz0SC2C\nICDvWG1bJt7pHYR3A2fLmjWshOEVVy4eDGYiVqU8hF/yYVxt7Xg1ShFVDCmjFbeLggQB/Tf7VQ/n\nNmxe3Nzg8CRMXn1jA2kNBVxbiJE3MXWiuUKKQyNB1xOeP6BjdGJzNql2Mx4JYjDUv30iAx4N8qr8\nOkEQMBLsn7ZMhm3jXLI3i6fKoohDgysnZp+sQBLa89X6mvB423LV1jOmlzIzsFmnk88liKvGKAsS\nfGJ3l7rcWvN4RC9UcfP1A+VwwHhxs4QkhKCJu7s8os2HAq4tRNNV7NxfecXWqNmZOJLxbBtH5O7S\npQQSid6bTepnAV3riyRzzjkupStnTlVJQsTbXMCbtUycXFxo19AaFvbokNuwseN0ZqHjQU6jXuXf\nBlnc2NIdkiBB79McsH4kChpUsfruUbJ+lDS/xaxneWZs28aUPhgf3zozZ6txzmE0WAV/MzmzGMew\nz4ugpkEQBNdgRRCEphPlfYqK/YPt3UhgOg5EARsSfIx7Ahse5LQb5xwWd6CKW+NUk3YWoIsByELv\nLt2S7qEZLkI6zLTshpKqLYdhLr716uHsGRxAUNOwkMthNp1BxNfcLqvFfA4po7nCk/O5LFJm88Uq\n40YeGWtjEs97Od9qNZNVv0goMAvRPmtabTMbZoslIRRBg0CnVVIFfTJIT8lkCjDN9s7yxBOdXwat\nZT6eaWjmSpUl7BztzCxiwbKRyje2s2qje2DmTBO2wzCg64j4ai8bGnbl79EjK9CarFQfVDXoUvOz\nLqNeP8IabaFfxjjHuUKs6v26pGKbp3/a9ACAwQoweP3Crxknibg9V3abR/S75n0RArS4pMgYw913\n341XXnkFqqrir//6r7Fz504AQDQaxZ133ll67EsvvYQPfehDuOWWW3DdddfB7y8m6k5OTuLee+9t\nw1sgmwljvKKS/HoZbWhVxBjHqXNRHNjV/M6oyZHuL5FyzsFYY4HUy7NR7BsZamj3YyNORhewe3Cg\nLGl/tYxpwacCPkkt9oqpgnGOqUQCB4eHYTNWWnr0NrnU+EJ0Fr80vP4dlAQQBQH7vGOYLcQhCRIi\nWrDbQ1qXpB1HQBhBQArVfaxPDADo7/dLNlZLAdd3vvMdmKaJo0eP4tixYzhy5AgeeOABAEAkEsGD\nDz4IAHj++efxmc98Bu9+97thGAY456X7yMZLxIrJyOHhQJdHUl2wA7XExiLr/1IURQF7dwzDshwo\nLbY+6iZdVaCrjQUmrxpv73b7HQOhqsEWAIz4G1tCFAUBB4eHUbBtXEglsW9VflbBtjGVjOOyoUjZ\nbR658ivAb/8RAAAgAElEQVTulyOdTQxOmQYuZJOY9NU+aRccG54WZtl6TcExEbXS2OWJ1H/wGjEz\nAb/shUdsfvk0Yaegix5oLTy3Gk30QBFlAPXbZCWcGFRBg6+B4KxXWay4qUQR+79ocj9oaUnxueee\nw1VXXQUAuOKKK3D8+PGKx3DO8YlPfAJ33303JEnCyy+/jHw+j/e973249dZbcezYsfWNnDTNH/bC\nH+7f0gZr5fMm5qPtKwxZz/lLcVyYT8Bqc3PvkzNR2B3uQdlNy70SU4UCLibXf7w8slwWbC3fNurz\n41xyJV/oYpvqYbkp2FbVHYReWUHOtpAwK5dwT6WLJziHM0xnO5/blHc6319TEkTs0iMIKO4XS6vb\n/azllTxQhNYuYFRBgdjmrBiPqDe8JDggj/R1sAUAkhCEJNAs3UZp6fIqk8mUlgYBQJIk2LYNedXV\n5Pe+9z3s378fe/bsAQB4PB7ccccduPHGGzE1NYX3v//9+Na3vlX2HDcDA17Icv/NKHRTJNJbM1id\nmhWyHQbTtOHVNya5WPep8HvbX39nYNBXMQPUa8ewHYa4HzZjUNu0VLlWBAFwzks7cTv5O5zNpqHL\nCkKae9mCN+5zr2GkBleeMzbSmZP1dGYRA6oXHllBIrOAHcHBjryOm7xtQpXksppfuWweEV+1Y7Ge\nY9S547sZ//62kl49fi0FXH6/H9nsSiIyY6wicHrsscdw6623lv69e/du7Ny5E4IgYPfu3QiHw4hG\noxgfH6/5WvE41WNqRiQSQDTaWxXgT5+cxZ59ow2VpGCMN10lPptpfrfZsjPnYtizo/Gk3ny28zvU\nqh1Dw7Jh2Q78+vqCvtlEGn6PBr9nY3fBZU0TjHEEPJ0tGnk2EcfucHHzgc0YXlmM4fLh9i6TSgBM\nWIi6LD3V+xt0e047KUxEPmfCECyEoW/o98GsEUdQ9sIrrRxjL3REc731nVRLL36Hksb1wvGrFvC1\nNB975ZVX4plnngEAHDt2DAcOHKh4zPHjx3HllVeW/v3www/jyJEjAIC5uTlkMhlEIs2v+ZPWnTs1\nV3cHWrt3CALA3v3l7VmYwzA9FXV97OlTcw0nd9eSTOUa2m03Mdr+WYbp2cWW30O2YCKedr/IcBhz\nXXpknMNpYqPBgE+Hrm587pBQ+n9FDmM4s7jouvNwPQY9K0tbsijiVUP98T1TcGw4a/rXZWwTC0Zz\nF52KKHVtQ8CYNlAWbK0WNZOwVpWQOJWbAetCv75cg/0aCWm3lgKut771rVBVFTfffDPuvfdefPSj\nH8Xjjz+Oo0ePAgAWFxfh9/vLTrLvete7kE6nccstt+CDH/wg7rnnnrrLiaS9IhPhurNMM1OxikCl\nkDfbEgQtEyURo2PuO/f2HxirOsN18VLj+VP5goVGqht0osH1cMjfci9HSRRxcSGFRLZyW7pXUxH2\nV+bJxDN5LFQJ0txoigypDZXQm+VVVQS0lZPxdCKJAV0v5XjVUyuAns9mcTFdzA8LeTxwGMOJpSrz\ny8FHyjBwIe2eQ8Y53/ByGGstGDnk7PLZL0UQoW2CxHoA8IhKWeue3fpY2b/XMpmFS4b7hdl6ZJw0\nHObAZK3PjLeDxfOwGig/QTYPgXf7W6aObk8N9pt2TqcuRtPQvSoS8SyGRoJQ2zArcn56AeMTYcgt\n5HTlciZ0XdmQZsbrkczkkStYGB9uLRm13jG0bAfKFstrzJomLqXT2DfU+G4qw7HLgpXlmUC3chez\n2QwEAKM+9/6SSbMAjyTXDX5ejM/j9Xt3IrXYOyfSqJGBX9agS8WLiwUziyG1cmdoysoj55gY83Qv\nEXx1Dh7nHAY34VnTtzDr5KCLnprBWj0WtxC3FzCiVO5Y3aglKYMVX0MTezPfqF9tuiVFsjXoPhWK\nJmN8crAtwRYAjIwFWwq2bNuB16u2PdhyGEOsRnX3ZpbqlgV9HowMdq4x9MxiCoUOLP02q5FrtVOx\n9vQy9Klq3WBrLpsBWzWmtcGRKAhVa4uN+fxVgy2gmAvGGni/lw+MIJbPYaHQ2JL2RtBEGfKq4CTv\nmK5j88kaBl0CsU7inKOwVNWdc46T+XOl+wRBqAi2ACDPChVLr81SBMU12NpImhigYGuLoYCLVLBt\nB2dPzEL3am3ZIWrbDk6dmAUAaC0s4dm2g3PnF13vS6byuHip9e31wtL/VXNxPolMrrmlB0EQOrZk\nZ1o2hgJeeLqQg7XWS7P1y1mMB9d/QkkbBrJm/c0KtY7jeg15vNDlxj67I14fbMYw0yOJ4kHFA2VV\nT8ZJfcD1wkUSxA3veWhxG4tWcZlXEAQc8O6s+5xhZXCpVhYh/YUCLlJBliUYhdZ3UiUTOdircq0Y\n49g22XrLGlmW4PEocFxO7qGgjvGx1pdARFHA0ED1q/rtYwOYjbVeOypvWFVno2LJLBKZ5paeHMZh\n2e2tA9aqV4+P1CxoChRnpprlMFY2s7g6ODBsG1OJlQA7a5ml3K0Rn2/dyeI5y0Lebv2zP5fPQBEl\njHr9mPStLCkzznEhm6z53EKHaoa1IucYKKyp4fVi+kLd5zHOUXAa38mrigomtP5q/UNIqyjgIq4O\nHJps6HGOw8qCK2CpjcyqJQvLdGAY6zuZBAOeqononc7pGg77WlpaBIozUtUCpJDP41riYSaWrLoc\npWsKBgO1i9faDsPUfLz5wbaJwxjsdbRnWsznsZgvBqKMc5yNx0uBmypJGF3V3NojyRjwtK87gckc\nWGvGfiJRfVn0bCpeVly12rKjANScIbOZg/NLhVAZ56X/ruVUJoas3ZnEb5M5sHn55/bV/m11n2dx\nGwtWjfxDZsNgnS/GSkgvooCLuGp0l102U0AiXt4cOjzgK8v58vk1yIqE+GL1XKl6/H5P15LlDcuB\nbbcWQIT8OgJViqUqsuQ6Q6RI0rreqyyJGA275yOZLiUYCg001m5GPJdHPNfYzF2qUMDMmurzEZ8P\nkaWgShQE/NLoaOk+QRCgL/VOfCkWhSSKpX+3Q1jzIKiWH6+JqkU7gXFfAOqq5bpxr/tjBUHAkFY9\nUJZFCfuDxZkeAYBfqV+rbJ9/GD65+Lj15jStFVa88MvlRV0b+UxqooJtnmKu3YnsTMX9eWYi56w/\nSGymnMSMMQOTNT7rxjhDnmWRcVIt7WTknIHx3piFJr2FAq4tgDkMrMHWMcxhFUt3tZYXgyEvhkfq\n78bTNBl6E1Xa0+k8ZmYan6XJZA2cv+Ce57Veo0MBaBuYMzUysP6Ee7e+iabt4Pxi5bLW+YVEzQRv\nxjmS+co2NdUM+32INNgf0auoSOQLMB0HZxbjpVytF+fn686S7QkPgHGO+WzW9f6Cbbclcd2vVF8W\n9Uhy2y8EBEHAgFqctXM4w1yhfi7Y6czChixJZuwC8g0uGe7xVialB2UvBhQ/YmailCzfLIOZmDFm\nG378uDoO1aXfYoHlXQM3hzvIsxwkSC3thMyzNDIsDs5Zz2ycIL2BAq4tILGQQaLO7FIuU0AuU0Aq\nkUNiofyxszPxhgO2ahRFhiw3/nELBHRMTJTX6qpVC8zv0zC5rfU8sV7kOO6FTpcVTNs1r60aVZaw\nd6Ryp9/+seGaQQNjHBmjsZOjzRjSRuOzArIk4vKxEaiShJ3hUGnp8PKREcguGw8upJKlZbvl+l0c\n7p+L2WwGhtP/Mw1SAyf9A4HIhjTC5uBga37f80YSBcesmGWTl3oknsxdrFie9Eqe0v21JKwUck55\nsK+JKrZpY6VgKeNk4dSYUaoWNKWdNBgqn6eICgblCHTJB1lofvbUK4UQlIaRZjHkWOf7ZdbDuAHO\neyc/cCujgGsLGBwJYjDiPgvFHIa5VTNJ4SE/hpZmrJjDkErksHPvCMQ6ydH12LaDc1Mx9/ssp+JK\ncH4+VXabbTuYnU0gna4+0yIIApKp3ql/tF6pfAFxl6T6RDaP+WQGiWweBctuqFzBesiSiG3hxmqK\nOYwh22BwtlYjOztVSS5LjBcFoWo5h12hMDwdLK5sVWle3U6SIGJYa65Uw7lcvGOfiYCswyuqZcGV\nX/bA4Qyns7Ol13U4wyvZYpL9Xn28IrjySsXlyrXB1FqaqEERVtdSYygwAxknh0W7GMxYzGqpYn1E\nGSkFVItWrO1V74PSCHxS9y8CLZ6Azd1ngd1QcNY5FHBtQaZhIR4rLlMIogCPV4XX74HXX56zwThv\nW6sfWZawZ9+o633z8ynkc+UnaU2TsboPzPkLixgZCSIQcG8WvCyXM9paFb+bBvxeREKVJ9uAR8OA\nT8fYQAAeVcaJi+urxt3OZQ9NljG2VAqCc45z8do78wBgJpVCslB/ydJmrJRMDwCzmQzOJev//E4o\nODam043NXjh8fZsImhVUPOvarWkyG5cK5e/NYg5OZovLeEk7h3lzJe/OK2nwycXSE2k7B8Y5JEHE\nfm8xyb7aWGxm183n0iWtrASExW2k7SyCsh/DSrEp94AShiKuL49PEiQYrPgZ5Jwj47S+M7nXaOIo\nFLHxndx59go45aB1BAVcW5AoiqXio4IgIFSlLIIsSxgeCWJmegFWBwttTmwbgNdXnt8VCnnLEvd3\n74q41gQzDKsUMKTSeQQDetWE/9loCulM47lIvSCRzcN2GAyrmI/kOAySJJYqzUuiiMu2uTdmzptW\nQzMdL87U77G5rNGlRaD42QpUaZCdMU08ffosgGJ199Utf6oRBQHbgyszbTnLQjSb7UqejEeSsS9U\nuxCrzRzM5zOIG3nEmuyHuB5hpfVdmxfycRQcC4E1CfOKKGG3Hln6+T6Ma5WtucKKD5Ig4sfJV1Bw\nzLpBn0fSMKwWA4Gsk8eFwnzVx+acPGaMOWiiiog62OzbqiluL0KAAJMvBVzgpeCrX1ms9QsRr3Q5\nhAaWe0nzKODagmRFQiBUu7TAakMjgZaqw2+E+Vi61F9RliVILnli+byJ8xcXMRT2wddE4r5lO1hI\nVJ+Kj6dzmFvobHHLYh6Xg/PRBM7Nx/HzqUsAinlVZp3dhfFMHkYDOxAPTY655nBF09mVJSJWHEcs\n0/jSBAAM6O4nf5+i4NcmJwAUlyyrnZxThQJiuWKwYjoO4qtmwvYMDOB1ExMd272aMg2cTa2nvIYA\nURAx7PFhTG98I4TFHMzmu1M0dUQLwC97cC6/UJmTJdb+DhhQ/PDLOg75d7oWJr1oLJQ1r17NJ+k1\n63F5JR3bNPcZ8vXyij74pABCcjGQEwURQ4r7RUy/MHkSvAuNwUltFHBtQRenYzAKFi6cjcJpoNyB\nRy+21GGM48SLlVu9m5HPm5g+29oSmNtMxvZtK22HvLrq2oxa11WMj4SgKJLr7JftODh3sXKHoyAI\nkFblrmVyRlkRVK+mYjjcWisUxnhDwdBQ0AePqmDfxDB2jg7itXuLyzR500JsTcPqtbNZE4NB6KoC\nhzHMp8o3QjiM4aWL1WcUgPLf91wqg7RhYtdQe3JSBEGAb9Ws1svzUZguCe4XUimoS7ldHlnGZLA8\nlyxZKGAq0f6aY1OpBAKKihHdh1PJlc/GpWwai4X6eYKMczicYdjT+IXNMlEQXBPgZwtp2E3kjbVS\nKkIVZVjchl/2NJSsD1TmsgVk3fW5YdlfM1G+WnL7opVAzulcbqYmapA2YEbH2sBZM5+0A8I6ek2S\nzqAjsgUNjYagajKGRoOuM0LViKKAA5dXFj+8dCEOq8FaTrquIjIaxNxs81Pec3MpJJKtLc2sXY6M\nJ3OYnS+OQZYkjAxV1k+SJRHhQHGGJp0tQBJFDC3lVBUMC3MLKUiSCKPJ3YIAUDAtLKZaX2byeVRM\nDJYHHy9dcA+gBEGomEGSRBEHxyM1X2Mk6C89byIcxIC3fQVGl52MLcCwbRyMDEN16XN4YHgYQU/1\nvL2Qx4Nd4fYnJoe1Yt03n6JiV6C4fHYysYAhj46QppUCqmVrg92cbSJaqD8baDOnorK9JIgIq5W/\na1WU4KwpKrz8Wqurwi8XYj2djZUVZa1nKreA09koVEHGiNp44/Wz+bmKMRnMKvv9nMzNQBGKJTRS\ndhYzheoXXZxzmKuKo/okr2tZh16WdmIVtbjSLEr1ubY4Cri2IM2jFAtIVlleu3R+AalEbum/F5Gp\ns/MvPOhrqueiR1MQCte/8l87ozU2FkLYZSn09Nlow3k8jHEwxhEO6hhdtXNz7czY2nIMjHEIAqAo\nErJ5E7MLaewYH0QmZyCeyiFvNFc92+tRMT7U+EmtHtO2oVU5BqIgYDhQORO33jY47bB7cACaXL2W\n1erSEJ3O1Tq+MF96jbC2EuQtj2HCF4AqyZAEEXEjj9lccdbQcGycSJbvwPUrGiZ99ROVC46DpNXY\nzMeg6sWimUPcLA/UT2djiBrFsTDOMZUrzsgd8I9UNPBeNm9ULlmOagEMq75i02ip8ST0A76J0mcp\nbmWwYKaQsLJl9br2e7eV+jkGZR+2eaoH+wY3EbNWkvY1UW2ohESnOC3s2pOgAGt6ew7K2yH2WG6U\nxRNw+ObZ2d3rKOAiFca3DyG4FBCNbhuAP1h7ZkOSRJyvUvLBjSiJ8HjKv9DddkOePRst3X7pUvXi\nnNu3uTfjdbOYyGIxkYUgCFWfwxjHmfMxLK7K3woF9FJQ5tNV7Joo5ntkcgYGQ174VwWv2byJZJM9\nEquJZ3J1G0QDgCrL2D1aP5mYcY5MoTPtYFrhVmvLTTSbxaVM650Klr0Ym69o0zSdSiBtGrhsoHY9\nMt9SAVSHMwxoOrYt9UrUJBmDmo7ZFppV+xUVY3pjDb6PJ2cR0fwYWlMmIqL5MakXZ+FEQcDBQO38\nI845LuQrl2F1SUVI8SLnmK7tdzjnmMq7z0xl7AJSdg5B2YuQ4sOoFoZf9uAXmXMNvbfVPKKGCa32\n7GsjYtZC00F6wl4se47FDMSs8iKrnDPE7drL8V4p1FLR1I1WbPje/gsvxhPgfOM2ivSL3v9EkK5y\ny3manYmDcw6jYGH6TBSqJmNisvrJfn4uiUKdZtjnz1f2q9uzZ6SUn6V7VdeTYS5vlrURqidfMOH3\n1U6cF0UB+3ZEYC0FOpblVPRDNEwbsUQGY8NBqEr565+bXWy4NVI9jPGGTxpr61jZDkMyVz57cmEh\ngTPR7vVZbFXE54PNmGuel5tLmTTmspUB2mWDwxW/p23+IPyKWhH8ZS0TpxKLSBh5xI2VAHo+l8Wi\nUR5QRzw+jDSRGN+KVwdHXQPU5RN7o8uHgiBgt7d6grrJbJguuWKCIGBICeBMbq4iIJMFEbIgQRLE\nUvAFAK/272hoTJ2gCAocl8KmtYhrTomKqGFUXdtXVoAmtGd5fdGegsW6N8MkCyFIQu1SO63hS/8j\nq1HARZqm+4rBj+ZRMLmzuDVeViRk0gXYS4HJxQsrV4qSLGIxVvvqf+/e2juQ3JYSASAaTeHsVLRi\n1iIaS2MhXnnCHYuEXBPr1xJFAYokwrQcnJ+NI5svL4cgSSK0VYFWwbQxt1h8j3snhxHwtudLbCjo\ngyJLmI03P3viMFYRKO4YHsBrtle2XOkmmzHMpFKwGYPh0utx2ZCuQ2lwRmzcH3AtiOpWXFUWRddg\n3qeoiBVyyNsW9FVLc+O+QEUyvFue3FoFxy4L3JpV7eePaMX3eSZbvcn2WgNq9SX9sOKtKAux7CfJ\nUxjXBqAt1b0qOCayTgEeSUXeMTFrxOERldL9jTKrNLSOWykk7dZmNr2ijnmr9kzUWkE5XHe2XBAE\neKXGZiXrGZB2QBHbnxvZbaIwAEFobUPRZkYBF2laaNXOvNW7+FLJHLKZ4nJVIKiXvrgGBvyIjJbn\nK9WauTFNGxfq9EV0GINh2ti5YxjbJgZKJ9Llnzs06Megyw5CpUp5iwuz8YqCqYIggIPD79VKyfPL\nZElEwLdyUlJkEX5dW7pPwktTczXH3yy3Jtf1aIqM4eDGfunlTBNnF5qbQROXktNzpon4qsKmacPA\n/0xNwWYMDmPwqe6znO02k0mVZtL2hwcx6PHCI9cOIBYKOczm0khbK8u1DmeYz69/GbQRgiDgVcGV\nixaHM6Tt9e+Ki5lpzBorG1xeH9oPXVpJYGdY2TwwoPgxpg3AI6lNB1yz5gLsNSUjlpPn803u7uOc\nI+tkoYgKJtSJpp670Wgn4dZCR5u4SiVyMJcSwTmvDI7cduWFwt7SVXhgVd6XKApQ1iy7LcTSSCwl\n5jOH4cQrl0r3KYqEkZEgGGM4cbKySW0qnceJE7M4O1XMJ1m9pDg3n0Q6U4AoVs/RchNyKZg6EPJC\nU2TXHYyrxVM5ZPMmfLpaer8Hd1TPo3EYq1tDa62NDpzWyhgmcmb9jQFeVcX2gerJ4tPxRKlB9TJR\nEBDWPQh6PBgLrPyudUXB6yYmIIsiXllY2LBq7XGjgIxlImuZiBuFqonnq4U1D4Y9Xszlq+9M9Egy\nBrSNmc2wGUPGXl+uns0cDCl+jK7aseiVy5fjvZKGoFycLTuVu1TRM9GNwUxk7PL8nh2eMchrancJ\ngoBRbQhjavXlTzcMDLkuLtMRUg0FXKSueCyDhWj5ktaFqVhForvP70Eg1NgJJTISxMBShXtREnHg\n4HjpPkEQoKoyRFHEPpelRr/Pgz27I9i5vbLS9/hYGMGAjniiuYTN1bNVq5lLFd5r0T0q9FXLlCfO\n1d41mTcsxNOdPyG02tNwLdthMO3qPRstx8Gl1MrnY22ekcMYXpwtLu1MBALwKpWzHynDgOU4KFg2\nMkvNr2VRhHepmfWrI5GGE+zX69DQCAY9OnyKin2h2hsRlhPlJUGELErYF1x5vCSIHc/rWmsmn0Te\nsaBJMsY9jbdzWZay85gzirXmzuZjsDmr3dicc7yUKfZMPOCbaGg3IUdxZixupVFwan9GDdb8Z1gS\nJESUlSAtz/KYNYsXdCYzkLA3PoeRLe10NFluQzsjcO7AYOtr/dVJnM+B89qrGZsJBVzEVTDshboU\nRAxGAhgeKV8S3Ll3pKlk9VatnnVyHIbv//AETNOGpinQ9craPI7DcPLMHEyzPFAyTBs/PTaFbK65\nq/7oYga5glnzS9KjyqVWOwCwd9tQ2VLrWn5dw+hge3JAACCezbuOL5bOVuS2tWIxm4MAAX5t5fe9\n/HM55zgVXaxZJFMSRbxqtLjr7PTiomvie8GykLMs5G0Lv4i2/wSRMcuPoc0YslbzJ/NXErGyBs2t\n7ExcjxPp2r+bAUWH5lLlvVE+ScOAUpyx2u8bLZVyqEYUBLzKvzapfEXCqmy95BFVBGUfknYWSbv6\n78/hDubN9Z+MdVHHqDKGvJPDvBWFJrYnv7LAcsg10HOx4KSQdIopBnmWAGsykX/9BFi8V3tDhgBs\n7EVJN1HA1YPmzjVeYqFTEosZzM3EsRhLIzqbBGugNIFZpwBoJlNoqBl2tcdIkohf/9W9S42tK+Xz\nJs7PLGLvrhGMjgTLrsw1VcahV0001doHALaNhpHNmVhcVXA1nTVqBmC1gq1WxDO5mknzecNy3Q+0\nc3jANUm8WSNBPwZ85TOXL80WT/yCIOBVYxGMuNT5Wm15qfmykQg0ufL4BTQNyYKBAV3HRDCIUwvF\nBPCXozH8fG79+XCxfA42YzgeK9baMhwbmTVLm2eS8bq7IHf6QxAFAdPpBAQI2BGoLLpqODYczjCV\naf9MyqRee9bKK6tlyfVrq81fLCRhVmmvwziHAAGqKBf7dq6zNYzBLCSsTHFGi3Ok1ywj7tLHMKoV\nZ6nPFWZRcAwUmIm0XVyWlQQJ2z2NbfA4lT+LS8Ysco77zLYgCNAlLya1Seg1ktTzrPGZcQkSZKF2\nrhrjDlIshpA0CosVEJInIAmdv1BdJggSNHEYJmt8Q8VGEgQPBKG/itquBwVcGyS1mEE63lgfOq3J\noKATwoN+jG4bwGI0jaGRIKZPz8Ne6ll4/mwUuWzlTFEqkXO9fZljs4YCt5kLi64BzaXZBGR5ZUfZ\nzMU40ukCEskcFhYz0HUVO7cPVS3JoGut/WGPDAUwtCoB/+S5+XVVia/l5EysrIgqYxx+j4ZIyD2g\nsR2GicEgREGAaTsNNatuh0MTzfe1y5kWzi7GXeuK6YqCHeFiMBHWNCzm8shZFnYPhHFwyL1JNOMc\nU4mVApkF28bpuPuMyK5QGIok4bLB4VIF+bW7GMd9/rJq95ZTWQV+OXk+oGgQBQGDa3KyOOf4zvQp\nmI6DwRo7AVvllZv7DL+ULq8C75e0qrORC2YGUbMY2P8sOY3vL54o3VdwLCSs4veXw1lDwZjBLPhl\nD0RBAAND1qn+3TCpjcAjaUsVoZrfGBGUAtBFHV5pfb/zjJMCW3pvDrcxb12s+lhF1KDW2WEoChJG\nlD2wuQmDN9eHdL0snkLOKdZB80m7N/S1iTuBb+SCcgui0e40cW23Qs6AKApQPZ2N5iORQN3f2eJ8\nCrIiIThQPxGbOQxiizM2mUwBHo/SVBX68+cWMDIahOZSuiGZzCG0qjwE5xyCIMBxGDjnpddJpvJQ\nFAneVUuOqXQekiQ2PcO1WjZfXJZaXeR0eQyW7SCVKZQFZq1afQwXUlkwDteAy7Qd/Oz0DP7fwWKt\nowsLSQz4dPga/IyZtoOpaBwHxoeRMUxkCgbGQu1b6lxWnC3hmFqMYyIULOVwpQwDpxcWccV4ZfNs\n03GQMYoziZIkIVylvU/SKCC0qiq86TiuLYJa8ZO5GWzzBTCseyEJQt3mzct8YQ3ZRG8Ul/1JfBq7\nvUOILJWOYJw31GGAcw6T26XdhgazUHAshBQv4lYWFrMxolWfbUvaWYRkH87mZ7HdE+lqpfhlBVaA\nAAGKoIDBqTo7tfrvz2QGVLH7F8CtKJ7aGYQe+N1vpEbOgRsxBjc0w7VBPF6t48FWo4IDPvgC1a/M\nzrxyCXMX4zh7orhD8JXjF1p6HaNgNd1jcHwiXAq2OOcoFFaWfaKxNCxrZcln+SQtSWJZUCfLIqQ1\ns1yyLLVUWmE1QVh5TcO0sZDI4mI0WRqLXKMv5cVYEukm88cAYDDgxXDQ/apdFAQc3LZSkXtyKAQI\nqOS+UrYAACAASURBVCh2ulo6b2AuWfwyUmUJ+8aKs0e6IiPcgV6JABDP5zGfzmDf8FBZwnyqUMAv\njY66zsqpkoRBrxd+Tauah/ZidB7eNeUa2hVsAcCvjExgmz+IpGkg00S+l1cp/zs3nPobL9wYjl1W\nZqIZJzNRZG0ThwJjCC7V1JrOLeB7868gaZVv2LiQj5f1YgSKn+fVpR00UUFoKbdrQPGVgq2ZwkLF\nzkTOOTJLJSl262OQBQnzZgI2d5B1CkhY7SmVEbUWSrNRtRSWyko43AHjDgxuIGmvzIzG7QXkHPfZ\np34NtgAsddPYWsFWr6OAawsxjWLuhqxINZtW79o/hmDIi6GRAERJxMFD1ZNiaxkaDrjOVNWyOnBy\nHIZYbOXLee+eESwsZErlJKrxebWK1/XqatNjSabzMCwbF5eaXHs9aqn0QzKTh6bK2DZSbKkiSyJC\n/uoBSyTsb3jmabVoMoto0v1kIEsiQj4PsoYJw7JLsxdrg83VvJpSlo+1PNshiSI8SmdySwa9XkyE\nKvtGToZCkCURL0eLiegnFxYqgi9NljGg6zi5UJmDcnlkBMqqAOtMfBEpo36AEs1VJnK7OZdOImkU\nMKL7EF61dLhYyCNao/zDSwvlxTYv5dIorKkC73CGmVztRGaHMxhV8q3q2e+PwCer8MpaqazFmCeE\nNw7vRUgp/5wOqj6oLon2jSwbBmUvpFWnEYs5OJW7hG2e8mVgTVRgMQecc6gN1OhinCFfYwkSADyC\nttSapraEnYDDHdjcggMGAQKCUrh0f0AKwiNWLg1fNKfBOcOMcabua7TSb7ETqDk2wNnG1L5rBQVc\nmxjnvCxn6uJ0rG4OVWIxA9t2ICsSxBoJ11YDye/rJcsSJle1DEokchgdDSK8qvF1OuM+m5PPm5i+\nsL5EUdthwJolxGUjg4GK2y3bwU9/Me16MldkqSK3LJ0zEE/XDh5Hwn6MhMtzjV48N1sq0mrZDpLZ\nAmLpLPKmBV1V4PdUvyqXRBGqS9J6N10+OgJREGBYNvJWZa0vURAwGawM2DjnSBorx3/PwCCCWu0Z\nCctxYK1qW2MzhvPplcKenHP8PFZM0t8VDCOkebBYyJc9J6iqCKnuS5ycc2wLlC+17QoMQF8zEydA\ngKdOfS+vrGJYa2yJ+mQmWjZGN5ooQ3dpSu2VVNdlxjO5aNUE+2UBWS9bDlZECfu84xWPC8k+GMyE\nAwavVH/WyOYOUk7tE2dA9jdUa29MHQMHh8FM6KKOnJ1BxllZMrSYVdb3kHMOi1sYUSYgCCLG1V11\nXyNqnQNvYZMBW5p1awfOOdLOifoPbJDDs3Cq5J3Z7CIc3v3NXa6cGaBHA08KuDaxbLqAuZniTinL\ntDG5O1KWj2WZdqm46TJRFCGgOLtk25Uf2unT88hmCrhYpxJ8LQsL6VLAwDnHKy9XJqa6BS2W7WDt\nzdVmu3RdxehwAIZRv1hnNUNhHzRVQdDf2DZyRZawfbSykXa15tOaIsGjrpwAZ2JJzCcqTzKxVBbm\nqmNx+Y6xUvCmKTICejGB26epMG0HL1/sTt2dC/EkcqaFE/OxUouehWwOc+mV9+QwVvX3cWhsFD51\nZRbwhdmVore6S+0uh/OGZrRWOxFfwIS/uIO1YNu4lEkjqK4EAIIg4NBQedFaxlnZ504WpapLl2fS\n8dJndzaXRrTgfsJqZHPDXCFTsdRXzU7vQN0SDs3a7xtFwsohYbn/jaXtfCkgM5iFhaWE+2pBUFjx\nIyS7B5AOdzCVv1RaIlRFBaOq+2aJ5cfHrWTV+9cSIcIv+SAJEnTZB2Vplo2Dg6H882hxE0lnsZTj\n1UgT6jF1T0tV4/MsDqNNJRsEQUBIflVbflaRs/S/SpIwAhG1a9TZ7GUwvvGzTYJyEOjRpdSWAi7G\nGO666y7cdNNNOHz4MKanp8vu//KXv4x3vOMdOHz4MA4fPowzZ87UfQ5pP39Qx/iO4pdWNpVHbs1s\nUCFvIpcpP2EFw14oqozkqh2VuayBwlIvwe27I/D5PRgZC9fckVjTqnONIAg4eFl5+w3GOE6drCwF\nMBIJVswSba/VNDuWxvSqwDCeyJblgDmMYWqds2BrjQ2Vz8QUDAsX5hOuj1UVuaxgqq5KOO/yWFkS\nayY6e1QZ+lKgosoSLpso5nXZDsMLU5eqPs9NPFtcRm3FsN8HjyJjX2SoVPohrHsw5FuZkTwVW8Qv\n5oulGRZyuZp1wn55rHZJAFkUsT0YQt6yEMs1tmv08uGVYEqVJAzqelnSPVDes/CVeAxhzdNQbljG\nMiAJAlRJQsYyMKL7MaRV2zXHMbUqOAOA2Xy6rJq+LsmQGzyJq6IMizlNV5c3mY3pXPW/gYSVw5yR\nQtIl6LK4UwqQRIilgG95WREozlQtFzc1mIXzhShs7lRcUKXsLFRRgSiISNjpsuXEeXMRmTXlHgQI\nDQVCy0RBhFcqBnu6qMO/1AtREz3wSeUzyKqoIaK0v9/oVOF/UXDKk7l90jB0sbK0SC+QhCAkoXJm\nGQAEQa4bYMriZRAFPxjvzZIU3dDS2sJ3vvMdmKaJo0eP4tixYzhy5AgeeOCB0v3Hjx/Hpz71KRw6\ndKh021NPPVXzOZtNfC4JX0jvmUT58HDlrolAlYbQADA6UfwSsC0HZ16+hMGRICa2D5YCnkbKO1Qz\ntGosjHGk03n4vBrkpT6Hoihg/4H1f+HtmCy/QhZFsWzHuSSKGIu4f6E0yrKdYt5UlYR8z/9n702a\nJUnT67zHP5+HGO+cc2XW1EBDDbSJEkmRIo1aaAHsYcAGpj0Mv6FX/A/kUlxpxwVXMploBCkQcze6\nu6qyMiunO08xh8/u36eFx43hRtybN7Oypkae1R0iPDx8PP6+5z3HNnmwc/2T4AXa9QBzRSWn6V+t\nDRuECQpFlGY0L7nlG7rAucKcth/F1Bx7yaerGgy40eouYZUG7PLyP9mcOYAfDccYmuBoNOKj9bUb\neYYlRYFzqSWqC4F5xfb/onPGx63VyxaTKpdnmMtVSSkZZSnrjofQBKWS15q7AviGheMbdJOIp8MO\nv7e2OsevVBJD6DystRc+twrRnr2ubr6ZQWcuS+IyJ5iL3+lmIb5uXxlPZGo6m/bV58BH/hYShVih\nlWqbM6JiCh1TeNOfP3C32EuqxAVbmNN8xS2rxVk2INBdasbsuG6ZdS5oh6WZC9u6bTaWPl9ogoZR\nI5c54zLE1z3O8y637Oq6cZaf42senjG7xh2mB+SqoKnXCYw6uqYTTdqW3iXSlcqYUI5pGxu8C2Qy\nYtv6FFtbfc1N5QhDc9Bf4+v1Q4RSQ9Curlb+Y8JbVbj+7u/+jn/5L/8lAL/7u7/Lr3/964X/f/bZ\nZ/z7f//v+aM/+iP+3b/7dzd6z28ajEk0zfcFpwe9qWj+TWCYOp/+zh1s26AsJXuT/EK/5uDX3uyG\nMBxEfPHZAXE8m/jqdEZ0zsc39o86OOiyuzfTDvT60crW5zz6g4gsL2jU3akjvFKKbj/Emasw9QYR\nhyfLbYq8KHn66nTp7wD9Ucw4fncWADX3zaaiNK162g+vaJ1+cmv1DeMqz66m574TjdfLbm/l8r84\nncUePVpr4dsWH66tJkRSKX4511ZMi4K9QbV/evHMXd/S9aUq1QU+uoJsTZdZFitNY8d5Rj9NkCjO\n4+hKkXwhJa9GVVVSm1hH3A4aV5Ktg3DAP3Sr73Q5V3Hd9l9L6q6DpmlT769xkVIqybjIGBarY6TO\n0hFhmeHqJkdJn7N0eZRe0zR0TdxIKzUPXRNsWy0sYdIyZw9YljDYsdsLZOsyPN1ZENYbmj6tZuWy\nWIj7EZrAFCaZzCnndDtNo8l50SGbe+2OdYv7zn1KJLnKJss2V9pDWJq9IKy/KS7ruFIZMShOGMsO\njgiurApJChTfTlbotw1dvPcAu8BbXVnH4zFBMHsi0HWdoigwJhfq3//93+eP//iPCYKAP/3TP+U/\n/+f//Nr3XIVWy3sjH6fvC67y4fiuPtu1DbzAnpLAIi+nFaV5xFGKe0kMrpRi53aLYT+iXndp1B20\nFYHUr8P6esDWVgPXtaZTkm+yncpSousanmcTRSm+byOERqPhXnuMmJaO61rYc9UepRQStfD5163L\nznZj5U3nuvckWT7VaI2jdKX4/ircdLtsUL3uQ1YTqzQvKEq5NCH5TR2fZ6MQ1zT4JNik7i6SoMPB\nkJCCtfXgtdWsL07O+HRznf9tLlLq5wdH/NNP7iM0jXG3oFH3VrrW7w8GNByH2jUC+rMo5DwMabV9\ntlZMUG5Q43A0pJCSlutSs1YvSymFm1o0HXfhb2vrwbQ1OcxSjsIhn7Q2qLVcPlZyyTriTXEaj3EN\nk5o5W6+9sEdgOQSmTRIWNB2PunJRVNW3w2hAKUtsw2TTqeEVFqbQsYQxPY6+DqIiRSpFMFeZGw1D\nNoLadAqykOWN/cwuMF9dHOUhhSppWcvr+wGLVfF26QIazkSkfxQf07ZabOgPpq+JS4O0TGleWt7m\nZjX4kJaVDMPWr364zGVGXIaYmsmoGLHhzKa6pfIoVRPztfYS3979opP8PWvOT7+1z/su8F3ef6/D\nWxGuIAgIw9kTn5RySpyUUvzJn/wJtVr1hf/Vv/pXfP7559e+5zr0et+Mo/dvKq4zfYsnFa6ykOw+\nO+GDucDozumQ5lrA3/yXx9z7aJtmy8cLbIqi5NVXpzz6dAelFLWGx8uX5xi6uLYleQGlFK9enLO9\n08CZWCrEyZsL2fO8ZG+/y8MPNvj5L15xcNjjt390m/X12o2OkTxbfsrXNbGwrY7OBuR5yb1bsxbg\n01en3L/Vxpojl71hRODamCsI6wWUUjzbP+fDuxtIqdg77XF/+/WtxTDJ6MYxphJsv4O8xXGSkRUF\n7eDdu56v/Lw0o1MU6EIjdRf3s4nG/7i5w9nZCE3TrtWleaU+tQTpxTEt1+W26dOZ/C2Lc74cnLIT\nLG8jVUjCJCER13tnNUuLLJScZSMOxyPCPOMsDvnntyoj2fNwzJYXEKUpiTZbllKK8ySqKmuWw3kS\nElvZNFxbr+k8P+pwP5hVSFrKXjjWQt6uKjouMgZZTNNyybScRJ+tl4PB2XBEbGQ4GIwmfmxKKYYq\nmv4cq4wzY7YuUilyVS5kMMZlhqu/GSkMy4TjpM+gCPlp4xEAbRo8GR4SGC6+7vA02ueRe/tG5qsX\nOExPaRpVmoIjbEDjjNXXuKP0mIZRx9M9xuUYDQ1/ot1S0mSgpWhz+7JQOYUqeJl/xqa1g6mZC9fQ\nq1qO8yhVQSojPL2ORoOz0WzdCpWhIdC1dxMk/27w0cI6/qbhN8749Kc//Sl//ud/DsAvfvELPv74\n4+n/xuMxf/AHf0AYVl43f/VXf8WPf/zja9/zHt8udEMskC1g4ugt+Kf/5rdY26hhuyZJnPHV54c8\n/KR6ctQ0jcO9LpZp3IhsARwf9Wm1/SnZusD52Yjx6GqDzsswTZ2HH1RVnHt31/if/8kj1lfo0q5C\nWUqevbx+em+zXVsyR/3o/uYC2XodBuOYopRomsaHd2dVp9eRrTDJiNIMzzb5nYc7NyJbF5Oe1yFw\nrG+NbAEEtoVvWQsi836c8KrXn7YYz6OI7kTk/rzbWzlpeGGQ+rLX43Byc/j87GwqKm+77kqyBeAY\nxlIFrZvE7A4HnEUho6z6PEPXp5+z6fk8qDf5vY3ZebHj1zhPIg7D4ULGogLiImcwWU71tWb7ou14\nC2QLrp7cm8e4yNiPZi3tf+gdLYnLXd1gzfbxDWtJl6WU4iSZ3WhGRcLLqMuoSDlKh5hCx9WtpXig\nsEw5z8YLyzlI3jwH0tcd1ldUnppmwLiI+So6ZMdaeyOyBXDL3iSVKa/iw9f6p+3Y23i6x6tkF1Mz\np2QLwBTWdD8cZYckMsbQTMbliLrexFzRWvT0AE8PKFVxpe2Drhl4elUlLVVBLGf7IJEjchUzLs+J\nytXDM98VbmrGq5QkLj/7htfmHwfeKtpHSsnPfvYznjx5glKKf/tv/y2ff/45URTxh3/4h/zH//gf\n+Q//4T9gWRb/7J/9M/7sz/5s5XsePXr02s/6rpnqDw1fh91fxNQA9DtjHM+i1xmzc2kS8OKQeVNd\nB8Deq3PiOOfBww10XVwb9NzvhxiGTrDCluHV7jn3760zGFRtzuvWpdMb02x4hGFKfxhz7/bNROxv\ng84gpO47U60YwONXJ3x8d/PKjEeoHODP+mMebLXZ2qov7MPPXh3z2/cr0psXJeMkoxW4vDztsVH3\n8R2LflhpmlrfIrm6ClIpnpye8+nWjHBmRcHzbo9PN68XIedlSS9O2Ax8pFKcjMfs1N5Ne0ApxVkc\nkpeS27XXD0t0kogwz6lZFrmUbLo+X/bPuRc0lny15nFxDhayRMGSXcOzUZcPgtYC8ZBKUcgSCdf6\ncxWyfK2maphXDzKPR8d85G/SunJScoaTtLImKJUkMGzqE41VJgsGRczGCiIFi9cMgE4+oqa7S0aq\nuSw5y/ooFLed9cuLWcBheoorHFrmbB+lMkPXBMYNg5+lkhxlRziiunasmWscZodsmpsYmrG03vNY\ndQ3tFac4wscV1/uiFSojkWMCffEaI5VEg7eyjvgmIFVKLF/g65/e6PVK5Wg/EEH/97nC9T5L8TcM\nX+dgO9ztUGt41Bou/e6YoD7TRn356/2p4/z5yRCha7SvqDBddTE7Puzx+PEh/+J//XRBcxWGlR5L\nSjmJo6jemyQ5ui5Wtu6iKMPzLI5PBivtIuZxQbh0Ia690F6HKMnwJjqot13G69AZhrRrHpubi4RL\nSoUQlTFoWpTkRclabfEmmhWV03yalzS8NxtmeNfY7faRKB6033zcvZCSUZrSct2qdRdFbPg+R8Mh\ndcdZ8OmCSbssTWlckbW4avmFlEuTjhfoJTG2bkwrX6WSJEWB0LQFkqWUopPGrDvLZObiHDxPIkCx\n7izepMd5SmAuanr6WcJJXHmC7bhXk8HdsEfb9jiMh9z3Wti6wX7cxxbGNC8xLDI0DaIiQ9M0WqZ3\n46pSIUuENrMhKWRJWKbTWJ955LLkRXzCx/6t6TZ5Gh3ysX976bWHaQdfd2gYPmGZ4AiLUpUrXedP\n0g6e7lIz3u3DQ6GKJcImlSSSYwJ9ts03Nmo8OXqOqVkE+tV5kTeBUpJUhTji+6kp+j5AqRLUV2ji\nk3eyvO8z4fp+0O33+F7g1r01ao3qybbZDhZI0Ue/dZtnX1beOutbddrrNZ58dsCLrxb9spIk59Xz\n1a0717f5yU/uLyxXlpJet9L2nZ2NGA5nWivHMZFScnCw3N5I0pyz8xHbWw3G4fWtycEwppj4b70N\nUZJSctqZaDqSjJeHy6avZSl5/HLZO+xNsFb3F9ZPSkVRyimZPOoOOTgfLJEtAMswMIRO9DWMXq/C\nq06PcXq1BqWQkpPheOoSX3Ns6rbNi06XYTzbN3v9AYMkoZSSZ51qGw6SZMFd3hCiWt54jKZpbPg+\nYZbxot/nJAyJ85zTOS1oqRTD7OZ6KEOIK8kWVFYR8+TkPI74vHfKnx+8XJi6VLDQZlyFdcdbIlvn\nSbTyGGxaDo9qa7SsxX37fNylmHOQv+e3GBcZG1YwbSnecZts2AFSKXpZVEX66BbrdkBSFjfKG7yA\nIfSF7z8sYsIrInZMoU/JFlTn1kNvJlzv5rOb3rbVnpqe/nL0nEKVHGdd8hVO9lv22rVkq5cPrmyH\nnWZnDIvlm+1xdjRZp2VPqFwtnzNNfQ1ffD3LGGDicH91DNR7UOU9am8XH/dDw3vC9R5LePXslCTO\nFlzohdC4/2jRgfvDH93izv01kiRjNKiIkuOYPHi0yclRn68mBK0oSuI4IwgcWmuL4lOhC+7crcrv\nm5t1Gg2PKMo4Pq70DrouFgKsL9Bqeqy1q2WN5rRgB0c9kkuko15zGb2lSesoTNg/GfDgduUjY1sG\nH9xeI79kRaHrgk8fbK1cxucvT3j86oTuMHqjEONxknLaHxOlGb9+ecyDrTaf3rm6JWfogp1W9WQV\nphlHvXfzlHe71SCwVwuowzRjvzfAt61p66yQkqwscU2TeOI4L5VilKYYmoYuBDv11U+Af7t/gJyY\nogIcDIco4J/fu8fDVgtzTncllaKUkrv166sQT3qdBUNRgL882luIBbpAP00Wcg+3vIB/snmH/+XW\nvQUiIjSNW/6bVy0c3cC85ILdz2LGeUpYZPyyd7SQYbjpBEtTfU3TXZhOvIBUiuiSM/1tt7Hw/pdR\nh1Fxc+1k2wrYsZsUsqRUkrBIOLxG32XMfbf5WKBcVRXYXBZ86N7CFib3nC3MFRmOr4NcYeRxYRWx\nYa5TN2b7pZt3yWVOXW8gENiTFmOucmIZITRBy1j2iNLewgpjHoOievgSmk7DePcmqtehUGMyufhQ\nmMrvJn3iptC0m0VY/dCh/+xnP/vZd70S1yGKvk/THdeje9zHcszv1H/L9+2vvc3qTQ8FnB4NqE9y\nC9Mkp98ZL3hvaZrG/qtzTvZ7OJ6F589HpEC96WOaOidHA4bDGNsxMU0DKRX7e100NMZhiudZfPn4\nkG63GtM3DB3bNqftRd+3p1UxKat2XvUdFYahU6/NRvJt28S2jIWLZRSnNGrukl7s1X4H17GWhPIX\nSNIcDY31VkXs8qLk5UGXRuDy6rhHu15tm94oIk5yXGe1xmGjGdCu+xycD/Aca0HfBbB/1scydYyJ\n0PxiH9qmQc2zkUqhlORsGHI6GFdWBJbJ5/unrNf8lTcGXWhYpnHld3sTXNeOsgx94t01y4r0TJPA\ntqg59pSolVIR5znrQbW+F6HTjmEsBFC7pknb82i6LroQ2LqOrc+qLmLi5A4Q5Tkv+j0KJalZNkop\nFLMqZlZWGqq6bWPpOi8H/ekybN3AN80lfVXdsqetw1LK6edal3RVSZFzlkTUTJu4yMmlnC7runPQ\n0vUlQX8vi+mkMbe9OpYw8IyZuNtaYaFgiNXJA0LTsIWBIQTn6ZhxkXKQDFizZjezmuHgrMhTnEc3\nCxkVCf7EQFXTNDr5mFyVBIaLo5s38gsLDJfH4R7rVoPTrI8lDAxNR1KZoV7GQXqKronXhlt7uoOm\naZSqnJjSlpzm59SN2tK5IJGYwsQWNpqmYQkLqSSZzDjOD3CFx2l+jFKQqRRLs7FdnSR++6zYUdkl\nKvtYwvtOjEwVCk0TCG32kFSoAYb2j6Ot+S7uge9iHVbhfYXrHeIbkPV8Jxh0x6Rxxp0HM3HrcBBh\nu5PKglQ8+7Iyb7z3wQZe4FCrLxoZ+oGD51kMhzE7t1vcf7CB0DSklKRpztp6gB/MrBU++fQWH3+y\ng5jorMbjhKdPj+l0RjgTIhPHGXuTKJ6ylCun9C6TLaim0VaR4FtbzQVvrssoJy09gCwviOKMD+9V\nYv9Hd2bbpuY51K44wS4ghMZmc3XY7nojwL5mEtI2DW6vN7m33qTuOTR8FyE01mse56PV7QpdiCXn\n98Peu8lsm8fRYFZFOx+HpEWxoMODKmLoeDTiQbu1RBSkUoTZ7OLYct0FUmWvmDgEGKQJpVJ81F7D\n1Q0KKfmH0xOe92ZP9p044mA0xNYNnvY6KBRNxyEtC0whVgrfL9ZvlKX89ckBabl44z2Oqmm+0cQY\nVSlFJsvXthevw7ZT42FQ6d02HP9GeqtSyWkl7qLVKZXiZVR9/3BCAj/0Fyui80QpvdTO62YhB0mf\nhunSNhcrDhtWnZZZrdtlQfx1+NirWkVrZp2vwgOUYtri7OcjzrOKBA+KMY5mc5pdXT0rLgUSv0r2\nJ99J57a9HJgNkMgUNamIhcWYTGYMij6n+TEP7Ec4wmXHvIOne1iaTSTHdLPVocyJjOgVr68UCQRN\nY+c7c43XNRvjUsXIEauNeC/jey7pXoKmDkDdPFPzu8Z7wnUNhudvdoNqbTXRfyAmrVlasDunv0ri\njIOX54SjBL/uLpmfOo6JP5kW/Pu/esatu9UNYtiPqLc87LnqznAQcTZxbB8Pq5tSHGecnw158viI\n/kSzdXTYYzAJn07TnF6vshL55S9fMR6nfPLJDhtz0Tuua3H7VotxmFCvu7iuRVGUSy3Ey2g2vGun\nIa+C71rUAwcpFeMovfJiZOhiqWp1GQdnA2zLXBm146wgiatgGjq32nWsyWdtNWtsNqrq2xf7p9Nc\nwqsCoq8jdTdBP1puRc1X0AxdpxvGdMOIL05mNyYhNOrOakIaZRn/7eWrqaZrFfKypJ8sfrYhBIYQ\nnIQhx2FIUhT8eGOTR6024yyjlJKW4071Wp5hIjSNg9GQ/eHsAn2ZUF2gZtn8eG0TU+gMs5RxnlJI\nyf64eu+G6/Oj1kYVGGw5NG2HvfGApFg+FnNZufpfEKPP+icLLc4Lh3rgyrDry0jKgpNkyN9299iP\nq3USmsaHwTqFLNl2aoQyvZa8vYw6C8d0Wua0DY/PR4dksmT8Bq3HeZwkvWlb9OLzTc2gYfgMy5BX\ncXXdqRs+bbNOXKb08iGe7nDLnj3IpDKjk1eE7DA95SA9XnCZf+jef+26OMJGUFXB9rI9YhlTNxps\nmtscZQfV9KCmYWgmtnDoFR02ndUtQFtzqF3hPq+UIpeVbMHXm/TLI7Tv0e1VqpRx+fja1+TynEwd\nfktr9G6g2ACu9kj7vuH7c0R8j5CEKePemHH/7cWOT/7uOUVR8PTvXxAOv7556/PP9ineMlS4LCTP\nv5idSEophr2QW3MVLMe12LrTotcZYVnGkgt9rTFz/P/wk22sSSSOX3NoNGcC19OTAZ4/02rdutNC\nKXjyxSGb203uf7DBzu0WrmuxvdPk7iRcO8tKTk8GaJrG7dtrKz22RqOEoigZzwVup2lBGM7/nnN4\n3F/423Q7zN3k8qJk//hmvjillKRZQbP+dlNTSVYgBFOi9HVRSsnz40Xxry60KckaRAm9cNnode01\nlhGH/SFxtkgY5onCKEmX4no2gtmTdN2xaXkuozRj3femlatKiC5WVoEC2+Z///gjHl4z0fj/rsV9\nZgAAIABJREFUPn/O/3cp7N43LTzT5E69zqfr6wSWNcki1BhmKflkEnHLr47Dtuuy5QXUrCptoT5x\njn8+6K0k0i+H/SlJExrsjQYch0Oca+wg1hxvqfUYFzm74YCzJJySqR81NqcmqfNQSjHMk6mtw5PR\n+dI2G+QJ4yLDNyzu+21+0rzFPa+58P/zLMTWjaXq1oWovlQSqRSfBFs8Hh8TF9V+qpkOJZJM5hyn\nAwZXRAK9Dn8z/Iq4TKekSyrF02ifu+4mdcObCuKraUhBrgpc4WALE1vM2mC6pk+MTqFlNLhn31r4\nP8DLZO/adfF1H6EJdE3nU+9HRDJEIPB0j01zaykA+479YOVywnJEqpKVMUAAJQWjcnZOblsf3Shc\nW6qCs/zJa1/3dSE0m2BiAZHJDoncX3qNKdaxxfKE6fcamgXaD6PIAe9tIVYiCROyJKe+9vqed+9k\ngFd3sd3VomIpJYdfnXDn49Ul75tCSnkjbdhVI7FlIadxOoevzlFScfuDqwXY/c4YoQvqTY/nXx7x\n4KPtldYLjz87YHunSbNd3Xh/9fNXfPSjW9M24AVGw3ip7XgZV8UNQTX9eHo25M7tFv/wyz1+73dX\nP91KKen1I8IoXQqvfvr8hIcPNm4UknyBKM4I44yN9ts/RWV5QZIV1P2bWRdctQ8POgN2WpUFRpzl\nuNbiNs6KgmGc0vRcsqLAu0LofhXiLMc2jYWqyMlwjNA0NmrXi1oP+kMO+gMerleBzGu+x7PzDo/W\nq31wHkZ4poFnvXmkTTeKCCzr2ozHUspls9M4xhCC+oqIn+Owag1u+6v36zBLycoS3zRxDZNngw5C\n03hQa722Gvl1xtLDIiOXkqblcJqMCYuMD4KZp9MoT9E1bWpeehAN0DS45S4ODnSzkOacHcQoTzhN\nh7iGTSJz0jzjR41bvAw7bNk13MnyTtIBvm4TGG9vLVI51xccpl0+cKtBkuusVJRSPIl3+cSrzulE\nZjhzxCouEzpFnzv2YuWpl/dxhYOjO5znHUzNomGsvmb3iz6ucLHnInYKla8kUKKecHh+TtNYwxHV\nNSuVCQINU9iMy8GEtL07f7hvwmbm+wipjoEC8Q1OJb63hfiBwfGdG5EtANM2rvWAEkJ8bbJ1sZyv\ngwuyBbB1u71Q3VoFr+ZMRfD3Hs5MO/denhHNVY/ufbBBNGfL8Du/d3+JbAHU6i5RmLK32yG/VKnL\nsoIkzjBMHSkVXz4+mv6v2x2TZQXjcUK75SOEYGfn6lBZRSV2v0y2AD56uPVaspUXJaO572NbxoI+\nqzMIGYYJSZpz2q1O6rPemHGU0htFC1W0C1imcWOydR18x5ruh8tkC5iK0bOiYLxisrMoJXudq/UO\nrmUutaC26sG1ZKuQkkGcsNOo0XQdXMucCuUvyJZSinXfox8nNw4pn0ep1MJcWlIUS1OHX5yfLVWq\nHMOYasEuTyS+GPRYd71K26UUaVlwFoc861etzbplY86J0wPTZtNd1OANs5TjqDoG0jk91Wk05m3h\nGxZNqzpWNp1ggWxBJaKfd4oXmlYNCyjFV+NZGzcsMl5EHcK56tWjYJNbToOsLOgVMS+jDve9Nq5h\nEZUZuSzZshsLZKtUks/Hy22mV/HZ0r5UkylEoWkIxJRswaIdS6FKMpkv/O+CbAEcpWfsJ7OweFd3\nJpXWxX2uMQuudjWXTKVE5eqqnC1sMpkynkT1pDJlP91d+dqa2aClr2POJd/ZwkHXDEpV4AgPS7w7\nr7t/LGQLQGjb3yjZ+r7jPeH6mgiaPqb93TrwRuOE04OrNTCXoRurR56zNGc40VRdtBWlVBztV8vu\nd0Nu31tfmEa0TB3jhtogw9QxLZ2L63SRl8hSVoQrLXj27IRf/WqXu/fajEYxT54eUxQle3sdev1w\n6ji/vdUgilbbPOhCcHunxav9DoNhPM1tLEvJq/0Oh69pI0opyfJy7ndFbzBrCQeujWubmIZO4Nns\nHffQNA3HNikKSWcQUV7ST+2e9BiE8Upd1U2we9ZnGCU0fZfeeLE9/eq0R5zlRGnGIEpoeA6ebVFz\nbY56wwUfLF1otN4B8ZtHKSXn44hBnICmoVQldI+yDKkU3SjiYFBpIW3D4OKo2+31F/y3oCJvqwjZ\nhu8vhFT3k4SjS1lwP97cWjqmPdMkLQteDvp0k9mNWCnFplsJwKMiqwidAg2N20F9+pphlk69rjZd\nH/9S4HQ3iSgm7bnno0rsraimMY/j60nXs1GXQXYzjdRBNKCQklyW7EbV8bsXVVFJLcsln+iQdpyZ\n3vGu1+KRvz51re9kVTszLnM+rW3zPzTu0DJmCQ1hkZLJghfROS/CGXHrZGM2L7nMS6UY5OESOU9k\nzknW54vxHi/iY55Gh9O2YqFKnkWHPIsOGRYh4yuIEcAD5xYts0ZcJoyKar03zPa0RZfIlESmDMph\nRcQokUgMdIbFTHc7KAaMyhEn2QmlKrGFMzU+1TVBXW+QyJioXJSOWMJCFzqnxdHC3yM5JpRDDM0k\nldGVUT9vCqkKusWLd7KsHwKU+uE4D7xrvLeFeMcIB5W79LcpntcNgeWY6Ib+tUZiy1JSFHJBAK9p\nGpZtYpo6/W44NUa9gNAFSlXarXCc4roW4pJAXUpFOiE+vU7I+qTc2umOkaXCtAzOzkbcu7eGYeg0\nmz7HRwMePtwgCBza7WDquXWxnmfnIxSKPC8pinIh7zCMUgK/CrktihJnSogV7aZ/bbXQ0PWpo/zF\n99d1gWXqdCf71p1UmkxDp+Y5+K6FpoHv2iRZjm2ZC1XPmudw1BnSGYSsNV7vNzO/D4tSYpsGgVuR\n3KPuiLpr8/K0SyvwMHTBMEoIHBtF5UtlGhWpLaREqVk1TNO0a9tylzGIEoTGUlVQKUWpFELTMITA\nt03GacZWrYY3+azj4RjXNKjZNvWJC7xnmdMbvGMaFQGb/K6U4mQcch6FBJZ1bSUysCz6aULdtnnS\n6bDuVZqgThxNPbou4BgGDdum5bjkZYmYTFBmsmScZdwK6thGZaXgmeZUW6VpGoWSeEZF2p70u2y4\ni/uuabvUrcqiYGNicCo0DSz4+dEhD2pX69LatntthM88SqVw9Wrd1iYxPaWSmJpOrko2nep8ujw9\nOCoSTtIRTdOlm0V4uslB0qdleRwnQ9asSt+Uljl10+U4HSCVIjDsqSWEq1uMiwRHmIA2nUBtm8GS\nNcSgCGkaPtt2i3Wrjqnp0wDsXJX0i5CWXmdQhJxkXZpGsNKHq7JvMJFITrMumiYIDI/n8R4No0am\nchSKDWuNUpWYmomj27i6i6d7pCpFR8cQBpZmUTNqWMLiODuibtQRmkBD4Ol+RQg1hamZlKokLkMM\nF2SiU5u4zCsl6RTHNI117EmLMZEhlnCmUT2H2RMC0V4i/Wf5CxwRIK7RGWmawNKuf81vCpTKkOoZ\nQrs+4uvr4L0txD8iVFWbryeLK/LyjcZzhRBTEftl9M5HvHpyfKPlWLY59d0a9EKkVJyfDHAmdhDb\nt2c3EKUUeVa1UYKaw517azSaHgpFElcH+6AfTScRv/zikFJKHjycnWgbG3XqEwLnOiaGobO5WSeO\nM3ZuNRcuXmUp6XTGnJ4N0XXBndttnr88J89LsmyxRVkUJUpBMIkLOj4bIoRGq1F5fF20/Tq9kOOz\n4fTni2rY4rbV8Cf6PN+1cC618kop2T3usXtcVTjWGv6S95UQGve3Wjy6fX0bdxXiLGccz6p5QmiM\nkpR00pa9qGZlRYGp64zilKwosQyd9Zq/EFz9pnLNMMtI8oKnJ4tj8qMk5XjODsI2DBzDYL7xd7fV\nWKhKXWCvPyDKsgWyBfDZ6RmbgX/jiJ77jSZC07hbrxNNKmVhvnpa9eJz9kZDHner77LtV+3BXF5t\n51CfmIvausFvtavj9h86x5X9wqhHXhYopZbam+uOz281N3g+qWIVsuTLwTm99O1E6C3LXagmKaVo\nmi4FknGxeGMpZElYVMdLzXC477WRSnHHbfL56HhqBXHPa08nIw/TAaksMDQdWzPo5xHddMxh0kdo\nGqbQ6eVjTrPqXOnnEcMVE4yOsDCEPt3evxy9pJSSXBbYwuRD9xZfxrs4msUj7/bCdypksXR82sLi\nnrNDfRJAfd+5hdAEvu7h6xMPvKJPrmbnv9AE/WJASYmhGehzJGbb2sHQDJ7EjznKDiefYeOKalkS\nSaJikkn17SjbJZMJmibw9UXX+bqxRqpiysln37I+Xtk1WDPu38ge4ruykPi2oWkWuvjRlf+v2uPP\nvsU1+nbxvsL1juF4NsY13k43wcluB93QMe03X85ldh8OY5prAeY165TEGcN+hDvHyof9CM+3SZMC\nz7c5PqjMTS+qQ2mS8/SLQ3rnY9a3qouRaRmkaU4UZpSlJE0LNrcajEcJ65s1glrVwihLyd7uOc3m\npCogBKZVGaJW76tunNbcOh8e9bDMiiwFk7aYbRk0Gx7epYEFZ1KRA3Ada1LtqpDlBbsHXRo1F9+z\np/9TKExz2ZTyMi7bPygFaV5gmzqOvayBuoAQ2rVav3nM70PbNPAdi+PeCKWgFbj4joVtGozjFN+x\nOOgMeXHapeW71D2H/U5/GmLdGUUYeuXu/vS4Q829vno0j6woqzak5y6Yk9qmQd11+Oqsg2dVxrGO\naU5fE+c5L7o91vyJaW5R8Oy8w7rv4xizylaSF+SyxNR1NoOqxeeZJorVIvhfnZyw7i3mAuZS0k9i\narZNw76erDVtB1s3pkQwsKwrY36UUjzun7N5qaolpcQzTYQmOEsiTCH47yd7eIaJoxv8snOEsHXW\nhEtrUsWKihyhiWkV7OviLA0ZlxktyyUwFp+kE1kQllWG4qhIcHWL51EHRxjc8Vo0TGehMtXNQrbt\nBqbQcYSJb9iEZcZZNiQwbGqGg6tb+IaDI0xexuesWzUsYSwsJ5tot+arbFt2k0JJ/nb4hG4+QtcE\nLTNg027h6jaGpvM02mPNbHCUdTA0faniNe/pViqJQi1M/wW6v+BuX/0tWDkhePG3NXO9akFqxsLr\ndE3H03026m2iKKOmN9AnLUhTWx72SGSIrpkLpC4qBxiaNTEf1VaSsO8SueyRqw6GthxbJFVWxex8\ng1CT9vdVqP4n0LS3lz58nytc7wnX9xC1lv9WZAuWDzYvcJbIVllITg96BJfag9bkM7vnQ4K6i2kZ\nCyTMdkzCcVJ5bzV9dFPQaPsLLUjTNPB8G9PQiaKU0TDGry0aowqh4bn2VMifZyW2YzIeJ5SlpNHw\nME29qh4UktE4oVF32dvrYjsmtYmWaxymeK61dAKrC03OKgd2XdBu+jx9eTp1kIdK2D5/g+/2Qwxj\nkYB9+fKUtcais7sQGpapc9IZc9IZEXg2g3GCZV4/THEdVl0whNBIi2ra0Xesqp2n6xi6wHdMdloN\nHKtybb8gW1Ip+mFM4NjoQrBW895oQtOzTGxz0Ql+Hg3XWWl1Yer6lGxB5Zl1MgppuQ7WXGUryquJ\nPPdSG7Afx8RFsRRUvRUEU7KVFgW/Oj3hXqNBbTKFKCfVpqu+o6ZpS1W3g/EQUwhMoVNIiQacxiGl\nUtytLUcGFaqym/AMk6btYOkGYZFxL6gidALT5tHGGp1hyItRb8kq4k22/xeDyq9rPsbnIBpgaIJh\nnrBmLxM4U+j4ho2kOgds3aBteVMX/MttwJNkxJPwhFtOs2qnKmhbPp5hUU7ai+fZCFuYGELHFRa2\nvki2noZHmEKnk49ozhmmVgRKZ9Nq4ukOkczYttsL77U0E0MTNK5oL85jVI4Jyxip5JI9xJviIN3F\nFR7W3HJKVXKQvWKnvnWj+44t3AWyBRDKPpKSTIXYYtmG5XWEYxUS2adUGYZ2vbnyTSBwMLSZI38m\nTyhVhK75JPIZulb7xkiXUjlSfYbQro86+jpkCybXz3CMYA+lXT1g9U3ifUvxPaYQurZAtgxTX4js\nGXQjwtFiyyCoV9UpKRX1VnVRrdU9knh1G0fogtOjAY5t4tgmJ0d9Dg+607bBBbmTUnEwEfw3Gh71\nCTELw5STk5kA1jB0bMdkc71GrxdyejpkY722kGl4dj4iywp6/YjzzvJYcF6U07bhJw+Xcw+H43i6\nfqueTlt1l+GKoGzLNPjo3ga2ZWLoAl1oaMBX++fT1t/r0B/H9MerW06jOCUvJGs1n42JBsw0dOIs\nR0qFZRhYxnJ1rijlQozOIEpWCvez4u383a4iD/04YRAnHA1n++C3tzeXiFvdcRgmKYOJqalSiqed\nDm3PIy8l59HV/nUK8AyD//T0S5RSDJKE/7r3iv/01aKn0Uk4ppdc3cpr2g5ZUZKWBfvjIeM8o2E5\nCwL503gmqm7ZLromSMtiGir94/bWtD3XS2NOozGuYfJhfTYpO8gSOumb+fF9Ut+kYHF/3XLrrNs+\nt93r8yNtYWDrxrS9CPBVeEahJKWSHCYDojKjZXns2A2EpjHII/7P/b8AwNdtWuYiYejn0TQWaH64\n4QNvk5O0Tz+vpnRLJRlNPLyUUvzF4HMaps+W3WQ3uRR2LzNydTOX/qZRp24E1yZ63LRt/sj9GF+f\nkcODdJdMpuxYd3k6ekwnPyWTKWf5IcWKcOtVeJn8CpSGrzep6avlA53iJcUbisYNzbmWbBUqZFS+\nvNGyquva7Lw1tQ1MrVpXV/94IQ7oXUPTTHTxk29s+YswkXxzOrG3xXvCdQMkUUr4NUxQvy+Ixglx\nmKJpGsE1nlgffLzN2mZVcu6cDhc0UoNuOG31WZbB5vbswv/08dF0Qm88irl1t01rLSDLC9Y2aqRx\nzt5uh+Ew4mQyLSiExgcPF0OxAYLAYWeniWnqhOOUPC/Z3mpwdNzHsnXW1oJKP7XbmUb8uK5VVbBa\nPpsbyyXzx0+PiOKrQ6xHYTqdoGw1vCUtlu9aV0YBnfbG3NtuYZkG47ia0Ht0e+3G7u6ebeKt0OGd\nD0N0TcMy9IUoozDJyIqCrCgXJhHnYRk6t1qz7fDspDMlCfPY7QxW2llEWbZkhHoTDOIE3zJZ919v\nFHuv2Zjqtr44PWPD8+lEEduBz5p79TEa5TkPmi1+e32TfppwHkd80l7jn95eHDlvOy6+aXEazc7f\nvCzZHVbHn29a5EqSS8mDehNHN+gl8bSSlhQFX/Yq3VchJbujylajlyaM85xClpxOJhL3xgNu+3V0\nTdBN44XWZ9t2MYXg+ejm08RC07jrLT6hXzwIXFhDSKVIypyX4Wy5R8mAUkkKWU41W6+iLmumj6EJ\nullEXGT8eniIoBLbHyUD6obL/3HvXwBMMg2rY3fdqqFrglFRPZBIpXgSzqwiDE3nI/8W99x1hKZV\nsUMTR3hN0/jXrZ+gawJbmDy45OKeyAxLW32OdLMBu8nipKAtLAJ9dWs2lgmH2dV61dPsZDqRmMnZ\ndWA3ecmoGBCVY2IZcsu9i4GBpKSpr11pdnoZ2+ZDGsbytWwe6+ZDjDckNYbmoF8iXKVKKSfEzdB8\nAnH3jZZ5gSqk+zeDBmiqi6YmdiKaBt/DQOzfjC39DUNJtTK374eIq54ApZyJ4C9+Pz8ZVNOPc8Tj\n7gqz1LKUKKX46NMddF3Q74WcnQwoi+rvv/7FHmmSE9RdPM/m4FWX1mTqUEr12qfSjY0atm1UZVoF\nf/Hfv+LJ02OiKKPRcKetu8C3r43w+eTDbWqBw2AUczapgEmpptFAt7ear20D5vkiYflq75w4zTjv\njdH16r1rE7J2USH74uXJa48fyzQWJi1LKfl8t3qfY5m4tsmX+6fTDMlfvDgkSnJennV5cVLdbMdJ\nSi+MOR+GxFm+RKI+3tnAMZdvHh9urS1Vqw77Q5J82e/qJrjXamDo+lJFqx8nvOz2OBzMKpeaplFI\nyecnp3y0voYhBAfDIblcbL0keb6wLp0oQimFb1kopXjUarMd1Fh3PV70e9MoIFPXMYRYqMgYQhCY\nFsmksvdfDl7g6AZPeuecJxHnSTQV078Y9bjj18hlia5pU4f6bS+gOdGMXeiAAtPi+bDLXx7uYly6\nibmGybrjT6cMvy7SsuCz4THnWcggS9iwZ+1xWxhoaMRlTi+vKk3bdp2m6dLPYwxNcNtt8pPGHWqm\ny7ZTx9BWW8XM4667Vg0aqIINq8FRWg2KpDLnKOmigJNJSPWGNXsQmyeelz9jzaxPt59SakrUqu9h\nIuf2eS8f8JeDn9PPV5tausK5MlOxWp5NJKsqY6foMCh6xGXEhrnFQ/cTLOHgaQG+4dMw2zjCw5z4\nd70OhcoIZe9b02wVKqJQs8rtN629+r5DUx2UclF8Ny3Em+K9husGMC3jSif57xuuEwyalrGg51JK\ncXrQJ5iYkp4c9mi2A2QpSZIcJRWNlo+mwf7Lc2oND03TCMfJgqD9+LCHLgRpkmM7Jnle0l6vUZu0\nIW3HRErF+kYNz7cRhmA8itGF4Bc/f0Wt7qw0S72APrGeCKOUjfU6D+6vU69Xovf5XvkXT49Q8hrB\noi5Is4I0yen2Q9bbVfWt24+murAL5MXMQuACtmWwe9yjXfemf2/WXCzT4PBswPZavWrhGfrC+9Yb\nPk/3z2j4zo00PL5vE8c5G40A36k0anlR0o8SNhoBSV6QZDl31htkRcmj7XVKJfnVq2NqroXvWAzj\ntMob1AVfHJyyXvPfKEuxlJKG5y4FYN8Ef7N7QDeMiIuc8zAisG16cUzTdfFME8vQp4akUN2QA9vC\nnrRGt4JgIfomznMen59jCEGYZYzSFNes2reuUVlwWLrOaRhSyJK6ZXOexLScqkKmaRqBtWj1kcqq\njeiZJr/V3kRoGllZ4pom9+uVnqmQki0vAK2ylxCaWBLZn8bRVFjvGiaWbnB3rYUj9ZU3X0c36KUx\nJ8mYprVYwTtJxjhCv1EkTKkkgzzmvt8mMG2UUjwLz1m3fVy9OmaejE+xNJ227U9jj8ZFim9YOHql\nnaosPiQ18+a6GanUdCLV023+qvdk6q/mGjaevnj+zTupn2V94jLF06vPm9dt5aqgkw+oGdX2zGRO\ntxjgCgdLmJRItq11fN17LbGRSiKRC9vSEQ7epDpW02toCHRhYAubTn7KqOjj6QH1wJ9eQ5WSnBfH\nBPr1LVyh6Xj6clX9m4KhuRhfU+v0mwSNUVXR0qz3ovmvg+96w71LZElGluTXTgx+XbzJwaZpGmUh\ncVwLyzIY9qog6iwtGPVj1rYuTCDheL9Le6OGEBpnxwOCwEGbVIM838Z2TM5OhpydDlnfqGPO3ag9\n38b1qhteFKYoqfB8m89/vc9Pfu8evu9wdNRHKYU9aatJqfjVr/YIo4xWy+f4uE+WldQCByEqLdnl\nala76ZNlBaahkxclur781G6aOp5nY06mCg1dXyJbAIcnAyzTwDR0nu2e47vVNN5l0fzFz5ahk6Y5\nx90Rx50RG81g4TXrDf/GgunL+/DZUQfL1NlsBOhCoKRiEKfstOo0fZdXZz2UAl3XyPKSduARTCYZ\ndzt91ms++50BgWMttUmvgmOab/S0HmU5Lzo9LF1H06DlORUxsiyklCggsKvPnydbwzRF1wSv+n1a\n7syIMy0K9AnhNXUdb7I+G75PzbbxLQtrUr26WJ5E0U1iHMNgkKbERY5UCvdS/uGvzk+4V2uQS8lo\nLnexZtl0kqpyZgjBV4Mu665XkTpN4zgck0xI2jCr1vv/3n/KXb8xNUi1dJ2tVo0oykjLYmVmomuY\nS2QLqqqVo1896ToPQwjW56pahhCsWTMiEpUZaPCBv5i4MCwSxmWKp1s8j845S8fsJz3aVjBpN46J\nygxPtzhJh3i6haLSzM17prm6NSVWcZmzZtXZcpoE+uK5lMqc3eSUlll5hfm6MyVbl6FrOpYweR7v\n4+sunj7RjSJx9Yp09YsRhco5K7pLMT5KKeIy5ig7pqQkkSmePtvOg6LPqBhOtVv9ogcobGEzLkc4\nustIDtmub9Afj9C1asDjKrIVlUNGsocrfjjhyfMoVYgkQbwDMf63BU3+CliDyw8lWjDNVPw+E673\nLcV3jCzNSa5wQc+zkix9c03Mm0JKRbwivPkyiqKk0Z71ue892qxc012LzVvNhdfVW/609Xf73trU\n3DRJcg53q9DW7dtN8rxgf7fD6fGALK1aNvMtQ8OsxO/HR30efrg5DZne2mpMxfNQabsM08CdVL40\nIYjCjOPjAUop9g+6lFJydNxnMIo5Ohmg64K1dsB5d8Svv9gnSa8Wgzdq1+c63t1pTT/70b31K7Vb\nF7Atk58/OaDuO3x4pxKhdocRp70Ruyc9ylIu+Gm9Ce5uNHh2eE6YVhcRyzSqibyJXs4xdZq+y8Ot\nNXZaNR4fnnLUq9ou99dbtHyXj3bWb1zhGqcZ56M30yx6lsnHm+vUHJsP1trIiXP73WaDUik2Ap+z\nccgoXdwGF21LzzSn4nmA4/F42vKDqsJ0YWq6NxwsvPazs1PCLON4POZhs03Dcfl0bZ3btfq0yjWP\nH7U30DSNk3BcVYrShF4S008TtryAUikGWcKnrUXhc1zmqImIfZgl9NKYn7S3qU3ajKWSU6+teff5\nVRjmyZIH2JrtERYZu2Gfs2TmVK+U4jgeTX+e1+E9Hp0SFxlfjk4XCLIjTDbt5XiyCw8tQ+jcdds0\nTJe2FXAQ9+jnETXDpW64lEry88FLBnlMPw+nHlxSKZ7FlU7ms1EVgPxJcItNuzG1Z6h0ZRNbE2Fy\n392il4+nbd3n0SH9bEQx0Zcdp51pm/A069LPxyQyo1QldT2YEiupJE2jRtNs0FxRTcpUzlCOuW3d\nIpEpa2Z7+r4XyQtSmeEKt6rsZye4wqM2Wc6WdQtbODT1Fq/CF/TL12vtPL1O21jUpKUypJMvB0O/\nx7uB0n4EV2j+fgh4X+F6x0jClDzJcS4x3CRKOdvtsHX/zc0vT/Y65GmB69u8fHyI69tXhjz7vs2g\nFzLojJdsHy5j/8U5rm8v5CwCfP7zVwhdYJo6w17E0V6XUpbE45RGa1GIaBg6aVJNy7mGUxX5AAAg\nAElEQVSeRXu9RmstQBMalmVwsN/l+KhPveGi6wJ9slzPs8nTHE2A69pV9eKS0H1tLcAwdExTJ4oy\nbNtAN3Rcx0QpOO+M6PZD9vY6WIa+4EYfhim3tpskacFf//0LpJQ0G2+vn8nygmd75yillny/pFRY\nps697TaGEBx3hzQDF02Dv3u8x+2NBoZRien9G7Smfd/mv/7Dc26tVdtDF4Km71JzZ8fURt2f6s2e\nn3SpezaWUVXktho16t7btxs0DTTgVafPWvB22ywpSrZqVWtwnKYEtl35NOmL05T+xMcrsG3cSbtO\n0zSajrOgATOE4Gg0olSKdc/DnbOX2PR9LF2nZtkLy75coesmMWdRiDepeG14PoFl83cnh9wJ6th6\nlb14YfZ5uTrVst3p9KIldI7jMQ/r7WrCL0s4CAcITbDVrBFH2dR367+dvAQ0fMMkkxJDCIZ5yu64\nz7qzWDG1hU7NtBnkKTXDmqtY5QSGxTBPeT7uTN3l1ywPUzcIDGs6KXnx3feiHo5uVpYXSiI0jXU7\noG64VbtZq7RtoyLmA38dT7fQJ23GXhHxib9DiQQNNibxPpqmsT75ed2qTfy+YgZFRCYLHGEyKiI+\nG7/ijrM+ifQ5QkfjPB/QMmu8jI/JZYEpDBzdJjA8nEm1rGEE+IZLQw8Iy5hIJvSLIQJBieQ4P6eu\nBxxlpwS6j0DjIDumbtToF/2pq3x9rvp1kO2zY+1QN+p0inNCGaJrOpEMkRPyepjvsWFuYwqLdq1O\nEWsYkwpXrjIGZQdX+OynT6npVweYG5qFK2pvVB1+1yhUhKRAvEbsLzTrB1XdApYrWyvwvsL1jwh5\nVlAUy5Ngjmdz70e33mqZW3fXaE2mBu99vP1aPZnlmGzdbV/5/zTJOdrrcO/R5tSeAaoQ6eePj7j3\naJNGuyJN/e4IP7DZ2GpMXegvwzB0LkQcFyRgPEwYjxMGgwg/qMTsWVrQ647J8wIhNHRTJ03LpexB\nqIi2EBqOY/LlkyOE0Dg87tOou1QRI7C5UefRg03W12ogBPHE4f7gqMdonPL3v9xlMIz4n376gLVW\nQBilZJdsGr746nhagUuznOe71UTa0emA/nA2xm+ZBh/d31iZ9XfcGU7tInZP+tP4HMcy+dc//YiN\nVg3HMths3bz10PIdzgbj6VCBO9dqPRuE0+rWQWdAO/CWwqzfJiT6AqauEzg299feTIAqleLXRyeU\nUnI6Gk89r7br1c3PnZijPj0757OTk6X3d8KIvTlBPUAvjqe5iXcbDdquO9UjXcZFa/FwPCLK8yqQ\nOgynE4ptxyUwbf6vL3/Nr85PUEoxzjJ+d2ObXpqwO+ozzjNs3VjQauWyJClmlelOEpFLyYeN9pSU\n1UybpuWy49X4ojMLXn456iEQNC2HsMgZ5tVxsuH4HCUjXo0Xq2CapqFrgtteffodNU1jzXIra4ks\nYt1ZbFcrpTjPwmluYS5L/p+TL1m3fFzdpJSSv+69mr5nN+6SlNX3GRQxa9YspucsGyFRaKoyMTU1\nnf14daVOaBpRmeLpNg3DI5UFimqI4I5TDdfoCB66O+w4a9x3tyiV5PfqH/Ghf5vTfDnXdFCMOUrP\nUChqhs+a2WTTbNMp+rjCxtIq09m22SRRKef/P3tv9mtLmp51/uKLOWLNe+3p7H2GHE5lVmXZVV02\nNGDsgm6EulH3BcLc+sKIvwBuEJLNFbbkC1tCQlxTF21LFqhpI0CysNrYBmNsp7PyZOaZpz2ueYo5\n4vv6ItaOvdcezlSZWWl3PVJKedaOtVZMK+KJ933e58lGGMuQ6YbeIC0y+ulgpaq+Y+1Wflsdo0vL\naOFoZTVrKqekKuWG/fbZo8Bh9oxYlb9/AwOT8ve1a99+6VTfD9vsVKkcxeXV/XnxyZe8LgqlXi0z\n9P8P+FGF63OG5ZjYro3QBXv3DtENHcs5zbL7QfGyz3gVdi+EwLaNqkrWP5yQ5wXzcYDt2RSFpNZw\nEEJwfDCl2fbxfBu/5qCU4tG9Izrd0ydITWiYlrGiqXJcC9s2WevWiKKU2Szi4b1jJqOAVruG61k4\njkW97vDhnz6lVrcr/db9+0eEYUK7XT79t1s+43HA9d01HKfU8riuxSKIyYuCet1lZ2khMZ4E9Psz\n3r61wa3rXXzP5vnBmGbDJUlzdCFW3OLXO2XEy2Fvim0Z1b9rno3rnKtkKXXh/b3xAl0IOs2y4tSu\ne0RJVmUfvskx930bWzd4dDgkXsbVnBCqh0dD5lFCp1aamApNYxJEBElGyy8rmoWU/N9/9Am3NtpX\nmpa+Cl7HpBPKbV2vlVmV4yDCtQySvCQrQtOYxgn3+wO2m40Lwvg7xz0WacI7a2urFZ9lK/FFuqYo\ny3g8mbC2zFQ8DkofLFTpvO6bFp8M+2z5NVJZcL3e4Ea9JJO9KGDd83k6G7O3mPFWs12ZhJ5gkaVM\nkpjjMGDN8ZilMcM4pG279KIFljDQNJhnKXXTptPwyZPyoatmlhmXHcfl6WLKrtestuXteoe2vVqF\n/v7kiDXLu7C9R/GCuMjY8Ro0zwjc+8mC52GZj+jqZkXYtt1mlYeoUGQyZ5pFWEInU5Km4fDZ4rjM\nOxRm5a8VFRmebhEVKVGR0rI8NqzTik2hJMfpFE+3eB4PCIqYluFjCp2a4XA32K9sHiSKTBWM8jkN\nw2Ocz4lliqeXFe2O0Vg51icC/i27i0Ixyecsioi64dMy6uSqwNEtDM3AETa2sPB1j9pSZK9rOobQ\nmRYzLM2qBPknAn9NK6tWhmZiCRtTmDSNFrYo92emMsbZAM+zaOQbZ9zlFZNiRO0NRPGzvEeuUizx\n4m7D5wldsy/YSADkao5BHf1LFdunSLWH0JbtXTmgkHsIsfaS9705vsoVrh8RrjeAUgolVSUaPwtN\naJW+qbFWr8jWF435JCQOEjrd+gv3mZRqqY86vamkSU695fEHv32H9799g8ay9bb3ZMDb720t2446\ncZRimgaua2GY5RRWGCbkucTzyhMsDBPMpct6nhfoQtBoevhLx/t608WyjJXKWmetzDg8IWxrazXa\nZ1qXRSFZBDGNulstk2UFmtBo1N2VCcckycml4vpOm9k8wrYN2k0Pc9mKPEuWnu4NAQ3HNitbhpMK\nnaZpTOcRtmVUVYTnR5OSjHp2OTU4iyhkweFgRqt+agVRc8955hSSg8EU1zZfSGKeHI0wDZ1W0yMM\nU2quzVrDw7MtpFTMwqSc6HMsfMdmFiZkhaRVc/n0+TFhmrPeKPdbp+bR9r+8i/wkjFZc3Ls1n4eD\nIUmeYxl6NQVo6QaebeGZJvMkob8IaDgOG7VSO5UvJwVPoGnalWSrkJJn0wnrvk/njODeNUzcZYRQ\nzbKxdJ0tv6wKnYjjDSHKVq3tIDStNFqNAza8Gq5hkktJmGVYuo6jGzQsh6ZlI7TSlX7Tqy23SWLr\nOklR0HHK341maQznQSW2N3UdRzdpWc4FMgfwcD7EMywSma8QsrOomzaDNLiQq+gbFos8ZcupM84i\nDqIpDdPhv4+ecsNtV/svU5K24eEZFp5ukcmCa24LX7erqUagCsRumh6+YfOHk4ds2I1zMT4ZljBw\ndYu2WeMomZDKDE+3SWVOw/SIihhHt5aasHK/eLqNK6yVyt0JclWgkIzyGY6wOUj7bNtd/DOi90Qm\nJCrlUfR0Obl4sdJfIGkbTQb5YOlib/AgfoAt7EuXPwuN0hRUdyQkq+dgTW8wy0cYywrbZVgUowvE\nytK8L5VsnYVSikH2ezhiC6EZFCQIzXxpq/HzhKYZFdkCkGqA0Bpo2udjj6KpPcBa0XV9lQnXj1qK\nb4BgEnL0pHfp3+Igob83/JLXCGzXWonhuQxpkvHswcVWTppkaMD/9rN/uaoyAaBg2JvSOyxL//2j\nKUUhGY8WlcN8ME8qEiSlYtCbV0ap/eMZi6VjfVmVMitrCCkVYZgSBgm2bVY2E1Iq9vZGPHhwjJSS\nwWDOkyc9umulw/wJ9vfHJEnGcLSgKCSjccAiSGg1PW4vjVSzvCiJ8bmn6M8elOaIhqFjmfpyIlG/\n4MF1PJiRpBlJmvN4b0jdd9jqLg1hpwH3n/VpeC5N38HQNeI0Z7RsQ2Z5wWReCqiHsxBNe3nF6OZm\nG/9MVc13TnMPpVJEaYahC7pL/daT3ogky5lHCd/95ju8v1O2cYSmsdW6KJj+IrFIUhRwNF/QX5TH\nqeG43Oq0ibOy1dT1S4uRSRRxNJ/jWxZhlldC+u16nY736hdiXQjW3CXJOXOMXfNqYjtPE/7ocL/y\n9IrznM9GA240mvyv199hnpbrMogCFllKlGdEy3biiUbqs/GAT0Z9AEZJyIPZkP3gtBU6SWMG8Wk7\n+iCco5RaIVtPFuNqHXa9JpM04uH8xdeNd2pr5FLyYL4aJn7L75R2LXlC3bD5s/Ee150WkTxtg9b0\nMpJHW+rTjpMZhZKYQl8hcKMs4GHYr/49SOYMknLbjpIJGmXLsJxkXFbQlCReflfdKMlFrHIsUV5L\nCiXpp6Vh7FE6YpoHy/edevAdJANyJblmr2MJk5tO6aeVyJThsvXo6S4towFKQ2iCoAjpp0NSmVWf\ns58ckMiE5/EetijXr2N08M7E7GTLdY2KkIPkVOAuNIGn+3TtU/PSUXZMtjQY1TUTjasrrcUljvlf\nZnvxrC/XyXc3jA8Qy3aoqTXQPyei86bQxQ2EeH0d81Uofbf+/AR//6jC9QawXIt653I9jia0Mnj6\nC7R+uAy6IdAN/YXsXjd0Wmvleg+Op+w97uN4Fu1u/dJqnVe3sR0LjTJH0TD1Ugy81azCoR/dO8Lz\nTOTS0qFed3j+dIBfc1jMY1zPxrKNyo9LCEGWFfy3P7iHaRrYjsl8FpetwqXdg5SS7e0WQggWi6Rq\nWX722QFrnVpFztotnw8/eooudPqDOc2GUxHG8TREF6KqvJ1A0zTWlq1K1zHJc4lhCJxLXN51Q8c2\nSzLoOiaTeUSzVt5Qap7N7maLg0FpH+G7NvMwpj9eMJyGtOouD/cHeI5Np+HR8J2XXnxP/u77Ngf9\nKULTeHA4rAhWzbXxbKuKWNruNFhECevNso13UonrzQJqZ4hbkuVMwgjP/uK85Dzb4slwzPV2k/3p\nnIZtMwgCmq5TZi4uW5t1xy49tITANgzWfI9CSp6MT1uCJzjfKjzBNIkZRWVgtW0YBFm6YjUBJZGa\nJnE12XiCrJCsuS7OUnRviDKmJy0KciU5CudIBYks2K03CLKUQkmcM9YSW16N9aX31pPFhE3XZ9ur\nVyRvp9PEKU6jfixdX4kKuj8bsOnUKgJUtlY1tt36Sz24MlXQTxaVaP4smqaLq1v0kjmLIqFQio7l\nERUZn8yP2PXa1bLPozGJzGmZHtOlGaqGhreM9NE1QVSkHCZTbnhr1USlZ9j00tIuwhZltcfVbXJV\nEBUJGhqGprNhN5lkC4I8wtVtMlXg6hZ1w8MRFpNswdP4GIXCFTZNo0auCvRLDFj34iNaZwxS18w2\nlrAwNB1b2AyyIfNiQcOo0zKaGJrBprVBL+sxzxfomo5EYgubQhX08mMm+ZhUJUzyEU2jVYVUw2qF\nRNcMTK1s1VrCRtME03zIYfqYumijcfK7K32/TPHmIvQ3yVk8+95Q7mGL9srrhuaiyAiKJ2jo6JpD\nWDxaZib+Bai3aNYFIf1XucL1I8L1OUMI8YWRrTwrePLZAe2NBv2DMQeP+rTXV8nSVSdbmmRkaVG1\nEg3TYG2j+UIBvhDlVKHtmKRpTjCP8c5NSNqOwXgUYpo6rmejCY12p0YUpghd4Hpl3E6SZNz77JDu\nep2ikLTbPrW6wycf7/Ho4THXb3YxDJ3DwzHTSUi94VYTio26i+taldu8rouqjfjs+Yida22aDRfH\nsZCFpNef0Wp6ZSD1svp2/9Exa+0a+0cTdF1gmQZ5VmYrti+ZXiwKiedY1ft1XWBbRjkgcAaObdJu\neGUgt2PRafi0G2ULc7PTeGUrht5kQbpsv9VqDs8PxzR9t8pOBLi318e1TA5GM+4fDNhZa1JIueKZ\nNVqE5Y3zDLlSlEkJb2Ji+qoQmoZnWfQXAXXHpu6UZEihLujIFmnKLEloLEOnTV2/QKpOXvdNkzDL\nsA2DXEqmcUzdsiuHelMInk2ndFwPqRR3RwO6nr+MtpEXPLgsXWcURwR5Vpmh1k0LzzBxdIOu49Gw\nbeqWzafjPjfqrbKik2eV19YJ4jznD4+e8/G4x7vNNRzDJJcFpqOTxmWV1xAC69zEo6XpuMZqFa6c\njly9cUilLtyATaFXZOtZOMHXyyBzpRQfTvZpmS43/A5du8aatZyAVIpn0ZgbZwjXUTyjYTjUTYdn\n0YhE5hzFU9btOsfJlFxJ6obLW25ZjVDAcTKjsbSNiIoUR5gMsjl1w+U4mWALE1e3iWRSkbB5EdE2\na7j66nXG0S1MoVPXPYb5jFwVjPMZk3yBo9uVxYTQBC2zjrEkRAfJMTXdryKOdE3gC49IxoQyZJCN\naBlNxHLa0tFdEplgC5t5PqOXHbNrX6em16jpDRIZY2gG/aysetvCuUC4jrJnOJpbkTJbc/BEg2fp\np5jCRiAY5UcEakJDf3Nt0qR4iqk5iDewPdA0rSJb0/wOQpnoy1amIkeRYYo2miYQl0QFvQxxcQeh\ntf5cONr/iHD9APhh77ivEoQuaHZLUXeeFmxcb6OfIwBXnWxxmJJnRUWwdENcGmPz2fef0VlvXLjQ\nF4UkDBJMQ1/RX5mWAUphGDrOGfJm2QZFIQmCMjC5yCWD/gzT0FksEjY2m1UboCgUN292S72J0HBc\nE8MwStH+8WypB5M8etRjc7NZkSClFLs7HYTQKApFHGdYpoFtGzx5PqS7dir2bdRddCHoDWZ0Wj66\nLjAM/YLFwwke7w2peyW56w3nWKaOfW4SUCm1ogkDqm24CtlS13YeutD4/qNjXNuk3fSI4wxn+X1Z\nXk5y2pbJLIq5vt5iZ600Y3SskmzNopg4zYjSnM1z7URdiFciW58d9mm4r+aGfxkMXVB3bLzleqdF\nwSJJqZ2rrJU6KuuVnuYzWeYcumapq4qyjHmWMotjTF3gmRadZVsxynOGYciGXwryz5OtEzydTbnV\nbK1oiX7v4Bm7tQaGrle6pzW71Et9POrhGSaWrle2DmlREBc5txotfqyzhdA05lnKw9mIuu8ilt08\nfWm98OH4iGteeVwOohmTNKLzgpifVBb8Xv8Ju17jhVUvd1klU8Asj/D0Uxf5g3iGv7SL6Fo+D4I+\nhiYqcf26VUNoAh3BQTwhUznbToujeErL9IllRqEknmFjC6PKVFRKkaocR1jES+1W26xVLcZCFTyL\n+1xz1miZpw8M42yxQrwehvvUdZeO2QBNq0hWw1i1yji7/aU56ur5NMrHCDQ6ZpuGUVYJ4yLhMDtk\ny9pkUSzwdX9JuubEKmJezKmLOrqm4wgPS9j080Maepua76xcQ+v6agWsrEqW1b1YBksRvkPb2PyB\nqkauaL0R2ToPW1snUf1SJK/5CM3EEKcVrTfRcOna+ueybl8G/sIRLiklv/iLv8i/+lf/in/37/4d\nP/ETP0GrdTpC/lu/9Vv803/6T/k3/+bf8NFHH/Hd734XTdP4u3/37/Lv//2/59/+23/LH/3RH/G3\n/tbfeul3/bB33FcNJxcix7MQl9wYrzrZLNvEckz2HvUrs9M8L5CFQuiCPCvI84Lnj4YMelNaHX+l\nkqXrglF/hmUbOK5FGCTMZxF+zcHz7RWy1T+eMp9FdLqlXktJhW7oaELjyeMeX/9glzwrmE5CPN+h\n2XBA05hMQtptvxTlG3ql4ZJS0mx6OI6BlApNK/VX9+4fEQQJR/0ZrYbHfBExmYVVxe+4NyUIS11X\nfzAnyyQba/WVzMKr0Gl61VSiVAr7jKD+BHef9mjXvZfmL4ZxyuFwhm2ZHAxmtC8xXTV0nesbLSaL\niDDLWARJ5aV15+lRmU1olELvE4uI/WGpi7FNg88O+hxN5qw3fFzr9VzioSSPdcd+rfifEwwWAbZh\nIDSNJM+JlhUptLKF55rGyvqEWcbTS1qIJ5glSSXAN3W9EtHrQuBbFnXLpu26K+L6k2U3/NNWfyEl\nGhd1NBuef+G1s/mKuhAUSvFoNmbNKT2/GpbNOIl5NB2z7deJipwgS3AMk7ppsRfO2PZqTNOUD7Y2\nCcOUTyY9bFFOWS6ypBLoR8upzaZ19bSYrgnatoujnx7Lu7M+dcOuqmWOfrpfZ3mMr5ei/pNKXKFk\nRa5MoeMIg0WRcC/o4eombcurvksBX6ttMs0jNu0GiczQNR19+V6Ap9GAuuFgCL0S2p+P8dE1gaNb\nNAwfqRRH8ZiGWX7POJ9TN06PeceoV/5bhSzKaqgwsIVFLFNSlVU6sOoYC5MH0RM6ZuvMd+oMszGh\njGgZ5YNIrGJ8vYYtrHJiUTMxhEHTaKKAul5jIscUqmBWTAiLBbvWWxjCuPIauiim7KUPaOgdYhlg\nCx9H+DjCxRIOErkU3l/87UmVMyt6OF+CK33Z/myiyNG1l8cgvepnfhFQKv3cq2ZfZcL1RnT8t3/7\nt0nTlN/4jd/gH/2jf8Qv//IvV3+L45hf+7Vf41//63/Nr//6r7NYLPid3/kdkiRBKcX3vvc9vve9\n7/FLv/RLb7YlX0EcPemRZxcFk181aJpGd6uJLCT9wwnTUcBiVgotozAlmMfcur3J1k5nhUCdoNn2\nqS/bb0Uh6R+VN/zZNKyE8lIqoiij1SpJnSwkjx70sCyDnd0Of+WvfY04znj+fIDtmLRaHusbTQb9\nOULTiOOMZOnGXxQKyzJxPRshBEfHMxZBwmQSUhSS9762zXF/ShJlzBcxg+ECWZQmpJZlcG27zdZm\neWF2bJP+aE6a5ewdXu0AfoJFmHB/ORhR951LQ7Hfv7W58np/vFgJqT4Jj3Ztk2vdJqNZQPOSGKGz\nuLbWYK3h01pqxfYGU97ZXmOjVcMxDbwzWrOtVr0yQ/Vtk7fW22gaPO69fPvOI80LerPFyxe8BCfR\nL1Bu84mvmgbomsafHR4RpKcXQM80ud0tWy9JniOV4vtHpS+WVIpREPKDIkhT/uvBHpMkZn8+Yxwv\nBxiikDuDHlmx+nvdqTXQhWAQh6RFgSEEG45PlGf0woBpmrDmeNxulevdiwJMXScuMhJZUCiJrgne\nb50Kgh1h4CwJu65pjJbrsOXW6cUBaVFUvlyXoWk6K4L2d2qdlbbmcTznMJoxzWKOojkarAjzU1mQ\nyFM/Js+wKJTkJ5rX6ZgeD4NSHG8KnQ27zrNwxCJPkCgSmXN/cYR1JuvwpMJ1FpnMVxzzx9mCsEgw\nhU5QRDyJj5nl5fG8Zpf7TilFXCQoSlE8wH7axxYWdjXFeLWP3DvOzer/C1VgaSa3nOvs2qXPYVRE\nDNIhlmaSyhRdO821jIoIRzg8T5/REV3qepOW0WbXvsXT5AHJMqg6VxmJPBWhKyVxhc+2+TYKRUGO\nJWxs4VSVo2nRJz0nXC8/K0VDYH/JEUCW6LzBg1dOLB98QWt02fc9frlPl7oP6vWSL76qeCPC9cd/\n/Mf89E//NADf/va3+fjjj6u/WZbFr//6r+O65Q0jz3Ns2+azzz4jiiJ+/ud/np/7uZ/jww8//BxW\n/6uBWstH6F++2Z0sJFJeNA19EVzfZjGLuPvRczzPqkT09aZLu1vHMAWb1y43vGy2S/F2EmeMhwve\n++YuAEqqKrIoWMT0j6eMRwFhmCClotF0OdgbkS1JmeOY3Ly5TqPhMpuWF6ibt7o0mi6zWcRgUBpd\nJknG5maDzvJ7339vm51rbTzPpt8vl3nv9jU++PoOO9stvvXN6+xca1OvuWxtNKnXnCqSp9X02Nlq\noetiaZ56EWmWM18amKZpTqfpk2Y5zw4uj/n45OHRyr+FVoZMh1GKUoqDwYx5mJQtCF2QZsWKdcJl\n0DSNTsOrphUbnl3psSzTwLFMZmFMmuVVVuTecMrbm2tstOqs1X3e3rza9PYq2KbBjdc0Oj3Bes2v\nqi6eZdHyyv1r6jptz+VGs0X/ChI1CELiLOObmxss0pQ4z1lkWTXBdxZxnjMIQ+70ehf+LpWikBKp\nFNMkxrcs/vruDdqOy6Zfo2mXRNc3LdY9j3xpEnocLOhHAYMopJCSxtJGYm8xQ6IIshTftFhzSm+s\n2lL8fqveouv4bLg1jsI5nn6xTfN2o0MvCfkPe/dQSnK4jOcRmsbX6l3MJcE7i6S4Oo7KOGcpsenU\n2XYb+LrJLb9DVGQE+SmxzVTBk/D03A3zlEke88n8kPtBny37NCNQQ+Oj+XPWLL+0fBAWe8moemgA\n8M9Vs8Ii4X5wxKI4vWGeELSDuJy4/Kn2NypbiBOctBz34z6DdEpcJLzt7mAKg72kfMhxdWfFEuIs\nNE0jKkoH+l42YD85YlbMeRw/pZAFru6yZq5RqIJBNuBh+IhncWn8up8+J1MZ6+YGh+kBn4QfUdPL\ntu26uVXNIBYqr6YTw2LBKO+jawau7mFoJnW9fWG9OsY2tvCY5Meo5fmllGSUPWdc7FfVLalypHq9\n6/ZViOQxUq3GxS2KxwCkcrJiAPsqkMTofHEeWechxHtoL/UFe6sMpv4LgDdqyi4WC2q1U7au6zp5\nnle6m263fMr73ve+RxiG/NRP/RT37t3jH/yDf8Df//t/nydPnvAP/+E/5D/+x/+I8ZIbULvtXRAq\nf9Wwvr6qmSkKyWB/xOaNH3z89eBJn42dzqVRPr39MYap0zn3/efX57L1bTRcbMek0fLIswJNK3MR\nZ0q99P0Au9c7RGHKdBLyzu1N/vN/+j5/7WfeZ329zq231vn9//cz1tZrbF9rsX2txR/+13sEi4Tb\n751eqJRSRGFCrzflgw92uXNnjzjOaDQcmk2XZ8+G3L69ieOUk4KffLrP1laL7e0mrmuhlOLp8yHN\n6x10Q1Cr2zj21e20dcrtCsIEw9Av5CNGcUoUZ3RaPuvrdfaPJ2x1G3Q6tSpX8RV0f4UAACAASURB\nVAT98YL33t1kfWkAO5lHvH2ry3gWMR4t2Nho8J2NVaPEV9mv55c9WecVTEpjVmfZqjNcg3bNZRbG\n9KYLdtdaOMtte9afsN2uX9CafVEIkrQkLu6Zi6gjaCkP2zRWX2d1n1hRjCE0bl67nDAmeU4ty/j6\nzc3yu9KUQRAQZjnrvsfd/oB31jrsBQve3V2/ch1nScIkjlhv1ums+RRK8dHxIU3PReQ63WYNUdNZ\n98qL/NFiTsdbDR9/PB3TdhwmccxbW2uksiBDUVvmKq6v17k/GfL2dhenYWIKg02vRt2yy1bbKODt\ntS4bZ86RMEvpzQLeazcvDb0+jz8d7PNjne1qWRXAk/mQW+01DCGIwpyadFhfOv13VY23tXK/xHlK\noRS+ufTPy1N+fvOnq89+0D/mZ9/7S+yFI27Xty71D5PKZ0s2sc+QzXXqPJgd0NBcmsuW5bOgz9eb\n16vlngbHaKJAFzoLGfC19rWyDaYZrIv3X7rdAJl0yGSOt7ShCPMIO9GoWSY102edOkop/NTkIMzZ\nda8xL8b81PpfAmCUjuhIj3busl5b/a2FecDu5qk1hFI1FAqhCSbpgKZ5as4rleQgesyu9061vJdL\nPP1UB9tVP0YmE2y93B+D5DlJsWDH+/orbeuLEBcFlqgjzrTlGsVNbL3OIptgCx2hGaRyiobA0psv\n1HAleYwu6hh/TgO5T/A619ovE5p6XQoM/NIv/RLf+ta3+Dt/5+8A8DM/8zP87u/+bvV3KSW/8iu/\nwuPHj/nVX/1VXNclTVOklDhOecH92Z/9Wf7Fv/gXbG9vv/C7TioZf54gpWQ2XOA3PKSUL43ieRHm\nkxB/6fr+Klhfr9PrzV5aSp5NQkDRaPmMB3M0TWPUn7Gx06b2kmDn2SRcRnhoHB9NePe9i8cwzwrE\n0gRWSkWe5zy8d8zt97Yr8hiGKcPhnE7HZzBYYFkGhiFYW6uTJBm2XRL4x0/63Li+hhAa40lAzXeY\nTEK63TpCaKRpThRnLBalvYTnWcwXMRvd05vZ4fEUxzGoeQ6LMMG2jCsF868CKRUKxWgSstbymcwj\nHMsgSlKyQrK19vqu1CdYX69fed7PwphJEHFjvc2dZ0d8cKMMzw2TFM+2CJKUZ4MJt7e6GLpgHiX4\njvVCp/bPE0GSIpd6MCgrT0LTCNOUtJC0zhGuvJAYl7RrXwVJXto51JYC/GkSV5UspRRJUaxE9MTL\n9uV5q4hn8yl106JpOzybT2nZDi37dD2PwwVd1yMtikqIHxc5d4ZHWIbBO401PMMkyjNMIbgTD1iT\nDuM05pvtMhD+z0aHbLo1Ppv02A9n/J/Xv85hvOC616yyHR8vRrQtj9YLtF0vglKK/+vZH/N/bH+A\nY5hMsqgKsE5kzuNgwPv1LTJZ8HvD+6xZNW7XNnF1k98fPuCn1t699HNnecQij7nmtAmKBE9cPfBw\nFI85iIfc9ne4H+3TNmplVJAGb7vldWKYTjlMRnzN30VQpiXcDZ+Ryoxv1W9fuW0npOc89pNDUpny\nlnsTqWS1TCpTxvmYTask6PN8zlF6wKa1zYPoLtftm/i6j6evVk9Cr894HLJl7aIBoVyQqYy20WVW\njEo7iOX2T/MBnqhfaQeRq5RRtkfL2K4MUJWSDPMntPQdYjWlpm9c+t7PA/PiPr54i0ItUOQY2osJ\n118EvOj6+WWuw2V4oyvdd77znYpgffjhh3zta19b+fsv/MIvkCQJ//Jf/suqtfibv/mbldbr+PiY\nxWLB+vrVT6FfRSilyNOrS/4nEELQWm+QRAnR/GJP/3VQb3mXkq3ZOGAxvdimSZOcx58dvvRzTVOv\nPrfdrdNaq7G22bySbM0mIcGibB04noXrmtSb7gWy1e/NSJOMw4NxlW0YhSnjUUi96TE6Y146HMxp\nt3183+HGjTW2t1s0mx5pmjObRaRpqQ1569Y6ui54/GTAeByUT8NWGacCYFkGjbpDFGf0h4vSUDVM\nmS9OWx1bGw1cx+KoP6Xu23iuRRRnS7f5izjsz5gtYp4ejPj00RGjaUgYn7ZrhNCYLWI+fniIlIpO\n08OyDAqlSLNiZVmAw8GM7JKMzRdhMLuoW2h4DjfW24Rxii4Ew1nAYBZwOJ4zDSN820KgVRqluvvl\nhNPO4pjj2WIpOi8PzCdHPe72SpNOXYgVsnV/MCRMUx4MhyttKyh/Z+Po5b8b2zCo2zaFUjyfTYnz\nvGqhpLLg2XRStRpzKUmKnIeTER8PesT56e/4Rr1J2yknEm81WrRsp8qiHMUhQZ6hFOwHM+IiZ5rG\nHIULvtXdpmW5HAQzDsM5uiaYpDG3mm2+Pz7mG6310jNNKXa8Bt4yvPp/au8wSiPea3QrsgXwVq3D\n02DEYbSaJ3keUinuzno8C0+zCKM85b8MHvG3t97nT6Z7WMKoyBaALQze8rskRdnOMjSDH2/u4giD\nQkner2+tfMdhPGGcleefjmCel7+lUbYglhlBkVxYr34643F0jI5gki+o6S5bVhuBoG2UFadxNqdj\nNvh67QaGpvOni3toaFyzu1eSLYDDtM/jaI/RJfmLW9YGb7k32Yv3eRw/LatOySGZKo/xiSFp3aiz\na1/H1AxuOrdoLO0jTlCoAqUUlrBxhU8/O+Bpch9Xq9E2ym5FQ1/VRRmaiaGdsWBRsmonhsWUWM7p\nmDvE6vSYKiTlbKiB8QWHR9f12wjNwBQtLNH93MhWrk7bpj/Cq+ONKlxSSv7ZP/tn3Lt3D6UU//yf\n/3M++eQTwjDkm9/8Jn/v7/09fvInf7I6MX/u536O7373u/yTf/JPODg4QNM0/vE//sd85zvfeel3\n/bCZ6lnEQczwYMzO7RdX5X5Q5FlxaQtxZV3CBCHEheigZB6RFor6uaBppRTj/pwn945otH3e/WDn\n0s/tHUzobjUvTN5FyzBpTWjMpxFrSwa/mEcsZjFbO2Wr8OmjHtNxyK13N2k0V8nbdBJi2waLRYJl\n6QSLBMe1iOK08twyTZ1Bf85at4brWkRRRlFIWlcEZw+G82oKUaIIg5Rmw2VjvcHewRghSoPTduv0\nKfazB0d4nsWNax0KKS+1QSgKiRAacZJjWTpRnGEu25CLMKHm2URJhi60C1OPiyjBEKtmqouonLzb\nG0x5a/vFGquTJ7Sj0byMYdIFnfrp9j/rjxnOAt69tk6UZKRFwXa7zh/cfcpffvc6f/r4gL98+3pV\n1bqzd8wHu5sv/E4o3eIH84Bb3Yv6lPPYG0/ZaZ22TXIpKaTk+XhK1/dpeQ5RllWThHf7A25318qq\n6GLBmltGIZ3s//907z5/8+23sAyDQkoOFwt2G69WJVRKMQxD5mnKrdap3cPefEbTtktTUynZ9Gsc\nBXM8w6y8vM6iHwV0HY9cSu5PR3yjs86dUY8POhsM45CmZZNJSZTnaBq0bZdMFvyP/gEbrseNWotF\nlqLXDO4f9PhmZxOpFM+CKe81u8yzBB3BMC2TB2xhYIkyOuhEDD9PE4TQ8I2L1dcgTxmmITe8FrMs\nLjVlhs1BNKVjeQzTgKNoSlwU3KqtseOW1iuTLKJteUyyCKkkHcsnLjL2owmTLMDUTX68cXo9eB6N\n2LQbGJp+aWU0LBKCImHdWj0+j6NjTM1g1yk1QJ8tnrNm1glkgqHpJDLFEiZtw+fjxWM04LZ/nf14\nwE13k4ZxuU5HKskkn+MJB10TmOJy0pCpHB3BR4vvc9u7ja979LM+mgJL2EQyIlMpTb3JZ9Edts0d\nGkaTml5nkPcQlBE+1zc3eHj4DFs4xDJE18wX5ijOivKhraGvMS9KzVxd7yBVOXmpn7NTUEqSqAWO\nePMq+OcNpQpi+QRXf+flCwO5PELXNr5481T5fdA+uGBu+iJ8lStcb0S4vkz8sHfc6yLPCmRRYNom\nwTSk1np9sd+jj59z6xs7K5WtwcEY27NXiFSe5SymEa0zQdLdbo3B4OK02R//7l1+/K+8g5SqrG4t\n2zjzSUiWFbS7NZRUDI5nOJ5Jo+UTRymWZVTLFoVkPg3RdVFWqwZzHt07pt5yuX5rHUMXPH82YHOr\niec7TCch7aUFxXgUkOcF6xsNnj8bUKs5mKbB8fGUZsul06mjaaUgNo4zZrOIvb0R3/jGNXr9klQJ\noVE7N+X3Z99/zjtvreN59gWSKKXiv/y3e/zEt29S807fV0hZepJd4i7/Knh2OGZ3s/VSO4izCOOU\nJMtxbbPy1wKIlsMG7pl1OXvBCOMU2zJWSOHhaEaSFdRdi7XG6fl10p47aeO9Ca4ioOcxDiPa3sVq\naJhmZEVBfxFwo9O64AAPMApDmk7p9/VoNGKrVkMBvmUxDENMIUDTKmPUV0GQpQRpxob/4t/bf3r8\ngHfbHXZqDRzDYH8xo27ZNCyb/cWMTddnmpUTiQCHwZym7TCMQnIlcQ2DNcerNE1KKe6MjpllKX9t\n6wZw9W/wMJwvrR4MgjxlP5yxZnt4ulm1Kv90fMB1r0nXvrgdUikyWVwwYJ1mMaYmOIxn3Jv3+cn2\nLuMs4u1aF4HGQTxl1704EJHLgv1owobTQGhlaI1AI5YZ/jJg+mk05JrdwhQ6j8Iem3bzgnj+BHcX\n+9zyNrCXhKifTpFKsWm3qvXvZxNawufDxQM+qN3C1W0+DZ5ww9m6lHBFRcx+0sMRFnXdp2mW17pc\nFeQqxxE2qUxJZIqnu2hoFKqoSFkZiF1wlB1iC4eW3kIqybyY0bXWqxbkx4s/4Rv+t0vx/LkbdixD\nnDPRQMfpM9aNawhhEBRTBDqu/sPTPMVyQFAc0NY/QLvEqf9VUagA/asmTlcZ8AC0V9e7fZUJ118A\nb/+vFuIgZj4OyJKMT//b/deeIgR4+5vXL7QRW+t1/PrLtR1X/dje+vo2YukaL85oZtyaTa3hcrw/\n5vv/4zFRkPDobjl9N5uElUUDlFOReS5B0/jvv3cPv+7Q6nggJbNJyB//94coqajVXQbHU9I0J8+K\nUgjfdDk+mvD4UY9rOx1Go4BCSubziOPj6cq6O0u7iHp9acegwLL0angiy3Lu3jtkPAn51o9dJ0lz\nRuOAJMnYOxhXrTshNP7qX3qHz+6f5keOl23Yq8hWf7Qgu8Ti4+xzyY3tdkW2BpNFRZquQprlPDse\nYy+nDM8iywvyZfvvYOmrdRb7oxkaGkmWl5mR8xDXNrm12WYSxDw+Pm2JnmihXkS25BXPVyevnydb\nSZ4zvGTC8DKyBeBZJpMo5lqjTpoXJPnFFnzHK6tISZ7zdqeDZ1n4loVchsI7pskguHwMXJ7J3zsL\n37TY8H3maUI/vHqE/G/feodNv0ahJFlR8FHvEHdJYHZqpQFnLiXDOKQXBoyTMvZGCOg6HqjV/atp\nGqM4pB8tVl47gVKKdHl8t706jm4QF2WL8muNLmu2hykEn0zL6byvNzZ4MB8ySSPm2WrbTmgaszy+\nMKHZNMvKz5rl879vf52uXUPXNASlget5siWVYpwGPAoH3PTXcHWTJ+GQSRYSFCk14zSGasOqYyyr\nC297G/i6TS6L6nzJVUGwnFL8mn8NW5QxXw/DQ9atZkW2oEw8cLXS4uV/bn2DmuGhazrfrL1zZXXL\nFhae7uCK04qkVJKoiAiKsu1cKElQBHwW3ieSMaYwK3uH0qTUwNU8HoT3OU6PiVVMx1xDKslhuk8s\nIzbsa5fqw5RSzIvVNqZUkumyqhWrkHFxTKFeLjX5oiAwaOnvE3NMql7fEiaRB0iVoms+hXoza5gv\nDJoJ3Phhr8Xnhh85zX8OmPZnhPMI27VIopT2RhPd0Nl5d+tzM4wTuriQdyh0wbP7R3Q2mys5fJft\nM9M2+PD377Ox214hc0IIdEMQRylbO22UUrz13jaapuHXHTQ0oiglChLms5iNrSamadDdbDA8nuP4\nJoZusHmtRbPl49ccbNsgTQvyLCdLCz69c0CW5RwdTnBdm97RFM+12NhqsrXdAlVWVkyzNDs9yQVs\nNNyyjalBrVZG/YyXIdVbmy3yoihF8q4FGjzfG+P7FkdHM1zHLAmaKvdJnhcsFjFSKXqDOXXfvlQb\nVxQFtnXR5PRPPnmOZV7uTG9dYop6FrouaDe8S01FbcuoXs8KiWubK8dwrV4aFz49HqO0UpOVF4rR\nIsTQBQ23bJm9yLD0zt4xG43yCfzTg371mScIkpSD8Yy27/KgN6Tpnvo/Samq+KBXgVSKtudiGjpB\nmpZ6u0uqXOMwIisKPOt0f6ZFwTxNabsubfdyQrc/n1MoVbUqn04nNO3Tm/EiSbk7HNB23EstOL4/\n6GFoGoM4xNYNhklUmpdaNsfhgkkS0XU83GXUj2MYuIZJWhSYus6HgyNu1le1P5tejd1aE8cw6YUL\nHkcTHKnzZD7BNUz+bHyIp5sUSmLpBnGRkyuJs5zaE5qgs3S1N4Rg12uSK4WhiQvTgWGR4urmBVK9\nF42RKOqmgwJimdM0Lz6gKaU4iCbEMmfLblQ2Dl2rhq4JaobNcTIjlwWGJrD1i1O/j8M++/GQTbvF\nk7BHpgoahre0a0j4/dEnvO1u4ZyL8xlkU46SIfejPa5Za2Tk7Md9WubV1SFN06gbPp7uYi8d5iMZ\nE6uErlm2vgsKJJJr1haO7pCrnGE+oq7XKFTBNJ8yLabU9QYZKfbSPytdkrK60cQ/U6EaaUeQlk7y\nmqbh6+eqFZrCFXV0zcATdXKVY2o2+g8p9kbXHISmo6FjavU3uOcoBGXVMpF7mOL1bWU+DyiVgrqD\npp2TP2ivN9z0F8749EcosX/vAFlI/JZPo1NDFpI0vrra8Trd2zTJePLp/kuX+9q3br7SD8wwdN77\n9o2KZBS5JDwjKq8I25LknCDPC5I4q0KloawcOY7Fzs01NARBkBAGCc2WRxjEpYh8rYYQgk63xgc/\ntsudj55z49Y67Y7P5nYTpZX7QxaSjc0mzabHaBQwHC7K70wyhsMFhqHTaLiVoWi77bO50cS2DY57\ns8poczhc0Gq6hGGK71kc9Wfcf9xDKbBMndkiJogSup0aO5vNK61GGjX3UpPTW9fWCKOU5MzQRJRk\neI6FoQuCKGU8v1gJOhHPv0qbrlP3yPKCabBqBCilwrMNao6NAg7HM9YbPtvtBpZpMA8vCpjP4us7\np1NQ39jZuHCz9m2Lt9bLi+z1dnNlXU1d4FqXk63Lzuc7R73q9bbn4i8J1cPBkEl0brvOvd3SdXZe\notvabTTouC5KKRZpStMuqzFZURBlGU3Hoem4REVWCeODLGWelvvox9c32VgSpKbt8N3dt7hWq3Mc\nLHg4HfF8OuXZfIohBKau01oSoWka4xsm/8vu2xf8sBzDpGWXBHGWxWx5Po5u8E6j3Ke1pTt8sdwv\nNdOmZZXLn/hunRiKKqW4MzmmZlgXoolyWTqZX2YZUSjFtlPuO6Fp7LjNC8tU+1no9JM5e9Fp5aZQ\nkv24/HfTcElUxiyPeBoOCPOE3+7fqZZ9x9/kxxul+eg1d41rdodCScJlePW0CBGaxkEyYpqfVhs3\nrBa3/V02zBaRSnGExXVndUIvlVl1/py0A8+eZ/N8QSQTumaHQhU8jJ6gI+iYbXRN5zA5IpUZ21Y5\nBDAv5kyLKbv2LsfZEbvWdTrmGrqm4+oes2K2NNyVHKTPSGXCtrODoRlXisLrehvrzFSiokAhCYqL\nFeoTSJUzzY+u/PvngUSOkKzef+bF/Ze+z9AaS7d3iY5PWHz80vf8ICjkfZS6uK80zUITP/7yD1gO\nQaCmaOrlA2JfJfyIcP0AaG+3EbrAMHUMy8CwDLo7Vz8dHD7qMR+/mmOuZZvcuMRu4VUgiysuFE2P\nw2fl1Fie5YTB6Y16baOBV3Pwz2ikRoM5jmvR6dZpr9XY3r24bZvbLd77YId6w2UyDqrAaykVh/tj\nxqMA17P463/j62xtNQkWCZ1OjTjOysrN02HlUq9p5eTiw4c9XNdie7tsR4zGAZNzE5lSKlrNMh9R\nCI1222djvVFVs96+uU63U+P+o2PyXNJpetzYKcW8r6PdevR8QJrlrLV9up0ax8NTbcDRYFZN2JmG\nuFBlUkqx17s4VXUZnh6Py8xJqUiznE+f9aq/RWnGh48PKaTkeDIniFOyorTd8GxrpU34pDe+4KL+\nOji/DXGWczS9qIcYBSH704vTdD+2vXnpA0DTcbjfH/B0XO6P9ZrPem21jfTxcY9FkpBfcf6eRS4l\noyhiHEdlxmKe83RWEqW3Wy0+7p9OIvbDgP356brqQqxYQ0ilMIQGUvH+2jo3Gxf1Ts8XMx7NVg1w\nPx4ds8hSjs+0EzfcOrlSJEWO0DRc3eDdRoeG5VRRPnGR82BWtqR+6/mnfDQ+vWlomsZ7jav8+9SV\nLeF3al0U8DQYrTi/B3nCo2Cw8vkbToOu7ZOeaYNpaCgUD4IeQZHQMWt0rDK3NVUFf2PtfXJZsBeP\n+HSxT7p0sL8732M/HpHJnF4yRWiCv9p6j4bp09BdoiKplu2lEzJV8F7tBp6wmOXBhTbeMJsSyxSp\nJA+i5wyzCYvi9Lffy4bUdJejpM8km9HUG5VeK1M5sUxZFKfX2JbR4pZzC1OY3LJvceJsOs5HHKeH\n7NrXAXgU36WtdznODhCaIFcZR9neFcdhFR1jG6kKMhkzyY/J1cXqiobA1NzXNiK9CoVKmeWPV17z\n9V30M9UguVyPXIXk6uWaJoVC0wws7bSFFxd3UerFkonXhS5uo2lXPxC8DBoPQIWAj+KHU417U/yo\npfgDwHzFG7dSiiKXNLv11/LkuqpydfdPn9LdvtwV3HFM7vzJUzobFysFsij1V0opHM/GqzkcPB0y\nn0VVZI8sJEmSoRuC/acDPM8uA6ovQRxn5Llc5h4qLNugvnRxH/TndDo1ag2X//D//An2MoOx3iwN\nV03LwLZN2m2ffn+OoQtMy8DzLHaXxG42i5jNItotvyrRBkHCH/zhQ27dXCMvJI5Ttjye7Y1otzxm\n85hazUETIAtFs+7iexa2bTKeBBi6fqGCtQgSDnoT5kFCGJVtsME4wLFM2g2vMg01DZ3mGduMdsOr\nqkW6Li4Nsp4sItp194VVyDjN6E/meLbJaBby7o310rBwWWm0DB1zOdG3223R9JxKgA/Q9Bz2hlMe\n9YbsrjUvVKQeHo/wbAtdaAzmIf65MOmP947o1i/mC0LpFt86o9caBWHZ5nFsGs6r+0W5pokuBNuN\nerXPcim5PxjS9ctzb7NWYxzH5blwrg35dDJBQNUm1IWg6ThYuo5jGNiGQZzn2IbO7zx+zI1mi516\nnY/6x7y/tk7dtnkwGdF1V6ddH05GaMBxGHCj0abrelWFb5Gl7AVTTKHzXqvLcRjQssqKmqZpbLg1\npJIUSlX2DgKwXROr0NkLpgzigExJ6qZNUuQYQmAIQcMscw8NBL5hVRUy4FItEcAwDWlbLromeBqM\nqyrZWQySoMzbXLYrLWHQNMvzLy7Kh5zH4YB1q44rTIIixTdsjpIpcZEhlaRm2DjLcGaAfjKnZXr8\n4eQB62addbPB07hP1yrF9oVU1EyH/XiELyzuhgdcd7r0synzIkKg4RulzswSJoMl8ZIo3HMC/Lrh\nYYrS0HfNbOLrXtVKBGgZJcHqZUPWrBZ1vcafLe4gNI2GXsfSzPI/YbEoFiQqwV5Wo2pGjVQm5TSj\nphPIBY7mYgqTp8lDbOGwaV2jXnOJwxwLm8+iP2HDunyiu1A506KPK2rM5JC63inNRTXnwm9J0zQC\nOUTXDPTPwZpBAxZyD09/0fSxhr50cQ+Kp9ha94XXIU3TEdhkHGJoZbtW15poXzXfLq1bars0AZcE\nan+VW4o/IlyviZMnlNfpk8dBwvBgTL3z+UyydLdbjHqzMsT5XEWiVnOwrzjY03FAGmUE84hgFuN6\nNvN5hAbV9OPR/pjB0bSsePk25tJ89DJEYYosJLZtMp9FzCchjmdxtD9m61oL17OQhSSYJ7z97iaN\npkfvaIbrWkwmIYP+DHvZkjs+nnJ0NMWyDAaDBbWaQ78/pVZzGI9D6vXy6XA2i7Adg067hm0bHB5N\nS5F90+OoN2U6i7i21eKTu4c0Gy61msOTvSGdlk+aFpiWzngSVo70UZziezathodhCOp+GQek6wLL\nNCpyFkQpB70p9ZqNWk4BxknG06MxncbllhUAnYbHZBHx2dNjNtuX6ysMXadT90jygk69HBaIovKp\nMsly7u33eWtrDUMXWIaOZegV2Xp0NKTm2ARpwmAW0vAcHNNYaRt2al4lqF8kKTVnlXBtNGoX1utB\nb0jdsS+0Qkstk7jSCT1IUqxL2rWaplGzbe72+uRSUrft8iZ57jtqlnWBbAHULetCWDWUbcgoy7g/\nHvFOu4MhBLmSCE2j6/lsLoOqDSHoOBeJr6OXE6BxkbNbaxDlGYVUGMsMRKkkYZ7jLQOsB0lYPrAs\nCdY4iUHTKsJ1fzbEdSxsqS8DqD1atsvdaZ//fPiY9xrdsiq7JDMFimte45WuJ3GR4+gGYhk27Z6L\nE/r/2HuvHkfSNEvz+YRpMyqnixAZqSqruqu70ZjFXs9id+/2j+5vGAwwwPZiMNuyqrJSZ4ZwD9dO\nTZoW314YSXcPd4+MrKia7AbyAImMIBmk8TOj2bH3Pe85QggGTnDr8aKpeJVOGNgBl/kSLSS7ToSr\nLP5x+gpf2fRtn1A59K2Aq3LJrtOhwWBJxWk+5VN/r9WHaZfaGAZOyHBtCRFol67lo4XiwOnhKpun\n7pBJucSVFk/dIafFhGBt6SCE4IfkBC00B851deIsHxOou0TlTWye71td9PpiawsLV7o4yiFrchoa\nXmevGeg+F+UFnXV0D8Dv4t8RiICX+XOe2E9xlUfcLHlsPaNjtdo837eJ45zT8pAPnc/u2Dpst2Ud\nVG0AYQABuYnx3tR8reHKDkpY22zF1qOtYlGf/WSLCCEkhk07+v7zfbttDQKFluGWfP3Y+27IVvv3\nf98pL/fhF8L1Hvi5F+5NTM5mJMsUf13J+f5fX9A/6N46UVRljVSS1Swmwm7ePAAAIABJREFUWWZE\n/eDPRrY2MI1pydAb1Zq3HWyubxN0PDq9AK0VtqPxPBs/9FB6fUFeJIQdryVb1sNkC9rW3KY957hW\nK7IXrV4sy0rSpGAyjvEDByEFjmsRRg6rZYa1tpsQQhD4DvN5Qn8QcnW5YLATUtcN83nK48d9Op2N\nQ7Nhucp59nSHV4cjjl6PicLWdT6K3O3n+p7N0ycDXNdCSsFgbc3hOhZpWlLVDZ5rU9cNl6PVtmq1\nIVhCCGxL3dqntqXoRi7jeUJR1riOxtLqVvXKGENZ1XcqaFpJOoG3jdt5E/Ha+mGyTAg9mzB0SZKC\nrCiZLBK6gUfo2by4GJOXFUIIHEvzw+mIZVqw1w3pBz4fDHvEWYH7ho3EBkKIO2TrIYSOjX2P6Ny1\n9INkyxjD69mCge8xTdKtCBzatt0iz4lch7yqttWxd9G2wfVk4NmybY1sKl3zPON8FbfkxnX5fjLm\nV4MdjhYzHoURSVVuRfsPVfBspejYLQFcFq1Tvqvb7xlaDkVTb72yOrazJVvQTkdepTFSCBylEQiw\nBKKC7xZjFmXGrhswyVP+l53H21bmNE9JqoJd95rsniQLbKnurG9jDLVpCLRN2rRu+SfpnK7lcpIu\n6FouizLjNJuzqnLKpsbXNkVT8Y+TQxyp8JSNoyxCfT1gUBvDh/6AVdXmfbYh1h3SpsCw8Qlr//ty\necyqaluNSshbIdZl05qpbh4TQmBLjSPbhANXWiyqhFWdMikXPHP3UVJgyTV5NAYB2PK2QL8xzfbv\ni2pF1hSMiimevBaoCyG2gvpl1QZ4Z3VGbnL2nD0iFaGFJm1SjrPXhDLkifuUVbkgJ8ORLhfFGfN6\nsjZCVaR6ziKNWdULJuUFPbXLUf4DPX07Y1AIgRY2hoaL8iV9fYC/9usqTc6kek1wT+bivD7Dki5S\naEAgb1S9alMA5p38rSwRoO6ppt1E20qssf4Cnl95/Q0152jxl3PKvwVTAiMQb7+W/kK43gM/98K9\nCT/ytmQLYPCod4uUGGN4+fkRg0c9WLceQGwJzY/h4mjUVo1+pPV4k2x9+7tXrcFn6L7zwWbZbdn+\n8IdLOv1gu31R18fzbZI4Rwpxi9A9/+aMwTDi6MUVaZwzm8Z01pWxoqhYzBJcr61qtVUgyRefH+H5\nLstlyt5+t70wuRauYxFF3jq+R7Ttx9Dlh+8vaEyD77cH7Nn5nOHaZyxNS5bLjG63rQK1YvqGx4/a\nUOr5MmW4E+K9QSqev7pCCsHZ5ZzxdMXTx33Ksub0cs6Hb9HcQWsT4a/blkIIAs9utVTjBd03WoVp\nXjKex3SC23eSSt7Vd21QNw3nkyW9sCVkWqvtPszLVjA8WSUkecnHewO0koyWCaN5zCcHOzwatCfS\nqq5RUhK49i0Sc7WIKav6jh0FwMV8RXxPxWuzzW+DMebetslg3X7MqwpLteTh9WxOUhQcTWc4WuNo\nC/8BIf6PwVaKpKq4iFf0XQ9bKbquy9D3ScqSbycjpllG33WRCCZZRu8dWp9/HF2w7wf4lsWqLJgX\nGZ5upwF9bT3Y5vv96IwPox5101CamrSu6EUe81XKosz5u8EBoyymY7nMy4yu7XKZrQi1zbeLEU/8\nDs+XYzqWy0kyZ8fxt9U1s17TWZkxL1N8ZXGeLRk6AUMn2Arol2VOpB1Oszm+tqmahj/Oz3jkdhjY\nPj3reirVlprKNLyIr9h3O3jK5jCdkFQF/XX2oSMtnPX04maKMVhXwE6yKaNiwbSK26xC7bCoUgpT\n88flIR3t46zbkZNywWF6Sd6U7NhtFU9JSaR9iqbispjiKYeLYoKrnK1/F7Ti+cP8lI4OyJuCUTml\nqEs8ZZM2BZZQNKbhm+QHdqw+UkhepofkpuSRc8DQbnVwmzggjUavSY2nPFKTbp3mC1NSmhJPetjS\nYbczoE4lvmwd5g2G2pTEzRJX+tckUQgaUzOpzjiwPwGu28FK6Ftka16dYQsPISSe7KzJVrt/b7YY\ns2aKoXknB/qHPLeKZratZinhvVNl60+BEBaW/J9k2WAMYID83iBrab5o9VxC/kK43gc/98L9GO69\n6Kz1VUorsjhvK2I/kk+4gR+6OP7DWWX3wXJ0GwGk3u1gy9MCY0xrVzCMbpHBo+eXnB9PaaoG17dv\nOd53uj5CCvK8IM8qnn3cRjNdns24ulyAMISRy+nJlDwrsR1NkZd8/Ku91hC2afjv//AdQhp21jmH\n00lMHOfbA7TbdXn8uE8QuJyfz9jf6+Ctyefl1YKD/Q5KSVZxRhS6W2IG7W/yPkuHQS/gXz8/xLE1\nRVnzaK+dUoxClzcn9i5GC6qq3rrEn13NGXRv2yjYlqYTuizj/FYAtqUVnaDVV71rRmC9Fog3TcM/\nfnvER/uD7T601872dd1wOY8xGPqhT+janI4X7HZDsrLk88MzBILu2tx1Grf+RJZq24+udX1yv4nQ\ntR+seBVVRfnAd2iM4auzS/aih+80XctqyUCeI4D9TsTjbofIdf5ksgUwTdPWINdAtLaD2OzDfzs/\n5dNen8C2OFkuCR2HDzrvJs49CK4rTbMiQ6//fLxa4Gu9nUw8T5YY04rou47D46BDWddkdUVk2ThS\nYXuaJCn4tNNWRGpjcJXFwPW5SmNGRUKgbF7GEx77EcfxnB3XJ7IcvLUNw2Uek1QF4fqxyHKRQt7S\nbQkhsIRiVMRE2uGR16VjufjaZmD7BLr9t1lT0rFcbKkZFSuKpsIY2HUiZmXCY7dH3w7aIY9sykWx\nINIulan5Pr7AEoqLYs6uHTF0otaqwkBaF3jKJtIenrLpaP9WW7AxECmPq3KGwXDg9AmVhxSStMlb\nM1Pt09EB9hvu8RLJoopxhEPSZIyrKbv2gHm9ZFXH+LrVdlWmpqPaVv3Q3iHS4bbVCHBenONIh5qa\nr5Mv8aVP1+ohETiytVPo6h59vYO7zjp0fcViFXOSH6KlJlAdAtWhMTWuCljWM9JmRdqs8GTIuDxB\noYmb+bbCdRONqciaFZ7s/uh53ZL+e8f9jKt/whJdSjNrV/IvpMGSfyEidx+E+RzEHoj727WGna2e\n698z4fplSvEnwhjDiz+8eufXR4OQncc/HpWywabN9lPQHYS3tFzPvzy5NQ1TVTXFDXPONC5u/X2D\num4Y7Eb85u+eUtcNZVmTpdcHblFUHB+O2Bl26A2u7zLqps0PE0IipeTDj3e5uphzejzh018/4tuv\nTtFa8f23Z+wMA5KkJElyqrJmsBOyu9vZmqR2uwFKKVarjEePeliWvraEWLdCAVarfPv4BmHgrON4\nrr9bWdW8ej3iyaM+H384xLEVs0U79dTUZvse42nMZBYzHIR0wuuLWuC1F/WyqklurEVjDKv0fjuG\nLK/Iix+f7JkuE16eTzAYbEvzv/76AyZvWEsoKTkYdPj1kyE/nI5ojMHSimE3ZBanzJOcvU7A40Hn\nxr8RLNMcYwyWUigpeXk5IX2HbdogLSuS4v6TlhSCv33841FBAK7Wd0T6b8Ks8w7fxJsGnwBl0zD0\nAx6/YR9xslzwKIyQUrLjBXRsB09pDufvNiUKrUVD1TQ8DiL2/JC8rgktG1vpreFqz3bxtObR+vnf\njc7456sTHKXb2Bml2PNDxnnKy8WE02RBZDl8Pj3nIl1ymcc887us1tWa58sJrrLI6prIum73DWyP\nfe/+i8tmW79bXrXic2NuWVVoIbePA1xkS+Zlul5r6Fgeny9PqU3DqsppuNalXhULDuwOr5IRjrT4\nyGsrPJ8FB2ip1garEU+9HZSS/LfxF9tzTaS9WzcwoXbpWD4d7fP16mg7PfkyPWNgdahMzWU+JWtu\nH2ezasllOeEj7wmB9tixenzoPiHS7ZDKb/xPaEzDam0/cZSfcFFcMi6mHGent97rsfMYW9pkdUqo\nOjxxn7ZrJC0a0zAqL9FC3yJpr5NDFvWMobWPJ4P1uhnGVWugHKkePb3LpDznqjjiifNrXBXeylS8\nibY9e33TVv+Zp/7exJ71nynMFEWA5HqbavN+ub4/J4z8+3sF8lv8B9Ga/VLh+okQQuB3vDti9XdF\nuspandBPiIV5COdHY4LO7bZWEDgo51rsXRYVP/zxGNux8Nas2/Vt7HsmLKuyIl62Plp13eC41vb/\n0LYhu70AqSTujZZnGLntxOGgrRJcnM9xbM0nv9rHcS3KokJbkt//yyv+t//zb9jb73B2MiNJCjzP\nRinJYpGSpQVFUeG6NvN5Qhi65Hm1/bN1S1dlOHw9Jklyut1r0XpR1rx4dYXjaCxLU1c13bW/VRg4\n7cSfpbEtzdV4ySYI27E1rttO0m0+YzJP2Ftr7/Ki2vpuQUs6ouD+OzzXvusoP1ul9z72bK+/bQPa\nWjFdpezvRHePe2Owtaa/JoMd38FSam0Bsda5JBmBa+NYmlmSErj29gI4CP17xehv4mS6oKxr+oH3\noP/WT4GSdycO38QizxnFbdzPBllV8Xo+x1aKeZZt/byiG3E/N9tujlL0PY8XsylPwoirNCa0bXxt\n4a7zGZdFzmUSUzXNLVuIDa7S1k5gVRZtK9GyOFrO6TkuF8mK0jTM8nzbyrSkYt8L+bjTx1GaeZEx\nyhIe97v4jSavKyyheLGa8rf9PdK6Im8qHvsdfliO+cDv8Em0Q992meYZkyKmZ3ukVcl3iyvSujUv\nvXfQQkq6locl1b3Tii/jMYWpCJRNaLmUTY2nLALdHhMfeH1sqUnrklWdE2l3TYgEAzugp1vLFWut\n/3oTQgjypsSRFntOl+NsvNZWXd/DZ3WrBZNCECiPZZ0Qag9fuizrmEm1xJU2panw1fW+d4RN0mQE\nytt+VqsHk3RUSNlUnBeXRCqkr9sK5sDqkzQpRjR09N0qkxKKuI45LY5Z1nN2rX1saZM2CbWpEEgU\nioYG25NYRcAP2ZeEqouzrny9Lr7Hkd425mdgHVCL1hutffx+t3wpJJa83kfj6iW+7P8JBqW3YdYa\nt2n1JZ68raOyZR8lnFtasLQ5xBLdd9KH/UfGv+cK1y+E6yciWaaMTyZ0hg/ffd7EcrK6NaE4vZjz\n6qsTBvtdTp5f0N15+H1Onl9g2fpBW4ambnD92zs2CByyG+arSsl24vCNWKAiL1FvTJMprdqWpmsR\ndT1sx8JxLdKkdZp33gjKbuqGoqiYTWNeH44JAofx1RK9zmrcWES4nk2vH/K3f/8B2lKYxnB6MuXq\naskHz3Za/ZlnY1maxTwlz0t2dztbl/m25WjTNAYpW/3E6+PWE0lbiu6NKUGt2imj2SIBA4evx+wO\nI7K8xHMs/u2LI7SWSCEo62YrqJfyujW1cVdfxm1INbTtwg3ZitMC+0fCxd/EfdquyL8boBz5zr0n\nDCEEr64mxGmxDbJWUvJ6NOfJoIO7dqw/Hs9xbYtB6N9pl96Hq2XMIm3F7AAd73bLr7lHq/Xnhqv1\nLbIFLaEYrN3m9T2k7dVsyslywYvZlA863a2x6L4frKtcPsuyoOe2beOqaZjnGU+j9rXLosB9Yygg\nsh0cpfh2OiIuSzq2w67n8/urc4QQPA46nCZLdlyPcZYQVyV5XfLtbIyjNH2ntWx4nS2IsAkth6u8\ntXKIbIfQsgm1zfeLMZ91hthKYUuFFJKatpoXWQ6WVOy6IeM85rvViA/8+y1gNvt3Wea38hWrpm1x\nPnI7/PP0iJ7lEdcFXev6or+ZGDzP5m1QtVRIBEpILovFViwPcJbOOM2neNLiKB3hKgtLakLtsuu0\n5EYLhbO2cwBYVAkv0wsi7eEoi47yOc4uGZVL9u0+cm370LGCW2Rr+x1MjaucO1pBIQRH+TGX5YRd\na4AUksvyito0eMohUm3o9pt4nj7nwD4gkhGv8pfsWntoaXFZnhOJgMTE2MJGCU0YuJQZaBQ9Pdzq\nN3esA6z1awBm1YjS5HgyeHCScYO8WVE0MZb0CNTgz/KbmlXf4sgejhhspx7fBlsOMNTvNXloTN1O\nSJry38cEoymRfI8R1951vxCu98DPvXAbNE3D/GpBNAjfmWylqwxjzK2WYtD12X06QOk2G/D0xSW9\n3fsnSIKOh/2WqbLJ5YKwe7fC9eaaJXGOvlEdqquGk1cj6qrBD+8eGGmSY92o4JmmbTrYtt5mI1q2\nJs0KVouU3f0u+496fPXH1+w/6jLYiVjME7K0IM8rAr+dUhRC0DSGi4s5nmuzu9+hqRvGoyWdjsf5\n+ZzdvQ6Oo4njnOk05vvvLxgOQw6Pxmil8NckZTAIiUIX17XRWvL//fML9oYRdWPwXJtu5LUVKyVx\nbE0Uunz3/ILf/qb12VFKcjFaMOzf1SHNFilxUrC3E1GU9VbHZIxhskhYrDJC725Y9tvwJtl6Gzb7\nMCuq7WcLIdjthLiOdct2YdgJUKolkEpK/PXz73pCl0LgaHXHQ2yDL08vt7FA74v7hPY/hjcrZGVd\n891kzKf9AftheEujdTSfURtDXBQtYXIc0qrE1W3lMrLbY71sGrK62la5lkXOLMsIbZuj1Zye7bDj\n+czzjP/n9BBXK0JtUTaGgePiaE1clvQcF0vqbaB1UdckZUksSvqy3d8dqyVa3y1GdLTDrEy5yhM6\nlkNjDC/jKVldMnB8QOCqa73dwPF54v247ufr5QW+sq9Jl4GzfEFaFpxnS3xl81GwQ1IXWFLRGMMf\n5sf0tbfVZBVNxVk+Z9dp9VA3tVgv0kv27S7P00vSpuSpM7gzRGDdIFubfb1n93Ckxbxu9YcfevtM\nqxWR9vCVe6sadhNCCNy1P9dZcbWeerTIm4Lj7Iwda0BHBRwXZyyrmAN7SE1NIAPstWdXbWom5ZRR\nNaaruxgajAAtNX29w7SeEqkOy2pBqCO6eoAS7e/G9gRlagh0uxaj8gxfRev4HMGymWEJm3F1Sk/v\nYQuXwmRUJr/VVqxMsRXtr+oRjTC48s83rV7TJjfkZowSFnL92ZVJyJortGg7Djd/d3HzA1r07lS5\nKjOnMBdo0ZL7pP4SvfbtakxKYY7QYkBhvgcjqDlHiZ/RdNTUtAJ6B0P3VkvxF8L1Hvi5F24D0xhW\n84TgLZ5Lb6JeT5nZ7l2/HADbtYj6wYPWC2+zZID2pOa+Mc1438E2Op/jh8524rDISpI45/TViL3H\nvVuTiMYYzl5P6N7QaCmtsNdVtqKsSJMCz29tI6qyZrlIybKS169G1HVD1PV49eIK29GMr5bs7nU4\nP5uhrfZ92jaeIi8qoo6L5ztorbaVLqUkZ2dTfN/GmFZb5vsOYehut+PV4YidnZAXLy+5mqz45KNd\nbEfzzXdn+L6zFbP7ns18kTKdJWhbM1+k7A5CtFa3yFZV19v19tzW7uLbFxcs4oxhL1yvDaySnMd7\n3S3Zmt/TKtwgL6utTcNPQRA4jKcxL87G7K0/u6hqVlnOKiuwlGSVFVzMV7y6nFI1DZ21YL6oakar\neFux+jFkZWsz8NAU5Z+LbF2t4tYWwnl4u5KyxFIKYwzfjyfs+Ld/a23Ui2HX929NUSZlyelqyUEY\nMUlTnkQdQttmVRR8Nb5ECUnnxuduzEc376GExF5PVPYcl8huW2OHyzl/O9jjN/1dTpMV382uUEIR\n2Q59x9u+j69t/ji5QAoomprX2ZJVkrHrXQvxx3nCRbLkv57+wP/19DfMywzfsjmO52jR2lIkdUmg\nbc7SBQbT2ky8A0ENtYMtr+06XiUTOpbLpEyILJfIcgi1w1EyZWC3vmSesviX2RFaSL6PL0irkot8\nwQfegEkRYwnF/zv5lidunyduH187HDg9Htk9hBD82+wFFQ1dy6dsKo7SEb6yOc9ndLTPSTbmqpgz\nqhY8c/cwGFZVyp7d56qcESmPeR2T1TmVqe+I5jeIbgjqtVB40qUwJTUVHzlPuSpbM9F9exclFItq\ngbUWiecmp2wKumu7h7qpWNYrBrq/Da9GCE7yw7Yytv6c3FrSZJLT4ohQdTgrjnCkh0ZhENRU7d+F\nRd4kXFXHRKqPwaCFTWMaGmryZkVDgyUcHBHgiNt+d5XJaai3E4s/FbbsoIWLLbtIYa+d5QWlmVOT\nYYseDRlJ8wotQmpSXPn43paiFC6KaPucEn0qc4mhQBIhRYAQGi2GSOH/vGQLgATBFETnjn7rF8L1\nHvi5F24DIcVPIlsA2tZ3yNabkFJSZHfbewCTi/k2OuhNfPu7Q56spwQ3aBrD4TenBL3b27mYxszG\nKzq9dspQKontaD78bP+Oj5cQYku2jDEUeYWUkrPjKVG3DZD2fKedrlvfOY2vluw/6hF1fTpdj/Fo\nxWAQIpXk0ZM+x0djqqpmsBMhpcB2NEIKfK91gNdaUVU1tt1OaI3HS87OWtNTz7PxfZt+P8CyFFK2\nsUG2rbFt3Ub+GHjyuN9WeDyb715eIhGE65iiqmpwHc2wHxIGDkpJlnGGY2uyvCTLK07OZ9v2IrQZ\niJZWfPh4cGttwjdauFfTmG54f/Wqqhvq+n5LhskiYbZKCb27E6lB4LBcZW1YttO2Ur86OsdgGIQ+\nF/NV670V+vQCD8+xsJQiyUv+7cUxgevQC95tKtbR+l6yFecPZ0DmZUVeVdhaUTXNndalMYasal3V\nhRAs85zaNOw/MNV4sVohgMu41V1toncspfhhPKbvtVXctKo4X622rcYvry7ZCwK0lG3YtNYtWVp/\nrpSCD7v9rafWBo0x/OvFKf21U/1Nv7ANBK1pqK8tXi4n+NrmcdBh1/OZ5hldx11HCrU+XzuOT8d2\n6dgu4zrlI6+HozRZVaKlomM5HPgRrtbsrM1QLSE5y5Z8FPZ4sZwSVwX7XsiqzFmWOf0b7vPLsh3Q\n2Gxn1dTbKlPVNLxOZ+w47fHbt30Egkg7dCyHQDs4SjOw2+dP0hm7dshTr8+yzknrgqden0+DPYQQ\nRNrFkopHTg9HWfzT9Dld7eOo1k9rUaXt0EiVs+90eZ5ekNU5j5w+WkpsqelZAX0rZM/ubde8weAr\nh/N8zDfxEaf5mJ4VYguLq3JKR9+vgboJLRW/W/2RXXuHcP36fef6PBjXCa50EQhc4fA6P2bH2sGW\nNlVTs2qWuLI1Ub4qz9HSwlU+o/KCju617V0r47vFtzyxPyKpV3T1gMvyGIPBCENhUqTR7VSjAF9F\nuDLYVrdSsyQ3MZHawVpPHG7akjdRmJiGCv2e035FsyBrrqhJ13q3PlLYZM0Zjhxiyx0aShqTocTD\n17CbRKx1nfeReGv7iT+NFP7FIOyWbN2DXwjXe+DnXriHML9acPjVazo70ZYsxfPkQYJljCFLijt6\nrCIvuTwe07nHGLVpDJZj3SFFwL3RPkIIPvpsnyQpOPr+HMdrbR06/QApBc764l6VNfNJTNi5fVEu\n8pIsbe0cAPKs5Px4yuuXV2irje+JVzl+4DCbrJjNEuJVxoef7HH0csT+QRfb0fT67YlwuUj54btz\nbFuT5wW7e13StODibIbrWWRZyXyeEoYul5etaeEm6yyKvG1kkLYUh4cjBoOwJUurjDjOCUOXQT9k\nuHO9dnpdjdOqJV/QTmm+Pp3S7XicXy7QWvL88Aq4Lrc/2mtbUyfnM9KsZND1CW6Qq1cnY+S6PXkT\nD5EtaPVkrm1RNw15Ud1q23mOReQ7fHV4sa1ibRAEDnlW4a+n+15dTul4Do8HXSbLlDgriNai+dPJ\nnD+8POWD3R4n4zl/82yfQfD2KKF3wTJrfdjuc43PqoqyrvEsi2/OrxiGt20z5lnOV2eX2yrbpnr0\nkHj+eLbAUZLHnc6W4G1e62i9NWBdFa0Ie1MlG3jtVJwQguNFK7D//PKCJ1GHyzjmdLVkzw+2JMUY\nw+lqSddx6ToO+obJ6E2tWt00SCnpOi0hC7TNrhcQWBa+ZdN1XI5Xcw5Xc76aXvIkiPh6dkXPdvnH\nqxP+7uAAURrypuZ87bllK7UWmtf8cXpB3/ZYVgW1MXw9v+KvO0Oe+q1PXWS1FbTaNFzlK0LtMC8z\nStMamgIcJjNsqZgUMQLBE/+6tVo0Fa/TKUfJlKKpefRGW3LzPkq0fl97ToeO5XGSzejc0HltJh9n\nZcKyzth1Ig7TMR2r1aqF2uWimPNZ8Ii0KdekqtmK7G8ScSUkjrTaPMWm4ok75JmzT94UxE1GR/uM\nyjkdHfCH1Xd4wt62Fd/EB+5j/LWgPlD+LYNUT3lU1IzKEQ0Nq2qJFJJABXye/IFPvV8xr6ac5ce8\nyL5HSsVH7icMrOE2Q9HxLGThMK4uKMnZ0fv09BBfRdjSRaIZlyc0oqY0GZ4ISZslmUlwpN9WtORd\nYlM0CatmvG0rauG+N9kCEEZhyw627Gxd5wUaLYKtzkoK661k6973vcfnqzJXGHKkeLcbuodgzAjD\nFULcr098H/xCuN4DP/fCPQQ3cLA9C/sGIbo4vCKexyC4Y1yaJwWf/8PXPPp4l3SVc3E4orvTagS6\nD2jC7AfI1tsQBM7WMiG6UelyblRSlJJ3yBZAWdacvR5jO5qyqPEDh7KsydOCT//qMctFynCvNTD0\nfIcgdMmykjByCSMXIQXPvz2nKhssW7G7321d01c5QejRX1fOyrJECkGvH+A4muc/XPDhR0POz2cs\nVyl1bbBtxdnZDNe1GY1XDHYCVquMxTJnNo+xLQvH1iRpQZoWuK6FMYbpLGG4E+HYmi++PqZuWpuE\nYb/VP3U7HmVZ04k8jk+nZEXJk/3eVl/2+mxKFDgE3u0fzCopmC5iQt99J3+tDV5fzqibZkuSbmIe\nZww6/h1S8+YJQ0nBZJWyEwUg4OmwS1nVrLKCySrm1492CVyHQdi22i7nK47HC4adH68YPATftu4l\nW9BmO25idnajgI0lYav3aCNhng16FHVFWpZErnOHbI2ThKPpDM+yeNyJ8O3bv5c/nJ9zEIZbl3iA\nSdqOtb+cTem5LklZMstSQttBIDhZLbhMYiLH5vl0wm92dlFSch634dKO1hRNTVqVZHVNz3X5enJF\nZDl8Oxsz9HwM8NXkirgsyeqKw8WMtC6ZFRlx1eq2AFxl8ciP2PfMF5GEAAAgAElEQVTCLXEZegEH\nXoByFLNVynE85697e0yKlEWR4yrNosz5NNrBVgqD4bvFFXlT0dDG/BzHc7rrvERDS9p8bWOAtC6J\nrPYY6tteS7jymApDx3JpjOGLxRmPvS47drBub8545HWI6wJXWczKhFWVbwX0nrK24vjKtGRpWsa3\n3OQ72uM4m+CstV4HTo+u5RNpj9JU2FJTmgpPORSmpKgrpuWSSF+ff+I6a9uerPenMBS004kHzgBX\nOYSqvVHQKApTclGOGVhv91GrTc3r/ISevn5daQoEgp7u0td9wCCQdHWX8+KMeT1lz37EE+cpl8U5\nO9bu1hYiNzmer7GLEE/69PUulSlZ1DNSsyJvUg6zL5FScmB9tPbiirCETdosH4z1gfZHIoW+pfOK\n6/Ed89Pr75G8NXfRmJqkvmBaf0WkbxuQthW1nyZqN6YCmjstx9os149bgEbivrdgXggf+HF94p+C\nXwjXe+DnXri3wfGcW4SoO4wI+wGOd3exta15+tkBUkpsx6K7E9E0DS+/OGZwcH2yWExWLMYrgnsI\n0X344Y+vGZ3NGOy3B28QOMSrjCTO8W9UX4wxvPzmjP7uW04Iov2hnh6OkVIQdX2axvDo6QCpJK9f\nXjHc63D4/JJOt7Va+PaPJ0Q9D8931lOFgtUq5fT1ZPueT54OSNM2vibPK/7xf/yAUpLhbsTl5ZJB\nP8BxLY5ej/jVrx7R6Xi4bttGzLKSDz8cUhYVi0XGZBJTlhXTWYxlW0Shi9KSNCtJ0pLnLy95tN/j\n/HJO4DtYWrIzCLEsRV03rTbGbp3uB/2APK8piroV9q+tHrpvmNTWdcNsmfL0oH8n8ufHELg2gWsT\nrTVW8zhjNFvRCVzqpkFJwfcnIwbR9VTh5oTx/emInu/iORa9oBX6ayUpq5rz6ZJ5nCGFwHOsbTUM\nIHQdqqYhfAcd1/FkjjFszVH/FEySlEXW6rMWWc40SYkcG+ctHlyb0GlX3x9DdBCGnK9WBNZ13EvH\nceg4DnFZcBnH1E1DTUPP9XC1ZugH9F2PcZryyaBPaDt8OxlTNw19t9Vc+ZaFoxS+1brI73ptBWxv\nnbn4u6uzNr5Hafb9EE9baCk4XM35bX/vOqx83bZ0lG6tGZzrqKKDfgdZwvPllKHj8y/jYz4M+7hK\nrzVfFpZU/N8vP+f/OPiUru0RlwX7XkRkOTiyzcJsXe7b9bOlYl5mFM11lQuga3t0rPazZ2XKvhNt\nK1MD2+eTYMioWLGqMvq2j6va732SzujbPq/T1gdsXiYUTY0nLfKmJVEbwqWlQtFOgYba2TrJH6ZX\nTIuYvhVyVSzwlc3AjniVXqCQdLTP98kpcZOxrBJ6OqQ0NbkpyOqCQDmUTUVS5/jK2bZIXWnjSJus\nzjkrLhna7dBR2VQcZSf01yTMGMPvVl/wV/6vbv0mtdBYot1GJRR5k7OsV9jCZlxNqE3F43WOolo7\n1s/rCbawcaXHIOoSxxlCSJb1nLReYkmbyhRgBL4K2bU+QEuNocGWG/sFgyUf/s3lJqY2BfYb1S8t\n7Ht1Vav6DFuED9o45GaCFGpdKbv9uvpGXuO7ojJjGvI7lbCGhDaCyEYI/WebTvxLTT//QrjeAz/3\nwv1UbA6i+WhJmVf3RvRUZc3LL4/ZOejdIlvQusZ7gfOjgvkNesOInUe97ecGgUOalrfI1ma7bvpn\nlUV1J/OvqhrKvOTZp/torZhPE/o74dYzzPNsHNfCD1201U5Z7h50WMxTNr3AqOOhLcXOMMRf66WE\ngK+/eE3TNJyfTinymg+eDWnqBs+zsddTic+etVMxL19c0u8HHB6NieOc4U7EYpHS6bh8/PEujw56\nOHZLmOw1iWuMwXEsHu23LvJ5UTHotc8vlm3A8HyRtFmLm0qTaA1PBz0fe004Nm2/sqyZzBMCz0ZK\ngeu0Xl2tNcW7nyg2JHQD19aE3rVDepKXPNnp3iIdmxNGd11NWyQZo0VMN3BJsoJFkvPBsMewG5Bk\nBUVV39Fsha7TtsY2nmKrBFurO3qrwLFxrXcTZz8E37a2bT7X0lhKcrGMyet665+1wSRJyKsa37Za\nC4JVGy90vlrdEcmnZYlvWXe2beB57AUBfc+j57bfe5KmeFY7jdhzXQLL5svRJb/qDyiaGiUErtZt\n5JSU23VYFTnfTSfs+W010NcWHdtBCYGnLb6fT/iw0wMDPcfbTjjaD7RH50VGJ/TI0pJnYRdLKT6J\nBuvQaUHZ1BzH83U8DHwcDejYDgPbpzaGnu3d2UcbbFzkH8K0SIjrYkvANlC0DvVFU/MqGVM2NU+9\nHpVpcKXFaTbjdTrjKBkhhaTBsKhSetb1/hgXSx65feK61ZKNyyWVaehbAV+tXvO30TMu8zlaSPo6\nXOviWl+ri2zKwAqJrPamol5PMJ4VE+qm5kV2Sqg8bGlxmJ0xsLrMyhX/tPySvo5wpUNjGk6LCx7b\n+9s2cjtN6VHTGqqqG0TgvLjAljZaaE6yU9I6ZcfeQUvNrrXHt+mXKBSBChECuqq/jtSxCAKHyWrB\nsp7Rt3bxVYQjPU7yl+zofSpKIt22wmzpbrdlVB3jyw5xM6E0Gba8/Zu0hHOHbClhPUioXHm/Z1bR\nLMmaCb7aRwsfKRzS5hx5Y1IxbY5RYpPX+G5QIkAJH2OqW58rhbd93/8I+IVwvQd+7oV7F2Rxxuhk\nQti/buEIIdC2vlcML5Wkv27NvYlW7PvuLSvxxgX9bQfb6GxGZ72Nr749o6kNfujS1A3T8ZKw423N\nUYUUaEuRpUVb8lZya5YaLzNWq4wsKfBDl8Us2VbHbEczGS3xAocsLzk/meH7Dp98dkBTG7Sl2d3r\nEMcpO8MI0xgWi5Tzkxle4OA4Gt9vJxXrusE0hjwv6Hbbac7TsxlSCF6+umJ/r435uRovSdOC4SDk\nh5eXrOKck7Mpj/a7OLZFWdXkRYkQgiyvtnYReV7Ri1wsW9275o0xW83WyeW81QpdtC3CwHNomnez\nOajqhvEixlJyG44Nrdj5q1fn9KM27mSyTPBde7sPN8TOsTSOViAErm0R3qigdgPvXoH8Ms25XMTb\nuJ9FmiMEdwKpF2l2h3BdLeOtQ/3bsMgyVnlxJ6pnsq5wbXIVb0IgMKZBSUlSFvzz8SlVU/M3+3t3\nyaD99oirWZZR1DWWUozTBEsqrPX0oRCCPT9ArclVbRqKuuY8jm9lKy6LgrN4yQdRe+OTr8nU88WU\nqyxhz/X53eictK4ZOj6VqcmqCt+6/wI0y1P6kc/3oxGNafC0tXVir41hVqSM84QPgh6R5fDF/AJP\n23Rtd2sJ8afCUxZKqFueXNDqp5ZV3k4sKoejbMojt8t3qwseuV0u8gW7TsieHdG3fCLLpW/524rT\n7xeHvEqu+NjfY14lnGQTVnVG0pSAwRKKfafXurGXSz5fHvLM28UWFoVpg62HdhdbWhgMl8W0NTxt\nKoSAvw0/wVPtZGikA6SQ2NLiM/8D9p0htalRQjG0B2ipeJEd0ddtRf+yGJE3OYHybxGuSEfbNuGk\nmpA1Gba0qU3FjjXEVwGWtDkrjnnqfEhpCoomRwuLMHAp0gZfhRjTcFEetxPh0ifQnbX7/PV5t2hS\nSlPS1/vttgsXW3g01AjeXsm5KL8mVLsPPn8fJBZaeLf0WVpEW/0WgC17SKFZVa9QwvtJxCs3L9Zi\n+b9MJNBfGr8QrvfAz71wN7ERxW9OoJsfktQSx7dvkSttqXvJ1gZ/znJqVdWUeYVUkjBsD7blPGE5\njW8ZnnZuEMLR+Zyo5+P6NsYY8qzEW1d+Xn3XCu6lFBR5hdK3JyVPjkZcnEyxLYsGw2wc8/y7C2aT\nJXleUWQlL364bE1XB0EbCfR6QlHVPH7Sx/UsdoZtnI+hFciHkcvp2QzLUmjdVrzOL+ZopUizkm+/\nO2d32EEIOL9c8Nu/fsTR8YR+z2c2j9kZdHh1eMX+boeyrPmrXx1sY4DkmlyFoUtRVEzmCVHgcHox\no98NODye3JpQ3MTMeK7FxWhB4NnYliYKXHodD9dqSdzx5Yz+O0yuNsYwX6VkRUXkt5Wn0WxF6Dl0\nA5eL6YrIa9uAnmMhtWwHFqZLjDGkecn5bMk8bVuIm6nHTQ7j1hl/lbBM863b/IZs1U2DpRXTOKXj\n3a5+jFcpcV6Q5OU2V7GqG1xLv5NxqlZ3xfBN0zBNM3o3PutsscTTrS5smmaAoeO6uFrTcR1Cx/nR\nz3s5nRLdeF0baSOZZimPwoiT5YKqbvgfp8d80uuT1zVxWRBYFq62uEpiHoURSkq+m45pjCGrKz7r\n7xBXJbMsw0BL2oTkw6iHwfCvV6f0HJd5kfMs6t0iW1dpzHmypGO7JOuJxL1eiFVJxnnCoiw4SRY4\nSnOetlWhv+61VRpPWzzxOhgD8zIjeEv16l0ghbxDtqDVhs3KhI7loqRkaAdUpuYka33LEPDMHdCx\nPP6wOGboRLjq+mI7sEKO0gmBdkjqHIPh77sfIYXgmTtkx46oTcNFMedDb4+j7IpfB08wNPjKZdfp\nbq0dGhoi5XOYX/Cx9whPOizqGFtopJBbkieF5LwYYQmNLS0saZHWGULA0GqNQxfVkrKp2LV3cKRN\nbWrOi0sC6VObeuuB1dEdPOURqIC4WrGs53R1j0CFSCSe8tHCojQFSR2TqgW6bG8WVvWc0/wlSbNk\nz36ClhbT+gohNhE9goYG1pYQcD2RuKxHINqWYVLPsORdgfxPJVvX76/eeOzuzZExhtQc48idn0S4\ntBj8hyVb8Avhei/83Au3QdM0XL0e0dmJePGHVxjYBlKbps3kexvB+ksiXmRcnU4pi4q9gy5JUmBZ\nCtu1SOOcsqixHc3lybRtBVqK/jC6Vc3ybgi6vcChKut2Yqrrb8mWMYbzkylKS548G9IfhixmCZ5v\n8/Gv9xEIhvutQ7wxhjDyuDhf0B+E7O51cF2Lqm44PZ6itOLqcsHOMCTPK774/IjhbutTkyQFFxdz\nLs4XdLs+g0GAVoowchgMQnaHEWfns9blfp6wSgp2hyH9XsAqznl80OPsYs7ZxRwh2mnPIHB4fTrh\nyUG/9QoLXfpdH7m2p5gvs+1U43yREqcFgWeTFxW+Z2NZm7vJttqntXonsgVtW7ETuFvR/GSRMF4k\n7HQC3HUFTilJd12pmsQJwgjOJkv6gctomdANXPa7YUuE1pWvi9mSxpgtAXMsjWdbt4hLXlYcjmbs\ndcM7ZAtaZ/nIdQhdmzgvWGU5/eDhttZNPDR5+P1ozK92d27dVNSNoVxnFfa8lrS2j2/ImXenonY4\nm2GM2Qr0baUQ689tjGGSpvRcl0maEDkuyzzHtTQf9/rYSrMqCi7iFVpJzuMlRd0w9NuJysiy0VIS\n2g4SgQDmec6+H7AqS76fjblMY5Kq5H9/8jFKSH7VvesQXpmmdWkXgsPljNNkya/3djmZzqmamt+P\nz/g47JM3NR+GPSypsJVa5zbWXGYx8zLF09a99hR/Dkgh6FguqyrHlprzvNVbWVJRmZpVnbNnR2RN\nSYNhWWVo0VYGl1XGqsqYVitsabFnRzzzhnwbn3Lg9FCizVeUCE6zMQdunz27S9oUTMp2WMG9EQ00\nKZc0GB7bO2uxuKI0FdZaF3YTrmxF+PN6Rah8VnWMEmpbuUqbnLheMbTbkPCGhqtyhCNtLssrRtXV\ndkLRlS5pnXJZXrCo5vT1AEtYCAS5yZjXM0LVwRYOB91dsrRa79+SJ84n9KzhVp/lyZBFNea0fEFP\n7SGRLOvxneDqm1YRSTPDEcFfTLd0H4QQuHL/T/b5AmhMhqH8D0XAfiFc74Gfe+E2EELQ2YkwxlAV\nFbtPd7bPJcuU1TQm6P60sds/FxzXojeMCDre9mATsiUGddWQp2WrlwocTNMwn7xdlK+1wnEtrLVm\nqa7bMXkhBKYxXJzO8HybIHSpqgakwLE1Qejy8ocLhBD4gcPufpez0ylh5FFVNYt5ymAnQmmJaVox\nvWVpVquMly8v+U//6WNc1+LLL17z+EmfL7484fHjLp7XftZGu3FyOiVNC4qyptPx8VyLTqe9YNd1\nQ16UWFoRBi6+72DfyE7sdX2qusFzLcqy5rtXl+wOQgRsdVyeaxGsyZfv2ixWraPzu0wnTuYJ//D7\n53x40EcgKKr6zr/zXZth9/rkG3oOeVlt/bCe7PfIs5JB5OHYFv3Qw3dsqrqhWQc9l1VNP2oJ4+W8\nrZBtdGG39qWSDMJ3PS7bFulmOvG/fvkDB93wwWnF+/DNxRW/PdjbfrfpWlvlWppvLkfMs6wVjtvt\n96lMW6Ur6hoJtwjcyWLRVijW4n8tJf/l+Q98NthBAGlVEdg2X1xdYEvFi/mU0LYpm4aT5YKnnS5D\n32+d1Ouaj7o9RmmCpy3SumJRtLmIZ/GSvKl4sZiS1zVKSn7d28GSkk+7A6QQvFhM0FIRvNFKVMCi\nKKhMQ8d2+Ky7QxA4vBxPyJua/7TzGF9bVE1NYLX2EBfpkkVZcJXFLKqcT8I+l1ncapK0TdnUW8H6\ntEjx1J9+sUvrkpN0xlWxYlokDO0QA3y9PCfSLjtOSNaUlKbiv1x+yX8e/oZZmVA1NY60uCqWuNrm\nt9FTutrn8+VrAu2Q1SU7dsR/n33D/ppgSaHo6Pa8MirnZE1JV/u3TE195eLKtT2Nab3EllVC1hR3\nIn7ypmBczlrzU2HhKZfK1CyqFbN6wa41oKs7NDTb6tjA6mNLm67usmPt4EmvNTgFaio8GVBSUZiC\naT3itDjBwiI3KVpoXuTf8lHvGf9w8d8IZEhFgUZzWhzRvRHJ40qfvtrDkg5ZvaKkIFAd4nqGLV1q\nU2HW29W+PnwnspU1CyqT/VnsIv4caIhb89P3tIH4n4lfCNd74OdeuDchhCDoBRx/e4qQ7aSi7Vo/\nG9mKl+mtIOo3D7aN75cxrV6rqmouXk8J1+L2H8NktGRytaS7bkc6roXtaPzAaXMRDVyczdC6dQh/\n8myHNCnYf9RDKUmWlXzw4RDXs+l2fQyGKGqJ4bZSczZvsxOVIIlzlquMx4/7/NVvHrVEt+NxcT7n\nm+/OsSzF+cWMwSBkf7/LcBBSruOGiqImSQsux0v2hhGvXo/od32c9foMByFKSqq6Js1KAt/m/GoO\nDazSHN+zuRqvKMqKZZyTFVXb9jQGva5qzZcp1toV/z7UTcOTnQ5l3TCax0yXCYMHKmHnkwVpXqKl\n4Gqe0FsHU281XDcrRHXD56/OsC1FnJeMFjGubfH96Zj9XvigU/xNxHnB5WJ1b6UL2AZob/Bs0H3Q\nRf8hNMbg29dC96tVQsd1KJtWQ/Wbvd2tBcTZcsHXlyMOohAQ5HVNeENk72pNx3HacOskoee6PI46\n1Ma0/ljr1z7rtvqhWZ7x2+EertJ8Mx79/+y92a4k93nt+Yt5ysg5c481k1UcTIqS2jZ0bB2f9tB9\nY6Av1LCAbvgB/A6GYT+CL3XZF0YDhhs4jW6g0bBh2ZYpWxYlUiJZrHHXnqecM+bx3xeRO2tv1q5i\nkdSxaLQWQHBXZmRkRGRkxMrvW99a1HUDazGNeOB5NE2TSRwxSxP6iwnEnfmUpMiZJQm/ubpJc5F5\nCBAV+ZktHB+NT3mt1VtW4UohGMUhWVlyGvnUdQNdVjBUlUjOqZUabcNmyxszSxNsVSfMM/aCKQ9m\nQ+40uhSiZC+YcsNtV6a2usWWP2GWRdhqVYE7jf0L4dR5WVKK8kI1aJyGDBL/QlYiQFxkbAcjQGKW\nR9xxVzhNPCylCrA+iCdLHy5FlnnDXUeTK4PUhmajSgqzLGTTai/3ORcFe9GIt+pXUWSZtlbjIB6R\nlAV+EdPRXH44vccbtSvYikFQJNTUZ8+3tMz44ewjrpp9nEXUD1QZiqfphJpqo8kqMjLfn/wbfaON\npVTWFxIStmKhSirzwuM972fUlTqmrBOWEcfpMa5SWe7ERcxusoOCii7rnKRHREXAbfs1UpGyrm9y\nkh2yblylprp01D71mo0cWThyjUkxpKY0yETCXvqQjrq6aOnJyIu2Xi5SFEnFkC3CcoYp1wjLKaXI\nL20jfhZS4ZOIOfrnrIhlwkeQ/UIF7rJk/ociW/ArwvWl8Ms+cM+D26lxujtcGpN6Ix/TMZicziiL\n8gIJgmoqcP/+0XNzE78oBodTanVrOUl42ckWhylpnLG/PWRlo02rV2f/yYDWJf5fQgjmkxDT0tnf\nHmI7BpOhh2Ub6IbKfBYiSaAsphTjKKXRctB0pWpj6iqP7h/jeRGdnkujabO3OybLch49OOFwb4zl\n6ERRimXplEVJGMWcnMzQdBVFUWi1bPK8IElyfD+u8hANDcfRsUydjfUWg6HHxiKj0rZ0bEtH1xXi\nJOP6lQ6aqrC9OyJJc8qiJIgS4jijKEoMQ10OAmRZjq6rtJvOUiDv1kwcW8cyNWZ+TLvhLFuKpxOf\nuR/TdC+/COmaSpRm5EXJWqf+XLJVFCUTryJZo3nI1f65vM3FZzicBfhximNWero4zZCoWqRZXum9\n6rZJ4yVzGlVFxtIvt2G4DEGSvhSRO49xFC2tIPKypG1X3kqKLGOq6rKC9XAwQiC41WlTMwxsTUNX\nFMZRuBClaxgLh3hL06gbVQUvzivdTJhl+Gm6zEP8ZDQgK0tcw2BvPmOSJKy7LjuzKTXdoGvbqIs8\nRU2p2nrvnxwRZCmvt3us1+oIIfhkMmScRNyfjrjVaDNOIlqmhSErNHWDPX++tKqYpTHTLOaNVp+k\nLKoWjqKSyAVSVv04C9KUvWCGkGDdctGkyhVfWVRkhknAJI1Zs1xMVUOXFVat+rK12NQtynOa0Uka\nLiOAzmAp2jNka5pFOIpOUGZct9vkVBOJsiSxG42pqQZJkVNS0tCqoQ1NUpaWElC1S/+3/X/mbfcK\nuqLyD+O76JKMIqmsmdWUXlykzPOYtuYuiJLJFauLqegoKPzc38JSDJxz1aujZIwua7xibfDe/B62\nbGApZ4ad0sISozo+kiThKjYN1UWTVRRJQZe1ZVvRlA1aap3D9Ahd1gjLiL7WIxUZSBJH6RF9vc9O\nvE1TaeEqdUqpxCvn1XVMUpgXcxRJwVHc6jhYEifeKXvpYwzJJBMJfW2DmtLgJNsFwCvGOIsWYpWx\nKDPMdulqV8hETCYSasrF+BshxCI8+vnfP1lS0eUammRzkv2cmrz6QtJVioxZ8RBT7lKySId4AeEq\nRUouPJQvWEFLyy0kjK90i/FXhOtL4Jd94J6HyrC0jmZolIUg8mNs10JCqojDp9owiiJTazpL366t\nD3dpdN0lUfqiqLccjvdGOAvj0csJV8Jk6HPrjfWloPM82dp/MiDLCjRNQZJlth8cc3o0JYtTag2L\n6ThAUarpyZ3HJ6xutJdVozwrUBSF0cBjurCR6K3UybKSOE7J0oLJyOfRg2NUXeHO6+voulJNPeoq\nk2nA4f4E3TTQNYXxOGA2i7h5c4UgSBiPgypDrxC0mjayUk2hbW8P6fWqKcW8qKbe9vfHDAYenYUj\nfb9bp9t2sW2DJMmJkgzLrG6WQZgSJzmr/QaObZDlJdN5SJxWy5xNE9YW/lxnqFkGzmKK8nnQVQVd\nU/Gj5LkVIi+MidIMP864tlKRLS9KCOKUbqtGGKZM/Cqq42wqUVdV7u8PuLnWYa3tYura8gYVZ/nS\nu2lvOF0K5s9jEkQY2ssRruOZx6OTEZvtFxtPfhppXnAwnVMKwcPBiL5bW1bqzshWKQTvbu9wrdVE\nV1WejCcgQU3XKURJlOcceR5d22Z/NqNuPg1SNlR1GceTFsVS92RpGh+fnuBoOptunUPPo6brVbi1\nBIMwQFeUJdkCKud4VcXRKyH+nj+nKEtW7BrX602MxaRmLkqeeBP8LKVvOZiKyiAKaBiV/YQiyTia\nvpwyXGvViaOMnw4PKSh5o9Vn3a4vKlYBqqwwigNKSfBOe4OWYXEc+2RluQixvogPpoeUogrCDosM\nRZY/s804TAMc1UBdEDxL1jGV6tx3VYOu4dLRK9NWL4to6w6aXHnMpWXOJAupKQY1RcdSDHbjEWtG\ni57e4IrdWX6mT6JTplnIitlgKzrBUDS6eh1ZkqqqnVZHlRSMRVsxKwssxUBfkL8Vo419LihbkiQ0\nSWU7PsBVqoiitt5Ak58S/0k2q84nWaUUJWEZcdXcRJd0xvmEttYiLCMUSaardZCReRJvMc6H+EVA\nR+vQ1brUlDqJSBCU9PRVysU0JEbGyJvyJHrAa87b6LKJLhtosl5Vu0hpKJ0LAn9V0pYES0JCRn7G\ntDQRAWE5wZRd4tIjKqcYzwmzLsnJRUxBgiE/3ztRkhRMuQtUROtFZAtAkFPy4oif5yErDwEFRXpW\ny/hVwq8I15fAL/vAvQxkRV4K6D9tBTE+mqKZGnsPjrAcY9niq3dqvzCRvSRVQdhnxqefPmampeO2\nbLbvH9FeVNhCP154SsmUZYk/j7EcnThMqdVNNq51sGomo9M5nX6dTr+Oaen0F63CM5SlYHQ6p9Vy\n8OYh/+///T5lUXLjlRXufXxAt+uyeaXDo4dHCCG4crXNzs6Y2SzEMDVGI59Wu4bnRQvzUcF0FtJs\nOqRpQa/nsrraQFGkhYt8DdPU2NhooWkqcZwxHPnU3apFGkYZXhDTbjlL0hRGKYahMZ2HKIuIlVbD\nXorkz46hIsu0Gw7beyO29oZYpo4fJjhWNcn5YGfA1AtpufYLCVc1hejxww+3ee3ayqXLlELg2hat\nmsXUj7AMrRKEKzKNukUYptiGjhclS32WBLRqFllREKeVqHd/OENVZIIkrUTsi9buZURvZzip9FOf\nMiP95PAUR9cvRA+Nw4hr3eYzNhKfhTQvWKu7i8lDHVOtqolhmvH9R0+41a0u1qoi4+g6tqbh6BoN\n08RLE1qWRZhl9GwbXamyGk1V5ZPBgKZpPg2clmWSoiKZuqIQ5Rl3Or3KawvBge/RtmwMVeHY9zkJ\nAroLny8BzJKYe5MhIDGMQ3q2syRQaVGw403JyspyAgF13bhxM/oAACAASURBVMDVjIURamVyaSgK\nfpZyHHl4Wbo0P3Ucg9E8ICkLXm/1+bvDx1xxGmiygqkotHWLvzt6zKtuF1vVkZBo6Sb6whj1/nxA\nTTWWVa6aaiz9uVRZwThnSjrLYkpRosmfvpYITmMfS9EwFuutROoyhlx9JkGekJYFuSgQwH48xZQ1\nVEmhWLjONzSHR8EJQgjaukNUpnh5hKUYeHnEXjSklEpqsomjmtRUk6TMiYuEvWSALEn4RYwqKXhF\nyHEyoak5y0raWRXrPCRJoq01+Mh/hKHoF7RdSZEgIaErT0X2qUgxZZNRPqajtVAlFVM2llWwXOQk\nZUpNdTEXLb6G2kAgUCQZW7ZJyoT70Yc4co1SjZlHc1paDyFK/HKOqzQWGkkZQ7aeEfgfp1vUlNZi\n+2WOs8cIUSxjfKCaVlQlg5ICTTLRJGtZ7TrN7pEKHwUdRdKQJQVTbi2MT39x5EaS1GeNTUXMy2Ql\nyjgo0tOA668qfkW4vgR+2QfuyyJNUgxLp7XSQNMr48X9h8dfqLXoz8KlGP48zsgWPHuyRUHC4GhK\no11bki2AKExBQJrkJHGG7RroukYUpORZgaopODWLwEto9+pomvqM71RZCh7fOwQEK+stBqdzbNug\n1XGpuRZlKWi0HIqy4GB3jBDQ6tS4dr1LHGUUpWA6Cen36/zw3fscH89I0oLX7qzTbNm4rkVRlHzw\nsx1MU+fKZnsZXu37CYahoWkKbs1k68mAlX4DTZORZYnauTbbweGU3YMxtqGRZAVFXkX7nIcsy2ia\nwt1HR6z167g1k0bNxNSfVrvqjkm/7b6QbAHMgxhNVXjn9ubyMS+sxOKyLLF7MqHlVpE+pRDEWYZt\n6AsneWX5GcZZzuFwxnAe0K07/PDeNlleULMMVEVm5se4loGhqbRrNpqqMI9iGpf4XwHULRPbuDjF\nCFU8z/5kjq1rS4F/wzI/N9mCcy0hWcJQn/p7aYrCldZTg1dTq0iWKsvVcsCTyRRNro5Jc1HVsjSN\ntCjwksqO4GyaD6gIzGIbR2G4JG22qrFZb5AWBUGWcb3RZMOt42cph/68IqayQlaWDOOQN9t9JmlM\nVhS8e7iDrqh0TYuabpAWOUlZUNeqv6dpjKOeTU2qlEKwYtVomU+PueMY/Phgjxtui7wsK+IoSuqa\nwcP5iJ1gykNviCJJ7AQTgjzjOPToGA5RmXEaB6zb7nI/DUVlnsX4eYqrGUuyBZCUVUh4kKccxx41\n1SAtc7b8EcPU5yTxaGoWhqKyG445jGf4RUJLtxmkPn3DRUjgqAaOqleGrAhOkzmyJDHNQmRJoqFZ\n/Gy2S03VmeUxq2aDnWjIbWeNDbPDPX8PWzEwFZ2CgkKIysE9D1EkmaTMsBWDvtFEk1WSsrr+xGV6\noXp1HqtG9wLZKkXJ/XALW7FwFHvRohNYytmxlzDkp95tWZnxSXiPhtpgzVhDlmQs2eQ4O8CUbXKR\nMc0nyJKCl89YUzeZFEMaTp1GsUJb6+GodZIyYpif0FSrQamw8EhEjH5On2XKzlLTBWBLLqqkX1rl\nKsnQZOsCcbHlDqbcRJWf/hjKRID6Aud6gEIkpGKK+pyKVSlySrLnTioKkROXO2hy59Lnz+OsO/JV\nx1eZcH0hqlqWJX/2Z3/Gd7/7Xf74j/+YnZ2dC8///d//Pd/5znf47ne/y1//9V+/1Gv+I0EIQVmU\nPP5g+zOXbXTrFypZkiTRXX+q10mTDG8SvNT75llBufBeelkUeYEoxTOP15s2B9tDRicz+utNmu0a\nhqnRXamj6gqzcbVNm9e76LpKnhV8/P4O6aKyApXdwdpme7l/d97Y4OrNLidHU44PJ5RlWfk0aSrN\nTo3f+NYtegvD1zTJ6ffrvP21q1iWTqNpo6gVsVE1mSjKyPOC/f0xpqVhWzoHhxPuPzxiNo+Ik+zC\nMb16pbpguDWLRt1me29U2VgMZmysN7lza4XVlQamoeJHKX4Qs3s4Zv9owmDkLdf1xitrzLwY09BQ\nVWWp3fr5/X0+fHDwUse85dq0XBs/TJaPhXFGXlSO2O26vSQeqiLTeU7moaWr3Nns8ea1VWRZ4nq/\nzZPjKXlWkmQFpqHRrFmM/RA/rt5r4kdLn7hPQ1erFpkQYqkLOsONXutSvdbHhyfPLPsiHM7nnPr+\npc8FScqJVz13NPeWfmdQfYY3Wk00RaZfq8TCkyhiEoZsTSbc7nYRSJxtSZCm7M2r1pKfpgRZhiJJ\nDMIQS9OwNY111+VqvUG2OO62qtEyLVqLKKCkyPlP65X4+8F4xN3xAFs16Fs2HcvhyPf4/v4TylJg\nqhpennGl1iDMc2Zpdby3vAk7/nS5H1lR8OPjfQ5DH1mSeOyNsVSNmqrzg5NtdFnlltvhv6zcoG1Y\nNDULS1XxixRJgofzIdec5gVSBeCoOtYlxKShmViKRl0z0SSZoEj4YLqPreq81djgZq2LqxrMsxhT\n0agpOtMsBGDTapGUOWGeEhcZmSgwZBVL0WlrNrvhCGdBYKIiZV5E6JJKQzN5f/4ER9bZjYaVCF9W\nWDfb3PV32QpPcNTK0qGrutyy17AXMT6qpDDPA3aiEw7iAT/zHj2zT0II0rL6fo+y6fJvWZLp692l\nwem88PgouM/jaLsaClIsSkr2kwMyUQ27SELCVmzG6ZioiEhETElJXEZEZUhdqWNIJsfpAY+T+4yy\nUxzVYZAeMs2HALS0HleMm+wmD4nLEF02MWWbk3SHQlTXw7P/n0GVjWec5gEsuY4lP9umv4zMxGJK\nKYrFMbn8ui+hIPOUpJUiJSoPl/8uCMnEbLmOqNz91Puq2Mqrl677V/jF4wtVuP72b/+WR48e8b3v\nfY+bN2/yl3/5l/zhH/4hUAUT/8mf/Al/9Vd/xR/90R/xF3/xF/ze7/0e77777nNf8yL8spkqQOTH\nhPMQc+Gj9OC9x/Q2OzS67udyhT/DWVsRoFjE6Zj2Z+fembbxmZOFjmMwn0VLrZhmqNiueel2tnou\nzc7FkvVsEnC4U11owiClvgjALkuxDKw+Q+DHfPDeE/Jc0Fup480j/q+/eY/5JGD9aodXbq/x+OEx\n3X69Er3XTKaTECFA11WmY5+trQHDwRzb1vmd33mN+TwiDCtBvSzLzOchrmuxuzvCdau8tfHEp9+r\nM51VbUhgWXWSJInDwwlBmDCdR+zsDQnDlNV+gyd7I/KsoNepkWUlpqHh+TGjWYCqnJmkSkRJxnQe\n0nTt5bHxoxTXMdA0BU1VeLg7IEnzymLCqMxwhQAhWGrKjkZzGk5VqQmilLwosU19aT8BcDicoanq\nBeuIMMvwvJj90ZyO65At1tdwTG6utkmLnH+9v1u1H+0qxFkIqsxFu3q/oiwZeyHGJQam4yDCi5KX\nylrs1ZyX8uQ6g6FWk3qXWUlMwoiiLFFlme3plPuDAQ3LxNY0Dmbzqop4zgV+niScBgFN01oGV5+5\nxOtK5ah+bzQkTFNyIUiKgrZlceDP6Vh2ZTibxPyfj+5xo1EZlj6ajHC0akrvvZND8qIkyFLe6a/R\nMExuNlocBB4dy2bXm7Fec/HSlLpuEBd5RXwW4nZFlhnFFXk5DD26pk0p4GEwoq2YrNv1qoVo2Fiq\nhiHLxGUVEHx3NuBbvWvIkkQJjNOIK3aDrulQ102GcYAqyU9bqJLMdjjB1cxnyBgsbGs0E1PRyIXg\nqtOq2nl5jKVonCQeZVkwSHxuuysYC/J2GM8YpwGmopGWOcM0oK6aTPOQnahquUZlSlAkvFW/UlWC\nJRUZib14hAA6ust1q09cJEzTkGE259fcawyzGZFIOU4mFGXBpllFd2WioKE6zIuA9U9VsQBSkTHK\nZriqQynKhd6r2mdbtjAXAntTNmiqDbpam1kxJyxibNniUfQYqIKtDVnHVV0m+ZiojJAlhRV1FU3R\nMBYVqlk5BiFQZIXX7LcRekocZ4RlQENtVYosSQYkdElHkw1kScGSayhS1bWYFqfP+HB9WRhyHUmS\nCYshg/xn1JUr5CIiFR7qYnJQkuQLDvNV5Ie81HIpkoEqOctzpHrsq2E58d8KX+UK1xdyRPvJT37C\nt7/9bQDeeecdPvroo+Vzjx8/5urVqzQaFYv/5je/yY9//GM++OCD577mqw5FkVHP3STv/Por1eOf\nQ4MVBwnTwZzV6886C/uzkMYlE4NfBGVZsvvohJuvrwOLiKHnbOfJ/pjOSgPdeLpvjZaztIAI5hHz\naUia5tSbNoPjGfWGRZZVRp2WbfCt//zasjLl1i3efOsKiiLT7lT7c3uxHY2mze72kJW1BkVRMPci\nXMfg9TfWybKCw8MJUZRx9WqHWs3EWJCYTsel23VRFZn1RWXw8GhS+X+dQ54Xy/2c+zGb662FOamF\noio83hmw1mvQqFeeYGlWMJtHjMY+iiYTJ1llXqtIqIpS+Y+VJbJc/X3rSrcKjR7OsVd1rq21LhCn\n8SykEALb1Jj7Meu9BtdWn04prbRd9k+nhHFKGKd0m5W2o+laz5CTKMnwooTNboMwqbITSyGoWQZC\nCPaGM1bbdR4dDXl8NOQPf/0NFEXmcDwHBCtNl6wo+en2AV+7usY8SgiSlHeur3My87F1jc5LenN9\n3hZCVpTPDaxWFQVLVRmGEVdcl9ypYWsa8zhmazzm1U6HB/6Qq80G5mJq8Xa3S5CmeElJ17LOvU9B\nVhbUDYOGYaJIEke+x4Zbp6brnAY+Hw8HNA2T31jbZBLH6IrKjUaramMqKj3LpmGYREXGPE2o69VF\n8narQ5RnrNVcvDQhFgV/t7/FhlOvwq6ReTgb8Wa7z5vtfpWfqBkM4oCWYfH13jrxPGGaxvzodJ+2\nafLN7gZenrFmuliqyv90tTqXT2KfFavGm40+uqIsydRuOOWa06Jzzjn+tvvstePD2RFv1FcukLDr\nTnXeDWKPaRrhZQmv11fZDkasWQ00SWGaBmSiZM2o09VrzLKInuHy/mxnEWSd0dNcojLlmtVhmHr0\n9co+IisLxrnPptlmw2xjLNpVBYK6bldtRVEyzXwaao2uVudheMA1e4VJ5rGyCKO+ZW9cep4Yss66\nUe1rTb14nmYi5yg55Zq5sVwWoK48vX7qks6mscF+ckBZ5hwlx6wbGzyJnqBJKpGIsIXFvJzQUFqo\nqNxx3iIpIlQ0FEnQUNr0tOp8uBe+zy3rTRIR0ZCffqeVxX5LkkRXeyofOI/T7DE99eaXasXZShdL\nPhPkqyhc/H6l5RxBgSG3KruKUmVefEJdfX25TC58FEw06eWGYITIgM/OWM3LfZA0FPr/IdqNv2x8\nIcLl+z612lMxoKIo5HmOqqr4vo/rPj35HcfB9/0XvuZFaLXs5xKG/0goOw79lfozYdZCCLrd2qUh\n189DGmfEUXohquc8fvM/37nw74cf7bN6pY37Ka+wmq1j2lXLYDYJ0PTKX+sMtqlyfDhFV2QefXTA\nb//+6yiKwvB0zmwacvPVlcrAMC84OpigaiqvvblBnhdMxz6Oo7O+0a4sDeKM06MpH/xkm9ff3Kh+\n2QtYW2uSJBmjoc8//cNd/uB/fJvT0zmvvFKt2/Niej2XXs9lb39Mp+3w6isreH5Cx1CrQG1d5ZP7\nR9x5dZV/fW+LtbUGt2722T0YI2syx4MZQZByZaNNr+cuzVw7nRoTP+S3fv2VZ8xJJ7OQVsNmMPbZ\nP5nwyrUePddlfa156THv9VxmflWFuXG1e+kyuqXimDofPj6i06ld6uWV5QV2XrDWqS9F7MdjD8uo\nKlVCQKttczrxWOnUaLkWKyuLXE5dwgsTGk0by9D4X9e/CVQVt7P9cxtW5Sn2EiauL4uyFPxkZ583\nN1bJNEGnZj+j//LihK4BSV7wzSubZEXB3aNTsGSypGBjpcHNtS7/8mQXw9VRZBlbM3Atk+k04etX\nnt7QjuYeh7OAr2+s4aUpx57Hj/b2WKvXWelXVYYNIXjj2ippUUW8zJOEohQ8OR3x+7duAfD7jVef\nCdfen88Is4yNTh0rM0CqTFlPt0O+cX2DvlNdw36nW+M0DFhxavRwuT8e4NRNAnLKvORUCni91aeT\nOWy6dZpNm3daFu8PjrhT79K1qu/u/9C7wzSJMBUVU32q97lj9rEUnZ59+RTbGX6355IWBXvBhFv1\ni+ddGcHBaM5vr1xftA1zNuotHFUnjQsMZNp2jUHssak2cTWL3+28gaGoTNOQ/7rzE9q6zUCd07Bt\n/mn+Cb/Vv4OhqHyzfQP3UyHZ47lH23KoqSaWofJ15xajZE7LdPifr/wWhSip5wau9izZP9NjfVqM\nfhnWRQtJkpimcwSClv6URMwzn28036Cpu3x8MiQtU9atVZp1EyYx6+51ZtmEVbNLWNhYisU1ZRWA\nYRLTNRqMkiGxM6Jv31w425fUGxod+Rqm8vk8qVrlm6jy8ydKS1GwE3zANeedCxqwz4Oi1Ckp0RYt\nzChPqJUb1PSn9+Eg8zAUE/WSNudlCLMn6HIHVfmsQkBF6sLkZ5j6HeSvSPWs1/vFFDB+0fhChKtW\nqxEET3VHZVkuidOnnwuCANd1X/iaF2EyCb/IJn7l4E0CkjChu9G+fAE/ufzxS5BEafVf/mxfv9dz\nGQw8sjSvLBPykuZKg09+vs/1O089XYq8RFFl/DBleDJDUWTsmkmwKMUWRUkYJARBgixXYdu72yNq\ndQskqYroOZiQLSpLWV4ymcyJohRJwNpGi9PTOUUh8LyY48MJN271ee2NDXRDo4bE3t6IvCiZTkNq\nNYN3vnGdf/7BfTRdZWd7SL1hUpQCz4/pdV2mk5Dx2Gd9rWqX7OyOMDSlqoK1awwGHo+3TlhfayLK\nKqJntV9nPAnotmtYhsZg4DGZBTx8csJvvHOT12+u8uDRMe2Gs2xLBlHCva0TvvnmVaI4Q5VkRiOf\nNM6fOd7ncTiYIcsyvWZ6qbDejxJSK6fnOoxGF3VO4cLzKoxTFEMl9BO6DYfRvPLiCpOMW6ttdE0l\nzXJ6toPkVJ/lcFit6ydbB7yx2cefx/jEL30+vQiTIMI1jRcSNCEEaiYxm4RossxsEj2zzMFsTssy\nAYntgxGOriPikp8c7VGUgjXX5aeP9unoFtNxyMPxiNe6XbbGAe8fHUEsaFvVpF6cpvQUi7s7JwRJ\ngqLI/MHmLR6Mh9zdPkaWJRxNR5Kq9mwpBB3L5tibYxUKg8FTzV5I9b0rheDAn1fZis0O4Szhf7//\nc37vyk1c3eC6XkcKBYPQWy5/d3JK5LZwNJ1aofH3h4/577obvH51Ff1wRDRLeHw84N7RCe51nZqm\nc1trI/ySdw+eoCkyN2rV9SAoEsIixVF15lmCIknsx1Myp9Iv6QvLhks/ozTiMJphRSrb4ZhXa1V1\nKC5SbkkdoknCv4y3cGSdYeqhWQ3qVDfGk2BOUubYus6PvC0k4Jrd4d8mW/SVOr9mbDBNI1blJj2r\nznQcABJNzSaWq22b5SGGpNJWXN6fb/G6c4Wh51VtR39EYcC7e3f5T803KUTJgRijSxqZqDRdddXh\nx/O7XDfX6emX/6C5DPlC3zSQnn6eWZkhEGSyx2Z5nb14D5M6O9EJSm5z339CV+8yD1N24j0ykfKK\ndYekjNmKH3DDFDTbJlbQZWu+h1/OaEhrTMYRlizj4ZGUEZlIqSkva5ny/O9iITJE0WQUPXufi8sJ\nuYioKesv+T5nx8GgECUzsY++1Iu5hOTnljn/PrsoOJ8SzncJLqwTkuI+BVNs5Tcvee+bBGRAdslz\n/744uwf+srfhMnyhn7nf+MY3+Kd/+icAPvjgA27fvr187tatW+zs7DCdTknTlPfee4+vf/3rL3zN\n/x/g1K1fmOmpYenU209/+ZZFycOf7y3/LYRg5+ExgRczWwjCb7y2duGCvbd1SprkFHmJZRvUm05l\n03A6J01zirzg5GDC6mab3mqDtc0Wqq6w+2RQeXSlBeNRwNaDEyZDH0WV6XRdRFlyfDLlo5/tceVq\n5TAfBDE1t9IWCQGBn2A7BpubLUxTQ5FlwjAl8BN+7a1NXnttHT+IOTiYomsqw+Gcj+8eoOsKH3yw\nSximbO8McSydKMkJgoTv/9M9BiOPr791jV7HpdWweeVGnywr2FxtEcc5H35yQBAmFIXg6kZ1cRlP\nw6o9KYHnx2ztDnEsg3deryoqlqnhOpVP12eh03BQZInR7OIQhBdWFhzDWcCDvcFSnO5HCcfjOZ/s\nnOCFCVle4Nom69065kLnZ+kaq02X16/0URSZNMt5cDDgYDQjSjN+eG+HNM95cjrmnetreFFMlFak\n+WTqESbV36UQ7I2mzKPPR8QqZ/MXi+YlSaIQgiSrCOmT0YQou3jh7dccilJUxyeMOJjP6To2RVlN\nJG5PptzpdnF0DUvXeKPXI8wy2pbF71y/zs5kQrhYZ03X2Z5OuDs4xdQ0hmHIaeCzPZ0yjiMOfY/3\njvd5Mp3QMi06VlVR2XTr3G49vamchD773oy8rHRcsyQGAX6WkhYF//3GDXqWg6VqvNp8Wj0qRIks\nSVx3W+iKwrY3ZRgHKEjsh3OOA4+kyJEk+PbaDf6XV75GTdOJ8oyfj4/48XAfR9VoqCb7wYwPJ0eM\nk5DTOGCcRCAE2/6EO/UehqJyGM0X2q/L0dIt3mysLiwONJKiWtZWdFq6zV40YdVoUNOsZ7Sch/FT\nUfrr7hq3nD6lEHhFzJreZJKG/HS2zaPgBF1WaWg2bc1BPyfgl5EqXxVgVW+SigxXtfnh7B6WYnCS\nTfh2861FYiUgKg+tWeYv9Vu/Xn/jAtnKypx5/uzwxSz3yBbbq0rq0vqhFCVHyTGjfEIqMgpRUIqS\nK+ZVGmqDqAhRJJUNY4NRNmCUDTGVyk0+L3O2ogfM8iGlKHkw/5hRdspB+oSm3MFVmpjnpgAVSUX7\nBbi5CyEIyiGu2r/weCYi5sU+ptx6LtkSoqQUl58ThYhJyykv0+ArREQp4peaUtTl21jyb1y6H1UL\n8lf4LHwh0fzNmzf5wQ9+wPe+9z1+8IMf8Od//ue8++67fPDBB7z99ttsbGzwp3/6p/zN3/wN3/nO\nd/jWt7516Wva7edUe87hly1++0VBkqWlkP3Jx3u0+p/PUPKz1t1ZqdbnOAaD4xmiFLT6dexaRXT8\neYSmVz35OKysH2RZYj4NaHXdZXurLEo0XUXTVfa3h9QbNrq5CBrOSwxTpdVxkYBm20FVZTwvptl0\nmIx9DnZGvPrGOo2mxXQSEoUJ9+8dcrQ/5uYrK0ynIUGQYOgK7Y6L78WYlso/fv9jXNfi4GDCxmaL\nbrfO1752jckk5Ph4imHoXLvaISsKWi0Ht2ZimhqyLOHWTLqdGqoi86P3tjANjZXF8bVMndHEp9Ww\n6XVqeH7CSq9qwela5dlkWTpHpzMURcE0VWxTRwKGk4C5H1N3TDRV+cw2nKrIOJaOszAqPRzMOBrN\nqyqja3Ey9qg7lfA/yws+3DrECxO+dmt9YfVQtRRc1yRPq1/vszAmTnMcU8ePErZPJxVxFtCpOzRt\nC0mCJM9pOhYH4zn7ozmtmlVVzNJs6bs1mPtIkvxSYvkzOIb+UkapqiRz6vu0bIuaoWN8qnqdFSXz\nJOFg5rFaqww3k6KgYZhcbTXpOQ62rmFpGtuTCS3LomlZqLLMvx0cYKoqV5tPb8iyJNFzHNKiYJrE\nFCW8vbKKplRu8k3DYsOtP7PtaVGwPZ/SNi0GoU+QZDyaj+jbNcZxhK4o9CyHj0an/OBwm5Zh8sSb\nsFF7+mNp25uiyTK1hUXDcejhZylZWTBLE17r9/HDhINgziyJSMqKoM3SBBmJURIyzxJWbJewyOib\nDpZaVeRqmsHHsxPiIuNardI6uaqOcU7LdRr7GLLKNIvQZYWdcIwuq0gSHEQz6pp5gRDthGOu2m16\nhkOQp1jKU2uNjl7DPRe9o0gysyyiqzok5GRlzo8nT2hqDqnIsRR9SZx+OH2AX8Q4srF0qT9KxqwZ\nbWRJpqc3kJC4Za0t/MM0DFljkvkkeUopV8aoaZkh4EI7sRAFqcgxZYNhNkFCRpNV0jJjlE9wlIte\nWJIkocoqpShwZJtxPsGSTRRJ5SDdZzvepqY4SBJMsglXzGu4iktaxmRkyJLMK9brJCJmvbFGHgvW\njWtoksa8GGPKNsP8EEepI0sK6sLuoRA5sQjQpJf/Tp3f5pIS7VNtOBkVCWUZfH0ZMuGRiCn6Jaao\nghKQzlW3XgyVzkt5a52fpBSiJCl/BpKKREEhTlCk1mes4d8HX2XRvCSeN0P+FcEvuzT4eVGW5YVf\nkXGQYH7q4KdxtiQxL8L4ZEaz6y6J2svgfDl1eDSlLAW1hsVsHLCy0SIKU06PptRcg95a9QWJwoQo\nSGme0xUJIXh495Dbb14ubH18/4hbd9aYz0JsS0fVVYancz58f5fX3lxjOPC5cr2LN4+YzyO6vTph\nENPpVh5de7tD+isNoijDMFR+8t5jhJC4crVNr9egVjM4PJxycDBG0xWuXOngzSPGk4BSCH79mzfJ\nsoIoTiviJUl8ePeAtZUGnbaDtqgiRXHGcOyx2m+gKjJhlGIaGkenMyRJYrVf3ZS//6/3uXmly7VF\n5csLEu4/OeHOjT7up6JzDgczHFOn8Zx4nzMcDaecjAM6TYe8KLB0lbpTESRZqjy5zkxAz6PTqT3T\ncoRKK/XDT7a5tdbBMTR0XatK1JJEVhSXitX3RlOudJrsDCdYmkaYpphaVTWDSt91MvfYaF1+cS6F\neOkpxTQvnht0fTz3GAQBLctiEsXc7nb44OiIjmNzrdlcutALIfjo5JTX+z1UWWZnOmUUhvxav7/U\nhX14esLrnS6DKCRMM5KiYM2tEWc5758c8Uq7ze12VZHKy5JRFHLoe7zRrSpGoyjkk/GA3964xifj\nAbcabY4Cj2FYTUTealY/BH90vM/b3RWSouA49LhZb+FnKfvBnLc7q8t9++fjba7YTeIyZ8Ou4+kZ\naziEecZ/3fmYP1h/hUEcsmI5PPRG1FUDJIl1y8VQT2RhtQAAIABJREFUVO7PB1x32qiyzDSL2LQb\n3JudcrveQ5Yk/p/De/x27waZKIiLDAmJnlFjmAZ09aryosoKWVmQi3LpQj/LIkxF4zCasmm10GSF\nQeLjqgY/Hu/Q1E3eajwr9v7EO+RRcMLt2gr/NtkiESnX7D6v2WtoikpWZrS1WuUpmIzp6nUMWcVW\nDPKy5CQdsxWd8JZzjZZWY5jPsWWDmvr0+/IkPKSjNahrDuNsjiapuOrlgxxxmaBJ6tIOIipiTNl4\npsVaiIKH4RbXzE0sxaIQBbvxHhv6Og+iB2Qi4bZ1h5P8hK7arUxXkThOD7ll3SYpY/aTbXJzThYp\nvGa9jSppzIsJx8kOpuzQ09cwJHtJ9obZPgUFK9q1F301PhdKUTArdmkoV5kUD+mor33pdQpRLklV\ntog1UqU6QXEPXVpBkz8fWRKiIlmq/LLtzn8/fJVbir8yPv0SKMuSYBaim9WNbnQ04eDhMaZjLAnV\nwaOLJqfeJMCwtJeyk4jDtBK1f474n/Ps3nZNZEUmzwq6qw3EYp1O3aTRqpHnVZXr0ccHmLaGN4uo\n1U0e3zukVrdQZAm7dpFsJHHGwc6IG69WNxzD1Dg6mFTBx6ZKt1+n3nRwHJ27Hx1w5VqH/mqDve0h\ns2nAjVdWmIwrd/npJERVZUZDj8DP+K1v31lMKFaVuIODCbdvr3H1SgfbNph7EaKEV26toOsqP/1g\nh739ETXHIAgS2i0Hw1A5Pp0xHPtLkXkYJTx4fIxAotdx8YKqrVZzDIxF1a/dsAmjlLpb6YQMXWW9\n31jmK144xpaBudjG8SzEWnzWo2kVKC1JEo/3h9QsA7dmstJyORl7XFttoSoKw1mAF8a4tnnB3V2I\nKiNxEkbEcYahqRQL37WzX5eb3eZi4ECwN5hWLbkFIfxk/5R+46LI+izix1BVGrZJy7EvVrgkkOBS\nD64ozdgdT2k7LzfR+KJKWCEETcukaVm0bYu0LHg4HHG12WDoh7QsszI4TVNkWaK1mEjUFYUrjcay\n+gdwOPdYc11+fHjAjVYL19BxNJ29eUWih2HArVab7dmEPW8OojJaVWSJHx3to8sKkyjES1MsVeM0\nDNjzp6zVXMI8ZWUhVB9HEaos0bWchaO9yv/x5C7fXr2GplSO/pIkcbXWpBAlQghOEp9+o4ZRKER5\nTs90OAw9SlEyiAO6psOdZg8vS9AlZZEFKeHqOraqE+c5cZlz1WkuCcWrbhdDUSuPLFnj+6ePeaOx\nQk01lpmDAGGeLXVgAGGRoi1idU4Sj5Zuk5QZs7zKWVy3mhjnIoL8PGGWRVyzu6waDUoEp+mcV+xV\nFGR6houp6MzziFWzyV4ywpFNRpnHqtFkKzpBReIfRh9SUw1yBOO8yinsnRO2l6JknHskIsVVbRzF\nWkb/XAZVUi9UszRZZZpXgvlUZMtcyqiMCYoAQzEwZZN5MScofcIypK/1sGUHS7WIioi60mCcj4iL\nsLJcUVtsR48YZwN+a+0/M/cDIhFQkxvkIsOSHVaMK0SFhyrrS4G7rdSpKS+vO3sZSJKMtZg4tKQO\nmfAJylOMl6hYZcKjJFvaQmSlR1aOicURsqQhoZCIA4TI0eSqAilJynPF7rmYXBpeLUiRpK9mpuJX\nucL1K8L1JVBkBfOhj7PwqlJ1lfZq64Kn1qd1W/ORx/7D4+eL58/BcoyXIltZmrN975B2v/7Myabp\n6nICMk1y/FlIu1dHkiW2HxzT7tXprTVxXAu3YXG0N2Z36xTL1knibGkRcQZVVdBNFU1Tlzcct26h\nGxrDU49W22Fna0CzZdNsO5WAuWbSW6mzebWLEIKDvTG+nyLLUHMtfv7BLp2eSxQllKWoomnMyhYi\nilJc1+TgYEKcZJimzmQa0GrarK01uXGtR80xcWsmtqXjeTFrq026bZeiKEmznHbTwbYMLFPDNDTS\nLKdeM7FMHSFg93CMIitYpo5lPHWqTrOcIEqfIV3nS+tTP8JdfN5BlGKbOlMvQtcUOs0apq6RFwX9\nVuXZlhclYZxyNPZoOBYClhWuWRDz08f7fOutGxRZRbROpz6FKJdRPXd3T+jUHf757jZfv7lBwzE5\nmfl4UcKt1c6lwuqJH+JaJjvDKbahXSBGkiQ9N6BaU5SXJltn54IQgrvHA/ruxfPGVFUMVWUSRoRZ\nTse2ud5uUQhB3TS5ezrgx3sHvLW6uiRbZ9sgSRJb4/EyB7FjWby7t7c0Sp1GEWGWLcxPZVqmRd9x\nuDca8o3VdXJR0rVtZnHCke8hSWAoGn6eUAqJa/UGR4HPJIn4em8ddWEO2zJNaprBPK0sHrqWzTvd\ntWU1rjI8lfDzFD9LWLNcxknEjU6b07nH/dmApm7StWpERc48S9CVKgvSUrSq2qWb9MynUTeWqjFJ\nI+raszfAsxDwO26v8puLFoL3BcEyFPVCqLUpV95armYyTgMUSSItC1zNZNVsLMlWKQQ70ZiWZjPL\nI+IyIy1ztqMhv9t9k02zzffHH7NmNunrdXpGFfRtyBolJRtmG0VSqCkmhSh4xVnDVk1etddpaA5t\nrfq1HxQxh8mQlubS1uo01Bof+Vs4qoX+AsJ1hqzM+cC7y4reIS0zNEklKRNUSVuGWne0NqZskouc\n/eQAW7ZRJZW6WmdaTAiLiJ7WQ5d1BtkxfX0VR3GJigBN0qhpdYSa8vPJTylERi4y5sWYRITYkouj\n1i+dJsxFSi6ypVXEZYjKGYVIUV/Qfhxk93CUp3rBKo7JQJfqL2W7UJItfMM0SpHiFY/QpTq2co1C\n+EiSjiH30RbkTZHsF04WZuIUhcYz710SACnyF8hk/G+NXxGuL4Ff9oF7EWRFXpItqHy5Pqv959Rt\n2qtN5mOf6emcWvNya4fLMDyaohnqMxNwiiLTXozDP+9kO9oZEvgxa+csC9rnyp5lUXJ8MEGSYPNG\nD8c1sW3zgkkrVG2tH/3jPTwvIvBj8qIgz0uyNMc0NfK85PRoymwesXm1g2FoSBKkaV5NM6YFk0lA\nnmcLawaX4WBOp+1gGBp+kGAYKpNJwN27BxSFoNm0MU2NZsPhkwdHmKZGmlbVubMQbYAHj44xDR23\nZiKE4OP7hzRcC7dmMvNiJpMAVZWZTAM6raqKsX88IUtLVvv1RZajRLlw5i8KQZrmyLLEdB5eyF48\ng3uOXEdJimNVIdymrjGaB2R5wTyodGBQVYHG85DVTp3dkwmlKGk4FcEwdY1r/dbyM/znj5/w+tU+\n1rlcxGbN4nTq8c1XNlEVmaKsXOfX23XGfkScZWiKcqE1PA4i6paJpWvPJVeX4cHJkJZjfeaFvihL\nPjkZ0ncrh/i2Yz23DZkWJVlR4BpVYPS/7O5hKDJHc5/fuLJJ7ZK2aJhl/MveHuuui63rJGfO8bpG\nTdM58Dw263XysqTnVCajYZ5xp1MZbdZ0HU1Wlv5bpRCsuDV+rbvKWs3FVDV6loOhqByFHpM4IhMl\nLcNCArZmY24128t98tKESRIhgOPQ44bb4jj02fanlMDrK30Gcx9LUbnqtrBVjb5Vo2va2KrKzyYn\n3HTbzLOYDbsKevazlEHisxNMeLXexc8SFFm+9DiefR5BntDQzCVZO49H/oBR6jPLY7pGjd1wQlGW\npJTUVfNC9qKgmvhzNRMvj5GRWTUbbJptTpIZ/zi+xzcaN3BVi1HmISExzDwMuarm6rLGo+CI7XhA\nS6sRFAkdzWVehBwnY07SCQ21xkEy4Jq1utwnSZKoqw4y0jKI+kXnmiLJuIqDqRjcDx+DkFgxKuf5\nuEzYTw5xZJv3vZ9xGB8xycccZSdYkoWlWKRlgl969LQ+qqxSU1wUFAbZKS21g604OIpLroc0ih4C\nWNWu0NA62LKLoED7VNROLjJkSWE/vY8hW+iyiV+MSUSE8SkLhooIqUvClomYqJygy0/vAWeVred9\n5p8FRdIpySuLDTRyMaOQQgy5tyBXn8+YQJWal763LJlfSbIFvyJcXwq/7AN3GfKsYPujPf4/9t7j\nSZIjzfL8mZoaN3MePBkStApV1ay6emYuc9rj/oF73vvK7mFlh4i01DSRru4uFAocSB6cOGfGTXUP\n5uGZkRmZyCygG5hdPJG8REa4u6mpmT3/vve9195+eSl5Ophf6x5f5iV5VhC2AoKm/9oXEtQxPbb7\n6nbkyzabRpNnBedHY8bDOUVRUeYV48GcsOGtqzZFXmKv2mXDixmeb78QTeSHFg++PMG0BGVWka4q\nYUIKirzEb3g8vneG0tDbaFAUFZ99vM/WTovFPMVxLSoFaVYwmSRoDPZudNh/0kdaJr1exMX5lHYn\n5O23N5jPUxoNH8syuX2zy0avgetIpDQZj5cEvlOTt05IGDoMhgsug2bbTZ/xNGYZ57x7d5OD4zHt\nVrAmT2Hg0GkFV6o+F8M5RakIA2fdLtRaX9teXJ/XSjFdJPhu7WJeW3JUDGcxYuUSf4lW6FFWim4j\nWBugXncOHcsicJ9W3NK8YDBbstdponRdCZSmSeDade7icIrnWLiWtSZchmHQ8Or3flPvrcCx19Wc\nV0EYxpWK1qs0XxerEGlp1lWkOM85ms7ZiUJut6+/ng5nMz7o9bBWuYuV1kzSlN2owaPJmLut2pdp\nMwjwLZtpnnFvNOB8sSAtSwLbXuUnCg7nM365scXj6QRhGAyTGE9aPJlPuNVoUmrF8XzGL3p16Hil\nNWlV0nHrh0teVRwtpwySmLPlAkeaVFpTqIq3G21yVVdPz6cLMlXRc33GWYInLeZFTqJKftHaQgrB\nlhciDINSKU7TGR3bp2179NMl/zw8YMOJSKra5kDrF1u2pVa4puQsmWMLSVzllFphC5NlmbPpRmw6\nIbMywxYmmS4Z5TGeaeGbNl8vzthwIobFkkfLPjtuLTvoOfWe7Ocz/nn8EA38VestFIphPufLxRG3\n3B5tOyTX5SrP0CZTBR07ZJjP+Hy+TyR9brgbVLrCFCY7Tne9N2blEg14poMlJIsyZljOXqrjusSl\n0em8WrLldIhVUuu5MBgWIxZVjEaRVjFLHfMfGr/BMiwO00O6Vpebzi1itcQRLgfpY0rKOvOxGnFe\nHKNRGLbidHnKu94vSHWMNCSeGbxAtgAuigMC0SI0W7gr4iQNB9twX7i3C8O8Uh0z6uTRK3mLl2Rr\nWfUxDfvaatq3odBzMGqXeUf0cMSLhrn/X8ZPhOs74IdeuOsgTEHjJbE+9//wiPZmk2l/RtB6kVBl\nSU66zPDCFy/Ib4Ozirt5HlVZk6fB2ZQgcCiuyVt03Jo4zUZLzg6GbGw1UUrjhy6OZzMZLpiNl7ie\nzWKaMp8lzKcxm9utF6p2x/sjuhsN3v35bh3b49YGpMP+nN6qrZnnJVWlaLV9bFvi+TaPHpzj+Tab\nW02aLb/27AI2ehFJUrCMM95/fwfXtZnOUm7c6KCUpj+Y0+1cjSCSq6nBJMnxfYf9w1rLZZoCYRpY\n0qTVrG0Hzvt1bp8lJVIKGqFLnOQcn0/ptgIqpfjnPz7BMk0C3+bwbMLN1UDBcLLEdSw859Utj/Es\n5uhiijCMumVly3WsTivyrpCdrCj5+vCCzVZ4RcN1iSBwmM/T+nWeqUgVpWI4X9L0XabLlCQv1xOI\nSisw6rBnyzQZzJcE7tVq0b2zAYFjMYnT9d+9Ct+nOeolbLMOnL4k+MIwqJQmq0o2g3BlfmnwdX9A\n5NjrcOuG4+BISVbWGXkniwU7YUjH8xjES6ZZyoPxiLPlAt+U3Gq2wIBFlhPaDq6U/N+P7xFKm2VZ\nkJYlp4s5vzs9rM1LvYBhmnAratFPY6Z5hmdaPJ6PsYRJ03bWn9e3bG5HLXaCiGmRUShF23bIlEKh\niQKXSNvkqiJXinmZ4QmL02TOrt/g8WKMb1oUVcVZuqDteLRtD9us98uDxZBbQZstN+Sz6RkGcJBM\naNs+Ugjuz/t0nQDXrCNvvpydM8pjWpbLKI8pdIUnbSLpYArBcTLlwbLP++EWbwVdAumgtGJRZnTs\nAN+02bQj7i/P163CTJWUWtGUPr9p3yVROa5pcZyNmBUJW3aDhuXXFhkrdyETwVfLY0LTxRQmmcpJ\ndcGe28MWV3VYuSqxDHMthLeF9a1k61mEpo8jbBKV4K0mFn3h0zBDunaHiopNa4v97ICO1aFpNVnq\nGE94HGRPCIyApmyT6Jhte5e27CIQJFXCwhzSVjuEMsQSNvaKaC2qCdKwrlSgQrO92hf1cYzLUzwR\nvZaBax3Lc/19RVEiDee1pgehFtpXJAjDBhSS4NrnS52rqBA/Qu3V94WfCNd3wA+9cC/Dy6pM3Z02\nhjAI21c3fFVWGIaB5Vh4KyH66eOL+gb3Bi7z1+HRF8e0txrkSVFrn15C5PbvnRE2PN758AZxnFFk\nFUVeEbV8vFU7TQiD08MBe7c3aHdDXN9e63Mu4QUOn/z+Ec12gOfZuJ7Nx//6iM3tFq5XX8iNps+o\nP68rUKFDELg4rkWj4dZj5atqGsBkskQpTaPpY5p1YHSa5BRFxeHRkJs3Oldah8/CXVWA2i1/3Wod\nT2OyrKwfuMuUi9GCX36wx9nFDK01/dGCf/7jPhudgNCvH0pCGAjTIApcNp7xOMvzEseW17rCPwvf\ntdloh7Qib10Ju4wH8lfEZzSL8RwLaYorTvLPIwgcJrOEj+4fcWujRaU0908GbHciulFdjfMd+wpp\nMoXAFPW0omNJSqWwpUlZVevKSNNzGcyXTOKUXvT6rezvE5earM/PLtgM62PZCkN2mw36y5hSVXiW\nRS+oyUWlFP90eMiddptKKR6tLCMmaUqpNYFtIzAoteJsMeez/jn/ae8WDcel7XpkqmIzqK/FbT9c\nVewM5nnGThDSdF26ro9vWXRcj0mW0nLcmsilMaFl03AczuIFYOBJa92Ok0LQsGzmZcbtqM1Xk35t\nWxL5/P3Bo5r4RS1atsf+csKdsIVtSrqOj2kI7s+HtByv9r0qU86SBYHlrMxPU+ZVxntRj54bsuVG\nzIqMWZkSSgf/GVf6G36LDSeg0tC1A47TMT27rp6dpBPuBF223QbVaoIxVeVahH9pH3F/ccaiyvh5\nY5d0pd/asiNyVTIulvTzObkq+Hl0k1t+lz/MH/O2v4UlJJYwebA8pZ9PuetvcpHPqIyKpvTpWg0G\nxRTXcK5YVSRVika/lnYLYFHFzKvl2rdLGvU+coTDaX5OJEMSlYABnunRlvUXJsMw2HP3VkTSJjAD\nurLHp/HHxGpJS7ZZqgUCgRQWw6LPXIwo8op+fsq0GtGztjjN97GFg2XYLyVT82pERYX/re7s3w5p\nuGuypXRJqkdYz7XwMjUhVQNAkespihLLCEjVOak6wzKaGM9VyEo9R5EijVcnGDwPpWMU2YrQ/bjx\nE+H6DvihF+5NURYVh9+cvCCWvzgYYhisJxoBonbwnckWQGeriRACP3LpbTauXbNkmZHnFTfeqgW3\nli2JViTFWbXNHNfCtiWWbdHuhtgrknO8P8SUAntFJCxbEkQu9744RmlNpxuhNRRFycXZBMex1kRs\ne7fNoD/n6GDIxdmEre02o9GizjKcxnQ6EePRkr2bXVqtgE/+eMDOTosocsnzgtm8Ng2V0ly//yWK\nomL/cIDv2fzxs9r4NS9LTs+mbPQihqMlGyuPsSh0sW1JI3IJfYedzQY7my3G0yX7J2MuhnPeubP5\nQtvGdaxryZbWmv54sfbcgtouwrHkOoqqrCoWSU6wOseTRS2m/7bKURA4ZGnJrY3WmgQ7sq6YKaX5\n4+OTNRkZLxJsS2IKgWXW2jFhGHi2xTLNmcYZ0eozCmEQeS7TJMWV8qWE798DrjSZpCmOKfnDyQka\n2Gs2cKVknmVrHy+tNQfTKXfadbpAz6+JWM+vHz5HsxkYcLKYozX851t3OJjP2ApCvhz2udtqr8/p\nZbVMo5HCZNMP8aRFpRWDJK4rbar2BvMtm4btorSi5dRanJqMeWitGa7ieCzTxDFNNHA7ajHMY361\ns0OeVLTdWk8GcJEsaNkuwjDIVMXvh8fs+g023ZCTZMq8yDlN5tzym7imZMuL6Ng+n0/P2fYiFJpp\nkdY6Jumshf1n6ZzIciiUYlIkNG2PnhMihckwX3KezlmUGb606wpVMmFaJnTsq+alhVaE0qWx0nGl\nVU5k+ZxkY275XbacBqf5lE/n+9zyerzj7wAwrxIOkgHvBXsoNHtul1JVZLrgJB/wjr9HQ/o8iI/Z\ncp6xHjCMldXD61Vw5tUSC4lj2kyKGZ8uv0JrTSTDVWNOkKuck+yUeTVnWs5wDZdhNWTT3uSb+Gv6\nxYCD9AkSkw1rk0g2sA2bluxgCQthmEzLCdvhFmbhsmPfYMPeQaEodEZbbnxr5cp/zerWm0DXn2Ad\nWL2ojtAoHNHCFg1AIA1v7bulyNEYWEZIqs+RPO0OGJfVyGsmD18FRQKU104s/tjwE+H6DvihF+51\ncfLgDMuR2K6NvwpMfhZhKyCN81XL6/tv1cwnMY5rvXSzDc9neIFNUZS1wadnEy9SsrTAD92VRYQg\nywoOH14wn8Y0V1OGjZZPlhZY0lxPTV6cTJmMluze6rCcp+zc6BAEDlHT52h/QLcXMezPSdOC0WDB\n9l6bZtOrjVQdiRCC5TytK0BhHcrcaHi0OwHTacJwOOeTTw7p9SLeurOB+1x77OJiRqPh0WkHZFlB\nnpVIS2DJetpw/3BIXpacnc84OZvUrx95lKXCNAXNyCeOMw5PJ3z47g6397rX2hrESc7R+YR24+q3\nS8MwSLJiXb2CusplW08jWO4f9dnbaK0Jm+9aHJyP6TRe3Tq5PIeXU38XkznzNKcV1Nqvk+GMvV6T\nvKyrWZety+fhWHJNtp5Fy/deyDr898LBZErTrasUD4YjPGmSFiV5WbIVhSitOZsvUFrjyrpSJ4ya\ncF629KDWiblS0vN9fnd8hG2abPoBe40GO2FdYdj0gyvrMs/qKcUbUYOT5ZzzRd1qdqUkLgsCy8Y1\nJZHtcLKco5Tio/4JDdthlmVMipSO43OwmHCwmLLp+khhMivq680xJR3HozA1aZKz4QXMi4xBFjNI\nYyQGD+ZDboUtbgZNQsthXmQoNHmleK/R45vZgFwpWnb9YNv2ovXxRpbDJE/qSUdx6UlVEKwI2GW2\n4WE8piFdAunUbdFFnwpNqWupwZ3gqat4UhUkVU6h60pWz46YlTENy8cRkkJXjIolHStkx22xY7eo\nUHimTakrJsWSm16vNrJVBbYhaVg+rrAYFgvaVogv3JXBp0michxhIQ3ztckW1HonR9iYhiBWKbNy\nwS239oAal1MOsyMW1ZxEZRRVzt9Of4s0JLe9W5znZ4RmRGAGWIYkN3J8M6BfXNCSHZZqzqQY4QqP\nTMc0g4hlnJCT0pJdKl2S6CWB+fKkkEqXjMoTIvntju1vCo0iVn1cUWscLSO6kolYa8OeXs8GgrQ6\npSJDGh5SBOsuhTCsK2RL6RTjNYT0wnAQhkeungAKgzeXxPx74cdMuL7/J///T7Fxs4vjO+RZwfB4\ndO3vlHlJpb49IuZPweOvT3iVh213q8GDz49ZTBPyLOfg4QVB5NLq1qXl+18cM+rPQcOTB+e89d72\nlWnILMnXnlAAGztN3vtwF1XpdeC1MAWWZaIqzf6jC548vEAYBh/+6iaOLZErPdJwsCDPCrzA5v79\nM7KkwPdt/vt/+4yPPnqM71tY0uQ3v3kLx5aUpSKOM9Rq7RbLlIv+bP1ZgsDlvXe32ew1aDY8+sM5\n3U6ANAW72002NkK+vn/GMs54fDDg9HyKUprJLOVn79bHmaTXR1P4ns1bN66/idrPTfxZsiZbT05H\nXIxmiOdMTU0heHvv+mDrlyHLSx6fj7m92V6/x1+/dxPfselEPg3ffS0n+Gfxukam/xaI7FrgLwyD\nv9rbxbNsGq7D5irYXhgGcVFQVFXdBpKSu50O0zQlK59GmRSrScWT2Yy3W208Kfn7wyf83eE+Xw36\nV6KFKqX4p5NDClVhmaImy2XBHwdnaDTTPKPleLRXbUgAxzQ5ief8zfZN5kUOBnzY3gA0PTfgP27d\nXIdNK61YFBlxWfDl+AJPWpwmtXHtH4YnxEXOr3t7NB2XX7a3qbRilMUoremnSxqmQ9txcU0LX9rc\nCdvkqqJU1dPjVRWLMidTFaApVT3Rt+nWhGxapFRaMSvS1e9m/B8nn2BgEEiXaZFQ6Ion8ZBB/tRU\nd14mfD4/oWdHtO2Afj5nx23TtUM80+aW16UhXc6yCU+SPunKFf6j6SMWZcr95enaed41bfbTPqN8\nzqCY8Tet97msz0Sy1rNq3txnO6kyKiqsVUWuYzX5y8Yv8EwPW9jsOdt0ZIuu1eUXwQcMqxF79i6u\n6dGzejiiljGUOucgO+AkPUKj2bS2GZTnJFVCScFJtk8gGozzAbZw8EW9J01DorViXPZf+hkLnbFp\n3XnjY8vV62QFa3L91MjzOqKjdEmh6vNqGh4t6xeE5h0cUd9vEnVAoSYv/F2qDtEviQi6DpZxC9Po\nkOsvUfr1839/Qo2fKlzfAWVespgscXwHc/WwxYAyr/AilzIvEaZgMVnSPxrVNxylX3Ce/z7guBZe\n4LyU3ZumYPtml0bbR1V67bF1WW2Lmh7Vitj82W/efqEK54fuFQI2HszJ0hLLMqkqRbDSpRmGQW+z\nwcnBkO5Gg92btd+Y7UiSuCZtnW6I69kc7A/Z2IhwPQvPd1Crb2G+bxMELh999ATft9nZafHw4QUY\nBoHvYNuSzZUNRpoV64y+/cMRvm8zGM7Z7DWZTJfcvb3BZq/Bo/0Bt292ubnbQSmFUpqNblRPE1YV\nh6cjbEuu25bnwzmO9aIFxyWKouLobEL3GVuPslKcDmd0mwHnozkn/Rlv7V5P1qaLhCQrrhXjP3sO\n86pir9d6Y1L1Y4VnWYyTmLQsKZVilMQs8oI7nVp8/GA04larRdu7ai0ROQ72amLy68GAUZKwEdRu\n7l8Ph8zSlBvNFr/Z3eNkPuNG1FhZfCjyqsLnaa54AAAgAElEQVSTkiezCe93NngwGfFuq4MnLT46\nPyFyHPbCiJPlAksIPro4pev6BJZNy6kf1o/nEzxp089imrbLRbzg68mQvaDBV5MLtr0IKQTjPGWz\nEbJp1vviTtim69Zkwzbr1q/SikmR0bRdmrbLP/b36Tg+R/GUXb+BI0xGeUyp9do1vp8tuT8f8MvW\nNraQPFwM8Z/Rk43zGNesW3SBtJkWCVopTrMZua5YVnUI+6+ae7imhWmIlQWEQccKCC2Xw2SE0ooH\ny3NcYSGFYFlmTIpl7fdlOiRVgSMsOlZApkqm5ZKeE6HRKKX5dL5PSUWFYtOuneQrrVhWCQ3TZz89\np2e/WazZsooZFGPa1svSEBSmIXiU7dORbSxh0RARHwY/J9MZaZWS67wWwBsWd713cU0XV7h0rC6F\nzrENtxbwG+B6NnYZoKgYlPXQQkN2iNX82iqX0opvkn+h1CkN+WZfqKbVMZ54tXFqTVlLHNFEa4Wm\nekFMX5HVonmsF3RbAJZoYT7nt6V1hTRaL7WKSNV9DJy1bqvUAyo9ROBjGDaG9qj06EdnD/FjrnD9\nRLi+A8qiYnAyQkq5dpZXlWY+WhC2Aw6+OibqhLi+Q6MTEjT975Vsaa2pygphClzfqWN8wpdvtsso\nmcUsYXg+oyyqtSWEtExsR2I7EmmZq2NRLzVeDRsey0XGcDhnNo7Z3nuqz6grbQZ7N6+auwqzzi/E\nMMjzEs93WC5SlILeRlQ/lGyTLCuZTJbcutVlc7NBWVZIadLtRi98u3v0pI9ry7V4fjJdsrfTIVpN\nInZaAUVZcfd2D9uSKKWwLIllmSRJTpzm9EcLNjrhyvrhqQ2EbV/fqoO6aoLBFQ1XWVUIw+B8uCDy\nHX5+d5tsNa0pn2kxp3nB333ykG4jWPtzPYtnbxizJKtdzld/v0gyziaLKzYT/9NBw/94/IRf7dQm\np1vhU41Jx/PWxOpliGx7/TehbTNOEr4cXPC/vvsBjpRsB+F6qOVkMefBZMQ77W6ddZhlHC9mvNPu\n0rAdBumS240W20FEx/X4etTn7VZNkkqtWBYFbbeufmHAbtDAEia+tDhezLgRNkmrsn7tIkNrzc1O\niyKtKJWi0opPR2dseyFqNYF5spzxX47v8bPmBrMio9AVd8I2aVWSrkKvu06AZ1pMixRbmESWQ9v2\nMFdt1a7jX/HSila5jrX9hUlc5limZMMJCUybbadBzwmJLBfTEJym03q/mxZN+/KBqWlKv9Z3GYLT\nbMq0ipmVKVII7vqbmMIkNB2sVTbittsirQoyVVChcIVNXGVIIXmUnJGqnIb0+Do+4oa78cZkC2or\niIYMEYbgUXJIJIO1TmpazrkoBkzLOS3ZoGO1VhW1iEAGHGVHWIZFqlJ27V3+uPyYYdGnZbU4yY84\nz0+56dzhIHtIJJuYhqATNjifXzAuLjjJDhCGQSCaCMMgUQsqXWKLp9ffZes/Eh1s8800Tt9GtmoI\npGGTqCG5WlCwfCFDURgWJi7z6gECicD+1pZfqSdULF4qoJdG94pIXhg+ptEEKpReoiko9AMs8WI8\n1A+JnwjXd8APvXCvgilNHM/GtMw64sexqMoKJ3AQQuAEDmmcXevH9TqY9GdYztMR+ueRLjNGFzOi\nlo9SmkdfHHPzrY1vXTPPd2h1Q+azBD9wyZK8DrYWxlp7pirFk/vnBA0P0xTEy2wtXr/E4GKGKhW/\n/Ms7658ppfn8j/u02iGev4oYiTPiZY4pa1KXZSUX51O+/uqEu29v0umEnJ9NcV2Lzz8/Znu7SVkq\notDFcVZCfstc5yM+i3sPznC9ugUZRS7Nho+UtfGn59kkacGjJwNc16KqFOf9Oa2GhykE+ycj5ssM\n25J02yEnZ1M6q4qV8wzZyvKS8TRei9+hrhjGSUGS5Wsd1yf3jwk9h91eg3mc0Qw9kqxAaX3F3kEp\nzW6vwcY1Hlzw9IaRZAWR57zQugy91wuU/qGQFAVn88Vaq/U8LFPwyckpvSAgdByysuR0Nqfp1rqQ\npCgQz+i1rsPjyYSO53GxXNLxPH7e28SzLEZJwiCJaTr11G3DcfAti/3plN2owflyyd1Wi8Cy0cDb\nrS7hyqcLoO14RHZ9vWoN4yyhUPWEcaEUgVWf60pr5kVGy/Zoux6lqogshz+OTtlrtTBLg3vTAYsi\n42bYwjElTxZjLCE4SubsuCGfjs/5VWcHUwg+Gh5zJ2yx4zVwn4nbGWRLfFlXpPrpAseUSGG+MDn8\nPELL4SAZ8164iS1MWra/dqSflynDPL4S7dPP5oyKmJ4TEkiHQbGgZQfsuR3Q0DA9plXCMJ/TtHyS\nKmdSLDlIBmS6oGuFFEohDGhbYa35sjtIYRJJj7aM+Lvxp7ztv3n23qxaMK8WhKZPqStKXWEZJsIQ\n2IbFRd7HMiQVJdKQnGQn9RfLak5XdrGEhYnJcX5IpjI+DH7JprNFS7YJjJCZmnDLuYtjuLjCY6PZ\n4XR+wU33bTIdM68mJHqOwKRr7WAbV3McK11iYDBW5zTl9+95dam9UrrAFiGueX1KiWEYuKJHrseY\nRvCtlhKm4b1yWrHUYwzsF16njgIKAY3WJaYRXVtV+6HwE+H6DvihF+7bIO26IrQY163Fj//2i5XW\nSXPvo4e4gYvt2uuq0cnDc4QpXiu8ejpaEM9TNKwnCZ/F5aQh1BdbZ+vFaJ+XoShK2t0IpRSPvjrB\n8Wwc1+LBVye0eyEXp1PSNGdzZe6arETcl87zdfxO7e01HS85ORzR6tRk5exkzMZWA8uSfP7JIecn\nE0ajRU2KVgRucDHn7Xe3+PyzQ6qirtJtbDZJkpy7dzfW75GmJY2Gd4XoPYvNXrTKWUwJA4fFMuPg\naEiaFZxdTPnymxPmi5SdrRZR6DKbJ6R5yWSWsLvVYrZI2d5o4NgWUfhUD1VWitP+lEbo1goV40XN\nlu9a+M8Ykzp27aofeA798YJOw8e2TKaL9EolzDTFupKWF+ULbcvLc3g6nuM7V8nVP32zT5KVdEL/\nW60qfiiYQuBI86WmqYZh0HBdWp6LbZqrnMJ6yrJSit8dHtH1PSzTZJZl2KbJIs/Xk4tpUZCX5Zqg\nnS3mTLKMhuvQcl2mWYoU5rpS9tuDJ/zh7Ji8qnin1eHL8QBDa3579ARXSgbJEgzIqorzeIlBHbEz\nWvlxBZZFx/XJqgpPWpRKMU4TTGHiShNbmHwxumBW5PxVb49b3TZxnNNzAzqOj2NK/vb0IcIwuBW2\nScqCXFUcxjO0odlyAnbcxnoa8lkkVcF5OuezyRl3ww5fTM/Y8Rp8Pj1jy42YFglgIIWgVBX9bEko\nHR4tB9iGoGMHDPIlh8kEy6gnFzWaRZWx5aza8lWBK2TtnVUVzMqUYbFgy6mz9v5x/A1aw3E6xDUt\nOnaIXLXfZkXMz6IbpKpgXqb84+Qrbno9BAY5JTtOp27Jpqf8uvH+G+sHS12RqowNuyYZ0jD5dPEV\ng3xE127z1fI+38QPUVoRqwTLkGhDc8e9TaYyhsUI0xBs2BtoNLNqxryasufcQBgmjukQmCGFLniU\nfc2imtHwIn4/+Cd6cguNAgE/8/+KggzffFplT9SCUuUc5feIzA4tc4tMxdcapH4fyPUCUzgvtAC1\nftpirHSOafhk6gJN9cI0YqkX1NJtjVr7dl2PSk8QhvdKMqV0DsQYBGgSjB+BbcRPhOs74IdeuNeF\ntCWWI+nstGiv9EXCNGl0ap2QXBGVoOm/thVE2PTxQ5fDe6d0r3G1H5xNMKXJ/jen3xrt8zw+/eeH\nVIUiXqZoXU8iXpxOamPQls/p4YidG+0rlhGXZOvB16dkWcHgYsqov2Bzp8nOjc66srSz12Y6jgkj\nF9sysRy5Nl51HIt4mWG7Etu2kNJke6fFZBLj+zZ7ex201hweDvn66zOiyKP9XJ7jeLzEW62hXE1O\nPnrSp9308T2bTjsgzUp8z+adu1s4dl3d8j0b15H87g+PGU9qh/puKyB8JnbnEoYBpmliW/UxPU+2\n6t+5WnmUZj0lKU1xZRIxLcor04zP4ugy3/AZ0vXUab4Oum74TytFtzbaOJbEXYVua60ZLxO01j+o\nzcOzMAzjpWRLac3RdIZvWQyWS0wEJ4s5oW2vydftdmvtKD9OElwpGacpDae+iQ3iJcuyzmP8Zjhg\nO4z4l+NDOr5H03YRhiBynt7wVKX49c4NtIZU1a7xD6ZD3m/3eLfd5SJZsuEGHC2mGBjciOq2V15V\n7AQRFZp/ONnHk5K263EeL5BCoNCcxHMCy+JwMcMUBk3bodcI6wplWfC7i0N806JpOeiV4F5rzTiL\n8aXNbzZu8o/9fcZFSigtPGkxSJdUSuGYklA6NCwXjWacx1hCsrny5QI4TWeEZh1dpIFcVVSq4iJf\n8na4gWkIpkVK2/KJLHcdcdSxg3VLclFllFrx2eyILafB343usWlHpKpkXC4JTIdA1v8KXeEYko9n\nj7nhdrntb9Ru/Cpn121zy+3RsSM+m++TqQJfuLimTSg9RsWcUL5Zy02jWVYJk3JGQ9ZEb9fZ4iwf\nMClnLKoFkQi55e6xKOdMqwXveHfJdUGpSzatDUIzJFUpg2KICZwXZ2w7O2tDU4B5OeXz5R/Ys2+D\nU2JkDhfFMaHZwBMBqVowLQe4IsASNrlKUbpCGhYduc2iGpHrjGl18cY6rtdBpQtSNcQ3r7621hWT\n8mssESAMm2V5wKy6R1P+bEW2KmJ1gL1qXRZ6siJsikKPkcb1k5daayo9w8AmU99giU0AlF5S6CcI\nGlR6iiEkUmyjSVF6jHjJ6/174ifC9R3wQy/c62L/yyPaWy0sW9atM9em2Wvg+PaabAGvFUZ9iYNv\nTglbPhvPBF1nSc7J4wua3YhypYNqbzz91vW6m23nVpc0yelsNLAckyDysCxBkZVELZ/uZgPDqNtf\nz1dgGqsWZtTwEaZBb6v5wu9kWYnn25wej+n2IuJlPdHS7gRIabJcZsxnCQ/un9NqBSRJTp5VSFmb\nkP7D39/jzls99vY6OM5VsjOdJYThUxKitaYsKppNn3sPz9noRuwfDChKVVsjhC6OI7FkLYI3hEGl\nFPaqyhSFLqf9KYH3tFVgGAa29XICcynWf34K8XmPLcMwriVbZaUQwqAVei+tcA2mS4pK0VplLT4+\nHxF5Dp5jUZQV/3L/kLwq2e9PCB2bwP23+Wb9fSOr6qmocZLw1cUFrmmy22i8UP0Qq5agFGJNtqAW\n0HdXPly2KenHC361tc0fzs6422pzvlzQcFbVr+WCeZ7j2xb9NGY3iGh7Hh90NjhezJhktbfVdhAS\nWQ69lZXELM+4PxnSsB0ezcd0XZe3Gm2Ol3MCy+beZIQw4GbYwLdsKq3YcgM6bkAYOAxnS+5NB3Sd\ngKwquRE2iasSadRO+1BX0QwM4qrgr7s3+B8Xj3kn6jHKY76annMraK/CiwWzMiWSDmlV8s18wK2g\nfoAuypy27a8tMyxh8r/v/ytbTsSe12JRZfx+csDdoEehSmxT4q8IGtRi+0i6+NImNJ11cPX70Q5b\nToODZMgH4S5Ny+cim/GOv8Xfjr7kP7Xfp2HV+3JWJmg0k2JJrko808YRkk/mj2lKj6VKkZgEqxif\nN0HtIO+uDU8HxZiKCkfY3HFvkKic94O7xCphy9rkm+Qh0jAodcEwH+JJly/jL0mrlIbZoDIUfx7+\nJZ8tPyWvMtpWfW/9cvkJLbMOvt5pbtKsNplWfeblBN+M8ESAY3jYpos0LIblKU2zixS183yucxzh\nE5hN5L9BlUcY5toWAmBYfo4vNjEMgSUiltUxsTrFMTosq0cYhqRiQaHn2EYbcxWYLY0AYVhkuo+B\nRBrXGyAbhkGh+2gjwxFvP3NftBG0UUzBUEhjc/Vz60dBtuAnwvWd8EMv3OuivfX0YnjyxSGz0ZI8\nKzClIEuKtYnom8CLXCzbIs8KjJXgXVomUSvAEAaOZ69/fonX3WxVqRhezFYVLAN3lZlYlgpvtVnm\n0wSl1JV2ZhLna2PTsih5dO8MIQxUpXE9m+l4ibkiTUVesbndRJqCIHLJ07LWGXg2ZVExnSb88pc3\n6fdnvP3ONq5nMRzOOToasbvb4p13tkiSoha3xxn+ajAgCK4KQoVhkKZ1BuRmL1qNn8PeTpvJNCYK\nfe4/vGC+TPF8mwePL7hzo8dbN3u135NjUVUad6WXex3EaVFXIV6Rr/gyaK15cDyg17x6s3tyPib0\nnFrwH+eEnrMmWwC+Y63F85q6WrTdjjCFge8465DrL48u6EZvltP574XLzzTP6lin9zZ7mEIQF+WV\nqtTr4r88uF8LuM06/iewbIQwGCcJoe1QKsVnF+d4UnKeLEnLgkIpup7PrMg4nE3ZjUKOl3MOFhNu\nRS3ioiApC/aiBpHt0HY8NrxaqG0Y0HJcXCl5MBthCsEkz9j0Ao7iOU3bBdtAFLDt1+fmPF2SqpK2\n4yENQVzmnCdLFJpC1eTTNATvNzZW7vUubcfHNS2GWYwlBF0nILQcNtyQL2dn3PbrydWmVRPLB4s+\nDenSzxbcDXv8rLGNBj6fnbEoUkZFzGE8IVXlujoGMM6X7KdDtpx6qnOYzWnZPh9Nn1Dpip9Fe0hh\nsqwyLENymk8IDIdvlse8E2yvX+cP04cMiwV7bofjdIRrWLwd7LLrdomkhyUkzmu6yj8LpRUP40M2\n7A4aTalLFlXMpt3DEpKe3UFeBkIb8CB5wGF8SKxSXOEiDZO2bNdTiqbFrrNHrGKW1Zw77ttYwqpt\nPdScSld0rC5bjR4fDz6iKbp07S027V0SvSDRSzqyJhiB2bxyfc3LPola0i+f0LX23vg4vw3Pa/b8\nVcUJasG8Y3TQlGCUdKy/WK1dgWGY2M8EYpd6TqmXGIhvzViUooM0nh5nqc7J1D2ksbOaTDTI9UOk\n8f1X9L4LfiJc3wE/9ML9KUiWGWVeUCQF0jI5+PqY7k77laHT1+FSwD44mSCluW7pvapK9rqbTQiD\nVjdctaUUBw/7dDYa+OHTjeL69gvasdPDEY1VRuT+wz4K2NpuEYR1gPTF+RTPd/jqsyPOTsbs7LX5\n7JNDHMdatw3LUuEHDu1OgO1Y7D8esLPbrj28lMbzbCxLEi8zLMuk0wnw/ZpkTacJ80X6woYOA4cs\nq72XpCkYDOccnow4Pp1y//E5v/hgh/kyxfdstjcatNt1rIy7IsJfPThls9u4oosqygqt6+lD0xQs\n4oxsFfVz+e9PgWEYL5AtANeu3d9fdg4vq2fDecw8ThktYqQQ3Oi11mQLoBv5P6jX1qsQ5zkfH5/i\n25JpmnFvOOSdboeN4MX1mD3jOA81way0vnJsHddjOwwZZxkazZeDPqD5tH+OJcw63qcqabkuf7G5\nw14Y0fPr93oynfDr7b2VI3wdUdN0XKrVwy1cCeSlEKuMTAPXXFWnVuL1ruthGYKO67PlheRVhbLg\ncDyh5dRi+qbt1lOOsMperPjXwRHbTsCkSLkdtpkUKZvuUwGzs3qfuMpxTEmhal3oosy56bfWAvhL\n+GZdnR3mS94KuvSzBUordr0mrpAcJiN+2dzjpt9GPiOCjix3reU6SkZsug0eLwfMioS/bt/FFpJS\nVZwkY46zEe8H22w6TZKqPo5JvmBeJiQqp2X5fDJ7gi8cHifnGMCgmLKsUozVZ3xTGIbBrFoQSR/T\nMHFNh4YMr5imLqols2pO02ygKs3t4Dab9gZ77i6RjLBFnS/YL/sIBJnO2LC2wICz/Ji21WFQnCMM\ng2k1orJykiTlIH/AlnMDT/jYhoMrAuQ1FgpKKVI1p6KgI2/giO/fjX1c3cMxnhKn69ZJGgGm4WMg\nqPQSBPjm7vpvtC6ZVZ/hGnuYhvtahqdX3gMfkJgrfzLDsDBpAuJH9eXuJ8L1HfBDL9yfAse3cTyb\nzVs93MBl82bvjcnWJRbTmM5Wc022vg2vs9lUpWodlSMxDPj8oyfcfmcL9zW0Zc1nMiJd18IA9h/1\niVp+XXWz5UoYb+CHLvEy590PdggCB9s2KQrFbBLT7taj+//1//mEv/r1W6RpwWKecP/BOdvbTRoN\nj+FwSW8VEp6mOZYlcVdu+tchSYq6tWLWn2Oz12CxSOh2QvaPRniujW0JPvr8ENs28X2bLHvqJdaM\nvCs3jsksIctL+qMF7VUQtoGB9YpW43eDwYPjAbd2Oi89h1lR4liSpu/S9D2aQf2Zx4sYW5prYvBD\nIs4LSqVe0HFprbGl5Fa7RdN1caRF1/Np+961BPF4NqftPX14zfOcYRLTWJGXYRxTKEVSlVjCoO15\n3G602AxC3mvX04eLPOedTpem45JVFV8OLjiLF2x6AU/mE95q1nYmGmisonekEGvCo3Tt0J5VFd+M\nB3S9upW5KHKUVnw8OOVG0GBeZASWzVfTPkggh6bjUmpNWhaEloM0BOcrvVjb8RhlSx4uxvyHzVsr\n7dmLa+DL2l19mC+Jq4LjZEbXCdZO85eQQtSWBrbPQTymVBUX6ZykKvGlTcNy2fNa2EKSVAWTIiaQ\nT6+jSit+O7zHL6I9Pp7uc5JO+LC5hyMsBvmCj6dP6FkhB+mA216PULp8Mt8n1yVPkj67bpv3w716\nHaXPaT7itrtJrgrO8jE/C28xL2PGf4KOq201OMkukIa8tiVZ20ZEKK343eL33PXucJAdYBuSk+KU\nr5OvcA0XGwvX8Cgp2HZ2cYRDa5W5GFdLbrh3EIbJrdYNvKzNg/RLpGEhkZzkj+latYj++eieTMcM\niiNynSAMi9B8c+uLV2FRnqN1iWe+2sXeMATCMFG6pDSWuMYWJYt1OxEMLNFEigBFhoH5rZOMV1/f\nwHyuBVmo+5R6HynefPr03wo/Ea7vgB964d4U4/MJ8SypR8rPp0SdNwsJfRZVWXHwzSndndfxaqnx\nOputKCoWk5ggclnMU7Zvdgmip5qo6XhJvMjWrcWX4dKz69ZbG3i+g5QmRwdDHNdCWpJON6LR9Cjy\nClMKDg8GKK3Z2WuvdUtB4NBoesRxzniy5M/+7BanJxPKSpHnFctlRhS5TKbxFd3W80izgjBwsCyT\nPC+ZLVKWccZkluD7LpYp+OL+MXlW8YsP9vjo0wM6rZAsLwkDB1MKDIwreirftfFdm3azfsha0nwp\n2Tq6mKxF838qhKgrXy87h0ppRvNLZ+r6s15WvS6mC84nS3qNHyaU+lnEeYHWXKlOAZzO5uSqqkXw\nScLFfEGl60Br15KUlSIpi/V04bNkC+rXuyRbAJ6UhLaN0oq263E0m3FvNMQxTdqef2Wo4Xgx4++P\n95GG4O12h8C2YVUt+/j8lGmWcRYv2Amu+ht9PRlgGnX+YdtxQRtM85RJniINg9ByaDkuaVUSWg6b\nbkAz9EjTYm0hMStzNHV1bpondG2fYZ7wdtilYbv03ICTZEbDevn+doWFb9ZWFl3n1UaTAoOuHbCo\nchwh2XGbnKUzdrxniIABzjPkRRgGP4t2eBBf0HMidpwWXTvCFpJAOmy6DX47+ooNq8GW2+I4HfEX\n0R3G5ZItu0UgHXJd8nB5xpPkghtul7+bfMGG3WBcLHnH38UWFp7p/ElZgw0ZrslWVuV8Gd9jy96g\n1CWjcoJvepjCROkKMIirJW95d9iyN9mxd7jIL1ioBQs15z3vA4QhGBUDpGFhGiaBWVfCAhGRWwv6\nywE9uUlHbrHUMzrmBqPqnEU1pSGfeg6e5o9QumTTvk3L3KLQCf4rIoD+FKRqRKnzFwTz16HSKbPq\nKyL5zsona4y10lbVOr/6np7rAcKwyfUZAueNq12XMEUP09j+wb/kPYufCNd3wA+9cG8KL3TxGx6L\n8RLbt/FeQRJehdF5bUxoORZ+dP1rVGWFVvpK9ex1NpspxZpg9U8mzGcxrU7IdLSkqlSt5xLitapq\n9sq/qygqvvr8kM3tJkf7Q4LIqT2+spInj/vM5zHzaUK8zNnebSOEQVUphBC4no3v21iWyenphDQt\n2N1t02r52LbE9+1Xki2Aw6MRrebTh2yc5LiuxWwRc3gy4s7NHh+8s0O7FRD4Du/f3aLZ8IiTHCnr\naB/zFYTpwUGfyHdf6jzvORaOJUnzknmcYZkCVpEnk0VyraP8dXiVee0izcmKkl4zYBqntXHlanqy\nFXg/ONkqqgqlNb5tv0C2ACK39sQqleLhcIQjLd7b6OKujuGLi3O+6Q/Za0RrX6xXwTAMKq05WczZ\nDOogakuYbIXhug1om3UChCkEv+hush1GZFXJf99/SGBabPkhj+cT/nJjhy0/XE+qVkoRFwV7K1F8\nYNmcLhcMs5jbUQvXlLRdn0JXaGDDq9f+y0mfj8en9KSHJy3uTQdsuAEXacyOH/HH0Sm3wzYdx+Pr\nWZ+u7RNYFl9MLrgVtJjkCaM8IZRXdYpPliMeL0cIQ3AYT2hYzhXj02dxkIwZpAu+nJ8RSpu4ypkU\nCXtuE80qxFvIdbLDJYb5gkkR07UCHizP8aRNQ9bVR8+02XXaBNKlX8yodMW226IhPU6zCQpFpkoG\n5Yz3/T2EEPwiusVNb5OGFdCygtUD/7v7x5mGwBE23kpIr9GrtiGEZsi4GrFn7zCuxtjCxhUuTdli\nXI7468bfcJ6fEskGCsWkHKOpOC9OOMkPMAyDt9p3mC8TxtWQG+4dKkoask3DbNOQVz2wHFxcEZLp\nhIUa0bNufufjex6OaL4W2QIo9BQDWds1GFyr04qrR1iiizR8DKwV4frTCZNiivEdX+P7xI+ZcP14\n3RP/J8V8tOD00Tmbt3rMR0vK/PVzqp6FFzi4vk3vFdWt2XjJZDh/6f+/DkzLpN0LGV7MsF2JZUuq\nUjEaLL79j5/B4ZM+WkFZKN7/cI92JyLPy5XhaMV0ktDpRrz7wc6atFSVIn0mw1ApRRi4vPvu9trw\ntNF4vfbD7k6Li369FoZh4DqSdtPnzz+8xa9+foP/9tsvsG2JaRp88+CM//O/fsJgtCAIbKQ06bQC\nvFd4o9290XtlK/EyR1GaAqUUH987Yn1Iup0AACAASURBVB6naF0bp74uHp+NSLLrcx0jz2GnU39b\n7UZ1lWO8qCteJ6MZw/nr5LL922GWZszSb89X+4fH+4SWw+1Wk6PpdJ0vGtkum2FwLVl7Gb4eDHi7\n3WGRZRzMpkSOwzRLr/yOMAwi20EYBl8N+wRS8me9bY7iOV8MLrhYLvjfPv89p4un11KhFNO8fp1S\nVfSTJW812/ysXT/AvhoPeDIf03E8wmf0VB+2N/mwu0mpNElVkpS1ieu7jbod9L/svkuhSv6vwy/5\n8/YOjmkyzGIiy1m9l2KeZ1T6aubq3bDLrzs3uem3CKXNonz5A+XdcIOG7fGfe+9Sas0oj7njdUhU\nwb+On3CcTDhMxjxcXs0GzFVFW/pMy4z/2H6HSLpMinpPaa2ZVwn9YsYH4S4fRjcxDAPPdPjL5lvc\n9DYITZfw/23vzmMkPesDj3/f+627+qo+5u45PQ6Djw2ErCcYvCxYWhSEjcZ4M4gE2QoEcoAsWHZl\n/0fiZNEmhBhzhOAMYINDJExWCxKQxGCsgI1tbDM2c/Z0T99VXdV1vPf77h9vdc30fUz3dA9+Ppal\n6erqqqf66ar61fP8nt9PTlD0qjw7fRovDJkOGtjB+r75SZLUavMjSzLpZhulMArRJQ1dMtAVg36z\nn0ZgUfbLjLvjNIIGQRQwHcTznFLS9Bh9uJGP7Vt0q9uxgjpOYDPsDlBQevhu6TFUdIJmYD2XriQI\nCagHFRJyhmowSRRtTL/cldClfLMVkEcQ2QteJyHvbp1OVKTkqrYVFxKEk9jBs0RRsPyVX+OkaKmO\nx1vAxMSVBRSbYe6JksFXh9m2r2def8K1mBieIteRbp16PPXCBfYd2dG6v66uzIp/Z67jMzlWId+R\nolqx6e7LNy/3kBUFVV39eEvFGpmsiaIoDJwdZ8++bp796VkOHd5GKr36pNkwDPH9uFFvsVSjp3vh\n/IggDHEcH11TOD9YZN+e+BTPk0//ikP7e9A0tbU1GIQh45M1HMdl9471P2FTbdjxNpmh0bBdRktV\n+hfpqbiQlc6h6/kEUTQrYf5aYHkeddcljOISEa7vs7ejo9WcejUB1+W3+W8XznP73v2zLrf9uO1O\nRjf4VWmS58ZHmWjUeX1nN7vzbQzWpvnh4FmO7TtMSjewQp+9uXgVo+a6TNoN2gwTLwpJKCp+FKJK\nMhN2g+2pLF4YcKZS4jc6ulv3OSE1eHFolLdu68cPAxRJxg0DplybnkScYjDaqPJSZYy96XbyeoKk\nqmEoKqerRYIoRJYk9qTaWyt9URThRSFO4DNu1+hPty+7ohBGEU7oc7o6TruRJqloZNS4BdCYU6Vg\nZGgELkW3xvZEG+cbk+xOdjJsl9lmtrVyyoJmr8JxZ5qErGFHHl16HPifa4zjhB5p1aRNTVMPLOq+\nAxKkFZNG6LArUaAe2KSUta32O6FLEIWt0hCLKXoliJq5RpHMC41fcFP6RobdYTrUDqLmf3HOV47T\n1qtklCyVYIpOtUDZL7Lb3I+RD7k4MYEmabihRSAFlNwxQinkcPI/oUqzn29WWCMKI0a8U3Tru0nJ\nbeu+2mOFRSAiIS/9ehVENuPuT2hTj9AIz5FU9mAu8zPrIYjGgAhF6ln2uhttNe+BGzmGhYgtxQ0w\n98lmJHS0NZSFmOvCr0bItqcwzLgchGt7dPbmV72l2BqnHCeAl4s1pkt1OrtzjAyWuDhQpDbdoL1r\ndbkIlak6phmfbPS8ANuKc3na2lNkc/FK1eX9GV85OUznIn+Y5XKdet2JTylN26TTJpJMq7n0jIsj\nU5iG1sqvkmWZXO5SEnZXZ4ZU0ohb9TR/T7IkocgSERGpNbZdWorj+kTAZLmO5fpsL+RWdWpwqTl8\n5vQQjufT1qzftViB0a1MUxSSuk5K18mZJu3NmlqqLC+6lbhUK5tio0Hd87ixpxfL81DkS6emnMDH\nCQKSmoahKOzM5Njf1sGpShFDVXl9Vw83dvVwsjzJnlx7s/yDxIRVZ8qxMVWVlKaT0038KCSK4HSl\nxO5MnnPTZV6aGmudQpQlmUm7ji379CfaMZS4eKsXBoQRnK4W2ZaMn1Nlx+JcfYo3FXbxw9GzHMp1\nIUlS/DNhRF5PkFC01uOoBy6/rIyxuxmgreTv6VRtggmnRm8iRxCFtBspVDleiU2r8RaQLqukVRO1\nWZX+l9WLDFkl0oqBG/rUfIdJt4YuK0x5DQbsCezQpdvIYwcunXqGYadErnmKsBG6FL1pVEnGVDQ6\ntLhMy4RbIavOzj1rBDa1wCKxzOlFL4yLmBqyzqnGeTq0hVf9k0oCK2jwVOVpfl5/nuuTh+g1e3ED\nl1etV5GRSCophp2LaJJGQetGx6BL76ER1sgoeUrBBH3ZHpyGz5g3TLe+jYScos/cQ07pRJPird5p\nv4ghJ5vjs5n0hhhzz9KfuHHdgi0/cgAJSZJRMVClxLKrUV5YQ5USJNU+VDmLE46iS51XPKYoipqV\n5Bd+H5OldLPdz+bbyluKIuC6CtQ1lA/wPX9ejS3d1EllEq2ApThaIZKgXmm0csVWFXA1W/Vkckk6\nmytHmVyCQm9+yWCrVrWYKtZJz8ktG7k4BZJEKmUgyxJmQsMwNFRNQVFkPM9ncKBILp+kXnPou6zh\n9VyKonD+/CSqKlMoxOUapqctbMdvVZkHiMKIZFKnYblMFmtYlkvmsnyv8nSD0+fH2dYz+75cz0dV\nlDWXdliKoauoisKpoQlcP64yX5pukFlhcLfUHOZTJoXc1nhhW6tio8HJsXEyusGUZZM24vkcqVap\nuy4DlQpdydl1xH4xNkZK0+atflUcm7rn0ZuJ39hfnhzH9n3azDjA1xWFpKZRtBqkdYO0buAEPjXP\nY7RRY6xRY0cmhx+F8QlURUZXFFKaTt4wyeiXcqVm6n31pjJcqFVo+B5ZVSela4RRXPh23K5TyGbA\nizAUlZrr8lxphH25DrrNNKemJ0kqGj4h1+e70WQFK/AomHGJFpk4IM0262vNOFMtktMT5LSFTzNe\nLooihu1pdiXbKRgZUqpBPXAwZW3BgHbm9ibdGnbg066nmPJrvFy9yI5EO31mW7x1p5oYska3nkOX\nVYacElk1QaeeRVfiFTpZkrACl6SiM+yW2GF2EQE5NUnZr6HJ6qw8LlmSly2GqkoKiiSjSAoJ2aTo\nT7W2ES/nhC4TXpHXp19HQS+w09zBqDvGqDtCv9mPJmtk1QyarJNQEphKgjP2KXRJo13rxJBNTDlJ\nPpPGavhM+mMEeNSDCoaURJXi9kfxfVmtgEuTDQwpSYiPKhnrVhbCCkvIyChS3M9wJVt/QWRjM0pC\n7kFGI5ICVCl9RQFXGDmE0TR+NIYi5ZAkmbr/JJq0Y91X8tbDVg64RA7XBvIcn/r02vJqJi5OYdcd\nfvnTM0wOTwHMOzVY2N5OKm2uy1al7wUMnBlb0XWTKZOOwvyVqT37uukqXDoRE4URjbqD5wbxAQBN\nZc/eAmEYUq8vnF8AMHB+EkWRaG+PG7DObHq3t6fJ55KEYcj5gUl8P2B4tExpqk61ZpNJGa1g6+VX\nLhJFEemUyesOXSpEWKlaPP3MGSZLNfRm3a+NEIQhh3Z1Y+oaiiyRzyz8Iuz5AVPL5F7FvTljI1Oz\nl8qL03UApi2bC5PlKxz11eEFAT3pNLbvMTw93bo8o+s0PI+DnfM/kXen0ws27M7oBoVUqhU03NDd\ny578/EA+jCLcIGCkVmW0UWNfWzuHO7rQZIl/HTxHhxknr8+cLIT4b3isUWPcqs+6LT8McfyA7mSS\nF6fGaDeSdCVSmIpKl5niV6UJap7L6ekiiizxpsJOIF7B25nKM9ioMGrV0JqP5/VtvQw3ppvXUUip\nOn4YcKo62brPg9kCqiRTcpd/PZEkibC5LTnze+k1c61SFzOGrKlmL8ZYp57mUKaHvakCBT3H67I7\nWsVK64FD2WuQVRMM2SXc0Gd3ootxt0IYhZiyRsVrMGQVuS6zg3rocEO6nzPWCONumWpgMZcmq8uu\nbgG4kce4VwIgIRt0ags3bzZknW1GHz4B242+uL+s1saexB5SalxDKy5bkUOTdarBNAcS16HKGvWg\nyoQ3hjazgiNFJKUE7WqBLn0bg86rTPmXct6y6qUUAS90GPHP0Kb3kVEXHttapJQCmpzCj2xG3WcI\nomVOn4c1/KiOHQzjhzXq4VlkLq1IRdHa8okjXCBEkbIEVAAIoip+OLym23stEwHXBgr8ANdaOAF6\nOb27u0ikTdK5JOYSuU+yIpPvXHhbbjXGR8qkMwlsy6VSqi95XVmWFmwmXa1YjA6XcZtJ4n4QcmFg\nkp8+/Su+939fYCZdUFUVuhfoDTmjuyeLLMv09OQoVxqtYqSyLCHLElEE7W0pHMenszPTajqdTput\n1a+pcoOG5ZIw4yryz710AQDL9jg1MMHwWIWzFyY5fX48bpK9SKL6Wp08N8pkpUZvR4ZTQ5NUGwsn\nk0fN/5dysVihbscvtnt7ZueCuX6cqJpNmPTkM60E9K2sJ5OhK5PG8gMK6RRT1sybsURaNxZchelJ\np0lq87czGq7LkwPn+f7Z0yyVjtqVTDHtOkDEjnSWbels3GWgebLx9FSJIIw4W5niZGmidVtnK1MY\ncz7QlN24r2MhkeYNhe3ossKYFR8yyekmfhhScx1eKI4Qhsx6PFXfIQijVkL+DHNOMFR0GrTrl4J0\nWZLYlszRYazsJOrZehE/vJTEXPcdTs9Jku81c2TV5km/KKLSTJAfs6c5VR9jZ6KDdPP7WTVBwciS\nUHQOpfvQm6tSqqQwZBcB0FE43xjjbGMUXVYZdovsMgv0Gu1k1SRtWiZuer1KhqzToeW56IzhRf6S\ntyEh4YUuT1d+ylnrHEWvSDWsUgtqXLAHqPnVZomOAIk4rcAOLSLAi5xLr1GSxq7EARJKCq/Ztkdf\npCm1Jhv06ftR2ZjGzTIqEjLSMm/XdjiGKifo0N6ALCVIK/sw5M7LtqXPEEbLH2qZS5EyqHInqtyN\nKnUQRVGz2vy1vdK+GUTAtYHMlEHbIkneK1Gftuja1kYytbZk09Xo29kR90+UJQbOjlMcn17y+rbl\nMjJUan0dRRFnTo1imGorGEunTfYd7OENb9rPbx89cOmJX1/6SW+aeqtqvNVwcF2PMIzwm8GF6/o4\nro+uq6RTJrqu0tVs6TOzYnXLb+0nlTQYHa/E/09UODc4SSZlcstv7qUtl+TiaJkdfW34fshEaXWn\nMpfzun19dOXTnLwwTkcuRaFt/otTuWbFjYQzS9dV2lloI7VI8+uZU4sA5brFcHF6ycBjq9Bkmc5k\nAl1RyDVb+piqSsZY+HGOVKtM1Od/ECjZFpoik1A1Bqcry95nxXaYdh38MAQkDubj9k5pLd4a7DDj\ncg5BFGH5Hj+fGCaaswqa0w26E3ETalVWkICi3WjeJpyplEhpGm8q7JzVuQAgpeo4gUemWXR0pq9k\npzk7kMpoBrkl6nItJ6MacQf21v0a7EvFJywbvovXTOafeU6GRNSapwm7zSyvy2yLk9+bgihkzJn/\n++3Ss+xttvhxIp+MmiQh6+jN1avltgvdcPkPOn4UN+Tu1jsZ94r4S6zU6LJGQk6QV3KYkkGP3sM2\nfRtZJcuh5HU4OGhojLhDEMVbmh1aF05o0y7PX1kteqMQwTajf8mtQkNO4OPSCJZ+3VwLWVIpaDc0\nm04vLqPuxZDbMeTOuNXRHJEUAmvP+QyiMmFkxf1h1ZtQ5JXXhxRiawq4bNvmIx/5CHfffTf33HMP\npVJp3nW+8pWv8J73vIf3vOc9fPaznwXiN+WjR49y/Phxjh8/zqc//ekrG/01xHd9rNri22hzhUFI\npVglsU5bhitlGBqGqS77pq0bGh2XJbxLksThIzuYLjfgsp8dulBiZDhePfvlS0NEUbSikhOVioVt\n+xQKWZ555hzj49OMjsUv+ImETldnBlmW0C47SdmwXE6fnb0t2t2Vpa83z62/dZB8NomuK+QyCTJp\nk8MH+uJim463ZEmI1XBcn4HRUlz9vWpx/e4euvLpBVeeHM+f93u+kmCpkEsjyRLhNRBwSZJEUtfj\n6v3NNzlVkUkssIoF8QpXZ3J+YOqHEUe6e+hOpyna8UrZz0dHWsHP5c5MlZBliZSmc6Zc4lB7J6NW\njbrnsj2TJaFq5AyT3dk8qixjKiq/d/AIeXP2/WqygiYrjFp18rqJqWr0JTMozcfx9t37mXIdar6L\nOedQg97MAwukkMFGheHGNF44/zh9UtVRF6mztRJH8ttmtfC5XD1wcMPZQYsiyWwz8zQClxG7jCor\nre1IN/SxAy8+KRkG2MH8IOlsY4yQkDY9TaeeRUZutfJpBA71YOHXvhG3iL9MOYFpv8aAM4IqKfTq\nXQu217mcFdrsS/WT0TLYoY2ExJAzRD2s0a31cNEbpEfbhiIpjLkjAHRoXVTCMnY4e+tTQWXcu4iM\njCkv/cGoTe1Z96KnM1aSv+VHdaIoou5fYNJ9GoCy/4vW9zPKdcsGbUsJojJ+NLn8FYVFremd/NFH\nH+XAgQN8/etf513vehcPPfTQrO8PDg7yxBNP8Nhjj/HNb36TH//4x7zyyitcuHCB66+/nhMnTnDi\nxAk+9rGPrcuD2IrCMGTw1Ut73N4qAy5ZkenbU1j+ihvg4G/sWPaEoixL8xpy67pKd1/brABx34Ee\nduzqYHK80ipMumPX8iUSCoUsyaSOacZ1slzPoy0/exWgWrMpV+JtkDCMGJ+Y5sC+2ceSJUlCUxUS\nCZ1T58Y4OzDJeLFKWy5BX3cOU9cwDJXsGgvUzmXoKr0dWabrNkQRpq5xfrS0YC2u7rbMrEKqQRjy\nyuDEvOutxvaO3IK5TltVbzazosTby6vGX66/rQ1Fkml4HjsyOcbrcYPqhbYl97a1kzNNap7Lzmy8\n8hwX/4SXS+Pzru+FIWPW4jlT21NZnMDnB0NnsIOgNb6EpjNp18lrxrygSZYkplyb/ZkOflmewA58\nat76J/jODbYuX63qMjKERLxYuYgzJ3iKooiSWyetmiSUeLXRCX2KXo1xdxo7dKktEDz1Gm20aRk6\n9QwT3jRJxSClmARRSNVvLPpBYpfZs+w2Y7uW43BqLwCj7iR2uPQKebvWhimb5NU8qWZyfa/Wy5g7\nihVa7DR2o8s6qqyRbbbhqfoVVEnDbK5iWUGdMArJa53sNPdfca2qq8EJS3EDaySyymEA8uqRdblt\nNzyPTPuWa1R9rVnTX9Gzzz7L0aNHAfid3/kdnn766Vnf7+np4Utf+hJKs8qz7/sYhsHLL7/M2NgY\nx48f55577uHs2bNX/gi2KM/x6ey7lLybSJu0L5G3tNWcPrl8QuSZV0fx5gQSgR8QBvNXF8ZGK3T1\nrOzTX6PhMnghzgtpa0vR3ZMnm0kwPFKmXre5MBh/L59L0tkRr7LJssTunQu/GEwUq1SqFgf6u9m9\no518JonrxZ+qS5U6ruuja+t3WlHXVBJGXFHd9XyySWPRSvOTlTquF/8OFVnmup0LB9kzOVy/Dk4X\ni9Td9Xs8WcNgb1s7vxgfZcq28Bc5CNGRSNJhJsnpJglV47nxYaIIfrt3B73JDDXXnbUSqckyPcml\n81S8MKAvmaHDTLSKlZYadWQkdHXhOY8ro6tcn++iO5FuFT3dSD8qnpm18mnKGn2J/Lwtv5RqcH02\nPmQyEyRlVJMOPc3eVDcZNUGnPjtndNAqUvctJAk0SaHPaKdNi39vcfK+vGD/xEF7nKpX56Kz8g8Z\n24xuzEVyqRZjhzYONkfSN5BT4wBr2B3ipfoL+PjYocV55ywXnYHWY66HVYLI56JzHpWrX+fOCxvL\nJsnPlVJ2IEsaKXUH+jr3c1SlAoqUQZbWvzH3a8my7zKPP/44jzzyyKzLOjo6yGTiJ10qlaJanX1y\nStM02tvbiaKIv/zLv+Tw4cPs2bOHyclJ7r33Xm6//XaeeeYZ7rvvPr71rW+t48PZGnzXZ/zCJDsO\nbnxDT8+Nt6XmrjZdqQPXb1v2Ov0HuuetOtRrNrqhzlrlMgyN192wa8X3nUzqyIUsr7wyzKFDfeza\n2YFte+zf1926vdWwbA9dU6g3XBqWS6lSZ3++gGW7JE2dzDrnyNUtl4lyjd298YmlPmPxFz9NVVbU\n2HysXKW/Z+XFU7eqMIqwXD/uZbiAquNgquqq6otVHYeTkxMcbO9kWzbLwY7FP4UHUdyCBuDGQvz8\nfLU0yXB9mp2ZHN859yv+254DqLJMEEVMORZZffE3+O3peG79MODV8iSH2wocKfSSCw1S6vzHqEgy\nN7T3xQn7ioYbBgRRiLrB6bT/tXDdrHISmqzQoc9PwB+0SmRUk7yW5IJVpF1Pk1FNUs3twbLXQG2W\niACoBzZhFOJFAaqk0KFnCaIQK3AwFR1FUujSF/7732HGHy5We3iu7E/jR/6ipxXnSipJksrs7cDt\n+k5q/jRE4EUeZa9Iv3mw9Xo2UyS1R9++KaUPAlyiKEKRNiYRf7VkaentVGFl1lRp/sMf/jD33nsv\nR44coVqt8t73vpd/+Zd/mXUdx3H45Cc/SSqV4oEHHkBRFCzLQlEU9OaL7dGjR3nyySeX/IP2/WDB\nE3FCrFysEYbhqouUbmWVSoPh4Sm6urJ0Nk9gnj03zq6dnYv2MlxIudLAsly6C7lW8vKLJ4dQFJn2\ntjS5jInvh7Pqdm1lURTh+QG6plKuWSiyRCZ5bYx9MQOlMvmESS5hEkUR337xJG850E/OXPnjGq/V\nsH2fkmVxpKdn2TpVQRiXTJAkicFKhUIqhSrL67oVG0URz4xf5De7ty/4/ZdLY1zf3r3g99ZbxbXi\nJPZFVtxWo+47rd6KEOd3NXyH/GXBmxN4TLk1vDAgr6fIaOu7KhIX4YyW7cv4avUUBzP7GbcnyGoZ\ntGaJC2XOFua52hkSUhJZkSiYm18pfYYfuqjy1gi4hPWxpn2Um266iX//93/nyJEjPPnkk9x8882z\nvh9FER/60Id44xvfyL333tu6/LOf/Sz5fJ577rmHV155hd7e3mU/PUxNbW5/uGuD1GplsBXaGlyp\nMAzJ5VJE0aXWTpl0gtIy5Srm304EERSLl5L0uzuy+EHIxEQVpdlc2l5j6Y6Nstgc1m2XqZrF9s4c\nddtFliXs+tYa+2ppAdi+i1vzmKw3SKNhT7u41ZU/robnYigq29Q0xRUcyLgwXSFnGOQME9txKTvS\nokHav108x75cB9vTK/9A09WVYXKyxm45N28ef1ke53C+QGgFjPvTV2X1ZMptYMgqyQVW3NaqRpxH\n5YY+w06J3YnZW+EKKgoqdsPHZnNej9rpYcKu4oYSFcmhGkwAUmtbcUaaAk5oY8gmE9XqvOffoHOa\nHca+qzx6GHB+xDbtDair3EJ9rdsK74GLtfZZ0wqXZVl8/OMfZ2JiAk3T+PSnP01XVxf/8A//wM6d\nOwnDkI9+9KPccMMNrZ/56Ec/Sn9/P/fddx+NRgNFUbj//vvZu3fvkve12b+4a81W+GMTrsxrdQ7D\nKIq3UVa50vT9c2foTWW4vrC6Qya272M2K9e/Uppkdzbf+vpKLDV/TuBjKCqjVpVu88oqgAvrZ8wd\npkvrQZbkefMXReGmJM37kYMqiWBrtbbC6+diAdea/ooSiQSf+cxnePTRR/nHf/xHurri+i6///u/\nz2233cbb3vY2XnzxxdZpxBMnTnDjjTeSy+X4whe+wFe/+lUeeeSRZYMtYWXed+sD63p7x297cM0/\n+9/f+X/WcSSrd+f7Pzfvsjs+8PCsr999z8PzrrMVvf1/fWmzh3BVvfXzf79ssHXr38//ndy6aw8H\nO+fnbf2XE1+cf92vxZedq0zx5se/3Cofcai9c12CreXMVHvvSVw6nfmb/++hpX5kRW79179Z/jo/\nWvq5+dan//ea7/+dP//Umn92s/yPgY+0/v2ZkU/N2qJ8YPCDrX9vdLD1yOSdC14ugq1fP1v/rKuw\npPe94QFYx13XaznYmrFU0HWtBFszXitB1y0Pf4mV5E67wG/PCboWanr9Wye+yNzNxTd+7YvMVFna\nkYm3lf7zNzb39zsTbF1p0OUAb1om6AqAo4sEXa+1YOty/3Pgw7O+/tDPf++q3fdiwZbw62lNW4pX\n02YvDV5rtsJyqnBlxBxe28T8XdvE/F3btsL8reuWoiAIgiAIgrByIuASBEEQBEHYYCLgEgRBEARB\n2GAi4BIEQRAEQdhgIuASBEEQBEHYYCLgEgRBEARB2GAi4BIEQRAEQdhgIuASBEEQBEHYYCLgEgRB\nEARB2GAi4BIEQRAEQdhgIuASBEEQBEHYYFu+l6IgCIIgCMK1TqxwCYIgCIIgbDARcAmCIAiCIGww\nEXAJgiAIgiBsMBFwCYIgCIIgbDARcAmCIAiCIGwwEXAJgiAIgiBsMBFwXYNeeOEFjh8/Pu/yH/7w\nh9xxxx0cO3aMb37zmwB4nsfHPvYx7rrrLu6++27OnDlztYcrzLHY/AFYlsVdd93VmqcwDLn//vs5\nduwYx48fZ2Bg4GoOVVjAaubP8zzuu+8+7r77bu68805+8IMfXM2hCgtYzfzNKBaLvPnNbxavn1vE\naufw85//PMeOHePd7343jz/++NUa5jzqpt2zsCZf/OIXeeKJJ0gkErMu9zyPP//zP+ef/umfSCQS\nvPe97+Wtb30rzz//PL7v89hjj/HUU0/x13/91/zt3/7tJo1eWGz+AF588UUeeOABxsbGWpd9//vf\nx3VdvvGNb/D888/zF3/xF3zuc5+7mkMWLrPa+XviiSfI5/P81V/9FeVymXe9613cdtttV3PIwmVW\nO38Qv7bef//9mKZ5tYYpLGG1c/gf//EfPPfcczz66KNYlsWXv/zlqzncWcQK1zVm586dCwZMZ86c\nYefOneRyOXRd5+abb+ZnP/sZe/bsIQgCwjCkVquhqiLG3kyLzR+A67r83d/9Hf39/a3Lnn32WY4e\nPQrADTfcwEsvvXRVxiksbLXzh+tAwwAAAt1JREFU9453vIM/+ZM/ASCKIhRFuSrjFBa22vkDePDB\nB7nrrrsoFApXY4jCMlY7hz/+8Y85cOAAf/RHf8Qf/uEfcuutt16lkc4n3n2vMW9/+9sZGhqad3mt\nViOTybS+TqVS1Go1kskkFy9e5Pbbb2dqaoqHH374ag5XmGOx+QO4+eab511Wq9VIp9OtrxVFwfd9\nEThvktXOXyqVAuJ5/OM//mP+9E//dEPHJyxttfP3z//8z7S3t3P06FG+8IUvbPTwhBVY7RxOTU0x\nPDzMww8/zNDQEB/84Af57ne/iyRJGz3UecQK16+JdDpNvV5vfV2v18lkMnzlK1/hlltu4Xvf+x7f\n/va3+cQnPoHjOJs4UmE15s5rGIYi2LrGjIyM8L73vY/f/d3f5Z3vfOdmD0dYhW9961v85Cc/4fjx\n45w8eZKPf/zjTExMbPawhFXI5/Pccsst6LpOf38/hmFQKpU2ZSwi4Po1sXfvXgYGBiiXy7iuyzPP\nPMONN95INpttrXzlcjl83ycIgk0erbBSN910E08++SQAzz//PAcOHNjkEQmrMTk5yR/8wR9w3333\nceedd272cIRV+trXvsZXv/pVTpw4wXXXXceDDz5IV1fXZg9LWIWbb76ZH/3oR0RRxNjYGJZlkc/n\nN2Us4qPyNe473/kOjUaDY8eO8YlPfIIPfOADRFHEHXfcQXd3N+9///v55Cc/yd13343nefzZn/0Z\nyWRys4ctNF0+fwt529vexlNPPcVdd91FFEV86lOfusojFJay3Pw9/PDDTE9P89BDD/HQQw8BcdKv\nSMDeGpabP2HrW24O3/KWt/Czn/2MO++8kyiKuP/++zctl1KKoijalHsWBEEQBEF4jRBbioIgCIIg\nCBtMBFyCIAiCIAgbTARcgiAIgiAIG0wEXIIgCIIgCBtMBFyCIAiCIAgbTARcgiAIgiAIG0wEXIIg\nCIIgCBtMBFyCIAiCIAgb7P8D7tjtUAeyfHoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUY2WZP/DvXZObpZJUVaqqu6v3rgaBUQYd5yAwPTKD\nMIDDYZNuOQ2OjLOiDgwi6gj8VKAVZsSDI+M2OuIZaW1bNnEZhXFf0e6xhd7X2lKppLLn5i7v/f2R\nqlSlsm+VpOr5eDyHSqdy38rN8tznfd7n5SzLskAIIYQQQlqGb/cACCGEEEKWOwq4CCGEEEJajAIu\nQgghhJAWo4CLEEIIIaTFKOAihBBCCGkxCrgIIYQQQlqMAi5Cutw999yDz3/+80X/7ayzzkI4HG7p\n8QOBALZv397SYyy2Z88e/N3f/V3ebe985ztx2WWX4ZprrsE111yDBx98sKbH/MAHPoCf/vSnNf3O\n448/jj/90z/F+973vrL3++QnP4nvfe97NT02IWR5Eds9AEJIdxscHMSTTz65JMeKRCL4t3/7Nzzz\nzDP44z/+47x/++1vf4uvf/3rGBwcrOuxH3jggZp/Z8+ePXjkkUfwute9ruz9fvGLX2DLli11jYsQ\nsjxQwEVIl9i9ezeeeOIJ8DyP/v5+fPCDH8TGjRsBZION7du3Y3p6GiMjI/jXf/1XOByOvN//9Kc/\njW984xsQRRHr16/Hrl274Ha7Sx5v586d2Lx5Mw4cOICZmRlcc801eNe73oXR0VHcfPPN2Lx5M8bG\nxrBr1y68/e1vx29/+1sYhoGHH34Y//u//wtBEPCHf/iHuO+++yDLMh5//HF897vfBWMMa9aswX33\n3VdzcPStb30LAwMDuPvuu/GDH/wgd/uZM2eQTCZx3333YWxsDOeddx7e+973wuv1YufOnTj33HPx\n85//HKFQCLfccgtCoRB++ctfIp1O49FHH8VZZ52FnTt34uabb8Z5552Ht73tbdi2bRv279+PaDSK\nO+64A1deeWXeWP7pn/4JgUAAH/jAB/Dud78bX/nKV3DzzTfjiiuuyD1/N998M0KhEA4cOICPfexj\nEAQB3//+9zEyMoLbbrsNQDZDOffzpZdeile/+tU4dOgQ7rzzTrz61a/Ghz70IUxMTEDXdVx11VUF\nmb0TJ05g+/bt+NGPfgRZlmGaJt74xjfiP//zP3H8+HE8/vjj4DgOgiDg7rvvxh/90R/l/f7evXvx\nzW9+E4wxBAIBDA4OYteuXRgcHEQwGMR9992H48ePg+d5bN++Hbfccgv27duHhx9+GJqmIRgM4g1v\neEPNGUVCVhqaUiSkC/zsZz/D5z73OXzpS1/CM888g6uvvhr/+I//iLmNIgKBAL7whS/gO9/5DgKB\nAL773e/m/f73v/997N27F7t378Zzzz2H4eFhfPnLX6543PHxcXzlK1/BN77xDTz//PN48cUXAQCT\nk5P4h3/4B3znO9+B3+/P3f+///u/8fvf/x5PP/00nnvuOSSTSTz//PN46qmncPjwYXzta1/D008/\njW3btuFf/uVfan4eduzYgdtvvx12uz3v9nA4jDe84Q340Ic+hKeeegoOhwPvf//7c/8+NjaGp556\nCp/85CfxyCOP4PWvfz327t2LSy65pOjzcObMGVx88cXYs2cP7rrrLjz88MMF93n00UcxMDCARx55\npCAYW2guiLv77rtx2WWXVfwbR0ZG8K1vfQuXXXYZ3vOe9+D666/H3r17sWfPHvz0pz/F888/n3f/\njRs3YmRkBC+88AIA4Mc//jHWrFmDLVu24GMf+xjuu+8+7N27F+9+97vxi1/8ougxf/Ob3+Dee+/F\n888/j3PPPTeX7ft//+//YcOGDfj2t7+N3bt346tf/SpOnTqFL33pS3jXu96Fr33ta/jmN7+JF154\nAQcOHKj4txGyknVNhmv//v145JFH8MQTT5S936lTp3D77bfj2WefBZD9IL7rrrugqioGBgbw0EMP\nQVGUpRgyIU3zox/9CFdeeSV6e3sBANdddx0eeOABjI6OAgD+/M//PPe6HhkZKajb+tnPfoYrrrgC\nHo8HACrWHM256aabIEkSJEnCFVdcgR//+McYGRmBKIo4//zzC+7/05/+FNdcc00uIHr00UcBAO9+\n97vxu9/9Dtdffz0AgDGGdDpd69NQ0mte8xr8+7//e+7n22+/HRdffDE0TQOAXKCzdu1aAMAll1wC\nAFi3bh1++ctfFjyeJEnYtm0bAOCcc85BJBJp2lgrmZueTKVS+NWvfoVoNIpPfOITudsOHjxYEODd\neOON+MY3voErrrgCe/fuxY033ggAuOqqq3D77bdj27ZtuOiii/COd7yj6DEvuuiiXLb0LW95C665\n5hoA2fP5nve8BwDgdrvx3HPPAQB27dqFH/7wh/iP//gPHD9+HKqqIpVKNfmZIGR56YqA67Of/Sye\neeaZioHSU089hS996Ut5Xzaf+tSncPXVV+O6667DZz7zGezevRtve9vbWjxiQpqr2JanlmXBMAwA\ngCjOv5U5jiu4vyAI4Dgu93MsFkMsFsPw8HDZ4y58XMuywPPZpLgsy3n/Vuz+ADA9PQ3GGBhj+Ou/\n/mu89a1vBQBomoZoNFrw+x/4wAdymZLt27djx44dZcc359e//jWi0Sj+7M/+LDfWuWm0ufEuJElS\n2ceTJCn3ty583ipZ+Lzrul70PovPz+L7zU0FM8ZgWRaefPLJ3GdfOByGzWYreMwrrrgCDz30EI4d\nO4Zf/epX2LVrFwDgjjvuwA033IAf//jH2Lt3Lz7zmc9g7969ub9tztzzNHfcuZ9FUcz7+8+cOQOf\nz4e/+qu/wtlnn41LLrkEf/EXf4H9+/cXfY0SQuZ1xZTiunXr8Nhjj+V+PnToEHbu3ImdO3fine98\nJ+LxOADA4/EUTA+89NJLuavZP/mTP6l5FRIhneDiiy/G888/n7uY+PrXvw6v14v169dX9ftveMMb\n8D//8z9IJBIAgMceewxf/OIXK/7eM888A8YYotEovvWtb+HSSy8te/8LL7wQzz33HDRNA2MM999/\nP775zW/mpufmjv+JT3wCd999d8HvP/DAA3j66afx9NNPVx1sAUAymcRHPvKRXCbq85//PC6//PK8\nQKLVent7c8Hi6dOncejQody/CYKQC459Pl/ufuFwGL/+9a+LPp7L5cL555+PL3zhCwCyQfKOHTvw\n/e9/v+C+NpsNV111Fe655x686U1vgqIoMAwDl156KVKpFHbs2IH77rsPx44dy41joZ///OcIBAIA\ngCeffBJvfOMbAWTP59e//nUAQDwex6233oqTJ0/iwIEDuOuuu/CmN70JgUAAp0+fBmOsrueNkJWi\nKzJcl19+eW7qBAA++MEP4sEHH8SWLVvwta99DZ/73Odwxx135D4kFkokErnCYKfTmQvOCOkmF110\nEd72trfh1ltvBWMMvb29+PSnP12QqShl27ZtOHr0aC6I2bJlCz784Q9X/D1VVXHDDTcgmUzirW99\nKy688MK89+Ji27dvx9jYGK677jpYloXXv/712LlzJ3ieRyAQwFve8hZwHIdVq1blsjDNsG3bNuzc\nuRM7duwAYwxnnXVWVX9fM/393/897rnnHvzgBz/Apk2b8lYuvvGNb8RHP/pR6LqOnTt34q677sLl\nl1+O4eFhvP71ry/5mI888gg+/OEP481vfjM0TcPVV1+Nv/zLvyx63xtvvBFf/vKXcf/99wPIZqfe\n//7346677splqh588MGCbB+QXWn6nve8B8FgEFu2bMGHPvQhAMC9996L+++/H29+85thWRb+9m//\nFueddx7+5m/+Btdeey28Xi98Ph8uuOACnDp1ChdeeGEDzyAhyxtndUkeeHR0FHfeeSe++tWv4rWv\nfS3OOeccANl0/IYNG/I+vC+66CL85Cc/AQBce+21+NznPoe+vj4cPHgQH//4x/HpT3+6LX8DId1k\nbpXd3Ko7sjzt3bsX3/nOd+hzkZAW64oM12IbN27ERz/6UaxevRovvfQSgsFgyftecMEF+MEPfoDr\nrrsOP/zhD/Ha1752CUdKSOf6+c9/joceeqjovy3ucUUIIaQxXZnhOnDgAD760Y/CMAxwHIcHHngg\nt8IGyM9wTU9P473vfS+SySR8Pl/R/kSEEEIIIa3UNQEXIYQQQki36opVioQQQggh3YwCLkIIIYSQ\nFuv4ovlgkNo41MLnc2Bmhjo+dzM6h92Nzl93o/PX3Trh/Pn9xfeopQzXMiOKS9fokbQGncPuRuev\nu9H5626dfP4aCrj279+PnTt3Ftz+xS9+EVdddVWuG/zx48fBGMO9996Lm266CTt37sSpU6caOTQh\nhBBCSNeoe0qx3P6Gc20bzjvvvNxt3/3ud6FpGnbv3o19+/Zh165dePzxx+s9PCGEEEJI16g7w7V4\nf8OFfv/73+Mzn/kMduzYketevHBPw/PPPz+3lxghhBBCyHJXd4Zr8f6GC1111VV461vfCpfLhdtv\nvx0vvvgiEokEXC5X7j5zm7mKYsfX7RNCCCGENKTp0Y5lWbj11ltzG0Zv27YNL7/8MlwuF5LJZO5+\njLGqgi2fz9HRRXCdqNQKCdI96Bx2Nzp/3Y3OX3fr1PPX9IArkUjg6quvxvPPPw+Hw4Ff/OIXuP76\n66GqKl588UVceeWV2LdvH7Zu3VrV47V7eWe38fvd1Eqjy9E57G50/robnb/u1gnnr1TA17SA69ln\nn0UqlcJNN92EO+64A7fccgtkWcaFF16Ibdu2gTGGn/zkJ9i+fTssy8KDDz7YrEMTQgghhHS0jt9L\nsd2RarfphOieNIbOYXej89fd6Px1t044f9T4lBBCCCGkTSjgIoS0DbMsGIy1exiEENJyFHARQtom\nqqqYiifaPQxCCGk5aoJFCGkbn6LAV2S3CkIIWW4ow0UIIYQQ0mIUcBFCCCGEtBgFXIQQQgghLUYB\nFyGEEEJIi1HARQghhBDSYhRwEUIIIYS0GAVchBBCCCEtRgEXIYQQQkiLUcBFCCGEENJiFHARQggh\nhLQYBVyEEEIIIS1GARchhBBCSItRwEUIIYQQ0mIUcJGaMMaQSmlLftykuvTHJIQQQpqFAi5SE103\nkUioS37cYDQBy7KW/LiEEEJIM4jtHgDpLjabhIEBacmPu2Gwd8mPSQghhDQLZbgIIU1zKhrBjJpu\n9zAIIaTjUIaLENI06z3edg+BEEI6EmW4CCGEEEJajAIuQgghhJAWo4CLEEIIIaTFKOAihBBCCGkx\nCrgIabMTU2FkdKPdwyCEENJCFHAR0mZrej2wSbRguBsF1SQmU/F2D4MQ0gUa+pTfv38/HnnkETzx\nxBN5tz/33HP4r//6LwiCgK1bt+L+++8Hz/O49tpr4XK5AADDw8N46KGHGjk8IcuCLArtHgKpU5/N\n0e4hEEK6RN0B12c/+1k888wzUBQl73ZVVfHoo4/i2WefhaIouPPOO/Hiiy/i4osvhmVZBcEZIYR0\nK57j2j0EQkiXqHtKcd26dXjssccKbpdlGU8++WQuEDMMAzabDQcPHkQ6ncbb3/523HLLLdi3b1/9\noyaE1O30TAQxden3wySEkJWs7gzX5ZdfjtHR0YLbeZ5Hf38/AOCJJ55AKpXCRRddhMOHD+O2227D\njTfeiJMnT+Id73gHvv3tb0MUyw/B53NApCmXmvj97nYPYUUzDBOMWZDl+mfsW3kO+/pc4HnKzFTr\neCSMHpsN/Yqz6t+h92B3o/PX3Tr1/LWkUpcxhocffhgnTpzAY489Bo7jsHHjRqxfvz73316vF8Fg\nEKtWrSr7WDMzqVYMcdny+90IBqmIt9kOjwaxYdAHuYri9mgsDcMw0dfrqutYdA47ixsSLJ0hmKju\nnND56250/rpbJ5y/UgFfS1Yp3nvvvchkMvjUpz6Vm1rcs2cPdu3aBQAIBAJIJBLw+/2tODwhTbd1\n2F9VsAUAnh6l7mCLEELI8tS0DNezzz6LVCqF8847D3v27MHrXvc63HrrrQCAW265BTfccAPe9773\nYceOHeA4Dg8++GDF6URCCCGEkOWAsyzLavcgyml3arDbdEI6lTSGzmF3mzt/k6kERJ5Dv7362i/S\nfvT+626dcP6WdEqREEJWun67Az6bUvmOTWBZFk4kQ0tyLEJIfWhOjxBCWkDkl+56luM49MqUSSOk\nk1GGixBClgGPZG/3EAghZVDARcgKcCYUgWGydg+DEEJWLAq4CFkBfE4HBGp22nQmYzgTj7Z7GF3J\ntOgCgKwsFHARsgK47DI42vev6XiOg1uytXsYXelUOoAM09s9DEKWDBXNE0JInTiOg9dOtVP12OQo\nv8sIIcsNZbgIaaJEKgOTaqUIIYQsQgEXIU2USmtUnN4GKV1HQtPaPQzSBNN6BEkz3e5hENJ0NKVI\nSBMN9HXmLvXLHYNFRdjLRI/ghMBRLoAsP/SqJh2JmQxTkytv9deJQBiMdfRuWx3JJcnw2KiWajmQ\neQkCJ7R7GIQ0HQVcpDNxHGx2qd2jWHIDHhd4at9ACCHLDgVcpCPxPAeP19HuYSw5p11u9xAIIYS0\nAAVchBBCOkpIjyGgzbR7GIQ0FRXNE0II6Sh9Uk+7h0BI01GGixCyZIKJJCZi8XYPgxBClhwFXIQA\nyGgGACAaT2N0MtLm0SxffpcTQ25Xu4dBCCFLjgKuFYiZDMcPTrR7GE0xE04gGGisfYRumJicjgEA\nPG4Fw0PeZgyNlEB7OhJCViKq4VqBeIHH+pHBdg+jKbw+J6wG21ZJooD1q3ubMyBSYDqZgiKKcNpo\nBSYhZOWiDNcKJQjddepjsTSsIpEVx3HUt6rDKaIISaBGlgsZjIE1eqXQZgkjDZ0ZTX/ctJnByfRk\n0x+XkHbrrm9dsmKl0lrRgIt0PqdNhiwWBlxRVe36oKNeQTWJiKa2exgN0SyzJdspKYING5Shpj8u\nIe1GU4qkKwwNeto9BNJkCU2DU5LBCysvQ7nK0f17bvZKtPiBkFpQhosQ0hZrenogdtnUNiHlmJaB\nNEu0exikQ9GnHSGErAAnktNIGVrF+83oyZZMFa4EDAyGpbd7GKRD0ZTiCmLoJgBAlKiAmZCVZq2j\nFyJX+RrbsMxsvWQTZ3rDehwaMzBk8zXvQTuQxMmQBFqNS4qjgGsFScTTAABvL9VeELLSVBNsAYBf\nbv62Or1S99esEdIoCrhWEAq0CCGEkPZoqIZr//792LlzZ8HtL7zwAq6//nrcdNNN+OpXvwoAYIzh\n3nvvxU033YSdO3fi1KlTjRyakI7FmAXTpBoYQggh8+rOcH32s5/FM888A0VR8m7XdR0PPfQQ9uzZ\nA0VRsGPHDlx66aX4zW9+A03TsHv3buzbtw+7du3C448/3vAfQEiniaVUpDM6VvU1f2qGkE5iWRZt\n1URIlerOcK1btw6PPfZYwe3Hjh3DunXr4PF4IMsyXvva1+JXv/oVXnrpJVxyySUAgPPPPx8HDhyo\nf9SEdDCvS1mxwZbJGDTTrHg/y7Iwk04vwYhaz2CV/97lSGcmDiepIzwh1ao74Lr88sshioUJskQi\nAbd7vkDS6XQikUggkUjA5ZqvIRIEAYbR/G0hCCHtk9Q0TCdTFe9nAUhkKrco6AYHZ6bbPYS2kHgB\nZ7lWtXsYhHSNphfNu1wuJJPJ3M/JZBJut7vgdsZY0YBtMZ/PAbHItiCkNL+fVgRVKxpLI55QMby6\ns5arN/scqroBmyi0fPrHj+rHPTiwPLKAl/Q5sT84gdcOrsnd1s3vQZ2ZmMkkMaAsj/NTj24+f6Rz\nz1/TA67Nmzfj1KlTiEQicDgc+PWvf43bbrsNHMfhxRdfxJVXXol9+/Zh69atVT3ezEzlq2Uyz+93\nIxiMt3sYXcOyLIgC31HPWSvO4anQDIZ63LBJtDC5FdbxPblz1u3vQYOZiBoqOHll1mZ1+/lb6Trh\n/JUK+Jr26fvss88ilUrhpptuwj333IPbbrsNlmXh+uuvx+DgIC677DL85Cc/wfbt22FZFh588MFm\nHZqQunEcB2EFFP2u7+usDN5KMJqKYsjuhsh314YeIi+gT3a2exiELDucZVlWuwdRTrsj1W7Tzuj+\nyMvj2HzWEHjaH68hnXCFVqtAPAG/ywm+juD1lakgNvX6YKuixKAbzJ2/iJZGj2Sv6zmZY1oMQpUN\nS0lzdOP7j8zrhPNXKsNF72TSNCPnrIZhMkyOz7R7KDhyYqptvbDGQzEwVv91TFrTEYh21wc+z3F1\n7wTzqgE/bKKIhFZbEf3+6UmwGq8Xk7qG07FoTb9TL6+sNBRsAcDLsama/0ZCSGeigIs0lSgK6PE4\n2j0M8BxgGO1Zru+wSWjke1YSBDhttuYNaAn4Xc66C/Ity8JkPIGpZLKq4EI1DByansZr+odqDmgU\nUcKgs3umy87rGWw4aCun24M50zIxro23exiEVIUCLtJUPM/B4Wx/sLB5wwBsNqktx/a6lIZWA4oC\nD5d9+W+AmzEMZGZbw3AcsMnnqyq4sIsizurvr+uYPMfBJnTP1OX+mdb2uTqaCkBj3dueR+AE9Iv1\nvRYIWWoUcJGmUVUdibja7mG0zPRMAlPTnTPVZzKGk1Ptn76tV1LTkNYNcByHQRft81nM+b2t7XO1\n1TkEme+eALQYmV/+FydkeejudxrpLJaFDl+D0ZB+X2cFBQLPY8DTPdNji/U66pt6pu1kCCHdiDJc\npGnsigx3j1L5jqRpHLaVdXWvGgYOhUPtHkbXyph6u4dQs4A2hbiRaPcwCGkYBVyEkK5hF0Wc3bdy\nanZ0ZuJQfKppjzeqRqB32d6Pg/IA3GJnZZcJqQcFXCTP5Gh4WU8LLgcmY3h5tHlfwqRzSbyAzc7m\nBZibnX5IfGdvlRbW4zCt9rR0IaSVKOBawdLJTMFtitNG9TFLaHImjmiytoUGAs/jnOEBANll/WPh\n+b5SkWQaJuucL6tIevkuolgq3dapfk6xlhOGZeJoqnwbBwvdecFnWQyG1X1TtmTpdOc7mTRFeDpe\n0BzU4ytdhM1YflG8oZsYPzndsvF1i2Rag67XN03T3+OEW6m/jQYHwLmgjkszzLb2VtJNMxfwWZaF\nSDqNE+HuXUnZbKFMquum9OphWgxHU2MFt4ucgI3KUNnf7ZN6urK7vmapSJiRdg+DdDBapbiCrVlf\n21RFMBCFXZHh8WZXlwkiD19/Z+7KvpQymgGOAySp9qkascFtkDiOg9c5v1BhwNPeWpfpZAoOSYJH\nsYPjOGzo9SGuFmZSVyrL6tb8TW0EjsdW53DJf1uObLwDNr79TZ9J56KAi1RtcJU372eO46C4ymdn\nNM3A2OkQNm4ZbOXQ6qJmdMiSCJ5vbAq1t0JnfcYsMMtqOLjqBqt6CgNwt739jXA7Rb+9e9t4kOpk\nWAoMJhSeLkZJvuX/DUDaSpZFrN800O5hFBWOpqAvwfY/STWDqQgtaycr00pbhMNzAgR09sIE0h4U\ncJGqMWbhyMu171vWaAapVVYPeGCTW5/kdTvsWN3X0/LjdBqTMaQ0DVqb9rRcjjoxeBlTQziZChT9\nt6iexFgmvMQjai+JsyHBwlBZ5+xKQToDBVykajzPYfPZjW01wlgbC7rrLGwn9RmPxRGIJ3P7JS5H\nSxkAZUwDh+LBJTtetRRexqDNV/TfPJITw/a+hh5fZwZYl7WJ6BWHYacpRbIIBVwrSCKWLvlvhm5C\nTWkVH6PRbNXJY1Mw2hT4jAci0PTmfPkbJsNYgFYklbPW68HGPt+yruE6GgsjqVd+3zSDTRAx7PBA\nbXO3+MU9snplNxSh9I4HcSOFlFn/womQEUGGLc1zTEgrUcC1gkTDyaJX5IZh4tTRAEJTsZaPYdPI\nIMQ6VvM1Qs3oUDM61g/3QZaaM4Uo8Bw8btrGqJnCqRSmEsl2D6MmI54+OKX8YCOSSSOqtab/mMEY\nzCWeVlRNDVE9BQCIG2mMZ2pr88FzPPgivf0WZq1OpCYR14tfEA7J/VAEe03H7BQpM9aR08CkPSjg\nWkHWbOgv2tRUFAVsftVq8AIPNb38riR1zYSuNTerxnEcXI7qMjdnAhGkM9QQsZIeux29SvcHsRIv\nQGpRs1KvrMApls4mHU8GW/AFz+UCJreoYG2VU4Qq0xDRs3VMxTrHn1ID0Fj2feGT3DihjiFupJo0\n5nwJsz2LVjJWumsbuZLmo4CL5PQN9sBml3I/q2mtoDFqMZPjEaRSre21dPp0qO4vErfbDre7fVfI\nQ31u2FtUnK+bZlcXpSc1Dcbsa0zkeQg8h8Oh7t6c2inJcJQJilpp0NZT104RCUPFhBpBVE9BY/nT\n7nZBglusPRDmLA5zJZscCse0UVkFmc9+3nglJ17t3gK3mN9ipVlb/KRZui11YD5xEHwH9x0zrRQY\ndcdfMp37SiA1m56MIpWofypDlsW8D+tENI1MFRmv3n4X7PbWfsH097u7dsshSRRaNvaEqiGe7t7G\noglNg7ag8zrHcVjbs/JWdDaLU6yvXk4RZPTJLhgWa1pGhoEhzTJwCnY4hNrHlTIzGFObE3z7JX9T\nAh/LspAwo5Xv2CVMKwHdCiNuHm/3UFYEany6jLh6FMg2Ccl0c65Y+oc8Vd1PXoLWCg5H8YDu4JEJ\nnD3S2MrJTqcZBiZm4ljvL1wJ5nN29xTcoKuwM74iSUXuSYrJmAYEjoPY4IbUAsdD4Hj0yc3bqUAR\nbFhTR6A1xyHYsE7xN208zWFBX0YZIZnP9kiUqc5sSVCGaxmxO+SmFqQbuolIuHm1D7rW/PYAWzeX\n35dtOZAEYcm27ElrOqKp1hR8BxNJjEdbvzADACbjcQQSzXntvhya6tjWFlFdRcKov+5yKhNHINO+\nflHjmSBS5tJscB4xYghq1WXMkmYMOivMHHOzWbKk2f09tqwFU6zdOnvQbSjgIkvCMEyMnW5+bc5S\nNlX9/dGJJTvWQhzHQZGLZ30sy8Lp6e5oT+F3ObHaszTThUNud9HsWT3O6RvARDqOSJ0rD6OaiplM\n6ZYspRyITMKosNH1gN0Fr1x/ltMvuzDQxKxWrQZkHxS+uW1DTMvEpDZdcLtX7IFfrq7gn+f4XHC1\nmEfwwcGMTNlIAAAgAElEQVR39xZNzMogZf4OptVdq4K7HQVcK9DJw5NV1WaJkgBvb3M+jEVRwIYO\n3E+xFudu6bypS47j4HE0b0GAIktNfbx2OhmJQDObs6Bgg9sHr1zf82LjBdiE2qfdz/MONTxVWAnH\ncTVnN8J6AmNqc7rHi5zY9OwKDx5uobGASOFdELniFzk8J5QMxroFz9lgEzbBwvJbld7JuvtVQ+qy\nfmQQNqXxIvczJ4JIJVtTsH3kyCSMLl59t5Q6IUAyTIZgcumvlvdPTZZcvTrgdLasPUMt7KIEh1h7\nXZplWTgcL8zUtFuv5MIae2+7h1ESx3FwCt1d27gURM4NkSu+QwBpjfZ/GpEl16wryrUb/XA4W9NF\nfGRkCKJIG8AupGodXKzLAUKTMxWRtIpTM+WnS18zMFTy9eyQpKa91lVDB1viwmKO4zCsLL8Vm6bF\noFeYKu0UlsUQMYrvE0lIrSjgIqSDZEpsPWSYDJMz7WneWA2R59HrcFS+YxWYZeGVYBBexY71Pm9D\nj2UyhjOxKE7HItAbmF6cVlNIG0sf8Larn1cpi3t01SNhphE1Ove1nI+DzCnQWAam1R1BIulcFHCR\ntjBNhkik8a7SM5HlU/SpGyYmQ8VX8YkCjw2D1af/05qOZKZ8fUa7thyJZzJls0U8x2FL7/yUVSMr\nBHmOQ49sQ6/dAbGB6cVhl6dgC5+VxrIsnEo3vnm2R3SiX66u5Uw76CyDSe0kgGyW0SH0IM2S0C2q\ndyKNqauBEmMM999/Pw4dOgRZlvGRj3wE69evBwAEg0Hceeedufu+8sor+Od//mfs2LED1157LVyz\nK4eGh4fx0EMPNeFPIN3IsqyquthXkmliq4lILAVVMzDU355pHEkUsH6oObUxJrPKdtY2GcPBiSDO\nXbP0Cxmiqgq7KIIXslPGZyJR+BQFLtt8QCMJ89PJJyMRjPT1gec4GIzVFDhxHAePvbYat4PhaWzo\n8cIuUpvChTiOw4iz+MKRoBaDQ5DhXLTnocp0cABsfGf0VouZEcicDXa+dI2XxNswJG/Iu80jVv++\ntCzW9UX1pDXq+kT53ve+B03TsHv3buzbtw+7du3C448/DgDw+/144oknAAC//e1v8fGPfxxvectb\nkMlkYFlW7t9IczFm4cyxAPx+d7uHUhVRFNDX1/gKyKGB5l0pe9wKehYlXnTdhLTEm203g6tC53+B\n59sSbAHAsCf/nA25XRDKBFFn9fcDyE41HgpN41z/QNnHPzoThs9uR59S3xTn2b39Vd/XtBiEEl+u\nh6PT2OqZfyxmWTAYgyx0z+spaarQmQmvVH7Vn1uwF11RmTE1gONyAVfCSMEAg1dsfSuKgDaNAakv\nr47PxtkhcK19/qf0M+iTVpdc5dipTCsN3QrCzq9r91CWrbrC8JdeegmXXHIJAOD888/HgQMHCu5j\nWRY+/OEP4/7774cgCDh48CDS6TTe/va345ZbbsG+ffsaGznJw/MchtZW12NmOUkmMwg1qTkrx3F5\nfb3GAhEcPdPYFEpgJo5wrDUb8naSQ8HpuovKJUHIbY5cDs9xecHW/qnJovdzy3LRvfta4WgsDNWc\nz7ImdC03VbvGmZ8pTRoaptTqX6sJPYPJdO0NNjPMaNoehCInQOYrX5fbBRnibCCTMNK543skJzwL\n9keUeQl2fmmmZhXeVrBowsbbWx4IDcrruy7YAgAeNshc+YsZ0pi6MlyJRCI3NQgAgiDAMAyIC1Lw\nL7zwAkZGRrBp0yYAgN1ux2233YYbb7wRJ0+exDve8Q58+9vfzvudYnw+B61Wq1GnZbkYs2AxC4LY\n/DS7z+eAbphQWrCXY4/HDoHnG3r9zWXxam3Q2mnnsJIenwLbEk/BXdrvKhqoLeVzt/hYsUgYOmPw\n+91YvCmNH7WNy8sc0E0TjkW1Y+OpKGy8iD578azT6cQMnDYb3FLj7UJ0ZoBZFmxC9QGEntbhkx01\n/U4r1Pp85/1ul73/SL5OPX91fUK6XC4kF/TcYYwVBE7PPPMMbrnlltzPGzduxPr168FxHDZu3Aiv\n14tgMIhVq8o3k5yZWf7ZgWby+90IBjtr24loJAUtY8A/mL3in8sANLPhYSJeXT+wsckI+nudsJXo\n3N4JFp7DaFKF0y5DFJoTrI7PxOBx2OG0tSbLoJkm4pkM+pq0YnGhU9EI1vZ4qsqG1Uo3TRyNhPGq\nvsb27uuBBFkQmvoeTCL/tc0xCzpnIBgvfgwFItS0DhWNr6qM6kmYYOiVqv8CkyAhBhXA0mzZ02yd\n+BlKqtcJ569UwFfXp/gFF1yAH/7whwCAffv2YevWrQX3OXDgAC644ILcz3v27MGuXbsAAIFAAIlE\nAn5/p21MunKEgzHEy6wS1JpYjO7xOnLBFgCEQgmEw6VXF04H44jHa98KBcgGc9EyU3j9vU7IUnMy\nMbGkilC0taskddNEPJ1BJFH5+bAsC0aFhQi9LgfsTfr7i+Fm/1+KyfLHdzwcrnoVotdmb0mwBWSn\nNc+qoXarFUaTUcSr2D5I5IWSdWPN5pGcNQVbo2p1eyPqzMCU1hlbUqlMpZYPZEnU9a697LLLIMsy\ntm/fjoceegjve9/78Oyzz2L37t0AgHA4DJfLlZfBuOGGGxCPx7Fjxw7ccccdePDBBytOJ5LWcfU4\noLhKNy0dPdH48u90iS70/f3usgXzikNGNFZfwMUsC6pa+gvcJjevGaZik+BSmt/4dWomgclw9gqt\nv8cJRZYgVTGtmcxomIyUv7KzS2LZAvVGSYJQth/XK8HpvHYUwx5P0anIYi0riq02HI/H8NPR0wW3\nm4zhcLi2vTtLBXNL1fBU5HlMa92d0V9t64NDqDyVyXM8lDpquTJMK7pPYikay1Rsf5JmKehWa3us\nmZaGDOuW3mOkVTirXc14qtTu1GC3aSSdGo+mwRiDx1ffPmSnT05jzdpeCAIP02SYHA1jzfraswaM\nWchkdChN2H6oU50JROBzK3A5CgO2SudQN8yqArBuFUgkYAEYqmLzaWZZMBnLayMxJ2MaNe1hGEwn\n4VcKX/v/Nz2JV/cPVf04i89ftvg9gS09rVvU8nJ8AltdgxCXIPM1rkbQI9rhEisHVpZlNeUCx7BM\naEyDnbdBtwzYqgzWpvRJ+MQ+SDUUsbdiSkq30jAsFQpPW+m02rKbUiTLk02RYG8gyBlc5YEwW2sk\nCHxdwRaQLTAvFmw1urdiJJaCVqKTeynW7Bd6s63u74Gzjuc6ndExHi7eHLXdqrl2m06mMJMun70c\ndLmqCrbmhNXij1frhtGZEp3oywVbBjNxJFo+k+aSbLlgqxXZMsuyAAvgl2hlZr/sgkOoLrN7XB2D\nXqI7vWpWvw+raZnIMA08x1cdbAHAgDRUU7DVKhKnULBFKOAi82RZhM2e/XCKziQxNZ5fYxGLpTE+\nNlPy92221n6wnTgZLPqlfuhI6Q2MF6rnSjuRymAi2PwARxD4qsaTzuhILegYr9gkrB/ozA/uVyaD\nMCoEp26bDJfceOZyKpnMBS/NagEx7Kq94a3IC1jrqr4X3O9mmr8vH8dxOKdnVcvq2xaTebHqY21W\nhiGVaCsxpUfKNuddyMbL8Emd252ekGpQwEWK6vE60D/Yg/HTISRm66l6ehSsWl3f3nbBQBSJROVi\n2nA4gVSq+JXvyJbiGxWPbB6sKnjxuJWqC+YZs3D8zDTcTjuGByv/zYbJEE/VvyorFEsiHC+s3zEY\nq1gI3ynOWTVQsQu8TRSLTv9Voi3KPs2d7ZORGfTP1owFU0mEy2TPNNNEXKs+q1Ite5FMWkRT8/pz\nzXlN7xBGk9G8TBezrIK/rx2ierrm/l0vJ8YKsnY6M6ranHqdfRA8dWQnKwi92klRHMeBF3gMDffC\n1aPk3V6NjJpfhJrJGMikKxemOhwyZLm2qaBae1xV+5hrigRaiVTxIlyTMagNrOzscdjR48iviTFN\nBjWjF9xei2hKxVS0/cW6hskQSqVwMlL7yjSDMZyYyc+s+p1O8ByHQed8Ly6PzY4eW+mpLoOxktOG\n1ZpKJxHJ5AfWmmniWCycd1t2mq941lURpbyc3FxD1KCaQMqovF/fyWQYEa2+RSXlZJhec8D1Kufq\ngmxX3EwjuWil4uKfCVmJKOAiZdUbzEyMzeSvRlvXh77ZQkLGLIyNhov+nt0ud0yjW1uRwC+WUGGy\nwi9SmyTC761/uxJJFAp7bXHI1cTVy2WX4XXmB2zaojYMao11bfUIJBKQeB4bvPNB7GQ8jqSWDTD0\nEoFQQtMwEY/ntvdZzLlgelIWhLIZNockob/O7X7meGQbXFL+1LksCFjjyC+S9dkU2MXiU+x9Nkfe\nhYtbsmHY6YEiSEW3x1lsg7MXXrn0XoAL1RJADdh6quoqv9Dc36GaGk6mpwAAvZK7YCugkF7/tHy1\n047lZFgGx9JHSz5WhqlIms0pHTCt1r+fSHeigGuFqabw3DBMsCJBxZzF2atiNmweKJkN43kOHk/l\nLz7GGI4cLr59CwAkkhmcKRG4tcrqAU/TmpBWIvA8et2NBQgCz0Ne0HZBM0yMLiq6PxOKVKyBS2la\n1f2yilnj6UHPbFuHyXgCwWQSHrsdNlGEZpo4VSLz5ZAkDLpcSOs6Dk3ntwNIaFouYAOAtN7apf1A\nthC/WFBUKriqhUuyQV702ClDqzubpTMTRxK1t3dJmRkkjdoyUnZBxrC99CrMYVs/xtT6Ws0E9TDi\nRmNZWhtvg0d0wUL+69y0TGgsAx48BK7+NkXWgkBu2jid9zMhcyjgWkEyaQ2Tp0uvqLIsC9OBKEJT\nMSTjpT9wJ0bDVRWpl+Nyl58mMwwTPM9j85bSGyy7nDYMr/GVDQ6XO90wc6sodcOEViGglkUBmwZ6\n824bGeqvOFWc1g3oRWrJIunap4oGXE70OxxQJAkiz0MWBGzpK/5lzXMc5Nm9Fr2L+nBZVv7X52gi\nVrFov9tw4OpuqyDxAs52175BuQWgmmdxcfYsrCWQNucD4IPJM7n/5jkePWI26xXUZqCx6oJjwzIx\nKPfDvWCza9MykTBrbzjcLw0VbFytWRmkWQoSL8PO13dxozEVIWM09/OgtAlcm2vTTKu7+7ktVxRw\nrSA2RcbwpgHEIqmSARXHcRhc7YMg8iUzWRu2VFekvhgzGViJAvDJyfkMB2MWTs02Xq00pclxHMYn\nZhCJppBMZhpuHdENTgdnkJmdBgzFU0iqGphlIaFmEE83vygcAPqcDriKbAcUU9Wag2+eqy2IMBiD\nwPNQFi14cNtseSseR3x9FYv262FarGmbQddKESV4mrAnYi0SupbbiLqYDNNhWRaOJMfzbneJdhjM\nxLFUNiu91TGc9+/u2U2sbbxcVcBlWRbOqOMFt6fMdE0tJYrJMBUJMwaFd8AjNrbqV+bt6JfWNfQY\nzaayiYazbJbFKFPXZBRwrUCSLECU8j9QE7E0knEVfQPZpfGGbpYMjuoViaQQKbGdkN0+PyXD8xw2\nj1TfaHJ4TS/sdgnxhLrkU4ztMOh1Q56tcxvyudHjsGM6loTJLPSVmYJsRY/jdT4vzkTqr32pZmuf\ng9PTMBgDBw5j8cJj6abZ0sxWSE0jVKLXVyOqWcnXDg5BwrFUtn1FSEsgvmh6MajFkLEMnO2aD6gS\nRhp2XoZmmXDw2QCR57iifcdsvIQUqxwwcRyHjcragttTTIVHbGxzYp4TclOIGabCKFJ3xSyGpNmd\njbedwuaGs2yGFYRhVd/Vn1RGAdcKpDhsuX5bc0RRyCtW7/E6oDjnV3xNjs5ATVdeQVVOb58LvSW2\n9PF6q+9uPxGIFtxmt0kYGvRg44bs/pyZTPYK+tRoCHqHZ71C8VRuWjSt6RUbrdoksSBD5O9xwmkv\n39/q92NTLWm86V5w3ESm+GtEN00cDWWns18OTOVuX1tia585SU3DOX4/MqYBjZlwSIW1UqF0uiXt\nHuYMKE4MFOlAX0pS1xDJlA/QTIvhWLwzLg5OpqahLWhO6pbsONu5CgDgEGTYFhXSD9v7YOfzz0Pc\nVGFaDH2yC6vs8wsjDiXH8u43pUXBg8eAnJ9VOq2OI24kcTxdmNFabFDuh8Q3VjMncRKU2SnEbMA1\nn3ELZUJQWRoWLGSs7lpdySwDhtWcVckSPwiJH2jKY5EsCrgIAMDukGF3lP7C9vY5Ibe4sWm17BXG\noesmpma3dhj09+Dk6cav0mIJFakSAadlWTh8aqrov1XDNBksZDvaHzwzhcBM6avqV85MIakWjkM3\nTQRj5etazhserKs5pskYphOFjz2XVfIp2RVzzLIQjBcfgyQIWOvJNq4c6e/Lu72ccDqNhJZBIqOh\nT3HAZy9cnTfkchW9vZmORsNI6NVdcFQzZSpwPM72+Gsaw1gq2pKAebXdC5kXEdFTOJPOBsVzCwMU\nQa5q5eIqmw9SkcUEr3LlTysqvAyVaZjW8i+a1tlXwy06scFefWa7WXpEL+z8/OvHJbogcTIETkCv\nWNs5ajcLOgyr9vo2sjQo4FoBIqEEouH5N6FpMJw+VluAYFfkXD1VcDKKUJ17VR0+ONHwVKXPm70y\nLTVFJkkC1g5nC8PtNgkb1lXeYujkaKho8f14MIpUWgPPcyXryTiOw/pVvTDr/LsGvC4IPA+B5/GH\nm9dgdZ8H6UzxGpfhfg9iReq0ZFHEuv75zEKxL+bjU2GE40lEkrVPjxV7qo9OhfKasvIch439peth\n5jJZi4Os05Foye1+1no8cEpyrmD+5alslu7/pgINBR8pXUcglZ8JGE/GEVKLT3lv6vHBJVXukP/y\nTBCKKMEpynU3M2WWhfF0YRZXEaSKPfWZZdU8dTwXUHklB9YqfQhkYojqtb9GTItVPCduUYEi2OAS\niwfICxuhmpaJ8Uz9FzL1sgm2guL6Ruhs6bJkAqfAzte+UIIsDQq4VgCn2w7nglWBgshjsM6O8QDg\nH/Kgz++GphmYLLPVTzEjZw2Bb6CtQjiUQDyeRiyexvhEdU00F270PB1OYDpcmHIf7O/BTCxV8GXV\n73XCbpPgctjKZtZUTcd0JBvUpopkoGo1EYoV/eJ0Kzas8pWvXzFMhiPjhVm9DX4fHHZbzQseBJ6H\n3104pXb2kL8pLTLWenpyWbJQKoWJWH4wL/B8rt/W1v5+8ByHP/APNLSVjSwIcC4KoAYdTvhspQKB\n+WMF00kE08WnbTb3+MAsC3E9g3AN7Rwsy0JUU5EwMuCAolml3kX9uxaaqwcbV6OIzAZLGjMKAiCD\nmXg5No7RVOnpTJ/kgEusbq/Ehaa1GGJGfsCaYTqOpcaRNjWcSE9AZdmCfHsV+yEKnACX4GhKH652\niRpTiJqlW9uQlYUCrhVAksWCInlbDRsnv/DcvqJZKVEU4PFVX9sCFHaqr/Vq3OW2Q1Fk9LgVrFld\nfnVRJJrCdGj+i9E0Gfp8TvQVGbNil2CYJgwj/++UJTGX2Tp4MpDL6JgmywusPC4Fg33ZQCgQjjfc\nqmLT6r6ygVE8ncHp6eIBpyjwOGtN4VQIz3GwSyI8DXSub4WFf6dPUTDgmj8/i18fc6sQ622VsPBx\nXJIM3TRxMJwNTgWOryqI65FtGE8miq5ctAkiDs9MQ+YFDCnVN8I1LQtTagIzWgocx6HfVtv76lRq\nBqppYFjxwidnM8ABNY6UmR/8T6gxDNg8cBQJqFRTR1RPQ+ZFCHUUXA/avAUNT228BB4CAtoM1toH\nqgq0FsowveO61DOr+sylxNnQJ7Z/BWOGTbR7CAQUcJEq/OlfvLpoVornOSgOGcm4iokaM10AEIkk\nMT4eyZuKsywrr0XEYrIsVt2J3u22w+vJZix0w8TJ0RC4MvU1DruM4Exh5iIaT0M3TJy9YTCX0dFN\nhniyeKH2xtV9BdOPUzOJpu2JOB1LwmWXsaa39GbLyYxWsfi+E/EcB2E2qDIZw4Gp5k8p/W56fjpS\nEgQ4RKnkVCIATKbimFqQ0bIJIl7TP1TyYuHsXn9B9qwSkecx0tOPtY7qWhScTkUwo6WhmgbCWhJb\nXP0FezqudfjgEm0IZuJIm3rutn6bE71yYUBnAbBgQTX1vH5aAHAmHaqpNcaMnoA6+xir7b3YoAxC\n5AQcTI7W9Dh+2ZdrJ9EsGtMQM8qvrE2aCWSKTAVme25lV3CqLIVUhVWMDsHT9p5cWe0bg2lRsDen\nE14JpMNVmgIUJQHpVAaJeBqxBW0fgoFY2ZWNXq8z284hNj/1wnEclDLZN5MxqFV0ugeyU1FzwZkk\nClg14MFYmWDO7bRj9YAHjFmYmJ7/QDZZYV2MLArwuLKZouBMAjNFNp5eyCYJaDApkzMXuAllek5F\nUyrCiVTVQV5a03F4srOWgAs8jz8YnK9HOTEz05T2D+f0+vMyWWtcbvxuagq/CozCKNKqYUBxwW/P\nD1BU08CJeO37QjbLsOKBT1bAIdsctRSNGbALEsQqvvQVQYJXckC3TGRYfpsEn+TE8dRU3mpGIFsz\nNqYWNlMWOSFXj2VbsKLwbOdwXdmzRliWldf2gef4ijVa3Oz/FpN5O/zSagCAAAECV/9CoqQ5jaS5\nNO85W1vrulZuY+rFKOAiZUVL9M1ayGaXsH7TACRJhGzLXmWPng5BtouQiuxHqKp6rui+r88F76Ip\nvnLb/mgZA9EFAdqZsXCuBUQp6bSG06NhKHYJA/2V+/dwHGBfMG5ZEmAY2SnEyVAsl/EKzdZs+Xoc\n6HGWn6bzuJSyAVI5jFmYXLByccjnrjilttrXAw5c1VkuRZawdajy4oJWCSaSua15DJMVLTj3O51N\naWw6dx6SuoaTsRkIPI9ta9djxNuXV7Q9Z27V4cn4/BZIdkHEiKd4d/xIJo1kFZtQN2IuYLQJYm4K\nsZjjyRCcgq3oCsJS3KIdXin/MW28BAYGmRdxYkHgxXMc3LMF8IeSY4gZKaTMDNyiUnJ1o8GMsnVZ\nlmUhUsXei3EjWVV9V8bKIKTP16yJnAinUH7K1iE4IfPl69gk3gYbX//0vIPvg4MvvR3SciFwq9s9\nhI5BARcpK53SqqqzEgQekiTAPpudsttFeDyOopsviyIPZUELiomJCFKp6r6gFEXG4GxzVpMxDPp7\nIAg8dL10XYWiyFiz2guO4/IK6AHAME2MBfIzFRzHwdfjWHRbtp7LIcswTAabLGLNYHbhgSjwVQVT\nqmbg2GjtV7QcB0h1FKf39zhhk+rfHw7Ifvn9fqL1K8XskpgLpuJaBlFVxZFQCIenp3ONURd2lS+m\n1ilUhyhhjSv7WuI4Dl6bUraGyyvbcDw2g4Su4ZfBUcT10r2/ymWdmi3DjNyU4WJnu2trBXImHUJU\nL7zIkngBm5RslmTY3pcXTPWIDliWhS3KKvDgK04ZhoxYxcanehUbQKtMA6uwCVHSTEHmZAzKnddP\nqlx5A1meKOAiedLJDJKJ+dqFodnVjMWKwBmz8m4fG5tBKpX9IDWM+Wk4wzBx5Mj8Sh1RFOBY0FS1\nr88Fu11CJJrCVLD0lW06reHUqfmAJTAVQ0YzkExmEItns15j4zNFx1oqIBJ4Hh5X+R5OLocNil2G\nKPDocduRqGP7nHRGh10WsXF17Ve0HMehr6e2IupGWZaFUCJbwH3WYP2Zr1AqhUC8ciNGt82Waxfh\nUxT4nU6sdruxube3bGPUORnDwLGZ2uoIOY7Ly/zsD06WvbhwSTZMp7PByHqXB9Ml6r68NgWOJmxm\nXa2MaRQUx9drjb0XHql4xmzuuVr4nDHLgmkxRI0UAloELtGey3iVMij3wiUU3iesZ1fmchwHv9xb\n5Dfz+WUfxAobTqtMhVlDkTshrUQBFym06DsnFkkhWKT2aSaUwExofqpr7bo+OBzZQGpoNqMEZAOs\nkTJb9chydiVgj1tBX2/plV2KImPt2vmAZfWQF26XHR6PA329LhiGCa5Mv6xiOI6Dy1l+6iCj5V9t\n93lKBz+HTk0VfGkzZmEynA0kaxlbo0zGkNaqq3dbzAKQmO3eXs00nl5kCnAyFofXbofbbsPBQHZv\nzIXPTUxVy9aYOWUZAs8jlKpiWlsUsbXEBtjVeo1/qGzGQeR5rO/xwilKGFTc2OhubA++ZpnWkvCV\nCJJqNZcNO54Kls1UvZwYBbMsRPQkprU4vJITq+2Vg6SFmMWQYfOBomkxaMxAylTzbm9En9Rbsiv9\nmcwZ6EX2dMyYGUSM6oN3y2IwmQ6Nde6G0ZZlIMOC7R5GUZZlgrEj7R7GkqCAi+RRnDY4XPkBiMfn\nxGCRFgx9fjf6/KVXytWK57miU5CGYeLI0QBMk+H06cIC3TmMWbDN1pD94jcnECqy4nBONJ7GVKi6\n5q2nJ8J5gYLLUTpA2zLcX/ClzfMcNq5qfa3GzKKGppphFtxWLZ7joBksV6ReqaHm0WDheRF4fvZx\nzNzU5qHpUG6KMGOYVa1YS+t6rr6rHjEtkxt7Qqv+izxl6DgZj8C0GEaT9e8XWQvLsnA4XtsX44DN\n1VBPsmKGbJ6yxe3nuIbBcxx6ZRcGbZ6qHtOaDdDmqExD1Jj/2S97wcCQNjOY0pq37dFo5gy0IgHc\nsDxcNBgTOKGq2qykGUWGpaBaCcRYAGlW2Kx2jlnFFGmzZbf5mQ8Cl3KauxYcJ4Djln6HgXaggGuJ\npBMqYqHm7HHValPjEUTCCRx9eRymyQqmDmtRakVhKpUp+W+GYea1ihBFASNbBiEIPFYvath68PD8\nkmNZFtHny2bILviDdegtsz+jy2lDb5ni/DkmY+hx2jFWZP/GYooFjK0WiqcwFUkglcmvt1NkCat9\n9QfEIwN9uexWIJZAKFn6Cv5VQ4U1Mn6XM1sbpdixsTcbsJ/t789NEfpdztx/h1MpHA5OI6lpOBCY\nygV6R0IhDLhcGI1WH/D8bjqQ9/OMmoY5+7xMpZJla70SmoaxxOyxLAsix4EHl5siHHK4imbBDMbK\nrqBkloWT8cpZE47jMKxUF8DMKdaktFQgmzQymNbKfw7pzCzYK7EeR1OjedN5FoD0bO1WzEhB4W25\nPUp7qiAAACAASURBVBXjRgrMsqAINki8iEG5/AVK1IhjSssGpmOZCahlurkP29ZCLtL/a+48aiyT\nt4pR5EUofOWtokROBs+JUPge+MRheMRVRe/HLIaAfhSG1dqFFAXHhQbTyl5UcpwImW/fophKOK6x\nzci7BQVcS0QQBWiqhuh05+8+P7jGB2+vC1vOWQ1B4HHgt6fws/99pa7HCkxEigZrhsFKbvETiaSQ\nXNTjamJ2SlOWRaiqjpf2nUQsnsZZJaYqJUkoOz20sGVEOUdOBbOB2xJeHBqzQS4ATEUSmIoU/4I0\nTIaMbsDnVNDX48CaXk/LinBXedzod9VfR5aqMLUZy2QgCTwUScJaT08u0Fvn8UAWBIBDQUAzlUwi\nWSRjtcnjw9GZ+QzJ+h5v7vE2eX1lFzg4JAn9SjYQlwQBPVK2M79coY1AREsjnJkPSBN6BqPJ+SCd\n5zj02qqb9nOItfXwKuZEMlS0rkviBTgWBR9Hk4Fc3y2NGXgpehK/j48W9OIqZW7FYlRP5XpvAcAm\nZTUMK3/rp1W27LRjwlTzKheSZqZiAfxCHtGNATnb3FfiRKgVivDLUVka45lTNTU0BQAbr0DiKp8r\nnuPhFYZgWK3bYH0hjYWRZuMQOUeb20GQxTir1lbfSyxY5559nUjL6GAGg71CzVAj/H53Vc/ZqSMB\nrN3kr2qbHWayhrbjiUZS8HjrqzFhzMKJE1Po63fDuyAjpekGhEWrA4PTcfT6nBAEHvHZwn+3q3ld\n1ecKejXdQDKt5VYyTs0k0NvjaMo2NwCgwkQmqcNTpNVEMJqEz6VAFHgcmwhBNQycu7Z5H6qT0Tjc\ndhtmkmm47DK8jsY3hTYZw8mZCFa5XZAEoWAvxbkmpBnDgCQIOBgMwrKAcwfnt+/RTDMbeC2Q1DXY\nBLFojVnGNGATGluhGUwnoZkmhhwuHImGscXTW1U9m9/vRmAqBp2ZDY+hVuNqFL2SA3YhP0MVN1TM\naGmsK9JY1bIsWMjfvkhjBiSu/EXLnN/GTuA17g1ImCpkTsw79rHUBDYqQ02f8myUzjRICwJPjWUg\n8zbEjCg2Da3B9HR3zEYUk/1KZ+CauB9kN6n2O7DVYyiGMlxLSLZJLQ22ajG0thexSApTRfYjnBwN\n56b0TJMhMD6T+++jL4/XfKxUKlP1Fj6JhIrR0fnsBM9zWL++PxdsqbPb6ciSWJCpkGUhr1C/2o70\nVY0rlcHpyezzwIHL+wKRxfmmpumMXtXfmkxrGAsWb5y51u/NC7YWZghFYb4SY/OqvlywFYqnkNGr\nrxMxGcPxqcI6Ga9DgV0SscbX05RgC8hmEzf39SKh6QX9teKZDE7PZPtbKZIEkedx3uAg/C5n3vO4\nONgCAKckQ+R5xDIZHF+0QrEZgY5fcWKV0w2e4+CRbUgb1deR8RyXNwadmQ1ttj3HYAyRMns0ekQ7\nJF7A/0Xz36cuwYYB2YlX4oX7+nEch5fjEziZDEFjBs6kZyDzYlXBFrMsDNo84DkOPaICwEIgM/+6\n3uxYlXuv6MxAUMufms/e1pwGstki/GwWKW2mETNKB00hYxqGNX8+53pu6Zae3TRbG23KmNoh225i\nZQZbnY4CrhXIsizwPAdPrxP9g4X1Iq4eJbeajuc59Mw2JhUEHlvOqb2J3arVvqqnulwuO9asyb8K\nXxg4BYNxGEbx1L+nxwGe55DJ6JiYiECx116HEo4ki97usMu57IYkCfC454MRr3u+qWkokoReYnz5\njydhoMIm1EB2U+wTgfnAyOcq0dtM4MFx2UanSTVTMfgSeB6rvIXHt88Gsq2YmhxwOXObUM9xyTJS\nhoHD0/lF90MuV0FAndZ1nI4W1tL12GzY5PNhRk3jVHT+y9tgDDNqbYsGxpNxxLVM3s8hNY1VTjfc\ncuWLpSPR4os6AulkQd+u0WS05r1EGSyoZulz6xRtEDger/bkv085joNdlHGWq3g2dKtrAKsVD0RO\nQG+ZFY+La8N4jsNq2/zqRGl2H8a5+x1KjsGYnarjOT6v6/zcbbXur5gdh1mwktGwDMTMGHSmIayH\nIBVpGZFmaZiWiSF5NcQiXeL7pH5MqGdgWSbSrPhnAbMYrC7cUNvq0nGXZalAGxYk1IsCrmXONArf\nYJqqY2psBhxX2EIhNBWDoZu5rArHcXBWmJbTtea+4Mt92btcdqRLbBc0NhFBPKHCZpOwaWPh5s3V\n0EoESzzPwb1oii+d0RGJz3+ha7oBw2SQSzQbnY4mkcpkx16sCWsxdlnC5hIrHE9NzSCWyk6dehx2\nyKKAVEbHWDiOZKZy/Y0iL2GvKMPAK1OFq+84jsNGnxevGqh8vuyiiEFn8TqyjJGdQlzvmV9UwSyr\nZCE7s6xc8XwgmUBqdhVkr12BQ8o+LydiYaiGnqvpKmZxwLTKUbytybCzBx45//VjF6WaA1uZFzBg\nd+FgPFD5zkWUmtqTeREyL4LnODiLFOHPKba9z0ICx8OEmQuytjpWQ5zNtggcj55F+yIKHF/XXokZ\npiNu5i/ikHkZfskPkZPglwegCHZoLAOVpRf8noqJzDhiRums2pB9GKvltVD44q+1JJtBxGhOiwXT\nqi4j3gyqNQXNqi+bqNfYUkJnozCt5q00LYXHDDh0bjuOxSjgWsZMg+HEoQlkFq0GtCkyvCW2uBEE\nHobBYBXZP3CheDSF8TPZN9TkeARaFUGXZVk4+MoYphuYX9cNE9PhBHTDLBifv88FR5l9GKsx1F96\nVV/PosCT57i8ui1ZErFmwFOyt5Rik/Lql8LxVN6WPYuZJst7rKSqIZqcX421fsCHHsf8mDTDxKHx\n/8/em/TIsqZZuY/1Zm7eR9/s7rSZeTKprCrgKiWg7uhOYMAMwYQ/UKrfkEgIwS9AMEJihJgwvLdU\nUl0lcCFRFZWZp9/9jtYjvHdz682+7w7Mw5tw94jY++zTZOZZZ3K2h7u5dW627H3Xu1abumvTLL/d\nwN83xcfnF/z3F6+I0mwlqcpysbJdeIVOEHAyKqYGFUVZa4Ia5/mSdYSpaWyVVt80e1FIe2Ji6pom\nwzhiGEfYmj61Q6iZDgfuzVXIX/dmLbo4zzgN7nZur2ovRnnKRXS7dkhVFN5xv16bkct4RD9drvC8\n7+4uRfYchZ0Fd/odszGtZK0ilMkK76tVSETKeby6YljSbExFW+nXpSjKdCoxl/nCpGRdb1DRqzea\noRqqcWPgdEXbICVfmGx8U3j5BRnrJyzfJhx1F0t9Pa80uNL4vd6Epa7solJfej0VnyLl2yNIQtlD\nKm/PmujrxhuJ5oUQ/PznP+fLL7/ENE3+5b/8lzx48GD69//wH/4D//k//2eazeLg/ot/8S94+PDh\njZ9Zh29b/PbbhnnBYDCO8L2Irb3FE18IyflRl4OH68eEx6OQYd9nY7uKEEULUgi54BB/9frrQEpJ\ntzNmc42o8C7wxhGdroepaRwczi4g3d4YXdeoVe+mPRJC0u2P2dpYvy7HZ312t6oYxt01EU+O27xz\nsHFr3I+UEimXzVDHWYKrGQzGIZmQbE2MVqMkJRcS154T+06I55XPVS4EUhYtxijNOOoM+GBvkyTL\nMO/g2A7Q9nya7ptnP85DSEmQJJRMc2V15dOLS5CSH04E8u2xz9ZXmIaEYnqxalnYd9xegCjL0FV1\nSRT/yhuwYTuUjcWqTyZyno56/KC+de11wc52lednHVzdQL+WYThKI1IhKOsGj70uP6nvLiwzyFOq\nxpsPevST4MZsxbsiFTlHYZcHzgateIirWzQMlyd+i4fO1oLb/FnUw1FNGmaZMI8xVQMh5VJ+41F0\nySgNUVXBvrlJ3Vj83UkpeRmd8sg5BK40WSmOtrriNs59LMVca2z6pvgqoutBdoqrbmBMfLykFHSz\nIzaNh29xDX87IOQAhTLKLWkAbxvfZdH8G+2Jv/iLvyBJEv7Tf/pP/OpXv+Jf/+t/zb/9t/92+vdP\nPvmEf/Nv/g0//vGPp6/9+Z//+Y2f+V2H1/dRNQW3+s1VHkplm9KKdqCqKjeSrXZriD+OuP/ONlGY\nIIQA1AVvrKvlvC4URVkiW3ku8Mcx5bJ1p2nIStleOX14k0v96nW5fRu2Nsro+vI6pVleGLWuICXv\n37tbO7MQty6/3qy6JEFKo7J4rtgrWoBhkpILMRHuL66Pbeh8sLfJaXdIlGW8u7O6KtIbB19bRUxV\nFMpWccP8/LLNh1ubC8Tro51tXvUH5EKgqOpSCzDKstciTgCWrqEpCs/6PfbLFRzj9hvy1XeM06Tw\n3Zp8xlBVkMtTj7qq8V51uVqgT7bBS2O6ccC2XaZszAiyqeroigQU9p3qtc9qVF8jZHoVRlk8JVxx\nnuHnMU3z9QmsoWrs2XV0VePQmW3nI2driUTOO8yPsoBYpijAPXub46jNllHD1kx2zSYHloqQYmVW\noqIoHFozAqoq6gLZGuc+CgquVmxfeS6AOhYJlmrSSs6pajVKWolUpHSyLnvmLrnMOYqOMVWdA+tw\n6bsTERPkAVLJKOdvfgwq2jbqwm1VoaTOdLKhGGApFdTfA1G7JEDB4Q1pxu8k3ugR9q//+q/5+3//\n7wPw05/+lE8++WTh759++in//t//e/7pP/2n/Lt/9+/u9JnfdeiGhvYWp+beBOdH3bXeV/PY2K5S\nrhSEpuRalCsO/Y63EDj9OhgNA1orpiG9UUi/5yOEJM1ynj+/vHX9Tk57S4apQZAwGt0sjr7sjPD8\niPOLwYI+7eIWt3lNU3l6tKxf6A59wjXGrV8Vq+wg1r63ZGMbOi9WTBxewdC1tWQLIEqzhfbsVsX9\nytUtL4oXMhSFlBiKOiVbV9+X5jkbJQd9ItTfq1a4GI859zyElLwaDO4cSp0LwTCKqFk2hqbxoFa/\nE9m6voxcCoLJRKKmqPyme8kgLto+nShgNI08Wv17NjWNQ7fGO5XmAtkCsDWdi9DjPPQKMveWsWtX\nCPOURGSkMltyFz8Ph/xqeEQmBcfhzRqbkrb8e1+3zVfYsRpoqBxYxUPHrtnAnizHnAjqDVWnpK0+\nx41Ju1JIQZAvttp0RV+ZnZjLnG7am3zfHqUJITNUgw29OO8VFGzNoqatNpUd5z6BCKho9Tu5zK+D\nphjMZ6NJcuJJC62bHpGLhKXstN9RaMo+ivLdmMr/ruCNqOd4PKZcnlUTNE0jyzL0yVPiP/yH/5B/\n9s/+GeVymT/90z/lL//yL2/9zDo0GqW3Ot7/reErtNBe+6tWfFeW5tiGRmWFH1aW5ujXWmY7O7On\n7yRJKf9on+OXHd79YLcwcU0ykBLTuv2GtrlZRgi5NF1XqzkIIbFtY8lBHiBN86W4n1rNwTA0hJBE\nUYphaFQqNlmWU75B3C+QmIaGrqtsbVWmla0/ucNx2dtdNhS9vo/jJMMyV5/L4yC+MQ5oFdaVpNfh\nweF6QjW/rCBOismwuXV93e+6CxrCJcsFtqETJimjKOajR7tUHZtcCH5z2uIP7+3zvNNjq16hYs/2\nz/z6bG9V+NVZi5Jh8O7msg/WvD9Xkudk4zFbteLzl+MxqqqyUZqd890gYBhHlAwDW9ep27P2cy4E\nIlTYcct81rnk/kaDLaXCj5k5iLuphaaqt9pOuHWLF6M+H23skAuxQGCNqk7dejPLjU7kY6gqNXP1\n54dJSCJyFMDCYNMurrmn/oBNu4yWqXxk7hdVvNSkFY54VNnE/IqVtXnIMKeTDPhR7f7a92Qiv5G8\nJSKll6Rs2cWxzGWOdoMb+e5ELxRkIbqqY65oM4owpGk2sDSLVKQM0wGbE2K4RbFsLx2iKuqdfhNx\nHpLJFFefXSvD3GeU9tm2Z9u+QzF1Xc0fYWnfvrYyyjrkMsA11h+f33Z8Hde0t4E3Ilzlchnfnwkq\nhRBT4iSl5J//839OpVJs8J/8yZ/w2Wef3fiZm9Dv//ZMIHwb6F6O2Nie/eBX9a/zTPDq6QXv/GCP\n6Prf8snfPtwjzwWt495Su/G//fkn/O1/8CHVZpne5HiMBgFCSOrNWVn/yhj0OoSQPPnynA9/uNpS\nwvNWi0Z/8/ERB/sNNlZorB4/abG1WcGyDEqTylsYLlacOl0PyzSoVGxUFLJU4Fgm3WsRS0JIRuOI\n+g3aryTNeHbUwTJ03rk/2z+9YUC1bHNyOWB/s7pyQvFVq8e97cat7ctREOFHCX/rw4PpMXx61uFw\ns7aynfgm6PshuqpScd7+k+fl2KdmWwvCdo+iihWlGdI0CL0EVVE4tIvztIJBOIqJvPWiXDfXsBWV\nfndRxB1nGcejIe81Z2TTQp3uuzTPyYC2vyiQLkudOMqQqiD1Zq2t/3l+gqPrqFu7qJHk1y/POChX\nyYSYEr1+HFLWTYI8nU4dtoIxu3PTiVtbFfxBzJZ0aLc9no667Jeq03gggDZ315gIKXk27vJ+ZRM/\nS9AUlUS7WbAtKUjN6bCPlJDIjL7voykqPWb70c1Nhknxm85EsZ80RSUSKc6KCteN3ykl3dRDRyWX\nCu3EI8hjLpIBuqKyazamFayTqE3DqOCuqXQBaFi0PY9UpJwlbR7Y+2Qy53n4kvecR6grhO1e5mGo\nBvaKKpUUBkMlRlEShBREIkdqi8ehm7b5wX6NL89eoCk6NX35QfAKqYjJyQmu/a5VGrS9dce3eD0R\nIeYd4oO+HliARfAa5+BvE77LGq43qmn/0R/9Eb/4xS8A+NWvfsUHH3ww/dt4POYf/aN/hO/7SCn5\n5S9/yY9//OMbP/M93hzyllBhAE1XeecHq3O+NE3lnQ/3pv/f3KrQbg1Jkowszelcjvh7/9ePsW1j\nWmk6ftFGN7QFsgXQOh8wXOFjparKWrJ1etJbO+H4gw/3V5ItgA/e36XRcKdkaxWqFefGvwM8eX6B\nEOJW3yrT0Pnhu7vcP1h26gZ4uNdEVVR6o+UHhAe7zQWyFacZXrBMMsu2xVZtUYf23v7mWrJ1l2N/\nHQ3X+VrIFoCtaysDjw1N43g45MJbzGO8mtT79cUFn7SWbQ5ORiPavs84SVa2Bi1dXyBb12FOXO1z\nIfikcwnA82F/sq7LDvU/2dzmvXqTTAgaljMlUc9H/an3VZLnZFJMW4wAck2L6Orh473qxgLZmoeX\nxpwGq3Min3odxmmMqigcTPRerm5i38HUNcgTjsI+fpbgZTEV3cbPEl4Fi23E+UrdMIsYZCGxyG7N\nW1yFSKScRB0CkTDMihteSbN4aG+zZdSm9hAAh/YWpmIQrZgyvA5DNXhgF9ePMA/ZNDaXyFYmcz4e\nf4amaCvJViYzDNWcHhNVUfHyEUG+eL3aMHYYJAMkkppevzF02lAtbHVWsfLzmy0XOukLxGR5Y9F9\n64HW32RoTCrOyOTqCdLvsR5faUrx8ePHSCn5V//qX/HZZ58RBAH/5J/8E/7Lf/kv/Mf/+B8xTZOf\n/exn/Nmf/dnKz7z77ru3fte3zVR/2/BV2L0/jlCVYhrRdgqPoLEXUV3RhnyTCUWAXneMYWpUJsah\ngR9zdtrnvQ9mYlkhBK3WkP39gty0WkMajRLWivblYBgsRP6sQ54LRl5Id+Bz/6A5rURlWf7WWtZP\njtuULIOD7fVPxVBMG0ZJRr28+glXt3V++clL/vi9RXFvZ+SzUSlNbxqdkc+rdp8/fndZBPxdQpxl\nHPcHvLe1WDl91R/QcGyqdnGD7PgBFcucVsiklAyiCGfS/vsqEFKiKgrPBj22Si7VNSamn/cvERI+\nas7CuNuhT5znHJbvNn5+9Rs8DzxKmk7JMJcm9q6QyyL02tL0lfFF65CI/MY2oJdF+Fky1WFVDZte\n4iMlbFjrRfRHYZea7lAzSjwP2hzaDUxVZ5gGaIpKWV9fkZJScpEMUICmUV27zVfw84hIJGwYi/tV\nSEEoYlxt8fdxFJ1zaO2srGyNshG9dMBDZ3Wb7Cg64v6kzddO25RVF1t1Vlbkr45fKmIGeYct4+DG\n7bjCILugrq+P2cplhvY1TexJKfDFp5S1n3wty1/+vgxQb7TP+LbwXa5wfZ+l+DuGr3KyBeMYRZm0\nBtoe9x5t8fjTU97/0f7ChSnLcl49a/Puh6uDo9e1FjttDyEE3ijk/oNNDFNHSkn7csT2nON9HKeE\nYUK9PrFDiFJMU19J8M5bA/Z2byY4V+s88iIa9dJrm01GcYpprP7+eazb7teF7Rr0egGlawTzYuCx\nXSsvfEdv7JOkgp16+a1899tCmKY8vuzyBwfFOZLl4tasyX4YUjbNBa+yQVi0QDMpUWFKzlbBi+Np\nPNA6rLN/mMdl4NO0ndnEYRJh6QaZEGuJ2jyufoNhljJOY1AUtuzbJwWfel0OSzUU4Dz0eFheXU0F\neOJ1eOA2FkhXlKd8Orzgj5uHPBm3qesOrmEiZVEZi0WGAks+WuuQiGz6Xj+PUVFubTN2Eo9c5uxY\nxW9ylPqcJwM2zQpCSmp6aaW+avF7U4aZx5a5OAUaiRhb/erV2UxmaKzOicxlRuL2Mfw6iUgoaXeb\n8AyFh6N+N3VDvy2QMgGOUJT3vtJyvsuE67tHT7/Ht4ZS2cJxLUplm3sTp/YPPjpAURTCIOHLT07o\nXIzQdW2JbLVO+wwHRbvo+FWXIIiXll+p2mxsVnj3/V1evuxMX79+4fP9eEEob9sGqqrwy//1jJG3\nOI14nWx1+2NOz/tLE4S6rtFsuK9FSq6eRXrD4Na4njwXfPb8gi9fXd55+auQZDmVkr1EtgB26pWl\n9bcNg1+/OCOMv56JyXl8fn45bQOuc3AfhBF/fXxKmudsukWFIslznvdmrazH7c7K9kfDcaZkqxsE\njKKI31xc0PYDxnGMBI5XRPtcwU/Ttet1hVWtxOtQFQUpJc+GPVqBx387PybMbl/2dTi6wZZTZst2\nGSQRg+Rmg8v3KhvYmo6pauzYyxYnr/w+yURn9f6c0P04GBDmKanMuVcqHlwelprYmkFJM3H1giRZ\nEzf5VfjUO106JvPvdTXrTpquTbPCjlUnkzlPglNGecC7pV2aeoVNo8qT4JQgW742LH6vwZbZJBXZ\nQh7iTWSrnXQYZatbs/MY52PaaZtIrj4WmqJzWHpYpBS8RssvEt432tL7XYSimMBq6cvvCrSf//zn\nP/+2V+ImBMHrOdz+vsN1rTfaZ2maoWkqxy/aGIaO5MonqrjBG4ZGtebguBbq3A0rjlKSJKPedLEn\nLu+1emkqcDYn03AnR13cskWa5hiGzsbG7IZy2fGo10q8fNmh0XBxHHNl+3Bjo4xbstaSpjwXdLpj\nGnWXNM2wJ1mKT19eUinbr2118PK0h2XqNGvuQnWmMBeVyLm2qqoqbDfLbNYXn4ijJOVVq89ZZ4ht\n6li3iN+P2wM26mWSuIgJitMMQ9f4/PiSrZq7VEUzdI339jYZxwlhkn6tcT2NOTPUz1tttivLT/+K\nUmi2Toce709aiJqqUnNsVEUhTFM6fsBOZTI9NxyhqwpftjtFCztJKJsmz7s9dspl7tfrNB2Hmm1j\nTciYretEWXEzfNnv03AKYlc2zbVkahhH9KKAimmR5DmPB122nNn6e0nMhT9mkETsuxU0VcXUVDYd\nlw8bm5R0A2eNDus6Vv0Gj/wBigIV4+YKzWkwwjVMTE3nLBhR0o2plYahatgrQqVNVcNSdWzNmMby\nJCInyJMp2YJCFP94fMmmtUzmtsxlMr8K4yziNOrRMG6u/KiKSlOvUDNcVEWdXksc1WKQjhGIqV3E\nOgiZk8psJdGSUpLIdKoLc7US1rX3ddIulmottCCVyX+WYpHKBCEl2jVPrLJrE4f5a9lDOOri/hvl\nHXTFXNn+/CYhZY6fv0BVTFTlq6VwfBNQ3sI6vuk98G3CdVf/zr+vcL1lRH6E1399wem3jaMXRcXp\n4MEmpbJFv+MRXTtpTctA1zV++YsvSSYVlTwXZGm+dLEWUuKNZk+RWztVVFWh31sUqSqKgmMb/OY3\nx7iuheeF/PpXr8jz5YqSZRpkmVg71ahpKo5joOvqgq7rnftbS7mFQkievbo5H+zR4QZZJpaqW6cX\nAy46I/reokD+1XlvyRzWNg226mUa1dLajEWA3iig5wU83GlOLRviNGMcFcfgg4NNup7Pk7OZUPWL\nk6Ka9slRi5JpULa/Xs+beTLz0d72yvdYus52pUy9tKi/ufqsYxj8eHemc9kolbAnrzUdZ2rhsFet\nYE6qUVfnlqIo1CYtxVeDAaqiME7XX1jF3FBBxbSoGhZ/1TolzjI+bCzqyVRFoemUuFeuTT933V1+\nHl4SE+UZqciJssXqYi8KlkKe369ssO9UGacxL8f9tcu1NR114p1latqCj5armytJkYqCqih4WcQw\nDYnylLNouOSjpasa75VXH7d1ZOs47OHPVaTO4wH79vpW5/VlHkdt/Dk/LVs1SGQ6nVa8Qicd0E0X\nq5eGalDTV7dmMpnTS2f7cVVUj61aKChkcuYzd5YcUdEqGKpBJjMEOe20NV3Gi+jpnbZtFYJ8SCSK\na7+uGMQiIBavF57+9iFBUVH47pOt3wd8T7jeNuaqQr9NePeDXV49u5xWbHb2G5TKFpfnM6PQK/z4\njx6gGzpRlNJte5iWwYuni1Nmu3t1difeWkEQY1kGmqaxO4kZOjnukk2IzO5unT/4g/tsb1cplSyc\nksHHH58srePTZxdkWbZEaubh2Ms3pVXaK1VVuL9/e65YtiKzsVlzqVdLbNYXKwXbzcqS1xgUT+Mb\n1dKN1g5V117IRQRwbXMa66OpKpaus1GZEZl3dzemVS3L0DGvkcowSemNvxlblUEQEiQF8VAVBUNR\nV7ZY5ttyp8MRmqpMKzjanLZq3jvrCvMGrR9uFo71H2xs0g18/CQhuNZSbPljjr3CZV9VFHIkddvh\n/37xlEwI/DShe5WnaJiUjSJ+6Hg8ZJisbnu9GPWRUpJJQS4EYZYxShOCLMWbfCZI06WsxKtz0tVN\nDkvrxfcb1kxjuGm5a8Om5/Hc7+KnhcZKV1ROwyH37PpCdSueBE7rKyouich4PF4dhr1jVReIWLx+\nkQAAIABJREFU2/vu7jQn8Tb4eYSQAlOZvX+U+xiqhqvZjDKfXjoiEpM0i9foyKmKwp5VEHchBb/x\nP10638paGVVR6aYdYhkTipBto5h27KRtLMXGVCxctfgda4qGqRgIeXPrWMicy3T5+mSoFvqkQlNS\na2iKtmQ8+01DUXTK2iO016gcyVu2/9uEKh/DW57u/CbxPeF6A2RJRrBi/B/ALlmU618tC+7bghSC\nv/qvXy4QLNMyFuJnfvW/npPGGaqqYNsGtbpDEqU8em95OufZk1aRV9gunvo+/eSEX/3NS4SQfPn5\nGaNh8fR3PudC3+/7vPNoh+3t6tIF9IP3d3EcC9e1iCcVttEoXHhfpWyvNSCdR9HavH0irFl3MQ0d\nz79WVVtxc3DWmMDWys5KstUd+gzGxT7QNfVWUXnZsdiozs4tQ9dwTIP9ZpXnF8sj2po6C9cWUpKu\nqBreBUGS3mqboakq7bHPKIw4GQynLb/rOBkOGcdFVapqWQtt3n4YcjQoqhy5EAukJc4ynvV6JNe2\nwdZ1xmlKazzmxBsuVJv2yxXKhkU60T3VLJv36k3+aHuXX56f0PLHDOMIP1mskj2o1Klbq9tJTauY\nbGtYhSA9yBLKhomUklwK+nGAoijTCT0hJb044NW4OMcVRbnVrf06Hnvt6TaswrvlTb7w2ozSGFe3\nsBVj+v2fjM5J8uxGV/lMCjqxxziLiEVKlKfTdTdXtDCza9WkbjJaqugBuJrNvrXBSTyrJFe00vS4\nljSbilYiFimWalIzCuIT5NE0lDrKY1pxl246IMwjOklR1bpIulMnegWF9513FtYzErPf6465i63a\nJCLmOHnFRdrCUR3G+ZBAjClpswenA+vBrW1AVdGoa1ukMl4gJ4ZiTwnXFbz85ir6t41YXBCLRbId\niE+RN4R7f5sQ3INvOJvxbeJ7wnUDuqerL1JpkhKvEIU///ho2mqLgpiXnxwTeK9fUn7yq1ev/Znb\n0GkN6bVHdFrrRcf3Hm2ze69JPtdCqzcXheYP39umXJtVWeI4wzBnY/wLy3uwiaoq1BslRsOA99/f\n5Sd/6z6qqvDTP3yIaRWfc5y5rDlD5/nzS0rXtFpBEBNFCVJKojglCJPJ6wlXX3veGhBN9r+/4vhM\nlxUlnLfX74frkFIymDuO5ZJFybn9ibHVu1nEW3XthSDqN4fk6HLZA8jUdapOQRy8MKaz5iEBwI8T\nWsPFyZ6r1lqcZUtE5zoqtsV2xWUUJxiKyv1G4c4fZxmjMCaeELCHjQZly5x+Zr6C03AcgjQhyXMu\nfZ9+WOzzTAged7tLpqpXeFCr826zia0b2Nd0Vk3HoXJtsnCnXGHfLeMaBqqi0olW75dPuhd82rvk\n3PcYTny3ateIWNmwMFUN1zDRVY1eHNKcc6/vxQFxnnPfXR0pcx1eGnPkF8fyIioeVB65zSmBivKM\nbry4vqaq8cfNQ/acKkJKXsx5bf2osksoUh46hV+Zl0VT8paKnFEaMkpD3nU3uYxHhFlCJIpooKfB\n6gGQs6hHlC+3ctvJiNOwxxf+8fQ1Q9V55MwGbE7jDvtW0c7VFQ1D1anpLjWjPNVjZTKfEjhdKaph\ntmphqSYVvXjg2Le2p/FAvgiW/LwG2WCpzVjT6zyy32XX3MPVyjSMTcra6mpjLjMGWWfl3wBM1cLP\nB6RyfUvbUl02jHtr/w7g5Rf4+bfnZ2WpO1jq4sOyq/2EHJ8gf/EtrdUNUL4ts9i3g+9tIW767qMO\nW/fXhzxfh5SSYXuEXbaxSxZCCM6eXnD4wetNXgghFoTpr4N1I7FXVatBx6O5XSWJM86Pujx4f71v\nzBXGo5AkzmhuVWidDQqB/ESQ/stffMn/8Q8+pNvxGHTGvPPh7tITcRJnSORKIfwqzFefgiDBsnT6\nfR9vHLEzaTsCDAYB1aqDqipEcUqWCUqOiaoqHJ/22N+rLwnlkzTj5KzPOw/uFjANhaVBqz3i8A72\nE/PoDH02a69f7bx+DC8HY+quvVYDJqVkHCVoqkLJmhG4XAg6I5+d+u3j6rkQpJMoniucDz1MXWPD\nvXscSccPOOr20VSVPzjcYxwndHyfkmmyXb59X4RpSpLnU63WbZCysB1d1XrLhKDljzmsVBdee9Lv\n8sONrem/1wntM5EjJZz6HvtuhSjPMDUNW9N5Nuxx4FaWCB68+Vj6IAnpJyEHpRqmqnEejti7FnAd\n5xlhnhKLjG1r0QrkyO/j6gYbc6L4z70WVd2mabo4mkE79lBRURS4iD0eOhvkMqds2ByHPXas6p1t\nI67jMi50dRtG9bVkFa24i62a1I3F8/RqSvAqP/E0vqCh1zhPWrzrPJy+T0iBRNLPhmzojYXvDkVI\nKlKq+mpiddU+nK9qbW1VaF0M+CL8G951PsKeOMJ3sxZ1bfNr89L6fYSQR4CFqtx+H7orvreF+C3F\n65AtKNoFhmlMyZKqqq9Ntq4+97ahqgqqqtCcxACZls7ho7uRDrtkUq4WN8Dd/fqUbIlcYJcMsjRn\nY7OyMqcRYDyOSNOcQX9RMJ8k2TSI+ooQtlpDdF1lMPBptYb4fvHZzc0Kjx5uTb8bCvJ01dvzgxiF\nmV7r3kFz5VSiaeivRbaklDx5eUnZXaxEpVnOycWA/igoQpPH4UIVDHgjsrUKtqnfOGGpKAqaqkwF\n9vOvd7zgTq1ETVUXyBbAXq3yWmRrFEVoKGxVXMq2RZRmlC2Th83GncgWFMTptmraFfwkoR+FnHqr\nK4mqoqArCu2gOO+OvSGpyKnbNlJKgjTl/z15sXacX1c1NFWlbJiYmkYuZ23O+5UagySmEy2e0+M0\nIbhByH8T6qbDo3JzavdwnWzNv28VnVEUhXCi1Xrhd8lEzg8ru7i6RTsuqmVbVgUvj/hsdM4PK7vE\nMmWUF9Xge05zSraklIzSxfP5E29Rt5RLwVE4qwJtW3VqenlqXXEbrlqCu9bGAtkaZh7DzGOch4zz\nYh1CEaGjUtJsHk0MTM/iNrnMURUVFbXQTM2TrTwiFwJTLX67o2w0bTUKKQjzAC8f4eWj6TZnMkVI\ngaZqPLA+wJxrEZbVGiq/A7m+3yGoyv23Sra+6/iecL1luPUSpv31jea/KUa9Mb3LxRuTpq8+/J2L\nIf54poHQdW0hpLpzMdPZ7B40p8HXWztVRoPl9oxlG+jasog6jlI8L0QIwbNnhY4gTTOyLKded3Fd\nk07b4+x8QJJkfPrpKWdns9bZ9laVKMoQQrLRKK8dxfXGEZ98ccrRyax0n+eCy+7NT0Hn7RFRkmJb\nBlX32tSdptKslUhzwdnlkCTNljRcw3E4IYXQGficrmj73QWmrvHJqxb5DT5QYVIIw7Nc8PS8Q5wW\n/36w1VhL1rJccN5/O0+CXT+gH4SYusbpyMOLIiTyVvLU8jy6fjA9NyxdZ8u9nZzFWcbRcEDVsrlX\nLdp1XhLzfDBrp6lK8ZDRngjjN50SlqaTihwhJSXD4O/tP+DM9xajeubOU1VRMDWNQRzRsJxpRI+h\najz3enTCxfM9k4JMSoSUtIK779tnXo9ROluHI3+wkgg+94tzeNtetCEQUnIaDtg0i+rWtlVBVzUy\nKagbDvdLs8nCsmbxYWUHMdGdGSs0SwLJMAtpJx69ZMwoC+mn44V10hSVTbPCZ+NjgjzmOGpzkfR5\nEpyu3c5IJLwMLziJLnkVrRbqu5pDSXWo6xXqkynFcRZQ0ysMstG0GlXTy6iTW9iz6BUNvTgPjuNT\nEpGQU5CxVtIilzmGaqBNCJMgJxQBtmqjonKWnJHJhG7a4iR4WewnvYo6ZxlhrXGmvwmxCEjFzb5j\nAKP8jEQsx6L9rkHe0IL9fcD3PlxfEV5/jKoqaG8pHuarYp0HiWZoWLaBeoswG0CbEKx1zuqBH1Mq\n22iaihSSMEhonQ2wbQN/HFOuFNUwISR5LrBtA93QsCbO8n4Qc3kxpFyxefH8ErdsT2N88lxgmjqa\nphLHhZfWwUEDTVPxw6RoE85tQ7szWsh5XFjPsJh+8vyY3a0ajbq7sE1Zli9UzK6j1RnSrLpsrDBM\nVRQFQ9dwHZNKyaZcspZE71GcoWsauqbiRwnH7SF7zdvbLdePoa5pIIuqmqFpKwnUWW/Idq0MCry4\n7LNdK09zBK+IxxImqQLXK1vz8OOETOQL7u9XyHIxXa6Ukprj4JgGh/UahqYRZxmZECtzEK9g6jq9\nIERVFCxdX/IZuxiPKZvLOrcwTbF1Y+FvlqZjazon3oiG7ZBNhPf3KsWN2FA1UiEYxQm5FBPdlUpJ\nL6KDFEUhzjOeDHsLHl1SFv5i12N37pVrbDqL5NBSNU7iEWVM2lGAqih3yj5sWs5CrmGOoKQvb/fW\nXLtwmEZYqjb1uKoYNraqoSoqpqoR5xkvgy4b5uI6dlOfXEqEFIyzpJganPh3DZKAYVYMoliKTpRn\nk3akya5ZWyn4lxKaZpmy5lA3XLYnLvN+Hi20J78YH1PRioqpoqjsmHVimU6d5yOR8CI8w8t9Ns3F\n9n0qMxzVxs8DYpEQ5CElzUabrE/TmL2/opW5zC4xFJOy7lLX66iKiqEYU88tBRWQKCioioqruZiq\nRVmrUXFL9MYDBALjhum+dnqErpjoyvrzO8xH9LMzKvrN3RJDcdCU9R6DvwuQMkXIp6jK3TsMb4Lv\nsg/X983or4g8E0u2CW8LWZpPq0dfFVGQUJqcBKEfM+iO2bu/OvjXsg3OjjrUNyrTz8xjc6c2tWaw\nSwZSMA2ydkoWWZqT5YLjow6aqvDo3R3yTEyqWZKNzQquW1xcfvqHD4ttzXLiOKPZLG4ovh8Tx0Wk\nz9Fxl/v3NkjnWohXyHNJkmZTg9V5pGkOhkacZJRduUDKzi+HHMxpsl6ddGk2ypRLM1uJva0a+poq\n4DzmyUyrM8IwNPJcsN2ctUm26mVqrv1G+ZMAu80Kn7xqcdYbsdesUi0VbTFrQpYONmqYRkFYfniw\nPSVlXhhTtk30yWj/PKFRFYVaab1WqjP2GccJrmlg6cttzaPegP16FdvQca3FG5OQkkapNNVHvej1\n2a9WlkTvpqbxoFEch34Y4sUJ9+szgfk6hWnFssiFIEhTSnOEztZ19svFfs+EKMT6FvhpwjhJ6EYh\nuqrwwJl9x7yGy9J03q9tTLMXr5Z5HbksbAyO/SFCSuqmQ9N2yKXgIvTpxQGPKo1bLQbWoWne3sod\nJCElzcCYkIiaYTNMQ6qKjaIoWJrOB+VthmlIPw247zQL89k85YHT4DQasGVVsFS9mLBMfJ4Hl2yb\nVcq2VWgDk4htKpN9s0wshtnMc+x6cHk38XBsi2E6RgKvogv2rQ22rXox/CISlLnfs47Ke87hyjDw\nq0rXlrkxaQdGDLIRW+byNUxVVEpK6UZ7g1fxC2IRcWDdo6wt6m3CPMBSbDSl+D0dJ8+4b83iZmIR\noioaW8bq3MZ5VPQNXO123zL190AXpigGmvKjhdekPAJ234rh6W8Dvq9wfUXYrvXWSNE8kjjl/MUl\ntc3Xy+dax+5HfR9zUgnSDQ27ZE4JyMVpH6dkLZCBXsfDda3pBOI8nn15zhcfH1OplShXnKXWZBgm\ntC9GVGsOB/c2iligL87Y2a1TrV094V4T1ic5UZRMJxY1TUVVFTrdMQ8fbOL7MZapI+RMfN/tjdnZ\nrqJr2koiY1sGhqFRqzpLgnMpJfZcC7BeLdEb+IjJ61kusC3j1ifOIEoYjAJcpyCm5ZKFYxnESUbp\n2gTiqircPLojnywXNOvu0jFs9T32GlUONmuULJNxlBBnGY5pTJzvizbn1WTg/3h8hG3o7DYqGLpG\ne+SjoPCi3WNzhUP8KpiaTtW28eMEQ9OWqlwN1yHOMk4HI/phiK6pU0LlmuaCkL1kFKTt84s2DcdB\nUWbnQCYE4yShbtvUbJtMFB5XmqpStkzCNOV5v8/mNW+uKMsYRCEVa/ZQUNguFPtZV1XcSQVMnejc\nDspVNpyb8zTPfQ8h5Y3O8ueBx2kwommVCNKETcflPPBwNJ1SyWTkhxy6NY78EYaqLlSv3hYSkXMc\nDKiZ9tRfq5P4uPri9KetGdSNEp+PL2iYJWqGjaUZNEyXcRahKyqXyQg/i9m2qmzbVRzNxFR1NEXF\n0mZu95EovM5ehh2aZjFZ6Or2EtkCqBlFZbidDOklHptGjWfROQ+c7Yl1ho6pGkgpeRqekMmiGmup\ni7+bSMRT4TwUx9hUDVxtPSm1NRtbK6wgmFSxUpEiZI6maNT1BpvGFuYKF/vt2gZxKFAnmrCavujX\nF4sQBW6sbOUym7Y+F0X8Hjq3X1feFmLRQsgQTVn9my9CqOU3FkJ91ZKebb8C2G91f3yXK1zfa7i+\nozAtg/sf7r+15W3u1qfkyfcigjmNluNaqNrshE/iFLfiUCqvrn5s79XRdZ16czkiJMty3LJNvTGL\n+im5Fj/86IAszel1C/GuELKoQE1g28a0unX19zBMefSwKD8PhwEnZ33siZWE50UMhgFSwvPjzlp9\n07rqY62yPF68t12bvn503pvqr4SQXHRHk7zE1sJnRn5EcC3HUFEUNua82JI0o3eDJcMVXNtaG81T\nLVkLxqa1kk2zXNxwwjilP54JnG3D4A8f7U9NUwF0VcEyND7cu3s5/8obbLdWWbtermVyv1njnY3m\nAvG5jisi9uH2Jkme86w701rlQkxNU6EQ3w+iufPTMPhwc7klUzIKG4hzb6aVElIyTpLp+XA1MKCr\nKq6x/BT9fNifen5dCeIPylUaE2uHThjQi5atXQ7cKrtOhYbl8H59E1vT2bBLmJpOLPJpO3PLLt0a\n57MOx8GAp95MlJ6KnOfjmQ7Ry2LqpoM2J6E/dOorzU2hsIjQJ4a0V4L4DbOMo5k4qslpPJy0I/Wp\nJUhVd+inM21RmMekMuPQLkiIqeqkMqOdjDiLVtvo7FlNdp0Ghqbzs9oPp8u5sm1QFIV3nH32rA1c\nbfF3KaWknaxerpSSbnqzLjIQ/tS6IZExsVytpzqNX5HKu+WRuloVS725AtlOV1v7JCJCsHytehOz\n0VB0SOXN1xVT2cZQFn87fv7x9P9T2SWT65MP3jYkF0jOpv9WlOpbJ3syfQLfUR+x7wnX7yFMy5iS\nIYBqffGJv98dE47XB+1Wqg5795uIXCyI66MopTURtatzppsnR13Go6jQPJWLm08QxPR66yOQzs76\nRFFCFKVctkeomsrBfgMmNxfL0jnYa6CqCu8/nLXQciE4n4j6x37MWWvxghyEydTh/ur9Y3/5IvzO\n4eZCVaw3CBgHMT96ZzG0e3ejStmxuOyPedXqMQ6Xl3U1RXgbbFNfiCB62ZrdaEqWSXtSAbsOTVUX\nWoO5EERpRjhHYhrl0q1ZkskKV/27YN1yB2FxbrRGHv/j1dG0TVcyDd7bnLWCLF1nd5KteDQYoijK\nAuFahfOxx9loRDvwaTgOvTDgr87O+KxzybN+j1QIzscev768edhg23HRVJVeFHIZ+IyThDifmbZW\nTYswX30jbtrFtGA4MVu9yj38ycYOP93YQ0hBO/L5YrDaz6kTBTfub11Rue/O2lGGqi1MLj5ymxw4\nq3VVAL1kRpSiPKUde8Qiw8tiPh9fTN3nAZqGyx/XHtCKhwzTkM/GpxyHPbwsWjCgbRhlKrqDPWkv\nCilJREZJNTmOOrTj4ZJJ68vokqZR5aGzw8fjFxxHbcZ5SDp3U7yeZ3gFRVG4Z6+f9L7JyV1KSV1v\nTm0dXK280D48TY4QUhCJEFt1yOcczDOZ0ctmpqW5zPFzDy8fMM6XPfw+CX6xQJp2zXdXrlNN31qy\nlRAyo5M9X7sd66ArJTRWPwglYoCfn6Ao6lL1qKT+cPr/prqDob7eNP5XgarsoioHX++XaHuw5nz6\ntvF9S3EFoiAm9mPMt2JK+c3iejlV5IJ+18OZK3Fqurq2DSpyQRgk7K/Rd13BNA1aZwPiMKVcLaZ3\ndF2btgzjKCXPBeNxxO5enShKaF+OiKKEUsnEcUzKaypoUBCqeq2EBM5aAw4PmkghGAzDiUZKEkUp\npqWTZ2LarlMoLrSWZWCaOtWKw9FprxDuayqDUYCua1Nik2U53jjGLa2vQiiKwlazvNCChEI03u55\nKIpCuWQRJ9lS3A9MLBdeI1T66hjqmoqQEMQJlqGTCYE5aU1FkynEcRhPqzNXei5jItSPs5zWwKPh\n3s0s8POzS1zLxFyhWXoTXHhj6o6NpescVKsriVmcZSjAk06X+iTg2jVNXNNcKdSHIjrH0XWapRKK\nAqfeiDPP4+/sH6AqCmXTpGbb2Fqh57r+vf0onGq/roTwjq5TMgzGaYI2mUzshgFCSuI8p2paXARj\noiylZJi8HPWpmTaxyPnLsxfsOGUsTacTBVRcmyQqWkqubpKRUzWWz/VeHFIx1gulK4a11Koz5siV\noigIKemnIV4aTYXvmci5jMdEIqOqF+2aL8eXNM3i95Qjqek2icgYZRGOZvKF18JSDR65m9iawbZV\ntBW9PGLHWm3aOkwDuqnHjlXHVHUqmk0qMkxVXyCBG3OWD7tmg6pewtUdLpIepWvh0ifRBYaiL2Ut\nAvh5OBXYX22/o92gQUy75DKfhloP0wG+8NEVjf/p/YJ75gNsrYSKhqlaDPM+tupQdm0CPynanhNt\nkSAnERGuVsFYEUpdUTcwVrQn7wJFUXG122PGrkNTDBRFQ8icjHAhvkfFwlBWB5J/U+3DbwtuuULg\nj1E5Qip3y/186+vwfUvxNSAl4oa8vt86vEbRIsvFgm4rzwWdi2WfI6dk8uCdLQ4fbi7opy5aA0Qu\nuGwNGXshTqm4CHTaHr2uR7NZxlgxFXd9f3ujkCTNMU2ddx5uEYQxfpCwvVWh0/UwDI3jkx7jcUx/\n4NPpenhehKIoVK+1C/e2a1imzvOjDtWKgzOZTMwm7abtO+rkjlt9+tdag6qqYhg6lqHTnLTwztrD\nhcDrV60e3g3O9+tQdixAToXjtZLNf/38BS8ve/w/f/2Yx6dt/CihWipyGL84bU8rYEJKNsoltqvl\nIvMvub1dsllx17YOr5Z5Nljvnn+9WqOoCuOJ/ku/Rp7ORh5RmtELQ9p+UYnRVZUkL9pxV0J4IeVC\nPqKQEj9Jpl5PNdNiFEX83YNDxknCKI4LOwQh1k50hlnGyXg0Xd6fv3rKKIk5Ho/YdEqMkyLRoBuF\nRHnGYbmoKkVZOo38qVsOuZS0Q5+fbuxhT7ZPUxT+4ugp/sSLy1A16ivIFsChW71TVuJ1CCn5eHgO\nQDf2CbKYqjE75xOZE+Up+dyAxLvuJlXDwVJ1dEVl266yZVVwNAMVhT27hnNNFG+qOrsTsuVlEV42\nqzqex31qRolDe/ZgVjNcNEWjmxT79lW4HGtzNVEJ0NSrS5WtfWuLqyr2UXTGp+PH9NMh4zygmw5f\nqwK7ZW5SnQu/TmSCgYauGDS0bQaTsOyrCcZtY3e6Pqqi4qhzLXnFwFZLaIq+0vjUFwOyO7Yk3zYE\nKalY7BYU+/n37PYuA5BX+8FA8N3z9/o9OyJ3g+3aVDZeT6z+XYWqqVOz0+sYj0K84aI+pd/2FqJ9\npJDkec6w7+OPIwa9Za+YwI/JshwhJGdHPVAU3vtwj/3DDUoliyhKOT/v89M/eoQ7qWqNr7Usnzxu\n8eL5LEpke6c2tWy4qlTt7tSIopT9vQaGofGTHx9Sqzpsb1XJczl1pz+/GNKf8wO78tvSVGWhnegH\nyVI7cZ4ozeO8M6Qz8KnPkTldU9lqlqmVi+nDKx+uWtlZuNH7YfLGET62aVBzi332+KzDDw+32GtW\n+cc/+wjXtuj7wXSddVUhiAv9UntYHKeybZJkOX0/5PFZm2QSsbPqxrVbW64GzUOBtRYPQZLyrNPj\ny8s2jy87CCnZLDlEWcqnrdlxvSKENdtCUWCr5LJbqfD+pMW45boL3zGIoikhg6K69bTXm5JQXdNo\nOiXCLKXlj9l0SiR5fqPZ655bnsb9qIrC39k5oGbZPKzUp871iqLwTq3BTmlWsXRNa1q5qVs2mqJQ\nMUy2HZdRWpxHDcvh7+0/mAruVUWhfIuG6yIa88WgzTi9GylXFYUfV3cZZzFeFnNYatCKRlMfryhP\nqeo2m0aJL71i39taIU4XUk5beVJK6kYJIQVN051WyFZBUxS0SUXt8/EJpqIT5MvrKxXJadSnn/o0\n9BlheRm2CK+939GWq3uqotJO+wgpuGft8X7pIYaqE4mYXXODYTbmLCq26XqmYy5vbolvmdtUjcIi\n4tC6R1kvM84XHyCEFJyFJ6RiubMyyNsLbcd5bBqHN4rov07oik1J++6Ri28eOQqT46MooNzdtPmb\nwveE62uAEILRDfqk7wp0Q1sKcLZL5kKFK00ykEWLsNfxiMLZhUhOKoHeMCTLCk+mP/y77yxUvF48\nvUDXVf7B//kjdEMjSYofxPnZgN/8zavpBfLBw80FgbsQYoEcCSH58stzvvjyjJcviyfn+Yu1pilc\nPdDt7dRoTFzvcyGmxO3B4cZC67BWcWjOidvjJOP8cnXG4lajwnajQn+0PhvztD0kywVhnOKHMVJK\nPn9xwY8e7b6xHQRAlKR8/LLFhwdblCxzSlokkppbtHOllFQdk9+8OkdTVR5uz0rpjmmw36gSZdm0\nXfj0onunqtc8FEVZ254smQbvbjYZRwmuZfLfn78qWp1C8uH2TCPytNMlFwLXNBknyTQv8arSkwvB\ncE6/1XQc9irFw0/b95FS8rN79ygZxlRb9P7GBpamI6Tgy16H3XKZdhjQvyZ2PxoNGcYRYZaxMZd3\n2LCdycRjoVfadQuS9XH3gqcTI9Ungy5Na3HbMykwVI1xGvN0WIjZP+1f4hjGa1WudEXlverGrcRs\nHoqiUNYt3ikXRPVBqTFtWzZNl6blUjZsHrlNhJSchAM+91p0Ex9Xs3gZdDmNBgzSgJNoQDCXjfjM\nvyxsIlKfMC88y0qaRUkrph9/4B5Q00u04mXB+pZZ4yfVB6Qyo5uNCCfLfWDv4Gg3b18MtnziAAAg\nAElEQVQucz4eP+HQ2kadaI9M1aSsuWwaDSSS87iFPVnOUXRKJCJO47OCKMXnePnidfckPl7KVASo\n6jUctcRx/JJUzH4HqqJS1av0sg5+7hUGqpPPbxuHa2N9MpnSSr6D2YMrkIjL72w4NVKiiF+/2WeV\nClJ5vfi1bxrfE663jCzN8QcB0Qoh9jcBKSXhLd99RWRsx8QuLVZeag2XWmPSGjvu4bgW2/t1tnZr\n7OzV2T2Y3ci9UcjZSY84TpcMRI9etDk76bG5XUXXtSmxumgNefbkgvfe3+Hg/saUNNlOQSSu1m00\nihjMVak6nRFjP+Jgv8nhYZPnLy6JJ9OBrYshSZKRJEWV7cWrDpftUeEjNI7v3B62TJ37+6u1FLqm\ncrBTo1lbfGrqDMZ0Bz5CSD59fk6cpFRKFkJCbxTw4YNtoHCdf1O/tijJ2G2UeXXZxzENKhMLigdb\nDbygIHbtkc+ziz6PttdrQf7W/Zn4+P3dzRvbh1cIk5SL0e0PD0JKun7AH98/YK9a4WeP7tMeF7FH\n8z5XP9jZIkwz2mOfjVKJrbnIn09aF+RSLkwsAjzv9xjGEa5pTqcd275PLwz4/06OC0sKVeXDjS3+\n7v4hAIeV2aThFQ7KFapmUVmDYgJxnBSEIMxSzgOPcE4wXzNt7k3aiftuZYlExXnOII74deec9iQA\n+0f1rTtbQFyFUG9YhV/Zl6P2gmBfSMnnw4sF0ToUHmBBlvDFaFY5vNJzPfYW23gXsUeQJ2xZZbat\nCidRD1vV2bNrNIwST8YX7FlVgjyeTiPu23U0ReXxuIWmqLwI2iRzAvt+6vMq6qzUWcUixVYNts0a\nj5xdJJIgKyYbL+Ie3WREkEez60HSZZB6HEUXfBG8oqZVUFCI5ypMV15mmci4bx3QNIo25zvOfWzV\nZt/cI51E8iRzbT0v89DnzE4zmXEUz6YHLdXmA+cj2mmxH1vJySRXssqOuU8mM3zhEYjbz39dMdgx\nHgIwznuMsuV26ve4AxQFqXz0ba/F14bvRfNvERdHHcJxhMgFW4c3i87vguefnVKulVb6N335v1+y\nubfM5k1D4+RFe22uoZSSV49bNK6Fa4Z+zMd/9YLdwyaKUrTehn2fWsOl3RoSjGNOXnbZ2p0JaC3b\noFovEQQJqqpgmjreKCwc6IFyxcK2TVRN5fSkN9E7aTgT0XypZJKlOVGcYRgam5uVaY6kbRvTkGoo\nZGhJnFGvl7Asg3rDRdc1Xrxs07oY8sF7exyf9tEUhbPWgDjJiOOUcsli5EXoukrrsjAlvV7VWwXP\nj3j88pKNa+7012GbBnku6I4CPnq0i6FrjPyIKEmpujbm5Lv+5vEpmzV3YQrxOp6cdmiUHcrlxcGH\nOM1pVkrYE63YPDarxZSdRODHKe/vvb2Jo5P+EF0rMhbNW5IUJDBOEspWYRyrKgqGpmHq2pLZqaIU\nnmS6ujhBtVEqYWjakr1Ew3GwdX2qyXo1GFA2TTZKJTacEmXTXGpNrRILqxP9kKFqWJrGp51L6rbF\niTeiZllkQrBdchfef+Xjdd1l/tPeJbulMo6u4+gGf3vrYPq9uQFftgvyVIjw1QWxu5fGPPN6KEpB\n6q5QNxzasU9p4nslgYvIY8t2p2TPzxLa8ZhcSu6X6gvbqSgKrm4uCNZrhjN1e4/yjJJmUTUK3y5d\n0ajqNpaqY6kGtmbw1L9ARcHVLQ6dJq14yL5dX3CMt1WDhuEWxqUKc8tPOIm6lHUbXdF4HJziqCZn\nSY9hNsbLAvbtTf6395hdawNNUSlrJWzNwlZMqrrLltkglRmddEB10pJ8GZ2SyYzLtINAUNVnbd7j\n+BQv92kadWIZ4WqlaXaipVqUteK9XjZCU1RqWp12ekGQBQzzAZqiYSgGreSMLWMXQzWmQyu26qCj\nY0yW54kBoRgTigCdZS3X1bEwVQdLfTs5ql8FUuakcoimLD54aIr73dZ3fcV1+y77cH1PuN4i3KpD\nue5SqhYneOvFJaqmYlhv1tuvbZTR19zoVpEtKCwb1BuiWhRFIUtzVFVZaB2qmkq96WJaxv/P3pv9\nWpLf1Z6f+MUcsWOPZ86hMrMGl+fh0txuwCDde6WW/IaEBS/mAZq/gCcesPxmJB5AQkLiDeEXIyFB\nS4iGFmoazHDB2K6yqyqHyso887TnIeaIX/RD7BPn7DPk5LSroL2kUmXm3jt2ROwYVny/67sWMpcc\n7Y9I05xWp4brWcymEbOJz+rGaYWrdzxB01RqnoU5NwmdTSMMQ+Ngf0iz4cwd5/vcvLWEaeqMJyGF\nLKoDMk4y/Fl06QGaJBlFUSCEIMsk+wcj3JrJcBSQJDm5lHzn7U06bY+11QbHxxM2NpokcYpp6NiO\nia6rtNsucZzRadcwz2yzH8QcHE847I5pNxfje+IkQxMKUZJRe8oEY5ymOKZBmuUMxgGDccCt9faC\nrcSNleYTyRYwr4wV5EqBzE6rct3xDM820bXTqJ6d3oiGYzENIh4d9rnWabLaXCTR8lxMzvPC0nXs\nucv806AoCrW52/zOcDxvcVoVUVEUhXEY8c7h0Vy/pbA9HjOLy2lMgXIhGukEW6MRmhDVspqWVem8\ndLU0p8ykxE+TK6tL9wc9wiTlvWEXR9N5u3vET69fx9Z0emGAlAVRltGxHWRR8E7/mJv1UtPlZwmG\nWk6JHgRTPN2gY5dVqRPSeH/cY9Uub+7tuoOZCXQhOAhLE9WdYELHtJFFwSSNSWXGHa/D49kAhTL+\nRygKmcyxNb0Sl69ap5W1R7MBWZ7jaAZLlkteFPzLYJMVs1aRrJP/H0YTjqMpdd1CAe5Oj7jhNCtT\n1M2gx1Y44BWnU7bvUBgkPrrQaOslwZMUaIqKKRaNOvvpjEke0tRdTFGSw8fhEYnMaBs13PnkYEvz\nsFWDJaNOXSsjfzRFsGF2eBjsEciwcpDPyEiLDEsYqIpakS2All5nNzpgw1xhkvs0tNPpO0tYpEVa\nRkupDfaSQ1rzmJ+syCgoEIogLzJUpYxv6mddDGGyZm4gFBVN6LT1pcpc9ewNO5AzpMzoZocs6xso\nqOiKiaZcJPkfNRRIMmZoSo1p/h6m+NFF6hRFhPIRccv/CeH6IfBh77jnwfkTMApKg1Gv9WJPOy9y\nQj/TwabA0e6Q1nw6L45SFEXBsg3CIKZ3NMFxTWQuy4gQSyeJUpZXGgsh1oUsMMwy9/DRg0PaSx6O\nY6Kqgn5vhmFoeHWbf/7H+9TrNp5nYxgas1mE7yfUaha6rjIYzNB1rao8DfplSG4QJgwGPo2Ggz7P\ngqy5Jp2OR801sUydtZUGrZaLOV+uqqmMJiEry3VGk6DScvlBTM0941WVS6I4Y3W5Tqd1sYp11Juw\nulzHc0+FvfGcAJ4Vlt/fPMY2dUxdw7VN6q5Fp+FWlbrngSoEWS5L5/78tI2kKKVg3jZ0Hh+WgnHb\n1NkbTKhZBlGS0awtButuHg95fDzA0DR0TTzVg+uq9XmeY/BwMsUxDBqWyfZoTM3QGYWl6L3nB+ia\nSt0yadk25tzWwZkTus3hCFsv44PyM7E6ADXDwJwTq/PIpORur0vTsvCTBENV2ZlOaFqLk4HKfDmO\nrnPk+1yr1avKmC4EvSgkKyQrTo292ZS0yOlYDofBlK3pmHXXIy8kH0yGdCyHbuhjaxpCEUR5hqYo\nlRD/5BxUFUFdN2lbDm3DQhMqspD8YHTEp1trCEWhZdgLWYuxzDmMprSMxapEnGfkRc5gbljanL9u\nKAJTaAsVNChF8oPEZ5gGdObtRKEovDPdAxQ0ReW2u1Tt5wKYZCFhnrJseoyzkGHq0zFqF/b7KA0I\n8pgVs1F9XkFhlkesmS32on4pbZAx0zzEUDT24h5hHiMUgaWaLOkNPM2p7BUSmVFTy2P4YbBNc06q\nIhmTyZw1cxlTGLT0xsL6lITQRBcamtCoa161zGk+Iy2y+etG1Vpsam3ceZVMKIKsSJnlk8qvy3I0\netMBhjAxhYUhTOpa+aDZTw+pq80LthDPgmG2h4JA+zHF2CiKQFNqyCKBQkETFy1rXhby4jEKHsq5\nqdOiSCiKHZS5tqr0KhujKFfbefyw+Anh+iHwYe+4Z4HMJcolbSen7rww2XpRBJOQIEgujeQ5gWFo\neA0HoZau0+Nhqd0wTJ17b+9gWhqrGy3qzbKdubfVo73kLXh5le/XEGIenFu3UVVBFKUMejOu32jj\nzMnKnVdX8TwLRSh0jyc0mi7+NKo8u04I1QkUBXRdw3bMsi04n2wsigJtHjI8nUWY8wgeXVPRNJWZ\nH7OyVGep42GaOqomiOKyQnVWLF8UBb2BTyELHOfyJ1XT0EizvIoYAjjuTxiOQ+rzTMSpHzEOQpaa\nNbojn7prLYy9Z7nkoD/GNvUnEp5HB30sQy+3Yz75ePa4N3UNitLisVmz6U8DXNNgueHyzvYRQZKy\n0qgtfEfTtVlv1QmTtPLlepmIs4w4zTA0taqkRVmOo5fVEM80eDwYUTMN1ure3Ln8dNLxcDolznI8\nszxGWraFrqqMoohxFC+0FcWZfXqCcRwxTWI8w2R53oo8iRMyhHqhBVh6bml4hsmqW6vI1jv9Y2qa\nzs16k1Ec0bEd6vP2Yk03cHWDdae8+UtZ0DJtbE0nzFLcuYeWLlTqxukxiqEwmAaYaulHNU1j4jzD\n0nSEIli3PVKZsxdMKuIEpTZLKArL1sVrRj8JsDWdm06z+szJsRbkKYZQeewP0BWVSRbhqDqqIsgL\nSUO3SWRGXkg2rCaWqjNMfTzNWoif8TQLVzMJshhJwZJRbvdWUBq3npidZoVEn0f6dJMJrmpiqQZ+\nHuOpNtM8pG14TLMQoQg8zaGp16hrDgKBUAQSieCU0HfT4VyUL2ifIVWzPOAoGWDNSdVZbEW7SCmB\nAmteVbsX3Keu1dEUDUuYlQfXCbpptxLjn0BBQVXUqsJl2irD2bgiYEUhGec9LOFSUy+Gzwf5BKGo\nTyVhluK9sFfX82KWP0JXyv1YkFOQoSoO0/wBpvjh5S7nIZTOBbJVQkFRdE6zEjMK+ijK5d5uLwql\n2AEsULSPNOH6CDdy/+Ng671d0rmAu38wxH+GGJcfFbyGjWE9vYV5Ynw6OJ5SyILavA1667VVmu3T\nytewP2N3q8/jD44I/JjwigNZNzSSJEMIheFgRhyfimxHI5/ZrBTKnmi3LjNe7fWm9HpTUGA48un3\np0RRuZyjozFpmqPrKr3+lO2dciosyyTJPCJobbXBwRlneds0cOzLnyZlUTCehcTJ4ph3nKT0hjOS\nNGc8Dbn/+NSpPEwyWnX7xCYIXdeYTCOSJKNdL936s1wynJa//2QWYhk6j/b7PAm319qVpcRVcCwd\nTRNEScZGp852b8RWd8Qnb6zyU6/duNKstOM5F3RfLwNpLomyrMw57JWTfEvuaWKBrqq8vtwhm7dA\nl2suK56Ln6R8/+CQKE1p2qdPue8ed8mlpGXbbNSfbsniaHpVUbqgYzKuriBsT8b0w9Pzs2mYzLKy\nJXW73uLdfimgXnNqzNIEP00r0Xosc/w05W93P2DfnyIUhSTPuTc6FUgnMufQn9GN/Opzh8GUUVIO\nsjyc9tGFiq3qbJxxjZ+lCduzUSWkP49Vq0ZDt9gJRsyy8hyURUFNM1k2a2iKoKlbTNKITEr6iV+a\nnM4F5ycWElBORbZ0F1URhHnCTniaaGAKjazIGSUhO1GPXjLFVg3iPOU4npAXElNoyLm534n4Pchj\nGlr5+9c1h+N4zJrZYtloUBQFx0l5Xv7b+D7DZMpxMmKWn06RbpjLaIqGn4eMs1ORelOr86pzA+eM\nwel2tEecx9wwN5BIDpNjDuLyd9sw1jlIDvkgPHVuP5lClIWkrnm4akloZ/mUYTZAVVRMcbp8XehV\nfmJWpPTT4ydWpST5pYHb5/GyW5BZcfXEtCXWKp2WUAyMOclyxNMDt18mSqf72pm/6wjl5a9DQROu\ncN3/KOEnFa6XgNZqA3WuzxGqwDBLofiHgUbTIYqePu6/t9nDcU1q9dPMxNkkZDIMWDojjBeKwvXb\ny6yuN0nTUkifpXllaAqw9eiYNM3oHk7odMrqzNLc+ysKE2zHIApTdrcHbFxroSgKHzw8pN2uoWoC\n3y91X1km8byyUqaqgiBMGY19Vlbq+EFMUYDjmMz8iAcPjlhbbaBpKptbPVRV4NgmqhAYhkaeS7R5\n5Wv/cIRhaGWbI0wxDY2aa9JqOJdq5BQUigLqNYuVtlcNLbTrDpapU8iC7YMhSy0XTRV0mm5liKqq\ngr//3gestktPK9c2WWl5BFHC7vGIlndxmOH8hfjkCW0aRGhCsNsbYRkadcfCtQw0IVhreTRdG2Ne\n8RtMAwoKBrOAmnX6dDUOIrJcPlX0/rwwNBXH0NFVlbZ7uk0Pjns4us63t3foOM7CawAtx6Zl23im\nuUASD6ZT1rwaDwcDbF2/0mX+BLM04XA2o20/3UXfTxLCLMXSNDzdqKpwAFvTMZ5usD0b0w0DPrVU\n+hnlRcFxMA8z17RKQ+bqpX7qptcgyFJsTWd7NmLd8ciLgp1gzGfW1zGz0xZox3Iqw9RSsK/xeDak\nadinLTkFLE2nYz7ZO8gSGpaqkcicD2Z9lkx3/nkFRzMI8oQCSV6Argi+PdymbTgsmTUc9fScNdXy\nuNEUwSO/RywzVEWQyRxL6Awyn1edVRzVxNVMapqFLyO2wwErRp20yOevWciiIMoTVCF4a7LJslGe\n+87cvmEv6pOTU9dcHM1glgdICjpanUSmaOcqVwKBLjQ+CHdo6w1kIat9Oc6mGIrGOJ/S0Oo4qk1b\nb+HO25GWauEIh5wcV7gcpkdM8jGe6pEVGYfJQVnRQjDMBmiKSlSE2MIhL3Km+YS216juOwoKutCx\n1RpFIZHkjPMuAoGmlN5mSRERyilibqr6snEx8LlEIPfQlNoFAXwsu1V16yxCuUVBQV6Uuq7/VFBM\nTsaPP8oVrp8QrpcMTddeKtnqHYwwbf1STVB3f0gSpeRZTu9ghNdyn/lgMwwN3SwvunGYkOcSxzWp\nn5luFEJUGq3x0C+rU65ZDgLMK1SjgY9uqDiOyep6szRWjDNcz2J3u9RyKIqCaZb7xXFNimLe1uvN\nsCydf/vXR6yuNpjNYmazCM8rtV2bj7vcubNSrqumEkYJNdei5lrcvrXMUXeC65isrTWI4wzT0jBN\nnTjJ+PfvbRLGKa2Gi65r9Ic+aVoaI9pzE9JLJ9mEwNA1TENDm7dcz+u7hCi3R9dUak7ZVjJ0FcPQ\n0FSVV9baOJaBaWhVm0/X1EvJFpT7Yvt4iKVraJpa/YZjP8LUVdp1d6FKtd0d8WCvy2AWVkL53tTH\nsw2SXOKapzfWLJeoQnkqgXlZUBXBNIrxLJMV74qLugJbozEd53R/rHmlVqht2xfagQBhmhLnefXa\n3nTCmusySRIcXWcURTweDlh2L7bjUlkOWFiazmEwI8yyKsh6xXapGQZty2HZPp0GFIpC07R4NBni\nzgngyWumqjFKIv6vnYe8Vm/zve4BQoFlp4apqjQ958pz8ETUb6jqgnYLSjJ22TF5dvjhRKSvKOWf\nz7rDy6LgMJpiqhodw6Wb+Hy+eR1HNdgJhzR1Zx747FfkS1EU8kISyYx+PGWUhiRFxh1nuTKA3Q0H\nTLOQdauFIVSm8xzEulaSXT+P8GVMW/doaA7b0THXrA7TLKQAGrpDQyuHUhzVoqHXaGg1NqMDpnmI\nrpTaNk1o5dTgnIDVNRehCA6S3jxUuyQ4w3TMNXPtQmUTIMhDeukAioK6Xuc9/y63zFtM8gmRDHGE\nS11rUCBp6i0sYWMKi152xDSboCiw5LVPCZeioCoaw6zLNB+Rk+CpbXTF4IPoeyQypKWtoaAgyX8k\nLUNfdsmLGP1cYLYhmiiKYJLdQ1caZAQI9LlQ3r1wLAksBA5CMRFPEbiH+VtoyspHfjDgMvyEcP0Q\n+LB33IeNLM0w7ct1RrZrYrsmpmXgNsonvGc92DT99OIe+jF5LjEtnYd392m0SxF5luUIIZCy4Phg\nhFe30Q1tQW/lz2Ka7RqmuXjhNy0d3dCoNxwMQ+Ot724i81JkH4YpQlEQqsCydVzHYDqJuH6jTZ4X\n82UVjEYB9bpNkmZsbfWQeUGrdfJED8259sv3Y5Ikw7ENhCgtCYIoYX21gWWW2ijH0pnOImzbWJhU\nfBo29/q4jkEBHA+m1cSiPvcWO9mHqiqqG/JlNh5Sliagl1lMKEo5offP722y1vJQNEGeSlzLqJaV\n5ZIky9FUUWqyhMIb106njvzoNG/ROUO4DE19Ktl6d++ITs15oZiZ85jGMa5hXE22KMnMWbJ1grP7\n8zySPC8F+KFP27Zp2za6qjKOS72XoaoEaUYmJb3Ap3FGNG+oKu8PB6zOHeZPyBbAu4MuHaucOExl\nTpilC5OOy5bDnj8lyFIa5ukyZ0nC6/U2KHCn3uI49it912HqE4RJ5Tb/3uiYVOZlteyEcJ0TuR9H\nM+I8w9Eutq7eHR/RNhziPKMfB9R0E1lIpllM7Yw7vKRgnEZs2E268Yw108OaR/eYaims3w6HDJJZ\nlXcoFIW6btPQLKI8ZZD5fLp+HUnBg9lRJaBfMxvlgIDMUBWFmmZVxMgQOrU5+TKExopRisrTIkcT\napldOLqLpqh42hnDWb1OS/dIZMogm2AJE1VR6SUjTKFXmipPc6sMRV1o6EJf0GDlRV7ppzRFQyLL\nCUi9gSscduIdGloDR3XQFZ1ABtwP79HUWujzCUyBYJQOqOstWjXvwjXUFi6aopMXGbpiMJY92to6\ntlrqsnRh/Mj0WYZwL5Cts5BFjqZYpMUIVbHQxcXqFoBQtLnW7OnXP01Z/WhbRzwBH2XC9UJ7VErJ\nV7/6VX75l3+Zr3zlK2xtbS28/pd/+Zd8+ctf5ld+5Vf46le/Ohc2wi/+4i/yla98ha985Sv81m/9\n1ot89f/vUG/Xrpx4E2emyJ42Fbf7qHulAahQBZNRwPH+ECEUVFWQ55KdR13SJCOOEuIovVSIX/Ms\n/OmpM7iUkn63jNKx5/qpMEj41Gdu8Orrq/zj39/D9yOWVuqsrNYxdI12x0PVBJNJWFbC5kL81dUG\nUhYcHIwpFFhbO7XC+O5bW/hBzGAw4/BoTM01mfkx3d6U3f0Br1zvVDYMw7kx6e7+gLff3XnifjqP\nOzeWMPRyZP88Ubv7+OiJn908GBCnpUZsGkR0x1cbKNZsk//xhTcQQjCcBjw6WNR9/fv7O7yzuQ+A\naxncWG4hZcG3399hGsZoqiBMMo7HM4az59MQfvLaalWJexb3+SjNGIXRpa8t11ySvKwoHU1nF0w7\nr0KYprx9cHhlNItrGFxv1Hm1dWrsqigKG3MXeqEo3Go2WXIcNryLUVafXr48+uRTnZXKmDWXxYI7\n/e5sQpCl3K63qBtWtW6ZzPlub5+kkHQjn5yCT7ZWuDvqcW/UZcVxaZ1xpV+zamRSViqf/WCykA8J\nsGZ7LF0ilgf4VHMNTZQ2E+6ckGlCZc2q42cJD6c9+nE5+OJpJgIFR9Ur4lhWlgwSmfHOZJ9Vs0E3\nmjJKTyOTNKGyatf5TL00jlUVwce9dTKZM8mCSrPV1B1aeq1qF16GbjJGSomnlTYYBQU3rBVWzcut\nbFzVpql7aHPRtaaoKChkRc4HwTaDdDH9wVFP920sE96evUsk42pbW3qTW3apE5JIblm38VSPu+H3\nQYG62uBj9pucpSRHyT6r5gY19Uz2oow5TvfKbUr30BWTnBwVHU/tYKse1lP8tso4pUVX9yAfET+D\nmeqzQlVMQGCLDcRLmoD8UVe2ikJSXBGT9J8ZL0S4/vZv/5YkSfjTP/1TfvM3f5Pf+Z3fqV6Loojf\n//3f50/+5E/45je/yWw24+/+7u+I49IR+xvf+Abf+MY3+PrXv/7SNuKjhOlwxrg3/bBX4wI6q/WF\nVmcyF7UHswhFgfUbHTYfHHHzTlk1UVWBbqgcH46JoozVjYsXy+FghpSyItRQEr+N66c3xTyXvP3d\nTaQsL7w/9wtvcm3++mwa8fbbWyRJxo0bnYWJQEVRaLXcuZ2ERd21cByD73xvk4PDMetrDfr9Gbks\ncF2LvYMR793bZTDysUydLMtJkvJCJ+dtQa/uUHMt8md0nk/SjGAeZSSEwngaLYjsP3Fn7eI+mQbV\ne64tNxamA9fai0RgPAuZBovExTI0bq21ub226Bj/8RurLNVrHA6mJHMSJ4TCm9dXMHWNmmVQt002\nWnXeP+zjxy/2hHcwnlZDAk/EE4jUO4dHVazPedf4q2DrOl3fZxrF88W/mCs/wDvdY37QXSTDj8ZD\nAO72u3QDn3F8kTDamkYsT3MGT7RSmZR8r7tPNHeBVxXBz66/wqpTw1A1DoMZWVHwmfYqbdOuhOoA\ngzhAAp5u0tBNJmmMJkoric3Z8Lm2SxMq3rn4H1kUdEyHluFwb3rEpj8s26G6veBan8mcu9Mj/tvy\nx1g2a2zYTQSCRGbshkO2gwFKoVR5imGe8MA/JJIpjmqiXzqBdopU5qRzN/pMZvzr+D4AvXSMLApu\n2EtzP6yccTpbyEF8EG5TU08tIhy1nJ7UFJVb1rULgnRZSLL5d5nC4AveZ1ARFyJ8duJdPLU0U86K\nnDXjRvlAmPWRSPQ5OYllXJqZFjphfkpCDWHS0VaRhaQ2t4JQKTsD+jMSm0COGWWLx6IuLNSXaA1h\niOYzVa2ehqwYksrjp7/xpWBEwcEzvfOFo34+gnghwvWd73yHL37xiwB87nOf45133qleMwyDb37z\nm9hzMWuWZZimyb179wjDkF/7tV/jV3/1V3nrrbdewup/9GDaBqbz4/FZOUGWPv1JwXZNkjjl8f0D\n8kxysH1aQVEUBSEUPv75mwuVsmuvLHHtZodW+zTu5yyKeVTNaG4rkWU53/23D6q/AwyHPmvXmkzG\nAb3jKbWaVT09Oa7Jm29uEAQJUZTiuiamqZOmJ/E+IVmWU/csrs+d+7/wuVdYWVECIssAACAASURB\nVPFYXW3Q6dRQVQWZ57z+6io/9fk73LjWZmW5jlezaMwnLzut0kD2+nqTV6614QkPb0GYVITpqFeS\nmzjJ2D0ccetam9E0pD+6GOB9AqEoFSHKZcH24ZAoTpnNsxXPwjS0BXPUszj/hNlwLW6ttanZBpMg\nqmKCPNukP/XnflsqTdfmp1+7saDjeh7cWW4/1bPL0jWaztVi9V949XbpGG+ZBOkp4QqShOQJodJf\nvPUKo7jMM/yHza1L3zONYyZnyNLbR4tVsaIo+NTyCrcbrYo4FkVBa94OfK3ZxjNMJnFMLwwIs9P1\nO9nngyhgksT4WVJ6bAnBL1y7XbUI80KSzonZulPjjUYHS9Xw0wRZgKsbJHnGB9MBNc3E0w1GScSO\nP+bvDh4hZYE+t4d4Es4Spqvg6SYto2w3tQ23mnyMZca/DjdJ8owoTxGKwFGNSvPlaia9xOft8R51\nzaZjuPzfvXcXlq0rGn4WE8v00orHQ/+w+rOfR0zz8nfxtFKzFcuUG9Yy3XRYkbEwjzlKBqQyq363\njzmvVMsZZTO2o8MqzkcVKh198WFvmI7599nb+PlpJdeXPnvxHgdxSW4SmeKJGoEMyGRKVESEechh\nckAsI8bZoCJok3zMqnmNoewTn5v8UxWN/eQx9ryS1dCWrqz+TPMeWbH4oFOQowmNcXa6r3TFWph6\nPP+ZHxahPCYvEiJ5RJg/G6kpioKiyFB/TFmEitJGKDee6b3/maJ+XogWz2YzarVTjYaqqmRZhqZp\nCCFYWirjRb7xjW8QBAE/+7M/y4MHD/j1X/91vvzlL7O5uclv/MZv8Nd//ddoT3GxbrUunyT7j4Ki\nKDja6rF264dz+d3f7LJ6vV1NQ57F/be3eeMzN6oLwfLy1Rfyk+qSKApUBRxbZ3neqpNpRrtTisyf\nhMkowHZNlpc9wiChkAWqopDJgpWVBm9+YoP93SHLq3X63Slraw2Wluu89Z1NOkvXEKKsZM2mEWma\ncev2Mn/zN9/nv//3TxJFKY8eH/HZz7xCHKfU6zZBkLC87JEkGYahEYYJ43HI/sEQKQt+7mfeqNat\nKAqiOK2E8WexvOwxmgTUa/aVcT3DcWnQWXNNkjzn2lrpNt7p1LAtnQyJoWt0mpe3Elptl8d7fZaX\nPd66v8snX1/HdUxucHXG4WW46jdcxmO/P6HdcNDn545uaxwMp6y4Lo5pMJyFbLQvttV+nAiSFD3T\nue2c6p6Op7PSpLXpXKkru0EZtvwz5issNy7uAycp3fhPfLq+2LLZn0y43+vzv7/+GtM4phcEaKZK\nq+ZiahrHsxm2aS4sb0M2kEXB/3nvLr/0yU+VVVBF4bDwadgOigIN4bDsXPyd4zzjuN+lU1NZtj2S\nPGd7OiJXC171OgyiAL2u82ZrlaZp8XDU5/XmMooCr20s4+g674/6fKK9cmHZJ1ovU9W4Ozxmue5d\n6p4/TkKOwhlvNMrryuZ0gGdb2JpO03QYxD7/rfUxTFXjKJxyw6tTy0wctdSDFkVBo20vCPX/j/Wf\nn29fSlu4+JMYU2hoUr30t/Dapf8WlMflCe4eb7LSbtIvxlx3lnhNXccUOlvBMRtWm9vaKoNkyiTx\nCbKY1+rXeH+6yycbt1BiyS19+dKcxhMs43ErX0VBwVQNgixkWbtBPx5gqw6G0NkND7jjbJDJjFEy\nxtJM7BTWrDWO4y6DeMBKvY4u9GrdR8kQTy/Pm7PnX6f4zILHVl5k+NkU5pW3ul6e224Gplp6jUGB\nogiW8SgKSVokGHPribxIGSb7LJmvkBcZvfiYZevVK7f3eRHlObrikOSQyDEN02MU38PRrmGol19X\nikISZkMc/eV7dH0YeNI98MOEUrxA7f7rX/86n/3sZ/nSl74EwM///M/zD//wD9XrUkp+93d/l8eP\nH/N7v/d72LZNkiRIKbHmYtZf+qVf4g/+4A9YX1+/9DtO0O1+9NpzV0FKSewn2N6ii+7waExr9Ycz\nepuOAtz6orHmZVhe9p5pnx3vD4mjlP7xhE/91O3nIrV3v7/D7TfWsCydYX+Gaek450SCSVLmIyqK\nQpJk7Gz1uXGzPJm3trrcvrOy8J0ylwhV8N3vPKaz5HFz/t6TbU2SjP2DEdevldql0ShA1QQKpVWE\nZemluL87YTINeeO1tepzsiiwTJ3NnT5CwMZqE01TS2NTIa4kX5chlxIFZeEzw2mAa5lAQRhn+GHM\nxnKjrGrJAs99PlflZ/kN//6dR9xZbXFjuXTAlkXBdnfEWqtGlhfUzhDOwSygXXuy3cDLRpimRGlG\n61wlrDvzac5NTqEcBvhhTFkzKfGThIKC5rmw6ijLsC55oMukJEhTDFVlczLkzfYy3+8d8unO6mmq\nQJ7hpyntM8uMshRdlHmOB/6UWOZYqkbTsIjnlaSO5fDt2QH/xV3nIJxQ00z+5/EWN90mCIVPt8rj\n8geDQzShEEvJ59qn18CDYIIQglXr2cf23591sYXOht3gMJqwZLrshePKo+sE28GAVauOKTT+394D\nXGHwem2FcRbxinP6QHAQlZ/1NItYpphCr4KtW/pFAurnMa5qEsuUzeCIuuqgCZW3J4+oaRb/a+vj\nyKJgL+7S0es4qoUsJEIR/OPwbTp6g4/XbpXfHfdZN59+08+KHE0pB1ceho9paB5LeueC+eg4GyOL\nnGk+JZ1Xkm5ZdwhyH0tYSGTlwfV9/99Z06/xyWtvVOefLHIO0x1W9etVdmJeZARyhivKm7pEEskZ\nNbU8F4N8RJCPWDLKbUqLiEiO8dRSR1gUBRkx+jm39VnexRZN1JdgLZEXIbHs4ahlFcnPH2Eq62ji\n6TYq/9HxrPfAH/U6XIYXutJ94QtfqAjWW2+9xRtvvLHw+le/+lXiOOYP//APq9bin/3Zn1Var6Oj\nI2azGcvLP7psp5cJKSVZenUr5AR5Khn3Jxf+/YclWwBe00EIwdaDQ+JzPlsHm73nXp6mqWzcXOLV\nj288UXDfP56QnDMHvXF7CWturtrq1CqyJXPJ0eGYu+/sYBhadfPqd6esbzQxTA3D1Fha8rh/d58o\nSsmynNHQr/Rln//CLV55ZYmiKHj7+9tV6+zgsCRbmlaGT8dxSqddwzA0kjQjmhvPdvsTwvBM8HOS\nVb5kr1xvc/NapyJ6R91JpdE6wYPHpYZha39AECW89d4O77y/X71+QtCiOKU7KIWvUz9m93hEUZT6\nEtvUq1bkWbKVS8nu8YjnQX/iV/vgBO9uH/Fzn7jF8dhnGsb4cUKaZTRciyyX2OfE/X78bDqqF8Hu\naMzQD+jOFtuscZYzjWMGQcD2aFy91zhjrwCwMx4TJFe3VJI8Z3bF636SMAhDGpZVka3DWfmbRFnK\n5ly3lUm5IN7fHA8ZJSGWpvFmu7wGfWZpjXuDHum85WmqGt45A9Xd2YTv98uW1brr0dQNDvwJmign\nVLthQDf0+a+rN9jzJwzjiCjP+Ex7nbSQCzYQ15w6mlD5XHudKE9J8pxdvzQ+vYpsbQfDqpUJ8Ngf\nkEnJbafDdafJTjgkLyRvjfZIZE5dW7yh33Tac2NTyafr11CFiqMaqGd67LIoGGcB3vyzB9GYRGa4\nqol7TiifF5JJFrIfDZhkAftxHygtSB4E+7xZu8mbbnnDF4rCqtFmkobsxX0Okj6zLOAN5yYfc0+N\nMG3x5Fb4Pf8DMpmxEx0gC8lR2uWGuUFHb3OcdgnyEFlIEpmwPZ9ObGhNVHRW9FUc4aKg4Gl1hKJy\nmOyRFuX58Unn87S1ZSbpmKxIOU73OUr3WNEXdWSqouGpzfnEXynwVxDz2Bpw1Caq0E/bohhMsj6T\nuZar1IBdfAjTFBPlJXmRq4pdkS0AV73zwmSrKFKy4vnvMT/BRbyQLcSdO3f41re+xR/90R/xrW99\ni6997Wv80z/9E2+99RaKovC1r30N0zT5i7/4C/78z/8cz/P40pe+xF/91V/xx3/8x/zN3/wNv/3b\nv821a9ee+l0f9ngnwKQ/xR8HuPUnVwlUTVC7otX0PMiz/MpKVnPJu1CNKooCcz4R6Lomb/3LQ9qr\nixEUWZbz1r98gKar6IbKeODT6NQwLf3C9wx7U4QQaJpa2kWY+kJF5yRPUeaS7vF47qslefs7j2l3\naoCC45qVpcGJnYSUBWGQEIQpjmswGYUIVXB4MEKoAts2KAo42B9hWmVMSxSlaJqg0/EqYpikeWWQ\nahgajza7hFFKu+Uym8VlW7tTww/i0jvMPvUc2trt06w7PNw8JpcFa8uLrbdGvWw3eq6JqWs0GjZp\nltM876E1170ZukqjZtOqO2iqwDZ1bFMvQ6ilxDJOn1Y3D/o0a/bCv12Gs2PNszDBMQ0e7PVYqpfH\nVp5LcllgGzrH4xlxmmObOpMw5v7eMXGa0/FOj8Od/oiVxtUVEz9O2BtOaLnPf0HOpMSPS5uPIEkr\n7ZilazTsMmS6dhK5o6o87A+wNK0Kn27N7R0A3j44JEgTWvbZqlJGlGU4+sV9pgDqfLlQEtpjf0bb\ndkhySZLnNC2L/Vn5tGtpGmmeIxSFlbnnViZl+V8h6YchtXmsj6KUQvsl+/R3b1sO6+7pk2uYZ0yS\nhA3X4yAoCdZR5NOq2VhSpWVYLFkuTdMmyDNW7RqmqpEXklBm3HDLB7G9YMKWP6JjOtyoNa+051AV\nwX4wpqabqIrAECpCgXcnB9Q0E1No+FnCqulx3WnyzvgAP4tom4vXpA/8Y9q6wyD1SYqcSRqxbHrV\nNaehOaiKYDPo8YrdQRMqqiJQz1WPEpni5zErRp0cyZrZwhI6b083+ZnWxwEoFLDnbcf7/g6xTFg3\n26Qy439O3mWc+dy0V3kY7tLUaguO8sCC6SlALFM8zaWtN0t/P8XAlwF5kdHRO+hCZzPeZknv0NDK\n/asoCqNsyHb8mCAPcIRTaruKjG5yQEvvoCn6vDpWoFgZRaQxycdsGDfJi4xR3sO9oh1XWmBE7Ccf\nYIkamqJji9Prr6Io2MKbDwJcPd2pKeaHasUgi4ik2Ee7ELsjKQgRyo83pq5C8T5lbM+z6VI/yrYQ\nL9RS/HHiwy4NPi+yeQvrLCnJshyKAuMSXdFl2H98THOpjuNd3oravLvHrY9fTlY7HZf77+yxtH7J\nVGF3wsH2gI9/4RXSJFsIot55dMzajQ7jwQzLNrBsozRchCtzGaUsGA1mDPozVtcbfPuf32d5pcFr\nb25gWjqzaYjjmFWMT5JkDAczvLrD0eGIw4MRP/XTdzg6mnBt7kCfJBlxXIp0d3b6tNs1clmwcWZ7\nev0pmqbSbJRGjqNxgFAUGvNsxtksojuY4VgGrZazIEz3gxjXMQmj5FKd12XYPhhyfbX5XK3HsxjP\nwtI9X4gLET5FUTCahQumqJeVxKdhjGeXJ7EfJRwNp7iWQd2xFpZ5Mh34vG26XMoXCrgGSouIAnRV\nLIj1h0FInGX0goBPrZXtlJ7vs3SJOSlAnGaoatkm3h6PWXHdJ8b0XPh8ntEPQzZqV+s37g16TJOY\n67U66zWPYRSSSomj6ahCIc5zNEVQMwyOghnHoc+nO6eWEncHXTbcGg3TJskz3h8P+GR7hV7oM0oi\nXmt0WFqq0evN2PXHrNk1tHOeW5mU9GIfa26geqtWtqLuT7q4msG67V0gNyeI8rTKNITy+NkJRxiK\nSkaOoZSTldedJt/qfcA1q8Gd2tKlyyqKgq1wgKuZLBslIY9lhjnXT02zqKp0ncDPYt6ebvNTjdsY\nQuPubJc33WsLpCgv5CXkLOOBv8cde5VpHuKpNu/MHqEJlS/UP3bp+o3SCY+jPT5b+9hCq3CQjrCF\nhS50NEUlL3ISmZKTl0HV5yb2ummX5nzKcJpPqav1MtIHFVd16aZHOMKlqbeRhWR1pUG3OyWUAQpg\nzT2wygqWQlYkCEUllFMKSmd8V2080UfuR4FUltcIfd7aDPIDVMXEUMrj6XnXpXTSj1GVj1jbsUiB\nx8AdeIZpzP90LcWf4GqEs4jZmSm92cjneLvH8HD8hE8tYuP2ypVkC2D9CQL8k4nDszjh1F7L5drt\ncsrGOHfjr9Vt7n9/hw/u7uO4JUl6+O4ug3MHbhSl9HtT/un/eY8wiPFnEbNpSBRl/G8//3GEKtjZ\n6jIZB+xu9UtrBT/mB2/v4M9iVteaOI7B7TsrmJbOwcGQ4cCvwoH3dgd4nk2tZnHjRod226WQsmqr\n5blka7tfTUhu7/QJgrgiW3v7Qw57E9pNh9WVekW23n98jJRFFWL9NLKVpnnVMry53uKya9dwEjAL\n4icuB5iHUqsLxOj+9jG5lBQFRPOW7X7/8mNkEkQcj8p1yXLJ0WjKnfUOQZKSS0l/cnq8ibmJ6nk8\nyQ+rmAvGL0Oa5/Sf4uvVtC2CdHGSLUozhKKw5LoV2QIukK1pfLr/TL2M0PGTBM8wGIaLE2NPs6sY\nhlEVoXMVlmyHzy6vsey4FEXB7mxCwzDxs4RcFmRSYs91Xw3DpGlY7M4mPB4PGSdRqR2aV9SmaUIw\nzzW8O+ryWmNRd3jdbSyQrTgvA6Snacya7dE07IpszdIYXVF5PBsgUAizlF58cRpWU1S68amHk6Io\nLJs1LFXHUQ1WLI+6bpHKnC8uvXol2dqPRhxEY5q6XbXCEpmxF55aVZwnW1BON36+/gpRniCLgtft\ndeQ524YTsnUUjxik5fXDEBqf8l7BUk0c1cJUDX66+YkryRaUflsdrbVgIQGl0ekkm5IVGUdJl6Qo\npzATmbAT7Z7u77k3l6d6qIpKKlN2wx0ehR9QVxtkRUZWZBjCxJtXw3aTraoVaCk20/xUAjDO+/hy\nwkQO8LMJeZEhUBGc+p39OKEo6kJgtC3WMEWbqDgmLrpP+OTVSIsuefHyPMJeChQduPZMZOujjp8Q\nrpcMr11D01X6+0NG3Qn1jsf119dZfYEpxe33DwlnF/2CzCsCmaE86dvnNGPd/RGj3rTKFpwMfUaD\n2YIurbXk8an/cou1622UOWH7xOdvUSgQ+OWFa9ifIYSCbRv8Lz/zOkf7IzorDRpzv6wwTNi42Wbj\neocwSNjc7HJ8MELTVN78xDqKAh+8f8h77+zy8MEBr7+xRp4VvPGxNfq9KUIoXLvershVrWah6xq2\nbVSER1UFn//sK7Ra5Q3z3oNDVlZOt1ciicMEIQTjacjO3oDxJFzw3hpPrg59PYEQCqZxejG79+ii\nyall6hjz6t1hb0IQXV7GdiwD61yV8LXrS5UebL1TtjUvazVOgoj9/pRbqy2yvPQ8u95pMPJDFMDQ\nNSbhIum7t98lO7O9uZTc37/6Atyd+nSnpzf3SRhxOC5vlArKpWTzPDYaHo6hz8fLC/JCInlypS2T\nkkEQLvw9k5JhGLHkulxvLB7H93q9K4mjnybEWYahqjweDTn2Z/TDgChb1B+mMmd7OqYXBhz6Mz69\ntMqDUZ9xFGFpGoMoQBZFOYkY+izZDkuWg62XsUA3ao3KfLRt2hjzatDrc7L1b8c7vNc/5jAsb1rb\nsxGpzInzjB1/TC4l++FFnWdNN3ml1uSLK7fLOBkhnuh9VRQF/jyM2lZ1moZN23CJ84x3JgdkxdXk\nNMpT8pPILaGzYpbHX15IDKER5smCVuw8bNXAlzESybdG93jg75eay8ljEpnRSyaM04CO4XEcnxK4\nR8EBQlEYpTM+CPbZDA+I5NWtH0Po3LTXKpf5E1jCxBAGljBp6y0sxcQUBm29haM6yEKSypSj5Hj+\nfotIRrwXvEdGgqs66EKnpnmERUhWJKjzfX3TvF1V0xRFYVnfqL63qS1TUxs4wkNVNBxRRyjiglD/\nx4cCTTmtjJ8QPlusYomLE7BPg6IIVFwS+WRD5x8nCvmd8oHgw2pnvmT8JNrnORCHCf29wVN1Wpqh\nYdoG0+EMp26/8JNPo1Or2nlH231kLp9ItuDy/rVbt7Gc056yEIIsyzFMHaEKgllUWTVkSY57pro2\n6vsIVcF2TPxZhFuzynxFTeXB3X1aLZdarTQTbbZcLEsnzyXtTo2lJY/OksfOdp92x+Nf/vE+rbaL\nW7OIo4yl5TpLSx5SylJPk+UMhwGGoVY6tSzLcV2rGmXPc1lpw46OJzQaDu3WaW6YHyTkWU6alvYN\n37+7g+MYvHZ7pVrGYOzj1Z5cCSkJ1+mFvtN0iZKUzb1BZQmR5acaLW2uJ0vTnOEkwL3kd8pySZqX\n8TyXVZROKmCua+L7MYeDKYau0qmXmppZGBOmWTk4oAqaNQddU8s4H0NnGsaYuka75iy0B4WisFy/\n+ph1TWOhFaipZYKBqZWu/7ax2LJ80vHc9wMmcUyc5XimWRGuLJdMk3hhalAoCk27/B2KoqDr+6Wu\nrn6xHB+mKSu12pVtT4WTClJJ9jyzzLjUVYEmBLmUjOOyAmZrOm3bxjPKc2LVqdGxHbqhz/ujMrev\nbpqMoqj0EzNMLFUlySUrzqkWTlEU1uZ/r80NSW1N585ShzzM2ZyNWLLdKlanFwU0jbJd4+kmcV7G\n5Jzsz6NoSiLzsr2piAWR/TgpiamhariaQVrkdGOfhr7Y/tGE4IbTQhdXk7X9aMwkDcsAacNlNxri\nqCa70ZAVs06UpwR5XJmg3p8d0NJddqI+qiIwhYan2QhFsG42Wbda+HmEITRqms1u1GOYTVk325jC\noJuMqWtOpc86iHvccTZo6d4F+4dEpgjEpcdYURT4MmSUjVk2OvOcQ8FOvI8tLMbZBKEIXNVhmk+x\nhDWXswsG2YBJNuKz3uepz6tZx+khDbVFTa3j51Om+RhHrc3Pv+jK41xXDIQimORd6tpSFVidFSlJ\nES14bJ0gyEdIsktfexEURU4oDzDE032zsiIgKo7QlcutYsL8PqpSIyuGaEoLXfzorCGKIkUW7yCU\ni6bRl0FRNq6+3hQShS3AnFfBSnyUNVw/qXA9B3RTo/EM/h6qps5Jl0l3d/BSvnv5egvvEvPR54HM\nJYapYzkGzXklbjLyOd4flTozYGltsaqwdr1VidWXVuoL7cr/+nNv0Gy7uDUTr1Fe+O+/t8fB3pCH\nDw5pdWoYps6rr68hhILrWVi2geuafOzjGxhzIf3WZh+3ZtHtTllfb2Kdaffdv3/A1lY5IROGKYdH\np2235SUPVQhG49OW18Zqk431Nn4QEycpP/vTr3PrxhJ+EHNwNCrjYFafzdxv93BUtQyjJGU4Drl1\nrRyfz3PJcf+03WqZOqoQqOpFnVaWS7JcEkQJ0ye0IO/tHPP4sDxeigK2ukPqTkk2Hx70CZOUpbrL\nvz/YZTALKjKzXHcZ+iFb3bKacELmnjVW5zxUITiazBaqZCfYHoyYRJfH+gAs1VzW6x51y1yobuVF\nmQV5gjTPuXvUZRJFRGnGu8ddll2XlmMzjeML6z6OY+Jz1aqiKNgajTiczdBVlUmScDCbcKPeqMxN\nT4xX86LgKJjRDQNq53RhcZ4xSxM83eRzyxv0Qh9DqNysNzgOy8qfUMSFqcUkz3k47vMvhzv05u9r\nmw6mpiEpiGWOp5vV73Gz1sRQVWq6wXf7++wGY743OKgc51esGi3jcv1MAQuNO0No3HRaF94ni4Jp\nGnMQTebu8ocX3tMxXEKZsmaWk5KJzMmKnFfdFRzVICty2nqNu9PSNHPFrPPudJeW5uBpFrMsYj8q\n11kXGrMs5K+738NTyweDW/YKN60VojzBEjqGolX2EuPU56a1iiE0hFI6wI+z0xZWNx0SF4tTtf10\nyH58zH7SxREW+3GX46TPKCsrhdfNdQxhYAqTrMg4TI6oqTUaWoNpXrYe14w1Put9vqpk9dMua/oG\npjDRFI3H8UM0jPmxkrETP0YWObKQ7MSPL+xDTdHp6Is62qKQxDIgK1KyImGYnZqOqor2wu7yWREx\nzRcjyRRFpabeuvDe4lxlc5x9H6UQmMrlrWUAS7yOUCwKCmQRXojcSeQBWdG/4tPPB0XRUcVnf/gF\nFWMUNilYAX40GZY/CvykwvUcUBQF7TmCjy3XpNY4LflmSbYQr/O8332W6Xf3Sh8t+xyTvozdZ2mO\nIhS23z/C8WxUraxwZakkTTL0eQVjOg4wTJ3sTBUpzyRxlFJImE1CbOfiwb35qNRHOY7J0kqddqc2\nn1YsSd7h4Yjd7T77O0M++ZkbCEVBNzTSNCOOUpIko9F0KjI3HoekaYZpaqAodNouk2nE9u6A115d\nzMTLcolpaozGAaNxQH0+vTiZhNy83sbQNfJcMplFNOqLJrpZnvNwq0untTjB9+0fbNGoWcyCmJVO\nSbB1TcVzrarCIoRC07t4cywnFxePkdEsJE4zmp6Nc047Ng0iuqMZ4yCi6Zi06y6NeXv2+lJJDNN5\naHWaS+qOhalrLNXdal0mYcQ0jLAMHc8uKztDP+R4PEMVAvPc+pyQNVUIulOfSRjjWYu/a9t1Lh0S\naDo2hqpyOJld+MxZnLd/0IRYEMCXAdY2YZaVmh+lJJmWrtH1A2xdX6hm1QyjmkYECNKUrdEITVXp\nOE5VxRrEER3L5t3eMa+1OtiaRi8MmCYxd5ptNscjVpyyIprmOVvTMcMoYhLHrLk1XN3guleG/47j\niEkcseLU5u03lQejfjW5WFDG7bzaaC8EYgtTUCRFaRGi6QhF4fFkwOZsWLYnVR2hwKpVI8lz1m0P\nfR4kfdXTvKXqBFlCmKWM0vBCxM8JIpkxSHxsVcfVTDqGe2GZhtBYMT3uzg5Ztxoczj27zLkY/x8H\nD2loFtesJvf8fa5bHbajPn4e09JdTKEzyULCPOYwGZEUGXGecdNZQlNUtqNjbLWsAgkUxlkICthq\nOV3ZT8cYio4uVPJCEskEe245UdfcKlOx2nZh4qkuda38HVzVRlVULGGiC424iHnPf8A1cw1Pq6Er\nOofJEQKBJnQiGWKrZUVOFpKy2V38f+y9V5MsV5al9/k5flx76BRXAiig5NT02IwNh8YxGh/4e/nA\nh3mg2ZAc0eyxrq6uYlWjAFwtU4dWrt0PH05k3IybeQWAqkYNDdsMBgNSUc9vFwAAIABJREFURXh4\nuK/Ye+1v4Vguk2qEtGxc4eAJnz8lv6ftx4jCxZMBlmWRNQmu5W3F2k01rc7xREihc0DjWB7SUkjL\n4CGm9RGx/G4YJAuJbXkfjO/RWjOtH+AL83fW1QssJK4YIN7D9ro8P6QVUuspWCCubFMKfATBP7tH\n7b1leWB1TWfrrcf119zh+lFwfce69Kp87ElYFhUnT8/p7P15COCreUpvP77G0LrpZDs/nmIryd6t\nDtI233/0fESyzGh1Q2xb4AcurqdIk4I//v1TWp0Az3dMxyYwN3Fpi+3G4dVyHJvZJMG2JY67e1Go\n64bHD0/4/KeHhJGL2HSBvv7TkdlkXOV0OgGuq/inf3qFZRmejes6FEXFq5cjgsAFy6Isqs3WYsP5\nxYIodHFdm0bD2fmCg/02y2VKkhbcu9vj6fMhypZcjJZbPIRuNPNlaiC8rromtgBC3yEKPZSSO+Ip\nyQqOz2eEgbsVA49fDYmDNwiMm6ppNOP5mryqiPzdN6JjSyLfJfJcaq2JNh3Ay9cwKyoWSUpe1tzu\nmQ6jhq1gAnh2NibwHWwpcW2bdV6Q5iW3u60bfWFJUeLYNlKYrcKrwul8saKs6p0x4k2VldWN8UFV\nbWJv7BtGf/Msw8KIr4vVmqQsGYQhSkoCW+Epw25ree4HNyaVlHQ8j6PlgoMwQlgWkeNwGEb87uyE\nn3b7ZiRqWYTKIXYMYX0vCLdCUFgWx6sFn7U7HIbx9r3caM28yJlkCWfZmruhWem3LItQqe24TlgW\nnm3vXAOqpua8Sng8vuD5cs6nURdhWcTKZVqkzMqUljLixhYCLIu283Fg3HKzSWoLuTNu3DkuQtJW\n/hbF8GQ9pG1713xGszJhUWbc8tr8aXmMxKLnhEzLNT8LD8h0SakbPgnMks0dz3R2bSFxhY0jbGLl\n01MxXRXyWbCPbUkWVYKFYOC0UMLmrJiS6wLbkkS2j21JHEvxPDmhpqatoq3Yele9/WHTlx6+9Lbj\nSK2hLSNc6XKcnxDJiMfpE/p2j0JXaBoCaUTyrJrxLHvKXfceT7JHJNWant0ntlso4XBg3+KgM6DO\nxPb67gkf21Kcla/xLH9HeGltxFvSzAlFm3l9QVcdbsadavv4Q3lz0sTlxuOkeoH/jvGgZVnXxJaJ\n78muebguxRaw4YQF34q/Ja1oR2yZ33vziPevtX4UXN+jfugDd1NVZc2f/us3CPGGu1VX9XsBopPT\nKf3b3RsFy3cp3TQ4/nWG1k0nW9wOrqEdvMAhbvu4nkI5xqsjpcD1FJ1+SBh7PPn6hP6+EYhC3iy2\nwAgu33dwHHungzceLrEscD2HPCmIOz7rdY7jKLr9kCj0ePVyxP5BmyQp8DzFfJaY4OpeSJIWCCFp\nt3xaLZ9OJ+TR4zMG/ZjlMuXFqxGWZRFHHnFkwq19TxEEDo+fXfCTT/fwPEW75eN7ptOQpAVnF3Oi\nyMN9R7fSc81xfbtTpWxJO/Z5djzeYhx67QBbSvKieqdB3JYC37PxXefa95iLqfGWnYwXdCN/5zV8\neTEh8l201pxOl3RCn3WW89XLcw46ZqRqWRaDOCT2Xaq6Ic1LDjrxOzcPA0e9U9B4to2n7Hf+7OVj\nfldW46rIWeUFketQ1DWz1IissjYh0FIIlJRErrMVj5fLAx97UX82nW6jfWZZxkFoOkXPZ1P6QcAg\nCPl6dME8z9nfbEVeZSJdfR59L7gWnVNrzSRP8W3FL7t7O8fqJm/UPw6PSeuKWDlUTcO9fpd/OD7i\nf9y7i20Zv54Ugj0vZN8LyZuKZVXQcjwCW/Ffz59zL2i/8/mXTY3A4tFqyG2/hS8VqyrfGva/WZyx\nKHN6TsBptiCpCuZlyteLM5QQeFLtoCTALEMceDFVUxPYLveDPo3WnOZz9t0WSkhOsxmx7SMtwXE2\nZVqu6aoAJWzstzpySZ2b/29JPOEgLbHxXGWcZGPuuANcqah0jSsUbRUyq5Z01HWLxuWWYK4Lyqa6\n5vOalnOm1ZzYjig3OAhlKQpdEgoDiF7WSwbOHm073oqti+IcaUkW5YxhdcaBfYtcpwgL0ibFlwGl\nLqmchIezr3mcfElH9fGF6RLGso20JLWusDbnz0X5Ak9E5jon/C1tHmBVT8j0ElfcbAWpdcWiPsUX\nbSTOVqBp3VCTv7ejZeNjW+/3BwvLJWvOPsrn9W1rXf8nJB3ED4GQ0BeAgnd0HH8UXN+jfugDd1MJ\nKTj4dI9o46lKlimjozGt/puLR5bk2OqqQVjgeGq7AfiuWoxXzMdLwvb7Iauu7+y82ebjFckqY7Df\nIkkKLo4nKMe+MXsRDGn+1ZMLwtjbdr1gA1H1HIQQOK4RYzvr/lnBxemMuB2wXqb87f/5Ff39FmHk\nIaRgvcxYrTKmkxVB5GEJmM+TzZvA4BtabR/XVUgpsKWgrjWua6OU5GJoAq6llPQ2x3e1zhmPTZfq\n8MDcmKazhE8/GXAxXLI3iFHKxHycns9pxT69bogQgrKskVKwTnK+eXxGVTX4vqId+TtdqbpuePpq\neC0jsW4aJrP1Djy13zYX4IcvL+htWGCvz2d03wHGtSxrg4Z4tyAXwmKdFniOIoo8Hrw8px14ZEXN\nMs046MaEnoOrbELP5XS6pLWh2LcCbyuQbCkIroihoqo4mswZLRN8R70zw/Dq43if2PpQubZNtPn7\njdYUdc3Fas3r6RzXtumHb47RPMtBm5/5NiWFQANPphN+1h9sBc0oTVnlBVXT8Hg65k7U2oGo3lTC\nsphkKRfJeouUEJZFy3GJlHmPFXXNi8WMSDnXhGpeV/hC0fcC8rrm785fMohCfh4MWJUFeV3xbDmh\nbAxp/h/Hx9wJ2nQcj1mR4UmbeZEx8MJtF+rJckzPNcepahqOkjmutLkbvIGivkpm9Dah1W3b51ky\nQiK45Zvont9NXxPZLj0noEET2bs3ACUko2LFN8szfhnfMiNWbbxcse1hW5K+84YHNi3WeNJhVq6o\ntN5mMgI8WB0zzBcceObxPV6fMMrnnOQjPgtukTUlvnRZ1ykXxQxfujiW4jgf4lpqm8d4WefFhFKX\nSEvS0NDohkW1xpcela5I6gx3w+B6kb0mqTIC6XFSnJPWGY5wuOPeRlk2ta63x9W2lKHMq5hZNSGU\nMX1nj0i2OC5e0bX7WJYgCj2azGbfuU0sOzvXP601Z8VrsmZNKFtEsou0JLblMqxe4whvGwHkCB9X\nhFS6YNWMcMVuN11YAl8Yz+zVOJ+anKSZ4Ip3+4U/FPF2WVfFltaaUi+QN1Duv23Z1gHC8newFP8s\npTWQAR4WMyxG8Bao9UfB9T3qhz5w76qrJ7ty1Y7YAjh+ck6rH22/T7n2B8UWgOMrgtj71i1c5Uhc\n3yGOPZKkwBKGtfX239Rak6wyHFfRHUQ7YitNcv7wm6e0uyGOq5hP1khb7IRZSylIVjl+6HJ+NqfV\nCphM1nR7IVIKHj84wfOUyTasG/Ki4vi1EX9FXtFqBwzP5/iBsyXFO67EdRVKSeLYoxV7/PYfntHp\nBHS7IXHsbQWalMZ/lqQF3U64s6F4yfK67FA1jebF0YheJ2SdFASe4u7tLg8enRnz/s7mpkWn5W9v\naC+Ox8YILwV5UVHXZpPyUqRleUm3ZbYEhWXRbQXUm+6S8y26mGVVM5qvCVyHTuTz/z45pt8JsRpI\n8pJGazqhzyrLiTyH16M5ndDD3kBUH5+NOJ0sOezG29f3fL4i2owJxaZTd9COPii26qYhLUqcD+Rq\njtcJ0ySl9Q4PV1ZWXKxNZqKvFL0g4Ha7RcvbvdAHjvpWYktrzShJcKRkXZaGNC/EdvPRkzaPJ2OU\nLei4PrfieMf39a4ygc/Xb0KjLCGvKzxp82Q2NmZyz4ic16s5jpBcpGtK3RAqh0g5fBp16LUCisxs\nGwbK4cCPqHSNsgTn2YrYdpkVGU+XY2whaDsenlRvRLMQuNJGa803iwt+3tq71lm7FFuN1hRNxWdh\nn3WdE9nGJzVwI7pOQMcJGOYreo75IJFWBUld4ElF2VR8Hu6/2fCtMkLbpdQ1L5IRfSfid/MXtG2f\nlu1T6gpPuEzKFQMn3m79pnXBXX+wfYy2JYhVwF1vD41mWMwJpPFb7TsdHGFviPYh02pJy979kGNZ\nFmmd0VUtlGXzLH3N8/w1993b5I3JzfSEhyOMwd+XPi0VE0gfX3p4wqWhMST5akjWmA3PaTVh1Sw5\ncA6JRISwJLalUELRtrtUumBWj+hGbUTu4Qqfk+IlkYi3Vofj8hm3nE+whYNtKS7KVwgkRZNgWw7L\nZkwo3+4oWQjkVlTVuiLTixvjfQCEZb9XbH1MLevHKKvNvP4KT1z6XjWFHqPE97e1WJb6AcRWBjwG\n65NNd8sHWv9debh+3FL8jnX69JzkPTynT355570jxneVAZd++5+TttwxhAebjlNZVLx8ZDaV0nVO\nU2sWs5tBln7g8st/dR9nk5O4f7vD2dF0y8WaTw2gtMhLzo6nDPZa/OTnh3iu4vGDU/7x75/w6ef7\n5HmF5zt0+xHrVc5gL+Lpo1OULfnyD6/wAnf7O20lt4JuOFwRRWaT8X/69z/l6qJaWdbbTEQpBd3O\n7qho+xw2WAowIuqzewP+y98/IstK1pvcxH/3bz7bmuEBFquMo9Mp1pVMuXuH3e3mYb8Tsk7yHc5W\nXlYU5VuMp7phnX4YhHpZWVFyMp6TFRXlZgPvV58c0G+HtAKPXhywSnJWWUE78HCUzZ1ei0YbQGfg\nOhy2YxZpSlq82ey62kmzLIvjyZyL+eqDW4tFVbPMPvz4+2HAnc67L9pKCtrvMdS/rxqtt3mGN1XV\nNESOw34Y8mmnS9s10NVX8xmh4/CLwR5l3VA3DaFSPJt9+y3htDLHMlYOoW1iiQZBwEHw5pwZeAGj\nLOH5asYncQffNu+ZJ4sJ/9frZySb35FVJbMio+cGJHXJo8WY3wxf82Bxwb8b3OPQjxl4IdMiZZiZ\nTceW8qgagxP9defN+nxeVzxa7vLUiqZmVJifO/TMa6K1ptI1aV3S6IafhGZD7SSd82B1vt12/Gp5\nSn2Ft6WBJ+sLAulQbjbVfhoc0KANpkI47LstfhHdJmvM83ueXqCEZFi82R7uqIi0LiiaCguLnooA\nTdsOKXXFs8TwtywsZuV6h9UFEEqfQ9c85rNiTCRD/pfO/8CiXrGqEgLpM68XjErjD7scS9ZNzaic\nIi3JsByj0dx2btO3ByyqOQO1hyvMeRnaMbWuGZbm2mhbNq7w6dsHfD3/I8UGmmpZmtoyx6jSJXv2\nHTMKrEYMy9fsq/tIS5LrBCVc9tWn184nYYnrgdR/4YCXWiegBR37X27+22wWB/LuX/Tv/kXL8sD6\n1ZX/tuAHjEL6LvVjh+s7lh952I79ncTRepFeI71/TNVVzehkRth695jkbXUvpSBq+zS15vd/+5D7\nPz0gfs+4cj5dc/xixN4GD9G90qWbjVdELZ9217C0tN6In37E3kGLTjdEKZveIOLo1Yg4Nt6r5TKj\nvxeTFyVl0ZDlBctFymCw+ynud799xuGtzhbQ6l9hWbmu4uhoiuvanJ3P0cBsnhBHu93AyXQNlvXG\nGO85KMui34txHEmal3hvHXtlS1brDNsWW9/W5YbeZJ7guQZfYVnW1vflOeqaB8yWgtC/WWgsk8yE\nHF/pONpS0ol8Gq2xpUTZEseWO69hXlbsd0IcZbPOCpaZifhpBd72sftKcTJdErgKV9k7I0WAfhQw\nTzMCx7m2efhqPDMdA2XGjdF3FEpX6zI38bvU8XzBw9FoCz19OZvR3jC1LMvaerfAdOQsMD4l25jQ\nn89n/KzXx7UlSkocKflqeMGiyBn4AbMN4PR99XIxR1jWRrQ5/Lez10S2w2EYsy4LFkVG2/VoKZdP\n4100Q0t5/PJwHwrDA/tqNmRZ5lxkKwZuwL/t3+F1Mud/vfU5r9ZGpOR1RUt5+FIxytcGIjo7xbcV\ngW18YWbZwBji397+fJvFpYFpmXLbN6T7Py1O6TsBNQ13/M52vLjvxizrnLQ24imULl1l0A5KSPKm\noq0C3A3C4aoP7Cgb07YDek5EvTGOp3VBuKHTS0tuvVgath0u25K8TIdc5BMC28MVDh0VXdtMBLgo\nJhy6/W0HzLUc0JppveC2e0DVVCgh8YW5BlhA1mRoGmIZb8VVoxseZQ+5591HWQ55k/Eg+Yq+2mPP\nOSCrM46Kl3jCRwmHLwafG3Bz/gitwbE8XuWPCGWMpsGTAaFs4wiPVT0jEDGBbL+XsTWtX+Na0RaU\nqr5jkPTbpXVDrscUzQJ1ZWTpicOd62KuTxGW895txf+/1F9zh+tHwfUdS0jByeMzbNdG3SCehkdj\n8nWBv4GIzsYLvvy7R9z5/IDzlyPa/Q+3jI+fnqMce8fw3jT6vfDTm042IQRCCg7v9UyMy3tEYhh5\nW7G1fS5nc/zA3RFqeVayWqScn8yQtiBZ59RVQ7QRg7PJmqjl4Tg2QeCS5xV37/a5c69HGBpGk9ag\n0dvOXJLmTMZr9vdbNE1DWdYURcV8YTYg9/ZiTk5nZHlltg4D55p4ch2bNC9RtuR8uKQVeyzXOask\n59XxhLpuaG38W6PJygRMu4pW7GNLida7XbPFKiXwXXzP4DK+zbjwas1XGa6SN24z+q5CXelOXn0N\n48Bsdp5OFrw4n3J30N5Gy6yzgrPpknt7HTqhh2O/Mbs/PBkyuBJgHfvujZiHrKyoG010Q9TRhyCn\nf4lqed4OYd4CvE1w9VfDC3r+G8Hx+9MT0qraYiEA+n6ABlZFgb8JyT4IIwa+WWs/T1a0HXf7vOZ5\nhmUZ4aK1Zppn+NKEj385PKfluhwGEb8bnW5o8oa8LyyLaZER2IpVWfAfXj3gi1YfR0pe50uc2mAq\n7kVt+q5P3w3wpOLFakajG24HLRrdoIREbUaIwrLI64rQdjjwYnypeLgYUugaDTtjx3VVIK2b/XaW\nZXGeL+k7IZVuqJqaaZlwy2vz9fKM/U1QtS0kjiXxhM2wWOEJm3G5okETShclJEVjIppGxZKLYsFR\nOia2PfbdNyZ/TzpGUFlyG2W0qlNO8jGR7eFLlxfpOQNnEyatYVIv+Wlwd7u5eFOVTYW32WDUWlNT\n81XymD3VxxMuR7nhXGk0aZMhhaSrOiZ+yZLbbUJhCRzL8LaG5QUOLjUN0rI5K0+YViMiGRNJQ44P\nQ5c0KZFI2rJDYMcEMsYTIY54cyOdVGfYGwiq/ACywbMiVvUQ73uOCq9Wo0uW9XNc+rii8973qk0L\nEHzXcGyt6xt/Vuvyn3+0eEMJ/TWaLmxevx9aN/wouP6MNT2f4UcerUF8o9gCKPOKsBNsTeuu7zDY\nbCnaymZ0PP0gyDRs+TuB15ZlXRNbpy9HRO032yrvO9lePDxDNxovcCiLamcE+XYVRbUVZ/PpGj90\ndsSCUnJLndcalvOUIHIZD5dELY8w9rBtyVd/fEWr7TEarRkMImPGd8zPvHw5JC9Kg5NwbPr9mM6G\nx/Xll69J0xLXVdgbM31elAgh+OyTAWHg4l4GhG+6T0fHU6qq4uRsxv27ffpdw6pqt3yENOPFXifk\nP//9I+7f7hr/mC23AnQ8W5MV1Q4rKwpcqqoxG1wj05F4G2z6MRX6znvRETvfu3kNsyubj6HrEPsO\n4ZUOlGNLupERuFLs0utb/ofRCkle4NqSbnj903ZWVrwYz3ZM7t+nvmuw79Vu1DBZMwiC7fO8Hbfo\nbUzxWmvyukZJyYPxiGWem5unUjvbdB13tyO6LgtsIVgWBaMs4cFkyDeTIb/s7YFlUTS1eQxacxjG\nNGjjr0KTVhWhMnwwXyrarseyyOnGAaq2eLKY0nd9GjSrquTlasrAC7kVxNiW4O+HrxkXCZ9F3a0f\nKrCdTS5gRaM1h36LjuNf2zIc5+uNWLvClWtqvpyfUjUN43xNrRsWVYovHLpOgCNtOsrn0cqMDS/h\no2AE1cCJaSnzt6QlkJbgRTJCWBbP0iFFXZquloquYSbERsCByWR0N34tVypepmcIS9LdcLSEJbjn\n7X0wEse7got4kR0jsNAN5DrHEYpcFyzrNYHwCWyf0/yU2I7xhLsVW41umNUzXOGSNgmrakVp5Xzq\nfYYjHHzhUdOw5xxsifHKt1gnGb4MsYW5FtiWYt0sNhuRDkm9xNYKzw4Zlq+JZYdlM0FZN/tvk2ZB\n2ixwRPBBcfYxVeuCpDnCF4dkjDYjS4llCYrG5D9ayO1jqVhS6vE7afMAZXNBo9cUzSnC8qj1CE2J\nsHwK/QBJe0dcaV1Q6GfY74Gq/sVLayAxAFTrTVLHD60bfhRcf6bSWrMcrwg/EO9TZCXKUVtTumVZ\nW6yC4yrClv9BE/3HjCu11nhXRNjbJ5vhhYFuNGdHY27dH3D2esLwdHaNKn+15pOV6aZ5iqKojVDc\nCLSiqFgtUpJ1Thh7BIGJosmygjwvOT+ZMR4uSdY5x8cTbt3p0x+YmKI8LxmPVkSxh+c6xrPlGTFi\nWdb2b4Shy95ezIOHp0wna375i9sbg7qBmo4nK7TWOI7i5asRk8kaLIhCDyEsWhso6TrJWa4yzs7n\nDPrmk/1P7g+YL1JWSUEQONvjHPjOVmxdjJdM5gnt2Gc0XSGEoN+JSLOCwHeom4YkLa6hI64dx1W6\nY7Z/X6V5SVnXdFoBSVJwPJ4bhMPm2JxOl5xMFlR1Q+y7NFrzf3/5lLv9NlrDdJ3CJr/Q/oiRXlqW\naG7eErSl+LOJLYAvz845iK8zz95V66LYjiVfzeY4UnIQmp/XGw/b8/lsK7jyuuZsvaLWDb5S7IcR\nyyJnURS03TfxQZcsq8sKNlwt3zaC6SCI2PMN6uNWGHO6XnGWrKhp6Hs+zxZTlBCEytnCTn9z8ZqB\nGxAoh69n53Qin1fTGXteiBKCb2ZDTtIlX8Q9srridbLg0I9NFqaQLMqCYb7iePP/AZLK5B1eesPe\nrli514z0Gni+nvCr1iE9N+T/GT9lz43Z9yLOsyVn+ZzQdvGEIm1KQvlmVPu/n/2B+36XwHb5ennM\nosroOSFZXTKrEn4d32XfbdN1ItIm5/eL58TS46yY01EhZVNzlI2IbZ9VnVJRc5SPCaXHcTbmvreH\nKxW1rjnJx3jC4SwfEdsfB9TsqhaVrmirmH2nT1pneNJ0qpImZd8Z4AgXidigG8x2okaTNzmzasae\n2iNpVuypfZRQlLpkXs2IZcysmuIKAzfVbsFynaCBRtek9Zpxec6yntG1BwhLUlMxrI5xLA8sTSjb\npM0KT9z8fJTl4ljeNUyE1ppCr7915I+wJK7oIi0HV3TI9QRpOQjLpmxWCGzWzWMkEQ0Zymq9V2wB\nCDwsHCo9xJV3EHgIfCxLYFt71zpZliV/WLEFQIXFMVx5HD8Kru9RP/SBe7ssy/qg2AJwA2dnA/Da\n73mH2Ko2RuyrX19sgqbf9n1lSc7o1Hi6Xjw4pbffunayLWcJ88mKZJ3zyU8PUUrS7oUMDtuslxnK\nkTdeIPzQgFBXi5SqNPmKQhj46PGrMZ1+RJYWFEVJELjELZ+45dPpRpwcTfji57fp70VGLAiL+WyN\nUjauYyNtgec5+L6z3T48P58TBA7Pnl0wn6fs7bU4P59z+3aXvb0WaiP4HEdux5TrJMdREs9TzOYJ\nB/ttwsClsxl9zuZrvn50Shx5fHK3v/M8hWXhuYrXp1PAwlFyZ+SWZCWtyBjVo8DFUYZVdomHqKqa\nxTonuoG8f7XS3Gz9vS24lknO6XhBJ3rTXcrKiqbR9DohSVLQCd+gK8qq5o/PTrjXb2NZAmWb8efd\nXhvPsSnrmi9fnQEW8Ud0twBcZb9zSzAvK8pNx+imqhoT1VPU1Y3fU23yMS/rII7Iq4qiqpkk6RYd\n8Xo2J3KcrWfqxXRKx/N4NZ/TC8zr6Nn2JtdRcL5aGUCs43CxXuErhSMlthBEjoNn2wgMoLTj+Vux\nBZDVFSfrJV3P33mc58lqm6uopCSpSsZZSt8L6HsBZ8mSw8BwzSyg7/nb7sy8yDj0Y9qutw2M3mvF\nyMoATaUQdBzP/OP6RMql7Xi8Ws/ouj6zIufn7T0kgk/jLn+YmMifBs3tYPcG2WjNtEzxpaJq6p0O\n0bzMOMsW/E3ntgkNtyRt5dHeZB7uudEWiCqF4CxfMnBC/rB4TWi7/Jv2feKNF2zPbSE3Xa3Pw30i\n6fEyGVHqmlGxZFGn/DS8jSsUvnQM4DSfYiGYlmtueV084dC2Q5SwadsGNquEzevsAoGFJxweJ6/p\nqzaPkiMsbbGo18T2u0W+KxySJmVRLZlWcySSvupw4JibbdZkJjvRsjjOj4mlAdbmOqdrdzfxPx5l\nU+BKD4HgcfoQZSmG1Rl7ah9p2cShz5+mf2RdrZhXF4DAlT4H6u62O2VbDm05IGtS0mZJKFusm+kN\nG4qmTCC5usbk0tSkevq9txKVFZFrEzo9rb7CEwMCeQ9NSaNL5Efwsgzg1Ma2uliW3PzzV25KtyRY\nu1DZHwXX96gf+sC9Xcky5dkfXuJHLmVebTf63lVaa3SjrwmsIi9vZGSNz2ZbFtZlNY3GVvLa99vK\npjOIkVLQ2wBK3z7ZXN+hrmpm4xW9vXhHdIwv5vihe62T1jSa+XRtRn/A1394RV3X5HnFfLqmyiv2\nb3U2iImCuO1TlhVZUjIdrzi802W1ysjS0nQVyprxyGzJCSFAw8MHp/iBEVxVVdM0DY5j47qKOPZ4\n+OCUVsun2zW4ifU659HjM/r9CKVsbFsShR7nFwsC3+HWYQd3A3C9rKrWOMrm6HhCK/bwXEXTaEbj\nFVlZkWXlxjBfcDpa0OuE258PN5yz5Srb8YmdjxY4GwL9h8QWmPGjENbWV7Z9XZTNcLYi9JxtN8pV\ntuFsvfUavhrOiDyXbuQzXiVYYLbQiop5kuHYkvk64/ODHsssJ3Sdj+pwva+SwvCsLv1Tb9eDsyGh\no975PS8nM8q63gJSG615Np6yF4VI8cZU/3g0Zi8MzULBxmzv2PbdW7SQAAAgAElEQVRWbIHxV23R\nBWXJXhgyyzL2ghBfKeqm4dV8xrPZlLutNi/mU9ZVuePVAsOe6no+yyInqyo8295s9JlOUqM1GvBt\nm0g5KGE+jNwOWyZQWgimecqyLOi6Pqsy5z+8esTtIKblGFRHrFz+aX6Or20i5ZLVFcsi4+liSmAr\nvp5dUNQVd8I2kXJ5shpjac2kNCyuQz+m43hISxDYu12PWmtG+RoLi+N0QUu5vFpP6ToBnrTpblAR\nF/mSQteABRacpDPKpqF9mdOoNY6w8aUisl0a3Zhzvcq2hHpPKvacmIerU1q2z2kx457Xo6tC5uWa\ni2LOqs45dI3ACKXHWTHjrtcnqTM86WwFtxI2WVMyLhfYls2B00NagtvegOfJCYt6yRf+XQLpbblf\njW743fJr+qqz4/HyhEsoA3qqQ2QHO1BUZSnSJiXTOYfOwSZX8QxlmXGiRiMtyT+ufosvPE6LI5Jm\nxX33U5ImxbFMHmMrCrGzkFyn3Hc/p6LAlyGL2nTBKl0iLZtlPSHRCwbqDsZhVrOuZyjLvXFsuKjP\nDCDiinHdssT3FlsATVNjWyESl0je3dLlhaU+SmxdrQ95shqdUukzpPXuCcn7H+sTzPjz+/PAbqof\nBdf3qB/6wL1dylX4LQ9pS6bnc6J28M5u1fR8xtmLEUVWbon0l/X8T68Zn83oH3Zo6mb7O8KWvyO2\ngPcCTC8rTwvyrKTTDa8dM8936A7ia52suB1sxdZilrBapEgpmE9WFFnJelXQNJrPfnZIXWn2b7Xp\ndENaXSNMhDRgUduWnLweE8YerXaA49jGWCwEutGcn824d7/PrVsd8rzE8xX9foxuNNIWPHlyQVUa\nUn9RVLRaPtOZ2dbqdEL++MfXCGkBmsUyQzk2r16PqRtNUVZ0Ns9Da21E3eZ5Pn81omk0f/Oru1vR\n1DSa33/1mtsHbZQtWawyDvdaVHXDcpXiOm8M7E2jKYoa/4qofn48Zr8XfXDcO56vSbKCwHOo6obR\nbL0FlYLJV+zGPv4NxPa3Lxi2FHiOzcvhjHuDDp3Ix1WK2crgPfbakRkNKptO6PP4bEQn9Fmk+Qcj\net5VrrLfKbYA9uLwxu/RWlNUNf0wYLhKaPvedmw1CIOtqPr98SmOLfmi39+JAbq63fhwNCJynJ2v\n/+7kmEA524BrKQRPpxOKuubXewcIy+JiveLlbMYgCDhbr/CVvfM7vhyds8hyOp7JhfRtxaLIebGY\nMc1T9oIIaQkeTkecJ2uKpuZktdiEZ1vciVpYFpysl/zPh5/Qct5cXC3LYr8dUeY1vq0YZWvO0zU/\naXWZbaJ9QuWQ1iWv1jO+iAfMyoznKyPIYuVS6wYsrhHwhWXI/LVuuBt0sLB4vh5z4O2mCrxMptzx\n2kjLIpQOj1ZDHCnpOyHTIuHJ+oJP/J7xhAobTyr0BhbhvEV1H+YLZlXCZ8GAcbmmrXykkNz3B5RN\nRVLnRJvNRFfYrKuUXFfE9mbU25TkTUkoPULpkTclRVNS6oqiKQlsn58F95FCbsXW5XGMZcjr7Jys\nyWnZ7x9Hp3XKqJyw5/TxxZtNyVCGuMJhUk5Y1Stc6ZI3GaEwqAoN3PXuM1B75DrDES5R6JEmFRUl\noYxY1lNiq8O0HhJYEU/yfyISZmlAILmoXtK3b2MLl0DEW9/X2yUtB9tyqCmwMOf5oj7Bu4GLpXVD\nRXYdJ3Ht+zR5M2VY/5ZYfrrpUn2/rlSjM6x3+MxqvQINwgqwvvPGY/cvJrbgR8H1veqHPnA3leMq\nbMem1Yve68PyI4/OXutGc3zvsEP/sEORlxw/2c1YfPbVEe1BdOOo72o9/eqITj9iPlkxPp/jhS7d\nXnTjMXv56Iz4SgfnaiWrDLnJUxRSmMDp4yntbkh/v4UlLFbzhOUiJW4HHL8coVyTxffk4Smttk+r\nHZJnJa6n+G9/+4jHD0x+YrsTohxJtxexXGWMhguOjsbcudtntcpIkoL79/u4jk3c8gkCl0cPz/jZ\nz25thJtFVdWs1zlK2dS1RuuGP319zGefDLgYLalrY8jOi4rZPCWOzJu52wmII29rPK828Uuep+h2\njEg7O58z6EUMuhG+p3DUG7K+FGIrtrK85GKy4t5h94O+LTDbkr6rthT0q2ILTObg05MJiyQjcJ0b\ntxTLqub52YTDrhHLvcg32YgWPDy+IC8qGgz2wXNsLMxNea8VUTeavKwIPmDwf3g6pBP4N54X36Vm\nacY3F0NansdB693nsGObLMT3Ue0HV7YPwcQDzfMcYcF+GNFoTct12QtCTpdLbsemU9D3A6Rl8WAy\nYi+ITEew0Vsxdztq0feDnXGqK20GfsA0T2k0hMrBlTbPFzN+1dtjWRUUdcP9uI23CaTuujdHqzxc\nj+kJD0dKIuWiLdMxcoRgkmf8Te8WTxdjyqam0g3H6YJ/3bvNwca/ZQu5I7ZeJzPKpiawHXyptp0v\ny7K47be3242rKt90pkKmZYISEk8q7gc9+hvw6bxMueW2+GZ5xrhYs++avzkp1oT2G1juZXVVxHE+\n5a7XI7I9HqxP8CxFpLzNzb4kts1iwHE2ptQ1t70eWVMwLVcoYTOv1vx2/pCOiuipmD+snvDz8B6z\ncsmB02NVp+RNhSvMuTorVzxMnnPb26dlm9Dqq+PT83xETYMAxuWUcTll4PQIpM91M7/BMMS2wUS8\nSJ9TNBl9ZUz7y2pGLFskzYqO3dvZUgykEWXHxQu0Bb4MWTdzPvN+tcFQCELZoqEm2MT+vG8RQFim\nY7qoz1HCvTKevH5zrinImjHuByClmR6zal5w6Pz7G8/FRheYzdqPe39rXZM1L1Cif/PXScCykNbH\n+zHfrr/05vOPgut71A994L5taa05fXZB3DMn5Nsn1/GTM7Opt7mRS1teC7SOu8EHO1oAnX6EkAIv\ncOn0Y1xPvfNki9oBtpKslxmOa1MW1dYflKxyk6PoGwO5+bdFGHuojQAJYw9/s2nX3vC2hBTYtqQq\nK9rdEH9jQF/ME27d7hC3ffK0oKo1fuCwmKe4rsOjb06JYo/lIsPzFWHo8fVXx3i+g+cpBptuXJaV\nJEnOkycX3L3TYzCIODhoE0UeX3x+gO87HOy1zGMRgih0zZhQSRZLg3O4FFvLVcbpxRzLgl473BjR\nDUcsDBxW65wkLYjeeqOcXMyJQ49GG6jqu/IX3y7xjpX9y3I2vKxW4O1sRYJ5sy6XGU/PJvzksL8V\nQ1dFkWtLPj3oUZQVjjLMqZfDmQk3liav8KrYquqGeZpd63h1Q/+9kUPfto5mCz7tdbeP4e1aZjnL\nvMBXNtISpFXJPMso64az1ZLOe6J4Lsd9t1stHCkJrnTXDqOISZriK9OtSqqSn3UH9IOAcZpuWF3m\ntWu05tl8Qt/f9QvNspS8rmi7Riw9no35RW9AVld0XY/DIL72nLKqpGqa7YYewC8PD5guU4M8EYJo\ns8noSptllTFwQ7K6puMF3A/b2JYgst1rHa3Laivv2njxssb5Go3eRvP48k2+qnqrawRwnM7ouRHr\nusTGouuYpIaX6Zjfz1/RtQOOsikajbIkR9mEtvKZFCsGbkwoPbKmQFk2aVOSbbpXL7Mh9/09I1KT\nIbNyuXn+kpYdILDYczooYXPL6VE1FQ+T1xS6QCJY1GtG5YyWHXGaD1nVCeEmA3Fame1AicDCoqEh\nqVNadoS0JG27RaNrnmcviWW0Ey59VpxhYRmxlT3nJ97nOMLjqHyFK1x6zgBlKRoaPOFTNAXKhyLV\n1LriojziU+8XzOspAujZ+whLsqinhGJD26chbRZ4V/xZRZMxrU4J5PWxmyda25zEm8QWXNLmzX2h\nbFZkzQjnhtGjjUfWDAnk4bWvAaTNKcKyER9pyrcssSO2tK52OmbC8q6FW/+11Y+C63vUD33gPlQv\nvz7aifCxLAtuwDdcVtwN38vRAnYCoN9XN3XX3nWyXf7Oi+MJrW7I8fMhYWw2JZfzBK0N9f3y+4Q0\nWYpCWMwmK/zAZTZeEYSu6TitcoNVcGymkzWOpyiLynDDlCRZ57TbIXWjKYuKLKu4OJuzd9hisUxp\ntXw+/WyPPKtYrXPanYB222e1zEjSAt93qOuGLCtpdwxA1bYFi2VGmub85jdP+PTTPS5zCpMkJ0sL\nnr0Y8vpoasj70vDHpDBxQK3IJ80K1kmB6xgfmO85FGWF7zm4m43Aq1XXhvh9MV7gu4rpMkE3MJqv\nicOPb4tfIh4W68zciDaB19NlguconhyP6ESm0xSGLmla0ouC7eNpGk1e1tibjcVL4dQKvK0I6IQ+\nrrJ5cHzBXmv3E2jVNKRFYUChb4n5RZrj3dC1u1isUFJ+lAH/bLFECsFBbIKkVxtRdVV0VnVDjca1\nJc8mExxbMl4nnC5WfNrt0PU/FMZr4SvFPM+2HqzLarTm9WLGIAjxbJuOa46Lten+BOrNaLJoak6W\nS25Fb25gT2cTXq8WPFvM+Hl3gBTmvDldrzhazxGWieB5+/GtyoJSNzvbhGHocjZbYm0e1+PFmL4b\nbDpRhgDvSuMTS+qSo2Sx4XR9e1yA3hjkPanwr6AjLsXWKF/xMp2w55rzoe+Ehr8lJDWaeZlQNDUd\nFRBJl0OvbRYDHGM4d4RNVhf8b2e/4TN/j6qpeJWNadC8SC74IjjElYpYejjCZlqu6KqQtC7QWHy5\nfMkXwW1i5eNtRm3P0hOG5Yyf+Lc5dHtEdkBHxbRsA0ANpc99/xa+dHGFQ2yHFE2Jsmxe5sfccveJ\nbSMUsybnpDhj4PRxNziIq4Irr7ONT8plWa84L86JVEjX7qKEYlHN6Ko+oTTHp9QFjieoMoOvsJBM\nqyFd0SO2e8jNyLXUOa7wmVUjYtnBk7vvNwtrCzp9uy7KBwSi/9GdHoG9Caq+/gHGsiw8sffOMaJt\nhRR6BmjkdxBKWfMIabVv/Nt/rfWj4Poe9UMfODCbg5cm97ffJF7oot7qGrxPUP0526mX3q+qrKiq\nGrmhlE8nay6OpsSd3U/wj/90xGc/vwVAu2e6Y5ZlkWflputmc348Y71MTfdsI+jmkzVRy+fhV8d0\n++bCMjyb47iK3/7dYyxpMTybE7d8PN/h9//wjDQtids+F+dzXjwfouuGz396SOA7xLHP/iaE2g8c\nRqMl81nC/n4LKQXLZcp6nXF+PmexSMmLmjt3uti2JM1KLs7nVHVDUdQMJ0t6nYAsK7GVZLXO+Zf/\n4i79bsQ6uRxD1lyMVwx6Eat1Tl3XNFobsVVUzJYZrcjbEVtHZ1NakY+3gZK2YyOGHGXz6mzKYT++\nJlzeVy9OJ3Rjn7Kq0dqIHs9RnM+WnI2X/OqTgzc5jXXFxWRF5DvM1xl5WbLKcta5eS9MVymeo3Y6\nXuezJWVV4zvqmti6LE8pzuZLOsGbLlLdaOZpxulsuTHb747wvLdE07vKwsKxzVjzMsD60cWIjm+O\nW15VvJhODRnd9wzI07YBi5/vDXZYWTfVNE1ZlyWBUuiNd+tqt+nheEToOLRdj7Qq+e3pMb5ShMoh\nKUpWZUGwYXLZQnArivk/Xjzmk7iDFIJxlvCL7h4txyUpS1quy+PZiI7rcTdqM8tT/svJC37WMY91\nlBnzeuy4TPMUV5oRe6M1KwrKrOIomdPzAl6vZwS2wrcVLccDLLK6ou8ZkVXpZouD+LbliF1/2ts1\nLtfc97pb0Xx5jB+tzolsl7ypOM8W7LsxkW1M67Hyt767vKmIbI9fx/d4llzgSEVS5dz2u9zyDD9M\nWoJvVq95vD7hV/F9fOkwcFr0nZjPggMsCxzx5hrZsUN86TIsZvQ3MNRZuURaAtuSW5N8pWvSJmda\nLWjJkJqGfWd31PU6O+ET7w4AyrJZ1EuUUORNjhKKQAa4wqVsSlzhsqoXdGWHWLbNVqO1SYjBYlIN\nadtdunFre9+RluS4eMZp8RJHuATSvE7uxpR+VjwnkK0tw+uy1s2UmhLnClG+bDIaKlry8FvdB8xr\n8e5rzfs8Ww0luR4ZQ/13EFxKDP67Elvwo+D6XvVDHziAdJWxnK548vvnHH62v/M1+0pnIFtn2B85\ncvpz1NOvjunuxyTLjDwt8EOXMHTJ8hIvcEiTgqqst6T6bt94zo6fD4mucMD80MXbjhMVWVKQJDmu\nqxBSbOnxtzaip64bVvOEuOWTbkKkf/Yv7uD5jiFCNw37B23W64w0KfjX//YzlsuMVifg7HTG8HxJ\nlpfbwOrhcM6rFyMODtoMR0vStOD586EZHX5xyO1bHYajJatVxun5DNex+Ztf32M8XfHFZ/torZnN\nEgb9GFsK4sjj+GzGi9cj7t3uoZRNp+XTNJp/+MNz7t7u0d/46kyMkGC+zLbIB4AXRxM6LX9n208I\nC1sKBt3oW4ktgF7L8HlcZXMxM50jZUu6UcBosaYdetvf2WkHZgQ6mTNfZ7hKkRXVhjIv8JTN0XiO\n76itQPIdheeod17In56NaQce/WhXhAthEXsu/SjY/q7zxQpHCkLX/SixBcaTJSyLo/nCwHWVYhC9\n8QzmpQHpHrbMDcuTNkpKvrkYciuOrv2dB8MRsfumK2ULscU/TLN0G9sDmxHhbMqv9vZZFQXPZlN+\n2d+js8E/PJ1NiJTDebreGSP2XN8IRSkpqpq2a8Z6eV3ycDomr2tix0EKi30/5F7c3rK3yqbBERuR\nhfGHPVtMOUkWFJiN3kWZk9UVnlTcDd+MloqmQgmBIyS/HR9xN2jhScW8yHDFzZiW71quMKPby05L\nXpeMizU/Cfc4TmdYQGA79J2IZZWZxUYNXy2PCKXLpFpjW5JS13ziD1hWGbe9LkpIjrIxAkPJD4TB\nYuy55nlqrZmUK8Pk0jX+FYipsAQCSdJkdJT5cPA2Hb5oSk6LIX3VxpcmULvQJZ7YvZEZ47/Dqk4o\ndcVxcUIsIipM0Pa8mjMrZ3yTfMOBs4+ybHwZICzJi+wpoYzwhIcnfHwRIiyB7yumqzm2UGTNmkPn\nPrfcT8l1imO5DKsjItmm1hUlOaFs0+iGeT3E38TrOCLYEVsApd6Mmb8lc+v7lBlN9r6T2Hq7Gp2g\nqd9pqP9rqR8F1/eoH/rAATieImyZ8c77GFxHj07p7H+3VdnvUr2DlrngeA7+5gW+PNmkLbebf5fA\n1bppWM1TwtijqmryrKSp9fbrsMle3IgT11NUZb3tvEzHK5J1BhtsRRT7ho10MiVu+yglt/DSyWiF\nbQui2Of0ZEpdNxRFies6fPaTvW3uIsAf/vAKPzBcrpOTGb/85R1OT2fcv99nPk8INl2wXjdCa81q\nlTOdrmlqzaAfozV0Nt28N5ysZpvHeClkhuMlrrLZ60fYtuSbx6d02gFSGr7SVTP8waC1I7byoiJJ\ni3d6uFZpTlHWSCH4/cPXKFsS+g5V1VDV9U73rHVFXFmWxV47oqxrnM3/iyOPumxoBR57nYjAc2hv\nxpfrrKCsGg678VYgLZKMrCivZSherX4cfNRoEKBpGlxl883JBRfLNfvv6JjdVG3Po2wahqs1Le/N\nyPXpeMIqL9iPzCjowXBIxzdeqbQsWZclkePQaM2j8Rhf2fSvoCGkEORVxav5jEma0vF8JmlKWlVE\njsPdVov/+PwpjdZ40iatTM6eIyWN1uyFBiFRNPVWqA3ThOP1ksMw4jxZ0/V8krrkq/EFd6IWvx4c\n0HJcHs7G+LaibBoidYlNMGKrbGrGWUqtNS3H5cCP6LYCvhme80Wrx72oQ98zzyOvKy6yFauyoELT\ncjySqqSlTMdvXCQkZYknjW9yXRXbDtJ3rd/OXtJRAa/SKb6wsYU0BPoy4zSb868693iZjknrklWT\nk9QFrrD50/KYe36fA9eIwUo3/H/svcmz5PZ17/nBPOecd66ZLFIkRZq2Wpb6ORyv4/Wie61oa+WN\n/wVvHQ7vbP8J3njjlRSOHqJftNsdtp4tWTJl0SLFqYo13XnIm3MiMQM/9AJ5s+6tW6wqUrRFd+ts\nKuomEokEkMDBOd/z+Z6mU6Z5yJbVxlYMmqpDJDI81WRahEve1nEyYT8eMEgneJrNin6ZTVVS0tIq\njVKVXI3onFtOkRT66ZiG6hGLFEPRCYoQS65QH8fpKZZsYso6MjKWYmLKBit6F13Wl4lZImKaWpOr\nZmUybSsOh+kB82KGX0wZZX0USWZWzPBUD1lSOBD3uTP5CFO2mBcz3EVCpUgqmmwsEzNZkrFkl2ne\nR0KuqruyTVkKCjLkJypDqmS8ULJVlgJfHD1XMP/vHQU+IJD/DScMv4z4dcL1S8SvesedxXngqRDi\nwlPo6HjMfBKw+fL6v+s2Bf5lE+zzJ5umqxeSKVGUxFGKW7M52h1iu+aFhOx8GEZVLbn7wT6NloOi\nKhimhmXpBPOEerO6ccqyRJaLyvswzbEWljtezSKOMmzXwDR0tq60qdUt6o0Ko3F+/1271iHLctIk\nx7R0Gg2HbrfGdBoSxSmWrbO9M2B1pY4/iwijjPW1OjXP4vBoxA9/co/XXt0gijOUBbPJsnQkqeJg\nffqwhxAlq90a7ZZLXlTJWKNm8/6dfTZXm8zmEfe3+3RazgXkw/HplEKUaKpClheVbiTJ0DWV8TRc\nTjHmRXVOGLpKu+7g2gbzKGG/NyErxKUpRaiStKPhDMfUmQQR+kJ3dnYMn6z6nIx9TkYzCiHozwIc\nQ2PkR4zmIe2a81zx+/5wir4wdX5WGIs2YtdzaDv255pgnIQRnmlUhPxz+7HrOhxNZ5haVdmaJQk1\nw6SkpD8PmcUxa4spQyRpOXEIVQXro9NTtup1ClFys9XCUFU8w8DRH9/A0jzHVBQEcL3eICsK3jna\nX+IikiLnznDAplfdyOqGyTxL0WSZKM+p6wYnwZxrtQZdy1nuf1WSMVSVSRKzPRuzZleaTVGWjJIQ\nU1XJRIEuq8yyBEmT2dIrNte96YAH/pAgT2kbDqfxnKBIKcsK7xAXVYIlSxJd0yEoUqZZTJRnHEYz\nGrp5iSifi2KBP7l4vD+YHtE1Lk6Grugekyzio9khmqKiSyq9ZMbD4JTfbt1AXZhUb5hNaqrFmlnH\nVDRuu2uYikYqciQk3p9t85KzhquaSFAlZorGfjzgJJ5Q1xwUZFzFICxibEWnobrMigh7AUd9fDwF\n29EJAH4RUlMdmppHURb00tESfqpJKu9OP6agoK66lcn6IuFSUdAljVE+IRYJ02JGUiQ8iB5RU2vI\nVBosUzZJRcrd6C7zfE5drVcwVBHhKB7XzFuUUkmymFwE2Gpu0Mw3EKIgLVOmxZC4DElEvPRbPIuz\npOs038VVG2iSQVbGBGKCKX/+ST6/OEZQoEkmCp9dsX5WpGIKlF+6UbUsWV/5ZAt+nXD9UvGr3nFP\nRlmWPPj5Nu2Nim4b+hG6qRHNY8wFVuFZcfjgsiH1F43TgzFe86KVxPmTTRSCwK8seExbR1Yq9IMk\nSZzsDcmy4oK9jygE/izCOEMhRCnD3oyNq232t/sYpoamK4wGPoalkyzApitrdVzPwrINPvrFHq5n\n8tEv9igl2Niq/CNPTqa880/3WFtvLD0QAeI44/69EybjEN3QWFtrkOcFjlNV4Q4ORlzZajObRVim\njqIpbKw1sG0D2zao1SxevrWKqioMR3PEwox6NA545+fbeK5JmhZsrNZRFJksLzjuTReVLRnHMjAN\ntSLU1yzyXCDJj22VXNvAMqrWnWlopFlOlgsMXeXD+8esdWrIciXc11SFeZQwncfUHBNDq5KvJ5Ot\neZQw9iNaNZu6Y6IqCp5lsHNS6bzOjuF4Xo32j+Zh1UqbR9xYaVF3LN57dMh6q4YoS1YaHsYLoCrM\nBVj1RS7isyjG1LTPjYs4mc1pWOYy2UryfNkWbNnWUqu14jpsj0cEacYrKx26TtV+PPb9ar+fS6Qk\nSWLFqRL8WZLgGZWt0c5kQnMx1ThPU37eO8LSKqaULMvsTMcYSmVeLUkShqIu7YEeTcekRUHTNNmZ\nTXil2eYonFPTDZqmxU+O9mhbNoM4wtN0BnHIhuNxEs5Zd7ylAP7utM/L9Q6uVrUjXVXnOJ3jSlU7\n1JQrcn0scpq6yWkScMWp4+cp+8EEP0tpmw4gYSrqkkRvq9ql6cQzM/FhWgndn5xcXDUvsvbGacgo\nDVAXvoi33RWMhTG3rRhM8wiJqs2oywpxmWMvwKe5KPjFbJ8P/X324wHfaNziKB7TT2a0tKqyZco6\nUgkbVhNNVnkYHhMWGY5q0tRcCgRNzeEkmRAVCYKSII9xVJOWVmM3PuGquYokSTwID2hrla7zTO8V\ni8oz8SX7ajUYID8G2WpydR7bisU0n2HKBm29RSwS8jJHlzVUSSUqIvbiPTaNDabFGKmUKcqCUATk\nIgMJ1owN9IW+S5VUplKPNBGEYo4u6SCVrGhb7CX3aWpd/GJUTSkqVeIeiIqyX1Mr4r0iaZiyS1BM\nEOTLqlZZCkrEMzVXhuyhSRZFmTIpdjDlxnO5WrNiG1nSURafU5QJsqQ8NeFKxbCy8PmCbetUPETC\n/kq3FX+dcP0S8avecU+GJEnLZAsq4ChI6KaObj3/icT2rKWoXgjBow/3aa1+sTZkrVXdhI52+niL\n6tv5ky2cx8wmIaatL5Oos+isN0jibKnPisOUo/0hoZ+QpZUIfzyYc/XWCqqq8OmHBziewcHOkLIs\ncT0TSa6eIrVzFbL9nQHd1Rpb1zqkSc7B/ojZNOLRgxPqTYe1hWn0WfizGMPU+OAXu2ysN0nTguGw\n0nH1TmdYts76egND17DtiqAeJxnzIKHmVdY3YZjw4ccH3H5pjf3DEY26zTxIePWlVWzboFm3ieIM\nWZY4OJ5U/KZFdW/qRxW5foG4mPgR6kJfdXa8z4emKhgLPlin6V747gCqoiySmsqOR1Vk0iy/0FIM\n4pRSAsfUubt/Ssutqkitms1+f8LGSp0wTJnOYyxDI0oyXMsgSDK2T4esN2u8tNFZWvOUZVnthySl\n7wcYmvrU9qEiSwz8cEl/f1Y8OB0yjRNa9rMnB88iLwTDMAOgLdIAACAASURBVERTFII0JRcFSV5w\nMJ3RXqxDlWVmSUIuKr/DU3/Ow+GIlmlSSpXYfhrHnM4DmpaFKssEaco8SbAXCZij64yiCEfXL+i4\n3u+d0DBMojxnxXFpmhaWqlIIUSU+iynCsiyZJDG2Wu2jhmHStRwO5jMUSUKXFUxVw9MNXN2AsuT+\nbMSq7eBpBqKEWZrg6Tq9aM51r3mhAlWUJS+tdMjigqIU/D9HD1Blmbfb6xiqRtd0eOiP+Fp9BUmS\n2HLqHEWzitWmPU7MKyschZ1gREO3mGYxvdinoVsMkoCWbj9TLA8gI+HnCW3DWZLlNVnBVQ1c1aCp\nVZOTjmKgL5AVnmoyTgPSsiAsUr5Rv8GsiNk0GjR1F0NSicuMNaOBn0eMsjlt3cNUdJKFNu2fJnfY\nMtvosoqjmDRUh1IqMSUdUzGWLdKO3lieWzXFRpGVZbKVi5z9uMdNa+uZ518/HYAk09Gra3ImMhzF\nwZRNemmPeTHHVh0MyeA4PV4gIArW9U0UScZVPebFDFMysRWHQX5C122zM9tGQmLNuIJfzFBQ2TRv\nVBqzsgKeGgvAqi5b2Mrl9p8kgSKpy9ZiVE5JymBp7xMUI/IyQpOfYh4vJjjyGjOxg/UZTKyzOPNU\nPAtFMj+zupWXMxTJ/sJw1FQco0qNXwJ6+m8fv064fon4Ve+454Vu6miGhm4+O9lKk4xf/OMd1q53\nl9UTSZKot59PLX9+SMuE6vzJphsaXsPmcKdCQJz3dsyzgt7RGNPS0XWVLCvQdKWyENIU6k2HetOm\ndzQmSwuu3OgsvBIdOqtVa8da8LqiKGHnQY88F3zywT6trsf2wx6mpbG/M+CNt66Q54KV9QbDwZz7\nd48ZjwP6/RlZVtBs2hi6SpYXhGHKjRtdbNugUXeo1ywsS6csYTia4zgG9bq9hJtCdbOPk4xO24Oy\nMtfutD36w/lSV9YbzGg3XBo1m0II8rzAMqu2o64/nsRzLJ3j0yl3Hp6w3q0jyxJHp9OlnuvOox5R\nktHwns6vSvOCWRgzDxMGk4BWzebR0ZB2/bH2T5Kqtp2qVKP75jlLIkmSaDUc7u31WW1UWjPHrGyG\nFLkSzNtmNW03CSImQcRgFtLybHrTOYamYi+Aq09GfxYwCWPa3kXh/EcHPTqeU1HMRYksS+RC0LSt\nZ9Lmz4egJCsKOq6z8EmU0JQKE3H2u/jZ/kE1IVjzKvp+GPL66iqWrpHmObIk0bJtGpbFOAzxDGPp\nHrAzHuMtRPx+muLq+gUqvavruFo1tNG0LH56fMCa4zFKIiQkGgs9WZClxEVB07TY86d0LYf9+Yym\nYWIoKndGfTbcGpM0pqYbDJMIV9OJ8oy4yOla9lJsXwKebnAwny4rTqfRHMVQICsZJ5Um65bX4qeD\nfbqmi6motA0bQUlNM/hg3KNt2HiawSAJqOuXWzamomEqKo2FNY8uK0udl58lZGVxgRB/FE1QZQVV\nkikoaWgWrvo40RFlyXvTA7asBrqsVhZGCzhmJnI+nB2wbtSoaza6rJKXBfvRkLpqE4gEAE+1GOch\nB/GQw3iIq5j8y+Qeb9Su8VbtRkX8T6fsxD2CPMFWdY4WZtVPtkiBS+3RtKyqT34RLqteohTkZX5h\n+UlWIQ+8BYnelA0MSSctU+aFv8Q/5GWOLmms6xskpBiyQV1tMMnHeHKNoTjFUTx02WQmDxmHU47S\nbTrqGnW1jS7ry/NYlbVlsgUQFGeJVPW7mhdDsjLBlD3GxTGWVFUeFVQUSbsAPB3nO7hK99y6+mRl\niKtUvo6m9PwK1+cJVXKfur6q+pY+t3KlSq1fc7hecBueFr9OuP6dohQlXsvFck32Pj2i3qk0Kl8k\n2UqTjChIlvDU89Wrs5Pt0Z0j6gs+WLPjXTLSTtOcIiuwHQNNVzk9HFNbTO71j6a0uh6yLFFSLrVf\neS6WLcndh6d4dZs8KwjmMbZtkKYZeVawvtFifatFrV7hHzRdZToNabVdZpMAStjcbDEc+Oi6Snel\nxrvvPmI6CUiTnHbboz/wCcOEzc0Wdz89RtdV6nUL266e5CaTENPUePjolJVujW672p+6pjCZhNQ8\nC0NXMXSNk37FUfrFJwfIikzdtfDcqqyuL/RK86CCv3663ePqRhNFVqi5xnKZs6pXq+7Qqn+2we7E\nDzEXOq5WzWYyj9jsPq5gBlFKEKfUnermGSYpxjnEw5mX4mQacjCcVsMGec40rKxsHhwPMDQV1zLI\nikrc7kcJnmXgmDqaqi7F90+Grim0XftSMrayIMLPooRpFOOZBp5pPJXN9VlxxsgCmCcptq5dqsB0\n3UoTBhX6YrNWW2q6gjTl2J/TcarKTXhORG+qKrMkwV6I3tu2fckc21QrobwoBU3TQlnoBK/VGySi\nIMwyHE1j159yrdagF8zJikqTd2d4SsusEoEtr86+PyUtcqZJwqbjEeQppqLi6Aa9cI6pqiQiXyAe\nwNUMHE1nlia0TZtuo3J7OI0CPN1gw6lR000GScA7p7schFPGScTefMJPB/u8Vl8hyFJmWWWEPU1j\noJrMNM+xtaZZzCyLaeiPq45ZWeBnMcexT9uofr8fz07oxY/Bo5qsME6jZQvy7ryHn0UV/FSSl7BU\nQ1ZJRVXZWjXrOIqx0G/t0jFqdAyPsEiYZAHvz/ZYN+oISmxFp6lVGquyLDlOJ6wZDeIiIShiVo0G\np8mEVaPJMJviKiaCElGK5b9PJlyqpOIqNp7qLKte43zKIBtXk6WyVumnFAtTNpcoCVmS2U12aakt\n6loDv/DRJI2aWqOXHaFjkIgIXTaYFGMm2QBZVlnTNzhNT0jLhPXaKl7WRlcMOvo6aRkzKQakZbic\nQry4rTqaZCy/gyoZaJK5SLKUpdVPVsakZYC+SMwkScKROxce1HXZQZF0BBmypD4z2UrEePGdn/1Q\nlJfBc8GnBXPycowqPVuo/5U3s+arnXB9ob0nhOCP//iP+e53v8vv//7vs7u7e+H1H/zgB3znO9/h\nu9/9Lt///vdf6D3/EWP/7iGhH73QsqquUlswrLqbj1uSRV4w6c8+1+eWoiTPimcuc/Wl1eVNfDKc\nMziZXnjdn4TYrrmcbty83iHPcqajgNaqy3hQaWnqDQfHMzBtHVWVOT4YAeB4JkVeYFo6jmvSaDls\nXmnzyutbvPfuI2aTgN1HfWynEtF3ujXmfsztVze59fIq3dUab/7GVbI852//5n1EKWh367z51lVa\nbYfNzSan/RmTSYBlaoRRyv7BiDTNiaKUKEopy5KrVy4CBBVFRlEkhuN5VbmSqwnE9bU6nY7HxmoN\n1zEQQjCaBJycTjnsTdg7HFGWJV+7tYauqRiGwnhWHduiEPz9Tz9dtBuf/ZPpNFw8u7oRz6OEeZhU\nVRpRedUZuop3zvT6s8TunbrDq1srtGsOnmViaAquqTOPE0Z+5aGoyjJBnGAbOkVZMg1iouSzLzSa\nUqEbRFk+9fW6bbLeqBJXUZZ8fNR75nd9WhxPZ5wsdFhPRpCmDOYBWV5wOL14zncch67zOJFddV38\nJOHdw0MUWealdruaCiwEWVHwcFSdh7kQy/dMkphRHKErCi8122x6FZF+xXKWFaGXGi38JOFgPqs8\nGdOEb65t0bUdgjxlnEQ8mo5oGhZRnvGDw22yomCURoiy5EatiaVqnIRzoCLN358OAejHwXJbHs5G\nTJKInfmY/WCGLsncmwy5ajf5zdYmHdOmYzn8VnsTTZaZ5ckyaRCU9CKfcRotj0UuBI6iXWg7Ariq\nQVCkXLOby79tWHU2zQZ13WacVhU+WYJZFrMdDBCUfLN5A0fVCIuUYVJ9l2kWossK1+0OqqSQipwf\nj+/zsr3O3fkBh9GIw3hEP/V5y7uCIWuYskYkUnRZ5Ya1wj+MPqIsq2OSIVg3Wowyn4bq0NBcrltr\nzIqQo7jPQTLgOBlwnI6IxcXzNln8PxM5w2wCQEtrICjRZI1e2gcqYb0h60xzn2k+4zTt01Ca9LJT\n4iLmJO4hSsEoG9FSu+TkKLJCKmJKBKv6FtvxPcqy5F/nP0FQJUL76SPsRfKhSyZxEZKLi9fccd4j\nEnNkSUaRVBJRHS/5nMWPcY4+r8s2rtK5sI6ndUWKMiErgwt/O9un50NGW3oyXtx3A7JyvnhfQSJO\nLy1zFrE4RpQJquRhyJufudyv48uJL5Rw/d3f/R1pmvK9732PP/zDP+TP/uzPlq9lWcaf/umf8pd/\n+Zf81V/9Fd/73vcYDAbPfM9/pAgmAfNxgCgEkR9he5/PiR0qj8WzKEuWN+MXDcPSaXQ+G5RYliWc\n+x3Xmg7NJ5bvrjdotC8+rcmKTFkKTo+nOJ7JdBxwelRd7GRJwq1ZbF5tc7Q/pH8yw7R07n18SBRU\nvK+/+d9/zke/2KXb9VA1lck4ZDSofvittkvveIIoBPWGw+H+iN7JlDQp+PZ/epm33rzObBLQO53y\ns589wrJ0fuc/vcJ8HjMczul2XE77MwYDn9E4oNv12D8YLejzEUmSAfDOu4/44O7hBQp8khbs7A2q\nKl0mODwe8U8/e4Bl6uRCYGjyoj0q4wcxOwcD4jijvdDFybLEWtfjsP84aQ3j6obwycOT5d+EqBKr\nNKvaHuNZxHq7Qnfc3asuepUR9eMn0p2TKtFLspxP9nqMF4bUZ6EqFUyz6dqkecHtjRWudOr8890d\nTqcVLHKl4SDKkkwImq69XN8sismLizeJwTykP7t4MX9ayJLEa+srz13uydAUhVvt1lNfi7OcTAii\nPONWu8X9wYD/4+M77IxG7E+mtOyLlcMgTTEUhR/t7C51X23bRlMU1rwKpfHO4T4PRkOCNOVarY6j\n6zwYj8iFQJRVxeW93jEfDnqkRcHubEJWClZsh4+GPQZRwDCpbpSrtsuq7fIbK+scBT6OpmNKCtM0\noa4ZaIuK3SiJlm2xUVqZUZ+Ec9as6ve0PR2z7Y95ud7h292r1DQdUcI3u5vkUuWduGJ6dM3KTPow\nmvFSrU3HrM43RZJYt2t4atXKHKcRvdhHXbQSn4yX3O4FW6C8LGgZFmVZsmXVK5RKnnA/OMWQVDaM\nOqqscM1uM8kC7gfVuSmoErugSPjEP+RvTz/kFWeNjJwts8P98IS27vG6t8VxOgYkNs32wpMw5r8O\n/pX/vvEKDdVmOzwhFwWmotNLxmRldTzCPKGl1XBVG0qBKqlcMVeWFHpY2KOlg+V5qJ+r4Fw3N3EV\nmw3jopWNq9g4ik1X69DQ6mhofDD/hHExRZXUih2Y+/SyE3RJp613WdM3SMuYV+zXOcr2uWHcRgGi\nIqStrnOaHVIupkHb2urCW/Fx1JUOprSYXC8L5sXoqef95w1ddrHkNqP8U0RZIMqccfHgwjJZGVKQ\nXtBunYUiOSic+W0qOMqNz/wsVXKR+OoK4P+/Fl+opfj973+fb37zm9y+fZu1tTX+/M//nD/4gz8A\n4P79+3z88cf83u/9Hoqi8PDhQ4QQvPfee5/5nmfFr7o0+GRUdPfKC7G9+fQby4uEPw7YvXOI5ZrL\n9uKXEY5j0D+ZMhn4uPXHpevz02bjgU+WFpeE9JqmUm+5iFzQaLkYpobtmjy4e8zqRoMsLYjClEbL\nod12F7qsOrZTTY3N5zGvvrZJveUw7M94/c0ruF514S+FYGWtzvHhGMetpjnDIKHRsHE9i97xlG9+\n6xbNpotl6dQWYn5NU8nzgnbb5drVTvWZKzVkuRLr67pKsrDNURSZNMu4dX2FsoQgiNk7GFKUgpW2\ny81rK2iaQpbnGLqGZWn0B3PmYYbr6Di2wWA8R4hKy9Rc7D9VVVhperRqj1lWB70JzZpNZ4HHABhM\nAuI0YzgNcSydZu0xUqHbeHyxnkcJ9/b7rDQrWr2uqSiyhK2r6KpK3w+QBUuh/V5/zDRIaLgWEnD/\neER/OkeIkqORz1anQZJmjOYhTddiGiXsDsbcOexTd0wORzNcs6LI96ZzNlu1FxLCf5FJJlvXGS88\nDZ8MzzDwDINBELI9HOPqBrc7bZq2xTAM+fnhEbqiUF/orQZRRNdxWPVcLO2iRnISxxiqStOyqs9T\nNdzF+ttW1Zb8x/0ddqcTfqO7yprrMksTSmDNcfHTmDDLudVsVZiDRQsTwE8TbtZbNAyTWZZgKAo/\nPN5FCMGmW8dSNRqGSVLkDOKQVbOqjjUMk2kaY9saL1ttduZj3h8dcbvRYZCE1HWTOM95rVlhKhxN\nJysEjmqwYjoLsKvCceTT1K3KWijyaWgmLeOz29j3/f7CHLtKApu6TVlWk4Yfzo7Q5Ur/dd1uM8pC\nTEXDkFWG6RxbqaCnsUjZCYd8Mj+mppjshAPerl8DSWLdqJOXgk2zyZbVxpA11owGj8IemSjYNFt4\nmokuV9twmvo4qklDc/GLCEPW6Oh1ZkXAbtyjobnEImPT7C4REE+edw11IbmQZIxFMiZKwXZ8QEu7\nPGR0xsU6O0d6aR9PdVnXVxEICqngINmjo3XIRE5dq5hfFfjUws9nbBhbaLJBw/EYh2NW9C1Osj1M\nySYUM+rqk9Wpx58nSfIl4fw0ryrEXxR0akqtheG1/BThfDWxKiETimP0C8wuadlm9It7qJKHIKEy\nsX7S3Nt4Zpuwqqxdnqwsy5JU/BxV3vhC3+3fMr7KLcUvlNrO53Nc9/ENRFEU8jxHVVXm8zneOYaO\n4zjM5/NnvudZ0WzaqJ+T6v1vGt0vJzlqNW1W12qYjnnJv+9FYjYOKsG7efnGtnW1zYNPYrrntjVN\nMrTFdF29Xt24NV0l8GOEEHjndEmKVFHp7/xin0bb5Te+cb1aLi9wXYOV1TqzSVgJ3tsu00mAH6a8\n8uo6V653GA8DfvwPd3n5lXW6XY/jozEP7p3wtTe2+MY3b3J6MsVzDSajOaIU7O8P+e1v3eLgYES/\nP6O7UieYx2xsNqnVTFoth+FwzupqnTBKzn2v6t9u1+PDTw65eqWJZWrsHYxotWyiOCdKM7rtGtev\ndcnyAiFKbjVWidMMU9eo1y2OTqa8/spGVclaqxNEKYosYRoaO4dDrm20+ODuEa/eWsFYVKe6TzkP\nul2PeZiQ5QXN2tNvkPMwwU8TXrm5Srfr0X3KMrMgxl4kSH6U8LWba8iyxKOTIQ3P4r9cfZmiKHhw\nNOJKt45j6szCBNszWOvUyfoTfnv9OtqC63U+bK/Sen2Z4ccJeSFoOhZ7wwmyqdA+Zw11toyj65SU\nTMqEdrsCkRqqys/2DhgnEd9+5TqZKOh2PXIhmEoZa14Fu90ejbnSqNOwTKIsRy5CVjoeuqLw8cd9\nXq53GWUx4zTm7Y11DFXlf+m+ycPRCFPXGYchjm3wRrN6SOp2PV7N1i4YYJ9FNK0GKnZnE16/skrT\ntOmJENvU6XRcTsNgiZfYLBt8Oh7QdhyCssCxLe6O+vzO5nW+1b6G2df4MDzlf7rxCpMkIjQKnLrB\nw8mIr3fW+HbTJC0K6sbjimy36/HxqMc1r8Fvda88c9/v+CO+1blBLsSFIQKAfuzTUT1eW9ng3rSH\nqqtsOk38LKbtuUz8iCCLWTFdumYNL7EqREUJfi9iKM1ZsWvUXZtJEPLI73GSTelaNa45bW46K6xb\njaVxdy03+Wn/Plv1FitGDVezCHKLYTrH1XVumiu8zhVyUdAUNq5qUZTic4FdV8rLDwtRETPNfNbM\n6tcU5hG3apsE+ZztcA9Htlk1V3ij8QqlgN1oF72xtUy6ANrlq0zTMU2jzWG4x2q7RSwi3jbfIipC\nknhEJJ9y1b71wtvaKi1k5GcmNH42ZJ73WbdefeH1no+yFKRCxlhYDuUiZp6d0DBeBqBTvo0kyYR5\nD03W0D4nGyzJTynJMdWLiVWY/AJT/9ZXlsv1tOvzVyG+UMLlui5B8LgtIYRYJk5PvhYEAZ7nPfM9\nz4rxOHzuMv+R4uhhj/ZGc4mGCJPnt3eeFrPRHMPSL/k2drseJ8cTmmsNjo8ny2T1cLtPZ71xqaoV\nRymHOwNu3F5bMsSCecz+boV/UA2VJC1QDQ1/nnB8OCY9Vx3b3e0z6s/Zutbh6GBEcr9HURRcudal\nBPp9H1VTsR2D//u/vs9//h9fxzA0hCjZ2xvS6risrzX43/7Xd3ntjU1M2+DOnUOuXevy9z/4BF1X\n+OY3b1KvO5yezlAVhY8/OaTbucgcisKEnZ0hk2mMKApsXafu2fQHM+Io4Z//5SHra3UUWaYsS8I4\nw3NM5lGCBAyHVeuzN6xsh9qNCl5apILBYE6RFwwHwSUMxJMRpzlZnvPpox63Ni8+Ec+jSm9lyioa\nMv3+Ra1TXlRUetVUGQzn+GGMZxscDGa8stllNApZdz1mk6oF1jJN8rhgGlf/9/2Yn/f3qTsmc+LP\n3MbQT575Hc5vjx8nNJ1nt82jLEOIkjzMKZKCmq4v9+dZHE5ndBwbQ1XRMokszbk/HiBLsDMa0zRN\n0iClZdv0+z5JnvPx4TE7mkYpQcM0uedX8FNdUdAzmXv7lY5nRbUJpjE5JbfsBrNxRLyg0t9stpiH\nEX4Uc5ynqLF0wfQ6OLefsqKgH4XMspifBnO+vX6FwSDgWMyoCY03nFX6fZ+TcI4cPpYBnIymvFRr\n8/HwmJe8Nt9c32IyDPhg3CMrCh7NRxxYY6ZpTE03CcYJ01nEz2Z7XPeaxEVOKCVIEnwyOeWNxipT\nP2SQqERq9aReadXKZXJzFmmaMYh87s373HLa9JMAU1Fp6lXCbyYq+yeV9vG0nDLOI17xVhmnAS1s\n9LwyUZ+GIf/Q/5TXvHVsVWc0Dbhpd5CFxGk0o6N6eOoCIRNlHIZjDFnjwaRH7dzk4avyFe6M9kmU\nnFHmV1ZbioVrWPR9n7vBPpnI+JpzlUkZ8q/+p9y2q6Sy8xQi/YuEKAVFKdNfaAeLsiAvC4Iixyua\n1JU6w9AHSZCWGSvyFqeDKSflmJraoJ/10CWdoJixbki0Wh3++eAnXDde5SF7SJJETdmgKHP6gU8i\nYrIyxlW+2Paej6Dw0aQm/fll3eOs2MeQ6i9AnJeBx+8vyiaH5R663Dy3jA2UF5YDKMucQNzBVb7+\nGeu2yMshWfGPqPIKmry1+PtNAjIge862/ftHt+tdurb+KrbhafGFNFy/+Zu/yQ9/+EMA3n//fW7f\nvr187datW+zu7jKZTEjTlHfffZe33377me/5/1N0NptPrUp93qi13GWy9eDDfYq80uoIIegdjAhm\nEePT2VJXtHmjeynZEqJE01Qc1+T0uNJqiUIQzGJMS6coLhL1syxHUmT2d/rsPqrK5VlSkGcFUZiw\ndbXN4NTnX995RKNlEQYJwby6oZ0cT7l2vbusesiyRHelhmXp+POY3/rGTYpcMB4FeJ5JmuZ87Wvr\nqKrMhx8fcOfOEYOhT7/vM/Mj/uVnj3i4fcoHHx0wHM25ca1L3aumt155aZ1Ox8N1DLqdWmV9ZOv8\n9OfbTGYReSFYX6mjawpxXFHjhSjJsoJ5ENNturgLYbuhq/QGM66sNZ+bbAGYukqWC1RZIS/EUutV\nCMF79w4oqaj1QpQEcUJvXF0Ytk9GDGcB8yhlvV3DswxsU8c1Ddaa1cTo61dXKYRg5IfsnI74h48e\n0pv4zOOE3sTHjxIajoUQgii9fCFM84KhH3I6m1967WlxJtZ+XuiKshTBu4bOo8GI7Ant2Ga9xsls\nziSKsTSNQRBSliWGorDmuIRZTmsxfSjKEkNV+c2NddqOjaEoRHnOzVZrWcVpmCaaIvPRaY/d6YS/\nffSQNC+YxjE/Pzni3mjA0eImVjdMbjSafL2zeiHZ8tOEv999SFLkpEXBNI2ZpjG3ai1eb62gywpd\ny2bD8XijXWmGJEli1b5o73U22WfJCj862aUfVSiDrzdXuV3v8F82bmEoKgfhFE2W6UVzBlGAp2r8\nn/t3GKch/SRYMsPu+0OuOA2cc2DTaRYzTC8/fDb1Cnx83W4xSiOamkVde5wgX7Ga1DSTuMywNZ1E\nVJOJZ6FKMppU4UlecVaZZCE11eKt+hV24zFH8YRH4Sn35sdoskJQxCQipaZa1FRr0cZ7vD2arPB1\n9xqaLLOf9PnX6QM2jQ7GYtKwq9e5aa4RFgmGorNpdHEV66nJ1plY/iyKsmCcTS8tJ0sy+qLtGBYh\nHwd3USUVBQUJGSRwFJuwCLhh3iQuIxzJw1PrRCJEKiEXGXGZMsh63PM/IcpjHsV3EaVApdr2M5yD\nIilov6QfYiYiIjHGUdrLqcUnw5DqZOXlY16WArHAY1xe74yiDHjRW3ssdrHkz9Z4AahSG1N5G1W6\nLKovy69ewvVVji+k4bp58yY/+tGP+Iu/+At+9KMf8Sd/8if8+Mc/5v333+fNN99kc3OTP/qjP+Kv\n//qv+c53vsO3v/3tp76n1Xq+BupX3Yv9MuN0f4iiKuhfckuntVpf4iUsU0O3DQxTw/EsRqezpbE1\nwPH+kCTOsF0Tfxoxn4asbjaXAFSkaiovS3ICP6a98vjpKo4yNq60cD2TetMh8BNUTaHd9Spvwg8P\nMAyN175+lcP9IQ/unbD98JRrN7sUeWUR0l2pc/fOIUKUXLnaYTSYM51G7GwPGA5m1cVbknj11XUM\nQ2N1tU6W5gzHIa5tkqQZN2+sUKtZuI7J+noddyGQn85C5kHK8em0Er03XUxDw9BVbEunLCVWuzXK\nsiTPBWVZomsKzbrNPIz56NNjXr+9jq6pxEnG6XCOJIFt6i+UbJ2FZWg0PIuT0Yz+JCSMU9KsoFmz\nmAUJNcdkGsR8+PCIKM1Yb9dpuhbuIsk60yCcmVHv9yc03IrS/s7dXfwwoVN3uLHSQpFkciGoWSam\nrpJkOR/tn9KtVdY0UZovMRHDeUghCjRFwdKfn/QrsvxCkFSAnj9nxavaFa5hPBVNEecZD4fVKPtW\nvUbdMjFVlVKS+K2tjcojb1GlMNXH8NZ/OTzkG5ublyyJTuZzTE1Fl2Wu1GrkpaBumjQME0fTea27\ncgmB0QvmZKLAUjXSouDBdMSa7TJNYj4e9tlwajRN+bUpZwAAIABJREFUi3dPj/DTlH/u7VcIC3fh\n+1cUPJyOaJoW+/MpRSm44tZ55E+YZykdy+G1tVUG04AfneywH0x4o7lKJgSP/BGeZvDQHxKJjFfr\nK5VFkWayF0yIRE5NNRgkc7as+oWHHVvVcFWDonyMw9gLxkiSxHY4xJJ1TpMZdc1CXwjo4yIjKwse\nhQNedlaq4QvdwVEf60tUWVkyvOq6zYpRW9ogKcgcRGOO4wmBSAiKhLrmUNdssrIgEznvTO6jSyqq\npCyZXTtRj6vWCi/bm6iSwrrZIihidFnFVgxK4H3/Plet1SUD7Lz1z1kcJ/2FLuzxuZqWGQoK/WyI\nqzxOfEfZuEqEZI221kKTVdIyxS9mCASBCJBLlUTEOLJDXEbERUxcxliyRVDOaaltutoaV5qblIlG\nU2tRUKBKKvrCm3GQHWPIFvqCwxUKH5nHU4kvHiUgPVX0fhZSKaNIOsoT2IesnJOUY3T5chWlJEOS\nNLSnvPa0UKUG8HTI84VtkSRKUtLyU1SpGqYRZUAm7iFL3lcKhPpV1nBJZfkZM+JfkfhVlwY/bwgh\nkGWZOEgwn9jpWZqjqPILs7dGvSmNjvdcu6DHn10yPp7Q3mxeem06muPWbT786SNuvLpOFCSsbjUp\nSy5obfK8YNibsXpuHaOBT54VrKxffAoNwwRFlhkNfGqNCpL63rvb/M7/8Br1pkMYxMRxTs0zOTmZ\n0u54eDWTOM44Phzz8iuV9+TPf77NoD/j5s1VNrdafPThHl9/8xqffHKA65rcuNHlJ+884PrVDodH\nY954Ywvb0knTnPk8xvMsjk+nbKw1mE5CkjRnc6O51MYVQnB4NKHbrgT5SZJRlvCDdz7lt9+8xnAa\nsrnWqMCihsZoEhAlWQVGhaV4/nxESUZv6HN947MfGnaOR9zd7fGt168xmkfcWGsxCxNMvbLYSbO8\n8rJ84vielcTFAkJ6PkZ+yP2jAasNl812naIsSdMM1zIvLRsmKZ8cnvKNm1Ub4Mef7vD2jY0ltf0s\nDkZT1hveU+n0lWff88XzaV58Jv8LYBLF7I4nFKJAliVutFqMFnBTS9MueCKefeZHvR4vtdv8t0eP\n+J/PVcQfjcesOg6nYUDdMLgzGOCnCZuex7rrYaraUgA/T1PmWcokjtAVFUfXaJs206QS3buaznu9\nIwxVxdF0NFmhphu4uk5aFPzs5IA3u2vszadsOTVsTWPXn7BiOfhZiq1qZKIgzDOiPOdrzS6Kp/Dw\naIi74Ib9t+NH/Oe1G5iKxmE4xVBUgqxyG7jtddgPp6xaDnXNRJUVHs2HpEXBuuVR1y+2c394us2r\nXoemYbMfTmjpFo5qoMkK0YKrpckV0uE0meMoOraqUwhBgUBBpkDwk9FD/rvGdVr6xWodwIezA65Y\nLf6m9wGDdMZbjatYks40D3m7fh1NVjiKx9wwOxwnE/wi5jWvOsdSkePnESfpmLIsedO7jqDkMB6w\nZXYXWBLBg+CAm/YGSZkRFgndp1S4UpE9NRkry5KkTJcG1QBhEWHIOsdpj5baRJEUIhESFykSJTIy\nURlRUHAc73PduklDbZKJbKnlysuMn/r/wO9u/S4PTneQqbwYj9Jt3nZ/t9qmIiYrUxy1SsCH+TGp\niFjXb37muf9FIxZTijJFk0zickxNufpLra8sBVk5QZWcJbxUiJy43EaTO2jS5fvG86IoJ4CM8hx+\n179nfJVbir8Gn34Jkac5cZigGRp3f/qANErxxwH1J3RGilJNtQgh8MfBJf3VkxGHKaatI72gn50k\nSVy7tXJpn0VhQugnOK5Jd6OBYWlkaY7tmpzsj8izgv2HfRpth8HJDChxaxbjgY8sy3g1C8d7LI7c\n3+6jGxq2bXB6PKXWsHA9C8e1MG2dKExxXZM8FygyHB9NeOVrG+w96uPPIlbX6niehSTB/v6Q6TTi\njTeusLHZIs8LBv05hSh57bVN2m2P7Z0+b339Ks2mw9ZWi37f57Tvk8QZk1lEvWax2q28Ev+vv/0A\nWZW5uvV4qmcw9Dkd+Ni2zsd3j4jTnNVujU7TwTQ1bEvHtQ00VWEwntOo2dQ9C8vUlubUT4amKtSc\nx55kZVly1K8sWvRFNazmmBi6SsOzGU8jBrOA9bbHbm9Mkmd4lnkp2SrLEtPUmM8TPtnr0ak5FxIp\nQ1PZbNcJ04xZFNObBqSZQNeqaccnt7HpWMvK0NVO4zONq83P8Fj85OiUjuc88+kXeGqydj4kqeKG\nbTbq+EnKes1jGISc+HO6bjWhl56BSE/7tG2LNc9DlWU2PO8SVf693jGDMOR2u4MoS15pd/jh3i63\nWy1OgoCGaSJLEidzn14wpyhLNEUmyXOCLONoPuP93hF7/oy2bXO91uQomLHueghKhlHEtj/mZr2F\nIstossyOP2Waxlxx63i6QU03KiDqgjAvSRKuqtGtuzwYDAmylKTIiYucVxsrjJKQVctly2kQFRl1\nzVzaEXmagbWwH2rqNoaiYqraUlCei4I7s1Pebm7gaAb3531ue11M5fEykyyiBAxFJReCkpKW7iAB\nB/GYR8GQruniqSY3zDbjPKR2rv2YFBn91OeWs4KpaDR1m1EyX0wgqlyzOzQ0G1VWGKQ+vWzKFatN\nXgpausvd4IDt8IRR5qNJKrIEh8mAEmjp3rKtKEkSsyJknPt09UaFiHjaObVodT4ZBQXjfIooBbpU\nEeC1BQhVl3QOkkNEKRatPxVd1piKKQYGDbWBLi38JGWbO/GH2LLDdnIPCZl1bZP1xipjf0ZORkdb\nY12/RiJiBAJVVonLAHPRBrRlD0/5/InKi8Q036amXEWVDXTpxSaLoWJvheIYTfKAkrTso0oOodhB\nlClIAnWBs/CLDxYMrrVnrxQoSp+yjJCQkZagWfMrR57/Kle4fp1wfQmRRClxkGC5Jp3NFrql09lo\nPvUHUpYlD97bRdVVnGcQywEsx3ihZEsUggcfHdBerT/1ZBscT2mt1FA1BVmRicOE0I/x6jZe3cay\nDXYfnqKoMmVZQU3zvCCJqtbjkxU2r24vhh4UHM9AN6rW12wWUltM5wVBQpEL1jaadBdtyWbLQZJl\nhn2fvd0+cVKwsdFkbb3BycmUKEz44P19Xrq9RqfjMZ1GpGmOYWhYls79+z0+fXDC6kqNq1faNBoO\nK93a0ptRWrQir24+TraSNCfPChRZxnMtSlGwulLH0FUsU2cepmiawmAU4LkmSZpjGOqFqk4FL+VS\ncvTk8Z3MQ3RNxVxsz9FghmPqeLZBu+5Qd0x2exNe2uxwf79Pq2ajKjJJli+tgybziFEQMZqEOJax\ntAE6iw+2j/l4r8e1lSZrTY+2ZzPwA0xDe2qb8CzBKsuSSRgzDeNKI3Vunc8ytD6j0H+eeNAfYuna\nheROleVK3zUcVVosVaHt2OxPpjRtC0vT+PCkx7Hv89b62oX9f+L7SFRJnSxJ+EnCveGIt1bXqBkG\nSVGwM51gLZKUQRTRsix0pTKOfqnZRpMrntb+bIqja8sK12+srLMzm1AgyAuBrek0TWvB8IJNt8Zx\n4LPueGy5NVYs90Lyt+NPOAimS19GW9VJlIKBX5lGb9g1gjzlutskKQre6R9wzW2QFgXzPGXFrJLZ\nROQXNFt+nqAs/BSh0il1DQdFrh7aukbVvt0LqxatqWg4qr7kcamyvDSinmQhYZ5y1W5iyBqxyJBl\nmeaiurUbDnFVE0WSGWUBohRYik5UpOxHI0KR8HXvCo5q4KoV1b2jeegLEvqaWVWIGqqDIenYqsFt\ndxNXtVg1GjQ1D1VSlsf0XnDATWsDWzHppWMkoCjFU9uKT4uP5vdwFIewCDFlA/Xc+1RZpa21GOVj\nbMXCVmz62YCrxlW2k0dokr6g2Ht4Wo01fRNDNgmKKik/yQ6wDYP703uokoon13mU3KWfHdFU2xiy\ntUy2zkdZCpIyeC4CIhIz8jJBe0qSMsn3UNCWLUTrHIX+8/0GS4JiB11uUIqCDB9NrqHLTRTJoiRD\nkarvYMhrqPKLefkW5QyBv0BJfLmymC8zfp1w/RLxq95xLxKari5hppIkoT7DEkWSJJqrddwFVDOY\nhvQPhtRazx/XHfdnyLKE+oSeSJIl2gsD7KedbJZjMDqdMR0F1Bo2mq5ewEAArF9p4daqqtPO/R6O\nZ1WU+CcqPPc+OaTd9bj/0SFRlDGbRuw9OsVyDOIoJZjHBEFCu+PRaDkVGyvNqxumqmDZOkmScnQ0\n5etvXWV3d8D9eydsbTX59N4xK6sN2m0HVVUYjgL29gboukp/4LO52WR3b4AoBI3m0wnt/b5PlhVY\npsbdByfUPYssKxhOw6q1eDLl5RuVBqEsS0aTkOEkZHO1gaLIWKa2gB1WF7hCCPaPx3iOuTS0/qzj\n6tkmUZxhmdUU5r39U9ba3rLypMgyzgL3oCkKn+z2WG16nE4C6gsdmmVoXN1ooUoyrqVz77Cy8jmD\npa41PQytotVrSuUTmRcCVala1aN5hK1f9vUsgUkQ0fYcDE19oTYhwN5wgq4qn1kZe1pEWUYuyqfq\nvyRJIs5z9idTPMPgeqvJj7Z3CdOEG60mddO8xPDqBwH9sPIlVGSJtBDoqkJJ5ZvopwnrrsdGrcbh\nfMb/y957PUlypVl+v+vXtQqZkbIUgOpGN7q3e6Y5O5wll0sj+cJX/gn85/i+ZuRybbnG4azN9kyr\naTRk6aqsVJGhlWv3ywePjMxEZRUKohcYEscMZgAiw8Pjhovj33e+c95rtcnWOq3QquOZXMPYBFbb\nuo5jmPxqex/XMNj3Q+K8YJjGbDvuOrdS8GQ+pm27NEx7Q3yezyc0rdrO4E+jU0LD5m7YpG25TNKE\nf3/0kPd72zSFjaCuNt32W0hNw9dNWpbDOI04i5f4urnelqJlORyupqRlwbLMsDSdwLBeWbtrv6lS\nzIuEnnUzKX68GHCazpFoPFqeE+o2bcNlWabIdesRatG/L+tomqwqSKqC0HDwdZs7bpfn8ZBxtqJl\n1rrAZZkwLSJCw2VVpvh6fex+OH/OMJ/zjrfDYTzgJB3SMgIexUcoJTZTjk3DX3++TkP3KFSJhoa8\n4mv1JnjSxZMOh+kJUkgKchzN5iQ9w9B0Pl8+RAl4Ej/l09Un3LZuc5i+YM/aI1MZUug40sXQDPIq\no5+dcmDdJTQaaAi6QZtOuU9UrciqlAPzHlLqtPTrJi6lqq9rQgjO8icIBPbaduEse4IvX5UbCMS1\nQOtp8RJ7TXhM4aNfaZN+HR+8+n0ajtyhUAuW1UN04WOsJx01oW/I1leFFB5SNL/XZAt+IFzfCN/1\nwt2Ex394Snv35jJyVVUsxkss9/Vl1uX0sp1o2gZB68tbNlBXsnRTf6Nv180Hm6DIa22WJjUefXxE\ns+NzfjLFckziKMW06pvc4GxG2KorX5PRkjTOcK8447e7AWma8+xJn8UsJs8LOt2AoqjY3W/TP5vV\n/SMFnl/fdD78w3NabZ/JZMVnnx2znKf89b+6T5oWzGYRgW+yWCQkcUaeFxwcdDYRPp1uwHavsalk\nHey3aYQus3mMv96vsqw2bTfXMXHWQeLtpodpSM4Gc/rDGcPhkn/zNz+69tQY+jbN0NnYZyilePR8\nQLe1JsCqNj4NXnMCXftd45Qky/Fdi8kiwrOtTWi1UoonxyN66+2WlWK7HeBY5oZs3fQbCgTdK8HX\nR8MpndDDNvRN0LRrmRwOpjQ8myTLN2HX144AIQgca1Mlels4po6lv74CdhNC236t2H4axQS2xW4Q\noEtJpRSPRqNa/9Tr3WiYGto2J/M573bqyqUpJfthSFaW5GXJMs8QAkLLwjdMkrLk2XTCrh/w7548\nZMcLsHSdw/mc/SBky/X4eHC+yV38aNjH1nV2PB+pSaQmiIqcA69BVOaU6zzHq2v56WSArmmMkoij\n5ZySCtcw+EV7B8PW+afTY+74TYZpxCrPCM26/ezoBg3TJi4L7oe1bcjLaEbbcvH0OqT6OJ7z68Fz\ndp1w02YEiIp6IuyizaaUolQKVzc5jCYE+mWL+zSegYIdJ2RZpLRMh366QBMaxtoZPjQcPp4fU6iK\njuVTqopAt7GlQVzmmJrOH2eHnKZTumZAw3D4aPaCW04HXUj+MHvCHad7KWpXilt2l0mxwpEW58mE\nuMq4bfVIVUa4bh2uypjqSkXL1AyWZcSqTPDkl/s6mZpRTx5qDlJoHKdn9MwuAniWvGCYj2joIcty\nwS/9X6KEop+dc9+pvakqVWBoBmmVsKqW9PNjClWwKhekKsZzXE4Xp/TMXWblmIbRJryhbbgox1Si\nwhAWjubjystKkaOFNwrp69ify4cXgYa+rnYJobEsT28Uw38dFGqJLfewXjFN/f82fiBc3wDf9cLd\nhMZW+Frh+8mTPvPhgvbOzR4tSinGZzOC1uVN9G1vZqZlvEK2qrJicDrFCx0mgwWdreCVNRNCYDsm\nmoBomTI+X2CYkrDpIqUgSwuG5zNePD7n7v0dzk+m2I7FZLQkaLjYX9CavXg6wA8dfvTBPp1uSLPl\n0Vh/nyB00DRBGLo8e3hGnOS89+MdlILDZ0OC0OFH7+8ipYauS2zbYDxeMZ8n7O610A1Jtxvguiaj\n8Qqpge/bm/WWUsM0deIkx1uT2qfPBzQa9RSfWP9z8b2rSnE+nJOlOe/d2yYMHKpKsYxq36P+Wqd2\nNpjhuRbLKEWTgrwoMQ2d8Tyi0/BYrBImswj/DcTrP/zDAw56TTzHqluzjrmpwgkhNmamAJ88O6Pp\nO9difi5wccGYRymdLxioDmYrTENSlhXDeUS4zm3MygIpNBR1O+mm6t/JZM48Tmqd2VuaCV+0sL4t\nmLrElPLa+dN0HM6XEbomOJ7P8UzzWkVNE4K2W9tDWLrOp4Nz2utK1IW4/XixQAiYJDFPZmN+0dvh\n2WxKy64nFi1dZ5LEfDo8516zxbPZmN+fHXMer0iLgtCyQQiaVj05+dl4wLP5hJ+2e0RFXle91oRJ\nCkHDtNn3QlqWw/FqRtN00IXgs+mA2+0mRVrRdepz4ulizIHXYJLGDJIVLcvB0w0KpVgVtfDelrUG\nSWoacZExTFa4hokrayH/WTznd5Mjepa/CbR+sDxn2wo2IeESwYPlOYsixdF0SgVbtr+pZpVK4ekW\ncZWTqrqK1bNCumuy9dnilJ4VEpc5f5g9p2P63PO22Lda/Njf5ZPlEUmZ1XFSVkiouwSGs472ifF0\nm0+WL1kUMaaQJFXJll0HXm+blwapuaqPVf0K8XCk9VZk6/KY0DA1g6RK2LG211OSJoEMGOZD3rHv\n4q6rWIUqMDWTQuVYwsCTPud5H0uzaegtmnqHQhWUoiBXOcKosHIfV/PxtABDmOQqJVPpNTsIW3M3\nrcGrJCquFpQUN7YNvwj9C39Tv++rx8VBncGoKNGETqGWGKJ5bQoyqc6QuN/q+fx9xA+E6xvgu164\nm/CmKcOw7b9CtpRSVGU9vSiE2JCtLM158dkJre2366HfCAFVUVEWJc8+Pead9/duXLOyqDg9HOM3\nHO7e3+b54z7SkLS3QmzXxDB1wmZ9c8+yOsR6706b4As3/CwtePjJEY2Wx1avwWSyYjaNCC9alAL6\nJxN0U2cyXtJoujSaHlITbO82MQ0doQmUqkO4j4/GNJsu7763zYPPTglDh0ajjsQ5P5+hlCCOsw3R\nuoB3pYLYbtWtjtP+bC04r72/dF3yycMT3rmzhaHr2LbB85ej2p05rzgfLXjxcoRtGTR8h0rVOp5e\nO8Cxa1f0i/aksSaHbxKH39vvEK6rVVdd3ldxttFilWXFPEq4t9u5kWzB5QXj//z9Azqhe80Zvh24\n2KaBaegbsiWEwNB1sqLWgpmGvLafcZZjSElRVQwXK5qe89aE69vGBTn47HzAll9Xdj3TZMf3sHWd\nQim2vMuHEaUUx/M5yzxH1zRMWQup/93jR/xqdw/BZWj1vh/waDxmy/WYZRk/7W7R83xGSYyuaZwt\nl7zX6lAqRdNy2PF8JknCvz64S9f1yKuqjvkpCt5ptFgVOYFh1saaleLFYkZ3TfQENbna90LuBC18\nw+TBbMSOE3CczHkxnfJu2GaURLzf3OLRYsS+G9K0nPU6SA5XU0ytrh6eRQuysuAwmvJe2OV+uIVC\n8Xw1ZccJWJUZrjTp2f6mctK1/M165lWFLQ22LB9fNwkNhxfxiKKqatKlaZiaxJMmXcvH0nRsWVeC\ns6ogKlNWZcY0j9ixQgwhWRUpqyrlaTygqbtoSALTZlws2bNahFfI1t+NP+G+t4utmbyI+ti6yS/D\ne2Sq4DgZ0jFDDFF/V1MzOEtHhPqrE5JfhnE+pVAlcRVTUtHQw2vELa4iemaPQPcxZa3XSqsMW7Pp\nmdusyhWP48/Zt24R6g1mxYQn8QPu2vWU4Wn6ghUTkjynUBnLao6p2Qg05uUEhdpYQlyFUhWj4riO\n91GgITe+XV8FN5GtSpXEaoyxbgUuy5coFPoXXN6X5XMUJYYWEFdn6MJnWT3GFG2EEJQqRlEC1Sb6\n500o1RSB3Ajk/7ngB8L1DfBdL9xXRTSPGZ1M8K9UsKK1CemFbusCUpffjGxR32wtx8SwDHZud157\nsJ2fTOnuhAQND01qeIGN49objVZZVJRFhR84hE2P9laAYeqMBwtWy2TTVtR1ye13eqiqFhU7jsnf\n/8dPuPPONlGUMp9GTCcrDFOiScGt2x3iJKN/NiNJC+IopX82o382Q9M1dEPSbvsYhk6r7RGENotF\ngqZpHB+PyYsKqddRMTe1Ug9fjqiU4uXLMYdHY24ftJlMI5IkJ/Bt4jinLCv2dpp1u9Ey8Dyb0Lfp\nND28dRvu9x+9oNcJ2WpflvM1ITZTirWu5/Vkazyr7Sjyoty0IS+wiGoCeEHUV0n2xnidi9/w/l4X\n37FYJVmtWVKKPz47IXTsWr8TJQwXKwK7nrB0TAPb0K/tZ6UUh8Mpbd/FMQ22Qp95nDCLUwL7u5ku\nivOCCoWuaXzaP2eZ5mwHPqau07Rt5kmCudanPRyNkJrGnWZzI1Z3DIO7jWbdJpxN+c3xMbt+wDhN\n2AsCftTp0vM8PhkOaDsOTdveZDQ2LJvfnB7TcVzuNurBloZlk1Ylg3iFrmkIVQc5b7v+pQhdSkCh\nCw1dk2RViSt1DCmZZymuYbLvhQzTiF8dHCALQWBY9d/pBpbUebma0VrbPAzSFc9XE+75LXSh8ens\nHEvq3As6aAj+aXKMpen8KKx1Q9MsoWU6CASKy7biLI+plGJWJNiajq7VhPQ4nuJKg/NsRdf0OIzG\na12WxTxPyFWJsxbVD9MFCsEdt/5sQ9OJq4xRsSIpMz4I9jlKRvSzGT2zwfveHqUqSaqco2TElhly\nx9liWSY8XtXZjb9o3EMKjcN4wK7Vpmn4PI6O6ZhrLRHimr/WmxCVMVGV1AJ5oTPIJ5wkfXpmm/N8\nRKj75FVdNcurgv97+neUVUFHbxOpiExlpFXKaXrMsloRyAYNo8E4H1NSsG3u4UiXXGVIDEoj5b7+\nS0zNomNsU6icUpWEson5muzBi1xDQzORQv9aZOv1UJRkpNUIRYUrt18hWwBS2BgiZFE+wpV7aJjk\naom1dpzXhYciQyDQ3kKHVakZQliIb/W7/PnxA+H6BviuF+6rYnA0xmu41zRcpm1syFaWZMTL5Fs3\nPwUo8gIpBHlx6Q6eZwWrRYztmESrFKnXwdu2YzI8m2E7Boq6XWnZBvEq5Xd//xDHtXB9C8ezrmm4\nACajBYP+nMOn55iWzu5Bh6DhYDsm82lEsxOw1QtJk5yyUMznMVla0Gi6OI7JVq/B7l6LRw/PCEOH\nMHR4eTgiCB0cx8T3bYSAp08HPHnU5y/+4jbuDZq46SwiijLC0GG5StnfaxF4Nk+eD6hU3Uo8O5+B\ngPkiwdDrSamirDg6ndBp+XXIdMOl2/Hpti7Fx48PB3iOdWNr7iaYhsS2DPKyQpd1dStKMl72p+xv\nNVjGGXGW4ztfnmV4ccHQNME8SjgezeiGHpVSZHmFodetwzQvsA0dx3pVJH8BIQRt/3qV0jEN/Bt0\nXn9OFGXF2XJJYFmcL5cUZYWp11OFqzxjFie03Xo/T+dLAstkFMccNBr0lyssvW4nXnyni38fRBGB\nZVKUFaFpca95OR3c87xrejVDk/RXSx6MR+z5PoNoxSRN2PHqvMa4KFhkKUoIjpcLQsvClJLT1ZIn\nsxH7fogpdRSKP43OKKsKU+pMsoTmOgsxNCyagUuVVPx+eMyW4+PoBkerGYu8DhCOqxxXmrwTtDE0\nyYvVlD0n5DxdMS9SerbPnhPSMC/Pu9CotVXzPCGtCtz1RGNW1RO4bdMlrQoWRYIrTRxpEBoOe06D\nj2YnzLOYW26LF9GYhuFgaJKkyilVxSyPiauMtukxSBdYmkHb9OiZIYsyYZbHdM2Q9/09QsMhqwrO\nshmutOiaYd0e1CRxmWFrJl0zZFIsaRoeSZUjRD2FuG91GOYzPGm/Ndm6gCa02j1eaJjC4OPoc+7Z\nd7A1i4qKJ9EzjtITTGFylpzyMHmIUpComKbexNUcFuUSA51pNcbUTELZwJU+83KCL8N1dWyXyox5\nMnuMb4Q4mouqKqTQMTQTITSSKiJX2bX2YqkKJuUp/p/BIkJRklQjfHkLXXt9u1ETBkJodWtR5cTV\nMabWRF9XxpRSSGFvyJZSBeqGYOrL7dV607T6GF3bvr5PSn1vW5PfZ8L1z4u6/jOAJgXccBxeGKJW\nlaIsvzwu5W0xOJ7Q2a2d5vO0IFomcEX/ohRUpeLscFiPk18xL7Vdg/GgNjXt7jSwHZOnD07XlaTX\n++EmcU67U1ejbLd2Yb9ol3Z7Dc77M3LP4sGnx/zlX73D7l6LZ4/7lIWiUBVFURE2XMqi5OysLtMH\noc10uuLjj47Y32+xf9Bmayvkgw8OWCxSGleE40VRkmUlValI1lqu++9ub16zTB0NQRRnWLZBXpaY\n6IynK6SULFfJxjm+Nh8VtBvXq4/v3b4pVvr4hoKUAAAgAElEQVQ64rSemjMNnePBjG7TI/RsVnHG\nZDTH0CXvrC0q2q8Js/4yVJVCcFkVu7t9eUEPnK9XofouLpSaJvBMgyjL2AkuTVYbdm37sN24rPTq\nUrDMcrKyRBOC97e6PBmPCazL75uXJVlZEmc577ba/Ienj5mlMf1oyX9z6861z1ZK8XIxZ8fzOZrP\n2fMDGpbDfzp+QNdxKcuKF4sZO55f68Skzu2gQbImYIeLGYFp4K+nBpVS3G90aJg2n00GvBO2mGYJ\nGjDPU6qVxjxPuB92mWcpcZGzyDPu+PU0Y6kqPp8OeC/sYEmdPad2d9c0gaObnMZzdp26EhQVGY40\nqKj1Xh3L48HiHFcauLpJaFySskwVoGCUrjhL57wfbAOC300OObCbfDg7pmf5RGVGx/SY5wVRmaFr\nkl2zyXEyxddtpkWEq5sMswUNvdZ5rcqUl/GQQHc5SUagYIZkWSbM8iXbVgtHmkRVSscM+GjxnDtO\nj1t2l6wqOEqGBNL5yo7shSpZlhEt44ogXdr8z53/Yf16wXFyxp69i6PZZGVGz9raaA97Zg+B4FH8\nCEGFLkxMzSKUTc7zMzrGFlvGDrN8zOP0c37m/mVtECt0rHUV6bw4Zt+8jL8RaMD1a7iioqO/Gn3z\nNsiq6LXxPgAVJZlavvG8rVRBqRIMzceV9X5YqnftPcvqIZ52d+ObVag5FTmW2L5xmwBC6Fjaz77w\nWRGFeokpfvxW3+8HXOKHCte3hPlogdRl7SQv5Wbq7+jhaT2S36+z5rzQwX7DBONXRZ4V2G49+m6Y\nOlvbjWtrJnUN2zXpbDdodLxNW6uqFMOzGTv7bZodH92Q5FnBYh7zk39x+xXbiKsIQof+6azWJVm1\nc7vtGGiahtQ1wobLeX/GwZ0uRVHi+TaOYzKdrtjZbdY5jUXFhx8e8ld//V4dzaNqS4deL6CqFFJq\nnPWn5HnJzk6D07MprmNubCZWUUq77WE7JtYVbdeDx33u3OowGMzZWWvp9rZbPHxyys9/ekAzdOi2\nfdpNj7Kq+OzRKZ5rk6Q5UmrX2nGzRUy+JnBfRJLmzBZxrS0zdHzHYjhd4tkm55MFZ8M5ZanoNG/W\nqWR5QVlVTJYx7hcqXlef0GzToOHalJX6znRX3waEqEOjh6uIUqnNNOI/Hr6k4dhkVYVcV65C28Y2\ndMIrBKvtXD7ZF1XF3x2+YDfw0aXGyWJOXlUYmuRvDm7xfDbD1Y2Nbu3ZbIKuCXzTYpom/KjdxTdN\nXsynzNKY99tbfDYZ0LRskrLA0DSWecaqyDHWQvbjaE5RVXRsl2mWMM9TfMPk08k5XdtjmEZ4uoGj\nm3XVOKtoWDYN0yYwLHbcYDNxWKkKBBuy9J8HLxhlER3Lw9dNzHXcjSYER9GM43iOLXVWZU5gWJwm\ncw7cV4dy4jLH0CTa+omvUoo/zI7IygJDk/zr7rscRhP2nSZKKZKqoGW62NLA1CTjLOLz1QmLIuG2\n09m0HJ9HQ87SKb60GecL3vV2sKWJoelsmSGfLo7wNBtHN/nd9BHW2mw0qlJC3a2d4auCfjbhlv3l\nDzJXoVCM8xlZlePKV6s7mtBwpU1cpkRVzFF+Qktvc8e+zY7Zo2W0WFZLYhXTlG127F1aehsNDVfz\ncKSLFJJcZSyLGbNixM+2fk6z3OZJ8ik6BtvmAf38EE+r45Z0oaNf0UDlVcph+imOCBgWLwnkV5sK\nnJdnWMJ/baWpJENDYmqX1kGlyjdCfaUUhYqoSDaGpvDqg5Wlda+1B6Vw0LAB9cpnJ9UTBBJN2Ne2\nE5d/xBD7aIQUaoCGjSL9Idrnhn24CT8Qrm+ALMmYns9wA4doHmNYBkVeG21exPoMjsbs3usRtLwv\ndZb/OjAtA1XVuVxCiDcebBdkK0sL+scTokVCp9dA0wTLed129IJLXVdV1VWum56sWh2fo+dDhAaj\nwZKt7cY1R/QgdHBcE8+3SdOCJM42BqZZVnB0NOZnP79VT22Ol7Q7AZZlYFk6o9GKqqrY2a5vKo5j\n0lnrvKDWR7muRVlWTGcxwbrlmeclSimCwOZ8uODOQYdeN+R8MOPdu9vY1pWLZFGiKkWWlbSaLk8P\nh3Ra3jWdmFprsW5qK0ZJjmFIgrVIXtMERVHiWAZFWSE0wa1ek0Wc4ljXL0ZH51Men4yw1hE/9hcI\n3Rd/wzQviLMc1zJ5fDrEt803WoN8nxFYFi8mU1ZpxjRJ+dnONm3XpWnb2DdYQtwETQj2ggDPNAks\niwo4CBr84fSU9zs1mfLXZG0cx2RVhViTkN+fnrDj+fimxdF8zt1Gi/0g5HbQIMqz2uF9rdtaZBnb\nno9rGNwOag2Zs9ZjxUVBWpa8G7Y5TyKkEDQth/NoiW5Jpsto46NVoXgwGxIYVq1bm5wzzRMOV1N6\ntk8/XeJKnXtBG21tdvpkOcKVBlu2T9N0EEDbclnkKbduIFsAjqz3bVGkVOrS/NSTFj8Nt/F0ix27\nbgEWqiIpc6Z5TGDUpqdxmXHL6bBt1bmUQsCf5i8ZZgu6ZsAtp0PHDMiqnNBwcaRJqSosoVNQa8Js\nzWJWxBzGAxKVoSFIqpxpueR979ZXPl40oeFLF3vtE/Yoek5nHcWzKJZMihkNPeSj5adsGW32rT1a\nRpNpMWNZLWjqTXKV1yHbaMzKCafpKSf5Ictywayc0DV6nGXHaEIn1Fvshts8nT5BIjnNDjlLD0Eo\nNCSOfPUBSihBqlY0jC6B1n4tcXodHK3xxvfUWY0GmtDJqgVJNSaqznC02lakJCJTY1y5R6FWKBTa\nW+quMnWOokB+QayvizbaDToxQ9tZC/DHlOocTfgoVpv24/cB32fC9c/zqv29gSCNa2+csBtg2gZS\nSppbIZP+jGgR8+4v7nzJNm5GsSYP8TIhjV9/8MwnK2ajJU8+OeJtYzENU9Lphfz4F7dJ1tueTyKU\nYmMBkaY5Lx73mY1Xr91OWdZBuh/84taGAMRRxqcfvdyQNYDVMmG5jFks4vrzDcl4uGS1SkmznK2t\nkNUq5ZOPX6JUTZxc18K2awIWBDa6Lomi9Nrn67ok9GuR/flgzqOnfbx1RM8vf3YLw5CsopSz4RzT\n0MiLklWU1pNvpxNO+jNeHI0oS4Wmaa8Ymzp2HXydZgWD8fLaa6FvE3o2nz492/y/F2cTBtN6He/t\ndtB1yWJ1fZ+hDsP+1Y/22W4Fr3hwXaCqFElWH1uuZdIN6wv9vV4dNZMX5Wt/l+8Ko1XEOIre+Ddx\nnlOhOFsucdbrfTpfEOf1d02LAqirWK/DLEmYJgmfDQcA7PoBHdflf/2Lv+TxdHztvV3XrQOyUUR5\nzq929zZVzL/a3eeDbm2Cq2saPdenYVrYuk5gWuhaHeL8bD5hlee01hOG2to+4ixeYkqdHcejados\n8pTzZFm3s8uCRZ4yz1OOVnN+0tzaELmTaAFV7cV2uJrys+YOSsDD+YBlXp+P94PupiKWlgVRmaOU\n4jz58oy4Lcuna3m8iMbsO01+0dqnY12/Ic7zpH5A0y3kmowaUqdhOJwlcz5eHLEoEn7VuMu/at/H\n0gyeROcAnGd1tX5VpPzv57+nbQb4uoNSYGqSXzbu8V+3foyJTssI2DIbbBkN/nby4Zfu+014nhyj\n1hIHAeRVfawEuk/P6HCSnqFQrMqYUT7mOD2hUAVdY4txMSHUQxzhcJy/pK13yVXOfxX8DT/zfom9\n1kTdsd/lrvUeu+YB/eSEhuzQM/axNAtTWmhKZ5Af3bh/Qmj4skNcLphW51/rO74JQmgbkbyGgcSm\npV+283Th4a1zFiuVocjfetuWtoOh3ZwHW1TD175P13oY2h5lNULSe+vP+/87fqhwfQMoBXma44YO\nTz98QXu3xfnLEZom+N3/9Sds36Iq1caF/ujRGYalY9zQovoizg6H6HptI6CU2rQovwjbtXB8m852\n40srXBcQQhCtEs5PpiRxRtjyMCyd/smEsOmRxBmf/O453d0mnd7rQ0kbLW9Djh4/PCNPC0bDRW14\nKmC5SBgO5jz45ISw4WIYkjB0am3FdshwsODf/tvf86Mf7RGGDju7TY6Oxty/v42UAsPQCUMXKWvt\nW78/o/GFVmf/fE6z5eLYJju9BkenEwLf5k+fHDMcLjg5n1HkJasop9lwieOM6SJmuUrZ6YXYtkG3\n5dNquNeqRrUr/ZRGUFcXELySVQjQaVya1vbWInx/3eJ9+PIcJRSmoV9771WRu1KKvCivfbbnWUxm\nK0aLS5+tC2ia4A9PjxhMl+y2vz+BsVBHH1m6/sZpTkNKtjwPxzBQ1JYQula/TxOCw+kM1zD48PSM\nbc9/JZB7ntREofbmqm+Wh/MZL2czLF3n3Vab57Ppxr6hv1ryx/4plYL/5+VzftLe4uVyTl6WvJhP\neTwdcbfR4rf9Y2yp83A6oufWYvuoKBjGKxqWzZZTDy3MstrH7Pl8ypbt4psWJRV/e/KcD1o9TCn5\n8U4Pp6wrZbbUaZo2szTm/zh+yJ4bsu34/Hp0yHtBm47lcp6uaBkOt7wmUhPX8gN/PTykQlFrKgVH\nyYxhumLHvpymHWURptColGKYrvD0upL2eDUkrXK6ls8sj5kXCQ8Wfc7TObfdNram4+r18MSiSFBV\nRVoVnKZTdswGbcujn875zfQJ77nbHMZDDFFbjhii1m2mVU7T8DhJx0Rlwu/nT3jH3WFexISGR9vw\nOUlHuNLmPXf/K5nuXqBlNMhUzqKIOM5O2TI6PIifEEif/zT5B86zIV29xePkOctyxY/d97ClTVwl\neNLlLDvD0z32zX3O8mPyKkPXdAI9pGVctv9epE/Iqoy+ekmSZgyLE9rGFrvmHUxp48sGaRVfi/ZJ\nqoi0WjErBnXygb7zlXVqb4tK5VSU6yzEm6wpSjRhsCifYojmNW+w+nVFwRwpbEq1Wmci3ryvSilK\nxkjxhil6pVOos3UlrPzeONB/nytcPxCubwBNarhhfdH3Wz5Sl4RtH03T2L7VxWu4nDzp0+jUr/lN\nF/M1YchfRLAmQaPTKYap39iOPHsx5PxkTGvr8sb7NgdbGmd8+ocX3H5vmxeP+himpCwqTEvHcS10\nQ240Xq1ucGP76pMPX/DJPx3iujbNjk+7G2C7Bp1uSKPpkud1Beb0ZMI77/Y4uN0hCGw++dNLTEvH\n9SyaTRfXtUjTnGbLI03r3ETTlDx63Gc4nJOmJe12TWpMsyagF5YLs3lMGDpYps54siLLSvZ2mvUN\nwdBYxRm399vcuVUHHHdadRD0s8Mhz4/GzBYxP3+/Fph+kSRoQmz0WdpaGH8TrrZbNU1c+2/PsfAs\n48bq2QWSrGA4W238uy5+wywtCNaWENNVcm2ysRt4dBoehpQcj6avkLLvClLT3ki2LlCUFfMkIS0L\nRqsY1zJ5OZ3RcV1ajoOuaRRVtSFUF6iU4my1wjVqp/GyUvzu5GT9mRVJUVsw+OsqFbC5wd9pNHF0\nnYbl0LZtPhqe8/PuNk3L4WS1YNcNGCUxHcdBF7Xfl6vXE7w91+M8XvGbsyN80+R4uWDL8Xi+nLLt\neDxbTAlME083OYuX3O22mSzq+J5clZRVxW9Hx/xVdx/PMBlnMU3dpmt7vIxm/Ly1w2/GR7Qsl2eL\nMZoAKQS6JjGERtNwiIqcsqrwDJP7fpd5kWzyCaOiboUKBHGZoRRkqsSXJgJBoUpC3caUOqG0sNc+\nXVeJwThb8dvpMxzdYpqveBYN+SA8oGE4aAjO8znbVpPPV8fctbc4SSdYQq+vdVaDLbNBXpX82N9H\nCo3Hq1PiIsPVTXpmE0sz6GcTTE2/5pv1NpgXS6bFAk+63HNuUamSaTGna7T57eKf2DG2+JH7Lofp\nS3bM7fU5KKiocKVDS29RqYon0SOepI/4bxv/PQ29ySA/R0NDExofrn5DUsaEeotu0CRLFJUomOZD\npNDJVUpepdjSQRfGZu1ylZJUK3zZRFGxKEd4WvPPMpgSVQM0oWN9Ifswq+ZUKidW5xgiIKvm5NUC\nJUp04dWvVccYwidXE3QRkqsRQpiv9eMSQlCpnKT8CEPsX/s+SlWk1Z/QRANFitRCKjVFE9+PB8Af\nCNc3wHe9cG+DLMnpvxjQ6NZPnZrUsBwT0zLY2m8j1zfbtwmivoqqqhidzdi5XT+FHT48xV4TIgDL\nNTAt8xoZe5uDTTckOwdtDFMijdoo0187ykfLlKpSBA0Hx7Pw/Jtv5o5jcutuj+Ui2WQmSnnpSl6U\nJXleEMU5O3vNzVTg0eGYvYMWul77LB2fTJhOVpiW5OxsxnQa4bq1wD7PFa2muzFVTZK6VH5hgJpn\n5Xo78PTFkJ2tEF2XpGnOgyd9drYaLFYJtl2TOMvUQdVu57NlzHYnoBG6yPX06NlwvtFkwc0VrauY\nL5MbBfUXMHSJaehvzGA0dIlrm9cqORe/YVaUDKYrXLsOpl4lGYPZkpbvYkjJy+GUv/v0GW3fJStL\n7BsyFL+PUCjyskTTBB+e9YmynNC2aF4RxjftV487IQRN28bSdez1P55hcKvRIClLQtPid2cnOLpO\ny663NYojJmlC03LY80M+HQ3Y8X1+vrXNLEuRmuDFbMqeH9B1PNq2s/H7Ol4tOF7OmGUJFXAraNCx\nPfrREkOTTLKEbcejqiosqdO2HZqmzUrkDOYrmqbFyWpBw7Q48Jq0LIcXqymWlGw7AYN0iabqDMyf\nNbc5ieaUSjFMIhZFRs/28Q0LW+q8jKZEZc6+2+DD2SmONHD02ibB1U2kqCObDqMJ/3HwkDtOm8Cw\naJgO/zh+jm/YoBS+YREal+s8z+NaeK4ZlMD7wQ5JkdMyPbaskAfLU247HVqGyyCb40qLhuFyls64\n7XRZlQmhXletJ/lyM9vctUI+Xb4kLXN2rTafR0dsm3V49lc9Rg2hk1cFtmZSUGIInbhK6JgtDqxd\nENDQAzzp8yx5TlKmdYuxWjHJpyyrJcfZMctqzrv2fRzd4VnyhG1jB1e6jIsB03xCU2+zax6QGku2\nOCApY6blFF3TsTUHXzZAqHUskbXet3rqMVcZtuZhSx9D+/NUekzNR15xpk+rKXF5TlydIDUbV9th\nWT6nUEui6gW2tkVFhi48NGEghY0uQtLqDBAY2pstLHJ1iqYC9C8QyDp1oQeiAiJ0rfe9IVvwA+H6\nRviuF+5tIHW5IVtVVTEfLbAck6d/OqTIS+bjFV7D+coXGiEEXuhsCJtpGRsxPoCU8pXK19sebNPh\nguPDEbsHdWj1BVnK0gIpNSzbYHA220T2XMVFdmEcpcRxhmEaRMuUPC8wLZ35LGJ0vqDR8tjfbwOq\n/n+jFX5g0+7UepJnT89pNT1+8sEBDx/0uXevh20btNsepmkghCJOao3Xcpmg6xqua1EUJZqmYVk6\n+npqUWoazbVTvqLWd1mmTrPhIoD//Nun7PYagOJ8PMexTG7ttbGukJSyVNeE9W9CVSlGX6hMfR1E\naUZ/vKDhOxRlxeFgyn6vnjTVpUbTd3DWjvS6puGsszTLqiJKc3aaAd3QJStKpquEsqo2f/99RKUU\nz8YTKhSuYdJ2HZqOTcfzvlJA9gX+/ZPH3Gs1eTye4JkmW25NPqUQpGWJJXXSsuSz0ZCoyDhazmiY\nNi3bJq8qQtPmt/1aI2RLySCOaNkO0zRBAHcbLQLToud4eEbdfvMMk9CyeDobcxot2PFCFkVGpcCU\nOrc6TWQuMKXOSTxnkWc0zZrI6UIwz1Im6Yp+vOKdoCZGn8z6/KTRo2HY9ByPru0hhcayyMjKglte\nk20nQEfw4fSUv2wfXGs9KqUYpxGfL8/5X/Z/gWdYzPKEfjonVwVPVkMyVbIsUyrqiB+ARZFiaJJp\nETPKl2xbIWfZjH+aveCu22XHbmJoOqamMy9jpJAsi5hZHtE0PDJV0M+mPFqdoqra62zbavIiOueW\n3eUdd4eSih2rhaF9tUzOzXdDkaiUUT4lVwWe7hJIDykkjrRp6Q0UiriK+cPyQ3bNHhk5ZVXQz/sY\nQqdttNk3D5iXM3KVs6X3MISJrum40ierUlKVUlLyTusun4w/JtBCPN1n17yNJjTGRZ+eeWtDti6g\nCcm06DMuT8mrCE+2/ywPPl/0vtKFjaU1cLRtFCU5c0wRYIoGhmjVAdbM0UWwifhZlY/RRQNzLbh/\nE3TRvka2CjUir85QZEgtQAgDKZok5R+RYusrDwv8ufAD4foG+K4X7quiKitWsxjHt/n47x/w7i/u\ncPTwhO5uC+1rTJbJK9WR46fnNDr+G0/mtz3YHM/CcU3MddBz/2RCtExpbwWbCtpNZAsgjlJWi4RB\nf4HfdBAopBQkSYHrWnz+6cnG+sEPbB4/7PPrv3/Izm6TO3cvT3TXNTd2EHt7LTzPZD6PsW2DKEqR\nUnLvXu0lk2UFUgp0XfL46Tmd9qUIWNclhqmTJjmmqaMqxWSyYhVn/OMfnjGZrvjlBwfESUZelHiO\nxd5OE+eK+eeDp30C375GuJI0RyleaalOFzEKtQmm/iYwdEnDX4uxNYGpS5oN98bfUKzbnJ8dnTOY\nLdGE4J2dDqau49kmgWPhvCY0+vuCtCgZJzF/Ou1zOJ3xL28foKjbjPa6ojhP042x6QXytSfXF4/9\nbc/DNgyyqgSh+IfjI04W87rSImCZZ+x4AfdbbQ6CBj9pb9G0HZRSfDYasO8H/Hxrh30/ZJzEdB0P\nc20nYes6ltQxtCthw0JgSb2eANQNpCa5EzTp2LW/lkCwUBlPx2O6tsuOExCaNrasycYki7F1nV8P\nXhKYJlITPF9O+VHQ2Wz3wi0e6ozMCoWhSeIyJ1Mlt5zGJk9xs65VwTiPeD/Y5jxdEBo2nm4S6Daa\nECgEUZnxF81bONLctFpd3UTXJL5u0TMD/mn6Aokkqwru2J1N/E9cZPzD5Al/2biDrzucZ3McaVBW\nJbftLR6sjrnr9PjbyUekZY5E8Hezj7nv7HGUjuiaX68CUqmKZ8kR+9YOLSMk0L06c/JKW3JcTMlV\nfa5uGR1MaXLXuk3HbONKF196tGWLhVpSVAUVJfv2AaNiQFzFnGQvsTQDU7N5mT6l528zXA54FH/M\nbeddPBkgkASy8VoHeQ2NeTGgpe9j3zDJ+E1RqpxZ+RTnhiDq2uXeQAoLQ/OJqiMcuYvUTAwRXG8H\nkhOXpxha8FbxPtc+BwcNDyHUtQlGKdo/2ELcsA834QfC9S1D02pdlxCCZjfADR127mx9LbJ1gdU8\nxrQMmt3gS5+c3krDleRUZYXtWuRZyfNHZygFe3fezj/GNHVc36a7HXJ8OCJsevVnKlX7ca0J0p17\nW8RRRllU/OpfvkOW5AThZTvjvD/n2dM+SZyTlyVFXmGaOmHocHg4ZmcnZDJZ4fs2pqlvtFtXydYF\n8nWsjr3WTF1oyFZJyru3txjPIjptn+FkyW8/fM6dgy7Guq25XKWXGq/1+uZFydlwzjJKsS3jmjVE\nccVN/tvGi/MJ3ZZPlhY3vr6MU/baIU3Poek511qRaV6Q5uX31q9rlWVoQrATBPykt0XDspinCR3X\n3fhyAZwsFjTt6/4/x4vFJkvxKixd549np2RFQdfx+Ou9A37cqY0vtz2fnudvhPzLLOX356cUqqLj\nuBzOZ2y7PnFZ1NE/lr3ZvillTXKKnFLVMURRkfNiMaVh2Tybj2laNgrFp+NzjlYz3mt0MKWkny+J\nkoy25ZJV5YZsXeDFagooorLgL9r7GJqGZ1jXiN0FTFmTvrQqOI2XnCRzuraP+YW/1TVJ03RY5gnT\nPKZl1pXdP85e1nojofjr9r3aYFUIzpI55hViB7AoEp7GQ4qqZJSvWFQJO3YDQ5P84+QxZ+kUWxq0\nDJ9Slfx6+gBH1k7vtjR519thx2jyNO4TlSm37S4tMyAtCxZljBAwK1b4N/hpvQ5CCCzNZJCPCfWb\nrQdc6eBIh8PkJZNiSsMIGeZDHkaP6BpdPlp+RM/cZpJPmBRjPvB+jhQSXwZ40qNjdElUiiM87tr3\nyYwlx4sjUBots4ul2TxI/khLbqGvHfJLVVzTwD1J/lg7zwvxrbvN59WKSfGEln7/tVUkIbQrvlwF\nUnPRhCSvZsgr5EgXPrrmIdSF5c/bXyuEEAihb8hWUb2kUgtK+kjx5RWz/1L4gXB9A3zXC/dVsRgv\nGZ2MsTyL/uGAsBN+LbK1nEUgat3X6HS6Cbz+MrzNwRYtE8qiFp9Hy4Ttg9r89AJJnDHsz/DDL78w\ndnshtmMShPXN37IM/MDm7GSMAlptn7DhUhQlcZQRhA7Png5otTwcx0Rogv1bHcajJXfvdvHWNg/D\n4YzFIiGKMnpvmJS8QFVVeJ7NdBaRFyWGoTObRez2GgzHSx48OUPTBK2mgxQa40nEcX/K/k6T/nCB\n71q4V9qzUtNoBg6NwHmFWJlG3cocTVckabHJW/w20A5cGqHz2t/wcDCl6TsYuiTO6kDni5v54WDG\nKs1o+W9/Q/sviSjLAEFWluRVyeFsxjiOKCtF06lbqpVS+Ka5zi68RMO2XyFbUIc2dxwHTQg+HPQx\n1l5Z5tox/oJAx0XOfzp6wSJL107zNnFRcB5HPJoOmaYxO+6r1eMHkyFxUdCwLMpK4RkG4yRhGK9o\n2w62NAkMi47t4hn18SNMjS3NIa1KJkmMb1jkVUlSFZzFS267LXJV8d9t38PQJJ/NBji6gW+8uTpZ\nojhwGptYn5tgSYOW6fL5rI8pJXe8Dr5uMckitu3L86hSFZY0rk0NlqriltMmrnIU8D9u/RRDkxRV\nyXE2ZssIGBUrdqwGhar4m9aPcaTFSTrBEDqfrg6Z5BEdI+B300fklCRVRssIOLC7WJqJK62vPKlo\nasY1snWaDRjnU5p6/X3G+RQpNHasbTKVs2P2SKqUUlXsWDsEus9ZdootHDKV0DY7mJrJMD/H1uqH\nY1tzsDUbqUnaQUiZaJjSpqJkUgy5bd2nICOqFtiax2n+nFC2GOenjMs+d60P8GSTUmV1gPW3iIqC\nZXWCL3ff2LarVE6pYmLVx5E7ACRVH2mLuOIAACAASURBVFO77tumCZOsGpBWJ5ja17d0EARoIkTX\nvpqZ7Z8bPxCub4DveuG+KizHxG95FFlBtIhp9Rpfq58fLRMGx2NavcZryVaW5tdajvB2B5tlm1i2\nQVVVPPv8FC+wMS2D+TQizwqkLnE965Vtvw6jwQLDlBw+H9JoubU/VtPjT79/getb6LrG44dnLOYx\nQcPhvD/Hdkwc1yRsuJimTq8XIjTB40dnjIYLbt/pEoYut29/edUtL0rOzmc0wrqtM53Ftb9XNyDP\n6xbiz396QP98TqXg7q0ut/fbdJsew+mS7a2A1SrD+5IEgNF0xTJK8daROubatPRqlSkvSoaTJa5t\nUlWKSimWcfpGcf1VVJXC91//GxZlRVlV2KbBcL7CWpM/gJbvfC/IVpznm2iVq7ANA1OXDKIV54sV\n277Hj3tbG7H8w9GISRzTXy3Z9t/OSPF8tUJoAtc08U2DPT+s43l0nS/mKDYth/vNNqM04eV8StNy\naFgmL+czftLZ2hCmCyyzjF0voOO4TNOEfrzEkJJt16dtOXi6yWlUTyx6hslHkz4vlzMKWbJt+Ahg\nktU2FhdZire8BmfJkvfDLr8dHrHvNUjKgqNoxoHbYJRGKOqMRENcruE/jA4pK0U/mVOoCu9KW/Aq\n6vYS/G9Hv+c9f4uzZEY/nePpJm3Drc0lhMCSl6HsFxhnS46TKQ3DxtVNTuMpgW5TqIp3vW0OnA7L\nImGWR1RCsW01cKXFJF/haRbzPEZqkp4ZElUZ/1PnF3i6w67dJq1yLM34ymTrJphCxxEWxrraVFFh\nasbadd7hLOtjC4tda5t5MaNrdLE1h1k55Wf+v8CRDuN8hC4MzoszNCBXGU+TB2yZOww5IU1KCnLu\n2PcxhIkmNBzNx9Zqu5FwXcWy/t/27jw6sqs+8Pj37e/Vq02lKm3drd7sxgsmYM+EyYw7LB6G8AcJ\nB8yx8UxzSBj7JASywPGBIXPsf+ZAnAxnMgkxxhACGDBLyBlMzhmYABkMhOOxHWxs7MZ2L2qptUtV\nqv2td/546upWq7S21FLD/fzVLZVUt+qWXv3q3t/9/RQHU7FRUJgJx+i/oAXQVtEUg4y2Z80cqZAW\nEW3S2n4i0aIdT2Eo2SUrXAB+PEtMhK0Nbnhb8ULK4ha/EIKYha6FUneCDLguwU4/cZtx6pkz5EtZ\nqrN1cqW1twG7sVNW57TjSs6emsZJ20sCo4282FRVpTiQ49knTzOwpweUJOF8emKB3tL6P6WNjcxi\nGBo9hTSjp2fJF1xMU2f/oVJSOX62ytxsnXyPi66p7B3upVptke5yAjIII/L5FD09aex1rhxpqkou\nm6JWb9NuhziOQamYxTR0Uo7FE0+fZr7S5Nojg7TbAbWGx2NPnUbXNUqFNLZlrBlsQVI/y3XO532p\nqrK8TlSjzUy5gWloVBttbFOn6QXL2vd0E8UxL52dZXiwsOIcuraJvZgUf6746Xy9RTsIcXdJ/tZk\ntY6t6ytuuc7WG9Q8n5Sp40dR0jxd00ibBnXPx9C0TiPrtZiaxkhlAccw+Pn8HPtz+RVLU1S8FoaW\nnGwMRZw0oZ6Z6pxGrPs+ezPnj9zPtBpYmk4QR8QiZk86S2qxGOnZRg1L1XFNk6rv0QwDDmcLpHWT\n4d4eYl/wxNxZZr0m1+RKlJw0RdvFUJP8qBers0RCoKkqacMkrVtkTRsvCtFVlZl2g4xhdratBuwM\nA06GeujhaAYZw1r1ujJgZ+g1Xeb8OlndIYyTSvCPlU+TNxxszeDp6hi2anbywRaCFq5msTdVQAAl\nK8O4V0kKe+oWtbDNicYUN+YPMmAlqyaxEPSZWVzdRlc1qmGDn9ZPE8Uxr8gdICYmiCIqUZ2cvjW5\nTbqid4ItoBNsAcwF86S1NLqi0RYemqJhqiaeaFMNF2jEDXr1XiIRktYy9OgF5oI5KsEsvWYfKS2N\nZsdM1CdZCOcZ9V+ioBWx1BSaqi17zhVFxVBN6lGZdtzAUMxlSfWXi6aYIDQa0QiW2gtoxLTQL6oC\nr+KgK+lOE+tLF+FFzwIhmtK9C8LlJAOuS7DTT9xm5PtyaLpG/oLVrUa1xcJMDXcd23TndAu2fC9g\nfmoBN+tQryZNmC+s7bXeF9vs5AKKmiShCyFwsza6oWMYOm7aQumyQrGS3lIWJ2XRbvn0FNKY1vnV\nnPm5OrVqm76+HKmURW8pi6qqXYMtgPRi38Vz2m0fXdeYLzcQQnTa+3QzM1tDVZUlOV4L1RYnR2Z5\n7b89gm0Z9ORT9Pa4i8nqNj0bSHw/94luNY5lUOpJU2t69BcyPD8yxYHB7pWcL6YqCsWcu/4LhgKG\nppJ3nV0TbAHkHHvV/Dbb0NmTy/Lz2TliAYVUUntL17Skcnsms+LPXkxXVTKmyVi1SsFOUewSqE3W\n61R9j9lWEz+K+e6Zk7xQnmOvm+VALs+TU+Mcyha4qX+I4+VZinaKII7w4oi8ZdMIfE7XKuRNOzmt\n5rUw1KQ9zny7yZCbJWUkqze2rvPt8ZfIKhZHckX2udlOADjdqqOpKrqiUgu9pKG1mydtWKSNJGg4\nWZtj1m9wVabIVLve6beoKSpeFBIJgaoonUba3SiKQo+ZSmpk2Vkasc+MX2evk2c41dNJhLdUg3YU\nUIvaZHSbOb9Ov5VDU1Xm/DolK0uvmcbVTGIErdhjwMrTiDzSejKucW+e0fYcg3YPU36V69xhQhFx\nKDVAwcxgKDoTfplDzsC65/Ri0WIDa2uNcgte7DPnz1OJKiyEC3iiTY/eg6maZLUcOT2Pq6aYCWaw\nVIsR7xR5PY8nPPzYo88cYiaYJNY9hjhMSktjYhISMOafYNw/xYC5vHNIM6rSjBcwFQdFVbBWaUS9\nGX5coxXPYaqr/12EokEtOk47nsJW+/HFHClt77Lbrec6thGKoqIpOQR1NGVr89c2QwZcl2Cnn7jN\n6PZi1nUN09bXvU23kqnReSzbxHEtsj0upm3Qbnroi4HIel9sqqpimgaaphL4IULA6IlpUq7J4z94\nEU1XVzyluBLLNpibqZHOnA+mUq5FtdJk73AvcSyoVBq4aZuR0zNYltGpz3WhkZFZMhkLUJiaqpJK\nJb0DDUPr9IO82PhEhd5CulPJ/hzbNij2pkktbgOeu9hEUYRjW52aXlttbKpMyjYZ6M0yMVvdUPmI\nlebQC0JeODtDud6iN5uUUbgSeyoaWlKwc08uS9FNoV8wp5tJ+J9vt3ANk325HHXfw9SWzulcO+lr\n2Jdy6XVSDGey3FDs55unX+BVfYMcyvdgqBoCONLT29n2ioXgVLWcJMcLgaVpnKiWGXIzGKrGZLPO\n2UaVqt9m0M0SxhGxAAwFPVbJGEn/vyfnzlKyXQRgL+aWHV+Y5WA6z1S7jq6quLpJJAStKMDRDezF\n/CpncfUpiCNGmhWGU3lqgdfp07iSRujz1MIoad1CAP1WJimlop0vg+JoBmndwtWTvKoe02UuqPPY\n/Ak0VUUsHvX04oBpr8qp1gwlK8uZ9hy9RhpNUamFLVQFamGLopnBFyFp3cInYt6vYStJE+uC0T1Y\nmPTmcBb7JK4kEjHt2MPRbM56k+iKtmSF6xxd0fBin5OtUzzXeI4haw8HnP3ExFSDKv+08F16jSIK\nkNXzgEJWz5FSk7mZD6dx1TT7e/ZRbTaYDs5SMobI6T0MWvvJa32dpPlqNJ9sJSoK9ajMVDhKLEJc\nNbdlAVcgmmiKgYqBoaTW3FJUFRNNcdDVDBoO7XgCW+vfkrEAxMIjaXS9/G9UUcxdEWyBDLguyU4/\ncVtFUZUNB1vdcrRM2yCVPX+Ca/rsPJXZOvnFOmDrfbHphtbZDku5FpZl0NuXxTB19l/Vt2aw5XsB\n42NlcvnzF5czp2ZQdZVMZukqnp0y0XWNublkBcpeLAqbWmEbz7J0yuUm09NVBgZy1OttPD9ctioW\nRTFRFHeKro6Ol0EslpsAJmeqGLqK54fUG96SbcO2FyZ1vLbhRF/LC5hdaOBHET2ZFAuNZPzuOpuX\nXzyHSV/FENs0KOXS9Ga3/tj55VRptTk1P08QxTTDgLSZPC81z2O8WiNjWsu2al+am8OLIibr9SSp\n/oIgrRkECJJk+++fGWEonVlS0ytnWtQCn7Rp0gh8AhFzplblZYUS/3fsNC8v9VNut0CBopO8ns+t\nVvXaSS/GvOVgaTp9jks98Jn3WkRxDAiuyiUlHWbbTX46P8nRAwcZLS9QsByeK09jqir9TgZ7MdDK\nmUmV+bzpJFuJhsnz1RkGnAw9loOuatiaviQ5XkGhaCUdFxqhv2yF64XaDI5mdE46znh1rk6XcHWL\ntG4RLLbtSWlLX4Pn2iQJIXi2dpaMblOJmuy1CxyvT9BrpukxXfJGiqKZoRzUOZzqx1SToDalWdSC\nNnnDxdZMdEUlo6dQgSlvgdmwzsvTwyhKErg1Iw/rgmBJAJZqrrriogCGYqApKq7mMOHPdBLmL9SK\n27RFm0POQa5NvQxN0QhFwM9bP0dDY799gD3WHjw8XNXFUi10RacdtxjxT3GVcy2WapPPpGk0PGph\nhWZcpSnqZNQsoRKiYyw+libWYsK9o6XRSZ4PS3O2LOCqRxNYShpF0dZd40pbbLNTj07h6vsRxJeU\np3VOJBYI4zkgRlVSeNHzCAI0Zf2r0ZfLbg64rryPx1eApPhpfe0briIKI8ZPTjM5MsvI8XFa9TaQ\nbDNeuMqj6xr7XzZ4SfcFSf2w+ZkqtYXVmw+fY1oGA0NL9+uHD5YYHFr+KWdmKulnODjUQ19/jiiM\naXZp6nyO45jYtkG53CCKYvJ5l0LP+W3CZtNjcnKByakqp88kDVYNU8OxDBwnubhMz1bJpm10Q6NY\nSNNXzDBXrjMxVebxnyS1uWzLWNJke6s4lsH1hwbIpx38IKTaaFHIdr8Il2vNNRtRB1HEVKX766np\n+TQ9Hz8MeXFi5Wazu0kYR2SspOjpc1Pnm/06erKq40XLS2I4hkHBcTjY07OsRlfBcehdDJTecPDw\nkhITkLypx0LQDH2aQUA7DLmh1I+tadi6xs/mpnENk147xVx76ev/dK1CI1h68c4aFn4UMttucLpW\nIWMmF9eClSJrWrxYmaNop2iFAX2OS948P/fX5ft4rjJNJGKCOMaPQ2qBzwH3/N/NnNdY9hyMNStU\n/KT5+4Cz/E3uqnRxSYAWixj9gjfprGHTa3YP1Ke9KrN+nRuyeylZGQ6l+rBUg+syeyiaaWIhCOOI\nKX8BVVGZ9haS51UIZvwqRSvLQtjEiwO8OEBFoRI2uT4zjKVqTHjzXe8XIKOn1tze8mKf+bACgKZo\n7LW6r9o4qs2g2Y9AoCkae+whDMXgoHWQrJ4lr+eoRgsU9RJCEfgiuQapisY1zvWM+qdQF98SdUXH\n0hwcNU2/vo9GXGfMO0Gw+DNZvXfJuD2RnCq3lK37MJTTh1EUDT+uUwlforlKM2mARjRKO5xjIfgZ\nmqoT0UTh/AcPIbqXmlmPSNRRiDv1tkIxAbFJKK6Ma85uIQOubSBiQbvRvqTfoekaB67dQ+CHFAZy\nWKnuqyOF/lWai65THAtO/nyCTC5FGMa0W+v7dHBhE+5atYUQgrOjc8RR3Pn6s0+P8v3vPEul0mTs\nzBwApqVTWqPUg+ta3HDDPs6Ol5ckp8exII6htzdNf1+G/ft6abUD5ubqpNMWbspCCMGpM7MEYcT0\nTA3PD6nV21SqLVzX5sc/OcVsuUEUx0xMV5ivNPCDzV+MulEUhXrTZ6HeZmquvmJO03rCPcvQaflB\n1+9FsSCKBaauc6i/gLfFj2M7FF2XoptmttnghoEBJqo1AGabTYpuCtdc/lrfk81i6fqSlS2AH42O\n8NjYKCMLZWLR/dlUFYUBN03DDxbbAZmowHgjOWEYhjFeFJIxTUZrVZ6dnSKMY1phQBiHne3Dc9qL\nwdCr+/byyuIg8+0mZa8FCPrsNNONGl4UcnxhhoxhUrRT1AKP07Uyk60aKd1gvFGl4rcWE+lV9AtW\n9PwoOaF4oWG3h7y5cv7nxaf//Dhizm9Q9puMtsrM+40Vf7ZoZigYLgtBEmymNJNG5NFvZYmF4Hh9\nAl3VOOCU2GsX2OMkOYnn8sAmvDJFM0s7Cvh/lRcYbc9iqDoLYZMDTj8DVnJ7SzXI6htf/UkC5uSa\nEouYFaa5oxJU+Mfy92hFLVpxi0bcYMQ7zUQwgVj8i4tF3Pmd9ajGqfaL7DMPdoIoRVEZsvZjaoun\nIRVBRsuvWPh00DxMTi0iiLt+/1JoikkQtzFZ/eSupSZdPQytQE6/HkcdWtIKqBGfIBYhQgjEWk/i\nRUx1D6Z2oNPM2lSvTpYepQ2RW4rbQFVV3NylLyvHcUzoh+R60yvmLl1sM8upiqJQKGXRNBWv5TNy\nYop0NkkAXet+x0fnkpISCy1SrsX05ALZXApNT34uX3C55vo92I6BaemdnKkwjPAXeyFeLAwj4lhg\nWTo9PS6jo3O0F6vIx7GgstAkl0uSgjVNRSHZIs1mHOJYoKoKewd7sEwdN2XxwktT/OSZM+RzDoN9\neZqez56BHsYnK/SXsqiqQrMVLKnDdamabZ9as02pJ1kh6M12/yTvWMayU3Xn5rBSbyX5TqpCaYXk\nfsvQsYzzjZqfH5umJ22vq4n0TlJVBUNLDmykLbPzOC1NX7adCHCqXEZX1WWrW+0wpNxuk7UsJusN\n+tyVVxiaQcB8u814o0af6zKUypA1Lap+Gz+K6Eu5zLSaXN/bh66q1HyPx6bGyZs2KcPAWTyhqCkq\nrp4U2PUXK+Bbms6816LXTvFsdZrIj8hbqU6LHkvTyZhJLa+kmGpMzrSxNA1bN9AvKGRqqlonsX2z\nWlGy0pQ1bAqmi3PRVqIXBYQiRl88eScQzPsNsosnGJuRR3qxZlbJSlbUJr0KKW3p6UhHM+k1Mxiq\nzrg3jxCw1yliKhq1sEnJzC0prtqNHwdLKsdf7FyzaxWVQARUoipprfv11Ys9YqDfKGFpJm3RZsAc\noKD14uppsnqWCX8CQUQ1qpBbbDqdUl2cxd954TU0FjELUZkevYSm6BjKytufs+Eoea3/kuatG1XR\nSKlFtC55a0tvZ6KrKewV6mKZahFFUfHERNKeR9nYe1QsGsS0URULTcktFlfd2gMCW+EXbkux3W7z\nvve9jzvuuIM777yT+fnlS8af/exnefvb387b3/52Pv7xjwPJEvTRo0c5duwYx44d42Mf+9hm7v6K\n1W54+F73lYpu4igmDKJ1B1tbIZ1zKPXnabd8FuZX/lR8TrEvi2npDAzlOX1yGoGCYV7w5mHqtL2A\nJx47uSRny/dCGvXuq4DtdkC12mJ+vo7vB1RrLTwvYHyigqoqDA6c38r0/bDTCFsIwYsnpzrfU5Rk\nZezaI4O85t8e4cihAWbnaxzaV2KwL4dpaGRcm2zaoe0HW7bK1Wz7lKtNDg71cnZmgYMDBfw1tg0v\ndO7TZxBGRBv8JNqXc9mGXdItpyoKKcMgFgJl8aNyyjBWXAncn8+TsZZfxFKGQca0UFDZk80QxjFP\nTo4vu50fRZytVwFB3rJpBgGmrjPdaiyWY4hIGSY39g12VtEKdopb9h5iXyZHj3V+dSnJ7zKYb7fQ\nVJWi45I2TFwjadXzK32DZCwbQ9Wo+ue3zjVFJWfa5E2bs60a016T6XZz2crcWiUf1mPAzlCy0p1c\nq4u14oB2fP5apCkqe5weFoIWc16tE+RAsh0759cwFZ1m5C1bHWlHPuPteQbMHlRVJaM5QFIhXlNU\nqovbjd0IITjrzaz6WHwRcMabIBABpmrQb65c1bwRNUlrKfbae6hGVQbNQSIRMR/NUwurBHFAK65T\nMIrk9GQbtxotMOqfxIuXX49MxUSI5G/XUd1Vc6mGzKu3rXn8enK4QtFEiJhJ/3u0o2Q3YSF8FiGW\nrrrZ6tC6eileLBIVQrHy9rC0tk29kz/88MMcOXKEL33pS7zlLW/h/vvvX/L90dFRHnnkEb785S/z\n1a9+lR/+8IccP36cM2fOcP311/PQQw/x0EMP8YEPfGBLHsRuNfbCBNEFb7Reyydorz/g0g2dgf2X\nt2WCrmsUB3IUihl611Hh3bTOfxLft7+XQ4f7ll10KvNNrr1+aMmFOuVa9Ba7J1ym0zbFYgZNUwnD\nmHK5ieOYDO8rLFsRm5qu4vshU9NVhICXXbX8+LmqKmQzDifPzKCoCtMzC0zPVLnqQF8nf6rYk8bY\nogR6xzLoK2SYrdRJWQbz9SazK+RgdXN6sky12aaUT2/41F5/PtPpSXglKKRS6xrvSgUziykXW9co\n2Em/wrO1atcVlalmnSM9Ra7qSXJvclZyAMM1TJ6dnyIUy7eCYiEYb9RWHFPJcVGAJ6bPcrI632mV\nc02hjyCOGamV0S8at6oo6KpGLGKmWlUW/BZ+vPXbwJqytKxLJGKaUfKpvxn5zPn1pP/kMoKFsEXO\nOH/aNxQRp5uzuLrFWHuehXBpnpupGkkJCFVj2Orl581x8obLkJ1sJVbDRmf77mKKonDQGVr1sViq\nyfXu1aQ0hzFvkmCV56tg9GCrydwOmUOLP28RxSGe8GhEdQ47RxYfaYwvPPJagSPOy5cEXK0oGbOh\nWvSZy0sr7EZ+XCYmwFWGMRZzyXL6y7ekqXQsPCJRx1A2X95D2mTA9eSTT3L06FEAfv3Xf50f//jH\nS74/MDDApz/9aTQtWXkIwxDLsvjZz37G1NQUx44d48477+TkyZOX/gh2sd7BPEJAuNjXL1fMbMlW\n43abGJ2jWV85qf2cKIp56fnzqwmmaeB5AVG09OJ68HAfJ1+a3lDewKlTMziOSTptc/XVA3h+yMlT\nM1QWmszMnn8T3Le3gGnqHBju7boVBXB6dI5qvcVVB/pIpyxKvVl6e9LUmx6VavLmYVuXtoVzMUPX\nqDU9MikbQ9PozS3Pv5gq15Y9VwAHBwtkU0tPZDbaV97WejexEDwzObX2DdfJ1nWuK/UhFHhi8ixC\nCAa7VKnfl8mhKQonyvMc6eml3G7x9RefY086yxv3X02fnabcTvIQL1xx2pde/UNH1kza9gymMhiL\nK2NPz0ygAcPp/LLXVCRiji/McHP/fq7L9nF1tkg18FbMP9sqx2tTjLeSZHdT0SgZGXL68lIlOSPF\nIbevszImhMBUdW7KH8RSDfbahSWnDOthm/mgRjvyk7IXusU17p4lv9NWza5bhtWwwbiXJF23Io+5\nYGHNx7Hf3oOxwqrdSmIRo6rJKcW8kaxq1aMa094kzzaexlYdmnGTk60XmfKT61kjrhItJpmf9U5t\n6P42QghBO177ca9HStuDplhkjKvQ1K2t+q5gYqr7dk01+SvVmq/cr33ta3zuc59b8rXe3l4ymXNl\nCFxqtaWfAg3DoFAoIITgz/7sz7juuus4ePAgs7Oz3HXXXbzpTW/iiSee4O677+brX//6Fj6c3cXJ\nOFSmkz+mfN+lJ7d3I4Sg1fBIrVBIdDP2rHNVTdNUDl+z9IRks+ljGPqy+lD/6tWHNzSG/ft78f2Q\nEyem2b8/CabCxf6PG034HBrIMT5ZYXJqgZ5cimzWZnJmgULeJb/C6cFLMTFXxTENDg4lbYlWKgdh\n6ssrV3cTxTEzCw3cdVSr3+1UReGGgX5emp1jMJtZliBfbrXI2faGWsC0w5AzlQpDbpYD+ZVrATmG\nwdWFZE68KOIth69BVRROVcsEcczpaoWcZWFpOnvSWcI4puK1O6cQu7E0nV8bGE4CqcoM1/f0c2Pf\nEGfiMs5FTashWXn6lcIgURzjEaN36l1tr2szA53nVFc1shcl4DcijyAOyRsuz1THuCGbrOq81Jxi\n2OntBFnpi4I0TVGpR20MRSNvuDiYVMMmGc0hFBGGqlM0u1/7srpLdrH6vKHqOKyvQvuMP4elmmT1\n9ZUkUBWVvdbSVSpd0XE0lx69iEDwYvM5HNWlqCcnIMUFx1kGzH3rup/NEMSEogVsz/vDVklaRu3+\nxYLdThEbffcC3vve93LXXXfxile8glqtxjve8Q7+4R/+YcltPM/jwx/+MK7rcu+996JpGq1WC03T\nMBcvskePHuXRRx9d9U0nDLsnVkuJwA+ZGptn76HNNyHdbVotn5mZGkEQceBAEU1Tqdfb1GptBgfX\n3zrC80PGzs5z+GDy3JwanSUIIkq9GXRNoVJtMdiXu2JeX1GcNHc2NI0z0xWG+3a+jcZWGC1XyNg2\nURTx2Jkx/sM1Vy87jbiaM+UKKFD1PF7ev75Cj14YMtmosz+XJ4iiJXW7tsJYbQFVURhaYYXs+flp\nXtZT2pLegutVC9qoSlJk9WLtKCCMI9LGxj64xSKmHnrYmtFZFRtrzjJg9/BibYJrc1u/HReLGIXV\nq6WfaowwZA9gaRbT7RmyRibZWhQR+gUrZI2wTi2s0QjqDNp7SBm7J6gIYx99jer60pVlU8keN954\nI9///vd5xStewaOPPspNN9205PtCCN7znvfw6le/mrvuuqvz9Y9//OPk83nuvPNOjh8/zuDg4Jqf\n8Mvl9dWF+mVmZRxmZpJVxlIp0/n3lSqOBZqm4jgm8xck7uu6tuHH5lhm52dcy0SxFUI/ou4F1Bse\nZWP3vb5WmsNKo0XbDxnoydCse8woV/Y8n6NFUG01GalU2GtnKM+tfVjjQkqYtLvp11Lren20woCx\nWpWik2LGX/n2YRzxj6MnuXlweNVVrouVShmsdhIwzrSW/v7JVo0BJ0MRh7nZOmEccbJe5kh2+3M1\nq0E7aQukr/xYWqw/x/QcIQTPNke52k1Wuy0syo0mRXI7di1KU6Da9AEfP1ZYUDx8UaMWVSkZSz+c\naqTJkqbRjmhQo1TKMDY1g7W4LXfWO8mgeWDVavhbrRFNU4+mKBnXoq5QikLqbje8B5ZK3VdfN7XC\n1Wq1+OAHP8jMzAyGYfCxj32MUqnE3/7t3zI8PEwcx7z//e/nla98Zedn3v/+93Po0CHuvvtums0m\nmqZxzz33cPjw6ltNO/3EXWl2bcu5lwAAB7pJREFUw4tNujS/rHMYRvGqPRhX8tOpSYpuaslq0nSj\nQRhHDGW6rzCFcUwYx9i6zlSjToxg0N2aqtmrzd+5gOtCXhRiafJNdbfoLbr8bPwFBswkF02IeEsS\nzzciEgEKKuoq5TKk7nbD9XOlgGtTryLHcfjLv/xLHn74YT7/+c9TKiV1P377t3+bW265hTe84Q08\n88wzndOIDz30EK961avI5XI8+OCDfOELX+Bzn/vcmsGWtD7vfN29G85rWs2xW+7b9O/7j2/+H51/\nb+WY1nLuvm591yeWfe9t735gyVjeeucDl3Vsm/XG//rpnR7CZfXvP/WZNW/zur/59LK5e1lvkYGL\ngqU+1+Wd/+sry37+tV/8FEIIzlQrvOZrn2GqWacv5W5ZsLWWi4MtIQQ3/58HO//erNf+0/9c8zav\n+8Hqf5uv//F/39R9CyF48798ZFM/u5P+y8j7Os/Dn4y8t/NvVVH5xNR/69xuO4MtIQSfm7112dc1\nxZDB1i+g3V0dUVrTO3/1XmjAiz8d3ZLfd+yW+wB48bmzG/7ZC4OthUqTqYnKloxpPU6dmcVbrHHW\nLei69T9/koVqi7fe+QAAx09MXraxXYpflqDr5gc+TUiyyrUaD/h3n/mbJQGDpevLcqH+zUOfos7S\nwOLVX/wULeBsvUrKSHJjfvMbX2K0tjWnxDbjV7+VvFb/9f++n59WNvearPgtPODX1gi6QuDoYtA1\n0V5g1j9fqmSzwRbAb/7ko5v+2Z026p/mT0beC8BsmJyefc+//KfLct9+3ODzc2+/LPcl7Q6b2lK8\nnHZ6afBKsxuWU6VLI+fwyibn78om5+/Kthvmb0u3FCVJkiRJkqT1kwGXJEmSJEnSNpMBlyRJkiRJ\n0jaTAZckSZIkSdI2kwGXJEmSJEnSNpMBlyRJkiRJ0jaTAZckSZIkSdI2kwGXJEmSJEnSNpMBlyRJ\nkiRJ0jaTAZckSZIkSdI2kwGXJEmSJEnSNtv1vRQlSZIkSZKudHKFS5IkSZIkaZvJgEuSJEmSJGmb\nyYBLkiRJkiRpm8mAS5IkSZIkaZvJgEuSJEmSJGmbyYBLkiRJkiRpm8mA6wr09NNPc+zYsWVf/973\nvsfb3vY2brvtNr761a8CEAQBH/jAB7j99tu54447OHHixOUernSRleYPoNVqcfvtt3fmKY5j7rnn\nHm677TaOHTvGyMjI5Ryq1MVG5i8IAu6++27uuOMObr31Vr773e9ezqFKXWxk/s6Zm5vjNa95jbx+\n7hIbncNPfvKT3Hbbbbz1rW/la1/72uUa5jL6jt2ztCmf+tSneOSRR3AcZ8nXgyDgox/9KH/3d3+H\n4zi84x3v4PWvfz1PPfUUYRjy5S9/mR/96Ef8xV/8BX/1V3+1Q6OXVpo/gGeeeYZ7772Xqampzte+\n853v4Ps+X/nKV3jqqaf40z/9Uz7xiU9cziFLF9jo/D3yyCPk83n+/M//nEqlwlve8hZuueWWyzlk\n6QIbnT9Irq333HMPtm1frmFKq9joHD722GP85Cc/4eGHH6bVavGZz3zmcg53CbnCdYUZHh7uGjCd\nOHGC4eFhcrkcpmly00038fjjj3Pw4EGiKCKOY+r1OrouY+ydtNL8Afi+z1//9V9z6NChzteefPJJ\njh49CsArX/lKnn322csyTqm7jc7fb/zGb/CHf/iHAAgh0DTtsoxT6m6j8wdw3333cfvtt9PX13c5\nhiitYaNz+MMf/pAjR47w+7//+/zu7/4ur33tay/TSJeT775XmDe+8Y2MjY0t+3q9XieTyXT+77ou\n9XqdVCrF2bNnedOb3kS5XOaBBx64nMOVLrLS/AHcdNNNy75Wr9dJp9Od/2uaRhiGMnDeIRudP9d1\ngWQe/+AP/oA/+qM/2tbxSavb6Pz9/d//PYVCgaNHj/Lggw9u9/CkddjoHJbLZcbHx3nggQcYGxvj\n937v9/jWt76FoijbPdRl5ArXL4h0Ok2j0ej8v9FokMlk+OxnP8vNN9/Mt7/9bb7xjW/woQ99CM/z\ndnCk0kZcPK9xHMtg6wozMTHBO9/5Tn7rt36LN7/5zTs9HGkDvv71r/PP//zPHDt2jOeff54PfvCD\nzMzM7PSwpA3I5/PcfPPNmKbJoUOHsCyL+fn5HRmLDLh+QRw+fJiRkREqlQq+7/PEE0/wqle9imw2\n21n5yuVyhGFIFEU7PFppvW688UYeffRRAJ566imOHDmywyOSNmJ2dpbf+Z3f4e677+bWW2/d6eFI\nG/TFL36RL3zhCzz00ENce+213HfffZRKpZ0elrQBN910Ez/4wQ8QQjA1NUWr1SKfz+/IWORH5Svc\nN7/5TZrNJrfddhsf+tCHePe7340Qgre97W309/fzrne9iw9/+MPccccdBEHAH//xH5NKpXZ62NKi\nC+evmze84Q386Ec/4vbbb0cIwUc+8pHLPEJpNWvN3wMPPEC1WuX+++/n/vvvB5KkX5mAvTusNX/S\n7rfWHL7uda/j8ccf59Zbb0UIwT333LNjuZSKEELsyD1LkiRJkiT9kpBbipIkSZIkSdtMBlySJEmS\nJEnbTAZckiRJkiRJ20wGXJIkSZIkSdtMBlySJEmSJEnbTAZckiRJkiRJ20wGXJIkSZIkSdtMBlyS\nJEmSJEnb7P8DWHwd8XsUmLQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price vs pca')\n", + "plt.show()\n", + "\n", + "if simname != \"bm_kaggle\":\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs pca')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['ohlc_price'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs ohlc_price')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return shift')\n", + " plt.show()\n", + " \n", + " \n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price - 15min future vs pca')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# this creates a training dataset for the model\n", + "def create_dataset(dataset, look_back_rows=20):\n", + " dataX, dataY = [], [] # for training\n", + " # it creates for each row a 20 row lookback dataset\n", + " # this expands the data by 20!\n", + " for i in range(len(dataset)-look_back_rows-1): # \n", + " a = dataset[i:(i+look_back_rows)] # from example 1 to 21\n", + " dataX.append(a)\n", + " dataY.append(dataset[i + look_back_rows]) #get example 1+20, so the next point that is to be forecasted\n", + " return np.array(dataX), np.array(dataY)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAM9CAYAAACITXI7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYFeX7x/H3WVhEQARR3BdQ3NcUl7Sy1Mo2bXFBs0wr\nzW+lqGiauaW5tWmZqW1mlpaVfct+reZXc7fEhVTIDVQQRATZOef3B3UU2Q7q8UB9XtfFdcXMPTP3\n3DNzOg/PM48Gq9VqRURERERERK45o7MTEBERERER+adSg0tERERERMRB1OASERERERFxEDW4RERE\nREREHEQNLhEREREREQcxOzsBEREREREpf3JZ6ewUimUi1NkpAOrhEhERERERcRg1uERERERERBxE\nDS4REREREREH0TtcIiIiIiJSahZLrrNTKJapjHQtlZE0RERERERE/nnU4BIREREREXEQDSkUERER\nEZFSs1pznJ1CuaAeLhEREREREQdRg0tERERERMRBNKRQRERERERKzWot27MUlhXq4RIREREREXEQ\nNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoWTQtvF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUi\nIiIiIlJqVg0ptIt6uERERERERBxEDS4REREREREH0ZBCEREREREpNQ0ptI96uERERERERBxEDS4R\nEREREREH0ZBCEREREREpNatFQwrtoR4uEflH6N69O8HBwbafJk2acMMNNzBs2DD++OMPZ6f3jxUc\nHMyXX35pV6zVauWLL74gMTERgG3bthEcHMzp06cdmWKxYmNjeeCBB2jevDnPPPNMoTEzZ86kTZs2\ntGvXjoSEhKs+Znp6OitXrrzq/YiISPmgBpeI/GMMHz6cTZs2sWnTJjZs2MD7779Pamoqjz76KKmp\nqc5O719v9+7dhIeHk56eDkCbNm3YtGkTVatWdVpOK1eu5NSpU3z55ZdMmTKlwPqoqChWrFhBeHg4\nX375JVWqVLnqY7733nssX778qvcjIiLlg4YUisg/hoeHB/7+/rbfq1WrRnh4OP3792fr1q3cdttt\nTsxOrFZrvt9dXV3zXS9nOH/+PPXr1ycwMLDQ9cnJyQB06dKFWrVqXZNjXl4HEZFyS7MU2kU9XCLy\nj2YymYC8L/eQ9wV64sSJhISE0KFDB4YPH86ff/5pi8/MzGT27NnccsstNG/enI4dOzJx4kRbr8za\ntWvp1asXU6dOpV27dowfP560tDQmTpxI586dadGiBQ899BBbtmyx7TM9PZ358+fTvXt3WrRowYMP\nPphv/YQJE3juueeYOXMmISEhtGnThrCwsGJ75RISEggLC6NDhw60b9+ep59+mvj4eNv6Tz/9lLvu\nuouWLVvSo0cPPvzwQ9u6ws6hsGUAO3fupH///rRs2ZJbb72VBQsWkJmZWWhOxdUuJiaG0NBQAG69\n9VYWLlxYYEihI+p08uRJRo8eTceOHWnTpg0jR47kxIkTAAwePJg1a9awY8cOgoOD2bZtW75t165d\ny8CBAwG47bbbmDBhAgCHDh3iscceo1WrVnTr1o0pU6Zw/vx523YxMTE8/fTThISE0KxZM7p3786y\nZcts+3zttdeIjY21HXPhwoX06NEj37EvXRYTE0NwcDBvvfUWnTp14o477iArK4tTp07x9NNP07Zt\nWzp37szo0aOJi4uz7eP333+nf//+tG7dmpCQEMaNG8e5c+eKrJWIiDiGGlwi8o914sQJFixYgL+/\nP23btsVisfD4448THx/PsmXL+Oijj6hRowYDBw4kKSkJgDlz5vDzzz8zb948vv32W6ZMmcLXX3/N\nJ598Ytvv0aNHSU1N5YsvvuCJJ57g9ddfJyoqiuXLl/PNN9/QpEkTRo0aRVpaGgCjR49m/fr1TJs2\njS+++IJWrVoxbNgw9uzZY9vnunXryM3N5eOPP+bVV1/lp59+4oMPPij0vHJychg6dCgxMTG8/fbb\nfPjhhyQkJPD0008D8O677zJjxgyGDBnCunXreOyxx5g7dy7vvPNOkedQ2LLIyEgee+wxevTowVdf\nfcXMmTP5+eefmTp1aqF5FVe76tWr8+abbwKwZs0ahg4dWmD7a12n1NRUBgwYQHJyMsuXL2fFihWk\npKQwaNAgUlJSWLhwIXfddZdtaGObNm3ybX/nnXfmy3nSpEnExcUxePBgGjVqxOeff2679qNGjbJt\nN2LECLKysvjggw/45ptvuPfee5k3bx6RkZHceeedDB8+nICAgEKPWZyvv/6aDz/8kPnz55OTk8Pg\nwYNxc3Pj448/Zvny5WRnZzNkyBCysrLIzc1lxIgRdOrUif/+97+8/fbb7N27lzlz5th9PBERuTY0\npFBE/jHefPNNli5dCkB2djY5OTk0bdqURYsW4enpya+//srevXvZvn07np6eAEybNo2tW7eyevVq\nnnjiCVq1akXv3r1p164dALVq1eKjjz7i0KFD+Y41cuRIateuDcCxY8eoWLEitWrVwsvLi/DwcHr1\n6oXJZCIqKoqff/6Z5cuXc+ONNwIwefJkIiIiWL58Oa+//joAPj4+TJ48GZPJRP369encuTO///57\noee5ZcsWDh48yA8//GDLYebMmaxdu5aMjAyWLVvGkCFDePDBBwGoV68eJ06cYNmyZTz66KOFnsPf\njZpLl40dO5abbrqJxx57DIC6desybdo0Bg4cyOjRowu8e1Vc7UwmE5UqVQLA19eXihUr5tvWEXX6\n8ssvOX/+PC+//DI+Pj4AvPbaa3Tv3p1169YRGhqKu7s7Li4uhQ5tdHd3z5ezl5cXy5Yto1atWoSH\nh9viXnnlFbp168Zvv/1GkyZN6NOnD71796ZatWoAPPXUU7z11lscPHiQJk2a4OHhgclkKvVwytDQ\nUNvQxzVr1pCens5LL71k68V9+eWXCQkJ4bvvvuPGG28kKSmJKlWqULNmTWrVqsUbb7xBdnZ2qY4p\nIiJXTw0uEfnHCA0NtQ0BM5lM+Pj42BpWAAcOHCA3N5euXbvm2y4zM5Po6GgA7r33XjZt2sTcuXM5\nevQoUVFRHD9+PN/7OwaDId/vjz32GCNHjqRTp060adOGrl27cs899+Dm5mZrqF3ek9GuXTs2bNhg\n+71OnTq2L84AXl5e+YaHXerQoUP4+vraGkYADRo0YOzYsSQmJpKQkFDgeO3bt2fZsmW2GQIvP4fC\nlkVGRnLs2LF8+/r7/aPo6OgCDS57alcUR9Tp8OHD1K9f39bYgryGU2BgYIEGtL0iIyOJjIwstGcq\nOjqaNm3aMGjQIL755hsiIiI4duwYkZGRWCwWLBbLFR3zb5de7wMHDnD27FluuOGGfDHp6elER0dz\n11138eijjzJ9+nQWLlxIly5duOWWW+jVq9dV5SAicimr3uGyixpcIvKPUalSJerWrVvkehcXF3x8\nfFi9enWBdR4eHgBMmjSJH3/8kT59+tCzZ09Gjx7N9OnT88UajUbbO2EAN9xwA7/88otthsSVK1ey\nePFiVq9ejbu7e6G5WCwWzOaLH8GX7u9vRU2ucOl2l3Nzcyt0eW5ubr5tLz+Hwpa5uLhw3333MXz4\n8AL7K6x3xp7aFcURdSpuny4uLnbldTkXFxe6dOnC5MmTC6zz9fXlwoULhIaGkpubS69evQgJCaFV\nq1bccsstpTpOTk7BLzGXXlsXFxeCgoJYtGhRgTgvLy8AwsPDCQ0Ntd2bEydOZPXq1UUOwRQREcfQ\nO1wi8q/RsGFD26QBdevWpW7dutSqVYtXX32VHTt2kJSUxKeffsr06dMJDw/nvvvuo379+pw4caLY\nmeUWLVrE7t276dGjB9OmTeO7777DxcWFDRs2EBQUBORNiX6p3bt329aVVmBgIGfPniU2Nta2LDo6\nmo4dO3Lu3DkCAgIKHG/Xrl34+/vbhsjZIygoiOjoaFut6taty9mzZ5kzZw4XLlzIF2tP7QwGQ7HH\ngmtfpyNHjuSbKOLs2bMcOXKkyFkJS/J3TWrUqGGridFoZNasWZw6dYpNmzYRGRnJihUrGDVqFL16\n9SItLQ2LxVJkHVxcXArU89ixY8Xm0bBhQ2JiYvDx8bHl4efnx+zZszl06BDHjx/nhRdewN/fn9DQ\nUBYvXsycOXPYtm2brZdTRESuDzW4RORfo1OnTrRu3Zpnn32WnTt3cuTIESZPnsxPP/1Eo0aN8PT0\nxNPTkx9//JHjx49z4MABwsLCOHXqFFlZWUXuNzY2lmnTprFt2zZiY2NZt24dKSkptGrVijp16tC7\nd2+mTp3Kpk2biI6OZvbs2ezfv5+HH374is6jc+fONG3alPDwcPbt28cff/zB888/T2BgILVq1WLE\niBF88MEHrFmzhmPHjrF69Wo+/PBDHnnkkWIbPZcbPnw4ERERzJ49m+joaLZv3054eDgpKSkFerjs\nqd3f721FRkaSkpKSb3tH1Omee+7B19eXMWPGsH//fvbv38+YMWPw9vamd+/eV7TPQYMGcf78eSZM\nmMDBgwfZu3cvY8aM4ejRo9SrV4/q1asD8NVXXxEbG8uWLVt49tlnAfLVITk5mT///JPMzExat25N\nYmIi7733HjExMXz00Uds3Lix2DzuvvtuKleuzLPPPsvevXs5dOgQYWFh7Nmzh4YNG1K5cmXWr1/P\n1KlTiY6OJjo6mvXr11OnTh0qV658RecuIlKAJbts/5QRanCJyL+GwWDgjTfeICgoiJEjR9KnTx+O\nHj3K8uXLCQoKwsXFhVdffZX9+/dz1113MXLkSCpVqsTQoUPZt29fkfudPHkyHTt2JCwsjF69evHe\ne+8xe/ZsOnToAMCMGTPo2rUr48aNo2/fvuzZs4fly5eXaoa6SxmNRhYvXkzlypUZPHgwQ4YMoXr1\n6raJJfr378/o0aNZsmQJvXv35t1332XChAkMGzasVMcJDg5myZIl7N69m/vuu49nn32W9u3bFzqM\nzZ7aBQUF0atXL0aPHm3L9VLXuk5ubm4sX74cV1dXBg0axJAhQ/Dy8mLlypV4e3tf0T79/f159913\nSUhI4KGHHmLYsGFUr16dd999F1dXV1q2bMn48eNZunQpd955J9OnT+eee+4hJCSEvXv3AtCrVy9q\n1qzJPffcw4YNG+jYsSP/+c9/WLp0Kb1792bLli22GSeL4u7uzrvvvou7uztDhgxhwIAB5OTk8P77\n7+Pn54eXlxdLly7lxIkTPPTQQzzwwANkZWXx9ttvYzTqf/0iIteTwap/gVFEREREREopJWWKs1Mo\nlpeXfe8RO5omzRARERERkVLTLIX20bgCERERERERB1GDS0RERERExEE0pFBERERERErPoiGF9lAP\nl4iIiIiIiIOowSUiIiIiIuIgGlIoIiIiIiKlpyGFdlEPl4iIiIiIiIOowSUiIiIiIuIgGlIoIiIi\nIiKlp3/42C7q4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoGTQtvF/VwiYiI\niIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJ6GlJoF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJ6\nGlJoF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJqBquGFNpDPVwiIiIiIiIOogaXiIiIiIiI\ng2hIoYiIiIiIlJ4l19kZlAvq4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoG\ni6aFt4d6uERERERERBxEDS4REREREREH0ZBCEREREREpPU0Lbxf1cImIiIiIiDiIGlwiIiIiIiIO\noiGFIiIiIiJSepql0C7q4RIREREREXEQNbhEREREREQcREMKSyGXlc5OoVgmQst8jqA8rzUToaxv\nP8DZaZTojh2ryk09v75hoLPTKFbvnR8B5eMz6adODzg7jRJ13/Ip33Xo5+w0StRz+yfl5ln/seOD\nzk6jRLduXcMvXfo6O40S3bR5Lcf7dXB2GsWq88l2ALIWVHRyJsVzDbvAhs73OzuNEt3862fOTsFu\nBs1SaBf1cImIiIiIiDiIGlwiIiIiIiIOoiGFIiIiIiJSehpSaBf1cImIiIiIiDiIGlwiIiIiIvKv\nY7FYmDJlCv369WPw4MEcO3Ys3/p169bRp08f7r//fj766KMrPo6GFIqIiIiIyL/ODz/8QFZWFp98\n8gm///47L730EosXL7atnzt3Lv/973/x8PCgd+/e9O7dm0qVKpX6OGpwiYiIiIhIqZX3aeF37dpF\n165dAWjdujX79u3Ltz44OJiUlBTMZjNWqxWDwXBFx1GDS0RERERE/nVSU1Px9PS0/W4ymcjJycFs\nzmsiNWzYkPvvv58KFSrQo0cPvL29r+g4eodLRERERET+dTw9Pblw4YLtd4vFYmts/fHHH2zYsIEf\nf/yRn376ibNnz7J+/forOo4aXCIiIiIiUnqW3LL9U4K2bduyceNGAH7//XcaNWpkW+fl5YW7uztu\nbm6YTCZ8fX05f/78FZVJQwpFRERERORfp0ePHmzevJn+/ftjtVqZNWsWX331FWlpafTr149+/fox\ncOBAXFxcqFOnDn369Lmi46jBJSIiIiIi/zpGo5Hp06fnWxYYGGj77wEDBjBgwICrPo4aXCIiIiIi\nUmrlfZbC60XvcImIiIiIiDiIGlwiIiIiIiIOoiGFTmK1Wpk0cR1BDf0Z+lhnZ6dTJOV5bTkrT/8u\nbWj0VH+MrmZSDh9n38y3ybmQbnec0c2FZuOHUqlpAzAaSd4Xxf6572DJzMa3XVMaPzsIg8lEdnIK\nkS9/QMrh4w4/J2de86pdWhM86u86nSBiRuH1LCrOXLECLac8jme9GmAwEPP1//jz/a/ytunallZT\nnyT9dIJtP1uGTyc3LcOh5+SMevp1bkvgiFAMLmYuRB8n8sU3yU1LL1WMW1U/blg2i+2Dx5KdnJK3\nzY3taPr8KDIuqeHuEc9fVQ2rdGlDw5EDMLq6kBJ1nP0z3yK3kGteUpxbVT9C3pnJltDxtnz9b2xL\n8xeeIj3uYr47Hn/hivItq8+6X+e2BI4ciNHFhdSoY0S+uLjwa11YjNFIo2eG4BvSCoPJxPGP1hH7\n+ff5tq1+1y3439yBiLFzChy79kN3UuPeW9kWGlaKSoJvp3bUfzIUo6sLF6KOcXD2GwVyLirG6OpK\nUNhwvJoEYTAaOL//MFELlmLJysKjXi0ajR+BycMdq9XKkcUfkrT991LlVhT3Nl3wGTASg4sr2cej\nSHxrJtb0C/liPG68He97BoPVijUzg6T3FpD1ZySGChXxe3Iy5pr1MBgMpP7yDSnrPrgmeV3OUL8X\npq7TMZhcsZ7ZR853IyErpfDYoLsw376U7EXV/zrJyphuexWjf0us2WlY9q/A8ttb1yQv385tafDk\nIIwuZlKjj3FwVsHPpJJi3Kr60XbpbHY+HGZ7xs1enjQc8xge9WthcnPj2PufEfftL9ckZ6fTkEK7\nqIfLCaKjzzB0yAq+Xb/f2akUS3leW87K09XHixZTnuC38Ff43wNhpMfG02hUwRdAi4sLfLQPBpOR\nTQMnsGnAeIxurgQ+ci/mihVoO3c0B19fyeaB4ex/6R1az34Go4tj/5bjzGvu6uNFyxeeYNf4V/nl\n/rGkxcbReFT/UsU1GvEgGXFn2dgvnM0PP0/d+2/Dp0VDACq3bMifH37NptDnbD+Obmw5o54uPt40\nmfQUeyfOY1v/Z0iPjSNwZGipYgLuuIm2b83Azd8v33aVWgRz/KOv2DFknO3namro4uNF8+dHsGfC\ny2x+cDTpsXE0empgqeOq39mNDm9Pxb2qb/58WwZzdOVXbB0Ubvu5knzL6rPu4uNN08kj2TtxPlv7\nPUP6yTiCnip4rYuKqdnnNirUDmBb6Bh2DJ1A7X698W4aBIDZ25Pg8cMJDhuKAUOBY1dqGUzdwfeW\nupYuPt4ETxrFgUnz2DHgP6SfjKP+iMF2x9QZcj8Gk4ldQ8aw8+ExmNxcqfNwXwAahj3O6a9/ZNcj\nYRya9QZNZ4SB6eq/jhm9fPAb8TwJL0/g1OgHyYmLxWfgU/lizNXrUHnQ08TPeprT4YNIXvsOVcLy\nGqk+/Z4k52w8p8cO4PRzj+DVoy+uDVtcdV4FVKiC+fYl5KwbSPa7bbAmH8XUdXrhsT6BmLvNAsPF\n+phungNZF8h+rx05H92MsV5PDA1uv+q0XHy8aTxpFPufm8f2AU+TcTKOBiMHlSqm2u030WbxzAKf\nSY0njyLzTCK7HhnHnqenEvTsUNz8838OyD/bP7LBtXDhQlatWlVg+ahRowosW7VqFQsXLrweaV08\n5sqd9OnbmtvvaHZdj1tayvPaclaeVTq2JPnAn6SdOA3A8c++p8btXUoVl/RbJFHvfA5WK1isnD94\nFPcAfzzqVCc7NZ3EHXlf1C8cO0nOhXRb48FRnHnNL6/TsU9/oMYdJdfz0rgD8z8g8rWVALhV8cHo\naiYnNQ2Ayi0bUeWGZty44kU6LZ2Cb5vGDj8nZ9TTt0MrzkdGkR6TV5/Ytf9HQK+udse4VqlMlW4d\n2DNmVoF9V2oRTOV2zbnh3Tm0XTwDn9ZNripXv5BWJB+Itl3LE599T8DtN5Yqzq1KZare1J7do18q\nsJ1Py0b43tCcju/Ppv3bU6nc5sryLavPum9IS85HRpN+4u/r+F3Ba11MjP9NIZz6789Ycy3kpFwg\n7ofNBNyet67arZ3ISkzi8MIVBY7r6luJ4LHDOLyo4LqSVO7QmpTIKNJjTgFw8vNvqdazq90xyXsO\ncPz9NX/V0ULqoSO4BfgDYDAZMXt5AmDyqIAlK7vU+RXGvVUIWdEHyDl9AoCU7z+j4o35GyLWnGwS\nl7yI5VwiAFl/RmLy8QOTmaT3FnBuxet5eflUweDiiiUt9Zrkdilj3Vuxnt4F56IByN2zFGOTfgUD\nzRUw37mcnF8m5FtsqNYGy4FVYLWAJRvLkW8xNryyqbovVblDq/zXc+3/FXLNi475+zMpIuzF/Kfh\n5UnlDi05unw1AJlnzrJ7+ASyz1/72krZ9a8aUrho0SJnpwDA5Cl3ALB16xEnZ1I85XltOStP92p+\nZMQl2n7PiD+Li6cH5ooV8g01Ki4uYdvei3EBVag34A72zVpK2vFTmD3cqRLSgoRte6nUtAFeDWrh\nVqWyQ8/Jmde8QjVf0u2oZ0lx1lwLraePJODWDpzesJPUYycByE5OIeabTcRt2EnlVsHcsGAM/xs4\nkYz4sw47J2fU072aH5nxF+uTeSYRs2dFTB4VbMNziovJSkhi38R5he47OzmV09/+QsIv26nUsjEt\n54azfXAYmWeurIbu1fzIuDSP+ERcPD0wVayQb7hgcXGZCUnsCV9QZL6n1m8kfsMOfFoF03r+OLaE\njiezlNe8rD7r7lWrkHHJcMnM+ETMnh75r3UxMe5V8+ebGZ+IZ1BdANvQwuq9b85/UKORZtOeIWrR\nCiw5OSXmeDm3qn5kxl+STyH3Z3ExSdv3XNxXNX9q9ruLQ3MWA3B4wVJavT6NWv3uxqWyN5EvvAy5\nllLneDmzXzVyEuNtv+cmxmP08MRQoaJtWGHumVPknjlli6n88LOk79wIuX/VyJKL36hpeIR0J23H\nBnJOHrvqvArwroU1Jebi7ymxGNwqgatXvmGFph4LsUS8g/XMvnybW0/twNh0ALknt4DJDWPD+8By\n9Y1W92pVyIwr/poXF5OVkMT+5wp+JlWoFUBWwjlqD7gb345tMbqYObFqHeknThWILY80S6F9rluD\nKzs7m4kTJxITE0Nubi6PPvooq1aton79+hw5cgSr1corr7yCv78/CxYsYOfOnVgsFh555BHuuOMO\nBg8eTOPGjTl8+DCpqam89tpr1KxZs8jj/fDDD6xfv56MjAwmT55My5Yt6dKlC5s3b2bnzp3MmjUL\nb29vTCYTrVu3vl5lELn+DAWH2QBYL/8fvB1x3o3r03beGI6t/j/ObPoNgF1h82k0sh/BT4dy9rc/\nSNyxH0t26b/glBvGwgcGFKinHXG/T3kT0+zltJs7mobD+nL47c/YNf5V2/qkPQdJijhMlZAWxHz1\nDxnv/7ei6mOxlC6mEJc2xJIj/iB570F8O7Ti1Nc/lz5PwGAs/Nm4/EuyvXGXu7Qhdm7PQZIjDuHX\noSUn/7uhNGmW3We9iLrkv9ZFxxRW1wLndJmgkQM59/sBzm6PwKdt05JzvIzBjnvPnhjP4AY0mxXO\nyc/Wc/bXXRhcXWgyPYw/XlzI2V934dWsEc3nTCQlMirfHxeuiKGIQUuFfCE2uLnjN/IFTH5ViZ/1\nTL51iYte4OzSl6gSNodKDzxG8pqlV5dXwaOXmKex1XCw5GDZ9wF418kXlvvLREw3zcI8eAtcOI3l\n2E8Ya4Rcg7TsuE/tibl8t2YTFWpWI+dCOr89OYkKNQNovXgmaSdOkXrwz6tKWcqP69bg+uSTT/D1\n9WX+/PmkpqbSt29fXF1duf/++5k+fTorV65kyZIldO3alZiYGFatWkVmZiYPPfQQXbrkDXVo2bIl\nkyZN4pVXXuHrr7/m8ccfL/J4NWvWZPr06Rw+fJjx48fz+eef29ZNmzaN119/nfr16/PCCy84/NxF\nrreGTzxA1W7tADBXrEBK1AnbOjd/X7KSU8nNyMy3TUZcIj7Ng4qMq96jE03Dh3Jg3ruc+r9f84IM\nBnLTM9j+5Azbdl1XzyftryFg/xSNnniAqt3aAuBS0YPz0RcnCnAvqp6nE/BpHlhoXJWOLUmJOk5m\nwjly0zM5+X+/EtC9A2ZPD+o+2IPod7+8uCMDWK/gL/RlXcbpM3g3vTgczc3fl+zzKVguqaM9MZcz\ne3pQ8/7bOfb+2osLDYZS93IEPv4g/t1uyNtnxQqkRl285m7+vmQXcc0rNQsqMe7yfGs/0JMj731x\nSb72X/Py8KxnxiVQqdll1zE5Nd91LC4mIy4hX0+am79viY2TgNu7kZWUjP9NIZgquOPm70uHD+ax\n/eFxJeYLefee16X3XhW/Qu/P4mL8b+1Cw7GPE/XyMuK//x8AFRvUweTuxtlfdwGQsv8QaUdO4NW0\nEZnxW+y0UauzAAAgAElEQVTKrSg5CadxDbo4LNjk609uajLWzPzvA5r8quEf/jLZsUeInzYSa3Ze\nvu6tOpJ9PIrcpASsmemkbf4/PEK6X1VOhUqJwVC9/cXfPWtgTT8LOWm2RcZmg8DFA/PgLRhMLnnD\nCwdvIWdtHzCayd04GTKS8mLbj8F67uobLplxCXhfcg+6+he85vbEXC4rIS/P03/9wSc99jTJEZF4\nN22oBte/yHV7hys6Opr27fMeME9PTwIDAzl+/DgdO3YEoG3bthw5coRDhw6xf/9+Bg8ezLBhw8jJ\nySE2NhaApk3z/koVEBBAZmbRNzdgO1bDhg05c+ZMvnUJCQnUr1/fdlyRf5rDSz5lc+hENodOZMuj\nU/Bp3hCP2gEA1Ln/NuI37iywTcLWiCLjArp3oMnYIez4z+yLX8AArFZueDUc7yYN8uJuDcGSk3td\nZim8ng4t+dQ2gcXmR6dQOV+dbiXul10FtjmzdW+RcTV6hNDw8fsBMLqYqd6jI4k795OTlk69B3sQ\n0D3v88s7uC4+zQKJ/zXiepzmdXV2+x4qNW9IhVp59anRpycJG3eUOuZyOWkZ1Lq/F/435/3F27NR\nfbybBHF2a+lmgYt+e41tAovtQydT6ZJrWatvj0KfocRtEXbF5c83ndoP9KLqLR0A8GpUj0pNg0jY\nsqfY7f5WHp71xG1/Xce/jlezT0/O/G+H3TFnNu6g+t235L375OlBtR5dOFPCfbDprsfZPngc2x8e\nR+TsxaTHnra7sQWQtH0P3s0aUaFW3sx4Nfr0JPGynIuLqXJzJ4JGDyNi9HRbYwsgPeYU5ooeeDcP\nBsC9ZjU86tUi9fDVf/HOiNiGW8PmmANqA+DZo2/ecMFLGCt6U23qEtK2/0zia5NtjS0Aj4634f3A\nsLxfzC54dLqNjH3F379XwnL0RwzVO4BP3h+kTK2GYYn+Ol9Mzkc3kfN+e3JWdCJ7bV/ISSdnRSe4\ncBpTq2GYOk/+K+mqmFo8giXyk6vO6+z23/Nfz/t6kvC/yz+TSo65XMapeFL+iCbgzpsBcKlciUot\ngkn5I+qqcy4TLLll+6eMuG49XIGBgezcuZMePXqQmprKoUOHqFWrFvv27SMgIIDdu3cTFBREgwYN\nCAkJYcaMGVgsFt58801q165d6uNFRERw9913c/DgQWrUqJFvXbVq1YiOjiYwMJC9e/dSqVKla3Wa\nImVOVtJ59k5/izYvPYvRxUxaTBwRU98EwLtJA1pMHs7m0InFxjV6qj8Gg4EWk4fb9pu05xAH5r7L\nnucX0WLScAwuZjITktg9rvD3VP4pspLOs2f6EtrNyZuh7UJMHHteyHs3o1KT+rSYPJxNoc8VG3fg\nlZW0eO4xun0yB6vVStyGXRxZ9S1YrewMW0CzcY/Q6IkHsOTk8tvEhbaphf9JspPOEznzDZrPGovR\nxUx6bBwHpi/Eq3EgjSc+yY4h44qMKZbFQsT4uTQaM5T6w/phzc1l3/MvX1UNs5LOs3/GYlq9NAaD\n2Ux67Gn2Tn0DyHuGmk56gq2DwouNKzpfK7+Pm0fjsY8S9PhDWHJz2TPptSvKt6w+69lJ5zkw401a\nzArLu44xceyfvgivxg1o8twItj88rsgYyJtAo0LNADqsmI/RxUzs599z7rcDpa5PaWSfS+bgrEU0\nnTkOg4uZjNjT/DHjdTwbBxI8YSS7HgkrMgag/pN5MywGTxhp22dyxB9EvbyU/c/NIfDZxzC6umDN\nyeXQ3LfIiI276pwt55NIXDyDKmNewmA2k3M6lsQ3puLaoAm+T0zidPggPHvej6lKNTza34xH+5tt\n28bPeIqkFa/iO3wCAfNXgdVK+o5fSFn/8VXnVUD6GXL+70nMd6/EYHLBeu4IOd8Ox1CtDaaeb+Y1\nrIqRu20+5juXYR6S19DJ3TILa9zuq04rO+k8f7z4Bs1eHGu7npF/fSYFTxjBzkfGFhlTkn0T59Iw\nbDg17usFRgNH31lDSmT0Vecs5YfBarVar8eBsrKyeP755zl+/DiZmZkMHjyYtWvX4u3tTXJyMhUq\nVGDu3Ln4+Pjw0ksvsXfvXtLS0rjtttsYNWoUgwcPZurUqQQGBrJq1SoSEhL4z3/+U+ixFi5cyIED\nB7hw4QJZWVlMnTqVxo0b297hioiIYNq0aXh6elKxYkWaNGlS5L4ulcvKa12Wa8pEaJnPEZTntWYi\nlPXtC079XNbcsWNVuann1zcUnPK7LOm98yOgfHwm/dTpAWenUaLuWz7luw6FzJJWxvTc/km5edZ/\n7Pigs9Mo0a1b1/BLl77OTqNEN21ey/F+HZydRrHqfLIdgKwFFZ2cSfFcwy6wofP9zk6jRDf/+pmz\nU7Bb5u6Ozk6hWG5ttzo7BeA69nC5uroyZ07+f5Bw7dq1jBkzhsDAwHzLJ06cWGD7FSsuTus6YEDx\n/8MpqvG0efNmIO9dsM8+Kz83s4iIiIiIlE/lelr4UaNGkZycnG+Zp6cnixcvdlJGIiIiIiL/DoYS\nZo2VPE5tcF3aa3Ulysq/qyUiIiIiIlKY6zZLoYiIiIiIyL9NuR5SKCIiIiIiTlKGpl4vy9TDJSIi\nIiIi4iBqcImIiIiIiDiIhhSKiIiIiEjpaUihXdTDJSIiIiIi4iBqcImIiIiIiDiIhhSKiIiIiEip\nGaz6h4/toR4uERERERERB1GDS0RERERExEE0pFBEREREREpPsxTaRT1cIiIiIiIiDqIGl4iIiIiI\niIMYrFar1dlJiIiIiIhI+ZK9uZmzUyiWS5f9zk4B0DtcpZLLSmenUCwToWU+R1Ce15qJUL7r0M/Z\naZSo5/ZPyk09v+3Q39lpFOv27R8D5eMz6fuQh5ydRol6bFvNjx0fdHYaJbp165py86yXl3r+0qWv\ns9Mo0U2b13K8Xwdnp1GsOp9sByBrQUUnZ1I817AL5ebeLDcsmhbeHhpSKCIiIiIi4iBqcImIiIiI\niDiIhhSKiIiIiEjpaUihXdTDJSIiIiIi4iBqcImIiIiIiDiIhhSKiIiIiEipGSy5zk6hXFAPl4iI\niIiIiIOowSUiIiIiIuIgGlIoIiIiIiKlp1kK7aIeLhEREREREQdRg0tERERERMRBNKRQRERERERK\nT0MK7aIeLhEREREREQdRg0tERERERMRBNKRQRERERERKT0MK7aIGl5NYrVYmTVxHUEN/hj7W2dnp\nFEl5XlvOyrNKlzY0HDkAo6sLKVHH2T/zLXIvpJc6zq2qHyHvzGRL6Hiyk1MA8L+xLc1feIr0uARb\n3I7HXyA3LcOh5+TMa+7fpQ2NRva31WnvzCWF1rOkOPeqfnR8ZwabQ8Nt9XTxrkiTsY/iWb8mRjdX\n/nz3C06u/5/Dz+l61rNKlzYEjRiI0dWF1Khj7H+x6Pux0DijgeBnh+AX0gqDycSxlV8R8/n3AHjU\nDqDp5BG4VPIiNy2DfdMWkXbsJAA+rZvQ8D+hmNxcyUlNY//0N0k/GW87nl/ntgSOHIjRJe94kS8u\nJjctf15FxhiNNHpmCL5/5XT8o3XE/pVThdoBNJ00EpdKXuSkZXBg+kJbTi1mh+EZVI/c9LznJWnX\nPg6/9j7u1f1pPP5x3KtXITctg2Mr19ld27L4rDuqtn+rftct+N/cgYixc2zLGjzRn2q3dSY3PZPk\nvQc5/Nr7WLKy7aojgG+ndtR/MhSjqwsXoo5xcPYbBXIuKsbo6kpQ2HC8mgRhMBo4v/8wUQuWYsnK\nsm3rXr0qbd+ZR8To6aT+EW13XsVxb9MFnwEjMbi4kn08isS3ZmJNv5AvxuPG2/G+ZzBYrVgzM0h6\nbwFZf0ZiqFARvycnY65ZD4PBQOov35Cy7oNrktflDPV7Yeo6HYPJFeuZfeR8NxKyUgqPDboL8+1L\nyV5U/a+TrIzptlcx+rfEmp2GZf8KLL+9VarjO+NZ92ndhKBRgzD+9flzYMYbZJyMp93bMzG5u9mO\n61GnRqnORcoHpw0pXLt2LfPnz8+3bPTo0WRd8mF0uS5duti9/+7du5OZmZlv2caNG/nkk08KxD70\n0EPExMTYve+rFR19hqFDVvDt+v3X7ZhXQnleW87K08XHi+bPj2DPhJfZ/OBo0mPjaPTUwFLHVb+z\nGx3enop7Vd9821VqGczRlV+xdVC47cfRjS1nXvO8Oj3JbxNe4X8PjiEtNp7gpwaUOq7GnV0JKaSe\nLaaMICP+LL8OnsiOUS/SJGwIbpfFXGvXs54uPl40mzySiIkL+PWhZ0mLjafhyMLvx6LiavXpgUft\nALYMDGPboxOp0/9OvJsGAtB82tPEfPYdW/qPIXrpalq9FAaAW1VfWs0dyx9zl7N10Hjift5G4/HD\nLjmeN00nj2TvxPls7fcM6SfjCHoq9LKcio6p2ec2KtQOYFvoGHYMnUDtfr3xbhoEQLOpzxCz9ju2\nDhjNkWWf0GL2WNs+KzVvxK4RU9j+8Di2PzyOw6+9D0DT50eRvP8QW/uPZveoadQddK9dtS2Lz7oj\na2v29iR4/HCCw4ZiwHDxHHrfTJUu7djx6AS2PzyOzIQkGjzRv8RcL80neNIoDkyax44B/yH9ZBz1\nRwy2O6bOkPsxmEzsGjKGnQ+PweTmSp2H+9q2Nbi60HjKsxjN1+7v3kYvH/xGPE/CyxM4NfpBcuJi\n8Rn4VL4Yc/U6VB70NPGznuZ0+CCS175DlbC8RqpPvyfJORvP6bEDOP3cI3j16ItrwxbXLD+bClUw\n376EnHUDyX63Ddbko5i6Ti881icQc7dZYLj4ddV08xzIukD2e+3I+ehmjPV6Ymhwu92Hd8az7ubv\nS8s54zg4bxnbB4/jzM/baDxuOAC7Hp9se/7/XPoJGafikX+eMvUO1yuvvIKrq6vD9t+tWzf69evn\nsP3ba9XKnfTp25rb72jm7FSKpTyvLWfl6RfSiuQD0aSdOA3Aic++J+D2G0sV51alMlVvas/u0S8V\n2M6nZSN8b2hOx/dn0/7tqVRu08SBZ5PHmde8SkjLAnWqXkg9i4v7u547L6uni3dF/Dq0JGrppwBk\nxp9ly9DnyU5OdeQpXdd6+oW0IjnyYl1i1n5HwO1dSxVX9aYOxH61AWuuhZyUC5z+/leq394NN//K\nVKxXg9Pf/wpA4pbfMbm74RVcn2rdO5L46++kHDwCQOznP3Dwlfdsx/MNacn5yGjS/zpe7NrvCOiV\nP6/iYvxvCuHUf3+25RT3w2YCbu+Km78vFevVIO77zRdzqpCXk3v1qpg8KtA4/HE6fDifJpNHYvb2\nBMCrcQNOfb0BgNy0DJJ2ldwYLqvPuqNqC1Dt1k5kJSZxeOGKfPvzahzImY3byUlNA+DMhm1U7d7R\nrnwBKndoTUpkFOkxpwA4+fm3VOvZ1e6Y5D0HOP7+GrBawWIh9dAR3AL8bds2HDOc09/8ZOs9vBbc\nW4WQFX2AnNMnAEj5/jMq3pi/IWLNySZxyYtYziUCkPVnJCYfPzCZSXpvAedWvA6AyacKBhdXLGnX\n/rPHWPdWrKd3wbm8Xr3cPUsxNinku5m5AuY7l5Pzy4R8iw3V2mA5sAqsFrBkYznyLcaGfew+vjOe\n9ardO5Kw5beLnz9ffM+hV9/Nf7renjQeP5z90xbafS5Sfjh1SOGePXsYOnQoZ8+eZcCAASxZsoT1\n69dz+vRpJkyYgNlspmbNmsTGxrJixQqysrIICwvj5MmT+Pj48Prrr+Pi4lLk/qdMmUJsbCx+fn7M\nmTOHb775hj///JOxY8fyyiuv8L///Y+AgACSkpKu41nD5Cl3ALB165HretzSUp7XlrPydK/mR0Z8\nou33zPhEXDw9MFWskH94WzFxmQlJ7AlfUOj+s5NTObV+I/EbduDTKpjW88exJXQ8mfFnHXZOzrzm\nl9cpw856ZlxWz9/DXy6wb49aAWQmJlEvtDf+nVpjdDVz5MP/knb8lEPP6XrW072aH5lx9t2PRcW5\nV/Mj87J71TOoDu7VqpB5JinvS+5fMs6cxb2qLx61q5ObkUGLmc/gUacGGXEJHHrl/YvHq1qFjEuG\nymXGJ2L29MDkUcE21Ki4GPeqfmTEXZ5TXdyq+hXIKTP+LG5V/TCYTZzdsZeD85aSlXSeRqMfoemk\nEUSEz+P8/sNU730LR5atxsXHG7/ObeyqbVl81h1VW8A2lKt675vzHfP8/sPUHtCbmDXfkn0+lYA7\nb8LNr3KxeV7KraofmfGX5HMmEbNnxXw5FxeTtH3PxX1V86dmv7s4NGcxAAF334bBbOb0Vz9Qd8gD\ndudUErNfNXISL/aO5CbGY/TwxFChom1YYe6ZU+Seufh5UvnhZ0nfuRFyc/IWWHLxGzUNj5DupO3Y\nQM7JY9csPxvvWlhTLhlVlBKLwa0SuHrlG1Zo6rEQS8Q7WM/sy7e59dQOjE0HkHtyC5jcMDa8Dyz2\nDxV1xrPuUacGlvRMms949uLnz6vv5cur7uB78xplf/xp97mUCZZcZ2dQLji1h8tsNrN8+XIWLVrE\n++9f/B/f3LlzefLJJ1mxYgVt27a1LU9LS2P06NGsWrWK1NRUIiMji93/gAED+PDDD6lZsyarV6+2\nLd+7dy87duzg008/Ze7cuVy4cKGYvYiUbwajofAVuZYrirvcnvAFxG/YAcC5PQdJjjiEX4eWpc6z\nvDAYi/jYLFBP++LybWM24VGzGrmp6Wwb/gJ7Jr1O49EP4924/pWmW/YYCq+L9fK6FBdX2L1qsYCh\n8HvYarFgMJvx79ae6CWfsO3hcM7u2EerOReH9hW6z7+2tSemsOfHmlv48r/Xnd8fxd4J88hKPAcW\nC38uXY1fl7YYzGYOTF9ExXo1CflwAU0mjSBh865C93OpMvusO6i2xTn97Ubif9xCmzde4Ia3Z5J2\nNBZLdk7Juf6lqOf30pztifEMbkDrN2dy8rP1nP11F56NGlDjvp4cnle6d47sUsQzU9gXYoObO1VG\nz8YcUIvEJS/mW5e46AVihvXE6FmJSg88du3zpIj775I8ja2GgyUHy76C75Dl/jIRsGIevAXzvR9j\nOfYT5Bb9OkoBTnjWDWYTVbq1J/rtj9k+ZDxnd+6l5UvjLh7O1YWa997G0ffW2n8eUq44tYeradOm\nGAwG/P39yci4OA48OjqaNm3y/prXrl07vvrqKwAqVapErVq1AKhSpQrp6QVfBP6bi4sLrVu3BqBt\n27Zs3ryZFi3yxiIfPXqU5s2bYzQa8fT0pFGjRg45PxFnCXz8Qfy73QCAuWIFUqOO29a5+fuSnZxK\nbkb+dxwzTidQqVlQiXGXMnt6UPuBnhx574uLCw1gzbH/i015EPT4g1Tt1g7Iq2dK1AnbOjd/X7IK\nqVN6IfUsLO5SmQl5ve0xX/8CQFpMHOf2HKRSsyDO/1G2e3CLE/j4Q/h3zbsfTRUrkBpd8H60XH4/\nxiVQqXnB+9GSkUnG6QRc/XzyrcuIP0tGXP7lAO5/rctMOMu5iIO2YXSx636icdijGN3yRklkxiVQ\nqVnDYvMqLiYjLgG3KpXzrcuMTyyQ66XrfFo1xuztScL/dgJgMBjAYsVqsWB0d+XAzDdtxw8eP7yI\n2pb9Z91RtS2O2duTuO82ceyDvHy9mwWRHnO6xFz/lnH6DF5NL8mnih/Z51Py5VxSjP+tXWg49nGi\nXl5G/Pd5E99Uu+NmTB4etFkyGwDXKpVp8sKz/PnGByRu2mF3foXJSTiNa9DFYcEmX39yU5OxZuZ/\nz87kVw3/8JfJjj1C/LSRWLPz8nVv1ZHs41HkJiVgzUwnbfP/4RHS/apyKlRKDIbq7S/+7lkDa/pZ\nyEmzLTI2GwQuHpgHb8FgcskbXjh4Czlr+4DRTO7GyZCR93lpbD8G6zn7e4Wc8axnnkkiee9B2xDF\nk+t+InjMUIxurlgys/Dr1IbUw0fJOKn3t/6pnNrDZSjir5GNGjXit99+A/KGHZYUX5js7GxbD9jO\nnTtp2PDigxMUFERERAQWi4W0tDSioqKuJH2RMiv67TW2l9q3D51MpeYN8agdAECtvj2I37izwDaJ\n2yLsirtUTlo6tR/oRdVbOgDg1agelZoGkbBlT7HblTdRb6/h10ET+HXQBLYOfR6f5kG2OtXpe1uR\n9bQn7lLpJ8+QHPknNXt3A8DVtxI+LRqRfODazGDmLNFvr2br4PFsHTye7Y9NKnif/a/gF83EbXuK\njDuzcSc17+6OwWTE7OlBtR6dOfPLdjLjz5IeG0e1HnmzLPqFtMJqsZAadZz4DdvxaRWMe/W892iq\n3dKB1OjjWDKz8x2vwl/Hq9mnJ2cuy6u4mDMbd1D97lsuyakLZzbuIPPMXzndlpeT7985RR/H5OFO\nozFDbe9t1Rl0D/E/bwWLhQbD+lGrb08AKtSubmuwFqxt2X/WHVXb4ng3bkCLOeMwmEwYTEbqPdyH\n0/9n/2yfSdv34N2sERVq5c2MV6NPTxIvy7m4mCo3dyJo9DAiRk+3NbYAol97hx0DRrHrkTB2PRJG\nVkISkdNeverGFkBGxDbcGjbHHFAbAM8effOGC17CWNGbalOXkLb9ZxJfm2xrbAF4dLwN7wf+mkjG\n7IJHp9vI2Ff8fXElLEd/xFC9A/jkTXRjajUMS/TX+WJyPrqJnPfbk7OiE9lr+0JOOjkrOsGF05ha\nDcPUefJfSVfF1OIRLJEFJ0QrijOe9TO/bMenZTDu1asCUPXmkL8+f/J65nzaNOXszr2lKWOZYbBY\nyvRPWVEmp4UfO3Yszz33HO+88w5eXl6Yr2AWHxcXF1asWMGxY8eoUaMGYWFhtp6yJk2a0K1bNx54\n4AGqVq2Kn5/ftT4FkTIjK+k8+2csptVLYzCYzaTHnmbv1DcA8G7SgKaTnmDroPBi44pksfL7uHk0\nHvsoQY8/hCU3lz2TXrumL4KXNVlJ59k74y1avzQao9lMWmxcvno2n/Q4vw6aUGxccX4bv4Cm44dS\nu+9tGAxGopd/xvnIcjamvxjZSec5MGMxLWf/fZ/FsW/aIiDvS3LTSU+ydfD4YuNi1n5HhVrV6Pjh\nPIwuZmI+/4Gk3/L+wLZ38qs0mfgEDR7tiyUrm4jnXgGrldTDx/hjzjJazx2HwWwiO+VC3rp8eb1J\ni1lhGF3MpMfEsX/6IrwaN6DJcyPY/vC4ImMg76X6CjUD6LBiPkYXM7Gff8+53w4AsO/5V2gy8Unq\nPXo/lqxs9k16GaxWErf8Tsyab7jh7RlgMHIh+jiRs/OGmkUtWkHTF/5D9Ttvxpqby4GZb9LmtcnF\n1rasPuuOrG1Rzm6PwKdtM0JWzgeDkTMbt3P846+L3SZfzueSOThrEU1njsPgYiYj9jR/zHgdz8aB\nBE8Yya5HwoqMAaj/ZN6MdsETRtr2mRzxB1EvL7U7h9KynE8icfEMqox5CYPZTM7pWBLfmIprgyb4\nPjGJ0+GD8Ox5P6Yq1fBofzMe7W+2bRs/4ymSVryK7/AJBMxfBVYr6Tt+IWX9x9c+0fQz5Pzfk5jv\nXonB5IL13BFyvh2OoVobTD3fzGtYFSN323zMdy7DPCSvAZS7ZRbWuN12H94Zz3rq4aP8MXcpLefk\nff7kpFxg76SL7/F61K5O3DX6pwGkbDJYrZe83VdGrFu3jlatWlG3bl3WrFnD7t27mT17trPTIpeV\nzk6hWCZCy3yOoDyvNROhfNfB+bNvlqTn9k/KTT2/7WD/9NHOcPv2vC9BZb2eJkL5PuQhZ6dRoh7b\nVvNjxwednUaJbt26ptw86+Wlnr906VtyoJPdtHktx/t1cHYaxarzyXYAshZUdHImxXMNu1Bu7s3y\nIvfr6s5OoVim3o6ddMpeZbKHq3r16owePZoKFSpgNBqZNWtWoXERERHMmzevwPI77riDgQML/tsj\nIiIiIiJyjZShYXtlWZlscLVv3561a0ueqaVly5asWLGixDgRERERERFnKFP/8LGIiIiIiMg/SZns\n4RIRERERkTJOQwrtoh4uERERERERB1GDS0RERERExEE0pFBEREREREpPQwrtoh4uERERERERB1GD\nS0RERERExEHU4BIREREREXEQvcMlIiIiIiKlZ7E6O4NyQT1cIiIiIiIiDqIGl4iIiIiIiINoSKGI\niIiIiJSepoW3i3q4REREREREHMRgtVr1tpuIiIiIiJRK7hofZ6dQLNOD55ydAqAhhSIiIiIiciU0\npNAuanCVQi4rnZ1CsUyElvkcQXleayZC+W+7UGenUaK7dq0sN/VcV8brec+uvDqW9XqaCOXHjg86\nO40S3bp1Dd+HPOTsNErUY9vqcvOsl5frvrFLH2enUaJumz/nRP/2zk6jWLU/3gFA1oKKTs6keK5h\nF8rNvSn/LHqHS0RERERExEHUwyUiIiIiIqWnf/jYLurhEhERERERcRA1uERERERERBxEQwpFRERE\nRKT0rJql0B7q4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUnqaFt4u6uESERER\nERFxEDW4REREREREHERDCkVEREREpPQ0pNAu6uESERERERFxEDW4REREREREHERDCkVEREREpPQ0\npNAuanA5idVqZdLEdQQ19GfoY52dnU6RlOe15aw8q97Ymsaj+mF0MXM+6gQR05eScyH9iuLazXuW\nzDNJ7Jv7PgB+NzSlyTMDMJpN5GZms3/e+5zb/6fDz6msXPOqN7am6SU1+72Y2hYV1+uHxWTEJ9li\no1b8l9j1v163c4DrV0+/zm0JHDkQo4sLqVHHiHxxMblp6fbFGI00emYIviGtMJhMHP9oHbGff59v\n2+p33YL/zR2IGDvHtqzF7DA8g+qRm54BQNKufRx+7f0Sc63SpQ1BIwZidM3LY/+Lb5FbyLUtMs5o\nIPjZIfj9le+xlV8Rc1m+Ne6+hao3deD3S/Jt+VIYXkF1bfme3bWfQ6+WnC+U3WfdGdf9b7UfupMa\n997KttAwu3L9m2+ndtR7chBGVxcuRB3j0OxFBXIuKsZU0YNGE5/Co24tMBiIW/8zMSs/B8CzcRCB\nz0ywxMoAACAASURBVAzFVMEdg9HIiQ8/J/67X0qVW1Hc23ShUv+nMLi4kn38MGeXzMSafiFfjMeN\n/8/efUdHVa19HP9OS2+kh05CKAFCb6KICAhYaVJCQEAQEZXem4B0Ua+KoIgFERBBX8tFio0OCQKh\nlyAJBNJ7z5T3j9EJIW0SEibxPp+1WIuZeWbO7+wz58zs2fuc9MHx6eFgAENuNkmfrSHv+sUCNW5T\nVqFLiiP509UVkuteigZPoHpkMQqVFYa4c2j3ToDctKJrGz6FuvfH5L3v8/dK1kDV4x2UHoEY8jLR\nn9+M/tT6cmep7PemjY8nHT5byanXl5B2KX9/UWjUtHxrNre/3Ufsb8fKnV9UD1VmSuGuXbtYs2ZN\nhb3erFmzOHDgQIH74uLiWLRoUaHaNWvWsGvXrgpbdmnCw+MYPXIzP+8+/8CWWR6Ss2JZKqeViyMt\nF47j5PR3+H3AdDJvxdLk1cHlqvMb8RSurRubbivUKtosn0jY0o0cGDqHq598R6vFL1f6OlWVbW7l\n4kjrheMImf4Ovw6YTsatWJoW07bF1dnX8yEvNYM/hs0x/XvQna0H1Z4aFycC5k3g7Ow1HBv8Olm3\nY2j4SpDZNbX69cC2jjfHg6YQMnoWdQY/iVNAQwDUTg40njGWxlNHo0BR4DWdmzfi5MsLODFiOidG\nTDers6VxcaTZvAmEzX6LI89PIjMqFv8Jw8pUV7tfT+zqeHN02FSOj5pN3SF9cQrw+zuvPU1njqXJ\n1FHcExeX5v6Ejl/IseAZHAueYXZnq6ru65ba7gDOgY2pF/ysWTnvzdNo7qtcmLuK0KETyb4dTYOX\ng82uqT92KDlxCZwMfp1TL06nZr/eODYztmfAmzOI+GQbf74whbNTl+D72ihsavuUOeO9lI4uuI5f\nQMLbM4meMhBtbBQuQycWqFH71MMl6DXilr9GzKwgUnd9gvuUVQVqHJ8OxrpJq/vOUyxbd9S9N6D9\nfhh5n7bGkHID1SOLi6518UPddRko8r+uqrqthNwM8j5ri/arbijr90Lh27tcUSrzvQmgtNLQ7I1X\nUWgKjm84NW9E+43LcAlsUq7covqpMh2uB8HDw6PIDteDtnVLKP36t6J3n2aWjlIiyVmxLJXTo3ML\nki9cJ+NmDAAR3+ynVp8uZa5zaxeAx0OBROz8xXSfQatjf59XSb0cAYBdLU9yU9Irc3WAqrPN722z\nG9/sp7YZbXt3nWugPwa9noc2zKXbtuU0GtsPlIW/OFamB9Werh0DSb0YTtbNaACidu3F+4lHzK7x\neLQjd378DYNOjzYtg5j9h/HubXzM6/HO5CYkcfW9zQVez8bHE5WdLU1mjqPDl2toOm8CaieHUrO6\ndWxJysVwMv/OcWvXXtOyzK3zfLQDUT/8bsobve8IPr27AuD9+EPkxCdx5T/35vVAZWdL05lj6fTl\nagLmv4zayb7UvFB193VLbHcAK1dnGk97kavvF36sNDU6tCLt4lWyb90B4Pa3P+PZq6vZNeHvfML1\n9z8z5nCrgUKjRpeRgcJKQ+Sn20kODQMgNy6BvORUrD3dypzxXjaBncgNv4A2+iYA6ft2YvdwwY6I\nQZtL4kdL0ScnGJd//SIqFzdQGTsE1gFtsWnZmfT9lfcjtLLe4xiiT0JyOAC6Mx+jbFr4hwHUtqj7\nfoL2j1kF7lZ4tUZ/YSsY9KDPQ//Xzyj9+5UrS2W+NwEaT3uROz/9Tl5KaoHXrPN8H8I3bCP1wtVy\n5a5KDPqq/a+qqHIdrk2bNjFgwAAGDx7M6tWr0el09OzZE61WS2xsLE2bNiUpKYnc3Fz69St5B/vq\nq68YOXIkw4cPJyIiglu3bvH8888DsGfPHp577jlGjx7NmTNnHsSqmcxb0Idnngt8oMssD8lZsSyV\n08bLjezoRNPt7NhENA52qO1tza6zdneh2bRgTs1bB7qCRzCDVoeVqxM9dr9H09eHEv7Fj5W7QlSd\nbW7r5UaWGW1bUp1CrSLu+DmOTVzJoReX4NkpEN/BTzywdYAH1542nu5kx8SbbufEJqB2sENlZ2tW\njY2nG9kxCQUe++eLatS3+/jrk2/Q5+QWWKaVqxOJIWe5tGIDJ0bMQJeVTcDc0kdmbLzcyLlnWRoH\nO1RF7DfF1dl4uZETe29eVwBufbuP6598g65QXmcSQ85yYcVHHBsxA11mNs3mTSg17z9ZquK+bont\njlJJszde59r7m8mJS6SsrD3dC267uATUDvYFMpdao9PTeMEk2m1+l5RT58mMvI0hN4/oH/M7st7P\n9ERla0PauStlzngvlZsXuoQY021dQixKOwcUtvkddl3cHbJPHTbddgmeTNbJA6DToqzhjsvIqSS8\nPx/0uvvOUyyn2hjSbuXfTotCYe0MVo4F16fne+jDNmGIO1fgfsOdEJQBQ0GpBo09Sv/nUDh4lytK\nZb43az7THYVaxe3/y9/e/zi/4F0SjvxZrsyieqpSHa6IiAh2797Ntm3b2LZtGxERERw4cIB27dpx\n+vRpDh48iL+/P0ePHuXo0aN06VL4l7u7tWnThs8//5yxY8eyenX+POS8vDxWrFjBp59+yieffIKN\njU1lr5oQFqNQFD1aYrjny1RxdSigzfJXOf/WZnLik4ssyU1MZX+fVzk8ahEtF76Efd3yffhVN/fb\ntgadnshvf+Pc6i/Q52nRpmcSvuW/eD/WrsKzVgnFjNwZ9HqzahRFPHZvW98r9fw1zs5aTW5CMuj1\nXP/4a9y6tEGhLuUUZkXRH4+FlldSXVHroi8975mZa/7Oa+D6xztw79IahVpVcl6q8L5uge3ecMIw\nkk9fIPFEWOn5inKfmf9xefE7HHlyJGonB+qNer5AXZ3h/ak3ZgjnZy5Dn5t778tUWOaiOk8Kaxvc\nJi1H7V2bxA1LQaXC7bU3Sf5irWn0q/KUnlPZcizotejPfVGoTPfHbMCAOvgo6me3oY/4FXTlbL9K\nem86Nm5ArX69uLTyo/LlEv86VeqiGRcvXqRbt25oNBoA2rVrx9WrV+nVqxd//PEHt27dYvLkyfzy\nyy8olUoGDhxY4uu1a2f80tK6dWtWrcqfo5yYmIizszM1atQwPS7Ev0mj8QPw6toWALW9LWnXbpoe\ns/FwJTclHV12ToHnZEUn4NK8YaE6hwa1sKvpQcDk4QBYuzmjUClRWmu48PYW3Ns3I/q3UABSL90g\n7UoEjg3rkBEZXdmraRGNxw/A+662Tb2PttVl51C778OkXonIfx2FAoO2En9dtqCcmHicm/mbblt7\nuJKXko7+rvYqqSY7Jh5r9xoFHrt7hKEoLi2boHZyIP6g8T2qUChAbyj4hepvfuOex+MR4+eGyt6W\n9PDIErMCZMfE43zXti2QNzoeKzeXAo9lx5Y82uLSqgkaR3viDp7k78DF5oXqsa9bYrt79+5KblIK\nHo92RGVrg7WHKx2+WM2JEdNLfJ4pT3Q8jgGN8pfp7kZealrBzCXU1OjQiozrEeTGJ6HPyiZu/0Hc\nH+0MGC+W0Hjua9jVr83pl2aREx1nVqbS6OJjsG7Y3HRb5eqBLj0FQ052gTqVmxfuM9aijbpB3OKX\nMeTlYOXfArVnLVyCJxtrXNxAqUShsSLpozcrJJ9J2i0UPu3zbzvUxJCVCNpM013KZsNBY4c6+CgK\nlcY4vTD4KNpd/UCpRndgHmQbLzSkbD8FQ3L5LtRUWe9N7z6Pora3pd3Hxrazdnc1jbj+cyz615Cr\nFJqlSo1wNW3alLCwMLRaLQaDgZCQEBo0aECXLl0ICQkhKSmJRx99lPPnz3Pp0iUCA0ueAhMWZvxl\nKzQ0FH///J3Fzc2N1NRUEhONH3xnz56tvJUSwgKurN/JwWFzODhsDodfWEiNFg2xr+MFQL2BjxPz\nx8lCz4k7drbIuuSz1/jlyddMrxe58xfu7D1G2JKNGHR6AheMo0ZL45cOB99a2NevSfK58Ae3sg/Y\n5fU7TRe3OPjCQlzvarP6Ax8nuoi2jT12ttg6R7/aNH55ICgVKK01NHi+J1H7/p1XrEo4fgbn5v7Y\n1jGOitTq14u4gyFm18QdCMHn6cdQqJSoHezw6tmFuAMFn38vlZ0NjaaMNp23VXf4M8YrghXRgQn/\n6GvThSpOjJmLc3N/7P7OUbt/T2IPFl7WP3mLqos7EEqtp7vflfch4v44UXJeWxsaTx1tOm+r3vBn\niPn1WLFfaqrDvm6J7X7oqXGcCDZeJOXi8g/Jioo2u7MFkHTiNE7NGpkuZuHT7wkSDp4wu8ajexfq\njTKel6TQqPHo3oXkP43fNQKWTkdlb8vp8bMrrLMFkB12DKuGzVF71wHAoccAskMLXjxMae+E58IN\nZJ34jYT/zMWQZ+xY5F49y51XniJmVhAxs4JI37+TzKP7Kr6zBehv/ILCpwO4GC8go2r5IvrwnwrU\naL96FO3n7dFu7kzerv6gzUK7uTNkRKNq+SKqh+YZC+08UbV4Af3F7eXKUlnvzavvfMbR5183Xagn\nJz6R8wvf/fd1toTZqtQIV7169WjTpg1Dhw5Fr9fTtm1bevTogUKhwNvbm5o1a6JUKmnQoAGurq6l\nvt6ZM2cYMWIECoWCZcuWYTAYP7DUajULFixgzJgxODs7oy5taokQ1VhuUipn3thA21Wvo9CoybwV\ny+kFHwLg3LQBgfPHcnDYnBLriqPLyiF06lqaTR2OQq1Gn5fHqXkflPor/r9FblIqp97YQLtVr6PU\nqMm4Fcupu9q21fyx/PF32xZXd+XjXbSYMZLHtq80zvfff5zIb3+z5GpVmrykVC4sWUeLZVNRatRk\n3Yrh/OL3cWziS9M5L3NixPRia8B4srptLW86bF6DUqMm6tt9JJ+6UOIyE46e5taO/9LuoyWgUJIR\nHsnF5aVfQtqY40MCl09BoVaTFRXDuTeMOZya+BIwdzzHgmeUWHdr115sa3vR6cvVKDVqbn27n6RT\nF0taLAlHT3Pz6920/2gJCqWS9PBILizbYE7zVtl93RLb/X7lJadwedl7BCydjlKjISsqmstL3sWh\niR+NZr3Cny9MKbYGIPz9T/GfPp62m98Fg4H4g8eJ+vpHnFo0we3hDmRGRtFq/XLT8v5a9wVJJ07f\nV2Z9ahKJ6xfjNnkFCrUGbcwtEj9YhMa3Ka7j5hEzKwj7ngNQuXtj2/4xbNs/Znpu3NIJ6NNT7mv5\nZsuKQ7tnPOqnt6BQaTAk/4X257EovFqj6rXO2LEqge74GtR9N6Ieaez06I4uwxBTvvOhquN7U1RP\nCsM/vRBRKh1bLB2hRCqCqnxGkJwVTUUQP7YNKr3Qwp46uaXatOf3Vbw9nzlpbMeq3p4qgvil0yBL\nxyjV48d2sK/j86UXWljP419Xm329umz3A13Kd3W7B6nr4W+5OaR96YUWVGebsfOT+5Z5V9S0FKup\nGdXmvVldaD+ytnSEEqnH5ZRe9ABU66Gd3NxcxowZU+j+Bg0asHhxMX/TQQghhBBCCCEekGrd4bKy\nsmLz5rL/fQ0hhBBCCCGEeBCq1EUzhBBCCCGEEOLfpFqPcAkhhBBCCCEspOQ/iSf+JiNcQgghhBBC\nCFFJpMMlhBBCCCGEEJVEphQKIYQQQgghyk7+uJRZZIRLCCGEEEIIISqJdLiEEEIIIYQQopLIlEIh\nhBBCCCFEmRn0CktHqBZkhEsIIYQQQgghKol0uIQQQgghhBCiksiUQiGEEEIIIUTZyR8+NouMcAkh\nhBBCCCFEJZEOlxBCCCGEEEJUEoXBYJA/WSaEEEIIIYQok7x3bS0doUSa17MsHQGQc7jKRMcWS0co\nkYqgKp8RJGdFUxHE7vZDLR2jVH1Ctlab9vyp3TBLxyjRk6FfAdXjmLS3w2BLxyhVrxPb+bXzQEvH\nKFX3o99Um339l06DLB2jVI8f28EfXfpbOkapHj28i8jBHSwdo0R1t58AIPctewsnKZnV1Ixqc0wS\n/y4ypVAIIYQQQgghKol0uIQQQgghhBCiksiUQiGEEEIIIUSZGfQKS0eoFmSESwghhBBCCCEqiXS4\nhBBCCCGEEKKSyJRCIYQQQgghRNnJlEKzyAiXEEIIIYQQQlQS6XAJIYQQQgghRCWRKYVCCCGEEEKI\nsjPIlEJzyAiXEEIIIYQQQlQS6XAJIYQQQgghRCWRKYVCCCGEEEKIMpM/fGweGeESQgghhBBCiEoi\nHS4hhBBCCCGEqCQypVAIIYQQQghRdnoZuzGHtJIQQgghhBBCVBIZ4bIQg8HA3Nnf09Dfg9FjHrJ0\nnGJJzoplqZweXVrT6JUhKK3UpF2N5NzSj9BmZJldp7TW0GzGaJwDfEGpJOXcNc6v2oQ+Jw/XtgE0\nmTQchUpFXkoaF9d+QdrVyEpfJ0tuc88urWg88Z92uknYkqLbs7g6tb0tgQvG4VC/JigU3PrpINc/\n/wEAt7YBNHl9GEq1Cl1OLufXfEHK+fBKXydLtad7l9b4TxiK0kpD2rVIzi9dj66ItiytztrTjY6b\nlnI0aAZ5KWkAODX1o/GUkahsrVEoldz44v+48/OhMmd0e6gNfi8HodCoyQiP5OKb69BlZpWpxtrT\njXYbl3EieJopn2NTP/wnjUJlY41CpSRi83fE7DlY5nx3q6r7uttDbfCbMAylRkP6tQguvvlh0W1Y\nVI1SSaPXR+LasSUKlYrIr74n6tt9BZ7r89RjeHTrQNi0lab7XFo1peHE4SitrdCmZ3JhyQdk3441\nuy1dO7elwfgglFYaMq5FcHn5B4UyF1ejtLKi4dSxODZtiEKpIPX8Va699TH63Fzs6tem0YyXUdnZ\nYDAY+OvDL0k6cdrsXCWxad0Fl6ETUGisyIu8RsL6pRiyMgrU2D3cG6dngsFgwJCTTdJnb5F7/SIK\nW3vcxs9DXas+CoWC9D/+S9r3X1RIrnspGjyB6pHFKFRWGOLOod07AXLTiq5t+BTq3h+T977P3ytZ\nA1WPd1B6BGLIy0R/fjP6U+vvK899H4eUChpPGoF7J+N79MaWH7i1az8A9g1qETB7HCo7GzAYuPrB\nVhKOnaH+iGfx7pV/rLVycUJtZ8Ov3Ufd17qIqskiI1y7du1izZo1lfb6x48fZ/LkyYXuf/PNN7l9\n+3aB+8LDwwkODq60LEUJD49j9MjN/Lz7/ANdbllJzoplqZxWLo60WPASp2a+zcGBU8mKiqXRxKFl\nqvMb1Q+FSsmhYbM4NHQGSmsr/F54FrW9LW1WTebyf7ZweNhMzq/YRKvlr6PUVO5vOZbc5lYujgQu\nfImTM97hjwHTyIyKocnEIWWqa/TyILJjEjkweCaHR8yn3oAeuLTwR6FW0Xr5q5x982MODpvNtU++\no9Xilyt9nSzVnhoXR5rPf5kzs9ZyeNBksqJiaPTKsDLX+fTtSoePFmHj6VrgeS1XTiH8ox0cGz6T\nPyctp/GkEdjV8S5jRieazn2Fs7NXc3zI62RFxeA3IahMNd59HqXN+iVYe7gVeF6LZdP4a+N2QkZO\n58zkN/F/7QVsa5ct392q6r6ucXEiYN4Ezs5ew7HBr5N1O4aGrxRuw+JqavXrgW0db44HTSFk9Czq\nDH4Sp4CGAKidHGg8YyyNp45GQf7V0qw9XAlcOZ3LqzdyIng6cb8dp8n0sWa3pcbFicZzJ3Jh7mpC\nhr5K1u0YGrwcbHZN3ZEDUKhUnBw5hdARU1BZW1F3RH8A/KeOI/qnXzj5wlSuLPuAgCVTQXX/X8eU\nji64vTyf+LWzuDN5ENqYKFyGvVKgRu1TlxrDXyN22WtEzxxOyq5NuE81dlJdBo9HmxhL9LShRM95\nAcee/bHyb3HfuQqxdUfdewPa74eR92lrDCk3UD2yuOhaFz/UXZeBIr99VN1WQm4GeZ+1RftVN5T1\ne6Hw7V3uOBVxHKrTryd2dXw4MnQax16YQ70hfXEK8AOg6YwxRP3wG8eGz+T8kvUELpuEQmX8AejY\n8JkcGz6T0PFvoMvOJmzuu+VeD4vRK6r2vyrif2pK4dy5c6lZs6alY7B1Syj9+reid59mlo5SIslZ\nsSyV071TICkXrpN5MxqAyJ37qNm7S5nqkk5d5Nqmb8FgAL2B1Ms3sPH2wK6uD3npWSSEGL+oZ0Tc\nRpuRhUsL/0pdJ0tu83vbKeKb/dTsU3p73l13Yc0XXHx3CwDW7i4ordRo0zMxaHX80mciqZcjALCr\n5Ulecnqlr5Ol2tOtY0tSLoSb2ujmzn149364THXW7jXwfLQ9f05eUeA5SisN1zd+Q2LIWQByYhPJ\nTU7D2rNgp6c0rh1aknrxGlm3jMuO2rUH7yceMbvGyr0G7l07cGbKskL5/tq0g6R/8sUlkpeSWuZ8\nd6uq+7prx0BSL4aTdfOf9tlbuA1LqPF4tCN3fvwNg06PNi2DmP2H8e5tfMzr8c7kJiRx9b3NBV7P\ns3sn4o+eIu3yX8bX+24fV9751IxWNKrRoRVpF6+RdesOALe//RmvXo+YXZNy5gKRn+/4ux31pF/5\nC2tvDwAUKiVqRwcAVHa26HPzzM5VEpuWHckNv4A2+iYAaft2Yv9wwY6IQZtHwoY30ScnAJB7/SIq\nFzdQqUn67C2SN//HmMvFHYXGCn1mxR9/lPUexxB9EpKNI/e6Mx+jbDq4cKHaFnXfT9D+MavA3Qqv\n1ugvbAWDHvR56P/6GaV/v3LnqYjjkGe39tz+8XfTezR63xF8+hjfCwqVEs3f21ttb4s+J7fQazd6\nPZj4I6eJP1oxI52i6nkgUwqzs7OZPXs2t2/fJi8vjyeeeML02KZNm/jpp59Qq9W0a9eO6dOnc/Lk\nSVauXIlarcbW1pZ3330Xa2trFi5cSEREBHq9nkmTJtGxY8dilxkREcGYMWNISkpi6NChDBo0iODg\nYBYtWoSjoyPTpk3DYDDg4eHxIJqggHkL+gBw7NhfD3zZZSE5K5alctp4uZEdk2C6nR2biMbBDrW9\nbYGpRiXVxR8/m1/n7U79oX04t+xjMiPvoLazwb1jC+KPn8U5wBdH39pYu9eo1HWy5Da39XIly4z2\nLK3OoNPTavEEvB/vQPTvoaRHGEffDTodVq5OPPLlMjQujpya/V6lr5NF35ux+W2UE5uAxsEOlb1t\ngek8JdXlxCdxZuZbhV5bn5tH1Pe/mW7Xeu5xVHY2pJy7UuaMOXcvOy4BtYM9Kjtb0/Sykmpy45M4\nN3t1kfnu/PCr6XbNZ3ugsrUh9fzVMuW7N2tV3NdtPN3Jjok33c6JTUDtYFewDUuosfEsmDcnNgGH\nhvUATFMLfZ7sVmCZdnVros/KofmSSdjVrUl2TDxX3vms1Kz/sPZ0Iyf2rjxFbPeSapJOnMl/LS8P\nag1+iisrPwTg6lsf0/I/b1B78NNoajhxceFa0OnNzlYctZsX2oT8KZO6hFiUdg4obO1N0wp1cXfQ\nxd0x1dQYMYms0AOg0xrv0Otwm/gGdh27kxnyO9rbEfedqxCn2hjSbuXfTotCYe0MVo4FphWqer6H\nPmwThrhzBZ5uuBOCMmAouttHQWWN0v850Je/01oRx6Gi9in3v9+jF1dtot26+dQb2hcrV2fC5r6L\n4a7tbe9bG89H23Go32vlXgdR9T2QEa5t27ZRq1Yttm/fztq1a7G2tgbg8uXL7N69m23btrFt2zYi\nIiL47bff2L9/P3369OHLL79k6NChpKamsmPHDmrUqMGWLVtYt24dixcXM/z8t7y8PD788EO++uor\nNm7cSGJioumx9evX89RTT7F582Z69OhRqesuhMUpih5SN9z7AW9GnVOTBnT6eCERX+8h7tAptBlZ\nnJy6Bt9Rz9Flywpq9u1KQsh59HnaCotf5SiLPmwWak8z6k4vWMe+Hi9h5eSA/4v9TffnJqbyS9+J\nHBm1kJYLX8K+bvmnmVVlCmUx0z3uaUtz64pTf8SzNBw3iFNTV6HPKeMXs+K2o15ftpoS1At+jgYv\nDiZs+ooif/02W1Xd14vZfgXbsPiaorZ/oXW6h0Ktwr1re8I/2saJkTNIDD1L4IrppWf95/lmbFNz\nahwa+9Jq3VJu79xN4pGTKKw0NF08lUtvvsexfmM5/cp8/KePv6+RzbsCFX2/Xle41NoG98nLUXvX\nJmHDmwUeS3h/Ibde7IXSwRnngWPuP1fhpZeaU9lyLOi16M8VPodM98dswIA6+CjqZ7ehj/gVdOXf\nbyrkOFTUe1SvR2mlIfDNSZxb/CEHnp5AyEuLCJg9tsD2rje4Dzd37CnyXEvx7/FARriuX79O165d\nAahfvz5OTk7Ex8dz/fp1WrZsiUajAaBdu3ZcvXqV8ePHs379ekaOHImXlxeBgYFcuXKFkydPEhYW\nBoBWqyUxMRFXV9cil9mqVSusrKwA8PPz49at/F9Tbty4wfPPPw9AmzZt2Lp1a6WtuxCW4P/SQDy7\ntgWMUxjSrt00PWbt4UpuSjq67JwCz8mOScClecNi63x6diZg5mgurP6UO3uOGIsUCnRZ2ZwYv8T0\nvEe+XkPm31Or/i0avTQQz65tANDY25Eann+hAJvi2jM6HpfmfkXWuXcKJO1aJDnxyeiycri95wje\n3TugtrfFrX0zYn4PBSD18g1Sr0bg2LAOGZH/jjb1GzcIj67tAON7M/1afltae7iSV0xbOjdrWGrd\nvRQaNc0XTMDBtzbHx8wn+05cmfNmR8fhFJA/bc7aw5W81DT0dy3bnJri8gXMm4hdg9qcHDuH7Oiy\n56sO+3pOTDzOze5pn5T0Au1TUk12THyBkTRrD9cCI4pFLjMuiZSzl01TFG9//yuNp4xGaW1lVqc2\nOzoOx7u3qbtbkdu9pBqPx7vgP20c19ZuJHaf8WIo9r51UdlYk3jkJABp56+Q+ddNHAMakRN7tNRc\nJdHGR2PVMH9asMrVA116Coac7AJ1KjcvPGauJS/qL2LfmIAhz5jXpmUn8iKvoUuKx5CTRebhPdh1\n7H5fmYqUdguFT/v82w41MWQlgjbTdJey2XDQ2KEOPopCpTFOLww+inZXP1Cq0R2YB9lJxtr26ZRa\nbwAAIABJREFUUzAkXy9ThIo+DmVHJ2Dt7lLgsZzYBBz86qCysSL+0J8ApJy7Svr1m7g0b0jMrwmg\nVODZvSPHRswuU/6qxGCoOudJVWUPZITLz8+Ps2eN0xRu3rzJ2rVrAfD19SUsLAytVovBYCAkJIQG\nDRrw/fff069fPzZv3oy/vz9ff/01vr6+PPnkk2zevJmPP/6Y3r174+LiUuwyL1y4gFarJTMzk/Dw\ncOrWrVsgz6lTpwBMuYT4N7m64RsOB83mcNBsjo5agEtzf9PFAuoO6EHsgdBCz4k/FlZsnXf3DjSd\nNpKQV5fnfwEDMBho985MnJr6Guse74heq3sgVyl8kK5s+IZDQXM4FDSHw6MWUKNAOz1OzB8nCz0n\n7tjZYutq9uyI/7gBACg1anx6diIh9DwGvZ6WC16iRstGADj41sK+Xk2Sz1X+VQoflH8uYnFs+ExO\njJ6H811tVLt/zyLfmwnHw8yqu1fL5ZNR29tyopydLYDEE2dwbu5vuphFzX69iD8QUuaaojR/cyoq\ne1tOjptbrs4WVI99PeH43+3z9/Jq9etF3MEQs2viDoTg8/RjxnOfHOzw6tmFuFLaN+6PE7gENsbG\nxxMAz24dSQ+PNHsEMenEGZyaNcK2tvHKeDX79SLhnswl1bh360zDyS8SNnmxqbMFkHXrDmp7O5ya\nNwbAppYXdvVrk361bB2GomSHHcfavzlq7zoAOPTsb5wueBelvRNeizaQeeI3Et6dZ+psAdh16oHT\nwBeNN9Qa7Dr3IPtc6ftZWelv/ILCpwO4GH+QUrV8EX34TwVqtF89ivbz9mg3dyZvV3/QZqHd3Bky\nolG1fBHVQ/P+Du2JqsUL6C9uL1OGij4OxR4IpdZd71Hvng8R+3sImTejUTvY4dzCeEy3reWFff1a\npF6+AYCjX120qRnlPj6J6uOBjHANGTKEOXPmMHz4cHQ6HaNGjSIpKYnGjRvTp08fhg4dil6vp23b\ntvTo0YOwsDDmzZuHra0tSqWSxYsX4+Xlxbx58xg+fDjp6ekMGzYMZTHD+QDW1taMHTuW1NRUXn31\n1QKds5dffpnp06fz3//+l9q1az+IJhDCYnKTUjm7eD2tV0xCqVGTeSuGsEXrAHBq6kuLeWM5HDS7\nxLpGrwxBoVDQYl7+Vb6SzlzhwqpPOTP/fVrMHYtCoyYnPok/pxc+n+bfJDcplTOLN9B2pfEKbRm3\nYjiz0HhuhnPTBrSYN5ZDQXNKrLvw9hZazBlD1+0rMRgMxPx+kr+2/gwGA6HT3iJgSjAKtQp9npbT\n894nOzaxpEjVVm5SKueXfEjLFVNQqNVkRUVzdtEHgPG9GTD3JY4Nn1liXXFcAhvj2bUdGRG3ab8x\nfwr61fe/IuHYmRKeWVBeUioXl35A82XTUGrUZEXFcGHxezg28aPJ7PGEjJxebE1JnAMb4/FIezIi\nomi7Yanp/vB1X5J43Px8d6uq+3peUioXlqyjxbKpxva5FcP5xe/j2MSXpnNe5sSI6cXWgPECGra1\nvOmweQ1KjZqob/eRfOpCictMv3qDS6s+JnDldBRqFdq0DM7OXWt2W+Ylp3B52fsELJ2OQqMmOyqa\nS0v+g0MTPxrPmsDJF6YWWwPQYLzxCouNZ00wvWZK2CWurf2Y83NW4jdpDEorDQatjiur1pMdFWN2\ntuLoU5NI+HAJ7lNWoFCr0UZHkfDBIqx8m+L60lyiZw7HodcAVO5e2LXvhl37bqbnxi55haTN7+A6\ndhbea7aCwUBWyB+k7d5237kKyYpDu2c86qe3oFBpMCT/hfbnsSi8WqPqtc7YsSqB7vga1H03oh5p\n7Nzqji7DEPNnueNUxHHo1s692NXyovOWVSjUam59u5+kUxcBOD3jLZpMfcG0vS+s+Jisv7e3XV0f\nsqSz9T9BYTAYDJYOUV3o2GLpCCVSEVTlM4LkrGgqgtjdvvCln6uaPiFbq017/tSu8CWBq5InQ78C\nqscxaW+HIq4+VsX0OrGdXzsPtHSMUnU/+k212dd/6TTI0jFK9fixHfzRpX/phRb26OFdRA7uYOkY\nJaq7/QQAuW/ZWzhJyaymZlSbY1J1kb2kAs4/rEQ280uefvygVOs/fPz+++9z/PjxQvcvW7aMOnXq\nWCCREEIIIYQQQuSr1h2uiRMnMnHiREvHEEIIIYQQQogiVesOlxBCCCGEEMIyDHq5SqE5HshVCoUQ\nQgghhBDif5F0uIQQQgghhBCiksiUQiGEEEIIIUTZyZRCs8gIlxBCCCGEEEJUEulwCSGEEEIIIUQl\nkSmFQgghhBBCiDIzGGRKoTlkhEsIIYQQQgghKol0uIQQQgghhBCikkiHSwghhBBCCCEqiZzDJYQQ\nQgghhCg7vYzdmENaSQghhBBCCCEqiXS4hBBCCCGEEKKSKAwGg8HSIYQQQgghhBDVS8YcH0tHKJH9\nsjuWjgDIOVxlsrv9UEtHKFGfkK3s7TDY0jFK1evEdn5sG2TpGKV66uSWKr/NwbjddWyxdIxSqQiq\nNu2ZdaGHpWOUyDZgP1A9jkk/dxhi6Ril6n1iG78/NMDSMUrV7cjOarOv/9p5oKVjlKr70W9YVO9V\nS8co1aKI91jf5CVLxyjR+EsbANgaOMrCSUo2NOxTfmo3zNIxSvVk6FeWjiAqmEwpFEIIIYQQQvzP\n0ev1LFiwgMGDBxMcHExERESRdfPnz2fNmjXlXo50uIQQQgghhBBlZjAoqvS/0uzfv5/c3Fy2b9/O\n1KlTWbFiRaGabdu2ceXKlftqJ+lwCSGEEEIIIf7nnDx5kkceeQSAVq1ace7cuQKP//nnn5w5c4bB\ng+/vlB3pcAkhhBBCCCH+56Snp+Pg4GC6rVKp0Gq1AMTGxvLBBx+wYMGC+16OXDRDCCGEEEIIUXbV\n/A8fOzg4kJGRYbqt1+tRq43do59//pmkpCTGjRtHXFwc2dnZ+Pr60r9//zIvRzpcQgghhBBCiP85\nbdq04bfffqNv376cPn2aRo0amR4bMWIEI0aMAGDXrl1cv369XJ0tkA6XEEIIIYQQ4n9Qz549OXz4\nMEOGDMFgMLBs2TJ++OEHMjMz7/u8rbtJh0sIIYQQQghRZgZ96VcCrMqUSiWLFy8ucJ+fn1+huvKO\nbJmWc1/PFkIIIYQQQghRLOlwCSGEEEIIIUQlkQ6XEEIIIYQQQlQSOYdLCCGEEEIIUWYGQ/U+h+tB\nkREuIYQQQgghhKgk0uESQgghhBBCiEoiUwqFEEIIIYQQZaeXsRtzSIergnh0aU2jV4agtFKTdjWS\nc0s/QpuRZXad0lpDsxmjcQ7wBaWSlHPXOL9qE/qcPFzbBtBk0nAUKhV5KWlcXPsFaVcjy5XTvUtr\n/CcMRWmlIe1aJOeXrkdXRM7S6qw93ei4aSlHg2aQl5JmXLeH29B84StkxcSb6kLGLUSXmV3mnJ4P\nt6LJxMEoNWpSr90kbPHHRbanOXVtV08iJy6Jc6s+B8CtXQBNXx+KUq1Cl5PH+dWfk3z+epkzQvXZ\n7mVhMBiYO/t7Gvp7MHrMQ5W+vLtVt/Y8EJrFe1+mkJtnwL+ehkUTXXGwy//w+eG3DDZ/n2a6nZ6p\nJzZBx56NNVGr4M0NSVz+Kw9bGwXPdrdn6JOO95XnbtWlLT26tKbRhCGmY83ZpRuKPCYVV6e01hAw\nfTTOAX6gVJBy7hoXVhtz/qPW093w6taeP6euLldG14fa4Dt+OEqNmvTwCC4vW4cuM8usGqWVFf7T\nXsSxaUMUCiWpF65wdc1G9Lm5ODb1o+Hro1HZWINKyc0vvyNmz4FyZSyPB7mvuz3UBr+Xg1Bo1GSE\nR3LxzcJtWGyNUon/ayNx7dQKhUpJ5Fc/cPvbvQC4tGmG/2sjTe/Fq+98Svq1CNNrKjRqWq6ZTdR3\n+4j77ViFrY9/92b0mPE0Kis1MZdu8/2Mr8hJL/xZ12FkV9oNfxgMBhIj4vlh1lYyEtIrLEdR6j7a\nnI5T+qGyUpNwOYrf535BXkbxn8OPLR9J4tXbnNm0DwCFUsHD84fi094fgMgD5zi2ameF56z5SCAt\nXx+I0kpN8pVbHF+4CW0JOTsuGUPKtSguff5zgfvtvFzp+eU8dg9aQG7y/betZ5dWNJ74zzHxJmFL\nij52FlentrclcME4HOrXBIWCWz8d5PrnPwDgHOBLwNRgVDbWKFRKrn/+A1G7D993ZlH1Sbe0Ali5\nONJiwUucmvk2BwdOJSsqlkYTh5apzm9UPxQqJYeGzeLQ0Bkora3we+FZ1Pa2tFk1mcv/2cLhYTM5\nv2ITrZa/jlJT9r6yxsWR5vNf5systRweNJmsqBgavTKszHU+fbvS4aNF2Hi6Fniec2Bjbmz5gWPD\nZ5r+laezZeXiSMuF4zg5/R1+HzCdzFuxNHm18F/7NqfOb8RTuLZubLqtUKtos3wiYUs3cmDoHK5+\n8h2tFr9c5oz/LL86bPeyCA+PY/TIzfy8+3ylLqco1a09E1N0LHwvkTUz3Pi/D3yo7a3m3c3JBWqe\nfsyer9/25uu3vdmy2gt3FxWzxtbAzUXF6k3J2Nko2fUfbzav8OLQn9kcCCn8oV4e1aUtjcea8Zya\n9TYHB00hMyqWxq8UzllSnd+ofijUKg4HzeTwsBmorK3wHfmc8XlO9gTMGkPTaS+AonwndmtcnGgy\ndyLn56zmxNDXyL4dg++E4WbX1HthAAqVitARUwkZMQWltTV1Rxj/gGazN6dzY+N2Ql+YxtkpS/F7\n7QVsa/uUK2dZPch9XePiRNO5r3B29mqOD3mdrKgY/CYEmV1T67me2Nbx4UTQZEJHz6LO4CdxDGiI\nyt6OFsunc+39zZwInsrl1R/RbOkUFH+/F52aN6LdxuU4t2xSoetj5+rAc6uD2D7+E97vvpSkyHh6\nzHqmUJ1P8zo8NLY7n/Rfy7pey0m8EcdjU5+s0Cz3sqnhwGPLRrL3tQ1s67OQ1JvxdJrar8haF19v\nnv5sMr692xW4v9GznXBp4MWOZxbzzXNLqNm+Eb5PtKnQnNY1HOm4ZAwHp3zAT8/MIf1WHK0mDSqy\n1qmBD903zqBur/aFHqv/9EM8/tls7LxqVEguKxdHAhe+xMkZ7/DHgGlkRsXQZOKQMtU1enkQ2TGJ\nHBg8k8Mj5lNvQA9cWhg7r21XTeLKhp0cCppDyGuraDp5OHZ1vCsku6jaqmWHKzg4mPDwcEvHMHHv\nFEjKhetk3owGIHLnPmr27lKmuqRTF7m26VswGEBvIPXyDWy8PbCr60NeehYJIcYPxYyI22gzskw7\nb1m4dWxJyoVw0/Jv7tyHd++Hy1Rn7V4Dz0fb8+fkFYWe5xLYCNd2zen0+XLaf7SIGq2bljkjgEfn\nFiRfuE7GzRgAIr7ZT60+hduztDq3dgF4PBRIxM5fTPcZtDr293mV1MvGX0DtanmSm1K+X8Sqy3Yv\ni61bQunXvxW9+zSr1OUUpbq159HT2TTzt6JeTQ0Ag3o7sPtAJgaDocj6z75NxdVZycAnHAC4GJ7L\nk93sUKkUaDQKHmlrw76jmeXOc7fq0pbuHQMLHWt8ijgmlVSXeOoS4XfnvHIDWx93ALx7dCYnPpnL\n/9lS5mz/qNGhJWkXr5F16w4At3ftwavXI2bXJJ++QMRn3/ydT0/6levYeLujtNJwY9MOkkLDAMiJ\nSyQvORVrT7dyZy2LB7mvu3ZoSerFa2TdMm6/qF178H7iEbNrPB7twJ2ffsOg06NNyyB232G8n+iK\nXR0ftBmZJIWeBSAz4ja6jCycmxt/ZKszqC/XN2wl9fy1Cl0fv65NiAqLJPFGHAChXx6ixbPtCtXd\nOXeT/3RbTE5aNmprNY5eLmQlVcw+Xpw6XQKIPRtBSkQsABe2/UHDpzsWWds8qBuXdh3h+s+hBe5X\nKJWoba1RWalRWmlQalTocrUVmtO7czMSzv1FeqTx8/va179Sr2+nImv9hzzO9e8OErk3pMD9th4u\n1H6sDX+88naF5br3mBjxzX5qFvH9o6S6C2u+4OK7xmOOtbsLSis12vRMlFYarn68i4QT5wDIjk0k\nNzkN23t+vK5uDHpFlf5XVVTLDldVY+PlRnZMgul2dmwiGgc71Pa2ZtfFHz9LZqRxx7Xxdqf+0D5E\n/3KMzMg7qO1scO/YAjAORzv61sbavey/5th4uZEdm7/8nNgENA52qIrKWUxdTnwSZ2a+RcZfUYVe\nPy8lnZvf7OHYyNlc/WArLVdNxbocBxIbLzeyoxNNt0tsz2LqrN1daDYtmFPz1oFOX+B5Bq0OK1cn\neux+j6avDyX8ix/LnNG0/Gqw3cti3oI+PPNcYKUuozjVrT1j4nV4u6lMt73cVKRnGsjIKtzhSkrV\n8cX/pTF9TP7yWjSy5qffM8nTGsjM0vPL0Szik/SFnlse1aUt7z3WZJt5TLq7LuF4GJmRd0w56w3p\nQ/QvxwG4uWs/4Rt3os/OLXO2/GW7k3PXNOmcuATUDvao7GzNqkk6cYasm8Z81t4e1H7+KeJ+PYo+\nN4/oH/N/DPJ5ticqWxtSz10pd9ayeJD7uo2XGzl3f6YU2YbF11jf077ZsQlYe7qRGXkbla0Nrh1a\nAuDY1A973zpYu7sAcH7hOyQc+bPC18fZpwapt5NMt1PvJGPjZIu1g02hWr1WT5NegUw5toR6Hf04\ntaPipjUWxd6nBul3fS6mRydh7WiLxr5wtkNLtnH1++OF7r/87RFyUjMJ/mMlIw6uIjUyjojfwio0\np523K5l35cyMScLK0Q51ETlPLv+SGz8eLXR/Vlwyh6a8T+r12xWWy9bLlSwzjp2l1Rl0elotnkDX\n7StJOHmR9Ijb6HPzuPl/v5ueU6dfd9R2NiSdu1ph+UXVVaXO4Zo4cSIjRoygQ4cOnD17lvfeew8n\nJydu3bqFTqdj1KhR9O3b11T/3nvv4e7uztChQwkPD2fRokVs3ryZp59+mnbt2nH58mV8fX1xc3Mj\nNDQUKysrPvroI7Kzs5k7dy5JScYD5rx582jcuHFxsUpXzFQVwz1f9M2pc2rSgDarpxDx9R7iDp0C\n4OTUNTSaMJjGrwWReOoSCSHn0eeV/dcmhbKYnv49Oc2tu9eZmW+Z/p985jIpYVdw6xDI7R9/L0tM\nFGa2Z3F1KKDN8lc5/9ZmcuKTiyzJTUxlf59XcWpSn04fzuHw9QVk/P3lsgxBzcpp6e1ebVSz9tQX\nPZCFqoifsXbuzaBbB1tqeeUfcqeMcuHtz5IZMiUad1cVnVrZcOZSTrnzFFBN2lKhLOY3v0LHpNLr\nnJo0oPWqqUTu2EvcoQr8kl1cG+n1ZapxaOxL8+UziNq5m4QjJwvU1Q3uR61BTxI2ZQn63PJ3Dqus\nYrZfgTYsoabIY71ejy4zi7MzV+L70jD8JgaTfPoCSSfPVfpxsrjPSH0xn5GX9oZxaW8YbYY8RPDm\nCfyn6+JiR8LvP5sZbV2Ktq88RXZiGp8/PB21tYYnPphA4KgehH26v6JiFtuGZclZKYprv3u3rRl1\npxesQ7X8E9qumoz/i/25+lH+eXB+I5+m/tDenHh1ZYHzTcW/V5XqcA0aNIhvv/2WDh06sGvXLrp2\n7UpkZCRr1qwhPT2d/v3706lT0UPOd8vIyOCpp55i4cKF9O7dm9mzZzN58mSGDx/OtWvX+PHHH+nU\nqRPDhg3jxo0bzJ49m61bt5Ypq/9LA/Hs2hYAtb0taddumh6z9nAlNyUdXXbBL0/ZMQm4NG9YbJ1P\nz84EzBzNhdWfcmfPEWORQoEuK5sT45eYnvfI12vIvGVe58Bv3CA8urYz5Uy/ln9iu7WHK3lF5YyO\nx7lZw1Lr7qZ2sKPOwF789dl3+XcqwKA174Ov0fgBeBXTnjbFtGdWdMH2/KfOoUEt7Gp6EDDZeA6F\ntZszCpUSpbWGC29vwb19M6J/M06hSL10g7QrETg2rGNWh6u6bPfqojq3p4+7inNX8rPFJuhwclBi\na1P4g3jv4UxmjHEpcF9Gpp5JI5xxdjSOkn26K5U6PuU/JFeXtmw4blCZc2YVcUy6u867Z2cCZozh\n4ppPubOnYk9Az4mJx6lZ/nRJKw838lLT0N+VsbQazx5d8J82lqtvbSR23yFTnUKjpsm8V7GvX5tT\n42aTHR1XodmriuzoOJwC8tvH2sO1UBuWVJMdE4/VXSOo1h6uxhFPhQJdZjanXlloeqzj1ndM0xIr\n0mNT+tK4h3FU19rRhphL+aMqjt7OZCVnkJdVsLPsWs8dBw8nIkONF2U69fVRnlo2GBtnW7KSK25q\nYbtXn6Z+d+Mon5WDDQlX8meg2Hu5kJ2cgTbL/I68b8/WHHpzG/o8Hbl5Oq58dxTfJ9rcd4erxYTn\nqNWtNQAaBxuSr+bntPWsQU5KOroy5KwojV4aiGdX4zlqGns7UsPzvycV9/0jOzoel+Z+Rda5dwok\n7VokOfHJ6LJyuL3nCN7dOwCg1KgJXDQexwa1ODJqIVl34qnu5A8fm6dKTSl85JFHOHv2LMnJyYSG\nhnL16lXatzeeJOng4ICfnx83b94s5VWMmjUzzkt3cnLCz8/P9P+cnByuXLnCzp07CQ4OZv78+aSk\npJQ569UN33A4aDaHg2ZzdNQCXJr7m058rDugB7EHQgs9J/5YWLF13t070HTaSEJeXZ7/xQbAYKDd\nOzNxauprrHu8I3qtzuwrgoV/tMN0AYsTo+fhfNfya/fvWWTOhONhZtXdTZuZRZ2BT+D5mPGg4tio\nPs4BDYk/esasnFfW7+TgsDkcHDaHwy8spEaLhtjX8QKg3sDHifnjZKHnxB07W2Rd8tlr/PLka6bX\ni9z5C3f2HiNsyUYMOj2BC8ZRo2UjABx8a2FfvybJ58w7J7C6bPfqojq3Z+dWNoRdySXitvHXyW/2\npNOtQ+HpMKnpeiLvaGnZxLrA/Tv2pLNuayoACck6du3LoM8jduXOU13a8tpHOzgyfBZHhs/i2Oj5\nuDRvmL/8/kXnTDgeVmydV/eONJ36AqGvLavwzhZA4onTODVrZLqYRc3nehF/MMTsGo/HOtFw8hjC\nJi0p0NkCaLZ0Gmp7W/58ac6/trMFkHjiDM7N/bGtbdx+Nfv1Iv7AvW1YfE38gRBqPtUdhUqJ2sEO\nr55diD9wAgwGWq6dg2MT42e8R/fOGLS6AlcprCi/rf0v6/uuZH3flWx87i1qt66Pa30PANoFPcyl\nvWcLPcfB05mB77+AXQ17AAKfa0/s5TsV2tkCCH3vB77pt5Rv+i1l1+CVeLX0xbmeJwABQ7py41fz\nPof/EXchEr+/L6ShVCup91hLYk7/dd85z677jp+fX8jPzy9k7/CluAf64lDX+PntP+gxon47dd/L\nKI8rG77hUNAcDgXN4fCoBdQocEws4ftHMXU1e3bEf9wAwNjB8unZiYRQ4zmvbVa+jsbeliOjF/0r\nOlvCfFVqhEupVNK7d28WLVpEjx49TFMBe/bsSXp6OleuXKF27dqmemtra+LijB9S588XvNJSsdPN\nAF9fX5555hmefvppEhIS2LFjx33lzk1K5ezi9bReMQmlRk3mrRjCFq0DwKmpLy3mjeVw0OwS6xq9\nMgSFQkGLeWNNr5t05goXVn3Kmfnv02LuWBQaNTnxSfw5/a0ic5iT8/ySD2m5YgoKtZqsqGjOLvrA\nlDNg7kscGz6zxLpi6Q2cnr6aJtNG0XDc8+h1Os7Mfdd0yfiy5jzzxgbarnodhUZN5q1YTi/4EADn\npg0InD+Wg8PmlFhXHF1WDqFT19Js6nAUajX6vDxOzfuA7NjEEp9XXM7qsN2ri+rWnq4uKt541ZXp\nqxPIyzNQ21vN0tddOX8tlzc+SOTrt40fxJF38vCooUKjLnhMGjPAibnvJDLgtTsYgPGDnWjub13E\nksquurRlblIqZ5esp9WKySjVajKjYgock5rPHceR4bNKrGs0wZiz+dxxd+W8zMXVn5Yr073yklK5\n9OYHNHtzGgqNmuyoaC4ufg/HJn40nvUyoS9MK7YGoMF440h741n5V0NNOXuJmL0HcX+kPZkRUbRZ\n/6bpsfAPvyTp+OkKyV5V5CWlcnHpBzRfNg2lRk1WVAwX/m7DJrPHEzJyerE1AFHf7sG2thftv3gL\npUZN1Hf7SD51AYDzC9+lyezxKNRqchOSCJu5stLXJyMhnf+bvoXnPxyDykpFUkQ8307eDEDNFnV4\nZuUw1vddSWRIOAfe38sL219Dr9WTFpvCtnEfV2q27MQ0fp/zOT3fHYdKoyb1Zhy/zjTuCx7N6/Ho\nkmC+6be0xNc4smIHD88bwuD/voFBpyfq2CVOb/y5xOeUVU5iGsfmb+LhtyYY/5TCzViOzd0IgGtA\nfTosGsXPzy8s5VUqXm5SKmcWb6DtSuOVVzNuxXBmYf73jxbzxnIoaE6JdRfe3kKLOWPoun0lBoOB\nmN9P8tfWn6nRshFeXduSHnGbzp/kr9ul97YRf6xiz5ETVY/CUFkTicvpzp079OjRgz179uDp6cn8\n+fOJjIwkJyeH4OBg+vXrR3BwMIsWLcLKyopJkyZhZ2dHs2bNOH/+PJs3b6Z79+7s3r0ba2trnn/+\nedauXUvt2rWZMGEC48aNo169esydO5e0tDTS09OZOHEijz/+eKnZdrcvfLniqqRPyFb2dih8+fSq\npteJ7fzYNqj0Qgt76uSWKr/NwbjddZT/KmwPioqgatOeWRd6WDpGiWwDjFN7qnp79gnZys8dCl9S\nuarpfWIbvz80wNIxStXtyM5qs6//2nmgpWOUqvvRb1hU71VLxyjVooj3WN/kJUvHKNH4SxsA2Bo4\nysJJSjY07FN+alf4z+FUNU+GfmXpCGZLfrVh6UUW5PJexV6ltLyq1AgXgI+PT4HRqpUrC/9atXnz\nZtP/d+4s/Mf4fv31V9P/v/76a9P/161bV+T/hRBCCCGEEKIyVKlzuIQQQgghhBDi36TKjXAJIYQQ\nQgghqr6q9MeFqzIZ4RJCCCGEEEKISiIdLiGEEEIIIYSoJNLhEkIIIYQQQohKIudwCSGcSitHAAAg\nAElEQVSEEEIIIcrMYJBzuMwhI1xCCCGEEEIIUUmkwyWEEEIIIYQQlUSmFAohhBBCCCHKTC4Lbx4Z\n4RJCCCGEEEKISiIdLiGEEEIIIYSoJDKlUAghhBBCCFFmBoOM3ZhDWkkIIYQQQgghKol0uIQQQggh\nhBCiksiUQiGEEEIIIUTZyVUKzaIwGAwGS4cQQgghhBBCVC/xYwMsHaFE7h9fsHQEQEa4ykTHFktH\nKJGKoCqfESRnRVMRxO72Qy0do1R9QrZWm/b8qd0wS8co0ZOhXwHV45j0S6dBlo5RqseP7WBfx+ct\nHaNUPY9/XW329eqy3f/o0t/SMUr16OFdRA7uYOkYJaq7/QQAuW/ZWzhJyaymZlSb96b4d5EOlxBC\nCCGEEKLMDAaZUmgOuWiGEEIIIYQQQlQS6XAJIYQQQgghRCWRDpcQQgghhBBCVBI5h0sIIYQQQghR\nZga5LLxZZIRLCCGEEEIIISqJdLiEEEIIIYQQopLIlEIhhBBCCCFEmRkMMnZjDmklIYQQQgghhKgk\n0uESQgghhBBCiEoiUwqFEEIIIYQQZSZXKTSPjHAJIYQQQgghRCWRDpcQQvw/e/cdHUXZ9nH8uy29\n99AJCYEQCEgXKVKUovLQpHepotJ7kd6kPCKKooAgYEUfGyiogHSC1IBAKIEE0nvPlvePhYSQDlmT\n+F6fc3IOu3vtzG/vmdnZe+aeQQghhBDCRGRIoRBCCCGEEKLEDAYZUlgccoZLCCGEEEIIIUxEznCV\nEYPBwJxZ3+Pt48qIkc+WdZwCSc7SVVY5XVs1ovbr/VCaqUm6fodLSz5Cm5JW7DqluYZ600dg7+cF\nSiUJl4IJWrUFfUYWTo39qDNxEAqViqyEJK6s3U7S9Tsm/0xluczdWjXEd8LDdrrLhcX5t2dBdWpr\nSxrMH41NjUqgUBD605/c/PQHAJwb+1HnrQEo1Sp0GZkEvbOdhKAbJv9MpmxP52efodb4ASg1GpKD\nQ7iy9AN0qWnFq1Eqqf3WUJyaB6BQqbiz63vCvt0PgGVVD/zmjEdjb4s2NZ3LizaQGnIv13SrvtqV\nSt07cHLgFABU1la0/nlznjoAl1aN8B43AKWZMUPQ0k3o8lmuBdYpFfhOHIrzg6whO38g9EFWq6oe\n+M0dh8beFl1qOpcWvpc3a98uVOnegeMDphqzWprjN3c8NjUrg7J4x0fL67ZuqnXgIc+Xnse1XTMu\nTF2Z/ZxDw7p4TxiE0twMbXIqlxdvJP1eZLHyAji1bEzNsQNRmmlICQ7h6vKNeTIXVKM0M8N7yihs\n63qjUCpIDLpO8JrN6DMzsapRhdrTx6GyssBgMHDrg8+IO3Wu2LkKY9GoFQ79x6PQmJF1J5iYTUsw\npKXkqrF6rjN2rwwGgwFDRjpx29aQefMKCktrnMfORV25BgqFguRDP5P0/fZSyfU4Rc0XUbVehEJl\nhiHqEtpfx0NmUv613i+h7ryZrPc8H3xIR1Qd16N0bYAhKxV90A70Zzc9cRZTrZu2dWtRe9IwVBYW\nKJRKQj77jvB9f+aa7uPfT+LfS85wlYEbN6IYMXQH+/YGlXWUQknO0lVWOc0cbKk/fwxnZ6zjz95T\nSAuLpPaE/iWqqzW8BwqVkiMDZnKk/3SU5mbUGtYdtbUlz6yaxNV3d3J0wAyCVmyh4fK3UGpMeyyn\nLJe5mYMtDRaM4cz09RzqNZXUsAjqTOhXorra4/qQHhHL4b4zODpkHtV7dcShvg8KtYpGy9/g4tLN\n/DlgFsGffEfDReNM/plM2Z4aBzv85o7n4qx3ONH3LdLuReD9+sBi11Tu0RHLqh6cHDiZ0yNmUrVv\nN+z8vAGo9/ZbhO75lRP9J3Hr4y+ov3xqrunaN/Cl+uDuuZ/z9yH+3BVODZmW/WfMYEu9ueO5MGsN\nx16dSGpYJD7jB+TzeQquq9KjE1ZVPTg+YAonh8+iWr+u2PnVAsB/4ZuEfvMrx/tN5sbmLwlYkfsH\nln0DX2o+lrX6wFfQZ2RyfMBUTo2cY6zz8yqwrcvrtm7KdUBtZ4Pv9FH4ThmBgpyhTeauTjRYOY2r\nqz/m1OBpRP1xkjrTRhWZ9dE8vnMmcHnOak73f4O0exHUHDe42DXVhvZCoVJxZuhkAodMRmVuRrUh\nPQHwmTKa8J9+48ywKVxbthG/xVNA9fQ/x5S2DjiPm0f02pncn9QHbUQYDgNez1Wj9qyG46A3iVz2\nJuEzBpGwZwsuU4ydVIe+Y9HGRhI+tT/hs4dh26knZj71nzpXHpYuqDt/iPb7AWRtbYQh4Taq1ovy\nr3WohbrNMlDktI+q3UrITCFrW2O0u9qhrPECCq/OTxTFlOtmg+VTubn5S04Nmca5SUvxeXMollU9\nsqeb3/dTRWQwKMr1X3nxr+1wffTRR1y4cKGsY+Rr985AevRsSOcu9co6SqEkZ+kqq5wuLRqQcPkm\nqXfDAbjzzX4qdW5Vorq4s1cI3vItGAygN5B49TYWHq5YVfMkKzmNmNPGH+opIffQpqThUN/HpJ+p\nLJf54+0U8vUBKnUpuj0frbv8znau/HcnAOYuDijN1GiTUzFodfzWZQKJV0MAsKrsRlZ8ssk/kynb\n06l5AxKv3CDtQTuE7fkVjxdbF7vGtW1z7v/4BwadHm1SChEHjuLRuTXmrk5Y16hExP6jAMQcP4fK\n0hxb35oAmDnZ4zv1Na6/tyPXvOzr+6Kxs6Hxh4tp9ukqKvd8AQDn5gEkXLmRvbxC9/yKR+fcOYuq\nc2vbjLAfDmZnDd9/DM/ObTB3dcS6RiXC9x/LyWqRO2vdaSO5tuGzXPNSqJSorCxQqJQozTQA6LO0\nBbZ1ed3WTbUOALh3aElmTBzXN+Rezm7tWxB9/CxJV28Zp/fdfq6t31pk1occmzUk6UowaaH3Abj3\n7T7cX2hd7JqE85e58+lXD9pRT/K1W5h7uALG5aq2tQFAZWWJPjOr2LkKYxHQnMwbl9GG3wUgaf83\nWD+XuyNi0GYR8+FS9PExAGTevILKwRlUauK2rSF+x7vGXA4uKDRm6FNL//tHWb0DhvAzEG88c687\nvxll3b55C9WWqLt+gvbQzFxPK9wbob+8Gwx60Gehv7UPpU+PJ8piqnVTaabh5idfEXf6IgAZUbFk\nJSRh4eoMFPz9JP69/rVDCkePHl3WEQo0d34XAE6cuFXGSQonOUtXWeW0cHcmPSIm+3F6ZCwaGyvU\n1pa5hhoVVhd98mJOnYcLNfp34dKyzaTeuY/aygKX5vWJPnkRez8vbL2qYO7iaNLPVJbL3NLdibRi\ntGdRdQadnoaLxuPRoRnhBwNJfjC8zKDTYeZkR+vPlqFxsOXsrA0m/0ymbE8LNxfSI6KzH2dExqC2\nsUJlZZk9bKewGgu33OtlRmQMNt7VMXdzJiMqzviDNvu1WMzdnEm6HkK9hW8R/N4O9NrcHRSDTkf0\nkUBubd2DubMDz2xcYMzg7kzGY/PR2FihsrbMNaywsDoLd2cyIh/PWg0Ld5c8WdOjYrFwcyLp+m38\nF73JtQ07MGh1ubLe3vE/mnzwNm1+/BCVtSVAoUP4yuu2bqp1AMgevuXZrV2ueVpVq4Q+LQP/xROx\nqlaJ9Ihorq3fVmTWh8zdnMmIfCRPVAxqG+tcmQuriTt1Pmda7q5U7vsS11Z+AMD1NZsJeHchVfq+\njMbRjisL1oJOX+xsBVE7u6ONyRkyqYuJRGllg8LSOntYoS7qPrqo+9k1jkMmkhZ4GHQPthO9DucJ\nC7Fq3p7U0wfR3gt56lx52FXBkBSa8zgpDIW5PZjZ5hpWqOq0Af2FLRiiLuV6u+H+aZR+/dHdOw4q\nc5Q+/wH9k3VaTbVu6jOzuP/D79nPV+reEZWlBQlB10GpLPD7Sfx7mbzDlZyczJw5c0hKSiIyMpIu\nXbrw448/8vPPP6NQKFi0aBEtW7bE3d2dhQsXYm1tjbOzM+bm5qxYsSLfaW7YsIGbN28SExNDYmIi\nc+fOpUmTJjz//PN4eXlRq1YtEhMT6dq1K82aNWPWrFncu3ePrKws5s2bh7+/PwsWLCAkJAS9Xs/E\niRNp3ry5qZtCiLKhyP+UuuHxHXwx6uzq1OSZ1ZMJ+fIXoo6cBeDMlHeoPb4vvm8OJPbs38ScDir0\nKHyFV8C1NHnasxh15+a/j2r5JzReNQmf13py/aNvAMiMTeS3rhOw861Biw/mcHRYKCl3wksn/z9N\nWcB6pdcXq0aRz2sGXf7PP3zNe/wA4s9dJvbUBRye8cv1+u2t32T/OyMqlrDv9uPz5tBcQ5Yen14u\nhdXll0mvL3jb0uvxGT+A+LNXiD11EcfHstaZNpKYkxcI/mA3Zk72tP35I9yfb0bEH6fynV653dZN\ntA4URqFW4fJcE86MnUfa3XCqvNqFBityhpAWRVHQ9vtI5uLU2Ph6UW/ZDO59s5fYY2dQmGmou2gK\nfy/dQOyxM9jWq43/ylkkXQnO1Vl/IgWsm+h1eZ5SmFvgPH4BKmc3Ipe9leu1mPcWELt5BS5TVmLf\neyQJX21+ulx5515kTmXAKNBr0V/aDnbVcpXpDs1C1XYZ6sHHISUcfcjvKCs94W+4f2DdrD74P1Tt\n25VzE5eiz8jEe8KgAr+fKiL5j4+Lx+QdrpCQELp168YLL7xAREQEgwcPxs/Pj8DAQAICAjh58iSz\nZ8+mT58+rFq1Ch8fH9atW0dERESh07WwsGD79u1cv36dKVOm8P3333P//n327NmDo6MjM2caT0F/\n/vnnVK5cmXXr1nH79m0OHjzIlStXcHR0ZNmyZcTFxTFo0CB++uknUzeFEP8YnzG9cWvTGAC1tSVJ\nwXezXzN3dSIzIRldekau96RHxODg711gnWenlvjNGMHl1Vu5/4txaBQKBbq0dE6NXZz9vtZfvkNq\naAXtHBSg9pjeuLV5BgCNtRWJN3LOMlgU1J7h0Tj418q3zqVFA5KC75ARHY8uLYN7vxzDo30z1NaW\nODetR8TBQAASr94m8XoItt5VK2yHKyMiGvt6OcPOzF2dyEpIRv9IexVWkx4RnessirmrExmRMaSH\nR2Pm7JBrXg9f8+jchsy4BFzbNkdlaYG5qxPNtq/m1JBpVOnTmajDgWREROM1qi+VXmkPQOXu7Ul+\nZLnmlxMgPSIa+8e2k+ysj2Uyd3UiPTKW9Ii8WS0evObZxZjVrV2z7KwtdqzixODpuLVrzvEBU8Bg\nIDMmHgDnJn65OlwVYVs31TpQ6Dyj4ki4eDV7GNi973/Hd/IIlOZm6DMyi8ycHh6Frd8jeVycyUpM\nypW5qBrXDq3wmTqa4LUfE7nfeLMEa69qqCzMiT12BoCkoGuk3rqLrV9tMiKPF5mrMNrocMy8c4YF\nq5xc0SUnYMhIz1WncnbHdcZassJuEblwPIYsY16LgBZk3QlGFxeNISON1KO/YNW8/VNlyldSKArP\npjmPbSphSIsFbWr2U8p6g0BjhXrwcRQqjXF44eDjaPf0AKUa3eG5kB5nrG06GUP8zSeKYsp1U6FR\n4zfvdaxrViFw1BzS70cBFPr9JP69TH4Nl4uLCwcOHGDq1Kl88MEHaLVaXn31Vb799lsOHDhA+/bt\nUavVREZG4uNjXKEbN25c5HRbtGgBgI+PD9HRxlO9jo6OODrmHt5w8+ZNGjZsCECNGjUYNmwY165d\n4/DhwwwePJg333wTrVZLbGxsaX5sIcrU9Q+/5ujAWRwdOIvjw+fj4O+D1YOLdav16kjk4cA874k+\ncaHAOo/2zag7dSin31ie8wMMwGCgyfoZ2NU1Xsjv0aE5eq3uH7lL4T/p2odfc2TgbI4MnM3R4fNx\nzNVOHYg4dCbPe6JOXCywrlKn5viM7gWAUqPGs1MLYgKDMOj1BMwfg2NAbQBsvCpjXb0S8ZdMf5dC\nU4k5eR57f5/si8Ur93iBqD9PF7sm6vBpPF9+3njdi40V7p1aEXX4NBlRsaSFReDe0XhHRafmARj0\nepJv3OHIS6M5Ndh4NuPK8g9ICwvP/jHjEFCX6oNeAeDOFz+hTTH+yDs1cg72jyyvKj07EflYzkez\n5lcXdTiQyi+3fyTrs0QdOkVG5IOsnYxZnR9mDb7D4W5jODFoOicGT+fysk2khYVzYvB0AJKu3sTj\nwXuUFuYAxF8KzpWnImzrploHChN16BQODXyx8HQDwK1dc5Jv3ClWZwsg7tR57OrVxrKK8c54lXq8\nQMxjmQurcWnXEu9Jr3Fh0qLszhZAWuh91NZW2Pn7AmBR2R2rGlVIvv5kHYZHpV84ibmPP2qPqgDY\ndOppHC74CKW1He5vf0jqqT+I+e/c7M4WgFWLjtj1fs34QK3BqmVH0i/lXX+elv72byg8m4GD8YCU\nKuA19DdyH/TW7mqL9tOmaHe0JGtPT9Cmod3RElLCUQW8hurZuQ9Cu6GqPwz9lS+eKIsp1836y6ag\ntrYicNTc7M4WUOj3k/j3MvkZri1bttCwYUMGDBjAiRMnOHToEC1btmT16tVERESwYIFx/LyHhwfB\nwcF4e3tz/vz5IqYKQUFBdO/enWvXruHu7g6AMp/T+7Vq1eLixYt07NiRu3fvsn79egICAvDw8GDs\n2LGkp6fzwQcf4ODgkOe9QvwbZMYlcnHRJhqtmIhSoyY1NIILb78PgF1dL+rPHcXRgbMKrav9ej8U\nCgX15+bc5Svu/DUur9rK+XnvUX/OKBQaNRnRcfw1bU2ZfM5/SmZcIucXfUjjlcY7tKWERnB+gfHa\nDPu6Nak/dxRHBs4utO7yup3Unz2SNl+sxGAwEHHwDLd27wODgcCpa/CbPBiFWoU+S8u5ue+RHllx\nDwhlxSVyefH71F82BaVGTVpoBEGL3sO2jhd1Z4/j1JBpBdaA8QJ1y8oeNNvxDkqNmrBv9xN/9jIA\nl+ato+6ssdQY3gt9ZhaX5qzNdZ1Ufq6+8wl1Zo6m+a61KNUq7n69D9/JIx5k+IAGyyejUKtJC4vg\n0kJjBrs6XvjNGcuJwdMLrQvd8yuWVdxp8dlqlBo1od8eIO7sFQAuzl1P3Vlj8BreE31mFhdmrysy\n66WFG6kzbSQtu7Y1Dk0E7u09UmB9ed3WTbkOFCT5+m3+XrWZBiunoVCr0CalcHHO2mLlBciKT+Dq\nsvfwWzINhUZNelg4fy9+F5s6tfCdOZ4zw6YUWANQc6zxLna+M8dnTzPhwt8Er91M0OyV1Jo4EqWZ\nBoNWx7VVm0gPK3xUT3HoE+OI+WAxLpNXoFCr0YaHEbPxbcy86uI0Zg7hMwZh80IvVC7uWDVth1XT\ndtnvjVz8OnE71uM0aiYe7+wGg4G004dI2vv5U+fKIy0K7S9jUb+8E4VKgyH+Ftp9o1C4N0L1wvvG\njlUhdCffQd31Y9RDjR0b3fFlGCL+eqIoplo37Rv44tq6CSkh92jy0ZLs+QVv/IzYk0X/xhX/PgqD\noYhv/Kd04sQJlixZgoODA7a2tly/fp2ff/6ZLVu2cOzYMbZvN/4fDxcuXGDJkiVYWVmh0Whwd3dn\nyZIl+U5zw4YNnDp1CqVSSVpaGvPnz8ff359WrVpx9KjxjlUzZ86ka9euNG/enNmzZxMREYFOp2P2\n7Nn4+voyd+5c7t27R3JyMgMGDODVV18t8rPo2Fl6DWMCKgaW+4wgOUubioHsbZr31s/lTZfTuytM\ne/7UJO/twMuTboG7gIrxnfRbiz5lHaNIHU58xf7mRe8Dylqnk19WmG29oiz3Q616lnWMIrU9uoc7\nfZuVdYxCVfvCOMw1c411GScpnNmUlAqzblYUoQOalHWEQlXZVfpnaZ+Eyc9wtWjRgh9//DHP82PH\njmXs2LHZjy9evMimTZtwcnJi3bp1aDSaQqfbtWtX+vfPveN52NkCct1wY82avEfhVq1aVezPIIQQ\nQgghhBBPotzcFt7Z2ZkRI0ZgZWWFra0tK1asYMKECSQkJOSqs7Gxwc+v4t/VRQghhBBCCPHvV246\nXJ07d6Zz59z/Qd97771XRmmEEEIIIYQQhZHbwhePye9SKIQQQgghhBD/X0mHSwghhBBCCCFMpNwM\nKRRCCCGEEEJUHAaDDCksDjnDJYQQQgghhBAmIh0uIYQQQgghhDARGVIohBBCCCGEKDEZUlg8coZL\nCCGEEEIIIUxEOlxCCCGEEEIIYSIypFAIIYQQQghRYvIfHxePnOESQgghhBBCCBORDpcQQgghhBBC\nmIh0uIQQQgghhBDCROQaLiGEEEIIIUSJyW3hi0dhMBgMZR1CCCGEEEIIUbHc6tWyrCMUquY3x8s6\nAiBnuErkpyYDyjpCoboF7mJfs35lHaNInU99zveNB5Z1jCK9cmZnuV/mYFzuaZc7lnWMIln6Hagw\n7aljZ1nHKJQK4/ZT3tuzW+Au/vfMoLKOUaTuf33G8TavlHWMIrU8/H2F2dZ/b9m7rGMUqf3xr1nr\nPb6sYxRpcvD77PAfWdYxCjX40icA5X577/7XZ3wRMKysYxSp7/ltZR1BlDLpcAkhhBBCCCFKzGCQ\n20EUh7SSEEIIIYQQQpiIdLiEEEIIIYQQwkRkSKEQQgghhBCixPRyl8JikTNcQgghhBBCCGEi0uES\nQgghhBBCCBORIYVCCCGEEEKIEjPoZUhhccgZLiGEEEIIIYQwEelwCSGEEEIIIYSJyJBCIYQQQggh\nRIkZ5C6FxSJnuIQQQgghhBDCRKTDJYQQQgghhBAmIh0uIYQQQgghhDARuYZLCCGEEEIIUWJyDVfx\nyBkuIYQQQgghhDAROcNVStxaNcR3Qj+UZmqSrt/lwuKP0KakFbtObW1Jg/mjsalRCRQKQn/6k5uf\n/mB8T+tnCHh7LGnh0dnTOT5qEbrU9BLndG3ViNrj+6E005AUfIeLSz5El0/Oouos3JxpsWUxRwfO\nICshCQCNnTV1pw7HpmZllOZm3Nz6Hff2/lnijI9ze64hfhP6otSoSQy+y7lFm/Nv20LqXjzwAemR\ncdm1wTt+JGzvsafPZsLl7tzYjzpvDUCpVqHLyCTone0kBN14qryHA9PY8FkCmVkGfKpreHuCEzZW\nOcddfvgjhR3fJ2U/Tk7VExmj45ePK6FWwdIP47h6KwtLCwXd21vTv5vtU+V5XEVrz+IwGAzMmfU9\n3j6ujBj5rMnn91BFbUv35xpS941XUWk0JFy/w7lFH+ebu7C6Gn06Uv0/7VBZaIi/cptzCzejz9I+\ncSaHFk2oNmYISo2a1Bsh3Fj5LrrUtGLXuP+nC24vvYDS3IyUqze4sfJdDFlarOt4U+ONUagszFGo\nlITt3EP0/oNPnPNR5Xlbd372GWqNG4hCoyblxh2uLH0/T3sWVWPu5kyTj5dxavDU7H2Q83ON8Zs3\ngfRH9pV/jZv3RPvK/NRs589zU7ujMlMTfTWMX2d9RmZy3mnX7d6MJq91xGAwoE3P4o9FXxJx6Q5m\nNha8sGIQTl4eKJQKLu85wemP9pdKtkdVbtOARhN7otRoiL8WyvH5W8lKKbgNnl0ygvjgMC5v+wUA\njY0lLRcNw76mJygV3PzfMYK27H3qXKWxbXf+7f3c+/LtPxG69xi2NSsRMHckaisLDAYDlzd8QdTx\ni0+U07N1AA3e7I3STE3CtVBOvf0J2nzar6A6MztrGs8dgoNvNXRpGdz63xGu7z4AgFvTOjSc0g+F\nSkVGQjLnVu0i/trdJ8opKhY5w1UKzBxsabBgDGemr+dQr6mkhkVQZ0K/EtXVHteH9IhYDvedwdEh\n86jeqyMO9X0AcGzgw83PfuLIwNnZf0+yA9E42OI/byxnZ67jzz6TSQ2LxPf1/iWuq9S1Nc0/ehsL\nN6dc76s/fxzpkbEcGzyL0xOWUnfKUMwfqykpMwdbGi0Yzelp6/m91zRSQiOp+0bfEtVZV/ckKzGF\nQwNmZ/+VRmfLlMtdoVbRaPkbXFy6mT8HzCL4k+9ouGjcU+WNTdCxYEMs70x35n8bPanioea/O+Jz\n1bz8vDVfrvPgy3Ue7FztjouDipmjHHF2ULF6SzxWFkr2vOvBjhXuHPkrncOn8+4sn1RFa8/iuHEj\nihFDd7Bvb5DJ5/WoitqWZg62NHp7FKen/pffek4jNSwSv4K29wLqPNs3watfJ46NW87vvWeiMtdQ\na2CXJ86ktrfDe9abXJu3nHODxpN+P5xqY4YWu8apTUs8er3ElUnzOD9kAkpzMzxf7Q6A7+JZhG7Z\nxYWRE7kybSE1JozAoornE2d9qDxv6xoHO+rOeZ2Ls1Zzst9bpIVFUGv8wBLVeHRpyzObFmPu6pzr\nffb1fbmz6wdOD52W/VdanS1LJxteXDmYH17/iG0vLCThTjTPTftPnjrHmm60ntGDPSPe47NXlnNy\n415efn80AK0mvUzy/Xi2d13Czh4raTCgDZ6NapZKvofMHW14dvFwDk18n+9fnkNSaBSNJvXOt9bO\ny5NOn0yl+otNcj3f8I3/kBoRxw895rO332Jq922HS0Ctp8pVGtu2zYN9+cH+c7L/Qh/syxvMGs6d\n7w9xsP8czi3cTNMVb6BQlfwnrrmjLc0WjeTolPfY230WyWGRBLzVp0R1Daf1R5uawb4eszkwaDEe\nrerj2SYAjY0lrda+wbm1X/BLn3mcWbKdlqvHo9RU7HMfBoOiXP+VF9LhKgUuLRqQcPkmqXfDAQj5\n+gCVurQqUd3ld7Zz5b87ATB3cUBppkabnAqAY4PauDSpx3M7ltJy83ycGtV5spzNG5Bw+Ub2/O9+\nsx/Pzs+VqM7cxRG3tk0JnLQi13s0dtY4N2tA8OavAciIjOX4iHlkJSQ/UdaHXFvWJ/7yTVLuRgBw\n++sDVMmnbQurc2rgg0Gv59kP59Du8+XUHtUDlE+/EZpyuRu0On7rMoHEqyEAWFV2Iyv+6dry+Ll0\n6vmYUb2SBoA+nW3YezgVg8GQb/22bxNxslfS+0UbAK7cyKRbOytUKgUajYLWjS3Yfzz1qTI9qqK1\nZ3Hs3hlIj54N6dylnsnn9aiK2pZuLesTF3Qrezu+9dVvVOmS96xgYXVVuz1H8MX+I+4AACAASURB\nVI69ZCWmgMHA+aVbufvTkSfO5NCsEcl/Xyc99D4AEd/txaVT22LXuL74PPc//w5tUjIYDNx8532i\nf/kDhZmG0G2fk3DmPACZUTFkJSRi5uryxFkfKs/bulOzABKvBJMWalznwvb8gseLrYtdY+biiEub\nZpyfvCzPtO3r++LY2J8mW1fyzAeLcWhYt1QyA1R/ri7hF0KID4kC4Pyuw9R9pWmeOl2mlv2zd5IS\nlQhA+MUQrF3sUGpU/LH4Kw6t2AOAjZs9KjM1GUmld9AKoNKz9YgOuk3SnUgArn3xBzW7Nc+31rff\n8wR/d5SQXwJzPX96+W7OvPMlAJYPtv2spKdb/qWxbTsFPNyXz6bdF8uoPeo/2ftyhUqJxtYaALW1\nBbrMrCfK6dHSn9hLt0i+Y5x/8Jd/UK1ryxLVOfnV4PaPxzDoDei1Ou7/eYGqHZtiU82drKQ0Ik9d\nASDp9n20yWk4B3g/UVZRsVTsbnU5YenuRFpETPbj9MhYNDZWqK0tc50uL6rOoNPTcNF4PDo0I/xg\nIMkh9wDISkgi9OcjRBwMxDHAlyZrJvPngFmkR8aWKKeFuzPpkY/OPwaNjRUqa8vcwwULqcuIjuPc\njLV5pm1VxYOMmDhqDOyGa8uGKM3U3PrsR1Lv3C9RxsdZujuTFp7zOQtu24LrFGoVUScvcXn9LpTm\nZrT47zS0yWnc3L3vKbOZdrkbdDrMnOxo/dkyNA62nJ214anyRkTr8HBWZT92d1aRnGogJc2AjVXu\nDmhcoo7t/0vi8zUe2c/Vr23OTwdTaVjHnKwsA78dT0OtLr2jRxWtPYtj7nzjmZUTJ26ZfF6Pqqht\naenunDePbQHbewF1NtU9MQ+6SYv3pmPh6kDs2asErf/8iTOZubmQEZkzRC0jKhq1jTUqK8vsIW6F\n1VhUrYTG0YG6q99G4+JE0oUgQj7YhiEzi8ifcoaTub38IipLS5KDrj5x1ofK87Zu4e5MxiP7l4yo\nmDztWVhNZnQcl2atznfaWQnJhO87RPShU9g3qEODVTM4NXgKGVEl21fmx9bTkaT7OUPZksLjMbe1\nxMzGItewwsSwWBLDcubXbk5vbvx+AX2WDgCDTk+XNcPw6dyI4F/PEXcz4qmzPcrKw4nUR/aFqRFx\nmNlaobG2yDOs8PSyXQB4Ns/bMTXo9LRa8RrVOzXhzm9/kXg7/Klylca2rVApiTpxiaD1u4378nen\nok1J4+auX7iwYhvPbppNrYFdMHeyI3DWexh0+pLn9HAiNSKn/dIiYjGztUJtbZFrWGFhdTEXb1Lj\npWeJPncdlUZNlY6N0Wt1JIWEo7Yyx71lPSKOB+FUryZ2tSpj6WJf4pyi4qkwZ7j27NnDwIED6d+/\nP59++ilDhgyhT58+jB49mszMTPbs2cNbb73FmDFj6NKlC3v2GI8iXbhwgV69ejFkyBAmTZrEzJkz\nAdixYwd9+/alX79+bN++/enCKfNvxjwbezHqzs1/n/0dx2BmZ4PPaz0BODN9PREHjUeg4s5fJe7C\ndVya1y9xTEUB8+exnMWty/UetQqryu7oktM4OWoB5+e8S51JQ7Cr83TDJRSK/Hfyj7dtYXV3vv2D\nS6u3o8/Sok1O5cbOn/F4vkm+9SVi4uUOkBmbyG9dJ3Bs+AICFozBuppHfpMqFn3+B7fJb9TFN7+m\n0K6ZJZXdc47JTB7ugEIB/SaHM2llNC0aWlCqIyEqWHuWaxW1LQs485w3d8F1CrUK1+b+BM7YwKGB\n89DY2VB3Qt4hQcWlUBTQRnp9sWoUajX2TQK4tmAlF0dNRm1rS7VRg3PVVRrYi6oj+vP3zMXoMzOf\nOOtD5XpbL2ide6Q9i1WTj0uzVhN96BQACRf+JuHiVZyaBTxZzscoCljn9AXsF9WWZry04TUcqruy\nf9bOXK/tnbKND5pOx8LBmhZvdC2VfEXlLKrt8nN05sd8+dxbmNtbU3/cK08XrBS27ZBvD3Jx9Y6c\nfflne/F8vglKMw1NVkzg7Nsf8muXNzny2mIC5ozAwr3klzQU+FtCX8zfHHo959Z8DgYDL36xkFbr\n3iDieBD6LB3alHSOTPwvfiNf5sUvF1Hj5VZEnr6S3RmvqPQGZbn+Ky8q1BkuOzs7Nm7cyPvvv8+2\nbdtQKpWMHDmSixeNF0YmJyfzySefcPv2bcaOHUvPnj1ZsGABq1atwsfHh3Xr1hEREUFwcDA///wz\nu3YZj+4MHz6c5557Di8vr2JnqT2mN25tngFAY21F4o072a9ZuDqRmZCMLj0j13vSw6Nx8K+Vb51L\niwYkBd8hIzoeXVoG9345hkf7ZqhtrKjepxM3tv4vZ0IKMGiLdwG49+g+uLVpDIDa2pKk4JyLM80L\nyJkWHo19Pe8i6x6VEW088hf60yEAUkMjiD9/Fft63iT+XbKj+75je+HxSObERzIX1LZp4TE4+Hvn\nW1el63MkXgvJmY5CgUH7ZF9w/9hyt7bEuWm97I524tXbJF4Pwda7Kil3nuxIo6eLikvXcrJFxuiw\ns1FiaZH3C+nXo6lMH+mQ67mUVD0Th9hjb2s8cr51TyJVPZ/uK6Qit2d5U1Hbss7YXni0NebOs727\nORa4vTs+mvuRuvSoOML/CMw+ah7681F8R+W91qa4MiKisPGrnf3YzMUZbWIS+kcyFVaTFR1L7J8n\nss/eRP16kCrDjNekKDRqvGdNxLJGVS6Nm05GeOQT53xUedzWH0oPj8LOzyf7sbmrE1mPtWdxah6n\ntrGicq/OhHy6J+dJhQJ9MfeV+Xn2rZfw6mA8uGlmY0n0tbDs12zcHUiPT0GblreDbOvpyH8+GkfM\njXC+GrgebYZxeFv11nWJvnqPlMgEslIz+PuHQHw6N3rifA8FvN6dKs83BEBjbUn89dDs16zcHMlI\nyD9nQTyfrUf89TDSouLRpmVw6+dTVO/0TIlzlfa2XaVbKxKv3SHx+sN9ORi0OuxqVUFlYU7En+cA\niLt4g6QbYTj61+J+RNFnN/3H96BSW+Ny0NhYkPBI+1m6OZKRkIzusfZLDY/Bub5XvnXmHjacX/cl\nmYkpxnYY3tU49FChQJuawR+v5VyS0eXbZSTfLd2znKJ8Kj9dv2KoWbMmSqUSjUbD5MmTmT17NuHh\n4WgffKHWqWO8tsnT05PMB0cJIyMj8fExfnE3bmz8EX/t2jXu3bvHsGHDGDZsGPHx8YSEhJQoy7UP\nv86+gcXR4fNx9PfBqqrxCG+1Xh2IOHQmz3uiTlwssK5Sp+b4jO4FgFKjxrNTC2ICg9CmplGjTyc8\n2hvHitv5VsehXi0ij10oVs7gj77i2KCZHBs0kxMj5uHg750z/54diTwcmOc9MScvFKvuUWn3oki4\ncpPK3doAYOZkj0P92iRcLvmdy65u+ib75hZ/DluAU31vrKu6A1CjdwfC82nbyBMXC6yzrVUF33G9\nQalAaa6h5qudCNt/osS54J9b7ga9noD5Y3AMMP6Is/GqjHX1SsRfevI7wbVsaMGFa5mE3DPu/L/+\nJZl2zSzy1CUm67lzX0tAHfNcz3/1SzLv7zZelxATr2PP/hS6tLZ64jxQsduzvKmobfn3pm+yL4A/\nPPRtHB/djnt1IPzQX3neE3n8YoF19w6colKn5ijNjdcvebRrTNzlm0+UDSD+9Fls/Hyzb2bh0b0L\nsUdOFrsm5uBRnNu1QmlmBoBT6+ak/B0MQO1FM1BZW3JpfOl1tqB8busPxZ46j72/D5ZVjOtcpR4v\nEH34dIlrHqdNTadKrxdxbWe8Xsmmdk3s6noTe+LcE2c99t8f+eyV5Xz2ynJ2916FZ8OaOFR3BSBg\nQGuCD+TdD1vYW/Hqrklc//UcP0/ckt3ZAvDt2piWD85oqczU+HZ9hrvHn34I6fmN/+On3gv5qfdC\n9g1cikuAF7bV3ACo3bctd38/W6Lp1ejclAbjXgaM236NF5sQfvLvEucq7W3brlYV6oztlb0v9+r7\nAmG/niD5bgQaG0scGxh/61lVccOmZiUSrhbvd92l97/l177z+bXvfA4MXoxzg1rYVDPOv1af57l3\nMG/7hR+/VGBdrT7P4/96DwDMnezw6tmWO3tPgMFA642TcfSrAUCVTk3Ra3Vyl8L/JyrUGS6lUsnf\nf//NgQMH+Oqrr0hLS6Nnz57ZFwLnd4rXw8OD4OBgvL29OX/eeHGyl5cX3t7efPzxxygUCrZt24av\nr+8T58qMS+T8og9pvPItlBo1KaERnF/wAQD2dWtSf+4ojgycXWjd5XU7qT97JG2+WInBYCDi4Blu\n7d4HBgOBU9ZQb9owao/pjV6r4+ysDdm3wS1pzouLN9FwxSSUajWpYRFcfHsjAHZ1vfCfM5pjg2YW\nWleYs9PX4Dd9BFV7dkShUHLjk29IvPLkP3QeZj678EOarHrYZpGcnZ/Ttg3njeLQgNmF1l3bvIf6\n04fy/BcrUahV3Dtwkjvf/vFUuR5mM+lyn7oGv8mDUahV6LO0nJv7Xomv23uUk4OKhW84MW11DFlZ\nBqp4qFnylhNBwZks3BjLl+uMP27u3M/C1VGF5rFrNkb2smPO+lh6vXkfAzC2rx3+Pub5zOnJVLT2\nLM8qaltmxiVy9u2PaLr6zezt+K95mwBwqFuThvNf42D/OYXW3frqAGb2NrTbuQSFUkn837c5v3TX\nE2fSxidwY8V/qb1oJgqNmoywcIKXrsPa15ta0ydwYeTEAmsAwr/bi9rOlvofr0WhVJJy7SY3N27E\n1r8uTq2ak3YnFP+NK7PnF7LpUxJOl+wH8uPK87aeFZfIlSUb8V82FaVGTVpYBJcXbcC2Ti3qzBrL\n6aHTCqwplF7PhemrqD15BDVf64tBp+PSvLVPtK/MT1psMr/O2MHL741CqVGTcCeKfdM+BcDdvxqd\nlg3ks1eW02BAG2wrOeHdKQDvTjnDGb8e8i6Hln1Dh8X9GfLzXDAYCN5/nr+2Pf2+6FHpsUkcm7uV\nNuvGo9KoSLobxdFZnwDgVK86LRcO46feCwudRuDqL2gxfwgvf7sIg8HA3d/PcuWzA0+VqzS27asf\nfUv9GUNp/+WKB/vyU4R8exCAU1PWU3/aYFRmGvRaHeeXbiE1tOQHMTJikzg1/xNavfM6So2a5NBI\nTs7ZDICjXw2aLhjBr33nF1p35ZOfaL50NJ2/WQIKBUGbviM2yDjS58TMTTRdMNy4XkfFc2Tiu0/V\nruWBQV9+7gRYnikMBd22qJzZs2cPN2/e5PXXX2fMmDHZZ7DMzMzo3bs3Wq2WmzdvMnXqVDIyMujS\npQu///47Fy5cYMmSJVhZWaHRaHB3d2fJkiV8/PHHHDhwgMzMTBo0aMC8efNQqVSFZvipyYB/4qM+\nsW6Bu9jXLO+tn8ubzqc+5/vGA4suLGOvnNlZ7pc5GJd72uWOZR2jSJZ+BypMe+rYWXRhGVJh3H7K\ne3t2C9zF/54ZVNYxitT9r8843uYpr1H5B7Q8/H2F2dZ/b5n/rcjLk/bHv2at9/iyjlGkycHvs8N/\nZFnHKNTgS8ZOXXnf3rv/9RlfBAwr6xhF6nt+W1lHKLagLh3KOkKh6u39rawjABXoDFfPnjkXaxd1\nkwtzc3N+//13AC5evMimTZtwcnJi3bp1aDTGYSavvfYar732mukCCyGEEEIIIf7fqzAdrifl7OzM\niBEjsLKywtbWlhUrVhT9JiGEEEIIIUShytN/Llye/es7XJ07d6Zz585lHUMIIYQQQgjx/1CFukuh\nEEIIIYQQQlQk//ozXEIIIYQQQojSJ0MKi0fOcAkhhBBCCCGEiUiHSwghhBBCCCFMRDpcQgghhBBC\nCGEicg2XEEIIIYQQosT0cg1XscgZLiGEEEIIIYQwEelwCSGEEEIIIYSJyJBCIYQQQgghRInJbeGL\nR85wCSGEEEIIIYSJSIdLCCGEEEIIIUxEhhQKIYQQQgghSkyGFBaPnOESQgghhBBCCBNRGAwGQ1mH\nEEIIIYQQQlQsZzt2LusIhWp0YF9ZRwBkSGGJ6NhZ1hEKpWJguc8IkrO0qRjI3qb9yzpGkbqc3l1h\n2vOnJgPKOkahugXuAirGd9JvLfqUdYwidTjxFfubv1rWMYrU6eSXFWZbryjL/VCrnmUdo0htj+7h\nTt9mZR2jUNW+OAVA5hrrMk5SOLMpKRVm3awo5D8+Lh4ZUiiEEEIIIYQQJiIdLiGEEEIIIYQwERlS\nKIQQQgghhCgxuUth8cgZLiGEEEIIIYQwEelwCSGEEEIIIYSJSIdLCCGEEEIIIUxEruESQgghhBBC\nlJhcw1U8coZLCCGEEEIIIUxEOlxCCCGEEEIIYSIypFAIIYQQQghRYnoZUlgscoZLCCGEEEIIIUxE\nOlxCCCGEEEIIYSIypFAIIYQQQghRYnKXwuKRM1xCCCGEEEIIYSLS4RJCCCGEEEIIE5EhhWXEYDAw\nZ9b3ePu4MmLks2Udp0CSs3SVVU7XVo2o/Xo/lGZqkq7f4dKSj9CmpBW7Tmmuod70Edj7eYFSScKl\nYIJWbUGfkYVTYz/qTByEQqUiKyGJK2u3k3T9jsk/U1kuc7dWDfGd8LCd7nJhcf7tWVCd2tqSBvNH\nY1OjEigUhP70Jzc//QEA58Z+1HlrAEq1Cl1GJkHvbCch6IbJP5Mp29P52WeoNX4ASo2G5OAQriz9\nAF1qWvFqlEpqvzUUp+YBKFQq7uz6nrBv9wNgWdUDvznj0djbok1N5/KiDaSG3APAa0w/3Ds+iy4t\ng4SLV7n+30/RZ2Zh7uZM3TnjMHOyR6FUErLz++wMLq0a4T1uAEozY4agpZvQ5bNcC6xTKvCdOBTn\nB1lDdv5A6IOsVlU98Js7Do29LbrUdC4tfC87a60xffHoZMwaf+Eq1/67HX1mFigVeI3ojWvrxqgs\nLYrV1uV1WzfVOvCQ50vP49quGRemrsx+zqFhXbwnDEJpboY2OZXLizeSfi+yWHkBnFo2pubYgSjN\nNKQEh3B1+cY8mQuqUZqZ4T1lFLZ1vVEoFSQGXSd4zWb0mZlY1ahC7enjUFlZYDAYuPXBZ8SdOlfs\nXIWxaNQKh/7jUWjMyLoTTMymJRjSUnLVWD3XGbtXBoPBgCEjnbhta8i8eQWFpTXOY+eirlwDhUJB\n8qGfSfp+e6nkepyi5ouoWi9CoTLDEHUJ7a/jITMp/1rvl1B33kzWe54PPqQjqo7rUbo2wJCVij5o\nB/qzm0oll6nWU8dn6uH9xmAUahX6jEyurd1K4uXgUslc1mRIYfH8o2e4Bg8ezI0buX84nDx5kkmT\nJpX6vPbs2cNvv/1W6tMtDTduRDFi6A727Q0q6yiFkpylq6xymjnYUn/+GM7OWMefvaeQFhZJ7Qn9\nS1RXa3gPFColRwbM5Ej/6SjNzag1rDtqa0ueWTWJq+/u5OiAGQSt2ELD5W+h1Jj2WE5ZLnMzB1sa\nLBjDmenrOdRrKqlhEdSZ0K9EdbXH9SE9IpbDfWdwdMg8qvfqiEN9HxRqFY2Wv8HFpZv5c8Asgj/5\njoaLxpn8M5myPTUOdvjNHc/FWe9wou9bpN2LwPv1gcWuqdyjI5ZVPTg5cDKnR8ykat9u2Pl5A1Dv\n7bcI3fMrJ/pP4tbHX1B/+VQAPLu1w6VVY04Pn8mpIdPIiI7Da4yx7X2nvUbMsb84NXgaZ99YhO+U\nEQ8y2FJv7nguzFrDsVcnkhoWic/4Afl8noLrqvTohFVVD44PmMLJ4bOo1q8rdn61APBf+Cah3/zK\n8X6TubH5SwJWTAGg0kvtcH2uMSeHzeLE4OlkxMRTa6wxa7W+XXF8xo/To+dxfOCDz9apZYFtXV63\ndVOuA2o7G3ynj8J3yggU5PzwM3d1osHKaVxd/TGnBk8j6o+T1Jk2qsisj+bxnTOBy3NWc7r/G6Td\ni6DmuMHFrqk2tBcKlYozQycTOGQyKnMzqg3pCYDPlNGE//QbZ4ZN4dqyjfgtngKqp/85prR1wHnc\nPKLXzuT+pD5oI8JwGPB6rhq1ZzUcB71J5LI3CZ8xiIQ9W3CZYuykOvQdizY2kvCp/QmfPQzbTj0x\n86n/1LnysHRB3flDtN8PIGtrIwwJt1G1XpR/rUMt1G2WgSKnfVTtVkJmClnbGqPd1Q5ljRdQeHV+\n6limWk8VajX+SyZxZfkmTg2exq2t3+C34I2nzisqln/tkMKePXvSoUOHso6Rr907A+nRsyGdu9Qr\n6yiFkpylq6xyurRoQMLlm6TeDQfgzjf7qdS5VYnq4s5eIXjLt2AwgN5A4tXbWHi4YlXNk6zkNGJO\nG3+op4TcQ5uShkN9H5N+prJc5o+3U8jXB6jUpej2fLTu8jvbufLfnQCYuzigNFOjTU7FoNXxW5cJ\nJF4NAcCqshtZ8ckm/0ymbE+n5g1IvHKDtAftELbnVzxebF3sGte2zbn/4x8YdHq0SSlEHDiKR+fW\nmLs6YV2jEhH7jwIQc/wcKktzbH1rYlunFlGHT6FNTgUg6uBJ3Nq3AODC9FXc/WofAObuLhi0egCc\nmweQcOVG9vIK3fMrHp1z5yyqzq1tM8J+OJidNXz/MTw7t8Hc1RHrGpUI338sJ6vFw6xeRB46nZ01\n8o+TuD/fHIBKXdtya+se9BlZGLK0xveevlRgW5fXbd1U6wCAe4eWZMbEcX3DjlzTc2vfgujjZ0m6\ness4ve/2c2391iKzPuTYrCFJV4JJC70PwL1v9+H+Quti1yScv8ydT7960I56kq/dwtzDFQCFSona\n1gYAlZWl8WxmKbAIaE7mjctow+8CkLT/G6yfy90RMWiziPlwKfr4GAAyb15B5eAMKjVx29YQv+Nd\nYy4HFxQaM/Sppf/9o6zeAUP4GYg3HoDXnd+Msm7fvIVqS9RdP0F7aGaupxXujdBf3g0GPeiz0N/a\nh9Knx1PnMtV6atBqOfLyGJKv3QbAsrI7WQn5n80T/14mOwydlZXFrFmzCA0NRafTMXz4cAA2btxI\ndHQ0aWlprF27Ntd7vvrqK3bv3o1er6d9+/a8+eab+U57z549HDhwgJSUFOLi4nj99dd58cUXeeml\nl6hRowYajQYvLy9cXFzo168fixcv5sKFC2RlZfHGG2/QsWNH1qxZQ2BgIHq9nmHDhtGlSxdTNUUe\nc+cb53XixK1/bJ5PQnKWrrLKaeHuTHpETPbj9MhYNDZWqK0tcw01Kqwu+uTFnDoPF2r078KlZZtJ\nvXMftZUFLs3rE33yIvZ+Xth6VcHcxdGkn6ksl7mluxNpxWjPouoMOj0NF43Ho0Mzwg8GkvxgeJlB\np8PMyY7Wny1D42DL2VkbTP6ZTNmeFm4upEdEZz/OiIxBbWOFysoye6hOYTUWbrnXy4zIGGy8q2Pu\n5kxGVJzxB232a7GYuzmTGHSdqv27EfrVPrISk/Ho2hZz5wfrpMEABgPPvP829g3qcPfzH6k+qDsW\n7s5kPDYfjY0VKmvLXMMKC6uzcHcmI/LxrNWwcHfJkzU9KhYLNycSg65TrV837j7I6tm1bfb2Y1XN\nE+uaVagx9D+YOdgBkJlY8A/g8rqtm2odALKHbHl2a5drnlbVKqFPy8B/8USsqlUiPSKaa+u3FZn1\nIXM3ZzIiH8kTFYPaxjpX5sJq4k6dz5mWuyuV+77EtZUfAHB9zWYC3l1Ilb4vo3G048qCtaDTFztb\nQdTO7mhjcoZM6mIiUVrZoLC0zh5WqIu6jy7qfnaN45CJpAUeBp2xQ49eh/OEhVg1b0/q6YNo74U8\nda487KpgSArNeZwUhsLcHsxscw0rVHXagP7CFgxRuQ8yGO6fRunXH92946AyR+nzH9A/fafVlOup\n8XvdnqbbVmHmYMvFueueOm95If/xcfGY7AzXF198gZOTE59//jlbt25l/fr1xMXF0bZtW7Zv306b\nNm3Yt29fdn1MTAybN29m165dfPvtt2RmZpKSklLg9NPS0ti6dStbtmxhxYoVaLVaUlNTGT9+POvW\n5azIBw4cIC4ujq+//prt27dz6dIlDh06RGhoKLt372b79u1s2rSJxMREUzWFEGVLkf+XoeHxHXwx\n6uzq1KTF5gWEfPkLUUfOok1J48yUd/Aa/h9a7VxBpa5tiDkdhP7B0fh/JWX+X5t52rMYdefmv8/+\njmMws7PB57We2c9nxibyW9cJHBu+gIAFY7Cu5vH0ucuKsoD1Sq8vVo0in9cMuvyff/ha+L7DRP52\nnEYbF9DkoyWk3g7Ls07+Nf5tjrw0GqdmAcYnFMVcroXV5ZdJry9429Lrub/3TyJ+P0HjjfNpunkx\nqSE5WRVqFfb+PpydtJzTo+cBUKNvIUOnyuu2bqJ1oDAKtQqXNk258dHnnBo6ndjAizRYMa3orA/f\nX9D2+0jm4tTY+HrR8P0l3PtmL7HHzqAw01B30RT+XrqBEz1Gce71efhMG4u5m3OxsxUSOv/n9bq8\npeYWuExajtqjCjEfLs31Wsx7Cwh97QWUNvbY9x759Lnyzr3InMqAUaDXor+U9xoy3aFZgAH14OOo\nu3+OPuR30GU+fSwTr6eZsQkcfWUMgaPm4Dd3PJZVPZ8ur6hQTHaG68aNGzz7rPHCaxsbG2rVqsXR\no0fx9/cHwMXFhejonKMEd+/excfHBwsL44XBU6dOLXT6TZs2RalU4uLigp2dHbGxsQDUrFkzV92t\nW7do2LAhAPb29kycOJHNmzcTFBTE4MHGsdZarZawsDDs7OxK4ZMLUfZ8xvTGrU1jANTWliQF381+\nzdzVicyEZHTpGbnekx4Rg4O/d4F1np1a4jdjBJdXb+X+L8ahUSgU6NLSOTV2cfb7Wn/5Dqmh4ab6\naGWi9pjeuLV5BgCNtRWJN3JuFGBRUHuGR+PgXyvfOpcWDUgKvkNGdDy6tAzu/XIMj/bNUFtb4ty0\nHhEHAwFIvHqbxOsh2HpXJeVOxWzTjIho7OvlDDszd3UiKyEZ/SPtVVhNekR0rrMo5q5OZETGkB4e\njZmzQ655PXxNbWdDxK9HCNn+HQB29bxJe7BOuj3fgpiT59ClplO1TxfMTBTQ/wAAIABJREFUnO0B\nqNy9PcmPLNf8cgKkR0Rj/9h2kp31sUzmrk6kR8aSHpE3q8WD19R21oT/coTbn+Zkfbj9ZETFEbH/\nKIYsLboHHRuH+j6we2/2dCrCtm6qdaDQeUbFkXDxavbQr3vf/47v5BEozc3QZxT94zw9PApbv0fy\nuDiTlZiUK3NRNa4dWuEzdTTBaz8mcv+fAFh7VUNlYU7ssTMAJAVdI/XWXWz9apMRebzIXIXRRodj\n5p0zLFjl5IouOQFDRnquOpWzO64z1pIVdovIheMxZBnzWgS0IOtOMLq4aAwZaaQe/QWr5u2fKlO+\nkkJReDbNeWxTCUNaLGhTs59S1hsEGivUg4+jUGmMwwsHH0e7pwco1egOz4X0OGNt08kY4m8+dSxT\nracqayucmvgTdeiU8eNfvUVycAg23tVIu5tztlH8u5nsDFetWrUIDDT+aEhOTubatWtUqVKlwPpq\n1apx8+ZNMjONX4RvvvkmERERBdYHBRnHkUdHR5OcnIyzs/HokPKxI05eXl5cvGgcIpGUlMTIkSPx\n8vKiefPm7Nixg08//ZQuXbpQtWrVJ/+wQpQz1z/8mqMDZ3F04CyOD5+Pg78PVlWNZ0mq9epI5OHA\nPO+JPnGhwDqP9s2oO3Uop99YnvMDDMBgoMn6GdjV9TLWdWiOXqv7R+5S+E+69uHXHBk4myMDZ3N0\n+Hwcc7VTByIOncnznqgTFwusq9SpOT6je/F/7N13dBRl28fx77b0RnogFJNACqEKoShFmiI2QHoH\nQZpKb6FXBRSxF8SCKEXQR/RVARuIhAQEQi+hJkI6Cekhu+8fC0tC2i5ks8nzXJ9zOIfsXjPz23tm\nd+beuWcWQKlR49O1NckHT6DTamky/0VqNGkAgINfLezr1uTGcfPfpdBckg8cxTm0Pra326FWz24k\n7o0yuiZxTxQ+Tz+mv+7FwQ6vro+QuCeK3MQUsuPi8eqi/2LPtVUTdFotGTFXcAryo9Fr01GoVChU\nSuoN7cn1X/QHvLV6dcO3j34I5eWvdpCXdAOAyFHhOBdaX769upJwT87CWUuqS9xzkFpPdyqUtS2J\nf0aSm3A7a1d9Vrc7Wc9fwSnYnyavTTNkfWhYT67/8hcACb9F4P1Ee1AoUKhUAKSdLLotVIf3urm2\ngbIk/hmJS+NAbHw8AfDs2IqMmCtGdbYAUiOP4tSwAba++rMQNXt2I/mezGXVuHdsQ8DkF4ievNjQ\n2QLIjr2G2t4Op9BAAGxqeWFXz5eMcw/eYciJPoB1/VDU3vrjGYeuvfTDBQtR2jvhtfBDsiJ/J3nt\nXENnC8CudRecnn9B/4dag12bLuQcL779PCjtpV9R+ISBi/4LKVWTF9DG/Fik5tZXHbj1eUtubWhD\n/vZecCubWxvaQOZ1VE1eQNV27u3QnqgaDUd7avMD5zLbdqrVEhw+DufG+nVu/5AvdnVrkX783ANn\nrgp0OkWV/ldVmO0MV9++fZk3bx4DBgwgNzeXiRMnsn379lLrXV1dGT16NIMHD0ahUPDYY4/h5eVV\nan1SUhLDhg3j5s2bLFiwANXtndG9OnfuzP79+xkwYAAFBQVMmDCB9u3bExkZycCBA8nKyqJLly44\nODg88GsWoirKS03n2OIPaPbqJJQaNVmx8UQvfA8Ap2A/Gs0dzb5Bs8usazChPwqFgkZz797lK/Xo\nWU6u/JSj896hUfhoFBo1uUmp/DP9dYu8zsqSl5rO0cUf8vBr+ju0ZcbGc3SB/toM5+CHaDR3NH8N\nmlNm3ck1G2k0ZxTtN7+GTqcj/o9DXPz6Z9DpODjtdUKm3L59cP4tjsx9h5yEFEu+5AeSn5rOySXv\n0Wj5VJQaNdmx8ZxY/A6OQX4EzxlH5NDppdaA/qJ021rehG1YjVKjJu7bXdw4fBKA4/PWEDx7LPVG\n9Eabl8/x8DdApyMlMhqX5g1ptXE1KJQk7onkyib9Ad3JJe8SNGsMXl+uBuDf/+wmMHDU7Qzv03jF\nFBRqNdlx8RxfpM/gFORHSPhYIobMKLMudvtObH29aP3lKpQaNbHf7ib18CkAjs19k+DZL+I3ohfa\nvHyi56zRZz0QTVKzEFpvXIVCqSThzyguf/0DAOc/3ET9CYNp8/XrKG7fxe5SobNb96qq73VzbgOl\nyTh3idMrP6bxa9NRqFXcupnJsfA3ypymSOYbaZxZ/g4hS6ej0KjJibvO6SVv4RDkT+Cs8RwaPrXU\nGoCHxurvXBc4a7xhnmnRpzn/xsecmPMa/pNGobTSoLtVwNmVH5ATV/oXzMbSpqeS/P4S3Ke8ikKt\n5tb1OJLfXYiVXzCuL4ZzfeZgHLr1RuXuhV3Ljti17GiYNmHJBFI3vInr6Fl4r/4adDqyo/7k5k+b\nHjhXMdmJ3PplLOqnN6JQadDduMitn0ej8GqGqtt7+o5VGQoOrEb95DrUw/QdnYL9y9HF//PAscy5\nnUbPXEWDScNRqNVo8/M5MX8tuYnV93NdmE6h0xW6irea2L59OxcuXCh32GFFK2BjpS7PVCoGVfmM\nIDkrmopB/NSy+K2fq5ruUV9Xm/b8sUXx24FXJT0OfgVUj8+kX1v3sXSMcnWO2MquVn0tHaNcXQ9s\nqTbv9eqy3v98pFf5hRbWYd92rvQLs3SMMtXZrB8ul/e6vYWTlM1qama12Tari78efc7SEcr06F/f\nWToCUMV/+HjhwoXFfrcLqNQ7CgohhBBCCCHE/aryHS4hhBBCCCFE1SO3hTfOf+0PHwshhBBCCCGE\npUmHSwghhBBCCCHMpEoPKRRCCCGEEEJUTbrSfshaFCFnuIQQQgghhBDCTKTDJYQQQgghhBBmIkMK\nhRBCCCGEECbTyV0KjSJnuIQQQgghhBDCTKTDJYQQQgghhBBmIkMKhRBCCCGEECaTHz42jpzhEkII\nIYQQQggzkQ6XEEIIIYQQQpiJDCkUQgghhBBCmKy636VQq9WycOFCzpw5g5WVFUuXLqVu3bqG53/7\n7Tfeffdd1Go1vXv3pm/fvve1HDnDJYQQQgghhPifs3v3bvLy8ti8eTNTp07l1VdfNTyXn5/PihUr\nWL9+PRs2bGDz5s0kJSXd13KkwyWEEEIIIYT4n3Po0CHatWsHQNOmTTl+/LjhuZiYGOrUqYOzszNW\nVlY8/PDDREVF3ddyZEihCVQMsnSEclWHjCA5K1r3qK8tHcEo1aU9exz8ytIRjFId2rNzxFZLRzBK\n1wNbLB3BKNXlvV5d1nuHfdstHcEodTZHWjqCUaymZlo6Qrmqy7YpKkdGRgYODg6Gv1UqFbdu3UKt\nVpORkYGjo6PhOXt7ezIyMu5rOdLhMsFvbZ63dIQyddr/Dbta3d/Y0srU9cAWfm3dx9IxytU5Yis7\nw/pZOka5ukVu5uew/paOUa4nIjdVm/X+n+aDLR2jTM/+8yVAlW/PzhFbKWCjpWOUS8UgFAqNpWOU\nS6fLrzbvddkXVZzOEVurxfEHVI/jpPTkly0do1xObm9ZOoLRqvtt4R0cHMjMvPtFgVarRa1Wl/hc\nZmZmkQ6YKWRIoRBCCCGEEOJ/TvPmzdmzZw8AR44coUGDBobn/P39uXz5Mjdu3CAvL4+DBw/SrFmz\n+1qOnOESQgghhBBC/M/p2rUr+/bto3///uh0OpYvX86OHTvIysqiX79+zJo1i1GjRqHT6ejduzde\nXl73tRzpcAkhhBBCCCFMVt1vC69UKlm8eHGRx/z9/Q3/79SpE506dXrw5TzwHIQQQgghhBBClEg6\nXEIIIYQQQghhJjKkUAghhBBCCGEyLdV7SGFlkTNcQgghhBBCCGEm0uESQgghhBBCCDORIYVCCCGE\nEEIIk1X3uxRWFjnDJYQQQgghhBBmIh0uIYQQQgghhDATGVIohBBCCCGEMJlWhhQaRc5wCSGEEEII\nIYSZSIdLCCGEEEIIIcxEOlxCCCGEEEIIYSZyDVcFcWvbHP9xg1Bo1GTGXOHUsvcoyMo2qcba040W\n65YTOWQa+Wk39dM8+jAh8yaScz3JUPfPuHkUZOUYnc39kWYEjBuI0kpDxvnLnFj2AQWZ2cbXKRUE\nThqGW6smKFQqLm/cQey3uwCwq+1NyNxxaJwdKcjK4fiid8i6/C8ALk2Dqf/SIFTWVtzKyOLE4vfI\n/jeh9PYbPxClRr/sU8veL7n9SqpRKmnwyjBcb+e78tX3xN3Od4fPU4/h0TGM6GmvGR5rtGIqDgH1\nKMjWt2XqoeOcW/u50e16p83qjx+A0krDzfNXOLG09LYtq87a041W65eyf9AMw7p3CvYncMowVLbW\nKJRKLn3xH679/JdJ+e7weKQZDcb3Nyz/2NIPS8xZWp3SWkPI9JE4h/iDUkHa8fOcXLUebW6+Ydpa\nT3fEq2NL/pm6qtQc5lrPtrW9CQkfj8bZkVtZOZxc/LZhO7yjdt8nqflsZw4MmgqAyt6Odv/3cZG6\nc29+ZnLbej3alOCX+qLSaEg7d4Uji9dxq4S2LauuXp8u1H2uIyobDTdOXeLIoo/R5t8qd9mWaE+/\nF/vj1aUtBdm5pB07w7m1n6PNy8fa043g8HFYuTqjUCq5vPF7k9vSGDqdjvDZ3xNQ34ORo9qaZRkV\n6dNPP+H48eO8/vqaSlleVXmv38uc+yG1kz1BU0di/5AvKmsrLn62nWs/7dVn7dmFOv2eRHergOxr\nCZxc+oHhM/ZeltgPASg0apq8Ppt/v91Fwu8RRrdpkUxmOP5wDPan/qQRqGysUaiUXN7wHfG/7DU5\nX2Vmrmh/7Uvk3Q/Okpevpb6/I3PnhOJgX/TQ+fc/4/lo3XkUSgVOjmrmzgrF19eOtPQ8Xl11irPn\n0rG1UfF0j1r061PXLDktSW4Lb5z/iTNcffv2JTY2lu3bt/Prr78CMGXKFHr37s3Zs2cZMmQI/fv3\nJy0t7b7mr3FxIjh8Asdmr+JA/1fIjovHf/wgk2q8u3eg+QdLsPZwKzKdc6NArny1g6hh0w3/TOls\naVwcaTh3PNGzX+fvvpPIikug/viBJtX59uyKXW1v9g+cyoERs6nT/0mcQvwBCF30MrHbdrK//xRi\nPt5Ck1f1B7PWnq40WTmN0ys/IWLwDOJ/P0DQjBdKbb+QueM5Nns1Ef1eIfvfeAImFG+/0mpq9eyC\nbW1vDgyaQtTIWdTu1wOnkAAA1E4OBM4YTeDUkSgo+qHgHNqAQ+PmEzl0OpFDp5vc2dK4OBI6bxxH\nZ73Bvj6TyY6Lp8GEktu2rDqfJ9sT9tFCbDxdi0zX5LUpxHy0lYjBM/ln0goCJw3Frra3SRnvLn8s\nh2etYW+fKWTFJRA4YYBJdf4jeqJQq9g3aCb7Bs5AZW2F37Dn9NM52RMyaxTB04aDouwPXnOt54YL\nXyF2+04iBkzm4rrNNFoxrch8nRsHUnfIs0UfC63PjSOnDOs/cuh0Uv85YXzDAlYujjRbOJqoaWv5\ntdd0suISCHmpn0l1Pp1a4Ne/K3+PW8Fvz89CZa3Bf1B3o5Zf2e3p06Mj7o88TNSIWUQOnU5uUip+\nL/YHIHD6CyT//Q+RQ6Zz+KXFBE4daVJbGiMmJpGRwzbw80+mrSdLCAoK4tdfd9K37/OVtsyq9F6/\nd3lm3Q/Nm0BOQgoHhs7k0EtLCJwyAmtPV2x8PAgY25+DY+YTMXg6OdcS8R/Tt5SMltkPOYU2oOW6\n5bg0DjK6Pe/NZK7jj0bLp3Fx3Waihk3n6ORl1H95OLa+pu+DKjNzRUpNzWPxsuO8trwp2za1o1ZN\nW95572yRmpzcAuYvOsbKFU356vO2tH/Uk9VrTgGwZu0Z7GxVbNn4KJ9+3Jq/I5LYu6/kL53Ff7//\niQ7XHb169aJz584A/P3332zbtg0HBwcyMzPZtGkTzs7O9zVf17AmpJ86T3bsdQDitv+C9+PtjK6x\ncq+Be/swjk5ZXmzezo0CqfFwKC0+fY3m7y/BpWmwSdncWjUh7VQMWVf1y43dvhPvJ9qZVOfZIYy4\nHX+gK9By62Ym13f9jc8T7bH2qIF9vZpc3/U3AMn7j6CyscYx8CG8OrUm+e8j3DxzUf96v93NmTWf\nldx+rRqTfiqG7Kt32mZn8fYro8ajQyuu/fC7IV/87n2G7F6d25CXnMq5tzcUmZ+NjycqO1uCZo4h\n7MvVBM8dj9rJwfS2PXm3za5u24X3E4+aVGftXgPPDi35Z/KrRaZRWmm4sO4bUqKOAZCbkELejZtY\ne5q+c3Fv1bjY8n1KyFlWXcrh08Ss/xZ0OtDqSD97CVsfdwC8u7QhN+kGZ97aWG4Wc6xnaw9X7OvV\nJH7XPuD2dmir3w4BrFydCZz2AufeKboNODcKROPkwMMfLiHs85XU6tXNiNYsyrNNI1JPXCTzajwA\nF7f+im/34mddyqqr3eNRzm/4ifz0TNDpOLrsU67+aNyZzMpuT8cgfxL3RHIrIwuAxD8O4NmpNQDR\nM1ZydevPAFh7uaO7pTWyFY339caD9OzVlCe6N6zweVe0CRPG8emnn7NlyzeVtsyq9F4vzJz7IbWT\nPa5hjbmwbiug/6yMHBlOfloGCpUShVqNyt4WFAqU1tZoc/NKzGiJ/RBA7b7diflwE+knz5nUpoZM\nZjr+UFppuLh+K6l39kGJKeSnpd/XPqiyMle0iMgkQoKdqFPbHoDeverw885r6HQ6Q422QIdOpyMj\nQz8iISu7ACtr/aH1qdPpPPlETVQqBRqNkkfaevDr7/FmzSyqrio7pDA/P5/Zs2cTGxtLQUEBI0aM\noFatWixfvhytVouXlxerV6/GxsamxOnXrFnD3r178fb2JjU1FYC3334bd3d3zpw5Q0ZGBuPGjePW\nrVtcunSJ+fPns3jx4vvKauPlRm5CsuHv3MRk1A72qOxsDae/y6rJS0rl+OySh2bkp2Vw/ec/Sfoz\nEufGQTReOZPIIVPJTUwxPlt8oeUmJKNxsENlb1tkOEdZdcWyJyTjEFAHGy93chNT9Tvm23ISU7Dx\ndMWutg8FOTk0WvoKdnVqkhOfxNk1JZ9BsvF0Jyf+7pDJ3IRk1A52RduvjBobTzdy4u/Npz9tf2dI\nh0+PjkWWaeXqRErUMc6s+pi81HQaTB5OSPg4omcaP0TGxsuNnATj2ra0utykVI7OfL3YvLV5+cR9\n/7vh71rPdUZlZ0Pa8bPFak3NmWNkzsJ1yQei79Z5u1O3f3dOrFgHwNXtu/UZe3QoN4s51rO1p1ux\n7TA3IQVrTzdunrtMw0WvcP6dDWhvFR2ipysoIOmvg1z8dDvWbi40f3cBuUmp5b6Gwmy93MiOL9xm\nKWgc7VDb2xYZVlhWnUNdH6xPXKD1OzOw8XAh5fAZTry5yajlV3Z7pp84R+0BPYjd+jP56Rl4P9kB\na7ca+iKdDnQ6mr+3EOfGQVzd9AN1Bxc9q/ig5s7Xn/mLiLhYofM1h5deegWAzp07Vdoyq9J7/d5c\n5toP2fl6k5ucSt2BT+HepilKKw2XNu4g6+o1smPjufzl9zyy5U3yMzK5lZFF1Ki5JWe0wH4I4MT8\ntQDUHfxM+Q1ZUm4zHX9o8/K5tuM3w981n+2CytaG9BP31zGsjMwVLT4+By+vu8eYnh7WZGbeIjOr\nwDCs0M5OzewZIYx68QDOzlZoC3Ss+zAMgNCGzvzfz//SpLELeXlafv89HrX6v2/4XcV/tfbfqcp2\nuDZv3oyrqyurV68mIyODXr16YWVlxdq1a/H392fr1q3ExMTQsGHxbzqPHTtGVFQU33zzDVlZWXTr\nVvSb64ULF7Jr1y7ef/99YmNjmTJlyn13tgBQlnyiUKfVmlZTgsIfKmnRp0k7dgbXsCZc+/H3MqYq\nRFHKcgu0xtcpS/iA0GpLHVKi02pRqNV4tHuYgy/OJ+vqdWr37U6T16YRMWRG8QlKmj/3tl8Zyyrh\nuWKv7x7pJ85zbNbdtr3w8Rba/d/HKNRqdLfKv3YGKHG5ANyzbGPrSlNv6LPU7d+dQ6+sKHIdhbEU\npWx7xXOWX+cU9BDNVk7lytadJP71j8lZSvKg67m09tUVaAkYP5AbR06SEhmNS/OQIs9f+nSb4f+5\niSnEfbcLzw5hpoUvY9nG1inUKjxahRI5ZQ0FuXk0XzyW4Il9OL76S9Oy3JmnGdvz+s97sPZ0pdm7\nC9Bm5xL33a5i15r9M34hGhcnmr01777yi/tXZd/rZtwPKdRq7Gp5cSszm6gx87H19aLlh4vJunoN\njbMjno+1Ys8z48i/cZP6EwfRcP4EjtxzDRVgkf1QhTDj8ccddYc8h2/fHhydvLTUM4QmqYTMFaHQ\nd05FqApFOx9zk3XrY9iy8VF8fe3YtOUyM+ccYePnbZn0UiBr3znDoGH7cXe3JizMjehjNyonvKhy\nqmyHKyYmhrZt9UNuHBwc8Pf357fffsPfXz9mu0+fPqVOe+nSJUJDQ1EqlTg4ONCgQQOzZs25nohT\nSH3D39YeruSn30Sbk2tSzb3UDnbU6v0Elz/ffvdBhaLYN/X38h/TF492LQBQ2duSEXOl6HLTMoot\nNyc+CefQgBLrcq4nYeXmUuS5nIQUcuKLPg5gc/u53KQUbkSfMQwNifv+N4KmjkBprSmWNzc+CeeG\n97TNPRnLqsmJT8LavUaR5wp/M1YSlyZBqJ0cSNp7EACFQgFaXbkf5v5j+uDRXt+2antbMs4Xb9uC\ne9v2ehLODYu37b1191Jo1ITOH4+Dny8HRs0j51pimfWFBYzpg2f7hw05b56/WmT5eSUsP7uEnIXr\nvLu2IWTGKE6t/pRrv+wzOkth966niljP926fhZ/zfqI9ealpeHRohcrWBmsPV8K+WEXk0On49nmC\nxD0HyTV8Y61AW1BQ7msIGtsb7w7NAX3bphdqWxvPGqW0bTI1Qv1LrMtJTOX67wcNZ8Ri/28fgaOf\nKzcHVH57qp0ciN/5F5e/+A4Ap4YBhiE/no+1JvnAEQqycsi/kU7inkgcG9Qz6nX8N1i0aAHPPPM0\nAN9/v4MFCxZVynKr6nu9svZDd0Z7/PvjH/rXFhvPjaOncQ4JwN6vNol7D5Kfmg7A1W9+oc1XxUcU\ngGX2QxXBXMcfoN8HhcydiN1DvhwaPYec68bvgyyVuSJ5edlw/MTdDlJiYi5Ojmpsbe8eOu8/kEST\nxjXw9bUDoE/vOqx56zRpafnk5BTw0oQGODtZAfD5hgvUvl0n/vdU2Wu4/P39OXhQfzCckZHB2bNn\n8fX15dKlSwB89NFH7Nq1q8RpAwICiI6ORqvVkpWVxfnz582aNSXyKM6h9Q0Xk9bs2Y2kPVEm19zr\nVlYOvr0fx6NjKwAcGjyEU3AAKRFHypwu5qMtRAyZQcSQGUSOCsc5tL7hZgu+vbqSsLf4cpMPHC21\nLnHPQWo93QmFSonawQ6vrm1J/DOS3IQUsuPi8eqq7xi7tWqCTqsl4/wVEv6IxKVJIDY+HgB4PRZG\nRsyVEs/Q3Fm27e1l1+rZjcR7MpZVk7gnCp+nHyuU7xESy2lblZ0NDaaMNFy3VWfwM/q7Q5XT4bpz\nE4uIwTOJHDm3eJvtOVjC64s2qu5eTVZMRm1vS6SJnS2A8x9t5e/Bs/h78CwiRs7DJTTAsPw6vbqU\nmrO0Oq9OrQieOpyDLy+/7wMwwCzrOTfx9nbYRb8dut7ZDmOu8NdTY4gcor8hxqkV75Mdd53IodMB\ncGkSbBjGo3ZyoOYznUjY/Xe5r+H0B9v4Y0A4fwwIZ8+whdRoFIB9bS8A6vXuzPU/i58NSNh/rNS6\nf3dHUrNrK8OXEd4dHyb15IUq2Z5OQX40em06CpUKhUpJvaE9uX77rmW1enXDt49+yJ/K3g6Pdi2N\neg3/LRYsWESzZi1o1qxFpXW2oOq+1ytrP5RzLZH00xeo+aR+mKOVqzPOjQJJP3WBm2cu4vFIc1S2\n1vrX9lirUodlW2I/VBHMdfwBELpsKip7Ww6NCa+wzpa5M1ek1mFuHD+RxpWrmQBs++4q7dt5FqkJ\nauDEP4dTSE7RdwT/3BNPTR9bXFys2PbdVT78WH/8mZySy3ffx/J4V59KfQ2VQadTVOl/VUWVPcPV\nt29f5s2bx4ABA8jNzWXixIn4+/szZ84clEolHh4eDB8+vMRpg4ODad++Pc8//zyenp64uZnvLjYA\n+anpnFr6LqHLp6HUqMmOi+fk4rdxDPInaPZYooZNL7WmTFot0TNW0mDKSB56oR+6ggKOz3vDpNuf\n5qemc3LJ+zReMQWFWr/c44veAcApyI+Q8LFEDJlRZl3s9p3Y+nrR+stVKDVqYr/dTeph/V14js19\nk+DZL+I3ohfavHyi56wBnY6Mc5c5/do6mq6cjkKtIv9mpv65UjO+R6PlU/VtExvPicXv4BjkR/Cc\ncUQOnV5qDegvXLat5U3YhtUoNWrivt3FjcMny2yX5P1HiN36f7T4aAkolPpbzq74wOh2BchLTefE\nkvdp8uqdNrvOsYXv6ts22I+Q8BeJGDyzzLrSuDQOxLN9CzIv/0vLdXeHu5575yuSI46anPPYkg9o\n+upklGo1WXHxRXKGho/h78GzyqxrML4/CoWC0PAxhvmmHj3DqVWfmpTFXOv5+Lw1BM8eS70RvdHm\n5XM8/I3Sx4Pcdmb1JwTNGkOrr95AqVZx9ZufSYmMLnOae+WlpnN44Ue0XPUySo2azNgE/pmn345c\ngh+i6fwX+GNAeJl1F7fuxsrZgY4bl6JQKrlx+hJHl31VJdtTPzSzIa02rgaFksQ9kVzZ9OPtLO8S\nNGsMXl+uBuDf/+wmMHCUSe0pHkxVeq8XZu790NEZqwia/gK+vbqCQsGF9d+QfiqG9FMx2Pp40Orz\n19Dm5ZNzPYkTS94rI2Pl7ocqgrmOP5wbB+LRriWZl+N4+MOlhsdj3vuSlAOm7YMqK3NFc3W1Zn54\nKLPCj5Cfr8O3lh0L54dy8lQaS189wVeft6VlCzcGD3qIsROi0GgUODlpWP2afgTE8CF+LFh8jH6D\n9qFDx+hRATQMub+bs4nqT6HTlXNUIgx+a1N5t/e9H532f8OuViU6P3zCAAAgAElEQVTf8rYq6Xpg\nC7+2Ln1IaFXROWIrO8OK3+K7qukWuZmfw/pbOka5nojcVG3W+3+aD7Z0jDI9+4/++q6q3p6dI7ZS\ngGl3tLMEFYNQKIoPd65qdLr8avNel31RxekcsbVaHH9A9ThOSk9+2dIxyuXk9palIxituuwvLa3K\nnuEyxubNm/nhhx+KPT5lyhSaNWtmgURCCCGEEEL8b9BWoWF7VVm17nD169ePfv2q/hkIIYQQQggh\nxP+mKnvTDCGEEEIIIYSo7qr1GS4hhBBCCCGEZeiQIYXGkDNcQgghhBBCCGEm0uESQgghhBBCCDOR\nIYVCCCGEEEIIk8ldCo0jZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiIdLiGEEEIIIYQwE7mGSwghhBBC\nCGEyrc7SCaoHOcMlhBBCCCGEEGYiHS4hhBBCCCGEMBMZUiiEEEIIIYQwmQ65Lbwx5AyXEEIIIYQQ\nQpiJQqfTyeVuQgghhBBCCJNsbjLc0hHK1O/oZ5aOAMiQQpPsDOtn6Qhl6ha5mV9b97F0jHJ1jtjK\nrlZ9LR2jXF0PbOG3Ns9bOka5Ou3/hj/a9rZ0jHJ1/HtbtVnv+9s/Y+kYZWqz53uAKt+eXQ9sQaHQ\nWDpGuXS6fArYaOkY5VIxqNq812VfVHG6HthSLY4/oHocJ9lZ17N0jHJl5V6ydASjaXUypNAYMqRQ\nCCGEEEIIIcxEOlxCCCGEEEIIYSYypFAIIYQQQghhMrkThHHkDJcQQgghhBBCmIl0uIQQQgghhBDC\nTGRIoRBCCCGEEMJkWvnhY6PIGS4hhBBCCCGEMBPpcAkhhBBCCCGEmUiHSwghhBBCCCHMRK7hEkII\nIYQQQphMp5NruIwhZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiJDCoUQQgghhBAm08qQQqPIGS4hhBBC\nCCGEMBPpcAkhhBBCCCGEmciQQiGEEEIIIYTJdJYOUE1Ih6uCuD/SjPrjB6C00nDz/BVOLP2Agsxs\nk+usPd1otX4p+wfNID/tJgAejzYndMEEsuOTDHVRYxZQkJVTYha3ts3xHz8QpUZDxvnLnFr2PgVZ\n2cbVKJU0eGUYrq2aoFCpuPLV98R9uwsA29rehISPR+PsyK2sHE4ufpusy/8C0GjFVBwC6lGQrc+U\neug459Z+jo2PB0EzxmDj405BVg6XN35fZhsGjBuI0kqf6cSy0tuwxDqlgsBJw3C7nf3yxh3E3s5+\nR82nH8OzQxhHpr1meKzxq1NxDKhryJ5y6ARn3/y81JxF2nDcIBQaNZkxVzi17L2S27mMGmtPN1qs\nW07kkGmG9e0Y7E/9SSNQ2VijUCm5vOE74n/ZW26e0ri2bY7f2MEoNWoyYi5zZnnxnKXVKK2sqD/t\nBRyDA1AolKSfPMu51evQ5uXhGOxPwCsjUdlYg0rJ1S+/I/6XPeXmMed6tqvtTcjccWicHSnIyuH4\noncM2+gdtft1x/fZzuwfOA0Ala01IXPH4/BQLVCWf9LfpXUL6rw4FKVGTVbMZWJee6tYe5ZV4/Vc\ndzyf6obS2orMMzHEvPYWuvxb2AcFUO+l0Yb1HrdxO0m7/qiy7en/Yj+8u7alIDuXG9FnOLv2C7R5\n+aBU4DfyeTzaPQzAG2+sZsqUaeW+DlN9+uknHD9+nNdfX1Ph864IOp2O8NnfE1Dfg5Gj2lbKMqva\ne70wc+2X1E4OBE4diX09X5TWVlz6bDvXf9Zn83uxP15d9Nto2rEznFv7uX4bLYOl9kMACo2aZq/P\nIva7XST8dsDotjXn8YdTsD+BU4ahsrVGoVRy6Yv/cO3nv4zOVlk576j5dEe8OoZxeOrK+8pYkie6\nP8aiJTOwtrbi+LHTjHtxJjdvZhSre+aZxwmfPwmdVkdqahrjx83k4oUr1KjhzNq3l9G4STBZmdl8\n8cVWPniv/GMM8d/FbEMKJ06caHRt3759iY2NfaDl7dq1i/j4+Aeax/3SuDgSOm8cR2e9wb4+k8mO\ni6fBhIEm1/k82Z6wjxZi4+laZDrnxoFc2riDiMEzDf9K62xpXJwImTueY7NXE9HvFbL/jSdgwiCj\na2r17IJtbW8ODJpC1MhZ1O7XA6eQAAAaLnyF2O07iRgwmYvrNtNoxd2DKOfQBhwaN5/IodOJHDqd\nc2v1HyYh8yaSduIsEf0n88/ERdQd/Gypbdhw7niiZ7/O330nkRWXQP3xJbdhaXW+PbtiV9ub/QOn\ncmDEbOr0fxKnEH8A1E72BM8cTdDUEXDP9Z0uofU5OHYBEUNmEDFkhlGdLY2LE8HhEzg2exUH+r9C\ndlw8/uOLt3NZNd7dO9D8gyVYe7gVma7R8mlcXLeZqGHTOTp5GfVfHo6tr3e5mUrLGRQ+kRNzVhE5\n4GVy/o3Hb/xgo2vqDu+NQqXi4NCpRA2dgtLamjpDewHQcNl0Lq3bzMHh0zg2ZSn+Lw/H1tennDzm\nXc+hi14mdttO9vefQszHW2jy6tQi83VuHMhDQ4pug3UHPYM2N4/9A6cROSocAPuggBLzq52dCJj9\nMmfnreDI4PHkXLtOnReHGV3j2r4N3r2f4tTkeRwdOhGltRU+ffV5ApfMJnb9V0SPmsSp6YuoN3Ek\nNlW0PWs+1RGPRx/mwPDZRAyZQW7yDfzH9gegTr8nqdE8hKgx8wBo06Y1/fr1LfN1mCIoKIhff91J\n377PV9g8K1pMTCIjh23g559OVNoyq9p7/d7lmmu/FDJvAjkJyUQOm8HhlxbTYMoIrD1c8enREfdH\nHiZqxCwih04nNykVvxf7l5PTcvsh59D6hH2yDJcmQUa3650s5jz+aPLaFGI+2krE4Jn8M2kFgZOG\nYlfb9P2RuXOqnewJnvUCwdOKt+2DcHd35YOPVjGw/ziaNurMxYtXWbJsZrE6GxtrPvlsDQP6jaV1\n2JP8+ONuXn9jIQCvrZpPZkYmzZt0pUO7njz+eEe6P9mp4kKKasFsHa533nnHXLMu0RdffEFGRvFv\nHCqDW6smpJ2MIevqdQCubtuF9xOPmlRn7V4Dzw4t+Wfyq8Wmc2ncANcWobT+fAUtP1pIjWbBpWZx\nbdWY9FMxZN9eRtz2nXg/3s7oGo8Orbj2w+/oCrTcuplJ/O59eD/RDmsPV+zr1SR+1z4AkvcfQWVr\njWPgQ9j4eKKysyVo5hjCvlxN8NzxqJ0cAHAM8uPaj38AUJCVQ+qhkg9A3Fo1Ie3U3baJ3b4T7yfa\nmVTn2SGMuB1/GLJf3/U3Pk+0B8C7c1tyk1I5+9aGIvOz8fFAZWdL8MzRtP5yFSHzxqF2si+1fQ1t\nGNaE9FPnyY6904a/FG/nMmqs3Gvg3j6Mo1OWF5lGaaXh4vqtpEYdAyA3MYX8tHSsPYt2yoxVI6wJ\nN0+dJzv2GgD/bv8Fr27tjK65ceQklz/7BnQ60GrJOHsBG293lFYaLq3fSurB6Ls5b5Sf05zr2dqj\nBvb1anJ919/A7W3URr+NAli5OhM8fRRn3/6yyLIUKiUqOxsUKiVKKw0AuvxbJeZ3CWtGxulz5Nxu\nq/jvfsK9awejazwef4xrm77j1s0M0Om4sPo9kn75HYWVhtjPNpF26CgAeYnJ5KelY+XhXiXb0zHI\nj4Q/o7iVkQVAwu8H8HqsFQA1n+zAxU+3o83Vn0no3bsvv/76W5mvwxQTJozj008/Z8uWbypsnhXt\n640H6dmrKU90b1hpy6xq7/XCzLVfUjs54NqyMRfXbTVkixo1h/z0DByD/EncE2nYRhP/OIBnp9Zl\n5rTUfgj0X1TEfLiJtBPnjGjRe7KY6fhDaaXhwrpvSLmzP0pIIe/GzfvaH5n7OMm7Sxtyk25w5q0v\niz33IDp3acc/h6KJOX8JgI8/+pJ+/Yt/caxSqVAoFDg7OQLgYG9HTk4uAM2ah/LVV9+i1WrJz8/n\n559+47meT1ZoTkvS6hRV+l9VUe6Qwu3bt7N7924yMzNJTU1lwoQJ1KhRgzVr1qBSqahduzaLFy9m\nx44dbNu2Da1Wy8svv8y0adPYt28fJ0+eZMmSJahUKqytrVmyZAk1a9ZkzZo17N27F29vb1JTU8vM\n8NRTT1GvXj00Gg2LFy8mPDzcMM3cuXO5du0ap06dYubMmaxatYqZM2eyZcsWQH/27I033uDbb7/l\n8OHDZGVlsWzZMubMmYO3tzdXr16lUaNGLFq06L4b0cbLjZyEZMPfuQnJaBzsUNnbFjkNXlZdblIq\nR2e+XuL889MyuPbTHhL+iMKlSSBNV09n/6AZ5CakFM/i6U5OoaGHuQnJqB3sUNnZGoZvlFVj4+lG\nTnzRjA4BdbH2dCM3MVW/MzY8l4K1pxsKtYqUqGOcWfUxeanpNJg8nJDwcUTPXEX6iXP49HiMi+u2\noHFxwq1ts1LbMDfeuDYsrc7Gy43chHuz1wEwDOnw6VH04NjK1ZmUqGOcWrmOvNQ0AicPp+Hc8Ryd\nsarEnEVyFF5WYjJqB/ui7VxGTV5SKsdnF1+GNi+fazvuHpzWfLYLKlsb0k3cCd/N6U5u4XVdYs7S\na1Ijjxoet/b2wLfvU5x97QO0eflc/+FXw3M+z3bV5zx+tpw85lvPNl7uxbbRnMQUbDxduXnuEqGL\nX+bs2xvQ3SookunShv/Q4v2FtP/hQ1T2tgBkxVwqMb+Vpzu5CYXbKqlYe5ZVY1O7JpoaLgSvWojG\n3ZWb0Se4/P5n6PLySfjx7rAjz6cfR2VrS8aJM1WyPdNPnKNO/x5c3foz+ekZ+DzZAWv3GgDY1fHB\n/iFf6g17DoBx415kwYL7/3y910svvQJA585V9xviufO7AxARcbHSllnV3utFsplpv2Tn601ecip1\nBj6FW5tmKDUarmz8nvir10g/cY7aA3oQe3sb9X6yA9ZuNcppQ8vshwCOzVsL6M+4m8Kcxx/avHzi\nvv/d8Het5zqjsrMhzYR1Xxk5AWK37wagZglt+yB8fWsSe/sLCoC42Gs4Ozvh6OhQZFhhZmYWL08M\n57c/t5GSfAOlSknnx/Rn4Q9GHmHgwJ7s//sg1tZWPPtcd/JvlfylnvjvZdQ1XNnZ2Xz66aekpKTQ\np08flEolW7Zswc3NjTfffJNvv/0WtVqNk5MT77//fpFp586dy7JlywgODmb37t28+uqrjB49mqio\nKL755huysrLo1q1bmcvPyspi/PjxhISEsGrVKlq3bs3AgQO5dOkSs2fP5uuvvyY4OJiFCxei0WhK\nnY+fnx9z584lNjaWS5cu8cknn2Bra0uXLl1ITEzEw8PDmOYoRqEspQddoL2vunsV/oC5cfQMadFn\ncQtrzL8//FG8uJRl6LRao2pKyqgrKPnxO8+lnzjPsVl3Ow8XPt5Cu//7GIVazcnF71D/lWG0+vJ1\nsq8lkLTvEA5+tYvPSFHyyVbdvW1TVl1JGbVlt236ifMcnbm6UPattP/pIxRqVZnTlXatT9F2NqKm\nDHWHPIdv3x4cnbwUbW6eUdMUozBiezCixiHQj9AVM4jb9hPJfx8qUldnSE9q9elB9JQlaPPKyWnO\n9VzG66g/fiA3Dp8iJfIYNZqHFHk+aPookg9Ec/79r7FydabD/32Ea4c2pPy5v3j80nIVaquyahRq\nNc4tmnBmzjK0efkEzJlEndFDuPT2OkNdzUG98Xn+aU5NW1hl2/PaT3ux9nTj4XfnU5CTS9x3u9He\nPiuoUKtwDq3P4ckr6PLXVzz66CO89NJE1q59q+zXIh5MVXuvF2au/ZJahW0tL25lZnNozDxsfb15\n+IPFZF29zvWf92Dt6Uqzdxegzc4l7rtdhm20VBbaDz0Icx9/3FFv6LPU7d+dQ6+sMJy9NkVl5axo\nylLyFBQU/eKuYcNAZoe/TPOmXbl44QrjJgznq00f0Lpld2bNXMaKV+ewP/JHrl9P4Ldf/6J1m+aV\nEV9UIUZ1uFq2bIlSqcTd3R1bW1suX77MpEmTAMjJyaFt27bUrVuXhx56qNi0CQkJBAcHG+bz+uuv\nc+nSJUJDQ1EqlTg4ONCgQYNyM9yZ99mzZ4mIiOCnn34CIC0trczpdIW+nS2cr06dOjg46Ie9eXh4\nkJubW26GwvzH9MGjfQsA1Pa2ZJy/YnjO2sOV/LQMCnKKzjPnehLODQPKrStM7WBH7ee7cfGz7+4+\nqABdKd+O5MYn4dywfrFlaAsto6yanPgkwzfVd57LTUgm53oSVm4uRZZ15zmXJkGonRxI2ntQH0+h\nAK0OnVaL0saKk0vfMyw/cMZow/T+Y/ri0U7fhip7WzJiireh9t42jE/CObR4G2pzcotltPZwJaeE\ns4CFuTQNQuNoT+Le2wcWhbKXJed6Ik4h97Rh+s0ieY2pKYlCoyZk7kTsHvLl0Og55FxPLLO+LLnx\nSTgVWtdWHm7FMpRX49nlEepPG82519eRsOvuxdIKjZqguS9hX8+Xw2Nml5qz3gv9cX9Uv55rPdvJ\nbOs5J774Nmpz+zmf7u3JS03Ds2MYKlsbrD1cab1hJRFDZuDZsRX7B04FnY685BsAODdrXGKHKzc+\nEYeQu59XVu5u3CrWnqXX5CelkLI3wvCtfuLOP/Ad3s/QngGzJ2FbrzbHx80g93pCie1Ze+Td6xks\n1Z5qJ3uu//IXlz7Xfy45NQwg6/bQ2dzEVOJ37TMMy9y6dRvt2z/K2rUlvpxyLVq0gGeeeRqA77/f\nUaFny/6bVIX3elnZzLFfyk3Uj3S5dvvLx+zY69w4ehqnhgFkX0sgfudfXP7i7jZ6Z3h3YVVhP2Sq\nyjr+AP26D50/Hgc/Xw6MmkfONePXfWXmrEjz5k+mx1NdAXB0cuDE8bsjDWrW8iYl5QZZ99zwpUu3\n9uz/+xAXL+hf44fvf8HKVfNwc6uBrZ0t4XNWkJqqP16dMnUsMTGXK+nVmJ9lusLVj1HXcJ04ob/u\nJikpidzcXOrUqcN7773Hhg0bGDt2LK1b68dFK0v4Rt/T05PTp08DEBUVRb169QgICCA6OhqtVktW\nVhbnz58vP+jtefv5+TF8+HA2bNjAm2++yTPP6E+/KxQKdDod1tbWJCcnU1BQQHp6epGbcRTOpyjl\nmz5j3bmINGLwTCJHzsU5tL7hQlLfXl1J2HOw2DTJB6KNqivsVlY2tZ9/HM/HwgBwbFAP55AAkvYf\nLbE++cBRnEPrY3t7GbV6diNxb5TRNYl7ovB5+jEUKiVqBzu8uj5C4p4ochNTyI6Lx6uL/m5brq2a\noNNqyYi5gsrOhgZTRhqu26oz+BkSfo8ArRa/F/rh20t/BtO2to9hx6Zvwy2GG1VEjgov3jb35C6c\nvaS6xD0HqfV0p0LZ25L4Z2SZ7auytSFw6kjDdVt1Bz9D/G8RoC37Rqcpkbfb8PbNLGr27EbSniiT\na0oSumwqKntbDo0Jf6DOlj7DEZwaNjBc4F7zuW4k7b03Z+k1Ho+1JmDyKKInLSlyAAbQcOk01Pa2\n/PNi2Z3CS+s2cXC4/gYr5lzPuQm3t9Gu+m3U7c42ev4Ke3q8SMRg/bZ2cvkHZMddJ2LIDABunrmA\n9+1plDbW+sdKGcp3I+owDiGBhptZeD/bnZS/Dhhdk/zHPtw6PoLSygoA13atyDyt//xrsHgmKntb\njo8vvbMFcHX9V4b/W6o9nYL9afLaNBQqFQqVkoeG9eT6L/rtI+G3CLyfaG84m/LUU08SFVX251xZ\nFixYRLNmLWjWrIV0tspQFd7rpTHXfinnWgLppy8YhuhZuTrj3CiQ9FMxOAX50ei16YZttN7Qnlwv\n4W6vVWE/ZKrKOv4AaLJiMmp7WyJN7GxVds6KtGTxGlqHPUnrsCfp2K4nLcOa4h9QD4AXRg/ixx27\nik1z5PBx2rVrhaen/rrbp5/pxqVLV0lOTmX06EHMWzAFAE9Pd0aM6s+WTf+ptNcjqgajznAlJSUx\nbNgwbt68yYIFC1AqlYwZMwadToe9vT0rV67k2rVrJU67dOlSlixZgk6nQ6VSsXz5cmrXrk379u15\n/vnn8fT0xM3N+Aswx44dS3h4OFu2bCEjI8NwN8RmzZoxY8YM1q9fzyOPPMLzzz9P7dq1qVu3rtHz\nvl95qemcWPI+TV6dgkKtJjvuOscWvguAU7AfIeEvEjF4Zpl1pdLqODJ9FUHTRhAwpi/aggKOhq8t\ndivUO/JT0zm55D0aLZ+KUqMmOzaeE4vfwTHIj+A544gcOr3UGtBfqGxby5uwDatRatTEfbuLG4dP\nAnB83hqCZ4+l3ojeaPPyOR7+Buh0JO8/QuzW/6PFR0tAodTf/nzFBwCcf2cDIQtewufJjugKCji5\n9D2arZ1bSu73abziTtvEc3yRPpNTkB8h4WOJGDKjzLrY7Tux9fWi9ZerUGrUxH67m9TDp8ps3uT9\nR7i65SdafrQEhVJJRswVTi7/sOx1cjvvqaXvErp8mr4N4+I5ufhtHIP8CZo9lqhh00utKYtz40A8\n2rUk83IcD3+41PB4zHtfknKg5E52eTlPL3uXhsumodCoyYm7zqnbOQNnjePg8Gml1gA8NFZ/B7PA\nWeMM80w7dpr4nXtxb9eSrMtxNP9g2d2c739J6oEjZeYx53o+NvdNgme/iN+IXmjz8omes6bINUgl\nOb7oXYKmj6LNkx0MQ39Kux37rRtpxLy6lgaLZ6HQqMmNu875ZWuwDwzAf8ZEokdNKrUG4Pp3P6F2\ncqTRujdQKJVknr3AhXffxTE0GNdHWpF9JZbQd+/eKvryB5+TFnW4yrVnyoFokpqF0HrjKhRKJQl/\nRnH56x8AOP/hJupPGEybr/VDoS9cuMibb8pwQnOrau/1e7OZa78UPXMVgdNHUatnNxRKBZfWb+Xm\nqRgAXJo3pNXG1aBQkrgnkiubfjQiZ+Xvhx6EOY8/XBoH4tm+BZmX/6XlusWGx8+98xXJEabtj8x6\nnGRGiYnJjB0znY1fv4+VlYaLFy7zwkh956l580a898FrtA57kj//2M+baz7k512byMvLJzXlBn17\n60f0rFr5Hp98uoaof35BoVCwbMmbHDoUbbHXJCxDodOVfTSyfft2Lly4wLRpFf87KtXNzrB+lo5Q\npm6Rm/m1dR9LxyhX54it7GpVcbeJNpeuB7bwW5uqe+vpOzrt/4Y/2va2dIxydfx7W7VZ7/vbm3bh\nemVrs0f/e3ZVvT27HtiCQlH6dbVVhU6XTwEbLR2jXCoGVZv3uuyLKk7XA1uqxfEHVI/jJDvrepaO\nUa6s3EuWjmC0j4PHWDpCmUaf+sjSEYAq9MPH0dHRrFpV/K5t3bt3Z+DA4r/VIIQQQgghhBBVXbkd\nrl69elVGDho3bsyGDcV/m0IIIYQQQgghqiuz/fCxEEIIIYQQQvyvqzJDCoUQQgghhBDVh1b3YHf9\n/l8hZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiJDCoUQQgghhBAmK/uXLsUdcoZLCCGEEEIIIcxEOlxC\nCCGEEEIIYSYypFAIIYQQQghhMrlLoXHkDJcQQgghhBBCmIl0uIQQQgghhBDCTGRIoRBCCCGEEMJk\nWksHqCbkDJcQQgghhBBCmIl0uIQQQgghhBDCTBQ6nU5+s0wIIYQQQghhkrcbjLN0hDK9dPZ9S0cA\n5Bouk/zUcoClI5Spe9TX7AzrZ+kY5eoWuZkfHh5k6RjleurQxiq/zkG/3gvYaOkY5VIxqNq0Z/bJ\nLpaOUSbbkN1A9fhM+jmsv6VjlOuJyE380ba3pWOUq+Pf26rNe/23Ns9bOka5Ou3/hoV1X7J0jHIt\nvPw2HwS9aOkYZRp7+kMAvm48wsJJyjYg+lN+bDHQ0jHK1ePgV5aOICqYDCkUQgghhBBCCDORDpcQ\nQgghhBBCmIkMKRRCCCGEEEKYTG4Lbxw5wyWEEEIIIYQQZiIdLiGEEEIIIYQwExlSKIQQQgghhDCZ\nTqewdIRqQc5wCSGEEEIIIYSZSIdLCCGEEEIIIcxEhhQKIYQQQgghTKbVWTpB9SBnuIQQQgghhBDC\nTKTDJYQQQgghhBBmIkMKhRBCCCGEECaTEYXGkTNcQgghhBBCCGEm0uESQgghhBBCCDORIYVCCCGE\nEEIIk2nlh4+NIme4hBBCCCGEEMJM5AxXBfF4pBkNJvRHaaXm5rkrHF/6Ebcys42uU1praDhjJM4h\nfqBUknb8PCdWrkebm4/rwyEETRqMQqUiP+0mp974gpvnrtxXTvdHmlF//ACUVhpunr/CiaUfUFBC\nzvLqrD3daLV+KfsHzSA/7ab+tT3anNAFE8iOTzLURY1ZQEFWjsk5PR9tStDEfig1atLPXyV68ccl\ntqcxdQ+vmkRuYirHV34OgFuLEIJfGYBSraIgN58Tqz7nxokLJmeE6rPeTaHT6Qif/T0B9T0YOaqt\n2ZdXWHVrzz0Hs3n7yzTy8nXUr6th4URXHOzufo+14/dMNnx/0/B3RpaWhOQCfllXE7UKln2YypmL\n+djaKHi2kz0Dejg+UJ7CqktbejzSjAbj+xs+a44t/bDEz6TS6pTWGkKmj8Q5xB+UCtKOn+fkKn3O\nO2o93RGvji35Z+qq+8ro2rY5fmMHo9SoyYi5zJnl71GQlW1UjdLKivrTXsAxOACFQkn6ybOcW70O\nbV4ejsH+BLwyEpWNNaiUXP3yO+J/2XNfGe9HZb7X3do2x3/cIBQaNZkxVzi1rHgbllqjVFL/5WG4\ntm6KQqXkylc7+PfbnQC4NG9I/ZeHGbbFc29+Ssb5y4Z5KjRqmqyeTdx3u0j8PaLCXk/9Tg3pMuNp\nVFZq4k//y/czviI3o/i+LmxYe1oMfhR0OlIuJ7Fj1tdkJmdUWI6S1OkQSqspPVFZqUk+E8cf4V+Q\nn1n6fvixFcNIOfcvR9fvAkChVPDovAH4tKwPwJU9x4lYua3Cc9Zs15gmrzyP0krNjbOxHFiwnltl\n5Gy1ZBRp5+M4/fnPRR6383Kl65dz+anPfPJuPHjbej7SlMCJdz4TrxK9pOTPztLq1Pa2NJ4/Bod6\nNUGhIPbHvVz4fAcAziF+hEwdgsrGGoVKyYXPdxD3074HziNJK/QAACAASURBVCyqPjnDVQGsXBxp\nNP9FDs9cw97np5Idl0CDiQNMqvMf0ROFSslfA2fx14AZKK2t8B/+LGp7W5qvnMyZtzayb+BMTry6\nnqYrXkGpMb2vrHFxJHTeOI7OeoN9fSaTHRdPgwkDTa7zebI9YR8txMbTtch0zo0DubRxBxGDZxr+\n3U9ny8rFkSYLxnBo+pv80Xs6WbEJBL3U777q/Ic+hWuzQMPfCrWK5ismEr10HXsGzOHcJ9/RdPE4\nkzPeWX51WO+miIlJZOSwDfz80wmzLqck1a09U9IKWPB2CqtnuPGfd33w9VazdsONIjVPP2bPljXe\nbFnjzcZVXri7qJg1ugZuLipWrb+BnY2S7W95s+FVL/76J4c9UcV36vejurSl/rNmLIdnrWFvnylk\nxSUQOKF4zrLq/Ef0RKFWsW/QTPYNnIHK2gq/Yc/pp3OyJ2TWKIKnDQfF/Q170bg4ERQ+kRNzVhE5\n4GVy/o3Hb/xgo2vqDu+NQqXi4NCpRA2dgtLamjpDewHQcNl0Lq3bzMHh0zg2ZSn+Lw/H1tfnvnKa\nqjLf6xoXJ4LDJ3Bs9ioO9H+F7Lh4/McPMrqm1nNdsa3tQ+SgyRwcOYva/XrgGBKAyt6ORiumc/6d\nDUQOmcqZVR/RcOkUFLe3RafQBrRYtwLnJkEV+nrsXB14btUgNo/9hHc6LSX1ShJdZj1TrM4ntDZt\nR3fik15v8F63FaRcSuSxqT0qNMu9bGo48NjyYex8+UM2dV9A+tUkWk/tWWKti583T382Gb8nWhR5\nvMGzrXF5yIutzyzmm+eWULNlA/web16hOa1rONJqySj2TnmXH5+ZQ0ZsIk0n9Smx1ukhHzqtm0Gd\nbi2LPVfv6bZ0/mw2dl41KiSXlYsjjRe8yKEZb/Jn72lkxcUTNLG/SXUNxvUhJz6FPf1msm/oPOr2\n7oJLI33n9eGVkzj74Tb+GjSHqJdXEjx5MHa1vSsku6japMNVAdxbNybt5AWyrl4H4Mq2XdR84hGT\n6lIPn+L8+m9BpwOtjvQzl7Dx9sCujg/5GdkkR+l3ipmX/+VWZrbhzWsKt1ZNSDsZY1j+1W278H7i\nUZPqrN1r4NmhJf9MfrXYdC6NG+DaIpTWn6+g5UcLqdEs2OSMAB5tGnHj5AUyr8YDcPmb3dTqXrw9\ny6tzaxGCR9vGXN72q+Ex3a0Cdnd/ifQz+m9A7Wp5kpd2f9+IVZf1boqvNx6kZ6+mPNG9oVmXU5Lq\n1p77j+TQsL4VdWtqAOjzhAM/7clCpyv5JrmffZuOq7OS5x93AOBUTB49OtqhUinQaBS0e9iGXfuz\n7jtPYdWlLd1bNS72WeNTwmdSWXUp/8/efYc3Vb5/HH9nNd0t3UDZhZZSKLOAKCKKCooCsstW9pBV\n9p4iDlAUcKEiLhScXxFUFARKAdmbMkpL994r+f0RKJSuFBra8Ltf1+V1SXIn55M755zkyXnO6dFz\nhN6Z88JVrKq7AODxVHuy45I4/86Wcme7pVqAP6lnL5EZHgnAjW2/4/70Y0bXJB07w7VPv7uZT0fa\nhctYerigtNBw9ZOtJB4+AUB2bAK5SSlo3ZzvOWt5PMht3SnAn5Szl8gMN7x/Edt+x+OZx4yucX08\ngMhfd6PP15GXmk7Mrn14PNMR61rVyUvPIPHwSQAyrt0gPz0TBz/Dj2y1+nTj8savSDl9qUJfT4OO\nPkScCCPhaiwAh7/4l6Yvti5SF3nqOu90WkJ2ahZqrRo7d0cyEytmGy9JrQ6+xJy8RvK1GADOfP0P\nXt3bFlvrF9iJc9v2c3nH4UK3K5RK1FZaVBZqlBYalBoV+Tl5FZrTo30T4k9dIS3M8Pl96du/qNOt\nXbG1Dfs/yeUf9hK281Ch261cHfF8oiX/jH+7wnLdvU+89t0f1Cjm+0dpdWfe+Jyzaw37HK2LI0oL\nNXlpGSgtNFz8cBvxIacAyIpJICcpFau7frw2N7oq/l9V8dBNKdy2bRt//PEH6enpJCYmMn78eCws\nLFi3bh16vZ4mTZqwePFidu7cyZYtW8jLy0OhULBu3TqcnO5tpbd0dyYrOr7g31kxCWhsrVHbWBU6\nDF1aXdzBk7frPFyoO6Arp1Z8SEZYJGprS1zaNiXu4EkcfOtjV98TrUv5f82xdHcmK+b28rNj4tHY\nWqOysSo0hae0uuy4RI7PfLPY589NTiPytz3E/H0IR39vmr8RxIHAGWTHJJQ/Z9Ttx5TazxLqVFZa\nmkwfzMEJq6jTq3Oh59fn5WPhZE/HLcvRONrx3+x3y5Wv0PLN4H0vj3kLugIQHHzFpMspjrn1Mzou\nHw9nVcG/3Z1VpGXoSc/UY2td+GhKYko+n/+Yytdv3v4ls2kjLb/+nUFzHy25uXr+PJCJWl0xJx+b\nSy/v3tdkGblPurMu/uCJQjnr9O/K6ZUfAXB92x8A1Hzu8XJnu71sF7LvmCadHRuP2tYGlbVVwZS4\n0moSQ44X3K71cMWz7/NcWLUBXU4uUb/c/jGo+otdUFlZknLqwj1nLY8Hua1bujuTfednSrE9LLlG\ne1d/s2LicfaqQ0bYDVRWljgF+JMQchy7xg2wqV8LrYsjAKcXrgGgduCLFfp6HKpXI+VGYsG/UyKT\nsLS3QmtrWWRaoS5Ph8/TzXhh1QDycvLY/davFZrlbjbVq5F2x+diWlQiWjsrNDaWRaYV/rv0awA8\n2xc+Anh++37qP9uKwf+sQqFWEb7vDNd2n6AiWXs4kXFHzozoRCzsrFHbWBaZVnhk5RcAuLf1LXR7\nZmwS/05dV6G5rNydyDRi31lWnT5fR/Ml4/B4MoCovw+Tdu0G6PRc//HvgsfU6tkZtbUliacuVuhr\nEFXTQzfgAsjMzGTTpk0kJCTQs2dPFAoF27dvx9nZmQ8//JCoqCiuXr3KBx98gJWVFQsWLODff//l\nhReKTgkwSglTVfT5unLX2fvUo+XqqVz79ndi/z0KwJFpb9BoXD+8JwWScPQc8YdOo8st/69NCmUJ\nX+buymls3d3uHIglHT9P8okLOAc048Yvf5cnJgoj+1lSHQpouXIip9/cTHZcUrElOQkp/NF1IvY+\ndWm3fg77Li8gPSyqXDnN5X03G2bWT10Jf+1RVcy8ge93ptMpwIqa7rd3uVOHO/L2p0n0nxqFi5OK\nds0tOX4u+57zFGImvVQoS5hkUWSfVHadvU89Wrw+jbCtO4n9979yZylRST3S6cpVY+tdH7+VM4j4\n/jfi9x8pVFd7cE9q9nmOE1OXosvJuf/MVU0J71+hHpZSU+y+XqcjPyOTkzNXUX/0QBpMGEzSsTMk\nHjll8v1kSZ+RuhI+I8/tPMG5nSdo2f8RBm8exzsdl5R4JPz+sxnR6zK0Gv88WQmpfPZoEGqthmfe\nG0ez4U9xYtMfFRWzxB6WJ6dJlNS/u99bI+qOLXgf1cqPafX6FBq+0ouLH9w+D67B0O7UHfAsIRNX\nFTrfVDy8HsoBV5s2bVAqlbi4uGBjY0NOTg7OzoZpGiNHjgTA2dmZmTNnYmNjw+XLl2nevHm5ltFw\ndG/cOrYCQG1jReql6wX3aV2dyElOIz+r8JenrOh4HP28Sqyr3qU9vjNHcGb1JiJ/328oUijIz8wi\nZMzSgsc99u0bZIQbNzhoMKoPrh1bF+RMu3T7xHatqxO5xeWMisOhiVeZdXdS21pTq/fTXPn0h9s3\nKkCfZ9wHX6MxL+FeQj8tS+hnZlThft6qs61XE+sarvhOMZxDoXV2QKFSotRqOPP2FlzaNCFqt2EK\nRcq5q6ReuIadVy2jBlzm8r6bC3PuZ3UXFacu3M4WE5+Pva0SK8uiH8Q792Uw42XHQrelZ+iYPMQB\nBzvDUbJN21KoVf3ed8nm0kuvUX3KnTOzmH3SnXUeXdrjO+Nlzr6xicjfK/YE9OzoOOyb3J4uaeHq\nTG5KKro7MpZV4/ZUBxpOH8nFNz8iZte/BXUKjRqfeROxqevJ0VGzyYqKrdDsVUVWVCz2vrf7o3V1\nKtLD0mqyouOwuOMIqtbVyXDEU6EgPyOLo+MXFtzX9qs1BdMSK9ITU7vh/VRTw/LtLIk+d6PgPjsP\nBzKT0snNLDxYdqrjgq2rPWGHDRdlOvrtAZ5f0Q9LBysykypuamHrid2p29kfAAtbS+IvRBTcZ+Pu\nSFZSOnmZxg/k63dpwb/Lv0aXm09Obj4XfjhA/Wda3veAq+m4HtTs1AIAja0lSRdv57Ryq0Z2chr5\n5chZURqN7o1bR8M5ahoba1JCb39PKun7R1ZUHI5+DYqtc2nXjNRLYWTHJZGfmc2N3/fj0TkAAKVG\nTbNFY7CrV5P9wxeSGRmHudPLZeGN8lCew3X6tOHcgri4OHJzDb8cJCUZjnQsW7aMkJAQ3nnnHd5+\n+22WLVuGVqst969NFzd+x77A2ewLnM2B4Qtw9GtYcOJj7ZeeImbP4SKPiQs+UWKdR+cAGk8fyqGJ\nK29/sQHQ62m9Zib2jesb6p5siy4v3+grgoV+sLXgAhYhI+bhcMfyPXt1KTZn/METRtXdKS8jk1q9\nn8HtCcNOxa5RXRx8vYg7cLzUx91yYcP37B04h70D57Bv2EKqNfXCppY7AHV6P0n0P0eKPCY2+GSx\ndUknL/Hnc5MKni/s+z+J3BnMiaUfoc/X0WzBKKr5NwLAtn5NbOrWIOlUqFE5zeV9Nxfm3M/2zS05\ncSGHazcM+5jvfk+jU4BlkbqUNB1hkXn4+2gL3b719zTe/yoFgPikfLbtSqfrY9b3nMdcennpg63s\nHzSL/YNmETxiPo5+XreX36v4nPEHT5RY5965LY2nDePwpBUVPtgCSAg5hn2TRgUXs6jR42ni9h4y\nusb1iXZ4TXmZE5OXFhpsATRZNh21jRX/jZ7z0A62ABJCjuPg1xArT8P7V6Pn08TtubuHJdfE7TlE\njec7o1ApUdta496lA3F7QkCvx/+tOdj5GL74unZujz4vv9BVCivK7rf+x4Zuq9jQbRUf9XgTzxZ1\ncarrCkDrwEc5t/NkkcfYujnQe90wrKvZANCsRxtizkdW6GAL4PC7P/Ndz2V813MZ2/qtwt2/Pg51\n3ADw7d+Rq38Z9zl8S+yZMBrcvJCGUq2kzhP+RB+7/6mnJ9//gR19F7Kj70J2DlqGS7P62NY2fH43\n7PMEEbuP3vcy7sWFjd/xb+Ac/g2cw77hC6hWaJ9YyvePEupqdGlLw1EvAYYBVvUu7Yg/bPhe2nLV\nq2hsrNg/YtFDMdgSxnsoj3DFxcUxdOhQUlNTWbhwIXq9ntGjR6NUKvH19aVNmza0bNmSfv36oVar\nsbe3JyYm5p6Xl5OYwsklG2jx2mSUGjUZ4dGcWPQ+APaN69N03kj2Bc4uta7R+P4oFAqazhtZ8LyJ\nxy9w5vVNHJ+/jqZzR6LQqMmOS+S/oOLPoTIm5+ml6/F/bSoKtZrMiChOLnqvIKfv3NEED5pZal2J\ndHqOBa3GZ/pwvEb1RZefz/G5awsuGV/enMcXb6TV66+i0KjJCI/h2IL1ADg0rkez+SPZO3BOqXUl\nyc/M5vC0t2gybRAKtRpdbi5H571HVjnPM7uV0xzed3Nhbv10clSxeKITQavjyc3V4+mhZtmrTpy+\nlMPi9xL49m3DB3FYZC6u1VRo7jo/6+WX7Jm7JoGXJkWiB8b0s8evobaYJZWfufQyJzGFk0s30Py1\nKSjVajIiogvtk/zmjmL/oFml1jUaZ8jpN3fUHTnPc3b1pnvKdLfcxBTOLX+PJsuno9CoyYqI4uyS\nd7HzaYD3rLEcHja9xBqAemMMR9q9Z92+GmryyXNE79yLy2NtyLgWQcsNywvuC13/BYkHj1VI9qoi\nNzGFs8vew2/FdJQaNZkR0Zy52UOf2WM4NDSoxBqAiO2/Y+XpTpvP30SpURPxwy6Sjp4B4PTCtfjM\nHoNCrSYnPpETM1eZ/PWkx6fxY9AW+q5/GZWFisRrcWyfshmAGk1r8cKqgWzotoqwQ6HsWbeTYd9M\nQpenIzUmma9HfWjSbFkJqfw95zO6rB2FSqMm5Xosf800bAuufnV4fOlgvuu5rNTn2P/aVh6d159+\n/1uMPl9HRPA5jn20o9THlFd2QirB8z/h0TfHGf6UwvUYgucazr108q1LwKLh7Oi7sIxnqXg5iSkc\nX7KRVqsMV15ND4/m+MLb3z+azhvJv4FzSq078/YWms55mY7frEKv1xP99xGufLWDav6NcO/YirRr\nN2j/8e3Xdu7dr4kLrthz5ETVo9CbaiJxJdm2bRuXL19m+vTpFf7cv7UperniqqTroa/YGVD08ulV\nzdMh3/BLq8CyCyvZ80e2VPn3HAzvez73fhW2B0VFoNn0M/PMU5Udo1RWvoapPVW9n10PfcWOgKKX\nVK5qng35mr8feamyY5Sp0/7vzWZb/6t978qOUabOB75jUZ2JlR2jTIuuvcsGn9GVHaNUY85tBOCr\nZsMrOUnpBpzYxK+ti/45nKrmucNfVnYEo62oP6GyI5RqzuWKvbDKvXoopxQKIYQQQgghRFXw0E0p\n7NWrV2VHEEIIIYQQQgjgIRxwCSGEEEIIIUzv4ToxyXRkSqEQQgghhBBCmIgMuIQQQgghhBDCRGRK\noRBCCCGEEKLcdMgfPjaGHOESQgghhBBCCBORAZcQQgghhBBCmIhMKRRCCCGEEEKUm06uUmgUOcIl\nhBBCCCGEECYiAy4hhBBCCCGEMBEZcAkhhBBCCCGEicg5XEIIIYQQQohy08s5XEaRI1xCCCGEEEII\nYSIy4BJCCCGEEEIIE1Ho9XIwUAghhBBCCFE+C+pMquwIpVpy7Z3KjgDIOVzl8me7PpUdoVRPBm+t\n8hlBcla0J4O38lf73pUdo0ydD3wn/awgnQ98B5jHPmlX276VHaNMXQ5+W+V7CeaxboJh/cxnS2XH\nKJOKQFk/K8iTwVsB89gn7QzoV9kxyvR0yDeVHUFUMJlSKIQQQgghhBAmIke4hBBCCCGEEOUmJyYZ\nR45wCSGEEEIIIYSJyIBLCCGEEEIIIUxEphQKIYQQQgghyk1X2QHMhBzhEkIIIYQQQggTkQGXEEII\nIYQQQpiITCkUQgghhBBClJtOrlJoFDnCJYQQQgghhBAmIgMuIYQQQgghhDARGXAJIYQQQgghhInI\nOVxCCCGEEEKIcpNTuIwjR7iEEEIIIYQQwkRkwCWEEEIIIYQQJiJTCoUQQgghhBDlptMrKjuCWZAB\n1z1yfqQlDcYNRKnRkHbpGmeXryc/I9O4GqWSRq8OxamtPwqVirAvfyJi+65Cj63+/BO4dgrgxPRV\nRZZdq283arz4JAcDp1XJnPVH98f9qUfIz8wm+eR5Lq79DF1ObpXLaS79dGzeGK8Jg1BqLchLy+DM\n0vfIuhFTds6xgSg0atJDwzi7/P3icxZXo1TScNJQnNo1R6FSEvblz9zYvtOQpWUTGk4aikKlIjc5\nlYtrNpF26VrBcyo0avzfmE3ED7uI3R38UPSyQnt7k9bNmdYfrSBk8HRyk1MNj3m0Fb7zJ5AVFVdQ\n99/Y+eRnZBmfy0z66dKhBV5jB6K0MOQ4vXwD+emZxtcpFXhPHorzzbzXtvxM+M28ansbfKaNwKae\nJyqtBVc+3Ubkb3sBqNnzKWr364Y+L5/MyBjOLNtQ0P8H1U+1vS3e00ZgU9cTpdaCq59uI2rHHuA+\n9p1VfFu/X3q9nrmzf8KroSsjXn6kwp/flOujdS0PfOeNReNgR35GFqcWryPj2o2C51Ro1LR4cxbh\nP+wi5q+DAGgc7Wg8axTWnh4o1KqbhQq8Jg7GvXN7clPSAMgIu8GpeW8XyujZ51k8e3dFl51D+tVw\nzr/xMXk3642lcbTHd+EErDxc0et0nHttI8knLwBg06A23tNGoLaxvnnfB6Sev1zwWI+uHak9oHvB\nv9W21mjdnNj3whhyEpILbveaNKTM12LKnHdz6dCChuMGoLTQkHopjNPLSl4Hiq1TKvCePASXdoZ1\n4OqWnwnf9gcA1Vo1wfvVwShUSnKT0zj39mekXTRsS15j+uHWKQCAlLOhnHntI3TZOeXqgzAPMqXw\nHmgc7fGdN46Ts98guN+rZN6Ixmt8oNE1NXs+hVUtDw4GTuXQiFnU6vcc9r5ewM0P4xkj8Z42AgVF\nfzVwaOZNncEvVtmc1Z/rhEuHVhwaPouQIUFkxyVSf3T/KpfTXPqpdXWi2aogzq/+iJDBQcTuPohP\n0MgyczaeO56Ts1dzsP+rZEZE02Bc0Zwl1dTs0QWrWtUJCZzC4Zs57Xy9UNlY03RlEJfWbSZk8DTO\nr/6AJsumotAYfrex92tE649W4uDv89D0sqJ7C+DR9XFabliK1tW50OMcmnoT9uXPHBoaVPCfsYMt\nc+qnxtGOJvPGcWL2m+zvO5mMiBgajhtYrjrPnl2wruXBgYHTODh8NrX7d8PetwEAfvPHkxWTwMEh\nMzkycSneU4ejdXPCsrorXmP6c3jUAoIHBZEVGUuDUX0feD99548nKyaekKEzODpxCY2mDkfr6nTP\n+86qvq3fr9DQWEYM3cyO306b5PlNvj4unkT49zs50H8qoR9+i/9rt3/Yc/BrSMDHy3G8q4/ek4eR\nfiWc4EFBHBwyEzB8tjo29ebU/LcJGRJEyJCgIgOUai2bUGdwD45OWEzIkCDi9x+l8azR5e6J9/SX\nSTp2luABUzi96F38lk9DqbVAqbWgxdp5XNv8IyFDZ3Dlk+9osnhSocdG/banIN+h4bPIiU/iwhsf\nFxpsAWW+FlPnvJPG0Q6/+WM5Pust9vWZQmZENI3GF78OlFRXq2cXrGtVZ/+A6QQPm0Odm+uA2saK\n5qumcuHdLzgQOIMzqz7Cf8VkFBo1bp0CcG7bjAODZrC//zSUllrq9O9W7j4I82D2A65t27bxxhtv\nPNBlOrVtRsrZUDKvRwEQsW0nHs88ZnSN6+NtifxlN/p8HXmp6UT/sQ+PZw33uT/Znpz4RC6+u7nI\nci2cHPCe/goX1xW9r6rktPNpQOyeEPLSMgCI/fsgbp3bVbmcYB79dOvcjrgDR0k9f8XwfD/s4sKa\nTaXnDPAn5ewlMsNvZfi9aM5SalwfDyDy19s5Y3btw+OZjljXqk5eegaJh08CkHHtBvnpmTj4eQNQ\nq083Lm/8ipTTlx6aXhbJfZ+9tXCphkvHAI5PXVHkuR2aelOtlR+tN62i5fqlODZvbHwuM+qnc1t/\nks+GknEzR/i2nQXLMrbO7fEAIn7+uyBv1K79VH+2I2p7G5wCmnH5o60AZMckEDJiLrnJaShUShRq\nNSobK1AoUGq1Jf6SbKp+qu1tcWrTjCu38sUmcOjlOeSmpN3bvtMMtvX79dWWw/Ts1ZxnuzYxyfOb\ncn3UulbDpm4NonbtByD+wDFUllrsvOsBULtfN0I3fk3y6YuFlhXzTwjXt+4AKDjCaVnDHdtGdakd\n+AIBm1fTdOU0tO4uhR5n51OfhEMnyY5NMDzP3wdxebQVCrUahVpNw1eH0uazVQRsXk3j+eNRWVsV\neZ0KlRKXR1tx48c/AUi7eJXM8Eic2zfHqa0/mRHRxB84CkDc3sOcmvdWib2tM+RFchKTifjhj8LL\n0KhLfC2VkdO5rT/JZ26/t9e/34XHs4+Wq86tUxtu/HLXOtD1MaxrVycvLYOEQ6cAw7aUl56JY9NG\nxPwdQsgrC9Dn5aOyscKimj05JRxxr8r0+qr9X1Vh9gOuymDp5kJW9O1pP9kx8ahtrQvtFEqrsXRz\nJis6vtB9WjfDr90R23dx5ePvin4RUCppsvhVLq3bXLAzrYo5U05fxOWx1mgc7EChwKPb42idq1W5\nnObST+vaNdBlZuO3dDIBn72O37Ip6HLzSs/p7kx2zB3LiY1HbWtTOGcpNVp3F7LveA1ZN3NmhN1A\nZWWJU4A/AHaNG2BTvxZaF0cATi9cQ/z+/0rNZkyfjKl5UL0skvs+e5sTl8ip2avJuBpe5Llzk9MI\n/34Hh4fPJHT9Fpq+NgOtq5Nxucyon5buzmTftSyNrbVhIGRkXZEex8SjdXPC2tOD7PhE6gx8njYf\nLKHtpyux86mHLjuHzPBorn3xEx2+XUPH/22kWsvGXPl0+wPtp7WnBznxidQe+DytPlhKm02vYe9t\nyHdP+04z2Nbv17wFXXmhRzOTPb8p10dLdxeyYxMLfevLik3A0s2wXZ+cv5a4fUeLZIrZfbDgiJBd\no7oApJw6T+KRU4S+/yUhg4NIPnUR/9dnFHpcyplLOLXyw9LDMHip8fwTKC00aBxsqTukB/p8HYeG\nziRkcBA5sQlFjtoCaBzsQaEgNynlduZb62/t6uTEJ9F4zljabHqNFu/OR6FSFdtXjYMdtQd058Lb\nnxa5T+viVOJredA5wfDeZsUYtw6UVGfpXnibz4pJwNLNmfSwSFTWlji3NazD9o0bYFvfs2Bb0ufn\nU6vPM3T86T0sHO2I+TukxJzCvD0U53AdP36cESNGkJCQwIABA/D09GTNmjVotVocHR1ZsWIFZ8+e\n5euvv+bttw2HrTt06MC+ffuYNWsWSUlJJCUlsXHjRhwcHMpeoLL4EwT1Op1RNYpi7tPn64qpvs1r\n3ECSjp0hIeQEji19y85YSTmjduxB6+ZEi/cWosvMJuKHXWV/CZN+lkihVuHyaGuOjJlP5vUoPPt2\npdlrhikYJecs/neUwjlLrlEoinkNOh35GZmcnLmK+qMH0mDCYJKOnSHxyKlyD1oMyzeTXhbJfX+9\nLc2p2asL/j/5xDmST57HKcCfyF93G5HLjPqpKKE/dy+vtLriXotOh0KtxrqmO3npmRwatQArT3fa\nbFxCxvVINA52uD3Rlj0vjCU3KZWGEwJpsmA8x4o5r9NU/VSoVVjdzHdk1HysPD1otWEJGdej7nHf\naQbbelVnwvWR4vpL2fuCW5zb+uO3eCIA8fuPEr//9uAsbMtP1BvxEpbV3ciKNJw3mXTsLJc/3krT\nVUGg03Pjl7/ITU5Fl5uHc4dWaOyscQowfPFXatTkFDrwhwAAIABJREFUJCYXXWgJ6zX5OpRqNc6P\ntOC/8YtIOX0Jl8da4//WHPb1GFukvEaPp4jde7gg252yImM4PnVlsa/lQecEit1ebz2X0XXFbfM6\nHfnpmRyb/gZeY/vRaNIgEo+eJeFw4W3p+tbfub71d7zG9MP/takcHrO4+OUIs/ZQDLjUajUff/wx\nERERjBw5kuzsbL766ivc3d357LPPWL9+PZ06dSrx8e3atWPYsGFGLy87Og6HJg0L/q11dSI3OQ1d\nVrZRNVnRcWhdqhW6785fx4rj8WxHchKTcX28LSorS7SuTgR8vrrULzeVkVNtb0v0zn+59vkPANg3\n8SqYylKVcppLP7NjE0k+eb5g2tKNn/7Ce+oIlFqLEqdDZUXFYu97V4aU1EI5S6vJio7D4q6cWTHx\noFCQn5HF0fELC+5r+9WaMt/fYl+XmfTybvfb25Koba2p+dKzXPts2+0bFQp0ecZ9wa3q/Wwwqi+u\nj7UGQGVjRVpoWKlZAbKi43Dw8yo+b1QcFs6Ohe7LikkoOFp949e/AcgMjybp+DkcfL2wqV+L2L2H\nyU00/CJ+/bvfaf/lm8W/NhP1Mzs2EYDIX27liyLp+DnDfjIyptz7TnPY1qsiBc1QUBOAmi92Ntn6\nmBVd+HYAy5v3laX2gOeoN6QHJ+evpdW6+dh61cbWq27BBVZuvRL9HfsIlbUlSUfPEPnzX4Bh2nyD\nUf3JSzFMqb3w9ibiDxwz1FpZorTQYOdTn8Zzbg9EDg03nDOmtrMhLzW9IHNMTDyarGzSr0UUTCWN\n23sYxZyxWNV0L5Lf/alHuPBW8VOMS3stDypng1F9cO1o2CepbaxIu1R0Hci/ex2IisOhSdF1ID8r\nm6yo+IKjVrfuy765LeVlZnF47JKC+x755i0ywqOxbVgHhUJB6oWrAIT/+Be1+3UttmdVmXE/H4iH\nYkqhr68vCoUCV1dXIiMjsbW1xd3dsGG1adOGixcvFnmM/o5D/PXq1SvX8uIPHsfBryFWtTwAqNnz\naWL3HjK6JnbPIap3fwKFSona1hr3Lh2I3VP48Xf79/lRhAw2/Hp8duV6MiOiyvwluTJy2vvUp+mq\nIBQqFQqVkrpDehL1+94ql9Nc+hn7TwiOzbyxrO4GgFuntqSFhpU6QEgIuZnB05ChRs+nibtrOaXV\nxO05RI3nOxfKGbcnBPR6/N+ag52P4WRw187t0eflF7pymbHMpZd3u9/eliQvIwvPl57BtVNbAGwb\n1cO+sRcJwceMylXV+xn6wbcED55B8OAZhLw8Fwe/hljfzOHZqwsxe4su61be4upi9xymZvc719FH\niP0nhKzIWFLOXaZGt8cBwxdOh6bepJy9TOr5K7h2aInKSguA+xNtST514YH2MysyhpRzl6n+3N35\nQu9p32kO23pVpOcEOn4DMOn6mB2TQGZENO5dDFdWdG7rj16nK/Tlvji1BzxHrd7PEPLyXBIOGc6j\n0+v0NJo6vGB7q/nS06SFXis0JV7r4kTL9xcVTCmtO7w3UTv3AZAQfAzP3l1RqNWgUOAzezQNxg0k\n9dzlggtXhAwJQp+vI37/f9Ts0QUwDI5s6nmS+N8Z4g8cw8rDDTvv+oDhKqXo9UWuTKq2s8Ha04Pk\nE+eL738pr+VB5Qz9YCvBg2YSPGgmISPmFX1v9xwuZh04UWJdzJ7D1Lxjm/fo8ggxfx8CvZ6Wb8/C\nvrEhi/uT7dDn5ZF28Rp2XrVpsmAsSq0FADW6dSTh8KlS1w1hvh6KI1x3TouoVq0aaWlpxMTE4Obm\nRkhICHXr1kWr1RIbGwtAREQEycnJxT7eGLmJKZxZ+j5NV0xDqVGTGR7N6SXrCn6BCRkSVGINGE6u\ntqrpQcDmN1Bq1ERs30XS0TMV0InKz2mYoteEtlveAIWS2D0hhH39a5XLeS8qI2faxauce/1Dmq0K\nQqFWkZeazsm5JZ/8eyvn2WXv4bdiuiFDRDRnlryLnU8DfGaP4dDQoBJrACK2/26YivX5m4acP9zO\neXrhWnxmj0GhVpMTn8iJmcVMx3qIellc7vvpbYl0Ok7MeJ1GU0dQ75V+6PPzOTX/rRIvWV5cLnPp\npyHHepqtnIpCbejPqcWGHPY+9fGdO4bgwTNKrQvfthMrT3fafbEapUZN+PY/SDx6FoDjM1bjE/QK\nnr26gELB5U++I+VsKClnQ7Gq7krbz1ahy8klKyqO00vff+D9PDFzNd5BL1Oz59MolAqufrKV1LOh\nAPe076zq23pVZ+r18eS8NTSePZr6w3uhy8nlxJy3Sz2TX6FW4TW6H7mpGfivml5wu2vHNlx46xP8\n35iJQqUkKyaBU/PXFlonM8JucO3zH2jzyQpQKEk+fo7zb34MwJVN39Nw4mACPn8dhVJJ2sWrXFz7\nebEZzq/+CJ85Y2j77Jugh9OL3iU/PYP89AxOzHwd7xmvoLLUosvN48TsN4r86QIrTw+y45LQ5+cX\n3HZnzvTL14t9LQ865y05iSmcXroe/9duvbdRnFz0nmEdaFwf37mjCR40s9S68O93Yl3TnfZbXkeh\nvmsdmP8OvnNGodSoyY5L4liQ4UJvkb/txdrTg3afrUSfn0/a5XBOL9tY4rohzJtCr69K1/Aov23b\ntnH58mWmT59OdnY2Xbt2ZdmyZaxduxaFQoGDgwMrV67E3t6eiRMnEhcXR4MGDTh69Ci///47s2bN\nolu3bnTs2LHMZf3Zrs8DeEX37sngrVU+I0jOivZk8Fb+at+7smOUqfOB76SfFaTzge8A89gn7Wpb\n/KXXq5IuB7+t8r0E81g3wbB+5rOlsmOUSUWgrJ8V5Mlgw5U3zSHnzoB+lR2jTE+HfFPZEYw2tcar\nlR2hVG/dWFvZEYCH4AhXr169Cv5fq9Xy11+GucuPPFL0jyOuX7++yG2vvfaa6cIJIYQQQggh/l97\nKM7hEkIIIYQQQoiqyOyPcAkhhBBCCCEePLlKoXHkCJcQQgghhBBCmIgMuIQQQgghhBDCRGTAJYQQ\nQgghhBAmIudwCSGEEEIIIcpNZ9Z/XOrBkSNcQgghhBBCCGEiMuASQgghhBBCCBORAZcQQgghhBCi\n3PRV/L97kZWVxcSJExk4cCAjR44kISGh2DqdTscrr7zCV199VeZzyoBLCCGEEEIIIYCvvvqKRo0a\n8eWXX9KjRw/ef//9YuvWrFlDSkqKUc8pAy4hhBBCCCGEAI4cOcJjjz0GQMeOHTlw4ECRmh07dqBQ\nKArqyiJXKRRCCCGEEEKUm7lfpXDr1q189tlnhW5zdnbGzs4OABsbG1JTUwvdf+HCBX755Rfeeecd\n3nvvPaOWIwMuIYQQQgghxP87ffr0oU+fPoVumzBhAunp6QCkp6djb29f6P4ffviB6Ohohg4dSkRE\nBBqNhpo1a9KxY8cSlyMDLiGEEEIIIYQAWrZsyT///EOzZs3Ys2cPrVq1KnT/jBkzCv7/3XffxcXF\npdTBFsg5XEIIIYQQQoh7oNdX7f/uxYABA7h48SIDBgzgm2++YcKECQBs2rSJP//8856eU6HX32sc\nIYQQQgghxP9X49xfrewIpXo/em1lRwBkSmG5/NOhV2VHKNXj+7ZV+YxgyLmnQ8/KjlGmjvu2m00/\nF9WZWNkxyrTo2rtm08+3vMZVdoxSTb1kuERtVe/n4/u28We7PmUXVrIng7eyq23fyo5Rpi4HvzWb\nbd1c+pnPlsqOUSYVgWaxrQNsbzG4kpOUrufRzWazTxIPFxlwCSGEEEIIIcpNV9kBzIScwyWEEEII\nIYQQJiIDLiGEEEIIIYQwERlwCSGEEEIIIYSJyDlcQgghhBBCiHLTybXOjSJHuIQQQgghhBDCRGTA\nJYQQQgghhBAmIlMKhRBCCCGEEOUmMwqNI0e4hBBCCCGEEMJEZMAlhBBCCCGEECYiUwqFEEIIIYQQ\n5SZXKTSOHOESQgghhBBCCBORAZcQQgghhBBCmIhMKRRCCCGEEEKUm16mFBpFjnAJIYQQQgghhInI\nEa4K4tS+FfXGBKK00JB+6RrnV75HfkamUTVKCwu8po3ErrEXCqWClNMXufTmh+hycrCu60mjGWNR\nWVui1+u5sv4LEkOOVamMt1hWd6PlJ6s5MWUJaedC7ynjrQx1xwwqyHBh5bpicxZXo7KxptHs8VjX\n8QSFgujfdhO+ZTsAtj5eNHh1BCorSxRKJde/2E7Mzn/uK2dVf8/L0rBzE56a0R2VhZroczf4acaX\nZKdlFakLGNqR1oMeBb2ehGtx/DzrK9Lj0yo0i7n2s14nPx6d/iIqCzVx5yPYOfsLcorpYeMXA2j9\nylPo9XrysnLZveRbok+FYWFrydOvDcKpvgcKpYIz24I59MGu+85VVfvp/EhLGowbiFKjIe3SNc4u\nX18kV4k1SiWNXh2KU1t/FCoVYV/+RMT2wr2q/vwTuHYK4MT0VYVuV2jU+L85mxvbdxGzO9iorC4d\nWuA1diBKC0OO08s3kJ+eaXydUoH35KE438x7bcvPhN+Vt0b3J3B7PIBjxeRt8eYswn/YRcxfB43K\nW5YHvb2bsn/WtTzwnTcWjYMd+RlZnFq8joxrNwqes7j+aRztaDxrFNaeHijUqnK/nrLo9Xrmzv4J\nr4aujHj5kQp//pKYy2e7+6P+NJnYF6WFhpSL1/lv8YfkpRdd/0qrq9fnSer27IRKqyHx7FWOLv4I\nXW4eLq0b4zelP0q1mvysHE68vpnE05eNymXqfZJldTcCPl3F0VeXknrOkKnpymnYetUlP9PwuhKP\nnOLi2s/K3VNhPuQIVwXQONrjPXcCZ+au5tCAiWTeiKbe2MFG19Qe+hIKlYojQ6dyeMhUVFoLag/p\nBUDDaaOI+vVPjgybxoUV7+G7dBqoyv+2mTIjgMJCg8+CySjV9zeG1zja02juRM7MfZ3DAyaQdSOq\n2Jwl1dQdOYDs2HiODH6Vo68EUaPns9g18QbAd/kMrn38Nf8Nm8rJaUupP2k4lp7V7zlnVX/Py2Lt\nZEuP1YF8M+Zj1nVeRmJYHE/NeqFIXXW/WjwysjMf93qL959eScLVWJ6Y9lyFZjHXflo52fLMqsH8\nPP4DPn16MclhcTwa1KNIXbV6bjw2syfbRqzjixdWcvC93+j+/igAOkzpTlpkEp93W8aWnqtoNrAj\n1VvUu69cVbWfGkd7fOeN4+TsNwju9yqZN6LxGh9odE3Nnk9hVcuDg4FTOTRiFrX6PYe9rxcAantb\nvGeMxHvaCBQoCj2nvV8j2ny0AsdmPuXooR1N5o3jxOw32d93MhkRMTQcN7BcdZ49u2Bdy4MDA6dx\ncPhsavfvhr1vg5t5bWg8cyQ+04ZzV1wc/BoS8PFyHP2Nz1uWB729m7p/fosnEf79Tg70n0roh9/i\n/9q0gucsqX/ek4eRfiWc4EFBHBwyEwAF9cv92ooTGhrLiKGb2fHb6Qp5PmOZy2e7RTU7Wi0excGg\nd/ij5wzSw2NoMqlfuepqdG5Ng/5d+HfMa/zRezYqSwu8Bj2LQq0iYNUEji75hL/6zeX8Rz/SatkY\no3KZcp8EoLTQ0GTxRBSawv1z8GvEkbELCBkSRMiQILMebOmq+H9VxUM74MrOzqZz584PZFnVApqT\nevYSmeGRANzYvgP3px8zuib5+BnCPttqmAir05F24QpaD1cAFColajtbAFTWVuhycqtcRoCGU0cS\n9b+/yE1Ovad8hTNcJOuODG5PdzS6JnTNx1xe9ykAFs7VUGjU5Keno7DQELbpG5IOnwAgJzae3KQU\ntG7O95Gzar/nZWnQ0YeIE2EkXI0F4PAX/9L0xdZF6iJPXeedTkvITs1CrVVj5+5IZmJGhWYx137W\nebQxUSeukXTN0MPjX+6h8QttitTl5+Sxa84W0mNTAIg6eQ0bF3uUGhW7l27ln9e2AWDr5oDKQk12\natGjAOVRVfvp1LYZKWdDybweBUDEtp14PPOY0TWuj7cl8pfd6PN15KWmE/3HPjyeNdzn/mR7cuIT\nufju5iLLrdW3K6EbvyblzEWjszq39Sf5bCgZN3OEb9tZsCxj69weDyDi578L8kbt2k/1Zw37Ko8n\nHyE7LpEL7xTNW7tfN0I3fk3yaePzluVBb++m7J/WtRo2dWsQtWs/APEHjqGy1GLnbfihoqT+xfwT\nwvWtOwDuWG9tyv3aivPVlsP07NWcZ7s2qZDnM5a5fLa7tWtK4unLpIdFA3Bl65/U6lr0KGBpdbWe\nf5SLX/xGbko66PUcW76JsF/2oc/L57dnJpF8/hoA1p5u5CQbd0TWlPskAO/prxD569/kJqcU3GZZ\n3Q2VtRU+M0cR8MUbNJ43DrW9rVF5hfl6aAdcD5LWzZnsmLiCf2fHxqO2tUFlbWVUTWLIcTKvG3aE\nWndXavZ7nti/DB8kF9/8kNqDe9Fu+4c0W7uQi29shPzyj9lNmdGj+1Mo1Gqifv6j3LmK5nQhOya+\njJxl1OTr8F4wmdab15J89DQZYTfQ5+QS9cufBY/xeKELKitLUk9duMecVf89L4tD9Wqk3Egs+HdK\nZBKW9lZobS2L1OrydPg83YypwUup07YBR7caNyXLWObaT7vq1UiNvN3D1KgktHZWWNzVw5SIBK78\nfarg353m9ib0rxPocvMB0Ofr6PrmMIb8bx7hBy+QeDn6vnJV1X5aurmQFX3HMmPiUdtaF8pVWo2l\nmzNZ0fGF7rv1o0nE9l1c+fg7dNm3p0LdcnrBWuL3/2dUxoIc7s5k37Usja01Khsro+ss3Z0L76ti\n4tG6OQEQvn0Xlz/+jvxi8p6cv5a4fUfLlbcsD3p7N2X/LN1dyI5NLHS2flZsApY3e1tS/2J2HyQn\nIRkAu0Z1AdATXu7XVpx5C7ryQo9mFfJc5WEun+3WHk5k3vE+Z8YkoLGzRm1jaXSdbR0PtNXseWRd\nEJ2/WU7j0b3ITTX8GKDPy0frZM+zv6/Fb3J/Ln76q1G5TLlPqvFCZxRqFTd+vP3dA8DCyZ6EQyc5\n99pGQobMID8zC9+5Y43KK8zXQzXgSk9PZ+zYsQQGBrJo0SIAQkJCGDJkCIMHD6ZXr15cuXKFb775\nhlWrDPPl8/Pz6d69O9nZ2fe8XIWy+Dbqdbpy1dh616f5+8u48f1vJOw/gsJCQ+Ml0zi3/F2Ce47k\n2Pj5NAwac09HZUyV0bZRfWr0eJqLqzeUO1OxlIpib74zgzE155esYf9zQ1Hb21JneN9CdbUG9aLO\ny/05PXNFoXnq5WEO73lZFCX0UVfCl+dzO0/weovZ/P32bwzePA6FovjH31sW8+xneXuotrLg+Xdf\nwbGOK7tmbyl032/TPmV9mxlYOtrQbmK3+8xVRft5n9t3cf3Wm+DHCAAUJfTn7uWVVlfca9FVziSX\nB769m7J/JWTRG9lb57b+tHxn3s1/JZZaW9WZzWd7Se9Zvt7oOqVahVs7P0JmvsvuwAVoHGzwndC7\noCY7IYUdz7zKP0MX03LxSGxre5Sdy0T7JDvvetTs+TTnVn1Q5P6U05c4OWs1OfFJoNNx+cNvce7Q\nEsV9TtsUVdtD9e5+/fXXNGrUiClTpnD8+HEOHjzIxYsXWb16Ne7u7mzYsIEdO3YUDL6mT5/O3r17\nadu2LVqt9p6XmxUVi51vw4J/a12cyU1JRZeVbXSN65MdaDh9FJfe+oiYXXsBsKlfG5WlloT9RwBI\nPX2BjCvXsfNtRHbMgSqR0b1rJ1TW1rTYuBIAC5dqNF44mcvvfU78v4fKlREgOyoOO99GpeYsraZa\nQHPSL18jJy4RXWYWsX/sxeXx9oDhJGrvuZOwruvJsdGzyI6KLXe+W8zhPS/OE1O74f1UU0MeO0ui\nz90+ydzOw4HMpHRyMwsPQp3quGDrak/YYcPJvke/PcDzK/ph6WBFZlLFTC00p34+8urz1H/S0EML\nWyviLkQU3Gfr7khWUjp5mUUH8nbVq9Hjg7HEh0axNXANedmGKU11HmtM3PkbpMckk5uRzbmfD9Pw\n2Rb3lO2WqtrP7Og4HJrcsUxXJ3KT0wpv36XUZEXHoXWpVui+O4+A3K8Go/ri+phhmp3Kxoq00LBS\nswJkRcfh4OdVbF1WVBwWzo6F7suKSaiwvGV50Nv7ncur+WJnk/UvK7rw7QCWRva29oDnqDekByfn\nr6XVuvll1ld1VfmzvfHYXng83hIAjY0VKZeuF9xn6VaNnOQ08u9aHzKj4nFq2qDYuqzYJG7sPlJw\nAY3rv+7DZ1RP1LZWuLbxJXK3Yb+UfO4ayRfCsG/oSVpYVKkZTbVP8uj6OGobK1p/uNxwu4sTTRa/\nyqV1m8lLSUNtb0vc3sMAhh8zdHqjfzCoanRyWXijPFRHuK5evUrTpoadvb+/P2q1Gnd3d5YvX86s\nWbM4ePAgeXl52Nra0qZNG/7991+2bdtG7969y3jm0iWGHMe+SSOsbl6AoUbPp4nfe8joGpdO7fGa\n8gonpiwp2NkBZIZHoraxxt7PcNEHy5ruWNf1JO2icVfeeRAZQ9d+wqEBEzgybBpHhk0jJy6Rs4vX\n3NNgy5DhGPZNGhVczKJ6z2eI3xtidI1r5w7UGW44wVahUePauQNJ/50EwHdZECobK46NmX1fgy1D\nhqr/nhdn91v/Y0O3VWzotoqPeryJZ4u6ONU1zNdvHfgo53aeLPIYWzcHeq8bhnU1w7kOzXq0IeZ8\nZIUNtsC8+rl/7S988cJKvnhhJV/1fp3qzevhWMfQQ/+Bj3HpjxNFHmPpYE3fL6dwcecx/jf5k4LB\nFoB3t1a0v3lES2WhxrtbS64fOH/P+aDq9jP+4HEc/BpiVcvwy3PNnk8Te1eu0mpi9xyievcnDOeR\n2Vrj3qUDsXvubV9TnNAPviV48AyCB88g5OW5OPg1xPpmDs9eXYjZW3RZt/IWVxe75zA1u3e+I+8j\nxP4TUuQ5TOVBb++3lgeYtH/ZMQlkRkTj3sVwbo9zW3/0Oh1pl8KKPP+dag94jlq9nyHk5bkkHCr6\n2s1RVf5sP7t+G7v7z2N3/3n8PWQx1Zp6YVPbHYB6vZ8k8u+i03yjD5wqsS7ijxBqPhWAUqsxvI4n\nWpF4+jL6fB0tF43Eyd8wKLKrXxO7utVJOFn2FRVNtU+6uOZTDvR9teCiGNlxCZxeuJa4vYdRWVvS\naOqIgvO2ag96wXDlVDMdcAnjPFRHuBo0aMCxY8d46qmnOHPmDHl5ecyfP59du3Zha2vLzJkz0d+c\n8923b18+/PBDEhMT8fG5vytB5SYlc37FOnyXBaHQqMmKiOLc0new9WmA96xxHBk2rcQagHpjDFe7\n8Z41ruA5k0+c49JbH3J6zioaTH4ZpYUGfV4+F17fQFZE+c/vMGXGimTI8C6+y4JQajRkRkRxfula\nbH0a0GjWeP4bNrXEGoDQdZtoGDSGVpvXgl5P3N6DRHz7C/ZNfXB+NICMsAiab1hZsLwr739+T5cI\nN4f3vCzp8Wn8GLSFvutfRmWhIvFaHNunGE7gr9G0Fi+sGsiGbqsIOxTKnnU7GfbNJHR5OlJjkvl6\nlCned/PrZ2ZCGjtnbqb7upEoNWqSw2LZEWS42pS7X226rAjkixdW0mxgR+xqOOHVxR+vLv4Fj/9u\nyDv8s+J7nlw6gCH/mwd6PZd2Hee/T3ffV66q2s/cxBTOLH2fpiumodSoyQyP5vSSddj51KfxnLGE\nDAkqsQYMJ6tb1fQgYPMbKDVqIrbvIunomfvqVelZ19Ns5VQUajWZEdGcWmzIYe9TH9+5YwgePKPU\nuvBtO7HydKfdF6tRatSEb/+DxKNnTZK3LA96ezd1/07OW0Pj2aOpP7wXupxcTsx5u9S/wKpQq/Aa\n3Y/c1Az8V02/fTtN0PNgryxYkczlsz0nMYX/Fn1I29WTUKpVpIfHcHj+RgAcfevRYsHL7O4/r9S6\ny9/+gYW9LU98uRSFUknSuaucfOsT8jOzCZ66hmZBg1CoVehy8jg0Zz1ZMWVPF62MfVL8gWOEb/0f\nrT9YCgol6aFhnF1ZQVM3RZWl0Osfnr8RnZ2dzYwZM4iJiaF+/focPnyYTp06ERwcjJWVFS4uLjg6\nOrJs2TIAunfvTmBgIP379zfq+f/p0Kvsokr0+L5tVT4jGHLu6dCzsmOUqeO+7WbTz0V1JlZ2jDIt\nuvau2fTzLa9xZRdWoqmX3gfMY5/0Z7s+lR2jTE8Gb2VX275lF1ayLge/NZtt3Vz6mc+WsgsrmYpA\ns9jWAba3GFxGZeXqeXSz2eyTzMVg51crO0KpNsevrewIwEN2hEur1bJ2rXGN1el0WFtb8/zzz5s4\nlRBCCCGEEOL/q4fqHC5jXb9+nZ49e9KtWzdsbeVvHwghhBBCCCFM46E6wmWsWrVq8eOPP1Z2DCGE\nEEIIIcyWXKXQOP8vj3AJIYQQQgghxIMgAy4hhBBCCCGEMJH/l1MKhRBCCCGEEPfn4bnWuWnJES4h\nhBBCCCGEMBEZcAkhhBBCCCGEiciUQiGEEEIIIUS56So7gJmQI1xCCCGEEEIIYSIy4BJCCCGEEEII\nE5EphUIIIYQQQohy08llCo0iR7iEEEIIIYQQwkRkwCWEEEIIIYQQJiIDLiGEEEIIIYQwETmHSwgh\nhBBCCFFucgaXcRR6vZztJoQQQgghhCifPo6TKjtCqbYmvVPZEQA5wlUuYf0CKjtCqWp/E1LlM4Ih\n5/X+bSo7RplqfX3IbPq5wWd0Zcco05hzG82mn5v9Xq7sGKUafOpjwDz2SX+1713ZMcrU+cB37Azo\nV9kxyvR0yDdms63/2a5PZcco05PBW/mnQ6/KjlGmx/dtI58tlR2jVCoCAcjd27iSk5RO89hZs9kn\niYeLDLiEEEIIIYQQ5aaTeXJGkYtmCCGEEEIIIYSJyIBLCCGEEEIIIUxEphQKIYQQQgghyk0v1yk0\nihzhEkIIIYQQQggTkQGXEEIIIYQQQpiITCkUQgghhBBClJtcpdA4coRLCCGEEEIIIUxEBlxCCCGE\nEEIIYSIypVAIIYQQQghRbrrKDmAm5AiXEEJ09aeiAAAgAElEQVQIIYQQQpiIDLiEEEIIIYQQwkRk\nwCWEEEIIIYQQJiLncAkhhBBCCCHKTa+X68IbQ45wCSGEEEIIIYSJyBEuE7Bs0QHHAeNQaCzIDbtE\n/IZl6DPTC9VYP/os9i8MBr0efXYWiZ++Sc7lsyisbHAeMw91zbooFArS/vkfqT99/v8+p0P/8Tdz\nXiRhY3E5u2LXfRDoQZ+TReKnb5B7+WyhGuepr5OfGEvSptUmyWgOvQSo/bgfbaf2RGWhJv58BH/P\n/Zzc9KwS659YOZSEizc4/skuABRKBY/OH0D1Ng0BCNtziuDXv6/QjObUz5odm9Fici+UGg1JF8I5\nsGBTqf18ZNkIki5FcObT3wHQ2FrRfskwHOpVB6WCyz/u5/Qnv1VoxqraT+dHWtJgbCAKjZr00DDO\nLn+f/IzMctVo3Zxp/dEKQgZPJzc5FQC7xg1oOHk4KkstCpWSa5t/IPr3vfeV1aVDCxqOG4DSQkPq\npTBOL9tAfnpmueu0bs60/WQZBwJnFOS1b9wA76lDUVlpUSiVXP38RyJ3/HtfeaFqbOtek4bg3rk9\nuSlpAGSE3eDUvLcL1Xj2eRbP3l3RZeeQfjWc8298TN7NemNpHO3xXTgBKw9X9Dod517bSPLJCwDY\nNKiN97QRqG2sb973AannL5f5nE7tW1FvTCBKCw3pl65xfuV7RdbPkmqUFhZ4TRuJXWMvFEoFKacv\ncunND9Hl5BQ81rK6Gy0/Wc2JKUtIOxdartd7P/R6PXNn/4RXQ1dGvPzIA1vunf45oWfN93py86CR\nJywZpsDWSlFw/4/79Xy+6/aRk7RMiE6EP15XYGsFy7boOX3V8Ed3m9aDeYEKLC0UxSypbPe1H1Iq\naThpKE7tmqNQKQn78mdubN8JgHVdT3xmjUZlZQlA6PtfkHDwOAB+K6Zj27AO+RmG7THxv9NcWvvp\nPeUX5kGOcFUwpZ0jzmPnE/fWLCKn9CEvOgLHgeML1air16baoEnErJhE1MxBJG/7BJdpqwBw7DeG\nvIQYoqYPIGrOMOy69MKiYdP/1zmdxiwg/u2ZRE3tTV5MBI4DJtyVsw6OgZOIXTmJ6FmBpGz7GJep\nrxeqses+GK1P8wrPdyujOfQSwLKaLU+sGMrOSRv5uutCUq7H0W5az2JrHet70P3TKdR/tnWh2xu9\n2A7Heu5sfWEJ3/VYSo02jaj/TMsKy2hO/dRWs+WRpcP5Z/L7/NR9LqnhsbSY0rvYWvv61eny8XTq\nPFO4n80n9iAjOpGfey7gt/5LadSvEy7+DSosY1Xtp8bRnsZzx3Ny9moO9n+VzIhoGowLLFeNR9fH\nablhKVpX50KPa7piOlc++oZDQ4M4PmU5DScNw8rT4z6y2uE3fyzHZ73Fvj5TyIyIptH4geWuq96t\nIwEfLMLSzanQ4/xXTSX0g60ED5rJf5NX4j15CNa17j0vVJ1t3bGpN6fmv03IkCBChgQVGWxVa9mE\nOoN7cHTCYkKGBBG//yiNZ40u34sFvKe/TNKxswQPmMLpRe/it3waSq0FSq0FLdbO49rmHwkZOoMr\nn3xHk8WTynw+jaM93nMncGbuag4NmEjmjWjqjR1sdE3toS+hUKk4MnQqh4dMRaW1oPaQXgWPVVho\n8FkwGaX6wf7uHRoay4ihm9nx2+kHutw7JaTqmb9Jz5pxCn5ZrsTTFd7+vvC0tBcfUfD9QiXfL1Ty\n9VwFLvYwZ6ACFwcFH/yqJ18H3y9UsG2Rguxc+Oh/9zat7X73QzV7dMGqVnVCAqdweMQsavV7Djtf\nLwC8g0YS+ctuDg0N4uzy9/FbNhWFyvC128GvEf+NXcChoUEcGhpk1oMtXRX/r6r4fzngCg8Pp2/f\nviZ5bkv/tuSEniEv6joAqbu+x+bRZwvV6PNyid+4HF1SPAA5l8+icnQGlZrET98kafM7AKgcXVBo\nLNBllO+XvocqZ7N2hXKm7foe6yI5c/g/9u47Oqpq7eP4d1p6IYUkQKgJJRAINTQp0hQ7KgLSFRCw\n0nsHqVawUFQQFQHB9nJBVHoJCUgNPZSQhPTek5nz/jEwENIhY5J7n89aruXMPDPnlz2zz8w+e59D\n/JqFBeYEsGzcCiu/9qT+tb3M80HlaUuAmh0bE332Jkk3owE4/+N+vJ9tW2Ct78CuXNx+hGu7jue5\nX6VWo7W2RGOhRW2hQ63ToM/OLbOMlak9q3doQmzwDVJCje15efNe6j5dcHs27P84V385zM0/8rZn\n0OJNnFixBQBr1yqoLbTkpKSXWcaK2p7O/n4kX7hKRlgkAOHb/8DjiU4lrrFwdcK1sz+nx7+f5zlq\nCx3Xv95KQtBZALJi4slJSsbSLe+grDRc2vqRdD6E9FvGHLe2/YnHk4+Vqs7S1Qm3Lm34Z9ySfHmv\nrfuJ+Lt5o+PJTkx5pLxQMfq6SqfFrkEdag18Dv+Ny2m6eAKW7q55auwb1SM+6CxZMfEARO87hutj\nrVBptai0Wuq/O5Q2G5biv3E5PrPeRGNjnX87GjWuj7Ui4te/AUi9coOMsNu4tG+Oc1s/MsKjiDt6\nEoDYg8c5N/PDYrM7+Tcn5cJVMsJuAxDx8y7ce3UqcU3S6fOEbtgKigIGA6mXr2PpUdX03PrjRxL5\nnz2mWc5/y6bvj9PnxeY82bvJv7rd+x0JhiZ1oLa7cUaqX1cVO44Vfi7Q17vA2QFe6WKsb9VAxRtP\nq1CrVWjUKnxqqoiIe7gsj7ofqtrFn9s79qLoDeSmpBH952E8nugM3Ok/9rYAaG2sMGTnAMaZTY2N\nNQ0nj8J/4wf4zBiL1sHu4f4AUWnIksIypnVxJzcu2nRbHxeN2sYOlbWtaQmPPuY2+pjbphqnIe+R\ncfwA6O98kRn0uLw1D5u23UgP2kduxM3/2ZwaF3f0cVGlylll8DgyThhzqp1cqTJ0AjGL38aux4v5\nXr8sVJa2BLCt5kRqZLzpdmpkApb21uhsrfItNTq04EcAPNs3ynP/pZ+PUO/JVgzevxSVVkPY4fPc\n3HumzDJWpva08XAm/b72TI9KwMLepsD2DHr/BwCqtfXJ9zqK3kDHJSOo3bM1oX//Q/KNyDLLWFHb\n08rdhazoe7+SsmLi0NrZorGxNi3nKaomOzaBc9PyLw82ZOdw+/c9ptvVn++BxtqK5OArj5Q18/4c\n0XHo7GzQ2FrnWS5YVF1WbAKnp3xQYN7w3/aabtd4oTsaGyuSzl1+6LxQMfq6paszCSfOEfL5D6SH\nRlBr4HP4LZtM4NDJpprk81ep+cpTWHm4khkZS/VnHkdtoUPnaEeN53ug6A0EDZ0CgNfoAXi/OZBL\ny9fl2Y7O0QFUKnISk033ZUbHYenmgtpCR3ZcIj7Tx2BXvza5qWlcXfVd8dndXMiKjjXdLujzWVRN\nQuDpe6/lXpUa/Z7h8tIvAPB4tgcqrZbI3/+i9tCCZ8TNZebs3gAEBFz/V7d7v8h48Lhvktfdybhk\nMC0T7B4YTyekKGzYrbBl1r3lgh2b3Pv/iDiFjX8pzBnycMsJH3U/ZOnuSlbUvc9AZnQcLt61Abi0\nYh0tVs2hZv9nsHByIHjWxyh6AxZOjiQcP8Ol5WvJTkim/nvD8Jk+lrNT867MEf9dKt0M14svvkhc\nXBw5OTm0bNmS4GDjtHifPn3YsGED/fr1o3///nz7rfEcg9u3bzNixAgGDx7MiBEjuH373o8KvV7P\npEmTWLNmTdkFVBXSpAZ9/lJLK1zHLUbr4Unc6kV5HotbNYewEb1Q2zni+PLrZZevsuVUF7ITLSSn\ny3vGnPGrF4JGg8s7i0j89kPTkXuzqCxtifGIW0EUQ8kn3lu9+QyZ8SlseGwS33WZgqWjLc2G9yir\niJWsPQv+fJamPe86PHUdWx57F0tHW5qOee5Ro91TUduzJJ/FR/y81h78AnVH9OPMpCUYsrKLf0Ih\nCnuf0Rseqq4wdYY8j/eovpycsAxDVk5pIuZTEfp65u1oTo9fTHpoBACh3/+Gtac7VtXcTDWJpy5w\n7autNF06iTbfLEFRDOQkpWDIycWlYyuqdm6N/7fL8f92OVW7+GNb1zP/hopod7VWi0uHFoT/+idB\nw6dya8tO/D6cjkpX9PHmkrRfSWrsGtaj+ecLidi2k/gjJ7BrUI/qL/TiyvIvi9z+fzNDIav/CmrO\nrQfg8ebgWTX/exx8Q2HIUoUB3VR09Xu4Adej7odUqgK2azCgttDhu3AcFxZ+xpHn3+CfMbNpOGUU\nlm4uJJ+/wtmpy8mOSwSDgevrtuDSsSWqf3l5aVlRFKVC/1dRVLp3t1u3bhw8eBAPDw88PT05cuQI\nlpaW1KpVi127dvHDD8ajyMOHD+exxx7j008/ZfDgwXTp0oWjR4+yYsUKxo0bR25uLhMnTqR169YM\nHDiwmK2WXG5sJBbe96bqNc5V0acmoWTlPaKocXGn6pQPyQm/TvS8sSg5WQBY+bUjJ/Qq+oRYlKwM\n0g//gU3bbmWWr7Ll1MdGYentW6KcrpM/JDf8BjHzx6DkZGFRvylatxpUGTzOWFPFBdRqVDoLEtbk\n/TH5KCp6W7Z++1nqdPMDwMLOirjL4abHbN2rkJmYRm5GyX+M1uvZgkOLfsSQoyc7R8/lX45S74mW\nnPnmrzLJW9Hb0+/N5/F83Hg+oM7WmsQrYabHbNycyEoqXXtW69CExCvhZMQkkpuRxfX/BFK7Z9md\nE1dR2zMzMgaHxvVNty2rOpOTnIIhM6tUNQVR6bQ0nvkWNnU9OTFyOpmRMaXO5zWqL1U7G89p0tpa\nk3o1NG+OpFT0D+TIjIzFsYl3sXUF5fWdPRa7ep4ce30WmbdLnxcqXl+3866FnXcdIncduO9eFUru\nvWWJGhsrEk+eN81KWjg74jWqP7nJqag0ai5/9A1xR08Za62tUFvosG9UD5/pY0yvETTcOAOmtbcl\nN8U4a2tV1Zno6Dh0mVmk3QwnOfgqYFxSqJo+Busa7kVmz4yMwf7+z56rS4Gfz6JqqnbvSP2Jo7j6\n4Tqi/zRetMW9d1c0Nja0WL3Y+Pe6OuEz5z2uffYtcYeCStCqlV81Zzh73wRbdCI42ICNZf7By64g\nhWkD8t//n0CFhd8pzBio4um2DznY4tH3Q5lRsVi4OuV5LDM6Dtt6tdBYWhJ3+AQAycFXSLsehkOT\n+mRXc0Nnb0vsIeMSXpVKBQbloQ7Uicqj0s1w9erViwMHDnDw4EHGjRvH0aNH2bNnD0888QQREREM\nGzaMYcOGkZiYyM2bN7l8+TKrV69m8ODBfPbZZ8TFGWc6Ll26RFxcHOnpZXeuBEDmmWNY1vdF61ET\nALueLxqX5txHbeuA+9zVpAfuJe6TmaYfNgA27Xrg8PII4w2tDpv2Pcg8l3dd/f9WzgAsvO/L2eMl\nMgvI6TZnNRmBe4n7dIYpZ/aVs9x+8xmipg4kaupAUv/aRvrRP8t0sGXMWLHb8vjK3/mpz0J+6rOQ\n7f2W4u5XD8faxiPMjft35sae08W8Ql4x50PxunNyvVqrpvbjfkSdKrvlKRW9PU9/9is7Xp7Hjpfn\nsWvgIlz96mFfy9ieDfp14daek6V6vTpPtqHZmGcBUOu01HmiNZHHLpZZ3oranvGBp3H0rW+6mEX1\nPr2IPRBU6pqC+C6agMbWmhOjZjzUYAswXcQiYNAUAl+biaNvfdOFLDxf7En0gfxtEHfsTInqHuS3\neBxaW2sCH2GwBRWvrysGhQbjh5tmtGq81IvUkJum87XAuOyw5edzTedm1Rn+MpG7DwMQH3AKz5d7\nG4/8q1Q0mvYGXmNfJeXiNdNFOAKHTELRG4g78g81XugJGAd6tnU9SfjnPHFHT2Ht4YZ9w3oAVGnu\nA4pCZkQ0RUkIPI1DkwZYe1YDjJ+9uINBJa5x7doe73EjODNuvmmwBRDyydcEDXiLE8MmcGLYBLJj\nE7gw7+P/mcEWQIcmcDoEbkYZZx8271PoVsA1rZLSFG5FQ/MHriG0+7jCkk0Ka8Y/2mALHn0/FHsg\niOrPdEOlUaO1s8G9Z0diDwSSEXYbjZ0NDk0bAmBdwx3bOjVIvXwdjbUVDca/bjpvq9bA54neGwAy\n4PqvVulmuBo0aMCtW7eIiYlhwoQJrF69mr///pt58+bh7e3NunXrUKlUrF+/noYNG1KvXj1ee+01\nWrZsSUhICEFBxk7SpEkT1qxZQ9++fenUqRONGjUqZsslY0hOIO6LBbiOX4JKqyU3Mpy4z+ZiUc8H\n5zdmEDllEHa9XkLj6o5Nm67YtOlqem70gjdJ2PgxziOn4rFiEygKGUH7Sdn5Y5lkq6w547+cj8u4\nJai0OnKjwoj/bC66ej44j5pJ1NSB2PZ8CY2rB9ZtHse6zeOm58YsHIshNanMMxWUsTK0JUBmfAr7\npm+g5yej0Oi0JN+KYc+UbwCo6lubLgsG81OfhUW+xpElW3lsZn/6/Wceit5AeMBFTq3bVWYZK1t7\nHpn5DZ0/GotGpyHlVgyHp30FgHOT2rSfN4wdL88r8jWOL99Mu9lDePbn+SiKwq09J7nwXdnMFkLF\nbc+chGQuLPwM3/cnotZpyQiP4vz8ldg38qLRtNEEDZ1UaE1RHJs1pGqnNqTdDKfV6nuf5fsvyVxa\n2QnJBC/4Ar8l41FptWSER3J27mcAOPjUo/GMNwgYNKXIusJUadYQt86tSbsZQZt18033X1n1A3EB\nD5cXKkZfT7t2i8sffo3fiimoNGoyo+M5N+sT0wxV4JBJpIdGcPPbX2jz9fugUpN0+iKXPjD2oevf\nbKP+24Px/3YZKrWa1Cs3uPJJwf8kwaXl62g0fTRtn/wAFAieuxJ9Wjr6tHTOTFlGw8kj0FhZYsjJ\n5cy0FaYLGBQmJzGJS++vovHCSah0WjLDI7m44FPsGnnRcOpYTgybUGgNQN3RxpUzDaeONb1m0pmL\nXP1wbYnb77+Vi4OKhcNh3BcKObkKNd1g8Wsqzt1QmLNBYdsc41xAaDS4OoJOm3dQ9fF2BUWBORsU\nwDhoa+ENMweWfg7hUfdD4T//gbWnO22+/QC1Tkv4L3+SePI8AGenLqPBe8NRW+pQcvVcXLqajPAo\nMsKjuLX1P8b9k0pFWkgoF5dU3iWmMkwsGZVSkRY4ltDy5csJCwvjk08+4YMPPuDq1at88cUXrFu3\njr/++ovs7GyaNWvGrFmziIiIYO7cuWRlZZGZmcmMGTOoWrUq48ePZ8uWLRw/fpwFCxawdetWLCws\nitxuaD//f+kvfDi1NgdW+IxgzHmrf5vyjlGsmj8GVZr2/LJR6S+j/G8bfXF1pWnPjb7mOeerrAw+\nZ/xBWtHbs9bmQPa0/3cvCvAwuh39id3+/co7RrF6BW6uNH3973Z9yztGsboHbGV/R/NcTKksdTm8\nHT3fl3eMImkwDjBzDua/KFBFout0odLskyqLJ+3eLL6oHO1KLfqg17+l0s1wAUyaNMn0/xMmTDD9\n/4gRIxgxYkSe2po1a/LVV1/le40tW4yXYW7dujW//vqrmZIKIYQQQggh/pdVygGXEEIIIYQQonwZ\nKt9CuXJR6S6aIYQQQgghhBCVhQy4hBBCCCGEEMJMZEmhEEIIIYQQotQUZElhScgMlxBCCCGEEEKY\niQy4hBBCCCGEEMJMZMAlhBBCCCGEEGYi53AJIYQQQgghSs1Q3gEqCZnhEkIIIYQQQggzkQGXEEII\nIYQQQpiJLCkUQgghhBBClJpBLgtfIjLDJYQQQgghhBBmIgMuIYQQQgghhDATWVIohBBCCCGEKDWD\nIksKS0JmuIQQQgghhBDCTFSKIkNTIYQQQgghROl0sXmjvCMUaX/66vKOAMiSwlLJ/sC2vCMUyWJC\nWoXPCJKzrFlMSGNTs+HlHaNYA858U2na89eWg8o7RpGe/+c7oHLsk/a0f7m8YxSr29Gf2O3fr7xj\nFKtX4OZK09f/bte3vGMUq3vAVn5uMbi8YxSrz8mN5Bz0Ke8YRdJ1ugCAnu/LOUnRNAysNJ/NykKR\nqxSWiCwpFEIIIYQQQggzkQGXEEIIIYQQQpiJLCkUQgghhBBClJr8w8clIzNcQgghhBBCCGEmMuAS\nQgghhBBCCDORAZcQQgghhBBCmImcwyWEEEIIIYQoNTmHq2RkhksIIYQQQgghzEQGXEIIIYQQQghh\nJrKkUAghhBBCCFFqiiwpLBGZ4RJCCCGEEEIIM5EBlxBCCCGEEEKYiSwpFEIIIYQQQpSaXKWwZGSG\nSwghhBBCCCHMRAZcQgghhBBCCGEmsqTQDFR1n0DTaT4qjQVKzDlyd4+F7JSCa72fQfvkWnJWVTPe\nYeWEpsfHqKs2Q8lJxxC8EcPJLyVnBc9ZGTLeVb1TM/zefRm1hZbEy2Ecm/M1uWmZhda3XfA6SVfD\nubhhV577bdyd6fndTHb2nU12YmqZZqzo7en+WHN83n4FjU5H0pVQTs1fR25aRqnqnvz7czKjE0y1\nV7/dQdjOI9jXrY7fzNfR2lihKArnV24m5ujZR8pb0dvzLpcOLfEaMxCVTktaSCgXFn2OPj2jVDWW\nbi60Xvc+gYMnkpNU8N/4MFw7tqD+2AGoLXSkXA0leOGX6At4z4urs3Rzoe3XCzk6cHK+fNWf7Yp7\nV39OTlhWJpnLu6979O5MrQHPmm5r7WywdHPm8HOjyY5PMt3v/c4Q3Lu1JyfZ+NrpoRGcm/lRibcD\noKviQOM5b2HtURXFYODiktUknb0MgK1XLRpOeA2trc2dx9aQculaiV7X/TE/mrz9CmoLHclXbvHP\nvLUFtmFRdXX7dqdOn65oLHUkXLjByXnrMOTk4traB99x/VFrtegzszmzbCMJwSXLVZj9ZxQ+3qaQ\nkwsNPGH+MBV21irT478eUfj2z3tLwFIzICoB/lqmws4aFn6vEHwDDAo0rQszB6qwslAVsCXzUxSF\nGdN+w7t+VV57vYPZtuPSoSVeY19FrdORevUmFxZ9UfB+p6AatZoG7w7Fua0fKo2G0B9+I/znP7Gt\n40mT+e+anq9Sq7HzrsWZqcuJ2RdI08UTsPOugz7D+BlJOHGOK59sMNvfaE4GlaG8I1QK/1MzXJcu\nXSIoKAiAbt26kZWVVfYbsXZF++Rqcn97lZxvWqAk3UDTaX7BtVW80HZ+H1T33gZN16WQnUbO+lbk\n/tAVdZ1eqOo9KTkrcs7KkPEOSyd72i54nYPjP2PHc9NJDYuh+Xt9C6x1qFuNbusmU6tXm3yP1Xm2\nA93XT8PG3ansQ1bw9rSoYk+LuSMJmvgJf784ifTwaBq/3a9UdXa1q5GTnMa+ATNM/4XtPAJAs2nD\nCf1tP/sGzODUvLW0WfI2Ks0j7KoreHvepavigM+MNzk7bTnH+r9LRngUXmMHlqrGo3cXWn65AMuq\nLmWczR7fWWM4PfVDDvcdR0Z4FA3efLXUddWe6oz/mrlYuTnneZ7WwRafqSPwmTgcyui3bUXo65E7\nDxA4ZBKBQyYRNHwq2XGJXF7xVZ7BFkCVpg05N+sjU21pB1sADSe+TuKpCwQMGEfw3JX4LpqA2tIC\ntaUFLT6Zyc2NvxI4dDLXv/6JJvPeKdFrWjjZ02reKI5N+pS/+kwmLSyaJu8U0NeLqKverTVe/Xty\naPQS/np5GhorC7wHPYlKq8F/6VucnP81e/rN4NK6X2m1cHSp/+77xacozPpG4eOxKv5vkRrPqvDR\ntrzn1zzfQcW2OWq2zVHz4wwVrg4w/VUVro4q1uxQ0Btg2xwV2+eqyMqBdf8pn/NzQkJieG3oRnbt\nDDbrdnRVHGg8cyxnp60goN+7ZERE4f1m/v1OYTU1+vTAuqYHxwaOJ+i1qdTs9zQOjb1JuxFm+jwH\nDplEXOBpIv84RMy+QAAcfRtwYsxs0+OVdbAlSu5/asC1e/durl69atZtqGt3R4k8AYkhAOhPr0Xt\nk38HjdYa7VNfkbt/ap67Ve4tMJzfBIoBDDkYru9CXb+P5KzAOStDxrs82jch7tx1UkOjALi6ZQ+1\nn2pXYG39/t259stBQncH5bnfumoVPB9vyf43S/+jqCQqenu6tW9KQvB10m4Z2/D61r/x7J3/6GtR\ndc5+9VEMBjqsnk7Xze/TYOQLoDb+0lZp1OjsbY1/oq0V+uycR8pb0dvzLmd/P5IvXCUjLBKA8O1/\n4PFEpxLXWLg64drZn9Pj3y/zbC5t/Ug6H0L6LeN2b237E48nHytVnaWrE25d2vDPuCX5nufRoz1Z\nsYlc+vS7Mstc0fp67SHPk52QRPgvf+W5X6XTYtegDrUGPof/xuU0XTwBS3dX42NaLfXfHUqbDUvx\n37gcn1lvorGxzvfaKo0a18daEfHr3wCkXrlBRthtXNo3x7mtHxnhUcQdPQlA7MHjnJv5YYkyu7Vr\nSkLwNdJC7/XhmgX19SLqaj7zGFe+20lOchooCqcWfUPo/x1GydWz84l3SLp0EwAbTzeykx5tpcCR\nYGhSB2q7G/cl/bqq2HHMOFNUkK93gbMDvNLFWN+qgYo3nlahVqvQqFX41FQREfdIkR7apu+P0+fF\n5jzZu4lZt+PcthnJF0LIuHV3n7I7/36niJqqXdpy+//2ougN5KakEfXXYTyezPv8Kn6NcHu8HReX\nrgHAqpobGhtrGk0Zhf93K/CZORatg51Z/05R/ir8ksLt27ezd+9eMjMziYmJYciQIfz9999cuXKF\nyZMnk56ezoYNG7CwsKBOnTrMnz+f33//nf3795OZmUloaCgjR46kY8eO/Pzzz+h0Opo0MXbguXPn\nEhYWBsCqVatwdHR89MAOnigpYfdup4SjsnQEC/s8S3g0PVdiOPM1Ssy5PE9XbgehbjwAfcRR0Fii\nrv8CGB7tB5fkNHPOypDxDhsPZ9Ij402306MSsLC3QWtrlW+ZzInFxh9/7m0b57k/IyaRQ+NXmSUf\nUOHb09rdhYyoe79CMqPj0dnboLW1zrOssKg6lUZNTMA5gj/ehNrSgnafTiQ3LYNrP/zBmSXr6fDl\ndLwG9sbS2YHj01ah6B9hyUYFb8+7rAf/0DkAACAASURBVNxdyIq+115ZMXFo7WzR2FiblvcUVZMd\nm8C5acvLPNfd7Wbev93oOHR2NmhsrfMsFyyqLis2gdNTPijw9cO2Gwch1Z/uUmaZK1Jf1znaU2vA\nswQOnZLvMUtXZxJOnCPk8x9ID42g1sDn8Fs2mcChk6kz5AUUvYGgO8/zGj0A7zcHcmn5ugde3wFU\nKnISk033ZUbHYenmgtpCR3ZcIj7Tx2BXvza5qWlcXVWyga2Nh3OePpxh6sN527CoOrvaHliec6DD\nqklYVa1C3MnLnPv4RwCUXD2Wzg48vmkBFlXsCZryWYlyFSYyHjzumzx1dzIuGUzLBLsHxqkJKQob\nditsmXVvSrVjk3v/HxGnsPEvhTlDymc54czZvQEICLhu1u1YubmSGRVrup0VHYfWzibvfqeIGis3\nFzKj8vZ5O+/aebbh/c4Qrq3eZHo9C2cH4oPOcmn5WrITkmkwbhiNZ4zhzBTz7L/MTa5SWDKVYoYr\nLS2NtWvXMnLkSDZt2sSqVauYP38+P/30EytXrmTDhg1s2rQJe3t7Nm/eDEBqaiqrV6/miy++YM2a\nNbi7u9OnTx+GDRtGs2bNAHjppZfYuHEjNWrU4PDhw2WUtpCdk0Fv+l+130gw5GI4922+Mv3+aYCC\ndvBRtM//iOHmHtBnl1E2yWmenJUh452k6oKzKoaKtAa7grdnYW344KCoiLqbP+/j7PKNGHJyyU1N\nJ+S7nVR7vDVqCx2tl7zFybmr2d37HQ6NWIDfjNewcncu8LVKpoK3pylEwV9HeT6bJakxg8L6DQ+8\n5yWt+zdUpL5e/YUexBw8Tubt6HyPZd6O5vT4xaSHRgAQ+v1vWHu6Y1XNDZeOrajauTX+3y7H/9vl\nVO3ij21dz/wbKKLd1VotLh1aEP7rnwQNn8qtLTvx+3A6Kl0JjjerCuvDSonr1FoNbu18CZyykr0D\nZ6NztKXxWy+barLik9n1xLvsHzqPlvNGYlfLo/hchTAU8ru3oG6z9QA83hw8q+bPHnxDYchShQHd\nVHT1K58B17+mJP2kiJqC+tn93wWOTRugc7Qn8o9DpvuSg69ydupysuMSwWDg2totuHRsiUpb4edA\nxCOoFO+uj48PAPb29nh5eaFSqXB0dCQjIwNvb2/s7IxTsW3atOHQoUP4+fnRqFEjAKpVq0Z2dsE/\nDnx9fQFwdXUlM7PwE4lLJSUMVbX71sHbVUfJiIfcdNNd6iaDQGeDdvBRVBqdcSnP4KPkbu8Dai36\nAzMh03gyvbrNeJTERzuJVnKaOWcFz9h07AvU6NoCAJ2dFYlXwk2PWbs5kZWUij7DPAO8h1IB27PR\n6Jfw6NISAK2tNclXb5kes3JzIjspFX1m3nNCMyLjcPL1KrDO8+mOJF8OJfnKnddRGY92O3h5orGy\nJOrgKQASzoaQEhKOk68Xt6PieSgVsD0LkhkZg0Pj+qbbllWdyUlOwXBfu5akpqx4jepL1c6tAeN7\nnno1NO92C3jPMyNjcWziXWyduVTUvu7eowOXP/ymwMfsvGth512HyF0H7rtXhZKbi0qj5vJH3xB3\n1NgfNNZWqC102Deqh8/0MabqoOHGGTCtvS25KWkAWFV1Jjo6Dl1mFmk3w0kONp5OEHvwOKrpY7Cu\n4V5gHp8xL5r6uq4Ufd25acF9PTMmkYi9J0wzYrd2HKbRqD5o7ayp2qYxt/eeACDp4k2SLofiUN+T\n1NDIohu0ENWc4ex9E0LRieBgAzaW+QcFu4IUpg3If/9/AhUWfqcwY6CKp9v+lw+2gKyoWBybPLBP\nSUrNs08pqiYzKhZLV6c8j90/C+/eoyORO/fDfcs6q/g1QutgR+zB4wCoVCowKBXswKcoa5VihktV\nyNEjlUpFSEgI6enGHw6BgYHUrVu30OeoVCoM932gC3vdR2G48Teqav5Qxbjz1fiNwBCyI09N7g9d\nyN3QhtyN7cnZ/iLkZpC7sT2kRaLxG4Gmw0xjoY0bmqbDMFzYLDkrcM6KnvHs57+w65U57HplDrsH\nLcS1WT3sahl/bNTv+zjhe0+W2bbKQkVsz4tfbjNd3OLA0Lk4NfXGtqaxDeu81J3I/f/ke0700bOF\n1jl4edJo9EugVqG21FGvXy/CdweQeisKnZ01Ts2MX+42nm7Y1a1uOs/jYVTE9ixIfOBpHH3rY+1p\nPMJfvU8vYg8ElbqmrISs2UrAoCkEDJpC4GszcfStj01N43Y9X+xJ9IHj+Z4Td+xMierMpSL2da29\nLTaeHiSduVTg44pBocH44VhVcwOgxku9SA25SVZMPPEBp/B8ubfxyL9KRaNpb+A19lVSLl7Lc0EC\nRW8g7sg/1HihJ2AcxNnW9SThn/PEHT2FtYcb9g3rAVCluQ8oCpkR+WfbAC58sZ29/Weyt/9M9g2Z\nZ+zDd9qw7svdub0vf1+POnqu0LrwvwKp0cMftaUOgOqPtyIh+BqK3kDLuSNx9jP2dft6NbCvU434\nsyEP1c4AHZrA6RC4GWX8cb95n0K35vnrktIUbkVDc6+89+8+rrBkk8Ka8f8bgy2AuGN39il3+myN\nPr2IORhU4pqYA0FUe/ZxVBo1Wjsb3Ht2JOa+fVKVFo2JP553mbbGxooG418znbdVa9BzRO8NABlw\n/VerFDNchdFoNLz99tsMGTIEtVpNrVq1mDhxIjt27Ciw3tfXl2XLluHl5VXg42UiI4bcP0ajffZ7\nVBodSuJ1cneNROXeAk2vz40/YoqgP7YC7VPr0A41dlj90fdRovLv4CVnBcpZGTLekRWfQsCsr3ns\ng7GodVpSb0UTMMN4PoRz4zr4zx3OrlfmmGXbJVbB2zM7IZmTc9fQZvk7qHVa0sKi+WeW8TLpVXzq\n0nz2CPYNmFFk3aU1P9N0ylC6bVmCSqsh4q9Abv68D4DACR/TdNJgNBY6DLl6Ti/6mvSwgn8clkgF\nb8+7chKSubDwM3zfn4hapyUjPIrz81di38iLRtNGEzR0UqE15padkEzwgi/wWzIelVZLRngkZ+ca\nz7dx8KlH4xlvEDBoSpF1/7aK0tetPT3Iik1E0d9bwnp3hipwyCTSrt3i8odf47diCiqNmszoeM7N\n+gSA699so/7bg/H/dhkqtZrUKze48kn+Za8Al5avo9H00bR98gNQIHjuSvRp6ejT0jkzZRkNJ49A\nY2WJISeXM9NWYCjBxWiyE5L5Z+5a2i5/B7VWQ1pYNMdnrQagSuO6tJj9Onv7zyyy7tqWv7BwsOPx\nHxagUqtJvHiDsx9+jT4ji4DxH9Ns0iBUWg2G7FyCpn+R55+KKC0XBxULh8O4LxRychVqusHi11Sc\nu6EwZ4PCtjnGY+yh0eDqCDpt3kHVx9sVFAXmbFDgznk5Lbxh5sBKcWz+oeQkJHN+wec0fX+CcZ8S\nFkXw/FV5PqOF1YDxAhrWNTzw37gCtU5L+M9/knjyvOn1bWp65Bvcxx09RdjW/9B6zQJQqY3/vMVi\n8/1TMOamIAPFklAphV2+RuST/YFteUcoksWEtAqfESRnWbOYkMamZsPLO0axBpz5ptK0568tB5V3\njCI9/4/xpP+K3p4WE9LY0/7l4gvLWbejP7Hbv4ArN1YwvQI3V5q+/ne7gi9BX5F0D9jKzy0Gl3eM\nYvU5uZGcgz7lHaNIuk4XANDzfTknKZqGgZXms1lZtLSt2H3on7SN5R0BqCRLCoUQQgghhBCiMqrU\nSwqFEEIIIYQQ5UMuC18yMsMlhBBCCCGEEGYiAy4hhBBCCCGEMBNZUiiEEEIIIYQoNYNKrlJYEjLD\nJYQQQgghhBBmIgMuIYQQQgghhDATWVIohBBCCCGEKDWD/MPHJSIzXEIIIYQQQghhJjLgEkIIIYQQ\nQggzkSWFQgghhBBCiFKTJYUlIzNcQgghhBBCCGEmMuASQgghhBBCCDORJYVCCCGEEEKIUlNkSWGJ\nyAyXEEIIIYQQQpiJDLiEEEIIIYQQwkxUiqIo5R1CCCGEEEIIUbn42L1c3hGKdCH1p/KOAMg5XKWy\nr8NL5R2hSF2PbOPvdn3LO0axugdsrTQ5d/v3K+8YxeoVuJkdrV8t7xjFevr4D5Xmfd/sN6y8YxSp\n3+n1ABW+PbsHbCU57p3yjlEsB5dPsbGsU94xipWedaPS9PXKsu+s6H0IjP1oT/uK/aO221Hjj9qK\n3p7dA7ai5/vyjlEsDQPLO0KJGVRyDldJyJJCIYQQQgghhDATGXAJIYQQQgghhJnIkkIhhBBCCCFE\nqRnksvAlIjNcQgghhBBCCGEmMuASQgghhBBCCDORJYVCCCGEEEKIUlPQl3eESkFmuIQQQgghhBDC\nTGTAJYQQQgghhBBmIksKhRBCCCGEEKUmVyksGZnhEkIIIYQQQggzkQGXEEIIIYQQQpiJLCkUQggh\nhBBClJosKSwZmeESQgghhBBCCDORAZcQQgghhBBCmIkMuIQQQgghhBDCTOQcrjLi3KEl9UYPQq3T\nkhpyk0vvf44+PaNUNZZuLrRcu5jjQyaQk5QCgNbejvrjX8emricaS0tubthG1K79RWZx6dASr7Gv\notbpSL16kwuLvsiXpdAatZoG7w7Fua0fKo2G0B9+I/znPwGwrulB4xlj0Tnak5ueyfn5K0m/GQFA\nleY+eL81CLWlBbmp6Zxf8BmZEdG0WrMQjZWlabs2tar/q5nvsqrmhv/6pZx8dwEpF6+Z7lfptPh9\nMI2In/8kem9Ake16l2vHFtQfOwC1hY6Uq6EEL/wSfVpGyevUKhq+NwTXdsa8N77/nbDtfwFgW7cG\njaeNQmNjBYrClc82ERdwmjpDnsejVwfTa1tUcUBrY8WebsNLlNmtY3MavtUftYWWlCu3OLNgDbkF\nZC6sTmtrTbPZo7CrUx1UKsJ2HOTaht8BcGxcj8YTBqOxskSlUXNtw++E7zxcbCZzvef2Pl40GDcM\njZUVKrWam9/9QuSug3let+YrT1H9+e4cGzihRO33oGqd/Gj2zsuoLbQkXQ4jcO5X5KZllrjOwsGW\nVjOHUKVhLfQZWVz/9RBXNhk/A25tGtF8Qn9UGg1ZSamcWvYDiZdvlTqjudrXqWUTvN8ejEqrwZCV\nzeUPvyH5/NWHaMX8Dh2O4bMvL5OdY6C+lz0zp/tiZ5v3a2rv/ijWrLuKSq3CwV7LzKm+eHrakJSc\nzZLlF7h8JRlrKw3PPl2Dfn1rl0muBz3Z+3HmLZiMpaUF585eZMwbU0hJSc1X99xzTzBj9nsoBoWE\nhCTGjpnC9WuhODk58snKRTTz8yE9LYNvv93Kl59vKJNsFbGvg3n3m06tmtDw3cGoNGpyklK5+NEG\nUq/cBMB7dD/cuvoDkHwhhPNL1mHIyi4wY3l8DzVdPAE77zroM4z7j4QT57jySdGfBZcOLfEaMxCV\nTktaSCgXFuX/vVFojVpN/XeG4tyuOSqNmtAffifi590A2NTxpNHUN9BYWwEQ8vl3xB87DYDv+xOx\nq18bffqdnP8Ec/WT9cXnLOP2tK3jSZP575qer1KrsfOuxZmpy4nZF/hQ7fmoFEVhxrTf8K5fldde\n71D8E/7LKOjLO0Kl8F8zwxUUFMTFixfLZdu6Kg40mvEWwdOXEzjgHTIjoqg3dlCpatyf7EKLLxZi\nWdUlz/MazXyLrJg4TgybxOl35uL93mtYVnUuMkvjmWM5O20FAf3eJSMiCu83B5a4pkafHljX9ODY\nwPEEvTaVmv2exqGxNwBN5r5L2PbdBAwYx/V1m2m6eCIAllWdabZ0EpeWryNw8CRi9h6j0aSRAJwY\nNZPAIZMIHDKJa2s3k3k7+l/NDKC20NFk3tuodHl/uDn4NqDNuvep0qxRoe2ZP6s9vrPGcHrqhxzu\nO46M8CgavPlqqepq9umJTc1qHBkwkYBh06nd/ykcGnsB4DP5dcJ/30vAoCkEL/iSZu+/h0qj5sa3\nvxIwaAoBg6ZwfPQ89JmZnJnxSYkyW1Sxp9mcNzgx+WP2vzSR9PAoGr3Vv1R1Dcb0JTMqngP9pnB4\nyCxqv9SDKk3rA9Bq2XtcXr2NQwOnE/TOMnzGDcKmpkcx7Wi+97zZ4olcW7uFwCGTODVuEfXfGYr1\nfXkcmzWk9uDnS9R2BbF0ssd//uscnrCKnc9PIzU8Gr93+5aqrvmkAeSmZ7Grz3T+GrQAj45NqdbZ\nD52dNR0/fJtTH27mj76zOLHwW9ovH4taV7pjY+ZqX5VWi+/CcVxY/CWBgydx/ZttNJ7z9kO2ZF4J\nCdnMX3SOpe83Z9uPnahR3ZpVn1/OU5OZpWf2vLMsW9ycHzZ0oPNjbqz46AIAH31yCRtrDVu+f4xv\n1rbjSEAsBw/n3988KldXZ75cs5xX+4+hedPuXL9+iwWLpuSrs7Ky5Kv1HzGg32ja+T/Fjh1/8cGH\ncwFYunw2aalptPTrSZdOfXjiia70fqrbI2eriH0dzLvf1Npa03zpeC6v/I6jAydzfuk6/N5/D5VO\ni1tXf1zaNuPooMkc6T8BtZUltfs/VUjG8vkecvRtwIkxs03fk8UNDnRVHPCZ8SZnpy3nWP93yQiP\nwmts/pyF1dR4oSfWNasROHAcx+/ktL+Ts+Gkkdz+v70EDZ3EhUWf47twPCqN2pTznzGzCRo6iaCh\nk4odbJmrPdNuhJnaKnDIJOICTxP5xyFi9gU+VHs+qpCQGF4bupFdO4PNuh1R+f3XDLi2bdtGdHTZ\nf7mWhJO/HykXrpIRdhuAiO1/4N6rU4lrLFydcO3sz5kJi/I8R2tvh5N/M258tQWArJh4/hk5lZzk\n/EdS73Ju24zkCyFk3IoEIHz7bjye6FTimqpd2nL7//ai6A3kpqQR9ddhPJ7shGVVZ2zrVCfqT+PR\nzLijp9BYW2LfsC5u3doRe/QkKZeuG1/vlz+5/PE3ef8WBzsaTR5J8LyV/1rmuxpOHMHtHfvISUrO\n85o1X+lNyOofST5/pdD2fJBLWz+SzoeQfifHrW1/4vHkY6Wqc+vahoj/22fKG/nnEar1NuZVadTo\n7O2MbWZrXeCR2AbvDib2yClij54qUWbXds1IOn/NlOXmT39RvXfHUtWdX/EtFz75HgBL1yqoLbTk\npqajttBxZe124gLPAZAZHU92YgrWboUfFADzvedqCx3XvtpKQtBZwNhncpJSsLpzIMPC2ZGGE0dw\nZdXGErVdQTza+xJ/7jqpoVEAXN2yl1pPtS9VnXPjOtz4vyMoBgVDrp7bB89Qs0cb7Gq5k5OSQXSg\ncRCRcuM2uakZuPh553v9opirfZXcXA49+wapl28AYF3D3TQb/6gCAmNp7ONArZq2ALz0Yi127b6N\noiimGoNeQVEUUlNzAUjP0GNhafwau3AxmaeerI5Go0KnU9OxQ1X+3htVJtnu171HJ/45cYaQqzcA\nWLvmO/r1zz+A12g0qFQqHB3sAbCztSEzMwuAFi19+eGHnzEYDOTk5LBr5x5e6FPwQKA0KmJfB/Pu\nN21qVSM3NZ34IGOu9JsR5KZlUKVpA6L3BRI4YjZKrh6NrTUWTg5kF/J5LY/vIatqbmhsrGk0ZRT+\n363AZ+ZYtA52Rbals78fyReukhF2N8Mf+XMWUVO1iz+3d9zLGf3nYTye6AwYZ4u09sb+p7WxwpCd\nkydnw8mj8N/4AT4zSpDTzO0JUMWvEW6Pt+Pi0jUP3Z6PatP3x+nzYnOe7N3ErNsRlV+ZLCncvn07\ne/fuJTMzk5iYGIYMGcLff//NlStXmDx5Munp6WzYsAELCwvq1KnD/Pnz+f3334t8To8ePdi5cyfr\n169HrVbTqlUrJk6cyMqVKwkLCyMuLo6IiAimTZuGk5MTBw8eJDg4GG9vb/r27cvhw8aBwbhx4+jf\nvz/h4eHFbu9hWbm7khUVa7qdFROH1s4WjY21afq8qJrs2ASCpy/P97rWnh5kxyZSc8CzOLdriVqn\n5dam38i4dbvwLG6uZN6/neg4tHY2ebMUUWPl5kJmVFyex+y8a2Pp5kJWTALc9+MnKzoeSzcXbGpV\nx5CRhe+C97CpVZ3MqFguf7w+T67ag583DsruW85n7swA1Z/rhkqrIeLXv6kz7MU82w2ebZwhqj3o\nuULbM19Wdxcyo/NuS2dng8bWOs/ymKLqrNzz5s2Mjsf1Tt4Ly76m9eezqD3gKSycHTkz4xMU/b1L\nrtrW88StS2sO9XmnxJmt3Z3JeGB7OjsbtLbWeZYaFVen6A00nz8Wj+7+RO47TurNCDAo3Pp1n+k5\nNft0Q2tjRcK5ogex5nrPDdk53P59j+n+6s/3QGNtRVLwFVCraTLvXa6u2oghN7fE7fcgaw9n0qPi\nTbczouKxsLdBa2uVZ1lhUXVxZ69R55kOxJ66gkanxbNHKwy5elJuRqK1scS9fROijgbj3KQuDl41\nsHZ1LFVGc/YpRa/HwtmRNuuXYVHFnrMzPypVtsJERWXi7m5luu1W1ZK0tFzS0vWmZYU2NlqmTW7M\n628cw9HRAoNeYd1q43Ix3yaO/GdXBH7NqpCdbWDv3ii0WlWZZLufp2d1wsLu7YPDw27j6OiAvb1d\nnmWFaWnpvPPWDPbs30Z8XCJqjZruj78MwPHAU7z6ah+OHjmOpaUFz7/Qm5xH+EzeVRH7Oph3v5kW\nehuNjRUubZsRd+wMDj5e2NXzxNK1CmD8vNbs+wTeo/uRFRNP9J2ZkHwZy+F7yMLZgfigs1xavpbs\nhGQajBtG4xljODMl/++B+9so6/42KvD3RuE1lg/8FsmMjsPlTs5LK9bRYtUcavZ/BgsnB4JnfYyi\nN2Dh5EjC8TOmnPXfG4bP9LGcnbqs8JxmbM+7vN8ZwrXVm0yv9zDt+ahmzu4NQEDAdbNto6KTy8KX\nTJnNcKWlpbF27VpGjhzJpk2bWLVqFfPnz+enn35i5cqVbNiwgU2bNmFvb8/mzZuLfM727dtJTExk\n5cqVrF+/nk2bNhEVFWUaRFlYWLBu3TpmzJjB+vXr8fX1pVOnTkyaNInq1Qs+R6i47T0SVcFf6orB\nULqaB19Wq8G6hju5aRmcHD2D87M/wuud4dg1rFd4FnUJtlNEjaqAxxR9wfebHtNqcO3chpA1PxI4\ndDLxx8/SbMmke5uz0FHj+R7cWF9IO5sps33DutTo08t09KssFNYO6A0lrysor8GA2kJHs0XvcW7+\nFxx4dixBb8yl8bSRWLrdW2Zau19vbm39o8BzMgqlLribKw9kLkndqdmf82ePN7BwsKP+iLwDWK+h\nz9LgjZcIGrcCQ1ZOMZnM857fr/bgF6g38hVOT1yCISsb77GvknjqPPGBZ4rOVgxVCftyUXWnPvgR\nFIUnNs+j40dvE3U0GEOOnty0TA699wmNX3+WJ7bMp86zHYkOuoAhp5Rr5M3cvtnxSRx+7g2Oj5xB\n45ljsa5ZrXT5CtquUvD9mvs+lldDUlj3dQhbvn+Mnb91ZfjQekyZfgpFUXjv7YaoVDBw6FEmTTuF\nv78LWl3ZL+JQF9Juen3e96hJk4ZMm/EOLZv3xKtuW5Yt/YwffvwSgKlTFqEoCkcDd/Dj1tXs+fsQ\nOdkFn1dUynAF3l2ufR3z7jf1aRmcmriCusNeoP33y6j+dGfij5/DkHNvAHtr6x/s7f4a0fuC8Fsy\nvuBtlMP3UHLwVc5OXU52XCIYDFxbuwWXji1RaYs4Fl7Ye5cnZ+E1Be6X7nz/+C4cx4WFn3Hk+Tf4\nZ8xsGk4ZhaWbC8nnr+TJeX1dSXKadx/k2LQBOkd7Iv84ZLrvodpTiH9JmX0KfXx8ALC3t8fLy8u4\nlMLRkYyMDLy9vbGzM07rtmnThkOHDuHn51foc7KysggNDSU+Pp5Ro0YBxsFSaGhonm15eHiQXcyX\n1P3LUYra3qPIiorFoUl9022Lqi7kJKdgyMwqVc2DsmMTAIjcsReAjPBIks5cwKFxfVIv5Z8pursd\nx/u2Y1nVmZyk1HxZCqvJjIrF0tUpz2NZ0XFkRsZi4VIlz7buPpYVk0DS2UumZQERv+2h4fjXUFta\nYMjKxqV9C1Kv3CAzouAln+bK7NG7C1pba1qvNS7VtHR1Ns1wxB48XmCWgniN6kvVzq0B4zK/1Kuh\n+XLoH3gfMyNjcWziXWBdZmSc6ejr/XntvGqisbIg9tA/ACSdu0LqtVtU8fUmak8cqFW4dWtLwJBp\nxWZu8MbLuHVuCYDO1obkkHuZrao6k11I5iq+XgXWubZrRsrVULJiE9FnZBHxxxE8uhlnFtQ6Lc3m\njsa+bg2ODJ9Dxu1YimOu9xyMF0JpPOtNbOt6cnzkDDJvxwDg8WRnshOSqNqlLRprKyyrOuP/7XIC\nh9w7OFAY37F9qN6lhbE97axIuhJmeszazYmspFT0GXn3RemRcbg0rVdgnaWHHac/2kJ2choAjYY/\nZVx6qFKRm57F3hFLTM/r/fP7pN4q3dI4c7WvxtYG59a+xOw3zhKkXLpO6tWb2HnXKnLmvSTc3a04\nF5xouh0Tk4WDvRZr63tfU0ePxeLXzAlPTxsA+r5Ui48+vUhSUg6ZmXrefrMBjg4WAGzYeI2ad+oe\n1azZ43j6mZ4A2DvYEXzukumx6jU8iI9PJP2BiwH06NWZo0dOcP2ase+t/uJbli2fhYuLE9Y21syY\nvpiEhCQAxk8YTUjIzYfKVlH7+r+130SlIjcjk+Nj5pse67D5Q9LDorCrXxuVSkXKnSWwYb/uoVa/\n3gXmLY/vodzkVLQOdqbvI5VKBQalyAOxmZExODR+IMMDvyWKqsmMisXigZyZ0XHY1quFxtKSuMMn\nAEgOvkLa9TAcmtQnu5obOntbYg+VPKc59/EA7j06Erlzf54jNVX8GpW6PYX4t5TZ4b/CjuaqVCpC\nQkJIT08HIDAwkLp16xb5HABPT0+qVavG119/zcaNGxk0aBDNmzcv9Hkqlco0uMrNzSUtLY3s7Gyu\nXr2ap8Yc4gNP4dCkAdaexqO81V/oRezBoFLXPCjzdjQpF0PweKorADonRxybNiTlYuFXBIs7dhpH\n3/qmiwTU6NOLmAe2U1RNzIEgF8S7ZQAAIABJREFUqj37OCqNGq2dDe49OxJzIIismHgywqNw72G8\nAo9zWz8Ug4HUkFBi9gdSpVlDrKq5AeDWtS2pIaGm84+qtGhM/PGz/3rmKx+v5+gr75pOns2KjSd4\nzielGmwBhKzZarpgReBrM3H0rW86UdzzxZ5EH8j/enHHzhRaF33gODXuy+vRswPR+4JIvxWJ1s4G\nx6YNAOP5MbZ1apB86QYA9l61yE1OMw0ginJ59U8cGjidQwOnc3j4bJzuy1Lrpe5E7T+R7zkxAWcL\nravesy31R70EGH90VevZjrjjxpOEWy59F52tNUdem1uiwZaxfczzngM0fX8CWlsbjo+cmaetDj0z\nisDBxs/ChcVfkBEeWaLBFsC5z39md7/Z7O43m78GL8ClmRd2tdwB8Or7OBH7TuZ7TuTRc4XWefV9\nHN83+wBg6exAvRe7ELozABSFTp+Nx6lxHQA8e7bBkKsv9VUKzda+BgM+M8bg2KwhALZ1PbGpXYPk\nEiwrK047fxfOBScRess4CN32yy06d3LLU9OogQP/nIwnLt74o23/gSiqV7OmShULtv1yi9VrjfvG\nuPgsfvktjCd6PvrMG8CC+R/Rzv8p2vk/RddOfWjj3xwv7zoAjBg5kB2//5nvOadOnqNTp7a4ubkC\n8Oxzvbhx4xZxcQmMHDmQWXOMMy1ubq4Mf70/W3789aGyVdS+/m/tN1EUWn40FQcf48EN9+7tUHJz\nSb1yE3vvWjSZPQa1pXEQXv0p4+xXQcrje0hjY0WD8a+ZzjOqNeg549VyixggxAfeyeBpzFC9Ty9i\nDzz4e6PwmtgDQVR/pluenLEHAskIu43GzgaHpsa+fff7J/XydTTWVjQY//q9nAOfLzanOffxcPd3\nRd738mHaUzw6BUOF/q+iMPs8q0aj4e2332bIkCGo1Wpq1arFxIkT2bFjR5HPc3Z2ZtiwYQwePBi9\nXk+NGjXo3bvgI1MAfn5+rFixAk9PT4YMGUK/fv3w9PQscolhWclJSObios9osmgiKp2WzPBILsxf\niX0jLxpOHcPxYRMLrSnOuWnLqD9hJNVfeALUKm58vZWUCyFFZjm/4HOavj8BtU5LRlgUwfNXYd+o\nHj7TxxA4ZFKhNWA8adW6hgf+G1eg1mkJ//lPEk+eN2aZ9RE+00ZTZ/hLGLJzODfjQ1AUUq/c4OKy\ntTRbOgmVVkNuShpnZ3xoymRTsxpRF8snc1nLTkgmeMEX+C0Zj0qrJSM8krNzPwPAwacejWe8QcCg\nKUXWhW3bjU0Nd9p/vwyVVkvYz3+RcNJ4kYRTkz+g0YRhqC10KLl6zi9ZS0a4cXbDplY1Mkow2Coo\n8+n5q2m19F3UOi1pYVGcnvMFAI4+dWk6cySHBk4vsu78R9/TdPrrdN68FEVRiNp3guubduHk1wD3\nzq1IvRlB+6/mmLZ5ceWPxAYUvnTPXO+5Y7OGVO3UmrSbEbRes9C0vauf3bu88aPKik8hcPZXdFzx\npvGfeAiL5tiMtQA4Na5Dmzmvsbvf7CLrLny1g7aLRvHktoWgUhH85S/EBxvPAQiY+iVt5gw3/s0x\niRx679NSZzRnnzozZTkN3huGSqvFkJND8OxPyIqJLypOiTg7WzJ7hi9TZ5wiJ0fBs4YNc2f7cv5C\nEguXBPPDhg60ae3CoIF1Gf1mEDqdCgcHHSuWGmd3hg2ux5z5Z+k38DAKCiNf96ZJ49Kd+1YSMTFx\njB41ie83fYGFhY7r124y4jXj4Klly6Z8/uVS2vk/xf59R/n4o9Xs+vNHsrNzSIhP5JWXjFdvXb7s\nc7765iOC/vkDlUrFogUfc+LEoy11hYrZ1+/mMud+8+ysT2k8fRRqnZas2EROTVoBwO2dB7Hx9KDd\nhsUoej2p18IIXri6wIzl8T0Ud/QUYVv/Q+s1C0ClNl6+ffGXRT4nJyGZCws/w/f9icYM4VGcv/N7\no9G00QQNnVRoDUD4z39g7elOm28/MOb85V7Os1OX0eC94agtjd8/F5euJiM8iozwKG5t/Q+tVhv3\nV2khoVxcUnxOc7anTU2PfKtmHqY9hfi3qBSlsJXz4kH7OrxU3hGK1PXINv5ul//y1BVN94CtlSbn\nbv9+5R2jWL0CN7Ojdf5LLFc0Tx//odK875v9hpV3jCL1O70eoMK3Z/eArSTHlfwCL+XFweVTbCzr\nlHeMYqVn3ag0fb2y7Dsreh8CYz/a0/7l8o5RpG5HfwIqxz5Jz/flHaNYGgYWX1RBeNo/+j9pYU7/\n396dR0VV/38cf84AIrIoguKCqCCWZmqItlhaaibW91uSkJio5bGs1COKOyaikmuYWG5pKqdUTDjH\nXMq00lJzaaOfkQsGilruIYsoML8/PMwXZEBGm9B6Pc7xnLoz87nvz713PnPf9/O+l8zLX9z8TX8D\n3UkoIiIiIiJWK9IfPq6Uf8zf4RIREREREbnTKOESERERERGxEZUUioiIiIiI1e6kJwHeyTTDJSIi\nIiIiYiOa4RIREREREQGuXLnC6NGjOX/+PM7OzsycOZPatWuXes/y5cvZuHEjBoOBIUOG8OSTT1bY\nphIuERERERGxWpHpn/eUwtWrV9O8eXOGDRvGpk2beO+994iKijK/npWVxapVq9i6dSt5eXk899xz\nN024VFIoIiIiIiICfPfddzz22GMAdOrUiT179pR63cnJiQYNGpCXl0deXh4Gg+GmbWqGS0RERERE\n/nXWrVvHypUrSy3z8PDA1dUVAGdnZy5fvlzmc/Xr1+fpp5+msLCQV1999abrUcIlIiIiIiL/OiEh\nIYSEhJRaNnToUHJycgDIycnBzc2t1Os7d+7kzJkzbN++HYBBgwYREBBA69aty12PSgpFRERERMRq\nJoru6H+3IiAggB07dgDXk6t27dqVer1mzZpUr16datWq4ejoiKurK1lZWRW2qRkuERERERERICws\njLFjxxIWFoaDgwNz584F4IMPPsDHx4euXbuye/duQkNDMRqNBAQE0LFjxwrbVMIlIiIiIiLC9Ydi\nzJ8/v8zyl156yfzfw4cPZ/jw4ZVuUwmXiIiIiIhYzcQ/77HwtqB7uERERERERGzEYDKZTFUdhIiI\niIiI3F3quLSv6hAqdDZ7f1WHAKikUEREREREbkGR6daeBPhvo5JCERERERERG1HCJSIiIiIiYiMq\nKRQREREREavd6h8X/rfRDJeIiIiIiIiNKOESERERERGxEZUUioiIiIiI1Uwm/eHjytAMl4iIiIiI\niI0o4bpDxcfHs3r16jLLhw4dWmbZ6tWriY+PL7M8KSmJOXPmlFoWERHB1atXy11vx44dKx1jly5d\nyM/PL7Vs586drF27tsx7Q0NDyczMLLctS7HejnHjxrFz585Sy86ePUt0dHSZ986ZM4ekpKRKtftX\nx3mjvXv3EhERUWb59OnTOXXqVKllaWlphIeH39b6wsPDSUtLu6027nRLliwhJSWlqsOwOUv7srzj\n6XYlJSWxffv2v7zdW1U8vpSMa+TIkTz//PMcPnyY8PBw+vTpw59//mlVu5bG25vFcDs+//xz/vjj\nj9tq425k63HVVvLz8+nSpUtVh/GXyczMJDQ0tKrDqJRDhw6xf//1P2hr6VzkTrN//35+/fXXqg5D\nqpBKCu8yCxYsuK3Px8XF/UWRWNapUyebtn876tSpYzHhuhtMnDixqkO4a73yyitVHcI/TnBwcFWH\nYFHJuHbv3s23337LqVOnyMnJqfRFlZJud7y11qpVq4iOjsbLy+tvXa/I3Wbr1q14enrSvn37qg6l\nUtavX0/Pnj259957qzoUqSJKuKxw7do1xo8fT2ZmJoWFhbz00kusXr2apk2b8ttvv2EymYiLi6NO\nnTrMnTuXAwcOUFRUxMCBAwkKCiI8PJx7772XI0eOkJ2dzTvvvEPDhg3LXd+2bdvYsmULV65cISoq\nitatW9OxY0d27drFgQMHiI2Nxc3NDTs7O9q2bWuxjZ9++omXX36ZCxcuEBYWxuLFi9myZQu///47\n48aNw97enoYNG3Ly5EkSEhK4evUqo0aN4tSpU9SqVYv58+fj4OBQboxvvvkmJ0+exMPDg5kzZ7J5\n82aOHTtGZGQkcXFxfP3119SrV4+LFy9WahsvX76cTZs2YW9vT2BgICNHjqRHjx5s2bKFCxcu0Llz\nZ3bv3o2zszMvvPACycnJ5bb10UcfsWzZMgoLC5k+fTp2dnaMHDmSxMREPvvsMxYuXEjt2rW5du0a\nvr6+Ftu4cuUK48eP59SpU1y7do2nnnqq3FhHjx7Nd999x8yZM7G3t8fJyYl33nkHR0dHJk+eTEZG\nBkVFRYwYMYIHH3yw3LgzMjIYNGgQFy9eJCwsjJCQEMLDw4mOjsbV1ZXIyEhMJhN16tQpt42hQ4fS\nv39/OnTowM8//0x8fDxubm6ljt2ePXua3x8fH4+npydhYWGkpaURHR1NQkIC//nPfwgMDOTQoUP4\n+vri4eHBgQMHqFatGkuWLOHKlStMnDjRvH+joqK45557LMaUnZ3NxIkTuXz5MmfOnCEoKIiNGzey\nefNmDAYDMTExPPzww3h5eTFlyhScnZ3x8PDA0dGRGTNmWGwzPj6eY8eOcf78ebKysoiKiiIwMJAn\nnngCX19f/Pz8yMrKomfPnnTo0KHUvpw0aRKtWrWyat8US0pKYv369RQVFdGjRw+2b99OXl4e7u7u\nLFiwgI0bN7Jjxw6uXLnC8ePHGTx4MMHBwaSkpFjsW0JCAhs3bsRgMNCzZ0/69+9f4fotjUUA7777\nLufOnSMvL4+333671GfWrVvH6tWrKSoqokuXLgwfPrzcvm3bto2cnBwuXrzIG2+8wVNPPcUzzzxD\nkyZNcHBwwNfXF09PT/r06cPUqVNJSUnh2rVrDBs2jG7dulkc/yrTh4YNGxIbG0tRURFeXl7MmTOH\n6tWrW4zT0vhSfBwfOnSI7OxsXnvtNQoKCjhy5AhdunShUaNG5j65u7sTFxeHnZ0djRo1IiYmhk8+\n+cS8X4cPH05kZCS7du3il19+YerUqdjZ2eHo6MjUqVNp0KCBVWNcye0XExNT5ntz+vRpUlNTGTt2\nLLNnz2bs2LEkJiYC12fP3n77bZKTk/nhhx/Izc1l+vTpTJgwgXr16nHixAnuv/9+pkyZUul9Wq1a\nNRYsWIDJZOK+++5jypQpbN26lQ8//JCCggIMBgMLFiygdu3aFfbrr3Ljb5W3tzfz5s3D0dGRWrVq\nERsbS2pqKmvWrDFfOCz+PRw3bhyXLl3i0qVLLF68mJo1a9oszpycHCIjI8nKysLHxweAffv2mbdl\nTk4Oc+fOZd++faSnpzN27FgKCwt57rnn+Pjjj3F0dLRJXMHBwSxduhQ3NzcefPBBEhISuO++++jV\nqxfPPfeceZwtHl9Onz7NpEmTyM/PNx/TxQoLCxk3bhz+/v5/6QWrpKQkvvzyS65cucLZs2fp378/\n27dv58iRI4wZM4bc3FxWrlxJtWrVaNKkifk7eeNY2rFjR5KTk3FwcOC+++4DIDo62jzDvGDBglLH\nwK2ut6LPdOvWjS1btrBixQqMRiPt2rUjMjKS+Ph4MjMzOX/+PKdOnWL8+PG4u7vz9ddfc/DgQZo1\na0ZISAi7du0Crlcd9enTh5MnT950fXeqIj0WvlKUcFlh7dq11K5dmzlz5pCdnU1wcDDVqlXj+eef\nJyYmhg8//JDFixfz2GOPkZmZyerVq8nPzyc0NNRcqte6dWsmTpxIXFwcmzZtqnAwa9iwITExMeYv\nXMnkYsqUKcyfP5+mTZsyefLkctuwt7dn2bJlnDx5stS6Zs2axZAhQ+jcuTOJiYmcPHkSgNzcXCIi\nIvD29iY8PJzU1FRat25dbvthYWG0bduWWbNmkZiYiIuLCwA///wz+/fv5+OPPyY3N5fu3bvfdPtm\nZGSwd+9e1qxZg729PcOGDWPnzp0EBgby448/kpGRgb+/P3v27MHZ2fmm5Y8BAQG88sor7Nixg9mz\nZzNu3Djg+onejBkzSEpKolatWhXugzVr1tCwYUPi4uJIT0/nq6++4vLlyxw6dIgtW7aUivXLL79k\n3759BAUFMWDAAL744guysrL46quvcHd3JzY2losXL9KvXz82bdpU7jqvXbvGwoULKSoq4tlnn6Vr\n167m1xYtWsQzzzxDaGgomzdvtlh2ChASEkJycjIdOnQgKSmJTp06cfz48VLH7kMPPVTh9oPrJxfP\nPPMMkydPpkePHowfP56IiAj69evH0aNH2bhxIw899BB9+/YlPT2d8ePHlxtTRkYGTz/9NN27d+eP\nP/4gPDycli1bcuDAAdq0acPevXuZMGECISEhzJo1C39/f+Li4m5aYlW9enVWrVrFkSNHGDVqFBs2\nbOD06dMkJSXh7u5u3u+W9mVqaqpV+6YkNzc33n33Xd577z3zj+6gQYP4+eefgesJ5rJly0hPT2fI\nkCEEBwczefLkMn07evQomzdv5qOPPgLgpZde4tFHHy33IgCUPxb17t2bZ599lvj4eD799FPzd/f8\n+fMsXbqUDRs24OjoyNy5c8nJycHZ2dli+3l5eXzwwQdcuHCBkJAQunbtSm5uLq+//jotW7Y0lzBv\n27aNixcv8vHHH/Pnn3/ywQcf4ODgYHH8c3Nzq1Qf3nnnHfz8/Fi3bh1paWnmE6qSbja+REdH8/nn\nn7Nw4UIyMzMZOHAgjRo1YtmyZeY+GY1GEhMT8fDwYN68eSQnJ2Nvb4+bmxsLFy4s1V5UVBTTp0+n\nRYsWbNu2jRkzZjB48GCrxriS22/27NkWvzctWrQgOjq6wotcvr6+REVFkZmZSXp6OsuWLcPJyYlu\n3bpx9uzZci/ElNynvXr1wmAwkJycjIeHB0uXLuX3338nPT2dJUuW4OTkxJtvvsk333zDf//73wr7\n9Vcp+Vs1ePBg8vPzWb16NV5eXqxcuZKFCxfy+OOPl/v5hx56iIEDB9o8zjVr1tC8eXMiIiL46aef\n2Lt3L0eOHGH27Nl4eXmxaNEiPv30U8LDwwkODiYyMpKvv/6aBx980GbJFlwvqytO/r29vdm9ezeO\njo74+Pjw6aeflhlf5s+fT3h4OJ07d2bPnj3MmTOHiIgICgoKiIyMJDAwkBdffPEvjzMnJ8d8sXLF\nihUkJiayd+9eVqxYQVpaGsnJybi4uBAbG8vatWupUaOGxbG0V69eeHp6mse4559/nsDAQMaNG8eu\nXbtKXVC81fWW95lVq1YRGBhIfHw869evx8nJidGjR5uTqGrVqvH++++za9culi9fzrJly3jsscfo\n2bMnDRo0sHrbrFq16o5OuKRylHBZIS0tjUceeQQAFxcX/Pz82LVrl/nENSAggC+++AIvLy8OHjxo\nvr+moKDAnNC0bNkSgHr16nHu3LkK11c8Ve7v78/Zs2dLvXbu3DmaNm1qXu/x48ctttGyZUsMBgN1\n6tThypUrpfrywAMPANCuXTs++eQTAGrWrIm3tzcAnp6e5OXllRufg4ODeWYtICCAXbt2cf/99wOQ\nnp5Oq1atMBqNuLi40Lx58wr7CpCamsrjjz9uPtkIDAzkyJEjdO/enR07dpCZmUlERATbt2/HaDTS\nu3fvCtsLDAwE4IEHHmDWrFnm5RcuXKBmzZq4u7ubXy/PsWPHzGWSTZo0wc3NjXPnznHs2DHatGlT\nJtYhQ4awaNEiBgwYgJeXF61bt+bw4cN899135vuICgoKuHDhQrlXjtu2bUu1atUA8PPzK3VfSHp6\nurnGPiAgoNzk5rHHHmP27NlcunTJPNPw6KOPAv87dk+cOFHh9itWfMLr5uaGn5+f+b/z8/M5fPgw\n3377LVu2bAGo8B4ZT09PVq5cydatW3FxcaGgoIDQ0FCSk5M5e/YsXbp0wd7enjNnzuDv7w9cPzY3\nb95cYXzF3z9/f3/zd8rd3d28f4vduC8HDhxIdHS0VfumpKZNm2I0GnFwcGDkyJHUqFGD33//nYKC\nAgBz6Uj9+vXN901a6tvhw4c5deqU+WTxzz//JCMjo8KEq7yxqFWrVsD1bV1yfDlx4gT+/v7m2aLI\nyMgK+9a+fXuMRiOenp64ublx4cIFc59L+u2338xjQM2aNRkxYgRLly61OP7dmHBZ6sMXX3xhPsZC\nQkLKje9WxpeSfXJyciIjI4MRI0YA12eyH3nkERo3blymj3B9v7Vo0cLczty5c28phuK2rfneAJhM\npjJtAPj4+JgvctWpU6fC+1hK9t/Z2ZmrV6/i4eEBwODBgwHw8PBg7NixODs7c+zYsXIrJ2yh5G/V\n6dOn8fHxMZdWtm/fnrfffrtMwlXedrGl9PR0OnfuDECbNm2wt7fHy8uL6dOnU6NGDf744w8CAgJw\ncXGhffv2fPPNNyQlJfH666/bNK7u3buzaNEi6tevT0REBAkJCZhMJp566ilmzpxZZnw5fPgwixcv\n5v3338dkMmFvf/108NChQ7i4uJCbm2uTOIu/R66urvj5+WEwGKhZsyZ5eXk0a9bMfDwXb7s2bdpY\nHEtvVHLsK3muczvrLe8z+fn5HD9+nAsXLpgv2Obk5JjPw4o/V69evQrvmYfSx3BF65O7nx6aYQU/\nPz8OHDgAXL96ffjwYby9vfm///s/AL7//nuaNWuGr6+veUp/5cqVBAUF0ahRI6vXV3wSeOjQoTJX\nRby8vMw3yBdfUbfEYDBYXN68eXN++OEH4Hopx83eb8m1a9dITU0F4MCBA+YTSYBmzZqRkpJCUVER\nubm5HD169KbttWjRgpSUFAoKCjCZTOzfv5+mTZvSsWNH9u/fz8WLF+ncuTMHDx7k119/rXDmDf63\n/W6MzcPDg6ysLPNJZEXbz8/Pz/z6iRMnzGVavr6+FmPdsGEDvXr1IiEhAX9/fxITE/H19eXpp58m\nISGBpUuX0qNHD2rVqlXuOn/55RcKCgrIzc0lLS3NXLZSHE/xfqsobqPRSI8ePYiOjqZbt274+/tb\nPHaLOTo6mpP6gwcPlmqromPC19eXgQMHkpCQwLx58yq8Gr58+XLatm3LnDlz6NGjByaTiYcffpjU\n1FTWr19vPsGuV6+e+XgpeWyWpzjew4cPm0/QjMayQ9uN+3LUqFFW75uSjEYjv/76K9u2bWPevHlM\nmjSJoqIi8w+ope1mqW++vr40a9aMVatWkZCQQHBwcLllmSX7UtH+vJGPjw/Hjh0z//gPHz68wpnD\n4m167tw5srOzzSfmN25XX19f8za9fPkygwYNqvT4V14f0tPTgesPO/n8888txncr40vJPuXn5+Pj\n48N7771HQkICQ4YMMSfulo6dunXrmm94379/P02aNLmlGIrbLu97YzAYMJlMODo6cv78eQoLC8nK\nyip10aVkfNaM1yX7f+3aNQAuXboEwLRp09i3bx/z588nLi6OadOm4ejoWOpk0NZK9sXd3Z3s7GzO\nnDkDXC/Za9KkSalx6uTJk6USVWu2xe3w8/Pjxx9/BP43Vk+aNInY2FhmzJhB3bp1zdstNDSUdevW\ncf78eZvfu9O8eXNOnDhBSkoKnTt3Jjc3l+3bt5c7vvj6+hIZGUlCQgJTpkyhR48ewPULbEuWLGHD\nhg02echDefvJYDCQlpZmTvT27dtnTqItfcZgMFBUVFTq//+O9Rbz9vamfv36LF++nISEBPr162e+\nQFFevMXHRUFBATk5OVy9erXUuPF3HcN/NZOp6I7+d6fQDJcVQkNDmTRpEmFhYeTn5zN06FCSkpJI\nTk5mxYoVODk5MWvWLGrVqsW+ffvo27cvubm5dOvWzXz1xBqZmZn079+fq1evEhMTU+q1mJgYxowZ\ng4uLC87OzlbXrEdGRjJhwgSWL1+Oq6ur+eqWNRwcHEhISCAjI4MGDRowatQo80xZixYt6NSpE717\n96Zu3brmE7aKNG7cmICAAMLCwigqKqJdu3Z069YNg8FAvXr1aNCgAUajkaZNm1ZqBuKnn36if//+\nGAwGYmNjzYOdvb09b775JoMGDaJmzZoV9r1Pnz5MmDCBfv36me8zuXjxIvfccw9BQUFlYk1JSSEq\nKgonJyeMRiMxMTF4eXkRFRVFv379yM7Opm/fvhZP6oo5OjoyePBgsrKyGDZsWKkE4LXXXmP06NFs\n3ry5whNsuF5i0a1bNz777DPq1q1b5tgtuU+CgoIYMWIE+/fvt1jCVZ4hQ4YwceJEEhMTyc7OrvCp\nbk888QTTpk1j8+bNuLq6YmdnZ74vbvfu3ebEcvLkyUyYMIEaNWrg4OBw0wcIpKamMmDAAPLy8krd\nh3CjG/flhAkTuOeee6zaNzdq3LgxTk5O9OnTB7g+y1B8kmiJpb7de++9PPzww4SFhXH16lVat259\n0z6XNxaVp3bt2gwePJh+/fphMBh44oknKlzHuXPnGDBgAJcvX2by5MnY2dlZfF/Xrl3Zs2cPYWFh\nFBYW8sYbb9CpU6dKjX+W+uDn58eECRMwGo3UqVOn3BKxWxlfbuyT0WjklVdewWQy4ezszKxZszh9\n+rTFz06bNo2pU6diMpmws7MjNjaWRo0aWR1DsfK+Nw888ABjxoxh+fLldOzYkd69e9OoUSMaN25c\n6bYr23+TycSrr76K0WikZcuWtG/fnoCAAF544QVzaWVFx7ItGQwGpk2bxrBhw8xX+d966y3c3Nxw\ndXUlJCQEPz+/m46BthAWFsaYMWMICwvD19cXBwcHnnzySV588UWcnJzw9PQ0b7c2bdqQkZFhk9I8\nSzp06EBmZiZGo5H27dtz9OjRcseXsWPHEh0dTX5+vvle3GLVq1dn8uTJjB07lnXr1pkrLmzJzs6O\nYcOG0b9/f4xGIz4+PkRGRpZb4t2qVStmzZplnhH/u9ZbrHbt2gwcOJDw8HAKCwtp2LChxXtVi7Vp\n04Y5c+bg7e1N//79eeGFF/D29q6wxFD+WQymv/MS1j9Q8cMMbvdL/3fbsGEDbdq0oXHjxqxbt47v\nv/+et956q6rDEuHDDz8/kZgcAAADwklEQVQkKCiI2rVrExcXh4ODQ7mJXMmHfdwNrOlbVUlKSjI/\n+Oaf4p/YJ2v82/tfVYqKiggLC2PZsmW3dNFV5G7g5tSyqkOoUFbeL1UdAqAZrio3dOjQMvX7Li4u\nZW7a/qsV13kXz8TExsZafF9KSgqzZ88uszwoKIi+ffvaNMabuXr1KoMGDSqzvGnTpmVmBO80CxYs\nYO/evWWWF185/zfz8PDg5ZdfpkaNGri6ujJjxoxyvyfF90TeLSz1rapER0db/BtsFV2l/butXbuW\njRs3llk+cuTICu+9rCp38ngpf68TJ04wdOhQgoODlWzJP5qJwqoO4a6gGS4REREREbGaq1PF9xxX\ntct5h6o6BEAPzRAREREREbEZlRSKiIiIiIjV7qQnAd7JNMMlIiIiIiJiI0q4REREREREbEQlhSIi\nIiIiYjUTKimsDM1wiYiIiIiI2IgSLhERERERERtRwiUiIiIiImIjuodLRERERESsZjIVVnUIdwXN\ncImIiIiIiNiIEi4REREREREbUUmhiIiIiIhYzWTSY+ErQzNcIiIiIiIiNqKES0RERERExEZUUigi\nIiIiIlYzoZLCytAMl4iIiIiIiI0o4RIREREREbERlRSKiIiIiIjV9JTCytEMl4iIiIiIiI0o4RIR\nEREREbERlRSKiIiIiIjV9JTCytEMl4iIiIiIiI0o4RIREREREbERlRSKiIiIiIjVTKbCqg7hrqAZ\nLhERERERERtRwiUiIiIiImIjSrhERERERERsRPdwiYiIiIjILdBj4StDM1wiIiIiIiI2ooRLRERE\nRETERlRSKCIiIiIiVjOZVFJYGZrhEhERERERsRElXCIiIiIiIjaikkIREREREbGaSU8prBTNcImI\niIiIiNiIEi4REREREREbUUmhiIiIiIjcApUUVoZmuERERERERGxECZeIiIiIiIiNqKRQRERERESs\npz98XCma4RIREREREbERJVwiIiIiIiI2ooRLRERERETERnQPl4iIiIiIWM2kx8JXima4RERERERE\nbEQJl4iIiIiIiI2opFBERERERG6BSgorQzNcIiIiIiIiNqKES0RERERExEZUUigiIiIiItYzmao6\ngruCZrhERERERERsRAmXiIiIiIiIjaikUERERERErGZCJYWVoRkuERERERERG1HCJSIiIiIiYiMG\nk0mPFxEREREREbEFzXCJiIiIiIjYiBIuERERERERG1HCJSIiIiIiYiNKuERERERERGxECZeIiIiI\niIiNKOESERERERGxkf8HmZWqmR+I/yUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAEeCAYAAAAjC0L/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VFX+//H3TCYJqUASCDVAQkAQAUNRlwWU4gK63xWQ\nEiDAyqKI4EqRXkIxIlUFREVQyFcRUNgfolgABUW6AgpIldBrAiG9zPz+yGYgpNwkkEnC9/V8PObx\nSGbO3Pu55945cz/3nHPHZLPZbAIAAACAPJiLOwAAAAAAJR+JAwAAAABDJA4AAAAADJE4AAAAADBE\n4gAAAADAEIkDAAAAAEOW4g4AAAAA+L8iXR8X+D1O6l0EkRQcPQ4AAAAADNHjAAAAADiI1Zpe4Pc4\nlZBL/SQOAAAAgIPYbGnFHUKhkTgAAAAADmKzFbzHoaQgcQAAAAAcxEqPAwAAAAAjDFUCAAAAYIjE\nAQAAAIAhm5XEAQAAAIARehwAAAAAGGGoEgAAAABj1tTijqDQSBwAAAAAB6HHAQAAAIAxJkcDAAAA\nMETiAAAAAMAQQ5UAAAAAGDHR4wAAAADAUClOHMzFHQAAAACAko8eBwAAAMBRSnGPA4kDAAAA4CAm\nJkcDAAAAMGRNL+4ICo3EAQAAAHAQ7qoEAAAAwBg9DgAAAAAMFUGPg9VqVXh4uI4cOSIXFxdNnz5d\nNWrUsL++bt06ffjhhzKbzeratat69epVqPWQOAAAAAAOYiqCHoeNGzcqJSVFK1eu1L59+zRjxgwt\nWrTI/vrMmTO1fv16ubu766mnntJTTz2lsmXLFng9JA4AAACAoxRB4rB37161bNlSktS4cWP9/vvv\nWV6vW7eubt68KYvFIpvNJpPJVKj1kDgAAAAADlIUPQ5xcXHy9PS0/+/k5KS0tDRZLBmn+sHBwera\ntavc3NzUvn17eXt7F2o9/HI0AAAA4CjW9II/DHh6eio+Pv7WKqxWe9Lwxx9/6IcfftCmTZu0efNm\nRUdHa8OGDYUKncQBAAAAcBCTNb3ADyMhISHaunWrJGnfvn2qU6eO/TUvLy+VKVNGrq6ucnJyko+P\nj2JjYwsVO0OVAAAAAEcpgqFK7du317Zt29SzZ0/ZbDZFREToiy++UEJCgnr06KEePXqoV69ecnZ2\nVkBAgDp37lyo9ZhsNpvtHscOAAAAIAfJ+1oU+D2ujbcVQSQFR48DAAAA4Cj8ABwAAAAAIyartbhD\nKDQSBwAAAMBRSnGPA3dVAgAAAGCIHgcAAADAUUpxjwOJAwAAAOAgJhtzHAAAAAAYoccBAAAAgCHu\nqgQAAADAEIkDAAAAACMmhioBAAAAMESPAwAAAABDJA4AAAAADJE4AAAAADDEHAcAAAAARkz0OAAA\nAAAwROIAAAAAwBCJAwAAAABDJA4AAAAADFltxR1BoZE4AAAAAI5SinsczMUdAAAAAICSjx4HAAAA\nwFFKcY8DiQMAAADgKMxxAAAAAGDIRo8DAAAAACP0OAAAAAAwROIAAAAAwBCJAwAAAAAjpXiKA4kD\nAAAA4DD0OAAAAAAwRI8DAAAAAEMkDgAAAAAMld6RSiQOAAAAgKPYrKbiDqHQSBwAAAAAR2GoEgAA\nAABD9DgAAAAAMMJQJQAAAADGSnHiYC7uAAAAAACUfPQ4AAAAAI5iK709DiQOAAAAgIMwxwEAAACA\nMWvpnSlA4gAAAAA4Cj0OAAAAAIzYmOMAAAAAwBBDlQAAAAAYYXI0AAAAAGMkDgAAAACMFMUcB6vV\nqvDwcB05ckQuLi6aPn26atSoka3cxIkTVbZsWY0cObJQ6ym9g6wAAACA0sZqLvjDwMaNG5WSkqKV\nK1dqxIgRmjFjRrYyn376qY4ePXpXoZM4AAAAAA5is5oK/DCyd+9etWzZUpLUuHFj/f7771le/+WX\nX7R//3716NHjrmIncQAAAAAcxGYzFfhhJC4uTp6envb/nZyclJaWJkm6fPmyFi5cqEmTJt117Mxx\nAAAAABylCG7H6unpqfj4+FursFplsWSc5n/99deKiYnR888/rytXrigpKUmBgYHq0qVLgddD4gAA\nAAA4SFHcjjUkJETff/+9OnXqpH379qlOnTr21/r27au+fftKktasWaOTJ08WKmmQSBwAAAAAhymK\nuyq1b99e27ZtU8+ePWWz2RQREaEvvvhCCQkJdz2v4XYmm81mu2dLAwAAAJCr2OE1C/we77mn7nkc\nhUGPAwAAAOAgpfmXo7mrEgAAAABD9DgAAAAADlIUcxwchcQBAAAAcJQiuB2ro5A4AAAAAA5Smuc4\nkDgAAAAADsJQJQAAAACG6HEAAAAAYMhmY44DAAAAACP0OAAAAAAwwhwHAAAAAIaY4wAAAADAEHMc\nAAAAABiixwEAAACAIeY4AAAAADBE4gAAAADAEEOVAAAAABhicjQAAAAAQ6W5x6H0pjwAAAAAHIYe\nBwAAAMBBmBwNAAAAwBCJAwAAAABDpXmOA4kDAAAA4CD0OAAAAAAwxO1YAQAAABiy0uMAAAAAwAhz\nHAAAAAAYYo4DAAAAAEMkDgAAAAAMkTgAAAAAMGTlrkq5S9fHRb2Ku+ak3iU+ztIQo1S64tzQLLS4\nwzDUcfeKUlOfXzbtVdxhGHpqzyclvj6d1FuS9G3zHsUcSd6e3LVSmx97trjDMNRm+2el5rO+6dFu\nxR2GobY7VmtLiy7FHYah1tvW6HSP5sUdhqGAlbuUMsejuMPIk8uI+BLfHkkZbVJpweRoAAAAAIYY\nqgQAAADAEIkDAAAAAEP8ABwAAAAAQ6W5x6H0TusGAAAA4DD0OAAAAAAOUpp7HEgcAAAAAAdhjgMA\nAAAAQ/Q4AAAAADBE4gAAAADAEEOVAAAAABiixwEAAACAIRIHAAAAAIYYqgQAAADAED0ODmKz2TR+\n7DrVDq6g5wb8pbjDyRVx3lvFFWeFFg+rzks9ZXax6Oax0/p9+vtKi0/Mdzmzq7MeHPWcytYPlMxm\n3fj9uA7OXCprcqp8mtTXA6/0kcnJSak3burw3OW6eex0kW9Tce7zii0aq+6QzHo6owPTcq7P3MpZ\nPNzUcNLz8qxZRTKZdPbLH3Vy2ReSJN8m9fXAv3vJbHFSenKKDs5erhsHTxT5NhVXffq1eFjBg0Nl\ndnHWzeOndXD6u0rPoS6NyrlW9NUjS6dre+9RSr1xU5LkXS9IdYf3k5Obq0xms04t/3+68PVPBY7R\n9y8hCnqxt0zOFsWfOK3Dr72j9ITEApVxreirph9EaFfYSHt8XvWCFPzKP+VUxlUmJ7OiIv+jS9/8\nWOD4bldSP+u+fwlR0OBeMjs7K+54lA6/tijnOsypjNmsOv/uJ59HGsnk5KTTn6zTubXfZXlv5aef\nUIXHm+vAyDfsz5VrXE+1h/SR2dVFaXEJOjRtoZLOX853Xfo81kS1BvWW2cVZ8cejdOT1hdlizq2M\n2cVFtUcMlFe92jKZTYo9eEzH5yyWNSVF7jWrqc6oF+XkXkY2m01/Lvpfxezal++48lLm4RYqFzpY\nJmcXpZ4+rmvvTpctMT5LGfe/dpD3/4RJNptsyUmK+WiOUk4elsnNQ76DJshStaZMJpPitnylm+uW\n35O47mSq9Tc5tZwqk5OLbFd+V9q3g6WUmzmXrf20LB0WK3VB5f9uZHk5tXtT5goNZUtNkPVgpKy/\nvntX8dx1O2Q2qe4rfeX3aMYxeurjL3R2zUZJkketqqo/9nk5uZeRbDYdW7hC13bsV82+/1ClJ2+1\ntS7lvGVxL6PNbf55V9viaKW5x8Fc3AHk14kTV/Rcv0h9veFgcYeSJ+K8t4orTpdyXnpo0gv6dfQ8\n/fjsCCWeu6w6Q0ILVC7on51lcjLrp15j9FPoKJldXRTU/x+yeLgpZOYwHXn7Y23rNVoHZyxV49f/\nLbNz0ebxxbnPXcp5qeHkF7R31Jva0nWkEs5d0gNDehaoXJ0XuynpUrS29hitbX0nqkbXdir3ULBM\nFic9/PpQ/fbaYv3Ya6yOL/mPGk99sci3qbjq07mclxpMfFH7x8zVtm7DlHjukuq81KvA5Sp3aqXm\n74erTEWfLO9r9MZwnXh/tXb0Ga1fXnlddV/pK/fqlQoYo7fqjX9Jv42dpZ09/63Ec5cUNLh3gcpU\n6thaIe9Ok2sF3yzveyhipP78YKV293tV+4e9puCX+8utWsHiu11J/aw7l/NW/QmD9dvY2drR499K\nPH9JtV/KXoe5lanauZ3cqlfSzt7Dtfu5Mare4yl5168tSbJ4e6ruqIGqO+I5mXTrBMa1go8avvGq\njsz6QLvCXtWV73fqgVcH5rsunct5q+74ITo0fpZ2hw5V4vlLqvViWL7LBPTrKpOTk/b2G649fYfL\nydVFAX27SJKCRzyvi19u0t7+I3Q0YqHqTxshOd39KYzZq5x8X5yoq3PH6MKwbkq7dE7ler2UpYyl\ncoDK93lZlyNe1sXRfXRjzVL5jchItsr1GKS06Mu6ODJUF8f1l1f7LnIJfuiu48rGzU+WDu8pbV0v\npX74sGw3Tsmp5dScy5YLkqVVhGS6VT9Oj78hpcQr9aMmSvvkcZlrPilTYIdCh3Mv2qHqndvLvXpl\n/Rw6Ujv6j1ONnp3kXT9IklRv1ACd++J77egzWgenvauGEa/I5JRxIWNHn9Ha0We09gyaovSkJB0Y\n/1aht6O42GQq8KOkKDWJw4qP96hzl8bq0PHB4g4lT8R5bxVXnH6PNtSNQyeVcOaiJOn059+pSocW\nBSoX8+thHV+6VrLZJKtNsUdOqUylCnIPqKzUuERd251xwhkfdV5p8Ykq91BwkW5Tce7zO+sp6rON\nqtLRuD5vL3do9nIdfutjSZKrXzmZXSxKi0uQLS1dmzoOUeyRKEmSe9WKSr0eV+TbVFz16ftII904\ndMJeR2c+/06VOvy1QOVc/cqrYutm+mXYjCzvMbs46+QHnyl692+SpOTL0Uq5flOuFbOevBvxad5I\nsYePK/FsxrrPrflGlf7WMt9lXPzKy69Vc+0fHpEtvj+XrlZMZnxXopV6I7bA8d2upH7WfR5pqNjD\nJ5R4JrN+vs1eh3mUqdD6EV1Y/71s6Val3YzXpY3bVKlDxmv+bR9TyrUYHZsfmWV5Fds8qqvbf9XN\nI39mLO8/3+nomx/moxYzlG/eWDcPH1fi2QuSpPNrv5b/ky3zXebG/kM6vWz1f+vRqrijf8q1UgVJ\nksnJLIuXpyTJyd1N1pTUfMeVlzKNHlHKiUNKu3hGknTzu8/l8desJ9S2tFRde+81Wa9fkySlnDws\np3K+kpNFMR/N0fXItzPiKucnk7OLrAn3vv0x12gr28W90vWMntT0/Ytlrtcje0GLmyydlihty5gs\nT5v8H5b10ArJZpWsqbL++bXMwZ0LHc+9aIcqPt5M59f/YD9GL373syp3zDgWTE5mOf93f1s83GRN\nTsm27Dr/DtPVn/fp6vZ70/PkSDabqcAPI1arVZMmTVKPHj0UFhamqKioLK9v3rxZXbt2VY8ePbRq\n1apCx15qhipNmNRRkrRjx5/FHEneiPPeKq44y/j7KunSNfv/SZej5ezpLouHW5YhDHmVu7rzt1vl\nKvmpZmhH/R6xWAmnL8jiXkZ+jzykqzt/U9n6gfIKrCZXv/JFuk3Fuc/d/H2UmI/6NCpnS7eq8dTB\nqtS2uS7+sEdxUeclSbb0dLn4eKvl/0bIuZyXfh07v8i3qViPzcu36ij58jU5e7rLycMtyzCBvMol\nX43R/tFzsi3bmpKqc+u+t/9f9Zm2cnIvoxu/Hy1wjMm3r/vKNVk8PeTk7mYftpJXmZSrMfp97Kwc\n47vwxWb7/1X+0U5ObmUUe/BYgeK7M9aS+FkvU9FPSZeu2v9PvnxNFk/3rHWYR5kyFbPGm3z5mjxr\n15Ak+5Clyk89nmWd7gFVZE1MVoNpr8g9oIqSLl3V0Tc/Mow1k2tFXyVfvi2eHPZ7XmVidu2/tSz/\nCqra42kdfWORJOnYnMVq9PYUVevxdzmX99bhyXOldGu+Y8uNxddfadduDcVKv3ZZZndPmdw87MOV\n0q9cUPqVC/Yy5fu+osQ9W6X0tIwnrOnyHTJF7o+0UcLuH5R2PusJ2z3hXU22m2dv/X/znEyuZSUX\nryzDlZzaz5f1wFLZrvye5e22C7tlrh+q9PPbJSdXmYOfkayFT77uRTuU02fK77/H6OGZS9X0nYmq\nEdpJLj5ldWD8W7Ldtr89AqupYuum+qnzy4XehuJUFEOVNm7cqJSUFK1cuVL79u3TjBkztGhRxucn\nNTVVr7/+uj777DO5ubkpNDRUbdq0kZ+fX4HXk2fiEBYWJpMp541bvrxoxvABJUIux73tzi+qfJTz\nfqCWQmYNV9Sqb3Tlp18lSXtHzFadwT1U9+Xeiv71D13bfVDW1LR7E3tJZM65czNbfeaj3L5J78jp\n9SVqMnOYgv/VRcfe/1ySlBIdq02dhsi7bk09umi8tvU/q/jTF+9N/CWIyZzLF84ddZnfcrmp2fcf\nqtGzo/b++3VZkwt4gpHbfrRaC1YmDzXCnlG17k9p/7DpOV6NzLeS+lnPZf9lrcPcy+S0/7Nt0x1M\nFif5/bWp9g6aqMQzF1Wte0c1nPGqdvV91TheSaZ87NP8lPGsG6gHI0br/OcbFP3zXplcnFVv6gj9\n8dp8Rf+8V14P1lGDN8bq5uHjWZLPQjHlMvDCmp69qGsZ+Q6eLCffiroc8e8sr11bMFnRi2fIb8Qb\nKvvsAN1Yvfju4sq+dsM4zY0GStY0WX9fLnkHZCmWvmWsnFpHyBK2XYq/KGvUZpmrPFL4aO5FO5TT\nMWq1yuzirIavvaLfpy7S1Z9+UdkGwXp4zijdOHTCvr9r9OioM6u/yXEuUmlQFJOj9+7dq5YtM3ps\nGjdurN9/v5U8njhxQgEBASpbtqwkqUmTJtq9e7c6duxY4PXkmThMmTJFkrRw4UK1bdtWTZo00YED\nB/T999/n9TagVAp+4VlVbNVEUkbX6M3jZ+yvuVbwUcqNOKUnJWd5T9KlayrXoHau5Sq3f0z1Rz+n\nQ7M+1IVvfs4oZDIpPTFJuwZNs7+v5arZSjh7f53k1nnhWVVsFSJJcvZwV+yJWxNCy+RWnxevqlyD\noBzL+T3aUDePn1by1etKT0zW+W9+VqU2zWXxcJNvswd16Yc9kqTYI6cUeyxKXrWr3zeJQ9Dz3VSh\nVVNJGcdm3PFbdelawUepudRl2QdrG5a7k8nZogaTBsszsJp2DpiopAtXChxv0sUr8q5/aziOawUf\npcbelPW2deenTG7x1Z8wRO61qmnvwHFKuljw+ErDZz350lWVffCO+rkRl6V+8iqTdOlqlp4N1wo+\nhifZyVdidOO3I/ahT+fXbVbd4c/J7OqSr+Qs6eIVed2+T/18c9zveZWp0LaFgkc+r+NzP9Dl7zIm\nvXsEBsipjKuif94rSbp58KgS/jwjr/p1lHx5u2FceUm7elEutW8NN3TyqaD0uBuyJSdlKefk668K\no+cq9dyfujxlsGypGfGWafSoUk8fV3rMVdmSE5Ww7Ru5P9LmrmLK0c2zMlVudut/zyqyJUZLaQn2\np8wP9pGc3WUJ2y6Tk3PGsKWw7Upb01kyW5S+dYKUFJNRttlw2a6fLFAI97odSrp4Ta5+5bK8lnz5\nmjyDqsupjIuu/vSLJOnG78cUd/KMyjWorUubr0lmkyq2eUQ7+o4tUPwlSVH0OMTFxcnT09P+v5OT\nk9LS0mSxWBQXFycvLy/7ax4eHoqLK9yQujznOAQGBiowMFBXr15Vp06d5O/vr/bt2+vs2bN5vQ0o\nlY6995m29R6rbb3Havs/J6lcg2D7pNCAru10eeuebO+5uuNAruUqtWmueiP7affQ12+dSEiSzaam\nb46Wd73AjHJtH5E1Ld0hd1VypKPvfaafeo/TT73Hads/J6l8lnpqq0tb9mZ7z5Udv+Varkr7RxT8\nfFdJktnZosrtH9W1PQdls1rVaNILKt+ojiTJM7CqPGpU0fXfi/6uSo6SOVl5R5/R2vXcBJW9rY6q\ndWmf47F5beeBfJW7U6PXh8ni4aZdhUwaJCl6136VbRBsn7RcpfOTurp1d4HL5KTBayPk5OGmvc+P\nL1TSIJWOz/q1nf+tn/+ur2rnJ3Xlx935LnNl625V/vsTGXMDPN3l376FrhjU75Utu1SuYV2VqVxR\nklTx8UcUd+J0vnt0Ynbtl/eDdeRWLeNOPlU6P6lrd8ScVxm/xx9T7WH/0oFhU+1JgyQlnr0gi4e7\nvBvUlSSVqeov95rVFHesYCe+OUk6sFOuwQ1kqVRdkuTZvkvGMKTbmD285R/+nhJ2fa9rb02wJw2S\n5P5oO3k/+6+MfyzOcn+snZJ+N/6cFZT11CaZKjeXymVcWHFq9C9ZT3yZpUzaJ62VtqyZ0iIfU+qa\nLlJaotIiH5PiL8qp0b/k9JcJ/w26opwe6i/r4ZUFiuFet0OXt+5R1duO0Urt/6LLP+xWwpmLsni6\nq+xDGW26W1V/edSsqtgjpyRJXkEBSouNL3T7VBIUxRwHT09PxcffuhuY1WqVxWLJ8bX4+PgsiURB\n5HuOw+rVq9WwYUP9+uuvcnZ2LtTKgNIiJSZWv019Vw/PeEVmZ4sSzl7SgfB3JEne9QL10ISB2tZ7\nbJ7l6rzUUyaTSQ9NuHVXkpj9R3Vo5ofaP3GBHho/UCZni5KvxuiXV7OPN7+fpMTEav/U99TkjYw7\nysSfvaT9kzPGXpatV0sPTRion3qPy7PcoXkf66FxA9Rq5Ruy2Wy69MNe/bnia8lm056Rc1R/eJhM\nFidZU9O0b8ICJV2OLs5NLjIpMbE6OG2RGs0YLpPFosRzF/Vb+EJJGcdm/fEvaEef0XmWy025hnVV\nsVVTxUedV7MPbt2x5diCT3Rtx/483plVakysDk9fqAYRI2V2tijx3CUdmjpfXg8E6YGxg7S736u5\nlslL2YZ1VaFlM8VHnVOT96bbnz/xzv8qemf+47tdSf2sp8bE6tC0d/RQxIiM+jl7SQenLpDXA4Gq\nN+5F7er7aq5lpIyJ0m5VK6l55GyZnS06t/Y7Xf/1UJ7rjDt2Sn/MXKyGb7wqk8VJaTfj9dv4ufmu\ny9TrN3QkYoHqT39VJmeLks5d1B/T3pbnA0GqO2aw9vYfkWsZSao1KOOOUHXHDLYv88aBP3R87mId\nHPeGgl4ZILOLs2xp6To6810lnbuU79hyY42N0bVF0+Q3fIZMFovSLp7TtYXhcgmsJ58Xxuvi6D7y\nfLKrnPz85d7scbk3e9z+3svTXlJM5JvyGThGlWavkGw2Je7eopsbPr3ruLJJvKK0bwbJ8vePZXJy\nlu36n0r7eqBM/g/L6cl3MhKEPKTvnC1Lpw9k6ZeRpKVvj5Dt0i+FDudetENnP/9W7lX99djHM2Wy\nWHR27UbF/HpYkrRv1Bw9MKK/fX8fmrFYif/d3+4BlZVYipOGohISEqLvv/9enTp10r59+1SnTh37\na0FBQYqKitL169fl7u6uPXv2aMCAAYVaj8lms9mMCl25ckXvvvuuTp06pdq1a2vQoEEqXz5/EznT\n9XGhAnMkJ/Uu8XGWhhil0hXnhmbZb7lY0nTcvaLU1OeXTbPfiq+keWrPJyW+Pp2UcfL0bfMc7phS\ngjy5a6U2P/ZscYdhqM32z0rNZ33To92KOwxDbXes1pYWXYo7DEOtt63R6R7NizsMQwErdylljkdx\nh5EnlxHxJb49kjLapNLi6+bZb0dupMOuvBNSq9Wq8PBwHT16VDabTRERETp06JASEhLUo0cPbd68\nWQsXLpTNZlPXrl3Vu3fvPJeXmzx7HC5evKhKlSopLi5Offr0kc1mk8lk0vXr1/OdOAAAAADIUBST\no81ms6ZOzfrbHkFBt+YMtmnTRm3a3P38mzwThw8//FBjx47VpEmT7HdXykweuKsSAAAAUDCl+Zej\n80wcxo7NmLEeGRmp6OhonTt3TjVq1JC3t7dDggMAAADuJ0XR4+Ao+Zoc/fnnn2vx4sUKCgrSyZMn\nNXToUHXq1KmoYwMAAADuK3f/04XFJ1+Jw4oVK/T//t//k6urqxISEtSvXz8SBwAAAKCA7vseh3Ll\nytnvBVumTBmGKgEAAACFcN/OcRg+fLhMJpOio6PVpUsXNWrUSIcOHVKZMmUcFR8AAABw37DpPk0c\nevbMfp/Zp59+2v73uXPnVLVq1XsfFQAAAHAfum97HJo3z/vHU8aOHcttWQEAAIB8shr+9HLJla85\nDrnJx49OAwAAAPiv+3aokpHMH4UDAAAAYOy+HaoEAAAA4N4pzQN2GKoEAAAAOIi1FA9VMhek8PXr\n17P8/+ijj97TYAAAAID7mc1mKvCjpMhXj8OuXbs0depUpaenq0OHDqpSpYq6deuml156qajjAwAA\nAO4bpXmOQ756HN566y397//+r/z8/DRo0CCtWLGiqOMCAAAAUIKYbPmYqBAWFqbIyEj17dtXy5cv\nt/8PAAAAIP8+evBfBX5P/4MfFEEkBZevoUoBAQGaM2eOrl+/rvfff19VqlQp6rgAAACA+859P1Rp\nypQpqlKlipo0aSJ3d3dNmzatqOMCAAAA7jvWQjxKinwlDikpKXriiSc0ePBg3bhxQ1euXCnquAAA\nAID7Tmm+q1K+EoeXX35ZBw8e1KxZs+Ts7KxJkyYVdVwAAADAfcdqMxX4UVLkK3FISkpSmzZtdPHi\nRT3//PNKT08v6rgAAACA+46tEI+SIl+To1NTU7Vs2TI9+OCDOn78uBITE4s6LgAAAOC+U5J6EAoq\nXz0Oo0eP1uXLlzV48GDt2LFD48ePL+q4AAAAgPvOfT85OiQkRM2bN9fKlStVqVIlNWzYsKjjKpT5\n8+fn+ON0Q4YMyfbcihUrNH/+/GzPr1mzRrNnz87y3LBhw5SSkpLrelu0aJHvGNu0aaPk5OQsz23d\nulUrV67MVrZ79+46e/ZsrsvKKda7MWbMGG3dujXLc1euXFF4eHi2srNnz9aaNWvytdx7Heeddu7c\nqWHDhmV7/rXXXtP58+ezPHfixAmFhYXd1frCwsJ04sSJu1pGSff+++/rwIEDxR1GkctpX+Z2PN2t\nNWvWaNMkFm/IAAAevElEQVSmTfd8uYWV2b7cHtfw4cPVtWtXHT16VGFhYerZs6du3LhRoOXm1N4a\nxXA3vvvuO126dOmullEaFXW7WpSSk5PVpk2b4g7jnjl79qy6d+9e3GEYOnLkiHbv3i0p53ORkmb3\n7t36448/ijuMIlGaJ0fna6jSnDlzFBUVpZCQEP3nP//Rnj17NGbMmKKO7Z5ZsGDBXb1/3rx59yiS\nnLVq1apIl383KlSokGPiUBrQM1Z4zz//fHGHcN/p0qVLcYeQo9vj+vnnn7Vjxw6dP39e8fHx+b44\ncLu7bW8Lavny5QoPD5e/v79D1wuUNt9++638/PzUrFmz4g4lXz7//HN16tRJDzzwQHGHcs+VpB6E\ngspX4rB79259+umnkqR+/foVKLNOTU3V2LFjdfbsWaWnp+uf//ynVqxYoVq1aunPP/+UzWbTvHnz\nVKFCBc2ZM0d79uyR1WpV//791bFjR4WFhemBBx7QsWPHFBcXp7feektVq1bNdX0bN27Uhg0blJSU\npAkTJqhhw4Zq0aKFtm3bpj179igiIkLe3t5ycnJS48aNc1zG/v379dxzzyk6OlqhoaF67733tGHD\nBl28eFFjxoyRxWJR1apVde7cOUVGRiolJUUjRozQ+fPnVa5cOb399ttydnbONcZJkybp3Llz8vX1\n1RtvvKGvvvpKJ0+e1MiRIzVv3jz9+OOPqlSpkmJiYvJVx0uXLtWXX34pi8Wipk2bavjw4erQoYM2\nbNig6OhotW7dWj///LM8PDzUo0cPrV27NtdlffLJJ1qyZInS09P12muvycnJScOHD9eqVav0zTff\naNGiRfLx8VFqaqoCAwNzXEZSUpLGjh2r8+fPKzU1VX/7299yjfXVV1/V3r179cYbb8hiscjNzU1v\nvfWWXF1dNXnyZEVFRclqteqVV17RI488kmvcUVFRGjBggGJiYhQaGqpu3bopLCxM4eHh8vLy0siR\nI2Wz2VShQoVclzFkyBD17dtXzZs312+//ab58+fL29s7y7HbqVMne/n58+fLz89PoaGhOnHihMLD\nwxUZGam///3vatq0qY4cOaLAwED5+vpqz549cnFx0fvvv6+kpCSNHz/evn8nTJigunXr5hhTXFyc\nxo8fr5s3b+ry5cvq2LGj1q9fr6+++komk0lTp07VY489Jn9/f02ZMkUeHh7y9fWVq6urZsyYkeMy\n58+fr5MnT+ratWuKjY3VhAkT1LRpUz3xxBMKDAxUUFCQYmNj1alTJzVv3jzLvpw4caIaNGhQoH2T\nac2aNfr8889ltVrVoUMHbdq0SYmJiSpfvrwWLFig9evXa8uWLUpKStLp06c1cOBAdenSRQcOHMhx\n2yIjI7V+/XqZTCZ16tRJffv2zXP9ObVFkrRw4UJdvXpViYmJmjt3bpb3rF69WitWrJDValWbNm30\n8ssv57ptGzduVHx8vGJiYvTSSy/pb3/7m55++mnVrFlTzs7OCgwMlJ+fn3r27Klp06bpwIEDSk1N\n1dChQ9WuXbsc27/8bEPVqlUVEREhq9Uqf39/zZ49W2XKlMkxzpzal8zj+MiRI4qLi9OLL76otLQ0\nHTt2TG3atFH16tXt21S+fHnNmzdPTk5Oql69uqZOnaovvvjCvl9ffvlljRw5Utu2bdOhQ4c0bdo0\nOTk5ydXVVdOmTVOVKlUK1MbdXn9Tp07N9rm5cOGCDh8+rNGjR2vWrFkaPXq0Vq1aJSmjN2Pu3Lla\nu3atfv31VyUkJOi1117TuHHjVKlSJZ05c0YPPfSQpkyZku996uLiogULFshms+nBBx/UlClT9O23\n3+rjjz9WWlqaTCaTFixYIB8fnzy3616587uqWrVqevPNN+Xq6qpy5copIiJChw8f1qeffmq/AJb5\nfThmzBhdv35d169f13vvvaeyZcsWaazx8fEaOXKkYmNjFRAQIEnatWuXvT7j4+M1Z84c7dq1S6dO\nndLo0aOVnp6uZ555Rp999plcXV2LJK4uXbpo8eLF8vb21iOPPKLIyEg9+OCD6ty5s5555hl7W5vZ\nxly4cEETJ05UcnKy/bjOlJ6erjFjxig4OPieXXxZs2aNvv/+eyUlJenKlSvq27evNm3apGPHjmnU\nqFFKSEjQsmXL5OLiopo1a9o/k3e2pS1atNDatWvl7OysBx98UJIUHh5u7/FbsGBBlmOgsOvN6z3t\n2rXThg0b9NFHH8lsNqtJkyYaOXKk5s+fr7Nnz+ratWs6f/68xo4dq/Lly+vHH3/UwYMHVbt2bXXr\n1k3btm2TlDEKpGfPnjp37pzh+kqqktSDUFD5ShzS0tJktVplNptls9lkMuV/g1euXCkfHx/Nnj1b\ncXFx6tKli1xcXNS1a1dNnTpVH3/8sd577z21bNlSZ8+e1YoVK5ScnKzu3bvbhwA1bNhQ48eP17x5\n8/Tll1/m+YGsWrWqpk6daj9wbj9JnjJlit5++23VqlVLkydPznUZFotFS5Ys0blz57Ksa+bMmRo0\naJBat26tVatW6dy5c5KkhIQEDRs2TNWqVVNYWJgOHz6c53Cu0NBQNW7cWDNnztSqVavk6ekpSfrt\nt9+0e/duffbZZ0pISNCTTz5pWL9RUVHauXOnPv30U1ksFg0dOlRbt25V06ZNtW/fPkVFRSk4OFjb\nt2+Xh4eH4bCqkJAQPf/889qyZYtmzZpl71lKTU3VjBkztGbNGpUrVy7PffDpp5+qatWqmjdvnk6d\nOqUffvhBN2/e1JEjR7Rhw4YssX7//ffatWuXOnbsqH79+mnz5s2KjY3VDz/8oPLlyysiIkIxMTHq\n06ePvvzyy1zXmZqaqkWLFslqteof//iH2rZta3/t3Xff1dNPP63u3bvrq6++ynE4myR169ZNa9eu\nVfPmzbVmzRq1atVKp0+fznLsPvroo3nWn5TxBfn0009r8uTJ6tChg8aOHathw4apT58+On78uNav\nX69HH31UvXr10qlTpzR27NhcY4qKitJTTz2lJ598UpcuXVJYWJjq16+vPXv2qFGjRtq5c6fGjRun\nbt26aebMmQoODta8efMMh26UKVNGy5cv17FjxzRixAitW7dOFy5c0Jo1a1S+fHn7fs9pXx4+fLhA\n++Z23t7eWrhwod555x37l8eAAQP022+/ScpIlJYsWaJTp05p0KBB6tKliyZPnpxt244fP66vvvpK\nn3zyiSTpn//8p/7617/mmsxKubdFzz77rP7xj39o/vz5+vrrr+2f3WvXrmnx4sVat26dXF1dNWfO\nHMXHx8vDwyPH5ScmJurDDz9UdHS0unXrprZt2yohIUGDBw9W/fr17UMjN27cqJiYGH322We6ceOG\nPvzwQzk7O+fY/nl7e+drG9566y0FBQVp9erVOnHihP3E4HZG7Ut4eLi+++47LVq0SGfPnlX//v1V\nvXp1LVmyxL5NZrNZq1atkq+vr958802tXbtWFotF3t7eWrRoUZblTZgwQa+99prq1aunjRs3asaM\nGRo4cGCB2rjb62/WrFk5fm7q1aun8PDwPC/WBAYGasKECTp79qxOnTqlJUuWyM3NTe3atdOVK1dy\nvaBw+z7t3LmzTCaT1q5dK19fXy1evFgXL17UqVOn9P7778vNzU2TJk3STz/9pP/5n//Jc7vuldu/\nqwYOHKjk5GStWLFC/v7+WrZsmRYtWqTHH3881/c/+uij6t+/v0Ni/fTTT1WnTh0NGzZM+/fv186d\nO3Xs2DHNmjVL/v7+evfdd/X1118rLCxMXbp00ciRI/Xjjz/qkUceKbKkQcoYspOZyFarVk0///yz\nXF1dFRAQoK+//jpbG/P2228rLCxMrVu31vbt2zV79mwNGzZMaWlpGjlypJo2barevXvf0xjj4+Pt\nF90++ugjrVq1Sjt37tRHH32kEydOaO3atfL09FRERIRWrlwpd3f3HNvSzp07y8/Pz97Gde3aVU2b\nNtWYMWO0bdu2LBfGCrve3N6zfPlyNW3aVPPnz9fnn38uNzc3vfrqq/ZkwMXFRR988IG2bdumpUuX\nasmSJWrZsqU6deqkKlWqFLhuli9fXqITB2tJuk1SAeUrcejUqZNCQ0PVqFEjHThwINvBlZcTJ07o\nL3/5iyTJ09NTQUFB2rZtm/0ELCQkRJs3b5a/v78OHjxoH3+elpZmPzGvX7++JKlSpUq6evVqnuvL\n7IILDg7O9kN1V69eVa1atezrPX36dI7LqF+/vkwmkypUqKCkpKQs2/Lwww9Lkpo0aaIvvvhCklS2\nbFlVq1ZNkuTn55fnXaecnZ3tPR0hISHatm2bHnroIUnSqVOn1KBBA5nNZnl6eqpOnTp5bqskHT58\nWI8//rj9S7Np06Y6duyYnnzySW3ZskVnz57VsGHDtGnTJpnNZj377LN5Lq9p06aSpIcfflgzZ860\nPx8dHa2yZcuqfPny9tdzc/LkSfvwq5o1a8rb21tXr17VyZMn1ahRo2yxDho0SO+++6769esnf39/\nNWzYUEePHtXevXvt4+zT0tIUHR2d65W8xo0by8XFRZIUFBSUZdz0qVOn7L1kISEhuZ6kt2zZUrNm\nzdL169ftV37/+te/Srp17J45cybP+suUeeLm7e2toKAg+9/Jyck6evSoduzYoQ0bNkhSnmPI/fz8\ntGzZMn377bfy9PRUWlqaunfvrrVr1+rKlStq06aNLBaLLl++rODgYEkZx+ZXX32VZ3yZn7/g4GD7\nZ6p8+fL2/Zvpzn3Zv39/hYeHF2jf3K5WrVoym81ydnbW8OHD5e7urosXLyotLU2S7F3SlStXts8r\nymnbjh49qvPnz9tPem7cuKGoqKg8E4fc2qIGDRpIyqjr29uXM2fOKDg42H71fuTIkXluW7NmzWQ2\nm+Xn5ydvb29FR0fbt/l2f/75p70NKFu2rF555RUtXrw4x/bvzsQhp23YvHmz/Rjr1q1brvEVpn25\nfZvc3NwUFRWlV155RVJGz+Jf/vIX1ahRI9s2Shn7rV69evblzJkzp1AxZC67IJ8bSbLZbn0z3x5f\nQECA/WJNhQoV8hznffv2e3h4KCUlRb6+vpKkgQMHSpJ8fX01evRoeXh46OTJk7n2ZBeF27+rLly4\noICAAPuQrWbNmmnu3LnZEofc6qWonTp1Sq1bt5YkNWrUSBaLRf7+/nrttdfk7u6uS5cuKSQkRJ6e\nnmrWrJl++uknrVmzRoMHDy7SuJ588km9++67qly5soYNG6bIyEjZbDb97W9/0xtvvJGtjTl69Kje\ne+89ffDBB7LZbLJYMk6jjhw5Ik9PTyUkJNzzGDM/R15eXgoKCpLJZFLZsmWVmJio2rVr24/nzHpr\n1KhRjm3pnW5v+24/17mb9eb2nuTkZJ0+fVrR0dH2C4/x8fH287DM91WqVCnPOaVS1mM4r/WVZKU4\nb8jf5OjnnntO06ZNU0hIiKZOnVqgKxRBQUHas2ePpIyriUePHlW1atX0+++/S5J++eUX1a5dW4GB\ngfZuwmXLlqljx46qXr16gTco82TmyJEj2bJUf39/+0TIzCucOcmtR6VOnTr69ddfJWV0ERuVz0lq\naqoOHz4sSdqzZ4/9hEiSateurQMHDshqtSohIUHHjx83XF69evV04MABpaWlyWazaffu3apVq5Za\ntGih3bt3KyYmRq1bt9bBgwf1xx9/GE5sz6y/O2Pz9fVVbGys/WQor/oLCgqyv37mzBn78I/AwMAc\nY123bp06d+6syMhIBQcHa9WqVQoMDNRTTz2lyMhILV68WB06dFC5cuVyXeehQ4eUlpamhIQEnThx\nwt4VnhlP5n7LK26z2awOHTooPDxc7dq1U3BwcI7HbiZXV1d7cnrw4MEsy8rrmAgMDFT//v0VGRmp\nN998M8+rk0uXLlXjxo01e/ZsdejQQTabTY899pgOHz6szz//3H6iWKlSJfvxcvuxmZvMeI8ePWo/\n0TCbszcHd+7LESNGFHjf3M5sNuuPP/7Qxo0b9eabb2rixImyWq32L4Kc6i2nbQsMDFTt2rW1fPly\nRUZGqkuXLrkO97p9W/Lan3cKCAjQyZMn7V9iL7/8cp49OZl1evXqVcXFxdlPMO+s18DAQHud3rx5\nUwMGDMh3+5fbNpw6dUpSxqT27777Lsf4CtO+3L5NycnJCggI0DvvvKPIyEgNGjTInoDmdOxUrFjR\nPrFx9+7dqlmzZqFiyFx2bp8bk8kkm80mV1dXXbt2Tenp6YqNjc1y8eD2+ArSXt++/ampqZKk69ev\nS5KmT5+uXbt26e2339a8efM0ffp0ubq6ZjmpKWq3b0v58uUVFxeny5cvS8oYBlSzZs0s7dS5c+ey\nJFwFqYu7FRQUpH379km61V5PnDhRERERmjFjhipWrGivu+7du2v16tW6du1akY9vr1Onjs6cOaMD\nBw6odevWSkhI0KZNm3JtYwIDAzVy5EhFRkZqypQp6tChg6SMi0Xvv/++1q1bd88n9Oa2n0wmk06c\nOGFPVnbt2mVPBnN6j8lkktVqzfK/I9abqVq1aqpcubKWLl2qyMhI9enTx55o5xZv5jGRlpam+Ph4\npaSkZGk3HHkM30ul+Qfg8uxxmDNnTradcujQIUkZd9/Ij+7du2vixIkKDQ1VcnKyhgwZojVr1mjt\n2rX66KOP5ObmppkzZ6pcuXLatWuXevXqpYSEBLVr186ezRbE2bNn1bdvX6WkpGjq1KlZXps6dapG\njRolT09PeXh4FHhM58iRIzVu3DgtXbpUXl5e9isNBeHs7KzIyEhFRUWpSpUqGjFihL3nol69emrV\nqpWeffZZVaxY0X7ikZcaNWooJCREoaGhslqtatKkidq1ayeTyaRKlSqpSpUqMpvNqlWrVr6uCO/f\nv199+/aVyWRSRESE/UNrsVg0adIkDRgwQGXLls1z23v27Klx48apT58+9nHYMTExqlu3rjp27Jgt\n1gMHDmjChAlyc3OT2WzW1KlT5e/vrwkTJqhPnz6Ki4tTr169cjw5yeTq6qqBAwcqNjZWQ4cOzXIi\n++KLL+rVV1/VV199leeJopTRdduuXTt98803qlixYrZj9/Z90rFjR73yyivavXt3jkNDcjNo0CCN\nHz9eq1atUlxcXJ53oXniiSc0ffp0ffXVV/Ly8pKTk5N93sjPP/9sT5AmT56scePGyd3dXc7OzoYT\nRQ8fPqx+/fopMTExyxjdO925L8eNG6e6desWaN/cqUaNGnJzc1PPnj0lZVz1zTzZyUlO2/bAAw/o\nscceU2hoqFJSUtSwYUPDbc6tLcqNj4+PBg4cqD59+shkMumJJ57Icx1Xr15Vv379dPPmTU2ePFlO\nTk45lmvbtq22b9+u0NBQpaen66WXXlKrVq3y1f7ltA1BQUEaN26czGazKlSokOuFncK0L3duk9ls\n1vPPPy+bzSYPDw/NnDlTFy5cyPG906dP17Rp02Sz2eTk5KSIiAhVr169wDFkyu1z8/DDD2vUqFFa\nunSpWrRooWeffVbVq1dXjRo18r3s/G6/zWbTCy+8ILPZrPr166tZs2YKCQlRjx497EO28jqWi5LJ\nZNL06dM1dOhQ+1XX119/Xd7e3vLy8lK3bt0UFBRk2AYWldDQUI0aNUqhoaEKDAyUs7Oz2rdvr969\ne8vNzU1+fn72umvUqJGioqLu+ZCf3DRv3lxnz56V2WxWs2bNdPz48VzbmNGjRys8PFzJycn2+WqZ\nypQpo8mTJ2v06NFavXq1vRe8qDg5OWno0KHq27evzGazAgICNHLkyFyHjjZo0EAzZ86091A6ar2Z\nfHx81L9/f4WFhSk9PV1Vq1bNcS5XpkaNGmn27NmqVq2a+vbtqx49eqhatWp5Dl0qLUrz5GiTLY/L\nI5nzA65cuSJXV1d5e3tr7ty5eu655+wTCwsjc9Lq3R68jrZu3To1atRINWrU0OrVq/XLL7/o9ddf\nL+6wAH388cfq2LGjfHx8NG/ePDk7O+eakNw+qbs0KMi2FZc1a9bYb3Bwv7gft6kg/q9vf3GyWq0K\nDQ3VkiVLCnUBESjpZgQW/DtszEnH3rEuN3leMu/cubOkjKuw8+bNU0BAgH0izd0kDndryJAh2ca3\nenp6Zpucd69ljoHMvDIeERGRY7kDBw5o1qxZ2Z7v2LGjevXqVaQxGklJSdGAAQOyPV+rVq1sPTQl\nzYIFC7Rz585sz2deyfy/zNfXV88995zc3d3l5eWlGTNm5Po5yZwzVFrktG3FJTw8PMff8Mjrqpmj\nrVy5UuvXr8/2/PDhw/Ocm1RcSnJ7Ccc7c+aMhgwZoi5dupA04L513/Y4ZOrZs6f9dqxSRo9BZGRk\nkQYGAAAA3G8iCtHjMK409DhkqlKliubOnavGjRvrwIEDqlixYlHHBQAAANx3HHgPhXsuXzMaX3/9\ndfn4+GjLli3y8fFhXD8AAABQCFaZCvwoKfLV4+Dq6uqwH4kBAAAA7lf3/Q/AAQAAALh7pXmoEokD\nAAAA4CAlaehRQZE4AAAAAA5CjwMAAAAAQ6X5dxxIHAAAAAAHYXI0AAAAAEOlOG8gcQAAAAAcxWpj\ncjQAAAAAA0yOBgAAAGCIydEAAAAADJXmHgdzcQcAAAAA/F9hLcSjMJKSkjR06FD16tVLAwcOVHR0\ndM7xWK3617/+pRUrVhguk8QBAAAAcBCrreCPwlixYoXq1KmjTz75RM8884zeeeedHMu9+eabio2N\nzdcySRwAAAAAB7EV4lEYe/fuVcuWLSVJrVq10vbt27OV+frrr2UymezljDDHAQAAACjFVq9erWXL\nlmV5ztfXV15eXpIkDw8P3bx5M8vrR48e1fr16/X2229r4cKF+VoPiQMAAADgIEXxy9HdunVTt27d\nsjw3ZMgQxcfHS5Li4+Pl7e2d5fX//Oc/unTpkvr166dz587J2dlZVatWVatWrXJdD4kDAAAA4CCO\nuqtSSEiItmzZooYNG2rr1q1q0qRJltdHjRpl/3v+/Pny8/PLM2mQmOMAAAAAOIyj7qoUGhqqY8eO\nKTQ0VCtXrtSQIUMkSR9++KE2bdpUqGWabLbSfDdZAAAAoPR4vuK/C/ye9y+/VQSRFBxDlQAAAAAH\nKc1X7EkcAAAAAAcpisnRjkLiAAAAADhIaZ4kQOIAAAAAOEhhJzuXBCQOAAAAgIMwVAkAAACAoVKc\nN5A4AAAAAI5CjwMAAAAAQ0yOBgAAAGCIydEAAAAADFlLcZcDiQMAAADgIKU3bSBxAAAAABymNE+O\nNhd3AAAAAABKPnocAAAAAAexleLBSiQOAAAAgIOU5qFKJA4AAACAg3A7VgAAAACGbNyOFQAAAIAR\nehwAAAAAGKLHAQAAAIAhehwAAAAAGLLS4wAAAADACL/jAAAAAMAQQ5UAAAAAGLLS4wAAAADACHMc\nAAAAABhijgMAAAAAQwxVAgAAAGCIxAEAAACAodI8VMlc3AEAAAAAKPnocQAAAAAchKFKAAAAAAxZ\nTaX3J+BIHAAAAAAHoccBAAAAgCGb6HEAAAAAYIAeBwAAAACGmOMAAAAAwJCVoUoAAAAAjJA4AAAA\nADDE5GgAAAAAhpjjAAAAAMAQQ5UAAAAAGLIpvbhDKDQSBwAAAMBB6HEAAAAAYIjEAQAAAIAhhioB\nAAAAMESPAwAAAIASIykpSa+++qquXbsmDw8PvfHGG/Lx8clSZunSpVq/fr1MJpMGDRqk9u3b57lM\nc1EGDAAAAOAWm6wFfhTGihUrVKdOHX3yySd65pln9M4772R5PTY2VsuXL9enn36qpUuXKiIiwnCZ\nJA4AAACAg1iVXuBHYezdu1ctW7aUJLVq1Urbt2/P8rqbm5uqVKmixMREJSYmymQyGS6ToUoAAACA\ngxS2ByEvq1ev1rJly7I85+vrKy8vL0mSh4eHbt68me19lStX1lNPPaX09HS98MILhushcQAAAAAc\nxGq793dV6tatm7p165bluSFDhig+Pl6SFB8fL29v7yyvb926VZcvX9amTZskSQMGDFBISIgaNmyY\n63oYqgQAAAA4iKPmOISEhGjLli2SMpKEJk2aZHm9bNmyKlOmjFxcXOTq6iovLy/FxsbmuUx6HAAA\nAAAHcdTvOISGhmr06NEKDQ2Vs7Oz5syZI0n68MMPFRAQoLZt2+rnn39W9+7dZTabFRISohYtWuS5\nTJPNZrM5IngAAADg/zpfjybGhe5wLX5vEURScPQ4AAAAAA5SFJOjHYXEAQAAAHAQWxFMjnYUEgcA\nAADAQaz0OAAAAAAwYrOROAAAAAAw4Ki7KhUFEgcAAADAQehxAAAAAGCIuyoBAAAAMMRdlQAAAAAY\nYqgSAAAAAEOleaiSubgDAAAAAFDy0eMAAAAAOAhDlQAAAAAYKs1DlUgcAAAAAAfhrkoAAAAA8oEe\nBwAAAAAGmOMAAAAAwBBzHAAAAADkA4kDAAAAACMMVQIAAABghKFKAAAAAPKBxAEAAACAEZutuCMo\nNBIHAAAAwEFsKr2Jg8lmK8VpDwAAAACHMBd3AAAAAABKPhIHAAAAAIZIHAAAAAAYInEAAAAAYIjE\nAQAAAIAhEgcAAAAAhv4/nFu8rOoxCoYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close_bid'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close_bid') # predict this, should it be return?\n", + "dataset = df.values.astype('float32') # so regressor can use it\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset) # scale features to between 0 and 1 for faster convergence\n", + "\n", + "# Set look_back to 100 which is 100 ticks\n", + "# look back is 1 period, to check which features predict best a 1 period return\n", + "look_back_rows = 1 # to work with more than one, use alternative reshape\n", + "X, y = create_dataset(dataset, look_back_rows=look_back_rows) # look back only 1 row\n", + "y = y[:,target_index]\n", + "#TODO:X = np.reshape(X, (X.shape[0], X.shape[2]* look_back_rows)) # to get back rows and columns\n", + "X = np.reshape(X, (X.shape[0], X.shape[2])) # to get back rows and columns\n", + "# extend extra rows into columns, as all the prices during lookback periodd should be used as features." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(14878, 11)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X.shape\n", + "#y.shape\n", + "#X[0].shape\n", + "#X.shape[2]\n", + "#np.reshape(X, (X.shape[0]*10, X.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n", + "0. close_bid 3 (0.816391)\n", + "1. ohlc_price 7 (0.067108)\n", + "2. high_bid 1 (0.064573)\n", + "3. avg_price 5 (0.050164)\n", + "4. low_bid 2 (0.001339)\n", + "5. open_bid 0 (0.000077)\n", + "6. range 6 (0.000056)\n", + "7. momentum 15 (0.000053)\n", + "8. volume 4 (0.000046)\n", + "9. pca 10 (0.000045)\n", + "10. hour 11 (0.000038)\n", + "11. oc_diff 8 (0.000028)\n", + "12. period_return 9 (0.000028)\n", + "13. week 13 (0.000023)\n", + "14. day 12 (0.000023)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAJMCAYAAABkexbrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2Y1XWd//HX3AACgyDb5LYl3lC4phlCtnEl5uJSZpom\n6ADukOnuXq6V9ZPMm1ZUEMQss7W8yexmtQRzvRTsxhaj2MhMMUw0ajVlXfIiVFRmQGGY8/tjrpkV\nb9thmDP6eTyuy+uac75zznnzduY4PvmeMzWVSqUSAAAAAIpSW+0BAAAAAOh9ohAAAABAgUQhAAAA\ngAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAdpi99947Rx55ZI466qiufz73uc91+/5+85vfZObM\nmT044bZuv/32XHDBBTvs/l/Oo48+mk9+8pO9/rgAQNnqqz0AAPD69u1vfzvDhw/vkft68MEHs3bt\n2h65r5dy6KGH5tBDD91h9/9y/vjHP+bhhx/u9ccFAMpWU6lUKtUeAgB4fdp7771zxx13vGQUeuih\nhzJnzpw89dRT2bp1a5qbmzN58uS0t7dn7ty5uffee9Pa2ppKpZILLrggf/VXf5WpU6dmw4YNef/7\n35+jjz46s2fPzq233pokufPOO7suX3bZZVmxYkX+9Kc/Ze+9984XvvCFXHHFFfnxj3+c9vb2vPnN\nb865556bXXfddZuZbrrpptx222256qqr0tzcnH333Te//OUv88QTT2T69Ol54okn8qtf/SqbNm3K\npZdemr333jvNzc0ZOXJkVq5cmfXr1+eoo47KqaeemiRZvHhxvvKVr2Tr1q1paGjIWWedlf3333+b\n+d72trflvvvuy9q1a3PggQfmmmuuyZVXXpnFixfnueeey6ZNm3LGGWdk4sSJueyyy7JmzZqsW7cu\na9asyfDhw/OlL30pu+66ax5++OHMnDkzTz75ZGpra/PP//zPOfzww7N27drMmjUrjz32WLZs2ZIP\nfehDOfnkk9PW1pbZs2fnnnvuSb9+/fKWt7wlF154YQYPHrzjvzAAgD7BmUIAwA710Y9+NLW1//uK\n9W984xsZOnRoTj311Hz+85/Pvvvumw0bNqSpqSlvfetbU6lU8qc//SkLFixIbW1tvva1r+Xqq6/O\nlVdemVNPPTW33XZbLrzwwtx5552v+Lhr1qzJrbfemvr6+tx88835/e9/n+9973upr6/PggUL8i//\n8i+5+uqrX/U+br755tx777057rjjcsUVV+TMM8/M3Llzc91112X27NlJOs70uf7667Np06Ycd9xx\necc73pERI0bk3HPPzfz587PbbrvljjvuyCmnnJIf/ehHL5qvM2hdc801WbNmTX7xi1/kuuuuy047\n7ZTvf//7+dd//ddMnDgxSXL33Xfn5ptvTkNDQ04++eQsWLAgp556ak477bRMnjw5xx9/fB577LE0\nNzfn4IMPzumnn54TTjghEyZMyHPPPZd//Md/zIgRI/LGN74xv/rVr/KDH/wgNTU1ufjii/O73/0u\nY8aM2Z5/3QDAa4goBADsUC/18rEHH3ww//3f/52zzz6767pnn302DzzwQKZNm5ahQ4dm/vz5efTR\nR3PnnXd26+yV0aNHp76+40edJUuW5L777sukSZOSJO3t7dm0adOr3kdniNltt92SJOPHj0+SjBgx\nIr/61a+6Pq+pqSn9+vVLv379cthhh+XnP/959tprr7znPe/puu24ceMyfPjwrFy58kXzPd+b3/zm\nXHTRRVm0aFFWr17ddcZUp3e/+91paGhIkrz97W/P008/naeeeiqrVq3KsccemyR505velMWLF2fj\nxo2566678vTTT+fLX/5ykmTjxo1ZtWpVDjrooNTV1eXYY4/NQQcdlA984APZf//9/9z1AgCvA6IQ\nANDrtm7dmp133jm33HJL13WPP/54hgwZkp/+9KeZM2dOPvaxj+XQQw/NXnvtlYULF77oPmpqavL8\nV8Fv2bJlm+ODBg3q+ri9vT3/8A//kGnTpiVJNm/enKeffvpV5+zfv/82l/v16/eSn/f8uFOpVFJb\nW5uXeoV+pVJJW1vbi+Z7vvvvvz+nnHJKTjjhhLz3ve/NgQcemPPPP7/r+E477dT1cecOOh+/pqam\n69gf/vCHNDY2plKpZP78+Rk4cGCS5Mknn8yAAQMyePDg3HLLLbnnnnvyy1/+Mp/+9Kczffr0nHDC\nCa+0EgDgdcRvHwMAet2ee+6ZAQMGdEWhxx57LEcccURWrlyZZcuW5W//9m8zbdq0vOMd78jixYuz\ndevWJEldXV1XVBk+fHj++Mc/5oknnkilUsnixYtf9vEOOuig3HjjjWlpaUmSfPnLX85nP/vZHvvz\nLFy4MO3t7Xn66afzwx/+MBMmTMh73vOeLFu2LI8++miS5I477shjjz2Wd77znS+6fV1dXVfUuuuu\nu7LffvvlYx/7WN797nfn9ttv7/rzv5yGhobsu+++ufnmm5N07HPq1Kl59tlnM3r06Hzzm99Mkjzz\nzDOZOnVqbr/99ixZsiQnnHBCDjjggHzyk5/M0UcfnVWrVvXYTgCAvs+ZQgBAr+vfv38uv/zyzJkz\nJ1//+tfT1taWT33qUxk7dmyGDRuWz3zmMznyyCNTV1eXd73rXV1vEH3AAQfk0ksvzcc//vF89atf\nzZQpUzJp0qQ0NjbmkEMOednHO/bYY7N27docd9xxqampyZve9KbMmzevx/48zz77bCZPnpzW1tZM\nmzYt48aNS5Kce+65+cQnPpGtW7dmp512ypVXXpkhQ4a86PZve9vbUldXl8mTJ+fKK6/Mj3/84xx+\n+OHp169fxo0bl6effroraL2cL37xizn//PNz7bXXpqamJnPmzEljY2O+8IUvZPbs2TnyyCOzefPm\nHHHEEfnwhz+crVu3ZunSpTniiCMyaNCgDB06tOs9kgCAMvjtYwAA26G5uTnHH398DjvssGqPAgDw\nf+LlYwAAAAAFcqYQAAAAQIGcKQQAAABQIFEIAAAAoECiEAAAAECB+syvpF+3bkO1R+gTdtllUNav\n31jtMarKDjrYQwd7sINO9tDBHuygkz10sAc76GQPdtDJHjrYgx10amwc8rLHnCnUx9TX11V7hKqz\ngw720MEe7KCTPXSwBzvoZA8d7MEOOtmDHXSyhw72YAd/DlEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKNSHjB27X/bYY49qjwEAAAAUQBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABdquKHTvvfemubn5Rdf/5Cc/yaRJk9LU1JQb\nbrhhex4CAAAAgB2gvrs3vPrqq7Nw4cIMHDhwm+u3bNmSCy+8MDfeeGMGDhyYqVOnZsKECXnDG96w\n3cMCAAAA0DO6fabQiBEjctlll73o+oceeigjRozI0KFD079//4wdOzZ33XXXdg0JAAAAQM/q9plC\nH/jAB/I///M/L7q+paUlQ4YM6bo8ePDgtLS0vOr97bLLoNTX13V3nNeF2tqaJElj45BX+czXPzvo\nYA8d7MEOOtlDB3uwg0720MEe7KCTPdhBJ3voYA928Gq6HYVeTkNDQ1pbW7sut7a2bhOJXs769Rt7\nepTXnPb2Smpra7Ju3YZqj1JVjY1Dit9BYg+d7MEOOtlDB3uwg0720MEe7KCTPdhBJ3voYA920OmV\nwliP//axkSNHZvXq1XnqqaeyefPm3H333TnggAN6+mEAAAAA2A49dqbQokWLsnHjxjQ1NeXMM8/M\nSSedlEqlkkmTJmXXXXftqYcBAAAAoAdsVxR6y1ve0vUr54888siu6ydMmJAJEyZs32QAAAAA7DA9\n/vIxAAAAAPo+UQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIHqqz3Aa8Gwy8/rlcepfeapXnu8p07Z8Y8BAAAA9F3OFAIA\nAAAokCgEAAAAUKBuRaH29vbMnDkzTU1NaW5uzurVq7c5vnDhwnzkIx/JpEmT8t3vfrdHBgUAAACg\n53TrPYUWL16czZs3Z8GCBVmxYkXmzZuXK664ouv45z//+dx6660ZNGhQPvShD+VDH/pQhg4d2mND\nAwAAALB9uhWFli9fnvHjxydJRo8enZUrV25zfO+9986GDRtSX1+fSqWSmpqa7Z8UAAAAgB7TrSjU\n0tKShoaGrst1dXVpa2tLfX3H3b3tbW/LpEmTMnDgwEycODE777zzq97nLrsMSn19XXfG2eG2VHuA\nHaCxcUi1R3hFfX2+3mIPHezBDjrZQwd7sINO9tDBHuygkz3YQSd76GAPdvBquhWFGhoa0tra2nW5\nvb29KwitWrUqP/3pT3P77bdn0KBBOf300/PDH/4wH/zgB1/xPtev39idUXrFsGoPsAOsW7eh2iO8\nrMbGIX16vt5iDx3swQ462UMHe7CDTvbQwR7soJM92EEne+hgD3bQ6ZXCWLfeaHrMmDFZunRpkmTF\nihUZNWpU17EhQ4Zkp512yoABA1JXV5fhw4fnmWee6c7DAAAAALCDdOtMoYkTJ2bZsmWZMmVKKpVK\n5s6dm0WLFmXjxo1pampKU1NTpk2bln79+mXEiBH5yEc+0tNzAwAAALAduhWFamtrM2vWrG2uGzly\nZNfHU6dOzdSpU7dvMgAAAAB2mG69fAwAAACA1zZRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nqu/Ojdrb23Peeefld7/7Xfr3758LLrggu+++e9fx3/zmN5k3b14qlUoaGxtz8cUXZ8CAAT02NAAA\nAADbp1tnCi1evDibN2/OggULMmPGjMybN6/rWKVSyTnnnJMLL7ww119/fcaPH581a9b02MAAAAAA\nbL9unSm0fPnyjB8/PkkyevTorFy5suvYww8/nGHDhuVb3/pW/uu//ivve9/7stdee/XMtAAAAAD0\niG6dKdTS0pKGhoauy3V1dWlra0uSrF+/Pr/+9a/z93//9/nmN7+ZX/7yl7njjjt6ZloAAAAAekS3\nzhRqaGhIa2tr1+X29vbU13fc1bBhw7L77rtn5MiRSZLx48dn5cqVGTdu3Cve5y67DEp9fV13xtnh\ntlR7gB2gsXFItUd4RX19vt5iDx3swQ462UMHe7CDTvbQwR7soJM92EEne+hgD3bwaroVhcaMGZMl\nS5bk8MMPz4oVKzJq1KiuY7vttltaW1uzevXq7L777rn77rszefLkV73P9es3dmeUXjGs2gPsAOvW\nbaj2CC+rsXFIn56vt9hDB3uwg0720MEe7KCTPXSwBzvoZA920MkeOtiDHXR6pTDWrSg0ceLELFu2\nLFOmTEmlUsncuXOzaNGibNy4MU1NTZkzZ05mzJiRSqWSAw44IIccckh3ZwcAAABgB+hWFKqtrc2s\nWbO2ua7z5WJJMm7cuNx4443bNxkAAAAAO0y33mgaAAAAgNc2UQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQPXVHoD/9V//7x+qPQIA\nAABQCGcKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUKBuRaH29vbMnDkzTU1NaW5uzurVq1/y884555x84Qtf\n2K4BAQAAAOh53YpCixcvzubNm7NgwYLMmDEj8+bNe9HnzJ8/P7///e+3e0AAAAAAel63otDy5csz\nfvz4JMno0aOzcuXKbY7fc889uffee9PU1LT9EwIAAADQ4+q7c6OWlpY0NDR0Xa6rq0tbW1vq6+vz\npz/9KV/96lfzla98JT/84Q//7PvcZZdBqa+v6844O9yWag+wAzQ2Dqn2CK+or8/XW+yhgz3YQSd7\n6GAPdtDJHjrYgx10sgc76GQPHezBDl5Nt6JQQ0NDWltbuy63t7envr7jrn70ox9l/fr1+ad/+qes\nW7cuzz77bPbaa68cc8wxr3if69dv7M4ovWJYtQfYAdat21DtEV5WY+OQPj1fb7GHDvZgB53soYM9\n2EEne+hgD3bQyR7soJM9dLAHO+j0SmGsW1FozJgxWbJkSQ4//PCsWLEio0aN6jo2ffr0TJ8+PUly\n00035Q9/+MOrBiEAAAAAele3otDEiROzbNmyTJkyJZVKJXPnzs2iRYuyceNG7yMEAAAA8BrQrShU\nW1ubWbNmbXPdyJEjX/R5zhACAAAA6Ju69dvHAAAAAHhtE4UAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokChE\nnzJ27H7ZY489qj0GAAAAvO6JQtAHiWMAAADsaKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgF91tix+2WPPfao9hgAAACvS6IQAAAAQIFEIQAAAIAC1XfnRu3t7TnvvPPyu9/9Lv37988FF1yQ\n3Xffvev4rbfemm9/+9upq6vLqFGjct5556W2Vn8CAAAA6Cu6VWoWL16czZs3Z8GCBZkxY0bmzZvX\ndezZZ5/NpZdemn/7t3/L/Pnz09LSkiVLlvTYwAAAAABsv25FoeXLl2f8+PFJktGjR2flypVdx/r3\n75/58+dn4MCBSZK2trYMGDCgB0YFAAAAoKd0Kwq1tLSkoaGh63JdXV3a2to67rC2Nm94wxuSJNde\ne202btyY9773vT0wKgAAAAA9pVvvKdTQ0JDW1tauy+3t7amvr9/m8sUXX5yHH344l112WWpqal71\nPnfZZVDq6+u6M84Ot6XaA+wAjY1Dqj3CS6qt7fha6avz9RZ76GAP/8sOOthDB3uwg0720MEe7KCT\nPdhBJ3voYA928Gq6FYXGjBmTJUuW5PDDD8+KFSsyatSobY7PnDkz/fv3z+WXX/5nv8H0+vUbuzNK\nrxhW7QF2gHXrNlR7hJfU3l5JbW1Nn52vt9hDB3vo0Ng4pPgdJPbQyR7soJM9dLAHO+hkD3bQyR46\n2IMddHqlMNatKDRx4sQsW7YsU6ZMSaVSydy5c7No0aJs3Lgx++23X2688ca8613vykc/+tEkyfTp\n0zNx4sTuTQ8AAABAj+tWFKqtrc2sWbO2uW7kyJFdH69atWr7pgIAAABgh+rWG00DAAAA8NomCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC1Vd7AF47hl1+3g5/jNpnnuq1\nx0qSp07pnccBAACAvkYUgv+j11scE8YAAADK5OVjAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQ\nKAQAAABQIL99DPg/643fipb4LWwAAAA7kjOFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgA\nAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgA\nAACgQKIQAAAAQIFEIQAAAIACdSsKtbe3Z+bMmWlqakpzc3NWr169zfGf/OQnmTRpUpqamnLDDTf0\nyKAAAAAA9JxuRaHFixdn8+bNWbBgQWbMmJF58+Z1HduyZUsuvPDCfOMb38i1116bBQsW5PHHH++x\ngQFKMnbsftljjz2qPQYAAPA61K0otHz58owfPz5JMnr06KxcubLr2EMPPZQRI0Zk6NCh6d+/f8aO\nHZu77rqrZ6YFAAAAoEfUd+dGLS0taWho6LpcV1eXtra21NfXp6WlJUOGDOk6Nnjw4LS0tLzqfe6y\ny6DU19d1Z5wd79wvVnuCHtfYnRv1xh6++e9Jkn69tHN76MM7SPr+HnpBbW1NkqSxccirfGYZ7KGD\nPdhBJ3voYA920Mke7KCTPXSwBzt4Nd2KQg0NDWltbe263N7envr6+pc81trauk0kejnr12/sziiv\nO42NQ7IXSrrPAAAOA0lEQVRu3YZqj1E17e2V1NbWFL2DxB462YMdPF/pz4+d7MEOOtlDB3uwg072\nYAed7KGDPdhBp1cKY916+diYMWOydOnSJMmKFSsyatSormMjR47M6tWr89RTT2Xz5s25++67c8AB\nB3TnYQCKt3z5yjzyyCPVHgMAAHgd6taZQhMnTsyyZcsyZcqUVCqVzJ07N4sWLcrGjRvT1NSUM888\nMyeddFIqlUomTZqUXXfdtafnBgAAAGA7dCsK1dbWZtasWdtcN3LkyK6PJ0yYkAkTJmzfZAAAAADs\nMN16+RgAAAAAr22iEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiENBnLV++Mo888ki1xwAAAHhdEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAA\nUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoXoU5YvX5lHHnmk2mMAAADA654oBH2QOAYA\nAMCOJgoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAA\nAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAA\nAAAKJAoBAAAAFEgUAgAAAChQfXdu9Oyzz+b000/PE088kcGDB+eiiy7K8OHDt/mcb33rW/n+97+f\nJHnf+96XT3ziE9s/LQAAAAA9oltnCl1//fUZNWpUvvvd7+boo4/O5Zdfvs3xRx99NAsXLsz8+fNz\nww035Oc//3lWrVrVIwMDAAAAsP26FYWWL1+e8ePHJ0kOPvjg3HHHHdsc/8u//Mt8/etfT11dXWpq\natLW1pYBAwZs/7QAAAAA9IiaSqVSeaVP+N73vpdvf/vb21z3F3/xF5k5c2ZGjhyZ9vb2HHLIIVm6\ndOmLblupVPL5z38+ra2tmTVr1isO0ta2NfX1dd34IwAAAADwf/Wq7yl07LHH5thjj93muk984hNp\nbW1NkrS2tmbnnXd+0e2ee+65nH322Rk8eHDOPffcVx1k/fqNf+7Mr2uNjUOybt2Gao9RVXbQwR46\n2IMddLKHDvZgB53soYM92EEne7CDTvbQwR7soFNj45CXPdatl4+NGTMmP/vZz5IkS5cuzdixY7c5\nXqlUcsopp2TvvffOrFmzUlfnDCAAAACAvuRVXz72UjZt2pQzzjgj69atS79+/fLFL34xjY2N+eY3\nv5kRI0akvb09p512WkaPHt11m9NOOy0HHHBAjw4PAAAAQPd0KwoBAAAA8NrWrZePAQAAAPDaJgoB\nAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiUB+wdevWnHXWWZkyZUqmTp2a3//+99UeqSpuuumm\nNDc3p7m5Occdd1ze8Y535Jlnnqn2WFVx7733prm5udpjVNVHPvKRrq+Hs846q9rjVMWWLVty+umn\nZ9q0aZk8eXJuv/32ao9UFe3t7Zk5c2aamprS3Nyc1atXV3ukqrjqqqvS1NSUY445Jt/73veqPU6v\ne/7z4gMPPJDx48d3PUf84Ac/qPJ0ve+JJ57I+973vjz00EPVHqXXPf9rYfXq1Zk6dWqmTZuWc889\nN+3t7VWerve81M8Kc+fOzfXXX1+liapjy5YtmTFjRqZMmZJp06YV+T2RJJs3b86MGTNy3HHH5cQT\nT8wjjzxS7ZF63fO/Jx588MFMnTo1U6ZMyZlnnpm2trYqT9c7nr+D3/72t5k2bVqam5tz0kkn5fHH\nH6/ydL3npZ4fFy1alKampipN1LfVV3sAkiVLliRJ5s+fnzvvvDNf+tKXcsUVV1R5qt53zDHH5Jhj\njkmSnH/++Zk0aVJ23nnnKk/V+66++uosXLgwAwcOrPYoVfPcc8+lUqnk2muvrfYoVbVw4cIMGzYs\nF198cZ566qkcffTROfTQQ6s9Vq9bvHhxNm/enAULFmTFihWZN29ecc+Rd955Z37961/n+uuvz6ZN\nm/KNb3yj2iP1qhc+L95///352Mc+lhNPPLHKk1XHli1bMnPmzOy0007VHqXXvfBr4cILL8ynP/3p\n/M3f/E1mzpyZ22+/PRMnTqzylDveC/fw5JNP5rOf/WweeeSRnHTSSVWernf97Gc/S1tbW+bPn59l\ny5bl0ksvzWWXXVbtsXrdDTfckEGDBuWGG27IH/7wh8yePTvXXHNNtcfqNS/8nrjkkkty2mmn5cAD\nD8yZZ56ZJUuWvO6fG164gzlz5uScc87JPvvsk/nz5+fqq68u4i9aX+r/pR544IHceOONqVQqVZys\n73KmUB/wd3/3d5k9e3aS5I9//GORIeT57rvvvjz44IPFltwRI0YU+cPM861atSqbNm3KiSeemOnT\np2fFihXVHqkqDjvssHzqU59KklQqldTV1VV5oupYvnx5xo8fnyQZPXp0Vq5cWeWJet/Pf/7zjBo1\nKh//+Mdz8skn55BDDqn2SL3qhc+LK1euzE9/+tMcf/zxOfvss9PS0lLF6XrfRRddlClTpuSNb3xj\ntUfpdS/8Wrj//vvz7ne/O0ly8MEH5xe/+EW1RutVL9xDa2trPvnJT+aoo46q4lTVseeee2br1q1p\nb29PS0tL6uvL/DvvBx98MAcffHCSZK+99irujKkXfk9cdtllOfDAA7N58+asW7cuDQ0NVZyud7xw\nB5dcckn22WefJB2vTBkwYEC1RutVL9zD+vXrc8kll+Tss8+u4lR9myjUR9TX1+eMM87I7Nmzc+SR\nR1Z7nKq66qqr8vGPf7zaY1TNBz7wgWJ/oOm000475aSTTso111yT888/P5/5zGeKOe33+QYPHpyG\nhoa0tLTk1FNPzac//elqj1QVLS0t2/wwV1dXV9zXw/r167Ny5cp8+ctf7vqeKOlvu174vLj//vvn\ns5/9bL7zne9kt912y1e/+tUqTte7brrppgwfPrwrlJbmhV8LlUolNTU1STqeMzds2FCt0XrVC/ew\n22675Z3vfGcVJ6qeQYMGZc2aNfngBz+Yc845p9iX3++zzz5ZsmRJKpVKVqxYkbVr12br1q3VHqvX\nvPB7oq6uLmvWrMkRRxyR9evX56//+q+rOF3veOEOOv/i4J577sl1112XE044oUqT9a7n72Hr1q35\n3Oc+l7POOiuDBw+u8mR9lyjUh1x00UW57bbbcs4552Tjxo3VHqcqnnnmmTz88MN5z3veU+1RqKI9\n99wzH/7wh1NTU5M999wzw4YNy7p166o9VlU89thjmT59eo466qhig3FDQ0NaW1u7Lre3txcXTocN\nG5aDDjoo/fv3z1577ZUBAwbkySefrPZYVTNx4sTst99+XR8/8MADVZ6o9/z7v/97fvGLX6S5uTm/\n/e1vc8YZZxT7/JgktbX/+6Nsa2tr8Wdbl+hb3/pWDjrooNx222255ZZbcuaZZ+a5556r9li9btKk\nSWloaMi0adPyH//xH9l3332LPcO405vf/Ob8+Mc/ztSpUzNv3rxqj1MVP/jBD3Luuefma1/7WoYP\nH17tcXrd/fffn9WrV+e8887LaaedlgcffDBz5syp9lh9jijUB9x888256qqrkiQDBw5MTU3NNj/k\nlOSuu+7KuHHjqj0GVXbjjTd2/cd77dq1aWlpSWNjY5Wn6n2PP/54TjzxxJx++umZPHlytcepmjFj\nxmTp0qVJkhUrVmTUqFFVnqj3jR07Nv/5n/+ZSqWStWvXZtOmTRk2bFi1x6qak046Kb/5zW+SJHfc\ncUf23XffKk/Ue77zne/kuuuuy7XXXpt99tknF110UZHPj53e/va3584770ySLF26NO9617uqPBG9\nbeedd86QIUOSJEOHDk1bW1tRZ8h0uu+++zJu3Lhcf/31Oeyww7LbbrtVe6SqOvnkk7vebHvw4MFF\n/r/VLbfc0vXfi1K/Hvbff/98//vfz7XXXptLLrkkb33rW/O5z32u2mP1OWX9VWsf9f73vz9nnXVW\njj/++LS1teXss88u8s0jk+Thhx/OW97ylmqPQZVNnjw5Z511VqZOnZqamprMnTu3uDNDkuTK/9/O\n3aKsGgRQAD43GBRsXzEJ7sEFGMQNGMRksimYFEER/ImCRdyQyd1YRd4vXLhL0AvzPCs4acKZmXO7\n5fl85nq95nq9Jvk7nlfa+dDv93O/3zMajVJVVU6n07cjfVyv18vj8chwOExVVdlut0XfAO92u+z3\n+9Rqtfz8/Pzb5aM8y+Uym80m5/M5nU4ng8Hg25H4sMlkkvV6nfF4nNfrlcVikUaj8e1YH9dut3O5\nXHK73dJsNot/DTGdTrNarVKr1VKv13M4HL4d6aPe73eOx2NarVZms1mSpNvtZj6ffzkZ/6M/VUmj\nBAAAAAAk8X0MAAAAoEhKIQAAAIACKYUAAAAACqQUAgAAACiQUggAAACgQEohAAAAgAIphQAAAAAK\npBQCAAAAKNAvnTbiiIhM3PgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1] # get indices for importances\n", + "#print(indices)\n", + "\n", + "column_list = df.columns.tolist()\n", + "#print(column_list)\n", + "print(\"Feature ranking:\")\n", + "for f in range(X.shape[1]-1):\n", + " print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + "\n", + " \n", + "# Plot the feature importances coming from the forest of decision trees and their standard deviation\n", + "plt.figure(figsize=(20,10))\n", + "plt.title(\"Feature importances\")\n", + "plt.bar(range(X.shape[1]), importances[indices],\n", + " color=\"salmon\", yerr=std[indices], align=\"center\")\n", + "plt.xticks(range(X.shape[1]), indices)\n", + "plt.xlim([-1, X.shape[1]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "#df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOEAAAJDCAYAAABHO5LzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYVvP+//HXuk9zrplqks4HClERQhKJREWRConQbztt\nu03abJukr2SLTc52taUktqTSlooKHeRYKkrpMKWapjk1p/u0fn/cM/fM3Zxn7pl75p7n47pc1vqs\nz1rrfd8yK9ar98cwTdMUAAAAAAAAAAAAAAAAgCqzhLoAAAAAAAAAAAAAAAAAoL4jhAMAAAAAAAAA\nAAAAAABUEyEcAAAAAAAAAAAAAAAAoJoI4QAAAAAAAAAAAAAAAADVRAgHAAAAAAAAAAAAAAAAqCZC\nOAAAAAAAAAAAAAAAAEA1EcIBAAAAAAAogdPp1K5du4qNJyUlqUuXLurSpYsef/zxEFRWMcGoc+HC\nhf5rfPLJJ0GuUMrKytL+/fuDfl0AAAAAAIBQIIQDAAAAAABwgnXr1mnIkCFatmxZqEsJW8uWLdPA\ngQO1adOmUJcCAAAAAAAQFLZQFwAAAAAAAFCX/PHHH7r99ttDXUZY+/bbbzV+/PhQlwEAAAAAABBU\nhHAAAAAAAACK8Hg8ZR5v3bq1fv3111qqJrSGDRumYcOGBf265X3HAAAAAAAA9RHLUQEAAAAAAAAA\nAAAAAADVRAgHAAAAAAAAAAAAAAAAqCbDNE0z1EUAAAAAAAAUlZOTo/nz52vlypXavXu3jh8/rvj4\neJ155pkaPHiwBg4cKIul+J8t2rhxo2699VZJ0qJFi9SpUye9++67WrZsmX7//Xc5nU61atVKl156\nqcaOHatmzZoFnN+lS5dSa5ozZ4569eqlpKQkXX755ZKkESNGaPLkyf45Cxcu1COPPCJJ2rRpk1at\nWqU33nhDSUlJ/vpffPFFRURE+M/5448/9M477+irr77SgQMH5HK5lJiYqHPPPVcjR47U2WefXaXv\n8MQ6n3zySX388cdauHChfv31V+Xk5Oikk05Snz59NGbMGLVr167YNYp+nueff17XXHNNwPHc3Fy9\n//77WrFihXbs2KGsrCzFxsaqTZs26t27t2666SY1b968xJpKsmrVKrVu3TpgbOfOnZo3b542btyo\nQ4cOyTRNNW/eXOedd55GjRqlM888s8RrzZgxQy+//LLi4uK0adMmzZo1S/PmzdORI0fUtGlT9erV\nS+np6Vq9erUkaeXKlWrTpk2ptb311lt67rnnJElLlixR586dS50LAAAAAAAaJluoCwAAAAAAAChq\n8+bNuu+++3T48OGA8eTkZH3xxRf64osv9M477+ill14KCHicKCUlRQ8//LB27NgRML5r1y7t2rVL\nH3zwgWbPnl1qiKO63nvvPU2fPj2g/qysrIAAzgcffKCnnnpKeXl5AecmJSUpKSlJixYt0ogRI/SP\nf/xDdru9yrVkZWXp9ttv1/r16wPG9+3bp3nz5umjjz7SSy+9pD59+lT4mn/88YfGjh2r3bt3B4yn\npqYqNTVVmzdv1uzZszV9+nT179+/0jWbpqnp06dr5syZ8nq9Acf27t2rvXv36sMPP9TNN9+sRx55\nRDZb6f+ba/r06Xrrrbf8+4cOHZLVatXQoUP9IZwlS5bonnvuKfUaixcvliR17dqVAA4AAAAAACgR\nIRwAAAAAAFBn7Ny5U2PGjFF2drZiYmJ000036cILL1RcXJwOHDigpUuXauXKlfrhhx90xx13aMGC\nBYqOji7xWn/729+UnJysPn366IYbblDLli2VlJSkWbNmacuWLcrIyNDEiRO1dOlSGYYhydc958iR\nIxo3bpwkXweZUaNGSZLatm1bqc/ywgsv6OSTT9Zf/vIXtWnTRj/99JM6dOjgP75w4UI99thjkqTW\nrVvrlltu0VlnnSWr1arffvtN8+bN0/bt27VgwQK5XC5NnTq10t9ngaVLl0rydfoZPXq0OnXqpMOH\nD2v+/PnauHGjsrOzNXHiRH322WeKjY2t0DX/9re/affu3bJarRozZox69+6txo0b69ixY1qzZo0W\nLFig3NxcTZgwQcuXL1fz5s3VvHlzLVq0SD///LP/s99///3+7jhFQ1VPP/205syZI0lKSEjQbbfd\npp49e8pisWjz5s2aNWuWjhw5orlz5yorK0vPPPNMiXVmZWXprbfe0qmnnqr77rtPzZo104YNG3TJ\nJZfotNNOU3x8vNLS0soM4Wzfvt0f5ho6dGiFvh8AAAAAANDwEMIBAAAAAAB1xoQJE5Sdna0WLVro\nnXfeCQi+dOvWTQMHDtS8efM0efJk7dixQ6+++qoeeuihEq+VnJysP/3pTxo/fnzANfr376/hw4fr\nl19+0W+//abNmzere/fukqTTTz9dcXFx/vmJiYk6/fTTq/RZDMPQzJkz1alTJ0lSz549/ccOHz7s\nX8bqwgsv1KuvvhoQJjr77LM1dOhQf0ho4cKFGjhwoC655JIq1SJJV155paZPny6Hw+Efu+qqqzRu\n3DitXbtWKSkp+vLLLzVw4MByr3XgwAFt2LBBki9Ec/fddwcc79u3rzp16qTJkycrOztbS5cu1dix\nY+VwOHT66acrIyPDP7dly5bFvuPvvvvOH8Dp0KGD5syZExDQ6dmzp4YOHaqxY8dq69at+uijj9Sv\nXz9deeWVxWr1er2Ki4vTnDlz1KRJE0nSueee6z8+aNAgzZ07V7t379bPP/9cYmekjz/+WJJkt9uL\nLckFAAAAAABQoPji6QAAAAAAACHw9ddfa/v27ZKkiRMnltp55uabb9b5558vSZo/f75cLleJ8xIT\nE3X//fcXG3c4HAHdTH755Zfqll6i888/3x/AOdG7776rnJwc2Ww2TZs2rcRuPjabTZMmTfKHggpC\nKVXhcDg0efLkgACO5AsKFXT6kXydiCri6NGj/u127dqVOOeGG27Q8OHD9cADD6hbt26VqnfmzJn+\n7WeffbbEZcfi4+P1r3/9S1arVZIClps60YABA/wBnBMNGzbMv71kyZJixz0ej7+TUN++fUu9DgAA\nAAAAACEcAAAAAABQJ6xevdq/3bt37zLn9u3bV5J0/PhxbdmypcQ5F1xwgWy2kpsAFw34ZGVlVbLS\niinorlOSgs/aqVMnnXTSSaXOi4uL0znnnCNJ+vbbb0sNHJWnW7duSkhIKPFY0RBNenp6ha7Xtm1b\n/3f7zDPPaOXKlcVqi4iI0JQpU3TPPfcEdJ4pj9vt9nfZ6dq1a5kBnrZt2+riiy+WJG3ZskWpqakl\nzuvRo0ep1+jatas6d+4sSfrkk0/k8XgCjq9bt07JycmSWIoKAAAAAACUjeWoAAAAAABAnVDQBUeS\nv9NNRezfv98fVCmqVatWpZ5TtPOM2+2u8L0q4+STTy5x3O12a8eOHZKkX3/9VV26dKnQ9XJycpSS\nkqIWLVpUupayzomIiAiorSISEhI0fPhwzZ8/X4cPH9a9996rmJgY9erVSxdddJF69+6tjh07VrpO\nSTp48KA/GFVWkKlA9+7dtWbNGpmmqZ07d5b4a6e87+z666/X1KlTlZycrA0bNgSEwAqWokpISPCH\nvwAAAAAAAEpCJxwAAAAAAFAnlNbFpDwZGRkljsfExJR6jmEYVbpXZcTGxpY4npGRIa/XW6VrVrRT\nzYnK+i6KMk2zwtf8+9//rjFjxvg74mRlZenzzz/XlClTNHDgQF1xxRV64YUXdOzYsUrVmpaW5t9u\n2rRpufObNWvm3y7t+yntn0WBwYMH+z9H0SWpsrKytHLlSknSoEGDZLfby60HAAAAAAA0XHTCAQAA\nAAAAdUJBF5aEhATNnj27wueVtZxTKJUW9CnabaZPnz568MEHK3zNoktHhZrdbtejjz6qu+66S8uX\nL9cXX3yhb7/9Vrm5uZKkffv26fXXX9e7776rmTNnlrmsVFGVCQJJClg+qrTvvLzQVdOmTdW3b1+t\nWrVKn332mSZNmqTIyEitWLFCOTk5kliKCgAAAAAAlI8QDgAAAAAAqBPi4+MlSdnZ2erSpYsslvBs\n4FvwOSXJ6/Xq9NNPD2E11ZeYmKhbbrlFt9xyi5xOp77//nt9/fXX+uSTT3TgwAFlZGRowoQJ+t//\n/lehf6aNGzf2b6ekpJQ7v+icot9tZQ0bNkyrVq1SVlaW1q5dqyuvvFLLli2TJHXu3Fldu3at8rUB\nAAAAAEDDEJ7/NwsAAAAAANQ7p556qiQpLy9P27dvL3Pu2rVrNWvWLC1fvrzSyx2FmsPh8He02bp1\na0BnnJLMnz9f8+bN0+rVq8udW1u8Xq/279+v9evXB4w7HA5dcMEFevDBB/Xpp5+qR48ekqQ9e/bo\n999/r9C127Rpo+joaEnSTz/9VO78H3/80b/doUOHin6EYvr27asmTZpIkj+MU/D56IIDAAAAAAAq\nghAOAAAAAACoEy6++GL/9rvvvlvqPI/HoyeffFLTpk3Tn//8Z/9yQcFSGx14Cj5rWlqaPvnkk1Ln\n7d27V5MnT9bkyZP11FNPyWarG02N//GPf6h///667bbbtH///hLnFARyCuTl5fm3y/qOrVar/7yt\nW7fq559/LnXu3r17/UGZ0047TU2bNq3U5yjKbrdr8ODBkqTVq1drzZo1cjqdslqt/nEAAAAAAICy\nEMIBAAAAAAB1Qv/+/dWmTRtJ0ocffqjFixeXOG/q1KlKSkqSJF1++eVq1apVUOtwOBz+7ezs7KBe\nu8Ctt94qq9UqSXr66af166+/FpuTk5OjCRMmyOv1SpJGjx5dI7VUxWWXXebfnjp1qkzTLDYnJydH\nq1atkiTFxMQEdKkp7zu+/fbb/dsPP/ywjh49WmxOenq6xo8fL4/HI0kaO3ZsFT5JoGHDhknyhaNe\nfPFFSb7AVGJiYrWvDQAAAAAAwl/d+ONTAAAAAACgwbPZbJo2bZrGjBkjl8ulhx9+WF988YWuueYa\nJSYm6sCBA1qwYIE2bNggSWrcuLEeffTRoNeRkJAgu90ul8ulpUuX6qKLLlKjRo3Url07xcfHB+Ue\n7du31/jx4/Xcc88pLS1NN954o2666SZdcsklcjgc2rFjh/7zn/9oz549kqRu3brp5ptvDsq9g6Ff\nv34666yztGXLFq1atUrXX3+9Ro0apfbt28s0Te3evVtz587Vzp07JUl33HGHoqKi/OcXDbW89957\n6ty5s2w2m04//XRFRUXp/PPP1+jRo/XOO+9o165dGjJkiMaMGaOePXvKMAxt2bJFs2fP1qFDhyRJ\ngwYN0rXXXlvtz3XaaafpjDPO0LZt2/zf/XXXXVft6wIAAAAAgIaBEA4AAAAAAKgzevbsqTfffFPj\nx49XWlqali1bpmXLlhWb16JFC73yyitq3bp10GuwWq3q16+fli9friNHjujOO++U5OtYc/311wft\nPnfddZcMw9ALL7yg3NxczZo1S7NmzSo279xzz9XLL78su90etHtXl8Vi0csvv6w77rhDv/32m7Zu\n3arHHnus2DzDMDRq1Cjdc889AeMtW7ZU165dtXXrVu3cudPf5eftt9/2L0X16KOPym63a/bs2UpJ\nSdHzzz9f4vVvu+02Pfjgg0H7bMOGDdO2bdsk+YJe/fv3D9q1AQAAAABAeCOEAwAAAAAA6pSLLrpI\nq1at0vz587V69Wrt2rVLmZmZio6O1imnnKLLL79cI0eOVGxsbI3V8PTTT6tp06ZatWqVjh07pkaN\nGik1NTXo97nzzjs1YMAAzZs3T+vWrdPBgweVk5Oj+Ph4de3aVUOGDNHVV18ti6XurSjeokULffTR\nR/rwww+1YsUK7dixQ2lpabLb7WrevLl69eql66+/Xt27dy/x/Ndff13PPvus1q1bp4yMDMXHxwcs\nO2WxWDRx4kRde+21evfdd7Vx40YdPnxYFotFLVu2VK9evTR8+HCddtppQf1cAwcO1JQpU/zbRZfO\nAgAAAAAAKIthlrRoNwAAAAAAANAArVmzRuPGjZMkLViwQD169AhxRQAAAAAAoL6oe3+MCgAAAAAA\nAAiRhQsXSpJOOeUUAjgAAAAAAKBSCOEAAAAAAAAAktatW6eVK1dKkkaNGhXiagAAAAAAQH1jC3UB\nAAAAAAAAQKhMmTJFWVlZyszM1Jo1a+R2u9WiRQtdf/31oS4NAAAAAADUM4RwAAAAAAAA0GClpKRo\n2bJl/n273a6nn35aUVFRIawKAAAAAADURyxHBQAAAAAAgAbr3HPPVXx8vKKiotSzZ0/NnDlTvXv3\nDnVZAAAAAACgHjJM0zRDXYQkJSdnhrqECktIiFZqanaoywAAoFbw3AMAhBLPIQBAQ8OzDwBQH/H8\nAgA0JImJcaUeoxNOFdhs1lCXAABAreG5BwAIJZ5DAICGhmcfAKA+4vkFAIAPIRwAAAAAAAAAAAAA\nAACgmgjhAAAAAAAAAAAAAAAAANVECAcAAAAAAAAAAAAAAACoJkI4AAAAAAAAAAAAAAAAQDURwgEA\nAAAAAAAAAAAAAACqiRAOAAAAAAAAAAAAAAAAUE2EcAAAAAAAAAAAAAAAAIBqIoQDAAAAAAAAAAAA\nAACAWrNs2RK99tqMGrv+999/qyeeeKTY+IsvTtehQ4cCxvbu3aP77hsXlPvagnIVAAAAAAAAAAAA\nAAAAoA574IEHa/T6hHAAAAAAAAAAAAAAAAAagJhJjyliyaKgXjNv8HXKmjSl7Dl5uXr66Sd16NAh\nuVwuXXbZ5f5j8+fP1apVn8lqtap797N1zz1/1ubNP+rll/8lm82myMhITZkyTQ5HhP75z6eVlLRf\nXq9Xd911t84559xS77l//3799a/3KT09XUOHXq9Bg67TffeN04QJjyomJlaTJz8m0zTVpEnToH0X\nhHAAAAAAAAAAAAAAAABQYxYt+lAtWrTUk09O1f79+7R+/Vc6fvy4du36TZ9/vkKvvz5LVqtVf//7\nw/r66y/144/fq1+//rrxxpv01VdrlZGRqfXr/6fGjeP1yCOPKz09TffeO05z575f6j09HremTXtB\nXq9HY8bcpN69+/qPzZkzU/37D9CQIUO1atVn+uij/wblcxLCAQAAAAAAAAAAAAAAaACyJk0pt2tN\nTdi3b68uuOAiSVKbNm21ZUucUlJStHfvHnXtepZsNl98pXv3Hvr9910aPfp2zZkzSw88cLcSE5vr\njDPO1K5dv2nz5h+0bdvPknwhm7S0NMXHx5d4zzPOOEt2u12SXR06dNChQwf9x/bv36fBg4dKks46\nq3vQQjiWoFwFAAAAAAAAAAAAAAAAKEG7dh20ffs2SdKBA0l6441X8sfba9u2n+V2u2Wapn788Qe1\nadNOn322TFdfPUgzZryhDh06avHihWrXrr369x+gl19+U9Onv6TLLuuvRo0alXrPnTt/ldvtVk5O\njvbs+V2tWrX2H2vfvqO2bt0sSf66goFOOAAAAAAAAAAAAAAAAKgx1147TFOnTtZ9942Tx+PRiBE3\nKz09TZ06naJ+/frr7rvvkGma6tatuy655FJt27ZVzzwzRVFRUTIMQw8//Hc1a5aoadOm6L77xikr\n67iGDh0ui6X03jMOh0MPPfRnHT9+XGPHjlOjRo39x8aMuUOTJz+mlSs/U8uWrYL2OQ3TNM2gXa0a\nkpMzQ11ChSUmxtWregEAqA6eewCAUOI5BABoaHj2AQDqI55fAICGJDExrtRjdMIBAAAAAAAAAAAA\nAABAvTN79lv67rtNxcYfffSJoHa4qShCOAAAAAAAAAAAAAAAAKh3br/9Lt1++12hLsOv9MWxAAAA\nAAAAAAAAAAAAAFQIIRwAAAAAAAAAAAAAAACgmgjhAAAAAAAAAAAAAAAAANVECAcAAAAAAAAAAABA\ng+P1mqEuAQAQZgjhAAAAAAAAAAAAAGhwPF5TXpMgDgAgeAjhAAAAAAAAAAAAAGhwTNOUx+MNdRkA\ngDBCCAcAAAAAAAAAAABAg2Oavm44AAAEiy3UBQAAAAAAAAAAAABAbfOapkyWowIABFGFOuH89NNP\nGj16dInHcnJyNHLkSO3atcs/9sYbb2jEiBEaNmyYPvjgg+BUCgAAAAAAAAAAAABBRCMcAEAwldsJ\n56233tLixYsVFRVV7NiWLVv0xBNP6PDhw/6xjRs36ocfftD8+fOVk5OjWbNmBbdiAAAAAAAAAAAA\nAKimpv/vNnkcEcp7c2aoSwEAhIlyO+G0bdtWM2bMKPGY0+nUK6+8oo4dO/rHvvrqK3Xu3Fn33nuv\n/vSnP+nSSy8NWrEAAAAAAAAAAAAAEAwxyxar0aIPJI8n1KUAAMJEuZ1wBgwYoKSkpBKP9ezZs9hY\namqqDh48qNdff11JSUm6++679emnn8owjDLvk5AQLZvNWsGyQy8xMS7UJQAAUGt47gEAQonnEACg\noeHZBwCoj+rz8yvRlSm1aBPqMgAAYaDcEE5lxcfHq2PHjnI4HOrYsaMiIiJ07NgxNW3atMzzUlOz\ng11KjUlMjFNycmaoywAAoFbw3AMAhBLPIQBAQ8OzDwBQH9XL55fbrcT8zezn/qWsxyaFshoAQD1S\nVvC03OWoKqtnz5768ssvZZqmDh8+rJycHMXHxwf7NgAAAAAAAAAAAABQNbm5/s3ol54PYSEAgHBS\n6U44S5YsUXZ2tkaMGFHi8csuu0ybNm3SDTfcINM09fjjj8tqrT/LTAEAAAAAAAAAAAAIb5aM9FCX\nAAAIQ4Zpmmaoi5BUr1rU1cuWegAAVBHPPQBAKPEcAgA0NDz7AAD1UX18ftk2blDC4Cv9+8lHMkJY\nDQCgPqnV5agAAAAAAAAAAAAAoC4zXM7AgbrRtwAAUM8RwgEAAAAAAAAAAADQsDgDQzgGy1MBAIKA\nEA4AAAAAAAAAAACABsVwuwL2LSlHQ1QJACCcEMIBAAAAAAAAAAAA0LC43JIkb2JzSZLx85ZQVgMA\nCBOEcAAAAAAAAAAAAAA0KAWdcNxndZMkJdw5JpTlAADCBCEcAAAAAAAAAAAAAA2LyxfC8cbHh7gQ\nAEA4IYQDAAAAAAAAAAAAoGFx+5aj8rTvEOJCAADhhBAOAAAAAAAAAAAAgAbFyO+E4+l0qiTJGxsb\nynIAAGGCEA4AAAAAAAAAAACAhiU/hCO7Xe7Tz5BptYW2HgBAWOBpAgAAAAAAAAAAAKBBMdy+EI5p\ns8u2fZtvLD1NZuP4UJYFAKjn6IQDAAAAAAAAAAAAoGFxuX1/t9v9QxEfvBeiYgAA4YIQDgAAAAAA\nAAAAAIAGxbrnd0mSaWfhEABA8BDCAQAAAAAAAAAAANCgRL09U5JkOXpUru5nS5K8bdqFsiQAQBgg\nhAMAAAAAAAAAAACgQTIy0pU3fIQkyfr9dyGuBgBQ3xHCAQAAAAAAAAAAANAguc/uKTMiUpIU+8Kz\nIa4GAFDfEcIBAAAAAAAAAAAA0HCYpn/T3fM8mY0bh7AYAEA4IYQDAAAAAAAAAAAAoOHIywvY9bRr\nH5o6AABhhxAOAAAAAAAAAAAAgAbDyMqSJDnPv1CSZDZqVHiwSJccAAAqixAOAAAAAAAAAAAAgAbD\nyPaFcLzt2kmSPJ1O9R+LWPxRSGoCAIQHQjgAAAAAAAAAAAAAGgwjfzkqMzKq2DHbxvW1XQ4AIIwQ\nwgEAAAAAAAAAAADQcOTmSpLMyIhih7wtW9d2NQCAMEIIBwAAAAAAAAAAAECDYeT5QjiKiPSPHX9s\nkiTJ27JlCCoCAIQLQjgAAAAAAAAAAAAAGgz/clQRhZ1wzGaJvg2nMxQlAQDCBCEcAAAAAAAAAAAA\nAA2C1zSLLEdV2AnHdDgkSYbLFZK6AADhgRAOAAAAAAAAAAAAgLBn37BOia0T5fhilW+gaCec/BCO\nnHkhqAwAEC4I4QAAAAAAAAAAAAAIa44lixQ/5CpZXE5Fv/GKJMmMiCwywRfIMZwuudzeUJQIAAgD\nhHAAAAAAAAAAAAAAhCe3W2ZKihrfcWvxYwGdcOySJMfKz5Qw+EoZ6Wm1VSEAIIwQwgEAAAAAAAAA\nAAAQNkzT9G83GjNKTc/vXvK8IiEc2X3LUTm+XK2o775R5Nuza7RGAEB4IoQDAAAAAAAAAAAAIGx4\nvKay0o/Lm5eniBXLZc3MkKf5ScXmmY6IErclyXDm1XidAIDwYwt1AQAAAAAAAAAAAAAQLB6vqbZd\n28vbLNE/Zj1yuNg8b+vWhTv5y1EVMPII4QAAKo8QDgAAAAAAAAAAAICw4fV4ZXE6ZTl4oNixY19/\nK+ubryun7+Wynt3TP35iJxzl5lbsXl5TFotRrXoBAOGDEA4AAAAAAAAAAACAsOHNKT1A4zm1s45P\neVZREYGvSc2YmMD9zMwK3ctDCAcAUIQl1AUAAAAAAAAAAAAAQFCkHpPlwP6AIW+jRpIk0/CFZey2\n4q9IzbhGAfvG0aMVup3H661KlQCAMEUnHAAAAAAAAAAAAABhIbFL+2JjziuuUu65veQ+qYUkyWYt\nIYQTGxuwb6Qdq9D9vF6z8kUCAMIWIRwAAAAAAAAAAAAAYSvyw/eV+dq/y54UESHTapXh8UiSLKmp\nFbq215QsO3fI276DZLdXt1QAQD3HclQAAAAAAAAAAAAAwlbutcMqNK8ggCNJ1rSKhXASx92qpr3P\nVdz9f6pSbQCA8EIIBwAAAAAAAAAAAEBYcrdspczXZ1b6PGtaqmSWv9RU7PJPJEmRCz+o9D0AAOGH\nEA4AAAAAAAAAAACAsOO8sLdSf9gmWa2VPtdwuWRkHS97ktdbxcoAAOGKEA4AAAAAAAAAAACAsJM3\nfKRkGBWe7+pxdsC+kVrOklQuV1XKAgCEMUI4AAAAAAAAAAAAAMJO7s23Vmq+q2+/gH3LZ8t9G8eP\nyzhyxD/uye+AY7ic1SsQABB2COEAAAAAAAAAAAAACCvpjzxeqS44kiTTDNhNeORBGWmpanLxeWp2\n5imS2y1J8njy59EJBwBwAkI4AAAAAAAAAAAAAMKK1Wqt9DnZ4+7R8Qt6K33uAv9Y49EjZT14wLfj\n9HW+8Xh9IRz7NxurXygAIKwQwgEAAAAAAAAAAAAQXirbBUeS2by5jn2wRM4rByp71C2SJPvG9YWX\n9Pg64Zg/K8KdAAAgAElEQVSHDsl0ueRYtiQ4tQIAwgYhHAAAAAAAAAAAAADhpQqdcCQpwuE7z927\nT/GDbrcsfxxUu/POUNzokXKf1yvgsJGWKvtfH5B97eoq3RsAUP/ZQl0AAAAAAAAAAAAAAASTp2On\nKp1nye+gY7jdxQ+63LL+sl2SFPX5Ch0/IajTrHM7372/WKFjP2yr0v0BAPUbnXAAAAAAAAAAAAAA\n1HueI8n+beeAgdW6lvXnzcXGDI9bhsvp34996vGSzz2QVK17AwDqL0I4AAAAAAAAAAAAAOq9Fmf6\nut9kn3O+lN/RpqqcV13j3867erBvw+2W5eDBKl3Psm+vHEsWVasmAEDdx3JUAAAAAAAAAAAAAOq3\nlBT/pkVmtS/nuuRSZU59Tq7GCYr6ek3+oEtxD4+v0Pm2TRsV8d/35W7ZSq7hI9Tkkl4ysrN1bPV6\nec7oWu36AAB1EyEcAAAAAAAAAAAAAPWWkXpMzU7v4N+35uUG5bq5d4zzbWz4WpJkST1W4XMTrrnC\nv+2ZM0tGdrYkybbha0I4ABDGWI4KAAAAAAAAAAAAQL0VM+XJgH0jSCGcAmaEQ5IU8b9PqnS+df8+\n/3ajvz0UlJoAAHUTIRwAAAAAAAAAAAAA9VbUO7MD9o3c4IZwIpZ/KkmKfun5oF4XABB+COEAAAAA\nAAAAAAAAqLdcZ3YL2Ddyc4J6fTMmpsJzUzZtDuq9AQD1CyEcAAAAAAAAAAAAAPWW12INHHC7g3r9\n409NrdC8lO+3ytuuvY6u2ajjD07U0e2/K+ORx5V3yaX+OZ74hKDWBgCoWwjhAAAAAAAAAAAAAKg3\nvKbp37ZtWK+IzT8ETjCM4N6vxckB++7WbUqelz9unn66cib+XWbTpsob/5AyZ85Rxouvyt3pFBku\nZ1BrAwDULYRwAAAAAAAAAAAAANQbWTku/3bMc88UnxDkEI6ncxf/dvbd98uSU7nlrszG8cobdYsM\nl0uWrCzp+PFq1WMWCSEBAOoWQjgAAAAAAAAAAAAA6gXH4o/UsX0z2dd/LUly9b64+CRL8F+Bpr/w\nsnIGXK2sxyfLyMmu0jWs+/ZKkmJe+Ge1aiGDAwB1FyEcAAAAAAAAAAAAAPVC4zvHSJLirx0oSfI2\nbVZsjhkdG/T7Om++VcffeU+yWmVkF4Zw0l/9d6WvZdrt1arFFCkcAKirCOEAAAAAAAAAAAAAqJ9c\nTklSxouvKvvGUXJ27KT0/8yrlVtnPvaknDfcWOH5WeMfkiR5Tjm1WvelEw4A1F22UBcAAAAAAAAA\nAAAAAJVmmjKcLt9mQhNlvfyGnC6PHHZrjd42beFSRT43TXm3jZUkHf3oE7kjo1XeXb3tOvg23O5q\n3d8khQMAdRYhHAAAAAAAAAAAAAB13wnhk8STGhcecviWeLLban4hENfFl8h18SX+fWev3vKaZrkh\nHNPqm2F4vdW6PxkcAKi7COEAAAAAAAAAAAAAqPuysko9ZMbESZIMw6itavwsFslmVCD8Y8t/NVvt\nTjjVOh0AUINqPgoKAAAAAAAAAADCHsujAKhpztQ0SZKnbftix8yEhFquppDVYqlY+Ce/E061Qzji\n5y0A1FWEcAAAAAAAAAAAQLU5XdVbXgUAyuKYN0etep4hSfK0bq3UlWuVfef/8x/3No4PVWkVZlrz\nO+F4PdW7DhkcAKizCOEAAAAAAAAAAIBqy3NV76UyAJSl8fj7/NtGVpbc3XrI1beff8yMr/shnILl\nqIxqL0dFCgcA6ipCOAAAAAAAAAAAoNpcbjrhAOHM7ak7/45nznhdkuTucXbhYEREiKqpBGv+q1l3\nNTvhBKEUAEDNsIW6AAAAAAAAAAAAUP95vHXnBT2A4DuanqsWTaJDc/MTOr94OnSUJHlPaqGDr86W\n0SiuXrz0NAs64eTlVu86pHAAoM6iEw4AAAAAAAAAAKgej0eJTz8h6/Ztoa4EQE0wTTmPJEuScp3V\nW0qpSk5cvqlI15u8a4bI7Hd5LRdUNd7WbSVJ1t93V+s6LEcFAHVXfQiFAgAAAAAAAAAQUm6PVzYr\nf661NI5Pl6nx229Ib7+h5CMZoS4HQJBFT/s/9Xz+WeXeMEKJ/10gScq+7U7lXX+jb0JCtGyp2TV2\nfyM3x7+dNvOdgGMWw5DVUj9+Pnsbx/s28vKqdR0yOABQdxHCAQAAAAAAAACgHC43IZwyWa2hrgBA\nDYp5/llJUmR+AEeSov/zb0X/59/+/YRaqCP3umFyDb42YMxqNWSxGLVw9yCIcEiSjGqHcEjhAEBd\nRQgHAAAAAAAAAICyuN2KefZpWQZeJfe554e6mrrJRggHaIiy/vKQJCkm2qGsbGfN3sxiKG/o8GLD\ndlv9CUiajvxltKoZwvGSwQGAOosQDgAAAAAAAAAAZXCsWqHGM56Te8UnSl27MdTl1KoKL8Pl9dZ8\nMQDqnOxHH5ckxSTGKTs5MyQ1WIx60gVHkiJ8IZyIL1aGuJCGwZuUJEuzZlJkZKhLAdCA1J9oKAAA\nAAAAAAAAIWAc971Ytv2yPcSV1D7zm42yvvlG+RNd7povBkDImJbirxRTPltd+4XUd0WW7jMyM6p8\nGZajKp+RmaGTzjlDCVf1C3UpABoYQjgAAAAAAAAAAJSlPnVZCKacHLW8doCaPDZBxrGUMqcazuot\nrQKgbjs2pPgyUN4e54SgkvARNfPNKodpTFPysiZVmazbfcFZ27afQ1wJgIaGEA4AAAAAAAAAAGVp\noCGcqNn/Ltxxe8qe7HTWbDEAQsY4lqKmixYEjKV8vzVE1YQPy949yjmeU6VzPaaprFxXkCsKL7H/\nmBjqEgA0UIRwAAAAAAAAAAAoSwMN4RgZ6YXb5XS6MQjhAGErYvGiYmPeVq1DUEl4iZo3R+06tZA8\n5YQcS2B6Tbnc3hqoKnxYDh0q3D58qIyZABBchHAAAAAAAAAAIEzlOt2hLgH1mLdZM/+2kZdb9mSW\nowLCl81WfKyBhhODIWXjjwH7RQOPFWKa6tq1lVoPvyaIVYUfd5Hl0hpfd3UIKwHQ0BDCAQAAAAAA\nAIAwlZtHCCcoTDPUFYSEGZ9QuJNbTiecPDrhAGErz/fvf1a/K5Q+c45S/vliiAuq37wdOsobEenf\nj5n8eKXOt3+1VobHo5gfNgW7tLBiHDns37bt+i2ElQBoaAjhAAAAAAAAAEAYsn/9pU7t1FyOFZ+G\nupQ6z1teyMbdQMNMlsJXCOV1wjHL65QDoN4qWG7ONWasnIOvk3fM7SGuqP7zJib6t6PmzanUudYd\nv/q3zSosZdVQOL47IaTEdwWglhDCAQAAAAAAAIAwFPXqS5Kk6GenhriSui/7j2TJ6y19QkN9cVfk\ncxt5ZXfCiVi6uHDH5aqpigCEQsFycxERoa0jjFgquwRVPtv33yrukYf8++6U1GCVFF6cxbuzWQ4e\n8P19/z7ZvtlY2xUBaEAI4QAAAAAAAABAOLI7JEmGs+zwRENnHEtRhx6nqNHIYaXPaaidcIqGj3LL\n7nTj2PJT4faqFTVVEYAQ8IfwCOEEjSUjo0rnxV87MGDf+dsuZWSzHOCJHGs+LzbWtOeZinnwz2ra\n80wlDLpCic0bKfqFf4agOgDhjhAOAAAAAAAAAIQh02H3bZTwp8FRyLp/nyQpYnXxF3Z+Deg7dLmL\ndL8p0h2ozE44JyznZeRkB70uAKETOfdtSZLpcIS4kgYuJ6fYz+L2112hFldc3HCXTSyFfd3X/u3U\nV97yb0e/85+AeTFTn1LkCWMAUF2EcAAAAAAAAAAgDEUs+ViSZLh4MVcW02rzb3tKWZKqqsuG1BcF\nn9u25SdZ1q4pcqAwkGP78bvSL3BiSKkBhZaAhsB66A/fBp1wQip2wl9KHI/Z+YuiZ7xQy9XUbe4e\nZ0uSskbeIvPMs8qcG/fgn2X/ck2ZcwCgMgjhAAAAAAAAAEAYMvIDFNZ9e0JbSF1ntfo387JK7vYS\n8/Tk2qomJNweXyebhMv7qMXI6/zjpqdiAS4jNydgP9xDS0BDZdrphBMsWQ9O9G97YuMqdE7U+/NL\nPWakHK12TWElfwlFb68L5OncpVgXp5zhowL2WUYRQDARwgEAAAAAAAAANFyGUbidmVF79y3SZSbU\nPB5Tlr17ig5IkrxFlqaK+PCDUs+37N8vSXK3ONk3sPmnoNcIoA6IIIQTLNkT/659b/9XnvYdZFRk\nKamcnDIPG7llLBkYAuYJyxTWuvxwqBkZKVmtOpp0VMlHMpR8IEXJRzJ0/OXXlfpJYfDGQogJQBAR\nwgEAAAAAAACAMJY7bHioS6jbioRhjGPHauWWMVMmKfHkBBlH68ZLP292lpqe182/bxzP9G0cOOgf\ns+3dI5Xyojju4fG+OflL1kTSUQAIS6bBa8VgsvS/XN6mzWRUoOuY/acfyjzu/7ldBxjHMxX953tk\n3fFryGpwH88P4UREBh6w231/Nwy5z+tVOO5y1VJlABoCnpYAAAAAAAAAEM5Mb6grqNOKvvxs9K9/\nljnX64gIyj2jX3pekmT/blNQrlcdtm+/UdMJDwSMGZmZUk6O4l95IWDcciCpcMc0Zf6+W5Lk7tZd\nkpQxZZpMh0OG01mzRQMIjVB3NwkzEXarTLtdhstV7nfbeMRQ/7YZGVnseF0K4US99rJiF8xT45tD\nFwL2ZGfnF1P8uyoq7b0PJUlmTExNlwSgASGEAwAAAAAAAADhpmh3lzwCEWUq8l3FL/5v4YtQ01RO\n+vGAPx1vRgQnhFMgYAmoWub1+j5nwtX91WjJwoBjRmamjIIXmEVYfvxBMk05Fn+khG6nqXmvHoqY\nP1cR/31fkuS+vL/c3XrImpHOy3qgniv4GREw1qp1CCoJb8bx45Ikyw/fydzze+nziixHlbJtV6nX\nCTmnU44Vn0oq3l2u1paoyspS4j+n+O5ptZU51XPGmZKkiI8/kv3JJySvV2ZGupxHa6czHoDwRAgH\nAAAAAAAAAOo4y+FDsr2/oMLBBiM9zb/tzcurqbKqxOOtY515Tlhiyb5xvSSp0S03qu2pLWWkFX6X\nRinLMVVV3GMTg3q9ysh1lv5ZjMzMEpeeSrhrjCI+XqjGd46R7bBv6alGD9wjS0a6JMl7UgtZ9u2V\nJMU+8lANVA2gtuQ6CwOKnvgE5Z3SRQpyEBGS/efNkqSmV/VT8/O7lzvfednlMmPj5Ox0qiQp9/Ir\n5Y2JkTIyarTOioqd8BfZf8xfOssS+Bra6fKUcEbwOb5Y5d8uKVBalBkdLUmyZKQr/pUXFDn3bTU/\npY1andG+JksEEOYI4QAAAAAAAABAHdf42oFKuO8u2dd8UaH5ltQif4K7Di0NZFu7WpH33R3QXaao\nWvtT8kUYnsCXgpaDByRJESuWS5KsBwuXYDLcJddd3xiHD6vJHbfItnFDycePZ8hwlhzeiv3r/aVe\n14yNk/XIYUlS1Ky3ql8ogJAxft0uZWX5djweyWEPbUENVV6eGg+9xr+bMXOOJOnA5xv09aY9Sn/3\nA5mxjXzhyTogav7cwh2b1b8ZPXWyWrduIiM/tFkZlf29gRkdVbgdWXZwzIwOXIbK+su2St0LAEpC\nCAcAAAAAAAAA6jjbbt/SE5ZDf1RoftQbr/q3jVICL6GQcMMQxf93vhyfryzxeE5e7fwp+QAndHyx\n7N8XuH802b9tuFzBX2YpyN11KiJi6SLFrfifEgZfWeJxx+crZbgKw1tHJ0/zb1tKWfIku8+lQa0R\nQOhY9u1V2yt6K/7agb4Bj1uG1Vr2SQiOE57Ztv9+IMfXX0qSnJ1PkxkbJ0kyDCk6yiGLYchsFCfr\n4UOyr/681sstk6Xw10zMC89Jkmxbf670ZfIq2UHHKPKcdl3Wv+zJtsDlqoou+2X542Cl7gsABSoU\nwvnpp580evToEo/l5ORo5MiR2rUrcP3BlJQU9e3bt9g4AAAAAAAAAKCKDKNC06L+M7Nwp5SOJqFk\nSdpXbMy6c4eaXH+NLHv3yLLnd1leelEqspSW7ftvC7syBNMJIZjY/3tSxtGj/v3Go24IOO743ydB\nvb1ty09BvV6FOIp3BjhyqHDZreg3X5OchS+C7a1blnvJ7DdnB6c2ACFnTdovSbJv/lFGepqs2dmy\n7dwR4qrCU/b/uzdg37H2CzUaPEDN2rdQzG23KGH8PYUHowo7vFgMQ9GRvgCJGRsrS26O4m+8rsId\n82qDJfmIYm8cqshn/s8/lrdzd6Wv4927z9eNqaKK/l6hgr9vKuBYu9q/HbFkUaXOBYACtvImvPXW\nW1q8eLGiivxgL7BlyxY98cQTOnz4cMC4y+XS448/rsjIyOBVCgAAAAAAAAANXUVeJp3QqcVwuiSv\nV163WxaHo4YKK5+RkuLfjntkgnLv+H8Bx6P/+bQiN62X6+47Zf/2G0lSZmy0csfeJduG9UoYMkDO\nvpcp/YOPg1uXp3gnGtv2raXOt27ZLOcVA+WwB6crRMKAy5T8R6pUm10mSniZaVgsOrZijZpc0Ve5\nw25Q3IN/9h8z4xop96weitzyY6mXNJs2lSTl3DFOUTPflPvk8oM7AOom01r4+rCgs5olN6e06agG\n10UXS2+84t8vGvyMXrY4YK7jpx/82zarxR/CKarxmJuUM2as7/cCpinJLNzO//2BYZ4wZirgeLFz\nTLPwHClg3IyIUPZfHpI3sbmi/vZQsXqiVq+SVq/y75/00L1KvnG4VMF3yLbvv1W7q/opd8RNypzx\neoXOMfM7tmXc+5cKzT/25TeyLVuqRlMny1q0G14Ov+YBVE25IZy2bdtqxowZevjhh4sdczqdeuWV\nV4odmzZtmkaOHKk333wzeJUCAAAAAAAAQENnKb+5uZF1wnJBLqcSLusty287lHIgRR6vV9YKXCfY\nIhZ/VPYEb/7LwfTCjiyW5CO+c5f6/jS6oyb+hL+7hEBKGS+b3W6PnG5v0EI4khR3x2hl/ufdoF2v\nXO6Slygz4xN8G3aH7Js2Fh5wOHRwyUrF2Q3ZN6yTbda/FfuJLwyVfeXV8lzWzz/1+FPPKGrmm3K2\nbV9T1QOoabbCn29eAnU1y1a1Z4ndZpHV9AVzjYwM/7iRnaXo12YEpbSK8p7cUjJNxbw3t0LzLclH\n5G3TtvTrmaYs+aHjglBu5IJ3KxzCiViaH17q3r1C8z1dTpOnTVtp6uSAcYMQDoAqKjeEM2DAACUl\nJZV4rGfPnsXGFi5cqCZNmqhPnz6VCuEkJETLVsUHTSgkJsaFugQAAGoNzz0AQCjxHAIANDTFnn1e\nr3+zUW6mVN6zcfH7haee1EI2j1vWX3dKkuJnvy4jPUO2yZNqtfOK12vK0iiw23pis9jAzj75IR1r\nWqp/KGb6NMU894z05muF53mzpZNOKvE+uYePypOZqZhTOlS4tjxH8UBS4ycfK3V+zLo1MvpcrMbX\nXi2X2yubwyajMqGmIv88C0QuW6pIu0eKj6/4daqj4DPfcos01/fSNDExTnI389WjwGBS/KAr5XB6\nFB1pl4YN8v21fLnMvDxFDxkiSTrxV2X0xnWKjrXJZY+Q3Vb7oS8A1dCskX8ztmWib2PGjHL/24z/\ndquCpo2Kjw0aJP34o1Twfnb0aOmddySV8h1bi/yMnTFDuuAC37ZhlPxXsI7t3CldcYWi1n4u49ix\nin9kb06Zv5fJznX5njeS1DjGP17hX18rl0uSGrmyy/89UwFPdLGhGJsUw69pAFVQbginsj788EMZ\nhqH169dr+/btmjhxol577TUlJiaWeV5qanawS6kxiYlxSk7ODHUZAADUCp57AIBQ4jkEAGhoSnr2\nxfzfk/K/GvrrX5V8y51lXiNq/yHFSnL27iPj99+l3DwVxG3sE31dzdNPOU3OQUOCWnupTFOxQwcp\n8pv1KrqYVsqP2+Vt3ca/X/B/kI3k5IDTk5MzVfT/Lpsnn6yjh9OL38ftVmL+y+LkQ2kV6xqUnqZm\nI4ZLkjKnPqeImW/K8dsOaceOUs+xb/pGjW+4Vscfm6TYKZOUd8llyvhvJZbIyslRoqTcHj0V+eN3\n/uHcP92rzKnPVfw61RB9OEUxkrJOaqWC15vJyZkyjrvUTFJeRpYi8sezBg9VdkqWXG6vsoqGac65\nKP/E4r9XK/jn5epxjtzRMcq+9TZ5ZJHnltE184FQJxXtZoF6xOtVzIsv+587md9tViNJmW5DuWX8\ntxn/7VY1Eb/u1okxnKPPvyL7po1qfPONkqTkf86QpUcvqU8feUv4jhM8Xtkk5Q69XpkjxtR80fmM\nkzuomSTLN99U6ry0vX/I1a7kXyvWbVul9xco6/FJksWiyBy3P+RZ3q8vr9dU9DuzC+cPHFriM6o0\nJ77Jzk4/rix+TQMoRVnBwKCHcObNm+ffHj16tCZNmlRuAAcAAAAAAAAAULLoF6dX7oT88EnOuHsU\n9cTfZWRnFZ9SpNtMTTPS0xS17kv/vuucnrJ//52sSfvlatmq3KWxIue+HXg905SysqSYmIBxyx8H\nC+ekpsps2rTc2uxfFdYlm03OXhf6QjgnyHx+huL+en/AmOPLNZKkiLWVWyLLctQXMvK2aiUVCeFE\nLnhXkQtqcUkqSZ527X215HfgMe0O34G8PP8cS36GwmatfJjCvuMX2SVF5X/Oo9dcIzOhSZXrRf3i\ndHkU6Qj6ayjUsIj35yu6yM/dRs9NlSSZtdg9rSExXMWXBzTjE+S85DJlXXKZvNcOlSwWeUffWvpF\nTLMGKyzjtk2q9vPcSC8hSJsv4YpLfN/Jq/9S8v7kwI55ZfF6lXUkVSdN+EvhWGxslerz11nkWQgA\nlVHp3/0sWbJE2dnZGjFiRE3UAwAAAAAAAAAoRcFLUK/XlMVS8ospI9W3JISZkCA5HDJKCNxYd/xa\nc0WewJJyNGDf07ad7N9/JzMtTTl5HsVG+UI43oQEWVKL13pi+EWSrLt3yXNWt4Cx+CFXFd4z9Zg8\nFQjh2H7eXGTHpsynnlHsPN/L5+z7x8vYsF65/5gk9wUXycjJVuzfJ/qnGzk55V6/KJfbK7vNIvv6\nr30DkZE6unWXzP37FDv1KVkc9kpdr7rMJk2VN/g6pbVsJU+X03yDNt8rg4jPV/jnFfwqMyrR0STv\nvF6K2LSx2Lh19y65exLCaSjcHpNuOPWQbevPJY5bDyTVciUNg2kv/Nnv6niK8sbmd7uLiFD6ewtl\nt9Xh8JPNpuxB1yl66aKA4ewHHiwzQGzJKAzhWPb8rvih1yjjtZlyX3BhQCjJum+v/j979xngRNm1\nAfiekr690EGxgYq+KogVC3YFFbD72QuKvtgbir1gbyh2ee0FEVEsiNgLiGDvYgGkbC/pycz3I8kk\ns5lkk2za7t7XH2aeeWbmLAspM2fOKZl2SUqhOC45H7VPz9bWVas1xR8iMaG9vcvHIKLeKaUknEGD\nBuGll0J9hMePHx+3/elwH8JUx4mIiIiIiIiIiIgofUIwCHn5MjQN3xaldrPhnEgii1JRCfmfvyF6\n4pNF7A/NTKldUzaI69fp1oObbAYAqDzxGODoExC4/4HQBkXRzWt9dDbKzjjZ8JiVB++D+lX6tlWx\nN4gFtyul2Bx33qotq5IEucSB1lmPwTR/HpxXTNeSUgBAtdr0O7tSO0dEe0MzKvtWwXHrTQCAwKjR\nUGtrgdpatL88r5O9c8e/x17RFTn+loFaXpH2MU2//Gw4XnreFDR98iUTM3oJx9wXga22BrbfvtCh\nUBrEcCJnR5HKWZRd3olHomnZV1BOOx3KVlvrtqWagOO6dBrKzjoNnpNOy0WISTmfeArS/x0Fy8K3\nAQBN736IwIhtkybhBBsatGX73bdDWrMaZWechMZvOyQIC4JhpaBYkfcTe0wCDgAIHk96P4gB4c+V\nXT4GEfVOrANIRERERERERERE1I1UHHYQhD33g//RxwGbPjHEPuNG2P73OABAqawyTMDR5j54X07j\nNOLfZDMEtt5GW6988WnU3Tcz1G7CH9DGFbMF3sMmAgmScASvN2kih9DaGmrPkU6iRzgBxTvpKHgn\nHRW/vUMrllQTfQDAfsv1qL37DrQ8/hSkVf+EBlOo1JN3Bu1mXBdcnPZhYqsc6MZXrYL1sYdgnv0k\nWt9+r8utQqh4CW2tqL1gCgCgbkNrgaOhVAktzbC+9HzcuGvXMcavi9R1Fgsar78VZQ7jxNpUeCce\niT/2OQRl5fYsBpYGOVrNJ7jRxobvJbEqbrwGLX37wXf0sVDLygAAYlsbhLYOrxWBgH49GNQdW2ht\nQeW4A+A6/6K4cwQ23yK9nwH65F/FYoXQ3MykUSLKCJNwiIiIiIiIiIiIiIqVQSsEwetFxcI30Pzl\nEgS22x7qDz8Au+wKAHDcdZs2T60wrmCy5qOvYHfn96a4+YPFML35BlpfmAtp5e+6babPP4V/190h\n+H3amFJWDgDwHHIorAvmGx4zGAhCNBlf4q6YcAgAoOnl1xDcehuoNTWG81xTpkaTkQyqwMRSOybh\nxCQNCU2NUCsTt1ly3H0HAKD0suiNQlXOb/upTKx+6Q1YBg3O2vFEtwul0y4FAMi//4rAdjtk7diU\nOxndhA4Go8vpJsRRwdjvvctw3HnCqfwd5pDZ1PXKdDZH19svZcry5uvaslpalnCeUl4OsSWUpFn+\n38moO2Q87A8/CAAQXM5QAm3scefN0a2L69ZCGThIW7fNmgnzzz/CfFZ8BaCWV16PG+tMcOOh0Vhr\namD+4zeIb7wBGHSJISJKhkk4REREREREREREREVKbG9LuE1oaUbJRefB+tpctDw/B7599tdPsFgM\n95OHbYZAnm+mBrYfCVxwSWi5slK3rfyIQ1G/pkHXckKu3wAAaHvyGTS5Pag482T4Jx0Jy/x5sLzx\nGgBgwMCqTitsVB55GACgbn2L8Q3kmBZYce2mOuqYpBOTNGT65GP4xh+WfH8AvrH7RqtMqEryyUXA\n2qcaao6OLTQat7yh4uP1BWGzpHk7KbbdXSAAmIo/6ay3E+rrYZ95j/E2uy1nrwUEWM1dv11rkvPT\nYulBb2wAACAASURBVLJT4YTVwFYjIP/4vTYcrKpG48dLUbv1ptpY7SYDdLuaPv1Yt+6463bduu2J\nR+Gcfl10IDbZrwOlX/+0Q1dt0UpCkc8ktacdz2peRJS2InlFJiIiIiIiIiIiIqI47sTtpBy33Ajz\nh4sBANZnn4a8dElKhyx4WwVRf1laCAQAjyfhdNlmRfvTL8B7+CS0znw4o1M6rrrMcFzwebVl1dxJ\nK5AOSTixSUOptqaKbfOiOoq/FZNQlriiQTJqCgkXYhOTcPLO64V4/32Ql3wBefmylHfz+BLf6E5I\njUnZUIo/4YwA+btvEm4TbYWrskLFr/2qa+PGmt7/FHV/ro0OyDJQW5v0OGX/PSvpdtPHH0RXVBWm\nr5fr45gyFS3Pz0HD1z91FrIhNeZ9XnA6MzoGERHAJBwiIiIiIiIiIiKiomV+byEAwH3K6QgOGqLb\nJv/+K8TmZgChFg3JbqACQLBffzS9vjA3gaap/nt9Sypx3Vrdevt/LzTe0W6PGxKamyA9/VTS89kf\nfch4Q0wiDazJbzKrUodKBcFoOyrbg/dD+uJzw/3MC98yPvVeY5OerxgkamnWmebX4n/m1nsfRNsB\n47R1gUk4eWe59WZU33AVKsfvj8oDxyZNfouwPTQTQ3ccDqG1Jb2TxSbeMAmnW4h9HW5a+IFuW3C3\nMXmOhroTzymnI1BTC9f/nRQdFATA4dDGfAeHXv8bPzB+r0yF6esV2rL1qSdh/mCxbrsybDh8++wP\nZcDAzE4Qk4wrOuPbgSarvENEFItJOERERERERERERERFqnTapQAA6bdf0bj0a6x+cDbarpgeN8+0\nbCls99+d9Fi+/Q5EYKedcxJnutQ+feA56lht3fbc0wCAwNbbYNWUi+GeFv8zRvj22Eu3XnrBf1F1\n0bnaumvyFDRdeiXck47SzbM8/GDcsQRvTCWcBO27opP1FYTEpiZt2fTj96g69ACUnn06hJZm/bx/\n/42eQ5ahlJXBO3zruIpAxabxrKlQS0oz2jcwanT8oNUKz9PPofmV1wEAYkNDV8KjDJTN1L9G1A7p\nk3S+P6Cg5OppMDU2QF7+VXonU2Iq4fDGdbcgxrSIC26yqX4j24lREmppGZq+/gnOO++L2+a86378\nPudttN8wAwAQ3GprrPt9NVrPuwRKWbnh8VofeCTxycJJfdYXntHHYDbD2+F9P13KoMFomnoRmufM\n142XH7I/ysYfgNr+lQkr6xERxSruT/lEREREREREREREBMHlBGQZpokT4Dn/Yvh2GBU3R/53jbbc\nOv36uO2qtZMkk3yLSWqJVNnw7b0PvJdcDkhSwt3a7rpfty53aEfhPutcBC6+DO2zHsP6dS1wHzoB\nAFA2/fL4g8W2o7I7kserdJ5IYH3lJZRcfL5+t9poooMQCAA+PwRLJ62vCkyx2hC47obsHjSciKFU\nVQMAxDVrks2mLBP/+Tu9HdrbUTr5FG1VtcVXoUoqph2VoLISTncQaavXet8sqGXlaH34CQBA/bNz\nChkWdRdmc1yyaoR1552AmERXqawM3iuno+H3Vahb24TAViN08/277p74NIvfBQAInuj7d92GVtSv\nrtdVssmU/8qr4d9jL/j23id6zi+/gGVJqIKP/ZFZkL9Zgco9dtKqFRIRdcQkHCIiIiIqOCX2CTki\nIiIiIooT2G4HAIAoCoAgoOXtxaj/7je0GDwt/tfbn8Bz7nnxB7Ekb7eUb/6YRCL5m1CLCbWsDDZz\n4gQcAFCGbITARhsj0K8/3N5AXAUbZeAgbVkUBYjexC13BK9PW1bLjZ/I1+YGAkm3R1hfmwvLnBcB\ntxtCXR3KTzlet130uKFm4UZhrqz7cy3W/fQXhAQ3UzMWbv0V3GxzAIDthWcgrvwju+egxFL59+t0\naskz1hefRenrr2qbIgkaKYttQcVKON2C4HYDAIKbbgYA8E44An/8VQ91v/0LGRb1AGZTktvRkgR0\nSNRTS0sR7NPXcLrj8otRNWJzyD98l80QNdp7XzBx8mDlfntC/vknlB97BKTff8tJHETUvTEJh4iI\niIgKzh/gU3FEREREREZ8O+4EAGi/9qa4bWrfvvAdeUzcuGXr4dpNpNZZj0Xnd9ZuKc88J0arbJjC\nrW6Cg4dAllO4bC1JkNethXD/fbqn641Y3nlLW7Zf8F99MkJMJRylojL5OVNMwgGAsilnoPzk4yD/\n+L3xhCJOwhHsdsj2HCRsRdpvxfy+qnfePvvnIUOdVaMRmhpRvdWmKD1vSmhA1T8sE0nQyOh8SW5m\nUxHxhH7HqtWmDZlTeT0m6kRnSZ2+/Q/SrauOEiiDB2vrTW8ugvOyKwEA8j9/Q9qwPvtBdoxpr7Ep\nzbO++FyOIyGi7ojvnkRERERUUEJDA8wvP69/So6IiIiIiEKCQSgmM2BNnBThH7mjttx68x2QY1od\nKTW12rJqs6GoSBKUSn3ii1LbB2IqFVjC7aoG33Yt5J9+TDrVt8fe2rLj2f/B9NEHMRtDlXBWLf8Z\nsHfSbifNah7m99+D4IpWDwkM3URbNn37TVrHyidRELJaBcd54SVwXjEd3iOONtzesZ0Y5YjPbzwe\nTraR/lwJ0e2C9YVnQ+Md2rMJLmd654tN4uH3/W5BS7SyR98rTEzCoTxwXjoNa199G+03zkDr5HMA\nSYLgjlaxC4waDde55xvu2/TuhzmJyX32uWh6cxHq/tmAxntmoW7lv2hYEf95QxWzXDWOiHoEvnsS\nERERUUGVnfp/6HPBFFjmvlzoUIiIiIiIio7S1gY1SQIOALTdca+27B9/qH6jGHMJuMgq4QCA6/xL\ndOuqOcUYReNL266pF8aNtcx+Vrdu+vRjbVlwuaCaTJD69ev0lKm2o4pVftKx2rJaXaMti22taR+r\nuwpuvAlcF1yiJU51VHJZ/O+Msk+IqfqkEwgAqgr7zdfrhju+7qRbCSc28UZQ2I6qO4gkDcZWwpES\nvNYSZZXJBHm3XeE+cwq8N9wSGuuYDGrwGca7974I/CdHFdUkCYFRowGrFcHjjgdKSqAMHISml+YB\nADyHTgiFmSjBkYh6Nb57EhEREVHBKKoK0xefAQB7KBMRERERdeT3w/rbLwhusmnSacGtR6D55DPh\nvGI6lL4dkklibqCqlhy0GOoi9ymn6wcsKbZpEo0TOgyr/ZSUwDPhCG1V+OP36GGaGhEsr0it2kMn\nlXCc50xFw4dfJNxedJWI8sXg567/Lvr9z7SClXDywTJvrrbs22ssfGP2DK/4YPpgMSwxFaJaW12Q\nly/T7S8429M7YWz1G1bCKSilQ2uxRARPqPJIr32touLidsUNtZ91LgDAdda5qFtVh9bn8v9AX2Cv\nsVizpgmu8y4KDSRKcCSiXo1JOERERERUMMGgCphDF9mFcBl4IiIiIqKeTlFSuyFq/uA9AEBwy607\nneu/7Y5QtZGOYpNwOqmoUxAdn2xPsQ2S/NMPhuOqzbilVNuDj6Jl+g0AAPubr0NeuiR0utZWKKVl\nKZ3Te8ihCPTpi9b7ZhlvP+FkKFtulfgAKd4I72lU2RQ/1rcv6lauKUA0vZf0+6/acstzcwCE/q+J\n69dBrNugm7vpZv1gf0T/71yKSV5LSWziTZqt3Ci7fP7Q33+nyTju+Eo4RIUS284xwn3dTWia+wac\n064OfX5IUGEt18wmSfv8Inh5PZOI4jEJh4iIiIgKJqgoUE2hJBx52dICR0NERERElHvysqUw3X1H\nSnPtt94MAFBSaJWUiCoUdzuqjkk3Rjfd0pEw0UiS4Dt3qrZacs0VoYVAADDFJ4kYHrumBv9+9RO8\nxxxvvN3uSLq/f9TolM7T0/h32sV4Q0kp/KN3hioIrJSSB8HBQwAA6xZ+BMgyzB9/AAAouem6pAl6\nvuGhxDKhPc1KOLEJH0zCKZiSSy9A2RknQ/jqK9iuvDzp70L+4XsoJSWG1auI8i3SwtF5YUyCsSAg\nsPseQBEkFavaQ4WshENE8ZiEQ0REREQFoygq1JKS0EoRfIEmIiIiIsq1yoP3RdWtN0Bc+Uenc9Xy\ncgCAb98DMj+hrhJOcd5YbX7ldW3ZP3rnrh1MlhNvi0n4UcXQPCGYehIOAK1tVf30G7Wx9htnwHnC\nKVorsOZXFxjuqzoc8O6zX8rn6iki/46NyMuWQlBVyBeeD4Rb4VBuRKo1SLbQd2/v+MMBAJbX56H8\n9JMAAL6x+8bt1zpnfmjBm+aNZrajKgq22Y+j/K35qDlob5Q9NgvWZ5/Sbff4AlBUFeZ334a0YT3E\n9vaUK5IR5VLL40+h9eTT4Tr3gkKHYiyS2MzK3kRkgEk4RERERFQw0lfLIK1bG1pJsSQ/EREREVFP\nIAQCnc5Rwk+BK0OGZH4iMSbxpBgr4QDw774H/rnpHqxe/nPyJJosMn/5BVRVBQLBtM4pS6FL6hZH\n9CEC95lT4LrzXu3GtX+3MWie/zZab5wB56XTtHmC34/Ajjtl6Scofk0L3sXvN92bNMlJCCdnVD43\nG6XnnZ2v0HolwdkGABDDD8C0PvR43Bz/yB3jd7SEqj2oaSbhCGo08UZQWAknlzptMxWj9OLzIH+9\nXFuX334Lwe9/gG3WzFyERpQxZZNN4Z5xJxB5eK/IRCp7C0zCISIDTMIhIiIiooIZNCHmid40LhoR\nEREREXV7fn/nc8LtX1RH8jZHScVUwina6pOCAMvpp8AyaEBWjpWqdrcfQjAAVcog8aeTffw77wrv\nmVPguvhyqJHfQcDfq773BHbcCW2HH5l0TnOkygoA66uv5DqkXs06d05oIZKMZ5Ac5T14vG69/bgT\noZpD89O+0eyLeY3jQzc5paT592ta+kVowelE/9OPx4B9dkVg+5EAANfUC7MdHlHGRLGIqzKFExTh\n84aSeomIYjAJh4iIiIiKgxLkl1YiIiIi6jUEt6vTOdLqVQg6SqCWlGZ+oth2VEVaCQcAxAK0P9lk\n45pQYoEspb+zlPo+Sk0tAEAtrwSCvasiiMWU/O/Jv8de+QmENLFJZ60PP6EtN372FYJbj4Dr9MkA\ngIbDj4Lzjnsybrlieyimskov+3efb5leSxEbG7Rl+/13AwA8xx6flZiIerpIgqJYtwH+L7+C6ZOP\noHzzTYGjIqJiwSQcIiIiIsqrRGWSVUVBkE/HEREREVEvIbjdnc4RmxoRqKlNq7pLHCXaEka1FGkl\nnAy033ALWsZNxN/Lf4Fn3GHRDZ38XTWs+DF+MI2EGo2Y+qX11mdeRPPRJ8B9yulQ+oeq/fhHbJv+\nObuhSPsuKh5qVZW27J1wBJpffg0N3/yM4GabAwCcN92G9Wsa0H7fLIiyDIgigmVlEOs2pHUe0/Jl\n0ZWY1yHKvrQvpYRfJ2OTcCKCAwZlISKiXsAcqoRjWrEcA8eNRcXEcei735gCB0VExSI/DXaJiIiI\niMJUVTW8MK6aTAgG1YweQiUiIiIi6m5SqYQjuJxAuIpKxvyB6HKxtqPKgHvyOWg6zosyhwltTzyN\nwKyZKLlmGnz77Jd0P2XgILhG7QT7siXamOXzT9M+v5pGEk5gux3QOmMEyqxmeI45HoLLCe9hE9M+\nZ3ckFXMrkV4mWNsHSllZXNKZf8+99RMFAaLJBJMQrV6j9OsPaUN6STgQY87DSjg5lbASTrilYdz8\n8DUZ6wP3xW+02bIVFlHPJghQLBaIXq9+eMMGqH36FCgoIioWTEMnIiIiorxK+ACcP4Agn44jIiIi\nol6i00o4qgrB6YRgd3TtPP5oC5libkeVCVkSIIWTYdxnn4tff9+gVZpJxvbtiq6fPI0kHACwW8PP\nw5pMcE8+B0q//l2PoRuQpc6TcPzDt8pDJASfD6rJnPJ0XRUjmz3Uui0Nakyyj6AwCSeXEl1Kkdas\nTriPuPZf2Oa9oq2rsoy61fXZDo2oRzNqFyqtXVOASPIv0zZ4RL0Fk3CIiIiIKK8i7ahMMRd7AMD6\n+Scou/3mQoRERERERJR/nSXheDwQFAUo6VoSDmJvnMs9qzC6SdZf3pZSbH2UbjKBEbW6Oq35vbUt\nkymVUqcsh5offp/WPiUVQmwFW4sFgteT3vliE9X4wE1OJWr7nejv3fzRBxBaW7X1ltnPYf3q+rT+\nfRARoFRUxo0JTU0FiCS/VFWFP8DXdaJkeucnfyIiIiIqmMiTEhVnnhK3rfL+O/MdDhERERFRQQiu\nUDsqoaEB8Pvjtkt//QkAEMN/ZnyemGOrsqlLxyo2HZNwxBRbH7n+7yTdunf/A9M+t2/MXnBusz3a\nr7kx7X17k46/IyOuaVdHVzq09aDsEXx+wJTZa4BqsUIIBg1fqxIJbLdDdIXtqHIqUUUKIWD8+7K8\n/SaElhZt3Td2X62qGBGlwSBRWmhtMZjYs6jNTXD++kehwyAqanxXJSIiIqK8UlWWLCUiIuqJFIXv\n70TpENxuwOlEzZZDUTFuv7jtjluuBwDIf67s0nkC/9lOW1Zrarp0rGLT8aaxlGoSzvTrsOaZudq6\n6bNP0z+52Yy1ry2E+5yp6e9LOr59D4Bz4lEAAHH9ugJH07P4A6HkF3X9eogBP5TyioyOo9qsAJBW\nNZzAsGHRFX5GyJlAUEn41+tx6iuurb8x+uCT+f1F0Q1Way5CI+rxTN98HTcmtrcXIJL0yd99A3Hd\n2oz2rdltR2yx9ygonVV1JOrFmIRDRERERHkVVFQEA3wKjoiIqCcRGhtQsdcuML/zVqFDIeo2BLcL\njjtmAABMK5bD5w8iEIyW9g9s8x8AgFKR2U3zCKVff6z8eRXWrm0GhNSSVLqrVCvhqJVVkPYdGx0w\nZ1YdxGxiG6VsESrKQ392k5uX3YLHA8s9dwHr1kJdvhwAEBg5KrNjWcJJGp7UKxUJMdVvBIXXAHJF\nUVR4fYG4cdPid+F46kltfcPMx+A96RQEHSXwbb0NHHfeCgAIDhqct1iJerL2yeeGFrpD5a9AAJX7\njEH1tsM6nxsR095Oqq8DANRsvVm2IyPqMZiEQ0RERER5pSgqbM/MTjYhb7EQERFRdlhffgGWn39E\n+QlHJ50n/fYrhLbWPEVFVHyCzc3asuB2w/7Avdq6/Y4ZMD01W1tXqqoAAO233d3l80p2O2Sp518K\nTrUSTmhu9O9DtWRWBSKVVkuUIkcJACbhZJN91v2ovu0G1G47DH1PCr0/q1XVGR1LtVgAAMFwG72U\nxD580x1uShdIVysJqgDc3vi/34pjJqFszvMAgJbzL0Fg4iRYzBJUiwWK2wP/jjsBAFpnPd6l8xP1\nZp6jjgUABAYNhrL99qHBQHxSXNFJo7UgAJjfeQu1/SogL/lCNy61t8G8kA9hEBnhtwQiIiIiihP7\nBG62BRUV0srEJfWlX3/J2bmJiIgoN1STWVsOJkioFZoaUbXbKFSO3T1fYREVFdPid9FviyHRAbf+\nZnbl3bei5rLzQ/1bAQjO0HbV4ej6uXtJskiqlXA6UktKMtqvNyQ25YtqtwMABJezwJH0HOLff8WN\nZfp6oobbFZnfmJ/6TrGJN3zYJiGPQRWbdMjfrMDQKSdCaGpMOEc0m2GSJYiCAMFkhnXlb9r/ucA2\n23bp/ES9mi9UHUyQJKiyHBrrBpW/hEA0Ccf08YedJkra7wxVbnTcdWvcNvP772U3OKIegt8SiIiI\niEjHcflFKD1vSs6OH1QUBJI86VVy+UU5OzcRERHliDmahOPzK4aJOOKGDQAAyeCmIFGPpigQV6+C\n7dmndcPmxYuM59eFSvxHkhFUe9eTcHpLsoiYYbut1oeeyHIklC7VFk7C8XgKHEnPYf7w/bixSOJF\n2sKVcCqvnQY4U0uU0rWgYiUcQ0JzE6qPPhzyd99kfIx+B49F9SfvwfbYwwnniDG/C2n9WgAx/z5s\ntozPTdTb+Q44GADgOuscQAy1qBS6w+tdTLWeiknjUbX9Vkmna+/RBtXQlPKutU0l6ql6x7cvIiIi\nIkqZ/YlHUfLSczk7fjCowh9MnIQj1tdBUdQul2QmIiKi/FFNJm05qKjGD7ynWfacqKcwL5iP6h22\nhuX1ebpxeeUfxjs0hqoZRG50ZHzTPIaQYXJKbxFkJYiCi1RaETzuAkfSc0hrVseNqWXlGR1LlSRt\nOeWHdmJbsrASjqGaLTZCyecfo3KfMZ1P9nrh+/yLhJvNixYm3Ca0tSU+Lt8fiDLmnXgkVn6wDJ7T\nJgOR18kcVhfPmoA+UUhatzZpGy3z55+GFsKVf2KJzU1ZDY2op2ASDhERERHlVeXD96HPEw8m3C60\ntcEfVKCoTMIhIiLqNmIq4SiqCtNnn6Bilx0g/rtGG+eNVeqtbE8+lt4Ozc0AAHHDegDZqYRDxpwX\nXIz2Qw4rdBgEQI1U42AlnJSYXn0F4mvzks5RqqvjxwYPzuh8gtenLVvnv5raTjHVIIRu0J6l2JVc\ncTEGHrY/zAteN9xuWvEVhLo6iP/8Hb9RNU4KCAzbMpshEvU+ggB5001Cy5Gqg0VeCSeoKLp2VBGi\nQeImAJg+/Ti6vGI5TOGEnMCmmwEAhPDnViLSYxIOERERERnLURLMwLtvTrpd8HpQfdwklNxzR07O\nT0RERNmnytFKOIP23x21R4yD6Y/fYZt5jzZuVL6cqDcwf/JR0u3NL76KplcXwHPM8eGBcBLOX38C\nAIIbD81pfL2Z64qr0fzI7EKHQQAQqYTjZsJmKiomn4LqM05EIEnFBbWkVFsO1vZB88XTENxks4zO\nJ3gzSI6KvRHNSjhdZpk3FwBg+ix0Q1zdsAGWO2/VzanZelNUj9oGpg8W68ZdF15qeEzffgfkIFKi\n3sVqDlfACVfCUYOJK8oUA5cnYFj1RjJK4AMgtLTo1suPnQQAUPr1Dw00sRIOkREm4RARERGRMZ+v\n8zlpElf90/mcxkbYPlyM0ltvzPr5iYiIKPcsv/4cXfFGS5YL7e0FiIao+KmOEgR2GwP/9iNDA+Ek\nHKGtFYHKasBiKWB0PZ9Z5iXyYqBaQ5VwBFbCSYuybFn8oKrC/PprQExCk1S3Af5LL8+89VAGSThC\nbBJOd2jPUgBKeUVqE91uiO2hllKCJ/TZqnzK6Si79SbD6RVHHQ7FUQIAqFvfArUqWhUpMHST6ESR\nr39EXRVp+amKoSQc05LEbeMKzfzCsxi863ZQN2yI2yZ1uGYrff8dyk48FkKrPgkn8tCmWlkF1WyG\n0NSYs3iJujO+wxIRERGRIcGf/SQcx03XZbwv21MREREVr0RtJuxPz47OccYk4fCJeKIoayjJRi0v\nD60feyygqhDr66GWlBQwsN5ByDQpgbJKjVTC8biTVnch6CrMDBy/L6QfvtdtNr8xH+WnnQAp3NIu\nG8TGDG6yxlZaKPL2LIXi22c/AEBgyEZJ54mNDdGVcMsb09fLkx9cUeDfZLO4xKv2O+/TltlGhiiL\nwpVwrIveKXAgiZVPPRumf1ej5qCxAADfLruh+ZVQi7uOD06WH3cELG8vgL1DpXJVlkN/Wq1Q+vSF\nvPIPJuIQGWASDhEREREZy0ElnK6UFvcHeCGWiIioaBmUNO9IcDq1ZXnJ57mMhqhbUcpCyTdqWZk2\n5rj2KkhNjQj27VeosIjyyxaqhAOPGy5vAEEmayYkuPXtHSsP3Fu3Xn7aCXH7tF+XvC10Z5zTr0Og\nskqrrpLK+778zYroisrfp6HI34vfn3xeTCKNbfbjAACxtTXpLqLbBYRvlusO1damLfsOODDFQImo\nU+EknO5EtdsRHDwEAOC481bYHp0FqCqEX36BtG4tgPiWwmL4NUS12RDYfiSk1hbUDNsYpk7arxL1\nNkzCISIiIiJj/uz0MNZVsAl0cmEp0TEUFUE+DUlERFS8ktyMM7+1AHC5IC9bqo1VHnYQn4onClMr\nQu1IlNJybcw+634AgGnl7wWJiSjfVLsdQChh0+cLIhBgJdREYpNaAUCIaf0Y+14bS+1iW7vAttth\n9Te/wb/zLqGBmHMmYv7sk2iMfM83JARCfy/y2n917cPidPyclSRJzX3qGdEVOT4pQIhpLaaUpdgO\ni4g6V2SV9SyvzoHp4w+1daEtPnHPfeYUKAMGauslV16G2r7lqBmzozYWScZpfXS2bl/VakUwpr2d\n+a03shU6UY/AJBwiIiIiioq5kJaNdlTSr79AWbIk5pjGSTjuk09D65TzsPb5eYbbLU8+hppJ43JS\nnYeIiIi6LtnNtfKTjkXtxv1ge+l5/T6//pLrsIgKL0FL1WD/AdEpFZUAgMDonaJVJrRtvEFKvYNS\nUwsAEOrq4A0oCDJpw5DQ3ATzTTfEbwi/1lQevK821PLMi2i77W4AgO+gQ7p8bptZBizhtmExiRwp\nYWUjQ0F39O+xYtz+SSbq/z9UjhltOM0/ZGMENts8OiCb4ub49o05j92WWqBE1LnYZLnwa57XX6D3\nMr8fZZNPRcWk8Vpcpo8+jJ+2866A2ZzSIVWbDc4rpkcHrDatmiMAKOGKOkQUwiQcIiIiItJIK/+I\nrnRWDjkFVbvviP6HxlzgMTimc7c90X7NjfBeewPEsfoy2pELTRVXXATHl59D+uvPLsdEREREOZBC\nW4oIz257AABKLrsoV9EQFY8ESeTeQycAABS7IzooCHBPnqKfmOKNEaLuTkvCWb8eG59zEvrvaZxk\nkEvdoQWW45orUfrC03Hj8rdfx70X+/Y/CJ6TT8O/axqhxCT+ZUoUBaiW0GuSkO4DMkyqihcIwL7o\nbW3V9N03Cad2THaWf/vVeGJ5ORDzvqIatKNSS0q15WAftjwkyhb/yB1jVvyQv/sGgwZWomKfMXmP\nRfojWkmx/PgjIa5ZjfJTjtfNabx3VrQVZApUmx2uKVOj67IE1RF9vbHPuAlCYwOEn3/uQuREPQeT\ncIiIiIhIE9tbXkjjZlqnPKGnuwJbbqUbbrrpdqx75hUg/KVN7FC61XHddN3FOsGTpDwzERERFU4a\nN9esn34U+vOLT3MVDVHREJztxhssFjQs+RqNX/+oG5a//1a3rhpUMSDqkcxmBCoqIa38AxXveic1\nZgAAIABJREFUL4T5r5V5D8HrK/5EEenvv7Tl+nMuhH/TUNWTyv32RO2AKq2aVtMb72rzTKb4RIxM\nCeHKLeb33k0+sWMVMCbhxIm9/tKpNK7PqLE31Q2ScADAu81/4O/bH2rfvqnHQETJORxo3zNcjczv\nh/2u2wEkT7DLFVNMa0Lz+++hrEMCDgBIlZXasvuEkwEA3vGHJzxmcPAQwGLRqt+Ira2AGE0zEF1O\n1Awfipo9RsO84PWu/ghE3V72Pn0RERERUbcnrl+vLQstzdk7bnMTlH79ofTrrxtXdx8Dm0Xfo9x1\n7vmwz7wHAGB/aCak1auiMbUnuIlBREREhRVM/eaQUlMLsb4OACB/9SUCsU+NEvUwgtNpvCEYhDJ0\nk7hh19SLYFkYrYygDNkoV6ERFR25uQlAU3RAVYEOD2rkitDSDPHzL4ED98vL+dIWCKB89x1hjqle\na60sh7LlVsAfv2ljorMdvs22QGD0TjkJw/L2AgBA6QXnwnP8iYknujokmCRozUediPwfSDGJyfTd\nN3DZ7NGBBEk4jW+/j/Z2D9jwkCjLwhUMBb8PvjF7wrJgPgBAXPVPXsNw3Hy9bt309QptWTWbIfh8\nUC0Wbaz9ptvg33V3eA+fBHHtTZB+/QX+vfcBnE7UbhKqpKZsPDQ02RxOEHe54D1sAuTPPoHttbm6\n85WfcjzqNrTm4Ccj6j6YhENEREREmvKTjtWWpVX/IDAqVALcHwhCksS4SjWpijwBLHRsRxUMwiTr\nk3CcV1+vJeEAgOWN16Ibs9Aii4iIiLIvUQW9hi+/BWQZQa8PfXbeDgDQ9M77qB45AgBgffE5tDMJ\nh3owIXwj2rv/gfC3u1DyWagSlBRz0zxWYMfRUC68CK7KGmD1Gnj+e37eYiUqOoEAYMpPNaiyyaei\nZvEieA48GC3nXABxp9wksWRKaGzUJeAAgOpwoO2u+/TfmQGo5eU5i8N92pmwPf5I0jmKqkJu0998\nFf/6C2pdHYTaWt240N4G+HxQq6qzHmvR66T9mdDWiurhQ+HdZXe4p1+b8mF1lXAk41uAsklGabnd\ncBsRdUEkQcUfAJRo8lzku08xaJ67AL7XX4e46+7RQasV3klHAQCUQYOhDBocGi8pQcPXP2kVzgGg\n7Z4HUHrqiXBPmQq1qhrtj86G87a7UH70BF2yD1FvxyQcIiIiIjIW8wXLH1DQ5vKjqsya0aEiTwCr\n4SSatmP+D+rqNQgO39Jwvm/MXjB//EH8hjSesiciIqI8Chg/oa1stDEAIDaNVxk8BM0PP4mKyafk\nPi6iAhPa2wAAwc2HwXX19RBm3ADH3XfAt+feCXYQIN55B9x1bXmMkqhI+Xx5S8IxfRJulfj2m7C+\n/WZhn+B3OiH99SeCW0dv2gZ/j0/cU/r2g1pRGTdu/uG7nIXWfvPtsD3+CJSysoRz/H4FppYW3VjJ\n3beh5O7b4v5eq0ZvB7G+rndWTDCobiP+9adWbcJx03UQ/H5YP3of3n9OTemQ9X+shvTzT9GBJK3I\npJg2MkSUHUJMJZzSaZdq4/6RoxAMtw/MNetLzyfdHhi9E7z/GQmbJbUUAWXAQN26b/+D8OsPq1Bd\nHr1GrFZWoXnhh7DMfRllZ52WftBEPRCTcIiIiIjIkBCThGN+5034RAsw/sDMjuV0Qvrhe+2JOe9x\nJ8AzcjQsHargRLQ++TRqNhscfxw/k3CIiIiKkkGirBq+CB3h23NvCGvXhqZvvwMA/ecNAAgEFcgS\nbwpRz1Ey7RIAgLziKwiCANelV6Jp1G6w7Du2wJERFT/B74MKR17OFRw0GHJspZk8tsLqqOLoCTAt\n/QKNn3yJ4BbDAADmF+JvqiqDQ9+Z26+6FjCZIX33LWxzXoh7b80qQYBn0y1gaqwPrf70I4SKCij9\nQ+1K4HSi+rgjIfTpAwAIDhwEac3qhIeLtKeE0wk48vO7LhpKfIsuwefTlq0vPKstO66fbniI5lMn\nI3jWFLhW/Yuyf/+GWqpPjpKXLslSsESUCtERqjAldGjJ5znuRHhOODk/Qfi8sM6ba7ip8YPPASDl\nBJxETCbj72veCUcAZ52GYHVNl45P1BPwqgYRERERadSYfuHyD9+HFtxu9D/jBGx+2lEZH1dob0PV\n3rtCamkGAEgWMywm4wQcAHEXjjQJWl0QERFRYRm1o1JLSnTrLS+/huZPloa22cItENzumB1UCJ9+\nqqvGR9RdWF56HtL38dUnTCuWAwDEdaEENEgS1D33LNjNfaJi5u/YntDrM56YA6pD/55VyPci09Iv\nAADSnyu1sdYhm8bNCw4MJeG4p14I99nnwnfwOACAUl6R2wAryiG2twHBIGr23BnV/xkOcdG7AADr\na3Nh+/wTWF8L3QBOloAjNDVqy7bHHoK7zZVwbo9k1I4qpgV37E18+e+/QrtUVWHDyWdp4+3Xz4Cy\n8VB4d9gRvqOPCw1ao9UpxHZWVSPKJyXcck/qUL1MzVNVNwBwXXpl3FjbzaFKZMGtts7KORJe0xUE\nBLYY1mm7PaLegEk4RERERKRR7dGe4LannoBQXw+hLbOLNkJrtPx0pB2Vdh65ky+fggDPAQfHDwf8\nBpOJiIio4AxaKiS9CWi3hf50RT8jmN+Yj35HHILSi6ZmOzqinBLWr0fZuZNRNXa30HpDQ9z/ieYF\ni7TlZMnoRL1Z+zU36tYFf/6ScNChepvQmv/2SOK6tTA/87/oQLhyrLBhAza67Zq4+Wp1tW7dd/A4\ntF91LZrfWZzTOIWyMgh+P0wfvq+NVR83KVR1xZf678xx43XacslN16H2sMwq73ZXghJ6n/BMmITm\nyeeGxrweKIqa8AGk9lvugDI19DkpWF0Dc7gaRWxaZ2Cb/6D1hFD7qsCWW+UoeiIyItaFqnuVn3Ss\nNubbaRf4xh2atxiCm22O4MBBUM1muE84GS2zn4Pn9LM63zENZjlxeoFqtUHwerN6PqLuiEk4RERE\nRAQAUFUVCOqfVBCbGiH4ol+cTO+/B+v/noDickFR40snx4q9aBmXyJPCEyBtT78QP8hKOERERMWp\nQzsq14j/oPXpFxNOV62hJBzVGa2EI//wLQDA+rLBZwCiIibWbdCWpZ9/Qs2WQ1Fy1WWQv16ujcfe\nLBdYBYfIUGDnXfQDaSR0dFXHFopie/6TcMonjUf5hf/V1lUxlIQTezMXAFquug4r3/ksvqKWKMI9\n9UIEN9ksp3FGKtdWHDNRN145bj+IG9brxlxT9Im15vcWasuCx63bZvv+62yGWdQCQSVaKUKUIIar\n1wheL7yffYHaAVWG+6mlpZAGDcK/cxagftHH2vtJx38Knjvuxj9vLEbz3AU5+xmIKF6kEk6sltff\ngVpSmtc4Gr9YgfrfVqH9zvu0KmnZlPSzrMmU3yRaoiLFJBwiIiIiAgD4A0pckou49l9Iq/7R1iuO\nnoDSS85HyXXTQ0k7CZQdPQGlJx8fPU6kz3uEKbPew+q//7KkKRERURES/NHPEJ6tt8Xq1xYhuMWw\nxDuYTKGy7O5oqwXVXpJ4PlERsz73lLZs+nIJAMD2+COo3H+vAkVE1H21nzZZWxbymIQDU+Er4ci/\n/apbj7SjCg4erBtXR4yAMDzJe2yOqaWJbyY77pihLStWW9xnAcc14TYpqqol3SqxFX16Q/UEVYV8\ny02Ql38VWhdFiLZQEo7p808xZOIB2lTvQeN0FYvV8L9T/+hdgAEDtPGON8QFQYCw3XZx1ZKIKLfc\nZ0zRrXv33b8wgVgsgM1WkFOrZjMEv5/Xb6nXYxIOEREREQEAFFWFoASh2B3aWMURh6LisIPi5pq+\n+wbJCuFY3n8P5m+jT7FJP/6g295pO6qw4MBBuvXyG65Gbb8KVsQhIiIqMkFP6KbZX6+9hzVvLIYp\nSYnyCNVqhW3FMki//hJaT6FSHlExUgZvpC2rBjc8Wo49MZ/hEHVr7quuhWfUTgDiK6XkUsdKOIVI\nwumo9PKLAABqeaU21n7RZfDvvS9KbIV7z+xY6bZpwbuG81SrVZdsCwDyr7/APP9VwOPRxgLDttSW\nS66+IouRFifTF5+h9r7bUX7q/4UGJAkIVwg0LflcNze48VB4Dx6vrQvt7eFdBIgxiTdGRSnMbH1I\nlHcdkxRdl11ZoEgKx/z5pwAA26OzChwJUWExCYeIiIiIAACWRQsh+P2GNw46UsTEF3Ok776NG7O+\nNlc/kOJNtsYv448FAJY3XktpfyIiIsqP4LpQ+wnJZoEoCjBJnV9yEsM38SrH7gYAKL1mWu4CJMoh\nweXUlm0PPRC33XvP/fkMh6h7czigbL89AKDi4H3T3t3tzeyBDaXDd1ShtSWj42RdIADEtIh2X3al\nccZFHikxD8u4pl6IwI474Z/FS+LmSc1N8B1yaNx4+eknQfrjdwCA5/CJEBsbtG22Jx/LQcTFJZJ8\nHKGKIlSLBQBgfv89AIB/p13Q+MxLcF46De033wb3pKPQeuhE+MJVNTp+zjL6FyGy9SFR/oX/L0cE\nh2yUYGLPZ174TqFDICooJuEQEREREQCgz8nHAACkhvpO51qXfg5x1d+G2xwzbuh0f7VDqe+EZBn1\ny75D2x336oaFhoYEOxAREVG+yd+sQMUboYRbyWqBKAgpVcKJMGo3In8ZfzOPqFgJzc3asimmGiQA\neA4eF9cmhIiSE5yhxDYhEEgrqcb0yUcwv2dclaUzHZtmiAWohGP0QIzQ1grBG6oa49ll93yHZMg7\n8Qht2XnlNQAAddPNDOd2rDAUURVOwDV9uRTOSztUioipktMTRarZaCQJsFp1Q55jjkdw/wMBhwNq\nRSXaZz2G9oee0G7wi2J8+ykiKj5qZVWhQygY88cfAB1f72IEgmxXRT0bk3CIiIiISCcwZCMoJfE9\n3p2XX6Vb7zv6P4b7J+sPrzHJKcejDtkISk2tbkzwx9+sIyIiosIwffhBdMVigSjG3xzqjLxsqW7d\n/MlHWYiMKD/sD8dXv4lom/lIHiMh6iFiEgpaGlpgnXV/0ht5ERUTx6HfyUdnds5AULdaesG5EOo7\nf0Alm7zjDosbE3w+WOfOAQA0P/50XuNJJDBiW3gOnYDWh5/QfleyLKLlgUfQeupkbZ5SUwskSMKJ\ncJ82Gb5xh8J96hnaWOn55+Qm8CIRWz1No+hvRivlFXFT0klwJqLCaznp9EKHUBCx14/t998VP2Hd\nOkBVoX7xBeA0eD0k6iH4rk1EREREOqrFCt/B4+LGXWedi59+Ww//yFFJ9w+MME7O0Z1DTrN/fcek\nHZ8/vf2JiIgoZ1SHPbpiNmf0NHZlx5Yj3p79FDz1IiUlhY6AqNsRAtHqN9tsNxSl11yJsjNPydn5\ngooC62cfAwDWTr9ZG7c99lDOzmkcSOjn9m+3Pfw77QIAKLn4fG2zYLMa7pZ3koS2x/4H74RoRRxZ\nFuE78hh4Z9wO5yVXAACaFn+iq4LrH7Ft3KHcU/4LAPAeOkEbM7+/KFeRFwXB5dKt256eHfe5Rxkw\nIL1jshAOUdGRrJbOJ/VA/l1205Ydd9+hLSuqCrz/Pmq33QJVO/4HAyYciNqh/QsRIlFeMAmHiIiI\niHQEUYBqMkiSsdtRZjdDLS1Lvn9Mv/qEjI6fhCrpk3BYCYeIiKiICNHLS4LNijSL4BgfsgBtQDoS\n16yG5flnAFUtdCjUTbRcF7p5337R5fBvMRytMx8ucERE3VQgvgWVZdE7OTudcOONkJyhSjvKFsO0\nccddt+XsnIbC1Xhanp2DwOZbAAAs77ypbRatRZKEY0CMyQJxXXIFfvh5LZR+/XXf/Vufn6Pbx3n5\nVYAY+gwRSToKraTegqw7MqqE4514pG49sNWI9I7JLByiotH07BwES0rhO/7EQodSEP6RO+rWhc8+\nBQBYrroCtUeHKr5J//yV77CI8i71PgBERERE1Gu0z7gTTtGMmqcfAwA0rPgRAGA2SZ0m4STq3+4f\nOQqmr5aFVtJMwuk43/LS83BddFl6xyAiIqLcEGOe8Sorz86NoHSr5uVAxf57QarbgDaPB55TQuXk\nxXVrYb9wKtzX3IDgsOEFjpCKQkySlvesc7B+8jkQRQHuy6YVMCiibi5onIRRcvRE+I86Bt5JR2Xv\nXG43+s6MPqkv7baLbnP5UYdDqazM3vmSMEVaM8qSLsFVI0l5iSMbKstsoQVRhHvkaCiSDKVvP9St\nqkPN5oMheDzwxN6gjvnZhAS//57C8uLzcWNqVTXWr21C3/7hf2uW9CpoZCMBmoiyI7Df/lj949+w\nW3vpLXizGa5zzoP9gXsBADWHH4T6n/5ExaMPFjgwovzqpa8ARERERKQT+4S3JAMWC4K334nGM8+E\nUlEJtW9fbbNSljwJxz7zHsPxtvsfRtWuI0MrYpoFGWX9x9bgkI3S25+IiIhyJxjUFkVRhIosVI5R\nFQBAIKhAlvJbyFloboJl/jxIdRsAAJbX52lJOPbbZ8C26B2Y1qxC04df5DUuKk7y999qy4IgsCUI\nURYIQcVw3Pb+Ili++7rTJBzp++8QHLFNSueyvPm6tqzYHZBKSvDvqnoMGFwDADB/sDi1oLMk2K8/\n1JJSWBa8ltfzZptJjr531736FlxuP6oBwGJB/T8boKiqrnpOLMHthv3Wm+C6dFqP7LMkdqiE03Zz\nqOKSGJtklfbP3fP+noi6s16bgBPmvOYGeI45HlVjRgMAxJYmw3lKTU0+wyLKq979KkBEREREITE3\nz9RwwosoCsZPeEvJP0IKHUqH+/beBy13zwQGDMw4PLVDEg6c8eWbiYiIqDAEX6hNZMutd4XvGaV2\nI0iprITYZHxBVly/DuZ334Z50SL4Ztye15twNVt0SPaNSVaOtMSUf/oxb/FQcVN545Mo+5K0ARTr\n60Pbk7wvVI3dDXUbUmtraH3uGW1Z8IaquposZtRtaIXQ0AAh4E8x6OxQyisAkwn+nXaF5a038nru\nXDGZJAi+oG4sUQJOhOPOWxEYOQq+fQ/IZWjZ5/HAvGghfAePS/nhI7W2j7bc+sAjQAYtOXtgrhIR\ndXPBYcMRHDgI0prVgNNlPIcPWVIPxiQcIiIiItIl4UBOXuLae8RRsD31ROfHCVMt1i4l4ACAarXp\n1oXGBqiqyr7nRERERSBy01LdaONQJZBUdwzEf25ovW8WyqaeDeu8ubDOmwsAaDj7HCgbD81StJ0w\nuvG7YUN0c8fEYOr1BJ+30CEQ9Tjt06+D5Y3ElWAsc1/OWksq88cfaMtCh++zanV1Nmq7ZcR5xXRY\n3noD7TfOgGKzI9DSVqBIuk4UhYyq2km//QZ0syQcxyXnw/7ic2i75XZ4Tpuc0j5CW/R36z3ymIzO\ny0sjRFSMAjuMgrRmNSwL3zLcrtodeY6IKH/yW8+XiIiIiIpTzMVGIcET6RH+nXdFYOOhUIy+KHk8\n0UP2CbWw8u+2uzbWctd9aH4oQQJPEkqfvrp188o/oP7ya9rHISIiohzwhpMQLJa0dmu/6db4Qx11\nbDYiypxBQrH5t19gXvQOAECtqtbGPR5f3sKi4iWuXw8AaL/sygJHQtRzKEM3QeMlif9PiWtWd3oM\n0+J3UT7uAAhtqVcVUSoqUp6ba8HhW6JuXTPcZ5wN7wknw3PWlEKHlDFRECBLGWSJ+PNbhairLE8+\nBvuLzwEA5O+/022Tli7R/i0qjhL4RmyrbRPr67p87jRSoImI8kapqAQAOG69yXiCyZTHaIjyi0k4\nRERERARBid5wkv9c2el8tabW8KlfISYJp+njJWia9ybcp5+ljfn+72T4Jx6RdnyqQY/gvnvsmPZx\niIiIKPuEcBKOmmYSjveY43XrnqOPM2zdEGl3lRde46om5ccdCbjdUMrKtTHH9dfkKyoqYtKqvwEA\nwc23KHAkRD2L9/yLsOrj5Wg+/1KoHW7SqeGberGUDpXMKo6ZBPPSz2EJV1VLRCkrC/1ps8N1/iVd\njDrLRFErcZJJJZliImUQf6QFZHdRdtmFhuPisi9RNW4/VG82GOa3FkB0tgMmE9ruvA8A4B13WNdP\nzhwcIipCamX8+7V+QqHqzRHlHmvoEhEREREQCKQ1XbVYIAQCQDCIwNxXIe++K9B/AASPOzqnvAKB\nXXdPcpQ0SMlbZBEREVEB+TKrhNNRcOgmhuPWl19AsIutLVMltjRry/4R2yK4xRawzp0DALDPul/3\nmanqsQdQd/MteYmLipfgdAIA1JgELSLqOtkkQx62GfzTrkLLzjuj4piJ8Ew8Eta5L0O1WODx+mG1\nhJJzvP4g1AQ38hK1EVQDAQiyDFWU4NtiOFo++Awo4paD3b0VsyT2/Eo4sQS/H+1uP8rX/o3SE0NV\n/gRVRflJoWVVluE54WS0HXsiTHLXE6zEbv7vg4h6JtVq7WQCk3Co5yreT5VERERElD9BRVt0/feC\nzueHb7KZPvsEteecisDgIWj66nsILld0jsGT7F2xctnPaPcp2HbXrbJ6XCIiIuoawRt6Ul21dHKR\ntROJbpTa772zS8fNlDJkIzinX68l4QgN9YDVpp/kdAIOgxad1GtoSTj8d0CUM/6x++LfNY1wvPU6\nrHNfhv3eO+G44hI0L/4EysZDgbfeArY0/p4o//wj/D//BGX4ltqYuOofVI8cgfYrpkNwuwG7vagT\ncHqCVCr5KLV9INZt0NYFvx9BRYGU5WsLOdHhRrL1pecx9KXnE063fLkEALKSgENEVKxUcycPaShK\n8u1E3Rg/WRIREREREIy2o1JNnX9EjHyJkn/+MfTnqn8AAIKzHQDg22hotiOEqV8fVPHpLiIioqIj\neEPtKFWzuYsHCt2Ian7ldVRMGg8A8I8cBffkc7p23DSUnXmKttx29/1QKyqhVFZCbGqC114Kk7NN\nN19sbYHC5IteLfL5V3WUFDgSop7NZJIR3HoEAED+/TcAgP3B+9Ay5XwMOv24hPvZZ82EfdZMAEDj\nx0sRHDYc5kULAQAlt9wQmsTX8aLQ+P5nCC5fjr4nHhUa8Hnh8yuwWYo/UUVtbip0CERExcei/37Y\n8PVP8C35EvL4cagdUJWwih1RT8AkHCIiIiKCoMQk4djsne8QfhKt5MrL9McJPwnsmXhU9oILM8sS\nRFGAUl6htYpQVbXbl+UmIiLq9rLUjsq311gAgH/Mnlrii/usc+E9bGJXI0xZS2kpyo89Am233AG1\nsgoA0Dz/HVSNGY3Ke29H23En6ebb7pgB55335S0+Kj6shEOUP8H++taEttmPwzb78ZT3LzvzZDQt\nWATpz5W6ccHny0p81DVqnz5Qx47V1i2vvgJ7RQ3Uiy4uYFSdk7/6EtZbbix0GERERUf643dt2XPA\nQVAGDITvoD6Qw9eVBSbhUA9W/CnERERERJR7MZVwPKee0el0obHBeDz8JLBYVpqduGKI4R7yLS/P\n08akH77P+nmIiIgoPYInlISjZpCE4xuzFwBg7fKfENxmW228ef47aLl4GrzjD89KjCnHs8/++Ov3\ntfCcdqY2pvTpoy1Lq/7Wzbc/PRvysqV5i4+KTzQJh5VwiHLOnsIDI0kEBw5C9fZbwv7QTN24/MN3\nXTouZY9kMkWXN6xHza3XQ1y/roARda7yoH1g++h9APGfhTwJEom9hxya87iIiApN3BBtMegLv+7J\nkghEHqhUmIRDPReTcIiIiIhIS8JpmXAU1NKyTqcLMUk7uvE8PAkc2GqEtlw9drecnYeIiIhSFK6E\nE2lXmY6W5+fgj29WQh6kr24QHDYcvksv16rv5ZNk1f8cakWltmz/+IO4+Zb58+LGAEBctxbweLIa\nGxUftT3SjoqVcIiKnWXRQogtLfEbEny/pQIQBHhHbKsfqq8vUDDJqRs2wL9qtW6s9eEndettj85G\n0/x30PjeJ1BqarRxobU1LzESERWS8+rrtGXvoRMAALIck4TDSjjUgzEJh4iIiIi0i46SKcVupYpi\nOCw0NgIA1C4+oZiUbByjEjSOiYiIiHJL8IbbUVmt6e9sNkOurMhuQF0kSx0ulwkCGq+foRtyXnip\ntqzU1MYdQ/x3Daq3HYbaIX1QtucuEBqMqwhSD9DeDlUUM/v3T0QZa33w0U7nBDcemtKxWp6b09Vw\nKIvWL1gMxRJ9TRUibS+LTJ8Rm2HAyK10Y4FttoX34PH6sZ13QXCbbeE6e6o25j14XF5iJCIqpOAm\nm+GvZT/hz+W/atXsxHACjioIgMprudRzMQmHiIiIiCAooSQcMcUkHP/onQ3H5d9/BQAEN9k0O4EZ\n6fhEvN+P2j5l6Nu/AuYFr+fuvERERGTM6w0lISRIlO2M2VRcl6fiknAASNXV2rJSUQHXZVdq60LA\nHz//55+0ZctPP8D0+adZjpKKhehyQnE4ok/0ElFOtTz7Elr2PQjecYfBE36qPhHprz8BAMGNNk44\np+7l1+Efs2c2Q6QuEiUJojemkpzXV7hg0qQ6HGid/Sxa/vc8GpZ8rdvmPvtcrP38a6z7dDk8p5xe\noAiJiPLLMrA/Sgb1i98gCKyEQz1aZldHiIiIiKhnCYSScATZ1MnEENcFF8M+6/64cSFc2lvp1z97\nsXXC9Nkn2nL5Kcej9aHH83ZuSBJ8e42FWl5cT/ATERHllccD1ZJ5FRCjpJeiE1OtxzvpqFB1nCnn\no+rBe6C0O+OmCy6Xbl1sZCWcnkpwOqHa2YqKKF98+x0I55h94LCa4Dl9MqzzX00413PoBFjnvwr3\nKWeg5NpQ8qTzsElw3fsAajcO3RCUy0oQyEvklCqLWdKtF2MlHPGfvw3H1apQ0q7voEPiN8oy5E03\nyWVYRERFJ+F3PVFkEg71aEzCISIiIiKtHRVSvAmmVlTq1v0DBgEAxPXrQtvLy7MXW2dM+sShsrNO\ny9+5AbjO/i+c192U13MSEREVE8HnhWo2FzqMnFLKokk4kYQL9/gJwIP3oHTm3TAtW4q2197UqqHI\n3+qffhec8Yk61DOILieU0rJCh0HUqzisoe+AqhhN1nCN3R/2xQsBAIGqarivvAaeCUd/1VCwAAAg\nAElEQVTAe+zx8I3dD6alX8D89gK47nsQsNm0/VRTz37/6q58O+4E85dLABRnEo7p048LHQIRUfcm\nCIDCdlTUczEJh4iIiIi0JBxVkjqZaEwNt4iS/voT/j59oebxRoTg0t/Uarv9nrycV2xqhOPm6/lk\nOxERkccL1WIpdBS5ZY4m/arhm7diSbT6ifWLTyEdsBeaF34Y2tZQr9td9bjzECQVguB0Qs1jFUgi\niiHHfH8dtgVayiugHHssGkbtjvKS0PuSb5/9AQCtj/0PTfUtqIxJwAkdg7dIilH7Hfeias9wG+wi\nbEdlffG5QodARNS9sR0V9XD8hElEREREEJRwJRwxsyQcwRt+Ms3nAxwlWYoqNe76JkTq7vhHjoLn\npFPzcl5x3Vo4br4eqrf4nsojIiLKJ3nNKgRq+xY6jJwKDN9KW5ZXfAUAEMtKdXNMX68IXUgWBK1F\nZ4T90YfgueCS3AdK+aUoEF1OqHZ7oSMh6p1iHiJxXjINit0BURRg9Qfj58oyyvtUaauNH34B76vz\nIA8bno9IKU1qafQ9VvAXXxKOURvC1htmFCASIqJuiu2oqIfrBk23iYiIiCjntHZUXUzC8Xp1T4rn\nQ7+pZwIAnNOuRvMrb+TtvJG2G7Z5r+TtnERERMVG+uM3CH4/TP+uLnQouWW1aotifR0AQCqNTzy2\nhJ+M71gJRwrvQz1M5DN0D2/HRlSsVCnmGeOSEohiqCWgxWT8vTayHQCCW24F5ZLLtDaCVFxURzTJ\nRf7u2wJGoid+tQzSLz/Dsugd3fgvv2+Ad/KUAkVFRNT9qGA7KurZmIRDRERElAK1p2fmdzUJx+cJ\n/en3AQVqRxHYYjiQx6eQVXMPb7tBRESUgmK6MZZr3j32BgC03f8wAOOn4OU/fof450qYP/0YitUG\n7+575DVGyrPIdwSRl1iJCiLD768R5gTJOlR4amW0apH9/rsLGEmU7ZEHUX3QWFSNGa0b92+/Axy2\n/D6MRETU7bEdFfVw/IZIRERElIIe/5UgGHryQM3wIqbk8QDr10N0OoECJafElqvOiwIlGxERERUT\nVe49N52aX56HFT/8i+AWw0IDBokX9nvvRPVO24VWJAmtc+bnMULKu8jTu0zCISoM/t/r0dwnnFLo\nEHRKrro8bqzlvlloeeblhNWXiIgogV7ejqrHP/BLTMIhIiIiSkVP/2AsKOFKOGlcxGx+YS68I7bV\n1mu32RwAIP36S1ZjM6IYJNyoJfEtIXLKFHPTMVJJiIiIqIdSEn0WkmXj8R5IFASUpPGku+j8f/bu\nOzyKcm0D+P3O9mTTCQjSxI7iUey9i11RVESxYFcUj733w/HYEOzlWLHr0WNFFMtnx4roUekI0hJS\nN1tn5v3+2N3Z3WzJbrItm/t3XV7OvPPOzJOQZHdnnnkeF6AocO8eqobj9+coMiqYUBKOYDsbooLQ\nBw6E7nDAfcqkQodCORDzGb8IPnPrVVVxY/7xJ0HW1xcgGiKiXk4IiD7cjsrrL/zrGuUWk3CIiIiI\n0lDiOTiAqgb/n8GNtMB+B2D97E/jxpW21mxFlVT7JVfGjenVNTk/b2fuw44EAKgrVuT93ERERPmk\nacmScPrWk98OW+L3Su13z0i6j2KzBhcCAWOs1BO8+4zQv6NkNQ6igpCVVVj4wyJ03Fkc7Yoou9zn\nX2Qsiw5XASMBEAhAac39tQ4ioj5DiD77mchx/3QMGVoHsW4dPD610OFQjvATIhEREfUZWh/Oro+m\nJXiCTLiCF7QyrSZjNhXm7WTHOZOx9uJIIk7LpHOhbzQi73FoQ4YCAOqOPBj2mU/n/fxERET5outJ\nLpCGKoC4z7kgj9EUjtmUuOKJXluH5vc/TrhNWINJOEILXmBV/loJ9YM5uQmQ8kpItqMiKjSzw2a8\nFlFpkQMGwHvEUQAA8/yfoXzwfsFisc58xljuuCzYlsr7t9GFCoeIqPdTRF6eetV0HapWXPcEnLdc\nDyElKiefjdYOVkstVfyESERERH1GT3JwSiUz37R4ITYYWAPbyy/EjItQ9RpZGV9eOZVCld4XAkBd\nP2NdverqwsRhswEArGtWoeKSCwsSAxERUT4kvXgZCCaW6IM2zHNEhWHqlGzR/P7HcE08Hf4xh0Dd\nbnv4QlXyAKDljXdDO4Wq54S+V3XbjcSgk4+BaGzMS8yUQ+EPGEwAICoYh7VvVWTrc6zBz9zVYw9D\n3UnHQVu9uiBhVF35dwCA59jj4Tn/QrSddT7WPvF8QWIhIioJQvTsYn2anCePR9mlU3J+nnSJtWuN\nZesnH6HqoeQVVal3YxIOERER9RlJn+BOQ4nk4MD2UjD5pmLK+THjSmsLAEDPMAkHAAI77tzzwLrB\n0hS5cSUL0IoKiDzZTkREVPKWLoHy9FNxb4qE1wMAkH30NVHdbnt47p5utPRsv3s6Vl9+AxoXrUBg\ntz0AANISSsJR1ZhEJqWlOe/xUpaFfx8EL7ESFYqlj7VF7Gtk6MGXMOW77/MeQ33/SmPZtG4tpLMC\nvn/cDtG/f95jISIqGUJA9uBafbqcH85C1fPFU73c8sqLMetDp0+F6ddfChQN5RI/IRIREVGfofUk\nCSeLcRQj0dYGAJCVlV3MjNf6/CvZDqdLQgCmIvhX6as3HImIqO8ZtveOGHDVxbB1umgo1geTYmW/\nfol263NkbR28k6fEVhcMVcIRagBef6QtqGASTu+nsx0VEVFOhavJhZS99mKSiTni88WsmpYvN5bt\nrMJERNRtSnMzbAt/jwyoavYrhapqZLkInrC1vfwCqm65Pm686pTxcWM9eZiYigM/IRIREVGfoffg\nzXaptKMydH6KvTXcjirzJBxZVQ0t6um0wHa574suhIBSDP8mlvgknIBaXH2GiYiIeswf6VNv/iNy\noVRrboayLlhOW+9Xn/ewipXTYYkdMEcq4US/T3A8MD2PUVFOhC+Osx0VEVFOOJ59Mmbd+e6beT1/\n+IGlMN9hR0S28W8/EVGPmRb8AQBwXnoR+o0cAWXpEmNbwnbImfB6I8uBAOByxSVX5lPl5HMSjut1\ndXFjbp/ao3sZVHhMwiEiIqI+g+2oACS5RqSHK+FUVHTvuFFPp7W+9Hr3jpEBRQgIEfxHkYV88jj6\niQoA6OhAxeknAf95rTDxEBER5UA4WReItFYyf/8tNth8GMqn3QUA0OvZkiEZaQkm5YhAAMP33t4Y\nt7/zVqFComwJf0hgJRwiopxwn31eQc+vtLfGrPv3O6BAkRARlSbr++9BV1U4XpgJAKg8YyKUNath\nn3weHLfdBMuXnwMATL//BtsD09O6SN/Y6oHXr0JEJdyIDhfqRwxC5YRxOfk6ekIdvUPcWMDjgxbQ\nEswOKrkHhkuQuespRERERKWhJ+2oSk6nN+p6uys4XO7s3vGibjzEtF/IId9xJ8I57S603/tAXs6X\niPDHPj3Rb9MhEKqKivffQcMxxxYoKiIiouwSgUglHJgtgMeDmkP2j5mj17MSTlKhZGVl9SpYV/4Z\nt1lKCSEERFsrZEUlq6r0ElJKiFA7qoImhRMRlTDvaWei7NGHYsZsL7+Qt+RH808/AADcZ52LtpMn\nwbTlFnk5LxFRqXNPuRRl0++G89Yb4Lz1BmPc8st81G2zeWTiA/eiYV0bavfaGQDQvOMuUHfaOelx\nTfN/Rv1dd6Hfe2/Afe7kyPjChQAA22efAg0NUKI/4+aBXlVtLKsjt0brE8+ibpftggPRFXsAoKMD\nww7ZE/qw4XC9nPhhV1XTYTGzLWIxYxIOERER9Rl6dAlLlwv6+vVQhg1La9+SyS5PclOn8p03AADS\n2b0knPANCAB5uximb7IpFixah5pKe17Ol4j/oINRfsdUY11EV8bRNMDED0NERFQC/LEXKK0ffRiz\nrpvNkFEXFSlWuHqQ8tfKuG3mj+egfbe9UbHgV9TsvydcN0+F57zJcfOo+Gi6hEmG3gMzb4qIKCcS\nJfkma+eRS7Kyigk4RERZ5D7zXJRNvzu9yYGAsai0taScWrv/HsZy2cP3G8v2118xluu32jjNKLNH\nr62FusmmMC9aiNYXX4O+wUCsn/c76v62BYTXEzPXMu9H2JYuBpYuhsvjgfm3X6FuOzrmmntAZRJO\nsWMSDhEREfUJpgV/YIs9dkTb9AfhO/FkVJ8wFpZvv0Hjr4sh03hyu0RScGD5dm5wISoZx3Hfvcay\nLCvv1nGFpnY9KQdM5iJ+6jgQYBIOERGVBBGdhNPcDN1mi9muqCrb8aQSqoQjFi6I21RzwljUAPCN\nOQQA4LzxGibh9BKqpsPKdlRERDnVOcnXPfE0aNuOztv5Ky69CACgDxyUt3MSEfUFcsCAtOfGPAQS\n/SBoBpTly2LWfQcf2v2K8Bkyz/sR5kULoTQ1QR04CPoGAwEA0h58sFR4YivhKCsi1VPrhwW/T95x\nJ6D9vocBkwmO+6fD+d47cL01i59DihiTcIiIiKhPsL/yIgCg4rIp8J14MizffgMAMC9agEA6STgl\nkoVj/exTALGVa6JLfnb7jXvoiQT34Ud3O7busJgK+0FDHbk1XIcdBec7/43bJgJ+48MUERFRrxaV\nhFP+2EMof+yhFJMpjsUCALB9ODvpFNv77xnLpj9+h7Y5n7bPJ8+Kv+DYoL/xb5UOVZORmwCCF7+J\niHKl+d0PYZk+DZ7HnwI6JQLnmn+PvSBnzYKceFpez0tE1Bet/+FX1I3eKm5ctDRHVvRuXqR3lMWs\ntj30b6C8ew+jZqr8tptgnnEPACCw6+7GuLQ7ggudKuGYFy2MO4b91ZegDR4C9zU3wHnL9QCAjvXr\n03q4mAqDnxCJiIioT5BKqPKLpsWMOy+bAmXFn9C6yKIvmXZUORJO6lEc+U06MZsKXPvfbEbLo09h\n/Uefx2/z5be3MBERAR5fYSqzlToRSP6apg0chIa/1ucxmt5HmoPPwFl/+zWt+bV77gRl6ZJchkRR\nTP/7FUO33xKO229Lex8pJWRbG6TPFxxI0vKViIh6Tt1hJ3iefSHvCTgAoG80Av6zzuHfeSKiHGtY\ntgb64CGJN0Zdl5fdrMYumptiB/KUgNOZ//CjIivhhzc9HkDXoTaFko283vgdAThmPh1TJce0fGmu\nwkxLV/dT+jom4RAREVHfoATbAolObw7NCxeg+qhDsMEG1XA8MCPp7r05Bcftjf9w4t9u+5ycK9+V\nX0wFroQDADaLCfrW20DdalTMeKoblkRElH3KmtWovOkalJ88HlCZjJNVKRJLm774LqPqIX1SN9pT\n1hx+UA4CoUQsP3wHAHDeNy3tfQJvvY0RozZC5VmnBQdYBp6IqGRZzGwzTUSUC60zXwIAtF91HVAW\nrFTT9vC/4+YJt9tYdjx0f7fOpSyLJKy0TX+wW8foLvcFFxnL/n33j2wQAtJmh2nlClSNPQwDtxgG\n06+/QISScLzHnwjPoUcY05XGBlQfEtnfeeO1uQ8+hbaOQEHPX+z4CZGIiIj6huibH52q2phWrgAA\nOG++Lvn+vTQLx3nJhRi4R6Rfum/0jgAAXTGho6Ep2W7dJvP8ZJpSRE+jtbz+Nnx77Qt1s82DA34m\n4RAR5VPt6K1Q/e+HUTb7XZi//67Q4ZSUZImlrmtvBJzOPEfTC3WRhKP1HwDvJpvFjCkN6yKtjii3\nMvw+m36Zjw3PPAkAYP35p+Agk3CIiIiIiDLiP+gQNKxrg/eSKyJju+9lLPt23xMAIFztxpht7tdJ\nj2cOvzcHoG04GGuPPB7uKZcGt4Wu/zf8uhi+E0/OzheQJllTi78+/wHNsz6Kq8AjHXaYV66A9asv\nAACWrz6H8AWTcDouvxqup56D9+hjjPmmdWuN5cAOO+Uh+iSkRKDD3fW8PoyfEImIiKhviLr5YX/i\nscx2/exT2P/v42xHlBeOmU/D+ucyIFQq37RoAQDA/v1cDN9qOJQ/l0OvrgYAND3+TM9PaMtvJZxi\nIqtr0Pbqf6FuHayI47z5+gJHRETUt4jo6jdFlKRZEkJJOHpNTcywf78DCxFNr2N747WYdbWuH/SK\nSmPdfckVaP3iW6xd0YCVvy0zxqt32yFfIfZpor2960lRTAlahUn+zSEiIiIi6jHZr5+x3HF18Nqq\n0tbWaVKnp2U1DbKxEc5LpxhDzR9/Afnoo5BRVdQDm28J1NdnP+g0iBEbQR0d//lOaWmJWdcHbBBs\nTwUY7araH4qvDgQA2iabZjfIDJRffxVGbjcCorGxYDEUOybhEBERUZ8go55Otb3+akb71h57BDY8\n9bhsh5RXor0d1lnvwtzWGjNu+fJzaEOGQSt3Qjvy6B6fJ9+VcIqRsmoVAMD29n9RccTBsP33PwWO\niIioD1KCN8TZozw7RKgdlfviy7FiZRMWv/A2Vj37KrRR2xQ4st7BvOCPmPU1M18DLGYAgFpdC++p\nk6AIAcVmg7W2Bt7jxgMALEsWwdRpX8o+tbnZWLa8/V8jeT0ZqSRIuGElHCIiIiKinouuIhp6cEF0\nup5tf2FmzHrZPXeg/8gRsMz70RiT1TUwKQpEIPKwjrbV1jkIOD1mU3qfF5R166AsXQIpBPTauuBg\nssqqgcK1gyp79CEITYPl6y8LFkOx4ydEIiIi6huUqDerURfak1G10rppJ9rbUHXK+Lhx86/zIbxe\nyGxVsLH33Uo4Yd6JpxnL9m++ROVZpyWdS0REuRGuiqOqvbSfZJExLQxW0pNWC+xWM5TddoXpQFbB\n6S6zxw29/wAAgPu0M2IuqgohYHv1JWPdedmUuP0puxwfzDKWqydNRMUFZ6ecL1UtfpBJOERERERE\nWdE24yGsv3MGZKj1sfJlbKJHxcUXQITaS6majvI7/xmz3XXDrcZydMsm/8GH5irkLok0K2dWXH0Z\nrD//BL2yCrBYUs61fjInC5H1jNIpQYoi0vqEOG/ePEycODHhNo/Hg/Hjx2Px4sUAgEAggMsvvxwT\nJkzAuHHjMGdO4X8AiIiIiKIvjFsXdv1EsaaX1k07pb0t4XjZIw8CPi9gz04Fm6wl8/RivuPik52I\niCjPvMEe6oESS6otFOdtNwIAlFAis9NhgZKoGggl5J5yacy6vt12aHtyJjpOOhX+C+OTbDxnn2cs\ni46OnMfXp/l8sP32a8yQ/c3XU+5Sc9apcWOigE+hEhERERGVEt/4k6CfepqRhGNb8FvcnH6jt0LV\n0Ydig8F1cdv8Yw6JLB9yGJqeexXNM1+B7+hjcxd0lnW+lt824yFj2X3O+QAA26x38xpTQl1UEe3L\nukzCeeyxx3DdddfBl+CbOH/+fJx00klYsWKFMfbmm2+iuroazz//PB5//HHceuutcfsRERER5Z2a\n3oVxj9sHx333wvH0EwAA2x3/7GKP3kH5YHbMeseOuxrLor09a8kz0mrNynGIiIh6QoSScEqtsl2h\nhb+vlBnPhMiDberIrWEqc0DbeFO4p90HGSqxHq3jpn+g9cnnAAD68I3yFmdfpDStT7zB70fFicfC\n/vjDgNsNZe2a1AeSpZXAT0RERERUaIk+K0Wzfvk5hBZfpVKvqY1Z1w48COpBY7IaW7b4d9sDAKB2\n+twnOrXW9p0wAR2Tp6DljXcBc+oKOXnl9RQ6gqLVZRLO0KFDcd999yXc5vf78cADD2DEiBHG2MEH\nH4wpU4JP8UgpYUrWp4yIiIgoj4Tfn9Y8+913wHnrDai75lJgzWpU3lUaSThV/7rNWG74cx28Z55j\nrJuam7JWCYftqIiIqBgIrwdi/XpsPHIoHI8+WOhwSoZ0OAodQq+k1/c3lltfeBVKV6XITSb4Dzgo\nuBwq7y2Z5JETojVx+XTnVZfCPucDVFxzBaqPOwp1ozaDaG5KepzA37bNVYhERERERH2T2QzPpLPS\nmuo96hj4tx2NwEYbQ9bFV8cpVq2vv4O1q5rQ+p+3U08UAu4bbkVgtz3gO2psfoJLg+5ydz2nxDoO\npMvc1YQxY8Zg5cqVCbdtv/32cWPl5eUAAJfLhYsuuggXX3xxWoHU1JTBbO49CTv19RWFDoGIiChv\nSuJ1zxJ/s0M740woO2wPcV6k5H//++40lm3zfoiZXwrfB9m/P+qH1EOrjr2JZi4vy8rXV1FfjYoS\n+D5lWyn87BAVEn+HKFOVVgH88h3g9cB53VVwXntloUMqCeW1lSjn72Pm6ivQPG4CzFtshrptNk9z\npwpImw3WJYtQ52tD4J13YTv6SGDAgJyG2ucsin9yFgAcM582li3ffgMA6LfsDwTMmyacX7HbTll/\nD8zXPiIi6o34+kVEWbXvXsATj0XW77sPuPDCuGn2444BTjgBEAL1vbFASE38Ay9J/54euDcAQO68\nS8H/5lbd+Q/gjttixlpdPlQ5Qw/8NjTA95/XYTv3LKCrh1FKTJdJON2xevVqXHDBBZgwYQKOOOKI\ntPZpbu46U6pY1NdXoKGhvdBhEBER5UWpvO6Vt7hQ1mms+aobIKuqgSOPR/2G8RnylRNPjFnvTd8H\nKSWEEKjvvKGtDQ0N7bC6/KiKGg6YLGjtwdcXPk+rT4e/F32fciX6++7bYiTa+D0h6rZSeR2i3Iv+\n29u+rhna0EpUh9b5M9Qz4e9t0y57Q+P3slsWXfsvjBhUCW8G37/aikqYVqyAGDIYNgDqv25H8zc/\n5S7IPsiyqhHVANQtt4L5t19TTx4zBhYAekUFlPbYf8fmjgDULP5u8LWPiIh6I75+EVG2lf04H+Wh\n5TWvvA3T3nuh+pHHYPnlZwBA+13T4d1tD2CTTYHm3t0aqfN1/FR/T2srq6C3taGlQH9zo2ONjlO0\nNKPfZsPQfvNUeM+bjOrDj4Rt7tdo96vwRrVpLhWpkqC6bEeVqcbGRkyaNAmXX345xo0bl+3DExER\nEXWLcLnixmRV6NacxQLfEUfnOaLcUjUJJGhbILxeAIDWqc8sbFlqI2WxZuc4pcTjgc4WEkREeSV8\nXoCtk7ImsMVI6FYbtC1HFjqUXstqVrpuQ9WJ0t4Ws25eugQen5rNsPo84Q1eqJe29N/DSmuCNq5W\nvgcmIiIiIso20dFhLCvOYDpO++NPwXvceDQuXgnvKacHE3D6GOkoA9xFknQkJcTatajvX4l+mw0D\nAFTceA0AwDL3awCA6fffChZeoWSchPPWW2/hpZdeSrr94YcfRltbGx588EFMnDgREydOhDd0s4eI\niIioUEwrlqfc7r740jxFkh+qpkNZ8WfS7dqobWLWpT3BzYTusOSk0GKvpVdXw7JmNXRNT38fJuwQ\nEfWc1wuo6SUrSCnhDyRuSUMhug6tvLzreZSU1ZJ5SXTh88WNBTJ4T0FdE57ghWv/mEOh1vaD65ap\naFz4J9qn3Y/1P/4v4T5KSzOk2Yy2K681xqTSC0veExEREREVucBOuxjLJqsFAKCN2ATtDzwKWVFZ\nqLByTttwcMrt0uGA8BSgy5CUwLJlkFEPISh/rUS/UfGJULb/vGIsmxYtyEt4xSStuySDBw/Gyy+/\nDAAJ20s9++yzxvJ1112H6667LkvhEREREWWJ359yszrqb2h5+Q1UH18CFXGkxMDdtoOli8SjmF1q\narNzarMlK8fp7fSKSijtbVC3HQ3rJx9Brl4DDNkwvX3bXbDOfg/qEUcBtiwlRxER9QHqkKEwhxJQ\nhccDBAJp7Vd1/NHQdQnXa2/mMrxeTeh6n+vfnm0Oa3aSNGpuuxHa1H9m5VgEIJSEow3aEGvnLzSS\npbwnnQLRqRJRmNA0+LfeBr5LrwT+9Y/gmLsAF8CJiIiIiEqc//AjjWXRR6pPescei45rbkw9qbwM\nYn1jfgJC8OElIQSss2ehauIJMdusH32YcJ/Kc88wlk1//ZXT+IpR1ttRERERERUj0UUSDgAE9tkP\nUkn89kgv60VPf6tqTALO+smXoH3a/Sl30QdskJ1zW5iEAwBNX/2AdR9+Dhn6ftg+fD/tfZ233oCa\n889E2bQ7chUeEVFpiqp8I3w+CDW9JBzbpx/D8dknOQqqNEgpk75HovRUlGd+wVjvVx83Vvv4A4CU\nsD/5OJTly7IQWd9mJM84HHHVimSq9/+dEqXVHXbMdmhERERERBT9MIi5tKtPts14CM1nT0b7I09C\nHzY89WRHGUztbXAedlDO4zItXoia3XaAef48WGfPituuLFtiLLc+/wpa/vN23BytPv6zbanjFRQi\nIiIqfboeV/IwsMlmCae2PfMC1GHD8ef7n8du6E0tgjrFGhhzKLwTJqJ90tlofer5hLuYfk9cbj/j\nU5vYjgoAZP/+ENtsA9sHweSbuisvTnvfiqf/DQCwfP9dTmIjIipVIioJx/rf/0C0thYwmhKj6xCs\nhNMjSje+f+7zL0o4bvr6K1RceQlq994F5u+/RdnUW6B7PAnfr6qd2lc5LzwXZRdPzjiWUhVuRyUd\nZfEbTSas+WM5Vi1ZA//o2CQb08oVAIA1q5qwaPE6wFTaNwSIiIiIiAqt1Cuw+8afBPW2qWnNDX9+\ncXz7NWSaVYC7RUrU7ro9LIsXouKCsxNWyC2/fzoAoPWp5+E/YAwCe+wVN0f3eHMXY5FiEg4RERGV\nvPIbr4HS3Bwzpo3ePuFc/0GHoPnbn2EetTWanngOgaHDoQ0Z2iuScIybLJ1itThsgBDw3n4X/Ice\nnnBf78mnZScIC5NwekTTIss+H8rumIqym68vXDxERL2JqkK3BKuNmFeuQMXfI4kGYv36QkVVGqSE\nZBJO3nkuuAgNN/wjbtz07jsAglVcag7ZH+X33oUBwwbA8cgDcXM7J+E4Xnoe5c8/k3a7tlInPMFK\nONLhSLjdVFMDc7kDrW+/D++obSPja9cAABSTCYqJl1eJiIiIiHLOzOvOYbI88hCBnDkzZ+epmHK+\nsSxcLtiffTLp3MAOOxnLvoMPAwA0zfkcuqMMcl0DvB5fzuIsRvyUSERERCWv7JEH48bc512Ych+L\nWYF2+BFo+e5n6PX1gK6nnF9o+odz0PZrqNpPp1jT6ZerdVXiMl1sRxVDr6jscmzOIhYAACAASURB\nVE5Ajfr3imqbJvw+lN91O8ofmJ6L0IiISk8gAN3pNFajW1FWXJq4okiMXpBwWyhC6oDgJaS8EwL+\nc86PG6565L6E08tvui5uTNUS/1w7HnuYP/MAhDf4RKa0J07CARCsAmU2Q997n4TbLGb+bhARERER\n5Vz0w4t9nHRWGMsDrpySs8929hefM5aFqx0ixXlkVMup9gcfRdP/fQNt1DZQPG6ULV+MIcPqEViy\nNCdxFiN+SiQiIqI+SR+wQfqThQKB4r1JIdpaMWDCWGx+QCjbvHPCkLXrxBhpt/cohrZHnkD7gYdA\nHbl1j45Talpfe9NYtnz1Rdx2XUoE1MgHSBGISsLpVL2JiIhSE5oGWe5MuE1pWAevX4Wup3g99/a9\n8shpkzJh2WnKPavFhPXfzYe61agu54rOidjtbai75HyYfv8tOBB1wdR507WoH1CFijNP7dvJOF1U\nwokRddG//fa7jWWrma2oiIiIiIhypfXxp+EedwL0wUMKHUrR0DccHLMuGhtzfk6lpSXptvZLr4y5\nZiCdFdC22DJunn3GvTmJrRgxCYeIiIj6pkwulitKcVfC8UUlbrjag0+rR0nWL1ePyphHOjceUoUw\ndhzWPPIMYOJNiGjqtqONZcunH8VsE2vXwnL7VNgfuj8yGFCNRfPSJRmdy+NTu55ERFTKVBV6eXni\nTcOGw/z0U9BdrqS7C68nV5H1flIG3w9RQehDh0EdtU1acx3nnIGK8ceiYsJxKL/5BlS+9hKqTj4e\nAGD98P24+fY3X4eyfFk2w+1VhCf0e1/W9Xth+/PPGsuB3fYwlhWFCWpERERERLniP3IsOh58jJ9J\no3W6V6GsW5v1U5jmfpP2XDl0WPJtUW3Eap9/EmLduh7F1Vvwp5WIiIj6pGSJKQkJUdRJOMIf6aeq\nLFsWH2uSFlFtz71sLPe0Eg4AKHxCPqHWp18AAMjK6pjxqgnjUDvtXxjwzxtRfttNAGIr4WTK1dG3\n+uoSEXUm1ABkZRU8E0+L2+Z49SUMvPYSVJ13ZvL9C1gJJ2WFnmKg66yEU2DSaosb08vLERixCVw3\nTzXGnK+/AvtHH8D+4ftwPPMEAECsXw8ASZNtRHt7/KDfnzJprVQId7gSTlnXky2Ri8d6bV2uQiIi\nIiIiIkrNF3v9Qlm7JuunkEsjraP8++4ft13rF2k/Jauq47aH+Y45Lmbd/NEHWYiu+DEJh4iIiPqm\nqAzsrkhFKe4y/f5I4oZp2dK4WGVZ4psKgV13j8yxZSEJh08BJySrqgAAoi22ZKdl/jxjuWzGPcEF\nf/eScCrOOR0jtxgI83dzuxckEVFvp+sQUkJYLXDdPQOuW/+ZcJr9q8+SH8NTuEo41rv/Beuc2QU7\nf5dYCafgpM0aN7bq16Vo+fqHhIln0ZSOYDKNnuTCaDgRJVrVicdiwIhB3X5vUtSkDL5n0nWjEk46\n7ajcF18WOUT//jkLj4iIiIiIKBXR6fpFLirhOB+cAQDwHHoEtKj2V3pd8IEEoUWqskt7/EMjYe13\nz4D7pFMic5uasx1qUeIVFCIiIuozZHRFmAyScKAoEFIWbSKOCASMZdNfK+Iq4aTKRDdkpRJOjw9R\nkvTKcBJOW8y4jLqZ6Tv4UACA6c/l3TqH/fXXAAA1hx7Qrf2JiHo9NXTxJ/T67jntTLSfMglN/xdb\nPllPUQmvYJVwXC7U3DkVVSeOK8z508FKOIVniU/CsZWF3r/Zkl/wjFZ1wdkAAGkyoeHnP9Bx5bUA\nAOHuiJ0oJayffQoAsM56B4iqiKMsXVLUFSLTUT+gCjWHHoB+g2qhNARLoadTCcdz9vlYP/EMtN33\ncK5DJCIiIiIiSqrzQwTZroRj/vkn2H77BQAQOPxI6PWRqjf6gIHBhahrBCLVZ0SbDR3T7kfro08G\n929uST63hDAJh4iIiPoMWV4eWTGZ0t8x/IaySJNwYp5Q9nqB7rS0yMKNNcGbcwnJykoAgNLaGrsh\n6mdQhP4NwzeC4g+S/N/UdN/0ngVIRFQCLF9/CQCwffpxcMBmg/vOadC22DJmnqm108WeqAtFwluY\nSjhCDXQ9qdAkWAmnwFJWakkjuVw0NxnLbc++CGwwENLpDG4LVcIRTetRs91IOK+4xJhbdeapqN1x\nG0DXUXb7bajbeVvY77+3m19FcRG6Dku4imCaiUye2++C74QJOYyKiIiIiIgoNfeV16LlzPPR8uqb\nAAD7009k9fjK6tWRFU2DrK41VgM77AQg+CBT6xMz4dlzH/j32LvLY+ojNgYA1E2/I6uxFiteQSEi\nIqI+Q9s86kZcJgkj4ZtORZqEIwKRJBzh9Wb0dLJ/730RGLhhVuJgO6rEjFZfnds5RP88hZ5AL7tj\nKgBADyXuGFQViZjnfoPaW6/PSpxERL2Z/dWX4saUBK/1ovNruaZFthWoHZX5f78W5LyZEJKVcArN\nfcEUrD9pEtqnJrhgGfVv0/zm+wn377f5cGPZf8AYAIAsCyaomz4PtmlzXn81zH+thOPpf8fsa1rf\niJr99kD5PcFzV9x2Uze/isKz//vRxBvS/Pm2WTJI5CciIiIiIsoBWVGJwNTboW49CgBgXrkiuyeI\nulYiq6qhV0cq7XsmnQXdbEb7tPvhP/xIuF57M60q+3pF5Hq3adHC7MZbhJiEQ0RERKUt6mZb22NP\nYd3Pf2D5+59neJDQRfmo5BY5d27Wyzx2mz/yBL3w+TJKwml9+Q0s/+KnrISR6GYnAbAEn06PbhsG\nKSGiEmusX38Fyxefwbx4EQBAHzw09hhJknBMK/+MWfftvW8WAiYi6oUCyavJeE48Oek24Yu0oCpU\nJZzqow+NrOg6ICU8bl9BYklKSlbCKTSnE21T74SsqEy4efVX87Bq/mKou+wK103/SOuQpgV/BA/9\n74chGhpgf+XFpHPN//sl85izyN3S3q39Opqj9nO5UHH1ZVmKiIiIiIiIqLBkbV1kJSpxJuPjeL3w\n/PwrEHo4SbS3BcctFvgPOAiBXXYDAHiPPxHayK3w2y8r4BubWUvtmM+ynR9WLUFd16slIiIi6sXM\n8+cBALT6/tA3GAgBQK2sS71TZ0psOyrR3IT6ww+AtNnQuKIhi9F2T3QlHPh9EIgkHsmu2m4JAbst\nO28JeW8uCYsl+P+odiOiwxU/7bNPjGV1081ibnYJTUWiOkyioyN2vT3+uEREfYKWOFkRAHzHjYfj\nhZmRAVU12vc4r4rckHeePQlNfyxLq7VProgOF6qOOhT1v/wM7977of2VNwoWSwxdZ9vJIuCwmeJe\n+8PERsPCaeOQFRVpHc970ikoe+QBAEDtbtvHbfeNOQS2999LuG/V+GPSOkc2WD/60Fj273dARvvV\nA3Dddjs8p52Jfhsnrv7oO/jQhONERERERETFruOAg1H+4SyIDhdkZVXmBwgEYLntFvR/9H4AQOPi\nlRCu4MMMbQ//GzCboW80Ao3/WwJZFTx+RXl67XyjyX79IC0WiEAAwl9kDx7lAJNwiIiIqKQ5r7wU\nAGBqWGeMWUwZZouEs0tCFWZEe/BNqPAVyZvFqDetwhtbCafxvY+63D1bZfV5cy4xaQ4m4URXwhFN\nTXHzRIc7shxVmQFA0ko4cdWYGgufFEZEVAhCS14FLrDHXmh57S2U3X8vrB/PgWhthawLJuTaX37B\nmGdqb4Nl7tcI7LZHzuONppc7oYSSM22vvwbLLz8HY/v0I7TrenFkuUoJWQxx9HEmRYFv3PEwPz8T\n/iuuitsWJp3OpMfwnHqGsaxtEWnVqrS2xMzz774n2p55ER1L/sTwXYMlzlufeRHmuV+j/P57YxJj\n8qk753VedxXMc7+JaUfX9PGXqN03+DSnf5/9sxYfERERERFRPimVwQozpo8/gnrU2Iz3rzjndNjf\nftNYrzpxHPwHHAQAkOWRz5ayXz9j2Wzq3n0Az/kXoWz63TGV/UsVk3CIiIiopIWztqOZM0zCkVYr\nAEBZ3wh9w8FJn0AuFMu8qHZSumYk4TQdcSyw7XZ5i4PtqJIIV1RQVVScewbUbbeDNij+SWzrB7OM\nZeHtlIQTSJaEsxYA4B13AmxvvAbrn8uCpUe7qoBERFRiZBf9xwN77g3t9VcBAEpzE7S6xFXxbDOm\n5T0JJ7DLrrDN+QAAUHHZlJhtornZSBgqKF0H+DpfFGRlFda/91HKJOpwAnAinrPPS3l83+gdseaV\nt1BWbgeEQNmIofBMPB3W2e/BP+YQ+A8+FO4rrolp+Zpr5nk/oebIMQCAxt+XQjrK0trP+t7bqDo3\nmHRkf/N1AEBg1DZoefYlYNCG0IYMhWnFn5GqhURERERERL1N6F5HzVmnok3XMm4TFZ2AAwBSVaH8\n9VdwOUmVVVOmDzmHjx367MVKOERERES9nPmP3+PHMszU1gcMBBCVhBOV2OOccn7PAsyQ76ixCOx3\nYMxY+T9vjaxokSQci8WE7neCpawJJeEojQ2wfvYp8J9XjE2BkVvDf/AhKL/nTpiXLDbG9dramENI\nNfHTAaK9FQDQcf3NEM1NwZu4Hg+Q4gl4IqJSFNh6FOyvvIiOK65JOkdW1wAItpVMxvHRB8h3Yz+R\nohe68LghUQRJOFIWR0UeAtB1FUOhJ38HqI3YOGY9sN32sPz4vbHuvuoaWBx2499bCAHX3dMBTI/s\n1EXSW7apu+yKxl8WYc0fyzGgNv3fB/8xx0G//mooURUxXXdMA0LJ0G1PPQfLSy/Ae/yJWY+ZiIiI\niIgoHxyvvGgsV54zCQ0JknBMv/8GfPcttJNP6fJ41h++A374DgAgKyoTzunuw7jSFmpjxSQcIiIi\notLgnnKpsZxp2yRZXh5cCLejckVuzzlemNnz4DJg/uM3tHRKwokmYpJwzPAmnUl5IwSk2Qzzb/+L\n26SP2Bjq1n+LG3fdcjv06lqYli+Fbc4H8HT44Eh06NDPonQ6AXtwhvB649pQ6LqEorCCARGVsFCL\nyMDo7ZNO0WuCCY5KiiQcAIDfD4Sq4OVDovaWgVF/g2X+PAiPJ29xpCIkK+H0Jr7Djky+sVO1vPb7\nH0Ht7jsgsN32aH3xNciaWhRjXRjZvz+qazJPSHOfcz6ct91krKvbRf5GqKP+BnVU/PswIiIiIiKi\n3qLllf+i+rijUs6p3WtnAID6yP1Y894nsDnTqy6arBJOd0ln8HhKS0sXM3s/JuEQERFRSdMrq6C0\ntcJz5jndPobwBm+Ald0xFW3Pv2okPnSceQ68Z+evEk7NAXt1fTNO04z2AJJPrBcNoSZuJ9Vx7Q1Q\n1qyJG5d1dei4/S6j0tIGJx2D1m9+jD9uOAmn3Gm0YhFeDzo3iNB0HYrCFlVEVLqEL1RNxmpLOkeW\nhdIZO7f866Tf0P5oXJPHC0KdknA8J54Me6hqmv25Z9Bx0235iyUZKQEmc/Ye5sSX+9Tq2rgxbdPN\nsGrpWljKE6X7FpeuKgAl4rnoEnj22heVN1yNwK67s6ITERERERGVlMDe+xrLXd0PMP/xOwZtMRTr\nVzYG53fRZlgPVRHNFn3wEACA7YnH4DvmuKweu9gwCYeIiIhKmrrdaFg//dh4+r07TKEKJrYPZwMA\nREcw8UHfahT04Rv1PMg0Sbs97kZdHD1SCYc3GYpb2wOPQtt4U4im2IoM6oiNI0+ph26iWZcu7rx7\nUHs79LIyQFEgHZFKONGklFA1CQvf+RNRKfMF//bJFEk4MId6jwfiW/w1nzwJNTOfCG4Pv47mifD7\nIIWACF38ck27H9ZPP4Zp1V8w/fFbXmNJSmclnN6m8b2PoLz9FhxNDXC8MBPt/7oHzceemLCyXm9I\nwOmRbbdD25uzCh0FERERERFRTsmqKkBVYx/M6NQCW/H74f/oE9i22Rp1u25njDe/NRvi4zmwz/kA\n9nk/BAezfB1A23AwAMA29+usHjffxNq1cFx9OfDW60nn8FI8ERERlbbwjTZLDwrrd0pmsb73NgDE\ntfzJOZsNwu+HMnsWhKpCO/Tw+DmaHmwZATAJp8jJ2mBimLr9jsaYZ/zJcM14MDIpumVE5w9QAKzz\n50WOF6qEI70eeHwqHLbgXH9Ah6YnearB54Pu7oDSgyQ1IqKiEE5StaVoIxX+G5qgOpmwWaENHQ7T\nn8uCA1GtJ3NNdHRAq+8P87q1wQFFQfuMh1A97khoW2+TtzhSkmASTi8jt98B/u1GQ9N1rDv7IpRt\ntUXCBBwiIiIiIiIqDUpzM+oH1aL93gfgnTARAGBavixu3obj41sYqzvvArnTzghcdS1M++wKdatR\nWY9P1tdn/ZiFUH7HVDjefiPlHCbhEBERUWnz+yEtlp7dOIpKZjF/+w3s770DAJBl6fVOzRpFgWn5\nMtSdfDwAoGHJKqBTIpDQNMBIuODNsmIWGLVtcEFR0PD1j7DOnoXA+Akxc2RU0o1wd0BWVgFSwjpn\nNvwjt449oD14a836xOMom/sNOl5/GzCbUDvxRLScexFw+GFxMVQdfzSsX32Bxt+XQtbWZfcLJCLK\nI6U5WFVMlidPkA3/TVUaGuK2uY8cC/Xa69FvRLDUcv2IQTmIMjlptaJ51kdG20lZWRnc0EXrrLzR\ndSb39kImRQEUBWKTTQodChEREREREeVI81vvo+aIMcZ6xcUXGEk49peeBwAEthsNy48/pDyOCN1D\nafnkq5zEGdOtwOuFR5iNB0l7E9OK5V3O6X1fFREREVEm/H5Icw+q4ACAiNx0ss2OlLLXhg7v2XEz\n1DlrXWlYBzSsi52ksR1VsfPuuz/WXXsrHP37RwZHbAz/uRfET4762VXmfgOvrRyDjj0kZkpgx50B\nRCrhVMx8Kjj/ykugjtwKZXO/gv3Xn7HqoJWwWYOVdQKqDotZgfWrLwAAVeOPQcvsT7P1JRIR5Z1p\nzWoAgDZsePI5oddR5y3XwzN5CgBAHTIUcLmg77ATpMWEtkeegPWVl/JW9MW0eBHMSxZD+P1QR+9g\njIfbaomAP9mu+SUlmNzbe1nMfE9IRERERERUqtSdd40flBLQdZTNuAcA4J58MarOOCXPkXVijVQv\ntv33P9Bb2oFzzilgQKmZf/weaG2Fus9+MePKn392vW+ugiIiIiLKB1XTYTYlv7EgAqFKOD2hRG46\nlU2/21jWNt+iZ8ftIaWhAY4nH4sd1DUIX/CpeWm3FSAq6oqw2eHYZuuuJwIxH0xqJ4xLOMV7/IkA\nAOmIrcwkWpqBJUsAAEpHB7Tffwe22QqipRnOv0+BdsFkY67lpx8z+RKIiIpPuMWUOfllDmX1qrgx\n4fdDq6yCJfRewjd2HHxjE/+9zQXH9Lvh/MfN8RtCbbXsL8yE6/a747fnmYAEUrzfouKW6r0yERER\nERERlZ7y666E0hipBKzutAvULbeC+bdf4+ZKW/7uI3gmngbHs0+h8sJzUQmg4eyzi6/9tZTAKy+j\nZvJZAICmT76CNnIrwO+H8HlhWroY3l12hz3FIfgpnIiIiHo1TZOpJwTUmESGbklQUab55dd7dsxu\naH36hZh1Zd3a+JuNmgZ4Qq0rQu2JqLh4J56a9lyZRjUj35FHB+d2ao+mbrElyl990VgfdkDwiYiy\ne+5E5TtvoObQA2KPE9DSjouIqOioarDdVKoLN9HbXK7g/30+wGaDohTmgo9I0m7KqIQTak9VcLoO\nVsIhIiIiIiIiKk5tDzwK3xZbGetljz0M++uvGev6gA3QcfnVMfuoQ4YCAGQe7yPIyqrYgfBDVUWk\nfkAV6kMJOABQds8dUFb9hbqNB6Nmtx0gpIS+404pj8EkHCIiIurVtHDrpSSyUQlHmkzxY/36J5iZ\nW/5DDoN/192N9apJJxs9XcOErkNZtwYAgjcjqehIW6oc+VhC6zoxRlZVB//vdKa1r1i4IOG49aH7\n046LiKjYCE2DVOJfr5OpPCuYECn8fiCPT3x1Jnw+AIDe+SJUF+9v8k5KtrkkIiIiIiIiKlK+48aj\n5dMvU87xH34kGta2Guv6JpsCAKQ9/evVPaXX1MYOBAJ5O3d32d98HXXbbgnF54VpbfDei7rlyJT7\n8AoKERER9Wqa3kUlHL8f6Gk7qgRP1Wubbd6zY3aTrK5JPUHT4bz6cgCA/cXn8hARZUJaLAjssVfa\n85VVf6UxKfiWXjorYof/Whk/V9PgmDM74WH633Z9xk8eqFrim8TJxomIckZVEybNRvNOPM1Yts35\nAAAg/D7InlbM6wH/vvsDADpuuCVmXN9wcCHCSU7Xi688NBEREREREREZFCHQ+MsirL3rfgR2iFRq\ncV0X1QZbCLQ+9zLWX3tzJCEmj0k4sjY2CUeoxZWEo8su7jeFaEOHp9zOJBwiIiLqtURjI2pvvhZi\n3brkk/x+SEsPb64lehq9QDfsPJPOih879Ag0/Pi/4Iqmwr/fgQAA9+Qp+QyNUnBPvhgA0Ljgz4wq\nCShrVqc9V5aXx6zbZs+KP15Dit8VAEookz9dATX+d0O0tWLgwGrU96+E5bNPMzoeEVG3qWp8i8bO\nU7bZNnZA1yFUFbAWrhJOYM+98dfCv+A95fTYDWYzAsNHQO0/ADLNC0A5JWVaLRKJiIiIiIiIqHBk\n//7wnTABbQ8+BgBQt9wKnov+HjPHf+DB0Kf83WiRLR35a0cVVwmnyNpROW7/h7G8/M05Sefpw4al\nPA6voBAREVGv5bzhalQ/+Qgqrrwk+aSAClh7Vgkn3CqiGAT23heNC/+MGVP3PxAYtGFwRdMhA/7g\n+PY75js8SqLjhlvw+8J1QKdEma74jjomZt1z0iloWNOScK4s6/rYtpdfiBzrlElx20Vra9xYKokq\n3ih//GEsVx97RLAaFRFRrmlal0k46FwpJ/T6LgvYjgoArFUVCceFzQoEAtB0WfAKY0JKVsIhIiIi\nIiIi6gWsFgX68I3Q/O6HaH3xtaTztE03AwAE8ngfoXMlHASKKwmnctodxnLZLjvCF1XVfv1389F+\n9wy4L7oEev8BKY/DJBwiIiLqtZRQBZxU1TtEoOeVcITH06P9s01WVaP9n3dGBkItIqSiAJqGstde\nDs4zdXEzkvLKZk3dJiUR76mTsGDOXGjDhgNA8OmEqEoE7dPuj0xOo1KC87abAACBTTeH685pWLck\ntt2VcHekH5yqwvn4Q3HVevTVsev2554JxpbP/4io70mjHVVnwh9Ksi1wEk4y0mKFubkJ5q++gKZL\naIkq8+UlkNDfVVbCISIiIiIiIip6ptDnd3WHnaAPHJR0XsffL8e6O6bDdevt+QoN0umMWS+qdlSa\nZiy23zENAOA9b7Ixpg8dBu/E09Bx3U1dPqjEOzNERETUe4Xf56S46W7yuKFZelYJJ7qSh3fzkVj/\n/KsoTDOqCN+xx6Pi6suDy0eHqqWYTJBaJHNc22TTQoRGSdi7kYQDIWAaMQII/4jL2Buw/n33N5bV\nHXdCInpNDZTm5pgx7+lnAEJAOGOrLwi3O2U4UspgNQRdh/2Fmai47XoE3nwNLR/+X3gC+p05MWaf\niisvSV2tKsukw4GWl/8Ldedd8nZOIioCabSjiuMNJeHksfd5JhRXOwCg/pjDsGJlEzQNMBUiDyac\n/MNKOERERERERESlo6wM6smnwmLO38UG2bkleBG1oxIdLgCANmgwvKedAQAIbLs9AMB9wZSMjsUk\nHCIiIioBiZNwLF9/CQCwfv9tj47umnYfag4Ilh1cf83NsAzesEfHywZZXYP2ex+AuvUoyKpqAIAI\nBGD74TsAQKBffyCPvVypa+Zu3jm1WhT4DzgQjiceQ2DPfQAAzW++D+8PP8E8KOpnMUmFAmmLv7ms\nD9ggcYy/zEdgr32SB/PAA6i/5RoAgBY6t3n+PGNz+INKNP/ueyY/XpYp6xth/v03mOf/xCQcor5G\n0zKuhKN0BJNcOj+FVSxEU5Ox7HjpBcjKSuCoo/IfSDjZWbASDhEREREREVEpyWcCDgBom2+Bv664\nEf3nvAPL998VVRcC4Qpe2w7ssqsxJuvr0bC2NeNjMQmHiIiIeq8unsi2vv9eVk6jbrOtsWyyWSGK\n5Elw74SJSbfJsrI8RkK5ZDErcN08Fe1jDoPYZ18AgLrLrujYejSqOs31HHQI0NICx9yvjDFtxMYw\ndW4Z1T+ShNP4yyLIZctQf/gBMP/2a9I4zN9+g5pQAg4AmFaFWllF/T44Hn7AWJYmEzquuRGeCy9O\n+2vtKesHs1B10vGw/+dVeM88N2/nJaLCEz4vZFXnv4qp2V5+MbhvEV3wiRFVBrnfpRcAABqOast/\nHKyEQ0RERERERERZYr70EvhVDyzffwdlfSO0rnfJi3ASjuxUPb4710P4GBMRERH1XuE3P8naUel6\n4vEesJfZup5UBGRZeaFDoCwxKQpgs0Hsu1/MG/5ETym4Zr6E9rdmxYy13/cwWo+bEDOmDxhgLMv+\n/SG22BxAbNUFANCjfrdqDjswcYBRMZXfMdVYblzdnNcEHACQ9mD1J8t3c1F+/VV5PTcRFZbi7sj4\nta/8njsAANbZs7qYWRgiwfsb4WqPaZPZpY4OaAsX9SyQcBwKk3CIiIiIiIiIqGcUISLV/VszrzKT\nK9YPZwPITsVkJuEQERFR79VVBnIOknC0YcOzfsycKGclnFKXrFRo50pN+uAhaLxzBpreeDcy1qkd\nlayohDSbIZrWx4z7A2k8h5Bh+5dckvZI662yRx6EridJ0COi0qLrMLndQDcvksjq6iwHlC3xf8P6\njdgQNTtvm2BurPDfv5ox+2CD3UfH/X3PCCvhEBEREREREVEWha/jCr+vwJFEOG+6FgAgvD2vmMwk\nHCIiIur9klXCSXDzqqf0ysxaXRRMOSvhlDqzKflbeWmO6jorBMpsZmg77BQZczhidxACek1tTCUc\nTdcRUCOJbNqQoQCAlXN/Rdud0yLnqorcvPbvtgcAoPXJ5zL6WrJF71cfs+7qCH6Is73yIsxzPihE\nSESUD2538P/dTcKpqMxiMLln/mtlyu3K6lUoO3UClDWrYV7wR3Bs1aruwTyopQAAIABJREFUnzD0\nPksqvIRERERERERERFkQeuCn8uzTCxxIAlloW84rKERERNRryU5PZMtOyTiyLAfVYDonLxSr8p6X\nTKTi1rniTbTmTkkwZpMCWK1oWNeGhnVtCffRa2qhRFVKsL7+GiovvzhSASEQgHfIcNiGD4FA5Nx6\nVRVUTYeq6RCqGpy6487d/bJ6RB++Ucz6xhv3h1i7FpUXnI2aE48tSExElHuiowMAILuZgOo7/Mhs\nhpM1IpxclKGK885ExfvvoPzGayLH8gSPpSdNXE6BlXCIiIiIiIiIKIusX35uLIvmphQzcyQQSLop\nfJ2pJ5iEQ0RERL1X+GaQLqHrEgG1U+WOzbcEAHhOmZS9c/aSp8BzkoBEvYZ60MFY+6/paP/X3Wnv\nI2trobS1AlqwBVXteWeg3yszYfm/TwAAwt0BxRm6wa0Govarg+X5mRDvvw/L3K+Dg+YCtagSAu0T\nTo0ZqjptQmFiIaK8ER0uAIDsZgKqe/LF2QynIKLb7ylrVgcXohJuhNsNv8uNpnUtEI2NGR1bhCsL\n9pL3QERERERERERU3LTBQ4xl89xv8npu2xuvoX7DOlgffyQyGJWU4z/iqB6fw9z1FCIiIqLipmo6\n/D4/TAsXQlu9GpYxBwY3hJIJ1L9t2/NzbDQC5qVLenycfJFlbEfVlwkh0DH+ZCgOS9r7yIpKCCkh\nOlyQUW3XhMsFXdODFRlCVSZkdU1kR01Fv0snxx7MXLiPGe133Quha3C+OBMAYPn+24LFQkT5IcJl\ngkP9xFPxjj0W9tdfix1MY79CaPriO9TssytEiqezwnx+FVi9CtXffG4kyygLFhjby/55K6p/+A4b\nhtabZ30EdfQO6QXCSjhERERERERElEUdV1+PsofuAwBUTzwB/t32yNt1h/CDpFXXXI6GM84GhICy\nPvjAUmCHneA76pgen4NJOERERNR7hd6UOX6ZhyHD6o3hhrWtwW2hJByZhYSA5i+/R3ubGxU9PlJ+\nsBIOmZQMP7RYQgk7ATW2eoKrHdbbbgm2mgr9XPmOOgbr/1iAunvvgGhtjTuUNKef/JNtJpMCE+8T\nE/UtoSQRmUallvb7HolPwinS5BJt083gmXQ2yh55oMu5A/fYHpY/l8WMWf/3S2T5h+9ittUcvB88\nBx0C9xFjoZ8wPvXBw68JRfp9IiIiIiIiIqJexm5H4/yFqDxhLKz/+yWmPVU+lU27E+5LroCybi0A\nIDB6+6wcl0k4REREVHp8PsBuhwgl4WSlfYLJhLKq4q4u4znpFDieewYAIMuZhNPXmTPMRJHhJBxV\nNRLYAKD89ttgWvVX8Jjz54UOboZ29bXQnn0iYRJOISvhKEJARCURhRlfHxGVHKNdUjpJIlYrPKO2\nhWP+T7kNKkvcF1/WZRKOacmiuAScdDhmvwfH7PeAC89G4/yFkAMGJJ5oVMJhOyoiIiIiIiIiyg45\nYABaP/ky5oHQfKnddkuYVq9C+e23wT35YjhmTAMA6P2TXBvJEK+gEBERUe+V5Gab6OgILoQTCUym\nrJzOlI1knhxyTbvfWGY7KjKZMvx5DSXOCDUAuWxZ5DihBBwAUJqbjWUhBKTNBqWtuJJwAEDdbIu4\nMREIxPT2JaISkmmlluqqrucUCVlXh/WXXhO/we8Hvp0LV2sHqsYe3uPzWL/8LEUQrIRDRERERERE\nRDkiRN7/a3typnH6+sH9YH/zdQCAXt8/K19Scd9JIiIiIkolWRKOO5SEo6rB/xc4IaAQ2I6KlExv\nlhrtqAKonHJeWrtIuwPC50tw8sJ+zPCcNxmNd81A46+Lsf7nP+A76GAAgPB6ChoXEeWI8cRUen/3\nRGVl7mLJAfWKK9F0/sUxY2XT70b9YQdgo00HwrR6VY/P4XjwvuQbw9/eIk9GJiIiIiIiIiJKhzp6\nh4Tjsr4+K8fnFRQiIiIqOcLtDi7owUo4MkuVcHoVVsKhDEmjEo4KZfXqhHPULUfGDthtcXOabrk9\n67FlzGSCPOU0yPp66BsMhHSEktLcTMIhKknhJJx0k0ScFbmLJQcUIdB+5XUxY+V3/jNuXuP0h9M6\nnuvmqVg/fwGaPptrjFnm/Rhs55mI0Y6KlXCIiIiIiIiIqHRJmz0rx2ESDhEREfVeXVTCEUY7qj5Y\nCaecSTiUoXDFKI8H1pV/xm1uu/8RtLz835gxaXfEH6amOifh9YgjGKfwuAscCBHlRIZJItLpzGEw\nuWGxpJFQfHh6bak8502GPmADyE4Vgar22ClxH/bQmGQlHCIiIiIiIiIqQYFtt4Nn7DgEdt41K8fj\nFRQiIiLqtWyz3k04blTCUcNJOH2vEg7bUVGmZKgdVcVlUxJu9x1/IuSAAbGDCZ4M0LNUsjObwr8P\nxt8GIiot4cSRNJNw9Ire1Y4KAMwmBb4xh8SNu8+70FiWZeVoe+SJtI/Z+b2CdflSOGbcE1xxuSC/\n/gaQEkKGk5wyj5uIiIiIiIiIqBi5p1wa/P/E09Ay62O4HnkCsFqzcmwm4RAREVHJCVfCgVEJp++9\n5UlUoYQoFevHcwAAlh+/j9sWblUVJ0E7qmJshRZuR8VKOEQlKsMkHPTCRFUhBNqefA4t+xwYM+6+\n/CoAgG6zAyYTfGPHpTyO1j+STCkT/L12/uNmwO9H2c3Xof+RB8L69puZt/siIiIiIiIiIipyHdfe\niIZ1bei4e0bWr3nwCgoRERGVHNERbkelAgBkX2xHZclOxjb1Hd4TJybdFthjr7SPkzRhp4Ck0Y7K\nU+BIiCgnMkzC6bWvkWYzWv41zVj1jjkE0lmBpjmfY91XP6Z1iJY5n0VWLBY0LlgO1yVXwHPK6cZw\n9YF7ofzpYEUd05JFkXZfLIVDRERERERERNSl4rtCTkRERNRDlWefjlZNj6qE0/faUcHCt3mUGd/x\n4+G89YaYMb22Fu0jNkfgsaeS7OSLHwu1tSom4Uo4mqujwJEQUU6EcnDSTcKx/PBd7mLJsfL+dcay\nuvueAABt1DZI552O98Ax0AdsEDMmq2vgueo6AIDjmScBAJbf/heZYLGyEg4RERERERERUQZ4BYWI\niIh6LXXjTZJuqzrvDFjmfh1c6ZNJOMWXCEHFTSZoz9Ly1my0vv4OZFV1wn2Ezxt/HHPx/ezJsmAl\nnKqLzgX8/gJHQ0RZl2ElHNG0PofB5Jgt0gZQljsz2lV04/2QtFkjlXDSbfdFRERERERERNSHMQmH\niIiIeq9wpZskrJ98BKBvtaPynDIJAKCOSJ6gRJRIuFpMNL2qGlZL8o8Mwts7KuGYli0DAJhbmlF+\n5z8LGwwRZV8oCUem244q1KIOANZ9+3NOQsqZqJZ/srw8rV10I5GyG0k0Qsk4yYmIiIiIiIiIqC9j\nEg4RERH1XuEns7ti6jtveVx33YtVKxoBZ2ZPxxNF39gNk3V1MKVqPxKqhKNXVEb2SXCcQvONPdZY\ntnz9ZQEjIaJcEOF+VOnmiEQlHYphw7MeT74kSp5MRB+0IQBA22hEynlt9z0cN2aePw8iVEFMRlXh\nISIiIiIiIiKixPrOHSkiIiIqPV1UwjEUYVJALlls1kKHQCXAdczxXbZyk1VVAAAt+iZ2EbZ/U0fv\ngLUP/BsAENhx5wJHQ0RZl2GlFnWrrXMYTP5oSRKIWt54F4GRka+x9ann0HzGeei46rqUx/MdNz5u\nzPHcM5ALFgCIrSBERERERERERESJMQmHiIiIei0Ruunm3fpvcdt0Z0VkpQiTAoiKUfuUy4xlUxrJ\na+13zUDzkePgunOaMZZuZYZ8U7bcAgAgPO4CR0JEWRdOwkmzFI77gim5iyUPGhetwPJ3P4U2cquE\n2wO77YHAvvsb6/pGI+C5dSrQVRJNVOUzdeAgY7nutBODC0X6952IiIiIiIiIqJgwCYeIiIh6L01D\nYKONsfbtD+E67Ci4rr3R2OQ74ihjObpVDhElFzj8iMhKGm3ctK22RuO9D0HdfkesvfRarL/vUcj+\n/XMYYfcpZaGbx15vYQMhouzLsBIObDa4J52NjrPOzV1MOSQrqyBGjUo9ye+LWbWYM0tIbnr/4+Bh\n9toncl62oyIiIiIiIiIi6lLf6s1AREREJUOXEtB1QFFgtVnQ9thTsJhNkOXlEB9/DBHVokHfcHDh\nAiXqTcqdkWVLem3Nyu3BjxTN505BXZU9F1FlR6iyz/+zd9/xbdT3/8Bfn7vTsLyTOJu9Z8OmbCh7\nlVXGjw2FsmehhUJL+2UTSluggbIbNrTsMsIqq6wQwk6AJJAdJ96WNe7u8/vjtE7DlmxJd2e/no9H\nHrn73J3ubVmWZd1L748odho7IvKOUkM4AHqvn1qhYqoj4O8/VCOiMQCAMXpMSbe7cNZcCENHMPE7\nQHR3p7Ypy5eXWCURERERERER0cjDTjhERETkSaYpAcMAVAWaqqQ+4R355RnouP9hmA0Z3W/8xYUJ\niEY6s7EptRy+6JKijkn+7Glq8Re/HZGcXkvXna2DiMovGcJRRs5bHMpAgaO4FcJBqd1rWsbAN3lS\nqhua6OpMbRJRdhIjIiIiIiIiIhoIO+EQERGRJ8V1E0KagMi94BbwqfC/964DVRF5m2xpQevUW6Fv\nshm0iZNKOlYtYvoqJ0k18aePwRAO0bBjmtb/JXTCGfYSwUPZ1FzSYQGfCiFE6njt++/SGxliJCIi\nIiIiIiIakLvfKSciIiIqIG6YgGFAFvjUe+TQw6tcEdHwYB53AjBlSsnHqYrLL34np6OK8yIy0bAz\niOmohrvwpZcjsv+B6Lrr/pKOE4n7MBVczGCstXY5SiMiIiIiIiIiGtbYCYeIiIg8SddN65Pvqpp3\ne2y/AwEAxugx1SyLyPMURUBB6Rey3T8dlfVcEXj+Geu5YwRNW0M07DGEk8McNx7d9z88+BvQct8u\nCp9zwRAqIiIiIiIiIiIaGRjCISIiIk/STQkY/VxI1zSs+vRryIaG6hZGNEKpLg+1ZHZ1UJYthVni\ndFtuZpoSits7ERFVkuR0VGWXFXJuvfUfQE2NQ8UQEREREREREXkHQzhERETkSWP+cgOUvnDBTjgA\nhtVFdiK3c30IJLOrQzzuXB0VoE67Hb5wD5SWFshAANFjjnO6JKKqajramoJSMoRTPlnBShEMQjpU\nChERERERERGRlzCEQ0RERN4TjWLc3/8MADDXXMvhYojIEzJCOKK318FCykudOwej/ni5bayVIRwa\nqRjCqRg14IfudBFERERERERERB7g7p7xRERERPno6ctAsrnZwUKIyDMyumaJnh4HCymvpoP3cboE\nIhdhCKecottsl1pWJPvgEBEREREREREVgyEcIiIi8hxhZIRwakIOVkJEniEEYptubi32dDtcTPko\nbW1Ol0CUXzRa/XOyE05Zdb0wI7VsTpjgYCVERERERERERN7BEA4RERF5T2YnHJ/PwUKIyEv6jjoW\nwPAK4fQd+HMAgMyYbguG4VA1RJbQTdehZbUWqN/Ore6JGcIpu+Vvf4TOv9wOfcqWTpdCRERERERE\nROQJDOEQERGR5yirVqWWRbjXwUqIyFPWXBMAoM2d42wdZSQjVrcRY73104PxuEPVEFlqb7oOAOB/\n7ZWqnlf9dvj8bLuFssEGiP2/450ug4iIiIiIiIjIMxjCISIiIs+pvf7q1LKIODDdBRF5krHOugAA\nZfEihyspD/9rryD06ksAALNlXGpc6AzhkEsYZlVPV/PIg1U9HxERERERERERUTaGcIiIiMhzlKVL\nUsvshENExTIbGgEAoqenpOOiMXdO79R4zBGp5fhOO6c3sBMOuYVZ3RAOERERERERERGR0xjCISIi\nIu+JxVKL0f0OdLAQIvIUnwYAELpe9CH1552JUQf8rFIVlUxKmXc8fO6F6RXdnaEhGiEyf74kQzhE\nRERERERERDSyMIRDRERE3qOmX8LEDvq5g4UQkadoVggHxsAhnL7uMAAg+OhDCM3+pJJVlUTPmN7H\nrAkBAKTfD6gq+g61OuNwOipyUuDfT6RXCoTGiIiIiIiIiIiIhiuGcIiIiMhzYrvvCQDovehShysh\nIi+RaiKE0990TbEYak8/BauvMx7Nu2yXcXB5wgTGEKfn0Q0JM1GLbGqG0dSMVd/MBwAIn8/aidNR\nkYOCGSEcwemoiIiIiIiIiIhohGEIh4iIiLxHsV7CxHfaxeFCiMhTkp1w+pmOqu7K3yL09JPW7t98\nnRoXnR1DPr1oWwX52uvFHxCJwPz3v20BIFNKhCOJ+sO9MMeNg6yrBwDIRAiHnXCo2jI7NMlgTXqD\nwanRiIiIiIiIiIhoZGEIh4iIiLzHTFzUS15QJyIqRhEhnJr77s4/fvedQz5906EHYsKxh0H77NOi\n9q+/4CyMO+MkBB+eDsTjqDn5eKy+7kSMOeVYAIDa2WEPPGjJTjgDT7dFzonGhl8wJZLxNUm/L7Us\nIpGq1mG2jK3q+YiIiIiIiIiIiLIxhENERESeI3TrYp9UVIcrISJPURRIISD7CeHoa6yZd1z09Q35\n9NrXXwIA1Llzito/8Pyz1v7fzoX5zLOoe+EZKLEo6l97CdqHHwAA/LNnpfaXviKm2yLHReLDL4Rj\nCxb5A+nlvnBV6+i+8Zaqno+IiIiIiIiIiCgbQzhERETkPcnpLVS+lCGi0ggpEfzgf/k3SgnthwUA\ngPa//N2+ye9PLZsZ00MNqobe3oLb+qIZAaFEZxvtm68w7qyTbfsF//147sEap6PyAl03B97JY4zW\nFTASv5szf1bKEV4rhWxsrOr5iIiIiIiIiIiIsvHKFREREXmPwemoiKgCYrHUornrbrZN+kYbp5aH\nPJ2Qkf940dqK+rNOg/7pZwAAGbDCDP7XX83ZV9aEcm/Al5gGqJ9OP+Q8Y4ghLrfxv/QfbLLDpvA/\ncB8AwNQypqMKV7cTDhERERERERERkdMYwiEiIiLvMawLzJyOiogGy/fGa/DdeD10w+pK0hfVIaIR\nAEB07/0gGxps+4uMYEt8qJ1MCoQwQrf/Fc3P/QsT9t4JAKC0txe+iURAp/eSy9JjiemoBEM4rmaa\nwyuEE3z4nwCA2vvvBgCI5ctS22Q/XZ/6E9cNyGEWViIiIiIiIiIiopGBHx8nIiIizxHshENEQ9R0\n1KEAgJ4jjkZAxjHm+P8H44STAABKextkbZ39gIwuOcngzmBJM//xob//rejbUFauAgCYEyamB5Md\nSOJx+N5/D/omm0LWN+Q5mpw03EI4iFvTnwW++QqQEiIjPFbz8n/QM5ib1E2YEgj4SgzbCjGIsxER\nEREREREREZUPO+EQERGR9+iJEI7KTjhENDRNf7wCo366FULfzUH9762uMr6PPgAUBV1/vyu1n0gE\nDQCg4dHp0N55q+C0UgNp+N2lUL/71j6YNW2P/8H7+70N39tvAgCk358ak4npqHz/exdNB++LpoP3\nG1R9VFnmMOvwIuIZnZc+eB/qoh8hhxKG0XWMOvFohK68bOB9c4phCIeIiIiIiIiIiJzFEA4RERF5\nj5kM4fClDBGVxhg7zrZe9+KzOfvIUAgAEN9mu/RgMoRjGJhwxcVoPuxAtExohujpLuq8osM+tVTT\nPrunt3V1Qs6ebdveeNF5/d6eNn+eVWtmxx7V6g6mfjfX2ufLz4uqjapHnfMN6t58FXF9cAEu1wiH\nEX/nPWtqNT0dUBtzxEHwL1oIkRk0KjF0pM2aifo3ZmDUvXeUq1oiIiIiIiIiIqKq4ZUrIiIi8p5E\n9wmpcjoqIipN9133D7jPyjk/AADMNdZEz8GHAQBE3JqOSoR7bfuq8+cBsRjUl18EIhGEIzryUVpb\n7evdXanlUdtvibE/36foryGTrEuHcGRjIwBA+/bbQruTw0btvC3WO/sERLoGM0mTc7JDQ7U3XYeJ\nh+2LwJOPQejpx7zImLYtRc//M1GIMndOeqXUrkHshENERERERERERA5jCIeIiIg8J3XBj9NREVGJ\n4j/dceCdAoHUYuTwI62FmNXtQ2RNGyVVDY1HHYpRxx+F0K23YPJma8P/3NM5N9lfxxxlZTqgo2+0\nSb+lRffa137++vrUsjFpEgB2wPGCiYfsC5im02UURc6bh/hnX9jG/M8/Y/3/8ouQ3fkf27E99rQW\nMqZyK0bjheeklkV7W0nHEhEREREREREROY0fHyciIiLvSXTCgcaXMkRUOrOmBkpfn22s6677YXT3\nQG68sW1crbECOSI55U6vvROO//VX4X/3bQBWdxAAaDz1BLQuabM/R2V1AzGaR+WtrfuWW9G87x55\nt/UeczzCt9yKlvFN6a9l9Jj08sTJeY8j9wl+8yV6Fy+CudrqTpfSv3gcY7efAgCpx3TNXdOg/bAA\nABB89qmCh0qfD4D1s1NiP5sUZflyGKNGD/JoIiIiIiIiIiKi6mMnHCIiIvKe5HRUCjvhENEg5OlA\nYoyfCP24E2BsubVtXPj81kIsOR2VvRNO3Z+uzHsK38cf2m/HsE/no3R1AlJCN9K19F50KfSs82cK\nXz8VUOx/wpnjJ6SWZSiUe1CJUwERZcqcfk2b+TF8776Nut/9pqhjlWXLrOO+KK0zU3z1NdPnnPtN\nSceaLWNL2p+IiIiIiIiIiKjcGMIhIiIiz0ldzOZ0VEQ0CEo0mjMmx+TvtiETIRwjcYz/kQeLOofv\nsUcg3ns3PZAIw6w44wL07bEnhGGg5u47MGGC1dXGaBmL8G+vyLkdY+Kk9EowaI1NXg0AsHRxm23q\nLPj9Ocf7X3mpqHrJAVnBLFeKpaeSaj5obzQdekDe3cInnZoz5ps9CwBQd/mlJZ3S9+OC1LKyYH5R\nx5hNiZ+jddcr6VxERERERERERETlxhAOEREReU9qOiqGcIioPMxCU974rSl1Gm77C7BoIerumlbU\n7dU+9ADGHLJfeiARwgk21kIkwjS2jiIZHW56TjgltWysvkZ6HyEAAG3vzcSKL7+H5rNPySc1X04d\ngaeeLKpeqj6RJwzmNiIaGXCf2DbbIXbQIbYxfYMNU8u2x/BApH3iKmXVqqIOM8eOg15gijciIiIi\nIiIiIqJq0gbehYiIiMhljMT0KuyEQ0RlIhub8o9nBFtG/2yngscbkyZDXbyo4HaReN5SfH4E//N8\nnhOlwweZz2zGuusB779n3zcYTAV5bPy5IRyRZ+otcgcRi6LmjtsgOjsR/s3vnC4nLxHrPyi0cu4P\nkLV1OVO8hS+8BJASDWf+EvqGGxV/wkQwyRg9BuqqlVBWthZ3nJSpkBoREREREREREZGT2AmHiIiI\nvCfRCUeqzBMT0eB13XlvekUp8KdRxhRPSnt7allfa+3UcnTfA2wBnNjOu+bejp7s4JX/ecucPDm1\nLLo60uMldBHJ1wknOxxBLhKJoO73l6P25hucrqSwSG4Ix6yrh9nYiPbX3oZsagZ8Pvu0aACih/0C\nxnrrAwCUrk7U7bcn6g/Zf8DTJTvvxDfexDr2qy+Lr5UhHCIiIiIiIiIicgGGcIiIiMhzhM5OOEQ0\ndPHtd0D7q29hxavvFNxH+vIEWwDIMS2pZX3KFrZtPddNTS2ryRBB8nlLU9H+4ms5t9d34qmpZaWr\ny6pvyhYQieWiZASG0oXK3DFyBRGLOV3CgLI74Sxb1oFV8xZj1bcLoW/2k36PlTUhAEDNvXehZuaH\nCL73DpTly/o/YSL0IxPTw/m/+iI9BWW/J+PjnIiIiIiIiIiI3IEfHyciIiLvSXZ2YAiHiIbAbGyC\nOWEi+u2fUSCEo2+2OXwffQAACJ9/MWqvvzq1zVht9dTyqN1+itYVXalp9KSqQd9qm9T2vpNORdcl\nl0MZMyZ944lAgTl6TGnPc6oKGQgApgkRjye+yCICDOSI4H13p5brLj6/qp1c9M1/gsgJJw+8Y1Yn\nHLVQx6g8ZCiUM6bNnoXY3vsVPEaEe62FjOnWmnfeFu3vzRz4hOyEQ0RERERERERELlBUCGf27NmY\nOnUqpk+fnrOtr68PJ598Mq655hqss846ME0TV111FebMmQO/34+rr74aa6xRfAt1IiIiogElPxXP\nEA4RDULPFX8E3nsXqKkZcF/py9NdBkDvry9Dzx57Qw34AVVF3/Eno2b6fdbGPLdrRhNdTxKhnsXf\nLoL8eCYCu+0CJeu5rOfaGxG6/FL0Xn8zgo/k/g1WkBBY+d/3YSoqxm27OQDA2GCj4o+nqgo++1Rq\nOfXYqRIpBCLHHFcwZJaU2Qmn+6a/9Ltvx1MvoOnQA9B9w5+tc+T5OQhdeXm/IRx10UIAgDlpUmpM\n++5biO4uyPqGwidnJxwiIiIiIiIiInKJAUM4d911F5599lnU5HkD7fPPP8cf/vAHLF++PDX26quv\nIhaL4bHHHsOnn36K66+/HtOmTStv1URERDSiCV2HVBR+6p2IBqXvvAthnnsBlGKeQ/wFpqNqagL2\n3gfJPjPxnXa2BSnMunooPd3p9ViiM41m/Qnmb2wAfrZ73ts21lkP3Y8lAhpKiWHDtdeBAqDr9n+g\n4ezTYUxerbTjyRHtz8+AbG6uyrnqfn0+/P97F4jFBg7hRCMAgM4r/ojYiaf0u298x52xcOEqBAPW\nbSano8rkm/89tI8/hL71tvnP1xe2jq2zB25ER0f/IRyArwmIiIiIiIiIiMgVBgzhrL766rj11ltx\n6aWX5myLxWK4/fbbbdtmzpyJnXfeGQAwZcoUfPHFF2Usl4iIiAhWJxyNs2oS0eAVFcBB/iABgJxO\nXPGttoFZU4O+8y8GAIjeHtt20d1l3V6JHbwiRxyF2qnXo/svt5d0HPyJDj66XtpxVHXxDTeGvu12\nVTufbLLCPiIeg0Rt/zsnOjipNcH+90tIBnCslfQxfSeeipoH7rFua9HCgiEcGOnpJruvvRH1l1vv\nNdTcchN6/3xr4ROzEw4REREREREREbnEgFev9tlnHyxatCjvtq222ipnrKenB3V1dal1VVWh6zq0\nAS6UNTeHoGnemVKipaXe6RKIiIiqxnW/94SEVFX31UVEw1A9wu8+Uf9HAAAgAElEQVS8j9BO29tG\nW8ZmdeVo2RRoa0NtIIBaIWyhgJaWeuD3vwUANIyqB0p57mqZgh+WdGCNCY0o6RlvlLV3fciH+mHw\nXDmcn+99SpW/vnorWDamITDwYzFghdXqxjShbgg11px4LJAI4TR0tBY+b50VHqtrDAHnn49oRzsC\nN16H0IMPIDT9/oK3L1UFUlWG9eOEiEYePqcREZEX8fcXERFRESGcUtXV1aG3tze1bprmgAEcAGhv\nD5e7lIppaalHa2v3wDsSERENA278vdcUjUNVFKx0WV1ENDz1rbE+Vs8aK/i82G1NO1V3wimo+ee9\nqX1bEpu7wnFES3zu6umJlvw87O+NoxFAT0cv+jz+XOnG30OD1ZJnLF5Ti44qfn31pkAQgLH1Noht\ntAl6Hnq84L6BlZ1oANAVNUt+3ALpr7djRTvEP+5D4+knI/zdfPQWuK1AWzcaAHT36Yi0dsO88DcY\nd+N1AIDWFV0Fp5xq1g3AlFg1TB4nRETD6XcfERGNHPz9RUREI0l/wVOl3Cfbcsst8dZbbwEAPv30\nU6y//vrlPgURERGNcMIwIFVOR0VE1aEq6Qv/kQMORuuMtwY8pue6mwAA8bXXAeLx1Phgnrv82iD+\nbFMTx3A6KlcxGhoRXWc9GIkpoQDkTG1WadpXX1qnXbQQNTNegrLwR/ifexq+12fk7CsiEWshWNx0\nVIXoP9kS+vY7AACU5csL72gY1v+J+0RRMx770Wj/JylyijkiIiIiIiIiIqJKKvkd4Oeeew7hcBhH\nHXVU3u177bUX3n33XRx99NGQUuLaa68dXGXRKER3N+SYMYM7noiIiIYvQ6/6RUsiGrkURcCsrYPS\n24PY3vsCP5ky8EE+H/QJEwHdgAj32sZLpamlh3BSYR/TKPlYqiDDAAJBKN1dqaG+Y0+oagnaV1/Y\n1pv23QNq6woAQNu7H8NYL/1BGhGzgi/SHxjUuVqXdwKmCagqpK5DCgGxfFnhA7JCOAAQ3Xd/BF76\nD0Q0AlkoDJQx/RsREREREREREZGTigrhTJ48GY8/brWoPuigg3K2T58+PbWsKAr+9Kc/DbmwxuOO\nhP+/b2Dl1/MhR48e8u0RERHRMGIYQBHTXRIRlYOmKuh49iX4HrgP0cOPLPo4oWmQhg7R15d5YyWf\nP7MTT/EHWecR7ITjKsIwAE1F9x+vRcMVv0HHA48gvs9+Va2hfcZ/0bzXrqn1ZAAHAHxvvWkP4XR2\nAgBkcHAhHAiRDtRoGmSoFqKnp/D+eUI4MmAFb7SvvkT8pzv2fy4iIiIiIiIiIiKHlX06qnLx//cN\nAICydInDlRAREZHbCF2HVFz7MoaIhiFjs80RmXoL4PcXfYzUNCsEEw6nxwYxHZVvMNNRJYOKDOG4\nQzyOaHfYCpmoGqKnnYHWha2I73cAUOXfZ/pPtkB0r33zbhPxmG1dXTAfAGCOn1iWc8tQCCLj50E3\nTPv5EyEcmRHC8b3/HgCg6ef7QZv5EdDbixzshENERERERERERC7h+qtXmW/QEREREQFIXMTkdFRE\n5G7q8mXQli+z/00ziC5eg+mEw+mo3GXUtlMwacPVIEwDQlOtri2BQXaXKYOu6Y8ifMY5uRticduq\niEQAAObYceU5cW0tRG+iE45pou78s+H795Pp7Xk64ZhrrJlabt7vZ6i94ZrUeuim61Bz841WBoed\ncIiIiIiIiIiIyAVcE8IRPd15x5WOtipXQkRERK5nmpyOiohcLxm+afx5eroh6S89eCEGEy5QrT/1\nhM4QjhuoixdCxOMQhmHr8uIYRUHvFVdh5W13oe3N/6HjsacA5HbCCTz/TGKh+A5Q/TIMaMuXAQCC\n9/4D9Y8/hKYzTrFtB2AL4XTdea/tJvwzXkot1950HepuuBpS2jvqEBEREREREREROcU1IZwxa09C\n6NKLIFassLWSFm0M4RANN6Zp/YwbpgmTreOJaDB0HVJxwUVMIqIiqN1d6ZVBdLUZlGRQ0WAIx3GJ\nbjJJSjjPdEpO8PshjzwKxsabAMGgNZYVwkkaTHgsH3XhjwAA3+szEPjP87k7JDo3yYygrTlpsv02\nFi1E4IF7bGP+hT9CshMOERERERERERG5gGtCOABQe//dGLPputBmzUyNqcuWOlgREVVCMngT103E\n4/zUKhENAqejIiKvqlZQIBFikLpenfNRQer8ebZ132ezHaqkMOnzAQBE5nRUmWF5f5k64SSEbr4J\n/nfeyhlPnV/zFTxWRKNouORC+N57J2sDQzhEREREREREROQ8V4Vwkpr33SO1rCyY72AlRFQJpikB\nKTH6xGNQe+stTpdDRF4Ui0GW+YIgEVG5rfz829zBKgUFkt3CzMxQBTlC6exwuoSBJX+ndnWmx6LR\n9HKZH7f+j963D0gJ/5/+AP/LL1qrdXW2zeFzL8y5jboLzylrTUREREREREREROXgyhBOJmXxIqdL\nIKIyM6UEensReu1lNN/wJ6fLcZ6UUGfNBGL52/8TUS4RjaanziAicik5blzOmDk2d6wiEp1wah+Z\nXp3zUUGis9O2Hj71Vw5VUpix1toAAHXBgtSYiPSV/TwdTz6bd7z+rNPQeNst8L/3NoDcEE7vb36H\nJfc/ZhsTfdn1sRMOERERERERERE5zzUhnOje++YdV+bPR+jGa4He3ipXRESVYpqA0Pmp7CT/c09j\n1D67o+63FztdCpE3SAklGoEMBJyuhIioJF033gJz8mrVOVliyj4lGoFYtao656S8RFYnHH2jjR2q\npDBZV2/9n9H9RkQiAIDIIYeX7Tz6T6bkHQ/+63F7PaFa+w5+P/Sf7WUb4tTVRERERERERETkRq4J\n4XRNfww9V12TM+77cQFqp16P0F9vdqAqIqoEU0qAUyOk+D76EAAQePrfDldC5BHJrlHshENEHhDN\nCA7oO+5ctfPKRCccAIBhVO28lEu2t9vWheKaP8PThIAMBCAjVghHSgkkOs3IUKhsp5GNTYgcdsTA\n+/l8OWOa6sL7jYiIiIiIiIiIKIt73sUSAn1nnYu+407Mu1nW1uYdJyLvkVICcU69lCKs1vnCNB0u\nhMgblPY2AIAMMIRDRO4XzegiYgvGVJrfn1oUkq8xKsEwTUDKgUNOWdNRKSuWV7CqwRPRKGpmzwSk\nhG7I9HRPZQ69xvbcZ+CdMh6/SZoqsOqdj9D2/id5D2GnTSIiIiIiIiIicgP3hHASem76S95x2TK2\nypUQlV9c5wUQAGi65QaM2cJ9bfiJyBuUH38EAJhrre1wJURERUhMCwUAyNPdo1KkLyPEEGc4oRJM\nE2g46Vi0TGi2VvKREo1Tr7OP6XrlixuKWAxx3YToCwMAZLCmrDdvTpg44D62x2+CEALm+hvAWHvd\nvMcIt9+vREREREREREQ0IrguhJP5JnXPlX9Kj7OFOg0DMZ2PYwAY9debnC7BXRKdcCCls3VQRcW6\neyF6up0uY1gQ0QgAdskjIo/IDGdUMYQDf/pcNfffU73zjiCmlAi8+DwAwFjwQ/6denurWFGZ6Dp0\nw4Q6fx4AwCzzB2Li2++A8Nnno+31dwvv5B/EzwrDZkRERERERERE5ALuC+Fk6DvrXHTdea+1wk+1\nkcdpn8/GuF8cBGXJYqdLcZ+RHrJLTkeV+LQxDU8te++CMWtPYtiqDBqPOhQAICIRhyshIipCRghH\nqtWbjiqzk0job3+u2nlHEtNM/04fv/1P4Hv91Zx9hJnnda5LXwvEN58CABCxKCYdsDsazjoNAGBO\nmFDeE6kqev/wfzA23QyRw47Iu0u+TjhERERERERERERe4OoQDlQVUku8UW0whEPe1nDqCaj54D2E\nbrjG6VLcJxZzugLHKEsWI/T3vzldBlVaNAr/998CAERnh8PFeF9yugll2VKHKyEiKoKWEbzR1ML7\nlVs1u+4MknRpGKVYZlb9TUcflruTh8Lm5mqrAwDEDz8g+NXnqXGpVS481n3HvVj45YLcDf7+Qzid\nDz9RmYKIiIiIiIiIiIiGyJUhHH2jjaGPT8wTn/i0qPDQm5dEeSUew4JdnXKI+MgN4TTvsaPTJVAV\niM7O1LJv5kcOVkJERNUmGxvTy03N1TtxBYMT5RLTzYF3cjGzmKlmDetrjGy3Q4WrGbpk2Cb64yL7\nBq2yga5gyyj0br+TfXCAEFlsz32w8pv56Lj+ZkT3OzAx6u1QFxERERERERERDQ+uDOG0v/Ee2md9\naa2oiU+LFvMGJ5GbJaYccmv7eUdFR24IR2lrc7oEqgKR0c2t9ne/cbCSYSb5vEpE5GKx3fdE+LAj\n0fHEM9U9scufI5WlSxCcfr9tui5PkRIt555mG4puvW3ufskPk4wbV4WihigRwpn4y2OzxivfwWnF\ng0+i95zz0wNFPH7lqNGIn3Ja6j0Ddz/iiYiIiIiIiIhopHDnxyOVjGxQ8g0/dsIhz2MIBwAQjeYM\nqT/Mh97S4kAxDhvpj4URxMyYci2+3U8drISIiKpO09B7x92OnDp84qkIPXAPzMYmR87fn8ZD9oc2\nfx46J05AbN/9nS6nZOp336L+BXuwSv3xB+vvVlUFpETD/nsiuv9B1sbMIItbXwPK/IEoWeFOOAAQ\nCAUgRw/t7wHJGA4REREREREREbmAKzvhZJJK4lNtBqfwIY9Lvifs1jfdq0RZtTJnrO6i8xyoxHnB\nB+51ugSqEvlhegoqEY04WMnwYqy/gdMlEBG5Wl+is4gbQy7a/HkAAGVlq8OVDFI8njOkrViO2Pfz\nAQCBxx9BYOZHaPi/31sbFRXS5d2Jgv9+Mu+40raq4uf2aSr8b785uIMT96vgdFREREREREREROQC\nrg/hJFtiQ2cIh7xNJjs8FfiE6YgRyQ0giJ5uBwpxXuiGa5wugapALF+OsWefmh7o7HKumGFCX3c9\nAED49LMcroSIyOV8iQ4meQIjbiH9fqdLGJyMQE332ecjfPqZAICxvzgI/pf+A5Hd/VHNnNLJW2GR\nnK+lUufp6RnUcW4PNxERERERERER0cji+hCOrK0FMPg35IhcQ3A6KgAQZp4Q0gi9T8zmZqdLoCoI\nPv6IbV39/juHKhk+zAmTrAVf5afHICLyMumzAi7CbSGcjHpkMOhgIYMn4umpJkVTE2TI+rvVt3Qx\nGk84GuqXn9v2l6pqC+64UficC/KOV+t71HfCyVU5DxERERERERERUSW5PoRjNo8CACjtbQ5XQjRE\nLn/TvWryhHC0xYscKMR5vu++dboEqgJzwgTbeva0G+YIDaENSbKjmK2rABER5fAluoq6LIQjIn3p\nFc2jgcq+dHfHwIyXYY4da9scuu9u+/6qll526e/+6H4H5Iy1n3UBogcfWp3zH/YLAICReA+gaPw7\ni4iIiIiIiIiIXEQbeBdnJT9RiMw3amlIdMOEpro+fzX8pDrhOFuG4/J1wgEgVqyAzLp4MawZRv5x\n0wQU/nwOJ6LbPt2a2tNtXQxNdHHRdRN+H8MkJUn+/PCiGxFRv2Qy4KK7K4SDcMbfdoVeE7mciKZD\nOOq87xDbY6/+D1AV1//e0rfZDotnvINJe+0EAOi8ZzriBx4MUa26NQ2t734MtdS/Vd19txIRERER\nERER0Qjj/iu9mpUTEpFI0Z8YZFeB/vVFdadLGNEM3UBczx9EGREKhXDcdnGowkR3FwAgutse9g3R\nqAPVUCVlTqdojkp0d8vohqMbI/j5YJCEaUIK4fqLmUREjvMnpqOKuet1Vu0tN6aWM6d18pLMEE73\nX26HufY6iBx6ROEDMru3ufjPVd/mm6VXQjXVC+Akrbc+jLXXre45iYiIiIiIiIiIysj9IZzEp+AC\nL/0HDaccDwDwPfUkRGtr3t21D96H/M1voX70IQBe3MwWfOBejD35mIJBCKocEbMuMNS+8AwaLjrH\n4WqGRlm+DMasWYM7OOPTziuu+L/0+Ai7mO57520AgP/DD2zjIsYQznATfPRBAEDHMy9CabOmVhz9\nkw1Rc+ftAAD5ww9AOOxYfZ5kmpyKioioGD57Jxzt00+gzp3jYEGWmnvvSq/EvBnCQST9ms2YvDoA\noGfqX2CMT09D2bqiCzIQAJDRlcjlMkM3Zn2jg5WUINVx1MXpJiIiIiIiIiIiGjHcH8LR0jNmBV54\nFr7XX0XTr05B0+EH5t29+aC9Mf7+aRh1wJ4AAH3OXKC3tyqlekH9JReg7o0ZUJYtdbqUITOl9FbX\no0j607J1iYvyXjV6s/Uxfp9drSl1SiRkOgCm7L1PeoNHpyIYLNFnhS4iRxwFY/U10xsiDOEMN9q3\ncwEAZmMTogf+PDVed+VlMFa1Yc2dt0Tz/ns6VZ7jBvU8bhqcto2IqBhCQKoqRDwO9PWh8aB9MWqn\nbVwVVhC6N7t0iszpkhMdh2R9A3pu/qt9v0SXQ3PsuKrVNlQdT72A3lNPh771Nk6XQkRERERERERE\n5Dmuv4IlFfsn3dUliwEA2jdfD9jNRZv5EVbbbVvUXXVFzjbf6zPgf+LR8hXqNV7vOmIYqDvqcPhu\nusHpSopme6N+mBjU15T4uW0//lTIDTdMj3v0AkyxsrtyiUQ4ML7Djmh/YUZqPPDqy1Wti6rH2Ghj\nRPe3B0jHb7QmAED76gsHKnJeze1/Q/3xR5d+oGnmvD4gIqL8hGHA99EH8L/7FpTEFErKwh8drSmW\nOd2QRzvhmL3pLnYy44MjsV12z7//+PGe+RssvuPOCF831TuBV4/cr0RERERERERENDK4/121jDc0\nAdjeYFOWL0st117zR7SMbbAf+sXnAICaB+5JjfVFdWifz0bT0Yej8ezTrTd9R+DUTNLjX3PNtNtQ\n++arGDX1WohVq5wupyhKV5fTJZSFrWtFX6TwjgVvwHrsqXW1AIDY7j8DAAhjeIdwzLlzbUEjkXg8\nyIYGyHHpT0bXX2ifqsxT3Z4oLzNUi/DGmwFCIHr4kei++W9Ol+QadX+8AqFXXkTNXdNyN0oJo0CH\nLN+sT6AMw2AjEVElhf7659SyOn+eIzXU/v5y1F5wNpRVK1NjIu7NEI5sbwcAdB1yJMw110pvCATQ\nfdmV6Jhq/31vZOwj+PquzBjCISIiIiIiIiIi9/BcCEedOye9KdE5QFm8CKG/3pxzqO+5Z2zroqcb\nY/bbHc0/2zk1Fnjm3xi97mTUXXC2Z8Ic5RCPezvwoH3zVXp59iwHKxka5ccfoHzxmdNllMQ00xcN\nklMqlSRxUV2oVhcLY401rXF9+E5HFXjkQUzaddt0wCYeRzAxJZnZ0GT9X1efc5zo7ICx2PtTx41k\nUkqIaAQIBq0BIRA5/iT0HXeis4W5TOjG63LGGo4+DI2HHJC78zDvmkVEVCmiuzu93NNT9fPrPb0I\n3XEbQg9Ph9bZAbPJeg0Ej/5dItraAACRk3+Zsy1y4SWIn3ASAKDtjfew7PfXQd96W3ZsISIiIiIi\nIiIiGgG0gXdxWFYL7NC0W1PLgWeegvnSywjG8n8aPvjWG7b1uovPQ/CL2baxhrNPBwDUPDwd6pxv\n0P7Cq1CU4f/mqPjsM2DNNZ0uY9AyW+g3HX0YWle4v8uMMXoM1IxP/cIwMHrrzQDAE/UnGbYQzmCm\no7KOF6r1s51q3x+PD7k2t2o4/ywAQPCxh9F96x2omXYbtO++BQDIxkYAgNnSAqUnfXEsFjcwbv89\noc6fh5ULWwGVU+94UeAf0yAMA2ooZBs3J0x0qCJ3Ujo7csYCb7wGAMi8TKx+8TlG7bFjlaoiIhpe\nMqc+DP77CWhzv6neyaVE7fVX24b0jTaB/3/verYTjtJuhXC0cWPQX5Tc2GRT9K29AeoyAzjshFNe\nDDcREREREREREZGLuD+E04/gow8hWML+srau3+3+mR8h9OsLELlhKuDzDa04lxv/y+PQuqQtd7ov\nj1A6O4d0vCkllCq/WSt6emCGQjBCtfCtbLV3c5DSM28eD7UTjpDWdFTJTjjQrJ+14T4dVSbfxx+m\nlmVDYhq9YE1qTFm+DEZHD7Rv5wKw7meZp1MOuV/jlb+1FkI1tnF9iy0dqMajwmGYNTVQhLAFcOIb\nbOhgUURE3hZ47mkEnnva0RrMsYnpOKNRR+sYrLrnnwIAmE3NA+4b8Fnhc7NlLNQliyFrayta24jj\nkb+jiIiIiIiIiIhoZPBmAmMA8e1+Ct8H/8vdoA785dY/eB/kT3+K6C+OrkBl7qIsWwpz8mpOlzEo\n+uY/SX2aN7b9Dtab94FA0cfLN/8LsdmmkGPGVKpEu3gcSjSC8E93hhkMwvfGDHvnl1ispPqdZBhm\nanlQnXAS01Glulwlg2AOTTEjpYSo9hv3evp7b9ZbIRyZEfwbvdn6GJ25f18EYAjH2wL2yGhsz33Q\ncf/DaDrp/6UHPRTGK4tY4c4HZsb0kLVTr0frpVfC77N3gzLXWKtipRERDWcdV/4fsNlmVTtf8LGH\nEfzX4znj5uprAABE19DC9Y4Ih6GErTC6bGwacHefZv0O63z8aai3/Q2x086saHlERERERERERETk\nnGEVwlk5ZwGUb76G2tGBxuwQTiQCJXMqoH6Ifi4MDiciXHoXE9cw0k3f/e+/h/rzzkD3nfcVdaj6\n1ZdoOepgAEDnI09WpLxsoisx3dSoZihxK2wiMoIYIhqB9EgIp/Hm61LLg+mEAzMR4lGypqPS+2vk\nXxmmlIjrJgK+yk31lO/CkohlBLDqEh26tMI1iEgfOGmBt8R1Ez4tPZ2iDOb2bYvvf6B9IBoFEvs5\n0a2r2pS2VXnHA48/goZzfpUeaFuF4EsvwJTW/SgiEQDw7PQlREROi590MpAIAVeDb+ZHeceNtdYG\nAMi2tqrVUi7qsiUZK8W/jjTW3wDt192Chlp/BaoawYb5ayYiIiIiIiIiIvKWYRXCkc2jYPx0Ryj/\nezdnmzbnayjffZtaN0ePhpL4pH3HE88g+I+/IzjjZet2PBKGGKq+9k549u3frKmLgk/9q/gQzvff\npZYbjzmirGUNaLXV4Xv/PQBA8K470uN9EaChsbq1DNKoW29Or4QH0QknGcJJXrBI/O/EdFTG8hWo\n+9ufYW63PYyfH1qRc4iVWeG/eBxi0cKc/WK77QHfJzPz38ZgOg6RY9TPP4Py6gyYF1yUGpPBmn6O\nsIhoJBXWicYM1ASG1a/oHNrns3PGRFcnfC++YBsLPTwdoYenAwD6Tj0dNff8w9rgQHCPiGhYqGIA\nB4C9+2MGY02ro1ntv59AeNrd3gpSJEL10bXWLf1YD32ZnuGlxw4REREREREREQ17nrjC13fwoah5\n9qnUenTvfRF45SXbPp0PP5FaNse05NyGFAKiswPxCZMQvvZGxHfeBaM32wCiL4z4Trsg+OhD6Z0d\nmhan2mR3j9MlDN4QLr6G/v43AEB8yhaIHnhIuSoaUBQK5FFHY8wdtwEA6m7K6CjjlU4nWV2ihtIJ\nRyano0q8ae5/9inEd9hpSOWVauLm61kLd09Da6VCONGobV395mv45llBsLY33kuNhy/+LWpu/SuU\nPN091O+/g7H+BhWpj8pv1M+sx3HHNtukxmRw4HCn6OmBbGxCX1SH8c0cmGYcyhZTKlan0xqPPdI+\nEIthzLr9T5GozPs+vaLnv6hLRETuoi78Me945t9s/hkvIbb3ftUqaegSfy/Gdt295EMZF6kgT/xB\nRUREREREREREw50nQjjtd9wH2dGJ0FuvAwB6/3hNKoTTfd1UyHfeQWz3PVP7G+uuh7ZfX45RU69N\njZmRKJTOTsTXXgexAw4CAKz8biHikRh8WS3Esy+aD1fKgvlOlzBoIvHGd9ffpqHhvDNLOjbZEr/n\n5r9B3+wnZa+tkGjcKDjtkVcec8EnH7OtD6ZDS6rjjWLdF75PPgYAhO69C73X31zosLJTflhgH5Cy\nIp+iFdGIbd2X0f3D2GTTjA0+9O25D2pffC73NsK9BW8/rhvwZUxlJaWE4KeBXUF+nw6MKO3tA+6v\nzfoEsUmTgffexVpHWb+nWld0Vay+atJmz0LzXrui8+4HEDv4UOjx3LBr04F75YzFtt8R/vfT3e0C\nb7yWWhYjJDBLRDRUKz/5EqN23hZKby+MlrFVP78M1drWOx9+AtoLz9sCxr4PP/BUCCc5rawSKL2v\nKF+nVUDyPuVdS0RERERERERELqA4XUAxFAUQGd0hZG0d2l58Has++gyRU09H9L5/pqe2AQAhEL7g\nEqx66Y3UUPCRB6GEe4GmpvR+Ph989dabwj1XXYO+9Ta0bt8jgYjBSHUfATDx8guhzco//Y3rJYIc\nyUAVgKK/FmPSZACoagAHAHyadd933v1AzjYR8cZ0Q6Kr077eF4ZumEUfH9cNiB6rA5Osq7MGM7rr\nKAvmQ1myuCr/tNmz7MWFB9HVpxiRrE44X35ecFcRKjBlUSy3Ow4AiPY2KA89mJ7iC/wAsJuE/nlv\najk7wJaXtL6Pqx+Vfl4rNIWH1wQfsO6L+t9cDITDWPLWxzn7+D61/0xGdtkd8R12LHyj7IRDRFQU\nOXk1LPjfF1j05H/Q9sW3Ax9QZpGjjkkt9/38MMT23AfhW261/shLKvBax7USQVChlf6ZFmZwKoB3\nKhERERERERERuYgnOuEoQqDmf++k1qXmg7nV1v0eo2kC5pZboevEU9HwwD2oeygRfGhsyru/HDcO\nnZf9ATWnHAMj7I1AxKBomu1Nbt/HH0LfYisHCxqkxBvfUk0/hMUAnSZMU0JRBGRDI4zu7oqWl4+S\neHM4dvChiO10D/zvvJXeGPFG8EsGgvb1SAS9fXE01g081Q4AdPTEUNNhBXlkfb01mBGgG71tdYNR\nmURvL2Rt7cA7lnq7Mfv3NnTXHQCs4F/OvjX5QzgiEsk7XnfFbxF84lH0dKxE3/kXQ0oJWaGOPmSn\nL18BbVz+bgLS54OIxxHI6Hqkr73OgLcpwmH4X3nRPtbZCTlmzNCKdQHZ0AgAUFatRMua45E7aWSu\n7iefQe0ffldwe/TwIwtuIyIiO625EYFdqjvtZ5K+9bap5T4AZD0AACAASURBVJ5/3Jd/p0BxryVd\nI9HRTfp8JR+q8HVa5fC+JSIiIiIiIiIiF/BECCe7ZbccPXrAY9TEJyvVrO4W6rzvCh4TrA8BAOr+\neS86Lrio1DLdT0qIrE+ZZreH94rUNCSZnz71998O3jBNKIoKRPogg8F+9620VBeYBK90wsm+QFLz\n6ENoCscgL798wEN9b72J9c74JbT2VQAAWd9gbTDtnXQiVbywHvzX46ll0dsDifJP0ZCcjkoqCkRm\nx5o8F5sKPS6zp7RK0j79BADg+2w2+gAYJvvgVEPNP/6Ouit+i877HrJ140rx+XI62MR322PA29U+\n+xTq0qX2QcMYSqmuIRsaStq/44lnrOMKBOOWvvI2tCnOhfaIiLxGU51tgKqvux60777NCUn0Xvhr\n1N4yFcZqqztU2eCkpldV80812++xzImUneSdSkRERERERERELuKJEE6OEt5kk6PtHQS0r78qvG+i\ny4dv0Y9Q5s+Dudbag6vPrfK1eTeLn0rITURvr7Wgqui95DLU3nRdwaBCkm5I+FQJ0dUFs7au330r\nTf3xR9v6QLW7hcwKOmnzvseYv1yP1iJCOE1HHGy/rWQnnGSgCkB0r33QPe3uoRdaJHsIp7cyJ4la\nP3ci+2ctX+AmmL8TjtlX4PEhrdCNFAKmlOjtiyMULP0T2TQw3TBTFzCD9/wDABB45l95QzjS54dA\nOgBqBoJ5Ox9lC911B8K//JVtTJiGZ6YYM0wzFYDNUWgcgL7BhtDmfJNa77j7n4jvujsAIHLcidBm\nfgR1wXxo8+el9hGbb1aeoomIRojktKhOaX/rA5ixWM5cyPpmUwBY3RW9RFm00FoYRCec7A+YUBnx\nviUiIiIiIiIiIhdw9t3YQYgecPDAO2XovdQeDoge+PPCOwfSAQNhDo/uA5lE3AoDyIwpbzzTgSWD\n7/VX4fv4Q2tFVdNhjmiekFFC4F+PY9Lm60JZsRzqqpUw1hl4aphK6rnqavtAJAJl2VLUnnwclHnf\nO1NUlSW/b+bk1RyroW/PfVLLmSEc0d6G2ssugbJk8dBPUuCiUt4OHwVCcaKtLf9tJ0I4UATEZ7Nh\nfDPHmo6Kykp0d0E883S6K03yPi50ocdnz7f2/Wzv/KGrfOfKfgx4qBOOrvfz2OsL5x1eMfcHxLfb\nIbVuNjYifvAh6fWJk9D12FNof/tD23EFwz5EROROmgYlFModr7F+PzZc8ZsqFzQ0DeeeAQCQWumf\naeF0VBXA+5SIiIiIiIiIiFzEc1exIr84uqT9lbpaRDbcOLUe3We/gvsmO+EAAGLxgvt5ViKkYtan\npwWp+5233vAGgOBjD9kHkm3g++nq03DmL6G2t6F5p22tgfrSpkYpt/hue2Dll9+j9ze/AwBo33yN\n0ZtvgNALz6Lh7NMdra1f8QI/F4MICujrrg8A6Ln6+vTNZ1yMr4bO6Y+iO/E9qP31+alwRWjq9Qjd\ncyfqy/C9iHT1AEDqe50k/bnTUcX23T/vbdTfeVv+G88Ig4zdaxdssP9OYAan/OovOAfjzzgJwUce\ntAYy7nczzx1uZj2/KCWEHXM6MnkphFPoOXjJEmiff2YbMiavhtZ//BOiqRnSn+4iED3sF/lvI6ML\nV+ynOw65ViIicod8r4fcTvvog/TKIKa4ZV6kAninEhERERERERGRi3gmhGOMGw8AMCdMKPlYNZz+\nBH58h50K75jRCUfpaC/5PG4nYlEAgLna6g5XMjSyrt6+nuyIUET3IqWzwzomXxeSKpMtLTBWXwMA\nEHw0HSwSiRrdSBQK4RQa70+iI5NsHoXWZR1ov+9B9J12xhCqK52qqlASHaL8c76G/8UXIKWE0mF9\nD9SFP/Z3eFF8M14GABhrr4O2J59NjesbbZyzb3z7EkNIee53Kb05xZyb+f73DgBAm/0pgIwGRKtW\nYdy4Rvgfnm7b3xw7zrZe8/qMos8l5s4BAPTsua814KEQTixuPfaklDASgRxlwXy0TNkQgVdfse0r\nQyHInyc606npLgL6hrk/F0ntjz+F1rMvQtddD5S5ciIicorocO/r3kJC0zLC0Xrpv6cVhYGRimEY\nh4iIiIiIiIiIXMAzIZyOV97E8mn3Qd9iq5KPjR13gnUb9z/cfwAlrqcWa6++quTzuF08bE2LY6y7\nHlZd4L0OOEkylBWgUaxOODnTuPQnY0ouJ8lExwzbBYhSvo5qi+ef8kvopYVwIjvtah9QFOgHHOzI\n9yW2/0GpZdHbA+Wxx9JTC8QKT3EGAAiHUX/IAdAef6TgLloiyCP9ARi77IbW5Z1YNfsbmGutXVqh\neTquJG9b7+hOfw3t3ruY5XYyaD0uk9P3+X5cAADw//cNAEDjBWfbD4hGbavxzacUfa7ArJnWuRob\nrf/d/HyQQVm2FJP33xW+t/8Lw5Spqal8H76fd39t7hyIxIUy0ZfuFCSi+advAwB9t58Bf7gKcuzY\nMlZORERO0rfZNr0ymFC3A6Smppb1jTcp+XhOR1UBvE+JiIiIiIiIiMhFPBPCMSdMhH7wIYM6Nnze\nRVg18wvE9z+w3/2MddZNLce33Brq7FlQ5n0/qHO6UV/iQr30B6BP2cLhagZP1tXZB5KdcEroGGEm\nLnA7zRw1GgCgdHelxoSLO1+IQtO0lXjRRIF75kwyW9IX9Ot+fxnGnHc6ahLTDqnLlkJ0deY5yApG\n+F99GcH33kbzOb/Ke9u+12egYe6XAID41omLTELAnDCx5DqVFctt65l11b2R7jLSdPWVJd829U8G\nElNlRCNFPdbVHxaklleceSG6Hnq85HMqyec5Fz8fZKq5+06E5nyFpsMPQuOZp6Jv3g8A+umelUH0\npENkxhprVaxGIiJyH3P8BHTvZU3HKbq6BtjbJTI6uMV328PBQiiFIRwiIiIiIiIiInIRz4RwAMCn\nDbJcRSluCiafD+3THwNgvSE8aq9dMXp774ZVMmmzZmKt/XYGAMiAH5qH26Anu8ekqIlPo2Z0jDDz\ndA3JZGywUbnLGpR802KpPyxA8JabrO39dMEwTYmevip/YjjRCafzxluyxvU8O2fI/n74fGUsamjM\n0WNSy8qqVTnbm362M3zHHQPt4w8BAKGp12PUxutArFo1YGCq6ejDU8s54bEC2v90Q/4NWd1VtC+/\nyLtb3eMPp5YH+jmgIqU64UQAvcBjPeOxkNkZqvdXZ8NMTKdYErX0cKGTfG++nloOPf0vrLfLFMAw\nUH/hOXn3j/zi6NSyCPemlmP77l+5IomIyJVkIhyvdLZDeuG1i6oOvA85g2EcIiIiIiIiIiJyAW3g\nXdxDVOFNNeGz7pKau6ZV/FzVFHj26fSKzw9z190cq2WopN8KcHReN9UayNMJJx43EfAXfoM8tve+\nFauvJAXCKPXX/R+0H3+A/6X/oO2r7/O+oWx+8zXihgJstmGlq0xJdrUQWeEhocf7722T1Q1Dz+g6\n5Ti/v9/N2g8L0PTDApizPoJY2QqRuDjUePhB0LfYMr1jJAIEg4VvKE/gKp/4KaeiVVXhW7wQaF0J\nXyiI2gfusU3ZAwCidcWAt2WaEorKixFDJRPfV9HXV3C6OGXpEhihEMSo0YBuPRd1HXMClOamwZ0z\neYHPKyGczz7NGRNtbTljC79aAN/SJVDXSz8HiJ4eAEB82+158YyIaCSqr7f+7w2jN6KjrsY9YW3y\nCpH1PxERERERERERkXM8FcKpBiVx0VBdstjhSspLX3+D1LIMBICaGuhrrQ309vZzlDslu4/I8ROs\n/xMhHO3rr5DsFRLTjXQIJyu8AACytriuJJUm++kIU/PQP62F3l4gTxeVCbttjwkAOp54BvFdd69I\nfdrjjwEBPwxVg9LQkOqEI0NZgZIBppwR3dZ0M2ZtHboOPgzGeRdVpN7B6jv0CNQ89WS/+4j2tlQA\nBwB8X30B31fpbjSiszMV1si2/J+PF912TPj96DvhFEQEEI2bmHjDVQAA9dGHYfz+j6mQgtLaOuBt\nGaaExg9rD1ny8S66uyBk/hDO6C03AQC0Lu+EMA1Et9gaPTf/FepgP9CvWN84YXojhJPPmE3Wsa3L\nQADBMaOAMaNs48nnh2K7RRER0fCi1Vm/Z43eXsilS4C1Vnd1KLO/1+/kEBc/XoiIiIiIiIiIaOTx\n1HRUVVFoqhGPExlfV/Dpf1kLgUCqs4mnJLpMCM3KkPk++RgAEJp2q7VdSvjeeRtIdFfInBomxS1v\n1BbxJr7S25N72BuvpZbrL7mgrCUlaZ99iuZzTkPzaSdizCnHYtQRB0HErPtShkK2ffPexxlCd9wG\nwPpaOm64BWYiQOUWvdfdNOA+YoDnBqWrs/DGvfYqqR6fpkBVFGiqgLnaagCAxtv/gtFrjIdITJnl\nHyA0BADRmHcDHG5iTpwIAFCWLRuwM40yfx6g6xCqAp+mQhtEJ6Lw4Uemp7rwSCec2PY7FNwWPuQI\n9B1zHDpemJF3e/TAg63/Dz60IrUREZG7yRpr2sfm44/G2ttvVlRHUken3NSs1+9dd9zjXA2Ul3TL\n33hERERERERERDSiMYSTRZ+y5cA7eVFG2EZdMB8AIH1+iFi00BHuZSTCEIkWH9nT9Phf+g9WO+5Q\nNJx7hjVQYPoYVygihCPyhHCajkpfrFaWLilrSUnNe+6SOxiNAABkjT2Eg/gAAZXFi1LLAZ/7WrPI\nUaOHfBvKysKdaRS1tK9ZUxWoqoCmKjDHjkvfTqQP/hkvAVIi8OH7AIC26/9sOza68Wap5Y6eKHTD\nxY9/j5CJwJ/U9QGfTwIvvgBhGKljVKW0X7ORjTZF77S7PRfCkY2NBbfFDzwIPX/9O/TNp+Td3nfu\nhWh75yNEjjmuUuUREZGLyYDVSVDrbAcABB+aDqD/MHFcd+71jegLWzVsva1jNVAWhm+IiIiIiIiI\niMhFGMLJYmy4kdMlVIQw0iGJzrsfsBb8Pk92wklNR6UmLoxnBlmkhDZrJgDA/9IL1ljWRfP4Bu75\nHkutiBBOT24Ix7Y9WuYglZTQPvs07yZ1SSLwU5sdwin8OBKffoLgk4+l1jXVnU87HXfcg6W33GEb\ni48bj9jk1WAGa2zj+bp+NP18P8A0yxZ6UYSAporcrkOmieA/70vXst8BWHnzbVh21sUwGxvTXYnC\nYUz48zUYvct2UOfOKUtNI5WybCkAQFux3Bb6m7dgJbpuu9O2b+r7VWLwKnzOBeg472KsePpF63ZS\nIRxvhKhEX6TgtgHDrYoCY/0NeAGNiGikyp7qMfH7oLsvMQ2qlMDy5VBfedna/N57UD76sKol2kQS\nofSs14fkPL6SICIiIiIiIiIiN9CcLoCqJNGpZPlxv4SSmPJD+gMQsRggpbcufianBUpepM4I4dTc\neXs6lBIIWP9nXcQOX3lVhQssgd8ewjGDNVAi9s4+A4Vwyi3w7FNoOO2kvNuS3V6yO+EUmo5K/eJz\njNp7t3KWVzHxw34BRUrgwjNSY62zvoFhmpi8VrobzarP58IcNx7NO24N7du5tttQFsyH+O/bEAce\nADna6q4T3WGnQdekKgpkqNY+2NeH+st+nV4fNw7GscfDNE3Ipx9NhUTqLzwbwaesqefqLzoXHc+/\nMug6RjqlvS21rH39JQCg98BD4PepiGd9f1MdkbTifr1GDzgYgReeRWy3PRDdeVeoyU/2JzroCNMD\nnXAMA6JtZcHN5uprVLEYIiLympwpP6UEenqw5v57wNhqa9Q9+iAAYBSAtmn3YtSZpwAAWld0VblS\niwhbnXAQYgjHNRJ/ynI6KiIiIiIiIiIicgN3tqSg8ku8uR3ddY/0mM9v/e+1bjiJeqXfCtlkdsKp\n+/3lkJD2/bM64Zjjxle2vhJkh1nM0bnTIome7mqVAwDwvfFawW3JaaWkz2fvQFRgOqpRe+xoW++9\n6JKhF1hBStYb9z5NQdCv2TpGJR8/+lbb5Bxff9mvMf4356H+/DPTP1dFhjEKkbX2EE5mJxZ9nXWh\nKgoURcCnqVYwLfF497/1Zmo/dd53Q6phxMt8fCeXVQUBnwpz0mR0/e4qdJx5HgCg9qbrEtuL64TT\nNe1uLH3hdcR32Q2KEPBpiv14D0xHVX/emfB98bltrPvaG7Hy7unoePxph6oiIiLPyDM9rv9/76Dm\n229SAZykZAAHAOTzzycWJIwq/r6Uiddi7ITjInLgXYiIiIiIiIiIiKqFIZw84ltu5XQJZSdjVjv3\nQG0wPZbowiLyvPHtZiLxtaS6yGQFJ0J3WVMKJT+lmt1JwlVvmGsaOh54BACw6v1ZkGNacveJ2Kd5\nqbnyssrVIyVqHp5ecLO6aKG14Pdj8fdLYTQ0AsjfCUdZ+GPOmLHRJuWp0wXyfdLWnwgwBV59Jd2x\nyTfwlGP9nicrqCV7exDdc28AQGd2wEEoEIkpHURvb3o8+xPmVJLMT+iLqPXzKJIhGSEQPf8iGL88\n3X5QseGrYBDKVunfOSL5uPJQCCf4xKO29VUPPYnIL8+AedDBiO+2R4GjiIiILLK+0T4gBBqPPXLA\n40afa/3ubTz8IDTvuG0lSsslJYLvvmUtDzFoTRXATjhEREREREREROQCDOHk0fGv523rUnr/o3Xq\nxx8BAPz1denB5BvHHrjIaxO3Qjgy2cknq/7MC+bq3Dk526XfX9n6ShTf7wB8+tVSmGuvA7MlN4Qj\nMkI4orsLdXfebttu1tZlHzK4OnQTNXffUdS+0udHIOhH+FdnJw7ODeGM3mrTvMd5Wfd1N6WWY3vt\nCwDoueIq9B13Ys6+gQcfsBaGGMLJvpgge8NAdzekEDAnTc7aF+nOTxnPW/qULYdWwwikZ05jlxEy\nU1YsBwAI2L8vZstY+w0oxXXCAQBFyb1gJJMhHC9MR5VFaWgAkBEoIiIi6kffaWeg46LfpgekWXjn\nDGpvDyAl/O+8hcC8byE6O3J3WrqkTFVatNdmlPX2iIiIiIiIiIiIaPhhCCef2lrIQCC12rDnLlCS\nHUC8SMr/3959B7ZVXn0c/11Jlix5xXacvRghBMoKM+yyoewAAcpMCoWwR14SRkspI5TQEvYuLZQs\n9p4BSiGMsAlJGNmDxHFsx1Pzvn/I1rDkIcuSLPv7+cf3PveR7pEt+bF0j8+Ra95bkqRA//7hcWtT\nEo4vuy7yGu7mSjhNCR2uvFbnWn/+KaYdVUfbxKRTcwsas7RvzDHHk0+EtgsuPC/muOfQw7okBrfX\nL/vLL0aNVb4xL/7knOBzx2iuRuTvYKUVe5IJKRlmFpeEtj1HH6tNn3yphkuuUO2td8TMLbyh6WJS\nkolHgUGDJEn+IUOD9/vgPXJ8Ol+GaUqW6F/hpsUSSr4xCwpC4/b3W/k5olW+zTWSaSrQ6Jbtpx9D\n43l//bMkyfncnOgb5Oaq4cxzw/vJ/p5pSuIxsi1JUsr61zkAIM3sdnmnXBvatS36ocM3df0pfDvH\ni89HHcv99z9VttO2crz4XPIxNik+/aQuuy90oR7wTzMAAAAAAADoOUjCaUXFgu9D27nffaPSMdvL\n+vH/MhhR5xkbNoS2A8NHhLbNLGp3EiVUCSd4obf+4staneq6a7q0sTx6sBsm4diaKmGYdkfMMcen\n88Pbb70ec9xojG0nFggk9kG0/aXn1ee2v8i3W3Qpf9/OY7Tpv59qxYP/jhoPtfRqSuRqmShgVG4K\nbfsjEleyvRJOy6o0/i23Do7l5srXsipN85xhw5M6pZlfoA1L16jquVfan2yxhJLO/IOHJnXeXq22\nVkNHDVXxgWPVf1h0dSqjRXu4SGafPuHtZH/PhH4/d6waQCYFCgvl6RuuBJT1r3MAQLdT86ebtOmD\nT1R9/MlR43kRFSID/fpHHXM2HbO/8GyXxJD7+CPhcxUVtTETGUMVPgAAAAAAAHQDJOG0wuzfX75t\nRkWNlRx/VIaiSU6gslKSVPf7s6M/mLQGf/xGFrQ7iWwNY3iaKuE0VSsy+xRr2YoK1UyfEXO7nK+/\nVOnhvw3tbz5zggKDBqc22E6wNv0sIn8+/gED27xN46GHB2/ijk0K8Pj8CiTwH6FFfzhbxQ/eLbOp\njYwkbb7ocslikX/b0XIddUT0DZqrENmaEgVaVFMquGxSaLtywbfhA47YJKPuZvOM++XdehttejdO\n0l0bH+z79tkv7riZ13qlpo4y8gtinreevfaOM9EIV8JxOqMOBTyxLcMQn3X9OkmJ/Se+JLmPOyG0\nXX/F5CSDaPqdkAVJkkZjowJDhspz0CGSpMCwYRmOCACQjar/PavVY8Y118g/ejs1PvRo63fgCSem\ne30BGdXVkqTcV1+OmlbX2MG/ierq5K8Kt7gqmHJVOJ66uo7dB9KDSjgAAAAAAADoRkjCaYslu789\nzdVQnPf8Q5JkRCRYSIpoR9XBVkIZVNfoUyBgBpNxvMEPziOrLeTarWo88eRgO542bJ52Z7f8D0m7\nLTYJp2USRaTyVeWqeXJ2cMcdWwnH+P57aUN5zHi76uslSb88NkfuP98UHs/NVcDlkiQFHLmhOE1b\n/OeQ9ZefQ9tmQfh511y9qDtzn3aGqj5eIP8OO4bGPPsdIEnyjRrd6u3Mpu9PzLgjt2sCs0dXFwn0\nHxA7x2IJtqmSZAQCUdVYch99sGviyCamKc2bF/qd0fHbde50vh13VuPe+6n8uPHyb/+bzt1JcwjN\nP7vuniQZCMjweGQJ+FX99DPa+MtqmYVUBwAAJM5z+JFx/5b3DxuufFfw7yBLG3/HF/3hbBmVm+SY\nM1POyy6SdcP6mDnW77+Tc9ot8ja3t41g+/xTGR+8L19Do4xFP6hsi4EasM2wuAmxtbf8LZGHhpRr\n+uOtG77PAwAAAAAAQO+T3VkmqWbE+fa00Yqku6mp90herwrmzpQUW6JdWdSOyuP1a1NVvbR4kXJf\nej44aA8ndNisFik/X9UvvNbm/eTYuudT3umwxQ62SLpobjPkGbtPsKKMxSLTbo99TjY2asgR+6vf\nmNYTRlpj1NVKkgrL+sQc85eUSpLMyGo2luBzyPAHk3Dy/vpnFR5/lLz7HyhJ2nztjW0/pixR/dQc\nrXn7I/lHb9fqnFb/I9rRdY+5duoNoe3GsyfECcIIPU8UCEgWi9y/O1aSVHTjdV0WR7bIffxhlZ16\nvPJu+Uurc5wP3y/XZReFv29S9HaCNj//ijbPuK/9ie1pWn9atnrrbuzvvRP8+u3Xwd9JBYXt3AIA\ngFYYhoyINXjTY0+p8tW3Vfn2Bx2+i5K9dlHhxX9U8dz/RN/1pgpJUvERv1X/+/+uQUP7yrJqZdSc\n4t8dqr4nH6uBw/up7wF7hcYta1bLqKiImtt47h86HBPSiCQcAAAAAAAAdAPdMyOhm4isItEs7/Zb\nMhBJ4nLeeE39Tj1O1lUrQmPuo4+NmmNmQRKOaZoyAwHlz3lao7cdqIG/HRs+lhOb3BCqzNKKtv57\ntluIDC/y5+L3h6t5RCSymA5HTBKO4fU0fU28/VBzIok1P04LpZKS4NfI10XT99v2zFyptlaue/4h\nx8f/k/OxhyVJ3kMOjboL0xm/Wky353TKtmPblU1s334dd9zYuLHLwmi4YrJ+/nShNn72jbz77h87\nwWIJJ5CYAZmGJesreiXD/t67wa/vz2t1Tv71U5Q380kVTDxTxuZqFRyyvxzPzI6Zt/GTL6P2q+a+\nGPf+DMNQoasLEq+y4PezJFmX/pLpEAAAPZT/mGPl231PmcUlUeOBvPxWb2NpasPbku3r4Doeamsr\nyf5mOHnf0sZ6ZtlYroLJl3coZgAAAAAAAABoO2Oht8uJ/fbYvvoiA4Ekrs9Zp0qS6p/8lyQpUFKq\nwPAR0ZOa2lEZSVR9SDXnXdPlevwRWdf/GnswXlWVLGh31KaIJKGoJBqPR4avqQ1XRCUa05EbWwkn\niYv2Rm2wEo6csS2Umi+AWCs3hQebknBcb70myxUXx96fK9hSq+H0M5U78yn5Wz4Hs0h7CVyB0r7x\nbxfvuZuEwhFDZLYWi2EJtmCSQpVwav90kxwvv9ClMWSN5pZ7HWjplPvqyzL79Vfut19LLRKqAiWl\nMrfcOmrMe8BvuyzMuLIkCcfvC8ZX+6e/ZjgSAEBvUXv7nSq8+I8J3cb+3w9kFkVXeox8D2Q0tWSN\nJ+/Wv8qyIfz3XFRVSHQPZid7iQIAAAAAAAAp0HtLJHRAoG9ZzJhZmF2tNpr/67NuyvWxB61NP36f\nL40RJabgtr/GT8CRQgkgkUxrlueVRSRX+LYZFR7/5hsVHPe74HZEBaBASamsG9ZHf/Ds6/xFe0t1\nlaT4FWvcRx0TMxZZLSr3xedijgeKiiVJtXfdpx8Wrc3+JKk21Nz3cMyYLy9fdTdP69LzGG0lAxmG\nDLO5HZUpWS0KDB8h75jdZObk9LoLFGZzol4Hq0I5//lozJh3z7GqWLS0K8PqmObXVjdOkrQs/UVF\nf75WkuTbdbcMRwMA6C3cJ5/a4bk1dwVbRLruv1vFRx4cdcz27TehbcPdesth+3/fk3XF8tB+5byP\nOnx+pFl3r3oKAAAAAACAXoEknDYE+g+IGfPtPCYDkXSedfkySVJg0KDYY0uDF5adjz6U1phSKiLJ\nY9Ot06MqhlTN6f7VQPxDhoW2AwMGyr3fAZKksmMPk+P74IUCMy/cKiowZKistTVSUxspSTL8nU+q\nsn/wXvAcTmfMscCAgbE3aKP9l7+gUGZpaWi/IK9n/9dwYPAQff3lUm1YV6mG08+UJK15dZ7MgvQl\n7pmW6Eo4ZlMrqkBpqQyvV0ZdbXTMPT0ppynR0PbLz52+i0C//qELOht/XiXPTruoatrfuyS8tjQn\nEEW2zehucr74PLQd6N8/g5EAAHoVw1D1Xfe3OWXDf55V1Q1/VeNpZ7Q6x2/LCf0tZF21MjTecNoZ\nKl+7SZs+/Cx8yoYGSVLFq2/LP3KbZKJHKvT0v2kBAAAAAACQVUjCaYNZWBQ72I2rxsRjXbNaUvyE\nIvt/gwkXzn8/ntaYuoJ77D5xx82CgtC2f8edtemdiHA8dAAAIABJREFUD0P7vjG7pjyuZDWcd0HU\nvlnWL2ZOoE+4lL5ZGHy8lrffktl0cSDyORqore3Uh9LxKuGYRXFeDxGVcGIO1WyO2nfYW5/bU5T2\n6yPDalXt9Bla+/1S5W47qv0bdSWLJVgBR5Lh9wfbUyncSsyoqIia3uju3q2OkuV45aU2j+f877/t\n3kdkIp9ZWKTqtz+Q+9yJScfW7nmbXoNGQ+vtMTLNzA23rfMPHJzBSAAAPUX52k3afOyJqv7nf9qc\n5xl/WpvHjYMPlveSyyTD0Ob7H4k7J+/pf8vvD1acy535VPB+DzpEtTPul2w2BQbEvn/S4CEdeBTI\nGCrhAAAAAAAAoBvI8t49qeXb/jcxY7Yli6WXXpK9uiEDEXVeZHJKT+A+4+y444FB4QvBlrJSmQXh\nxBHTkgVJIA6H/P0HhFtwWWLz5Mz8/PD0t96UJJX+8Rw1HD9Om+57VLkRSTj9txykmtumq3Hi+QnH\n0RGJtP+y9IIPxXPtTd8Pm005/fqmPwBD4fZFZiD0/AmUBCsSWSo3KTB8RGi6PxBQIGDKYuk5Pxuf\nPyBbUwWc9qrI9Dnx6Pbv0Br7GkzHc9l0NSfhdM+1xrJmtYomniVJ8m21tRSnehYAAAmz2eR+9In2\n51mtWv/kXPU/8+T4xyP+hvbusVerd2N++ZW0x27ybbud7O+9q/rzJ4WPxfmHjMj3Gug+jKbWo0YH\nW5ACAAAAAAAAqUQSThvc405RxXvvy6GA8p+ZJUlyvPyC9PILilMTpFtLJFkiG0RWYGhpzdxXZPvy\nC1m22EpG5abwgTgJLd1S8wX+QEC2r76IOex45SXVT7khOLU+3IbK+cKzMk7+vYytRkTNz7/u/xJP\nwomTZODdaRd5ho2Q+w9/DA+20Y7KR6n+9GvRjqr5OW+WBCvhWCo2Rk/fsF6BviWy5Ocpm9k+/URu\nq03W3XaTd9kKFV9wjur/cU/0JLc7lFwWMM1WE2l82+8g28Lvwvu77p6yuNsSqoRTW9vOzMxwTbs5\ntG2WZiDhDADQ61kOP1ybnpojbbGlSvbZrdV5gaHDovZNw5DR9PfS4KMPUvmydTKqqyRJ/hFbhCca\nhhrOmhCqGrrp3f918SNAV8mdM1OSZNlYnuFIAAAAAAAAAJJw2maxyHPP/XKbUsN9D8k6d7bsFRuV\nn+9Qba0709G1yfbdN8p9ZnZ4ICcnZk7DmefI+eQT6QuqK+XYWz1kP2B/+fbdN9hrLTLxpo3WSd1K\nU4KR0dAgoz62FY3n0CNavemg35+ouqunRI159zsgodPX77pH/AN5edr4ydfKsUV8T23R39NAcYlq\nZtyv3Dv/ppqZzyR0XnQBwyLDbKqEE4ithFN02kkq39DUJszj0Yg9tpdvyFBVfrkwE9F2meJjDpMk\nVXzylYbtvYskyfaHs6LmGPV1MpuScDxev+w54eeub+uRsv38kySp8ZTTpLpj5HzyCdWcdpa8512Y\njocQIzB0qCTJsmpFRs7fGsvKFQoMGSrn7KfDg72gyhUAoHvyHxb7d3HtzdOiB1quU06XFJHIbl25\nQpZNwZadZmlp9H1Nv0u1E85XwO+XZYcduiZoAAAAAAAAAD0aSTjtsEW0IvGfcqoaJOWXFaihvCZz\nQXWA9cclUUk4pi1OEs4FF2dtEo6luV1TK0I/tyxMwgnkF8gqyairlVlcIq1bq/pz/yDXPx+VJDVM\nOC80t2banSqYclXU7e3vvhW1bzQ2JnR+1xefqa6VY1EJOIqtsFQ5738KDB4izxFHJXROdBHDCLej\nCgRkNlfCKQrX7rIu+kH+0dvJcAefF7bVq9IeZqqU7rVLaNu2bGnUMaOhQWZxcDv3P09Ko7cNHat6\n9W3lX36xcl9/Jfj6cjjUcPUUmaYpI0MJJmZhoaTu1Y7K/tbrKjpjvExXdOUk75jWqw8AAJBu8d73\nbPpogYpO+J2sG9bLdDlVf/lVyrv1JknBv7ktFRUyrda4Lai03XbKknqaAAAAAAAAALoBPk/sqVpe\nOLbFJqAEWvynZ1ZpbrnT3jRLxOPOkiSc2tvvlK//ANX933Wq/dNf1Lj7nmq4YnLoeOQFcO+Bv425\nvW+XXaP2cz6d3+HvV8Iivqfrbr5TgcFDUnMedExr7agc4fZthRdMDG74fOmOLjWak47aYTQEq0pZ\nli1V2TWXqezYwyVJDSeNl1lcopp/Pa3166tDLaskZSwBR4pIcPN6MxZDSznvz5MU3QZPkuovvjwT\n4QAAEF+cCqD+kdvIfcI4SZJv5CjVXxZOYne8/qqMTRXy9ymmuhsAAAAAAACApFEJp4cKDBwYPRDn\nw2izqUWNb+CgdITUpXyjt+/YxMhKOFnyobpv9z218ZvFslos8kvyHnRo1HGzT5/Qtn/g4Jjb2996\nI2bM9tUX8rVSrcKybm3UftV/5nY82IgkHO/Z5/ILJdMiKuEYkZVwcnNjp3o8aQ0tZTpaKaY+OC//\nz9dFDZt9y0Lblu70O8LW9GrqLslSjY1yPfpQ3ENmQUGagwEAoHVmnPc9klR/zXXyu71yT54iGYZM\nq1WG3y/nw/fLcHfvVsMAAAAAAAAAsgeVcHooM79AmyaHLza3bBvUzDdocNyS7d2db8+9OjbRkp1P\ncWucuDff97DW3nh7dEUfp1MbrpwaPbGpEop73/3laUq8yfnof62ey/HyC1H73oMO6XigEQkCufbs\nqDTUk5kWi4ymn791xXIZTVVUvHvvG5pjW7RQ9nffkmP20xmJsat1tN1ac1sn21dfRI0Hyvp1eUxd\norsl4fz3v3GH1/3jQSlOkhcAAJlitLJ2mvkFavzbnTLLggm41c+/GpxPAg4AAAAAAACALpSdGQro\nkNyN68M7rfxHqGy27nORt6WuaKGUJS2oOsJ98qlqOHtizHjdZVdHDzRVQnGfcbYaJ5wnScr/659a\nvd9ASbgtWflXPyT0PYu8aJHJ1j1o0pS8ZV36c/Br+YbguN0eNS3nvXeV+/yzoX3HrP+kJ74u5Pb4\nJYXbTDWeNF6b3p+vxn0PCM0pv3Sy6i+9UpJkqdgYnF8X3UrJzM9PR7iJs1hkGobk88ky713Zvvsm\ns/G8807MUMNue8kz7uQMBAMAQOssa1Z3aF5U21pJ/iFDUxEO0qDyzfe0ecddtfGXjv3sAQAAAAAA\ngFQiCacHazznD+Gd1hIrrFYZ/m6ahOP3R+16d9gp8fvI0ko4rXE6Yn+O+c4WCVbNlUGsVnkOPLj9\nO21Kwqq54y5p8JDEAnJ3rAoJ0qQpEcr6ww8xh+r/OCm07Xr4AdkWfhfaL7z0wtTH1sUaXnhJRlWl\nik48WpJkOl3yb7e9ap57WRu++1nrflqlhslTZfv+W0lSwWXBx2jURyfhtExQ6lZyciSvV6WnnqDi\ng/fLbCx33CFJCrjytHrZepWvWK/Nz78se07PSXQEAPQMgaHDOjTPt8uYqP3mxF1kH98uu2rJUy/K\nLCjMdCgAAAAAAAAASTg9melyhXdaS0ax2SSfP/6xTGuq6NKseuazrUxsQw+rzpJja/+Ct7Vyk6Rg\nCzKzXz+ZNps8u+3R6vzmkv2m05l4QE23MR2OxG+LrmcEX+dFE86QJNUfPy50qOHc8zISUio4np2j\nkRefrYKLzpdt+TJJkukMt0Qy+veTrahITodN9RdfLkmyVFUpsHatjBa/V/wDB6Uv8AQZHo8cXy7I\ndBhRvAf8Vo48p+R0yuJwyGblzwgAQOa5DzlMkrT+iqlqPO2Mjt2oRaVQs6ioq8NCGjlIDAYAAAAA\nAEA3wdWznqwjiRE2W1QlHOviRbK/+5bkdsu7Zq0kydhUIds3X6Uqyta1qISj3E4kevSwJJyENCVe\nGT6f7As+k1FVKZmmHI89LMfMp8LzmtuRtdayrA2egw9TxZVTVTnvo66IGMmyRD/fLdXV4Z1O/Hy7\nK9eMOyVJ9vfnhcZatplq5h27T2i735jtYo//tgPVorqLFglEaRPZGtDjbn0eAAAZsvmpOfpu/iLV\nXnZVQn//BwrDlVMCJOFkNXsH/lkBAAAAAAAASAeScHowswNtVkyrLZTsYtTWqGT/PVV02kkquOJi\nDdplW1lWLFfx4b9V8aEHyLJqZapDjhaRhFNz23SZFj5YTYTh9UTt58z/WI5nZqtw6tUqvGySjA0b\nggd8XkmSabMlfhKLRbWXT5Z/5DbJhouu0PKiU0R1mI4k4Xi7a1WsFmyLF0mSDK83NOY98KD4kyNa\n8UVWwQkUFanynf9mVaJe2YA+st/9j7Sf1/LrutC20UgLOgBAN2SxyNm/r1yOxP6erZz9QmjbLCQJ\nJ5vZc/hoAwAAAAAAAN0Dn1T1YKYz2I6qzWQcm1VGU7JL0cnHhYZzn5kdPPzt17KuWC5JsqxbF3Pz\nVDLM4AVz9+FHqnHi+cHWWYhr0wefqPb0s6IHGxqidk2HXYUXnR/aN+qDlUMsVVXBAWvnvr9OB8lR\n3Ya/RaWUiItJZl5e27dtaJDHF5AZWfWkG2lwBys2WZp+H0Vq/N2xch97Qqu3rbvw4pixip9Wybfj\nzl0WXyr4hw6LGSu6+c9SGhNhbAs+U/4lF4b2GyZdkrZzAwCQiHxXTsJtEs0RW4S3i/p0dUhII6sl\nexKrAQAAAAAA0LOR1dCTOZ1a+/b/ZB3Qv/VsK6tNampHlfPFgpjDhi/cqspobIg5nlLNlXCMpuit\nJHu0xj96O3kuuEh6+t8xxxpOGi/nM7PV59Rx0QeaqoLk/e1WSZJl/a+dOreRRZVEejrDHZ2c4T7q\nmNC2WVCoNa9/oNLH7g8l2UVyPXCPNl9wuXz+gHK6YTn/BrdPNquhXHdsOyTf2L3brGhjqalJZWgp\nU3/hxSq49v9ixnPnzlKgT3ouFBZNDCf31U29QZ5Dj0jLeQEASJTVkvj/l5guV2g70L9/V4aDNOM9\nCQAAAAAAALoLknB6uMB228va1n+E2mxRiTYtGdXVoW3LpoquDK19zVU9mpNvSMJpW4tKQe5xp0iS\nfLvvKcVJujAbG6OqnljWrU1tfEi9FgkqniOOitq37rKTam+/M24SjmXdOvWdeqUajz1ROriV1k4Z\n5PEF1OjxyxknGTBn/sdqOH9SBqJKsVxn3OGCqy5NcyBBgf4DMnJeAABSJjfcupN2VNnNQhIOAAAA\nAAAAugmScHo4m9WQpY3S3LYvF8gIBGRs3KhAnz7h1kRN8qb9NbRtXfyDpBbVVFKk4KhDZY4cKUky\nm5NvOvHfrb2J6XBED+TkBL+20o7Msnq13D8vDe17jj42VaEhTSIr4XiGxLYyslosMgsKtfaJ2Rp0\nzvjoY8uWqui/76lo5r9VvmFzymNNiNer7XYbKWttjSpfejP2eHPVrNa0SFCrvf4vXRhc6pjO2CSc\nmml3SmYgzuzUsP30o5yPPyJJCpT2Tdt5AQBICxI3egzeKgIAAAAAAKC7IAmnh2uvLLvh9UoKtqIx\n7Q55Rmwp+/JwYoZl06bwdmVlaoJsGdPmauUu+FRa8GnTicMfjlc985J8CVZjWPO/LxXIzVVu+1Oz\nmllcHH+8ORmnhZIzTg5te0vL5Ntx55TEhTRqej1LUt2Z57Y6zdm3JLS9+b6HVXjR+TILC1MaWjJy\nPv9U1tpgSylr0++nuqunKG/6NEmS+/gT27x93dVT5XzisdC+d+99UhRp1zLjVMJpnHBeWmOwrFsb\nkYRTmtZzAwCQDjWTr5W/X79Mh4Ek0Y4KAAAAAAAA3QX/LwZJUs7H/5N1w3pZ6utVd8XV8Sd5PKkP\npK5OfbceGj1mCbeh8u5/oMxR2yZ0l/7hI2T2gjYqZl5+aLv2zzeHtiPbTPkHDpJnz7Ext/WNGJHS\n2JAehjfcWi7H1XraWWSFFf/Q4U0b7VSTySCjYmN4Z/lySZLpdKnq+VdVNf1uuU84qc3bm/36ybfl\nVpKkTTdNk2+3PVIVapeK/Dk1nHmuKr76If0xuFzh7ZKSNmYCAJCdGidPkffsCZkOA0lqq/orAAAA\nAAAAkE5UwoEkKeeLzyVJtg2/qvKSK1VfWKqSB2fIuv7X0BzD7U55HHm3xmkTY7XGjiXAMCRDveBD\nWcPQyp/WymdKBX3CCTmW6urQdvVzLyv3n4/K/un8qJsGmhMxkN384SQc0+5ofZ7LGbNtlG9IVVRJ\nM2prQ9uFf789uJHrkHef/aR99uvQfVS9/q5qKjYrb6vh2fPbICIJp/bOGRkJwXTlhbYDBUUZiQEA\nAKA9FirhAAAAAAAAoJugEg6imC6XlJ8v93kXyPB5o46lIwnH9ciDsYPttNTqiN7ymayjME95RXlR\nY5GtdwJl/SRrbO6dkZcXM4YsFNGOSo7Wk3BMI/yaMp3BSif2BZ+lLKykmKZyn5sbOxynVVObd1Nc\nIseIoVnVqiCyEk7GRLSzMwsKMhgIAAAAAAAAAAAA0P2RhIMolW++L0my51hkqaiIOma6G1N+fjNO\n4oCZbCUcGVl14T0ZFsOI+S9QzyGHh7bNgsL4lYVIwukRIhPnzDae82bfvpIk7047d49EjzbkTzhT\n9g/eixm3fbkg4fvKsSX3uyTdzPxulvSS23qLMwAAAAAAAAAAAAAk4aAF/5ChkiTDMFT/x4skSTXT\n7pQk5b71hiwrV6T2/AMHxw4mmYQjo/dUwmlN7RWTVXXmRMkwZNpiK+GY+STh9Ag+f2jTqK9rdZpZ\nWKTln3ynqlfellkUp8WQ3x87lgHuyio5X30p/sFe8KIO9OuX6RAAAAAAAAAAAAAAJIAknF6u4awJ\n0QMRFVHqbrpVFd8sVuM5E0Njrhl3pjQey4b18pf2Ve0tt0cMJl+9omV1mN6mYeoNqrntjuBOnKQm\n//At0hwRUiGyEo4RCLQ51z5siORwBKsjtVA2sLjLY0uU8flnGjJqWKvH66+eksZoMsMsLFL5LdO1\ndnYriUhpUnfF1TKvuSajMQAAAAAAAAAAAADZgCScXs79u2NaP2gYCgwcJFkiniammdJ4DK9H/hFb\nyj9sRHjQklwCjaFeUTSjXfbmVjxxKuEEho9IbzBIDW84Cae912q7rZnaSeJJtT7n/D5mrHzD5tB2\noDBOBZ8eqO7Mc+Xea5+MxlA/9U8ypk3LaAwAAAAAAAAAAABANoi9Go/eJScntFlz69/anW7ZtCll\noRg1m2V4vZI9R6bTGRo3k2xHZRjB9lq9naUpmck7NvaCvn+LLdMdDlLASCAJp937qquNWyUnHSzL\nl8lWvj7usdqbp8n84ouoql09mdNhUyCQ2uRHAAAAAAAAAAAAAF2DSji9XURVFLOoT7vTvbuMSVko\nhb8/RZJkn/+RTJcrfCDpJBwScCJ5995Xmx96XHUHHapN8z7SmqdfCFY8Qo/i33pkUrc3amq6KJLE\n5U27ObRdc/vfo441nD9JjQ891mvKW1kMQzYrSzUAAAAAAAAAAACQDTp0Ze+bb77RmWeeGTM+b948\njRs3TuPHj9ecOXMkSV6vV1dddZVOPfVUnX766frll1+6NmJ0KTMyCcfhaP8GKbzwbf/k43Aszogk\nHCO5C9CWXnKxPhHuE05S5ZNz5P/NDjIOPDDT4aCLefbeT56DDu3wfPdhR4S2/X3LJEnG5s2tTU+9\niApdjaedoYZjT1DVsy9nLh4AAAAAAAAAAAAA6IB2sxseeeQRXX/99XK73VHjXq9Xt912mx5//HE9\n+eSTmj17tjZu3KgPPvhAPp9Ps2bN0kUXXaS77rorZcGjC3SwEk7V3BclSUZ9fcpDkhTVjirZSjjN\nbZgQzZET/L7m2Kiy0dN4Dj08oYQ5/1bBqjmNhx4u92lnSAq2h8uUyORA5eaq9tF/ybvfARmLBwAA\nAAAAAAAAAAA6ot2r78OGDdM999wTM/7LL79o2LBhKioqkt1u16677qrPP/9cW2yxhfx+vwKBgGpr\na2WLvJiKbse0hStO+Eds0fq8ggJJktHYmLJY/EOHhXe6sB0V0OvkJPZ7t37yFFVc9n+q/cd9CvQp\nliS5ZtypgvEnSl5vKiJsk2ll3QAAAAAAAAAAAACQfdq90nn44Ydr9erVMeO1tbUqaErMkKS8vDzV\n1tbK5XJpzZo1OvLII1VZWakHH3ywQ4EUF7tks2VPskVZWUH7k7JBv6LQZunQflJrj2twsEWNUz65\nuvixm6YpwzCkgw+SnnhCWrBApcP6h4678nO7/JxAT5bfJ1/5ibxmygpUc+tfVeCyS7v8RpLkeOsN\nSVLu2qXSbrulIsz4/H7p349Lkszjju85v2t7AH4WAIBMYh0CAPQ2rH0AgGzE+gUAQAeScFqTn5+v\nurq60H5dXZ0KCgr0xBNPaN9999VVV12ldevW6eyzz9bLL78sh8PR5v1VVqanzVFXKCsrUHl5TabD\n6BLWGrdKmrY31vtltvK4LPV+lUpq2FStui587PWNXlmtFjlyrCqoqVeupAqrS4E6v8qa5tQ1+lTf\nQ77fQCo1v2ZqGv1qTPA14/b41VjnlrXf0NDvBEmq/naxPMNHdVmM7cm9++9qfpu26dobFeC13y30\npHUPAJB9WIcAAL0Nax8AIBuxfgEAepO2Ek87nYSz1VZbacWKFaqqqpLL5dKCBQs0ceJE/fLLL8rJ\nCbY4Kioqks/nk9/v7+xpkGKRbV/MXGfrE51NxxoauvT87k3VspcUyZFjlXy+YBy2HCkn3CaLdlRA\nYszI108H2WyGpNi2dIXnnZ2216DRovVVYNjwtJwXAAAAAAAAAAAAALpCwkk4L7/8surr6zV+/HhN\nmTJFEydOlGmaGjdunPr3769zzjlH1157rU4//XR5vV5dccUVcrlcqYgdXSHyYr2t9aeDmZsb3Gho\n7LJTOx++X2XXT9HaJ+ZIRx0RvgCf0yIOi6XLzgn0Cp1ImrE2v87sdgVcebLUByud+cakrxVVzoLP\nWgRFAh4AAAAAAAAAAACA7NGhJJwhQ4Zozpw5kqRjjjkmNH7QQQfpoIMOipqbl5enGTNmdGGISKk2\nEm8imc5gIpXrrddU187cjnI+cK8kqeCZp9V41BGSrzkJp0UVDy7EAx3iHzBQ1l/XKTBocFL305yA\nI0lVr72TbFgdljPvbfU5dVzazgcAAAAAAAAAAAAAXYkSI72caetg2xq7PbRpVFd1aQwFr7wgBQKh\nSjgtYzItJOEAHVH1+rtaeesMeffZL6n7qb3hJklS/aRLuyKsDvMedKg2LFyqqof+qY0/r0rruQEA\nAAAAAAAAAAAgWQm3o0IPY+tggothhDcbG2UWJX9q65rVoe38yVdIPl9wh0o4QKcEBg9R1QmnyBnx\neu2MhksuV8Mll3dRVIkxyvrKewLVcAAAAAAAAAAAAABkHyrh9HJmrlOS5C8pbX+uwxHcqK/v8jic\nT/4znITTMunGwtMU6CiLJbkEHAAAAAAAAAAAAABA55Dd0Ns5HFr78VfaOP+Ldqc2/v4sScFKOKlg\nn/9RcCPJKh5Ab2bw+gEAAAAAAAAAAACAjKAdFWTdaktZOnDh3nS6JElGQ9dXwmmTx53e8wFZjMxK\nAAAAAAAAAAAAAMgMrteiQwk4kmTm5ga/1jekMpwYRkN6zwdkM3uOtf1JAAAAAAAAAAAAAIAuRxIO\nOqy5Ek6gti69Jw4E0ns+IIsV5tkzHQIAAAAAAAAAAAAA9Eok4aDDTJdTklRw9/SUnaP+oEND25vv\nfUiS5B5/WsrOBwAAAAAAAAAAAAAA0BVIwkHCHAs+65L7CbW3sljk3XEnVT/2b9XNejZ03H3Kafp5\n2Ub5txrZJecDAAAAAAAAAAAAAABIFZJw0GHuE0/u0Dyvr2PtoxrOnihJ2vzUbFW986E8xxwfM6fA\nmdPxAAEAAAAAAAAAAAAAADKEJBx0mFlSqvpddpNptUqm2cokU/l/mqrCA8bK2LCh7Tu02SRJgZLS\nVqdYLEZnwwUAAAAAAAAAAAAAAEgbknCQEKO0VIbfL2PjxrjHrUt/VuGjD8ixaKEKLz6/1fvxBwJS\noKlijoWnIQAAAAAAAAAAAAAAyG5kPyAhFqtVkmT74fv4E/zhVlTWZUvjz2lslOeLr0nCAQAAAAAA\nAAAAAAAAPYYt0wEgu3h331OON1+T4W6Me9zMyQlt+7YeGXdOwcQzVfb2m+HbGCThAAAAAAAAAAAA\nAACA7Eb2AxLjsEuS8qZOjn/cMMLbuc64U3IjEnAkUQkHAAAAAAAAAAAAAABkPbIfkBCjulqSZFu1\nMvZgXZ0cLz0f3q+tiZniWfdr7O1IwgEAAAAAAAAAAAAAAFmO7AckJqLdVCBgRh3Ku/0W5d98Y3ig\noSHquOtvt2rwTtvE3idJOAAAAAAAAAAAAAAAIMuR/YCENEw4L7RtnTMrtG379BO5Hry3xeSGqESd\nvOnT4t6nmZfXtUECAAAAAAAAAAAAAACkGUk4SIhZ1Ce03ffSP4a28267KWau0dAg5+QrlDPv7Vbv\nr+rk3ysweEjXBgkAAAAAAAAAAAAAAJBmtkwHgOxjOp0ymltN1dZK+fmyf/y/mHn2n3+U/ecfpScf\nV/mGzXHva/Pf75HTMFIZLgAAAAAAAAAAAAAAQMpRCQcJMy3W0Lb113UKBAKdux9XnnJsPAUBAAAA\nAAAAAAAAAED2oxIOEmcNJ+HY33pD1oULO3U3/oEDZbVQBQcAAAAAAAAAAAAAAGQ/ypAgYfWXXB7a\nzr/xOhXNfVqS5NlmlAJ9+rRyo/rYoSnXy6AVFQAAAAAAAAAAAAAA6AFIwkHCGi65Iu64f7c95Ntx\nF0lSoLBI1U88HTpmqdwUM9993ImpCRAAAAAAAAAAAAAAACDNSMJB4iwWuXcaEzPcMOlSNZ50iiTJ\nt/MYeY46Wp6995MkmXV1aQ0RAAAAAAAAAAAAAAAgnWyZDgDZyTvuJDm++TJqzMzPl/uU07TZapXn\n4EODgw578NjmzVFzq158PS1xAgAAAAAAAAAAAAAApAOVcNAp3j32ihkLlPYNVsk5+VSZJaWSJNNq\nlSSVHXWwJKn+iKP1/eJf5R27T/qCBQAAAABhv+nqAAARzklEQVQAAAAAAAAASDGScNAppt0RO+iI\nHXO881bUvuuNV+TMpQATAAAAAAAAAAAAAADoWUjCQefY7aFN98GHqmruix26WfVlV8tu42kHAAAA\nAAAAAAAAAAB6FrIh0ClmRBJO47l/kPeA38ad591x56h9//AtZBhGSmMDAAAAAAAAAAAAAABIN5Jw\n0DkRSTjG5s2tTmu48OKofe/2O4gUHAAAAAAAAAAAAAAA0NOQhINOMXPCSTi2RT+0Os99wklR+77f\n7EAlHAAAAAAAAAAAAAAA0OOQhIPOcYSTcBrOmdj6PItFG6+6VpJUc+fdMgyJHBwAAAAAAAAAAAAA\nANDT2DIdALJTZCWcwNBhbc6tvfhy1R15jFw7bi/DHyAJBwAAAAAAAAAAAAAA9Dgk4aBz7Pb25zRx\n5Npl2WG70D7tqAAAAAAAAAAAAAAAQE9DEg46x2rt8FSbNdz1zDAkUnAAAAAAAAAAAAAAAEBPY2l/\nCtB1DMOgEg4AAAAAAAAAAAAAAOhxqISDTmv87cHyDhme0G0sJOAAAAAAAAAAAAAAAIAeiCQcdFr1\nzOfk9QfkyHQgAAAAAAAAAAAAAAAAGUYSDjrNYjHksFgzHQYAAAAAAAAAAAAAAEDGWTIdAAAAAAAA\nAAAAAAAAAJDtSMIBAAAAAAAAAAAAAAAAkkQSDgAAAAAAAAAAAAAAAJAkknAAAAAAAAAAAAAAAACA\nJJGEAwAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAAAAAgSSThAAAAAAAAAAAAAAAAAEkiCQcAAAAA\nAAAAAAAAAABIEkk4AAAAAAAAAAAAAAAAQJJIwgEAAAAAAAAAAAAAAACSRBIOAAAAAAAAAAAAAAAA\nkCSScAAAAAAAAAAAAAAAAIAkkYQDAAAAAAAAAAAAAAAAJIkkHAAAAAAAAAAAAAAAACBJJOEAAAAA\nAAAAAAAAAAAASSIJBwAAAAAAAAAAAAAAAEgSSTgAAAAAAAAAAAAAAABAkkjCAQAAAAAAAAAAAAAA\nAJJEEg4AAAAAAAAAAAAAAACQJJJwAAAAAAAAAAAAAAAAgCSRhAMAAAAAAAAAAAAAAAAkyTBN08x0\nEAAAAAAAAAAAAAAAAEA2oxIOAAAAAAAAAAAAAAAAkCSScAAAAAAAAAAAAAAAAIAkkYQDAAAAAAAA\nAAAAAAAAJIkkHAAAAAAAAAAAAAAAACBJJOEAAAAAAAAAAAAAAAAASSIJBwAAAAAAAAAAAAAAAEgS\nSTgAAECSZJpmpkMAAAAAAAAAAAAAshZJOHGYpimv15vpMAAASBu/36/q6urQPgk5AIB0CQQCamxs\nzHQYAACkjd/vV3l5uaTgOggAQDbwer2aP3++amtrMx0KAADdGkk4EUzTVGVlpW666SYtWbIk0+EA\nAJAWzzzzjCZOnKjbb79dL7zwgnw+nwzDyHRYAIBeYNasWZo0aZLuuOMOrVy5MtPhAACQcg0NDbrt\nttt07733SpIsFj6eBQB0f3PnztWECRO0aNEiORyOTIcDAEC3xrs8hf/b3zAMrV69Wq+//roWLFig\nqqqqDEcGAEBqNK99ixYt0rvvvqubbrpJBx98sBYuXKj169dnODoAQE/WvAb99NNPmjdvnqZOnSrT\nNDV79mxJVAQAAPQ8kZVGrVarVq9erdWrV2vevHmSgpVxAADobkzTlGma+uCDDzRnzhzdeuutOuWU\nU1RRURE1BwAAROv1STiVlZWqr68P7X/xxRf63e9+p19++UU//vhjBiMDACA1Ite+Dz/8UMOHD9ew\nYcM0atQofffddyotLc1whACAnipyDfroo4+09dZba/jw4dp77721ePFilZeXy+PxZDhKAAC6TsvP\nHtetW6eioiJNnDhR7733nioqKuTz+TIYIQAAsSorK1VXVyfDMJSfn6/dd99dM2fO1KRJk0IV3crL\ny6mmDQBAHNYbb7zxxkwHkSlPPPGE/v73v2vlypVasmSJxowZI5fLpRNPPFFLlizRihUrNGLECOXn\n52c6VAAAukTz2rd8+XKtXr1a55xzjkaPHi2Xy6Xy8nL9+OOPOuqoozIdJgCgB4pcg1atWqWzzjpL\ne++9t6qqqnTXXXepuLhYCxYs0Pr167XTTjtlOlwAAJIW+dnj4sWLteuuu6q+vl5+v19jxozRv/71\nL73xxhsaO3asioqKuJAJAOgWItevpUuX6sgjj9RTTz2lvn376o477tBWW22lH3/8UevWrdOOO+6Y\n6XABAOh2bJkOIFOWL1+uDz/8UA888IC8Xq+mTp2q4uJijRs3TpJ0wgknaMaMGVq4cKFKSkpkt9sz\nHDEAAMlpufZde+21stlsOuWUU2Sapl577TVtt912kqRvvvlGgwcPVt++fTMcNQCgJ4i3BlmtVp16\n6qkqLi7WvffeK4fDoZkzZ4ZuY5omFyMBAFmr5dp33XXXacCAAerbt6+effZZvffee+rXr58Mw1Cf\nPn1Y8wAA3ULL9euaa67RoEGDNHny5FBlt2222UbvvfeeioqKJPHeDQCAlnptO6qKigpts802ys3N\n1cCBA3XJJZfowQcfDJV/HTBggHbccUe98847Ki8vz3C0AAAkr+Xad/HFF+uRRx6Rz+eTYRjasGGD\n+vTpo6lTp+qZZ57JdLgAgB4k3hr02GOPyefzadWqVfr555+1evVqffDBB3I4HJLEh7gAgKzWcu2b\nNGmS7r33Xnk8Hm233Xa64IILdPfdd2vLLbfUq6++mulwAQCQFLt+XXrppZo+fbqGDx+unJwczZ8/\nX7/++qu+/fZb5ebmSuK9GwAALfWKdlTNFxcNw1AgEJBhGKqvr9ebb76pnXbaSX369NGgQYO0cOHC\nqNLno0aNUllZmUaNGpXhRwAAQGISWfsqKio0YMAATZ48WV6vV4cccoguuOACuVyuTD8MAEAWSmQN\nqq+vl91u11NPPaW5c+dq3LhxOv744zP9EAAASEhH1r7BgwdryZIlamxs1NVXX63+/ftLCn7+uOee\ne2b4EQAAeqOOrl/ff/+96uvrZbVaNXPmTD3zzDM64YQTdOSRR2b6IQAA0C31+CScBx98MPTfJFts\nsUXoD4nS0lL98MMPWrZsmUaOHCmn06nNmzcrLy9Po0aNUiAQkM1m08CBAzP8CAAASEyia5/T6dSY\nMWPkdDp13XXXafTo0Rl+BACAbJXIGlRdXa2cnBwdeOCB2m+//XTKKado2223zfAjAAAgMYmsfZWV\nlSouLtaoUaPk8/lktVr55wcAQEYk+t7NZrPpkEMO0eGHH66TTjqJ924AALShx7aj8ng8uvnmm1Vd\nXa1zzz1XHo9HkmS1WmUYhr7//nuNGDFCa9as0cyZM/Xqq69q1qxZKiwslCRZLD32WwMA6KE6s/bN\nnDlTBQUFkqSJEyfKZrNl8iEAALJUZ9ag2bNnh95/5ebm8h4MAJBVkv3skfdeAIBMSPa9m8Vi4b0b\nAADt6LHv9qxWa6ilxtNPPy2/368VK1bovPPO06233qpFixbpb3/7m/bcc0999dVXmjdvnq688kqN\nHTs206EDANApnVn7rrrqKtY+AEDSeP8FAOhtWPsAANmI9QsAgNQzTNM0Mx1EV5k1a5YMw9D48eO1\ndu1aPfjggxo0aJD69eun/fffX1dccYV23313nXHGGSopKcl0uAAAJI21DwCQKaxBAIDehrUPAJCN\nWL8AAEivHlUz7vPPP9dDDz2khoYGDRo0SHl5eXr77bc1cuRI9e3bV3/+85/1/vvvh8rm+f3+DEcM\nAEByWPsAAJnCGgQA6G1Y+wAA2Yj1CwCA9MrqJJzy8vLQ9k8//aT8/HxtscUWmj59uiTp1FNPVVlZ\nmZYsWSK/3681a9Zor732CvVctlqtGYkbAIDOYu0DAGQKaxAAoLdh7QMAZCPWLwAAMisr21H9+uuv\nuueee1RRUaGDDjpI++yzjwoLC1VeXq7+/fvr2GOP1UMPPaStt95a77zzjubPn6/ly5eroaFBkyZN\n0r777pvphwAAQEJY+wAAmcIaBADobVj7AADZiPULAIDuISuTcO6//355vV6deOKJevHFF1VZWakr\nr7xSeXl5kqR7771XixYt0n333SfTNGUYhr755hvttNNOGY4cAIDOYe0DAGQKaxAAoLdh7QMAZCPW\nLwAAugfrjTfeeGOmg+iIZ599Vv/617+0ZMkSrV69WmeddZaGDh2q/v37a/HixVq5cqV23nlnSdIe\ne+yhadOmadiwYdpqq60kSQMGDMhk+AAAJIy1DwCQKaxBAIDehrUPAJCNWL8AAOh+siIJZ/r06fru\nu+80YcIEvfnmm3r11Vdlt9u1zz77yOl0ymq1auHChdphhx2Um5srSRo9erSGDBmikpKSDEcPAEDi\nWPsAAJnCGgQA6G1Y+wAA2Yj1CwCA7smW6QA6oqamRuPHj9f222+v3//+9+rXr59eeeUVHX300Ro9\nerRKS0vldrvlcrlCJfTGjh2b6bABAOg01j4AQKawBgEAehvWPgBANmL9AgCge7JkOoD2BAIBHXbY\nYdpxxx0lSa+99pr2339/TZo0SbfccouWLVumjz/+WFVVVQoEAjIMI8MRAwCQHNY+AECmsAYBAHob\n1j4AQDZi/QIAoPsyTNM0Mx1ER9XW1uqcc87RAw88oLKyMj3wwAOqrq7Wxo0bdc0116isrCzTIQIA\n0KVY+wAAmcIaBADobVj7AADZiPULAIDuJSvaUTVbv3699t57b9XU1Ojmm2/WyJEjddVVVyknJyfT\noQEAkBKsfQCATGENAgD0Nqx9AIBsxPoFAED3klVJOJ9//rkefvhhLVy4UMcdd5yOPfbYTIcEAEBK\nsfYBADKFNQgA0Nuw9gEAshHrFwAA3UtWtaN69tlnVV5ergkTJshut2c6HAAAUo61DwCQKaxBAIDe\nhrUPAJCNWL8AAOhesioJxzRNGYaR6TAAAEgb1j4AQKawBgEAehvWPgBANmL9AgCge8mqJBwAAAAA\nAAAAAAAAAACgO7JkOgAAAAAAAAAAAAAAAAAg25GEAwAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAA\nAAAgSSThAAAAAAAAAAAAAAAAAEkiCQcAAAAAACCLTZkyRc8991yrx6dOnao1a9akMSIAAAAAAIDe\niSQcAAAAAACAHuzTTz+VaZqZDgMAAAAAAKDHM0w+hQEAAAAAAMgapmlq2rRpev/999WvXz/5/X6d\ndNJJWrFihebPn6/q6moVFxfrnnvu0fPPP6+7775bw4YN03/+8x+tWrVKt912mxobG1VcXKy//OUv\nGjp0aKYfEgAAAAAAQI9AJRwAAAAAAIAs8uabb+qHH37QK6+8ohkzZmjlypXy+/1aunSpZs2apTff\nfFPDhg3Tyy+/rPPPP1/9+vXTww8/rLy8PF1//fW688479fzzz+vcc8/VDTfckOmHAwAAAAAA0GPY\nMh0AAAAAAAAAOu6zzz7TYYcdppycHJWUlGj//feX1WrVNddco7lz52rZsmX6+uuvNWzYsKjbLV++\nXKtWrdKFF14YGqutrU13+AAAAAAAAD0WSTgAAAAAAABZxDAMBQKB0L7NZlNVVZUmTpyoc845R4cf\nfrgsFotadiAPBAIaMmSIXnzxRUmS3+/Xxo0b0xo7AAAAAABAT0Y7KgAAAAAAgCwyduxYvfHGG/J4\nPKqurtaHH34owzC0xx576LTTTtPWW2+tjz76SH6/X5JktVrl9/u15ZZbqrq6WgsWLJAkPfvss7r6\n6qsz+VAAAAAAAAB6FCrhAAAAAAAAZJFDDjlE3333nY4++mj17dtXW221lRobG7V48WIdc8wxysnJ\n0ahRo7R69WpJ0oEHHqjzzz9fjz76qGbMmKFbbrlFbrdb+fn5uv322zP8aAAAAAAAAHoOw2xZmxgA\nAAAAAAAAAAAAAABAQmhHBQAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAAAAAgSSThAAAAAAAAAAAA\nAAAAAEkiCQcAAAAAAAAAAAAAAABIEkk4AAAAAAAAAAAAAAAAQJJIwgEAAAAAAAAAAAAAAACSRBIO\nAAAAAAAAAAAAAAAAkCSScAAAAAAAAAAAAAAAAIAk/T9xGUjzVTpaiwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJ8CAYAAABQyzzyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VWW+xvHnnPQeUqjSQUGkBimKIEVwLCg4iFKUcRQs\ngIKKF0RFBEXnIigooKAOiIwVBkeUIirg0KVJJ0BIIT05SU7aafcPbo6J6YeEBPh+1mK5s9/9vvvd\nSSBr7Tz+fgaHw+EQAAAAAAAAAAAAAAAAgCplrOkNAAAAAAAAAAAAAAAAAFcigjkAAAAAAAAAAAAA\nAABANSCYAwAAAAAAAAAAAAAAAFQDgjkAAAAAAAAAAAAAAABANSCYAwAAAAAAAAAAAAAAAFQDgjkA\nAAAAAAAAAAAAAABANXCv6Q0AAAAAAADANf369VNsbKy6deumFStWVMs9Dh06pPfff18HDx6UyWRS\nnTp11KNHDz399NPq37+/JGn48OGaOXNmtdy/Io4dO6Y2bdq4PN/hcOjHH3/Uv//9bx06dEgpKSly\nd3dXw4YN1bNnT40ePVpNmzYtd41vv/1WX3/9tY4ePars7GzVrVtXERERGj16tDp06FDuPlJTU/XJ\nJ59o8+bNio6Olpubm6655hoNHDhQo0aNUnBwsMvPCAAAAAAAagbBHAAAAAAAAJTo8OHDGjlypPLy\n8pznEhMT5e5eO14pRUVF6bXXXlNeXp7LwaSMjAxNmjRJ27ZtK3I+Pz9fp06d0qlTp/Svf/1LU6dO\n1ciRI0tcIzc3V08//bR+/vnnIudjY2MVGxur//znP3rmmWc0bty4Uvdx6NAhjRs3TikpKUXOHz9+\nXMePH9eXX36p999/X+3atXPpOQEAAAAAQM2oHW9RAAAAAAAAUOssXbrUGcoZMWKE7rjjDhkMBoWE\nhNTwzi74+9//rujoaHXr1s2l+Q6HQxMmTNCOHTskSTfccINGjhypli1bKjc3V9u3b9fy5ctlNps1\nc+ZM+fv765577im2zvTp052hnJ49e2rUqFEKCwvT4cOHtWTJEiUkJOjtt99WvXr1dO+99xabn5iY\nqLFjxyo1NVUeHh4aM2aM+vTpI5vNpg0bNmjVqlWKj4/X448/rtWrVyssLMyl5wUAAAAAAJcewRwA\nAAAAAACU6NSpU5KkevXq6eWXX5bBYCgyfvz48ZrYlpPdbr+o+evWrXOGcm6//XbNnTu3SDWg7t27\n66677tKIESNkMpn0+uuvq3///vL393des2PHDn377bfONebPn+/8PHXq1EmDBg3S8OHDFRMTo7fe\neku33Xab/Pz8iuxj7ty5Sk1NlSQtXLhQt956q3OsR48e6tq1qyZPnqzExEQtXLhQM2bMuKjnBgAA\nAAAAl46xpjcAAAAAAACA2ik7O1uS1KhRo2KhnCvB119/LUny9vbWjBkzSmzR1apVKz3xxBOSpPT0\ndP3yyy9Fxj/55BNJkpeXl6ZNm1bs8xQWFqYXX3xRkpSSkqI1a9YUGU9KStJ//vMfSVLfvn2LhHIK\n3HHHHbrtttskSV999ZVMJlMlnxQAAAAAANQUgjkAAAAAAAAokcPhkKQSAyuXO4fDod9++02S1KVL\nF9WpU6fUa2+66Sbn8bFjx5zH2dnZ2rZtm6QLLazq1atX4vx+/fopNDRUkvTDDz8UGfvpp59ktVol\nqcQ2VwX++te/SpIsFot+/PHHUq8DAAAAAAC1y5X3VgUAAAAAAFSL0aNHa9euXZWaU1Kro5SUFK1a\ntUq//PKLzp49q5ycHIWEhKhDhw66++67NXDgwHKrs5w8eVIrV67Uzp07FR8fL4fDobp16+rGG2/U\ngw8+qBtuuKHEeQsWLNDChQsVHBysnTt3KiYmRh999JF++eUXJSYmKjg4WJ07d9Zjjz2m9u3bS5LM\nZrM+/vhjrV+/XtHR0TIajWrbtq1GjhypO+64o8x97t+/X59//rl2796txMREubu7q1GjRurVq5dG\njx6thg0bljk/KSlJK1as0M8//6zo6Gh5enqqffv2GjNmjHr16lXmXFft3LlTDz30UJFzu3bt0nXX\nXSdJ6tatm1asWKGYmBj1799fkjR8+HDNnDnTef0333yjqVOnSpJ2796tH3/8UUuWLFFMTIyCg4N1\nww036J133pGXl5ckafv27frqq6+0b98+JSYmysPDQ+Hh4YqIiNC9996r7t27F9nPn78XC+9v/Pjx\nmjBhQrnPmZ+fryeffFIJCQlq0aJFmdcWBJQkKS8vz3l86NAhWSwW5+elLF27dtX69eu1b98+5efn\ny9PTU5Kc4aDy1oiIiJDBYJDD4dCOHTs0dOjQMu8HAAAAAABqB4I5AAAAAACgWri5uRU7t27dOr38\n8svKzMwscj4hIUEbN27Uxo0bdeONN+rdd99VSEhIsfkOh0Nz587VsmXLZLfbi4xFRUUpKipKX3/9\ntUaOHKmpU6eWWell69ateuaZZ5SVleU8l5iYqPXr1+unn37S4sWL1bhxYz366KOKiooqMnfPnj3a\ns2ePTp06pYkTJxZb22q1atasWVq1alWR83l5eTpx4oROnDihTz/9VNOnT9fw4cNL3N+vv/6qCRMm\nyGw2O89lZ2dr69at2rp1qx5//PFSn602+de//qW5c+c6P05KSpLZbHaGcmbOnKmVK1cWmWOxWJxf\nz2+++UaDBw/WG2+8UaWVe7y8vDR27NgKXVs4BFQ4TBUZGek8btq0aZlrNG7cWNIfz9a6desiawQG\nBpb4PV/A399fISEhSklJKXJfAAAAAABQuxHMAQAAAAAAFTJr1ixlZ2eXOu5wOPTyyy/r0KFDkqQp\nU6YUGd+wYYOeffZZ2e12eXh4aNiwYerXr58CAwN1+vRpffbZZzp48KB2796thx56SJ9//rn8/PyK\nrPH6669r+fLlkqQ6depozJgxioiIkNFo1MGDB/XRRx8pMTFRn376qcxms+bMmVPiXrOzs/X000/L\narXq0Ucf1S233KK8vDytXr1a33//vfLz8/Xqq6/KYDAoJiZGI0aM0IABA+Tj46Nff/1VS5YskcVi\n0aJFizRkyBBn6KLA9OnTtXr1akkXKp3cf//9at68ufLy8rRv3z6tWLFCSUlJevnll+Xp6akhQ4YU\nmX/kyBGNGzdOFotFHh4eGjFihPr16ycPDw/t2rVLy5Yt0+LFi2U0Vn2X8htuuEFr1qyRJD322GNK\nSkpSu3btNHv2bEmSr69vpdabN2+eGjRooGeeeUaNGzfWgQMH1Lx5c0nSmjVrnKGcbt266YEHHlDj\nxo2Vl5enY8eO6aOPPlJcXJzWrl2rDh06aPTo0ZL++F4saX9hYWFV8nkokJeXp3/+85/Oj2+55Rbn\ncUJCgvO4vOpHDRo0KDKvIJhTsEbh8dLUr19fKSkpRe4LAAAAAABqN4I5AAAAAACgQsqrCDJv3jxn\nKGfo0KEaM2aMcywrK0svvfSS7Ha7fHx8tHTpUnXt2tU53rFjR91zzz166aWX9NVXX+nkyZOaN2+e\npk+f7rxm7969zlBO8+bNtXz5ctWtW9c5HhERoSFDhuiRRx7R4cOHtXr1avXr108DBw4sttf8/HxZ\nLBZ9/PHH6tmzp/N8nz59FBsbq4MHDzqr5MybN69Iy6ouXbqoTp06eu2112S327V582Y9/PDDzvFN\nmzY5Qznjxo3T5MmTi9y7W7duGjZsmEaPHq1Tp05p5syZuvXWW1WnTh3nNTNnzpTFYpHRaNSiRYuK\nhEEiIiI0aNAgjRgxQmlpaWV9SVzi5+entm3bSpKz3VLhc5VlMBi0bNkytWzZUtKF/Rf4+uuvJUmt\nWrXSsmXLnPeTpBtvvFG33XabBg8eLJPJpC+++MIZzCn4XqyK/ZXnzTffVExMjCSpd+/ezueQJJPJ\n5Dz+c4jsz3x8fJzHGRkZxdYob770RyjqzxWnAAAAAABA7VX1/1sVAAAAAAC46qxZs0aLFy+WJHXu\n3FmvvvpqkfGvvvpK6enpkqQJEyYUCeUUMBqNeuWVV9SsWTNJ0hdffOGcI0nLli1zHr/11ltFQjkF\ngoODNX/+fGcbrQ8//LDUPd92221FQjkFCgd5unXrViSUU6B///7O43PnzhUZW7p0qSSpdevWmjRp\nUon3DgkJ0SuvvCLpQvWeL7/80jl24sQJ7du3T5J03333FQnlFGjRooWef/75Up+tNunWrVuRMEth\nycnJki5UmykcyilQv359TZw4UY8++qhGjRolh8NRrXv9s08++cRZ0cfX11dTp04tMp6fn+88LmjN\nVRpvb+8S5xUclze/8DWF5wMAAAAAgNqNYA4AAAAAALgou3fvdla2adiwod57771iIYtt27ZJktzc\n3DRs2LBS1/L09HSO5+XladeuXZIkq9WqHTt2SJLatWunDh06lLpGkyZN1KtXL0nSoUOHSq0qU1Io\nR5Lq1avnPO7Ro0eJ14SGhjqPC7f3MplM2r9/v3OuwWAodZ8RERHOKikFzyZJv/zyi/P4rrvuKnX+\nnXfeWSTsUVt17Nix1LEWLVpIkrZu3ap58+YpJSWl2DWjRo3S888/r+HDh5f5+axqK1ascLZCMxgM\nmjVrlnO/BQoCYAXXVFThawvWcHU+AAAAAACo3QjmAAAAAAAAl0VFRWn8+PGyWCzy8fHR+++/XyS0\nUuDkyZOSLrSgCgwMLHPNTp06OY9PnDghSYqLi5PZbJZUdtCjQME1DofDee8/a9SoUYnnC4eKSqrK\n8+drCldxOXr0qPPjFStW6Lrrriv1z/XXX+98pujoaOcap0+fdh6X1Z7J29tb1157banjtUWDBg1K\nHXvkkUfk7u4uh8OhxYsXq1evXrrvvvs0d+5cbd++vcYqwyxcuFCzZs1yfi3/53/+R3feeWex6wpa\nS0kXgmRlyc3NdR4Xro5TsEZ58wtfU5HqOgAAAAAAoHYgmAMAAAAAAFxiMpk0btw4paeny2AwaM6c\nOaUGSQpaUoWEhJS7buFgT8G8wi2tSgr+/FlYWFiRfZakoFpNWQpXRKmI0qrzlCcjI8N5XFA1xmg0\nKigoqMx5Fflc1DR/f/9SxyIiIrRw4ULVr19fkmS32/X777/rgw8+0JgxY9S9e3dNmjRJe/bsuSR7\ntVgsmjp1qhYsWCDpQmWaadOmacyYMSVeX/h7qHDlpJLk5OQ4jwt/XQvWKDxemoJ7lPd9AQAAAAAA\nag/3mt4AAAAAAAC4/FgsFk2cOFFnzpyRJI0fP1633357qdcXripTHrvd7jw2Go2Vni9JNpvNeVxa\n2x9396p/LVL4vk888YQGDRpUoXkFzykV3a/D4SizbZGHh4cLu7y0ymu71LdvX/Xq1Utbt27Vpk2b\ntG3bNiUkJEi6EERZt26d1q1bp3Hjxmny5MnVts/MzEyNHz/e2VbM3d1dr732moYOHVrqnIYNGzqP\n4+Pj1aZNm1KvPX/+vPO4cCWmhg0bKi4ursh4aeLj44vNBwAAAAAAtRvBHAAAAAAAUGkzZsxwBhgG\nDRqkp556qszrg4KClJiYqNTU1HLXTk5OLjKv8H+lPyrKlKXwNcHBweVeX1UK79Pb27vMVlSlCQ8P\nl3QhoJSWllZmlaHClYQuZx4eHurXr5/69esnSYqMjNT27du1adMm7dixQw6HQ0uWLFHv3r3VtWvX\nKr9/cnKyHnnkER0/flzShfZS8+fPV58+fcqc17p1a+fxuXPnyry2oF2Zh4eHmjZt6jzfqlUr7dmz\nR2lpacrMzFRAQECJ87Oyspx/f1q2bFn+QwEAAAAAgFqBVlYAAAAAAKBSli5dqq+++kqS1LZtW735\n5pvlVkW57rrrJElnzpwp0rapJAcOHHAet2jRQpLUuHFj+fr6Fhsvzf79+53HzZs3L/f6qnLttdeW\nuIeS5Ofna+HChfryyy+1b98+5/lWrVo5jw8dOlTqfLvdrhMnTlzEbmteenq6fvvtNyUmJhY537Jl\nS40aNUqffPKJpk2b5jz/008/Vfke0tLS9PDDDztDOaGhoVq+fHm5oRzpwve1j4+PJJXbbqtgvFOn\nTkWqNXXq1Ml5vHfv3lLn792711k5qjrCSQAAAAAAoHoQzAEAAAAAABW2adMmzZ07V5IUFhamRYsW\nOYMJZenVq5ekC62eCkI9JcnPz9fXX38t6UIroe7du0uS3Nzc1KNHD0nS4cOH9fvvv5e6RlRUlLZv\n3y5JatOmjUJDQyvwZFWjXr16zioq27Ztc1ZJKcnatWu1YMECTZ8+XV988YXz/MCBA53HBZ+Lkvz8\n88+XdcWcPXv2qHv37nrwwQe1atWqUq8rHJDJy8srMlZeIKw8drtdEydO1KlTpyRJjRo10qpVq9S+\nffsKzff29lbv3r0lSVu2bCm1mtPmzZudYwMGDCgy1r9/f2dLsm+++abUexX8vfHw8NCtt95aof0B\nAAAAAICaRzAHAAAAAABUyOHDh/Xcc8/JbrfL29tb77//vho0aFChuffdd58CAwMlSQsWLChSIaaA\n3W7XzJkzdfbsWUnSvffeW6SN09/+9jfn8ZQpU4q0vCpgMpk0adIk2Ww2SdIjjzxS4eerKgX7tFgs\nmjx5cokVgs6cOaN//OMfki6ES0aPHu0ca9iwoQYNGiRJWr9+fYlhjYSEBM2aNas6tn/JdOjQwRma\nWrlypaKiokq87ttvv3Ue/zkw4+npKUkym80u7eGjjz7Srl27JF1oebZ8+fIibaYqYtSoUZKknJwc\nTZ8+XVartch4cnKyZs+eLelCq7OhQ4cWGQ8MDNTdd98tSdqwYYPWrVtX7B7r1q3Txo0bJUl33333\nJQ2bAQAAAACAi+Ne/iUAAAAAAOBql5CQoMcff1w5OTmSpBdffFFhYWGKjIyUxWJxttj5swYNGig4\nOFgBAQGaNWuWJk6cqOzsbI0ePVrDhw9X3759FRAQoDNnzuizzz5ztqlq1qxZkRZGktStWzeNHj1a\nK1asUGRkpAYPHqyHH35YERERMhgMOnTokD7++GPFx8dLku666y7dc8891fhZKdnQoUO1YcMG/fzz\nzzp48KDuvvtujRkzRh06dFB+fr727t2rf/7zn87AzsMPP6zrr7++yBrTp0/Xzp07lZ6ermnTpmnn\nzp266667FBAQoP3792vp0qVKSkqSr6+vsrOzS9zHggULtHDhQknS+PHjNWHChOp98Ery9PTUk08+\nqddee00mk0nDhg3TqFGj1LFjRwUFBSkxMVHr16/Xd999J+lCW7M77rijyBrh4eE6ffq0jh8/ri+/\n/FJt2rRRUFCQmjRpUu79s7Ky9MEHHzg/HjNmjDIzM3X06NEy5wUFBalhw4bOj7t166bBgwdr7dq1\n2rx5s0aOHKkxY8aoQYMGOnr0qBYtWqSEhARJFwJlBQG1wp577jlt3rxZ6enpevbZZ/Xbb7/ptttu\nkyRt3LhRK1eulMPhUGhoqCZNmlTuswEAAAAAgNqDYA4AAAAAACjXr7/+qsTEROfHL730UoXmvfHG\nG84KIYMGDdLbb7+t6dOnKzs7W59++qk+/fTTYnNuvvlmvfXWW/Lz8ys2Nm3aNHl4eOjjjz9WSkqK\n3n777WLXGAwGjRkzRs8++2xFH69KGQwGvfPOO3rxxRf1n//8R/Hx8ZozZ06J144cOVIvvPBCsfN1\n69bVypUrNXbsWMXGxmrNmjVas2ZNkWuGDx+uhIQE/fzzz9XxGJfEyJEjdfbsWa1YsUImk0nvvfde\nide1atVKH3zwgbPlU4GBAwdq586dslqtmj59uqQLlZbefPPNcu/9ww8/yGQyOT+eP3++5s+fX+68\nIUOGFPt6zpo1S+np6dqyZYv279+vZ555psi4wWDQ+PHj9de//rXENUNDQ7V06VKNHTtWqampWrFi\nhVasWFHsmg8++EB169Ytd48AAAAAAKD2IJgDAAAAAAAumTvvvFPdu3fXp59+qi1btig6Olp5eXmq\nX7++2rZtq6FDh6p3794yGAwlzjcajXrhhRd0zz336LPPPtPOnTuVkJAgo9Gohg0bqnv37ho2bJja\ntGlziZ+sKG9vb82dO1cPPPCAvv76a+3du1dJSUmy2WwKDw9X165dNXz4cEVERJS6RqtWrfTtt9/q\niy++0HfffaeoqCjZ7Xa1bt1aDz74oO655x6NGzfuEj5V1TMYDJo+fbpuv/12ffnll9q/f78SEhJk\ntVpVp04dtWnTRgMHDtSQIUPk7l78NdbIkSOVn5+vL7/8UrGxsfL09Cy1gtCfHTlypMqew8vLSx9+\n+KG+/fZbrV69WkeOHFFWVpaCg4MVERGhhx56qMyvtXShTdf333+vjz/+WJs3b1ZMTIxsNpsaN26s\nfv366W9/+1uR1m4AAAAAAODyYHCUVmsaAAAAAAAAl7W0tDT16NFDL7zwgh555JGa3g4AAAAAAMBV\nx1jTGwAAAAAAAED1OHnypCSpcePGNbwTAAAAAACAqxPBHAAAAAAAgCtQZmam3n77bQUHB+uWW26p\n6e0AAAAAAABclQjmAAAAAAAAXIHWrl2rM2fO6N1335W3t3dNbwcAAAAAAOCqZHA4HI6a3gQAAAAA\nAACqlt1uV0ZGhoKDg2t6KwAAAAAAAFetWh3MsVptSkvLrultAAAAAAAAVEqdOr680wAAAAAAAJcd\n3mm4Jjw8oNSxWt3Kyt3draa3AAAAAAAAUGm80wAAAAAAAJcj3mlUvVodzAEAAAAAAAAAAAAAAAAu\nVwRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAAgGpAMAcAAAAA\nAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAA\ngGpAMAcAAAAAAAAAAAAAAAA1at26b7Vo0YJqW/+33/bolVemFjv/zjtzFR8fX+RcVNRZjR8/tkru\n614lqwAAAAAAAAAAAAAAAACXmaeffrZa1yeYAwAAAAAAAAAAAAAAcBXzmzFdXt+ukYwGhdgdVbJm\n3t33yjxjVunjebl6/fVXFR8fL4vFor59+zvHVq36VD/+uEFubm7q2LGznnxyog4e3K+FC+fL3d1d\n3t7emjXrTXl6eukf/3hdMTHRstvteuyxJ9SlS9dS7xkdHa3Jk8fLZDJpyJD7dNdd92r8+LF6/vlp\n8vPz18yZ0+VwOBQSElolnwOJYA4AAAAAAAAAAAAAAAAusTVrvlb9+g316qtvKDr6nLZv36asrCxF\nRp7S5s0btXjxR3Jzc9OLL07Rr79u1f79v6lfvwG6//4R2rZtizIyMrV9+/cKCgrW1Kkvy2RK11NP\njdWnn35R6j1tNqvefHOe7HabHn54hG6+uY9zbPnyZRowYJAGDx6iH3/coNWrv6qS5ySYAwAAAAAA\nAAAAAAAAcBUzz5gl84xZCg8PUGpS5iW557lzUerR4yZJUuPGTXToUIBSUlIUFXVW7dq1l7v7hUhL\nx46ddOZMpEaP/puWL/9ITz/9hMLD6+r6629QZOQpHTy4T0eO/C7pQvAmPT1dwcHBJd7z+uvby8PD\nQ5KHmjdvrvj4OOdYdPQ53X33EElS+/YdqyyYY6ySVQAAAAAAAAAAAAAAAIAKatq0uY4ePSJJio2N\n0ZIl7/3/+WY6cuR3Wa1WORwO7d+/T40bN9WGDet0xx13acGCJWrevIXWrv1GTZs204ABg7Rw4Qea\nO/dd9e07QIGBgaXe8+TJ47JarcrJydHZs2fUqNE1zrFmzVro8OGDkuTcV1WgYg4AAAAAAAAAAAAA\nAAAuqXvuGao33pip8ePHymazafjwkTKZ0tWyZSv16zdATzzxdzkcDnXo0FG9e9+qI0cOa86cWfLx\n8ZHBYNCUKS8qLCxcb745S+PHj5XZnKUhQ4bJaCy9Ro2np6eee26isrKy9MgjYxUYGOQce/jhv2vm\nzOnatGmDGjZsVGXPaXA4HI4qW60aJF2iEkkAAAAAAABVJTw8gHcaAAAAAADgssM7DdeEhweUOkbF\nHAAAAAAAAAAAAAAAAFwRPv74Q+3du7vY+WnTXqnSSjgVRcUcAAAAAACAKsb/XQYAAAAAAC5HvNNw\nTVkVc0pvrAUAAAAAAAAAAAAAAADAZQRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRz\nAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAABXtAxzvg6dTpHJnF/TWwEAAAAAAAAA\nAABwlXGv6Q0AAFBdMsz5OhiZIqvdrpSMXIUGeqt5g0D5+3jU9NYAAAAAAAAAAAAAXAUI5gAArkiF\nQzkFUjJylZKRq7rBPmpWP1C+3vwYBAAAAAAAAAAAAFB9+I0kAOCKYzLn69CfQjmFJabnKNmUq3p1\nfNS0foC8PflxCAAAAAAAAAAAAKDq8ZtIAMAVpbxQTgG7w6HzqdlKSMtRw1A/Na3vLw93t0u0SwAA\nAAAAAAAAAABXA2NNbwAAgKpSUijH05SmkCP7Sp1jdzgUk5ylHUcSdOZ8hqy2sgM9AAAAAAAAAAAA\nAFBRBHMAAFeEkkI5BptVt0x7TP0mjZR/7Nky59vsDkUlZOrQ6ZRq3ikAAAAAAAAAAACAqwXBHADA\nZc9kztfByORi7auu/fJjhZw8LIPDoWt++aHCa8Umm6tjmwAAAAAAAAAAAACuMgRzAACXtYJQjs3u\nKHI+4Fyk2q1YoNw6YbK7e6jxlvUVXvNMXIby8m1VvVUAAAAAAAAAAAAAVxmCOQCAy1ZpoRzZbLpx\n7otys1i09+kZio+4WcGnj8k/5kyF1rXa7ToZm14NOwYAAAAAAAAAAABwNSGYAwC4LJUaypHUes0K\nhR49oHO33qG4m/orpvcgSdI1laiak2zKVVJ6TpXtFwAAAAAAAAAAAMDVh2AOAOCyY861lBrK8YuN\n0g2fvKO8oDra9+SLkqS4nv0q3c5Kkk7FmGS12atkzwAAAAAAAAAAAACuPgRzAACXFZvdrsNnUksM\n5chuV9d5L8k9L1e/PTVd+cEhkiSLf2Cl21lJUp7VptNxGVW1dQAAAAAAAAAAAABXGYI5AIDLyslo\nk7LzrCVujef9AAAgAElEQVSOtfjuc9U9uFuxN/VXTJ+/FBlzpZ2VJMWlmGXKynNtswAAAAAAAAAA\nAACuagRzAACXjfMpZsWnZZc45psQqw5L/1f5/oH6bcLLksFQZDyuZz/ZPDzUeMsPlb7v8eh02Uuq\n0AMAAAAAAAAAAAAAZSCYAwC4LJhzLToVYyp50OFQxPxX5JGTrf2PT1VuaN1il1j8A5XQ5WYFnz4u\n/+iKt7OSpOw8q6ISMl3ZNgAAAAAAAAAAAICrGMEcAECtZ7PbdfhMqmyOkqvWNNuwWvX3/qrzXW9R\n1G33lLpOQTsrV6rmRCdmyZxrqfQ8AAAAAAAAAAAAAFcvgjkAgFrvRLRJ2XnWEse8UxLVcfEcWXz9\ntPeZGcVaWBVW0M7qmq3rK70Hu8OhE+fSKz0PAAAAAAAAAAAAwNWLYA4AoFY7n2JWQlp2yYMOhyLe\nmSFPc6YOPvq8cuo2LHOti2lnJUmm7HzFJpsrPQ8AAAAAAAAAAADA1YlgDgCg1srKsehUjKnU8cY/\nfaeGO35SYsfuOn3HsAqtGd3n9gtzXWhnJUln4jKUl29zaS4AAAAAAAAAAACAqwvBHABArWSz23Xk\nbKpsDkeJ415pyer83ixZvXy0Z/JrkrFiP9Iupp2VJFntdp2MpaUVAAAAAAAAAAAAgPIRzAEA1Eon\nok3KzrOWOt75vdnyyjTp0COTZG7QuMLrWv0CLqqdlSQlm3KVlJ7j0lwAAAAAAAAAAAAAVw+COQCA\nWud8ilkJadmljjfaukGNt/yg5HZddOqekZVe/2LbWUnSqRiTrDa7y/MBAAAAAAAAAAAAXPkI5gAA\napWsHItOxZhKHXfPNqvze7Nk8/DU7smzKtzCqrCLbWclSXlWm07HZbg8HwAAAAAAAAAAAMCVj2AO\nAKDWsNntOnI2VTaHo9Rr2n62SD6pSTr2wFhlNW7u0n2sfgFKiOh1Ue2sJCk+NVu5+aW32wIAAAAA\nAAAAAABwdSOYAwCoNU5Em5SdV3rQxT/2rK79ZrnM9Rrq2P1/v6h7RfceJOni2lnZHQ6dS8i6qH0A\nAAAAAAAAAAAAuHIRzAEA1AopplwlpGWXeU3HxXNktFp04LEpsnt5V3hto8FQ7JyzndVFBHOkC1Vz\n8vJtF7UGAAAAAAAAAAAAgCsTwRwAQK0Qm2wuc7z+rl/UcOcvSuzYXbG3DKzwum4Gg5rWCyh23tnO\n6syJi2pnZXc4FJ1I1RwAAAAAAAAAAAAAxRHMAQDUuJw8q1Izc0sdN1jy1WnxHDmMRu17cppUQgWc\n0oQGeatRuJ/cjcV/5FVFOytJOp9iVp6FqjkAAAAAAAAAAAAAiiKYAwCocXEpZVfLab3mUwXEnNWp\nux9URvNrK7V2eLCP3N2MahjmV/y+VdTOyuZwKIaqOQAAAAAAAAAAAAD+hGAOAKBG2e0Oxadklzru\nlZqk61e+r7zAYB0ePb5Sa7sZDAoJ9JIkNQr3k/FPlXYKt7MKOHe68psvJC7ZLIuVqjkAAAAAAAAA\nAAAA/kAwBwBQo5LSc2Sx2Usdb//RPHlkm/X7mKdlCQyu1NqhQd5y+/8WVl4ebqpXx6fYNQXtrKqi\nak50YtmVfwAAAAAAAAAAAABcXQjmAABqVGxy6WGWOscOqvmG1Upv0Uan/zKs0muHBxcN4lxT17/Y\nNc52VlvXV3r9P4tNzpLFWnrICAAAAAAAAAAAAMDVhWAOAKDGZOVYlJGdX/Kg3a7O782WJO17cprk\n5laptQu3sSrg5+2h0EDvIueqsp2Vze5QbHLWRa0BAAAAAAAAAAAA4MpBMAcAUGNik0oPsTTdtFah\nxw/qXJ+/KLnDjZVeu3Abq8KuCS9eNaeq2llJUkyiWdYyWnMBAAAAAAAAAAAAuHoQzAEA1Airza7E\ntJwSx9zNWeqwbK6sXt46+NjzLq3/5zZWBeoEeCnAx7PIuapsZ2W12xWbVHp7LgAAAAAAAAAAAABX\nD4I5AIAaEZ+aLZvDUeJY288WyTstWceGP6acug0qvXZJbawKa1yvaNWcqmxnJUkxSVlUzQEAAAAA\nAAAAAABAMAcAUDPOp2SXeN4/5oyuXb1C5nqNdHzYIy6tXVobqwLhQd7y9nQrci669+2SqqadlcVm\nV1wyVXMAAAAAAAAAAACAqx3BHADAJZeWmSdzrqXEsU6L58hotejAuCmye3m7tH5pbawKGAwGNQ4v\nWjUnrmffKmtnJV2ommOzUzUHAAAAAAAAAAAAuJoRzAEAXHJxKSVXk6m/82c12LVFCZ16KPbm21xa\n281Ydhsr571CfeXh9sePwcLtrIJOH3fp3oXlW+2lVgUCAAAAAAAAAAAAcHUgmAMAuKTyLDalmHKL\nnTfm56vT4jmyG920/4mpksHg0vqhgWW3sSrgZjSqYZhfkXNnbr9PktTj9Wflbs506f6FRSdkyW53\nXPQ6AAAAAAAAAAAAAC5PBHMAAJdUfEq27I7iYZXWa5YrIDZKkXc/qIzm17q8fnltrAprFOYnY6EA\nUNxN/XVi6MMKPBepnrMmyWCzurwPScqz2nQ+lao5AAAAAAAAAAAAwNWKYA4A4JJxOBw6X0IbK5/E\n82q7cpHyAoN1+KHxLq/vZjQoNNC7wtd7eripfohvkXMHHntecd37qP7eX9Vp0Rsu76VAdEJmiUEk\nAAAAAAAAAAAAAFc+gjkAgEsmxZSrXIut6EmHQxHvvCKPnGwdfPQ5WQKCXF4/NNBbRmPlWmBdE+6v\nIjPc3LTzf/5Xpmat1WrtZ2q5dqXL+5GkXItNCVTNAQAAAAAAAAAAAK5KBHMAAJdMXAnVcppu+rca\n7N6q+C436eygoRe1fmXaWBXw9XZXaFDRKjtWP39tm7lIuUEh6vT+G6q359eL2te5hCyq5gAAAAAA\nAAAAAABXIYI5AIBLIifPqtTMvCLnvFMS1WnRG7L4+GrvpJmSoXLVbgqrbBurwhrXDSh2Lrt+I/13\nxkI53NzUc9YzCjgX6fLecvKtSkzLcXk+AAAAAAAAAAAAgMsTwRwAwCURl/ynajkOh7osmCnPrAwd\n+vuzyq7X6KLWd6WNVYEgP08F+XkWO5/SrrP2TJ4lj+ws9XrpCXma0lze37mETNnsdpfnAwAAAAAA\nAAAAALj8EMwBAFQ7u92h+NTsIueu+eV7Nfrvj0pq31WRdz1w0feo60Ibq8Iah/uXeP5c/7t1ZMTj\n8j8frZtenSBjfr5L62fnWXX8XPrFbBEAAAAAAAAAAADAZYZgDgCg2iWm58hi+6NajGd6qrq8N0tW\nL2/tnjxLMl7cjyM3o0EhLraxKhAW7CNfL/cSxw4/NEHRtwxS+O971eXdGZLD4dI9EtNzdC4h8yJ2\nCQAAAAAAAAAAAOByUvJvIOGUlpmns/EZcjMaZDQa5GY0ys1okJubQe6Fjo3GCx8bDZIMrrVSKYvB\nIPn7eMjdreayVKkZuUo25apVoyCX28UAuDr9uY1V5/dny8uUpv1jX5C5UdOLXv9i2lgV1riuv45H\nl1DVxmjU7uffkF9CrJpvWK3MJi10/P5HXbrHmfMZ8vfxuOggEQAAAAAAAAAAAIDaj2BOGVJMuTp8\nNlX2ClRG8E5OUMQ7M1Tvt1+V1KGbYnoPUuzNA5QfWKfK9mM0GBTg66HQQG+FBHrL38ejytYuS3au\nRadiM5SamStJMuda1L5FaI2GhABcPjKz85WR/Uf7p4a/blKTn9cppW1HnRwyukrucbFtrArUq+Or\nM+czlG+1Fxuzefvo11ffU/8J96v9sreV2aiZ4m4eUOl7OCQdOZumLteGy9ebH8MAAAAAAAAAAADA\nlczgcLjYj+MSSUqqmZYfiek5OhaVVn4ox+FQ041r1GnRG/I0Zyo7rL58k+MlSXajmxI796iWkI4k\nebm7KSTQS3UCvRUS4FXlQRmL1a6z8Rk6n5Jd7PPg7+2h9i1D5eXhVqX3BHDlOX4uTedTsyVJHpkm\nDXrsLnlmmrRx0WplNml50eu7GQ26+YYGVVbJKzUjV2fOZyozJ7/E8eBTR9R30ihJ0ub5K2Vq2dal\n+/h5e6hz6zBCjgAAAFeo8PCAGnunAQAAAAAA4CreabgmPDyg1DGCOSWIT83W8XNpKu8T452coK7z\nX1aDXVtk8fHVwcem6PSd98s3PlbXbF2vxlt+UMiJ3yVVf0inoJpOSIC3QgK9FODr6fJadodDcclm\nRcVnymIrXjWigLeHmzq0DJWv96Wp3APg8mO12bX993jZ/v9HzY3/mKpmG9fo0N8m6diDY6vkHvWC\nfdS2WUiVrFVYhjlfsUlZSjLlFgsnNty2UTfPnKjssPr6ccHnyg2t69I9woK8dUPz0KrYLgAAAGoZ\nXmIBAAAAAIDLEe80XEMwpxJik7J0MtZU9kV/qpKT0Lmn9kx+Tdn1GhW71Pd8zIWQztb1Cjl+SNIf\nIZ3o3rcrasBgOTxcD9GUxsPNqCA/TwX5eynIz1P+vh4yGsqvJpFiylVknEnZedYK36d9i1AF+lX9\nMwC4/J2Oy9C5xAv/jtfftUW3TB+ntFbX68d3/yWHe9WE+m5oFqKwKmplVZI8i01xyWadTzEXaXF1\n3ecfqsOyt5V8fWf9/I9PXP63vFn9ADWrH1hV2wUAAEAtwUssAAAAAABwOeKdhmsI5lTQuYRMnT6f\nUeY1f66Sc2DsCzpzxzCpAqGXkkI68V176b8vvyubd/X9UlmS3AwGBfh5KsjPU8H+Xgr085Cb8Y/2\nKdm5Fp2KzVBqZq5La1/fLEShQd5VueVa7/czKcrKtsjHy73QHzf5ernL29O9ytrqAJeryFiTopOy\nJEnu5iwNeuxueacla9PCL2Vq2aZK7lHVbazKYnc4lJSWo5gk84U2Vw6Hur/xnJr8vE4n7x2t/U9O\nc3nt6g4XAQAA4NLjJRYAAAAAALgc8U7DNQRzKuDM+QxFJZRxr0pUyakI3/Mx6vLea2qwa4uS2nfV\ntpmLZPXzd3H3fzDm5+v6le8rLzBYJ+8bU/p1BoP8vD0U7O8pm92h+NTsYq1aKnVfg0HXNg5W/RBf\nl9e4nJT3/WKQ5OXhViS00zDMt0gYCrhS2R0OHT+XroS0bOe5Lu/MUMvvPtfhUU/qyEMTquxe1dXG\nqjwFba5S41PUd8L9CoqK1I6p/6vovne6tJ6b0aAu14bLj9aAAAAAVwxeYgEAAAAAgMsR7zRcQzCn\nHKdiTIpJzip1vEiVHF8/HRg7RWf+UrEqOWUxWPLV/c0X1HjLD0q9rr22zP5AlsBgl9fzTklUz9ee\nVtiR/ZKk3c/O1tlBQy9qj5XVokGgmtQr/RvuSpCUnqPDZ1MrPS/Yz0vtW4YQzsEVzWa36/CZVKVm\n5jnPhe/boVtf+JtMzVpr43tfVWn7vpquNGPKytPJn3ZrwIRhMtjs+nHB58po1tqltXw83dXl2nB5\nuPNvBAAAwJWAl1gAAAAAAOByxDsN15QVzLmqf/vncDh0/FxamaGcJpvWatBjd6vBri2K73KT1n+w\nVmfuuP+iQzmS5PDw1M6p/9DZ2+5VyPFDuvX5h+WVluzSWiFHD2jA+GEKO7JfMb0GKt8/UF3enaGQ\nowcuep+Vcfp8hk7Fmi7pPS+lrByLjkWluTQ33ZynQ5GpstntVbwroHawWG3afzKlSCjHLSdbXee9\nJIfRqN3Pzq7SUI6b0aCQwJptoRfk7yVry1ba/ezrcs/L0U0zJ8rdXPrPlLLk5Ft1NCpVtTwvCwAA\nAAAAAAAAAKASrtpgjt3h0NGoNJ1PzS5x3JiXq4i3p6v7Wy/I4LBrzzOvausbS5VTt2GV7sPh5q7d\nz87WqcEjFHzmhPo+O1o+iecrtUbTDat163Oj5Z2WrANjp2j7S/O1Y9rbMtpsumnmRHmnJFbpnssT\nk5Slo2dTL6o1Vm1ksV6oBGK7iOcinIMrVU6eVftOJiszJ7/I+Rs+mS//+Bgd/+vflHZd+yq9Z1ig\nt4zGiw9JXqy6wb6KvWWgjg17RAExZ3Xj3GmSi/9OpGbm6XRcRhXvEAAAAAAAAAAAAEBNcZsxY8aM\nmt5EWbKz88u/qJKsNruOnk1Tkim3xHH/2LPqPfUxNdi9VWmt2uqXNz9WYpebqqRKTokMBsXf2Ftu\nljw12r5ZjX7dqLgefWUJCCp7mtWiTovfVIeP5snq66//vrJQ5wYMlgwGmRs2kdXLR9ds26iwI/sU\n1X+wHG5u1bP/EphzrcrNsyq8BlvMVCWHw6Hfz6QqM8dy4YTNpiY/fSerl3el24/lWmzKyLIovI63\njNX1PQVcQlk5Fh08laJci63I+eBTR3Tj29OVdU0z7Zj2thzu7lV63+b1A+Xr7VGla7rCw92ouBSz\nkjp1V9jve9Vg91ZZvX2U0q6LS+tlZOfLx8td/j41/2wAAABwnZ+fV7W80wAAAAAAAKhOvNNwjZ+f\nV6ljFQrmHDhwQM8//7yGDh1a5PzmzZv13HPP6ZtvvpHD4VC7du2Un5+vKVOmaNmyZfr+++/VsWNH\nBQcH6+jRo3rqqaf0zTffaO/everXr58MFQglVMUX3GK1KS0jT3Ep2TpzPlOn4zJkzrOWeG2jrRt0\ny/Rx8ks8r8g7h2v7S/OVHxx60Xsol8GgxM49ZXd31zW/btI1W9br/I23KD84pMTLPU1p6vXKU2ry\nyzqZmrbSL299rLQ2RatRpFzfSf5x59Rg9xZ5pybpfI++1RcuKoE516rQQG95eVy6QFB1iYzLUGJ6\njqQLgajub72gdivfV4t1X8hgtyulbadKBZ8I5+BKkZ6Vp4ORKbLYileBavfPBQo5eVi7psxRZtNW\nLt/D3WiUt6eb/Hw8FOTrqToB3goL8la9EN8K/Rypbp4ebkpMy5HFLsXfeIua/PSdGm3/UUk3dFV2\n/WtcWjMtI092h0M2m10Gg0Ee7ldtgTsAAIDLFi+xAAAAAADA5Yh3Gq4pK5hjcDjK7rfx4Ycfau3a\ntfLx8dEXX3zhPG+xWHTHHXfoq6++ko+Pjx588EEtWbJEP/zwg44fP67XXntNp0+f1uzZs7Vs2TI9\n9dRTuv/++9WnTx89++yzuvPOO9WvX79yN5+UlFmJR70gJ8+qDHO+0rPyZDLnK7uUEE5hBku+Oiz9\nX127eoWsXj7a+/SMC9VnakDrb/6pTovnKC+ojra8/qHSW7crMh4UeUw3zxgvv4RYxd7UX7umvCmr\nr1+JaxnzctVv0kjVOXVEv42frsjBIy/FIziFBHirQ8tLEGyqRgmp2Tp6Lk2SZMzPU4/Zk9Vo+2al\nXnuDfFIS5ZOSqMxrmum3CS8rsXPPSq0d7Oel9i1D5Gbkl+64/CSl5+hoVFqJbevccsy6+4HesvgH\n6bvlG6UKBNd8vdzVKNxfXu5GeXq4ycPdKC8Pt1rRrqo8Z+MzdDb+ws+r0MP7dOtzDyk/IEgb3/9a\nuWH1Lnp9d6NR/r4e8vf544+vtzvBPgAAgFosPDzApXcaAAAAAAAANYl3Gq4JDw8odazcNECTJk20\nYMGCYucjIyPVpEkTBQUFydPTUxEREdq9e7dOnTql3r17S5JatGihyMhISVLbtm2Vnp4uh8Mhs9ks\n9ypuaZKakaujZ1O1/XC8dh5N0NFzaTqfml2hUI5PYpz6PveQrl29QhlNWmrTwi9qLJQjSSeHPqw9\nk2bKMyNdfab8TaGH9znHrvnle/V7ZoT8EmJ1ePR4/ffld0sN5UiS3ctbv85YoNygEHVaNEdhB3e5\nvC9jfr78o89Uak5qZq5M5ss3TZeRna/j0emSJLecbPV66XE12r5Z8V1u0s//+Kd+WPqdTgwZLf+4\nc+rzwiPqNmeKvNKSK7x+ujlPhyJTZbMXrzYC1GaxyWYdOZtaYihHkhpvWS+PnGydGTS0QqEcSWpS\nL0CNwvwUFuyjQD9P+Xi5XxahHEmqW6htX0q7zjow7gV5p6eo56xnZLBc/L+BVrtd6Vl5iknK0rFz\nadpzPFHbDp7X3uNJOn4uTVkFbfYAAAAAAAAAAAAA1CrlpmMGDRqkmJiYYuezsrIUEPBH4sfPz09Z\nWVlq27atfvrpJw0YMEAHDhxQQkKCbDabmjVrppkzZ2rRokUKCAhQ9+7dK7TBslJFBU5Gp+lMolmS\n5OnlIU8vjwqtLUlh239Wh1cnyTMjXXED79HhKbMlXz+Vf9fqlTxstA4GBan9a5PVe9qj2jdniUL2\nblfL5e/L6uun395YosQ+Ayu2T/8WOvDGIt04YaRunjVJ/132b+U2qER7FYdDdbds1HULX5dfbJT2\n/mOZkm4uv9pRgbRsi1o1u/yq5uRZbDp8Ll1+fl5yz8pQxEvjVOfgHiXccpsOvLZAvp4XSlGdfn6m\nkgffr3Zvvqimm79Vw92/6MQTLyh68ANSBSrh2CSdS85RRJu6cnOjcg5qv8iYdMWn58rf37vUa1pt\n+EYOg0FJQx5QQBnXFfBwN+r61nXldpkEcUoSm5arjP8PIiaM/LviTh5Sw41rdePHb+vo5BnVdt+s\nfLvy7FLzCvy8BAAAwKVVkXcaAAAAAAAAtQ3vNKqWy2Vr/P39ZTabnR+bzWYFBARowIABioyM1IgR\nI9SlSxe1a9dObm5umj17tlauXKnWrVtr5cqVmjNnjl555ZVy71NWiSSrza5jUWlKzsit9P4NNquu\nX75Q169aIpuHh/ZOnKHTd94v2Q1SVuXXqw6ZNw1U1kvvqMfsSbrx6dGSpKyGTfTrjIXKaNa6UvvM\nbNVB7k9OU8SCmer4wlj99PZK2bx9yp0XFHlMnRbPUd0DO2V3u/Dt0mzpOzrdoadUwRYqmVm5CvZx\nV7B/6T3Vahu7w6EDp5JlMufL05Sm7lMfVZ1TRxTV9y7tfv51OfIdUv4fn//MRq0UO+8ztfzuX2r/\n0Xy1e+tF1f/2C+2dOEOmlm3KvV9mVq7STdnq0DKUtlao1VIzcnXwdEqZ1wSci1SdQ3sVH3GzkgLC\nKvRvVeNwf6WmZFXVNmuEl/HC3+UCO8a/ov4njqjpV//U+VY3KLrfXdV279PRNoX6VTyUCgAAgOpH\n2WcAAAAAAHA54p2Gay6qlVVpWrZsqaioKKWnpys/P1979uxR586ddejQIfXs2VOrVq3S7bffrsaN\nG0uSgoKC5O/vL0mqW7euMjIyXL21JCk716rfTiS5FMrxSk1S7/95VNevWqKs+tdo8/xVOn3X8AoH\nTS6luJv6a9vMRbL4+ul811u06d3PL4RyXHD6rgd0+i/DVOfUUXWd95JUSgsaSfJKS1HEvJd125ND\nVffATsV176MNS/6tmF63KfT4QdXdv6NS9z5z/uK+3pfaqRiTTOZ8eack6tbnRqvOqSM6/Ze/ateU\nOXK4l/LLbzc3RQ4eqR+Wfadzff6i0KMHNOCpv6rDB2/JLcdc8pxCTOZ8HYxMoa1VLWS12WW3l/73\n5WqRb7Hp2P+xd9/RcZRXG8Cfme1dW9SbZRV3G3dTTUvoEAKBjxZCCRBIKKYnAUxNaAkECC0QQgkJ\nCR3TwRhwMC64W7YsW1YvK+2utL3NfH8IjI1taXa1siT7+Z3Dsa2d+77vyquVj+bh3gZvv9eVvf8q\nAKDuuNMVr13g2vNIvpEix75z2DFpMOJ/t/0FcaMJM/58K6x1NYO2dzASRzSeHLT1iYiIiIiIiIiI\niIiIiCg9giz3kc74VlNTE+bNm4dXXnkFb7/9NkKhEM4880x8+umneOyxxyDLMk477TScc8458Hg8\nmDdvHsLhMCwWC+6++27k5uZi+fLleOCBB6BWq6HRaHDnnXeiqKj/cUq7S2J5eiLYsM2LxI4BBlmG\n1u+D3tMJvcfd+6t3598bPG7ovZ3Q+rsBAM0HHYVl192DuNmawqdsaAjxGGSNNiPrHH79L+DasBKr\nL74ONWdctNPjYiyGijdewPh/Pg5NKIieknKsuuwmtM84BABgr1mHo3/9M7QfMAef3/f3lPaePNoJ\nh7X/kTZDraUziJomH4ztzZh744UwtzSg5tTzsPqym1MKb+Uu/xLTHrkD5tZGhFx5WH3pDWg69Jh+\nx1vZTFpMGu2EmmOthlwoEkeTO4h2bwiluRaU5O7fLdvWbOmExx/t8xohHsNJZx8OAHjnpc8gaft/\n33JYdJhc7srEEYfcyho3ukOxnT5W8OVHOPiOK+EvLMXHj/4HCdPgvI7GltiR5zAOytpERERElDr+\n32VERERERERENBLxZxrp6atjjqJgzlD64V94Q7sfda092PHQeUs/x6z7b4Kuu+9ODlFrFiKObETs\nTjQffDS2nHR2Rrvk6DQqjMqzQBQHofOODHj8UXT6wkgO8K9M53Hj6F//DAaPG1/c9WRv6EaWUbD4\nY0x5+n6YWxsRtdiw/vzfYOsJZ0JW7Tzx7NCbL0beisX45OGX4Rl3gOJ9rUYtplVlD+jsg83rj2Lt\n1i4YG7di7o0XwehuxYazL8P6869M67UiRiMY9/KTGPvKMxATcXgrxmPtBVf3fs77WE+nVqG8yIac\nrP7HjVHmdXVH0NwZ2CmEohZFzB6fC416/wxMNXYEsKWlu9/rCj//AAfddTVqfno+Vl92k6K1J45y\nwLWPvNab3AHUNu/6eZr0twcw9pVn0D51Dv536yNImMwZ3zvXbsS4UnvG1yUiIiKi9PCHWERERERE\nREQ0EvFnGunZJ4I5SUnCpgYfOnzhnR4vf+ufmPrXuyGpNWibfggiThfCjmxE7Nm9IRyHCxG7CxG7\nMyMdZ/bEYdFhXKkdGrVq0PYAekfqdHjDaPOE0PODrgypsG9aiyPmnYukTo9l196NyjdeQM7qpZBU\natSefDY2nHs54hbbbmtda5biiOvOR8ucI7D4jr+mtO/EMgdctuFzA16SZXQHYvD0RNDVE0EomoC1\nrgZzb7oIem8n1lw0D5vO/GXa61sMGuQ5jMj3tsJ0390wv/UaAMA9cTrWXngNuiZO77PeYdGjssgG\ng07d53U0cImkhLauEJo7gwjHEru9pjjbjPLC3X9d7Mv8oRhWbu6EpODbxSG/vQT5y7/AB0+9pWjs\nnrE9UtgAACAASURBVE6jwpzxuRCG4SjBdETjSSxZ34YffqaEZAIH3nEVCr/6FN2jKvHFXU8gnFOQ\n0b11ahUOnJiX0TWJiIiIKH38IRYRERERERERjUT8mUZ6RnwwJxJLYN1WDwKR+PcPJJOY8tR9qHr9\neUSynFh8+2PwjJuy188nABiVZ0VJrnmv31gOReJo9YTQ4QkjmkimXF/64RuY9cDN2//cMnsuVl9y\nIwLFZX0XyjKOmHcuXOu/wYdPvIHu0WMU72nWazBjbE7KZ82kcDQBjz8Kb08EXn90pw5E9pp1OPTm\ni6Hzd+ObX/8eW04+J+X1NSoRuQ4j8hxGmA2anR5TrVsL7V23w/zphwCA1pmHYt0FV8NXMX6P66kE\nASW5FhTnmiHuI+GF4WTHcVVJqe+3Q1EQMGtcDvTa/ScolUhK+KbGjVB092GlHRk6WnDCeUeja9wU\nLHzoZUXrl+VZUZq3b40IW1XbCV9g15FfQjKBKU/ci8o3X0TY4cLiOx6Ht2piRveeMSZnl/cdIiIi\nIhoa/CEWEREREREREY1E/JlGevoK5qjmz58/f+8dJXUtHX6sru1CJP598EQVDuLAu+eh7KM30F1a\njkX3/wM9Zf13Zsg0rVrExDIn8pzGIen2oFGr4LDoUZhtgsWogSTLiMSSu3Rq2JPu8rGQBQFiPI7l\n19yJ6nMvR8ymYAyKICDicKH003egCfSg+dBjFJ85lpBg0mtg0u+9G8eSJMPrj6K5M4itW9vRvnYz\n4uvXQ79mJVyrvkbBV5+iZOECjH73Pxj/4mPQhENYdu3dqDv+DMV7CACcVj1G51tRVZIFp1UPrWbX\n7klyTi4Sp5+B2OFHQtqyFY6lX6J8wSuw1m9B96iq3X7+ZQC+QBSd3RGY9er9KhQyaBIJ6K+fh9bq\nrVhlLoY/HIeSiKIMIJGQ95mxS0rUNPrg3U3IZHeqXnseOauXYv25V8BXueew2XdEQcDYUjvUqn1r\nPJgsy+jqiez6gCiibdZhiJltKFr8EUo/fgs9JeXwl5RnbG+DTg2bafC6wxERERGRciaTDqEBdLol\nIiIiIiIiIhoK/JlGekwm3R4fG9Ydc9q6gli8smmn8Sn6rg4ccstlsNdWo33qgfjqlocQN1v3+tls\nJi3Gj3JAt5vwxVCKJ5Jo94TR5A7sFGYaKAFAvtMEk0GDzU0+QJbxo1/9FLZtNXj/mQUIFI5SvJZJ\nr8GMMdmDHmaSJBnedz+G4y/3Qd/ZAb23E9pg38m+mMWGFVfNR9Nhxyraw6hTI89hRK7DmPprQZah\n+fwzaO+4Dca1qyCLIrb96CfYcO7lCOUW7rEs32HE6ALroI9N25cZHn4Q5rtvhyyKWPjgi+iaMFVx\nrQBg+n7SlaTdG0J1vVfZxckkjj//R9D6u/H2vz5H0mDqtyQ7y4AJoxwDPOXwE09I+Gp9W5+jv/K/\nWog5f7gOqmgYay6+DjWnXwBk4D3RYdFjcrlzwOsQERER0cDx/y4jIiIiIiIiopGIP9NIz4gdZbWx\n3oO1NR3b/2zbshGH3PIrGDvbsPW40/HNb26FrE7t5rhOrcKofAtEQYDbF4bHH+3z5unuFOeYUZZv\nHdZjhSRZRktnEA3tfsQS0oDWyjLrUFFo2x5EWF/ngbs7jKJF7+HAu+dh63GnY8U1d6a05rhSO3Lt\nxgGdqy8d3hDqt7bj8PN+DGNnOyI2ByLObETsrt7/dvh92JmNiD0bEUc2EkZTnzfHtWoRNpMONpMW\nNrMWFmMGOlPIMjTvvgP93XdAX7sJklqD2pPOwrpfXLnHcINGJWJ0gRX5zv7DD7QzVc0mZB15COI6\nPbSBHgTzivDR46/3/t0r5LTqMWn0vh1+CEcTWLHJjYSk7P0jd/liHPbbi1N6P5hS7oLdsufk6Ei2\ndmvX7rvm7CCrdgMOueVXMHR1YMsJZ2LlFb9L+XvaD6kEAQdPyocoDt/vT0RERET7C/4Qi4iIiIiI\niIhGIv5MIz19BXNGzEycvKWLMOfuedCEQ1hz8bXY9LOLUuouIAoCinPMKMk1QyX2jk3JdRiRSEro\n6o4oCuloVCLGlGTBZRv+Y2xEQUBRthn5TiOa3UE0dgQQT6YW0DFo1SgvsO4ytqeiyAZfIIqmQ34M\nf9EojProTWw49wqEs/MUr13f5kdOliHjXXN6QjFsae5GdzCGMf/9B4yd7ag+85dYd9G8tNYzaNXb\nQzg2kw5G/SB8yQgC4iechPixxyP62n+g/8NdqHr9eRR89SmWz7sL7gNm71IST0rY1OhDuyeMymLb\nXh0NNqIlkzBeeTnEWBTLb34Ajo1rMO7fT2PKE3/Ainl3KV6mqycCXyCKLPO+GSqRZBnV9V7FoRwA\nKPvgvwCAumNPU3S9UafeZ0M5AJCTZeg3mOOrGI9P/vJvHHzr5Shf8G+Y2prw1e//jIRpz9+0+5OU\nZXQHY/v055aIiIiIiIiIiIiIiIhoJFHNnz9//lAfYk86u8Po6Aqi/K2XMPu+mwBBwJLf/gl1x/8s\npVBOTpYBE0c7kJ1l2KXLjSgKMBs0yLEbUZjdO6oJMhCJJbFjRMdi0GJyuRO2PuaCDUeiIMBm1qHA\nZYIgCAiE4uivP5BaFFGWb8XYUnvv5+OHj6tEaDUqdPqjSOiNKFr8ESBLaJ95qOJzxZMSDDp1xsYB\nReNJ1DZ1Y3NzN6LxJDQ9Phx49zwkdXos+f2fIWmV/b0ZtGrk2g0ozjajoigLpXkWuLIMsBi10KjF\njJx1j0QRyQkTET3/QsSjMVgWfYKyD1+HzueBe/IMyJpdu/NE4km0dYWQlGRYTZph3cVpONA/9ThM\n/3weDXOPw8ZzfgX3pOnIX7oIBUs/h2/0WPhLRiteKxRJ7LMdi+pa/ejwhRVfr+32Ysafb0VP8Wis\nu+AaRe/PpXkWWE0Z6Dg1TOm1KjS7g/2+3yZMZtQfdSJsdZuQv+wLFCxZiNbZcwc0olGnUTGYQ0RE\nRDQMcB47EREREREREY1E/JlGekx9ZEkGOWkwQMkkpjx+D6Y9eheiVjs+u/8faD70x4rLLQYtplZm\nY/woB/Ta/judqFUicu1GTBztxEET8zCu1A6XTY9ClwlTq1ww6EZMg6FdqFW9YZvZ43NR5DLvNsAh\nAChwmjB7fA6Kc3Z/zXfyHEY4rXrUH3kiQtn5GP3uf6D1eVI607a2npTHiP2QJMmob/Nj6YZ2tHlD\n2z8+9t9PQxvoQfVZlyq+wa0SBRxQ4UJlURZy7EboNKoBnS1tej3i8+9Ex1sfwj+qAhVvv4wfX/oT\nZK/6ereXS7KMhg4/lm3sgKefDh37M7FuK4z33I6ozY6VV/weACBrtPj6xvuQ1Oow46FbofO4Fa/X\nE4rBnUJ4ZaTw+qNo7EitNV3px29CTMR7u+UoCOWoBAF5jsEbZTccqFUiHFa9omuTBhMWz38Mm39y\nHmz1tTjqyv+DfeOatPf2+qNp1xIRERERERERERERERFRZg3rjjm6M05Hwbuvobu0HIvu/wd6yiqV\n1alVqCzKQlVxFvTa9MIVO3bScVr1GR+5NFRU394sznUYkEzKCIbjAAC7WYcJZU7kO03bR331J8uk\nQ6sviqQoonDJQkhqDdxT5yg+SyIpQ6dRwWJMr2tGhzeEdXUedPZEdupKYehoxex7b0DEmYOlN94L\nWaUsUFWeb1N8I31vEAoLET7rPLg9QeQs+azf7jmJpIx2bxjBSAI2kxZq1fDO3e1VkgTTL86Bdlsd\nll17N7xjJ29/KJblQNxgQtGXH8FaX4uGI09U3JErGI5v70a1L4gnklizpQsJKYXAnCxjxp9vhTbo\nx9Ib/oikvv9Rf3kOI3Ls+3YwBwAgQHl4SxTRNvNQxMw2FC3+CKWfvI2eknL4S8pT3jaeSKLQZYZK\n3Ddel0REREQjFf/vMiIiIiIiIiIaifgzjfSM2I45lo/fR9u0g/DpQy8jlFfY7/UqQUBprgWzxufs\n890YBkqvVWNMiR0zx+ZiUpkTUypcKY+V0mlVKC+0YutxpyOS5UTFW/+EOphap436dj+kFEIASUlC\nhy+MlZvd2FDvRSSe3OWaCS88ClU8hnXnX6l4hJXFoEFh9vAbS6QxG2G8/w9Y8bfegFrF2y/jmEtO\n2WP3HKA3CLC0uh1N7gDkAXYk2lfonnsGhiWL0XzQUWiae9wuj9eecg7aph+M/GVfoPztlxWvG4om\n0NoV6v/CEWJTgw/RxK5fU31xbFwNW30tmg8+CjGbXVFNgWv4fa0NBpdVn3I4pvbU87B4/qOAIGL2\nvTek/J4KADIAb4Bdc4iIiIiIiIiIiIiIiIiGg2HdMaehcjK+OuF8SAo6MGSZdJhS4UR2lqHPEUy0\nM41ahFGf/ogui1ELX0RCJBxDwdJFSBjN6Jw0XXF9UpKhUYuwmvbcNScpSejsjmBbmx81DT50+MKI\n7iaQAwDWuhpM/8vt6CmtwDe/uRVQ0P1HADChzKlo3NlQEAUBtspR2HjkTxAMxZC39PPe7jneLrgn\nz9xt9xxZBjz+KDw9EZiNmqEbyzUMiI0NsP7iHCR0Bnx515NIGM27XiQI6Jg6B6M+fB35yz5H06HH\nKA6ZBEJxFLiMI/59p9kdQFNnMOW68S88CnttNVZfehOCBSX9Xm81ajEqT9l4uZFOEASEIgkEI/GU\n6gJFZRAkCXkrFsNfPBrd5WNT3lstCnDZ+v/eSURERESDh/93GRERERERERGNRPyZRnpGbMec0CGH\nQ1b338VFp1ZhQpl92AYr9nVVxVnYdvJZiJksqHztH1BFFI5u+VZjewBJSdrpY991xlm/zYP/rW3D\nhm0euH1hJPvpADPp7w9BkCSsuWgeoFIWRsl3mvoMBg0HgiCgqiIP/ptuwad/+Re6SytQ8c6/ervn\nrFyyxzp/OI6VNW5sbvIhkZT2eN0+S5ZhuPo3UIWCWHXZzYg4c/Z4acSZgxVX3Q51NILZ994AIaEs\nTBFNJNHUkXqgZThJShK2tvakXKcOBVHy2XsI5hagfdqBimr2l24538nJSi8c03DECQCAkoXvpFXP\njjlEREREREREREREREREw8OwDuYoIQAYW2qHRr3/dgQZagadGsWVhag9+Wzouz0oe//VlOqjiSRa\nOkNph3G+41q7HAVLFsI9aQbaZs1VVKNTqzC6YOR07yjLt8J1xMH45LFXUX3WpTC42zD3pgvhWrN0\njzUygObOIJZVd6DDu++MXVJC+88XYPxiIVpnHIr6H53S7/XNhx2DbT/6CRw16zD+xb8q3qexI4B4\niiOghpOuniiSKYyU+07RovegjoRQd8xPFXWn0qjEtIMqI5XdqoNGlfq32mBBCbrGTEbOyiXQeTtT\nro/EkghHEynXEREREREREREREREREVFmjfhgTnGOBXbLnlsC0d5RlG1G+7kXI6EzYMwrz0CIK29t\nZXC3Qfen+1Dzwhsph3G2k2VMeuZBAMCai68FFI4VGl1ohTqNm+ZDqTDbjDFVedhw4TX4/N5nAQDT\nHrmz3w4v0UQSG+q9WLnZDf9+0HpMbGuF6ZbfIm40YcXV8xW/JlZe/jsEcwsx7l9Pwbl+paKahCSh\nvj0wgNMOrXQDW6Pf/y9kQcC2H5+q6Po8hxGiOLJHfqVKFAS4bPq0ahuOPAGilETR5x+kVe/xs2sO\nERERERERERERERER0VAbWYmEH7AatRiVbxnqY9C3Rk8qR90JZ8DY2YbST97u+2JZhnPdCsy5+xoc\nf97RmPDsQzjkpotRtOi9tPYu+N8ncG1YhaZDfgTPuAMU1TgsOuTajWntN9RysgyYNNoJ79Q52Hrc\nz2Crr0XFGy8pqu0OxrCixo2N9V5E4yO3y0ufZBm6a66EOtCDNRdfj3BOgeLShMmMpTf8EZBlzLrv\nRqhDysZUtXQGEYmNvA4liaQET0/qAQ7rts1wVq9G2/RDFH9+97cxVt/JSfN9pumwYyGLYvrjrPyR\ntOqIiIiIiIiIiIiIiIiIKHNGbDBHJQoYV2qHqLALBg0+o16N8K9+DUmtwdh/Pw0kdw19iLEoRn3w\nGo6+4jQcOe9cFC96Hz2jKrH2gquR1Okw5w/XYdQHr6W0r5BMYNKzf4YkqrD2gmsU1YiCgMqirJT2\nGW7sFh0OqHRh0y/nIWqxYcKLj0Lf1aG4vs0bwtLqdtS3+SGlMcZoOFO/+h+YP/kA7QfMwdYTzki5\nvnPSDGw885cwtzbigMfvUVQjyTLqWv0p7zXUOrsjkFLtUAVsH1lXd9zpiq53WHQw6NQp77MvyDJr\noUtj3GLEmYOOKbPg2rAKxtamlOt9/hjkNP5uiYiIiIiIiIiIiIiIiChzRmwwp6o4a7+9yTuc5U2u\nQstxp8LSXI+iL74fv2Jwt2Hi3x/CieccgZkP/g62rTVoPPQYLHzwBXz0+GvYeNalWHTfc4iZLJj5\n4O9Q/qay7i8AMOrD12Ft3Iq6Y09DoLhMUU1prmWfeP2YDRpUTinHugvnQRMKYvJT96dUn5Rk1LX1\nYGl1e9rjjIYbwe2G+ebrkdAZsOKaOxSPsPqh9eddAW/FeJR98BoKv/xQUU2HN4RAuO+RYsNNhzec\nco0Yi6H04zcRsTnQMudwRTUFzv2zWw4ACIKA7CxDWrUNR5wIACj57N2UaxOSBH9oZL0eiYiIiIiI\niIiIiIiIiPY1IzKYk2s3jtgRRPs6QRCA66+HLIoY96+n4Fq7HHPu6h1XNe7lJwFZRvX/XYJ3n/8I\nS255CJ2TZmwPTnirJuKzB55HxO7CtMfuwph/Pd3vfqpIGBOefxQJnR4bzrtC0RmNOjWKc80Dep7D\nSZZZh/jPz4dnzCSULnwH2auXprxGJJ7EhnovVm52oycUG4RT7j3a666BptuLtRdeg2B+cdrryBot\nvr7pPiS1Okx/6DZF3YhkAFtbetLec2+LJ5LwBaKoeP0FHHHNOZj85L0oWPwxtN3ePusKlnwKXY8P\n9T86BbJG2+8+eo0KTps+U8cekbLt6QVzmg/5EZIazQDGWaU+poyIiIiIiIiIiIiIiIiIMmfEBXMM\nWjUqi2xDfQzqg27sGHiOORlZWzfhiGvPQ/HnveOqls27C++8tBDrLrwG4Zz83db2lFVh4Z9eQCg7\nH5Of/RMm/P0hoI9RLBVvvAhDVwc2//R8RJw5is5XWZS1z41AKyuyY+O82yELAqY+eieERHpdMrqD\nMXxT48bGei+i8V1HkQ13qjdfh/W9t9A5YRpqTzlnwOv5S8qx+pfXQ9fjw/SH5yuq8fgj6A6MjDBE\nhy8Clb8bk/7+EFzrv8GYV5/Dwbf/Bqf87CAcc/GJmPbQbSj5+C0Y25t3qit7778AgLpjT1O0T77T\n1Bva24/ZTFroNamPs4qbrWibeRhs2zbDWleTcr3HH0m5hoiIiIiIiIiIiIiIiIgyZ0TN8hEFAeNG\n2aFWjbg80X5H/t3vEFq5HF2VE1D7k3PROXG64pFCgcJRWPinF3DYjRdi/MtPQh0JYfVlN+9Sr+3x\nYuy/n0bUYsPGMy5StHau3Qi7RZfy8xnuREFAwXFzUXf8zzB6wSuoeOMlbD79F2mv1+YNocMXhiaF\nrzWHVYeyfCu0aYQPBiIpSfD5Ywhu2owJN1yLpEaLZfPuAsTMvE9sOflsjPr4TeR//RnUQT8SJku/\nNe3eMGzm4f86c3vDKHvvv1BHQlj381+jc9JMuNYuh2vdCrg2rEL5u6+g/N1XAACh7Hx0TpwGb8V4\n5H7zP3SOnwp/SXm/e4iCgDwnO5wBvV1zGjsCKdc1HHkiCv/3CUoWLsC6sqqUav2hOBJJid83iYiI\niIiIiIiIiIiIiIbIiArmjMqzwGrsf2wKDT25agx836xFLJZEYVJGniQhKcmQJBnJpIykJCMhSdt/\nn5QkeP1RJKXe7jih3EJ89uALOOymi1D1+gtQh0NYcdXtgOr70MfYfz0NbdCPVZfeqCgsoVGJKC+w\nDtpzHmomvQatv70V0c8/wIQXHkHjEccr7iK0O5IsI5pQ3jWn1dMb5inNtaAo2wxRHLwOKaFIHJ6e\nKDz+CHyBGJwrl+DAu66GrseHVZfciEBxWdprqwQBoihApRKgFkWoRAE9sw6GY9NaODatRce0g/pd\nw+0Lo6LINqw7M0XjSfT0BHHQmy8ioTOg9pRzEbfY4J4yCwAgJBPI2rJxe1Ane90KlCxcgJKFCwAA\ndcedrmgfl00P3V4Oaw1XuXYjmt1BSH10AdudltmHI24womThO1h3wdWKQ45A79dxdyC2V0aJdQei\nEAQBVhO/TxMRERERERERERERERF9Z8QEcxwWHUpy+w9f0PChUaugUSu/IR9PSGjpDKLJHUA8KSHi\nzMFnDz6PQ2/+JUa//yrUkTCW3vBHyGoNjO3NqHjzRQRzC7DlpLMVrT8U3Vz2tvzKEmy5/EaMv/e3\nmPLUffj65gf26v5JScbW1h60doUwusCK7CxDhtbt7Yrj8Ufg6YkiHEv0PiDLqHjzJUx54o+AKGL5\nVbej7oQzFK1ZlG1Grt0AlShAJYpQqQSoRGG3I5e0R88FXngCjo1rFAVz4kkJPn8UDuvghyHS5faG\nkb/4E5g6WlF70lmIW3YeESir1PBWTYS3aiI2n/YLQJZhaayDa91y6Lq9qD/yxH73UAkCyvL33TBc\nqswGDSaWObC+zoNkCuEcSadH88FHY9THb8G5YRW6JkxNaV+vPzrowRxZlrG5qRsJScKMMTns0ENE\nRERERERERERERET0rRFx50yjEjGmxD7Ux6BBplGLKM2zYM6EXJQX2KBTqxCz2rHovr/DPXE6Sj57\nFwfeeTXEWBQTnn8Uqngc686/EpK2/+4MNqMWBS7TXngWQ896xaXwjpmEkoULkL166ZCcIRxLYP02\nD1Zt7kQgHE9rjVAkjqaOANZs6cTitW1YW9eF5s7g9lCOGItixp9+j6l/vRsxmx2f3f+c4lBOeYEN\nFYU2WIxaGPUa6LQqqFXibkM5ABCfNgMA4Kxerfj8bl9Y8bVDocMXRtXrzwMANv/kvP4LBAH+ktGo\nO/4MbDzrUsia/r/uSvMsMOhGTP5zr3BY9ZhS4UppTBwANBzRG4Qq/mxBynt6/JGUa1LV0hVCIBJH\nJJbE5kbfoO9HRERERERERERERERENFKMiGDOuFI7R6HsR1SiiOIcM2ZPyEVVURY0dju+uPsptE07\nCIVffYrDrz8fpR+/Cd/oMdtvVvdFFARUFmfthZMPDzq9Bp6774csCJj66B0QEmkEY5JJFH3+PkZ9\n8Bryln4O25Zq6DxuIKl8tBUA+IJRrNjUgU0NXsTifdcmJQld3RHUNPqwZEMblm7sQG1LNzz+6C6j\nf/RdHTj8up+j7IPX4KmaiI8f/Q+6Jkzr9zyiIGBciR3FOeaUnoecm4tYYREcG9cACjuduH2RlEcW\n7S3haAKqlSvgWv8NWmcdNqDRX3ti1mtQlOLneX9hNWkxtTIbeq3y72sdU+cgYnOg+LP3ICQTKe0X\niiYQjaX2tZuKeELCttae7X9u94XR5gkN2n5EREREREREREREREREI8mwb2VQlG0e1uNgaPCIgoAC\nlwn5TiM6fBasvvdpJG/9DQq/+hQAsPbCeYCq/xvbhdkmmA2awT7usGI97CC0nno2Cl57CZVvvIia\n0y9QXGuvWYdpD8+HY/P6XR6TRRGRLAcijmxE7K7eX7/9fdvMQxAoHLVrDYBWTwgdvjBKcy0oyjZD\nFHs704QicXh6ovD4I/AFYoqCLI7qVTjo9ith8Lix7eiTseKq2yHp+n+PUAkCJpQ50n4/iU+dAdM7\nb8DU1oRgfnG/1yckCd6ewR8hlA63L4zK118AANSc+vNB2aOyyAZxDx2ICDDq1ZhamY21W7oQiPQf\nnpPVGjTNPRYVb/0TOSuXoH3GISnt5w1EkecwpnvcPm1r60E8Ke30sc1NPliNWhj1w/6fGURERERE\nRERERERERESDaljfMbOatLAbhvURaS8QBAG5diNy7UZ0PfMC6uf/HvFYHN4DD4dFq4JWo4JWLe78\n6/bfi1CJI6IxVMaJd96J2McLMP6FR9FwxAmIOHP6vF4d9GPicw+j4q1/QpBlbDv6FLinzILe44be\n09n7q7cTBo8blsZtsNdW71QfM1nw4ZNvIJxTsNv1k5KMra09aOkKwmHRw+OPIJJiF49R77+KaY/c\nDjGZxKpLb8Tmn54PKAh/aFQiJo12wmrqf/zSnsgzZwHvvAHHxjWKgjlA77io4RjM6d68DVMXvYfu\n0nJ0TDso4+vnO4ywmXUZX3dfo9OocEClC+u2euALRvu9vuGIE1Dx1j9RsnBB6sGcnsigBHMC4Tha\nOoO7fDwpyaiu92BqVTYDWkRERERERERERERERLRfG9aplwKXGW63f6iPQcOI02UBHn0YAHDgEJ9l\nuFNlu+C96Vbk/nYepjx1H76++YHdXyjLKFr0Hg544g8weDrRU1SGb66aD/eUWX2vHw7C8G1oJ2fl\nEkx48THMuv9mLLr370AfYahILImWrl1v5PdFSMQx5cl7UfnmS4hZbPjyd39SHCjRa1WYPNo14M4d\n8ekzAQDO6tVoPOIERTVd3RFIkry9Q9BwEIrEkfef5yEmE9h86s8VBZtSoVGJGF1gy+ia+zK1SsTk\ncieq671wd4f7vLZr3AEI5hagcPFHWHHlbYo6RX3HG+g/+JOO2uZu7KnPlT8cR11LD8oL+XogIiIi\nIiIiIiIiIiKi/df+2UqEaD8hXnghAhMPQMnCBche9fUuj5taGnDo7y7BgfdcC62/B+vOvxIfPfFG\nv6EcAEgaTAgUjkLnpBnYcN4VaD7oKOSsXoqqV5/L6HPQ+jw47OaLUfnmS+geVYmPH/2P4lCOWa/B\n1MrsjIzTSUyaDEmthmPjauU1kgRPT2TAe2dSR6sH5Qv+jag1C/VHnZzx9csLbdCo+a0lFaIoYPwo\nOwqcpv4uRMPhJ0ATCiL/60Up7RFLSAiE+x+ZlQq3LwxfP4GfRndg2H0NpCuRlBBPSP1fSERErJK0\nFQAAIABJREFURERERERERERERLQD3j0l2peJIqIP/hmyIGDqY3dCSPTemBdjMYx76XEcc8nJyFv+\nJdqmH4wPnnoL1ef8CpI2jXFPgoDlV9+BiN2Fic89BNuWjRk5vqVhC47+zc+Qs3opmg75MT55+GXF\nY6SyTDocUOmCTqPKyFlgMCA6biKytlRDjMUUl7l9fXdB2dt0/30Fuh4ftp5wZkodV5TIMukGZVzS\n/kAQBFQVZ6Esz9rndd91ayr5bEHKe3j9meuak5QkbGnuVnTtxgYvYvHUxtYNN0lJwrqtHqyr64Ik\n7alHEBEREREREREREREREdGuGMwh2sdJU6cjcPb5sNVvQeUbLyJ79VL86FenYuI//oKY2YKvfvsg\nvrjnaQQLSwe0TyzLgWXX3g1VPI7Zf7weYmxgIQBjezMOu+kimNpbsO7nv8FXtzyEpKGfjiLfyrYZ\nMLncCbUqs29x0vSZUMXjyNpSrbimsyeCpDQ8umz4g1GUvvJ3SCo1ak86K6Nri4KAqmKOLBqo0jwL\nqoqysKcBY91lVegurUD+14ugCfSktLbXn7nONU0dQUQUhm1iCQkbG3wZ23tvk2QZ6+s88AWj6A7G\nUN3gzej6SUlCdb0Xmxq8aGj3o8MXRiAcRyI5PN43iIiIiIiIiIiIiIiIaGAYzCHaD0RvuQ2JLDsm\nPftnHH79+bA01aH25LPx/jPvounw4wFhTzGA1LTNOgy1J50FW30tJj3757TX+W58lbGzHasuuRHV\n516u+IwFThPGj7JDFDPznHaUnDkTAFIaZ5WUZHT1ZK5TyUBE3/8QtvpaNB52LCKu3IyuXZxjhlGv\nyeia+6sClwkTRjkg7u41LwhoOPJEqOIxFC7+OKV1uwOxjHR7icQSaGj3p1Tj8UfQ2BEY8N57myTL\n2LDNA88O3YbcvrDibkH9SUoS1m7xoN0bQqsnhK2tPdiwzYPlmzrw5dpWfLWuDSs3u3cK7YQiiYzs\nTURERERERERERERERHsHgzlE+wHZ4UR4/l0QE3F4K8bhk7/8Gyt/fQsSJktG1t8xPrDml9ejp6gM\nVa/9Azkrv0p5LXUoiEN/fyksTduw8YyLsPn0XyiuLXKZUVWcBSFDQaMfSkyfAQBwblyTUt1wGWfl\neO4pAMDm087P6LoGrRolueaMrrm/c2UZUFWctdvHGg8/HgBQ8uk7Ka2ZlGV0B5WPYduTLS09SMqp\nB3zqWnvgDw18/71FlmVsqveis3vXTkON7gCa3QMLGn0XyrG/8gKOP+8oWOtqdrkmmkiiOxjbKbSz\nqTGzHXuIiIiIiIiIiIiIiIhocDGYQ7SfiJx9Hrr+twLNb36E+JRpGVlTFATkO4yYOTYXlYW9Y4yS\negOW3nQfJJUaM++/GZoe5SNsxFgMB93+Gzhq1qHumJ9i7UXXKq416zUYXWhN+TmkIllWjoTNDkeK\nwRxP99CPswqtWY/crxehc8I0eKsmZnTtyiIbVCK/nWRansOIIteugadgfjG6xk1BzuqvofO4U1rT\n6x9Y9yZfIJp20EySZVTXe4f8a0GpmkYf2vt4rrXN3ejsTu9zkZQkrK3tQsETf8KMh2+Dqb0FrvXf\nKKqNxJSNECMiIiIiIiIiIiIiIqLhgXdSifYjUkUlcrOtmDE2BxPLHLAatWmtoxIEFLnMmD0uF2NK\n7DDq1SjMNm8P53irJmL9eVfA2NmOaY/cASjpriFJmHn/Tchd+RWaDzwSK66+XfH4KlEQMLbUvvvR\nP5kkCIhOnQ5zayO0Po/isqQso2s3XTf2Jt2TjwMAak79eUbXzc4ywGHVZ3RN+t7oQiuyzLpdPt5w\nxIkQJAnFi95PaT2vP/3XoSzLqG0a2AinUDQx4DX2htqmbrR6Qn1eIwOo3uZFT4pdiJKShLU1boz+\nw28x4YVHkdAZAAB6hSGrWDwJKY2ORURERERERERERERERDQ0GMwh2k+5bAZMq8rGlHIX7Lu58b87\nalFEaa4FcybkoqLIBp1WtdPjO4ZzNp15MTrHT0XJovf6H7kjyzjg8XtQsug9uCdOx5LfPghZpVb8\nXEbnW2E2aBRfPxDyzFkAAOfG1SnVdQzlOCuvB663/4NgTj5aDj4qY8uqRREV3/590+AQBQETRtmh\n/8HXWuPcYyGLIkoWpjbOKhCOI55Ir+NKS1cIgUg8rdodtXpC6PD2HXoZSnWtPWjqVDamKinLWFfX\nhXA0oex6ScL6Da0Y99vLUb7g3/CNHosv7/grAMDQpSyYIwOIsmsOERERERERERERERHRiMFgDtF+\nzm7RYUqFC9OqsuGy7b7ziVYtYnS+FXMm5KIs3wqNWrXb64DvwzmySo2lN96LuMGIaY/cAWN78x5r\nxr30OCrffAm+siosvuOvkHTKO7DYzToU5ew67mewJKbPAAA4qlML5nh6okgkh2iEz7N/hzoSRu0p\n56YUeOrPqHwLdJo9vxYoMzRqFSaWOaHaoSNU1O5C+wFz4Ny4BqbWRsVryQC8gdQ6vABAPCFhW2tP\nynV7UtPYje7AwMZqDYaGdj/q2/0p1cQSEtZu7eo38JSUJFSv2obJV52Hoi8/QseUWVj44PPwVYwD\noLxjDsBxVkRERERERERERERERCMJgzlEBACwGrWYWObEzLE5yLUbIQoC9BoVKgttmDM+DyW5FqhV\nyt4yvgvnBPOLsery30ETCmDm/TcDyV1vJo9+51+Y+PwjCOYW4ot7nkbcbFV8Zo1KxNgSu+LrMyEx\nbToAwLlxTUp10lCNs0okYHnuaST0RtQde1rGlrUYNCh0mTK2HvXNbNBgTOnOr/WGI08EABQvXJDS\nWlubu7GluRtef1TxSKRtbT2IZzBYlpAkrKztxIpNbrR7QsNiNFOTO4CtaYaPQtEE1tV5IEm7fx5J\nSULNkmpM/dUZyF67HI2HHYsv7n4aCZMFcbMVSY02xWCOsg49RERERERERERERERENPQYzCGinZj0\nGowrtWP2+FzMGp+LwmwzRFHov/AHvgvnbPvxqWg6+GjkrFmGqlef2/mazz/AtEfuQMTmwOd//Bsi\nzpyU9qgsztplnNZgk7PsiJRVwLFpLSClFlQYinFWmgVvQd/egm0//gnilsyMnRIAVBVnQRBSf11Q\n+nKyDCjJsWz/c/PBRyOp0faOs0oh2BKJJ9HoDmD1lk4sXtuKdXVdaOkM7jHsEQjH0dIZHPD5d8cf\njqG6wYsl69tQ19qDaHxoOsG0dgVR29w9oDW6g73P5YeSkoQtny7H9EtPQ1ZdDWpPPhtLbn4Aklbb\ne4EgIOLIht7bqXgvdswhIiIiIiIiIiIiIiIaORjMIaLd0mlUEAcYvCjMNqOy2I4VV9+BsMOFSc89\nDNuWagBAzsqvMPve65EwGPHFPU8hUDgqpbVz7UbkZBkGdL50JabPgCYUgKVxa0p1Xv/eH2elffwx\nAMDmn5ybsTULs82wGLUZW4+UK8u3wGntHfWWMFnQOnsubPVbYKurSWu9pCSjszuCmiYflmxox7KN\nHbt006lt7sZg97OJJSTUt/vx9YZ2VG/zoDuY+ritdLV7Q6hp9GVkLbcvjC07BHySkoT6tz7FjMtO\nh6m9BWt/cRVWXvF7QLVzoDDszIbe26U47MdgDhERERERERERERER0cjBYA4RDapClwmlE8qw7Np7\nICbimP3HG+Bc/w0Omv9rAMDi2x6Fr3JCSmvqNSpUFmWm+0s65JmzAADO6tUp1UmyDPde7Jqj/mY5\njN8sQ8vsuQgUlQ14PbNeg0llTlQUDt3nfn8nCALGldph1KkBAA1H9I6zKln4TkbWD0biO3XTWbW5\nE75ANCNrKyHJMtp9Yazc7B70MVexeBL1bX5savApCh7ZtlSj9MM34Fy3Ajpv5x67FDW6A2hyB5CU\nJLS8+Bqm/+YcaAM9WH7NHdh49mXAbgKPEUc2xGQCuu5dO+7sDkdZERERERERERERERERjRzqoT4A\nEe37Cl0m4NSTUPv12ah46584Yl5v95avfv8Q3FPnpLSWAGBsqR1q1dDlChMzZgIAHBvXYNuxp6VU\n6/ZFkO80DcaxdqF/8q8AgM2n/nxA6xh1aozKsyDHbszEsWiA1CoRE8sc+KamE62zDkPcaEbxwgVY\ne8E1gJi5r4ukJMMX3HuhnB/qHXMVw5aWbuQ5TMixG2A2aAa+biiGZncQHb6w4tBP2buvYNpf7oAo\nfd+pJm40IVBQgkBBKQKFpQgUlMBf2Pv7LbIM8aWXcMC9N0NWqbD4tkfQeuCRe1w/4sgGAOg9bkTt\nzn7Pw445REREREREREREREREIweDOUS0VxS6TGi57U70rFwCa+NWrLhyPpoP/XHK6xTlmJFl1g3C\nCZVLjJuApF4P58bUOuYAgC8QRTyRhEat6v/iARBbmqF/+w10l1agY+qBaa2h16hQmmdBnsMIYYBj\nzSizjHoNxpXasa5OQtOhP0bZB69hxp9+jxVXzYesGZoxY8b2ZqhDQfSMqtxtV5h0xRISGjr8aOjw\nw6hTIzvLgOys1EI6kiyj0xdGszuI7lAKY7IkCZOeeRBj//MsojY7qv/vEui9nTA318Pc0gBLYx3s\ntdW7lMUNRmjCIcQsNnx5x1/RNWFan9uEdwjmdJeP7fdYsXgSkiwPeNwgERERERERERERERERDT4G\nc4horykozkb9y2/CvWxNvzeqd8es16As3zoIJ0uRWo3oxCmwfbMMqnAQSYPyDjiSLKOze/C75hj+\n/jcIiQQ2//TnKYcktGoRJbkWFDhNEEXe+B+unDY9RuVZsfbCebDV1aDsw9dham/B/259GHHL3h03\npunx4ejLT4PO342QKxdtMw5B28zD0D7tQCRMloztE4omUN/uR327spBOLJ5Ea1cILZ1BRBOpdZlR\nRcKYdd+NKPryI/QUleHLu55AsKBk54skCXqPG5bmephb6rcHdszN9ZC0Oiy79u7eoFI/vuuYY/C4\nFZ1NBhCNJWHQ8Z9xREREREREREREREREwx3v6BDRXpVXVQpjYT60Xb2jZJKSslEyoiBg3Cj7sOkQ\nkZwxE8Lyr+GoWQ/3lFkp1XZ4w4MbzAmHoX/+WUStWag/8iTFZWpRRHGOGUU5JqgyOBKJBk9pngWB\nSBE+e+B5zLr3BhQt/hhHXnXW7kMkg2j8P5+Azt+NrnFTYG6ux+j3X8Xo91+FpFKjc8JUtM08FG0z\nD0N3WVXGuun0FdLp+XZclTuFcVU70nncOOS2K+DYtBYdU2bhf7f+ZfdhJ1FExJWLiCs35feBHe04\nykpxDYM5REREREREREREREREIwLv6BDRXmc1aWE1aVFRZIPbF0GbJwRfINpnzegCK0x65aNrBps0\ncxbwBODYuDrlG/K+QBSxeBJazeCMs9K98SpErxdb/+8SSDq9opribDNKci3QqBnIGWnGlmRhZSSB\nr255GJP/9iDG/PdZHHXV/2Hx/EfT6kyVKlNLAyre+ieCuYX47P7nIalUcNSsQ96yL5C37Atkr12O\nnDXLMPmZP+3UTadj6hzEzZnpgLVjSEejEhFPSmmvZd22GYfcchlM7S3Y9qOfYPnVtw/6eLCwM51g\nTgLA0I71IyIiIiIiIiIiIiIiov4xmENEQ0YlishzGJHnMCIcTaDNE0K7J4RIfOeRM3azDkXZ5iE6\n5e4lps8EADirV6dcKwNwd0dQ6BqErjmyDMMzT0IWRWw58UxFJSa9BuWFe3f0EWWOShQxcbQD39S4\nseaS6+EvLMW0R+7A3BsuwLLr7kHjEScM6v6T/v5niIk41l54DSRtb4DFM24KPOOmYMPPfw2tz4O8\n5V/2/rfiy+3ddAAgUFACb/k4+CrGwVc+Fr7ycYg4cwZ0noGEcnJWLMZBd14NTSiAtb+4ChvPujRj\nHX76ErG7AACGrtQ65hAREREREREREREREdHwx2AOEQ0LBp0aZflWjMqzwOuPos0TQmd3BCpRwNgS\n+1AfbxdSQSFiOXlwbFwNyHLKN+/d3vCgBHPUK5ZBs2Y1mg86CuGcAkU1+Q5jxs9Be5deq8aEMidW\n13ai7oQzEMotxIF3XY05f7gO5pYGVJ992aAETBzVq1C86H10jZmMxsOP3+01sSwHGo4+GQ1Hnwwk\nk7BvXo/8ZV/AtW45smqrUfzFByj+4oPt10fsrt6wTvnY3sBOxTgE8kuAQR6vVrbgFUx75A7IKhWW\n3PzAoAeadhS1OSCLYsqjrIiIiIiIiIiIiIiIiGj4YzCHiIYVQRDgsOrhsOqRSEqIxJLQaQdn5NNA\nxaZOh/mDBTC4WxWHYL7THYwiGk9Cl+FxVoZnngIA1J5yjqLrRUFALoM5+wSbSYsxJVmorveifcbB\n+PTPL+GQWy7DxH/8BeaWhsyPZJJlTHnqfgDAmkuuVxb8UangHTsZ3rGTt69hcLcha0s17LXVyKqt\nRtbWauQv/wL5y7/YXpbU6hA3WZAwGJHQG3t//eHvDUbEDSYkDCaEcvIRKCxFoKAEkrafcU+StH0E\nWNRmx+L5j6FrwtR0PyvpUakQyXKmMcqKiIiIiIiIiIiIiIiIhjsGc4ho2FKrRJgNg9slYyDkmbOA\nDxbAuXENmlIM5sgA3L5wRkd0CR0d0L39BnqKR6PjgDmKarJtemjUw/dzTKnJtRsRiiRQ3+5HT1kV\nPvnLv3HIbVdg1EdvwNjRgv/d8jDi1qyM7FW4+CO41n+D5oOOQuekGektIggI5+QjnJOP1gOP3P5h\nTY8PWVs2wr6lGllbqmFprIM6FIQ6EoKx2wtNOAhB6n9klSwICLvy4P82pBMoLN0e2AkUlECQJMy6\n9wYULf4YPUVl+PKuJxAsKEnvuQyAw6JDxJENa8MWxR24ouyYQ0RERERERERERERENCIwmENElKbk\nzFkAAEf1ajQddmzK9ZkO5hhe+geEWAy1J5+teGxRnjPz47RoaJXlWxGKJuD2hRF1ZOOz+/+BWffd\niKIvP8JRV5+FL+56csDhEyEew6S/PQhJpcaai6/N0Mm/F7dmwT11DtxT9xAwk2WI8RjU4dD2wI46\nHIQ6HII26IeprQnm5gaYW+phbm5A7qolyF21ZOclBAEJgxGaUBAdU2bjf7c+jLjFlvHn0h+dWoVc\nuxFhZzbstRugDgWQMFn6rYvGk5BkGeIgjCgjIiIiIiIiIiIiIiKizGEwh4goTfHJB0BWqeDcuCat\n+u5gDNFMjepKJKB77hnEDUbUH32KohKjTg27pZ8xPzQijS3JQiSahD8cQ1JvwFe/fwiTnnkQY//z\nLI668kx8fs/f4KuakPb65QtegaWlAbUnn41AUVkGT66QIEDS6hDT6hCz2fu9XBUJw9TaCHNzPSzf\nhnXMLfUwtTWj/uhTsOrSGzM75isFOXYD9FoVIo5sAIChyw2/gmCOjN6uOQYd/ylHRERERERERERE\nREQ0nPFuDhFRukwmRKrGwb55PYREHLJak/IS7d4QSnL7vwnfH+3770Ld2oLak85CwqSsC0+ewzjg\nfWl4UokiJo524JsaN6LxJCCKWPvL6xEoKMX0R27HYTdfhM8eeB49ZVUpr60J9GD8i48hbjRh/blX\nDMLpMy+pN6CnrCqt5zvYch1GqEQBgW+DOXqPG/6S0YpqIwzmEBERERERERERERERDXviUB+AiGgk\ni0+bAVUsCtvWmrTqG9oDvcGJATI88yQA9I6xUkAUBOQ7GczZl+k0Kkwsc0C1w6ijuhPOwLJ5d0Hn\n78bcmy6Cuaku5XXH/vtp6Hp8qP6/SxHLcmTyyMOaShQyPjbKpNfAbNBAt0PHHL3Hrbg+Ektk9DxE\nRERERERERERERESUeQzmEBENxKxZAADnxtVplSckCbVN3QM6gmrTRmgXf4GOKbPhL61QVOO06aFR\nZ2CEFg1rFqMW40p3HvVU/+NT8c2vb4He24m5N1wIY1uz4vWM7c2ofO15hLLzsfnU8zJ93GHLbtZh\n5tgcZGcZMrpuzrfriYKARHYuAMCQUjBn4KE+IiIiIiIiIiIiIiIiGlwM5hARDUBi+kwAgCPNYA4A\nuLvD6PSF0643PPsUAKD2FGXdcgCgwGlKez8aWVxZBozOt+70sS0nn43VF18HY2cb5t54AfRdHYrW\nmvjcw1DFY1h7wVWQdPrBOO6wohIFVBZlYUqFC3qtGoWuzH7d5Ni/D/okc/IApNYxJ8pgDhERERER\nERERERER0bDHYA4R0QAkKyqRMFvh3LhmQOtsbu5GIimlXCf4e6B75WWEXHloOfBIRTUGrRp2iy7l\nvWjkKsm1IM++8+iymjMuwvpzL4e5tRFzb7wQWp+nzzWyataj9JO34a0Yh4YjTxrM4w4L33XJ2TGM\nYzVpYTFoM7K+zaSFQaf+/gP53wZzutgxh4iIiIiIiIiIiIiIaF/CYA4R0UCIIiJTpsLStA2aHl/a\ny0TjSWxt6Um5TvfKyxCDQWw58UzIKnX/BQDyncb+L6J9TlVJFmymnUMlG877NTadfgGsDVsw96aL\noPHvYayaLGPK0/cBAFb/8gZA3Hf/+aASBVTt0CXnhwqzM9M1J+cHQSkhN51RVomMnIWIiIiIiIiI\niIiIiIgGz757Z42IaC9Jzvh2nNWmtQNap6UriO5gTHmBLEP/zFNIajSoO+5nikpEQUCug8Gc/ZEo\nCJhY5oBhx7CJIGDNL6/HlhPPRNbWjTj0d5dAHQruUpv/9WfIWb0ULbPnwj11zl489d71XZecgj5G\nVuVkGaBRDeyfT6IgICdr51FgWrMRUYsttVFW8SQkWR7QWYiIiIiIiIiIiIiIiGhwMZhDRDRQs2YB\nAJzVqwe8VE2jT/GNds0Xi6Cp3YymQ49F1O5UVOOw6qDTqAZyRBrBNGoVJpc7d34NCAK++fWt2Hb0\nKXBuXIODb/0VVJHw9w8nE5j89AOQRRFrLr5uCE49+PrrkrMjURSQ7xxY1xyHRQeNeuevQ51WhYgj\nO6VgjgwgynFWREREREREREREREREwxqDOUREAxSfOgMA4Ni4ZsBrBSNxNLYHFF2r/9uTAIDaU85W\nvH7BAAMFNPIZdGocUOHaOZwjilh+7V1oPPQY5KxZhgPvuApirLd7U9l7r8LauBVbjz0d/tKKITr1\n4FHSJeeHClxGCAPYM8du2OVjOk1vMEcb9EOMRhSvFWEwh4iIiIiIiIiIiIiIaFhjMIeIaIBklwuR\n4lFwbloDZGCsTH27H6FIvM9rxKZG6D58D57KCfCMnaJoXb1GBbtFN+Dz0ci3u3COrFLj65vuQ8vs\nuchf/v/s3Xt8nHWd9//3nJKZSSbnySQ9pGegtCC1LFLZG7GiIAsq9rccxdtbbtd1793lsbqrrvhw\n8fZGdm9Xb71x73UX3YcLeFhkReiKKALKghzaAqXnJmnTpE2bZDKnzPlwXb8/0hRKk+aaZJJMJq/n\n48GjyeT6fuczQKYz17yvz+c/9Y57PiPXSFTr7r9XebdXez76p7NeZ7XToY5Wn9avaFJTif/frXW7\ndP7yJktdct7KXeVUc5178gPH4bDb1Fx/5lq3y6FUs3/061DQ8n6ZHMEcAAAAAAAAAACAckYwBwBK\nILvh7aoaiar2WM+09zJMUwf6Imc9xv3978lmGOr+wC2SzVrvjvbmGtksHovKN244x1WlF774TQ1c\ndKmWPP9rve+TH5I7Mqz9N3xcmSb/rNRlt9nkb/DoghXNunRdQCsX1aml3qMLV7Vo4zl++Rs80+pW\nU19TpQtWNOvi81rV2nBm5xqriumw82b+eo8c9jNfflW57Kf+HXuKGGeVzuanVAcAAAAAAAAAAABm\nB8EcACgB85J3SJKa9+0syX7RRFbHgonxf5hOq/qBf1XGV6/eK66xtJ9NUluTtyS1oXKMF84xqt16\n/svfVvD8DfIGTyjV5NfBLf9txmupdbu0enG9Nq0LaN3yJjXXu88Ikvm8VVq3vEm/d16r2hq9shcR\nNGvyVeui1S3asMY/bseaYjXVueWtLq7TjjT+GCtJstlsyvkDkiR3McGcDB1zAAAAAAAAAAAAylnx\nnygBAM5gXPx7kqSm/a/ryHs/VJI9D/fH1FLvPi00IUnVjz0iZ3hYXTfcLqPaWsCgqc6t6irH5Adi\nwRkL57zWFTw1FqngqdF/3v1PuvB7X1ff5e9XwTMzoS6Xw65Ao1eBJo983irL67xul85b1qjl7T4d\nHUzo+HBChXHGyNkktdR71BGoLWp/qxa11KjrWNTy8dXOs4+TK7ROIZjDKCsAAAAAAAAAAICyRjAH\nAEogv/5CGVXVJeuYI0l5w1Dn0YjWr2g+7faq+/5Jps2m7j+4yfJe7c10y8HExgvn5Gt8euXP7yr5\nfdkkNfrcamv2qqXOLbt96oOp3FVOrV5Sr45ArY4OJdQfTChvGLLbbGptGA3keN2u0hX/Fm1NXh0+\nHlPBODMUNB5/o+es4+TMQJskRlkBAAAAAAAAAABUEoI5AFAKVVVKrV2v+t075UinVHCPP66mWMFo\nWsFISi0No/s5X90h985X1H/pu5VsX2Jpj2qXQ8110x/dg8o2Fs7Z2RWckS4s3mqnAo1etTV5S969\nqcrl0MpFdeoI1GownFJTXbXcVTP/Esd5suNP//AEY+feYqIxVqe0tUsqrmNONmfINM2zBn4AAAAA\nAAAAAAAwd+xzXQAAVIrcxotlL+TV0LW3pPt2Ho0qXzAkSVXf/WdJUtcHbrG8vq3Jy4f2sMRT7dTb\nVrfI7SpNcMZht6m9yasNq1t0ydqAlrX5ZnSkmtNh16KWmlkJ5YxZ1FJj6ThvtVN1k4zTsi06GcwZ\nth7MMUzzVJcjAAAAAAAAAAAAlB+COQBQKpdcIklq3v96SbfN5As61B+TLRiU59GfamTxMg28/Z2W\n1trEGCsUpxThnPqaKp27tEGb1rXp3I5G1ddWl7DC8lLrcamhZvLHF2ic/PewqqFOOY+3qFFWkpTO\nEswBAAAAAAAAAAAoV4yyAoASKVw8Gsxp2rez5Hv3Dyd0zpM/kD2bGe2WY7eWq2z0uWd1RDk7AAAg\nAElEQVS1ewgqw1g4Z6KxVjZJDrtdDodNDvvYP3bV11Yp0OiV172w/p9b5K9RJJE56zGTjrGSVFXl\nULrJX9QoK4lgDgAAAAAAAAAAQDlbWJ+cAcAMMpZ2KNvUUvKOOZKkQkHe+/9F+WqPjrz3Q5aX0S0H\nU+WpdmrDOX6ls4VT4Runwyb7yRAO3tBS71a1yzHhSKk6b5U81ZO/5Kp2OZRubFFtf69shbxMh7WX\naRmCOQAAAAAAAAAAAGWLT9YAoFRsNqUv2ijv0HF5B46VdOtFLz6jmoF+HXnPdcrV1llaU+10qLne\nXdI6sLBUuxyqr6lSrcclT7VTLqeDUM447DabFjXXTPjzgIVuOdLJYE5zq2ymqerwsOX7T2fzlo8F\nAAAAAAAAAADA7OLTNQAoodxV75ckrXj8JyXdd83PHpQkdX3wVstrAk1e2W22ktYBYHztzeP/vtlt\nNktjrMbkWlolSZ4ixlml6JgDAAAAAAAAAABQtgjmAEAJGTfdrExdg1b9/N9kz6RLsmfd4YNq3fmS\nBi66VLEV51hexxgrYPZUuRzyj9OhqqG2Wi6nw/I+hdaAJMldRDCHjjkAAAAAAAAAAADli2AOAJSS\nx6PjH75V1bGIlj29tSRbrn70B5Kkrg99xPKaxtpqeaqdJbl/ANYs8teecVugyXq3HGlqwZxszpBp\nmkXdDwAAAAAAAAAAAGYHwRwAKLH8Jz4pw+HUmp/eL03zw3JXLKJlTz2mRGCx+t9xheV17S0107pf\nAMWrr6mSz+M69b3DZlPLOF10zsZsa5dUXDDHME1lcoyzAgAAAAAAAAAAKEcEcwCgxOrXLNfxzdeo\n/kiXWl99YVp7rXji3+XMpNX1wVslh7VxOC6HvegwAIDSWPSmUFxLvVsOe3EvtWyLRoM5niKCOZKU\nyRLMAQAAAAAAAAAAKEcEcwBgBiT/6FOSpHN++q9T36RQ0OqtP1S+2qPDV33Y8rK2Jq/sNtvU7xfA\nlLU2euRyjL68CjR5i15vb2+TJLmHg0WtSxPMAQAAAAAAAAAAKEsEcwBgBtT9l3dqeP3b1f7ys6rt\nOzylPRa9+IxqBvp15MoPKOert7yuvZkxVsBccdjtamvyqsppV4Ovuuj1rla/Ci5XUaOsJII5AAAA\nAAAAAAAA5YpgDgDMALvdpvDH/kiStOZnD0xpjzU/e1CSRsdYWdRQUy2v2zml+wNQGotaatTaMLXO\nVdVVDqUbW4oeZZXO5ou+LwAAAAAAAAAAAMw8gjkAMEO8N2xRonWRlv/qZ3KNRItaW3f4oFp3vqSB\nDZcqtnyN5XXtLcWPzgFQWp5qp5a3+6a01uV0KNPUKnc4KJmm5XV0zAEAAAAAAAAAAChPBHMAYIa4\n3NUavPljcmZSWvGLh4taO9Ytp/NDt1m/P4dd/npPUfcDYGY4HVN/iZVtaZU9n1NVLGJ5DcEcAAAA\nAAAAAACA8kQwBwBmkPP225V3e7Xm0R/IVrA2asYVi6jj6a2Kty3R8UveZfm+Ak1e2e3Fj84BUF7y\nfr8kyV3EOKtMriCziA47AAAAAAAAAAAAmB0EcwBgBrnb/Dpx7RZ5h45r8fO/trRmxRP/Lmcmre4P\n3CI5HJbvq72ZMVZAJSj42yRJnmHrwRzDNJXNGTNVEgAAAAAAAAAAAKaIYA4AzLDcH/8PSdKan94/\n6bG2Ql6rH/uB8tUeHb7qw5bvo76mSjVu15RrBFA+jLaApOI65khSOmutKxcAAAAAAAAAAABmD8Ec\nAJhhtReer8FN71bL3lfVuP/1sx7b/sIzqhk8riPv/YByvnrL99HeXDPdMgGUCbOtXZLkDhcbzCnM\nRDkAAAAAAAAAAACYBoI5ADALEp/4lCRpzSMPnPW4NY8+KEnq/OBHLO/ttNvlb3BPvTgAZcW+6GQw\np+iOOQRzAAAAAAAAAAAAyg3BHACYBd5r3qfYinO09Nkn5A4OjHtM3eGDat35sgY2bNLIstWW9w40\neeSw83QOVIqxYI6HUVYAAAAAAAAAAADzHp/kAsAssNvtCn3sj2Qv5LV664/GPWbNz052y/mQ9W45\nEmOsgErjam+TabPJPUzHHAAAAAAAAAAAgPmOYA4AzJKqj9yqTH2jVv7Hj+VIp07/WSysjqe3Kt62\nRMcveZflPeu8Var1uEpdKoA55KyuUqahmVFWAAAAAAAAAAAAFYBgDgDMEpevRoN/eJuqR6LqeGrr\naT9b8cS/y5lJq+sDt0oOh+U925u9pS4TQBnItPjlCQWLW5MjmAMAAAAAAAAAAFBuCOYAwCyyf/KT\nMpwunfPI/ZJpSpJshbxWPfZD5as96rn6w5b3cthtam30zFSpAOZQrqVVznRSzmTC8hrDNJWhaw4A\nAAAAAAAAAEBZIZgDALOoatlSDV75B6rr7VZgx+8kSe0vPKOawePqee8Hlauts7xXoNErh52ncaAS\n5f0BSZI7NFjUujRdcwAAAAAAAAAAAMoKn+gCwCzLfepPJUlrHvnX0T8ffVCS1PXBW4vahzFWQOUy\nAm2SJHdoqKh16Wx+JsoBAAAAAAAAAADAFBHMAYBZ5t50icIXXqz2bf+pJc8+odadL2tgwyaNLFtt\neQ+fxyWft2oGqwQwl8zAaMccz3CRwZwMHXMAAAAAAAAAAADKCcEcAJgDI//9jyVJl/zd5yRJnR+6\nraj17c01Ja8JQPmwtbdLomMOAAAAAAAAAADAfEcwBwDmgHvL9UoGFsuRyyrevlTHL7nc8lqHzabW\nRs8MVgdgrtmnGMzJ5OiYAwAAAAAAAAAAUE4I5gDAHLC5XAr9109Ikro+eKvkcFhe29rokdPB0zdQ\nyRyLTwZzwsGi1qWzBHMAAAAAAAAAAADKiXOuCwCAhcrx53+m55qX6fjbLilqHWOsgAWgfZEkyTNc\n7CgrgjkAAAAAAAAAAADlhJYLADBHnFUu1V57lbyeKstrat0u1dVYPx7APOV2K1dbV/QoK8M0GWcF\nAAAAAAAAAABQRiwFc3bu3KnbbrvtjNuffvppbdmyRTfeeKMeeughSVI2m9VnPvMZ3XDDDfr4xz+u\nnp4eSdLw8LA+9alP6dZbb9VNN92k3t7e0j0KAJinFvtrdcnagData9P5y5u0pKVWPo9LtgmOb2/2\nzmp9AOZOtqW16GCORNccAAAAAAAAAACAcjLpKKv77rtPjz32mDwez2m353I53XPPPXr44Yfl8Xh0\n8803a/PmzXriiSfk9Xr10EMP6dChQ/rKV76i733ve/ra176m6667Ttdcc41efPFFHTp0SB0dHTP2\nwABgPql2OdTa4FFrw+hzbb5gKJbIKprIKhrPKpbMyiYp0EQwB1gocv5W1fR0yZ7Nyqiy3ikrnc2r\nns5aAAAAAAAAAAAAZWHSYE5HR4fuvfdeffaznz3t9u7ubnV0dKi+vl6StHHjRm3btk1dXV26/PLL\nJUkrV65Ud3e3JOmVV17Rueeeq4997GNavHix7rzzTksF+v2+oh4QAFSK9jd9XTBMpTJ51Xpcc1YP\ngNk1smSxtE1qzsSUblpieZ23xs3rJwAAygR/JwMAAAAAgPmIcxqlNWkw56qrrtLRo0fPuD0ej8vn\ne+M/Rk1NjeLxuNauXatnnnlGV155pXbu3KmBgQEVCgUdO3ZMdXV1+v73v69vf/vbuu+++3THHXdM\nWuDQ0EiRDwkAKlcqnp7rEgDMlsYW+SQVjh7ViK/F8rLjAzH5qixNKwUAADPI7/dxTgMAAAAAAMw7\nnNOYmrOFmab8qU1tba0SicSp7xOJhHw+n7Zs2aLa2lrdcsstevLJJ7Vu3To5HA41NDRo8+bNkqTN\nmzdr9+7dU71rAACAime2jfbNcg8PFbUunc3PRDkAAAAAAAAAAACYgikHc1atWqUjR44oEokom81q\n+/bt2rBhg3bt2qVNmzbpRz/6ka6++motXbpU0uioq9/+9reSpG3btmn16tWleQQAAAAVyN4+Gszx\nhIoN5hRmohwAAAAAAAAAAABMwaSjrN5q69atSiaTuvHGG/X5z39et99+u0zT1JYtWxQIBORyufSt\nb31L3/nOd+Tz+XT33XdLkj73uc/pi1/8on784x+rtrZWX//610v+YAAAACqFvb1NkuQmmAMAAAAA\nAAAAADBv2UzTNOe6iLNhdhkAAFiIHJ0H1XTZxTp09Rbt+PT/KmrtpnVtqnY5ZqgyAABgBfPYAQAA\nAADAfMQ5janx+30T/mzKo6wAAAAwc4xAQJLkDgeLXpuhaw4AAAAAAAAAAEBZIJgDAABQhkxfnQrV\nbnmGixtlJUnpbH4GKgIAAAAAAAAAAECxCOYAAACUI5tNOX+r3KGpBHPomAMAAAAAAAAAAFAOCOYA\nAACUqbw/IHdkWCoUF7QhmAMAAAAAAAAAAFAeCOYAAACUqUJrQDbDUHU0VNQ6gjkAAAAAAAAAAADl\ngWAOAABAmTLb2iRJniLHWaWz+ZkoBwAAAAAAAAAAAEUimAMAAFCu2tslSe4igzkZOuYAAAAAAAAA\nAACUBYI5AAAAZco2FswZLi6YUzBNZXOEcwAAAAAAAAAAAOYawRwAAIAyZQamNspKktJ0zQEAAAAA\nAAAAAJhzBHMAAADKlNEakFT8KCtJStMxBwAAAAAAAAAAYM4RzAEAAChTxsmOOVMK5mTypS4HAAAA\nAAAAAAAARSKYAwAAUKbM5mYZTiejrAAAAAAAAAAAAOYpgjkAAADlym5XvtkvdyhY9FKCOQAAAAAA\nAAAAAHOPYA4AAEAZK/gDo6OsTLOodekso6wAAAAAAAAAAADmGsEcAACAMmYEAnLksnLFY0WtS2cL\nKhjGDFUFAAAAAAAAAAAAKwjmAAAAlDGzrU2SRrvmFMEwTcUSuZkoCQAAAAAAAAAAABYRzAEAAChj\ntvZ2SZKnyGCOJEXimVKXAwAAAAAAAAAAgCIQzAEAAChjRuBkx5zh4oM50US21OUAAAAAAAAAAACg\nCARzAAAAytipYM4UOubEElkZplnqkgAAAAAAAAAAAGARwRwAAIAyZgQCkqY2ysowTY3QNQcAAAAA\nAAAAAGDOEMwBAAAoY9PpmCNJkTjBHAAAAAAAAAAAgLlCMAcAAKCMGS1+SVMP5kQTmVKWAwAAAAAA\nAAAAgCIQzAEAAChnVVXKNzZPaZSVJEUTWRmmWeKiAAAAAAAAAAAAYAXBHAAAgDJXCASm3DGnYJiK\nJ3MlrggAAAAAAAAAAABWEMwBAAAoc2agTa5kQo5UckrrI3HGWQEAAAAAAAAAAMwFgjkAAADlrq1N\nkuQOB6e0PJrIlrIaAAAAAAAAAAAAWEQwBwAAoMwZgZPBnCmOs4rGszJNs5QlAQAAAAAAAAAAwAKC\nOQAAAGXOCAQkSZ4pBnPyhqF4KlfKkgAAAAAAAAAAAGABwRwAAIAyVxjrmDM8tWCOxDgrAAAAAAAA\nAACAuUAwBwAAoMwZrdMbZSVJkXimVOUAAAAAAAAAAADAIoI5AAAAZW66o6wkKRqnYw4AAAAAAAAA\nAMBsI5gDAABQ5ozA9Dvm5AqGEulcqUoCAAAAAAAAAACABQRzAAAAyp3XK8Pnm1YwR5IidM0BAAAA\nAAAAAACYVQRzAAAA5gHDH5jWKCtJisYzJaoGAAAAAAAAAAAAVhDMAQAAmAeMtjZVR8Oy5abe9SZK\nxxwAAAAAAAAAAIBZRTAHAABgHjACAUmSOxKa8h6ZfEHJdL5UJQEAAAAAAAAAAGASBHMAAADmAaO1\nTZLknu44qwTjrAAAAAAAAAAAAGYLwRwAAIB5wAiUJpgTYZwVAAAAAAAAAADArCGYAwAAMA+MjbLy\nDE+zY06cjjkAAAAAAAAAAACzhWAOAADAPPBGx5zBae2TzhWUzuZLURIAAAAAAAAAAAAmQTAHAABg\nHiisOUem3a7Fz/9aMoxp7cU4KwAAAAAAAAAAgNlBMAcAAGAeMNoXKbPlBjUcPjgazpkGxlkBAAAA\nAAAAAADMDoI5AAAA80Ty038l027X+Q/+w7S65tAxBwAAAAAAAAAAYHYQzAEAAJgnCqvWKHn9H067\na04qm1cmVyhhZQAAAAAAAAAAABgPwRwAAIB5JPOXny1J1xzGWQEAAAAAAAAAAMw8gjkAAADzSGHV\nGoWv/fC0u+YwzgoAAAAAAAAAAGDmEcwBAACYZ3J/9blpd82JJgjmAAAAAAAAAAAAzDSCOQAAAPOM\n/dxzdeKqD452zXnuySntkUjnlMsXSlwZAAAAAAAAAAAA3oxgDgAAwDw0csdfyrTbtW4aXXMYZwUA\nAAAAAAAAADCzCOYAAADMQ3UXrVPv5utU39M55a45UYI5AAAAAAAAAAAAM4pgDgAAwDzksNs18Km/\nmFbXnEg8MwOVAQAAAAAAAAAAYAzBHAAAgHmq/m3n68g0uuYk0jnlC1MbgwUAAAAAAAAAAIDJEcwB\nAACYpxp91er66J9MuWuOKbrmAAAAAAAAAAAAzCSCOQAAAPOUzWZTzfrpdc2JxrMzUBkAAAAAAAAA\nAAAkgjkAAADzWmujR/tu/eMpd82JEMwBAAAAAAAAAACYMQRzAAAA5rG6mioVVqyectecRDqnfKG4\nMA8AAAAAAAAAAACsIZgDAAAwzwWapt41xzBNxRJ0zQEAAAAAAAAAAJgJBHMAAADmudYGr+KLl0+5\na06UYA4AAAAAAAAAAMCMIJgDAAAwz3ndTvk8Vdp36x/LsDuK7poTiWdmsDoAAAAAAAAAAICFi2AO\nAABABQg0eRRfvFy97ym+a85IMqdCEUEeAAAAAAAAAAAAWEMwBwAAoAK0Nnhkk7T3luK75himqXS2\nMLMFAgAAAAAAAAAALEAEcwAAACpAlcuhRl+1EouXTalrTjZHxxwAAAAAAAAAAIBSI5gDAABQIQKN\nXkmjXXNMm02rt/7Q8tpsjo45AAAAAAAAAAAApUYwBwAAoEI017vlsNmUWLxM6Sa/vAP9ltdm83TM\nAQAAAAAAAAAAKDWCOQAAABXC6bCrud4tSUo1+eUJDUmmaWktHXMAAAAAAAAAAABKj2AOAABABRkb\nZ5Vu8suRzciVGLG0jmAOAAAAAAAAAABA6RHMAQAAqCCNddVyOexKN/klSe7QkKV1jLICAAAAAAAA\nAAAoPYI5AAAAFcRus8nf4FGq+WQwZ5hgDgAAAAAAAAAAwFwhmAMAAFBhAk1epRtbJEnucNDSGkZZ\nAQAAAAAAAAAAlB7BHAAAgApTX1MlozUgSfJYHGWVKxgyTHMmywIAAAAAAAAAAFhwCOYAAABUIO/y\npZIkt8VgjkTXHAAAAAAAAAAAgFIjmAMAAFCBfKuWSZLcw0UEc/LGTJUDAAAAAAAAAACwIBHMAQAA\nqEDVi9slWR9lJdExBwAAAAAAAAAAoNQI5gAAAFQgu8etjK9e7nDQ8pocHXMAAAAAAAAAAABKimAO\nAABAhco0t8pdVMccgjkAAAAAAAAAAAClRDAHAACgQmVbWlUVj8meSVs6PsMoKwAAAAAAAAAAgJIi\nmAMAAFChcv5WSZI7ZG2cFaOsAAAAAAAAAAAASotgDgAAQIUq+AOSJI/FcVZZOuYAAAAAAAAAAACU\nFMEcAACACjUWzHGHrQVzMnmCOQAAAAAAAAAAAKVEMAcAAKBCGYGTwRyLHXNyOUZZAQAAAAAAAAAA\nlBLBHAAAgApltrVJktzD1oI5BdNUvkA4BwAAAAAAAAAAoFQI5gAAAFSq9nZJksdixxxJytI1BwAA\nAADmJS60AAAAAMqTc64LAAAAwAxpP9kxp5hgTr4gLy8RAQAAAGDeSGfzOtAbUSyZ1RJ/rZa21srp\n4JpcAAAAoFzwqQsAAECFctXXKV/tkTsctLwmm+cKSwAAAACYL44FEzrUH1XBMCVJRwZG1B9MaGlr\nrRb7a+SwE9ABAAAA5hqvygEAACqUy+VQutlfXMecXGEGKwIAAACA8hdP5bTncGiuyzirdDavnV1B\ndR6NnArljMkVDB06HtPLewd1LJiQYZoT7AIAAABgNhDMAQAAqFAOu13pJr/ckZBUsBa4yebomNN9\nLKqRZHauywAAAAAwB3J5Q3sOhzQUTalvMD7X5YzrWDChbfsHFY5nznpcJl9Q59GIXt43oBOhpEwC\nOkBRToSSc10CAACoEARzAAAAKli2pVU2w5A7MmzteDrmaCia0qudQR0LJua6FAAAAACzyDRN7e0J\nKZXNS5IOH4+VVWg/lZm4S87ZpLMF7e8Na/uBIQ1FUjNYIVA5kum8uo5GlS9wARMAAJg+gjkAAAAV\nLNfslyS5w0FLx2fzC/uEUy5vKJ0tyDBNdR6NaF9PSAVjYf87AQAAABaKQ/2x07rQGKapfUfCZfHB\n/LFgQtsPTN4l52wS6Zz29IS048CQItPYB1gIhmNp5Q1Dx4fpmgMAAKaPYA4AAEAFy7cGJEnu0JCl\n4xd6x5x4Knfa9wORlHYcGFIinZtgBQAAAIBKMBBKqm/ozNFVycxo14y5ksrk9doUuuSczUgqq9e6\nguo+FpXBeCtgXMOxtCTp6GCc3xMAADBtBHMAAAAqWN5/MpgzbC2Yk1vgHXPeGsyRRk/Ev3JgSAPM\nlgcAAAAqUiyZ1YG+yIQ/PxFOaiA8++8HhiIpbT8wOGPdbfqG4nr14JCSXIgAnCZfMBRLjI6xy+QL\nnA8AAADTRjAHAACgghlto8Ecj9WOOfmCzAV8Jdh4wRxJKpim9vWGdbAvIqNEV6kCAAAAmHvZXEF7\nDocm7YjR2RdVKpOfpaqk3oER7ekJlaxLzkRGUjntODCk/mBiRu8HmE9CI5nTnhP6BuML+lwJAACY\nPoI5AAAAFcxsbZNkfZSVqYXdNWeiYM6Y/uGEXu0cmtUT8gAAAABmhmGa2tMTUsbCSN+8YWjfkfCM\nj7QxTFMHesM6dDw2o/fzZgXT1MGjEe0+PKxcfmGPNwYkKRRNn/Z9MpNX8C23AQAAFINgDgAAQCVr\nPxnMCQctL8ku0GCOYZhKJ1Jq2rfzrMeNXVEajKRmqTKg/LzWGdSREyPKFxbm8wUAAKgMXUejip4c\nV2NFLJlVz/GRGasnXzC0q3tYx+dobE4wmtb2/UMKj8zM6CxgPjBNU8OxM0M4vQPxOagGAABUCoI5\nAAAAFcze4pfhcFrumCONtnJfiOLpnFY89kO9546b1Lrj+bMemzcM7e4JqXdg5k7KA+Uqly8oksjo\n8ImYXthzQt390QX7vAEAAOav/mBC/cPFj2/qGxyZkeBKKpPXq51BheNzG4rJ5Ava2R1U97HojHcH\nAspRLJlTbpwLEEZSWUJrAABgygjmAAAAVDBXlVPpxmZ5hosI5izQjjnxZE7+XTskSW07fmdpzfHh\nubmSFZhLkfgbV5UXDFN9g3G9uHdAB/sijHkDAADzQjSeUdex6JTWmpL2HwmXdORTLJHVq51DSqTP\nPlp3NvUNxfXqwSEly6gmYDaExumWM6ZvkItzAADA1BDMAQAAqGAup13pJv9oxxyLVzsu1M4X8VRO\njZ17JEktu7dbWpPK5pVZoP++sHBF42eOezBMU/3DCW3bP6h9R8J8gAMAAMpWJlvQnp7QtLrBZPIF\nHeiNlKSewUhKO7uCZXmBxNgY38EwFyRg4RiOThzMCY1kNJK0Pv4OAABgDMEcAACAClblGg3mOHJZ\nueIxS2uyufI7ITwbMgNDqhk4Jklq7NwrR8rayefoHLeaB2Zb5Cz/zxumqYFwUi/vH9Tuw8OKcdIa\nAACUEcMwtfvwcElCMMFYWseG4tPao3dgRHt7QiqU8ciogmmqd2B6jxOYLzLZguKTXGTQO8jvAwAA\nKB7BHAAAgArmsNuVaWqRJLnDQUtrsiVsyT5fmKYp166dkqSCyyV7Ia+m/a9bWhsZp3sIUKnyBcPy\niIVgNK1XDg7ptc6gjpwYUSSekWGU74dOAACg8h3oi2gkVbrOft39McWnsJ9hmjrQG9ah49Yunphr\niXROuTLs6AOUWvAsY6xOHRNJMcIXAAAUzVIwZ+fOnbrtttvOuP3pp5/Wli1bdOONN+qhhx6SJGWz\nWX3mM5/RDTfcoI9//OPq6ek5bc3WrVt14403Tr9yAAAAWJJtaZUkuYeHrB2/ADvmJDN51R/cLUnq\ne9c1kiT/7h2W1kYTBHOwcETjWRUbrYkkMjp8IqbXuoJ6btdxvXpwSN39UQ1H03zAAwAAZs2xobgG\nSjySyTBN7TsSVsGY/DWNaZrKFwylMnnt6h7W8dDcjYdyDw9qybNPWB53bEqKJugUisoXshDMMSX1\n0TUHAAAUyTnZAffdd58ee+wxeTye027P5XK655579PDDD8vj8ejmm2/W5s2b9cQTT8jr9eqhhx7S\noUOH9JWvfEXf+973JEl79+7Vww8/LLOMW3MCAABUmrw/IEnyhCwGcxZgx5x4KqfGzr2SpM4P3abl\nv35ULbu3W1o7evVoQS6nYyZLBMrC2cZYjafjqa069yf/ou1/8T8VPvcCGaapaDKraDKrPo2ezK51\nu1RXU6WG2irV11ar2sXvEgAAKK1oIqvqr35F7zx0QL+769uSzVayvRPpnHYdCsntcqhgmCoYhgoF\nUwXDVP5NXxvlcE7cNLXsyUd10T9+VVWJET3/N/eq/7IrLS2NJrJqqfdMfiAwTxUMQ5ERa+93ToSS\nWt7mUxXvXQAAgEWTdszp6OjQvffee8bt3d3d6ujoUH19vaqqqrRx40Zt27ZNXV1duvzyyyVJK1eu\nVHd3tyQpHA7rG9/4hr7whS+U+CEAAADgbPKto8Ect9VgzgLsmBNP5tTYtVdZX70ia85XdPkaNe/d\nKVveWlv6KOOssEBY7RBlK+R14T//b73j7z6rhkP7te7+M99Tjomnc+ofTmjvkbBe2jtAFyoAAFBS\n2VxBnbsO65yHvqvFLzytpn2vlfw+IvGMToSTGoqmFBrJKJrMKp7OKZ0tKFcwyiKU4w4O6LIvfUqX\n/P1fy5lOSZL8r2+zvJ73PKh0kZGsChZ/Vw3T1NGhxAxXBAAAKsmkHXOuuuoqHQzUnFsAACAASURB\nVD169Izb4/G4fD7fqe9ramoUj8e1du1aPfPMM7ryyiu1c+dODQwMqFAo6M4779Rf//Vfq7q6uqgC\n/X7f5AcBAABgQtFVyyVJdSMh+WrdltY0NdXI4bA09bQi9Hb3q7a/V8Hfu0w+n0fRDe9QfU+nFh/r\nUnTdhknX26qcvG5FxcsXDMkx+fOIKxbR2770Z2rZ9pziHStlVLvVvu0/1RY8psTyVZPeT28woUvb\n6uR1u0pVOjBn+LsBAOaWaZratm9AHc8+IUduNHS/+rlfat8lm+a4sllkmlr0i59q7Te/LFd8RMGL\nL9O+T39Zl/3XaxTY96rl94iy2Rbc+0QsLIMjWeu/D5JGMgU1NNbI5eR3AgBQmTinUVqTBnMmUltb\nq0TijURwIpGQz+fTlVdeqe7ubt1yyy16+9vfrnXr1mnPnj06cuSI7rrrLmUyGXV1denuu+/WnXfe\nOen9DA2NTLVEAAAASIp56yVJ9oEBjcQnn5cuSceOR+WpnvJLxXkn9fyLkqTgyrUaiafVf95F6tCD\n8r78go4uWzvp+p4+Q81eQgSobKFYWrGR1FmPqTt8UO/48p+ptr9X/e94l176/NcUePUFvfN/3qH2\nH35Xr/7531i6r99u69VFa1rk5IMfzGN+v49zGgAwBZlsQdVVpRkP090fVd9gXJu3/kSm3a6cp0aB\np36ul2//K8lR+SNo3MEBbfzW32jRS79VzuPVjj+/S4f+4AbJZlNozTo179+p1OCw8t4aS/t1Hwmp\n0VfchbfAfHGoN6R0rrjR3q/vP6GOQPEfWibTeXndC+ecCwBg/uGcxtScLcw05bOcq1at0pEjRxSJ\nRJTNZrV9+3Zt2LBBu3bt0qZNm/SjH/1IV199tZYuXaoLL7xQP//5z/XAAw/oG9/4hlavXm0plAMA\nAIASaBsdZeWxOMpKkrL5hTPOKp3Ny7d/tyQpvPp8SVJw/UZJUsvuHZb2iKeyo91EgAo22YipRc89\nqffccbNq+3u17+ZP6vm7/kH5Gp+ObXqPEoHFWv7ko3LFIpbuK57Oad+RsMwyGPsAAABm14G+sPb0\nhGQY03sdMBRJqW8wLt+RLjUfeF0nNl6mvne9X+5wsKgRTvOSaWrZrx7RVZ+4Tote+q0GNlyqX/3T\nYzp07Y2SzSZJCl6wUTbDKGq0VySemamKgTkVT+WKDuVI0rGhRFHPValMXrsPD2vHgcFpP8cBAID5\npehI7tatW5VMJnXjjTfq85//vG6//XaZpqktW7YoEAjI5XLpW9/6lr7zne/I5/Pp7rvvnom6AQAA\nYJHT41amrkHuIoI5uSmckJqv4smcGrv2SpLCa9ZJklL+NiUCi0eDOYYh2c+eZzclxRJZNdVZb3sN\nzDcTfhBjGDr/wf+ndQ/+g/LVHr3wxf+jo5df/cbPHQ51fvAjuuif/04rf/ETHbjxE5bubziWVnd/\nTKsX15egegAAMB/EUzmFRkZfc2SyBa1f0aQqV/GdbZLpvA70jgaClz/5M0lSz/uuV6ahWasef0gd\nv3lcQxsuLV3hM8UwZDMKMp3Wu3O6gwO6+JtfUvvLz57RJefNguveLklq2fOKBjdeZmnvaPzsQW1g\nvhqOWusu/FaZfEED4aTam8/edSpfMHRkYGQ0yHPy4oNIPMM5BAAAFhBLwZwlS5booYcekiRdd911\np27fvHmzNm/efNqxTU1N+v73v29pLwAAAMw8l9OudJNfnqETltdkFlDHnHg6pyWde5StrVOifemp\n24cu2Kjlv35Mdb3dii1fM+k+UYI5qGAFw9BIMnfG7c5kQpf83ee0+IWnlAgs1vN3fVvRVeedcdzh\n92/Rugfu1epHf6iDWz5m+cOlo0NxeaudWtRibbwCAACY3/oG3miXH0tm9UrnkC5c2Syv23owpWAY\n2tMTUt4wZCvktezXjylbW6f+TZtlOJxKNfm1+Llf6ZU//aJMV9VMPIyScKSS2vwXt6r+8AFl6hqV\nbmpRurFF6Sb/6NdN/lPfp07etvj5X+uif7xHVYkRDWzYpO2f/oqSgcXj7j8WzPHvstYlVBr9b2KY\npuxvCfkA810oNrVgjiT1DcbV1uSVbZzfC9M0dXw4qZ4TsTM6Ew/H0pxDAABgAWGIJQAAQIWrcjqU\navKrvqdT9kxaRvXkJ36yC6hjTmpwWL5jRzRw0aWnXUUaXD8azGnZvcNSMIe27qhksUTu1JWdY2qO\nHdFld/0P1R/p1sBFl+rFO7+hbH3juOvzNT71vO/DWvPog1r83JM6esU1lu+761hUnmqnGn3V03oM\nxeADJwAAZl86m9fQW7pWpLMFvXIwqHUrmiy/FjjQG1EiPRooDuz4nTyhIXVde5OMqtH1fe+6Wuc8\n8oACr76gE5e8q7QPooQu+s7fquHQfsU6VkmGIe/gcTUcPjjpupzHq+13fFmHr/nDM7rkjLHbbPIE\n/IouX6Om/Ttly+csBacN09RIIqv62tl7XQbMtFy+oFhy6t2gkpnR567WBs9pt4dHMuo+FlU8feYF\nDtJoMGfyMw0AAKBSEMwBAACocKMdc1okSe5QUMn2JZOuWUjBHOeu1yVJkdXnn3Z7cP3FkiT/ru06\ndO1Nk+4zkszJMEzZ7XyYj8oTTZwePAtsf06XfvUzqorHdPD62/T6H31WpuPsby87P/QRrX7sBzrn\nkfuLCuYYpqm9PSFtWOOX1z1zb2FN09RwLK1jQwnl8oY2nNMixyRj7AAAQOkcfdOIlzfLG4Z2HRrW\nmiX1k46LOToU12Akder75U8+IknquerDp27ru+IanfPIA+p45udlG8xZ/OwvtfIXP1F41Vo9/a0f\ny6ga7ezjSKdUHR6WJzQkd3hI7tCQ3KGg3OGg3KEh5WrqtPu/3TFhlxxpNJSzfkWTcnlDQ+s3qr6n\nUw1d+xQ+70JLtUUJ5qDCDMcyOvOZpzh9AyOngjmpTF7d/VEFJxmPlc4WlEjnVFNERzAAADB/EcwB\nAACocC6nXdEmvyTJExqyFMzJLZBRVrl8Qd59uyVJ4TWnB3NGlq5Qur5JLbt2SKY54dWmYwzTVCyZ\nVQMnqVGBIvE3riBd/Owvtemrn5bhcOjlv/yqjrzvekt7JBYvU/+l79biF55W077XFFp7keX7zxUM\n7T48rA1r/HI5SxuWyRcMHR9O6lgwrnT2jVDiwb6o1i4bvwMQAAAordG/jxMT/twwTR3oiyiVKWjl\norpxj4kmsjrUHzv1vWskqkW/e0rRZasUPmf9qdtD571NicBiLfrdU5Y7is4mz2C/Lv7ml5Sv9ujF\nL3z9VChHkgpuj5LtSyy9pxvPWCinqc6tZDqn4+s3avV//Fj+3TssB3Mi8aw6AlO6e6AsDU9jjNWY\nkVROQ5GUYomsjgXHDxmOe9/RNMEcAAAWCC7/AwAAqHBOh12Z5lZJkjs0ZGlNJrcwgjnxVF6NnXsk\nSeFz1p3+Q5tNwQs2yhs8Ie9Av6X9ovGpt78GytXYyIIx5/3bfTJl02/+/n7LoZwxndd/VJK05pEH\niq4jmclrT0/I8knuySTSOR3si+iF3SfU3R89LZQjSQPhpI4FJ/6AEAAAlE5/MKGCMfnf8b2DI9rT\nE1LBOP39SjZX0N7Dp79OWPqbx+XI5dTz3utPD9nbbOq94hq5Ukm1v/xsyR5DKdgKeb3jbz+rqnhM\nr/7JFxRfuqJke785lCNJXrdL4QtHu4S27N5heZ9YIiuzRK/HgLlmmKbCsdKMpd7TE1LfULyo9yul\nCAUBAID5gWAOAADAApBrKS6Yk8svjFFWI8msGjv3KOetVby944yfB9dvlCS17N5uab+3jvsBKsFI\nIqvCyZPLvt5Daurco4GLLyuq482YobddosjKc7Xk2V/KM3Si6PWReEadfZGi140xTVPBSEqvdQW1\nbf+g+ocTpx7beLqPRRVLELgDAGAmGaapY0PWw7BDkZR2dg2fGr87OvYyrMxb3sOs+NUjMu129b7n\nujP26Ds5VnPpbx6fRuWlt/YH35F/9w71vetq9Vy9pWT7vjWUM8a5bJkSre1q2fPKaJdQC/KGoXgq\nV7LagLkUjWeVN+buwqRYIrtgOhYDALDQEcwBAABYAAr+4oI52QVyYigdDMt3rEfh1Wsl+5kvjYfW\nj15B6t9l7QrSaCJbsm4eQLmIvimY0vH0VknSkc1nfsBlic2mzus/KrtR0KrHfjilLY6Hkjo6GLd8\nfC5vKJbIqm8wrpf2DWh3T0iRuLUQnWGa2tMTWjBhRQAA5sJAKHlGqGYysWRWr3QOKZHO6XB/TJG3\nBOTrejrVdGCXTlz8+0qf7B76ZtGV5yq2dKUWvfQbOZPl0SGvZdd2nf/Df1QisEg77vjypKN0rZoo\nlCNJPq9LwXUbVR0Ny9d32PKedApFpQjNcccaU1JohK45AAAsBM65LgAAAAAzrxAISJI8FoM5hmkq\nlzfkclZ2jtu263XZTFPhNevG/Xl01bnKebyWW7sXDFPxVE513qpSlgnMqVMhFtNUxzM/V97tVf+m\nzVPer/fdf6ALvvt1rXr8Ie279VMquD1F79HdH5Wn2qnm+tEPmHJ5Q6lMXqlsfvTPdF6pbEGpTF65\nwvSChplcQXt7wrpwVbNsJfqADAAAvOFoEd1y3iydLeiVg0PjjsBa9uTPJEk9E43dtNnUd8U1WvfA\nt7Xod0+p98oPTKmGUnHFInrH335Wpmx66fN/r1xtXUn2PVsoRzoZzLlgo5Y98x9q2b1dIx0rLe0b\nSWS0RLUlqRGYS5ONknIm4nIl43KmknKmk6N/JhMnv06Mfn/yT9ls2n/Df1eurqGoGkLRtAKN3uk8\nDAAAMA8QzAEAAFgAzEC7JOsdcyQpmy9UdDCnYBjy7n1dkiYM5pgOp4bP36C2Hc+rOjysTGPzpPtG\n41mCOagYpmme6pjTtO811R7v05HN16ngmfqJY6OqWt3X3aR1D/4/Lfv1ozp07U3F1yVp75GQatyu\nkoRvJhOOZ3T4+IhWLirNh2QAAGDUcDStRHrqY5HGC+XYCnkte+oxZX316r/03ROu7T0ZzFn628fn\nNphjmrr4m1+Sd+i4dn/0zzS8bkNJtp0slCNJPm+Vjq57uySpZfcrOnzNDZb2pmMOKkEqk1cyk5/w\n5+f96J+1/vvflK2IrrjphhZ1/n8fK6qO0EhGpmlyEQAAABWOYA4AAMACYK+vU97tlTsUtLwmmzNU\nM/E53HkvkcqrsXOPpImDOZIUXL9RbTueV8ueHTr2+++bdN9oPKOlrVw9isowksqd+sBr2dP/IUnq\n3XzttPftvvYmrf3xfVrzyAM6dM0N446Sm0zBMBVLWvtQyDN4XLXH+zT0tkuKvp8xvYMjqvO61NJQ\nfIcfAAAwvr4ixlNaFdjxvDyhoLquu1lGVfWEx8WXrlB49Vq1bX9erlik6C4XpbLi8Z9oyXNPauiC\ni7Xv5k+WZE8roRxJ8lQ7lVp5jrK+estdQiUpVzCUSOdU43ZNt1RgzgxHJ+6WU3f4oNbdf6/Sjc0a\nfNulynu8J/+peeNrt/fU1850Spfd9adqOvB60XXkCqOjd+trJ36+AgAA8x/BHAAAgAWgymlXqqnF\n8igrabRjTiUbSeW0snOvch6v4ouXTXjc0AUbJUktuywGcxJcPYrKMXY1tC2f09Lf/kLp+iYNbHzn\ntPfNNPnVe8U1Wv7rRxXY8bwGfu+/THvPidgzaV3xlx9V7Ymj+u0939XgxsumvNf+3oje7nbJ6+at\nNAAA0xVLZhVJZEq+7/JfTTLG6k36rrhGjV1f15Lnn9Th9/9hyWuZjO9Ily76zj3K+ur10uf+t+Rw\nTHtPq6GcMbU11Qqev0GLXvqN3MEBpVsCltZF4lmCOZjXJhxjZRja+H+/LHshr+2f/l86ccm7Jt/M\nNJXx1avp4O4p1RKMpQnmACiJXL6gXN6Ql7+jgbJTubMJAAAAcIrLaVe6ya/qaEgqWAvcZHMzOxpm\nriWHI/L1HVJk1dqzdusInXuhDKfL8hWkuYKheGrq7fiBchKNj35YFtjxvKqjYfVdcY1MR2lCKZ3X\n3yZJOueR+0uy30TO+7fvqvbEUUnSxd/8khypxJT3yhuG9vaEVDAq+/kRAIDZMBPdclyxiBa98JSi\ny1YpfM76yWu4/P2SpKW/ebzktUzGns3o0q9+Rs5MWtv+4itKtbZPf88iQznS6Dir4NjFCHtesbwu\nFi99qAqYLfmCMeFFNSt++e9q2fOKjv7++6yFciTJZlP43AtUe7xPVbFw0fWEYvw+AZg+wzS153BY\nXceic10KULRc3lB4JKO+wbj29YS0bf+gnt3Zr51dQfUHE8pVwEXEBHMAAAAWgLFgjs0w5I4MW1qT\nzc3/F7tnY3/9ddlM86xjrCTJqHYrdO4FauzeJ2fS2gf6UU5SowKYpqnIyY45pRxjNSayZp2GLrhY\nbdufk+9IV8n2fbOa/l6d92/3KdXcqoPX36aagX5d8C//Z1p7xtM5HeyNlKhCAAAWplQmr2AkVfJ9\nO37zuBy5nHree71ks016fLJtsYLnX6TWnS+ruojuoqVw4X1fU8Phg+q+9kb1//57p72fTSo6lCNJ\nPq9LwXUngzlFjLOK0CkU81h4JCPDNM+4vSoS0oXf/bpyHq9e/ZMvFLVn6GQYsPFA8V1zEumcUpl8\n0esA4M06+yKKJDIKjWQUmqgrGFAG0tnR9wI9J2LafWhYL+45oed3H9fO7qC6+6MaiKSUSOdkmKbC\n8YwOHo3od7tPzPuQDsEcAACABcDldCjd5JckuS2ecM7mK7cjhGGacu/ZKUmTBnMkaWj9RtkMQ817\nX7O0P+OsUAkS6bzyhiFHKqFFv3ta8UUdCp13YUnv4+D1H9X/z959x0dV5f8ff01PJn3SSEIKJdTQ\ni6BYsLv2dddddXV1i6hfu2t3bauu2MvPtrqWVdd1i32tyAoKAtJJQgqEkF4m03u59/fHQKQk5M5k\nEkg4z8eDByVzzr2EMLn3nvf5fABKP3grrvPuNv2FP6MJBth0+S1s+e0fcBSNofTDt8nasrZf87bb\nvDR3xn+XvyAIgiAcLpo6Xey/JN5/JV99gKTW0HDCmYrHNB77E1SSROHyLwbgjHqW9/1SSj98G3vx\nWDYuui0uc47OT4s6lAORYI61dDJhvYGscuUVc/zBsAgSCENWl73nBetpLz+K3mmn/NLrFLd1280y\nfgoApuotsZ2TWEQXBKEfGtqdtFo83b+va3Eg9xBAFISDxRcIUdfiYGV5K6sq2ymvt1Df5sTs8OFT\nsEFYhr1COhuHYEhHBHMEQRAEQRAOA3qtGm+0wZxhXDHH4wuRXlMBgLV0Up+v7y7tXq5sMd/uEsEc\nYeiz7ar8VLDia7R+LzuPP0PRzvNotMw/HnduAcVLPoyp5PuB5H3/P/JXf0PHtCNoPO4nSHo9P9z0\nILJazezH70Tj698u/e0tDhHCEwRBEIQYBENh2ro8fb8wSqn1tZiqt9A2ZwG+zBzF45qOOQVZrR60\ndlYJ5nbmPH4nYZ2eVXc8jmSIPkyzr+y0RApzkmM7H70WrTFSJTS9rgqt26l4rLgWEoYqi3P/EEz2\npjWUfPUB1rET2X7WhVHPubt9nqkm+oo5gKhuIQhCzMw2LztaHXv9mcsXpM0S/+stQYiWzeWnYoeF\n1ZXtNHQ4FW0GNljNFH/5ATOfuZe0uur9Pi7vmneohXREMEcQBEEQBOEwsLuVFUCiwmBOcBhXzHF5\ng2RsqySUYMQ5clSfr++aNANZpSJbYZUNf0jsHhWGvt0Bs6IBaGPVTaOh9pxfofX7GPXpv+M2rdrv\nY8bzDyJptKy/+q7uQJFl4jRqfvprUloamPy3Z/t1DEmWqay3DOsQoyAIgiAMhBazh/AA7OAu/uoD\ngEgbqyj4MnPomDqXrMoNGNub435ee1KFghyx+FYMDhubFt2KY9S4fs9pNGgZX5TerzmSE/WYy2ah\nkmXFVUJBtPAVhiaHO7DfoqA6EGDmM/chq1Ssu/ZeZI026nl9mTl4skZEKubE8B5ncwUIS8P3OYwg\nCAPD5Q2ydae1x0qE9W1O8b4iHBRhSaK1y83aqg42bjPTafcesFqmKhwis2I9k197ihOvOo+zfnE0\ncx+7nTGfvMvCG39F9qY1vY7tKaTTfIiGdEQwRxAEQRAE4TCg1agJmLIASLCYFY3xD+PFZo/FQWrD\ndmxjJoBG0+frg8mp2EeNx1S1GXVA2a5Qm3hILQxxNpcfg9XMiPUrsIyfgktBiK0n6j6q7Ow49TyC\niUbGfvQ2qlAwpmPsa8K7r5DU3kztuZfgLB6718cqLrkGZ34R4957A9NW5QtPPfEHw1TutIry0IIg\nCIKgUFiSaBqAdpCqcIjirz8ikJJG67yFUY9vPO40AEYu+zzep9ZNFQoy76E/kLNpNc3zT2D7mRf0\ne06NSsXkUSa0mv495k8x6ugsi1QJzS5fp3icTVQKFYagnlpGjfv3q6Q21rH9zAuw9qN9r2V8GQlW\nM4mdbVGPlWQZq0M8RxAEQTl/MEx5XVevgWd/MExTh3uQz0o4nPkCIba32FlV0U51ow2Xr/fnfAZL\nJ8Vfvs+8B2/grJ8fxfE3XMSkd14irb6W9unz2PT7m1l/9R/RBPwcfcfvKPj2yz6PvzukU3uIhnRE\nMEcQBEEQBOEwEcqJ9EdX2soqGJaQhulis2rLZlSShLV0suIxnVNmoQkGyKhVVpZatLMShjKPL0gw\nLFH4zWeoJCnSxioGapWKWeOzKcpJobd4TigphfpTzsNobmekgpvsviS1NDDh3ZfxZuZQ+aur9vt4\nOCGRtTc+gEqSmPP4XYrDdr2xufzU7VMyWhAEQRCAYXstDZGATUO7E38guofcbRYvwXD8d27nrltB\nosVMw8LTkfT6qMc3LzgJSaOl6Jv/xv3c4MdQzsjvvqRj6hxW3/ZIXFqEji9KJylB1+95Uow6uiZN\nR1apyIoimOMNhIb1hg5heNq3ZVRSSwOT/v4iXlMWWy67vl9zW8dNAcBUsyWm8T2FhgRBEHoiSTIV\nOyz4+vg+3NDhFJV+hQFndfop39HF6sp2GjtcvV7v622WXVVxfspZvzyGuY/dQeGyzwkak9h++i9Y\nce//48N/f8/yR16j5ue/YftZF/LtAy8iaXXMf+B6Rn/8juJzOhRDOiKYIwiCIAiCcJgIRxnMAQgG\nh2e5U8OWTQBYSycpHmPetYM0a4uyB9U2t9jpJgxd1j3aWMlqNY3HnhbTPAVZSSQl6Bidn8rUMVkY\ndD1XqKo951fIKhWl7/0tprLve5r+wkNoggE2LrqVkDGpx9eYp85h21kXktqwnYlvP9+v4wE0drgw\n27z9nkcQBEEY+vYs275pm5nQAIRQDgXbmuzUtTpYvbWdinqLopZGsizT1BH/ajkAJV+8D0D9ydG1\nsdotkJpB+6wjydi2leTGHfE8tf1COd/96UXCicZ+zzsyK5mcjP7PA5Bi1BNKSsE2egKm6i1RBZdF\nOythKAlLEi7vHrv3ZZmZ/+9PaAJ+Ni26jVBSSr/mt0yIBHMyqpVt6NlvvKiYIwiCQlUNVhyevr9f\nhyWZ+jbnIJyRcLhxuANsb7azqqKNTdvNmO2+A7ar0tutHHfzJUx65yVSd26jfcY8Nl1+C5+//DGf\nvvk166+7l5YjT9jvWV7HzCP55tG/4U8zMevZ+5n0t2ejfnbYU0jnYNyniWCOIAiCIAjC4SIzE0mj\nJTGKYI7/ECnzGE9ef4jU2goArGOjD+Zkl69V9HpfIBz1DmJBOFTYXX6Sm+vJrN5M+4z5+E3ZUc9h\n0GooHvHjg+2MFAOzx+eQnZa432vd+UW0zDuezOrN/Wovlff9/8hfvYz26fNo6iNMtOU3N+LOzWfC\nu6+Qvq0y5mPuVtVgw+ML9XseQRAEYWjqqWy73R1gY6152F0Ttls8tFo8QKQqUKfNy4ZtZtZWddDa\n5UaSen5Qbrb78Abi/71S77CSv2op9uKxUVXE3FfDcT8BoHDZp/E6tQEL5aQl6RldkBqHM4ww6DQY\ntBrMZTPRBPxk7LpfUsLuFpVChaHD7QvttWg4cvnnjFj7HW2zjqJx13tAf+x+D4q1Yo4/FMapYKFd\nEITDW32bg44oNge1WTx4DtBSSBCUcrgDbNsVxllf20ljp6vPqk0AOpeDY27/LWk7t1N79q8iVXEW\nv0bNzy6LtKDvo5Kkbdxklj75Nq68Qia/9Twzn74XVTi2+4rdIZ2DUe1eBHMEQRAEQRAOEzqdFl9G\n1mFfMcflDZJRW0HIkICzaLTicb7MHFz5RWRWbICwssUVUTVHGKrsrgBFX38CQEOMbaxG5aei1ex9\ny6nTqpk8ysT4wnQ0+9x01/70EgDmPXQTpq2boj6e2u9jxvMPImm0bLj6rj5v6kPGJNZefz9qKcyc\nx+5EFerfQ6qQJFFZbyEsDb/3TUEQBKF3Vqefih2WXsu2u3xBNtR2DpvFEI8vSE2jrcePuXxBqhtt\nfF/RRl2LA98+IZzGAaqWU/jNp2iCwUi1nH60h2qZfwJhvYGi/33a7wp+MHChHINWw6QSE+o4tMLa\nU0qS7scqoRXK21mJFr7CUOLeo1qO1u1k+gt/JqzTs/7qP8alvVwwORXnyBJM1eUQ432BaGclCMKB\ndFg9UVfAkWSZuhbRgluIjX2fME6TwjDObhqvmwV3LSJj21bqTvs5G6+6g3BizxWu9xqnUjF1dCb5\nmZHXuguKWfrU37GOnciYT//J/D9dj9of+/dM20Go+iiCOYIgCIIgCIcJnVaDz5RFgsWs+EFzYBhW\nzHFbHaTWb8M2ZgKyRhvV2M4ps9G7naTV1yp6vXhILQxFXn8IfzBE0dKPCRkSaD7qpKjnSDXqGWHq\nfeEpLzOJWeNzSEnUd/9Z59Q5bLnseozmdhbedDFj338zqkWxCe++TFJ7MzU/vQRn0RhFYzpmHUXd\nqeeRXlfFhHdfUXys3rh8QWoael6sFARBEIaPvdpVbTfTafcesGy7Lxhmw5YNkgAAIABJREFUQ60Z\nxyBXFvH6Q1TssGB1xuehc1iSqKy3Eu7j+3MwLNHQ4WR1ZTsVOyy7dqT6FbVbAEjo6kDj9Sg+r5Iv\nP0BSa2IOE+8WSkqmde6xpDbWkbajpl9zDVQoR61SMbEko9f2oP2RkqiPun0vRK5/giERTBaGBrf3\nx8Bg2evPkGjpZOsFi3AXFMftGJZxU9B5XCQ374xpfJddbPARBKFnDneAqhifOZgdvrhdEwpDk6ex\nhfY2K20Wj6IfVfUWVlW0sSGGMM5uar+PBXf/H1mVG9l5/Jmsu/YeRUFYFTCxOANTagLjCtOZUZpN\ncoIOf0YW3zz6N9pnzKNg5dccc/vv0DntMXw2RDBHEARBEARBGEA6rRqfKRtNMIDOpWyXRGAYVsxR\nbdmCWgrHVOa+u53VFmXtrERZd2Eosrn8ZFRvIaWlgZb5x+/X21mJsQVpfb7GmKBlxrgsinJSUAGo\nVFRdsIhlf/4rgeRUZrzwEPMeuAGtu+/d9UktDUx49xU8WblsveiqqM5106Jb8WTlMuntF0jt5yIc\nQLvNS1PnwFQEEARBEA4iWUb9+qt0/eM/e7WrUioYlti0zUyXfeArIUiyTEO7k7VVHXTavZTXdcVl\nIWZbkz2qv7MMdNq9bNxmZvP2LkVjCr79kjMuWsi558zmlN/8hCMeuonx/3yF3LUr0Nss+70+dUcN\npppy2uYswJeZo/jcetPdzuqb2NtZRUI5N0VCOdPmxi2UAzAqL5X0ZENc5tpXilEXqRKaV0hW5Yao\nqn3YRaVQYYjY/R6WUVPO2I/exjFyFNXn/y6ux7CMnwKAqTq2dlZObwB/DIufgiAMb75AJHAt9aOq\nX11LbAEGYehzfPYVhUdMYdz8MlKuXoT9n+9Rs62dqgZrrz/qWx0xhXF2UwUDHPmn68jZtJqmo07k\nh5sfAo2ycPnYgjSy0hO7f5+WpGfm+GzG5KchJ6fw3Z9eovHYU8kuX8fCmy4mwdwe9fm5vIMfLhfB\nHEEQBEEQhMOEXqfGa8oGUNzOajhWzNFv2QyAbeykqMd27t5BWq5sB6nbFyQ4DD+HwvBmdwUoXhp7\nG6sRGUZSk/R9v5DIru/R+alMG5tFwq6d350z5vHVC+/RWTaLwm+/4MT/O4+07VW9TyLLzHj+QTTB\nAJsW3Rp1kCiUlML6a+9BHQoy54m7Yu5Rvae6FocI5gmCIAwTYUmizeLBecsdZN5yPWNuuwbJ7Y5t\nLlmmot5Cm0V5NZho2V1+1lV3Utfq6K5sE5blfodz2i0eWvtx3n1V2QHIrNjAEYtvIWRIoHPKbBKs\nZoq++ZSprzzOMXf8jrPPP4rTLzyOo/54BZNff5qC776k9IO3AKg/6dyYz21PbXOPIZhojARzYlj4\n+jGU81UklHP/C3EL5WSnJ1KYkxyXuXqSYtQBYJ48E73TTurObYrHikqhw4cky8hxaOV2qHJ7gxAO\nM+upe1DJMuuvvQdJr+zeRSnL+DIATDXlsc8h2lkJgrCHsCRRXmfB389njE5vkHbrwF2HCoceSZZp\nWF9FwXWXgywTMiZTsuRDFtx9FWf+YgFzHrmVvFX/Qx2I77WcKhxi3p9vJm/NclpnH83q2x9XXLm+\nMDuZguz9r3nVKhWFOcnMmZiDKSuVVbc/Tu3ZvyKtvpbjr7+AlIa6qM5RJnLvNJhEMEcQBEEQBOEw\nodNEKuYAJCoN5gyzijmBYJjkXbvWYqmY484vwmvKIqt8reIH9eIhtTDU2O1uCr/5FH9qOm2zF0Q1\nVqNWMSo/NepjpicbmDU+h5xdu2F8mTkse/R1qn7xO1JaGjjhul9S8tm/e/x/l7fqf+StWU779Hk0\nHXNq1McGaJ23kJ0nnImpegul/3kjpjn2JMkylfUWAmKnqyAIwpBldweobrDyfXk7LF7M6DeeQ1ar\n0Xlc5K/8OuZ5JVmmqsFKQ7szjmcLwVCY6gYrG7aZcfdQ1aY/4RyPL0hN48C2akxurueoe65CFQrx\n/V1Pseyxv/Hhe6v57xtfsfLup6m88ApajjgOgPzVy5j09xc58v7rGP3Zv/CnpNE6b2FcziOckEjL\n/BNIbmvCVLU5qrEDGcoxGrSML0yPy1y90Wk1JOg0mMtmApBVsV7xWJu45xk2drQ6aDHHFj481PmD\nYYJhibEfv0PGtkrqTzyLzulHxP04tjETkTRaTNXRvYfsqUsEcwRB2ENNY3RVCw9kR4sDSRq+AUzh\nR8FQmC1VrRTfuIgEWxebLr+F/771NV8//Q+qz7uUYFIyJUs+YsHdV3HW+UfFL6QjScx+/M7u6pEr\n73lGcQg2Oz2RMX1U4U7QaykbnUnZ6CyqrvsjWy67gaSOVhbecCHpNRVRnepgX8MqiyYJgiAIgiAI\nQ55Oq8a+u2JOl9JgzvBaVHZ5g+TUVhLWG3AUj4l+ApUKc9lsCpd/TlJLg6I+9DZ3YK/Sm0o4PQES\nDVq0GpGjFwaXLxAidfV3JNi62HbGL5G1uqjGF+emYNApK0u7L51WzaQSE4WeAA3tLsx2L1t+exPm\nSTOZ+9jtzHnyj2SXr2P9NXcTToj8n1L7fcx4/iEkjZYNV9+lqE91bzZeeTu561ZS9sYztMw/Hlfh\nqJjngsiD/8qdVqaNyUTVj/MSBEEQBo8/GKbd4qHN4sHjj1RQG/v+m0x57UncOXmsvelBjr31N4z6\n4j0aY6gqt6e6VgeBoMTYkX23f+xLa5ebuhYHwfCBQ/W7wzllozPJSFHWDiksSVTWWxVVvImV3mbh\n6DsXYXDYWHvD/bTPOTryAZUKT95IPHkjaV5w8l6vT9++lYztW0mrq6F17jFxrXjRsPAnFC/9mMJv\nPsUycZqiMQMZytGoVUweZRqUe4OUJD3mstkAZG1ZR90Zv1Q0zu0LEpYkNGpx/zKUWZ1+Gjtc6DRq\ncjIS0Wlju64/VLm9QRLM7ZS9/hSB5FQ2//6WATmOZEjAXlJK+vYqVKFg1PdUEPm3kGQZtbiPEITD\nXmuXO65VbnzBME2dLopyU+I2p3DocXmDlO/oYsKTD5BVuYGGhaez7ZxfgUqFZeI0LBOnsfnyWzBV\nbWbkt18wcvnnlCz5iJIlHxE0JtN85PF0nXwm7klzo7vOlmVmPns/JUs+omviNFbc9zySIUHR0LQk\nPROLMhQfKis9kYxUA/XX3shaUxazH7+TqX99jOWLX1M8h3WQK+aIYI4gCIIgCMJhQqfV4DNlAZBg\nNSsaExjkPqsDzW1zklZfi7V0kuLymfsyl82icPnnZJevUxTMibYkptnuZWu9lRnjsklOFA+2hcEV\naWP1MQANJ5wV1VijQcvIOLRXSDHqmTzKhMcXpKHdRfuRx/PVc/9h/gPXU/LVB2TUVvD9XU/hLBrN\nhHdfJqm9marzf4uzKIaw3R4CqRmsv+ZujvzTdcx54i6+eeQ1ZF3/FvlsLj91rQ7G5Pd/0VUQBGEo\nsDh8uLxBEgxajAYtCXrN4AeNw2F0y/+Hf858MPYdjJCRsTj8tFk8WBw+9oyflHz2b2a88BBeUzbL\nFr+Gu6AY8+SZ5GxcRWJHC96c/H6dapPZRTAUZnxxRkyLr5FKNnZsbuXXm9GGc7Y1xW+Hdk80Pi8L\n7r6S5JYGKi+8gh2n/bzPMYF0Ex2zjqJj1lEDck7tM48kkJJG4bJPsY2ZqGhMwYqvKPh+adxDOQDj\nizJISoh+YT8WKYk6OgtH4U/LIKtCWfteiFSCsrsCmFKVLbwIh55gKEzVTmvk12GJHa1Oxg1wlabB\n5vaFmPLqk+g8btZedx/+jMwBO5Zl/JRIeLC+NqY22mFJxub0i/9TgnCYc3mDbGuyx33ehnYXeZnG\nYRfAFCI6bF6qd1rJX/oJpR++hb14LGuvv3//zWx7hnR+f3OPIZ2pu0I6TUefSvusow4c0pFlpr20\nmDH/fRfrmIl8++BfFLebNxq0lI0yoVZHd0+kUasZU5CG69orcH7wJlkVG1AH/Eh6ZZsQ3L4ggWAY\nfYybDKMlgjmCIAiCIAiHCZ1WjXd3xRzFrayGV8UcubwCdTiENYYHY7t1TpkFQFb5OupP+Wmfr3d5\ng4TCkqJFqaZOF9ub7ciAPxAmOXFwHsALQ0tYkggEJQLBMP6QRDAYJhCK/L7756BEMCyRkWJgVF6q\n4q8lR6eVCSu+xjViJF2Tpkd1XmML0uK6o9OYoGNCcQYleSk0ZhpZ/uTfKXvpYcZ+9HdOuObnVF58\nNRPefQVPVi6VF10Zl2M2H30yjUefQuG3X3DKorPZdPkttB5xXL8q8TR2uEg16smOsnKWIAjCUCLL\nMvU7zeTedj2h/CIqL/6/7vdOg1ZDgkGD0aAl0aAdkNBOMBTG7gpgdwfIffR+Rv39ZZz5Rfzwh4fo\nKpsV05yFSz9h9lN3409NZ9niV7sD2fUnn0NWxXqKl3xE1YVX9Pvc221ejOvXMOWdF/HcfhehmbP7\nHBOWJBraXTR2uJBiqGSjNJzTbvHQaonfDu39TyTMEQ/fTGbVZupPPIuKX18b9RQ56YmYUhPY1mQn\nJMVnU4Gs09N49CmM+fSfzH3sdsXjognlqFUq9Do1eq2m+2eDLvJrnVaNXqfBoNWg06kHtWJGilEf\nqRI6eSYFK7+OKoBmd4tgzlBW1WDDH/rx/r+1y01+VtKwuid1eYNM2LgarymbHaf9bECPZR1fBp/+\nk4zq8piCOQAWhwjmCMLhLBSWqKy3DEjVwpAksbPNFZfKjcKhQ5ZldrQ6aehwkrqjhtlP/JGgMYmV\n9zzT9/VpDyGd0auWkPP1f/erpNNbSGfy355l3Htv4Cgaw/I/v0IwWVmre71WzZTRmf0KiiUn6mDh\nQjSvVJG5dROd0+YqHmtz+cnJiF+o/kBEMEcQBEEQBOEwodOqCWTmAJCoMJgTlmXFoZKhQL9lIwDW\n0skxz2EvGUfQmEz2lrWKXi8Djj4eUsuyzLZmO81md/ef+YZZKEqIj/o2B/VtTsWv73L46HL4yElP\npGREKsaEA98CJn75GVqfh4aFF0cVRslMTRiwh8YJei2lI9Mpzk2h6f5HsEyZw4wn7mTaXx4BYNOi\nWwknKtuBo0T7w0+R9dcnSH7jVRbcfRVtM49k0xW34SgpjXnO6gYbSQm6Pj//giAIQ5E/GGbrTitF\nj/+pu+paormNddfdBxoN/lAYfyiM3R3Yb2ysoR1fINQdxLG5/N1tpzIrNlDyziv4U9JIbm1k4U0X\nU3vOxZRfdn13G0Ql8lcsYe4jtxE0JrP84b/iLB7b/bHGY05l+vMPUfLl+1RdsKhf4U0AZJnRT/4J\nQ/UWtCu/Y8P199Fw8rkHHgIxBXL21Fc4J1KNx9avYxyQLDP9xYcpWPk1HdOOYO0Nf4rpczkyO5nU\nJD0ZyQZqmmx0OXxxOb0tv70Rc9lM1GFl1+ShhERa5i3ss1R/epKBMQWpkQDMISjFGAlhmMtmUbDy\na7LK19N4vMJgjmv//+PC0NDU6drv/45MpGLW9NKsg3NSA8BrdWA0t9Ex7QgY4LZrlnFTADBVb2bH\n6efHNEeXw8dYxKK5IByuahtt3de4A6Gly01BdhKJBvGcYjgIhSW27rTS5fChdbs48k/XofV7WXn3\n07hGRtmqfVdIJzjnCNZeeuMB213tDumUvv8Gk95+AVd+EcsWv0og3aToUBqVirJRmXH5OpSOPQ5e\neYHsTaujDOYERDBHEARBEARBiL9wVnQVcwACweERzAmFJZIqtwBgHRd7MAeNBvPkGeT98C0JXR34\ndoWdDsR2gLLue9447Wm4VSsS4qPd4o1pXIfNi9nuIzcjEtAx6PffheIPhsn98kMAGk44U/HcapVq\nUFo16XUaRuenErr6MqrmziT/9utx5+bTdMypcTvGiAwjxcUZuB5+HO+lv0N72y2MWLmM3CvOYfvp\nv6DikmsIpCnvd71bSJKoqLcwc1wWmgFeBBAEQRhMVqefqp1W0r//hvH/eR3nyBKCiUmM/vw/aH1e\n1tzyMLK292oL0YR2NGoVDnckjNNTgFnj9TDn0dsAWHH/84CKOY/fwbj3/0be6m8UV8/JXfsd8x66\nEUlv4NsHX9qv0kEoKYXmo06ieOnHZFZuoGvyzD7nPJDMivWYqrdgHTuJpLYmZj96O6nbKtl8+S0x\nt15VqrdwTliSqKi3DsgO7d1K33uju7T+ynueial9ZKpRT2pSZJxBr2HK6EzaLJ64VM8JpqTRcOLZ\n/ZpjTwl6DWPy0w75CnpajRqjQUtn2Y9VQhuPP0PRWIcngCTJUbcgEA4ulzdIXYujx4/Z3H46rJ5B\nW6waSJIso66vA8CpoCV1fzlKxhIyJGCqKY95Dm8ghMcXxDhIrewEQTh0tHa5abfF9vxHKUmWqWtx\nMHmUsgCFcOjy+IKU77BEglyyzJzHbielqZ6q839L84KT+zf5PpV0Mqq3ULj8871DOolGdF4Pnuw8\nli1+VdGzcgAVMLEko/t6vr+C849EVqvJ2biaykuuUTzO5lLeFri/xBNBQRAEQRCEw4g2MQF/ajoJ\nXcqDOcHQ8AiIuL1BMmorCOt0OPbY9RyLzilzgMiDaiXs7p4v8P2BMBtrzT3u7PUFhsfnXYgfhyeA\nNxD7bilJlmm1eFi9tZ1tzfb9/m+7GpoZ8cN3WMdOxFk0RvG8BdlJg1oJRqtRM2L+DIJL/8eOxc/1\nv1LBLhnJBsYVpXf/PjxhIv73P2LnS2/hyi9i7MfvcNqlp1D6n9dRBaPfEe72BalqsBEKx6fNhiAI\nwsG2s83J5u1m6Ghj7qO3E9bpWHXH4yx75DU6y2ZR9M2nHHn/dagDsT3o3B3YabV4qGt1UNtsp93m\n7bWq4JRXnyClpYGa8y6ja/JMuibP4MsX3qf6Z7/prp4z7YWH0Ph6X+TI2ryGo+69GlRqvrv/eSyT\nZvT4uvpTIhVtSr58P6a/257G//s1ADZeeTtLnv0n9uIxjHv/TY6+/ffo7dZ+z9+X3eEcq/PHf6dt\nTXbcvuCAHbNg+RdM+8sjeDNz+PbBvyguc7+vkdn7V8wbYTIyZ0IOmYdI+xeNWsXovFTmTsg95EM5\nu6Uk6rCNnUjIkEi2wvsdiFxrOj2ias5QEpYibVIOVIGrrsVBOE5t4g4mrz+EsWknAK4ogjmaGO81\nZI0W29hJpNZvQ+ONvSWg2R6fKmCCIAwdLm+QbU32QTlWp91Lh83b70qMwsFjdfpZX2Purq40/l9/\nZeSKJXRMO4Lyy66P78FUKqwTprL58lv49M2vWfLMu1T/7DICKWl4skawbPFf8eQWKJ5ubEEaWWnx\nuz6WU9NwTZhCZtXmqL73evwh/IP0HF4EcwRBEARBEA4jOq0anymbBKtZ8Rh/aOg/hANw292k1ddi\nHzX+gDu3lTBP+XEHqRJOTxBJkvf5swDrazpx9bLo4RcVc4R9dFjjs1tKkmWaOl2sqmxnR6ujOyii\n++B91FKYncefpXgug1ZDcW5KXM4rWhq1mkklJkZmJfd7ruQEHZNHmVDv++BdpcJ47lm0LlnJ5qvu\nAJWK6S8t5pTLzyLv+/9BlA+vOm1eVpa3UVlvweLwIYuHX4IgDEHBUJjN27vY0eZAliTmPno7CbYu\ntvz2JmxjJxFKSuHbB/9C28wjyV/1Pxb88Yp+LUoqkb1hFaUfvo2jaAzll17b/eeSIYHNl9/M0iff\nxlVQzLj33+TkK84hq4eWpKatm1jwxytRSRIr736GzulH9Hq8jmlH4MnOo3DZZwcM+vQlqXkn+d8v\nxTJ+CuayWbgLiln69Ls0H3kCuRtXceLVPyetrjrm+ZXaM5zTZvHQahm4f6/MivUcsfgWQgmJfPvA\ni3hz8mKax6DTkNVL0GV39ZwJRRloD1KlOhWQZzJyxMRcinJThlQVmWSjHlmro2viNNLqa9E5lS8O\n2kQ7qyFlW5O9zzYpvmCYhnbXIJ3RwHF7g6S0RB/MGVeUji7GCsKWcWWopTDp27fGNB7A4hi8XfyC\nIBx8oXAkMDmQVQv3VVlvYeWWNip2WGjtcg9aQEHoP1mWqW2ydVeKzN64mimvPok3M4dVdzzWr+qb\nGpWKpATd/s/JdtsnpPPft76OqmVWYXYyBdn9f563L8/8BahDQbIqNkQ1zjpIVXNEMEcQBEEQBOEw\notOq8Zqy0budqP3Kdl4Nl5ZKUkU56lAQa2k/2ljtYi0tI6zTk71FWTBHkmUce+weNdu9bKw14z9A\nNSJxIyzsSZZlOuMUzNktLMnsbHeyurKdhnYnpk/eQ1apaFz4E8VzjMpPPeit7saOTGN0Xmw77SGy\nsDdldOYB/x4ZpmRSbr2Jr9/8itqzLyKptYkF91zF0bf/jtQdNVEdT5JlOmxeNtd1sXpXOMo7gH3j\nhaFhOOxEFw4PDneAddWdWJyR68hx773BiHUraJ1zNLXnXtL9unCikRX3P0/z/OPJ3bCKY+74PVq3\nc0DOSet2MefxO5DUGtbc8jCS3rDfayyTfqyek9TWxHF/uCRSPWdXYCht+1aOvvNyNH4/q+54jLa5\nxxz4oGo19Sedjc7jpmDFkpjPfdz7f0Mly9T89NfdFeBCxiRW3v0MFRdfTVJ7M8dfdwEjl38e8zGU\n2h3OqW20Ddgxkpt2cNTdV6EKh/n+j09jHzMx5rkKspJ6XyjYZYTJyJyJsVXP0ahUJOg0xBKnSU82\nMGt8DuOLMtDr9m8feqhLMUY2MZjLIm3asirWKx7bW6XQ3kiyLILKB0mHzas4hNfY4Rry16sub4jk\n5kgwJ5pWVqlGPWWjM/t8v+mJZfwUAEzVW6Ieu5vDExAVNwXhMFLbaOszMDkQQpJEp91LdaON7yvb\nWFvVwfYWO1anX1TTOYR12X3dXy8J5nbmPXQTskrN93c9hT8jK+Z5E/VaZozL5ugZBSyYmscRE3OZ\nOjqT0oI0RmYlk5magNGg/fF7o0oFfYTh1SoVOo2aBJ2GPJORMQVpMZ/fgQSOOhqAnE2rohpncw5O\nMGfw6o0LgiAIgiAIB51eq8FnygYg0dKJO6+wzzGBYOwPgcKShCxz0BfuAXSbNgJgLZ3U77kkvR7L\nhKlkla9D53IoKr9vdwVITzbQ1OFie4udvm5rRcWcgSfLMqo4tUEaaDZX4IBBrv4IhiXa11cwq2ID\n7TPmKe4FnWrUM8JkHJBzilZRbgo6rZqaRluf/7f2pFGrmDI6E4O+70Wz5EQdk2eXssV0L9vP+CXT\nX1rMiLXfkXvlubjyi3DlF+EsKMaVX4yroBhXfhGe3PwD7lDyBcPsbHeys91JepKBEZlGstMT0Byk\n3f3CwREKS6zZ2o4xQUeeyUiW+BoQDlFNnS7qWhzdD+fTayqY8uqT+DKy+OEPf96vtaCkN/D9H59i\n7qO3U/S//3LczZey/M+vEEjLiOt5TfvLYpI6Wqm86Eqs48p6fd3u6jlNC05kzmN3Mu79N8lfvYzK\ni65k6l8eRed2submh2lecLKi49afdA6T/v4iJV++T8MJZ0Z93jqHjZIv3sedk0fTMafs/UG1msqL\n/w/b6PHMfeRW5j9wA1svqKL819f2+dC7PwZyd7bB2sXRdy7C4LTzww1/on32gpjn0qhU5GXu38aq\nx+PuCuC2WTxsa7J37yjePU+iQbvHD033rw27AjWSLOPzh/D6w3j9IbyBUORnfxhfILTXdUeiXsvo\n/NQh07KqN8mJOlSAefKPwZzWeQsVjbW7A4qusV3eIG1dHtqtHkoL08kZ4p+zocYXCFHToDyEJ8ky\ndS0OJo8yxXzMsCRhdwUwHaQ2c25fkFHNO5FVKkXPQXbTadUkGrSML0xna0N07QW7gzk15VGN25Mk\ny1gcPnIyDo37LkEQBk5rl5t2W3w3ZMXK5Qvi8gVp7HChVatJT9GTmZqAKTWh+xpJOPgaOyIV7VTB\nAPMfuJ4EWxfr/+8uuib33I5XCVOKgYnFJnTayD2Heo/r5X1Jsow/ELlGDoYlNCoVGo0ajVqFRqOK\n/KxWo9GoYgq4xkJ99AIkjZbsjWuiGmcbpIo5IpgjCIIgCIJwGNFp1fgyI8GcBIXBnGA/wgDbmuzd\nu/AiF+e7LsjVe/xao0KjUqHVqsnJSCTVqI/5eL2RZBljZWSXWjwq5gB0ls0ie8taMis30Db32D5f\nb3X58TeGaelyK5pfkmWCoTA6rbjhHSiddh9NHS4KspLIzkgctJvEWHRYB7YFSNHXHwPQcLzyhcWx\nIwdmd0us8jKT0GnVbK23KlpYVKtUTC4xkZyovLVdokHLjNIsNqsn8e1DLzNizXImvPsyqTu3kddU\nz77NOCSNFveIAlwFxd2hneYFJ/UYfrK5/djcfmqbVOSkJzIiM4m0pPi/HwqHnvo2J4GQRMDlx+by\no21Sk52eQF5mEqnia0A4BITCEtWNNjr3WCjQetzMe+hG1KEga25+GH9GZo9jZa2O1bcsJpSQyOjP\n/s1xf7iY5Q+/qjgE2pcRa5Yx+rN/Yx0zkcoLr1A0xjJpBl+98B5lbzzLuPdeZ+6jtwOw9rr7aDhR\neTtHd0ExnWWzyNm4isSOFrw5+VGd++hP/4XW76XinGt6DXG2HHUiS5/+B0fdezUT33mJtLoqVt/2\nKKGkg9NGMlYan5ej7r6K5NZGKi+6kvrTftav+XJNxu7FAqVGmIxkpBiwOHz7hW8ORK1SYUzQYUzY\n/3ohEtqJLEaEJInstMQh1bKqN1qNGmOCDsvE6UhqDVkKq4RCpCKj0xvs8Z4uGJJot3pot3hwen9s\n59vS6RbBnEEkyzJbd1r3Cqkp0Wn3YnX6yUjZvypZX/zBMOV1FnyBEEdMyj0oG3fc3iApzTvxZI/o\nsbJaT9QqVfe55pqMePwhdrYrr/7mzi8ikJJGRj8q5kCkIoII5gjC8ObyBqltUt46cjCFJAmz3YfZ\n7kOtUlEyIoXCnOQhs9FtuLK7/Nh3VWef9pdHyKrcyM6FZ7D9rAtjnrMwO5nR+amK/20PFNo5WPRp\nqVgnTMW0dSNat1PxfZMvGLmmH+i/y6HzmRIEQRAEQRAGnE6rxrchHjqjAAAgAElEQVSrlGWCxaxo\njL8fFXMse5SBDMsy4ZAM9D5fU6eLjGQDRbkpMT3w643HFyJ9WyWSVoejuDQuc5qnzIZ3XiJryzpF\nwRzbrgXXaPgCIpgzkJzuAA5PAEdDgO0tdvIyk8jPSjrkdv9IskynTVnruVhklq9j/L9fJWRIoGnB\nSYrG5JmMAxKi66+stESmjtVQXtdFsI+S76Uj02LasavTapg2NpPKegttc4/pbneic9pJbmmI/Giu\nJ7mlgZTmnSS3NJC3Znl3aCd3/UpW3vdcr/OHJZlWi4dWi4e5E3IxJojb9uHM4wvSYt47sBmSpO6v\nAaNBywiTkVyT8ZB7bxIOD20WDztaHPtVbZvx3AOktDRQ9fPf0D77qANPotGw7vr7CSUkMu79N1l4\n08UsW/wqntyCfp2bzmFj9hN/RNLqWHPLw8g65d+X9qyeM+W1p2g89jR2nH5+1OdQf9I5ZJevo3jJ\nR1QpDAZBZFdr6YdvETQmUddHSMVRUsqSZ95l3p//QP7qZZxwzS9Ycd9zuApHRX2+B4MqFGTegzeQ\nWb2Z+hPPouKSa/o958hsZdVy9mXQaRRX2lEiEtrRDsvv1SmJOtzGJGxjJmCqKUft9yEZlF032V2B\n7utEWZaxOv20Wjx02X09tsOwuf24vMGowtJC7OrbnNjdgb5f2IPtzXZmjs+OakODyxukvK4L366K\nsC1mN0W5gxsuDIUlgg4niV0dtM+Yp3jcvgHAUXmpeHwhOu0KK1qoVFhKJzNi/Up0DhvB1PRoTrub\nxeknFJYOiUrEgiDEXygsUVlvGRItoyRZpq7VgdnuY0JReo/BZWFwNHZGquUUff0xpR++jb2klHXX\n37dfFVMl1CoV4wvTyT1EqmL3l23OkWRWrCd781pa5yur+giRZ/cDHcwR38kFQRAEQRAOIzqtGq/p\nx4o5SsRaMcflDcbUjsnq8rNpu5n1NZ2YlT7w6oPT7iatrhp7SSmSPj5hgq6J05HVarIq1sdlvp6I\ndlYDy+H58YF0ICSxs93J6sp2ttZbcMT4sHogWOy+qHe0KpWzbgXH3P47NH4/P/zhIUU7SXQaNaPz\n+27fdrCkJemZUZpFwgFCDMW5Kf1amNNq1JSNziR3j93dwZQ0rOOn0LjwdLb+6v/44ZbFLH36H3z0\nr5V88N5qlvy/f+HOySOrfB0ofOC259eoMDxta7Yf8AGsxx+irtXB6sp2ttR10WnzDokHtsLQZ3cH\nWFfdSVWDdb9QTuHSTyj56gMs48oov/Q6ZROqVGy64nYqL7yC5JYGFt54MclNO/p1jjOef4hESycV\nF1+NY9S4mOawTJrBskffoO6MX8Y0vumYUwkZEij58n3F7+0Ahcs+I7Grgx2n/kzR995gajrfPfAi\n1T/7DalNOzjxmvMZ969X0TkPzZ3V3SSJ2U/cRf7qZbTNXsDaG/4U02LBnkwpBrEINAiSjZHPsbls\nFupQMKpWPHa3H48vRF2Lg1WV7WxW8P1r35CqMDBsLj8NUVR82Zerh0DxgVgcPjbWmrtDORBpuxEe\noHub3ri9QZJbGgBwFRQrHqfrIQgzoTidlChCZD+2s6pQPGZfwbDE9uZD/P1eEISY1Tba8PhDvX48\nuXEHcx69nclvPIMqFOz1dYPJ4QmwtrqThnYn8iDen8qyjGPXJrvDmccXosvuI6WhjllP3UPQmMzK\nu58mnBh9sMag0zC9NGvYhHIAPPOPBiBn0+qoxtmcA9/OSgRzBEEQBEEQDiN6rRrfrmBOosJgTiDG\nijkWR/8qfDg8Acp3WFhb1UG71dOvGz25ohJNMBC3NlYAoaRk7CXjIjtIAwNzQ9ifakXCgUmyjMuz\n/wMNSZZpt3lZX9vJuupO2i2eg74IPlA9xvNXfs2Cu69EJUmsvOcZmo49TdG4sSPTDvlKTsYEHTNK\ns0nqYeFuRIaRUXn9DxapVSomlpgoykmhryXGYHIq1nFlmCfPwuC0k9yyU9ExDqWAmBB/Zpt3r8py\nByLJMl0OHxX1FlZVtLGj1YE/IMKbQvz5AiEq6y1sqO3E6d3/PSiptZFZz9xLMNHIqtsfi6pKDSoV\nFZdex+bf3oixs5WFN11C6o6amM6z4LsvKV76MV3jp1J9/m9imiMeQknJNC84iZSWBjKVhrVlmfH/\nfh1Zrab23IsVH0vWaNl8+c2svvURVJLEtJcf5YwLj2PmU/fE/HkcaFNfeYySJR/RNWEqK//4dHRf\nL70YmZ0chzMT+pKyq+KNuWwWQCRYrFCX3ceaqnYaOpyKNxq0Wz2E+qh2KPRPMCRRtdNKf+9sdrY5\nFW3eaTa7Kd9h2W+DQTAs0Woe2Da9+3L5Qt3BHGd+ieJxet3+y2cadSSgr7SSoXVXMCejpn/trHZX\nnRIEYXhpMbt7feZjbG9m9uN3curvz6Dkqw+Y9PYLHHfzpSSY2wf5LHu2u3rOhlozbt/ABYYCwTDt\nFg9b6y2sLG9jfW0nG2o6qW9zDGoo6FDS1OlClmWmP/8gWr+XH258ANfI6KtppiXpmTUu+5CsiN0f\n4TlzCOv05GyMMpjjGvhncCKYIwiCIAiCcBjRadX4MqOsmBOWYrrRsTj9EIedcC5fkK07razZ2kGL\n2Y0kKTsXSZLx+kPY3QHUGyILJfEM5gCEjpiHJuAnfVvsu98ORCy6Dhy3N0i4j69rpzfA1gZr9yL4\nwVgsCIUlLAPwALbwf/9l/v3XIWt0fPfAi7TOU1baNSstgdyMobGLxqDXMH1sFmlJPz5gyEg2MK4o\nthLyvRmdn8rsCTmYFLTfs0ycBoBp6yZFc4tgzvAlSTLbWxwxje2u8LW1nYp6C/Yo2yQKQk/CksSO\nVgdrtnbQ0cvigCoU5IiH/oDO42b9NXfjjqLqwJ6qf/F71l99FwlWMyde/XNmPHMfxtYmxeMN1i5m\nPn0fYb2BH27+M7Lm4LYRqj/5XIBI1RwFsjeuJr2uiqajT46pnVfDCWfyydtL2XT5Lfgyshjz6T85\nZdHZHHvzpeSvWALhQ+P6cdw//8r4f7+Go2gM3z3wYkw7ePeVlKCLqQ2lEL3kRC1qlQpz2UwgumBO\nLEtkYUmmzTK4YY3DhiSR+MwTtH26dK/KNbEKhiV2tPZedUeWZbY326ltsvW6waGxw6X4vj4e3N4g\nyc2RYHx/K+ZApLpA2SgTGgUVwLor5lQrrzrVm5pGG8GQCLAJwnDh9gXZ1kM1LIOlk+nPPchpl53G\nqC/ew1E4mu/vfILGY08lq2I9J195LjnrVsTlHHJ/+JapLy0msaMl5jkcnkilzX5VzwkGu6tPyrKM\n3R1gR6uDddWdrKxoY2uDlXabt7tluUykNePGWjPeA1QbGo4CwTBtFg8j1ixjxPqVtM06iuajT456\nnvzMJKaNzUI/DFtmG9NSME+eSXpdFXq7VfE4fyiMZwBDZgDDrwGuIAiCIAiC0CudVvNjK6suZcEc\nSZYJhqSoLtTDkoR6/TrOu/aXrLj/OdrmHhvT+e7JGwhR02RjZ5uTSdVrSO5qw3LqOXgNiQRCEoFg\n+Mefg9JeO/NmbI3sTrOWTur3eexmSjGgP2YBvPM6WRUbsEyaEbe5d/MHDq+by8Hk6KFaTm92L4Kb\n7T4ml5gwJgzebVSX3ddngChaoz77V3ep2+8eeImuycq+dnUaNaUj4xtqGWg6rZqpYzLZWm/FFwgz\neZQJdT9baPQkKUHH1DFZmO1e6locvZah7toVzMms3EjDiWf3Oa/bFyQUltD2siggDF2NHS68/XyP\nl2SZTpuXTpuXlEQdBdnJ5KQnolbH/2tcGN7aLB52tDj2a1m1r8l/+39kVm9m5/FnKnoPO5DWn/+a\n7aMKKXjiQcZ+8g9Gf/ovGo4/napf/B5n8djeB8oyM5+9jwS7hY1X3IazaHS/ziMeOqYdgSc7j8Ll\nn7Pxyjv6DKCM/89rAFSfd1nMxwympFHzs8uoOfcS8tYso/SDN8ndsIqcTatx5+az7cwL2XHqeQRT\nD8737ZIv3mPaK4/hyRrB8odeJpCaEZd5C7Jib0MpREejVmM0aHFlZOEsKCarYkMk9KUZuMWbFrNb\nVEQaAPr/fkzyA/dSMn4K25/9Z1zmbO1yk5+VRPI+LZ3CksTWnVbMfWws8IfCtHa5KRikf2+3N0h+\ncz0QZTDnAM9AUox6JhRnUFFvOeAcvswcvJk5mKo3Kz5ub/yhMNuabEwsMfV7LkEQDr7Wrr0rNOuc\ndsb/61VK338Trd+LK6+QiouvpmHh6aDR0HTMqXSWzWb6S4s55o7fU3nRVVRedGVM35tTdm5j2kuP\nkLf2WwDGfPIuFZdcTe25FyNro28Zurt6jtnuY3xReo/Vi/elrtuOfulX6L/+Ct2K7winZ1Bzw93U\nzjqOoMLwpn1XKKh0ZNqwasV0IM1mN3IwwLSXHkFWq9m06NaoWsWqVSrGFKQN6+tqY4KWjulHkLtx\nFdmbf4gquGR1BQa0ba54uicIgiAIgnAY0WnVyMZkQglGEqxmxeMCUe7KsjkD5K1YgloKM/LbL6M9\nzQOfi99P8U2LGHHXHyg9Zhopd9+GdWMFHTYvNpcfjz+0X7nsjNoKJI0W+6hxcTuP4twUgnPnAZCl\ntHVBlEQrq4HjjKESidsXZH1NZ7/btEWj3RrfNlal773B7CfvJpCSxrJHXlMcygEYU5CmuGT7oUSj\nVjN5lIlpYzMHPOCSlZbI7Ak5jM1PQ6ve/1i20eMJ6w1kVimrmCMDzihCZMLQ4A+EaWjvfad5LJze\nIFUNVr4Xba6EKNhdftZVd1LVYO0zlJO9YRUT3n0ZV14h66+5O6bjadQq8kxGZpRmM3diLqkXX4Dz\nh42Yn34JT/EYSpZ8xKm/P5P5911DRnXPLT+Kln7CyO++onPKbGrPUd4GakCp1dSfdDY6j5uCFUsO\n+NKUhu3krVmOefJMrBOm9v/YGg2t849n+eLX+OIvH7H9jF9gsFmZ9spjnHHRQmY9efegt7nK+34p\ns568G39KGsv//DLenLy4zKvTqMk1JcZlLkGZFGNkUcJcNgudx0Vafe2AHs/jDw3qdfbhQAqF0fz5\nQQBM1Vuiqk52IDJQ22Tb68/8wTAba7v6DOXs1tjhGrSWwW5fiOTmnchqNe4RIxWP661izm7Z6YmM\nVtAi1zJ+ComWzri0n2nfFcoWBGHoM+/6v6zxupnwzkv85JKTmPiPvxBMSmbdtffw+Suf0HDiWT8G\nb1Qqtp99EUufeAtPTh6T33qOY+74PQZrl+Jj6h1Wpj/3ICcvOoe8td/SPn0eG6+4jbDBwLSXH+XE\nq3+OqXJDzH+n3qrnSLKM1+bA9/GnyDfcQPLsaWTOm0HKHbdg+PorXNl5qLs6mXzrFcy98wqMbc2K\njxmSJLY2WNlabxn2bTHDkkSL2c2Yj/9BatMOtv/kfBwlpYrH6zRqpo3JHNahHIhUtrPOjDyzz9m4\nKqqxNoXtxmMlKuYIgiAIgiAcZrQaFV5TFokKW1lBpEwmicrT4hanj7G7buTiHVpJ216NzuPGNno8\nBpuFce+/ybj336R17jHUnnMx7TOPhD0WxFXhEOl11dhLSpH0fbeaUSI92UBasgEpqZBAzggyKzZE\nSq7GuRKHPw6lxoWeuaxOjr/2QpoXnET1+b9TPC4kSWyp62JUXipFuSkDeIYQDIWx7dGiJrGjlWNv\n+w3OgmLqT/4pLfOOQ9Yp7AMty0x45yWmvP40XlM2yxa/euCKBPswpSQwYgjvPlKpVOi0gxMqUqtU\njMxJJteUyI5WJ61d7u6WDrJOj7V0Mqatm9B4PYraejjcATIUtMkSho66FnvcK2HtFgxHKnw1drjI\nTEtgZHbyXu3cBAEiD3RrGu20W5W1jdHbrRyx+BZktYZVtz9GKCm6CgfpSQZGZBrJTk9As29oUatF\nvuACvL/4BV3/+YDUZ59g5IoljFyxhLaZR1J1wSI6p84BlYqErg5mPPcAoQQjP/zhob2u9w62+pPO\nYdLfX6Tkq/cjCyi9GPefNwCoPu/SuJ+Do6SU9dfey5bLbqDki/cZ+9HbjP7sX4z+7F9UXrCIisuu\nj/sx95W1ZS3zH7wRSafnuwdejOpaoy95mUn7f/0IAyrZqAeLB3PZLEZ98R4nXnM+ksJd+dvP+CWb\nF90a9TFbzG7RrixOgqEwHa/+nenbqvBlZJFgNTPy2y+oOf+3cZnf7g7QbvWQm2HE5Q1SXtcVVass\nXzBMW5eH/AFeHPTu2riT3LITT3Yekl75dZFe1/d7TlFuCh5fiLYDfE+1jJ9CwcqvMVVvoSUrV/Hx\ne1PTaCM9WT9o9zeCIMSfwxMg4PYy9r/vMvGdl0iwdeFPSWPT729m21kXIhl6/15onTCVr577D3Mf\nvY381cs46aqf8v2dT9BVNqvXMapQkDEf/4PJbz2H3mnHlV/EpstvoWX+8aBSsfPEs5jyyuOM/vw/\nnHD9hWz/yfls+e2NBFPSov677a6e02H1ktbWQMp3S8n6fhn5m39A64+EN4OJRpqPPIHWOcfQNmcB\n3px8kht3MPPZ+8lf/Q05G1dR+aurqDnvUsUVfNptXuyeABOLMkhLHp7PUFq7PGC1MPmt5wgkpVBx\nyTVRjR9flD5sPzf78k+bQSjBSM6mNVGNsw1wq3ARzBEEQRAEQTjM6LUafKZskivWowqHkDV9XxJG\nWzHHanFhqoqUak5pqsdg7cKfkRnT+e4rq2IdANU/u4zGY09j5HdfMfbDt8lbs5y8Nctxjiyh9uxf\nsfOkcwgZk0jduR1NwB/XNlbFuwMZKhX+ufNI+eQDklt24iooidsxQARzBkooLGGo2ERm1WbS6rdR\nd9rPo3rYIAN1rQ7c3iDjitIHbJGow+bbaxfp2I/eJqWpnpSmevJXL8OflsHO48+g/uSfYh8z4QAn\nLDPl1SeY8O4ruHPzWbb4Ndz5RYrPQ6NWMa4w+ocxhzudVsO4wnQKspPY3mzHsmvXTdfEaWRVrCej\ntgLz1Dl9zmOPobqTcOiyu/y0D8Iu5z3bXE0dnSkWOYVuXn+Iih0WXL69q3GpggG0Xg9anwedx939\na63Xw5hP/kGipZPNv71RcZWXBJ2GXJORESYjiQYFjx/Vaow//ym+c8+m/MPPyf7L04xYv5IR61fS\nNXEaW3+5iDGfvIPe5WDdtffgziuM5a/fLxq1iuy0RCxO337Xxu6CYjrLZpGzcTXG9mY8uQX7jdfb\nLBQv+RBXflFkEWSABFPSqP3ZpdSeezF5a5Yx4/mHmPjuyzQuPD2qHbXRSqur5qi7r0IVDrPi/mex\nTJwet7nVKtWw39l7KErdVTGnef7xFM5egN5pVzTO2NbM+P+8TvNRJx5wkbAnXQ4fvkCIBL1YtugP\njy/Ilm1mFvz1aWS1mhX3PsvCG35FYRyDOQB1LQ7UKhXVDbb9qtYq0dDhZESmcUBaze7m9gXRetwk\nWsy0zTwyqrF9VczZbVxROt5AqNfrdsu4MgBMNeW0HHViVOfQk2BYorrRRtmo+DxjEQRh8Fl3tnLy\n5WeS0tJAMNFIxa/+j5rzfk0oSdkGsGBqOivue57x//wrU15/iuP+8Gu2/PZGan522X6bBkesWc60\nlxaT2lhH0JjMpstvYdtZF+0VVAykZrDuxgeoP/lcZj19L2M+/ScFK5awadGtNJxwpuKNiGq/j5xN\naxjxw7eM+GE5KS0N3R+zF4+lbc4xtM49BvPkGfttNHMVjmL54lcp+vpjpr20mKl/fYLirz9m3XX3\n0jV5pqLj+wJhNm4zU5SbQsmIFFQD+P1lsMmyTFOni0lvP4/eaWfT5bcQSFfe2jA7PZGstMOn+qQx\n2Uhn2Szy1n5LQlcHvswcReOCYQmXN7hfu854EVe4giAIgiAIhxmtVo0vMxuVLGOwWRRdmAaiCIh4\n/SEMlVvQ+n2EdTo0wSCZFetpWXBSf067W/aWSDDHXDYbWaenceHpNC48nYyacsZ+8BaFyz5l5nMP\nMOW1J6k/+acEkiM3tdbSyXE5flqSfq/qFfL8I+GTD8is2BD3YI4kywSCYfRDsH3QoczpCXYHx7S+\nyIJj1QWLop6n3ebF4w8xeZRpQBYPOvbYdakO+Bn1xXv4U9NZ/tArFP3vE4qXfNRdMco6dhI7Tvkp\nDQtPJ5ia/uMkksSM5x9k7Ed/xzmyhGUPvxp1S4nR+WlicaQfkv4/e2ceHldZt//P7JOZSSaZ7GuT\npnu6l26UspWyyY6AigqyKCryvqK+oj8V3BXcUEARRQVkpyAF2feltNA9S5MmafY022T2feb8/pgk\ntDTLOZOZbnk+19UraXK+z3nSTuac8zz3976NOhZW5jDgDNDU5WRgziIAsvfslCXMcfuEMOd4QZIk\nGjvlbWomk/o2ByfMyRVd1QIG3UFqW+zkv/Ycqx77G3q3A63fh87vQx0ZPzavZ8kq6i8bfzPXZNCS\naTGQYzWSlW5IaCFcq9WQf+mncJ29nqaX3mTav/5M8abXOOnWrwGwf+mJNH/qCsXjTgarWU+BzURu\nZhpajRqHJ8iupoFDIlha1l9EbvVWpr36LHVXfvWQcWZsfARNOETDxV/8OJIglQzFXKFScdKPvsai\ne3/NO7+4L+kOjwCm7g7Wfv869F43H9xyBz3L1yZ1/ByrEYNevIcdbsxpOtQqFeGMzPhrRya22u2s\n+9/PsezO23jlnqfkOzwSF8B39fuYXjRxPJBgdAbdQWr22cl/8wUy9zXQcsaF2OcupnfJKgq2voep\nuwNfofw4p/EIhqPUtNgTrg+EovQO+lPqzOn1RzB3xzeGPcXTFNXqZD6Hq1Uq5lfY2NrQR2CUONHB\nYWHO0DNoMuh3BkYciwQCwbFH2pOPkd7VRuvp57PjhlsUCSxGUKup/8z1DMxbxKpffItF991BTvVW\nPvz2LwinW0lvbWTRvbdT+NE7SGo1TeddQfUXbxr3XAPzl/HKPU8xa8O/mPfQPay8/btUvLSBrTfd\niqe0YtQac2crhUNCnLydW9CE4k1Jo7niTIhKRdsZF9C94mQW3P97Kv/7OKd/80qaz/k0u6+9mVBG\n1oRDSEBrjxuHO8icaVnymgSOAfocfrRNjcx49hE8RWU0XnCl7FqtWs2M4qnVcGc2auldvJLCj94h\nd+cW2k8/T3atwx0UwhyBQCAQCAQCQXLQadX4bbkAGAf65AlzFDjm2F2Bkfiq1jMuZPoLT5KTLGGO\nJJFTsw1fTj6+/IMf6AZnzefD//sVu67/DtP/+ziVGx9h5jMPjnzfMSM5jjnTPhFfFF0Zz6zNqdlG\n65kXJ+UcBxIUwpyk4/KGyGuoBiCq0zHzmYdouPTqhKLO3P4wW+v7qKqwkZlEO9jAJzouS95+CYNz\nkD2XX4tjVhWOWVXsvuabFG55m/KXn6Zw81ssvftnLPrrr+k6cR37zrqU3kUrWHbnbVS8/DSOilm8\n/au/E8zKUTSPTItBdKgniWyrkQyzjm0dcWGOrW6nrLpwNIYvEMZkTM2igODwsd/uw+0fX/yQCoKR\nKHWtDhZWiq7qqUxHr4d9LX0s/MsvmfHco0R1OgK2PALZeXjSTESMJiJpH/8Jp5njnxvNhNMzaD/5\nrIOio9QqFWajjkyLHqtZjzXJkRoZZj2Wi9fTedKJ1L3/ETMfu4+M1kY+uvlnKRGWfBKDTkPBGI4/\nmRYDFYUZNHUdLLTrOOUcltzzC8pfeYa6z91w0DzVoSCVzz5MyJJBy5kXpXz+B+I6ZT09S1ZTsPU9\nCj58m/0rTknq+IbBfk7+3rWk2fvZ/tXvK1r0lktJrrL4NEFyGP49d/uViYTt85bQdO7lVP73cWZt\n+Bf1V1yvqL57wEt5QTpq9fHT5X642G/30dDuIBaNUvXQ3UhqNXVX3gBAx8lnUbD1vaTGWSWDth43\n+VlpKXM18ATCpHe2xj9XKsyR6ZgDcbfMuWVZbG/sP+R74XQr7uJpZO2tSWoEdmOHk0yLAYNYLxAI\njik8/jBFL2wgptaw8yvKXE9Go3/hCl65ZwOrfvkdije9jvXrn6Z3yWrKX9qAOhalZ8kqdtzwPVwV\ns2SNJ+n01F9xPe2nnMuSu39K0ea3OPOGC9lzxfXs+cyXQZLGdsUpn0n38rXsXz66K45cwhmZbPvf\nH9O6/iKW/vE2pr/wJMXvv8bO6/+P1vUXynofdfpCfFTfS1W57bhwkG3v9bDor7ejjkbYef13FEUz\nVhZnTLlrhcmoo3VxfM0+b+dmZcIcT5CSvNQ8fwhhjkAgEAgEAsEUQ69VE8gaEuYM9smqUeKYY3cH\nmVWzHYCGS66i/OVnRoQ6k8Xc1YZxsJ+2U84Z8yEsmJVN3ZVfZc8V11H87ivM/M+/UYeCOCrnTvr8\n6Wn6Qx7mIvPmE00zkTP0MyebYChKumiCSypuX4g59bsJpVtpPvtS5jxxP9Nee5Z951yW0HjhaIxd\nTQNUFmVQnKSNo97Bg6NuKp97FEmlOsglQNLp6VpzBl1rzsBg72PaaxupeGkDpW+9SOlbLxJOM6Hz\n+7DPXsDbP//rwU46MtCoVMwuVVYjGB+dVoO2rBRfTj7ZdTtkL8w7vSEhzDnGiURjNHe5jtj57e4A\nHb2epC0u+QJhXL5wSjvcpzoxScLtDaHTajAZE1++i8UkGtoduGobOPXn38TWUI2zfCbv//DOMbte\nR0OjUpFp1g8JcQxkmHUpi3IcRq1SUZpnIffck2hctIB+ZyDl58u2Gim0mSZ0/CnNs+Dyhuhzfny9\njpjMdKxdT/mrz5Jds+2gCJ9prz2L0Wmn7orriaYdHsGrWqWiojCDklwzjd/8IXlXn8eie2+nZ+mJ\nSNrkXFO0Xg9r/9+XSe9qo/azX6Hx4i8kZdwDyTDpyTAntqkjmDzpJuXCHIDd13yT4vdeZd5D99B+\nyrn4Cg6NdxuLcDRGryO1LirHI/u6XbT2uAEofvcVrC17aTnjwhFX1841Z7D0zh9T+vaLR5UwxxeM\n0Ovwp8z5xesPkz0kzHErFObodcquc9Yh17jRrlf2WQuY9g9HSPIAACAASURBVMZzSY3ADkdj1LcJ\n8bVAcKzh/Wg7FY21dK08VXHz1FgEbbm89au/U/XgXcx7+C9YXngCd/E0dn75u3SvOjUhQaCvoJj3\nfvJnit97hcX3/IKqh+5h+n+fQO9xfeyKYzLTseYM9i9fy/4T1ip2aJ6IgaolvHr3k8x8+kGqHriL\nFb/5HuUvb2DbTbfiLqucsD4ak2jv9RzzwpxBd5C0d9+kaPOb9C5aQdeJ62TXZpoNFGZPvYY7S5oW\nR+UcQpYM8nZsVlTr8ISQJCklomEhzBEIBAKBQCCYYui1GgJDjjlpdpnCHJmOOTFJwuEKkF27DX92\nHu6ySgZnziNrby2agJ+ocXJZtrnVQzFWC5ZNcCRIWh0dp55Lx6nnTuqcBzKtYJQNTa2WwJJlZLz/\nDnrXoCxbVSUEFYiiBPLwd/dg6Wpj/7I17L3kqngc1BP/YN9Zlx7kBqCEmCSxt9OJxx9mZmkm6kk+\nvB0ozLE27SGndjvdy9fiLSwd9figLZeGy66h4dNfwrZnF+UvP03ZG8/Tu2gl7912FxGz8s34isKM\n48by92giM92Afc4iSt59mbS+bll2zi5vaEoupBxPtHS7CUdHuZZGoxRtep38HR/gKSpjcMZcHJVz\niZjTDz12kjR3u7Ba9KSbJrfBHQxF2dU0gEqlSmmH+1QjEo3h8oZwekM4PSFcvtBIVJIt3UhJrlnx\ngnIwFKV6nx3L6y+x/o5b0Htc7DvzYrbf+ENF92QzSzIpzDZN+tqWKEa9lvkV2fgCYWLSxMcPE41J\nRKOx+MdDPpeIxuJ/j8UkstIN5GWZ0Gnl3wfMLsvE2xDGF4yMfK1l/cWUv/os5S8//bEwR5KY9dS/\niGm0NF4o33J+MlhNemaXZY6IOm2rT6D5nMuofP4xKp97jMaLPj/pc6hDQdbcdiNZjXU0n3MZNVf/\nz6THHI2SXHH9O5Kkm3QwoLwunJHJzq98l5W3f5cld/+U937yZ0Wbgp19XiHMkUksJrGnbZBeh3/4\nC4e45QCEMrJSEmeVDNp6PCkR5sRiEv5gBEsCjjlqlQqtAsecYaYXZmB3BQ+JOxycPZ9pbzxHVn11\nUiOw7e4A3QNe8awgEBxDmJ58HCDu/JJMNBpqrv4fepesxtLVSssZFx7kWKMC1GoVWrUajUaFRq1C\nrY5/HA//Oeez5eTTmP63P1Dy1EN4SsrpXr6W7hPWTsoVRy6SVkfDZdfQfsrZLLn75xRvep11N32G\n/z7wsqw1WIcnSOgYdyPv6HKw7N5fI6lU7LjhFtn3VGqVillTtOFOp9Wg0+voW7Cc4k2vYerpxJcv\nTygeicVw+8IpaQ4Qq6wCgUAgEAgEUwytVo3rgCgrOch1zHF6Qhi720mz99N+8tmgUtE/fxnZe3Zh\nq99N36IVCc8bIGdYmFM1sTAn2ViMOnKso29ixVathvffIbtmB92rT0vqeYNh+TFigokJhCJYancB\nYJ+9gEB2Hq2nn0fFy09TuPlNulefPqnxu+0+fIEIVRW2hB/6fYEwnsDHcTeVzz0KQNN5n524WKXC\nPncR9rmL2HbjD+NCowQ2Uq0mPcViIywlZFkMDMyNC3Oy63bSIUeY4zv88UeC5OENhOka8B70NZ3L\nwfQXn6Ry4yOYe7oOqfEUluKonIujck5crDNjXlxUOwlhREySqGsdZNns3ISdTsKRGLuaBwgM3RcM\nOAPkZE5OdDtVCYWjOLwhXJ4QTm8Qjz/MWJoTuzuA3R3AZNBSlGOmwGaacLPQ6Q1R19jLzPt+y5zH\n/05Ub+DDm39Gy9mXKppneUH6URNpeLQ5h2k1aqoqbGyr7yM6tAHbt2gF3rxCSt9+kR1f/T7RNBMF\nH75DRlsTLWdcQCAnP6VzOtAl50DRXLbVyK4v30zZG88z78G7aF13PuF0a+InkiSW//b/kbdzMx0n\nrWfrTbemJGLMqNOI95gjzGTEnG3rzqfipQ0UbX6LovdeVRRt7PaHcHlDwi1pAsKRKNXNdpy+j12N\nRnPLGab95LOPyjgrbyBMr8NPXpJ/372B+LU1vbMVSa3GK3NDDpTFWB2IyaijwGY65N7PPnshALb6\nXUmP/GvsdJKVbsCoF9t9AsHRjs8bpPDlZwhZMuhalfj6oVqlQq9Vo9dp0OvU6LUHfCw/G51WzTKN\nGs2Q8CYuxJmM22UO/PEPDNz5e1CpyJIk0kJRCoMR/MEI/mAUfyj+eSAUPUScmAz8eUW8/+O7mX//\n75n76F8p2PI2bWdMLG6SgD5n4Kh5plGKxx/G+sRDWFv20nz2pTgVOMJPy0+flPvqsY45TUfv4pUU\nb3qN3J1baD3zYtm1Dk9QCHMEAoFAIBAIBJNHp1Xjzx4S5sh1zJEpDrG7A2QPxVb1Vy2Jf5y3hNn8\ng5zqrUkR5oTM6TjLZ05qnESYVjC2e0F05WoAcmq3JV+YE4pMfJBANi5fGFv9sDAnvjja8OkvUfHy\n08x+4v5JC3MgnmO9q2mAxTNzEuqy7DnALUfr9TDttY148wrpXnGysoE0iQmD1CoVs8syhQtGirBa\n9HTPWwwQF+accs6ENd5AmEg0ltDrSXDkaexwjixMZuxrYOYzD1H2+ka0wQARQxpN511B22nnkdbf\nQ2ZjLVmNdWQ21VHy7suUvPvyyDiBzOy4UGdmFXsv/kJCtue+YITGDiezy5S7u0VjMXY3D+A9QDjY\n0ecVm+YKCT36OO1RPe3zTlAsZPAFIzR2OtnX7aLQZqYoxzzqQmv3gJf2HQ2s+vnN5FZvxV08jU0/\n+APOyjmKzldoM1FekKGoZqphNuqYXZZJbetg/AtqNa3rL2Lev+O2/21nXMisp/4JQMOlV6d0Lp90\nyfkk+bOnUfu5G1j0t98w76F72PnV7yV8rtlP/J2yN56nf94SNt9yR8L3HBNRlGM+Yk5NgjhmoxaN\nSjUiPlOESsXWm27lzBsuZMk9P6d36YlETPI3xTr7vUKYMw6+QJjdzXb8Bz4vjuGWM0zXmnXE7rzt\nqIuzAmjb706BMCf+b2PpbMWbX6zI1UGJg9onqShMp3fQTyT28TqKo3IOMbUGW311wuOORTQmsafN\nweIZyYnEEQgEqSP48iukDfTS9KkriOkNsuvS9FpmlWaOiG8m8x41KYbuy1QqFWkG7aguy5IkEQhF\n8QUidPR5GPQEkzqF1nXnM/fRv1K06Q1ZwhyAvkH/MSvM6W7uYtm//kg4zUS1AodKi1FHaX5yoqyP\nVcxGLb2LVwKQt+MDxcKcsvzkOxkLYY5AIBAIBALBFEOvVRMY2syTG2UVicWIxSTUE9ibDrqCzKrZ\nDsBA1dKDPmYPfT1RDIP9pHe20r18bcoW/8fCYtSRO84iYeSE5Uhq9aR/xtEIiCirpOL2higbWgy1\nz54PgKt8Jt0rTqZwy9vY6nZgn7t40ufxBMJUN9tZWJk94e/NJzkwxmraa/9BG/BR99kvH7bXfXlB\n+lHnSnA8oVGriS5cTEyjxbZnp+w6lzd0zOeiT0X6HX4cTi9Fm95g5n8eIm/nFgA8BSU0XnAlLWdd\nfJBrRftpn4p/IklDQp24SCezqY6sxjoKtr4X//PRO7zxu38nFBHZbfeRlWFUtPkVkyRq9g3iOqAj\nH8DhDeL2hSYdjzVV0Lz9JsU3XUcxMHdaJY0Xfp7WdRcQTVMW3xGNSXT0e+jo9xwUcxWTJBo7nERe\neYV1v/wORqed9rVn8dHNP1McaWhLNzBzitqeKyUvy4TLG6aj3wNAy5Awp/zlZ3BWzCZ/+yZ6Fq9S\n1N2qhLFccj5JblYaH112NZXPP8aMZx+m6bzP4CmtUHy+/A/fYcHff4cvJ5/3f3Sn7E2lomwzoUiU\nQXeQqIxMMo1KJaJZjgJUKhWWNN1BjixK8JRWUH/5dcz795+peuBP7LzhFtm1fQ4/M4oz0GmP3eiJ\nVDHoDlKzz36Q8APGd8uBozvOyhMI0+/0j+lSmwhefxit14PRMcD+Gcregyez6a3TaijNs7Bvv2vk\na1FjGq7ymWQ21aGKhJG0yX3ecniCdPR5KMmd2puwAsHRjuXJxwBolSkoGabAZiIrXb6Q50hyoGgn\n22qk3+mnuct1UPzrZHCXVeIpKqNg67uoQyFi+omfRZ3eIMFwFMMRjLOSJElxA1wwFCXnnt9jcA6y\n+0vfJDjkgD8RKmBWaeaUF7ibjDo6p80gYLWRt2MLSJLs5hinJx4tnex/Q9FuJxAIBAKBQDDF0GnV\nhDIyiWm0GAf7ZdcFJxCIBMNRPIEwOTXbiBjScEyfHf96VjbuknJyardDNHGRSU71kBPP/BMSHiNR\nyiboMJDSMwjMnoetfjfqUGKL1mMx0b+7QBkubxBb/W68eYUHPdDWXxbvGJ39xP1JO5fDG6S21Y6k\noMPY5Q193PUqSVRufISYVsc+hdEjiZKepqc0TyzmphprbiaO6bPJ2lsr+z3jk4IIwdFPtH8A6be/\n4ZyrzmTNT24ib+cWepas5t0f380L/3iRvZ++euwoGZUKf24B3atPo+7zX2PTrX/ivw++yjMbNtN8\n9qVkNdZxwu9/GF9YSoCGNgd+BQuj9a2D2N2BUb/X2ecd9euCTyBJ6H/2EwA6V68jvbONZX/8Medd\neRoL7/015u72hIa1uwPsah5gS10PO+p7sd55Oyd/7zr0Xjfbv/p9PvjB7xWLcixGHfPKbVN+IVcJ\n04szsA45e3iLyuibv4z8HR+w6K+/BqDh0qtScl6rSc8Js3MpzbNMuNCvVqkoKrGx6/pvo45GWHTf\nHYrPZ+lsYdUvvkVMq+P92+6SvTmQYdIzqzST+RXZrFlQyKLKHErzLFjGEQLn20xHrhtccBCTFV/W\nffYreIrKmPnMg2Q21squi0kS3QO+SZ37eKR7wMvu5oFDRDkTueUM037y2QCUvvNiKqeZEK37PUkd\nz+MPY+lqBcBdPE1RrX6S7z8leeZDNoDtsxegDQbIaG2c1Nhjsa/LhS8gHHcFgqOV4ICdvLdfwl1U\nxsA8ZQ1heVnHrktpjjWNE+bkUVlkRTupOK0hVCq6Vp2Gzucld9eHskok4oLfI4XLG2JLXS9d/V5i\nMgTqw/Rt282Mpx/Em1+k6HmiOMciXAeJO+agVtO3aAWm/v0j9wRyiEoSbm/y1+HE041AIBAIBALB\nFEOvVYM67pojN8oKIBwZP87K7gqgczuxtuzFPmfhQR1g/VVL0fk8WFv2JjzvnOqt8bHmL014jEQw\nGbTjuuUME125Ck04RGZjTVLPLzdGTDAxMUki2tKK0THA4KwFB32vb+Fy7LPmU/zeq1g6W5J2zn5n\ngIZ2h+zjD3TLydn9EdbWJjpOWp9QZI1SRITV4SMz3YB97iI04RDW5j2yalwpWBAQpA7jQ/9CVVrK\nvHvvwOB00HTeFbx430be/vVQZF6CDlhhSwbbvvEj+uctoeyN55mVoJgwEouxp3VwJGJrPBo7nPSM\ns4jZ6/ATEiLSCVG/+jKWHR/ReeI63v/xXTz/4KvUfP7rxHR6Zj/1T865+ixOvPXr5G17X7HgSuv1\nYNi9g0XfvJr5D9yFP6eAN377II0Xf0FxXJZBp2HB9GwRnacQtUrFvHIbhiFnj5Yhm/T87R/gKp3O\n/uUK4yhlnK+yyMrimTmKXO4Ks030nnwWvQuXU/TBG/HXm0y0Xg9rbr0RvdfNR9/8CYOz5suqUwEz\nSz4WIapVKrLSDVQWWTlhTh6r5xUwuzSTXGvaQZs1JbnCLedoId00OWePmN7Atht/hCoWY+mdP1bU\nrNHV71Ukcj/eae5yUd/uGPX6PeyW03r6+aO65QzTtWYdMbWGkrdfSuFME8PtD2F3jS4ETgRvIIyl\nM74J5ylSJsyZrFOTRq2movDgOMhhx1Zb/e5JjT0WUUmivm1Q/M4IBEcp0Sc3oA0G4m45Cu7RrWb9\nqJFRxxJqlYrSPAsr5+VRlG1msqtOXUMx9EUfvC675kgKc1r2u/CHIjR0ONhc20N7r4dIdPz13kg0\nRv7tP0UdCbPrum/Ldqk06jSUFyY/gulYxDwU+zwSZ7V9s6J6h0cIcwQCgUAgEAgEk0SrUaMCAtm5\ncWGOzEWbiTbd7O4g2XU7AOivWnLQ9/rnLwMgp2ar8gkPkVO9lahOh332gokPTiJl+emyhAqxVasB\nyElynFVMkoRrTpLw+sNk7tkFgH3OJ15HKhX1l12DSpKY9dQ/k3rebruP5i7XhMdJknTQQkHlxkcA\naDr/s0mdz1iU5VuwpIkIq8NBuknH4FCHXHadvDgrlzecyikJkoiqpwfzD24hqtez48vf5bmH32Db\nTbfhnjYjKeNLOj3v/+hOfDn5LLz/d+R/9G5C4zh9IVr3u8c9pq3HPRLPMxYxSaKzX7jmjIskof/5\nTwGo+eI3AAhk51H7xRt57qHX2Pzd27HPXkDxptc55ZZrOfPL5zP9uUfR+D92itB6PWTuraHkzf8y\n5+G/sPyO73Ha/36O8y8/iYsvXs4ZN15Gwdb36F5xMq/8+SnscxcpnqZWrWbB9GwMehEbkwgGnYa5\n5VmoVSo6Tj6biCEu7G645CpQ0B2s06ixGHXY0g3kZ5kozbMwo8jK3GlZLKrMYcWcPE6cXyDLJeeT\naNRqSvLS2fmV7yKpVCy699fyRBKxGCtu/y4ZbU00XHIVbQriFwqzzeM6rhj0GgqzzVRV2DhxQQGL\nZ+QwqyRTxGoeRUxWmAPQc8Ia2k49l+z6XUz/7+Oy6wLhKAPO5Ak1jlViMYmaFjttvWNct4fccmJq\nDbVXfnXcsYbjrGwN1Zi6O1Iw28kx0b2JXELhKKFIjPRhYY5Cx5xkOHblZ6WRfsDz1fBahm0oWjkV\nOH0halsHiX7SUUkgEBxx0jckHmN1vKDTaphVmskJc/KwJRDNpdeqsaUbcC8+gVC6laJNb8he13Z6\nQwRDh3991eUNYXcHR/4ejERp6nKyubaHlv2uMRth3S+8StG7r9BftZSOIbc7OcwsyRRNFkPotBr0\nWvWIMCd3pzJhzqAnOPFBCjm2JXYCgUAgEAgEAsWoVCq0GjV+Wy62+t3o3E7CGZkT1gXHccyRJAmH\nO8jsIVFKf9XBrjbDQp2c6m00XXCl4jlrfV6ymuoYmLtYdodAMkjTa2XbxYZXrAIgp2YbDZddk9R5\nHOkc5OMFly+MbU+8O9E+e+Eh3+88aT2eghLKX36Gmi98g2BWdtLO3dbrRqdVjxsT5fCECEbiiwQG\nex8l772Kc9qMEWFbMlGrVJiNWixpupE/6cLm9rChVqmILFsOQPaenTTyhQlrIrFY3I5fiKeOesy/\n+zVqn5e67/yMvetTE0MXtOXy/q1/4rSbP8+qX3yLV//0OF6FG04QF95kpRvItBx6be0e8NLcPbGo\ncPjYafnpqNXCcWs0Ys8+S3rtLtpPORvnUNTnMJJOT9u682lbdz62up3M+M+/KX37RZb98ccs+Pvv\ncE2rxNLVjtExcOi4ag2+gmK6Z8zDU1yGffYC2k4/X5EIZBi1SkVVhU28x0ySTIuBisIMmrok9l70\neQq2vkvrGReMebwKsFoM5GamYUs3YNBrUh4hVpRjpm3WfFrOvJiKlzZQ8eJT7PvU5ePWzHvoboo3\nvU7PklXsuv7bss+l0xzqGDEeapWKTMvo70mCI0eaQYtGrSKqIHphNHZ+5bsUbnmbBff/ns41Z8iO\nQuvs95Ijw8H0eCUUjlK9zz5urGnJuy9jbdlLy/qLZN0PtJ98NgVb36P0nRepv/y6ZE530jh9IQbd\nQbIS2LA9EO9QpNOwY47iKCvd5Dc1VSoV04us7GyKR4i7ps0gqjeQ1ZA6YQ7EXSH8gQhVFbZj3mVD\nIDheiDTvI3f7ZnoXLsdXUCy7Tq1SyXLxPtYwG3UsrMyh3+mnucuFb5SY5TS9FotJh8U4tG5l0o2s\njbbsd9G9/GSmvb4Ra/MenJVzZZ231+E/7PHtLftdqENBtD4voUzbyNfD0Rgt+92093ooyjZTkmcZ\n+flikQj5v/ghADtuuEW2w1JuZhrZVmPyf4hjGJNRh6O4HH92Hnk7t8SFXDL/PV3eELGYlNR1DnFV\nFggEAoFAIJiC6HUaAkPROGn2PlnCnHBk7K4Cty9MOBoju2Ybkkp1SFayp7icgNWWsJuMrW4Hqljs\nsMdYleVbZG+OxEpKCRUUkV2zXdFNvhxCoSgcPw0yRwy3N0RRw24klYrBmVWHfF/SaGm49GqW3v0z\nKjc+TO2Qq0GyaOpyoteqyR+j26l38GNnhIoXn0IdCcfdcib5WtKq1R8LcEzxjyajNuUbf4LxMc6Z\nRTAjE5tMxxwAty8kNs2PcjTNjRgf/Cfu4ml0nH85BFLXkTc4ewFb//fHrLjje6y57eu8fudjREzK\nol8koK51kBNm5x3UGd7v8CuK4QtFYvQM+ijMFtEzhxCLYfr1z5HUamq+cOO4h9rnLmLL3EXs/PJ3\nqHz+caY//yi2PbsPEN9Mw1NUFv9YXIY3vxiVTo9eq0an1cS740dZ1JbDrNLMSW+CCuKU5llw+UJU\nX3sz1dfefMj3DxTj5FqN6A+z+FqnVVOYY6b66v+h9K0Xmf/PO2k/9Rwi5tEt74vefYWqh+7BU1DC\nB//vd0ga+cvJ04sykuI6ITiyqFQq0tP0OLyT6xoOZOex+5pvsvSun7Lo3tvZ8r07ZNUNeoL4AuEp\n6aLkC4TZ1TxAYLwO/1iMeQ8OueV87gZZ43atWUfsztsoefulo06YA3HXnEkLc/xxt0lLV2tcyJpf\npKhelyS3gax0A7Z0I3Z3AEmrY3DGPGx7dqEJ+IkaU7fZ7gmE2dbQx7xym7i+CwRHAw//G1DulpOd\nYTyu3U9yrGnYMox09XnjjUimj5vHxvu5czPT6Fp9GtNe30jRptdlC3P6DrMwx+kNYXf4OP1bXyS7\nfhd+Wy6Oyjk4ZsxjsHIujso5eAtLae/z0NnvpcAWd8tUP/BP8hvraDnjAgZlOsfrNGpmFlsnPnCK\nYTHqcHiC9C5eybTXNpLR2oirfKas2pgk4fSGknodFcIcgUAgEAgEgimITqMmMNShaBzsl3VDGgqP\n7ZhjdwdQRcLY6nfjrJh16MK+SkX//KWUvPcqab1d+POULYrl1GwDoC8FziFjYdRpxhRQjEV4+UrM\nG5/G0tWKp7g8aXMJiCirpOBy+7E11OAqqxxz87rlzIupeuBPzHj2Yeovvy7pi6X17Q60GvUhHSyx\nmESfY8imPxql8vnHiRhNtK4bu8t+InKtaUwvyhBdkkcpmRlGBuYuomjzWxgG+wkOiSXHw+UNHbXC\nh5gkEQhGMRmn9uvN9MufoYpE2P2lbyJpdUBq379b119EZmMds55+gBW//i7v3/pHxW4pwXCU+vZB\n5lfEXcIcniC1rYMo9UXo7PMeta/PI0no8SfJbdxDyxkX4C6rlFUTtOVS+4WvU3flV8k0adEbDeh1\nmvgfrZp8nYZSnXpEkHMgLl+I/QM+egf9RGTGWFQUZBxXFvlHA7NLM/H6wyPdv0dajPNJSnMtdPXn\nU/eZ61nwzzuZ+8i97L7uUCecjJa9rLjjFiKGNN6/7S5CGVmyz5Fh0ov3hOOIdJNu0sIcgKZPXUH5\nK88w7Y3naDnrYnqXniirrrPfy8ySiZtJAKKxGH2OAN5AmMqiY3eDatAdpGaffcL38pJ3X8ba2ijb\nLQeG4qyWrqbgo3cxdXfgKyxJxpSThsMbxOkJYp2Ee5ZnSJiT3tmKt6B46L5MPskUFVYWZzC4J4AE\n2GfPJ6d2O5lNexj4RAR4sglHY+xuHmB6UQYluYfXIUIgEByAJJHx9ONEDEY61p6lqDRfpov3sYxa\npaJEoVjGbNThOvFUYlodRZveoO7zX5dV5/KF8Acjh22drHW/i8rnHyO7fhfuknI0wSCFH75D4Yfv\njBwTNplxTJ+Do3IujhlzaSyr5MTf/IKIwUj1l74p+1zTizKO+DPG0cjwGlXv4lVMe20jeTs2yxbm\nQHx9RAhzBAKBQCAQCASTQqc7QJgz0CerJjSOOMTuCpLZWIc2GKB/3uiLS/1Vyyh571VyqrfRfroy\nYU7u7q1DTjypXbg6kNL8dMWOIrETT4SNT5NTvS2pwpygEOZMmkg0hnZvPdqAD/s43SbRNBNNF3yO\nef/+M+Uvb0goem08YpJEbYudhTNysB4QHWV3BUYW3Qu3vIWpr5um864gYk5sAdVi1DFnWiaaBOJM\nBIcHS5qO/nmLKdr8FrY9u+heffqENU7v2BEGh4O4+CaCPxjFH4zgC0YIhOIfg6EoEjC9MIOy/NFd\nF453tNu3YvzPBgZmL6Rz7Zko+VfQadSoVBCNSkQlZZKYXV/+DtZ9DRRveo15D91D7RfHd2UZjX5n\ngM5+L1aznupmOzGFc4B4Z3YyoieOJ2KRCBm//WXcxeDKrymuz7WZmVdum/jAA8gw6ckw6ZlRbKXP\n6Wf/gI9Bz9ib6YU2E9MKpubvbCrRatTMr7DR2Okk23p0iHEOxKDXkJeZRsOlVzP9v48z8+kHaP7U\nFXgLS0eO0bkcrLntRnR+H+//4A+HxLCNhwqYWXLsCiIEh1KUYyZDZuxpJBqjfizXNY2GrTfdyhnf\nuJylf/oJL9/7H1lRxfvtPioKM8btnnd6Q+wf8NLr8I/EbqlQMb1Ifpza0UL3gJe9Hc6Jr8cJuOUM\n0772LAo+eveojLMCaO1xs3ASwhxvIIzO48LgHMQ+a77i+k8KXyeD2aijwGai2+5jcFb8WTSrYXfK\nhTkQv39v7HTi8YWZVZopYkcFgiPB5s2Y21toPe08RWs8Oo0am4glGpOskjx6Fy6nYNv7pPXtx59b\nIKuuz+E/LGsWTm8Ib1sXa/95JyFzOm/89kGCWTnonYNkNtWR2bSHzMY6sprqyKndTm711oPqaz7/\nddk/U6bFIATxY2AeFuYsWglA3o4PaLzo87LrHe4gFCZvPkKYIxAIBAKBQDAF0WnU+LOHhDl2mcKc\nyOideuFIDLcvxIwhV5uBqtHjpoZjqHKqt9J++nmybDLuSQAAIABJREFU56qKhLHt2YmzfCbh9MOz\nwG/QaihMoHM8smIVANk122g565KkzSc4nnW5QBZuX9zRCRhXmAPQeMGVzH7ifmY99S+aPvUZ0CR3\nIy0qSVQ3D7B4Zg7mIUv+Hod/5PuVGx8FoOm8zyY0vk6jpqrCJkQ5xwChZcvhH5Bdt1OWMMcXjBCO\nxA5bLIiqr4/0Sy+g4cqv0LL27BHxzXjs63ZhNuqmXq65JGH+6a0A7L7uW4oi6HQaNSvm5h20ARSJ\nxojGpLhQJxYjFpOIxiQiMQmPL0xbr/vjU2u0fPD/fscZN15G1UN345g+m66T1iv+EZo6nWg1Ktku\nK6PR2ecRwpwD8D/wb/Jbm2g++1LZLgYHMpkFY7VaRX6WifwsE4FQhB67n26796A4FFu6gZml8hwo\nBMoxGXUsrJzYDe1IUZZvYf+gj93XfotVv/w2C+/7DZt+dCcAqmiEVb/8NpauNmo/+xU6T1bW3V2Y\nbSbdJE/EITg2SDNoFXWXt+53j+n66ZhZxd4LP8+spx9gzqP3yRKURmMSPYN+inMO3nQKhqP02H3s\nt/tGHKoOpK3XjcmoPaZcwZq7XAdd58cjEbecYY72OCu7OxiPNUkgxlWSJHyBCBldbQAJNc3odcm9\n3y4vzKB30I99TvxZ1FZfndTxJ2L/YPx3pKrChuEoEooKBFMB9b8fBKB1vbIYq9zMNBFBPg65mWl0\nrzqNgm3vU7j5TZrP+4ysusMlzGnd72LB/b9D73Gx7es/GHFJDlmz6F164kGugZqAH+u+hhHBjjoc\nov6ya2SdR61SMVs8043JcBSqr6AYT0EJubs/gmhU9lqv2x+ON3smKVJOrNQKBAKBQCAQTEH0Bzjm\npMkV5oyxsDrojlsy59RsB6B/DGGOY8ZcIgYjObXbFc01a29t3IlnjHFTQWm+JaFOssjcKqIm88i/\nRbIQjjmTx+UNHSDMWTjuscGsbFrWX4Slu52S915JyXzC0Ri7mgYIhCJEojHszniMlbmrjcKP3qG/\naqmizvRhVMC8cpuIrzpG0KxYjqRSkV23U3aN6zC65hifeRLDnhoKHvsXARmiHAAJqGsdxBc4dHPs\neEb3xmvo332b7uVr6Vu0QlHtjGLrIV3ZWo0ag06Dyagl3aTHajFgyzCSl5lGeWE6+k+Is0LWLN77\n8d1EDGmsuOMWMlr2Kv4ZYpI0pghXLgOuAP5RNkanIuFAiJw//YaYVkfdlV9VXJ9rTUtoM3I0jHot\n0wrSWTWvgEWVOeRnmbCa9Mwrt4nF/imMyagjx2qk/dRzGZi7iJJ3XyZn14cALPj77ynY+h5dK0+l\n5qqbFI2r06ipKDz2HEoEyWWiCKKaq27Cl5PPnMf+iqVj38ffkCTUoSB65yCm/Z1k7GvAVreDvK3v\nEd3wNLpN7xGTJPocfnY3D/BBzX6au12jinKGaWh34BzHOexIIkkS/mAEuytAZ5+HXU0DskU5k3HL\ngY/jrGwN1Zi72xXXHw7aez0J1fmDEaKShKWzFQC3QtGSWqVK2gbcMAadhtJ8C56iaYQsGdjqdyV1\nfDm4fCG21fcdcRdOgWBKEQiQ8d//4Lfl0rNktaLSY0lUeiSwpOkYPPkMAIo2vS67zu0Pp/yZ1ekN\nweYPqHhpA4OVc2k+74pxj48a07DPXUTzeZ9h2//cxkff/gXRtLH//406DZkWA0XZZuZNyxJrgOOg\n06oxDK239C1agd7tJLN5j+z6mCQldR1O/E8JBAKBQCAQTEF0GjWBIaW+cbBfVs1Ym3V2VxAkiZya\nbfiz8/Dljx5TJWl12OcsJHfXh+g8LsIWeQv2OUNOPP0LTpB1/GTRa9UUZif48KvVElx6AhnvvoXe\nNUgoIyspcxKOOZPH7QtRWb+bqE6Ps2LiLOGGS69i+n8fZ/YT98czwFOwcRkMR9nVNEBhtnkkumb6\n848B0CSz0+eTVBZZhVvFMURGYS6ussq4aExmx47LFzpsbjS6Z58BIKd2u6L3tEgsRvW+AZbOyk36\npsZRSSyG5ae3IqlU7L7mZkWltnQD+QoXXNUqFQU28yEbd87ps/nwO79g9c++yZrbbuTVPz5GOOPw\nds5JQGeflxkiwgbf3/5BUWcrjed/Fl9+seL6svzEogwnIivdIK4TghHK8tLpdwbYccP3WPc/n2Hx\nX35FwyVXMfvJ+3GVVLD5lttBoQPf9KKMw+bsJjh6ybTo6Rn0jfn9iMnMjq9+nxN/+j+c/r+fI6o3\novV70fp9qGPjP/u8/tf/MFA+S/ZcYpJE9T47S2flHpGNK0mSCITiMaD+4UjQUPzzQCiaUHwkTM4t\nZ5jhOKuSd45O15w+h5+KwnSMemX/b54hgbilsyX+d4X/ProU3b+W5lno7vcxOLOK/O2bFK2LJItg\nJMrOxn5mllhF7IlAcBjQvvQCOreLpsuuUeTGnKbXyo6QnMqY58zEMX02eTs+QOP3Ek2T977WO+hP\naZxva+cgS//0UwC23/hDJI3y+w+jToPRoMU05FqYpteQZtSSpteKWEKFmIxagp4ovYtXUfHSBvJ2\nbMYxs0p2/aAniC0jOetw4ilJIBAIBAKBYAqi02kIZGUD8qOsYpJEeBRxzqA7iLm7HeNgf9zVZhwB\nQ3/VUlSSRHbtDtlzzdm9daQ2lWjUKqxmPZXF1klFAMVWxTtgsmvk/4wTEYrEkBJcsBXE8Qy6sO5r\nwDFjLpJu4sUNT0kFXatPx1a/m5zdH6ZsXr5ghKYuJwDqUJCKlzYQtGbFxUAKKcgyUZKXmo1cQWpI\nM2hxVi1BG/BhbW2UVXO4HHPUPfvRb/kAAFUsRsGH7yqq9wUj7GkdTMXUjjoMG55AW7Ob1nXn46yc\nI7tOo1IxsyQx4UxhtonRrrYdJ59N3We/gqWrjVW//Daq6OF3r+m2e4lEJ+e8c6zjc3kpvPf3RHV6\n6j77FcX12RlGEQMkOCxkmPVkmg3Y5y6i9bTzyGqsZcUdtxA2WeIuXGZlGxYZJr3Y6BUAYDVPLADs\nPGk9+868GEmlJqbT4csvwj5nIfuXraHjpPW0rL+Ixgs+x54rrqP6qptovOBzABS//Izi+YSjMar3\n2Q/79ckbCPPOrm421/Wwq3mAvZ1OOvo9DLgC+IKRhEU5k3XLGaZrzTpiGi0lb7+U8BipJCZJdPZ5\nFdd5/WEA0occcxQLc1IkLtSo1ZQXpo9EK2c1HN44q2FikkR9u4OGdkfir0GBQCALzcMPAdB6hrIY\nq3xbWiqmc9yRm2mka9VpaMJhCra+J7uu74A4+WTj9IbIevRfZDXVse/MixmoWqKo3mTQsmZ+Aauq\nClg8I4dZpZmU5lnIyUzDbNQJUU4CmIfirHoXrwQgb+dmRfUOd/KcF4VjjkAgEAgEAsEURKdRI+n0\nBK1ZGAfkCXMAwpHoQYtUHn+YYCRKwbCrzQQPG/3zlwFxF5z9K06e+ISSRE7NVrz5RfjzCmXPcyL0\nWjWWND2WNB0Wkw6LUYfJmJxb48iKVQDk1G6je/VpSRlzOF5EZMEnhj8YwVRfgzoawT5rgey6+suu\npfj915j9xP30L1QWTZMIJW+/iMHlYM8V1xHTK9uQTU/TM0tkSh+TBJcug/8+ga1up6z4MpcvhCRJ\nqFIcP6N/fiMqSaL5nMuY/sITFG55i7Z15ysao98VYF+36/iONAkGMf/yp0R1Omq+qCzupbwwI+HO\n/TSDlqx0I3Z34JDvVV91E9bmPRRtfosFf/89u778nbEHkiTU4TDaQNylIGi1ETVObhE4GpPoHvBR\nOoWFgoF7/4a5p4uGi79IICdfcX0quzcFgk9SmmfBsS/I7mtvpvj9V9GEgnzw/d/gKa1QNI4KmCnc\nsgRDmIxaDFoNwcg47jcqFR99+xeyx1SHQpS9/hxlbzzPrmu/pch5AOIimdoWOwumZ6f8PmqYve3O\nlAgfit9/ddJuOTAUZ7VkFQUfvYu5ux1vYWkSZ5kcuga8TCtIV+TC6A3EhTmWzlZiGi0+hWsJqXT9\nKrCZaF+wBB4FW/1uepeemLJzTUTXgBeDTiPuOwSCFKHq6yP97dcZnDEPV4V8pzeA/CwRYyWHdJOe\nzpPXw8N/oWjTG3SedKasOk8gjC8QxmRMTnTwgXTVNrPqH3cSMqez+9pvKarVadTMr8g+JOpaMDnM\nafF1l0B2Hq6SCnJ2f4QqEkbSyvj/j8XI/s8TpAX78H/vB8Q0GkLhKKFwLP4xEiMUOfjvZ+WOfV0V\nwhyBQCAQCASCKYheF19o8ttyMfd0ya4LhmOYDnButLviG4LZNdsB6K9aNm79wNxFSCoV2UNCnolI\nb2/G4HKw/4S1suc4GtkZRjJMetJNOsxpupQKXCInLEdSq0f+TZJFMBQVwpwEcftC8aggGOlOlMNA\n1RL65y2haPNbpLc24p42I1VTBGDGxkeQVCqazh0/e/qTGLQa5lfYRNfMMYpqVVzMl71nJ/s+dfmE\nx0djEt5ABEta8heQDkS/Md6NXvv5r5G/9V0KPnwHVTSi2IK5tceNJU1Hbubx2fGX9sD9aNrbaLjk\nKnwF8uOK0tN0lOROzlWiKNs0qjAHtZrNt9zBum9cwewn78fS2YpKiqH1+9AGfPGPPu/I5+oDXHWC\nGZls+b9fyxPPjkNnv4eSXPNh2/hMJh5/mD6HH18gQmm+hQyFzjWDfQ5K/3EXEUMaez5zveLz29IN\nis8pEEyGbKsRi1GHJ6+Qd37+VzShED0nrFE8TmG2WTg9CQ7CatHTm8SO9JheT8fas5j+whPk7vqQ\nviWrFI9hdwdp6nQdlsjF7gEvDm/yOqwPZOaGBwDYc8Xk46eO9jiraEyiq99LWb588YjH/7Ewx1tY\novj+VZ9CYY5KpcJ62knAx7HdR5I+R2rjXASCqYx+w+OoolFa1l+kqM5q0h+R6MVjFd2KE/Dbcinc\n/KbsiHCAXoef8oLkrqs4vSFK//gr9F43277+A4JDbvVyUKtUzCu3Ja1xVPAxBwqwehevZMZzj5K1\ntwb73MXj1mW07GXpH39MbnXczX+vzkbj2ZdOai4iykogEAgEAoFgCjKcmR6w5aLzedAE5C2Yhj7R\n8WgfsnLMqdlGxGjCWTm+20PEnI6zYjbZe3ahCk8cx5IzdOM77LSTCDqNmqoKG9MK0rFlGFMubpEs\n6QTnVmGr3406lLzImWB4nG5Twbi4fGFse4aEOXPkC3MA6i+7BoDZT/4j6fM6kMzGWrLrdrJ/+Vp8\nhSWy69QqFfMqbBj0QrR1rGJaNJ+wyUx23U7ZNc4Ux1mp+vrQb3qP/nlL8OcW0L3yVPQeV8KCwz2t\ngyMbJMcTKreLtN/eTthsURRXpFapmFWaOWnRSrZ17GtaxJzO+7fdRdCaRfGm1yj64A3ydm4mo2Uv\neucgMa0WX24B9tnzRyJD2k49F63fy9offIWqf/whvqiZIIFQlH7nKKKhoxSPP0xzl4stdT18VN9L\na4+bPqefbQ19VO8bGOm8nwhJkoj85a+Y+ntovOhKglk5iucyTcHGo0CQLErz4w5X/QuXJyTK0WnU\nTC86jt3RBAlhtUwcZ6WU1nXnATDt9Y0Jj9HR76GzX3k8khLCkSjNXa6UjJ3ZUENu9Va6T1iLu6xy\n0uONxFm99WISZpcaOvu8sp2HItEYgVAUncuBwe3EnYCjUKqdCqwzpuEtqyCneusRiR09EE8gjD94\nZOcgEByv6B55mJhGS/up5yqqy7MJtxwl5GaZ6Vp1GgaXg+y6HbLr+hzJf151vPwGFS9tYLByLs3n\nKWu6m1liJSs9+fdOAjAfIHbqXRwXduftGDvOShPwM//vv2P9Vy8ht3ornavXETEYmfOvP8reQxkL\nIcwRCAQCgUAgmIIMWzMHhjaMjIP9supC4djI55FoDJc3hM7txNrayMCchbI60frnL0UTCpLVWDvh\nsTnV20ZqEiXHakR9mDv2oytXoQmHyGysSdqYQpiTOG5vCFvDbkKWDDxFyhZmu1afjruknGmvbcQ4\n0JuiGULlxkcBaDz/s4rqZhRbsZpFd/qxjM6gxzl3ERltTeg88jZw3CkW5hheeA5VLEbH2rgNdPfK\nUwDiHWgJEJUkavbZCUdiEx98DJF29x/R2AfYc/l1hKxZsuuKc5PjKqFSqSjMHnvR1l02necffI2N\nD7/J009v4ckXdvP0xu1sfOI9XnjgFV659z+88YdHeOeXf2PTj/7I5u//ltf/8AieghLmPXIvp9xy\nLQa7/LjLT9LR50m49nDg9oVo7nKxuTYuxmnrdeMbZWOq3xngoz291LUOTrhx1d3Rz/SH/kLYZB4R\ndioh02JIyUa2QDAReZlpGCch8p1elKEoZkYwNci0JP8etX/+CfhyCyl552XUocTdaJo6nSPur6mg\nuctFOJqa+56Zz8TdcvZe8sWkjDccZ2XbW4O5uz0pYyabYCRKj90n61hvIH6ttnS1ASh+/oPURlkN\nE15zMjqfl8y9E6+LpJpjSUwtEBwraGprSKvdzf7laxW7puQdp26zqSLDrKf/pHUAFG16XXadNxBO\nagOR0+mj8vYfAbD9xh8qcmsrzbVQmD05R13B2Gg16pGmpr5FKwDI2/HBqMcWbH6Ts64/n7mP3Yc/\nJ593fvpn3v/xXey95CrSBnqZ8cxDk5qLeGISCAQCgUAgmIKoVCp0GjWB7FwAjDI33g50zHF4gsQk\naaQbYaBqiawx+qviIpth0c145FRvJZRuxTWJTsAjEZ8SXbkakPczyiUYEsKcRIhJEoGePtI7W7HP\nmg9qhY9AajX1l34JdSTMzGceTMkctV43Za8/hze/SFFsW1G2maIc8eB+PBBYcgIAtj27ZB2fascc\n/bPxGKthYU7vopVEDEYKt7yV8Jj+UITaFjuSzG7nox1VTw9pf74Lvy2XvRd9QXZdml5LeRLjAgpt\nZsaTnkaNaQRy8omY02UtDDpmVvHqPU/ReeI68nZuZv3XLiFn15aE5ub0hnD7UvtaVYIkSQeJcbY2\n9NHW68YfmrhLXAJ6Bn18uKeXhnbHqGLZSDSG5t6/YBzsZ+/FXySUIV+sNYxwyxEcKVQqFaW5loRq\nrSa92EgQjIrZqBtxak0aajVtp52Lzueh8IM3Ex4mJknUtgzik+mIpgSnJ0i3TBGJUowDvZS9+QKu\nskp6lil3txqL9rVnAVDyzktJGzPZdPTJcznyDm2ypne2AuBJyDEn9dtm0ilx4XvezrE79g8X/c7k\nRc4JBII4hscfBlAcY2XLMByW96DjjtNOI2JIo2jTG4rK+pIYuRn981/Iaqpj31mXyF4jB8jOMArn\nycPAsGtOyJqFY/pscmq2H+R0n9a3n9U/uYm1P/wqaf091F1xPS/dt5H9K08FYM/l1xJMtzLnsfvQ\nuwYTnof47RYIBAKBQCCYoui0avy2IWHOgExhzgGOOXbXcIxVPNpkWHAzEcOxVBOJVoz9PVj2d8TH\nVSqmGEKnUZN5BGxAwyvitpg5Cca+jIZwzEkMrz9MZn01AIOzlcVYDdO6/kICmdlUbnwUrdedzOkB\nUP7Kf9AG/TSfe4XsLGyrWc+MEmvS5yI4QqxcCSA7zsofihCOpOY9QWUfQP/e2wzMWYg/rwiAmMFI\n75LVWFubJtVJPegJpizW4XBj/u2vUPt91HzhRqJp8q3GZ5VmoknwmjYaBr2G7Axj0sYDCFsyeP/W\nP7Hzy/+HwTHIqf/3JeY88leIKe/8l7uJliwkScIfjDDoDtLZ76Wp00l18wBb6np4Z1e3IjHOaMQk\nia4BL1tqe2jqdB70e9je1M3MR+8jZMmg4dKrFY9tNeuFdbngiFKQbVIsolCBuB8RjEtmSuKsLgAm\nF2cFEInF2N1sT+o9VUySaOhwJm28T1K58RHUkXBcFJxEV9hjIc7KGwgzIMPZZTh+0jIkzEkkykp/\nGDbFo2viDRl5OxMTQCcTlzdESKw3CATJIxLB8MRjhNKtdA9t6sslP0vEWCVCdoGNnmUnktGxD0v7\nPtl1yRLmeFo7qbj3t4QsGey+5mbZdRajjrnTsiYdcy2YGLNRN/J576IVaEJBbHt2oIpGmLnhX5x1\n3acoefcV+uYv45U/b6D62puJGj9u9o2Y06n73A3ovW7mPHpfwvMQwhyBQCAQCASCKYpeqyEwJMxJ\nk+mYc+Ci5aB7SJhTvRVJpWJg7iJZY/hzC/DmFZJTuw3GcU7Iqd4KHHsxVgCx4hLChcVk124f92dU\ngnDMSQyXL4ytPu5CYk9QmBPTG2i9/EvofB5mPPtIMqcHkkTlc48S0+rYd/alskqMOg1V5bYj8toW\npAbdiXExn02mMAdS55pjeOF5VNEoHUOd08N0DS0oFm5O3DUHoL3PIzuKQAnRWIw+h5/aFjubqvfT\n1uMmliJ3Hk3TXowP/hN3STktZ18iu64gy5QS4UVKnCpUKho+/SXe/O0D+G25LPjH71lz69fQuRyK\nhulz+FMqLPUFwoeIbzbX9bCzqZ+9HQ7a+zz0uwL4gpGkvh6ikkR7n4fNtb207Hfh9oUw/+0vGFwO\n6j/9JcIW5R2Pwi1HcKTRqNWUKHTNKcpJTjSf4PjFmoI4K1fFLBwVsyj48G107smJYPyhCDX7BpN2\njejo9YwIQ5KNOhig8vn4Rm/rGRckdexjIc4KoL134pjM4VgSy4hjTrni8xwWx5z8fLzlM8ip3oYq\nkprXjOy5IOKsBIJkonv7TbR9vbSdcg4xvfzroE6jJtua3KaLqYLVrKf3pDMAKPpAvmuOLxhJisur\n4bYfoPe6qb76JtnRZXqtmvnTbSIO9jBhMn7sINy7OL4GV7nxUdZ943IW/+VXxLQ6Prz5Z7z5mwdw\nlc8cdYym8z+HN7+IGf95CFNPZ0LzEP/bAoFAIBAIBFMUnVY9IsyRHWU15JjjC0TwhyKowiFs9btx\nVswiYpa/odRftQyDcxBLR8uYx+TUxB11+oYcdhLhSMRYDRNesRKj046lsyUp4wnHnMRwe+OvUUhc\nmAPgu+paoukZzNzwLzSB5Fnd5u7cQkZbEx1rz5T18K5RqaiqsKHXyXPWERwbqHNz8ZZMI7t+l2xX\nEpc3NQv4uuEYq5POPOjr+1ecDEDh5jcnfY76dgeuJCx+HSjGeX/3fmpa7PQ6/AQjUZq7XXxY10t/\nEq2phzH98meoolF2X/NN2bnxOo2ayuLU2FPbMgwYU/SeMFC1lFfu2cD+ZWso2vwW6792CVkyI9dg\nyGGmPzWuOR5/mO17+1MmvpFDJBajZb+bXduamPnkPwhmZNKoINpsmAyTHluSnY8EgkQoyjFTkmOh\nLC+dioIMZhRbmV2aybxyGwunZ7NkRg7LZuWyYk4+q6sKqCwWbjmC8UmFYw5A2+nnoQmHkxK95PAG\nqW9zTDpu0x+M0Lr/YHdNVSQ8afHQMGWvP4fBOUjTuZcf1MGdLNpPPhuAkrePXtcchzc44T2k1x93\nxUvvaiWq0+HLLVB8nsMVI+NZuQZtwIdtyOH1SCLirASC5GF8LB5j1br+QkV1uZlpogFrEkTOPBtJ\npaJo0+uK6vockxMmBt96h6Lnn2JwxlyaPvUZWTVqlYqqimyMennrCYLJc6BjTv+CE5DUasreeoGs\nxjr2nXkxL97/Ai1nXzqua39Mr6f6qpvQhMNUPXBXQvMQwhyBQCAQCASCKUpcmJMDgHGwX1bNsDhk\n0B1/aMlqrEMTCtI/T352LnzsgjPsijMaubu3EtUbGJxZpWjsYY5UjNUw0VWrgeTFWYUisUkvFk9F\nXN4gtvrd+HIKCGTnJTxOdlk+/uu+jNH5/9m77/i66vqP469z7l65M7nJzU6a1XQ3nbRAgVIEmTJU\nRJShgijTAaIICPpTZIiiAoLiBJS9R6EUWlq6d5u2adomaXZyk9zc3Pn7I0lJ24w726T9Ph+PPpTk\nnO85aW/uPed7Pt/3p4X8t/6XmJMLhyl/5lEAKs+/PKJdctNNYmX6cap7ynTUHe0HV/eOxJ2ExByp\nrRXN0g9pKSrHk5F16PmlptNaWEbqhpUouuMrtAiFw2yuaqGpvRu3x0ePLxhxQcVQxTjBQfbv9gXY\ntKeFdTubDq6ejpdyzSq0r7xIc+kkak5aGPF+47LMqJTJKZ6RJCkhqTkpejXjMs0oDpsM9llsLP3F\nn9n09RvQNx7gtFu+xriX/hFxIlxtUxehUGI/v9xdPtbvbMIfjL69VjIU/++vqDvdbLv0GgL66P8t\nRFqOMFqolDLjsswUuFLITTeRlWokw24gzaLDlqLFbNRg0qvRa5VoVArx8EgYkUGrRJnAFo799i44\nB+gtVkmE+lYPm6paCMTxubKzpv2Q6xEp4GfBrVdw9jcWoWuoje8Ew2GKX3yGkELJrvO+Gt9YQ6iZ\n29fO6qP4i50GIwUDqN2tcY8zXGqO1xcg0FfkbqzdS1d6dsStggdK1jXb4Xx97axSNxz7dlZtnb64\nXv+CIPSSOtyo33iNjsxcWkojSxbv57Qeu8WFxwNrQRbNZVNwbFmLuj3yz5uGtjgSfQMBzHfcBsCa\nG34a8WdOSY4Fs0HM7R1NAxNz/MYU9p56Dq3jxvPBA39j1W334zNbIxpn74Iv0lZQQu57L5NStSPq\n8xCFOYIgCIIgCCcolVKmuz8xpznCVlbBEKFwmJa+Nlb2vqKTpihTbfq370/FOZyyqwNz1XaaSycR\nVsV2o3Ks2lj188/sLcyxD/EzRisUDh9MLBIiEwiGCO/fj7a1iZbS2NNyUvRqdBol3m99l6BWR8nz\nTyH54y+KSF+5hNRNq6mdvYCWCIrbtCpF1C0mhLEjXDETAHuE7aw6PL6Ep4Oo33oDKRA4oo1Vv7pZ\np6Dw+3GuWR73sXr8QTZVtbBmRyPLtxzgo/W1fLKxjlXbGtiwq4mt1a3sqm1nf0Mn9a0eGlo9ERXj\nDKats4fV2xvYvrcVXzzpY+EwhnvvAmDDNbdChJ8xNpMWp1Uf+3EjkG7Xx/WZp5AkynKtZKUaqShN\nw2I4rLBVoWDr177LR798Ep/BxNTH7mPWL2+HzroJAAAgAElEQVSD4Mh/n/5giLrmxKXmtHb0sH7X\nsSnKUXi7MdTtw755LZlL36HwlX9S/tdHKHrhb3itjpgelpp0KhFZLwjCcUuSpKS0s+pOc9E4sYK0\nDZ/FX/TSp9ntZV1lU0wthBvbuml2H7rivvQ/j2Pfuh51RzvTHr0nrhbHaes+xbynkv0nL6I7hgSY\nSPhTLAlrZ6Xo9mDbspbCV/7F9Id+xuk3XMKF503n/Ivnxn1/3NTWTXdPYNDv9aflqN2tqDva6czM\njXp8WZKOWmIO83sTKdPWrTg6xxtGKBw+4jUsCEL0NK+8hNzjZc/CCyK+XwTQqhWYk5Qyd6JIMahp\nOOl0pFCIjJWRt+D2+oKxJ/o+/mdMlVupWnRRRPN60LsoI9nzA8KRlAr5kKThlT/+Ne899j+aJs2M\nbiCFgo1X3YIUDjPxqQejP4+o9xAEQRAEQRCOCyqlTFBnwK/To4uwlRVAjy9IW19hjmNL76Rac3l0\niTnu3HH4DKYhC3Mcm9cihcM0lU+LatyBjmUbK4Dg+HKCBmPCEnOg90G2Ri1aGEXKPbCNVXHshTlp\nfauWwnY7nZdfifkvfyL3/Vd7I05jFQwy6S8PEpZlNn7zpoh2yU03IctiZfrxSp7b2+Pavm0d1Wde\nMOL2wXCYrm5/QhOU1K/2trGqmT94EkzdrFMZ/68/kbHiQ2pPOiNhx+3nD4Z6iy2S8EwgDNS1eGhs\n85LjNJKVZoy6kEX1wXuoP1lK7axTIp68UUgSRVnJb/WiUSmwp2hpjLENQWGmGZ2md4pIp1EypchB\nTWMnu2vdhxRANUyby7t/fIG5995IzodvsO+UL0T0WqisaafLG6DAlYJSEfvDrha3l81VLREXZcVK\n11BL0Uv/QNd4AF1LI9rWJrQtTag8Q6/SX/ed22NqLZIj0nIEQTjOmQ3qpDzwrz7tXFI3riLng9fZ\nftm1CRmz0+tnzY5GJhTYIr7GCgRD7Kw5tF2VZecWxv/zT3gc6XRlZOFasYSsJW+y/9SzYzqvohee\nAWDHhV+Paf9I7Tv5LNJXfUzWkrfYfunVEe2jdrdh2bUV666tWHb2/jHV7EEa8FkdVKnoSs8mZd9u\ncha/RnMc9/lhYH9jJ0VZliO+1+XtTUjsT6DsiKEwRxXHdUq0NC4n7XlF2LesRfb5CKmPbXpCU5tX\nPCwWhDhpnvs3AHtPPzeq/cTvXvwkScK76AvwxAO4ln9A9cKR51X6NbZ2kxLl3IrU0ID5gfvxGVPY\neNUtEe2TatGRn5GcFtfCyPRaFd54Fmv1OTBjPg2TZ+JasQTHhpVRFfeIwhxBEARBEIQTlLpvFZjX\nloo2isKcxv6UgnAYx+a1eBxOPGmu6A4uyzSPn0LGZ0vRtDbRY3Uc8u3+gp2miRXRjdvnWLexAkCh\nwDetgpSlH6J2t+JLiSwSczhefxBx+xa5Do8f2/YNALSUxFaYIwFpA4q8At+7kdDf/kLps0/0roCK\nIRodIPf9VzHvqaRq0UW484tH3N6oVZFuExM1x7NQ+USCag22rRsi3sfd5UtYYY7kbkf94Qe0FZTS\nmZk36DYtJRPxmm29q89CoWF7b49WgVCI3XVu6po9FLpScERQxBkKhwm3t2P56R2EJSniSTeAvIyU\ngwUvyeZyGGIqzHGkaHE5jmy/lJlqxJaiZfveNtq6eg5+3etwsuqme1j07fMpeP25iIu0apu7aHF7\nKcmxYo3hM7qxrZut1a0Hk6KkYIAFt3yNHrONZXf9jrAiMX/PSk8XJ99+LSn7dgMQliR6zDa60jPx\n2lLxWh14bQ66B/x/T1omnvTMqI9l1KqOeSGxIAhCslmSlACw/+RFTH3sF+Qsfi1hhTkAPYEg6yqb\nKMuz4jCP/B6950DHwZbPALLPx8xf/xg5GGDVLb+gMyOLRd8+n6mP3U/9tLn4U44sKBmOsWYPrhUf\n0jR+Cq2lk6L+eaJRM/d0pj/ycyY99SCTYlgFDuAzmGicWEFbYSltheNpG1eGO6cAJInzLp2Ha/kH\nrL3hp1ElSRzuQLOHvHTTES2nuroPLcyJJTHnqKXl0PsQua1iDub/VmLbviHm+Y9EaXF7CYZCKMbg\nNb4gjAaKyh2ol39Cw+RZeJzR3RuIwpzEME6ZSIcrh/RVHyP7egipI7sGaWzrpjAz8gU1fn8Q9Y9+\niKqzgzU3/JQeq33EfUw6NaU50V0DCIll0Cpp6UjAQJLEhqtv5YzvX8akJ3/L4kf+E/F1jSjMEQRB\nEARBOEH1T2J1ZuSQsWop6Ss+5MCsU0fc70BLb+9dQ90+tK1N7DvlrJgm1ZomTCfjs6U4Nq+hZt6Z\nh3zPsXEVYVmmuWxK1OPCsW9j1S80ew4s/RD75nXUzVkQ93i+GGLVT2Ruj4+c7RsJSxKtxeUxjWE1\naVAPiDoNuTJpu/AybM//g6yP32H/KV+IekzZ18OEv/2OoErN5ituiGifvAwT0ih4TQtJpFLRPWEy\nlnWrUHR7COpGnphzd/nITE3M4dXvvIXs97F//plDbyTLHJh5MnnvvoR15xZaiyck5uDHQLcvwKY9\nLZgNarRqJcFQiGAwTDAUJhQKEwiGCIZ6/zvs9zHvzu+gqtzOjguviKiYDsBsVJOVemTBS7JYTRp0\naiXdvsHbOwxGrZQpzh56cnCo9Bx3fjFN46eSvvpj9HX78WRkRXQ8rz/I+l1NuOyGqNJzDrR42L63\nlYE5OZmfvHew9dukx3/D+utuj2isYYXDVDx4Jyn7dlN5/uVs+/K36DFbCStV8Y89iBynaE8oCMLx\nz6hXoZAlgqHEpp35TWYOzDiZzGXvk1K1I+LP50gEw2E2V7VQmGketpVsZ7efmsZD09TG/+MPmPdU\nsuuLl1FfcRIAm6/4LpP+8iCTn/gNq269L6pzGffSPwCoTHJaDoAp00nbD3+C9sP38XgDhCL4Nwvo\n9LQVlNA2roy2wjK60rOGnB+om3kyue+/iqVyC20x3p9B779PbZOH3PRDU+e6vL3XQKYxUpgD4Jk1\nD/77DKnrVxzzwpxgOEyruyeiwnVBEAbo7kb7p99jeOS3AFRFma6colej14rH9YlgMWmoP+l0xj3/\nNKnrV1I/Y35E+3n9Qdq7fJgNwy986vEHqdnbSPpPf4DrvZdpHVfGrnMuG3F8rVrBhAKbKHw8xgy6\nxN3Xt5ZOYv+8M8n6+B0yP3n3iGcbQxGvAEEQBEEQhBNU/4TTxqtvJqhSM/PXP0bXUDfifp6+fu6O\nTX2pNuNji6Hub1PVP04/2dfbfqgtv4SAIbYHVqNl9bl/Zm9rGsfm1QkZrycBcZsnEre7G2vlZjqy\nCwgYYmsVMthrKXTLLYRlmbJ/Pw4xtFMZ98q/0DfWUXnB1+hOyxhxe7NBHdFqXWHsC1TMRAqFsFZu\nimj79lj7oA9C/UpvG6v98xcNu11tXwFnxorIe7YfTVLAT+raT5F9kf3dtHf5qG/10NTupbWzB7fH\nR6fXj9cfxB8MEQqFmP7Iz0lfs4zaWaey4Vs/jGhchSwxodBx1AvqMuzRrbQsybYeUnw4lMxUIxWl\naYekHuz64mVI4TAFbz4f9XnWNnexalsDrR09I25b09TFtsOKcgiHKXn+KcKSRGdGNsUvPkPuuy9F\nfR6HK/rf38j+6C0aJ0xn/bd/hNeelrSiHL1GOWquVwRBEJJJlqQRH3TFqvq03lYhuYtfTfjYYWBn\nTTuV+9sID3LNHw6H2bGv7ZDPJ9vWdZQ+9ySd6Vmsv/YHB7++40vfoK2glPy3XyB13YqIz0HV6Sb/\n7RfxpGZQM2/wVqOJoNcomZhvZ1Khg+DNt9L18hv433iLrU88y5Lf/HXYP5/c8xibv3EjNfPOpCsj\ne9hFOzVze1P2Mpe9F/c572/sJBgKHfzvUDh8cK4irlZWR7kwJ3DSPMKSRNr6lUf1uENpak9CT1lB\nOE6FQiH8/34W0+zpmH55Lz6VllU33c3e074Y1ThOq7gnSBRJkuhe2LuAzrV8cVT7NrYOnT7b3RNg\nx742NixZT9GVF5H73ss0l0zi43v+OGKStkalYHKhA00E991CciW6AG7jN28iJCuY+NRDSMHIFkiJ\nwhxBEARBEIQTVP+EU3thGeuuuwNNRzuz778FKeCPaP+D7aZi7A/fUjKRkFKFffPaQ75urdyEwu+j\nacL0mMZVKeSYWmQkQ2B6BWFZxnHYzxirRPTBPVF09wTQVu9C5emKuY2VLEmDPjQNF46j+cxzseze\nRvrK6IoTVJ1uyv79Z3zGFLZFGLlf4Io8TlcY26RZswAOpoCMxOsL4kvA+4LU2YF68Xu0546jI6dg\n2G3rp59ESKEkY8WHcR830cy7t3P69y/j1B99k5NvvxpVpzvuMcv++Rj5b79AS1E5n97x24jaJcmS\nRHmeLWFtxqKRYddHnBjnshuwm7URj63TKJkyzkFRphmFJLF//iJ8JjP5b/0PyR99kVh/es6OfW0E\ngqFBt9lb30Hl/rYjvu7Y+Bm27RupmXs6S+9/HJ8xhekP34V1W+St4I4Yc8NnTHryAbptDj79yYNJ\nK8jpl+sUSWiCIJw4zIbk3J/VzT4Vv95IzuLXe9tsJkFNUxebqlqO+KyqbfbgHlAkrfB2M/M3t0M4\nzGe33U9Q93lqXlipYtUt9xKWZaY//DPknsiKH/Lf+h9Kr4ed5381YS0bB1IpZMZlmqkoTTvimkCp\nkBmfZ6Msx4pCTszn1YGKkwiq1FE/LB2MPxjiQMvnD1E93sDBdpfGmmqCKjXdjvSox1Urj+6DU116\nKm0Fpdi3rEP2jVywPBJlVye6htqY9292ew/+PQqCcKRQOEyL20vNW0tQnHE6rhuvRdVUz7ZLr+bN\nv75F1dmXRpUqLksSaaIwJ6HUJ8/DZzLj+vSDqBbTNbYdWZjT2e1n654WVm6tp+ejpZz23Yux7dhE\n1ZkX8uFvn8HrcA5/LkqZyYX2o9beWhieIcGFOZ3Z+VR94WJM+/eQ99YLEe0jCnMEQRAEQRBOUANX\ngu0+51L2nno2ji3rmPD0wxHtb9+yhoBWT3thSUzHD2m0tBaNx7pzC4puz8GvOzb1pss0TYit4Mdh\n1o6aB11howlfWTnWHZsiTm8YjmhlFbkOT2/yEkBLSWztduwp2iHbrPhuuQ2Asn//Oaob/ZJnn0Td\n0c62L1+LP2Xk3tIOszZpK4yF0SdQMQOIvDAHettZxUv93jvIvp4R03IAAgYjjZMqsO3YhLa5Ie5j\nJ4IU8FP2jz9wxg2XYN25FXdOIakbV3HqrVfEdY6577zEhGd+T5czk4/v/WNE7cUkoDTHgi0l8oKX\nRFIpFTgiKLbRa5QUZqbEdIz+9Byd2cSehRegbWsmM44HbEOl51TVudldN3hxVcnzTwGw/ZKr6MzM\n49PbH0AOBph7z/fRtDRGfQ7a5gZm338LAJ/+5CG89rSox4iGTq0UE/CCIJxQLMbkXM+G1Br2zz8T\nfWPdwfvIZGh2e1lX2URP3/2Yzx+kqvbQz6gJTz+Maf8eKi/8Ok2TZhwxRmvxBCovuAJT7V7G//OP\nIx5TCgYY99LfCWh07D7r4sT8IH1kSSLTYWBmmZOsVOOwRb1Om56KkjRSElBwHNQZaJg6G0vVDvR1\n++Meb39D58E0o67uvgVG4TDG2r10urIhhpYhRzsxx6BT0Th5Jgq/L6p7gKHMvv8WFn3r/EPmWKLh\nD4Zo70xcKqcgHA/6i3G2721l7YfrUV//baZ8/Vwcm1azf95C3n7iNTZec1tMSc02kwbVUS4IPN5Z\nrAbqZ52Cvqkey84tEe/XEwjS3tl7T+ru8rFpdzOrtjdQ39ZN3hvPceoPvoG6vZW1193BqlvvI6Qe\nvuhYpZCZVOhAr03ugg8hcgpZRqtO7O/blq9dT0Cjo/zvv0fhHTp1qZ8ozBEEQRAEQThByZKEqr/o\nQJJYfePddGTmUvr8U2R8+sGw+6rcbZird9FcOimulXtN5dORg4GDBRQwsDAntsSc0dYWIjhrDgq/\nD2vl5rjHEok5kXN7/Nj6khNaSibFNEbqMA9NVVMm0zDvDBxb1uHY+FlE42mb6il+8Rk8DieV539t\nxO0loCAjtgfnwtgUynDhS3dh27Y+4oKvRLSzUh1sYxVZT+y6vnZW6Ss/ivvY8TLv2sbp37uMCc/8\nHq/FxtJf/Jm3//wyO8/7KpaqHZx201cw7quKety01Z9Q8dBP8ZnMLL3vcXpsqRHtNy7TTJo1unZS\nieZyGIb9vixJlOZY4+pvr9MoyUkzsvvsSwEoeO3ZmMeCI9NzdtW0U13fMei2puqduFYsoal8Gi3j\npwJQP2M+G6+6GX1TPXPvuTGqYlgp4Gf2fbega2liw7W30TSxIq6fJRI5TuOoKSIWBEE4GkwGNYok\nve/1twzJfT/x7awG6vT6WbOjkQ6Pj1017QQGJPSkrl9J8YvP4M7KZ+M3bxpyjE1Xfo8up4uS55/C\nvHv7sMdzffI+hoY69iw8P6KC/kjZTFoqSlIpyrJEXISi0yiZUuToTXuL8/g1c04HIHP5+3GOBN2+\nwMHWS53e3sIcdXsr6q4OOl15MY15tAtzlAqZtum9LbBT10fe5mww+voaMj5bisrTiblq+NfXcAZL\njRCEE5XHG2DF5no2ba3B/PsHOePKs8h/50XaCkr58Nd/ZfnPfkeXKyfm8dNsx/be8XgkSxKdZ5wF\ngGv58PPbh6uu72TdzibWVDbS5PYi+X1M/d3dVDx8F369gY9++SQ7L7xixFQkhSwxsdCOUSeKckYb\nQ4ILpbz2NHZc9HV0LY0Uvfj3EbcXhTmCIAiCIAgnsIGTTgGDkeV3PkRQpWbGb24fNv7YvnUdEHuq\nTb/+/Q+ubgyFcGxeS2dGdkyr1UdTG6t+gdlzALD3tf6Kh88fPLgiUBheR1dvYk5QpaI9P/pUJ6Us\n4xgh8aLzezcDUPavP0c0Zvnff4/C18Pmr3+PkGbkRIt0m16srDkBBaZXoGtpQh9hBH3ciTldXWje\nfwd3Vj7uvKKIdqmbdQoArmPYzuqQlJxdW6ladBHvPP4KB2aeDAoFa797Jxu/cSOG+lpOu/mrUbU4\nMu/eztx7byQsS3zy89+P2N6rX67TRGaqMdYfKWEsRg36YaKyc50mUhKQxJVq0eHNH0fD5Jk4132K\nsWZP3GPWNnexfPMB9jV2DrlNyX+fBnrTcgbafsnVfel/a5ny2H0RH3PSEw+Qumk1+045i8qLrozp\nvPUaJRajJqI/DrMWp5iAFwThBCNLEqYkpUA2TJpJtz2NrKVvJySldDg9gSDrKpuoH1C4oPR0MeOB\nOwjLMp/94JfDXucHdQZWf//nyMEAFQ/9FIJDL7wofvEZAHZecEVCzl2vUTKpwM6kQntM9xiyJJGf\nkcKUcQ60qthXm9fNPhUgIe2sAPY19F4zdHUHADDVVAPQmZkb03hHuzAHoGfWXMKyTNq6+Apzct99\n+eD/t+7cGvM4ze2RtVoThONdjy/Ihp2NpL7/Gmddcw4T//oIAa2OVTffw7t/+C+NU2bFNX4k805C\nbJSLFhFSqnB9Gt1nTUuHl7a+1BxNazOn/Ogqxr32H9oKSnjv0edpnDp7xDEUksSkAntCkuaExNPH\n2M5quGuf7ZdeTU+KhdJnn0Dtbh12HFGYIwiCIAiCcAI7fNKpvbCMddfdgaajndn334oU8A+6n2Pz\nWgCax8dZmNO30t3RV7SSUr0Tdac75rSc0dTGqp9/Zu9NW//fWTzCgM8fGnG7E10oHKarvRPL7u20\nFZQRUkd/M+wwa5Hl4V9LhlPn0Th1NulrlmEdkPo0GNPeXeS//QLunEKqF54/4vEVkkSeSMs5IYVm\n9E7u2SKMsu/w+AnFUbCnXvwecnd3b1pOhO+fnZl5dGTl4VyzPOkPwAZzSEqO1c7SX/yZVbfeh984\n4HdGktj21e+w6uZ7UHe6OfUH38D52dIRx9Y1HmDend9G5eli5Q9+FXF6istuIH8U/c667IOn5qTo\n1eQ4E1M8JMsSTpv+89Sc159PyLjB0NCvZ21zA7nvv4o7K5/a2QsO/aYkseqWX9BaWEbhG89R8Np/\nRjxW1pI3exMOcgr57JZfRPw7MJDToqOiJI0p4xwR/ZmQbx+2ZYggCMLxKlntrFAo2LvgHNSdbtI/\nS36aX/Cw665JT/wGQ30N2y67lpayySPuXz9jPtULvoht+0bGvfLPQbexbt+IY/Ma6mbMj7hAeDhO\ni46K0rSEtNo0GzVUlKbhjDGp1mtPo7l0Eo6Nq1G52+I+H7fHR3tnz8FWVsa+wpyOGAtz1MegMEeb\nZqe1sAz7tg0RtcEYVDhM3rsvEe67xrDsir0wpycQpD0B7XIjFQ6HCYbEPIcwuvgDITbsbqbk9/cz\n575b0LY0su2ya3jz6beo+sIloIi/HU66TT/ivJMQmxSXg8Yps7Du3IquoS7q/S2Vmznjhkt6F3Cc\nfBaLH/oXnoysEfeTJYnyfBtm4+haNCp8LpbEnDSLjtnl6UwrSsVlN6A8LH04YDCx9avfQeXppPTf\njw87lijMEQRBEARBOIENthps9zmX9q04X8eEpx8edD/H5jWEZZnmCCYeh+Oz2HBnF/Qm8ASDA9pY\nxVbwc6zbhwwm5MrE78rCvmVtxK1phiPaWY2sq9tPys6tyMEALaUTYxojbZg2Vv1kSaLxut6o+tL/\nDH/jNfGph5BCITZedXNE7d8yU41o4liJKoxd/ukzALBHWJgTCofp7B68iDIS6ldeBGD/yYui2q92\n1qkovR5SN0TWyi0RpICf8X8/NCXn7Sde7U3JGULVFy7hk7seRQqHmPez68l57+Uht1V2dTDvzm+j\nb6pn/TW3sf/UsyM6r1SLjqIsc9Q/TzI5bfojij8UskRZrjWhBawuu56akxbiNdvIe+cFZF9PwsYe\nTNFLf0cO+Nlx8TdgkFZcQa2OZT9/lB6zlal/uA/HxlVDjmWq3smM396JX6dn2c9+R1A3fAuwweQ6\nTZTl2cSEuiAIQgTMhuQ9pOpvZ5Wz+LWkHWMwzlUfU/j6s7TlF7Pl8usj3m/9d35Mj8nMxKcfQV9f\nc8T3+1shVF4YW5LbQFqVgqJsS0KLQpUKmbI8G2U5VvQaJVq1IqI//Q+yauecjhwKkrFySULOZ3ed\nm55A731yf4LfWErMMWhVNE6ehRzw984bxMCxaTXGun3sO/VsgioVljgScwCajmI7qz0HOvhsawP1\nrZ6jdkxBGE4wFGLT7mbU61ZT9OIzdGTl8fYTr7Hx6lsJGBKzyEEhSWQnaMGEcCRZkuhYsBAA16fR\ntbPKXvwap918ObqmA2z85s18+pMHCepGnm+WJYnxedaEFMEKyWOIMjFHp1ZSnN3bUjTFoKY428Kc\nCU7KcqxYBhRg7friV+hyuoYsuu4nCnMEQRAEQRBOYGrlIA/+JYnVN95NR2Yupc8/RcZhNzCSv7dF\nUHtecUJuSJvKp6LydGHeswPHpt7knMYJkSUUDKRSyMlbhRmnwKzZaNtbEtLmo0cU5ozI7fFj60uw\naS2eEPX+amXkLdGMZy2kuXQSWZ+8h6l656Db2DevJXPZ+zSNn0rtnNNGHFOlkBOWaCGMPYFJkwkr\nldi3RVaYA3G0s+ruRv3uW3S6cmgvKI1q17pZpwKQcZTaWfWn5JT//fd4rQ4+uu9xVt16HwGDacR9\n6+acxpL/e4qATs+sX/+Y4uefOmIbye9j7j03Yqnawc5zv8KOw9okDcVq1CS82CURVEqZtMNWso/L\nNKMbpsVVLPRaFSlWE3sWXYjG3Ubmx+8mdPyBlJ4uCl57Fq/VQfUZQyePeZyZLL/zYQiHmXPvTYOu\nkFR2dTL37u+j9Hr47Nb7o04jkCWJshzrqEpJEgRBGO1SDKqkJYa1FZbhzinE9ekHKLs6knKMw6k6\n3VQ8eCchhZKVP/xVVCmdPVY767/9Y5ReD9MeveeQBRza5gayl7xJe24h9dPnxn2exdkWlIrkPAZy\n2vTMLHMye3x6RH+Kc3ofbNXM7b0nylyWmHZWA9NdTLXxtrI6+osjjDoVDVNmApC6fmVMY+S901ts\nv/sLl+DOLcK8Z8eQCciRaDpK7aya2rupru/A6w+ytbqVtTsa42/VKwhxCIXDbNnTirvDw/Tf/Rwp\nHGbVTXfT5cpJ6HFcDoNYjJVs5/QW7Q5XmCMF/OgaD2DdsYmMTz9gyh/uY/avfkBIqeLjex5j21e+\nFVGqqgSU5lhwmGNLkxOOHr1WSaRXo/0JSIdfRylkGadNz5RxDmaVOclLN6E26Nh05Y0o/MN/9orC\nHEEQBEEQhBPYUKvBAgYjy+98mKBKzczf3I6uofbg96w7t6Dw9dBUPjUh59DftsqxaQ2pm1bjNdvo\nzMqLepzR2MaqXyCB7ax6fKIwZyQdXT5s2zcA0FIyKer9Uy26iF9LOq2K/VfdAEDZYKk54TAT//Jb\nADZcc2tEN/Q5TlPSJs+FMUCnw18+EcvOLRG3iYp18lr9wfsoPJ6o2lj1a5owDb/e2FuYk4A0sKHo\nGmqZ8of7DkvJeYX6GfOjGqe5fBofPPgPPA4nk5/4DZP+/H/QH5kfDlPx8F041y6ndvYC1l7/k4j+\nPkw6FeX5tlHblijD8XkCjMOsJWOI9lbxcjk+b2dVGEH7qFjlv/E86q4OKs+/nJB6+OLJxskzWXfd\n7Wjbmjnp5zcg9wx4uBQOM+O3PyFlfxXbv/QNaqJMi1IpZCYV2nHaRl9KnyAIwmimkGVM+ujbB0RE\nkqg+7Yso/D6yklgkOtCUx+5H31TPlsuvo72wLOr9qxeeT/3UOWSs/IjsD984+PXCV/6FHAxQeeHX\nY2qxOJDLbhhVK/cdKVpUCpmOnEI6XDmkr/o44Wl7xpq9BNUauu1pUe8rS9IxSczRaZS0TqwgJCtI\ni6EwR9HtIeujt+hyumicNIPWcWUo/H5M+6piPqduXyCuVM6IjtETYFv1oe3M2j0+1lQ2srW6Vcx9\nCMfE9r1tNLu9FL7yL6w7t7Jn4QU0TRONr54AACAASURBVJqZ0GMoZEksxjoKTGXjaCssJW3dCor/\n+zQTn/gNM379I+b/+GrO/NZ5nHfJXC4+exJfvHwBZ9xwCfN+dj1FL/8Dd1Y+7z36HAf6FiNFojjb\nMipT3IUjKWQZrTqyBUuFmWaMuuGvXXUaJXnpKcwuT8d67TfoLBr+mlDM9gqCIAiCIJzAhpt0ai8s\nZe31P0Hd0c6c+245uNqqv7ikqTy2dlOH6x8n54PX0DfW9baximECcjTfAPn7C3P6WnXFQyTmjMzt\n6U118uuNdMRQ5BXta0l13rm05xWR/cEbGOr2HfK9jE8/JHXTamrmnEZzXxHacLQqBZmO5Dw8F8aO\nYMUMFH4/ll2RRdDHXJjzyksA7J8fXWECQFip4kDFPIwH9mPatzum4w/HtHc3FQ/cwdlXLqLo5X/Q\n7XBGlZIzGHdeEYsf/hfunEJK/vdXZv76x0h+H+P//gfy3n2JlpKJfHr7A6AYeeWiXqNkUqF9VBfR\nmQ1qjFoVaqVMSV/0cjI4LDp82XkcmDaX1E2rh0wPi4cU8FP84jMENDp2f/GyiPbZdd5XqVp0Edad\nW6h46GcHC8iK//dXsj5+h8aJFWy8+paozkOnVjK1KPWQyGpBEAQhckltZ7Wgr53V+68m7Rj9XMve\nJ++9l2kpnsC2L18b2yCSxOobf05Ao2XKY/ejdrci93gpfP1ZelIsVJ9+XlznqFMrKcwcXclusiyR\natGBJFE79wyUXg9pa5cn7gDhMMbaajpdOYO2vByJUnHsiq21diutReXYtm9E0d0V1b5ZH7+DqtvD\nnoUXgCzTNq73oaB155a4zqmpPXntrIKhEJurWgj0F8ofpr7Vw8qt9ew54CY4xDaCkGg7a9qpb/Wg\nbapnwl8focdkZv21P0j4cTIdxmOSznWikSWJ9gWLkAN+Jj/+a0qff4q8914hfc0ydE319KRYaZg8\ni70LzmHHRVey/prbWPGjX/P+o8/RmZ0f8XGKMs1JWwQjJEck7azSLLqo52etZh3+h3437DaJzTAW\nBEEQBEEQxpSRVoNVnX0JaRtWkvPB60x86mE2fOsH2Df3tptqTlBiTpcrB6/VgWPLOgCaykcuXjjc\naG5jBRAcX05YqUzIw2tRmDO8QDCEv7kF0/491E+dHfWErFatwGyI7rVkt+rZefl1TL/vFkqe/wtr\nvv/z3m8Eg0x86reEZZlN37wporHyMlKQ5dGZviEcPf7pM9D95XFs29bTUjZ5xO29/iA9/mB0Udg9\nPajffoMuZyatReUxnWfdrFPI/ugtMj79kI6cwpjGOJylcjOl/3mCrI/fQQqHcWcXsO3L17J3wTmE\nlZGtsreZNITCvatwD3/P7E5z8cGDf+ekn11P7uJXMVdtx1K1g870LD6+57GIesdrlAomFtjHxGRq\nhsOAVqVI6rnKkkS6Xc/ucy4jfc0yCl9/jnXX35HQY2R/+Cb6xjoqz/8avhRrZDtJEmu+dxcpe3eR\nu/hV2saV0VJczsQnf0u3LZXlP3kw4tcU9BY6Tci3jYl/d0EQhNHKYlSztyE5Y3sysmgqn0ba+hVo\nm+rxOpxJOY66vZXpD99FUKVm5Q9+GdVnyeG6XDlsvuIGJj/5AJMe/w3N5VPRuNvY+pVvE9LEnnQj\nASU5FhQxFKckW7pNT21zFzVzT6Pkv0+RuWxxVKkEw9G0NaPydNERYxurQVt9HyUGnYrGKTOxb9+A\nY/Na6ivmRbxv3ju9xfb9rT7bCscDYNm5leqFF8R8Tk1tXvLSk1PctWNfO53e4RN5guEwew50cKDZ\nQ74rBecoXowljH176zvY39gJwJQ//hJVt4fPbr4Xn8WW0OMoZZnsNJGWc7R0f/dGVlrT8esMeO2p\neK2peG2OERNYI1WQkUJmqvj3HGv0WhW4h27ZqNcoKY5xcVNg5qxhvz/6rswEQRAEQRCEo2bEiSdJ\nYvWNd9ORmUvJf58iY/kHODavxeNw4klzJeYkJOmQtlhNE6JP4hnNbawAUCgIZrjQN9TFPZSIcx6e\nu8uHdccmILY2VmmW6Cf7ZEkieNFFdLpyyHv7BbTNvU8b8t57GXP1LvYsvAB3XtGI4xi1KpxW0Y9a\n6C3MAbBvXR/xPlurW3F7Ik/OUS9ZjKKrszctJ8b3z7oZJxOWJFwrPoxp/4EcG1cx745vsfC7F5O9\n9G1ax41n2c8e4e0nXqV64QURPfTSKBVMyLcxqdDBlHEO5pSnM39SBhUlaUzIs1GQkUKGTY/elc6K\n3/6N2lmnYqnaQY/JzNL7HqfH6hjxGCqFzMRCOzrN2Fjn5LLrsZuT38LCZTdQO2cB3TYHue+9jMKb\nwBXW4TAl/32KsCyz46Iro9o1pFaz7Ge/o9uWyqQnH2Du3d8HSWL5nQ/RY0uNeBynRcfkQocoyhEE\nQYhTikGd1BaQ1ad9ESkcJmdAa6iECoWY/shdaNua2fSNG+nIHRf3kJVfupLWcWXkv/MiE55+hJBC\nyc5zvxLXmJmpxlGb7pZiUGPQqmgum4LXbCNjxQeftxeNk7GmGoDOGAtzlMegjVU/g05Fw+Teh3lp\n61dEvJ/+QA1p61fQOLGCLlcOAG0FxYQlKeL0zaF0ev109wTiGmMwNU1d1Ld6It7e6w+ytbqVNTsa\nY04KFYTh1DV3sbvODUD6yiVkL32bpvJp7Fl0UcKPlZVmOCYt805U1gw7+xddSO28hbSUTcGTnhlX\nUY5KIeNI0VKQkcK0olRynLGl+QrHlkE39HyOLEmMz7MlLR1Z/PYLgiAIgiCcwCK5GQzoDSy/82GC\nKjWzf3kb2rbm3vZTCZxQ7W9nFdDoDsYuR2M0t7HqF8rMQtfSiBSMb2JLJOYMr9ntxbZ9IwAtxROi\n3j8txsKYDGcK2y+9GoXfT/H//orc46X8b48SVGvYfMUNEY2Rn5EyugvMhKMmlJdP0O4gbf3KiAsc\n2jp7WLOjkU1VzXSNsPoUQHWwjdWZMZ+nz2KjuWwy9s1rUbnboh8gHCZ95UecesvXWHDrFWSsWkrD\n5Jl8dP+TvP/756mZd2bEqVdOq56K0jQc5kN/hxWyjFGnwmHRkeM0UZJjZco4BzOn5yP/77803/t/\nHPjPy+SfXMH4XCsl2RbGZZrJT08hJ81EpsNAulVPqlmHzaRhQr5txB7jo8nRek/RaZRYrUaqFn0J\ndaebrI/eStjYztXLsOzezr75i/BkZEW9v9eexrK7HiWkUKDpaGfDtbdF1FqwX166ibI8m0gzEwRB\nSAClQsagTd7n6P6TzyKkUJKzOAntrEIhKh76KVkfv0vjhOlRF4sOJaxQsuqmewnLMtq2ZvadfFZc\naT96jZKCjNHVwupwTqsOFArqZp+KrqUJ2/YNCRnXFGdhjvoYPiw36lQ0lU8lpFCSum5lxPvlvtd7\nTb/nzAsPfi2oM9CZmYtl17aDrTxj1dQ+dKJALNxdPnbVtMe2r8fHmspGmhN8TsKJramtmx37eu9l\nFd5upj16LyGFktXfvyumlnjDUSlkskS6ylElyxKZDiN6jRJlDP+eGpUCp0VHUZaFipI0TpqYwYQC\nOzlOEylRpm0Lo8dw16KFmeakzvmMjSVegiAIgiAIQlJEukqjvbCUtdf/hIpH7gKguTz6VJvhNPU9\nIGsumxx1FPhob2PVL5SZhRQKoW1uoDuOtCGfP0goHE7qStOxyusLUNfsIXdbX2FOaXSJOUatKuab\nL61aifuiy/D84zEKX3uWsEKBvukA2y69mu60jBH3txg0RyXVQhgjJImer16B/tGHKH32CTZf+f2I\nd21q99Lc7iXNqicv3TR4sovPh+atN/CkZkT9e3K4upmn4NiyjvTVn7BvwTkR75e+cgkTnn4Ea99K\n3tpZp7Lty9+Kuk2iRqmgKNt8REFOJBRqNaFvX4ceGP3lnaNfht1A1dmXUPafxyl8/VmqBzwgikfJ\n838BYPslV8c8RkvZZD6+90+Y9lWx67yvRrSPLEmUZFtw2sSrQxAEIZEsRjUd3clJvfCZrRyomIdr\nxYeY9u5KWKvN/qKc/LdfoKWonE/u/gMoEpei1lZczvZLr6H4v0+z4+JvxDyOBJTmWEd9ManTpqeq\nzk3tnNPIf/sFXMsW01I2Je5x+xNzYm1ldSxTLAxaJUGdgZaSCdi2bUTZ1UnAMMID/FCIvHdeIqDV\ns+/kRYd8q7WwjJwlb2I4sJ+ujOyYz6uprTthbXf8gSBb9rQQirtYqFvcOwsJ0dbZw5bqVvpfkWX/\n+hOG+hq2XXo17vzihB8vO82YtBQOYWgFrhQKXL0Fq8FQCJ8/hC8Qwu8P0hMI4fMHe/8EQgQCIfRa\nJRajhhSDeswk5QrR0WuUSMDhn0ZpFh2ZDkNSjy3eAQRBEARBEE5g0Uw8VZ19CdWnnUtYlqmfNifu\nYytkCaNWRapFR8q82Ry47mZ2X3NT1OOkWnRjImUklNm7yj/edlZheotzhCPtre8kFAph276ebnta\n1CtNY03L6ZeeYWXHxd9E6fVQ+uyT+IwpbLvs2oj27Z8kEIR+XTf/gEB6BiXP/QVD30OGSIWB+lYP\nn21rYMe+tiOStlQfL0Hhbmf/vIVxp5/VzToVgIwVSyLaXuVuY+b//ZD5d34HS9V29i44h3f+9BKf\n3PvHqItyhkrJEY4Nu1lLMDOHAzPmY9+6HvOubXGPadm5Befa5TRMnkVbcXlcYzVMm8uu8y+P6DUv\nSxITC+yiKEcQBCEJzHEsqohkccLe074IQM77CUrNOawo56Nf/QW/yZyQoSV6C/SLMs0YH/gVDRt2\noJ05I+bxstPGxgp+jUqB1aSlftpcAhotmcsXJ2Tcz1tZ5cW0/4itvpNIqZDRqZU0Tp6FHAri2Lx6\nxH0cm1ZjPLCf/fPPJKg79EFifxKxZWd87azaPb6EpPaGw2G27GnFm4CxWtw9cY8hCJ3dfjbt/rxQ\nLGVPJSXPP0WX08WWy69P+PFUCpnM1OQ+8BdGppBldBolZoMaR18RRn5GCiU5ViYW2JlanEpJjhWn\nTS+Kco5jsiwd8e+r1ygpzrYk/9hJP4IgCIIgCIIwasmSFHmUpySx8oe/4o2/vRPxykOF9HnxTa7T\nREm2hanjHMwpT2f+JBcVpWmU59nIz7SguPtu8i8+K+rK9FTL2HggG3RlAqBvPBD3WD3+UNxjHG+6\newIcaPGga6pH19JES8nEqMeI97VkT9FSc96X6UnpvZHb+uVvRTRpn2rWjYkJdOEoMxrx3PtLFH4f\nUx+7L6YY+lA4TG1zFyu31LOrph1/oHciXN3fxuqwlbWxaC8oweNIJ/2zj0Zs1ZexfDGLvnUuue+/\nSkvJRN7544usuP0B2gtKojqmRqlgYr6dslzrMV3ZLBxKliTS7Xp2nfNlAApefzbuMYuffxqA7Zdc\nFfdY0SjKMmM1aY7qMQVBEE4UFqOGWMqCbSYNs8Y7cY7Qxrh2zmn4dXpyF78WdxufZBTlDCzGmV2e\nzpQiB5mpRjRqJQqHndJcK+NzrVG33DBqVeRlmOI6t6Mp3a4nqNVRP20uKXt3YazZE/eYxtq9BDQ6\nvLbUmPZXHuPrSqNORcPkmQCkRdDOKu/dI9tY9WsrHA/0FjnHKxHtrKrqOmjtTExBTU8gSIcnOalb\nwokhGAqxcVczgVDf3FooxLTf3Y0cDLD2u3cS1CW+OD/HaUKR4NZYgiDETq/9vDBHliTG59mOSqKV\neBcQBEEQBEE4walVUVwSyjIeZ2bEm+emmz4vvslIIcNuwGzUoFENvhJNIcsUZVmYmG9HFcHF8Fhp\nYwUQyupPzKmNe6we3/APv09E1Qc6CIXDWLf3tbEqia49j1kff0StJEmkZTlYd90d7Ju/iJ3nXz7i\nMcfnWinLs8Z1XOH41XPehXTOmU/GZ0txxbGSOBgOs6+xkxVbGqje14z69dfotqXSnICWAUgSdbNP\nQdPRjm3r+kE36U/JmXfXd1F3tLPh6ltY/PC/YooHT+9LyRHx9aNThl1P/cz5eBzp5C5+FUV3V8xj\n6etryF7yJu15RRyYMT+BZzm87DQjGXaxmlUQBCFZlAoZgza69rF6jZLxeTY0KgVluVYmFzrQD3Ht\nHtTqqDlpIYb6Goqff2rEwuEhJbAoZ8hinCHui9OseipKUzFHWLwvSxKludYx1e7YkaJFpZCpnXMa\nAK5lcabmhMOYaqrpzMyJORFSPQoKc5rHTyWkVJG6fsWw2yq6u8he8hZdzkwaJ1Yc8f3WvsSc/rax\n8Whu745r/6b2bvY2dMR9HgOJ1BwhHg2t3fQEPk9vynv3JVI3rWb/SWdQN3tBwo+nUSpwOUQSpyCM\nJgOvRcdlmjHqors2jZUozBEEQRAEQTjBRVIAE6toJ1z72c1aZpSmYTMN/+B1rLSxAgi6+gpzRGJO\nwnm8fupbPQDYDhbmTIhqjHjbWPXLsBnYd/q5fPrThwlpjnz9ypJEulXP9OJUphankmbVj6kJdOEo\nkyS8v3mQkFLFlD/ej8Ib36R4IBTC+9qbKNtb2T//TEjQir3avnZWrhUfHvG9w1Ny3n3sBbZfdi1h\nRXSFcP0pOaUiJWdU06qVWK1Gdp99MSpPFzkfvB7zWEUvPIMcCrL94qvibrkWKYdZS0GGaC0oCIKQ\nbBZj5KlkKoXMxAL7IauYrSYNFSVp5KWbBr2Wrrzo6/j1BiY/+QALv3MBzlWfRHeCCSzKKXRFVoxz\nOK1ayZRxDvLTU0a8X8h1mo7aA6VEkWWJVIuO2tkLCMsymcvej2s8bUsjSq+HTlduzGMc68Icg1ZJ\nUKujuXQS1l1bUXW6h9w26+N3UXo97Fl4waDX9D6LDY/DGXcrK4C2Th+BYGxzEN09AbZVt8V9Dodr\ndsef4iOcuOqaPQf/v7q9lUlP/IaAVs+66+5IyvFynEaRliMIo0x/Yo7TosMVZXp/PMQ7gSAIgiAI\nwglOFU1iTpQGxkJGS61SMKnQzrhM85ATkWOljRV8npijS0Rhji/+vuzHk+oDHfSH1PcX5rQWR16Y\nI5G415JGrRg0yUOjVJCfnsKccieluVZM+rGR9CQce+HiEuq/fi2G+lpKn30irrH0B2qoePBOQrKC\nPQuPjLyPVePkWQTVGjJWLDn4NZW7jZm/OjIlpyN3XNTjmw1qKkpTRUrOGJFh11N11sWEZAUFrz8X\n0xiqjnYK3vwvHoeTvQvOTvAZDs6oVVGWax0zBb+CIAhjmTnC1FNZkijPtw2abCnLEnnpKVSUpGE9\nrNCnbdx43nz6LXadfSkpe3dz8h3XcNJPv4NxX9XIBx1YlFM8Ia6iHJ1aSXZa5MU4h5Mkidx0E1PG\nOdCpB7+3NunUZDuNMY1/rKXb9fgsNprGT8W+ZS2a1uaYxzLWVAPQkRl7Yc6xLv429BVXNUyZhRQK\n4di4esht897pbWNVvfD8IbdpKyxD19KIprUprvMKhcM0x9DOKhgKsbmq5fN2QQnU4fEdbNMrCNHo\n7PbjHtAKbdKTD6Bxt7Hp69+jOy0j4cfTqhQijVMQRiGDVoVeo6Qo23JUjysKcwRBEARBEE5wyUrM\nkSUJrTq2CciBslKNTCtOPSJ9Zyy1sQIImy2E9Ab0DXVxj9XjFxNQ/Tq7/TS09aWIhELYdmzEnZWP\n3xh54oHVpEEd42T5YFwDJl3621XNKneSm25CpUzccYQTR+jHt+NJTafkuScx9D10iJayq5N5P7sO\nbXsL666/nbbi8oSdX1Cro37qbMx7KtEfqMG17H3OuvZcchfHl5ID4LTqmTzOIX53xhB7ipZwhou6\n2adiq9yMdcemqMcoeP05lF4PlRdcQViV/M96jVLBhAKbWMkqCIJwlER6H1eUZR4xXUevVTJ5nIOy\nXOshiSc9Vgdrbrqbdx97gYbJM3GtWMKib53H5D/ej8o9RILH4UU5v3wy5qIcAFtK5MlAw0kxqJle\nkkq69dBWKL0trCxjNoEzRa/GoFVRO+c0pHCYjEHSFyPVX5jTOYYLc3QaJUpZpnHSTADShmhnpT9Q\nQ9r6FTRMmkFXRvaQ47X1tbOy7NoW97k1xtDOase+djq9/riPPZgwop2VEJu65s9b7To2riL/7Rdo\nKyhl54VfS8rxcpwmZHlsvkcLwvGsv02qMomdBAYjZhwEQRAEQRBOcMl62KnXKBO26tyoUzG9OJXM\nAdGSY6mNFQCSRNCVib5RFOYk0sC0HNP+KlSeLlpKJ0Y1Rpo1sb2+rSYN2alG0a5KSBi1xcyem3+K\nwu9n6mP3QTg88k4DBYPM/uWtmPdUUnn+5ew67/KEn2NdXzur+Xd+m5N+fgOqzvhScgDy0k2U5VrF\n788YI0kSGXY9u865DICC15+Nan/Z56PopWfw6w3sPufSZJziocfrS2PQDpFEIAiCICSeSqkYse1x\ndpoxqpQBp1XPzDInLruBgVcO7YWlLPn1X/nkrkfxOF0Uv/h3vvDNsyh8+Z9IgQFFAwkuygFGbM0c\nDaVCpjTXyvhcK8q+QtK8dFPM7aNHC6dVR+3c0wBwLV8c8zim2vgKcySSNzcSDYNOSfP4KQRValLX\nrxx0m9z3etNy9pw5fAJma2FfYU4C2lm1unsIDpN8Ew6HD7aY3lXbzrqdTQfbTSeLaGclRCsYClHf\n0ltkJvl9TPvdzwlLEqtv/HlMi0hGolUrSLcndr5JEITEkGXpmLQBFYU5giAIgiAIJ7hk9VGPp43V\nYGRZoijLwsR8O2qlPKbaWPULZ2Whcbeh8Ea/2mwg0cqqV4fHd8jKvbR1vSsKW0onRzyGLEk4Etwe\nR5IkCjPNol2VkFCaL19K/dQ5ZHy2NOqHFpMf/zUZKz/iQMU81n/nx0k5v7qZpwCQsncXzSWT4krJ\nkSWJshwreemRJ18Jo0uGzUDD9JPocmaSs/h1lF0dEe+bs/hVdC1N7D77UgIGUxLPsldpjoUUg3i/\nFgRBONrMw7z3OsxaCjKivw5QKmSKsy1MLUrFOLBgRZKoPekM3n78VdZf+wPkYJBpf/gFZ37nQpyr\nPk5KUY4sSVhMif98SbPqqShNJSvVSHba2GxhNZDTpqcrMw93TiHONctivlc21uwFYm9ldazTcvoZ\ndSpCag3N46dg2b3tyHSnUIi8d14ioNWzf/6Zw47VNm48ANZdW+I+r2A4TGtfQk0oFMbt8VHb1MWO\nfW2s2dHIxxvqWLmtga3Vrexr6KStM/lpNq0dPYSjXbAgnNAa27wHW6sV/+9vmKt3sfucS2kpi3wO\nKRp56SlikYkgCIcYHVcbgiAIgiAIwjGjUo2Nwpx+drOWipK0MdXGql8wMwsAXeOBuMbxBYKExAQU\new4c+qDXtex9AGpnL4h4DHuK9qjHlgpCLFKMGipvu5uQUsWUP94f8UOL/Nefo/jFZ3DnFLL8Jw8m\nZSUgQHdaBuu+82PWXv8TPnj4nzGn5KgUMpML7ThtYmXhWKZRK7Bb9ew++1KUPd3kvv/qsNvLPh+m\nvbvJWP4Bpc89SUihpPKCK5J+nnnppoSnpgmCIAiRGep+zqhVUZZrjSsdtb/1U0m25ZCFKCG1mh2X\nXMWbT7/FrrMvxbS/ipPvuJazrvpCQotyoPfnS1aLRK1aybhM89hKkB2CRqXAlqKlZs5pKHu8ONcs\ni2kcY201fp2eHqsjpv3VoyAtBzi4er9h8kykcJjUDZ8d8n3HplUYD+xn//wzCeqGT5TyOF34TOaE\nJOYA7K5zs2pbAx9vrGPNjkZ27G+jtrkLt8dH8BjMT/iDIdxdvqN+XGHs6m9jpa/bz/h/PobXYmfj\nN29OyrH0GiVO69hbUCgIQnKJnF5BEARBEIQTnCpJRQn6JEZqq1WjY9IsWqG+whx9Yx2d2fkxjxMG\nfP7gCd12w93lOyS6WtXRTtr6lbQUldOdlhHxOGliokQYQywVk9jxpSspffZJSv/zOJu/ceOw26eu\n/ZRpv7+XnhQLH9/7x6Snj1RedGVc++s1SiYW2NFpTtz3tuOJy25g+6ILKX/mUQpef5aqsy7GcGA/\nxppqjLXVff+7F1NNNfrGOqQB7RGqFl0U1Xt5LJwWnUhlEgRBOIbMRs0RX9MoFUwosCWkoKW3taKB\nVIuO6voOahq7Di5u6LHaWXPT3ew69ytM+dOvSFu/IqFFOZDYNlbHO6dNT+3c0yh79glcyxdTO/f0\n6AYIhzHW7KUjKw9iLFZSjpLEnP7WZI2TZwG/J239SmrnLTz4/bx3ImtjBYAk0VZQStr6FSg9XQT0\nkbeGG4ynJxDX/snQ7O4Z9L1EEA7X5fXT3lfINfnx/0PZ42X1Tfck7D3/cLnppuOieFIQhMQSs12C\nIAiCIAgnuGRFNuvFg9Uj9Cfm6Bvq4h6rxze6CnPcXT4a2ropdKUclcmHPQfch/x3xsqPkIMBak46\nI+IxlLKMPUVMmAtjR6pFx6qvf5ec91+j5Pm/sGfhBXQNEddv3F/F3HtvBEli2V2P0pWRfZTPNjoW\ng4byfNuoaSMgxM9q0iClp1Nz0hlkf/QWF507BWmQ1dTdtlSayqfR6cqhIzOPzqzcqJLPYpGiV1OS\nY03qMQRBEIThaVQKdGol3b7eh/2yJFGeb0v4PY5SIVPoMuOyG9hd6z6kFW57YSlLfv00lsotdOQU\nENQmrmjfliKKBSLlSNFSOX4K3TYHGZ9+CMEgKCJfjKNtbkDZ001njG2sYPS0sjLolEhAS8kkgmoN\nqRtWHvyeoruL7I/epsuZSePEiojGayvsLcwx795G84TpSTrrY6fF7aXAJQqthZHVNXsA0DbVk7l8\nMS3FE9h72heTciyDVkWaRSwCEwThSKNnJl8QBEEQBEE4JpIR2SwhCnMGE3JlAqCPs5UVQI8/GPcY\nidTa0cP+xk68PQHK8qxJi20HaO/soaXj0J71B9tYRbG60p6iQZbFCiZh7JAlibTsVNZ958fM/cVN\nTH3sPj7+xZ+PWBmscrcx76fXoe50s/K2X9IU4cT9seK06inJsSCLFYXHFUmScNkNbLvsGsx7Kukx\nWz8vvnHl0JmZS6cre8Q2DImmrcA8MAAAIABJREFUVSmYkG8T7/+CIAijgMWoprultzCnNMdCiiF5\n7Yp1GiXl+TZaO3rYVdNOp9ff+w1Joq24PKHH0qoVSU2QPd7IskSqzUDdrAUUvPk89q3roioiMdVU\nA8RVmKMeJYU5CllGp1HiAZrKp+Jc+ynqthZ8FhtZS99F6fWw/eJvQoT3263jygCw7tx6XBbmdHr9\neH2BUbVoSRh9QqEw9S29hTk5i19DCoWoWnRRzAlbI8kTaTmCIAwhok/v9evXc8UVR/b2Xrx4MV/6\n0pe47LLLeO655wDw+XzceuutXHrppVx11VXs2bMHgK1bt/LVr36VK664gquvvpqmpqbE/RSCIAiC\nIAhCzFSqxE9AadVK8cBrEKGs/sSc2rjH8vpGWWFOZ2+hTJPby7rKpqQWDlXVdRzy33KPl4zPltLh\nysGdOy7icexmkZYjjD0ZdgN1Jy/iwLS5ZHy29GBRWj8p4GfuvTdhqqlm22XXUH3mBXEdz2xQk2bR\nYU/RYjFoMOlU6DVKNCoFSlkm3nf6vHQTZblWUZRznEq36XEXT+DtJ1/jw9/+nVW3/j97dx4fV1nv\nD/xzzpl9n8k6mexp0qYbbaF0ZWkBAUHRC4jg9brggtcrelUQF/QKsqmAuCII6k8UBERZZJWCbIVS\nWrovadJm3zNLttnOmd8faUPTTJJzZibJ0H7er1dfr2bmnOc8SZr0zDPf5/u5Cfs+/nm0nn4uglXz\nZrwoRxIFLKzMed9GYhIRHW+ORNCUF9qR77bMyDXddiNOnpuHuSWuaSvGYIyVdoU5FrSuGdlk4Tvm\n/nYqttZDAID+tApzsufewGoeKerqOmkFACBv+9sAgPIX/g4AOHSO+vv7QNVIYY6rfk8mp5hVekOR\nqQ+iE1p3cBgxWQESCZS/8A/Iej2azzh/Wq5lN+uRx245RDSBKctI7733XjzxxBMwm8f+IonFYrjl\nllvw6KOPwmw24/LLL8f69evx7LPPwmKx4OGHH0ZDQwNuvPFG3Hfffbjppptw/fXXo7a2Fg899BDu\nvfdefPvb3562T4yIiIiI1BEFATpRRFxRMjam1cTdSsnI3pGOOeYMdMyJxjL3/UqXoiQQOpzVDQD9\nwzFs2d+NRZU5sJkzu1PU3x9BYHDswlvB1o3QhYdGYqxUvrkvCgI8jLGi9yGjXkKey4ytX/4ezv3i\nRVhy9y3oPHnNSPRCIoFlv7gR+dveQuvqs7DjM/+b8nUkURiJfcidunBCVhQoSgJxOQFZOfxHVpL/\n/aiPc5wmFMzQm3A0Owx6CTlOE7oDw1MfPM3MBh3m+JwZ/3+JiIhS57KNFACXF85sFI0gCPDmWJHn\nMqOpcwAt3QNQksQtpooxVto5LAbUrTgNcZMFRW+8iO2fv0b1aztbWxOA9Drm6LKkYw4A2Ex6dGMY\n3YcLc/K3vQV/9QLkb9uErpNOxZC3WPVY/aWVkA1GuA4cv4U5faEwfCpes9CJ60iMlevAbjgbD6Bl\n7QcQc7gyfh2LUYd5ZYzLJaKJTfmOSWlpKX7xi1/g2muvHfN4fX09SktL4XQ6AQAnn3wy3n77bRw4\ncACnn346AKCyshL19fUAgDvuuAP5+fkAAFmWYTTy5pSIiIgoW5gMEgbCmSv0YNvuCVgskD05GYmy\nCsfiGZhQZgQHo+MWsiMxGVvrujG/zJPRzjSH2kPjHnsvxups1eM4rAbopOxZfCXSwpdvw5aSCuy7\n+NOo/eu9mPfQPdj16a+i+rE/ovKZR+CfU4u3vvVj1S3uj+WxG1FT4lLdEl4SRUgioGdNJiVRlGOd\nlcIcURDgshngcZjgsZtgYdEwEVHWMRlm901MnSSissiBXKcJW+q6MzLmyP8/fO8jFXmFLnScshbF\nrz0Pe1M9+lV2Q7UdibIqKk352vpsKsw5XETcN3ch4kYz8rdtQsSVAwA4dM5HNY2VkHQIVtTAVb8X\nQiyKhH764uJmS6A/AkVJsGszJTUUjiNwuMNz+QuPAwAOnXNRxq+T7zKjpsTFdSYimtSUqxLnnnsu\nWlpaxj0+MDAAu90++rHVasXAwABqa2vx0ksv4eyzz8a2bdvQ2dkJWZZHi3K2bNmCBx54AH/+859V\nTTAvzz71QURERESUFl8wjLbuwYyNV1zkRF6eLWPjHU8SpaWw7N0Lu9WYVp61yWzImntl/3Acdlvy\n4pvGnkGYbUaUZWAXbJd/CIoojr2WLMP35suIeHIRXb4CdpWFCNXlnqz5+hFplQegKxRFyxe+hvKX\n/4l5j9wPIS8f8+75McK5+Xj3p/fBkufRPK5OEjC3zIOSAv5sZAp/z4x8DTqDEQyGY9N+LYtJh1yX\nGbmH49ckLowTEZEKeXlAZygypgtoqnKcJngLnRmY1YnH7jRj//pzUfza86h85xU0LFio6jxnezPi\nFhsMxT4YUnyN7S1wZE1HVZvDjEPdgwBMCJx0CnI3vYo5/3wIcbMFwfM+BLtF2zwH5y2EZ98OeLua\n0T93wfRMepaJBj3y3IwPovH2NfbBbjNBiMdQ9vI/EXV5MLjuHNh1mdlQKAgCasvdKJ3hzm9EM4Vr\nGpmV8nYhm82GwcH33rwZHByE3W7H2Wefjfr6elxxxRVYtmwZFixYAEkayed8+umn8Zvf/Ab33HMP\nPB51i4Td3f2pTpGIiIiIVJIjcfQPhDM2Xngwgm5krhX48cRR6IXx3a0It3em1To3Eo5mzb3yoWY/\n+ocmXsTetKMNbe0hVPkcENIoRtqyrwv9w2Pf2M3dsRnGQC/qP/ixSedwLFGWs+brR5QKu1FEiyxi\n6xe+hdU3fhW1d92AuNGE1/7vV/Bb3IDG3+keuxE1PidMIl+HZ0penp1fy8MKnEa0RmPo649kNCpk\nwq44cRl9fZkrOCYiouOfRS+iNQOvifMdRv7/n4bAmvVQRAk5Lz+Hbf/x2XHPC/EY7M0H4T6wG64D\ne+Bq2AvboToEKueh/5jIYy36g0OQI9NfRKxWeDiKmKygbeFy5G56Fca+Hhz8wEcRUCTN9/ldZTUo\nAWDYuQ39vqrpmfAsqzvUA8QzH01E729KIoE99T2IyQq8G1+CIdCHuo98EqGwDEBOe3yTQcL8cg/M\nksDf+3Rc4ppGaiYrZkq5MKeqqgqNjY0IBAKwWCzYvHkzrrzySuzYsQOrVq3Cd77zHezYsQNtbW0A\ngMcffxx//etf8ac//QkuF/+DJCIiIsomNktmo6cYFzExxTeSB2/pbkcwjcKcaFyBkkhATKPQJRPi\nsjKuWCaZlp4BhKNx1Ja7IaUQr9MTGE56nfdirM5SPZbFqIPZyH+j9P6W5zKjoTWE1rXnoP2U0+Dd\n/Co2XXMr/DXqdhYfIYkCqoqcKMq1TtNMiQC33Qi33Yi4rKA3FEZ3YBh9odSKdMwGHTwOIzx2E1x2\nQ0r/pxARER2rwG1GQ2sQcpoFpB4HY6zSkVNRhJ5FJyN/2yZYWxthCvTBVb9n5M+BPXAeqoMUe29D\nRkIQ0O8rR91HPpnWdbMpygoArCY9AoMRdJ906uhjhz7wkZTGClTVAgBcB/YA52ZkelmnL5R6URYd\nv3qCYcRkBQBQ/sI/AGQuxirHYcK8UnfW/e4gouymeTX6ySefxNDQEC677DJcd911uPLKK5FIJHDx\nxRejoKAAer0ed911F+6++27Y7XbcdNNNkGUZN910E7xeL77yla8AAJYvX46rr746458QEREREWl3\nJMM8E4x6iZnKk5CLDhfmdHUgeHiBLFWRqDzrBSbBgajqN1Z7QmG8W9eDhRU5MBokTdc51JFkh0Yi\nAd8bLyJmtqBryUrVY+VkSYtyonSIggBvrgWHOvrxxv/9EpauVgwUV2gaw2M3oqbEBZOBhWo0M3SS\niAK3BQVui+oinZGuOMbRYhwW/xIR0XTQSSJyXWZ0+odSHsOkl2A1ZXbTy4km12FC55qzkL9tEz74\nmfPGPCfr9QiW1yBQNQ+BObUIVM1HoLIGsjm9AnMByLo1DJt5pDDHX7MAEYcLUZsDPQtPSWmsYEUN\nEqIIV/2eDM8yewxH4xgKx2Dhzx8dpb1npIOmPhSA962XECybg8Cc+WmNKQoCygvtKGX8MxGlQNVq\nRnFxMR5++GEAwIc+9KHRx9evX4/169ePOdbj8eAPf/jDuDE2bdqUxjSJiIiIaDrpJBFmgw7D0Xja\nY1nYiWRSSvF7HXPSFY3NfmGOf0DbzrT+4Ri21HWjJM8GSRIgSSJ0ogBJFCCKAiRRHHlcFEYXR7v8\nQxgIj++W4zy4H7b2ZjSfcR4Ug0H1HHKcLMyh40NRjhVNnQNQDAZNRTmSKGCOzwlvDrvk0OyZrEjH\nqJfYFYeIiGacN8eSVmGOhxsA0iaKAsIfvQT+5x9HzGJFoKp25M+cWoRKK5HQZb7wQq8T04pcng5W\n88jr/ISkw0t3/BmywQikeD8km8wIlVSMFOYoSsrjZLveUISFOTRqOBIfXa8q+fczkGIxNJ5zEZDG\nz7pRJ2F+uRtOGzujEVFq+K4JEREREQEYibPKRGEOdwhObrRjTgYKc8IxGc60R0lPoF97y+j85x6H\n+eA+7Pjs16dcFJEEARP14yl6418AgNbVZ6u+tl4S4bSqL+IhymYGvYQ8DTu7jToJ3lwLinKsMOi1\nda0imk5HF+lkQ0wjERGdmFw2IyxGHYYiqb0u9tj5Zm0meKrL8K9f/23GrqfXZd99sfWorsb9pZVp\njxeomg9nYz1s7U0Y8JWnPV426g2FUZJvm+1pUJZo733vNXL5vx5HQhTReNaHUx7PbTOitszN19FE\nlJbjszSWiIiIiDSzZyjOysyIiUkpPh8AwNzVkfZYkaic9hjpiMXlpJ1sJuM4uB+n/vQ7mPfX38H7\n5stTHi8nEhPGm/jeeBGKTo/2U09XfX2P3Zh1uyGJ0uHLm7rrjcNiQG2ZGysWFKC80MHFRMpqLMoh\nIqLZVOixpHSeKAhwsTAnIxwWA2wzuOFHr8u+t8lsJj0yeUcUmDMSo+06cPzGWYUGo4jLymxPg7KA\nkkigs2+kMMfWchA5e7ahc+kqhHPyUxqvJN+GxVU5fB1NRGnLvjsOIiIiIpoVtgwV5jDKanJKoRcJ\nUcxIx5xIbHYLc/wDUU3HC7EoTv3xdRDjMSQEAQv/+PORVtopsHS2wn1gD7qWrEDcqj7bmzFWdLxx\nWAxwWMZ3gRIFAQUuM5ZV52FZTR4K3BYWPBARERFNodCT2j2Tw2oYjeKl9BXlWjNamDKZbCzMEUUh\no7HVgap5AI7vwhwlkYA/hY6+dPzpC4YRiY+sl5W98DgA4NA5H0lpLKfFgKoiJzd4EVFGZN8dBxER\nERHNCrslM4U5VnbMmZxOB7mg8LgozNEaY1X74G/hrt+Dg+f+B5rWXQhXw174XnshpWsXvfEiAG0x\nVqIgwONgYQ4df47ummPUSSgvtGPF/ALUlnvgYHQbERERkWoGvQSPQ3vnG8ZYZVZRrhUrFxSi0uuY\n9s0/hiwszAEyt3kKAPxVIx1z3PXHb2EOAPSFwrM9BcoCbUdirBQFZS8+gZjZgrbVZ2keRwBQXeLK\n7OSI6ISWnXccRERERDTj9DoJpjTbsuolka1dVVCKS2Du6QLk9AprZjvKKjCgvjDHvX8nav/yWwzm\ne/HuVd/G7k/+NxRRwoI//SKlr4PvcGFO26p1qs/hLlY6XuW5zMhxmMbEVRn5u5iIiIgoJV7P1FGh\nx+IGgMwz6iWUFthxam0BllbnweuxQCdm/vVcNnbMATJbmBNzuDCY7x3pmDNBVPTxoC/EjjknunA0\nDn//SIFW3va3Ye1qR8vp50E2mTWPVZRrzejPIRFRdt5xEBEREdGssKXZNYcxVuooPh9EOQ6Tvyet\ncWazY04kKmMoEld1rBiNYPlProOoyNj8jZsQt9ow4CtH4zkXwdlYj5J/P6Pp2oaQH3k7NqO39iRN\nGeG5XCyn45QoCFhUmcO4KiIiIqIM8DiMMOrUFzkb9RLfvJ1mTqsBc0vdWLWwALWlbrhsmetQpNfw\nvZ5JVlNm/00FqubDFOiFqa87o+Nmk0hcRv+QtshtOr609w7hSOlZ2b+OxFhdpHkcg05EhdeRwZkR\nEbEwh4iIiIiOYjenF3liYYyVKkpRMQCkHWcVjStQlNnZ7ebX0C1nwR9/DmdjPQ58+Ap0LV01+vju\nK74ERdJhwZ9+CUFWV+QDAN43X4agKGjV2Io4x8nCHCIiIiIimpwgCCjMsag+njFWM0cSRRR4LFgy\nJxcragtQVmBPv/PvCdAxBwACc0birFwHdmd03GzDrjknrkQigY6+kRgraXgIxa8+h8GCIvQsPEXz\nWJVFTnZcJqKM428VIiIiIhplNadXWGPJ8I6u45VcfLgwpyu9whxg9rrmBPrVLXbl7NqKuY/+HgNF\npdh+5TfGPDfkLcbB8y+GvbURZf96QvW1fa+PxFi1rjlb9TkWow5mdnQiIiIiIiIVCj3qC3Pc7Mw5\nK8xGHSq8DpwyLx/p9Iw0ZGlhjtEgQZ/BwgD/4cIc94E9GRszG/WGwprPicZk7Gn0T8NsaCb1hSKj\na2S+1/8F/fAQGs/6MKAxAs9pMWj6P4CISK3svOMgIiIiolmRdsccFj6o8l7HnI60x5qtwhw1HXOk\n4SEs/8l1AIBN19wC2Tx+YWPP5VdB1hsw/4FfQ4hN3XJaCg+jYMvrCJVWYaC4QvV82S2HiIiIiIjU\nMht1quKSREFgx5xZppPEtGKfsrVjDgBYNXbNyXeZUehOXlAQqDrcMad+b9rzymb9Q1HE4urXSQbD\nMWzZ341O/xCCGjoDU/Zp7x0c/fuRGKtGjTFWAoDqElcmp0VENCp77ziIiIiIaMYZDVJau8UYZaWO\ncrhjjjnNKCsAiERnvjBnKBxXVRC06P47YG9rwv6LP4PeBcuSHjOcV4iGCy6DtbMVFc/9fcoxC955\nHbpIWHOMVS53sRIRERERkQZeFXFWdouecSdZwGFNfZNRtnbMAbTFWZUV2DG/3IMqnwO6JB1ChvMK\nEXG44Ko/vjvmJAD0qoyz6guFsXV/D8KH1zeOxCDR+084Gh/tlmTu7kDB1o3omb8EA75yTeMU5Voz\nHiNHRHRE9t5xEBEREdGssKXYNUcSBEYFqSQXvb+jrNR0y8nb+iaqH/8zQqVV2Pnpqyc9ds/HP4+4\n0YTav9wNMTr52L7X/wVAW4yVXhLTWqglIiIiIqITT57TPGWUkMfODQDZINXXewKQ1YVVagoEREHA\nvFI3KrwOAIBeJ6G80D7+QEFAoKoWtvZm6Ab7Mz3VrKImzqqtZxA7D/Yhriijj3UFhiEf9TG9f9S3\nhZA4/PfSDU9CSCTQePZHNI1h0ImjP0dERNMhe+84iIiIiGhW2C2p7Qxhtxz1Ejk5UIymjERZhWeh\nY05gisIc3eAAlt/+HSiihE3X3ALFMHlr94gnDwc+fAUsPR2o/OfDEx4nyHEUvfUyhnIL4K9eoHq+\nHocJgiCoPp6IiIiIiEgUBeS7zZMe43EwxiobOCypFeboJDGrXytap1hn0UsiFlfloNAztrtTUZ41\nabyXf86ROKvju2uOPxSBkkgkfS6RSKC+NYj9LYFxx8hKAl3+4ZmYImVQXyiM7sDh71sigfIXHoes\n16P5jPM0jVNZ5MzqQj0iev/jbxgiIiIiGiPVlq0WdstRTxAgF/ky0jEnqqFjzmA4hs4MtGYO9E9e\nmHPSPbfB2tWOvZd/Af65i1SNue9jn0PMbEHtQ/dACidfCMvd8Q4M/UG0rVoPJGnNPZEcJ3exEhER\nERGRdt4c64TPGXUS7CkWhFBmWUy6KbsbJWPQS9Mwm8yxmvQQJygcMht0WFqdB5dtfHGYKAiY43OO\nezwwZz4AwH3g+C7MiSsKQoPRcY/LioJdh/rQ3D0w4bmMs3p/kRUFdS3B0Y/ddbvgaKpH28r1iNnH\n/wxMxGk1jCtwIyLKNBbmEBEREdEYKRfmJNmNRRNTfD6YAr1TRjdNRU2UVWgwip0He/H23i7saw5g\nOBJP+XoDwzHE5IlbOxdu+jcqn3kU/qpa7L7iKtXjRp1u1H3kkzD5e1D15INJjxmNsVp9lupxRUGA\nx85drEREREREpJ3NrId9gtfIbr7OyCqpxFmlUswzk0QxeWS402rAsprcSTsXu+1G5B6zSSVQdbhj\nTpYU5ghyHKfeei1O+el3Mj72sXFWkZiMd+t60ROcPOYqOBjFUDj1NROaWU2dAxiOvvf9KnvhcQBA\n4zkXqR5DAFBd7Mr01IiIxsnuuw4iIiIimnFmow46Dd1IjmCUlTaJ4hIAgDnNOKvJoqz8/RG8e6AH\nW+q6RxeflEQCh9pDKV/PP0m3HH0ogFPuuB6KTo+3r7kFCb22hdH9l3wGUasd8x7+HXRDg2OfTCTg\ne+NFRK12dJ90quoxHVYDWxETEREREVHKCifomsMYq+ySSpyVXp/9rxVtx6y1FLjMOKkqF3rd1N1+\nqoqcYzru9PvKEDeasybK6qS7b0XZhidR8fzfYW1tzOjYfaH31i4GhmPYur8b/cPju+gkw6457w+D\n4Riau97rfiTEoih96SmEnR50nLJW9Ti+XFvKmxSJiLTI/rsOIiIiIppxNov2F6QszNFGLvIBACxp\nFubEZAWKMjYXvScwjC37u7GtvgeBgfGFNJ2BYQwMx1K6XrLxjlj665th7uvGrk9+GcHKuZrHjtmd\n2H/xp2AM+jHn8QfGPOc6sBuW7na0rzgTCZ36f5+5DsZYERERERFR6grcZkjHxAkJANx2vtbIJsdj\nxxwAsB5VMFBWYEdtuQeimDze6lhmow4l+bb3HpAkBCtr4GisT7t7b7qqnvgLqh//M2Lmkfig0pef\nzuj4g+EYwtE4+kJhvFvXg7CGGPBO/xASicTUB5JmDW2hcWtYqaprDkI56vvkfftVGEMBNK2/UPW6\nkUEnotxrz8h8iIimkv13HUREREQ04yZq1T0RUUjeXpkmpviKAQCW7vb0BpJlxLp6kEgk0Nk3hLf3\ndmHnoT6EhibfCdbQFpz0+WSURGLCwhzfa8+jbMOT6J27GPs+dqXmsY+o++inELE7MfeR+6EfeK+z\nj++NFwFoi7ECgBwnF8uJiIiIiCh1OklEnss85jGHxQC9jm+vZBO7RQ915SrvMbwfOuaY9RAFAbWl\nblR4HZrPLy2wwah/r7uOv6oWoiLDeaguk9PUpGDz61jy65sRduVgw88ehKw3oHTDU0CGi2H2Nwew\n82Af4srEcdzJRGLymI47x4OD7SHEJ4klnwmRmIzmrn7safSnXfjU0TeEwODY71HZC/8AoC3GqrLI\nyS7LRDRj+NuGiIiIiMbR2jHHZJDGtEemqclHCnO60ivMWfDAr+BdPh97nngJe5r8GAyr64TT1x+Z\nNJYqmf6hGOQkO5uEWBRLf3kjZINxJMJKSr1IK261Yd/HroRhIITqx/44+rjv9X9B1hvQsVx9O2KL\nUceCMSIiIiIiSps3xzLmYw87c2YdnSTCatK2lqEmDmq22S16LK7KQYHHMvXBSUiiiMqi9wp6AnNq\nAYx0pZ0N9qZ6rPrR15CQJLz+f79AqKIGbSvXwdHcAGfD3oxeq68/MqajihbHU5xVY0c/Gjv7x8Q+\nzYbuwDASALqDw6hvSz1iPRaXUd86drOZIeRH0Vv/RrC8GoGqWlXjOK0GFKb4c0VElAoW5hARERHR\nOFo75jDGSrsjHXPMaUZZFWx5A1Ikgvl33ah5d1mDxoWQwASFPEVvvgxzXw/qL7gM/aWVmsZM5sCH\nP4GwKwc1j/0RhpAf1tZGOA/VoXPZashmq+px2C2HiIiIiIgywWkzwnJU0b/bYZzF2dBE7Bo3Gb0f\nuh7pdRJctvT+vRW4LXAejvoKzJkPAHAd2JP23LQyBP1Ye/2XoB8awOav/wh985cCAJrXfRAAUPrS\nP2d8ThPpDYURi6uPv8pWnf4hHOwYWftp6RpAJDp7n1N3YHj07y3dA2jpTq1QqKEthNgx3X9KXn4G\nYjyGQ+d8BFCxcVAAUF3sSun6RESpyv67DiIiIiKacWajDpKGDjgWo7bFLwIUnw9Aeh1zBDkOZ8M+\nAEDezndQ/O9nNJ3fPxxFl1/9LjD/BDFWFc88CgA4eP4lmq4/Edlswd7LPgf90CBqHvk9fBs3ANAe\nY5XLXaxERERERJQhRzorGHQiHBbDLM+GknFYtX1f9CdQhM0cnxMCgGB5NRRRgivD3WmmIsSiWH3D\n1bC1N2P3FVeh6awPjT7XfuoZiFlsKH3paUBj7NR0URIJdPqHpz5wGq6bKf7+CPY1BUY/lhMJHGxP\nvVNNOiIxGaHBsZHr9a3BMcU6agQHImhP0s2o7IXHkRBFNK2/UNU4vlwbbBo3JRIRpevEuesgIiIi\nItUEQdD0AtXKjjmaJWx2yA4nLN2pF+bYmxqgi4TRuWQlZL0eJ93zE0jD2totH2zvV7XwoyiJcYso\nAGDuakfhO6+ht/YkhMqrNV17MvUXfhzDOfmo/scDKHvhH0iIItpXrlN9vl4SNS/KEhERERERTaTQ\nY4EoCHDbuQEgWzk1vgY06E+ct8jslpHYHsVgRKisCq76fYA8Q91TEgmc/PMfIm/HZjSfdi52/ddX\nxjytGIxoOe0DsHS3I3fXlpmZkwodvTMfZ7V1fw+CE2yK0mIwHMOug33j1ns6/UMYGFYXgZ5JR2Ks\njpYAsLfRj2CStaZklEQCdS3BcY87Du5Hzr7t6Fi2BuGc/CnHkQQB5V67qmsSEWXSiXPXQURERESa\n2DS0gDazMCclcpEPljSirNx1uwAALad9APsv+SwsPR2Y9/DvNI0xHI2jvWdwyuOCg9GkBTzlzz8G\nIZFAw3mZ6ZZzhGI0Yc/lX4QuMgzXwf3omb8UEXeO6vM9DhMEDV2fiIiIiIiIJmPQS/A4jPAwxipr\nWUx6TV1wDO+DKKtMqixyQCeKCFTVQhcZhr21cUauW/PI/ah47jH01SzE29fcAojjv+5NZ47EWZVk\nUZzVQDiG/iF1RSOZEBonevEvAAAgAElEQVSMon84im31vWhTsU4zkUhMxo76XsSTdB9KYKRTzUyb\nqDOOnEhgZ0MvhiPxKcdo6RrAQHh8UVHVkw8CABou+JiqubgdRuhOoG5ZRJQ9+JuHiIiIiJLS0jHH\nYmRhTioSxSXQDw1AN9if0vme/TsBAP7qBdjz8c9jOCcfcx++D5b2Fk3jNHb2Iy5P3i46kGzHlqKg\n4rnHEDNb0Hzm+ZquqcbB8y7BYL4XANC6+mxN5+Y4uYuViIiIiIgyqyjHCo+dhTnZzK4yZkwATrg3\n5/U6CeVeOwJzagEArvo9035N78YNWHzf7RjKLcDrP/wVZJM56XHdS1Yg7M5FySvPQojPfEeXibTP\nYNecnmAYwEhnmP0tAexvDmiOtorLCnY29CIcm7gbkn8ggt7D15oJkZg8aVecmKxge30vYvGJ5zwc\niaOxY/zamW5oEGUvPoGh3EK0rzxT1Xxyncn/DRIRTbcT666DiIiIiFRTu5hl0ksn3GJWpii+YgCA\npSu1OCt33S4okg7ByrmQzVZs/9w3IcWiOOneH2saJxpX0NI9MOkx/v7xhTn5WzfC2tmG5jPOh2y2\narqmGorBgHf/+7vwz5mP5nUfVH2eKAhcLCciIiIioozzOEzQ66TZngZNQm2clU4ST8guq0W5VoTn\nLwIAuA7sntZrOev3YOUt10A2mPD6D381acxQQtKh+YzzYQwFULDljWmdlxbdgWEoirbimFT1BMd2\nlWnrHcS2Az2ITlJkczQlkcDuQ370q4iqamgPIaGx6CdVE3XLOdpwNI4dDX2Qk3T5AYADrUHISeZb\n+uIT0A8PoeGDlyIhTb1pUBQE5Di4kYuIZgffQSEiIiKipCwmHUQVi1QWxlilTC4+XJjTrb0wR5Dj\ncDbsQ7C8GophpAilaf2F6Jm/FMWvvYD8rRs1jdfcNTDhYk9cVpK2b6589lEAwMHzMxtjdbS21Wfh\nX7/+m6qc8COcVgOLxYiIiIiIiE5AdpWx3PoTLMbqCFEQkHv6SgCA+8D0dcwx9XZh7fX/DV14CG99\n6zYEqhdMeU7T4Q05pRmIs7K0t2DJr26COY34cGCkm8uxBTPTYTAcw1CSOKfgYBRb9neritSqaw6g\nr19dJ5zBcAwdfTPTDUhNYQ4AhIai2NPoH1cw1B0YRm8oyeeVSKDqqYegSDrV61JOq+GE/dknotnH\n3z5ERERElJQoCLCqKLqxmNRHXtFYSpEPAGDp0r5QZG9qgC4Shr96/nsPCgK2fvm7SAgClvz6Zk3t\nn2UlgcbO5JFawYEojt2XZAj64Xv9RQTL5qBv3kma5z+dGGNFRERERER0YnKo7JhjOIE7HzmL8jDs\nKx2JspqGriliJIzV//cVWHo6sP2zX0fb2nNUndc37yQMFBbD9/qLkMLpFcOc/IsfovrxB7D6hqsh\nRqcuapnMTBSw9AQmLqgJx2S8W9eDTv/E82js6Ee7xnkeau+fsENNpkwVY3WsnmAY9a2h0Y/jsoID\nrcGkx+bs3grXwf1oXXO26s1cuS7GWBHR7GFhDhERERFNyGaeuujGYmTHnFQdibIyp9Axx7N/JwDA\nf8yus0D1Ahw87xI4Gw+g6smHNI3Z3juE4SQ7tPwD42Osyl58AmI8hoPnXQxkWftvtiUmIiIiIiI6\nMekkEVYVG4j0+hP77bHE4sUwhgJpd5QZP3ACy3/6HeTs245DZ1+EfZd9Tv25goCmdRdAFx6C982X\nUp5C/taNKNz8GmS9AZ59O7DkNzenPBYwEu0djo5fK8mkqbryyIkE9jT6Ud8aHNdRptM/hIMdoQnO\nnFgkLqO5a/JY83Sp7ZZztJaeAbQcntehjn5EJujuXPXEgwCA+gs/rnrsXG7kIqJZdGLfeRARERHR\npGyWqXeaqemqQ8nJvtSjrNx1uwAA/pqF457b8ZmvIWq1Y8GffglDoE/1mEoigYPt4xdzAv3HFOYk\nEqh45lEoOj0az75I28SnmdWkh5nFYkRERERERCcsh4o4K/0JHn+srFoNAKh98LcZHbfqyQdR+u9n\n0LNgGd752g2aN/I0r7sAQBpxVoqCRb+7HQDwyq33wV9Vi6p//hVlz/89tfEAJAB09k1fnNVwJI7+\nYXUdj5u7B7CjoRex+EinG39/BPuaAilfu7lzYMLCl0xIpTAHAOrbgjjUEUJrd/LCIaO/F8WvPYdQ\nSSW6TzpV1ZhOiwFG/YnbKYuIZt+JfedBRERERJOyq+mYw8KclCneIiQEAZYUdqi563ZBkXQIVtSM\ney7q8mDXf/0PDAMhLPzjzzWN2xUYHpNdHovLGAiPXSDy7N0OZ+MBtK45C1GnW/Pcp4tRJ6G80D7b\n0yAiIiIiIqJZpCbOSq87sd8eG/705xBbsAhV//wrfK89n5ExHQf346Tf3oaIw4WN37sTikFdrNjR\nQuXVCFTOhfftV6HvTx5hNJniV5+Dp24Xms44Hz2LTsHG79+FqM2Bk3/+Qzjr92ge74j2vsGUz51K\nb3DiGKtk+voj2LK/G12BYew62AcljTgyOZHAoSQbtDJBa4zV0RIY6ZYz0WdW/txjkGKxkW45Kou/\nGHtORLPtxL7zICIiIqJJ2cx6iJO8wNVLIvQncC572gwGyHn5sHRp65gjyHE4G/YhWF4NxWBMekz9\nhy5HsKwKlU8/DNeB3ZrGP7prjn9g/CJKxbOPjhx37iWaxp0ueklEpdeBU+fnI4954URERERERCc0\nNYU5hhO8MAcmE/p/ez8Ukxmn3HE9zF1taQ0nhYex8uZvQIpF8fY3bkY4Jz/lsZrWXQAxHkOxxoIh\nIR7Dot//DIqkw85PfxUAMOgtwaZrb4UUjWD1D69OqdgHAMJRGf5juwlnSPcUMVbJDEfj2H2oD3FF\nSfv6HX1DGFDZsUeLVLvlTEmWUfXPvyJuNKPxHPVdnLleRESz7QS/8yAiIiKiyYiiAMsksUDslpM+\nxVcMc08HoGExxd7UAF0kDH/1/AmPSej0ePeqb0NIJLDk1zcDGnZQ9fVHRhecjo2xkoYHUfLy0xgs\nKELnslWqx5wOkiigrMCOFfMLUFpghyTy5Q0REREREdGJzmrSQzfF60M9I20g18zF4E23wTAQwopb\nrwXk1CONTrrnNjgbD6Duok+gfdW6tObVfOYHAQClG7TFWVU+/QhsbU1ouOBjGPSVjT7evnIddn/i\nS7B1tGDFbddqWn85WkffUErnTSYakxFKsatMpiQANLRlvmvOdBXmFG5+FdbOVjStvwAxm0PVOTbG\nnhNRFuDKNRERERFNyjZJnJXVNHXUFU0u4SuGFIvBGOxTfY5n/04AgL96waTHdZ28Bq2rz0LezndQ\n8vLTmubV0Dayi+zYHWEl/34W+uEhHPrAfwCzVAgjCgJK8mxYOb8AFV4HdBJf1hAREREREdF7HNbJ\n1yv0fB0JAAj/56cwdMFFyNv5DmofvDulMXyvPY+qp/6KQEUNtn/+mrTnNFTgQ8+CZcjbvgmm3i5V\n50jDg5j/wK8RN1mw+xNfGvf8rv/8MjpOXgPvpldQ+5fUPs+ewDDicvodao7WGwpPGNc0k/r6wxnt\nCJROjNVUqp56CABGYqxUynUxxoqIZh/vPIiIiIhoUjbLxItZk3XTIXVkXzEAaIqzctftAgD4axZO\neey2L34Lst6Axff+BNKw+t1d/cMxNHX2YzgaH/N4xbOPIiEIOHjuR1WPdSyLUYeTa/JQW+pGcZ4N\nLptxyt2MwEhBTlGOFStqC1DlczJGjYiIiIiIiJKyWyaPs9Kf6FFWRwgChu78OaJeHxY88Gvk7HxH\n0+nmrnaccuf3ETea8OZ3bp8wblurpnUXQEgkVG8yqvnbH2EK9GLfJZ9BxJ07/gBJwlvf/gkG871Y\n8KdfomDza5rnJCcS6PJntgtMdyCc0fHSUd8aREJDt+XJJOuWY2+qx7Kf/QBGf2/K41raW+Dd9Ap6\n5y1GYIrNakfLdTLGiohmH+88iIiIiGhS9kk65jDKKn2KzwcAsHRrK8xRJB2CFTVTHjvoLcG+Sz4D\nS08n5j10j6a5HWwf28rY3ngAubvfRcfJazGcX6RprKPNLXHBbjGgwGPBHJ8TS+bkYu1iL1bUFmBh\nuQdlBXbkOEwwHm4tLgAocJmxfF4+akpcMBpYkENEREREREQTc1onL8wxsDBnVMLlxuBv7wMArLj1\nGuj7g+pOlGWsuO1aGPqDePeqb6O/bE7G5tR8+nlQRAmlL00dZ2UI9GHuI/ch7PRg/yWfmfC4qMON\njdffBUWnw4pbvglLR6vmeWUyziouKwgMZK5LTboGwjF0ZqjwKFlhztxH7kfV0w9j5c1fhyDHk5w1\ntcqnH4aQSKD+Q5erPsds0E3aDZyIaKbwzoOIiIiIJmVlYc60kn0lANR3zBHkOFz1exEsr1a9E23v\nx7+AodwCzH3097C2N6ue27H7pCqe/RsA4OB5F6se41jFuTY4bcnnbTbqkOsyo8LrwKLKHKxaUIg1\nCwtxam0Bass9zAMnIiIiIiIiVRxTFOawY85Y8ZWr4b/6m7B2tePkn/0AUNE5pfbB3yJvx2a0rD0H\nBz94aUbnE3V50LlsNTz7d8LWemjSY+f/5W7oh4ew+z//G3GLddJj/XMXYeuXvwdjfxCrbvwqxKi2\nwpjQUBSD4ZimcybSGwpDyVCHmkw52B6CrKQX15U0xkqW4X3zZQBA/rZNWPj7n2keV4xGUfnso4jY\nnWg+43zV5+U6GWNFRNmBdx5ERERENCmdJCaNrJIEASYDCyXSdaRjjrm7Q9XxjsZ6SNEI/NXzVV9D\nNluw/fPXQIpFcdJvb0tpnmI0ivJ/PY6I0422VetSGsNkkFBRZNd0jl4nsSCHiIiIiIiINJloLQMA\n9JIIQRBmeEbZT772OoSWnoqSV59DxbOPTnpszq4tWPDArzCU58Xmr90ATMPXs2n9BQCAkkm65ljb\nm1H11EMY8JagQWVx0MHzL8XBc/8DnrpdWPqrH2meV0dvZrrm9ARnKMZKllH64pOwdE7dISgSk9HS\nNZjW5ZJ1y8nZux2mYB+azzgP/b4yzHv4Pvhee17TuL7Xnocx6Mehcy/WFJmW62KMFRFlBxbmEBER\nEdGUkrV8ZbeczFB8xQAAi8rCHHfdLgCAv2ahpus0n/lBdC88Gb43XkTF0w9rmySAojc3jCyAnPMR\nJPST7zycyNwSNySRL0GIiIiIiIho+k0UZ8VuORPQ6TB8z32I2hxY8uubYW+qT3qYfiCEFbd8EwDw\n1nU/RszhmpbptK0+G7LBiNIN/5ywg8+CP/wcYjyGnZ/+qvq1CkHAlv+5Hv45tah85lGUH+4OrFZH\n3xDicnpdZRQlgb4ZKMwRo1GsvPkbWHHbtVjzgy8DsjzlOU1d/RhKoytQssIc75svAQAa138Yb3z/\n54gbzVj+0+/A1nxQ9bhznnwQAFB/wcdUn2PUSVPG2hERzRTefRARERHRlJIX5jCfOROUvHwk9HpY\nutpUHT9amFO9QNuFBAFbvvJ9ROxOnPKzH2Dh/XcCGtoTpxtj5fVY4Lar39FERERERERElA67Jfkb\n8gadNMMzef8Qy8rQccud0EXCWHnzN8dHPSUSOPlnP4C1qx27r/gSehadMm1ziVusaFu5Do6Wg3DV\n7xn3vOvAbpS99BT8c+ZrijYCAMVowsbr70LU7sSyX9wA1+G1FjVisoJDHf2arnesvlAY8jTHWOkG\n+3Had7+AklefQ9xkgathHyqef2zK82Qlge31vYhEpy7iOVbSGCuMbPaKG03oWroSoYoabP76jdAP\nDWL1DVdDGp66Q4+zYR9yd21BxylrMegrUz2fHMZYEVEWYWEOEREREU0p2WLWRC2hSSNRRLywSFPH\nHEXSIVhRo/lSoYoabLjrQfQXlaL2oXuw8uZvQIxMvUPL0tmKgndeR8/8pegvrdJ8XaNeQpXPqfk8\nIiIiIiIiolQ52DEnJebLLkXrRy6Hq2EvFv/u9jHPlT/7N5S88ix6FizDnk9cNe1zaVo3EmdVumF8\nnNWi++4AAGz/3DeAFLrzDnpL8Na3boMYj2H1DV+FPhRQfW5bzyAGhlPvKjPdMVbGvm6c+c1PIX/b\nW2hdfRae/+0/EDdZsPD3d0E3ODDl+eGYjO0NvYjFtXUGStYtx9raCGdjPTqXrYZsGomVal53Aeou\n+k84Gw/glDu/P2FHpCOqnjrcLefCj2uaTy4Lc4goi/Dug4iIiIimlKxjjpVRVhmjFBfD1NcNITZ+\nV9HRBDkOV/1eBMurNeVpH22guAIb7noI3QtPRskrz+LMaz8No7930nPKn/s7hEQi5W45NcUu6CS+\n9CAiIiIiIqKZYzXpoEtSsMHCnKkpP/4JQqVVqP7Hn0ZjiOxN9Vj665sRtTnw1nU/RkKa/nWhjuWn\nI2q1o+Tlf47p+pu/5Q0UvvM6OpatRtey1amPf+oZ2P2JL8Ha2Yp5f71X9XlKIoEDLcGUrqkkEugN\nTV9hjq31ENZ/7Qq46/eg/oLL8Mb1d2HQW4K9l30OpkAv5j10j6pxBsMx7Gjohayh23Kywpyiw/9+\n2lauG/P4ti9cg575S1D68tOY848HJhxTNziA0hefxFCeF+0rzlA9F50owsXOzUSURXj3QURERERT\n0utEmPRjWz1bWJiTMQlfMYREAube7kmPczTWQ4pG4K/RGGN1jKjTjVduvR+N6z+EnD3bcNbVl8He\neCD5wbKM8ucfQ8xsQfMZ52m+VqHbwtbBRERERERENOMEQYDdMn6jEQtzpmZyOdByx92Q9QYsv/27\nsLS3YOXN34QuMozNX7sBQwW+GZmHYjCgde05sPR0Infn5sMPKqPdcnZc+fW0r9H1ua9AMZpQ+M7r\nms4LDEbQ2Tek+XrBgShisrZONGq59+/Euq99AraOFuz65P9gy9U/AKSR9bx9l3wGQ3le1Dz2R1ja\nW1SNFxqKYtdBPxQVsVuR6EQxVi8hIQhoX3nmmMcTegM2fu9nCLtycNI9P0bOri1Jxy178Qnoh4fQ\n8MFLNRWD5ThNEAVB9fFERNONdx9EREREpIrtqMUsURBgYpRVxii+YgCApbt90uPchzPP/dXpFeYA\nI4tbm751G3Z98n9g7WzF+q9dgfytG8cdV7B1I6xd7Wg+8wLIZqumaxh1jLAiIiIiIiKi2ZMszsrA\nwhxVck47FXv/+zoYg3584EsfhathLxrOvxStp587o/NoWn8hAKD0pacBAMWvPAtP3S40rbsAgTTX\nRzx2I+bPK0J8xSq4GvZN2VH4WA1tIcQ1Ftkk6yqTCQWbX8eZ3/wUjP0BvHP1D7D7k18GjipMUYwm\nbP/cNyDFolh83+2TjDRWX38Y+5qmjvnqDo7/vPShAHJ3vIO+eYsRceeOez6cW4A3v3sHkEhg1Y1f\ng7HvmA1riQSqnnoIiqRDw/mXqJ4zAORxkxgRZRnefRARERGRKnbze4tZZqOOu04ySD5SmNM1c4U5\nAABBwO5PfhlvXXsbpGgYp33nCyh/5tExh1Qc/jiVGKvqYid3IhIREREREdGscVjGF+bwdao6oiDA\nePX/oG3lOuiHBhAqqcS7V1034/PoWnwqhj25KH7lWUjDQ1j0h7ug6PTY+emvpjWux27EwoociKKA\n6OkjEUl5297SNEYkLuNQR7+mc3qDmY+xKtnwFNZefxUEOY6N37sTDRd+POlxzWd+EL21J6HklWeR\ns/Md1eN3+odwoHXy6K5kBUfet1+FqMhoW7l+4vNOOhU7Pvu/MPd1Y9VNX4cQj40+l7NrC5yH6tC6\n9mxEPHmq5ysJAtwOxlgRUXbh3QcRERERqWIzv9cxx8JuORml+EZaQJu7OyY9zr1/JxRJh2BFTUav\n33T2h/HKrfcjZrFi+Z3XY+F9dwCKAkOgD76NGxAsr0bfvMWaxsxzmZHrMmd0nkRERERERERaJOuY\no9dJSY6kZJx2E5p+dCf2XPZ5vH7DryCbLTM/CUlC8xkfhLE/iJU3fwO2tibUX3AZBr0lKQ/psZtG\ni3IAIHbaSGFOwdY3NY/V1jOIgeHY1AcCCA1GEYnLSZ8zd7Wh+m9/QOGmV2Dq7VJ9/epH/4CVt16D\nuMmMV275HVrXfmDigwVhtLhqyW9uART13X5augfQ1Jm8CGniGKsNAIC2VesmHXv/pZ9Fy9pzkLdj\nMxbdf+fo43OefBAAcOBDl6ueJwC4HUZIIt8CJ6LswndUiIiIiEiVo6OsLCbeRmaS7BtZTLJ0tU14\njCDH4WrYh2B5NRRD5nf99Cw6BRt+/hDWfu8q1P71XtjamxGonAsxHhtpF6yhQ5JeElFTzAgrIiIi\nIiIiml16nQiLUYehSHzMY6Re6fwybPrCNxHTGNmUSU3rLkDN3/8fit56GTGzBXuuuCrlsUaKcjyj\nRTkAEF+8BLLDmTTieypKIoG6lgCWVk/d0SVZ3BMAiNEo1n7/y3A17B19LOzOhb+qFoE5h/9UzcOA\ntxQ4UnCiKFh03+2Y98j9GPbk4ZVbfoeQio1cfbVL0LjuQpS99BTKXnwCjed8RN0nCqChPQS9ToQ3\nZ2zUebLPS4hFUfj2qxjwliBUNmfygQUBb3/jZjgOHcDcR3+P3nknoWfRKSh+9XkEy6rQs2i56jkC\nQJ6TG8WIKPvwHRUiIiIiUsWol2DUSYjEZRbmZNiRjjmWSTrmOBrrIUUj8NdkKMYqiQFfOTbc9SBW\n//BqlLzyLEpeeRayXo+msz6kaZw5xU7uQCQiIiIiIqKs4LAYxhTmGFiYo4leJ6Hc60BdS2DW5uCf\nuwgDRaWwtTVh36WfRcSdk9I4yYpyAACShNia02B75ilY2lsw5C3WNG5wMIrOviEUeCbvKDRRjNWC\n//dzuBr2omXtOQiW18BVvwfuA3vg3fwqvJtfHT0uZrEiUDkPgapamPq6UfLqcwgVV+DVW+7FUIFP\n9Xx3XPm/KH79BSy6/060rP2Apk5I+5sD0EvimC7JyWKs8ra/Df3QIA6ee7GqzV5xqw0bv38XzvrK\nZVh++3fQcvp5EOMx1F94uabNYqIgIMdpUn08EdFM4TsqRERERKSazaJHJCQzyirDEg4nFKt10sIc\nd90uAIC/evoKcwAg6nDjlVvuwyl3fg9lLz6J1rUfQNThVn1+rtOEAvcstLYmIiIiIiIiSsJuNaDD\nPzT6sY6FOZoVuM1oaAtCVhKzMwFBwK7//DJKX3oK+y/+dEpDTFiUc1js9DNheuYpFLy7EQe9l2oe\nv6EthBynCTop+b+vgeHYmAKxI3K3b8LcR+7HQFEpNl1zC2Tze91oDCE/XPV74TqwZ+RPwx7k7t6K\nvJ3vAAB65y3GazfejahT/boNAAznF2HfpZ/F/D//BnMfuQ+7/+srqs9NANjd6MdinQiXzThJjNVL\nAIC2VetVjx0qr8bmr9+Ilbd8ExXPPYa40YzGsz+s+nwAcNkME34PiIhmE99RISIiIiLVbGY9ekNh\ndszJNEFAvKgYlo72CQ9x798JYPoLcwBAMRiw6drbcOgDH0VfzSLV5+klEdXFrmmcGREREREREZE2\nTqth9O96SYSoofsGjdBJIvJdZrT3DU198DRpOvvDaNJYpHHEVEU5wEhhDgDkb30TB8/XXpgTics4\n1N6PORNEeyfrlqMb7MepP74OEAS8de2tY4pygJHNU11LV6Fr6arRx6TwMByH6mDu7ULnyWsgm1KL\nbdr7sStR8cyjmPvI/Th43iUYzveqPldJJLCzoQ9LqnMRGIiMPyCRQNHGDYjaHOhZuEzTvJrXXQDP\n3m2o+fuf0HjWhxC32jWdn8MYKyLKUiwZJCIiIiLVbGY9TAYJksjbyExTfMUw9AchDQ8mfd5dtwuK\npENQRV54RggCupauQtxqU31Klc8Jo54RVkRERERERJQ9rCYdpMMFGXp2y0lZYY516oOmmdNq0Lzu\noKYoBwDkOdWI5Rcif+ubgKKkNL/WngEMDMeSPpcs7mnZL2+Etasdu6+4Cn3zl6q6hmwywz9vMdrW\nnJ1yUQ4AyGYrdnz269BFwlh0/52az48rCrbX96C9d3yxlrNhH6xd7WhffjoSOr3msbd//hq8de2t\n2PHZ/9V0noCRTs5ERNmIdyBEREREpJrNrIfFqP0FNU0tUVICAEnjrAQ5DlfDPgQrqqEYjDM9tSlZ\njDrMLXGhcIosdSIiIiIiIqKZJggC7JaRrjkszEmd02qA1TR7a0ImvYQlc3KxakEh1iwsxOLKHFR6\nHch3mWEx6pCs7EZtUQ4AQBAQWXs6TME+OA/VpTTHBIC6lsC4x4cjcQyExxbsFP/7GZS9+CT65i7C\nniuuSul66Wo8+8Poq16Asg1Pwr13u+bzo3EFg+HxhUhFGzcAANpWrUtpXgmdHk1nX4SYQ1tXZodF\ne+EWEdFM4R0IEREREalmNurGtICmzFGKfAAAS9f4whxHYz2kaGRGYqy0sJn0mF/uwfJ5+fBmwc45\nIiIiIiIiomSOrGUYdHzTPh2zuSHHm2OFIBzpfCTB4zChtMCO+eUenFpbgLWLvVhanYfqYhe8Hgu8\nHov6opzDlHXrAQD5WzemPM/gYBSdx0R+9RwTY2Xu7sDJP/8h4kYz3vrWbSl1lckIUcS2q64DACy5\n+xYgkcjIsEVvvgRF0qFj+WkZGU+tXBdjrIgoe7Ewh4iIiIg0yXfzRe50kH3FAABzd/u459z7dwJA\nRgpzJEH9gtREnFYDFlXk4JR5+ch3mUcXxoiIiIiIiIiykd0yUvjAjjnpKfSYIc7CGoAoCCjMmbwo\nSBJFOK0G+HKtmFvqxtxSt6aiHACInX4mAKAgjcIcAGhoCyEuvxeH1RM8KsZKUbD8p9+GoT+IbV/8\nFgaKK9K6Vrp6Fp2C5tPORe7ud1Hy8tNpj2fq6YRn/050L16OuNWegRmqxxgrIspmvAMhIiIiIk3M\nRt1sT+G4pBwuzLEkK8yp2wUgM4U5NSUurFpQiPnlHhTn2mA365O2e07GYzdiyZxcLK3OQw4XO4iI\niIiIiOh94kjHHAtS78cAACAASURBVBbmpEevk2ZlPcDjMM5IRJHiLcJweRVyd2yGEB8f0aRWJC7j\nUHv/yN9jMkKD0dHnqv/xJxRsfRNtK85EwwUfS3vOmbDjc9+ArNdj0X23Q4yEpz5hEkVvvgwAaFu1\nPgMzU89m0nPNkoiyGu9AiIiIiIiygOI7HGXVPT7Kyl23C4pOj2DF3LSvY7foYdRLyHeZMafYiZPn\n5mPNIi8WV+agrMAOp9UwZvebACDPZcbJNXlYXJULl82Y9hyIiIiIiIiIZpJeJ8Fs0LEwJwO8sxBn\nVTSD8dnhNadDPzwEz74daY3T2jOAgeEYeoNhHAmIchzcj0X33YGw04PNX78RyJIOxIPeEtR99L9g\n7WpHzd/+kNZYRW9uAAC0rVyXgZmpl+viBjIiym68AyEiIiIiygKy93BhTlfbmMeFeAyuhn0Ils+B\nYjCkdQ2dKMJiGp9brpNEeBwmVHgdWFqdh7WLvFg6JxdzipxYPi8fC8o9sFvSuzYRERERERHRbHJY\nDTCwMCdtbrsRphnoXnOE2aCDxzFzRReJ9SOdXvLTjLNKAKhrCYzGWInRKFbcdi2kWBSbv34jIu7c\ndKeaUXsuvwphVw5qH7oXpt6ulMaQhgeRv/VNBCrnYqjQl+EZTi7XaZ7R6xERacU7ECIiIiKibGA2\nI+7JHdcxx9FYDykayUiMlc0yvignGVEU4LQZUZxvS1rIQ0RERERERPR+47AaoNfNXEHJ8UoQBBTm\nzFzXHO8MXgsAlNNOR0IUUbAlvcIcAAgORtHXHwEALPjjXXA17EPD+ZeifYZjntSIW23Y+amroQsP\nYdF9t6c0RsE7b0CKRWe8W47HboLNzPUrIspuLMwhIiIiIsoSis8Hc3cHkEiMPuau2wUAGSnMsass\nzCEiIiIiIiI63jgsekZZZUihx4KZCGESBQGFMxydlXC5MTB3IXL2boc0PJSRMXO3b8LcR3+P/qJS\nvHvVtzIy5nQ4eN7F8M+Zj/J/PYGKpx/WfH7Rmy8BANpmqPAox2HC0uo8LK7KmZHrERGlg3cgRERE\nRERZQikugS4ShiEUGH0ss4U5jKMiIiIiIiKiE5PVrIfJwI45mWAy6OC2G6f9OjlOEwwzGJt1xNCa\n0yHGY8jd+U7aY+kHQjj1x9chIYjY9K3bIJutaY8pCcL0/FuWJLxx/V2IOFxY9ssfIWfXFvXnyjKK\n3noZw568jKxhTUQAkO8y45S5+VhUmQOnlWtdRPT+wMIcIiIiIqIsofhG8rct3e2jj7nrdkHR6RGs\nmJv2+Ha29SUiIiIiIqITlCgI0El8WyxTCnPSLzCZStEMXCMZZd1IFFPB1jfTHmvpL38Ea1c79lxx\nFfpql6Q0hl4Skes0oarIiWU1eViz2IvFldPTJWbIW4yN370TUBSsvuGrI52dVcjZuw3GoH8kxkrM\n/M+ZKAjweiw4tbYA88s9jK4iovcd3oEQEREREWUJxVcCALB0jRTmCPEYXPV7ESyfA8WQ3g4gvSTC\nbNSlPUciIiIiIiIiolynCfppLHSyGGemK08y0po1kPUG5G/dmNY4xS8/jbINT6J37mLsueKLqs8z\nGSQUuC2YW+LCqfPysWaRFwsrclCSb4PDYoAoCLCY9HBZp+fr0710JbZ98VqY/D1YfcPVEKORKc8p\n2rgBANC2al1G5yIJAorzbFhRW4C5pW6ubRHR+xZ/exERERERZYkjHXOO7EZyNNZDikUZY0VERERE\nREREWUUUBBR4LGjpHpiW8b2z1C0HAATL/2/v3sPsrMu70X/XWnM+z2RyJiGZEJCDCCEvgVcbLYWC\n11Uu3WqFYGMRLrFstza8CgRJCJZEQDy8iG1F3LVujsK2CrRF3y0ewgYMUApbg0qBEJDQQJDEJOQw\nmVn7D0sk5DCZZNbMJPl8/mKt9fye5/eEi2fCPd913w1Z89bj0vHog6lZ82o2t7b3+xyljRtyzNeu\nzJbaujw09+qUq/ru8HLI+NaMbK1P7W6OqRrX2ZDV6/sOzeyJp947O+1P/TKT/p/v5bj/uSAPX3hl\nUijsfC8P/jhbauvz0jEnDMj1q4rFjB/ZmINGNqa6ygg6YN+nYw4AAAwTPeMPSvKHUVbt/7E0SQYo\nmKPFLwAAADBwxo5oqMh5i4VCxnTUV+Tcu2v9iX+UJBn1+JI9Wj/ln29L/W9X5T/e95dZN35Sn8e3\nNdXmoJFNux3KSZLOtvrKdS0qFPJvf315Xjns6Ez64Z2Z+t3/a6eHNv1mWVqefyYrp/339NbW7fWl\nG2qrctxhIzN5bItQDrDfEMwBAIBhovf1YM5LbwrmHHrUXp+7RcccAAAAYAA11lWntQL1hpGtdUMe\nyNjyrnclSUb9+8/6vba0YX3e8u0b0t3QlF+//+zdWtM1tqXf1ykWChlToXBUkvTW1OaBBV/Jho7O\nHP31a3Y62mvcz36SZGDGWDXX1+TYqZ1GVgH7HcEcAAAYJnpHj0m5VErDf42yan9yaXqrqrNm0qF7\nfe4mHXMAAACAAVaJYMi4zqEbY/W66uP/W7obmjJ6J2GUXZn6vZtSu+bVPPn+s9Pd0tbn8Z2tdWlp\n3LOA07gKj/za2Dk6D87/SlIs5oSFF6Txxee338ODP0q5UMiLM965V9fqaK7N2w4ZMeShLIBKEMwB\nAIDholTKltFj0/DSiyls6U7bM7/KmkmHpLdm7759VltdSm21ogYAAAAwsEa116dULAzY+RrrqtPa\nVDtg59tTtfW1eeWYGWla8VwaVr6w2+uq1q/NYf/3N7OpuTVPvu/DfR5fSDJ5D7rlvK6+tiodzZX9\n83rlyGPz6Cfmp3btmvz3y/+PlDas3/pZze9eTefSR/PK4W/LpvbOPb7G6Lb6HNU1IlWVGs0FMMQ8\n3QAAYBjpHT8+da+8lNZlT6bUvTmvTj1yr8/ZrFsOAAAAUAGlYjGj2uoH7HxjKziaqb/WnfiOJP0b\nZ3Xod76VmrVr8us/PzdbGpv7PH5Ue0Ma6/aubjN2ALvmNNdXp30Hwahl7/7zPHX6rLQtezL/7QuX\nJuVykmTMQ4tT6O3NihNO2uNrThjZlMMndaRYGLiAF8BwI5gDAADDSO9BE1Ls7cnYJT9JkgEJ5rRU\nYN47AAAAQDJwwZBSoZAxHcMnmNM984+TZLfHWdX87tUc+k/fysbWjjz1nrP6PL5YKGTSmL7DO30Z\n0VqX2gEa/zRlfGuOnNyR5vrta0mPnX9JXn7r9Ey47wd5y63XJ0nG/ewnSZIVJ/7xnl1vXGumjG/d\n4/0C7CsEcwAAYBgpjz8oSTL+/nuTJK8eetRen7OpXsccAAAAoDJaGmvStJddX5JkZFv9sBplVPPW\nI7OhY2RGPbZka4eYXTn0jm+m+rV1+dUZH01Pfd9hpTEdDamvrdrrfRYLhYwZgE5DnS11aWuqTVWp\nmKOndKThTXsrV1XnwXn/M6+NHJujvvWVjP9//1fGPHJf1o2bmLUTp/R7z4dPbM+EUU17vW+AfcHw\n+ekGAACkZ/z4JEn7079Mb1V11kw6dK/P2axjDgAAAFBBA9HpZlznwI1kGghNDTV5+dgTUvfqqrQ8\n+x+7PLb21Vcy9Xs3ZUPHyDx9+pl9nrtUKOTgAeiW87qxIxqyN4OgioVCusa1bH1dXVXK0VNGpLZ6\n2048m9pH5P7Lr0tPTW1OWPg/Uv3a+qw44Y+TfoyhKhUKOWpyR0YPo+5IAJUmmAMAAMNI7/gJW/95\nzaRD0luzd6Ga+pqqVFf5az8AAABQOaM76lPsRzjjzZrqqtPSOLy+WFQsFrLm+HckSUY99rNdHnvY\n7d9I1aYN+eVZH0tvbV2f5x4/smm70MveqKupSkdL39fdmTEdDWl4U9ejupqqHD1lRKrf1MVo9dQj\n88gFV6TY25MkWXHiSbt9nepSMW87pHOv9gqwL1KhBwCAYaT3vzrmJMmrU4/c6/O1NBhjBQAAAFRW\ndVUpI1r3PGwxdph1y3nd5ne8M0ky+tEHd3pM3Ssv5ZC7b81rI8dm2Wl/3uc5q4rFioxwGruH46xK\nxUIm7aR7T2NddY7qGpHSm0JXz5/0Z/n/zvkfWTHjnVl11LTduk5dTSnHTh057AJYAINh7wcXAgAA\nA6Zn/EFb//nVqUft9fmajLECAAAABsHYjoa8vHpDv9eVioWMbq+vwI72Xt0hk7J2/MEZ+fOHU+jZ\nknJp+1+tvuW2r6e0eVOe+NBf7Vbn4wmjmirS3XhES11qq0vZ1N3Tr3UTRzWnZhfde1oba3LEpI4s\nffa36S2Xt77/6zM/ml/no32ev5Bk7IjGTB7bnOqqgesSBLAv0TEHAACGkXJ7R3rrfl+MevVQHXMA\nAACAfUNHS13qavofvBjd3pCq0vD8lWVzQ01eOvaEVL+2Pu2//vl2n9e/tCJd/3p71o2dkGf/9H/r\n83w1VcUcNKoy3YEKhUK/u+bUVpd2az8jWuty2IS2fu+po7k2098yKodOaBPKAQ5ow/OnHAAAHKgK\nhWwZf1B6q6qzZtKhe3eqJE2COQAAAMAgGdvR/9DJno5gGgz1tVX57XFvT5KM/vefbff5ETd/LaXu\n7jzxF/97ylV912Amjm5OqVi5X8+O7WhMoe/Dtpo8tmW39zO6oyFTxrXu1rENtVV56+QROXpKZxrr\n1KYAjLICAIBhZs3Cq/PUL57drfbHu9JYV13RYg8AAADAG43rbEx1VTHrNnRn3YburN/QnZ43jD96\ns+b6mjQP8zHcG9/+jpQLhYz69wfzyw+dv/X9xhefz6T/9d387qDJWX7S6X2ep666lHGdlemW87ra\nmlJGtNZl1ZqNfR7bVFfd7xFiE0Y1ZfOWnjz/0rodfl5dKubgMc0Z19mYYqE/ESGA/ZtgDgAADDd/\ncnJWdK5IdlG42h1N9b6RBAAAAAye6qriNuGTcrmcDZu2ZO2G7qx7rXtrYKe7pzdJMq5z+HbLeV3D\n2NFZPeXwjPjlYylt3JCe/xpBfsRNf5diz5Y8MfvjSanvMU0Hj2kelLDKuBGNuxXMmTK+NYU92M+U\nca3ZsqU3L/72ta3vFf9rjNakMS2prvIlMYA3E8wBAIBhqL25Nq/8ru8iyq40Nw7vb5wBAAAA+7dC\noZCGuuo01FVndPsf3t+4eUvWbehOe3Pt0G1uNzU31GTlsSek/akn0vmLR7Ny+tvT/NwzOfjeu7Jm\n0tQ8/85393mOhtqqjOkYnBBSe3Nt6mpK2bi5Z6fHdDTX7dWf/aET2tLd05tVazamo7k2U8a3GlkF\nsAsiiwAAMAz1t5XwjjQ3KIgAAAAAw09dTVU6W+v3iRHcLY3VefnYE5Mkox57MElyxE1/m0Jvb37x\n4U8ku3EPk8a27FF3mj1RKBQybsTOR2YVkkwZ37LX1zji4I68bUpnjp7SKZQD0Ifh/9MOAAAOQJ2t\n9anai+JUsVAwygoAAABgL5WKxWw4bkZ6q6oz+tEH07LsyUz46T159ZAjsuLtJ/e5vrm+OqPa9v4L\nWP0xpqNhp2OzxnQ0DEiQplgs7BMdjwCGA8EcAAAYhorFQka21e3x+sa6qkGZWw4AAACwv2vsbMuq\nI45J29O/zDF/f2UK5XJ+8ZefSHaj9jJ57N51p9kTNdWljGjdvq5UKhQyaQj2A3CgE8wBAIBham9m\njzc31AzgTgAAAAAOXC2NNXnpmBNSKJcz+rGf5ZXD35b/PP6dfa5ra6xNR8uef/Fqb+xonNWE0U2p\nrS4NwW4ADmyCOQAAMEy1NtWmvqZqj9Y2NxhjBQAAADAQWhqq89KxJ259/Yu//GSf3XKKhUImjxu6\n7jTtzbVpqP1DXam2qpQJo5qGbD8ABzLBHAAAGMZGd+zZDHIdcwAAAAAGRkNdddYecXReGzk2/zn9\nHduEdHakulTM0VNGpLVxaOszY9/QNWfS2OaUin41DDAU9uzrtwAAwKAY3d6QZ/9zbb/WlAqFNNb5\nqz4AAADAQGlqacz3/89/SW+ptMtuOc311Tlyckfq9rAL8kAa01GfZS/+LvW1VXs1Mh2AvTP0PxEA\nAICdqq+tSmtjTdas37zba5oaqlPoo50yAAAAALuvpbE6v127687Go9vqc+jEtmHTmaa6qpSRrXUZ\n1d6gVgQwhARzAABgmBvT0dCvYI4xVgAAAAADq2UX9ZZCksljWzJxdPPgbWg3dY1rTW1Naai3AXBA\nGx5xTQAAYKdGttWn1I9vNTU3VFdwNwAAAAAHnpbGHQdzqorFvLVrxLAM5SQRygEYBgRzAABgmKsq\nFTOitW63j2+u1zEHAAAAYCBVlYppqN12GEljXXWOO2xkOlp2v24DwIFHMAcAAPYBYzoaduu4qmIx\nDXUm1gIAAAAMtDeOs+psrcuxUztTX6sOA8CuCeYAAMA+oL25NrVVfbceNsYKAAAAoDJeH2d18Ojm\nHDV5RKpKftUKQN/8tAAAgH1AoVDIqPb6Po9rbjDGCgAAAKAS2ppqctSkjkwe2zLUWwFgHyKYAwAA\n+4jRuzHOSsccAAAAgMpoqKtOZ1vfX5wCgDcSzAEAgH1EU311mup2HbwRzAEAAAAAgOFDMAcAAPYh\nY3bRNaemqpi6mqpB3A0AAAAAALArgjkAALAPGdVen2KhsMPPmhtqBnk3AAAAAADArgjmAADAPqSm\nupT25todfmaMFQAAAAAADC+COQAAsI8ZvZNxVs31OuYAAAAAAMBwIpgDAAD7mM6WulQVt/+rvI45\nAAAAAAAwvAjmAADAPqZYLGRUe/0279VVl1JTXRqiHQEAAAAAADuyW8Gcxx9/PLNnz97u/R/96Ed5\n//vfnzPOOCO33357kmTz5s351Kc+lQ9+8IM555xz8uyzzyZJli9fnlmzZuWss87KggUL0tvbO3B3\nAQAAB5g3j7NqbjDGCgAAAAAAhps+gzk33HBD5s2bl02bNm3zfnd3d6688sr8wz/8Q2688cZ8+9vf\nzqpVq3L77benoaEht99+e+bNm5crrrgiSXLllVdmzpw5ueWWW1Iul3PvvfdW5o4AAOAA0NpYk/qa\nqq2vjbECAAAAAIDhp6qvAyZOnJjrrrsuF1100TbvP/3005k4cWJaW1uTJMcdd1wefvjhPPXUU5k5\nc2aSpKurK08//XSSZOnSpTn++OOTJDNnzsz999+fU045pc8NjhzZ3L87AgCAA8RbpvTkqedXJ0km\nTWjPiNb6PlYAMJjUNAAAAIB9kZrGwOozmHPqqafmN7/5zXbvr1u3Ls3Nf/iX0djYmHXr1uXwww/P\nj3/845x88sl5/PHHs3LlyvT09KRcLqdQKGw9du3atbu1wZdf3r3jAADgQFOTctau25gk2bxhc17e\nvGWIdwTA60aObFbTAAAAAPY5ahp7Zldhpj6DOTvT1NSU9evXb329fv36NDc35+STT87TTz+ds846\nK9OmTcuRRx6ZUqmUYrG4zbEtLS17emkAACBJfW1V2hprs3lLT6pKfU6pBQAAAAAABtkeV++nTJmS\n5cuXZ/Xq1dm8eXMeeeSRHHvssfn5z3+eE088MbfeemtOO+20TJgwIUlyxBFHZMmSJUmSxYsXZ/r0\n6QNzBwAAcAAb3VGf5vrqod4GAAAAAACwA/3umHP33XfntddeyxlnnJG5c+fm3HPPTblczvvf//6M\nHj061dXVufbaa/O1r30tzc3NWbRoUZLk4osvzvz58/OlL30pXV1dOfXUUwf8ZgAA4EAzsq0+5fJQ\n7wIAAAAAANiRQrk8vMv4ZpcBAMCu9ZbLKRYKQ70NAN7APHYAAABgX6SmsWdGjmze6Wd7PMoKAAAY\nHoRyAAAAAABgeBLMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACA\nChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAA\nAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAA\nAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDM\nAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACA\nCiiUy+XyUG8CAAAAAAAAAAD2NzrmAAAAAAAAAABABQjmAAAAAAAAAABABQjmAAAAAAAAAABABQjm\nAMNWb29vLrvsspxxxhmZPXt2li9fnldeeSXnn39+PvShD+XMM8/Mc8891+eaJFm+fHlmzZqVs846\nKwsWLEhvb+9Q3BIwCB5//PHMnj07SfLLX/4yZ511VmbPnp1zzz03q1at2uZYzwwg2f658cEPfjCz\nZs3KJZdcst1//54bAMDuUNMA9oSaBtAf6hkA+w7BHGDY+uEPf5jNmzfn29/+dj71qU/lqquuyjXX\nXJPTTz89N998c+bMmZNnnnmmzzVJcuWVV2bOnDm55ZZbUi6Xc++99w7FLQEVdsMNN2TevHnZtGlT\nkmTRokWZP39+brzxxpxyyim54YYbtjneMwN483Pjq1/9aj7+8Y/n1ltvzebNm/OTn/xkm+M9NwCA\n3aGmAfSXmgbQH+oZAPsWwRxg2Pq3f/u3/NEf/VGS5JhjjskvfvGLPProo1m5cmXOPvvs3H333Tn+\n+OOTJBdddFFWrFixwzVJsnTp0q3Hzpw5Mw888MAQ3BFQaRMnTsx111239fWXvvSlHH744UmSnp6e\n1NbWJvHMAP7gzc+Nww8/PKtXr065XM769etTVVWVxHMDAOgfNQ2gv9Q0gP5QzwDYtwjmAMPWunXr\n0tTUtPV1qVTK8uXL09LSkn/8x3/M2LFjt35T5POf/3zGjRu3wzVbtmxJuVxOoVBIkjQ2Nmbt2rWD\nezPAoDj11FO3/k9nkowaNSpJ8uijj+amm27K2WefncQzA/iDNz83Jk2alEWLFuXd7353XnnllcyY\nMSOJ5wYA0D9qGkB/qWkA/aGeAbBvqer7kIHT29ubyy+/PL/+9a9TU1OThQsXJknmzp2bQqGQqVOn\nZsGCBSkWi7tcc/DBB2f58uW7XAfs+5qamrJ+/fqtr3t7e9PZ2ZmTTjopSXLSSSfly1/+cp9rqqqq\ntnk+rF+/Pi0tLRXePTBc/Ou//mv+/u//Pl//+tfT0dGxzWeeGcCbLVq0KDfffHOmTp2am2++OVdd\ndVUWLFiw9XPPDThwqWkA/aGmAQwENQ1gd6lnALuipjH0BvVPaEfzC/uaXWjmIRy4pk2blsWLFydJ\nHnvssRx66KE57rjj8tOf/jRJ8vDDD+eQQw7pc02SHHHEEVmyZEmSZPHixZk+ffpg3QYwhO68887c\ndNNNufHGGzNhwoTtPvfMAN6stbV16zfIRo0ald/97nfbfO65AQcuNQ2gP9Q0gL2lpgH0h3oGsCtq\nGkNvUIM5O5pfuLPZhWYeAqecckpqampy5pln5sorr8wll1ySiy++OHfeeWfOPPPM3Hffffmrv/qr\nJH94ZuxoTZJcfPHFue6663LGGWeku7s7p5566lDeGjAIenp6smjRoqxfvz6f+MQnMnv27HzlK19J\n4pkB7NzChQtzwQUX5C/+4i9yyy235IILLkjiuQGoaQD9o6YB7A01DaC/1DOAXVHTGHqDOspqZ/ML\ndzS78POf//wu15h5CPu/YrGYv/mbv9nu/W9+85vbvff6MyPJDtdMnjw5N91008BuEBiWDjrooNx+\n++1JkoceemiHx3hmAG/0xufG9OnTc9ttt213jOcGoKYB9IeaBrAn1DSA/lDPAHaXmsbQG9SOOTua\nX9jX7EIzDwEAAIChpqYBAAAA7IvUNIbeoAZzdjS/sK/ZhWYeAgAAAENNTQMAAADYF6lpDL1CuVwu\nD9bFent7c/nll+fJJ59MuVzO5z73uRSLxcyfPz/d3d3p6urKwoULUyqVctFFF2XOnDkZM2bMdmum\nTJmSZcuW7XAdAAAAwEBT0wAAAAD2RWoaQ29QgzkAAAAAAAAAAHCgGNRRVgAAAAAAAAAAcKAQzAEA\nAAAAAAAAgAqoqvQFuru785nPfCYvvPBCNm/enPPPPz9jxozJggULUlNTk8MPPzyXXnppisVtM0Jz\n587N0qVL09bWli1btqS9vT2XXHJJJkyYUOktAwAAAKSnpyfz5s3LsmXLUigU8tnPfja1tbWZO3du\nCoVCpk6dmgULFqhpAAAAAMPGjuoZhx56aJLkc5/7XCZPnpxZs2Ztt049o3IqHsy566670tbWlmuu\nuSarV6/Oe9/73nR0dGTevHmZNm1avvzlL+fuu+/Oe97znu3WXnjhhZk5c2aS5JFHHsmcOXPyne98\np9JbBgAAAMiPf/zjJMltt92WJUuW5Mtf/nLK5XLmzJmTGTNm5LLLLsu9996bU045Zbu1ahoAAADA\nUNhRPWPRokW56KKL8uyzz+bcc8/d6Vr1jMqoeDDntNNOy6mnnpokKZfLKZVKWblyZaZNm5YkmTZt\nWu69994dBnPeaPr06amurs7y5ctTU1OT+fPnZ9OmTamtrc0VV1yRsWPH5u/+7u/ywx/+MD09PZk1\na1bOPPPMSt8eAAAAsJ86+eST8653vStJsmLFirS0tOSBBx7I8ccfnySZOXNm7r///h0Gc95ITQMA\nAAAYLDuqZ6xfvz6f+MQnsnjx4t0+j3rGwCn2fcjeaWxsTFNTU9atW5dPfvKTmTNnTiZMmJCHHnoo\nye/TWhs2bNitc40YMSKvvvpqrr766syePTs33nhjzj333HzhC1/IE088kcWLF+eOO+7IHXfckWef\nfTblcrmStwYAAADs56qqqnLxxRfniiuuyOmnn55yuZxCoZDk9zWPtWvX7tZ51DQAAACAwfLmesaE\nCRPytre9rd/nUc8YGBXvmJMkL774Yj7+8Y/nrLPOyumnn54jjzwyixYtyt/+7d9m+vTpqampyfe/\n//3cfPPNXfIrcwAAB2BJREFUSZKLL754h+dZsWJFxowZkyeffDLXX399vvGNb6RcLqeqqirLli3L\n0UcfnVKplFKplLlz5w7GrQEAAAD7uauvvjqf/vSn88EPfjCbNm3a+v769evT0tKipgEAAAAMO2+s\nZ/zLv/xLGhoatvlcPWPwVDyYs2rVqpxzzjm57LLLcuKJJyZJfvrTn+YLX/hC2tvbc8UVV2TmzJl5\n5zvfmdNOO22n57n//vtTV1eXMWPGpKurK+ecc06mTZuWp59+Og8//HC6urpy6623pre3Nz09PTnv\nvPNy/fXXp6amptK3CAAAAOyHvve972XlypX52Mc+lvr6+hQKhRx11FFZsmRJZsyYkcWLF+eEE07I\naaedpqYBAAAADAs7qmcUi9sPU1LPGDyFcoV7CS1cuDD33HNPurq6tr73kY98JNdee23q6+szY8aM\nXHDBBdutmzt3bpYuXZq2trYUi8U0NjZmwYIFGT16dJ5//vlcfvnl2bRpUzZu3JhLL700xx57bK6/\n/vr86Ec/Sm9vb2bNmpX3ve99lbw1AAAAYD/22muv5ZJLLsmqVauyZcuWfPSjH82UKVMyf/78dHd3\np6urKwsXLkypVNpmnZoGAAAAMFR2VM84+eSTkyTXXXddOjs7M2vWrO3WqWdUTsWDOQAAAAAAAAAA\ncCDavl8RAAAAAAAAAACw1wRzAAAAAAAAAACgAgRzAAAAAAAAAACgAqoG+4Ld3d35zGc+kxdeeCGb\nN2/O+eefn0MOOSRz585NoVDI1KlTs2DBghSLv88M/fa3v82sWbNy1113pba2NuVyOTNnzsykSZOS\nJMccc0w+9alPDfZtAAAAAAAAAADALg16MOeuu+5KW1tbrrnmmqxevTrvfe9785a3vCVz5szJjBkz\nctlll+Xee+/NKaeckvvuuy9f/OIX8/LLL29d/9xzz+XII4/M1772tcHeOgAAAAAAAAAA7LZBH2V1\n2mmn5a//+q+TJOVyOaVSKUuXLs3xxx+fJJk5c2YeeOCB32+uWMw3v/nNtLW1bV2/dOnSrFy5MrNn\nz85HP/rRPPPMM4N9CwAAAAAAAAAA0KdBD+Y0Njamqakp69atyyc/+cnMmTMn5XI5hUJh6+dr165N\nkrz97W9Pe3v7NutHjhyZ8847LzfeeGM+9rGP5cILLxzsWwAAAAAAAAAAgD4NejAnSV588cV8+MMf\nznve856cfvrpKRb/sI3169enpaVlp2uPOuqo/Mmf/EmSZPr06XnppZdSLpcrvmcAAAAAAAAAAOiP\nQQ/mrFq1Kuecc04uvPDCfOADH0iSHHHEEVmyZEmSZPHixZk+ffpO13/1q1/Nt771rSTJr371q4wd\nO3Zrtx0AAAAAAAAAABguCuVBbjezcOHC3HPPPenq6tr63qWXXpqFCxemu7s7XV1dWbhwYUql0tbP\nTzrppNxzzz2pra3NmjVrcuGFF+a1115LqVTKZZddlilTpgzmLQAAAAAAAAAAQJ8GPZgDAAAAAAAA\nAAAHgkEfZQUAAAAAAAAAAAcCwRwAAAAAAAAAAKgAwRwAAAAAAAAAAKgAwRwAAAAAAAAAAKgAwRwA\nAAAAAAAAAKgAwRwAAACA/dDcuXPzT//0Tzv9/JJLLskLL7wwiDsCAAAAOPAI5gAAAAAcgJYsWZJy\nuTzU2wAAAADYrxXKKjAAAAAA+7xyuZyrrroqP/nJTzJq1Kj09PTkAx/4QJYvX54HH3wwa9asSXt7\ne6677rp897vfzVe+8pVMnDgxN998c55//vlceeWV2bhxY9rb2/PZz342EyZMGOpbAgAAANjn6ZgD\nAAAAsB/4wQ9+kCeeeCL//M//nGuvvTbPPfdcenp68swzz+S2227LD37wg0ycODF33313zjvvvIwa\nNSpf//rX09jYmHnz5uWLX/xivvvd7+YjH/lI5s+fP9S3AwAAALBfqBrqDQAAAACw9x566KH86Z/+\naaqrq9PR0ZGZM2emVCrl4osvzh133JFly5blsccey8SJE7dZ9+yzz+b555/P+eefv/W9devWDfb2\nAQAAAPZLgjkAAAAA+4FCoZDe3t6tr6uqqrJ69eqce+65Ofvss3PqqaemWCzmzVPNe3t7c9BBB+XO\nO+9MkvT09GTVqlWDuncAAACA/ZVRVgAAAAD7gRNPPDHf//73s3nz5qxZsyb33XdfCoVCjj/++Mya\nNSuHHHJI7r///vT09CRJSqVSenp60tXVlTVr1uSRRx5JknznO9/Jpz/96aG8FQAAAID9ho45AAAA\nAPuBk08+OT//+c/zZ3/2Z+ns7MyUKVOycePG/OpXv8rpp5+e6urqHHbYYfnNb36TJHnXu96V8847\nL9/4xjdy7bXXZtGiRdm0aVOamppy9dVXD/HdAAAAAOwfCuU39y8GAAAAAAAAAAD2mlFWAAAAAAAA\nAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAA\nAAAAAABQAYI5AAAAAAAAAABQAf8/+TJBU5zSnn4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low_bid',y2='high_bid', data=df, alpha=0.4)\n", + "plt.title(\"entire history\", fontsize=30)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200', fontsize=30)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close_bid')\n", + "high_index = df.columns.tolist().index('high_bid')\n", + "low_index = df.columns.tolist().index('low_bid')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Create y_scaler to inverse it later\n", + "y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + "t_y = df['close_bid'].values.astype('float32')\n", + "t_y = np.reshape(t_y, (-1, 1))\n", + "y_scaler = y_scaler.fit(t_y)\n", + " \n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back_rows=20)\n", + "y = y[:,target_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 98% training / 1% development / 1% test sets\n", + "train_size = int(len(X) * 0.99)\n", + "trainX = X[:train_size]\n", + "trainY = y[:train_size]\n", + "testX = X[train_size:]\n", + "testY = y[train_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_9 (LSTM) (None, 20, 20) 2960 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 20, 20) 3280 \n", + "_________________________________________________________________\n", + "lstm_11 (LSTM) (None, 20, 10) 1240 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 20, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 4) 240 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 4) 20 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 5 \n", + "=================================================================\n", + "Total params: 7,745\n", + "Trainable params: 7,745\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "\n", + "# create a small LSTM network\n", + "model = Sequential()\n", + "model.add(LSTM(20, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(4, return_sequences=False))\n", + "model.add(Dense(4, kernel_initializer='uniform', activation='relu'))\n", + "model.add(Dense(1, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.26399, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.26399 to 0.17870, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.17870 to 0.07720, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.07720 to 0.02238, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error improved from 0.02238 to 0.01324, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error improved from 0.01324 to 0.01135, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error improved from 0.01135 to 0.00217, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00009: val_mean_squared_error improved from 0.00217 to 0.00062, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00010: val_mean_squared_error improved from 0.00062 to 0.00048, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00011: val_mean_squared_error improved from 0.00048 to 0.00037, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00012: val_mean_squared_error improved from 0.00037 to 0.00028, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00013: val_mean_squared_error improved from 0.00028 to 0.00020, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error did not improve\n", + "Epoch 00016: val_mean_squared_error improved from 0.00020 to 0.00020, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00017: val_mean_squared_error improved from 0.00020 to 0.00018, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error did not improve\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error improved from 0.00018 to 0.00016, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error improved from 0.00016 to 0.00016, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error improved from 0.00016 to 0.00015, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error improved from 0.00015 to 0.00014, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "Epoch 00034: val_mean_squared_error improved from 0.00014 to 0.00013, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00035: val_mean_squared_error improved from 0.00013 to 0.00013, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error improved from 0.00013 to 0.00011, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error improved from 0.00011 to 0.00011, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error improved from 0.00011 to 0.00010, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error improved from 0.00010 to 0.00009, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error improved from 0.00009 to 0.00009, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error improved from 0.00009 to 0.00008, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error did not improve\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error improved from 0.00008 to 0.00008, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error improved from 0.00008 to 0.00007, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error improved from 0.00007 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error improved from 0.00006 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00100: val_mean_squared_error did not improve\n", + "Epoch 00101: val_mean_squared_error improved from 0.00006 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00102: val_mean_squared_error did not improve\n", + "Epoch 00103: val_mean_squared_error did not improve\n", + "Epoch 00104: val_mean_squared_error did not improve\n", + "Epoch 00105: val_mean_squared_error did not improve\n", + "Epoch 00106: val_mean_squared_error did not improve\n", + "Epoch 00107: val_mean_squared_error did not improve\n", + "Epoch 00108: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00109: val_mean_squared_error did not improve\n", + "Epoch 00110: val_mean_squared_error did not improve\n", + "Epoch 00111: val_mean_squared_error did not improve\n", + "Epoch 00112: val_mean_squared_error did not improve\n", + "Epoch 00113: val_mean_squared_error did not improve\n", + "Epoch 00114: val_mean_squared_error did not improve\n", + "Epoch 00115: val_mean_squared_error did not improve\n", + "Epoch 00116: val_mean_squared_error did not improve\n", + "Epoch 00117: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00118: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00119: val_mean_squared_error did not improve\n", + "Epoch 00120: val_mean_squared_error did not improve\n", + "Epoch 00121: val_mean_squared_error did not improve\n", + "Epoch 00122: val_mean_squared_error did not improve\n", + "Epoch 00123: val_mean_squared_error did not improve\n", + "Epoch 00124: val_mean_squared_error did not improve\n", + "Epoch 00125: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00126: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00127: val_mean_squared_error did not improve\n", + "Epoch 00128: val_mean_squared_error improved from 0.00005 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00129: val_mean_squared_error did not improve\n", + "Epoch 00130: val_mean_squared_error did not improve\n", + "Epoch 00131: val_mean_squared_error did not improve\n", + "Epoch 00132: val_mean_squared_error did not improve\n", + "Epoch 00133: val_mean_squared_error did not improve\n", + "Epoch 00134: val_mean_squared_error did not improve\n", + "Epoch 00135: val_mean_squared_error did not improve\n", + "Epoch 00136: val_mean_squared_error did not improve\n", + "Epoch 00137: val_mean_squared_error did not improve\n", + "Epoch 00138: val_mean_squared_error did not improve\n", + "Epoch 00139: val_mean_squared_error did not improve\n", + "Epoch 00140: val_mean_squared_error did not improve\n", + "Epoch 00141: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00142: val_mean_squared_error did not improve\n", + "Epoch 00143: val_mean_squared_error did not improve\n", + "Epoch 00144: val_mean_squared_error did not improve\n", + "Epoch 00145: val_mean_squared_error did not improve\n", + "Epoch 00146: val_mean_squared_error did not improve\n", + "Epoch 00147: val_mean_squared_error did not improve\n", + "Epoch 00148: val_mean_squared_error did not improve\n", + "Epoch 00149: val_mean_squared_error did not improve\n", + "Epoch 00150: val_mean_squared_error did not improve\n", + "Epoch 00151: val_mean_squared_error did not improve\n", + "Epoch 00152: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00153: val_mean_squared_error did not improve\n", + "Epoch 00154: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00155: val_mean_squared_error did not improve\n", + "Epoch 00156: val_mean_squared_error did not improve\n", + "Epoch 00157: val_mean_squared_error did not improve\n", + "Epoch 00158: val_mean_squared_error did not improve\n", + "Epoch 00159: val_mean_squared_error did not improve\n", + "Epoch 00160: val_mean_squared_error did not improve\n", + "Epoch 00161: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00162: val_mean_squared_error did not improve\n", + "Epoch 00163: val_mean_squared_error did not improve\n", + "Epoch 00164: val_mean_squared_error did not improve\n", + "Epoch 00165: val_mean_squared_error did not improve\n", + "Epoch 00166: val_mean_squared_error did not improve\n", + "Epoch 00167: val_mean_squared_error did not improve\n", + "Epoch 00168: val_mean_squared_error did not improve\n", + "Epoch 00169: val_mean_squared_error did not improve\n", + "Epoch 00170: val_mean_squared_error did not improve\n", + "Epoch 00171: val_mean_squared_error did not improve\n", + "Epoch 00172: val_mean_squared_error did not improve\n", + "Epoch 00173: val_mean_squared_error did not improve\n", + "Epoch 00174: val_mean_squared_error improved from 0.00004 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00175: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00176: val_mean_squared_error did not improve\n", + "Epoch 00177: val_mean_squared_error did not improve\n", + "Epoch 00178: val_mean_squared_error did not improve\n", + "Epoch 00179: val_mean_squared_error did not improve\n", + "Epoch 00180: val_mean_squared_error did not improve\n", + "Epoch 00181: val_mean_squared_error did not improve\n", + "Epoch 00182: val_mean_squared_error did not improve\n", + "Epoch 00183: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00184: val_mean_squared_error did not improve\n", + "Epoch 00185: val_mean_squared_error did not improve\n", + "Epoch 00186: val_mean_squared_error did not improve\n", + "Epoch 00187: val_mean_squared_error did not improve\n", + "Epoch 00188: val_mean_squared_error did not improve\n", + "Epoch 00189: val_mean_squared_error did not improve\n", + "Epoch 00190: val_mean_squared_error did not improve\n", + "Epoch 00191: val_mean_squared_error did not improve\n", + "Epoch 00192: val_mean_squared_error did not improve\n", + "Epoch 00193: val_mean_squared_error did not improve\n", + "Epoch 00194: val_mean_squared_error did not improve\n", + "Epoch 00195: val_mean_squared_error did not improve\n", + "Epoch 00196: val_mean_squared_error did not improve\n", + "Epoch 00197: val_mean_squared_error did not improve\n", + "Epoch 00198: val_mean_squared_error did not improve\n", + "Epoch 00199: val_mean_squared_error did not improve\n", + "Wall time: 8min 11s\n" + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training.\n", + "#simname = \"15_min_replication_1\"\n", + "from keras.callbacks import ModelCheckpoint\n", + "checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "\"\"\"\n", + "it seems batch size controls convergence speed a lot! Batch size tells how many examples are propagated through the network.\n", + "Weights are adjusted based on results with these examples. This is useful if the full dataset takes too much memory\n", + "It also speeds up training, as you will converge quicker (dont have to wait for a full iteration of each example to adjust weights).\n", + "\"\"\"\n", + "callbacks_list = [checkpoint]\n", + "%time history = model.fit(trainX, trainY, epochs=200, batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 200\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACO8AAAJoCAYAAAA0mVe1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WmYpGV99+9vVVcv1dOzMTMsCiI7KBoERNRBHyWKC7Io\ni0Q2IRr/xpjHJQmo8CAicgQxJBiMII5CJKjjCgJucLiMijIRBXFgQGNEZBtn66W6u7rq/6JnSkdm\nYJbuvgfqPF/dXXXfVb+eoy9fcHy8rlKz2WwGAAAAAAAAAACYcuWiBwAAAAAAAAAAgHYl3gEAAAAA\nAAAAgIKIdwAAAAAAAAAAoCDiHQAAAAAAAAAAKIh4BwAAAAAAAAAACiLeAQAAAAAAAACAgoh3AAAA\nAJ5A7rvvvuy1117Za6+9cvbZZxc9DgAAAABbSLwDAAAAAAAAAAAFEe8AAAAAAAAAAEBBxDsAAAAA\nAAAAAFAQ8Q4AAAAAAAAAABREvAMAAAAAAAAAAAWpFD0AAAAAABNr6dKl+cxnPpNbbrklDzzwQJrN\nZrbddts897nPzQknnJB99913g8/W6/V89atfzfXXX58777wzK1euzLRp0/KUpzwlBx98cE444YTs\nvPPOE/4sAAAAQLsqNZvNZtFDAAAAALBx7rvvvhx66KFJkuOPPz7nnntu671ms5mLLrooV1xxRRqN\nxnqfL5VKecMb3pAzzzwzlcq6/7+u1atX581vfnP++7//e4Pf39HRkfe+9715wxveMGHPAgAAALQz\nO+8AAAAAPEmcf/75ufLKK5Mks2fPzqmnnpoDDjgg5XI5P//5z/PJT34yDz30UP7zP/8zAwMDueCC\nC9Z5/kMf+lArvjnmmGPyspe9LHPmzMnKlSvz4x//OFdddVUGBwdz3nnn5YADDsjee+89Ic8CAAAA\ntDPxDgAAAMCTwOLFi1vhzi677JIrr7wy2267bev9Aw44IEcffXROO+20/OIXv8iXvvSlvPSlL83L\nX/7yJMnIyEiuvfbaJMmxxx6b8847b53Pnz9/fg444IC8+c1vTqPRyOc///mcddZZW/wsAAAAQLsT\n7wAAAAA8CVxxxRWt63/+539eJ9xZa9asWbn44ovzile8ImNjY7n88stb8c6qVasyMjKSJNl5553X\n+x0vfvGLc9JJJ2XmzJl59rOf3Xp9S54FAAAAaHfiHQAAAIAnuHq9nh/96EdJkmc+85mPGcc87WlP\ny/z58/Od73wnt99+e5YvX57Zs2dnzpw5mTVrVlasWJGPf/zjmTt3bl75ylemp6dnneff9773Peoz\nt+RZAAAAgHZXLnoAAAAAALbM/fffn4GBgSTJX/zFXzzu/WvvaTabWbp0aZKkVCrlr//6r5Mkq1ev\nzhlnnJGDDjoop512Wi6//PL88pe/TLPZXO/nbcmzAAAAAO3OzjsAAAAAT3ArVqxoXc+ZM+dx7587\nd27reuXKla3rN73pTWk0Grn00ktTq9UyPDycRYsWZdGiRfnwhz+cbbfdNocddlhOPfXU7Ljjjut8\n5pY8CwAAANDO7LwDAAAA8AS3qbvajI2Nta5LpdI67/3N3/xNvvvd7+aDH/xgDj300EybNq313kMP\nPZSrrroqr3rVq3LTTTc96nO35FkAAACAdmXnHQAAAIAnuJkzZ7auly1b9rj3/+k9s2bNWu/nHXPM\nMTnmmGNSr9dz++23Z9GiRbnxxhuzdOnSDA8P54wzzshNN92Uvr6+CXsWAAAAoB3ZeQcAAADgCW6n\nnXZKb29vkuRnP/vZ495/2223ta532WWX1vUDDzyQH/zgB6nX663XKpVKnvOc5+Rtb3tbrr322hx2\n2GFJxo/bWrx48YQ8CwAAANDOxDsAAAAAT3AdHR05+OCDkyS/+MUvcscdd2zw3t/85jf54Q9/mCTZ\ne++9M2fOnCTJpZdemhe/+MV54xvfmJ/85CfrfbZUKuWQQw5p/TwyMrLFzwIAAAC0O/EOAAAAwJPA\nG9/4xtb1P/7jP+aRRx551D0rV67MO97xjoyNjSVJTjvttNZ7L3nJS1rXH/nIRzI8PPyo5xuNRq6/\n/vokSblczjOe8YwtfhYAAACg3VWKHgAAAACALXfQQQflpJNOylVXXZV77703RxxxRE455ZQccMAB\nKZVKuf3227NgwYI88MADSZLDDz88Rx55ZOv5ffbZJ4cddli+/vWv5+c//3mOOOKInHzyydl1113T\n2dmZ++67L9dcc01++tOfJkmOPvroPPWpT93iZwEAAADaXanZbDaLHgIAAACAjXPffffl0EMPTZIc\nf/zxOffcc1vvNRqNXHjhhVmwYEE29J98SqVSTj311LzrXe9KZ2fnOu+tXr06b3nLW3Lrrbc+5gwv\nf/nLc9FFF6Wrq2tCngUAAABoZ+IdAAAAgCeQx4p31lqyZEmuvvrq3HLLLXnwwQdTLpfzlKc8Jc97\n3vNy7LHHZu+9997g5zcajVx33XW5/vrr88tf/jLLli1LR0dH5s6dm/333z9HHnlk5s+fP+HPAgAA\nALQr8Q4AAAAAAAAAABSkXPQAAAAAAAAAAADQrsQ7AAAAAAAAAABQEPEOAAAAAAAAAAAURLwDAAAA\nAAAAAAAFEe8AAAAAAAAAAEBBKkUPsKUefnh10SPwZ2bP7s3y5YNFjwFMMWsf2pO1D+3J2of2ZO1D\ne7L2oT1Z+9CerH1oT9b+1Jk3b/oG37PzDhOuUukoegSgANY+tCdrH9qTtQ/tydqH9mTtQ3uy9qE9\nWfvQnqz9rYN4BwAAAAAAAAAACiLeAQAAAAAAAACAgoh3AAAAAAAAAACgIOIdAAAAAAAAAAAoiHgH\nAAAAAAAAAAAKIt4BAAAAAAAAAICCiHcAAAAAAAAAAKAg4h0AAAAAAAAAACiIeAcAAAAAAAAAAAoi\n3gEAAAAAAAAAgIKIdwAAAAAAAAAAoCDiHQAAAAAAAAAAKIh4BwAAAAAAAAAACiLeAQAAAAAAAACA\ngoh3AAAAAAAAAACgIOIdAAAAAAAAAAAoiHgHAAAAAAAAAAAKIt4BAAAAAAAAAICCiHcAAAAAAAAA\nAKAg4h0AAAAAAAAAACiIeAcAAAAAAAAAAAoi3gEAAAAAAAAAgIKId5hQt/x+cd5xw/tTq9eKHgUA\nAAAAAAAAYKsn3mFC/Xb17/K7VQ/k4aFlRY8CAAAAAAAAALDVE+8woaqVniTJ4OhQwZMAAAAAAAAA\nAGz9xDtMqN7O3iTJUH3T45177lk60eNskre97c2ZP//AvPSlLyh0DgAAAAAAAACgfYh3mFCtnXfq\ntY1+pr+/Pxdf/OGcfvqJkzUWAAAAAAAAAMBWqVL0ADy5VCvVJMlgfXCjn7nkko/ka1/76mSNBAAA\nAAAAAACw1RLvMKF618Q7Q5uw806j0ZiscTbJRz96WdEjAAAAAAAAAABtxrFZTKjezrXxzlDBkwAA\nAAAAAAAAbP3EO0yoaqUnSTI4Kt4BAAAAAAAAAHg8js1iQv3x2KzHj3euuOLjWbDg8nVemz//wCTJ\nfvvtn49+9LJ88IPn5IYbrsvuu++ZT3ziylx++cdy443XZfXq1ZkzZ15e8pJD89a3vr31/PDwcL7+\n9evzwx8uytKld2XlyhWp1+uZPn1Gdtllt7zwhfPzmtccnWq1+qh53va2N+e22/47XV1duemmH6x3\nrre//Z057ri/yne+c1OuvfbLufvuu7J69arMnr1N9t//wBx33AnZc8+9N+0fDQAAAAAAAABoW+Id\nJlR3R3fKpXIG67UJ/+wPfODsfPvb32j9/Pvf/y49PT2tn++6a0nOPPNdeeihBx/17B/+sCx/+MOy\nLF7843zxiwtzySX/kXnztt3kGcbGGnn/+9+Xb37zxnVef+ihB3PjjV/LN75xQ9797jNzxBFHb/Jn\nAwAAAAAAAADtR7zDhCqVSpnWWc3gRuy8c9RRr8uLXvR/8olP/EcWLfpekmTBgs8kSarV3nXu/dWv\n7sk999ydZz3rL3LSSW9MT09PFi36Xl71qiOSJCtXrsg73vG3WbVqZTo6OvKqV70mL3jB/MyePSer\nV6/M0qV353OfuzorVqzIfff9bz760Yvz/vefv8m/3zXXXJVly5bl6U/fJccd91fZbbc9snr1qtxw\nw7X59re/mUajkYsvvjAHHfT8bL/99pv8+QAAAAAAAABAexHvMOF6u3ozNPL48c6cOXMzZ87czJgx\ns/XaHnvstd57G41GnvrUHXPxxf+e7u7x3Xb23//A1vuf/ezVWbVqZZLkb//273PccX+1zvPPf/78\nvPKVh+ekk45Lf39/vve976Rer6dS2bQlsGzZshxwwEH553/+l3R3d7deP/jgF2T69Bn58pe/kJGR\nkXzrWzfmxBNP3aTPBgAAAAAAAADaT7noAXjymdZZzdBG7LyzqV75ysNb4c6fe+SRhzN37rzMmTMn\nr33tceu9Z968bfOc5xyQJBkZGW7FPpvq//7fd68T7qx15JGvbV3fc8/SzfpsAAAAAAAAAKC92Hln\nI33upnvykyUPFT3GlHru3tvmuJfuvsnPTevqzUhjNPVGPZXyxP2JPfOZz9rge+95z/9LMr5DT7m8\n4SZtm23mtK5HRkY3eYZ587bNLrvsut73nvrUHVvXg4ODm/zZAAAAAAAAAED7Ee8w4aZ19iZJhuq1\nTO/qm7DP3W677R73nrXhTr1ezwMP/D733/+7/Pa3v8m9996TX/zi9tx77z2te5vNxibPsP32O2zw\nvWq1t3U9Nja2yZ8NAAAAAAAAALQf8c5GOu6lu2/WLjTtqLermiQZrA9NaLzT2/vYn1Wr1fLFL34+\n3/rWjbn33nvWG9CUy+U0Gpse7az1p4HOnyuVSq3rZrO52d8BAAAAAAAAALQP8Q4Trq9rPHAZHB2a\n0M/9kzbmUe6//3d55zvflvvu+23rtc7Ozuy009Oy8867ZK+99s5++x2Qr3/9+nzpS5+f0LkAAAAA\nAAAAADaXeIcJ19s5vvPOUH1i453Hcs45722FO3/5l4flmGOOz957PyOVyrp/4l/5yhembCYAAAAA\nAAAAgMcj3mHCTesc33lnquKdJUvuzJ133pEk2X//A3POOR/c4L0PPvjAlMwEAAAAAAAAALAxykUP\nwJPPtLXHZm1kvFN6rPOwNsKfHpW11177bPC+3//+/tx++89aP4+NjW3R9wIAAAAAAAAAbCnxDhNu\nWteaY7NGaxt1f1dXV+t6cHBwk79v5sxZretbb70l9Xr9UfcsW/ZIzjrrjIyOjrZeGxkZ2eTvAgAA\nAAAAAACYSI7NYsKtPTZrY3femTNnbuv6ssv+Pa94xatTLpez5557b9Tzz372fpkzZ26WLXskS5fe\nnb//+/8vr33tcdl++x2yatXK3Hbbf+drX/tKVqxYsc5zAwP9G/kbAQAAAAAAAABMDvEOE25Tj82a\nP/9F+dSnPpGxsbEsXPjZLFz42Wy33fb5wheu26jnu7u7c9ZZ5+af/ukdGR4ezs9+9tP87Gc/fdR9\nO+30tBx++JH52McuSZL8+te/yrOe9Rcb+VsBAAAAAAAAAEy8SYt3Go1GzjnnnNx1113p6urKeeed\nl5133rn1/nXXXZdPf/rT6ejoyJ577plzzjkn5XI5Rx99dPr6+pIkO+64Yz70oQ9N1ohMkmmda47N\n2sh4Z4899soFF1yUT3/6k7n33nvSaIylUqmkVtu4Y7eS5MADD8qCBZ/Jf/3Xf+bWW3+SRx55KMn4\nkVq77LJrXvKSv8xhh70yY2NjWbDg8tRqtdx00zdzxBFHb/ovCAAAAAAAAAAwQUrNZrM5GR/8jW98\nIzfddFMuuOCC3Hbbbfn4xz+ej33sY0mSWq2Www8/PNdee22q1Wre+c535tWvfnXmz5+f448/Pl/+\n8pc3+nsefnj1ZIzPFpi5TU9OXPj27D17j/zdc95U9DjAFJk3b7r/TYY2ZO1De7L2oT1Z+9CerH1o\nT9Y+tCdrH9qTtT915s2bvsH3ypP1pYsXL84hhxySJNlvv/1yxx13tN7r6urKNddck2p1fIeWer2e\n7u7uLFmyJENDQznttNNy8skn57bbbpus8ZhEXR2d6SxXMlTf+J1zAAAAAAAAAADa0aQdm9Xf3986\n/ipJOjo6Uq/XU6lUUi6XM3fu3CTJVVddlcHBwbzwhS/M3XffndNPPz3HHnts/ud//idvetObcuON\nN6ZS2fCYs2f3plLpmKxfg800ras3I83hxyzHgCcfax7ak7UP7cnah/Zk7UN7svahPVn70J6sfWhP\n1n7xJi3e6evry8DAQOvnRqOxToTTaDRy4YUX5te//nUuueSSlEql7LLLLtl5551b17NmzcrDDz+c\nHXbYYYPfs3z54GT9CmymefOmp7vck9XDA7bXgjZiSz1oT9Y+tCdrH9qTtQ/tydqH9mTtQ3uy9qE9\nWftTp5Bjs/bff/9897vfTZLcdttt2XPPPdd5/+yzz87w8HAuvfTS1vFZCxcuzAUXXJAkefDBB9Pf\n35958+ZN1ohMot5KNYP1oTSbzaJHAQAAAAAAAADYak3azjsve9nLsmjRorz+9a9Ps9nM+eefn2uv\nvTaDg4PZd999s3Dhwhx44IE55ZRTkiQnn3xyjjnmmJx55pk54YQTUiqVcv755z/mkVlsvaqdPWk0\nGxlpjKa7o6vocQAAAAAAAAAAtkqTVsaUy+Wce+6567y22267ta6XLFmy3ucuuuiiyRqJKTLWaKa3\nMr6b0uDooHgHAAAAAAAAAGADJu3YLNrTtxffl5P+3w3pTHeSZKheK3giAAAAAAAAAICtl3iHCfWH\n1bWsHhxNfbQjSTJYHyp4IgAAAAAAAACArZd4hwk1u298x51mffxEtiHxDgAAAAAAAADABol3mFCz\n1sQ79eHxeGdwVLwDAAAAAAAAALAh4h0m1Ozp4/HOyPD4n9ZQvVbkOAAAAAAAAAAAWzXxDhNq7c47\ntaHxP63B+mCR4wAAAAAAAAAAbNXEO0yomX1dSZLBgfGf7bwDAAAAAAAAALBh4h0mVKWjnFl93env\nbyZJButDBU8EAAAAAAAAALD1Eu8w4baZ2ZNVq8avh0bFOwAAAAAAAAAAGyLeYcJtM6Mnw7VSEjvv\nAAAAAAAAAAA8FvEOE27OzJ4k5XSVuzJUrxU9DgAAAAAAAADAVku8w4SbM7OaJOkq99h5BwAAAAAA\nAADgMYh3mHDbzOhJklSaXRkS7wAAAAAAAAAAbJB4hwk3fmxWUm52pVYfTqPZKHgiAAAAAAAAAICt\nk3iHCbc23mnWK2mmmVq9tlHP3XPP0skca4v8/vf3Z3BwoOgxAAAAAAAAAIAnGfEOE27tsVmNeiVJ\nMvg48U5/f38uvvjDOf30Eyd9tk01MjKSBQsuz4knHpuVK1cWPQ4AAAAAAAAA8CRTKXoAnnxmTOtK\npaOU0eGOpCsZqg895v2XXPKRfO1rX52i6TbN1VdfmSuu+HjRYwAAAAAAAAAAT1J23mHClUqlzOrr\nzkht/M9rcPSx451GozEVY22WsbGxokcAAAAAAAAAAJ7ExDtMill93akNjf95Pd7OOwAAAAAAAAAA\n7Uq8w6SYNb07jfr4qWyD9VrB0wAAAAAAAAAAbJ0qRQ/Ak9Osvq40H+hMkgzWB9d7zxVXfDwLFly+\nzmvz5x+YJNlvv/3z0Y9ets57t9zyw1x//Vdzxx23Z/nyP6Srqzs77rhTnv/8F+Z1rzs+s2bN2uA8\nDz/8UL74xc/nllt+mN/+9n9Tr49mxoyZ2W23PfLCFx6Sww8/It3dPa37r7/+2px//vvX+Yxjjz0i\nSbL99jtk4cJrN/JfAgAAAAAAAABgw8Q7TIrZ07uTsfE/r6Et3HlnaGgoH/jA2fnud29e5/WRkZEs\nWXJnliy5M5/73NU566wPZP78Fz3q+cWLf5L3vOfdGRgYWOf1ZcseybJlj+THP/5h/uu/rspHPvLR\nPO1pO2/RrAAAAAAAAAAAm0K8w6SY1dedZn3NzjujQ+u956ijXpcXvej/5BOf+I8sWvS9JMmCBZ9J\nklSrvUmSRqORM854ZxYv/kmS5AUvOCSHHfaq7LDDDhkcHMzixT/Jl770+fT39+e97/2HXHTRJTnw\nwINa37F69eqcddYZGRgYyKxZs/OGN5ySffZ5Rrq6uvLggw/ka1/7an70ox/kgQd+n/e//335xCeu\nTKlUyvz5L8qCBZ/Jl7/8hXzlK19Mklx44cWZO3deKpXOyflHAwAAAAAAAADajniHSTG770933ll/\nvDNnztzMmTM3M2bMbL22xx57rXPPwoXXtMKdd7/7zBx11OvWef/AAw/K4Ycfmbe+9fQsW7Ys55//\n/nzuc19JpTL+3d///neyatXKJMn551+YZz97v9azz3jGvnnJS/4yZ511Rm6++Vu5665f5q67lmTv\nvffJjBkzM2PGzGyzzZzW/U9/+q7ZYYenbO4/CQAAAAAAAADAo5SLHoAnp1nT/7jzzobincfTaDRy\nzTXjO/EcfPALHhXurPXUp+6Yt7zl75IkDz30YL7znZta7y1b9kjreqednrbe508++Y056qhj8ta3\n/n2mT5++WbMCAAAAAAAAAGwOO+9spC/ec11++tDtRY8xpZ6z7bPy2t0P36xnZ/V1JY2OpFnK4GbG\nO/feuzQPPfRgkuS5z33eY9578MEvaF3feutPcuihL0+S7Lzz01uvv+c9/5C3v/2d2WefZ67z7B57\n7JV3v/uMzZoRAAAAAAAAAGBLiHeYFD1dlVS7Kyk1OjNYr23WZ9x9912t60su+Zdccsm/bNRz99//\nu9b1858/P7vttkfuvXdpbr/9Z3nTm07J3Lnz8tznPi8HHnhQnvvc561zNBYAAAAAAAAAwFQS72yk\n1+5++GbvQtOuZvV1Z0W9kqHRzdt5Z+XKFZv13OrVq1rXlUolF130b7nggg/kRz/6QZLkkUcezg03\nXJcbbrgupVIp++zzzLziFa/Oa15zVDo7OzfrOwEAAAAAAAAANod4h0kze3p3/lCvbPaxWWNjY63r\nd73rjOy777M26rnu7u51fp47d14+/OF/y69+dU9uvvnb+eEPF+Xuu5ek0Wik2WzmzjvvyJ133pGv\nfOWL+dd//VhmzZq1WfMCAAAAAAAAAGwq8Q6TZlZfd5qjnRltrMpoo57O8qb9uU2fPqN1PW1aX/bY\nY68tmmfXXXfPrrvuntNP/5usWrUqP/3prfnRj36Qm2/+Vvr7+3PvvUvzsY/9W8488+wt+h4AAAAA\nAAAAgI1VLnoAnrxmT+9OxsaDnVq9tsnP77rrbq3rO++8/THvXb58eT75yctyww3XZenSu1uvj46O\n5le/ujdLlvxynftnzJiRF7/4pfmnf3pfPvWp/0pf3/QkyQ9+8P1NnhMAAAAAAAAAYHOJd5g0s/q6\n06x3JkkGRwc3eF+pVFrv6/vs88zMmDEzSfLNb96Y/v7+DX7GF77w2Xzyk5flgx88J9///ndar594\n4rE5+eTj8973/sMGn91++x2yyy67JklGRobXea9ctkQAAAAAAAAAgMmjTGDSzOrrTnNsTbzzGDvv\ndHV1ta4HB/8Y+XR2duZ1rzsuSbJy5cp84ANnZWRk5FHP//znt+Xqq69KknR3d+c1rzm69d4LXnBI\nkuTBBx/INdf853q//ze/+Z/cffeSJMneez9znfc6Oztb10NDGw6QAAAAAAAAAAA2R6XoAXjymjW9\nK6mP/4kN1Yc2eN+cOXNb15dd9u95xStenXK5nD333DsnnnhqFi36Xu6+e0kWLfpe3vjGv8qxx56Q\n3XffM/39q3PrrT/Ol770+daOOW95y99l7tw/ft4JJ5yYG264Nv39/fn3f//X3H77z/LSl7482223\nfQYG+vPLX/4iCxdek+Hh4ZTL5ZxyymkbnO1Tn7oir3/9G9JoNLPvvs+akH8jAAAAAAAAAKC9lZrN\nZrPoIbbEww+vLnoE/sy8edPz8MOr84dVtfzTwmvS9fQ788Zn/lUO3G6/9d6/dOld+eu/PjljY2Ot\n17bbbvt84QvXJUlWrlyRs88+M4sX/2SD39nR0ZHTT/+bnHzyaY96b/Hin+S97/3H9Pdv+G+lp6cn\n73rXGXnlKw9f5/VHHnkkJ5zw2nV23alUKvnmN7+3zq48wB/XPtBerH1oT9Y+tCdrH9qTtQ/tydqH\n9mTtQ3uy9qfOvHnTN/ienXeYNDOmbdzOO3vssVcuuOCifPrTn8y9996TRmMslUoltVotPT09mTlz\nVv71Xz+W73//u/nGN27IL35xe5YvX54k2W677bL//gfmta89Lrvttvt6P/+AA56bq69emC99aWF+\n/OMf5X//9zcZHBzItGl92X77HfK85z0/Rx31umy33faPenbu3Lm5+OJLc9lll+auu+7MyMhIttlm\nTh588IHsuONOE/CvBAAAAAAAAAC0MzvvMOH+tMz7+wVfSH3nW3Lkrq/My5/+koInAyaTKhfak7UP\n7cnah/Zk7UN7svahPVn70J6sfWhP1v7Ueaydd8pTOAdtaHrXtCTJQH3wce4EAAAAAAAAAGg/4h0m\n1czqeLyzeli8AwAAAAAAAADw58Q7TKrZvePxzqraQMGTAAAAAAAAAABsfcQ7TKo5feNnttl5BwAA\nAAAAAADg0cQ7TKo506el2ShnsD5U9CgAAAAAAAAAAFsd8Q6Tavb07qTemdpYrehRAAAAAAAAAAC2\nOuIdJtXsvu40xyoZaQwXPQoAAAAAAAAAwFZHvMOkmjW9O816Z+oZTrPZLHocAAAAAAAAAICtiniH\nSTWtp5JSozMpNTPSGC16HAAAAAAAAACArYp4h0lVKpXSWepOkgyODhY8DQAAAAAAAADA1kW8w6Tr\n6ehJkgyMDBU8CQAAAAAAAADA1kW8w6TrrVSTJA/3ry54EgAAAAAAAACArYt4h0nX19WbJFnWv6rg\nSQAAAAAAAAAAti7iHSbd9O7xeOcPA/0FTwIAAAAAAAAAsHUR7zDpZvVOS5KsqIl3AAAAAAAAAAD+\nlHiHSTend3qSZNXwYMGTAAAAAAAAAABsXcQ7TLo508fjnYGRoYInAQAAAAAAAADYuoh3mHTbTp+R\nJBmsi3civ82KAAAgAElEQVQAAAAAAAAAAP6UeIdJN6valyQZHqsVPAkAAAAAAAAAwNZFvMOk6+no\nTpKMNocLngQAAAAAAAAAYOsi3mHSdZQ7UmpU0iiNZGR0rOhxAAAAAAAAAAC2GuIdpkRnupPKaFb0\n230HAAAAAAAAAGAt8Q5ToqvcnVJHPctXi3cAAAAAAAAAANYS7zAlejqqKVXq+cPqWtGjAAAAAAAA\nAABsNcQ7TInezmqS5OHVqwueBAAAAAAAAABg6yHeYUpM7+5NkvxhQLwDAAAAAAAAALCWeIcpMbNn\nWpJk+WB/wZMAAAAAAAAAAGw9xDtMiZnV8Xhn5dBAwZMAAAAAAAAAAGw9xDtMiWmd48dmrR4ZLHgS\nAAAAAAAAAICth3iHKdFbqSZJBkaH0mw2C54GAAAAAAAAAGDrIN5hSlQrPUmSRmkkA7V6wdMAAAAA\nAAAAAGwdxDtMieqanXfSUc+K/uFihwEAAAAAAAAA2EqId5gSvZ3j8U6pMpoVq8U7AAAAAAAAAACJ\neIcp0tvaeWc0y+28AwAAAAAAAACQRLzDFKlWepIkpUrdzjsAAAAAAAAAAGuId5gS3R3dKaWUdIxm\nRf9I0eMAAAAAAAAAAGwVxDtMiVKplGqlmlJHPcvtvAMAAAAAAAAAkES8wxTq7aymVBnNin7xDgAA\nAAAAAABAIt5hCvVWqilV6lku3gEAAAAAAAAASCLeYQr1VqpJeSyrBmsZazSKHgcAAAAAAAAAoHDi\nHaZMtdKTJGmWR7NqYLTgaQAAAAAAAAAAiifeYcr0dlaTJKXKaJavdnQWAAAAAAAAAIB4hylTrYzH\nO+moZ0W/eAcAAAAAAAAAQLzDlFkb79h5BwAAAAAAAABgnHiHKdO7Nt6x8w4AAAAAAAAAQBLxDlOo\nt9IzftExmhV23gEAAAAAAAAAEO8wdaqdfzw2y847AAAAAAAAAADiHabQ2mOzOrsbWd4/UvA0AAAA\nAAAAAADFq0zWBzcajZxzzjm566670tXVlfPOOy8777xz6/3rrrsun/70p9PR0ZE999wz55xzTpI8\n5jM8sVXXxDvdPY2s+L2ddwAAAAAAAAAAJm3nnW9961sZGRnJZz/72bzrXe/KBRdc0HqvVqvl4osv\nzpVXXplrrrkm/f39ufnmmx/zGZ74etccm1XpGsvgcD3Do2MFTwQAAAAAAAAAUKxJi3cWL16cQw45\nJEmy33775Y477mi919XVlWuuuSbV6njMUa/X093d/ZjP8MRX7ehJkpQ760mSFf123wEAAAAAAAAA\n2tukxTv9/f3p6+tr/dzR0ZF6fTzaKJfLmTt3bpLkqquuyuDgYF74whc+5jM88XV2dKazXEmpYzRJ\nsmK1eAcAAAAAAAAAaG+Vyfrgvr6+DAwMtH5uNBqpVCrr/HzhhRfm17/+dS655JKUSqXHfWZ9Zs/u\nTaXSMfG/AFtk3rzp6329r2ta6vXxeGesVN7gfcATkzUN7cnah/Zk7UN7svahPVn70J6sfWhP1j60\nJ2u/eJMW7+y///65+eab86pXvSq33XZb9txzz3XeP/vss9PV1ZVLL7005XJ5o55Zn+XLBydlfjbf\nvHnT8/DDq9f7Xne5O0ON8ff+9/6VeXinmVM5GjCJHmvtA09e1j60J2sf2pO1D+3J2of2ZO1De7L2\noT1Z+1PnsSKpSYt3Xvayl2XRokV5/etfn2azmfPPPz/XXnttBgcHs++++2bhwoU58MADc8oppyRJ\nTj755PU+w5NLtVLNQ41HkjSz3LFZAAAAAAAAAECbm7R4p1wu59xzz13ntd122611vWTJkvU+9+fP\n8OTS21lNI42kPJYV/eIdAAAAAAAAAKC9lYsegPZSrfQkScqVepaLdwAAAAAAAACANifeYUr1VqpJ\nkukzSlnh2CwAAAAAAAAAoM2Jd5hSa+OdvmnNrOgfSbPZLHgiAAAAAAAAAIDiiHeYUtXO8XinOi2p\njzUyUKsXPBEAAAAAAAAAQHHEO0ypaqUnSdJTbSRJljs6CwAAAAAAAABoY+IdplRvpTdJ0tU9Hu+s\n6BfvAAAAAAAAAADtS7zDlFq7805H5/hxWSv7R4ocBwAAAAAAAACgUOIdplRvpTp+0TGaJOkfGi1w\nGgAAAAAAAACAYol3mFK9nePxzlhpPNoZqIl3AAAAAAAAAID2Jd5hSlUra+Od8eOy7LwDAAAAAAAA\nALQz8Q5TqlrpSZLUm8NJkgHxDgAAAAAAAADQxsQ7TKlyqZyejp4MN2pJ7LwDAAAAAAAAALQ38Q5T\nrlrpydBYLdXujvQP1YseBwAAAAAAAACgMOIdplxvZzVD9aFM6+nMQM3OOwAAAAAAAABA+xLvMOV6\nK9UM1WuZVq04NgsAAAAAAAAAaGviHaZctVJNkvT2JqP1RoZHxwqeCAAAAAAAAACgGOIdply10pMk\n6ak2kiQDdt8BAAAAAAAAANqUeIcp19s5vvNOV894vOPoLAAAAAAAAACgXYl3mHJrj83q7B4/LsvO\nOwAAAAAAAABAuxLvMOV618Q7HZ31JEl/rV7kOAAAAAAAAAAAhRHvMOXWxjvltfGOnXcAAAAAAAAA\ngDYl3mHKVSs9SZJSh3gHAAAAAAAAAGhv4h2mXG9nb5KkWR5JkgyIdwAAAAAAAACANiXeYcqt3Xln\nrDwe7dh5BwAAAAAAAABoV+IdplxvpZokGYuddwAAAAAAAACA9ibeYcpV18Q7w2O1dJRL6a+JdwAA\nAAAAAACA9iTeYcp1d3SlXCpnaGwo03oq6R+qFz0SAAAAAAAAAEAhxDtMuVKplGqlJ4P1WqZVOx2b\nBQAAAAAAAAC0LfEOheitVDM0Opi+amcGaqNpNJtFjwQAAAAAAAAAMOXEOxSiWqlmsF5LX7UzzWYy\nWHN0FgAAAAAAAADQfsQ7FKK3Us1oYzTV6vifoKOzAAAAAAAAAIB2JN6hENXOapKkp6eRJOmviXcA\nAAAAAAAAgPYj3qEQvZWeJEnXmnjHzjsAAAAAAAAAQDsS71CIamV8551K11iSpF+8AwAAAAAAAAC0\nIfEOhehdE+90dNaTJP1D9SLHAQAAAAAAAAAohHiHQqzdeadcWRvv2HkHAAAAAAAAAGg/4h0K0VPp\nHr9YE+8MiHcAAAAAAAAAgDYk3qEQ1UrP+EV5TbxTE+8AAAAAAAAAAO1HvEMhejrGd95plhybBQAA\nAAAAAAC0L/EOhehec2zWSHM43Z0d4h0AAAAAAAAAoC2JdyhET8f4sVm1+nD6qpUMiHcAAAAAAAAA\ngDYk3qEQ1craeKeWadXO9A/VC54IAAAAAAAAAGDqiXcoRE/H+LFZtbHh9FU7Mzw6ltF6o+CpAAAA\nAAAAAACmlniHQlTKlZRL5TXHZnUmSfodnQUAAAAAAAAAtBnxDoUolUqpdvSkNjZ+bFaSDNTEOwAA\nAAAAAABAexHvUJieSvf4zjs9a+IdO+8AAAAAAAAAAG1GvENheio9qY0Nt3becWwWAAAAAAAAANBu\nxDsUprujO7V6LdN6OpKIdwAAAAAAAACA9iPeoTA9le4000xPz/jP4h0AAAAAAAAAoN2IdyhMtWO8\n2unsbiZJBobqRY4DAAAAAAAAADDlxDsUpqfSnSSpdI4lsfMOAAAAAAAAANB+xDsUprtjPN4pr4l3\nBmriHQAAAAAAAACgvYh3KExPZfzYrGa5nlLJzjsAAAAAAAAAQPsR71CY6pqdd0bGRjKtp1O8AwAA\nAAAAAAC0HfEOhemujMc7tXot06qdGRDvAAAAAAAAAABtRrxDYXo6xo/Nqo0Np69ayUCtnmazWfBU\nAAAAAAAAAABTR7xDYXoqa+Kdei19PZ0ZazQzNDxW8FQAAAAAAAAAAFNHvENhqmuPzRobTl+1M0nS\nX3N0FgAAAAAAAADQPsQ7FKa7Y028Ux/OtDXxzsCQeAcAAAAAAAAAaB/iHQrT07Hm2KyxWmvnHfEO\nAAAAAAAAANBOxDsUpnVs1p/svNMv3gEAAAAAAAAA2oh4h8K0js0aG27tvCPeAQAAAAAAAADaiXiH\nwnSUO9JZ7kytXktfTyWJeAcAAAAAAAAAaC/iHQrVU+lObazWOjZrYKhe8EQAAAAAAAAAAFNHvEOh\nqh09qdX/eGzWQM3OOwAAAAAAAABA+xDvUKjxnXf+GO84NgsAAAAAAAAAaCfiHQrV3dGdkbGRVCql\ndFbK4h0AAAAAAAAAoK2IdyhUT6UnSVpHZ4l3AAAAAAAAAIB2It6hUD0da+KdsVqm9XRmoCbeAQAA\nAAAAAADah3iHQlUr3UnW7rxTydDwWOpjjYKnAgAAAAAAAACYGuIdCtXdsSbeGRs/NitJBmr1IkcC\nAAAAAAAAAJgy4h0K1VNZc2xWvfbHeGfI0VkAAAAAAAAAQHsQ71Consofd96Ztibe6RfvAAAAAAAA\nAABtQrxDoaoda3feGc60HjvvAAAAAAAAAADtRbxDobpbO+/88dgsO+8AAAAAAAAAAO1CvEOhejrW\nxDv1P4l3auIdAAAAAAAAAKA9iHcoVLWy5tissWE77/z/7N19sOQFfef7Tz+c7j7n9HliGGAQRUCJ\n60Mkoq5mY65hg240WaVEwZvC2shNpbK5KetuYl29qVLjA1KVWLmVrNe72UqyCbtbhcUmMaxGVtSU\nNyQxyu4oRNBEFnziYRjmPJ/unn64f5wHmDADM8P06e7Tr1cV5Uw/nPOlip9/vev7BQAAAAAAAADG\njniHgarubN5pZnqynCRZE+8AAAAAAAAAAGNCvMNA1cpPPpu1ttEe5EgAAAAAAAAAALtGvMNA1UqP\nn82arjmbBQAAAAAAAACMF/EOA1UtVVJIIY12M8ViIVPVclYb4h0AAAAAAAAAYDyIdxioQqGQaqma\nRqeRJKlPTti8AwAAAAAAAACMDfEOA1crV9NoN5Mk05MTWds4ml6vN+CpAAAAAAAAAAD6T7zDwNXK\ntWM277Q7vTSPdgY8FQAAAAAAAABA/4l3GLjJUjXNrc079clykjidBQAAAAAAAACMBfEOA1ctVdPu\ndXK028705ESSZG2jPeCpAAAAAAAAAAD6r9yvH9ztdvOBD3wg3/zmN1OpVPLhD384F1544TGf2djY\nyM/93M/lIx/5SC655JIkyVVXXZV6vZ4kueCCC/LRj360XyMyJGrlWpKk0W6kvhXvrDZs3gEAAAAA\nAAAA9r6+xTu33357Wq1Wbr755hw8eDA33nhjPvGJT+y8f9ddd+X9739/Hn744Z3Xms1mer1ebrrp\npn6NxRCqlatJkka7mena9uYd8Q4AAAAAAAAAsPf17WzWnXfemde85jVJkssuuyx33333Me+3Wq18\n/OMfz8UXX7zz2r333puNjY28853vzDve8Y4cPHiwX+MxRCZLW5t3Os3HN++IdwAAAAAAAACAMdC3\nzTurq6s756+SpFQqpd1up1ze/JWXX375k75Tq9Vy/fXX561vfWvuv//+/PzP/3w++9nP7nzneBYW\nplIul878vwDPyP79Myf92YWHNj9bqxfzrPNmkyS9YvGUfgYwHDy3MJ48+zCePPswnjz7MJ48+zCe\nPPswnjz7MJ48+4PXt3inXq9nbW1t5+/dbvcpI5wkueiii3LhhRemUCjkoosuyvz8fA4dOpQDBw6c\n8DtHjqyfsZk5M/bvn8mhQysn/flus5AkeejwY5ltTydJHn509ZR+BjB4p/rsA3uDZx/Gk2cfxpNn\nH8aTZx/Gk2cfxpNnH8aTZ3/3PFUk1bezWS972cvypS99KUly8ODBXHrppU/7nVtuuSU33nhjkuTh\nhx/O6upq9u/f368RGRK18tbZrHYz05Obgdeas1kAAAAAAAAAwBjo2+adK6+8MnfccUeuvfba9Hq9\n3HDDDbn11luzvr6ea6655rjfufrqq/Pe9743b3/721MoFHLDDTc87bYeRt9kqZokaXSaqU9OJEnW\nGu1BjgQAAAAAAAAAsCv6VsYUi8V88IMfPOa1Sy655Emfu+mmm3b+XKlU8rGPfaxfIzGkquWteKfd\nSHWilFKxkFWbdwAAAAAAAACAMdC3s1lwsmqlrbNZnWYKhULqkxPiHQAAAAAAAABgLIh3GLhaeSve\naTeSJPXJiayJdwAAAAAAAACAMSDeYeAmt89mdZpJkunJiaw32ul2e4McCwAAAAAAAACg78Q7DFy1\ntBXvtDfjnfrkRHpJ1hq27wAAAAAAAAAAe5t4h4F78tmscpJkrdEe2EwAAAAAAAAAALtBvMPATRTL\nKRdKx5zNSpLVDZt3AAAAAAAAAIC9TbzDUKiWqzvxTr0m3gEAAAAAAAAAxoN4h6FQK9V2zmZtb95Z\nE+8AAAAAAAAAAHuceIehUCtX02hvbd5xNgsAAAAAAAAAGBPiHYZCrVRLs9NMr9cT7wAAAAAAAAAA\nY0O8w1ColavppZdmp+VsFgAAAAAAAAAwNsQ7DIVaqZokaXQaj2/eabQHORIAAAAAAAAAQN+JdxgK\ntXItSdJoNzNdKyexeQcAAAAAAAAA2PvEOwyFWnlz806z00y5VEytUsqqeAcAAAAAAAAA2OPEOwyF\n7bNZG+1GkqQ+OSHeAQAAAAAAAAD2PPEOQ2HnbFanmSSZnpxwNgsAAAAAAAAA2PPEOwyFWmkr3nnC\n5p1Wu5vW0c4gxwIAAAAAAAAA6CvxDkOhVt48m7W9eac+OZEkTmcBAAAAAAAAAHuaeIehUCttxTvt\nrXinthnvrDXaA5sJAAAAAAAAAKDfxDsMhVr52LNZ05PlJDbvAAAAAAAAAAB7m3iHobCzeWfrbNb0\n1tmsNfEOAAAAAAAAALCHiXcYCpM7m3e2zmZtxTs27wAAAAAAAAAAe9lJxTtf//rX8wd/8AdptVp5\n5zvfmVe96lW57bbb+j0bY6S6s3ln82yWeAcAAAAAAAAAGAcnFe98+MMfzotf/OLcdtttqdVq+ZM/\n+ZP87u/+br9nY4zUylvxTlu8AwAAAAAAAACMj5OKd7rdbl7xilfkL/7iL/K6170uBw4cSKfT6fds\njJFioZhKqZJGZ/Ns1vRWvLMm3gEAAAAAAAAA9rCTincmJyfz+7//+/nyl7+cn/iJn8gf/uEfZnp6\nut+zMWYmS9U025vxTr22Fe802oMcCQAAAAAAAACgr04q3vnN3/zNrK+v57d/+7czNzeXRx55JB/7\n2Mf6PRtjplquZqOzeTZrslpKsVBwNgsAAAAAAAAA2NPKJ/OhhYWF/ORP/mRe8IIX5NZbb023202x\neFLdD5y0WqmWI42lJEmhUMj0ZFm8AwAAAAAAAADsaSdV4Lz73e/Obbfdlq997Wv5nd/5ndTr9bzn\nPe/p92yMmVq5lqPdo+l0O0mS+uSEeAcAAAAAAAAA2NNOKt753ve+l3e961257bbbcvXVV+eXfumX\nsrS01O/ZGDO1UjVJ0uw0kyTTkxNZaxxNt9cb5FgAAAAAAAAAAH1zUvFOp9PJY489ls9//vN57Wtf\nm0OHDqXRaPR7NsZMrbwZ72y0N+Odem0ivV6y0WwPciwAAAAAAAAAgL4pn8yHrr/++rztbW/LFVdc\nkUsvvTSvf/3r8653vavfszFmaqVakqTR2QzD6pMTSZK1jaOZrk0MbC4AAAAAAAAAgH45qXjnZ37m\nZ/L6178+999/f+655558+tOfTrl8Ul+Fk7a9eaexvXlnK95Z3WjnnIWBjQUAAAAAAAAA0DcnVeDc\nddddede73pX5+fl0u908+uij+fjHP56XvvSl/Z6PMVIrbcU7nc14Z3py8z/P1Y2jA5sJAAAAAAAA\nAKCfTire+chHPpLf+q3f2ol1Dh48mA996EO55ZZb+joc46VW3jqb1d48mzX9hLNZAAAAAAAAAAB7\nUfFkPrS+vn7Mlp3LLrsszWazb0Mxnh7fvLMZ79Rr22ezxDsAAAAAAAAAwN50UvHO3Nxcbr/99p2/\nf+5zn8v8/HzfhmI8Pb55ZzMMq0+KdwAAAAAAAACAve2kzmZ96EMfyrvf/e782q/9WpLk2c9+dn7j\nN36jr4Mxfh7fvPOP4p2GeAcAAAAAAAAA2JueMt657rrrUigUkiS1Wi0XXHBBer1eJicn8/73vz9/\n9Ed/tCtDMh5q5a14p715Nmt6K95Zs3kHAAAAAAAAANijnjLe+eVf/uXdmgOOczZr8z9P8Q4AAAAA\nAAAAsFc9Zbzzyle+crfmgNRKm/FOc+ts1kS5lMpEMasb7UGOBQAAAAAAAADQN8VBDwDbts9mbXQa\nO6/VJyeyavMOAAAAAAAAALBHiXcYGpXiRAop7JzNSpJ6bSKrDfEOAAAAAAAAALA3iXcYGoVCIbVy\nLY3245t3picn0mx10u50BzgZAAAAAAAAAEB/iHcYKrVSNc3OEzbvTE4kidNZAAAAAAAAAMCeJN5h\nqNTK1WPPZm3FO2viHQAAAAAAAABgDxLvMFRqpVo2Oo30er0km2ezEpt3AAAAAAAAAIC9SbzDUKmV\nq+n2ujnabSdJ6rVykmR1oz3IsQAAAAAAAAAA+kK8w1CplWtJkmZn83TW9uadtYbNOwAAAAAAAADA\n3iPeYajUStUkyUa7kSSpO5sFAAAAAAAAAOxh4h2GSq28Ge80Ov8o3lkX7wAAAAAAAAAAe494h6FS\nK22ezWq0N89mzdUrSZKltebAZgIAAAAAAAAA6BfxDkNle/NOs7MZ68zXN/9+ZEW8AwAAAAAAAADs\nPeIdhkqttBnrbLQ3z2aVS8XMTE1kcbU1yLEAAAAAAAAAAPpCvMNQqZWPPZuVbG7fWVy1eQcAAAAA\nAAAA2HvEOwyV7c07jU5j57X5ejWNVicbzfagxgIAAAAAAAAA6AvxDkNle/NO8wmbdxZmKkli+w4A\nAAAAAAAAsOeIdxgq25t3NjrHns1KksXV1kBmAgAAAAAAAADoF/EOQ2V7806jfezZrCRZXLF5BwAA\nAAAAAADYW8Q7DJVaeTPUaTxx887M9uYd8Q4AAAAAAAAAsLeIdxgq22ezmu3HQ52Frc07R2zeAQAA\nAAAAAAD2GPEOQ6VcLKdcLGej84SzWTbvAAAAAAAAAAB7lHiHoVMrVdN4wuadmamJFAuFLK62BjgV\nAAAAAAAAAMCZJ95h6NTKtTTaj2/eKRYKmatXnM0CAAAAAAAAAPYc8Q5Dp1aqptk5NtRZmKlmcbWZ\nXq83oKkAAAAAAAAAAM488Q5Dp1auptFpptvr7rw2X6+m0+1ldePoACcDAAAAAAAAADizxDsMnVqp\nliRpdlo7r83XK0nidBYAAAAAAAAAsKeIdxg6tXI1SY45nbUws/na4mrruN8BAAAAAAAAABhF4h2G\nTq20Geo02o2d1+br2/GOzTsAAAAAAAAAwN4h3mHo1MqbZ7M22o+HOjvxjrNZAAAAAAAAAMAeIt5h\n6NRKm/FOo/OEzTszNu8AAAAAAAAAAHuPeIehUytvhjrNJ2zeWahXkiRHbN4BAAAAAAAAAPYQ8Q5D\np1bajHc2Oo+HOpPVcioTxSyutgY1FgAAAAAAAADAGSfeYejUyltns9qPn80qFAqZr1edzQIAAAAA\nAAAA9hTxDkNn+2xWo31sqDNfr2Z5rZV2pzuIsQAAAAAAAAAAzjjxDkNn+2xWs3NsvLMwU00vyfKa\n01kAAAAAAAAAwN4g3mHobJ/N2ug0jnl9vl5JkiyuincAAAAAAAAAgL1BvMPQ2d6802j/43hn8/Uj\nK80nfQcAAAAAAAAAYBSJdxg625t3Gu0nn81KksVV8Q4AAAAAAAAAsDeIdxg61dLmeaxm59hIZ3vz\njngHAAAAAAAAANgrxDsMnWKhmGqpcpyzWZtRz6KzWQAAAAAAAADAHiHeYSjVSrVs2LwDAAAAAAAA\nAOxx4h2GUq1ce9LmncpEKdO1chZXWwOaCgAAAAAAAADgzBLvMJRqpWqanSdv2JmfqeaIs1kAAAAA\nAAAAwB4h3mEo1crVHO220+62j3l9vl7NerOd5tHOgCYDAAAAAAAAADhz+hbvdLvdvO9978s111yT\n6667Lg888MCTPrOxsZFrr7023/72t0/6O4yHWrmWJGn8o+078/VKkmRx1fYdAAAAAAAAAGD09S3e\nuf3229NqtXLzzTfnV37lV3LjjTce8/5dd92Vn/3Zn813v/vdk/4O46NWqiZJGu1jI52Fmc3XF53O\nAgAAAAAAAAD2gL7FO3feeWde85rXJEkuu+yy3H333ce832q18vGPfzwXX3zxSX+H8VErb0Y6zSdt\n3tmKd1Zbuz4TAAAAAAAAAMCZVu7XD15dXU29Xt/5e6lUSrvdTrm8+Ssvv/zyU/4O46NW2jybtdFu\nHPP6drxzxOYdAAAAAAAAAGAP6FsVU6/Xs7a2tvP3brf7tBHO6XxnYWEq5XLpmQ3LGbd//8wz+v6+\nR2eTJNXp4jE/66KNdpKk1e09498BnHmeSxhPnn0YT559GE+efRhPnn0YT559GE+efRhPnv3B61u8\n87KXvSxf/OIX84Y3vCEHDx7MpZde2pfvHDmyfibG5Qzav38mhw6tPKOf0WkUkiQPP3Ykhyae8LPa\nnSTJDx5Zeca/AzizzsSzD4wezz6MJ88+jCfPPownzz6MJ88+jCfPPownz/7ueapIqm/xzpVXXpk7\n7rgj1157bXq9Xm644YbceuutWV9fzzXXXHPS32E81cqb57Ga7WPPY81OT6RQSBadzQIAAAAAAAAA\n9oC+xTvFYjEf/OAHj3ntkksuedLnbrrppqf8DuOpVtqMdzY6jWNeLxWLmZ2uZHG1NYixAAAAAAAA\nAADOqOKgB4DjqZVrSZJG+8kbdubr1SyuNtPr9XZ7LAAAAAAAAACAM0q8w1DaPpvV+Eebd5JkoV5N\nq93NerO922MBAAAAAAAAAJxR4h2G0vbZrObxNu/MbL63uPLk9wAAAAAAAAAARol4h6G0fTZro3O8\ns1mVJMmRVfEOAAAAAAAAADDaxDsMpVppM95ptI9/NitJFldauzoTAAAAAAAAAMCZJt5hKE0UyykW\nig69pG4AACAASURBVGkeb/PO9tksm3cAAAAAAAAAgBEn3mEoFQqF1ErVNNrHO5u1Ge84mwUAAAAA\nAAAAjDrxDkOrVq5l43hns7Y376yIdwAAAAAAAACA0SbeYWjVStU0jnM2a7pWTrlUyOJqawBTAQAA\nAAAAAACcOeIdhlatXE2z00yv1zvm9UKhkPl6NYvOZgEAAAAAAAAAI068w9CqlWrp9ro52j36pPfm\nZ6pZWm2l2+0d55sAAAAAAAAAAKNBvMPQqpWrSZKN9pM37MzXq+n2ellZdzoLAAAAAAAAABhd4h2G\nVq1US5I0Oo0nvbdQ3wx7jjidBQAAAAAAAACMMPEOQ2t7807zeJt3ZipJksUVm3cAAAAAAAAAgNEl\n3mFo1Uqb8c7xNu/Mb23eWbR5BwAAAAAAAAAYYeIdhlatvHk2a+M4m3d2zmatiHcAAAAAAAAAgNEl\n3mFobZ/NarSPs3lnxuYdAAAAAAAAAGD0iXcYWttns5qdJwc68/VKkuSIeAcAAAAAAAAAGGHiHYbW\n9tmsxnHOZtUq5UxWS1lcae32WAAAAAAAAAAAZ4x4h6FVK23GOxudJ5/NSpL5etXZLAAAAAAAAABg\npIl3GFq18ubZrONt3kk2453VjaM52u7u5lgAAAAAAAAAAGeMeIehVSttxjvNzonjnSRZsn0HAAAA\nAAAAABhR4h2GVq28eTar0T7B2ayZSpJkcbW1azMBAAAAAAAAAJxJ4h2G1vbmnY0TbN5Z2Nq8c8Tm\nHQAAAAAAAABgRIl3GFqlYikTxYkTb97ZincWV8Q7AAAAAAAAAMBoEu8w1Gqlapon2LwzP7MV79i8\nAwAAAAAAAACMKPEOQ61Wrp5w846zWQAAAAAAAADAqBPvMNRq5Vo2TrB5Z65eSeJsFgAAAAAAAAAw\nusQ7DLVaqZpWp5Vur/uk98qlYmamJnJktTWAyQAAAAAAAAAAnjnxDkOtVt48jdU8wfadhXo1i85m\nAQAAAAAAAAAjSrzDUKuVakmSRvv4gc78TDXNVicbzfZujgUAAAAAAAAAcEaIdxhqtfJmvLPRbhz3\n/fn65mYe23cAAAAAAAAAgFEk3mGo1UpPfTZrvl5JkiyuiHcAAAAAAAAAgNEj3mGo1cqb8c5Tnc1K\nksXV1q7NBAAAAAAAAABwpoh3GGq10tbZrM7xz2YtbJ3NOuJsFgAAAAAAAAAwgsQ7DLWn3byzFe84\nmwUAAAAAAAAAjCLxDkOtVtqMc5qdpzubJd4BAAAAAAAAAEaPeIehVitvns1qtI9/NmtmaiKlYsHZ\nLAAAAAAAAABgJIl3GGrbZ7PW2xvHfb9YKGSuXsniSms3xwIAAAAAAAAAOCPEOwy1mYmZJMlKa/WE\nn5mvV7O42ky319utsQAAAAAAAAAAzgjxDkNttroZ7yy1Vk74mYV6NZ1uL6sbR3drLAAAAAAAAACA\nM0K8w1CbKJYzPTGVpebyCT8zX988rbW40tytsQAAAAAAAAAAzgjxDkNvrjKb5dZTxDszlSTJ4qp4\nBwAAAAAAAAAYLeIdht5cdTYb7UZandZx39/ZvLN6/PcBAAAAAAAAAIaVeIehN1uZSZIsNVeO+/78\njLNZAAAAAAAAAMBoEu8w9Oaqs0mSpROczlrY2rxzxNksAAAAAAAAAGDEiHcYenOVrXinefx4Z+ds\nls07AAAAAAAAAMCIEe8w9Garm2ezllvHP5s1WS2lMlHM4mprN8cCAAAAAAAAAHjGxDsMvfnqU2/e\nKRQKWahXnc0CAAAAAAAAAEaOeIehN7t9Nqt1/Hgn2TydtbLWSrvT3a2xAAAAAAAAAACeMfEOQ2+u\nsnk260Sbd5JkfqaaXpLlNaezAAAAAAAAAIDRId5h6E2UJjJVnsxSa+WEn1moV5PE6SwAAAAAAAAA\nYKSIdxgJc9XZLD/V5p16JUmyuGLzDgAAAAAAAAAwOsQ7jIS5ymzW2xtpdY4e9/35mc3NO4s27wAA\nAAAAAAAAI0S8w0iYq84mSZZPcDprvi7eAQAAAAAAAABGj3iHkTBbmUmSLJ3gdNbO5p0V8Q4AAAAA\nAAAAMDrEO4yE7c07S63jxzsL9UoKSb7/6NouTgUAAAAAAAAA8MyIdxgJO/HOCTbvTJRLeckl+3L/\nQyv51ncXd3M0AAAAAAAAAIDTJt5hJGyfzVpurZzwMz/96ucmSf7rX92/CxMBAAAAAAAAADxz4h1G\nwvzTbN5JkuddMJcXPGc+d//Px3L/Qyf+HAAAAAAAAADAsBDvMBJmK08f7yTJG3/0uUmST//VA/0e\nCQAAAAAAAADgGRPvMBIqpYlMlief8mxWkrzwwoVcdGAmd37rUL7/6NouTQcAAAAAAAAAcHrEO4yM\nucrM027eKRQK+elXPzdJ8pm/vr/vMwEAAAAAAAAAPBPiHUbGbHU2a+31HO22n/JzL33+2XnW/ul8\n+RuP5JHFjV2aDgAAAAAAAADg1Il3GBlzldkkyfLTbN8pFgp546svTLfXy2f/5oHdGA0AAAAAAAAA\n4LSIdxgZc9WZJMlSa+VpP/vKF5ybcxYm85d3PZgjK81+jwYAAAAAAAAAcFrEO4yMuerJbd5JkmKx\nkDe86sK0O73c9rff6fdoAAAAAAAAAACnRbzDyJirbG7eWWw9fbyTJD/64vOyMFPNXxz8flbWW/0c\nDQAAAAAAAADgtIh3GBlz1bkkyXLz6c9mJUm5VMy/+KfPSetoN5/76vf6ORoAAAAAAAAAwGkR7zAy\nZrc27yydxNmsbT/+0vMzMzWRz9/5vaw32v0aDQAAAAAAAADgtIh3GBlz1dkkydJJns1KkupEKa97\nxbOz0Wzni//D9h0AAAAAAAAAYLiIdxgZ1VIltVIty62TO5u17Sd+5IJMVsv5b1/5bppHO32aDgAA\nAAAAAADg1Il3GClz1ZlTOpuVJFO1cv755RdkZf1ovnTwB32aDAAAAAAAAADg1Il3GClzldmsHl1L\nu9s+pe9d+fILUpko5rN/+520O90+TQcAAAAAAAAAcGrEO4yU2epMkpzy6ayZqUpee9mzcmSlmb+6\n+6F+jAYAAAAAAAAAcMrEO4yUuepskmSpeWrxTpK8/pXPSblUyGf++oF0urbvAAAAAAAAAACDJ95h\npMxVtuKd1vIpf3dhppofe8mBPLK4ka/c88iZHg0AAAAAAAAA4JSVBz0AnIrtzTvLzVOPd5Lkp151\nYb70tQfze5++J//pc99KqVRMqVjY/KdUTHnnz4WUisWUS4WUy8VMlIqZKG//U9r5e2XrtdnpSl75\nT87NRFkPBwAAAAAAAACcPPEOI2WuMpMkWWqd+tmsJNk/P5mrfvyifOWeR9Lp9tLu9tLpdNPp9tJq\nt3f+3On20un00u31Tvpnf/M7i/m5N7wghULhtGYDAAAAAAAAAMaPeIeRMru1eWfpNDfvJMkbX/3c\nvPHVzz2pz3a7vRztdHO0vflP+wl/fuLrf/L/3Ze/vOvBXPys2bz2smed9mwAAAAAAAAAwHgR7zBS\nHt+8c/rxzqkoFgupFkupTpSe8nPnnz2VX/+Dr+Q/f+5bec45M7n4/NldmQ8AAAAAAAAAGG3FQQ8A\np6JWrqVaqjyjzTv9cPbcZH7hTS9Kp9PL//Ond2V5vTXokQAAAAAAAACAESDeYeTMVWez3FwZ9BhP\n8uKL9uXNP35xHltu5t996u/S7fYGPRIAAAAAAAAAMOTEO4ycucpsVo6uptPtDHqUJ3njqy/MZc87\nO/c8cCR//KX7Bj0OAAAAAAAAADDkxDuMnLnqbJJkuTV823eKhUL+t5/+JzlnYTKf+ZsHcuc3Dw16\nJAAAAAAAAABgiIl3GDmzlZkkwxnvJMlUbSL/+1UvSaVczO99+ht56LH1QY8EAAAAAAAAAAypvsU7\n3W4373vf+3LNNdfkuuuuywMPPHDM+1/4whfylre8Jddcc00++clP7rx+1VVX5brrrst1112X9773\nvf0ajxG2vXlnsbk84ElO7IJz6vlXP/WCNFqd/Ns/viuNVnvQIwEAAAAAAAAAQ6jcrx98++23p9Vq\n5eabb87Bgwdz44035hOf+ESS5OjRo/noRz+aW265JZOTk3n729+eK664IjMzM+n1ernpppv6NRZ7\nwFxl+2zW8MY7SfKqF52X+36wnNvv/F7+w5/fm1/4ly9KoVAY9FgAAAAAAAAAwBDp2+adO++8M695\nzWuSJJdddlnuvvvunfe+/e1v5znPeU7m5uZSqVRy+eWX5ytf+UruvffebGxs5J3vfGfe8Y535ODB\ng/0ajxE2V908m7U0xJt3tr3tiufleRfM5W/veSSf++r3Bj0OAAAAAAAAADBk+hbvrK6upl6v7/y9\nVCql3W7vvDczM7Pz3vT0dFZXV1Or1XL99dfn937v9/Lrv/7r+dVf/dWd78C27c07S82VAU/y9Mql\nYn7xTS/O3HQln/zCP+Sb3zky6JEAAAAAAAAAgCHSt7NZ9Xo9a2trO3/vdrspl8vHfW9tbS0zMzO5\n6KKLcuGFF6ZQKOSiiy7K/Px8Dh06lAMHDpzw9ywsTKVcLvXrX4PTtH//zNN/6DRNz2/+d7SR9b7+\nnjNl//6ZvPdfvTL/1yfuyL+79Rv5v/+P/yX75iYHPRb0xSg8k8CZ59mH8eTZh/Hk2Yfx5NmH8eTZ\nh/Hk2Yfx5NkfvL7FOy972cvyxS9+MW94wxty8ODBXHrppTvvXXLJJXnggQeyuLiYqampfPWrX831\n11+fW265Jd/61rfygQ98IA8//HBWV1ezf//+p/w9R46s9+tfgdO0f/9MDh3q31acXq+XSqmSR1ce\n6+vvOZPOmankra+9JDd/4R9y83+7N2997fMGPRKccf1+9oHh5NmH8eTZh/Hk2Yfx5NmH8eTZh/Hk\n2Yfx5NnfPU8VSfUt3rnyyitzxx135Nprr02v18sNN9yQW2+9Nevr67nmmmvynve8J9dff316vV7e\n8pa35Nxzz83VV1+d9773vXn729+eQqGQG264YWdbD2wrFAqZq8xkqTVa/wfyz15yIDd/4R/y/UNr\nT/9hAAAAAAAAAGAs9K2MKRaL+eAHP3jMa5dccsnOn6+44opcccUVx7xfqVTysY99rF8jsYfMVmZz\n39L96XQ7KRVH42xafXIiM1MTeeiwbVEAAAAAAAAAwKbioAeA0zFfnU0vvawcXR30KKfkwFlTObS0\nkaPtzqBHAQAAAAAAAACGgHiHkTRb3bwFt9RcHvAkp+bA2dPp9ZKHHtsY9CgAAAAAAAAAwBAQ7zCS\n5iqzSZLl1sqAJzk1B86aSpI8eHhtwJMAAAAAAAAAAMNAvMNImqtuxjuLI7h5J0kePLw+4EkAAAAA\nAAAAgGEg3mEk7WzeGbV4Z5/NOwAAAAAAAADA48Q7jKS56kySZGnEzmadNVtLZaJo8w4AAAAAAAAA\nkES8w4jaPpu1NGKbd4qFQs47ayoPPbaebq836HEAAAAAAAAAgAET7zCSaqVaJooTWW6NVryTJAf2\nTedou5vDS41BjwIAAAAAAAAADJh4h5FUKBQyV5kZuc07SXJg31SSOJ0FAAAAAAAAAIh3GF1z1dks\nt1bT7XUHPcopObBvOkny4OG1AU8CAAAAAAAAAAyaeIeRNVudTS+9rLRGK4KxeQcAAAAAAAAA2Cbe\nYWTNV2aTJEutpQFPcmrOXZhKoWDzDgAAAAAAAAAg3mGEzVZnkiTLzZUBT3JqJsrF7J+ftHkHAAAA\nAAAAABDvMLrmtjfvNJcHPMmpO3DWVFY3jmZlvTXoUQAAAAAAAACAARLvMLLmqttns0Yw3jl7Okls\n3wEAAAAAAACAMSfeYWTNVjbPZo3q5p0kefDw2oAnAQAAAAAAAAAGSbzDyJrf2byzMuBJTp3NOwAA\nAAAAAABAIt5hhE2WJ1MulrPcHMF4Z9/25h3xDgAAAAAAAACMM/EOI6tQKGSuMpul1uidzZquTWR2\nuuJsFgAAAAAAAACMOfEOI22uOpPl1kq6ve6gRzll5++byuGlRlpHO4MeBQAAAAAAAAAYEPEOI22u\nMptur5vVo6O3wea8fdPpJXnoMaezAAAAAAAAAGBciXcYabPV2STJUnNlwJOcugP7ppIkDx4W7wAA\nAAAAAADAuBLvMNLmK9vxztKAJzl1j8c7o7c1CAAAAAAAAAA4M8Q7jLTZ6kySZLk1ept3zt83ncTm\nHQAAAAAAAAAYZ+IdRtpcZXTPZi3MVFOdKNm8AwAAAAAAAABjTLzDSJurbsU7reUBT3LqCoVCzts3\nlYce20i32xv0OAAAAAAAAADAAIh3GGk7Z7OaoxfvJMmBfVNpd7p5dGlj0KMAAAAAAAAAAAMg3mGk\nTZenUi6UsjiCm3eS5MC+6STJg4fXBzwJAAAAAAAAADAI4h1GWqFQyGx1NsvNlUGPcloOnDWVRLwD\nAAAAAAAAAONKvMPIm6vMZqm1nG6vO+hRTtmBs7c376wNeBIAAAAAAAAAYBDEO4y8uepMur1u1o6O\n3vaacxcmUywUbN4BAAAAAAAAgDEl3mHkzVZmkyTLrdE7nVUuFbN/YTIPHl5Lr9cb9DgAAAAAAAAA\nwC4T7zDy5qqb8c5ic3nAk5yeA2dNZa3Rzsr60UGPAgAAAAAAAADsMvEOI2+uMpMkWR7VeOfsqSTJ\ng4fXBjwJAAAAAAAAALDbxDuMvO3NO0ut0Yx3zt83nSR58PD6gCcBAAAAAAAAAHabeIeRtxPvNFcG\nPMnpOW/f9uYd8Q4AAAAAAAAAjBvxDiNvrjLam3cOnLW9ecfZLAAAAAAAAAAYN+IdRt70xFRKhVKW\nm6MZ70zVypmrV8Q7AAAAAAAAADCGxDuMvEKhkNnKTJZao3k2K0nO3zedw8vNNFudQY8CAAAAAAAA\nAOwi8Q57wlx1NsvN5fR6vUGPclrO2zeVJHnosfUBTwIAAAAAAAAA7CbxDnvCXGUm7V4na+3RjF/O\n3zedJE5nAQAAAAAAAMCYEe+wJ8xVZ5MkS83lAU9yerY37/zg8GjGRwAAAAAAAADA6RHvsCfMVjbj\nneXmyoAnOT3bm3cesnkHAAAAAAAAAMaKeIc9YWfzTms0N+/M1yupVUp50OYdAAAAAAAAABgr4h32\nhLnqTJLRPZtVKBRyYN9UHj6ynk63O+hxAAAAAAAAAIBdIt5hT5irbG/eGc2zWUly3lnTaXd6eXSx\nMehRAAAAAAAAAIBdIt5hT9g5mzWim3eS5Pyzp5LE6SwAAAAAAAAAGCPiHfaE6Ymp1Cemc+9jf5+l\n5mhu3zmwbzpJ8uDhtQFPAgAAAAAAAADsFvEOe0KxUMwbL3pdGp1GPvXtzwx6nNNyYJ/NOwAAAAAA\nAAAwbsQ77Bk/9qx/mmfXz8+XH7oz3168f9DjnLL985MpFQs27wAAAAAAAADAGBHvsGcUC8W87Yeu\nSpJ88lt/mm6vO+CJTk25VMw5C5N58PB6er3eoMcBAAAAAAAAAHaBeIc95eK5C/Oq816e763+IH/5\n/b8Z9Din7MC+6aw321leaw16FAAAAAAAAABgF4h32HPe9LyfymS5lj+777astFYHPc4pObBvKkny\n4OH1AU8CAAAAAAAAAOwG8Q57zmxlJm+86HXZaG/kz77954Me55Q8Hu+sDXgSAAAAAAAAAGA3iHfY\nk378Wa/O+dPn5a8e/EruX/7OoMc5aQf2TSexeQcAAAAAAAAAxoV4hz2pVCzlbZe+OUly8zf/NN1e\nd8ATnZzzzrJ5BwAAAAAAAADGiXiHPev5Cxfn5edelu+sfC9//YOvDHqckzJZLWdhppof2LwDAAAA\nAAAAAGNBvMOedtXz3phqqZJP3ffnWTs6GkHMgX1TObLSzEazPehRAAAAAAAAAIA+E++wp81X5/KG\ni67M2tH13HrfbYMe56QcOGs6SfLQY6MRGwEAAAAAAAAAp0+8w573Exf8WM6bOid/+f2/yXdWvjfo\ncZ7WgbOnkiQPOZ0FAAAAAAAAAHteedADQL+ViqW89dI35XcO/vt88pufyr+5/BdTLDx1t/bI+qF8\n/dFv5Lsr30+7206720mn19n5c7vXTmfrf9vdTsrFUl534RV51XmXp1AoPKN5D5y1Ge/84PDaM/o5\nAAAAAAAAAMDwE+8wFl5w1vPzI+f8cP7HI1/Plx/673n1gZcf83631839y9/NXY9+I18/9Hd5aP2R\nE/6sUqGUcrGUcqGcUrGUcrGcI42l/Md7PpmvHborb/+hqzNXnTntWQ+cvXk267uPrJ72zwAAAAAA\nAAAARoN4h7Hxluf9dP7u0XvyqX/4TF569otSLpbzzSN/n68f+kbuOvyNrLQ2Y5mJ4kR++OwX5SVn\nvzCXLlySWqmacrGUUrGccqF03M06hzeO5D/e88nc9eg9uW/xY7nmh67K5ee+9LTmnJuu5Nnn1HPX\nfYfz4OG1HNg3/Yz+vQEAAAAAAACA4SXeYWws1ObzL577z/Nn9302v3nnx/NY40iOdo8mSWYm6vnR\nA6/IS85+YV5w1vNTKVVO6Wfvm1zIL//Iz+dL3//r/Ok/fCa//3f/KV87dHfe9kNvTn3i1OKbQqGQ\nN/3YRfm3f3xX/uyO+/ML//JFp/R9AAAAAAAAAGB0iHcYK1c858fz5Yf+ex5efyTnTp2THz77hfnh\n/S/Mc2efk2Kh+Ix+drFQzGsv+Gd54VmX5o++8cnc+cjX8veL9+V/fcFb8pKzX3hKP+tHnn92nnNu\nPX/7jYfz06++MM/aX39GswEAAAAAAAAAw0m8w1iZKJbzq5f/66y3N3L25L6+/I5zpvbn31z+i/n8\nd76U/3rfbfl/v/4f8qoDL8/Vz/+ZTJYnT+pnFAqFvPnHLs5v/5ev51N33J9//eYX92VWAAAAAAAA\nAGCwntmqERhBUxNTfQt3thULxVx54Wvzf77iXXl2/fz8zYNfzUe+/Fu597G/P+mf8dLn7ctzz5vJ\nV+99JN99ZLWP0wIAAAAAAAAAgyLegT46v35e3v3yX84bnvuTWWot53cO/vvc8f0vn9R3C4VC3vya\ni5Mkn/rL/9nPMfn/27vXMCuqe8/jv1W1dzcNzR3xSKABUQiaIKIGPYpnYoajjxMDUY+KUYz6PBON\nidGMMWjGOyKGRPPEqImaFzOYRDKIF05iMseYPOQoJ1EJGuTijbRHgoyCCN3Y3XtXrXlRl1371t1A\nN9Xs/n6wrXvVqtq1LtX7X6sBAAAAAAAAAAAAAEgJwTtAL3MdV//t8H/Wt477mhoyDVrx5q+0q2N3\nt7b99OEjNGnMEK15/X01v9e9bQAAAAAAAAAAAAAAwMGD4B3gAGkaMlafP/yf1ea16am3nunWNsYY\nzZk1URK97wAAAAAAAAAAAAAAUIsI3gEOoFljTtQnGg/Tf2x9SZs/au7WNkdPGKEjxg7V2jc/0Oat\nu3o5hQAAAAAAAAAAAAAA4EAieAc4gFzH1XmT50qSfvn6k/Kt3+U2xhh98RR63wEAAAAAAAAAAAAA\noBYRvAMcYEcMm6gTDj1W7+zeotV/f7Fb23xy/HBNGTdMr761XW/9/aNeTiEAAAAAAAAAAAAAADhQ\nCN4BUjD3iDNV79bpqbefUWtuT5frG2M0d1bY+84f6X0HAAAAAAAAAAAAAIBaQfAOkIJh9UN15sTZ\nas3t0b++/dtubTOlabimjh+udZt36I13d/ZyCgEAAAAAAAAAAAAAwIFA8A6Qkv8y9mQdOvAQ/XHL\nf+g/d2/p1jZzTgl633mS3ncAAAAAAAAAAAAAAKgJBO8AKck4Gf3LkXNkZfXL15+UtbbLbSaPG6aj\nJ47QhuYPtemdDw9AKgEAAAAAAAAAAAAAQG8ieAdI0dSRkzX9kE/p7Y+a9ef31nRrm7lh7ztP/Tu9\n7wAAAAAAAAAAAAAAcLAjeAdI2dlHnKWsk9ETb/1KH+fbulx/0ieG6tOHj9TGd3ZqQzO97wAAAAAA\nAAAAAAAAcDAjeAdI2ciG4Tp9/Gna3dGiZzY/261t5s4Ket958o9vd+vPbQEAAAAAAAAAAAAAgL6J\n4B2gD/ivTf+kUQNG6Pfv/ru2tm7rcv2Jhw3R9CNG6Y13P9L6v9H7DgAAAAAAAAAAAAAAByuCd4A+\nIOtmde7kL8i3vv7P6091qzedOacEve/8r99s1L+99J/a2dLe28kEAAAAAAAAAAAAAAA9jOAdoI/4\n1MipOmrkFG368E395f2/drn++H8YrNM/M07bd7XpF8++of/xo+f13Z+v0R/WbtHuPR0HIMUAAAAA\nAAAAAAAAAGB/ZdJOAICAMUb/cuQXdOeOe7TijX/V0SM/qXq3rtNtzj/tSJ3xmSa9tOl9/WnDNm18\nZ6c2vrNTj/72dR01cbhmTj1Uxx55iAYOIKsDAAAAAAAAAAAAANAX8Y0+0IeMHniITms6Vf+3+fd6\n+K//WzP/4ThNHTlZjdlBVbcZ2livzx03Vp87bqx27GrTnzf8P/15wzate3uH1r29Qxl3oz59+EhN\nP2KUhg+p15CBdRoyqE6NDVllXDrfAgAAAAAAAAAAAAAgTQTvAH3MGRM+p/XbN2nDjte1YcfrMjIa\nP2Scjho5RUePnKKmwWPlmMpBNyOGDNAZM5t0xswmbftwTxzI85c3PtBf3vigbP1BAzIaMqhOgwfW\nacjArAYPqtPghqzqs66yGUd1WVd1GUfZjKu6rFMYzzjKZh1lXUeuY+SGw4zryHWNHGN6+zIBAAAA\nAAAAAAAAAFATei14x/d93Xrrrdq0aZPq6uq0cOFCjR8/Pl7+3HPP6f7771cmk9E555yj8847r8tt\ngP6g3q3Tt0+4Wltatuq17Zu0fvsmbd7VrL/teke/3vxvaswO0tQRk3XUyCk6asQUNdZV7pXn0OED\nddY/TtBZ/zhB777foje3fKTdrR3atSen3Xs6tCsc39Xaofe275HtwXNwjJHrGmVcI9cJAnoypUE+\nRcNgmWOMHMfImGAfxiiYlpHjBH9azDFGjpGMY+TIyDgK5yXWj7cP1y3bb7X5iX2V7jfaLpxvs25i\nbAAAG6hJREFUnEJanGjcKaxvEgFM1nZ+dbtKT+n8eN0q5wwAAAAAAAAAAAAAOHj0WvDOs88+q46O\nDi1btkxr167V4sWL9eCDD0qScrmc7rrrLi1fvlwNDQ2aN2+eTjvtNK1Zs6bqNkB/4hhH4wZ/QuMG\nf0JnTDhNe3Ifa+OHb2j99k1av32jXtz2F7247S8yMho+YJgyxpXjuMoYV65xg4CZeDyY72RcucMc\nZYZnNMRxNDxc5hpXjhx5nlE+Z5XLS9Y3stbI94ysb+T7Rr4veflgPO9Jfl7y/GBdz5N8X7LhMO8b\n+Z6V51n5vlXes/I9qzbry+sI5nmeL89aeX53wob2IyClaPemyjIjGRvMMFbG2KLpovHkfmxif8lx\nmXDfpvgYkmy8XmKdOC0V9pvch+NLxpdx/Hhcji9jfMnxCtPWkcIfY91g3Hdl5MTLjHWD05aVcRSe\ntx/MC8/ZOOG1CNMRbC/JuDLWhPNMOB4EYvl+uLYJloYHCc/MhPOCfUtWchQcV1bW8WVkw1P2ZYwN\ntjMmSHeQuOAjMUF6CnsNljnWFNZTtK5TWMtE6StcYxNeh2jCRLdElOpoG9l4O5ucb6KzC69jYiMT\nj4bnZTxZ+bLGl+QXxk1hPDizjBy55T/GlStXxriJY4bHUZzQ6ucQr2KK1otOyhir4J8vq+S4L1Vc\nllgeTdvCuo6cMN0ZuXLj88qYrByF96SJUx6nv5NJyZg4IM6Exyx8JjZMh4qG4ckl5trwTrQKwwDl\nGCceN3Kq9nCWvI4V01glgK5qKVZlQbX19yZAr9qq1dNSvsRaK195eTanvM3LU055m1M+mqe8BtS7\n6mi3ck1GGWXkmvBHhWHWycoJ79tusVZ526EO264O21Y89INhzrbLVUb1zgDVmQGqi4amXnXOANU7\nA5Q1dUWfpWe98Fxyytlc8bhysrJhveiG5+Eqo2xYp2bC+UFeTOYF3/rxvWVtNN8P1rBW1vhx/oiX\n2eh+LeSX+NpFdXh8HaPjB+cS7MGL9+1bX758+dYL0+PJSEHeC8sNxyTLkOLP2re+crZN7X6b2vyP\n1eZ/rPZwGI13+O3Kmrrw2tarzqkPrr0TXm9TmHaMG+Ws4FhV78UKC/Y6T1S7iarkxe4fcu/S3en6\ne3PMyvlQ4X2W/Jw960nGhp+vE9+bTnTdy3a9d+2p6mVIsOCDlpx27tzT6UmZMP02Tr8nzwb1hpc4\njygPuSZqz2bkFI13P0C5q3R3195cri7itMN1rPI2H5Shfj4oU60nSXHelkxYL5q4biq0YQrzjTGS\nrTK/i3NIzqt0TSpvk2jrFDYuH+2BIPK93UN0f1lZBf8F/4wpBNBHLYLCMcqvW6HN1POB8D2xz0p7\nsMl6xMa1UMk1sUHZ74Rlg7P/ackbRzs+3NP1ip3poevcE3vpsU+8B3a0t+VU1f30kfc5+tKLJT2V\nlB7ZTQplZU/sqK6lXbv2dPRaWg7k/bI3h9qLp6+qS3zry/M9+fLDF7Kc8Pmze+2b4JnMl+/74fOM\nH7afvPCZIrFulVfzHGOUcRLPOOHvA5N14F6e1n599vv+ce/7UdMqkvb1uPtVJ/TgptbaLl9KlPpW\nmb8/4t831cj51ALf+vKsLyPF5RYA7Avf+rLWBu0wyhL0Yb0WvPPyyy9r1qxZkqTp06dr3bp18bK3\n3npLTU1NGjp0qCTpuOOO04svvqi1a9dW3QbozwZmGzRj9DTNGD1N1lptadkaBPLs2KT3P96uj/2c\n/Fzw8J63njzfq/rA3iPc8CfdXaCH2ZIh+i5rTfc/qGQ7NPkLl5LtjSmf19usleS7QcCaSR7chulO\nzDPRL1AOYNqsCYPparQxb6udVxTl5cu4Xtf7aenm4aJrGh2jLGgxnGckuflE8OC+s1aSFzZ3HS8M\nHDx4WdszecD6JgzsdMLrnevVvBWXWTYMUIjzVjfta9oqBfCWBNWWbdKNdHV9b0YBoV0mqsI6yXIv\nCIbcl/s2/oytI/lGNrz2ldNuE+koTXtpeku3r7BtvG4wr0fu2ej+8Z3CfbT3e+nGOsn7pFIgVek8\nU/2eigOuvXD8wJQ/hTZCJ+Vs6bLu7LNbEutVPN1O9lMpv5YF1wd5ovDj93jZFTeVOq2vSuYnllcM\n1LcqzieJNk4hTybmJ9tAJjlM5s99y1uFsiEYWr8wfuDsY16o0eaYpAqXZF+/6Y3yRcmLKMmfite/\ntI7sIj2Vyr2obg/LGhuXOaXlTeV7vZDmTs5vP6/TXpdl1cr3KE+HaTal1zc5ndxHN8vkquVIUdRk\n8nrZkrIkeaFKy67S61Bh37Z8m+L67gCL75dCHVBeJ4Tjla5ZxevZjWu9V23VQhqCl6uS6eu8rqra\nTk7Wdb3YhihuMzrdzCdd1fcl6+yXPvD8tt+n0nvn0P1n5irPJxXag5XvgSpt3mrlR8XtEuuWtulU\nIV9HhW3cbgnrFls8r+sPKPl8VVqWlObXQnka5I2ojWSkMK8UpUGmsP+ScllGMsllReVOtTLKFNcl\nif0G10eFZYmyuqjOjT+HxHRcPtmya6DwhcrgVBJ1eXR+pdd+XzNEZ2VL/Fn4RWWnws+n9D4vKrei\ntMafj5M47+7kj8p5w5Tm24rJ72z/1fJM6YEqPAvEm5TU55XyUoU8XFZ/FyW3lhvUVZQ+T3X6wraU\nvO8rjktd3M9dJWg/64SK6Zek4KXs8vZ+aRs0mchK7VOVjJcOK6W/MK+4zVNh3UrXp7M2ftX7tsI6\nybKj4njJZ11Wp5QM97Y92C3p5EHXDtD/nPXfNXrokFSOj73Xa8E7LS0tamxsjKdd11U+n1cmk1FL\nS4sGDx4cLxs0aJBaWlo63aaa4cMHKpMhBKCvOeSQwV2vhH02evQQHXv4lE7Xid7syftBME/eesr7\neXnRdLTMRtN55cO3eKL18ol1g/mJfVhPnu/H0e++H7zxE70F5NvCW0H71STpzqvM1TaVCkFMtjAe\nvZkbjVuFf+rLuIlh9Ge8iufF21hbYah4Wjbok0FW8uWHw+T8rpcH+/PjVGecjLJuVnVOVhk3Uxi6\nGWWcbDjMyPN95fyccl6+MPRyyvnFQxO+8eUaV47jyC0ad+WaQu8jvk181omhH94D0Y9NXP3C287R\ndOGzcR2n/NiOWzhuuDy6PtZa+TbotcKXjaOkg/mJ3i1KpuP15MuLugUqYorGKt1t1d926rqxZaLH\nPRt8foVzLPR8lTGZxDV3gx4w/LzyfvD55b3g7fycF83LK+/n4nsuPpYpZJdkmm2nKS1e4oQ9zkTR\n545xwh4cnHhZcn7yjcHCeGG9qDzJh2nO+3nlbE55PxefY97PyVfQE07UW1Oy5yYjhZHwJj63Qs9B\nRVsp6jmp0AtR4k36CttFV8izfnBvxb1ahNMq3Nu9YT+Kt/0/dsndXvomXaEHjKyyTjYc1ikTjxeG\nRiboTcIPe+fxw54lynqYyMfHiv9FZWZiWlLQq4sb9J5T7wY96gxwG8KeXYLxOqdeOT+nDq9NbX6b\n2v2P1e63qd0rjHf4bWrz2mSkQtpNcB5Zk1XGqQuGJquMk5WRI8/m5Vsv7hXDKxoGP758Rb00FXpv\nSLxBKyNjnKJ1nHjdxDoy8Ta+fHk2X3RcPxwm50kK86CbyH9uIU8metaJ3sj1rBf2eOLF+4ymJane\naSj/MQNU7zRogDNQ9U6DsqZOeduhdtuuDj/oASkXjdu2cF4w7oc9qxT3NhSNB9OlbwlH9u4xtvpT\nf/kdXbLM2rKl1bcvrS3Kl1RbXn27StsW5gdlX1imJspho0Q5m+yJyQY9u/kK38J2gx56wlpTvvWK\n929Kj2yK0lp+VpXWrbTcJKajGsjE5xDkAFflvZ6F+SDsnceXF6fbkycbzovOqfck7wZbdq8Ur2HL\ntkhOu6Yu0XteJsynUU9YUQ97TsmebNkwebxkbyqFdUqWVRq3pfsuP4+isQr5s/qLAZXzTNV9V91P\n8jjBOkEp6RbKUhXfL8lhtL7CsdL/l/6ysfR6xOMmXGZKr1XpdoltquwzOV1Im5NouSTzS3GLRUXj\nleapk2XFeTRIQVgeOH5hXMXjB8x+tX/27Zed1bbqLCk90QtO916o6fwX4JWmqz2zBGnOVMkjhenk\nXoryZoVTrngOiS+UCvd7oidO2aJpxdPJ+zb60rPyvVz9TLuZxm5uX75taWlVvjyo3aJzSLTrbMl1\ntiXXOtlLqKlcXiTLnvKyJsqn0ZVyEnndFPWOW35+0YOiLTrn4uXJ9lJ5+debujpCfD/bqF5wVHxf\nOzJ+ocwLLn/pNe2i/C/6bHxVv68KqUqOGevIKJNIa9hjsQ3a50GPeU7x8aPeOZP5xVhZYwv3mHVk\nvOjcC/WgbKE+7N41top6zQ16BfWKx40vm+msPqhUDnW3jNuf8jSdL7nK9PiXd/uj2jNE9bnVlxU/\nB1VvryU+8WSwQYUtS/dZtE70q5pkeWmNFLb3gvs6Gkb79YP87BTuYRmveFm1Uyo596J8pahX8aCX\ncuMX0hTsxo/3bxUElsTjxpdVXsnnnTgvxmWxpERdFyj8jre0vC9uMyb2Ge+vEOBnZMLZxc8OUZmS\nLE+Cyx7WV/H5uorrLz+ZxmQ5FPWqHZZPUa/p+9Rm7LysKC7Tsole44PyT3GZr7jsSvZgLuPLuuFn\nYkrL7715Pq+yzFaZr8rtxaLPNdFmKl5W8uxioznJtlDpvqs8x3VyjLL8aNTVx1GjKuUpI1m3eH78\nLBjd91H7yxbaFd1qG/VmnVFo8xXagI6C1+STy6Sye8aU3pOJtp+RCm3NZNs1uX5xOorEt2O1c+/q\nmpQfo+heNpXXKZtnE/WJDcsTP9F2il40iNp7cQBjWHY4UT2zn8/I+/VCas9nUmN9DRs5QIcM7973\n9ny/n75eC95pbGxUa2trPO37fhyEU7qstbVVgwcP7nSbaj7c3+6a0eMOOWSw3n9/d9rJQBkjKStH\nWTmSsqWLnfAH2EfkfaB/Iu8D/RN5H+ifyPtA/0TeB/on8j7QP5H3gRqTV7fyNHn/wOksSKrXvqqf\nMWOGVq1aJUlau3atJk+eHC+bNGmSmpubtXPnTnV0dOill17Sscce2+k2AAAAAAAAAAAAAAAAQK3p\ntZ53Zs+ereeff14XXHCBrLVatGiRVq5cqT179uj888/XggULdPnll8taq3POOUeHHnpoxW0AAAAA\nAAAAAAAAAACAWmWsrfAH7Q8idN/U99CtFtA/kfeB/om8D/RP5H2gfyLvA/0TeR/on8j7QP9E3gf6\nJ/L+gZPKn80CAAAAAAAAAAAAAAAA0DmCdwAAAAAAAAAAAAAAAICUELwDAAAAAAAAAAAAAAAApITg\nHQAAAAAAAAAAAAAAACAlBO8AAAAAAAAAAAAAAAAAKSF4BwAAAAAAAAAAAAAAAEgJwTsAAAAAAAAA\nAAAAAABASgjeAQAAAAAAAAAAAAAAAFJC8A4AAAAAAAAAAAAAAACQEoJ3AAAAAAAAAAAAAAAAgJQQ\nvAMAAAAAAAAAAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAAAAAAAAAAAAApIXgHAAAAAAAA\nAAAAAAAASAnBOwAAAAAAAAAAAAAAAEBKCN4BAAAAAAAAAAAAAAAAUkLwDgAAAAAAAAAAAAAAAJAS\ngncAAAAAAAAAAAAAAACAlBC8AwAAAAAAAAAAAAAAAKSE4B0AAAAAAAAAAAAAAAAgJcZaa9NOBAAA\nAAAAAAAAAAAAANAf0fMOAAAAAAAAAAAAAAAAkBKCdwAAAAAAAAAAAAAAAICUELwDAAAAAAAAAAAA\nAAAApITgHQAAAAAAAAAAAAAAACAlBO8AAAAAAAAAAAAAAAAAKSF4BwAAAAAAAAAAAAAAAEhJJu0E\noHb4vq9bb71VmzZtUl1dnRYuXKjx48ennSwAvSCXy+nGG2/Uli1b1NHRoSuvvFKHHXaYvvKVr2jC\nhAmSpHnz5unMM89MN6EAetwXv/hFNTY2SpLGjh2rK664QgsWLJAxRkceeaRuueUWOQ7x4UAtWbFi\nhZ544glJUnt7uzZs2KBly5ZR7wM17JVXXtH3vvc9LV26VM3NzRXr+l/+8pd67LHHlMlkdOWVV+qz\nn/1s2skGsJ+SeX/Dhg2644475Lqu6urqdPfdd2vUqFFauHCh1qxZo0GDBkmSHnjgAQ0ePDjllAPY\nV8l8v379+optfOp8oPYk8/61116rDz74QJK0ZcsWHXPMMbr33nup84EaUuk7vSOOOIJn/T6I4B30\nmGeffVYdHR1atmyZ1q5dq8WLF+vBBx9MO1kAesHTTz+tYcOGacmSJdq5c6fmzp2rq666Spdeeqku\nu+yytJMHoJe0t7fLWqulS5fG86644gpdc801mjlzpm6++Wb97ne/0+zZs1NMJYCedvbZZ+vss8+W\nJN12220655xz9Nprr1HvAzXq4Ycf1tNPP62GhgZJ0l133VVW10+fPl1Lly7V448/rvb2dl144YU6\n+eSTVVdXl3LqAeyr0rx/55136qabbtLUqVP12GOP6eGHH9YNN9yg1157TY888ohGjBiRcooB7K/S\nfF+pjf/+++9T5wM1pjTv33vvvZKkjz76SPPnz9cNN9wgSdT5QA2p9J3eJz/5SZ71+yBei0aPefnl\nlzVr1ixJ0vTp07Vu3bqUUwSgt5xxxhn6xje+IUmy1sp1Xa1bt05/+MMf9KUvfUk33nijWlpaUk4l\ngJ62ceNGffzxx7rssss0f/58rV27Vq+99po+85nPSJJOPfVUvfDCCymnEkBv+etf/6o333xT559/\nPvU+UMOampp03333xdOV6vpXX31Vxx57rOrq6jR48GA1NTVp48aNaSUZQA8ozfv33HOPpk6dKkny\nPE/19fXyfV/Nzc26+eabdcEFF2j58uVpJRdADyjN95Xa+NT5QO0pzfuR++67TxdddJFGjx5NnQ/U\nmErf6fGs3zcRvIMe09LSEv8ZDUlyXVf5fD7FFAHoLYMGDVJjY6NaWlp09dVX65prrtG0adN0/fXX\n62c/+5nGjRun+++/P+1kAuhhAwYM0OWXX66f/vSnuu2223TdddfJWitjjKSgbNi9e3fKqQTQW37y\nk5/oqquukiTqfaCGnX766cpkCh01V6rrW1pairrMHzRoEEF8wEGuNO+PHj1akrRmzRo9+uij+vKX\nv6w9e/booosu0pIlS/TII4/o5z//Ob/MBw5ipfm+UhufOh+oPaV5X5K2b9+u1atXx73uUucDtaXS\nd3o86/dNBO+gxzQ2Nqq1tTWe9n2/rAEAoHZs3bpV8+fP15w5c3TWWWdp9uzZ+tSnPiVJmj17ttav\nX59yCgH0tIkTJ+oLX/iCjDGaOHGihg0bpu3bt8fLW1tbNWTIkBRTCKC37Nq1S5s3b9aJJ54oSdT7\nQD/iOIVfHUV1fenzf2tra9Ev+ADUhl//+te65ZZb9NBDD2nEiBFqaGjQ/Pnz1dDQoMbGRp144ol8\nkQfUkEptfOp8oH/4zW9+o89//vNyXVeSqPOBGlT6nR7P+n0TwTvoMTNmzNCqVaskSWvXrtXkyZNT\nThGA3vLBBx/osssu07e+9S2de+65kqTLL79cr776qiRp9erVOvroo9NMIoBesHz5ci1evFiStG3b\nNrW0tOjkk0/Wn/70J0nSqlWrdPzxx6eZRAC95MUXX9RJJ50UT1PvA/3HUUcdVVbXT5s2TS+//LLa\n29u1e/duvfXWW/wOAKgxTz31lB599FEtXbpU48aNkyT97W9/07x58+R5nnK5nNasWUMbAKghldr4\n1PlA/7B69Wqdeuqp8TR1PlBbKn2nx7N+30S3KOgxs2fP1vPPP68LLrhA1lotWrQo7SQB6CU//vGP\ntWvXLj3wwAN64IEHJEkLFizQokWLlM1mNWrUKN1xxx0ppxJATzv33HN1ww03aN68eTLGaNGiRRo+\nfLhuuukm3XPPPTr88MN1+umnp51MAL1g8+bNGjt2bDx966236o477qDeB/qBb3/722V1veu6uvji\ni3XhhRfKWqtrr71W9fX1aScVQA/xPE933nmnDjvsMH3961+XJJ1wwgm6+uqrNWfOHJ133nnKZrOa\nM2eOjjzyyJRTC6CnVGrjNzY2UucD/cDmzZvjYF1JmjRpEnU+UEMqfaf3ne98RwsXLuRZv48x1lqb\ndiIAAAAAAAAAAAAAAACA/og/mwUAAAAAAAAAAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAA\nAAAAAAAAAAApIXgHAAAAAAAAAAAAAAAASAnBOwAAAAAAAAAAAAAAAEBKCN4BAAAAAADAXlmxYoUW\nLFiQdjIAAAAAAABqAsE7AAAAAAAAAAAAAAAAQEoyaScAAAAAAAAAveOhhx7SM888I8/zdMopp2je\nvHn66le/qnHjxqm5uVljxozRkiVLNGzYMP3+97/XD37wA/m+r3Hjxun222/XqFGj9MILL2jx4sWy\n1mrMmDH6/ve/L0lqbm7WxRdfrL///e866aSTtHDhwpTPFgAAAAAA4OBEzzsAAAAAAAA1aNWqVVq3\nbp2WL1+uJ598Utu2bdPKlSv1+uuv65JLLtGvfvUrTZo0ST/60Y+0fft23Xzzzbr//vu1cuVKzZgx\nQ7fffrs6Ojp03XXX6e6779bKlSs1ZcoUPfHEE5KkrVu36r777tMzzzyjVatW6Y033kj5jAEAAAAA\nAA5O9LwDAAAAAABQg1avXq1XX31VZ599tiSpra1N1lpNmDBBM2fOlCTNnTtX1113nU4++WRNmzZN\nY8eOlSSdf/75euihh7Rp0yYdeuihmjp1qiTpm9/8piRpxYoVOv744zVs2DBJUlNTkz788MMDfYoA\nAAAAAAA1geAdAAAAAACAGuR5ni655BJdeumlkqRdu3bpvffe07XXXhuvY62V67ryfb9oW2ut8vm8\nstls0fzdu3ertbVVkpTJFH6tZIyRtba3TgUAAAAAAKCm8WezAAAAAAAAatCJJ56op556Sq2trcrn\n87rqqqu0bt06bd68WRs2bJAkPf744zr11FN1zDHH6JVXXtG7774rSVq2bJlmzpypiRMnaseOHXrz\nzTclSY888oh+8YtfpHZOAAAAAAAAtYiedwAAAAAAAGrQaaedpo0bN+q8886T53maNWuWTjjhBA0d\nOlQ//OEP9c4772jKlClauHChBg4cqNtvv11f+9rXlMvlNGbMGN15552qr6/XkiVLdP311yuXy6mp\nqUnf/e539dvf/jbt0wMAAAAAAKgZxtKnMQAAAAAAQL/w7rvvav78+XruuefSTgoAAAAAAABC/Nks\nAAAAAAAAAAAAAAAAICX0vAMAAAAAAAAAAAAAAACkhJ53AAAAAAAAAAAAAAAAgJQQvAMAAAAAAAAA\nAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAAAAAAAAAAAAApIXgHAAAAAAAAAAAAAAAASAnB\nOwAAAAAAAAAAAAAAAEBK/j8f2/XossdQIgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOkAAAJoCAYAAAA5hyfyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX6//HPJJNMSA9JaNKR5oIiIixdEL8CgiKISBFU\nWCvqsoKLuijIirK66gosyk8FQUB6F1hKBAQEQVqkhCItBBJCJm1In98fMWczpBCSmYRl3q+/Ts5z\nznPuMzPPXtfqx/sx2e12uwAAAAAAAAAAAAAAAAC4jEdFFwAAAAAAAAAAAAAAAADc6gjpAAAAAAAA\nAAAAAAAAAC5GSAcAAAAAAAAAAAAAAABwMUI6AAAAAAAAAAAAAAAAgIsR0gEAAAAAAAAAAAAAAABc\njJAOAAAAAAAAAAAAAAAA4GKEdAAAAAAAACrA0qVL1bhxYzVu3Fhr1qyp6HJKJa/+4cOHu+wZGRkZ\nOnnypMvmBwAAAAAAKC+EdAAAAAAAAHBT2rFjhx5++GF9//33FV0KAAAAAABAmZkrugAAAAAAAADg\nWjExMXr66acrugwAAAAAAACnoZMOAAAAAAAAbjrZ2dkVXQIAAAAAAIBTEdIBAAAAAAAAAAAAAAAA\nXIyQDgAAAAAAAAAAAAAAAOBi5oouAAAAAAAAOEfjxo0lSePGjdPgwYO1cuVKLVq0SFFRUcrMzFTN\nmjX18MMPa9iwYfL29pYk7d69W998840OHDggq9WqKlWqqFOnTnrxxRdVpUqVIp919epVzZ8/Xxs3\nbtSpU6eUkpKi4OBgNWvWTL1791aPHj3k4VH8fxv0ww8/aP369dq3b5/i4+Nls9nk7++vmjVrqm3b\nthoyZIiqVatW4L4pU6Zo6tSpCggI0J49exQXF6eZM2cqIiJCMTExMpvNatCggXr06KFBgwYZ7+oq\ne/bs0apVq/TLL78oNjZWKSkp8vPzU9WqVdW6dWsNGjRIDRo0uO48V65c0eeff65Nmzbp0qVLCg4O\nVosWLdS/f3917ty5yPvS0tK0cOFCbdiwQVFRUUpNTZW/v79q1aql9u3ba9CgQcV+l9nZ2Vq/fr1W\nrVqlQ4cOyWq1ys/PT3Xr1lXnzp01ePBgBQUF3dBnsmvXLg0dOlSS9Nprr+nZZ58t9Lp169bp1Vdf\nlSS9//776tu3r6T//pbzTJ06VVOnTpUkzZ49W23atHEYt1qt+vbbb/XDDz/o7Nmzunr1qkJDQ3XX\nXXepb9++xX5+zmK327V27VqtWrVKkZGRSkhIkJ+fnxo0aKD7779fTzzxhPz8/Aq9N+9933jjDd13\n332aOHGi9u7dK7PZrNq1a2v06NFq166dunbtqujoaA0dOlTPPfecJk6cqG3btslut6tmzZp69tln\n1bt3b2PejIwMLV++XOvXr9eRI0eUlJSkgIAA3X777erWrZsGDBggHx+fMtUEAAAAAABKjpAOAAAA\nAAC3mMzMTL3wwguKiIhwOB8VFaWPPvpIO3bs0FdffaVp06Zp2rRpstvtxjXR0dGaP3++Nm3apMWL\nF6tq1aoF5j948KBGjhypS5cuOZyPi4tTRESEIiIiNGfOHH322WeFhkMSEhI0cuRI7dmzp8CY1WqV\n1WpVZGSk5s6dq3//+99q27Ztke+6Z88evfTSS7JarQ7n9+/fr/3792vp0qWaPXu2goODi5yjtNLS\n0vT6669r/fr1BcYSExOVmJioqKgofffdd3r//ff18MMPFznXqVOn9P777ysuLs44FxcXpw0bNmjD\nhg3q1auXJk+eLLPZ8R/lxMTE6JlnntGpU6cczickJCghIUEHDx7UzJkz9c9//lPdunUr8Nzo6GiN\nGjVKBw4ccDhvtVqNz3DWrFn66KOP1KlTpxJ9LuVty5YtGj16tJKSkhzOx8TEKCYmRuvWrVPXrl31\n4Ycfyt/f3yU1xMfHa+TIkfrll18czlutVu3du1d79+7VrFmz9Nlnn+nuu+8ucp6LFy9q4MCBunLl\ninHu8OHDql27tsN1KSkpGjx4sE6fPm2ci4qKclivR48e1Z///Gf99ttvDvdeuXJFu3fv1u7duzVz\n5kxNmTJFzZs3L3NNAAAAAADg+gjpAAAAAABwi/niiy+UkJCg5s2ba+jQoapZs6aOHz+ujz/+WFar\nVTt27NDzzz+vLVu2qH79+ho+fLgaNmyo2NhYzZgxQwcPHlRsbKw++eQTffDBBw5zHz9+XMOGDZPN\nZpOfn58GDRqktm3bKiAgQNHR0Vq9erU2btyoffv2afjw4VqwYIF8fX0d5njllVeMgE67du306KOP\nqkaNGsrMzNSZM2f07bff6vjx47LZbBo7dqw2b94sT0/PAu+ZlpamF198UampqRo4cKDuv/9++fv7\n6/Dhw/r8888VGxurY8eO6ZNPPtGECROc/jm/8847RkCnWbNmGjhwoGrXri0PDw+dO3dOCxYs0L59\n+5SVlaV33nlHHTt2VEhISKFz5YWlOnXqpAEDBigsLExHjhzRF198oZiYGK1evVrBwcEaN26cw31j\nx47VqVOn5OnpqWHDhql9+/YKCgrSlStXtGXLFi1YsEBpaWkaM2aM1q9f7xCaunLlip555hkj6HHP\nPfdowIABqlu3rqxWqzZu3KglS5YoMTFRzz//vL788sty65yyfPlyxcbGGh14BgwYoIEDB0qSQzhk\n586deuGFF5Sdna3Q0FANHjxYrVq1ko+Pj06fPq3Fixdr9+7d2rx5s0aOHKmvvvqq0N9SWdhsNg0d\nOlQnTpyQyWRS79699eCDD6pKlSqyWq3aunWrFi5cqNjYWD3zzDNauHChGjZsWOhc33zzjex2u0aM\nGKEuXbro8uXLOnLkiGrWrFng88nJydFjjz2mPn36KDk5WTt27FDr1q0lSadPn9bTTz9tBGu6dOmi\nPn36qEaNGoqNjdXq1au1du1axcTEaOjQoVqwYIEaNWpUppoAAAAAAMD1EdIBAAAAAOAWk5CQoPbt\n2+vzzz83tnpq2bKlqlWrZoQetmzZoubNm2v27NkOIZqOHTvqwQcf1MWLFxURESG73S6TyWSMjxkz\nRjabTdWqVdOcOXMcAhN33nmnevTooblz5+rdd99VVFSU/v3vf2v06NHGNTt27NDu3bslSQ888ICm\nTJniMH/btm3Vv39/DRw4UAcOHNDFixe1b98+tWrVqsB7ZmZmKiUlRZ9//rlDl5e7775bnTp1Uu/e\nvXX16lWtXr1af/vb3+Tl5VXWj9Zw+vRprVixQpJ011136dtvv3XYVqtVq1Z69NFH9corr2j9+vWy\n2WzaunWrHnnkkULnywtBjBkzxjjXokULPfjggxo8eLBOnTqluXPn6vHHHze2IYqOjtZPP/0kSXr5\n5Zf1wgsvOMzZuXNnNWjQQO+++65sNptWr16tZ555xhj/+OOPjYDOk08+qbfeesvhu+jcubO6d++u\n5557TpmZmRozZow2btyoSpUqleGTK5mmTZsqICDA+Ds8PFxNmzZ1uCYvfJSdna1GjRrpm2++UeXK\nlY3xu+66S4888og+/PBDffnll9q5c6cWLlxohH2c5ZNPPtGJEydkNps1depUdenSxWG8U6dOeuSR\nR/Tkk0/KZrPprbfe0sKFCwudKycnR88//7xGjRplnOvevXuh1/Xq1Uvvvfeeca5r167G8YQJE4yA\nztixY/X000873N+tWzd17txZY8eOlc1m0+jRo7VixQqH7/9GawIAAAAAANdX/ObwAAAAAADgf9Jf\n//pXh9CIlBsWyB+wGDNmTIEuNz4+Pmrfvr2k/249lWf79u06cuSIMX9R290MHjzY6Ogxf/58ZWZm\nGmO//fabatWqJS8vL40cObLQUICnp6d69uxp/B0bG1vkez7wwAOFbsNUq1Yto+tLSkqKzp8/X+Qc\npXH8+HHVqVNHFotFzz33XIHPOk/+La6u3R4sv8aNG+svf/lLgfOVK1c2ugDZ7XYtWLDAGLt8+bJx\nXKdOnULnfeyxx9S/f3+9+uqruvPOO43zV65c0bJly4xnv/HGG4V+F+3bt9fzzz9vPC/vnpvBypUr\nje3B3nvvPYeATn6jRo0yPp/Zs2c7tYakpCQtWrRIktS/f/8CAZ08zZs314gRIyRJBw4cKLC9WH4l\nDREVdd2RI0e0Y8cOSdJ9991XIKCT59FHH1Xfvn0lSceOHdPWrVvLXBMAAAAAACgeIR0AAAAAAG4x\noaGhRreV/Ewmk7Hdkbe3t+65554i789js9mM4x9++ME4zgvyFKVz586ScgMyhw4dMs4PHjxYGzdu\n1MGDB9WkSZMi7w8PDzeOMzIyiryuQ4cORY7lDxGlpqYWW++NeuCBB7R+/XodOHDAoYPJtcLCwozj\n4t7jscceK3IbptatW+u2226TlBuUylO7dm2ZzblNkj/44ANt3LjRIRAlSRaLRX//+9/14osvOnQj\n+umnn5SVlSUpN1xS3BZQ+QMaxQU5ylve7zEgIMAhgHQts9ls/F5PnTpVbFjqRu3evVtXr16VdP01\nkT9MtnPnzkKvqVq1qqpVq3bd55rNZjVv3rzQsW3bthnHAwYMKHae/N9t/vtKUxMAAAAAALg+trsC\nAAAAAOAWkxfoKExex5eQkBAj4FHUNVJu95Y8eV10JBmdckri3LlzatmypcM5Dw8PY/7Y2FidO3dO\np0+f1okTJ3To0CGHTiM5OTlFzl3cu+bvEpSdnV3iem9E/u4zly9f1rlz53TmzBmdPHlSkZGR2rdv\nnzGe/7O81l133VXsc5o2baro6GidPn1a6enpslgsCgkJUf/+/TV//nxdunRJL730kvz8/NSmTRu1\na9dO7du3V/369QudLyoqqsTPDg0NVa1atXTu3DmH+ypa3u8xOTm50FBaUc6dO6eqVas6pYbDhw8b\nxyNHjryhGgpTvXr1Et0fEhIii8VS6Njx48eN4xYtWhQ7zx133CEvLy9lZmbq2LFjZaoJAAAAAABc\nHyEdAAAAAABuMX5+fte9pqiATnESEhJKU46SkpIc/rbb7Vq7dq0WLlyoAwcOOHTryZMX4rmea7fr\nyi9/gKa4gExZbNu2TfPmzdPPP/+s5OTkAuMlfY+itmrKExISYhwnJiYaHZHeeusteXt7a+7cucrK\nylJqaqo2b96szZs3S8rtttOzZ08NGzbM4Rn5tzHL3zmpKGFhYTp37pwSExNL9D7lwVm/x5upBn9/\n/xLdX9waz/tuPTw8HH43hTGbzQoODlZcXFyR321JawIAAAAAANdHSAcAAAAAgFtMcVsXlUXe9kgh\nISGaOXNmie/L37UkPT1dr7zyisPWWSaTSTVr1lT9+vXVtGlTtWzZUlarVa+//rrTanc2u92ucePG\nadGiRQ7nq1evrvr166tx48a6++67FRAQoKeeesopz8uTv9ORl5eX3nzzTf3pT3/S+vXrFRERoT17\n9igtLU2SdPbsWX3++eeaN2+evvrqK2NbqBsNLeV1Iipp6KikiuuSdD15v8fGjRtr8uTJJb6vZs2a\npX7mtfJ3aJo2bVqxnZ3yK2vwJX8A7Vo3+t3mfQfO/m4BAAAAAEBBhHQAAAAAAECJBAcHS5JsNpsa\nN25cqn+p/9lnnxkBnWbNmumll15S69atC4QWli5dWuZ6XWn+/PlGQKdu3bp65ZVX1L59e+MzyrNr\n164SzZeYmKhatWoVOR4fHy8pt/NJQEBAgfHw8HANGTJEQ4YMUUZGhn755Rdt375da9asUXR0tJKS\nkjRmzBitXbtWHh4eDnXGx8dfN1yS9/ygoKASvU9JuxilpKSUaL7C5HWASU9PV9OmTUs9T1nk/zwq\nV65cYXXkl1dTTk6OEhISiu3SlJmZaXT1Kel3CwAAAAAASo//RAYAAAAAAJRIw4YNJeV2wzly5Eix\n127dulVff/211q9frytXrkjK7Try3XffSZICAwP1zTffqGvXroV2Fblw4YKTq3euefPmScrtWvTl\nl1/qoYceKhDQkaSYmJgSzXfixIkix+x2uyIjIyXldo3J65SUk5Ojc+fOaefOnQ7Xe3t7649//KNe\ne+01rVu3Ti1atJAknT59Wr/99psxT56DBw8WW1tsbKyio6MlSfXr1y/R++Tv5nT16tUiryvL95z3\nezxz5ozxGyvKmjVr9M0332jjxo2Fbq9W1hok6cCBA8Ve+9tvv2n69OlauXKlTp8+7bQarpX/u71e\nTb/++qsyMzMllfy7BQAAAAAApUdIBwAAAAAAlEiHDh2M47yQSmGys7M1YcIETZ48Wa+88ooR0rhy\n5YrROaV27dpFbvmTmZmpdevWOcx3szlz5oyk3LBRcR1wVq1aZRznbc9UmO+//77IsR9++EFxcXGS\npI4dOxrnx40bp27duumpp57SuXPnCr03L7CTJz09XZLUpk0beXl5SZIWLVpU7LZTecEqSWrXrl2R\n1+UXGBhoHOcFfAqzdevWIseu16kp7/dot9sdarxWcnKyxo0bp0mTJmnMmDHFbhV1o9q2bSuzObdR\n9aJFi4zAS2GmT5+uTz/9VGPGjNH+/fudVsO18q/TBQsWFHvt/PnzjeP27du7rCYAAAAAAJCLkA4A\nAAAAACiRbt26GYGUJUuWaOXKlYVe9/777+v8+fOSpPvvv9/YSikgIMAINJw4caLQLioZGRl65513\ndPz4cYdzN5uQkBBJUkJCgg4dOlRg3G6367PPPtOPP/5onCvuPbZs2aKFCxcWOB8TE6N3331XkmSx\nWDRo0CBjrEuXLsbx+++/X+i2UlevXtWmTZskSX5+fqpXr54kKTQ0VL1795YkHT16VP/4xz8KrWvH\njh2aMWOGpNztnB599NEi3yG/2rVrq1KlSpKkjRs3FtpRaNasWfr111+LnMPb29s4Lqz7Tf/+/Y2g\n1/Tp0wt0FJJyuw2NHTtWqampkqTHHnvMqMsZwsPD1atXL0nSyZMnNXHixEK/h7Vr1xqBrfDwcHXv\n3t1pNVzrjjvuUOvWrSVJERERmj17dqHXLV++XMuXL5eU20Xnvvvuc1lNAAAAAAAgl7miCwAAAAAA\nAP8bzGazJk+erGHDhikzM1Ovv/66IiIi9NBDDyk8PFzR0dFasGCBfvrpJ0lSUFCQ3nzzTeN+Hx8f\ndenSRRs2bFBaWpqefPJJjRgxQo0aNVJGRoaOHj2qhQsX6tSpUw7PTU5OLtf3LIkePXpo1qxZkqTn\nnntOI0aMULNmzWQymXT8+HEtXbq0QHgnr4tQYSpVqqRx48Zp37596tmzp/z9/bV//37NmDHD2Mpp\n7Nixqlq1qnFP165d1bx5cx06dEibNm1Sv379NHDgQNWtW1d2u12nTp3St99+awSehg8f7hBQ+etf\n/6pdu3YpOjpaM2fO1KFDhzRgwADVrVtXVqtVGzdu1JIlS5SVlSWTyaTJkycrKCioRJ+PxWJRjx49\ntHTpUtlsNg0ePFgvvPCCGjZsqMuXL2vFihX6z3/+o9q1a+vs2bOFzhESEiIvLy9lZmZq9erVateu\nnQIDA1WnTh0FBwcrMDBQEydO1KhRo5SRkaERI0aoX79+uv/++xUYGKjTp09rzpw5RhCoZs2aevnl\nl0tU/43I+xxjYmK0YMECHT16VIMGDVK9evUUHx+vzZs3a9myZcrJyZHJZNL48ePl4+Pj9Drye++9\n99SvXz8lJSXpvffe086dO9WnTx9Vr15dcXFxWrNmjdG9yWKx6JNPPjECdAAAAAAAwHX4f98AAAAA\nAKDE7rnnHs2YMUOjRo2S1WrV999/X+hWTdWqVdO0adNUs2ZNh/Pjxo3TkSNHdP78eZ0/f17jx48v\ncK+/v7/eeOMNvf3228rOznboqnOzePnll7Vnzx5FRkYqPj5ekydPLnCNl5eXXnvtNc2cOVOXLl0q\n9j0mTpyoCRMmaOnSpVq6dKnDmKenp0aPHu3QRUfK3Q5q6tSpGj58uE6cOKFff/1Vf/vb3wrMbTKZ\nNHDgQL344osO54ODg/Xtt9/qpZde0uHDh7Vnzx7t2bOnwP2VK1fWP/7xD4ettkpizJgxioyMVFRU\nlKKjowvUVq9ePU2dOlUPPfRQofd7enqqa9euWr9+vWJjYzVixAhJ0qRJk9SvXz9JUs+ePZWVlaW3\n335bV69e1YIFCwrd4qlhw4aaPn26wzZczlK5cmXjczx69KgOHDigAwcOFLjOx8dH48ePV7du3Zxe\nw7Vq166tOXPm6KWXXtL58+e1efNmbd68ucB1tWrV0ieffKImTZq4vCYAAAAAAEBIBwAAAAAA3KB2\n7dpp06ZNmj9/vn744QedPHlSycnJ8vX11e233677779fTzzxhLEVUX5Vq1bVsmXL9PXXX2vTpk06\ne/assrKy5O/vr3r16qlDhw4aMGCAwsPDtXTpUu3du1dbt26VzWaTr69vBbxt4fz9/TVv3jzNmTNH\na9eu1alTp5Seni4/Pz/VqlVLbdq00aBBg1SrVi0dPnxYK1eu1MGDBxUdHW1s/5XfnXfeqeXLl+vf\n//63fvzxR125ckWhoaFq27atnn76aTVu3LjQOqpVq6Zly5ZpyZIl2rBhg6KiomS1WuXl5aUqVaqo\nTZs26tevn+66665C769Ro4YWL16s1atXa+3atYqMjJTValVwcLBq166t7t2765FHHilxB538Kleu\nrMWLF2v+/Plas2aNTp48Kbvdrjp16qhHjx4aNmyYsrOzi51j0qRJCg0N1aZNm3TlyhUFBgYqISHB\n4ZqHH35Y7dq109y5c7Vt2zadPXtWqamp8vf3V5MmTdSjRw/17dvXYfssZ6tZs6aWLl2q1atXa926\ndYqMjFRCQoLMZrNq1aql9u3ba/DgwcZ2ceWhSZMmWrt2rRYtWqQNGzbo2LFjSk5OVmhoqOrVq6de\nvXrpoYcecur2XwAAAAAAoHgme2EbZQMAAAAAAAAAAAAAAABwGo+KLgAAAAAAAAAAAAAAAAC41RHS\nAQAAAAAAAAAAAAAAAFzMXNEFAAAAAAAAlIfU1FSdPXu2zPPUrl1bfn5+TqgIFeXEiRPKzMws0xxB\nQUGqUaOGkyoCAAAAAADuwGS32+0VXQQAAAAAAICr7dq1S0OHDi3zPLNnz1abNm2cUBEqSteuXRUd\nHV2mOR599FF98MEHTqoIAAAAAAC4A7a7AgAAAAAAAAAAAAAAAFzsf6aTTlxcckWXgEKEhPgqIcFW\n0WUAKGesfcA9sfYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNrv/yEhwcUOUYnHZSJ2exZ0SUAqACs\nfcA9sfYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNr/+ZASAcAAAAAAAAAAAAAAABwMUI6AAAAAAAA\nAAAAAAAAgIsR0gEAAAAAAAAAAAAAAABcjJAOAAAAAAAAAAAAAAAA4GKEdAAAAAAAAAAAAAAAAAAX\nI6QDAAAAAAAAAAAAAAAAuBghHQAAAAAAAAAAAAAAAMDFCOkAAAAAAAAAAAAAAAAALkZIBwAAAAAA\nAAAAAAAAAHAxQjoAAAAAAAAAAAAAAACAixHSAQAAAAAAAAAAAAAAAFyMkA4AAAAAAAAAAAAAAADg\nYoR0AAAAAAAAAAAAAAAAABcjpAMAAAAAAAAAAAAAAAC4GCEdAAAAAAAAAAAAAAAAwMUI6QAAAAAA\nAAAAAAAAAAAuRkgHAAAAAAAAAAAAAAAAcDFCOgAAAAAAAAAAAAAAAICLEdIBAAAAAAAAAAAAAAAA\nXIyQDgAAAAAAAAAAAAAAAOBihHQAAAAAAAAAAAAAAAAAFyOkAwAAAAAAAAAAAAAAALgYIR2USlpW\nmt796SNtPb2roksBAAAAAAAAAAAAAAC46RHSQanYsq7qki1W+2IiK7oUAAAAAAAAAAAAAACAmx4h\nHZRKkHegTDIp3pZQ0aUAAAAAAAAAAAAAAADc9AjpoFQ8PTwVZAksdUjnxInjTq7oxowc+aw6dGil\nrl3bVWgdAAAAAAAAAAAAAADAPRDSQamFWIJ05apVOfacEt+TkpKiTz/9SMOHD3FhZQAAAAAAAAAA\nAAAAADcXs6smzsnJ0fjx43Xs2DF5e3vr73//u+rUqWOMz5o1S4sWLVLlypUlSRMmTFD9+vVdVQ5c\nINgnWL8lnVVyRoqCLIElumfKlI+1Zs1KF1cGAAAAAAAAAAAAAABwc3FZSGfjxo3KyMjQggULtH//\nfn3wwQeaPn26MR4ZGanJkyerWbNmrioBLhZiCZIkJaRbSxzSyckpedcdV5o6dUZFlwAAAAAAAAAA\nAAAAANyIy7a72rt3rzp27ChJatGihSIjIx3Gf/31V82YMUMDBw7UF1984aoy4EIhPsGSpIS0xAqu\nBAAAAAAAAAAAAAAA4ObmspBOSkqK/P39jb89PT2VlZVl/P3QQw9p/Pjx+uabb7R3715FRES4qhS4\nSHC+TjoAAAAAAAAAAAAAAAAomsu2u/L391dqaqrxd05Ojszm3MfZ7XYNGzZMAQEBkqTOnTvr8OHD\n6tKlS5HzhYT4ymz2dFW5KIX6HjWkSCndZFN4eECx106ZMkVTp051ONehQytJUuvWrTVnzhyNHTtW\ny5YtU5MmTbR48WL961//0vLly5WYmKgqVaqoe/fuGjNmjHF/enq6VqxYoS1btujIkSNKSEhQZmam\ngoKC1LBhQ9133316/PHH5evrW6CeJ598Urt375a3t7cOHTrkMNa4cWNJ0htvvKGnnnpK//nPf7Ro\n0SIdPnxYiYmJCgsLU5s2bTRs2DDdcccdpfrsgFvB9dY9gFsTax9wP6x7wD2x9gH3xNoH3BNrH3BP\nrH3APbH2K57LQjotW7ZURESEevbsqf3796tRo0bGWEpKinr16qXvv/9evr6+2rVrl/r161fsfAkJ\nNleVitJK95IkRVvjFBeXXOylqanpRY5lZGQpLi5ZaWmZkqSsrBy9+upftGnTf4xrzp8/r5wcD+M5\nx44d1RtvvKbY2EsF5rt8+bIuX76snTt3as6cuZoy5XOFh1cp8Mw8RdWelHRVI0e+qg0b1jmcj4mJ\n0fLly7Vy5UqNHv2GHn740WLfHbgVhYcHXHfdA7j1sPYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNr\nv/wUF4ZtYlc0AAAgAElEQVRyWUjngQce0Pbt2/XEE0/Ibrdr0qRJWrVqlWw2mwYMGKBRo0Zp6NCh\n8vb2Vtu2bdW5c2dXlQIXCfQOkKfJQ9a062931adPP3XqdJ++/PJzbd++TZI0c+ZcSVKlSo6dbk6d\nOqETJ6LUvPldevLJp+Xj46Pt27epZ8+HJUmJiVaNGvWSkpIS5enpqZ49e6tduw4KCQlVcnKijh+P\n0sKF82S1WnX+/FlNnfqpJkyYdMPv9913cxQfH6+6devp8ccHqUGDhkpOTtLatau0adMG5eTk6NNP\nP1Tr1m1VrVq1G54fAAAAAAAAAAAAAAC4D5eFdDw8PPTuu+86nGvQoIFx3KdPH/Xp08dVj0c58DB5\nqHKlYCWkJ1732tDQMIWGhikwMMg417Bh40KvzcnJ0W231dSnn06TxeIjSWrZspUxvmDBPCUl5T7z\npZde1eOPD3K4v23bDurRo5eefPJxpaSkaNu2LcrKyjK2Wyup+Ph43XNPa/3jH5/IYrEY5//4x3YK\nCAjU8uVLlJGRoY0b12nIkKduaG4AAAAAAAAAAAAAAOBePCq6APxvC/UNUWJ6krJzsp06b48evYyA\nzrUuX45TWFi4QkND1bfv44VeEx5eRXfffY8kKSMj3Qj13Kg//3m0Q0AnzyOP9DWOT5w4Xqq5AQAA\nAAAAAAAAAACA+3BZJ53/VQs3n9DPR2MruoxydW+TKnq86+2lujfUN0R22ZWUkawQn2Cn1fSHPzQv\ncuzNN9+RlNtxx8Oj6JxZ5cqhxnFGRuYN1xAeXkX16tUvdOy222oaxzab7YbnBgAAAAAAAAAAAAAA\n7oWQDsok1LeyJCkh3erUkE7VqlWve01eQCcrK0sXL8bowoVonTt3RidPntCvvx7SyZMnjGvt9pwb\nrqFatepFjlWq5GscZ2c7t4sQAAAAAAAAAAAAAAC49RDSucbjXW8vdVcZdxRaKTeYk5BmlYKcN6+v\nr3+x42lpaVq6dJE2blynkydPFBqU8fDwUE7OjYdz8uQP4lzLZDIZx3a7vdTPAAAAAAAAAAAAAAAA\n7oGQDsok1DdEkpSQnujUefNlYAq4cCFaf/nLSJ0/f8445+XlpVq1aqtOnXpq3LiJWrS4R+vXf69l\nyxY5tS4AAAAAAAAAAAAAAIDSIKSDMgnLC+mkWcvtmePHv2UEdLp1e1CPPTZATZrcIbPZ8ee8YsWS\ncqsJAAAAAAAAAAAAAACgOIR0UCau6qRTlKNHD+vw4UhJUsuWrTR+/HtFXnvp0sVyqQkAAAAAAAAA\nAAAAAOB6PCq6APxvC7QEyOxhljWtZCEdU3H7WJVA/i2uGjduWuR1MTEXdOjQAePv7OzsMj0XAAAA\nAAAAAAAAAACgLAjpoExMJpOCLUFKSC/Zdlfe3t7Gsc1mu+HnBQUFG8d79uxSVlZWgWvi4y9r3Lix\nyszMNM5lZGTc8LMAAAAAAAAAAAAAAACche2uUGYhliCdsP6mrJwsmT2K/0mFhoYZxzNmTFP37g/J\nw8NDjRo1KdGz7ryzhUJDwxQff1nHj0fp1VdfUN++j6tatepKSkrU/v2/aM2aFbJaHUNDqakpN/5i\nAAAAAAAAAAAAAAAATkJIB2UW4hMsu+yypicprFLlYq/t0KGTZs36UtnZ2Vq8eIEWL16gqlWracmS\n1SV6lsVi0bhx7+qvfx2l9PR0HTiwTwcO7CtwXa1atdWr1yOaPn2KJOm3306pefO7bvzlAAAAAAAA\nAAAAAAAAnIDtrlBmwZYgSVJC2vW3vGrYsLE++OCfatbsTlWq5CuLxSKz2ay0tLQSP69Vq9aaOXOu\nevfuo+rVb5OXl5e8vLwUFhaue+9to9dff0uzZs3To48+Jh8fH0nS5s0bSvdyAAAAAAAAAAAAAAAA\nTmCy2+32ii6iJOLikiu6BBQiPDxAS/b9RwuilmnYHU+odbWWFV0SgHIQHh7A/y4Dboi1D7gf1j3g\nnlj7gHti7QPuibUPuCfWPuCeWPvlJzw8oMgxOumgzEJ8cjvpWNMSK7gSAAAAAAAAAAAAAACAmxMh\nHZRZiCVYkpSQfv3trgAAAAAAAAAAAAAAANwRIR2UWYhPXkiHTjoAAAAAAAAAAAAAAACFIaSDMvM1\nV5K3h5esaXTSAQAAAAAAAAAAAAAAKAwhHZSZyWRSiE8wnXQAAAAAAAAAAAAAAACKQEgHThFiCVZK\nZqoysjMruhQAAAAAAAAAAAAAAICbDiEdOEWwJUiSZE1nyysAAAAAAAAAAAAAAIBrEdKBU4T45IZ0\nEtLY8goAAAAAAAAAAAAAAOBahHTgFCGWYElSAp10AAAAAAAAAAAAAAAACiCkA6cI9vk9pEMnHQAA\nAAAAAAAAAAAAgAII6cApQiy5211Z6aQDAAAAAAAAAAAAAABQACEdOEVIXieddDrpAAAAAAAAAAAA\nAAAAXIuQDpyiktlHPp4+Skijkw4AAAAAAAAAAAAAAMC1COnAaUJ8guikAwAAAAAAAAAAAAAAUAhC\nOnCaYEuQrmZdVVpWekWXAgAAAAAAAAAAAAAAcFMhpAOnCbEES5Ks6Wx5BQAAAAAAAAAAAAAAkB8h\nHThNiE+QJCkhjS2vAAAAAAAAAAAAAAAA8iOkA6fJ66STQCcdAAAAAAAAAAAAAAAAB4R04DQhPnkh\nHTrpAAAAAAAAAAAAAAAA5EdIB04TYsnd7sqaRicdAAAAAAAAAAAAAACA/AjpwGlupJPOiRPHXV1O\nqcXEXJDNllrRZQAAAAAAAAAAAAAAgFsIIR04jbent/zMvkooppNOSkqKPv30Iw0fPqQcKyuZjIwM\nzZz5/zRkSH8lJrJlFwAAAAAAAAAAAAAAcB5zRReAW0uwT5AuX42X3W6XyWQqMD5lysdas2ZlBVR2\nffPmzdZXX31R0WUAAAAAAAAAAAAAAIBbEJ104FQhliClZ2foalZaoeM5OTnlXFHJZWdnV3QJAAAA\nAAAAAAAAAADgFkVIB04V7BMsSUpIL3rLKwAAAAAAAAAAAAAAAHdDSAdOFWL5PaSTRkgHAAAAAAAA\nAAAAAAAgj7miC8CtJcQSJEmypic6nP/qqy80c+b/czjXoUMrSVKLFi01deoMh7Fdu3bq++9XKjLy\nkBISrsjb26KaNWupbdv26tdvgIKDg4usIS4uVkuXLtKuXTt17txZZWVlKjAwSA0aNFT79h3Vq9fD\nslh8jOu//36VJk2a4DBH//4PS5KqVauuxYtX3eCnAAAAAAAAAAAAAAAA4IiQDpwqxNjuKvE6Vxbu\n6tWrmjjxbW3dGuFwPiMjQ0ePHtbRo4e1cOE8jRs3UR06dCpw/969P+vNN0crNTXV4Xx8/GXFx1/W\n7t07NX/+HH388VTVrl2nVDUCAAAAAAAAAAAAAADcKEI6cKqitrvq06efOnW6T19++bm2b98mSZo5\nc64kqVIlX0lSTk6Oxo79i/bu/VmS1K5dRz34YE9Vr15dNptNe/f+rGXLFiklJUVvvTVG//znFLVq\n1dp4RnJyssaNG6vU1FQFB4do8OBhatr0Dnl7e+vSpYtas2alfvpphy5ejNGECX/Tl1/OlslkUocO\nnTRz5lwtX75EK1YslSR9+OGnCgsLl9ns5doPDAAAAAAAAAAAAAAAuAVCOnCqYEugpIKddEJDwxQa\nGqbAwCDjXMOGjR2uWbz4OyOgM3r0G+rTp5/DeKtWrdWr1yN68cXhio+P16RJE7Rw4QqZzbk/4x9/\n3KKkpNznTpr0oe68s4Vx7x13NFOXLt00btxYRURs1LFjR3Ts2FE1adJUgYFBCgwMUuXKocb1devW\nV/XqNcr6cQAAAAAAAAAAAAAAAEiSPCq6ANxavDy95O/lJ+s1nXSuJycnR999l9tZ549/bFcgoJPn\ntttq6vnnX5YkxcZe0pYtm42x+PjLxnGtWrULvX/o0KfVp89jevHFVxUQEHBDNQIAAAAAAAAAAAAA\nAJQWnXSusfTEau2LPVTRZZSru6s0V9/bezltvhCfYF1MvSS73S6TyVSie06ePK7Y2EuSpHvvbVPs\ntX/8YzvjeM+en3X//f8nSapTp65x/s03x+iVV/6ipk3/4HBvw4aNNXr02BLVBAAAAAAAAAAAAAAA\n4CyEdOB0IZZgnUuOVmqmTf7efiW6JyrqmHE8ZconmjLlkxLdd+FCtHHctm0HNWjQUCdPHtehQwf0\npz8NU1hYuO69t41atWqte+9t47ClFQAAAAAAAAAAAAAAQHkhpHONvrf3cmpXGXcU4hMkSUpIt5Y4\npJOYeGPbY+VJTk4yjs1ms/75z8/0wQcT9dNPOyRJly/Hae3a1Vq7drVMJpOaNv2Dund/SL1795GX\nl1epngkAAAAAAAAAAAAAAHCjCOnA6UIswZIka3qiagXcVqJ7srOzjePXXhurZs2al+g+i8Xi8HdY\nWLg++ugznTp1QhERm7Rz53ZFRR1VTk6O7Ha7Dh+O1OHDkVqxYqn+9a/pCg4OLuFbAQAAAAAAAAAA\nAAAAlB4hHThdiOX3TjppJe+OExAQaBz7+fmrYcPGZaqhfv3bVb/+7Ro+/DklJSVp3749+umnHYqI\n2KiUlBSdPHlc06d/pjfeeLtMzwEAAAAAAAAAAAAAACgJj4ouALeeYJ/c7jQJ6Yklvqd+/QbG8eHD\nh4q9NiEhQV9/PUNr167W8eNRxvnMzEydOnVSR48ecbg+MDBQnTt31V//+jfNmjVf/v4BkqQdO34s\ncX0AAAAAAAAAAAAAAABlQUgHTpe33VVhnXRMJlOh9zRt+gcFBuZ24NmwYZ1SUlKKnH/JkgX6+usZ\neu+98frxxy3G+SFD+mvo0AF6660xRd5brVp11atXX5KUkZHuMObhwXIAAAAAAAAAAAAAAACuQSoB\nThdsCZRJJiWkFwzpeHt7G8c2m8049vLyUr9+j0uSEhMTNXHiOGVkZBS4/+DB/Zo3b44kyWKxqHfv\nR42xdu06SpIuXbqo7777ttDazpw5raioo5KkJk3+4DDm5eVlHF+9ahMAAAAAAAAAAAAAAICzmCu6\nANx6PD08Fejtr4S0gttdhYaGGcczZkxT9+4PycPDQ40aNdGQIU9p+/Ztioo6qu3bt+nppwepf/+B\nuv32RkpJSdaePbu1bNkiowPO88+/rLCw/843cOAQrV27SikpKZo27V86dOiAunb9P1WtWk2pqSk6\ncuRXLV78ndLT0+Xh4aFhw54psrZZs77SE08MVk6OXc2aNXf2RwQAAAAAAAAAAAAAANyMyW632yu6\niJKIi0uu6BJQiPDwgEK/m3/smaLzyRf06X3vycP034ZNx48f04gRQ5WdnW2cq1q1mpYsWS1JSky0\n6u2339DevT8X+UxPT08NH/6chg59psDY3r0/6623XldKStG/Fx8fH7322lj16NHL4fzly5c1cGBf\nhy46ZrNZGzZsc+iyA6DotQ/g1sbaB9wP6x5wT6x9wD2x9gH3xNoH3BNrH3BPrP3yEx4eUOSY5/jx\n48eXXymlZ7MV3PoIFc/Pz1Lod3M4PkoxqRfV8ba28jFbjPOhoWFq0qSpYmIuKDk5WZ6eHvL3D1Dv\n3n1kNpvl4+OjHj16qVGjJsrJyZHNZlNmZqY8Pc2qUeM2delyv8aOfVtdutxfaD01atymnj17y8en\nkjIzM5WWlqbs7CwFBASqTp166tmzt956a7xatGhZ4F5fX1/dc8+9v9eWaNTbsWNnBQYGOekTA24N\nRa19ALc21j7gflj3gHti7QPuibUPuCfWPuCeWPuAe2Ltlx8/P0uRY3TSQZkUlbZbfHylIs79qNdb\nvaw6gbUqoDIArkTSFnBPrH3A/bDuAffE2gfcE2sfcE+sfcA9sfYB98TaLz/FddLxKHIEKEZOjl0r\nf/xNZy4mFToeYgmWJCWkJ5ZnWQAAAAAAAAAAAAAAADclQjoolYTkdC3/8TctjThR6HiIz+8hnTRr\neZYFAAAAAAAAAAAAAABwUyKkg1IJDvCW2dOks5cKb4cVYgmSJCWkE9IBAAAAAAAAAAAAAAAgpINS\n8fTwUNXKvjp/KVl2u73AePDvIR1rGttdAQAAAAAAAAAAAAAAENJBqdUI9VNaRrauJKUXGAuyBMrD\n5EEnHQAAAAAAAAAAAAAAABHSQRnUCPOTJF2ITy0w5mHyUJB3oBLopAMAAAAAAAAAAAAAAEBIB6Vn\nhHQuFwzpSFKIT5ASM5KUY88pz7IAAAAAAAAAAAAAAABuOoR0UGo1Qn0lFRPSsQQrx56jpIzk8iwL\nAAAAAAAAAAAAAADgpkNIB6VWtbKvPDxMiom3FToe7BMkSUpIs5ZnWQAAAAAAAAAAAAAAADcdQjoo\nNbOnh6qH+unC5VTZ7fYC4yGWYElSQnpieZcGAAAAAAAAAAAAAABwUyGkgzKpXS1AtvQsJaZmFBgL\nsdBJBwAAAAAAAAAAAAAAQCKkgzKqVTVAknThcmqBsRCfvE46hHQAAAAAAAAAAAAAAIB7I6SDMiku\npBOct91VGttdAQAAAAAAAAAAAAAA90ZIB2VSq4q/JCkm3lZgLMDbT54mTzrpAAAAAAAAAAAAAAAA\nt0dIB2VyWxV/mVR4Jx0Pk4eCLUGy0kkHAAAAAAAAAAAAAAC4OUI6KBMfb7PCgn10Ib5gSEeSQnyC\nlJSRrOyc7HKuDAAAAAAAAAAAAAAA4OZBSAdlViPUT8m2TCXZMgqMhViCZZdd1vSkCqgMAAAAAAAA\nAAAAAADg5kBIB2VWI8xPkhRTyJZXIT7BkqSEdGu51gQAAAAAAAAAAAAAAHAzIaSDMjNCOvG2AmPB\nliBJkjWNkA4AAAAAAAAAAAAAAHBfhHRQZtVDc0M6FwrrpPN7SCchPbFcawIAAAAAAAAAAAAAALiZ\nENJBmVUP9ZUkXYhnuysAAAAAAAAAAAAAAIDCENJBmVWymFU50FJEJ53fQzppdNIBAAAAAAAAAAAA\nAADui5AOnKJGqJ+sKRmypWU5nPfz8pXZw6zE9KQKqgwAAAAAAAAAAAAAAKDiEdKBU9QI85MkxVyz\n5ZXJZJKfuZJsWbaKKAsAAAAAAAAAAAAAAOCmQEgHTlE91FeSCt3yytfLV7bMq+VdEgAAAAAAAAAA\nAAAAwE2DkA6cIq+TzoX4QkI6Zl/Zsq4qx55T3mUBAAAAAAAAAAAAAADcFAjpwCmqh/4e0rlccFsr\nPy9f2WVXWlZaeZcFAAAAAAAAAAAAAABwUyCkA6fwr+SlID9vxRTWScerkiQplS2vAAAAAAAAAAAA\nAACAmyKkA6epEeany4lpSs/IdjjvZ/aVJNmyCnbZAQAAAAAAAAAAAAAAcAeEdOA01UNzwzgxVxy7\n6fh65Z5PzSSkAwAAAAAAAAAAAAAA3BMhHThNjTA/SdKFy44hHb/ft7uyEdIBAAAAAAAAAAAAAABu\nipAOnKZGaF5IxzGM4/v7dlepWVfLvSYAAAAAAAAAAAAAAICbASEdOE1eJ52Y+Gs76eSGdOikAwAA\nAAAAAAAAAAAA3BUhHThNgK+X/Ct5Fdjuyvf37a5SswjpAAAAAAAAAAAAAAAA9+SykE5OTo7efvtt\nDRgwQE8++aTOnDlT6HXjxo3TRx995KoyUI5MJpOqh/oq1npVmVnZxvm87a5smWx3BQAAAAAAAAAA\nAAAA3JPLQjobN25URkaGFixYoNdee00ffPBBgWu+++47RUVFuaoEVIAaYX6y26WLV/4byPH7vZOO\njU46AAAAAAAAAAAAAADATbkspLN371517NhRktSiRQtFRkY6jP/yyy86cOCABgwY4KoSUAFqhPpJ\nksOWVz6ePvIweSiVTjoAAAAAAAAAAAAAAMBNuSykk5KSIn9/f+NvT09PZWVlSZJiY2M1bdo0vf32\n2656PCpIjbDckE5M/H9DOiaTSb7mSrJl0kkHAAAAAAAAAAAAAAC4J7OrJvb391dq6n+DGjk5OTKb\ncx+3bt06JSQk6Nlnn1VcXJzS0tJUv3599e3bt8j5QkJ8ZTZ7uqpclEF4eIBx3Nw79zuOT85wOB/g\n4ydbZprDOQD/21jPgHti7QPuh3UPuCfWPuCeWPuAe2LtA+6JtQ+4J9Z+xXNZSKdly5aKiIhQz549\ntX//fjVq1MgYGzp0qIYOHSpJWrp0qU6dOlVsQEeSEhLownIzCg8PUFxcsvG33W6Xj7enfruQ6HDe\nx+Sj2PR4xcYmyWQyVUSpAJzo2rUPwD2w9gH3w7oH3BNrH3BPrH3APbH2AffE2gfcE2u//BQXhnJZ\nSOeBBx7Q9u3b9cQTT8hut2vSpElatWqVbDabBgwY4KrHooKZTCbVCPPTmYvJysrOkdkzd0c1Xy9f\nZduzlZ6dIR+zpYKrxP9n7+6D3L7re9G/pZX2QdKu7fVDEicOD3mAMwSS8hAokB6SJpw2lIY2FwLN\nEChcCkPTFoahTYeSaZMUGBigtLQzMH2ahHChodycC5feMnmCwuFkgNOEeoCeUiBxcGLHdmzvSmuv\ndqX7x9ob0lAjx9Zq5d/rNeNZ6aeftO8d6/vfez4fAAAAAAAAAGBl9a2kUy6Xc9111z3m2hlnnPG4\n+37aBB2Gz+b19Xx/+/7sfGQumzfUkyS1Si1J0lpoKekAAAAAAAAAAIVTHnQATjyHizkP7m4uX6tX\nJ5IkzfbcQDIBAAAAAAAAAAySkg7H3eYNS1Nztu96tKRTqx6apNNuDSQTAAAAAAAAAMAgKelw3G1e\nvzRJZ/vuRws59UPrrpoLSjoAAAAAAAAAQPEo6XDcTa8Zz2i1/B8m6SytuzJJBwAAAAAAAAAoIiUd\njrtyqZRTput5cHcrnU43SVJfXnc1N8hoAAAAAAAAAAADoaRDX2zeUMvCYie79i2VcmrWXQEAAAAA\nAAAABaakQ19s3lBPkmzftVTKqVt3BQAAAAAAAAAUmJIOfbF5/aGSzu5mkqRWPTxJx7orAAAAAAAA\nAKB4lHToi1OWJ+kcKulUTNIBAAAAAAAAAIpLSYe+2Lh2PJWR0nJJp1wqZ6IynpZJOgAAAAAAAABA\nASnp0Bcj5XJOnq7lwd2tdLvdJEmtUkvTJB0AAAAAAAAAoICUdOibzRvqOdhezJ79B5Mk9eqEdVcA\nAAAAAAAAQCEp6dA3m9fXkyTbdy+tvKpVapnvtNNebA8yFgAAAAAAAADAilPSoW9O2XCopLNrqaRT\nr9aSJK2FuYFlAgAAAAAAAAAYBCUd+mbz+qVSzuGSTu1QSadp5RUAAAAAAAAAUDBKOvTNSdO1lEul\nPLh7qZRTr0wkMUkHAAAAAAAAACgeJR36pjJSzknTE9m+q5lut2uSDgAAAAAAAABQWEo69NXm9fW0\nDi5kX3N+uaTTUtIBAAAAAAAAAApGSYe+OmXDUjFn+67m8rqr5oKSDgAAAAAAAABQLEo69NXm9fUk\nSyWdRyfpzA0yEgAAAAAAAADAilPSoa82b1gq6Ty4u5X6oZKOSToAAAAAAAAAQNEo6dBXJ0/XUsqh\nSTqVw5N0lHQAAAAAAAAAgGJR0qGvRqsjWdMYze79B1KrTiSx7goAAAAAAAAAKB4lHfpu/dR4Hpk5\nmJGMZLRcte4KAAAAAAAAACgcJR36bt3UeBY73exrzqdWrZmkAwAAAAAAAAAUjpIOfbd+aixJsmf/\ngdSrtbRM0gEAAAAAAAAACkZJh76bnhpPkuyZOZhaZSJzCwey2FkccCoAAAAAAAAAgJWjpEPfTU8u\nlXR271uapJMkcwsHBhkJAAAAAAAAAGBFKenQd+vXHFp3NXMgtcpSSadp5RUAAAAAAAAAUCBKOvTd\n4Uk6e/YfXJ6k02or6QAAAAAAAAAAxaGkQ99N1qqpjJSzZ/+B1KoTSZKmkg4AAAAAAAAAUCBKOvRd\nqVTK9NRY9uw/kPqhdVethbkBpwIAAAAAAAAAWDlKOqyI9VPj2d9qZ6y8tPrKJB0AAAAAAAAAoEiU\ndFgR01NjSZKFdiVJ0lLSAQAAAAAAAAAKREmHFTE9uTRBpz239JVrWncFAAAAAAAAABSIkg4rYv2a\npZLO3NxIEpN0AAAAAAAAAIBiUdJhRUxPLq27mp1det5cUNIBAAAAAAAAAIpDSYcVMT21NEln38xi\nKqWRtNrWXQEAAAAAAAAAxaGkw4qYnlqapPPI/oOZqE5YdwUAAAAAAAAAFIqSDitifLSS+ngle2YO\npl6ppbVgkg4AAAAAAAAAUBxKOqyY6anx7N5/ILVqLc12K51uZ9CRAAAAAAAAAABWhJIOK2Z6ciwH\n5xczVh5PN90cXDw46EgAAAAAAAAAACtCSYcVM71mPEky0h1LkjTbVl4BAAAAAAAAAMWgpMOKmZ5c\nKudksZokabVbA0wDAAAAAAAAALBylHRYMeunlibpdNuVJElzQUkHAAAAAAAAACgGJR1WzPShkk77\n4FJJxyQdAAAAAAAAAKAolHRYMdNTS+uuDswtfe2a7blBxgEAAAAAAAAAWDFKOqyYtY2xlErJXLOU\nJGlZdwUAAAAAAAAAFISSDiumMlLO2sZY9s8sPW9adwUAAAAAAAAAFISSDitqemosM/uXHresuwIA\nAAAAAAAACkJJhxU1PTmexXYlSdK07goAAAAAAAAAKAglHVbU+qnxZLGSUkppWXcFAAAAAAAAABSE\nkg4rat3UWJJSRktjaS5YdwUAAAAAAAAAFIOSDitq/dR4kqSSMZN0AAAAAAAAAIDCUNJhRR0u6ZQ6\no2m1W+l2uwNOBAAAAAAAAADQf0o6rKildVdJd6Gahe5i2p32gBMBAAAAAAAAAPSfkg4ranKimmql\nnIX5SpKkaeUVAAAAAAAAAFAASjqsqFKplOnJscwfWPrqtRbmBpwIAAAAAAAAAKD/lHRYcdNT45k/\nMJLEJB0AAAAAAAAAoBiUdFhx01Nj6S5UkyQtJR0AAAAAAAAAoACUdFhx66fGk0MlneaCkg4AAAAA\nAAAAcOJT0mHFTU+N/9gknbkBpwEAAAAAAAAA6D8lHVbc9NRYsnhoko51VwAAAAAAAABAASjpsOLW\n/+UcdpsAACAASURBVPgkHeuuAAAAAAAAAIACUNJhxU1Pjqe7MJokaVp3BQAAAAAAAAAUgJIOK25s\ndCS1yniSpGXdFQAAAAAAAABQAEo6DMT6qVq6i5U0rbsCAAAAAAAAAApASYeBWD81nu5CNc15JR0A\nAAAAAAAA4MSnpMNATE+NJQtVk3QAAAAAAAAAgEJQ0mEgpg9N0ml32ml3FgYdBwAAAAAAAACgr5R0\nGIjpqbF0F6pJklZ7bsBpAAAAAAAAAAD6S0mHgZieHE8Wl0o6c1ZeAQAAAAAAAAAnOCUdBmL9oXVX\nSdI0SQcAAAAAAAAAOMEp6TAQaydHlyfptEzSAQAAAAAAAABOcEo6DMRIuZyJkYkkSbOtpAMAAAAA\nAAAAnNiUdBiYqbF6kmR2XkkHAAAAAAAAADixKekwMGsnGkmSR1ozA04CAAAAAAAAANBfSjoMzHRt\nMknyyNzsgJMAAAAAAAAAAPSXkg4Ds6GxVNLZd0BJBwAAAAAAAAA4sSnpMDAnr1mTJGm2WwNOAgAA\nAAAAAADQX0o6DMymNZPpLpbTWpgbdBQAAAAAAAAAgL6qDDoAxTU9NZYsVjOfA4OOAgAAAAAAAADQ\nVybpMDCNiWqyOJqFHBx0FAAAAAAAAACAvlLSYWBKpVIqGUt3pJ1OtzPoOAAAAAAAAAAAfaOkw0CN\nlceTJPvmZgecBAAAAAAAAACgf5R0GKiJkYkkyfZ9+wacBAAAAAAAAACgf3oq6ezZs6ffOSioxmgt\nSbJDSQcAAAAAAAAAOIH1VNK58sor+52DgpoarydJds3uH3ASAAAAAAAAAID+qfRy09Of/vTceuut\nedaznpXx8fHl65s3b+5bMIphemIyaSV7mjODjgIAAAAAAAAA0Dc9lXTuvffe3HvvvY+5ViqVcvvt\nt/clFMWxvjGZ7E72HZgddBQAAAAAAAAAgL7pqaRzxx13HPUHdzqd/OEf/mH+9V//NaOjo7nhhhvy\npCc9afn1f/zHf8zHP/7xlEqlvPzlL8/rXve6o/4dDL9Nk2uSJDPzrQEnAQAAAAAAAADon3IvN+3Z\nsydve9vb8vznPz/Pfe5zc/XVV2fXrl1HfM9tt92W+fn5fPrTn8473vGOvO9971t+bXFxMR/84Afz\nt3/7t/n0pz+dT37yk9mzZ8+x/SUMpbUTjSRJs62kAwAAAAAAAACcuHoq6Vx77bV55jOfmdtvvz13\n3HFHzj333LzrXe864nu++c1v5oILLkiSnHfeedm6devyayMjI/nCF76QycnJ7N27N51OJ6Ojo8fw\nZzCsapVakuRg50C63e6A0wAAAAAAAAAA9EdPJZ1t27bljW98YxqNRqampvKmN70p27dvP+J7Zmdn\n02g0lp+PjIxkYWFh+XmlUskXv/jFXHbZZTn//PMzMTHxBP8Ehlm9uvT/3inPp3lg4afcDQAAAAAA\nAAAwnCq93FQqlfLggw/mlFNOSZJs3749lcqR39poNNJsNpefdzqdx73npS99aS6++OJcc801ufXW\nW3P55Zf/p5+3bl0tlcpIL3FZYRs3Tj7h93a7jZRSTkba6Y6MHNNnASvLeYVicvaheJx7KCZnH4rJ\n2YdicvahmJx9KCZnf/B6Kun8zu/8Tq644oqce+656Xa7uffee3P99dcf8T3Pfvazc+edd+bSSy/N\nPffck7PPPnv5tdnZ2bzlLW/JX//1X2d0dDQTExMpl4881OeRR1q9RGWFbdw4mYcfnjmmz6hmLIuV\ndv79vj2ZHO1puBMwYMfj7APDx9mH4nHuoZicfSgmZx+KydmHYnL2oZic/ZVzpDJUTyWdU045Jbfe\nemu+9a1vpdPp5I/+6I+yfv36I77nkksuyVe/+tW8+tWvTrfbzXve85587nOfS6vVyhVXXJGXv/zl\nufLKK1OpVPK0pz0tv/zLv3x0fxUnjImRiRyszGb3/gODjgIAAAAAAAAA0Bc9lXTe/va35x/+4R/y\nkpe8pOcPLpfLue666x5z7Ywzzlh+fMUVV+SKK67o+fM4cdWqtexdeCS7988NOgoAAAAAAAAAQF/0\nVNI588wz89GPfjTnnntuxsfHl68/73nP61swimNyrJbSgW52zcwOOgoAAAAAAAAAQF/0VNLZu3dv\n7r777tx9993L10qlUm688ca+BaM41ozXk33J7qb9dwAAAAAAAADAiamnks6ll16a17zmNf3OQkE1\nqvUkyd6Wkg4AAAAAAAAAcGIq93LTzTff3O8cFFitOpEk2T/fSqfTHXAaAAAAAAAAAIDjr6dJOief\nfHKuuuqqnHvuuRkbG1u+fvXVV/ctGMVRq9aWHozMZ+/swUxPjQ82EAAAAAAAAADAcdZTSee8887r\ndw4KrF45XNJpZ89+JR0AAAAAAAAA4MTTU0nn6quvTqvVyv3335+zzz47Bw4cSK1W63c2CuLwJJ1S\npZ09MweSrBlsIAAAAAAAAACA46zcy01f+9rXctlll+Wtb31rdu3alYsuuihf+cpX+p2NgqhXJ5Ye\nVNrZvf/AYMMAAAAAAAAAAPRBTyWdD33oQ/nkJz+ZqampbNq0KZ/4xCfy/ve/v9/ZKIha5ccm6ew/\nOOA0AAAAAAAAAADHX08lnU6nk40bNy4/P/PMM/sWiOKpH153NdLOHpN0AAAAAAAAAIATUKWXm04+\n+eTceeedKZVK2b9/f26++eZs3ry539koiInKeEoppVxdyO49SjoAAAAAAAAAwImnp0k61113XT73\nuc/lwQcfzCWXXJLvfOc7ue666/qdjYIol8qZqIxnZHTBuisAAAAAAAAA4ITU0ySd9evX50Mf+tBP\nfO3d7353rr/++uMaiuKpVWs5WG1ldq6d/a35TNVGBx0JAAAAAAAAAOC46WmSzpFs3br1eOSg4OqV\nWrrl+STJtp2zA04DAAAAAAAAAHB8HXNJB46HWnUinSwmpcVs26GkAwAAAAAAAACcWJR0WBVqlYml\nB5V2tu2cGWwYAAAAAAAAAIDjTEmHVaFerSVJxsYXrbsCAAAAAAAAAE44x1zS6Xa7xyMHBVc7VNLZ\nuGEkD+5upb3QGXAiAAAAAAAAAIDj55hLOi984QuPRw4Krn5o3dX6dSNZ7HSzfVdzwIkAAAAAAAAA\nAI6fnko6P/rRj/Lrv/7reelLX5qdO3fmqquuygMPPJAk+d3f/d2+BqQYDk/SmZpaen7/zpkBpgEA\nAAAAAAAAOL56Kulce+21eeMb35h6vZ6NGzfml37pl/J7v/d7/c5GgdQPlXQm6kvr07btmB1kHAAA\nAAAAAACA46qnks4jjzySF7/4xel2uymVSnnVq16V2VklCo6fWmWppDM61kkpybadvl8AAAAAAAAA\nwImjp5LO+Ph4HnrooZRKpSTJN77xjYyOjvY1GMVSr04kSQ525nLSdC3375xNt9sdcCoAAAAAAAAA\ngOOj0stN11xzTd785jfn/vvvz2WXXZZ9+/blIx/5SL+zUSC1Q+uumgtz2bKpkYe+uzO79x/IhjUT\nA04GAAAAAAAAAHDseirpPOlJT8pnPvOZ/PCHP8zi4mKe+tSn5uGHH+53NgqkVlkq47TarZxxUiNf\n/+7ObNsxq6QDAAAAAAAAAJwQjrju6sEHH8z27dtz5ZVXZteuXanX65mamsqOHTvyxje+caUyUgCV\nciVjI6NptVvZsqmRJNm2c3bAqQAAAAAAAAAAjo8jTtL50z/909x9993ZuXNnrrzyykffVKnkJS95\nSb+zUTC1Su3QuqvJJMn9SjoAAAAAAAAAwAniiCWd9773vUmSj3/84/mN3/iNFQlEcdWrtTw8tytr\nG6NpTFSzbefMoCMBAAAAAAAAABwXRyzpHDY/P5+PfvSjj7t+9dVXH/dAFFetWsvB2fksdhdz+kmN\nfPuHj2Tu4EImxnr6mgIAAAAAAAAArFrlo31Du93OHXfckd27d/cjDwVWr9aSJM12K1s2NZIk26y8\nAgAAAAAAAABOAD2NKPmPE3N+8zd/M294wxv6EojialTrSZZKOqdvmkyyVNI5e8vaQcYCAAAAAAAA\nADhmRz1JJ0mazWa2b99+vLNQcI9O0mlmy0mHJ+nMDDISAAAAAAAAAMBx0dMknYsuuiilUilJ0u12\ns3//fpN0OO5+fN3VU9bXUhkp5f4d1l0BAAAAAAAAAMOvp5LOTTfdtPy4VCplamoqjUajb6Eopnrl\n0ZJOZaScUzc08sDDzSx2OhkpP6GhTwAAAAAAAAAAq8IRSzq33nrrEd/8ile84riGodgOT9KZbTeT\nJFs2NXLfjpk8tGcup26oDzIaAAAAAAAAAMAxOWJJ5+677z7im5V0OJ4ao0tFnGa7lSTZclIj+Zdk\n244ZJR0AAAAAAAAAYKgdsaTz3ve+d/lxu93OD37wgywuLuass85KpdLTpizoWb3y2JLO6ZuWVqpt\n2zmbFzxjYLEAAAAAAAAAAI5ZT02brVu35rd/+7ezdu3adDqd7Nq1K3/+53+ec889t9/5KJDD666a\nC4+uu0qS+3fODiwTAAAAAAAAAMDx0FNJ54YbbsiHP/zh5VLOPffck+uvvz6f+cxn+hqOYpmojKdc\nKmd2fmmSTm28mvVT49mmpAMAAAAAAAAADLlyLze1Wq3HTM0577zzcvDgwb6FophKpVLqldryJJ0k\nOf2kRvY357Nv1vcNAAAAAAAAABhePZV01qxZk9tuu235+W233Za1a9f2LRTFVa/W0my3lp8fXnll\nmg4AAAAAAAAAMMx6Wnd1/fXX553vfGfe9a53pdvt5vTTT8/73//+fmejgOrVWna0Hk6n20m5VM6W\nTZNJkvt3zuacp64fcDoAAAAAAAAAgCemp5LOk5/85Nxyyy1ptVrpdDpJkkaj0ddgFFO9Wk833bQW\n5tKo1rPlJJN0AAAAAAAAAIDh19O6qzvvvDMf+MAH0u1288pXvjI///M/n5tvvrnf2SigRrWWJMsr\nrzasGc/E2Eju3zEzyFgAAAAAAAAAAMekp5LORz/60fzqr/5qvvCFL+RZz3pW7rjjjvz93/99v7NR\nQPVqPcmjJZ1yqZQtGxt5aE8r8+3FQUYDAAAAAAAAAHjCeirpJMkZZ5yRu+66KxdddFHq9Xra7XY/\nc1FQ9eVJOs3la1s2TabbTX60q/mfvQ0AAAAAAAAAYFXrqaSzYcOGXH/99dm6dWsuuOCCvO9978vm\nzZv7nY0COlzSmT00SSdJtpzUSBIrrwAAAAAAAACAodVTSeeDH/xgnvnMZ+amm25KrVbLli1b8sEP\nfrDf2SigR9dd/fgknaWSzradswPJBAAAAAAAAABwrCq93NRoNDI1NZVPfvKTqVQqeeELX5hGo9Hv\nbBTQo+uuHp2kc+qGesqlUu5X0gEAAAAAAAAAhlTPk3T+8i//Mqeeemo2bdqUj3zkI/nYxz7W72wU\nUOMnlHRGqyM5eX0tD+ycTafbHVQ0AAAAAAAAAIAnrKdJOnfddVc++9nPplqtJkmuuOKKXH755Xnz\nm9/c13AUz09ad5Ukp29qZPuuZnbtncumdbVBRAMAAAAAAAAAeMJ6mqSzZs2aNJuPliba7bZ1V/RF\nrTKR5LGTdJJky6al79s2K68AAAAAAAAAgCF0xEk6v//7v58k6XQ6ueyyy3LRRRdlZGQkX/7yl/PU\npz51RQJSLCPlkUxUJh5f0jlpqaRz/47ZPOdpmwYRDQAAAAAAAADgCTtiSef8889/zM/DnvGMZ/Qv\nEYVXr9Yet+5qy6bJJCbpAAAAAAAAAADD6YglnV/5lV9Zfrx3797Mzc2l2+1mcXExDzzwQN/DUUz1\nai0PHNibbrebUqmUJFlTH82a+mi27ZwZcDoAAAAAAAAAgKN3xJLOYR/60Idy8803Z2FhIevWrcuO\nHTtyzjnn5JZbbul3PgqoUa1nsbuYg4sHM14ZX76+5aRGtn5/T5oH2qmPVweYEAAAAAAAAADg6JR7\nuenzn/98vvSlL+XSSy/NjTfemL/5m7/J9PR0v7NRUPVqLUnSbLcec33LpkaSZNsOK68AAAAAAAAA\ngOHSU0ln06ZNaTQaOeuss/Ld7343L3jBC7Jr165+Z6Og/rOSzumbJpMk9+9U0gEAAAAAAAAAhktP\n664ajUZuvfXWPOMZz8gnPvGJbNq0Kfv37+93NgqqXqknSWbbzcdcX56ks3NmxTMBAAAAAAAAAByL\nnibp/PEf/3H27NmT5z//+Tn11FNz7bXX5m1ve1u/s1FQjdGfPEnn5OlaRitl664AAAAAAAAAgKHT\n0ySdk046KW94wxuSJNdcc81jXnvzm9+cj33sY8c/GYVVry5N0vmPJZ1yuZRTN9azbedsFhY7qYz0\n1DEDAAAAAAAAABi4Y2457Nix43jkgGX1yuFJOs3HvbZl02QWFrt5cHfrca8BAAAAAAAAAKxWx1zS\nKZVKxyMHLKtXD5V0Fh5fxNmyqZEk2bZzZkUzAQAAAAAAAAAcC/uCWHUao0vrrmbnHz9J5/STlko6\n9++YXdFMAAAAAAAAAADHQkmHVefRdVePn6Rz2sbDk3SUdAAAAAAAAACA4XHMJZ1ut3s8csCy6kg1\no+XqT1x3NTFWyaa1E9m2c9Z3DwAAAAAAAAAYGsdc0nnFK15xPHLAY9Sr9Z84SSdJtmxqZHaunYf3\nzq1wKgAAAAAAAACAJ6bSy03/9E//lA9/+MPZv39/ut1uut1uSqVSbr/99rz+9a/vc0SKqF6tZefc\nrp/42nlnbcg3//fD+fzX7ssbLv0vK5wMAAAAAAAAAODo9VTSueGGG3LNNdfkrLPOSqlU6ncmSKNa\nzwOz29PuLKRafuzX9GefcXL+v7vvz1f/5cH8t+dtyakbGwNKCQAAAAAAAADQm57WXa1bty4XXnhh\nTjvttJx66qnL/6Bf6tVakqTZbj7utXK5lMtfcka63eTvv/T9lY4GAAAAAAAAAHDUepqk85znPCfv\nfe97c8EFF2RsbGz5+vOe97y+BaPYHi3ptLJ2bM3jXj/3jPU5+7Q1ued7u/JvD+zNWaetXemIAAAA\nAAAAAAA966mk861vfStJ8u1vf3v5WqlUyo033tifVBTekSbpJEvfv//jwjPznpu+mVvu+vf8/pXP\ntooNAAAAAAAAAFi1eirp3HTTTf3OAY9Rr9aTJLPt1n96z5mnrsnPnLUh//xvu3LP93blZ87auFLx\nAAAAAAAAAACOSk8lnW984xv5q7/6q7RarXS73XQ6nWzfvj133HFHv/NRUD++7upILv+vZ+Se7+3K\n33/p+zn3jA0pl03TAQAAAAAAAABWn3IvN/3BH/xBLr744iwuLubKK6/Mk570pFx88cX9zkaBHZ6k\n89NKOps31HPBs07J9l3NfHXrgysRDQAAAAAAAADgqPVU0hkfH8/ll1+e888/P1NTU7nhhhvy9a9/\nvd/ZKLDG8iSd5k+997IXPzXVSjm3/tMPMt9e7Hc0AAAAAAAAAICj1lNJZ2xsLHv37s1TnvKU3Hvv\nvSmVSmm1jjzhBI5Fr5N0kmTd5Fgufu5peWTmYG7/Xw/0OxoAAAAAAAAAwFHrqaTz+te/Pm9/+9tz\n4YUX5tZbb83LXvaynHPOOf3ORoHVj2KSTpJc+oInpT5eyf/7P+5L80C7n9EAAAAAAAAAAI5apZeb\nfvEXfzG/8Au/kFKplM9+9rP54Q9/mKc//en9zkaBjY+MpVwq9zRJJ0nq49W87GefnL+783v5wtfu\nyysvPLPPCQEAAAAAAAAAetfTJJ19+/bl3e9+d6666qocPHgwN910U2ZmZvqdjQIrlUqpV2uZ7XGS\nTpL8/HNOzfTUWG775gPZs/9AH9MBAAAAAAAAABydnko67373u/PMZz4ze/fuTb1ez6ZNm/LOd76z\n39kouEa13vMknSSpVkZy2YufkvZCJ//9Kz/oYzIAAAAAAAAAgKPTU0nngQceyBVXXJFyuZzR0dG8\n/e1vz0MPPdTvbBRcvVrL3MKBdLqdnt/zonNOyakb6vnKvzyYH+3qfQoPAAAAAAAAAEA/9VTSGRkZ\nyczMTEqlUpLkhz/8Ycrlnt4KT1i9Wk833bTacz2/p1wu5fL/eka63eSzX/r3PqYDAAAAAAAAAOhd\nT02b3/qt38prX/vabN++PW9961vza7/2a3nb297W72wUXL1SS5LMto9uIs65Z67PWaetyT//2658\n74F9/YgGAAAAAAAAAHBUeirpnHPOObn44otz2mmn5cEHH8wll1ySrVu39jsbBdcYrSdJmu3WUb2v\nVCrllS85M0lyy13fS7fbPe7ZAAAAAAAAAACORqWXm970pjflaU97Wi688MJ+54Fl9erSJJ3mUU7S\nSZIzT1uTnzlrQ/7533blrR/6ctbUR7OmMXro51jWNkYzVR/N2sbY0rX6aJKkvdhJe2Hp38JiN+2F\nxeVrC4vdLCx0cuZpa7Jx7cRx/VsBAAAAAAAAgBNbTyWdJHnPe97TzxzwOIfXXR3tJJ3Drrzk7IyM\nlLPzkVb2zc7nez/al+MxVGfTuonc8H8+P5WRngZRAQAAAAAAAAD0VtK5+OKLc8stt+QFL3hBRkZG\nlq9v3ry5b8Hg8CSd2ScwSSdJpqfG89ZXnLP8vNPpZqY1n33N+eydnc++2YPZ15zPvtn57GvNp5Sk\nWimnWimnMrL0szpSTuXQz2qlnO/c90j+1/9+OHf+849yyXO3HI8/EwAAAAAAAAAogJ5KOjMzM/n4\nxz+edevWLV8rlUq5/fbb+xYMGqP1JE98ks5/VC6XsqYxljWNsZx+0hP7jOf9l035zn178v985Qd5\n0TknpzZePS7ZAAAAAAAAAIATW08lnS9+8Yv52te+lvHx8X7ngWXHuu6qH6Zqo3nZzz45n7nr3/P5\nr92XV1145qAjAQAAAAAAAABDoNzLTVu2bMm+ffuO6oM7nU6uvfbaXHHFFXnta1+b++677zGvf/7z\nn88rX/nKvPrVr861116bTqdzVJ/Pia9ePTRJZ2H1lHSS5OLnnJbpqbHc9o0Hsmvv3KDjAAAAAAAA\nAABDoKeSTqlUyste9rK85jWvyVVXXbX870huu+22zM/P59Of/nTe8Y535H3ve9/yawcOHMif/Mmf\n5MYbb8ynPvWpzM7O5s477zy2v4QTTq06kVJKmZ1vDjrKY4xWR3L5z52RhcVOPvvl7w86DgAAAAAA\nAAAwBHpad/WWt7zlqD/4m9/8Zi644IIkyXnnnZetW7cuvzY6OppPfepTmZiYSJIsLCxkbGzsqH8H\nJ7ZyqZxaZWLVTdJJkuc/46R88evb8j+/vSOXPG9LnnLK1KAjAQAAAAAAAACrWE8lnfPPP/+oP3h2\ndjaNRmP5+cjISBYWFlKpVFIul7Nhw4YkyU033ZRWq5UXvehFR/07OPHVq7U026trkk6SlEulvOqi\nM/OB/+uf83d3fC+/+2s/k1KpNOhYAAAAAAAAAMAq1VNJ54loNBppNh8tV3Q6nVQqlcc8/8AHPpAf\n/OAH+bM/+7OfWnBYt66WSmWkX3E5Bhs3Tvbts9fUJrN7z55s2NBYdSWYjRsnc9e92/P1b+/ID3Y2\n8/xzThl0JFhR/Tz7wOrl7EPxOPdQTM4+FJOzD8Xk7EMxOftQTM7+4PWtpPPsZz87d955Zy699NLc\nc889Ofvssx/z+rXXXpvR0dH8xV/8Rcrl8k/9vEceWX0rj1g6xA8/PNO3zx/LWBa7nWx7aFcmKuN9\n+z1P1GUvfHK++Z2d+cv/vjWnb6ilMvLTv8twIuj32QdWJ2cfise5h2Jy9qGYnH0oJmcfisnZh2Jy\n9lfOkcpQfSvpXHLJJfnqV7+aV7/61el2u3nPe96Tz33uc2m1WjnnnHPymc98Js997nPzute9Lkly\n1VVX5ZJLLulXHIZUvVpPkjTbzVVZ0tm8oZ6fO/eU3HXP9vzTvdtz4bNPG3QkAAAAAAAAAGAV6ltJ\np1wu57rrrnvMtTPOOGP58Xe/+91+/WpOIPVqLUnSbLeyYWL9gNP8ZJe9+Cn52rd35Nav/CAveMbJ\nmRjr27ECAAAAAAAAAIaU3Tysaocn6cy2V++6szWNsVz6/NMz02rnC//zvkHHAQAAAAAAAABWISUd\nVrVHJ+k0B5zkyF56/ulZ2xjNF7++LXv2Hxh0HAAAAAAAAABglVHSYVX78XVXq9lYdSS/8nNPTXuh\nk//7y98fdBwAAAAAAAAAYJVR0mFVaxxad7XaJ+kkyYvOOSWnbWzkf2x9KPc9NDPoOAAAAAAAAADA\nKqKkw6o2LJN0kqRcLuVVF52RbpK/u/N76Xa7g44EAAAAAAAAAKwSSjqsasNU0kmSc56yPuc8ZTrf\nue+R/Mv39ww6DgAAAAAAAACwSijpsKrVD627mh2CdVeHverCM1MqJZ/90r8POgoAAAAAAAAAsEoo\n6bCqVcuVjI2MDs0knSQ5bVMjZ526JvfvnM3CYmfQcQAAAAAAAACAVUBJh1WvXq0PVUknSdZNjSdJ\n9jfnB5wEAAAAAAAAAFgNlHRY9erVWppDtO4qSdY2RpMkj8weHHASAAAAAAAAAGA1UNJh1atXapnv\ntDO/2B50lJ6tbYwlSfbOmKQDAAAAAAAAACjpMAQao/UkGappOsslHZN0AAAAAAAAAIAo6TAE6tVa\nkqTZbg04Se8Or7tS0gEAAAAAAAAAEiUdhkC9MoQlnUmTdAAAAAAAAACARynpsOrVq0vrrmaHct3V\n/ICTAAAAAAAAAACrgZIOq15jCNddjVVHUhurmKQDAAAAAAAAACRR0mEIHJ6kM0wlnWRp5dXeGSUd\nAAAAAAAAAEBJhyFQPzxJZ2F41l0lydrGaJoHFtJeWBx0FAAAAAAAAABgwJR0WPUOl3Rm54dskk5j\nLEmyd3Z+wEkAAAAAAAAAgEFT0mHVW153NXSTdA6XdKy8AgAAAAAAAICiU9Jh1RsbGU2lNJJme9gm\n6YwmMUkHAAAAAAAAAFDSYQiUSqXUq7UhLOkcmqQzY5IOAAAAAAAAABSdkg5DoV6tp9kesnVX0Coa\nKAAAIABJREFUk9ZdAQAAAAAAAABLlHQYCvVqLXMLB7LYWRx0lJ49uu5KSQcAAAAAAAAAik5Jh6FQ\nr9aTJK2FuQEn6d2a+uFJOvMDTgIAAAAAAAAADJqSDkOhXq0lyVCtvKpWymlMVE3SAQAAAAAAAACU\ndBgOh0s6s+3WgJMcnbWNMSUdAAAAAAAAAEBJh+HQOLTuapgm6STJ2snRzB1czIH5hUFHAQAAAAAA\nAAAGSEmHofDouqvhm6STJPtm5wecBAAAAAAAAAAYJCUdhsKwl3SsvAIAAAAAAACAYlPSYSjUl9dd\nDVdJZ11jNEnyiJIOAAAAAAAAABSakg5DoXFoks5suzngJEdneZLOjHVXAAAAAAAAAFBkSjoMhWGd\npLN20rorAAAAAAAAAEBJhyExURlPKaU0h3WSjpIOAAAAAAAAABSakg5DoVwqp1adGLpJOlP1akpJ\n9s5adwUAAAAAAAAARaakw9CoV2uZHbJJOiPlcqbqoybpAAAAAAAAAEDBKekwNBrVeloLc+l2u4OO\nclTWNsayd/bg0OUGAAAAAAAAAI4fJR2GRr1aS6fbydzCgUFHOSprG6OZb3cyd3Bx0FEAAAAAAAAA\ngAFR0mFo1Cv1JEmz3RpwkqOzdnIsSay8AgAAAAAAAIACU9JhaNSrtSTJbLs54CRHZ21DSQcAAAAA\nAAAAik5Jh6HRqB6epDNsJZ3RJEo6AAAAAAAAAFBkSjoMjcOTdIZu3dXyJJ35AScBAAAAAAAAAAZF\nSYehsVzSWRjSks6MSToAAAAAAAAAUFRKOgyN5ZLO/JCtu5o8PElHSQcAAAAAAAAAikpJh6FRr9aT\nJLNDNklnslZNuVSy7goAAAAAAAAACkxJh6FxuKTTbA9XSadcKmVNY9QkHQAAAAAAAAAoMCUdhka9\nOpFk+Eo6SbK2MZa9swfT7XYHHQUAAAAAAAAAGAAlHYZGpVzJ+MhYmu3moKMctbWN0SwsdtM8sDDo\nKAAAAAAAAADAACjpMFTq1fpwTtKZHEuS7J2x8goAAAAAAAAAikhJh6FSr9aGdJLOoZLOrJIOAAAA\nAAAAABSRkg5DpV6tpd1ZyPzi/KCjHJW1jdEkySNKOgAAAAAAAABQSEo6DJV6tZYkmR2yaTrrlifp\nDFe5CAAAAAAAAAA4PpR0GCqNaj1J0my3Bpzk6Fh3BQAAAAAAAADFpqTDUDk8SWfoSjqTh0o6M0o6\nAAAAAAAAAFBESjoMlfryJJ3hWndVH6+kMlKy7goAAAAAAAAACkpJh6FyeJLO7JBN0imVSlnbGLPu\nCgAAAAAAAAAKSkmHodIY0kk6SbK2MZZ9s/PpdLuDjgIAAAAAAAAArDAlHYbK4Uk6zSGbpJMkaxuj\n6XS7mWm1Bx0FAAAAAAAAAFhhSjoMleEu6YwlSfbOWHkFAAAAAAAAAEWjpMNQqR9adzU7jOuuJg+V\ndGaVdAAAAAAAAACgaJR0GCqj5Wqq5cqQTtIZTaKkAwAAAAAAAABFpKTDUCmVSqlX60Na0jk8SWd+\nwEkAAAAAAAAAgJWmpMPQqVdrQ17SMUkHAAAAAAAAAIpGSYehU6/UcmDxQBY7i4OOclSWSzozSjoA\nAAAAAAAAUDRKOgyd+mg9STI7ZNN0JsZGMlotW3cFAAAAAAAAAAWkpMPQmRptJEn2HNgz4CRHp1Qq\nZW1jzLorAAAAAAAAACggJR2Gztlrz0iSbN31nQEnOXprG2PZ35zPYqcz6CgAAAAAAAAAwApS0mHo\nPH367FTKlXxr17cHHeWorW2Mpptkf7M96CgAAAAAAAAAwApS0mHojFfG8vR1Z2Z786E83No96DhH\nZW1jLEn+f/buMziu/D7z/XNCR3QjEIEkMpgwjMPJQZpkzYykUQ62gq8taX293q3yeu9W3fWt2jd2\neW2Xa/eFvbvWWk67VlwrWFma0WiCJmhGM9JEksOMDAYEooFuoNMJ98XpbgAkB0xogCS+n6rmOX1w\n+vSvwznd7H7692fIKwAAAAAAAAAAAAAA1hhCOrgm7WnaKUl6c+LAKldyaSohnTQhHQAAAAAAAAAA\nAAAA1hJCOrgm7WraIUPGtRfSSYYl0UkHAAAAAAAAAAAAAIC1hpAOrkl1kaS6azt1PDWgTGF2tcu5\naA2lTjpTmcIqVwIAAAAAAAAAAAAAAFYSIR1cs/Y075AvX/snD652KRetMtwVnXQAAAAAAAAAAAAA\nAFhTCOngmrWnaack6c2Jt1a5kotXl2C4KwAAAAAAAAAAAAAA1iJCOrhmbahp0fp4sw5OHlbBLa52\nORclGrYVi1hKpRnuCgAAAAAAAAAAAACAtYSQDq5pe5p2quAVdXjq6GqXctHqExE66QAAAAAAAAAA\nAAAAsMYQ0sE1bU/zDknSm+MHVrmSi1efiCiTLaroeKtdCgAAAAAAAAAAAAAAWCGEdHBN667tVDKc\n0L6Jg/L8ayP0Up8IS5Km6aYDAAAAAAAAAAAAAMCaQUgH1zTTMLW7cYfSxYz6p4dWu5yLUp+ISJJS\nmcIqVwIAAAAAAAAAAAAAAFYKIR1c8ypDXk1cG0NezYd06KQDAAAAAAAAAAAAAMBaQUgH17zehq0K\nm6FrJ6STDEI6U4R0AAAAAAAAAAAAAABYMwjp4JoXtkLa0dirsbkJnZodW+1yLqg+EZZEJx0AAAAA\nAAAAAAAAANYSQjq4Luxp2ilJenP86u+mUxnuKl1Y5UoAAAAAAAAAAAAAAMBKIaSD68LOphtkGuY1\nMeQVnXQAAAAAAAAAAAAAAFh7COngupAI1WhzXbcGZoY1nU+vdjlLCtmWaqI2IR0AAAAAAAAAAAAA\nANYQQjq4buxp3ilfvvZPvLXapVxQfTKiVIbhrgAAAAAAAAAAAAAAWCsI6eC6sadppyRdI0NeRZTN\nO8oX3NUuBQAAAAAAAAAAAAAArABCOrhuNMXWqbVmgw5NHVPOubqHkqpPhCVJqdmru04AAAAAAAAA\nAAAAALA8COngurKneaccz9HBM0dWu5Ql1ScikqRUmpAOAAAAAAAAAAAAAABrASEdXFduvEaGvKqE\ndDKFVa4EAAAAAAAAAAAAAACsBLtaG/Y8T3/8x3+sw4cPKxwO60//9E/V1dW1aJ1sNqvPfe5z+rM/\n+zNt3ry5WqVgDelItqk+Uqf9Ewfleq4s07qoy/m+r4JXVM7JBSc3r5yTL01zypfO5928tjf2akt9\nzxXVOR/SoZMOAAAAAAAAAAAAAABrQdVCOk888YQKhYK+/vWv6/XXX9df/MVf6G/+5m8qf9+3b5/+\n6I/+SKdPn65WCViDDMPQnqYdenb0RR2f7te2hi1Lru/5nn5+4iX94PhPNOvMXdR1/GzkBf2n2/+D\nGmMNl11nfTIsiZAOAAAAAAAAAAAAAABrRdVCOq+88oruueceSdLevXu1f//+RX8vFAr6/Oc/rz/8\nwz+sVglYo/Y07dSzoy/qzfG3lgzpnJ4d09cO/4uOpfoVs6Pa2XiDolZEUTuiiBVR1I5WzkdL50fT\nJ/W9vkf1pYP/rH9/0+/JNC5vxLgGhrsCAAAAAAAAAAAAAGBNqVpIJ5PJKJFIVM5bliXHcWTbwVXe\ncsst1bpqrHFbGzYpakX15sQBfWzrB2QYxqK/u56rnw49o0cHnpDjOdrbvEu/se3DqovUXnDbO9b1\najA9rNfH9+uJoWf0cNcDl1VjbU2pk06aTjoAAAAAAAAAAAAAAKwFVQvpJBIJzc7OVs57nlcJ6FyO\nhoa4bNtajtKwzJqbk6tdwjlubtulF4Z+pWx4Rl317ZXlx88M6guvfkWDqRHVR2v1r27+hO7suPmS\ntv377/iM/t/H/rN+2P+47t58k3oaOi6rxvpEROls8aq8/4CLwXMXWJvY94G1h/0eWJvY94G1iX0f\nWJvY94G1iX0fWJvY91df1UI6N998s55++mk98sgjev3117Vt27Yr2t7U1NwyVYbl1Nyc1Ph4erXL\nOEdvcpte0K/0syMv65GeOhXcgn7Y/7ieGnpOvnzdvfE2fWTL+xQPxS+r/t/s/XV9/o1/1F8+/w/6\n/2779wpboUveRm08pNNTWY2NzZzT7Qe42l2t+z6A6mLfB9Ye9ntgbWLfB9Ym9n1gbWLfB9Ym9n1g\nbWLfXzlLhaGqFtJ56KGH9POf/1yf/OQn5fu+/vzP/1w/+MEPNDc3p0984hPVulpAkrSzsVeWYenN\nibe0qa5b/+fQv2gid0ZN0XX69A0fV++6LVe0/R2Nvbqv/W49M/KCvnv8x/qNbR+65G3UJyMaGsso\nV3AVi1RtVwQAAAAAAAAAAAAAAFeBqiUDTNPUn/zJnyxatnnz5nPW+/KXv1ytErCGxeyYtjVs1sEz\nR/Q/Xv97GTL0rs579f6ehxW2wstyHR/e/IgOnzmmZ0Z+rl2NN2hHY+8lXb4+EZEkpTJ5QjoAAAAA\nAAAAAAAAAFznzNUuAKiWm1tulCS1JTbqP976+/rolvcvW0BHksJWWJ/Z+UlZhqWvHPyGMsXZS7p8\nfSKoJZXOL1tNAAAAAAAAAAAAAADg6kT7Dly37tp4q1oT69WRaJNlWlW5js5ku97f87C+1/eo/s+h\nf9H/veu3ZBjGRV22PlnupFOoSm0AAAAAAAAAAAAAAODqQScdXLcMw1B3bWfVAjplD3bdp811PXp9\nfL9+ceqVi77cwuGuAAAAAAAAAAAAAADA9Y2QDnCFTMPUZ3Z8QlErom8e+a4mspMXdbmGUkhnipAO\nAAAAAAAAAAAAAADXPUI6wDJojK3Tb2z7sPJuQV986+vyfO+Cl6lPhCUx3BUAAAAAAAAAAAAAAGsB\nIR1gmdy+4Wbd1LJHfdMDenzwZxdcPxkPyzQMhrsCAAAAAAAAAAAAAGANIKQDLBPDMPSp3o+qLlyr\nH/U/rsGZ4SXXN01DdYmwUmlCOgAAAAAAAAAAAAAAXO8I6QDLqCYU12/v+IQ839NXDn7zguvXJ8JK\nZQryfX8FqgMAAAAAAAAAAAAAAKuFkA6wzG5Yt1W7GrfrxOwpTeVSS65bn4jIcT3N5pwVqg4AAAAA\nAAAAAAAAAKwGQjpAFWyu75Yk9c8MLbleY11UknRqcq7aJQEAAAAAAAAAAAAAgFVESAeogp7aTknS\nwPTSIZ1t7fWSpMPDU1WvCQAAAAAAAAAAAAAArB5COkAVdNZ2yJBxwU462zqCkM6hoaWHxQIAAAAA\nAAAAAAAAANc2QjpAFUSssNoSGzWcHpHjOW+7Xm1NWG1NNTo6kpLjeitYIQAAAAAAAAAAAAAAWEmE\ndIAq6anrUtFzNJo5ueR62zrrVSh6GjiVXqHKAAAAAAAAAAAAAADASiOkA1RJT22nJKl/eukhr27o\nbJAkHR6aqnpNAAAAAAAAAAAAAABgdRDSAaqku64U0pkZXHK93o56SdLhoVTVawIAAAAAAAAAAAAA\nAKuDkA5QJS2xJtXYcQ1coJNObU1YrU01OjoyLcf1Vqg6AAAAAAAAAAAAAACwkgjpAFViGIa66zo1\nkTujdCGz5Lq9nfXKF10NnkqvUHUAAAAAAAAAAAAAAGAlEdIBqqintjTk1fTFDXl1aGiq6jUBAAAA\nAAAAAAAAAICVR0gHqKLuulJIZ2bpIa96OxskSYeHUlWvCQAAAAAAAAAAAAAArDxCOkAVddd2yJBx\nwU46dTVhbWyM6+jotBzXW6HqAAAAAAAAAAAAAADASiGkA1RRzI5pQ02LBtMjcj13yXVv6GxQvuBq\n8HR6haoDAAAAAAAAAAAAAAArhZAOUGU9tZ0quAWdnD295Hq9nfWSGPIKAAAAAAAAAAAAAIDrESEd\noMq66zolSf0zQ0uu19sRhHQODU1VvSYAAAAAAAAAAAAAALCyCOkAVdZT2yVJ6p8eXHK9ukREGxvj\nOjoyLcf1VqI0AAAAAAAAAAAAAACwQgjpAFW2oaZFUSuqgQt00pGk3s4G5QuuBk+nV6AyAAAAAAAA\nAAAAAACwUgjpAFVmGqa6azt0em5cs8W5Jde9oTMY8urIUGolSgMAAAAAAAAAAAAAACuEkA6wAnrq\nOiVJAzPDS67X2xGEdA4R0gEAAAAAAAAAAAAA4LpCSAdYAd21QUinf3pwyfXqEhFtWBfXkZGUXM9b\nidIAAAAAAAAAAAAAAMAKIKQDrIDuSiedoQuue0NnvfIFV4OnMtUuCwAAAAAAAAAAAAAArBBCOsAK\nSIRq1BJr0sDMkDx/6Q45vZ0NkqTDQ1MrURoAAAAAAAAAAAAAAFgBhHSAFdJT16Wsk9PY3PiS6/V2\n1kuSDg+nVqIsAAAAAAAAAAAAAACwAgjpACukuzYY8qpveukhr+oTEW1YF9eR4ZRcb+muOwAAAAAA\nAAAAAAAA4NpASAdYIT11QUhnYGbwguv2dtYrV3A1dDpT7bIAAAAAAAAAAAAAAMAKIKQDrJDWmg0K\nmyH1X6CTjjQ/5NWhoalqlwUAAAAAAAAAAAAAAFYAIR1ghVimpa7aDp2cPa2ck1ty3d6OBknS4aHU\nSpQGAAAAAAAAAAAAAACqjJAOsIK6azvly9fAzPCS6zUkI1q/Lq4jwym5nrdC1QEAAAAAAAAAAAAA\ngGohpAOsoJ66TknSwMyFh7y6obNeuYKrodOZapcFAAAAAAAAAAAAAACqjJAOsIK6a7skSf3TFw7p\n9HbUS2LIKwAAAAAAAAAAAAAArgeEdIAVVBdJqjHaoIGZIfm+v+S6vZ0NkqRDQ1MrURoAAAAAAAAA\nAAAAAKgiQjrACuuu7VSmOKvx7OSS6zUkI1rfENPRkZRcz1uh6gAAAAAAAAAAAAAAQDUQ0gFWWE9d\nMOTVwMxFDHnV2aBs3tXQ6Uy1ywIAAAAAAAAAAAAAAFVESAdYYT11nZKk/ukLh3Ru6KyXJB0eSlW1\nJgAAAAAAAAAAAAAAUF2EdIAV1p5olW3a6p8ZvOC6vZ0NkqTDQ1PVLgsAAAAAAAAAAAAAAFQRIR1g\nhdmmrY5Em0YzJ1VwC0uu25CMqKUhpiMjKXmev0IVAgAAAAAAAAAAAACA5UZIB1gFPXWd8nxPQ+nR\nC657Q2e9snlXQ2PpFagMAAAAAAAAAAAAAABUAyEdYBX01HVJkvqnL37Iq0ODqarWBAAAAAAAAAAA\nAAAAqoeQDrAKemo7JUn9M0MXXLe3o16SdHhoqqo1AQAAAAAAAAAAAACA6iGkA6yC+kid6sK16p8e\nlO/7S667rjaqloaYjoxMy/OWXhcAAAAAAAAAAAAAAFydCOkAq8AwDPXUdWmmkNZU/sLDWPV21Cub\ndzRwKr0C1QEAAAAAAAAAAAAAgOVGSAdYJT11pSGvpi885NXerU2SpH969KCyeaeqdQEAAAAAAAAA\nAAAAgOVHSAdYJd21pZDOzOAF171pa7N+7eY2jYzP6m+/f4BhrwAAAAAAAAAAAAAAuMYQ0gFWSWey\nXaZhauAiOulI0qce3KqdPev05vFJfePpY1WuDgAAAAAAAAAAAAAALCdCOsAqCVshtSdaNZweVdG7\n8BBWlmnq335ol1qbavT4L4f1s9dGV6BKAAAAAAAAAAAAAACwHAjpAKtoa8MmOb6rX51+/aLWj0dt\n/cHH9ygRC+krjx/RgYEzVa4QAAAAAAAAAAAAAAAsB0I6wCp6oP2dsk1bj/Y/IeciuulIUkt9TL//\n0d0yTel/fme/Tk7OVrlKAAAAAAAAAAAAAABwpQjpAKuoIVqve1rv1GTujF48+auLvty2jnp99r03\nKJt39N+++aYy2WIVqwQAAAAAAAAAAAAAAFeKkA6wyh7qekAhM6THBp5U0b34sM3duzbq/Xd3aSyV\n1V9/e58c16tilQAAAAAAAAAAAAAA4EoQ0gFWWV0kqfvb36FUflrPn3jpki774Xs26dbeZh0ZTulL\njx2W7/tVqhIAAAAAAAAAAAAAAFwJQjrAVeDBrvsUtSL6ycBTyruFi76caRj6nffvUPeGpJ7fd1KP\nvTRUxSoBAAAAAAAAAAAAAMDlIqQDXAUSoRo90HGP0sWMnh154ZIuGwlZ+oOP71FDMqJv/ey4Xjk8\nXqUqAQAAAAAAAAAAAADA5SKkA1wlfq3jHsXsmH46+DNlndwlXbY+EdEffGyPQiFTf//DA3r54Gk5\nrlelSgEAAAAAAAAAAAAAwKUipANcJeKhmB7svE+zzpyeHn7uki/ftSGp3/vAThUdT1/43gH94d+8\noO8+16epdL4K1QIAAAAAAAAAAAAAgEtBSAe4itzf/g4lQjV6cug5zRbnLvnyN21r1n/+nTv0rpvb\nlS+6+v7PB/Qf/+cL+utv79OB/jPyfL8KVQMAAAAAAAAAAAAAgAuxV7sAAPOidkQPdz2gbx/7oZ4c\nelYf3PyeS95Ga1ONfvPhbfrY/Zv00lun9fRro3r1yLhePTKuloaY7t/bpnfu2ahELFSFWwAAAAAA\nAAAAAAAAAM6HkA5wlbmn7S49OfSMnh55Xg90vFPJcOKythMN27pvb5vuvbFVfSdn9LNXR/XyoTF9\n4+lj+vazfbp9e4tu3tastuYaNdfFZJrGMt8SAAAAAAAAAAAAAABQRkgHuMqErZDe3f0ufePId/X4\n4NP62NYPXNH2DMPQ5tY6bW6t0yfetVXPv3lSP3t9VC/sP6UX9p+SJIVsUxsb42prSqituUZtTcFp\nXV1UpkF4BwAAAAAAAAAAAACAK0VIB7gK3d16u346+DM9N/qi3tV5r+ojdcuy3UQspPfc0amHb+/Q\n4aGU+k5M68TErEYnZnVyck5DpzOL1o+ELLU21WjDurga6yJaVxvVumRUjbXBfCzCIQQAAAAAAAAA\nAAAAgIvBN+zAVShk2nqk50F99dC39JOBp/WJ3g8v6/ZNw9D2rgZt72qoLPM8X+OprEZLoZ3R8YxO\nTMxqeCyt/pMz591OPGJrXW0ptFMX1bpkRI210dKyqOqTYVmmuay1AwAAAAAAAAAAAABwLSKkA1yl\n7thwi34y+LR+fuIlPdh5nxpjDRe+0BUwTUPr18W1fl1cN29rrix3XE+pdF6TMzmdmSlPc5qcyevM\nTE7j01mNjGfOu03DkBqS5Q488wGehmREkZClkG0GJ8uszNsLzlumIYPhtgAAAAAAAAAAAAAA1wFC\nOsBVyjItva/nIX3xrX/WYwNP6De3//qq1GFbpprqY2qqj533777vK5t3zhvgKZ/vG53RMd+/5Os2\nDUPxqK1kPKRkLKREPKxkPKRELDifjIeViIfml8XDioSsK73JAAAAAAAAAAAAAAAsO0I6wFXs1vV7\n9ZOBp/SLU6/ooa771RJvvvCFVphhGIpHQ4pHQ2pvSZx3HdfzNJ0pVII8qUxeBcdT0fFUdNzS1FPR\n9ebnHU8Fx9VczlF6rqhTk3O6mJhP2DaD4E7s3ABPMhZSTSykaNhSNGwpFraD+UgwtS2G5gIAAAAA\nAAAAAAAAVAchHeAqZhqm3rfpYf3j/q/ox/1P6LM7P7XaJV0WyzSDIa9qo9qiusvahuf5ms0VlZ4r\nKpMtKj1XUDpbVGauvKyg9FyxsuzkmVkVTnuXdB22ZQbhnUgQ4KmJhVQTLU9DqonZwTQaUiJmKx4N\nKRa25Hr+4tCR66lYnA8dFRxPjuspEQtpXTKi+mREDYmIwnT9AQBcRQpuQX+//8tqjjXq41s/KNMg\nvAoAAAAAAAAAwHIipANc5fY271JbYqN+dfp1mYap1sQGtdVsVGtig2rDSRmGsdolrgjTNIJuOPHw\nRV8mX3SVKYd6SiGeuZyjXMFRruAqmw+mi+eD6elUVvmxTBVvkVQTtdVQCu2sS0ZUn4ioIRlRIhZW\nPGorHrEVK08jliyTL0sBrD0vnHhZY3MT+uDm9xAaqbJ/OfoDvTV5WJJUcIv69A0f4z4HAAAAAAAA\nAGAZEdIBrnKmYerXt35Qf7vvi3rp1CuL/pYI1ai1ZoNaE8GpLbFRG2s2KGJdfJDlehYJWYrUWWqs\ni17W5R3X01zO0WyuqNmso0yuqNlsUbM5pzQtKpt3FbINhSxLoZCpkGUqZAensG3KLs3bpql0tqip\ndE5T6bxS6bzOpIPhv0bGZy/69sQiVtDBJ2LJNk05nifH9eW6wdRxPbleMHVcX67nyTAM1deEVZeI\nqD4RVn0iorrSdH55RLGItWZCXwCuDa+OvamvHvqWpGB4xQ9tfu8qV3T9em1sn54/8ZLaEhtlGZZe\nPPlL2aatT2z7MK8NAAAAAAAAAAAsE0I6wDVga8Nm/Zd7/ljjcxManT2lE5lTOjF7SqOZkzqa6tOR\n1PHKuoYMbahp0aa6LvXUdWtTbada4s18wXYZbMtUbU1YtTXVDT3lCo6m0vnKaTbnaK4UAJrLl6YL\nzs/MFnRq0pHn+7JMQ5ZlyDZN2ZYhywqm0XBIVmmZ6/mani1obDglf8nbG1zeMgyZZnCyTEOmEUyN\nBedrE2GFLTPo+FPq9lMTDSkenZ/Go7bCtlnajnnO9srnDUM8PwGcYyg9oi+99XVFrLASoRo9Pvi0\nOpJturllz2qXdt05k5vSVw99SyEzpH+189NKhpP6b6/9rZ4bfVG2aeljWz7AcRoAAAAAAAAAgGVA\nSAe4RpiGqfU1LVpf07LoC8q8W9DJUmDnRCaYDs4M6+Tsaf38xMuSpJpQXD21XaXgTpe6ajvotnMV\niYZtbWy0tbGx5qIv4/u+fEnmJXxp6rie0nNFpTJ5pTJ5TWcKpflgmp4ryvU8eZ4vz5dcz5fnefI8\nqeh6cou+PC/ozjM6kZG/VOLnEpVDO6ZpVEJCC4M85allGoqELIVDlsK2qUjYUti2SstMhUPBfLmb\nkW0Zsi1TlmkqZJdCTKYhu9TdyC6vc858ECbiS2lgXtEtrth1TefT+ts3vyjHc/Svd/+2mmKN+q+v\n/LW+fPAb2hBvUWtiw2Vv2/d9nZob0/p4M0M5SXI9V/904J+VdbL69A0f04aa9ZKkf7f3d/VXr/2t\nnh5+XiEzpA9ueg/HRAAAAAAAAAAArhAhHeAaF7HC6q7tVHdtZ2WZ67kanT2p/ukh9U29bLDnAAAg\nAElEQVQPqH96UPsnD2r/5EFJQeCnPbFRWxs2a3fjDm2q65JlWqt1E3AZDMPQpX5ValumGpIRNSQj\nV3z9jY0JDY9Olbr+BJ1/ZnOO5vJOZYiwubwjxwlCP65fDvi8zfSsv5+9TtHxlPN8OY6nguPKcZcx\nIfQ2DKkS3Cl3AjIW/NHQfAcgo3ReMmRbQZAoEg4CQ283H7LNxUGks8JJZqWjUdAhq3Kd5StUuYZS\nSUZwvdGIpWjYVjQcBJmW80t11/NUKHoqFF3li64KRU95x5XvS9GQpWjYUjQSXLdtEX64Xni+px/1\n/1Q/GXhKD2y6W+/veG9Vg55Fz9Hf7/uSUvlpfXDTe7Sneack6be2/4b+cf9X9Hf7vqg/vPUPFA/F\nLnnbrufqywe/qV+eflUdyTZ9bMsHtLVh03LfhPPyfV9ncimFLFu14eSKXOfFeGzwKR2f7tdNzbt1\n98bbK8uT4YT+YO+/1l+99jd6fPBphUxbj/Q8tIqVAgAAAAAAAABw7TN8fzl7IVTP+Hh6tUvAeTQ3\nJ3lsrhHT+Rn1Tw+qr3QaTo/I8V1JUtyOaUdjr3Y37dCOddsUD8VXuVpciOM58n1fISu0Kte/2vv+\necMiRbd0vhzk8eS4fmXqup6KZ827rl+aLl43mC6e98qvlqUuRvIlX36lo5BfWui4vvJFV/mCu+Tw\nYivBMBQEZ0qhnfK8YUieF9Tu+X5w8oIQwcJ5x/Uq9+/bhqOsomT4krM4tBEMu7b4eiOhUmjICIJH\nC/NDZ4eeygGtCwW5LDPollTpnGSbCpXOh6xyh6Ty3+eXL+y0tHiZWdmGbZ9//WCYtrXRUSTvFvSl\nt76u18f3yTRMeb6nlniTPrfz0+pMti/79fm+ry8f/IZeOvWKbl2/V5/d8alF9/X3jj+qxwef1s7G\nG/Rv9nz2kjrh5N2C/mH/l/XW5GE1ROo1lU9JkvY279ZHtjyipljjst4W13M1kjmhvulBHZ8eUF9q\nQNOFGVmGpYc679O7u9+l8Codw8uOpfr1V69+QfWROv2n2/+f877+T+VS+stXv6DJ3Bl9aPN79XDX\nA6tQKVbTar/mA1gd7PvA2sS+D6xN7PvA2sS+D6xN7Psrp7n57X+sS0gHV4Qd+dpVcIs6MnVM+yYP\nav/EQaXy05KCLjub67q1u2mHdjdtV0u8eZUrxUJFt6hnR1/UTwaeUtF3dPfG2/RAxz1qiq1b0TrY\n9y/M94MOQOXATr7oKltwdHz6uF5P/UpZd07b47eoPbxFnq9K8GR+qLEgMON6/nwwSCqFg4Ltz19X\nEBjKFzzlCo5yBbd0cpTNu4uWOa63qE5DCroEGaWuPUapi48RdBKK2MFQYguHGbPCRc1FRjVtD2ra\nHJUvqdXbpabsjSoUtOj6F85fyTuOszsNBd2HJM+Xik4QpHK9lXlLYxhBZ6pKtyNDi7sfGaX7sbTM\n8+cfz3Me5wXLLMuYDwedFTRaODWM0mNeel5U5v1gu8F8UKtlBXXY5oLOTVZ5+Lj5ZQu7RAUTQ3ll\ndND4qTLGhOr8jbrBeEBjobfUX3xdhkxtD9+l3ujN8/VZ80Gmyv1x1n1hmKXH0ghCWq7nz4friq7e\nmHlZr2aeVb3ZolvtD8l1TBWKrhzPL23L10HzcU0ZI+rSTdps3V56zqryvAjbVmkovPnnrWvm9P0T\n39TJ7Ki21W3Vb/V+WmPZ0/rBwI81kB6SZVi6t/UderjzAcVC0eAeMOafdxdjrjhXCcL2TQ9ocGZY\nBW9+iLBkOKFNdd0amhnRVD6lplijPtn7EW1ft+2Kno+u515WN7y54pz+/OW/Uio/rf9w87/V5vru\nt113MntGf/nqFzSVT+njWz+oBzreeQUV41qznK/5BbeoQ2eOqDnepI2lodXWgmOpfp3JTWlr/SY1\nROtXuxzgovB+H1ib2PevPulCRoMzw3J8V67nyvVdub4nz3flel7pvCvP8xSyQrpjw838+A6XjH0f\nWJvY94G1iX1/5RDSQdWwI18ffN/XSOak9k+8pX0TBzWYHq78rSXepF2N29XbsEVb6nsUtaOrWOnq\nKLgFzRbnlCnOabY4q9niXOVU8AraEG9Re7JVG+ItVRs2zPM9vXzqVf2w73FN5VOK2VFFrIhS+WkZ\nMrS3eZfe1Xmfeuo6L7yxZcC+f2lyTk6/OPWKnh15QafnxiUFIQhfvjqSbfrQpvfqhnVbV6Q7Szmk\nUw5JXOx1ZgqzemNiv14b26fDU8fk+cF2OpNtmi1mNZk7o8boOn2q96Pa3nhu6KDcmccvhYzKnYiC\nv2nBNFhqGqUgiVUOdFy4Ts/zS92SvCC44wQdk4qlqeME3ZHKoZ7igr877vmW+SqWOgidb1vndiCa\n70RU7lDk+zpPiMeodOOxSkOamYYhx/Pnaz9nurJv14yaaUW2viojnJcz1q7i4A7JD7rWmHXjCvfs\nkxEuyJ1uVKFvt1S88tcGs25c4W2vSMWIcgfuevttWgVFdr4oM5pV/uhN8qaW/qLfCGcV7v2VzNis\nnIlWFft3VW6L5Mtad0p2x2GZkZz8YljFka1yx9tVTixZphEMH1ca0i1SmpqRvJzohHLhcc2apzVn\nTM1fqS/F/AYl/BbVuC2Ku82yvYR8Typ6BZ0Ov66p6GHJ8BWd7VT8zB55hfA5zy/LXNzFaf7kKVcz\nonT8qPKhSdUVu9VRvF0xK6GQZQaBL3txcCoIlknllNcvZn+skeIx7YrdqV3xOxd1uCp32Vo47GDa\nmdLPc99W3p/TdutetRo7ZBpSPGIrGrEVj9iKRWxFI1awLBwsC4eWd9i9hXzfV8HxlMsHwy3mCq6y\n+SCcmM07ypbCgfPDCOqssJ9ZWRayTIXPGaIwWLacw/f5/vwwjuXH2lgYQiwFJhcOfWgYhjLFWYXN\n8Kp0X1qO1/xTs6f1/OhLeunUK5pzsjJk6N72u/X+nocva+i6a4XjOfre8Uf11PBzlWUtsSZta9hc\nOm1RMpxYxQqBt8f7fWBtYt+/ekxkJ/Xk0LN68eQvVfSci75cIlSjD295n+7YcPMldR7F2sa+D6xN\n7PvA2sS+v3II6aBq2JGvT9P5tA5MHtS+iYM6dOZIpROAaZjqru1Qb8NW9TZsUU9dp2zTXuVql4fn\nezqRORUMSTI9oJOzp0tBnNmL/jDENm211mxQR7JV7Yk2dSRb1ZbYqLAVvvCF34bv+zoweUjfO/6o\nTsyekm3auq/9br2769cUtSJ6ZewNPTX0rIYzJyRJm+q69a7Oe7WnacdFfRgzU0hrcGZYgzMjOpOb\nUmtigzbVdasj2abQEo/tle77qfy0jk316WiqT0dT/fJ8Vx3JNnUm29WZbFdHsu26+NJubG5cz4y8\noF+c/JVybl62Yenm9Tfq/vZ3KGbH9KP+x/Wr069LkrbVb9YHN793xYJWFyNdyOiN8SCYcyR1fEEw\np103t+zRTS271RRrVMEt6Mf9T+jJ4Wfl+Z5uW3+TPrb1A3zxuIym82m9MXZA+ybeUtSO6o6W27Sp\nrnu+C1IpcFUOXpUjEeUhw1y31Jmp1HHIKYcvztOB6K3UAT164vtyfVf3r39Qt6wLutX4vpRMxjQ+\nmVG6kNZT4z/WcK5PESOm2xMPab3dUwpCeQtCS+cOo7YwyGSZhiIhSwUrpRfy35YvVw83fkJt8bYg\nMFHq5GRZpvxyCMr3NZY9ra8O/JMMGfqNjs+oIdRUun1BsKo8TNtEflwvzn1POc2q1dut1uItKhaD\nIenK74A935cnR1PRQ5qKH5BvOAoX67Uuc5Mi+fUqukGHqqw/o3x4XE5sQqo5IzOardxnvmvJm62T\nl26Ql6mXl6mX3KXDFEZ8RuHuAzIT05Jryzy1XeF0j0KWpVCpG9E5Q+9ZGbkNgzIbh2WEikHorRAN\nAkaOHQSMxjolLR2KsZqHFe45IHemQYVDt19w/UrN0Ywi21+WESqo0LdL7sSFhzwzDUORsKkgAlTa\nTrlj04LwTmkkvMoZQ1rQ2encQGGh6Cqbd+WtwH9lys/TSNhSyDZLtQX7nbRgn6vchuDfReG/BaG7\ni6/Yl1k3IXv9kMy6cckJyxjfJGOyW5YRWhT6WxzyMd7mb5K5oIOWaRpBiMsMwlyWdXYgLAgy1dVF\nNZvJV27r+RgLHqsyV65GC8fUV9inCSd4nxIx4uoM9+pUsV9pL6WIEdeN8XeqJ7Jdhlm+9+aHQ1w0\npOFZQxOWA2wh2yoFH+fv//nn2PzjYxjn+ZuMyuN29m1zPU+O488HNB13QbgqONYUXU+2ZQYBtbCl\nWMRWLByE087kUvpfB76qgZkhrY83666Nt+lYql/HUv3KubnK9awLNasl1K46v1XRQovcol3p5FWp\nv9yVbMF5yzRUEwspGQsrGQ8pGQ+ptiaseMReM0MyLuT7vnJuXtP5GU3nM6oNJ7Q+3iTTvPQvJ8th\nOtf15XilMJ1pqCZqy7qM7VWL53sazZzS8VS/+mcG1RRdp4e6HlDUjizL9vm/PrA2se9fmQOTh/TY\nwJOyzZBuat6tvS27VBt++w/mz2c4fUI/HXxar469KV++GqMNumPjrYrZUVmGJcswg6lpySzPG6Ys\n09Jw+oR+MvCkCl5RPbVd+kTvh9WRbKvSrcX1ZK3t+77vq+g5qz4ENeZ5vqcnh57VgclD+uDm92hT\nXfdql7QmrLV9H2tD0XP05vgBbanvUV2kdrXLuSqx768cQjqoGnbk61/RLer49IAOTx3T4aljGpoZ\nqXS/CJshba7vUW/DFvWu26K2mo3KujllCrNKFzLKFMvTBfOFWc06c5XtG+Uv7SpfKhuVL0xMGYrZ\nMdWEapQIx5UIJZQIxZUI1agmVKNkOJjWhOKX/OugvFvQwPSQ+qYHdHx6QP3TQ4u+MIlYYSVCCdWE\n4gtONZX5hB2ct0xLJ2ZPaTR9QsOZEzqZOSXHdxfdvpZ4cym406qOZJvak61KhGouWGPf9KC+e+zH\nOj7dL0OG7th4i97X85DWRRsWref7vo5MHdeTw8F/ZCSpOdaoX+u4R3duvLUSEso6WQ3NjGowHYRy\nBmeGNZVPnfe6bdNWZ7Jdm+q6tKmuSz11XYs+WLrUfT+Vn9bRqT4dTR3X0VSfxuYmFt3XtmEvel6U\nb0Nnsl2dte3qTLapI9mmmH31B3c839PBM0f1s5Hn9dbkYUlSXTipe9ru0jva7jjnA7rh9An9oO+x\nymN3Y9NOfWDze1Z8GBDf9zWenQieG+lhDc4Ma2BmuBLM6artCII5zbvV+DbDqw2nT+hrh76lofSI\nauy4PrL1/bpzwy2r8mXhXHFOb00e1r7Jg3pr8rAs09Luxh3a07xDvQ1br4kPYlL5ab0+vl+vj+3T\nsVS//LO+2l8fb9E7W2/X7RtvuahjyoX4vq8f9/9UPx54QlEros/t/LR2NW1ftM7Cfd/3fT0z8oK+\nc/xHcjxH97bdrY9sed8l37ezxTn9l1/9D01kJ/XZHZ/SbRtuuqjLvXL6df2vA19TS6xJf3jbvzvn\n+NA3PagvvPG/NevM6cObH9FDXfdfcJvT+Rl9v+8xvXTyFfnytatxu8JWSMdS/ZopzB/zYnZMPcku\ndSa61BrtUIPdIkPnHwJt4bBZhmHMD2tmmTJNXz8/8ZK+d/wx5dycemq79KkbPqq2xMbKdXm+pwOT\nh/Ts6Is6OHlEvnwlQjW6c8NtumP9bUrYtXrx1Mt6fPinyrk5bYhu1IMb3qum8IYgNOXNd4LyfWnK\nmdCPJ74qy7D0yLrfUtwMjknlYfOC7k9nhTsWhD5Szri+e/Jryns53d/0bnVFdqhYUKmDjaNspZvN\nfEeb+VBUqXvW/OzbDN+nSoutt+u8FQlbioWDzj2xsK1YZD4gEY3YioUtRSP24iHnSqG18vmFnYIc\ntzQ8YdGtDMFWHqqwcioEoQwtqLGccSvfhkr9kkLljka2VZk/3xB2voJAnV+qpaicpsPHNR09KsfO\nBNsqNMixM/LNogw3osjUVoVSPfJcqxIomL99WnT7ViLItJARzchqHpHdNCojFAS93elGOWMd8lIt\nQScrw5O9oV92a58My5WbrldxYIf87Op/eFJ+xbqSe82qH1N40z7JLiqc6VBj+jbJtZWeKyg9l1c+\nNCWr9ozM2kmZiSkZVvBa6/uSl6mXO94ud3Kj5F96h0bLNJSIhUrBnbBqYiH5XtB1qhw0KjiLg0fl\n80al25RZGhZxfohE0zRll5bNB6rmw0/SgrBdOQBVmT83hLfwrUH5fcJSYT3J11zopPJGRkVl5RhZ\nOWZOrpmVZ+UlOyeZi4f09B1b3lytNFcnI1cnM1cvs5gIhoAsdeqTtDgM6QYB1rd7/OMRW4lYSDWx\nkBKLTsHyaMQO7tPifGC04ATT8vGlUPq7Vxqz0tdZxzpfpWNLUIVpBCE6w/TkRs4oHx5XLjSuOXtc\nnlFcVF9UCe0I3afWcLfCdhAsLB97wiFzUajtQurr40ql5i64nqHgeXJ297aQHTyPytPleD9YHtLT\nPeuYPn/eO+dYWD5fvmz5te7sYULLw4hWhhy1zcpQr7ZtKmybCttWZRhMz/c1l3OUyRaVmSsG00Wn\ngjJZR77vl4bfDC4fXjBf7thWvp7wovUWr3Op96Hv+yvyHvzsx6T8mlMOVF4tfN+vvJbniq5s01Q8\nGgQsr/R+cj1X6WJGdeHay97Wwk57bilIX+7st9L/l7raP+c7MnVcmeKsdjbeoMh5fhDleX5w3HWC\n14R4xL7i56Lv+8rmXc3liwqHrPNu8+TsaX376A/11pnDla65UnCM3FLfo5ta9mhv8663/aKo/LnO\nT4d+poNnjkiS2hIb9VDn/bq5Zc8ldW2eyqX0L8d+qNfG3ix1L7xL7+95d+WHUJ7nK1dwFA3bFz20\n79WsUHRl22bldR2X52rf95fTydnT+uaR7+loqk/3t79Dj/Q8pNga6Bzv+77G5sbVHG+66rpsTeVS\n+uJb/6yjqT5JwbHzwc779L5NDy/5I1JcubW072NtGJgZ0pcPflOnZk8rbIX1YOd9elfHvcv2Y5br\nBfv+yiGkg6phR1575opZHU316fDUUR0+c0yn5sYueRtRK1LpylD6mLTyZVf5KzlfwReT5YDAUgwZ\nilgRRe2IonZUUSsSnMrz9vz56fyMjk8PaCRzYtG218ebtamuW5vqurW5vlstsabL+jDM8Rydmh3T\ncOaERtKjGk6f0GjmhHJuftF6DZF6tSdb1ZFoVXuyTe2JVq2L1sswDJ2aHdP3+x7TG+P7JUm7m7br\ng5veq9bEhgte/8nZ03pq6Dm9fPpVOZ6jGjuubQ2bdWL2VGWYpbJkOKGuZIe6atvVVduhxug6jWRO\nqG96QH3TgxrNnFx0HzXFGoPATm2nmhvqNTOTrTx2wUuJX/liwZcv1/c0kj6hY6k+jWXnQzlRK6LN\n9T3aWr9JWxs2qSPRJtMwNZmb0lB6RMPpUQ3NjGgoPaI5J7uo5qboOrXUNGt9vFktsWa1xJu0Pt6s\nukjtiv8H0/d9zRbnlMpPK5Wf1lR+WlO5lF4be7NyezfVdem+9ndob/OuC3adOjrVp+/3Paq+6cEg\nlLXhFj3S85AaYw1LXu5ypfLTlS5KgzPD59zfhgx113Zob8tu3dS856Lr8HxPz4y8oO/3PaaCW9C2\n+s361A0fVUu8uSq3o6z8YcO+yYPaP3FQx6cHKs/f+kidHM9RpjgrKQgYbm/s1e6mHdrduF2J8JUH\nXJbLRHayEszpnxmqLO+p7dLell3a27xLqfyMnh/9hV4b3yfHc2Sbtm5q3q13tt2pzXXdl3XsKrhF\nffng1/Xq2JtqjK7Tv9nz2fMec873uj+aOan/feBrOjl7Whtr1utzOz+9KGSyFNdz9fk3/lGHp47p\n4a4H9KHN772kur9z7Ed6YugZ7Wrcrt/b85nKcWD/xEH9w/6vyPVdffqGj+uujbde0naHZkb0raM/\n0PHpfklSbTipLfU92lK/SVvqe7SxZv2yHnOm8zP61tHv69WxN2Uapn6t4x7d23aXXjn9hp478Qud\nyQVDaW2q69I9bXfpppY953xQNVNI69tHf6Rfnn5Vhgzd03aXPrDp3Yu6khXdov7rK3+t0cxJ/e7u\n39be5l2XVe9QekT//bW/U9bJKWyFtXNdr/Y079Suxu3XRRe01TKcHtWzIy/ol6dfV9ErKmTaunX9\nTbq3/S51Jts1V8zq6eHn9NTw88q5OSVDCT3Udb/uabtzya59i75AXRBQKn8J6JSm5S8GFwYVHNdX\nPBHRzPTi12P/rO0XvaKG88d0dG6fThWCYVOjZkybYzu1JbZbtXbDomBWeSbjTuuV9DMaLhyTIUNb\nozdqV/xOhY3gQ3L37GEMK8MZ+iq6roqlTjeuOx9yqdzmSn0LzpcDEW8XrloQmKh8Ub+wk8+C8+Wg\nleN686G0QkEj1itKxQ9Knqnw6T0qjrcpl/dkmlIyHq4EaIJpWDVRU4XIpKZ1QqedYZ3KjcqXr6gZ\n1c76G7Wn7mbVhRrOCRU4rq9MtqD0XLF0Ks0vWJbNn9sN0jKNIKxhBYGN+fngmOacp/vawudLEHbQ\ngvd88/ezSuEHLVjmL1jpsj54MDxZTaOyN/Yt6mA2fyWGDCcq04vI9mKyvahsReVYc8rbZ+RY6cUt\nnjxbVj4I7RjZOlm5BtlurUKWNR8wMYNQTDlcYlumPN/XbCl8kc4WNZstLttQlAuDTUHXJF+yHBmR\nrIxwVoqnpMQZmTXTMsz56/SycXmZhkoXN6vphOwN/TJMX87ERhWHtkvO5Xf0XG62VQqsVm7nfGBr\nUTfA8rCLZ4UNy+dXm2Uasm1ThQVd+VaCaZT2XXvp9x9+bEpeY5/82pOS4QfByIUnzzxnmeHZkmtL\nni25oeD8wmWeLTkh+bka+a4tzzs3lPN2NYdCC0JiZx13bMtY0HXx/N0Xy8e+cuD5fCFia0EXuaLj\nKVdwlSs4QSCnFMopFNzzHoMs01AsYqsmaiseDakmaqsmFlI8GiwLWWYQ4vO8oLvWgi6HWW9Wk9YR\nnYkckWtmZbkxRQpNCheaFMo3yyrUyveMc25T+fV24ZC7b3c8KXdNK9eVWFBjuWYpCEuXb3d5+M9c\n+faXlvm+X+r8Vgo3Lwg7RyPzy5oaa5ROBz9gmg9OlifzoUrflwrlsGcxCH6WQ58Fx1OxOH9+4fOk\n8hp81uvI2a/RwaL5MwUzrana15SLBt35DM9WKNMqI9Uhd6YheE/gnNslVJKiYSsIWEZDqonZpWnp\nvoyGFI1YypZDd6XT7ILj/WzOOWe7kXAQ1onFXRWbDisTPyYZvur9Nu0Iv0M14bjG/T6NFo9pvHii\ncrn2eKd2rdupPU271FLTIMdz9cqpfXru5PM6lQvWa7bb1WPtVbzQqmze0WzOUdHxSh0ESx0Pz+ow\nWO4uaBqqXOZUYVCD9osqWGkZbkShsR0qjG1UNu9VHsfaeFh1NWHVJSKlaVj1C+brasJBWGxh18bS\n8KwLh2a9XOX3qcH+vnjoaMfxND1bCE6ZgqZn85rOFJSaLWg6k68szxddGaVheGsWPM7B/lLan0uP\nt+sFAcv5HxUEw+YunGbzwfYq79tiISXi5fdvYSXL7+XiIUXDduV5Wgnflm5P6Wk9/0PHcgCz1DE2\nFLq4YFHlxwSFxT8eMIxzfwRwdsfJS3lsVvozft/39erYG3p04El1Jtv1wc3vUX2kbtHfy0OQF0rH\nFVNSuBRgDNuXPqxy1snp0f4n9PTI8/J8TzE7pqyTVW04qY9seZ9uW39T6fNqvxKwzheD41zYNhUJ\nW4qG7Uu+b68GJ2dP6+uHv6OjqT611mzQ+zY9rBubdl4Vt+O1sX362qFvac7Jak/TTt3depu+deT7\nmsidUWvNBn1mxyfVnmxddBnXC35UU37PfiUhPddzdTTVpwOThxQyQ9rR2Kue2s5LCkdey66X7/e8\n0n/qr4fw6cXKOXmdyU2pKdZ4TfwYtdoKblE/6n9cTw49K1++bm7Zo6OpPqULGdWGk3p/z8O6c+Ot\na2bfvpDrZd+/FhDSQdWwIyOVn9aRqeM6fOaYxrMTlQ43iVBCyXBCiVDNOdNLeSHMu4Wg+05xVpkF\np9nC4vNZJ6eck1fODabugm42Z7MMS53Jdm2u7y4Fc7qqOiyP53uazE5pODOqkfSJynRhVwZJqrHj\naok3a2BmSL589dR26cNbHtGW+p5Lvs6ZQlrPjryoZ0df0GxxTlErqs7adnUlg0BOV227GiL1S/5n\nLOfkNZQe1vHUoPpmgm5DWec8X45cQNSKakt9t7Y2bNbW+k1qT7Re1HPA931N5s5oaEFoZzRzshK0\nWChshtQcb1JLvFnrY01aF21QwSsq7+ZLz4u8ck6uMi0vz7sF2aaliBVR2AorYoUr0/n5iMJmSFkn\np6l8qhTKmVEqPy3nPEOh2YalW9bv1X3td6urtuOS7ivf97V/8qC+f/yxYHgzw9IdG2/VumiDQqat\nkGnLNkML5oNTyAzJNi0V3ELpNga3Ob/gdudLy7JOTicyJzV91vOvOdYYPDeS7eqq7VRHsvWKhmo7\nk5vS1w9/R/snD8k2bb23+0E92HnvorCS67nKujnlnJyyC055Ny/LsBS2QgqZocr07HnLMNU3Paj9\nkwe1b+ItjWcnJc0HjHY1bdeuxu1qS2yUL1/900N6c+KA3pw4UOnmZMjQprpu7WneoT1NO9USbzrv\n4+L5nlzfk+u7cv3gQ+7gS6bSB5MyZBimDC08H+xf5cclv+hxWTw/W5zTwTNHNFIaus6Qoa31m7S3\nZbdubN656MOqskxxVi+ffEXPn3ipEsLbEG/RO9ru0B0bblFNKH5Rj1UqP62/e/NLGkwPa3Ndt353\n92+/7THx7V73C25R3zn2Iz07+oJs09bOdb1qijWqKdao5nijmmONaojUn7Pvf+PId/XMyAva07RT\nv7v7ty45+OL5nj7/+j/q0NRRPdL9oN636WG9dPIVfeXQN2UZpn5n1/+l3U07Lm89ByYAACAASURB\nVGmbZb7vazA9rLgdV3OscUU+vDoweVhfP/wdTebOVJaFzZBu23Cz7mm7Sx1nfTB1PofPHNPXj3xH\np+fGlQwn9LEtH9Ct6/fKMAx948j39MzIz/XOtjv1qd6PXlGtp+fG9cKJl/XG+P7KvmcZlrY1bNaN\nzTu1p2nnJbWUDfaDWVmmJdsoH9vs6/4/z47n6LWxfXp29AX1TQ9KCgKp97TfpTs33nreLllzxTk9\nNfycnh5+Xjk3r9pwUg913a93tt5ZlQ9m3m6/z7sFHZg8pFfH3tSBiYOV4VG31W/WO9vu0J7mXRf9\nq8eDk0f0jaPf1djchJKhhD685RH9/+3deZRcdZ03/vddat9639d09sQQQiAJSwQ06iAIAg+LIzjK\nc87oODo6j+Ogc9wAGRxmdM446LjMc87vh+OIwyIiKo4CE4EQICH73unu9L5WV9d+1+ePe+t2VaeT\ndCdd6ZB+v84pblV307ldVd97b93v+34+V9Ssu+Cu8DydaGYc/3f/T3E81olKXznuW32PM2ZzH7ln\nsh0ZTUfxat92vNq33TnmWVG2FJvrN2F1xYpZPSeabiCZ0axqJrkT2BfAScv8EFUu3D013KMZKrYP\n7MTvu19CNDsOWZCxoWY92kpaEPGEEHaHEPaE4Jd9p31OMloGPYl+dMd7nVt/crCgOl3A5UdbpBVt\nJS1os9u+nilcnavKkUipSGQmJ3UzWR0uWXQqp3jyqqTk7rtkAXEthmh2HGPZcYxnxjGWGbceZ8YR\nzUSd8ZQjCiLqg3VoDTWjJdSMhkAT/FLACdrlJvr7kgP474HnMZTth0f0YV1gM+rlZfYk12TYbSb8\nfjdSKeWMP2eFACfbw+m63RYuP9CgGVD16avZ5Cbl8ydq8yu6nSqckZssPim0Md3PCwIEEQUBoamt\nQnNDQ80PGUypNqWoutMCz+uSrJZz/ukqK7mcikuSKFgVlXLVlezfk6uyNLXiUu57WU0v+Lnc99Rp\nXj8TBtRgL7KRY9C9VrBXVIIQdA8gGDAFAxAMQNCd+ybsr4kzez8AAAwJnmQj/Mk2eLQySKJ40msl\niYITRJl8LvUpz6sBzVQgeNIws37AsPb1k63+rADA5HE2TgqZnonHJcHrluwJVQlel1VhL9e+Ure3\nj6mMhmRGdZYzCd8JgRjk6i5IZf0QRNNqexovg+ifgOCevDjH1GUgWQokSyEkyyFmSiFBgiyLVqtJ\n2QoFFiydaosCsoqOZGYyJJLMqIXBMFGDGBqDqXlgJsOYrn2pLIl2O0brObYCPPqMtwMXBFGDXNcO\nuaYTgmhCnygDkqUQy/usICMAQfXBm2xCMNsKv1lib2utfUMqo9nPoYpE2qrwOBMCAL9XLhjPAa8M\nRTWs1yWjIOY7CrX8ECCrMDJ+qCeWwxivxEmvhSsDqWwAUukgxFDUqWamx0sguBSI3pS1/YtWQ+1v\nhZksmaMnD3b1wk7Ide0QJB1yphyVifUIi5VIZtSCoMtZ/xOAXTU092jK96d8aTJ4XLj/n9W/mQsY\nBd0I+d1QVN2qbpY5+yCtxyXB75Xh88gwDBPxlIJkZso5H1GD6I9DCMQgBiYgSKrV9jgZgZGIAPrs\nzqGcVEVNFu12y9Y+IKNo0KUMRG8KgicFwZt07kMwAUOCaYjWdjT/vinCNCSIpgQJLkiGGxI8kE0P\nZMEDt+CFR/DCJbmcoI/f70Y2q555pWfBMOFUC51siW0iLY5iLLQTimck74clyCNLYAwtgqoCqnrm\nNsG5Y63cMZbHfpxf6Sp3SWHC04mxwC7oUhqyHkR5fB082RqMefcjEToIiAaEZBn0E6uQjZ/+Qi5J\nFPL2MbKzz/G6rW3t1IC7Ybcczw/CA7lxY1fiFaxqlWLePtCQ0hBEDZIWLggyTh5HWX9hbreYq3op\nSVbVSFkUIYgaRn17Mew+AAgm/EY5UsIYIJgIohxt4hWolpohy6JTTTPXCjkXVi+sljj5tVyVYAhw\nQpenqpJrYjKArWrW8WJay+KV0T/gcHIPJMi4NLAZza7V0DQDE5k0DiivYlA8BJgiIvFVkEYXI5Ux\nkMpaQdx8LrvqYX4lRJddkdAlSxAEOwxoV1vUoSDtHkDK04O0tw+mOOXY23ShxKxHldSMOk8LSr0R\nu4KvFWp12++zXOXRXKVOWcp7DkXruVHzjyPtYyFF06GqecebuuEcpzrHQgLs98TkMREEIJPVC45d\nrOMZ+1ghPfl1wAqUWpUZCz+b5Co1elwSSiI+6Kpm/Zy78HNL/v+Xu4DhVMfds634ON172cx7H+Vf\nWJPKaHZAczKwGcsPbCYVTCQVGIbpHJ+H7IticiHLgNeFuNyDw5mdmNCieFfJWqwvuwJ++9xprhI2\n8j4nANZnal2f8jlHKwxu64Zh70Mmg95+jxWmPlPAfjY0e//QOzGI1wZex57obihGFgIElLhLUemt\nQpW3EtX+KtT4a1Dtr4DH5S54T872fIBhmtbnGDv47gRGFR2aXrhtzy1zF/bkHrsk0XodfNbrEbQD\n8XNRAc+wL+w6OtaB/2p/CiOZUZS4S/EndTei1tOEiWwKb42+jr3xN6FDQ1AowyJsgE+tRTZrOGF2\ntywiHHA7t0jAjbB/8nHAe/G1Fefc/vnDkA4VDQcyXahUQ3PCGGktay/T8Mk+NIca4LoA0sWxbBw9\nTnDHqrwznB5Fjb8KH2r7E6ypWHnOO39FVzGhxFHmLTnniS7DNDCYGsaJiR74AjISiSxgBxGsNga5\nq+oEp41Zpb8CjaH6OZ1kS6lpDKdHMJgaxlBqGEOpEQylhjGYHoGin3kiAbAmvb2yF27JDc3QoOgK\nsrpy2nBXjgABIXcQJZ4ISj0RROxliTeCEk8YdYHac67MYpgG3hrchV8dfwGjdgWNuRRxh9ESbkST\nHdhqDjU4H0rmkmmaeHt4L35+5BeIKwmUekrgltzIaGmktcxJE1DnwiO5saJsGVZXrMCq8mUntRWb\naiA5hL0jB7BnZD86YiecybqgK2CVmzd1J5Qzk4pec0ESJCwvW4K1lauxpmLVjN9Hpmni2PhxvNK3\nHbuG9kIzdciijMWRVsiiDEkQIQh2KyZBnLzZ7Zn2jR7CeDaGjbXrcdeyW087qX6m/f7ekQP4z0NP\nI6ZMnPQ9URBR7i21gju+cgDA1t5tqAvU4P9c9hfwnmV56YSaxD+8+S8YzUSxoeYybB/YAZ/sw6fW\nfBxtJS1n9Tvnk6IreKHzRbTHOnFJ5WpsrL1s1q3+VEPDH078D37b+QeohoZlpYuxpnIV/uvIs6gN\nVOOL6z87Z2EO0zTRnxzE7uH92D2yD93xXud7reEmXFK5Gm0lLUipaUwocecWy8YLHp9q+y1AcEKJ\nrrxgYrmvDDWBKtQGalAXqEa1v2reS9capoGUmrbbfKaQUlNIaenJpZZG0r6fVq3HsewEMrp1UmVl\n+TJsrt+EleXLZrTfTKopvHhiK17qeQVZXUHEHcKW5uuwoeayvLEvnPM+OH/cO8Gcwd3YP3rI2Y5X\n+SpwadUabKhZh+pA1Vn9O6qh4aUTf8RvOn8PxVCxKNKM9zdfjwpfGSKeyKxL0Cu6mne8YB0rRDPj\nVts5QbJOQgsSJEGCOOWxLEqo9JWjLliLukDNGStE7R89jP//wM+QUJNYV7UGH1l++zmXzFcNDbuH\n9mJr7za0xzoBWJUYr6nfiCvrrpg2TGmaJjJ6Fik1haSWQlJNIaNlEfGEUO4tR9gdvOBPLKmGhtf7\n38QLnXY4R5Rxdd0GbGm+dtrA6tlQdAW9iX6ciPeiI9aF9linU7EMAFyijJZwE9oiLWgraUVrpPmc\nXk9FV9A10YOOmBV8Px7rQlKdvo1UwOVHmacEpd5SlHpLUOqJoCFUh9Zw04z3k4Zp4OWeV/Hc8Reg\n6AqWly7B3ctvRYW9752p+fqsrxma1ULrHEKaiq5iMDWE/uQg+pODSKpJNIYa0BZpQU2g6h0VADyd\nhJrEq73bsbV3G8azMQgQsLpiBa5vvBpLStpmNN5N04RiqFaw3w73p/MubshdDJPSUtg9vN8JEjcG\n63B1/Uasr1474/fmeDZmHX8PH8CR6DFopg4BAip8ZagN1KA+WOMsK30Vp30PTNe60jBMKyTnls7q\npL9pWq0B84M7ueolgmiiPXkIO8feRF/aOtap8FbgqtpNuLxqHQJuLwQBGFOiVkvt8Q60xzoK2jzL\ngoSmcANaw81oiTShNdyEUu/MwxiaoaNjrBd7Rw7i8PhR9KV6YMD6nBKWS7AivAprytagIVwDr8dq\n5XWqNk9WxSGrTWkmr2VpJqvB7XUhHs8UhCnzFgWlbmR5MljgskMGuYnShDGB9vhhdCY6Ue2vwrvK\nVk2eG5jsiHhS28Tc0jRN7BjchV8c/zUmlDhKPSW4dcmNuLTyXdbktWmgfbwTbwzswM6hPU714uZQ\nI66oXYf1VWun/TylagZSGRWJXHgnrSKj6PDlBXKCPhf8nlO3gto/eghPHf0VBlND8MlefKD5PVhf\ncQUUxXTCXxlFK6jEkbsl1AQGjeMYEzqQlIYgQECZ3oZmcS0qvRXweQsrO+WWbll0wo+qZjiVBjXN\ntCd4re/phgmfR5qsION1weeREFNiePror/D28F6n6uYVNZeiNlANr+xFRtGcSc/xvCo1sWTWqVBk\nGCdXZ3Qm5k4RuDnVrIMoFk5E50/25iZKJUlExD9Z0ScS9KDEvh/yu0/5+uTGshNws0NaueCy32NN\ntOcCOblJd0ksHC+qrqI73oejYyfQGetGb7IXY8rISW2o83nNMIJmJUKoQghVCKIckmBtyxTNqvwx\n2QZTsy4eM9NQzDQUpKEJGUi+NERvCnAnYbiSMMVpKiNChgAJBjQYOPuAlamLgO6CqblgZn3Qx6ug\nR6uLV4lPzsLVcBRSZY8VmohWQ+9dDlckCtQeAmQFgupHaHwNgmoTPLJUsF0x7ApeWbtCWjYv8Go9\nt9b4yCf44nA1H4AUjsI0RGh9i6D1tyLXVlaWBLj9WQgNB2CEBgBTQDC5GBXZS+CXffDa4YTc65dR\nNGRUq1JZVtGRVrNQvENAaAhiKGo9j2M10MerrOp0gNVmdUpLWWCyklz+ODKgQSgZgFDeAzE0Zj1P\niQi0wSYY0RoIpmwHjAHADhnbIZnCIKsJsXQIrqaDED0ZGFkv1K6VMMarIHgTkOvbrbCp/fvV3sUw\nYhWYLmhXDII/Bnfbboi+FIxkCEr7JTAzJ3++ESPDcLfus0KwyRL4BtcjKJbYLStlaIZhh13s198O\nOucCMAWhVDkLqXQIUukQxPAoBDuobGa9MMarYcaqYUCDGBmGWDIC0TN5oaqRDEGPVcCIVcJIlFjV\nCOeCpEAMRyH64k6FzHP53S5ZdLb9AjDZzlszTllVcK4IApxwfH4IH3n3i/Hvy5Lo7BskUUA8bVWV\nTaZV698TDEjlfZBrOiH6rXbipi5BkHSYugRtqBHaQAugFqflnVsW7X27y26XKUwGkHI/lHue8v4/\nTc+1ap2slmiGh6ygeMS6UM5UPNBj5RA8aYj+BAS58Dy7aQgwMwEY6SDMdBBGogRmMgIJbkiSWBjs\ny1uq2mQoR1Hzt6kmhMAEpNAYxFAUEEyYqgum5gFUN0zNDdNe5h7nwvhTCQKcY65coMrjlgqPc+yl\ndaGJdbzjXHxif1+Hau1Xqq2L3vTBZqg9S6xKoPlcGbjqjzn7Hz1WBrV7OczUzC4ulEQBIb8LPrvl\n6WRrcNEJQOW3C5fEU4wD+46dSyuovGctT1EVGrnjZsFpE567nwvwCfYFE9evq8eShjN/xuDc/vnD\nkA4VDQcy0dxSdKu9xYU+gXIhjn3TNBFTJuxJuBjckrug1ZlX8sAjeeCR3Kc84asbOrK6gqyetYI7\nhoKspkAxFPhkL0o8EUTc4fNW2UEzNHROdEPRFaiGBs2+qYbqPM6/75bcTos3z5S2bx7ZA6/ktb93\nflsfpNQUftH+G7w1+DZcdkDKL3vhlX3wyV74JC98shde2Vp6JDd007D+Nl2FkrdUdNX+m62v1QVr\n8K6KlWgraT3rPtUTShz7Rg7ZFXaGIQr5E7eifZWwBMn5uhV6sa7yMGHAhGka9tK+YXKZe108+a9N\nwWtkLRtCdbMOY0yVUJJ4feAtvNq3vWBS4HQECLhl8Q14T+PmM257ZjL2TdNEQk1iOD2KkfQohlMj\nGE6PWffTIwXVsIKuAP5m/WdQ4Sub0bqeSne8D/+04zGohoqIO4y/XPu/Z9Qi8GI3kh7FE0d+gQOj\nhwEAsijji+s/M+N2ZGdjNB3FnpH92D28D8fGO057EluAgLA7iLA7hJAnhKArAMM07G2blrdUoRk6\nVHuZ1bMntUMEgHJvKWoC1ajNu/ll/2RjTXtMOh+C88apkauUZejQ7KVu6tDsZe7rqq4goaacIE7C\nruyXVJNIqqnT/r35JEGCX/Yh4PJjVcVyXFO3CZX+2U2g5yTUJP5wYite7nn1lGGnyXDeZFjPJcp2\nNZIwItMt3WGEPSGUlfvxP4ffws7B3dg3eghqXjBnXdUaXFq1BvXB2jk7dhnLRJ1JpHxeyYOIxwrE\nlngiebcwZFG2gjjpYQwmhzGUHkE0Mz7j1+NMSjwR1AVqUBessZe1qPFXQhRE/Lrjv/HbrhchCxJu\nW3ITrqnfNOfHcT3xPvyxdxveGHwbiq5AEiSsLF8KwAprJdW0E8w5XbDULblR4S1DpV3prMJX5lQ9\nK/eWQhREZHUFGT3jVH/Lr1SZqwqnmidPFk3HJcoo85SgzFeKMm8pwu7QKcMRqq7itf438buulzCe\njcElyri6fiO2NF07q6pcZyuaGUe7M7Heib7EgPP+ESCgyl9hHQd6woi4w9bSE0aJ/TjsCTvHIdHM\nOI7HuqxQTqwL3Ynegtel3FuKlnATqvwVKPWWoMxjB3K8JXN6jDaajuJnR57GgdHDcIku3Ljofbiu\n4eoZH8fO5fG+aZrI6llMKAk7qDkx/VKZQFJNQYBgP78RJxhvBeIjeUH5MEzTxEBqGP3JAfQnBzGQ\nHEJ/cgAj6bFTjn+/7MOiSLPd5rgVTaGGGQdXFV3BhBJHXEnAa382ONdA3tnoSwzg5Z5X8cbATqiG\nCo/kxpW1V+DdDVed9b5kJgzTwKGxo3ilbzv2jhyAYRrwSG6r4l/dxpNaUVivzxB2D1uVLLsmup3v\nNQTr0BRqwHB6BH3JgZOCa7IgoTpQNWXbW3PGarCnWu+h1Ag6J0447X4NGM74nRzPEedx0BWAIAiI\nZeN4pe91vNL7OiaUOAQIWFW+HNc2XIVlZYvPGPiaUOI4Pt6JY7EOtI93oDveV/DeLPFE0BJuQmuk\nCS3hJjSF6guqmcaVBA6NHcWBscM4OHoEcdWaXBIgoCnUgOVlSzCaGcOe4f1OcLYhWIf11Wuxvnrt\nrEJAOWc79k3TxIl4D/aMHMCe4f3oSw6c9DOlnhKsrVzthLhP9fydmOjBfx19FsdjXXCJMrY0XYst\nzdeestKroqvYM7IfbwzsxMGxIzBMA6IgYlnpYtQFa1Djr0ZNwLqyfKbVRqf7+/qTg3jm2PM4MHYY\nAgRcVb8BN7a+76wrMyeUJARBOOt1Ohv51Qtzyr1lqAtWoy5Q64y3an/lafcXqq5OVre2j4dV5yIc\nIe+/AATBuS9AgFf2oCFY77R8LxbN0HAi3otj48dxbLwDx2OdUHUVsl2J2GVXKZ6sTjx5UUAsG0Nv\ncqBg/+0WXWgM1aMp3ICmkHWxk1f24US8G50T3eiMnUBXvBtpLeP8P7IgoSFUj7pANTJ61nmucrfT\nHrfZFaMrfRWoKliWI+wOOc9d7vNT7ryJOuW8SVrLFlw8kMwtp9zP6Lk2dwJaQs1YWboSK0tXnnVI\n2rTbzlgV1jS8OrAN/939ErJ6FrWBGty+5CYsL1vi/Hxay+CFzhfxUvcfoZk62iKt+F9LP4TGUP2s\n/l3DrjCY1tP4befv8Urf6zBg4F3lK3FL240F5x6sUMHkdmj/6CH8/MizGEmPIuQO4sNtH8QVNesK\n3qemaWIwNYT9o4dxYPQwjo0fh2Zf8CeLslNxO3cR1rqqNVhTseq0oX/DNHAk2o7tAzuwa2ivsz1v\ni7TAI3lxcOwwTJgIugLYVHs5rqnfiPJTnEOx1m8E/3XkWRyKHoEkSLi65ipcU7MZImToeq4qnYHB\n1CBeG/4jjiUPAQCq3fW4NHwVquRGq0piXgtkzbAmxCfvT37NRGHo0glc2k9yLospClY1j15hD46b\nb8KEgTbXWqz2XQmP7MqrzmNVtfLb7SghKfhl1/PYMbQLLtGFWxbfgM31m067DzZMAyPpMQwkhtAd\n78fB6CGncj0A1AVqsKZiFS6pWoXGYH3eeDKRVXSkMip6JgZxePwI2uPH0JfpdgJxMtwImzXwm2Xw\nGmXw6CWQtaDVDtR+frW8KkquvEpZoqwj4xpGXOpHDH2Io/C8nVvwokZuRa3chkqxAQLkyXag9oS9\n150Lc9rtG/MDna5Tb7etFnKGFW5TJ6s5+gIeDA3HnccFwR7n56wQlDElHK3nBTbzg9P5rW2Rdz/3\nnshlLHPPu2i/gUxo0OQ4FDkGRYo5Sxe8KJfq0eBtQnO4GRWhoBPM8Xmmn0dJKim8eGIbXul7DQnN\nOoZrdC9Fg7kGohpEn3kQPdgLRUhCMEVUmUtRa7wLHtOqXGXYKQpJsqqN5SpH5R4XVJUSBWRVu8JR\nNlepUUM6V+nI/loqo52yVaww5YEkWtUQPV4dZvkJKOEO6LJ1PjWgV6HWXIVauQ1uWXLecxk9hYQ5\nioQZRUqIIi1GkRVjMIS88I4JyGoEcrYcUqYMQqrMChfqKAy9uyS43SIk3wQ0/wiy7iEk5cHC3zUD\nsuCCXwzChxK49TAkNQgjHYCS8iOdEJ0Wo6c6c5NrNTy17bhLEqH7hxErfROanIRbD6MhcyVKhBrn\n+7Is2lXOZPjcVlXNFMbwxvjL6EwdhwABl1ZegpsWfQBBKeRUZJpIqdYyqWAipTj3Y0kFGUV3tqG5\n8X4yExB1O6B0/uf4brqyBR/evOiMP3chzu9drBjSoaLhQCZamDj2iS5spmlCNVTopmEFiEzTug8D\numEv7e/5ZN+MJ0DnYuyntQxG0mMYTY+iLliDKn/lOf2+nL0jB/B6/w7cuvhGlPtK5+R3XgxM08Su\n4X14oetFXNdwNTbUXnbe/u2EksTekQPoSw4gZIdxwu4QIp4wwu4QAi7/WVczSKhJZzK2P5mrljCA\nuJKY47/i9ARYEysBVwBBVwBBdwBB+3HA5Ydf9sPv8jmBHL/sg9/lh1t0zfmkREJJ4qXuP6I70QfD\nNApa9Zkw7BN7ur00oOgKYko8b0JleqIgOhMIVf4KrKuc+2DOdI5G23F0/HhBm8nxbOyUFUjyRdxh\nVPkrUO2vtFph+itR5a9Audc6mZ1rXagbxrT3FV3FUGoYfckB9CUG0JccwHg2VvBviIKIgMuPuJJA\nubcM/3v1R9EUbijKc5GT1tLYPrATf+zZhoHUEIDJ96Df5UNADiDgst5jAZcfAdkPj+RGTInbQUkr\nPJmdJsyVmz4rzvWNFkmQUOqJoMxbat9KUOYtRVpL4w/df7TDOS5cU78R7226FhHP6aviFVNKTaNj\nogvt4504Nt6BgeQgktrp33sBlx+yIBW0FJUECY2heicU0hppmrOKQDNhmibeGtyFJ4/+Egk1icZQ\nPW5oeS8EQXCC6VndCqVn9SwUY/K+4AIM1bTaqwoyZFFyWq3mf00SJWQ1KzxptS5NI6VlkLGXafvr\nZ6pM6JO9CLutkKBuGs6YP12lSwHCSe/ZgMtvBzVr8gKbPnRNdFtBrFgnRuw2jUCuFXI9FpW0oDnU\n4FQiLbjZ1d9ylTryeSUvSrxWcKg0FyLyljhLWZCtCVNDsUPnmj2Bqtihc80JoZowCsLeTgA8b9mX\nGMCh6FEA1sT6tY1XYVPt+nMOes/WeDaG1/rewKt9bzjbx5ZwE66u34hKX7nVYnZ4v9MSUxRELC5Z\nhDUVVovZ/GM10zQxoSTQl+xHf2IAvckB9Ces/frUypteyYu6oPX65od38ttDTihxa7J8wpo4nzpp\nbgXxBajTtC7O/5mIJ4xYdgK6qcMne7Gp9nJsrr/ynIJQGS2L7ngPOiZOoDN2AscnugqOXURBREOw\nFvXBOvQlBnAi3uO8x0PuIFaWLcPKsqVYXra0oEpMVlewd3g/3hrahf2jh53x1hZpxeU1a3Fp5ZoZ\nV+mczfG+Zmg4Em3HnpED2DtywHkvyKKM5aWLsaZiFZaVLUFPog+7h/dh78gB57UIugK4pHIVLqlc\njaWli+ESZcSVBJ47/lu81vcmTJhYW/ku3Lr4g6ecjJ5OLBvHjsG3sX1gp9NKOF/QFbDaQAQqUeOv\nQnWgCmXe0pOqPk5MqfoYVxLO9mhZ6WLctuSmogbfi0k1NOwc3I3ueC96kwPom6atuCRIdtXKaoiC\n6IRxkmoScTU54yrGpxNw+dEUarCCL6EGNIXqUeYtPevjS0VX0BE74YRyOiZOFBznVvkqEHAFoNkX\nOuUuBlDzLhDIjTeXKFthQjuQ0xRqmFEltvxQYOdENzonTqA30V+wD/TJXutzgytgfYZwB5zHQVcA\n5b4yVPkrEHGHz+sFfIYvgxcPb8fu4X1OG17Aqk61tnI1LqlajepZfnbPtXR/6uhzGE6PIuDy48bW\n9+OquitOGQIbTo3imWO/wu6R/RAgYFPtetzU9oEzVkt2/g7TwPaBnXj22K8RVxOo8lXg9qU3Y1X5\nshn9/6qu4vcntuKFrhehGioWRVpw6+IPYkJJ4MDoIRwYO1JQgbEhWIeV5cuwqnw5WsNNGEmP4u3h\nvdg5tAe9iX4Ak4GdS6vW4JKKlU4l64HkELYP7MAbAzud7We5twwbatbhiprLnP3NSHoMr/S+jtf6\n33DCzKsrlmNz/ZVYXrbEeV+quorfnXgZv+t6CZpdUffOpbecsdJpd7wPodJ2EwAAHQZJREFUz3f8\nDntHDgAAlpQswgdb34cqf2XeNrBwe5i/jXRLblT4ylDpq3AqJ1farc/zj0/GszH8fweewJHoMUTc\nIdyz8k6sKFs6o9cFAHYO7cHPDj+NpJrCstLFuGfFHfC7/BhKDWMgOYTB1BAGUsMYTA5hKDXshKeA\nyVb3udbcs92XZ3UFR6PtdjjrEEbyWpQD1jbDqgZYa99qUBeohVtyoyPWhSPRYzgcbUdXvNvZHsiC\nhNZIM5aWtqEuUIPD0XbsHt7nVKb2SG6sKl+OtZWrsap8+VlXnz6T2Z7nK6jCaFdezDgXeGSgGErB\nxY+SmHfRoyg5XxcEASPpUafy5UBycNqgfUD2I61PfpYQBREt4UYsLWnDktI2LIo0F4R4o5lxvNTz\nCl7t3Y6MnoVHcuOqug24rvFqlHkLzxWqhoY3Bnbgd10vYyQ9ClEQcVnVWryv+do5u/AvrWXQm+hH\nX6IfvQkr/BnIfV53+a3P7vLkZ3i/7IdbcqE73ov/6XkNbw2+DdXQ4BJduKLmUmyuv/KkYPzpmKaJ\naHYcvYl+50KSzonugv1j0BVAa6QJi8ItaAjVYSA1hCPRdhwb70A67wK5Sl85lpa2YUlJG5aULoJX\n8iChJhFXEvYyiYSSQFxNWPfVBBJKAqOZ6LQX2gVkP6rsczWlrjKE5BKE3AEEPD6E3H6EPNb5jan7\ni4yWwTPtv8Yrva9DgID3Nr0bN7RumVXF8INjR/DMsefRm+iHLMpYWbYMtYFq1ASqrJu/6pTh8Hyq\nrqI3PoATcatLRk+iD/2pASiGYl+cZ52XCbgC1n1X0HkcdAXgl33OZ+pcVWdnKUqQBQmyKELMVcu2\n6uIDEApaxhlOmR4g5J/Z+UbO750/DOlQ0XAgEy1MHPtECxPHPl3opoZ3snoWYq4po5Br0Sg4/d4n\n7wt2i6jCD8SSYH0oFu0Pxy7JZZ9A9yPoCsLv8r2j26ZY7ZEymMjGEVPimMhOIGZXs8h9zRQ0tIUW\nYV31JagL1Mx7tT9FVxGzQzuxbAzRbAyaoaHSV46qQCWqfBVFOYGZVFPoSwygPzlgT2gNYCg1jGWl\ni3HXslvP2BJrLpmmifFszKnMNpv34NRqZ9ZtDCNp60Szz6n4NlmJzzelIp8syJjJ2yCrKxjLjGM0\nM4axzDjGMlGMZaLThuncogvXNGzCe5vePeNJmPNN1VVrfGQnEFMmrGV2AuN5j7N6Fk2hBiyKNKM1\n0jyrKi3FlFCSePrYr7B9YMd5+zfdogs+2Qefy2dXUPQi5Ao61YjCnpBdtcQKcE53EtQwDSTVFKLZ\ncYxnrNBO1A7vjGdiMGA4FdTqAtWoCVQj5DpzW7dYdgLHY11oj3WgfbwTPXa4cToCBARdAYTt9Qy7\nQwi6A8hoWWt9MuMYz8amPfFcLEtKFuG6xqvxroqV874P0g0dB8YO45Xe17F/9HDBxIpbcmNV2TKs\nqVyFVeXLZ10txDANjKaj6Ev2oy8xaC8HMJQeOen1CrtDqPZXYtTezuSr8legOdSElkgjWsKNqA/W\nQRYkpLV0wfjNje1xZ2zHEHD5cXXdRlxRs64obTVN08RYZhydE11OcKc73gvN1CEKItoiLVhZtgwr\nypehPlgzo9c7oSaxa2gv3hrc5VQ1FAUR9cFauEWXVT1EkiHbVURcU5bhkB/xRNpuX2RVC9VN3Qn/\nWu1YDCSUJA6NHXHCawHZj9UVK7CmYiWWly2d9vnSDA1Ho8exa3gvdo/sd/YHXsmL5WWLcTh6DGkt\ng9pANW5f8qGCKhtnI6EmMZgctiduhzCYHMZAagijp6m2NZVTedAOml9Rc9mctCa/0EwocSeYnFv2\nJwqDci5RRtAVdEIlAZcfIVfQDpr44RYnt+O55zfX1sG5DyChJnAi3ovuiZ6TJroDLj8ag1a1mtpA\nNQQI0waqjbz7GT2Lzlg3TsR7nCCVAAF1wRosLmnF4pJFaIu0njH8m2t7rRoq3OKpKzDPlqKrGMuM\nwSf7EXT5z1tl5tnK/6wfy05Y7YyH9+HIeLuzza0NVGNV+XIEXQF4JDc8kgduyT3t/bgSxzPHnseh\n6FGIgojN9ZtwQ+uWGe8LDo0dxVNHn0NfcgBeyYMPtLwH66rWIK4mpoToEnnBOqsyn2pocIsu/EnL\ne3Fd0zVnVXV5NB3FU8eew+7hfQVf98k+LC9bglVly7CyfNlpL3gaTA3j7aG9eHtojxMalAQJy0oX\nI6mm0BW3Ksx5JS/WVa3BhtrLsCjSfMptvaKr2Dm0G1t7tjn/b6WvHJvrN6HcV4anjz2PkfQoIu4Q\nbltyE9ZVXTKrbVXXRDd+1fE7pxLvmQRcfoTcISi6csoqpgGX3w7vlOHg6BEktRTeVbESH13+v2Yc\nHs0Xy8bx00NPYt/oQUiCNG2Y2yO57TBmlbX0V6KtpPWsq55NJ64k0Jvod259iX70JwcLgkFA4QUv\noiCiOdSApaWLsXSacAlgHft0TXRj1/A+7Bra62wjZVHGirIlWFOxGmXekoL2zZOVv0WnjbNoT+bD\n2Raf/NrkpoWDJW50Dw471YEnb3mPtRRSatqpsFqMCzuCroAdkiisjhxyB5HRMmiPdeFotB1Hxttx\nYmIyxCwJkhXaKW3DWGYcbw6+DcM0EHaHcF3D1bi6fuMZP6vrho63h/bgha6XnEqAl1Sswnua3o1y\nX6lz/CSfpvtB7ri1N9GHnrz3xuiU/dxM5FflqvCWYXPDldhUu94J+J0r3dCd0M7xWCc6Jk6cdPyc\n+7eXlLbZwZxFZ1WhEZg8B2G1IreOxYZSwxhMDWMkPXbGizk8khs+2br4zSd7MZqJYjwbQ22gGves\nuAPN4cazWi/DNPDGwE483/HfJ/39AgSUeUud0E6t33pv6qaOnngfuhO96In3oT85WLAdEgUR1f5K\nlHpKkNLSSChWFe5ctbq5Itpj3ukEYG8PZFHGB1u34IqadWf8HTzHf/4wpENFw4FMtDBx7BMtTBz7\nRAsPxz3NNVVXMZadDO0ouor11Wvn9MQ5Te+IXaHKc4oJtfxlTVUJBodi0Mz8lqu63YJQg2bo0EwN\nuqE7LUutm3XyVD7LNqTzIasr6IydQG+iD17Zh7A76FR9C7oCM5pQzWhZJzgYtUNE0ew4dFO3TuxL\nrryAxMn3JVGCCHEyTCoIEPPu55Z+2YcKX/FaWp2L0XQU2/rfRFJNYVX5MiwrXQxXEUJqqqFhMDnk\nhAn6kwPoTQwgmh1H0BVAS7gRLWG7fVS44by2EpoLub+v3Fd2zu3Uoplx7BjajR2DuzCQHIKaVylk\nLlR4y7CmcpXVfjjSMqvwgWEaOB7rwu7hfdg1vA9jmSh8shcfbH0fNtdvKmqQQdVVDKdHneBONBtF\nwBWwwziT1R/DnhC8kveiC+TMlGEaGMuMW2FFd6AobbNTasoK7MR7cSLegxPTBHdmQhRENIbqsbik\nFUtKFmFRpOUdN/bn26mO+ZNqCntHDmDX8D4cHDviTBzP1IqypbhtyU2oDVTPep10Q8erfW/gVx0v\nnLGapiiIzthtCNbihtYtZz2hnO/A6GG82rcd1f4qrCxfhtZw01ltn4ZSI3h7aA/eHtqD7kQfBAhY\nUb4UG2ouw5qKVbMOdXdNdON/el7DjqHdzmsiCiKubbgKN7RuOaf9x/FYF17ufgUGzMnt4ZRtY9AV\nKDjWUw0NY+kxDNvVO4ftducj6VGMpqPQTR0u0YXbltyIq+s2ntN21TRNbOt/Cy91/xFBdxA1/kpU\n25UvagJV570KVY5u6BhKjxQEdxJqCosizVhWuhhtJa2zel1M00RfcgC7hvZi1/C+adtIni9eyYuA\nyzflQg7rAo78Czy8sgce0W0FfHOtxE0dhqFDt1uM51qKG6aBMm8pagNVqA3UzOqzYFrLoH28A0fH\nj+NItB3d8V7n+KbGX4X3NL0bl9dcOuuAnmEa2DdyEL/terGgTWuOAMFpjZh/HC8KIobTIydVrA26\nAmgI1qEuWGMva+ESZaQ0K/yUUtN2AMpqYZ1Uk0hp1jLiCePquo1YWb7svITyx7MxHI91oTfehyp/\nJZaULjqp8lAxaIaGkfQYBlPDiGbG7aqs6ckqrWraqdSaq9AqCSK2NF+L97e856xCmFOZpom4msBA\nchD9ySEMJIes+6nB01brdoky6oK1aAzWoSFUj8ZQnV1B6+TtuWpoSOa1CM3dUmoKet74sELJeY+n\nfM84RTVo3RlXJm5o3YIr6y4/49/Nc33nz7yEdAzDwNe//nUcPnwYbrcbDz30EJqbm53vv/jii3js\nsccgyzJuu+023HHHHaf9fXyzXJg4kIkWJo59ooWJY59o4eG4J1qYOPbpnUbRVbhOc4UzwamGo9hh\nO0VXoRlWG7Zc259g2I2JWAaiIObd7OL6eY9dohtl3pI5eb5N08Rgahhhd+i8VqajC1MuuDOUGobg\nXCUu5rVJKbwviy7UBqqLUu1qIZnJft9q2ddrt8vMIqurTutMxW6jaS0V6KaBjbWXYXX5inPeTqTU\nFH5/YivGMtGCynb5oRG//M6pcDqWiUK2q3Sdq4SSxLb+NzGYGsZ1jVdfkG34coE/r+wpaE9JszOU\nGsb+0cNIa2mnrXXhpL3hhF904+QKQ9ONQwECgn4fZN1d0IIp174710L5Qq0AlpPW0mgf74Qsylha\n2nbO2wLTNHEk2o63BnfZLYEnj5vU3H1Dhapb91VTQ4W3zAnj5Nqehd0hHpfOsVxr9/P1nkyqKSe0\nk2s53hiqR0OwDtX+ygt+bJwOP++fP/MS0vnd736HF198EY888gh27dqFH/zgB/j+978PAFBVFTfc\ncAOefPJJ+Hw+3H333fjBD36AioqKU/4+vlkuTBzIRAsTxz7RwsSxT7TwcNwTLUwc+0QLE8c+0cLE\nsU+0MHHsEy1MHPvnz+lCOkWLF+/YsQPXXHMNAGDt2rXYt2+yf2d7ezuampoQiUTgdrtx2WWX4c03\n3yzWqhARERERERERERERERERERERzauihXQSiQSCwck+gpIkQdM053uh0GRyKBAIIJE4dW83IiIi\nIiIiIiIiIiIiIiIiIqJ3MrlYvzgYDCKZTDqPDcOALMvTfi+ZTBaEdqZTWuqHLL9z+7tdzE5XqomI\nLl4c+0QLE8c+0cLDcU+0MHHsEy1MHPtECxPHPtHCxLFPtDBx7M+/ooV01q1bh5deegk33HADdu3a\nhaVLlzrfa2trQ1dXF8bHx+H3+/HWW2/hvvvuO+3vi0ZTxVpVOgfsW0e0MHHsEy1MHPtECw/HPdHC\nxLFPtDBx7BMtTBz7RAsTxz7RwsSxf/6cLgxVtJDOli1b8Oqrr+Kuu+6CaZp4+OGH8dxzzyGVSuHO\nO+/E/fffj/vuuw+maeK2225DdXV1sVaFiIiIiIiIiIiIiIiIiIiIiGheFS2kI4oiHnjggYKvtbW1\nOfevv/56XH/99cX654mIiIiIiIiIiIiIiIiIiIiILhjifK8AEREREREREREREREREREREdHFjiEd\nIiIiIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIi\nIioyhnSIiIiIiIiIiIiIiIiIiIiIiIqMIR0iIiIiIiIiIiIiIiIiIiIioiJjSIeIiIiIiIiIiIiI\niIiIiIiIqMgY0iEiIiIiIiIiIiIiIiIiIiIiKjKGdIiIiIiIiIiIiIiIiIiIiIiIiowhHSIiIiIi\nIiIiIiIiIiIiIiKiImNIh4iIiIiIiIiIiIiIiIiIiIioyBjSISIiIiIiIiIiIiIiIiIiIiIqMoZ0\niIiIiIiIiIiIiIiIiIiIiIiKjCEdIiIiIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiI\niKjIGNIhIiIiIiIiIiIiIiIiIiIiIioyhnSIiIiIiIiIiIiIiIiIiIiIiIpMME3TnO+VICIiIiIi\nIiIiIiIiIiIiIiK6mLGSDhERERERERERERERERERERFRkTGkQ0RERERERERERERERERERERUZAzp\nEBEREREREREREREREREREREVGUM6RERERERERERERERERERERERFxpAOERERERERERERERERERER\nEVGRMaRDRERERERERERERERERERERFRk8nyvAL3zGIaBr3/96zh8+DDcbjceeughNDc3z/dqEVER\nqKqKL3/5y+jt7YWiKPjUpz6F2tpa/Pmf/zlaWloAAHfffTduuOGG+V1RIppzH/7whxEMBgEADQ0N\n+OQnP4n7778fgiBgyZIl+NrXvgZRZN6b6GLy9NNP45lnngEAZLNZHDx4EE888QT3+0QXsd27d+Mf\n//Ef8fjjj6Orq2vaff3Pf/5z/OxnP4Msy/jUpz6F6667br5Xm4jOUf7YP3jwIB588EFIkgS3241v\nfetbqKiowEMPPYSdO3ciEAgAAL73ve8hFArN85oT0bnIH/sHDhyY9jif+32ii0/+2P/85z+PkZER\nAEBvby8uueQSfOc73+F+n+giMt283uLFi/l5/wLDkA7N2u9//3soioInnngCu3btwiOPPILvf//7\n871aRFQEv/zlL1FSUoJHH30U4+PjuOWWW/DpT38aH//4x/GJT3xivlePiIokm83CNE08/vjjztc+\n+clP4nOf+xw2bNiAr371q/jDH/6ALVu2zONaEtFcu/XWW3HrrbcCAL7xjW/gtttuw/79+7nfJ7pI\n/ehHP8Ivf/lL+Hw+AMDf//3fn7SvX7t2LR5//HE89dRTyGaz+MhHPoKrrroKbrd7nteeiM7W1LH/\nzW9+E1/5ylewYsUK/OxnP8OPfvQjfOlLX8L+/fvx4x//GGVlZfO8xkQ0F6aO/emO84eHh7nfJ7rI\nTB373/nOdwAAsVgM9957L770pS8BAPf7RBeR6eb1li9fzs/7Fxhe/kyztmPHDlxzzTUAgLVr12Lf\nvn3zvEZEVCwf+MAH8Fd/9VcAANM0IUkS9u3bh5dffhl/+qd/ii9/+ctIJBLzvJZENNcOHTqEdDqN\nT3ziE7j33nuxa9cu7N+/H1dccQUAYPPmzXjttdfmeS2JqFj27t2LY8eO4c477+R+n+gi1tTUhO9+\n97vO4+n29Xv27MGll14Kt9uNUCiEpqYmHDp0aL5WmYjmwNSx/+1vfxsrVqwAAOi6Do/HA8Mw0NXV\nha9+9au466678OSTT87X6hLRHJk69qc7zud+n+jiM3Xs53z3u9/FRz/6UVRVVXG/T3SRmW5ej5/3\nLzwM6dCsJRIJp/0FAEiSBE3T5nGNiKhYAoEAgsEgEokEPvvZz+Jzn/sc1qxZgy9+8Yv4j//4DzQ2\nNuKxxx6b79Ukojnm9Xpx33334d///d/xjW98A1/4whdgmiYEQQBgbRvi8fg8ryURFcsPfvADfPrT\nnwYA7veJLmLvf//7IcuTBZan29cnEomCMveBQIBhPaJ3uKljv6qqCgCwc+dO/OQnP8Gf/dmfIZVK\n4aMf/SgeffRR/PjHP8ZPf/pTnrAneoebOvanO87nfp/o4jN17APA6Ogotm3b5lTS5X6f6OIy3bwe\nP+9feBjSoVkLBoNIJpPOY8MwTtrJE9HFo7+/H/feey9uvvlm3HTTTdiyZQtWr14NANiyZQsOHDgw\nz2tIRHOttbUVH/rQhyAIAlpbW1FSUoLR0VHn+8lkEuFweB7XkIiKZWJiAh0dHdi4cSMAcL9PtICI\n4uQpoty+furn/2QyWXASj4guDr/+9a/xta99DT/84Q9RVlYGn8+He++9Fz6fD8FgEBs3buRkHdFF\nZrrjfO73iRaG3/72t7jxxhshSRIAcL9PdBGaOq/Hz/sXHoZ0aNbWrVuHrVu3AgB27dqFpUuXzvMa\nEVGxjIyM4BOf+AT+5m/+BrfffjsA4L777sOePXsAANu2bcOqVavmcxWJqAiefPJJPPLIIwCAwcFB\nJBIJXHXVVdi+fTsAYOvWrVi/fv18riIRFcmbb76JTZs2OY+53ydaOFauXHnSvn7NmjXYsWMHstks\n4vE42tvbeQ6A6CLz7LPP4ic/+Qkef/xxNDY2AgA6Oztx9913Q9d1qKqKnTt38hiA6CIz3XE+9/tE\nC8O2bduwefNm5zH3+0QXl+nm9fh5/8LD8ic0a1u2bMGrr76Ku+66C6Zp4uGHH57vVSKiIvm3f/s3\nTExM4Hvf+x6+973vAQDuv/9+PPzww3C5XKioqMCDDz44z2tJRHPt9ttvx5e+9CXcfffdEAQBDz/8\nMEpLS/GVr3wF3/72t7Fo0SK8//3vn+/VJKIi6OjoQENDg/P461//Oh588EHu94kWgL/92789aV8v\nSRLuuecefOQjH4Fpmvj85z8Pj8cz36tKRHNE13V885vfRG1tLT7zmc8AAC6//HJ89rOfxc0334w7\n7rgDLpcLN998M5YsWTLPa0tEc2m64/xgMMj9PtEC0NHR4QRzAaCtrY37faKLyHTzen/3d3+Hhx56\niJ/3LyCCaZrmfK8EEREREREREREREREREREREdHFjO2uiIiIiIiIiIiIiIiIiIiIiIiKjCEdIiIi\nIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIiIioy\nhnSIiIiIiIiIiIiIiIiIiIiIiIqMIR0iIiIiIiIiIjqlp59+Gvfff/98rwYRERERERER0TseQzpE\nREREREREREREREREREREREUmz/cKEBERERERERHRufvhD3+I3/zmN9B1HVdffTXuvvtu/MVf/AUa\nGxvR1dWFuro6PProoygpKcFLL72Ef/7nf4ZhGGhsbMQDDzyAiooKvPbaa3jkkUdgmibq6urwT//0\nTwCArq4u3HPPPejr68OmTZvw0EMPzfNfS0RERERERET0zsNKOkRERERERERE73Bbt27Fvn378OST\nT+IXv/gFBgcH8dxzz+HIkSP42Mc+hueffx5tbW3413/9V4yOjuKrX/0qHnvsMTz33HNYt24dHnjg\nASiKgi984Qv41re+heeeew7Lli3DM888AwDo7+/Hd7/7XfzmN7/B1q1bcfTo0Xn+i4mIiIiIiIiI\n3nlYSYeIiIiIiIiI6B1u27Zt2LNnD2699VYAQCaTgWmaaGlpwYYNGwAAt9xyC77whS/gqquuwpo1\na9DQ0AAAuPPOO/HDH/4Qhw8fRnV1NVasWAEA+Ou//msAwNNPP43169ejpKQEANDU1IRoNHq+/0Qi\nIiIiIiIionc8hnSIiIiIiIiIiN7hdF3Hxz72MXz84x8HAExMTGBgYACf//znnZ8xTROSJMEwjIL/\n1zRNaJoGl8tV8PV4PI5kMgkAkOXJU0iCIMA0zWL9KUREREREREREFy22uyIiIiIiIiIieofbuHEj\nnn32WSSTSWiahk9/+tPYt28fOjo6cPDgQQDAU089hc2bN+OSSy7B7t270dPTAwB44oknsGHDBrS2\ntmJsbAzHjh0DAPz4xz/Gf/7nf87b30REREREREREdLFhJR0iIiIiIiIione466+/HocOHcIdd9wB\nXddxzTXX4PLLL0ckEsG//Mu/4MSJE1i2bBkeeugh+P1+PPDAA/jLv/xLqKqKuro6fPOb34TH48Gj\njz6KL37xi1BVFU1NTfiHf/gHvPDCC/P95xERERERERERXRQEk/WJiYiIiIiIiIguOj09Pbj33nvx\n4osvzveqEBERERERERER2O6KiIiIiIiIiIiIiIiIiIiIiKjoWEmHiIiIiIiIiIiIiIiIiIiIiKjI\nWEmHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIiIioyhnSIiIiIiIiIiIiIiIiI\niIiIiIqMIR0iIiIiIiIiIiIiIiIiIiIioiJjSIeIiIiIiIiIiIiIiIiIiIiIqMgY0iEiIiIiIiIi\nIiIiIiIiIiIiKrL/B8QZwLn1LW59AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACO8AAAJoCAYAAAA0mVe1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmAV2W9P/D3rDAwA8iieEXNBdHSMkVNQSvJvGZ6lXLf\nbpndm5VWVmo3zaXU6mYmaWop7itSuZsaaWKuv9xSFlETcQERkGFmmPX3B/HNiRlkmeHLdV6vv873\nnPOc8zmH8/gHvP08JW1tbW0BAAAAAAAAAADWuNJiFwAAAAAAAAAAAD2V8A4AAAAAAAAAABSJ8A4A\nAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAPcLEiRMz\nYsSIjBgxIo888kixywEAAABIIrwDAAAAAAAAAABFI7wDAAAAAAAAAABFIrwDAAAAAAAAAABFIrwD\nAAAAAAAAAABFIrwDAAAAAAAAAABFUl7sAgAAAIA1Y8SIEUmSU045JYcddlhuueWW3HTTTZk2bVqa\nmpoybNiw7LvvvjnqqKNSWVmZJHn00UdzxRVX5Kmnnsr8+fOz7rrrZrfddsuxxx6bddddt9N71dfX\n57rrrsu9996bF198MbW1tRkwYEC23nrr7LPPPtlrr71SWrr8/6foT3/6U+6+++789a9/zdy5c1NX\nV5fq6uoMGzYsO++8cw4//PAMHTp0mXHjxo3LL3/5y9TU1OTxxx/PnDlzMn78+EyaNCmvv/56ysvL\ns9lmm2WvvfbKoYceWnjW7vDMM8/khhtuyGOPPZbXX389paWlGThwYLbddtt85jOfyZgxY1JSUtLp\n+L/85S+55ppr8re//S1z587NeuutlzFjxuTLX/5yysvLs8MOOyRJzj777IwdO7Yw7qSTTspvf/vb\nJMmDDz6YIUOGdHj9//qv/8qf/vSnJMnUqVM7PGfmzJm56aab8uijj2bmzJlZsGBBKisrM3DgwHzk\nIx/J2LFjM2rUqGXGvfrqqxkzZkyS5IILLsiQIUNy9tln57nnnkvv3r2z2Wab5Qc/+EG23HLLwpjV\n/W7a2trypz/9Kdddd12mTZuWt99+O+uvv3723HPPHHPMMZ2O62qr+hyPPPJIjjzyyCTJ7373u8ye\nPTs///nPM2PGjPTt2zcjRozIT37ykzQ1Na30u507d26uu+663H///Xn55ZdTX1+fgQMH5sMf/nD2\n2WeffPrTn+7wW1zRmtZbb73ueJUAAADQIwjvAAAAQA/T1NSUr3zlK5k0aVK7/dOmTcv//u//5qGH\nHsqll16aCy64IBdccEHa2toK58yaNSvXXXdd7rvvvkyYMKHDf7B/+umn87WvfS1vvvlmu/1z5szJ\npEmTMmnSpFx11VU5//zzOwwAzZs3L1/72tfy+OOPL3Ns/vz5mT9/fp599tlcc801ufDCC7Pzzjt3\n+qyPP/54vvrVr2b+/Pnt9j/55JN58sknM3HixFx55ZUZMGBAp9dYVb/+9a/zs5/9rN37S5a8w1mz\nZuX222/PLrvskgsuuCB9+vRpd05zc3NOP/303Hjjje32v/LKKxk/fnzuuOOOjBs3rstr/lcXX3xx\nzj///DQ3N7fb39TUlEWLFmXmzJm57bbbcsghh+S0007r9DrPPfdcLr300jQ0NCRJFi9enClTpmTD\nDTcsnLO6301DQ0NOOOGE3Hvvve32v/zyy7n44otzyy23ZP/991/ZV7DSVvc5lrr//vvzi1/8Iq2t\nrUmSxsbGzJo1K+uuu25mzZpVOG9F3u0dd9yRU089NQsXLmx3jzfffDP33HNP7rnnnuywww45//zz\nM3DgwFWqCQAAAFh1wjsAAADQw1x88cWZN29ettlmmxx55JEZNmxYpk+fnnPPPTfz58/PQw89lP/+\n7//O/fffn0033TRHH310hg8fntmzZ+eSSy7J008/Xei+cc4557S79vTp03PUUUelrq4uffv2zaGH\nHpqdd945NTU1mTVrVm677bbce++9+etf/5qjjz46N9xwwzLBleOOO64Q3Nlll12y//7759/+7d/S\n1NSUv//977n66qszffr01NXV5aSTTsof//jHlJWVLfOcDQ0NOfbYY7No0aIccsghGTNmTKqrq/Pc\nc8/loosuyuzZszN16tT8/Oc/z+mnn96l7/ixxx4rBHe23HLLHHXUUdlkk03S2tqaF198MZdffnle\neOGFPPTQQzn//PNz0kkntRv/4x//uBDc2WCDDfLlL385W265ZebMmZPrr78+Dz74YI4//vgurflf\n3XzzzTn33HOTJEOHDs3hhx+eD37wg+nbt29ee+21TJo0KbfddltaW1tz3XXXZcyYMdl11107vNav\nfvWrVFRU5IQTTsjIkSPzyiuv5O23307fvn2TdM13893vfrcQ3BkxYkS++MUvZpNNNsmbb76Z66+/\nPpMnT85FF13UjW+sa55jqV/84hepqanJ8ccfn6222irTpk1LZWXlMt1x3uvd/uEPf8gJJ5yQ1tbW\nVFRU5IADDsjuu++efv365cUXX8y1116bp59+Oo899liOPPLI3HDDDYWxq1oTAAAAsHJK2v71f/8C\nAAAA3peWLpuVJKNGjcpFF13Ubsmo+++/P1/+8pcLv7fZZptceeWV7cIFDQ0N2XPPPfPGG29kwIAB\nefjhh9v9w/1+++2X559/PkOHDs1VV12VjTbaaJk6rrnmmpxxxhlJkmOOOSbf/va3C8ceeuihfOEL\nX0iS7LHHHhk3btwywYCWlpYccsgheeqppwrXGzlyZOH40mWzkqSsrCwXXXRRdtttt3bXmDlzZvbZ\nZ5/U19enuro6Dz/8cCoqKt7rFa6wk08+ORMnTsyAAQNy7733pqampt3x2tra7L///nnllVdSU1OT\nRx55pBBAmjJlSsaOHZuWlpZsvvnmueaaa5bpDPSjH/0oV155ZeF3Vy+b1dbWlk984hN544030q9f\nv0ycOLFdJ5elrr766px55plJks9//vP50Y9+VDj27mWzkuTMM8/MgQce2GEdq/vdTJ48OV/84heT\nJDvvvHMuueSSZZZD++EPf5irrrqq8PvKK6/MTjvt1GE9q2p1n+PdS1QlyWWXXfaeS5Ilnb/b2tra\njBkzJvPnz09VVVV+85vftJsrSdLa2ppTTjklEyZMSJIcccQR+f73v7/SNQEAAACrbvmLywMAAADv\nSyeeeOIy4YbddtstVVVVhd/f+c53lukK0rt378I/3C9dwmqpyZMn5/nnny9cv6PgQpIcdthh2XHH\nHZMk1113XZqamgrHXnrppWy44YapqKjI1772tQ47epSVleUzn/lM4ffs2bM7fc499thjmeBOkmy4\n4YbZZZddkiwJOLz66qudXmNVzJkzJ0kyaNCgZYI7SVJdXZ1vfOMb+cIXvpBvfvObWbx4ceHYxIkT\n09LSkiQ57bTTOlzS68QTT8zw4cO7tOZ3mzVrVvr375+ampqMHTu2w+BOkuy7776F7X9dJurdevfu\nnf3226/DY13x3dxwww1JlnwbZ5111jLf9tJrb7zxxp3WuLq64jnebaONNlqhkMzy3u2ECRMKc/Tr\nX//6MsGdJCktLc0PfvCDfOADH0iS3HjjjcssM7eyNQEAAAArR3gHAAAAephBgwa168KzVElJSdZd\nd90kSWVlZbbffvtOxy9VV1dX2F7awSXJe/4D/8c//vEkS4IzzzzzTGH/YYcdlnvvvTdPP/10ttxy\ny07Hv7uTTGNjY6fnjR49utNj7w5XLFq0aLn1rqxNN900STJjxox8//vfz6xZs5Y5Z++9985JJ52U\nww47rF1Iaul7XH/99bPDDjt0eP3y8vIccMABXVrzuw0bNiy33HJLHn/88Zx44omdnldTU5PevXsn\nWf6fwwc/+MEOAzXJ6n83zc3NmTx5cpJku+22y7/92791OLaioqJd2KirdcX3/24f+chHVui+y3u3\nDz74YJIloablfS+VlZWF44sXL86jjz66WjUBAAAAK6e82AUAAAAAa9YGG2zQ6bGlIYB11lkn5eUd\n/7XBu4MC716Ne2nXkSSFziIrYubMmdluu+3a7SstLS1cf/bs2Zk5c2ZefvnlvPDCC3nmmWcKS2Yl\nS5b96czynvXdgZmlnW66ymGHHZYJEyZk0aJFuemmm3LTTTdl+PDh2WWXXbLLLrtkxx13XKar0dI6\nZs6cmSTLDS8lyUc/+tEurbkzS/8samtrM3PmzLzyyiuZMWNGnn/++TzxxBNpaGhI0v5b+Ffrr79+\np8dW97uZPXt2amtrk7z3O9tmm21W+Porqyu//2T572xFz5s+fXqSZJNNNkm/fv2We51tt922sD1t\n2rR8+tOfXuWaAAAAgJUjvAMAAAA9TN++fd/znM6CO8szb968VSkn77zzTrvfbW1tufPOO3PjjTfm\nqaeeatfdZ6mlgZL30lFAZql3L8m1vODJqth4441z6aWX5nvf+15efPHFJEuCFNOnT88VV1yRysrK\njBo1KgcffHA+8YlPFMbNmzevEEZaZ511lnuP9dZbr0tr7siMGTMyfvz4PPDAAx0ui9XRsmYdqa6u\n7vTY6n43b731VmFfR0uMvdvgwYNX6V4roqu+/6WW985W9Lyly18NHDjwPa/z7o5anS2btaI1AQAA\nACtHeAcAAAB6mLKysm65bnNzc5IloZPx48ev8Lh3h1AWL16c4447rt0SRCUlJRk2bFg23XTTbLXV\nVtluu+0yf/78fPe73+2y2rvDRz/60dx+++155JFHcs899+TPf/5zXnnllSRLlpiaNGlSJk2alH33\n3Tc//vGPU1pausKhpGTJMlCra3ldi26++eaceuqphT/XZEk4ZtNNN83w4cPzkY98JKNGjcpee+3V\nYcBqRa3ud7OiAaJk1UJpK6orvv93W5nn6szKhNLe/S109h12RU0AAADAsoR3AAAAgC6xtOtJXV1d\nRowYsVJBlKXOP//8QnBn6623zle/+tXsuOOOy3T8mDhx4mrXuyaUlpZm5513zs4775wkefXVV/OX\nv/wlkyZNyv3335/m5ubccsstGTVqVPbbb7/069cvZWVlaWlpydy5c5d77QULFnR6bEW7Ci1cuLDD\n/VOnTi0Ed/r27Zuvf/3r2WOPPTJs2LB257W2thaWzVpVq/vdrLvuuoXtt99+e7nnLu+dra6u+P67\nWv/+/TN79uz3fC9J+w5G/fv3786yAAAAgH9R/L9FAAAAAN4Xhg8fnmRJ95znn39+uec+8MADueyy\ny3L33XcXggUtLS25/vrrkyT9+vXLFVdckd13373DpXpee+21Lq6+a9XW1ubpp5/OzJkz2+0fNmxY\nDjjggFx44YU5//zzC/uXBpbKy8szYsSIJMnf/va35XbGWd47fnd3peWFa15//fUO999www2FTjKn\nnnpqvvCFLywT3EmSN954Y7k1rojV/W4GDx5cCM4888wzyx3/XtdfHav7HN1h6bf00ksvdbo811JP\nPfVUYXvTTTfttpoAAACAZQnvAAAAAF1i9OjRhe1rr7220/NaWlpy+umn58c//nGOO+641NfXJ1nS\nNaW2tjZJstFGG3UY2kmSpqam3HXXXe2utzZ5/fXXs/322+eAAw7IuHHjOj1v1113LXRnWbx4cWH/\nJz7xiSRLOqFMmjSp0/G///3vOz1WU1NT2J41a1aH50ydOjVvvPFGh8f+/ve/F7Y/9KEPdXqfW265\npbD97uW1VsbqfjdlZWUZM2ZMkuTpp5/O1KlTOxzf1tbWrt6utrrP0Z01tbS0ZMKECZ2e19jYmJtv\nvjnJkgDZTjvt1G01AQAAAMsS3gEAAAC6xKc+9alsuOGGSZKbb76506DE2WefnVdffTVJMmbMmGyw\nwQZJlgROysuXrPD9wgsvdNhdp7GxMT/4wQ8yffr0dvvWJuuvv3623HLLJMmdd96Zv/71rx2ed/vt\ntxe61myzzTaF/YccckiqqqqSJGeccUaH4ZsJEyYUuvV0ZGnHlSS5+uqrlzm+aNGinH766Z2OX2ed\ndQrbDzzwQIfn3H///bngggsKv1f1z2F1v5skOeKIIwrdhk488cQOu8xcfPHFefbZZ1epxhXRFc/R\n1T73uc+lX79+SZJx48Z1+C22trbmjDPOyMsvv5wk2W+//TJw4MBuqwkAAABYVnmxCwAAAADeH8rL\ny/PjH/84Rx11VJqamvLd7343kyZNyt57750hQ4Zk1qxZueGGG/Lwww8nSfr375/vfe97hfG9e/fO\nJz/5ydxzzz1paGjIEUcckS996UvZYost0tjYmClTpuTGG2/Miy++2O6+CxcuXKPPuSKOP/74fOUr\nX0ljY2P+8z//MwcffHB23HHHDB48OG+99VYeeOCBQqeTgQMH5tBDDy2MXXfddXPqqafm5JNPzhtv\nvJGxY8fmmGOOyXbbbZf6+vrcfvvtmThx4nLvv/vuu6dfv3555513cu+99+bYY4/NgQcemH79+uX5\n55/PlVdemZdffjkbbbRRXnnllWXG77XXXrn11luTJD//+c8zZ86cjBo1KtXV1Zk1a1buvvvu3HPP\nPWlrayuMWdo1aWWt7neTJFtttVW+9KUv5eKLL87zzz+f/fbbL8ccc0w++MEPZt68eZk4cWLuvvvu\n9OnTJ3V1datU55p4jq5WU1OTH/7whznuuONSV1eXI444IgcddFA++clPpqamJi+99FKuvfbawpJZ\nH/jAB7q9JgAAAGBZwjsAAABAl9l+++1zySWX5Jvf/Gbmz5+fO+64I3fccccy5w0dOjQXXHBBhg0b\n1m7/Kaeckueffz6vvvpqXn311Zx22mnLjK2urs7JJ5+cU089NS0tLe268Kwtdt9993znO9/Jueee\nm4aGhlx++eW5/PLLlzlv6NChufDCCzNgwIB2+8eOHZuGhoacddZZmT9/fn7605+2O15TU5PPf/7z\nGT9+fIf379evX84+++x84xvfSFNTU+67777cd9997c459NBDs9lmm+XMM89cZvyYMWNy0EEH5YYb\nbkhTU1PGjx/f4b3Gjh2bBQsW5L777susWbNSX19f6Bq0Mlb3u0mSb37zm2lubs6ll16aWbNmLfPt\nDBgwICeeeGJOPvnkla5vRXXFc3S1PffcM+eee26+//3vp66uLldffXWH3ZhGjRqVn/zkJ+nbt2+3\n1wQAAAC0J7wDAAAAdKlddtkl9913X6677rr86U9/yowZM7Jw4cL06dMnm2++ecaMGZODDz441dXV\ny4xdb7318tvf/jaXXXZZ7rvvvrzyyitpbm5OdXV1Ntlkk4wePToHHXRQhgwZkokTJ+aJJ57IAw88\nkLq6uvTp06cIT9u5L33pSxk9enSuu+66PPHEE3nttdeyePHiDBgwIJtttlnGjBmTAw88sNOwy6GH\nHpqPfexjueyyyzJ58uTMmTMnAwcOzCc+8Yl85StfKXRL6cynPvWp3H777bn00kszefLkzJ49OzU1\nNdlmm21y6KGH5uMf/3iHIY6lzjjjjHzsYx/LhAkT8re//S0LFy5Mr169MnTo0Hz4wx/OAQcckJEj\nR+amm27Kfffdl6amptxzzz3Zd999V+l9rc53kyQlJSX57ne/mz333DNXXHFFnnrqqcyePTuDBg3K\nbrvtlmOPPTZz5sxZpdrW5HN0h7333js77bRTrr766jzwwAOZOXNmFi9enKFDh2arrbbK2LFjs9tu\nu6WkpGSN1QQAAAD8U0nbu/sbAwAAAPB/wl133ZXjjz8+SXL22Wdn7NixRa4IAAAAgFVRWuwCAAAA\nAAAAAACgpxLeAQAAAAAAAACAIikvdgEAAAAAa4NFixbllVdeWe3rbLTRRunbt28XVER3a2xszIwZ\nM1b7Ouuvv34GDBjQBRUBAAAAPZHwDgAAAECSZ599NkceeeRqX+fKK6/MTjvt1AUV0d1mz56d/fbb\nb7Wvc/bZZ2fs2LFdUBEAAADQE1k2CwAAAAAAAAAAiqSkra2trdhFrI45cxYWuwT+xTrr9Mm8eXXF\nLgNYw8x96JnMfeiZzH3omcx96JnMfeiZzH3omcx96JnM/TVnyJCaTo/pvEOXKy8vK3YJQBGY+9Az\nmfvQM5n70DOZ+9AzmfvQM5n70DOZ+9AzmftrB+EdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAA\nAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEd\nAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAo\nEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAA\nAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAA\nAAAAAAAoEuEdutQjrz+Rb955ehqaG4pdCgAAAAAAAADAWk94hy41c+GszHrnjcypn1vsUgAAAAAA\nAAAA1nrCO3SpqvLeSZK6pvoiVwIAAAAAAAAAsPYT3qFL9anokySpb1758M4LL0zv6nJWyte+9uWM\nHj0yu+++S1HrAAAAAAAAAAB6DuEdulSh805zwwqPqa2tzXnn/W+OPvrw7ioLAAAAAAAAAGCtVF7s\nAnh/qSqvSpLUNdet8Jhx487N7bff0l0lAQAAAAAAAACstYR36FJ9/hHeqV+Jzjutra3dVc5K+eUv\nLyl2CQAAAAAAAABAD2PZLLpUn4ql4Z36IlcCAAAAAAAAALD2E96hS1WV906S1DUJ7wAAAAAAAAAA\nvBfLZtGl/rls1nuHdy699OKMH//rdvtGjx6ZJNl22+3yy19ekh/96LTceedt2XzzLfKb31yZX//6\nV7nrrtuycOHCDBo0JJ/85Jgce+xxhfGLFy/O3Xffkb/8ZXKmT5+aBQvmp7m5OTU1/bLJJptl1KjR\n2Wef/VNVVbVMPV/72pfz5JP/L5WVlfnjHx/qsK7jjvtWDjzw0Nx//x9z662/y7RpU7Nw4TtZZ52B\n2W67kTnwwEOyxRZbrtxLAwAAAAAAAAB6LOEdulSvsl4pLSlNXXNDl1/7zDNPzX33/aHw+/XXZ6V3\n796F31OnTsnJJ5+Q2bPfXGbs22/Pzdtvz80TTzyaiRMnZNy4izJkyLorXUNLS2tOP/37ueeeu9rt\nnz37zdx11+35wx/uzLe/fXL23Xf/lb42AAAAAAAAANDzCO/QpUpKStK3oip1K9B5Z7/9PpfddvtE\nfvObizJ58p+TJOPHX5Mkqarq0+7cF198IS+8MC3bbPORHHHEF9K7d+9MnvznfOYz+yZJFiyYn29+\n86t5550FKSsry2c+s0922WV01llnUBYuXJDp06flxhuvzfz58/Pqq6/kl788L6efftZKP9/111+V\nuXPn5gMf2CQHHnhoNttseBYufCd33nlr7rvvnrS2tua8836aHXfcOUOHDl3p6wMAAAAAAAAAPYvw\nDl2uT2Wf1De+d3hn0KDBGTRocPr161/YN3z4iA7PbW1tzQYbDMt5512QXr2WdNvZbruRheM33HBt\n3nlnQZLkq189PgceeGi78TvvPDp77fXZHHHEgamtrc2f/3x/mpubU16+clNg7ty52X77HfOTn/w8\nvXr1Kuz/2Md2SU1Nv/zudzensbEx9957Vw4//D9X6toAAAAAAAAAQM9TWuwCeP/pW1GV+hXovLOy\n9trrs4Xgzr966605GTx4SAYNGpSxYw/s8JwhQ9bNRz+6fZKksXFxIeyzsr7xjW+3C+4s9R//Mbaw\n/cIL01fp2gAAAAAAAABAz6Lzzgq68Y8v5LEps4tdxhq1w5br5sDdN1/pcX0r+6SxtSnNrc0pL+26\nT+xDH9qm02Pf+94Pkizp0FNa2nkmbeDAQYXtxsamla5hyJB1s8kmm3Z4bIMNhhW26+rqVvraAAAA\nAAAAAEDPI7xDl+tb0SdJUt/ckJrK6i677nrrrfee5ywN7jQ3N+eNN17Pa6/NysyZf8+MGS/kb397\nJjNmvFA4t62tdaVrGDp0/U6PVVX1KWy3tLSs9LUBAAAAAAAAgJ5HeGcFHbj75qvUhaYn6lNZlSSp\na67v0vBOnz7Lv1ZDQ0MmTrwp9957V2bMeKHDAE1paWlaW1c+tLPUuwM6/6qkpKSw3dbWtsr3AAAA\nAAAAAAB6DuEdulx15ZKAS11TfZde913ZmGW89tqsfOtbX8urr84s7KuoqMiGG26UjTfeJCNGbJlt\nt90+d999R37725u6tC4AAAAAAAAAgFUlvEOX61OxpPNOfXPXhneW57TT/qcQ3PnUp/bM5z9/ULbc\n8oMpL2//if/+9zevsZoAAAAAAAAAAN6L8A5drm/Fks47ayq8M2XKc3nuuWeTJNttNzKnnfajTs99\n88031khNAAAAAAAAAAArorTYBfD+03fpslkrGN4pWd56WCvg3UtljRixVafnvf76a3nmmacKv1ta\nWlbrvgAAAAAAAAAAq0t4hy7Xt/Ify2Y1NazQ+ZWVlYXturq6lb5f//4DCtuPP/5Impublzln7ty3\ncsopJ6Wpqamwr7GxcaXvBQAAAAAAAADQlSybRZdbumzWinbeGTRocGH7kksuyL//+94pLS3NFlts\nuULjP/zhbTNo0ODMnftWpk+fluOP/0rGjj0wQ4eun3feWZAnn/x/uf3232f+/Pntxi1aVLuCTwQA\nAAAAAAAA0D2Ed+hyK7ts1ujRu+Xyy3+TlpaWTJhwQyZMuCHrrTc0N9982wqN79WrV0455YyceOI3\ns3jx4jz11F/z1FN/Xea8DTfcKJ/97H/kV78alyR56aUXs802H1nBpwIAAAAAAAAA6HrdFt5pbW3N\naaedlqlTp6aysjI//OEPs/HGGxeO33bbbbniiitSVlaWLbbYIqeddlpKS0uz//77p7q6OkkybNiw\nnH322d1VIt2kb8U/ls1awfDO8OEjcs45P8sVV1yWGTNeSGtrS8rLy9PQsGLLbiXJyJE7Zvz4a3Ld\ndVfn8ceoAuYZAAAgAElEQVQfy1tvzU6yZEmtTTbZNJ/85Key5557paWlJePH/zoNDQ354x/vyb77\n7r/yDwgAAAAAAAAA0EVK2tra2rrjwn/4wx/yxz/+Meecc06efPLJXHzxxfnVr36VJGloaMhnP/vZ\n3Hrrramqqsq3vvWt7L333hk9enQOOuig/O53v1vh+8yZs7A7ymc19B/YO4dPOC5brjM8X//oMcUu\nB1hDhgyp8d9k6IHMfeiZzH3omcx96JnMfeiZzH3omcx96JnM/TVnyJCaTo+VdtdNn3jiiey6665J\nkm233TbPPvts4VhlZWWuv/76VFUt6dDS3NycXr16ZcqUKamvr88Xv/jFHHnkkXnyySe7qzy6UWVZ\nRSpKy1PfvOKdcwAAAAAAAAAAeqJuWzartra2sPxVkpSVlaW5uTnl5eUpLS3N4MGDkyRXXXVV6urq\nMmrUqEybNi1HH310DjjggLz88ss55phjctddd6W8vPMy11mnT8rLy7rrMVhFfSv7pLFt8XKTY8D7\njzkPPZO5Dz2TuQ89k7kPPZO5Dz2TuQ89k7kPPZO5X3zdFt6prq7OokWLCr9bW1vbhXBaW1vz05/+\nNC+99FLGjRuXkpKSbLLJJtl4440L2wMGDMicOXOy/vrrd3qfefPquusRWEVDhtSkV2nvLFy8SHst\n6EG01IOeydyHnsnch57J3IeeydyHnsnch57J3Ieeydxfc4qybNZ2222XBx54IEny5JNPZosttmh3\n/NRTT83ixYtz4YUXFpbPmjBhQs4555wkyZtvvpna2toMGTKku0qkG/Upr0pdc33a2tqKXQoAAAAA\nAAAAwFqr2zrv7LHHHpk8eXIOPvjgtLW15ayzzsqtt96aurq6bL311pkwYUJGjhyZo446Kkly5JFH\n5vOf/3xOPvnkHHLIISkpKclZZ5213CWzWHtVVfROa1trGlub0qusstjlAAAAAAAAAACslbotGVNa\nWpozzjij3b7NNtussD1lypQOx/3sZz/rrpJYQ1pa29KnfEk3pbqmOuEdAAAAAAAAAIBOdNuyWfRM\n9z3xao74wZ2pSK8kSX1zQ5ErAgAAAAAAAABYewnv0KXeXtiQhXVNaW4qS5LUNdcXuSIAAAAAAAAA\ngLWX8A5dap3qJR132pqXrMhWL7wDAAAAAAAAANAp4R261IB/hHeaFy8J79Q1Ce8AAAAAAAAAAHRG\neIcutU7NkvBO4+Iln1Z9c0MxywEAAAAAAAAAWKsJ79Cllnbeaahf8mnVNdcVsxwAAAAAAAAAgLWa\n8A5dqn91ZZKkbtGS3zrvAAAAAAAAAAB0TniHLlVeVpoB1b1SW9uWJKlrri9yRQAAAAAAAAAAay/h\nHbrcwP698847S7brm4R3AAAAAAAAAAA6I7xDlxvYr3cWN5Qk0XkHAAAAAAAAAGB5hHfocoP6905S\nmsrSytQ3NxS7HAAAAAAAAACAtZbwDl1uUP+qJEllaW+ddwAAAAAAAAAAlkN4hy43sF/vJEl5W2Xq\nhXcAAAAAAAAAADolvEOXW7JsVlLaVpmG5sVpbWstckUAAAAAAAAAAGsn4R263NLwTltzedrSlobm\nhhUa98IL07uzrNXy+uuvpa5uUbHLAAAAAAAAAADeZ4R36HJLl81qbS5PktS9R3intrY25533vzn6\n6MO7vbaV1djYmPHjf53DDz8gCxYsKHY5AAAAAAAAAMD7THmxC+D9p1/fypSXlaRpcVlSmdQ31y/3\n/HHjzs3tt9+yhqpbOddee2UuvfTiYpcBAAAAAAAAALxP6bxDlyspKcmA6l5pbFjyedU1LT+809ra\nuibKWiUtLS3FLgEAAAAAAAAAeB8T3qFbDKjulYb6JZ/Xe3XeAQAAAAAAAADoqYR36BYDanqltXnJ\nqmx1zQ1FrgYAAAAAAAAAYO1UXuwCeH8aUF2ZtjcqkiR1zXUdnnPppRdn/Phft9s3evTIJMm2226X\nX/7yknbHHnnkL7njjlvy7LPPZN68t1NZ2SvDhm2YnXcelc997qAMGDCg03rmzJmdiRNvyiOP/CUz\nZ76S5uam9OvXP5ttNjyjRu2az3523/Tq1btw/h133Jqzzjq93TUOOGDfJMnQoetnwoRbV/BNAAAA\nAAAAAAB0TniHbrFOTa+kZcnnVb+anXfq6+tz5pmn5oEHJrXb39jYmClTnsuUKc/lxhuvzSmnnJnR\no3dbZvwTTzyW733v21m0aFG7/XPnvpW5c9/Ko4/+Jdddd1XOPfeX2WijjVerVgAAAAAAAACAlSG8\nQ7cYUN0rbc3/6LzTVN/hOfvt97nsttsn8pvfXJTJk/+cJBk//pokSVVVnyRJa2trTjrpW3niiceS\nJLvssmv23PMzWX/99VNXV5cnnngsv/3tTamtrc3//M938rOfjcvIkTsW7rFw4cKccspJWbRoUQYM\nWCeHHXZUttrqg6msrMybb76R22+/JQ8//FDeeOP1nH769/Ob31yZkpKSjB69W8aPvya/+93N+f3v\nJyZJfvrT8zJ48JCUl1d0z0sDAAAAAAAAAHoc4R26xTrV7+6803F4Z9CgwRk0aHD69etf2Dd8+Ih2\n50yYcH0huPPtb5+c/fb7XLvjI0fumM9+9j9y7LFHZ+7cuTnrrNNz442/T3n5kns/+OD9eeedBUmS\ns876aT784W0LYz/4wa3zyU9+KqecclImTbo3U6c+n6lTp2TLLbdKv379069f/wwcOKhw/gc+sGnW\nX//fVvWVAAAAAAAAAAAso7TYBfD+NKDmn513OgvvvJfW1tZcf/2STjwf+9guywR3ltpgg2H57//+\nepJk9uw3c//9fywcmzv3rcL2hhtu1OH4I4/8Qvbb7/M59tjjU1NTs0q1AgAAAAAAAACsCp13VtDE\nF27LX2c/U+wy1qiPrrtNxm7+2VUaO6C6MmktS9pKUreK4Z0ZM6Zn9uw3kyQ77LDTcs/92Md2KWw/\n/vhjGTPm00mSjTf+QGH/9773nRx33Ley1VYfajd2+PAR+fa3T1qlGgEAAAAAAAAAVofwDt2id2V5\nqnqVp6S1InXNDat0jWnTpha2x437ecaN+/kKjXvttVmF7Z13Hp3NNhueGTOm55lnnsoxxxyVwYOH\nZIcddsrIkTtmhx12arc0FgAAAAAAAADAmiS8s4LGbv7ZVe5C01MNqO6V+c3lqW9atc47CxbMX6Vx\nCxe+U9guLy/Pz352fs4558w8/PBDSZK33pqTO++8LXfeeVtKSkqy1VYfyr//+97ZZ5/9UlFRsUr3\nBAAAAAAAAABYFcI7dJt1anrl7ebyVV42q6WlpbB9wgknZeutt1mhcb169Wr3e/DgIfnf/z0/L774\nQiZNui9/+cvkTJs2Ja2trWlra8tzzz2b5557Nr///cT84he/yoABA1apXgAAAAAAAACAlSW8Q7cZ\nUN0rbU0VaWp9J02tzakoXbnPraamX2G7b9/qDB8+YrXq2XTTzbPpppvn6KP/K++8807++tfH8/DD\nD2XSpHtTW1ubGTOm51e/Oj8nn3zqat0HAAAAAAAAAGBFlRa7AN6/1qnplbQsCew0NDes9PhNN92s\nsP3cc88s99x58+blsssuyZ133pbp06cV9jc1NeXFF2dkypTn253fr1+/fPzju+fEE7+fyy+/LtXV\nNUmShx56cKXrBAAAAAAAAABYVcI7dJsB1b3S1lyRJKlrquv0vJKSkg73b7XVh9KvX/8kyT333JXa\n2tpOr3HzzTfksssuyY9+dFoefPD+wv7DDz8gRx55UP7nf77T6dihQ9fPJptsmiRpbFzc7lhpqSkC\nAAAAAAAAAHQfyQS6zYDqXmlr+Ud4ZzmddyorKwvbdXX/DPlUVFTkc587MEmyYMGCnHnmKWlsbFxm\n/NNPP5lrr70qSdKrV6/ss8/+hWO77LJrkuTNN9/I9ddf3eH9//73lzNt2pQkyZZbfqjdsYqKisJ2\nfX3nASQAAAAAAAAAgFVRXuwCeP8aUFOZNC/5xOqb6zs9b9CgwYXtSy65IP/+73untLQ0W2yxZQ4/\n/D8zefKfM23alEye/Od84QuH5oADDsnmm2+R2tqFefzxR/Pb395U6Jjz3//99Qwe/M/rHXLI4bnz\nzltTW1ubCy74RZ555qnsvvuns956Q7NoUW2ef/5vmTDh+ixevDilpaU56qgvdlrb5ZdfmoMPPiyt\nrW3ZeuttuuQdAQAAAAAAAAA9W0lbW1tbsYtYHXPmLCx2CfyLIUNqMmfOwrz9TkNOnHB9Kj/wXL7w\noUMzcr1tOzx/+vSp+dKXjkxLS0th33rrDc3NN9+WJFmwYH5OPfXkPPHEY53es6ysLEcf/V858sgv\nLnPsiScey//8z3dTW9v5t9K7d++ccMJJ2Wuvz7bb/9Zbb+WQQ8a267pTXl6ee+75c7uuPMA/5z7Q\ns5j70DOZ+9AzmfvQM5n70DOZ+9AzmfvQM5n7a86QITWdHtN5h27Tr++Kdd4ZPnxEzjnnZ7niissy\nY8YLaW1tSXl5eRoaGtK7d+/07z8gv/jFr/Lggw/kD3+4M3/72zOZN29ekmS99dbLdtuNzNixB2az\nzTbv8Prbb79Drr12Qn772wl59NGH88orf09d3aL07VudoUPXz0477Zz99vtc1ltv6DJjBw8enPPO\nuzCXXHJhpk59Lo2NjRk4cFDefPONDBu2YRe8JQAAAAAAAACgJ9N5hy737mTe8eNvTvPGj+Q/Nt0r\nn/7AJ4tcGdCdpHKhZzL3oWcy96FnMvehZzL3oWcy96FnMvehZzL315zldd4pXYN10APVVPZNkixq\nrnuPMwEAAAAAAAAAeh7hHbpV/6ol4Z2Fi4V3AAAAAAAAAAD+lfAO3WqdPkvCO+80LCpyJQAAAAAA\nAAAAax/hHbrVoOola7bpvAMAAAAAAAAAsCzhHbrVoJq+aWstTV1zfbFLAQAAAAAAAABY6wjv0K3W\nqemVNFekoaWh2KUAAAAAAAAAAKx1hHfoVutU90pbS3kaWxcXuxQAAAAAAAAAgLWO8A7dakBNr7Q1\nV6Q5i9PW1lbscgAAAAAAAAAA1irCO3Srvr3LU9JakZS0pbG1qdjlAAAAAAAAAACsVYR36FYlJSWp\nKOmVJKlrqityNQAAAAAAAAAAaxfhHbpd77LeSZJFjfVFrgQAAAAAAAAAYO0ivEO361NelSSZU7uw\nyJUAAAAAAAAAAKxdhHfodtWVfZIkc2vfKXIlAAAAAAAAAABrF+Edul1NryXhnbcX1Ra5EgAAAAAA\nAACAtYvwDt1uQJ++SZL5DcI7AAAAAAAAAADvJrxDtxvUpyZJ8s7iuiJXAgAAAAAAAACwdhHeodsN\nqlkS3lnUWF/kSgAAAAAAAAAA1i7CO3S7dWv6JUnqmoV3AAAAAAAAAADeTXiHbjegqjpJsrilociV\nAAAAAAAAAACsXYR36Ha9y3olSZraFhe5EgAAAAAAAACAtYvwDt2urLQsJa3laS1pTGNTS7HLAQAA\nAAAAAABYawjvsEZUpFdS3pT5tbrvAAAAAAAAAAAsJbzDGlFZ2islZc2Zt1B4BwAAAAAAAABgKeEd\n1ojeZVUpKW/O2wsbil0KAAAAAAAAAMBaQ3iHNaJPRVWSZM7ChUWuBAAAAAAAAABg7SG8wxpR06tP\nkuTtRcI7AAAAAAAAAABLCe+wRvTv3TdJMq+utsiVAAAAAAAAAACsPYR3WCP6Vy0J7yyoX1TkSgAA\nAAAAAAAA1h7CO6wRfSuWLJu1sLGuyJUAAAAAAAAAAKw9hHdYI/qUVyVJFjXVp62trcjVAAAAAAAA\nAACsHYR3WCOqynsnSVpLGrOoobnI1QAAAAAAAAAArB2Ed1gjqv7ReSdlzZlfu7i4xQAAAAAAAAAA\nrCWEd1gj+lQsCe+UlDdl/kLhHQAAAAAAAACARHiHNaRPofNOU+bpvAMAAAAAAAAAkER4hzWkqrx3\nkqSkvFnnHQAAAAAAAACAfxDeYY3oVdYrJSlJypoyv7ax2OUAAAAAAAAAAKwVhHdYI0pKSlJVXpWS\nsubM03kHAAAAAAAAACCJ8A5rUJ+KqpSUN2V+rfAOAAAAAAAAAEAivMMa1Ke8KiXlzZknvAMAAAAA\nAAAAkER4hzWoT3lVUtqSd+oa0tLaWuxyAAAAAAAAAACKTniHNaaqvHeSpK20Ke8saipyNQAAAAAA\nAAAAxSe8wxrTp6IqSVJS3pR5Cy2dBQAAAAAAAAAgvMMaU1W+JLyTsubMrxXeAQAAAAAAAAAQ3mGN\nWRre0XkHAAAAAAAAAGAJ4R3WmD5Lwzs67wAAAAAAAAAAJBHeYQ3qU957yUZZU+brvAMAAAAAAAAA\nILzDmlNV8c9ls3TeAQAAAAAAAAAQ3mENWrpsVkWv1syrbSxyNQAAAAAAAAAAxVfeXRdubW3Naaed\nlqlTp6aysjI//OEPs/HGGxeO33bbbbniiitSVlaWLbbYIqeddlqSLHcM/7dV/SO806t3a+a/rvMO\nAAAAAAAAAEC3dd65995709jYmBtuuCEnnHBCzjnnnMKxhoaGnHfeebnyyitz/fXXp7a2NpMmTVru\nGP7v6/OPZbPKK1tSt7g5i5tailwRAAAAAAAAAEBxdVt454knnsiuu+6aJNl2223z7LPPFo5VVlbm\n+uuvT1XVkjBHc3NzevXqtdwx/N9XVdY7SVJa0ZwkmV+r+w4AAAAAAAAA0LN1W3intrY21dXVhd9l\nZWVpbl4S2igtLc3gwYOTJFdddVXq6uoyatSo5Y7h/76KsopUlJanpKwpSTJ/ofAOAAAAAAAAANCz\nlXfXhaurq7No0aLC79bW1pSXl7f7/dOf/jQvvfRSxo0bl5KSkvcc05F11umT8vKyrn8AVsuQITUd\n7q+u7Jvm5iXhnZaS0k7PA/5vMqehZzL3oWcy96FnMvehZzL3oWcy96FnMvehZzL3i6/bwjvbbbdd\nJk2alM985jN58skns8UWW7Q7fuqpp6aysjIXXnhhSktLV2hMR+bNq+uW+ll1Q4bUZM6chR0e61Xa\nK/WtS4698tqCzNmw/5osDehGy5v7wPuXuQ89k7kPPZO5Dz2TuQ89k7kPPZO5Dz2Tub/mLC8k1W3h\nnT322COTJ0/OwQcfnLa2tpx11lm59dZbU1dXl6233joTJkzIyJEjc9RRRyVJjjzyyA7H8P5SVV6V\n2a1vJWnLPMtmAQAAAAAAAAA9XLeFd0pLS3PGGWe027fZZpsVtqdMmdLhuH8dw/tLn4qqtKY1KW3J\n/FrhHQAAAAAAAACgZystdgH0LFXlvZMkpeXNmSe8AwAAAAAAAAD0cMI7rFF9yquSJDX9SjLfslkA\nAAAAAAAAQA8nvMMatTS8U923LfNrG9PW1lbkigAAAAAAAAAAikd4hzWqqmJJeKeqb9Lc0ppFDc1F\nrggAAAAAAAAAoHiEd1ijqsp7J0l6V7UmSeZZOgsAAAAAAID/z979B0le0Peff/WPmf70zsz+iIJK\nUAKikgsETiJKSlLgwZ1C6gJqghRZy+hRsSxMgpYpqYgaJGCs0uQPjZVUmbuCmCqM8bgyiYkBvMQk\nfPkilUW5+OOCATUsIMfO7szsdM/2j/ujZwY27EIvTE/PzOfxqKJq59Pds2+qtv971vsNACUm3mFd\nbatvS5JMNgbxzuy8eAcAAAAAAAAAKC/xDutqZfNObWJwLmv//NI4xwEAAAAAAAAAGCvxDutqW705\n+EPtUJJkfvHQGKcBAAAAAAAAABgv8Q7ratvEIN7pVgbRzkJLvAMAAAAAAAAAlJd4h3XVrK/EO4Nz\nWTbvAAAAAAAAAABlJt5hXTXrRZKk028nSRbEOwAAAAAAAABAiYl3WFfVSjVFrUi710pi8w4AAAAA\nAAAAUG7iHdZds15ksdtKs1HL/GJn3OMAAAAAAAAAAIyNeId1t22imcXOYqaKiSy0bN4BAAAAAAAA\nAMpLvMO621ZvZrHTylSz7mwWAAAAAAAAAFBq4h3WXbPeTJJs25Yc6vTSPtQd80QAAAAAAAAAAOMh\n3mHdNetFkqRo9pIkC7bvAAAAAAAAAAAlJd5h3W2bGGzemSwG8Y7TWQAAAAAAAABAWYl3WHcrZ7Mm\nGoNzWTbvAAAAAAAAAABlJd5h3W1bjndqE50kyXyrM85xAAAAAAAAAADGRrzDuluJd6or8Y7NOwAA\nAAAAAABASYl3WHfNepEkqdTEOwAAAAAAAABAuYl3WHfbJrYlSfrVpSTJgngHAAAAAAAAACgp8Q7r\nbmXzTrc6iHZs3gEAAAAAAAAAykq8w7rbVm8mSbqxeQcAAAAAAAAAKDfxDuuuuRzvtLut1KqVzLfE\nOwAAAAAAAABAOYl3WHeN2mSqlWoWu4uZKuqZX+yMeyQAAAAAAAAAgLEQ77DuKpVKmvUiBzutTDUn\nnM0CAAAAAAAAAEpLvMNYbKs3s3joYKabE1loHUqv3x/3SAAAAAAAAAAA6068w1g0680c7LQy3ZxI\nv58cbDmdBQAAAAAAAACUj3iHsdhWb+ZQ71CazcE/QaezAAAAAAAAAIAyEu8wFs2JZpKkKHpJkvmW\neAcAAAAAAAAAKB/xDmOxrV4kSSaX4x2bdwAAAAAAAACAMhLvMBbN+mDzTn2ymySZF+8AAAAAAAAA\nACUk3mEsti3HO7WJTpJkfrEzznEAAAAAAAAAAMZCvMNYrGzeqdZX4h2bdwAAAAAAAACA8hHvMBZF\nvTH4w3K8syDeAQAAAAAAAABKSLzDWDTrxeAP1eV4pyXeAQAAAAAAAADKR7zDWBS1weadfsXZLAAA\nAAAAAACgvMQ7jEVj+WzWUr+dxkRNvAMAAAAAAAAAlJJ4h7EoaoOzWa1OO9PNehbEOwAAAAAAAABA\nCYl3GItmfSXeaWWqOZH5xc6YJwIAAAAAAAAAWH/iHcaiqA3OZrW67Uw3J9I+1M2hTm/MUwEAAAAA\nAAAArC/xDmNRr9ZTrVSXz2ZNJEnmnc4CAAAAAAAAAEpGvMNYVCqVNGtFWt3B2awkWWiJdwAAAAAA\nAACAchHvMDZFvTHYvFMsxzs27wAAAAAAAAAAJSPeYWyKepFWt726ecfZLAAAAAAAAACgbMQ7jE2j\n1kir08pUUUsi3gEAAAAAAAAAyke8w9gU9Ub66acoBj+LdwAAAAAAAACAshHvMDbN2qDamWj0kyQL\ni51xjgMAAAAAAAAAsO7EO4xNUW8kSeoT3SQ27wAAAAAAAAAA5SPeYWwatUG8U12OdxZa4h0AAAAA\nAAAAoFzEO4xNUR+czepXO6lUbN4BAAAAAAAAAMpHvMPYNJc37yx1lzJVTIh3AAAAAAAAAIDSEe8w\nNo36IN5pdVqZak5kQbwDAAAAAAAAAJSMeIexKWqDs1mtbjvTzXoWWp30+/0xTwUAAAAAAAAAsH7E\nO4xNUV+OdzqtTBcT6fb6WWx3xzwVAAAAAAAAAMD6Ee8wNs2Vs1nddqabE0mS+ZbTWQAAAAAAAABA\neYh3GJtGbTne6bQztRzvLCyKdwAAAAAAAACA8hDvMDZFbflsVre1unlHvAMAAAAAAAAAlIl4h7FZ\nPZv1lM078+IdAAAAAAAAAKBExDuMzerZrG57dfOOeAcAAAAAAAAAKBPxDmNTq9YyUZ1Iq9PKdFFP\nIt4BAAAAAAAAAMpFvMNYFfVGWt3W6tmshcXOmCcCAAAAAAAAAFg/4h3Gqlkr0uo8eTZroWXzDgAA\nAAAAAABQHuIdxmqweefJeMfZLAAAAAAAAACgTMQ7jFWj1shSdyn1eiUT9ap4BwAAAAAAAAAoFfEO\nY1XUiyRZPZ0l3gEAAAAAAAAAykS8w1gVteV4p9vKVDGRhZZ4BwAAAAAAAAAoD/EOY9WsN5KsbN6p\nZ7HdTafbG/NUAAAAAAAAAADrQ7zDWDVqy/FOd3A2K0kWWp1xjgQAAAAAAAAAsG7EO4xVUV8+m9Vp\nPRnvLDqdBQAAAAAAAACUg3iHsSrqT27emVqOd+bFOwAAAAAAAABASQwV7zzxxBOjnoOSatZWNu+0\nM1XYvAMAAAAAAAAAlMtQ8c6VV1456jkoqcbq5p0nz2bZvAMAAAAAAAAAlEV9mDeddtppue222/Kz\nP/uzKYpi9fkJJ5wwssEoh6K2HO90WvmJlXinJd4BAAAAAAAAAMphqHjnvvvuy3333XfYs0qlkjvu\nuGMkQ1Eezfry2axu2+YdAAAAAAAAAKB0hop37rzzzlHPQUk1VjfvtDPVHPxzXBDvAAAAAAAAAAAl\nUR3mTU888UR+67d+K6997Wvzcz/3c7n66qvz+OOPj3o2SqCoP3k2a2XzzsJiZ5wjAQAAAAAAAACs\nm6HinQ9/+MM544wzcscdd+TOO+/MmWeemd/5nd8Z9WyUQFF78mzWVOFsFgAAAAAAAABQLkPFOz/8\n4Q/zrne9K9PT09m+fXuuuuqqPPzww6OejRJo1CZTSSWtTjvVaiXbGvXMt8Q7AAAAAAAAAEA5DBXv\nVCqV7N27d/Xnhx9+OPV6fWRDUR6VSiWNWiOtbitJMt2csHkHAAAAAAAAACiNoQqc3/zN38zll1+e\nM888M/1+P/fdd18+9rGPjXo2SqKoN9LqtJMkU82JPPFYK/1+P5VKZcyTAQAAAAAAAACM1lDxzkte\n8pLcdttt+eY3v5ler5ff/d3fzQte8IJRz0ZJFPUic0tzSQabdzrdftqHuikmbXcCAAAAAAAAALa2\noeqIa665Jl/5yldy/vnnj3gcyqhZa+TxzuNJkunm4J/k/OIh8Q4AAAAAAAAAsOUNVUeceuqp+fSn\nP50zzzwzRVGsPn/Na14zssEoj0atkU6/m0O9TqaaE0mShcVOXrhjzIMBAAAAAAAAAIzYUPHO7Oxs\n7r777tx9992rzyqVSm6++eajfqbX6+WjH/1ovvvd72ZycjI33HBDTjrppMPes7i4mF/7tV/L7/3e\n7+XlL395kuSyyy7L9PR0kuTEE0/MTTfddMz/U2wuRX0QhLU6rUwvxzvzrUPjHAkAAAAAAAAAYF0M\nFTahQqYAACAASURBVO9cfPHFueKKK47pF99+++1ZWlrKrbfemj179uTjH/94PvvZz66+/q1vfSsf\n+chH8uijj64+a7fb6ff7ueWWW47p72JzK+qNJEmr085UsbJ5R7wDAAAAAAAAAGx91WHe9PnPf/6Y\nf/G9996b8847L0ly1lln5f777z/s9aWlpXzmM5/JKaecsvrsO9/5ThYXF/POd74zb3/727Nnz55j\n/nvZfJq15c073faTm3fEOwAAAAAAAABACQy1eefFL35x3v72t+fMM89Mo9FYfX711Vcf9TPz8/Or\n56+SpFarpdPppF4f/JVnn3320z5TFEXe9a535Zd/+Zfz4IMP5qqrrsrf/u3frn7mSHbt2pZ6vTbM\n/wbr6LjjZoZ+765HBu8tpqv5yRdvT5L0q9Vj+h3AxuB7C+Xkuw/l5LsP5eS7D+Xkuw/l5LsP5eS7\nD+Xkuz9+Q8U7Z5111jH/4unp6SwsLKz+3Ov1njHCSZKTTz45J510UiqVSk4++eTs3LkzP/7xj/OS\nl7zkqJ/Zt+/gMc/GaB133Ex+/OO5od/fa1eSJI/8f09ke2cqSfLo4/PH9DuA8TvW7z6wNfjuQzn5\n7kM5+e5DOfnuQzn57kM5+e5DOfnur59niqSGineuvvrqHDx4MD/4wQ/yyle+Mq1WK9u2bXvGz7z6\n1a/O1772tVx88cXZs2dPXvnKVz7r3/PFL34x3/ve9/LRj340jz76aObn53PccccNMyKbWFFfPpvV\naeclzcE/yQVnswAAAAAAAACAEqgO86a77rorv/RLv5T3vOc9efzxx/OGN7wh//RP//SMn7nooosy\nOTmZt73tbbnpppty7bXX5stf/nJuvfXWo37mrW99a+bm5nLFFVfkmmuuyY033vis23rY/Jq1wSm2\nVred6eZEkmSh1RnnSAAAAAAAAAAA62KoMuZTn/pU/vzP/zxXXXVVjj/++PzZn/1Z3ve+9+X1r3/9\nUT9TrVZz/fXXH/bs5S9/+dPed8stt6z+eXJyMp/85CeHnZ0tolFfjnc6rTQmaqlVK5m3eQcAAAAA\nAAAAKIGhNu/0er3DzledeuqpIxuI8ilqy2ezuu1UKpVMNyfEOwAAAAAAAABAKQy1eefFL35xvva1\nr6VSqeTAgQP5/Oc/nxNOOGHUs1ESRX053um0kiTTzYnMzrfHORIAAAAAAAAAwLoYavPO9ddfny9/\n+cvZu3dvLrroonz7299+2kkseK6aK2ezuoNgZ6o5kYOtTnq9/jjHAgAAAAAAAAAYuaE277zgBS/I\npz71qSO+dt111+VjH/vYmg5FuTRqy/FOZxDvTDcn0k+y0DqUmW2TY5wMAAAAAAAAAGC0htq880zu\nv//+tZiDEnv62axBU7bQ6oxtJgAAAAAAAACA9fC84x14viaq9dQrtcPOZiXJ/OKhcY4FAAAAAAAA\nADBy4h02hEa9sRrvTBfiHQAAAAAAAACgHMQ7bAhFrVg9m7WyeWdBvAMAAAAAAAAAbHHPO97p9/tr\nMQclV9QbaXWWN+84mwUAAAAAAAAAlMTzjnd+/ud/fi3moOSKWpF2t51+vy/eAQAAAAAAAABKo/5M\nL+7evTuVSuWor99888357d/+7TUfivIp6o3000+7u+RsFgAAAAAAAABQGs8Y77z3ve9NknzhC19I\nURS59NJLU6/X81d/9Vdpt9vrMiDlUNQaSZJWt5XpZjNJMt/qjHMkAAAAAAAAAICRe8Z455xzzkmS\n/P7v/37+8i//cvX5WWedlTe/+c2jnYxSKepFkqTVaeeFxUwSm3cAAAAAAAAAgK2vOsyb2u12/uM/\n/mP15+9+97vpdGxFYe0U9cHmnXa3nXqtmmKylnnxDgAAAAAAAACwxT3j5p0VH/zgB7N79+686EUv\nSq/XyxNPPJFPfvKTo56NElk5m7XYaSVJppsT4h0AAAAAAAAAYMsbKt55/etfnzvvvDPf+973UqlU\n8qpXvSr1+lAfhaGsns3qtpMkU82J7H18YZwjAQAAAAAAAACM3FBns/bv35/rr78+n/jEJ3LCCSfk\nuuuuy/79+0c9GyVS1Jbjnads3lnq9LJ0qDvOsQAAAAAAAAAARmqoeOe6667LGWeckdnZ2UxNTeX4\n44/PBz7wgVHPRokU9cHZrJXNO9PNiSRxOgsAAAAAAAAA2NKGind+9KMf5fLLL0+1Ws3k5GSuueaa\nPPLII6OejRIpasvxTmc53ikG8c5CqzO2mQAAAAAAAAAARm2oeKdWq2Vubi6VSiVJ8uCDD6ZaHeqj\nMJSifvjZrKlmPYnNOwAAAAAAAADA1lYf5k2/8Ru/kd27d2fv3r15z3vekz179uTGG28c9WyUyOrm\nneWzWVPLZ7MWxDsAAAAAAAAAwBY2VLxz3HHH5U//9E/zzW9+M91uN9dff31e+MIXjno2SqS5unln\n+WzWcrxj8w4AAAAAAAAAsJUNFe9cc801+cpXvpLzzz9/xONQVo3VzTuDs1niHQAAAAAAAACgDIaK\nd0499dR8+tOfzplnnpmiKFafv+Y1rxnZYJRLUV+OdzriHQAAAAAAAACgPIaKd2ZnZ3P33Xfn7rvv\nXn1WqVRy8803j2wwyqVaqWayNplWd3A2a2o53lkQ7wAAAAAAAAAAW9hQ8c4tt9wy6jkgzVoj7c4g\n3pkuluOdVmecIwEAAAAAAAAAjNRQ8c43vvGNfO5zn8vBgwfT7/fT6/Xy8MMP58477xz1fJRIo97I\n4vLZrGajlmql4mwWAAAAAAAAALClVYd504c+9KFceOGF6Xa7ufLKK3PSSSflwgsvHPVslExRK9Ja\n3rxTqVQy1ayLdwAAAAAAAACALW2oeKcoirzlLW/JOeeck+3bt+eGG27IPffcM+rZKJmiXuRQ71C6\nvW6SZLo5Id4BAAAAAAAAALa0oeKdRqOR2dnZnHzyybnvvvtSqVRy8ODBUc9GyRS1RpKk3R1s35lq\nTmShdSi9fn+cYwEAAAAAAAAAjMxQ8c473vGOXHPNNbngggty22235ZJLLsnpp58+6tkomaI+iHcW\nl09nTRcT6feTxXZnnGMBAAAAAAAAAIxMfZg3velNb8ob3/jGVCqVfOlLX8qDDz6Yn/7pnx71bJRM\nUSuSJK1uK8ngbFaSLCweylQxMba5AAAAAAAAAABGZah459prrz3i85tuumlNh6HcVjbvtFY27yzH\nO/OLnRy/a2xjAQAAAAAAAACMzFDxzjnnnLP6506nkzvuuCOnnHLKyIainIracrzTHcQ7U83BP8/5\nxUNjmwkAAAAAAAAAYJSGincuu+yyw35+61vfmiuuuGIkA1FeRX35bFZncDZr6ilnswAAAAAAAAAA\ntqLqc/nQAw88kMcee2ytZ6Hknty8M4h3pouVs1niHQAAAAAAAABgaxpq885pp52WSqWSfr+fJPmJ\nn/iJvO997xvpYJTPk5t3BmezppviHQAAAAAAAABgaxsq3vnOd74z6jngKZt3/ku80xLvAAAAAAAA\nAABb01Dxzqc//elnfP3qq69ek2Eot6K+HO90BmezppbjnQWbdwAAAAAAAACALao6zJv27t2bv/u7\nv8vExESazWa+/vWv51//9V9HPRsl8/SzWYO2TLwDAAAAAAAAAGxVQ23eeeCBB3Lrrbdm27ZtSZLd\nu3dn9+7dNu6wporaIN5pL5/NmqjXMjlRzfxiZ5xjAQAAAAAAAACMzFCbd/bt25dKpbL689LSUg4e\nPDiyoSinlbNZi93W6rPp5kTmbd4BAAAAAAAAALaooTbvvPWtb82b3/zmnH/++en1evmHf/iHvPvd\n7x71bJTMZHUilVRWz2YlyXQxkUdnF8c4FQAAAAAAAADA6AwV71x11VV57Wtfm3vuuSdFUeSP/uiP\ncsopp4x6NkqmUqmkqBdpdZ7cvDPVnEj7sfl0ur3Ua0MtigIAAAAAAAAA2DSGqiFmZ2czPz+fd73r\nXZmbm8sf/uEf5t///d9HPRslVNQaaXefsnmnOZEkTmcBAAAAAAAAAFvSUPHO+9///nz/+9/PXXfd\nla9+9at5wxvekI985COjno0SKuqNw89mLcc7C+IdAAAAAAAAAGALGire2b9/f371V381t99+ey69\n9NJceumlWVxcHPVslFBRK7LYbaXf7ycZnM1KbN4BAAAAAAAAALamoeKdXq+X+++/P7fffnsuuOCC\nfPvb30632x31bJRQUW+k1+/lUK+TJJku6kmS+cXOOMcCAAAAAAAAABiJ+jBv+sAHPpBPfOITeec7\n35mXvvSl+ZVf+ZVce+21o56NEirqRZKk3W1nsjaxunlnoWXzDgAAAAAAAACw9QwV75x77rk599xz\nV3/+whe+sPrnX//1X88f//Efr/1klFJRayRJFjutzExOZ9rZLAAAAAAAAABgCxvqbNYzefTRR9di\nDkgyOJuVJK1uK0mejHcOincAAAAAAAAAgK3necc7lUplLeaAJElRG5zNanXaSZId05NJkv0L7bHN\nBAAAAAAAAAAwKs873oG1tLJ5p90dxDo7pwc/75sT7wAAAAAAAAAAW494hw2lqA1incXO4GxWvVbN\nzLaJzM4vjXMsAAAAAAAAAICReN7xTr/fX4s5IElS1A8/m5UMtu/Mztu8AwAAAAAAAABsPc873rn0\n0kvXYg5I8uTmnVa3tfps53QjraVuFtudcY0FAAAAAAAAADAS9WHe9PWvfz1/8Ad/kAMHDqTf76ff\n76dSqeSOO+7IO97xjhGPSJmsbN5pP2Xzzq6ZySTJ7Hw7zcZQ/2QBAAAAAAAAADaFoUqIG264IR/8\n4Afzile8IpVKZdQzUWIrm3cWu4efzUqS2fmlvOQFU2OZCwAAAAAAAABgFIaKd3bt2pULLrhg1LPA\n6uadVufws1lJMjvXPuJnAAAAAAAAAAA2q6HinbPPPjs33XRTzjvvvDQajdXnr3nNa0Y2GOVU1Af/\nvlpP3bwzs7J5R7wDAAAAAAAAAGwtQ8U73/zmN5Mk//Zv/7b6rFKp5Oabbx7NVJTWytmsdufJUGfX\n8uadfTbvAAAAAAAAAABbzFDxzi233DLqOSBJUq/WU6/Ws9h9ytksm3cAAAAAAAAAgC1qqHjnG9/4\nRj73uc/l4MGD6ff76fV6efjhh3PnnXeOej5KqKg10nrK5p2ZbROpViqZnV8a41QAAAAAAAAAAGuv\nOsybPvShD+XCCy9Mt9vNlVdemZNOOikXXnjhqGejpIp6kVbnyc071UolO6Ynnc0CAAAAAAAAALac\noeKdoijylre8Jeecc062b9+eG264Iffcc8+oZ6Okiloj7e7hoc6umUZm59vp9/tjmgoAAAAAAAAA\nYO0NFe80Go3Mzs7m5JNPzn333ZdKpZKDBw+OejZKqqg30uq20+v3Vp/tnG6k2+tnfvHQGCcDAAAA\nAAAAAFhbQ8U773jHO3LNNdfkggsuyG233ZZLLrkkp59++qhno6SKWpEkaXeXVp/tnJ5MEqezAAAA\nAAAAAIAtpT7Mm970pjfljW98YyqVSr70pS/lwQcfzGmnnTbq2Sipot5IkrS77TTrg5Bn18zg2ez8\nUl72orGNBgAAAAAAAACwpobavLN///5cd911efvb3552u51bbrklc3Nzo56Nkipqg1Cn1WmtPts5\nvRLv2LwDAAAAAAAAAGwdQ8U71113Xc4444zMzs5mamoqxx9/fD7wgQ+MejZKqljetrPYeTLUWY13\nnM0CAAAAAAAAALaQoeKdH/3oR7n88stTrVYzOTmZa665Jo888sioZ6Okitog3ml1n7J5Z8bmHQAA\nAAAAAABg6xkq3qnVapmbm0ulUkmSPPjgg6lWh/ooHLOiPgh12k/ZvLNrejJJss/mHQAAAAAAAABg\nC6kP86b3vve92b17d/bu3Zv3vOc92bNnT2688cZRz0ZJFbVBvLPYfTLUaTbqmZyoZnZ+aVxjAQAA\nAAAAAACsuaHW55x++um58MILc+KJJ2bv3r256KKLcv/99496NkqqqC+fzeo8eTarUqlk53TD2SwA\nAAAAAAAAYEsZavPOVVddlVe96lW54IILRj0PrJ7NanUOD3V2Tjfy//5wNp1uL/Was20AAAAAAAAA\nwOY3VLyTxJks1s3K2ax29/B4Z9dMI/0kBxaW8hPbizFMBgAAAAAAAACwtoaKdy688ML8xV/8RV73\nutelVqutPj/hhBNGNhjltXI2a7HbOuz5zunJJMnsvHgHAAAAAAAAANgahop35ubm8id/8ifZtWvX\n6rNKpZI77rhjZINRXiubd1qd/xrvDJ7vm2s/7TMAAAAAAAAAAJvRUPHOV7/61dx1110pCttOGL2V\nzTutztPPZiXJ7Lx4BwAAAAAAAADYGqrDvOmlL31p9u/fP+pZIEnSqA3OY7W7h0c6K5t3xDsAAAAA\nAAAAwFYx1OadSqWSSy65JK94xSsyMTGx+vzmm28e2WCUV7VSTaM2eYSzWYOoZ9bZLAAAAAAAAABg\nixgq3nn3u9896jngMEWtyKLNOwAAAAAAAADAFjdUvHPOOeeMeg44TFEvsnBo4bBnkxO1TBX1zM4v\njWkqAAAAAAAAAIC1VR33AHAkRa2RdvfpG3Z2zjSyz9ksAAAAAAAAAGCLEO+wIRX1Rg71Oun0Ooc9\n3zndyMF2J+1D3TFNBgAAAAAAAACwdkYW7/R6vXz4wx/O5Zdfnt27d+ehhx562nsWFxfztre9LQ88\n8MDQn6EcinqRJGn9l+07O6cnkySz87bvAAAAAAAAAACb38jindtvvz1LS0u59dZb8/73vz8f//jH\nD3v9W9/6Vq688sr88Ic/HPozlEdRayRJWp3DI51dM4Pns05nAQAAAAAAAABbwMjinXvvvTfnnXde\nkuSss87K/ffff9jrS0tL+cxnPpNTTjll6M9QHkV9EOm0n7Z5ZznemV9a95kAAAAAAAAAANZafVS/\neH5+PtPT06s/12q1dDqd1OuDv/Lss88+5s9QHkVtcDZrsdM67PlKvLPP5h0AAAAAAAAAYAsYWRUz\nPT2dhYWF1Z97vd6zRjjP5TO7dm1LvV57fsOy5o47buZ5ff4Fj29PkjSmqof9rpMXO0mSpV7/ef8d\nwNrzvYRy8t2HcvLdh3Ly3Ydy8t2HcvLdh3Ly3Ydy8t0fv5HFO69+9avzta99LRdffHH27NmTV77y\nlSP5zL59B9diXNbQccfN5Mc/nntev6PbqiRJHn1iX3488ZTf1ekmSR5+bO55/x3A2lqL7z6w+fju\nQzn57kM5+e5DOfnuQzn57kM5+e5DOfnur59niqRGFu9cdNFF+ed//ue87W1vS7/fz4033pgvf/nL\nOXjwYC6//PKhP0M5FfXBeax25/DzWNunJlKpJLPOZgEAAAAAAAAAW8DI4p1qtZrrr7/+sGcvf/nL\nn/a+W2655Rk/QzkVtUG8s9htHfa8Vq1m+9RkZueXxjEWAAAAAAAAAMCaqo57ADiSol4kSVqdp2/Y\n2TndyOx8O/1+f73HAgAAAAAAAABYU+IdNqSVs1mt/7J5J0l2TTey1OnlYLuz3mMBAAAAAAAAAKwp\n8Q4b0srZrPaRNu/MDF6bnXv6awAAAAAAAAAAm4l4hw1p5WzWYvdIZ7MmkyT75sU7AAAAAAAAAMDm\nJt5hQypqg3in1Tny2awkmZ1bWteZAAAAAAAAAADWmniHDWmiWk+1Uk37SJt3Vs5m2bwDAAAAAAAA\nAGxy4h02pEqlkqLWSKtzpLNZg3jH2SwAAAAAAAAAYLMT77BhFfUii0c6m7WyeWdOvAMAAAAAAAAA\nbG7iHTasotZI6whns6aKeuq1Smbnl8YwFQAAAAAAAADA2hHvsGEV9Uba3Xb6/f5hzyuVSnZONzLr\nbBYAAAAAAAAAsMmJd9iwilqRXr+XQ71DT3tt50wj++eX0uv1j/BJAAAAAAAAAIDNQbzDhlXUG0mS\nxc7TN+zsnG6k1+9n7qDTWQAAAAAAAADA5iXeYcMqakWSpNVtPe21XdODsGef01kAAAAAAAAAwCYm\n3mHDWtm80z7S5p2ZySTJ7JzNOwAAAAAAAADA5iXeYcMqaoN450ibd3Yub96ZtXkHAAAAAAAAANjE\nxDtsWEV9cDZr8Qibd1bPZs2JdwAAAAAAAACAzUu8w4a1cjar1TnC5p0Zm3cAAAAAAAAAgM1PvMOG\ntXI2q919eqCzc3oySbJPvAMAAAAAAAAAbGLiHTaslbNZrSOczSom62k2apmdW1rvsQAAAAAAAAAA\n1ox4hw2rqA3incXu089mJcnO6YazWQAAAAAAAADApibeYcMq6oOzWUfavJMM4p35xUM51Omt51gA\nAAAAAAAAAGtGvMOGVdQG8U67e/R4J0n2274DAAAAAAAAAGxS4h02rKI+OJvV6hzlbNbMZJJkdn5p\n3WYCAAAAAAAAAFhL4h02rJXNO4tH2byza3nzzj6bdwAAAAAAAACATUq8w4ZVq9YyUZ04+uad5Xhn\ndk68AwAAAAAAAABsTuIdNrSi1kj7KJt3ds4sxzs27wAAAAAAAAAAm5R4hw2tqDeOunnH2SwAAAAA\nAAAAYLMT77ChFfUii0fZvLNjejKJs1kAAAAAAAAAwOYl3mFDK2qNLHWX0uv3nvZavVbNzLaJ7Jtf\nGsNkAAAAAAAAAADPn3iHDa2oD05jtY+yfWfXdCOzzmYBAAAAAAAAAJuUeIcNragVSZJW58iBzs6Z\nRtpL3Sy2O+s5FgAAAAAAAADAmhDvsKEV9UG8s9hpHfH1ndODzTy27wAAAAAAAAAAm5F4hw2tqD3z\n2ayd05NJktk58Q4AAAAAAAAAsPmId9jQivog3nmms1lJMju/tG4zAQAAAAAAAACsFfEOG1pRWz6b\n1T3y2axdy2ez9jmbBQAAAAAAAABsQuIdNrRn3byzHO84mwUAAAAAAAAAbEbiHTa0ojaIc9rdZzub\nJd4BAAAAAAAAADYf8Q4bWlEfnM1qdY58Nmtm20Rq1YqzWQAAAAAAAADApiTeYUNbOZt1sLN4xNer\nlUp2TE9mdm5pPccCAAAAAAAAAFgT4h02tJmJmSTJ3NL8Ud+zc7qR2fl2ev3+eo0FAAAAAAAAALAm\nxDtsaNsbg3hn/9LcUd+za7qRbq+f+cVD6zUWAAAAAAAAAMCaEO+woU1U65ma2Jb97QNHfc/O6cFp\nrdm59nqNBQAAAAAAAACwJsQ7bHg7JrfnwNIzxDszk0mS2XnxDgAAAAAAAACwuYh32PB2NLZnsdPK\nUnfpiK+vbt6ZP/LrAAAAAAAAAAAblXiHDW/75EySZH977oiv75xxNgsAAAAAAAAA2JzEO2x4Oxrb\nkyT7j3I6a9fy5p19zmYBAAAAAAAAAJuMeIcNb8fkcrzTPnK8s3o2y+YdAAAAAAAAAGCTEe+w4W1v\nDM5mHVg68tmsZqOWyYlqZueX1nMsAAAAAAAAAIDnTbzDhrez8cybdyqVSnZNN5zNAgAAAAAAAAA2\nHfEOG972lbNZS0eOd5LB6ay5haV0ur31GgsAAAAAAAAA4HkT77Dh7ZgcnM062uadJNk500g/yYEF\np7MAAAAAAAAAgM1DvMOGN1GbyLZ6M/uX5o76nl3TjSRxOgsAAAAAAAAA2FTEO2wKOxrbc+CZNu9M\nTyZJZuds3gEAAAAAAAAANg/xDpvCjsntOdhZzFL30BFf3zkz2Lwza/MOAAAAAAAAALCJiHfYFHY0\ntidJDhzldNbOafEOAAAAAAAAALD5iHfYFLZPziRJ9h/ldNbq5p058Q4AAAAAAAAAsHmId9gUVjbv\n7F86cryza3oylST/+fjCOk4FAAAAAAAAAPD8iHfYFFbjnaNs3pmo13LGy1+QBx+Zy/d+OLueowEA\nAAAAAAAAPGfiHTaFlbNZB5bmjvqeXzz3p5Ikf/UvD67DRAAAAAAAAAAAz594h01h57Ns3kmSU0/c\nkdNetjP3/8cTefCRo78PAAAAAAAAAGCjEO+wKWyffPZ4J0ku+fmfSpL89b88NOqRAAAAAAAAAACe\nN/EOm8JkbSLNevMZz2Ylyf9w0q6c/JKZ3Pu9H+c/H19Yp+kAAAAAAAAAAJ4b8Q6bxo7JmWfdvFOp\nVPKL5/5UkuRv7npw5DMBAAAAAAAAADwf4h02je2N7VnoHMyhXucZ33fmK16YnzxuKnf/22N5bHZx\nnaYDAAAAAAAAADh24h02jR2T25MkB55l+061Uskl556UXr+fv/1vD63HaAAAAAAAAAAAz4l4h01j\nR2MmSbJ/ae5Z33vOaS/K8bua+adv7c2+ufaoRwMAAAAAAAAAeE7EO2waOxrDbd5Jkmq1kotfd1I6\n3X7+7r//YNSjAQAAAAAAAAA8J+IdNo0dk4PNO7NLzx7vJMnPn/7i7Jpp5P/e85+ZO7g0ytEAAAAA\nAAAAAJ4T8Q6bxo7GjiTJgfazn81Kknqtmje+9mVZOtTL33/jR6McDQAAAAAAAADgORHvsGlsX968\ns3+Is1krfuHMEzKzbSJ33PujHGx1RjUaAAAAAAAAAMBzIt5h09jR2J4k2T/k2awkaUzU8j+/5qVZ\nbHfytX+1fQcAAAAAAAAA2FjEO2wajdpkilqRA0vDnc1accH/eGKajXq+es8P0z7UHdF0AAAAAAAA\nAADHTrzDprKjMXNMZ7OSZFtRz/909omZO3go/7jn4RFNBgAAAAAAAABw7MQ7bCo7Jrdn/tBCOr3O\nMX3uop87MZMT1fztf/9BOt3eiKYDAAAAAAAAADg24h02le2NmSQ55tNZM9smc/5ZP5l9c+38y/2P\njGI0AAAAAAAAAIBjJt5hU9nR2J4k2d8+tngnSf6Xc16Weq2Sv7nroXR7tu8AAAAAAAAAAOMn3mFT\n2TG5HO8sHTjmz+6aaeT1Z7wkj80u5p5vP7bWowEAAAAAAAAAHLP6uAeAY7GyeedA+9jjnSR50+tO\nyj/etzef++tv5/N//73UatXUqpXBf7Vq6qt/rqRWraZeq6Rer2aiVs1EfeW/2urPk8vPtk9NTNs1\nGQAAIABJREFU5pyfflEm6no4AAAAAAAAAGB44h02lR2TM0mS/UvHfjYrSY7b2cxlv3By7vn2Y+n2\n+un0+ul2e+n2+lnqdFb/3O310+320+v3h/7d3/3BbH7t4tNSqVSe02wAAAAAAAAAQPmId9hUti9v\n3tn/HDfvJMkl5/5ULjn3p4Z6b6/Xz6FuL4c6g/86T/nzU5//n1//fv7pW3tzyk9uz/ln/eRzng0A\nAAAAAAAAKBfxDpvKk5t3nnu8cyyq1Uoa1VoaE7VnfN8JL9yW3/3f78mf//338rLjZ3LKCdvXZT4A\nAAAAAAAAYHOrjnsAOBZFvUijNvm8Nu+Mwgt3NPPrv/Qz6Xb7+aPbvpUDB5fGPRIAAAAAAAAAsAmI\nd9h0djS250B7btxjPM3pJ78gl/7CKXniQDt//H/9P+n1+uMeCQAAAAAAAADY4MQ7bDo7Jrdn7tB8\nur3uuEd5mkvOPSlnnfrCfPuhffnSP35/3OMAAAAAAAAAABuceIdNZ0dje5LkwNLG275TrVTyv/3i\nT+f4Xc38zX97KPd+98fjHgkAAAAAAAAA2MDEO2w62ydnkmzMeCdJthUTufqyMzJZr+Zzf/1veeSJ\ng+MeCQAAAAAAAADYoEYW7/R6vXz4wx/O5Zdfnt27d+ehhx467PU777wzb3nLW3L55ZfnC1/4wurz\nyy67LLt3787u3btz7bXXjmo8NrGVzTuz7QNjnuToTjx+Ou9402lpLXXz6S99K62lzrhHAgAAAAAA\nAAA2oPqofvHtt9+epaWl3HrrrdmzZ08+/vGP57Of/WyS5NChQ7npppvyxS9+Mc1mM1dccUXe8IY3\nZGZmJv1+P7fccsuoxmIL2DG5cjZr48Y7SfK6n3lxvv/wgdx+74/yf3zlO/n1//VnUqlUxj0WAAAA\nAAAAALCBjGzzzr333pvzzjsvSXLWWWfl/vvvX33tgQceyMte9rLs2LEjk5OTOfvss3PPPffkO9/5\nThYXF/P/t3fncZLV9d3oP6eql9l6dpZBGBhWQUXEBYzik5CH6DUqKATEKEZ53RuNidFcYsDnuiNq\njJpXjJq43Ne9DyYRLy5IovGJ0bxIkBgVR2RfHQQHhAFmpnuY6e6qc/+opat7umfvqenu9xvHOvv5\nnlPn9/ud0/WtX73xjW/MRRddlLVr105XeMxgS/obP5u18QDueafl/DOPzbGHL8l/3far/MuPHuh2\nOAAAAAAAAADAAWbakncGBwezaNGi9ni1Ws3o6Gh73sDAQHvewoULMzg4mHnz5uXiiy/OF77whbzv\nfe/LJZdc0l4HWlo972zctrnLkexcT7WSN5/99CxZ2Jcvf/fu3HH/490OCQAAAAAAAAA4gEzbz2Yt\nWrQoQ0ND7fF6vZ6enp5J5w0NDWVgYCBr1qzJkUcemaIosmbNmixdujSPPPJIVq1aNeV+li1bkJ6e\n6nQdBnvooIMGdr7QHlq4tHEdPZkt07qffeWggwZy2e89L+/8zPX522tvzV++/b9lxZL53Q4LpsVM\nKJPAvqfsw9yk7MPcpOzD3KTsw9yk7MPcpOzD3KTsd9+0Je+ceuqp+d73vpeXvvSlWbt2bY4//vj2\nvGOOOSbr1q3LE088kQULFuRHP/pRLr744lx99dW588478973vjcPP/xwBgcHc9BBB+1wP48/vmW6\nDoE9dNBBA3nkkenrFacsy/RV+/Lo5semdT/70sEDffmdXz8mV3337lz1v27P7/z6sd0OCfa56S77\nwIFJ2Ye5SdmHuUnZh7lJ2Ye5SdmHuUnZh7lJ2d9/dpQkNW3JO2eddVauv/76vPrVr05Zlrniiity\n7bXXZsuWLbngggty6aWX5uKLL05Zljn33HNzyCGH5Lzzzstll12WCy+8MEVR5Iorrmj31gMtRVFk\nSd9ANg7PrArkBc9Ylau+e3cefGRo5wsDAAAAAAAAAHPCtGXGVCqVvP/97x837ZhjjmkPn3nmmTnz\nzDPHze/r68vHPvax6QqJWWRx3+Lcu/HnqdVrqVZmxs+mLZrfm4EFvXlog96iAAAAAAAAAICGSrcD\ngD2xtH9xypTZPDLY7VB2y6rlC/LIxiczMlrrdigAAAAAAAAAwAFA8g4z0uL+xm/Bbdy2qcuR7J5V\nKxemLJOHHnuy26EAAAAAAAAAAAcAyTvMSEv6FidJNg1v7nIku2fV8gVJkvUbhrocCQAAAAAAAABw\nIJC8w4y0pL+RvPPEDOx5J0nWb9jS5UgAAAAAAAAAgAOB5B1mpHbPOzMteWeFnncAAAAAAAAAgDGS\nd5iRlvQPJEk2zrCfzVq+eF76eit63gEAAAAAAAAAkkjeYYZq/WzWxhnW806lKHLo8gV56LEtqZdl\nt8MBAAAAAAAAALpM8g4z0rzqvPRWerNpeGYl7yTJqhULMzJaz4aNW7sdCgAAAAAAAADQZZJ3mJGK\nosiSvoEZ1/NOkqxasSBJ/HQWAAAAAAAAACB5h5lrSf/ibBoeTL2sdzuU3bJqxcIkyfoNQ12OBAAA\nAAAAAADoNsk7zFiL+xenTJnNwzMrCUbPOwAAAAAAAABAi+QdZqylfYuTJBuHN3Y5kt1zyLIFKQo9\n7wAAAAAAAAAAkneYwRb3DyRJNm3b3OVIdk9vTyUHLZ2v5x0AAAAAAAAAQPIOM9eSVs872zZ1OZLd\nt2r5ggw+OZLNW4a7HQoAAAAAAAAA0EWSd5ixlvS3fjZrBibvrFyYJHrfAQAAAAAAAIA5TvIOM9bi\nvsbPZs3UnneSZP2GoS5HAgAAAAAAAAB0k+QdZqyl7Z53Nnc5kt2n5x0AAAAAAAAAIJG8www2v2d+\neio92bRtBibvrGj1vCN5BwAAAAAAAADmMsk7zFhFUWRJ3+JsHJ55P5u1cF5vFi/s87NZAAAAAAAA\nADDHSd5hRlvSP5BNw5tTL+vdDmW3HbZiQTZs3JrhkVq3QwEAAAAAAAAAukTyDjPakr7FqZf1DI7M\nvB5sDl2xMGWShx7z01kAAAAAAAAAMFdJ3mFGW9y/OEmycdvmLkey+1atWJAkWb9B8g4AAAAAAAAA\nzFWSd5jRlva1knc2djmS3TeWvDPzeg0CAAAAAAAAAPYNyTvMaIv7B5Ikm4ZnXs87h61YmETPOwAA\nAAAAAAAwl0neYUZb0jdzfzZr2UB/+nuret4BAAAAAAAAgDlM8g4z2pL+ZvLO8KYuR7L7iqLIoSsW\n5KHHnky9XnY7HAAAAAAAAACgCyTvMKO1fzZr28xL3kmSVSsWZLRWz6Mbn+x2KAAAAAAAAABAF0je\nYUZb2LMgPUU1T8zAnneSZNWKhUmS9Ru2dDkSAAAAAAAAAKAbJO8woxVFkcX9i7Np2+Zuh7JHVi1f\nkETyDgAAAAAAAADMVZJ3mPGW9C3OxuFNqZf1boey21atbPW8M9TlSAAAAAAAAACAbpC8w4y3pH8g\n9bKeoZGZ13vNIcvmp1IUet4BAAAAAAAAgDlK8g4z3uK+xUmSTcMz76ezeqqVHLRsftZvGEpZlt0O\nBwAAAAAAAADYzyTvMOMt6W8k7zyxbVOXI9kzq5YvyNDW0WzeMtLtUAAAAAAAAACA/UzyDjPekr6B\nJMmmmZq8s3JBkmT9hqEuRwIAAAAAAAAA7G+Sd5jxWj3vbByemck7h61YmCRZv2FLlyMBAAAAAAAA\nAPY3yTvMeO3knW2buxzJnjl0RavnHck7AAAAAAAAADDXSN5hxlvSN7N73lm1vNXzjp/NAgAAAAAA\nAIC5RvIOM97C3gWpFtVs2jYzk3cWzOvJkkV9kncAAAAAAAAAYA6SvMOMVxRFFvcNZOPwzPzZrCQ5\nbMXCbNi0LduGa90OBQAAAAAAAADYjyTvMCss6V+cTds2pSzLboeyRw5dsSBJ8tBjW7ocCQAAAAAA\nAACwP0neYVZY0jeQ0bKWodGZmfxy2IqFSeKnswAAAAAAAABgjpG8w6ywpH9xkmTjtk1djmTPtHre\n+eWGmZl8BAAAAAAAAADsGck7zAqL+xrJO5u2be5yJHum1fPOQ3reAQAAAAAAAIA5RfIOs0K7553h\nmdnzztJFfZnXV816Pe8AAAAAAAAAwJwieYdZYUn/QJKZ+7NZRVFk1YoFefjxLanV690OBwAAAAAA\nAADYTyTvMCss6Wv1vDMzfzYrSQ5dvjCjtTKPPrG126EAAAAAAAAAAPuJ5B1mhfbPZs3QnneS5LCV\nC5LET2cBAAAAAAAAwBwieYdZYWHvgizqXZjbH7srG7fNzN53Vq1YmCRZv2Goy5EAAAAAAAAAAPuL\n5B1mhUpRyW+v+a1srW3NNfd8s9vh7JFVK/S8AwAAAAAAAABzjeQdZo0XPuW0HLHosPzgoR/nnid+\n3u1wdttBS+enWin0vAMAAAAAAAAAc4jkHWaNSlHJ+Se8Mkny5Tu/nnpZ73JEu6enWsnBy+Zn/YYt\nKcuy2+EAAAAAAAAAAPuB5B1mlaOXHJnTD31OHhj8Zf7jwf/sdji7bdWKhdmybTSbhoa7HQoAAAAA\nAAAAsB9I3mHWOfvY/y3ze+blG/d+O5uHB7sdzm5ZtWJBkmT9hi1djgQAAAAAAAAA2B8k7zDrLO4b\nyG+v+a08OfpkvnHPt7odzm4ZS94Z6nIkAAAAAAAAAMD+IHmHWelFT3l+Dlt4aL6//of5+ab7ux3O\nLlu1YmESPe8AAAAAAAAAwFwheYdZqVqp5vzjz0mSXHXH11Mv612OaNcculzPOwAAAAAAAAAwl0je\nYdY6btnRec4hp+T+zQ/khl/+sNvh7JL5/T1ZNtCfX+p5BwAAAAAAAADmBMk7zGqvPPa301/tyzX3\nfitDIzMjIWbVigV5fPO2PLlttNuhAAAAAAAAAADTTPIOs9rS/iV56ZqzMjSyJdfe++1uh7NLVi1f\nmCR56LGZkWwEAAAAAAAAAOw5yTvMer9x+Atz6IKD8x8P/mfu3/xAt8PZqVUrFyRJHvLTWQAAAAAA\nAAAw6/V0OwCYbtVKNb9z/Nn55NrP5ct3XJM/efabUyl2nLf2qy2P5KZHb80vNj+Y0fpoRuu11Mpa\ne3i0HE2t+Tpar6WnUs1vHXlmTj/02SmKYq/iXbW8kbzzyw1De7UdAAAAAAAAAODAJ3mHOeGpy4/L\nsw4+OT/51U35wUM35vmrnjNufr2s5+ebfpGfPXprbnrkljy05VdTbqtaVNNTqaan6Em1Uk1PpSeP\nb92YL9725fz0kZ/lwhPOy5L+gT2OddXKxs9m/eJXg3u8DQAAAAAAAABgZpC8w5xx7rEvyy2P3pZr\n7v5mnrnyaemp9OSOx+/KTY/cmp9tuDWbhxvJMr2V3py88ml5xsqTcvyyYzKv2p+eSjXVSk96iuqk\nPetsePLxfPG2L+dnj96We5/4WC444ZV59iHP3KM4lyzsyxEHL8rP7t2Q9RuGsmrFwr06bgAAAAAA\nAADgwCV5hzlj2byleclRv5lv3PvP+YsffyqPbX08I/WRJMlA76L82qrn5hkrT8pTlx+Xvmrfbm17\nxfxl+aNn/e+57sEb8vW7v5n/+5a/y08fuTnnn3BOFvXuXvJNURQ5+4Vr8tdf/Vm+cf3P8/uveNpu\nrQ8AAAAAAAAAzBySd5hTzlz9ovzgoRvz8JZf5ZAFB+fklSfl5INOylGLV6dSVPZq25Wikl8//AU5\nafnx+Z+3fjk//tVPc9cT9+Y1Tz03z1h50m5t61nHrczqQxblv259OC97/pF5ykGL9io2AAAAAAAA\nAODAJHmHOaW30pNLnv0H2TL6ZFbOXzEt+zh4wUH5k2e/Of96/3X5x3u/nb+56f/J6auek/OOe3nm\n98zfpW0URZFzXnh0/uorN+Wa63+ePzjn6dMSKwAAAAAAAADQXXvX1QjMQAt6F0xb4k5LpajkrCN/\nPX/23D/OEYsOy3+u/1E++INP5PbH7trlbTzz2BU56tCB/Oj2X+UXvxqcxmgBAAAAAAAAgG6RvAPT\n6LBFh+ZPn/NHeelR/z0bhzflk2s/l+sf/MEurVsURc454+gkyTX/cd90hgkAAAAAAAAAdInkHZhm\n1Uo1v330b+VPn/2Hmd8zP1+9+5+yaXjzLq37jKOX55jDFufGOx/Juod2bR0AAAAAAAAAYOaQvAP7\nyerFh+dlR/9Wtta25pp7vrVL6xRFkbPPWJNE7zsAAAAAAAAAMBtJ3oH96IzDTs9TFq3Kf67/Ue7b\nuG6X1nnaUctz7OFLsvbuR3Pf+k3THCEAAAAAAAAAsD9J3oH9qFqp5vzjz0mSfPnOr6de1ne6TlEU\neeUL9b4DAAAAAAAAALOR5B3Yz45duibPPeRZuX/zg7nhlz/cpXWeeuSynHDE0tx0z4bc88uN0xwh\nAAAAAAAAALC/SN6BLjjn2Jemv9qXa+79VoZGtux0+aIocs4Zzd53/l3vOwAAAAAAAAAwW0jegS5Y\n2r8kL11zVoZGtuQf7/32Lq1zwuplOfHIZbn5vsdy1wNPTHOEAAAAAAAAAMD+IHkHuuTXD39BDllw\nUP79wf/MLzY/uEvrnP3CRu87X9f7DgAAAAAAAADMCpJ3oEt6Kj35nePOTpkyX77z6ynLcqfrHH/E\n0jxtzfLctu7x3HH/4/shSgAAAAAAAABgOknegS46ccXxOeWgp+fejevyXw/duEvrnNPsfeea/9D7\nDgAAAAAAAADMdJJ3oMtedezL01vpydfu+ac8Obp1p8sf85QlecbRK3L7/U/ktnV63wEAAAAAAACA\nmUzyDnTZivnL8uIjz8zm4cF8677v7NI655zR6H3n6/9+7y793BYAAAAAAAAAcGCSvAMHgP+++r9l\n5bzl+d4D/5H1Qw/vdPk1qxbnlGNX5q4HNubWn+t9BwAAAAAAAABmKsk7cADorfbmvONfkXpZz/93\n5zW71JvO2S9s9L7z//7z7fmXH/0iTwxum+4wAQAAAAAAAIB9TPIOHCCevuLEnLTihNzx+N35ySM/\n2+nyRx46kBc/74hs2LQ1//Cdu/J//vX1+fO/vzH/tvbBbN4yvB8iBgAAAAAAAAD2Vk+3AwAaiqLI\n7xz3inzwsY/nq3f9Y5624qnpr/btcJ0LzjwuL3ne6vzojkfyg9sezu33P5Hb738iX/z2nTlpzbKc\nduIhedZxB2XBPEUdAAAAAAAAAA5EPtGHA8jBCw7KmatflP+17nv53M/+Z0479Nk5ccXxWdS7cMp1\nlizqz28++/D85rMPz2Obtua/bvtV/uu2h3PzvY/l5nsfS0/19jzj6BU55diVWba4P4sX9GXxwr4s\nmt+bnqrOtwAAAAAAAACgmyTvwAHmJUf9Zm7dcEdue+zO3PbYnSlS5MjFR+SkFSfkaStOyOqBw1Mp\nJk+6Wb54Xl5y2uq85LTVefjxLe1Enp/c9Wh+ctej2y2/cF5PFi/sy8CCvixe0JuBhX0ZmN+b/t5q\nensq6eutpq+nkt6eavp6K2PDPZX09lbSW62kWilSbb72VCupVotUimK6TxMAAAAAAAAAzArTlrxT\nr9fz3ve+N3fccUf6+vpy+eWX58gjj2zP/+53v5tPfepT6enpybnnnpvzzz9/p+vAXNBf7cufPfet\neXBwfW7ZcEdu3XBH7tu0Lj/fdH++ed+/ZFHvwpy4/PictOKEnLT8hCzqm7xXnkOWLcjLf+2ovPzX\njsoDjwzm7gc3ZvPQcDZtGcnmLcPZ1BzeNDSchzZsSbkPj6FSFKlWi/RUi1QrjYSenolJPuNeG/Mq\nRZFKpUhRNLZRFGmMp0il0vhpsUpRpFIkRaVIJUWKSprTOpZvr99cdrvtTjW9Y1sTt9tarzm9qIzF\nUmkNV8aWLzoSmMpyx2d3Z/FMnN5edopjBgAAAAAAAGDmmLbkne985zsZHh7OVVddlbVr1+bDH/5w\nPvOZzyRJRkZG8qEPfShXX3115s+fnwsvvDBnnnlmbrzxxinXgbmkUlRyxMBTcsTAU/KSo87MlpEn\nc/vjd+XWDXfk1g2354cP/yQ/fPgnKVJk2byl6SmqqVSq6SmqqRbVRsJMe7gxvdJTTXVpJT3LerK4\nUsmy5rxqUU0lldRqRUZHyoyMJmW9SFkWqdeKlPUi9XqRej2pjTaGR2tJfTSp1RvL1mpJvZ6UzdfR\nepF6rUytVqZeLzNaK1Ovldla1lMbbkyr1eqplWVq9V1JG9qLhJRxmy+mmFckRdmYUJQpinLc+Ljh\nzu2UHdvrHE7R3HYxfh9JyvZyHcu0Y5lku53bqNSTop6iUm8Pp1JPUdSTSm1svKwkzX9FWW0M16sp\nUmnPK8pq47BTpqikedz1xrTmMReV5rloxtFYP0lRTVEWzWlFc7iRiFWvN5cuGnObO2keWdGc1th2\nUiaVNPabMmWlniJl85DrKYqysV5RNOJuBNd4S4pGPGNbbcyrlMXYcmktWxlbqmjFN3aOi+Z5aI0U\nrUuiFXVrnZTt9crO6UXr6JrnsWOloj3YPK6iljL1lEU9SX1suBgbbhxZTyqpbv+vqKaaaoqi2rHP\n5n7SDnTqY2gvUoxbrnVQRVGm8V89ZTqH68mk8zrmt8bLsWUrqTTj7kk11fZx9RS9qaR5TRbtyNvx\n72A0KYp2QlzR3OfYe1I248i41+bBdUwtm1dimWYaYCpFpT1cpDJlD2ed53HSGKdIoJuyFptixlTL\n706C3lSLTh3L9nPKskw9o6mVIxktR1PLSEbLkYy2pmU08/qrGd5Wplr0pCc9qRbNfxl77a30ptK8\nbndJWWa0HM5wuS3D5dbxr/XG60i5LdX0pL8yL33FvPS1Xov+9FXmpb8yL71F37j3slbWmscykpFy\nZPxwRlKmbLaL1eZxVNOT3mab2tOc3iiLnWWhXtbb11ZZtqbXG0uUZcqi3i4f7Xll63odKy/tc9dq\nw9vnsbX/xrE0tlBrb7te1lNPPfWy1oynliJplL1mvVEpOuuQ8e91vaxnpNyabfWt2Vp/MlvrT2Zb\n87U1PFzflt6ir3lu+9NX6W+c+0rzfBdj45Wi2ipZjX1NeS1OMmO3y8RUF9EUZXHXd7l7ce9w+d3Z\n5+TlMM3rrPN9rpW1pCib72+lfW1WWud9u03v3v3U1HVIY8ajgyN54oktOzyoohl/2Y6/llrZaDdq\nHcfRKkPVonU/25PKuOFdT1DeWdy7andO107ytJvLlBktRxt1aH20UaeWtSRpl+2kaLaLRbttGruH\nGZteFEVSTjF9J8fQOW2yczL5Oh33OmMrbz+4D5LId3cLreurTJnG/xr/FcVYAn3rjmBsH9uft7F7\npn2fCL8vtjnZFsrOdqRst0ITzknZqPsrzbqhsvexjBaVPPb4lp0vuCP76Dzvi63ss3d8H2xod+up\nKbdzgHyf40D6Ysm+CmWfbKYLdeW+2FDf4LZs2jI8bbHsz+tld3a1G09fU86pl/XU6rXUU29+IavS\nfP7ctfubxjNZPfV6vfk8U2/eP9WazxQdy07x1bxKUaSn0vGM0/x7YGcbuJuHtVfv/Z6/3Xu+125V\nSXu6371qE/bhqmVZ7vRLicmBVefvjfbfm2bJ8cwG9bKeWllPkbTrLYA9US/rKcuycR+mLuEANm3J\nOz/+8Y9zxhlnJElOOeWU3Hzzze1599xzT1avXp0lS5YkSZ797Gfnhz/8YdauXTvlOjCXLeidn1MP\nPjmnHnxyyrLMg4PrG4k8j92RR57ckCfrI6mPNB7eR8taavXalA/s+0S1+a+7m2AfKye8cuAqy2LX\n36jO+9DOP7hMWL8otp823coySb3aSFgrOndeNuPumFa0/oCyH2Mri2Yy3Sy9mS+nOq5Wllc9RbW2\n8+0M7uLuWue0tY/tkhab04ok1dGO5ME9V5ZJas3b3UqtmTg4c5XlvikDZb1oJnZWmud7ZFrLVrvO\nKpsJCu2ytYv2NLbJEngnJNVut8ouxLXza7OVELrToCZZprPeayRD7sl1236Py0pSL1I2z/3ksZcd\ncUyMfWK8E9efZN32so1p++SabV0/9crYdbT7W9mFZTqvk8kSqSZOK6a+ptoJ17Xm8P6pf8buEXZQ\nz06ctyvb3CUdy016uDvYzmTldbvk+kaZGPtX3+d1V/tWaYft1YTpHfMnTdQvM76cdNzjjJXJjumd\n90BF52tn+dyzsjVWNzRey/rY8P6zh2Vhlt6OJZnklOzpJ72tcjHhiyid/yY9/xPbyJ3EM1m912rb\nm3VN2a5zJtY3k1/rYzHv4Pj28jztdl02Vf3eKtPNmIuJ57dzvHMbu1gnT1mPjMua7Dxf5YS6pPNE\nTay7Jp6HSbZdbr/O+PZuP2tfL2NtwPZtQnN4snM26fnchXO9W/eqYzE0vlzVGd+O26op75M727pp\nvIcYf89Y2cVysrP2fsIye+UAeH7b60OZvmPY9WfmKZ5PJrkfnPwamOKed6r6Y9L1OpadeE+XScp1\nq7Jt37c025Zy/LSdv0Gdz1cT65KJ5XWsPm2UjdY9UpE0y8q4GFKMbX9CvZwiKTrnjat3pqqjivFt\nScd2G+cnY/M66upxbW77fegYb9dP5XbnIM0vVDYOpaMtbx3fxHO/pwViR3VL+72oj6s703x/Jl7n\n4+qtVqzt96fScdy7Uj4mLxvFxHI7afg72v5UZWbijiZ5FmivMqE9n6wsTVKGt2u/x4U7m2+opzDx\neWqHX9hOOq/7SYeTnVzPOwtoL9uESeNPksaXsre/3594D9oZ5GT3p5kwPPF1svjHpo2/55lk2cnO\nz47u8ae8bidZprPumHR4wnu9XZsy4XV37wd3SXfKYLWcl//rjP8jBy9Z3JX9s/umLXlncHAwixYt\nao9Xq9WMjo6mp6cng4ODGRgYaM9buHBhBgcHd7jOVJYtW5CeHikAB5qDDhrY+ULssYMPXpxnHX3C\nDpdpfbNntN5I5hktaxmtj6bWGm/NK1vjoxltfountdxox7KN6R3bKGup1evt7Pd6vfGNn9a3gOrl\n2LeC9uqWZFe+yjzVqslYElM5Ntz6Zm5ruEzzp76Kasdr62e8xk9rr1OWk7ymPZ6y0SdNduOdAAAS\n60lEQVRDyqSeevO1c/rO5ze2V29H3VPpSW+1N32V3vRUe8Zeqz3pqfQ2X3tSq9czUh/JSG107LU2\nkpH6+Nei+Y2valFNpVJJddxwNdVirPeRetnxXne81pvXQOtf2XH2x77t3Bofe2+qlcr2+65Ux/bb\nnN86P2VZpl42eq2op2xnSTemd/RuMWG8vVzqqbW6BRqnGDc02dU29beddn6zVbQe98rG+zd2jGM9\nX/UUPR3nvNroAaM+mtF64/0brTW+nT9Sa00bzWh9pH3NtfdVjBWXzpjLHUY6fk6l2eNMK/u8UlSa\nPThU2vM6p3d+Y3BseGy5Vn0y2ox5tD6akXIko/WR9jGO1kdST6MnnFZvTZ09NxVJMxO+aB/bWM9B\n49ZKq+eksV6IOr5JP8l6rTNUK+uNa6vdq0VzPGPX9nTYi+pt7/c94Wqf+E26sR4wetNb6W2+9qWn\nPTz2WqRo9CZRb/bOU2/2LLFdDxOj7X21/2vVmR3jSRq9ulQbvef0Vxs96syrzm/27NIY7qv0Z6Q+\nkuHa1mytb822+pPZVt+abbWx4eH61mytbU2RjMVeNI6jt+hNT6Wv8Vr0pqfSmyKV1MrR1Mtau1eM\n2rjXxr966mn10jTWe0PHN2hTpCgq45aptJftWCZFe5166qmVo+P2W2++dk5L0iyD1Y7yVx0rkx09\n67S+kVsra80eT2rtbbbGk6S/Mn/7f8W89FfmZ15lQfor89Nb9GW0HM62cluG640ekEZaw+XW5rTG\ncL3Zs8r43oZaw43xid8Sbtm9x9ipn/q3v6InzCvL7eZOvf7E1mL7OVPNn3q9ydYdm96o+5p1akc9\nXKSjnu3sials9OxWT/Nb2NVGDz3NVjP1sjZ++8XEPRfjYt3+qCZbdrL5Rcd4qwUq2sfQKAHVbN/r\nWbMcNHvnqafWjruWWsrmtNYxTZ/Oq6Hc7loZv0S53Rqd49Wir6P3vJ5mOW31hNXqYa8yYUvldq+d\n++vsTWVsmQnzJhsuJ257++MYNzRJ+Zz6iwGTl5kptz3ldjr301imUUtWx+rSjL9eOl9by6c5NPH/\nJ/6xceL5aA8XzXnFxHM1cb2OdabYZuf4WGyVjjuXzvIy/o4l44Ynm5YdzBtfRhsRNOuDSn1sOOOH\n95u9uv/Zsz92TrXWjkLZF73g7NoXanb8B/DJxqd6ZmnE3DNFGRkb79zKuLI5ySFPegwdHyiNXe8d\nPXGmHDee9njnddv60HPya3nqI93FGHdx/e3XnVhbbT+/0bq1jqHjvq6ccJ7LCee6s5fQYvL6orPu\n2b6uaZXT1pmqdJT1YlzvuNsfX+tBsRx3zOPnd94vbV//Taed7aF9PZetdqGS8dd1JUV9rM5rnP6J\n53Qn9f+496aeqa+rsag6h4qykiI9HbE2eywuG/fnjR7zKuP33+qds7O8FGXKohy7xspKilrr2Mfa\nwZRj7eGuneMyrV5zG72C1sYPF/WUPTtqDyarh3a1jtub+rQ7H3JtZ59/eLc3pnqGmHrq1PPGPwdN\nfb/W8Y53JhtMsubEbY5bpvWnms76siyS5v1e47puvba2W2+U58rYNZyiNn7eVIc04djHlau0ehVv\n9FJe1Mdiamym3t5+mUZiSXu4qKfMaDqfd9plsV0XJ+lo6xrG/sY7sb4ff8/Ysc329sYS/IoUzcnj\nnx1adUpnfdI47c32qn281bTbr3pnjJ31UKtX7Wb91Oo1fY/uGXdcV4yv03o7eo1v1H9p1/lp112d\nPZinqKesNt+TYmL9vTvP51PMK6eYnsnvF8e9rx33TOPnTXh2KVtTOu+FJm57iue4Hexju/JYZGdv\nxyw1WZkqkrI6fnr7WbB13bfuv8qx+4pdujeazjZj7J5v7B6wksbX5DvnJdtdM8XEa7Lj3q9Ixu41\nO+9dO5cfH8c47ctxqmPf2TnZfh/jruVi8mW2m1Z2tCdlsz6pd9w7tb5o0LrfaycwNuuOSqud2ctn\n5L36Quq+L6RFWc/SFfNy0LJd+9ze5/vdN23JO4sWLcrQ0FB7vF6vt5NwJs4bGhrKwMDADteZyuN7\n210z+9xBBw3kkUc2dzsMtlMk6U0lvakk6Z04u9L8B3tI2Ye5SdmHuUnZh7lJ2Ye5SdmHuUnZh7lJ\n2YdZZjS7VKaV/f1nR0lS0/ZR/amnnprrrrsuSbJ27docf/zx7XnHHHNM1q1blyeeeCLDw8P50Y9+\nlGc961k7XAcAAAAAAAAAAGabaet556yzzsr111+fV7/61SnLMldccUWuvfbabNmyJRdccEEuvfTS\nXHzxxSnLMueee24OOeSQSdcBAAAAAAAAAIDZqijLSX7QfgbRfdOBR7daMDcp+zA3KfswNyn7MDcp\n+zA3KfswNyn7MDcp+zA3Kfv7T1d+NgsAAAAAAAAAANgxyTsAAAAAAAAAANAlkncAAAAAAAAAAKBL\nJO8AAAAAAAAAAECXSN4BAAAAAAAAAIAukbwDAAAAAAAAAABdInkHAAAAAAAAAAC6RPIOAAAAAAAA\nAAB0ieQdAAAAAAAAAADoEsk7AAAAAAAAAADQJZJ3AAAAAAAAAACgSyTvAAAAAAAAAABAl0jeAQAA\nAAAAAACALpG8AwAAAAAAAAAAXSJ5BwAAAAAAAAAAukTyDgAAAAAAAAAAdInkHQAAAAAAAAAA6BLJ\nOwAAAAAAAAAA0CWSdwAAAAAAAAAAoEsk7wAAAAAAAAAAQJcUZVmW3Q4CAAAAAAAAAADmIj3vAAAA\nAAAAAABAl0jeAQAAAAAAAACALpG8AwAAAAAAAAAAXSJ5BwAAAAAAAAAAukTyDgAAAAAAAAAAdInk\nHQAAAAAAAAAA6JKebgfA7FGv1/Pe9743d9xxR/r6+nL55ZfnyCOP7HZYwDQYGRnJO9/5zjz44IMZ\nHh7Om9/85qxatSq///u/n6OOOipJcuGFF+alL31pdwMF9rlXvvKVWbRoUZLk8MMPz5ve9KZceuml\nKYoixx13XN7znvekUpEfDrPJV7/61Xzta19Lkmzbti233XZbrrrqKu0+zGI//elP8xd/8Re58sor\ns27duknb+i9/+cv50pe+lJ6enrz5zW/Ob/zGb3Q7bGAvdZb92267LR/4wAdSrVbT19eXj3zkI1m5\ncmUuv/zy3HjjjVm4cGGS5NOf/nQGBga6HDmwpzrL/a233jrpPb42H2afzrL/9re/PY8++miS5MEH\nH8wzn/nMfOITn9Dmwywy2Wd6xx57rGf9A5DkHfaZ73znOxkeHs5VV12VtWvX5sMf/nA+85nPdDss\nYBp84xvfyNKlS/PRj340TzzxRM4555y85S1vyRve8Ia88Y1v7HZ4wDTZtm1byrLMlVde2Z72pje9\nKW9729ty2mmn5d3vfnf+9V//NWeddVYXowT2tVe96lV51atelSR53/vel3PPPTe33HKLdh9mqc99\n7nP5xje+kfnz5ydJPvShD23X1p9yyim58sor85WvfCXbtm3La17zmrzgBS9IX19fl6MH9tTEsv/B\nD34w73rXu3LiiSfmS1/6Uj73uc/lsssuyy233JLPf/7zWb58eZcjBvbWxHI/2T3+I488os2HWWZi\n2f/EJz6RJNm4cWMuuuiiXHbZZUmizYdZZLLP9J761Kd61j8A+Vo0+8yPf/zjnHHGGUmSU045JTff\nfHOXIwKmy0te8pL88R//cZKkLMtUq9XcfPPN+bd/+7f87u/+bt75zndmcHCwy1EC+9rtt9+eJ598\nMm984xtz0UUXZe3atbnlllvyvOc9L0nyohe9KN///ve7HCUwXX72s5/l7rvvzgUXXKDdh1ls9erV\n+eQnP9ken6ytv+mmm/KsZz0rfX19GRgYyOrVq3P77bd3K2RgH5hY9j/+8Y/nxBNPTJLUarX09/en\nXq9n3bp1efe7351Xv/rVufrqq7sVLrAPTCz3k93ja/Nh9plY9ls++clP5rWvfW0OPvhgbT7MMpN9\npudZ/8AkeYd9ZnBwsP0zGklSrVYzOjraxYiA6bJw4cIsWrQog4ODeetb35q3ve1tOfnkk/OOd7wj\nf/d3f5cjjjgin/rUp7odJrCPzZs3LxdffHG+8IUv5H3ve18uueSSlGWZoiiSNOqGzZs3dzlKYLr8\n7d/+bd7ylrckiXYfZrEXv/jF6ekZ66h5srZ+cHBwXJf5CxculMQHM9zEsn/wwQcnSW688cZ88Ytf\nzO/93u9ly5Ytee1rX5uPfvSj+fznP5+///u/98d8mMEmlvvJ7vG1+TD7TCz7SbJhw4bccMMN7V53\ntfkwu0z2mZ5n/QOT5B32mUWLFmVoaKg9Xq/Xt7sBAGaP9evX56KLLsrZZ5+dl7/85TnrrLPy9Kc/\nPUly1lln5dZbb+1yhMC+tmbNmrziFa9IURRZs2ZNli5dmg0bNrTnDw0NZfHixV2MEJgumzZtyn33\n3ZfTTz89SbT7MIdUKmN/Omq19ROf/4eGhsb9gQ+YHb75zW/mPe95Tz772c9m+fLlmT9/fi666KLM\nnz8/ixYtyumnn+6DPJhFJrvH1+bD3PDP//zPednLXpZqtZok2nyYhSZ+pudZ/8AkeYd95tRTT811\n112XJFm7dm2OP/74LkcETJdHH300b3zjG/Onf/qnOe+885IkF198cW666aYkyQ033JCnPe1p3QwR\nmAZXX311PvzhDydJHn744QwODuYFL3hBfvCDHyRJrrvuujznOc/pZojANPnhD3+Y5z//+e1x7T7M\nHSeddNJ2bf3JJ5+cH//4x9m2bVs2b96ce+65x98AYJa55ppr8sUvfjFXXnlljjjiiCTJz3/+81x4\n4YWp1WoZGRnJjTfe6B4AZpHJ7vG1+TA33HDDDXnRi17UHtfmw+wy2Wd6nvUPTLpFYZ8566yzcv31\n1+fVr351yrLMFVdc0e2QgGnyN3/zN9m0aVM+/elP59Of/nSS5NJLL80VV1yR3t7erFy5Mh/4wAe6\nHCWwr5133nm57LLLcuGFF6YoilxxxRVZtmxZ3vWud+XjH/94jj766Lz4xS/udpjANLjvvvty+OGH\nt8ff+9735gMf+IB2H+aAP/uzP9uura9Wq3nd616X17zmNSnLMm9/+9vT39/f7VCBfaRWq+WDH/xg\nVq1alT/6oz9Kkjz3uc/NW9/61px99tk5//zz09vbm7PPPjvHHXdcl6MF9pXJ7vEXLVqkzYc54L77\n7msn6ybJMccco82HWWSyz/T+x//4H7n88ss96x9girIsy24HAQAAAAAAAAAAc5GfzQIAAAAAAAAA\ngC6RvAMAAAAAAAAAAF0ieQcAAAAAAAAAALpE8g4AAAAAAAAAAHSJ5B0AAAAAAAAAAOgSyTsAAAAA\n7JavfvWrufTSS7sdBgAAAMCsIHkHAAAAAAAAAAC6pKfbAQAAAAAwPT772c/mW9/6Vmq1Wl74whfm\nwgsvzB/8wR/kiCOOyLp163LYYYflox/9aJYuXZrvfe97+cu//MvU6/UcccQRef/735+VK1fm+9//\nfj784Q+nLMscdthh+djHPpYkWbduXV73utfll7/8ZZ7//Ofn8ssv7/LRAgAAAMxMet4BAAAAmIWu\nu+663Hzzzbn66qvz9a9/PQ8//HCuvfba3HnnnXn961+ff/qnf8oxxxyTv/7rv86GDRvy7ne/O5/6\n1Kdy7bXX5tRTT8373//+DA8P55JLLslHPvKRXHvttTnhhBPyta99LUmyfv36fPKTn8y3vvWtXHfd\ndbnrrru6fMQAAAAAM5OedwAAAABmoRtuuCE33XRTXvWqVyVJtm7dmrIsc9RRR+W0005Lkpxzzjm5\n5JJL8oIXvCAnn3xyDj/88CTJBRdckM9+9rO54447csghh+TEE09MkvzJn/xJkuSrX/1qnvOc52Tp\n0qVJktWrV+fxxx/f34cIAAAAMCtI3gEAAACYhWq1Wl7/+tfnDW94Q5Jk06ZNeeihh/L2t7+9vUxZ\nlqlWq6nX6+PWLcsyo6Oj6e3tHTd98+bNGRoaSpL09Iz9WakoipRlOV2HAgAAADCr+dksAAAAgFno\n9NNPzzXXXJOhoaGMjo7mLW95S26++ebcd999ue2225IkX/nKV/KiF70oz3zmM/PTn/40DzzwQJLk\nqquuymmnnZY1a9bksccey913350k+fznP59/+Id/6NoxAQAAAMxGet4BAAAAmIXOPPPM3H777Tn/\n/PNTq9Vyxhln5LnPfW6WLFmSv/qrv8r999+fE044IZdffnkWLFiQ97///fnDP/zDjIyM5LDDDssH\nP/jB9Pf356Mf/Wje8Y53ZGRkJKtXr86f//mf59vf/na3Dw8AAABg1ihKfRoDAAAAzAkPPPBALrro\nonz3u9/tdigAAAAANPnZLAAAAAAAAAAA6BI97wAAAAAAAAAAQJfoeQcAAAAAAAAAALpE8g4AAAAA\nAAAAAHSJ5B0AAAAAAAAAAOgSyTsAAAAAAAAAANAlkncAAAAAAAAAAKBLJO8AAAAAAAAAAECX/P/F\nN2YK5ZjUdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "print(\"epoch\", epoch)\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k, fontsize=30)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0034859505006226755" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error did not improve\n", + "Epoch 00001: val_mean_squared_error did not improve\n", + "lr changed to 0.0005904900433961303\n", + "Epoch 00002: val_mean_squared_error did not improve\n", + "Epoch 00003: val_mean_squared_error did not improve\n", + "lr changed to 0.0005314410547725857\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "lr changed to 0.00047829695977270604\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error did not improve\n", + "lr changed to 0.0004304672533180565\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "lr changed to 0.00038742052274756136\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "lr changed to 0.0003486784757114947\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "lr changed to 0.00031381062290165574\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error did not improve\n", + "lr changed to 0.0002824295632308349\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "lr changed to 0.00025418660952709616\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error did not improve\n", + "lr changed to 0.00022876793809700757\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "lr changed to 0.00020589114428730683\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "lr changed to 0.00018530203378759326\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "lr changed to 0.00016677183302817866\n", + "Epoch 00026: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00027: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "lr changed to 0.00015009464841568844\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "lr changed to 0.0001350851875031367\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "lr changed to 0.00012157666351413355\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "lr changed to 0.00010941899454337544\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "lr changed to 9.847709443420172e-05\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "lr changed to 8.862938630045391e-05\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "lr changed to 7.976644701557234e-05\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "lr changed to 7.178980231401511e-05\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "lr changed to 6.461082011810504e-05\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "lr changed to 5.8149741380475466e-05\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "lr changed to 5.233476658759173e-05\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error did not improve\n", + "lr changed to 4.7101289601414466e-05\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "lr changed to 4.239116096869111e-05\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "lr changed to 3.815204618149437e-05\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "lr changed to 3.4336842873017304e-05\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "lr changed to 3.0903160222806036e-05\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "lr changed to 2.7812844200525434e-05\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error did not improve\n", + "lr changed to 2.5031560107890984e-05\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "lr changed to 2.2528404588229024e-05\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n" + ] + } + ], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler) # do sth to learning rate\n", + "\n", + "callbacks_list = [checkpoint, lr_decay] # checkin with these once in a while\n", + "history = model.fit(trainX, trainY, epochs=int(epoch/3), batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAJoCAYAAAATN9ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fW9x/H3GcnJHmRvkjACJGyQEQcuHIgbtI66WrX1\n1jraqq1eOxy3VmuvvVrroHUV3FtcKEjYKySBQAYGsvceJ2fcPwJHIgFZ4SQnr+fjwSPnnN/v+zuf\nk8DnnId5+/kanE6nUwAAAAAAAAAAAAAAAAAGHaO7CwAAAAAAAAAAAAAAAABwdAj/AAAAAAAAAAAA\nAAAAAIMU4R8AAAAAAAAAAAAAAABgkCL8AwAAAAAAAAAAAAAAAAxShH8AAAAAAAAAAAAAAACAQYrw\nDwAAAAAAAAAAAAAAADBIEf4BAAAAAAAYYkpLSzV69GiNHj1aDzzwgLvLAQAAAAAAwDEg/AMAAAAA\nAAAAAAAAAAAMUoR/AAAAAAAAAAAAAAAAgEGK8A8AAAAAAAAAAAAAAAAwSBH+AQAAAAAAAAAAAAAA\nAAYpwj8AAAAAAAAAAAAAAADAIGV2dwEAAAAAAAAYeAoKCvTqq69q7dq1qqyslNPpVGRkpKZNm6Yr\nr7xS6enpB11rs9n0/vvv6+OPP9a2bdvU1NQkf39/xcbGasaMGbryyiuVlJR03NcCAAAAAAAMRQan\n0+l0dxEAAAAAAAA4cUpLS3XGGWdIkhYuXKg//OEPrmNOp1OPP/64XnjhBTkcjj7XGwwGXXXVVbr3\n3ntlNvf+f8taWlr005/+VJs2bTro85tMJv32t7/VVVddddzWAgAAAAAADFVM/gEAAAAAAIDLww8/\nrJdeekmSFBoaquuuu05TpkyR0WjU1q1b9eKLL6q6ulqvvPKK2tra9Oijj/Za/8gjj7jCO5dddpnO\nOusshYWFqampSevWrdPLL7+s9vZ2/elPf9KUKVOUlpZ2XNYCAAAAAAAMVYR/AAAAAAAAIEnauHGj\nK/iTnJysl156SZGRka7jU6ZM0cUXX6wbbrhBeXl5euedd3T66afr7LPPliRZrVZ98MEHkqTLL79c\nf/rTn3pdPzMzU1OmTNFPf/pTORwOvfHGG7r//vuPeS0AAAAAAMBQRvgHAAAAAAAAkqQXXnjBdfvP\nf/5zr+DPPiEhIXryySd1zjnnyG6367nnnnOFf5qbm2W1WiVJSUlJfT7HqaeeqmuuuUbBwcEaP368\n6/FjWQsAAAAAADCUEf4BAAAAAACAbDab1qxZI0kaN27cIcM1iYmJyszM1PLly5WTk6OGhgaFhoYq\nLCxMISEhamxs1LPPPqvw8HCde+658vHx6bX+d7/73QHXPJa1AAAAAAAAQ5nR3QUAAAAAAADA/crL\ny9XW1iZJmjBhwg+ev+8cp9OpgoICSZLBYNBNN90kSWppadE999yj6dOn64YbbtBzzz2n7du3y+l0\n9nm9Y1kLAAAAAAAwlDH5BwAAAAAAAGpsbHTdDgsL+8Hzw8PDXbebmppct3/yk5/I4XDo6aefVmdn\np7q6upSVlaWsrCz95S9/UWRkpObOnavrrrtO8fHxva55LGsBAAAAAACGKib/AAAAAAAA4Iin6tjt\ndtdtg8HQ69jNN9+sFStW6KGHHtIZZ5whf39/17Hq6mq9/PLLOu+887Rs2bIDrnssawEAAAAAAIYi\nJv8AAAAAAABAwcHBrtt1dXU/eP7+54SEhPR5vcsuu0yXXXaZbDabcnJylJWVpaVLl6qgoEBdXV26\n5557tGzZMgUEBBy3tQAAAAAAAEMNk38AAAAAAACghIQE+fn5SZKys7N/8PwtW7a4bicnJ7tuV1ZW\natWqVbLZbK7HzGazJk2apNtuu00ffPCB5s6dK6lnu7CNGzcel7UAAAAAAABDFeEfAAAAAAAAyGQy\nacaMGZKkvLw85ebmHvTckpISrV69WpKUlpamsLAwSdLTTz+tU089Vddff73Wr1/f51qDwaCTTz7Z\ndd9qtR7zWgAAAAAAgKGM8A8AAAAAAAAkSddff73r9q9//WvV1tYecE5TU5PuuOMO2e12SdINN9zg\nOjZnzhzX7SeeeEJdXV0HrHc4HPr4448lSUajUWPHjj3mtQAAAAAAAEOZ2d0FAAAAAAAAYGCYPn26\nrrnmGr388ssqKirS/Pnz9eMf/1hTpkyRwWBQTk6OFi1apMrKSknSvHnzdOGFF7rWjxkzRnPnztWn\nn36qrVu3av78+br22muVkpIiLy8vlZaWavHixdq8ebMk6eKLL1ZcXNwxrwUAAAAAABjKDE6n0+nu\nIgAAAAAAAHDilJaW6owzzpAkLVy4UH/4wx9cxxwOhx577DEtWrRIB/vPRgaDQdddd53uuusueXl5\n9TrW0tKiW265RRs2bDhkDWeffbYef/xxeXt7H5e1AAAAAAAAQxXhHwAAAAAAgCHmUOGfffLz8/Xa\na69p7dq1qqqqktFoVGxsrE466SRdfvnlSktLO+j1HQ6HPvzwQ3388cfavn276urqZDKZFB4ersmT\nJ+vCCy9UZmbmcV8LAAAAAAAwFBH+AQAAAAAAAAAAAAAAAAYpo7sLAAAAAAAAAAAAAAAAAHB0CP8A\nAAAAAAAAAAAAAAAAgxThHwAAAAAAAAAAAAAAAGCQIvwDAAAAAAAAAAAAAAAADFKEfwAAAAAAAAAA\nAAAAAIBByuzuAgaCmpoWd5eA7wkN9VNDQ7u7ywCA447+BsBT0d8AeDJ6HABPRX8D4KnobwA8Ff0N\nQEREYJ+PM/kHA5LZbHJ3CQDQL+hvADwV/Q2AJ6PHAfBU9DcAnor+BsBT0d8AHAzhHwAAAAAAAAAA\nAAAAAGCQIvwDAAAAAAAAAAAAAAAADFKEfwAAAAAAAAAAAAAAAIBBivAPAAAAAAAAAAAAAAAAMEgR\n/gEAAAAAAAAAAAAAAAAGKcI/AAAAAAAAAAAAAAAAwCBF+AcAAAAAAAAAAAAAAAAYpAj/AAAAAAAA\nAAAAAAAAAINUv4V/HA6HHnjgAS1cuFDXXHONSkpKeh1ftmyZLr30Ui1cuFCvv/76IdeUlJToyiuv\n1I9+9CP993//txwOh+s69fX1mjt3rrq6uiRJLS0tuuWWW3T11Vdr4cKF2rx5c3+9RAAAAAAAAAAA\nAAAAAMCt+i3888UXX8hqtWrJkiW666679Oijj7qOdXd365FHHtGLL76ol19+WUuWLFFtbe1B1zzy\nyCP65S9/qddee01Op1NffvmlJOmbb77RDTfcoJqaGte1Fy1apBkzZuiVV17RI488oj/84Q/99RIB\nAAAAAAAAAAAAAAAAt+q38M/GjRt18sknS5ImTpyo3Nxc17GioiIlJiYqODhY3t7emjJlitavX3/Q\nNXl5eZo+fbok6ZRTTtGqVat6ijcatWjRIoWEhLiufd111+mKK66QJNntdlkslv56iQAAAAAAAAAA\nAAAAAIBbmfvrwq2trQoICHDdN5lMstlsMpvNam1tVWBgoOuYv7+/WltbD7rG6XTKYDC4zm1paZEk\nzZ49+4DnDQoKkiTV1NToV7/6le67774frDU01E9ms+noXij6TURE4A+fBACDEP0NgKeivwHwZPQ4\nAJ6K/gbAU9HfAHgq+huAvvRb+CcgIEBtbW2u+w6HQ2azuc9jbW1tCgwMPOgao9HY69x9AZ+D2bFj\nh+688079+te/dk0MOpSGhvbDfl04MSIiAlVT0+LuMgDguKO/AfBU9DcAnoweB8BT0d8AeCr6GwBP\nRX8DcLAAYL9t+zV58mStWLFCkrRlyxaNGjXKdSw1NVUlJSVqbGyU1WrVhg0bNGnSpIOuGTt2rNau\nXStJWrFihaZOnXrQ5y0sLNTtt9+uxx9/XKeeemp/vTwAAAAAAAAAAAAAAADA7fpt8s9ZZ52lrKws\nXXHFFXI6nXr44Yf1wQcfqL29XQsXLtQ999yjG2+8UU6nU5deeqmioqL6XCNJv/nNb3T//ffriSee\nUEpKiubOnXvQ53388cdltVr10EMPSeqZMvTMM8/018sEAAAAAAAAAAAAAAAA3MbgdDqd7i7C3RiN\nNvAwsg6Ap6K/AfBU9DcAnoweB8BT0d8AeCr6GwBPRX8DcMK3/QIAAAAAAAAAAAAAAADQvwj/AAAA\nAAAAAAAAAAAAAIMU4R8AAAAAAAAAAAAAAABgkCL8AwAAAAAAAAAAAAAAAAxShH8AAAAAAAAAAAAA\nAACAQYrwDwAAAAAAAAAAAAAAADBIEf7BgPPhqm91x5PL1dTa5e5SAAAAAAAAAAAAAAAABjTCPxhw\nLN4mFe5p1JNvbFVHl83d5QAAAAAAAAAAAAAAAAxYhH8w4Jw5JV5zZySppKpFz7ybK5vd4e6SAAAA\nAAAAAAAAAAAABiTCPxhwDAaDbr1kvManhil3V73+vTRfTqfzsNYWFhb0c3WHdtttP1Vm5lSdfvos\nt9YBAAAAAAAAAAAAAACGBsI/GJBMJqNuvTBdyTGBysqp1Lvf7Drk+a2trXryyb/oxhuvPkEVAgAA\nAAAAAAAAAAAAuB/hHwxYFm+Tbr9sgiJDfPXBqm/19Zayg5771FNP6M03F8tut5/ACgEAAAAAAAAA\nAAAAANzL7O4CgEMJ8vfWHQsn6KGXNurlT3coJMCiiSPCDzjP4XC4oboD/f3v/3R3CQAAAAAAAAAA\nAAAAYAhh8g8GvKhQP91++Xh5mYz6x3u5Ki5vdndJAAAAAAAAAAAAAAAAAwLhHwwKqbHBuuWidHXb\nHHryjWxVNbS7uyQAAAAAAAAAAAAAAAC3Y9svDBoTR4Trmrmj9dLSHfrrkmzdd80UvbF4kRYteq7X\neZmZU3vOnzhZf//7P/XQQw/qk08+1IgRo/T88y/pueee0dKlH6qlpUVhYRGaM+cM/exnv3Ct7+rq\n0qeffqzVq7NUULBDTU2NstlsCgwMUnJyqmbPztQFF1wsX1/fA2q87bafasuWTfL29tayZav6rOsX\nv7hTCxb8SMuXL9MHH7yrnTt3qKWlWaGhwzR58lQtWHClRo1KO97fPgAAAAAAAAAAAAAA4IEI/2BQ\nOW1inOqbu/Thqm/1tzezFWV3HtH6P/7xAX355Weu+xUVZfLx8XHd37EjX/fee5eqq6sOWFtfX6f6\n+jpt3LhOb7/9pp566h+KiIg84tdgtzv0+9//Tp9/vrTX49XVVVq69CN99tknuvvuezV//sVHfG0A\nAAAAAAAAAAAAADC0EP7BoHPxyclqaOlUVk6lvKLH6vkXXtGiF59VVtY3kqRFi16VJPn6+vVaV1xc\nqMLCncrImKBrrrlePj4+ysr6RuedN1+S1NTUqDvu+Lmam5tkMpl03nkXaNasTIWGhqmlpUkFBTv1\n+uuvqbGxUaWlu/X3vz+p3//+4SOuf/Hil1VXV6fhw5O1YMGPlJo6Ui0tzXr3vXe18ptlcjgc+utf\nH9P06TMVHR19jN8tAAAAAAAAAAAAAADgyQj/YNAxGAz68Tlpamq1KndXvdYUS4GBQa7jI0eO7nOd\nw+FQXFy8nnzy/2Sx9Ez7mTx5quv4kiWvqbm5SZL085/frgULftRr/cyZmTr33Hm65poFam1t1Tff\nLJfNZpPZfGT/jOrq6jRlynT9+c9/lcVikSRtLqhRa+Q8BSe1q6lkjbq7rfrz06/o9p/drKTowCO6\nPgAAAAAAAAAAAAAAGDqM7i4AOBpmk1G3XpSupKhArcguV2lN62GtO/fcea7gz/fV1tYoPDxCYWFh\nuuSSBX2eExERqUmTpkiSrNYuV1joSP3yl3fLYrHI7nDoja8L9dRbOeq2O3Tlgu+ed3t+vn7/r/V6\ncNE6fbWpVO2dtqN6LgAAAAAAAAAAAAAA4LmY/HMCvb6sUOvzq91dxgk1LS1SC04f0S/X9rWY9cvL\nx+uhlzcqd8vhhX/Gjcs46LH77vtvST0TgozGg+fihg0Lc922WrsPs9rvREREKjk5RY2tXfrHe3na\nuadRkaG++tlF6QoPNOofj/WclxRh0dgR4dpaVKeXP9upJV8ValpapE6ZEKsRccEyGAxH/NwAAAAA\nAAAAAAAAAMCzEP7BoBYcYNEdCybo5pWHN8QqKirqB8/ZF/yx2WyqrKxQeXmZ9uwpUVFRofLyclRU\nVOg61+l0HHHN0dExyi9p0D/ez1Nzm1VTRkXo+vPGyM/HLKfT6TrP38ekX1w2Xg0tXcrKqdCK7HJl\n5VQqK6dSseH+OmV8jGamRyvQz/uIawAAAAAAAAAAAAAAAJ6B8M8JtOD0Ef02BWcoiwnz15ikUGWV\n9NzfVdGs5JigPs/18ws45LU6Ozv19ttv6IsvlqqoqFB2u/2Ac4xGoxyOIw/97NPaZdBjizfLaDDo\nitNH6KxpCa4pPvtP89kXBAoNtGjerOE6b2aS8ksatCK7XJt21mjxskK9ubxIk0dF6JQJsUpLCpWR\naUAAAAAAAAAAAAAAAAwphH/gEYL8v5t+87c3snXftVMVGeJ7wHmHysaUl5fpzjtvU2npHtdjXl5e\nSkhIVFJSskaPTtPEiVP06acf65133jjqWqsa2pURYNGtF6ZrRHzwYa8zGgwaO3yYxg4fppZ2q1bn\nVmp5drnWba/Wuu3Vigjx0cnjY5U5PkYhAZajrg8AAAAAAAAAAAAAAAwehH/gcZrbu/XXJVt03zVT\njmhLrAcf/K0r+HPmmXN12WULlZY2VmZz738m77331hHXtKui2XU7wNdL/339NAUdw3ZdgX7eOnt6\nos6alqDCsiatyC7X+u3VentFsd79ZpfGp4bplImxykgZJpPx8LZEAwAAAAAAAAAAAAAAgw/hH3ic\nc2ck6pM1u/W/b27V3VdOOqw1+fnbtG1briRp8uSpevDBhw56blVV5WHX4nQ69fXmMv3nywLXY8Oj\nA48p+LM/g8GgkfEhGhkfoivPGKW123qmAW0prNWWwlqFBlo0OyNGp4yPUXgfk5AAAAAAAAAAAAAA\nAMDgRvgHHsGw335el56aqoaWLq3Jq9I/38+T0+n8wfX7b/U1evSYg55XUVGunJxs13273X7Qczut\nNr306Q6tyatSgK/X/tX+YD1Hw8/HrDmT4zVncrxKKlu0PLtca/Iq9eGqb/XRqm81NnmYTpkQq0kj\nw2U2MQ0IAAAAAAAAAAAAAABPQPgHHsHb+7tJOp0dHbrhvDFqarVqc0GtVN58iJU9goNDXLc3bFgr\nm812wHZfdXW1uv/+e9Td3e16zGq19nk9p1P64783qKKuXamxQbr1onTNf+NIX9XRS4oO1LXRo7Vw\nzgitz6/Wiuxy5e2qV96uegX6eWl2eoxOnhCjmDD/E1cUAAAAAAAAAAAAAAA47gj/wCOEhYW7bv/z\nn/+nc845X3PTvdXSHqANW9p/cP348RMVFhauurpaFRTs1O2336pLLlmg6OgYNTc3acuWTfroo/fU\n2NjYa11bW2uf17PZHaqoa9eZU+O1YM4It03asXiblDk+RpnjY1RW26Zvssu1KrdSS9ft1tJ1uzUq\nPlinTIzV1NGR8vYyuaVGuIfT6VR1Q4dCAiyyePOzBwAAAAAAAAAAAIDBivAPPEJm5in617+el91u\n15tvLtGbby5RVFS0nv/XW7r+6x8ONlgsFt1//x/0m9/coa6uLmVnb1Z29uYDzktISNS8eRfqmWee\nkiTt2lWsjIwJkqRum0NVDR2uc2+9KF3T0iKP0ys8dnHh/rrijJG69NRUbS6o0fIt5dpe0qCdpU16\n9fMCzRwXpQkjwpUQGaBgf+9eW6nBc9Q3d2p1XqVW5Vaqoq5dZpNRaUkhmpAarvGpYYoI8XV3iQAA\nAAAAAAAAAACAI0D4Bx5h5MjRevTRx/Xvf7+ooqJCORx2mc1m+Xo5NW74MC3f1XPejt2NmrXflKD9\nTZ06XYsWvar//OcVbdiwXrW11ZJ6tgRLTk7RnDlnau7cc2W327Vo0XPq7OzUsmWfa/78i1Xb2KFn\n3stVY0uXJMlsMg6o4M/+vMxGTR8TpeljolTd2KFvssu1MqdCyzaVadmmMklSgK+XEiIDlBAZoPiI\nnq+x4X7yMjMhZjDqstq1aWeNsnIrtP3bBjnV83d00shw1TR2Kre4XrnF9Xr1cyk23F/jU8M0ITVM\nqXHBbptaBQAAAAAAAAAAAAA4PAan0+l0dxHuVlPT4u4S8D0REYHH9eeyY3eDHl+yRWaTUfdcNVmJ\nUYHH7drZhbV6/sNtauu0aVZ6tK6ZO1qWQbaFlt3hUN6uehWXN6u0pk17qltU09jZ6xyjwaDoMD/F\nR/j3CgaFBlqYEjQAOZxO7dzdqFW5lVq/o1pdVrskaURcsGZlRGt6WqT8fLwkSXVNndpaXKethbXa\nXtIgq80hSfKzmJWeMkwTUsOVnjJMgX7ebns9nuR49zcAGCjobwA8GT0OgKeivwHwVPQ3AJ6K/gYg\nIqLvrAPhHxH+GYj6441rfX61/vFuroL8vfXba6coPPjYtjeyOxx695td+mh1icwmo646a6ROmRDr\nMUGYji6bymrbtKe6VaXVrdpT0/O1c2+IZB9/H7NrOlB85L4pQf6DLgDlKaoa2rUqp1Kr8ypV29QT\n4AoLsmhmeoxmp0crapjfIddbu+3K392g7KKeMFBdc880K4OklLgg1/ZgCZEBHvN3/UTjgzkAT0V/\nA+DJ6HEAPBX9DYCnor8B8FT0NwCEfw6BBjnw9Ncb12fr92jxlwWKCfPTvVdPUYCv11Fdp6nNqmff\ny1X+7kZFhPjoZxdlKCn6+E0TGqgcTqfqmjp7wkD7BYKqGzq0fyMxGKSoUD9XGCghIkDxkf4KC/Ih\nMNIP2jttWp9fpazcShWWNkmSLF4mTU2L0Oz0GI1KDJHxKL7vTqdTZbVt2lpUp+zCWhWWNWnfO0Zo\noEUTUsM0PjVcY4aHEvY6AnwwB+Cp6G8APBk9DoCnor8B8FT0NwCeiv4GgPDPIdAgB57+fONa/GWB\nPlu/RyPjg3X3FRPlZT6y0MLOPY165r1cNbVaNWlkuG48f4xr+6ShqtPaMyWotLpVpdU924btqWlT\nR5et13m+FrMSIvwVv9+UoPjwAFm8CY4cKYfDqbxv65WVU6HNBbXqtjlkkJSWFKrZGdGaMiryuH9f\nWzu6lVtcp61FdcoprlNbZ8/P18tsVFpiqManhmlCapjCQ45tqpan44M5AE9FfwPgyehxADwV/Q2A\np6K/AfBU9DcAhH8OgQY58PTnG5fD6dQ/38/Tuu3VmjI6QrdemC6j8YenojidTi1dt1tvfV0sSbrs\ntFTNnZ7AJJuDcDqdqm/u6jUhqLSmVZX17dq/6xgkRYT6amR88DFNqRkqSmtatSq3Z1uvplarJClq\nmJ9mp0dr5rhohQX7nJA67A6HisqatbWoTluLalVa0+Y6Fhfu3xMEGhGu1LggmYzGE1LTYMEHcwCe\niv4GwJPR4wB4KvobAE9FfwPgqehvAAj/HAINcuDp7zeubptDTyzZoh17GnXmlHhdeebIQ4Z42ju7\n9cJH27W5oFbBAd669cJ0jUoI6bf6PFlXt13le6cE7dkbCNpT3eqaIhMe7KPZGTGanR7NBJm9Wtqt\nWrOtSqtyKlVS1fPvws9i1vSxUZqdHq2U2CC3h9BqmzqUU1Sn7KI6bS9pULfNIUny9zErPSVM41PD\nlJESdtRb7XkSPpgD8FT0NwCejB4HwFPR3wB4KvobAE9FfwNA+OcQaJADz4l442rv7NYjr2xSWW2b\nFswZoXNOSuzzvJLKFj39bo5qGjuVlhiimy9MV7C/d7/WNtQ4nE4V7GnUyq0VWr+jWtbunuBIWmKI\nZmfEaOro47+F1UBnszuUXVinVbkV2lpUJ7vDKaPBoIyUYZqdEaMJI8KOeMu6E6Wr2678kgZl750K\nVN/cJUkyGKTUuGBNSA3T+NRwxUf4uz205A58MAfgqehvADwZPQ6Ap6K/AfBU9DcAnor+BoDwzyHQ\nIAeeE/XGVd/cqYde3qiGli79dP5YzRgb7TrmdDq1Irtcr35eIJvdoXmzknRRZsphbRGGo9fRZdPG\nHTVamVOhnXsaJUkWb5OmpUUqMyNGI+ODPTYw4nQ69W1li1blVGrt9iq1dnRLkhIiAzQ7PVonjYse\ndMEzp9Opspo2ZRfVKruoTkVlTa5t34wGg/x8zPL39VKAj1l+Pl7y9zXL38dL/j57v7ruf3fbz8cs\ns2nwbiXGB3MAnor+BsCT0eMAeCr6GwBPRX8D4KnobwAI/xwCDXLgOZFvXKXVrXrk1Y2ydjt058KJ\nGpMUqi6rXS9/tkOrcivl72PWTfPGasKI8BNSD75T3dCuVbmVysqpVF1zpyQpMsRXszOiNSs9RmHB\nPm6u8PhoaOnSmrxKZeVWqry2TZIU5OelGeOiNSs9WolRfTfwwai1o1s5xXXKKa5TTWOH2jttauvo\nVlunTXbH4b8dWbxN3wWG9gaI/HvdNn/vfk9oyMfb5PbwGB/MAXgq+hsAT0aPA+Cp6G8APBX9DYCn\nor8BIPxzCDTIgedEv3FtL2nQE0u2yNvLqBvOG6N3V+5SWU2bkmMCdetF6QoP9j1hteBADqdTO0oa\ntDKnUht3VMtqc8ggaczwUM3OiNHkURGyeA3MLbD60mm16duKFu2qaNa2kgZt+7ZeTqdkNhk0cUS4\nZmXEKD152KCebnOknE6nurrtauuwqa2zJwzUEwrqVnunTa2d3WrrsKm917Geczut9sN+HpPRIH8f\ns0ICLUqMDFRiVIASowKVEBkgX4u5H1/hd/hgDsBT0d8AeDJ6HABPRX8D4KnobwA8Ff0NAOGfQ6BB\nDjzueONas61S/3x/m+v+6ZPjtPD0kfIyD50AxmDQ0WXT+vxqZeVUqKC0SZLkazFpWlqUMjNilBoX\n5PbJLvuzOxwqq2nTropmFZc3q7iiWeW1bdq/86bGBmlWRoympUUqwNfLfcUOUja7Q+1d+wWCOvYP\nDPXcdgWKOrvV2mFTfXOnum0O1zUMkiJDfZUY1RMISooKVGJUoIL6YZs1PpgD8FT0NwCejB4HwFPR\n3wB4KvobAE9FfwNwsPDPiRlzAAwCM8ZGq6W9W0vX7tblc1I1Y2y0u0tCH3wtZp0yIVanTIhVVX27\nsnIrlJXrgoKdAAAgAElEQVRTqRXZ5VqRXa6oYX7KzIjWzHHRGhZ0YrcFczqdqm/uUnFFs3aVN6u4\nvEnfVrXI2v1dyMTby6iRccFKiQ1WcmyQUmODTnidnsZsMirIz1tBfocf1LE7HKqsa9fuqlaVVLVo\nd1WLdle1an1+tdbnV7vOCwnw3hsIClTS3ilB4cE+Aypg9kOcTqc6umxqaOlSV7dDw6MDZTQOnvoB\nAAAAAAAAAAAAHBqTf8Tkn4GI1CqOhMPh1PaSBmXlVGjjzhp12xwyGKRxw4dpdkaMJo0Ml3c/bAvW\n3tmtXZUtKi7fG/apaFZzm9V13GCQ4sL9lRwTpJTYICXHBCkuwl8mI9OkBiKn06m6pk6VVLXuDQO1\naHd1qxpaunqd52cxu7YL2/c1JszvsH+ux7O/OZxOtbZ3q6GlS/UtnWps6VJ9S5cavvenq/u7rdEm\nj4rQzfPHMdUMwHHH5zcAnoweB8BT0d8AeCr6GwBPRX8DwOQfAB7LaDRoXPIwjUsepvZOm9blVykr\np0K5u+qVu6tevhazThoTqdnjY5QSc3TbgtnsDu2pbnVt37WrolkVde29zgkNtGjK6Ail7A37JEYF\nytdCmx0sDAaDwkN8FR7iqymjI1yPN7dbXZOB9n3dsbtR+bsbXed4mY2Kj/BXQuR3E4LiIwNkOYbQ\nmd3hUFOr1RXg6Qn1dPYK9TS2dslmP3iGN8DXS1GhvgoJtGhYoEWlNW3atLNGT729VbddnNEvoTgA\nAAAAAAAAAAAAJxaTf8Tkn4GI1CqOh4q6NmXlVGpVboUaW3sm8sSE+Wl2RoxmjotWaKClz3VOp1M1\njR0q3hf0KW9WSVWrbPbvtu/y8TYpOSao11Sfg10PnqfTalNpdVuvLcPKalt7BXEMBil6mJ+S9m4b\ntm9KUHLiMJVXNPYK9Rw4sadTTW1WHewd2mCQQgIsCgnoCfWEfv9PkI9CA7zlZe4d7rF22/X0u7na\nWlSntMQQ/del4wmoAThu+PwGwJPR4wB4KvobAE9FfwPgqehvAA42+Yfwjwj/DES8ceF4cjic2vZt\nvVbmVGjTzlrZ7D3bgqUnh2l2RrRGJYRod1XvqT6tHd2u9UaDQfGR/kqJDVZyTKBSYoMVM8xPRuOR\nTxCC57LZHSqvbdtvQlDPtmGdVnuv8/x9zGrrtB30OmaT4btQT5CPQgMODPcEB3gf9fZxNrtDz76f\np407apQaG6RfLpggfx+vo7oWAOyPz28APBk9DoCnor8B8FT0NwCeiv4GgPDPIdAgBx7euNBf2jq7\ntW57tVZurdCuiuY+zwkP9lFKbJBSYoKUvHf7rmPZvglDl2PvFKl9gaCSqhY1t3fL32LeG+6xKDRw\nv4BPkEWBvl5HtTXdkbA7HHrxo3ytzqtUYmSA7rxiooL8vPv1OQF4Pj6/AfBk9DgAnor+BsBT0d8A\neCr6G4CDhX/Y6wPAkOLv46U5k+I0Z1KcymrblJVTocq6diVEBri27wryJwSB48NoMCgq1E9RoX6a\nlhYpaWB8MDcZjbpx3hhZvE36enOZ/ufVTbr7iklsXQcAAAAAAAAAAAAMQoR/AAxZceH+WjBnhLvL\nANzCaDDomrNHydts1Gfr9+jRVzfqV1dMUniIr7tLAwAAAAAAAAAAAHAEjO4uAAAAuIfBYNDC00do\n/uzhqmns1KOvbVJlfbu7ywIAAAAAAAAAAABwBJj8AwDAEGYwGHTRySmyeJn0xtdFevTVTbp74UTF\nRwa4u7Tjwul0asOOGpVUtsjhdMrhcMru2O/r3se+f3//c5zOvtcc+hy5bgf4mnXS2ChlZsQoLsIz\nvq8AAAAAAAAAAAAYOAj/wKMUFhZoxIiR7i6jTxUV5QoODpafn7+7SwGAA5w7I0neXia9+vlO/c9r\nm3TnwolKjglyd1nHpKGlS/9emq+tRXXHfC2DQTIZDTIaDT1fDT2397/v7WX87pz9jlfVt+vTdXv0\n6bo9So4JVGZGjKaPjZK/j9dxeJUAAAAAAAAAAAAY6gj/wCO0trbq+ef/oXfeeUPLl691dzm9WK1W\nvfrqv/XKK//SK6+8QfgHwIB1xpR4WbxMWvTJdj32n8365eUTNCohxN1lHTGn06k1eVV69fOdau+y\naezwUM2bOVzeXiZXOMdoNMjYK9Bj7OOxfecZZDAYjrqebptD2YW1WplToZziOu2qaNF/vizU5FHh\nysyI0djhw2Q0Hv31AQAAAAAAAAAAMLQR/oFHeOqpJ/TRR++7u4w+vfbaS3rhhWfdXQYAHJbM8THy\n9jLquQ+26YnXt+i/Lh2vccOHubusw9bUZtVLS/O1uaBWFi+Trpk7WqdNjD2m8M6x8jIbNTUtUlPT\nItXQ0qXVeZVaubVC67ZXa932aoUGWjQrPVqZGTGKGubntjoBAAAAAAAAAAAwOBH+gUdwOBzuLuGg\n7Ha7u0sAgCMyfUyUvM0mPf1ujv72xlb97KJ0TRwZ7u6yftC67VV65bOdau3o1uiEEF1//hhFhvi6\nu6xeQgMtOm9Gks49KVHF5c1amVOhddur9NHqEn20ukQj4oOVmRGjaWmR8rXwMQ0AAAAAAAAAAAA/\njN8qAQCAA0wcGa7bL5+gp97aqv97J0c/uWCspo+JcndZfWppt+qVz3ZqfX61vM1GXXnmSJ0xJV5G\nN077+SEGg0GpccFKjQvWFWeM1KadNcrKqdD2bxtUWNqk177YqamjI5WZEaNRiSED+rUAAAAAAAAA\nAADAvQj/AACAPo0bPkx3Lpiov72ZrWffz5O126HM8THuLquXTTtr9NLSfDW3d2tEXLBuOH+MogfZ\n1lkWL5NmjovWzHHRqm3q0KrcSmXlVGhVbqVW5VYqPNhHmRkxmpUerfABNskIAAAAAAAAAAAA7mdw\nOp1OdxfhbjU1Le4uAd8TERF4WD+XF154VosWPdfnsYkTJ+vvf/9nr8fWrl2tjz9+X7m5OWpoqJe3\nt0Xx8QmaOXO2Lr10oUJCQg76XDU11Xr77Te0du1q7dmzWzZbt4KCgpWaOlKzZ5+sefPmy2LxcZ3/\n8ccf6OGHf9/ntaKjY/Tmmx/84OsD4HkOt78NJLsqmvXEki1q67Tp6rNH6fTJ8e4uSW2d3Xrt851a\nnVcls8moS05J0dnTEmQ0esaEHIfTqYI9jVq5tULrd1TL2t2zveWYpFBlZsRo8ugIWbxMbq4S6G0w\n9jcAOFz0OACeiv4GwFPR3wB4KvobgIiIwD4fZ/IPhoSOjg798Y8PaMWKr3o9brValZ+/Tfn52/T6\n66/p/vv/qMzMUw5Yv3Hjet13391qa2vr9XhdXa3q6mq1bt1q/ec/L+uJJ/6uxMSkfn0tAHCiJccE\n6Tc/mqy/LNmiVz7bqa5uu849yX29bmtRrRZ9kq+mVquSYwJ14/ljFRvu77Z6+oPRYNDoxFCNTgzV\nj84apQ07qpW1tULbSxq0vaRBvp+bNC0tSpkZMUqNC5KBbcEGjPZOmyrq2mR3OOVwOGV37v3qcMq5\n96vD6fzu+N77rtuO793+/rl7r+n83v19x30tZs0cG6W0pFD+XgAAAAAAAAAAMEQw+UdM/hmIDje1\nWldXq/r6Oj3//D+UlfWNJGnRolclSb6+foqPT5DD4dAdd/xcGzeulyTNmnWy5s49TzExMWpvb9fG\njev1zjtvqLW1VSaTSY8//pSmTp3ueo6WlhYtXHiRmpubFBISqquu+rHGjBkrb29vVVVV6qOP3tea\nNaskSaNHj9Hzz78kg8Gg5uYmVVVV6t1339J7770tSXrssScVHh4hs9lLyckpx/V7BmBwGMyp/Mr6\ndj32n81qaOnS/NnDdWFm8gkNF7R32rR4WYFWbq2QyWjQhZnJOndGokxG4wmrwd2qGtqVlVOhrJxK\nNbR0SZKih/lpdka0ZqXHKDTQ4uYKh7ac4jo9/+E2tbR3u7sURQ3z06kTYpU5PkYBvl4n5DkHc38D\ngB9CjwPgqehvADwV/Q2Ap6K/AWDyDzxSWFi4wsLCFRQU7Hps5MjRvc55883FruDP3Xffq4suurTX\n8alTp2vevAv1s5/dqLq6Oj388O/1+uvvyWzu+eexcuVyNTc3SZIefvgxjR8/0bV27Nh0zZlzpu6/\n/x599dUX2rFju3bsyFda2hgFBQUrKChYw4aFuc4fPjxFMTGxx/ebAAAnSPQwP9171WQ9tniz3s/6\nVl3ddi2YM+KEBIDydtVr0SfbVd/cpcSoAN10/ljFRwb0+/MONFGhfrrklFRdlJmi7SUNWplToY07\navTW8mK9vaJY6clhyhwfo4kjwuVlHjqhKHez2R16e0Wxlq7dLbPJoNMnx8nPxyyjwSCj0SCTce/X\n790/4Ph+jx/w2EEe33fNfX8q69q1fEuZ1ufX6PWvCvX2imJNTYvQaRPjNDI+mGlAAAAAAAAAAAB4\nIMI/8GgOh0OLF/dMApoxY9YBwZ994uLidcst/6WHHnpQ1dVVWr58mc4442xJPdOF9klISOxz/bXX\nXq/g4BDFxsYpMLDvpB0AeILwEF/dc9UU/WXxZn26bo+6uh26+uxRMvZToKCjy6Y3virU11vKZTIa\nNH/2cM2bNVxm09AOthiNBo1LHqZxycPU3tmttdurtXJrhXKK65RTXCd/H7NOGhulmenRSogIkLeX\nyd0le6yaxg49+36eisubFRXqq1suTFdStPs+CwT5eWtUQoiuPLNbWTkV+npLudbkVWlNXpViw/11\n6sRYzU6Plp/PiZkGBAAAAAAAAAAA+h/hnxPo7cIPtbk6x91lnFCTIjN0yYh5bnv+oqICVVdXSZKm\nTTvpkOfOmDHLdXvDhvWu8E9S0nDX4/fd9yv94hd3asyYcb3Wjhw5Wnfffc9xqhoABrbQQIt+c9Vk\nPbF4i77eXKYuq103nJ923Lffyi9p0Isfb1dtU6fiIvx10/lj3RqqGKj8fLw0Z1Kc5kyKU1lNq7Jy\nKrUqr1LLNpVp2aYySVJIgLciQ3wVEeq731c/RYb6nrAtoTzRhvxqLfokXx1dNs0cF6Wrzx4tX8vA\n+Hgd4OuludMTdfa0BO3Y3aivt5Rp444a/eeLAr31dZGmjYnUaZPilBITxDQgAAAAAAAAAAAGuYHx\n2wmgn+zcucN1+6mn/qqnnvrrYa0rLy9z3Z45M1OpqSNVVFSgnJxs/eQnP1Z4eISmTTtJU6dO17Rp\nJ/Xa2gsAhoIgP2/96keT9NfXs7U6r1LdNrt+On/ccZnI09Vt15tfF+nLjaUyGKTzZyZp/uxktrE6\nDHERAVpw+ghdelqKcorrtbWwVlUNHapu6FBBWZN2ljYdsMbPYnaFgiJDfRUR8t3tkEBLv011Gsys\n3XYtXlaorzeXydvLqBvOG6PZGdEDMkRjMBiUlhSqtKRQNbdZtTKnQsu3lCkrp1JZOZVKiAzQaZPi\nNGNs1IAJLgEAAAAAAAAAgCPDf+E/gS4ZMc+tU3CGoqamxqNa19LS7LptNpv1+OP/q0cf/aPWrFkl\nSaqtrdEnn3yoTz75UAaDQWPGjNM555yvCy64SF5eTFAAMDT4+3jproUT9b9vbtWGHTWyvp2jn12U\nfkxbTBWUNuqFj7aruqFDMWF+uvH8sUqJDTqOVQ8NJqNRE0eEa+KIcNdjNrtDtU2dqm7oUE1jx3df\nGztUVtOmksqWA65jNhkVEeLTKxC0LyAUHuw7JANZFXVteubdPJXWtCo+wl+3XJiu2HB/d5d1WIL8\nvXXejCSdc1Kitn1br+Wby7W5oFYvf7pDry8r1IxxUTptYhwTtgAAAAAAAAAAGGQI/8Cj2e121+27\n7rpH6ekZh7XOYrH0uh8eHqG//OV/VVxcqK+++lKrV2dp5858ORwOOZ1ObduWq23bcvXee2/rb397\nRiEhIcf1dQDAQOVrMeuXCybo/97J0daiOj35RrZ+cdl4+Xgf2UeMbptd76zYpU/X7ZYkzZ2eoItP\nTjmmIBF6M5uMih7mp+hhfgccczidamzpcoWCqht7B4Qq6toPWGOQNCzI0hMM2jcxKNSvZ1uxEF/5\n+XjWx0yn06msnEq98vkOWbsdmjMpTgtPHzEo/44aDQalJ4cpPTlMDS1dWrm1XCuyy7V8S8+f4dGB\nOm1SnE4aEyWL9+B7fQAAAAAAAAAADDWe9VsZ4HsCA7+bFuHvH6CRI0cf0/VSUkYoJWWEbrzxZjU3\nN2vz5g1as2aVvvrqC7W2tqqoqEDPPPO/uvfeB461dAAYNCxeJv3XJeP17Pt52rSzRo8v2aI7Lp8g\nP5/Dm4RWXN6sFz7apoq6dkWG+urG88doZDwhyhPJaDBoWJCPhgX5aHRi6AHHWzu6eweD9gsI5e9u\nVP7uAyftBfp5aea4aJ17UqKCAywHHB9MOrpseuWzHVqdVyVfi1k/u2ispqZFurus4yI00KILZifr\n/JnDlVNcp+VbypVdVKt/fZKvJcsKNHNctE6bGKf4yAB3lwoAAAAAAAAAAA6C8A88WkpKquv2tm05\nOvvscw56bkNDg9555w3FxMRqxIhRGjlylCSpu7tbe/bsltVqVVraGNf5QUFBOvXU03Xqqafrxz++\nUddd9yO1trZo1aqV/feCAGCA8jIbdetF4/TCR9u1Jq9Kf/7PZt21cKIC/bwPuqbb5tD7Wbv08ZoS\nOZ3SmVPidempqUwaGYACfL0U4Oul5JgDt2CzdttV09TZEwhqaFf13q3Edle16rP1e/T15jKdNilO\n585IUrD/wf8+DFQllS36x3u5qmroUEpskG6eP04RIb7uLuu4MxoNmjAiXBNGhKu+uVMrsnumAS3b\nVKZlm8o0Ii5Yp06M1bS0yEE57QgAAAAAAAAAAE9G+AcewWAw9Pn4mDHjFBQUrObmJn3++VLddNOt\nCgjo+/9cf+utJfrXv56XJN14482u8M/VV1+usrJSRUVF6623PuxzbXR0jJKTU5STky2rtavXMaPR\neLQvCwAGFZPRqJvmjZXFy6TlW8r1P69t1t1XTFRIH1NfSipb9MJH21Ra06bwYB/dcN4YpSUdOHEG\nA5+3l0lx4f6KC/fv9Xi3zaGVORX6cNW3PSGgLWU6fVK8zjkpUUGDIATkdDr15cZSvf5VoWx2p845\nKVGXnJIis8nz39eHBfnoopNTdMHs4courNPXW8qUV1yvwrImLf6yQLPSY3TapFjFhPn/8MUAAAAA\nAAAAAEC/8/zfXmBI8Pb+7peI7e3trtteXl669NIFkqSmpib98Y/3y2q1HrB+69Yteu21lyVJFotF\nF1xwsevYrFknS5Kqqiq1ePErfT5/Scm32rkzX5KUljau1zEvr++2venoaBcAeDKjwaBr547WWVMT\nVF7bpkdf2aTapg7XcZvdofdW7tKfXtqg0po2nTYpTr+/YTrBHw/kZTZqzqQ4PXrzTF199ij5+3hp\n6brd+vU/VumNrwrV0n7g+/FA0drRrb+/naPXviiQj7dZv7x8ghbMGTEkgj/7MxmNmjwqQncumKhH\nb5mp82cmyWQy6vMNe/Tb59bqf17dpLXbqtRtc7i7VAAAAAAAAAAAhjTTgw8++KC7i3C39gH8y6eh\nyt/fckQ/lx078rV580ZJPQGbkJBQ1dfXKSwsXOPGZWjNmlWqq6vVnj279fXXX8pkMslms6u4uEjv\nvvuWnnzyMdfEnttuu0PTpk13XTslJVUfffS+rFar1q9fq6KiAkkGtbe3a9euYn3xxaf6y18eVltb\nm4xGo+6553eKiYl1rS8rK9U333wtqSeAFBUVraqqKkVGRh37NwrAoHOk/W0wMhgMSk8eJodT2lxQ\nq407azQhNVyNLV168s1srdterZAAi35+cYbOmpogL/PQClQMNSajQckxQTp9cpyC/S36tqJZubvq\n9dWmMnVa7UqIDJBlAG0jVVjapMeXbFZxRYvSEkN01xWTNDw60N1luZ2/j5fGDh+mM6fGKz4yQG0d\n3crf3aiNO2r09eYytXR0Kz4qUAPnJwkAx9dQ+AwHYGiivwHwVPQ3AJ6K/gbA3//AHTckyeB0Op0n\nuJYBp6amxd0l4HsiIgKP6OdSULBDN910rex2u+ux/bfpampq1AMP3KuNG9cf9Bomk0k33nizrr32\nhgOObdy4Xr/97a/V2nrwmnx8fHTXXffo3HPn9Xq8trZWV155Sa+pP2azWZ9//k2vqUAAhoYj7W+D\n3Uerv9Vby4sV4Oulji6b7A6nMsfH6IrTR8rPh91Hh6Jum13Lt5TrozUlamq1yuJt0plT4jV3eqIC\nfN33vuhwOvXJmhK9s2KXnHLqwtnJmjdruIzGvrcWhVRV367lW8q1MqdCrR3dMhikOZPidOmpqfK1\n8O8bgGcZap/hAAwd9DcAnor+BsBT0d8ARET0/T8sM/lHTP4ZiI40tRoWFq60tDGqqChXS0uLTCaj\nAgICdcEFF8lsNsvHx0fnnjtPo0alyeFwqL29Xd3d3TKZzIqNjdOcOWfonnse0Jw5Z/R5/djYOJ13\n3gXy8fFVd3e3Ojs7ZbfbFBgYpKSkZJ133gX67W8f1MSJkw9Y6+fnpylTpu2trclV78knn6qgoOCj\n+wYBGLSGWip/VEKI/H3M2rizRkH+3rpl/jide1IS036GMJPRqJTYYJ0+KU6Bft7aVdGsnOJ6fbW5\nTF3ddiVEBsr7BE8Camqz6um3c7Q8u0LBAd66/bLxmp0RI4OB4M+hBPh6aVxyzzSg2DB/VTd2KLuw\nTmu3VSku3F+Rob7uLhHwKCWVLXo/61utzqtUU5tVZpNBgX7e9KoTZKh9hgMwdNDfAHgq+hsAT0V/\nA8Dkn0MgHTnwkFoF4KmGan8rq2lVaKAP035wAGu3XV9vLtPHa3eruc0qX4tJZ05J0NnTE+Tv0/+T\ngPK+rddzH2xTc5tV41PDdOP5YxTo593vz+uJQkL99OJ7Ofp49W45nPumfI2Q3wn4OQKeqtvm0IYd\n1Vq2qVRFZc0HHPe1mDUyPnjvnxAlxwQRsO0nQ/UzHADPR38D4KnobwA8Ff0NwMEm/xD+EeGfgYg3\nLgCeiv4G9K2r266vNpVp6doSNbd3y9di0llTE3T2tIR+CY/YHQ69+80ufby6REajQZedlqqzpyUw\nQeMY7OtvJf/P3p1Gt3XYd97/AQQBkgDBFdwlipv2XbItS5Fly3GS2tlaJ3HTdDKTttP2RXvOvOmZ\nvphp+5ynp9M+PXnZp5NJO5l22nniNk0TO4lTx5ZkybslkZKoheImUtwJkAAIYgfu8wIgRFkStZgU\niavv5xwKy8UFL0ngfy+An/7/iTl972eXNTwVUpnLrm9+dpP2dHhWe/OAvDITjOpE16hOdo0pGE7I\nImlHW5WO7m1UTUWJeq/7dXXEr97rAU35I7n1bAVWtdaXqmNduTqaytXeWEbwdplwDAfArKhvAMyK\n+gbArKhvAAj/LIECufaw4wJgVtQ3YGmxeErHO0f12gdDmgsnVOyw6TOPrdNz+9ct2wfYvkBU33n1\novpGAvKUF+l3v7RdLfXuZbnvR9ni+pZMpfXaB8N69Z1BJVOGnthaq1/7dAddlYAlGIahK0OzOnZ2\nVJ29XqUNQ84imz61s17P7MmEfm7HH4qpdySgq9f96r3u1/WpkBZe5Fss0jqPSx3ryrVxXbk6mspU\n7rp9W2AsjWM4AGZFfQNgVtQ3AGZFfQNA+GcJFMi1hx0XALOivgH3JhpP6vjZUb32wbBCkYRKHDZ9\n5vFMCKjY8eAhoM6r0/qfP7us+WhSj2+p0Tc/u5muGMvkdvVt1Duv7/3ssgbGgiotKdQ3ntuoxzbX\n0GEJWCQSS+rd7gkdOzuicV9YkrS+1qVn9zbp8a21chQW3Nf9haNJ9Y9lw0AjAQ2MBZVMpXPLa8qL\n1bGuTBubMoGgmopinpP3gGM4AGZFfQNgVtQ3AGZFfQNA+GcJFMi1hx0XALOivgH3JxpP6s0zI/r5\nB8OajyblLLLpM4+v16f3Nd1XCCiRTOufjvfpzTMjKrRZ9Wuf7tBTuxr4wHsZ3am+pdOGfnH6un54\nckCJZFp7Oqr17z67ie4jecIwDM2FE/IFo5oJRuULROULxuQLRpVIpnVga632b65Roc262puad0a9\n8zp2dkTvdk8oFk+pwGrRY1tqdHRvk9oa3MtWnxLJtK5NBHNhoN6RgCKxZG6522lXR9ONMFBTjVMF\nVv6eH8cxHACzor4BMCvqGwCzor4BIPyzBArk2sOOC4BZUd+ABxOJZUJA//bhjRDQZx9fr2fvIQQ0\nORPWX/+4W8OTITVUO/W7X9qmJo/rIW35o+Nu9W1yNqz/9bMr6rnuV4nDpq9/ukMHt9cRwFplyVRa\nM3Mx+QKLwz2Z895gTDPZkM9S3CWFOrK7UU/vaVRFKaGupSRTaXX1enXs7IiuDPslSRWlDj29p1FP\n7WpQmXPlR+OlDUOj0/PZMJBfV6/75Q/Fc8uL7AVqayzTxqYybVxXrpZ6t+z32X3IjDiGA2BW1DcA\nZkV9A2BW1DcAhH+WQIFce9hxATAr6hvwyURiSb1xZkSvZ0NAruJCffbxdXp2X5OK7LeGgN67OKG/\n/7cexeIpHd5Zr197buN9j9DBvbmX+pY2DL3VOap/OtGvWDyl7a2V+vef3ayqsqKHtJWPFsMwFIkl\n5Q1ENZPt1nNzB5+oAqG47vSC0FVcqKqyIlW5i1TpdqjaXaRKd1HuumgipRNnR3Xy3JjCsaQKrBbt\n2+TRp/etU1vj8nWuMYNAKKa3zo3pROdoLmizpblCR/c2aXdH1ap22jEMQ95ANBcG6h0J5MaPSVKB\n1aIN9aXa2FSuLc0V2rKh4pHsDMQxHACzor4BMCvqGwCzor4BIPyzBArk2sOOC4BZUd+A5RGOJvXG\nmet6/cPrCscyIaBfemK9ju5tksNeoFg8pX/8xVW9fWFcRfYCffNzm3Rga91qb7ap3U998wYi+vuf\n96h7cEYOe4G+9ky7juxukJWwyH1JG4b8c9lQTzbM48t261m4LhpP3XbdAqtFFaUOVWXDPJXuIlWX\nZT0bJosAACAASURBVEI+VdmQz70G5WLxlN67NKE3z4xodHpektRcV6pP72vS41tqVGh7NAN3hmGo\ndySgY2dHdKZnWqm0oSJ7gQ5tr9czexvVUO1c7U28o2A4rt7rgWwYyK+hiZDS2bcOyl12HdpRr8M7\n61VTUbLKW/rwcAwHwKyobwDMivoGwKyobwAI/yyBArn2sOMCYFbUN2B5haMJ/eL0iF7/6LoisaRK\nSwr17N4mfXB5UuO+sJrrSvW7X9qm2kfoA+rVcr/1zTAMvXNhQt9/s1fhWFKb15frP/zS5kcqTPAg\n0mlDvSN+nb4yrdNXpxRYNK5psWKHTVULQZ6yolu69pQ57bJalzdsZRiGeob9euPMiDp7p2UYme5B\nR3Y36Jk9jap0PxodnmLxlN6/NKFjZ0d1fSokSWqodurZvY06sK3urqMK16JoPKn+saDOXp3W+xcn\nFYklJUmb15fr8K4G7dvoMf1oMI7hAJgV9Q2AWVHfAJgV9Q0A4Z8lUCDXHnZcAMyK+gasjHA0odc/\nuq5fnL6uSCzT6eS5/ev0lafbVGh79MbTrIYHrW+zczH9w+s96uz1ym6z6leeatWn969b9mBKPkul\n07o67NfpnmmduTqt4Hwm8OMssmnLhkp5yjOBnoWvSneRSopWN2DiDUR0vHNUJ7vGNB9NymqxaO8m\njz69r0kdTWWmHAk2ORPW8c5RnTo/rkgs+zNvrNbRvU3atL7cND9zLJHS2Z5pnTw3pp7rfklSicOm\nA9tq9dSuBq2vvf2bD/mOYzgAZkV9A2BW1DcAZkV9A0D4ZwkUyLWHHRcAs6K+AStrPprQya4xNdW4\ntKO1arU355HySeqbYRj66MqU/uH1qwpFEmprcOtbz29Z02ORVloylVbPsF+ne6Z09uq05sIJSZlO\nOns3erR/s0eb11fIVrC2w23xRErvX5rUm2dGcl1w1te49Oy+Jj2xtTbvu8Wk04bO9/t07OyIugdn\nJElup11HdjXoyO4G03c7mpwJ69T5cb1zYVyBbCitubZUT+2q1xNba1VSVLjKW7h8OIYDYFbUNwBm\nRX0DYFbUNwCEf5ZAgVx72HEBMCvqGwCzWo76FgzH9X9+cVUfXp6SrcCiLx5q0eeeWL/mAy7LJZlK\n6/LQrD66MqXOq9Oaj2ZGK7lLCrV3U40e2+TRxvXlKrDm3+/DMAz1jgT0xunrOnvVq7RhyFVcqMO7\n6nV0T5OqyvIrJDMXjuvU+XGd6ByVNxCVJLU3lenZvU3at8nzyDxmF6TSaZ3v9+nUuXGd7/cpbRgq\ntFm1f1ONntpVr43r8r/zEcdwAMyK+gbArKhvAMyK+gaA8M8SKJBrDzsuAGZFfQNgVstZ3zqvTuvv\nX+9RIBTX+lqXfuP5LaYdJZRIpnXx2ozOXJlSZ69X4Vgm8FPmsmv/xhrt3+xRR1O5qcagzQSjOt45\nqre6xhSKJGSxSHs7PHp239ocj5U2DHkDUY1Nz2vUG9LwZEidvV4lU2nZC606sLVOR/c2mvYxer/8\noZjeuTCuU+fHNTUbkSTVVhTrUzvrdWhHvcpdjlXewgfDMRwAs6K+ATAr6hsAs6K+ASD8swQK5NrD\njguAWVHfAJjVcte3+WhCL7/Zp7cvjKvAatHzB5r1+YMbVGjL/44q8URKFwdndLpnSl19XkViKUlS\nRalD+zZ5tH9TjdqbymRdYyGY5ZZIpvTBpSm9cea6hiczI8GaPE49u69JB7bVyfGQR4KlDUO+QFSj\n3nmNeec1Op05HffNK55M33TbmopiHd3TqEM76+U00Wir5WQYhq5e9+vkuTGd7plWIpmW1WLRzrYq\nHd5Vr51tVXnVxYpjOABmRX0DYFbUNwBmRX0DQPhnCRTItYcdFwCzor4BMKuVqm/dAz793c+vyBeM\nqaHaqW89v1ltDWXL/n1WWiyR0oV+n073TOlcv0+xeCbwU+Uu0v7NmcBPS4Pb9IGf2zEMQ32jAb15\nZkRneqaVShtyFtl0eGeDju5tVHV58bJ+v7RhaGZxyCf7Ne6bVzxxc8jHVmBVfVWJGqudaqh25k49\nFcWP5N/qQYWjCX1waVInz41raDJTJ8pcdh3aXq/Du+pVW1Gyylt4dxzDATAr6hsAs6K+ATAr6hsA\nwj9LoECuPey4AJgV9Q2AWa1kfYvEkvrBW/06fnZUFov02cfW68uHW2R/yJ1h7lc0ntT5fp9O90zr\nfL83FyypLivSY5trtH9zjTbUla65MVeraXYulh0JNqq5cGYk2O72aj27r0lbmivu63dlGIZ8wWgu\n4DOW+worlkjddFtbgUV1lU41ej4W8ikvyqvuNPlgaGJOp86P6b2Lk4pkx9xtWleup3Y1aN8mz5p9\nXnMMB8CsqG8AzIr6BsCsqG8ACP8sgQK59rDjAmBW1DcAZvUw6lvP8Ky+99oVTc1GVFtRrG89v0Ub\n15Wv6Pe8X5FYUuf6vTpzZVoXBny5cVE1FcWZwM+mGq2vdRH4uYtEMq2PrkzqjdMjujaReVw1VGdG\ngh3cVieH/UZAxDAMzQRjGvPdGNU16p3XmG8+12FpQSbkU3JTwKeh2qmaimJCPg9ZPJHSmavTOnVu\nTFeG/ZKkYodNB7bV6qmdDWquu/2bGKuFYzgAZkV9A1bOyFRILx/vU99IQAe21eqFJ5tVXba8XS1x\nZ9Q3AGZFfQNA+GcJFMi1hx0XALOivgEwq4dV32KJlH50akCvf3RdhiEd3duoF4+0qdhhW/HvfSfh\naFLn+rz66MqUugdnlExlAj/1VSXavynT4afJ4yTw8wAMw9DAWFBvnhnRR1emlEobuYBIIpnOdfOJ\nfizkU2C1qK6qRA1VN0I+jR5CPmvV5GxYb58f19sXxhUIxSVJ62tdOryzQQe21cpZVLjKW/jwj+EW\nxtONz4RVX1my7OPv1rq0YWgunJCzyCZbgbmes2nDUCAUly8YlS8QlS8YlTdw4/zsXFT2wgJVuByq\nKHWovNShcpfjpssVLoeKHQXsV7AseI0KLL/AfFw/OjWgk+fGZBiSq7hQoUhCBVaLDu2o1+efbH7k\n9u2rgfoGwKyobwAI/yyBArn2sOMCYFbUNwBm9bDrW/9YQN/72RWNeedV5S7S5vXlMiQZhmTIkIzM\nB6ySlM4uyCzLBEoMI3uavb90duHCdbnli9fJnmrRdem0NDIdUiqduadGjzMT+NnkUaPH9dB+H48C\nfyimE52jOtE1puB8JiBSYLWodlEnn8ZFnXzMFhh4FKTSaV0YmNGpc2M61+dT2jBUaLNq3yaPDu2o\n17oal0qLC1cl8LBSNe6W8XTTmdNx343xdAVWi47ubdIXDm2Qq3j1g1Ar7fK1Gb18vE/DkyFJkrPI\npnKXQ26nXWUuu8qcdpU5HSpz2uXOXi53OeQssq2JMEwyldbMXCwT5skGehafzsxFlUzd/q24YodN\nlW6H4omUZufiuTDp7TgKC1Tust8UCPr4aZnLTi3EXT3MYzjDMHR9KqRzfV519fmUSqW1taVSO1oq\n1d5UrkIbj1fkt3gipV+cvq6fvDekWDylhmqnXjrarq0bKvThpSm98u41Tc6EsyGgOr3w5AZ5CAGt\nGN6DA2BW1DcAhH+WQIFce9hxATAr6hsAs1qN+pZIpvXqu9f02vtDufDNSrFk/7FmP1i2WCyyWDLX\n11aWaP8mj/ZvrlF9lXNFtwOZD9Z7RwJyO+2qJeRjWoFQTO90T+jUuTFNzkZy1zvsBfKUFctTXiRP\nebGqyzKnC+fthQVL3OuD+6Q1bmE83ah3YTRdKNO5yhdecjxdTUWxPrg0qWl/VM4im75wcIOO7msy\n5eN+dDqkfz7Rr/P9PknStg0VShuZ7gmBUEzz0eSS6xdYLZmA0MKXyy53NiRU7soEhhbCQo5P8DiJ\nJVK3DfV4s+f9czHdaY/kdtpV5S5SVVmRqrOnVYtOS4pudLEzDEPz0aRm52Lyh2KZ07mYZhed94di\nCoYTd9xWi6RSp/1G1yCXPRcMyoWGSh0qcayN4BRWx0ofwyVTaV0ZntW5Xp+6+qblC8YkZZ6zFosl\nF3JzFBZoS3OFtrdWantrlWoIRCCPGIahDy5P6l9O9MsXjKm0pFBfPtyqp3bV39R1Mp3O3O7Vd65p\nIhsCenJ7nT5/cAOP+RXAe3AAzIr6BoDwzxIokGsPOy4AZkV9A2BWq1nfQpGEIrFkNoyTDeUsCudo\n0fkb1y/cLnM+E+yRtPh6iyW3DoDVYRiGrl73q7PXq2l/JPMViN4SmFlQ5rLnwkHVZcXZYFAmIFTu\ncshqfbDn873WOMMwNDuXCfmMTs/f6Ojjm79lmxfG0+VG0y3qXLX4g8JEMq03z4zoJ+9eUziWVE15\nsb7ydJv2bfKYoj75QzH96NSgTp3PjEbZvL5cX32mXS317ptul0imNReOyx+KKzAfU2A+rmAongkH\nzWevy15OJO/cMUeSiuwFi0JCjkVhoUxIyFlkU2A+fnO4J3saitw+bGO1WFRR6rgp0FO96HxlqWNF\nwmnJVFr+UEz+ufgtwaDZbFjIPxdTfInfid1mVXm2Y1Cl26Hqsszzp8qd+Rkq3UV0ZDGxlTiGC0US\nutDvU2efV90Dvtx4zhKHTTvaqrS7vVo7WitVUGDV1et+XRjwqXtgRhMz4dx91FYUa3trlXa0VmrT\n+opPFNoDVlLviF/ff7NPg+NB2Qoseu6xdXrhwIabAp0fl04b+vDypF5995rGfWFZLRYd3F6nzx9s\nVk1FyUPcenPjPTgAZkV9A0D4ZwkUyLWHHRcAs6K+ATAr6huAh8UwDM1FEvL6o5r2R+QNZENB2csz\nwVhu7N9itgKLqtzZjkELoaBFAaGSojuP1Pp4jVsI+SyEe0a98xrPhnwisduEfBaNp2uodqrRc2vI\n525CkYReeXtQxztHlUob6mgq00tHO9Ta4L77ymtQNJ7Uzz8Y1r99eF2xREr1VSX66jPt2tVW9YlC\nTYZhKBJLKTAfU3AhGBSKyz8f+1hYKK65+fgdu/R8XKHNqkp3kardHw/4ZEIy5aX2+/p7PkyGYSgc\nu10XoXjmdKGL0BK/j3KXPffzVpfd2r1opbpuYeUt1zHc5ExYnb1edfV51Tvi10IZ9pQXaXe7R7s7\nqtXRVLZk57Jpf0TdgzPqHvDp0tBsLjRpK7Bq07oybW+t0vbWKjVUlZgi/Ij8NuWP6Acn+nX6ypQk\n6fEtNXrxSNt9jfFKpw19dGVKr7wzmAsBPbm9Vp8/uEG1hIA+MV6jAjAr6hsAwj9LoECuPey4AJgV\n9Q2AWVHfAKwVqXRaM8FYNhgUvdExyB+VNxDR3B3GJJU4bNlgUHaUWHakWIW7SGmrVZf7pjXmy3by\n8YYVid08hqrAalHtopDP4k4+yzmma2ImrB+c6NfZq9OSpCe21urFI62qLsuPcSGpdFpvnx/Xj04N\nKjAfl9tp15c/1aLDHxuN8rC2JRROKDB/o6NQcD6u+UgyM6JrUcjHXVJo+rBBMpWWfy6WG2HmDWSe\nMwtjze4UrJMyI82qF3U7ygSEbgSF6Nqydj3oMVw6bahvNKCuPq+6er25rj0WSa2Nbu1ur9buDs8D\nB3WSqbT6RgK5MNDwVCi3rNLt0PaWTFegLc2VS3ZYwcOTNgyFwgnNzsU0MxfNdB+bi2kmeON8VVmR\nntxWp70bPSp25OffLRxN6ifvXdMbp68rmTLU2uDWrz7bofbGsge+z3Ta0OmeKb3yzjWNeedltVh0\nYFutvnBwg2orCQE9KF6jAjAr6hsAwj9LoECuPey4AJgV9Q2AWVHfAOSLSCwp3+JQUCCaCwp5/ZEl\nxyNJmZBPTUXxoi4+LjVUO1W7zCGfu+kZntX3j/VpaGJOtgKrnnus6a5jRlaTYRg63+/TP5/o15h3\nXvZCqz73+Hp99vH1efsB8KMmlU7LPxfPBoOyz5lAZhzawoi0VPr2bzOWlhQuCgYV3xiLlr2Ox8Dq\nuZ9juEgsqYuDM+rq8+p8vy83Bs9eaNW2DZXa3V6tne3VKnPal307/aGYLg7O6MKATxcHZzQfzQQw\nrRaL2hvd2RFhVVpX65LV5EG91ZA2DAXn49kwT0yzi8M92YCPPxRTMnXnjxpcxYU3HjM2q/Zu9Ojg\n9jpt2VCxZjunLZZKp/VW15h+dGpQoUhCVW6HvvJ0ux7fUrNs4dC0Yej0lSm9+s41jXrnZbFIB7bW\n6QuHNqiOENB94zUqHoaJmbC6er0yDEMHttWpotSx2puERwD1DQDhnyVQINcedlwAzIr6BsCsqG8A\nzMDIfrg57Y9qOjtObCYYU0NNqcpLbGqsdqq2suShhnyWkjYMfXBxUv9ysl8zwZhcxYX68uEWPbWr\nYc1soyQNTczp5WO9ujLsl8UiHd5Zry99qpUPR0wmnTbkD8UWdQ1aCAZFct2E7hQMcBUXqtxlV5Hd\nJoe9QEWFBSqyF8iR/Sqy21RUuHA+u6wwe/3C7bLLCX7cn7sdw80Eo5nuPn1eXRmazf0Ny1z2THef\n9mptaa54qKPf0mlDgxNBdQ9kugINjAdzY8bcJYXalu0KtLWlUu6S5Q8imU06bSgwH8916JmZuxHu\nmZmLaTaYGQ14p3CfRZnHQ0VpkSpLHaoodajC7VBlaZEqSh2qLHWovNQhW4FVU7NhvXdxUu91T2jK\nH5EklTntemJrrQ5ur9P62tt/iLGaDMPQhQGfXj7Wp3FfWEX2Ar3wZLOe279uxR73acPQ2Z5p/fid\nQY1OL4SAMuPA6qucK/I9zYjXqFgJ6bShgbGgOnun1bmo852UCaTuaq/Skd2N2t5SKauVYxKsDOob\nAMI/S6BArj3suACYFfUNgFlR3wCY2VqvcfFESr84fV0/fW9I0XhK9VUl+uoz7drVVrWqo6p8gah+\neLJf712clCTtaK3SV59pU5PHtWrbhNWz0Dlk8TixhZFi3kBUgfm4YvHUHUeL3SvH4pBQ4Y3w0MdD\nRUUL1xcuChTZbw4UFdsLZCuwmnrk28frm2EYGpqcU1dvJvAzPHlj3Na6Gld2nFe1mutK10zQKhRJ\n6NK1TFeg7oEZBebjkjKhlA31pdkRYVVqaSjNiw4zy80wDPlDcY16QxrzhuULRG8K9wRC8Ts+76wW\ni8pL7ZlAz+JwT2km3FPpdsjttN934NQwDPWPBfVu94Q+ujyZ6+TU5HHqye11OrB1bXTPGJkK6eVj\nvbp4bVYWi3RkV4O+dLh1Rbpb3c5CCOiVdwY1kg0BPbE1Mw6MENDdrfXjN+SPWCKlS9dm1Nnr1fk+\nr4Lhmzvf7enwKJntDjY0kXnMVbmL9NTuBh3eWa9y1+rXM5gL9Q0A4Z8lUCDXHnZcAMyK+gbArKhv\nAMwsX2pcYD6uH789qLe6RmUY0pbmCr10tP2hd1IIRxP66XtD+sXpESVTaa2vcemrR9u1bUPlQ90O\n5B/DMJRMpRWNpxSNpxSLpxRNpBSNJzPn4ynFEqmbl8eTuesWbhNNpBSLJ3PXfZI3PwuslkxAyHFz\nt6EbgaFFlwsLVOSwLepMdPPtFzoUraUwkcdTqrFxvy4Pzaqrz6dzfV7NzsUkZX72zc0V2t1erV3t\nVaouK17lrb07wzA0Mj2v7gGfLgz41DsSyHWsKXHYtHVDhba3VmlLc4Wq3EWm68oQDMc1Oj2vMe+8\nRqdDGvXOa3R6XuFY8pbbFlgtKnctdOm50alncecet7NwxQNTiWRa5/t9erd7XOf7fUqlDVks0tbm\nCj25vU57N3pUZH+4owEDoZj+9dSgTp0fk2FI21sq9bWj7asWXk0bhjqvTuuVd67p+lRIFkmPZ0NA\nDdWEgO4kX47fsDYF5uM61+dVV69Xl67N5EYDu532XBB26206312bCOpE55g+uDSpWCKlAqtFu9ur\ndWRPg7ZuqFwzwVnkt0epviVTaQVCmdGjwXBcG+pKVekuWu3NAlYd4Z8lPCoFMp88SjsuAI8W6hsA\ns6K+ATCzfKtxo9Mh/dPxfl0Y8Mki6eCOOv3KU20r3kUhmUrreOeoXn3nmkKRhCpKHfqVp1r15PY6\nPujAqjEMQ/FkOhcUWhwgyoWFFgWIorGUoonkLQGjaPxG6CiZSj/w9likW8aZFRRYZLFkuqxYLRZZ\nrRZZLZLFarnlOmv2OovFIqtVi85nl+fOW2Sx3nqfi9eXpOveeZ29MqVYIiVJchbZtLOtWns6qrWt\npVLFjocbulhukVhSV4Zn1T2Q6QzkDURzywqsFlW5i1RdXqTqsiJVlxVnzxfLU1Ykt9O+poJai4Wj\niVywZ3RR0Gcu241igcUi1VaUqNHjVGO1Uw3VTnnKi1VZ6lCp077manMoktBHlyf1bveE+seCkjLd\nvPZu9Ojg9jptaa5Y0cBWPJHS6x9d10/fH1IsnlJDtVMvHW3XjtaqFfue9yNtGOrq9eqVtwc1nA0B\nPbalRl841KJGQkC3yLfjN6wuwzA0MRNWZ69Xnb3TGhgN5sLDDdVO7enIjLpsaXDfU+2MxJJ6/9Kk\n3uoc1fBUpotedVmRjuxu0Kd2Njy0DmIwJ7PUt0QyLX8olu1GmO1KGMxcnp2LamYupmAofkuQf12N\nS7uy42c31K+dbpTAw0T4ZwlmKJBmY5YdFwB8HPUNgFlR3wCYWb7WuIuDM3r5WK9Gpudlt1n12cfX\n65cOrF/2DgqGYehMz7R+8Fa/pmYjKrIX6IUnm/Xc/nW3/G9owAySqXQmLBS70Zno40GhWDylSPzm\nrkWZ65O57kQLt0ul00qnM8+l1XijtraiWHs6PNrVXqX2pjLTjsYyDEOTsxFdGPBpYCworz+i6UBU\nweyYsI+z26yqWhQK8pQVZ0JC2YCQs8i24uGgaDypMW9Yo97QjY4+3vlcd6bFPOVFaqx2qdGTCfk0\nVjtVX1WiQlt+1uHJmbDeuzihd7sncqGtcpddB7bV6eC2OjXVLF8XnrRh6INLk/qXt/o1E4yptKRQ\nXz7cqqd21a/J54ORDQH9+J1BDU8uCgEd3KBGRmvmrOTxWyKZ1lw4rmA4ruB8XMH5xI3z4bgssuQ6\njRHyWLvSaUN9owF1ZQM/k7MRSZngZEdTeSbw01Gt2oqSB/4ehmFocHxOJ7pG9eHlScUTaRVYLdrT\nUa0jexozoUaCC7hP+fD6NJFMaWYuptngzeGehbGjs8FoboTe7dgKLLkxoxXuTGfCEodNPcN+XRme\nVTKVOWouc9q1s61Ku9urtXVDpRz2/DzuAe4X4Z8lrPUC+SjKhx0XADwI6hsAs6K+ATCzfK5x6bSh\nty+M619PDigwH1eZ065ffqpVn9pRvyzdE/pGAnr5eK/6R4MqsFr09O5GfeFTG+Qu4YMu4EEYhqG0\nYSidVvbUyF6XeT4vXJc2DBmGFl2WjIXld1rfMG7cJrt8a7tHRWsv2/BQxRIp+QJReQMRTfuj8gWi\nmg5E5PVnrpuP3joyS5KKHQWqchfLkw0DLQSDPNmw0P0ELRPJlMZ94Vs6+SzuVLSgotSR6+STC/tU\nOU37YZdhGOodCei9ixP68PKUItkRZutrXHpye50ObK1VmevBO9v1jvj1/Tf7NDgelK3Aqucea9IL\nBzaopGjtd70yDENdfV698vY1DU3OySJp/+YafeHQhlUbUbaW3M/xm2EYiiVStwZ55uMfO59QcD5+\n21F6d9JcV6odrVXa2VqllobSNRkoe5TE4il1D86oq29a5/p8CkUy4QNHYYG2t1Rqd0e1drZVqXQF\njmXD0aTevzShE51jGpnOdAOqKS/Wkd0NOrSjXm6CYrhHq/36NJZIZYI8wUx3nplsqGc2GM2Fexae\nW7dTaLOqcmHUaGmRKrMjSCsWRpC6HSotLrxjyDoSS+rStRmd6/PpfL83FyKyFVi1pblCu9urtKu9\nmvFgMDXCP0vI1zfwzGy1d1wAsFKobwDMivoGwMzMUOOi8aR+/sGwfv7BsOLJtJo8Lr10tF3bWiof\n6P4mZ8P6wYl+nemZliTt3ejRV55uU13lg//PaAAPnxnq20oLR5PyBiLyBqKZL//C+UznoFg8ddv1\nXMWF2UBQJhjkyZ53l9g1ORvOdfIZ8c5rajasj79L73baswEfpxo8TjVVu9RQXaKSosKH8FOvTYlk\nSuf6fHq3e0IXBnxKpQ1ZLNK2lkod3FanPRs9ctxjx7kpf0Q/ON6n09n92ONbavSVI22qLi9eyR9h\nRRiGoXN9Pv34nUENTWSez/s3efTFQy3L2iEp31RVuTQ0MntriOd23Xrm44onlx7paJHkKimU22mX\nu8S+6LTwxuXsdZF4Mjdu8Op1v1LpzBPcWWTT1g2V2tFapR2tlZ8ouIZ7FwjF1NXnVVevV5eGZpXI\n/q3LXHbtbs+MutzSXPHQOqUZhqGBsaBOdI3qo8tTiicz3YD2bvTo6d0N2txcsWbHTq62WCKlnuFZ\nXRiYUc/wrFzFhWquK9WGOrc21JXKU1H8SHRSepjHb4FQTANjQQ2MB9U/GtD1qdAdg9GSZC+0qjIb\n6MmFe3JBH4cq3UXL2j0xbRgaHAuqq8+rc31ejUzP55atXxgP1lGt5jrGg8FcHnr4J51O60/+5E/U\n09Mju92uP/3TP1Vzc3Nu+bFjx/RXf/VXstlsevHFF/W1r33tjusMDQ3pD//wD2WxWNTR0aE//uM/\nljWbjp6ZmdHXv/51vfLKK3I4HIpGo/qDP/gD+Xw+OZ1O/cVf/IUqK5d+I4sXuGsPbzwAMCvqGwCz\nor4BMDMz1bjZuZh+eLJf716YkCFpe2ulXnqm/Z7HhMyF43r1nWs63jmqVNpQa4NbX3umXRvXla/s\nhgNYEWaqb6vBMAyFIombgkHT2WBQpnNQVMnU0oECZ5EtG/BxqbHaqabs2K6V6DphJsFwXB9dntK7\n3RMaHA9Kkhz2Au3f5NHBbXXadIdROuFoQj95d0hvnLmuZMpQW4NbLz3bofbGsof9Iyw7wzB0vt+n\nH789qGvZENC+TR699Ex7XoaaHpTXH9H3XrtyU+jmTgqslo+FeQpvCvHcOF8oV0nhA3XticSSbi6m\nJQAAIABJREFUujI0qwsDPl0Y8MkXvDG2b32tKxsEqlJbo5uuQMvEMAyNeefV1edVZ69XA2PB3LJG\njzMb+PFoQ/3qhwHC0YTe7Z7QW11jGvVmQgu1FcU6srtRh3bUPfL7AsMwNDET1oWBGXUP+HRl2J/b\nr9ptViWS6ZtGphY7bGqudWXCQPWlaq4rVU15senCVCt1/BZLpDQ0MZcL+wyOBW6qWZJUW1mi6rKi\n7EiuTJgnF+wpdajYsfJjUZfi9Ud0rt+nrj6vej42HmxXe5V2tTEeDObw0MM/r7/+uo4dO6Y///M/\nV1dXl77zne/or//6ryVJiURCzz//vH7wgx+ouLhYX//61/Wd73xHZ8+eve06v/u7v6tvfetbeuKJ\nJ/RHf/RHOnz4sJ577jmdOnVK3/72tzU8PKz33ntPDodD3/ve9xQKhfT7v//7+ulPf6rOzk79l//y\nX5bcVl7grj288QDArKhvAMyK+gbAzMxY44Yn5/TysT5dHpqVxSId2dWgLx1uVdkdxg0kkim9cXpE\nP3lvSJFYUp7yIn3l6Xbt3+Qx3ZvpwKPEjPVtLUkbhoLzcXn92VFigaiC83F5yoszXX08TpU57dTR\nT2jcN6/3Lk7ove5J+YKZUWkVpQ49ua1OT26vU2O1U8lUWm91jenHbw8qFEmoyl2krz7Tpsc215ju\n928Yhi4M+PTjt69pcDyoYkeBfv0zm/TktrrV3rQV9+HlSf3dz3sUiSXV2lCmMmcmzFNaYleZ89aA\nT8lD/pDaMAyN+cK60J8JAvWO+HMfTJc4bNraUqkdrZXa3lKlilK6At2PVDqtvpGAOnszHX6m/BFJ\nktVi0cZ1Zdqd7f5RU7E2u1QahqG+0YDe6hrTR1emlEimZSuwaN+mGj29u0Eb15WbrlbdSTSe1JUh\nfy4wt3gEZpPHmQvMtTeVKZFMa3hyTtcm5jQ0kTmdnAnfEgjaUFea7RCU+fLkeSBoOY7f0oahyZlw\nJuiT/bo+FVJ6UWygtKRQrfVutTaWqbXBrZY6d16MxVwQiSV1cXBG5/q8Otd/Y8xfoS0zHmxXe7V2\ntVUxHgx56aGHf/7bf/tv2rlzp1544QVJ0uHDh3Xq1ClJ0pUrV/SXf/mX+tu//VtJ0p/92Z9pz549\n6urquu06hw8f1smTJ2WxWPTGG2/onXfe0R//8R/rnXfe0datW/Xiiy/qtddek8Ph0O/93u/pt37r\nt7R7927Nzc3pV3/1V/XTn/50yW3lBe7awxsPAMyK+gbArKhvAMzMrDXOMAyd6/fpn4/3adwXlsNe\noBcONOszj62TPTs2JW0Y+uDipH54sl++YEzOIpu+cKhFz+xpVKGN/50O5Duz1jc8mtKGod7rfr3b\nPaHTPVOKxDIj2ZprSxVPpjTuC6vIXqDPH9yg5/Y3PbQRP6vFMAy92z2hf/jFVcXiKR3YWqtf/8ym\nvPrg9l7F4in94xtX9fb5cdkLrfrGcxv1y0c3yusNrfamLSkaT+ryUGaE0YV+Xy68Jknraly58WBt\njWWyFXDc9XH+UEzdAzPqHvTp4uBMbhSRw16gHS2V2tPh0Y62KrmK82tcYiiS0HvdEzrRNapxX1iS\nVF9VoiO7GnRwR33e/Tx3s9Cp6UJ2VN7iUFyxw6ZtGyq0PRv4uZdQXCSWzAWCri0KBC1W4rDlwkDN\neRgIepDjt2A4rsGxoPrHMh19BsbnFIndGN9lK7Cqudal1oZM0Ke1wa3qsqK8+Z3cTTptaGA8qHN9\nXnX1eTW6eDxYrUu726u1q53xYMgfdwr/rNhRXigUkst1o2V0QUGBksmkbDabQqGQSktvbJDT6VQo\nFLrjOoZh5IqL0+nU3FymoB06dOi233fhvhffFgAAAAAAADdYLBbtbq/W9pZKnTw3ph+dGtQPTw7o\neOeoXjzSqnKXQ/98vF9Dk3OyFVj0ucfX64WDzXIWmesDBwCAOVgtFm1aX6FN6yv0jec2qqvPq3e7\nJ9Q9MCNDhp7e06gvf6pF7jt0uTMbi8WiQzvq1dFUpu++eknvX5pU70hA//ELW001rnNoYk7feeWi\nJmbCWl/r0u98cZvqq5x58YF1kd2mPR0e7enw3BhvlO0K1HPdr+tTIf3s/SEVOwq0dUNlruPJo9oV\nKJlKq380kAuJXJ+6Ee6qdDv02JZa7emo1ub1FXkdUncVF+q5x9bp0/ub1DsS0ImuUZ2+Mq3vH+vT\nD94a0P7NHj29u1EdTWV58Ti/nUgsqUvXMuPwugd9mrnDOLzWBvd9B9+KHbbcvmBBOHojEDQ0Oadr\n40FdHprV5aHZ3G2cRTatr812B6p3q7muVJ48Db8sdERaGN81MBbQtD96021qK4q1u70qF/ZZV+My\ndcjQarWovbFM7Y1levFIm7z+iLr6vDrX59WVYb+GJ0N65Z1rKnPZtautSrvas+PBCs0dFIb5rFj4\nx+VyaX7+RmounU7LZrPddtn8/LxKS0vvuI510ZzT+fl5ud3ue/q+d7vtgoqKEtlMnvLPR3dKrAFA\nvqO+ATAr6hsAMzN7jXuprkyff6pd//zmVb1yakB/85PLuWVH9jTp3z2/RbWVa3NMAoBPxuz1DY+u\nxoZyvfBUuwKhmFJp45Ed6+HxlOrb/8mjl9+4qpd/0aP/5/+c1Vef3ahf/cymvP6g1zAMvXJqQP/r\nJ5eUTKX15SNt+ubzW27q6JRv9a2mxq2dmzPj2aKxpM73e3Xm8qTOXJnSmZ5pnemZliRtqHdr3+Ya\n7dtcqy0tlXn9d7ybqdmwzl6Z0tmeKXVdnc51KrEVWLV7o0f7Ntdo76YarastzcuQxt3U1Lh1aO86\nBefjOnZ6WD9/b0jvX5zU+xcnta62VJ870Kxn9q9TacnaDjUahqFr48HMY/nKpC4PziiVznT3cRUX\n6vDuxtzfsmKFanXzugodXnR5PpLQwGhAvdf96h/xq2/Ef0sgyFVcqPamcrU1laljXYXamspUW1my\nJh5rC/XNMAyN++Z1dWhWPcOz6hma1eBYINc9Scr8HHs312jT+gptzH49KkHYO/F4SrWlo0ZflxSO\nJtR5dVofXpzQ6cuTOnluXCfPjctus2pnh0ePb6vT41trVVVWLCnzO08bmW5ChmEonTaUzp6m0oYM\nQ7nLuWU3XdZN6yxeZmSXpRYtM9KG6qqcaq6/e+YBWLHwz969e3X8+HE9//zz6urq0saNG3PL2tra\nNDQ0JL/fr5KSEp0+fVq/+Zu/KYvFctt1tm7dqg8++EBPPPGETp48qQMHDiz5fd966y3t3LlTJ0+e\n1L59++66rbOz4bveBg8XLYcBmBX1DYBZUd8AmNmjVONeeGK9ntjk0b+eGlQoktCXD7eopd4tpVKP\nzO8AeJQ8SvUNmJ5OrPYmrKrn9jZqQ41T3331kl5+46o+vDih3/7iVtVW5F+4Nzgf19/+9LIuDPjk\nLinUb35+h3a0Vsm/6LMeM9S3Fo9TLZ5WvXi4JdMVaGBG3QM+XRn269p4UP9yvE9F9oWuQJnOQPke\nckskU7p6PZDtCDOjMe+NhgE15cU6uK1O21srtXl9hRz2G0GvtT7ibTkc2lqrg1tqdPW6Xye6xnSm\nZ0rf/XG3vvvjbpU4bCpz2VXmtKvc5ciez5yWO+0qy15X4rA9tOBKOJrQxYXuPgM++UNxSZJF0ob6\nUm1vqdKOtiq11rtltWa2KRlLPNRaXVfmUF1ZrQ5vr81uc1JDk3MampjTtYmgrk3Mqat3Wl2907l1\nnEWZkWGV7iIVWC2yWiyyZk8LrBZZrLrp+o/fJndd7rJuWv/m+7KoYGHdRfdlKSxQ5+VJDYwFNTge\nVChy43dWYLVoXY0rN7qrraFMNRU3jzSLhWOaDt/otgRpY32pNtaX6teOtmtgLJjrCnT68qROX57U\n/6vM7zZtZAI6q6Gtwa2n9zTqsc01uTHdeHTdKeBsMYyVeYim02n9yZ/8ia5evSrDMPRnf/ZnunTp\nksLhsF566SUdO3ZMf/VXfyXDMPTiiy/qG9/4xm3XaWtr0+DgoP7rf/2vSiQSam1t1Z/+6Z+qoODG\ng/ro0aN67bXX5HA4FIlE9J//83/W9PS0CgsL9e1vf1sej2fJbc33A0AzMsOBOQDcDvUNgFlR3wCY\nGTUOgFlR34BHTzia1D/+okfvXZyUo7BAv/Zchz61o35NdLK4F92DPv3NTy4rOB/X9pZK/ebnt6rs\nNh0szFzfYomUeoZndaE/M/5qyh/JLauvKlGTx6XayhLVVRartrJEtRUlchWv3bGtk7NhdWdHeV0Z\nnlU8kZYk2W1WbW6u0I7WKm1vrczLoNpKCobjevfChLoHfQqE4vKHYpqPJpdcp9BmVZnTfvtw0KLg\nkLvEngvk3Ku0Yej6ZEjnBzKj6wZGg0obN7r7bM8G1La1VMq9xjsVLRaOJjJhoIVQ0PjcTc+51VZd\nVpQN+mTGdzXXum7qgIZPZjo7Hqx7YEbhWCIT2LJYZLHopkCXRTcuW6wWWS3K3i4b8Mqdv/0yqzV7\nn5bb38eV4Vld6PfJUCaAdmhHvZ7Z00h33kfYQw//5BOzHgDmMzMfmAN4tFHfAJgV9Q2AmVHjAJgV\n9Q14dL1/cUL/+/UeRWIp7d9co29+dtOaDogkU2n98K0B/fzDYRVYLfrK02167rF1st4htPQo1bfJ\nmXAucHH1uj8XnlnMVVyo2spi1VWUZINBmdOaimI5HnIHiVg8pSvDs5nAz6BPU7M3h5d2tFZpR2uV\nNq4rI8RwnxLJtILzcfnnYwqG4vLPxxUIxeQPxTPXh2IKzGfOL4zduh2LRSotuTkYVObKhoMWwkMu\nh+w2a+5v2T04o+B8PLd+a4NbO7LdfZrrSu/4XM1H4WhCoUhCaUNKpT823ik7+umWy8aNkU+pdDq7\nTiY0dcf7WDT66cZtpMryYtWWFamlwX3b8CPMadof0clzYzp1bkzBcKbb05bmCj2zp1G7O6pNPQIS\ntyL8s4RH5QAwnzxKB+YAHi3UNwBmRX0DYGbUOABmRX0DHm1ef0Tf/ckl9Y4EVFHq0H/8/FZtbq5Y\n7c26xeRMWP/9lYsamphTbUWxfudL27Shzr3kOo9qfUsbhvxzMU3OhDUxG8mczoQ1ORuR1x+5beCj\n0u1Q7UIoqKI4Fw6qKitalg+TDcPQmC+s7uz4p57rASVTmYDSwtiy7a2V2t5Sqeqy4k/8/XB3acNQ\nKJJQIHQjHBSYj2U6CM3HFQzFssGhuGKJ1D3dp9tp146WSm3PdvdZy2HCfPeo1jdkJFNpnemZ1onO\nUfVc90uSylx2PbWzQUd2N+T9+EfcG8I/S6BArj3suACYFfUNgFlR3wCYGTUOgFlR3wCk04Z++v6Q\nfnxqUIZh6HMH1uuXD7euiQ4ChmHo3e4J/cPrVxVLpPSpHfX6tec6VGS33XVd6tutkqm0fIFoJgy0\nKBw0ORvWTDB2y+0LrBZVlxfnAkGLw0HlpY4lO7lEYkldujar7sFM4Me36P7X17i0vbVKO1or1dZY\ntiYea7izSCx5U9egxUGhcDSZ6fDTWqV1tS5TdfdZy6hvWDDqndeJzlG92z2hSCwpi0Xa3V6tp/c0\naltLJc9JEyP8swQK5NrDjguAWVHfAJgV9Q2AmVHjAJgV9Q3Agv6xgL77yiVN+SNqri3Vb39xq+qr\nnKu2PeFoUv/79R59cGlSxY4CffOzm/XE1tp7Xp/6dn9iiZSmFncKmglrYjasyZmIQpHELbe3F1pz\n3YJqK4pVV1miylKHBsaD6h6YUd9oINdlyFlk07aWSm1vqdL21kqVuxwP+8cDTIX6ho+LxVP64PKk\njneOamgi89jwlBfp6d2NOrSzXu4SxsOZDeGfJVAg1x52XADMivoGwKyobwDMjBoHwKyobwAWi8SS\n+v/e7NXb58dlL7Tq68926KldDbI85M4B/aMBfeeVi/IGomprcOu3v7hNnvL7GwdFfVs+oUhCk7PZ\nQNBMtltQNhwUT6Rvub1F0oZ6t3a0ZkZAtda7ZbXSfQJYLtQ3LGVwPKjjnaP68NKk4sm0bAUW7d9U\no6f3NKqjqeyh79OxMgj/LIECufaw4wJgVtQ3AGZFfQNgZtQ4AGZFfQNwOx9dmdLfvXZF4VhSezqq\n9R9+abNKH0LXgHTa0M/eH9KPsiPIXjjYrC8eanmgsVDUt5VnGIb8oXguCOQLRNVY7dTWlkq6TAAr\niPqGezEfTejd7gmd6BzVuC8sSWr0OPX07kYd3F6nYsfdR2hi7SL8swQK5NrDjguAWVHfAJgV9Q2A\nmVHjAJgV9Q3AncwEo/qbn1zSlWG/ylx2/dYLW7WtpXLFvt/sXEzfffWirgz7VVHq0G99fqu2NFc8\n8P1R3wCYFfUN98MwDPUM+3Wia1RneqaVShtyFBboia21emZPo5rrbh8iwdpG+GcJFMi1hx0XALOi\nvgEwK+obADOjxgEwK+obgKWk04b+7cNh/fDkgFJpQ595bJ1ePNKmQtv9d+JZSmfvtL73sysKRRLa\n01Gtbz2/Ra7iwk90n9Q3AGZFfcODCszH9fb5MZ3oHJMvGJUktTa49fTuRj2+pUb2woJV3kLcK8I/\nS6BArj3suACYFfUNgFlR3wCYGTUOgFlR3wDci2sTQX3nlUuanAmryePS73xxqxo9rk98v/FESv90\nvE/Hzo6q0GbVS0fb9cyeRlkslk9839Q3AGZFfcMnlU4bujDg04nOUZ3v98mQ5Cyy6dCOeh3Z3aD6\nKudqbyLugvDPEiiQaw87LgBmRX0DYFbUNwBmRo0DYFbUNwD3KhZP6eVjvTrRNaZCm1Vfe6ZdR/c+\neFBndDqk//7KRY1Oz6ux2qnf+dI2NS1DoGgB9Q2AWVHfsJy8gYje6hrTqXNjCoYTkqQtzRV6Zk+j\ndndUy1awvN3+sDzuFP6xPeTtAAAAAAAAAAAAQB5x2Av0zc9t1o7WKn3vtSv6x19c1YUBn37j+S1y\nO+33fD+GYehE15i+/2avEsm0ntnbqJeeaWfUCAAAq6C6rFgvHmnTlz7VorNXp3Wic1SXh2Z1eWhW\nZU67PvPYOn3uifXL0pUPK4/wDwAAAAAAAAAAAO5qz0aPNtS79T9/eknn+336o7/9QL/xwlbtbKu6\n67qhSELf+9lldfZ65Syy6Xe+uE17N3oewlYDAICl2AqsenxLrR7fUqsx77xOdI3qnQsT+vHbgzq6\nr0kOQrp5gbFfYuzXWkTLOgBmRX0DYFbUNwBmRo0DYFbUNwAPKm0YeuOj6/rBW/1Kpgw9u69JX326\n7Y4dfHqGZ/U/Xr2k2bmYNq8v1299fqsq3UUrtn3UNwBmRX3DwxJLpBSNJVXmcqz2puBjGPsFAAAA\nAAAAAACAT8xqsegzj6/X5uYK/Y9XL+nNMyO6MjSr3/7iNq2rceVul0qn9crb1/STd6/JYrHol59q\n1QsHmmW1Mj4EAIC1zFFYQMefPGNd7Q0AAAAAAAAAAABA/llfW6o/+vf79ezeJo165/V//91Hev2j\n60obhrz+iP7iHzv16rvXVFVWpD/89b36wsENBH8AAABWAJ1/AAAAAAAAAAAA8EDshQX6xmc2antr\npb73s8v6/pu9OtMzpZHpeUViST2+pUbf/OxmlRTxkRQAAMBKofMPAAAAAAAAAAAAPpFd7dX6v37z\nCe1orVLvSEDptKHfeH6LfueL2wj+AAAArDCOtgAAAAAAAAAAAPCJlTnt+k9f3amuPq8aPS7VlBev\n9iYBAAA8Egj/AAAAAAAAAAAAYFlYLBbt6fCs9mYAAAA8Uhj7BQAAAAAAAAAAAAAAAOQpwj8AAAAA\nAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAA\nAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAA\nAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAA\nAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8A\nAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAA\nAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8\nAwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAA\nAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQp\nwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAA\nAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABA\nniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAA\nAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAA\nAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAA\nAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAA\nAABAniL8AwAAAAAAAAAAAAAAAOQpwj//P3t3HxznYd8H/rsLEMQ7SJEAKYoE+CLSL7HeKEdJr3Uu\ndl6UetLO9dxRMs3lbiZu08l0HCeXycSdJmMncaNM07qdJr5cm7F7rVOP5EuTpk6m1cV2EjdO6+qN\nerEtkSIJECRFAnzBO/G6e38AC1uWSIIkFstdfj5/kdjd5/ktRT3ELr77+wIAAAAAAAAAQJ0S/gEA\nAAAAAAAAgDol/AMAAAAAAAAAAHVK+AcAAAAAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAAAAAAAKhT\nwj8AAAAAAAAAAFCnhH8AAAAAAAAAAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwDAAAAAAAA\nAAB1SvgHAAAAAAAAAADqlPAPAAAAAAAAAADUKeEfAAAAAAAAAACoU8I/AAAAAAAAAABQp4R/AAAA\nAAAAAACgTgn/AAAAAAAAAABAnRL+AQAAAAAAAACAOiX8AwAAAAAAAAAAdUr4BwAAAAAAAAAA6pTw\nDwAAAAAAAAAA1CnhHwAAAAAAAAAAqFPCPwAAAAAAAAAAUKeEfwAAAAAAAAAAoE4J/wAAAAAAAAAA\nQJ0S/gEAAAAAAAAAgDol/AMAAAAAAAAAAHVK+AcAAAAAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAA\nAAAAAKhTwj8AAAAAAAAAAFCnhH8AAAAAAAAAAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwD\nAAAAAAAAAAB1SvgHAAAAAAAAAADqlPAPAAAAAAAAAADUqeZqHbhUKuVjH/tYXn311bS0tOTjH/94\nBgYGVm//0pe+lE9+8pNpbm7OBz7wgTz22GNXfczQ0FA+8pGPpFAo5ODBg/noRz+aYrGYz33uc3ni\niSfS3Nycn/qpn8p73/veTE5O5md/9mczMzOTlpaW/MZv/EZ6e3ur9TQBAAAAAAAAAKBmqrb55wtf\n+ELm5+fz5JNP5ud+7ufy67/+66u3LSws5PHHH8+nP/3pfOYzn8mTTz6ZCxcuXPUxjz/+eH7mZ34m\nn/3sZ1Mul/PFL34xo6Oj+cxnPpMnnngin/rUp/KJT3wi8/Pz+f3f//0cOnQon/3sZ/P+978/n/rU\np6r1FAEAAAAAAAAAoKaqtvnn2WefzXve854kyYMPPpiXX3559bbjx4+nv78/PT09SZKHH344Tz/9\ndI4cOfKWj/na176WRx55JEnyPd/zPfnKV76SYrGYhx56KC0tLWlpaUl/f39eeeWVHDp0KCdOnEiS\nTE1Npbm5ak8RAAAAAAAAAABqqmrJmKmpqXR2dq7+vqmpKYuLi2lubs7U1FS6urpWb+vo6MjU1NRV\nH1Mul1MoFFbvOzk5edVj3HXXXfnKV76S97///RkfH8+///f//rqzbt3anubmpvV42qyj3t6u698J\noA65vgGNyvUNaGSucUCjcn0DGpXrG9CoXN+At1K18E9nZ2emp6dXf18qlVa38Hz7bdPT0+nq6rrq\nY4rF4hvu293dfdVj/NZv/Vb+7t/9u/nRH/3RvPLKK/nQhz6Uz3/+89ec9fLlmVt+vqyv3t6ujI5O\n1noMgHXn+gY0Ktc3oJG5xgGNyvUNaFSub0Cjcn0DrhYALL7lV9fB4cOH8+UvfzlJcuTIkRw6dGj1\ntgMHDmRoaChjY2OZn5/PM888k4ceeuiqj3nnO9+Zr371q0mSL3/5y3n3u9+d+++/P88++2zm5uYy\nOTmZ48eP59ChQ+nu7l7dCLRt27Y3BIQAAAAAAAAAAKCRFMrlcrkaBy6VSvnYxz6Wo0ePplwu59d+\n7dfy9a9/PTMzM/mRH/mRfOlLX8onP/nJlMvlfOADH8iP/diPveVjDhw4kJMnT+aXfumXsrCwkP37\n9+fjH/94mpqa8rnPfS5PPvlkyuVy/v7f//t59NFHc/78+fziL/5iZmZmsri4mJ/+6Z/OX/2rf/Wa\ns0pH3n6kVoFG5foGNCrXN6CRucYBjcr1DWhUrm9Ao3J9A662+adq4Z964gJ5+/EPF9CoXN+ARuX6\nBjQy1zigUbm+AY3K9Q1oVK5vwIbXfgEAAAAAAAAAANUl/AMAAAAAAAAAAHVK+AcAAACL/VsDAAAg\nAElEQVQAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAAAAAAAKhTwj8AAAAAAAAAAFCnhH8AAAAAAAAA\nAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwDAAAAAAAAAAB1SvgHAAAAAAAAAADqlPAPAAAA\nAAAAAADUKeEfAAAAAAAAAACoU8I/AAAAAAAAAABQp4R/AAAAAAAAAACgTgn/AAAAAAAAAABAnRL+\nAQAAAAAAAACAOiX8AwAAAAAAAAAAdUr4BwAAAAAAAAAA6pTwDwAAAAAAAAAA1Kk1hX9efPHF/Jt/\n828yPz+fn/iJn8h3f/d356mnnqr2bAAAAAAAAAAAwDWsKfzz8Y9/PO9617vy1FNPpbW1NX/wB3+Q\nf/2v/3W1ZwMAAAAAAAAAAK5hTeGfUqmU7/zO78yf/dmf5Qd/8Adz9913Z2lpqdqzAQAAAAAAAAAA\n17Cm8E9bW1s+/elP56tf/Wre+9735t/+23+bjo6Oas8GAAAAAAAAAABcw5rCP//0n/7TzMzM5F/+\ny3+Znp6ejIyM5J/9s39W7dkAAAAAAAAAAIBraF7LnbZu3Zrv//7vz9vf/vZ8/vOfT6lUSrG4ptwQ\nAAAAAAAAAABQJWtK8Pz8z/98nnrqqbzwwgv5zd/8zXR2duYjH/lItWcDAAAAAAAAAACuYU3hn9On\nT+fDH/5wnnrqqfztv/238w/+wT/I+Ph4tWcDAAAAAAAAAACuYU3hn6WlpVy6dClf/OIX873f+70Z\nHR3N7OxstWcDAAAAAAAAAACuoXktd/rgBz+Yxx57LO973/ty6NChPProo/nwhz9c7dkAAAAAAAAA\nAIBrWFP452/8jb+RRx99NIODg/nGN76RP/7jP05z85oeCgAAAAAAAAAAVMmaEjwvvfRSPvzhD2fL\nli0plUq5cOFCPvnJT+aBBx6o9nwAAAAAAAAAAMBVrCn884//8T/OP//n/3w17HPkyJH86q/+an7v\n936vqsMBAAAAAAAAAABXV1zLnWZmZt6w5efBBx/M3Nxc1YYCAAAAAAAAAACub03hn56ennzhC19Y\n/f2f/MmfZMuWLVUbCgAAAAAAAAAAuL411X796q/+an7+538+/+gf/aMkyZ49e/Ibv/EbVR0MAAAA\nAAAAAAC4tmuGf378x388hUIhSdLa2prdu3enXC6nra0tH/3oR/Pv/t2/25AhAQAAAAAAAACAN7tm\n+OdDH/rQRs0BAAAAAAAAAADcoGuGfx555JGNmgMAAAAAAAAAALhBxVoPAAAAAAAAAAAA3BzhHwAA\nAAAAAAAAqFPCPwAAAAAAAAAAUKeEfwAAAAAAAAAAoE4J/wAAAAAAAAAAQJ0S/gEAAAAAAAAAgDol\n/AMAAAAAAAAAAHVK+AcA7gDlcjlDE8MplUu1HgUAAAAAAABYR8I/AHAHePniN/JPnvnNPH3u+VqP\nAgAAAAAAAKwj4R8AuAMcvXw8STI8dabGkwAAAAAAAADrSfgHAO4AQxOnkyQjMxdqPAkAAAAAAACw\nnoR/AKDBlcql1Y0/o8I/AAAAAAAA0FCEfwCgwZ2bHsn80nyS5MLspSyVlmo8EQAAAAAAALBehH8A\noMENTS5XfjUVmlIql3Jx9nKNJwIAAAAAAADWi/APADS4UxPDSZLv2Pb2JMnIzGgtxwEAAAAAAADW\nkfAPADS4oYnTaSo05cHedyVJRq9crPFEAAAAAAAAwHoR/gGABrZYWsyZqbO5p/Pu7OrcmSQZmblQ\n46kAAAAAAACA9SL8AwAN7MzU61ksL2Wge09627YlSUavCP8AAAAAAABAoxD+AYAGNjRxOknS37U7\nrc2t6W7pysjMaI2nAgAAAAAAANaL8A8ANLChyeEkyUD37iRJb9v2XJody0JpsZZjAQAAAAAAAOtE\n+AcAGtipidNpKW7Kzva+JMmO9u0pp5yLVy7WeDIAAAAAAABgPQj/AECDmluaz+vT57On6540FZuS\nJL3t25MkIzMXajkaAAAAAAAAsE6EfwCgQQ1Pnkk55Qx071n9Wl/bSvjnivAPAAAAAAAANALhHwBo\nUKcmhpMkA127V79m8w8AAAAAAAA0FuEfAGhQQ5OnkyT937L5p7dtW5JkVPgHAAAAAAAAGoLwDwA0\nqKGJ4bQ1t60GfpKkpaklWzdvUfsFAAAAAAAADUL4BwAa0MzCTEavXMxA1+4UCoU33Nbbvj1jc+OZ\nX5qv0XQAAAAAAADAehH+AYAGdGryTJKkv3v3m27rq1R/Xbm4oTMBAAAAAAAA60/4BwAa0NDEcJJk\noHvPm27rbd+eJBmZUf0FAAAAAAAA9U74BwAa0NDk6STJQNebN//saO9NkowK/wAAAAAAAEDdE/4B\ngAY0NDGc7paubNnc86bbettWNv9cEf4BAAAAAACAeif8AwANZnxuMmNz4xno3p1CofCm27e33ZVC\nChmZGa3BdAAAAAAAAMB6Ev4BgAZzanI4SdL/FpVfSdJcbM5drVtt/gEAAAAAAIAGIPwDAA1maGI5\n/DPQveeq9+lr357J+alcWZzdqLEAAAAAAACAKhD+AYAGMzR5Okky0HXt8E+SjNr+AwAAAAAAAHVN\n+AcAGki5XM6pidPZ1ro1nS0dV71fb9tK+GdG+AcAAAAAAADqmfAPADSQS7OXM7Uwnf5rVH4l39z8\nMyL8AwAAAAAAAHVN+AcAGsg3K792X/N+lc0/I2q/AAAAAAAAoK4J/wBAAxmaGE6SDHRfO/yzrXVr\nioWi2i8AAAAAAACoc8I/ANBAhiaGU0ghe66z+aep2JTtbXfZ/AMAAAAAAAB1TvgHABpEqVzK8OSZ\n9LX3pq259br372vbnumFmUwvzGzAdAAAAAAAAEA1CP8AQIMYmbmQ2aW561Z+VfS2b199HAAAAAAA\nAFCfhH8AoEEMTQwnSQa69qzp/n1tvUmSUdVfAAAAAAAAULeEfwCgQQxNnk6SNW/+6bP5BwAAAAAA\nAOqe8A8ANIhTE8MpFoq5p3PXmu7f21YJ/4xWcywAAAAAAACgioR/AKABLJWWcnrqbHZ17ExL06Y1\nPWZra0+ai81qvwAAAAAAAKCOCf8AQAM4O30uC6XFNVd+JUmxUExv27aMzFxMuVyu4nQAAAAAAABA\ntQj/AEADGJoYTpIMdO25ocf1tW3P7NJsphamqzEWAAAAAAAAUGXCPwDQAE5Nnk6S9HffWPint317\nkmRkRvUXAAAAAAAA1CPhHwBoAEMTp7Op2JxdHTtu6HF9bZXwz2g1xgIAAAAAAACqTPgHAOrc/NJC\nzk6fy+7Oe9JUbLqhx65u/rli8w8AAAAAAADUI+EfIKVyKU+++h/zwujLtR4FuAmnp86mVC5loHv3\nDT+2byX8M6r2CwAAAAAAAOqS8A+Q18ZO5stn/jJPDf5prUcBbsLQxHCSpL/rxsM/PS3daWlqsfkH\nAAAAAAAA6pTwD5DnR15MkgxPncn80nyNpwFu1NDE6STJQPeeG35soVBIb9u2jM5cSLlcXu/RAAAA\nAAAAgCoT/oE7XKlcyvOjL63+uhIiAOrHqcnhtDa1rlZ43ai+tu2ZLy1kfH5inScDAAAAAAAAqk34\nB+5wr42dzOT8VLZs7kmSnBwfqvFEwI24sjib8zOj6e+6J8XCzf2z3tfemyQZmVH9BQAAAAAAAPVG\n+AfucJXKr7+5/4eSJCcmBms4DXCjhidvvvKrondlY9Co8A8AAAAAAADUHeEfuINVKr86N3Xk3Tse\nzLbWrTkxPpRyuVzr0YA1qlT19Xfvvulj9LUth3/OXxldl5kAAAAAAACAjSP8A3ewSuXXA73vSlOx\nKft6BjK9MJORK7Z/QL0YmhhOkgx03fzmn77VzT8X12UmAAAAAAAAYOMI/8Ad7LmVyq/DffcnSfb3\n7E2SnBgfqtVIwA0amjydzk0duat1y00fo3NTR9qaWwX/AAAAAAAAoA4J/8AdqlQu5chK5dfBLfuT\nJPt6+pMkJ8cHazgZsFaT81O5NHs5/d27UygUbvo4hUIhvW3bc+HKxZTKpXWcEAAAAAAAAKg24R+4\nQ1Uqvx5cqfxKkns67k5LcZPNP1An1qPyq6KvfXsWS4u5PDt+y8cCAAAAAAAANo7wD9yhKpVfD61U\nfiVJU7Epe7v78/r0+cwsXKnVaMAanZo8nSQZ6N59y8fqbdueJBm5MnrLxwIAAAAAAAA2jvAP3IFK\n5VKOjLyx8qtif89AkuTkxKlajAbcgKGJSvhnfTb/JMnozIVbPhYAAAAAAACwcYR/4A702tiJTC68\nsfKrYl8l/DM+WIPJgLUql8sZmhzO1s1b0t3SdcvHq4R/Rq4I/wAAAAAAAEA9Ef6BO9BzIy8leWPl\nV0Ul/HNifGhDZ6qV89Mj+W+vP5NyuVzrUeCGjM2NZ3J+al0qv5Kkr83mHwAAAAAAAKhHzdU6cKlU\nysc+9rG8+uqraWlpycc//vEMDAys3v6lL30pn/zkJ9Pc3JwPfOADeeyxx676mKGhoXzkIx9JoVDI\nwYMH89GPfjTFYjGf+9zn8sQTT6S5uTk/9VM/lfe+971ZWlrK448/npdffjnz8/P50Ic+lPe+973V\neppQd65V+ZUkHZvas7O9L4MTp7JUWnrTZqBG8x9e+6N87eIr2dnel309/bUeB9ZsaGI4SdLftT7h\nn/ZN7enY1J4R4R8AAAAAAACoK1Xb/POFL3wh8/PzefLJJ/NzP/dz+fVf//XV2xYWFvL444/n05/+\ndD7zmc/kySefzIULF676mMcffzw/8zM/k89+9rMpl8v54he/mNHR0XzmM5/JE088kU996lP5xCc+\nkfn5+fzhH/5hFhcX88QTT+S3f/u3MzR0Z2wvgbW6VuVXxf6egcwtzefs9PkNnm5jLZWW8trYiSTJ\ncyMv1HgauDFDk6eTJAPde9btmH1t23Nh9lKWSkvrdkwAAAAAAACguqoW/nn22Wfznve8J0ny4IMP\n5uWXX1697fjx4+nv709PT09aWlry8MMP5+mnn77qY772ta/lkUceSZJ8z/d8T/7yL/8yL774Yh56\n6KG0tLSkq6sr/f39eeWVV/IXf/EX2bFjR37yJ38yv/iLv5j3ve991XqKUJeuVflVsa9nb5Lk5Pjg\nBkxUO6cmz2RuaT5J8vzIS6q/qCvrvfknSfrae1Mql3Jx9vK6HRMAAAAANtITr/5BPv3ck7UeAwBg\nQ1Ut/DM1NZXOzs7V3zc1NWVxcXH1tq6urtXbOjo6MjU1ddXHlMvlFAqF1ftOTk5e9RiXL1/OqVOn\n8q/+1b/K3/t7fy//8B/+w2o9Rag716v8qtjfs1zRd2K8sTdnHbt8PEnStakzl+fGMjhxqsYTwdqU\ny+Wcmjydvrbtad/Utm7H7W3bniQZvaL6CwAAAID6c2XxSv7izH/Pnxz/r1lYWqj1OAAAG6a5Wgfu\n7OzM9PT06u9LpVKam5vf8rbp6el0dXVd9THFYvEN9+3u7r7qMbZs2ZLv/d7vTaFQyCOPPJLBwcHr\nzrp1a3uam9+6/oja6e3tuv6duCEvn381kwtT+f4D78nOHVuuer9t2zvS+XxHhqZONfR/h8GvL4eb\n/rcH/1Z+++nP5BuTr+SRe99V46m4E9zq/1evT47kyuJsHt5137r+P3rvld3JyWSmONnQ/+8D1ePa\nATQy1zigUbm+AY3kubODKaecpdJSpprHcmj71T8EC1CvfP8GvJWqhX8OHz6cP/3TP8373//+HDly\nJIcOHVq97cCBAxkaGsrY2Fja29vzzDPP5IMf/GAKhcJbPuad73xnvvrVr+a7vuu78uUvfznf/d3f\nnfvvvz//4l/8i8zNzWV+fj7Hjx/PoUOH8vDDD+fP//zP8+ijj+aVV17J3Xfffd1ZL1+eqdYfAzep\nt7cro6OTtR6j4fzpsa8mSd7Z9Y7r/vnu7dqTly++ktdOn0nP5u6NGG9DLZWW8o3R17KzvS9v73hH\n2prb8pWhZ/JD9/xAioWqLUWDdbm+PX/ulSTJjs071/VauXmxI0lyYuRMRre6BgM3xvdvQCNzjQMa\nlesb0GieHnp59dfPn3olW8u9NZwGYP35/g24WgCwauGfH/iBH8hXvvKV/OiP/mjK5XJ+7dd+LZ//\n/OczMzOTH/mRH8lHPvKRfPCDH0y5XM4HPvCB7Nix4y0fkyS/8Au/kF/6pV/KJz7xiezfvz+PPvpo\nmpqa8uM//uP5O3/n76RcLudnf/Zns3nz5jz22GP56Ec/msceeyzlcjm//Mu/XK2nCHXlWyu/7t2y\n77r339ezNy9ffCUnx4fyYN99GzDhxhqaPJ35pfkc2nogzcXmPLD9O/Lfzz2TwYlT2d+zt9bjwTUN\nTQ4nSQa69qzrcfvUfgEAAABQx167fHL114Pjp5L1ffsMAOC2VbXwT7FYzK/8yq+84WsHDhxY/fX7\n3ve+vO9977vuY5Jk3759+d3f/d03ff2xxx7LY4899oavtbS05PHHH7+V0aEhvTZ2IpMLU/lru74r\nTcXr19zt7xlIkpxo0PDP0cvHkyQHty5flw7vuD///dwzee78i8I/De7/PfqHGZo4nf/z4Z+q2y1P\nQxOnU0ghu7t2retxW5tb093SlZEZ4R8AAAAA6suVxdmcmjyd/T0DGZ29mMGJU7UeCQBgw9TnTz2B\nG/bsyItJksN9D6zp/gPde1IsFHNifKiaY9XMsUr4Z8ty5/Pbtt6b9ua2PD/6UkrlUi1Ho4rK5XKe\nPvd8Tk4M5dXLr9V6nJuyVFrK8OSZ3N2xI5ubWtb9+L1t23Np9nIWSovrfmwAoH6VyqXMLy3UegwA\nALiqE+ODKaecg1sO5OBde3Nx9nIm56dqPRYAwIYQ/oE7QKlcygsjL6+58itJNje1ZHfn3RmePN1w\nIYDF0mKOjw9mV8fOdLV0Jsly9VfvuzI2N56T4z4R0qhGr1zM9OJMkuR/nHuuxtPcnHMzI1koLWSg\nuzo7i/vat6ecci5euViV4wMA9ek/Hf8v+cW//MeZXpip9SgAAPCWjl0+kWT5A5/3blt+H9z2HwDg\nTiH8A3eASuXXg333ranyq2Jfz94slpe3jDSSwYnhLJQWViu/Kg733Z8keW7khVqMxQYYmhhe/fWR\n0ZcztzRfw2luztDE6STJQPfuqhy/r317kqj+AgDe4OuXXs30wszqBk0AALjdHBs7kWKhmH09Azm0\nEv7xQU8A4E4h/AN3gNXKr977b+hx+3sGkiyvS20klR9YHFqp/Kp429Z709HcnudHXlT91aAqn/R5\n29Z7M780nxdGX67xRDduaHI5wDTQVaXNP20r4Z8rwj8AwLL5pYW8Pn0+SXJ0TPgHAIDbz+zibE5N\nns5A1+60Nm/OgbuW39u2+QcAuFMI/0CDWyot3XDlV0Ul/HNyfKgao9XM0bETKaSQe7e+MfzTVGzK\nA73fkfH5yZxosOfMsqGJ4RQLxfyv9/5wkvqs/jo1MZzmQlN2de6syvF7Vzb/jNr8AwCsODv9+mo4\n/qjNPwAA3IZOjA+lVC6tbnvvaGnPzva+DE0M+6AnAHBHEP6BBvfa2MmbqvxKkq2bt2TL5p6cGB9K\nuVyu0oQba6G0mJPjg9nVuTOdmzredPvhvgeSqP5qRIulxQxPnc3uzruzu2tXBrr35JVLxzI+N1Hr\n0dZsobSYM1Pnck/XrjQXm6tyjt62bUnUfgEA31SpAS4Winl9+nwm56dqPBEAALzRsbETSZJ7v2Xb\n+97u/swuzeXc9EitxgIA2DDCP9Dgnhu9ucqvJCkUCtnXM5CJ+clcnL283qPVxOD4UBZKizm05cBb\n3n5o64F0bGrPkZGXfCKkwZyZej2LpcUMdPcnSR7ZeTjllPP0+edrPNnanZk6m6XyUga6dlftHC1N\nLdmyuUftFwCwqhL+eaj3viTf/MEKAADcLo5dPpFioZgDK9vsk2Rvz54kyeDEcK3GAgDYMMI/0MCW\nSks5MvJSujZ13nDlV0Wl+uvE+OA6TlY7R1d+UFFZ//rtmopNebD3XRmfn8zxscENnIxqq7zIH+he\nftH/7r4HUywU66r6a2jidJKkf+U5VEtfe2/G5sYzvzRf1fMAAPVhePJMmovNec89fyWJ6i8AAG4v\nc0vzGZoczp6ue9La3Lr69b3dy+9tD04M1Wo0AIANI/wDDey1sZOZWpjOA33vuuHKr4pK+OfkeGO8\nQDp2+XgKKeTgNcJQ36z+enGjxmIDDK2Ef/atBGc6WzryHdvenjNTr+fM1Ou1HG3NKs+hmpt/kqRv\npfpr9MrFqp4HALj9LZYWc3bqXO7puDv7ewbS0tSSY8I/AADcRk6MD6ZULr1p2/uujh1pKW6y+QcA\nuCMI/0ADq1R+Pdx345VfFbs7d2VTsTknGiD8M7+0kJPjQ9ndeXfaN7Vf9X4Ht+xP56aOPD/6ouqv\nBjI4cSqtTa3pa+9d/dojOw8nSd1s/zk1eTotTS3Z2dFX1fP0tm9PkozMqP4CgDvd69MjWSwvZU/X\nrjQVm3KgZ2/OzYxkfG6y1qMBAECS5cqvJG/aft9UbEp/9+6cnTqX2cW5WowGALBhhH+gQb2x8mv/\nTR+nudic/q49OTP1emYXZ9dxwo03ODGUxfLSVSu/KpqKTXmg912ZnJ/Ka2MnN2g6qmlm4UrOz4xm\noHt3ioVv/tN337Z3pK25NU+fe/62D3rNLs7l3PRI+rvuecNzqIa+tuXwz6jwDwDc8YYnl2tH93Td\nkySrn6Y+Nmb7DwAAt4djYydSSCEH3mLb+97u/pRTzqmV72sBABqV8A80qG+t/LrVoMD+noGUU677\n9ahHV+oJDl0n/JMkh1e2Jan+agxDkyt1WSuVXxWbmjblcN/9GZ+fWP37cbsanjyTcsoZ6Npz/Tvf\nosp2pJErwj8AcKcbnjyTJOlfqR2tBOlVfwEAcDuYX5rP0MRw9nTdk7bm1jfdvre7P8nyVnAAgEYm\n/AMN6rmRF5LcWuVXxf6egSTJyTqv/jp6efkTIN++/vWtVKq/joy8dNtvhOH6hlaCa5UX+9/qkZ0P\nJ7n9q7++GWDaXfVzbW+7K4UU1H4BABmePJNioZi7O3cmSfq77snmppYctfkHAIDbwInxoSyVl3Jw\n61tvv9/XsxL+GRf+AQAam/APNKCl0lKOjL58y5VfFftWwj8n6jj8M780n8GJUyufAGm77v2bik15\nsO++TC5M5bWxExswIdU0uBr+efPWnP09A9nWujXPj76UuaX5jR5tzU5NLK8m7t+AzT/Nxebc1bo1\nI1dGq34uAOD2tVRayump17OrY2c2FZuTLH+ffGDLvozMXMjY3HiNJwQA4E53bOW924NXeR98y+ae\nbNnck5MTp1IulzdyNACADSX8Aw2oUvn1YN99t1z5lSRdLZ3pa9uekxNDdbsF53qfAHkrla1Jz6r+\nqmvlcjmDE6eydfOW9GzuftPtxUIx37nzcOaX5vPC6Ms1mHBthiaG09Hcnu1td23I+frat2dyfipX\nFmc35HwAwO3n/MxoFkoL2dN1zxu+fmhLpfpLSB4AgNo6trLt/UDP1be97+3uz8T8ZC7PjW3gZAAA\nG0v4BxpQpfLrcN9963bMfT0DubI4m3PTI+t2zI107PJyLUHlBxVrce+W/ena1JkjIy9lqbRUrdGo\nsstzY5mcn8rAW2z9qXhk5+Ekt2/119TCdC7MXkp/9+4UCoUNOWdf+/YkyegV1V8AcKcanjyTJG8O\n/2xd/p766GXVXwAA1M780kKGJk5ld9eutG+6+rb3yjbwynZwAIBGJPwDDWa9K78q9q9Uf52s0+qv\no2PHUywUc2DL1T8B8u2KhWIe7LsvUwvTq+tjqT/Xqvyq2NHem4HuPXnl0rGMz01s1GhrNjyx/IO3\nga7dG3bO3raV8M+M8A8A3KmuFv7Z3bkrrU2tOTom/AMAQO0MTgxlsbx01cqvir3d/cv3Hz+1EWMB\nANSE8A80mGNjJ9a18qtif8/eJMv1WfVmdnEugxPD2dN1T9qaW2/osYdXqr+eV/1VtwYnll/UXyv8\nkyxv/ymnnGfOH9mIsW7I0ORygKn/Os9hPVU2/4zMXNywcwIAt5dTk2dSSCG7O+9+w9ebik25d8u+\nXLhyMZdnVScAAFAbR1dqaK8X/unv3p1ioZiTE8I/AEDjEv6BBlMJqaxn5VeS7OzoS2tTa05MDK7r\ncTfCyfGhlMqlG6r8qrh3y750tXTmyOjLqr/q1OD4cAopZM91tua8u+/BFAvFfPXcsxs02doNTZxO\nkgx0b/zmn5Eroxt2TgDg9lEql3J66kx2dvSlpanlTber/gIAoNZeGzuRQgq59zrb3jc3tWRXx84M\nT572Hi8A0LCEf6CBVKvyK1muwNrX05+RmQuZmp9e12NXW6WO4ODWGw//FAvFPNR7v+qvOrVUWsrw\n5Onc3bEjrc2br3nfzpaOfMe2t+XM1Os5M/X6Bk24NkMTw+lp6c6WzT0bds5trVtTLBTVfgHAHWr0\nysXMLc2/qfKr4uDW5dcbqr8AAKiFhaWFnJw4lXs67077pvbr3n9vT38WSou33ft+AADrRfgHGki1\nKr8q9vUMJElOTtRX9dfRy8dTLBRzYKW67EZVtig9N/LCOk7FRnh9+nzmSwurvd7X88jOh5Mk/+Pc\nc9Uc64aMzY1nfH4i/Ru49SdZrvPY3nZXRq4I/wDAnWh48kySXDX8s7tzV9qa23LssoA8AAAbb3Di\nVBZLi6uh9OupvD84qPoLAGhQwj/QQKpV+VWxfyX8c2K8fsI/s4uzOTV5OgNde667+eVqDmzZl+6W\nLtVfdWhoYjhJsrd7z5ruf9+2d6StuTVPn3s+pXKpmqOt2WrlV9fansN66mvbnumFmUwvzGz4uQGA\n2loN/3S+dfinWCjm4Jb9uTh7KRevXN7I0QAAIEdXtrQf3LK2be/7Vt4fHFx5vxAAoNEI/0CDqGbl\nV8Xe7v4UUsiJ8cGqHL8ajo8PplQurfkTIG+lWCjmob77Mr0wk6OX1RrUk8oneZA2X+kAACAASURB\nVPb2rG3zz6amTXmo9/6Mz0/cNv+tT628ITGwwZt/kqS3fXuSZET1FwDccSrhn91du656H9VfAADU\nymuXT6SQQu7dsm9N9+9r701bc2vdbbUHAFgr4R9oENWu/EqStubW7OrcmaGJ4brZgFMJcBzaurZP\ngFzN4b4HkiTPrWxXoj4MTgynpbgpO9v71vyYR3YeTnL7VH8NTS5v/tno2q9kefNPkoyq/gKAO0q5\nXM7w5Jn0tW1PW3PrVe93aOVT1sduk9A0AAB3hoXSYk5ODGVX5850bGpf02OKhWIGuvZkZOaCLdcA\nQEMS/oEG8c3Kr/urep59PQNZKC3m9NTZqp5nvRy7fCJNhabs79l7S8fZ3zOQnpauvKD6q27MLs7l\n9enz6e/enaZi05ofd2DL3tzVujXPj76UuaX5Kk54feVyOacmTmd7613p3NSx4efva+9NYvMPANxp\nLs5ezszilezpeuvKr4pdnTvT0dyeo5ePp1wub9B0AADc6YYmhrNQWszBG9yAv29lO7jqLwCgEQn/\nQANYrfxq6VzzmtObtb97IElyYvz2X496ZfFKTk2ezkD3nmxuarmlYy1Xf92f6cWZvHr5tXWakGoa\nnjydcsoZWOnzXqtioZhHdjyU+aX5vDD6cpWmW5uLs5cyvThzw89hvfTa/AMAd6RK5df1wj/FQjH3\nbt2fy3NjuTh7aSNGAwCA1c2TB29w2/ve7kr459S6zwQAUGvCP9AAViu/eqtX+VVR2aBzYnywqudZ\nD6+NnUw55Vuu/Kp4aGWrkuqv+lD5BE/lRf2NuF2qv4ZWnkMtKr+SZGtrT5qLzRmZGa3J+QGA2lhr\n+Cf5ZvXX0csnqjoTAABUHBtb/t7z3p4b+yBs5QN2wj8AQCMS/oEG8NwGVX4lyfa2u9K1qbMuNv8c\nW/kBROUHErdqufqrOy+MvpzF0uK6HJPq+Wb458a35uzo6MtA1568culYxucm1nu0NRuaOJ0kGeiq\nTfinWChme9u2jMxcVOUBAHeQGwr/bK2Ef45XdSYAAEiSxdJiTowPZVfHznS2dNzQY7taOrO9bVuG\nxoe91wUANBzhH6hzS6WlvLBBlV9JUigUsr9nIGNz47k8O1b1892Ko2PH01xoyr6egXU5XrFQzOG+\n+zOzeKUhqr8a/QXu4MSpdLd0ZevmLTf1+EfuPpxyynnm/JF1nmzthiaHU0hhTT94q5YdbdszuzSb\nqYXpms0AAGyccrmcU5Ons611azo2tV/3/nd37Ejnpo4cGzve8N9fAgBQe0MTp7NQWsjBrftv6vF7\nu/dkenFGzT0A0HCEf6DOVSq/HtqAyq+KSpjmdq7+mlm4ktOTZ7O3pz8tTZvW7biHdzRG9de56fP5\nhf/6y/nKma/WepSqGJsbz9jceAa696RQKNzUMd7d92CKhWLNqr9K5VJOTZ7Jjo6+tDa31mSGJOlt\n354kGZnxhggA3AnG5ycytTC95vBxoVDIwS37MzY3ntErF6s8HQAAd7pjY8sbJw/e5Lb3fd3L722f\nHFf9BQA0FuEfqHOVEMpDG1D5VbG/Z2+S2/sF0mtjJ1JO+aZfBF7N3u7+bNnckxdGv1bX1V//4bU/\nyvTiTL5ao2BLtQ3dQuVXRWdLR75j29tyeupszk6dW6/R1uz8zGjml+ZrVvlV0de2Ev7xaSgAuCOc\nWqkdvZHNg5Xqr2OqvwAAqLJjl08kyU1vwd/bs/x+4eDK+4cAAI1C+Afq2EZXflX0d92TpkJTTowP\nbdg5b9TRlU+AVH4QsV4q1V9XFq/klUvH1vXYG+UbF4/m6xdfTZKcnBjK7OJcjSdaf4Or4Z/+WzrO\nIzsfTpKabP+pBJgGbiHAtB6+uflntKZzAAAbY3jyTJKbC/9UvgcHAIBqWCwt5sT4YO7u2JGuls6b\nOsY9nbvSXGjK4MTt+8FWAICbIfwDdawWlV9JsqlpU/q77snw1JnML81v2HlvxLHLJ9JcbM6+Wwx/\nvJXKlqV6rP4qlUv5/df+KIUU8q5t70ipXMprYydqPda6q4R/+m9xa859296RtubWPH3++ZTKpfUY\nbc2GVj51P9Bd480/K+GfUbVfAHBHGJ668fDPjva+dLV05tjl4ymXy9UaDQCAO9ypydOZLy3k4Jb9\nN32MTcXm7Om6J6enzmZ+aWEdpwMAqC3hH6hjtaj8qtjXM5BSubQaULidTC/M5MzU69nX3Z9NTZvW\n/fh7u/dk6+YtefHC17JQZ9Vf/+3s0zk7fS7fffe7833970mSvHK5PjcYXU2pXMqpieHsaO9L+6a2\nWzrWpqZNeaj3/ozNjefoBtdYDE0Op6nQlHs6d23oeb9dT0t3Woqb1H4BwB1iePJstmzuSXdL15of\nUygUcmjLgYzPT9oWCABA1VQqvw7e4rb3vd39KZVLOb0SfAcAaATCP1CnalX5VbG/Z2+S5ORtWP11\nbOxEyimve+VXRbFQzEN99+XK4mxeuXS0KueohtnF2Xz+xFNpaWrJD+//wezr2ZtNxU159dJrtR5t\nXZ2fGc3s0lz2rlNd1iM7DyfZ2OqvxdJizkyeza7OndlUbN6w876VQqGQ3vbtGZ254JP8ANDgJuYn\nMzY3nj1dNx4+Prha/dV4WyUBALg9HFv5XvNW3w/f27O8Lf7kuOovAKBxCP9AnapV5VfFvpUXSCcm\nBjf83NdzbGVDy6Gt91btHIf7HkiSPD/yUtXOsd7+ZOjPMrkwlR/s/95s2dyTTcXm3LtlX85On8v4\n3EStx1s3lcqv9Qr/HNiyN3e1bs2R0Zc2rObu7NS5LJaXMnCLtWXrpa9te+ZLCxmfb5y/JwDAmw1P\nnk2S7Olce+VXxaGV6oVjG7wtEQCAO8NSaSnHxwezs73vhrZUvpW93cvvbQ9OCP8AAI1D+AfqVC0r\nv5Jky+aebGvdmhPjQ7fdNpCjl49nU7E5A+sU/ngrleqvF0bro/rr0uzlfHH4y9myuSff1/89q19/\n+10HkySvXm6c7T+VF+3r9d+/WCjmkR0PZW5pPi+Mfm1djnk9Q5PLAaZq/h2+Eb3t25MkIzOqvwCg\nkQ1PLlf67um68fBPX3tvelq6cnTs+G33+gAAgPp3avJ05pfmc+/W/bd8rG2tW9O5qWP1Q4QAAI1A\n+Ae+TalcqvUI11Xryq+KfT0DmV6YyciV2ycQMDk/lbPT57K/Z29V65IKhUIO77g/s0v1Uf31n47/\nlyyUFvM39/9QWppaVr/+9q3L4Z9XLh2r1WjrbmhiOM3F5tzTefe6HXOjq79OTSz/4O12Cf/0tfcm\nSUaFfwCgoQ1Pnklyc+GfQqGQg1sPZHJ+KudnRtZ7NNgw5XI5gxOn6uK9AQC4k1QqvyobJ29FoVDI\nvp7+XJq9nPG5yVs+HgDA7UD4B77FX559Oh/5i1/Jyxe+UetRrqnWlV8V+3v2JklOjA/VbIZv99rY\nySTJoa0Hqn6uwytbl549/2LVz3UrBidO5enzz2dP1z35zp0PveG2XZ0707mpI69cOtYQn9CeX1rI\nmanXs6dzV5rXMfy1o6MvA1178o1LRzfkDYGhydPZVNyUne19VT/XWvS1rWz+uY2CfgDA+huePJOu\nTZ3Zsrnnph5/aMvy9+BHVX9Rx545fyS/8cxv5QtDf17rUQCAb3Hs8nL4594t6/O+r+ovAKDRCP/A\niiuLs/mPx/840wsz+Z2XP5NXL92+NUiVyq/DNar8qtjfM5AkOTk+WNM5vlXlBw0H1+lF4LUMdO3J\nXa1b89KFr2VhaaHq57sZ5XI5v3/sj5IkH7j3h98UFisWinn7XQczPj+Rcw3wCe3TU2dSKpdWX7yv\np0d2Hk455Tx7/vl1P/a3ml+az+vT57On6540FZuqeq616lP7BWv2zPkjeWrwS1kqLdV6FIAbMr0w\nk4uzl7On654UCoWbOsbBrcI/1L+nV77f//9O/WmmF2ZqPA0AkCxvwj8+fjI72nvTs7lrXY4p/AMA\nNBrhH1jxp8P/NdMLM3mg911JuZz/+6X/57baaFPxrZVfB2pY+ZUkuzp2pqWp5bb6czo6djwtxU0Z\n6N5d9XMVCoUc7rs/s0tz+cZtWv11ZPTlHB8fzAPbv2P1hzHf7m0NVP1V6emuRl3WwzseSLFQrHr1\n1/Dk2ZTKpQ35O7xWnZs60trUavMPXMf80nw++8rv5T+d+C/5zSO/k8n5qVqPBLBmt1L5VdHbti1b\nNvfk2NiJhtgqyZ1nZmEmr1w6lmKhmCuLs/mToT+r9UgAQJLhqTOZW5rPvetQ+VUx0L0nhRQyOC78\nAwA0BuEfSDK1MJ0vnvpyOjd15H9/x4/kJ971Y1ksLeb/euFTGZ48W+vx3uB2qfxKkqZiU/Z29+f1\n6fOZWbhS01mSZHJ+Kuemz2d/z951rXy6lsr2pco2ptvJQmkx//G1P06xUMz/cu/7r3q/t991b5IG\nCf+svFivxuafrpbOvPOut2V46mzOTp1b9+NXDE0uB5j6u26f8E+hUEhf+/ZcuHIxpXKp1uPAbevF\nC1/P3NJ8ulu6cmzsRP7JM795230fAXA16xH+KRQKObjlQKYWpvP69Pn1Gg02zAsXvp6l8lIeHXhv\ntmzuyZ+d/krG5yZqPRYA3PEqlV+H1jH809bcmh0dfRmaHPZ+FwDQEIR/IMmfDP1ZZpfm8kN7vy+t\nzZvzQO+78uPveCyzi3P5rSO/k3PTt08d0nMjLySpfeVXxWr1122wHrVSL3DoKhtuqqG/a3e2td6V\nFy98LfO3WfXXl0//ZS7MXsr/fM//lL723qve767Wrelr355jY8frvqZmaGI4HZvas73trqoc/5Gd\nh5Okqtt/hqq4vehW9LVvz2JpMZdnx2s9Cty2nj63XBPy0w/9ZH543w/m0uzlfOLZT96WAVGAb7ce\n4Z/km9+Lq/6iHj2/8m/2Izsfzl/f+31ZKC3kPw9+scZTAQDHxpbDP/duXb/wT5Ls6+7P3NK84DoA\n0BCEf7jjjc2N589PfyVbN2/JX9v1Xatff2Tn4fzo2/5Wpham85tHficXrlyq4ZTLliu/vnZbVH5V\nrIZ/xgdrO0i++SJwI8M/leqvuaX5fOPSqxt23uuZmp/Ofx78Qtqb2/LX933/de//9q2HMrc0f1uE\nuG7W5PxULsxeWl7ZWyhU5Rz3bX9nWpta8/T556v2iaBTE6fT1tya3rZtVTn+zept254kGVX9BW9p\nan46X7/0avZ07srdHTvy1/d9f37yvv8jhUIhn3r5d/P5E0/5JCFwWxuePJO25rZsa916S8epfC9+\nbEz4h/pSqfza07krfe3b81fu/s70tm3LV85+NReuXKz1eAD8/+zdd3hb93n3//fBIkGCBLj3HqK2\nRE1vW5ElD3nHSWrXSZPG2bN10j6/J+31+zW/tk+z2sZ22szGaewkdbwl25L31t4SKe69B0iQAEiM\n8/xBQpYdSiIpAOeAvF/X5UuxCHy/txRLxDnn/t4fsWgFggEanS1kWtNxxNnDunbx9OG7lhi+JyqE\nEEIIESLNP2LRe7HlVXxBPzeVbMVsNH/ga1fmbeaO8ptxTozw4yM/wzmh7cSL9yO/Vmke+RVSMh2v\n1DTSqnElU6eLLUZL1OOS9Bj99XzLy3j8Xm4s2UqiOeGirw9Ff52J4eiv0MSc4qTITcyxGM1UZ67E\nOTFydtxwOLl9Hvo8AxQm5evmz3hIZsJU80+fu1/jSoTQp8N9xwmqQdZnrz37c6szlvPAuq+Qbk3j\nxZZX+NmJR/D4vRpWKYQQM/P4vfR5BihIyrvkJuq0+BRS4hzUDzdJ06OIKaHIr7XT13dGg5EdJdsI\nqkF2Nr2kcXVCCCHE4tUx1oU34KU8jJFfISXTB1tbRqT5RwghhBCxT19PFoWIsgHPIO907SPTms6m\n7HUzvmZr4TXcVLyVQe8QPz7yc1yTY1Gu8n3vR36t1KyGD0swJ5CdmEXLaJumkVEjE6P0uvsot5dg\nNBijundBUh7p8akcHziti+iv3vE+3up8jwxrGlfnXTar91SmlKGgUDscu80/LaHmH3thRPcJRX/t\n6zkU9rXbXB2A/iK/4JzmH5n8I8SMDvQeQUFhfdaaD/x8ri2bb6//KlUpFZwYqOEHhx6mzy1/joQQ\n+tLh6gKg8BIjv2BqMmZlShnjfjddYz2XvJ4Q0RKK/Fp7TsR2ddZq8mw5HOw9QudYt1alCSGEEIta\naNp7RZgjvwByErOwGC1n7ysKIYQQQsQyaf4Ri9rzzS8TVIPcXLrtgg0jN5Vcz0cKrqbX3cdDR3+B\n2+eJYpVTAsEAR/tP6iryK6Q0uYiJwCRdGmYjaxH5FaIoCtVZq5kMTHJaB9FfTzU+T1ANcnv5zZgM\nplm9x2qyUpxcQMtoe8xOpQhN/imK4OQfgDJHCSlxDo72n2AyMBnWtdtGp5t/ojy9ajYyQ7Ff0rQg\nxJ8Y9AzRNNJChaN0xhHkieYEvrT6M2wpuIqe8V6+d/BBagbrNKhUCCFm1j7WCUw1tYfD+9Ff4Z+U\nKEQkfDjyK8SgGLi19AZUVJ5r2q1hhUIIIcTiFZq+XRGByT8GxUBRUj7d4714Y/SeqBBCCCFEiDT/\niEWra6yH/T2HybPlnI1tOh9FUbij/GauzN1Ex1gXPzn2S7z+iShVOqXO2ci4z62ryK+Q0unxqM0j\nLZrVUDfcCETmBMhsnI3+6j2myf4hdcMNnBg4TbmjhNXpy+f03qrUCoJqkPrp38tYoqoqraPtpFvT\nsFkSI7qXQTGwMbuaicAkx/pPhXXtVtd0A5MOJ/8kmBNINCfI5B8hZnCg9ygAG86J/Powo8HIXRW3\ncN/Sj+ELTPLwsV/yStubqKoarTKFEOK82l3hbf6pcEw1/9TF4OdKsTh9OPLrXMvTqii1F3Ni4LQu\n4q6FEEKIxSSoBmkcaSbdmkZKvCMiexQnF6Ki0jp9KE8IIYQQIlbpq4NAiCja1bwHFZVbSrfPqplG\nURQ+vuQONmStpXm0jZ+eeARfFCOeQiPI9RT5FRJq/tHyRmj9cCPxxjgKbOF5YDFX+bZcMqxpnBis\nCfs0mNkKqkGeqN8JwJ3lO1AUZU7vX5JSAUDtcEPYa4u0fs8g4343xVFqmglFf+3vORzWdVtHO0gy\n22acHKIHmdZ0BjxDmkb8CaE3qqpyoPcIJsXImoyLf4/enLOeb1R/kWSLjScbdvLfNf8T1c8TQggx\nk3ZXJ3FGCxnWtLCsl2ZNIS0+lXpnE0E1GJY1hYikmSK/QhRF4bayGwF4tvEFadwVQgghoqhjrAuP\n3xuRqT8hxfZCAFpG2yK2hxBCCCFENEjzj1iUWkfbOdp/kpLkIlakLZ31+wyKgfuWfozV6cupG27g\nFyd/G5WH4KHIr2RLku4ivwAyEzJINCVo1vzjnBihzzNAuaPkgvFtkaQoCmszVzEZmOTUoDbRX/t6\nDtMx1sXG7Op5TY4psRdiMVo4M1QfgeoiK3RxXpxcGJX9shMzKUoqoGaojpEJV1jWHJ10MTzhpCg5\nf86NW9GSkZBOUA0y6B3WuhQhdKNjrJue8V5WpC8lwWyd1XtK7IV8e8PXKE4uZF/PIf718H/inBiJ\ncKVCCDGzycAkPeN95NvywjphtDKlDI/fQ+dYd9jWFCISzhf5da5yRwnL0pZQ72yidjj2rpeEEEKI\nWNUQwcivkNBhwmZp/hFCCCFEjJPmH7EoPde0G4Bby26Y80N2o8HIp1fcy9LUSk4O1vDI6d9H/DRr\nKPJrTcZK3UV+wVTjS4m9iEHvECMTo1Hf//3Ir7Ko732u6szVABzui37010RgkucaX8BsMHNr6Q3z\nWsNkMFHhKKXH3cew1xnmCiOrdTT6cVkbs6tRUTnUeyQs64V+DYU6jPwKybRmANAv0V9CnHWgd2oC\n2Ias80d+zcQRZ+cbaz/Ppux1tLra+ZcDP6ZZokSEEBroGOtGRaUwTJFfIaEHNBL9JfTuQpFf5wpd\nZz3b+KJM/xExT1VV9nUf4n+/84/89tiTWpcjhBDnVeecbv5JiVzzjyPOTkqcg5bRNvkeL4QQQoiY\npr8uAiEirH64kZqhOqpSKqicZ7OI2WDicys/SZm9mEN9x3is9omINgDpOfIrJBT9pcWDy/rpBwqV\nDm2bf/JtOWRa0zk5EP3or5dbX2dk0sVHCq++pPzrqtSp6K8zMRb91TLajkExUGDLjdqe67JWY1AM\nYYv+apvOFS9Kyg/LepGQmTAVBdLnluYfIWAqbvFQ7zGspniWp1XN+f1mo5n7ln6MuypuwTU5xr8d\n/k/e6zoQgUqFEOL82l2dABSEufkndK0lzT9C7y4U+XWugqQ8qjNX0ebq4Gj/yWiUJkRE9LsHeejo\nL/hNzR9wToywu/4NvH6v1mUJIcSfCKpBGp3NpMWnkhqfEtG9ipMLcE2OMRRjByKFEEIIIc4lzT9i\nUVFVlWenp/7cUrb9ktayGC18cfWnKUzK473uAzxR/1xETgboPfIrJNT8o0X0V52zCaspnvyk6DV+\nzERRFKozVzEZ9HFysDZq+zonRni57Q2SLUlcX3jtJa1VlTLV/FMbQ9Ff/qCfDlcn+bYczEZz1PZN\nsthYlrqE9rEuusZ6Lnm9Vtd084+OJ/9kTMcgSPOPEFManM04J0ZYm7Fy3n//KIrCloKr+Mqaz2Ix\nWvht7eP8se7ZqMSKCiEERK75JyXeQYY1jQZnc8QnpQoxX7OJ/DrXjtLtGBQDzzXtlu/VIuYEggF2\nt7zKP+7/IbXD9SxLW8JVeZcxEZjkcN8JrcsTQog/0TnWg9vviWjkV0ixvRCAllGZyCuEEEKI2CXN\nP2JROTVYS9NIC6vTl1OcXHjJ61lNVr685rPkJmbzesc77JxuLAonvUd+hRQlF2BQDFFv/hn2Ohnw\nDFLuKNHF7091Vij663jU9nyucTeTQR+3lG4n3hR3SWvlJGaRbEmidrg+Zsbcdo5141cDFIXhz/Rc\nbcyuBrjk6T+qqtI62k5qfApJFls4SouITOvUAxGJ/RJiyoGeqdi/Ddlzi/yaSVVqBd9e/zVyErN4\nreNtHjr2S8Z845e8rhBCXEy7qxOzwUxWQkbY165wlOENeM82GAmhN7ON/ArJSshgc/Z6et19YZsA\nKkQ0NI+08n8O/DvPNr1IvCmezyy/hy+t+gzbiq5FQWFv90GtSxRCiD/REIXIr5DQs4KW0faI7yWE\nEEIIESnaPykXIkqCapDnmnajoLCj9NKm/pzLZk7kK2vuJ8Oaxoutr7Kn5bWwrQ3nRn7N7makVixG\nC/m2HNpdHfgCvqjtW6eTyK+Q3MRsshIyODlQw0QUor/aXZ3s6zlEni2HzTnrL3k9RVFYklKBa3KM\nrvFLn2YTDaGL8mINJuasTF9GvDGeA71HLulE+5DXyZhvXNeRXwDxpniSLUky+UcIwBf0c6T/BI44\nO+VhOoWYkZDGA+u+zKr05dQNN/D9Aw+GZbKYEEKcjy/op2u8h3xbDkaDMezrS/SX0LvZRn6d66aS\nrZgMJnY1v4Qv6I9UaUKEhcfv4Q9nnuKHh35C13gPV+Ru5O83PcC6rDUoikJqfAorspbQONIs13lC\nCN2pn/4MGY3JP4VJeRgUA80jbRHfSwghhBAiUqT5RywaR/pO0DHWxfqsteTassO6tj0uia+u+Rwp\ncQ6eaXqB1zveCcu6H4z8Kg7LmpFUYi/GrwZoH4veyd465/RFYIo+mn8URWFt5ip8QR8nB2oiupeq\nqjxZvxMVlTvLd4Rt8lFVajkAZ2Ik+qtldOqiXIvmH4vRTHXmSpwTI9QPN817nVbXVANTYbK+m38A\nMqzpDHmH8cuDDrHInRqsxeP3sC5rdVgnz8Wb4rl/5X3cWLyVAe8Q3z/0EEf7T4ZtfSGEOFf3WA9B\nNRj2yK+Q0Cnteuf8PycJESlzjfwKSYl3cHXeZQxPOHm7c28EKxRi/lRV5WjfCb6794e82fkeWQkZ\nfLP6i9xT9VESzAkfeO21xZcBsK/nkBalCiHEjIJqkAZnM6nxKaRZUyO+n8VoIc+WQ/tYp9zzEkII\nIUTMkuYfsSgEggF2Ne/BoBi4ueT6iOyRZk3ha2vvJ8li4/G6Z3gvDCOTYyXyK6TUXgQQ1eiv+uFG\nEkxW8mw5UdvzYkJTmiId/XVi4DR1zkZWpFVRlVoRtnVDa9UMx0bzT+toO/HGeDIjEFUxG+GI/mob\n7QCgKCn6DUxzlZmQjorKgGdI61KE0NTZyK+s6rCvbVAM7CjdxmdX3Aeqys9P/Ibnm1+6pAljQggx\nkzbX1GeQSDX/OOLsZCak0+hsJhAMRGQPIeZrrpFf59pWdB1xRgsvtryC1z8RgeqEmL9hr5OfnniE\nn5/8b8Z94+wo2cbfbvwG5Y6SGV+/MX8N8cZ49nUfks+bQgjd6B7vZdzvjsrUn5Di5EL8QT+dY91R\n21MIIYQQIpz0300gRBjs7zlMr7ufy3M2kJGQFrF9MhMy+Oqa+0k0JfBozeOX3PxxuDc2Ir9Cot38\nM+gZYtA7TIWjVFfNUVPRX5mcGqyJ2I3gQDDAU427MCgG7ii/OaxrO+LsZCdk0jDcpPuTLm6fm153\nP0XJ+Zr9N1DmKCElzsGR/uNMzjPqrXU0NPknMg/ewinTOnUqus/dr3ElQmjH4/dwcrCG7MQs8iPY\nfLo2cyUPrP8KafEp7Gp+iV+e/K08YBRChFW7a2piZ6Saf2AqntcbmKDNFb3poELMxnwiv0KSLDY+\nUnA1Y75xXmt/O9ylCTEvQTXIa+1v8919P+DEwGkqHKX8Pxu/yY0lWzEbTOd9X5zJwrqsVQxPOCWm\nUQihG6EJ29Fs/ilJLgSgeVSiv4QQQggRm/TztFyICPEF/exqfgmTwcSNJVsjvl+eLYcvr/lL4owW\n/uvUY/OOfgoEAxwbiJ3IL4CUOAeOODtNIy2oqhrx/eqm4wP0EvkVoigK1Zmr8AX9nBqMTPTXW517\n6XMPcGXuJrITs8K+flVqBZNBH81RnOI0H63Tp9WLpy/OtWBQDGzMrmYidLYvSQAAIABJREFUMMnx\n/lNzfn9QDdLm6iQrIQOryRqBCsMrFInQ5xnQuBIhtHOk7yT+oJ8NWWtRFCWie+XZcvj2+q9R6Sjj\naP9JfnjoYQY8gxHdUwixeLS7ujApRnIi8HkypHL6s3q9Ux4oC/2Yb+TXubYUXk2iOYGX295gzDce\n5gqFmJt2Vxc/OPgwf6x/FqNi5N6qu/n62s+TlZg5q/dvzlkPwN4wTLEWQohwCH12jOZ93+LkqYnc\nLSPtUdtTCCGEECKcpPlHLHjvdO5jeMLJNXmX44izR2XPouQCvrDq0xgVI784+d/zOjkVivxamxkb\nkV8w1fRSYi/CNTnGoDfykUD107+vlTpr/oHIRn+5fW6eb36JeGM8N0Uoxi4U/VU73BCR9cMldDFe\nlKxtXFYo+mtf79yjv/rdA3gDXgpjIPILIGP64Ui/W5p/xOJ1oHcq8mt91pqo7GezJPKVNZ/lmvzL\n6Rrv4XsHHuTMkL7/fhZC6F8gGKBzvJtcWzamC0yEuFTljqnP6jJNQujJpUR+hVhN8Wwv2oI34OWl\n1tfDV5wQczARmOSphl187+CPaXW1syFrLX+/+VtcnrthTk3qJclFZCakc7T/BB6/J4IVCyHExQXV\nIA3OZlLiHKTFp0Rt34yEdKwmKy2j+j4MKYQQQghxPrHRUSDEPE0EJnmx5RXijBa2FV0X1b0rUkr5\n3MpPElRV/uP4f815gkoo8mttRmxEfoVEK/pLVVXqhhtJNCdE9KTyfOXasslOzOLUYC1evzesa7/Q\n8grjfjc3FG8hyWIL69ohoSi12qH6iKwfLq2uqTG8xRo3/2QnZlKYlE/tUD2jk645vTc0vagoOT8S\npYVdhnUqOrFPJo+IRco5MUL9cCOl9iLSralR29doMPKxytu5p+ouvIEJHjr2C15vfycqk/aEEAtT\nj7sPf9Af0cgvAHtcEtkJmTSOtBAIBiK6lxCzdSmRX+e6Ou8yHHF23uh4B+fESDhKE2LWTg2e4R/3\n/ZCX294gJc7BV1Z/lr9Y/mfzuk+gKAqbs9fjC/rP3o8SQgit9Iz3MeYbpyKlNOLTds9lUAwUJxfQ\n7xmUqX5CCCGEiEnS/CMWtNfb38blG+MjBVdjsyRGff9laUv4zIp78Qf9PHzsV7S7umb1vliM/AoJ\nNf9EOi5q0DvE8ITzbJOKHlVnrMQX9M87+m0mfe4B3uh4l7T4FK7NvyJs635YvCme4uRCWkfbcfv0\neepPVVVaRtpJiXNgj0vWuhw2ZlcTVIMc7D06p/e1jupjetFsWYwWHHF2+tz9WpcihCYO9h5FRWVD\n1lpN9r8idxPfqP48ieYEHq9/hkdr/4gv6NekFiFEbGtzdQJEvPkHpiZ1TgYmzzY9C6GlcER+hZiN\nZm4q2Yov6OeFllfCVKEQFzY66eK/Tj3GT479kuGJEa4vvJbvbPorlqZVXtK6G7OrUVDY2yPRX0II\nbdU7m4Cpw4nRVpxcCLx/v04IIYQQIpbo84m5EGHg9nl4qe0NEk0JbCm8WrM61mSs4L6lH8Pr9/LQ\n0Z/TM9530ffUDcde5FdIvi0Xs8EU8ck/odiAaOY+z9XaCER/PdP4AgE1wG1lN2E2msO27kyqUitQ\nUalz6jOiYcjrxOUb03zqT8j6rDUYFAP7e+YW/dU62oFBMZBvy4lQZeGXaU3HOTHCZGBS61KEiLqD\nPUcwKAaqM1drVkOpvZi/Wf81CpPyeK/7AP9++KeMTIxqVo8QIja1R7H5J/SZXaK/hB6EI/LrXJuz\n15NpTefdrv30u2U6poicoBrkna59/MPeH3Cw9yhFyQX8zfqvcXv5TViMlktePyXeQVVqBU0jrfTO\n4t6VEEJESn3ovq8j+vd9S+xTzT/NI21R31sIIYQQ4lLFVleBEHPwStsbePweri+6FqspXtNaNmZX\n8/EldzDmG+fBoz9nwDN0wdeHmkViLfILwGQwUZhUQOdYd9jjrs5VNzx1AqRSg4vA2cq1ZZOTmMWp\noTNh+b1ocDZztP8EJclFVIfpRvWFVKVUAHBGp9FfLaNTF+F6mZiTZLGxLLWSdlcn3eO9s3pPIBig\nY6yTnMSssNysjZbQCel+if4Si0zPeC/tY10sS63UZKLguVLiHXyz+ktsyFpL82gr3zv4oJxMFELM\nSbtrqgE5NzHyDcihU9v10vwjdCBckV8hRoORHaXbCKpBdjbvDsuaQnxYz3gf/37kpzxW+wSqGuTu\nytt4YN2XyU/KDes+m3PWA7C351BY1xVCiNlSVZV6ZxOOOHtUo7ZDQvcZQ/cdhRBCCCFiiTT/iAVp\ndNLFqx1vY7ckcU3+5VqXA8BVeZu5o/xmnBMjPHjkZzgnRmZ8XSjyyx6DkV8hpfYiVFRaIvQQcuoi\nsBGbOZGcxKyI7BEu1Zmr8Af9nLjE6K+gGuSJ+ucAuKtiR1TyrouTC4g3xlGr0+af0EPu0DhePdiY\nXQ0w6+k/XeO9+IJ+ipL00cA0Wxmh5h/3gMaVCBFdB6Zj/bSK/Powi9HMp5Z9gjvKb2ZkYpQfHf4P\n9nXLgxohxMUF1SAdri6yEzKxRHiaJEw1SecmZtM40oJfogqFhsIZ+XWutZmryLflcqj3GJ1j3WFb\nVwhf0M+upj388/5/pcHZzOqMFXxn019zbf4VEZkUvSp9OVZTPPt7DhNUg2FfXwghLqbH3ceYb5wK\nR2lU7n9+mM2cSIY1jZbRdvl7UAghhBAxR5p/xIK0p+U1JgOT3FC8VVfTNLYWXsONxVsZ8A7x4JGf\n45oc+5PXhCK/1sRg5FdIqb0IgOYIRX/1ewZwToxQkVKmyUXgXFSHKfrrYO9R2lwdrMtcTcn072+k\nGQ1GKlJK6fMMMOgZjsqec9Ey2oaCEpWoitlamb6ceGM8B3qOzOoGQZtrqoGpKDk/0qWFVaZ16kFJ\nnzT/iEVEVVUO9hzBYrSwMmO51uWcpSgKWwuv4YurP4PZYOI3NX/gp8cfYcirv7+3hRD60efuZzLo\ni+rnqIqUUnxBX8QOCAgxG+GO/AoxKAZuLbsBFZVnG18M69pi8aofbuSf9/8rz7e8jM1i43MrP8nn\nVn6SlHhHxPa0GM2sy1yNc2JEtweBhBALW/30tPfQ5EgtFCcX4fF75NCbEEIIIWJObHYWCHEBQ95h\n3up8j7T4VC7P3aB1OX/i5pLr2VJwFT3uPh4++gvcPs8Hvh7LkV8hoeaUpgg1/9SfjfzS7iJwtrIT\ns8hNzOb0YC2eeUZ/TQYmeabxBUwGE7eV3RjmCi+sKqUSgDPD+rrpFwgGaHN1kmvLJt4Up3U5Z1mM\nZtZmrmR4wkmDs+mir28d7QD0E102W6FT0n0euQkiFo/m0TYGvEOsTl9BnI4ai0OWpy3h2+u/Srmj\nhOMDp/juvh/yctsbBIIBrUsTQuhQm6sTgMKk6DUgh+J6JfpLaCnckV/nWpa6hDJ7CScHa2gaaQn7\n+mLxGPe5ebTmcf7tyE/pcw9wTf7lfGfTX7M6Y0VU9t+cM3UvbW/3wajsJ4QQ56p3Tn1WrEjRsPnH\nHor+kqZ1IYQQQsQWaf4RC84LzS/jVwPcXHI9JoNJ63L+hKIo3Fm+gytyN9E+1sV/HP8VXv8EMB35\n1R/bkV8wNdY/05pO82hrRMaj1k1fBFamlIV97UiozlyFXw1wYuD0vN7/avtbOCdGuC7/StKinHVd\nlVoOoLsTf93jvfiCPl3GZW2ajv7aN4vor7bRdswGE7mJ2ZEuK6zSrGkoKDL5R5yX2+fhtzWP0+Hq\n0rqUsDnQcwSADdn6iPyaSWZCBt9Y+wXuW/oxzAYTTzXs4l8O/jhik/iEELGrfbr5J5qTf8qnH+DU\nzaJBWohIiFTkV4iiKGcPazzb+CKqqoZ9D7GwqarKgZ4jfHfvD3i3+wB5thz+et2X+Vjl7VhN8VGr\nozi5gKyETI4NnMLtc0dtXyGEUFWVemcTdksSGdbwf6+erZLkQmDqEJAQQgghRCyR5h+xoPS6+9nb\nc4jsxCxdP5xTFIVPLLmD9VlraBpp5acnHsEX8E1FfvljO/IrpMRehMfvpWe8L6zrqqpK3XAjSRYb\nWQmZYV07Utaejf46Nuf3jky42NP6GjZzItuLrwt3aReVlZCJ3ZLMmeEGXeVct0xffIdO4uhJmaOE\nlDgHR/tOMBmYPO/rfAEfneM95NtyMRqMUazw0pkNJlLjU+iXyT/iPF5rf4v3ug/w2JknFsSDr0Aw\nwOG+YySZbVSllGtdzgUpisLmnPX8/eZvcXnOBjrHuvnhoZ/wu9on5OGNEOKsdlcnCgp5tpyo7Wkz\nJ5Jny6F5pAVf0B+1fYUIiVTk17nKHMWsSKui3tlEzVBdxPYRC8+AZ4iHj/2SX5/+Hd7ABLeX3cTf\nrP8aJfbCqNeiKAqX5azHH/RzaB73MYQQYr563f24JseoSClDURTN6siz5WAymM7efxRCCCGEiBWx\n3V0gxIfsatpDUA1yS8k23TfPGBQDn1z6cValL6duuIFfnvotB3qnpgpUZ67WuLpLVzod/RXuaQN9\n7n5GJ11UOrS9CJyL7MRM8mw51AzW4fF7Lv6Gc+xq3s1EYJIdpduwmqwRqvD8FEWhKrWCMd84nWM9\nUd//fFqnx+4WJ0f/RujFGBQDG7Or8QYmOH6BaU8dY10E1SCFydGL2winzIR0Ridd846zEwvXZGCS\nNzrfBab+rF7oz0GsqBmqY8w3TnXW6php1rOZE7l36d18s/qLZCdm8nbXPv5h7w/Y33N4QTRkCSHm\nL6gGaXd1kZmQEfX41EpHGb6gnxaZSCY0EMnIr3PtKL0BgGebXtTVAQqhT0E1yEutr/P/7/shNUN1\nLE2t5Dub/orri67V9HPnhuy1KCjs7T6kWQ1CiMWnfnpCZLlDu8gvAJPBRIEtj86x7gse7BNCCCGE\n0Bt9d0cIMQcdri4O9R2jMCkvajnol8poMPKZFfdSlVLBiYEa9vUcwm5JOts4E8tK7cUANIX5xn7d\n2dzn2Ij8CglFfx3vn/1D8M6xbt7tOkB2YhaX52yMYHUXVpVaAcCZYf1Ef7WMtmMxWshJzNK6lBlt\nnI7+2n+B6K/W0Q4AXUaXzUZo/LJM/xEf9l73QcZ9btZlrkZBYWfT7ph/8BVqzt2Qpd+pgudT7ijh\nbzd8ndvKbsQbmOCR07/nwaM/p9fdr3VpQgiNDHiG8Aa8FCTlRn3v0Gd4if4S0RbpyK9zFSTlsi5z\nNe2uTo72n4zoXiK2qarK43XP8HTj88QZLXxq2Sf48uq/JN2apnVpOOLsLE2rpGW0jZ7xXq3LEUIs\nEvXDU/d9KzVu/gEosRcSVIO0TcflCiGEEELEAmn+EQvGc027Abi19MaYmQgDU/E5n1v1Kcqmm2UW\nQuQXTE27iTfG0zTaEtZ160IXgTHW/PN+9NfxWb1eVVWerN+Jisqd5TdreuJvScpU80/tkD6af7x+\nL93jvRQm5en2z0p2YiaFSfnUDNUxOuma8TWtrqnpRUUxPPkHoN8tzT/ifYFggFfa3sRsMHF35W1s\nzK6ma7yHw72xGxfg9U9wvP8U6dY0ipNjs1nPZDCxreg6vrPpr1meVsWZ4Qb+ad+P2NX8Er6AT+vy\nhBBR1j79AKMgKS/qe1c4SlBQzj7YESJaohH5da4dpVPTiHc27SYQDERlTxF7djbv4c3O98iz5fB3\nmx5gY3a1ru5nXZazAUCm/wghokJVVRqcTSRZbGQmZGhdztnrf4n+EkIIIUQs0edTUyHmqGmkhZOD\nNVQ4Ss9OKYklcUYLX1z9aW4tvYHtRVu0LicsDIqBEnshfe4BxibHw7KmqqrUDzdhtySRaY3sac1w\ny0rIIN+WS81QHW7fxaO/Tg+doXa4nqWplSxLXRKFCs/PHpdEbmI2Dc5mXTwkbnN1oqLqMvLrXBuz\nqwmqQQ72Hp3x622jHcQb43RxQ2M+Qs0/fe5BjSsRenK0/wSD3iE252wgyWLjppLrMSpGdjbvidkH\nX8cHTjEZ9LEha42uHsbMR7o1lS+u+jSfXXEfieZEnm9+iX/a/6+6ae4UQkRHqPmnMCn6DcgJ5gTy\nbTk0j7QyqYPPlWLxiFbkV0hmQgaX5Wyg193PvgtMAxWL1yttb/JiyyukW9P48urPYrMkal3Sn1iZ\ntpQEk5X9PYdi9rO8ECJ29HkGGJl0Ueko08W1d3Hy1GT+lhFp/hFCCCFE7JDmHxHzVFXl2cYXAbil\n9AZdXBzMh9VkZXvxFuxxyVqXEjah+LLm0fBEf/W4+3D5xqhI0cdF4FytzVxFQA1wfODUBV8XCAZ4\nsn4nCgp3lN+si19rVWoFvqAv7DFu89E6GpqYo+8JHOuz1mBQDDNGf3n9Xnrd/RToeHrRxUjsl/gw\nVVV5qe0NFBS2FFwFTDWbXJG7kX7PIHt7Dmpc4fzEcuTXTBRFYW3mSv5+8wNcV3Al/Z5BHjz6c359\n6nfnnVQmhFhYQs0/+bbox37BVPSXXw3QEqZrBCEuJpqRX+e6qWQrZoOJ52XSnviQd7sO8GTDTuyW\nZL625n7scUlalzQjs9HM+qw1jEy6qBmq07ocIcQC1zA8FQtbroPIL4DUeAdJFhst0/chhRBCCCFi\nQWw+cRTiHGeGG6h3NrE8rYoyR7HW5YhzlE5HmYWrYeT93OfYivwKqc5cCVw8+uudrv30uPu4PHcD\nebacaJR2UUtSygGoHdZ+OkRo3G6Jzif/JFlsLEutpN3VSfd47we+FppepPcGpgtJi0/BoBjoc/dr\nXYrQibrhRtpdnazJWPGBB2vbi7dMP/h6OeYefLkmx6gdqqcwKY+sxEytywmreFM8H624lW9v+CqF\nSfkc6D3CP+z9AW917iWoBrUuTwgRIaqq0j7WSbo1jQSzVZMaQvG9dRL9JaIk2pFfIY44O1fnX87w\nhJO3uvZGdW+hX0f6TvBY7R9JNCfw1bX3k2ZN1bqkC9qcsx6AvT0S/SWEiKw65/R93xR9NP8oikJx\nciHDE06cEyNalyOEEEIIMSvS/CNi2gen/mzXuBrxYUXJBSgoNI20hGW90AOCipTYbP7JTMigwJZL\n7VA9bp97xtd4/B52Ne8hzmjh5hL9/Ddd7ijFqBh1EQ3TMtpOsiUJR5xd61IuamN2NcCfTP+JlelF\nF2I0GEmPT6VPJv+IaS+1vQ7A9UXXfuDnQw++nBMjvN21L/qFXYJDfccIqsEFM/VnJoVJ+Xxr/Vf4\nWOXtqKrK7888yY8O/YQOV5fWpcUM1+QYHv/FIz2F0IPhCSfjPjcFSXma1VDuKEFBkeYfETXRjvw6\n17bC64g3xrG75VW8fm/U9xf6UjNUx69PPYbFaObLq/+SnMQsrUu6qMKkfHISszjRf4rx89zHEEKI\nS6WqKvXDTSSZbWQl6OfgTejgoUz/EUIIIUSskOYfEdOOD5yi1dVOdeYqTW9gi5lZTfHk2rJpHW2/\n5Hz4oBqk3tmEI85OhjUtTBVGX3XmagJqgGMDp2f8+u6W1xjzjbOt6Dpdjf6ON8VRYi+k3dWp6Q0/\n58QIzomRqcYyHcShXczK9OXEG+M50HPkA5M0Wl0dwNSN1FiWmZDOuM993mY2sXh0uLqoGaqjwlE6\nY1PbBx98TWhQ4fwc7DmKgsK6rDValxJRBsXANfmX8/ebH2Bd5mqaR9v4l4M/5sn6nTH1/5cWRiZG\n+e6+H/Cdd/6ZV9vevOTPO0JEWtt05FehTbtrJ6vJSkFSHi2j7UwGJjWrQywOWkV+hdgsiXyk8GrG\nfOO82v5W1PcX+tE00srPjj8CisIXVv1FzBwEURSFzTnr8asBDvYe1bocIcQC1e8ZZGRylPKUUl3d\n7ysONf+MtGlciRBCCCHE7Ji0LkCI+QqqQZ5r2o2Cwo6SbVqXI86j1F5M51g3HWNdl3Rzq2e8jzHf\nOBuyqnV1EThXazNX8UzTCxzuO8Zl0+OzQwY9Q7zW/hYpcQ62FFytUYXnV5VSSYOzmTPDDVRrcGoW\n3p+YU6zzyK8Qi9HM2syVvNd9gAZnE5XT8Wlto+0kmhNIi0/RuMJLk5GQDoPQ5xmg2Bwb/5+IyHi5\n7U0AthZeM+PXbZZEthRcxfMtL/N6xzvcULwlmuXNy4BnkObRVqpSKrDHJWtdTlTY45L5zIp72Ty4\nnj/UPc0r7W9yqO8YH6u8jdUZK7QuT3dUVeUPZ55i3OfGbDDxRMNO3u7az0crbmFZ2hKtyxNiRu3T\nzT9aH5yoTCmjzdVB00grVakVmtYiFjatIr/OtaXgKt7oeJdX2t7k6rzLsVkSNavlQnrG+/hj/bN0\nj/diVAwoiuEDPxpQMChGDIqCQTHM8E/o6x987UxrKYqCUTFOv+79NTITMliTsSKmr/ln0jnWzU+O\n/Qq/GuD+FfedvS6MFRuyqnmm8QX2dh/kmvzLtS5HCLEA1U9HflU49BH5FVKUnI+CQsuoNP8IIYQQ\nIjZI84+IWQd7j9I93stlORvIStTPOFDxQaX2It7qfI+mkdZLav4JxQJUxmjkV0hGQhqFSXnUDtUz\n7nOTaE44+7VnGl/Arwa4tewGLEazhlXOrCq1nJ3NuzkzVK9Z80/L2eaf2DglCVPRX+91H2Bfz2Eq\nU8oZ9boY9A6zLHVJzN/UzrROnZ7ucw/ETEOWCL9BzzCH+o6Sm5jN8rSq875uS+HVvNHxLi+3vcHV\neZeRYLZGscq5O9AzdbJ5ffbCjfw6n2VpS/jfG/+K3a2v8lLr6/zsxG9Ymb6MuytuI80a202L4XS4\n7zjHBk5R7ijh/hWfZFfzHt7q3MvDx37JyvSl3Fl+iyZTJoS4EL00/1Q4Snm57Q3qhhul+UdElJaR\nXyHxpni2F2/hifrn2NP2GneW79Cslpn4g372tL7G7pZX8asBUuIcBFWVYNDHBEGCanDq39XA9I9T\nP6eiRqSejdnV3LPkLsw6vCaejz73AA8e/Tkev4dPLv04qzKWa13SnNnjkliWuoSTgzV0jfWQa8vW\nuiQhZi2oBvH6J/D4PVhN8SSccx9O6Ef9cDOgv+afeFM8OYlZtLo6CAQDGA1GrUsSQgghhLggaf4R\nMSkQDLCraQ9GxciNxVu1LkdcQKm9CICmkRauK7hy3uvUORdG8w9M3Xhuc3VyrP8Ul+duAKZGgB/q\nO0ZhUj7rdRovU5iUj9UUT+1QvWY1hJp/ipJjJy6r3FFCSpyDo30n+Hjl7XQO9wCx9Ws4n4yE95t/\nxOL1WsdbBNUgWwuvuWBDm9UUz/VF1/J04/O80vYGt5TdEMUq50ZVVQ70HsFsMLFmkU68sRjN3FK6\nnQ1Za/n9mSc5MXCaM0P13Fy6jevyr1z0Nz3HJsf5n7qnMRvM3Ft1NzZLIh9fcgdX5G7ij/XPcmKg\nhprBOrYUXs32oi3Em+K0LlkIYKr5JyXOofnkkXJHCQbFcPaUtxCRoHXk17muyt3Mq21v8WbHu2wp\nuApHnF3TekIanS08duYJesZ7sVuS+fiS22c97S+oBlGnm4ECahCV6R9VlYAamP4xeLZZ6Ow/H2go\nev/n/UE/L7S8wv6ew/S6+/ncyk/q5vdpvpwTIzx09Oe4Jse4u+I2NuWs07qkeducs56TgzXs7T7I\nnRX6amATC5uqqviCPtx+D26fB4/fi9vvnv7Rg8fnmfqaf+proX/3+D24/V68fu/ZZkWbOZG/2/wA\nNrM+J7AtVqqqUu9sxGZOJCcxS+ty/kRxcgFd4z10j/eSn5SrdTlCCCGEEBckzT8iJr3bfYAB7xDX\n5F8hJ9B1Li0+lSSLjaaR1nmvEVSDNAw3kRLniPmYJIDqzFU80zgV/XV57gZUVeXJ+ucAuKviFgyK\nQeMKZ2Y0GKl0lHFs4BQDnkHSrWlR3T+oBmkbbScrIROrSd8TQ85lUAxsyF7LntbXOD5wmnHFBXBJ\nk7D0ItOaAUC/R5p/Fiu3z807XftxxNlZl7X6oq+/Jv9yXm1/i1c73ubagitJstiiUOXctY910uvu\nY23mKqymeK3L0VR2YiZfX/t59vcc5smGnTzVsIt93Yf4s6o7KbUXa12eZh6vf4Yx3zh3lu/4wAPl\n/KRcvr728xzuO85TDbvY0/oa+7oPcXv5TWzIWhvzE99EbBuZGGV00sXqdO2nTsSb4ilMyqdltB2v\nf0Ia5ERE6CHyK8RsNHNTyfU8Wvs4zze/zD1Vd2laj8fv4ZnGF3mr8z0UFK7Ou4xby26Y03WWQTGA\nAkaMhGtGz5KUch478wT7ew7zvQMP8vlVn4rZ66Yx3zgPHv0Fg95hbi65nmsLrtC6pEuyMn0pieYE\n9vce5rayGxd9I7iYu0AwgHNiBJdvDI/Pe07DTqipx3O2oeeDP+8loAbmtFec0YLVZCUlzo41MZsE\nczwT/knqnI3sbnmVuypuidCvUszHoHcI58QIazJW6vJ6qdheyLvdB2gZbZPmHyGEEELonjT/iJgz\nGfDxQvPLWAxmthdt0boccRGKolBqL+ZY/0mGvU5S4h1zXqNrrIdxv5sV6Ut1eRE4V+nWNAqT8jkz\n3MCYb5wzQw00j7axJmMl5Y4Srcu7oKrUCo4NnKJ2qJ4r86Lb/NPr7scbmGB1DN783ZRdzZ7W19jf\nc5j4uKlb44VJsffr+LCUeDsmg0km/yxib3buZTIwyc0l12MyXPxjpcVo4cbij/CHuqfZ3foqH624\nNQpVzt2BniMAbMhafJFfM1EUhU0561iRvpRnGp/nna79/PDQT7gidxO3ld34gQjLxeDEwGkO9h6l\nOLlwxqmGiqKwLms1K9OX8lLr67zU9jqPnP49b3a8x92Vt8bsQ0wR+/QS+RVS4SilZbSNppEWlqUt\n0bocsQDpIfLrXJuyq3m57XXe6z7A1sKryUzI0KSOY/0n+cOZpxmZHCU7MYt7q+7STUOv2Wjmk0s/\nTp4th6cbnudHh/+De6s+ysbsaq1LmxOv38tPjv6KnvFeriu4ckFMrDYZTKzPWssbHe9weugMK9OX\naV2S0BlVVRn3uxn0DDHgGZr60Tv9o2eQoQknQTU4q7WMipEEk5XeniHoAAAgAElEQVREcwLp1rSp\nuC6TFavZSoJp6h+rKR6ryUqC+f1/TzAlYDXFz9ic5gv6+e7e7/Nmx7tck38F6dbUcP8WiHmqG24C\n9Bf5FRKKuW8ZbefKvM0aVyOEEEIIcWHS/CNizpud7zIyOcq2ouuwxyVpXY6YhVJ7Ecf6T9I00sK6\n+LlHWi2kyK+Q6sxVtLk6ONR7jFfa3sCoGLm97Caty7qoJakVANQON0T9grdlpA2YGrcba7ITsyhM\nyqNmqA6rKQ5HnH1B/P1lUAykW9Pocw+gquqCaM4Ts+cL+Hi9/W2spniuyN006/ddnruRl9ve4K2O\n9/hIwdXzagqNpKAa5FDvURJMVpbLw+gPSDQncE/VR9mUvZ7fn3mSd7r2caz/JHdV3LJoGqXcPg+/\nq30Sk2Lk3qqPXnBan8Vo4ebSbWzOWc9TDbs40n+C7x98iMty1nNr2Y26nXwlFi69Nf9UppTxUtvr\n1DubpPlHhJ2eIr9CjAYjO0q388uTv2Vn0x4+s+LeqO7vnBjhf+qe4Vj/SUyKkZtLruf6ouswz6KB\nO5oURWFr4TXkJGbzX6ce5ZHTv6drrIdby27Q7ZTcc/kCPn56/BFaXe1szl7PneU7Fsx10uacdbzR\n8Q57uw9K888i5Qv4GPIOM+D9YIPPgGeQQc8w3oB3xvclmW0UJeWTZk3FbknGarJiNcef08gz1cQT\navIxG8xh/3NjNpi4pfQGfn36dzzX9CKfXn5PWNcX89fgnG7+SdFn809OYhZxRgvNo21alyKEEEII\ncVH6usIX4iI8fi97Wl/Daorn+sJrtC5HzFKpvQiAppFW1mXNvfmn/uwJkIXV/PN04/M81bALX9DH\nloKryEiI7iSd+ci0ppMS56BuqIGgGozqzdcWVzvw/ombWLMxex1t9c8y7vOwOl2fNzTmI9OaTs94\nL2O+cXmQvcjs6zmEyzfGtqLr5hSNZTKYuLHken5b8z+80PIy91R9NIJVzl3dcCMjky6uyN04q2lG\ni1GZo5i/3fB1Xm1/i13NL/HI6d/zXtcBvnTZn2MmUevyIuqphp2MTI6yo2Q7ubbsWb0nzZrKZ1fe\nR91wA4/XPcu73Qc40n+Cm4q3ck3+FRKbIaKmTWfNP6X2YgyKgbrhRq1LEQuQniK/zrUmYwUFSXkc\n6jvG9a7rKIhCfEhQDfJO1z6ebngBb8BLmb2Ye6ruIjsxK+J7X4rlaUv41rqv8J8nfs1Lba/TNd7D\np5f/ma4joAPBAL869Rh1zkZWZ6zgnqq7YqJhabYKbHnk2XI4MVDD2OQ4NsvC/ty3GAXVIKOTrhkm\n9wydjWaaicVgJs2aSrq1hPT4tOn/nUpafCpp1lTijJYo/0pmti5rNa+0v8nB3qN8pOBqCpPztS5J\nMHUNnmhKIEen35cMioGipALqnU14/B5dfx8SQgghhJAnGiKmvNr+FuM+N7eUbidhkUVMxLICWx4m\nxUjTSOuc3xtUg9Q7m6ZvGKREoDptpFlTKUoqoNXVTqIpgRuLP6J1SbOiKApVqRW8132ADldXVG+U\ntI60YTKYZv2wVW/WZ63hyYadBNUghTE4veh8Qiep+9wD0vyziATVIK+0vYlJMXJt/hVzfv/GrLW8\n1Po673UfZGvhtbo5kQ9woFciv2bDaDByfdG1VGeu4n/qnuHkYA0P7P5H7l9xHyvSl2pdXkTUDNXx\nbvcB8m25bCu6ds7vr0wp5283fJ23uvayq2kPTzTs5O2u/dxdcStL0yrDX7AQH9Lu6iTZkoQ9Llnr\nUgCIN8Wd/Tzs9XuJn0MjqRAXo7fIrxCDYuDW0ht4+Ngv2dn0Il9c/ZmI7tcz3stjtU/QONJCvDGe\nTyy5kytyN8ZMQ0pWYibfWvdVfnXqUU4N1vL9gw/z+VWfIkujyLQLCapBHq39I8cHTrEkpZxPL/uz\nBdfgqygKm7PX8UTDTg70Hpkx/lTo30Rgkn73AIPT03tCjT2hH/1B/5+8R0EhJd5BhaOUdGsaafFT\nzT3p1qnmniSzLSYmXBkUA3eU3cyPj/6Mpxqf52tr7o+JuheyQc8QwxNOVmes0PX3pmJ7IXXORlpH\nO6ianoouhBBCCKFH0vwjYsaYb5xX297EZk7k2ny5wRBLzEYzBUn5tLramQhMzunET8dYFx6/h9UZ\nyyNYoTY2ZK+l1dXOTSXXx1QzW1VKOe91H6B2uD5qzT+TAR+d4z0UJRXE7CSOJIuNpamVnBqspWgB\nnS7LtE43/3gGKHMUa1uMiJrjA6fp8wxwec6GeT1Enoq92MYvT/6WXc17dDNy3RfwcbTvJClxDsoc\nJVqXExPSrKl8YdVfcKz/JL+u+T2/Pv07vr3+q2Tq8KHcpfD6J3is9gkMioE/X3r3vB/mGQ1TDXPr\nM9ews3kPb3fu5aFjv2Bl+jLuKr8lJqYAitjkmhxjeMLJ8rQqrUv5gMqUMppHW2kcadFdbSJ2uX0e\n3UV+nWtpaiUVjlJODtbS6GyJyGdoX9DPntbX2NPyKn41wJqMldxdeSuOOHvY94q0BLOVL63+DE83\nPM8r7W/y/YMP8ZfL79VV46yqqjxR/xz7eg5RnFzI51Z+CrPRrHVZEbEhu5qnGp9nX/dBaf6JQe2u\nLn585Ke4/Z4/+VqiKYHcxCzSrGmkT0/sCU3vSY13xOy9mA9bklrOsrQlnB48w+mhOol61lhdKPLL\noe8J2aEp5C2jbdL8I4QQQghdWxif2sWi8FLr63gDE3y0dDvxpjityxFzVGovonm0lbbRdipSZh/f\nFYr8qlxAkV8h1+RfTlFyPiXJRVqXMidLpi9ya4fq2VZ0XVT2bHd1ElSDFMf4xJw7y3ewNLuMJSnl\nWpcSNhnTD1T63QMaVyKiRVVVXmp9HYCPXEIE55qMFeTbcjnUe4ztRVt0MdXrxGAN3oCXq/I26/rU\nod4oisKazJV8PtHIQ/t+zc9O/IYH1n1lQX1ee7bpBYa8w2wv2hKWyCSbJZFPLLmDK3M38Xj9M5wY\nOE3N4Bm2FF7N9qItC+r3TuhDh6sLgEKdRH6FVKaUsbv1VeqGG6X5R4TN8YFTuoz8ClEUhVvLbuSH\nhx7mmcYX+Gb1F8I6eaLR2cJjtX+kx92HI87Oxypvj/nDNAbFwJ0VO8iz5fBY7R95+NgvubP8Zq4r\nuEoXUzueb36J1zveIScxiy+t/syC/j6eZLGxIm0pxwdO0eHqIj8K0XUiPHwBH4+c/h1uv4fLczaS\nlZgx3eSTRro1ZVFFGd1edhM1g3U83bCLpakVcu2noYbh2Gv+EUIIIYTQM/lkK2KCc2KENzreISXO\nwZW5m7QuR8xDiX2qwWWu0V91w43A1IOBhcagGCi1F+viZuVcJFls5NlyaBxpYTLgi8qerdMX17He\n/JOdmMnHVuxYUDeW3o/96te4EhEtjSMttIy2sTJ9GdmJmfNex6AYuKV0OyoqO5t2h7HC+TvYMx35\nlS2RX/NxdfEmrsm/gu7xXh6tfRxVVbUuKSwanM280fEuWQmZYY/pzE/K5Rtrv8Bnlt9DkiWJPa2v\n8Q97v8/+nsML5vdP6EO7qxMgLM1r4VRqL8KoGM9+5hciHA7rNPLrXKX2IlamL6VxpJnTQ2fCsqbH\n7+F3Z57kR4d/Qq+7n6vzLuc7m/465ht/zrUpZx3fqP4CSRYbTzTs5Lc1j+ObIaIoml5rf5vnW14m\nPT6Vr6z5LIkxNNV3vjbnrANgb89BjSsRc/FM0wt0j/dyTf7l3Lv0o2wtvIY1mSspSMpdVI0/AHm2\nHDZlr6NrvId9PYe1LmdRq3c2kmCy6uIw0IXY45JIjU+heaRNrtOEEEIIoWsL5+mjWNBebHkVX9DP\nTSVbF+zo5IWuxD51QmIuzT+BYIAGZzPp1jRS4h2RKk3MQ1VqBf6gn8aR5qjs1zLaDkDR9EkboR92\nSzIWg5k+j0z+WSxebnsdgOsLr73ktZanVVFqL+LYwCnNT9C5fW5ODdaSm5hNni1H01pi2V3lOyiz\nF3O47zivtL+pdTmXbDLg49Gax1FQ+POld0fkc6iiKKzLWsPfb36AG4u34va7eeT07/nR4Z/QNtoR\n9v3E4tQ2ps/mH4vRQnFyAe2uTjwzRJAIMVehyK98nUZ+neuW0htQUHi28UWCavCS1jraf5Lv7v0h\nb3fuJTsxi79a90U+vuR2rKb4MFWrHyX2Iv5mw9coTMpnb89B/v3wTxmZcGlSy97ug/yx/lnsliS+\nuvb+mIxVm48VaUuxmRM50HMEv8bNV2J2aobqeK39bbISMrm97Caty9GFHaXbMBtM7GzaHbWDbeKD\nBj3DDHqHKXeUxsQhueLkAsZ84wx6h7UuRQghhBDivPT/qUosegOeQd7p2kemNZ1N2eu0LkfMkyPO\nTlp8Cs2jrbM+IdEx1oU34F2QkV+xriplKvrrzFBDVPZrGW0n0ZxAujU1KvuJ2VMUhYyEdPo9g3L6\naRHoHu/lxEANpfYiyhzFl7yeoijcUnoDAM81ajv950j/CfxqgA1ZMvXnUhgNRv5yxX3YLUk83fA8\ntUP1Wpd0SZ5vfok+zwDXFlxBqT2yMZ0Wo4Udpdv4u00PsCZjJU0jrXzv4IM8WvNHXJNjEd1bLHzt\nrk4SzQmkxOmvob4ypQwVlQZndJrKxcIWivyq1vHUn5A8Ww7rslbTMdbFkb4T81rDOTHCz078hp+f\n+A3jvnF2lGzjf234OqX24vAWqzOOODvfrP4i67PW0DzayvcO/pjW6QMj0XKs/ySP1v6RBJOVr6y5\nn3RrWlT315LRYGRD9lrGfOOcGqzVuhxxEeM+N/99+n8wKAb+YvknsBgtWpekCynxDq4ruArnxAiv\nt7+tdTmLUoNzOvIrRd+RXyFno7/mONVeCCGEECKapPlH6N6u5pcIqkFuLt2G0WDUuhxxCUrsRYz7\n3LOeELKQI79iXbmjBJNipHaoLuJ7uSbHGPQOUZRcEHMRaYtFpjWdycAkI5OjWpciIuzltjcA2BqG\nqT8hlSllVKVUUDtcr2nsy4HpyK91WWs0q2GhsMcl8dmVn8SgGPjVqUcZ9MTmycjW0XZebnuD9PjU\ns01q0ZBmTeX+lffxtTWfIzsxk3e79/P/7f0er7a/RSAYiFodYuFw+zwMeAYpsOXp8rNUxXSjv0R/\niXCIhcivc+0o2Y5BMbCzefec/o4PqkHe6nyP7+79Icf6T1JmL+F/bfwmN5ZsxWQwRbBi/bAYzfzF\nsj/jtrIbGZkY5V8P/wcHe49GZe/aoXp+dfJRTAYTX1r9l7qPq4mEzdnrAdjbfUjjSsSFqKrK7888\nycjkKDeXbKMwKV/rknRlW9G1JJoT2N36GmOT41qXs+jUh5p/HLHR/BOaat8S5WZTIYQQQoi5kOYf\noWtdYz0c6DlCni0nJk7uiQsLnT6cbfRXfYydAFlMLEYLpfZi2se6In6DJHSCs1giv3QrYzpSoc8t\n0V8LmXNihAM9R8hKyGBl+tKwrn1L2XYAnmt6UZMJUsNeJw3OZsrsJaRZU6K+/0JUai/i7spbGfe5\n+cXJ38TcKH1/0M9vax5HReXepR8lToMT0ktSy/lfG77B3ZW3AQpP1D/HP+3/V2qi0HgrFpYOnUZ+\nhZTYizApxrOf/YWYr1iK/ArJSEjj8tyN9LkH2NtzcFbv6Rnv5d8O/ye/P/MUigL3LLmLb1R/nuzE\nzAhXqz+KorCt6Do+v+pTGBUj/3XqMZ5pfOGSY9QupHmkjZ+eeASAz6/81NmHwYtNflIuBbZcTg7W\nyIRCHTvQe4TDfccptRezreharcvRHavJyo3FW/EGvLzY8orW5Sw69cONWE3WmIndzrflYVAMmkeW\nCyGEEEJciDT/CF3b1bwHFZVbSrfHRPavuLBQXEbzSMtFXxsIBmh0NpOZkI4jzh7hysR8VKVOR38N\nRzbSJXRRXZxcENF9xPxlWqcervRL88+C9nr7OwTUAB8pvDrs35OLkwtZlb6cppFWTaIDDvYeRUVl\nQ7ZEfoXTlbmb2ZyznjZXJ38481RMRQPubnmVrvEerszdRGVKuWZ1GA1Grs2/gv9387e5Mm8zve5+\nHjr6C356/BEGPIOa1SViS5tL380/FqOZEnsRHa4u3D631uWIGBZLkV/nurH4I5gNZp5vfhnfBZpl\nfUE/u5r28E/7/43GkRbWZqzk7zY9wBV5mxb9/ZKV6cv41vqvkGFNY0/ra/zsxCN4/N6w79M11sN/\nHPsVvoCPTy+/5+w18WK1KWc9QTXIgZ7DWpciZjDoGeYPZ54mzmjhU8s+sej/njifq/I2kx6fypud\n79Hvls/X0TLsdTLgHaLcURwz/21ajGbybbm0uzrxBf1alyOEEEIIMaPY+GQlFqXW0XaO9p+kJLmI\nFWnhnTAgtJGbmI3FaJnV5J82VyfewASVDon80qvQjc7aoYaI7hMap1skzT+6lZmQATDrSD8Rezx+\nD2917iXZksTGrOqI7LGjdBsKCs817Y7oae2ZHOg9glExxtzDQr1TFIVPVN5BYVI+e3sO8lbnXq1L\nmpXOsW5ebH0VR5yd28tv1rocAGyWRP5syZ38zYavU2Yv4fjAKb679wc82/giXv+E1uUJnWufbv7R\nc9RHhaMUFZV6Z7PWpYgYFmuRXyGOODvX5l+Bc2KENzvfm/E1Dc5m/s/+f+P5lpdJstj4/MpP8dmV\n92GPS45ytfqVnZjFt9Z/laqUCk4M1PCDQw+HdTLpgGeQh47+nHG/m3uX3s2azJVhWztWbchai1Ex\n8l73wZhq8l4MgmqQ/675A96Al7srbiPdmqp1SbplMpi4tewGAmqA55pe1LqcReP9yK/Yuu9bnFyI\nXw3QOdaldSlCCCGEEDOS5h+hW881/V/27ju+zeps/P9H05Is2Zb33jPOdnZCEjKAsFcYCWFTZsto\n++vT3e/TFto+paWFUsqGsBIgrDADWWQ7TjzjvfeUt2Vr/f7wgJSELMu3JJ/368UrJtJ935djWTr3\nOde5rs8BuDzhImQymcTRCONBIVcQ6xNNY18z/ZaB731uaWc5AElG97oJnEyiDBHolFqKTKVOm+hz\nOBxUd9cSqA1Ar/J2yjWEczfaVkFU/vFce+oPYraZOT9yCSqFyinXiNCHkREyg7reBrJb851yjRNp\n6G2ivreRKQEpeKt0E3bdyUKlUHHXtA3oVd68U/ohFadR/U9KNruN1wo3Y3fYuTHlarRKjdQhHSfK\nEM7Ds+/h9vR16NV6Pq/ezu8P/lWSilmC+6jtaUCr1Lj0wl/yyJh/9B5AEM6UO7b8+rZVMcvQKDR8\nXr39uIo1A9YB3izewt+P/Jvm/laWRiziV/N/zPSgdAmjdV3eKh33zbid86OW0NTXzP8dfpKijnOv\nVNs12M2TR5+ja6iHa5IuY2HYnHGI1v3p1d5MC0yjoa+J2pEWk4Jr+KpmN6WdFcwMmsoC8Xo9pVnB\n04kxRJHVkjPWel5wrlLTaPJPvMSRnJnRquSVXaL1lyAIgiAIrkkk/wguqaClhMKOElKNSWMTwYJn\nGGv9dYr+yCWmkeQfN9sBMpnIZXKSjYl0mE20Oqn1SOtAG/3WAdHyy8XpVd5oFBqaReUfj2S1W9lR\nuwcvhZolEQuceq1L4i5ALpOzteILbHabU681KrP5KABzQ2ZOyPUmI3+NkdvT12N32Hk+byNdg91S\nh3RS22u/pqannnmhs5ka6JqVJ2UyGRkhM/nNgp9yUexKuod6eDrnRV49tok+0TJJ+C9m6yAt/a1E\n6sNdekNFrE80Krly7B5AEM6Uu7b8GqVXebMqehl9ln62134NQHZrPr8/8Dh76g8Q5h3CIxn3cX3K\nlS6XmOpqFHIF1yZdzvrUtQzahvhXzgvsqN1z1htW+iz9PJX9PG3mDtbErmRF1HnjHLF7G00sOdCY\nJXEkwqjangY+qvgcH7WBG1OucenPf1chl8m5MvFiAN4r+1hUspoApZ3laBQaIg3hUodyRuJ8owGo\nOsW8tiAIgiAIglRE8o/gchwOB2/lfgDAZQkXShyNMN7Gkn++Z+e/zW6jvKuKEF0wvl6GCYpMOBvf\ntP46992UJzLa8ivWJ9op5xfGh0wmI1gXQNtA+4S3axKcL7M5m66hbhaHz0en0jr1WsG6QBaGzaG5\nv4VDI0k5zmR32DncnI2XQs20wClOv95kluKfyJWJF9M11MPz+a9htVulDuk7mvta2Fr5BQa1nmuT\nLpc6nFPyUqi5LP5C/mfug0QbIjjYlMUfDj5OzgRWzhJcX11vAw4cRBkipA7le6kUKuJ8YqjvbaTX\n0id1OIIbcteWX992ftQSDCo922t285/cV3gu71X6LH1cGjf8Xj96Ly2cnkXhc3lw1t14K3W8U/oh\nbxS9g+UMxx9m6yBP57xIQ18TyyIXc0ncBU6K1n1N8U/BoNJzuOnoGf/7CuPPYrPwyrE3sTls3JR2\nHXq1qKB8upKNCUwNSKO0s0JU1XSyzsEuWgfaSfSLRS5zr+WpIG0g3krd2HylIAiCIAiCq3Gv0ZUw\nKRS0F1HcXsGMwHSx4O+B4kZ+phVd1Sd9TnVPHUO2IVH1yQ2kGoeTf4pNzk7+EZV/XF2wLgir3YrJ\n3CV1KMI4sjvsfFmzC7lMPmG7nNfErkIpU/BJ5TanLyBUdFXTYTYxM2gaaoXaqdcSYGXUUjKCZ1DR\nVcWWsq1Sh3Mcu8POa0XvYLVbuT75KrdqARehD+MnGQ9wRfwa+i39PJv3Ki/mv07PUK/UoQkuoLZn\nuA2Lqyf/wDetv8o6KyWORHA37t7ya5RG6cWFsSsw2wbJbSsg0S+OX8x7mDVxK1HKlVKH55YS/GL5\n2dwfEWWIYF9jJv88+izdQz2ndazFbuW5vFep6q5hXuhsrk26TFRQOQGFXMG80Nn0WfvJbyuUOpxJ\n74OKT2nsa2ZpxCLSA1KkDsftXJGwBhky3iv/ZMIq0U5GYy2/3HDeVyaTEeMbRdtAu7jfEgSGN3E3\n9jWLimmCIAguRCT/CC4nqyUHGTIujRdVfzyRTqUj1DuEqu6ak95Ij5b7F8k/ri9Q60+Axkixqdwp\nFV+qu2uRy+RE6t2rDPBkFKQdXmhpFa2/PEpBexFNfc3MCZmJUeM3Idc0avw4L3IhHWYT+xoOOfVa\n37T8muXU6wjDZDIZ69PWEu4dyq66fRx0ofYQu+v2U9FVxaygacwKniZ1OGdMIVdwQez5/HzeQ8T5\nRJPVksMfDj5OVnOOmISb5EaTf6LdIPlndAFItP4SzpS7t/z6tiURCzg/cgnrU9fy4Ky7CfEOljok\nt2fU+PHI7HvHEpD/kvnk2HvjydjsNl4ueIMiUynTAqdwU+pat6tOMZG+af11WOJIJreijlJ21O4h\nRBfMVSMtrIQzE64PZWHYXJr6mjnY5Dr3Kp6mtHMk+ccvXuJIzs7oZuVqUf1HmMTaBtr5qPwzfr3v\nMf5w8HFeL3pHVIMXBEFwEeLOVXA5l8ZdwP9b8Qjh+lCpQxGcJN4nhkHbEA19zSd8vHRkwt9dbwIn\nE5lMRqp/EgPWAWp66sb13Ba7lbqeeiL1YagUqnE9tzD+RndZt/SL5B9P8mXNLgBWRS+b0OteGLMC\ntULNZ1VfMWQbcso1rHYrR5tzMaj1Itl0Ankp1Nw17Wa0Sg1vFr877p8dZ6NtoIMPKj7FW6njupQr\npQ7nnIR6h/BIxn1cnXgpg7ZBXix4nefzN9I1eHpVDgTPU9tTj1qhJlgXJHUopxTjE4VKrhq7FxCE\n0+UJLb9GqeRKrk2+nEXhc0WyyThSK9Tclr6Oy+IvwjTYyeNZT5PVnHPC59oddt4ofpfs1nyS/OK5\nI309CrligiN2L+H6UKINkRzrKBZjDon0WfrZWLgZuUzOrVNuEFVNz8El8atRyVVsrfiCQSfdi052\npZ3laBRebrvRbzT5p7K7RuJIBGFiWWwWDjdn88+jz/Lb/X/ms+rtDNqGCNQGsL8xk1ePbRZV0wRB\nEFyAmEkQXE6A1p/UoESpwxCcKN43BoDKrqrvPGa1WynvqiLMOwSDWj/BkQlnI2Wk9VdRx/i2/mro\nbcTqsIn2f25itPJPy0CrxJEI46Wyq5qyzkqmBKQQoQ+b0Gsb1HrOj1xC91APu+r2OeUahR0l9Fn7\nmRM8UyzoTLBgXSC3TrlxpJ3GRnqH+iSLxeFw8GbRuwzZhrg2+XJ81AbJYhkvcpmcldFL+cW8h0nw\njSO7NZ8/HnycQ01HRBWgSWbIZqGpv4VIfbhbJBGo5EoSfGNp6GsSbRSE0+YpLb8E55PJZFwUu4K7\np92CXCbjxYLX+aji8+N2qTscDt4r+5gDjYeJNkRyz/RbxUaU07QgbA52h53M5iNShzLpOBwONhW/\nR+dgF5fErSbaJ1LqkNyan5cvK6POo2uomx21X0sdjsfpGuympb+NeL9Yt70Pj/WJAqCqSyT/CJND\nfW8jb5d8wC/2/oGXCt6g2FRGgm8cN6ddz2NLfsXP5vyIOJ9oMpuP8PKxN0UCkCAIgsRcfwZQEASP\nM5r8U9FV/Z3HqrprsdgtogqDG0kxJiJDNu7JP6M7aGJGbqoF1za62NIqKv94jNGqP6ujl0ty/VXR\nS9EqtWyr3smAdWDcz5/ZNNLyK1S0/JLC1MA0Lo5bTYfZxEsFb0g2ObS/MZMiUylTA1I9rv1bsC6I\nh2bfzdrkK7A4rLxy7C2eyX2ZzsEuqUMTJkhDXyN2h50oN2j5NWq09ddoOwhBOBVPavklTIzpQen8\nJOMBAjX+fFb1Fc/lbcRsNQPwWdV2ttd+TagumPtn3IFGqZE4WvcxJ2QmSpmCA42HRbLxBMtsPkpW\nSw7xvjGS3bt5mlUxy9GrvNlWvVMkJI+z0TFesp/7zvt6q3QE6wKp7qkVbY4Ej2W2mtlbf5C/HH6S\nRw/9nZ11e1HIFKyOXs5v5v+ERzLuZX5YBmqFGp1KywMz7yTBN44jLbm8kP8aFrtV6m9BEARh0hLJ\nP4IgTLhgXRDeSt0Jk3++afnlvjeBk41e7U2kIZyKrupxLSvJqMEAACAASURBVIk82jtbVP5xD94q\nHd4qHS0DIvnHEzT3t5LTWkC0IVKyFow6lY5V0cvos/azvWZ8d1yarWZy244RrA0k2iB2xkplTexK\npgWmUWQq5aOKzyf8+p2DXbxbuhWNQsMNKVcjk8kmPAZnk8vkLI9czC/nPUKKMZH89kJ+f+Bx9jUc\nEgtzk0BtTz2AWyX/JBuHP3NE6y/hdHlSyy9h4oTrQ/np3B+S7JdAblsBf836F1srvmBr5ef4a4w8\nMPNO9GpvqcN0K94qHdOC0mnsa3aJtq6TRfuAiU3F7+OlUHPLlBvctpKKq9EqNayJW4XZNsinVV9K\nHY5HGU3+SZRonmG8xPnEMGA109Ivql8LnsPhcFDRVcXGws38fO8feKP4XWq660gPSOWuaTfzx8W/\n5MrEiwnxDv7OsRqlhvtn3kGyMZGctgKey3sVi80iwXchCIIgiOQfQRAmnEwmI843hnZzB12D3cc9\nVjJyEyjVYrNwdlKNSdgcNso6K8ftnFXdNWiVGlG+340EawNpG+gQ5V09wPaa3ThwsDpmuaQJEcsj\nF2NQ6dle+/W4tobKaS3AYrcwJ3SWRyZ8uAu5TM4tU24gWBvItpqdYwu4E2G43dcWzDYzVydeglHj\nN2HXlkKg1p8fzryLG1OuBhy8XvQOT2U/T/uASerQBCeq6R5O/ol2o+SfGEMUaoV67J5AEL6PaPkl\nnAu9ypsHZt7JsshFNPY182nVlxjUen448y6PHxc4y4LQDAAONB6WOJLJwe6ws7FwE2abmbVJVxCo\nDZA6JI+yJHw+QdoAvq4/IBI8xlGpqQIvhdqtxqcnMtr6q3Jk46IguLOeoV6+qtnNHw4+zuNZT3Og\n8TAGlTeXxl3I7xf9nPtm3M7MoKmnTDD1Uqi5d/ptTPFPoaC9iGdyX2ZoHDcKC4IgCKdHJP8IgiCJ\n0dZfld+q/mOxW6nsqiJCHyZ22bmZVP8kAIrHqfVXv6Wflv42YgxRyGXio8pdBOkCsTvstJvFYrI7\n6x7q4UBTFoEaf2YGTZU0Fo3SiwtjV2C2DfJFzY5xO29m80jLLw9r8+SOtEotd027GbVCzcbCzTT2\nNU/IdQ83Z5PfXkiyMZFF4fMm5JpSk8lkLIlYwK/m/5gp/ikUmUr546HH2V23X5Sr91C1vfUo5UpC\ndd/dmemqFHIFCb6xNPU10z3UI3U4gosTLb+Ec6WQK7gu+UrWp15Lgm8sD8y4UySSnYM0/2R81QYO\nN2eL3f4T4Kua3ZR2VjAjaCoLwuZIHY7HUcqVXJ6wBrvDzofln0kdjkfoHuqhub+FeN9Yt69SNVql\nvOoEVe0FwR3YHXaOtRfzfN5Gfrn3j2wp20rbQDsZwTP44cy7+N3Cn7EmbuUZJ0SrFSp+MP2WsSrP\nT+e8iNk66KTvQhAEQTgRp62o2u12fvOb33D99dezYcMGqquPHwht376da665huuvv57Nmzd/7zHV\n1dXceOONrFu3jt/+9rfY7cOT05s3b+bqq6/muuuuY8eO4xeEysvLycjIYHBQfLAIgisaTf75duuv\nqq4aLHarqPrjhhJ8Y1HJlRSZxif5p7p7uEx4zMhOGsE9BGuHJ8pbResvt7ardi9Wu5WV0UtdIvlu\nSfh8/Lx82V23j87BrnM+X/dQD0UdpcT4RInFHRcRrg9lQ9p1DNmGeDb3FQasA069Xs9QL2+XfoBa\nrmJ96jWTrvqTUePHfTNuZ0PadchlCjaVvMc/jz5La3+71KEJ48hqt9LQ20SEd5jbLa4kj7T/Fa2/\nhFMRLb+E8bIofB6PZNxHpCFc6lDcmkKuYF5oBv3WAXLbjkkdjker62ngo4rP8VEbWJcy+cazE2VW\n0DRifaI52pp33OZF4eyUmoYrO46O9dxZhD4MlVxJlaj8I7iZDrOJjyu38Zt9f+JfOS9wtDWPYF0g\n1yRdxh8X/4rbp64n1T/pnOYDVXIld07dwMygaZR2VvCvnOedPs8jCIIgfMNpKzpffvklQ0NDbNq0\niR//+Mf86U9/GnvMYrHw2GOP8eKLL7Jx40Y2bdpEW1vbSY957LHHeOihh3jjjTdwOBx89dVXtLa2\nsnHjRt566y1eeOEF/va3vzE0NFxCrre3lz//+c+o1WpnfXuCIJyjGJ/hii7fTv4p6Rye4E82uv9N\n4GSjUqhI8I2jvrdxXHZpj948x4rkH7cymkjR0i+Sf9yV2TrI7vr96FXeLrN7VKVQcXHsKix2K59V\nbT/n82U15+DAIar+uJjZwdNZFb2MloE2Xjn2llMr0WwueZ8+Sz+XJ6yZtO0RZDIZC8Lm8Kv5jzAt\ncAqlnRX88dDf2F77tagC5CEa+5qxOWxEueFCdtLIvYBo/SV8H9HySxBc0/ywkdZfTa7f+svhcEgd\nwlmx2Cy8fOxNbA4bN6WtFZWznUgmk3FV4iUAvFf2idu+ZlxF2cjYLtHo/ps+FXIFUYZIGvqaGBRt\njQQXZ7VbOdKSy7+yX+A3+/7EJ5Xb6LP2syhsHj/JeIBfznuEFVHnjevniVKu5Pb0dcwJmUlFVzVP\nHn2efkv/uJ1fEARBODmnJf9kZWVx3nnnATBz5kzy8/PHHisvLyc6OhpfX1/UajUZGRlkZmae9JiC\nggLmzRsux7906VL27dtHbm4us2bNQq1WYzAYiI6OpqioCIfDwa9//WseeeQRtFqts749QRDOkVqh\nJlIfTm1P3Vg56FJTOTJkJIrKP27pm9ZfZed8rqruGgBiRsroCu4hSCcq/7i7/Y2Z9FsHWBa5CLXC\ndZKoF4TNIUgbwN6Gg7QNdJzTuTKbjyJDxuzgGeMUnTBeLo+/iBRjInlthXw+DoleJ5Ldms+Rllzi\nfWNYFrnIKddwJ35evtw97RZum3IjaoWKd0s/4u9H/k1TX4vUoQnnqLanHoBoQ6TEkZy5aEMEXgq1\nqPwjfC/R8ksQXFOYdwgxPlEUtpeMS9VOZxiyWXi54C1+vuf3YxXE3MmHFZ/R2NfM0oiFpAekSh2O\nx0v0i2N6YDrlXZXkiYpW56SkswK1XEWMG45PTyTOJxq7w07NSPVyQXA1TX3NbCndyi/3/pEX8l/j\nWEcxsT5RrE+9lscW/4r1adcS5xvttOpxCrmCW6bcwPzQDKp7avnn0WfpHepzyrUEwRM5HA76LP3U\n9jSQ21pAZVeNSEQWTovSWSfu7e1Fr9eP/b9CocBqtaJUKunt7cVgMIw95u3tTW9v70mPcTgcYx9A\n3t7e9PT0nPQcTz31FMuWLSM1Vdz8CIKri/eNoaanjtreeqL0EVR21xChD8NbpZM6NOEspPgnQjkU\nmUqZG3r2FTUcDgfV3bUYvfzw9TKc+gDBZYy2/RKVf9yTzW7jq5rdqOUqlrpYUoRCruCSuAt4+dib\nfFK5jZunXH9W52npb6W6u5Y0/2Tx/uKCFHIFt6ev50+Z/+Djym1EGSKYGpg2bufvt/Szqfg9lHIl\n61PXukRbO1cgk8mYEzqLFP8kNpW8z9GWXB7LfIJL4lazMmqp27WMEoaNJv9EGSIkjuTMKeQKEvzi\nONZeTOdgF35evlKHNGnZ7DYcOFDKnTZ1dNaOipZfguCyFobNobq7lkNNR7gg5nypwzlO52AX/8l9\nhZqe4cX6F/JfozBsLtcmX4GXC21+OJmijlK2135NiC5orCKN4HxXJKwhv72Q98s/JT0gVYyPz0LP\nUC9Nfc2kGpM85t8v1jcaaoc3MCZ5QDUjwTMM2oY40pLLvoZDVHRVAeCt0rEi6jwWhs0lXB86ofHI\nZXJuSluLUq5gb8Mh/nH0P/xw1l34qMWcnCDY7Da6h3poN5swmTvpMJvoGBz509yJyWz6TnW5OJ8Y\nVscsZ1pgmpjXFE7KaTM4er2evr5vsjjtdjtKpfKEj/X19WEwGE56jFwuP+65Pj4+Jz3Hhx9+SGho\nKO+++y6tra3cfvvtvP76698bq9GoQ6n0jEGnJwkKEgMATzdzIJWddXtptjbhLVNjtVuZEZ4mfvZu\nKiAwBUOON6Wd5QQG6s9610BLXzs9ll4WRM722NeCp35fYMBX40P7YLsHf4+e6+uqQ5gGO7kocTlx\n4RM7GXA6Lgpcwlf1uzjUfITrZ11CpE/YGZ9jZ/4uAFYkLhSvUSc513/XIAz8THsPv/7qr7xa+BaP\nrf4fQg3B4xLb0wffo3uoh3XTr2RarGgx+t+CMPDziHs5UHuEF7Le4oPyT8k3HePeuRuI9nO/BJLJ\nrjG7EYVMzvTYRFQKldThnLHZkVM41l5Ms62RpCDX2R0+mT47zNZBfr/jCZr62rhn7k3MjXCdinl9\nQ/0UmkqJ9YskPSZO6nAEwSOM5/vbBb6Lebf0Iw63HGVdxmVOqyhwpsraq/hr1jOYzF0sj13IJSkr\n+NfBV9jXmElVbw0PLryDOKPrth7vHerj9f1vo5DJeWjxHUT4T872tVIICjKwom0xX5Z/TX5vHqsS\nzpM6JLdTXlsKwMzIiZ/3ddb1MnRpvJAPDYMNk2qMKLgeh8NBeUc12yv2srfmMANWMwDTQ9JYEb+Y\nuRHTJb8n/FHQrRiO6PisbCdP5TzHr89/EH+tn6QxeQLx3uPazNZB2vo7aOsz0dbfTlt/B619HSN/\n10H7QCd2h/2Ex3qrtIQaggnUGQnSBRCgM1LUVkZWQx7P5r1ChCGUy1JXc17MXMl/vwXX47Tkn9mz\nZ7Njxw4uvvhisrOzSU5OHnssISGB6upqOjs70el0HD58mDvuuAOZTHbCY6ZMmcLBgweZP38+u3fv\nZsGCBUyfPp0nnniCwcFBhoaGKC8vJzk5mW3bto1dZ8WKFbz44ounjNVkEr0mXU1QkIHW1h6pwxCc\nLFAWAkBeQwntXcPloCO9IsXP3o0l+SVwpCWXguoKQrzPbrH2SHMhAGGaMI98LXj6+1ugVwAVXVU0\nNptccpe4cGIOh4MtBZ8hQ8bCoAUu+xpdE72aZ/NeYePh97hz2oYzOtbhcLCr4iAquYp4TYLLfo/u\nbLze3wz4c0PK1Wws3Myfdv2bn8x54Jx3Yhe0F7Ozaj9RhggW+M8XP//vkaBJ4hfzHuGdkg/JbD7K\nz754jDWxq7ggZrnH7NL1dDa7jarOOsK8Q+nsMANmqUM6Y+Gq4YSfrJp8UnSuUdXX08dw32Z32Hk2\n71VKO6oA+L89z7A0YiFXJV6K2gUmFg80HsZmtzHdf+qk+ZkIgjM54/1temA6WS05ZJYXEOcbM67n\nPhtZzdlsLNyM1W7jqsRLWBm1FJlFxkMz7+PD8k/ZXvs1v9z2Z65IWMPyqCUut5Pa4XDwUsEbdAx0\ncmnchfjY/MX73wRbEbqc3VUHeSv3I1J0aWiUXlKH5FayagqA4THeRL52nTl+cziU+KoNlLRWit9H\nQTJ2h523irewt+EQMNzae3nkYhaEzSVQ6w/gMveEl0atwTJo56va3fx62195cNbdGDUiAehsTab7\nU1fkcDjotfQdV6Wn47+q9/RZTpx7IEOGr5cPsT5R+GuMGL388NcY8dcM/2nU+KFVar5z3KLAhVwU\n2cRXNbs51HyEZzI38mbOB6yIPo/F4fNPeIzg2U6WAOi0VbnVq1ezd+9ebrjhBhwOB48++igfffQR\n/f39XH/99fzP//wPd9xxBw6Hg2uuuYaQkJATHgPws5/9jF//+tf87W9/Iz4+ngsvvBCFQsGGDRtY\nt24dDoeDhx9+GC8vMegWBHdi1Pjh5+VLRVcVvUO9yJCR6CfKpLqzVGMSR1pyKTSVnnXyT1V3DQAx\nBtfdcSecXLAukPKuStoGOgg9y9eAMPGKOkqp720kI3jG2OSAK5oeOIUYnyiOtuZR01NHtOH0q0HU\n9NTRMtBGRvAMNOJmyOUtGGkXsbt+P68Xvs1t6evOetf4gNXMm0XvDpebTl0rElhOg17lza3pN5IR\nMoM3i7awtfJzslvzuCltrVu2kZpsmvtbsditbv2zitSHo1FoKDGVSx3KpLSlbCt5bcdIMSZyVeIl\nvHpsE7vr91PSWcHt6euI0J959b3xJFp+CYLrWxA2h6yWHA40HpY0+cfusPNJ5TY+rfoKjcKLO6dv\nOK6trEqu5Jqky0j1T2bjsU28W7aVwo5SNky5zqVakmQ2HyWrJYd43xguiFkudTiTkq+XgVVRS/mk\n6ku21+7m4rjVUofkVkpNFajkKmJ8XKei47mSyWTE+kST01aAydwpkhiECedwONhSupW9DYeI0Idx\nRcIa0vyTXS6BdZRMJuOqxEtQyZV8Vr2dvx/5Nz+adbdLz0MKwiiTuZMddXuo72mkY3C4TZfFbj3h\nc1VyFf4aP6INkf+V2DP8tZ+X71nPTYbrQ9kw5Toujb+AHbV72NNwgPfKPuazqq84L2IhyyOX4Ovl\nOmNYQRpOS/6Ry+X87//+73F/l5DwTXn9FStWsGLFilMeAxAXF8drr732nb+/7rrruO66604aw/bt\n2880bEEQJli8bwxHWnLpHeojyhCOTqWVOiThHKT6JwFQ3FHG8sjFZ3WO6u5aZMiI9qAJgckkWBsI\nQOtAm0j+cSPbanYCsCpmmbSBnIJMJuPy+It4Mvs5Pqr4nPtn3HHax2Y2HQVgbugsZ4UnjLNrki6j\nrreBrJYcYnyiWBm99KzO80H5p5gGO1kTu5JIQ/g4R+nZpgVOIWF+HFvKtrK/MZO/HH6SC2LO56LY\nlahEdTeXVdtTD+DWyT8KuYJEvzjy2wvFYsoE21W3jx21ewjVBXPn1A3oVFp+OueHvF/+Mbvq9vGX\nw09yVeIlLItYJEkrn37LAIUdpUTqwwnWBU749QVBOD2p/kn4efmS1ZLDNUmXS1I1bNA2xKvHNpHd\nmkeAxp97pt9KuP7E7Y3TA1L4xfyHefXYJo51FPPoob9zc9r1TAlImeCov6vDbGJzyft4KdTcMuUG\nkcguoZXRS/m6/gDbanaxJGKBSyWIubLeoT4a+ppIMSZ6XIXoWN/h5J+q7loxXhUm3MeV29hRt4dQ\n7xB+NPMH6NXeUod0SjKZjMsSLkIpV7K18gueOPIMP5r1AzGuF1yWydzJ59U72NdwCJvDBgxvmAvz\nDsE4mtQzluAzXLVHr/J2+r2yUePH1UmXclHsCnbXH2Bn7R6+qN7B9prdzA/LYGX0MkJ0QU6NQXBd\nit/97ne/kzoIqfX3D0kdgvBfvL29xM9lkuga7OZYRzEAc0JmkRaQfIojBFemU2k51HSExr5mVkUv\nPeOdBja7jbdLPyTUO5jzo5Y4KUppefr7W/dQL0dacokyRBDvGyt1OMJpqOmp44PyT0kxJnJBzPlS\nh3NKARp/SjsrKDaVkWJMxF9jPOUxdoedjUWbUcmU3JBylcvugnJ34/3+JpfJmRKQwuHmbHLbjpHo\nF0vAGe4IKzGVs7nkfcK8Q7gl/UYU4md/xlQKFdOD0on3iaHEVE5+eyE5rflE+0Ti5+UrdXjCCRxo\nPExVdw1rYle69SJE91APhR0lRBkiJK80A54/hgPIbyvk1WOb0Ku8eXD2Pfh6+QDDyVjpAalEGyI4\n1l5M9kgFvlT/pHNuy3imslpyyG7NZ3nkYhL94ib02oLgqZzx/iaTyei19FFsKiPcO4TwCX4fN5k7\neSr7OUo6y0nyi+eHM+865TjSS+HFnJCZaJUa8tsKOdiUhdlqJsmYINkYcrQNY3N/KzekXE2Kf6Ik\ncQjDlHIlaoWa3LYChmyW46pICSd3rL2YIy25LAybS5JxYiu+O3v8ZnPYOdiUhb/GSJq/mNMWJs5X\nNbv5qOIzAjT+PDT7bnzcrNJHkjEelVxJdms+2S25pAekuUXykiuZDPenUjKZO/mw/FM2Fm6mqruG\nAK0/1yRdxq3pN3JR7EqWRCwgI2QGUwJSiPONIdQ7BF8vH7wU6gndJKNSqEj0i2Np5CKMGj8a+pop\nNpWxu24/9b1NBGiNYu7Og3l7n7gjlpj9FgRBUvHfKv+cbEz4nmcK7iLVPwmzzUx1T90ZH9vQ14zF\nbiHWR7T8clejOzVa+9skjkQ4XV9W7wJgdfRyaQM5TTKZjMsTLgLgo4rPcDgcpzym2FRGz1Avs0Km\ne9xOQ0/n5+XLnVM3APBC/uuYzJ2nfeyQbYjXi95Bhoyb0taKSjXnKC0gmV/Of4TzIhbS2NfMXw//\ni/fKPsZmt0kdmvBfanrqkSFziYSZczG6OCRaf02Mup4GXix4HaVcwT3Tbz1h+f1pgVP4xbyHSTUm\nkd9exKOH/k5hR8mExilafgmC+1gQmgHAgaasCb1uZVc1fz78T2p7G1gcPo8HZt552guKcpmcldFL\n+cmc+wnWBbK99msez/oXzf2tTo76xLbXfk1pZwUzAtNZGDZHkhiE4y0On0ewLpC9DQdp7muROhy3\nUNpZATDhiT8TIdoQiQwZlV01UociTCJ76w+ypWwrvmoffjTrLrdd2L8g5nyuSbqMrqEenjjyDA29\nTVKHJAiYzJ1sKn6f3+3/M7vr9+Pn5ctNadfxm/k/YUHYnAnf/HK61AoV50Us4LcLfsodU28iyhBO\ndmse/3f4KZ448gwF7cWnNYcueAaR/CMIgqQi9eGo5CpkyEgQOzc9QqpxuPVX0VksBFR1D98sx4jk\nH7cVpA0AoGWgXeJIhNPRNtDBkZZcIvRhY2373EG8byxTA1Ip66ykqKP0lM8fa/kVIlp+uaMEv1iu\nTbqcXksfz+a9isVmOa3jPqr4nLaBdlZEn0esT7STo5wctEoNN6RcxYOzfoC/xsiXNbv4V84L9FsG\npA5NGGF32KnrrSfUOxi1i05Kna5IfThapZZSkfzjdJ2DXfw79yUGbUPcPOUG4r61QeO/+Xr5cP/M\nO7gq8RL6LP08lf08W8q2YrVbnR6naPklCO4lxDuYOJ8YijpKzyiB+1wcajrCE0f/Q+9QH9cmXc6N\nKdecVfJ/tCGSn815kAVhc6jtqedPmf9gf0PmhC6a1Pc28lH5ZxjUem5MvUaSVovCdynkCq5IuBi7\nw84HFZ9JHY5bKO2sQCVXeuRcn0bpRbg+lNqeOrEpQpgQh5uzebN4C94qHT+cdReBI/Ow7mpF1Hlc\nn3wVPZZenjj6zFgLa0GYaJ2DXWwuGU362Tec9JO6lt8s+CkLw+a4TdtVuUzO7ODp/H9zfsSPZv6A\nNP9kSjsreDrnBR7LfIJDTUfE59UkIJJ/BEGQlEKu4MKYFayOWY5WqZE6HGEcpBgTkCGjqKPsjI+t\n7q4FEIu0bkytUOPn5Ssq/7iJ7bW7ceBgVfQyt5tMvjR+uPrPh6eo/jNks5DTmo+/xnhctTnBvSyN\nWMj80AxqeurYVPL+KRdeKruq2VG7hyBtAJfGXTBBUU4eycZEfjHvYaYFplFsKuNvR56mfcAkdVgC\nw5X3Bm1DRBkipA7lnMllcpL84mkzd9BhFq8vZzFbB3km5yU6B7u4ImENs0+joo5cJmdV9DJ+knE/\nwdpAvqrZzV+z/uX0Cgi5bQXYHLbTilEQBNewMGwODhwcbDri1OvYHXY+KP+UV469hUqu5L4Zt3N+\n1JJzusfRKL3YkHYdt6evQ46c14re5qWCNyYk6dlis/BywZtYHTZuSl2LQa13+jWF0zcjMJ143xhy\nWvOp6KqSOhyX1mfpp6G3iTifGI+txBrrE8WQ3UJDX7PUoQgeLq/tGK8cewsvhRcPzLiTMO8QqUMa\nF0sjF7I+dS39lgH+cfTZsc3BgjARhpN+PuC3+//Mrrp9+Hr5sn406Sd8rtsk/fw3mUxGin8iD8y8\nk/+Z+xBzQmbS0NvEK8fe4ncH/sLO2r0M2kTbOE8lkn8EQZDcmriVXJGwRuowhHGiU+mINkRS2V2N\n2Wo+o2OrumtQK9Qec/MyWQVrAzENdjIkBpAurXeoj30NmRi9/MgIniF1OGcsyhDOrODp1PTUkdNW\ncNLn5bUdw2wbZE7ITOQyMfR1VzKZjBtSribKEMH+xkz2NBw86XMtdiuvFb6NAwfrU9e6ffUTV6VR\nevGDabewPHLxcBuwrKfGkngF6YzulPSE5B/4pi2waP3lHHaHnZePvUFtbwOLwuaecQvQaJ9Ifjb3\nQRaGzR2rjLHPiZUxRMsvQXA/s0Omo5IrOdh42GnvDWarmefyNvJF9Q6CtAH8JOMBpgSkjNv5M0Jm\n8ot5DxHnE0NWSw6PZT7h9ISPDys+o6GvifMiFjI1MM2p1xLOnEwm46rESwB4r+xj0Ubje5R1VuDA\n4ZEtv0bF+gxvMqrqrpY4EsGTlZjKeD7/NRQyBffOuI1on0ipQxpXi8LncvOU6zFbzTx59DmRWCk4\n3fFJP3vxVfuwPnUtv13wUxa5cdLPiUQZwrktfR2/W/gzlkUuomeol7dLP+DX+x7l44ov6B3qkzpE\nYZyJFRBBEARh3KX6J2F32CnrrDztY8xWM019LcQYIsUCvZsLGmnD0Cpaf7m03fX7sNgtrIxe6rY3\nNJfGXYAMGVsrPsfusJ/wOZnNouWXp1ArVNw19Wa8VTreLvmAyq4TT65+VvUVTf0tLI1Y6NGTzK5A\nLpOzNvkKrk26nJ6hXp448gw5rSdPxhOcr6Z3JPlH7xnJP0l+w7/DpaYKiSPxTFvKtpLXVkiKMZEb\nUq4+qwoZGqUXN6Wt5fb09SjkCl4vepsXCl6n39I/rrGKll+C4J60Si0zgqbSMtBGxUnGbueifcDE\n41lPk9tWQLIxkZ/O+SGh3sHjfp0ArT8Pz76HNbErMZk7+fuRZ/i08suT3oOci6KOUrbXfk2wLpCr\nRxJMBNcT7xvLzKCpVHRVf+9mlMmutHN4DDc6pvNEsSPtzKq6xEYIwTkqu2p4JvdlHA4HP5h2M4l+\ncVKH5BTzQmdzW/o6huwWnsx+XrR/Fpyia7Cbt49L+jGwPvVaj0z6+W+BWn+uS76S3y/6OWtiV4ED\nPqn6kl/te5TNJR/QPtAhdYjCOBGrq4IgCMK4S/VPBIYnrU5XTU89Dhwe2QN8shldkBGtv1zXkG2I\nXXX70Cm1LAybK3U4Zy3UO5j5oRk09jVzuDn7O4/3BTz9PAAAIABJREFUWfo51l5MhD6McH2oBBEK\n4y1Aa+T29PXYHXaey9tI12DPcY/X9jTwRfUOjF5+oqrgBDo/agk/mHYzAM/lvcqO2j0SRzR51fY0\nABBpCJc4kvERrg/FW6WjpFNM/I63XXX72FG7h1DvEO6cuuGcJzkzQmbw87kPE+8by9GWXB499MQZ\nbQQ4FdHySxDc1+j9xoHGw+N63vLOKv5y+J809DWxNGIhD8y4A2+Vblyv8W0KuYJL4y/kwVl346M2\nsLXyC/5x9D+YzJ3jdo1+Sz8bCzcjl8m5dcqNooKli7s8YQ1ymZwPyj/BZrdJHY5LKjVVoJQrifWJ\nljoUpwn1Dkaj8KJStCoSnKC+t5Gnc15gyGbhtvR141rZzhVlhMzgzqk3YbPb+FfOi2e0tiAI36dr\nsJt3Sj7kt/v/xM66vfioDaxLvYbfLPgpi8LneXTSz38zqPVcGn8Bv1/8C65Nuhy9yptddXv53YG/\n8FLBG9SNzCsJ7ksk/wiCIAjjLs43FpVcRZHp9Afoo/18RfKP+wvWDif/tAyI5B9XdaDxML2WPpZG\nLESj9JI6nHNycdwqFDIFH1d88Z0J1yMtudgcNlH1x8Ok+idxRcIauoa6eSH/tbGfu81u4/XCzdgd\ndtanXotGqZE40sllelA6D8++F4NazzulH7K55AOn7IYXTs7hcFDbU0+wLhCth7z+5TI5SX7xdJhN\ntIldaOMmv62Qt0s+wKDSc+/029CptONy3gCtkYdm3c3FcavpHOziiSPPsPUEn89nQ7T8EgT3lWxM\nwOjlx5GWnHFrDb2/8TD/OPof+q0DXJ98JdenXDVhizZJxnh+Me9hZgZNpayzkkcP/Z3slrxxOfdb\nxe/ROdjFxbGrxdyIGwjRBbEkfD4t/W3sbTgkdTiSsNgsNPW1UNBexO66fWwp28pzeRv5U+Y/+Onu\n31LX20CcTzQqhUrqUJ1GLpMT4xNFc38L/ZYBqcMRPEhLfytPZj9Hv3WAm9LWMit4mtQhTYgZQVP5\nwbSbceDg37kvkd9WKHVIghvrGuzmndLhpJ8ddXswqA2sS7mG3y74KYvD56OUK6UOUTJeCjXnRy3h\n/y38GbdMuYFQXTCHm7N5LPMJnsp+nhJTmWht6qYm76taEARBcBqVXEmiXxyFHSV0DXbj6+VzymOq\nu4fL48Z58G6gyWK08k+LqPzjkuwOO1/V7EYpV7IsarHU4ZyzAK0/i8Pns7t+H/sbM1kSsWDsscym\no8iQMSdkpoQRCs6wKnoZ1d21HG3NY0vZVtYmX8G2ml3U9jawIGwOaQHJUoc4KUX7RPKTjAf4d+6L\n7KrbS4e5g1unrHP7JEN30W42MWAdYIq/Z73+k/wSyG7Np9RUTqDWX+pw3F5dTwMvFryOUq7g7um3\njvu/qUKu4JK41aQak3j52Jt8WvUlxaZSbp1yIwFneS3R8ksQ3JtcJmd+6Gw+q95Odms+80Jnn/W5\n7A4775d9wle1u9Eptdwx9SZS/ZPGMdrT463ScefUDextOMg7pR/xXP5GFofP59qky866Wk9m01Gy\nWnKI84nhgpjl4xuw4DRr4lZxsCmLTyq3MS90lsdtQLDZbXQOdtFu7qBtwES7uYP2gY6xP7uGek54\nnEquIkBjJM43hlXRyyY46okX6xNNsamM6p5a0jxsLC5Io8Ns4p9Hn6NnqJe1yVewIGyO1CFNqKmB\nadwz/Vb+k/sKz+a9yh1T1zMjaKrUYXkEh8PBoG0Is82M2TrIgNV8gq/Nw19bBzHbvvu13WEn1DuE\nKH04kYZwIvXhhOiCXKp6TtdgD1/W7OTr+v1Y7FaMXn6siV3J/LCMSZ3wcyIKuYJ5obOZGzKLYx3F\nbKveSWFHCYUdJcQYolgVs4yZQVORy0Q9GXchXuGCIAiCU6T6J1HYUUJRRynzwzJO+fyq7lp81Ab8\nvHwnIDrBmQK0AciQieQfF5Xdmk+buYMl4fPxURukDmdcXBS7gv2NmXxa9RXzQzNQKVS0D5go76ok\nyS8eo8ZP6hCFcSaTybgpbS2N/S3srNuLVqllW/UOfNUGrkm8VOrwJrUArZEfZ9zH83mvkddWyBNH\nn+He6bedViKwcG5qe+oBiDJESBzJ+Eo2JgBQ0lnOwnD3bVXpCjoHu/h37ksM2oa4Y+pNxPk6L+k+\nwS+Wn899iLeKt5DVksOjh57gxtSrzyohV7T8EgT3Nz9sDp9Vb+dA4+GzTv4ZsJp5ueAN8tuLCNEF\ncc/0WwnWBY1zpKdPJpOxJGIBCX5xvFTwBnsbDlLeWclt6evOuP1mh9nEppL38FKouWXKDS61eCZ8\nPx+1gdXRy9la+QVf1uzm0vgLpA7pjDgcDrqHekaSezpoHzDRYe6gzWyifaAD02DnCat5ymVyjF5+\nJBsTCdQYCdD6E6DxH/vTR61HJpNJ8B1JY3RMVdVVI5J/hHPWPdTDk9nPYRrs5LL4i1ge6f4b985G\nmn8y9824nX/nvsTz+a9xW/o6cT8wwmwdpLyjg4aOdsy2wZMk65gx2wZP+LWDM6/mIpfJ0So0aJQa\nFDI5JaYySkxlY4+r5ErC9WEjCUERROrDidCHoZ7gym8nSvq5KHYFC8LmiKSfU5DJZKQHpJIekEpl\nVw1f1uwkp7WAF/JfI1Ifzk/nPCD+Dd2E+CkJgiAITpFqHN59V2wqO2XyT+dgF52DXUwPTJ9UkwOe\nSiVX4q8x0irafrkch8PBtuodyJCxMnqp1OGMG18vH5ZFLuLLml18Xb+fFdFLyWrOBhAtvzyYRqnh\nB9Nu5i+ZT/Jp1ZcAXJ9yNTqVTuLIBK1Sy30zbuet4i3sa8zk/w4/xb0zbiNCHyZ1aB6tpqcO8Lzk\nnzDvEPQqb0pM5TgcDjFWPEtm6yDP5LxE52AXVyZcPCET5zqVltvS15EWkMLmkvd5qeANjrUXc13y\nFWdUGUG0/BIE9xesCyTBN5YSUzntAyYCtMYzOr5toJ1/575MU18zaf7J3J6+ftxaFp6rMO8Qfprx\nAO+Xf8LOur38X9ZTXJVwCcsiF53WZ5bdYefVY5sYsJpZn3otQbqACYhaGE8ropeyu34/X9Xs4ryI\nBS6X9D5gHaB1oJ32b1XuaTN/k+hjsVtPeJyv2kCsT9RxST2BWiMBGn/8vHxFktq3xI5UMa/qrpE4\nksnL7rDTM9SHXqVz69dmv6Wfp7Kfp6W/jdXRy7kw5nypQ5JUsjGBB2bcydM5L/Bi/utYp1jPqYKg\nOxuyDZHfXsSR5hzy24uw2C2ndZwMGRqlBo3CC6OXLxrvEDRKr7FEnuGvtWiUXmiUGrQjz9UqRx5X\nDP+dSq48blwzYDVT39tIbU89dT0N1PbWU9tTP9bdYfTaId7BYxWCovQRRBrC8XbCvF33UA/bqnfy\ndf0BLHYLRi8/LoxdwUKR9HNW4nyjuWvazTT3t/JVzW46B7uQIeZi3IV4xQuCIAhOEa4PxaDSU9RR\ncsqFmqqRQaHoae85gnWBFHaUYLaaPa7stTsr7SynpqeemUFTJd0l6wyrY5azp/4An1fvYFH4PDKb\nj6KUKSZNT/TJKkQXxK3pN/Cf3FeYEzKTGUHpUockjFDIFaxLvZZAbQAfVnzG37Ke5s6pG0RLNify\n1Mo/MpmMJL94jrbmUWwqI8WYKBKAzpDdYeflY29Q29vAorB5E9p+QyaTsTBsDgm+MbxU8AYHm7Ko\n6KritvR1pzX2Fy2/BMFzLAibQ3lXFYeaslgTt+q0jys1lfNc/kb6LP2cH7mEqxIvcbmFXZVCxdrk\nK0j1T+K1wrd5u/QDCjtKuCltLQa1/nuP3V77NaWdFcwITGdhmKhw5468FGouiVvNm8Vb+LhyG+tS\nr5E6JCx2K7mtBexvzKSoo/SEVR50Si2h3iEjyT1GAr+V5OOvMU54tQZ3ZlDrCdAYqeyuEcnqTmS1\nW2k3m2gbaKd1oJ22kf9aBzpoH2jHYrcSoDFyXfKVTA1MkzrcM2a2DvJ0zovU9zayJGIBVySsEa8l\nhiuK/nDWXTyV/QKvHtuE1W5j0SSpCGuxWSjoKOZIcw55bccYGkn4CdEFMSsiHblVNZKsM5LEM5as\n4zWWuOOlUDvldaRVakj0iyPRL+6beO1Wmvqaqe1poK63ntqeBup7G2jqayaz+ejY84xefkQZIkYS\ngsKJMkTg5+V7VnF2D/XwZfUudtfv/1bSz/ksCJuLSiT9nLMQXZBLjGuEMyNe+YIgCIJTyGVyUvwT\nOdycTVN/C2HeISd97mhGeKxI/vEYQdpACimhdaDd4xYh3dm2ml0ArIpeLm0gTqBXebMieimfVG7j\njaJ3aehrYkZguqgCMwlMC5zCHxf/8pQLK8LEk8lkXBi7ggCtPxsLN/N07ovckHIVi8PnSx2ax3E4\nHNT21BOgMTplF53UZgZP42hrHk9mP0eUPpwlEQuYEzJTJBifpi2lW8lrKyTVmMQNKVdJsogQrAvi\nxxn3s7XiC7bV7OSvWf/isvgLWRW9DLlMftLjRMsvQfAcs4On83bJBxxoPMxFsStP671ob/1B3ip5\nD4B1KdewOMK1xxDTAqfwi3kP8+qxTeS3F/LYob9z85QbSPVPOuHz63sb+aj8MwxqPTemXiMWed3Y\nwrC5bK/dw76GQ6yIWkLo98yBOVN9byP7Gg6R2XSUPms/MFyVJsYn8jsVfLRK16ie5SlifaLJasmh\nbaBDVPA6B2armdaBjm8l9nyT5NNh7jxhIptWqSHUOwQftYHCjhL+nfsSM4KmsjbpcrdpA2+xWXg2\n7xUqu2uYGzKL65OvFJ8J3xLrE82PZt3FU9nP83rR29gcVs6LWCh1WE5hsVsp6ighayThx2wbBCBI\nG0BG8Axmh8wg3DuU4GAfWlt7JI72eCq5kihDxMhawHCClt1hp22gfSQhqGGsUlBuWwG5bQVjx3qr\ndER+q0JQlCGcYF3QSe8Ve4Z62Vazk911w0k/fl6+I+29RNKPIIjfAEEQBMFpUoxJHG7Opqij9HuT\nf6q6apAhI8YncgKjE5xpdGd2S3+rSP5xEfW9jRxrLybRL26sH72nWRF1Hrvq9pLVkgPAnFDR8muy\ncLXS+sLx5oTMxOjlx3/yXuaNondpG+jgsvgLv3fBXzgznYNd9Fr6jtt150nmhMzEW6VjT/0BctuO\n8WbxFraUbWVu6GzOC19ApCFc6hBd1s66veyo20Oodwh3TrtJ0moZSrmSKxMvJtU/iVePvcUH5Z9S\n2FHKLVOux8/L94THiJZfguA5NEoNM4OncajpCGWdlSQZ40/6XJvdxntlH7Ojbg/eKh13Td1AkjFh\nAqM9e75ePtw/8w6+qtnNhxWf8VT286yKXsal8Rcc13bCYrPwcsGbWB02bko9dYUgwbUp5AquTFjD\nf/Je4f3yT7ln+q0Tdu1+ywCHm7PZ33iImpFKkAaVnpXRS1kYNvd75+OE8RPrO5z8U9VdI5J/vofD\n4aDX0kfrQBut/d9U7hlN8Omx9J7wOF+1gXjfGAK1AQSN/BeoCyBQG4C3UjeWKNPQ28RbxVvIac2n\nsKOES+JWc37kEperGPdtNruNFwpep9hUxvTAdDakXSfulU8g2hDJg7Pu5smjz/FW8XtY7TbOj1oi\ndVjjwmq3UtRRypGWXHLbChiwmgEI0Bg5L2Ihs0OmE6WPcMuEMLlMTrAuiGBdEBkhM8b+vmuwezgR\nqLdhLDGo2FRGsals7DkquYoIfdhxFYJ81AZ21u1ld90+hkaSfi6MWcHCcJH0IwijxG+CIAiC4DSp\n/okAFHWUnnQwbnfYqempI0QXJHYdeZBvkn/aJY5EGPXlWNWfiWv1MdG0Sg0XxJzPe2Ufo1FomBbg\nfmWeBcFTJfjF8pOM+/l3zkt8Ub2D9oEONqRdh0q0ExgX37T88txE6jT/ZNL8k+kc7GJ/QyZ7Gw6x\np/4Ae+oPEOsTzZKIBWQET0etUEsdqsvIbyvknZIPMaj03Df9NpcZa6f6J/HzeQ/zetHb5LUV8uih\nv7M+de13WjeKll+C4HkWhM7hUNMRDjQdPmnyT79lgBcLXqewo4RQ7xDunX4rgVr3WkiXy+SsjllO\nsjGBFwveYFvNTopNZdyWvm7s/ezDis9o6GtiScQCt2xPI3zXtMApJPjGkdd2jLLOSqcmZdsddso6\nK9jXkEl2ax4WuxUZMqYGpLEofC5TA9JcOtnBE8X6DG+yquyuYe4k34hkd9jpMHeeoD3X8J+DtqHv\nHCOXyfHXGIk0hBOoDSBQ6z+S5BNIoNb/tMf44fpQHpp9Dwcas3i//GPeK/uYg41Z3Jh6NfG+seP8\nnZ47u8POq4WbyGs7RooxkdvT14nf3e8RoQ/jodl388+jz/JO6YdY7VZWxyyXOqyzYrPbKDGVk9WS\nQ05rPv3WAWC4JdaisHnMDplOjCHKLRN+Toevlw++Xj7HjYEGrAPU9TR+UyGot4Ganjqqumu+c7yf\nly9XxZzPwvB5IulHEP6L+I0QBEEQnMZfYyRYF0hpZzk2u+2ENy9NfS2YbYPEiJZfHiVIOzyh2TrQ\nJnEkAoDJ3Mnh5mxCvUNID0iVOhynWhqxiJzWfNL8k0VSgSC4mGBdED+ecz/P5r5CVksOpsFO7p52\nK3q1t9Shub1vkn88v9qen5cva+JWcWHsCgrai9hTf4CC9mKqumt4t/Qj5ofOZknEgkm/y722p4EX\nCl5HKVdwz4xbCdD6Sx3ScQxqPXdPu5Wv6/ezpWwrz+a9wtKIhVyVeCnqkc9v0fJLEDxPkjEef42R\nIy25rE26Ao3S67jHW/pbeSb3ZZr7W0kPSOW29HVo3bjFY4xPFD+f+yCbSz7gYFMWf8p8guuTr8LP\ny5fttV8TrAvk6sRLpQ5TGCcymYyrEi/hr1lP8V7Zx/wk4/5xX7Q1mTs50JjFgcZM2swdAARrA1kY\nNpd5YbNPWklPcL4ofTgKmeKEi9STQUNvE4ebs8lpK6C1vw2bw/ad56jlqrHKPYEj/wVpAwjSBWD0\n8hu3pBe5TM6i8LlMD5rCB2WfsK8xk8eznmZR2DyuSFyDXuUa958Oh4NNJe9zuDmbOJ8YfjDtFjGP\ndRpCvUN4aPY9/OPos7xf/glHW/OI8A4lzDuEMO9QwvQh+Kp9XDJpxu6wU2qqIKslh+zWPPosw+0Z\nfdU+nB+ZweyQGcT6RE3ayk9apZYkY/xxCeIWu5XGvibqeoYrBLUNtDM1MI1FIulHEE5K/GYIgiAI\nTpVqTGZ3/T4qu2tOuOupursW+GaHjOAZAjRG5DI5Lf0i+ccVbK/9GrvDzqroZR5/A6lWqPhxxv1S\nhyEIwknoVd78cOZdvFb0Noebs/lr1lPcN+N2gnVBUofm1mrGkn8mT/sruUzOtMApTAucQvuAiX2N\nh9jfcIiddXvZWbeXBN84zotYwMzgaZNuUrBzsItncl9iyDbEnVM3uOw4WyaTsTRyEYl+8bxU8Aa7\n6/dT0lnB7enriNCHiZZfguCB5DI580Mz+LTqS7Jb81gQNmfssaKOUl7If41+6wAro5dyZcLFHnHv\nolFquHnK9aT5J/NW8RZeLdyESq5ELpNz65Qb8RIV6zxKnG80s4Knc7Qll6OteeOSwGqxW8lrO8b+\nhkwKO0pw4EAtVzE/NINF4fNI8I11yUXuyUalUBGpD6eupwGLzTIpkjjaBjrIas7mcHM2DX1NwHCC\nT5QhYqxyzzdJPoH4qPUT+lrVq7xZn7aWBWFzeat4C/saD5HbVsCVCRezIGyOpL83DoeD98s/YU/9\nASL0Ydw34/bvJMQKJxesC+Lh2ffycsGbVPfUjq0vjNIqtSPJQMP/hY8kBRlUE/sahOGEn/LOSo60\n5HK0JW+stZ1BrWdpxCIyQmYQ7xvjEWMeZ1D9/+3dd3xb9b3/8beWLdmyLXnv2I5HpnESOzsBApRV\nNpfRXwOFll4oHdDSW9rSlkJugY5fB+1tGYX+mgJlFkjbkEISCNl7OIkdJ3G894j3ks7vDzsmuQkl\nQGxZyuv5eOQRWdKRPueB80XnnLc+H7NVqWHJSg3gLsfAmXZ2nQEDAIy6CZGZWlO1XkXNJacM/xz7\nRkwanX8CisVsUbQ9UvXdDb4u5azX1d+lddWbFBEUroK4PF+XAwCyWWy6ddJNirZH6q2yVfr51t/p\ny7m3juhohEBX0V4lV3CEwoPCfF2KT0Q53Loi42Jdlnah9jTu0/tVG1XUUqJDR0sVWvKGZifka37i\nrLMiZNYz0Ks/7HpWrb1HdfX4yzQtdqqvS/pIic54fTv/a3r90D/0XuV6/XTr47o8/SJGfgEBanbC\nYPhnY83W4fDPmsr1ernkTZlk0ucn3qA5x4WCAkVB/DSlR6Tqmb3Pq6ytQp9N/wwdkAPUlRmXaFdD\nod48tFy50ZNk/YQh5KqOGm2o2aLNtduHu0Okh6dqTkKBpsed49ddsQJVWkSqytorVNlRrfSIcb4u\nZ0S09bVre91uba3bqdK2MkmSxWTR1OhJKojL05ToSWMu1Djelab7C76h1ZVr9Y/St/WXope1oWar\nbsq5RonOeJ/UtKJsld4pf09xITH6Wt4dCrGNjfG8/iTaEan78u/WgHdA9V2NqumsVU1nnWo661Td\nWavSo2U6fPTICduE2kKGOwQlDoeD4s94N2Kv4VXp0fLBDj/1u3W0r13SYCDt2LjqTFcGgR8AI4Lw\nDwBgRGW7x8skk4pbSvRZfeakx8vaKmQ1W5XkTPBBdRhJMSHRqm8qUld/l0JsIb4u56z1ftVG9Xr6\ndGnahZ/4pCMAnGlmk1lXjL9EUY4ovVD8qh7f8aQ+P/EGFcRP83Vpfudob7uO9rVpavREX5ficxaz\nRXmxU5UXO1X1XY1aX71ZG2q2aGX5Gq0sX6Mcd6bmJ83WOdGTz9hYgbHEa3j17N7nVdFRrXmJM3Vh\n6rm+Lum0BVlsuiH7ak2MzNbS/S/pjUPLJYmRX0AAinZEKcuVoZLWw6rvatDqirVaU7VBTluovjz1\nVo13pfm6xBET7YjSt6Z/RVWdNUpxBv6ozrNVbEi0FiTN0XuV67S2epPOS5532tt2D3Rra91Obaje\nqrL2wU4WTluoLkhZqNkJ+T4LKuD0pIWn6D1JR9oqAir809XfrV0Nhdpat1PFLQdlyJBJJmW7M1UQ\nl6e8mClj/ryfxWzRhannakbsOXq55E3taijUI1t+pQtSFurS9AtHNbD0bsU6LTu8Qu5gl76Wd4fC\ngpyj9t6ByGq2KtEZf9L62O/pV11Xw3Ag6Fgo6FDrER1sLT3huWE252AQyBl/XLeguI/1e20Yho60\nVWh7/S5tr9+t1t6jkqRQa4jmJszUjLhzlOXKCMjjUABjC1eAAAAjymF1KC08RUfaKtQ90C2H9YNv\nMvR5+lTVWatxYSl88A1AsSHR2tsk1Xc3Ks02NsdNBLp+T7/erVwnu8Wu+UmzfF0OAJxkbmKBIu0u\nPbVnqf607wU19TTr4nGLGF3wMVR2DI384iLiCWJDonV15mW6POMz2tVQqLVVG1XcclDFLQcVFuTU\n3ISZmpc4U1GOSF+Xesa8WrJMhU37NcGdpRuzr/HLf0dToyfpezPv1dJ9L6msvUL5dC0EAtKshHyV\ntB7Wz7f+Tp0DXUpyJug/p35BUQ63r0sbcRazhdEVZ4FL0y7QppqtWl76jmbFz/i3XXoMw1BJ62Ft\nqNmiHfV71O/tl0kmTYmaoDmJMzUlagJf5PETx0atlh4t0/kp831czafT5+lXYdN+ba3dob1NRRow\nPJIG9zE/Lk/TY3MVERzu4yo/PrfdpS9PvUV7GvfppQNv6O3yd7W1bqduyL5KuTGTR/z9N9Rs1csl\nbyg8KExfn/Zlue2uEX/Ps5XNYlNyWKKS/9do7D5Pn2q76lXTcSwUNNgx6EDrIR1oPXTCcyOCwpQw\nNDLsWJeghNC44TXdMAyVt1dqe/1uba/freaeFkmSw2rX7Ph8TY87RxPcmVz3ADCq+NQIABhxEyKz\nVNpWrpKWwyccSFW0V8treJUWQavrQBTrGBzRUN/VOHwCBKNrc912tfW166LU804I3gHAWDIhMkvf\nmvEV/c+uZ7Ts8Ao1dDfpcznXcYLsNFW0D4V/wgj/nIrNbFV+XJ7y4/JU21mntdWbtKlmm1aUrdK/\nylZrYlS2FiTO1uSoCX79O/duxTq9W7lOCaFx+tLUz/v1vriCI/S1aXfI4/X49X4A+HDTYqbqpQOv\nq3OgS7nRk3XrpJtktwb7uizgjAkLcuqicedr2eG39E7Zu7pi/CUnPae196g21mzThpotauxukiTF\nOKI0J6FAsxJmyBUcMdpl41OKcUQp1BaiI20Vvi7lE/F4PSpqKdGW2p3a3VioXk+fJCk+NE4FcXma\nEZunmJAoH1d5ZkyNnqQcd6aWH1mpd8rf0xN7/p+mRk/Sf2RdNWJB1B31e/Tc/pcVYnXoq3lfYrSt\njwRZgpQalnxSELdnoFd1XfWqPhYIGgoHFbWUqKil5ITnuoNdig+NVUN30/D6bbcEa2b8dE2PzdWE\nyGzZCG0C8BFWHwDAiMtxZ2n5kZUqaik5IfxzpK1ckpQWRvgnEMWEfBD+wejzGl69U/6eLCaLzks5\n/TbjAOALic54fTv/a/rD7me1sWarWnpa9aUpixViI7j4UY6Ff1LD6SLwUeJD43R91pW6MuNS7ajf\nrferNmpfU7H2NRXLFRyhuYmD3YD87WLbnsZ9eqXkTYUFOXVX7m0BE/gl+AMELrs1WLdOukltvW2a\nnzRbZpPZ1yUBZ9yilPlaU7leKyve14LkOXIFR2jAO6A9jfu1oWaL9jUVy5Ahm9mmWfEzNCehQJmu\ndL/s3IdBJpNJaeGp2ttUpPa+Dr8Y5+Q1vDrUekRb63dqR/1udfZ3SZIi7W6dmzxP+XF5SgyND8jf\nyyBLkK4af6lmxk/Xi8V/057GfSpuLtFl6RdpUcqCM/pZdF9TsZ7d+7yCLDbdnfdFJTkTzthr48yw\nW4M1LjxF48JPvE7RPdCj2uNHh3UMdgra33wIiaDIAAAdQ0lEQVRAQZag4U5YkyJzZLPYfFQ9AHyA\n8A8AYMSlR6QqyBKkouaDJ9xfNvRNmLQIusIEomOdfxq6Cf+MtuqOWr1buU71XY2anZDvdxcxAZyd\nIoLDdM/0O/WnvS9od+Ne/WL7/+grubefFSNAPo2K9iqF2ZyKCPK/tvu+EmSxaVbCDM1KmKGqjhqt\nrdqozbXb9c/St/XWkZWaEjVR85Nma2Jk1pi/IF3RXqVn9j4vq9mqO3O/EFBjzAAEtryYKb4uARhR\nQZYgfTbjYj1X9LJePvCmIu0uba7dro7+TkmD45PmJORrRlzevx0LBv+SPhT+OdJWrqnRk3xdzikZ\nhqHKjmptqduhbXW71Np7VJIUZnPq3OS5yo+bpvTw1IAM/JxKQmicvjHtP7W5drteO/h3vX7on9pU\nu0035VyrTFf6p379g62lenLPn2U2mXRn7m10R/czDqtd6RHjlB4x7oT7u/q7ZTNbCfwAGHMI/wAA\nRpzVbFWWK0N7m4rU0tM6PM/4SFu5nLZQRdm5SBGI3HaXrGYrnX9GSfdAj7bV7dT6mi3DwbqIoHBd\nPG6RjysDgNMXbAnSHVMX67WDf9fqirX62bbHdVfubSd9+w6DOvo71dTTokmROWfNyfkzLcmZoBtz\nrtFV4y/TtvqdWlu1Ubsb92p3415F2d2alzhLcxILFKMwX5d6kpaeVv1+17Pq9/Tri1M+z4UEAADG\nmNkJM7SqYo12NuyRJDltoVqUskBzEgqU6Iz3cXUYCcc+jx05OvbCP3VdDdpat1Pb6naqrqtBkmS3\n2DU7Pl/58XnKdo0/azsvmkwmzUqYoSnRE/XGoeVaV71Jv9z+e81OyNc14y+XMyj0E71ueVulfr/r\nWXkMj/5z6q3Kdo8/w5XDV+hSDGCsIvwDABgVEyKztLepSEUtBzUnIV/tfR1q6mnR5KgJXKwKUGaT\nWdGOKDV0N8owDP47jwDDMHSwtVQbarZoe/1u9Xv7ZZJJk6MmaG5CgaZET5SVGdMA/IzZZNb1WVcq\n2hGlVw68qV9u/4Num/w5nXPc6FAMqmyvliSlhCX5uBL/Z7cGa17iLM1LnKWytgqtrdqkrXU79Obh\nt/T30n9pYkymMpzpynFnKjUs2ecXRnoGevWH3X/S0b42XZN5uabFTvVpPQAA4GRmk1mLJ96g9yrX\na2r0JE3lGD3gHfvSQmlbuY8rGdTS06pt9bu0rW6nyofGBdvMVk2LzVV+XJ4mM6roBKG2EH1uwnWa\nk5CvF4pf08aardrTsE9XZV6qOQkFH6sraE1nnX6762n1enp12+SbNSV64ghWDgDAID5pAgBGxQR3\nliSpqPmA5iTk68jQQTDf5A9ssY5o1XbWqaO/0y9mnfuL1t6j2lyzXRtqtqh+aKxatCNKcxIKNCt+\n+nB3LQDwZ+clz1OU3a1nCp/TU3v+rGuzPqvzk+cTJj1OxdAJfMI/Z9a48BSNC0/RtVmXa0vtDm2o\n2ap99SXaW39Ay7RCdotdWe4MTXBnKScyU/EhsaP6e+k1vHp273Oq7KjWvMRZuiBl4ai9NwAA+HjG\nhafolkk3+roMjJIQm0NxIbE6fLRMf9r7giwmiyxmi6xmy+Bt07HbVlnMZllNFlnMVllMZlnM1qGf\nj3/ecbeP3X/cNlaz9YP3MFlkNpnVOdClHfV7tK1upw62lsqQIbPJrElROcqPzVNuzGRGzX2E9Ihx\n+k7+1/Ve1Xr9/fAKPV/0qjbWbNVNOdcqyZnwkds3djfp8R1PqbO/S5+bcJ1mxOWNQtUAABD+AQCM\nkoTQOIUHham4+aAMwxgeS8R4gsAWExIlSarvaiT88yl5vB4VNu3X+uot2tdcLK/hlc1sVUHcdM1N\nLFCmK/1jfQMJAPzB1OhJunfGXfrDrmf1askyNXY36fqsK1nvhhD+GVkOq0MLk+dqYfJc2cNNWn9w\nl4qbS1TcclB7GvdpT+M+SVJEUJiyh4JAE9yZIx7CfaVkmQqbijQxMls3Zl9NIA4AAGAMyY2epLfL\n39WWuh2+LkXjI9KVH5enabFTOS/3MVnMFi1KWaBpMVP1asky7WjYo0e3/FrnJ8/XZekXyW4NPuV2\nrb1H9ZsdT+loX5uuy/ys5iXOGuXKAQBnM8I/AIBRYTKZlOPO0pa67arurNWRofDPuPBkH1eGkRTn\niJEk1Xc3arwrzbfF+Knaznqtr9mszTXb1d7fIUlKDUvW3MQC5cflyWFlxjSAwJYalqz78r+q3+96\nVu9VrldTd4tum/y5Dz3ZejapaK9SiNWhKLvb16UEvLBgp6bH5mp6bK4kqam7RcUtB1XcUqLi5oPa\nUrddW+q2S5JiQ6KV487SBHemst3jFWILOWN1rK5Yq/cq1ykhNE5fnPJ/fD5+DAAAACe6avyluiB1\noQa8A/IYHg14PfIYHnm8Hg0M/T14/4A8hveD28fuP+45J2/jkccYkMfr1YBxbJvjb3tk1mCXnxlx\n5yiS44RPzW136UtTF2tvU5FeKn5dKyvWaFv9Lv1H9lU6J3ryCUH8jr5OPb7jKTX1NOuytAu1KJUO\nnQCA0UX4BwAwaiZEZmpL3Xbtbz6gI20VinFEyWkL9XVZGEExIdGSpIauRh9X4l96Bnq0vX63NtRs\n0eGjZZKkUGuIzk+erzmJBafVYhgAAkmk3a1vzviK/lj4FxU27devtv9eX5h8s+JD43xdms90D/So\nvrtROe5MOr/4QJTDrbmOAs1NLJBhGKrprFPRUBCopPWQ3q/aoPerNsgkk1LCkpTjztSEyCxlRKQp\nyGL7RO+5p3GfXi1ZprAgp+7KvZ0AMAAAwBhkMpnoshOAJkdN0PdnfUsrylbp7bJ39dSeP2tK1AT9\nR/bVinZEqnugW7/d9bRqu+q1KGWBLku/yNclAwDOQoR/AACjZkJkliRpXfUmdQ90a3JUjo8rwkiL\nHQr/1Hf7JvxjGIZaeltlGJLbHjGmx8QYhqHDR8u0oWaLttXvUp+nTyaZNDEyW3MSCpQbM1k2Mx/d\nAJy9HFa77sq9TS8e+JvWVW/Wkk3/V3kxU3Rx2gVKCUv0dXmjrrK9WhIjv8YCk8mkRGe8Ep3xWpSy\nQB6vR2XtFSpuPqiilhKVHi1XeXul3i5/V1azVRnh45QTmaUcd6ZSw5JOq3tPRXuVntn7vKxmq+7K\nvU1RDr7FDQAAAIymIItNV2RcrJlx0/TXA6+rsKlIxZt+oUvSLtC+piJVtFdpbkKBrs38LF/QAAD4\nBFeQAACjxhUcofiQWNV21UuS0sJTfVwRRlpEULiCzDbVdzWM+Ht19XerurNW1R01quqsVXVHrWo6\na9U90CNJsposinJEKcYRpZiQKMU4ogdvO6IVaXf5bGzG0d52ba7dpg01W1U39G8jyu7W7NRzNTsh\nnxbNAHAci9mim3Ou0+SoiXrryErtaNijHQ17NCVqoi5JW6T0iHG+LnHUVLRXSiL8MxZZzBZlRKQp\nIyJNl6ZfqF5Pnw62lg6PCDvQekgHWg9pmQZDbVmu8UOdgTIVFxJ70oWClp5W/X7Xs+r39OtLUxdr\nXHiKb3YMAAAAgOJCY/X1vDu0pW6HXiv5u5YdfkuSND02VzdPuI7gDwDAZwj/AABG1YTIrOPCP1y4\nCHQmk0kxIdFq6G6SYRhn5OB3wDuguq4GVXXUqLqjdijwU6uW3tYT31smxYbEaEJktiwmsxq6mlTf\n3TgYsGk68TXNJrOi7O7BQFBIlKKPhYQc0YpyRJ7xjjser0f7mou1vnqLCpv2y2t4ZTVblR+XpzkJ\nBcp2jx/TXYoAwJdMJpPOiZms3OhJ2t98QG8dWanCpv0qbNqvHHemLkm7QFmujIA/4VpO5x+/EWwJ\n0uSonOGulx19nTrQekhFzSUqbjmo3Y17tbtxr6TB4HROZKZy3IN/HFa7/rD7Tzra16ZrMi9XXswU\nX+4KAAAAAA0el86Mn64pURO1/Mg76vcO6PqsKzifBwDwKcI/AIBRNSEyS+9WrpPFZFGy8+wb0XE2\ninVEq6qjRkf72uQKjjjt7QzDUHNPq6o7Twz51HbVy2t4T3huRFCYJkZmKzF0cORGkjNB8SGxslls\nJ71uZ3+XGrob1dDVNPh3d5MauprU2N2kfc3FUvOJzzfJJLfdNRQGilJMyAcdg6IdkQqyBJ32PtV1\nNWhD9RZtqt2mtr52SVKKM1FzEmcqPy5PobaQ034tADjbmUwmTYrK0aSoHJW0HNZbR1aqqGUwTJER\nMU6XpF2gSZE5ARsCquioUrAlSDGOKF+Xgo/JGRSq6bG5mh6bK0lq6m5WcctBFTWX6EDLIW2u3a7N\ntdslSQ6rQ90D3ZqfOEsXpCz0ZdkAAAAA/pcQm0PXZV3h6zIAAJBE+AcAMMqyXBmyma1KdiadMpiB\nwBMTEi1Jauhq/NDwz0eN7DomyBKk1LDkE0I+iaHxcgaFnnY9obYQhdpSTzl2rnugR43dTUOBoKFg\n0FBQqLjloIpbDp60jSs44oNgkCNa0cMjxSJlt9rV6+nT9vrd2lC9RYeOlkoavJC3MGmu5iYW0LEB\nAM6ALHeGstwZOtJWrreOrNKexn36n13PKCUsSZekXaDc6EkB9Q3MXk+f6jrrlRGRFlD7dbaKckRq\nrmOm5ibOlGEYqu6sVfFQV6CS1sOaEjVRN2RfHbBBNgAAAAAAAHx6hH8AAKPKbrXrnul3KtR6+mEN\n+LdYx2D4p76rUekR4z72yK6k0HglOhOU5IxXpN09ohc5HVa7UsKSThnI6fX0nSIYNHj7YGupSloP\nn7RNmM2pPm+fej19kqQcd6bmJhQoN2aKggi/AcAZlxaeqjtzv6DK9mqtKFulHfV79NSePyshNE4X\nj1uk6bG5spgtvi7zU6vqqJEhQ6nhBEgDjclkUpIzQUnOBC1KXXjGxqYCAAAAAAAgsBH+AQCMulN1\nXEHgOtb55/VD/9RfD/zt347sSnImKNEZ/6Eju3wp2BI0fDHuf+v39Kupp/m4QNAHI8WCFaxFcXma\nnVCgaEekDyoHgLNPcliivjjl86rtrNe/ylZrS90O/WnfC/pH6b/0mXGLNDN+mqxm/z0crmivkiSl\nOAn/BDqCPwAAAAAAADgd/nu2EwAA+IUkZ4KctlD1efuHR3YdC/kkOuPltPl/Fyibxab40DjFh8b5\nuhQAwHHiQ2N1y6QbdVn6RXq7bLU21mzVc0Uv65+lb+uicedpbkLBmAubno7y9kpJYnQkAAAAAAAA\nAEmEfwAAwAhzWO36ybwHZDKZRnRkFwAAHybaEambJ1ynS9Iu0MryNVpbvUkvHXhdbx1ZqQtSF2p+\n4mzZrcG+LvO0VbRXyWa2KS4kxtelAAAAAAAAABgDCP8AAIARZzFbfF0CAABy2126PvtKXZy2SKsq\n3td7lev0t4P/0L/KVmtRygItTJqrEJvD12X+W/2eftV01mlcWDL/fwUAAAAAAAAgifAPAAAAAOAs\nExbk1FXjL9WFqefq3cp1erdirZYdXqG3y97TeclzdX7KAjmDxuZYyurOWnkNLyO/AAAAAAAAAAwj\n/AMAAAAAOCuF2kJ0efpFuiBlgd6v2qiV5Wv0Vtkqrap4X/OTZuvC1HMVERzu6zJPUNFeJUmEfwAA\nAAAAAAAMI/wDAAAAADir2a12XTTuPJ2bPFfrqjfrnfL3tKrifa2p2qC5CQW6MPU8RTncvi5T0vHh\nn2QfVwIAAAAAAABgrCD8AwAAAACApCBLkM5Pma/5SbO1uWabVpSt1pqqDVpbvUkz46fr4nHnKzYk\nxqc1VrRXy2qyKCE01qd1AAAAAAAAABg7CP8AAAAAAHAcm9mqeUmzNDshX1vrdmpF2WptrNmqTTXb\nNCPuHOVGT1ak3SW33aXwoDCZTeZRqcvj9aiqs0aJznhZzRzOAwAAAAAAABjE2UIAAAAAAE7BYrZo\nVsIMFcRP086GQr11ZKW21u3U1rqdw88xm8xyB0fIbXfJHeyW2x4xGAwKHgwHRdpdclgdZ6Sems46\nDXgHlBKWdEZeDwAAAAAAAEBgIPwDAAAAAMC/YTaZNT02V9NipupAyyFVd9aqpbdVLT2Df5p7WnWo\n9YgMlZ5ye7vFrki7Sy57hCKDXXLb3UMBoQi57W65gsNPq5NPRXuVJBH+AQAAAAAAAHACwj8AAAAA\nAJwGk8mknMhM5URmnvTYgHdAR3vb1NzTOhwMaj4uINTS26rqztpTv65MCg8KG+weZHcNBYROvO20\nhaqig/APAAAAAAAAgJMR/gEAAAAA4FOymq2KckQqyhH5oc/pHuhWS89RtfQOdgs61jWodejn8vZK\nHWkrP+W2NrNVhga7ECWGJozQXgAAAAAAAADwR4R/AAAAAAAYBQ6rQw6nQ4nO+FM+7jW8autrPy4g\n1KLWnqNDHYRa1NzTqomR2Qqy2Ea5cgAAAAAAAABjGeEfAAAAAADGALPJLFdwhFzBEUpXqq/LAQAA\nAAAAAOAnzL4uAAAAAAAAAAAAAAAAAMAnQ/gHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/\nRfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAA\nAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA\n8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAA\nAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAA\nAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAA\nAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/ZTIMw/B1EQAAAAAA\nAAAAAAAAAAA+Pjr/AAAAAAAAAAAAAAAAAH6K8A8AAAAAAAAAAAAAAADgpwj/AAAAAAAAAAAAAAAA\nAH6K8A8AAAAAAAAAAAAAAADgpwj/AAAAAAAAAAAAAAAAAH6K8A8AAAAAAAAAAAAAAADgp6y+LgA4\nntfr1YMPPqji4mIFBQVpyZIlGjdunK/LAoBPZdeuXfr5z3+upUuXqqysTPfff79MJpOysrL0ox/9\nSGYzWVwA/qW/v1/f+973VFVVpb6+Pt11113KzMxkfQPg9zwejx544AGVlpbKZDLpxz/+sYKDg1nf\nAASMpqYmXXvttXrmmWdktVpZ3wAEjGuuuUZOp1OSlJycrDvvvJM1DkBAeOKJJ7Rq1Sr19/fr5ptv\n1syZM1nfAJwSKwHGlHfeeUd9fX168cUX9a1vfUuPPvqor0sCgE/lqaee0gMPPKDe3l5J0iOPPKJ7\n7rlHzz//vAzD0MqVK31cIQB8fG+++aZcLpeef/55Pf3003r44YdZ3wAEhNWrV0uS/vrXv+qee+7R\nL3/5S9Y3AAGjv79fP/zhD2W32yVxfAogcPT29sowDC1dulRLly7VI488whoHICBs2rRJO3bs0Asv\nvKClS5eqtraW9Q3AhyL8gzFl27ZtWrBggSQpLy9PhYWFPq4IAD6d1NRUPf7448M/7927VzNnzpQk\nLVy4UOvXr/dVaQDwiV1yySX6xje+IUkyDEMWi4X1DUBAuPDCC/Xwww9LkqqrqxUeHs76BiBgPPbY\nY7rpppsUGxsrieNTAIGjqKhI3d3duv3223XLLbdo586drHEAAsLatWuVnZ2tu+++W3feeafOO+88\n1jcAH4rwD8aUjo6O4dackmSxWDQwMODDigDg07n44otltX4wZdMwDJlMJklSaGio2tvbfVUaAHxi\noaGhcjqd6ujo0Ne//nXdc889rG8AAobVatV3vvMdPfzww7riiitY3wAEhNdee02RkZHDX7qTOD4F\nEDjsdru++MUv6o9//KN+/OMf67777mONAxAQWlpaVFhYqF//+tesbwA+EuEfjClOp1OdnZ3DP3u9\n3hMumgOAvzt+9m5nZ6fCw8N9WA0AfHI1NTW65ZZbdNVVV+mKK65gfQMQUB577DGtWLFCP/jBD4bH\nt0qsbwD816uvvqr169dr8eLF2r9/v77zne+oubl5+HHWNwD+LD09XVdeeaVMJpPS09PlcrnU1NQ0\n/DhrHAB/5XK5NH/+fAUFBSkjI0PBwcEnhH1Y3wAcj/APxpTp06drzZo1kqSdO3cqOzvbxxUBwJk1\nadIkbdq0SZK0Zs0a5efn+7giAPj4Ghsbdfvtt+vb3/62rr/+ekmsbwACw+uvv64nnnhCkuRwOGQy\nmTRlyhTWNwB+77nnntNf/vIXLV26VBMnTtRjjz2mhQsXsr4BCAivvPKKHn30UUlSXV2dOjo6NG/e\nPNY4AH5vxowZev/992UYhurq6tTd3a05c+awvgE4JZNhGIaviwCO8Xq9evDBB3XgwAEZhqGf/OQn\nGj9+vK/LAoBPpbKyUt/85jf10ksvqbS0VD/4wQ/U39+vjIwMLVmyRBaLxdclAsDHsmTJEi1fvlwZ\nGRnD933/+9/XkiVLWN8A+LWuri5997vfVWNjowYGBnTHHXdo/PjxfH4DEFAWL16sBx98UGazmfUN\nQEDo6+vTd7/7XVVXV8tkMum+++6T2+1mjQMQEH76059q06ZNMgxD9957r5KTk1nfAJwS4R8AAAAA\nAAAAAAAAAADATzH2CwAAAAAAAAAAAAAAAPBThH8AAAAAAAAAAAAAAAAAP0X4BwAAAAAAAAAAAAAA\nAPBThH8AAAAAAAAAAAAAAAAAP0X4BwAAAAAAAAAAAAAAAPBThH8AAAAAAAAw6l577TXdf//9vi4D\nAAAAAADA7xH+AQAAAAAAAAAAAAAAAPyU1dcFAAAAAAAAYOx68skntXz5cnk8Hs2fP18333yzvvKV\nryglJUVlZWVKTEzUz372M7lcLq1evVq/+tWv5PV6lZKSooceekjR0dFav369Hn30URmGocTERP3i\nF7+QJJWVlWnx4sWqrq7WnDlztGTJEh/vLQAAAAAAgP+h8w8AAAAAAABOac2aNSosLNQrr7yi119/\nXXV1dVq2bJkOHDigW2+9Vf/4xz80fvx4/fa3v1VTU5N++MMf6ne/+52WLVum6dOn66GHHlJfX5/u\nu+8+PfbYY1q2bJlycnL0t7/9TZJUU1Ojxx9/XMuXL9eaNWtUUlLi4z0GAAAAAADwP3T+AQAAAAAA\nwClt2LBBu3fv1rXXXitJ6unpkWEYSktL06xZsyRJV199te677z7NmzdPubm5Sk5OliTdeOONevLJ\nJ1VcXKy4uDhNnDhRkvTNb35TkvTaa68pPz9fLpdLkpSamqqWlpbR3kUAAAAAAAC/R/gHAAAAAAAA\np+TxeHTrrbfqtttukyS1tbWptrZW99577/BzDMOQxWKR1+s9YVvDMDQwMCCbzXbC/e3t7ers7JQk\nWa0fnJoymUwyDGOkdgUAAAAAACBgMfYLAAAAAAAApzR79my98cYb6uzs1MDAgO6++24VFhaqtLRU\n+/fvlyS9+uqrWrhwoc455xzt2rVLlZWVkqQXX3xRs2bNUnp6upqbm3Xw4EFJ0tNPP60XXnjBZ/sE\nAAAAAAAQaOj8AwAAAAAAgFNatGiRioqKdMMNN8jj8WjBggUqKChQRESEfvOb36i8vFw5OTlasmSJ\nQkJC9NBDD+mrX/2q+vv7lZiYqP/+7/9WcHCwfvazn+m//uu/1N/fr9TUVP30pz/VihUrfL17AAAA\nAAAAAcFk0E8ZAAAAAAAAp6myslK33HKLVq1a5etSAAAAAAAAIMZ+AQAAAAAAAAAAAAAAAH6Lzj8A\nAAAAAAAAAAAAAACAn6LzDwAAAAAAAAAAAAAAAOCnCP8AAAAAAAAAAAAAAAAAforwDwAAAAAAAAAA\nAAAAAOCnCP8AAAAAAAAAAAAAAAAAforwDwAAAAAAAAAAAAAAAOCnCP8AAAAAAAAAAAAAAAAAfur/\nA6FZTqEsfzMdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPQAAAJoCAYAAADr1y2qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fW9x/H3yd6TDCAEwkpAloBsQRAvoOIEKaDgal1I\nayutVmm1XrW2vdWrOOpVEVCQISqCgCxBmYIQVkISQggJIftkj7PuHyHHRBIIkJBw8no+HjzyO7/x\nPd8z8jmn6dvP12Cz2WwCAAAAAAAAAAAAAAAA0CI4NfcEAAAAAAAAAAAAAAAAAPyMQA8AAAAAAAAA\nAAAAAADQghDoAQAAAAAAAAAAAAAAAFoQAj0AAAAAAAAAAAAAAABAC0KgBwAAAAAAAAAAAAAAAGhB\nCPQAAAAAAAAAAAAAAAAALQiBHgAAAAAAgBZu5cqVio6OVnR0tNasWdPc07kk1fN/6KGHmuw+Kisr\ndfz48SYbHwAAAAAA4Eoh0AMAAAAAAICr3o4dO3Tbbbfpm2++ae6pAAAAAAAAXDaX5p4AAAAAAAAA\ncDkyMjL0wAMPNPc0AAAAAAAAGg0degAAAAAAAHBVs1gszT0FAAAAAACARkWgBwAAAAAAAAAAAAAA\nAGhBCPQAAAAAAAAAAAAAAAAALYhLc08AAAAAAABcedHR0ZKkuXPnavr06Vq1apWWL1+uhIQEmUwm\nRURE6LbbbtPMmTPl5uYmSdqzZ48WLFig2NhYGY1GhYaGauTIkXr88ccVGhpa732VlZVpyZIl2rhx\no5KTk1VcXKyAgAD16tVLEydO1IQJE+TkdP7/5ui7777T+vXrtX//fuXm5qq0tFQ+Pj6KiIjQ0KFD\nde+99yo8PPyc69566y3NmzdPvr6+2rt3r7KzszV//nxt2bJFGRkZcnFxUZcuXTRhwgRNmzbN/lib\nyt69e/X111/rp59+UlZWloqLi+Xt7a2wsDANGjRI06ZNU5cuXS44Tl5ent577z1t2rRJmZmZCggI\nUL9+/TR58mSNGjWq3uvKy8u1bNkybdiwQQkJCSopKZGPj486dOig4cOHa9q0aed9LS0Wi9avX6+v\nv/5ahw4dktFolLe3tzp16qRRo0Zp+vTp8vf3v6jnZPfu3ZoxY4Yk6Q9/+IN+85vf1HneunXr9Nvf\n/laS9Oqrr+quu+6S9PN7udq8efM0b948SdLChQs1ePDgWseNRqM++eQTfffdd0pNTVVZWZmCg4PV\nt29f3XXXXed9/hqLzWbT2rVr9fXXX+vw4cPKz8+Xt7e3unTpohtvvFG/+tWv5O3tXee11Y/32Wef\n1Q033KCXXnpJ+/btk4uLiyIjI/X0009r2LBhGjNmjNLT0zVjxgw98sgjeumll/T999/LZrMpIiJC\nv/nNbzRx4kT7uJWVlfryyy+1fv16xcXFqbCwUL6+vuratavGjh2rKVOmyMPD47LmBAAAAAAAGo5A\nDwAAAAAArZjJZNJjjz2mLVu21NqfkJCgf/3rX9qxY4c+/PBDvf3223r77bdls9ns56Snp2vJkiXa\ntGmTVqxYobCwsHPGP3jwoGbNmqXMzMxa+7Ozs7VlyxZt2bJFixYt0ptvvllnkCQ/P1+zZs3S3r17\nzzlmNBplNBp1+PBhffrpp3rnnXc0dOjQeh/r3r179cQTT8hoNNbaf+DAAR04cEArV67UwoULFRAQ\nUO8Yl6q8vFx//OMftX79+nOOFRQUqKCgQAkJCfrss8/06quv6rbbbqt3rOTkZL366qvKzs6278vO\nztaGDRu0YcMG3XrrrXrttdfk4lL7zz4ZGRl68MEHlZycXGt/fn6+8vPzdfDgQc2fP1//8z//o7Fj\nx55zv+np6XrqqacUGxtba7/RaLQ/hx9//LH+9a9/aeTIkQ16Xq60rVu36umnn1ZhYWGt/RkZGcrI\nyNC6des0ZswY/fOf/5SPj0+TzCE3N1ezZs3STz/9VGu/0WjUvn37tG/fPn388cd68803de2119Y7\nzpkzZzR16lTl5eXZ9x09elSRkZG1zisuLtb06dOVkpJi35eQkFDr9zU+Pl6/+93vdOLEiVrX5uXl\nac+ePdqzZ4/mz5+vt956S717977sOQEAAAAAgAsj0AMAAAAAQCv2n//8R/n5+erdu7dmzJihiIgI\nJSYm6t///reMRqN27NihRx99VFu3blXnzp310EMPqVu3bsrKytL777+vgwcPKisrS6+//rr+/ve/\n1xo7MTFRM2fOVGlpqby9vTVt2jQNHTpUvr6+Sk9P1+rVq7Vx40bt379fDz30kJYuXSovL69aY8ye\nPdse5hk2bJjuvPNOtWvXTiaTSSdPntQnn3yixMRElZaW6plnntHmzZvl7Ox8zuMsLy/X448/rpKS\nEk2dOlU33nijfHx8dPToUb333nvKysrSsWPH9Prrr+vFF19s9Of5r3/9qz3M06tXL02dOlWRkZFy\ncnLSqVOntHTpUu3fv19ms1l//etfdf311yswMLDOsaqDVSNHjtSUKVPUpk0bxcXF6T//+Y8yMjK0\nevVqBQQEaO7cubWue+aZZ5ScnCxnZ2fNnDlTw4cPl7+/v/Ly8rR161YtXbpU5eXlmjNnjtavX18r\nYJWXl6cHH3zQHgoZMGCApkyZok6dOsloNGrjxo36/PPPVVBQoEcffVQffPDBFevI8uWXXyorK8ve\n2WfKlCmaOnWqJNUKkuzcuVOPPfaYLBaLgoODNX36dA0cOFAeHh5KSUnRihUrtGfPHm3evFmzZs3S\nhx9+WOd76XKUlpZqxowZSkpKksFg0MSJEzVu3DiFhobKaDRq27ZtWrZsmbKysvTggw9q2bJl6tat\nW51jLViwQDabTQ8//LBGjx6tnJwcxcXFKSIi4pznx2q1atKkSbrjjjtUVFSkHTt2aNCgQZKklJQU\nPfDAA/YQzujRo3XHHXeoXbt2ysrK0urVq7V27VplZGRoxowZWrp0qbp3735ZcwIAAAAAABdGoAcA\nAAAAgFYsPz9fw4cP13vvvWdfbqp///4KDw+3ByS2bt2q3r17a+HChbUCN9dff73GjRunM2fOaMuW\nLbLZbDIYDPbjc+bMUWlpqcLDw7Vo0aJa4Yo+ffpowoQJ+vTTT/W3v/1NCQkJeuedd/T000/bz9mx\nY4f27NkjSbrpppv01ltv1Rp/6NChmjx5sqZOnarY2FidOXNG+/fv18CBA895nCaTScXFxXrvvfdq\ndY+59tprNXLkSE2cOFFlZWVavXq1nn/+ebm6ul7uU2uXkpKir776SpLUt29fffLJJ7WW9ho4cKDu\nvPNOzZ49W+vXr1dpaam2bdum22+/vc7xqgMTc+bMse/r16+fxo0bp+nTpys5OVmffvqp7rnnHvtS\nSOnp6dq1a5ck6cknn9Rjjz1Wa8xRo0apS5cu+tvf/qbS0lKtXr1aDz74oP34v//9b3uY57777tNz\nzz1X67UYNWqUxo8fr0ceeUQmk0lz5szRxo0b5enpeRnPXMP06NFDvr6+9tshISHq0aNHrXOqg0oW\ni0Xdu3fXggULFBQUZD/et29f3X777frnP/+pDz74QDt37tSyZcvswaDG8vrrryspKUkuLi6aN2+e\nRo8eXev4yJEjdfvtt+u+++5TaWmpnnvuOS1btqzOsaxWqx599FE99dRT9n3jx4+v87xbb71VL7/8\nsn3fmDFj7NsvvviiPczzzDPP6IEHHqh1/dixYzVq1Cg988wzKi0t1dNPP62vvvqq1ut/sXMCAAAA\nAAAXdv4F6gEAAAAAgMP705/+VCtgIlUFC2qGMebMmXNO9xwPDw8NHz5c0s/LX1Xbvn274uLi7OPX\nt+TO9OnT7Z1ClixZIpPJZD924sQJdejQQa6urpo1a1adAQJnZ2fdfPPN9ttZWVn1Ps6bbrqpzqWg\nOnToYO8mU1xcrLS0tHrHuBSJiYnq2LGj3N3d9cgjj5zzXFeruczWL5coqyk6Olq///3vz9kfFBRk\n7y5ks9m0dOlS+7GcnBz7dseOHescd9KkSZo8ebJ++9vfqk+fPvb9eXl5+uKLL+z3/eyzz9b5Wgwf\nPlyPPvqo/f6qr2kJVq1aZV+i7OWXX64V5qnpqaeesj8/CxcubNQ5FBYWavny5ZKkyZMnnxPmqda7\nd289/PDDkqTY2NhzljirqaGBo/rOi4uL044dOyRJN9xwwzlhnmp33nmn7rrrLknSsWPHtG3btsue\nEwAAAAAAOD8CPQAAAAAAtGLBwcH2Li41GQwG+5JLbm5uGjBgQL3XVystLbVvf/fdd/bt6tBPfUaN\nGiWpKkxz6NAh+/7p06dr48aNOnjwoGJiYuq9PiQkxL5dWVlZ73kjRoyo91jNwFFJScl553uxbrrp\nJq1fv16xsbG1OqP8Ups2bezb53sckyZNqncpqEGDBql9+/aSqkJV1SIjI+XiUtWo+e9//7s2btxY\nKzwlSe7u7vrv//5vPf7447W6HO3atUtms1lSVRDlfMtQ1QxznC/0caVVvx99fX1rhZV+ycXFxf5+\nTU5OPm+w6mLt2bNHZWVlki78O1EzeLZz5846zwkLC1N4ePgF79fFxUW9e/eu89j3339v354yZcp5\nx6n52ta87lLmBAAAAAAALowltwAAAAAAaMWqwx91qe4kExgYaA+D1HeOVNUVplp1dx5J9g48DXHq\n1Cn179+/1j4nJyf7+FlZWTp16pRSUlKUlJSkQ4cO1epgYrVa6x37fI+1Zvchi8XS4PlejJpdbXJy\ncnTq1CmdPHlSx48f1+HDh7V//3778ZrP5S/17dv3vPfTo0cPpaenKyUlRRUVFXJ3d1dgYKAmT56s\nJUuWKDMzU0888YS8vb01ePBgDRs2TMOHD1fnzp3rHC8hIaHB9x0cHKwOHTro1KlTta5rbtXvx6Ki\nojoDbPU5deqUwsLCGmUOR48etW/PmjXrouZQl7Zt2zbo+sDAQLm7u9d5LDEx0b7dr1+/847Ts2dP\nubq6ymQy6dixY5c1JwAAAAAAcGEEegAAAAAAaMW8vb0veE59YZ7zyc/Pv5TpqLCwsNZtm82mtWvX\natmyZYqNja3VBahadeDnQn65ZFhNNcM25wvTXI7vv/9eixcv1o8//qiioqJzjjf0cdS3XFS1wMBA\n+3ZBQYG909Jzzz0nNzc3ffrppzKbzSopKdHmzZu1efNmSVVdfG6++WbNnDmz1n3UXEqtZkem+rRp\n00anTp1SQUFBgx7PldBY78eWNAcfH58GXX++3/Hq19bJyanW+6YuLi4uCggIUHZ2dr2vbUPnBAAA\nAAAALoxADwAAAAAArdj5lk+6HNVLNAUGBmr+/PkNvq5mN5SKigrNnj271vJdBoNBERER6ty5s3r0\n6KH+/fvLaDTqj3/8Y6PNvbHZbDbNnTtXy5cvr7W/bdu26ty5s6Kjo3XttdfK19dX999/f6PcX7Wa\nHZRcXV315z//Wb/+9a+1fv16bdmyRXv37lV5ebkkKTU1Ve+9954WL16sDz/80L401cUGnKo7HDU0\noNRQ5+u+dCHV78fo6Gi99tprDb4uIiLiku/zl2p2fnr77bfP2zGqpssNydQMq/3Sxb621a9BY7+2\nAAAAAADgXAR6AAAAAABAowsICJAklZaWKjo6+pICAG+++aY9zNOrVy898cQTGjRo0DkBh5UrV172\nfJvSkiVL7GGeTp06afbs2Ro+fLj9Oaq2e/fuBo1XUFCgDh061Hs8NzdXUlVHFV9f33OOh4SE6N57\n79W9996ryspK/fTTT9q+fbvWrFmj9PR0FRYWas6cOVq7dq2cnJxqzTM3N/eCQZTq+/f392/Q42lo\nd6Ti4uIGjVeX6s4yFRUV6tGjxyWPczlqPh9BQUHNNo+aqudktVqVn59/3u5PJpPJ3i2ooa8tAAAA\nAAC4dPznNAAAAAAAoNF169ZNUlWXnbi4uPOeu23bNn300Udav3698vLyJFV1M/nss88kSX5+flqw\nYIHGjBlTZ7eS06dPN/LsG9fixYslVXVD+uCDD3TLLbecE+aRpIyMjAaNl5SUVO8xm82mw4cPS6rq\nRlPdgclqterUqVPauXNnrfPd3Nw0ZMgQ/eEPf9C6devUr18/SVJKSopOnDhhH6fawYMHzzu3rKws\npaenS5I6d+7coMdTs0tUWVlZveddzutc/X48efKk/T1WnzVr1mjBggXauHFjnUu8Xe4cJCk2Nva8\n5544cULvvvuuVq1apZSUlEabwy/VfG0vNKcjR47IZDJJavhrCwAAAAAALh2BHgAAAAAA0OhGjBhh\n364OtNTFYrHoxRdf1GuvvabZs2fbAx15eXn2jiyRkZH1LjtkMpm0bt26WuO1NCdPnpRUFUw6X2ed\nr7/+2r5dvURUXb755pt6j3333XfKzs6WJF1//fX2/XPnztXYsWN1//3369SpU3VeWx3uqVZRUSFJ\nGjx4sFxdXSVJy5cvP+/SV9UhLEkaNmxYvefV5OfnZ9+uDgPVZdu2bfUeu1AHqOr3o81mqzXHXyoq\nKtLcuXP1yiuvaM6cOeddrupiDR06VC4uVc2yly9fbg/H1OXdd9/VG2+8oTlz5ujAgQONNodfqvl7\nunTp0vOeu2TJEvv28OHDm2xOAAAAAACgCoEeAAAAAADQ6MaOHWsPr3z++edatWpVnee9+uqrSktL\nkyTdeOON9uWcfH197eGHpKSkOruzVFZW6q9//asSExNr7WtpAgMDJUn5+fk6dOjQOcdtNpvefPNN\n/fDDD/Z953scW7du1bJly87Zn5GRob/97W+SJHd3d02bNs1+bPTo0fbtV199tc6lrcrKyrRp0yZJ\nkre3t6KioiRJwcHBmjhxoiQpPj5e//jHP+qc144dO/T+++9LqlpS6s4776z3MdQUGRkpT09PSdLG\njRvr7FT08ccf68iRI/WO4ebmZt+uq6vO5MmT7aGwd99995xORVJVF6NnnnlGJSUlkqRJkybZ59UY\nQkJCdOutt0qSjh8/rpdeeqnO12Ht2rX2cFdISIjGjx/faHP4pZ49e2rQoEGSpC1btmjhwoV1nvfl\nl1/qyy+/lFTVneeGG25osjkBAAAAAIAqLs09AQAAAAAA4HhcXFz02muvaebMmTKZTPrjH/+oLVu2\n6JZbblFISIjS09O1dOlS7dq1S5Lk7++vP//5z/brPTw8NHr0aG3YsEHl5eW677779PDDD6t79+6q\nrKxUfHy8li1bpuTk5Fr3W1RUdEUfZ0NMmDBBH3/8sSTpkUce0cMPP6xevXrJYDAoMTFRK1euPCfo\nU92dqC6enp6aO3eu9u/fr5tvvlk+Pj46cOCA3n//fftyUs8884zCwsLs14wZM0a9e/fWoUOHtGnT\nJt19992aOnWqOnXqJJvNpuTkZH3yySf2cNRDDz1UK8zypz/9Sbt371Z6errmz5+vQ4cOacqUKerU\nqZOMRqM2btyozz//XGazWQaDQa+99pr8/f0b9Py4u7trwoQJWrlypUpLSzV9+nQ99thj6tatm3Jy\ncvTVV1/p22+/VWRkpFJTU+scIzAwUK6urjKZTFq9erWGDRsmPz8/dezYUQEBAfLz89NLL72kp556\nSpWVlXr44Yd1991368Ybb5Sfn59SUlK0aNEie2goIiJCTz75ZIPmfzGqn8eMjAwtXbpU8fHxmjZt\nmqKiopSbm6vNmzfriy++kNVqlcFg0AsvvCAPD49Gn0dNL7/8su6++24VFhbq5Zdf1s6dO3XHHXeo\nbdu2ys7O1po1a+xdodzd3fX666/bw3YAAAAAAKDp8L++AQAAAABAkxgwYIDef/99PfXUUzIajfrm\nm2/qXC4qPDxcb7/9tiIiImrtnzt3ruLi4pSWlqa0tDS98MIL51zr4+OjZ599Vn/5y19ksVhqdetp\nKZ588knt3btXhw8fVm5url577bVzznF1ddUf/vAHzZ8/X5mZmed9HC+99JJefPFFrVy5UitXrqx1\nzNnZWU8//XSt7jxS1ZJU8+bN00MPPaSkpCQdOXJEzz///DljGwwGTZ06VY8//nit/QEBAfrkk0/0\nxBNP6OjRo9q7d6/27t17zvVBQUH6xz/+UWu5r4aYM2eODh8+rISEBKWnp58zt6ioKM2bN0+33HJL\nndc7OztrzJgxWr9+vbKysvTwww9Lkl555RXdfffdkqSbb75ZZrNZf/nLX1RWVqalS5fWucxUt27d\n9O6779ZaCqyxBAUF2Z/H+Ph4xcbGKjY29pzzPDw89MILL2js2LGNPodfioyM1KJFi/TEE08oLS1N\nmzdv1ubNm885r0OHDnr99dcVExPT5HMCAAAAAAAEegAAAAAAQBMaNmyYNm3apCVLlui7777T8ePH\nVVRUJC8vL3Xt2lU33nijfvWrX9mXQ6opLCxMX3zxhT766CNt2rRJqampMpvN8vHxUVRUlEaMGKEp\nU6YoJCREK1eu1L59+7Rt2zaVlpbKy8urGR5t3Xx8fLR48WItWrRIa9euVXJysioqKuTt7a0OHTpo\n8ODBmjZtmjp06KCjR49q1apVOnjwoNLT0+1LkNXUp08fffnll3rnnXf0ww8/KC8vT8HBwRo6dKge\neOABRUdH1zmP8PBwffHFF/r888+1YcMGJSQkyGg0ytXVVaGhoRo8eLDuvvtu9e3bt87r27VrpxUr\nVmj16tVau3atDh8+LKPRqICAAEVGRmr8+PG6/fbbG9yZp6agoCCtWLFCS5Ys0Zo1a3T8+HHZbDZ1\n7NhREyZM0MyZM2WxWM47xiuvvKLg4GBt2rRJeXl58vPzU35+fq1zbrvtNg0bNkyffvqpvv/+e6Wm\npqqkpEQ+Pj6KiYnRhAkTdNddd9VawquxRUREaOXKlVq9erXWrVunw4cPKz8/Xy4uLurQoYOGDx+u\n6dOn25esuxJiYmK0du1aLV++XBs2bNCxY8dUVFSk4OBgRUVF6dZbb9Utt9zSqEuQAQAAAACA8zPY\n6lqsGwAAAAAAAAAAAAAAAECzcGruCQAAAAAAAAAAAAAAAAD4GYEeAAAAAAAAAAAAAAAAoAVxae4J\nAAAAAAAAtDQlJSVKTU297HEiIyPl7e3dCDNCc0lKSpLJZLqsMfz9/dWuXbtGmhEAAAAAAGgNDDab\nzdbckwAAAAAAAGhJdu/erRkzZlz2OAsXLtTgwYMbYUZoLmPGjFF6evpljXHnnXfq73//eyPNCAAA\nAAAAtAYsuQUAAAAAAAAAAAAAAAC0IA7ZoSc7u6i5p4A6BAZ6KT+/tLmnAQCNjvoGwFFR3wA4Kuob\nAEdGjQPgqKhvABwV9Q1o3UJCfOs9RoceXDEuLs7NPQUAaBLUNwCOivoGwFFR3wA4MmocAEdFfQPg\nqKhvAOpDoAcAAAAAAAAAAAAAAABoQQj0AAAAAAAAAAAAAAAAAC0IgR4AAAAAAAAAAAAAAACgBSHQ\nAwAAAAAAAAAAAAAAALQgBHoAAAAAAAAAAAAAAACAFoRADwAAAAAAAAAAAAAAANCCEOgBAAAAAAAA\nAAAAAAAAWhACPQAAAAAAAAAAAAAAAEALQqAHAAAAAAAAAAAAAAAAaEEI9AAAAAAAAAAAAAAAAAAt\nCIEeAAAAAAAAAAAAAAAAoAUh0AMAAAAAAAAAAAAAAAC0IAR6AAAAAAAAAAAAAAAAgBaEQA8AAAAA\nAAAAAAAAAADQghDoAQAAAAAAAAAAAAAAAFoQAj0AAAAAAAAAAAAAAABAC0KgBwAAAAAAAAAAAAAA\nAGhBCPQAAAAAAAAAAAAAAAAALQiBHgAAAAAAAAAAAAAAAKAFIdADAAAAAAAAAAAAAAAAtCAEegAA\nAAAAAAAAAAAAAIAWhEAPAAAAAAAAAAAAAAAA0IK4NPcE0Dq88+Vhubk56/5x0XJxJkcGAAAAAAAA\nAAAAAABQH5IVuCJcnQ3acTBDi9Yfk81ma+7pAAAAAAAAAAAAAAAAtFgEenBFzBgXo64R/vr+YIa+\n2XWyuacDAAAAAAAAAAAAAADQYhHowRXh7uasuQ8NUZCfuz7fmqw9cZkNvjYpKbEJZ3Zhs2b9RiNG\nDNSYMcOadR4AAAAAAAAAAAAAAKB1INCDKybIz0O/m9RXHm7O+mB1nJLSC857fnFxsd5441966KF7\nr9AMAQAAAAAAAAAAAAAAmh+BHlxREaE+evyOXrJabXpzxUFlGcvqPfett/6tFSs+k8ViuYIzBAAA\nAAAAAAAAAAAAaF4EenDF9eocrHvHdVdxmUlvLItVSbmpzvOsVusVnlnd5s17Xz/8sFebN+9o7qkA\nAAAAAAAAAAAAAIBWgEAPmsUN/dpr/OBInckr1dsrD8lsaRnhHQAAAAAAAAAAAAAAgOZGoAfNZtIN\nXTQgOkTxqUYtWBsvm83W3FMCAAAAAAAAAAAAAABodi7NPQG0Xk4Ggx6+tafyCvdr++EzCg301MTh\nUfrww/9o/vz/q3XuiBEDJUn9+vXXvHnv6+WXX9DatavVtWt3ffDBQv3f/72rdetWq6ioSMHBIRo9\n+kY9/vhs+/UVFRVav/4b7dy5XYmJx1RQYJTZbJavr5+iorpo+PARmjjxTnl6ep4zz1mzfqMDB36S\nm5vbOctuVc9r9uzf6557pmnr1s36+usvlZBwTEVFhQoMDFL//gN1zz1T1b17TGM/hQAAAAAAAAAA\nAAAAwAER6EGzcnd11uxJffTfC/bqi+9PKCTw3EDNhbz00l+0adO39tsZGeny8PCw3z52LF7PPvsH\nZWVlnnNtXl6u8vJytW/fHq1cuUJvvfWeQkJCL3oOFotVL774vDZsWFdrf1ZWptatW6Nvv12rp59+\nVrfddudFjw0AAAAAAAAAAAAAAFoXAj1odv7ebvrd5D565ZN9+mhNnH49/ibNH3mDPvjgPW3f/r0k\naf78TyVJnp5eta5NTk5SUlKCevfuq/vue0AeHh7avv173XzzbZKkggKjnnrqCRUWFsjZ2Vk33zxR\nw4aNUGBgsIqKCpSYmKBlyxbLaDQqLS1V8+a9oRdffOWiH8Nnny1Sbm6uOnWK0j33TFOXLt1UVFSo\ntWu/1qZNG2S1WvXGG//UoEFDFR4efpnPGAAAAAAAAAAAAAAAcGQEetAitA/x0eN39tYby2K1aHO6\nnpsxQH59BFGRAAAgAElEQVR+/vbj3bpF13md1WpV+/YReuONt+XuXtWVp3//gfbjS5cuVmFhgSTp\niSd+q3vumVbr+qFDR2jChFt13333qLi4WN9/v1Vms1kuLhf3q5Gbm6sBAwbpH/94Xe7u7vb9Q4YM\nk6+vn7788nNVVlZq48Z1uvfe+y9qbAAAAAAAAAAAAAAA0Lo4NfcEgGrXdArSfeOiVVxm0hvLYmUy\nWxt03YQJt9rDPL+Uk5OtNm1CFBwcrLvuuqfOc0JCQnXttQMkSZWVFfYA0MX63e+erhXmqXb77XfZ\nt5OSEi9pbAAAAAAAAAAAAAAA0HrQoecyLNucpB/js5p7GlfUdTGhumdM1yYbf2TfdsrKL9M3u06q\nNDW/Qddcc03veo/9+c9/lVTVycfJqf78WlBQsH27stLUwNn+LCQkVFFRnes81r59hH27tLT0oscG\nAAAAAAAAAAAAAACtC4EetDh3jeqsLGOZVh+obND5YWFhFzynOsxjNpt15kyGTp9O16lTJ3X8eJKO\nHDmk48eT7OfabA3rDFRTeHjbeo95enrZty0Wy0WPDQAAAAAAAAAAAAAAWhcCPZfhnjFdm7RbTWvl\nZDDo4Vt6aOsqVxU24HwvL5/zHi8vL9fKlcu1ceM6HT+eVGeoxsnJSVbrxQd5qtUM7dR0OqdEh5Jz\n7bdtNtsl3wcAAAAAAAAAAAAAAGgdCPSgRXJzdVaPjkFKT6i6vfPwGQ3tFV7nuQZD/eOcPp2u3/9+\nltLSTtn3ubq6qkOHSHXsGKXo6Bj16zdA69d/oy++WN5o8zeZrVqzM0Vrdp6UxfpziOdMXqlOZBSq\nU7ivDOebOAAAAAAAAAAAAAAAaLUI9KDFcnVxsm9/9E2cgvzcFR0ZeFFjvPDCc/Ywz9ix4zRp0hTF\nxPSUi0vtt/5XX31++RM+K+GUUQvWxSsjt1SBvu4aPzhSL66uOpZTUKaXFuxVG38PXdcjVNfFhKpj\nGOEeAAAAAAAAAAAAAADwMwI9uGrMW3lIf75vgNoGezfo/Pj4ozp69LAkqX//gXrhhZfrPTcz88xl\nz6+03KwVW4/ru/3pMkga3b+9Jo3qIk93F7149pyOYb66rmeY9iflaO2uVK3dlaqQAA9dFxOm62JC\nFRnmQ7gHlyw9u1gnM4vUt2sbeXu4Nvd0AAAAAAAAAAAAAACXiEAPWqyawZaZ42P00Tdx+t/lB/Xc\njAENur7mMlvR0T3qPS8j47QOHYq137ZYLBc918LSSj3/wS4ZiyvVro237h8fo64R/uec5+vlpt/c\ndo0qTRYdPpGnH+OzdCAxR9/sOqlvdp1UaKCnroup6tzTIZRwDy4sr7Bcu+MytetIpk5lFUuSfL1c\nNfmGrhrWO1xOvIcAAAAAAAAAAAAA4KpDoActlpubm327f1d/ZQ3rpNU7UvTWykOyWm0XvN7fP8C+\nvXfvbpnN5nOW2srNzdHcuc/IZDLZ91VWVl70XFMzi9Spi0l3jIjShCEday0XVhc3V2f17x6i/t1D\nVGmy6FByblW4JylHa3ae1JqdJxUW6Hl2Wa4wRYR4E+6BXUm5SXvjs7TrSKYSThllk+TsZFC/rm3U\nto2XNu1L00ffxGlb7Gnd+1/dFRnm29xTBgAAAAAAAAAAAABcBAI9aLGCg9vYt99//22NG3ezjgWX\nKzFNMqcZL3h9nz79FBzcRrm5OUpMTNBvf/uY7rrrHoWHt1VhYYEOHPhJa9Z8JaOx9lglJcUXHNtq\ns2nbgdP2294eLnrhgUFq16Zhy4HV5ObqrAHRoRoQHaoKk0WHjleFe2KP52j1jpNaveOkwoO87J17\n2hPuaZVMZotik3K188gZHUrOldlSFWrrHuGvIdeEa2BMqHw8q5bZurF/hD7blKi9x7L14sc/akz/\nCN15fZS8WIYLAAAAAAAAAAAAAK4KBHrQYo0YMVIff/yBLBaLVqxYqhUrliosLFwD7nxRPxwov+D1\n7u7umjv3b/rTn55SRUWFYmP3KzZ2/znndegQqVtvvV3vvvuWJOnEiWT17t233nEzcku0YG28EtIK\n7Pui2vpdUpjnnDm7OmtgTKgGxoSqotKig8m5+jEuUweP5+rrHSn6ekeK2gbXDPf4XPZ9ouWyWm2K\nS83XriNn9FNCtsoqqpaDax/irSE9wzS4Z5ja+Huec12Qn4cev7O3Dp/I1acbErVpX5p+jMvU5NFd\nNaxXOIEwAAAAAAAAAAAAAGjhCPSgxerWLVp///v/aMGCj3T8eJKsVotcXFz065u7ae+3zipswBgD\nBw7S/PmfasmST7R374/KycmSVLUcV1RUZ40ePVbjxk2QxWLR/Pn/p/Lycm3evEG33XbnOWPZJK3a\nfkKrd6TIbLGpf/cQJdiPNn5Awt3N2R7cqai0KPZ4jn6Mz9LB47latT1Fq7anqF0bb113NgDUvhEC\nRWh+NptNKWeKtPtopnbHZaqguGoJuCA/d91wbXsN7RmuiNCGBbl6RQXrbw8G6tsfU/X19hR9uKZ6\nGa5odWjgGAAAAAAAAAAAAACAK89gs9lszT2JxpadXdTcU0AdQkJ8G+21OZNXqpcX7lV5pUW/v6ev\nenQKapRx65OUXqAFa+OVnlMifx833XtTtAZEhzTpfdanvNKs2KSqZbkOJefKZLZKktqfDfdc1yNU\nbYMJ91xtsvJLtetIpnYdzdSZvFJJVUu5DYwJ1ZCeYerWIUBOl9FZJ7egXJ9tStS+hGw5GQwaM6C9\n7hjRWV4e5DobQ2PWNwBoSahvABwV9Q2AI6PGAXBU1DcAjor6BrRuISG+9R4j0IMrprE/jI6l5utf\nnx2Qu6uz/nzfgEZZ8uqXyirM+nzrcW35KV02STdc216TRnVpMSGIsgpzVeeeuCwdSs6T2VIV7okI\n8a5auis6VMH+HnJ1cbqsMAiaRkFJpX6MqwrxJJ+u6jnl6uKkfl3baMg1YerdOVguzk6Nep+HknP1\n6YYEZeWXyc/bTVNGd9WQa8JYhusy8WUbgKOivgFwVNQ3AI6MGgfAUVHfADgq6hvQuhHoQYvQFB9G\nOw+f0f+tPqo2/h56fsZA+Xm7NdrYBxJztOjbY8ovqlDbYC/NHB+j7h0CGm38xlZWYVZsUo69c4/Z\nUvtX28XZIFcXZ7m5OMnVxUlurs5yrd52cZKbi7N929XVWa7OTnJzrT5e85iTXJ2d5eZ69nb1mK5O\nZ6/5eVxCROcqqzBrf2K2dh3J1NGUfFltNhkMUs9OQRrSM0z9u4fI071pA2Mms1Xr9qRqzY4UVZqt\n6h7hr3v/K7rBS3nhXHzZBuCoqG8AHBX1DYAjo8YBcFTUNwCOivoGtG4EetAiNNWH0Vc/nNBXP5xQ\nl3Z+mjP1Wrm5Ol/WeAXFFfp0Y6L2xmfJ2cmgW4Z21C1DO8nVpXE7pTSl0vKqcM/B5FyVlJtkMllV\nabbKZLbIZK7etqrSbJHJZFVTFYHwIC/FdAxUj46Bio4MkJ9X4wWuriZmi1WHk/O06+gZHUjMUeXZ\nZdKi2vpqSM9wDeoRKn8f9ys+rxxjmZZsStT+xBw5GQwaOzBCt4+IavJAkSPiyzYAR0V9A+CoqG8A\nHBk1DoCjor4BcFTUN6B1I9CDFqGpPoxsNps+WH1UO49kamBMqB69/ZpL6gxjs9n0/cEMLducpNIK\ns7q099P942PUPsSxu5bYbDaZLbZaYZ/q8E+lqSr4Yw//VB8zWeyhoOpj9pCQySKTxaqKSotSs4pV\nUWmx31dEiHdVwCeyKuDj5eHajI+8aVltNiWlFWjX0Uz9GJepknKzJCks0FNDrgnXkJ5hCgvyauZZ\nVjl4PEeLNyQqy1gmf5+qZbgG92QZrovBl20Ajor6BsBRUd8AODJqHABHRX0D4Kiob0Drdr5AD20Y\ncNUzGAy6f0IP5RZWaG98llYGeGrSDV0uaowzeaVasDZex04Z5eHmrHv/q7tuuLZ9q1gyymAwyNXF\n0CQdiMwWq06eKVLcyXzFp+YrMa1Aadkl2rg3TQaDFBnmqx4dAxUTGajuHfzl4Xb1liSbzabCkkql\n5ZQo/mS+dh3JVG5huSTJz9tNYwdGaOg14eoU7tvigjJ9urRRj46BWrs7VWt2ntT7Xx/VttjTmn5T\nd4cPtF3NzBarjqbk60xeqW7o1+6yu5MBAAAAAAAAAAAAaDno0IMrpqnTpcVlJr28aJ8y80p1/4QY\njezb7oLXmC1WrdudqlXbU2S2WHVttzaaflN3Bfl5NNk8WzOT2ark0wVVAZ+T+Tp+ulAWa1UJcnYy\nqFPbnwM+Xdv7t9iAQmm5Sek5JUrPLlFadrHSs0uUnlOi4jKT/RwPN2cN6B6iIdeEK6ZjgJydro4l\n27KNZVqyMVEHknLk7GTQTQM7aOLwTizDdQFXKj1vtdl0PL2681OW/T0X1dZPT97dWwHNsHQbAMfG\nfx0EwFFR3wA4MmocAEdFfQPgqKhvQOvGkltoEa7Eh1FmfqleXrhPpeVmPXVPX10TFVTvucdPF2jB\n2nilZZfI39tN02/qrgHRIS2ue4ojqzBZlJRWoPjUfMWdzFdKRpGsZ0uSi7NBXdv7KyYyUDEdA9W5\nnZ9cnK9sKKbSZFFGbqk9tJOWU/Uzv6ii1nkGSSGBnmrfxlsRIT6KDPNV785BLTaQ1BAHknK0eEOC\ncgrKFeDjpl/d2E3XxYTy+1GPpq5vaVnF2nU0U7uP/tz5ydfLVYNiwlRSYdKuI5kK9HXX7Lv7qGN4\n/R/6AHCx+GMCAEdFfQPgyKhxABwV9Q2Ao6K+Aa0bgR60CFfqwygxzah/LtkvVxcn/fneAecsGVRW\nYdYX25K1aV+abJJG9m2nyaO7yNvDtcnnhvMrqzAr4ZTRHvA5lVms6gLl5uqkbhEBiokMUI+OQeoY\n7tNoXW/MFquy8stqddtJzy5WVn6ZflkgA33d7cGd9iHeah/irbbB3nK/isM79ak0WezLcJktVvXo\nGKjpN3VXuzbezT21Fqcp6luOsUy74zK162im0rNLJP3c+WnwNWHq0TFQzk5OstlsWrcnVSu2HJer\ni5MeurWnrosJbdS5AGi9+GMCAEdFfQPgyKhxABwV9Q2Ao6K+Aa0bgR60CFfyw2jX0TN6f9VRBft5\n6PkZA+R/dhma2KQcLfr2mPIKKxQW5KX7x0crOjLwiswJF6+4zKRjqVUBn/iT+UrPKbEf83R3VveI\nAMV0DFSPjoGKCPWR0wW6x1htNuUVlCstu0TpZ7vtpGWX6ExeicyW2qXQ28NF7UN8FBHirfYhPmrf\npiq80xqDX1n5pVq8MVEHj+fK2cmg/7quahkuD7fmWYarvNKsHGO5sgvKqn4ay5RTUC5vDxd1jfBX\n14gAtQ32uuD7oTE1Vn0rLKnUj/FZ2n00U0npBZKqulX16dJGQ3qGqU+X4Ho7Px1IzNF/vj6iikqL\nbh8RpduGd6KjEoDLxh8TADgq6hsAR0aNA+CoqG8AHBX1DWjdCPSgRbjSH0Zf70jRF9uSFdXWV4/d\n3ksrth7XnrgsOTsZNGFIR00c1lGuLo7XVcWRFZRU6tjZ7j3xJ/OVmV9mP+bt4WJfniumY6B8PFyU\nllNS1XEnu7iq605OiSoqLbXGdHN1OhvW8VHE2Z/tQ7zl7+1GGKIGm82mA0k5WrIxUTkF5Qr0ddev\nbuymgU2wTJ3ZYlVeUYVyzgZ1so1lZ/+VK6egTEWlpguO4e3hoi7t/dW1vb+6RfirU1u/Ju2idDn1\nrazCrP2J2dp1NFNHT+TLarPJICmmY6CG9AzTgOgQeTUwSJaWVaw3Pz+onIJyXRcTqgdv6eGQ3aMA\nXDn8MQGAo6K+AXBk1DgAjor6BsBRUd+A1o1AD1qEK/1hZLPZ9NE3cdp+6IwMkmySOrfz0/3jYxQR\n6nOhy3EVyCssty/PFX8yX7mFFfWe6+xkUHiw1y+Wy/JRG3+PK9rJ5WpXYbLom50ntXb3SZktNvXs\nVLUMV9vghi/DZbPZVFhqUo6xTNkFZ4M6Z0M7OQXlyiuskLWOjyZnJ4Pa+HuoTYCnQgI8FWLf9lAb\nf08ZiyuUlFagxLQCJaUblW0sr3VtZJivukX8HPKp7tzVGC62vpnMVh1KztXuo5k6kJQjk9kqSYpq\n66vBPcN1XUyoAn0vbX6FpZV6Z+UhJaQVqGO4r2bf3eeSxwIA/pgAwFFR3wA4MmocAEdFfQPgqKhv\nQOtGoActQnN8GJktVv3vioNKSi/Q3SM7a0z/CDk5Ed5wRDabTdkF5Yo/G+6pMFl+XjKrjbfCgrzk\n4uzU3NN0GJn5pVq8IVGHkquW4Ro3KFITh3WSu1tVN5iay2JVB3bs3XYKylRpstY5boCPW1VIx//n\noE5IgIdCAjwV4ON+Ub+/BcUVSkqvDvgU6OSZIlmsP3/ktfH3qAr4RASoW3t/tQvxvuRwV0Pqm9Vq\n07HUfO06mql9x7JVWmGWJIUHeWlIzzAN7hmmsCCvS7r/XzJbrFq4/ph+OJghfx83zb67j6La+jXK\n2ABaF/6YAMBRUd8AODJqHABHRX0D4Kiob0DrRqAHLUJzfRhZbTZZLFaW1wIamc1m0/7EHC3ZmKDc\nwgoF+rorwMf9vMtiebo7nw3reKqNPbBTFdoJ9vOQWxMuD1VpsuhERqE95HM8vUAl5eYac3NRl/Z+\n6ta+KuTTua2fPaB0IfXVN5vNppQzRdp9NFO74zJVUFwpSQr0ddfgHlUhnsgwnyZZ3s1ms+nbH09p\n2ZYkuTg76cGbe2hwz7BGv5/mUFxm0uaf0mQyWxXo617jn4d8vVzpugU0Iv6YAMBRUd8AODJqHABH\nRX0D4Kiob0Drdr5Aj8sVnAfQLJwMBjkR5gEancFgUP/uIbomKkhrdqZo3e5TKiqtVLCfhzqG+Z7t\ntONRK7zj7eHSJOGVhnBzdVZ0ZKCiIwMlVYX9MnJLlZRmVNLZLj6Hk/N0ODlPUlXtiAzzUVf7Ml0B\nDV66KiO3pCrEczRTmfllkiRvDxeN6tdOQ3qGqVuHgCYPnRgMVZ2T2gZ76b2vjug/q44oPadEd1wf\nddUGXixWq77bf1pffp9cK4xVk7OTQQE+7r8I+tT45+OuAF93OnYBAAAAAAAAAACgRaNDD64Y0qWA\nYzOZrXJ2MlzVy9oVllQqKb1ASWkFSkw3KiWj9jJdwX7Vy3RVhXwiQnzk5GRQSIivEpJztCcuU7uO\nZurkmapa5+bipH7d2mhIz3D16hzUbCGS9JwSvbkiVtnGcg3oHqKHb+3Z4O5DLcWRlDx9tjFR6Tkl\n8nR31sRhUYpq66v84grlF/38z1hUobyiChUUV8p6nq84fl6uCvT1sAd9AnzdFVTzp4+7PN3JPQN8\nfwPgqKhvABwZNQ6Ao6K+AXBU1DegdWPJLbQIfBgBuNqYzBadyCiyh3yS0gtUXPbzcmKe7s7q3M5f\nTk5OOnw8RzZVdfbp1TlIg3uG6dpubeTh1jJCIUWllXrni8M6dsqoyFAfzZ7UR0F+Hs09rQvKzC/V\n0k1JOpCUI4Ok6/u2010jO8vP2+2811mtNhWUVMpYXKG8woqqn0XlMhbVDgBVmq31juHh5lxHlx8P\nBfq4q20bL4UGeDZbxym0HharVQaDodk6a/H9DYCjor4BcGTUOACOivoGwFFR34DWjUAPWgQ+jABc\n7Ww2m87klSrxbLgnKa1AZ/JKJUndI/w1uGeYBsSEys/r/GGT5mK2WPXJtwnaFntaft5uevKu3urS\n3r+5p1WnsgqzVu9I0bc/npLFalP3DgGaemM3dQyv/0vNxbLZbCqtMCu/sOIXnX7KlV9UefZnRb3L\newX4uCkmMlDRkQGKjgxUWCABH1wem82mvMIKHT9doOTThUrOKNTJM0XycnfRlBu7anCPsCv+HuP7\nGwBHRX0D4MiocQAcFfUNgKOivgGtG4EetAh8GAFwREWllQoM9Ja5wnThk1sAm82mjfvS9NmmRDk7\nOemBCTEa2iu8uadlZ7XZtP1ghj7flqzCkkoF+3loypiuGhAd0mxhmQqTRcbiCnvwJ6+wXCczi3Us\nNV9FpT+/7v7VAZ8OAYqODFB4kBcBH5xXWYVZKWeKlFwd4DldqIKSSvtxg0Fq38ZHmfmlMpmt6hUV\npHvHRSs0wPOKzZHvbwAcFfUNgCOjxgFwVNQ3AI6K+ga0bgR60CLwYQTAUV2N9e1wcq7e/eqIyirM\nunlIR901qnOzLelTLTHNqMUbE3XyTJHcXJ10y5COGjcoUm6uzs06r/rYbDadzi1VQmq+4lONOpaa\nr8KaAR9vN3v3nhgCPq2e1WrT6dySs8GdqgBPek6Jan4TD/R1V+d2flX/2vqpU7if3N2clWUs06L1\nx3TkRJ5cXZx02/BOGjcoUi7OTk0+76uxvgFAQ1DfADgyahwAR0V9A+CoqG9A60agBy0CH0YAHNXV\nWt8yckv0vysOKiu/TNd2a6NfT+wpDzeXKz6P3IJyLf8uSXvisiRJQ68J092juijIz+OKz+VyVC/J\nVh3uOZZqrNVtxc/bTdEdAhQTGaDukYFqF0zAx5EVFFfYl806nl6gE2eKVFFpsR93c3VSp/Cq8E6X\ndn7q3M5fgb7u9Y5ns9m0Jy5LSzYlqrCkUu1DvDVzXIy6RjTtsnlXa30DgAuhvgFwZNQ4AI6K+gbA\nUVHfgNaNQA9ahEv9MEpKSlTXrt2aYEaXLyPjtPz9/eXl5d3cUwHQjK7mL9vFZSa9++VhxZ3MV0SI\nj2ZP6q02/ldmOZ8Kk0Vrd53Uut2pqjRbFdXWV1PHdlfX9k0bULhSqgM+x04ZdSzVqPjUfBUU1wj4\neLmq+9klumIiA9SujTcBn6tUpcmik5lF9mWzkk8XKrewvNY5bYO91KWdv70DT/sQbzk7XXyHnZJy\nkz7/7ri+O3BaknRDv3a6+4Yu8vZwbZTH8ktXc30DgPOhvgFwZNQ4AI6K+gbAUVHfgNaNQA9ahIv9\nMCouLtYHH7ynL75Yrq1bdzfhzC5eZWWlPv10gT755GN98slytW3brrmnBKAZXe1fts0Wq5ZsTNSW\n/eny9XLVrLt6q1tEQJPdX3WnkeXfJSmvsEL+Pm6aNKqLhvYKb/Zlv5qSzWZTVn6Z4lPz7SGf/KIK\n+3EfT1dFRwYoJjJQ0WcDPo78fFytbDabMvPLlHy6QMfPhnfSsoplsf78ldrXy1Wd255dOqu9v6LC\n/eTl0bjdrxLTjFq47pjSc0rk5+2mqTd206AeoY0eCrva6xsA1If6BsCRUeMAOCrqGwBHRX0DWrfz\nBXqu/LoaQAO99da/tWbNquaeRp0WL16oDz/8T3NPAwAahYuzk+4bF632Id5avCFR/1i8XzPHx2hE\nn7aNfl8pZwq1eGOiktIK5OLspFuGdtQtQzs2y1JfV5rBYFBYkJfCgrw0ql/7qoCPsUzHzi7RFZ9q\n1L5j2dp3LFvS2YBPhwB1PxvyaR9CwKc5WK22swGsfCVnFOrE6UKVlJvtx12cDeoU7quos513Orfz\nV4i/R5N3W+oWEaC/PnCd1u9J1artKfrPqiPafihD946LVmjAlemyBQAAAAAAAAAAmo7j/79nuGpZ\nrdbmnkK9LBZLc08BABrdmP4RCgvy0rtfHNZH38TpdE6JJt3QRU5Olx9MKCiu0Odbk7X9UIZskgZ0\nD9HkMV1bdfDAYDAoLNBLYYFeGtm3nWw2m7ILynXsZFW459ipfO1LyNa+hKqAj7eHi7p3CFBUWz95\nurvIw81ZHm4u8nB3loerc+3bbs6XtJwTfpaZX6rthzK04/AZ5RX+3EkpNMBTvTsH28M7HUJ95OrS\nPM91VSiuk66LCdWibxN0+ESe5n6wW7cN76RxgyLl4sx7AAAAAAAAAACAqxWBHgAAYHdNpyA9P3Og\n/nfFQa3bk6qM3BL95rZr5Ol+aV8ZTGarNu49pa93pKi80qKIEB9NHdtNPToGNvLMr34Gg0GhAZ4K\nDfDU9WcDPjkF5YpPzVdCqlHxqUbtT8zR/sScBo3n6uIkDzdnubvWDvp4uFWHgeq6XbXtfnbb8+x+\n91YSECqrMOvH+CxtP5ShxLQCSZKHm7NG9m2ra7uFKKqdn/y83Jp5lucKDfTS7+/pq91xmfpsY6I+\n35qsXUczNXN8jLq292/u6QEAAAAAAAAAgEtAoAcAANQSHuSl52cM0HtfHlbs8Vy9smifnpzU56K6\n6dhsNh1IzNHSzUnKMpbJx9NV943rqpF927aKYEhjMBgMCgnwVEiAp67v006SlGMs0+ncEpVXWqr+\nVZirfprO3q40q7zi7M9KiyrO7s8tLFN5hUW2/2fvvqMjy+sz4T+Vc1YlxVZqtVrqnLsn9AQwYbBZ\nj20YMwZsvMd47d19MX73Ndj4xQfvmD02ToAxNn4xZteMhwGM08wA090TOk3nUWhJ3WrlUCWpcg73\nvn/cUkk1LamTYun5nKNzb926t+qqSvWrW7pPfb8PsD9qpRwGnQqtdTbsaqpAe739voNe64kgiugd\nCuLNjklc6vMjkxUgA7B9iw3Hdnixd6sTGpVirXfzjmQyGQ5v92BHgwMvnurHa1fH8UffvoRH91Th\n5x5tgF6rWutdJCIiIiIiIiIiIiKieyATRfFBzu2sS1NT0bXeBVqA02m6q+fm7/7u6/jmN/92wet2\n796Lr3zlb0qWnT9/Fv/xH/+Czs4OBIMBqNUaVFfX4MiRY3j66Q/BarUuel9TU358//vfxfnzZzEy\nMoxcLguz2YLGxmYcO/Ywnnrqp6HRaIvr/8d//Cuee+4PFrwtj8eLF1/81zv+fkRUfu52fNto8oKA\n51+9iVcvjcKoU+E3/lM7WmrvXFlndCqG51+9ge7BIBRyGR7fW42ffmgLDAwUrClRFJHJClLYJ5sv\nCf4Uwz/pucvzr5udD0TTiMQzAACFXIatNVbsaqrA7iYHXDb9Gv+G98YfSuJMxwROd0xiJpICILXT\nOrbDg6PtXjgs2jvcwvp2YzSEb73ci/HpOCwGNZ55shkHtrkgk91bC71yHd+IiDi+EVE54xhHROWK\n418oWHMAACAASURBVBsRlSuOb0Sbm9NpWvS6jf+1atq0kskkvvCF38frr58sWZ7JZNDT042enm68\n8MI/4nOf+wIeeuiR27a/dOkCPvvZ30Y8Hi9ZPjMzjZmZabz11ll85zvfxp/+6VdQW1u3or8LEdF6\npJDL8ZF3bUVVhQH/58d9+JPnr+KXfqoFj+yqXHD9WDKLf37jFk5dGYcgimhvsOOZJ5rhdRhWec9p\nITKZDJpC+6z7bcIkiCKGfVFcuzmDazencX0oiOtDQTz/6g14HXrsaqrArkYHmqot67ISUyqTw8We\nKbzZMYG+kRAAQKNW4KGdXjy0w4vmass9B17Wq+ZqKz7/ywfw8vlh/OuZQfz1D7vwZscEfundLXDe\nQ7UtIiIiIiIiIiIiIiJaG6zQQ6vmbtOlMzPTCARm8I1v/DVOn34DAPDNb/4fAIBOp0d1dQ0EQcCn\nPvUbuHTpAgDg6NGH8VM/9T54vV4kEglcunQBP/jBdxGLxaBQKPClL30Z+/cfLN5HNBrFhz70QUQi\nYVitNnzkIx9Da+t2qNVq+HyT+Pd//xecO3cGANDS0opvfOMfIJPJEImE4fNN4p//+Xv44Q+/DwD4\n4z/+c1RUOKFUqlBf37CsjxkRbQybIT1/fSiIv/pBB+KpHN59oAY//1hjMbCRyws4dWUMP3xzAPFU\nDm67Hs880YSdjRVrvNe00oLRNDpuzeDqjWl0DwaQyQkAAINWiR0NDuxscmBHg2NNqzMJoogbIyG8\n+fYELvZOIZ3NAwBa62w4tsODfVtd0KjXf0utB+ELJvC/X+lF12AQaqUcP/NQPd51oAZKxZ1DV5th\nfCOizYnjGxGVM45xRFSuOL4RUbni+Ea0ubFCD20oDkcFHI4KmM1z9QOam1tK1nnxxeeLYZ7f/u3P\n4IMffLrk+v37D+Kpp34G/+W/fAIzMzN47rk/wAsv/BBKpfQn/+abryESCQMAnnvuj7Fz5+7ittu3\nt+Oxx57E5z73Ozh58ifo7b2O3t4ebNvWCrPZArPZArvdUVx/y5YGeL0LV6sgIioXrXU2/N7H9uMv\nX3wbP7owgvGZOD750+0YmIjgO6/ewPh0HDqNEh9+vAmP76u+q6AAbXw2kwaP7KrEI7sqkcnm0TMc\nlKr39E/jXLcP57p9kMtkaK62SNV7mhyrVrFpOpTE6c5JnO6YwHRYaqlVYdHivTtqcbTdg4pNVKXG\nbdPjtz60G+e7fXj+1Rv47ql+nO2axMfesw2NVfdbr4mIiIiIiIiIiIiIiFYSAz204QiCgOeflyr2\nHD589LYwz6yqqmp88pP/Ff/zf34efr8Pr712Ak888W4AUhWgWTU1tQtu/9GP/jIsFisqK6tgMi2e\niiMi2izcNj1+95f246//pROdtwL4f/76DOKpHGQAju+uxAcfaYBZr17r3aQ1olYpsLOxAjsbK/Cs\nuBUj/hiu9UutufpGQugdCeGFkzfhtumKrbmaa6zLGv5KZ/K42OvH6Y4J9AwXWmqpFDi2wyO11Kqx\nQl4mLbXulUwmw+E2D9obHHjxVD9evzaO5759Ccf3VOHpRxugX8MqSkREREREREREREREdDsGeh7A\n92/+G674O9Z6N1bVHtcO/GzTU2u6D/39N+D3+wAABw4cWnLdw4ePFucvXrxQDPTU1W0pLv/sZ/9v\n/Lf/9ltobW0r2ba5uQW//du/s0x7TURUHvRaJf77z+3ECyf68eOLI2ipseKZJ5tR62bwkebIZDLU\nuk2odZvwgaNbEI5n0FEI93QOBvCjCyP40YUR6DQKtNc7sLupAjsaHTDq7j1UIooiboyG8WbHBC70\n+JHOSC21WmqseGinF/tanNCqecg7y6hT4ePv3Yaj7R78wyu9OHllDJf7pvDMk804sM0F2SYNPBER\nERERERERERERrTc8u0EbTl9fb3H+y1/+M3z5y392V9uNj48V548ceQiNjc3o77+Bjo5r+M//+WOo\nqHDiwIFD2L//IA4cOFTSVouIiOYo5HI882Qz3nekDma9igEAuiOLQY2Hdnrx0E4vsjkBvSOF1lw3\np3Ghx48LPX7IZEBjlQW7C9V7KisMS/5tzYRTONM5gdMdk/CHkgAAh1mLnzpQg6M7vHBtopZa92Nr\njRWf/+UDePn8MP7l9CD++oddONM5iWfftXVTtSMjIiIiIiIiIiIiIlqvGOh5AD/b9NSaV6vZjMLh\n0H1tF41GivNKpRJf+tJf4otf/ALOnTsDAJiensJLL/0bXnrp3yCTydDa2ob3vOf9+MAHPgiVim0o\niIjeyWJgey26dyqlHO31DrTXO/CLTzZjfDpebM11cyyMm6NhvHiqHxUWLXY1VWB3UwW21lihUsqR\nzuZxuW8KpzsmcH0wCBGAWiXH0XYPju3woqV287bUuh9KhRxPHd2CA60ufPuVXrzdP4PfGzqPn3m4\nHu/aX7Os7dCIiIiIiIiIiIiIiOjeMNBDG04+ny/Of/rTv4P29h13tZ1Goym5XFHhxJ/8yV/i1q2b\nOHnyVZw9exp9fT0QBAGiKKK7uxPd3Z344Q+/j7/4i6/BarUu6+9BRES02clkMlQ5jahyGvG+w3WI\nJjLovBXA1ZvT6ByYwauXRvHqpVFo1Ao0VZrRPx5BqtBSa2u1Bcd2eLF/mws6DQ9pH4TbpsenP7Qb\n57p9eP7VG/juyX6c7fThY+9pgdPJdnpERERERERERERERGuBZz9owzGZzMV5g8GI5uaWB7q9hoYm\nNDQ04ROf+DVEIhFcuXIR586dwcmTP0EsFkN//w187Wt/ic985vcfdNeJiIhoCSa9GkfaPTjS7kEu\nL+DGaBjXbk7j6s1pdA0GYTdr8OT+Ghzb4YHbpl/r3S0rMpkMR9o82NHgwIunbuL1axN47tuX8O4b\n0zjW5ka107jWu1j2YsksznRO4s23x5HJCaj3mgs/JtS6TdCoFGu9i7QC0tk8hiajUCrkcNt1MGhZ\nGZSIiIiIiIiIiIgkDPTQhtPQ0Fic7+7uwLvf/Z5F1w0Gg/jBD74Lr7cSTU1b0dy8FQCQzWYxMjKM\nTCaDbdtai+ubzWY8+ujjePTRx/Gxj30CH//4LyIWi+LMmTdX7hciIiKi2ygVcrTW2dBaZ8OHn2hG\nOJ6BSa9iS60VZtSp8PH3tuJouxfferkHr5wbwivnhlDrMuJouweHtrthMWrufEN0V0RRxK3xCE5d\nGcNbPX5kcwKUChnUSgXOd/twvtsHAJDLZKhyGooBn3qvGVVOAxRytkXbaBKpLG6MhtE3EkLfaAiD\nE1HkBbF4vVGngtuug9umh9umg9uuh9umh8umYzUyIiIiIiIiIiKiTYb/EaR1S7bICbvW1jaYzRZE\nImH8+Mcv41d/9ddhNC78rfHvfe+f8Pd//w0AwCc+8WvFQM+zz/48xsZG4XZ78L3v/duC23o8XtTX\nN6Cj4xoymXTJdXKePCEiIlpVFoN6rXdhU9laY8Uf/MpB3PLF8fKZAXTcmsHzJ27ihZP9aKu340i7\nG3uanawac5+S6RzOd/tw6soYhv0xAIDLqsPxPVU4tsMDo04FfzCJgYkIbk1EMDgRxZAvihF/DK9f\nk25DrZSj1m2aC/lUmuGy6hY9hqa1EY5ncGMkhN6REG6MhDDij2E2viOXyVDnMaK52gpRBHzBBHyB\nBAYnougfi9x2W2aDGh6bDi57Iexj08Ntl8I+fC0SERERERERERGVHwZ6aN1Sq+dO3CUSCej1UmsN\nlUqFp5/+BXzzm3+LcDiML3zhc/jCF/5XyfoA8PbbV/GP//htAIBGo8EHPvCfitcdPfowvvvd78Dn\nm8Tzz/9vfPjDz952/0NDg+jr6wEAbNvWVnKdSjVXCj+ZTDzgb0pERES0/igVchzbVYmtlSZEEhlc\nuO7Hmc4JdNyaQcetGWjVCuxvceFouwdba62snnQXRvwxnLwyhrNdk0hn8pDLZNi31Ynje6vQWmcr\neQzddimscbjNAwDI5QWMT8cLAZ8Ibo1HcWs8gptj4eI2Bq0SW+ZV8an3mmFlRaVVNR1OStV3RkLo\nHQnDF5j7rKBUyLG1xormGitaaqxorDJDq779I3kuL2AmkoIvkCyGfHzBJHyBBG6MhdE3Gr5tG5tJ\nU1LRx10I/risWqiUDPsQERERERERERFtRAz00LrlcFQU5//mb76K97zn/ZDL5di6dRueffbjOH36\nDfT19eD06Tfwy7/8i/j5n38GTU1bEYtFcfHiW/jBD75brKzzyU/+V1RUzN3eM888i5de+lfEYjF8\n9at/gY6Oa3j88XfD7fYgHo/h+vUuvPji80in05DL5fjYx35l0X37+7//O3z4wx+BIIhob9+xwo8K\nERER0eoz69V4Yl81nthXjYmZOM50TuJc1yTe7JjAmx0TcJg1ONzmwdF2D7wOw1rv7rqSyeZxoceP\nU1fHilVXbCYN3nuoFg/vrITNdHeBG6VCqshT6zYBu6sAAOlsHsO+KAbGIxiYlKZdAwF0DQSK29lM\nmpJWXVs8Zui1/Bi4HERRxMRMAn2joWKIJxCZq+ypVSvQ3mBHS40VzdVW1HvNUCnvXOlTqZAXQjl6\nAI6S67I5AdPh5O1hn2ACPcMh9AyHStaXAbCbtXNtvOxzrbwqLFooFaw8SkREREREREREtF7JRFEU\n77zaxjI1FV3rXaAFOJ2me3pubtzoxa/+6keRz+eLy+a3yAqHQ/j93/8MLl26sOhtKBQKfOITv4aP\nfvRXbrvu0qUL+N3f/R+IxRbfJ61Wi09/+nfw3vc+VbJ8enoazzzzsyXVeZRKJX784zdKqvcQ0eZw\nr+MbEdFGsdT4Jogi+oZDONM1iYs9fqQy0jFbvdeEI20eHNzuhlm/eVulTQYSOHVlDKc7JhBP5SAD\n0N7gwGN7qrCj0Q7FCrVwjSWzGJyIYGAigoGJKAYmIgjHMyXreOz6kio+tW4jq7jcBUEQMeKPFdtn\n9Y2GEE1ki9cbdSpsrbEWfiyocRlX7HleSCabhz+ULKnoMxv2Cccyt60vl8lQYdHCZdfBMxv2KQR/\nHGYt5PLyrrrF4zciKmcc44ioXHF8I6JyxfGNaHNzOk2LXsdAD62a+3kzOnv2TXzrW/8f+vtvQhDy\nqKhw4lvfeh5arba4zptvvo4f/egldHV1IBgMAgDcbjf27t2Pn/3ZX0BjY9Oitx8IzOAHP3gRb711\nDsPDQ0gk4jAYjPB4vDh06Ag++MGn4XZ7Fty2q6sTf/M3f4Xe3m5kMhnY7Q78+Z//Faqra+7pdySi\njY8H20RUru52fEtn87h6YxpnOifRNRCAIIpQyGXY0eDA0XYPdjU5NkVgJJcXcOXGNE5dGcP1Iem4\n1KxX4eFdlXhkVyWcVt2q75MoighG0yUBn8HJCJLpudC8Qi5DtdOIeq9UAchp08Fp0cJu3twVXLI5\nAYOTkUL7rBD6x8Ilj5vNpEFLMcBjhdehh2ydtp5LpnPwF8I9vmAS/kLYZzKQQCyZvW19pUIGp1UH\nz2wLr3kVfqxG9br9Pe8Fj9+IqJxxjCOicsXxjYjKFcc3os2NgR5aF/hmRETliuMbEZWr+xnfwrE0\nznf7cKZrEsO+GABAp1HiYKsLR9o8aK62lEUYYL7pcBKvXxvH69cmEClUw9lWa8XxPVXYu9W57kIx\ngijCF0iUhHyGfTHk8kLJejIZYDdp4bRqUWHVwWnVwWnVwmmR5k16VVk9l6lMDv3jEfQNS+2zbk1E\nkM3NPSZuux5bqy3YWmNFS40VDou2LH7/RCpbrOgzGUjAXwj6+IJJJNO529bXqBRwFdp2uW2loR+j\nbuP8TfD4jYjKGcc4IipXHN+IqFxxfCPa3BjooXWBb0ZEVK44vhFRuXrQ8W10KoaznZM42zWJUKHl\nj9OqxZE2D460e+C26ZdrV1edIIjouDWDk1fG0NE/AxGAXqPEsR1eHN9TCa/DsNa7eE9yeQGjUzGM\nTcUxFUpiOpzCVCiJqVCy+Ny9k0alQEUh4FNh1UqBH4uuGADSqNa+KpMgikikcogmMogls4glsogm\ns/PmM4glsgjFMhjxxyAUPh7LAFS7jHMttKotsBg1a/vLrDJRFBFNZKWqPoFCdZ9AApOBJPzBBDI5\n4bZt9BplsXWXx6aHa7ayj00PvVa5Br/F4nj8RkTljGMcEZUrjm9EVK44vhFtbgz00LrANyMiKlcc\n34ioXC3X+CYIIq4PB3GmYxKX+6aQzkptixqrzDja7sWBbS4YdaoHvp/VEI6l8frbE3j96hhmImkA\nQEOlGcd3V+FAq2tdhFiWWzaXLwR85kI+8wM/qUx+we3MBnWxok+FVWrj5bRK4R+7SQu5/N4quYii\niGQ6j1gyI4VyElIwJ1qYxpKZefPS8ngqi7v5xKtUyFDnNmFrjRXNNVY0V1tg0G6Mv8m1IIgiQtG0\nVNmnEPSZDf34g0nkhdsfdLNeVajqM9fCy+vQw+PQQyFf/SpWPH6jlZTN5THsi+HWRASDExGMTydg\n0quKY+D8ICTHGloJHOOIqFxxfCOicsXxjWhzY6CH1gW+GRFRueL4RkTlaiXGt1Qmh8t9UzjbOYnu\nwSBESGGKXY0VONLuwc5Gx7prUSWKIq4PBXHqyhiu3JhGXhChUSlwuM2N47urUOdZ/ANXuRNFEfFU\nrhjueWfYJxBJLxjuUMhlcFi080I+OlgMaqmaTrGCjlRVZ354Z6HbeicZAINOBZNeBaNO+pHm1fPm\nVTDqVTDppOU6jWLDtIpa7/KCgJlIGv5CC6/5oZ/pcOq2gJVSIUe104Batwl1biNq3SZUO43QqFc2\nHMfjN1oueUHA+LTUxnBwIoJbExGMTcVLxiulQoZcfuHxS6dRlgQeKwqVzpxWHSosWqiU5RcUpZXH\nMY6IyhXHNyIqVxzfiDY3BnpoXeCbERGVK45vRFSuVnp8C0bTONc9iTOdkxibigMADFolDm5341Cr\nG1aTBiqFHCqlHCqFHEqlbFUrecSSWZzumMCpq+PwBRIAgGqnAY/tqcLhNg90mvXVQmg9ygsCgpE0\npsILV/eJJrJ3vA29RjkvfDMbxFHDWAjmmArLpLCOGnqN8p6r/9DqyOUFTIWS8AWSmAwkMD4Tx7Av\nelv4QSYDPHY9at0m1LqkkE+t2wiTXr1s+8LjN7ofoihiKpTEwEQUAxMRDExEMOSLIpOda0GnVMhR\n5zZii9eMBq8ZW7wmuO16pDNStbPp2QBkYX52TFyojR0AWIzqQktDKexTYdXCZdWhwqKDzaTheEcL\n4hhHtHJiySyu9E0hlc3j8Hb3sh6f0J1xfCOicsXxjWhzY6CH1gW+GRFRueL4RkTlarXGN1EUMeKP\n4UznJM51+xCJZxZdVy6TQaWUQ6mYnc4FfuZffue0eL1SVggHyUumqnmXBUHEhR4/3rruRy4vQKmQ\n48A2Fx7bW4XGSjMruSyjVCaH6VAKU+EkIvEMDNr5FXTUMGiV665iEy2/XF7A+HQcw74Yhn1RDPtj\nGPFHkUyXtnOzmTTzAj5SRR+HRXtfr8nVPn7L5vIIxTIIxdKIJbNoqLTAYtg8JwCHfVGcujIGXzAJ\nq1EDu1kDu0kDm0kLm0m6bNSp1t34Go6lMTARLbbOGpiIIJ7KFa+XyYCqCkMxvFPvNaPKabjncUsU\nRUQS2UXDPoFIGsIC/76bX+2solDRx2nVFav7rMfHlFYHP6NuHtmcgNGpGJxW3YZpYbsRxZJZXO6b\nwoUeP3qGgsUgskopx5E2N57cV4Nql3GN93Jz4PhGROWK4xvR5sZAD60LfDMionLF8Y2IytVajG95\nQUD3YBBv35xBKptDNicgmxOQy4vI5vKFqYBcXlqezQsll++mJdPdctt0OL6nCsd2eHmChGiVCaKI\n6VBSCvn4oxj2xTDkiyIcKw386TVK1BZaddW4jKhzm+Bx6O8YqFiu8S2VySFcCOqEYhmEY2mE4oVp\nYXk4lkEinSvZTiGXYe9WJ47vqcK2WmtZhi5yeQGX+6Zw4tIo+kbDd1xfqZDDXgj32Aphn9l5u0kL\nm1kD0woGVBKpHAYnI4XWWVKIJxhNl6zjtGpRXwju1HvNqHObVrw9HCA9lsFouqTKWXEaSiKySLUz\njVoBp0ULi0ENg04Fg1YFg04Jg1YKTs6/LF3PEGW54GfU8iYIInpHQjjXNYlLvVPF9xiHWYs6jxR4\nlaYmWIyaNd7bjWt+iOf6YLAYrNziMeHANhcUchlevTyKqVAKANBaZ8OT+6uxq7GC1dNWEMc3IipX\nHN+INjcGemhd4JsREZUrjm9EVK424vgmiCJyCwZ+xEI46O5CQc3VFrTW2cryJDvRRhaOZzDii2LI\nFy1W9PEFkyXrKBVyVDsNxaBPrduEGqexJHix1PgmiiKS6VxJQGc2mFOcFpalM/kFb2OWQauE1aiB\nxaguTjUqBS72+DFaaDXosetxfE8VjrZ7yiI8GI6l8drVcZy8OlYMYLXX2/H43mq0brEhEs8gEEkh\nGE0jGE0jEEkjEJUuB6LpJau0KRVy2Ezq28I+dpMGNrMUAjLpVZDfYezO5vIY9sWKbbMGJqKYLLRW\nnGU2qIsts6Sped0+P6lMrtDOS6p4Nh2aDf1I1X7u9Hc6n0atgFFbGvJ5ZxhICgSVrqNWrXywie7e\nRjyGo6WJooghXxTnunx467oPocL4ajNpsKPBgWA0jaHJyG0BP4tRjTq3FO6ZDfnYzRoe4y5iyRBP\nqwv7W1xwWnXF9QVBxLX+afzk4iiuDwUBSOHPJ/bV4KEdXui1bNG73Di+EVG54vhGtLmtSaBHEAR8\n/vOfR29vL9RqNf7wD/8QdXV1xetPnDiBr371q1AqlXj66afxC7/wC4tu86lPfQrT09MAgLGxMeza\ntQt/9md/tuh9c8Bbn/hmRETlaq3Gt0Q2iYHIMNocLat+30S0OfD4jYg2gmQ6h9GpWLGKz4gvhrHp\nGHL5uX93yAC47XrUuqUqPlvrHZj0RxesrBOOZZDJCYvenwyASa+CZTaoY9DAalLDYtDAalTDYtTA\nalDDYlRDpVw45CCKIvrHIjh5ZQwXeqT2fiqlHAe3uXB8bxUavBurvd/s7/Pq5VFc7PEjL4jQaRQ4\ntsOLx/dWw2PX3/Vt5fICQoVwz2zQJxiRLgejKSn0E8tgsX9mKRUyqa2XSQO7WVuo9qOBUinH8GQU\nAxNRjE7FSiq66TQKbPHMhXfqvWbYTOVzwjuTzSOeyiGeyiKezErzs9PCslhxWRbxpLQ8dQ9BIJVS\nXhr+KcxbDGo4zFrYzVo4LFo4zBpo1TzBvdJ4DFc+fIEEznf7cK7bVwwe6jVK7N/mwuHtbmytsRar\nwYiiiFAsI4VeJ6Xw65AvikCktNqYUadCnduIWs9c0Mdp1d0xDFmuFgvx1HtN2L/t9hDPYkb9Mfzk\n0gjOdvmQzQnQqBV4aIcXT+6rhvse3gdpaRzfiKhccXwj2tzWJNDzox/9CCdOnMAXv/hFXL16FV//\n+tfxta99DQCQzWbxvve9Dy+++CJ0Oh2eeeYZfP3rX8fly5cX3QYAwuEwPvrRj+Jv//Zv4XK5Fr1v\nDnjrE9+MiKhcrdX49i/9L+OVoRP47MFPocroXfX7J6Lyx+M3ItqocnkB49PxkpZdI/4okunFAwoy\nGWAxzA/kSAGdkgo7BjXMBvWytiWKJjI43TGJU1fH4C9UG6p1GXF8TxUOt7nXdfghk83jfLcPr14e\nxbAvBgCoqjDg8X3VOLKC+57LCwjF0gtX+YlIwZ/wIqEfpUKOWrex0DbLhHqvGW67ftOeyF5KLi8g\nUQz95BC7LRD0jvlCECiRyi0auAKkylXFkE8h6GM3a4rzZoN6XT8feUFANJFFOJZBOD5XtStSuByK\nZ5DJ5NFQaUbrFjtaaq0w69Wruo9rcQwnCCLGZ+JQyGVwWnVs3/YAQrE03rrux/nuSQxMSM+jSinH\n7qYKHG5zo73eAZXy7h/fSCKDYV8UQ5NRDPliGJ6Mwh8qrW6n0yhQ65qr4lPrMcFr15dt66hoIoMr\nN6Zx4boP14dC9x3iWey2X782jhOXxxCMpiEDsKPRgXftr8H2LawA+qD4GZWIytVmGt9EUcTETAJ9\nIyFMhZPYUe/A1lrruv4MQLTSlgr0rNh/hS5duoSHH34YALB79250dnYWr+vv70dtbS0sFgsAYN++\nfbhw4QKuXr266DYA8OUvfxnPPvvskmEeIiKizcKX8AMAAqkgAz1ERERE80ihDandFiAdJwmiiOlQ\nEsO+GOJZATJBkCrqFCrrmPTqNTlxadKr8Z5DtXj3wRpcHwri1JUxXOmbxj+80osXTt7EkTYPju+p\nQo3LuOr7tpipUBInr4zhjWvjiKdykMtk2NfixBN7q9FSa13xk5VKhRwVFh0qLIufbM3lBYRjmUIr\nL6ntVK3bhCqngUGDu6RUyGEuhNjuhSCISKSloE8oJoWspiMpBCIpzIRTmImkMBlMYNgfW3B7hVw2\nF/Apqe4jBX/sZi00y9ziSxRFpDJ5hGcrdcUzhaBOuhDUyRSviyaySwaWZDJAIZdj2B/DqavjAIAa\nlxGtdTa01tmwtcYKnWb9BvXuVi4vYHAiir7REPpGQrgxGkYynQMgPYcumw5ehwFehx4eux5ehwEe\nu54tiBaRSOVwqc+Pc10+9AwHIYqAXCZDe4Mdh7e7safZed9/N2a9Gu31DrTXO+bdX7ZY2W6oEPbp\nGwmhdyRUXEetkqPGZSxp2VVZsXHH0Ggig8t9U7jY41/2EM98Jr0a7z+yBT91sBaX+6bw44sjeLt/\nBm/3z6CywoAn91XjSLtn2cexzSAYTUOhUUEURQajiIg2EEEQMeKPoW8kVDzeiCXn2oS+dG4YDrMG\nh9s8ONrugddhWMO9JVp/VuwTVCwWg9E4988mhUKBXC4HpVKJWCwGk2kuZWQwGBCLxZbcZmZmBmfP\nnsVnPvOZldplIiKiDSWQkvqzx7KJNd4TIiIiovVPLpPBZdPDZdOvy28/ymUytG2xo22LHcFoBzHO\nJQAAIABJREFUGm++PY7Xro3j5JUxnLwyhsYqMx7bU4UD21yLtvJaSYIoonsggBOXx3Dt5jREAGa9\nCk8drcPx3VWwm7Wrvk9LUSrkUgjEogVgWevd2VTkchmMOhWMOtWibWZEUUQ8lcNMuBD0Kf6ki8Gf\nnuHQgtsCUtu7YoUfs9TKa37wx6RXQSaTIS8IiMSzxUo67wzsSEEd6XImu3irPQDQqhWwGNTw2PVS\ny71Caz2LQVOYSpW9TDoVBFHE0GQU3UNB9AwFcWM0jBF/DD+6MAK5TIZ6rwmtW2xorbWhqdqyJq/p\ne5XO5HFzPIwbhRMxt8YjJe0JXTYd9m6tAERgIpDAxIz0805Wo1oK9zj08BaCPl6Hvqza3N2tbC6P\nazdncL7bh2v9M8jlpcezqcqCQ9vdOLDNdc+Burul16qwrc6GbXW24rJUJodRf7wY8BnyRTE4EUX/\nWKS4jlIhQ5XTWAz41LqNcFp1MOpU6/Jb9UuFeA5sc2N/ixMVyxDiWYhSIcfBVjcOtroxMBHBjy+O\n4MJ1P/7hlV5877V+PLKrEo/vrS68T9Fi8oKAqzdmcPLKKLoHpf+DadUKuO3SGOK26+G26+C1G+Cy\n6coiMElrLy8I6BsJI58X4LLpYDdrN2yYkWgtzAa/e0eC6BsJ4+ZYqKRart2swZEGN5prrLCbNLjY\nM4WLvX78+9kh/PvZIWzxmHCk3YNDre4VOxYi2khW7OjGaDQiHo8XLwuCAKVSueB18XgcJpNpyW1e\nfvllPPXUU1Ao7vwB12bTQ7kBPghvRkuViyIi2sjWYnwLZsLSjDrH8ZWIVgzHFyIqV+t5fHM6Tdja\nUIGPfaAdl3r8eOnsIC71+NA/FsE/nbiJJw7U4r1HtqDSufJVe+LJLF69MIx/Pz2A8WnpfzYtdTY8\ndawex3ZVboggAq1f9Utcl83lMR1KwR9MYCqYxFQoianifAIT03EMTS4czFMr5dBqlIgmMhCXKKcj\nlwFWkwY1bhNsJi1sJg1s5sLUpIXNrCku197jSWKvx4LDu6sBSO3prg8G8PbNaVy7MYUbIyH0j0fw\nb2eGoFLK0brFjp3NFdjV7ERztRWKZThp+KBjXDSRQfetGXTemkH3wAxujoYhCNKDKZMBdR4z2hsc\n2N7gQFuD47ZQnyiKCEXTGPXHMOqPFqZS+8PrQ0FcHwqWrK9VK1DlMqLGZUK1y4jqwtRbYYC6jCqZ\n5AURHTen8NrlMZzpGEciJVU1qnGbcHxvNR7ZUwXPGn4rvabKhiPzLmeyeQxNRnBzNIz+0RD6x8IY\nHI9Ir71rc+sp5DJYTZria8hu1sJqkoJ2xWUmadlKP5/hWBrnOifw5rVxvH1zuvh3u7XWimM7q3Bs\nV+WiYcOV4nSacHBnFQKRFP7jzABePjuIl84P45W3hnFkRyU+8HADttfbN12obSnBSAqvnB/Cy2cH\nMRNOAQDaGhwwG9QYn4phfJH3ALtZgyqnCZVOA6qcRlS5jKhyGuG26xnIoCUJgojrgwG8dmUUp6+N\nIxLPFK+Ty2Vw2/RSGLXCIP04DPBUGOBxGFhxi5bNev6MupRUJofeoSC6bs2g69YMeoaCyGTnAjxV\nTgPaGirQ1uBAe4MDrne8Dz9xuB6pTA5vdU3i5KVRXO71Y/AnN/BPJ25ib4sLj++rwUFWt6NNTCaK\nS32svX+vvPIKTp48iS9+8Yu4evUqvvKVr+Ab3/gGACCbzeL9738/XnjhBej1enz4wx/G1772NVy9\nenXRbX7zN38Tv/7rv462trY73vd6+5YdSdbjNyCJiJbDWoxv6XwGv/Xa7wEA3lV7HB9set+q3j8R\nbQ48fiOicrURx7epUBKvXxvHG9fGEUlI5clb62x4bE8VdjdXLPtJqtGpGE5cHsPZzkmks3koFXIc\n2u7C43urUe81L+t9Ed0PURQRTWSlyj7FSj/pYrWfVCYPi0ENq1FqGybNS5V1zIV5o061Jq32kukc\n+kZCxWDLyLz2Y1q1Ai01VrQWqqdUu4z3XPnkfsa4YDRdbIPQNxrC2NTcly4Vchm2eEzYWmNFc40V\nzdUWGLSqe7r9+dKZPCYDCUwE4picmavmMxlIFKvUzJLJAKdFJ51EdcxV9PE6DDDq7n8fVpMoihiY\niOJc9yQuXPcjXDhJbDdrcKjVjcNtHlQ7DRsmzJHLC1KYwhfFiC+GYDSNUKEKViiWue05fCeDVll8\nDb6z0pXVoIbZKLXC1GuUd/2YzFbiudDjR09JJR4zDmxzrWglnvuRzeVxvtuPn1wcKbYfrHOb8OT+\nahxsdUOl3JzBE1EU0TcSwskrY7jUO4W8IEKjVuBouweP76lCldNYHN8EQUSg0MLRF0hiciZRmE9g\nJpy6rTWiQi5DhVUHj00Ht10KZnhsUoUfq1G9YV5/tLxEUcTgZBRvXffhret+BKNpAFIVyv3bXDDr\n1fCHkvAHk/CHkiUhn/lsJg1cVh2cNh3cNh2cVh1cNh1cVraapLu3kT6jJlI53ByTWmf1jYQwOBFF\nfjb4DaDKaURLjRVba63YWm2Bxai5p9sPxzM43+3D2c5JDPmkx0SnUWBfiwvH2j1orrGuy8qARA9i\nqUDfigV6BEHA5z//efT19UEURTz33HPo7u5GIpHAhz70IZw4cQJf/epXIYoinn76aXzkIx9ZcJvG\nxkYAwPvf/3585zvfgdl8538abZQBb7PZSG9GRET3Yi3Gt8m4D184/yUAwBHvATzb+vOrev9EtDnw\n+I2IytVGHt9yeQGX+6Zw6spYsSWRxaDGw7sq8eiuygdq3ZEXBFzpm8aJy6PF23aYNXhsbzUe3umF\nSc9y50QrIZLIoHe4EPAZDMAXTBavM+qk1kjb62xorbPBZdPd8cTzncY4URThDybROxLCjRHpZMx0\noQIGIFU4aqyyYGuNdBKmodICjXrlvxEtCCJmIikp3DMTx3hhOhFIIFoIMs5n1KkK4R49PHYDKixa\nGLRK6LUqGHRKGLQqaNWKNTtRPzETx/luH851++AvPKcGrRIHWt04vN2NpmpL2Z2MEkURyXQO4bgU\n7iltcZeWlhVa38UL1YkWo1TIS0J5JQGgwvywL7phQjwLmQ2w/OTiKC7fmIIoAmaDGsd3V+KxPVX3\nfAJ0o0qmczjbNYmTl8cwVqgGWOU04PE9VTjc5ilpo3U3x3CZbB7+kBTy8QWlsOBkQAr+xJK3jyUa\ntaIQ7tHBY9fDU2jl5bHrV7SFlyiKyAsi8nkROUGQpnkBOUFEPi8gV7icz4tQKGRw2XQPFKakOWPT\n0vj81vW58VmnUWJfixOHWt3YVmeFQn57sC6ZzmGqEPCZCiXhK0z9wQQCkfRtQTJAeq+Swj1SyMdp\n1cFt08Np08FcaBFKBKzvz6iReKYY+u4bCWHEFyv+vctlMmzxSsHvrcsQ/H6nsek4znZO4lz3JAIR\nKXTnMGtwuM2Do+0eeNewsiHRclqTQM9aWq8D3ma3nt+MiIgexFqMb10zvfira38HANhRsR2f3Pnx\nVb1/ItocePxGROWqXMa3iZk4Tl4Zw5mOSSTSOchkwK7GChzfU4n2esddVx6JxDN47do4Tl0ZK34z\nefsWG57YW41dTRVrUsGEaDMLRFLF6j3Xh4LF1yUgVXVprZWq97TW2W5rdQXcPsYJgojRqVjhREwY\nfSOhkioDeo2yUH1HCvHUuU3rrjVNLJktVPORAj6z8/5Q8g5t1WTQa5XQa5UwaKWQj36RqaG4nrTs\nfsJAwWga57t9ON/tK36jXK2SY2+zE4e2u9FWb193j+1ayeYEROKZYnWf2aDPbAAoVJiPxDPFb/0v\nphji2eZEhWV9h3gWMx1K4sTlMbx+bRyJdA4KuQwHW91414FqbPGUZ2W80akYTl4ew5muSaQzeSjk\nMuxrceLxvdVorrYs+Pp70GO4WDJbCPfMD/ok4Asmkc3dXl3KYlAXwz1GnaoYsMkJwtz8bPhGKL2c\nL4RzpPXmAjrzAzv3yqhTScEjmx6u2fCRTQqIrEbwciPzh5K4cN2H891+jE5JlbHUKjl2N1Xg0HY3\n2usdD1QdK5sTMB0uVPMpVPSZnU6HkguOYxq1ohj0KZ3qYTNryi70SUtbT59RA5FUsfpO30gIEzOJ\n4nVKhRyNlWYpwFNrRWOlGVr1yleiEkQRvcMhnO2cxMVeP1IZqaXXFo8JR9o9ONTqhtnAL6DQxsVA\nD60L6+nNiIhoOa3F+PbG2Dk83/t9AECDpQ6f3vcbq3r/RLQ58PiNiMpVuY1v6WweF677cerqGG6N\nRwAAFRYtHt1diYd2VsKywD82RVHErYkITlwaxYUeP3J5EVq1AsfavXhsbxUqK/hNR6L1QBRF+ILJ\nYvWenuFQSYUJt12P1kIFn5ZaK0x6Naw2Ay52jBe/RX1jNIxkeq4aisWoRkuNFc3VVrTUWFHpNGzY\nk4bZnAB/UGrZFYimkUhlEU/l5k1ziM9bdi8n0BVyGXQaJQy628M+7wwHRRNSa4je4RDEwrZt9XYc\n3u7G7uaKVTnRVa4EUUQ8mZVCPiXhnwzsZg32tWzcEM9C0pk8znRO4CeXRosnUJuqLXjX/hrs3Vqx\nYNWQjWS20uCJy2PoG5GqAdpMGhzfU4VHdnrvWJVopY7hBFFq4eULJEuCPpOLtPBaigyAUimHUiGD\nQi5NlQo5FIrCfGFZ8bJCDoVcms4tl0Mpn91OhkxWgC8oBY8WC4fYTBop3GPXw22brTQkVYTZrEHC\nYDSNiz1+nL/uKx4jK+Qy7Ghw4NB2N3Y3VaxaBbpAJAVfKImpksBPAv5QEpns7WEyjVqBxkozmqos\naK62oqHSvKIVo2jtzY5v80/bl7zSxfmz89ZZYIASF9lQFBdaCoSi6ZIAz/zKjRq1As2zlRtrrKj3\nmte8NWQ6m8fVG9M42zWJzlsBCKIIuUyG9gY7jrZ7sLupAmoVQ460sTDQQ+tCuf3DlIho1lqMbz/s\nfwk/GjoJAHDpKvD/Hvkfq3r/RLQ58PiNiMpVOY9vQ5NRnLo6hnNdPqSz0rfd92514vieKmyrtSKX\nF/DWdT9evTSKwUnpMfA69HhiXzWOvKOtBRGtP4IoYtQfK1bv6R0JIV34hjIAeOx6BKJpZLJzy1w2\nHbZWSxV4WmqscFrv3LarHImiiExOKIZ8imGf5DsCQOls6TpJ6bo7VYkBgOZqCw5vd2P/NhfbFNID\nEUQR3QMB/PjiKDpuzQCQKnQ9vrcaj+yqhFG3sVovBSIpnLo6jtevjRcrhLVtseGxvdXY1eS466DS\nWhzDZXN5+IJJpNJ5KJVSIEehmA3gFObnBXdWurJhLi9gJpwqtBNLFioMSQGkhdo+yWSA06KDq1DZ\nx10I+nhsetjN2rKrxBhLZnGx14+35oUsZTJge50NB1vd2NviXFety0RRRDieKWnj5Q8mMOKPlVRF\nkcmAaqcRTdUWKeRTZYHDot2U7+flIBLPYGAiUviJYmAismBLwLVg0EqVG1tqrGiusaLWbVzXYdJw\nXApVn+2cLFZH1GkU2NfiwrF2D5prrBs2uE6bCwM9tC6U8z9MiWhzW4vx7e+7voMLvivQKrSQy2T4\n40f+YFXvn4g2Bx6/EVG52gzjWzKdw9muSZy8MoaxqTgAqZJHPJlFLJmFTAbsaXbiib1V2FZn48kA\nog0qlxcwOBktVvC5NRFBZYURDV6T1Ear2gqbaemKF3RnoigikxVKgkCJVA6xwlQul2FPc0VZVYqh\n9WNiJo5XL43idMdkMazrdehR4zKixmVCjduIGpcR5nUWIhNEEdeHgjh5eQxXbkxBFKUWfw/t9OL4\nnip47Pp7vs3NcAz3IDLZPPyhZLGN2PyWYvNbLc5SKuRw2XRw23SFij764rzZoN4wx4fJdA5Xb0zj\n/HUfugYCxQBmU7UFh1qlkOVCFSvXu1gyi5tjYdwcDePmaAgDk9GS1nBWoxpNVRY0VVvRVGVBrdu4\naasxrWfJdA7DvihuTUQwMC4FeGYiqZJ1KixauB0G5AqB7MVeeou9Jucvli2wsGSrknWlCwatEs3V\nUhUeb8XGrdw4Nh3H2c5JnOueRCAitax1mDU43ObB0XYPvI7Vr0IriiJSmfy8ILkUFI+nsnBadWiu\ntkClZDUhYqCH1gkebBNRuVqL8e1PL/0VboWHUG+pw63wIP7y+B9BIeeBHxEtLx6/EVG52kzjmyiK\n6B+L4OSVMVzo8UOrVuDR3ZU4vrsKDot2rXePiFbAZhrjiDaTRCqLN96ewMUeP0amYre16bEa1VLA\nx2VEbSHk47bpV70CSzyVxekOKVTsC0gVRmrdRjy+txqHtruheYA2KBzf7l8ilSu07UrAN6+yz2Qg\nWdKWcZZGrYDHpofLpoPNpIHVqIHFqIbVqIHVqIbFoIFOo1iz0E8mm0fHrRmc7/bhWv9MMehS6zbi\n0HY3Dm5zl92xbi4vYMgXlQI+haBPeF5QS62Uo95rLlbxaayybLhqXhtdLi9gxB/D4EQEtyYiGJyI\nYnw6XlI5y6RXod5rLv5s8Zpg1qs5vi0jQRTROxzC2c5JXOz1I1WoZrnFY8KRdg8OtbphvseQnyCI\nSKTnqjuWhHOS2WLIe35g526qPKqVcrTU2tBeb0dbvR1eh37DhClpeTHQQ+sC34yIqFytxfj2e6ef\nAwBsMdfgylQH/uihz8GsXvwNn4jofvD4jYjK1WYd3zLZPORyGb+5S1TmNusYR7SZCIIIfyiJEX8M\nI/4ohn0xjPhjCEbTJeuplXJUOY2Faj5zPyvRYnNoMoqTV0ZxrsuHTE6AUiHHwVYXHttbhQaveVlO\nUHJ8W36iKCKazMIXSGAykIB/XmUffzCJTE5YdFu1Sg6rYS7oYzGqYStMLUZNMfyj1yiX5fnP5QV0\nDwbx1nUfLvdNFU/Se+x6KcTT6lqTChxrRRRFTIdTuDkaxo1CwGdsKlYSHvE69GiulsI9zdVWuG1r\n23ZTFEXEUzmE4xlE4hmE42lE4llECpfjqSyMOhWsRo0UJDNpYDNKU5Neta4qxwiiCF8gIbXNGo9i\nYDKCYV8UufzcM6BRKbDFY5LCO5Vm1HtMi7ZK4/i2MtLZPK7emMbZrkl03gpAEEXIZTK0N9hxeLsb\nGrViLqAzP6xTDOcU2rMuEHxcjFwmg0GnhF6rglGrhEGngkGrhEGrgkGngl6rhE6txOhUDF0DAYxN\nx4vb2s2aQrjHge1bbOuqRSCtLAZ6aF3gmxERlavVHt/yQh7//dRn0WCpQ6XRizfGzuJ3D/4WKo2e\nVdsHItocePxGROWK4xsRlTOOcUSbVyyZxYgvWgj6xDDsj2F8On5bdQCnVYsalwm180I+i51kXko2\nl8eFHj9OXh5D/3gEgNQ65rG9VXhohxemZW4DxvFtdQmiiHAsg1AsjVAsPW8+M3c5nkYknsFSZxpV\nSjkshnnVfQrT0qo/Ghi0twd/BFHEjZEQznf7cLF3CrFkFgDgMGtxcLsLh1rdqHEZWdGiIJHK4da4\nVMHnxmgYt8YjSBfaOAGAUadCU5WlGPKp95oeuN2PIIqIJ7OFgE6mGM4JJ2bns4XgTgbRRHbJaiVL\nUchlxb+X2ZCP1aguVpCana5EYFEURQSjaSm8MxHFwEQEg5MRJNNzj61CLkO1y1iovGNCg9cMr8Nw\n11XSOL6tvHA8g/PdPpztnMSQ786PtVopLwnj6AvhHKNWBYOuNKBj1BbW06mgVd9b9bJAJIWugQA6\nBwLoHgwgnpLCQzIZ0OA1o63ejvZ6B+orTVDI+eWccsVAD60LfDMionK12uPbTDKA3z/7RRxw70GF\nzo6XBl/F/7Xn19Bsa1y1fSCizYHHb0RUrji+EVE54xhHRPPl8gImZhIYnhf0GfHHisGIWTqNshju\nqXUZUeM2oqrCsODJ/qlQEqeujOGNtycQS2YhA7Cj0YHH91ahvd6xYm2+OL6tT4IgIpKYC/uE3zGd\nDQRF4lkIS5ySVCpksBjmQj86tQJdgwGEYlJbKbNBjQPbpBBPY9XyVH0qd3lBwKg/LrXoGgvj5mgI\nM5G5Sl5KhQx1HhOaqixoqrKiqdoCi0ENQRQRS2YRic0P5swL68wL7cTuIqSjVslh1qthMahhNsxN\nzQY1zPq5ZQadCtFERvq7iaYRjKXnpoX5UCyz5P1p1Aop8DMv7DO/0s9sFamlqpbGU9m58M54BAOT\nEYRjmZJ1PHY96r1z1XdqXcYHCkdxfFtdY9NxXLs5XaymYyyEcwxaqbKOQauE+gFaRN4vQRAxOBlF\n58AMugYC6B+LFMdNnUaJ7XU2tDXY0V5vR4VFt+r7RytnqUDP8scUiYiIaEUFUkEAgF1rg0EllZGN\nZuNLbUJERERERERERJuQUiEvBnVmiaKIUCyDEb8U8plt2XVjJIS+kVBxPblMBo9DX6zkYzVqcP66\nDx39MxAhVft47+FaHN9dBaeVJxY3K7lcVqyysxRBkNp7haJphOPzwz6l4Z/BySjyglTxSa9R4uGd\nXhza7kZLrZXVKe6RQi5HnceEOo8JT+yrBiBVA7lZaNF1cyyMgfEo+scieAUjAKTXdSKVWzJ8BUjt\npMwGFbZ4TYuHdQqXteq7Px1t1KmWbJ0miCJiiSyCUSnkEywGfaS/oWA0jWA0jclAYsn7MetVxbCP\n1aiB2aDGdCiJgYkIfMFkybo2kwZ7tzqLAZ4tHhP0bIW0oVVVGFBVsf5a9MnlMjRUmtFQacZPH6tH\nIpXD9aEgugYD6Lw1g0t9U7jUNwUAcNv1aK+Xwj0ttdZ7ep3RxsJnloiIaIMJpKR/rNi1VmgV0gfl\nOAM9RERERERERER0F2QyGWwmqUXNzsaK4vJ0Jo/R6bkqPiO+GEampLZd57p9xfUaK814bG8VDmxz\nPXC7Hto85HIZLIWAB7B4JYLZwEY0mYXLqoNKyRDPcrKbtTho1uJgqxuA9Lq/NREphnz8oSQ8dn1J\nIGe2ko40r4L5HkM6y0kukxX3rW6Jv6NsTigGxRaq9BOMpjEZTGDYHyvZTq9Rom2LDVu8ZjR4zdji\nNcNmWjqsRrRS9Fol9rU4sa/FCVEU4Q8m0TkQQNdAANeHgnj10ihevTQKhVyG5moL2hscaNtiR43b\nCDmrmJUNBnqIiIg2mPkVemZLy8YyS3/jgIiIiIiIiIiIaCkatQKNlRY0VlqKywRRxHQoiWFfDFPh\nJLbX2VHnWfwkOtGDmh/YoJWnUSvQWmdDa51trXdlWamUclRYdahYonqYKIpIpvMIxdIIx9KwmbVw\n2XQMQtC6JJPJ4Lbr4bbr8cS+auTyAvrHwugcCKDzVgA9wyH0DIfwIvph1qvQVm8v/DgKQUraqBjo\nISIi2mDmB3qygtTvPJaNLbUJERERERERERHRPZPLZHDZ9HDZ9Gu9K0REy0omk0GvVUKvVaJyHbZf\nIlqKUiFHS60NLbU2PP1oIyKJDLoHAsUKPme7fDjbJVXXq3UZ0VZoz9VUbWXlsw2GgR4iIqINZn7L\nrXhWqswTY8stIiIiIiIiIiIiIiKiTcesV+NwmweH2zwQRRGjU3F0DsygayCAvpEQhv0xvHR+GGqV\nHE/uq8HPHW9c612mu8RADxER0QYTSAVhVBmgVqgBSOU/Z4M9REREREREREREREREtDnJZDLUuIyo\ncRnx3kN1SGfz6B0OoWsggO7BAAKR1FrvIt0DBnqIiIg2EEEUEEiHUGnwAADUChXUCjViGbbcIiIi\nIiIiIiIiIiIiojkalQI7Gx3Y2ehY612h+8AGaURERBtINBNHTsjBrrUVl5lUBsRYoYeIiIiIiIiI\niIiIiIiobDDQQ0REtIEEUkEAgF1rLS4zqAyIZeNrtUtEREREREREREREREREtMwY6CEiItpA5gI9\ncxV6jCoDskIW6XxmrXaLiIiIiIiIiIiIiIiIiJYRAz1EREQbyIKBHrUBABDLsEoPERERERERERER\nERERUTlgoIeIiGgDCaRCAG6v0AMAcbbdIiIiIiIiIiIiIiIiIioLDPQQERFtILMVehxaa3GZoRDo\niTLQQ0RERERERERERERERFQWGOghIiLaQAKpIDQKNXRKXXGZiRV6iIiIiIiIiIiIiIiIiMoKAz1E\nREQbSCAVgl1rg0wmKy4zqKVAT4yBHiIiIiIiIiIiIiIiIqKywEAPERHRBpHMJZHKp2DX2kqWG2cr\n9GQY6CEiIiIiIiIiIiIiIiIqBwz0EBERbRCBVAgAFg30RFmhh4iIiIiIiIiIiIiIiKgsMNBDRES0\nQQRSQQCAXWstWV6s0MNADxEREREREREREREREVFZYKCHiIhog5gpBnpKK/ToVTrIIEOMgR4iIiIi\nIiIiIiIiIiKissBADxER0QYRWCTQI5fJoVfpEMsw0ENERERERERERERERERUDhjoISIi2iACqRCA\n21tuAYBRZWSFHiIiIiIiIiIiIiIiIqIywUAPERHRBhFIBaGUKWBWm267zqjSI55NQBCFNdgzIiIi\nIiIiIiIiIiIiIlpODPQQERFtEIFUEFatFXLZ7W/fRpUBIkQkcsk12DMiIiIiIiIiIiIiIiIiWk4M\n9BAREW0A2XwW0UwMdq1tweuNagMAIJ5h2y0iIiIiIiIiIiIiIiKijY6BHiIiog0gkA4BAOxa64LX\nG1RSoCeWTazaPhERERERERERERERERHRymCgh4iIaAMIpIIAsHiFnmKgJ7Zq+0RERERERET/P3t3\nHuTqYZd7/nm1qyW1pJb6LH2623bsOIuv7UBIYKikKmNuwp0MVHLJgMO4kiG4gAJSBRRTJAyQIjZz\nkyEkqaQ8BQGGhITkErbrGdeFGm5ihztQwTchFTteshAvvZ2lta+v1nf+0Puqz9Z91N16Jb3q7+ev\n45b06udzTveRXj3v8wMAAAAAwB0EegAA8IDRAz2s3AIAAAAAAAAAAAC8jkAPAAAeUDAHK7cy+6zc\niocGgZ56m5VbAAAAAAAAAAAAgNcR6AEAwANGbeipsnILAAAAAAAAAAAA8DwCPQAAeEBf2uY4AAAg\nAElEQVTBLMqQoVQ4ed3bnUBPvUNDDwAAAAAAAAAAAOB1BHoAAPCAgllSMryogC9w3dtjdqCn1qlP\nciwAAAAAAAAAAAAALiDQAwDAjOv1eyq1ylqKpPa9T9gfUsAXUK1NoAcAAAAAAAAAAADwOgI9AADM\nuHK7or7V11Ikve99DMNQPBijoQcAAAAAAAAAAACYAwR6AACYcQWzJEkHBnokKR6MqU6gBwAAAAAA\nAAAAAPA8Aj0AAMy4glmUJKXD+6/ckgaBHrPXUqffncRYAAAAAAAAAAAAAFxCoAcAgBm319Bzg0BP\nKCZJtPQAAAAAAAAAAAAAHkegBwCAGec09Nxo5VYsOAj01NoEegAAAAAAAAAAAAAvI9ADAMCMGzXQ\nEw8uSJJqNPQAAAAAAAAAAAAAnkagBwCAGVcwS4oFFhQJhA+8XzwYl0SgBwAAAAAAAAAAAPA6Aj0A\nAMwwy7JUMItaiqRueN94yF65RaAHAAAAAAAAAAAA8DQCPQAAzLBap65Ov3PDdVvS3sqteptADwAA\nAAAAAAAAAOBlBHoAAJhhBbMoSSMFemJBGnoAAAAAAAAAAACAeUCgBwCAGVYwS5I02sqtYFwSgR4A\nAAAAAAAAAADA6wj0AAAwww7T0OOs3Kp1Gq7OBAAAAAAAAAAAAMBdBHoAAJhhhwn0+H1+RQMR1do1\nt8cCAAAAAAAAAAAA4CICPQAAzLC9lVs3DvRIUjwYU52VWwAAAAAAAAAAAICnEegBAGCGFcyiQr6g\nYvY6rRuJB2OqdRqyLMvlyQAAAAAAAAAAAAC4hUAPAAAzrGAWtRRJyzCMke4fC8bUs3oye6bLkwEA\nAAAAAAAAAABwC4EeAABmlNk11eg2R163JUnxUEySVGs33BoLAAAAAAAAAAAAgMsI9AAAMKMKZkmS\ntBRJjfyYeNAO9HTqrswEAAAAAAAAAAAAwH0EegAAmFEFsyhJh2voGQZ6aq7MBAAAAAAAAAAAAMB9\nBHoAAJhRxwv0sHILAAAAAAAAAAAA8CoCPQAAzKi9lVuHCPSEBoGeOiu3AAAAAAAAAAAAAM8i0AMA\nwIzaa+hJjfyYmNPQ0ybQAwAAAAAAAAAAAHgVgR4AAGZUwSzKZ/iUDC+O/Ji9lVsEegAAAAAAAAAA\nAACvItADAMCMKpglpcNJ+YzR/7km0AMAAAAAAAAAAAB4H4EeAABmULffVaVd1VIkfajHRQMR+Qwf\nK7cAAAAAAAAAAAAADyPQAwDADCqaZVmyDh3oMQxD8WBMdRp6AAAAAAAAAAAAAM8i0AMAwAwqmEVJ\n0lIkdejHxoMxVm4BAAAAAAAAAAAAHkagBwCAGbQX6DlcQ48kxYILanSb6vV74x4LAAAAAAAAAAAA\nwAQQ6AEAYAYdJ9ATD8UlSfVuY6wzAQAAAAAAAAAAAJgMAj3AHKu0q+pb/WmPAeAICmZJ0tFXbklS\nrc3aLQAAAAAAAAAAAMCLCPQAc2qjsqX/7R9/R49f+Nq0RwFwBE5DTzp8lEDPgiSp1iHQAwAAAAAA\nAAAAAHgRgR5gTn2r+K+yZOmFysa0RwFwBAWzqMVQQkF/8NCPjTkNPQR6AAAAAAAAAAAAAE8i0APM\nqc3qtiQp3yxMeRIAh9W3+iq2ylqKpI/0+IQd6KkT6AEAAAAAAAAAAAA8iUAPMKc2qluSpLxJoAfw\nmkq7qp7V01Lk8Ou2JCkWsht62o1xjgUAAAAAAAAAAABgQgj0AHOo2W1qt5mXJBWaRfWt/pQnAnAY\nBbMoSUdu6IkPV27VxjYTAAAAAAAAAAAAgMkh0APMoc3qzvDXXauncqsyxWkAHFahOa5ADyu3AAAA\nAAAA4H19qy/LsqY9BgAAwEQR6AHmkLNuKxtZkiTl7bYPAN5QMEuSdPSVW3agp95h5RYAAAAAAAC8\nrdVr6zf/6X/X55/6f6Y9CgAAwEQR6AHm0GZ1W5L0PafukiTlm4VpjgPgkPKt4zX0hPxBhfwh1dqs\n3AIAAAAAAIC3XWxcUrld1bO73532KAAAABNFoAeYQxvVLUUDEb0sfZskKdfMT3kiAIdRMI8X6JGk\nRDCmGg09AAAAAAAA8LicfcFqvsGFqwAA4GQh0APMmWbX1KVGTqvxFWWirNwCvKhglhQNRBUNRI58\njFgwplqnPsapAAAAAAAAgMnLNQYXrOabJfWt/pSnAQAAmBwCPcCc2aruSJLWE6taiqRkyBhewQBg\n9lmWpYJZ1FIkdazjxIMxdfodtXrtMU0GAAAAAAAATN6u3UDf6/dUbXMBGwAAODkI9ABzZrO6JUla\nT5xTwBdQKpxU3iTQA3hFvdtQu9c+1rotSYqHYpKkGic5AAAAAAAA4GG5y85vF1u00QMAgJODQA8w\nZzbshp61xVVJUja6pHKrok6/O82xAIyoYK/IG0dDjyTVWbsFAAAAAAAAD8vZDT2SVDTLU5wEAABg\nsgj0AHNms7qliD+s5WhGkpSJLMmSNQwJAJhtRbMkScdu6InZgZ4qgR4AAAAAAAB4VLffHZ4vk6Ri\nq3TAvQEAAOYLgR5gjpjdli42drWaWJHPGHx7Z6NLkqR8k7VbgBcUxhToSdDQAwAAAAAAAI/Lm0VZ\nsnRm4ZQkXRHuAQAAmHcEeoA5slXbkSVL64nV4dcyTqDHJNADeMG4Vm7FQoNAT41ADwAAAAAAADwq\nZ1+o+tL0rZKkYouVWwAA4OQg0APMkc3qtiRpLXFu+LVMxGnoYeUW4AV7gZ7jNfTE7YaeWptADwAA\nAAAAALwp18xLkm5ZXJff8KlEQw8AADhBCPQAc8QJ9KxfHuiJDkIBORp6AE8omEUFfQElgvFjHWcY\n6KGhBwAAAAAAAB7lBHpOLWS1tJCmoQcAAJwoBHqAObJR3VLIH9KpheXh1xZDCQV8AeXtNz4nwSef\n/pz+z6//X9MeAziSgllSOpKSYRjHOo4T6KkT6AEAAAAAAIBH7drntbPRjLILaZVbFfX6vSlPBQAA\nMBkEeoA50eq1daF+SWvxFfmMvW9tn+FTJrJ0YlZuWZalp3LP6pnCt9TsNqc9DnAorV5btU5dS+Hj\nrduSpIVgVIYMVVm5BQAAAAAAAI/KNwuK+MOKB2PKRNOyZKncrkx7LAAAgIkg0APMie3aeVmytHbZ\nui1HJppWvdtQs2tOYbLJqnXqMnstSdJ27cKUpwEOp2gOgndLkeMHenyGT7HgAg09AAAAAAAA8CTL\nspRr5pWJLskwDGUWBufMiiZrtwAAwMlAoAeYExvVLUnSemL1mtuykSVJg6sZ5t1uMzf89WZ1e4qT\nAIeXN0uSxhPokaRYMKYagR4AAAAAAAB4UKVdVbvf0XI0I0l7gZ5WaZpjAQAATAyBHmBObFYG4ZXr\nN/QMAj058wQEehr54a+3ajtTnAQ4vMKwoSc1luPFgwuqdxrqW/2xHA8AAAAAAACYlJx9gWrWDvRk\nhw09BHoAAMDJQKAHmBObtW0FfUGdiZ265rbMCW3o2aoS6Dkp/u/v/p3+afvxaY9xbIUxrtySpHgo\nLkuWGt3mWI4HAAAAAAAATEquObh4Mzts6Bmc56ahBwAAnBQEeoA50O51dL5+UavxFfmMa7+ts3ZD\nT/4kNPTYb/KSoYTO1y+q2+9OeSK4rdPr6O9ffEx/98IXpz3KsY090BNckCTV26zdAgAAAAAAgLfs\nDgM9g/Pbw5VbZnlqMwEAAEwSgR5gDmzXzqtv9bW+eO26LemkNfTkFTD8uiPzCvWsns7XL017JLis\n3K5IGlyZU/N4cKVgluQzfEqFF8dyvFgwJkmqdrz9+wIAAAAAAICTx2noWbYbehKhmIK+AA09AADg\nxCDQA8yBzeqWJGktsXrd2xeCUUUDUeXs9o95lmvklYlmhuGmrRprt+ZdqVUZ/nqztj3FSY6vYBaV\nDC3K7/OP5XhxO9BTJ9ADAAAAAAAAj8k1C/IZPqXDKUmSYRhKh1MqmgR6AADAyUCgB5gDm9VBiGE9\ncf2GHknKRtLKNwuyLGtSY01cvdNQvdvQcnRJq/EVSdJW1dsBD9xYqbVXsbtZ8e6fd6/fU7lVGdu6\nLWkv0FMj0AMAAK7j+fKGvlt6YdpjAAAAANeVa+a1FElfcfFbKpJSrVNXp9eZ4mQAAACTQaAHmAMb\n1W0FfQGdWTi1730y0Yw6/Y4q7doEJ5usvQrWrM7Fz8qQQUPPCXB5oGfDww09xVZZlqzxBnpCdkNP\nuzG2YwIAgPnx6Wf+XH/81GemPQYAAABwDbNrqtqpKRtZuuLrS3ZbT/Gyc4IAAADzikAP4HGdXkc7\n9Qs6F185cE1PJjoICeTNwqRGm7jdRk6SlF3IKOQP6dTCsraq5+e6lQhXN/RsTXGS4ynYK/EykdTY\njuk09FQ78xvkAwAAR2NZlgpmUZV2VY1Oc9rjAAAAAFfINQfnsbMLmSu+no4kJUmlFmu3AADA/CPQ\nA3jcTv2C+lb/wHVbkoZXMuSbcxzouayhR5LWEisye+Zch5gglVoVSdJK7IxyZkGNjjfbaJxAjxsr\nt+oe/T0BAADuaXSb6lo9SXtNlwAAAMCsyNnndJejVwV6nIYek4YeAAAw/wj0AB63UR2sGFpLrB54\nv0zUDvTMcbhlL9AzeJO3Gl+RJG1VWbs1z8qtsnyGT6/I3C5Jnl2z5kagJ2YHemqd+tiOCQAA5kPZ\nDkVL0m4zN8VJAAAAgGs5ofPsVYGeVMRZuUVDDwAAmH8EegCP26wOVgyt3aChJ2M39OTmuqEnJ5/h\nU8YORKwmBoGeTY8GPDCaUquixVBCNyXWJO2F3LymYA5OQiyNceVW2B9SwBdQrU2gBwAAXKncvjzQ\nQ0MPAAAAZovzGtVpnnekw4OVW0WTQA8AAJh/BHoAj9uobivgC2gldvrA+zkhl7leudXIaymSlt/n\nl0RDz0nQt/oqtcpKhZNat1uqNj0a6HFOQqTHGOgxDEPxYIyGHgAAcI0rGnoaBHoAAAAwW3INp6Hn\nqkCPfe6sQEMPAAA4AQj0AB7W7Xe1U7ugc7GzwxDLfoL+oJKhxbldudXsmqp2alfsVE6E4kqFk55d\nwYQbq3Xq6lt9pcJJZaNLigYi2rBbq7ymYBYVD8YU8ofGetx4MKY6gR4AAHCVSqs6/DUrtwAAADBr\ncmZBiWBckUDkiq9HAxFF/BGVzPKUJgMAAJgcAj2Ah+3UL6hn9bS2ePC6LUcmuqRiq6xev+fyZJPn\n7FRejmav+Ppq/KxKrbKq7do0xoLLSq3BG/dUeFGGYWg1vqJLjZyaXXPKkx1O3+qr0CppyW7SGqd4\nMCaz11Kn3x37sQEAgHeV7JVbhgxWbgEAAGCm9Po9FcyispddvHm5dCSpIg09AADgBCDQA3jYZmWw\nWmg9PmKgJ7KkvtWfyzc7zocQywtXvslbTQx+b2jpmU/OqoiUvTvbWbu1XTs/tZmOotquq9vvuhPo\nCcUkiZYeAABwhYr9OmolfkaVdlVmtzXliQAAAICBYqukvtW/Zt2WIx1Oqdk1ZXrsoj4AAIDDItAD\neJizWmjUhp5sdBAWyDXnb+3WbmOwJmD5qqs2VuMrkqStKoGeeeQ09CTDi5KkNTvA5bW1WwWzKEla\nsneAj1MsOAj01NoEegAAwJ5yuyKf4dMtyZsk7TVeAgAAANPmXLx5UEOPJBVbrN0CAADzjUAP4GGb\n1R0FDL9WYmdGun/GfgOUN+cv0LP/yi070ENDz1wqXdPQMwj0bFa3pzbTUewFetxYubUgSarR0AMA\nAC5TblWVCMZ1emFZkli7BQAAgJnhXJB69cWbjnR4cFFc0Zy/JnoAAIDLEegBPKrX72m7fl4r8TMK\n+AIjPSZrhwXyzaKbo03FbjMvQ4YyV9WwZqJpRfwRGnrmVMkcXIWTsht6lheyCvtD2iDQMxQPxiUR\n6AEAAHssy1KlXVEyvDj8kGS3mZvyVAAAAMCAc/Hm1ed6HWm75brYItADAADmG4EewKN26hfV7XeH\nK4ZG4bwBmseGnt1mXulISsGrwk0+w6dz8bO62NhVu9ee0nRwi7Nyy2no8Rk+rcZXdLF+SS0P/XkX\n7KuJXAn0hOyVWwR6AACArdltqtPvKhlODBsudxs09AAAAGA27LWx36ihh5VbAABgvhHoATxqs7ol\nSVpLrI78mFQ4Kb/hH1aWzot2r61Sq7zvTuW1xIosWdquXZjwZHBbqV3RQiCqkD80/Np6YtX+8z4/\nxckOx2noydhXF43TcOVWm0APAAAYKLerkqRkaFGZ6JIMGTT0AAAAYGbkmgWFfEEthhLXvT0dGVzc\nR0MPAACYd64Fevr9vt73vvfp3nvv1Tve8Q69+OKLV9z+6KOP6m1ve5vuvfde/cVf/MWBj8nn8/r5\nn/953XfffXr729+ujY0Nt8YGPGPTXim0foiGHp/h01IkpfycBXputFN5Nb4iSdqqsXZr3pRb5WE7\nj8NprdqwQ29eUDCLivjDigaiYz+2s3KrTkMPAACwlVsVSdJieFFBX0DpSEq7TRp6AAAAMH2WZSnX\nzCsbzcgwjOveJ2U39JRo6AEAAHPOtUDPF77wBbXbbX3+85/Xr/7qr+qDH/zg8LZOp6MPfOAD+pM/\n+RN95jOf0ec//3nlcrl9H/OhD31IP/qjP6rPfvaz+uVf/mU999xzbo0NeMZGdVs+w6eV2JlDPS4T\nWVK1U/PUOqIbca4m3jfQYwc8tuwQFOaD2W2p2TWVDC9e8XUn0LPpoT/vglnSUiS970mK44gFWbkF\nAACu5AR6UqHB66jlaEalVlntXmeaYwEAAACqdeoyey1lokv73ifkDyoejNHQAwAA5t5IgZ5C4fBt\nHv/yL/+i17/+9ZKkV73qVXrqqaeGt333u9/V+vq6ksmkQqGQXv3qV+srX/nKvo/52te+posXL+qn\nfuqn9Mgjj+i1r33toecB5kmv39N2bUcrsTMK+oOHeqzzRmieWnqcq4mXF7LXvf1s7JT8hl9bHlrB\nhBsrtwZX4Fzd0HN6YVlBX9AzgZ5GpymzZ2rJhXVbEiu3AADAtcptp6FnsMLACcbnaOkBAADAlDmv\nSfe7eNORDidVMEuyLGsSYwEAAEzFSIGe++6779AHrtVqisfjw//2+/3qdrvD2xKJvd2nsVhMtVpt\n38dsb29rcXFRn/rUp3T27Fn90R/90aHnAebJhcYldfrdQ63bcmQjdqDHnKNAT+Pghp6AL6CzsdPa\nrp1X3+pPcjS4qORcWX5VoMfv82s1flbn6xfV8cBV5gWzKElaiqRdOb7f51c0EKWhBwAADFVaVUka\nNh06wXjWbgEAAGDacvaFqNkbBHpSkZQ6/Y7q3cYkxgIAAJiKwCh3evnLX66HH35Yd911lyKRyPDr\nKysr+z4mHo+rXt/78LDf7ysQCFz3tnq9rkQise9jUqmU7rnnHknSPffco49+9KMHzptOLygQ8I/y\nv4YJW15O3PhOuKGna4P2qleu3Hro39NbmivSc5Lpr8/Nn0f56UG16svXblIkEL7ufW7L3qStF3bU\niTS0unh2kuPBJc/WB2vj1rKnrvm7fPupW/R8ZUONYEW3ZW6eyDxH/X56sW1KktYyZ1z7nkxG4mp2\nm3PzPQ9gsvjZAcyf5ncGH3q85OyK0tGEbm2tSv8qNX21E/U9f5L+XwGcPPyMA+BVjUs1SdJtZ1av\n+7PM+dpKalnfyElGtKPlND/zAHgfr98AXM9IgZ4nnnhCTzzxxBVfMwxDX/ziF/d9zPd+7/fqscce\n05vf/GZ9/etf1+233z687dZbb9WLL76oUqmkhYUFffWrX9X9998vwzCu+5hXv/rV+od/+Ae99a1v\n1Ve+8hXddtttB85bLJLInkXLywnt7lanPcZceHrnXyVJKWUP/Xsa6gzW77yYO6/d9Hz8eWyXLykZ\nWlS12FZV7eveJxtcliQ9+eJ3FD4Tv+594C2buxclSf52+Jrvg2zglCTpyc1vK9k/+GqecTjOz7fn\nLw5WwYV7Udd+RkZ9Ue22Crp0qSLDMFx5DgDziddvwHzarRRkyFC7Ku3Wqgp3YpKk53PbJ+Z7np9v\nAOYZP+MAeNmLuR1JUqB97bmyy3++RazBee7nLuwo1nVnlT0ATAqv34CT7aBA30iBnkcfffTQT/rG\nN75R//RP/6S3v/3tsixL/+E//Ac98sgjajQauvfee/Xe975X999/vyzL0tve9jadPn36uo+RpPe8\n5z36zd/8Tf35n/+54vG4PvzhDx96HmCebFS25TN8Ohc/fNNMxlm51SyOe6yp6PS7Kpol3Zq6+cD7\nrcYHjWJbtR29Rt8zgcngtlK7LElKXrVyS9JwHd1mdXuiMx2F2yu3JCkWjKln9WT2TEUDUdeeBwAA\neEO5VdFiKC6fMdjCnY0O3iPkGqzcAgAAwHTlmnkZMpS5wbmydHgQ4imapUmMBQAAMBUjBXoKhYIe\neOABffnLX1av19MP/MAP6Ld/+7eVzWb3fYzP59MDDzxwxdduvfXW4a/vueee4Rqtgx4jSefOndMn\nP/nJUUYF5l7f6murtqOzsdMK+YOHfnwsuKCwP6S8WXBhusnLNwuyZGk5uv/PI0laTQzCT1vVnUmM\nhQkomYNATyq8eM1tZ2OnFTD82iDQI0mKhwZX3dfaDQI9AACccJZlqdyu6kzs1PBrIX9IqXBSu83c\nFCcDAAAApFyzoHQkpYDv4I+v0hE70NMqT2IsAACAqfCNcqf3ve99uvPOO/XFL35Rjz76qO6++279\nxm/8htuzAbiOC/VL6vQ7WrMbSA7LMAxlIkvKNfOyLGvM002e86HDcvTgtUrRQFTZyJK2ajtz8f8N\nqdSqKGD4FQ/GrrnN7/NrJX5WO7UL6va7U5hudAWzpIDhVyLk3io45/eo1qm59hwAAMAbml1TnX5H\nydCVoejlaEYFs6TOjL92AgAAwPxq9zoqtyvK3uBcr0RDDwAAOBlGCvRsbm7q/vvvVzwe1+Lion7m\nZ35GOzu0XADT4KwQOmqgR5Iy0SW1em3VO41xjTU1u83BWoDlhYMbeiRpNbGiWqeuEldtzIVSq6xk\nOCnDMK57+3rinHpWT+frFyc82eEUzKLSkdRw5YUb9gI9ddeeAwAAeEOlXZEkJcNX7uZejmZkyVKh\nOR9NngAAAPCenH2uNxtZuuF9U+FFGTJUbBHoAQAA82ukTw8Nw9D58+eH/72zs6NAYKRtXQDGbKO6\nJUlaT6we+RjZ6OAN0Tys3XLe5N2ooUeSVuODENRWjUCi1/X6PVXa1euu23I4oTfne2YWtXsdVTs1\nV9dtSZcHerwf4gMAAMdTatmBnmsaegYBeScwDwAAAEzaYc71+n1+LYYSKppcvAkAAObXSKmcX/ql\nX9K9996ru+++W5Zl6YknntCDDz7o9mwArmOzui1DhlbjZ498jIx9hUOuWdBNi2vjGm0qdhv2VRuj\nBHoSg9+zreqO7sy+0tW54K5qpyZLllLh5L73cUJvm9XZDXA5VxA5O7/dEg8NAj11GnoAADjxKu2q\nJGnxqmB0dmHweppADwAAAKYlZ1+A6rw2vZF0JKXN6rb6Vt/V9msAAIBpGSnQc/bsWT388MN68skn\n1e/39f73v1+ZzGgvqACMT9/qa7O2o7Ox0wr5Q0c+zjw19Ow2c0oE44oGIje8r9PYQkOP9zlr05IH\nNPScjZ+Rz/DNdENPwSxKkusNPTGnoadNoAcAgJOubDf0XN10uNfQk5v4TAAAAIB0uJVbkpQOJ/VC\nZUPVdu3A84QAAABeNVKg51d+5Vf0d3/3d3rDG97g8jgADnKpsat2rz0MphzV5Q09Xtbr95Q3i7p5\nxJahZGhR8WBMWzPc2ILRlOwq3YMaeoK+gFZiZ7RdO69evye/zz+p8UY2qUDP3sotAj0AAJx05fYg\n0LMYSlzx9WU79O80YAIAAACT5rRFjtLGLu21XhdbJQI9AABgLo0U6Lntttv00EMP6e6771YksteC\n8ZrXvMa1wQBca6O6LUnHDvQ44YG8xwM9BbOkvtUf+Q2eYRhaja/om8XvqNltKhqIujwh3FIaXlm+\nf6BHktYT57RV29GFxiWdO8aaOrcUzMHKrYzbK7cI9AAAAJvT0HP1Bx6RQESJUJyGHgAAAExNvllQ\nLLCgheBo523T9rnBolnWzeR5AADAHBop0FMqlfT444/r8ccfH37NMAx9+tOfdm0wANfatAM964nV\nYx0nEggrEYx7fuWW82HD8oiBHklaTQwCPVvV83pp+iVujQaXOSu3bhToWUuck85/RRvV7RkN9Eym\noScaiMhn+Fi5BQAAVG5VZchQIhi/5rblaFYvVDZmtt0QAAAA86tv9ZVvFnQuvjLyY1KXNfQAAADM\no5ECPW9+85v1kz/5k27PAuAGNqpbMmRoNTH6m5r9ZKJL2qxuq2/15TN8Y5hu8pwK1uVoduTHrNlv\nCLdqOwR6PGyvoefgS2/W7PDbZnVb/93Z73N9rsMqmEUZMm4YTDouwzAUD8ZUp6EHAIATr9KuKBGK\nXzewsxzN6LnyCyqYJS0vjB6aBwAAAI6r1Cqra/WUtVfBjiIdtgM9JoEeAAAwn0b6FP+zn/2s23MA\nuIG+1ddWdUenF5YV9oeOfbxMJK2e1RtW7nvRsKHnEB82OGGoreqOKzNhMsp2Q8+NdmOfi5+Vz/Bp\ns7o1ibEOrWAO9nsHfCPla48lHoyxcgsAgBPOsiyVWxUlQ4nr3u4E5Vm7BQAAgEnL2RdvZg/Rxp6O\n2Cu37HOFAAAA82akTxDPnDmjd77znbr77rsVDoeHX3/3u9/t2mAArrTbzMvstYaNI8eVsa90yDXz\nStvVpF6z2zh8Q8+phWUFfUFt1rbdGgsTUGqVFQ/GbhiECfmDOrNwSlvVnZlro+r1eyq1yrp5cW0i\nzxcLLminfoEVGgAAnGBmr6V2v7NvKNoJyjtNmAAAAMCk5JoFSYcL9CyGEvIZPpVo6AEAAHNqpE82\nX/WqV+m1r33tFWEeAJO1WRk0jKwvnhvL8Zzq0pxZHMvxpmG3mddCIKpYcGHkx2QpyZoAACAASURB\nVPgMn87Fz+pC/ZK6/a6L08EtlmWp1CqPvKZqLXFO7X5Hlxq7Lk92OOV2RX2rr6VIeiLPFw/FJUn1\nbmMizwcAAGaP0865GNon0BN1Aj009AAAAGCynFD58iFWbvkMn9LhJA09AABgbo3U0PPud79bjUZD\nGxsbuv3222WaphYWRv8AHcDxbVQHjTLr42roiQzeGOXtKx+8pm/1lW/mdS6+cujHrsbP6oXKhs7X\nL2otMZ6AFCan2TXV7ncOFeh5/MK/aKO6rTOx0y5PN7qCfeXQxAI9wZgkqdaua3GfNRsAAGC+VdqD\nQM++DT1OoKdBQw8AAAAm6ygrtyQpFU7pufILtFIDAIC5NFJDz5e//GW95S1v0S/8wi8ol8vpnnvu\n0T/+4z+6PRuAy2xUt2TI0Gr87FiO5zT05E1vBnqKZlldqzdcC3AYq3aIZ6u6M+6xMAEl+4qb1D4f\nRF3NCcFtVmdrzVrBbsdamtDKu7jdZFXr1CfyfAAAYPaUWk6g5/rh3oXggmLBBVZuAQAAYOJyzbwC\nvsC+4fP9pCNJWbJUtsPrAAAA82SkQM9HPvIRfe5zn9Pi4qJOnTqlP/uzP9Pv/u7vuj0bAFvf6muz\nuqNTC1lFApGxHDMdTsmQMdxN7DXOGoDlQ16xIUmrdqvPZo1Ajxc5qyJGbeg5Fz8rQ8YMB3om1dAz\nWLlFoAcAgJOr0q5KkpL7rNySpOVoVvlmXn2rP6mxAAAAAOWaBWUiS/IZI31sNZQODy6WK5qs3QIA\nAPNnpFdG/X5fy8vLw/++7bbbXBsIwLVyzYLMnjnW9VB+n1/pSMqzK7f2dipnD/3Yc/EzMmTQ0ONR\nTkNPcsRATyQQ1qmFZW1Wt2fqg6nJB3oGDT11Aj0AAJxY5dbBK7ekQWC+a/X4QAQAAAAT0+g01Og2\ntWy3yh9GOuIEeorjHgsAAGDqRgr0nDlzRo899pgMw1ClUtHv//7va2Vlxe3ZANg2q1uSNNZAjyRl\nI0sqtyvq9DpjPe4kODuVj7JyK+QP6fTCsrZrOzMV8MBoDrtyS5LWE+dk9lrDvzezoGCWJE0u0BML\nxSRJtTaBHgAATion0LMYuv7KLWmvAdNpxAQAAADc5ly8mTlCG3vavuiv2CKQDgAA5s9IgZ4HHnhA\njzzyiM6fP683vvGNevbZZ/XAAw+4PRsA24a9Kmg9sTrW42bsKx4KHrx64TgNPZK0mliR2Wsp3/Te\n//tJtxfoGa2hR9oLw23M0NqtgllULLigsD80kedj5RYAACi3KzJkHBzoWRi8vt6doSA0AAAA5tvw\n4s2jBHqchp5WaawzAQAAzIKRAj2ZTEYf+chH9M///M96/PHH9fGPf1ynTp2SJP3Wb/2WqwMCkDbt\nEMJaYrzNWJnIINCT82Kgp5FTxB9WPBg70uNX44Pfy60aa7e8pmRfWX6YQM+6HejZnJFAj2VZKpil\nibXzSHsrtwj0AABwclVaVcWDMfl9/n3vQ0MPAAAAJi3XLEiSskdZuRV2Vm7R0AMAAObPSIGegzz1\n1FPjmAPAPizL0mZ1W6eiWUUD0bEeOxMdhAnyHrv61rIs7TbzWo5mZBjGkY7hNLZszUjAA6Mrt8oK\n+YKKBiIjP2bVDsPNSqCn1qmr0+9MNNATC7JyCwCAk67Urih5g7WlTgNmruGt9wgAAADwruM09MSC\nCwr6AjT0AACAuXTsQA8Ad+XNghrd5jCAMk7OFQ85szD2Y7up3K6o0+8oe4Q3eA4aeryr1KooFU4e\nKswVDUS1HM1os7oty7JcnG40zpq7JbsSeBJC/qBC/pDqNPQAAHAimV1T7V5bi+H9121Jgw9EooEI\nK7cAAAAwMc5rz6XI4Rt6DMNQOpxS0STQAwAA5g+BHmDGbQzXbY0/0JOJDAIx+aa3Vm7t2lcLLy9k\nj3yMeCimVDipzSqBHi/p9Luqdmo3vLL8etYTq2p0m8rPwIq5/DDQM7mGHklKBGOqdRoTfU4AADAb\nys7a0tDBr6MMw9ByNKPdZl59qz+J0QAAAHDC5ZoFpcJJhfzBIz0+FUkNGrF7nTFPBgAAMF0EeoAZ\n56wIWk+sjv3Yi6G4gr6g8h5r6Nk9RgXr5VbjKyq3K6q2a+MYCxNQcT6ICicP/VgnFLdR3RrrTEdR\nmFKgJxaMqdapzURLEQAAmKxyuypJWhwhGL0czarT76hiPwYAAABwS6ffValVHrbJH8VSeNCCXWyV\nxzUWAADATDh2oIcPBQF3bVQG4QM3GnoMw1Amklau6bVAT07SGAI9CXvtFi09nlEaQ6DHCclNk1MB\nPMmVW5IUD8bU6XfV7nO1EgAAJ43T0JO8QUOPtPc6e7eRc3UmAAAAoNAsyJKlbOTo53rTkcG5wlKL\ntVsAAGC+HDvQ84M/+IPjmAPAdViWpc3qtrKRJS0Eo648Rya6pGa3qUan6crx3TBs6DnGyi1JWovb\ngZ4agR6vKNlX2Xg90FNwAj3hyTb0xEMxSVKtXZ/o8wIAgOkrt+1ATzhxw/tm7dfZzutuAAAAwC3O\na87sMS7eTDsNPSYNPQAAYL6MFOjZ3t7Wu971Lr3pTW/SpUuX9M53vlNbW4PWkF/7tV9zdUDgJCuY\nJdW7Da0tjn/dlsOpMvXS2q1cI6egL6jF0I0/jDiI09AzCwEPjKY8DPTc+Mryq8WCC8pE0tqsbk+9\nXa5gFhXyBRULLkz0eeNBO9DTYc0cAAAnzbChZ6SVW3ZDD4EeAAAAuCxnn5dePsbKrVTEWblFQw8A\nAJgvIwV63ve+9+n+++9XLBbT8vKyfuRHfkTvec973J4NOPE2q4Pg3LoL67YcmYgd6PHI2i3LsrTb\nzGs5mpHPOF7JWCaypIg/oq3a+TFNB7eVhh9EHb6hR5LWEquqderDpp9pKZhFLUXSMgxjos8bGwZ6\nGhN9XgAAMH2VdlXSqCu37IYeVm4BAADAZTmnoWfhOA09g3OFTis2AADAvBjp0/BisajXve51sixL\nhmHoJ37iJ1SrcXU/4LYNuzlmPeFeQ0/GvvIh55GGnlqnLrPXGl41fByGYWg1cVaXGrtq9dpjmA5u\nKx2joUfaW7u1YYflpsHsmmp0m1qKTHbdliQl7EBPvcPKLQAAThqnoWeUlsvFUFwhf4iGHgAAALhu\nGOiJHCPQQ0MPAACYUyMFeiKRiC5cuDBsEvjqV7+qUCjk6mAA9kIHzmooN3itoWe3ObhK+DhXbFxu\nLX5Olizt0NLjCaVWWYaMI69bc9quprlmzblSaMk+0TBJsZDT0EOgBwCAk6bcrigejMnv89/wvoZh\naDma0W4zN/VVpQAAAJhvu82CIv7IsVbTRwMRRfwRlczptnIDAACMW2CUO733ve/Vz/3cz2ljY0Nv\nectbVC6X9bGPfczt2YATzbIsbVa3lYmkFbdbNdyQjQ5aQrzS0LPbGFyx4awBOK5zdlhqs7qjW5I3\njeWYcE+pVdFiKDHSB1HXszYTgZ6iJE2locf5WVJrE+gBAOCkqbSqw3bOUSxHs9qunVe1UztymBoA\nAAA4iGVZyjfzOrNw6tir6dORJA09AABg7owU6Lnpppv0V3/1V3rhhRfU6/X0kpe8RLu7u27PBpxo\npVZZtU5dt6Ve4urzRANRxQILyjeLrj7PuDi1/+NYuSVJa/FBoGertjOW48E9lmWp3K7oXOzskY+R\nCMWVCieH6+ymYSYCPTT0AABwopjdlsxeS8nQ6GtLndfbu408gR4AAAC4otyuqNPvKjuGc73pcErn\n6xdldk1FApExTAcAADB9B67cOn/+vHZ2dnTfffcpl8spFotpcXFRFy9e1P333z+pGYETyVm35awI\nclMmmlbBLHiiTt9ZuTWuhp4zsVPyG/65CPQ8X97Q+//5d3Whfmnao7ii3mmo2+8qFR79g6jrWU+s\nqtKuqtyqjGmyw9lbuTW9QE+dQA8AACdKpT143ZM8xOuoYaDHfv0NAAAAjFuuOWiNH0ugJ5KUJBVb\nrN0CAADz48CGno9//ON6/PHHdenSJd133317DwoE9IY3vMHt2YATzWkQWZtEoCeypI3qtirt6qFO\n8k/DbjOvgOEfvkE7roAvoJXYae3UzqvX7x15ldMs+P+2v6xLjZy+WfiOzsROTXucsXPejCfDx/uz\nX0us6Mnc09qobunO8CvHMdqh7DX0pCb+3AvBqAwZqrJyCwCAE8UJMicP0bSzvOAEevKuzAQAAAA4\nrzWzh1gNu590eHCurWiWdDZ2+tjHAwAAmAUHBno+8IEPSJL+8A//UD/7sz87kYEADGzagZ71xKrr\nz5Wx3zDlmoWZD/TkGnllohn5jAMLxg7lXGJFm7UdXWrmPPtmr9fv6an8s5KknDmfH7qU7UDPOBp6\npMH32J3Z6QR6fIZvKt9rPsOnWHCBhh4AAE6Ycrsq6bANPYNGzN0GDT0AAABwR34Y6BlHQ48d6GmV\njn0sAACAWXFgoMfRbrf10EMPXfP1d7/73WMfCIBkWZY2qltKh1OKh2KuP18mMgj05M2CbtXNrj/f\nUdU7DdW7Dd2SXB/rcVfjK5IGAQ+vBnqer2yo3mlI2quqnTelYaDnuA09g9arzep01qwVzKLS4dRY\nQ2mHEQvGVCPQAwDAieI09CweItCTDC8q4AvQ0AMAAADXOK81l8cR6Bk29LByCwAAzI9Df5rY6XT0\n6KOPKp/npB7glnK7omq7pvVF99t5pL1K0/yMB0Fywzd42bEe1wl4bNWmE/AYhyd3nx7+etb/HI+q\nZH8QddxATzK8qMVQQhvVrXGMdSidflfldnUq67Yc8eCC6p2G+lZ/ajMAAIDJKrcPv3LLZ/iUjWa0\n28zJsiy3RgMAAMAJlmsW5DN8xz7fJ0npyOAYNPQAAIB5MlJDz9VNPL/4i7+on/7pn3ZlIAB767bW\n4ucm8nzDlVvmbAdBnLr/7MLxr9i43Ln4WUnS1pQaW47Lsiw9mXtaIX9I6XBKObMgy7JkGMa0Rxur\nca3ckqT1xDk9lf+mqu2aEqH4sY83qqI5OKGwFElP7DmvFg/FZclSo9tUPOh+AxgAAJg+p6HnsCs/\nl6MZXahfVL3b4HUDAAAAxi7XzCsTScvv8x/7WCm7oadEQw8AAJgjR9r3Ua/XtbPjzQ++AS/YqAya\nQ9YXJxPoWYqkZciY+WaXXZcaeqKBiLLRjLZqO568+vhiY1e7zbxeuXS7zsZOqd1rz+VKpdLwg6jj\nX7HjtDJt2OG5SSmYRUlTDvQEFyRJ9fb8/R0BAADXV2lVJUmLh2jokfZWH+w2aOiFt/X6vWG4HgAA\nzIZm11StU1d2DOu2JCnkDyoejKnQKo7leAAAALNgpIaee+65Z9j0YFmWKpUKDT2Ai5yQgRM6cFvQ\nF1AyvKicZwI9423okaTV+Iq+vvsNlVplpae4DukonswN1m3dlb1D27XzkgZXt0yyeWYSSq2yIv6I\nIoHwsY+1lhiss9usbuuOzMuOfbxRFWagoSdmX11f7dR1empTAACASSq3K4oHYwr4RjoFMOQE6Xeb\nOd2SXHdjNGAi/svGP+g/P//3+vXX/LJW4memPQ4AAJCG56LHea43HU7qQmN3LtvLAQDAyTTS2bzP\nfOYzw18bhqHFxUXF4/P1QTEwSzarW0qFk4e+gvY4MpElPVd+Qb1+bywVp27YbebkM3zKuBCGWEsM\nAj1btR3PBXq+kXtGhgzdkXm5Wr2WpMEb4luSN015svEqtcpKRY7fziMNVm5Je+vtJmWvoWd6f8cS\ndqCnPoctTgAA4PrKreqRXn8s26tunWA94FX/WnpOfauvJ3NPE+gBAGBG5OzXmJno0tiOmYqktFnb\nYWUsAACYGwcGeh5++OEDH/zWt751rMMAkMqtisrtqu7MvnKiz5uNLum75edVMEvDE/ezZreR19KY\ndipfbTW+ImkQ8Jj07/1xVNpVPV/e0K2pmxUPxZSxr2iZ9balw2r3Omp0m1q3m3WOKxVOKh6MabO6\nNZbjjWoWVm45DT3zuJYNcEun35Xf8MlnHGlbLQBMVavXltkzlQwvHvqxw4YeVm7B43ZqFyRJT+e/\nqX938w9NeRoAACDtBXrG29AzCLEXzTKBHgAAMBcODPQ8/vjjBz6YQA8wfk5jyPqE1m05nNabvFmY\nyUBPs2uq2qlpNbHiyvGd427ZK6u84qncN2XJGoaQsvYVLTlzvj50KbXKkgZBnHEwDENriXN6tvBt\n1TsNxYILYznujTiBnmm2QMVDdqCnTaAHGEWv39Nvf/n/0ErsjH7+7ncR6gHgOeVWRZKUDB0+0JMO\nJ+U3/Mo1c+MeC5iYeqehcnvwffB8eUO1Tp0P+AAAmAFOoCc7zkCP3e5dapW05tJ5ZAAAgEk6MNDz\ngQ98YPjrTqej559/Xr1eTy996UsVCIy0rQvAIW3YjSHjaiIZlVNtOngj9dKJPvco9q7YyLpy/GRo\nUfFgTFvVHVeO75Ync09Lku6yAz1LkbQMGcrPWUNPeRjoOfwHUftxAj2b1W29fGkyf+cLZknJUEJB\n3/T+DY3T0AMcyoXGJZVaZZVaZX3hxX/Qm27+76c9EgAcyjDQc4TXUX6fX5lompVb8LQd+6KNsD+k\nVq+tb+a/re878z1TngoAADgN45nI+FZu7TX0lMZ2TAAAgGka6RLjp556Sj/8wz+s9773vfr1X/91\nveENb9ATTzzh9mzAibRhN/SsTbyhZ/DGKW83iMwa50MEt9qDnMaWvFlQo9N05TnGrd1r65uF7+jM\nwimdWliWJAV9AaXCyblbuVW0Az3JMTX0SHuhOacVy219q69SqzzVdVvSXqCn3mlMdQ7AK7Yva257\n5Pn/Vy9UNqY4DQAcXsVuJlkMJ470+OVoVrVO3TOvkYGr7dQvSpJet/IDkqSn8t+a5jgAAMC228wr\nEYorEgiP7ZhOK7ZzLhEAAMDrRgr0/M7v/I4++tGP6m/+5m/08MMP66GHHtKDDz7o9mzAibRZ3VYy\nlDjSFbTH4axqmtVml1xj/DuVr7YaH9Swbte80dLzzcJ31Ol3dNfyHVd8PRNNq9Qqq9vvTmmy8XOu\nLHdqc8fBCc1NKtBTaVfVs3pTXbclSTE70FPt1KY6B+AVTqDnf7j538qyLH3y6f8os2tOeSoAGJ3z\nOip1hJVb0t7r7xwtPfAop6HnNWe+V8lQQs8WvqW+1Z/yVAAAnGy9fk/FVmns53pp6AEAAPNmpEBP\no9HQ3XffPfzvV73qVWq1Wq4NBZxU1XZNpVZZaxNetyUNKvgDhl85czYDPbvNnCT3Vm5J0mr8rCRp\n0yOBnm/knpEk3Wmv23JkIxlZslSY0baloygNG3rGF3TLRNJaCESHa+7c5vx5TLuhJ+wPKeALqN6m\noQcYhRPouWftdXrjTW9QrpnX57/98JSnAoDRldtVSdLiEV9HOa+/ndfjgNfs1C/IZ/h0JnZKd2Re\nrlqnrhcrk3kPAAAArq9gltS3+sqOOdCTCi/KkKFii0APAACYDyMFepLJpL7whS8M//sLX/iCUqnp\nNgwA88gJFqxPeN2WJPkMn5Yi6Zlt6Nlt5mXIUCY6vp3KV1u1f9+3qrMf6OlbfX0j96wSwbhuXly7\n4janbWme1m6VnCvLx7hyy1mzttvMq9l1f4VEoTkbgR7DMBQPxlTr1Kc6B+AV27XzSodTWggu6Edu\neZNuSqzpv134mv7bha9NezQAGEm5NQj0JI/a0GOvvN2loQceZFmWdmoXdWphWUFfQHdkXyFJejr/\nzSlPBgDAyea0P2Yj4z3X6/f5tRhKqGiycgsAAMyHkQI9Dz74oD7xiU/o+7//+/Xa175Wf/AHf6D3\nv//9bs8GnDjO6p+1KQR6JCkTXVKtU5fZnb0Grt1mXulISkFfwLXnOLWQVcgX1JYHGnpeqGyq2qnp\nzuwr5DOu/FGemcNAT7lVlt/wK26vixqXvbVb7v+ZF+yq36Upr9ySZAd6WLkF3Ei1XVOlXdU5u8HN\n7/PrXXf8zwr7Q/r8t/4T62cAeEK5PQhGL4YTR3q8swZht8HPPHhPwSzJ7JlaiZ2WJL0sfZv8hp9A\nDwAAU+aExcfd0CNJ6UhKpVaZFZsAAGAujBToufnmm/WXf/mXeuyxx/Too4/qU5/6lF7ykpe4PRtw\n4mzYgZ71xcmv3JIGK4gkKT9ja7favbZKrbIrb/Au5zN8Ohc/q/P1i+r0u64+13E9ufu0JOmu5Tuu\nuc35fZq1P8fjKLUqWgwlrgkvHdf6MNCzPdbjXk++NRsNPdIg0NPqtdXpdaY9CjDTnHVbzkpGadBU\nce/t/15mr6VPPv0f1ev3pjUeAIyk0qooFlw4cjB+KZKWz/CxcguetFMf/Fu+Ehv8Wx4NRHRr6hZt\nVLdUsdfRAQCAycuZg0CP0wY5TulwUj2rp2qbi9kAAID3jfTJ6GOPPaYPfehDsixLP/7jP64f+qEf\n0mc/+1m3ZwNOnI3KlhKh+JHr8I9rGASZsWYXp2lm2eVAjySdS6yob/V1vn7B9ec6jm/knlHQF9TL\n0rddc9u8rdzqW32V25WxrttyrE0w0FMwZyjQExo0HdW7jSlPAsw2J9CzclmgR5K+/+yr9ZrT36MX\nKhv6z8//l2mMBgAjK7crx3p/EfAFtBROsXILnnS+dlGStBI/M/zaHZmXSZKeyX9rKjMBAIC985Zu\nNfRIUrFVGvuxAQAAJm2kQM9DDz2kH/uxH9Pf/u3f6q677tKjjz6qv/7rv3Z7NuBEqbXrKrZKWk+s\nyjCMqczgrGrK28GDWeFcDTyJQM9afEWStFU97/pzHdWlxq4uNC7pFUu3K+QPXXN7IhhXyBdUfk4+\ndKm2a+pbfaUi4w/0ZKMZRfzhYTuWmwpmSdFAVNFAxPXnupGYvbqs2q5PeRJgtl2vocdx78v+vTKR\nJf39i4/p28V/nfRoADCSdq+tZtdUMny8CwaWF7KqtKszuZoXOMi23dBz7rJAz7/JvFySWLsFAMAU\n5Zp5hfwhJYLxsR87bV8UWDTLYz82AADApI28u+TWW2/Vl770Jd1zzz2KxWLqdFjTAYyT0xDiNIZM\ng7NyKzdjQRDnauDlhazrz7WasAM9NfcDHkf1ZO4ZSdKd2Vde93bDMJSJLmm3WZBlWZMczRWl1uDN\nd+qYH0Rdj8/waS1xTpcau65+QGVZlgpmUUv2FULTFg8uSJLqHQI9wEG2a+cV9AWv++9PNBDRu+74\nSRmGoT995vOq8f0EYAaVW4OVQouhxLGO4wTrZ+19AnAjO7ULCvlDV7Rknl44pUwkrWcL32Z1JuYS\nf68BzDrLsrTbzCsbWXLlwtYUDT0AAGCOjBToyWazevDBB/XUU0/p9a9/vT74wQ9qZWXF7dmAE2Wj\nuiVJWp9moGfY0DNbq5p2G5Nr6FmJnZUhQ1vVHdef66ie3H1GhgzdmX3FvvfJRpdk9kw1us0JTuaO\nUqsiSa6s3JIGITpLlrZq7v2Z17sNtXvtmVi3JUlx++onAgjA/nr9ni7UL2oldkY+4/ovmW9J3qT/\n8ZY3qdQq63PP/tVchCgBzJdye/A66tgNPfbrcNZuwUt6/Z4uNnav+bfcMAzdkXm5ml1Tz5VfnOKE\nwPg9lXtW/+t/fZ/+6wuPT3sUANhXrVNXu9d27VxvOmwHekwCPQAAwPtGCvR8+MMf1p133qnPfOYz\nWlhY0Nramj784Q+7PRtwojgrf9YTq1ObIRZYUMQfUb45ayu3Bh8cuLFT+Wohf1CnY6e0VdtR3+q7\n/nyHVWvX9Vz5Bd2SXFcitH8lbTYyP1dRl52GntD4G3qkvVasTRfXbhXsNXYzE+gJDVZuEegB9nex\nsauu1btiRcf1vOmmN+ilqZfoidzT+sedf57QdAAwmrIdjE4e83WU01TmrMIFvOBiY1c9q6eV2Olr\nbruDtVuYQ9u18/rk059Tu9/R188/Pe1xAGBfbp/rTUfslVstVm4BAADvGynQE4/Htbi4qM997nP6\nvd/7Pd1yyy2Kx8e/2xQ4yTarW4oHY661kIxisKoprZw5W6uadpt5JUOLCvtDE3m+tfiKWr22cs3Z\naiqSpKfyz8qSpbuydxx4v722pdkKZx2F8+Y76dL3xvpEAj2DK4JmbeVWrU2gB9iP09p1Ln5wK6XP\n8Ol/eeXbFQss6K+/84h2ahcmMR4AjKTSHqzcGltDT8P7YXGcHDv1wb/JK/Gz19x2e/pWBXwBAj2Y\nG5V2VX/w5Kdk9lryGT69WNqa9kgAsK/cMNCz5MrxF0MJ+QyfSjT0AACAOTByQ88f//Ef69y5czp1\n6pQ+9rGP6ROf+ITbswEnRr3TUN4sai1xzpW9wYeRjSyp3WvPTHNHp99V0SxpecH9dh7HamLw4a2b\nK5iO6hu5ZyRJd2ZfeeD9nDfE89HQM7iy3Lm6ZtxOLSwr5A+drIYee+VWfUa+z4FZ5ARzbtTQI0np\nSEr3veJ/Uqff1Sef/pw6vY7b4wHASIYNPeHEsY6TiSzJkEFDDzzF+bd8JXbtv+Uhf0i3p27VTv0C\n6zjgeZ1eR3/45KdVMIv6kVvepJsX17VdvchrUgAzy+2GHp/hUyqcpKEHAADMhZECPV/60pf0p3/6\np3rHO96hd77znfr0pz+tRx55xO3ZgBNjcwbWbTkywyDIbLTT5JsFWbK0HM1O7DlX7TaGrepsBXo6\nvY6eKXxbpxayOhM7deB9M5HZ+nM8jpLT0OPSyi2f4dNqfEXn6xfV7rVdeQ4n0JOZkUBPLMjKLeBG\n9hp6rr2q/3ruXv43et25H9BO/YL+03f/1s3RAGBk5fYg0LN4zNdRQX9QqXBy+OEL4AU79fOSpJV9\nwrms3cI8sCxLf/bNv9TzlRf1fadfpX938w9pNX5Wfauv8/WL0x4PAK4rb5+vdCvQI0np/5+9Ow+P\n467TRf9W9b7vWluyvEq2bCckIQkECI4dEhKWkBBCFmfhDNvcYQbOnBlgzsC9c4aBuZdz+APuXBiY\nQ0JMErKQyQJJWBJCSFjihNiSJUuWF60tyb3ve9X9o7vadmJJLalW6ft5DMcXtAAAIABJREFUHj8E\nW131syW1uqve3/s1uZEsplDlqpKdgxBCCCFEDk0FelwuF7LZMzf9yuUyjdwiREST6VoVsjD6R0lC\nECRaUEcQRGiYCUj4Bu/NGoEelTX0jMaPo1QtLdnOA5xp6ImuiUBPCjaDFQadQbJzdDk6wYPHTGZW\nkuOfGbmljkAPjdwiZGkzmVl4TG5Y698vzbhpywfQZmvFb6dfaTSqEUKIkhoNPcbVNfQAQMDqR6KY\nRIkaH4hGhDJzcBjtcBjPf/1qh68XADAUHZVzWYSI6rnx5/Ha/CFsdG7AHX03g2EY1V7TIIQQQTgf\nBQNG0tH0HrMLPPhGwJ0QQgghRKsWDfR8+ctfxpe//GVwHIcPf/jD+Kd/+id87Wtfw4033gi3W7oX\nW4SIieM51dcMT9YberpU0NCjtiCIsAs4YJWvocdutMFtcmFawhFMKzFQvzm829+/5McadUY4jY41\nMnIrCbdJmnFbAiFMJ9XYrVghDgNrgL3ejKM0HauDRW+hhh5CFpAuZZAqpZtu5xEYdUZ8ov826Fk9\nfnz00caNdEIIUUqylIZVbxElGC0E7NfC60uy9hUqBUQLcXTaFv5Z3mL1o8Xqx0h8DGWuIuPqCBHH\n6/OH8bNTv4TX7MGndt/ZeK7vdNS+7qcl2rBCCCGrFclH4TW7oWf1kp3DY6rdv4rRaE1CCCGEaNyi\nr5guvfTSc/5X0N+/9M1kQtTioZHHMRgZxpcu/RvJQwErNZWegU1vlXRXQrOEkVtqaegJ5yMA5G3o\nAYAuRwcGI0eRKqXhFGFH82pxPIcjkWHYDTZscm1o6jF+ixfjqSlUuSp0rE7iFUojXymgUC3CZZJm\n3JagS4ZAj9fsBsMwkhx/JewGK7IU6CHkvIS2ruUGeoTHfGTz9Xh07EncP/ww/o8L/wtYpqlSTEII\nEV2ymIJbpNdRwuvxcD664AgjQtQiVB811G5vXfTj+n19+M3UyziROIU+71Y5lkaIKMZTkzhw9GGY\ndEZ8Zvfd51y36LC1gWEY1Y0RJ4QQAChVS0iV0uj1bJH0PJ76dfYEBXoIIYQQonGL3l34yEc+0vi1\nZ88eXH755bjssstwySWXoK2NLuAR9StzFbx++hDS5QweHn0CPM8rvaS3yJXziOSj6HJ0quJmv68+\nEiiajyu8kppwrrYDWMqZyufTqKhWyQWwyfQ0kqU0dvq2N31j2Gf2geM5xItJiVcnnWR97W6jtGG8\nNmsLDKy+0ZYlpmK1hGw5p5pxWwK7wYZMOafK50VClLaaQA8AXBl8J3b6tmMkPobnJ18Sc2mEENK0\nUrWMfCUPl1GkQE+9MVMI3BOiZrOZOQBAxyINPUAt0AMAQ9ERyddEiFjihQT+feBHqHBVfKL/9re8\nZjXqjOiwt2ImM0vv9wghqhOpt8JLfa3XU9/Yq+XrooQQQgghwBKBHsG3vvUt7N27F9deey1uu+02\nvO9978O3vvUtqddGyKodj59EsVoCAwYDkSG8ER5UeklvITSCdDuVH7cF1C78OIx21VTph/MROAx2\nWPRmWc8brDe2qGXm/GC4Nm5rV2BH049R2/i0lUjUx9W4zdIGenSsDp32DoSyc6LX7ccKtXCcGhq4\nzmY32lDlqyhUC0ovhRDVEQI9wRUGehiGwR3bb4bL6MBTJ5/DRGpKzOURQkhTUqXa6yixmg7Pbugh\nRO1msrVAT+cSbVJb3JtgZA0U6CGaUagU8d2Be5EqpXHT1g9ip3/7eT9ugyeIQrU2eo4QQtREeC0p\nXLeUitDQEy9SQw8hhBBCtK2pQM/PfvYz/Pa3v8V1112H+++/H/feey+8XmlfcBEihoFILQRxa++N\nMLB6PDL6BLLlnMKrOtdUphboEUb+qIHf7EWsmADHc4quo8pVES3EZW/nAdTX0DMQGYae1WO7d1vT\njxHGp0UK2r3pkhAaeiQeuQXUvgc5nkOofiNfLGcCPepq6LEZbACATEldz4mEqMFMZhYG1tBoo1gJ\nh9GOO3d8HBzP4d6hB1GoUHiOECKvZDENAKKNjxVek0dy2n1tSdaPUGYWDBi02xYfuWVg9ej1bsV8\nLtxohyVErTiew33DD2EmM4t3dVyG9wavWPBje9y1TWMzKtmkRAghgkhenjZ2j6ke6ClQQw8hhBBC\ntK2pQE9LSwvsdju2bt2KkZERXH755YhEqGabqBvP8xiMDMOit+Dy9ktw3carkS5n8PjYz5Re2jkm\nU9MAgG4VBXp8Fm9tVJPCb3hihVqoKGCVP9DjM3tg0ZtV0dATyUcRys6hz7MFJp2x6cf5zfVAz1po\n6DFJ29ADnPkenBJ57FasPqtbbYEeuxDoKWcUXgkh6lLlqpjLzqPD1tb0iMOF9Hm3Yl/3lQjno3jk\n2JMirZAQQpqTFLmhx6QzwmV00sgtono8zyOUnYPf4oWxifdPjbFbMWrpIer25IlnMRgZRq9nCz62\n7YZFx7YLgR61bFIihBCBcJ0yIHGgx2awwsDqqaGHEEIIIZrX1F0Ku92OJ554Av39/Xj66adx6NAh\npFIpqddGyKrMZGYRLybQ7+uFjtVhb9d70GXvwB/nXsPR2DGll9cwlZ6BVW+Bz6ye1ishCBItKBsE\nEW4WSP0G73wYhkHQ3oHTuQgKlaLs5z+b0DS129+/rMethZFbyUZDj/SBni7JAj21hh5hZ5BanAn0\nZBVeCSHqMp8Lo8JXlxzR0awPbroG3Y4g/jT3Ol6be0OUYxJCSDOSRXEDPQAQsPoQKyREH1FKiJhS\npTSy5Rw6bM39LO/39QIAjd0iqvb70Kv49eRv0WL14y923gEdq1v04zc0GnrEbaAlhJDVisg0coth\nGHhMbsQLFOghhBBCiLY1Fej5l3/5F8RiMVx22WXo7OzEV7/6VXz+85+Xem2ErMpgPQSxy78DAKBj\ndbh9+81gGRYPjfwUxWpJyeUBAPKVPE7nI+hydC66s0pujVFNCgdBhJnKAcvKR56sRtDRAR613Z1K\nGgzXvpZ3+rcv63EukxN6Rqf453E14vVAj5g3ohbSbmuFntFhUqJAj3obemjkFiFnE5rZOuujF1dL\nz+pxT/+tMOqMeGj0PzX9nEwI0ZZUqTZyy2UUMdBj8YMHjxg9lxEVC2Vq7986mgznes0edNjaMBY/\ngZIKrhMQ8mbH4ifw0OjjsOmt+Ozue2A1WJd8jNvshMNgV0XrMCGEnC2Sj8JmsMKit0h+LrfZjUw5\ni3K1LPm5CCGEEEKk0lSgp7W1FZ/4xCcAAF/60pfw1FNP4frrrwcAfPrTn5ZudYSswmDkKFiGxQ5v\nb+P3uhyd2Nv1HkQLcfzs5C8UXF2NUH3cpaJxWwAabUGqaehRYOQWAATrN3OnRQ54LEe2nMPx5Cn0\nOLuXHWphGRY+ixeRQlSi1UkvWUzCwOph0y99wXK19KweHfY2hDKzqHJV0Y4bKyTAMizcMoSSlsNu\nrAd6SjRyi5CzCTcBxWroAYAWawC3bLsBhWoB9w09JOpzDCGELORMQ49DtGMKzZlC8J4QNRI2ZHTY\n25t+TL+vD2WugmPxE1Iti5AVOZ2L4D8GD4ABg0/u2o8Wa6CpxzEMg057O6KFOPKVvMSrJISQ5nA8\nh2ghDr9MbeyeeuO3sGGQEEIIIUSLmgr0LGZ+fl6MdRAiqkQxiYn0FLa4N8FqODftf93Gq9Fi8eM3\nUy9jPDWp0AprhCaQbrUFelQyqimcU7ihRwj0KLijbSg6Ao7nGk1Ty+WzeJEt55CvFERemTwSxRRc\nJpdsDVZdjk5U+CpCWfF+tsUKcbiMziUr0eVmqzf0ZKmhh5BznGnoaf4mYDMua7sYF7dcgFOpCTwz\n/mtRj00IIecjBHqcYjb0WGuvyynQQ9Ss0dDT5Mgt4OyxW6OSrImQlciVc/jewL3IVnL4eO+N2OrZ\nvKzHBx21axozGWVbhwkhRBAvJFHlq42QuNS8ZjcAIFGksVuEEEII0a5VB3rUNCaIEMFQZAQAsPs8\nIQijzoDb+m4CDx4PHH0MFa4i9/IaJtPTAIAuR1CxNZyPx+QCy7AqaOiJwqq3wNZEnbQU2mwt0DM6\nTKeVmzk/UB8dd76v5Wb4zbU3yEqHs1aiylWRLmVkbbYRvhenRGplqnJVJIsp1Y3bAs4euZVVeCWE\nqEsoMwuPyd3UKIPlYBgGt/bdCJ/Zg1+Mv4AxagAghEgsWUrBorfAqDOIdswzDT0R0Y5JiNhC2Vno\nWf2ybhZucvXAojdjKHoUPM9LuDpCmlPlqviPIz/GfC6Mfd1X4p0db1/2MYSAutAOTQghSovUQ+Hy\nNfTUAj3xAjX0EEIIIUS7Vh3oIUSNhBDELv/28/75Vs9mXNFxGULZOfxq4kUZV3auqfQMLHqzbLsS\nmqVjdfCY3IqGQDieQzQfVaydB6iNYGq3tSKUFXcEU7PKXAVHo6Pwm71ot7Wu6Bg+Sy1IElE4nLUS\nqVIaPHi46/W4chDassQK9MSLSfDgVR7ooZFbhAjSpQySpbTo7TwCi96Cu/tvA8MwuG/4J9SQRQiR\nVKqYXvbI1qUIN1+EJk1C1IbjOcxm59FubVlWQ6aO1aHPuw3RQhzzubCEKyRkaTzP45FjT2A0fhy7\n/Dvw4c3vX9FxhNbhGQVbhwkh5GyNQI/ZK8v53PWGnliBGnoIIYQQol0U6CFrTqlawmh8DO221kXT\n/h/Zch1cRieeG38ecyKO12lWoVLA6VwEQXuHKpuufBYvkqU0StWyIudPFJOo8FUErMqGnYKOTpS5\niiIXdcfiJ1CoFrErsGPFXyPC90BEg2MRhPnWYt+IWkyHrQ0sw2Kq3p61WrFCHADgq19AUBOL3gyW\nYZEpUaCAEMFMptbIJlWgBwA2uTbgup6rkSgm8eDIY9QCQAiRRLlaRraSg8voEPW4Fr0ZDoOdGnqI\naoXzUZS5CtrtzY/bEvT7+gDUxh4ToqQXp1/By6E/odPejrt33AqWWdnl21ZrAHpWr+gYcUIIOVtY\n9oae2ibBOI3cIoQQQoiGrTrQQzchiNqMxMZQ5irYtcSIIoveglt6P4IKX8UDI4+B4zmZVlgznZkF\nDx7dKhu3JfDXG0ViCjW7CLt+lW4vEna0KXEBbLAxbqt/xccQdrxoceRWoh7okbOhx6AzoN3WiumM\nOK1MQqBHjQ09DMPAbrAhSyO3CGmQI9ADANf07MEW90YcCh/BK6E/SXouQsj6lCqlAUgTjA5YfYgW\n4oo0WBKylNnMHIBaUH+5dnh7AVCghyjrSOQofjr2NJxGBz67+x6Y9aYVH0vH6uqtw/P0nE0IUQWh\nQVyuDZye+gY7CvQQQgghRMtWHei54YYbxFgHIaIZjBwFgCUDPQBwQaAfb2vZjZPJCbw08wepl3aO\nyXoDiDDiR218jWYXhQI99V2/So7cAoCgox7okXnmPM/zGIgMw6q3YLOrZ8XH8VlqgR6lPo+rkSym\nAMgb6AGALkcnylxZlFYmNQd6gNrYrTQFeghpkCvQwzIs7t5xK6x6Cx4bexqzCjQFEkLWtmSp9jrK\nZZQg0GPxg+M5Gl1AVGkmWw/0rOBnucvkQLejE8cTp1CoFMReGiFLmsnM4t6hB6FndfjM7rsbN6JX\nI2jvQEWh1mFCCHmzSD4KA6uHU+QWyYVY9GaYdWYkCklZzkcIIYQQIoWmAj2/+93vcOONN2Lfvn3Y\nu3cvrrrqKuzduxcAcPfdd0u5PkKWheM5DEaHYTfY0OPsauoxH9v2YVj1Fjx14tnGzXc5TKVnAABd\nTnU39ERl/Dc5m1DBqvTILeGm7pTMDT1TmRkkikn0+7ZDx+pWfByL3gy7wYaoQk1Lq6FEQw+ARmuW\n8D26GsKNLq8KR24BgM1gRb6Sp92ahNTNZGZhYA1osUofJvWY3bi976Moc2XcO/QgygqNuCSErE3J\nooQNPfXgP43dImoUqjf0dK5g5BZQG7tV5asYjR8Xc1mELCldyuB7A/ehUC1i//ZbsKHJa1pLEa5p\nCMF1QghRCs/ziOSj8Jm9Kx4luBIes4saegghhBCiaU29cvra176Gz33uc7jvvvtw//3348CBA7j/\n/vulXhshyzaZnka6lMFO//am3xg4jQ7cuPWDKFZLeGj0cdnGyE2mZ2DWmRQfKbUQodlFqVFNjUCP\nwg09Fr0ZAYsPM+mQrCMGB8L1cVuBpZumluKzeBHNx2QfK7daZwI94t+IWkxXvTVLnEBPLRDnUWtD\nj9EOAMhWcgqvhBDlVbkq5rLz6LC1yXZx8cKWXbii4zLMZGbx5IlnZTknIWR9EJoOpdj9fCbQExX9\n2ISsVig7C6vesuJ2qn5fHwAau0XkVa6W8e8DP0KsEMcHNr4PF7deINqxlRwjTgghZ8tV8shXCvDL\nfC3cY3IjXylQ+x4hhBBCNKupuxUejwd79uxBMBhEZ2dn4xchajMohCCaGLd1tsvbLkafZyuGo6M4\nOP+GFEs7R7Fawnz2NIKODll3JCxHY1STQs0u4VwEZp0JdoNNkfOfLWjvQLaSk3U3x2BkGHpGhx3e\nbas+lt/sRYWvNm7saEWymAIDRpJREYsJ2tvBgGmMxVuNWCEOh8EOo84gwsrEJ3x/ZUo0douQ+VwY\nFb664h39K3XT1g+i1dqC30y/jCP1saGEELJajZFbUjT01FvMqKGHqE2pWkY4F0W7rQ0Mw6zoGBuc\nXbAZrBiKjsq6oYOsXzzP48cjj+JUagKXtF6Ia3v2inp8aughhKhFpLF5U+ZAj7nW/B0v0tgtQggh\nhGhTU0mCiy++GN/4xjfw8ssv4+DBg41fhKjNYPQo9KwefcsMQTAMg1v7boKRNeCxsaeQLmUkWmHN\ndDoEHnxjtI8aOQx2GFmDIg09PM8jnI/Cb/Gt+EKsmIL1xpbptDw72qL5OKYzIWz1bIZZb1718Rrh\nLIXallYqXkzCbrStauTYShh1RrTZWjCVCa2q1YjjOcQLCXhV2s4DAHaDFQCQKVOghxBh13JnfRez\nXEw6Iz7Rfxv0jA4Hjj6iufAlIUSdhOcSKYLRjYaeHDX0EHWZy86DB7+qcC7LsNjh7UWimEQoOyfi\n6gg5v+fGX8Br84ew0bkBd/TdLPo1EKvBAp/ZI9v1DEIIWYjQ7ihcp5SLx+QGAMQLNHaLEEIIIdrU\nVKBnYGAAw8PD+Pd//3d8+9vfxre//W185zvfkXpthCxLNB/DTGYWvZ4tMOmMy3683+LFBzddg2w5\nh8fGnpJghWcIo3yE0T5qxDBMbVSTAg09yVIKZa6smnFkwfqOtimZKqoHo0LTVL8ox/Mr3La0EjzP\nI1lMwmNyKXL+LkcnStUSTudWvvM8XcqgwlfhNbtFXJm47IbayC0K9BAChDK1m3ZyN/QAQNDRgRu2\nXI9MOYsDRx/R3IhEQoj6pEppAIDLJP7ILavBCpveSiO3iOoIAZyOVf4sb4zditDYLSKt1+cP42en\nfgGv2YNP774LBomaXTvtHUiXM0gW05IcnxBCmqFUQ4+7fl1OzuZ1QgghhBAx6Zv5oAMHDki9DkJW\nbbA+pmKXf/uKj/HernfhtdOH8dr8Iby99W3YuYpjLUYY5dOt4kAPAPjMXsxm55Er52CtN3nIQdjt\nK9T5K00IXs3ItKNNGB23mq/ls/nNtTfKUQ3ddMlV8ihzFbgUCvR0O4J4de7PmErPoM3WsqJjxApx\nANBEQ0+WAj2EnNXQ067I+d8bvALDsVEMR0fxwtTvsK/7SkXWQQhZG5LFFCx6M4wr2OjQDL/Vh5l0\nrc1QrSOEyfojhHM7bKv7Wb7dtw0MGByJHsX7evaIsTRC3mIiNYUDRx+GWWfCZ3ffA4fRLtm5gvZ2\nDESGMJ0JwWXqlew8hBCyGKE53C9zoMfbaOihkVuEEEII0aamrry99tpr+OxnP4u77roLd955J+64\n4w5cddVVUq+NkGUZjNRCEDt9Kw9BsAyL2/s+CpZh8ZPR/0ShUhBreeeYSs/AqDOixRqQ5PhiUWpU\nU1ihHRsLcRodcBjssjT05Ct5HEucQLejEx6Rml38Ghy5lajPtXYr2NADnGnTWgktBHpsRhsAIFOi\nQA8hocwsPCa3rAHWszEMgzu33wKH0Y6nTjyHydS0IusghKwNyVIKTgnGbQkCFh8qfJVujBBVOdPQ\n07qq49gNNvQ4u3EyOYFcOSfG0gg5R7yQwPcG7kOFq+Ke/ttW3Sq1lE5HbaTsjEytw4QQcj6RfBQM\nGPhkvk7mMdeuLVJDDyGEEEK0qqlAzz/+4z9i3759qFaruP3227Fhwwbs27dP6rUR0rR8pYCxxEl0\niRCC6LS345oNexAvJvDkiedEWuEZpWoJs9l5dNk7VL+b1V9/gyX3qKZwvjbmSC2BHoZhEHR0IFaI\nS35Bdyg6Co7nsMu/Q7Rjuk0usAyryPi0lUoUUwAAt0m6G1GLCdrbwYBptGmtRKw+m5tGbhGifulS\nBslSWrF2HoHDaMdd2z+OKl/FvUMPolApKroeQog2lbkKsuUcXBK+jgpYak2awut2QtRACOda9JZV\nH6vf1wcePI7GjomwMkLOKFSK+O7AvUiV0rhp6wcla4Y+W9BeC/RMy9Q6TAgh5xPOR+EyOSUbL7gQ\nd6OhhwI9hBBCCNGmptIEZrMZN910Ey699FI4nU587Wtfw8GDB6VeGyFNOxo7hipfFS0EcU3PXrRZ\nW/C7mT/gRGJclGMKZjKz4MGj2xEU9bhSEBp6oko19Khk5BZw1gWwzKyk5xGapnb7+0U7po7VwWty\na6yhp/YmW6mRW2a9GS1WP6bqoyRWQgsNPcLILQr0kPVupv7crnSgB6iN+djb9R6czkfw2NhTSi+H\nEKJBqWIaAOAyOiQ7hxC8D2topCtZ2zLlLJKltGhNJ/3+2liioeioKMcjBAA4nsN9ww9hJjOLd3Ve\njvcGr5DlvD6zB2adufGalxBC5FaulpEsphTZvGnUGWA32KihhxBCCCGa1VSgx2QyIZFIYOPGjTh8\n+DAYhkEuR7XDRD0GwrUQxC6RdjYZWD1u3/5RAMADI4+hXC2LclwAmKyP8BFG+qiZMNM4Wg8myCWS\ni8DAGuCU8CbEcgUdwo62lY9gWkqVq2IoOgKv2SP6TWW/xYdUKY1StSTqcaWidEMPUPseLVQLiOZX\n9vWvjUAPjdwiBFBXoAcAPrT5WnQ5OvGH2YN4ff6w0sshhGhMslR7HSVpQ4+VGnqIuoQy9XFbNnEC\nPUF7B5xGB4aiIysO+BPyZk+eeBaDkWH0erbgY1s/DIZhZDkvwzDotLdjPhdGScTrW4QQ0qxoIQ4e\nfONas9w8JhfihSR4nlfk/IQQQgghq9FUoOfuu+/GF77wBezZswdPPPEErr/+euzcuVPqtRHSlCpX\nxXB0BG6TC1128UIym1w9eE/wHZjPncZzEy+IdlxhhI8WAj3CTGM5G3p4nkc4H0XA4lPVSLIuGRp6\nxhInka8UsMu/Q/QLe0LbklZaepLFJIDaG26lCN+jKx27FSskYNaZYTWsvvJfKgadASadEVlq6CHr\nnNoCPXpWj3t23Aoja8BDoz+VvSmPEKJtqXowWo6GnkiOGnqIOoSy9UCPSA09LMNih68XmXIWUxJu\n6iDrx+9DB/Hryd+i1RrAX+y8AzpWJ+v5g4528OAxW/9eIYQQOUXqrY5KBXrcZjfKXBnZCm1SJ4QQ\nQoj2NHW3/P3vfz9++MMfwm634/HHH8c3v/lNfPOb35R6bYQ05WRyAtlKDjv920UPQXxo07XwmNz4\n5cRvRKsmnkrPwMAa0GZrEeV4UjLrzbAZrIgU5LtQnylnUagWFalgXUzA6oeRNUh6MXegMW5LnNFx\nZ/ML49MK2rgpLDT0KDVyCwC664GelX7OY4UEvGa3mEuShN1gQ6ZMFzTI+jaTmYWB1aNFRaMeW20t\nuHnbDchXCrh36CFUuIrSSyKEaESyVB+5JWFDj91gg1lnppFbRDWEhh4xw7n9vj4AwJHoiGjHJOvT\nWPwEHhr9KWx6Kz6z+x5Y66OP5dQYI54OyX5uQggJNwI9XkXO7zHVrs/FC0lFzk8IIYQQshpNBXqS\nySS+8pWv4M4770SxWMSBAweQTqelXhshTRmMSheCMOvNuLXvRnA8hweOPrbqqu1ytYzZ7DyC9g5V\ntc8sxmf2IpaPy1Yz3niDZ1VXoIdlWHTaOzCXOy3qCDYBz/MYjAzDojdjq3uT6McXdsBopaEnUUzC\npDPCojcrtoagfeWBnlw5j0K1oIlAj81gQ6acodphsm5VuSrmsvNot7Wp7mfzO9ovwcUtF+BUagKP\nH/+50sshhGhEsh6MdhqlC/QwDIOA1YdwPkrjiIgqhDJzYBkWrdaAaMfc7t0KlmExRIEesgqncxH8\nYPAAGDD45K79igXIhbCblK3DhBCyEKGhR6kNnB5zbcNgophQ5PyEEEIIIavR1F2Lr3zlK9i1axcS\niQRsNhtaWlrwd3/3d1KvjZCmDEaGYdQZsc29WZLj9/v68PbWt2EiPYXfTL28qmPNZGfB8Ry6neof\ntyXwW7yo8FWkSvKE+MK5CAAgYFFPS4Ig6OgAx3OYzc6LfuxQdg6xQhw7vL2SVG/7zfWGHo0EepLF\nFNwKtvMAgNVggd/iw1R6Ztlhl1ghDgDw1sfWqZndaEOZq6DEiR9UI0QL5nNhVPgqgioZt3U2hmFw\nW99H0WZrxW+nX8Grc39WekmEEA1IloSmQ+kCPUDthkyZK8v2PoGQhfB8bYxQizUAPasX7bgWvQWb\nXT2YTE0jXcqIdlyyfuTKOXxv4F5kKznc2nsjtnqkuW7VDCG8Pp2hhh5CiPyEDYZKjdw609BDgR5C\nCCGEaE9TgZ7p6WnccsstYFkWRqMRX/jCFzA3RzOXifLms6dxOhfBdu82GHQGyc7z0a0fgt1gw9Mn\nf9HYUbASk6la00eXIyjW0iTnqwdB5Gp2CSu8Y2MxXUJFtQQXwAbCQwCA3YF+0Y8NAL56pa2c49NW\nqlwtI1POKjpuS9Dl6ES2kkNsmW/4NRXoMdgAAJlSVuGVEKIMYaTesuwxAAAgAElEQVRmhwoDPQBg\n1pvwqV13wqwz48GRn2KKxiQQQpaQLMoV6KkF8IVAPiFKiRXiKFSL6LS1iX7sfl8fePAYjo6Kfmyy\ntlW5Kv7jyI8xnwtjX/eVeEfH2xVdj1FnQIs1gFBmlprVCCGyi+SjsOgtsCkwchAAPPUG7XiRRm4R\nQgghRHuaCvTodDqk02kwDAMAGB8fB8uqayQBWZ8Go0cBALt82yU9j91ow0e3fghlroyHRh5f8Wga\nYXRPt0M7DT1CEESuZpdwXt0NPQAkuZk6EBkGy7DY4e0V/dgAYNVbYNGbNTFyS9hV7lFBoEf4Xp1K\nTy/rcUIASAsjtxqBnjLtOibrkxDoUWNDj6DVGsBdO25BmSvjB4P3I1vOKb0kQoiKpUppmHVmmHRG\nSc8jBPDDq9jwQIgYQtnahrMOuzSBHgA0dossC8/zeOTYExiNH8dufz8+vPn9Si8JQO31bqFaRDQf\nV3ophJB1hOM5RAox+OvXmJUgXGOkhh5CCCGEaFFTqZzPfe5z2L9/P0KhEP7yL/8St912Gz7/+c9L\nvTZCljQYGQYDBjv90gZ6AOCS1gvR7+vDSHwMf5x9bUXHmEpPw8Dq0WZtEXl10hFGNUUK8jX06Bld\nY7axmkhVUZ0oJjGZnsY292ZYDRZRjy1gGAZ+sxeRfGzFgTS5JGTaVd6MrkagZ2ZZj9NSQ4+tEeih\ngABZn4Tn9E4VB3qAWoPbtT17ES3EcN/QQ7SzmhCyoGQxBZfJIfl5AtZ6Qw8FeojCQpl6oEeChp52\nWys8JjeOxo6hylVFPz5Zm16d+zNeDv0JnfZ23LXj42AZdWyKDNZbh2do7BYhREbJYgoVrqLYuC0A\ncJtcYMAgXqRADyGEEEK0p6l3lDt37sS+ffsQDAYxOzuLq6++GkeOHJF6bYQsKlPO4kRiHD3ObjiM\ndsnPxzAMPt77EZh0Rvz0+M+QLKaX9fgyV0EoO49Oewd0rE6iVYrPZ6kFEuRq6InkovBZvKq54HU2\no86AVmsAM5mQqDdSByPDAIBd/h2iHfN8fBYfylwZqZK6m1gS9fpbtwoaeoRAz+QaDvQ46oGebJlG\nbpH1KZSZhcfkhlWh6u/luH7j1djh7cVwbBTPnPqV0sshhKhQhavURpcapQ9GNxp6aOQWUdiZhh7x\nw7kMw6Df34dcJY/x1JToxydrT5Wr4uenfgU9q8end90Ns96k9JIaghKOESeEkIUIbeEBBQM9OlYH\np9GBeIFGbhFCCCFEe5q6Y/7JT34SoVAIe/bswd69exEIBKReFyFLGo6OggeP3RKHIM7mNXvw4c3X\nIV/J49FjTyzrsaHMLKp8VVPjtoDa35kBg6gMDT3Zcg7ZSk7RN3hLCdo7UKyWEBFxJ/JAWJ5Aj1Bt\nGy2oexf1mUCP8g09doMNXrMHk+npZTUbxQoJ6BmdLGHD1bIZ6w09Kg96ESKFdCmDZCmt+nYeAcuw\nuLv/VvjMXjw7/jwGwkNKL4kQojKpUm3TgVOGhh6n0QEja6CGHqK4UGYOJp1RsnG3O2nsFlmGg/Nv\nIFqI4Z3tlzY2SKlFp6P2mne6PnKWEELkIFxDFVrgleIxu5EoJqntlhBCCCGa03QFxte//nX81V/9\n1Tm/CFHSgNBqEpAv0AMA7+68HJtcPXgjPIhD4eabqoSRPV2OoFRLk4Se1cNtcskyY114gxew+CU/\n10oFHbUdbVNpcXa0FSoFHIsfR6e9XfKLfUKgJyJT29JKqamhB6i19GTKWSRLqaYfEyvE4TG7Vdk0\n9WZ2GrlF1rGZ+s0MrQR6AMBmsOJTu+6EgTXgR8MPYz4XVnpJhBAVEVpE5RhdyjAMAlY/wvmI6ke6\nkrWrwlUwlzvdGI8shW2eLdAzOgr0kCVxPIdfjL8AHaPD+za8V+nlvIXT6IDT6Gi8BiaEEDk0Aj0K\nb+D0mFyo8lWkaUMbIYQQQjSmqasd+/btw6OPPoqpqSmEQqHGL0KUUuEqOBodhd/sRZu1RdZzswyL\n2/s+Cj2jwyOj/4lcOd/U4yYbgR5tNfQAtbFbiWISZa4i6XmEun6/Vd0NPYB4FdXDsWOo8FXs9veL\ncrzF+Oo7YeQan7ZSiWItOCPHjahmCK1ak6nppj6+VC0jXc5oYtwWcHagh0ZukfVHi4EeoBYuva3v\nJhSqBXx/8H4UKkWll0QIUQkhgCzHyC2gNjqhWC0hXaYbI0QZ87kwOJ5Dh61NsnOYdEZs9WzGdCbU\n2HxAyPm8Pn8Yp/MRXN5+CTwSNUatVqe9HbFCHDna0EEIkUmk3vqueKCn/rwcLyYUXQchhBBCyHI1\nFehJp9P4+te/jrvuugt33HEH7rjjDuzfv1/qtRGyoLHESRSqRewK7ADDMLKfv83Wgmt79iFZSuM/\nj/+8qcdMpaehZ/XosLVKvDrx+cxe8OARL0jb0hPWUEOPWIGewXrTlByj47TS0JMsJsEyLJxG6UdF\nNEMI4QktW0sRvk8o0EOI+mk10AMAl7ZdhCuDV2AuO48HRh6ldgxCCAAgJXMwWnjdHs7R2C2ijNnM\nHACgwy5doAcA+utjt4ajo5Keh2gXx3N4bvx5sAyL923Yo/RyFiRsUqKWHkKIXML5KHSMDh6zsk3c\nnnoTeLxA4VxCCCGEaEtTgZ5f/vKX+MMf/oAXXnih8ev555+Xem2ELEgIQezyyTtu62xXb7gSHbY2\n/H72VRyLH1/0YytcBaHMHDpt7dCxOplWKB6fRWh2kSvQo96GHrvBBo/JjWkRRm5VuSqGIiNwm1yy\nNDd5zR4wYBApqPuGS6KYgtPoUM24KuFzM9lkoCdWqO308ap0R+abWQ0WMGCQKVGghywumo/j0WNP\nolApKL0U0cxkZmFg9WixqjdIupgbt1yPza4e/Pn0AJ6feknp5RBCVCApBHpkCkYLr9vD+Ygs5yPk\nzWaytUBPp+SBnl4AoLFbZEGHwkcwlzuNS1svamymUaNgPcg+TYEeQohMIvkofGaP4tf53NTQQwgh\nhBCNaupVVFdXF5JJSi4TdeB5HoORo7Dozdji3qjYOvSsHndsvxkMGDww8lOUqqUFP3Y2O48KX0WX\nU3vjtgDAXx/VJFSkSiWcj4BlWPhU3mwSdHQgVUojWUyv6jgnk+PIVnLY5ZenaUrP6uE2uVTd0MPx\nHJLFFNwmZXftnM1pdMBtcjXd0BPTWEMPy7CwGazIUkMPWcJvZ17Bi9Ov4OD8IaWXIooqV8Vcdh7t\ntjbFLyyulJ7V47/svAMuowNPHH8Go7HFA8aEkLUvWaq9PnXK1dBjFQI96g6Mk7UrJDT02KRt22ux\nBhCw+DASG0NF4lHURHuEdh4GDK7pUW87DyB+6zAhhCwmX8kjW84pPm4LADymeqCnQIEeQgghhGhL\nU3cvGIbB9ddfj1tvvRV33nln4xchSghl5xArxLHD26t4280GZxf2dL0LkXwUPz/1qwU/bjI9DQDo\ntmsz0HOmoUfqQE8UXrNH8c/rUoSK6tVeABuQcdyWwG/xIllMoVwty3bO5ciWc6jyVbhlugnVrC5H\nB5KlVFMhLq0FegDAZrDRyC2ypPHkFABgJDam8ErEMZ8Lo8JXG7uUtcplcuIvdu0HwzD44dADdHGS\nkHVO/oYeYeQWNfQQZYSyc3AaHbAbbZKfq9/Xh0K1iJPJccnPRbRlMDKMmcwsLmm9EC3WgNLLWVTA\n4oeB1WNGhNZhQghZirCpUBWBnvrIr3iRNq4TQgghRFv0zXzQZz7zGanXQUjTBhUIQSzmA5uuweHw\nEJ6ffAkXt1yAbmfwLR8jjOrRbEOPRfqGnkKlgHQpg6C3Q7JziKWrvqNtJh1qVK8vF8/zGIgMw6wz\nYatns5jLW5Tf4sNY4iRihThabS2ynbdZQu2tS0UNPQDQ5QhiMHIUU+lpuEzbF/3YaGPklnYCPXaD\nFadzYXA8p9mmEiKtKlfFVD2ceix+fE18rczUxwx0aDzQAwCbXD346NYP4ZFjT+AHgwfwhYs+A4PO\noPSyCCEKSJZSMOmMMOvNspzPZXJCz+qpoYcoIl8pIFaIo8+zVZbz9fv68OL0KzgSHcE2zxZZzknU\nj+d5PFtv57m25yqll7MkHatDh60dM5kQqlxV9RuqCCHaJrxGDKhgFKHT6ADLsEjQJhhCCCGEaExT\nd2IuvfTS8/4iRAkDkWGwDIsdKwxSiM2kM+K2vpvAg8ePRx5Flau+5WOm0jPQMzp02NoUWOHqOY0O\n6Fm9pA094fqxhV2+aiY09ExlmhvBdD6z2XlE8lFs9/XCwDaVrRTFmXBWXLZzLoewq9yjskBPt6MW\nxptqYhdjrBAHA0Z1f4fF2I128OCRq+SVXgpRqVB2HiWu1uyVq+SbHkGnZkKgR+sNPYL3dL4Dl7Vd\njIn0FB4de1Lp5RBCFJIspuCSsemQZVj4LT6E8xHwPC/beQkBgNlsfdyWXZ732Vvdm2BgDRiKjspy\nPqINQ9ERTKVn8LaWXWiztSq9nKZ02ttR4auYy51WeimEkDUuUg/0+FTQ0MMyLNwmFzX0EEIIIURz\ntL21mqw7yWIaE6kpbHFthNVgVXo5DX3erbi8/RLMZGbx68nfnvNnVa6KmcwsOuxt0MsY3BATy7Dw\nmT2IStjQE87XavoDVuXf4C3Fa/bAoresauSWUk1TPrMwPk2du6gT9TfVct6IakZXI9AzveTHxgpx\nuExOTe10tNefT7MlGrtFzm88NQEAjR3wo7HjSi5HFEKgp3ONBHoYhsHHe29E0N6BV0Kv4pWZPym9\nJEKIzKpcFZlyFi6jvK+jAhYf8pUCspWcrOclJJSpB3pk2jhj0BnQ69mCuey85OOoiTYI7TwAcG3P\nXoVX07yg0Dpcfz1MCCFSiTQaetRxvddjciNZTJ13Qy4hhBBCiFpRoIdoypFoLQSxy7/4yBsl3LTl\nA3AY7Xhm/NeYz57Z5TSbnUeFqzQCAVrlM3uRLedQqBQkOX4kp643eIthGAZBezvCuSgKleKKjiE0\nTfX7+kRe3eIaDT0qvQCdqDf0uFXWbuMyOuEw2hvj8xZS5apIllKaGrcFADaDDQCQLlOgh5zfeHIK\nAHBNzx4AwEh8TMnliGImE4LH5FZVQHi1jDoDPrnrTlj1Fjxy7AmMpyaVXhIhREapUhqA/MFo4fV7\nOKfOwDhZu0IyN/QAaLx/o5YeAtReE4+nJnFBYKemQuLCWqebaKAlhJDVEK4/+lUwcgsAPGYXePBI\nllJKL4UQQgghpGkU6CGaMhg5CgDY5e9XeCVvZTVY8bFtN6DCVfDAyE/B8RwANAIAXY6gkstbNV/9\njVdUolFNjYYeDYzcAmo72njwCGWXv6MtWUxjPDWJza4e2GS+keyv33CJSNi2tBpCQ49bZQ09DMOg\ny9GJeDGBzCItNoliChzPwWt2y7i61XPUAz1ZCvSQBYynJmHWmbDFvQmd9nacSI6jVC0rvawVS5cy\nSJbSmrrx0iy/xYt7+m9Dlefwg8EDSJcySi+JECIT4caE0+iQ9bzC63fh9Twhcgll5sCAQbuMY476\n66O/h6Ijsp1zNapcFU8cfwZPnXgOh8NDjfdbZPV4nsezp34NALi25yqFV7M8wmtgaughhEgtko/C\nZXTAqDMqvRQAtYYeAIgVEgqvhBBCCCGkedqc/0PWpVK1jJHYGNqsLaody/S2wC5c4O/H4cgQXgn9\nCe/ufAem6oGebs039NQaRyL5qCQ3QMP5KBgwjeCQ2nXZhRFMIWxy9SzrsUcUGrcFAHaDDUadsVF5\nqzaJghDoUVdDDwB0O4IYjo5iKj2D7b5t5/2YeLF2QUCrDT0ZCvSQ88hX8pjPhbHVsxksw6LPsxUz\nmVmcTI6jz7tV6eWtyFobt/VmO3y9+MCma/D0yefwwyMP4K8u/AtNjQFUg2K1BCNrAMMwSi+FkKYl\niwo19NTfm4VV+vqSrE08zyOUmYPf4pX1JqHP4kWbrRWj8eMoV8sw6AyynXslfnbql/jV5Ivn/J7L\n6ESPswvdzi5scAaxwRFcU42FchlLnMSJ5Dh2+vrQrbENXBa9GX6zF9OZEHiep9c7hBBJVLgKYoUE\nNro2KL2UBk99A16CAj2EEEII0RAK9BDNGI2PocyVsUuBEESzGIbBx3pvwLHECTxx/Bns9G3HVHoa\nLMOiQ+M3DRsNPRKNagrno3CbXDCw2nhaEmbOr6SieiAijI6Tv2mKYRj4zV5E8zFVXrhLlFKw6C2q\n2blzNmFs3mKBnli9wUprgR67sR7oWaR9iKxfE6lp8ODR4+wCAPR5t+L5qZcwEhujQI+KvW/DezGZ\nmsLhyBCePPksbtzyAaWXpBnxQgL/44/fxNtadmP/9o+p7mclIQtJ1keXuoxyj9yqN/TQyC0io2Qp\nhWwlhy2eTbKfu9/Xi+cnX8KxxMlGY48ajcaO41cTL8Jv9uLmbR/GdCaEidQ0JlKTOBwZwuHIUONj\nWyx+dDuD6HF2Y4MziKC9E0aVh5WU9uz48wCAa3v2KbySlel0dOBw+AiSpZQqN9QQQrQvVoiDB98Y\nz6oGnvrzXZwa6wghhBCiIdq4c04IgMFGCEK9gR6g1izykS3X48GRn+Ino49jOjOLDlubZoIqCxFm\nHUckGLlVqpaQKCaxzbNF9GNLpc3aAj2jw3RmZlmPK1ZLGI2Pod3WqljTlN/iQyg7h2wlB3u9mUUt\nksVko/5WbYRWpsn09IIfcybQo86/w0Ls1NBDFnEqOQkA6HF2AwA2uzdCz+gwEh9Tclmrsh4CPSzD\nYv+OWzD72rfx/ORL2ODowsWtFyi9LE04FD6CElfGn+ZeR4vVj2t79iq9JEKakqqP3JK7ocdjckHH\n6BChkVtERqHMHACgw9Ym+7l3+vrw/ORLGIqOqDbQkyln8aPhn4BhGNyz8zb0OLux07+98eeJYhIT\nqSmMp6YwmZrGRHoKr80fwmvzhwDUXkd02NrqDT5d2ODsQrutlRr/6k4kxnEsfhzbvduw0dWt9HJW\nJGhvx+HwEUynQxToIYRIIlLfFOpXURu70NAjNGwTQgghhGiBthMGZN3geA6DkaOwG2yauFjyzvZL\n8drcIRyJjgDQ/rgtAPCbpWvoEd7gqWnHxlJ0rA7t9jaEsvOoctWmL2yOxI6hzFWwW4F2HoHPUmuP\nieZjqgr0FKsl5CsF9DjlvQnVLK/ZDZvB2hijdz6abeipfx1kyzmFV0LUaDx1bqDHpDNio2sDjidO\nIVPKNhqetGQmMwsDq0eL1a/0UiRl0ZvxqV134f957Tv48cijaLe1osMu/41PrRFC5C6jE0+f/AXa\nrC24sGWXwqsiZGlnGnocsp5Xx+rgs3ho5BaRVShbD/Qo8HNtk6sHZp0JQ5Gj4Ld+SHVNbjzP48Gj\njyFZSuFDm65tvIY7m9vkgjvgwgWBnQBq11zC+Sgm6gGf8dQUpjMzmM6E8ApeBQAYWAO6HB3Y4Oxq\nhHwCFp/q/v5yeHb81wCg6dBvp73WOjyTmT0n7EWI2pW5CgqVAvKVAgrVAgIWPyx6s9LLIucRqb82\n9Kvoeq+wiTBeoIYeQgghhGgHBXqIJkylZ5AqpXFZ28VgGVbp5SyJYRjc2ncTvv7qt1DmKujS2Dz1\n87EarLDozYgUxA/0hOu7ebUU6AGALnsHptIzmM+Fm76QPBBWvmnKb679O0fyUWyoj9BRg0S97lat\nuwMZhkGXvRMj8THkyjlYDda3fEysPoNba4EeWz3Qky5nFF4JURue5zGemoTX7IHLdOYGcZ93K8YS\nJ3EscQIXtexWcIXLV+WqmMvOo8PeronXFKvVbmvF/u0fw/8+8mP8YPB+/P3bPweL3qL0slQrV85j\nLHES3Y4gbu/7KP7Xn/8//Gj4J/BZvI3Ri4SoVbKUBiB/Qw9QG7s1lBtBrpyH1UDPMUR6QkNPpwIN\nPXpWjz7vVhwKH8HpfASt1oDsa1jMy6E/4nBkCNvcm3H1hvc29RiWYdFqDaDVGsClbRcBqL1mCmXn\nMJGaqo3qStcafU4mJxqPs+ot6HYE0ePsQrezCxucQdW+nxPLeGoSR2PHsM29GVvcG5VezooF64Ge\n6czyx4gTshJVrop8tYBCpXhOICdfqf/eef+79itfLTb+u8JXzznuVvcmfP6izyj0tyKLCasw0GMz\nWGFg9dTQQwghhBBNoUAP0YSB+k7p3Soft3W2FqsfH9nyATxx4hn0ebUzSmoxPrMXp3Nh8Dwv6i48\n4Q1eQGNNCZ2ODmC2FjhrJtDD8RyORI/CaXRgg1O5kFdjfJoEbUurkWwEetTZ0AMA3c4gRuJjmEqH\n0Hue7+tYIQ6bwQqTzqjA6lbOpDPCwOqRLVFDDzlXtBBHppzFRZ7N5/x+r2crnsYvMBIb01ygZz4X\nRoWvIriGx2292UUtuzHZ/V78avJF/Gj4YXxq153rIsy0EsPREXA8h93+fgQdHbh7x8fx/cH78b2B\n+/D3l/z1OcE2QtQmWUzBqDPCrMAudSGYH8lH0W3Q/mYGon6h7Bz0rF6x95D9vj4cCh/BUHREVYGe\n2ew8fjr2NGx6K+7cccuqft7rWB26HJ3ocnTiXfVMa6lawlQ6hInUJCbS05hITWEkPnbOKFaX0XlO\nwGezayOMOsNq/2qq8dz48wCA92/UbjsPUGugtegtjVG0hKxEopjEQHgYyVLqrJDO+QM7Za68onOY\ndEaYdWbYDTb4LT6YdSZY9GaY9WYci5/A8cSpBTddEWVFVdjIzjAMPCY34gUK9BBCCCFEOyjQQzRh\nMDIMPaNDn3eb0ktZliuD78S7Oy9fMzfNfBYvpjMhpMsZOEWs8g/ntNrQU7uqOZ0J4TJcvOTHn0xO\nIFPO4oqOSxX9mlBroEeou3WpeEen0M4wlZl5S6CH53nECgm02VqUWNqqMAwDm8GGTDmr9FKIyrx5\n3Jag29EJi96M0djY+R6masJNi451FOgBgA9uugYT6WkMRobxi/HfaP4mlFQaIfJALUR+QWAnPrTp\nWjx18jl8f/BH+PzbPg3DGropSdaWZCkFt1GZYHTAUgtVhPMRdCsYXCfrA8dzmMvOo93aotj7qh2+\nXgDAUGQEV3W9W5E1vFm5Wsa9Qw+izFVwT/9t8Jjdop/DqDNis7sHm909jd/LlnOYPKvBZyI1hcOR\nIRyODAEAOmxt+G+X/JXmNj2cz1R6BoORo9jk6sFW9+alH6BiDMMgaG/H8cQpFKulNfH5IfJIlzJ4\n4/QgXj99CCcS4+DBn/fjDKweZr0ZFp0ZHpO7/t8mmOthHIvefE44p/bfFpj19d/TmWHWmxZ9nn/m\n1K/w81O/wmj8BN5GI3JVJ5yPwqQzNsa8q4Xb7MbpeATlapne2xFCCCFEEyjQQ1Qvmo9jJjOLHd5e\nmPUmpZezbGslzAMAfnMtCBLNx8QN9KiwgrUZnfY2MGAwnW6uonqw0TTVL+WyluStfx6lGJ+2Gsli\nCgDgUXOgpx7imkxNv+XPMuUsylxZc+O2BHaDrTH+jhDBePL8gR4dq8M292Ycjgwhko9q6vlbCPSs\np4YeoPY5+0T/bfi/D34bPz/1S3Q7g+iv34wkNRWugqHoKHxmDzrOGuHyvg17MJs9jYPzf8YDI4/h\nrh0fF7WpkBAxVLkqMqUsWt3KNIUErLWfA8LrekKkFM5FUOYqioZz3SYXgvYOHE+cRKFSVMW1iidO\nPIOZzCze1Xk5LgjslO28NoMV233bsN1X24DF8zwSxSQm0tM4OPdnHAofweNjT+PWvptkW5NUhHae\n63r2rYnXAp32dowlTiKUmcNGV/fSDyDrVq6cx+HIEF6fP4TR+HFwPAcA2OLeiItbLkC7rRVmvQUW\nvakRztGz0t926PNuw89P/Qoj8TEK9KgMz/OIFGIIWHyqe74UrjvGi0m0aKwtnhBCCCHrEwV6iOod\niR4FAOzS0LittcpnORPo2ejaINpxI/koXEan5naEmfVmBCw+TGdCTY0hG4gMwcgasM2j7Ag2o84A\nl9HZqL5Vi0RJ/Q09fosXFr0ZU5mZt/xZrBAHUKsu1yK7wYbpTIh2KJFzjKcmwTJso53qbH3erTgc\nGcJo7Dj8ndoL9HSus0APADiMdnxy135868/fxX1DD+KLb/9rTYWxpDaWOIlCtYB3tF9yzs90hmFw\ne99NiOQjODj/Btptrbim5yoFV0rIW6XLGfDg4VKsoace6MlRoIdIL5SdB4Cmxh5Lqd/Xh+lMCMfi\nx7E7oOymjSORo3hx+hW0WVtw05YPKLoWhmHgMbvhMbvR7+3FN1//f/Fy6E/Y4evDBQr/O61GKDOH\nQ+Ej2ODsQp93q9LLEUXQ3gGg1jpMgR7yZsVqCYORYbw+fxjD0RFU+CoAYIOjCxe3XoCLWnZL0gS2\nHBscQZh1ZoxosDl2rUuVMihVS6p8vylct0sUExToIYQQQogmSFYdwnEcvvrVr+KWW27B/v37MTEx\ncc6fv/DCC7jppptwyy234JFHHln0McPDw3j3u9+N/fv3Y//+/XjmmWekWjZRIaHVZJd/u8IrIb56\n84iYzS5lroJYIdHY1as1nY4O5Cp5xJaYvTyfPY3TuQi2+3phVEFYwmfxIl5MoMpVlV5KQ6Le0OM2\nKXMjqhkMw6DL3onTuQjylcI5fxZtBHo02tBjrFUgZys5hVdC1KLCVTCVCSFobz/v81Zv/UbG0bi2\nLp7OZELwmNywGqxKL0URG5xduGXbR5Cr5PH9wftRqpaUXpJqnHnN+dYQuUFnwKd23wWPyY2nTj6H\nw+Ejci+PkEUJTYcuhV5Hec0esAxLbX9EFiFhfKZN2UDPTn8fAGAoOqLoOpLFNA4cfQR6Rod7+m+D\nUUUbZQw6A+7ecSsMrB4PjDzaeK7SIqGd5/09e1XXNrFSnY5awF0IvBNS5io4HB7CD488gC/97p9w\n79CDGIgMocUawAc3XYv/6/Iv4u/f/jns7X6P4mEeoN4c69mMSD6qurHy6120ILSxexVeyVt5TLWv\n3XghqfBKCCGEEEKaI1mg59e//jVKpRIefvhh/O3f/i3+9dqgyDwAACAASURBVF//tfFn5XIZ3/jG\nN/DDH/4QBw4cwMMPP4xIJLLgY4aGhnDPPffgwIEDOHDgAK677jqplk1UJl8p4Fj8BLrsHap4o7je\n+c9q6BFLLB8DDx4BizZ3RJy9o20xA4vcJFSC3+IFx3OIFxcPIskpUUxCz+hUN1v7zbqctaaSN49a\ni2k80GOr/7unS1mFV0LUYiYziwpXecu4LUGLxQ+PyY1jsTOV62qXLmWQLKXRqfCOfqW9s+PtuKLj\nMsxkZvHQ6OPgeV7pJSmO53kMhIdh0Vuwxb3xvB/jNDrw6d13w8gacN/wT5oeuUmIHJQO9OhZPbwm\nN43cIrIIZecAKN/Q0+Pshk1vxVB0VLGfpRzP4cDRh5EpZ3HDlusRdHQoso7FdNjbcMOW65Et53Dg\n6COaed14trnsafz59AC67B3Y6Vs7m83ara1gGZZe06xzVa6K4egoDgw/gi+//D/w/cEf4fXTh+Ey\nOXFtz17890v/K/77Zf8V1/ZcpcrNeEJj1ii19KiK0NoYUGFDj7t+j2GpzZmEEEIIIWohWaDn9ddf\nx7vf/W4AwIUXXogjR87sYj1x4gS6u7vhcrlgNBpx8cUX4+DBgws+5siRI3jxxRdx++234x/+4R+Q\nyWSkWjZRmaOxY6jyVexUSQhivfOaa4GeSD24IAbhor8a3+A1o6t+wXQ6/dYRTGcbiAyDAYOdvj45\nlrUkv/C5VNEOpkQhCZfJqfrdjt32WqDnzWO3hAsB2h25VWsryZYp0ENqTiUnAWDBQA/DMOj1bkG2\nklsy1KgWZ8Ztqe9ml9xu3vZhbHB24dW5P+O3M79XejmKm86EEC8m0O/rhY7VLfhxXY4O3NV/K0rV\nEr43cB9SpbSMqyRkYclSLdDjNDoUW0PA6keqlEahUlRsDWR9CGXmYNVbFBsxJ2AZFtt92xAvJjBb\nHwMmt99MvYyjsWPY4evFe4NXKLKGZlzZ+U70+/pwNHYML06/ovRylu0XEy+AB49rN+5T/fvV5TDo\nDGiztmAmO6vJoBVZOY7nMBY/iZ+M/if+4ZWv4d8O/2/8ce41mHQm7O1+D754yV/j/7z87/HBTdco\nHp5cSl99rL3WmmPXukj9eq/frL7rvR6TCwBUtcmREEIIIWQxeqkOnMlkYLfbG/9fp9OhUqlAr9cj\nk8nA4ThzodFmsyGTySz4mN27d+Pmm2/Gzp078d3vfhf/9m//hi9+8YsLntvjsUKvX/hCPFFOILC8\nC8xjJ2tvxq7cegkCXuUuTpMzPGYXEqX4sj+XC8nHawG9zW1B0Y4ppwvs24DDwOlyeMH1JwspnEpO\noNe/CZs622Ve4fltzHQC40BRn1XFv3uVqyJVTmObb5Mq1rOYC0zbgGHgdGn+nLVmudpN3W2dXXCY\n7As9XLXakz7gFMBaqqr/HBB5zJ6ohV8u6ulDwHn+r4lLc7vwx9nXMF2cwsWb1L9b+U+xWiB1e4f6\nn2vk8KUrP4sv/vLreHzsaewKbkFfYMt5P249/Fu9OH8cAPCuTZcs+fe9OvAOpJHATwafwr1HH8BX\n93xeFeM0yfpWma+FaDa0tCr2PdvlbattyDAXEPBoo31zPTy/rTXFSgnhfBR9gS1oaVF+VO/lPRfi\ntflDGC+cwgUbt8p67lPxKTx58lm4zE584V2fgMus/L/HYv7mXffgvz33z3jyxLO4fNNubHAHlV5S\nU+bSp3Fw/g10uTqwd/tlYBnJ9kaKrpnnuM3+boQm5sBZimh1tMiwKqIUnudxIjaB30++ht9PvY5Y\nvhZmcJkcuGbLlbii+xJs82/S1Nc4APj9dvgGPRhLnIDPZwPLamv9a1X6RC1svi3YjYBd/Ndbq3kN\nZ3PrgVeBHJ+h14KEENWh5yVCyPlIFuix2+3IZs/s8uc4Dnq9/rx/ls1m4XA4FnzM1VdfDaezdmHi\n6quvxj//8z8veu54PCfmX4WIJBBwIBxufhczx3N4fWYQLqMT9opnWY8l0vGY3BhPTWFuPrHoDvZm\nnQrXWk5MZZtGP8csHEY7TkQmFlz/H0KvgQeP7e4+1fwdjZVaG8up0yGEncqvKVFMgud52Fm7av6N\nFqLjLTDpjBg763MeCDgwmwrDqDMin+RQYNT9dzgfvlj7GR2KRBG2aG/9RHyjp0/AqrdAV7AgXDz/\n10S7vnYj5vWpI3in/x1yLm9FRudOAQAcnFv1zzXy0OOeHbfjO4d+gP/58vfxpbf/zVvG9Sz39ZtW\n/XHiDegYHYKG7qb+vu/yX4ETrVM4OP8Gvv3yfbhz+y1rasc+0Z5QLAIA4PMGxb5nHag9fxwLTcJW\ncSmyhuVYL89va81Eaqo2stkYUMXnL2joBgMGr04elvW1ULFawrcO/gBVroo7em9GKc0gnFb+32Nx\nDG7vvRnfHbgX33r5P/D3l/y1JgKxDx39GXiex9XBPYhGtNNm2uxznN8QAAAMTI5B32KRellEAaHM\nHF6bP4TX5w8hUqi1NFv0Fryj/e24uPUCbHNvblzf09LX+Nm2ubbgD7MH8capUXQ7tREWXOtmEvO1\ncFjWgHBe3J9PYryGM+vMmE9FVfFaghBCBPQelZD1bbFAn2SR9YsuuggvvfQSAODQoUPYtm1b4882\nb96MiYmJ/5+9+w6P4z7vRf+d2d4reicIohHsVu8mLUuy3GSruVC2EiuJc05uTsrNc3Nz006Se3MS\n5zlJHDsukVzULMmSLduSrWJ1URKbAKISJEB0YHexve/O3D92ZylZLCi7+5vZfT9/6RGJ3VciCe7M\nvL/vF4FAAKlUCocPH8bu3bvP+zX33nsvBgcHAQBvvvkm+vv7SzU2kZHTwTOIpmMYcPfSAxIZcemd\nEEQB/mSwKK8ndSq7FVq5BQDN5kb4kwFE0+deJhz0jgAABmRUHec2SPVp8qjcCuR/P/3mg2Q54jke\nzeYmLEdXkMymCv9+NRGAU+9Q7PcrqXIrQpVbBLnfB564D23Wlgue0LRqLWg01eNUcArpbLqME27M\nQmQRGl6NWqMykiPKYZujE5/svBmhVBjfOfFDZIQM65HKzp8IYDaygG2OThjU+jV9Dcdx+FzPZ9Bu\nbcXbS0fx3MxLpR2SkIsI5Su3bDq2lVsA4Il7mc1AKt9CvtpKLhUwFq0ZbdYWnApOI56Jl+19H5/4\nKZZjHtzQcjX6XN1le9/N2u7uxTVNV2AxuoynTv2c9TgX5Yuv4q2lI6gz1mJ37QDrcUqiOV9FOx9W\nRoUuWZuVmBfPTL2A//nWP+Pv3v4afnnmRYRSYeyr24Xf2XEP/uGqv8Dnez+LXue2ohzWY02q3Rpb\npdotufDEfXDq7LL9/eXQ26hyixBCCCGKUbKEngMHDuD111/HnXfeCVEU8fd///d4+umnEYvFcMcd\nd+DP/uzPcO+990IURdx2222oq6s759cAwF/91V/hb//2b6HRaOB2uy+a0EMqw5AMlyAI4Movgvji\nq4WlkM3wxL0wa0xrfoAmRy2WJoyuTmAuvIBu5/vrSlLZNEZXJ1BnrEWdsYbRhB9k1Vqg5tXwxeWy\n0JN7CGXXyf80NwC0WptwKjiF+cgCttjaEUvHEc/E0WFrZT3ahpk1uZqwKC30EOROvwNAu/Xiv6d7\nnF1YmF3C6eCZD3wPlJOskMVidBmN5gbFxciX2g0tV+NMaBZHVt7Fjyd/htu3fZL1SGW10cVbjUqD\nrwwcxD8e/lf89NSzqDfWYkcNHTwgbASTIWh5DfQqdp+pa/IL+tLCPiGlsBDJVYI2yWShBwD6Xd2Y\nDs1gdPUk9tTuKPn7HV0ZxBuLb6PF3IiPd95U8vcrtk9tvQUTgVN4ee4N9Dm7sd0t39rWX535NQRR\nwEfbb6jYz49N5lwt+Fz+zxZRLn8igCMr7+LI8nHMhHNp2GpejZ0127G3die2u3uhU2kZT1ka3c5c\n5eGo/yQ+0n4942lIIpNEOBVBk6O8VZTr4dDZsRhdRiKTgF7B96QJIYQQUh1KttDD8zz+5m/+5n3/\nrrOzs/DPN9xwA2644YaLfg0A9Pf345FHHinNoES2hryj0PIabHPI9+FgNXLr8ws9RUh2yQpZ+BJ+\ntFlaNv1aLDUXboB9cKFn3H8SaSGNHTJbTOM5Hi69Uz4LPYlcQo9dAQk9ANBibgIAzITnscXWDm80\n9//RqXewHGtTTBoTACBMCz0EwFRwBgDQbr349+ceZxdenH0VY/6Tsl7oWY55kBGzhe/Z5CyO4/C5\n3s9iMbqMl+feQJulBZc27GU9VtlIS+Qb+bvaprPgd3bcg68d+Q/cP/Iw/njvVwsPxggpp2AqDKvO\nyjQp0KV3ggNHCT2kpBYiSwCABpOcFnp68POp5zDsGyv5Qs9qwo+Hxp6AltfgS/13Q8OX7LZeyWhV\nGnyp7y78r8P/hh+OPob/69I/hFXLLl3sfPyJAN5cPIwagwt7a3eyHqdkLFozbFor5mmhR7GCyRDu\nH34IJwOnAeTu9/Q5u7G3bid21vTDoK78KjWL1oxmcyNOB6aQyqagrdDFJaWQ7hkX4yBoqTj0uQOF\n/mQQDbTQQwghhBCZq8zjJUTxlmMeLMdW0OPcpohO9Wry3oSezVpNBCCIAmqMyq3bAoBmS265Yy7y\nwYjqQU/+IWGNvBZ6gNyFdTQTQyxdvmj48zlbuaWMhJ6W/K/5bCh36s0Ty/15cOmUu9AjVW5FU7TQ\nQ4DpkLTQc/GEnk5bB1ScSvbx5tJDikZatjgnnUqL3x74AgxqPR4efwKz+VO9lS6eiWPCfwotliY4\n9PYNvUaLpQkH++5EKpvCN969H+FUpMhTEnJhWSGLcCoCm5btYrRGpYFdZ4MnTgk9pHQWoktw6Oyy\nSnhtsTTBojFjxDcOQRRK9j6CKOCB4UcQz8TxmW0fR52ptmTvVWrNlkZ8ovMmhNMR/HD0MYiiyHqk\nD3hu5iVkxSxubLtBtpUxxdJkabhgjTiRtxdmXsHJwGlssbXjzu5P4x+u/At8dde9uKxhX1Us80i6\nnVuREbM4FZhmPUrV8+Y/C7oN8r3f69Dlrv38CardIoQQQoj80UIPkSWq25IvVz6hx1uEhB7p9G6N\njC/w1qLG4IJWpcXcb3TOC6KAId8IzBrTmh6Kl5t0UqYYaUubJVVuORSy0FNvqoWG12A2kl/oieZu\nVjg3+DBYDlS8Cga1ARFK6Kl6oijiTGgWNQYXzFrTRX++Xq1Dh60Vs+F5WT8EkBZ6KKHn/GqNNTjY\ndyfSQgbfHvq+rH89i2XEN4GsmN30Z85dtQP4WMeN8CcD+NbQ95EWMkWakJCLC6cjECHCpmOfcFFj\ndCOQDCKVTbMehVSgSCqKUCosq7otIJ+G4epGKBU+5yGPYvnl9Is4FZzCrpoBXNFwScnep1yua7kK\nPY4uDPvG8Mr8m6zHeZ9gMoTXF96GS+/AJfV7WI9Tcs3mRgDAfAl//5LSEEURR1cGoVfp8d93fwVX\nN122pmu4StTr2AYAGPVPMJ6ESMvdcr7fa8/fv/MnaaGHEEIIIfJHCz1Elk54R8GBw3Z3D+tRyG9w\n6G3gOb4oCT1nL/Dcm34tlniOR7O5AUuxFaTf8/DiTGgW4VQEA+4+8Jz8vt1K9WleGdRuBQsJPcqo\n3Mr9mjdiMbqMdDYNbz6hx2lQbkIPkEvpoYUeshL3IpaJr2sRscfRBREiJvynSjjZ5kgLPVSHdGED\n7j7c1L4fvoQf9w8/BEEoXdKAHAx6hwEAO9z9m36tj7bfgH11u3A6OI2Hx56QZdoAqUyhZBiAPD5H\nSQ9uvJTSQ0pgISrftL1+V+7exbB3vCSvfzo4jV9MPw+Hzo7P9dzGtF6vWHiOxxf6bodJY8STkz8r\n1KnJwfMzLyMjZPCRtusrPp0HeE+NeJgWepRmOjQLfzKAHTV9iqzgK6ZOewfUvBrjq5OsR6l60n1G\nl4wXepyFhJ4g40kIIYQQQi5Ofk+YSdWLpmM4FZxGu7VFlj3q1Y7neDh19uIm9Ci8cgvInWgTRAEL\n0bM3IQdlnjTlktEDl0AqCLPGBLWCbkC1WpsgiALmo4vwRvMLPXqlL/SYEElH6SF0lZsOrr1uS9Lt\n7AIAjPnlW7s1H1mAQ2eHMV8vR87v5o796Hf1YHR1Aj8afpr1OCWTFbIY9o3DobMXJbmJ4zh8ruez\naLO04K2lI3h+5uUiTEnIxQVTuaRD1pVbwNmFHqrdIqWwEFkGADSa5JXQAwC9zi7wHI9h31jRXzue\nieOB4YchiiIO9t1ZUZ9l7DobPtfzGaSFDB4YeVgWCXfhVASvzh+CXWfDpQ37WI9TFlJCz1x+AZ4o\nx9GVdwEAe2p3MJ6EPa1Kgy22dsxFFqgClzFv4QCnk/Ek5+fQ5xLCqXKLEEIIIUpACz1EdoZ9YxBE\nAdtlugRBch3I4VQEqWxqU6/jiVVGQg/w3htgZ0+0DXpHoOHV6M0/6Jabs5VbfqZziKKIQDIEu0Lq\ntiQt5iYAwGx4Hp7YKlScSvFLiGatCYIoIJFNsB6FMDQdyi/02FrW/DVtlmboVTqMr8pzoSeciiAo\nw4oOueI5Hvf03Qm33okfjzxbSDeqNJOBKcQzceyo6Sta0oFWpcF9Ow7CrrPhJ6eewaBnuCivS8iF\nBPPVpbJI6DHmPtdLi/uEFNPZhB75/X1u1BjRYW3DdGgGkVTxEi9FUcQj40/Cl/DjxvYb0OXYUrTX\nloudNdtxZeOlmI8s4qennmE9Dl6YeQVpIY0DbddVTeJJjdENDa8paWUcKT5RFHFsZQh6lR49zm2s\nx5GFXkfu/ptcr0urhTfug1ljgl6tZz3Kedl1VLlFCCGEEOWghR4iO0P5VJMdtNAjW658rdBmF0G8\ncR+MagNMFXDCsNmSX+jJR1SvxLxYii6jx9kFrUrLcrTzcuXTZFgn9MQzCaSyKdhl8BBqPVosuYWe\nmdA8vNFVOHQ2WVarrYdJYwIARFIxxpMQlqZDM1BzKjTlFxXXQsWr0OXohCfuK0olY7Gdrdta+39T\ntTNqjPjU1lsAAG8uvsN4mtIYKlGSnk1nxX07DkLNq/HAyMMVuxBF5ENa6JHDYjEl9JBSWogsged4\n1BlrWI9yTttdPRAhYnR1omiv+fbSURxePo4Oaxtubt9ftNeVm9u6bkWt0Y0XZ18t6v+/9Yqko3hl\n/g3YtBZc2XAJsznKjed4NJkbsBRdQUYGKUlkbaZDM/AnA9hZ0181y2cX01NIjqXaLVayQha+hL/w\nmVCutCoNzBoTLfQQQgghRBGU/eSRVJyMkMGIbwIuvQMNpjrW45DzcOlzyS6bWQQRRAHeuK8i0nmA\nXOw7z/GFE21nF9P6WY51QXq1HmaNifnD90Ay11dtU1hCT4OpDmpejanQGfgTQTj0dtYjbZpZWuhJ\nUzx1tUpl05iLLKLF0rTum8LSzdNxGd48XSgs9MjvRL+cbXf3wqIz452lYxX3cEcURQx6h6FX6dFl\nL37aQaulGV/suwPJbArfHHyAYv9JSQVTYQCQxXK0W6p0jdFCDykuqd64zlgj25refncPABStdmsl\n5sWjE09Cr9Lhnv67oOJVRXldOdKptPhS393gOR4/GHm0qClH6/Hr2deQzKawv/VaaFQaJjOw0mRu\nQFbMYim6wnoUskZHVwYBUN3WezVbGmFSGzG2epKqxBnxJ4MQRAEuGddtSRw6G/yJIP1eIYQQQojs\n0UIPkZXJwBQS2QQG3MWrPiDFJ12U+eIbT+gJJIPIiFnUGOV9YmOtNCoN6o21mIssQhAFDHqHwYHD\ndncv69EuyG1wwZfwQxAFZjNIp8odClvoUfEqNJkasBhdBgA484lHSnZ2oYfNDXTC3lxkHoIooN3a\nuu6v7cnHm4/JMN58jhJ6NkTNq3FN26WIpKM44R1lPU5RLUSX4Ev40e/qLtmD4T21O3BLxwGsJvz4\n1tD3ka6wpSgiH2cTetgv9OhUWti0VqrcIkW3mgggmU2h0STf5dxGUz3sOhtGVsc3fX2VETJ4YPhh\nJLMp3Nn96UJdciVrtTbj1i03IpgK48Gxx8v+gDWWjuOl2ddh0ZhxVdNlZX1vOZBqxClZUBkEUcCx\nlSEY1PrCwQqSS5va5twKfzKAlZiH9ThVSTr8KfeEHgCw6+1IC2lEM5RSTQghhBB5o4UeIiulqj4g\nxSUl9PgSG0928cSUc4G3Vk3mRqSyKUyHZnEqMI12a6ssqg8uxG1wIitmCyk5LCg1oQcAWqxNhX+u\nrIUeuplRraaDMwCAdmvLur+2zlgDu86Gcf8k0yXBc1mILELDq1FrrIxUuHK6vuNyAJVXuzXoKU/F\n603t+7G3didOB6fxyNiP6fQnKYlQKgQNr4FBrWc9CgCgxujCaiJAS2ykqKS0vUZzA+NJzo/jOPS7\nuhFNx3AmNLup1/r51HM4E57FpfV78aH63UWaUP72t16LbfZODHqH8frCW2V975fnXkcim8CHW6+R\nbW12KTVbcn+2pNRhIm/ToVn4kwHscPfLNrWMlV4H1W6xJC30uBVwv9ehyyVt+xPs7okSQgghhKwF\nLfQQ2RBFEUPeEehVemy1d7Aeh1yAu5DQs4mFnvyp3Uqp3AKAFkvuRNsvp1+ACLHkDwmLwV2oT2NX\nuxXInyqXQ03EerWaK2yhR5tf6KFqmKo1Fcov9NjWn9DDcRy6HVsRSUcxH1kq9mgblhWyWIwuoyFf\njUjWp9XehFZLM4Z940yXP4tt0DsMnuPR5+op6ftwHIfP996OVkszDi0dxguzr5T0/Uh1CiZDsGkt\nskk4rTG4IULEKuNaV1JZFvKpmHKvz+x3bb52a3x1Es+deQluvRO3b/tEsUZTBJ7j8cW+O2BUG/D4\nyafLVv8UzyTw4uyrMKmNuLoK03mAXMIUB66QbEnk7ejKuwCobutcup3yTY6tBtL9RUUs9OhzBwsD\nyQDjSQghhBBCLoyeahDZWIwul7z6gBSHWWOCVqWFdzMJPVIEa4VUbgFnI6pP5G/e7qiR/0KPK3+B\nvZnlrM2SLpztSkzosbx3ocfOcJLikBJ6opTQU7WmQ7Mwa0yFJLb1kuLex/3yuXm6HPMgI2bRLOMT\n/XJ3ecM+iBDx9tJR1qMURSAZxEx4Dl32LTBqDCV/P61Kg/t2HIRNa8VTk78oJFISUgyCKCCUisAm\no8VoKYFT+rxPSDEUEnpkXLkFAN2OrVBxqg0v9ERSUXxv5BFwHIcvbb8bepkkb5WTQ2/HXT23IS2k\n8cDIw8iUIe3r1bk3EcvEcUPr1VX5/xwA9Go93AYn5sMLlCgoc2frtgxUt3UOboMTboMLE/5TyApZ\n1uNUHU8hoUf+VZFnE3pooYcQQggh8kYLPUQ2BvMPN7a7exlPQi6G4zi49U744qsbvtFTWOipoISe\n5nxCD5B7kFFnrGU4zdq4DblUmc0sZ22WkhN6Gsz1UHEqAJWR0GMqVG5FGU9CWAilwlhN+NFubd1w\nykO3YysAeZ2GnFdARYfc7avbBTWvxpuL71TEAx5poWaHu79s72nX2XDfjoNQ82rcP/wQFmSUYkWU\nLZyKQIQIq4w+R9Xk6w1poYcU00J0CTqVFg6ZL9Hr1bnE4ZnwPIL565y1EkURD449jmAqhFs7bkS7\ndf2JiZViT+0OXNawD7Phefzs9K9K+l7JbAovzL4Cg9qAa5uvKOl7yV2zuRHRTKyiUhkr0XRoBoFk\nEDupbuu8epxdSGQTOBOeYz1K1fHFfdDwGti08vlsej7SZwo/fc8jhBBCiMzRQg+RjRPeEfAcX4io\nJvLmMjiQyCYRzWwsycMT80Kn0hYSQSqBSWMsnO7Y4e6XTe3Bhbj0uRPUXoYPXILJILS8BgZ16VMS\nik3Dq9FkroeKV8n+4cJamAsLPVS5VY2mg/m6rU08PLLprGgw1WEyMIV0GU5Tr4W00EMJPRtn1Bix\nq2Y7VmJeTIXOsB5n06Ql8oEyV2O2WVvwhd7bkcym8M3B+xGmekNSBMFUfjFaRg9Nzib0eBlPQipF\nRshgOeZBo0LqM6V7GiO+8XV93avzhzDoHcY2eyf2t11bitEU5bNdH4fb4MLzMy9jwj9Zsvd5df5N\nRNJRXNd8pSKvSYupKZ86PBdZYDwJuZCjy4MAgD11VLd1Pj0OqXZrgvEk1UUURXjiq3AbnIq4J+rI\nJ4VTQg8hhBBC5E7+d0JIVQilwpgOzaLT1g6Txsh6HLIGbv3Gq5pyF3g+1BjcirjAWw+pgqncDwk3\nyqG3ged4xpVbIdh1NsX+Xri75zP4kyt/B5oKOBlnUOvBczwiKarcqkbToVkAQLutZVOv0+PoQlpI\nYyooj8UPaaGniRZ6NuWyhn0AgDcX3mE8yeYkMglMrE6iydwAl6H8yWp763bi5vb98CX8+PbQD8pS\nI0Iqm5QAYtVZGE9yllta6IlRQg8pjuWYB4IooNEs77otibTQs57arYXIEn48+TRMaiMO9t+piMWl\nUtOr9bin7y5wHIfvjTxaklrgVDaN52dehl6lw/UtVxX99ZWm2ZL7vCx9fibyI4gCjnmGYFQbCumo\n5IO6HZ3gwMkqObYaRNMxJLIJRdRtAbkUVQ4c/Ela6CGEEEKIvNEdAiILJ7xjECEqZgmCAK78xZkv\n4V/31wZTIaSFdOH0biW5peMAPrX1FnTa21mPsiY8x8Old8DLaKEnI2QQTkdgk1FNxHq1WJqwp3E7\n6zGKguM4mDUmRKlyqypNhXIJPW2WTS70OHOnIcdlcvN0PrIIh84OIy0Mb0q3YyscOjuOrLyLZDbF\nepwNG109iYyYxQ6Gnzlv6tiP3bU7cCo4hUfGn6yIGjPCTigZBgBZ1RoY1HpYNGZK6CFFI9UUNpqU\nsZxbZ6yBW+/E6OpJZIXsRX9+OpvG/cMPIS1k8Lnez8CeTwwgQIetFTe3H0AgGcTDY08U/e/MNxbe\nRjgVwTXNV9DhMuQqtwBgLkwJPXI1FczVbe2oobqtCzFqjGi1NmMqNINEJsF6nKoh1a26FXK/V8Wr\nYNVaKKGHEEIIIbJHCz1EFoYK1Qe9jCcha+XS5061h6sdcAAAIABJREFUb6SqSTqtW2N0F3UmOWi2\nNGJ/67WKOlHpNrgQTkeQyCTL/t7B/EMoumktH2aNCWFa6Kk6gihgJjSLOmMtjJrNVQ1stXeA53iM\n+tkv9ERSUQRTITQp5ES/nPEcj8sa9iGZTeHYyiDrcTZs0DsMIFeNyQrP8fhi7+1otTThzcV38OLs\nq8xmIcoXyFduyW05usbogi/hX9MyAyEXsxDNL/Qo5O9zjuPQ7+5BIpvA6eD0RX/+k6d+gYXoEq5q\nugw7ayrjoEAx3dh+PTpt7TjmGcKhpSNFe920kMFzMy9By2twQ8vVRXtdJbPrbDCqDZTQI2NHV94F\nAOyp3cl4EvnrcXRBEAWcDJxmPUrV8ClsoQcAHHo7AskQBFFgPQohhBBCyHkp54kzqVipbBqjqxOo\nM9ai1ljDehyyRoWEng0ku0gnNioxoUeJzqYtlT+lJ5AMAqCFHjkxaYyIZ+L0AK7KLEVXkMgm0WFt\n3fRr6dV6dFhbMROaQ6wE1QjrMRfJnS5uyp82JptTqN1aVGbtVlbIYtg7BrvOVqjIZEWr0uK+HffA\nprXgycmf44R3lOk8RLlCUuWWVj6VWwBQY3BDEAWs0olnUgQL+eWCRpMyFnqA99ZujV/w553wjuLl\nuddRb6rDbVs/Vo7RFIfneBzsuxN6lR6PTTyFlVhx0r8OLb6DQDKIq5svh0VrLsprKh3HcWg2N8IT\n9zE58EMuTBAFHFvJ1W31UN3WRUnJsVS7VT6e/D1iJd3vdehsyIpZhFMR1qMQQgghhJwXLfQQ5ib8\nk0gLaUrnURiXfuOVW1L8vpIu8CqZW7/x5azNkhZ65HaqvJqZ8zezoxm2ixikvKZDswCAdtvm6rYk\n3c4uiBAxwfg0pPQAkBJ6isNtcGKbvROTgamiPUwrp9PBaUQzMQy4+8BxHOtxYNfZcN+Oe6DmVbh/\n+KFCpQwh6xHMJ/TYZfZZSvqcT7VbpBjmI0uwai0wa02sR1mzLnsnNLwaw76x8/6cYDKEH4z+CGpe\njS/33w2tSlvGCZXFZXDiru5PIZlN4Xsjj2z68EFGyOCX07+Ghlfjwy3XFmnKytBkaYAIsZCMReTj\ndPAMgqkQdtZsh4pXsR5H9jpsbdDyGoz5J1mPUjWkFHfpPqMSOPR2AIA/SUvohBBCCJEvWughzA0W\n6rb6GE9C1kOv1sGsMW1oCUS6wKvEyi0lkhJ6vAwSeoL5hR4HJfTIhlmTe1ASSVHtVjWZDs0AANqL\nkNAD5OLNAWCc8WnIucJCDyX0FIuU0vPW4mHGk6yfHD9ztllb8IXe25HIJvHNwQfoey9Zt2AyDDWv\nhkG9ubrEYju70LP+el5C3iueicOfDCgqnQcAtCoNtjm2YiG6hNVzHIIRRAHfH3kUkXQUn+y8GU3m\nBgZTKsu++t34UN0eTIdm8Ivp5zf1Wm8vHYU/GcCVjZfCppNXwhlrzfnPzXPhBcaTkN90NF97u6d2\nB+NJlEHDq7HVvgVL0eXCYTJSWp64Dxw4OA0KWujJ34/0J+j3CCGEEELkixZ6CFOCKOCEdxQmjRFb\nbG2sxyHr5DI4sZrwr7tn2BP3QcNrZFcNUK3c0kIPk4Se3KlyGy30yIZZYwQARNL0ULmaTIdmoOE1\nRXtY1m5tgU6lxZif7ULPQmQRGl5NiXBFtLt2AHqVDoeWjqz773+WRFHEoHcEOpUW2xydrMd5n711\nu3BT+374Eqv49onvIyNkWI9EFCSYDMGmtcoideq9pMV9Sughm7UQWQYANCowbe9CtVsvzr6KMf9J\n9Lt6cF3zleUeTbHu6P4EXHoHfjn9IiYDUxt6jayQxS+nX4SaU+FA23XFHbACSIvw8xFa6JETQRRw\nfGUQJrUR3VS3tWZUu1VevsQq7DobNLya9ShrZqeEHkI+YDIwhZ+d/hXSdG+CEEJkgxZ6CFOz4XkE\nUyFsd/WC5+i3o9K49U5kxCyC+aWMtRBFEZ6YDzUGF/2ay4Rbn3vQ7WNwglo6JSW3mohqZtbkKrdo\noad6JDJJLESW0GppKlp0u4pXocveiZWY95yn0sshK2SxGF1Gg6meIumLSKvSYm/dLgSSQUXdGF+M\nLsMb96HP2S3LG8w3d+zH7poBTAam8Oj4UxBFkfVIRAEEUUA4HZFlukQhoSdGCT1kc6Tan0YFJtj0\nu7oB4AO1WzOhOfz01LOwaM34Qu/tslvIkzOD2oCDfXcBAB4YfhixdHzdr3F4+Ti8iVVc3ngJ7HSw\n5AMaTLVQcapC0iWRh1zdVhg7a/rp2mYdzi70UO1WqaWyaQSSQcUdpnHo8gs9CVroIQTIfU7612Pf\nwjPTzysymZkQQioVPU0nTA15RwEA2929jCchG+HaQLJLJB1FIptQ3AVeJTNqDDCqDYwSeoLgwFFa\nk4wUEnqo9qVqzIbnIEJEu604dVsS6ebpOKObp8sxDzJiliosSuDyfO3Wm4vvMJ5k7YbydVs7avoZ\nT3JuPMfji313oMXShDcW38ZLc6+zHokoQCQdhSAKsGnltxht1BhhUhupcots2kIkt9DTpLDKLQBw\nG1yoM9ZifPVk4YRzIpPE/cMPIStmcbD3Tli0ZsZTKk+nvR0fbf8w/MkAHp14cl1fK4gCnj3zAniO\nx4HW60ozoMKpeTXqTbVYiCwqKo2x0h1deRcAsKd2J+NJlKXRVA+L1oxx/0lamC8xXyJ3T9GtoLot\nAHDo85VbVMtGCF6cfRX3Dz8EDa+BmlPhhZlX6LMAIYTIBC30EKaGvCNQcyr0ObexHoVsgEvvAHD2\nom0tpJv6biMt9MiJ2+CEL7Fa9hscgWQIVq2ZTpjJiElrAgBEKaGnakyHZgEA7dbSLPSwqt2az58q\npoWe4mu3tqLeWItBzzCi6RjrcdZk0DsCnuML9SdypFVpcd/AQVi1Fjw5+XPMhOdYj0RkTkrJtMo0\n6dBtdMEX99FNYLIpC9FFcOBQb6plPcqG9Lu6kRLSmAycBgA8cfKnWIl78eGWa9DrovsgG3VT+4fR\nYW3F4eXjeHvp6Jq/7ujKIFZiXlxWvw8ug6OEEypbs7kRKSENT4xqE+VAEAUcWxmCSWOUXXWs3HEc\nhx5HF0KpcCHxjZSGV7rfq7ADnFatBTzHI0AJPaSKiaKIpyZ/gSdOPg2r1oI/3PM7uKR+L1biXrzr\nGWY9HiGEENBCD2HInwhgLrKALkcn9Go963HIBkgXab51JLtIN4RqDO6SzEQ2xqV3Ii1kEEqFy/ae\noigimArBno+3JfJAlVvVZzo0AwDoKPJCT72xFjatBWOrJ5k8zJUWepppoafoOI7DZQ37kBGzeGf5\nGOtxLiqYDGM6NINOWztM+RQyuXLo7fhi7x3Iilk8MPwIUtkU65GIjEkLPXYZJvQAudqtjJiFP0En\nnsnGiKKIhcgSagwuaFVa1uNsiLRIOuwbw9GVQbyx+A5azI24tfOjjCdTNhWvwsG+u6BTafHo+FNr\nSpsVRAHPTufSeW5sv74MUyqXtBBPtVvycCowjVAqjF012+kw1AacTY5VTl2wEknfh5W20MNzPOw6\nGyX0kKqVFbL4weiP8NzMS6g1uvHHe7+KZksj9rdeAw4cnjvzEiWcEUKIDNBCD2FGqj4YcPcxnoRs\nlEufr9zaQEIPVW7Ji3TBXc7arWg6hoyQgV2mp8qrVaFyixZ6qsZUcAY2rQV2na2or8txHLqdXYik\no1iMLhf1tdeCEnpK65L6veA5HocU0Kl+QuZ1W7+p17UN1zdfheXYCp6c/AXrcYiMBVNSQo88q0ul\nBX5PnBIeyMYEUyHEMnE0mpVXtyXptHdAp9Li2MoQHhp7HFpegy/13w0Nr2Y9muLVGF24fdsnkcgm\n8L2RR5AVshf8+e96hrEYXcaH6nYr7oFzuTWbGwGc/TxN2Dq6MggA2F27g/EkyiQt9IwySo6tFoVE\ndoVVbgGAQ2dHMBm66N8jhFSaZDaFbw49gLeWjqDN2oL/sef34Mr/Ga4z1WJHTT/OhGcLSZOEEELY\noYUewsyQdxQAMODuZTwJ2Sin3g4O3PoSeuKU0CNH0od1KSK3HAL50y+2Ii8RkM0xa3KVW5EULfRU\nA38igGAqhHZrKziOK/rr9zjytVsMTkPORxbh0NlhlHkii1LZdBb0u3owG57HbHiB9TgXNCgt9Cho\nifzjnTehwVSHV+bfwIn8Z2ZCflMomUtWtMl0OVpa4PeU8fMlqSzzkVw9SqNJuQs9Gl6NHkcXAskg\n4pkEPrvtE6hTaH2YHF1avxd7anfgdHAavzrz6/P+PFEU8cz08+DA4cY2Sue5mCaLlNAj78941UAQ\nBRzzDObqtuxUt7URdp0N9cZaTPpPIy1kWI9TsbwKPsDp0NsgQkQgn35JSDWIpKL438f+EyO+cfS5\nuvEHu++DRWt+38850HotAOC5mZdZjEgIIeQ9aKGHMJHIJDDhn0STuQFOPfWWK5WKV8Gus8GX8K/5\nazxxH1ScCg49LXHIiXSCZj1pS5slLfRQQo+8aFQa6FRaRCmhpypMh2YBAO224tZtSbqdWwEAY2U+\nDRlJRRFMhdCk4BP9SnB5wz4AwKHFdxhPcn7JbArj/pNoNNUr6jS+VqXBPX13Qc2p8MOxxxBORViP\nRGQokE/oscm1cstICT1kcxaj+YUehaftbc8fYtpdM4DLGz7EeJrKwnEc7ur+NBw6O34x/TymgmfO\n+fOGvCOYjyxib91OWqhaA7PGBLvORgk9MnAqMIVwKoJdNQNUt7UJPc4upIQ0ps/zPYJsnje+CqPa\noMgDNQ6dHQDgTwYYT0JIefjiq/jno1/HmdAsLq3fi98ZuAe6c9Tbdtja0GnrwLBvjD4TEEIIY7TQ\nQ5gYWz2JjJhV1Elpcm5ugxPBZGjNp1y8MR/cBid4jr79yIlbn3vIuZ60pc06u9BDy11yY9aYEKaF\nnqowHZoBALRbS7PQ897TkJkynoY8W7fVWLb3rEbbXb2waMx4Z/mYbE+7jq1OIC1kFFnx2mxpxK2d\nH0U4FcGDY49Tbz35AKUk9HhjlNBDNmZBSuhR+ILupfV7cbDvTnyh746SJCJWO6PGiIN9d0AURTww\n/DASmcT7fjyXzvMCAODGthtYjKhIzeYGBJJBSm5lTKrb2kN1W5si1W6xSI6tBoIowJdYVdQBivdy\n6HMLPYEELfSQyjcXXsA/Hfk6VmJeHGi9Dl/ovf2CC6MH2nIpPS/MvFKuEQkhhJwDPVEnTEjVB0p8\nuELez2VwQoSI1TWk9ETTMUQzMUXGr1Y6qT6tvJVbuVPltNAjPyaNCdF0lB4eV4Hp0Aw4cGi1NJfs\nPbrzpyGngjMle4/fNJ+vB6CEntJS8SpcUr8H0XQMQ/nPdnIz6MnXbdUo8zPnDS1XY5u9E0PeEbyx\n8DbrcYjMBJMhqHk1jGoD61HOyawxQa/SU+UW2bCFyCI0vFrx14/S35fnOvlMiqPL0YkDbdfBm1jF\njyZ+8r4fG1mdwEx4DrtrBhS/HFZOzfnFeKrdYidXtzUEs8aELvsW1uMoWpd9C3iOx5h/kvUoFSmY\nDCEjZArp30rjyN+X9OcPHhJSqSb8p/AvR7+JUCqMz3R9HJ/cevNFl837XT2oN9XhneVja3r+Qwgh\npDRooYeUnSAKGPaNwaa1oMXSxHocsklufb6qaQ3JLmf7lN0lnYmsn4pXwaG3r6s+bbOCVLklW2at\nCWkhg5SQZj0KKaGskMVMaA4Npjro1bqSvU9v/jTkeBlrt+bzJ/opoaf0LivUbh1mPMkHCaKAE75R\n2LSWki6tlRLP8fhi3x0wqA14/ORPsRLzsB6JyEgwFYJNa5Ft4gfHcagxuuCJ+yCIAutxiMJkhSwW\nYyuoN9VRuitZk1s6DqDV0oy3lo7gyPJxAPl0nqnnAQAfbf8wy/EUp8lCCz2sTRbqtrZT3dYm6dV6\ndFhbcSY0i1g6xnqciiMtbys9oYcqt0glO7oyiK8f/w7SQhpf6r8b17dctaav4zke+1uvhSAK+PXs\nayWekhBCyPnQXRFSdlPBGUTSUWx399KNuQrgyp++WEtVkyfmBQC4jcq8wKt0br0TgWQQ6Wx5ljik\nhB4bJfTIjlljAgCKV69wC9FlpIR0yeq2JFul05BljDefjyxUxIl+JWg016PN2oIR33ihSlEuTgfP\n5D9z9in6M6dDb8dd3Z9CSkjjgZFHkBWyrEciMiCIAkKpMKxaeS9G1xhcSAtphFJh1qMQhfHEfcgI\nGTSaKFGFrI2aV+Oe/rug5TV4ePxJrCb8GPdPYip0BgPuPjRbaNF7PZrNDQDOVtmS8pPqtnZT3VZR\ndDu7IELEhP8U61EqjnTIU6nX3w5dfqEnIa/rWUKK5eW5N/BfJx6Emlfj93Z+Gfvqdq3r6z9Utwt2\nnQ2vLbxFS5GEEMKIcu9sE8UaorqtiuLKJ/T4EmtY6KGEHlmTonHLldITSAahV+lLmgxCNqaw0JOO\nMJ6ElNJ0KFeB1WEr7UKPQa1Hu7UF06FZxDPxkr4XkD/RH11Gg6meTrKWyeUN+yBCxFuLR1iP8j6D\n3mEAwI4K+My5t24XLqnfgzOhWTwz/QLrcYgMRNMxCKIAm8yTDqXP/dJiPyFrtRDNpe1RRRJZjzpj\nDT6z7eOIZ+L43sgjeGY6l85zE6XzrJvb4IJWpcVcmBJ6WMgKWRxfobqtYpKSY6l2q/i8Ck/oMWmM\n0PBqSughFUcURTx96ln8aOIpmDUm/MGe+9CT/164HmpejetbrkIqm8Ir84dKMCkhhJCLoYUeUnZD\n3hFoeA26Hev/8EDkx72ehJ7CQo8yL/AqnSv/6yJdiJdaIBmkui2ZOrvQQ6cuKpm00FPqhB4A6HZI\npyFPl/y9lmMeZMQsmvKniknp7a3dBQ2vxqHFwxBFkfU4BUPeEWh5DbodW1mPUhS3b/sEnHoHnp1+\nAaeD06zHIYydTTq0MJ7kwqTP/Z4yfb4klWNBqs800d/nZH2uaLgEO2u2YzIwhcnAFPpc3WiztrAe\nS3F4jkeTqQFLsRWkhQzrcarOZGAK4XQEu2oH6JBCkbRZWqBX6TC2OsF6lIpzdqHHyXiSjeE4Dg6d\nHf4ELfSQypEVsnhw7HE8e+ZFuA0u/NHer26qivzKxkthUOvx0uxrZUv3J4QQchYt9JCyWol5sRRb\nQY+zC1qVhvU4pAisWgs0vHrNCT08x8Old5RhMrJe0oW3dw2/lpuVyqYRy8Rhp7otWZIWeqJpqtyq\nZNOhWehUWtSbakv+XtIJoHF/6Wu3pFoAWugpH6PGgF01A1iJe3FKJosmS9EVrMS86HV1Q1MhnzkN\nagMO9t0JAHhg+BEkMgnGExGWQqn8Qo/cK7eM+YQeWugh6yQl9DSY6xhPQpSG4zjc3XNb4fvjTe37\nGU+kXE2WBgiigKXoMutRqs5RT65uay/VbRWNilehy9EJT9y3pkOJZO08cR/UnErR9/jsejsi6Sgt\nKpCKkMqm8K2h7+PNxXfQamnCH+/9KmqMmztgbVDrcXXT5QinI3hrSV7pzIQQUg1ooYeU1YlC3VYv\n40lIsXAcB6feWehLvhBP3Aun3kGni2RqPWlLmxVI5nqplXyxX8lM2nxCT4oqtypVPBPHcnQFbZYW\n8FzpPw62W1ugVWkxtlr6eHNa6GHjsoZ9AIBDi4cZT5IjVbxWQt3We221d+BA23XwJVbx2Mmfsh6H\nMBTMJ/RYZZ52WEjoocotsk4LkUWY1EbZL60ReTJrTPj9Xb+Fe7d/HltsbazHUaxmcyMAYC7/+ZqU\nh1S3ZdGYsZXqtoqqp1C7VfqDJtXEF1+Fy+Asy72FUnHk70/68/crCVGqSDqKfz32bZzwjaLH0YU/\n2H0fLFpzUV77uuYroeZUeH7mZQiiUJTXJIQQsjbK/ZRFFGkw/3Blu6uyHq5UO5fBgVgmjngmft6f\nk8gkEE5FqG5Lxlz6fEJPGRZ6goWFHrpBL0dUuVX5zoTmIEJEu630dVtArm+7y74Fy7GVksdYSws9\nzbTQU1bbHJ1w6h04svIuEpkk63Ew6B0GBw7bXZW3RH5LxwG0WJpwaPEwjq0MsR6HMBJMhgEANq28\nK7esWgu0vIYSesi6JLMpeOOraDTXg+M41uMQhWo012MPpZtsivR5ej68wHiS6nIycBqRdBS7agcU\nvSAhR72O/ELPKi30FEssHUc0E4Nb4fd7nXo7ACCQpNotolyrCT++duQbmAqdwb66XfjdnV+CXq0v\n2uvbdFZcUr8XnrgP73qGi/a6hBBCLo6uCkjZRFJRnApOo83aAptO3jeeyfq4C4sg/vP+HE9+SaTG\n4C7LTGT9zBoTdCrtmurTNiuQP1Vuo4QeWTq70EOVW5VqOjQDAGi3lmehB3hv7VZpU3rmI4tw6Oww\naowlfR/yfjzH47L6vUhlUzi2Msh0lnAqgqngDLbY2mHOJ45VEjWvxj19d0HDa/Dw2BOF1DtSXYJS\n5ZbMl6M5jkON0Q1P3AtRFFmPQxRiKboMESIazfWsRyGkqjWaG8CBw1yEFnrKSfosTQtpxVdrrIFd\nZ8O4f5LSJYrEm1/allK/lcqhyy30rJb4ABIhpTIfWcQ/Hf46lmMruKHlahzsuxNqXl3099nfeg04\ncHjuzEt0fUcIIWVECz2kbI4vDkMQhYqrPiCAS6pqusAiiCeei9nfbF8rKR2O4+A2uOCN+0r+gTxA\nCT2yRgs9lY/JQk8ZTkNGUlEEUyE00QNAJqTarTcZ124NeUchQsSOmsr9zFlvqsWnt34M0UwMPxj5\nET2QqEIhaTlaAXVENQYXktkUwmmq8iRrsxBZAgA0mujvc0JY0qm0qDG6MBdZpId2ZZIVsjjuOQGL\n1oyt9g7W41QcjuPQ4+xCNB2jRbUi8RQWepR9v9eeT+jxJ+iwBFGek/7T+Jej30AwFcKntt6C27pu\nLVnCW52pFjtq+nEmPIvJwOmSvAchhJAPooUeUjaHF3KVAAO00FNxzib0nD9K3xvL/RhVbsmbW+9E\nMpsq+SLH2YUeSuiRI6PGAA4cIila6KlEoihiOjgLh85e1sS8BlMdLFozxvwnS/ZAQKrbajI3luT1\nyYW5DE50O7biVHAKKzEPszmG8hWvlb5EfnXTZeh39WDMfxIvz73BehxSZoFUCCpOBZMC0sikhE5P\njGq3yNosRPMLPVSfSQhzzeZGxDNx+KmGpiykuq3dNVS3VSpUu1VcvkIiu7Lv9zry9yfpex1RmuOe\nE/j3d7+DZDaFg313Yn/rtSV/zwP593hu5uWSvxchlSyQDCKdTbMegygEXRmQssgKWRxfHIZT76BT\ndhWokNBzwcqtfEIPVW7JmvRr6Y2XtnZLqtyy62mhR454jodJY0SUEnoqki/hRzgdQbutfOk8QP40\npKML4VQEi9HlkrzHfP6UJSX0sCOl9BxaPMLk/VPZFEZXJ1BvrEWtsYbJDOXCcRw+3/tZmDUmPHXq\nF4VEC1IdQskwrFoLOI5jPcpFSQ94pOsBQi5G+n7WYKpjPAkhRFqUnwtTmkk5HKW6rZLrdtJCTzFV\nSkKPQ0rooYUeoiCvzr+J7wz9ADzH43d3fAmX1O8py/t22NrQaevAsG+scLCOEHJxyWwKJ7yj+NHE\nU/jrN/8Rf/763+Ffjn4TiUyC9WhEAWihh5TFZGAKsXQcA+5eRdx0Juvj0q+lcssHDlxhYYTIk3QB\n7rtA2lIxBJNBqDhVodqJyI9JY6LKrQp1tm6rpezvXbh56i/NzdP5/ANASuhhZ1fNAAxqPQ4tHmZS\nAzXun0RaSFdNIqRVa8Hnej6DjJDBAyMPIy1kWI9EykAQBQRTIcVUl0qVu54Sf74klWM+ugin3gGD\nWs96FEKqXnM+KYse2JVerm5rCBatGZ1Ut1UyFq0ZTeYGnApOI0Wn4jdNSmuX7g0rlUGth16lR4Aq\nt4gCiKKIn53+FR4ZfxImjRH/x+770OfqLusMB9pyKT3PU0oPIecliiLmI4t47sxL+N/HvoU/feUv\n8Y3B+/Hy3BsIpkJoMjfgTHgW/zn4PUrqIRelZj0AqQ5S9UG1PFypNkaNAQa1oRCzei6euA92nQ0a\nnr7tyJlbSui5wHJWMQSSIVi1FoqQljGzxoiVmAeCKNCvU4WRFno6rG1lf+8ex1YAwPjqSdzQcnXR\nX38+sgANr1Z83LeSaVUa7K3bhdfmD2F0dQL9rp6yvv+gZxgAsKOmv6zvy9KOmn5c2XgpXl94C0+f\nfhaf3vox1iOREoumYxBEAValLPQUKrcooYdcXDgVQTgVwXZXL+tRCCEAmi35hJ6I/BN6crUFmcIi\nqdJMBE4hmo7hmqYr6Bq8xHqcXZiPLOJUcAq9zm2sx1E0b2IVNq0VWpWG9Sib5tDbKKGHyF5WyOLR\niafw+sJbcOmd+P1d9zJJJ+539aDeVIfDy8dx65Yb4dQ7yj4DIXIUSUcxtnoSo74JjK6OI5gKF36s\nxdKEXuc29Dm3ocPWBg4c/mv4QRz3nMB3hx/Eb2//AlS8iuH0RM7oyTopizH/SRjUenTZt7AehZSI\n2+DEUnQZoih+IIUplU0hkAxiW/5BLpGvQtpSCSu3pFPlbZbyp4OQtTNrzRAhIpaJU5JShZkOzoLn\neLRYmsr+3g69HXXGGkwETiMrZIt6kZIVsliMLqPR3EAXP4xd3rAPr80fwpuLh8u60COIAoa8o7Bo\nzEwSqFi6retWnPSfwoszr6Lf2YNuJ33mqmSh/A0hm1YZCz02nRVqXk0JPWRNpLqtRqrPJEQWbFor\nzBoT5mSe0JPOpvG1I/+BaDqOv7jsj2DXKa/e+xjVbZVNj6MLL8y8grHVk7TQswkZIQN/IoAttnbW\noxSFQ2fHYnQZiUwCekoJJDKUyqZx//BDGPQOo9nciN/beS9sOguTWXiOx4HWa/GD0R/h17Ov4bau\nW5nMQQhrWSGL6dAsRlfHMbI6gZnQHESIAACzxoQP1e1Gn6sbPc4uWLUf/PN6T//d+Ma7/4Uh7wge\nHHscn+/9LC12k3OihR5SFlc0fAi1DgfUlM49tbpcAAAgAElEQVRSsVx6J2bD8wilwrD9xmlhb345\nhBIT5M+V36b3lnChJ5yKQBAFxdREVCuzxggAiKSitNBTQTJCBrOReTSZG5idoOtxduHluTcwFZrB\n1iJGyS/HPMiIWTTlawEIO22WFjSY6jDkGUYkXb7vIdOhWYTTEVzR8KGqu/jVqbS4p/8u/NORr+P7\no4/izy/5Qxjz38dJ5QkkQwDA7ObtevEcD7fBBU/ce87lf0LeayGar8800UIPIXLAcRyazA0Y908i\nnknItgrv1YVD8CX8AIAnTj6Ne7d/nvFE65Or2zoBq9aCTns763Eq3lZ7B9ScCuOrpamCrha+hB8i\nxELat9I59LlFQH8yiAaZfq8j1SuajuGbgw/gdHAa2xxb8ZWBLzL/O3lf3S48ffqXeG3hLdzU/mG6\nB0GqxmrCj1HfBEZWJzDuP4l4JgEgd++j096OXmc3+lzb0GxuvOj9SQ2vxlcGDuLfjn8bby0dgUGt\nx2e6Pk73TcgHVNedbsLMDa3X4PotV7Aeg5SQy5BbBPGdo6rJE8/F69NCj/xpVBrYdbaSVm4Fkrk+\naiWemKsmpvwD+Eg6yngSUkzzkUVkhAzara3MZuh2dAFA0W+eLuRPDdNCD3scx+Gyhn3IiFkcXjpe\ntveV6raqteK1zdqCm9sPIJAM4uHxH0MURdYjkRIJSQs9CknoAXLXAfFMAtFMjPUoVU0QBfzzkf/A\nQ2OPsx7lvM4m9NDf54TIRbM5V7sl/fmUm3gmgV9Ovwi9So9WSxOOrgxi1DfBeqx1mfDn6rZ21w5U\n3WI6C1qVFlvsHZiNLCCcirAeR7G8+fTFSrnf69DZAQD+BNVuEXnxJwL42tFv4HRwGntrd+L3dn6Z\n+TIPAKh5Na5vuQqpbAqvzB9iPQ4hJZPKpjHiG8fjJ3+Kvz30T/iLN/4BD40/geOeIRjVRlzVdBm+\nMvBF/OPVf4U/3PO7+Gj7DWi1NK/5M51ercPv7vwSGkx1eGnudTwz/XyJ/4uIEtEVAiGkKNz5qqZz\nJbtI8fo1RndZZyIb49I74U8EkBEyJXl96VS5XU8LPXJmyS/0RGmhp6JMhWYAgGkd0TbHFnDgMOYv\n7kLPHC30yMol9XvAczzeXHynbO855B2Bhtegx9lVtveUm4+0XYcttjYcXRnEO8vHWI9DSiSYyn2W\nsioo7VB60OOJUe0WS2OrJ3E6OI3XF97GiG+c9TjntBBdAs/xqKVrR0JkQ/p8PRdZYDzJub0w8woi\n6SgOtF2Lu3s+Cw4cHp14EulsmvVoa3a0ULe1k/Ek1aPHkauoHfdPMp5EuaR7wO4KWeix6/MLPUla\n6CHysRhdxj8d+TqWosu4vvkq3NN/FzQyasG4svFSGNR6vDT7mqL+3iXkQkRRxGJ0GS/OvIJ/P/4d\n/Omrf4mvv/td/Hr2Nawm/Nju6sFnuz6Bv7zsT/DXl/+fuKv709hZs31Ti3ZmjQm/v+u34NI78fOp\n5/DS7OtF/C8ilYAWegghReHKX7z54v4P/Jinwk5sVDq3wQkRIlZLdCIlKCX0KOhUeTUqJPSkaKGn\nkkwHZwEAHQwTegxqA9qtLZgOzRYiSYthPkoLPXJi1Vow4OrFXGQBs+H5kr/fSsyDpdgKep3boFVp\nS/5+cqXiVTjYdyd0Ki0eHX8KvhJWaBJ2gskwACiqvrTGkFvOkJI7CRtvLR0p/PNjEz9BukQL/Bsl\niAIWokuoN9ZSXTchMtJsySX0zMtwoSeUCuOF2Vdg0ZpxfcvVaLE04rqWK+GJ+/CrM79mPd6aZIUs\n3vWcgE1rwRZbG+txqoZ0CIBqtzZOSuiplIUeZyGhJ8h4EkJyTgWm8bUj/4FAMohPdN6E27pulV2K\nm0Gtx9VNlyOcjuDQe641CFGaWDqOoyuDeHD0cfzfb/w9/udb/4wnJn+G0dUJ1Bjc2N96Lf7brt/G\nP17z1/jdnV/GdS1XotZYU9RqLLvOhv+267dh1Vrw2Mmf4K1F+jNFzpLXd39CiGK59eev3PLGKusC\nr9JJ3deleggoJfTYqHJL1sxaqtyqRGdCMzCoDcwT07qdXRBEAZOB00V7zfnwIuw6G0zU2S0blzXs\nAwC8uXi45O816B0BUL11W+/lNrjw2W2fRCKbwPdGHoUgCqxHIkVWSOjRWhhPsnY1xnxCT5wSeliJ\nZ+J413MCtQY3rm2+AitxL16ceYX1WO+zmvAjlU2h0VzPehRCyHvUGWug5lSYCy+yHuUDnp1+Aals\nCje374cuv9T9sY6PwK6z4Vdnfo2VmIfxhBc37p9ENBPDrtodsntQW8laLE0wqY0YXT1JVbUb5Cks\n9DgZT1IcjnySOFVuETkY9o3h345/C4lsEl/ovR0fabu+qIsDxXRd85VQcyq8MPMy3X8gipIWMvjV\nmV/jn498HX/66l/huyd+iDcW30Y6m8be2p34fO/t+Lsr/xx/fun/wKe23oIeZ1fJE7JqjC78/q7f\ngkFtwA/HHsOgZ7ik70eUg64SCCFF4cwv9HjPcZPeE/fCprUWbq4QeXNJ9WnnWM4qhoCU0EMLPbJm\n1tBCT6WJpKNYiXvRbm1hfqNYijcfK9JpyEgqimAqhGZK55GVflcPLFozDi8dK3kKxKBnBBw4DLh7\nS/o+SnFZ/V7srhnAqeAUnjvzEutxSJGFkiGoOJWiFhgLCT1UucXM0ZVBpIUMLm3Yi4913AiLxoxn\npl/AauKDCauszEeWAACNJlroIURO1Lwa9aY6LEQXkRWyrMcp8MZ9eG3+LbgNLlzZeGnh3+vVetzW\ndSsyYhaPjj8l+2WNs3VbOxhPUl14jsc2Ryf8yQBWKEFwQ7xxH/QqXeH+kdLZdVS5ReQhI2Tww9HH\nAAD3DRwsHJaSK5vOikvq98IT9+FdWj4gCiGIAr4/8gh+cuoZTAVn0GFrxS0dB/An+34f/+/V/w++\nvP1zuLxhH5NnWE3mBvzezi9Dzanw3eEHMeE/VfYZiPzQQg8hpCg0Kg1sWit8v3FDOC1ksJoIFE7l\nEvlzF+rTSrvQY1NQTUQ1ooWeynMmlKvbare2MJ4EaLe1QctrMOafLMrrzUekuq3GorweKQ4Vr8Il\n9XsQzcQwlE/QKYVIKorTwWl02Fph0ZpL9j5KwnEc7uz5NGxaK3429SvMhOZYj0SKKJAMwaq1MF/O\nXA+HzgYVp4KXHpgx89biEXDgcEn9Hhg1Bnxy681IC2k8cfJp1qMVLEbzCz2U0EOI7DSbG5EWMrKq\nTvzZ6V8hK2Zxa8dHoOJV7/ux3TUD6HN2Y8x/EkdX3mU04cWdrduyUt0WA1S7tXGiKMIbX4Xb4JJt\nash6aVUamDUmWughzB1dGUQoFcbVTZdju0IOLe1vvQYcODx35iXZL9ISAgBPTv4cR1cG0WnrwP93\n9V/ij/Z+FTd3HEC7tVUW91q22NrwlYGDEEUR/zn4QOG+Pqle7H9XEkIqhsvghD8ReN+JrdX4KkSI\nhVO5RP6kqNxzpS0VQyAZgkljhFalKcnrk+Iw0UJPxZkOzgAA2q2tjCcBNLwaW+1bsBRdLiz5bcZ8\nZAEA0EQPAGXn8oYPAQDeXHinZO9xwjcKESJ2uPtL9h5KZNaY8IW+2yGIAh4YeRipbIr1SKQIRFFE\nKBVW3GK0ilfBZXBQ5RYjnpgPp4LT6HJ0FpJVL6nfgy22dhz3nMCIb5zxhDkLlNBDiGw1WXJJmHMR\nedRuzYUXcHj5OFrMjdhTt/MDP85xHG7f9kloeDWeOPk04pkEgykvbsw/iVgmjt21A7J4eFRtepzb\nABQvObaahFJhpIV04VBgpXDobPAngrSQQJgRRREvzb4ODhyubb6C9ThrVmeqxY6afpwJz2IycJr1\nOIRc0Aszr+DF2VdRb6zFfTsOyjb9uNe1Dff034VkNoWvv/tdLEWXWY9EGKIrBUJI0bgNTogQ33eS\nQbppX1NhF3iVzKq1QMOrS1a5FUwGqW5LAXQqLTS8GtFUjPUopEimCwk97Bd6gPeehtx8So9U0UEJ\nPfLTYKpDh7UVo6sT8CdKc9JRSv8ZcPeV5PWVrNe5Dde3XIXlmAdPTv6c9TikCKLpGLJiFjathfUo\n61ZjcCOSjiKWjrMepeq8tXQEQK6OT8JzPO7Y9klw4PDYxE9KXo24FvPRJehVusLSESFEPprzn7Pn\nZbLQ89PTz0KEiI933nTeRZgaows3tt2AYCqMn53+ZZknXBspPWhP7QeXkkjpuQ1OuPVOjPtPyapO\nTgmk+73SocBKYdfbkRbSiGboXhhhYyo0gzPhWQy4+xS3MHeg9VoAwHMzLzOehJDzO7x8HD+e/Bls\nWiu+uute2S7zSPbU7sDdPbchmo7h345/B764fCqzSXnRQg8hpGhceinZ5ewiSGGhx0gJPUrBcRxc\nBtf7fh2LJZFJIJFNKu5UeTXiOA4mjQmRdIT1KKQIRFHEmdAs3AYXzFp59NsXFnqKULs1H1mAhlfT\n8qhMXdawDyJEvLV0tOivnc6mMbI6gVqjG/Wm2qK/fiX4xJab0Giqxyvzb+KEd5T1OGSTgqkQAGVW\nl0rfo0uVAknOTRAFvL10BFqVFjtrtr/vx5otjbim+QqsxL14ceYVRhPmpIUMVmIeNJjqK6a6g5BK\n0mzOJ/SEFxhPApz0n8awbwxd9i3ozSesnM/+tutQa3Tj5bk3MBOWVwVpRshg0DMMu86GDps8Dl1U\nox5nFxLZhOx+f8idt7DQU1nX4A6dHQDgT2w+SZiQjXhp9jUAwHXNVzKeZP06bG3otHVg2DcmmwVg\nQt5rwn8KPxh5FHqVHl/dda9iDpJc0XgJPrX1FgSSQfz78W8jlAqzHokwQAs9hJCiceVPZfjet9CT\n61enh6zK4tY7Ec/EEUsX90RKIJl7CGXXUkKPEpg1JqrcqhCeuBfRTAzt1hbWoxQ0mOpg0Zgxtjqx\nqTjrrJDFYnQZDaZ6qHhVESckxbK3bic0vAaHFt8penT5uH8SqWyK0nkuQKPS4J7+u6DmVPjh6GMI\np2hRU8mC+c9SVq0SF3pyC/7S9QEpj1OBKfgSfuyuGYBerfvAj3+s4yOwaMx4ZvoFrCbYnfZbjq5A\nEAU0Un0mIbJk1Bjh0NkLVbesiKKIn5x6BgDwic6bL7oAqOHVuGPbpyBCxCNjT0IQhXKMuSbjUt1W\nDdVtsUS1WxsjHQKstPu9Dn3ufmUgWZp0WUIuJJAM4phnCI2memxzdLIeZ0MOtOVSep6nlB4iM/OR\nRXxr6HsQAXxl4Itoyi+rK8X+1mvxkbbrsRL34uvHv0vJx1WIrhYIIUXjzm+0vreqyROrzBMblU5a\nzip2Sk8gmTvhYlfgqfJqZNaYkMymkM6mWY9CNmkqOANAPnVbQK7qo9u5FcFUGEuxlQ2/znLMg4yY\nVdyFWDUxqA3YXTsAT9yHU8Hpor72YL5ua4e7v6ivW2mazA34eOdNCKcjeHDssaIvVpHyCeZPYtl0\nCqzcMuauBzyU0FNWh6S6rYa95/xxo8aAT269GWnh/2fvvqPbuu88778vGgECLGDvvalLlKxiFcuW\nJVfZlpO4JOMkTmInmdSZ59mdfXJmd5+ZZ3cy2dmdlJk0p0zsZGLHHnfZli3JKlbvEiWSIin23kCw\nAUR9/mCxFVsSSQG8APh9nZNzcg6Aiy8tErj3dz+/79fNy7U757K0q7SPjI/PlECPEKErKyYdu2tI\n1XBwRW8lDYNNLEtePO2uNmUJxaxKXU7TUAuH2o4HucLpO9N1AYDy1KUqVzK/lVgLUVCokkDPjER+\nhx4J9Ii5d7D1KD6/j83Z68O2Y+WixDLSzKmc6jqn6mYBIT7K5hzgZ+d/i8Pj5IkFj1CaUKR2SbPy\nQMHdbMhYQ+twO7+48G+4vC61SxJzSAI9QoiAuVaHHovejElnVKssMQuTM7A/Gs4KhA8DPdKhJxxM\njmaS2eHhr3GwBQitQA9AqXV87NbN7IZsn2jjK4Ge0LYufRUAR9tPBuyYPr+Pit5KLHozBXG5ATtu\npLo9ewMl1iIqeqs43B46N7PEzEx26AnnkVuTgX8RfGNeF2e7L5BgtFIUX3DN561OK6cgLo9zPRVU\n9l2ewwo/1D48HujJNEugR4hQlWXJAKBVpS49Pr+PN+p3oaDwQMFdM3rtw0XbMWqNvFH/TkiMKfD4\nPJzvHR+3FWrXaPONWR9NTkwWDYNNOD1japcTNnodfWgUDdYIW9+zGicCPWMyckvMLZfXzaH2Y5h1\n0dySukLtcmZNo2jYmnMbPr+PfRPjw4RQ06jbwU/P/4aBMTs7iu7jlrTw/ftSFIVHS3ewMmUZV+yN\n/Ori7/H4PGqXJeaIBHqEEAETHxWHVtHSN5G+9vq89DltU+31RfhIMn48nBUIUyO3jJF1wR+pzPrx\nQM+QS8ZuhbvGwWZ0ipasmAy1S7lK2cSOiMu22Qd6WiXQExaK4gtINCZwpvs8To8zIMdsHmpl0DXE\n4sQFMqZgGjSKhs8veASTzsTLtW/SNdqjdkliFgZd4TtyK8FoRaNoZOTWHDrfc5Exr4vVaeXX/ZzU\nKBoeLXkIBYWXal7HrcKi4GSHnnTp0CNEyMqcDPQMqRPoOdF5ho6RLtamryLNnDqj18ZFxbC98C4c\nHiev1L4VpAqnr7q/FofHQXnKUjmPDQFlCcX4/D7qBurVLiVs9Dr6STBaI27s9WRASTr0iLl2qusc\nI+5R1meuwaA1qF3OTVmVupz4qDgOtR9n1C2bRIV63F43z1Q8S8dIF5uz1rMle5PaJd00jaLh8wsf\nZWFiKZV9l3mu8k8hNVJWBI9cMQghAkajaEgwxk+1Xe13DuDz+6ba64vwMdkytzfAIxHs0qEnrMRM\nBHpG3BLoCWcur5vW4XayYjLRa3Rql3OVBKOVFFMStbZ6vD7vrI7RNiKBnnCgUTSsTV+Jy+fmTHdF\nQI55oWdi3FbywoAcbz6wGuN5vPRhXD43z156YdZ/d0I9kx16wnF8qU6jIyEqXkZuzaHjHePjttak\nld/wuVkxGWzKupVuRy/vNx8Mdmkf0z7cSZwhBsvE+acQIvRMduhpmwjUzyW3183O+vfQaXTcl791\nVsfYlLmOnJhMTnadocZWF+AKZ+ZM9/i4rRUpMm4rFExuNLmZzrHzidPjZMg9PNV9MZLER8WhoNAv\ngR4xh/x+P/tbD6FRNGzKXKd2OTdNp9Fxe/YGXF4XB9uOqV2OmKd8fh/PVf2J2oF6ViQv4VPF28N2\nlN2f02l0PLX4CQri8jjdfZ4/1byG3+9XuywRZBLoEUIEVKIxgWH3CE7P2NTu20i8wIt0k+PTeoPU\noSccx0TMR5MdeoYl0BPWWofb8Pl95MVmq13KJypLKMbpHaNpqGVWr28b6iA+Kg6zPjrAlYlAW5O2\nCgWFox2BGbtV0VuJXqOjLKEkIMebL1amLmN1WjlNQy283bhH7XLEDNnHhtAomrD9zEuOTmLQNSQj\nLeaAzTnAZVsdBXG5pEQnT+s19+dvI0Zv4Z3GvfRPdF2dC6NuB7axATIknCtESEs0WYnSGlQZufVB\n21FsYwPclnnr1EicmdIoGh4rfRgFhRcuv6baiAKPz8OF3ktYo+JD9hptvsmPy8Og0VN9E51j55PJ\ntcKkCFzv1Wq0xBpiGBiTQI+YO3UD9bQNd7AsefGsv+NCzfqMNZh0Rva3HMLldatdjpiHXq17izPd\nFyiMy+cLCx+LuI6IBq2Bry99kkxLOofajvFm/btqlySCLLJ+g4UQqpsMgvQ7bVPdXWTkVviJ0hqI\nMVjodQY60GNHp9Fh1oXnTaj5xmKYCPTIyK2w1mhvBiAvNkflSj5ZaUIxMLvdkMOuEeyuQbLkBmBY\nSDRZKbUWUW9vpGuk+6aO1evoo32kk1JrMVFh3o5aDY+UPESi0cq7je9zZaBR7XLEDNhdg8QaYsJ2\nMSo5SF0gxced6DyDHz9r0lZO+zXRehMPFd2L2+fm5dqdQazuapPjtjLMMm5LiFCmUTRkWjLoGu3B\nPYc35xweJ7ua3seoNbIt7/abOlZubDYbM9fRNdrNHhW6kcHkuC0nK1KWhO33eaTRa3QUxRfQMdLF\nwERnaXFtk+dxSRNrwJHGaoxnYGxQRpiIObOv9TAAt2dtULmSwDHpjGzMXMeQe5jjnafVLkfMM3ub\nD/J+ywekmVP52tIvoNfq1S4pKKL1Jr65/CskmxJ5t+l99jQfULskEURy1SCECKjJi7k+Z/9UO30Z\nuRWekowJ9DttAb2AHRizE2+IjZj2hpHOMrH7Xzr0hLfGwfHON6Ea6CmJL0BBmVWgZ7Ldv+zoDx/r\n0lcBcOwmF3Qu9E6M20qScVuzYdIZ+fzCxwB4tvIFHB6nyhWJ6fD7/QyODRJnCN9Oh5OBHhm7FVx+\nv5/jnafRaXSUpyyb0WtXp5VTEJfHuZ4KqvpqglTh1TomAz0WCfQIEeqyLOn4/D46Rrrm7D33Nh9g\nxD3K1tzbAjKWb3vBXcQYLOxq3BPwrsTTMTluq1zGbYWU0omxW5f71R3HFg4mN/9FYoceAGtUHF6/\nlyHXsNqliHmgz9HPhZ5L5MRkUhCXq3Y5AbU5az06Rcve5gMSkBNz5lTXOV6p20mcIZZvLPsS0WHa\n3Xi6Yg0xfGv5U8RHxfFq3VscaT+hdkkiSCTQI4QIqETjh6OaPhy5JR16wlGiKQGf34fNGZjdSV7f\n+MVwvDEuIMcTwWfRWwAYkUBPWGscbMaiN4fs7rlofTQ5sVk0DDbjnGGooG1kPNAjHXrCx9LkxZh0\nJo53nMLr8876OBd6LgGwWAI9s1YUn8+23Nvpc/bzHzVvqF2OmIZRjwOP3xvWo0uTo8evCyavE0Rw\nNA620DXaw7KkRUTrTTN6rUbR8GjJQygovFj7Gu45GEnTPiwdeoQIF1mWDABaJ4L1wTboGmJvywfE\nGCzcnr0xIMeM1pv4VNF23D4PL9W8ht/vD8hxp8N91bit0NxwMV8tmBjjK2O3bmxqA2ekBnomRh7Z\nZOyWmAMH2o7gx8/mrA0RtwE2LiqWNekr6XH0cX5iDUeIYKqx1fH7yj9h1Br5xvIvk2C0ql3SnEg0\nJfDN5V/BrI/mj9Uvc7a7Qu2SRBBIoEcIEVBTHXoc/fSM9hGtM2GO8BRspJrcadPnDMwO6kHXEH78\nxEdJoCdcmCd2Pw5JoCdsDbqG6HPayIvNDumFgTJrMT6/j7qBhhm9rm1o/EZCpgR6woZBq2dV6nLs\nriGq+mfX+WHEPcoVeyN5sTnERcUEuML55d78O8mJyeRY56mp3eIidNnHBgGIDePf+6kOPaPSoSeY\nJtvar0mf/ritj8qKyWBT1q10j/by/hyMpGkb7kRBIc2cGvT3EkLcnMyY8fPu1uH2OXm/XY17cXld\n3Jt3Z0DHrK5KXU6ptYiLfdWc7527m4zV/TU4PE7KU5aG9PXZfJRhTiNGb+Fyf+2chrzCUe/EeVxi\nhN4otU6sWwZqg6MQ1zLmdXGk/SQxBgvlqTPrqhkutmRvQkFhd9N++WwVQdU23MEvLzyHH3h6yefn\n3VpxujmVbyz7Mgatnt9d+uOs11xF6JJAjxAioCY79PQ4+uh19El3njCW9JFuS4EwOYc8nHeVzzeT\nI7dGXBLoCVeN9mYgdMdtTSqbaG8+092QbSMd6DU6+a4JM5Njt452nJrV6y/1VePz+2TcVgDoNDq+\nsPBx9Bo9z1e/PPVdLUKT3TUe6IkP45FbicYEFBTp0BNEbp+H013niDXEUGYtnvVx7s/fRozewjuN\ne+l32gJY4dX8fj/tI50kRydi0OqD9j5CiMDIMKehoNA2B4GeXkcfh9qOk2RKZH3GmoAeW1EUHi15\nCJ2i5aWa13F6xgJ6/GuZDFCvkHFbIUdRFEoTirC7huZ0pFw46nX0EaO3YNQZ1S4lKOKlQ4+YIyc6\nT+PwONiYsRa9Rqd2OUGRak5hafIimoZaqBuoV7scEaFszgF+dv63OL1OPr/gkakxmvNNbmw2X1v6\nRVAUnql4jgZ7k9oliQCSQI8QIqDM+miitAbq7Y14/F6SoyOz/ep8MNltKXCBnombUNKhJ2xoNVpM\nOhPD0qEnbDUOtgChH+jJj81Fr9Fzub9u2q/x+rx0jHSRbk5Dq9EGsToRaDkxWWSY06jorWR4FoHB\nyXFbSyTQExBp5hQ+VXw/ox4Hv698UWbbh7BI6NCj1+qJj4qbGtUgAq+it5JRj4Nb0lbc1PdjtN7E\nQ0X34va5ebl2ZwArvNrAmB2Hx0GGeX7toBQiXBm0BlKik2kb7gj6Tvud9e/h9XvZnr8tKOf7qeYU\n7szdzMCYnbcbdgf8+H/O7fNwoadyYtxWdtDfT8xcmYzduiGvz0v/2MBUV+9IZI2aCPQ4JdAjgsfv\n97O/5TBaRcuGzHVqlxNUW3NuA+C95v3qFiIi0qh7lJ+e/w0DY3Z2FN3HqrQVapekqhJrEV9a9Dk8\nPg8/O/9b2uZoTK4IPgn0CCECSlEUkkyJjHocQOTOU54PJi/OewN0w2Vy178EesKLRR8tgZ4w1jg4\n3qEnN8QXjPVaPUXx+bSPdGIfG5rWa7pGe/D4PPOuhWokUBSFdemr8Pq9nOw6O6PXun0eKvsvk2RK\nJF1GswTMhoy1LE4so9pWy/7Ww2qXI65hcOLzMS6MO/QAJEcnMTBmx+V1q11KRDreMT5ua23aqps+\n1uq0cgricjnXU0FVX3BadrePdAKQYUkLyvGFEIGXZUnH4XEGtXtX61A7p7rOkW3JCOoYkrty7yDJ\nmMC+1kNBv+FR3V+D0+ukPFXGbYWqMutE59h+CfRci21sAJ/fF9mBHuPEyC3pXiqCqLq/ls7RbspT\nlkX8KPH8uFwK4/Kp7Lss4QIRUG6vm19WPEvHSBe3Z21gS/YmtUsKCcuSF/EXZZ9h1OPgX8/9OmD3\n94S6JNAjhAi4ybFbgIxBCWNxUbFoFS29zsCO3IqXkVthxaI3M+wekTnHYcjn99E02EpqdArRepPa\n5dxQWcL4WJDL09wN2T6xCCCBnvB0Sy1RoaAAACAASURBVFo5GkXD0Y6TM/p8qbFdYczrYmnSQrkR\nEkCKovC5BZ/Bojfz+pV3ZDdqiBqYGLkV7uNLkwMcGhcfGnQNUdl/mZyYzIAEZDSKhkdKdqCg8GLt\na7h9ngBUebX24fFAT6ZZAj1ChIssSwYArUEcu/VG/S78+Hmg8B40SvCWrw1aPY+UPoTP7+OFy68E\ntVPh6a7xcVvlMm4rZFmN8aRGp1A7UI8nCN954a5tuINX694CPuzqHYliDTFoFA0Dck0kgmh/6yEA\nbs9er3Ilc2Nr7niXnj3NB1SuREzy+DzU2Op4re5tvn/iR/z9sf/N0faTeH1etUubFp/fx7NVf6Ju\noIEVKUt5uPh+WSf8iDXpK/l08QMMuob4ydlfTd2bE+FLAj1CiIBLNFmn/r+M3ApfGkVDotFKX8BG\nbkmHnnBkMZjx+X04vU61SxEz1DXag9PrDJt27qXWiUDPNMdutUqgJ6zFGCwsTVpI23AHLcNt035d\nRW8lAEtl3FbAxRpieKjwXjw+D7sa96pdjvgEg2ORFeiRsVuBd6rzLD6/jzUB6M4zKTsmg01Zt9I9\n2sv7zQcDdtxJkx160qVDjxBhIzNmMtATnF32tbZ6LvVVUxxfwIKJEUjBtCixjOXJS6i3N3Gs41RQ\n3sPtdVPRe4kEo5XcmPC4PpuvyhKKcXldNNib1S4lJPj9fmptV/jZ+d/yDyd+yLmei6SbU1mfsVrt\n0oJGo2iIj4qTDj0iaLpHe7jYV01+bG7Id9QOlEWJZaSbUznVdS6oHf7E9XWP9nKg9Qi/uPBv/KcP\n/l9+fPYZdjfvp3O0mz5nP3+ofmnqsz6UN/f6/X5eqd3J2e4LFMXn84UFjwY1AB6ubs/ewL15d9Ln\n7Oen537DiHtU7ZLETdCpXYAQIvJ8tENPJLdgnQ8STQl099fg9Dgx6ow3dSz72CAKStiPiZhvzHoz\nAEOuEUy60O/yIj40uQCZF5ujciXTk2lJw6I3U22rxe/333BXRduIBHrC3dr0VZzrucjR9lPklGbd\n8Pl+v5+K3krMumgK4vKCX+A8tDqtnN3N+znScZKtuZvlPC7E2F2DaBQNlonv5nCVHD3ewbPH0aty\nJZHnWOdptIqWVanLA3rc+/O3cabrPLsa93JL2goSjNYbv2ia2oc70Wv0MqpZiDCSNXH+3TYU+A49\nfr+f16+8A8CDhffO2U7rTxdvp6r/Mq/Vvc3SpEVYDIH9rq3qr8HpHWND5lrZPR7iFiQUc6D1MNW2\nWoqtBWqXoxqf38eF3kp2N+2fGuVdGJfH1tzNLEosi/gbp9aoeOrtjXh9XrQardrliAizv/UIMH+6\n88B4UO7OnNv4fdWL7Gs5xKeKt6td0rzg9DipsV2hqr+Gyv6aq7rkpkYnszChlAWJJRTHFzDiHuXt\nhj0c7TjJryqeIzc2m4cK76FkYhxlKNnbcpB9rYdIM6fy1SVfQK/Vq11SyLo3fyujHgf7Ww/zs/O/\n5VvLn8Koi1K7LDELEugRQgTcZNvVKK2BGL1F5WrEzZi8kdfntN30TfOBMTsWg1kuhMPM5E3DEfcI\nICP0wsnkolteXHjs9tEoGkqtRZzuPk/XaA9p5pTrPr9tqIP4qDjM+ug5qlAE2sKEUmINMZzsOsvD\nRffd8AK8ZaiNgTE7q9PK5bskSLQaLfflb+W3l/7I2w17+PzCR9UuSXyEfWxoagRAOJMOPcHRMtRO\n23AHy4JwIzpab+Khonv5fdWLvFy7k6eWPBGQ43p9XjpHu8kwp4b977UQ80msIYYYvSUoHXou9FbS\nMNjEsuTF5MfN3cYEqzGe+/O38XLdTl678jZ/seAzAT3+mW4ZtxUuiuIL0Cgaqvtr2V5wl9rlzDm3\nz8PJzjPsaT5A12gPAEuSFrItd/O82lRhNcbht/sZGBu8qhO9EDfL4XFyrOMk8VFxLE9eonY5c2pV\n6nLerH+XQ+3HuSdvC9GynhdwPr+PtuFOqvouU9l/mXp7E17/+Agto9bIsuTFLEwoYUFC6cc+2wxa\nA59b8Gm25GxiZ/27nO2p4Mdnn2FBQgkPFNxNTuyNN+LNhVNd53i17i3io+L45rIvy+/RDSiKwqeK\ntzPqcXCi8wy/qniOry17Er1G4iHhRv7FhBABN9mhJ9mUJDuPwtxkOKvX0XdTgR6/38/AmJ00c2qg\nShNzZDLQM+weUbkSMVONg83oNToyzeHTwaY0YTzQU22rvW6gZ9g1gt01yOLEsjmsTgSaVqNlTdpK\ndjfv50LvJVbeoKPEhd5LACxNWjQX5c1bK1KWktm0jxOdZ9iWu1m+u0OE3+/H7hokwxz+Y4kmA+O9\noxLoCaTjneNjYtakrwzK8VenlXO4/Tjneiqo6qthQeLNj8HpcfTi8XnICKNzFSHE+I2BTEs61bZa\nHB5HwDq5+vw+3qjfhYLCAyoEKW7LWs+xztMc7TjJuvRbKIzPC8hxx8dtVZJotJITExo3w8S1mXRG\n8mJzaLA3Mep2EK2fH52KHR4nh9qOsa/lEHbXIFpFy9r0VWzNuW1eXg9Yo+IBsI0NSKBHBNSxjlOM\neV1sy71j3m1U0ml03J69gVfr3uJg21HuztuidkkRYcg1TFV/zdT/hlzDACgoZMdkjgd4EkvJj82Z\n1u9cmjmFryx5gqbBFt64smvquOUpS7m/4C5So5OD/SNd0+X+Op6r/BNGrZG/XPYlrMZ41WoJJxpF\nw1+UfQaHx0lFbyW/u/RHvrToc/PuMyjcyRYoIUTAJZsSiTPEUBSfr3Yp4iYlGScDPf03dZxRjwO3\nz0N8lIzbCjdTgR6XBHrCyZjXRftwJzkxWWF1cl5mLQbGL9Cup21iN3CGjNsKe2vTVwFwtOPUDZ97\nobcSnaJlQUJxsMua1zSKhvvzt+HHz86G3WqXIyY4PA48Pg9xEXAuFaU1EGeIlZFbAeT1eTnZeRaz\nPppFQQq7ahQNj5TsQEHhxdrXcPs8N33MtuFOADIs4R9UE2K+yYrJAD78Ow6E451n6BzpYm36KlUC\nBFqNlsdKHwbghcuv4PV5A3LcyolxW+Upy2TTW5goSyjGj5+agStqlxJ09rFBXqt7m789/A+8duVt\nnF4nW7I38Xfr/oYnFjwyL8M8wNRN4gHngMqViEji8/vY33oYnUbHhow1apejivUZazDpjOxvOYzL\n61a7nLDk9XmptdXzxpVd/ODkj/l/Dv1/PFv5Aic6zwCwJm0lX1z4ON/f8F/5m1u+zfbCuymKz5/x\n+nBubDbfWvEU31r+FLkx2ZzpvsD/OP5/+GP1ywyM2YPxo11X23AHz1Q8B8BXl37+pqdJzDdajZYv\nL/ocxfEFnOu5yPOXX8Hv96tdlpgB6dAjhAg4vVbP3637L2F1E1l8ssTJHdQ3GeiZPMmLj5LUdLiZ\nHNkgHXrCS/NgK3785MXOXZv6QEg0JZBkSqTGduW6s+rbRsYDPVly8Rb20swpFMTlUt1fi805cM3d\nNX2OftqGO1iYWIpRZ5zjKuefJUkLyY3N5mz3BVqG2siOyVS7pHlvYGwQgDhDjMqVBEZydCJXBhpx\n+zzS6jkAKvsvM+we4bas9eiC+N8zOyaDTVnrONB6hPebD3JX3h03dbyOkYlATwR0nhJivpm8idI6\n1B6QzVxur5u36t9Dp9FxX/7Wmz7ebBXE5bI+YzWH20+wr/UQd+bcdtPHPNN9HpBxW+GkzFrM2w27\nqe6vZXnyYrXLCYru0R72NB/geMdpPH4vMXoLW3PvZlPmWhlfAlij4gCwqXDTWkSuS33V9Dr6WJd+\nS8BH5IYLk87Ixsx1vNe0j+Odp9mYuVbtksJCr6Ofqv7LVPXVcNlWh9M7BoBW0VIcX8CCxBIWJpSS\naUkPeHi4LKGYUmsR53ou8mb9Lg63H+dE52k2Z21ga+5mzHPwndHvtPHTc7/B6XXy5KLPUmItCvp7\nRiK9Vs9Xl36Rn5z9JUc7ThIXFTsvx4uGK1k5E0IEhV6rV7sEEQBJE21l+5w3G+gZvwklHXrCz2SH\nnhH3qMqViJloHGwGIC8uvAI9MH6heKjtGM1DreTH5X7ic9qGxgM9shsjMqxNX0W9vYljHae5J/+T\nWy5X9FYBsDRp4VyWNm8pisL2grv413O/Zmf9e3x92ZNqlzTvDbqGACKiQw+Mj+atG2ig39FP6nVG\nLIrpOdZxGoC1acEZt/VR9+ffxemu8+xq3MstaStIMM5+DEW7dOgRImxlWSY79LQH5HgftB3FNjbA\nluxNqo9PeLDwXs73XOKtht2sTFl2U/W4psZtJUhAOozkxWZj1EZxub9W7VICrmmwhfea9nO+5yJ+\n/CSZErkzZxNr0lZhkLXcKZN/97Yx6dAjAmd/y2EAbs/eoHIl6tqctYH3mw+yt/kA6zNWo1FkkMyf\nG/O6qLVdobK/hqr+y3SPftjdNsmUyOqElSxMLKE4vhCjLiro9SiKwoqUJSxNWsjxztO81bCb3c37\nOdR+jK05m9mcvYEorSEo7z3qHuWn53+L3TXIjqL7WJW6PCjvM1+YdEa+sewr/PjsL6mx1QES6AkX\nEugRQghxTSadCbMu+qY79NgndrTETexwEeHDPBHoGXIPq1yJmImpQE9stsqVzFyZdTzQU91fd+1A\nz0gHeo2OZFPSHFcngqE8ZRn/UfMGxzpOclfe7Z+4mHOh9xIw3jlGzI0yazFF8flc7Kuiwd50zb9H\nMTfsUx16IiXQM94FssfRJ4GemzTiHuVibyXp5tQ5uVkcrTexo+g+fl/1Ii/X7uSpJU/M+lhtI52Y\n9dHERkjnKSHmk9ToZHQaHa0BCPQ4PE52Nb2PUWtkW97tAaju5pj10TxUdB9/qHqRl2rf4Okln5/1\nsar6LzPmdbEpc6mM2wojWo2WYmshFb2V9DlsJJpmH14NBX6/n8r+GnY37aN2oB6AnJhMtubezvLk\nxXIz/RNYJzqM25zSoUcERsdIF9W2WorjC+b95rS4qBjWpK/kcPsJzvdcYkXKErVLCgm9jj6OVh/j\nZPMFrgw04PGPj/40aA0sSVrAwoRSFiSUkhydqFqNWo2WWzNWsyp1BQfbjvBe4z7eqN/F/tbD3JN3\nJ+szVgd0aofb6+YXF56lc6SL27M3sCV7U8COPZ9ZDGb+yy3fwY+M3AonEugRQghxXYmmBNpHOvH5\nfbO+yP9w5FZk3ISaTz7s0CMjt8JJ42ALsYaYqUWocFJiLURBodpW84ndWrw+Lx0jXWSYU2W0Y4Qw\n6YysSFnK8c7TXBlooNhaeNXjo24HtQP15MRkES/B0Dkz3qXnbn545ue8Wf8u317xtNolzWt213ig\nJzYqMoIPydHjgcweR5/KlYS/013n8Pi9rElbOWc3i1enlXO4/Tjneiqo6qthQWLJjI8x5nXR5+in\nKD5fbnILEYa0Gi0Z5lTaR7quOyp3OvY2H2DEPcr2grumrj/VtjZtJUfbT3K+5yIVvZWzDpWf6b4A\nQHmqjNsKN2XWYip6K6m21bDetEbtcmbF6/NypvsCu5v30zY83uW2zFrM1tzNlFqL5Pv3Osz6aPQa\nnXToUZHX56VpqIWmwVZWpCwJ+7WA/S2HANg8z7vzTNqSvYkj7SfZ3bSf5cmL5/Xnkd/v50DrEV69\n8hYenwcY74S4IKGEhYmlFMTlBnWs8mwYtHruzLmN9Rmr2dN8kPebD/KnmlfZ23KQ7fnbKE9ddtNh\nUZ/fx7OVL3DF3sCKlKU8XHT/vP49CTRZUw8/ofUpIIQQIuQkmRJoHmpl0DU064unDwM94X3xNR+Z\ndEY0ioZhl4zcChcDY3YGxuwsS1oUlhc6Zn002TGZNNibcXrGPtY6ttvRi8fnIXOizb+IDOvSV3G8\n8zRHO059LNBT2VeNz+9jadIilaqbv4ri81mQUEJVfw01tjqZU66iqQ49ERKO/rBDT+8Nnilu5Fjn\naRQUVqeVz9l7ahQNj5Ts4Acnf8yLta/xPetfo5/hInPHSCd+/GTM8x3KQoSzTEsGzUNtdDt6STen\nzuoYg64h9rZ8QIzBwu3ZGwNc4ewpisJjpTv4/skf8VLN65RaizDMcJSEy+vmQm8lScYEsi0ybivc\nlCUUA3C5v471GeEV6HF5XRzpOMn7zQfpc9pQUFiZsow7c28jJyZL7fLCgqIoWKPisTkl0DNXfH4f\nrcPt1NiucNlWR91AAy6vC4CTnWf5v1b+ZdjegB5xj3K88wyJRquMEZ+Qak5hafIizvdcpHagnpI/\nWweaL4Zcw/yh6iUu9lVh1kfzpfJHyYsqIC5MNvKYdCa2F9zFbVm3sqtxL4fajvNvlc/zXvN+Hiy8\nh4UJpbNam/b7/bxc+yZneyoois/nCwselW5yYt6TQI8QQojrSpq44dLr6L+JQM/4TSjp0BN+FEXB\nojczLCO3wkajfXLcVo7KlcxeWUIxzUOtXLE3sCix7KrH2obG2/rP9xbFkaYovoAkUyJnuy/wmZIH\nMemMU49d6K0EYGmyLHypYXvBXVT11/Bm/bv8dXlhWAYFI4HdNQREzsityfPLnlHp0HMzOke6aRps\nYWFC6ZyHvbJjMtiUtY4DrUfY1/zBjMfktA93AZBpTgtGeUKIOTB5Pt461D7rQM+uxr24vC52FN5L\n1AwDM8GWYUljS/Ymdjfv553GvTxYeM+MXl/ZfxmX10V51jI5fwpDqdHJxEfFcdlWd1Mdq+fSsHuE\ng61HONB6hGH3CHqNjk2Z69iSs2nq3EtMX7wxnm5bL26vG71Wr3Y5Ecfv99M52s1lWx01tivU2q4w\n6nFMPZ4anUyJtQibc4CLfVW83bCb7YV3q1jx7B1pP4Hb52ZT1q1h8VkyV7bm3Mb5novsbt4/LwM9\n1f21PFf5AnbXEKXWIj6/8FGKs7Lo6RlSu7QZizXE8EjJQ9yRvZGd9bs51XWWn53/LUXx+TxYeA8F\ncXkzOt7eloPsbz1MujmVry75gnwGC4EEeoQQQtxAkjEBGJ/jWhSfP6tjDIzZidIaMGqNN36yCDkW\nvRnbmMwNDxcNgxOBnrhslSuZvVJrEe817aO6v/bjgZ6RTkACPZFGURTWpq1iZ8O7nOk+P7UL1uPz\ncKnvMolGKxly01cVubHZLEtaxPneS1zqq2Zx0gK1S5qX7GODKCjEGCxqlxIQJp2RGL1FOvTcpOOd\npwFYk75Slfe/P/8uTned553GPaxKW06C0Trt17aPjI/+SLfIZ7sQ4SpromNm23AHt7Bixq/vdfRx\nqO04SabEkO2Ack/+nZzqOsfe5oOsSSsnbQbBpTNd5wEoT5FxW+FIURTKrMUc6zxF63B7SHe26XPY\neL/lIEfaT+DyuYnWmbg7bwubs9ZHzLmjGqwTmxptY3ZSJsbFitnz+/30OvqpGaib6sIz5Ppw82CC\n0cqy5MWUWAspsRZObSp1eJx8/8SPeLdpHwsSS2e9Nq0Wr8/LgdYjGDR6bk2/Re1yQkp+XC6FcflU\n9l2mbbhj3qzzeXwe3qx/lz3NB9AoGh4qvJctOZsiIuyVZErki4seY2vubbxxZRcX+6r4P6d/xpKk\nhTxQcDcZ07j2O9V5llfr3iI+Ko5vLPsy0froOahciNAngR4hhBDXlWiaDPT0z/oY9rFB4qPiZFda\nmLLozbSPdOL1ecO2ve180jjYjIIS0guON1IYl4deo+Oyre5jj7UOS4eeSLU2fSVvNbzH0fZTUzd1\nagfqcXqdrE1fKd8hKrqvYBsXeivZWf8uixLL5N9CBYNjg8QaLBGxyDcpOTqRxsEWOb+YJZ/fx4nO\nM5h0RtVGEkbrTewouo/fV73Iy7U7eWrJE9N+bfvweEA3Y5ZdPYQQ6pvq0DNxfj5TO+vfw+v3sj1/\nW8h+D0RpDXym5EGeqXiWFy6/yndWfHVa50Eur5uKviqSTYlTwScRfsoSxgM9l/vrQvL6um24g91N\nBzjdfQ6f30d8VBzbszdya8aaj42uFjOXYIwHwOYckEDPLA2M2bnc/2GAxzb24QizWEMMq1KXU2ot\nosRaRNLE+vOfM+mMfGHhY/zwzM95tvIFvrf6u5h0prn6EW7ahd5KbGMDbMxcJ8GET7AtdzM/v9DA\nnuYDfGHhY2qXE3Tdoz3826XnaR5qJdmUyJOLPktubPhuyLyWTEs6X1/2JFcGGnn9yttU9FZysbeK\n1Wnl3Je/dep+05+73F/Hc1UvYtQa+ctlX8I68TkshJBAjxBCiBuYvKDqc84u0OP2uhl2j5AhN9/D\nltlgBmDEM0qsITxm+M5XXp+X5sFW0s2pGHXh2xFLr9VTGJdPta2WQdfQVb93bUMdxEfFYZaFkIhj\nNcZTllBMVX8NnSPdpJlTqJgct6XSzWoxLtOSzsrUZZzqOse5nousSFmidknzit/vx+4aIt2conYp\nAZVhSafe3sQrdTv5dPEDEhSbocu2OgbG7KzPWI1BxRbkq9PKOdx+nHM9FVT11bAgsWRar2sf7iTR\naA3r8xUh5rtovYlEo3VWgZ7WoXZOdZ0j25JBeeqyIFQXOMuSF7EkaSEVvZWc6Dwzra5olX3VuLwu\nVqQsle+3MFaaUASMj0XZmrtZ3WI+on24k9euvM2lvmoA0s2pbM3ZzMrUZeg0crsnUKxRE4Gej4RQ\nxPUNuYapHaifGKNVR/foh904zbpolicvocRaSKm1kNTolGl/PhbG53F33h2807iXF2teD6vgx/7W\nQwBszrpV5UpC08LEUtLNqZzqOsf2grtm1PEznPj9fo53nuZPNa/h8rpYk7aSR0oejPhrocL4PP6q\n/Otc6qvmjfpdHO88zamuc2zMXMvdeVuu6iLXNtzBMxXPoQBfXfp52cgpxJ+RMzwhhBDXZY2KR6No\nZt2hx+4aBCA+KjaQZYk5ZNGPB3qGXSMS6AlxHSNduHxu8mJz1C7lppUlFFNtq6Wmv45VaeMt/Idd\nI9hdgyz+szFcInKsS19FVX8NxzpO8WDhPVzoqcSkM4VdW+1IdG/+Vs50X2Bnw3ssS14UUZ1iQp3D\n48TtcxNriKxzqe35d3FloIH9rYcxaA08UHC33PScgeMdE+O20lapWodG0fBIyQ5+cPLHvFj7Gt+z\n/jX6G9xMHHINM+QeZkmcjPATItxlWjK40HsJ+9gQcVHTv1Z8o34Xfvw8UHhPWJxTfKb4QS731/JK\n3U6WJC24YZeFM90XAChPCe2wkri+WEMMmZZ06uwNuLxuVQO0MH5D+FD7MV6ufRO3z0NhXB5bczez\nKLEsLP6Owk38VIceGUF/LQ6Pg7qBhokAzxXahjumHovSGlicWEbJRAeeTEvaTf2e3pN3J5X9NZzo\nPMPixDJWpi4PxI8QVC1D7dQNNLAgoWRGIxvnE42i4c6c2/h91Yu83/IBny5+QO2SAs7hcfB89Suc\n7j6PUWvkyYWPT61zzgeKorA4aQELE0s53XWenfXvsr/1MEc6TrIlexNbcjbh8Dj46bnf4PQ6eXLR\nZymxFqldthAhRwI9Qgghrkur0WKNiqfP0Ter1w+MTQZ64gJZlphDU4Ee94jKlYgbaRxsBiAvLvzb\ntZYmFMEVqLZ9GOiZXBySjl+Ra2nSIqJ1Jo53nmZFyhJsYwOsSl0esmMY5pPU6GTWpK3kaMdJTnWd\nY3VaudolzRuDE+HouAgLR1sMZr61/Gl+dObnvNe0D4PGwD35W9QuKyw4PE7O9Vwk2ZRIQVyu2uWQ\nHZPBpqx1HGg9wr7mD9iWd/t1nz/1fW6W73Mhwl2WJZ0LvZdoG24nLqp0Wq+ptdVzqa+a4vgCFiRM\nr6uX2hJNVu7Jv5PXr7zD6/W7eLz04Ws+1+V1UdFbSYopiSy5bgl7ZdZi2oY7qLc3UpZQrFodI+5R\n/lj9H5zruYhZF82Tiz7LsuTFqtUzH1gn1jGlQ8+Hxrwu6gcapwI8zUOt+PEDoNfopsZnlVoLyYnJ\nCuh1vFaj5YsLH+P7J3/M85dfpSAuL+TH8XzYnWe9ypWEtlWpy3mz/l0Ot5/gnrw7I6ojd729id9d\n+iN9Thv5sTl8cdFnrzleLtJpFA23pK1gRcoSjrSf4O3GPbzTuIeDbUcwaY3YXYM8XHQ/q8IgrCeE\nGiTQI4QQ4oaSTAlcttXh8rowaA0zeu3A2PhOFgn0hC8J9ISPhslATwR06MmyZGDWRVPdX4vf70dR\nFNpGOiYek4XxSKXX6lmVuoKDbUd4qeZ1QMZthZJ78rZwovMMbzXsZmXKMglazZHJcHRcBHbJi4uK\n4dsrnuafz/ycnQ3vYtDq2ZKzSe2yQt7Z7grcPjdr0laGTFej+/Pv4nTXed5p3MOqtOXXbZffMdIF\nQIYlba7KE0IESWZMBgCtw+0sTLxxoMfv9/P6lXcAeLDw3pD5DJuOO7I3crzzDIfbjrMufdU1r7ku\n9lXj8rll3FaEKE0oZm/LQar7a1UL9NQNNPC7S89jGxugOL6ALyx8LOSDDJFg8r/xfA/0jLpH2d96\nmOr+OhoHm/H6vcD4zfmCuNypAE9ebA76IHexSolO5tPF2/lj9cs8W/kC317xdMh2pxpyDXOq6xwp\npqRpfT/OZzqNjtuzN/Bq3Vt80HaUu/PCf5OHz+/j3cZ9vN24G7/fz915W7g3705ZQ2H833tT1q2s\nSV/FvpYP2N10gF53P3dkb5S1ACGuIzS/7YQQQoSUyeR4n9M249d+GOiJrF3l84llYmfEsEsCPaGu\ncbCFKK2B9Aho5atRNJQkFGEbG6DbMT53vW1oPNAjc5Qj27qM8fExDYPNaBWtLH6FkERTAusz1tDr\n6ONYxym1y5k3Bl1DQOR16JlkNcbznRVPE2eI5ZW6nXzQdlTtkkLe8c7xv79Q6pQVrTfxUNF9uHxu\nXqnded3ntk916JFAjxDhLssyHuj56JiV67nQW0nDYBPLkheTHxdemxB0Gh2PlezAj58Xql/B6/N+\n4vPOTo3bWjqX5YkgKY7PR6doqbbVzvl7+/w+3m7YzY/O/IKBMTv352/j2yueljDPHDHpjBi1Rgbm\n8citIdcwPzzzC95q2E29vZFMJLiXWwAAIABJREFUSzpbczbzjWVf5p82/h1/vfIvub9gG8XWwqCH\neSbdmr6aZUmLqB2oZ2/zwTl5z9k41HYcj8/DbVnrQzZ0FErWZ6zBpDOyv+UwLq9b7XJuis05wI/P\n/pKdDe8Sa4jhOyueZnvBXRLm+TNRWgN3523h7279G7657CvsKLpP7ZKECGnyTSKEEOKGEo3jgZ7e\nWYzdssvIrbBnNox36BmRDj0hzeFx0jXSTU5MVsQsFpRNzEy+3D++eNo20oFeoyPZlKRmWSLIsi2Z\nU6GtEmshJp1R5YrER92Vdzt6jY63G/fgDvOFtnAxeS4VqYEegCRTIt9e8TQWvZkXLr8qgbHr6HX0\nUzfQQHF8AYkh1q59TVo5BXG5nO2poKqv5prPaxvpRKtoSY1OnsPqhBDBkGi0YtQaaR1qv+FzfX4f\nb9TvQkHhgYK75qC6wCu2FrAmbSUtw+0c/IQA6pjXxcXeKlKik2QTQoQwaA0UxOXROtQ+p5ucJm8I\nv9Wwm/ioOL5b/jXuyb8zYq71w4XVGDdvO/QMjNn54Zlf0D7SycbMdfyvjf+dv7nl2zxUdC8LE0sx\n6qJUqUtRFD5b9mliDTG8Wf8uLUNtqtRxPV6flw/ajmDUGlmbvlLtcsKCSWdkY+Y6htzDHO88rXY5\ns3auu4J/OPFD6gYaWJa8mO+t/iuKrYVqlxXSLHozCxJL5PtNiBuQvxAhhBA3NNWhxzH7Dj2RfBMq\n0ln0FkBGboW6psEW/PjJj8tVu5SAmWxpXm2rw+vz0jHSRbo5VXa1RDhFUbg1YzUAy5IXq1yN+HPx\nUXFsyrqVgTE7h9qPq13OvGB3TY7ciuxzqTRzCt9e8TTROhN/qHqJ013n1S4pJE0ucK9JX6VyJR+n\nUTQ8UrIDBYUXa1/D7fN87Dk+v4+OkS5So5Pl+1yICKAoCpmWdLpGe264o/545xk6R7pYm76KtDDu\nKLqj6D6idSZ21r87td4x6dLEuK3yZBm3FUlKE4rx4+fyHHXpOd9zke+f+BF1Aw0sT17C91Z/l6L4\n/Dl5b3E1a1Q8Do8Tp8epdilzqt9p40dnfkHXaDdbsjfxaMlDRE907w4FFoOZJxY8gtfv5XeXnsfl\ndald0lXOdl/A7hpiXcYqjLJBado2Z21Ap2jZ23wAn9+ndjkz4vK6+GP1y/zq4u9x+zw8XvowTy1+\nAnMI/d0IIcKbBHqEEELcUJIpEYBe58w79AyM2dEoGmINMYEuS8yRqZFbEugJaY2DLQDkxWarXEng\nJJkSSTQmUGOro3O0G4/PQ+ZEW38R2TZlruOby77C+olgjwgt23JuJ0pr4N2m9xkLscXTSDTZoSc2\nKvLPpTIt6Xxz+VeI0hr4XeXzVPRWql1SSPH7/ZzoOI1Bo2dFiAYes2My2JS1ju7RXvY1f/Cxx/sc\nNlxeFxkWGbclRKTIiknHj5+Okc5rPsftdfNW/XvoNDruy986h9UFXozBwoOF9+D0jvFy7ZtXPXZm\nctxW6jI1ShNBsmByo0l/XVDfx+V186fLr/JMxXO4fC4eL32Yryz+i5AKUsw3VuN4t3Hb2PwZu9Xr\n6OdHZ35Bj6OPu3PvYEfRfSEZUFyYWMrmrPV0jnbzat3bapdzlX2th1FQuC1zvdqlhJW4qBjWpK+k\nx9HHD8/8nP0thz8WnA1FrUPt/OPJn3C4/TiZlnT+5pZvsyFzbUj+3QghwpcEeoQQQtzQZDv/Xkf/\njF87MDZIrCFG2iaGMYt+fOTWXLaXFjPXONgEQF5sjsqVBFZZQjEOj5OjHScBpHX9PKFRNNJyN4RZ\nDGbuyN7IkGuYA62H1S4n4tnHhlBQiJnomBfpcmOz+fqyL6FTtPy64vdU9V97dNN8c8XeSK+zn+Up\nS0J6t+/9+Xdh0Zt5p3EP/c6rO3y2j3QAkGmW73MhIkXWROC+dfjaY7c+aDuKbWyA2zJvxWqMn6vS\ngubWjNXkx+ZwpvvC1IjByXFbqdHJZJgltBhJsmMyidaZqLbV4vf7g/IeHSNd/NOpf+Fg21EyzGn8\n51VyQzgUWKPGP69szvkxdqtrtIcfnvk5fU4b9+ffxfbCu0P6d/DBwntJN6dysO0IF3ur1C4HgAZ7\nM42DzSxOKiM5OlHtcsLOvflbKY4voMHezEu1r/O3h/+B/3P6Z+xrORRyf4d+v599LYf4p1P/Qtdo\nN5uz1vOfVn6T9DDuQiiECF2yQi6EEOKGzLpojFojfTMM9Pj8Puxjg8RHxQWpMjEX9Fo9UVoDI9Kh\nJ2T5/X4a7S1Yo+Ijbrzd5NitI+0nAAn0CBEq7sjehElnYnfTfhweh9rlRDS7a5AYg2VejScqis/n\nq0u/CIrCLy88S62tXu2SQsLxjlMArElbqXIl1xetN/FQ0X24fG5eqd151WPtw10ApFtkoVuISDF5\nft461PGJjzs8DnY1vY9Ra2Rb3u1zWVrQaBQNj5Y+jILCn2pexe11c7G3CrfPzYoUGbcVaTSKhhJr\nEf1OGz2O3oAe2+/3c6jtGD84+RPaRzrZlLmO/7TqW9LJLkTETwQQbWOhFSQIhvbhTn545ucMjNnZ\nUXQf9+RvUbukGzJo9Xxx4ePoFC1/qHqJIdew2iWxv/UQMD4+SsxcfFQc3y3/Gv9j/ff4TMmDFMXn\n02Bv4j9q3+Bvj/wD//vUT9nbfJA+h+3GBwuiIdcwP7/wb/xH7RsYdUa+vvRJPlPyIHqtXtW6hBCR\nSwI9QgghbkhRFJJMCfQ6+ma0G2nEPYrX7yU+wgIG85FFb2ZIAj0hq99pY8g9HFHjtiaVxBeioEyN\n9ZFAjxChIVpvYmvObYx6HLz/CWN1RGD4/X4GxwYjLqw5HWUJxTy1+Am8fi8/v/BbGgeb1S5JVS6v\nizPdF7BGxVNiLVS7nBtak1ZOQVwuZ3sqruqyNNmhJ0M69AgRMdLNaWgUDW3X6NCzt/kgI+5Rtube\nNtX9NRJkx2SwOXs9PY4+3mvax9nJcVspS1WuTARDWRDGbo26R/nNxT/w/OVX0Gt0PLXk8zxaugOD\n3BAOGQnzpENPy1A7Pz77S4Zcw3ym5EHuzLlN7ZKmLSsmg+2FdzPkHubfq18KWhet6RgYs3Om+wLp\n5lRKrUWq1REJ4qPi2Jy1nu+Wf43/uf5vebRkByXWIhoHm3mlbif/7ej3+V+n/oXdTftnNVHgZlT1\n1fA/T/wzl/qqKbMW873Vf8XipAVzWoMQYv6RQI8QQohpSTQl4PK5GXJPf7fD5JzbOOnQE/bMejMj\n7hFVL4zFtU3e5MyLi6xxWzA+2icrZryNf3xUHGZ9tMoVCSEm3Za1nhi9hfdbPmBYQp9B4fQ6cfnc\nxBli1C5FFYuTFvDkos/i8rr513O/oXXo2uNcIt35nks4vWOsTisPi3GEGkXDIyU7UFB4seY13D4P\nML7726g1khABI3eEEOMMWj0p0cm0DXfg8/uuemzQNcTelg+IMVi4PXujShUGz/3524iPiuO9pn1c\n7KsiNTpFxm1FqAWTgR5bbUCOd2WgkX848SPO9lRQGJfP91b/FcuTFwfk2CJwrMbx9Uyb065yJcHT\nNNjCj8/+khH3KJ8t+xSbs9arXdKM3ZG9kVJrERW9VRxqP65aHYfajuHz+9ictV46tQVQXFQMm7LW\n8Z0VT/P9Df+Vx0sfpsxaTMtQG69deZv/fvQf+cHJH/Ne4z66RwPbRe2jPD4Pr9Tu5F/P/5pRt4Md\nRffxjeVfnpebb4QQcy/0V4GEEEKEhCRjAsCMxm5NBnqkQ0/4sxjMuH0eXD632qWIT9A42AJAXmzk\nBXoAyqzji6dZ0p1HiJBi1EWxLe92nN4x9jQdULuciGQfGwKY14uE5SlLeWLBIzg9Tv7l3K/oHOlS\nuyRVHO88DYx3vgkX2TEZbMpaR/doL/uaP8Dt89Dt6CXDkio3OYSIMFmWdJzeMfqdV4/A2NW4F5fX\nxb15dxKlNahUXfAYdUY+Vbwdj9+L2+ehXMZtRawkUyKJxgRqbHV4fd5ZH8fn9/FOw56p0Ub35m/l\nOyuexipB15AUHxXZI7euDDTyk7PP4PQ4eWLBI6zPWKN2SbOiUTQ8seARonUmXq59k66R7jmvwe11\n80HbMaJ1JlaH0fl6uIkxWNiQuZZvrXiK76//r3yu7NMsTCildbiD1+vf4e+O/S++f+JH7GrcS9do\nT8Det2u0h/99+qfsbTlIiimJ/3vlN7gz57aw2GghhIgM8mkjhBBiWpJM44GembSx/DDQIx16wt1k\na/ThEJhHLT6uwd6MRtGQE5OpdilBsSixFIDcCBwpJkS425ixlvioOPa3Hp4Kn4jAsY8NAhBrmL+B\nHoA16St5tHQHw+4RfnL2GXpG+9QuaU4NjNmp7q8lPzaHVHOK2uXMyP35d2HRm3mncQ/V/TX4/D7p\nXiFEBMqyjHfU/GgntV5HH4fajpNkSgzbm8TTsSJ5CQsTS1FQWJm6TO1yRBCVJRTj8DhpHmqb1ett\nzgF+cvYZdja8R3xUHN8t/xr35W9Fq9EGuFIRKAatHoveHJGBnhrbFf71/K9x+dw8ueizrElfqXZJ\nN8VqjOfxsk/h9rn5XeXzeCa6Q86V093nGXaPsD5jDYYIDLCGIovBzK0Zq/nG8i/zjxv+G3+x4BEW\nJZbRMdLFm/Xv8vfH/on/efyfeadhz6w3hfj9fo62n+QfT/6YlqE21qav4m9u+Q45sVkB/mmEEOL6\ndGoXIIQQIjwkmhKBmQZ6xm9CSaAn/E0FetwjJE6Eu0Ro8Pg8tAy3kWlOi9hFg2JrId9d8TW5YBYi\nBOm1eu7O28ILl1/h3ab3eaTkQbVLiih21/i5VFzU/By59VEbM9fi9rl5ufZNfnLuGf6q/GskGK1q\nlzUnTnSewY+fNemr1C5lxqL1Jh4quo8/VL3IH6peAiBDOu4JEXGmAj3DHSxPWQLAzvr38Pq9bM/f\nFtGBBUVR+MriJ+gZ7SXdnKp2OSKIyhKKOdx+fDxkO8Nx1+d7LvHvVS8x4hllWfJiPlf2aRknHSas\nUXF0jvbg9/sjpgNXZd9lnql4Fp/fz1cWP8Gy5EVqlxQQ5SlLuZS2imOdp3i7YQ8PFN49J+/r9/vZ\n33IIBYVNWevm5D3F1cz6aNalr2Jd+ipG3Q4qeis523OBqr4adja8x86G90gzp1KevIQVKUtJN9+4\nY+io28Hzl1/mTPcFTDojX1r0WVamLp+jn0gIIa4mgR4hhBDTMtWhxzn9HdEycityfBjoGVW5EvHn\n2oY78Pg85M5wQTHcFFsL1C5BCHEN69JXsbtpP4fbjnFnzqZ5E7KYC5MdeuLmeYeeSXdkb8TldfFm\n/bv85Owz/FX51yN+HJnf7+d4x2l0Gh0rU8Kz88OatHKOtB+n3t4EQIbc8BYi4mTGjAf1WofHO/S0\nDrVzqusc2ZYMyudB15oorYGsmAy1yxBBVmItREGh2lbDPflbpvUat9fNq1fe4kDrEfQaHY+V7mBD\nxtqICYbMB/HGeFqG2xnxjE6tjYWzit5Kfl3xexRF4atLv8CixDK1SwqoT5c8QO1APe817WNhYilF\n8flBf88r9kZahttZnrxEroVDQLTexJr0laxJX4nD4+RibxVnuy9wqf8ybzfu4e3GPaRGp7AiZQkr\nkpeQaUn/2GfylYFGflf5PP1OGwVxuXxx4eOywVUIoSoZuSWEEGJaEoxWFBT6ZtChxy4deiKGjNwK\nXY2DLQDkx0Z2oEcIEbp0Gh335W/F4/fyTsNetcuJKIOu8TFmkR5amYm787ZwV+4d9Dj6+Mm5XzEU\n4ecmzUOtdI52szRpIdF6k9rlzIpG0fBIyQ4UxhfKpUOPEJEn1hBDrCGGtuEOAN6o34UfPw8U3oNG\nkeVnERksejPZMZk02JtxesZu+PzOkS7+6fS/cqD1COnmVP7zqm+zMXOdhHnCjDUqHgCb065yJTfv\nbHcFz1Q8h0bR8LWlT0ZcmAfApDPyxUWPAfBs5Qs4PI6gv+f+lkMA3J69IejvJWbGpDNyS9oKnl76\nBX6w4b/xpUWfZXnyEvqdNnY17uX7J3/E3x/7J16/8g4tQ214fV7ebtjND8/8HJtzgHvy7uS7K74m\nYR4hhOqkQ48QQohp0Wt0xEXFznDklh2TzhSxY4DmE7NhPNAz4h5RuRLx5xoHmwHIk0CPEEJFt6St\n4N2mfRzrPMXW3M2kRCepXVJEmOrQI4Geq2wvuAuX18W+1kP89Nyv+faKr4Zt2OVGjnWcBmBN2kqV\nK7k52TEZPFx8P/1Om4wYESJCZVrSqeqv4ULPJS71VVMcX8CChBK1yxIioMoSimkeaqVuoJ7FSQs+\n8Tl+v58jHSd4qeYN3D43GzLX8qmi+2VtLExZjeObFAfGBsgO405cJzvP8lzVnzBo9Hx92ZfmpHON\nWgri8rg7bwvvNO7hT5df44uLHg/ae/U7bZzvvUS2JYPCuLygvY+4eUadkZWpy1mZupwxr4tLfdWc\n7b7Axd4q3mvax3tN+zBqjTi9TqxR8Xxx0eMR/XcihAgvskVCCCHEtCWZEhgYs+P2eab1/IExu4zb\nihAycit0NdqbMemMcvNcCKEqjaLh/oJt+Pw+3m7YrXY5EcPuGkRBIUZvUbuUkKIoCp8q3s76jDW0\nDLfzs/O/welxql1WwLl9Hk53nSPWEBMRN8XvyN7Ip4sfULsMIUSQZFnGb3T/ofolAB4svFc6kYiI\nU2YtBqDaVvuJj4+6Hfzm0r/zx+qX0Wl0fGXxEzxe+rCEecLYhx16BlSuZPaOtJ/k2coXiNIa+Oby\np+ZFSOGevC3kxeZwsusspzrPBu19DrYexef3cVv2BvnOCyNRWgPlKUv58uK/4Acb/ztPLX6CVanL\n0Wm0rExZxvdWf3de/J0IIcKHdOgRQggxbUnGROpowOa0kRKdfN3njnldODxO6RoSIT4M9ET2WItw\nM+IepdvRS5m1WFrZCyFUtzx5MZmWdE51nWNb7u1kWNLULinsDY4NYTGY0Wq0apcSchRF4bHSHbi8\nbk52neEXF37HXy77UkTdMLvU+/+3d+fRURZm+8ev2TPJJJNksgFJCAkkJOyLgrKoqFVftb5Va6W+\nYsXW4lK32lartlZp1W621da1aotVUVzRWlxQqaIoaICQDQgkbAGyTfbMZGZ+fyRE+QnKkuSZTL6f\nczgnZDIz1xySh8nM9dx3iVo6W3Vyxmy+BwCEvfTudXot/lZNSB6rEW5eC0DkyY7Pks1sU1ndpi9d\nVuHdqsc3PK269nrluLP0vTFzlRiVYEBK9KaEqO5CT8fAXLm1YvuHWlz+omJs0bp64veVGZtudKR+\nYTFbdEnBhbrrkz/pmfIXlR2f1es/j76ATx/sXCWXLUZTUyb06m2j/9gtdk1MGaeJKeOMjgIAB8U7\nPwCAQ5bUvS/2UNZuNXT/ohvvcPdpJvQPJvSEp62N2yRJWbxYDiAMmE1mnZ19mkIK6bUtbxgdJyI0\n+BrltjPt8GDMJrMuzv+2JiaP08aGCj28/p+HPElyIPiounvd1pCBvW4LwOCQ3r2KxiSTvpl9msFp\ngL5hM1s1Mn6EdrZU96xGDYaC+s/Wt3Xvpw+qvr1B/5N1iq6d9EPKPBEioft1zYE4oWd51QotLn9R\nsTaXrpu0YNCUefZJiU7St0d9U22d7fpn8WIFQ8Fevf2Pqz9Va2ebZg2bLpvF1qu3DQDAF1HoAQAc\nMs9hFHq8PYUe3oSKBNE2p0wyqdnXYnQUfMHWxipJ0ggmYQEIE2M9+cqKy1Th3iJVNW43Os6A1t7Z\nLl/AJzfPpb6SxWzRpWPmaqxntErqyvV40b8UCAaMjnXUmnzN2lBbqgzXUA3rnnoBAOEsJTpZOe4R\nOnX4iUqLSTU6DtBnRid2r92q26iGDq/u++wRLa1Ypjh7rK6ddLnOzP4Gk/UiSLzDLZNMqhtghZ5l\nW5fr+U2vym2P03WTFwza6anHDTlGE5LHamNDhd6qeq/XbjcUCund7R/IbDJr5rDpvXa7AAAcCIUe\nAMAhS3J6JEk17bVf+7UN3WcquZnQExHMJrNibNFq9lPoCSf7Cj3D4zIMTgIAXUwmk87uPit/6ZZl\nBqcZ2Pad9e22xxqcJPxZzVZ9f+zFyksYqbU1G/SP4md6/Qzc/vbJ7s8UDAU1bchUo6MAwCExm8y6\nYcoVOifnDKOjAH1qdEJXoefd7R/oNx/fq/KGzRqfNEY3H3udRiXkGJwOvc1itijOHquGjoFR6AmF\nQnq14g29UvEfJTjidf3kK5QWk2J0LMOYTCZ9d/R5cttj9WrFG6pq6p2TTsrqN2lXy25NThnPdHoA\nQJ+j0AMAOGT7Vm7VHsrKrXYm9ESaGFuMWij0hI1QKKRK7zYlRSUq1u4yOg4A9MhLGKlR8dkqri3T\n5oatRscZsLy+JkliQs8hslls+uH47ynbnaU1e9bqqdLnB3SpZ9WuNTKbzJqaOtHoKAAA4AuGutIU\na3Opqmm7OgI+fSf3f3X5uHk9q8oReRKi4tXQ0Rj2zy1DoZBe3vy6Xt/6lpKiEnX95CuUHO0xOpbh\nXLYYXZz/HQVCAT2x4Wn5Ar6jvs13t78vSTopY+ZR3xYAAF+HQg8A4JDF2lyym22HtHKrwbev0MNZ\nCpHCZYtRi7817F/AGCz2ttWopbNVWW7WbQEIL11Tek6XJC2t+I9CoZDBiQamfRN64uwUeg6Vw2LX\nlRMuVWZsuj7c9YmWbHxlQH7/7Wjepe3NOzXGM5rSLgAAYcZsMmtO5iyNis/WT6f+SLPTj5fJZDI6\nFvpQgsOtQCigJl+z0VEOKhQKacnGV/Rm1btKjU7W9VOukMeZYHSssJHvydVJ6TO1u3WvXtz02lHd\n1t7WWhXVlCorLlNZcbwmBwDoexR6AACHzGQyyeNMVE1b3de+ObJv5RaFnsjhsscopJBaO9uMjgJJ\nWxu3SRIvHgAISznxWSrw5GljQ4XK6jcZHWdA8vr2rS+l0HM4nFanrpp4mYbGpOm97Sv18ubXB1yp\n56NdqyVJ09OmGJwEAAAcyDeGn6TrJi/QMNcQo6OgHyRExUuS6sN07VYwFNTTZS/o3e0faGhMmq6b\nvIDXYw/gnJwzNDQmTSt2fKiimpIjvp33dnygkEI6KX1GL6YDAODgKPQAAA5LkjNR7YH2ry11NHR4\nZTVZGDkcQVy2aElSs4+1W+Fga2OVJAo9AMLX2SNOkyQtrVg24AoV4WDfhB63I9bgJAOPyxajH036\ngVKjk/Vm1bt6fetbRkc6ZIFgQJ/s/kwx1miNSco3Og4AAMCgl9Bdjqlv9xqc5MuCoaCeLHlOH+xc\npQzXUF076YeKs/P7w4HYLDZ9b8xcWU0WPVny3BFNXGrvbNeHO1fLbY/TpJTxfZASAIAvo9ADADgs\nSVFdu5dr2mq/8uu8HY1yO+IYOxxBYrrLWc1+Cj3hYKt3m6wmi9JjhxodBQAOKDMuXROTx2prY5WK\nao/8DMjBqtHXJElys3LriMTZY/WjiT+QJypRr215U29VvWd0pENSUleuJl+zpqROlM1sNToOAADA\noBcfphN6AsGAntjwtFZVr9HwuAxdM+lyueycWPlVhrmG6JycM9Tkb9aTJc8e9oknH1WvUXugXbOG\nHSeL2dJHKQEA2B+FHgDAYfE4EyVJNW11B/2aQDCgRl+T3Ix3jSix3YWeFgo9hvMH/NrevFPDYofy\nZh+AsHbmiG/IJJOWVixTMBQ0Os6A4u1olEkmzrA9CglR8bpm0uWKd7j14qbXtGL7SqMjfa2PqtdI\nkqYPYd0WAABAOEhwdBd62sOn0OMPdurvRU9qzZ61ynFn6UcTf6Do7sna+GonZszU6IRRKqot1fs7\nPzrk6wVDQb237QNZzVbNHDatDxMCALA/Cj0AgMOS1F3oqf2KQk+Tv1nBUFDxDs4ojyQ9E3pYuWW4\nbc07FQgFWLcFIOwNdaVpaupE7WjepcK9RUbHGVC8vka5bDGc+XmUkpyJumbS5Yq1u7S4/CV9uPMT\noyMdVKu/Vev3blBadIoyY9ONjgMAAABJCVHdK7c6wmPllj/g1yPr/6m1NRuUmzBSV038vpzWKKNj\nDRhmk1kXF1ygGGu0nt/4qqpb9hzS9Ypry7SnrUZTUycq1u7q45QAAHyOQg8A4LB4oron9LQffOVW\nQ/cvuPFM6Iko+8b2snLLeFsbqyRJIyj0ABgA/mfEqTKbzHq14g2m9BwGb0ej4hxM5+kNqdHJumbi\n5YqxRutfpUu0Zneh0ZEOaM2eteoMBTRtyBTW1gIAAISJOHuszCazdjZXq6S2XDubq9Xibz3sdU29\noSPg04PrntCG2lIVJObpivGXymGx93uOgS7e4dbc0efJH/TrieKn1Rns/NrrvLv9A0nSiekz+zoe\nAAD76bMdDcFgULfffrvKyspkt9u1cOFCDR8+vOfy5cuX669//ausVqvOO+88XXDBBV97naVLl+rJ\nJ5/U4sWL+yo2AOBrfD6hp/6gX9PQ0SiJQk+kcdko9ISLrd6uQg8TegAMBCnRSZqeNlUrd32sT6o/\n0zRWCX2t9s52dQR8cjPtsNcMdaXp6onf158/e1hPFD8jT0KcsuzZRsfaz6pda2SSScemTTY6CgAA\nALqZTWalOJNU3bpH9699tOfzVrNVbnuc3I6uP/Ff+PiLn4+yOHqlrN3e2a6/rX1cm71bND5pjOaP\nvYg17EdhUso4TR8yVR/tWq3Xtrypc3LOOOjXVrfsUUlduUbGj1BG7NB+TAkAQB8Wet566y35fD4t\nXrxYhYWFuvvuu/XAAw9Ikvx+v+666y4tWbJETqdTc+fO1Zw5c/Tpp58e9DrFxcVasmSJIa1nAMDn\n7Ba74uyxqmk7lAk9vAkVSSj0hI+tjdvkssX0FOwAINydMeJkfVy9Rq9teVNTUifIygvPX8nra5Ik\nue08l+pNmXHpumrifN1X+KjuXfmoTsk8QSdnzFa0zWl0NO1u2aMtjVXKT8ylFA8AABBmFoy/VBsb\nNsvb0agGX6O8HZ//2eLo3bwLAAAgAElEQVStVEgHf9/KbrF/qewTv+9jh7u7/BMr+1dM2mn1t+lv\na/+uLY1VmpQyXpcWzGU1by/49qhvalN9hd6sfFcFibkalZBzwK97r3s6z0lM5wEAGKDPXkVds2aN\nZs2aJUmaOHGiioqKei7bvHmzMjMz5XZ3vUg1ZcoUffLJJyosLDzgderr6/XHP/5RP//5z3Xbbbf1\nVWQAwCFKciZqa+M2BYKBA/7y6O2e0OPmzYiIEkOhJyw0+ZpV216nMZ7RrOMAMGAkRiVoxrDpem/7\nB/pw12rNGjbd6EhhrXHfcyk7K7d6W7Y7S1eMv1RPFD+l/2x9W+9tX6mTM2brpIwZirJGGZZrVfWn\nkqRpaUywAgAACDfJ0R4lR3sOeFkwFFSTr7mr4ONrVMMXyj7eL5R/9rTVfOV9OK3OA076iXPE6o3K\nd7StaYeOTZus/xv9bco8vSTKGqVLxszVvZ8+oH8UL9bPj73+S2X/Vn+bPqpeowRHvMYlFRiUFAAw\nmPVZoae5uVkul6vn7xaLRZ2dnbJarWpublZs7OcvTMbExKi5ufmA1/H5fLrlllt08803y+FwHNJ9\nJyREy2rlCU04Sk7mBWkgEgyLT1WFt1LmmE4lu+K/dHnb5q7CR86QoUp2DY6f+8FwfAuFXLJZbOoI\ntQ+KxxuuKndskSSNGTKSfwf0C77P0Fsucp2tD3d9rDeqluuscSfKbrEZHSlslbX6JUnDPCn8DPaB\n5OSJmpKdr2Ub39PLpW/o1S3L9N6O93VO/mk6beQJclgPfnZ0XwiGglr90WdyWqN0cv70fr9/AJGJ\n/z8ARKpwPL6lyi1p2Fd+TWegUw0djapv86q+zau6toaej+vbG1TX/XF1y+4DXn9O9gxdPuW7MpvN\nffAIBq/k5LE6t/0MLdnwml6ufFXXHDd/v8uXlq6SL+DTBWPPVFrql18HB3pTOB7fABivzwo9LpdL\nLS2fn8EfDAZltVoPeFlLS4tiY2MPeJ3S0lJVVlbq9ttvV0dHhzZt2qRf//rXuuWWWw563/X1rX3w\niHC0kpNjtXdvk9ExAPQCl6lr/UPZjiqZEr9cttzt7VrH1dli0d62yP+5H0zHtxhrtBpaGwfN4w1H\n67aVSZJSLGn8O6DPDabjG/qDWScMm6E3q97Vi2vf1JyMWUYHClvba/ZIksx+Oz+DfSQ5OVbHJx2n\nSdMn6d1t7+utqhV6cu0LeqXkTZ02fI5mDJsmWz+thiut26ja1nodP+QYNdZ3SOrol/sFELl4Dgcg\nUg3845tN8UpSvCNJIxySDtAP8Qf88vqa9pvwE2116pi0SaqtZWp2X5idPFNr4tbr/apPNNI1Usek\nTZLUVbz/d9ly2c02TYibMMC/9xDuBv7xDcDR+KpCX59VeSdPnqwVK1ZIkgoLC5Wbm9tzWU5Ojior\nK9XQ0CCfz6fVq1dr0qRJB7zO+PHj9dprr2nRokX64x//qJEjR35lmQcA0Pc8zkRJUm1b3QEvb/B5\n5bLF9NubIOg/LlsMK7cMtrVxmyRpeFyGwUkA4PCdMvwERVkcWrZ1udo7KS0cTM/6UnucwUkin9Ma\npTNGnKI7j79Jpw+fo/ZAh57b+LJu//Aevb/jIwWCgT7PsKp6jSRp2pCpfX5fAAAACG82i01JzkTl\nxGdpcsp4nZQxU9OGTJHZxGSevmIxW3RJwVzZLXY9U/aiatvqJUnra4pV216vY9MmK9oWbXBKAMBg\n1WfPAE499VTZ7XZdeOGFuuuuu3TzzTdr6dKlWrx4sWw2m2666SZddtlluvDCC3XeeecpNTX1gNcB\nAISfpKiuQk9N+5cLPaFQSA0djYp3uPs7FvqByxajjoBP/oDf6CiDUjAU1NbGbUqNTv7STm8AGAhc\nthjNyZilZn+L3tv+gdFxwpbX113ocTBuu79E26J1ds7puuO4m3Ry5my1+Fv0dNkL+tVHv9NHu1b3\nWbGnvbNdhXvWKykqUTnurD65DwAAAABfLTnao2+POkftgXb9o/gZBUNBvbPtfUnSiRkzDU4HABjM\n+mx0gtls1h133LHf53Jycno+njNnjubMmfO11/mi9PR0Pfvss70bFABw2JK+YkJPe6BdvoBP8Q7O\nKI9ELnuMJKnZ36IEC3uj+9vu1r1qD7RrQtwYo6MAwBGbkzlL721fqTer3tOsYcdRUDyAxo6uMdtx\ndgo9/S3W7tK5I8/SyRmztazyHX2w4yMtKnlWyyqX68wR39DklPG9enb0Z3uL5Av6deyQKTKZTL12\nuwAAAAAOz3FDpmpDbYkK9xbpyZLntLGhQqMTRmlITKrR0QAAgxgz+gAAh83tiJPVZFHNAQo9DftW\nRDChJyLF2PYVeloNTjI4bfVWSZKyWLcFYABzWp06ZfgJauts0/JtK4yOE5a8vka5bDGysr7UMG5H\nnC7IPUe/PO6nmjF0mmra6vT4hqd018d/UuHeIoVCoV65n1W7VkuSpqVN6ZXbAwAAAHBkTCaT5o4+\nT257XM9a3BMzZhicCgAw2FHoAQAcNrPJLI8zUTXttV+6rKHdK0lM6IlQsd2FnhZ/i8FJBp9AMKDC\nvUWSpCx3psFpAODonJA+Q7F2l5Zv+6+afM1Gxwk73o4muXkuFRYSoxL03dHn6ZfTf6JpaVO0q2W3\nHln/T92z+i8qqik5qmJPbVudNjZUaGT8iJ4JmAAAAACM47LF6OKCCyRJyU6PxnhGG5wIADDYUegB\nABwRjzNRLf5WtXW27ff5ho59hR7WMUWingk9vPnarzoCPj1S9E8V1ZYoMzZdw2KGGB0JAI6Kw2LX\nacPnqCPg05tV7xodJ6x0BHxqD7SzbivMJDk9mlfwHd067ceakjJB25p26IF1j+sPa/6q0rqNR1Ts\n+bj6U0nS9LSpvR0XAAAAwBHKT8zVlRMu0+XjLunVdbsAABwJ/icCAByRpKius4hr2ur3+/y+lVtM\n6IlMLjsrt/pbk69Zf/70Ia2vKdHohFG6ZtLlspgtRscCgKM2c9h0JTjitWL7yp5CMCRvz/pSnkuF\no7SYFM0fe5F+fuz1mpA8Vlsaq3Rf4SP682cPaVPDlkO+nVAopFXVa2Q32zQpZVwfJgYAAABwuMZ4\n8jTUlWZ0DAAAKPQAAI6Mp3stQG3b/mu3Gnz7JvS4+z0T+p5r34QeVm71iz2te/X71fersmmbpqdN\n1ZUT5stpjTI6FgD0CpvZqjOyTpY/2KllW98xOk7Y6Cn02Cn0hLNhriG6fNw8/XTqj1TgydPGhgrd\n++kDur/wUVU2bvva61d4K7W3rVYTkscpiv/bAQAAAAAAcABWowMAAAamJKdHklTTXrff5709K7d4\nEyoSUejpPxXeSj247nG1+Ft1RtYpOnPEqTKZTEbHAoBeNX3IVL1R9a4+2LlKp2TO7ikMD2aNPib0\nDCTD4zJ01YTLVOHdqqUVb6ikrlwldeUal1Sgs0Z8Q+mxQw94vVXVqyVJ04dM6c+4AAAAAAAAGECY\n0AMAOCL7Vm7Vtu1f6Glo98pmtslpdRoRC30shkJPvyjcW6S/fPaQ2jrbddHo83VW9jco8wCISBaz\nRWeOOFWBUECvb33b6Dhh4fMJPbEGJ8HhyHZn6dpJl+vaSZcr252l9TXFuuuTP+nRoie1q2X3fl/r\nC/i1Zvc6xTvcyk3IMSgxAAAAAAAAwh0TegAAR2TfGfQ1/3+hp6NR8Y44ygcRymWLliS1+Cj09JV3\nt32gJRtfkc1i04Jx8zTGM9roSADQp6amTtSyyne0qnqNZg2bruFxGUZHMpTX1ySJCT0DVW7CSN0w\nOUcldeVaWrFMn+1Zp8I96zU1dZL+Z8QpSolO0rqaDWoPtGt2+nEymzjPCgAAAAAAAAdGoQcAcESc\n1ii5bDGqaa/t+VxnsFNN/malxaQYmAx9yWK2yGl1MqGnDwRDQb20+d96u2qFYu0uXTlhvjJj042O\nBQB9zmwy67yRZ+lvax/Tg+ue0E+mXq3EqASjYxlm34SeODuFnoHKZDKpwJOn/MRcra8p1qtb3tAn\nuz/Vmj2Fmp42Rbtb90qSpqexbgsAAAAAAAAHx6lgAIAj5olKVF1bvYKhoCTJ29F1Rnm8w21kLPQx\nly2aQk8v8wf8emLD03q7aoVSo1P0kylXU+YBMKgUePJ03qiz1ehr0gNrH1dbZ5vRkQyzb0JPnIOV\nWwOdyWTS+OQxuumYa3XZ2P9TsjNJK3d9os3ercqKy1QqJXgAAAAAAAB8BQo9AIAjluRMVGco0HMm\nudfnlUShJ9K5bDFq9rcoFAoZHSUitPhbdf/aR7Vmz1rluEfox1Ou7FlpBwCDyUkZM3VC+gztbKnW\no+ufVCAYMDqSIbwdjYqxRctmZqBupDCbzJqcMl63TrtBlxRcqJHxI3TmiFONjgUAAAAAAIAwxyuE\nAIAjtq90UNNWp4SoeNW3dxV63A5WREQylz1GwVBQ7YF2Oa1Oo+MMaLVt9frb2r+runWPJqeM17z8\n78hmsRkdCwAMc/6os1XXXqf1NSV6puwFfXf0+TKZTEbH6leNvkYlOOKNjoE+YDaZdWzaZB2bNtno\nKAAAAAAAABgAmNADADhiSfsKPe11kiRvBxN6BoMYW4wkqcnH2q2jUdW0Xb9fc7+qW/fo5IzZunTM\ndynzABj0zCazLh1zkTJjh2nlrk/0RuU7RkfqV76AT22d7ZSjAQAAAAAAAFDoAQAcuaQojySptq1W\nktTQvXqLQk9kc3UXelr8FHqO1IbaMt376YNq8jXr/FHf1LmjzpLZxNMyAJAkh8WuBeMvVYIjXq9U\n/Eerqz8zOlK/8XY0SZLcdgo9AAAAAAAAwGDHO0cAgCOW9IWVW5LU0DOhhzehItm+Qk8zhZ4jsnLn\nJ3pw3eMKhYL6/tj/00kZM42OBABhx+2I05UT5ivKEqVFJc9qU8MWoyP1C6+vqxwd54g1OAkAAAAA\nAAAAo1HoAQAcsXiHW2aT+QuFnkaZZFKcnTehIllPoYeVW4clFArptYo39K/S5+S0RumaSZdrYso4\no2MBQNga6krT98f9n4IK6eF1/9Ce1r1GR+pz3u5ph0zoAQAAAAAAAEChBwBwxCxmixId8app71q5\n5e3wKs7uksVsMTgZ+pLLzoSewxUIBvRk6XP699a35IlK1I+nXKVsd5bRsQAg7OUn5mpu3rlq6WzV\n39Y+FvFl0n0TetxMOwQAAAAAAAAGPQo9AICjkuT0qMnXrI6ATw2+RrkdbqMjoY/tm9DT4m81OMnA\n0N7ZrgfWPa6Pdq1WZmy6bpx6lVKjk42OBQADxvFDj9Vpw+dob1utHlr/hPwBv9GR+kxjR5Mkyc3K\nLQAAAAAAAGDQo9ADADgqHmeiJKmqcZs6g52Kp9AT8WK6Cz1N/maDk4S/hg6v7v30QZXUlWusJ1/X\nTV7ASjoAOAJnZX9DU1ImqMJbqUUlzyoYChodqU/0TOhh5RYAAAAAAAAw6FmNDgAAGNiSugs9mxq2\nShKFnkHg8wk9/bv2pCPg08b6zSquK9fG+s2Kd7g1LqlA45LylRAV369ZDsXO5mr9be1jqu9o0Mxh\n03XBqHNYRwcAR8hsMuvi/AtU3+HVmj1r5XEm6pycM4yO1eu8HV2FHsqfAAAAAAAAACj0AACOSpLT\nI0na7N0iSYp3cEZ5pHNao2Q2mdXs69uVW6FQSLtadqu4rkwlteXa1FChzlBAkmQzW7WzpVrFdWVa\nXP6iMlxDu8o9yQXKcA2TyWTq02xfp7x+sx5e/w+1dbbrnOwzdOrwEw3PBAADnc1i0w/HXaI/rPmr\n3qh8R0lRiZoxbJrRsXqV19ekGGu0bBab0VEAAAAAAAAAGIxCDwDgqCRFdU3oqfBulcSEnsHAZDLJ\nZYtRcx+s3Gr1t6q0fpNKastUXFeuhg5vz2XprqEq8OSpIDFXI9zD5e1o0vraYhXVlKi8frO2Ne/U\nv7e+pXiHW2OT8jU+qUC58Tn9/qbo6t2FWlS8WCFJlxRcqGPTJvfr/QNAJHPZY3TFhPn6/Zr79Uz5\ni0qMSlC+J9foWL3G29FIORoAAAAAAACAJAo9AICj5OleudUR8EmS3LwJNSi4bDGq/0LZ5kgFQ0FV\nNW1XSW25iuvKtMVbpZBCkqQYW7Smpk5UQWKeRifmyu3Yf/2Ix5mgE9Nn6MT0GWrrbFdJXbnW1xRr\nQ02p3t/xkd7f8ZHsFrvyE3M1zpOvsUn5irW7jjrzwYRCIb1V9Z5e2vxvRVmidPm4ecpLHNln9wcA\ng1VKdJJ+OO57+kvhw3q0aJFumHKlhrmGGB3rqPkCfrV1tml4bLrRUQAAAAAAAACEAQo9AICjEm11\nymmNUltnuyQm9AwWLluMdrZUKxAMyGK2HNZ1vR1NKq3rKvCU1JWrxd+1usskk0a4M1WQmKcCT54y\nYofJbDIf0m06rVGanDJek1PGKxAMqMJbqfW1xVpfU6y1e4u0dm9Rz+2P83St5kqLTum1NVjBUFDP\nlb+iFTtWKt7h1pUT5kfEm8sAEK5y4rM0L/8CPbbhKT2w9nHdOPWqAf8cpNHXKIlyNAAAAAAAAIAu\nFHoAAEfFZDIpKSpR25p3ShJrIgaJGHuMJKnZ3/qlyTn/v85gpyq8lSqpK1dxbZm2d3+vSF0FsOOH\nHKN8T55GJ4xUtC36qLNZzBaNSsjWqIRsnTvyLO1u2aP1tSVaX1OszQ1bVeGt1MsVryspKlHjkgs0\nPqlAOe4Rh11M2scX8OnxDU9rXc0GDY1J05UT5ishKv6oHwcA4KtNSZ2o2rZ6vVzxuh5c+7ium3yF\noqwOo2MdMW9HkyQKPQAAAAAAAAC6UOgBABw1j9Ojbc07FWWJUpQ1yug46AcuW1ehp8XfcsBCT01b\nnUrqylRcW66y+o09K9msJotGJ4xSvidXBYl5GhKT2mtTcg4mNSZFqTEpOiXzBDX7W7ShplTra0tU\nUlumd7a9r3e2vS+n1akxnjyNSypQQWKeom3OQ7rtJl+zHlz3hLY2VikvYaR+MO5iOa2Hdl0AwNE7\ndfiJ2ttWq5W7PtbjG57SD8dfcsjT3cKNt3tCT5z9q4uyAAAAAAAAAAYHCj0AgKOW5EyUxHSewWRf\noafZ3yKpa0rNxoYKFdeWqbiuTHtaa3q+NsWZpHxPngoSczUqIUcOi92QzFJX7mlDpmjakCnyBzu1\nqb5C62uLtW5vsVbvLtTq3YUym8waGZ+tcUn5Gp9UoCSn54C3tae1Rn9b+3ftbavVsWmTddHo82U1\n89QKAPqTyWTShXnfUn1Hg4pqS/Rc+Su6IPecPi+L9gVvByu3AAAAAAAAAHyOd50AAEft80KP2+Ak\n6C/7Cj3v7/hIy7Yu1ybvFnUGOyVJdou9Z9JNgSf3oIUYo9nMVuV7cpXvydW3R52jnS3VWre3WOtr\nilVev0nl9Zv0/MalGhKTqnFJBRqXVKCsuAyZTWZt8VbpwXWPq9nfotOHz9FZ2acNyDePASASWMwW\nXTb2Iv1xzQNasWOlkp2JmpM52+hYh62n0GOn0AMAAAAAAACAQg8AoBd4oroKPZxRPnjE2l2SpDV7\n1kqShrmG9BR4st1ZA25Sjclk0jDXEA1zDdEZI06Wt6NRRTUlWldTrLL6jXqj8h29UfmOYm0u5SWO\n1Nq9G9QZ7NTcvHM1c9h0o+MDwKDntDp15YT5+t3q+/TCpteU6EzUxOSxRsc6LI2+Jkk8nwIAAAAA\nAADQZWC92wYACEtZcZnKisvUhOQxRkdBPxmXlK/Th89RUnSS8hNHRdx0JrcjTjOGTdOMYdPkC/hU\nWrdR62tKtL62azWX3WzTgvHf09ikfKOjAgC6JUTFa8GES3Xvpw/qiQ1P67rJP1RWXKbRsQ7Z5xN6\nYg1OAgAAAAAAACAcUOgBABy1aJtTP5l6tdEx0I/sFrvOzjnd6Bj9wm6xa3zyGI1PHqNgKKhtTTsU\nbY1WcnR4rhIDgMEsMzZd88d8Vw+t+4ceXPuEbpx6dc9q0HDn9TUq2uqUzWIzOgoAAAAAAACAMGA2\nOgAAAMBAYTaZNTwugzIPAISxcUkF+nbuOWryN+uBtY+p1d9qdKRD4u1oVBzrtgAAAAAAAAB0o9AD\nAAAAAIgoJ6QfrzkZs1TdukePrF+kzmCn0ZG+kj/gV2tnm+LtFHoAAAAAAAAAdKHQAwAAAACION8a\neaYmJI9VecNmPVX6vEKhkNGRDsrra5IkxTliDU4CAAAAAAAAIFxQ6AEAAAAARByzyazvFVyo4bEZ\nWlW9Rq9vfcvoSAfV6GuUJLmZ0AMAAAAAAACgG4UeAAAAAEBEslvsWjDhe/JEJei1LW/q4+pPjY50\nQA0d3YUeB4UeAAAAAAAAAF0o9AAAAAAAIlacPVZXTJgvpzVKT5Y8p431m42O9CWNHd0rt+ys3AIA\nAAAAAADQhUIPAAAAACCiDYlJ1Q/GzlNIIT20/p+qbtljdKT9eH1M6AEAAAAAAACwPwo9AAAAAICI\nl5c4UheNPl9tnW3629rH1ORrNjpSD+++lVt2Cj0AAAAAAAAAulDoAQAAAAAMCtOHTNUZWaeotr1O\nD617Qr6A3+hIkqRGX9fKLbeDlVsAAAAAAAAAulDoAQAAAAAMGmeOOFXHpE7WlsYq/aP4GQVDQaMj\nydvRKKc1SnaL3egoAAAAAAAAAMIEhR4AAAAAwKBhMpl0Uf75GhWfrcK96/XS5n8bHUleXyPrtgAA\nAAAAAADsh0IPAAAAAGBQsZmtunzcPKVGJ+vtqhX6744PDcviD3aqxd+qOAeFHgAAAAAAAACfo9AD\nAAAAABh0om3RunLCfLlsMVpc9pKeKl2itXs3qL2zo19zNHY0SRITegAAAAAAAADsx2p0AAAAAAAA\njJDk9GjB+O/pofX/0Ac7P9YHOz+W1WTRyPhsjfHkaYxntFKik2Uymfosg9fXKElyO2L77D4AAAAA\nAAAADDwUegAAAAAAg9YI93D9Zsat2tq4TRtqSrShtlSl9RtVWr9Rz296VUlRiRqTNFpjPPkaFZ8t\nu8XWq/ff2LGv0MOEHgAAAAAAAACfo9ADAAAAABjUzCazst3Dle0errNzTldDh1fFteVd5Z66cr23\nfaXe275SNrNNeQk5GuMZrTGe0fI4E4/6vhv2TeixM6EHAAAAAAAAwOco9AAAAAAA8AXxDreOH3qM\njh96jDqDnarwVmpDbak21JaqqPuPJKVFp2iMZ7TGJo1WtjtLVvPh/4rd2NEkSXI73L36GAAAAAAA\nAAAMbBR6AAAAAAA4CKvZqtyEHOUm5OhbI89UbVudNtSWaUNtqcrqN+ntbSv09rYVirI4NDpxlMZ4\nRqvAk6f4QyzoeLtXbsUxoQcAAAAAAADAF1DoAQAAAADgEHmciZqdfpxmpx8nf8CvjQ0VPZN7CvcW\nqXBvkSQp3TW0Z3pPVlymzCbzAW/Pu2/lliOu3x4DAAAAAAAAgPBHoQcAAAAAgCNgs9hU4MlTgSdP\n39Y52t26t2s1V02pNjVUaHvzTi2rXK4Ya7TyPbka4xmt/MRcxdpdPbfh7WhUlCVKDovdwEcCAAAA\nAAAAINxQ6AEAAAAAoBekRicrNTpZczJmqb2zQ+X1m3qm96zeXajVuwtlkknD4zI0xpOnMZ7R8voa\nmc4DAAAAAAAA4Eso9AAAAAAA0MuirA6NTx6j8cljFAqFtKtld9f0ntpSbfZu1dbGKr225U1J0rCY\nIQanBQAAAAAAABBuKPQAAAAAANCHTCaThrrSNNSVplOHn6hWf5tK6zdqQ02pNjZs1rjkAqMjAgAA\nAAAAAAgzFHoAAAAAAOhH0TanJqeM1+SU8UZHAQAAAAAAABCmzEYHAAAAAAAAAAAAAAAAAPA5Cj0A\nAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAA\nAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQ\nAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAA\nAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQR\nCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAA\nAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABA\nGKHQAwAAAAAAAAAAAAAAAIQRUygUChkdAgAAAAAAAAAAAAAAAEAXJvQAAAAAAAAAAAAAAAAAYYRC\nDwAAAAAAAAAAAAAAABBGKPQAAAAAAAAAAAAAAAAAYYRCDwAAAAAAAAAAAAAAABBGKPQAAAAAAAAA\nAAAAAAAAYYRCDwAAAAAAAAAAAAAAABBGrEYHQOQLBoO6/fbbVVZWJrvdroULF2r48OFGxwKAo7J2\n7Vr9/ve/16JFi1RZWambbrpJJpNJo0aN0i9/+UuZzXRmAQwsfr9fP//5z7Vjxw75fD5dccUVGjly\nJMc3AANeIBDQrbfeqi1btshkMulXv/qVHA4HxzcAEaO2tlbnnnuuHnvsMVmtVo5vACLGt771Lblc\nLklSenq6FixYwDEOQER46KGHtHz5cvn9fs2dO1fHHnssxzcAB8SRAH3urbfeks/n0+LFi/XjH/9Y\nd999t9GRAOCoPPLII7r11lvV0dEhSbrrrrt03XXX6amnnlIoFNLbb79tcEIAOHyvvPKK4uPj9dRT\nT+nRRx/VnXfeyfENQER45513JEnPPPOMrrvuOt17770c3wBEDL/fr1/84heKioqSxO+nACJHR0eH\nQqGQFi1apEWLFumuu+7iGAcgIqxatUqfffaZnn76aS1atEjV1dUc3wAcFIUe9Lk1a9Zo1qxZkqSJ\nEyeqqKjI4EQAcC+M3toAAAcESURBVHQyMzN133339fx9w4YNOvbYYyVJs2fP1sqVK42KBgBH7PTT\nT9e1114rSQqFQrJYLBzfAESEU045RXfeeackaefOnYqLi+P4BiBi3HPPPbrwwguVkpIiid9PAUSO\n0tJStbW1af78+Zo3b54KCws5xgGICO+//75yc3N11VVXacGCBTrxxBM5vgE4KAo96HPNzc09YzEl\nyWKxqLOz08BEAHB0TjvtNFmtn2+tDIVCMplMkqSYmBg1NTUZFQ0AjlhMTIxcLpeam5t1zTXX6Lrr\nruP4BiBiWK1W/exnP9Odd96ps88+m+MbgIjwwgsvKDExsedEOonfTwFEjqioKF122WX6+9//rl/9\n6le68cYbOcYBiAj19fUqKirSn//8Z45vAL4WhR70OZfLpZaWlp6/B4PB/d4IB4CB7ou7bFtaWhQX\nF2dgGgA4crt27dK8efN0zjnn6Oyzz+b4BiCi3HPPPVq2bJluu+22ntWpEsc3AAPX888/r5UrV+ri\niy9WSUmJfvazn6murq7nco5vAAayESNG6Jvf/KZMJpNGjBih+Ph41dbW9lzOMQ7AQBUfH6+ZM2fK\nbrcrOztbDodjvwIPxzcAX0ShB31u8uTJWrFihSSpsLBQubm5BicCgN5VUFCgVatWSZJWrFihqVOn\nGpwIAA5fTU2N5s+fr5/85Cc6//zzJXF8AxAZXnrpJT300EOSJKfTKZPJpLFjx3J8AzDg/etf/9KT\nTz6pRYsWKT8/X/fcc49mz57N8Q1ARFiyZInuvvtuSdLu3bvV3NysGTNmcIwDMOBNmTJF//3vfxUK\nhbR79261tbXpuOOO4/gG4IBMoVAoZHQIRLZgMKjbb79d5eXlCoVC+s1vfqOcnByjYwHAUdm+fbtu\nuOEGPfvss9qyZYtuu+02+f1+ZWdna+HChbJYLEZHBIDDsnDhQr3++uvKzs7u+dwtt9yihQsXcnwD\nMKC1trbq5ptvVk1NjTo7O/WDH/xAOTk5PH8DEFEuvvhi3X777TKbzRzfAEQEn8+nm2++WTt37pTJ\nZNKNN96ohIQEjnEAIsJvf/tbrVq1SqFQSNdff73S09M5vgE4IAo9AAAAAAAAAAAAAAAAQBhh5RYA\nAAAAAAAAAAAAAAAQRij0AAAAAAAAAAAAAAAAAGGEQg8AAAAAAAAAAAAAAAAQRij0AAAAAAAAAAAA\nAAAAAGGEQg8AAAAAAAAAAAAAAAAQRij0AAAAAAAAoFe88MILuummm4yOAQAAAAAAMOBR6AEAAAAA\nAAAAAAAAAADCiNXoAAAAAAAAAOhfDz/8sF5//XUFAgHNnDlTc+fO1ZVXXqmMjAxVVlZq6NCh+t3v\nfqf4+Hi98847+tOf/qRgMKiMjAzdcccdSkpK0sqVK3X33XcrFApp6NCh+sMf/iBJqqys1MUXX6yd\nO3fquOOO08KFCw1+tAAAAAAAAAMPE3oAAAAAAAAGkRUrVqioqEhLlizRSy+9pN27d2vp0qUqLy/X\nJZdcotdee005OTm6//77VVtbq1/84hf661//qqVLl2ry5Mm644475PP5dOONN+qee+7R0qVLlZeX\npxdffFGStGvXLt133316/fXXtWLFCm3cuNHgRwwAAAAAADDwMKEHAAAAAABgEPnwww+1bt06nXvu\nuZKk9vZ2hUIhZWVladq0aZKk//3f/9WNN96oGTNmaPz48UpPT5ckfec739HDDz+ssrIypaamKj8/\nX5J0ww03SJJeeOEFTZ06VfHx8ZKkzMxM1dfX9/dDBAAAAAAAGPAo9AAAAAAAAAwigUBAl1xyiS69\n9FJJUmNjo6qrq3X99df3fE0oFJLFYlEwGNzvuqFQSJ2dnbLZbPt9vqmpSS0tLZIkq/Xzl5tMJpNC\noVBfPRQAAAAAAICIxcotAAAAAACAQWT69Ol6+eWX1dLSos7OTl111VUqKirSli1bVFJSIkl6/vnn\nNXv2bE2YMEFr167V9u3bJUmLFy/WtGnTNGLECNXV1WnTpk2SpEcffVRPP/20YY8JAAAAAAAg0jCh\nBwAAAAAAYBCZM2eOSktLdcEFFygQCGjWrFk65phj5Ha79Ze//EVVVVXKy8vTwoULFR0drTvuuENX\nX321/H6/hg4dql//+tdyOBz63e9+p5/+9Kfy+/3KzMzUb3/7Wy1btszohwcAAAAAABARTCHmHgMA\nAAAAAAxq27dv17x587R8+XKjowAAAAAAAECs3AIAAAAAAAAAAAAAAADCChN6AAAAAAAAAAAAAAAA\ngDDChB4AAAAAAAAAAAAAAAAgjFDoAQAAAAAAAAAAAAAAAMIIhR4AAAAAAAAAAAAAAAAgjFDoAQAA\nAAAAAAAAAAAAAMIIhR4AAAAAAAAAAAAAAAAgjFDoAQAAAAAAAAAAAAAAAMLI/wN+hAwRaafF+AAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAJoCAYAAAATN9ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vF7JpOeSa8QAiF0CSAgColYUPnaWEQFRdG1\n7uq6ltW1/da+iq4r7op9VRRBqqgoNkAECUoTQgKhJZQQ0ntvM78/QsbEFBJImGR4v66LKzPnPOfM\n50wOn5lLbp/HYLVarQIAAAAAAAAAAAAAAADQ7RjtXQAAAAAAAAAAAAAAAACAE0P4BwAAAAAAAAAA\nAAAAAOimCP8AAAAAAAAAAAAAAAAA3RThHwAAAAAAAAAAAAAAAKCbIvwDAAAAAAAAAAAAAAAAdFOE\nfwAAAAAAAAAAAAAAAIBuivAPAAAAAAAA0EbLli3TwIEDNXDgQG3cuNHe5QAAAAAAABD+AQAAAAAA\nAAAAAAAAALorwj8AAAAAAAAAAAAAAABAN0X4BwAAAAAAAAAAAAAAAOimCP8AAAAAAAAAAAAAAAAA\n3RThHwAAAAAAAAAAAAAAAKCbMtm7AAAAAAAA0H0MHDhQkvTEE0/ohhtu0PLly7VkyRLt3btX1dXV\nCg8P16RJk3TzzTfLxcVFkrRp0yZ99NFHio+PV0FBgYKDgzV+/HjdfffdCg4ObvG1ysvLtWDBAq1a\ntUopKSkqKSmRr6+vhg4dqiuvvFKXXnqpjMbW/7+mH3/8Ud999522bdum3NxclZWVycvLS+Hh4Ro7\ndqxuvPFGhYaGNjlu9uzZev3112U2m7VlyxZlZ2drzpw5WrNmjdLT02UymRQVFaVLL71U06dPt11r\nZ0hISNCiRYu0efNmpaeny2g0yt/fXyNGjNBll12mCRMmyGAwtHj8zz//rPnz52vnzp3Kzc1VSEiI\nJkyYoDvvvFMmk0lnnXWWJGnmzJmaMmWK7bhHH31Un332mSRp/fr1CgoKavb8f/rTn/Tjjz9Kkvbs\n2dPsmNTUVC1ZskSbNm1SamqqCgsL5eLiIn9/fw0fPlxTpkxRTExMk+OOHDmiCRMmSJLeeOMNBQUF\naebMmdq1a5fc3NwUFRWlp556SoMGDbIdc7L3jdVq1Y8//qgFCxZo7969ysvLU1hYmCZOnKg77rij\nxeM62olex8aNG3XTTTdJkj7//HNlZWXp1VdfVXJysjw9PTVw4ED961//UnV1dbvf29zcXC1YsEBr\n167VwYMHVV5eLn9/fw0bNkxXXnmlLrnkkmbvxbbWFBIS0hlvJQAAAAAADo/wDwAAAAAAaLfq6mrd\nddddWrNmTaPte/fu1b///W9t2LBB77//vt544w298cYbslqttjFpaWlasGCBVq9eraVLlzb7D/47\nduzQPffco8zMzEbbs7OztWbNGq1Zs0Yff/yxXnvttWYDRPn5+brnnnu0ZcuWJvsKCgpUUFCgxMRE\nzZ8/X2+++abGjh3b4rVu2bJFf/nLX1RQUNBo+/bt27V9+3YtW7ZMc+fOla+vb4vnOFH/+9//9Mor\nrzR6/6S69zAtLU0rVqzQuHHj9MYbb8jDw6PRmJqaGj3zzDNavHhxo+2HDx/WnDlz9PXXX2v27Nkd\nXvPvvfPOO3rttddUU1PTaHt1dbVKS0uVmpqqr776Stdff72efvrpFs+za9cuvf/++6qoqJAkVVZW\navfu3erVq5dtzMneNxUVFXrwwQe1atWqRtsPHjyod955R8uXL9dVV13V3reg3U72OuqtXbtW//3v\nf2WxWCRJVVVVSktLU3BwsNLS0mzj2vLefv3113ryySdVXFzc6DUyMzO1cuVKrVy5UmeddZZee+01\n+fv7n1BNAAAAAADgxBD+AQAAAAAA7fbOO+8oPz9f0dHRuummmxQeHq59+/Zp1qxZKigo0IYNG/Tn\nP/9Za9euVd++fXXbbbepf//+ysrK0rvvvqsdO3bYZv948cUXG5173759uvnmm1VWViZPT09Nnz5d\nY8eOldlsVlpamr766iutWrVK27Zt02233aZFixY1Cb7ce++9tuDPuHHjdNVVV6lHjx6qrq7WoUOH\nNG/ePO3bt09lZWV69NFH9cMPP8jJyanJdVZUVOjuu+9WaWmprr/+ek2YMEFeXl7atWuX3n77bWVl\nZWnPnj169dVX9cwzz3Toe7x582Zb8GfQoEG6+eabFRkZKYvFopSUFH344Yfav3+/NmzYoNdee02P\nPvpoo+NfeuklW/CnZ8+euvPOOzVo0CBlZ2dr4cKFWr9+ve67774Orfn3Pv30U82aNUuSFBoaqhtv\nvFFDhgyRp6enjh49qjVr1uirr76SxWLRggULNGHCBJ177rnNnuutt96Ss7OzHnzwQY0ePVqHDx9W\nXl6ePD09JXXMffPwww/bgj8DBw7UrbfeqsjISGVmZmrhwoWKi4vT22+/3YnvWMdcR73//ve/MpvN\nuu+++zR48GDt3btXLi4uTWbnOd57+/333+vBBx+UxWKRs7Ozrr32Wl144YXy9vZWSkqKPvnkE+3Y\nsUObN2/WTTfdpEWLFtmOPdGaAAAAAABA2xmsv/9fxwAAAAAAAFpQv+yXJMXExOjtt99utOTV2rVr\ndeedd9qeR0dHa+7cuY3CCRUVFZo4caIyMjLk6+urX375pdE//E+ePFlJSUkKDQ3Vxx9/rIiIiCZ1\nzJ8/X88++6wk6Y477tBDDz1k27dhwwbdcsstkqSLL75Ys2fPbhIsqK2t1fXXX6/4+Hjb+UaPHm3b\nX7/slyQ5OTnp7bff1vjx4xudIzU1VVdeeaXKy8vl5eWlX375Rc7Ozsd7C9vsscce07Jly+Tr66tV\nq1bJbDY32l9SUqKrrrpKhw8fltls1saNG20Bpt27d2vKlCmqra1Vv379NH/+/CYzEz3//POaO3eu\n7XlHL/tltVp1/vnnKyMjQ97e3lq2bFmjmWTqzZs3T88995wk6ZprrtHzzz9v29dw2S9Jeu655zR1\n6tRm6zjZ+yYuLk633nqrJGns2LF69913myzn9s9//lMff/yx7fncuXN19tlnN1vPiTrZ62i4xJYk\nffDBB8ddUk1q+b0tKSnRhAkTVFBQIHd3d7333nuN/q5IksVi0RNPPKGlS5dKkmbMmKF//OMf7a4J\nAAAAAACcmJYXOAcAAAAAAGjFI4880iQcMX78eLm7u9ue//3vf28yK4mbm5vtH/7rl+CqFxcXp6Sk\nJNv5mws+SNINN9ygMWPGSJIWLFig6upq274DBw6oV69ecnZ21j333NPsjCJOTk667LLLbM+zsrJa\nvM6LL764SfBHknr16qVx48ZJqgtIHDlypMVznIjs7GxJUkBAQJPgjyR5eXnp/vvv1y233KIHHnhA\nlZWVtn3Lli1TbW2tJOnpp59udkmyRx55RP379+/QmhtKS0uTj4+PzGazpkyZ0mzwR5ImTZpke/z7\nZa4acnNz0+TJk5vd1xH3zaJFiyTV3RsvvPBCk3u7/ty9e/duscaT1RHX0VBERESbQjatvbdLly61\n/R3961//2iT4I0lGo1FPPfWU+vTpI0lavHhxk2Xy2lsTAAAAAABoO8I/AAAAAACg3QICAhrNAlTP\nYDAoODhYkuTi4qJRo0a1eHy9srIy2+P6GWQkHTcgcN5550mqC94kJCTYtt9www1atWqVduzYoUGD\nBrV4fMOZbKqqqlocFxsb2+K+huGM0tLSVuttr759+0qSkpOT9Y9//ENpaWlNxlx++eV69NFHdcMN\nNzQKWdW/j2FhYTrrrLOaPb/JZNK1117boTU3FB4eruXLl2vLli165JFHWhxnNpvl5uYmqfXfw5Ah\nQ5oN5Egnf9/U1NQoLi5OkjRy5Ej16NGj2WOdnZ0bhZU6Wkfc/w0NHz68Ta/b2nu7fv16SXWhqNbu\nFxcXF9v+yspKbdq06aRqAgAAAAAAbWeydwEAAAAAAKD76dmzZ4v76kMEfn5+Mpma/08PDYMGDVck\nr5/1RJJtZpO2SE1N1ciRIxttMxqNtvNnZWUpNTVVBw8e1P79+5WQkGBb8kuqW7aoJa1da8PATf1M\nOx3lhhtu0NKlS1VaWqolS5ZoyZIl6t+/v8aNG6dx48ZpzJgxTWZVqq8jNTVVkloNP0nSmWee2aE1\nt6T+d1FSUqLU1FQdPnxYycnJSkpK0tatW1VRUSGp8b3we2FhYS3uO9n7JisrSyUlJZKO/55FR0e3\n+fzt1ZH3v9T6e9bWcfv27ZMkRUZGytvbu9XzjBgxwvZ47969uuSSS064JgAAAAAA0HaEfwAAAAAA\nQLt5enoed0xLwZ/W5Ofnn0g5KioqavTcarXqm2++0eLFixUfH99odqF69YGU42kuYFOv4ZJirQVX\nTkTv3r31/vvv6/HHH1dKSoqkuiDGvn379NFHH8nFxUUxMTG67rrrdP7559uOy8/Pt4WZ/Pz8Wn2N\nkJCQDq25OcnJyZozZ47WrVvX7LJezS3L1hwvL68W953sfZOTk2Pb1twSaQ0FBgae0Gu1RUfd//Va\ne8/aOq5++S5/f//jnqfhjF4tLfvV1poAAAAAAEDbEf4BAAAAAADt5uTk1CnnrampkVQXWpkzZ06b\nj2sYYqmsrNS9997baAklg8Gg8PBw9e3bV4MHD9bIkSNVUFCghx9+uMNq7wxnnnmmVqxYoY0bN2rl\nypX66aefdPjwYUl1S2StWbNGa9as0aRJk/TSSy/JaDS2OdQk1S1jdbJamzXp008/1ZNPPmn7vUp1\n4Zq+ffuqf//+Gj58uGJiYnTppZc2G9Bqq5O9b9oaQJJOLNTWVh1x/zfUnutqSXtCbQ3vhZbuw46o\nCQAAAAAANEb4BwAAAAAAdBn1s66UlZVp4MCB7Qqy1HvttddswZ+hQ4fqL3/5i8aMGdNkxpFly5ad\ndL2ngtFo1NixYzV27FhJ0pEjR/Tzzz9rzZo1Wrt2rWpqarR8+XLFxMRo8uTJ8vb2lpOTk2pra5Wb\nm9vquQsLC1vc19ZZjYqLi5vdvmfPHlvwx9PTU3/961918cUXKzw8vNE4i8ViW/brRJ3sfRMcHGx7\nnJeX1+rY1t6zk9UR939H8/HxUVZW1nHfF6nxDEo+Pj6dWRYAAAAAAGjA/v8FAQAAAAAA4Jj+/ftL\nqpu9JykpqdWx69at0wcffKDvvvvOFkyora3VwoULJUne3t766KOPdOGFFza71NDRo0c7uPqOVVJS\noh07dig1NbXR9vDwcF177bV688039dprr9m21weeTCaTBg4cKEnauXNnqzPztPYeN5zdqbVwTnp6\nerPbFy1aZJvJ5sknn9Qtt9zSJPgjSRkZGa3W2BYne98EBgbagjcJCQmtHn+885+Mk72OzlB/Lx04\ncKDF5cXqxcfH2x737du302oCAAAAAACNEf4BAAAAAABdRmxsrO3xJ5980uK42tpaPfPMM3rppZd0\n7733qry8XFLdrC0lJSWSpIiIiGZDP5JUXV2tb7/9ttH5upL09HSNGjVK1157rWbPnt3iuHPPPdc2\nO0xlZaVt+/nnny+pbiaWNWvWtHj8F1980eI+s9lse5yWltbsmD179igjI6PZfYcOHbI9PuOMM1p8\nneXLl9seN1werD1O9r5xcnLShAkTJEk7duzQnj17mj3earU2qrejnex1dGZNtbW1Wrp0aYvjqqqq\n9Omnn0qqC6CdffbZnVYTAAAAAABojPAPAAAAAADoMi666CL16tVLkvTpp5+2GLSYOXOmjhw5Ikma\nMGGCevbsKakusGIy1a1yvn///mZn96mqqtJTTz2lffv2NdrWlYSFhWnQoEGSpG+++Ubbtm1rdtyK\nFStss+ZER0fbtl9//fVyd3eXJD377LPNhneWLl1qmy2oOfUzvkjSvHnzmuwvLS3VM8880+Lxfn5+\ntsfr1q1rdszatWv1xhtv2J6f6O/hZO8bSZoxY4ZttqNHHnmk2Vlu3nnnHSUmJp5QjW3REdfR0a6+\n+mp5e3tLkmbPnt3svWixWPTss8/q4MGDkqTJkyfL39+/02oCAAAAAACNmexdAAAAAAAAQD2TyaSX\nXnpJN998s6qrq/Xwww9rzZo1uvzyyxUUFKS0tDQtWrRIv/zyiyTJx8dHjz/+uO14Nzc3XXDBBVq5\ncqUqKio0Y8YM3X777RowYICqqqq0e/duLV68WCkpKY1et7i4+JReZ1vcd999uuuuu1RVVaU//vGP\nuu666zRmzBgFBgYqJydH69ats8204u/vr+nTp9uODQ4O1pNPPqnHHntMGRkZmjJliu644w6NHDlS\n5eXlWrFihZYtW9bq61944YXy9vZWUVGRVq1apbvvvltTp06Vt7e3kpKSNHfuXB08eFARERE6fPhw\nk+MvvfRSffnll5KkV199VdnZ2YqJiZGXl5fS0tL03XffaeXKlbJarbZj6mdtaq+TvW8kafDgwbr9\n9tv1zjvvKCkpSZMnT9Ydd9yhIUOGKD8/X8uWLdN3330nDw8PlZWVnVCdp+I6OprZbNY///lP3Xvv\nvSorK9OMGTM0bdo0XXDBBTKbzTpw4IA++eQT25Jfffr06fSaAAAAAABAY4R/AAAAAABAlzJq1Ci9\n++67euCBB1RQUKCvv/5aX3/9dZNxoaGheuONNxQeHt5o+xNPPKGkpCQdOXJER44c0dNPP93kWC8v\nLz322GN68sknVVtb22gWoK7iwgsv1N///nfNmjVLFRUV+vDDD/Xhhx82GRcaGqo333xTvr6+jbZP\nmTJFFRUVeuGFF1RQUKCXX3650X6z2axrrrlGc+bMafb1vb29NXPmTN1///2qrq7W6tWrtXr16kZj\npk+frqioKD333HNNjp8wYYKmTZumRYsWqbq6WnPmzGn2taZMmaLCwkKtXr1aaWlpKi8vt81a1B4n\ne99I0gMPPKCamhq9//77SktLa3Lv+Pr66pFHHtFjjz3W7vraqiOuo6NNnDhRs2bN0j/+8Q+VlZVp\n3rx5zc4GFRMTo3/961/y9PTs9JoAAAAAAMBvCP8AAAAAAIAuZ9y4cVq9erUWLFigH3/8UcnJySou\nLpaHh4f69eunCRMm6LrrrpOXl1eTY0NCQvTZZ5/pgw8+0OrVq3X48GHV1NTIy8tLkZGRio2N1bRp\n0xQUFKRly5Zp69atWrduncrKyuTh4WGHq23Z7bffrtjYWC1YsEBbt27V0aNHVVlZKV9fX0VFRWnC\nhAmaOnVqi2GZ6dOn65xzztEHH3yguLg4ZWdny9/fX+eff77uuusu22wtLbnooou0YsUKvf/++4qL\ni1NWVpbMZrOio6M1ffp0nXfeec2GQOo9++yzOuecc7R06VLt3LlTxcXFcnV1VWhoqIYNG6Zrr71W\no0eP1pIlS7R69WpVV1dr5cqVmjRp0gm9Xydz30iSwWDQww8/rIkTJ+qjjz5SfHy8srKyFBAQoPHj\nx+vuu+9Wdnb2CdV2Kq+jM1x++eU6++yzNW/ePK1bt06pqamqrKxUaGioBg8erClTpmj8+PEyGAyn\nrCYAAAAAAFDHYG04tzIAAAAAAABOG99++63uu+8+SdLMmTM1ZcoUO1cEAAAAAACA9jLauwAAAAAA\nAAAAAAAAAAAAJ4bwDwAAAAAAAAAAAAAAANBNmexdAAAAAAAAgKMoLS3V4cOHT/o8ERER8vT07ICK\n0NmqqqqUnJx80ucJCwuTr69vB1QEAAAAAABON4R/AAAAAAAAOkhiYqJuuummkz7P3LlzdfbZZ3dA\nRehsWVlZmjx58kmfZ+bMmZoyZUoHVAQAAAAAAE43LPsFAAAAAAAAAAAAAAAAdFMGq9VqtXcR9pad\nXWzvEvA7fn4eys8vs3cZANDh6G8AHBX9DYAjo8cBcFT0NwCOiv4GwFHR3wAEBZmb3c7MP+iSTCYn\ne5cAAJ2C/gbAUdHfADgyehwAR0V/A+Co6G8AHBX9DUBLCP8AAAAAAAAAAAAAAAAA3RThHwAAAAAA\nAAAAAAAAAKCbIvwDAAAAAAAAAAAAAAAAdFOEfwAAAAAAAAAAAAAAAIBuivAPAAAAAAAAAAAAAAAA\n0E0R/gEAAAAAAAAAAAAAAAC6KcI/AAAAAAAAAAAAAAAAQDdF+AcAAAAAAAAAAAAAAADopjot/GOx\nWPTkk09q2rRpmjFjhg4dOtRo/w8//KCrr75a06ZN0+LFi1s95tChQ7r++us1ffp0PfXUU7JYLLbz\n5OXlaeLEiaqsrJQkFRcX689//rNuvPFGTZs2Tdu2beusSwQAAAAAAAAAAAAAAADsqtPCP6tWrVJV\nVZUWLVqkBx98UC+++KJtX3V1tWbOnKkPPvhAH3/8sRYtWqScnJwWj5k5c6buv/9+ffLJJ7JarVq9\nerUk6aefftKtt96q7Oxs27nnzJmjc845R/PmzdPMmTP17LPPdtYlAgAAAAAAAAAAAAAAAHbVaeGf\nrVu36txzz5UkjRgxQomJibZ9ycnJioiIkI+Pj1xcXDRq1Cht3ry5xWN27typMWPGSJLGjx+vDRs2\n1BVvNGrOnDny9fW1nfuPf/yjrrvuOklSbW2tXF1dO+sSAQAAAAAAAAAAAAAAALsyddaJS0pK5OXl\nZXvu5OSkmpoamUwmlZSUyGw22/Z5enqqpKSkxWOsVqsMBoNtbHFxsSQpJiamyet6e3tLkrKzs/X3\nv/9djz/++HFr9fPzkMnkdGIXik4TFGQ+/iAA6IbobwAcFf0NgCOjxwFwVPQ3AI6K/gbAUdHfADSn\n08I/Xl5eKi0ttT23WCwymUzN7istLZXZbG7xGKPR2GhsfcCnJXv27NHf/vY3Pfzww7YZg1qTn1/W\n5uvCqREUZFZ2drG9ywCADkd/A+Co6G8AHBk9DoCjor8BcFT0NwCOiv4GoKUAYKct+zVy5EitW7dO\nkrR9+3YNGDDAti8qKkqHDh1SQUGBqqqqtGXLFp155pktHjNkyBBt3LhRkrRu3TqNHj26xdfdv3+/\n7rvvPr3yyis677zzOuvyAAAAAAAAAAAAAAAAALvrtJl/Lr74YsXFxem6666T1WrVCy+8oC+//FJl\nZWWaNm2aHn30Ud12222yWq26+uqrFRIS0uwxkvTII4/oiSee0KxZs9S3b19NnDixxdd95ZVXVFVV\npeeff15S3SxDb731VmddJgAAAAAAAAAAAAAAAGA3BqvVarV3EfbG1GhdD1PWAXBU9DcAjor+BsCR\n0eMAOCr6GwBHRX8D4KjobwBO+bJfAAAAAAAAAAAAAAAAADoX4R8AAAAAAAAAAAAAAACgmyL8AwAA\nAAAAAAAAAAAAAHRThH8AAAAAAAAAAAAAAACAborwDwAAAAAAAAAAAAAAANBNEf4BAAAAAAAAAAAA\nAAAAuinCP+hyvtpwUA/8Z60KSyrtXQoAAAAAAAAAAAAAAECXRvgHXY6ri5P2pxboP0t2qLyyxt7l\nAAAAAAAAAAAAAAAAdFmEf9DlXDQqXBPP6a1DmcV66/NE1dRa7F0SAAAAAAAAAAAAAABAl0T4B12O\nwWDQXVOGaVhUgBIP5Omjb3fLarW26dj9+/d1cnWtu+eeOxUbO1oXXjjOrnUAAAAAAAAAAAAAAIDT\nA+EfdElOTkbd9YehigwzKy4hQ5//dKDV8SUlJfrPf/6t22678RRVCAAAAAAAAAAAAAAAYH+Ef9Bl\nubo46b5rhivY111fbjioH7entTh29uxZWrp0oWpra09hhQAAAAAAAAAAAAAAAPZlsncBQGu8PV30\nwLThen7uVn383R75erlqRL/AJuMsFosdqmvq9dfftXcJAAAAAAAAAAAAAADgNMLMP+jyQvw8dN+1\nw+TsZNTbXyQq5WiRvUsCAAAAAAAAAAAAAADoEgj/oFuI6uGjP08equoai/6zJF6Z+WX2LgkAAAAA\nAAAAAAAAAMDuWPYL3caIfoGaMXGg5n67R68uitfjM0ZpycI5mjPnf43GxcaOrhs/YqRef/1dPf/8\n0/rmm6/Ur98AvffeXP3vf2/p22+/UnFxsQICgnTBBRN099332o6vrKzUd999rZ9/jtO+fXtUWFig\nmpoamc3eioyMUkxMrK688iq5u7s3qfGee+7U9u2/ysXFRT/8sKHZuu6992+aOnW61q79QV9++bn2\n7t2j4uIi+fn5a+TI0Zo69XoNGDCoo98+AAAAAAAAAAAAAADggAj/oFs5f0RP5RVV6qsNB/XfpfEK\nqbW26/jnnntSq1d/b3uenp4mNzc32/M9e3brscceVFZWZpNj8/JylZeXq61bN2nZsqWaPfttBQUF\nt/saamsteuaZf2jlym8bbc/KytS3367Q999/o4ceekyTJl3V7nMDAAAAAAAAAAAAAIDTC+EfdDtX\nnRup/OIKxSVkyDl0iN57f57mfPCO4uJ+kiTNmTNfkuTu7tHouJSU/dq/f6+io4drxoxb5Obmpri4\nn3TZZZMkSYWFBXrggb+oqKhQTk5OuuyyKzVuXKz8/AJUXFyoffv2avHiT1RQUKAjRw7r9df/o2ee\neaHd9S9c+LFyc3PVp0+kpk6drqio/iouLtLnX3yu9T/9IIvFoldffVljxoxVaGjoSb5bAAAAAAAA\nAAAAAADAkRH+QbdjMBh08/8NUmFJlRIP5OmXFMls9rbt799/YLPHWSwW9ewZrv/85w25utbN9jNy\n5Gjb/kWLPlFRUaEk6S9/uU9Tp05vdPzYsbG69NIrNGPGVJWUlOinn9aqpqZGJlP7/hrl5uZq1Kgx\n+te/XpWrq6skadu+bJUEXyGf3mUqPPSLqqur9K835+m+u/+k3qHmdp0fAAAAAAAAAAAAAACcPoz2\nLgA4ESYno+6aPFS9Q8xaF39UR7JL2nTcpZdeYQv+/F5OTrYCA4MUEBCgKVOmNjsmKChYZ545SpJU\nVVVpCwu11/33PyRXV1fVWixa8uN+zf40QdW1Fl0/9bfXTdq9W898uFlPz9mkNb8eUVlFzQm9FgAA\nAAAAAAAAAAAAcFzM/HMKLf5hvzbvzrJ3GafUWYOCNfXCfp1ybndXk+6/dpie/3irEre3LfxzxhnR\nLe57/PGnJNXNEGQ0tpyL8/cPsD2uqqpuY7W/CQoKVmRkXxWUVOrtL3Zqb2qBgv3cdffkoQo0G/X2\ny3XjegcVre1KAAAgAElEQVS5aki/QO1IztXH3+/VojX7ddagYI0f3kP9evrIYDC0+7UBAAAAAAAA\nAAAAAIBjIfyDbs3Hy1UPTB2uP61v2yRWISEhxx1TH/ypqalRRka6jh5NU2rqISUn79fOnQlKTt5v\nG2u1Wtpdc2homHYfytfby3eqqLRKowYE6ZbLBsvDzSSr1Wob5+nmpHuvGab84krFJaRrXfxRxSVk\nKC4hQz0CPTV+WJjGDg2V2cOl3TUAAAAAAAAAAAAAAADHQPjnFJp6Yb9OmwXndBYW4KnBvf0Ud6ju\n+YH0IkWGeTc71sPDq9VzVVRUaNmyJVq16lslJ+9XbW1tkzFGo1EWS/tDP/VKKg16eeE2GQ0GXXdh\nP118Vi/bLD4NZ/OpDwL5mV11xbg+umxsb+0+lK918Uf1695sLfxhv5auTdbIAUEaP7yHBvX2k5HZ\ngAAAAAAAAAAAAAAAOK0Q/oFD8Pb8bfab/y6J1+M3jVawr3uTca1lY44eTdPf/naPjhxJtW1zdnZW\nr14R6t07UgMHDtKIEaP03Xdf67PPlpxwrZn5ZYr2ctVdfxiqfuE+bT7OaDBoSB9/Denjr+KyKv2c\nmKG18Ue1KSlLm5KyFOTrpnOH9VDssDD5ermecH0AAAAAAAAAAAAAAKD7IPwDh1NUVq1XF23X4zNG\ntWtJrKef/n+24M9FF03UNddM06BBQ2QyNf5r8sUXn7a7pgPpRbbHXu7OeuqWs+R9Est1mT1cdMmY\nCF18Vi/tTyvUuvij2pyUpWXrUvT5Twc0LCpA40f0UHRffzkZ27YkGgAAAAAAAAAAAAAA6H4I/8Dh\nXHpOhL755bBeW7pDD11/ZpuO2b17l3btSpQkjRw5Wk8//XyLYzMzM9pci9Vq1Y/b0rRg9T7btj6h\n5pMK/jRkMBjUP9xX/cN9df2EAdq4q242oO37c7R9f478zK6KiQ7T+GFhCmxmJiQAAAAAAAAAAAAA\nANC9Ef6BQzA0WM/r6vOilF9cqV92Zurd5TtltVqPe3zDpb4GDhzc4rj09KNKSIi3Pa+trW1xbEVV\njeZ+t0e/7MyUl7tzw2qPW8+J8HAz6YKR4bpgZLgOZRRrbfxR/bIzQ19tOKgVGw5qSKS/xg/voTP7\nB8rkxGxAAAAAAAAAAAAAAAA4AsI/cAguLr/NpFNRXq5bLxuswpIqbduXIx0tauXIOj4+vrbHW7Zs\nVE1NTZPlvnJzc/TEE4+qurratq2qqqrZ81mt0nMfbVF6bpmienjrrslDNWlJe6/qxPUONeum0IGa\ndkE/bd6dpXXxR7XzQJ52HsiT2cNZMUPDdO7wMIUFeJ66ogAAAAAAAAAAAAAAQIcj/AOHEBAQaHv8\n7rtv6P/+73JNHOqi4jIvbdledtzjhw0boYCAQOXm5mjfvr267767NGXKVIWGhqmoqFDbt/+qFSu+\nUEFBQaPjSktLmj1fTa1F6bllumh0uKZe0M9uM+24ujgpdliYYoeFKS2nVD/FH9WGxAx9u+mwvt10\nWAPCfTR+RA+NHhgsF2cnu9QI+7BarcrKL5evl6tcXfjdAwAAAAAAAAAAAEB3RfgHDiE2drw+/PA9\n1dbWaunSRVq6dJFCQkL13oef6pYfjx9scHV11RNPPKtHHnlAlZWVio/fpvj4bU3G9eoVoSuu+IPe\nemu2JOnAgRRFRw+XJFXXWJSZX24be9fkoTprUHAHXeHJ6xnoqesm9NfV50Vp275srd1+VEmH8rX3\nSKHmr9ynsWeEaHi/QPUK9pKPp0ujpdTgOPKKKvTzzgxtSMxQem6ZTE5GDertq+FRgRoWFaAgX3d7\nlwgAAAAAAAAAAAAAaAfCP3AI/fsP1IsvvqKPPvpAycn7ZbHUymQyyd3ZqjP6+Gvtgbpxew4XaFyD\nWYIaGj16jObMma8FC+Zpy5bNysnJklS3JFhkZF9dcMFFmjjxUtXW1mrOnP+poqJCP/ywUpMmXaWc\ngnK99UWiCoorJUkmJ2OXCv405GwyaszgEI0ZHKKsgnL9FH9U6xPS9cOvafrh1zRJkpe7s3oFe6lX\nsJfCg+p+9gj0kLOJGWK6o8qqWv26N1txielKOpgvq+ru0TP7Byq7oEKJKXlKTMnT/JVSj0BPDYsK\n0PCoAEX19LHbrFUAAAAAAAAAAAAAgLYxWK1Wq72LsLfs7GJ7l4DfCQoyd+jvZc/hfL2yaLtMTkY9\nesNIRYSYO+zc8ftz9N5Xu1RaUaNxQ0M1Y+JAuXazJbRqLRbtPJCnlKNFOpJdqtSsYmUXVDQaYzQY\nFBrgofAgz0bBID+zK7MEdUEWq1V7DxdoQ2KGNu/JUmVVrSSpX08fjYsO1ZhBwfJwc5Yk5RZWaEdK\nrnbsz1HSoXxV1VgkSR6uJg3t66/hUYEa2tdfZg8Xu12PI+no/gYAXQX9DYAjo8cBcFT0NwCOiv4G\nwFHR3wAEBTWfdSD8I8I/XVFnfHBt3p2ltz9PlLeni/7fTaMU6HNyyxvVWiz6/KcDWvHzIZmcjLrh\n4v4aP7yHwwRhyitrlJZTqtSsEh3JKlFqdt3PimMhknqebibb7EDhwfWzBHl2uwCUo8jML9OGhAz9\nvDNDOYV1Aa4Ab1eNHRqmmKGhCvH3aPX4qupa7T6cr/jkujBQblHdbFYGSX17etuWB+sV7OUw9/qp\nxhdzAI6K/gbAkdHjADgq+hsAR0V/A+Co6G8ACP+0ggbZ9XTWB9f3m1O1cPU+hQV46LEbR8nL3fmE\nzlNYWqV3vkjU7sMFCvJ1092To9U7tONmE+qqLFarcgsr6sJADQJBWfnlathIDAYpxM/DFgbqFeSl\n8GBPBXi7ERjpBGUVNdq8O1NxiRnaf6RQkuTq7KTRg4IUMzRMAyJ8ZTyB991qtSotp1Q7knMVvz9H\n+9MKVf+J4Wd21fCoAA2LCtTgPn6EvdqBL+YAHBX9DYAjo8cBcFT0NwCOiv4GwFHR3wAQ/mkFDbLr\n6cwProWr9+n7zanqH+6jh64bIWdT+0ILe1ML9NYXiSosqdKZ/QN12+WDbcsnna4qqupmCTqSVaIj\nWXXLhqVml6q8sqbROHdXk3oFeSq8wSxB4YFecnUhONJeFotVOw/mKS4hXdv25ai6xiKDpEG9/RQT\nHapRA4I7/H0tKa9WYkqudiTnKiElV6UVdb9fZ5NRgyL8NCwqQMOjAhToe3Kzajk6vpgDcFT0NwCO\njB4HwFHR3wA4KvobAEdFfwNA+KcVNMiupzM/uCxWq95dvlObkrI0amCQ7vrDUBmNx58VxWq16ttN\nh/XpjymSpGvOj9LEMb2YyaYFVqtVeUWVjWYIOpJdooy8MjXsOgZJQX7u6h/uc1Kz1JwujmSXaENi\n3bJehSVVkqQQfw/FDA3V2DNCFeDjdkrqqLVYlJxWpB3JudqRnKMj2aW2fT0DPeuCQP0CFdXTW05G\n4ympqbvgizkAR0V/A+DI6HEAHBX9DYCjor8BcFT0NwCEf1pBg+x6OvuDq7rGolmLtmtPaoEuGhWu\n6y/q32qIp6yiWu+vSNK2fTny8XLRXX8YqgG9fDutPkdWWV2ro8dmCUo9FghKzSqxzSIT6OOmmOgw\nxQwNZQaZY4rLqvTLrkxtSMjQocy6vxceriaNGRKimKGh6tvD2+4htJzCciUk5yo+OVdJh/JVXWOR\nJHm6mTS0b4CGRQUoum/ACS+150j4Yg7AUdHfADgyehwAR0V/A+Co6G8AHBX9DQDhn1bQILueU/HB\nVVZRrZnzflVaTqmmXtBP/3d2RLPjDmUU683PE5RdUKFBEb760x+GysfTpVNrO91YrFbtSy3Q+h3p\n2rwnS1XVdcGRQRG+iokO0+iBHb+EVVdXU2tR/P5cbUhM147kXNVarDIaDIru66+Y6DAN7xfQ7iXr\nTpXK6lrtPpSv+GOzAuUVVUqSDAYpqqePhkcFaFhUoMKDPO0eWrIHvpgDcFT0NwCOjB4HwFHR3wA4\nKvobAEdFfwNA+KcVNMiu51R9cOUVVej5j7cqv7hSd04aonOGhNr2Wa1WrYs/qvkr96mm1qIrxvXW\n5Ni+bVoiDCeuvLJGW/dka31CuvamFkiSXF2cdNagYMVGh6l/uI/DBkasVqsOZhRrQ0KGNiZlqqS8\nWpLUK9hLMUNDdfYZod0ueGa1WpWWXar45BzFJ+cqOa3Qtuyb0WCQh5tJnu7O8nIzycPNWZ7uJnm6\nOcvT7dhP2/PfHnu4mWRy6r5LifHFHICjor8BcGT0OACOiv4GwFHR3wA4KvobAMI/raBBdj2n8oPr\nSFaJZs7fqqpqi/42bYQG9/ZTZVWtPv5+jzYkZsjTzaTbrxii4f0CT0k9+E1Wfpk2JGYoLiFDuUUV\nkqRgX3fFRIdq3NAwBfi42bnCjpFfXKlfdmYoLjFDR3NKJUneHs4654xQjRsaqoiQ5ht4d1RSXq2E\nlFwlpOQqu6BcZRU1Ki2vVmlFjWotbf84cnVx+i0wdCxA5Nnosel3z+tCQ24uTnYPj/HFHICjor8B\ncGT0OACOiv4GwFHR3wA4KvobAMI/raBBdj2n+oMr6VC+Zi3aLhdno269bLA+X39Aadmligwz667J\nQxXo437KakFTFqtVew7la31ChrbuyVJVjUUGSYP7+CkmOkwjBwTJ1blrLoHVnIqqGh1ML9aB9CLt\nOpSvXQfzZLVKJieDRvQL1LjoMA2N9O/Ws9u0l9VqVWV1rUrLa1RaURcGqgsFVausokYlFdUqLa9R\nWaN9dWMrqmrb/DpORoM83UzyNbsqItisiBAvRYSY1SvYS+6upk68wt/wxRyAo6K/AXBk9DgAjor+\nBsBR0d8AOCr6GwDCP62gQXY99vjg+mVXht5dvsv2/MKRPTXtwv5yNp0+AYzuoLyyRpt3ZykuIV37\njhRKktxdnXTWoBDFRocpqqe33Wd2aajWYlFadqkOpBcp5WiRUtKLdDSnVA07b1QPb42LDtNZg4Ll\n5e5sv2K7qZpai8oqGwSCyhsGhuoe2wJFFdUqKa9RXlGFqmsstnMYJAX7uSsipC4Q1DvErIgQs7w7\nYZk1vpgDcFT0NwCOjB4HwFHR3wA4KvobAEdFfwPQUvjn1ExzAHQD5wwJVXFZtb7deFjXXhClc4aE\n2rskNMPd1aTxw3to/PAeyswrU1xiuuISMrQu/qjWxR9ViL+HYqNDNfaMUPl7n9plwaxWq/KKKpWS\nXqQDR4uUcrRQBzOLVVX9W8jExdmo/j191LeHjyJ7eCuqh/cpr9PRmJyM8vZwkbdH24M6tRaLMnLL\ndDizRIcyi3U4s1iHM0u0eXeWNu/Oso3z9XI5Fggyq/exWYICfdy6VMDseKxWq8ora5RfXKnKaov6\nhJplNHaf+gEAAAAAAAAAAAC0jpl/xMw/XRGpVbSHxWJV0qF8xSWka+vebFXXWGQwSGf08VdMdJjO\n7B8ol05YFqysoloHMoqVcvRY2Ce9SEWlVbb9BoPUM9BTkWHe6tvDW5Fh3uoZ5CknI7NJdUVWq1W5\nhRU6lFlyLAxUrMNZJcovrmw0zsPVZFsurP5nWIBHm3+vHdnfLFarSsqqlV9cqbziChUUVyqvuFL5\nv/tTWf3b0mgjBwTpT5POYFYzAB2O728AHBk9DoCjor8BcFT0NwCOiv4GgJl/ADgso9GgMyL9dUak\nv8oqarRpd6biEtKVeCBPiQfy5O5q0tmDgxUzLEx9w05sWbCaWotSs0psy3cdSC9Sem5ZozF+ZleN\nGhikvsfCPhEhZrm70ma7C4PBoEBfdwX6umvUwCDb9qKyKtvMQPU/9xwu0O7DBbYxziajwoM81Sv4\ntxmCwoO95HoSobNai0WFJVW2AE9dqKeiUainoKRSNbUtZ3i93J0V4ucuX7Or/M2uOpJdql/3Zmv2\nsh2656roTgnFAQAAAAAAAAAAADi1mPlHzPzTFZFaRUdIzy1VXEKGNiSmq6CkbkaesAAPxUSHaewZ\nofIzuzZ7nNVqVXZBuVLqgz5Hi3Qos0Q1tb8t3+Xm4qTIMO9Gs/q0dD44noqqGh3JKm20ZFhaTkmj\nII7BIIX6e6j3sWXD6mcJiozw19H0gkahnqYz9lSosLRKLX1CGwySr5erfL3qQj1+v//j7SY/Lxc5\nmxqHe6qqa/Xm54nakZyrQRG++uvVwwioAegwfH8D4MjocQAcFf0NgKOivwFwVPQ3AC3N/EP4R4R/\nuiI+uNCRLBardh3M0/qEdP26N0c1tXXLgg2NDFBMdKgG9PLV4czGs/qUlFfbjjcaDAoP9lTfHj6K\nDDOrbw8fhfl7yGhs/wxCcFw1tRYdzSltMENQ3bJhFVW1jcZ5uplUWlHT4nlMTobfQj3ebvLzahru\n8fFyOeHl42pqLXpn+U5t3ZOtqB7eun/qcHm6OZ/QuQCgIb6/AXBk9DgAjor+BsBR0d8AOCr6GwDC\nP62gQXY9fHChs5RWVGtTUpbW70jXgfSiZscE+ripbw9v9Q3zVuSx5btOZvkmnL4sx2aRqg8EHcos\nVlFZtTxdTcfCPa7yMzcI+Hi7yuzufEJL07VHrcWiD1bs1s87MxQR7KW/XTdC3h4unfqaABwf398A\nODJ6HABHRX8D4KjobwAcFf0NQEvhH9b6AHBa8XRz1gVn9tQFZ/ZUWk6p4hLSlZFbpl7BXrblu7w9\nCUGgYxgNBoX4eSjEz0NnDQqW1DW+mDsZjbrtisFydXHSj9vS9NL8X/XQdWeydB0AAAAAAAAAAADQ\nDRH+AXDa6hnoqakX9LN3GYBdGA0GzbhkgFxMRn2/OVUvzt+qv193pgJ93e1dGgAAAAAAAAAAAIB2\nMNq7AAAAYB8Gg0HTLuynSTF9lF1QoRc/+VUZeWX2LgsAAAAAAAAAAABAOzDzDwAApzGDwaDJ5/aV\nq7OTlvyYrBfn/6qHpo1QeLCXvUvrEFarVVv2ZOtQRrEsVqssFqtqLQ1+Htv2++cNx1itzR/T+hjZ\nHnu5m3T2kBDFRoepZ5BjvK8AAAAAAAAAAADoOgj/wKHs379P/fr1t3cZzUpPPyofHx95eHjauxQA\naOLSc3rLxdlJ81fu1Uuf/Kq/TRuhyDBve5d1UvKLK/XRt7u1Izn3pM9lMEhORoOMRkPdT0Pd44bP\nXZyNv41psD8zr0zfbUrVd5tSFRlmVmx0mMYMCZGnm3MHXCUAAAAAAAAAAABOd4R/4BBKSkr03ntv\n67PPlmjt2o32LqeRqqoqzZ//kebN+1Dz5i0h/AOgy5owKlyuzk6a802SXl6wTfdfO1wDevnau6x2\ns1qt+mVnpuav3KuyyhoN6eOnK8b2kYuzky2cYzQaZGwU6DE2s61+nEEGg+GE66musSh+f47WJ6Qr\nISVXB9KLtWD1fo0cEKjY6DAN6eMvo/HEzw8AAAAAAAAAAIDTG+EfOITZs2dpxYrl9i6jWZ98Mlfv\nv/+OvcsAgDaJHRYmF2ej/vflLs1avF1/vXqYzujjb++y2qywtEpzv92tbfty5OrspBkTB+r8ET1O\nKrxzspxNRo0eFKzRg4KVX1ypn3dmaP2OdG1KytKmpCz5mV01bmioYqPDFOLvYbc6AQAAAAAAAAAA\n0D0R/oFDsFgs9i6hRbW1tfYuAQDaZczgELmYnPTm5wn675IdunvyUI3oH2jvso5rU1Km5n2/VyXl\n1RrYy1e3XD5Ywb7u9i6rET+zqy47p7cuPTtCKUeLtD4hXZuSMrXi50Na8fMh9Qv3UWx0mM4aFCx3\nV76mAQAAAAAAAAAA4Pj4VyUAANDEiP6Buu/a4Zr96Q698VmC7rhyiMYMDrF3Wc0qLqvSvO/3avPu\nLLmYjLr+ov6aMCpcRjvO9nM8BoNBUT19FNXTR9dN6K9f92YrLiFdSQfztf9IoT5ZtVejBwYrNjpM\nAyJ8u/S1AAAAAAAAAAAAwL4I/wAAgGad0cdff5s6Qv9dGq93lu9UVbVFscPC7F1WI7/uzdbcb3er\nqKxa/Xr66NbLByu0my2d5erspLFnhGrsGaHKKSzXhsQMxSWka0NihjYkZijQx02x0WEaNzRUgV1s\nJiMAAAAAAAAAAADYn8FqtVrtXYS9ZWcX27sE/E5QkLlNv5f3339Hc+b8r9l9I0aM1Ouvv9to28aN\nP+vrr5crMTFB+fl5cnFxVXh4L40dG6Orr54mX1/fFl8rOztLy5Yt0caNPys19bBqaqrl7e2jqKj+\niok5V1dcMUmurm628V9//aVeeOGZZs8VGhqmpUu/PO71AXA8be1vXcmB9CLNWrRdpRU1uvGSAbpw\nZLi9S1JpRbU+WblXP+/MlMnJqCnj++qSs3rJaHSMGXIsVqv2pRZo/Y50bd6TparquuUtB/f2U2x0\nmEYODJKrs5OdqwQa6479DQDaih4HwFHR3wA4KvobAEdFfwMQFGRudjsz/+C0UF5erueee1Lr1q1p\ntL2qqkq7d+/S7t27tHjxJ3riiecUGzu+yfFbt27W448/pNLS0kbbc3NzlJubo02bftaCBR9r1qzX\nFRHRu1OvBQBOtcgwbz0yfaT+vWi75n2/V5XVtbr0bPv1uh3JOZrzzW4VllQpMsys2y4foh6Bnnar\npzMYDQYNjPDTwAg/Tb94gLbsyVLcjnQlHcpX0qF8ua900lmDQhQbHaaont4ysCxYl1FWUaP03FLV\nWqyyWKyqtR77abHKeuynxWr9bf+x57bHlt89/v3YY+e0/u55/X53V5PGDgnRoN5+3BcAAAAAAAAA\nAJwmmPlHzPzTFbU1tZqbm6O8vFy9997biov7SZI0Z858SZK7u4fCw3vJYrHogQf+oq1bN0uSxo07\nVxMnXqawsDCVlZVp69bN+uyzJSopKZGTk5NeeWW2Ro8eY3uN4uJiTZs2WUVFhfL19dMNN9yswYOH\nyMXFRZmZGVqxYrl++WWDJGngwMF67725MhgMKioqVGZmhj7//FN98cUySdLLL/9HgYFBMpmcFRnZ\nt0PfMwDdQ3dO5WfklenlBduUX1ypSTF99IfYyFMaLiirqNHCH/Zp/Y50ORkN+kNspC49J0JORuMp\nq8HeMvPLFJeQrriEDOUXV0qSQv09FBMdqnFDw+RndrVzhae3hJRcvffVLhWXVdu7FIX4e+i84T0U\nOyxMXu7Op+Q1u3N/A4DjoccBcFT0NwCOiv4GwFHR3wAw8w8cUkBAoAICAuXt7WPb1r//wEZjli5d\naAv+PPTQY5o8+epG+0ePHqMrrviD7r77NuXm5uqFF57R4sVfyGSq++uxfv1aFRUVSpJeeOFlDRs2\nwnbskCFDdcEFF+mJJx7VmjWrtGdPkvbs2a1BgwbL29tH3t4+8vcPsI3v06evwsJ6dOybAACnSKi/\nhx67YaReXrhNy+MOqrK6VlMv6HdKAkA7D+RpzjdJyiuqVESIl26/fIjCg706/XW7mhA/D00ZH6XJ\nsX2VdChf6xPStXVPtj5dm6Jl61I0NDJAscPCNKJfoJxNp08oyt5qai1ati5F3248LJOTQReO7CkP\nN5OMBoOMRoOcjMd+/u55k/0NtjfZ1sL2+nPW/8nILdPa7WnavDtbi9fs17J1KRo9KEjnj+ip/uE+\nzAYEAAAAAAAAAIADIvwDh2axWLRwYd1MQOecM65J8Kdez57h+vOf/6rnn39aWVmZWrv2B02YcImk\nutmF6vXqFdHs8TfddIt8fHzVo0dPmc3NJ+0AwBEE+rrr0RtG6d8Lt+m7TamqrLboxksGyNhJgYLy\nyhotWbNfP24/KiejQZNi+uiKcX1kcjq9gy1Go0FnRPrrjEh/lVVUa2NSltbvSFdCSq4SUnLl6WbS\n2UNCNHbo/2fvvsPbSsw7339RiEKAABvYKYpNlZKoNmrWqEyzp9gTj+1xyTqbjLP27k327q43G+8m\ncXyf+PE6m/huNrlerx+v42ziJJ54XGY843GmqI7ajCRSIiWRYhN7A0gARG/n/gEQJFU4kkYkwcP3\n8zwUwHNwwEMSeM8h8NP7llDpsGLI0i31LqvWuDvId1+5QveQl+I8M1/6WANVJUt3LmDLNrCmMpfP\nPBrlVMswx5qHOHtllLNXRikrtHCgsYx9DSVkmxanG5AQQgghhBBCCCGEEEIIIRaehH8W0U87X6Vp\nrGWpd2NRbS3axMfrnl6yr9/V1cHY2CgAO3fumve2u3fvTV8/f/69dPinqmp1evl/+S+/x7/9t/+B\n9es3ztm2vn4t//E/fuUB7bUQQmS2vBwjv/+5bfy/P2rmWNMg4Uic33pq3QMfv9XWO8lf//IaTk+I\ncoeFLzy1YUlDFZkq25TFoa3lHNpazuC4j1MtI5y+MsKRi4McuTgIQK7VQFGuGUeeedZlNkV55kUb\nCaVG59vG+MHrbQTDMfZsLObXH1+L2ZgZp9dWcxZPPLSKx3dW0t7n5ljzIBfax/nHtzr4ybEudq4v\n4uDWcmpKbdINSAghhBBCCCGEEEIIIYRY5jLj3QkhFsj16+3p63/1V/+dv/qr/35X2w0NDaav79nz\nIWpr6+nq6qCl5RK//du/QWGhg507d7Fjx0Ps3LlrzmgvIYRYCWzZBn7vs1v57/90iTNXRojG4vyr\nj258IB15wtE4Lx3r4u0LA2g08NSeKj66r1rGWN2FcoeVTx2u47mDNbR0T3C508noZJCxySAdgx6u\nD3hu2SbbqE+HgoryzDhyZ67n5hgXrKvTchaJxvnRkU6ONQ1iyNLyW0+uZ9+mkowM0Wg0GtZV5bGu\nKg+vP8I7LcMcbx7kVMsIp1pGqCyycnBrObs3FGdMcEkIIYQQQgghhBBCCCGEEPdGXuFfRB+ve3pJ\nu+CsRB6P+762m5rypq/r9Xq+9a2/5Jvf/BPOnj0NgNM5zuuvv8rrr7+KRqNh/fqNfPjDT/HMM8+S\nlSUdFIQQK4PFlMWXn2/kL1+6zPn2cSI/beHfPNvwgUZMdQy4+f5r1xibDFJakM0LT22gpsz2APd6\nZdBptTTWFdJYV5heFosncHpCjE0GGXcHZy7dQQbH/fSOTN1yP3qdFkeuaU4gaDogVGg3r8hA1rDL\nz+SlUIIAACAASURBVHd+foWBcR8VDgtf+lgDZYWWpd6tu2KzGHhydxUf3rWKqzcmON40RFOHk7/7\n53b+6UgnuzcWc7CxXDpsCSGEEEIIIYQQQgghhBDLjIR/hKrF4/H09S9/+Ss0NGy6q+2MRuOczwsL\nHfz5n/8l3d2dHD36NmfOnOL69TYSiQSKonD1aitXr7by8ss/5X/8j++Qm5v7QL8PIYTIVGajnn/3\nqS18+2ctXO5y8Rc/vsS//cRmTIZ7O8WIxuL87EQP//xuHwBPPFTJr+2v+UBBIjGXXqelJD+bkvzs\nW9YlFAX3VDgdChpzzw0IDbsCt2yjAfJtxmQwaLpjUF52cqxYrplsk7pOMxVF4VTLCD98s51INMGh\nreU8f7huWT5GtRoNDdUFNFQXMDkV5p3LQ5y4NMTx5uTH6pIcDm4tZ9f6YoyG5ff9CSGEEEIIIYQQ\nQgghhBArjbrelRHiJjk5M90iLBYr9fVrP9D91dTUUVNTxwsvfBGv10tT03nOnj3N0aNv4fP56Orq\n4Dvf+Uv+83/+6gfddSGEWDaMWTp+9+Ob+e4rV7h4fZxvvdjMv//kFrJNd9cJrXvIy/dfu8qwK0BR\nnpkXnlpPfYWEKBeTVqMh32Yi32Zi7aq8W9b7gtG5waBZAaG2Pjdtfbd22svJzmLPxhI+smsVdqvx\nlvXLSTAc44dvtHPmyihmo55/8+wGdqwrWurdeiDycow8s6+ap/aspqXbxfHmIS51Ofmb19t48UgH\nezaWcLCxnIoi61LvqhBCCCGEEEIIIYQQQggh7kDCP0LVampq09evXm3h8cc/fMfbTk5O8rOf/ZjS\n0jLq6tZQX78GgGg0Sn9/H5FIhHXr1qdvb7PZOHDgMAcOHOY3fuMF/uW//Cw+3xSnT7+zcN+QEEJk\nqCy9ln/97Ea+/9o1zl4Z5b/9YxNffr6RnGzDHbeJxhK8cqqHX57tRVHg0e0VPHegVjqNZCCrOQur\nOYvq0ltHsEWiccY9oWQgaDLAWGqUWN+ojzfe6+dY0yAHt5bzkd1V2C13fjxkqt6RKf7Xy62MTgap\nKbPxxY9uxJFrXurdeuC0Wg1b6grZUlfIhDfEiUvJbkBHLg5y5OIgdeV2DjSWsXNd0bLsdiSEEEII\nIYQQQgghhBBCqJmEf4QqaDSa2y5fv34jNpsdr9fDm2/+ii984V9jtd7+f67/5Ccv8jd/878BeOGF\nL6bDP7/+659kcHCA4uISfvKTV2+7bUlJKdXVNbS0XCISCc9Zp9Vq7/fbEkKIZUWn1fKFpzdgzNJx\nvHmIP/2HJv7jpxvJvU3Xl96RKb7/2lUGxv0U2k381pPrWVd1a8cZkfkMWTrKCy2UF1rmLI/GErzT\nMsyrp28kQ0DNgxzeWsGHd63CtgxCQIqi8PaFAf7paCexuMKHd63i4w/XoNep/7iebzPx7P4antm3\nmkudLo41D3Kle4LOQQ8/eruDvQ2lHNxaRmmB5f3vTAghhBBCCCGEEEIIIYQQC079716IFcFgmHkT\nMRAIpK9nZWXx3HOfAsDj8fAnf/JHRCKRW7a/fLmZf/iHvwPAaDTyzDO/ll63d+9+AEZHR/jRj354\n26/f23uD69fbAFi3buOcdVlZM2NvgsEAQgihZlqNhs8/sZbHdlQy5PTzzR9exOkJptfH4glefqeH\nr//teQbG/RzcWs7/81sPSfBHhbL0Wg5tLeebX9zDrz++Bospi1+928d/+l+n+fHRTqYCtx6PM4Uv\nGOX/+2kL//BWByaDnn/3yS186lDdigj+zKbTatm2xsF/+FQj3/zSHp7aU4VOp+XN8/38wffO8ad/\nf5FzV0eJxhJLvatCCCGEEEIIIYQQQgghxIqm+9rXvva1pd6JpRbI4DefViqLxXhPv5f29jaami4A\nyYBNbm4eExMuCgoK2bhxE2fPnsblctLf38exY2+j0+mIxeJ0d3fx85//hL/4iz9Ld+z5nd/59+zc\n+VD6vmtqannttVeIRCK89945uro6AA2BQICenm7eeuuf+fM//wZ+vx+tVstXvvKHlJaWpbcfHBzg\n5MljQDKAVFxcwujoKEVFxR/8ByWEWHbutb4tRxqNhobqfBIKNHU4uXB9nC21hbinwvzFS5d499oY\nuVYj/9evbeKxHZVk6VdWoGKl0Wk1VJfaOLytHLvFyI1hL609Exy9OEgoEqeyyIoxg8ZIdQ54+NaL\nTXQPT7FuVS5f/vRWVpfkLPVuLTmLKYsNq/N5dEcFFUVW/MEobX1uLrSPc6xpkKlglIriHDLnNymE\nEA/WSjiHE0KsTFLfhBBqJfVNCKFWUt+EEBbLrRM3ADSKoiiLvC8ZZ3x8aql3QdzE4ci5p99LR0c7\nX/jC54nH4+lls8d0eTxuvvrV/8yFC+/d8T50Oh0vvPBFPv/537pl3YUL7/EHf/Cf8PnuvE8mk4kv\nf/krfOQjT89Z7nQ6+cxnPj6n649er+fNN0/O6QokhFgZ7rW+LXevnbnBT453YzVnEQzHiCcUPrS5\nlE8frifbJNNHV6JoLM7x5iFeO9uLxxfBaNDx6PYKnnhoFVbz0h0XE4rC62d7+dmJHhQUPravmqf3\nrkarvf1oUQGjEwGONw/xTsswvmAUjQYObS3nuQO1mI3y/BZCqMtKO4cTQqwcUt+EEGol9U0IoVZS\n34QQDsft/8OydP5BOv9kontNrRYUFLJu3XqGh4eYmppCp9NitebwzDPPotfrMZlMfOQjT7NmzToS\niQSBQIBoNIpOp6esrJxDhx7hK1/5KocOPXLb+y8rK+fJJ5/BZDITjUYJhULE4zFycmxUVVXz5JPP\n8Ad/8DUaG7fdsm12djbbt+9M7Zsnvb/79x/AZrPf3w9ICLFsrbRU/prKXCwmPReuj2OzGPjSRzfy\nkV1V0u1nBdNptdSU2Tm8tZycbAM9w15auic42jRIOBqnsigHwyJ3AvL4I/zPn7Zw/NIwdquB//sT\nm9m3qRSNRoI/87Gas9hYnewGVFZgYcwd5FKni3NXRykvtFCUZ17qXRRCVXpHpnjl1A3OXBnB44+g\n12nIyTZIrVokK+0cTgixckh9E0KoldQ3IYRaSX0TQkjnn3lIOjLzSGpVCKFWK7W+DY77yMsxSbcf\ncYtINM6xpkF+ea4Prz+C2ajj0e2VPP5QJRbTwncCunJjgu/94ipef4TNtQW88NR6crINC/511Sg3\nL5u/frmFX57pI6FMd/mqI3sRfo9CqFU0luB8+xhHLg7QNei9Zb3ZqKe+wp76yKW61CYB2wWyUs/h\nhBDqJ/VNCKFWUt+EEGol9U0IcafOPxL+QcI/mUgOXEIItZL6JsTthaNxjl4c5FfnevEGopiNOh7b\nUcnjOysXJDwSTyT4+ckefnmmF61WwycO1vL4zkrpoPEBTNe33pEpfvDLa/SN+bBbDXz+ibVsrXcs\n9e4JsaxMeEMcax7kRPMQ3kAUDbCptoDD28opysumo9/N9QE3Hf0extzB9HZ6nZaa0hzqK3Opr8il\nrtwuwdsHRM7hhBBqJfVNCKFWUt+EEGol9U0IIeGfeUiBzDxy4BJCqJXUNyHmF47EOdo0yOvnepkK\nRDEb9Ty+s5LHdlQ+sDewXZ4Q3/3FFToHPDhyTXzpYw1Ul9oeyH2vZLPrWyye4PVzffziVA+xuMKu\nDcV89tF66aokxDwURaGtd5IjFwdp6nCSUBQsJj0f2lzKoa3J0M/tuH1hOgY8XO9309Hvpn/Mx/Qf\n+RoNVDqs1FfmsqYyl/oKO7nW27cFFvOTczghhFpJfRNCqJXUNyGEWkl9E0JI+GceUiAzjxy4hBBq\nJfVNiLsTisQ4enGQ18/14QtGyTbqefyhZAjIbLz/EFDT9XH++pfX8IdiPLS+iM8/sU66Yjwgt6tv\ng04/P/jlNbqHvORkZ/G5x9awc12RdFgSYpZgOMbp1hGOXBxg2BUAYFWxlUe2VfDQhmKMWbp7ur9A\nKEbXUCoMNOChe8hLLJ5Iry/KNVNfaWdNRTIQVJRnlufkXZBzOCGEWkl9E0KoldQ3IYRaSX0TQkj4\nZx5SIDOPHLiEEGol9U2IexOKxHj7wgC/OteHPxTDYtLz+EOreHR7xT2FgKKxBP90tJO3LwyQpdfy\n2UfreXhLmbzh/QDdqb4lEgpvnu/npye6icYSbK0v5F88sVa6jywTiqIwFYji8oaY8IZweUK4vGFc\n3hDRWILdG4rZsa6ILL12qXd12Rl0+jlycYDTrSOEI3F0Wg071xdxeFsFtWW2B1aforEEN0a86TBQ\nx4CHYDiWXm+zGKivmAkDVRRZ0Gnl93kzOYcTQqiV1DchhFpJfRNCqJXUNyGEhH/mIQUy88iBSwih\nVlLfhLg/wXAyBPTP786EgJ54aBWP3EUIaHQiwHdebqVv1EdZoYUvfWwjFQ7rIu35yvF+9W10MsDf\n/LKN9n432UY9n3m0nr0NJRLAWmKxeIKJqTAuz+xwT/K60xtmIhXymY8tO4sDjeUc3FpOXo6EuuYT\niydo7nBy5OIAbX1uAPJyjBzcWs7DW8qwWxZ+NF5CURgc96fCQG6u97tx+yLp9SaDjtpyO2sq7Kyp\nzKW61IbhHrsPqZGcwwkh1ErqmxBCraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CfDDBcIy3Lgzw\nRioEZDVn8cRDlTyyvQKT4dYQ0JkrI/ztP7cTjsTZv7mUzz625p5H6Ii7czf1LaEoHG8a5J+OdRGO\nxGmoyec3nlhHgd20SHu5siiKQjAcw+kJMZHq1jO3g08Ijy/Cnf4gtJqzKLCbKLCZyLcZKbSZyLeZ\n0stC0TjHLg5y4tIQgXAMnVbD9rUOHt1eSW35g+tcowYeX5jjl4Y41jSYDtqsr8rj8LYKGusLlrTT\njqIoOD2hdBioY8CTHj8GoNNqWF2aw5qKXNZX5bF+dd6K7Awk53BCCLWS+iaEUCupb0IItZL6JoSQ\n8M88pEBmHjlwCSHUSuqbEA9GIBTjrQv9vPFuP4FwMgT0kV2rOLytAqNBRzgS5+/fvM47LcOYDDo+\n/+G17N5QstS7rWr3Ut+cniB/+6t2WnsmMBp0fOpQHQcay9BKWOSeJBQF91Qq1JMK87hS3Xqml4Ui\n8dtuq9NqyMsxUpAK8+TbTBTakyGfglTI526DcuFInDNXR3j7wgCD434AqkpyeHR7BQ+tLyJLvzID\nd4qi0DHg4cjFAS60jxNPKJgMOvY1lHJoWzllhZal3sU78gYidPR7UmEgN70jPhKplw5yrQb2bSpl\n/+ZSivKyl3hPF4+cwwkh1ErqmxBCraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CPFiBUJQ3zw/w\nxnv9BMMxcrKzeGRbBeeujTLsClBVksOXPraR4hX0BvVSudf6pigKp1pG+NHbHQTCMdatyuVffmTd\nigoT3I9EQqFjwM35tnHOXx/DM2tc02xmo56C6SCP3XRL1x67xYBW+2DDVoqi0N7n5q0LAzR1jKMo\nye5BBxrLOLS1nHzbyujwFI7EOXt1hCMXB+kf8wFQVmjhkW3l7N5Y8r6jCjNRKBKja8jLxevjnL0y\nSjAcA2Ddqlz2bylj+xqH6keDyTmcEEKtpL4JIdRK6psQQq2kvgkhJPwzDymQmUcOXEIItZL6JsTC\nCISivPFeP2+e7ycYTnY6eWxHJZ84WEuWfuWNp1kK91vfJqfC/PCNdpo6nBj0Wj7+cA2P7qh84MGU\n5SyeSHC9z8359nEuXB/H608GfiwmPetX5+PITQZ6pj/ybSayTUsbMHF6ghxtGuRE8xD+UAytRsO2\ntQ4e3V5BfYVdlSPBRicCHG0a5OTlYYLh1Pe8ppDD2ypYuypXNd9zOBrnYvs4Jy4N0d7vBiDbqGf3\nxmIe3lLGquLbv/iw3Mk5nBBCraS+CSHUSuqbEEKtpL4JIST8Mw8pkJlHDlxCCLWS+ibEwvKHopxo\nHqKiyMqmmoKl3p0V5YPUN0VReK9tjB++cR1fMEptmY3ffHJ9Ro9FWmixeIL2Pjfn28e4eH2cqUAU\nSHbS2bbGwY51DtatykOvy+xwWyQa5+zVUd6+MJDugrOqyMoj2yvYtaF42XeLSSQULne5OHJxgNae\nCQBsFgMHtpRxoLFM9d2ORicCnLw8zKmWYTypUFpVcQ4Pbyll14Zisk1ZS7yHD46cwwkh1ErqmxBC\nraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CCLV6EPXNG4jwD29e591rY+h1Gj66r5oP71qV8QGX\nByUWT3Ctd5L32sZouj6OP5QcrWTLzmLb2iJ2rnWwZlUuOu3y+3koikLHgIe3zvdz8bqThKJgNWex\nf0sph7dWUGBfXiGZqUCEk5eHOdY0iNMTAqCuws4j2yrYvtaxYh6z0+KJBJe7XJy8NMzlLhcJRSFL\nr2XH2iIe3lLKmsrl3/lIzuGEEGol9U0IoVZS34QQaiX1TQgh4Z95SIHMPHLgEkKoldQ3IYRaPcj6\n1nR9nL99ox2PL8KqYiu/9eR61Y4SisYSXLkxwYW2MZo6nATCycCP3Wpgx5oidqxzUF+Rq6oxaBPe\nEEebBjnePIQvGEWjgW31Dh7ZnpnjsRKKgtMTYmjcz6DTR9+oj6YOJ7F4AkOWlt0bSji8rVy1j9F7\n5faFOdUyzMnLw4xNBgEozjPzoc2l7NtUSq7VuMR7eH/kHE4IoVZS34QQaiX1TQihVlLfhBAS/pmH\nFMjMIwcuIYRaSX0TQqjVg65v/lCUF9/u5J2WYXRaDU/uruLpvavJ0i//jiqRaJwrPROcbx+judNJ\nMBwHIC/HyPa1DnasLaKuwo42w0IwD1o0Fufc1THeutBP32hyJFiFw8Ij2yvYvbEE4yKPBEsoCi5P\niEGnnyGnn8Hx5OWwy08klphz26I8M4e3lrNvcykWFY22epAUReF6v5sTl4Y43z5ONJZAq9GwubaA\n/VtK2VxbsKy6WMk5nBBCraS+CSHUSuqbEEKtpL4JIST8Mw8pkJlHDlxCCLWS+iaEUKuFqm+t3S7+\nz6/acHnDlBVa+M0n11FbZn/gX2ehhaNxWrpcnG8f41KXi3AkGfgpsJnYsS4Z+Kkus6k+8HM7iqLQ\nOejh7QsDXGgfJ55QsJj07N9cxuFt5RTmmh/o10soChOzQz6pj2GXn0h0bshHr9NSWpBNeaGFskJL\n+tKRZ16Rv6v7FQhFOXd1lBOXhukdTdYJu9XAvoZS9m8ppTgve4n38P3JOZwQQq2kvgkh1ErqmxBC\nraS+CSEk/DMPKZCZRw5cQgi1kvomhFCrhaxvwXCMl453cfTiIBoNPLFzFc/ur8awyJ1h7lUoEuNy\nl4vz7eNc7nKmgyWFdhM71xWxY10Rq0tyMm7M1VKanAqnRoINMhVIjgRrrCvkke0VrK/Ku6eflaIo\nuLyhdMBnKP0RIByNz7mtXqehJN9CueOmkE+uaVl1p1kOekemOHl5iDNXRgmmxtytrczl4S1lbF/r\nyNjntZzDCSHUSuqbEEKtpL4JIdRK6psQQsI/85ACmXnkwCWEUCupb0IItVqM+tbeN8kPXm9jbDJI\ncZ6Z33xyPWsqcxf0a96rYDjGpS4nF9rGael2pcdFFeWZk4GftUWsKrZK4Od9RGMJ3msb5a3zA9wY\nST6uygqTI8H2bizBaJgJiCiKwoQ3zJBrZlTXoNPPkMuf7rA0LRnyyZ4T8CkrtFCUZ5aQzyKLRONc\nuD7OyUtDtPW5ATAb9ezeWMzDm8uoKrn9ixhLRc7hhBBqJfVNiIUzMObjxaOddA542L2xmKf2VFFo\nf7BdLcWdSX0TQqiV1DchhIR/5iEFMvPIgUsIoVZS34QQarVY9S0cjfPzk9288V4/igKHt5Xz3IFa\nzEb9gn/tOwmEYlzqdPJe2xitPRPE4snAT2lBNjvWJjv8VDgsEvi5D4qi0D3k5e0LA7zXNkY8oaQD\nItFYIt3NJ3RTyEen1VBSkE1ZwUzIp9whIZ9MNToZ4J3Lw7zTMozHFwFgVbGV/ZvL2L2xGIspa4n3\ncPHP4abH0w1PBCjNz37g4+8yXUJRmApEsZj06HXqes4mFAWPL4LLG8LlCeHyhnB6Zq5PToUwZOnI\nsxrJyzGSm2Mk12qc83me1YjZqJPjingg5G9UIR48jz/Cz092c+LSEIoCVnMWvmAUnVbDvk2lPL2n\nasUd25eC1DchhFpJfRNCSPhnHlIgM48cuIQQaiX1TQihVotd37qGPPzgl20MOf0U2EysW5WLAigK\nKCigJN9gBUikViTXJQMlipK6TN1fIrVyell6/extUpfMWpZIwMC4j3gieU/lDksy8LPWQbnDumg/\nj5XA7QtzrGmQY81DeP3JgIhOq6F4Vief8lmdfNQWGFgJ4okELd0TnLw0xKVOFwlFIUuvZftaB/s2\nlVJZZCXHnLUkgYeFqnG3jKcbT14Ou2bG0+m0Gg5vq+CZfauxmpc+CLXQrt2Y4MWjnfSN+gCwmPTk\nWo3YLAbsVgN2iwG7xYjdYsCW+jzXasRi0mdEGCYWTzAxFU6GeVKBntmXE1MhYvHbvxRnNurJtxmJ\nRONMTkXSYdLbMWbpyLUa5gSCbr60Ww1SC8X7WsxzOEVR6B/zcanTSXOni3g8wYbqfDZV51NXkUuW\nXh6vYnmLROO8eb6fV8/0Eo7EKSu08PzhOjaszuPdq2O8cvoGoxOBVAiohKf2rMYhIaAFI6/BCSHU\nSuqbEELCP/OQApl55MAlhFArqW9CCLVaivoWjSX4xekbvH62Nx2+WSia1D/a1BvLGo0GjSa5vDg/\nmx1rHexYV0RpgWVB90Mk31jvGPBgsxgolpCPanl8YU61jnDy0hCjk8H0cqNBh8NuxpFrwpFrptCe\nvJy+bsjSzXOv9++D1rjp8XSDzunRdL5k5ypXYN7xdEV5Zs5dHWXcHcJi0vPM3tUc3l6hysf94LiP\nHx/r4nKXC4CNq/NIKMnuCR5fGH8oNu/2Oq0mGRCa/rAasKVCQrnWZGBoOixk/ACPk3A0fttQjzN1\n3T0V5k5HJJvFQIHNRIHdRGHqsmDWZbZppoudoij4QzEmp8K4feHk5VSYyVnX3b4w3kD0jvuqAXIs\nhpmuQVZDOhiUDg3lGMk2ZkZwSiyNhT6Hi8UTtPVNcqnDRXPnOC5vGEg+ZzUaTTrkZszSsb4qj4aa\nfBpqCiiSQIRYRhRF4dy1UX5yrAuXN0xOdhbP7q/h4S2lc7pOJhLJ2/3i1A1GUiGgPQ0lPL13tTzm\nF4C8BieEUCupb0IICf/MQwpk5pEDlxBCraS+CSHUainrmy8YJRiOpcI4qVDOrHAOs67PLJ++XfJ6\nMtgDzF6u0aS3EUIsDUVRuN7vpqnDybg7mPzwhG4JzEyzWw3pcFCh3ZwKBiUDQrlWI1rt/T2f77bG\nKYrC5FQy5DM47p/p6OPy37LP0+Pp0qPpZnWumv1GYTSW4O0LA7x6+gaBcIyiXDOfOFjL9rUOVdQn\nty/Mz0/2cPJycjTKulW5fPJQHdWltjm3i8YSTAUiuH0RPP4wHn8Ery+SDAf5U8tSn0djd+6YA2Ay\n6GaFhIyzwkLJkJDFpMfjj8wN96QufcHbh220Gg15OcY5gZ7CWdfzc4wLEk6LxRO4fWHcU5FbgkGT\nqbCQeypMZJ6fiUGvJTfVMSjfZqTQnnz+FNiS30O+zSQdWVRsIc7hfMEoLV0umjqdtHa70uM5s416\nNtUW0FhXyKaafHQ6Ldf73bR0u2jtnmBkIpC+j+I8Mw01BWyqyWftqrwPFNoTYiF1DLj50dud9Ax7\n0es0PLazkqd2r54T6LxZIqHw7rVRfnH6BsOuAFqNhr0NJTy9t4qivOxF3Ht1k9fghBBqJfVNCCHh\nn3lIgcw8cuASQqiV1DchhFpJfRNCLBZFUZgKRnG6Q4y7gzg9qVBQ6vMJbzg99m82vU5DgS3VMWg6\nFDQrIJRtuvNIrZtr3HTIZzrcM+j0M5wK+QTDtwn5zBpPV1Zoodxxa8jn/fiCUV55p4ejTYPEEwr1\nFXaeP1xPTZnt/TfOQKFIjF+d6+Of3+0nHI1TWpDNJw/VsaW24AOFmhRFIRiO4/GH8U4Hg3wR3P7w\nTWGhCFP+yB279NwsS68l32ai0HZzwCcZksnNMdzT73MxKYpCIHy7LkKR5OV0F6F5fh65VkP6+y20\n39q9aKG6bomF96DO4UYnAjR1OGnudNIx4Ga6DDtyTTTWOWisL6S+wj5v57Jxd5DWnglau11c7Z1M\nhyb1Oi1rK+001BTQUFNAWUG2KsKPYnkbcwd56VgX59vGAHhofRHPHai9pzFeiYTCe21jvHKqJx0C\n2tNQzNN7V1MsIaAPTP5GFUKoldQ3IYSEf+YhBTLzyIFLCKFWUt+EEGol9U0IkSniiQQT3nAqGBSa\n6RjkDuH0BJm6w5ikbKM+FQxKjRJLjRTLs5lIaLVc6xxnyJXq5OMMEAzPHUOl02oonhXymd3J50GO\n6RqZCPDSsS4uXh8HYNeGYp47UEOhfXmMC4knErxzeZifn+zB449gsxh49kPV7L9pNMpi7YsvEMXj\nn+ko5PVH8AdjyRFds0I+tuws1YcNYvEE7qlweoSZ05N8zkyPNbtTsA6SI80KZ3U7SgaEZoJC0rUl\nc93vOVwiodA56KG500lzhzPdtUcD1JTbaKwrpLHecd9BnVg8QeeAJx0G6hvzpdfl24w0VCe7Aq2v\nyp+3w4pYPAlFwReIMjkVZmIqlOw+NhVmwjtzvcBuYs/GEratcWA2Ls/fWyAU49UzN3jrfD+xuEJN\nmY1PP1JPXbn9vu8zkVA43z7GK6duMOT0o9Vo2L2xmGf2rqY4X0JA90v+RhVCqJXUNyGEhH/mIQUy\n88iBSwihVlLfhBBqJfVNCLFcBMMxXLNDQZ5QOijkdAfnHY8EyZBPUZ55VhcfK2WFFoofcMjn/bT3\nTfKjI530jkyh12l5bGfF+44ZWUqKonC5y8WPj3Ux5PRjyNLy4YdW8cRDq5btG8ArTTyRwD0V8r3i\ntgAAIABJREFUSQWDUs8ZT3Ic2vSItHji9i8z5mRnzQoGmWfGoqWWyWNg6dzLOVwwHONKzwTNnU4u\nd7nSY/AMWVo2rs6nsa6QzXWF2C2GB76fbl+YKz0TtHS7uNIzgT+UDGBqNRrqym2pEWEFVBZb0ao8\nqLcUEoqC1x9JhXnCTM4O96QCPm5fmFj8zm81WM1ZM48ZvZZtaxzsbShh/eq8jO2cNls8keB48xA/\nP9mDLxilwGbkEwfreGh90QMLhyYUhfNtY/zi1A0GnX40Gti9oYRn9q2mREJA90z+RhWLYWQiQHOH\nE0VR2L2xhLwc41LvklgBpL4JIST8Mw8pkJlHDlxCCLWS+iaEUCupb0IINVBSb26Ou0OMp8aJTXjD\nlBXlkJutp7zQQnF+9qKGfOaTUBTOXRnlJye6mPCGsZqzeHZ/NQ9vKcuYfQToHZnixSMdtPW50Whg\n/+ZSPvahGnlzRGUSCQW3Lzyra9B0MCiY7iZ0p2CA1ZxFrtWAyaDHaNBhytJhMugwpj5MBj2mrOnr\nqXVZqeXTt0utl+DHvXm/c7gJbyjZ3afTSVvvZPp3aLcakt196gpZX5W3qKPfEgmFnhEvrd3JrkDd\nw970mDFbdhYbU12BNlTnY8t+8EEktUkkFDz+SLpDz8TUTLhnYirMpDc5GvBO4T4NycdDXo6J/Bwj\neTlG8mxG8nNM5OUYyc8xkptjRK/TMjYZ4MyVUc60jjDmDgJgtxjYtaGYvQ0lrCq+/ZsYS0lRFFq6\nXbx4pJNhVwCTQcdTe6p4bEflgj3uE4rCxfZxXj7Vw+D4dAgoOQ6stMCyIF9TjeRvVLEQEgmF7iEv\nTR3jNM3qfAfJQOqWugIONJbTUJ2PVivnJGJhSH0TQkj4Zx5SIDOPHLiEEGol9U0IoVZS34QQapbp\nNS4SjfPm+X5eO9NLKBKntCCbTx6qY0ttwZKOqnJ5Qvz0RBdnrowCsKmmgE8eqqXCYV2yfRJLZ7pz\nyOxxYtMjxZyeEB5/hHAkfsfRYnfLODsklDUTHro5VGSaXp41K1BkmBsoMht06HVaVY98u7m+KYpC\n7+gUzR3JwE/f6My4rcoia2qcVyFVJTkZE7TyBaNcvZHsCtTaPYHHHwGSoZTVpTmpEWEFVJflLIsO\nMw+aoii4fREGnT6GnAFcntCccI/HF7nj806r0ZCbY0gGemaHe3KS4Z58mxGbxXDPgVNFUega8nK6\ndYT3ro2mOzlVOCzsaShh94bM6J4xMObjxSMdXLkxiUYDB7aU8bH9NQvS3ep2pkNAr5zqYSAVAtq1\nITkOTEJA7y/Tz9/E8hGOxrl6Y4KmDieXO514A3M7322tdxBLdQfrHUk+5gpsJh5uLGP/5lJyrUtf\nz4S6SH0TQkj4Zx5SIDOPHLiEEGol9U0IoVZS34QQarZcapzHH+Hld3o43jyIosD6qjyeP1y36J0U\nAqEor53p5c3zA8TiCVYVWfnk4To2rs5f1P0Qy4+iKMTiCUKROKFInHAkTigaJxSJJa9H4oSj8bnr\nI7H0sunbhKJxwpFYetkHefFTp9UkA0LGud2GZgJDsz7P0mEy6md1Jpp7++kORZkUJnI4chgadnOt\nd5LmTheXOp1MToWB5Pe+riqPxrpCttQVUGg3L/Hevj9FURgY99Pa7aKl20XHgCfdsSbbqGfD6jwa\nagpYX5VHgc2kuq4M3kCEwXE/Q04/g+M+Bp1+Bsf9BMKxW26r02rItU536Znp1DO7c4/NkrXggalo\nLMHlLhenW4e53OUinlDQaGBDVR57GkrYtsaBybC4owE9vjA/O9nDyctDKAo0VOfzqcN1SxZeTSgK\nTdfHeeXUDfrHfGiAh1IhoLJCCQHdyXI5fxOZyeOPcKnTSXOHk6s3JtKjgW0WQzoIu+E2ne9ujHg5\n1jTEuaujhKNxdFoNjXWFHNhaxobV+RkTnBXL20qqb7F4Ao8vOXrUG4iwuiSHfJtpqXdLiCUn4Z95\nrJQCuZyspAOXEGJlkfomhFArqW9CCDVbbjVucNzHPx3toqXbhQbYu6mEjz9cu+BdFGLxBEebBvnF\nqRv4glHycox8/OEa9jSUyBsdYskoikIklkgHhWYHiNJhoVkBolA4TigauyVgFIrMhI5i8cR9748G\nbhlnptNp0GiSXVa0Gg1arQatBjRazS3LtKllGo0GrZZZ11Pr09c1aLS33ufs7QH6nX4uto0RjsYB\nsJj0bK4tZGt9IRur8zEbFzd08aAFwzHa+iZp7U52BnJ6Qul1Oq2GApuJwlwThXYThXZz6roZh92E\nzWLIqKDWbIFQNB3sGZwV9JlKdaOYptFAcV425Q4L5YUWygotOHLN5OcYybEYMq42+4JR3rs2yunW\nEbqGvECym9e2NQ72NpSwvipvQQNbkWicN97r57WzvYQjccoKLTx/uI5NNQUL9jXvRUJRaO5w8so7\nPfSlQkA71xfxzL5qyiUEdIvldv4mlpaiKIxMBGjqcNLUMU73oDcdHi4rtLC1PjnqsrrMdle1MxiO\ncfbqKMebBukbS3bRK7SbONBYxoc2ly1aBzGhTmqpb9FYArcvnOpGmOpK6E1+PjkVYmIqjNcXuSXI\nX1lkZUtq/Ozq0szpRinEYpLwzzzUUCDVRi0HLiGEuJnUNyGEWkl9E0Ko2XKtcVd6JnjxSAcD434M\nei1PPLSKj+xe9cA7KCiKwoX2cV463sXYZBCTQcdTe6p4bEflLf8bWgg1iMUTybBQeKYz0c1BoXAk\nTjAyt2tRcnks3Z1o+nbxRIJEIvlcWooXaovzzGytd7ClroC6CrtqR2MpisLoZJCWbhfdQ16c7iDj\nnhDe1Jiwmxn0WgpmhYIcdnMyJJQKCFlM+gUPB4UiMYacAQadvpmOPk5/ujvTbI5cE+WFVsodyZBP\neaGF0oJssvTLsw6PTgQ4c2WE060j6dBWrtXA7o0l7N1YQkXRg+vCk1AUzl0d5SfHu5jwhsnJzuLZ\n/TU8vKU0I58PSioE9PKpHvpGZ4WA9q6mXEZrpi3k+Vs0lmAqEMEbiOD1R/D6ozPXAxE0aNKdxiTk\nkbkSCYXOQQ/NqcDP6GQQSAYn6ytyk4Gf+kKK87Lv+2soikLP8BTHmgd599ookWgCnVbD1vpCDmwt\nT4YaJbgg7tFy+Ps0GoszMRVm0js33DM9dnTSG0qP0LsdvU6THjOaZ0t2Jsw26mnvc9PWN0ksnjxr\ntlsMbK4toLGukA2r8zEalud5jxD3SsI/88j0ArkSLYcDlxBC3A+pb0IItZL6JoRQs+Vc4xIJhXda\nhvnZiW48/gh2i4Ffe7iGD20qfSDdEzoHPLx4tIOuQS86rYaDjeU886HV2LLljS4h7oeiKCQUhUSC\n1KWSWpZ8Pk8vSygKisKsz0GZXn+n7RVl5jap9RvqHJgyL9uwqMLROC5PCKcnyLg7hMsTYtwTxOlO\nLvOHbh2ZBWA26iiwmXGkwkDTwSBHKix0L0HLaCzOsCtwSyef2Z2KpuXlGNOdfNJhnwKLat/sUhSF\njgEPZ66M8O61MYKpEWariqzsaShh94Zi7Nb772zXMeDmR2930jPsRa/T8tjOCp7avZpsU+Z3vVIU\nheZOJ6+8c4Pe0Sk0wI51RTyzb/WSjSjLJPdy/qYoCuFo/NYgjz9y0/UoXn/ktqP07qSqJIdNNQVs\nrimguiwnIwNlK0k4Eqe1Z4LmznEudbrwBZPhA2OWjobqfBrrC9lcW0DOApzLBkIxzl4d4VjTEAPj\nyW5ARblmDjSWsW9TKTYJiom7tNR/n4aj8WSQx5vszjORCvVMekPpcM/0c+t2svRa8qdHjeaYyE+N\nIM2bHkFqM5JjzrpjyDoYjnH1xgSXOl1c7nKmQ0R6nZb1VXk01hWwpa5QxoMJVZPwzzyW6wt4arbU\nBy4hhFgoUt+EEGol9U0IoWZqqHGhSIxfnevjV+f6iMQSVDisPH+4jo3V+fd1f6OTAV461sWF9nEA\ntq1x8ImDtZTk3///jBZCLD411LeFFgjFcHqCOD2h5Id7+nqyc1A4Er/tdlZzVioQlAwGOVLXbdkG\nRicD6U4+A04/Y5MBbn6V3mYxpAI+FsocFioKrZQVZpNtylqE7zozRWNxLnW6ON06Qku3i3hCQaOB\njdX57N1YwtY1Dox32XFuzB3kpaOdnE8dxx5aX8QnDtRSmGteyG9hQSiKwqVOFy+f6qF3JPl83rHW\nwUf3VT/QDknLTUGBld6ByVtDPLfr1uOPEInNP9JRA1izs7BZDNiyDbMus2Y+Ty0LRmLpcYPX+93E\nE8knuMWkZ8PqfDbVFLCpJv8DBdfE3fP4wjR3OmnucHK1d5Jo6ndttxporEuOulxflbdondIURaF7\nyMux5kHeuzZGJJbsBrRtjYODjWWsq8rL2LGTSy0cjdPeN0lL9wTtfZNYzVlUleSwusTG6pIcHHnm\nFdFJaTHP3zy+MN1DXrqHvXQNeugf890xGA1gyNKSnwr0pMM96aCPkXyb6YF2T0woCj1DXpo7nVzq\ndDIw7k+vWzU9Hqy+kKoSGQ8m1GXRwz+JRIKvfe1rtLe3YzAY+PrXv05VVVV6/ZEjR/j2t7+NXq/n\nueee41Of+tQdt+nt7eUrX/kKGo2G+vp6/viP/xhtKh09MTHBZz7zGV555RWMRiOhUIjf+73fw+Vy\nYbFY+NM//VPy8+d/IUv+wM088sKDEEKtpL4JIdRK6psQQs3UVOMmp8L89EQXp1tGUICGmnyeP1R3\n12NCpgIRfnHqBkebBoknFGrKbHzqUB1rKnMXdseFEAtCTfVtKSiKgi8YnRMMGk8Fg5Kdg0LE4vMH\nCiwmfSrgY6W80EJFamzXQnSdUBNvIMJ718Y43TpCz7AXAKNBx461DvZuLGHtHUbpBEJRXj3dy1sX\n+onFFWrLbDz/SD115fbF/hYeOEVRuNzl4uV3eriRCgFtX+vg+UN1yzLUdL+c7iA/eL1tTujmTnRa\nzU1hnqw5IZ6Z61lYs7Puq2tPMByjrXeSlm4XLd0uXN6ZsX2riq2pIFABteU26Qr0gCiKwpDTT3On\nk6YOJ91D3vS6coclFfhxsLp06cMAgVCU060jHG8eYtCZDC0U55k50FjOvk0lK/5YoCgKIxMBWron\naO120dbnTh9XDXot0VhizshUs1FPVbE1GQYqzaGqJIeiXLPqwlQLdf4WjsbpHZlKh316hjxzahZA\ncX42hXZTaiRXMsyTDvbkGDEbF34s6nyc7iCXulw0dzppv2k82Ja6ArbUyngwoQ6LHv554403OHLk\nCN/85jdpbm7mu9/9Lt/5zncAiEajPPnkk7z00kuYzWY+85nP8N3vfpeLFy/edpsvfelL/OZv/ia7\ndu3iq1/9Kvv37+exxx7j5MmTfOtb36Kvr48zZ85gNBr5wQ9+gM/n43d/93d57bXXaGpq4g//8A/n\n3Vf5AzfzyAsPQgi1kvomhFArqW9CCDVTY43rG53ixSOdXOudRKOBA1vK+Nj+Gux3GDcQjcV56/wA\nr57pJRiO4cg18YmDdexY61Ddi+lCrCRqrG+ZJKEoeP0RnO7UKDFPCK8/giPXnOzq47Bgtxikjn5A\nwy4/Z66McKZ1FJc3OSotL8fIno0l7GkoobzQQiye4HjzEC+/04MvGKXAZuKTh2rZua5IdT9/RVFo\n6Xbx8js36Bn2Yjbq+PXH17JnY8lS79qCe/faKP/nV+0EwzFqyuzYLckwT062Abvl1oBP9iK/Sa0o\nCkOuAC1dySBQx4A7/cZ0tlHPhup8NtXk01BdQF6OdAW6F/FEgs4BD00dyQ4/Y+4gAFqNhjWVdhpT\n3T+K8jKzS6WiKHQOejjePMR7bWNEYwn0Og3b1xZxsLGMNZW5qqtVdxKKxGjrdacDc7NHYFY4LOnA\nXF2FnWgsQd/oFDdGpugdSV6OTgRuCQStLslJdQhKfjiWeSDoQZy/JRSF0YlAMuiT+ugf85GYFRvI\nyc6iptRGTbmdmjIb1SW2ZTEWc1owHONKzwSXOp1c6poZ85elT44H21JXyJbaAhkPJpalRQ///Nf/\n+l/ZvHkzTz31FAD79+/n5MmTALS1tfFnf/ZnfP/73wfgG9/4Blu3bqW5ufm22+zfv58TJ06g0Wh4\n6623OHXqFH/8x3/MqVOn2LBhA8899xyvv/46RqOR3/md3+ELX/gCjY2NTE1N8elPf5rXXntt3n2V\nP3Azj7zwIIRQK6lvQgi1kvomhFAztdY4RVG41OXix0c7GXYFMBp0PLW7isd3VmJIjU1JKArnrozy\n0xNduLxhLCY9z+yr5tDWcrL08r/ThVju1FrfxMqUUBQ6+t2cbh3hfPsYwXByJFtVcQ6RWJxhVwCT\nQcfTe1fz2I6KRRvxs1QUReF06wg/fPM64Uic3RuK+fXH1y6rN27vVjgS5+/fus47l4cxZGn53GNr\n+LXDa3A6fUu9a/MKRWJc602OMGrpcqXDawCVRdb0eLDacjt6nZx33cztC9PaPUFrj4srPRPpUURG\ng45N1flsrXewqbYAq3l5jUv0BaOcaR3hWPMgw64AAKUF2RzYUsbeTaXL7vt5P9OdmlpSo/Jmh+LM\nRj0bV+fRkAr83E0oLhiOpQNBN2YFgmbLNurTYaCqZRgIup/zN28gQs+Ql66hZEef7uEpguGZ8V16\nnZaqYis1ZcmgT02ZjUK7adn8TN5PIqHQPezlUqeT5k4ng7PHgxVbaawrZEudjAcTy8edwj8Ldpbn\n8/mwWmdaRut0OmKxGHq9Hp/PR07OzA5ZLBZ8Pt8dt1EUJV1cLBYLU1PJgrZv377bft3p+559WyGE\nEEIIIYQQQggxQ6PR0FhXSEN1PicuDfHzkz389EQ3R5sGee5ADblWIz8+2kXv6BR6nYYPP7SKp/ZW\nYTGp6w0HIYQQ6qDVaFi7Ko+1q/L43GNraO50crp1hNbuCRQUDm4t59kPVWO7Q5c7tdFoNOzbVEp9\nhZ3v/eIqZ6+O0jHg4bef2aCqcZ29I1N895UrjEwEWFVs5Ysf3UhpgWVZvGFtMujZWu9ga71jZrxR\nqitQe7+b/jEfvzzbi9moY8Pq/HTHk5XaFSgWT9A16EmHRPrHZsJd+TYjO9cXs7W+kHWr8pZ1SN1q\nzuKxnZU8uqOCjgEPx5oHOd82zo+OdPLS8W52rHNwsLGc+gr7snic304wHOPqjeQ4vNYeFxN3GIdX\nU2a75+Cb2ahPHwumBUIzgaDe0SluDHu51jvJtd7J9G0sJj2rilPdgUptVJXk4Fim4ZfpjkjT47u6\nhzyMu0NzblOcZ6axriAd9qkssqo6ZKjVaqgrt1NXbue5A7U43UGaO51c6nTS1uemb9THK6duYLca\n2FJbwJa61HiwLHUHhYX6LFj4x2q14vfPpOYSiQR6vf626/x+Pzk5OXfcRjtrzqnf78dms93V132/\n207Ly8tGr/KU/3J0p8SaEEIsd1LfhBBqJfVNCKFmaq9xz5fYefrhOn789nVeOdnN/371Wnrdga0V\n/Isn11Ocn5ljEoQQH4za65tYucrLcnnq4To8vjDxhLJix3o4HDl86985ePGt67z4Zjv/7R8u8slH\n1vDpx9cu6zd6FUXhlZPd/M2rV4nFEzx7oJbPP7l+Tken5VbfiopsbF6XHM8WCse43OXkwrVRLrSN\ncaF9nAvt4wCsLrWxfV0R29cVs746f1n/Ht/P2GSAi21jXGwfo/n6eLpTiV6npXGNg+3riti2tojK\n4pxlGdJ4P0VFNvZtq8Trj3DkfB+/OtPL2SujnL0ySmVxDh/eXcWhHZXkZGd2qFFRFG4Me5OP5bZR\nrvVMEE8ku/tYzVnsbyxP/y7zFqhWV1XmsX/W5/5glO5BDx39broG3HQOuG8JBFnNWdRV5FJbYae+\nMo/aCjvF+dkZ8Vibrm+KojDs8nO9d5L2vknaeyfpGfKkuydB8vvYtq6ItavyWJP6WClB2DtxOHJY\nX1/EZ4BAKErT9XHevTLC+WujnLg0zIlLwxj0WjbXO3hoYwkPbSimwG4Gkj/zhJLsJqQoComEQiJ1\nGU8oKArpz9Pr5nzOnG1mr1NS6+Kz1ikJhZICC1Wl7595EGLBwj/btm3j6NGjPPnkkzQ3N7NmzZr0\nutraWnp7e3G73WRnZ3P+/HleeOEFNBrNbbfZsGED586dY9euXZw4cYLdu3fP+3WPHz/O5s2bOXHi\nBNu3b3/ffZ2cDLzvbcTikpbDQgi1kvomhFArqW9CCDVbSTXuqV2r2LXWwc9O9uALRnl2fzXVpTaI\nx1fMz0CIlWQl1TchxsejS70LS+qxbeWsLrLwvV9c5cW3rvPulRH+1Uc3UJy3/MK9Xn+E7792jZZu\nF7bsLF54ehObagpwz3qvRw31rdphodpRw3P7q5NdgbonaO120dbn5sawl58c7cRkmO4KlOwMtNxD\nbtFYnOv9nlRHmAmGnDMNA4pyzezdWEJDTT7rVuVhNMwEvTJ9xNuDsG9DMXvXF3G9382x5iEutI/x\nvZdb+d7LrWQb9ditBuwWA7lWY+p68jLXYsCeWpZt1C9acCUQinJlurtPtwu3LwKABlhdmkNDdQGb\naguoKbWh1Sb3KRaOLmqtLrEbKbEXs7+hOLXPMXpHp+gdmeLGiJcbI1M0d4zT3DGe3sZiSo4My7eZ\n0Gk1aDUatKlLnVaDRsuc5TffJr0s/Tlztp97Xxp009vOui9Nlo6ma6N0D3npGfbiC878zHRaDZVF\n1vTortoyO0V5c0eahQNhxgMz3ZYErCnNYU1pDp89XEf3kDfdFej8tVHOXxvlf5L82SaUZEBnKdSW\n2Ti4tZyd64rSY7rFynWngLNGURbmIZpIJPja177G9evXURSFb3zjG1y9epVAIMDzzz/PkSNH+Pa3\nv42iKDz33HN87nOfu+02tbW19PT08Ed/9EdEo1Fqamr4+te/jk4386A+fPgwr7/+OkajkWAwyO//\n/u8zPj5OVlYW3/rWt3A4HPPu63I/AVQjNZyYCyHE7Uh9E0KoldQ3IYSaSY0TQqiV1DchVp5AKMbf\nv9nOmSujGLN0fPaxej60qTQjOlncjdYeF//71Wt4/REaqvN54ekN2G/TwULN9S0cjdPeN0lLV3L8\n1Zg7mF5XWpBNhcNKcX42JflmivOzKc7LxmrO3LGto5MBWlOjvNr6JolEEwAY9FrWVeWxqaaAhpr8\nZRlUW0jeQITTLSO09rjw+CK4fWH8odi822TptdgthtuHg2YFh2zZhnQg524lFIX+UR+Xu5Oj67oH\nvSSUme4+DamA2sbqfGwZ3qlotkAomgwDTYeChqfmPOeWWqHdlAr6JMd3VRVb53RAEx/MeGo8WGv3\nBIFwNBnY0mjQaJgT6NIw87lGq0GrIXW7VMArff3267Ta1H1qbn8fbX2TtHS5UEgG0PZtKuXQ1nLp\nzruCLXr4ZzlR6wngcqbmE3MhxMom9U0IoVZS34QQaiY1TgihVlLfhFi5zl4Z4e/eaCcYjrNjXRGf\nf2JtRgdEYvEEPz3eza/e7UOn1fCJg7U8trMS7R1CSyupvo1OBNKBi+v97nR4ZjarOYvifDMledmp\nYFDysijPjHGRO0iEI3Ha+iaTgZ8eF2OTc8NLm2oK2FRTwJpKu4QY7lE0lsDrj+D2h/H6Irj9ETy+\nMG5fJLncF8bjT16fHrt1OxoN5GTPDQbZralw0HR4yGrEoNemf5etPRN4/ZH09jVlNjaluvtUleTc\n8bm6HAVCUXzBKAkF4ombxjulRj/d8rkyM/IpnkiktkmGpu54H7NGP83cBvJzzRTbTVSX2W4bfhTq\nNO4OcuLSECcvDeENJLs9ra/K49DWchrrC1U9AlLcSsI/81gpJ4DLyUo6MRdCrCxS34QQaiX1TQih\nZlLjhBBqJfVNiJXN6Q7yvVev0jHgIS/HyG8/vYF1VXlLvVu3GJ0I8L9euULvyBTFeWa++LGNrC6x\nzbvNSq1vCUXBPRVmdCLAyGQweTkRYHQyiNMdvG3gI99mpHg6FJRnToeDCuymB/JmsqIoDLkCtKbG\nP7X3e4jFkwGl6bFlDTX5NFTnU2g3f+CvJ95fQlHwBaN4fDPhII8/nOwg5I/g9YVTwaEI4Wj8ru7T\nZjGwqTqfhlR3n0wOEy53K7W+iaRYPMGF9nGONQ3S3u8GwG418PDmMg40li378Y/i7kj4Zx5SIDOP\nHLiEEGol9U0IoVZS34QQaiY1TgihVlLfhBCJhMJrZ3t5+WQPiqLw4d2r+LX9NRnRQUBRFE63jvDD\nN64Tjsb50KZSPvtYPSaD/n23lfp2q1g8gcsTSoaBZoWDRicDTHjDt9xep9VQmGtOB4Jmh4Nyc4zz\ndnIJhmNcvTFJa08y8OOadf+riqw01BSwqSaf2nJ7RjzWxJ0Fw7E5XYNmB4UCoViyw09NAZXFVlV1\n98lkUt/EtEGnn2NNg5xuHSEYjqHRQGNdIQe3lrOxOl+ekyom4Z95SIHMPHLgEkKoldQ3IYRaSX0T\nQqiZ1DghhFpJfRNCTOsa8vC9V64y5g5SVZzDv/roBkoLLEu2P4FQjL97o51zV0cxG3V8/ol17NpQ\nfNfbS327N+FonLHZnYImAoxMBhidCOILRm+5vSFLm+4WVJxnpiQ/m/wcI93DXlq7J+gc9KS7DFlM\nejZW59NQXUBDTT65VuNif3tCqIrUN3GzcCTOuWujHG0apHck+dhw5Jo42FjOvs2l2LJlPJzaSPhn\nHlIgM48cuIQQaiX1TQihVlLfhBBqJjVOCKFWUt+EELMFwzH+8e0O3rk8jCFLy2ceqefhLf8/e/ce\nXXd9n4n63ZIsS7YlY2zJ4JuwDQ4QLgYS07RJihloLvRk0pCBhNQ5nJA0bSeZhnalJWuATEgmtFkz\ntKsrM2l6DukpNFlAmxxacprTDJArSSk3mzjBXHyR71g21s2yLUt7nz9sqaHB8ratbXlvP89arCX9\nbnrlxF/J0ru/nzkpnOCdA9Zu6cmX/+Gn2dmzL4vntOa33vX6tJ12dOOgrG/jp3/vgbwQbemsAAAg\nAElEQVS8+1Ah6JVDuwUdKgcNHij+wvWFJGed2ZoLFx0cAbXozNbU1dl9AsaL9Y2xrN/Wm+88syX/\n8rOXMzhUTEN9IW94XXuuuGRuzpk3/YR/TacylH/GYIE8+fjCBdQq6xtQq6xvQC2zxgG1yvoGvJYn\n1uzIX39rTQb2D+WSc2blxnecm5YTsGtAsVjKP/5zZx48NILsml/uyLt+ZeExjYWyvlVeqVRKd//g\naBFoV8++zJ01NecvPN0uE1BB1jfKsWffgfxo9fZ895kt2bZrIEkyt21qrlg6N798wRlpnnzkEZqc\nvJR/xmCBPPn4wgXUKusbUKusb0Ats8YBtcr6BhzOK7378n9982dZs7E706c15sPXnJ/XLzy9Yh9v\nd9/+/J8P/TRrNnZnRsvkfPjXz895HTOO+XnWN6BWWd84GqVSKc9v7M53V27JU893ZbhYyuRJ9bn8\n/NlZfsncdJzx2iUSTm7KP2OwQJ58fOECapX1DahV1jegllnjgFplfQPGUiyW8k//sjHf+P66DBdL\n+bU3zs+1v7o4kxqOfieesTzzYlf+6h/XpH/vgVxyzqz8H+88L9OaJx3XM61vQK2yvnGsevYM5ofP\nbs13n9maXb37kiSL5rTmiqVzs+y89jROqp/ghJRL+WcMFsiTjy9cQK2yvgG1yvoG1DJrHFCrrG9A\nOTZs782X/+FnefmVgcxrm5aPvuv8zG2bdtzPHTwwnAe+81IefXpLJjXU5forz87yS+amUCgc97Ot\nb0Ctsr5xvIrFUn6yble++8yWPLt2V0pJpjY15FcuPDO/unROzpw5daIjcgTKP2OwQJ58fOECapX1\nDahV1jegllnjgFplfQPKtX9wOPc/+mK+u3JrJjXU5brlZ+fKS4+9qLOlqz9/8Q8/zZauPZk7a2o+\n+u9fn3njUCgaYX0DapX1jfG0s2dvvrdya36wamt6Bw4kSc7rmJHll8zN0nNmpaF+fHf7Y3wcrvzT\ncIJzAAAAAAAAUEUmN9bng28/Nxcumpm/+taafPV/vZCfrNuVD73zvLRObSz7OaVSKd9duTX3PfJi\nDgwVs/zSubl++dlGjQDABJg1vTnX/uri/Ps3L8zTL3Tlu89syXOdu/Nc5+5Mn9qYX3vj/Lz98gXj\nsisflaf8AwAAAAAAwBFdsqQtZ53Zmq/8vz/Ls2t35fa7H8+Hrjk/Fy2eecR7+/ceyF/943N55sWd\nmdrUkI++6/W5dEnbCUgNAIylob4uy86bnWXnzc7WnXvy3ZVb8thPtufvf7g+V142L5OVdKuCsV8x\n9utkZMs6oFZZ34BaZX0Dapk1DqhV1jfgWBVLpTz8xKb83ffWZmi4lH932bz8hysWH3YHn+c37s5f\nPvSz7O7bn3MXnJYP//r5Ob21qWL5rG9ArbK+caLsPzCcffuHMn3a5ImOwr9h7BcAAAAAAADHra5Q\nyK8tW5BzO2bkLx/6WR55anPWdO7Ob73r9ZnfPm30uuFiMf/www355o82pFAo5DfeuijX/FJH6uqM\nDwGAk9nkSfV2/KkydRMdAAAAAAAAgOqzYHZLbv/f35B/d+m8bNm5J5/96yfy7Sc2pVgqZWf33vzJ\nV5/JQz/akJnTm3LLb16a/+2Xz1L8AQCoADv/AAAAAAAAcEwaJ9XnA7+2JBcsOj1/9Y/P5b5HXsxT\nz+/I5q492bt/KMvOa88H33ZupjT5lRQAQKXY+QcAAAAAAIDjcvHZs/KZmy7PhYtm5sXNPSkWS/nQ\nO8/LR9/1esUfAIAK890WAAAAAAAAx2361MZ84j9clJUv7czctmlpP615oiMBAJwSlH8AAAAAAAAY\nF4VCIZec0zbRMQAATinGfgEAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAAAAAAAFVK+QcAAAAA\nAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8AAAAAAAAAAKBKKf8A\nAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACqlPIPAAAAAAAAAABU\nKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAAAABAlVL+AQAAAAAA\nAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAAAAAAAAAAqFLKPwAA\nAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAAAAAAAFVK\n+QcAAAAAAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8AAAAAAAAA\nAKBKKf8AAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACqlPIPAAAA\nAAAAAABUKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAAAABAlVL+\nAQAAAAAAAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAAAAAAAAAA\nqFLKPwAAAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAA\nAAAAAFVK+QcAAAAAAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8A\nAAAAAAAAAKBKKf8AAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACq\nlPIPAAAAAAAAAABUKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAA\nAABAlVL+AQAAAAAAAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAA\nAAAAAAAAqFLKPwAAAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJUqq/zzyiuvVDoHAAAA\nAAAAAABwlMoq/3zgAx+odA4AAAAAAAAAAOAoNZRz0bnnnpsHH3wwF110UZqamkaPz5kzp2LBAAAA\nAAAAAACAsZVV/lm1alVWrVr1qmOFQiGPPPJIRUIBAAAAAAAAAABHVlb559FHH610DgAAAAAAAAAA\n4CjVlXPRK6+8kk984hO5/PLL84Y3vCEf+9jHsnPnzkpnAwAAAAAAAAAAxlBW+ef222/PhRdemEce\neSSPPvpoLr744vzn//yfK50NAAAAAAAAAAAYQ1nln02bNuWmm27KtGnT0tramo985CPZunVrpbMB\nAAAAAAAAAABjKKv8UygUsm3bttH3t27dmoaGhoqFAgAAAAAAAAAAjqysBs/v/d7v5frrr8/FF1+c\nUqmUVatW5bOf/WylswEAAAAAAAAAAGMoq/xz5pln5sEHH8yzzz6bYrGYz3zmM5k5c2alswEAAAAA\nAAAAAGMoq/xz880351vf+lauuOKKCscBAAAAAAAAAADKVVb55+yzz84Xv/jFXHzxxWlqaho9/sY3\nvrFiwQAAAAAAAAAAgLGVVf7p7u7O448/nscff3z0WKFQyD333FOxYAAAAAAAAAAAwNjKKv+8853v\nzPvf//5KZwEAAAAAAAAAAI5CXTkXffWrXz3qBxeLxdx+++25/vrrs2LFinR2dr7q/KOPPpprr702\n119/fR544IEx7+ns7Mz73//+3HDDDfn0pz+dYrGYJHnggQfynve8J9ddd12+853vJEn6+vry4Q9/\nODfccENuvPHGdHV1HXV2AAAAAAAAAACoBmXt/HPGGWfkgx/8YC6++OJMnjx59PjHPvaxw97z8MMP\nZ3BwMPfff39WrlyZP/7jP86XvvSlJMmBAwdy55135u/+7u/S3Nyc97///bnyyivz9NNPv+Y9d955\nZz7xiU/k8ssvz+23355HHnkkS5cuzb333puvf/3r2b9/f2644Yb8yq/8Sr7xjW9kyZIl+cM//MM8\n8MADufvuu3PLLbcc5x8TAAAAAAAAAACcfMoq/yxduvSoH/zUU0/lLW95y+j9q1evHj23du3aLFiw\nINOnT0+SXHbZZXniiSeycuXK17znpz/9aZYtW5Ykeetb35rHHnssdXV1ueSSS9LY2JjGxsYsWLAg\na9asyZIlS7Ju3bokSX9/fxoayvoUAQAAAAAAAACg6pTVjPnYxz6WgYGBbNy4MUuWLMm+ffsyZcqU\nMe/p7+/PtGnTRt+vr6/P0NBQGhoa0t/fn5aWltFzU6dOTX9//2HvKZVKKRQKo9f29fUd9hmnn356\nHnvssbzzne9MT09PWSPLZsyYkoaG+nL+KDiB2tpajnwRQBWyvgG1yvoG1DJrHFCrrG9ArbK+AbXK\n+ga8lrLKPz/+8Y9z++23Z3h4OPfdd1/e9a535b/9t/+WN7/5zYe9Z9q0admzZ8/o+8VicXQXnn97\nbs+ePWlpaTnsPXV1da+6trW19bDP+OIXv5gPf/jDed/73pc1a9bk4x//eB566KExP7/duwfK+WPg\nBGpra0lXV99ExwAYd9Y3oFZZ34BaZo0DapX1DahV1jegVlnfgMMVAOte8+i/cdddd+VrX/taWltb\n097enr/5m7/JF77whTHvufTSS/P9738/SbJy5cosWbJk9NzixYvT2dmZ7u7uDA4O5sknn8wll1xy\n2HvOP//8PP7440mS73//+3nDG96Qiy66KE899VT279+fvr6+rF27NkuWLElra+vojkAzZ858VUEI\nAAAAAAAAAABqSVk7/xSLxbS1tY2+f/bZZx/xnquvvjqPPfZY3ve+96VUKuXzn/98HnrooQwMDOT6\n66/PLbfckptuuimlUinXXnttZs+e/Zr3JMkf/dEf5bbbbstdd92VRYsW5W1ve1vq6+uzYsWK3HDD\nDSmVSrn55pszefLk/N7v/V5uvfXWfO1rX8vQ0FA++9nPHuMfDQAAAAAAAAAAnNwKpVKpdKSL/uN/\n/I9573vfmz//8z/PX//1X+erX/1qVq1alb/4i784ERkrztZoJx9b1gG1yvoG1CrrG1DLrHFArbK+\nAbXK+gbUKusbcFxjv+6444489NBD2bZtW66++uo899xzueOOO8Y1IAAAAAAAAAAAcHTKGvs1c+bM\n3HXXXa957rbbbjNaCwAAAAAAAAAAJkBZO/+MZfXq1eORAwAAAAAAAAAAOErHXf4BAAAAAAAAAAAm\nhvIPAAAAAAAAAABUKeUfAAAAAAAAAACoUsdd/imVSuORAwAAAAAAAAAAOErHXf755V/+5fHIAQAA\nAAAAAAAAHKWGsU6uWLEihULhsOfvueee/OEf/uG4hwIAAAAAAAAAAI5szPLPxz/+8STJAw88kKam\nprz73e9OQ0NDvvnNb2b//v0nJCAAAAAAAAAAAPDaxiz/LFu2LEnyJ3/yJ/n6178+enzp0qV5z3ve\nU9lkAAAAAAAAAADAmOrKuWj//v1Zv3796PvPP/98hoaGKhYKAAAAAAAAAAA4sjF3/hlxyy23ZMWK\nFZk9e3aKxWJeeeWV/Pf//t8rnQ0AAAAAAAAAABhDWeWfN7/5zXn00UfzwgsvpFAo5HWve10aGsq6\nFQAAAAAAAAAAqJCyxn719PTkjjvuyBe+8IXMmTMnt912W3p6eiqdDQAAAAAAAAAAGENZ5Z/bbrst\nF154Ybq7uzN16tS0t7fnk5/8ZKWzAQAAAAAAAAAAYyir/LN58+Zcf/31qaurS2NjY26++eZs3769\n0tkAAAAAAAAAAIAxlFX+qa+vT19fXwqFQpJkw4YNqasr61YAAAAAAAAAAKBCGsq56D/9p/+UFStW\nZNu2bfnd3/3drFy5Mp///OcrnQ0AAAAAAAAAABhDWeWftra2fOUrX8mzzz6b4eHh3HHHHZk1a1al\nswEAAAAAAAAAAGMoq/xz880351vf+lauuOKKCscBAAAAAAAAAADKVVb55+yzz84Xv/jFXHzxxWlq\naho9/sY3vrFiwQAAAAAAAAAAgLGVVf7p7u7O448/nscff3z0WKFQyD333FOxYAAAAAAAAAAAwNjK\nKv/ce++9lc4BAAAAAAAAAAAcpbLKP08++WTuvvvuDAwMpFQqpVgsZuvWrXn00UcrnQ8AAAAAAAAA\nADiMunIuuvXWW3PVVVdleHg4H/jAB9LR0ZGrrrqq0tkAAAAAAAAAAIAxlFX+aWpqyrXXXptly5al\ntbU1n/vc5/LEE09UOhsAAAAAAAAAADCGsso/kydPTnd3dxYuXJhVq1alUChkYGCg0tkAAAAAAAAA\nAIAxlFX+ufHGG3PzzTdn+fLlefDBB3PNNdfkggsuqHQ2AAAAAAAAAABgDA3lXPSOd7wjb3/721Mo\nFPKNb3wjGzZsyHnnnVfpbAAAAAAAAAAAwBjKKv986lOfes3jd95557iGAQAAAAAAAAAAyldW+WfZ\nsmWjbw8NDeWRRx7JokWLKhYKAAAAAAAAAAA4srLKP7/xG7/xqvff+9735v3vf39FAgEAAAAAAAAA\nAOWpO5ab1q5dmx07dox3FgAAAAAAAAAA4CiUtfPPueeem0KhkFKplCQ5/fTT8/u///sVDQYAAAAA\nAAAAAIytrPLPmjVrKp0DAAAAAAAAAAA4SmWVf774xS+Oef5jH/vYuIQBAAAAAAAAAADKV1fORdu2\nbcs//dM/ZdKkSWlubs4PfvCDPPPMM5XOBgAAAAAAAAAAjKGsnX/Wrl2b+++/P1OmTEmSrFixIitW\nrLDjDwAAAAAAAAAATKCydv7ZvXt3CoXC6PuDg4MZGBioWCgAAAAAAAAAAODIytr5573vfW/e8573\n5IorrkixWMz3vve9/PZv/3alswEAAAAAAAAAAGMoq/zzkY98JJdffnmeeOKJNDU15X/+z/+ZRYsW\nVTobAAAAAAAAAAAwhrLGfnV3d6e/vz833XRT+vr68md/9md56aWXKp0NAAAAAAAAAAAYQ1nlnz/4\ngz/IunXr8uMf/zjf/va3c+WVV+bTn/50pbMBAAAAAAAAAABjKKv809PTk9/8zd/Mww8/nHe/+915\n97vfnb1791Y6GwAAAAAAAAAAMIayyj/FYjGrV6/Oww8/nOXLl+e5557L8PBwpbMBAAAAAAAAAABj\naCjnok9+8pP5whe+kA996EOZP39+rrvuunzqU5+qdDYAYJyUSqVs7Nuc+S1zU1coq/sLAAAAAAAA\nVIGyyj9vetOb8qY3vWn0/QceeGD07Y9+9KP58pe/PP7JAIBxs3rXc/mLZ//vfPC863P5mZdNdBwA\nAAAAAABgnBz3S/9ffvnl8cgBAFTQC7vXJkk29W+Z4CQAAAAAAADAeDru8k+hUBiPHABABXX2bk6S\n7BjYOcFJAAAAAAAAgPF03OUfAODkViwVR3f86VL+AQAAAAAAgJqi/AMANW77nh0ZHB5Mkuzc90qG\ni8MTnAgAAAAAAAAYL8dd/imVSuORAwCokM6+gyO/6gv1KZaK2bVv9wQnAgAAAAAAAMbLcZd/3v3u\nd49HDgCgQjb2bkqSvH7muUmSHQNdExkHAAAAAAAAGEcN5Vz0gx/8IH/6p3+a3t7elEqllEqlFAqF\nPPLII7nxxhsrHBEAOB6dvZtTX6jP0rYL8uzOn6Zr766JjgQAAAAAAACMk7LKP5/73Odyyy235Jxz\nzkmhUKh0JgBgnAwVh7Klf2vmTjszc6adkSTZMbBzglMBAAAAAAAA46Ws8s+MGTOyfPnySmcBAMbZ\nlv5tGSoNp6N1ftqaZyZJuvYq/wAAAAAAAECtKKv8c9lll+XOO+/MW97ylkyePHn0+Bvf+MaKBQMA\njl9n7+YkyYKWeWlqaEprY0t2DHRNcCoAAAAAAABgvJRV/nn22WeTJD/72c9GjxUKhdxzzz2VSQUA\njIvOvk1Jko7WeUmStuZZWdezIQeKQ5lUV9a3AQAAAAAAAMBJrKzf+t17772VzgEAVMDG3s1prJuU\nM6a0J0lmT5mVtT3rs2vvrpwxdfYEpwMAAAAAAACOV1nlnyeffDJ33313BgYGUiqVUiwWs3Xr1jz6\n6KOVzgcAHKP9w4PZtuflLJrekfq6+iRJ25RZSZIdAzuVfwAAAAAAAKAG1JVz0a233pqrrroqw8PD\n+cAHPpCOjo5cddVVlc4GAByHTX1bUkopHa3zR4+1Nx8q/+zdOVGxAAAAAAAAgHFUVvmnqakp1157\nbZYtW5bW1tZ87nOfyxNPPFHpbADAcdjYuylJ0tEyb/TYz+/8AwAAAAAAAFS/sso/kydPTnd3dxYu\nXJhVq1alUChkYGCg0tkAgOPQ2bc5SbLg53b+aWuemSTpUv4BAAAAAACAmlBW+efGG2/MzTffnOXL\nl+fBBx/MNddckwsuuKDS2QCA49DZuynNDc2jhZ8kaaxvzIzJpxn7BQAAAAAAADWioZyL3vGOd+Tt\nb397CoVCvvGNb2TDhg0599xzK50NADhGAwcG0rV3V86dcU4KhcKrzrVNmZUXdr+UweHBNNY3TlBC\nAAAAAAAAYDyUtfNPT09Pbrvttnzwgx/M/v37c++996avr6/S2QCAY7Sxb0uSZEHrvF841z4y+mvv\nrhOaCQAAAAAAABh/ZZV/brvttlx44YXp7u7O1KlT097enk9+8pOVzgYAHKPO3k1Jko7W+b9wrm3K\nrCTJjgGjvwAAAAAAAKDalVX+2bx5c66//vrU1dWlsbExN998c7Zv317pbADAMers25wk6Wj5xZ1/\nZk9pS5J0Kf8AAAAAAABA1Sur/FNfX5++vr4UCoUkyYYNG1JXV9atAMAE6OzdlNbGlpw2efovnGtr\nPrTzz17lHwAAAAAAAKh2DeVc9PGPfzwrVqzItm3b8ru/+7tZuXJlPv/5z1c6GwBwDHr296V7f08u\nnHXeaHH3581qPj2FFLJjoGsC0gEAAAAAAADjqaztey644IJcddVVmTdvXrZt25arr746q1evrnQ2\nAOAYbOzblCRZ8Bojv5Kkoa4hpzfNsPMPAAAAAAAA1ICydv75yEc+kte97nVZvnx5pfMAAMeps/dg\n+aejdf5hr2mfMivPvfJC9g7tS3ND04mKBgAAAAAAAIyzsso/SYz5AoAq0dm3OUnS0XLk8k/X3p2H\n3SEIAAAAAAAAOPmVNfbrqquuyt/+7d9m06ZN2bp16+h/AMDJpVQqZWPv5sxsmpFpjVMPe11b86wk\nSdeA0V8AAAAAAABQzcra+aevry9/+Zd/mRkzZoweKxQKeeSRRyoWDAA4eq/s253+A3tyzozFY17X\nPuVg+WeH8g8AAAAAAABUtbLKP9/+9rfz4x//OE1NTZXOAwAch38d+TX2KK+RnX927FX+AQAAAAAA\ngGpW1tiv+fPnp6enp9JZAIDj1Nm7KUnS0Tp2+Wdm04zUFeqM/QIAAAAAAIAqV9bOP4VCIddcc03O\nOeecTJo0afT4PffcU7FgAMDR6+zdlEIKmX+EnX/q6+ozq/l0O/8AAAAAAABAlSur/PPbv/3blc4B\nABynYqmYTX1b0j6lLc0NRx7V2d48K6sH1mTPgYFMnTTlBCQEAAAAAAAAxltZ5Z9ly5ZVOgcAcJx2\nDOzMvuH9uegII79GtE2Zlew6eN/C6QsqnA4AAAAAAACohLqJDgAAjI/O3k1Jko6W+WVd397cliTp\nMvoLAAAAAAAAqpbyDwDUiM6+zUmSjjJ3/mmfMivJwZ1/AAAAAAAAgOqk/AMANWJj76bUFeoyd9qc\nsq5vax4p/3RVMhYAAAAAAABQQco/AFADhovD2dy/NXOmnpHG+kll3TOjaXoa6hqM/QIAAAAAAIAq\npvwDADVg657tOVAcKnvkV5LUFerS1jwzOwZ2pVQqVTAdAAAAAAAAUCnKPwBQAzp7NyVJOlrmH9V9\n7c2zsm94X/oP7KlELAAAAAAAAKDClH8AoAZs7NucJFnQenTln7Yps5IkOwaM/gIAAAAAAIBqpPwD\nADWgs3dzJtU1ZM7U2Ud1X3vzSPmnqxKxAAAAAAAAgApT/gGAKjc4fCBb92zPvGlzU19Xf1T3ju78\ns9fOPwAAAAAAAFCNlH+AFEvF3P/8g1nVtXqiowDHYHP/1hRLxXS0zjvqe9sPlX+6jP0CAAAAAACA\nqqT8A+Sl7vX5/pYf5Z82fGeiowDHoLN3U5JkQcvRl3+mN7amsb7Rzj8AAAAAAABQpZR/gDyz49kk\nyab+LRkcHpzgNMDR6uzdnCTpaJ1/1PcWCoW0Nc9M18DOlEql8Y4GAAAAAAAAVJjyD5ziiqVinun6\nyejbIyUCoHps7NuUpvqm0RFeR6u9eVYGiwfSM9g7zskAAAAAAACASlP+gVPcS93r0zfYn9MmT0+S\nrO/pnOBEwNHYO7QvLw90ZUHL3NQVju3LevuUtiTJjgGjvwAAAAAAAKDaKP/AKW5k5Ne7Fr09SbKu\nd8MEpgGO1qa+Yx/5NaLt0I5BXco/AAAAAAAAUHWUf+AUNjLya9qkqXnD7KWZ2TQj63o6UyqVJjoa\nUKaRUX0LWucd8zPamw+Wf17e2zUumQAAAAAAAIATR/kHTmEjI78ubrsg9XX1WTi9I3sODGTHXrt/\nQLXo7N2UJOloOfadf9pHd/7ZNS6ZAAAAAAAAgBNH+QdOYU8fGvl1aftFSZJF089Kkqzr6ZyoSMBR\n6uzbnGmTpub0ptOO+RnTJk1Nc0OT4h8AAAAAAABUIeUfOEUVS8WsPDTy65zTFiVJFk5fkCRZ37Nh\nApMB5eob7M8r+3ZnQeu8FAqFY35OoVBIW/Os7Ny7K8VScRwTAgAAAAAAAJWm/AOnqJGRX0sPjfxK\nkrlTz0xj3SQ7/0CVGI+RXyPap8zKUHEou/f1HPezAAAAAAAAgBNH+QdOUSMjvy45NPIrSerr6nNW\n64Js2/NyBg7snahoQJk29m1OknS0zjvuZ7U1z0qS7NjbddzPAgAAAAAAAE4c5fE1akMAACAASURB\nVB84BRVLxazc8eqRXyMWTe9Ikqzv3TgR0YCj0Nk7Uv4Zn51/kqRrYOdxPwsAAAAAAAA4cZR/4BT0\nUve69B149civEQtHyj89GyYgGVCuUqmUzr5NmTH5tLQ2thz380bKPzv2Kv8AAAAAAABANVH+gVPQ\n0zt+kuTVI79GjJR/1vV0ntBME+XlPTvy421PplQqTXQUOCrd+3vSN9g/LiO/kqS92c4/AAAAAAAA\nUI0aKvXgYrGY//Jf/kuef/75NDY25nOf+1w6OjpGzz/66KP5H//jf6ShoSHXXnttrrvuusPe09nZ\nmVtuuSWFQiHnnHNOPv3pT6euri4PPPBA7rvvvjQ0NOR3fud3snz58gwPD+fOO+/M6tWrMzg4mI9/\n/ONZvnx5pT5NqDpjjfxKkqmTpuSMKe3Z0Lsxw8XhX9gZqNZ8/aVv5qe71uSMKe1ZOH3BRMeBsnX2\nbkqSLGgZn/LPlElTMnXSlOxQ/gEAAAAAAICqUrGdfx5++OEMDg7m/vvvzx/8wR/kj//4j0fPHThw\nIHfeeWe+8pWv5N57783999+fnTt3HvaeO++8M5/4xCfyta99LaVSKY888ki6urpy77335r777svd\nd9+du+66K4ODg/n7v//7DA0N5b777suXvvSldHaeGruXQLnGGvk1YtH0juwfHszWPS+f4HQn1nBx\nOC91r0uSPL1j1QSngaPT2bc5SdLROn/cntnePCs7972S4eLwuD0TAAAAAAAAqKyKlX+eeuqpvOUt\nb0mSLF26NKtXrx49t3bt2ixYsCDTp09PY2NjLrvssjzxxBOHveenP/1pli1bliR561vfmh/96Ed5\n9tlnc8kll6SxsTEtLS1ZsGBB1qxZkx/+8IeZPXt2fuu3fiu33nprrrzyykp9ilCVxhr5NWLh9LOS\nJOt7NpyARBNnY9+W7B8eTJI8s+MnRn9RVcZ7558kaZ/SlmKpmF37do/bMwEAAADgRLrv+f8nX3n6\n/omOAQBwQlWs/NPf359p06aNvl9fX5+hoaHRcy0tLaPnpk6dmv7+/sPeUyqVUigURq/t6+s77DN2\n796djRs35stf/nI+8pGP5FOf+lSlPkWoOkca+TVi0fSDI/rW9dT2zlkv7l6bJGmZNC2793dnQ+/G\nCU4E5SmVStnYtzntzbMyZVLzuD23rXlWkqRrr9FfAAAAAFSfvUN788Mt/5z/tfYHOTB8YKLjAACc\nMA2VevC0adOyZ8+e0feLxWIaGhpe89yePXvS0tJy2Hvq6upedW1ra+thn3HaaafliiuuSKFQyLJl\ny7Jhw4YjZp0xY0oaGl57/BETp62t5cgXcVRWv/x8+g7056rFb8kZs0877HUzZ03NtGemprN/Y03/\n77DhZwfLTb+59DfypSfuzXN9a7Ls7AsmOBWnguP9e7Wtb0f2Du3LZXMuHNe/o2fvnZesTwbq+mr6\n7z5QOdYOoJZZ44BaZX0DasnTWzeklFKGi8Ppb+jOklmHfxEsQLXy/RvwWipW/rn00kvzne98J+98\n5zuzcuXKLFmyZPTc4sWL09nZme7u7kyZMiVPPvlkbrrpphQKhde85/zzz8/jjz+eyy+/PN///vfz\nS7/0S7nooovyZ3/2Z9m/f38GBwezdu3aLFmyJJdddlm+973v5W1ve1vWrFmTM88884hZd+8eqNQf\nA8eora0lXV19Ex2j5nznxceTJOe3nHfEP9+zWuZn9a41eWnzlkyf3Hoi4p1Qw8XhPNf1Us6Y0p5z\np56X5obmPNb5ZN4+9+rUFSq2KRqMy/r2zPY1SZLZk88Y17Vy8tDUJMm6HVvSNcMaDBwd378Btcwa\nB9Qq6xtQa57oXD369jMb12RGqW0C0wCMP9+/AYcrAFas/HP11Vfnsccey/ve976USqV8/vOfz0MP\nPZSBgYFcf/31ueWWW3LTTTelVCrl2muvzezZs1/zniT5oz/6o9x222256667smjRorztbW9LfX19\nVqxYkRtuuCGlUik333xzJk+enOuuuy6f/vSnc91116VUKuUzn/lMpT5FqCo/P/Lr7NMWHvH6hdPP\nyupda7K+pzNL2y88AQlPrM6+zRkcHsySGYvTUNeQi2e9Pv+8/cls6N2YRdPPmuh4MKbOvk1Jko6W\n+eP63HZjvwAAAACoYi/tXj/69oaejcn4/vgMAOCkVbHyT11dXe64445XHVu8ePHo21deeWWuvPLK\nI96TJAsXLszf/M3f/MLx6667Ltddd92rjjU2NubOO+88nuhQk17qXpe+A/1585zLU1935DF3i6Z3\nJEnW1Wj554Xda5Mk58w4uC5dOvui/PP2J/P0y88q/9S4v33h79PZuzm/f9nvVO0uT529m1NIIfNa\n5ozrc5samtLa2JIdA8o/AAAAAFSXvUP7srFvcxZN70jXvl3Z0LtxoiMBAJww1flbT+CoPbXj2STJ\npe0Xl3V9R+v81BXqsq6ns5KxJsyLI+Wf0w7OfH7djLMzpaE5z3T9JMVScSKjUUGlUilPbH8m63s7\n8/zulyY6zjEZLg5nU9+WnDl1dibXN47789uaZ+WVfbtzoDg07s8GAKpXsVTM4PCBiY4BAACHta5n\nQ0op5ZzTFuec08/Krn270zfYP9GxAABOCOUfOAUUS8Ws2rG67JFfSTK5vjHzpp2ZTX2ba64EMFQc\nytqeDZkz9Yy0NE5LkoOjv9ouSPf+nqzv8YqQWtW1d1f2DA0kSf5l+9MTnObYbB/YkQPFA+lorcye\nxe1TZqWUUnbt3VWR5wMA1ekf1v5/ufVH/zV7DgxMdBQAAHhNL+5el+TgCz7Pnnnw5+B2/wEAThXK\nP3AKGBn5tbT9wrJGfo1YOP2sDJUO7jJSSzb0bsqB4oHRkV8jLm2/KEny9I5VExGLE6Czd9Po2yu7\nVmf/8OAEpjk2nb2bkyQdrfMq8vz2KbOSxOgvAOBVfvbK89lzYGB0B00AADjZvNi9LnWFuiyc3pEl\nh8o/XugJAJwqlH/gFDA68qvtoqO6b9H0jiQHt0utJSO/sFhyaOTXiNfNODtTG6bkmR3PGv1Vo0Ze\n6fO6GWdncHgwq7pWT3Cio9fZd7DA1NFSoZ1/mg+Vf/Yq/wAABw0OH8i2PS8nSV7oVv4BAODks29o\nXzb2bU5Hy7w0NUzO4tMP/mzbzj8AwKlC+Qdq3HBx+KhHfo0YKf+s7+msRLQJ80L3uhRSyNkzXl3+\nqa+rz8Vtr0/PYF/W1djnzEGdvZtSV6jLe87+9STVOfprY++mNBTqM2faGRV5ftuhnX+67PwDAByy\ndc+20XL8C3b+AQDgJLSupzPFUnF0t/epjVNyxpT2dPZu8kJPAOCUoPwDNe6l7vXHNPIrSWZMPi2n\nTZ6edT2dKZVKFUp4Yh0oDmV9z4bMmXZGpk2a+gvnL22/OInRX7VoqDiUTf1bM2/amZnXMicdrfOz\n5pUX07O/d6Kjle1AcShb+rdnbsucNNQ1VORjtDXPTGLsFwDwr0bGANcV6rJtz8vpG+yf4EQAAPBq\nL3avS5Kc/XO7vZ/VuiD7hvdn+54dExULAOCEUf6BGvd017GN/EqSQqGQhdM70jvYl137do93tAmx\noaczB4pDWXLa4tc8v2TG4kydNCUrd/zEK0JqzJb+bRkqDqWjdUGSZNkZl6aUUp54+ZkJTla+Lf1b\nM1waTkfLvIp9jMb6xpw2ebqxXwDAqJHyzyVtFyb511+sAADAyeLF3etSV6jL4kO72SfJWdPnJ0k2\n9G6aqFgAACeM8g/UsOHicFbu+ElaJk076pFfI0ZGf63r2TCOySbOC4d+UTGy/eu/VV9Xn6VtF6Rn\nsC9ruzecwGRU2sg/8jtaD/6j/w3tS1NXqKuq0V+dvZuTJAsOfQ6V0j6lLd37ezI4PFjRjwMAVIdN\nfVvSUNeQt8x9UxKjvwAAOLnsHx5MZ9+mzG+Zm6aGptHjZ7Ue/Nn2ht7OiYoGAHDCKP9ADXupe336\nD+zJxe0XHPXIrxEj5Z/1PbXxD6QXd69NIYWcM0YZ6l9Hfz17omJxAnQeKv8sPFScmdY4Na+feW62\n9G/Llv5tExmtbCOfQyV3/kmS9kOjv7r27qroxwEATn5DxaFs7d+euVPPzKLpHWmsb8yLyj8AAJxE\n1vVsSLFU/IXd3udMnZ3Gukl2/gEATgnKP1DDRkZ+XdZ+9CO/RsybNieT6hqyrgbKP4PDB7K+pzPz\npp2ZKZOmHPa6c05blGmTpuaZrmeN/qohG3o3pqm+Ke1T2kaPLTvj0iSpmt1/NvZtTmN9Y86Y2l7R\nj9M2ZVaSZMeA0V8AcKrbtmdHhkrDmd8yJ/V19Vk8/axsH9iRnv19Ex0NAACSHBz5leQXdr+vr6vP\ngtZ52dq/PfuG9k9ENACAE0b5B2rUq0d+LTrm5zTUNWRBy/xs6d+WfUP7xjHhibehtzNDpeHDjvwa\nUV9Xn4vbLkjfYH9e6l5/gtJRSQMH9ublga50tM5LXeFfv/RdOPO8NDc05Yntz5z0Ra99Q/uzfc+O\nLGiZ+6rPoRLamw+Wf7qUfwDglLep7+DY0fktc5Nk9NXUL3bb/QcAgJPDi93rUkghi19jt/ezWhek\nlFI2Hvq+FgCgVin/QI36+ZFfx1sUWDS9I6WUqn571BcOjSdYcoTyT5Jcemi3JKO/akNn36FxWYdG\nfo2YVD8pl7ZflJ7B3tH/f5ysNvVtSSmldLTMP/LFx2lkd6Qde5V/AOBUt6lvS5JkwaGxoyNFeqO/\nAAA4GQwOD6azd1Pmt8xNc0PTL5w/q3VBkoO7ggMA1DLlH6hRT+9YleT4Rn6NWDS9I0myvspHf72w\n++ArQP7t9q+vZWT018odPznpd4ThyDoPFddG/rH/85adcVmSk3/0178WmOZV/GPNaj49hRSM/QIA\nsqlvS+oKdTlz2hlJkgUtczO5vjEv2PkHAICTwLqezgyXhnPOjNfe/X7h9EPlnx7lHwCgtin/QA0a\nLg5nZdfq4x75NWLhofLPuiou/wwOD2ZD78ZDrwBpPuL19XX1Wdp+YfoO9Oel7nUnICGVtGG0/POL\nu+Ysmt6RmU0z8kzXT7J/ePBERyvbxt6DWxMvOAE7/zTUNeT0phnZsber4h8LADh5DReHs7l/W+ZM\nPSOT6hqSHPw+efFpC7NjYGe69/dMcEIAAE51Lx762e05h/k5+GmTp+e0ydOzvndjSqXSiYwGAHBC\n/f/s3XeUW+d5Lvpnow3qAJiC6Zg+JCW2GRZRsqxm9WrZsZ0TLzsnjksclzTHybrHJ2vd5OTkxrGT\nE8t24shO4sRx4mNLtrqo3iX2YRPJwRRgML2hd2Dv+wewRyNpSE4BsIGZ57eWFpdmgO97SZEi9t7v\n9z5s/iHagOTIr92OHeuO/AIAi84Mh6EGI0FP2U7BudwJkOXIU5OOMfqrrEmSBHdwFPYKG6wVle/7\nvkpQYV99H5KZJE7OnlGgwpXxBL0waYyoMVQVZT+HsQahZBixdLwo+xEREVHpmY7OIiWm0GJpetfX\ne2xy9Beb5ImIiIhIWa7ctPdO68WnvbdVOhFMhuBL+ItYGREREVFxsfmHaAOSI7/6HDvytma7tRWx\ndBxTkZm8rVlMLl82lkB+ULESXbYOWLRm9M+cRkbMFKo0KjBfwo9QMozWZab+yPbX9wEo3eivcCqC\nufgCnJXNEAShKHs6jDUAgNkYo7+IiIg2K29oHADe3/xjz36mHvAx+ouIiIiIlJPMpOAJjqLZ0gij\n9uLT3uVp4PJ0cCIiIqKNiM0/RBtMviO/ZB256K+RMo3+GvAPQSWo0Gm7+AmQ91IJKux27EA4FVkc\nH0vl51KRX7I6Yy1aK1twfsGFQCJYrNJWzBvMPnhrtTQXbc9aQ675J8rmHyIios3qYs0/zeZG6NV6\nDPjZ/ENEREREynEHPUhLmYtGfsnaKp3Z1wdGi1EWERERkSLY/EO0wbj8w3mN/JJ1WNsAZOOzyk08\nnYA76EWLpQkGjX5V7+3LRX+dYPRX2XIHsxf1l2r+AbLTfyRIODrdX4yyVsUTyjYwOS/zc8gnefLP\nTHS+aHsSERFRaRkNjUOAgGZzw7u+rlap0WVrx1xsHr44oxOIiIiISBkDuRjayzX/OCuboRJUGAmy\n+YeIiIg2Ljb/EG0wcpNKPiO/AKDe5IBercdw0J3XdYthJOCBKImrivySddnaYdGZ0T97htFfZcod\n8EKAgJbLTM3Z69gNlaDCoaljRaps5TzBMQBAa2XxJ//MxGaLticRERGVDlESMRYeR73JAZ1a977v\nM/qLiIiIiJQ26B+GAAFdl5n2XqHWodFUD29ojPd4iYiIaMNi8w/RBlKoyC8gG4HVbnViJjqHcDKS\n17ULTY4j6LavvvlHJajQW7uT0V9lKiNm4A2NocFUB72m4pKvNetMuLJ6C8bDkxgPTxapwpXxBL2w\n6iphq7AWbc9qvR0qQcXYLyIiok1qNjaPRCb5vsgvWbc9e73B6C8iIiIiUkIqk8JIcBRN5gYYtcbL\nvr7N6kRKTJfcfT8iIiKifGHzD9EGUqjIL1m7tRUAMBIsr+ivAd8QVIIKnbnostWSpygdnzmZx6qo\nGCYj00iKqcVc78vZX78HAHB46nghy1oVfyKAQDIIZxGn/gDZOI8aQxVmYmz+ISIi2oy8oXEAuGjz\nT7O5EQaNAS4fG+SJiIiIqPjcwVGkxfRiU/rlyPcH3Yz+IiIiog2KzT9EG0ihIr9kHbnmn+FA+TT/\nxNNxjIbG0Gppuezkl4vptLWjUmdh9FcZ8gS9AIC2ypYVvX5H9TYYNHocmToBURILWdqKLUZ+WVb2\nc8gnh6EGkVQUkVS06HsTERGRshabf8zLN/+oBBW6bR2Yjy9gPuYrZmlERERERBjITWnvtq1s2nt7\n7v6gO3e/kIiIiGijYfMP0QZRyMgvWVulEwIEDAfcBVm/EIYCboiSuOITIMtRCSr0OnYgkopiwMdY\ng3Iin+Rps65s8o9WrUVv7U4EksGS+W89mrsh0VrkyT8AUGusAQDMMPqLiIho05Gbf5otjRd9DaO/\niIiIiEgpg75hCBDQZWtf0esdxloYNPqym2pPREREtFJs/iHaIAod+QUABo0ejeZ6eILespmAIzdw\n9NhXdgLkYvocuwAAx3PTlag8uINe6FRa1BsdK37P/vo+AKUT/eUJZSf/FDv2C8hO/gGAWUZ/ERER\nbSqSJMEbGofDUAODRn/R1/XkTlm7SqRpmoiIiIg2h5SYxkjQg0ZzPUxa44reoxJUaLW0YCY6xynX\nREREtCGx+Ydog3gn8mtnQfdpt7YiJaYxFp4o6D754vINQy2o0WFtW9c6HdZWWHUWnGT0V9mIpxOY\njEzDWdkMtUq94vd12tpQpbfjxOxpJDLJAlZ4eZIkYTQ4hhp9FcxaU9H3dxhrAXDyDxER0WYzH/ch\nmo6hxbJ85Jes0VwPk8aIAd8QJEkqUnVEREREtNl5gl6kxDS6VzkBvz03HZzRX0RERLQRsfmHaANY\njPzSmVc85nStOipbAQDDgdIfjxpLxzAaGkNrZQsq1Lp1rZWN/tqJSDqKC77BPFVIheQNjUGChNZc\nnvdKqQQV9tf1IplJ4uTsmQJVtzLz8QVE0tFV/xzypZaTf4iIiDYlOfLrcs0/KkGFLnsHfAk/5uML\nxSiNiIiIiGhx8mT3Kqe9t1XKzT+jea+JiIiISGls/iHaABYjv2oLF/klkyfoDAfcBd0nHwb9I5Ag\nrTvyS9abm6rE6K/yIJ/gkS/qV6NUor88uZ+DEpFfAGDXW6FRaTATnVVkfyIiIlLGSpt/gHeivwZ8\nwwWtiYiIiIhI5vJnP3t2WVd3EFY+YMfmHyIiItqI2PxDtAEcL1LkFwDUGKpg0ZrLYvKPK/cAQn4g\nsV7Z6K9KnJw9g7SYzsuaVDjvNP+sfmpOncmBVksLzi+4EEgE813ainmCYwCAVosyzT8qQYUaQzVm\novOM8iAiItpEVtX8Y5ebf4YKWhMREREREQCkxTSGAx40muph1plW9V6LzowaQzU8AS/vdREREdGG\nw+YfojKXETM4WaTILwAQBAEd1lb4EwH44v6C77ceA/4haAQ12q2teVlPJajQ59iJaDq2IaK/NvoF\nrjs4ikqdBfYK25rev7+hDxIkHJ3uz3NlK+cJeSFAWNGDt0KpM9QgnokjnIooVgMREREVjyRJGA2N\noVpvh0lrvOzrG0x1MGtNcPmHNvznSyIiIiJSnic4hpSYQre9Y03vb6tsQSQdZcw9ERERbThs/iEq\nc3LkV28RIr9kcjNNKUd/RVMxjIUm0GZ1QqfW5m3dvrqNEf01FZnGn7z6/+L18UNKl1IQ/kQA/kQA\nrZUtEARhTWvsdeyGSlApFv0lSiJGQ+OoMzmg1+gVqQEAao01AICZKG+IEBERbQaBZBDhVGTFzceC\nIKDb1gF/IoDZ2HyBqyMiIiKizc7lz06c7F7jtPf2yuy97ZEAo7+IiIhoY2HzD1GZk5tQeosQ+SXr\nsLYBKO0LpEH/MCRIa74IvJi2SidsFVacnD1b1tFfDw0+jkg6ikMKNbYUmmcdkV8ys86EK6u3YCw8\ngYnwVL5KW7Hp6CySmaRikV8yhyHX/MPTUERERJvCaC52dDWTB+XoLxejv4iIiIiowFy+YQBY8xT8\nNmv2fqE7d/+QiIiIaKNg8w9RGSt25JfMaWmCWlBjOOAp2p6rNZA7ASI/iMgXOforlo7h/IIrr2sX\ny7n5Abw9fwEAMBL0IJ5OKFxR/rkXm3+c61pnf/0eAFBk+o/cwNS6jgamfHhn8s+sonUQERFRcXhD\n4wDW1vwjfwYnIiIiIiqEtJjGcMCNBlMdLDrzmtZoMjdCI6jhDpbuwVYiIiKitWDzD1EZUyLyCwC0\nai2cliZ4w+NIZpJF23c1XL5haFQatK+z+WM58pSlcoz+EiURDw8+DgECtldvgyiJGPQPK11W3snN\nP851Ts3ZUb0NBo0eR6ZPQJTEfJS2Yp7cqfvWSoUn/+Saf2YZ+0VERLQpeMOrb/6pMzpg0Znh8g1B\nkqRClUZEREREm9xoaAxJMYVuW8ea19CqNGixNGEsPIFkJpXH6oiIiIiUxeYfojKmROSXrN3aClES\nFxsUSkkkFcV4eBLtlU5o1dq8r99W2QJ7hQ2n5s4iVWbRX29OHMFEZAoHGvbiQ84PAgDO+8pzgtHF\niJKI0aAXdUYHjFrDutbSqrXord0JfyKAgSLHWHhCXqgFNZrMjUXd972sukroVFrGfhEREW0S3tAE\nbBVWVOosK36PIAjosXUikAxxWiARERERFYwc+dW9zmnvbZVOiJKIsVzjOxEREdFGwOYfojKlVOSX\nrMPaBgAYKcHoL5d/GBKkvEd+yVSCCr2OHYil4zi/MFCQPQohno7jseGD0Kl1uLvjVrRb26BVaXFh\nYVDp0vJqOjqLeCaBtjzFZe2v7wNQ3OivtJjGeGgCjeZ6aFWaou27HEEQUGuswWx0jif5iYiINrhg\nMgR/IoAWy+qbj7sXo7823lRJIiIiIioNrtxnzfXeD2+zZqfFjwQY/UVEREQbB5t/iMqUUpFfsvbc\nBdJw0F30vS/HlZvQ0mPvKtgefY5dAIATM6cLtke+Pet5CaFUGLc6b4CtwgqtSoMuWzsmIlMIJIJK\nl5c3cuRXvpp/Om1tqNLb0T97umgxdxPhKaSlDFrXGVuWLw5DDZJiCoHkxvl9QkRERO/nDU0AAFrM\nK4/8kvXkohdcRZ6WSERERESbQ0bMYCjgRr3Rsaoplctpq8ze23YH2fxDREREGwebf4jKlJKRXwBg\nq7CiWm/HcMBTctNABnxD0Ko0aM1T88dy5Oivk7PlEf21EPfhee8rsFVY8SHndYtf31rVDQC44Ns4\n03/ki/Z8/fdXCSrsr+tFIpPEydmzeVnzcjyhbANTIX8Pr0atsQYAMBNl9BcREdFG5g1lI31bLKtv\n/nEYa2HVWTDgHyq56wMiIiIiKn+joTEkM0l02TvWvVa13g6z1rR4iJCIiIhoI2DzD9F7iJKodAmX\npXTkl6zd2opIKoqZWOk0BISSYUxEptBhbStoXJIgCOir24l4pjyivx4dehopMY17O26HTq1b/PpW\ne7b55/yCS6nS8s4T9EKj0qDJ3JC3NYsd/TUazD54K5XmH4exFgAwy+YfIiKiDc0bGgewtuYfQRDQ\nbe9EKBnGdHQm36URFY0kSXAHR8vi3gAREdFmIkd+yRMn10MQBLRbnViI+xBIhNa9HhEREVEpYPMP\n0RJvTBzBn7725zgzd07pUi5J6cgvWYe1DQAwHPAoVsN7DfpHAAA99s6C79WXm7p0bPpUwfdaD3dw\nFEemT6DF0oR99b3v+l6juR5mrQnnF1wb4oR2MpPCeHgSLeZGaPLY/FVncqDV0oJzCwNFuSHgCY1B\nq9Ki3ugo+F4r4TDkJv+UUKMfERER5Z83NA6L1gxbhXVN7++xZT+DDzD6i8rY0el+/M3R7+I5z8tK\nl0JERERLuHzZ5p8uW37u+zL6i4iIiDYaNv8Q5cTScfxq6AlEUlE8eObfcWGhdGOQ5MivPoUiv2Qd\n1lYAwEjArWgdS8kPGrrzdBF4Ka2WFlTp7Tg9dxapTKrg+62FJEl42PU4AOCjXXe/r1lMJaiwtaob\ngWQQUxvghPZYeByiJC5evOfT/vo+SJBwbPpE3tdeKplJYjIyjRZLE9QqdUH3WikHY7+IVuzodD8O\nul9ARswoXQoR0apEUlHMx31osTRBEIQ1rdFtZ/MPlb8juc/7z4y+iEgqqnA1REREBGQn4Q8FRlBn\nrIW1wpKXNdn8Q0RERBsNm3+Icl70vopIKopdtdsBScI/nv7XkppoI1sa+dWpYOQXADSa6qFT60rq\n12nAPwSdSovWyuaC7yUIAvocOxHPJHCuRKO/+mfPYCjgxq6aKxcfxrzXlg0U/SXndBciLmtP3S6o\nBFXBo7+8oQmIkliU38MrZdaaoFfrOfmH6DKSmSR+ev4XeHT4aTzQ/yBCjwtROwAAIABJREFUybDS\nJRERrdh6Ir9ktYZq2CqscPmHN8RUSdp8oqkozi+4oBJUiKXjeNbzktIlEREREQBveByJTBJdeYj8\nkrVWtkCAAHeAzT9ERES0MbD5hwhAOBXB86OvwKw14dPbPoHPbP8k0mIa3z/5I3hDE0qX9y6lEvkF\nAGqVGm2VTkxGphFNxRStBQBCyTCmItPosLblNfLpUuTpS/I0plKSEtP41eATUAkqfLjrzou+bmtV\nF4AN0vyTu1gvxOQfi86MK6q2wBuewER4Ku/ryzyhbAOT01I6zT+CIMBhrMFcbB6iJCpdDlHJOjX3\nNhKZJCp1Frj8w/jm0QdK7nMEEdHF5KP5RxAEdNs6EU5FMBmZzldpREVzcu5tZKQMbmu9EbYKK14a\nex2BRFDpsoiIiDY9OfKrJ4/NPwaNHnUmBzwhL+93ERER0YbA5h8iAM96XkI8k8DtbR+CXlOBXbXb\n8altH0c8ncB3+x/EVKR04pCOz5wEoHzkl2wx+qsExqPK8QI9F5lwUwhOSzOq9VU4NXcWyRKL/npl\n7A3MxRdwfdM1cBhrL/q6Kr0dDmMNXP6hso+p8QS9MGmNqDFUFWT9/fV9AFDQ6T+eAk4vWg+HsQZp\nMQ1fPKB0KUQl68hUNibkq72fx93tt2Ih7sPfHvteSTaIEhG9Vz6af4B3Posz+ovK0Ync39n76/fg\njrYPISWm8JT7eYWrIiIiIpc/2/zTZc9f8w8AtFc6kcgk2bhOREREGwKbf2jT8ycCeHnsddgrbLi2\n8arFr++v78Ovb7kf4VQED/Q/iLnYgoJVZmUjv86WROSXbLH5J+BWthC8cxFYzOYfOforkUni3MKF\nou17OeFkBE+5n4NRY8Ad7Tdf9vVb7T1IZJIl0cS1VqFkGHPxhezIXkEoyB47aq6AXq3HkekTBTsR\nNBocg0GjR62huiDrr1WtoQYAMMvoL6JlhZMRvL1wAS3mRjSY6nBH+834/I7fhCAI+NGZn+Cx4YM8\nSUhEJc0bGodBY0C13r6udeTP4i4/m3+ovMiRXy3mRjiMNbi6YR9qDdV4feIQ5mLzSpdHRES0aWXE\nDIb8bjgMNbBVWPO6dlvu8J27jO+JEhEREcnY/EOb3tPuF5AS07iz/WZo1dp3fe/apgO4v+su+BMB\nfOfEP8GfUHbixTuRXzsVj/yStefilYYDHoUryZ4u1ql1RY9LKsXoryfdzyGWjuOO9pth0hov+3o5\n+utCGUd/yRNz2iyFm5ijU2vR59gBfyKwOG44n6KpGGZic3Bamkvmz7jMYcw2/8xEZxWuhKg0HZ85\nBVESsbe+d/Fru2qvxNf2fBk1hmo87X4e/3T6x4il4wpWSUS0vFg6jpnYHFosTetuoq7W22GvsMHl\nG2bTI5UVOfKrN3d9p1apcXf7rRAlEY8PP6twdURERJvXWHgC8UwcXXmM/JK15w62ugNs/iEiIqLy\nV1pPFomKbC42j9cnDsFhqMFV9XuWfc3NzutxZ9vNmI8v4DsnHkQoGS5yle94J/Jrh2I1vJdRa0S9\nqQ7u4KiikVGBRBDT0Rl0WduhVqmLuneLpQk1+iqcmnu7JKK/piMzeHX8TdQaqnFd09Urek+PvRMC\nBJz3lW/zj1tu/rE6C7qPHP11aOpY3tceDY0BKL3IL2BJ8w8n/xAt68j0CQgQsLdu97u+3miux9f3\nfgVb7d04PXcO3zr2PcxE+eeIiErLWGgCAOBcZ+QXkJ2M2WPvRCQdxUR4at3rERWLHPnVuyRiu69u\nF5rMDTg6fQLj4UmlSiMiItrU5Gnv3XmO/AKABlMddGrd4n1FIiIionLG5h/a1J4ceQ6iJOKujlsv\n2TByZ/st+FDLdZiOzuC7/T9ENBUrYpVZGTGD/tkzJRX5JeuobEUik8SEgtnISkR+yQRBQF/dLiQz\nSbxdAtFfvxx6EqIk4sNdd0Gj0qzoPQaNAW2VLXAHvWU7lUKe/NNawMk/ANBpa4e9wob+2dNIZpJ5\nXXs0mGv+KfL0qpVwyLFfbFogep/52AKGA2502zqWHUFu0hrxu7s+g5taPoipyDS+efQBnJsfUKBS\nIqLlecPjALJN7fnwTvRX/iclEhXCeyO/ZCpBhXs7bocECY8NH1SwQiIios1Lnr7dXYDJPypBhVZL\nMyYj04iX6T1RIiIiIhmbf2jTmghP4fDUcTSZGxZjmy5GEATc33UXrm28CmPhCXz/5I8QTyeKVGnW\ngH8IkVS0pCK/ZB258agjAbdiNQz4hgAU5gTISixGf02fVGR/2YBvEKfn3kaXrR27aq5c1Xu3VnVD\nlES4cr+W5USSJHiCXtQYqmHWmQq6l0pQYX99HxKZJE7Ons3r2p5QroGpBCf/GLVGmLRGTv4hWsaR\n6X4AwL4lkV/vpVap8dHue/CpbR9HKpPE907+CM+PvgJJkopVJhHRRXlD+W3+6bZlm38GyvBzJW1O\n7438WurK6q3osLbh9NzbJRF3TUREtJmIkoihwAhqDNWw620F2aOt0gkJEjy5Q3lERERE5aq0OgiI\niuiJkWcgQcI9HbetqJlGEAR8Ysv92FfXi5HgKH5w+sdIFTHiSR5BXkqRXzK5+UfJG6Eu3xD06gq0\nmPPzwGK1ms2NqDVU4/T8ubxPg1kpURLxkOtxAMBHuu6GIAirev8WezcA4LxvMO+1FdpsbB6RdBRt\nRWqakaO/Dk8dz+u6nuAYLFrzspNDSoHDUIO52IKiEX9EpUaSJByZPgGNoMbu2sv/HX2gYS9+v++L\nqNSZ8fDg4/j3c/+3qJ8niIiW4w2No0KtQ62hOi/rVRvsqNZXweUfhiiJeVmTqJCWi/ySCYKA+zrv\nAAA8OvQUG3eJiIiKaCw8gVg6XpCpP7I2qxMA4A6OFmwPIiIiomJg8w9tSp6gF/2zZ9Be2Yrt1dtW\n/D6VoMKntn0cu2quxIBvED8885OiPASXI78qdZaSi/wCAIexFiaNUbHmH38igJnYHLps7ZeMbysk\nQRDQ69iJZCaJs/PKRH8dmjqOsfAE9tf3rWlyTLvVCZ1ahwsLrgJUV1jyxXlbpbMo+9WbHGi1tODc\nwgACiVBe1gwmQ/Al/GitbF5141ax1BprIEoi5uM+pUshKhlj4UlMRaaxvWYbjFrDit7TbnXi6/u+\nirZKJw5NHcPfHf9H+BOBAldKRLS8ZCaJqcgMms1NeZ0w2mPvRCwdw3h4Mm9rEhXCxSK/luqyteOK\n6i1w+Ydx3ld+10tERETlarCAkV8y+TDhCJt/iIiIqMyx+Yc2pceGDwIA7u28fdUP2dUqNX5r+yex\nraoHZ+bP4cdv/1fBT7PKkV+7a3eUXOQXkG18abe2Yj6+gEAiWPT934n86iz63kv1OXYBAI7PFD/6\nK5FJ4rGhp6BVaXFvx+1rWkOj0qDb1oGp6Ax8cX+eKywsT7D4cVn76/sgQcKx6RN5WU/+OThLMPJL\n5jDUAgBmGf1FtOjIdHYC2L66i0d+LcdWYcXv934BV9XvgSfkxV8f+Q5GGCVCRAoYC09CggRnniK/\nZPIDGkZ/Uam7VOTXUvJ11qNDT3P6D5U9SZJwaPIY/sfrf4mfnHxY6XKIiC5qwJ9r/rEXrvnHVmGF\nvcIGd3CUf8cTERFRWSu9LgKiAnP5hnBuYQBb7d3oWWOziFalwed3fBqd1jYcmzmJn55/qKANQKUc\n+SWTo7+UeHDpyj1Q6LEp2/zTbG6Aw1CDM3PFj/56zvMSAskQPuS8bl3511urstFfF8os+ssd9EIl\nqNBibizannvqdkElqPIW/TWayxVvtTTnZb1CcBizUSAzUTb/EAHZuMVj0ydh0OhxZfXWVb9fq9bi\nU9s+jo9234NQMoz/c/wf8ebEkQJUSkR0cd7QOACgJc/NP/K1Fpt/qNRdKvJrqRZLE/ocOzEaGkP/\n7JlilEZUELPReXy3/4f4t3M/gz8RwEHXy4in40qXRUT0PqIkYsg/gmp9Far09oLu1VbZglAyjIUy\nOxBJREREtBSbf2hTkSQJj+am/tzTedu61tKpdfjirt+C09KENyeP4CHXYwU5GVDqkV8yuflHieiv\nAf8wDBo9mi3Fa/xYjiAI6HPsRFJM4cz8+aLt608E8Nzoy6jUWXCL84Z1rbXVnm3+OV9G0V9pMY2x\n0DiazQ3QqrVF29eiM+OKqi3whicwEZ5a93qeUK75p4Qn/9TmYhDY/EOUNegfgT8RQG/tjjX//0cQ\nBNzU8kF8efdnoVPr8JPzP8cvBh4tSqwoERFQuOYfu96GWkM1Bv0jBZ+USrRWK4n8WurujtugElR4\nbPgg/66mspMRMzjofgF/efjbOO9z4YrqLfhg09VIZJI4PnNa6fKIiN5nPDyFaDpW0MgvWZvVCQBw\nBzmRl4iIiMoXm39oUzk7fx7DATd21VyJtkrnutczaAz40u7PotFUj5fGXsfjucaifCr1yC9Za2UL\nVIKq6M0/vrgfc7F5dNnaS+LXp69Ojv46VbQ9Hxs6iKSYwj0dt0GvqVjXWg2mOlTqLDjvc5XNmNvx\n8CTSUgatefgzvVr76/sAYN3TfyRJgifoRZXeDovOnI/SCsJhyD4QYewXUdaRqWzs37761UV+LWdr\nVTe+vveraDDV4cWx1/Ddkz9COBVZ97pERJfjDY1Dq9Kizlib97W7bZ2IZ+KLDUZEpWalkV+yOmMt\nDtTvxXR0Jm8TQImKYSTgwf935O/x6PDT0Gv0+MyVv4Hf3fkZ3Np6AwQIeGvyqNIlEhG9z2ARIr9k\n8rMCd9Bb8L2IiIiICkX5J+VERSJKIh4bPggBAu7uWN/Un6XMWhO+vPtzqDVU42nPC3jG/WLe1gaW\nRn6t7GakUnRqHZrNDfCGxpDKpIq270CJRH7JGk31qDPW4szcOSSKEP3lDY3j0NQxNJkbcKBh77rX\nEwQBW+zdCCXDmIisf5pNMcgX5W0KTMzZUXMF9Go9jkyfWNeJ9oW4H+FUpKQjvwBAr9GjUmfh5B8i\nACkxjROzp2GrsKIrT6cQa43V+NqeL2FnzZUY8A3ib448kJfJYkREF5MS05iITKHZ3AC1Sp339Rn9\nRaVupZFfS93ZfjM0Kg2eGHkWKTFdqNKI8iKWjuFnF36Jbx/7PiYiU/hA43782VVfw5663RAEAVV6\nO7bXbcFQYITXeURUcly5z5DFmPzjtDRBJagwEhgt+F5EREREhcLmH9o0Tsycxlh4AnvretFors/r\n2tYKC76y+/OwV9jwyPBTeGns9bys++7Ir7a8rFlI7dY2pKUMvOHinewd8OcuAu2l0fwjCAJ6HTuR\nElM4M3euoHtJkoSHXY9DgoSPdN2dt8lHW6u6AAAXyiT6yx3MXpQr0fyjU2vR59gBfyIAl294zet4\nQtkGJmdlaTf/AECtoQYLcR/SfNBBm9zZ+fOIpWPYU7crr5Pn9Bo9PrfjU7ij7WbMxRfwN8e+i/7Z\nM3lbn4hoqcnwFERJzHvkl0w+pe3yr/1zElGhrDbyS2bX23Bd09XwJfx4bfytAlZItHaSJKF/5jT+\n4q1v45XxN1FnrMUf9H0Rv7H112DUGt/12hvargYAHJo6pkSpRETLEiURg/4RVOntqDZUFXw/nVqH\nJnMDvOFx3vMiIiKissXmH9oUMmIGT4w8A5Wgwl3ttxRkj2qDHV/t/RwsOjN+PvAI3szDyORyifyS\ndVhbAaCo0V8u3xCMGgOazA1F2/Ny5ClNhY7+Oj33Ngb8Q9hevRVbq7rztq681jlfeTT/eIJe6NV6\nOAoQVbES+Yj+Gg2OAQBaLcVvYFoth7EGEiTMxRaULoVIUYuRX3V9eV9bJahwd8et+Oz2TwGShAdP\n/xueHHl2XRPGiIiWMxrKfgYpVPOPrcIKh7EGQ/4RZMRMQfYgWqvVRn4tdWvrjahQ6/C0+3nE04kC\nVEe0dr64Hz84/WM8eObfEUlFcHf7rfjT/b+PLlv7sq/f37wberUehyaP8fMmEZWMycg0IuloUab+\nyNoqnUiLaYyHJ4u2JxEREVE+lX43AVEeHJ46junoLK5p2IdaY3XB9nEYa/GV3Z+DSWPEf5z7+bqb\nP45Pl0fkl6zYzT/zsQXMx33otnWUVHNUNvrLgbPz5wp2IzgjZvDLoSegElS4v+uuvK5tq7Ci3ujA\noG+45E+6RFNRTEdn0VrZrNjvgU5bO+wVNpyYPYXkGqPePEF58k9hHrzlk8OQPRU9E51VuBIi5cTS\nMZyZP4d6Ux2aC9h82uvYga/t/TKq9XY8MfIsfnTmJ3zASER55Q1lJ3YWqvkHyMbzxjMJjIaKNx2U\naCXWEvkls+jM+FDLdQinInjR+1q+SyNaE1ES8aL3NfzFoW/h9Nzb6LZ14P/Z/we4o/1maFWai76v\nQqPDnrqd8CX8jGkkopIhT9guZvNPe6UTADASZPQXERERlafSeVpOVCApMY0nRp6FRqXBHe03F3y/\nJnMDvrT7t1Gh1uFfzv50zdFPGTGDk3PlE/kFAPYKG2wVVgwH3JAkqeD7DeTiA0ol8ksmCAL6HDuR\nEtM4O1+Y6K9Xx9/CTHQO1zZehXpTXd7X31rVjaSYwkgRpzithSd3Wr0td3GuBJWgwv76PiQySZya\nPbvq94uSiNHQOOqMtTBoDAWoML/kSISZ2JzClRAp58TMGaTFNPbV9UIQhILu1WRuwNf3fhU9tk70\nz57Bt499D3Ox+YLuSUSbhzc0AY2gRkMBPk/KenKf1V1+PlCm0rHWyK+lbnJeB5PWiOdGX0Y4Fclz\nhUSr4w1N4FtHv4dfuB6FWlDjk1s/ht/r/QLqTI4Vvf9Aw14AwFt5mGJNRJQP8mfHYt73bavMTuR2\nB7xF25OIiIgon9j8Qxve6+OH4Ev4cX3TNbBVWIuyZ2tlC35n529BLajxwzP/vqaTU3LkV6+jPCK/\ngGzTS7u1FaFkGPPxwkcCuXK/rj0l1vwDFDb6K5qK4smRZ6FX63FngWLs5Oiv877BgqyfL/LFeGul\nsnFZcvTXoenVR3/NRucQz8ThLIPILwCozT0cmY2y+Yc2ryPT2civvXW7i7KfWWfCl3d/Ftc3X4OJ\nyBS+eeQBXFgo7f8/E1Hpy4gZjEcm0Wiuh+YSEyHWq8uW/azOaRJUStYT+SUzaPS4rfUmxDNxPOt5\nKX/FEa1CIpPELwefwDePfgeekBf76nrxZwf+GNc07ltVk3p7ZSscxhr0z55GLB0rYMVERJcnSiIG\n/SOwV9hQrbcXbd9aYw0MGgPcwdI+DElERER0MeXRUUC0RolMEk+7n0eFWodbW28s6t7d9g58fsen\nIUoS/uHUv6x6gooc+dVbWx6RX7JiRX9JkoQB3xBMWmNBTyqvVaO5HvWmOpydP494Op7XtZ9yP49I\nOorb226CRWfO69oyOUrt/IKrIOvniyeUHcPbpnDzT73JAaelGecXXAgmQ6t6rzy9qLWyuRCl5V2t\nIRudOMPJI7RJ+RMBuHxD6LC2osZQVbR91So1Pt7zYfzG1o8inknguyd/iJe8rxdl0h4RbUxT0Rmk\nxXRBI78AwFphQb3RgaGAGxkxU9C9iFZqPZFfS13XdDVsFVa8PPY6/IlAPkojWrGz8xfwl4e+jedG\nX4a9woYv7/os/vuV/21N9wkEQcCB+r1IienF+1FEREqZiswgnIqg295R8Gm7S6kEFdoqWzAbm+dU\nPyIiIipLbP6hDe0l72sIpcL4UMt1MOtMRd//iuot+Mz2TyItpvG9k/8Mb2hiRe8rx8gvmdz8U+i4\nqPn4AnwJ/2KTSinqq92BlJhec/Tbcmaic3h57A1U6+24ofkDeVv3vfQaPdoqnfAEvYimSvPUnyRJ\ncAe8sFfYYK2oVLoc7K/vgyiJODrdv6r3eYKlMb1opXRqHWwVVsxEZ5UuhUgRR6f7IUHCvrpeRfb/\nQONV+P2+L8CkNeLnrkfwH+d/gZSYVqQWIipvo6FxACh48w+QndSZzCQXm56JlJSPyC+ZVq3Fne03\nIyWm8ZT7+TxVSHRpwWQI/3L2p/j+yR/BlwjgFucN+MZVf4ht1T3rWnd/fR8ECHhritFfRKQsl38Y\nQPZwYrG1VToBvHO/joiIiKiclOYTc6I8iKZieHb0ZZg0RtzkvE6xOnbXbsentn0c8XQc3+1/EFOR\nmcu+Z8BXfpFfsmZzI7QqTcEn/8ixAcXMfV6t3gJEfz0y9BQyUgb3dd4JrVqbt3WXs7WqGxIkDPhL\nM6JhIe5HKBVWfOqPbG/dbqgEFQ5PrS76yxMcg0pQodncUKDK8s9hqIE/EUAyk1S6FKKiOzp1AipB\nhT7HLsVq6LC24U/2fhVOSxPenDyCvz/+AwQSQcXqIaLy5C1i84/8mZ3RX1QK8hH5tdSB+r1wGGrw\nxsRhzEY5HZMKR5REvD5xCH/+1rdwdLofrZUt+JO9X8WHu+6ETq1b9/p2vQ1bq7oxHPBgegX3roiI\nCsUl3/e1Ff++b7s12/wzEhgt+t5ERERE61VeXQVEq/D86MuIpWO4pfUGGDR6RWvZX9+HT2y5H+FU\nBA/0P4i52MIlXy83i5Rb5BcAaFQaOC0tGA9P5j3uaqkBX/YESI8CF4Er1WiuR4OpDmcXLuTl12LQ\nP4L+2dNor2xFX55uVF/KVns3AOBCiUZ/uYPZi/BSmZhj0ZlxRVUPvKFxTEamV/SejJjBWHgcDaa6\nvNysLRb5hPQso79ok5mKTMMbnsAVVT2KTBRcyq634Q/6fhf76noxEvTgm0cf4MlEIloVbyjbgNxo\nKnwDsnxq28XmHyoB+Yr8kqlVatzdcStEScTjIwfzsibRe01FZvD3J36An55/CJIk4mM99+Fre76E\nZktjXvc50LAXAPDW1LG8rktEtFKSJMHlH4atwlrUqG2ZfJ9Rvu9IREREVE7Y/EMbUjAZwgtjr8Gq\ns+D65muULgcA8MGmA7i/6y74EwE8cOKf4E8Eln2dHPllLcPIL1mHtRUSJLgL9BAyexE4BLPWhAZT\nXUH2yJc+x06kxTROrzP6S5REPOR6DADw0e67i5J33VbZAr26AudLtPlHfsgtj+MtBfvr+wBgxdN/\nJiLTSIlptFpKo4FppWrl5p/onMKVEBXXkVysn1KRX++lU2vxm1f8Ou7vuguBRBB/e/wfcGiSD2qI\n6PJEScRYaAL1Rgd0BZ4mCWSbpBtN9RgKuJFmVCEpKJ+RX0v1Onai2dyIY9MnMR6ezNu6RCkxjSeG\nn8FfHf47DPpHsKt2O75x1R/hhuYPFGRS9M6aK2HQ6HF46jhEScz7+kRElzMVnUE4FUG3raMo9z/f\ny6w1odZQDXfQy/8PEhERUdlh8w9tSM+4X0Qyk8TtbTeX1DSNm53X4462mzEXX8ADJx5EKBl+32vk\nyK/dZRj5JeuwtgIARgoU/TUbm4M/EUC3vVORi8DV6MtT9NfR6X6Mhsawx7EL7blf30JTq9Totndg\nJjaH+ZivKHuuhjs4CgFCUaIqVmpHzZXQq/U4MnViRTcIRkPZBqbWyuZCl5ZXDkP2QckMm39oE5Ek\nCUenTkCn1mFH7ZVKl7NIEATc7LweX9z1GWhVGvzbuZ/hB6d+jIV46f1/m4hKx0x0FkkxVdTPUd32\nDqTEVMEOCBCtRL4jv2QqQYV7O2+HBAmPDj2d17Vp83L5hvBXh/8OT7qfg1lnxud3fBqf3/Fp2PW2\ngu2pU2uxx7EL/kSgZA8CEdHG5spNe5cnRyqhrbIVsXSMh96IiIio7JRnZwHRJSzEfXh1/E1U66tw\nTeM+pct5n7vab8FNLR/EVHQG3+v/IaKp2Lu+X86RXzK5OWW4QM0/rsXIL+UuAleq3lSHRlM93p4/\nj9gao7+SmSQeGXoKGpUG93XekecKL22rvQcAcMFXWjf9MmIGo6FxNJrroddUKF3OIp1ai17HDvgS\nfgz6hy/7ek9wDEDpRJetlHxKeibGmyC0eYwERzEXX8Cumu2oKKHGYtmV1Vvw9b1fQZetHafmzuIv\nDn0bz42+jIyYUbo0IipBo6FxAIDTUrwGZDmul9FfpKR8R34tdUXVFnRa23Fm/hyGA+68r0+bRyQV\nxX+c+zn+z4kfYCY6h+ubr8E3rvoj7KrdXpT9DzRk76W9NXm0KPsRES3l8mc/K3bbFWz+scrRX2xa\nJyIiovLC5h/acJ4aeQ5pKYO72m+BRqVRupz3EQQBH+m6Gx9ovAre8AT+4dQ/I55OAMhFfs2Wd+QX\nkB3r7zDUYCToKch41IHcRWCPvTPvaxdCn2Mn0lIGp+feXtP7X/C+Cn8igBubr0V1kbOut1Z1AUDJ\nnfibjEwjJaZKMi7rqlz016EVRH+NBr3QqjRoNNUXuqy8qjZUQ4DAyT90UdFUDD8593OMhSaULiVv\njkydAADsqy+NyK/lOIy1+P3e38Gntn0cWpUGvxx8An999DsFm8RHROXLm2v+Kebkn67cA5yBFTRI\nExVCoSK/ZIIgLB7WeHToaUiSlPc9aGOTJAlHpk7gL976Ft6YPIImcwP+aM+X8PGeD8Og0RetjrbK\nFtQZHTg5dxbRVLRo+xIRSZIEl38YVp0FtYb8/129Uu2VTgDZQ0BERERE5YTNP7ShTEdn8dbUMdSb\n6kr64ZwgCPj1Lfdjb91uDAc8+MHpHyOVSWUjv9LlHfkla7e2IpaOYyoyk9d1JUnCgG8IFp0ZdUZH\nXtculN7F6K+Tq35vIBHCM54XYdaacFvbjfku7bLqjA5YdZW44BssqZxrd+7iWz6JU0o6be2wV9jQ\nP3MayUzyoq9LZVIYj0yh2dwItUpdxArXT6vSoEpvxywn/9BFvOh9FW9OHsFPLzy0IR58ZcQMjs+c\nhEVrxlZ7l9LlXJIgCDjQsBd/duCPcU3DPoyHJ/HtY9/Hf55/iA9viGiRNzQOAQKazA1F29OsNaHJ\n3ICRgBspMV20fYlkhYr8WqrT1obt1Vvh8g/j3MJAwfahjWcutoDvnfwR/vXt/0Q8k8CHO+/En+z9\nKtqtzqLXIggCrm7Yi7SYxrE13McgIlqr6egsQskwuu2dEARBsTpAz4fgAAAgAElEQVSazA3QqDSL\n9x+JiIiIykV5dxcQvccTw89AlETc035ryTfPqAQVPr3tE9hZcyUGfIP40dmf4Mh0dqpAn2OXwtWt\nX0cu+ivf0wZmorMIJkPosSl7Ebga9SYHmswNODc/gFg6dvk3LPHEyEEkMknc3XErDBpDgSq8OEEQ\nsLWqG+FUBOPhqaLvfzGe3Njdtsri3wi9HJWgwv76PsQzCZy6xLSnsfAEREmEs7J4cRv55DDWIJgM\nrTnOjjauZCaJl8ffAJD9s3qpPwfl4tzCAMKpCPrqdpVNs55Za8Int30Mf9D3RdSbHHht4hD+/K1v\n4fDU8Q3RkEVEaydKIryhCTiMtUWPT+2xdSIlpuHmRDJSQCEjv5a6u+N2AMCjw0+X1AEKKk2iJOJZ\nz0v4X4e+jXMLA9hW1YNvXPWHuKX1BkU/d+6r74UAAW9NHlOsBiLafFy5CZFdNuUivwBAo9KgxdyE\n8fDkJQ/2EREREZWa0u6OIFqFsdAEjs2chNPSVLQc9PVSq9T4zPZPYqu9G6fnzuHQ1DFYdZbFxply\n1mFtAwAM5/nG/sBi7nN5RH7J5OivU7Mrfwg+Hp7EGxNHUG+qwzUN+wtY3aVtreoGAFzwlU70lzvo\nhU6tQ4OpTulSlrU/F/11+BLRX57gGACUZHTZSsjjlzn9h97rzcmjiKSi2OPYBQECHh8+WPYPvuTm\n3H11pTtV8GK6bO34032/h/s670A8k8CP3/4vPND/IKajs0qXRkQKmYstIJ6Jo8XSWPS95c/wjP6i\nYit05NdSLZZG7HHsgjc0jv7ZMwXdi8qbJEn4+cAj+NXQk6hQ6/CbV/w6vrTrt1FjqFa6NNgqrNhW\n3QN3cBRTkWmlyyGiTcLly9737VG4+QcA2q1OiJKI0VxcLhEREVE5YPMPbRiPDR8EANzbcUfZTIQB\nsvE5n9/5m+jMNctshMgvIDvtRq/WYzjozuu6A/JFYJk1/7wT/XVqRa+XJAkPux6HBAkf6bpL0RN/\nW+zZ5p/zC6XR/BNPxzEZmYbT0lSyf1bqTQ44Lc04tzCAYDK07Gs8oez0otYynvwDALNRNv/QOzJi\nBs+PvgKtSoOP9dyH/fV9mIhM4fh0+cYFxNMJnJo9ixpDNdoqy7NZT6PS4NbWG/GNq/4IV1ZvxQXf\nIP73ob/FEyPPIpVJKV0eERWZN/cAo8XSVPS9u23tECAsPtghKpZiRH4tdXdHdhrx48MHkREzRdmT\nys/jI8/glfE30WRuwP+86mvYX99XUvezrm7YBwCc/kNERSFJEgb9w7DozHAYa5UuZ/H6n9FfRERE\nVE5K86kp0SoNB9w4M38O3baOxSkl5aRCrcMXd/0W7u24Hbe13qR0OXmhElRotzoxE51DOBnJy5qS\nJMHlG4ZVZ4HDUNjTmvlWZ6xFs7kR5xYGEE1dPvrr7YULOO9zYVtVD66o2lKECi/OWmFBo6keg/6R\nknhIPBoahwSpJCO/ltpf3wdREnF0un/Z748Gx6BXV5TEDY21kJt/ZqLzCldCpaR/9jTm4ws40LAP\nFp0Zd7bfArWgxuMjz5Ttg69Tc2eRFFPYV7e7pB7GrEWNoQpf3Plb+Oz2T8GkNeHJkWfxvw//Xck0\ndxJRccjNP05L8RuQjVojms0NGAl4kCyBz5W0eRQr8kvmMNbi6oZ9mI7O4tAlpoHS5vX86Ct42v08\nagzV+NKuz8KsMyld0vvsqN4Go8aAw1PHyvazPBGVj5nYHALJEHpsnSVx7d1WmZ3M7w6w+YeIiIjK\nB5t/qOxJkoRHh54GANzTcXtJXByshUFjwG1tN8FaUal0KXkjx5eNBPMT/TUVnUEoFUa3vTQuAler\n17ETGSmDU3NnL/m6jJjBw67HIUDA/V13lcTPdWtVN1JiKu8xbmvhCcoTc0p7Asfeut1QCaplo7/i\n6Timo7NoKeHpRZfD2C96L0mS8OzoyxAg4KaWDwLINpt8oHE/ZmPzeGvqqMIVrk05R34tRxAE9Dp2\n4M8OfA03tlyL2dg8Huh/EP969j8vOqmMiDYWufmn2Vz82C8gG/2VljJw5+kagehyihn5tdSd7TdD\nq9LgSU7ao/d4Y+IIHh58HFZdJb66+3OwVliULmlZWrUWe+t2I5AM4dzCgNLlENEGN+jLxsJ2lUDk\nFwBU6W2w6Mxw5+5DEhEREZWD8nziSLTEBd8gXP5hXFm9FZ22NqXLoSU6clFm+WoYeSf3ubwiv2R9\njh0ALh/99frEYUxFZ3BN4z40mRuKUdplbbF3AQDO+5SfDiGP220v8ck/Fp0ZV1T1wBsax2Rk+l3f\nk6cXlXoD06VU6+1QCSrMRGeVLoVKxIBvCN7QOHbXbn/Xg7Xb2m7KPfh6ruwefIWSYZxfcMFpaUKd\nyaF0OXml1+jxa9334uv7vgKnpRlHpk/gz9/6Fl4dfwuiJCpdHhEViCRJ8IbHUWOohlFrUKQGOb53\ngNFfVCTFjvyS2SqsuK75GvgSfrw68VZR96bSdWLmNH56/hcwaY34Su/nUG2oUrqkSzrQsBcA8NYU\no7+IqLAG/Ln7vvbSaP4RBAFtlU74En74EwGlyyEiIiJaETb/UFl799Sf2xSuht6rtbIFAgQMB9x5\nWU9+QNBtL8/mH4exFi3mRpxfcCGaii77mlg6hidGnkGFWoe72kvn93SXrQNqQV0S0TDuoBeVOgts\nFValS7ms/fV9APC+6T/lMr3oUtQqNWr0VZjh5B/KeXb0JQDALa03vOvr8oMvfyKA1yYOFb+wdTg2\ncxKiJG6YqT/LcVqa8cd7v4yP93wYkiThvy48jL899n2MhSaULq1shJJhxNKXj/QkKgW+hB+RVBQt\nlibFauiytUOAwOYfKppiR34tdavzRujVFTjofgHxdLzo+1NpObcwgH89+1Po1Fp8addvo8FUp3RJ\nl+W0NKPBVIfTs2cRuch9DCKi9ZIkCS7fMCxaM+qMpXPwRj54yOk/REREVC7Y/ENl7dTcWXhCXvQ5\ndip6A5uWZ9Do0WiuhyfoXXc+vCiJcPmHYauwotZQnacKi6/PsQsZKYOTc28v+/2D7hcRTkVwa+uN\nJTX6W6+pQLvVCW9oXNEbfv5EAP5EINtYVgJxaJezo+ZK6NV6HJk68a5JGp7QGIDsjdRy5jDWIJKK\nXrSZjTaPsdAEzi0MoNvWsWxT27sffCUUqHBtjk71Q4CAPXW7lS6loFSCCtc3X4M/O/A17HHswkhw\nFH999Dt42PV4Wf33UkIgEcRfHPoWvvH6X+GF0VfW/XmHqNBGc5FfTrNy104GjQEtlia4g14kM0nF\n6qDNQanIL5lZZ8KHnNchnIrgBe+rRd+fSsdwwIN/OvVjQBDwOzv/e9kcBBEEAQca9iItZXB0ul/p\ncohog5qNzSOQDKLL3lFS9/va5OafwKjClRARERGtjEbpAojWSpREPDZ8EAIE3N1+q9Ll0EV0WNsw\nHp7EWHhiXTe3piIzCKci2FfXV1IXgavV69iJR4afwvGZk7g6Nz5bNh9bwIveV2GvsOGmlusUqvDi\nttp7MOgfwQXfIPoUODULvDMxp63EI79kOrUWvY4deHPyCAb9w+jJxaeNBr0waY2o1tsVrnB9ao01\nwDwwE5tDm7Y8/ptQYTw3+goA4Gbn9ct+36wz4aaWD+JJ93N4aex13N52UzHLW5O52DxGgh5stXfD\nWlGpdDlFYa2oxGe2fxIH5vfiZwO/wvPeV3Bs5iQ+3nMfdtVuV7q8kiNJEn524ZeIpKLQqjR4aPBx\nvDZxGL/WfQ+uqN6idHlEy/Lmmn+UPjjRY+/EaGgMwwEPtlZ1K1oLbWxKRX4tdVPLB/Hy2Bt4fvQV\nXNd0Dcw6k2K1XMpUZAa/cD2Kycg01IIKgqB6148qCFAJaqgEASpBtcw/8vff/drl1hIEAWpBnXvd\nO2s4jLXYXbu9rK/5lzMensT3T/4z0lIGn9v+qcXrwnKxr64Pjww9hbcmj+L65muULoeINiBXLvKr\n21YakV+y1spmCBDgDrL5h4iIiMoDm3+obB2d7sdkZBpXN+xDnal0xoHSu3VYW/Hq+JsYDnjW1fwj\nxwL0lGnkl6zWWA2npQnnF1yIpKIwaY2L33tk6CmkpQzu7bwdOrVWwSqXt7WqC4+PHMSFBZdizT/u\nxeaf8jglCWSjv96cPIJDU8fRY+9CMB7CfNyHK6q2lP1NbYche3p6JjpXNg1ZlH/zMR+OzfSj0VSP\nK6u3XvR1Nzmvw8tjb+C50ZdxXdPVMGoNRaxy9Y5MZU82763fuJFfF3NF9Rb8j/1/iIOeF/Cs5yX8\n0+l/w46aK/Cx7vtQbSjvpsV8Oj5zCifnzqLL1o7Pbf80nhh5Bq+Ov4XvnfwRdtRsw0e67lFkygTR\npZRK80+3rQPPjb6MAd8Qm3+ooJSM/JLpNXrc1nYTHnI9hmdGX8RHuu5WrJblpMU0nvG8iIPuF5CW\nMrBX2CBKEkQxhQREiJKY/Xcpk/sx+zUJUkHq2V/fh9/Y8lFoS/CaeC1monN4oP9BxNIxfHrbJ7Cz\n9kqlS1o1a4UFV1RtwZn5c5gIT6HRXK90SUQrJkoi4ukEYukYDBo9jEvuw1HpcPlGAJRe849eo0eD\nqQ6e0BgyYgZqlVrpkoiIiIguic0/VJYyYgZPDD8DtaDGHW03K10OXUKHtRUAMBxw48aWa9e8zoB/\nYzT/ANkbz6OhcZycPYtrGvcByI4APzZzEk5LM/aWaLyM09IMg0aP8wsuxWqQm39aK8snLqvL1g57\nhQ39M6fxiZ4PY9w3BaC8fg4XU2t8p/mHNq8Xx16FKIm42Xn9JRvaDBo9bmm9Ab8aehLPj76Mezpv\nL2KVqyNJEo5Mn4BWpcHuTTrxRqfW4p6O27Cvrhf/deFhnJ57GxcWXLir41bc2Hztpr/pGU5G8H8H\nfgWtSotPbv0YzDoTPrHlfnyg8Sr8wvUoTs+dw7n5AdzkvA63td4EvaZC6ZKJAGSbf+wVNsUnj3TZ\n2qESVIunvIkKQenIr6U+2HgAL4y+ilfG3sBNLR+ErcKqaD2yIb8bP73wEKYi07DqKvGJLR9e8bQ/\nURIh5ZqBMpIICbkfJQkZKZP7UVxsFlr8510NRe98PS2m8ZT7eRyeOo7p6Cw+v+PTJfPrtFb+RADf\n7X8QoWQYH+u+D1c17FG6pDU70LAXZ+bP4a3Jo/hId2k1sNHGJkkSUmIK0XQM0VQMsXQc0XQ092MM\nsVQs+7109nvyv8fSMUTTccTT8cVmRbPWhP954Gswa0tzAttmJUkSXP4hmLUmNJjqlC7nfdoqWzAR\nmcJkZBrNlkalyyEiIiK6JDb/UFl6Y/II5uILuL75AzyBXuKq9VWw6MwYDnjWvIYoiRj0DcNeYSv7\nmCQA6HPsxCND2eivaxr3QZIkPOx6DADw0e57oBJUCle4PLVKjR5bJ07OncVcbB41huqi7i9KIkaD\nXtQZHTBoSntiyFIqQYV99b14xvMiTs29jYgQAoB1TcIqFQ5DLQBgNsbmn80qmori9YnDsFVYsadu\n12Vff33zNXjB+ypeGHsNN7RcC4vOXIQqV88bHsd0dAa9jp0waPRKl6OoepMDv9f7BRyeOo6HBx/H\nLwefwKHJY/hvWz+CDmub0uUp5ueuRxBORfCRrrvf9UC52dKI3+v9Ao7PnMIvB5/AM54XcWjyGD7c\ndSf21fWW/cQ3Km+BRBDBZAi7apSfOqHX6OG0NMMd9CKeTrBBjgqiFCK/ZFq1Fne234L/OP9zPDny\nHH5j60cVrSeWjuGRoafx6vibECDguqarcW/n7au6zlIJKkAA1FAjXzN6tti78NMLD+Hw1HF888gD\n+MLO3yzb66ZwKoIH+n+I+bgPd7XfghtaPqB0Seuyo2YbTFojDk8fx32dd2z6RnBavYyYgT8RQCgV\nRiwVX9KwIzf1xBYbet799TgyUmZVe1WodTBoDLBXWGEw1cOo1SORTmLAP4SD7hfw0e57CvSzpLWY\njy/Anwhgd+2OkrxearM68cbkEbiDo2z+ISIiopLH5h8qO8lMCk+NPAedSovbWm9Suhy6DEEQ0GFt\nw8nZM/DF/bDrbateYyI8hUg6iu0120ryInC1agzVcFqaccE3iHAqggsLgxgJjmJ37Q502dqVLu+S\ntlZ14+TcWZxfcOHapuI2/0xHZxHPJLCrDG/+XlXfh2c8L+Lw1HHoK7K3xp2W8vt5vJddb4VGpeHk\nn03slfG3kMwkcVf7LdCoLv+xUqfW4Y62D+FnA7/CQc8L+LXue4tQ5eodmToBANhXt/kiv5YjCAKu\natiD7TXb8MjQk3h94jC+fez7+EDjVbiv8453RVhuBqfn3sbR6X60VTqXnWooCAL21O3CjppteNbz\nEp4dfQk/fvu/8MrYm/hYz71l+xCTyl+pRH7Jum0dcAdHMRxw44rqLUqXQxtQKUR+LXVVfR+eG30J\nb04ewc3O6+Aw1ipSx8nZM/jZhV8hkAyi3lSHT279aMk09GrVWnx62yfQZG7ArwafxN8e/wd8cuuv\nYX99n9KlrUo8Hcf3+/8ZU5Fp3Nhy7YaYWK1RabC3rhcvj72OtxcuYEfNFUqXRCVGkiRE0lHMxxYw\nF1vI/hjP/Ribx0LCD1ESV7SWWlDj/2fvvuOrrM//j7/us5KTc05O9t47zEDYICBLUZyIAxx1VWu1\njq/+7LLt92tbu2xtq611VUUcuBUVRUCQnTACCQnZe+95krN+fyTBBZLAObnPOfk8H48+tJ7c9/0O\nCefc4/pcl49Ki07tQ5A2cHBcl0qLVq3FRzX4P63KG61Ki4/6q//vo/JBq/I+ZXGa2Wbh0X1/Zmf1\nHhZFzSdIG+DoPwLhLBW2lQKuN/Jr2PCY+/LOKhZEzpE5jSAIgiAIwvcTxT+C29lZs4eOgU5WxJ6P\n0csgdxxhBBKMseQ05VLaUU6m9+hHWnnSyK9h00OmUNlVzcGGHLZW7kApKbk88SK5Y51RakAyAAVt\nxWN+wVveUQkMttt1N2G6UGIMkeS3FqJVeeHnZfSI9y+FpCBIG0hjbzN2u90jivOEkTNbzXxRtQut\nypv5EbNHvN28iFl8XrmDL6v3sjR64VkVhTqTzW7jYMMRfFRaJoqH0d+gU/uwNu0qZofN4PUT77C7\ndj85TbmsTr5k3BRK9Zr7eK3gHVSSknVpV31vtz6NUsPFCSuYEz6Dd4s/4nDTMf6c/SRzw2dwaeJK\nl+18JXguVyv+SfFPZEvlFxS1l4riH8HhXGnk1zClQsmqhAt4PvcVNpV+xi2T1o3p8dv7O9hY+D45\nTbmoJCUXxy9neez5qEdQwD2WJEliWcwiwnVh/DdvAy8df53a7nouTbzQZbvkfp3ZauY/R1+ioquK\nOWEzuDJplcdcJ80Jz2RH9W721WWL4p9xymw102pqo9n0zQKf5r4WWvraMFlNp9zOoNYTa4giUBuA\nUeOLVqVFq/b+WiHPYBHPcJGPWqF2+N8btULFJQkX8uLx1/iwdDM3T1zr0P0LZ6+4faj4x981i3/C\ndaF4KTWUdVbKHUUQBEEQBOGMXOsKXxDOoM9i4rOK7WhV3iyPWSR3HGGEEoyxAJR2VJAZOvrin6KT\nK0A8q/jnvZKPebf4I8w2M0uizyPYZ2w76ZyNEG0Q/l5+FLYWY7PbxvTma3lXFfDViht3Myssk8qi\nD+gx9zE1yDVvaJyNEG0Q9T0NdJt7xIPscWZ//UG6zN2siD1/VKOxVAoVK+OX80r+Rj4p/5y1aVc5\nMeXoFbaV0DHQxfyIWSPqZjQeJfrF8dOZ97Kt6ks+KtvCS8dfZ29tFnfNvR41OrnjOdW7xZvoGOhk\nVfwFROjDRrRNoDaA2ybfQGFbMW8WfsCeuiwONx3jorhlLIqaL8ZmCGOm0sWKfxKMcSgkBYVtJXJH\nETyQK438+rqM4ElEGyI52JjD8q7ziR6D8SE2u43dtft5r/gTTFYTicY41qatJkwX6vRjn4uJgak8\nlHk3Tx97kS2VX1DbU8/NE69z6RHQVpuVF/JepbC9hKnBk1ibttotCpZGKlofSaQ+nGPN+XQP9KDX\nePZ533hks9voHOg6Reee1pOjmU5Fo1ATqA0gSBtPkHfg0L8HEOgdQKA2AC+lZoy/k1PLDJ3K1qqd\nZDccYWn0QmJ8o+SOJDB4Da5T+RDuop9LCklBrCGaovZS+ix9Lv05JAiCIAiCIJ5oCG5lW9WX9Jh7\nuSThAnzG2YgJdxatj0QlKSntqBj1tja7jaL20qEbBv5OSCePQG0AsYZoKrqq0Kl8WBm3VO5IIyJJ\nEmkByeyty6K6q3ZMb5RUdFSiUqhG/LDV1cwIzeCd4k3Y7DZi3LB70ekMr6Ru7G0WxT/jiM1uY2vl\nTlSSksVR80e9/azQaWyp+IK9ddksi1nsMivyAbIaxMivkVAqlCyPXcz0kClsLHyf3JZ8Hvz0d9w+\n6QYmBaXLHc8p8lsL2VOXRZQ+ghWxi0e9fYp/Ej+deS9f1u7jo9LPeLt4E7tqD7Am+VLSA1McH1gQ\nvqWqqwZfjQGjl6/cUQDwVnmdPB82WUx4j6KQVBDOxNVGfg1TSAouTbiQp3KeZ1PpZn409RanHq++\np4FXC96mpKMcb6U316ZeyfyIWW5TkBKqC+GhzHt4IW8DeS0F/Dn7Ke6YchOhMo1M+z42u40NBW9x\ntDmPVP8kbp5wnccV+EqSxJywTN4u3kRWw+FTjj8VXF+/dYCm3mZahrr3DBf2DP/TYrN8ZxsJCX9v\nP5L9EgjSBhLoPVjcE6QdLO4xqPVu0eFKISm4IvFi/nHkGd4t+ZifZNzuFrk9WUtfK2397UwNnuTS\nn01xxhgK20uo6KwmbagruiAIgiAIgisSxT+C2+g297Ctcid6tY7FUeIGgztRK9VEG6Ko6Kqi3zow\nqhU/1d219Fn6mBo80YkJ5TEzbBoVXVVcFL/crYrZ0vyT2FuXRUFb0ZgV/wxYzdT01BNriHbbThwG\njZ70gBTyWgqI9aDVZSHaoeKfvmYS/eLkDSOMmaPNx2nsa2Ze+Myzeog8OPZiBc/nvsJHZZ+5TMt1\ns9XMkcZc/L38SPSLlzuOWwjUBnDnlB+Q05TLi/mv8+Lx1/h/M+4hxAUfyp0Lk6WfVwveRiEpuD59\nzVk/zFMqBgvmZoRksKnsM3bV7OPJnOeYHDSB1UmXuEUXQME9dQ1009bfzsTANLmjfEOKfyJlnRWU\ndJS7XDbBffWa+1xu5NfXpQekkOyXQG5LASXt5U45hzbbLHxWsZ3PyrdhsVvJCJ7MmpRL8fMyOvxY\nzuaj1nLX1Ft4r/hjtlbt5M/ZT3LrxHUuVThrt9t5u+hD9tcfJM43hh9Ovgm1Ui13LKeYGTadd0s+\nZn9dtij+cUNVXbX84/B/6LX0fec1ncqHCF0ogdpAgoY69gx37wnw9nPbezHflhqQxITAVI63nOB4\na6EY9SyzwuGRX36u3SF7uAt5eWelKP4RBEEQBMGlecZZuzAubKn4ApO1n6sSLsBb5SV3HGGUEoyx\nlHVWUNlZRbL/yMd3DY/8SvGgkV/DFkXNI9Y3injfWLmjjErq0EVuQWsRK2LPH5NjVnXVYLPbiHPz\njjlXJq0iPSyRVP8kuaM4TPDQA5Wm3maZkwhjxW63s6XiCwCWnsMIzozgSUTpIzjYkMMFsUtcoqvX\nsZZ8TFYT50XOcelVh65GkiQyQiZzh07Jk/tf5JljL/Ng5t0edb72QekntJrauCB2iUNGJuk1Oq5N\nvYIFEbN5s+h9jjUfJ7/lBEtiFnJB7BKP+rMTXEN1Vy0AMS4y8mtYin8in1Zso7CtRBT/CA5ztDnP\nJUd+DZMkiUsTV/L4wad4v+QT7p9+p0M7T5S0l/NqwVvU9zbi52Xk6pTL3X4xjUJScGXyKiL14bxa\n8BZP5TzPlUkXc370eS7RtePjsi18Ub2bcF0od029xaM/xw0aPZMC0znanEd1Vy1RYzC6TnAMs9XM\nS8dfo9fSx7zwWYTqgoeKfAIJ0vqPq1FGlydeRH5LIe8Vf0R6QLK49pNRcZv7Ff8IgiAIgiC4MnFm\nK7iF9v4OdlTvxt/LjwURs+WOI5yFeONggctoR38VtpUAgw8GPI1CUpBgjHOJm5WjYdDoidSHU9JR\nzoDVPCbHrBi6uHb34p8wXQhXT1rlUTeWvhr71SRzEmGslHSUU95ZyeSgCYTpQs56PwpJwSUJF2DH\nzqbSTx2Y8Oxl1w+N/AoTI7/OxsK42SyKmk9dTwMbCt7EbrfLHckhitvL2FG9h1CfEIeP6YwyRHDf\ntDu5ZeJaDBoDn1Vs5//2/ZkD9Yc85s9PcA1VXTUADilec6QEYyxKSXnynF8QHOGQi478+roEYyyT\ng9Ip6SjjeOsJh+yzz9LHayfe4a+H/kVDbxMLI+fxy9n/4/aFP183OzyT+6bfiUGj5+3iTbyS/ybm\nU4woGkvbq3bxcfnnBHkHcHfGbejcqKvv2ZoTngnAvvpsmZMIo/F+6SfU9TSwKGoe69KvYlnMIjJC\nJhNtiBhXhT8AkfpwZodlUttTz/76Q3LHGdeK2kvwUWldYjHQ9zF6GQjw9qeso1JcpwmCIAiC4NI8\n5+mj4NE2l2/DbLNwUfwyj22d7OnijYMrJEZT/GO1WSluLyNIG4i/t5+zoglnIS0gGYvNQklH2Zgc\nr7yzCoDYoZU2guswanzRKNQ09onOP+PF55VfALA8ZvE572tiYBoJxlhymvNkX0HXa+4lr6WACF0Y\nkfpwWbO4s9VJq0g0xnGo8Shbq3bKHeecDVjNbMh/EwmJ69PXOOU8VJIkMkMz+NWcB1kZt4xeSy8v\nHX+dvx76F5Wd1Q4/njA+VXa7ZvGPRqkhzjeaqq4a+k4xgkQQRmt45FeUi478+rpLEi5EQuKDks3Y\n7LZz2teRplwe3fc4u2r2EaYL5YHMH3FN6uVoVd4OSus64o2xPDzzJ8QYothXn83fD/2Hjv4uWbLs\nq8vmraIPMGoM3DPtdrccq3Y2JgWmo1fryKo/jEXm4ithZBjiarkAACAASURBVPJbC9letYtQnxAu\nT7xI7jguYVXCCtQKFZtKPx2zhW3CN7X0tdFiaiPJL8EtFsnF+UbTbe6hxdQmdxRBEARBEITTcv2z\nKmHca+5rYXftfkK0QcwOy5Q7jnCW/LyMBHr7U9ZZMeIVEtXdtZisJo8c+eXu0vwHR3+daC0ek+OV\nd1ahU/sQpA0Yk+MJIydJEsE+QTT1tYjVT+NAXU8Dx5rzSTDGkugXd877kySJSxIuBODDEnm7/xxu\nOobFbmVmqOj6cy6UCiW3TroBo8bAe8UfU9BaJHekc/Jx2RYa+5pZHD2fBKNzx3RqlBpWJazgkdkP\nkhE8mdKOCv6U/U825L9F10C3U48teL6qrhp0ah/8vVyvoD7FPxE7dorbx6aoXPBswyO/prtw159h\nkfpwMkOnUt1dy+HGY2e1j/b+Dp459jLPHnuZHnMPq+JX8LOZ95JgjHNsWBfj52Xk/uk/YkZoBmWd\nFfwp+x9UDC0YGSs5TblsKHgLH5WWuzNuJ0gbOKbHl5NSoWRm2DS6zT3ktRTIHUc4gx5zL+uPb0Qh\nKfjBxGvRKDVyR3IJ/t5+nB99Hu39HXxRtUvuOONScfvQyC9/1x75Nezk6K9RdrUXBEEQBEEYS6L4\nR3B5H5VtwWa3cXHCCpQKpdxxhHMQb4ylx9w74g4hnjzyy90l+cWjkpQUtBY6/VhdA920mFqJ9Y12\nuxFp40WINogB6wAdA51yRxGc7PPKHQAsc0DXn2Ep/omk+SdT0FYk69iXrKGRX5mhGbJl8BRGLwO3\nTb4RhaTghbwNtPS558rIis4qPq/cQZB3wMkitbEQqA3g9sk38JOMHxKmC2FP3QH+d9+f2Fb1JVab\ndcxyCJ6j19xHc18L0fpIlzyXSh4q9BejvwRHcIeRX1+3Kv4CFJKCTWWfjuo93ma38WXNXh7d9zg5\nTbkkGuP52az7WRm/DJVC5cTErkOjVPODCddxWeJKOvo7+duhf5PdcGRMjl3QWsQLuRtQKVTcNfVW\nlx9X4wxzwmYAsK/uoMxJhO9jt9t5/cQ7dAx0cnH8CmIMUXJHcikrYhejU/vwacV2ugd65I4z7hQN\nF//4uUfxz3BX+/IxLjYVBEEQBEEYDVH8I7i02u56suoPE6kPd4uVe8L3G159ONLRX0VutgJkPNEo\nNSQY46jqrnX6DZLhFZxxYuSXywoeGqnQ2CtGf3my9v4OsuoPE+oTzOSgdIfu+5LECwD4sHSzLB2k\n2kztFLeXkWiMJ1DrP+bH90QJxljWpFxKj7mX53JfdrtW+habhVfy38SOnXXpV+Elwwrp1IAkfjbz\nPtakXAZIvF30Ib8/8Dfyx6DwVvAs1S468mtYvDEWlaQ8ee4vCGfLnUZ+DQv2CWRexCwae5vZV589\nom3qexp44tDTvH7iXSQJ1qau5r7pdxCmC3FyWtcjSRIrYs/njik3oZSU/DfvVd4v+eScx6h9n7KO\nSv5z7CUA7ph808mHweNNlCGCaH0EuS35okOhC8tqOMyhxqMkGONYEbtY7jguR6vSsjJuGSaric3l\nW+WOM+4UtZWgVWndZux2lD4ShaSQfWS5IAiCIAjC9xHFP4JL+6jsM+zYuSThAreY/St8v+FxGWUd\n5Wf8WqvNSkl7GSE+Qfh5GZ2cTDgbaQFDo7/anDvSZfiiOs432qnHEc5eiHbw4UqTKP7xaF9U7cZq\nt7I0ZqHDP5PjfGOYEjSR0o4KWUYHZDccwY6dmWFi5JcjLYiYw5zwGVR21fDGiXfdajTgp+XbqO2p\nZ0HEbFL8k2TLoVQoWRw1n9/M+X8siJxDQ28TTx55jv8cfYnmvhbZcgnupbLLtYt/NEo18cZYqrtq\n6TX3yh1HcGPuNPLr61bGLUWtUPNx2eeYv6dY1myz8FHpZ/z+wBOUdJQzLXgyj8x+kPmRs8f9/ZLJ\nQRN4aMbdBGsD+axiO88ce4k+i8nhx6ntruffOS9gtpq5eeLak9fE49Xs8BnY7Day6g/JHUU4hZa+\nNt448R5eSg03Tbh23L9PnM55kXMI8g5gZ81emnrF+fVYaTO102xqJckvzm1+NzVKNVH6CKq6ajDb\nLHLHEQRBEARBOCX3OLMSxqWKziqONOUS7xvLpEDHdhgQ5BGhC0Oj1Iyo809lVw0maz8pfmLkl6sa\nvtFZ0Frs1OMMt9ONFcU/LivEJxhgxCP9BPfTZ+njy5p9+GoMzAqd7pRjrEpYgYTEh6WfOnW19qlk\nNRxGKSnd7mGhq5MkiWtTriDGEMW++my+rNknd6QRqemuY3PFNvy8jFyedLHccQDQa3Rcl3olD8+8\nl0RjPEeb83h031/4oGQzJku/3PEEF1c1VPzjyqM+kv0SsGOnqL1M7iiCG3O3kV/D/LyMLI6aT3t/\nBztr9p7ya4rby/jDgSf4uPxzDBo9d0y+idsm34DRy3eM07quMF0oD824hzT/ZI415/OXg085tDNp\nc18LTx55lh5LL+vS15ARMtlh+3ZXM0OnoZSU7K3Ldqsi7/HAZrexPv8NTFYTa5IvI0gbIHckl6VS\nqLg08UKsdisflm6WO8648dXIL/e67xvnG4PFbqWmu1buKIIgCIIgCKckin8El/Vh6acAXJp4IZIk\nyZxGcASlQkmcbwx1PQ30mvu+92uL2ksASPZ3r4vA8STaEImPSktBW5HTbvTZ7XYqOqsI0gaiV+uc\ncgzh3A2PVRCdfzzXrpr9mKwmzo9agFqpdsoxIvXhZIZOpbq7liNNuU45xqnUdtdT013HhMBUdGqf\nMTvueKFWqrl98g3o1TreKvqA0hF0/5OT1WbllfyN2Ow2rku9Eq3KW+5I3xBtiOD+6Xdyy8S16DV6\nPq3YxqP7/yJLxyzBfVR11aJVebv0g7+UoXP+4WsAQRgtdxz59XXLYhfhrfTm04pt3+hY02fp47UT\n7/C3Q/+mobeJhZHz+OXs/2FK8EQZ07oundqHu6bewvnRC6jvaeDP2f+koPXcO9V29Hfyz8PP0jHQ\nxerkS5gbPsMBad2fXqNjclA6tT31VA2NmBRcw9bKnRS1l5IRPIk54vf1jKaFTCHWEM3BxpyTo+cF\n5ypqGy7+SZA5yegMdyUv6xCjvwRBEARBcE2i+EdwSXmNheS3FpLmn3zyRrDgGU6O/jrDfOTCtqHi\nHzdbATKeKCQFKf5JtJraaHLS6JGmvmZ6LX1i5JeL06t1eCu9aRCdfzySxWZhe9UuvJQaFkTOceqx\nLo5fgUJSsKn0M6w2q1OPNSyr4TAAM0MzxuR441GAtz+3TFyHzW7juWPr6ejvlDvSaW2r+pLKrhpm\nhU1nUpBrdp6UJInM0Ax+NechLoxbSudAF//KeYGXj79BjxiZJHyLydJPY28TUfoIl15QEecbg1qh\nOnkNIAij5a4jv4bp1TqWxSyix9zLtqovATjSlMuj+x5nV80+wnWhPJB5F9ekXu5yhamuRqlQclXy\npaxLW0O/dYCncp5ne9Wus16w0mPu5ckjz9FsamVl3FKWRJ/n4MTubbiwZF/dQZmTCMOqumr5sPRT\nfDUGrktd7dKf/65CISm4POkiAN4t/kh0shoDRe0leCu9iTJEyB1lVOKNMQCUn+G+tiAIgiAIglxE\n8Y/gcux2O68ffR+ASxIvkDmN4Ggni3++Z+W/1WalpKOcUJ8QjF6GMUomnI2vRn+d+2rKUxke+RXn\nG+OU/QuOIUkSIT6BNPe1jPm4JsH5shqO0DHQyfyI2fiotU49VohPEHPDZ9DQ28iBoaIcZ7LZbWQ3\nHMFLqWFy0ASnH288Sw1I4vKki+gY6OK53Few2CxyR/qOhp5GNpV9hkGj56rkS+WOc0ZeSg2XJFzA\nT2feS4whkv31B/nt/sfJGcPOWYLrq+6uxY6daEOk3FG+l1qpJt43lpruOrrNPXLHEdyQu478+rrz\noxdgUOvZVrmT/xx9iWePvUyPuYdV8YPv9cPX0sLIzIuYyb3T7kCn8uGtog94teAtzKM8/zBZ+vlX\nzgvU9tSzKGo+F8evcFJa9zUhIBWDWk92/eFR//kKjme2mnnp+GtY7VauT78avUZ0UB6pFP9EJgWm\nU9ReKrpqOll7fwdNfS0k+cWhkNzr8VSwNgidyufk/UpBEARBEARX415nV8K4kNdSwImWUqYGTRQP\n/D1Q/NDPtLSj4rRfU9FVzYB1QHR9cgNp/oPFPyfanF38Izr/uLoQn2AsNgttpg65owgOZLPb+Lxy\nBwpJMWarnFfGLUMlKfm4bIvTHyCUdlTQamojI3gyGqXGqccSYGn0QjJDplLaUc47xZvkjvMNNruN\nVwrewmKzcE3KFW41Ai5SH86DmXdzWcJKes29PHPsZV7I3UDXQLfc0QQXUNU1OIbF1Yt/4KvRX8Xt\nZTInEdyNu4/8Guat8uKCuCWYrP0cbc4jyS+en8+6n5XxS1EpVHLHc0uJfnE8PPMnRBsi2VOXxT8O\nP0PnQNeItjXbLDx77GXKOyuZFTadq5IvER1UTkGpUDIrbDo9ll5ym/PljjPuvV/6CXU9DSyMnMfE\nwFS547idyxJXIiHxbsnHY9aJdjw6OfLLDe/7SpJErDGa5r4Wcb0lCAwu4q7raRAd0wRBEFyIKP4R\nXM7BxhwkJFYliK4/nshH7UOYLpTyzsrTXkgPt/sXxT+uL0gbQKC3PyfaSpzS8aWiswqFpCBK715t\ngMejYO3gg5YmMfrLo+S1FFDf08CM0Az8vf3G5Jj+3n6cFzWXVlMbe2oPOPVYX438mubU4wiDJEli\nXfoaInRh7Kjew34XGg+xs3ovpR3lTAuezLSQyXLHGTWlQsmKuPP52az7iPeN4WBjDr/d/zgHG3LE\nTbhxbrj4J8YNin+GHwCJ0V/CaLn7yK+vWxA5h/OjFrAubQ33TruDUF2I3JHcnr+3Hw9M/9HJAuQ/\nZf3z5Hvj6VhtVl7Me5WCtiImB03g+rQ1btedYix9NforW+Yk41tBaxHbq3YR6hPCFUMjrITRidCH\nMTd8JvU9Deyvd51rFU9T1D5U/OOXIHOSszO8WLlCdP8RxrHmvhY+LNnMI3se47f7H2dDwVuiG7wg\nCIKLEFeugstZFb+C/13yABH6MLmjCE6S4BtLv3WA2p6GU75eNHTD310vAscTSZJIC0imz9JHZVe1\nQ/dttlmo7qohSh+OWql26L4FxxteZd3YK4p/PMnnlTsAWBazaEyPe0HsEjRKDZvLtzJgHXDKMSw2\nC4cbjmLQ6EWx6RjyUmq4ffKNaFXevHbibYd/dpyN5r5W3i/9BJ3Kh6tTL5c7zjkJ04XyQOZdXJm0\nin5rPy/kbeC53PV09I+sy4Hgeaq6atAoNYT4BMsd5YxifaNRK9QnrwUEYaQ8YeTXMLVCxVUplzIv\nYqYoNnEgjVLDzRPXcknChbT1t/P4wX9xsCHnlF9rs9t49cTbHGnKJdkvgVsnrkOpUI5xYvcSoQ8j\nxhDF8dYT4pxDJj3mXtbnb0QhKfjBhGtFV9NzcHHCctQKNZtKP6PfSdei411RewneSi+3Xeg3XPxT\n1lkpcxJBGFtmq5nshiP84/Az/HrvH9lcsY1+6wBB2kD21mXx8vGNomuaIAiCCxB3EgSXE6gNIC04\nSe4YghMlGGMBKOso/85rFpuFko5ywnWhGDT6MU4mnI3UodFfBa2OHf1V212HxW4V4//cxHDnn8a+\nJpmTCI5S1lFBcXsZEwJTidSHj+mxDRo950ctoHOgix3Ve5xyjPzWQnosvcwIyRAPdMZYiE8QP5hw\n3dA4jfV0D/TIlsVut/NawdsMWAe4KuVSfDUG2bI4ikJSsDRmIT+fdT+JxniONOXyu/2Pc6D+kOgC\nNM4MWM3U9zYSpY9wiyICtUJFojGO2p56MUZBGDFPGfklOJ8kSVwYt4Q7Jt+EQpJ4IW8DH5Z++o1V\n6na7nXeLP2JfXTYxhijunPIDsRBlhOaEz8Bmt5HVcEjuKOOO3W7njRPv0t7fwcXxy4nxjZI7klvz\n8zKyNPo8OgY62V71pdxxPE5HfyeNvc0k+MW57XV4nG80AOUdovhHGB9quut4s/B9fr77t/w371VO\ntBWTaIznxvRreGzBL3l4xk+I940hq+EQLx5/TRQACYIgyMz17wAKguBxhot/SjsqvvNaeWcVZptZ\ndGFwI6n+SUhIDi/+GV5BEzt0US24tuGHLU2i84/HGO76szxmsSzHXxazEK1Ky5aKL+iz9Dl8/1n1\nQyO/wsTILzlMCkrnovjltJra+G/eq7LdHNpbl0VBWxGTAtM8bvxbiE8w902/gzUpl2G2W3jp+Os8\nffRF2vs75I4mjJHanjpsdhvRbjDya9jw6K/hcRCCcCaeNPJLGBtTgifyYObdBHkHsLl8K88eW4/J\nYgJgc/k2tlV9SZhPCD+eeiveKm+Z07qPGaEZqCQl++qyRbHxGMtqOMzBxhwSjLGyXbt5mmWxi9Gr\ndWyp+EIUJDvY8Dleip/73vfVqX0I8QmioqtKjDkSPJbJYmJ3zX7+lP1Pfn/gb3xRvRulpGR5zGJ+\nNftBHsj8EbPDM9EoNfiotdydcRuJxngONR7l+dxXMNsscn8LgiAI45Yo/hEEYcyF+ASjU/mcsvjn\nq5Ff7nsRON7oNTqiDBGUdlQ4tCXy8Oxs0fnHPejUPujUPjT2ieIfT9DQ20ROUx4xhijZRjD6qH1Y\nFrOIHksv2yodu+LSZDFxtPk4IdogYgxiZaxcVsYtZXJQOgVtRXxY+umYH7+9v4O3izbhrfTm2tQr\nkSRpzDM4m0JSsDhqPr+Y9QCp/knktuTz6L7H2VN7QDyYGwequmoA3Kr4J8V/8DNHjP4SRsqTRn4J\nYydCH8ZDM+8hxS+Ro815/OXgU2wq/YxNZZ8S4O3P3Rm3odfo5I7pVnRqHyYHT6Sup8ElxrqOFy19\nbbxx4j28lBpumnCt23ZScTValTcr45dhsvbzSfnncsfxKMPFP0ky3WdwlHjfWPosJhp7RfdrwXPY\n7XZKO8pZn7+Rn+3+La+eeJvKzmomBqZx++Qb+d38X3B50kWE6kK+s623ypsfZ9xKin8SOc15PHvs\nZcxWswzfhSAIgiCKfwRBGHOSJBFvjKXF1EpHf+c3XiscugiU62GzcHbS/JOx2q0Ut5c5bJ/lnZVo\nVd6ifb8bCdEG0dzXKtq7eoBtlTuxY2d57GJZCyIWR83HoNazrepLh46GymnKw2wzMyNsmkcWfLgL\nhaTgpgnXEqINYkvlFycf4I6FwXFf72Cymrgy6WL8vf3G7NhyCNIGcE/G7VyXeiVgZ0PBWzx55Dla\n+trkjiY4UWXnYPFPjBsV/8QaotEoNSevCQTh+4iRX8K50Kt13J1xG4ui5lHX08An5Z9j0Oi5J+N2\njz8vcJY5YZkA7KvLljnJ+GCz21if/wYmq4k1yZcRpA2UO5JHWRAxm2BtIF/W7BMFHg5U1FaKl1Lj\nVuenpzI8+qtsaOGiILizroFutlbu5Lf7H+fxg/9iX102BrWOVfEX8Oi8n3HX1FvICJ50xgJTL6WG\nH025mQkBqeS1FPD00RcZcOBCYUEQBGFkRPGPIAiyGB79Vfa17j9mm4WyjnIi9eFilZ2bSQtIBuCE\ng0Z/9Zp7aextJtYQjUISH1XuItgnCJvdRotJPEx2Z50DXeyrP0iQdwAZwZNkzeKt8uKCuCWYrP18\nVrndYfvNahga+eVhY57ckVal5fbJN6JRalifv5G6noYxOW52wxFyW/JJ8U9iXsSsMTmm3CRJYkHk\nHH45+3+YEJBKQVsRvzvwODur94p29R6qqrsGlUJFmM93V2a6KqVCSaIxjvqeBjoHuuSOI7g4MfJL\nOFdKhZKrUy5nXdpVJBrjuHvqbaKQ7BykB6Rg1BjIbjgiVvuPga2VOylqL2Vq8CTmhM+QO47HUSlU\nXJq4Epvdxgclm+WO4xE6B7po6G0kwRjn9l2qhruUl5+iq70guAOb3cbxlhM8d2w9v9j9O94p3kRz\nXwuZIVO5J+N2fjP3YVbGLx11QbRGqeaHU2462eX5XzkvYLL0O+m7EARBEE7FaU9UbTYbv/rVr7jm\nmmu44YYbqKj45onQtm3bWL16Nddccw0bN2783m0qKiq47rrrWLt2Lb/+9a+x2QZvTm/cuJErr7yS\nq6++mu3bv/lAqKSkhMzMTPr7xQeLILii4eKfr4/+Ku+oxGyziK4/bijRGIdaoaKgzTHFPxWdg23C\nY4dW0gjuIUQ7eKO8SYz+cms7qnZjsVlYGrPQJYrvFkTMxs/LyM7qPbT3d5zz/joHuihoLSLWN1o8\n3HEREfowbki/mgHrAM8cfYk+S59Tj9c10M2bRe+jUahZl7Z63HV/8vf2466pt3BD+tUoJCVvFL7L\nPw4/Q1Nvi9zRBAey2CzUdtcTqQt3u4crKUPjf8XoL+FMxMgvwVHmRczigcy7iDJEyB3FrSkVSmaF\nZdJr6eNo83G543i06q5aPiz9FF+NgbWp4+98dqxMC55MnG8Mh5uOfWPxonB2itoGOzsOn+u5s0h9\nOGqFinLR+UdwM62mNj4q28Kv9vyBp3Ke53DTMUJ8glidfAm/m/9Lbpm0jrSA5HO6H6hWqLht0g1k\nBE+mqL2Up3Kec/p9HkEQBOErTnui8/nnnzMwMMAbb7zB//zP//CHP/zh5Gtms5nHHnuMF154gfXr\n1/PGG2/Q3Nx82m0ee+wx7rvvPl599VXsdjtbt26lqamJ9evX8/rrr/P888/z17/+lYGBwRZy3d3d\n/PGPf0Sj0Tjr2xME4RzF+g52dPl68U9h++AN/hR/978IHG/USjWJxnhquuscskp7+OI5ThT/uJXh\nQorGXlH8465Mln521uxFr9a5zOpRtVLNRXHLMNssbC7fds77O9iQgx276PrjYqaHTGFZzCIa+5p5\n6fjrTu1Es7HwPXrMvVyauHLcjkeQJIk54TP45ewHmBw0gaL2Un534K9sq/pSdAHyEHU9DVjtVqLd\n8EF28tC1gBj9JXwfMfJLEFzT7PCh0V/1rj/6y263yx3hrJitZl48/hpWu5Xr09eIztlOJEkSVyRd\nDMC7xR+77e+MqygeOrdL8nf/RZ9KhZJoQxS1PfX0i7FGgouz2CwcajzKU0ee51d7/sDHZVvosfQy\nL3wWD2bezS9mPcCS6PMc+nmiUqi4ZeJaZoRmUNpRwT8PP0evuddh+xcEQRBOz2nFPwcPHuS8884D\nICMjg9zc3JOvlZSUEBMTg9FoRKPRkJmZSVZW1mm3ycvLY9aswXb8CxcuZM+ePRw9epRp06ah0Wgw\nGAzExMRQUFCA3W7nkUce4YEHHkCr1Trr2xME4RxplBqi9BFUdVWfbAdd1FaChESS6Pzjlr4a/VV8\nzvsq76wEIHaoja7gHoJ9ROcfd7e3LoteSx+LouahUbpOEfWc8BkEawPZXbuf5r7Wc9pXVsNhJCSm\nh0x1UDrBUS5NuJBU/ySONefzqQMKvU7lSFMuhxqPkmCMZVHUPKccw534eRm5Y/JN3DzhOjRKNW8X\nfcjfDv2b+p5GuaMJ56iqqwaAGEOUzElGL8YQiZdSIzr/CN9LjPwSBNcUrgsl1jea/JZCh3TtdIYB\nq5kX817nZ7sePdlBzJ18ULqZup4GFkbOZWJgmtxxPF6SXzxTgiZS0lHGMdHR6pwUtpeiUaiJdcPz\n01OJ943BZrdROdS9XBBcTX1PA+8UbeIXu3/H87mvcLz1BHG+0axLu4rH5v+SdelXEW+McVr3OKVC\nyU0TrmV2WCYVXVX84/AzdA/0OOVYguCJ7HY7PeZeqrpqOdqUR1lHpShEFkZE5awdd3d3o9frT/5/\npVKJxWJBpVLR3d2NwWA4+ZpOp6O7u/u029jt9pMfQDqdjq6urtPu48knn2TRokWkpYmLH0FwdQnG\nWCq7qqnqriFaH0lZZyWR+nB0ah+5owlnITUgCUqgoK2ImWFn31HDbrdT0VmFv5cfRi/DmTcQXMbw\n2C/R+cc9WW1WtlbuRKNQs9DFiiKUCiUXx6/gxeOv8XHZFm6ccM1Z7aext4mKzirSA1LE+4sLUiqU\n3DJxHX/I+jsflW0h2hDJpKB0h+2/19zLGyfeRaVQsS5tjUuMtXMFkiQxI2waqQHJvFH4Hocbj/JY\n1hNcHL+cpdEL3W5klDBouPgn2hApc5LRUyqUJPrFc7zlBO39Hfh5GeWONG5ZbVbs2FEpnHbr6Kwd\nFiO/BMFlzQ2fQUVnFQfqD7Ei9ny543xDe38H/zn6EpVdgw/rn899hfzwmVyVchleLrT44XQKWovY\nVvUloT7BJzvSCM53WeJKclvyea/kEyYGponz47PQNdBNfU8Daf7JHvPnF2eMgarBBYzJHtDNSPAM\n/dYBDjUeZU/tAUo7ygHQqX1YEn0ec8NnEqEPG9M8CknB9elrUCmU7K49wN8P/4d7pt2Or0bckxME\nq81K50AXLaY22kzttJraaO0f+qepnTZT23e6y8X7xrI8djGTg9LFfU3htJx2B0ev19PT81UVp81m\nQ6VSnfK1np4eDAbDabdRKBTf+FpfX9/T7uODDz4gLCyMt99+m6amJm655RY2bNjwvVn9/X1QqTzj\npNOTBAeLEwBPl9GXxhfVu2mw1KOTNFhsFqZGpIufvZsKDErFkKOjqL2EoCD9Wa8aaOxpocvczZyo\n6R77u+Cp3xcYMHr70tLf4sHfo+f6svwAbf3tXJi0mPiIsb0ZMBIXBi1ga80ODjQc4pppFxPlGz7q\nfXyRuwOAJUlzxe+ok5zrn2swBh7W3skjW//Cy/mv89jynxJmCHFItn/tf5fOgS7WTrmcyXFixOi3\nBWPgZ5E/Yl/VIZ4/+Drvl3xCbttxfjTzBmL83K+AZLyrO1KHUlIwJS4JtVItd5xRmx41geMtJ2iw\n1pEc7Dqrw8fTZ4fJ0s+j25+gvqeZO2dez8xI1+mY1zPQS35bEXF+UUyMjZc7jiB4BEe+v60wzuft\nog/JbjzM2sxLnNZRYLSKW8r5y8GnaTN1sDhuLhenR2o6cgAAIABJREFULuGp/S+xpy6L8u5K7p17\nK/H+rjt6vHughw1730QpKbhv/q1EBozP8bVyCA42sKR5Pp+XfElu9zGWJZ4ndyS3U1JVBEBG1Njf\n93XW8TJ90nk+F2r7a8fVOaLgeux2OyWtFWwr3c3uymz6LCYApoSmsyRhPjMjp8h+TfiT4B9gOOTD\n5uIveDLnWR45/14CtH6yZvIE4r3HtZks/TT3ttLc00ZzbwvNva009bQO/bdWWvrasdltp9xWp9YS\nZgghyMefYJ9AAn38KWgu5mDtMZ459hKRhjAuSVvOebEzZf/7LbgepxX/TJ8+ne3bt3PRRRdx5MgR\nUlJSTr6WmJhIRUUF7e3t+Pj4kJ2dza233ookSafcZsKECezfv5/Zs2ezc+dO5syZw5QpU3jiiSfo\n7+9nYGCAkpISUlJS2LJly8njLFmyhBdeeOGMWdvaxKxJVxMcbKCpqUvuGIKTBUmhAByrLaSlY7Ad\ndJRXlPjZu7Fkv0QONR4lr6KUUN3ZPaw91JAPQLh3uEf+Lnj6+1uQVyClHeXUNbS55Cpx4dTsdjvv\n5G1GQmJu8ByX/R1dGbOcZ469xPrsd7lt8g2j2tZut7OjdD9qhZoE70SX/R7dmaPe3wwEcG3qlazP\n38gfdvybB2fcfc4rsfNaTvBF+V6iDZHMCZgtfv7fI9E7mZ/PeoC3Cj8gq+EwD3/2GCvjlrEidrHH\nrNL1dFablfL2asJ1YbS3mgCT3JFGLUI9WPBzsDKXVB/X6Orr6edwX2ez23jm2MsUtZYD8OddT7Mw\nci5XJK1C4wI3FvfVZWO1WZkSMGnc/EwEwZmc8f42JWgiBxtzyCrJI94Y69B9n42DDUdYn78Ri83K\nFUkXszR6IZJZ4r6Mu/ig5BO2VX3JL7b8kcsSV7I4eoHLraS22+38N+9VWvvaWRV/Ab7WAPH+N8aW\nhC1mZ/l+Xj/6Iak+6XirvOSO5FYOVuYBg+d4Y/m768zzN7tdhVFjoLCpTPx9FGRjs9t4/cQ77K49\nAAyO9l4cNZ854TMJ0gYAuMw14arolZj7bWyt2skjW/7CvdPuwN9bFACdrfF0feqK7HY73eaeb3Tp\naf1W954e86lrDyQkjF6+xPlGE+Dtj7+XHwHe/gR4D/7T39sPrcr7O9vNC5rLhVH1bK3cyYGGQzyd\ntZ7Xct5nScx5zI+YfcptBM92ugJApz2VW758Obt37+baa6/Fbrfz+9//ng8//JDe3l6uueYafvrT\nn3Lrrbdit9tZvXo1oaGhp9wG4OGHH+aRRx7hr3/9KwkJCVxwwQUolUpuuOEG1q5di91u5/7778fL\nS5x0C4I78ff2w8/LSGlHOd0D3UhIJPmJNqnuLM0/mUONR8lvKzrr4p/yzkoAYg2uu+JOOL0QnyBK\nOspo7msl7Cx/B4SxV9BaRE13HZkhU0/eHHBFU4ImEOsbzeGmY1R2VRNjGHk3iMquahr7mskMmYq3\nuBhyeXOGxkXsrNnLhvw3uXni2rNeNd5nMfFawduD7abT1ogClhHQq3X8YOJ1ZIZO5bWCd9hU9ilH\nmo5xffoatxwjNd409DZhtlnc+mcVpY/AW+lNYVuJ3FHGpXeKN3Gs+Tip/klckXQxLx9/g501eyls\nL+WWiWuJ1I+++54jiZFfguD65oTP4GBjDvvqsmUt/rHZbXxctoVPyrfirfTitik3fGOsrFqhYnXy\nJaQFpLD++Bu8XbyJ/NYibphwtUuNJMlqOMzBxhwSjLGsiF0sd5xxyehlYFn0Qj4u/5xtVTu5KH65\n3JHcSlFbKWqFmlhf1+noeK4kSSLON4ac5jzaTO2iiEEYc3a7nXeKNrG79gCR+nAuS1xJekCKyxWw\nDpMkiSuSLkatULG5Yht/O/RvfjLtDpe+DykIw9pM7Wyv3kVNVx2t/YNjusw2yym/Vq1QE+DtR4wh\n6luFPYP/7udlPOt7kxH6MG6YcDWrElawvWoXu2r38W7xR2wu38p5kXNZHLUAo5frnMMK8nBa8Y9C\noeD//u//vvHfEhO/aq+/ZMkSlixZcsZtAOLj43nllVe+89+vvvpqrr766tNm2LZt22hjC4IwxhKM\nsRxqPEr3QA/Rhgh81Fq5IwnnIC0gGYATrcUsjpp/Vvuo6KxCQiLGg24IjCch2iAAmvqaRfGPG9lS\n+QUAy2IXyRvkDCRJ4tKEC/nnkWf5sPRTfjz11hFvm1V/GICZYdOcFU9wsNXJl1DdXcvBxhxifaNZ\nGrPwrPbzfskntPW3szJuKVGGCAen9GyTgyaQODued4o3sbcuiz9l/5MVsedzYdxS1KK7m8uq6qoB\ncOviH6VCSZJfPLkt+eJhyhjbUb2H7VW7CPMJ4bZJN+Cj1vLQjHt4r+QjdlTv4U/Z/+SKpItZFDlP\nllE+veY+8luLiNJHEOITNObHFwRhZNICkvHzMnKwMYfVyZfK0jWs3zrAy8ff4EjTMQK9A7hzyg+I\n0J96vPHEwFR+Pvt+Xj7+BsdbT/D7A3/jxvRrmBCYOsapv6vV1MbGwvfwUmq4acK1opBdRktjFvJl\nzT62VO5gQeQclyoQc2XdAz3U9tST6p/kcR2i44yDxT/lnVXifFUYcx+VbWF79S7CdKH8JOOH6DU6\nuSOdkSRJXJJ4ISqFik1ln/HEoaf5ybQfivN6wWW1mdr5tGI7e2oPYLVbgcEFc+G6UPyHi3pOFvgM\ndu3Rq3VOv1b29/bjyuRVXBi3hJ01+/iiahefVWxnW+VOZodnsjRmEaE+wU7NILgu5W9+85vfyB1C\nbr29A3JHEL5Fp/MSP5dxoqO/k+OtJwCYETqN9MCUM2whuDIftZYD9Yeo62lgWczCUa80sNqsvFn0\nAWG6EM6PXuCklPLy9Pe3zoFuDjUeJdoQSYIxTu44wghUdlXzfsknpPonsSL2fLnjnFGgdwBF7aWc\naCsm1T+JAG//M25js9tYX7ARtaTi2tQrXHYVlLtz9PubQlIwITCV7IYjHG0+TpJfHIGjXBFW2FbC\nxsL3CNeFctPE61CKn/2oqZVqpgRPJME3lsK2EnJb8slpyiXGNwo/L6Pc8YRT2FeXTXlnJSvjlrr1\nQ4jOgS7yWwuJNkTK3mkGPP8cDiC3OZ+Xj7+BXq3j3ul3YvTyBQaLsSYGphFjiOR4ywmODHXgSwtI\nPuexjKN1sDGHI025LI6aT5Jf/JgeWxA8lTPe3yRJotvcw4m2YiJ0oUSM8ft4m6mdJ488S2F7Ccl+\nCdyTcfsZzyO9lF7MCM1Aq/Imtzmf/fUHMVlMJPsnynYOOTyGsaG3iWtTryQ1IEmWHMIglUKFRqnh\naHMeA1bzN7pICad3vOUEhxqPMjd8Jsn+Y9vx3dnnb1a7jf31Bwnw9ic9QNzTFsbO1sqdfFi6mUDv\nAO6bfge+btbpI9k/AbVCxZGmXI40HmViYLpbFC+5kvFwfSqnNlM7H5R8wvr8jZR3VhKoDWB18iX8\nYOJ1XBi3lAWRc8gMncqEwFTijbGE6UIxevnipdSM6SIZtVJNkl88C6Pm4e/tR21PAyfaitlZvZea\n7noCtf7i3p0H0+lOPRFL3P0WBEFWCV9r/5zin/g9Xym4i7SAZExWExVd1aPetranAbPNTJyvGPnl\nroZXajT1NsucRBipzyt2ALA8ZrG8QUZIkiQuTbwQgA9LN2O328+4zYm2YroGupkWOsXjVhp6Oj8v\nI7dNugGA53M30GZqH/G2A9YBNhS8hYTE9elrRKeac5QemMIvZj/AeZFzqetp4C/ZT/Fu8UdYbVa5\nownfUtlVg4TkEgUz52L44ZAY/TU2qrtqeSFvAyqFkjun/OCU7fcnB03g57PuJ80/mdyWAn5/4G/k\ntxaOaU4x8ksQ3MecsEwA9tUfHNPjlnVU8Mfsf1DVXcv8iFncnXHbiB8oKiQFS2MW8uCMHxPiE8S2\nqi95/OBTNPQ2OTn1qW2r+pKi9lKmBk1kbvgMWTII3zQ/YhYhPkHsrt1PQ0+j3HHcQlF7KcCYF/6M\nhRhDFBISZR2VckcRxpHdNft5p3gTRo0vP5l2u9s+2F8Rez6rky+hY6CLJw49TW13vdyRBIE2Uztv\nnHiP3+z9Iztr9uLnZeT69Kv51ewHmRM+Y8wXv4yURqnmvMg5/HrOQ9w66XqiDREcaTrGn7Of5IlD\nT5PXcmJE99AFzyCKfwRBkFWUPgK1Qo2ERKJYuekR0vwHR38VnMWDgPLOwYvlWFH847aCtYEANPa1\nyJxEGInmvlYONR4lUh9+cmyfO0gwxjEpMI3i9jIKWovO+PUnR36FipFf7ijRL46rki+l29zDM8de\nxmw1j2i7D0s/pbmvhSUx5xHnG+PklOODVuXNtalXcO+0HxLg7c/nlTt4Kud5es19ckcThtjsNqq7\nawjThaBx0ZtSIxWlj0Cr0lIkin+crr2/g38f/S/91gFunHAt8V9boPFtRi9ffpxxK1ckXUyPuZcn\njzzHO8WbsNgsTs8pRn4JgnsJ1YUQ7xtLQWvRqAq4z8WB+kM8cfg/dA/0cFXypVyXuvqsiv9jDFE8\nPONe5oTPoKqrhj9k/Z29tVlj+tCkpruOD0s2Y9DouS5ttSyjFoXvUiqUXJZ4ETa7jfdLN8sdxy0U\ntZeiVqg88l6ft8qLCH0YVV3VYlGEMCayG47w2ol30Kl9uGfa7QQN3Yd1V0uiz+OalCvoMnfzxOGn\nT46wFoSx1t7fwcbC4aKfPYNFP2lr+NWch5gbPsNtxq4qJAXTQ6bw/2b8hJ9k/JD0gBSK2kv5V87z\nPJb1BAfqD4nPq3FAFP8IgiArpULJBbFLWB67GK3KW+44ggOk+iciIVHQWjzqbSs6qwDEQ1o3plFq\n8PMyis4/bmJb1U7s2FkWs8jtbiavShjs/vPBGbr/DFjN5DTlEuDt/41uc4J7WRg5l9lhmVR2VfNG\n4XtnfPBS1lHB9qpdBGsDWRW/YoxSjh8p/kn8fNb9TA5K50RbMX899C9a+trkjiUw2Hmv3zpAtCFS\n7ijnTCEpSPZLoNnUSqtJ/H45i8nSz9M5/6W9v4PLElcyfQQddRSSgmUxi3gw88eEaIPYWrmTvxx8\nyukdEI4252G1W0eUURAE1zA3fAZ27OyvP+TU49jsNt4v+YSXjr+OWqHirqm3cH70gnO6xvFWeXFD\n+tXcMnEtChS8UvAm/817dUyKns1WMy/mvYbFbuX6tDUYNHqnH1MYualBE0kwxpLTlEtpR7nccVxa\nj7mX2u564n1jPbYTa5xvNAM2M7U9DXJHETzcsebjvHT8dbyUXtw99TbCdaFyR3KIhVFzWZe2hl5z\nH38//MzJxcGCMBYGi37e59d7/8iO6j0YvYysGy76iZjpNkU/3yZJEqkBSdydcRs/nXkfM0IzqO2u\n56Xjr/ObfX/ii6rd9FvF2DhPJYp/BEGQ3cr4pVyWuFLuGIKD+Kh9iDFEUdZZgcliGtW25Z2VaJQa\nj7l4Ga9CtEG09bczIE4gXVr3QA97arPw9/IjM2Sq3HFGLdoQwbSQKVR2VZPTnHfarzvWfByTtZ8Z\noRkoJHHq664kSeLa1CuJNkSyty6LXbX7T/u1ZpuFV/LfxI6ddWlr3L77iavyVnnxw8k3sThq/uAY\nsINPniziFeQzvFLSE4p/4KuxwGL0l3PY7DZePP4qVd21zAufOeoRoDG+UTw8817mhs882RljjxM7\nY4iRX4LgfqaHTkGtULG/Lttp7w0mi4lnj63ns4rtBGsDeTDzbiYEpjps/5mhGfx81n3E+8ZysDGH\nx7KecHrBxwelm6ntqee8yLlMCkp36rGE0ZMkiSuSLgbg3eKPxBiN71HcXoodu0eO/BoW5zu4yKi8\ns0LmJIInK2wr5rncV1BKSn409WZifKPkjuRQ8yJmcuOEazBZTPzz8LOisFJwum8W/ezGqPFlXdoa\nfj3nIea5cdHPqUQbIrh54lp+M/dhFkXNo2ugmzeL3ueRPb/no9LP6B7okTui4GDiCYggCILgcGkB\nydjsNorby0a8jclior6nkVhDlHhA7+aCh8YwNInRXy5tZ80ezDYzS2MWuu0Fzar4FUhIbCr9FJvd\ndsqvyWoQI788hUap5vZJN6JT+/Bm4fuUdZz65urm8q3U9zayMHKuR99kdgUKScGalMu4KvlSuga6\neeLQ0+Q0nb4YT3C+yu6h4h+9ZxT/JPsN/h0uaiuVOYlneqd4E8ea80n1T+La1CvPqkOGt8qL69PX\ncMvEdSgVSjYUvMnzeRvoNfc6NKsY+SUI7kmr0jI1eBKNfc2Unubc7Vy09LXx+MF/cbQ5jxT/JB6a\ncQ9huhCHHydQG8D90+9kZdxS2kzt/O3Q03xS9vlpr0HORUFrEduqviTEJ4grhwpMBNeTYIwjI3gS\npR0V37sYZbwrah88hxs+p/NEcUPjzMo7xEIIwTnKOip5+uiL2O12fjj5RpL84uWO5BSzwqZz88S1\nDNjM/PPIc2L8s+AUHf2dvPmNoh8D69Ku8siin28L0gZwdcrlPDrvZ6yMWwZ2+Lj8c3655/dsLHyf\nlr5WuSMKDiKergqCIAgOlxaQBAzetBqpyq4a7Ng9cgb4eDP8QEaM/nJdA9YBdlTvwUelZW74TLnj\nnLUwXQizwzKp62kgu+HId17vMfdyvOUEkfpwIvRhMiQUHC1Q688tE9dhs9t49th6Ovq7vvF6VVct\nn1Vsx9/LT3QVHEPnRy/gh5NvBODZYy+zvWqXzInGr6quWgCiDBEyJ3GMCH0YOrUPhe3ixq+j7aje\nw/aqXYTpQrlt0g3nfJMzM3QqP5t5PwnGOA43HuX3B54Y1UKAMxEjvwTBfQ1fb+yry3bofkvay/lT\n9j+o7alnYeRc7p56Kzq1j0OP8XVKhZJVCRdw77Q78NUY2FT2GX8//B/aTO0OO0avuZf1+RtRSAp+\nMOE60cHSxV2auBKFpOD9ko+x2qxyx3FJRW2lqBQq4nxj5I7iNGG6ELyVXpSJUUWCE9R01/GvnOcZ\nsJq5eeJah3a2c0WZoVO5bdL1WG1Wnsp5YVTPFgTh+3T0d/JW4Qf8eu8f+KJ6N74aA2vTVvOrOQ8x\nL2KWRxf9fJtBo2dVwgoenf9zrkq+FL1ax47q3fxm35/4b96rVA/dVxLclyj+EQRBEBwu3hiHWqGm\noG3kJ+jD83xF8Y/7C9EOFv809oniH1e1ry6bbnMPCyPn4q3ykjvOObkofhlKSclHpZ9954brocaj\nWO1W0fXHw6QFJHNZ4ko6Bjp5PveVkz93q83KhvyN2Ow21qVdhbfKW+ak48uU4IncP/1HGDR63ir6\ngI2F7ztlNbxwena7naquGkJ8gtB6yO+/QlKQ7JdAq6mNZrEKzWFym/N5s/B9DGo9P5pyMz5qrUP2\nG6j1575pd3BR/HLa+zt44tDTbDrF5/PZECO/BMF9pfgn4u/lx6HGHIeNht5bl83fD/+HXksf16Rc\nzjWpV4zZQ5tk/wR+Put+MoInUdxexu8P/I0jjcccsu/XT7xLe38HF8UtF/dG3ECoTzALImbT2NvM\n7toDcseRhdlqpr6nkbyWAnZW7+Gd4k08e2w9f8j6Ow/t/DXV3bXE+8agVqrljuo0CklBrG80Db2N\n9Jr75I4jeJDG3ib+eeRZei19XJ++hmkhk+WONCamBk/ih5NvxI6dfx/9L7nN+XJHEtxYR38nbxUN\nFv1sr96FQWNgbepqfj3nIeZHzEalUMkdUTZeSg3nRy/gf+c+zE0TriXMJ4TshiM8lvUETx55jsK2\nYjHa1E2N399qQRAEwWnUChVJfvHktxbS0d+J0cv3jNtUdA62x4334NVA48Vw559G0fnHJdnsNrZW\n7kSlULEoer7ccc5ZoDaA+RGz2Vmzh711WSyInHPytaz6w0hIzAjNkDGh4AzLYhb9//buO76t+t7/\n+FvLlmx5yHvvmeEsO4skQICyy54ts6VldNCW3rb3tr0d3BY6fu0ttJRRoKVsCCNQoEAIIXs6sZ14\nJY733ntJvz/smOQmQIDYspTX8/Hww4qtY32UyN8cnfM+n48qu6q1q7lAq8pf0xUZF+ntqvdV3VOn\nxdG5yg7NcHeJJ6WEwDjdteAbemDPo3q/ZoPaBtp044xrPT5k6ClaB9rVP9KvGSHe9fpPD05VfnOh\nytr3K8wW4u5yPF5Nd50eLXpSZqNJX8+58YT/nZqMJp2ffJayHOl6fO/TeuPgOyppL9ONM65R6Gd8\nLEZ+AZ7NaDBqUdR8vVm5RvnNhVoYNf8z/yyny6mXy/+ld6vXyc9s01dmfVlZIeknsNrj42/x01dn\nXacNdVv0QtlqPVz4hE6JWaTL0y/8zN16tjXs0o6m3UoOTNQXEk87sQVj0pybfKa2NOzQvyre1sKo\neV53AcKoc1Qdg51qHWhTS3+7Wgfa1NrfNvG5c6j7mNtZjBaFWh1KDkrUmQmnTnHVUy8pMEEl7eWq\n7K5Wtpfti8M92gba9addD6t7qEdXZFykxdG57i5pSs0Ky9atOTfqwT1/10MF/9BXZn1Jc8Jnubss\nr+ByuTQ4OqSB0QENjAyqf2TgGLcHxm6PDGpg9OjbTpdTUf6RirfHKC4gRnH2GEX6hU+r7jmdg916\np2qtPqjdpGHniBy+wTo36Qwtil5wUgd+jsVkNGlh1HzlRc7T3rYSvV25VvvaSrWvrVSJAfE6M/FU\nzQ2fJaOBfjKeglc4AGBSZIWka19bqYrbyrQoesEn3v9gV7UCfQIU7Bs0BdVhMoXaQmWQgfDPNJXf\nXKiWgTYti1mkQJ8Ad5dzQpyTtFKb6rfpjYPvalHUAllMFrX2t2t/Z4XSg1PksAa7u0ScYAaDQV/O\nvkL1fU1aW7NBNrNNb1e+pyCfAF2WdoG7yzuphdoc+t6C2/VIwT9V0LJPf9z1V92Wc9NxBYHx+VR3\n10qS4gNi3VzJiZXhSJUklXbs15IYzx1VOR10DHbqgT2PaXB0SF+Z9WUlB01e6D41OEk/yrtTz5Ss\n0o6m3frV1j/qmqxLP1Mgl5FfgOdbFJ2rNyvXaHP99s8c/ukfGdDjRU+psLVYkX7hujXnRkX4hZ/g\nSo+fwWDQstjFSg1O1mNFT2lD3Rbt76jQTTOv/dTjN9sG2vVs6UvyNfnohhlXT6uTZ/h4gT4BOivh\nNL1W8W+9U7VOF6R8wd0lfSoul0tdQ93j4Z42tfa3q22gTS0D7Wrtb1P7YMcxu3kaDUY5fIOV4UhT\nmNWhUFuIQq0hE58DfewyGAxueEbucWif6mBnFeEffG5dQ926L/9htQ926MKUc3RanOdfuPdZZIdk\n6PY5N+uBPY/pkcJ/6qaZ1/J+YNzAyKD2t7Wprq1VA6ODHxHWGdDA6OAxb7v06bu5GA1G2UxWWc1W\nmQxGlbaXq7S9fOL7FqNZMfbo8UBQrOLsMYq1R8tniju/HSv0c07SSi2OziX08wkMBoNmhmZpZmiW\nKjqr9E7VWu1uLtLfCv+pOHuMvp/7Df4OPQT/SgCASZHlGLv6rqS9/BPDPx2DneoY7FRO2MyT6uCA\nt7IYzQqxOtTM2K9px+Vy6e3K92SQQWckrHB3OSdMkG+gTo1bqneq3tcHtZu0MmGFdjTmSxIjv7yY\n1WzV12Zfr99su09vHHxHknRV5qXys/i5uTLYzDbdPudmPVOyShvrt+m32+/XbXNuUqw92t2lebWq\n7hpJ3hf+ifaPlN3ir9L2/XK5XOwrfkYDI4P66+7H1DHYqYtTz5uSA+d+FptumnmtskMz9Vzpy3qs\n6CntbS3RlRkXfarOCIz8AjxfhF+YUoOSVNq+X6397Qq1OT7V9i39rXpgz+Nq6G1UdkiGbp75pRM2\nsvDzivaP1PcXfEMv7/+X1tZs0G933K9LUs/XqXFLj+v/LKfLqX/sfVb9IwP6UtblCvcLnYKqcSKt\nTFihdbWb9G7V+1oeu3jahd77R/rV3N+q1sM697QMfBj0GXaOHHO7IJ8AJQXGHxHqCbM5FGoNUbBv\nECG1wySNdzE/2FXl5kpOXk6XU91DvbJb/Dz6tdk33Kf78x9RU1+Lzko4TWcnnu7uktwqw5Gqb8z5\nqv6y+296tPBJjcwY+VwdBD3Z0OiQCluLtbNxtwpbizXsHD6u7QwyyGq2ymrylcM3SFb/SFnNvhNB\nnrHbNlnNvrKarbKN39dmHv++aexrFqP5iP2a/pEB1fbUq7q7VjXddaruqVV1d+3EdIdDjx3pHzHR\nISjeHqu4gBj5T8Jxu66hbr1duVYf1G7WsHNYDt9gnZ20UksI/XwmyUEJumX29Wrsa9a7VevUMdgp\ngzgW4yl4xQMAJkWMPUoBFruK20o/8UTNwfGdQmbae48IvzDtayvVwMiA17W99mRlHftV1V2rueGz\n3HqV7GQ4K/E0ra/drLcq39PSmIXa1rhLZoPppJmJfrKK9AvXjTOv1oN7/q7cyLmaEz7T3SVhnMlo\n0rVZlyvMFqpXD7yp/7fjL/rqrOsYyTaJvLXzj8FgUHpwinY1F6ikvVyZjjQCQJ+S0+XU43ufUnVP\nnZZGL5zS8RsGg0FLonOVGpSox4qe0paGHTrQeVA3zbz2uPb9GfkFeI/F0bna33lQWxt26NzkM497\nu7L2/Xq48An1Dvfp9LhluiTt/Gl3YtdisuiKjIuUFZKuf+57Xs+XvaJ9baX6cvYVCvCxf+y2a6o/\nUFnHAc0Jm6kl0XS480S+Jh+dn3yWni5Zpdcr3ta1WZe5uyQNO0e0p7lIm+q3qbit7JhdHvzMNkX5\nR46HexwKOyzkE2J1THm3Bk8W4GNXqNWhiq4qwuqTaMQ5otaBdrX0t6q5v1Ut4x/N/W1q7W/VsHNE\noVaHrsy4WLPCst1d7qc2MDKov+x+VLU99VoWu1gXpZ7La0ljHUW/Oe8W3Z//N/1j77MacY5q6UnS\nEXZ4dFhFbSXa2bhbBS17NTQe+In0C9e82JkyjljGwzrjIZ6JsI7vRHDH1+QzKa8jm9mqtOBkpQUn\nf1ivc0QNvY2q7q5TTU+tqrvrVNtTp4beRm15s/4EAAAgAElEQVRr3DVxP4dvsOIDYscDQTGKD4hV\nsG/QZ6qza6hb71S+r3W1mw4L/ZyuxdF5shD6+dwi/cKnxX4NPh1e+QCASWE0GJUZkqbtjflq6GtS\ntH/kR973UCI8ifCP1wi3hWmfStXc3+p1JyE92dtV70uSzkw4zb2FTAK7xV8rE1boXxVv66niF1XX\n26A5YTPpAnMSmB02Q/9zyn994okVTD2DwaCzk1Yq1BaiJ/Y9p7/seVRXZ16iU2IWubs0r+NyuVTd\nXatQq2NSrqJzt7kRs7WruUD35T+seHuMlsUuVm7kXALGx2lV2WsqaNmnLEe6rs68xC0nESL8wvW9\nBXfotQP/1ttVa/W7HX/WhSln68yEU2U0GD9yO0Z+Ad5jfkSOni99RZvrt+ucpDOOay3aULtFz5S+\nJEm6NvMynRI7vfchZofN0H8u/I7+sfdZFbbu06+3/kHXz7haWSHpx7x/bU+9Vu9/UwE+dl2TdRkn\neT3Ykug8raler411W7UyfpmiPuYY2GSq7anXxrqt2tawS70jfZLGutIkBsYd1cHHZp4e3bO8RVJg\ngnY07VZLfxsdvD6HgZEBNfe3HRbs+TDk0zbQccwgm81sVZR/pAJ9ArSvrVQP7HlMc8Jn6Yr0L3rM\nGPjh0WE9VPB3VXRVKS9ynq7KuJj/Ew6TFJigb827RffnP6Ini5/XqGtEy2OXuLusSTHsHFFxW6l2\njAd+BkYHJUnhtlAtiJij+ZFzFOMfpYiIQDU3d7u52iNZjGbFB8SOnwsYC2g5XU619LeOB4LqJjoF\n7Wkp0p6Woolt/S1+ijusQ1B8QIwi/MI/8r1i91CP3q5aq3U1Y6GfYN+g8fFehH4AfgMAAJMm05Gu\n7Y35Km4r+9jwz8HOKhlkUGJg3BRWh8l06Mrspr5mwj/TRG1Pvfa2ligtOHliHr23WRm/XO/XbNCO\npt2SpNwoRn6dLKZba30cKTdyrhy+wXqw4HE9VfyiWvrbdGHK2R97wh+fTsdgp3qGe4+46s6b5EbO\nlb/FT+trN2tPy149XbJKq8pfU17UfC2PWay4gBh3lzhtra3ZoPdq1ivKP1Jfnf1lt3bLMBvNujjt\nPGWFpOsfe5/RK/vf0L62Mt0w4yoF+wYdcxtGfgHew2q2am7EbG1t2KnyjgqlO1I+8r6jzlG9VP66\n3qtZL3+Ln26ZdZ3SHalTWO1nF+QbqDvmfkXvVq3Tqwfe1P35j+jMhFN1QcoXjhg7MTw6rMeLntaI\na1RfzvrkDkGY3kxGky5OPVcPFvxdL+9/Q7fm3Dhlj9033K/tjfnaVL9VVeOdIAMsdp2RsEJLovM+\n9ngcTpykoLHwz8GuKsI/H8PlcqlnuFfN/S1q7vuwc8+hgE/3cM8xtwvyCVBKUKLCbKEKH/8I8wtV\nmC1U/ma/iaBMXU+DnilZpd3NhdrXVqrzk8/S6XHLpl3HuMONOkf1t6InVdJerpywmbou+0reKx9D\nQkCcvj3v67pv18N6puQljThHdXr8MneXdUKMOEdU3FamnU17tKelSP0jA5KkUKtDy2OXaH5kjuLt\nsR4ZCDMajIrwC1eEX7gWRM6Z+HrnYNdYEKinbiIYVNJerpL28on7WIwWxdqjj+gQFOgToLU1G7Su\nZqOGxkM/Zyeu1JIYQj/AIfwmAAAmTVZImiSpuK3sI3fGnS6nqrprFOkXzlVHXuTD8E+rmyvBIe9M\ndP2ZulEfU81mtuoLiafrpfLXZTVZNTvU89o8A94qNThJdy24Qw/sfkz/rnxPrf1tui77SlkYJ3BC\nfDjyy3uD1NkhGcoOyVDHYKc21W3ThrqtWl+7WetrNyspMEHLYhdrQUSOfEw+7i512ihs2acXSl9V\ngMWu23Numjb72lkh6frRwu/oyeLnVdCyT7/a+gd9KeuKo0Y3MvIL8D6Lo3K1tWGnNjds/8jwT99w\nvx4telL72koV5R+p23JuVJjNs06kGw1GnZV4mjIcqXq06Cm9XbVWJe3lumnmtRPr2asH3lRdb4OW\nxS72yPE0ONrssBlKDUpWQctelXdUTGoo2+lyqrzjgDbWbVN+c4GGnSMyyKBZodlaGpOnWaHZ0zrs\n4I2SAscusqroqlLeSX4hktPlVNtAxzHGc419HhwdOmobo8GoEKtDcQExCrOFKswWMh7yCVOYLeS4\n9/Fj7FG6c/6t2ly/Qy/vf10vlb+uLfU7dE3WpUoJSjrBz/Tzc7qc+se+Z1XQsleZjjTdPPNafnc/\nRqw9WnfO/7r+tOshvVD2qkacIzor8TR3l/WZjDpHVdq+Xzuadmt3c6H6RvoljY3EWhq9UPMjc5QY\nEO+RgZ/jEeQbqCDfwCP2gfpH+lXTXf9hh6CeOlV11+hgV9VR2wf7BumSxNO1JGYhoR/g/+A3AgAw\naUKsDkX4hamsY79GnaPHfPPS0NukgdFBJTLyy6uE28YOaDb3t7i5EkhS+0CHtjfmK8o/UjNDs9xd\nzqRaEbtUu5sLlR2SQagAmGYi/ML1vdw79NCev2tH0261D3bo67NvlN3H392lebwPwz/e320v2DdI\n5yafqbOTVqqotVjrazerqLVEB7uq9GLZai2Kmq9lsYtP+qvcq7vr9LeiJ2U2mnTrnBsVagtxd0lH\nCPCx6+uzb9QHtZu0qvw1PVTwd62IXaJL0i6Qz/j/34z8ArxPuiNFIVaHdjbt0RXpF8lq9j3i+019\nzfrrnsfV2NesmaFZumnmtbJ58IjHxMB4/Sjv23qu9BVtadihe7b9UVdlXKJg3yCtqf5AEX5hujTt\nAneXiRPEYDDokrTz9bsd9+ul8td114I7TvhJ2/aBDm2u36HN9dvUMtAmSYqwhWlJdJ4WRs//yE56\nmHzx9hiZDKZjnqQ+GdT1NGh7Y752txSpua9Fo67Ro+7jY7RMdO4JG/8It4Uq3C9UDt/gExZ6MRqM\nWhqTp5zwGXql/F/aWL9Nv9/xFy2NXqiL0s6V3TI93n+6XC49W/qytjfmKzkwUV+bfQPHsY5DlH+k\n7px/q/5310N6ef+/tKu5QLH+UYr2j1S0f5Si7ZEK8gmclqEZp8upsvYD2tG0W/nNBeodHhvPGOQT\nqNPjFmh+5BwlBcaftJ2fbGab0h0pRwTEh50jqu9tUE33WIeglv5WzQrL1lJCP8BH4jcDADCpshwZ\nWle7URVdVce86qmyq1rSh1fIwDuEWh0yGoxq6iP8Mx2sqf5ATpdTZyac6vVvIH1MFn1vwR3uLgPA\nR7Bb/PXNubfon8XPa3tjvn63437dPudmRfiFu7s0j1Y1Ef45ecZfGQ1GzQ6bodlhM9Ta366N9Vu1\nqW6r1tZs0NqaDUoNStby2MWaGzH7pDso2DHYqb/ueUxDo0P66qzrpu1+tsFg0Iq4pUoLTtFjRU9p\nXe0mlXYc0M0zr1WsPZqRX4AXMhqMWhS1QG8cfEf5zQVaHJ078b3itjL9rfCf6hvp1xkJK3Rx6nle\n8d7Farbq+hlXKTskQ8+UrNI/9j0ri9Eso8GoG2dcI1861nmV5KAEzYvI0a6mPdrVXHBCAqzDzhEV\ntOzVprpt2tdWKpdc8jFatChqgZbGLFRqUNK0PMl9srGYLIqzx6imu07Do8MnRYijpb9NOxrztb0x\nX3W9DZLGAj7xAbETnXs+DPmEKdDHPqWvVbvFX1/KvkKLo/P0TMkqbazfqj0tRbo49Twtjs516++N\ny+XSy/v/pfW1mxVrj9btc24+KhCLjxbhF67vzL9Njxc9rcru6onzC4fYzLbxMNDYR8x4KCjAMrWv\nQWks8LO/o0I7m/ZoV1PBxGi7AB+7VsQu1YLIOUoJSvSKfZ7JYDGalRAQpwQv7nIMnGgn1xEwAMCU\nywpJ07rajSpuKztm+OfQFTFJdP7xKiajSWHWEDX1N7u7lJNe33CfNtRtUZBPoPIi57q7HACQxWTR\nDTOuVpg1RG9WrtHvtv9ZX8u5YVJHI3i76u5aBfsGKdAnwN2luEWozaELU87WeUlnqqBlrz6o3azi\n9jLt76yQf9krWhydq2Uxi06KkNnAyKD+uvsxdQx26uLU8zQvYra7S/pEMfYofT/3m3p5/+t6v2aj\nfrP9Pp2ffBYjvwAvtTh6LPyzuX77RPhnXc1GPV/2qgwy6MvZV2rJYaEgb5EXNU/JQQl6tOgpVXZV\n64LkL9AB2Ut9MeUc7W4u1Kv731BO2AyZP2MIubanXpvqt2lrw86J7hDJgQlaEp2n+ZFzPLorlrdK\nCkpQZXe1anrqlByU6O5yJkXXULd2Nu7R9sZ8VXRVSpJMBpNmh81QXuRczQqbMe1CjanBSfph3rf1\nXs16vV7xtv5Z/Lw21W/X1ZmXKMYe5Zaa3qpco3eq3lekX7i+OfcW+Vmmx3heTxJmC9FduXdoxDmi\npr4W1fc2qL63UfW9jarrbVBFZ6UOdB48Yht/i99Eh6CYiXBQ1AnvRux0OVXRWTXW4adpjzqHuiWN\nBdIOjatOC04h8ANgUhD+AQBMqgxHqgwyqKS9TBfoC0d9v7KrWmajWbH2aDdUh8kU7hemptZi9Q33\nyc/i5+5yTlof1G7W4OiQzk068zMfdASAE81oMOrC1HMUagvV0yUv6r5dD+nL2VcqL2qeu0vzOJ2D\n3eoc6tLssGx3l+J2JqNJcyNma27EbDX1tWhj3VZtqt+md6vW6d2qdcp0pGlZ7GLNCZt5wsYKTCdO\nl1OPFT2l6p46nRKzUGcmnOruko6bj8miKzMuVnZIhp7Y95xe2f+GJDHyC/BCYbZQpQenqKzjgJr6\nmvVe9Xqtq90ku8VfX5t9g1KDk9xd4qQJs4Xqe/NvV21vveLt3j+q82QV4Rem5bFL9H7NBq2v26LT\n4k457m37R/q1vTFfm+q2q7J7rJOF3eKvM+JXaHF0rtuCCjg+SYHxel/Swa5qrwr/9A33a3dzobY3\n5qukvVwuuWSQQRmONOVFztXc8FnT/rifyWjSmQmnakHEHD1f9qp2Nxfq19v+qDPiV+jc5DOnNLC0\ntnqDVh94Sw7fYH1z7i0K8LFP2WN7I7PRrBh71FHr4/DosBr7micCQYdCQfs7Dqq8o+KI+wZY7GNB\nIHvUYd2CIj/V69rlculgV7V2Nu3WzqY96hjslCT5m/20NHqhFkTOUXpwile+DwUwvXAGCAAwqWxm\nm5IC43Wwq1r9I/2ymT+8kmFodEi1vQ1KDIhnx9cLRfiFqahVaupvUZJleo6b8HbDo8NaW7NBVpNV\ny2IXubscADjK0pg8hViD9XDBE3p879NqHWjT2YkrGV3wKdT0jI/84iTiESL8wnRx2nk6P+UL2t1c\nqPW1m1XSXq6S9nIF+Ni1NHqhTolZqFBbiLtLPWFeLFutwtZ9ynKk66qMSzzy92h22Az958Lv6Im9\nz6myu1q5dC0EvNKi6FyVdRzQ77b/Wb0jfYq1R+vrs29UqM3h7tImncloYnTFSeDcpDO0pX673qh4\nR4uiFnxslx6Xy6WyjgPaVL9Nu5oKNOwclkEGzQrN0pKYhZoVmsWFPB7i0KjVis5KnR6/zM3VfD5D\no8MqbN2n7Q27VNRarBHXqKSx55gbOVfzI3IU5Bvo5io/PYc1WF+bfb0KWvbqudJX9HbVWm1vzNeV\nGRcpJ3zmpD/+pvrter7sFQX6BOhb874mhzV40h/zZGUxWRQXEKO4/zMae2h0SA19TarvORQKGusY\nVNqxX6Ud+4+4b5BPgKLHR4Yd6hIU7R85saa7XC5VdddoZ9Me7Wzao7aBdkmSzWzV4qhczY+coyxH\nGuc9AEwp9hoBAJMuKyRdFV1VKms/cMQbqeruOjldTiUF0eraG0XYxkY0NPW1TBwAwdTa2rhTXUPd\nOivhtCOCdwAwnWSFpOt7C27XX3Y/qtUH3lJzf6uuzbyMA2THqbp7PPwTQPjnWCxGs3Ij5yo3cq4a\nehu1vm6LttTv0FuVa/TvyveUHZqh5TGLNTM0y6Nfc2urN2htzQZF+0fqq7O/7NHPJdg3SN+cd4tG\nnaMe/TwAfLR54bP1XOnL6h3pU07YTN0w42pZzb7uLgs4YQJ87Dor8XStPvCm3qlcqwtTzznqPh2D\nndpcv0Ob6reppb9VkhRuC9WS6Dwtil6gYN+gqS4bn1O4LVT+Fj8d7Kp2dymfyahzVMXtZdrWkK89\nLYUaHB2SJEX5Ryovcq4WRMxVuF+om6s8MWaHzVCmI01vHHxX71S9rwcL/q7ZYTN0RfpFkxZE3dVU\noCf3PS8/s03fmPtVRtu6iY/JRwkBcUcFcQdGBtXY16S6Q4Gg8XBQcXuZitvLjrivwzdYUf4Rau5v\nnVi/rSZfLYyar/kROcoKyZCF0CYAN2H1AQBMukxHut44+K6K28uOCP8c7KqSJCUFEP7xRuF+H4Z/\nMPWcLqfeqXpfJoNJp8Uff5txAHCHGHuUvp/7Tf11z2PaXL9d7QMd+uqs6+RnIbj4SQ6FfxIC6SLw\nSaL8I3V5+hf1xZRztatpjz6o3ay9rSXa21qiYN8gLY0Z6wbkaSfbClr26oWyVxXgY9dtOTd5TeCX\n4A/gvaxmX90w42p1DXZpWexiGQ1Gd5cEnHAr45dpXc1GvVv9gZbHLVGwb5BGnCMqaNmnTfXbtLe1\nRC65ZDFatChqgZZE5yktONkjO/dhjMFgUFJggopai9U91OMR45ycLqf2dxzU9qZ87Wrao97hPklS\niNWhU+NOUW7kXMX4R3nl69LH5KOLUs/Vwqj5erbkJRW07FVJW5nOSz5LK+OXn9B90b2tJXqs6Cn5\nmCy6Y+5XFGuPPmE/GyeG1eyrxMB4JQYeeZ6if2RADYePDusZ6xS0r61UPiafiU5YM0IyZTFZ3FQ9\nAHyI8A8AYNIlByXIx+Sj4rbyI75eOX4lTFIQXWG80aHOP839hH+mWl1Pg9bWbFBTX4sWR+d63ElM\nACenIN8A3Tn/Vj1e9LT2tBTp9zv/ottzbj4pRoB8HtXdtQqw2BXk43lt993Fx2TRougFWhS9QLU9\n9Vpfu1lbG3bqXxVv682D72pWaLaWxS5Wdkj6tD8hXd1dq0eLnpLZaNatOTd61RgzAN5tbvgsd5cA\nTCofk48uSDlbTxY/r+dLX1WINVhbG3aqZ7hX0tj4pCXRuVoQOfdjx4LBsySPh38OdlVpdtgMd5dz\nTC6XSzU9ddrWuEs7GnerY7BTkhRgsevUuKXKjZyn5MAErwz8HEu0f6S+Pe/r2tqwU6vKX9PL+/+l\nLQ07dHXmpUoLTv7cP7+8o0IPFfxDRoNBt+bcRHd0D2MzW5UclKjkoMQjvt433C+L0UzgB8C0Q/gH\nADDpzEaz0oNTVNRarPaBjol5xge7qmS3+CvUykkKb+SwBstsNNP5Z4r0jwxoR2O+NtZvmwjWBfkE\n6uzElW6uDACOn6/JR7fMvk6ryl/Te9Xr9dsd9+m2nJuOuvoOY3qGe9U60K4ZIZknzcH5Ey3WHq2r\nMi/RRannaUdTvtbXbtaeliLtaSlSqNWhU2IWaUlMnsIV4O5Sj9I+0KEHdj+m4dFhfWXWlzmRAADA\nNLM4eoHWVK9TfnOBJMlu8dfK+OVaEp2nGHuUm6vDZDi0P3awc/qFfxr7mrW9MV87GvPV2NcsSbKa\nrFoclavcqLnKCE49aTsvGgwGLYpeoFlh2Xpl/xvaULdFf9j5gBZH5+qS1PNl9/H/TD+3qqtGD+x+\nTKOuUX199g3KcKSe4MrhLnQpBjBdEf4BAEyJrJB0FbUWq7i9XEuic9U91KPWgXbNDM3iZJWXMhqM\nCrOFqrm/RS6Xi3/nSeByuVTeUaFN9du0s2mPhp3DMsigmaFZWhqdp1lh2TIzYxqAhzEajLo8/YsK\ns4XqhdJX9Yedf9VNM6/VnMNGh2JMTXedJCk+INbNlXg+q9lXp8Qs0ikxi1TZVa31tVu0vXGXXj3w\npl6r+Leyw9OUYk9WpiNNCQFxbj8xMjAyqL/ueVydQ126JO18zYuY7dZ6AADA0YwGo67LvlLv12zU\n7LAZms17dK936KKFiq4qN1cypn2gQzuadmtHY76qxscFW4xmzYvIUW7kXM1kVNER/C1+ujbrMi2J\nztXTJau0uX67Cpr36qK0c7UkOu9TdQWt723U/bsf0eDooG6aeY1mhWVPYuUAAIxhTxMAMCWyHOmS\npOK2Ui2JztXB8TfBXMnv3SJsYWrobVTPcK9HzDr3FB2Dndpav1Ob6repaXysWpgtVEui87Qoav5E\ndy0A8GSnxZ2iUKtDjxY+qYcL/qFL0y/Q6XHLCJMepnr8AD7hnxMrMTBeiYHxujT9fG1r2KVN9du1\nt6lMRU2lWq23ZDVZle5IUZYjXZkhaYryi5jS16XT5dRjRU+qpqdOp8Qs0hnxK6bssQEAwKeTGBiv\n62dc5e4yMEX8LDZF+kXoQGelHi96WiaDSSajSWajaey24dBts0xGo8wGk0xGs0wGo0xG8/ifD7/f\nYbcPff2wbcxG84ePYTDJaDCqd6RPu5oKtKMxX+UdFXLJJaPBqBmhmcqNmKuc8JmMmvsEyUGJ+kHu\nt/R+7Ua9duAtPVX8ojbXb9fVmZcq1h79idu39Lfqvl0Pq3e4T9dmXaYFkXOnoGoAAAj/AACmSLR/\npAJ9AlTSVi6XyzUxlojxBN4t3C9UktTU10L453MadY6qsHWfNtZt0962EjldTlmMZuVFztfSmDyl\nBSd/qiuQAMATzA6boe8suE1/3f2YXixbrZb+Vl2e/kXWu3GEfyaXzWzTirilWhG3VNZAgzaW71ZJ\nW5lK2stV0LJXBS17JUlBPgHKGA8CZTnSJj2E+0LZahW2Fis7JENXZVxMIA4AAGAayQmbober1mpb\n4y53l6LUoGTlRs7VvIjZHJf7lExGk1bGL9e88Nl6sWy1djUX6J5t/6vT45bpvOSzZDX7HnO7jsFO\n/WnXw+oc6tJlaRfolJhFU1w5AOBkRvgHADAlDAaDMh3p2ta4U3W9DTo4Hv5JDIxzc2WYTJG2cElS\nU3+LUoOT3FuMh2robdLG+q3aWr9T3cM9kqSEgDgtjclTbuRc2czMmAbg3RIC4nRX7jf0wO7H9H7N\nRrX2t+ummdd+5MHWk0l1d638zDaFWh3uLsXrBfjaNT8iR/MjciRJrf3tKmkvV0l7mUrayrWtcae2\nNe6UJEX4hSnTka4sR5oyHKnys/idsDreq16v92s2KNo/Ul+Z9SW3jx8DAADAkS5KPVdnJKzQiHNE\no65RjThHNeoa1ahzVCPjn8e+PqJRl/PD24e+fth9jt5mVKOuEY06nRpxHdrm8NujMmqsy8+CyDkK\n4X3C5+awBuurs69TUWuxnit5We9Wr9OOpt26IuMizQmbeUQQv2eoV/ftelitA206L+lMrUygQycA\nYGoR/gEATJmskDRta9ypfW2lOthVrXBbqOwWf3eXhUkU7hcmSWrua3FzJZ5lYGRAO5v2aFP9Nh3o\nrJQk+Zv9dHrcMi2JyTuuFsMA4E1CrA59d8Ht+lvhP1XYuk9/3PmAbpx5jaL8I91dmtv0jwyoqb9F\nmY40Or+4QajNoaW2PC2NyZPL5VJ9b6OKx4NAZR379UHtJn1Qu0kGGRQfEKtMR5qyQtKVEpQkH5Pl\nMz1mQctevVi2WgE+dt2WczMBYAAAgGnIYDDQZccLzQzN0n8t+p7eqlyjtyvX6uGCf2hWaJauyLhY\nYbYQ9Y/06/7dj6ihr0kr45frvOSz3F0yAOAkRPgHADBlskLSJUkb6raof6RfM0Mz3VwRJlvEePin\nqd894R+Xy6X2wQ65XJLDGjStx8S4XC4d6KzUpvpt2tG0W0OjQzLIoOyQDC2JzlNO+ExZjOy6ATh5\n2cxW3ZZzk54tfUkb6rbq7i3/T3PDZ+nspDMUHxDj7vKmXE13nSRGfk0HBoNBMfYoxdijtDJ+uUad\no6rsrlZJW7mK28tU0Vmlqu4avV21VmajWSmBicoMSVemI00JAbHH1b2nurtWjxY9JbPRrNtyblKo\njau4AQAAgKnkY7LowpSztTBynp4pfVmFrcUq2fJ7nZN0hva2Fqu6u1ZLo/N0adoFXKABAHALziAB\nAKZMsG+Qovwi1NDXJElKCkxwc0WYbEE+gfIxWtTU1zzpj9U33K+63gbV9dSrtrdBdT0Nqu9tUP/I\ngCTJbDAp1BaqcFuowv1CFW4LG7ttC1OINdhtYzM6B7u1tWGHNtVvV+P470ao1aHFCadqcXQuLZoB\n4DAmo0nXZF6mmaHZevPgu9rVXKBdzQWaFZqtc5JWKjko0d0lTpnq7hpJhH+mI5PRpJSgJKUEJenc\n5DM1ODqk8o6KiRFhpR37VdqxX6s1FmpLD04d7wyUpki/iKNOFLQPdOiB3Y9peHRYX519nRID493z\nxAAAAAAo0j9C35p7i7Y17tKqste0+sCbkqT5ETm6Jusygj8AALch/AMAmFJZIemHhX84ceHtDAaD\nwv3C1NzfKpfLdULe/I44R9TY16zannrV9TSMB34a1D7YceRjy6AIv3BlhWTIZDCqua9VTf0tYwGb\n1iN/ptFgVKjVMRYI8gtV2KGQkC1MobaQE95xZ9Q5qr1tJdpYt02FrfvkdDllNpqVGzlXS6LzlOFI\nndZdigDAnQwGg+aEz1RO2AztayvVmwffVWHrPhW27lOmI03nJJ2h9OAUrz/gWkXnH4/ha/LRzNDM\nia6XPUO9Ku3Yr+K2MpW0l2tPS5H2tBRJGgtOZ4akKdMx9mEzW/XXPY+rc6hLl6Sdr7nhs9z5VAAA\nAABo7H3pwqj5mhWarTcOvqNh54guT7+Q43kAALci/AMAmFJZIelaW7NBJoNJcfaTb0THySjCFqba\nnnp1DnUp2DfouLdzuVxqG+hQXe+RIZ+GviY5Xc4j7hvkE6DskAzF+I+N3Ii1RyvKL0IWk+Won9s7\n3Kfm/hY197WOfe5vVXNfq1r6W7W3rURqO/L+BhnksAaPh4FCFe73YcegMFuIfEw+x/2cGvuatalu\nm7Y07FDXULckKd4eoyUxC5UbOVf+Fv6bJWAAABElSURBVL/j/lkAcLIzGAyaEZqpGaGZKms/oDcP\nvqvi9rEwRUpQos5JOkMzQjK9NgRU3VMrX5OPwm2h7i4Fn5Ldx1/zI3I0PyJHktTa36aS9nIVt5Wp\ntH2/tjbs1NaGnZIkm9mm/pF+LYtZpDPiV7izbAAAAAD/h5/FpsvSL3R3GQAASCL8AwCYYunBKbIY\nzYqzxx4zmAHvE+4XJklq7mv5yPDPJ43sOsTH5KOEgLgjQj4x/lGy+/gfdz3+Fj/5WxKOOXauf2RA\nLf2t44Gg8WDQeFCopL1cJe3lR20T7Bv0YTDIFqawiZFiIbKarRocHdLOpj3aVLdN+zsrJI2dyFsR\nu1RLY/Lo2AAAJ0C6I0XpjhQd7KrSmwfXqKBlr/6y+1HFB8TqnKQzlBM2w6uuwBwcHVJjb5NSgpK8\n6nmdrEJtIVpqW6ilMQvlcrlU19ugkvGuQGUdBzQrNFtXZlzstUE2AAAAAAAAfH6EfwAAU8pqturO\n+bfK33z8YQ14tgjbWPinqa9FyUGJn3pkV6x/lGLs0Yq1RynE6pjUk5w2s1XxAbHHDOQMjg4dIxg0\ndru8o0JlHQeO2ibAYteQc0iDo0OSpExHmpZG5yknfJZ8CL8BwAmXFJigW3NuVE13nd6qXKNdTQV6\nuOAfivaP1NmJKzU/Ikcmo8ndZX5utT31csmlhEACpN7GYDAo1h6tWHu0ViasOGFjUwEAAAAAAODd\nCP8AAKbcsTquwHsd6vzz8v5/6ZnSlz52ZFesPVox9qiPHNnlTr4mn4mTcf/X8OiwWgfaDgsEfThS\nzFe+Whk5V4uj8xRmC3FD5QBw8okLiNFXZn1ZDb1N+nfle9rWuEuP731ar1f8W19IXKmFUfNkNnru\n2+Hq7lpJUryd8I+3I/gDAAAAAACA4+G5RzsBAIBHiLVHy27x15BzeGJk16GQT4w9SnaL53eBspgs\nivKPVJR/pLtLAQAcJso/QtfPuErnJZ+ltyvf0+b67Xqy+Hn9q+JtnZV4mpZG5027sOnxqOqukSRG\nRwIAAAAAAACQRPgHAABMMpvZql+d8mMZDIZJHdkFAMBHCbOF6Jqsy3RO0hl6t2qd1tdt0XOlL+vN\ng+/qjIQVWhazWFazr7vLPG7V3bWyGC2K9At3dykAAAAAAAAApgHCPwAAYNKZjCZ3lwAAgBzWYF2e\n8UWdnbRSa6o/0Ps1G/RS+ev6d+V7Whm/XCtil8rPYnN3mR9reHRY9b2NSgyI4/9XAAAAAAAAAJII\n/wAAAAAATjIBPnZdlHquzkw4VWtrNmht9XqtPvCW3q58X6fFLdXp8ctl95meYynrehvkdDkZ+QUA\nAAAAAABgAuEfAAAAAMBJyd/ip/OTz9IZ8cv1Qe1mvVu1Tm9WrtGa6g+0LHaxzkw4VUG+ge4u8wjV\n3bWSRPgHAAAAAAAAwATCPwAAAACAk5rVbNVZiafp1Lil2lC3Ve9Uva811R9oXe0mLY3O05kJpynU\n5nB3mZIOD//EubkSAAAAAAAAANMF4R8AAAAAACT5mHx0evwyLYtdrK31O/RW5XtaV7tJ6+u2aGHU\nfJ2deLoi/MLdWmN1d53MBpOi/SPcWgcAAAAAAACA6YPwDwAAAAAAh7EYzToldpEWR+dqe2O+3qp8\nT5vrt2tL/Q4tiJyjnLCZCrEGy2ENVqBPgIwG45TUNeocVW1vvWLsUTIbeTsPAAAAAAAAYAxHCwEA\nAAAAOAaT0aRF0QuUFzVP+c2FevPgu9remK/tjfkT9zEajHL4BslhDZbD1yGHNWgsGOQ7Fg4KsQbL\nZradkHrqexs14hxRfEDsCfl5AAAAAAAAALwD4R8AAAAAAD6G0WDU/IgczQufrdL2/arrbVD7YIfa\nB8Y+2gY6tL/joFyqOOb2VpNVIdZgBVuDFOIbLIfVMR4QCpLD6lCwb+BxdfKp7q6VJMI/AAAAAAAA\nAI5A+AcAAAAAgONgMBiUGZKmzJC0o7434hxR52CX2gY6JoJBbYcFhNoHO1TX23DsnyuDAn0CxroH\nWYPHA0JH3rZb/FXdQ/gHAAAAAAAAwNEI/wAAAAAA8DmZjWaF2kIUagv5yPv0j/SrfaBT7YNj3YIO\ndQ3qGP9zVXeNDnZVHXNbi9Esl8a6EMX4R0/SswAAAAAAAADgiQj/AAAAAAAwBWxmm2x2m2LsUcf8\nvtPlVNdQ92EBoXZ1DHSOdxBqV9tAh7JDMuRjskxx5QAAAAAAAACmM8I/AAAAAABMA0aDUcG+QQr2\nDVKyEtxdDgAAAAAAAAAPYXR3AQAAAAAAAAAAAAAAAAA+G8I/AAAAAAAAAAAAAAAAgIci/AMAAAAA\nAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAA\ngIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAA\nAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAA\nAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMA\nAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAA\nAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KIPL\n5XK5uwgAAAAAAAAAAAAAAAAAnx6dfwAAAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAAAAAA8FCEfwAA\nAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAAAAAA8FCEfwAAAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAA\nAAAA8FBmdxcAHM7pdOpnP/uZSkpK5OPjo7vvvluJiYnuLgsAPpfdu3frd7/7nZ544glVVlbqhz/8\noQwGg9LT0/Xf//3fMhrJ4gLwLMPDw/rP//xP1dbWamhoSLfddpvS0tJY3wB4vNHRUf34xz9WRUWF\nDAaDfv7zn8vX15f1DYDXaG1t1aWXXqpHH31UZrOZ9Q2A17jkkktkt9slSXFxcbr11ltZ4wB4hQcf\nfFBr1qzR8PCwrrnmGi1cuJD1DcAxsRJgWnnnnXc0NDSkZ599Vt/73vd0zz33uLskAPhcHn74Yf34\nxz/W4OCgJOnXv/617rzzTj311FNyuVx699133VwhAHx6r776qoKDg/XUU0/pkUce0S9/+UvWNwBe\n4b333pMkPfPMM7rzzjv1hz/8gfUNgNcYHh7WT3/6U1mtVkm8PwXgPQYHB+VyufTEE0/oiSee0K9/\n/WvWOABeYcuWLdq1a5eefvppPfHEE2poaGB9A/CRCP9gWtmxY4eWL18uSZo7d64KCwvdXBEAfD4J\nCQm67777Jv5cVFSkhQsXSpJWrFihjRs3uqs0APjMzjnnHH3729+WJLlcLplMJtY3AF7hzDPP1C9/\n+UtJUl1dnQIDA1nfAHiNe++9V1dffbUiIiIk8f4UgPcoLi5Wf3+/br75Zl1//fXKz89njQPgFdav\nX6+MjAzdcccduvXWW3XaaaexvgH4SIR/MK309PRMtOaUJJPJpJGRETdWBACfz9lnny2z+cMpmy6X\nSwaDQZLk7++v7u5ud5UGAJ+Zv7+/7Ha7enp69K1vfUt33nkn6xsAr2E2m/WDH/xAv/zlL3XhhRey\nvgHwCqtWrVJISMjERXcS708BeA+r1aqvfOUr+tvf/qaf//znuuuuu1jjAHiF9vZ2FRYW6n//939Z\n3wB8IsI/mFbsdrt6e3sn/ux0Oo84aQ4Anu7w2bu9vb0KDAx0YzUA8NnV19fr+uuv10UXXaQLL7yQ\n9Q2AV7n33nv11ltv6Sc/+cnE+FaJ9Q2A53rxxRe1ceNGXXfdddq3b59+8IMfqK2tbeL7rG8APFly\ncrK++MUvymAwKDk5WcHBwWptbZ34PmscAE8VHBysZcuWycfHRykpKfL19T0i7MP6BuBwhH8wrcyf\nP1/r1q2TJOXn5ysjI8PNFQHAiTVjxgxt2bJFkrRu3Trl5ua6uSIA+PRaWlp088036/vf/74uv/xy\nSaxvALzDyy+/rAcffFCSZLPZZDAYNGvWLNY3AB7vySef1D//+U898cQTys7O1r333qsVK1awvgHw\nCi+88ILuueceSVJjY6N6enp0yimnsMYB8HgLFizQBx98IJfLpcbGRvX392vJkiWsbwCOyeByuVzu\nLgI4xOl06mc/+5lKS0vlcrn0q1/9Sqmpqe4uCwA+l5qaGn33u9/Vc889p4qKCv3kJz/R8PCwUlJS\ndPfdd8tkMrm7RAD4VO6++2698cYbSklJmfjaf/3Xf+nuu+9mfQPg0fr6+vSjH/1ILS0tGhkZ0S23\n3KLU1FT23wB4leuuu04/+9nPZDQaWd8AeIWhoSH96Ec/Ul1dnQwGg+666y45HA7WOABe4Te/+Y22\nbNkil8ul73znO4qLi2N9A3BMhH8AAAAAAAAAAAAAAAAAD8XYLwAAAAAAAAAAAAAAAMBDEf4BAAAA\nAAAAAAAAAAAAPBThHwAAAAAAAAAAAAAAAMBDEf4BAAAAAAAAAAAAAAAAPBThHwAAAAAAAAAAAAAA\nAMBDEf4BAAAAAADAlFu1apV++MMfursMAAAAAAAAj0f4BwAAAAAAAAAAAAAAAPBQZncXAAAAAAAA\ngOnroYce0htvvKHR0VEtW7ZM11xzjW6//XbFx8ersrJSMTEx+u1vf6vg4GC99957+uMf/yin06n4\n+Hj94he/UFhYmDZu3Kh77rlHLpdLMTEx+v3vfy9Jqqys1HXXXae6ujotWbJEd999t5ufLQAAAAAA\ngOeh8w8AAAAAAACOad26dSosLNQLL7ygl19+WY2NjVq9erVKS0t1ww036PXXX1dqaqruv/9+tba2\n6qc//an+/Oc/a/Xq1Zo/f75+8YtfaGhoSHfddZfuvfderV69WpmZmXrppZckSfX19brvvvv0xhtv\naN26dSorK3PzMwYAAAAAAPA8dP4BAAAAAADAMW3atEl79uzRpZdeKkkaGBiQy+VSUlKSFi1aJEm6\n+OKLddddd+mUU05RTk6O4uLiJElXXXWVHnroIZWUlCgyMlLZ2dmSpO9+97uSpFWrVik3N1fBwcGS\npISEBLW3t0/1UwQAAAAAAPB4hH8AAAAAAABwTKOjo7rhhht00003SZK6urrU0NCg73znOxP3cblc\nMplMcjqdR2zrcrk0MjIii8VyxNe7u7vV29srSTKbPzw0ZTAY5HK5JuupAAAAAAAAeC3GfgEAAAAA\nAOCYFi9erFdeeUW9vb0aGRnRHXfcocLCQlVUVGjfvn2SpBdffFErVqzQnDlztHv3btXU1EiSnn32\nWS1atEjJyclqa2tTeXm5JOmRRx7R008/7bbnBAAAAAAA4G3o/AMAAAAAAIBjWrlypYqLi3XllVdq\ndHRUy5cvV15enoKCgvSnP/1JVVVVyszM1N133y0/Pz/94he/0De+8Q0NDw8rJiZG//M//yNfX1/9\n9re/1X/8x39oeHhYCQkJ+s1vfqO33nrL3U8PAAAAAADAKxhc9FMGAAAAAADAcaqpqdH111+vNWvW\nuLsUAAAAAAAAiLFfAAAAAAAAAAAAAAAAgMei8w8AAAAAAAAAAAAAAADgoej8AwAAAAAAAAAAAAAA\nAHgowj8AAAAAAAAAAAAAAACAhyL8AwAAAAAAAAAAAAAAAHgowj8AAAAAAAAAAAAAAACAhyL8AwAA\nAAAAAAAAAAAAAHgowj8AAAAAAAAAAAAAAACAh/r/siyjDnpideMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss']) # get epoch length from any of the columns\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k]) # this is for train\n", + " plt.plot(history.history['val_' + k]) # this is for test\n", + " plt.title(k, fontsize=30)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0035122722055874436" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is not small enough. The model is still not an usable model in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visually compare the delta between the prediction and actual (scaled values)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAJMCAYAAABkexbrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8leX9//HXmdl7QiaEvUEBRYaKiii4wIraClWL9Wtb\nbdVf1W9rreKotv3W1tVWK25ciAU3iuw9AgESCIHsvXdyzrl/f4REMZBFQkLyfj4efUhy7vu6Pydc\nxuad6/pcJsMwDEREREREREREpE8xd3cBIiIiIiIiIiJy5ikUEhERERERERHpgxQKiYiIiIiIiIj0\nQQqFRERERERERET6IIVCIiIiIiIiIiJ9kEIhEREREREREZE+SKGQiIiItElGRgbDhw/n6quvbvrf\nVVddxQcffHDaY99xxx0sX74cgKuvvpqysrJTXlteXs4tt9zS7md8/vnn/OQnP2nz9Vu3bmXOnDnt\nfk5P9/777/PWW291+P6MjAzGjx/fiRWJiIhId7F2dwEiIiJy9nB3d+fjjz9u+jg3N5c5c+YwatQo\nhg0b1inP+P74J1NaWsq+ffs65Vl90c6dOxk8eHB3lyEiIiI9gEIhERER6bCwsDBiYmI4duwYBw4c\n4IMPPqC6uhpvb2/eeOMN3n//fd555x1cLhf+/v78/ve/Jy4ujtzcXB544AHy8vLo378/hYWFTWMO\nHTqUzZs3ExgYyD//+U8++ugjrFYrMTExPPXUUzz44IPU1NRw9dVXs3z5co4dO8bjjz9OSUkJTqeT\nn/zkJ8yfPx+AZ599lpUrV+Lv709MTMwp38cHH3zAq6++itlsJiAggD/96U8nvF5eXs4f//hHEhMT\nMZlMTJs2jd/85jdYrVb+/ve/89VXX2Gz2QgICODJJ58kNDSUI0eOnLKuRhs2bOBPf/oTK1euBKCs\nrIyZM2eyevVqPvnkE5YtW4bNZsPNzY1HH32UQYMGnXB/QUEBDz/8MIWFheTn5xMREcHf/vY3goKC\nOHr0KA8//DBFRUWYzWbuvPNObDYb33zzDRs3bsTd3Z2ioiKKi4t5+OGHAfjHP/7R9PGePXt45pln\nqKurIz8/nylTpvDEE090fLKIiIhIj6NQSERERDps9+7dpKWlMXbsWDZv3kxycjLffPMN3t7ebNu2\njRUrVvDWW2/h4eHBhg0b+OUvf8mnn37Ko48+ytixY7nnnntITU3lmmuuaTb2119/zfLly3nvvffw\n8/PjySef5M033+TJJ59k7ty5fPzxxzgcDn71q1/x9NNPM3LkSMrLy7nhhhsYNGgQBQUFfPnll6xY\nsQJ3d3fuuuuuk76HxMRE/vznP/PRRx/Rr18/li5dyosvvsiVV17ZdM2SJUvw9/dn5cqV1NfXc+ed\nd/Kf//yHuXPn8tprr7F582bsdjv/+c9/2Lt3LxdeeOEp6xo3blzTuBdccAGVlZXs27eP0aNHs2rV\nKmbMmIG3tzdPPPEE33zzDaGhoaxYsYKdO3c2C4U++eQTxo0bx+LFizEMg8WLF/Pxxx9z66238pvf\n/Ib58+dz8803k52dzU9+8hNWrFjBxRdfzODBg7n55pv5xz/+ccq/29dff51f/epXTJ48mcrKSmbO\nnElCQgL+/v7tnSYiIiLSQykUEhERkTZrXKED4HQ6CQgI4JlnnqFfv35Awyofb29vAL799ltSU1NZ\nsGBB0/2lpaWUlJSwadMmfvvb3wIQExPD5MmTmz1r8+bNXH755fj5+QHw4IMPAg09bRodO3aMtLQ0\nHnrooRNqPHDgAEeOHOHSSy9tqmfevHm88cYbJ33O1KlTm97DokWLgIaeQo3WrVvHO++8g8lkwm63\ns2DBAl577TVuv/12hg0bxrXXXsv06dOZPn06559/PsnJyaes6/uhkMlkYv78+Xz00UeMHj2a5cuX\nc//992OxWLj88stZsGABF154IRdccAFz585tVvvChQvZsWMHr776KseOHePw4cOMHTuWkpISEhMT\nuf766wHo168fq1evbnZ/S5566inWrVvHSy+9REpKCjU1NVRVVSkUEhER6UUUComIiEib/bCn0A95\neno2/dnlcnH11Vdz//33N32cl5eHn58fJpMJwzCarrVam/9fEovFgslkavq4rKysWQNqp9OJr6/v\nCTUVFBTg4+PDM888c8IzLBbLSWv+4XNqamrIzMw84RqXy9XsY4fDgdls5s0332Tfvn1s3ryZJ554\ngsmTJ3P99defsq4fmjdvHtdccw3XX3895eXlTQHZn//8Zw4dOsSmTZv497//zQcffMCLL754wr3P\nPPMMe/fuZd68eUyePBmHw4FhGE1fz++/r5SUFPr373/C/T/8e6ivr2/6880338ywYcOYNm0as2fP\nJj4+/oRrRURE5Oyn08dERESkS1xwwQV88skn5OXlAfDOO++wcOFCAKZNm8a7774LQFZW1gmrchpN\nmTKFr776ioqKCqCh383SpUuxWq04nU4Mw2DAgAG4ubk1hS/Z2dnMmTOHhIQEpk2bxueff05ZWRku\nl+uUYdbkyZPZvHlzU53Lli3jmWeeOeGaqVOn8tZbb2EYBnV1dbz33ntMmTKFxMRE5syZQ1xcHHfc\ncQeLFi0iKSmpxbp+KCwsjLFjx/Lwww839RwqKipixowZ+Pv7s2jRIu655x6SkpKa3bthwwYWLlzI\nNddcQ1BQEJs2bcLpdOLt7c3IkSNZsWJF0/NvvPFGysvLsVgsOBwOAAICAti/fz+GYVBVVcWGDRuA\nhhVdCQkJ3HfffVx22WXk5uaSlpbWLBwTERGRs5tWComIiEiXmDZtGj/72c+49dZbMZlMeHt789xz\nz2EymfjDH/7Agw8+yOzZswkPDz/pyWUzZswgOTmZG2+8EYBBgwbx2GOP4eHhwYgRI5g9ezbvvPMO\nL7zwAo8//jgvv/wyDoeDu+++m3POOQeApKQk5s2bh6+vL8OGDaO4uLjZc4YOHcr999/P7bffDkBI\nSAhPPPEEx44da7rmd7/7HUuWLGHu3LnU19czbdo0fv7zn2O325k9ezbz5s3D09MTd3d3fve732G3\n21us64euv/567r777qaVQIGBgdx5550sWrQId3d3LBYLS5YsaXbfXXfdxdNPP80LL7yAxWJhwoQJ\npKWlAfCXv/yFP/7xj7zxxhuYTCYef/xxQkJCmD59Oo899hgAN910E+vXr+eyyy4jLCyM8ePHYxgG\nfn5+LF68mGuvvRZ/f38CAgKYMGECqampREVFtXUKiIiISA9nMrQOWERERERERESkz9H2MRERERER\nERGRPkihkIiIiIiIiIhIH6RQSERERERERESkD1IoJCIiIiIiIiLSBykUEhERERERERHpg3rMkfQO\nh5Pi4qruLkN6oYAAT80t6XSaV9JVNLekq2huSVfR3JKuorklXaWvza2QEJ9TvtZjVgpZrZbuLkF6\nKc0t6QqaV9JVNLekq2huSVfR3JKuorklXUVz6zs9JhQSEREREREREZEzR6GQiIiIiIiIiEgfpFBI\nRERERERERKQPUigkIiIiIiIiItIHKRQSEREREREREemDFAqJiIiIiIiIiPRBCoVERERERERERPog\nhUJd7A9/eJBdu3awZcsmPv54+Smv+/jj5TgcjjaNuWLFB7zyyj87q0QRERERERER6YOs3V1AX3He\neVNafP2NN17l8suvxGrVX4mIiIiIiIiIdD0lEC349NOVrF//LVVVVZSUlPDTn97OK6/8k6ioGGw2\nK/ff/7889dSjlJaWAnDPPfcTFzeIDz98j1WrVhAUFExxcXHTWKmpx7jzzl+ydOnLrF+/FqfTyTXX\nzMNqtVBUVMgjjzzEk0/+hZdeeo74+N24XC5uuOFmLr74EuLj9/Dss3/Gx8cXi8XCyJGjuvNLIyIi\nIiIiIiJnubMmFHrvm2S2J+Z16pgTh4Xyo4sHtXhNdXU1//d/z1NSUszPfrYQl8vFokW3MWTIMF54\n4e+cc84krr12PunpaTzxxB95/PGnef/9Zbz++jLMZjO33fbjE8Y7dCiRrVs38a9/LcXlcvHSS8/x\ni1/cw9Klr/DII0+wefNGsrMzefHFV6itreWOO37KxImT+ctfnmTJkqeJjo7hz39+slO/DiIiIiIi\nIiLS95w1oVB3GTduAmazmcDAIHx8fElNPUp0dCwAKSnJ7Nq1g6+//hKA8vIyMjMzGDBgIHa7HYDh\nw0eeMF5aWirDh4/EYrFgsVj45S9/fcLrKSnJJCUl8otfLAbA4XCQk5NFUVER0dExAIwePZaMjPSu\nfNsiIiIiIiIi0sudNaHQjy4e1Oqqnq6QlJQIQFFRIZWVlQQEBGIymQCIiYnlsstGcNlll1NcXMTK\nlSuIjIzm6NEUamtrsFptHDqUxGWXzW4aLyYmlhUrPsTlcuFyubjvvl/x9NN/w2QyYxgGMTGxjB9/\nLr/97f/icrlYuvRlIiIiCQkJ4dixo8TGDuDgwQP4+Pic8a+FiIiIiIiIiPQeZ00o1F2Kigq5++47\nqaio4N57f3vC1q1bbrmVp556jP/+dzlVVZXceutiAgIC+PGPF/Lzn9+Kv38AHh4eJ4w3ePBQJk8+\nnzvvvA2Xy8W1187Hbrczduw47rvvV/zjH/9k9+6d/M//3E51dRXTp1+Ep6cX99//EEuW/AEvLy88\nPT0VComIiIiIiIjIaTEZhmF0dxGN8vPLu7uEE3y/ObScvUJCfHrc3JKzn+aVdBXNLekqmlvSVTS3\npKtobklX6WtzKyTk1ItKzGewDhERERERERER6SG0fawFV1wxt7tLEBERERERERHpElopJCIiIiIi\nIiLSBykUEhERERERERHpgxQKiYiIiIiIiIj0QQqFRERERERERET6IIVCneDIkWT27NnV7vsef/wR\ntmzZ1AUViYiIiIiIiIi0TKFQJ/j22685diylu8sQERERERERkT5kU9Y2Ht/6VyrqKjt0v46kb0Fl\nZQVPPbWEiopyCgryue66HzFkyDD+/ve/4HK5CAkJ5de/vp/PPluF1WpjyJBhPPzwg7z11ge4ubnx\n4ov/ICYmllmzruCZZ54gLy+XwsICLrhgOosX/093vz0REREREREROUsZhsHqtHXkVuWxLXcXF0dN\na/cYrYZCLpeLRx55hKSkJOx2O0uWLCEmJqbZdb///e/x8/Pjvvvuo66ujgcffJD09HS8vb15+OGH\niY2NbXdx37c8eRW78/ad1hg/ND50NNcNmnPK1zMyMrjkksuYMeNiCgry+cUvFuPu7sEjjzxObOwA\nVq1aQVFREbNnzyEoKIgRI0addJy8vFxGjhzNAw/8ntraWq677gqFQiIiIiIiIiLSYVmVOeRW5QGw\nNXvnSUOhiup6QloYo9VQaPXq1dTV1fHuu++yZ88ennrqKV588cUTrlm2bBmHDh1i4sSJALz33nt4\nenry3nvvkZKSwmOPPcYrr7zSjrfWMwQGBvLee2+zdu0aPD29cDgcFBUVEhs7AIA5c64BYMOGtSe9\n3zAMAHx9fTl4cD+7du3Ay8uLurr6M/MGRERERERERKRX2pkbD4CXzZOMiiwyK7KJ8O7X9HpmQSVL\nXt/BB0+eejFMq6HQzp07mTatIW0aN24cCQkJJ7y+a9cu4uPjueGGG0hJaeirk5yczPTp0wEYOHAg\nR44caedba+66QXNaXNXTFZYte5NRo8Zw7bXz2bVrB5s3byA4OJj09DSioqJ5882lREXFYDabcbka\nAiC73U5hYQH9+vUnOfkQsbED+PTTVXh7+/D//t//kpGRzn//+1FTYCQiIiIiIiIi0h6GYbAzLx67\nxc78wVfx2oFlbMnewbzBcwGod7j413/3U1vnbHGcVkOhiooKvL29mz62WCw4HA6sVit5eXk8//zz\nPPfcc3z22WdN1wwfPpw1a9ZwySWXEB8fT25uLk6nE4vF0uKzQkJ8WivnjLriilksWbKEdeu+xsfH\nB7vdxpIlj/GnPz2O2WwmJCSEu+66g02bNvH0008zduwI7rhjMQ888GsiIiIIDg7Ex8edKVMmcu+9\n93LPPT/HbrcTExODYVTj7m7Dz8+jx73v3khfY+kKmlfSVTS3pKtobklX0dySrqK5JV3lbJ9bKUVp\nFFQXckH0uVw2YgofJq9kZ348PzvvBixmCy9/nEB6XgWzzmve/uf7Wg2FvL29qaz8rou1y+XCam24\n7fPPP6e4uJjFixeTn59PTU0NAwcOZN68eRw5coSbbrqJCRMmMHLkyFYDIYD8/PJWrzmT4uJG8uqr\n7zT7/LPP/rPpz6WltYwceQ6vvfZu0z0zZsxqds8rr7zV7HP33vu/QM97371NSIiPvsbS6TSvpKto\nbklX0dySrqK5JV1Fc0u6Sm+YW18nbwZgpN8ISopqmBAylnWZm1iXtBOjLJSP1x0hPNCTa6bEtjhO\nq6HQhAkTWLNmDVdccQV79uxhyJAhTa/dcsst3HLLLQAsX76clJQUrrvuOnbv3s3555/PQw89xL59\n+8jKyjqNtyoiIiIiIiIiItCwdWxXXjzuFndGBA4F4Lx+57AucxMbMraTuH4gFrOJO64aiZu95QU6\nrYZCl156KRs3bmTBggUYhsETTzzBypUrqaqq4oYbbjjpPTExMTz77LO89NJL+Pj48Pjjj3fgbYqI\niIiIiIiIyPcdK0unsKaYSeETsFlsAET7RBLuGUpC4QGqasL40YzhxIS3vkWu1VDIbDbz6KOPnvC5\nuLi4Ztddd911TX8ODAxk6dKlrT5cRERERERERETabldew6ljE0LHNH3OZDIR5BpEjimPqMGlXDYp\nqk1jmbukQhERERERERER6VQuw8WuvL14WD0YHvhde5+MvAr2bHMHAzz65WI2mdo0nkIhERERERER\nEZGzwNHSNEpqSxkbMhKruWHzV129k3+u3I+jxk6ERyzplenkVua1aTyFQiIiIiIiIiIiZ4GdTVvH\nxjZ97v01R8jMr+Si8RFcOvB8ALbm7GrTeAqFRERERERERER6OJfhYk/eXrxsngwLGARAfHIBX+/K\noH+wFz+6eBBjQ0bibnFjW84uXIar1TEVComIiIiIiIiI9HBHSo5SWlfOuJBRWMwWKqrrefWzRKwW\nE4vnjsDNZsFusTMhdAzFtSUcKj7S6pgKhUREREREREREerideXuB77aOvfllEmWVdVw7bSDRYd8d\nPz+537kAbM3Z2eqYCoVERERERERERHowp8vJ7ry9eNu8GOw/kG0Hc9l2MI+4CF9mTYo+4do4v1iC\n3QPZk7ePGkdNi+MqFBIRERERERER6cEOl6RQUV/J+NAxVFQ5eOOLJOxWM7dfOQKz+cTj500mE5P6\nnUOdq57d+QktjqtQSERERERERESkB9vVeOpYyBiWfpZIZY2D6y8aRFig50mvnxx+DgBbs3e0OK5C\nIRERERERERGRHsrpcrInLwFfuw856e7EHylkeEwAF02IOOU9wR6BDPIfwOGSlBbHVigkIiIiIiIi\nItJDJRYnU+moYrjfCN79Jhl3u4WfXjEMs8nU4n2Tw89tdWyFQiIiIiIiIiIiPVTj1rHUJB+qa53c\nOHMwwX4erd43IXQ0fnafFq9RKCQiIiIiIiIi0gMVVBcRn78fD5M3R5MtjIkLYuqYfm26193qzmNT\nHmrxGmtnFCkiIiIiIiIiIp3DZbhYk76BVSlfUOeqx5U1BC93G4tmD8PUyrax77OYLS2+rlBIRERE\nRERERKSHyCjP4u3ED0ktT8fb5oVXwTlkZfix6Kqh+Hu7deqzFAqJiIiIiIiIiHSzOmc9nx1bzeq0\ntbgMFxPDJhBZN5G3N6Zy7tAQJo8I6/RnKhQSEREREREREelGh4uP8Hbih+RVFxDoHsCNQ69jgHcc\nD/5rC3abmQUzB3fJcxUKiYiIiIiIiIh0k2/TN/L+4Y8xYeKiqKnMGTALd6sbH649QlllHddMHUCg\nr3uXPFuhkIiIiIiIiIhIN3AZLr5M/QYPqzt3jb2dAX7RABSUVPPFtnQCfNyYNTm6y56vI+lFRERE\nRERERLrBoeIjlNaVMyF0bFMgBPD+t0dwOF3MvzAON1vLJ4idDoVCIiIiIiIiIiLdYHvubgAmho1v\n+tyh9BK2J+YxsL9vlzSX/j6FQiIiIiIiIiIiZ1i9s549eQkEuPkT5x8LgMsweOfrwwDcOHMwZpOp\nS2tQKCQiIiIiIiIicoYlFCZS46zh3LBxmE0N8czmhBxSc8o5b0QYcRF+XV6DQiERERERERERkTOs\naetYeMPWsZo6Bx+sPYLdamb+hXFnpAaFQiIiIiIiIiIiZ1BVfRX7Cw7SzyuM/l7hAHy6JY3Sijou\nnxzdZUfQ/5BCIRERERERERGRM2h3/j4chpOJYeMxmUwUltbwxbY0/L3tzJ4cc8bqUCgkIiIiIiIi\nInIG7cjZA8C5x08d+2DtEeodx4+gt3fdEfQ/pFBIREREREREROQMKakt5XBJCnF+sQR5BJCcUcrW\nA7kM6OfDeSPDz2gtCoVERERERERERM6QHbl7MDA4N2w8hmHw7pqGI+gXnIEj6H9IoZCIiIiIiIiI\nyBmyI2c3ZpOZCaFjiE8u5EhmGROGhDA40v+M16JQSERERERERETkDMipzCW9IosRgUPxtHmyfN0R\nTCa4dvrAbqlHoZCIiIiIiIiIyBmwPWc3ABPDx7P1QC4Z+ZVMGRlORLBXt9SjUEhEREREREREpIsZ\nhsH23D3YLXaGBwxjxfoULGYTV08d0G01KRQSEREREREREeliR8vSKKwpYmzwKLbtLyS/pIYLx0UQ\n7O/RbTUpFBIRERERERER6WKNW8fGBY/hvxuPYreZmXNBbLfWpFBIRERERERERKQLOV1OduXF423z\nIjPFg9KKOi49Nwo/L3u31qVQSERERERERESkCyUWH6aivpKxQaP5fGs6Xu5WZk+O7u6yFAqJiIiI\niIiIiHSlxq1jtfnhVNY4mH1eDJ7utm6uSqGQiIiIiIiIiEiXqXHUEl+wn0C3ALbtqMPPy87McyK7\nuyxAoZCIiIiIiIiISJf5b8pn1Dnr8KoeQG29i7kXxOJms3R3WYBCIRERERERERGRLpFQcJC1GZsI\ndQ8lZU8wwX7uTB/bv7vLaqJQSERERERERESkk5XXVfDmwfexmiwElpyHw2Hm2mkDsVp6ThTTcyoR\nEREREREREekFDMPgzYPvUV5fwUX9LmHPvjoiQryYPCKsu0s7gUIhEREREREREZFOtD5zMwmFiQwL\nGEx5WgSGAXOnxGI2m7q7tBMoFBIRERERERER6SQ5lbksT16Fl9WT+XHXsWlfLoG+bpwzNKS7S2tG\noZCIiIiIiIiISCeodzl4df871Lsc3DR8PvEHK6mtdzJzQiQWc8+LYHpeRSIiIiIiIiIiZ6FVKV+Q\nUZHFlH6TGBM0km92ZWC3mpnWg04c+z6FQiIiIiIiIiIipympKJmv09YR4hHEvMFz2X24gILSGqaM\nCsfbw9bd5Z2UQiERERERERERkdNQWV/F6wffxWQy8dORN+FudeOrHekAzDw3qpurOzWFQiIiIiIi\nIiIip+HDwyspqS3lygGXEuMbRVpuOYfSSxg5IJCIYK/uLu+UFAqJiIiIiIiIiHRQcU0J23N3098r\nnMtiLgJoWiV06bmR3VlaqxQKiYiIiIiIiIh00LrMzbgMFxdFTcNsMlNaWcfWA7mEBXoyamBQd5fX\nIoVCIiIiIiIiIiIdUOesY2PmVrxtXkwMGwfA2t2ZOJwGl5wTidlk6uYKW6ZQSERERERERESkA7bn\n7KbSUcUF/Sdjs9iod7hYszsTDzcrF4wO7+7yWqVQSEREREREziq1zjrqnHXdXYaI9HGGYfBtxkbM\nJjPTI88HYHtiLqWVdUwb0w93u7WbK2xdz69QRERERET6PJfhIrkkhU1ZO9iTv5cgjyB+N+k3mHr4\n1gwR6b0OFR8hqzKHc0LH4u/mh2EYfLUjA5MJZp7TsxtMN1IoJCIiIiIiPVZxTQlbsneyJXs7BTVF\nAFhMFnIqc0kvzyTa9+z4wUtEep81GRsAuChqKgDJmaWk5pQzYUgIIf4e3VlamykUEhERERGRHsUw\nDPbkJ7ApaxsHiw5hYGA325gcfg5T+k+ivK6ClxPeIL5gv0IhEekW+VWFJBQcJMY3igF+MQB8tf3s\nOIb++xQKiYiIiIhIj7IrL57/7H8bgAG+0ZzffyITQsfiYXUHGnoK2cxW9ubvZ+7AWd1Zqoj0UWsz\nN2JgcFFkwyqhwtIadh0qICrUmyFR/t1cXdspFBIRERERkR7lWFnDb9vvGL2QMSEjm73uZrEzLHAw\n+woOkldVQKhn8JkuUUT6sBpHDZuzduBn92F86GgAvtmVgcswuPTcqLOq15lOHxMRERERkR4lsyIb\ngCEBcae8ZkzwKAD2Fuw/IzWJiDTakr2TGmcN0yKmYDVbcThdrN+bjbeHjckjQru7vHZRKCQiIiIi\nIj2GYRhkVmQT7B6I+/HtYiczOng4JkzszVcoJCJnjstwsTZjI1azlakRkwHYc7iAiup6powKx2a1\ndHOF7aNQSEREREREeoyyunIq6iuJ8O7X4nU+dm8G+sWQUppKeV1Fm8cvqC4iueTo6ZYpIn3UgcIk\n8qoLODdsHD52bwA27GtY3Th1TMvft3oihUIiIiIiItJjNG4day0UAhgTMhIDg30FB9s0tstw8dye\nf/N/u17k06NfYRjGadUqIn3PmvTjx9AfbzBdXF7LvpRCBvTzJTLEuztL6xCFQiIiIiIi0mO0KxQK\nbmhCvbcgoU1jx+fvJ7+6EBMmPjn6FcuSluMyXB0vVkT6lOzKXBKLDzPYfyCRPv2BhlVChgHTxp59\nq4RAoZCIiIiIiPQgjaFQ/zaEQqGewfT3Cudg0WFqHLUtXmsYBl+lfYsJE3ePX0ykd382ZG3l5X1v\nUOes75TaRaR3+zZjIwAXRjWsEnIZBhv2ZmG3mpk0LKw7S+swhUIiIiIiItJjZFZkY7fYCfYIbNP1\nY0JG4nA5SCw61OJ1ySVHSS1LZ0zwCAYHxHHPhJ8zNGAQ8QX7+ceef1NZX9UZ5YtIL1VeV8G27J0E\nuQcwJngln73ZAAAgAElEQVQEAIfSSsgvqeHcYaF4ulu7ucKOUSgkIiIiIiI9Qr3LQU5VHhFe4ZhN\nbftRZezxLWTxrRxNvzrtWwAuiZkBgIfVnf8Zeyvnho0jpfQYf935AkU1xR0vXkR6reKaEv62+5/U\nueq5KGpa0/en9XsbVjZOOwsbTDdSKCQiIiIiIj1CbmUeLsPVpn5CjaJ8IvB38yOh4CBOl/Ok12RX\n5pJQmMhAv1gG+sU2fd5qtrJwxAIujppGTlUef9n5AlkVOaf7NkSkF8mqyOHPO58npzKXi6KmMiNy\nCgBVNQ52JuURGuDBkCj/bq6y4xQKiYiIiIhIj9CeJtONTCYTY4JHUuWoPuVR86vT1gJwSfSMZq+Z\nTWbmDZ7LtYOupKS2lL/ueoGjpWkdqF5EepvkkqP8ddeLlNSWcu2gK5k3aG7TKqGtB3Opc7iYNqYf\nJpOpmyvtOIVCIiIiIiLSI7SnyfT3jQ1pPIWs+RayktpStufsJswzhNHBw085xiXRM1g4YgE1jlpe\nSXiTqvrqdtUgIr3LnvwE/rHn39Q6a1k4YgGXRM84IfzZsDcLkwmmjDp7t46BQiEREREREekhvlsp\nFN6u+wb7D8TD6k58/n4MwzjhtW/TN+I0nMyMnt5qn6JJ4RO4PHYmxbUlvHvoo/YVLyK9xvrMzby8\n7w3MJjN3jvkpk8InnPB6Rl4FR7PLGT0wiAAft26qsnMoFBIRERERkR4hsyKbIPcAPKwe7brPYrYw\nKmg4xbUlZFRkNX2+2lHD+swt+Ni9mRQ2oYURvjM7diYDfKPZkbuHbTm72lWHiJzdDMNgVcoXLEv6\nCC+bJ/eMv4MRQUObXdcbGkw3UigkIiIiIiLdrqyunPL6CiK8+3fo/jHHt5DF53+3hWxj1lZqnDVc\nFDkVm8XWpnEsZgsLR9yIm8XOu0krKKwu6lA9InL2+fjIZ3x27GuC3QO595y7iPGNanZNvcPF5v05\n+HjaGDsouBuq7FzW7i5ARERERERa9m36Ro6VpXPLiB+1+aj2s01mece2jjUaETgEq8nC3oL9zBl4\nGQ6XgzXpG7Bb7EyLOK/pOpfLoKCshpLyWkoqaimpqDv+z1pKymupqHYwckAAVw64kuVHP+K1A8u4\nZ8LPe+3XXUQaOF1O1mVuwt/Nj3vPvQtfu89Jr4tPLqCiup5Zk6KwWs7+7wsKhUREREREerAt2Tt4\n//DHAMyOvZgwr9BurqhrZFY2hkIdWynkbnVnaOBg9hcmUlBdSHLJUUpqS7koaiqeNk8cThebEnJY\ntekYBaU1pxzHZjWTkV+BdSeEjY/lSOkxvkxdw+WxMztUl4icHTIqsqh11nFu2PhTBkIA6/Y2bFGd\nOqZj36t6GoVCIiIiIiI9VFJRMm8lftD0cXp5Zu8NhTrYZPr7xgaPZH9hIvH5+9mcvR2zycz0flNZ\nszuTTzcfo7CsFqvFxMRhoYT4e+Dvbcff2w1/Hzf8ve34eTU0jN2UkM2nW1LJ3D0Q99HZrDzyJUHm\nKCZGD+mMtyoiPdDhkhSgoXH9qRSV1bA/pYi4/r5EBHudqdK6lEIhEREREZEeKLsyl38nvI4ZE1cM\nmMWqo1+QVpHJuYzv7tK6RGZFNnazjWCPoA6PMSp4BKak5Xxx7BsqHVVE2Ybyp9cOUlxei81q5pJz\nI5k9OabV04JmjItg6ph+bE/MY8XuesrC1/OfhLfZvOMqrpoyiNhw3w7XKCI9U/LxUGiQ/4BTXrNx\nXzYGMLUXNJhu1Goo5HK5eOSRR0hKSsJut7NkyRJiYmKaXff73/8ePz8/7rvvPurr63nggQfIzMzE\nbDbz2GOPERcX1yVvQERERESktymtLeeF+P9Q7ahh0YgbGRU8nFVHvyC9PKv1m89CDpeDnMo8onwi\nTqt3j5+bDwN8o0kpSwXg8K4gbPUNvT8unxSNn3fbj462mM2cNyKcScPn8K8dNewr387+sg3ELy1h\n9nkxXDNtQK/oJyIi4DJcJJccI8g9kAB3/1NcY7B+bzZ2m5lJw8POcIVdp9XvYqtXr6auro53332X\ne++9l6eeeqrZNcuWLePQoUNNH69duxaHw8GyZcu46667+Nvf/ta5VYuIiIiI9FK1zjpe2vsqRTXF\nzB04i4nh4/GwuhPqEUx6eSaGYXR3iZ0utyofp+E8ra1jjXyd0QAYZcFcPmYUT985hRsuHtyuQOj7\nzCYTt51zLZHe/bGGZuAfWcSnW1J5/PWdZBdWnna9ItL9sitzqXZUt7h1LCmthILSGiYOC8XDrfds\numo1FNq5cyfTpk0DYNy4cSQkJJzw+q5du4iPj+eGG25o+tyAAQNwOp24XC4qKiqwWnvPF0xERERE\npKu4DBev7n+btPIMzu83kVkxFze9FuUTQbWjmqKa4m6ssGt810/o9Bq3GobBsf1+OIvCuXPyj7j+\nokH4etlPuz6b2cpPR96IzWzFHJ3AlNEhpOaW88dXt7Nmd+8M6kT6ksPFrW8dW3+8wfS0XtJgulGr\naU1FRQXe3t5NH1ssFhwOB1arlby8PJ5//nmee+45Pvvss6ZrPD09yczMZPbs2RQXF/PSSy+1qZiQ\nkFN3+BY5HZpb0hU0r6SraG5JV9Hcaps6Zz02sxWTyXTGn/3qrvfYV3CA0WHD+OXUhVjNlqbXhoUP\nZGdePKXmIoaFNG/n0J1Od24VZRYAMDJy4GmNtTMxl+w8BxdGzuHiMaNPq6YfCgnxYWbhVD5P/pbr\n5oQxfXwsz72/hze+SCIpvZRf/mgc/q30KpL20/etBg6X84TvB3L6vj+30g+lAzA5bjQh3s3nXEV1\nPbuS8ukf7MWU8ZHd8t+HrtJqKOTt7U1l5XfLIl0uV9PKn88//5zi4mIWL15Mfn4+NTU1DBw4kKSk\nJKZOncq9995LdnY2CxcuZOXKlbi5tfxNMj+//DTfjkhzISE+mlvS6TSvpKtobklX0dxqm8Siwzy3\n52VsZiuBHoEEuQcQ5B5IkMfxf7oH0M8rDJvF1unPXpO+gc8Or6G/VzgLh95IcWHVCa8HmoMB2J+R\nzEC3QZ3+/I7qjLmVnJ8GgGe932mN9e6XSQDMGNOvS+Z7qK2hj8jetMNcGHUBj/x0Iq98cpBtB3K4\n6+mvufXK4YyJC+705/ZV+r7VsHrws6Or+SJ1DRf0n8R1g+diM2snzun6/twyDIP9uYfwd/PDVOVG\nfnXzObdmVwZ1DhfnjwyjoKDiTJd72loKV1udTRMmTGDNmjVcccUV7NmzhyFDvjuG8ZZbbuGWW24B\nYPny5aSkpHDdddfx/PPPY7M1/IfSz88Ph8OB0+k83fchIiIiItKljpWlY2DgY/ehtLaMnMrcZtfE\n+Ebx/879Zac+Nz4/gQ8Pr8TP7sOdY3+Kh9Wj2TWRPg1bFtIqMjv12T1BZkU2ge4BeNqav++2Ssst\n52BqMcNjAogJ75rVJdG+kQ3PKs8AINDXnXsXjOOr7el8uPYIf3t/LzdfOoSZ50R2yfOlb6moq2Tp\ngXc4WHQIEybWZW4mtSyD20b9mCCPgO4ur9fIrcqnvL6Cc8PGnXIF0Lq92ZhNJi4Y3XtOHWvUaih0\n6aWXsnHjRhYsWIBhGDzxxBOsXLmSqqqqE/oIfd+iRYt46KGHuOmmm6ivr+fXv/41np6enV68iIiI\niEhnKqsrA+Bno28hyqc/VfXVFNYUU1RTRGFNMWvTN5JWlkGdsx57J60WOlaWxqv738FmsfHzsT8l\n0P3kP+x527wIcPMnvayhh01v2b5QXldBWV05o4OHn9Y4X2xrWG00a1J0Z5R1UmGeIdgtdtLLvwvm\nzCYTsyZFMzwmgKff3s1/Nx5l2ph+2G3a6iMdd7Q0lZcT3qSktpRRQcNYMPQ6VqZ8wdacnfxp+7Ms\nHLmAkUHDurvMXuG7o+hP3mQ6Lbec1Jxyxg0Kxr+DDet7slZDIbPZzKOPPnrC5052vPx1113X9Gcv\nLy+effbZTihPREREROTMKa1t2Dbg59aw0sTT5oGnzYOo46t0civz2JC1lbyq/KaVO6ejoLqIl+KX\n4nA5+PmYRUT7tLzCJNongviC/ZTWleHv5nfaz+8JOqPJdFFZDdsO5tE/2IvRAwM7q7RmzCYzUd79\nSSlNpc5Zh93yXRPr6DAfLhwfwadbUtlyIJfpY3tXM1o5MwzD4NuMjSxPXoVhGFw18HIujbkQs8nM\nT4b/iDi/WN47/DEvxP+Hy2NncuWASzGbTn1+lGEYZOZX4u1p65WBRmc4fDwUGnyKJtMb9jZ8j5o6\npvetEoI2hEIiIiIiIn1FWV05Jkx427xO+nq4V0NPmZzK3NMOharqq3gh/j+U11dww5BrGNWGlTJR\nx0Oh9PLMXhMKZVQ0nOgT4d3xH7hW78jA6TKYNTGqy1dQRftEcqT0GBkVWQz0iz3htZnnRPLFtjS+\n2JbG1DH9MPeS1VxyZtQ4angr8QN25e3Fx+bNT0fexNDA7/qHmUwmLoiYTJRvBC/ve5PPj33NsdI0\nFo28ER+7d7PxyqvqeP3zJHYeygcgxN+dwZH+DIr0Y3CkP/2CPPv8HDUMg+SSo3jbvAjzDG32er3D\nxeb9Ofh62hgTF9QNFXY9hUIiIiIiIseV1Zbha/c+5W/e+zWGQlV5p/WcepeDf+17ndyqPGZGT2d6\n5JQ23RflEwFAenkmo4NHnFYNPUVWRQ4AEV7hHbq/utbB2vhMfL3snDeyY2O0R+PfQVpZZrNQKMDH\njUnDw9i8P4eElEI1nZY2y6rI4eWEN8itymegXyy3jbr5lMFvtE8kD0z8Fa8ffJd9BQd5avuz3Dbq\n5hPmY3xyAa9+lkhZZR1xEb54udtIzihlU0IOmxIa/p3zcrcSF+HH6IFBzBjXH6vl1CuOeqvCmiJK\naksZFzL6pIHy7sP5VNY4uHxSdK/9+igUEhERERGh4TfGZXXlhHk1/21xo/Djr2VXdjwUMgyDtw5+\nwOGSFMaFjOaauCvafO93oVBWh5/f02RUZGEz2wjx7FiAsi4+i+paJ7Mnx2Czdv0PbT9sNv1DsyZF\nsXl/Dl9sS1coJG1SVlfO33f/i/L6Ci6OmsY1cVdgaeX4eU+bJ4tHL2R16lr+m/I5z+95hT+e/wBW\n3Fj2dTLr4rOwWkxcf1EcsyZGYzabcBkG2QWVHM4o5XBGKcmZJew9UsjeI4Vs2JvNbXOGExnSfMVR\nb3a45CgAg06xdWx9L986BgqFREREREQAqHHWUueqx9d+6pOr/Oy+uFvcT3oqWVt9cvQrtufuYoBv\nNAtHLGixH0iz57v54mv3OaHR8dnM6XKSU5lHpHf/dn0dGjmcLr7akY7dZubC8RFdUGFzJ2s2/X3R\nYT4MjwngYGoxabnlRId1zUlo0jsYhsGbB9+nvL6Ca+Ku4NKYC9t8r9lk5rLYi7CYLSxPXsWHB77i\nwJZQ8ktqiAzx5mdzRxAV6v29601EhHgTEeLd9O9LcXkty9ceYWNCDn98dTtXTR3AFedFYzH3zlUx\nP5Tc1E+oeZPpwtIaDhwtIi7Cl/7BJ99S3Bv0jb9pEREREZFWlNU2nDzm10IoZDKZCPcKJa+6AKfL\n2e5nbM7ewWfHVhPsHsgdYxZ16ASzKJ8IimtLqKirbPe9PU1uVT5Ow9nhfkI7kvIoKqtl2uj+eHt0\nzmlwrWlsNp1dmUuds+6k18yaFAXAF9vSz0hNcvZan7mZ/YWJDAsYzMzo6R0a4/zwSdhwZ2veNgrK\ny5l9XjS/X3juCYHQqQT4uHHbnBHcPX8M3p42PlqXwpLXd5KRX9GhWs42ycUpeFg96O/dfOvpxn3Z\nGMC0Mb27abxCIRERERERGrZwAC2uFIKGLWQuw0V+dUG7xk8sOszbiR/gZfXkf8bddtLGsG3RtIWs\n4uxfLXQ6TaYNw+CLremYTHDpxJZPbets0T6RGBhkHD857YdGDQyiX5An2w7mUlxee0Zrk7NHdmUu\ny5NX4WX15CcjftSh1XL1Dif/eP8AVenRmKwOLry0nusvHNTurZRjBwWz5PbJTBkVTmpOOY8u3c6q\nTcdwulztrulsUVxTQkFNEXF+sc2+9i7DYMO+bNxsFiYOO/WW4t5AoZCIiIiICFDaGAq5+bZ4XVOz\n6Xb2Ffr4yKcALB6zkDDPkA5U2OD7zabPdk1NpjsQCiWmlZCaW86EISGEBnh2dmkt+q7Z9Mn7CplN\nJi6bGIXTZfD1zpNfI31bvcvB0v3vUO9ycNPw+R06TdDlMvjXfw+QlF7CCO/xeFo92Fe2gxpHTYdq\n8nK3cfucEfxq/hi8PGwsX5fC46/vJLeoqkPj9XTJx/sJDQ5ovnUsMbWYgtIaJg4LxcOtd3fdUSgk\nIiIiIkLbto8BhHu2v9l0vbOejIpsYnwiT9nQtK2ivHtPKPTdSqH2nxr2xbY0AC6fFN2pNbVFa82m\nAaaMCsfH08a3uzOpqXOcqdLkLLEq5QsyKrKY0m8i40JGtft+wzB4a/Uhdh7KZ1i0P3ddPZ6Lo6ZR\n6ahifeaW06pt3PdWDR3LKecv7+6horr+tMbsiRr7CZ3se/KG4w2mp43tvQ2mGykUEhEREREByuoa\nemj4urW2fazxWPq2N5vOqszBZbiawoTTEejuj5fVs8eHQlkVOaxOW9ti76OsimwC3PzxtLVvpU9m\nQSV7jxQyKNKPuIj2r7A4Xa01mwawWS1cPCGSqloHG/flnMHqpKdLKkrm67R1hHgEMW/wVR0a45PN\nqazZlUlkiDe/uG4MNquZGZEX4G5x5+u0dafsd9VWjauG5k6JpaC0hhc+2ofD2bu2kiWXHMVusTcF\n7Y0qa+rZkZRPeKAng7rh+8uZplBIRERERAQorWtYKeRrb3n7WKC7PzazrV3bx1KPbzOK8jn9UMhk\nMhHlE0F+dSHVjurTHq+z5VXl8+r+t3li2//xUfInPLb1z+zI2Y1hGCdcV15XQWldeYe2jn15fJXQ\nrIlnfpUQtK3ZNMBF4yOwWsx8uT0Nl8s45XXSd1TWV/H6wXcxmUwsGnkj7la3do+xYW82y9elEOTr\nxq9/NBZP94btTZ42Dy6MnEJ5fQUbsrZ2Sr1XTxvAhCEhJKaV8M7XhztlzJ6gtKaMnKo84vxisZgt\nJ7y2ZX8uDqeLaWP6YTKZuqnCM0ehkIiIiIgIUFbbtkbTZpOZcM8QcqvycBlt+815+vFtRtE+nXNs\nemNPm4zyrFavzSjPYnXa2g6dltYehdVFvHnwfR7b+hd25O6hv3c4l0ZfSK2zjlcPvMOLe1+lqKa4\n6frM402a2xsKlVfVsXl/LqH+HowfHNyp76E9Wms2DeDrZWfKqHDyS2rYfbh9jcml9zEMg3cSP6Sk\ntpQrYi8l1rf9oebeIwUs/SwRL3crv/7ROAJ8TgyVLoqaht1iZ3XqWuqdp7/ly2wycfuc4USGeLNm\nVyZrdvfsFYptdTA/GTj11jGzycSUUe3f1no2UigkIiIiIkLD6WMeVvc2HRMf7hVGvctxQsjRkrTy\nTGxmW1M/otMV6dNwRHJrW8gMw+DNg+/xUfInrDr6Zac8+4eKqkpYlvQRf9zyDJuztxPqEcxto37M\nAxPv5ppBV/C/k37D0IBB7C9MZMnWv/BtxkZchousDoZC6/dm43C6uPicSMzm7vstfmvNphs1HU+/\nPa3La5KebUvOTnbn7yPOL5ZZsRe1+/6UrDJeWJGAxWLi7vlj6R/s1ewab7sX0yPOp7SujM3ZOzqj\nbNztVn41bzTeHjbe/uoQialt+77Xkx3Ib1j1NMj/xCbTabnlpOaWMyYuCD/v9q/iOhspFBIRERER\noWH7WGtbxxqFezU2m269r1C9s56syhwivfs126bQUU2BRCsrhZKKk0k/3sz5y9Q1xOcndMrzG32S\n8iW//OT3rM/cTIC7PwtHLOB/J/+GCaFjmo54DvEM4pfjfsaPh12PxWTh/UMf89edL5JQmAi0LxRy\nuQzW7MrAbjMzdXT3/ha/Lc2mAfoFeTEmLojkjFKOZJWeidKkByqoLuL9Qytwt7izcMSCdh8/n1NU\nxd/ej6fe4eLnV49kUOSpe91cHDUdm9nKl6lrcLg6p8l5sL8Hd13b0BD7hRUJ5Jf0vK2r7XEwPxmr\n2UqMb9QJn1/fhxpMN1IoJCIiIiJ9nsPloLK+qtWTxxqFt+NY+sYm053RT6hRiEcQbhY76RUtrxRa\nnbYWgJuHXY/NbOP1A++RV5XfKTUcKEzi02Or8XXz4eZh83l48n1MCp9w0h92TSYT5/efyO8m38eE\n0DEcLUslqTgZm9lKiEdQm5+5J7mAwrJapowMx9O99RVdXaktzaYbzZrY8IPnl9vSu7osOQ2GYfD5\nsa/ZV3Cg08f+/NjX1DrruH7IVQR5BLbr3qKyGv56/ASwn8wayvjBIS1e7+fmwwX9J1NcW8K2nF2n\nU/YJhkYH8OPLhlBRXc/fP9xLde3ZeapeVX0VaSWZDPCNxmb+7rj5gtJq1sdn4edtZ/TAtn9fOtsp\nFBIRERGRPq+8jSePNWrcBtaWUKixyXRnnDzWyGwyE+kdQW5l3ikbHWeUZ3Gw6BCD/Qcypf9Ebho2\njxpnDf/e9wa1p3kykctw8VHyJ5gw8dtpdzKl/6Q2rYLyc/PhtlE/5o7RCwlyD2BU0PB2rZ76emfD\n1/Liczrva9lRbW02DTAsJoDoUG92JOVRVFZzhiqU9kooPMjKlC94J3F5p/bgKqktZXvOLkI9g5kU\nPqFd9x7NLuOx13ZQUFrDVRfEcuG4tvUluyR6BlaThS9S13Tqe5kxLoKZEyLJzK/k5VUHcBlnXwP1\nI6XHMDCabR17Z/Vh6hwu5s+Iw2rpO1FJ33mnIiIiIiKn8N3JY20LhUI8grCYLGS34Vj6zm4y3Sja\nJwIDo6lh8w+tTlsHNPxwCDApfALTI6aQVZnD24kfNDsNrD02Z28nqzKHyeHnEBsQ1foNPzAmZCSP\nTnmQ20b9uM33ZBVUcjC1mGHR/kSGeLf7mV2hLc2moWGl1IzxERgG7Ehs+6l1cua4DBcrU74AGr4f\nHChK6rSxv03fiMNwcknUjHZtG9uZlMef3tpFWWUdC2YO5uqpzZsin0qAuz/n9TuXgupCdubFN3u9\ntLaM7Tm7eevg+7x36OM2N80HuGHmIIbHBLD7cAEfrj1y1p2sd7gkBTixyfTeIwXsPlzAkEi/PtNg\nupFCIRERERHp8xpPHvNza1tPIYvZQqhnMLmVea2GK53dZLpRY1+hk21fKqopZmfeHvp5hTEiaGjT\n5+cNnsMA32h25O5hbeamDj23xlHLqpQvsZttzI2b1bHij2vPcc9f72oI12b2gFVCjb7r7dRyXyGA\nc4aEYDLB9iSFQj3R7rx9ZFZkE+PTEHJuytreKePWOGrYkLUFH7t3m1cJGYbBZ1tSef6jBEwmE7+c\nN4bLJka1+3j0y2Iuwmwy8/mxbyivq2BP3j7eTVrBY1v+zEMbl7D0wDtsyt7O2oyNHCtreyN0q8XM\nndeMItTfg8+2pHHfCxt5/9tksgoq21Vfd0kuPorFZGagXwwAdfVO3vrqEGaTiR/PGtonjqH/PoVC\nIiIiItLnlda17Tj67wv3DKXGWUtJ7ambB3dFk+lGLYVCa9I34DJczIw+cWWC1WzltlE/xsfmzYeH\nV5JSeqzdz12dtpayunJmRs/A3+3UzW47U1WNg037cgjwcWNcNx5D/0NNzaZbOYEMGo6nHxYdwJHM\nMm0h62GcLiefHP0Ss8nMopE3EuUTQULhQUpry0577I1Z26h21HBh5FRsbTjZ0OF0sfSzRN7/9ggB\nPm48+OMJHZ7zQR6BTAqfQG5VHg9seJR/J7zBusxNFNWWMCJwKNfEXcH8wVcBsDO3+Wqilnh72Ljv\nxnFcOD6C2noXn21J43cvb2XJ6ztYsyuDypr6DtXc1WocNaRXZBIXGIvdYgfg0y2p5JfUcOnEyB6z\nCvFMsrZ+iYiIiIhI71ZW277tY3C82XT+PnKq8ghw9z/pNV3RZLpRmGcINrO1WShUVV/Fxqyt+Nl9\nmRg2rtl9Ae7+3DrqJv6++9+8vO9NHph0d5vfd0ltKavT1uJr92nalnYmbEzIprbeyZXnx2Ax95zf\na7en2TTAxGGhHEwtZkdiHpdNiu7i6qSttuXuJrcqnwv6TyLUM5gp/Sby7qEVbM3eyWUdODq+kdPl\n5Jv09dgtdqZHnNfq9ZU19Ty/fB+JaSXEhPnwq/ljCPA5vWPRZ8fO5GhpKn52X4YEDGJIQBwxvpFY\njzdYdrqcfPb/2bvv8LbP897/b0ySIMG9N8UtkqL2smVbsi0vObblOLYTx5l2mibtr02TtOlxezJ6\nmvYkHacnaeP8kjiJk3oksR3vJdmWZO3FvfcGSYAEB4j5PX9QpCRLJAEQHCLv13Xluhzi+33wQAZp\n4eZzf+6WdzlnKuf+3Lt9am+LjQjh0dvyeWhPDucbBzhS0UNVi5nmbivPHGhkQ24sxVnRpMaHkRwT\nSpA+sIVxf9SaG/AoHgrjcgAwWcZ5/Xg7kWF6Pnad9+15K4kUhYQQQgghxKpndfjWPgYXx9L3jpko\njM676jXtC5QnBJMtbClhyXSMdOH0uKan6BzuOo7d7eCOzFumP/h9VF5UDvdk38FLTa/zi8rf8mfr\nH/PqJNMrTW/h9Dh5YM3HCNbO78OqtzyKwsGzXWg1Km5Yn7woz+mtqbDp5uE2HG7H9MmDmWzMi+Pp\nt+s4JUWheanvGOJUjYm0hDAyE42kxIX6XSx0eVy80fIOWpWGOzJvAWBzwgZeaHyVoz0nuTXjJr/b\niU73nWfIPszutOsx6AyzXts9MMaPXqig1zzOhtxYHr+7KCBFlNiQGP5++zdmfFyj1lAaV8zRnpM0\nDbWSG7Vmxms/6kTPGY73nOYLJY+wtTCBrYUJWEbsHK/q5UhFD6dqTZy6kKGlAuIiQ0iJCyUlLozU\nuFAyk8KJjwyZ70v0mmm8n/+u/QNqlZrtaRtRXAq/facBl9vDQzfnEhK0Ossjq/NVCyGEEEIIcQl/\n2uQE9V0AACAASURBVMeSLoyl7xmbOWy6fQEmj10qzZhCq7WdnrFe0o2pOD0u3u/8kGBNMNenbJv1\n3lvSb6TV2s75/kp+W/t7Hs7fP2t7S8dINyd6z5AcmsiOpC2Bfikzqm4102ceZ2dxIuGG2YsuSyHd\nmErTcCudoz3TGSUzmWohq2mzMDg8QUxE8CLtcuWwO908+XIVlhH79Nf0WjXpiUayEsPJSjaSdaHY\n4E0x52j3SQYnLOxOvX76xJ9BF8KG+HWc7D1L41AzuVHZPu9TURTebf8AtUrN7tRdVzw+anNS22ah\nus1CTauZPosNgNu3pfPxm7JRL2KuzcaEdRztOclZU5nXRSG3x83LzW8yZB/mhYZXeXTtgwBEGYO4\nY3sGt29Lp71vlJZeK139Y3T1j9LZP8a5hslA5yl3bEvnvhvWLPi0rxHHKD8u+wVjrnE+VfBxsqMz\nePNIMxXNg6zNjGJLQWAz364lUhQSQgghhBCrntU+glalwaD1/rfW8SGxqFDNOpZ+MmRaG/CQ6Slp\nxsmTMx0jXaQbUznVexarY4Rb0m8kZI7XolKpeKTwEwzazJzoPUPPWC9fKP40sSHRV1yrKAovNr6K\ngsL+nH0+tZjM14HTyy9g+lKXhk3PVRSCS1rI6kzcJqeFfPb2yXYsI3ZuWp9MeqKR1h4rzd0jNHdZ\naey8mO91/bokPndHwayFIYfbwZutB9CrdVe0ie1M2srJ3rN82H3Kq6KQoigMDk8wYnOiKNA82kj3\nWC8FxiLMgyoGlSFsdhd1HUPUtFpo7xthKqI+WK+hNDuGnSVJS1KcyIvMJkwXyjlTBR/P/ZhXpwYr\nB2sZsg+jQsWJ3jNsSlhP0SWh9iqVioxEIxmJFwvtiqJgHXfS2T9Kl2mUg+e6eONEO3UdQ3zpY0XE\nLdCpIYfbyZPlv2LANshtGXvYmbyVCbuLZw7Uo1Gr+NSteasuXPpSUhQSQgghhBCrntUxglFv9OmD\ngU6jIzYkmt4ZxtJPhUxnGFMDHjI95WLYdDcexcO77R+gUWnYnXa9V/eHaIP52qav8Hz9SxzrOcU/\nn/o/fGbtQxTHFl52XdVgLXWWRgqj8yiMuXqr3EIwDdkobxpkTXI4WUnet/YtJl/CpgE25k+2kJ2u\nlaKQr4ZG7bx+vJ1wg44HdudMtvusn/wesDvdtPeN0NJt5UhFL0fKe0iOCeX2bTP/GR/qOsawY4S9\nGbuvOCWYE5lFfEgs5/vLGXd+7Ir2r+ExBy09Vlp7rLT0jNDSY2XUdjFcWV9wEk04nD8Wwbnxs5fd\nq1GryEuLpDAzirWZ0WQmGhf8pMxsNGoN6+NLONJ1nIahZgqic+e853DXMQAeXfsgT9c8zzO1f+CJ\nbV8jWDvz6TeVSkVEqJ6I0GiKMqPZVZrMb96u41hVH99+6iSfub2ArYUJAXtdAB7Fw69rnqPF2sbm\nhPXsW7MXgOfercdstXPXjgySYkID+pzXGikKCSGEEEKIVU1RFKyOkekCiy8SQxOoGKhmxDGKUX/5\n1JqFDJmekhSaiFqlpmOki8qBGvrG+9meuNmnqWB6jY5HCh9gTUQmz9e/yH+VP8VtGXvYt2YvapUa\nt8fNi42voULF/px9C/Zarub9s10owM0bl+cpIfA9bDrcIC1kM1EUhabhVo52n6RyoIZPb9hPiXHd\n9OMvHGrG7nTz4M05V+S/BOk05KZGkpsayZbCBL77q1P87v1GUuNDKc6KueK5bK4J3m57jxBtMLde\nJTRdpVKxM3krLzW9zqm+89yYupOugTFePtJCc/cwg1b7ZdfHRgRTmBFFlDGIMdUAZzETRQrr15Uw\nVWvWadSsSQ4nNzVyWYQuX2pTfClHuo5z1lQ+Z1Gof3yQGnM9ayIyL0w36+fN1gP8selNHsy/1+vn\nDAnS8tjdRazNjObpt+v4yR+rqG618PAtuQTpAvPn83LTm5wzlZMdkcUjhZ9ArVLTPTDGi+83EhMe\nzL6dmQF5nmuZFIWEEEIIIcSqNuYcx624ifAhT2hKoiGeCqrpHeu7oii0kCHTU3RqLcmhiXSN9vB2\n2/sA3Jx+g19r7UzeQpoxhZ9VPs1bbQdpsbbzuaKHKeuvpHfcxHXJW0kOSwzg7mdnd7o5XN5NuEHH\n5mWc96FWqUkNS6bFy7BpgC2Fq6OFzOlxoVGp52w3HLZbOdFzhmM9pzDZLubNHGw+SknpZFGovW+E\nD8t7SI0L5YZ1sweORxmD+Or+Ev75t2d58o9V/N1nNhMfdflJn/c6DjPmHGdf1m0zhkBvTdzEy81v\ncrT7JFm6En747HlGbU6MBh3rsmPISpo8wZaZZLws7+rnlSfABI+sv5OCaN/ziJZCTmQW4Xoj5/sr\neDDv3llPNx7pPg7ArgsT1W7PvJnzpgoOdR1lU0IpOZG+TfG6riSJNcnh/OSPVRwq66axa5g/uado\n3uPhD3cd553294k3xPL4ukfRqbUoisJv3q7D7VH4ZACLT9cyKQoJIYQQQohVbWrymDHI96LQVNh0\n77jpityRhQ6ZnpJmTKFztJsWaxvFMQXzKtykGZP5681/zm9qnqdsoIp/OvnvuBUPeo2eu7JuC+Cu\n53aiuo+xCRf7dmai0y6fMfRXk2FMpdnLsGmYnEL2m7fqObWCW8h6x0x8/9S/AxATHEV0cBQxIdHE\nBkcTExJNTHAUQ/Zhjnafotpch0fxoFNr2ZKwgR1JW3i15S0azC2MO8cJ0Ybw3MFGFODBPbmo1XO3\neWYnR/Dp2/J56vVa/u8fKvjbT2+aPl005hznQPthwnSh7E67bsY1IoKMlMQUUjZQxQ9eep9xWyif\nvaOAXeuSZmw1HbANcs5UQWpYMvlROb7/wS0RtUrNhvgSPug8Sp2lkbWX5ANdyul2cqznFGG6UDbE\nTxbsdGotnyp8gH8985/8tuZ3fGvrX6KfJbT+apJiQnni0U08/14TB8508r1fneYzt+ezszjJr9dT\nNVjH8/UvEaYL5U/XfYEw3WSL2IEzndS2D7G5MIH1ubF+rb3SSFFICCGEEEKsasMOK4B/J4UujKXv\nuUrY9EKHTE9JCL5YBNqd6t8poUsZdCE8VvIo77Z/wMvNb+JRPOzL2kuEH0UzfymKwoEznahVKnZv\nWLiTVoHia9h0uEFPQUYk1a0WBoZtxEYs3ljuxVJrbsDlcRETHM2oc4y+8f4Zr003prAjaSubE9Zj\n0E3+WTQPt9I83EatpRHVcBI1bRbWZcdQlHVlEPpMdq1Lpr1vlANnOvn5azX86X3FqFUq3ml7nwn3\nBPuz9s2agQOQayihjCoc4a18dsf97JrjlNLBjsMoKNyafuM1F168Mb6UDzqPcsZUNmNR6Fx/BWPO\ncW5Nvwmd+mI5YU1EBjelXcd7HUd4o/Vd7sm+w+fn12k1fOrWPNZmRPGL12v42as1uNwKN5TO/mf+\nUZ0j3fy88mnUKjVfWvdZ4gyT7YOna008824D4aF6vrx/HSq32+c9rkRSFBJCCCGEEKua1T55UihC\n73uQcYIhDoDej4ylnwqZTl/AkGkAl9vDiTMTEA2e0Qh+/UI/D98cRcmaKzNUfKFSqbg14ybWRGRS\nY67n5qtkriykI+U9dJhG2VwQT5QxaFGf2x9Tp8E6rN7lCgFsLoinutXC6dr+WcOQr1VT7ZNfLv0c\nSaEJ2FwTmCcsDNjMmCcsDNrMqNVqtiZsJNV45Yf+tTH5vNryNlUDtVQfHkOtUvHAbt9P3jy4J4eu\n/lHO1vfz6oet3Lgllvc7PyRCH86ulB2z3tvWO8IfXrWiFAQRktjHtqLZT5aMOsY42n2K6OCo6VM0\n15I1ERlEBkVQ1l/Fw/kutOorywWHu46hQsX1KduueOzuNbdT3l/Nu+0fsCG+hHQ/89Q25MXxzcgQ\nfvDMOX71Ri0qYJeXhSFFUfhF1W+xux18ofiR6SJtTZuFn75SRZBew18+UEp8tIH+/hG/9rfSLO9z\nmEIIIYQQQiywqfaxcD9OwgRrg4kKirxiLP1UyLS/H4q89cyBBpob1cSOlbI+aA99Zhv/9nwZ//67\nMnrN4/NePzsyk31r9vrcCuIvm93Fz16t5qk3agnSa7hr+9ynbpaDqbDpqUKINzbmxaFWqThdd+Up\ns5WgfaQTvUY/XTgN0QaTEpZEaVwRu9Ou5+N5H2N/zr6rFoRg8vSVUR9KWV8tfZZxbtyQTEqs71Oi\ntBo1X763mJjwYF460sJz5W/j9Di5I+vmWd/Xbb0j/PDZc9gmPBRHrsepODhnqpj1uQ51HcXpcbIn\nbdeCFoMXylQLmc1lo9bccMXjXaM9NA+3URidR2zIlYXnII2eTxbcj0fx8Jua3+H2+H8SJy0+jG88\nvIHQEB2/fKOWw2XdXt3Xbxugb7yf9XElbIy/mEf1oxfKURT4s/0lZCQu3qnHa4EUhYQQQgghxKo2\n1T720ZHU3koMjWfYYcXmsk1/bTFCpg+c6eS9s12kxhn5m70P8qXbdvDtz22lID2S8qZB/u5nJ3j+\nYCPjE64F20MgtfRY+c4vT3G0spesJCPf/tyWa+bD21TYdM9YHw63w6t7plrImrutDAzb5r7hGmJ3\nO+gdM5EWljxnyPRM1Co1hbH52JRRQsInuOd638KLL2U06Pmz+0vQa1WcH6hAp9axPXHzjNe39lr5\nwTPnGJ9w8fm7CvlE6W4APuw+edXrh+zDPFf3Im+2HsSgDWFH0ha/97rUNsWXAnDGVHbFY4cujKGf\nCpi+moLoXHYmbaFrtId32t+f116uKAyVz10YqrM0Tu8DoH9oslA+YXfz2N1rKcz0vv1wtZD2MSGE\nEEIIsapNt48F+d4+BpNh0zXmenrHTGRdaFVov9BGtFAh05Utg5PZGAYdf/7xkukA3akPUWfq+nnu\nYCNvnmznaGUP+2/M5vqSJK8CehebR1F460Q7Lxxqxu1RuGNbOvfdsAat5tr6/bWvYdMAWwLUQmaZ\nGEKn0U2H6S61rtFuFJR5n5QbM0UCsHad67LpXv5ITzBy3954Xh4Yxz2UzFOv1xMWosNo0GM06DBe\n+Ge7082Tf6zC5nDxxX1r2VE8mdlVEJVLraWBvjETCReyxKyOEd5ue4/DXcdxeVzEhsTwUN59BGuX\nf8vjTDLD04kKiqS8vwqn24nuwmmqCdcEp3rPEhUUSXFs4axr3Jezj6rBWt5oeZf1ccUkXgjk90da\nfBhff2g9P3z2PL98vXaydW3dzOHTdZYmAPKjsrGOO/jX584zPObg4Vty2Vro/z5WMikKCSGEEEKI\nVc3qGEGFCqPOv/HHU0HSPZcWhUY6FyxkuntgjP96qQq1WsVX7193RUixSqVic0E867JjeOtkO68d\nb+OXb9Ty9qkO9t+whg25scsmAHdo1M7PXq2mutVCRJieL+5bS9E1+pt8X8OmYbKF7OkLU8j8LQqN\nOsf4Xyf/jQxjKn+24TG/1gi0qaJo2jxOyvWaxzl3RkFfCu7QwLTYKeG9MAAT/bEcH+yb8TqVismC\nUNHFEPedyVuotTRwrOc0t2TcyLttH/BB54c4PE6igiK5M+sWtiVuuibbxi6lUqnYmLCOA+2HqDbX\nURpXDMDJ3nPY3Q5uTd895+kvgy6EB/P389OKX/Fi42t8ufTz89pTeoKRrz+0nh88c46nXq9BpZoc\nY/9RHsVDvaWRqKBIjJpIfvjsefosNu7cnsGtm9PmtYeVTIpCQgghhBBiVRt2WAnVGfz+MDf1W/Cp\nsOmFDJketTn5j9+XY7O7eOzuteSkRMx4rV6n4e7rsriuJIk/HmnhSEUPP3qhguzkcD5+Uzb56VEB\n3ZuvyhoH+PlrNYzanJRmx/C5uwrnfRpkKWVcOBXWMtzGTakzjzm/lNGgpzAjkqpWCwNDNmIjfZ9C\n9l7HEWwuG+0jnSiKsiwKftPtk/M4Kfe79xpx24OI0sbRNNyCw+1Ar5nf+6O8vxq1Ss0PPnUvbqeW\nEZuD0XEnI+NORsYdjNicjNmcrM+NY1325Zk56+KKCdUaONx1nMNdx5hw24nQh3Nf5j52Jm+5aijz\ntWpTfCkH2g9x1lROaVwxiqJwuOsYapWanclbvVqjNK6IrPB0qgbrGLCZiQ2ZX7E3PcHINx7ewA+e\nOccvXqvBoyhsX5uIVqOafs93j/Yy5hynKKGA/3qpipaeEa4rSeT+G9fM67lXupXzzhVCCCGEEMIP\nVvsoMSH+F0imxtL3jk+eZrgYMh3YPCGX28OPX6jANGRj386My04xzCY6PJjP3VnIbVvTefFQM2fq\n+/nn/z5H8ZpoPn5jNukJi5vb4/Z4eOlwC68da0OrUfOpW/PYszFlWRQz5iPBEE9kUAQ1g/W4PW6v\nC4KbC+KparVwus73FrJxp433Oz6c/GeXjVHnGEa9fyfeAumjIdO+aumxcq5hgLVZ0WQnreXdjg9o\nGGqhaIYx6d6wTAzRNtJBQVQukYbJP6OYiNnH0V9Kp9ayLWkTBzsOY9SFcdeavVyfvH3RQtgXU7ox\nldjgaMoHqnG4HXSMdNM91suG+HVE+BDIf33Kdlqs7XzYfcKvEfVX7CvByNcf2sAPnz3HU6/X8tTr\ntahVKoL0GoL1GohrhliorFAz2GpmXXYMn7m94Jr/2bLQrq1GXSGEEEIIIQLI4XYw4Z7wO2QaIFRn\nwKgPmz4pdDFkOnB5Qoqi8PRbddR1DLEpP457d/n+m+/k2FC+sr+EJx7dTEF6JJXNZr791CmefLmK\n8qZB+izjuD2egO35aobHHPzLs+d57Vgb8ZEhPPHoJm7elLoiPrSpVCqKYwoYc43TYm33+r6pKWSn\nan1vkfqg8ygT7glCdQYA+sb7fV4j0AIRMn3w7OT30IO35LP2QiGoxlw3r31VDFQDsC6uyO817l5z\nG4+VPMp3dv4Ne9J2rciCEEy1kJXicDuoHKzl8IWA6RtmCZi+mo3xpRi0IRztPonTE5jA+4xEI9/8\n5Ea2FsZTlBXNmuRwYsKD0WpU2PWTP4MHu8Ioyoziy/cUX3PZZEtBTgoJIYQQQohVa/hCyPR8ikIA\nSYYEGoaasbsdAQ+Z9igKfzzcwuHyHjISjHzxrrWo51FEWZMczjce3kBVq5nfv9/Eieo+TlRPfpjS\nqFXERASTEGUgISqE+KgQUuLCyE+LnHdIdUPnEP/1UiVDow425MbyhbsKMQSvrA/VJbFrOdJ9gsqB\nGnIivZuW5W8L2YRrgvc6DhOqNXBH5i38vuFlTOP9Xj/vQplvyPTYhJOTNSbiI0NYnxdHb78OvVpH\nzWA95Pq/r7L+KgDWxa71ew29Rs/6Cxk7K93G+NLJEO3OYzQPt5JgiCc3MtunNfQaHduTNnOw4zBl\npgo2J24IyN7S4sP4k3su//fg9rj5xuHXiQyK44mv3TGvn5GrjRSFhBBCCCHEqmV1BKYolBgaT/1Q\nE33jpoCGTA+POfjZq9VUtZiJDg/iz+4vIUg//5wilUpFcVYMazOjqWwepLV3hD6zDdPQOH1mGxXN\ng1Rccn1sRDB7NqayqzSJUB8LOYqi8M6pDn73fhMeReGBm7K5fVv6ijgd9FF5UTno1DoqBqq5N+dO\nr+/bUpjgcwvZ4a7jjLnG2Ze1dzrQeTmcFJpvyPSHFb04XR5u3JCMWq1Cp9aSF5VN5WAt5gkL0cG+\nt3qOO23UDzWRbkwhKjjSr32tNqlhScQbYqkfmpzmtStlu1/fs7tStnOw4zCHuo4HrCh0NW0jndjd\nDvKicqQg5CMpCgkhhBBCiFVr2GEF/B9HP2UqbLrzQvZGIEKma1rN/PSVaobHHKzLjuHzCxDErFap\nWJcdy7rs2Mu+Pj7hpM9io88yTm2bheNVfTz/XiMvHW5mR3EiN29MJTV+7uwam93FU6/XcLqun/BQ\nPX/ysSIKMpY24Hoh6TU6CqJzqBiooX98kDhDzNw3MTWFrI7D5d3s3Zo254dah9vBgfZDBGuCuTH1\nOjzKZNvfsigKzSNkWlEU3j/XhVaj5vpLpksVRudTOVhLzWA916Vs83ndqsFaPIqHdbGr45RPIKhU\nKjbFl/JG6wF0ah3bEjf5tU68IY6CqFxqLQ10j/aSHOZdFpqv6syNAORH5SzI+iuZFIWEEEIIIcSq\nZQ1U+9iFsOkzfWXzDpl2ezy8fKSVV4+2olar+MTuHK8KBYFkCNaRlaQjKymc7WsT+fhNORwp7+Hg\n2U4+ON/NB+e7KUiP5OZNqaxXq+notTI24WLM5mRswsX4hJMxm4tzDf30WWzkpUbwJ/cWExkWtGiv\nYamUxKylYqCGisFq9hh2eXVPWIiOrYUJHKvqpbJ58Ioi3Ud92H2SEecot2fswaCbbDcL1RowLZOi\nkL8h07VtFnrN4+woSsB4SQF0bUweNEC12b+iUNnAZOtY6TzyhFajzQnreavtPbYlbZp+n/ljV8p2\nai0NHO46zoP59wZwhxfVWRpQoSI3SiaN+UqKQkIIIYQQYtUKVPtYgmHypFCdZfK31Wl+5qlYRuw8\n+XIV9R1DxEYE86V7ishOnnns/GIJC9Fx+7Z09m5Jo6xpgANnOqlutVDbPgQvVs567+1b09l/45pV\nE/haHFsIdVAxUMOeNO+KQgC3bU3jWFUvb53smLUo5PS4eKftffQaPbsvWT/eEEfbSIdPk88CbSpk\nek1Ehl8h0++dm2w9u2nD5UXVuJBYYoKjqbM0+Pz6nB4X1YO1xIbEkHThRJ/wTmJoAv9z+zeICJrf\nz6CS2LVE6MM52XuGe7LvIFgb2OKww+2kZbiN1LAkwnShAV17NZCikBBCCCGEWLUuto/NrygUrg/D\noA1h3GUD8OukUHnTAD97tYZRm5NN+XF87o6CZRfErFar2JAbx4bcOLoHxjhU1o1LAa0KDMFaQoN1\nhAZrCQ3RYQjWEhUWRHS492O/V4KIoHDSjak0DjVjc9kI0Xp3wiI9wUhhRhQ1bRba+0ZIT7j6e/J4\nzymGHVZuSb+RMP3FD8AJhjharG0M2AZJCJ1/npU/5hMyPTRq51zDAKlxoeSkXF6EUKlUFMbkcaTr\nOK3WDrIjM71et97SiN3t4PrYohWZY7XQYkO8a4GcjUat4brkrbze+i6n+85xvY9TzObSPNyKS3GT\nJ61jfpGikBBCCCGEWLUuto/NL1NIpVKRGBpP83AbOrXWpxMJXQNjvPBBE+caBtBq1DyyN4/dG1KW\n/QfY5NhQHro5l7g4I/39I0u9nWWlOLaQ9pFOqgfr2ZRQ6vV9t21No6bNwlsnO3js7iunZLk9bt5u\nex+dWsuetBsue2yqXatvvH/JikLzCZk+VNaN26PM+N5fGz1ZFKox1/lUFJqeOiatY0vqupRtvNl2\nkMNdx7kueVtAf75NndDMj5aikD9WxxlOIYQQQgghrsLqGEGv0QeknSHxQgtZSliyV+0tg8MT/OK1\nGv7+5yc41zBATkoETzy6iT0bU5d9QUjMriS2EJhsIfNF8ZoYkmIMnKzpwzJiv+Lxk71nMU9YuC55\n2xWn2+JDLxaFloq/IdNuj4cPzncTpNewvejqQcSTU6XUVA/We72uR/FQPlBFmC6UNREZPu1JBFZk\nUAQlsWvpHO2m1doe0LXrLI2oVWqyI7ICuu5qIUUhIYQQQgixag07rETMM09oylTY9FytYyPjDp49\n0MC3fnqcIxU9JMeE8mf3l/CtRzbO2DIkri1pYSlEBkVQPViL2+P2+j61SsVtW9NxexTePdNx2WNu\nj5u32g6iVWm4Jf3GK+6dOim0lGHTHSNdfoVMlzcNYhmxs6MokZCgqzezhGiDWRORQftIJ6OOMa/W\nbbV2MOIYpSR2rV8ZRyKwdl1oGzvcdTxga9pcNtqtnWSGpwc8q2i1kO8MIYQQQgixKnkUD6OOsXm3\njk0piM4jRBtMadzVx15POFy88mELf/PkMd4+1UFEqJ4v3FXIdz6/lQ25cXI6aAVRqVQUxxQw5hqn\nxcdTETuKEgg36PjgXDcTDtf018+Yyui3DbI9aTNRwZFX3BcbEoNapV6yk0J2t4OesT7SwpJ9LsBM\nBUzv3jB7QbUwOh8FhVpLg1frlvfL1LHlJD8qh7iQGM6Yyhh1elfYm0uDpRkFhfyo7ICstxpJUUgI\nIYQQQqxKI45RFBTC5xkyPSU5LJEf3vBdCqJzr3yucQf/6+kzvHi4BY1azcM35/KPj2/nupIk1Gop\nBq1EJbGTmUCVXrSQuT1uflPzO35a/iv+2PIa2aVmJkK6efVcBRMuOx7Fw1utB1Gr1OzN2H3VNXRq\nLTHBUUtWFPI3ZNo0ZKOq2UxOSgRp8WGzXrs2Jg+AGi9byMoGKtGrdeRHXfk9KRafWqXm+pTtuDwu\njvecDsia9ZYmYLLgJPwjQdNCCCGEEGJVmp48FqD2sZmMTzj51+fK6Oof44bSZB7ckzNji4xYOfKi\nctCpdVQMVHNvzp2zXvtu+wcc6zl12deC8uC9sbO8dwhCtCHYXDa2J24mJiR6xnUSDHFUDtYy5hwn\nVGcIyOvwlr8h0x+c60Jh7lNCAKlhyYTpQqkx16Eoyqyn63rHTJjGB1gfV4xes7ym+K1m25M280rz\nWxzpOs6etF3zbuurszSiU+vIlMwov8lJISGEEEIIsSpNTR6LCFD72NXY7C7+7fky2vpGuKE0mc/c\nni8FoVVCr9FREJ1D77iJ/vHBGa/rHTPxeuu7hOuNfHv7X/ONzV/l80WfItW1GZcpjZSgTIz6UGKC\no7g98+ZZnzPesHRh0/6ETDtdHg6X9xAWomNzwdw5RGqVmsLoPIYdI3SP9c567VTr2LpYaR1bTsJ0\noWyKL6XfNjg9Ncxf1gvvg+yITHRq+bnqLykKCSGEEEKIVcnqmCwKGQPUPvZRdqeb//uHcpq6rewo\nSuDR2/IlN2iVKYmZbCGrGKy+6uMexcNva3+Hy+Piwfz7iDPEkBmezqaEUj676S6crUUozVv5n9u/\nyXd3fos4Q8ysz5ewhEUhf0KmT9eZGLU5ub4kCZ127ol9AIXRky1k1YN1s15XNlCFWqWm+MIkiH2f\n6gAAIABJREFUOLF8BCpwerp1TEbRz4sUhYQQQgghxKo0PH1SKPBFIafLw49fqKC2fYhN+XF8/q5C\nyQ5ahYpiC4CZR9Mf6jxG83AbG+LXsf4jAeVJMaGUZsfQ1GWlsWvYq+dbqglkDj9Dpt+/EDB944Zk\nr+8pvJArVG2eOVdoyD5Mq7WdnMg1i95GJ+aWGZ5OalgyFQPV8xpPX2eePGkkeULzI0UhIYQQQgix\nKk2dFAoPcFHI5fbwkz9WUtliZl12DF/6WBEatfy1ezWKDIog3ZhC41AzNpftsscGbWb+2PwGoVoD\nn8i756r337Y1HYC3Tnr3wTneEA9ceVJIURRft+6TTj9CpjtNozR0DlOUFU1ClPeFm3C9kbSwZBqH\nmvll1TMc7T7FoM182TUVA5Mns0qldWxZUqlU3Jl1K4qi8H/O/ZSqOU59zaTe0kiINtjnHCtxOWm8\nE0IIIYQQq5J1Kmg6KHCZQh6Pws9ereZcwwCFGVF85b5itBopCK1mxbFraR/ponqwnk0JpcBkkeaZ\nuhdwuB08VHjfjIXJ/PRIMhKMnK3vxzRkIz4yZNbnCteHEawJvqwodKism2cPNKDXqok0BhFtDCbS\nGERUmJ4oYzBRxiDWJIfPK+vKn5Dp9857N4b+am5Ov5HfN7zMqb5znOo7B0BMcDT5UdnkRmVzpq8M\nuDgBTiw/pXFFPFbyaZ6q+m9+Uv4UjxQ8wLakTV7fP2gzMzBhZl1s0bzDqlc7KQoJIYQQQohVadg+\nglqlDlh7iUdR+OUbtZysMZGTGsGf37/O65wUsXKVxBbyess7VAzUTBeFjveeocZcz9rofLYmbpzx\nXpVKxW1b0/jpK9W8e6qDT96aN+tzqVQqEkLj6BrpxqN4qGw286s3awnWawgJ0tJrHqe9b/SK+xKj\nDXzn81v8fr/6GjJtd7o5XtVLZJie0pzZc5KuZkviBjYnrKdnrI96SxP1lkbqh5o52nOKoxemuKWF\nJRMTEuXz2mLxlMYV89X1j/GT8l/y65rnsDpGuCX9Rq+y1+pkFH3ASFFICCGEEEKsSlbHCEZdWMB+\ny1zWMMCRih4yE438xcdLCdJLQUhAWlgKEfpwqgdrcXvcjDrH+UPDKwRp9DxcsH/OD8CbC+L53ftN\nHC7v4fZt6USHB896fYIhjjZrB+UdHTz5UitajZqvfWI92SkRKIrCuN2FZcTO0Igd84idssYBzjUM\n8M7pTu7c7t9Yb19Dpk/XmrDZ3dy8Kc3v1kqVSkVyWCLJYYnclHYdHsVD50g39UNNtAy3sSNpi1/r\nisWVE5nF1zZ+mR+X/ZyXml5n2G5lf+6+OX8u11kaAMiLyl6Mba5ocs5KCCGEEEKsOoqiYHVYiQjg\n5LHqNgsAD92ciyFYfvcqJqlUKopjCxlzjdNibef5+hexuWzcm30n0cFzn2TRatTcuT0Du9PN9359\nmpYe66zXTxVmnjp4GofTzeN3ryU7JWJ6L6HBOlLjwiheE8MNpcl84a5CwkJ0vHq0leExh8+vz5+Q\n6UNl3QDsWpfk8/PNRK1Skx6eyi3pN/JYyaMydewakhyWyNc3fYWk0ATe6zzCU1X/jdPjmvF6RVGo\ntzRh1IeRFJqwiDtdmaQoJIQQQgghVh2bawKnx0W4PnB5QvUdQ+i0arKSAremWBlKLhQofl//R873\nV5IdkcX1F8Zye2PPxhQe2pODddTBP//2LKdrTTNeG6mNBsDGEA/uyWFTfvysaxuCddy3K4sJh5sX\nDzV7vacpvoZMdw+MTQZMZ0YRN0dGklg9ooIj+drGL5MdkclZUzn/ef7n9I33M2gzX/G/hqEmrI4R\n8qNyvGo1E7OTX2EIIYQQQohVJ9CTx8YmnHSaRslPj0Snld+7isvlR+WiU+voGO1Gq9byqcKP+9S2\nqFKp2Ls1nfhoA0++XMV/vlTJfTesYd+OjMs+FLvcHg4eG4IYSE1VceuWNK/Wv2F9MgfPdnG4vJs9\nG1NIT/D++8LXkOnD5RdOCZV6P4ZerA4GnYGvrn+MX1Y/Q1l/Jd89/oNZr5fWscCQopAQQgghhFh1\nLk4eC0xRqKFjGAXIS4sMyHpiZdFrdBRE51AxUMNdWbd6nb3zUetzYvnbRzbxH78v48VDzfQOjvHZ\nOwrRadUoisKv36yjsdlFSDQYoxxen6LQqNU8eHMO//pcGc8dbOTrD633+l5fQqZdbg8fVvQSFqJj\nQ65/fwZiZdNrdHyx+BEOtB+iZ6xvxuuCtcFsil+/iDtbuaQoJIQQQgghVh2rfeqkUGBaveo7hgDI\nl6KQmME92XeSE7mG3anXz2udtPgwnvjMFn70h3KOVfXRPzTBV/eX8P75rgtB55E4g6Mw2frnXuwS\nxVkxrMuOobxpkPONA14XbXwJmT7XMMCozcneLWlyok7MSK1Sc2vGTUu9jVVDvhOFEEIIIcSyY3c7\nMI0PLNj6w1PtYwE6KVTXMYRGrWLNhUBfIT4qKTSBW9JvRKOe/1S6iFA93/zkBratTaCxa5i//8VJ\nXjrcQmxEMP/fA6UkhMZhdYxgc034tO6De3JQq1Q8d7ARl9sz5/W+hkxPBUzfIK1jQiwbUhQSQggh\nhBDLhsPt5ED7If7+6Pf57vEfTLemBNrwVPtYADKFJhwu2npHyEwyEqSTMfRicei0Gh6/ey33Xp+F\ndcyBIUjLXzxQSkSonkTDZLi0ady300JJMaHs3piCyWLjwJm5v/c6R3u8DpkeGLJR3WImJzWC5NhQ\nn/YlhFg40j4mhBBCCCGWnNPj4mj3Sd5qPcCwYwStWouCwoddJ0gv8G6qkS+s9lEgMO1jTV1WPIoi\neUJi0alUKj52fRaFmVEYDXoSow0AxF9o5eodM5ER7l3Y9JR7rs/ieFUvL3/Yys7iRIwG/YzXtlsn\nC0fehEwfLu9BAW5YJ6eEhFhO5KSQEEIIIYRYMm6Pmw+7T/CdY/+b5+tfwuaaYG/Gbv5h598SGRTB\n6b4y7G5HwJ93Kmg6XB8277XqJE9ILLHc1MjpghAwne/j60khgLAQHR+7Lgub3cVLR1pmvdbbkGmP\nR+FIRQ8hQRq2FMT7vCchxMKRk0JCCCGEEGJJnDNV8FLT6wzYBtGptexJ28XejN0YLxRqdiRt5o3W\nA5wzlbM9aXNAn3vYMYJBG4JOo5v3WvUdQ6iAnBQpConlISF0sijU50dRCGD3xhQOnuvig3Pd7NmQ\nQkrclcVTp8dFnaWRIC9CpiuaB7GM2LlpQwpBemmxFGI5kZNCQgghhBBi0ZnG+/l55W+wTAxxQ8pO\nvr3jr7k/9+7pghDAjqQtqFBxtPtkwJ9/xD5CeND8W8ecLjfN3VbSEsIwBMvvW8XyEKEPJ0ij97so\npNWoeXBPDh5F4bmDjVe95kjXcYbsw1yfsn3OkOmLAdNJfu1HCLFwpCgkhBBCCCEWXeVgLQoKn8i7\nhwfz7yUy6MqpXTEh0eRH5dA03ErvmClgz+30uBhzjRMegJDp5m4rLreH/LSoAOxMiMBQqVTEG+Lo\ntw3gUeaeInY1pdkxrM2MorLFzInqvsses7sdvNV6kGBNEHvTd8+6ztConbLGQdITwshMnH8hVggR\nWFIUEkIIIYQQi656sA6A4tjCWa/bmbwVgKM9gTstZLVPjqMPxOSx+gt5QhIyLZabBEMcTo8Ly8SQ\nX/erVCo+eUseQXoNP3+tmrp2y/Rj73ccYcQ5yu60XYTpZ58k9mFFDx5FkTH0QixTUhQSQgghhBB+\nURSFo90nGbIP+3Sf3e2gwdJEaljyVU8IXWpdXBGhOgMnes7g8rjms91pVsdkUSgQJ4WmikK5abO/\nDiEW21TOj78tZADJsaF8dX8JigL/8YcKOk2jjDttvNP+AQZtCDen75r1fkVROFzWg16rZvvaBL/3\nIYRYOFIUEkIIIYQQfukY6eK3tb/n9w2v+HRfvaURl+KmKKZgzmt1ai1bEzcy6hyjcqDG361eZnry\nWND8ikIut4fGLivJsaGEzzK2W4ilEIiiEEBRZjRf2FeIze7iX58/zysNB7C5bNyacRMh2pBZ761t\nH8I0ZGNzQTyG4PmHugshAk+KQkIIIYQQwi/9tkEAKgdqmHDZvb6vcrAWwKuiEMDOpMkWsg+9bCEb\nsJl5reWdGU8wDU+3j80v36S9bxS70y2tY2JZijdMjn6fb1EIYPvaRB7ak8PQxCiHuo8SpgvjxtTr\n5rzv8HTAtLSOCbFcSVFICCGEEEL4xTwxmTHi9DipHPTuFI+iKFQN1BKiDSEzPM2re5LDEskKT6dm\nsH7OfJQJ1wT/VfYLXm95h+8d/xcOdx2/Img3UO1jF/OEpHVMLD/xhlggMEUhgL1b08nd2A9qFxpT\nLnhmHi2vKAp17RZO1/WTGG0gN1W+R4RYrqQoJIQQQggh/GK+pEBztq/Mq3t6xvqw2IdYG52HRj3z\nh8qP2pG8BQWFYz2nZrxGURR+U/t7esdNFEbnoVLBs3Uv8O9nn6TvkullU+1jEfNsH5sqCsnkMbEc\nBWn0RAVFYgpQUcgyMUSvugadJ5Texjh+8lIlbs/lBdexCSfvnO7giZ+d4J//+xwut4e9W9JQqVQB\n2YMQIvCkKCSEEEIIIfxinjADEBUUSZW5DptrYs57qnxsHZuyKb4UvUbPsZ7TM47Yfq/jMOdM5WRH\nZPLldZ/jiW1/RWlcMU3DLfzjqX/nzdYDuDyuS04K+d8+5lEU6juGiI8MIcoY5Pc6QiykBEMcQ/Zh\nn9o7ZzL1/fPxgtspyoylrGmQX71Zh6IoNHUP8/PXqvmrH33IM+82YLLY2FoYzzcf3sCN66V1TIjl\nTLvUGxBCCCGEENcm88QQwZogdiZv4bWWd6gYqGZr4sZZ75kqCq2NyffpuYK1wWyOL+VozynqLI0U\nRudd9niDpZkXm14nXG/kC8WPoFFriAyK4PGSRzlvquD5+pd4pfktzvSVMeG2o1VrCdEG+/aCL9Fp\nGmXc7mJjXpzfawix0OINcdRaGjDZ+kk3pvq9zoBtkKM9p4g3xLIjeTOb7lX438+c40h5DzWtZgat\nk0WnuMhgblyfwvUlSYSHSvi6ENcCOSkkhBBCCCF8pigK5gkL0cFRbIwvBeDMHC1kNtcETcOtZBjT\nMOrDfH7OncmTgdNHuy8PnB62W/lF1W8B+ELxI0QEXX4CaH18CU9s+zrXJW+je6wX84SFCL1xXi0t\nF/OEJGRaLF9TE8hMY/NrIXut5R08ioe7svaiUWsICdLylw+UEh8VgmXEwaa8OL72YCnf/9IO7tye\nIQUhIa4hclJICCGEEEL4zOayMeG2Ex0cRWJoPClhSdSY6xl3jmPQGa56T525AY/iocjHU0JTMsPT\nSQxNoKy/ilHHGGH6UNweNz+r/A1Wxwj35+wjJzLrqvcadCF8suB+tiSs5/n6P5IVke7XHqZMF4XS\npSgklq+E0PmPpe8Z6+NU7zlSwpLYGL9u+uvhoXq+/bktuNwKYSEybl6Ia5WcFBJCCCGEED4bvBAy\nHR08GbK8Mb4Ut+KmbKB6xnum84RifcsTmqJSqbguaQtuxc3J3jMAvNj0Gs3DrWyMX8futF1zrpEb\nlc3/2PY1Plnwcb/2AJOnpOo7hogyBhEX4X8LmhALbeqk0HyKQq82v42Cwr6svahVl398DNZrpSAk\nxDVOikJCCCGEEMJnUyHT0cGTJ2U2XWghm2kKmaIoVA3WEqYLnVe2ydbETWhUGj7sOcXpvvO813GE\nREM8nyp4YNEmHPWax7GOO8lLi5SpSmJZiwyKQKfW+V0U6hzp5nx/BRnhaZTErg3w7oQQy8Gc7WMe\nj4dvf/vb1NXVodfr+Yd/+AcyMjKuuO7v/u7viIiI4Otf/zovvPACL774IgB2u52amho+/PBDwsP9\nn/AghBBCCCGWD/NHTgrFGWJIN6ZQa2lg1DlGmC70sus7R3sYdoywNXHjFacNfBGmD6U0roizpnJ+\nXf0cQRo9j5U8SrB28SaAXRxFL61jYnlTq9TEG2IxjffjUTw+f++dMU0Wefdm7JYCqBAr1Jw/Fd59\n910cDgfPPfccf/VXf8U//dM/XXHNs88+S319/fT/379/P08//TRPP/00RUVFPPHEE1IQEkIIIYRY\nQcwTFgBiQqKmv7YxvhSP4qGsv/KK6/0dRX81O5MmA6fdiptPFz5IYmj8vNf0hYRMi2tJgiEOh8fJ\nsN3q871Vg7Vo1dorpv0JIVaOOYtCZ86cYdeuyf7s9evXU1l5+X/kz549S1lZGQ8++OAV91ZUVNDY\n2HjVx4QQQgghxLVrqig0dVIImA6hPdtXfsX1VYO1qFAF5MNlfnQOmxPWc2/2nWyIL5n3er6q7xgi\nLERHUszVA7WFWE6mcoV6x0w+3TdkH6ZrtIfcyDUEaWSamBAr1ZztY6Ojo4SFXRwZqtFocLlcaLVa\nTCYTP/7xj/nRj37EG2+8ccW9Tz75JF/5yle83kxcnNHra4Xwhby3xEKQ95VYKPLeEgslkO8tq8uK\nTqNjTXLSdFtJHEZy6zKpszSiNypEBE+eFB+1j9FibSMvdg2ZyQkBef5vxn8pIOv4qs88zqDVzo6S\nJOLj5ST8FPm5tXyVOgt4o/UArbYWbojb5PV95U2TrWPbMkqX9N+vvLfEQpH31qQ5i0JhYWGMjY1N\n/3+Px4NWO3nbm2++icVi4fHHH6e/v5+JiQnWrFnD/v37sVqttLS0sH37dq83098/4sdLEGJ2cXFG\neW+JgJP3lVgo8t4SCyXQ7y3T6CBRQREMDIxe9vV10cU0mFt5t+Y4N6TuAOB033kURSEvPPeaf38f\nq+gBIDM+7Jp/LYEiP7eWt0RNCsGaYI62n+X2lL1eZwOdaJssCmUEZS7Zv195b4mFstreW7MVwOZs\nH9u4cSOHDh0C4Pz58+TlXTzy++ijj/LCCy/w9NNP8/jjj7Nv3z72798PwKlTp9ixY8d89y6EEEII\nIZYZu9vBqHOM6KCoKx7bMNVCZro4hSyQeUJLTfKExLVGp9ZSEluIecJC+0inV/e4PC5qzQ3EhcQQ\nf6H9TAixMs1ZFLr11lvR6/U89NBDfP/73+db3/oWr7zyCs8999ys97W0tJCa6v+4USGEEEIIsTxd\nLWR6SlRwJGsiMmkcamHYbsWjeKgerCNCbyQ1LGmxtxpwde1DhARpSIsPm/tiIZaJ9Reyt85fJQT+\napqHW5lw21dEIVcIMbs528fUajXf/e53L/tadnb2FddNnRCa8sUvfnGeWxNCCCGEEMvR1UKmL7Up\nvpTm4VbOmSrIikhn1DnGjqQt1/xIa9OQDdOQjQ25sajV1/ZrEavL2ug89God500VfGzN7XN+L1au\noNN9QojZzXlSSAghhBBCiEvNVRTaEF+CChVnTGUr6sNlVfMgAMVrYpZ4J0L4Rq/RUxRTgMk2QPdY\n75zXVw3WoVPryI1cswi7E0IsJSkKCSGEEEIIn5gnJnN1ZioKRQSFkxOZRfNwKyd7zqBWqSmIzlnM\nLS6IyhYzAMVZ0Uu8EyF8N91CZqqY9bpBm5nesT7yo3LQaXSLsTUhxBKSopAQQgghhPDJxZNCM4ct\nb4wvBWBgwkx2RCYh2pBF2dtCcbk91LRZSIgKIS7y2n4tYnUqjilAq9Zyrn/2olDVYB2wMk73CSHm\nJkUhIYQQQgjhk0GbBbVKTYQ+fMZrplrIYGV8uGzqGmbC4aY4S1rHxLUpWBtMYXQePWN99I2ZZrzu\n4rTA/MXamhBiCUlRSAghhBBC+MQ8YSEqKAKNWjPjNUZ9GPlRky1jK6EoNNU6ViStY+IatiFusoXs\n3AxTyJxuJ3WWRhJDE4gJkfe6EKuBFIWEEEIIIYTXXB4XVsfIjHlCl/pkwf08XvIZksMSF2FnC6uy\nxYxGraIgY+aWOSGWu5LYQtQqNednaCFrGGrG6XHKKSEhVhEpCgkhhBBCCK9ZJoZRULwqCsWERFMa\nV7QIu1pY1nEH7b0j5KZGEKzXLvV2hPCbQWegICqXjpEuBmzmKx6fah0rXgGn+4QQ3pGikBBCCCGE\n8Jo3IdMrTXWLGQVpHRMrw/r4YoCrnhaqGqwlWBPEmojMRd6VEGKpSFFICCGEEEJ47WJRaO6TQgvF\n6XLz4qFmDpV141GUBX++i6PoJWRaXPvWxRahQnXFaHrTeD/9tkHyo3PRquVEnBCrhXy3CyGEEEII\nrw0ucVFocHiCH71YQVvvCABHK3v57B0FJEYbFuT5FEWhqsVMuEFHWkLYgjyHEIvJqA8jN3IN9UNN\nWCaGiLpw6u/iKHrJExJiNZGTQkIIIYQQwmtLeVKops3Cd355irbeEXYWJ7IhN5b6jiH+/ucnee1Y\nKy63J+DP2WEaZXjMQVFWNGqVKuDrC7EU1sdPTiEr66+a/trFUfSSJyTEaiJFISGEEEII4bWpolDU\nImYKKYrCWyfb+Zdnz2Ozu/j03jy+cFchX91fwp/eW4whWMsfPmjmH359evoEUaBUSeuYWIFK4y60\nkF3IFbK7HTRYmkgJSyIyKGKJdyeEWEzSPiaEEEIIIbxmnhgiQm9Et0iZI3aHm6feqOFkjYmIUD1/\nel8xuakXC1KbC+IpyIji+YONHKno4Xu/Os1t29K457os9DrNvJ9/Kk9IQqbFShIZFEFWRAaNQy1Y\nHSO0WTtwKW45JSTEKiRFISGEEEII4RWP4sFiHyLDmLooz2eyjPOjFyrp7B8lJyWCL99bTJQx6Irr\nwkJ0fP6uQratTeBXb9byxvF2ztb189X9JaTE+Z8DZHe4aegcIj0hjPBQ/XxeihDLzoa4YpqHWynr\nr6JztBuQ1jEhViNpHxNCCCGEEF4ZtlvxKJ5FyRNq6hrme786TWf/KLs3pPDNT264akHoUkVZ0Xzv\nC9u4dXMafRYb3//NWeraLX7vobbdgsutSOuYWJFK4yZzhc6bKqgaqCVEG0JWePoS70oIsdikKCSE\nEEIIIbyymJPHnj3YwNiEi8/dUcCnb8tHq/Hur61Beg0P35LLF/cVYne6+ZfnznOq1uTXHi6OopfW\nMbHyxIREkWFMo9bSgMU+xNroPDTq+bdcCiGuLVIUEkIIIYQQXlmsyWMtPVaauqysy45hV2myX2vs\nLE7iLx4oRaNR85OXKnnndIfPa1S2mAnSa8hJleBdsTKtjy+e/mdpHRNidZKikBBCCCGE8Ip5YgiA\n6AWePDZVwLll8/yyi4qyovmbT24kPFTPM+828Px7jXgUxat7B4Zs9JnHKUyP8vqUkhDXmvUXWsgA\n1sbkL+FOhBBLRf4LJ4QQQgghvLIYJ4WGRu2cqjGRFGOgKHP+bVsZiUb+x6c3kRht4M0T7fz/r1Tj\ndHnmvE+mjonVIN4Qy7rYIjbFl2LU+x/KLoS4dsn0MSGEEEII4ZXFKAq9d7YLt0fhls1pqFSqgKwZ\nGxnC3356E//x+3JOVPdhHXPwlftKMATP/Ffh6TyhNVIUEivbl9Z9Zqm3IIRYQnJSSAghhBBCeMU8\nYSFUZyBYO/sUMH85XW7eP9+FIUjLzqLEgK4dFqLj6w+tZ0NuLDVtFr73q1M0dg1f9VqX20NNm5m4\nyGASogwB3YcQQgixnEhRSAghhBBCzElRFMwTQwt6SuhkjYmRcSc3rE8mSB/4KUh6nYav3FfC7dvS\nMVlsfP83Z3j+YCMOp/uy65q7rdjsbhlFL4QQYsWTopAQQgghhJjTqHMMp8e5YEUhRVF453QHKhXs\n2ZiyIM8BoFar+MTuHP76UxuJiwjhzZPtfOeXp2jqvnhqSEbRCyGEWC2kKCSEEEIIIeZ0MU9oYSaP\nNXQO0943ysa8OGIjQhbkOS6VlxbJdz6/lVs2pdIzOM4/Pn2G373fiNPlpqplEI1aRUHGwp2KEkII\nIZYDCZoWQgghhBBzGlzgkOmpMfS3bk5bkPWvJkiv4ZO35rEpP45fvF7DG8fbOd8wQO/gOLlpkYQE\nyV+VhRBCrGxyUkgIIYQQQsxp6qRQzAIUhQaGbZyt7yc9IYzc1IiArz+X/PQovvP5rezZmELP4DgK\n0jomhBBidZBffwghhBBCiDkt5Dj6g2e7UJTJU0KBGkPvq2C9lkf25rMpP54T1b3csD55SfYhhBBC\nLCYpCgkhhBBCiDktVFHI7nBz6Hw34QYdWwsTArq2PwozoiiULCEhhBCrhLSPCSGEEEKIOZknhgjS\n6DFoAxsCfbSql3G7i5s2pKDTyl9NhRBCiMUk/+UVQgghhBBzMk9YiA6OCmh7l6IovHu6A41axe4N\nCzeGXgghhBBXJ0UhIYQQQggxK5vLhs01EfDWsapWMz2D42wtjCciLCigawshhBBiblIUEkIIIYQQ\nszJPDAGBnzz27ulOAG5ZxDH0QgghhLhIikJCCCGEEGJWgzYzENiQ6aFRO+VNg2SnhJOVFB6wdYUQ\nQgjhPSkKCSGEEEKIWU2dFIoOjgzYmo2dwwBsyI0L2JpCCCGE8I0UhYQQQgghxKwWYhx9Y9dkUSgn\nJSJgawohhBDCN1IUEkIIIYQQs1qoopBGrSIz0RiwNYUQQgjhGykKCSGEEEKIWZknhtCqtRj1YQFZ\nz+F009Y7QnqCEb1OE5A1hRBCCOE7KQoJIYQQQohZDU6YiQ6KRK0KzF8dW3tHcHsUaR0TQgghlpgU\nhYQQQgghxIwcbgejzrGAto41TeUJpUpRSAghhFhKUhQSQgghhBAzWpDJYxeKQtnJMopeCCGEWEpS\nFBJCCCGEEDMKdMi0oig0dg0THR5EdHhwQNYUQgghhH+kKCSEEEIIIWYU6KJQ/5CNkXGn5AkJIf4f\ne3ceXedZ2Pv+9+55b01bs2TZli1Z8jw7cwIkEAIhARKSJgGOy9DS0pZz7j3lwO26hzaHwwn09NLb\nsw4UuG0phYYECklIIHEhA5A4ieN5tmVNtjWPW9Kep/f+ocExnvd+JW1J389aWpre/bzPtvey5Z+f\n5/cAyAGEQgAAALikc9vHrAmFpraOEQoBADDrCIUAAABwSYPRIUlWhkKjksRKIQAAcgDQPA3MAAAg\nAElEQVShEAAAAC5pIDIku2GX321NKXRzx4hcDpuWVORbMh4AAMgcoRAAAAAuyjRNdYd6VOkrl91m\nz3q8SCypzv6gllcXymHnx1AAAGYbfxsDAADgooaiAcVScVXnVVoyXmvXqExJKxazdQwAgFxAKAQA\nAICL6g71SJKq86osGY+SaQAAcguhEAAAAC6qO9QrSarOt2al0FQotMiafiIAAJAdQiEAAABc1GQo\ntMiC7WNp01Rr14gqS3wq8LmyHg8AAGSPUAgAAAAX1RXqkdPmUJm3NPuxBkKKxFJaUcMqIQAAcgWh\nEAAAAC6QNtPqCfWp0lchm5H9j4yTW8dW0CcEAEDOIBQCAADABQYjw0qkE5aVTLd0EAoBAJBrCIUA\nAABwga6Jk8es6BOSxlcKed0OVZflWTIeAADIHqEQAAAALmDlyWOj4bh6hyOqrymUzTCyHg8AAFiD\nUAgAAAAX6J5YKWTF9rEW+oQAAMhJhEIAAAC4QHeoVy6bUyUef9ZjTZZM1xMKAQCQUwiFAAAAcJ5U\nOqXeUJ+q86osOXmspXNUhiHVVXMcPQAAuYRQCAAAAOfpjwwqaaZUbUHJdDKVVlv3qBaX58vrdlgw\nOwAAYBVCIQAAAJzHypLps31BJZJp+oQAAMhBhEIAAAA4T5eFJdPNHZRMAwCQqwiFAAAAcJ7JlUKL\nLNg+NlUyvZhQCACAXEMoBAAAgPN0h3rlsXvkd2cf5DR3jqgwz6XyIo8FMwMAAFYiFAIAAMCUZDqp\nvnC/qvMqZRhGVmMNjUY1PBbTipqirMcCAADWIxQCAADAlL7wgNJmWossKJme2jpWw1H0AADkIkIh\nAAAATLG0ZLqTkmkAAHIZoRAAAACmTB1Hb0HJdEdfUJK0tLIg67EAAID1CIUAAAAw5VwolP1KoZ6h\nsEoLPXI77VmPBQAArEcoBAAAgCndwR7lOXwqdOVnNU4kllQgGFdVqc+imQEAAKsRCgEAAECSFE8l\n1B8ZVJUFJ4/1DIUlSdUlhEIAAOQqQiEAAABIknrDfTJlalG+NVvHJLFSCACAHEYoBAAAAEnWlkx3\nD7JSCACAXEcoBAAAAEnnQqFFFoRC51YK5WU9FgAAmB6EQgAAAJAkdQV7JFl08thgSG6XXf58V9Zj\nAQCA6UEoBAAAAEnjK4UKnPnKd2W3uiedNtU7HFFViS/rwmoAADB9CIUAAACgaDKmweiQqi0omR4c\njSqRTNMnBABAjiMUAgAAgHrDfZKsKZnm5DEAAOYGx5UuSKfTevTRR3Xy5Em5XC595StfUW1t7QXX\nfelLX1JRUZE+//nPS5K+853v6OWXX1YikdAjjzyiBx980PrZAwAAwBJdFpZMT548VsVKIQAActoV\nVwq9+OKLisfj+tGPfqQ///M/19e+9rULrnnyySfV1NQ09fmuXbu0f/9+PfHEE/rBD36gnp4ea2cN\nAAAAS3VbWTI9sVKompPHAADIaVdcKbR3717ddtttkqRNmzbpyJEj531/3759OnjwoB566CG1trZK\nkl577TU1NjbqT//0TxUMBvWFL3xhGqYOAAAAq0weR2/J9rHBkAxJlcXerMcCAADT54qhUDAYVH5+\n/tTndrtdyWRSDodDfX19+uY3v6lvfOMbeuGFF6auGR4eVldXl7797W+ro6NDn/3sZ7Vjxw5OnwAA\nAMhRXaEe+d1F8jmzD3K6h8IqLfLI5bRbMDMAADBdrhgK5efnKxQKTX2eTqflcIw/bMeOHRoeHtZn\nPvMZ9ff3KxqNqq6uTn6/X3V1dXK5XKqrq5Pb7dbQ0JBKS0sve6/y8oIsnw5wcby2MB14XWG68NrC\ndLnUayscjygQG9HGqtVZv/7C0YRGgnFtWVnBa3kB4fca04XXFqYLr61xVwyFtmzZoldeeUV33323\nDhw4oMbGxqnvbd++Xdu3b5ckPfXUU2ptbdX999+vV155Rd///vf1yU9+Un19fYpEIvL7/VecTH//\nWBZPBbi48vICXluwHK8rTBdeW5gul3tttY6cliSVOsuyfv21dY9KkkoKXLyWFwj+3MJ04bWF6bLQ\nXluXC8CuGArdeeed2rlzpx5++GGZpqnHHntMzz33nMLhsB566KGLPub222/X7t279cADD8g0Tf3l\nX/6l7HaWDwMAAOQiK0umuwfHV5hXc/IYAAA574qhkM1m05e//OXzvlZfX3/Bdffff/95n1MuDQAA\nMDdYWjI9cfJYFSePAQCQ8654JD0AAADmt67Q5EqhiqzH6h6cCIVYKQQAQM4jFAIAAFjgukO9KvEU\ny+PwZD1Wz1BYHpdd/nyXBTMDAADTiVAIAABgAQsmQhqNj1mydSydNtU7FFFViU+GYVgwOwAAMJ0I\nhQAAABawnlCfJGv6hAZGo0qm0qouZesYAABzAaEQAADAAjYUHZYklXlLsh6rZ+LkMfqEAACYGwiF\nAAAAFrBAbESS5HcXZT1Wz0TJdDUnjwEAMCcQCgEAACxg50Ihf9ZjdQ9x8hgAAHMJoRAAAMACFoiN\nSpL87sKsx+oZDMuQVFnizXosAAAw/QiFAAAAFrBAdEQOw658Z/ZbvrqHwiot8sjpsFswMwAAMN0I\nhQAAABawQCwgv7so6yPkw9GERkNx+oQAAJhDCIUAAADmgK5gj7pDvZaOmUqnNBoPyu/JvmSaPiEA\nAOYeQiEAAIAcl0qn9L/2f0ffPPBPMk3TsnFH42MyZVp88hihEAAAcwWhEAAAQI5rCrQomAhpOBZQ\nX2TAsnGHrTyOnpVCAADMOYRCAAAAOe5A3+Gpj08Nt1g2bsDKUIiVQgAAzDmEQgAAADksbaZ1sP+o\nnDanJKlpGkKhYgtCoe6hsLxuuwrzXFmPBQAAZgahEAAAQA5rCbRpLBHU9VVbVOgq0KlAq2W9QoHo\neChUlGUolEqn1TccVlVJXtanmAEAgJlDKAQAAJDD9vcfkSRtrlivBn+dRuNj6gv3WzL21EqhLE8f\nGxiJKpky6RMCAGCOIRQCAADIUeNbx47I5/Cq0V+vhuJ6SePF01YYjo3IZthU6CrIahz6hAAAmJsI\nhQAAAHLU6dGzCsRGtKFsrew2uxonQqFTw62WjD8SG1Ghq0A2I7sfCbsHOXkMAIC5iFAIAAAgR+3v\nHz91bFPFOklShbdMRa4CNQVasu4VSptpBWKjlh5Hz0ohAADmFkIhAACAHGSapg70HZbH7taqkkZJ\nkmEYaiiu11g8qN5wX1bjBxMhpcyURcfRh2QYUkUxoRAAAHMJoRAAAEAOOhvs1GB0WOvKVstpc0x9\nvdE/0SuU5RayyZPHrDiOvmcorPIir5wOfrQEAGAu4W9uAACAHHSgb+LUsfL15329obhOUvZl05Mn\njxW5C7MaJxRNaDScUBVbxwAAmHMIhQAAAHKMaZo60H9YLptTa0pXnve9cm+Z/O4inRrOrldo6jj6\nLFcK9VAyDQDAnEUoBAAAkGO6Q73qDfdrTekqueyu875nGIYa/HUKJkLqDvVmfI/hiVDI7/FnN9fJ\nUIiVQgAAzDmEQgAAADlm8tSxzeXrLvr9yS1kpwKZ9wpNrhTKtmh66uQxVgoBADDnEAoBAADkmAN9\nh+WwObS2bPVFv9/oXyFJahrOvFcoEBuVlH2nUPdgSJJUVZqX1TgAAGDmEQoBAADkkL5wv7pCPVpd\n0iCvw3PRa8q8JfK7i9QcaFXaTGd0n0AsoHxn3nknm2WiZygsn9uhQp8zq3EAAMDMIxQCAADIIZOn\njm36nVPH3s4wDDUW1yuYCKkn1HfN9zBNU4HoSNYl06l0Wn3DEVWV+mQYRlZjAQCAmUcoBAAAkEP2\n9x+WzbBpQ9may17X4K+XlNkWskgyong6Ib8nu1CobziiVNrk5DEAAOYoQiEAAIAcMRgZ0pmxDq0s\nXiGf8/JBS+NU2fS1h0Ln+oSyC4WOtg1JklbUZDcOAACYHYRCAAAAOeJA/+TWsYufOvZ2pZ4SFbv9\nOjV87b1Ck8fRZ7t97EDzgCRp44qyrMYBAACzg1AIAAAgRxzoPyxDhjZeRSg02SsUSobVHeq9pvsE\nYgFJ2R1HH44mdfJMQLVVBSoucGc8DgAAmD2EQgAAADkgEBtR68hprfAvV4Er/6oe01CcWa/Q5Pax\nbEKhI22DSqVNbWaVEAAAcxahEAAAQA44PHBMkrSp4tKnjv2uRv9Er9C1hkLR8e1j2YRCbB0DAGDu\nIxQCAADIAaeGWyVJa0oar/oxpd4SlXiKdSpwbb1CgdhkKFR4bZOckEqndbhlUMUFbi2tvLpVTQAA\nIPcQCgEAAMwy0zR1KtCqQleByr3XtvKm0V+vcDKizmDPVT8mEBuR1+GRx+G51qlKkpo7RhSKJrVp\nRZkMw8hoDAAAMPsIhQAAAGZZf2RAo/ExNfjrrjlkabiKo+kTybQiseTU54HYSFbH0U9uHdvUwNYx\nAADmMkIhAACAWdYcaJMkrfAvv+bHNvgvXza992Sf/su3Xtd/+vqvlUylFUvFFU5GsjqO/sCpAbmd\ndq1a6s94DAAAMPscsz0BAACAhe5UYLxPaMVEcfS1KPUWq9RTouZAm9JmWjZj/P/8RkJxPf6rJu05\n0SdJGg3FdbhlUIsWjz8u05Lp7sGQeocj2tpYLqfDntEYAAAgN7BSCAAAYJY1B9qU5/SpKq8io8c3\nFNcpkoyoM9gt0zT1xtEe/dd/eFN7TvRpRU2R/vhDayVJrx7qzvrkMbaOAQAwf7BSCAAAYBYNRoY1\nFB3WxrK1U6t8rlWjv15vdu/RwZ4mPXVgQAdbBuVy2vTIexr07i2LZbMZ+uWeDh1qGdSGbRFJmZ88\nduDUgAxJ6+tLM3o8AADIHawUAgAAmEXNk1vHiq9969ik+qJlkqQXDu/XwZZBra4t1pc/fYPu3LZE\nNtt4cfV7rluqtGnq8NlOSZmtFBoLx9XcOaL6xUUq9Lkyni8AAMgNhEIAAACzKJuS6UlnOlIy426Z\neUPaflejPv/wJlX4vedd884ti+WwG2obGO8YKvZce0n0oZZBmaa0aQVbxwAAmA8IhQAAAGZRc6BV\nHrtHi/MXZTzGoZZBpcaKZTjjWr3SfdFj7QvzXNrcUK5wOigps5VCByf7hAiFAACYFwiFAAAAZslI\nbFR9kQHV+5dl3CckScfah+WIjAc1LRMrjy7m1g3VMlxRGaZdPof3ktddTCKZ1uG2IVX4vaou9WU8\nVwAAkDsIhQAAAGbJVJ9QFlvH+gIRDYxEtaywVpLUEmi/5LVrl5XI5o7JjLsVT6av6T4nzw4rFk9p\nU0PZRVciAQCAuYdQCAAAYJZM9gk1+DMvmT7ePiRJ2rx4ubwOj5pHLr1SKK2U5IgpFfNo38n+a7rP\ngVPjW8c2snUMAIB5g1AIAABgljQH2uSyObWkoCbjMY6fHpYkrV1eqrqiZRqIDGokNnrRaye/bsY9\neu1w91XfwzRNHWgekM/tUMPia+8iAgAAuYlQCAAAYBYE4yF1hXq0vKhWDpsjozHSpqnjp4flz3ep\nqsQ3dTR9y0j7Ra8PTIRCxZ4iHT89rP5A5Kruc7YvqKHRmDbUl8ph58dHAADmC/5WBwAAmAUtI9lv\nHevsD2ksnNDq2hIZhqH6iW6iS5VNB2IBSVJjVZUkaedVrhY60MzWMQAA5iNCIQAAgFlwyoKS6ck+\noTXLiiVJtQWL5TDslwyFhmMjkqQNS2rkdtm183CP0qZ5xfscbB6Q3WZofV1JxnMFAAC5h1AIAABg\nFjQH2uQw7KotXJrxGMcm+oRW146HQk67U7WFS9QR7FYkGb3g+sBEKFSeV6zrV1VocDSqExNjXMrw\nWExt3WNqXOKXz+PMeK4AACD3EAoBAADMsEgyoo6xLtUWLpXLnlnQkkyldfJsQJUlPpUUeqa+Xu9f\nLlOm2kZOX/CYyU4hv7tIt26oliS9dujyW8gOtYxvHdvE1jEAAOYdQiEAAIAZ1hJolylTDVlsHWvr\nHlUsnpraOjbpcmXTgeiIbIZNBa58ragpUmWJT3ub+hWOJi64Np5I6Ve7z+rp345vc9vYQCgEAMB8\nQygEAAAww5onOn9WZFEyfbx9fNvXmtrzQ6G6omUyZFy0VygQG1GRq1A2wybDMHTbhmolkmntOt43\ndU08kdIvd5/VF7/9hp546ZRiybQevL1eFX5vxnMFAAC5KbPzTwEAAJCx5kCrbIZNy4tqMx7j2Olh\nGZJWLj0/FPI5vVqUX6X20TNKppNTx92n02mNxEdVW7Bk6tqb1lbpp79p0WuHunTzuir9Zn+nXth1\nRiOhuNwuuz5wU63ee90SFfhcGc8TAADkLkIhAACAGRRLxXV6rENLCmrkcbgzGyOeUkvniJZWFSjf\ne2EnUX3RMnUGu3V2rHMqeBqJjSltpuX3FE1dV1zg1vq6Uh1qGdQXvvW6xsKJqTDoruuXXnRsAAAw\nf7B9DAAAYAa1jZxW2kyrIYutY6c6AkqlzQu2jk2qn+gqan7bFrLB8Ph2s2J30XnXvnPjIklSIpnW\nPTfX6m8+e7M+8s56AiEAABYAVgoBAADMoObAeHHziixKpqeOol92iVDobWXTd058bSgSkDR+8tjb\nbWoo0xc/ulk15fkEQQAALDCEQgAAADOoOdAmQ4bqi7IIhdqH5LAbaljsv+j3iz1+lXqK1RpoV9pM\ny2bY3hYKFZ53rWEYF/QSAQCAhYHtYwAAADMkkUqobfSMavKr5XNmdppXMJLQ2d6gVtQUye20X/K6\nuqLlCiXD6g33Szq3fczvvniQBAAAFh5CIQAAgBlyeqxDyXQyq61jJ04Py5S0+hJ9QpNW+JdJOtcr\nNHiJ7WMAAGDhIhQCAACYIef6hDIvmT7XJ1Ry2esmy6ZbAu2SpKHwsAwZKnIXZHxvAAAwvxAKAQAA\nzJBTw9mXTB9vH5LHZdfy6suHO1W+CuU5fWoZGV8pNBQJKN+VJ4eNSkkAADCOUAgAAGAGJNNJtY6e\nVpWvQgWu/IzGGBqNqnc4olVLi2W3Xf7HOMMwVFe0TEPRYQ1HAxqMBC44jh4AACxshEIAAAAzoHWk\nXfFUXCtLGjIe41j7xNaxK/QJTZpckXRw4KgSqQQl0wAA4DyEQgAAADPg2GCTJGlNSWPGYxw/PSRJ\nWr3s6kKh+qJlkqS9vQclXXgcPQAAWNgIhQAAAGbA8aEmOQy7GorrM3q8aZo61j6swjyXasryruox\nSwpq5LQ51TrSLomTxwAAwPkIhQAAAKbZSGxMHcEu1fuXy213ZTRG12BYI6G4VtcWyzCMq3qMw+bQ\nssIlU58TCgEAgLcjFAIAAJhmJ4bGt46tzmbrWPvE1rGr7BOa9PaTzoo9hEIAAOAcQiEAAIBpdmzo\npCRpTenKjMc4fnq8ZHrNVfYJTaovOhcKFbFSCAAAvA2hEADMsHA0oUQyNdvTADBD0mZaJ4ZOqchV\nqEV5VRmOYarpbEDlfo/KirzX9NjlRUtlaHy7GdvHAADA2zlmewIAsFB0D4b01G9atbepX5LkddtV\n4HWpIM+pQp9LBT6XCnxONSwu0ob6slmeLQCrdIx1KZgI6caqbVfdBfS7egbDCkWTGf3Z4HF41FBc\nr7HEaMZ9RgAAYH4iFAKAaTY0GtWzO9v06qFumaZUW1mgPK9Do6GExiJxDXRFlTbN8x5zx5YaPfzu\nBjnsLOgE5rrJrWOrSzPvE2rpGpEk1ddkdqT8Z9ZvV0mpT5GRdMZzAAAA8w+hEABMk2AkoeffPK2X\n9nYokUyrutSnj7yzXpsbys5bLZA2TYWjSY2F4xoajenJl0/p5X2dOtMb1Gc/vE7FBe5ZfBYAsnVs\nsEmGDK0qach4jJbOUUlS/aLMtn95HR7lu/IU0VjGcwAAAPMPoRAAWCyWSOnFPWf1wptnFI4lVVzg\n1odvW65b1lXLZrtw64jNMJTvdSrf61R1aZ7+63/Ypu/tOKFdx3r13763W5/90FqtXHptxbIAckMk\nGVXb6GktLVysfGdexuO0dI3I7bRrcUXmYwAAAPwuQiEAsFDvcFh/9+OD6h2OKM/j0O/dvkJ3bKmR\ny2m/6jHcLrs+c+8a1VUX6kcvN+tvnjigh+5YofdsW5xxHwmA2dE03Ky0mdaaLI6iD0eT6uoPaeVS\nv+w2tpQCAADrXDEUSqfTevTRR3Xy5Em5XC595StfUW1t7QXXfelLX1JRUZE+//nPS5Luu+8+5efn\nS5IWL16sr371qxZPHQByS0vXiP7Xvx1SMJLQe7Yt1odvXS6fx5nRWIZh6M7rlmhpZb6+9bOjeuKl\nU2rrHtXvv2+V3K6rD5gAzK5jg9kfRd/WPSpTUl2GW8cAAAAu5Yqh0Isvvqh4PK4f/ehHOnDggL72\nta/pW9/61nnXPPnkk2pqatJ1110nSYrFYjJNUz/4wQ+mZ9YAkGP2n+rXd352VIlUWtvvWql3ba6x\nZNyVS4v1V5+4Tn//zGG9eaxXHf1B/eG9a7WkIt+S8QFMH9M0dXyoSV6HR7UFSzIeJ9uSaQAAgEu5\n4hrkvXv36rbbbpMkbdq0SUeOHDnv+/v27dPBgwf10EMPTX3txIkTikQi+tSnPqXt27frwIEDFk8b\nAHLHK/s79Y2nDkuG9LmPbLAsEJpUXODWFz+6RXdsqVFHf0iP/vNb+pcdJzQSilt6HwDW6osMaDA6\nrJXFDbLbMl/hl23JNAAAwKVccaVQMBic2gYmSXa7XclkUg6HQ319ffrmN7+pb3zjG3rhhRemrvF4\nPPr0pz+tBx98UO3t7frDP/xD7dixQw4HFUYA5rZ4KqHXOt/QkYPH5DI8Gh60qbU9KV9FgT7+zk1a\ntXR6VvA47DZ9/L0rtXFFmZ586ZR+c6BLu4716p6bl+nObYvldLClDMg1xwebJCmrPqG0aaq1a0QV\nfq8K81xWTQ0AAEDSVYRC+fn5CoVCU5+n0+mpcGfHjh0aHh7WZz7zGfX39ysajaqurk733HOPamtr\nZRiGli9fLr/fr/7+flVXV1/2XuXlBVk+HeDieG0hW4lUQi+3vq6njr+g4cjIed9z1UppSd9v3y21\nSwWuPN227Ab9/qYHLC+GvqO8QO/ctlQ73jytx3ec0E9+3aJXD3XrE/es0S0bFlFEPU/wZ9b80Hy8\nRZJ0a8MWleVl9nt6tndMoWhS162psuR1wWsL04XXFqYLry1MF15b464YCm3ZskWvvPKK7r77bh04\ncECNjef+t2v79u3avn27JOmpp55Sa2ur7r//fv3whz9UU1OTHn30UfX29ioYDKq8vPyKk+nvH8vi\nqQAXV15ewGsLGUulU9rVs1fPt72o4VhALptTd9S8U2eOVupw64AW19h0161lCqdHNRgd1mBkSB3B\nLj3f9LKqnFXaWrlpWuZ1fWOZ1i29Qc/ubNdLezv019/fo4bFRXrkPQ1aVkXvyFzGn1nzQyKd1NHe\nk6ryVcgMO9Ufzuz3dM+RbklSTakv69cFry1MF15bmC68tjBdFtpr63IB2BVDoTvvvFM7d+7Uww8/\nLNM09dhjj+m5555TOBw+r0fo7R544AH9xV/8hR555BEZhqHHHnuMrWMA5pS0mdbunv16vv1FDUQG\n5bQ5dMeS23RL5a36h6eb1dY9qk0rFumPPrRW7t85br4vPKDH3vpb/bjpZ1pZ3KB8V960zNHncerh\ndzfo9s01+vErzdp/akCP/WCf/uLjW7S8mmAImE0tgTbF0wmtLs1865h0rmR6RQ19QgAAwHpXTGps\nNpu+/OUvn/e1+vr6C667//77pz52uVz6+te/bsH0AGDm9Yb69E9HH1dnsFt2w6531Nysu5bdLlvS\nq//nyQPq6A/q3dct0SO3r5DNduF2rQpfme6pu0tPN/9CPzn1rD6x9pFpnW9liU+f+8gG7T3Zr79/\n+rC++fRh/eUnrlOhj/4RYLYcH5rsE8r8KHpJaukckcth0+KK6QmXAQDAwnbF08cAYCHZ13dI/3PP\n/1ZnsFs3VG3VX934BT208sMy4x597fF96ugP6vYtNfqPv7f5ooHQpNsX36ragiXa3btfRwaOz8jc\nt64s133vqNPQaEzf+dlRpdLpGbkvgAsdGzwpp82hFf66jMeIxJLq7A9pWXWh7DZ+ZAMAANbjJwwA\n0Hh30E9OPat/OvKvSsvUJ9d+VNvXPKRSb7EGAhF97fG96hkK633XL9XH72y8bCAkSXabXR9b/YBs\nhk1PnHxKkWR0Rp7H3TfVanNDmY6fHtZPf9M6I/cEcL5AbERdoR6t8NfJZXdmPE5r96hMSfU1bAcF\nAADTg1AIwIIXiI3o7/Z/W6+cfU1Vvgp9YdvntG2iILpnKKyvPr5P/YGoPnjLMj14e/1Vn/BVk1+t\nu2rvUCA2op+1vDCdT2GKzTD0B/esUWWJTzt2ndHuE30zcl8A5xwfOiVJWp3FUfSS1No50Se0iD4h\nAAAwPQiFACxoJ4ZO6atv/Z1aR05ra8VG/Zdtn1N1XqUkqaM/qK89vk/DYzE9+K56ffi2ums+8v2u\nZXeoOq9Sr3a+oVPDM7Nyx+t26M/uXy+3y67v/uK4OvuDM3JfAOOOD56UJK0pzbJPqGtUklRHyTQA\nAJgmhEIAFqS0mdaO9pf0jQP/qEgyqgcbP6RPrv2oPA63JOl0z5j+5w/3azQU18fubNT7b6zN6D5O\nm0MfW/WgDBn64YmfKJ5KWPk0LqmmLE+fvnu1YomUvvHUYYWjyRm5L7DQpc20Tgydkt9dpCpfRcbj\nmKapls4RlRV5VJRHaTwAAJgehEIAFqQXT/9Gz7X+u/zuIv2fW/5Y71p8iwzDkGmaeu1Qt772+D6F\nIgl98v2r9O6ti7O61/Kipbp9ya3qiwzo+bZfWfQMrmzbqgq9/4al6h2O6B9/fkxp05yxewML1Zmx\nDoWSYa0pabzmlYVv1zMUViia5Ch6AAAwrQiFACw48VRcL539rXwOr7543X/U8qLxVUDhaELfefao\nvvv8cdls0mc/vE63bVxkyT3vqbtLZZ4SvXjmNzo9etaSMa/G/e+s0+raYh1oHoEwM24AACAASURB\nVNAvXm+fsfsCC9WJoWZJ0uost461TmwdqycUAgAA04hQCMCC82b3XgUTIb2j5iYVuPIlSU1nA/qr\n776lt473aUVNkf7bJ6/XtlWZb/34XW67Sx9d9YBMmXr8xE+USqcsG/ty7Dab/uhDa1Va6NYzr7bp\naNvQjNwXWKgmQ9+6osy2nE5qmSiZ5uQxAAAwnQiFACwoaTOtl87+Vg6bQ+9ccotS6bSeebVVf/3D\nfRoai+mDtyzTFz+2WWV+r+X3XlmyQjdXX6/OYLd+efrXlo9/KYU+l/7kvvWSIT358im2kQHT6MxY\nh4pcBfK7s1vh09w5KpfDpsXl+RbNDAAA4EKEQgAWlAP9RzQQGdQNVVsVDzv014/v17M721VS4NYX\nP7pFH76tTnbb9P3ReN+KD6jIVagd7S+qO9Q7bff5XcurC3Xjmip19oe072T/jN0XWEhG42MKxEa0\npCC7HrJILKnOgaCWVRXIYedHNQAAMH0csz0BALBSNJ7UaCiu0VBCI6G4wrGEorGUIrGkwvGE9qV3\nSIZ05ki5/uqFtxSJpXTdqgr9/vtWyudxTvv8fE6vHl55n75z+F/0+PGf6D9v/axsxtX9o880TbWM\ntKu2YLGc9muf6723LNObx3r07M52bVlZLlsWJbgALnRmtEOStLSgJqtx2rpHZZr0CQEAgOlHKARg\nzkinTQ2ORtU7HFbfcES9QxENjEQ0Go5rNBTXSCiueCJ9ycfbCobkXj2g1FClmpqT8rkd+tTdq3XL\n+qqsTgm6VhvK12prxUbt7Tuo33S8rtuX3HpVj/t52y+1o/0lva/2Dt1b/75rvm9ViU83rKnUm0d7\ntb9pQFtXll/zGAAu7exYpyRpaWF2K4VaKJkGAAAzhFAIQE5Jp00NjUbVOxx5W/gTVu9wRP2BiFLp\nC/tw7DZDBT6nqkp8KsxzqcjnUmHe+Fuexymv2y6v26EX+n6i1qD0J7d8UCs/WCeX0zajYdDbPdj4\nIZ0YPqVnW17Q+rI1KvOWXPb617t2a0f7S5KkN3v26gN1773qFUZvd+/Ny7TraK+e29mmLY1ls/b8\ngfnozEQotCTLlUJTJdOLKJkGAADTi1AIwLQwTVOxREqhSFKhaELReErxZErxRFrxREqxxMTHyZTG\nwonx8Gc4rP5ARMnUhcFPnsehpZUFqizxqsLvVWWJT5XFPpX5Pcr3Oq+4Faor2KPW1mbVFy3ThuqG\n6XraV63Ala8HGj6ofzn2pJ448VP92aY/uGRAc3yoSU+c/KnyHD7VFi7RsaGTOjncrNUljdd83+rS\nPF2/plK7jvXqwKkBbW5ktRBgFStKpk3TVGvXqMqKPCrKd1s4OwAAgAsRCgG4JqZpKhRNqj8Q0cBI\nVAOBiPpHogqMxRSKJhSKJhWMJBSKJC66qudy8jwOLakoUGWxVxXF48FPRbFXlcU+5Xuz6/t56cxv\nJUnvWfrOrMax0nWVm7Wn94CODp7Qm917dNOi6y64pjPYrX88/K+yydBnNvy+JOnY0Ent6t6bUSgk\nja8WeutYr362s02bGlgtBFhhsmR6XenqrMbpHY4oGElo7fLLrx4EAACwAqEQgAtE48mJwCeq/pGI\nBgJRDYxE1D/xPhpPXfRxhiHleZzK8zhUXuRRnnf84zyPU26XXW6nXS6nXS6nTW7H+Mdup01ej8OS\n4OdSArER7e7dr0pfhdaVZfcPNisZhqFHVt6vr+z6un7a/HOtKV2pIve57SKB2Ii+dfCfFU1F9cm1\nH9UK/3KZpqkyb6kO9B9RJBmV1+G55vsuKsvTdasr9NbxPh1sHtSmhjIrnxawIFlVMs3WMQAAMJMI\nhYB5YnIFTyiSUDiWVDSWVCQ+fupWZOLjaDypZNJUMp1WMplWMmUqlR5/n0ylNRZOaGAkorFw4qL3\ncLvsKi/yqKzIqzK/R+Vve19c6JbX7cjJE61eOfuaUmZK71n6jox6eKZTscevD6+4W0+efFo/bnpG\nf7h+uyQpmozp24e+p+FYQB+qe7+2VW6SNB4k3Vi1VT9v+6X29x3WzRdZXXQ17r15mXYf79PPdrZp\n44pSVgsBWaJkGgAAzEWEQsAcEYunNDQW1dBoTEOjUQ2ORjU0FtPwxPuh0ZhiiYuv4LlaDruh0kKP\nllYWjIc/fq/Kijwqn3if73XOufAgkozotc5dKnQV6LqqLbM9nYu6ZdEN2tN7QAf6j2hf3yFtLFur\nfz76uM6OdeqWRdfrztp3nXf99VVb9PO2X2pXz56MQ6Ga8nxtW1Wh3Sf6dKhlUBtXsFoIyIaVJdNO\nh01LKvKtmBYAAMBlEQoB0yCdNieKlM8VKseSKcXjKcWSaSWSaZmmqbRpyjTHV/mk05r6WjCSmAp/\nxgOfqELR5CXvl+91qrLYq5JCjwp8TnndDvncDnncDnld4ydved0OuV12Oe02ORw2OeyGHLaJ9w6b\nHDabnE5bTq70ycZrnbsUTUV1V+3tctpy8488m2HTx1Y9oMfe+n/145PP6OjgCR0ZPKHVJY16qPG+\nC4K4Um+JGvx1OhVo1UBk6Ionl13Kvbcs0+4TfXp2Z5s21LNaCMiGFSXTkVhSHf1BragpksOeW6sa\nAQDA/JSb/0ICclQyldZoKK5AMK6RYEyBYGz849DE+2BcgWBMo+G4zGvrWL4kt8uukgK3llcXqqTQ\nrZICj4oL3Sop9Ki00KPiArfcTrs1N5tnkumkXjn7mtx2l26tuXG2p3NZFb5yfWD5e/VMy/N6s3uP\nFuVV6dPrPi677eK/tzdUb9OpQKt29ezVB5bfmdE9F5fna9vKcu052a/DrUPaUF+azVMAFiyrSqbb\nu0dlmmwdAwAAM4dQCPNG2jQVjiY1Fo5rLJwYfx9JyO1xamQkqkQqrVTqXH9OKmUqZZoyDMkmQ4Yx\n3tcy/n58zGAkMRH0jAc/l+rameRy2OTPd2tFTZF8bsdEkfJEsfLbSpZdDrts591v/L1t4n2ex6nS\nQo9KJnp6WMGRmd29BzQSH9UdS26Tz+md7elc0R1LbtORweMajgb0Jxs/ddkS6c3l6/Tjk09rV/de\nvX/ZuzPuSvrgLcu152S/nt3ZpvV1JbzWgAxYVTLd2j3RJ0TJNAAAmCE5Ewo98t1HZTMM2W2TbzbZ\n7OMfO2yG7HbbxLYXQw67TXabTfzbJXeZpqlUeuItZU4cTW5OfG/imrd/ovMDEpshSecCmtREkJNM\nTZYkn1+QPPm9aeGUbCWSs8KmkqmtVzY5HbaprVhOu23idWlIb3tdmpKiE29XdO6XSApNvHVb+1QW\nmjNjHbIZNt2x5LbZnspVsdvs+k+b/0imaV5yhdAkj8OjTRXr9VbPPrUE2tVQXJfRPRdX5GtrY7n2\nNvXraNuQ1tWxWgi4VlaVTLdOlEzXLWKlEAAAmBk5Ewql8nqVknTBOgxTUmriDZhkm3h72yt4ujdQ\nJSfepky+LuPTfGNk5R01N6vY45/taVw1m2E7L1i8nBuqtuqtnn3a1bM341BIGu8W2tvUr5/tbNPa\n5awWAq6VFSXTpmmqtWtUxQVuFRe4rZoaAADAZeVMKPT9j/ydBgaC4wW98aTC0aTC8fFjtYORpMYi\nCY0GYxqNJDQajGs0EtdoMK6xSFyplCmbzRh/MybeJlYcTa4+mvr87W+GoVTaVGKiDHiyGDieTM/2\nL8cl2QxDDruRk3OcLDf2uR3yehzKm3jv8zjkcTlktxnnVgPJOG/7lGlKqfTktq70+MfpySPTTeW5\nHcr3uVTgcyrf61CBz6UCr0t5Xqecjstvmykry9fAQHCGfhWQSwxJLrtrtqcxbRqL61Xs9mt/3yH9\nXuOHMn6uSysLtLmhTPtPDejY6WGtXZZZcTWwUFlRMj08FtNIKK4tjeUWzgwAAODyciYU8jjcctvj\nkl3yOt3y583eXNKmqXgipWg8pVAkoWAkoWAkqVB08uPxt2QqLZfDJqfdLqdjYhvRxFYip8M2/r23\nv9ltcjrGrzUMTW19muy6SSQnPk+mFUukFI4lFTnvLaVILKlEKi2P0y6Pyy63a/y9x+WQ+3e+5nY6\nJr438TWnXU6nXebEiVfptHneCVhp01Qimf6dk7ImTs5KpJRKmfK67fJ5nPJ5HMrzOMY/ngiCbLbc\nXF0w9doC5hmbYdP1VVv076df1oH+I7q+akvGY917yzLtPzWg53a2EwoB18CqkunJrWPLqwusmBYA\nAMBVyZlQKJfYDEMe1/jqFn8+S7gB5K4bJkKhXd17swqFllUVakN9qQ61DOrkmWGtXFps4SyB+cuq\nkum2bvqEAADAzMvsuBoAQE6ozKvQ8sJanRxu1nA0kNVY9968TJL03Ovt2U8MWCCsKplu6x6VIWlZ\nFSuFAADAzCEUAoA57obqrTJlanfP/qzGqa8p0pplxTrWPqyWzhGLZgfMb1aUTKfTptp6xlRdliev\nm0XcAABg5hAKAcAct7Vioxw2h97s2SvTNLMai9VCwLWxomS6azCkWDyluupCC2cGAABwZYRCADDH\n+ZxebShbo95wn06Pnc1qrJVLi9W4uEiHWgZ1umfMohkC89NkyfSSguy2jk2VTC8iFAIAADOLUAgA\n5oEbqrZKknZ17816rHtvWS6J1ULAlVheMs1KIQAAMMMIhQBgHlhd0qhCV4H29B5QIp3Maqw1y4pV\nt6hQ+5r61dEXtGiGwPxjWcl016icDptqyvOsmBYAAMBVIxQCgHnAbrPrusrNCicjOjJwPKuxDMPQ\nPRPdQj9/oz3ruQHzlRUl07FESh39IdVWFshh58cyAAAws/jpAwDmiRuqJ7aQ9ezJeqyN9aVaWpmv\n3cf71D0Yyno8YD6yomT6dM+Y0qap5WwdAwAAs4BQCADmiZr8ai3JX6Sjgyc1Gs+uJNowDN178zKZ\nkn7++mlrJgjMI1aVTE/1CVEyDQAAZgGhEADMIzdUb1PaTGtPz/6sx9rcWK6asjztOtar9v4BpdIp\nC2YIzA9WlUxz8hgAAJhNhEIAMI9sq9wkm2HTmz3Zn0JmMwx94OZape1Rff3Q3+pHTU9bMENgfrCs\nZLp7VPlep8qLPFZMCwAA4JoQCgHAPFLgyte60tXqDHarY6wr6/GuX1Wp4sUBpY2k3uzeq7H41Z1G\nFowktK+pXz98sUlf/t5ufftnR3SmN7stbUAusaJkejQU18BIVHWLCmUYhlVTAwAAuGqO2Z4AAMBa\nN1Rv1aGBo9rVs1eLCxZlNZbNZqh08Yg641LKTOm/P/e0ltk3q7LYqwq/V5UlPlUUe+V02NR0NqCT\nZwI6cXpYZ/uCMifHMAy194zpreN92lBfqg/cVKuGxf7snygwi6womW6d6BOiZBoAAMwWQiEAmGfW\nla5SntOn3T379eH6u2W32TMeK55KqD95Vm4zXzEzoqCvWXsOLpJ06VUNDrtNK5f6tWppsVYu9atu\nUaFOngno52+c1qGWQR1qGVTjEr/uualWa5eXsEICc85kyfS60tVZjdPWRSgEAABmF6EQAMwzDptD\n2yo36Tcdr+vY0EmtL1uT8VhNw82KpxN6T+3NCiXCeqN7t/7oYxXym4vVOxxR33BEfcNhRWJJ1dcU\nadXSYtXXFMrpOD+IWldXqnV1pWo6G9Dzb46HQ397NqDaygLde8sybWksz/ZpAzPGqpJpTh4DAACz\njVAIAOahG6q26jcdr2tX996sQqHDg8clSevL1shpc+iN7t3aP7xHf7xhvVYuLb7m8RqX+NW4xK/T\nPWN6/s3T2nOiT9946rA+95H12txAMIS5wYqSadM01dY9qgq/V/lep1VTAwAAuCYUTQPAPLS0YLGq\n8ip1eOCYQolwRmOYpqkjA8flc3i1vHCpaguXaGnBYh0ZOKGh6HBW86utKtBnP7xO//f2bTIk/fz1\ndpmmecXHAbnAipLpvuGIQtEkR9EDAIBZRSgEAPOQYRi6sWqrkmZKe3sPZjRGR7BLgdiI1paumuol\nuq3mJpkytbNzlyXzrFtUqC2N5WrrHtOx09kFTcBMsbJkuo4+IQAAMIsIhQBgnrquarMMGdrVszej\nxx8ZmNw6dq5Md1vlRnkdXu3sfkvJdNKSed59U60k6fk3TlsyHjCdxuJBBWIjWa0SkqTWyZJpVgoB\nAIBZRCgEAPOU312kVSUNah89o95Q3zU//vDAcdkMm1aXrJz6msvu0o1VWzUWD+pg/1FL5rm8ulBr\nlhXr+OnhqX8oA7mqK9gjSarJX5TVOG3do7LbDNVW5lsxLQAAgIwQCgHAPHZj9TZJ0pvXuFpoJDaq\n02NntaJouXxO73nfu63mRknSq51vWDNJSR+4aZkk6RdvtFs25kIUiSWVpptpWnWGuiVJi/KrMh4j\nmUrrTO+YFlfkX3BSHwAAwEzi9DEAmMc2lK2V1+HRWz37dG/dXbIZV/d/AUcGL9w6Nqkyr0KNxSvU\nNNysnlCvqvIqs57nqqV+1S0q1P5TA+rsD6qmnNUT1+rZnW165tU2GYaU73Uq3+tUgdepAp9L+b7x\nzzfUl6phsX+2pzqnnVspVJ3xGGf7gkqmTPqEAADArGOlEADMYy67U1sqNigQG9HJ4earftyRgROS\npHWXOM7+3GqhN7OfpMaLsT9w40S30JtnLBlzIenoC+q5ne0q8Dm1oqZI+V6nxsIJneoY0d6mfv3m\nQJd+8cZpffVf9+kHvzypaNyaPqiFqCvYI4dhV4W3LOMxJrdJ1tEnBAAAZhkrhQBgnruhapt2dr2l\nXd17tbqk8YrXJ1IJnRhqUqWvQhW+i//Dd2PZWhW5CrSrZ68+WP9+ue2urOe5saFMNWV52nWsV/fd\ntlxlfu+VHwSl06a+t+OEUmlTn/7Aam2oLzvve6FoQmPhhPoDEf3br1v0yr5OHW4Z1CfvXq3VtcWz\nOPO5J22m1RXqUWVexdSJfJlomzh5bDkrhQAAwCxjpRAAzHN1RbUq95bqQP8RRZLRK15/crhZ8XRC\n68pWXfIau82umxddr0gyqj29+y2Zp80wdPeNtUqbpna8xWqhq/Xyvg61do3qhjWV5wVCkmSzGSrw\nubSoLE8bV5Tprz6xTXffWKvB0aj+5on9rBq6RgORQSXSiay2jknjK4W8bruqSn0WzQwAACAzhEIA\nMM8ZhqEbqrYqkU5ob++BK15/eLJPqPTiW8cm3bLoBhky9GrnmzItKje+fk2Fyoo8evVQt0ZCcUvG\nnM+GRqP66W9bledx6JF3N1zxeqfDrgfeVa//un2bFpXl6ZV9nfrLf3pLx08Pz8Bs577JPqFFeZmX\nTIejCfUMhbWsqlA2w7BqagAAABkhFAKABeCG6q1y2hx6puV59YcHL3mdaZo6MnBcPodXdUW1lx2z\n2OPX+rI1OjvWqdNjZy2Zp91m0/tvWKpEMq1f7bZmzPnKNE394N9PKhZP6aE7GlSYd/Vb+JZXF150\n1VAimZ7GGc99ncHJk8cyXynU1j0miT4hAACQGwiFAGABKPEU6+GV9yuSjOofjnxf8dTFV+F0BLsV\niI1obemqq+pMeUfNTZKkVzusKZyWpFs3VKswz6VX9ncoHE1YNu58s/tEnw62DGp1bbFuWX/tK1cu\ntmroX3950rJVX/NRV2jy5LHMVwq10icEAAByCKEQACwQN1Zv062LblBnsFtPnnz6ov/4PzJwTJK0\n7iJH0V/MypIVKvOWam/fAYUTYUvm6XTY9d7rligSS+nlfZ2WjDnfBCMJ/fBXTXI6bNr+vpUystiG\ntLy6UF/6/W2qrSrQq4e6+TW/jK5gj/IcPhW5Mg902jh5DAAA5BBCIQBYQB5o/JBqC5ZoV89evdZ1\n4eqewwPHZTNsWlOy8qrGsxk23VS9TYl0UkcHT1o2z9s318jrduhXe84qlkhZNu588eNXmjUaTuhD\nty5XZXH2ZcVup12fu3+9Cn1OPfHiKTqGLiKWiqs/MqhF+VUZh3Cmaaq1e1TFBW75890WzxAAAODa\nEQoBwALitDn0B+s/rjynT//W9KzaRs6d8jUSG9XpsbNaUbRcPufVHwe/rnR8VdHRwROWzdPrdujd\nW2s0Fk7otUPdlo07Hxw/PazXDnVrSUW+3nvdEsvGLSn06E/uWy/DkL71zBH1ByKWjT0f9IR6ZcrM\nqk+oLxDRaCiu+poiC2cGAACQOUIhAFhgSjzF+uTajyptpvWPR36gsXhQknRk8tSxq9w6Nqkmv1pF\nrkIdGzqptGldUfF7ti2Ry2HTi3s76LmZEE+k9C87TsgwpE+8f5Ucdmv/Gm9c4tfH3tuoYCSh//3T\nwxxX/zadEyeP1WRx8ljT2YAkaeUSvyVzAgAAyBahEAAsQKtLGnVP3V0KxEb0z0d/qLSZ1pGB8ZU+\nV9snNMkwDK0tXaVQIqzTo9adGFboc2lDfal6h8LqGghZNu5c9tzr7eobjujObUumraj4XZtqdPvm\nGnX0B/XdXxwnkJvQZcHJY5OhUCOhEAAAyBGEQgCwQL239l1aX7ZaJ4eb9XTzL3RiqEmVvnJV+Mqv\neay1ZaskydJeIUna0jg+l71N/ZaOO9ckU2n95Nctev6N0yor8ui+2+qm9X6PvKdBjUv82nOyXz9/\n4/S03muu6Jw4eaw6rzLjMZrOBuRzO1RTnmfVtAAAALJCKAQAC5TNsGn76odV5i3Vy2dfVTyduOZV\nQpNWFq+Q3bBb2iskSRvqy2S3Gdp3cuGGQj1DYT32g716/s3TKvN79Kf3rZfbZZ/WezrsNv3Jh9ep\ntNCtp3/bqv2nFu6vvzReEN0V7FaZp0QeR2YF0UOjUfUHompc4pcti9PiAAAArEQoBAALmM/p1WfW\nb5fT5pQkrS9dk9E4XodH9f7lOjPWodH4mHXz8zi0ZlmJzvQFF1zxsWma+u3BLj36z2+pvWdMt6yr\n0qOfvF61VQUzcv/CPJf+7P4Ncjls+ofnjqlzAW/hG40HFUyEVJPN1rEOto4BAIDcQygEAAtcTX61\n/mDdx3XHkttU71+W8ThrS8ePsT9m8RayrSvHt5DtW0BbyIKRhP7+mSP63gsnZLfZ9McfWqtP37NG\nXrdjRudRW1WgT31gtaLxlL71zBElU9YVic8lXaHJPqFsSqZHJBEKAQCA3EIoBADQurLV+kjDvbIZ\nmf+1sK50slfI2i1km1aUyTAWTq/QoeZ+/dV339Lek/1qXFykL3/qel2/OvMem2xdv7pS79i4SF0D\nIb2yv3PW5jGbOi0omT51NiCX06allflWTQsAACBrM/tfjgCAeavSV6FST7GODzUplU7JbrOm96Yw\nz6XGxX41nQ0oEIzJn59Zp0uua+se1Ut7O/TG0R4ZMnT/O+p09421stlmv3/m/nfWafeJPv3s1Tbd\nuKZSBT7XbE9pRnVleRz9WDiuzoGQ1iwrlsPO/8cBAIDcwU8mAABLTB5NH0lG1TZ6xtKxt6wslylp\n/6kBS8edbclUWm8e7dH/+P4e/fd/2aPXj/RocUW+/uI/bNE9Ny/LiUBIkgp9Ln3o1uUKx5J65tW2\na3psJBlVKBGeppnNjK5Qj5w2h8p9ZRk9/lQHW8cAAEBuIhQCAFhm7TRtIds6cTT9vpN9lo47W4bH\nYnrm1VZ9/u9f1//33DG1do1qQ32p/vPvbdQ3Pn+H6hcVzfYUL3DHlhpVl/r06wOdOtsXvOrHffPA\nP+nLb/6NhqOBaZzd9EmlU+oO9aoqrzLj7ZVNZ8ef+0pCIQAAkGMIhQAAlmksrpfD5rA8FCop9Gh5\ndYFOnAkoGElYOvZMSqbS+u4vjusL33pdz+5sVyKZ1nuvW6Kv/tGN+j8e3Kh1daU5szrodznsNj38\n7gaZpvTEi00yTfOKj4ml4mofPaNgIqR/OPIDJdLJGZiptfojg0qmk6rJy7xP6OTZgBx2Q8urCy2c\nGQAAQPYIhQAAlnHZXWr016sz2G35ypAtjeVKpU0dbJ67W8he2d+p1w53q6LYq+13rdTf/uktevjd\nDaoo9s321K7K+rpSbawv1Ykzgas6De7sWKdMmXLZXTo9elY/PfXcDMzSWl2h8T6hTE8ei8SSOtM7\npuXVhXI5renZAgAAsAqhEADAUpNbyKw/mr5C0tw9mj4SS+rnr7fL47Lr//rYFr1rc43crrkXEjz0\n7gbZbYZ+9HKz4onUZa89M9YhSXqw4YOqya/Wq51vaFf33pmYpmXOnTyWWSjU0jki06RPCAAA5CZC\nIQCApdaUrpRkfa9QVYlPNWV5OtI2pGj8/2/vzuOrLO/8/7/us2U92fd9IxAIiIAsCrh0qNraaq0t\nDBZr25n+2vqdLuP067d1dJyZ6tRf58d0frXaUTvTFms37bS1arV2cKOKghAIEEL2kH1PTtaz3N8/\nDgmyhGwnOYG8n3+Zc+77uq8D14PEd67r87n4jiH9cV89fQNublibdVF370qJC2fLmkzae4Z46d36\nC15b2+t/vyAml78q3kGYLZSfHX+W+r7GuZhqQIx1HptmO/rjqickIiIi85hCIRERCaik8ASSwhMo\n6zoR8BoyqwoTcXt8lFZ1BnTc2dY3MMJL79ThDLez5YrMYE9nxm66MoeocDvPv1VDV9/wuNfV9Z0k\nzBZKYph/TdxRtBW3z8OTh3/CwEXSkazB1USkPYIoh3Na95fXd2MYkJ8+/4qHi4iIiCgUEhGRgFsW\nt4Rh7wiV3VNrXz6R1Yv9Xcj2X2RHyF54u5bBYS83bcghLMQW7OnMWHiojVuvzmfE7eOZVyvOe82A\ne5DWgXaynBkYhr949orEZdyQfR3tQ538+Ogv8Jm+uZz2lA15hugY6pz2LqERt5fqpl6ykp2XxN+7\niIiIXHoUComISMDNVmv6zKRIEqJDKalox+2Z34HCqM7eIf60v4H4qBCuuTw92NMJmI3LU8lOdvLW\nkRYqGnrOeb++rwGA7Kgzd0Z9OO+DLIldRGnHMV6q2T0nc52upv4WYPr1hKqbevF4TR0dExERkXlL\noZCIiARcQUwuDoudIwEuNm0YBqsXJzI04uVY7cVxhOx3e6rxeH3cvDEP/JQNjgAAIABJREFUu+3S\n+bZrsRhs37II8Leo953Vor62z19PKMuZceZ9hoXPLNtObEgMz1e/HPCC5IE0VmR6mu3oR+sJqci0\niIiIzFeXzk+nIiIyb9itdhbHFdAy0Er7YEdAx15d6O9Ctv/4/D9C1tTRzxuHmkiND+fK4untNpnP\nFmXEsG5pMtVNfew53HTGe3W9/s5j2VEZ59wX6Yjgr5fvwGpY+NGRn9ExOD8DvtF29OnT3Cl04lQo\ntChD9YRERERkflIoJCIis+L0EbLA7gTJS48iOsLBgRPteH3z+wjZf79RjWnCrZvzsViMYE9nVnzi\nmnwcdgvPvFpJ/5B77PXavpNE2iOIDTn/LpnsqEw+UXgz/Z4BHjv0Xwy4B+dqypPW6GrGwCA1InnK\n93q8PioaeklPiLiou82JiIjIpU2hkIiIzIqlcbNTV8hiGFxemIhr0M2J+nNr2cwXNc297CtrJTc1\nilWFCcGezqyJiwrlI1fm0Dfg5jev+wuL94246BzqIjsqc6zI9PlsTF/PtRkbaepv4YnSXXgC3K1u\nJkzTpMHVRGJYPA7r1EOduhYXw26vjo6JiIjIvDZhKOTz+bj//vvZunUrO3bsoLa29rzX3Xffffzr\nv/7rGa91dHRw9dVXU1lZGZjZiojIRSM+LJbUiGTKuyoY8bonvmEKVhfO/y5kz75WBcBtV+ddMBi5\nFFy/NovkuHD+58BJ6lr6qOvzHx07u57Q+dy66CZWJCyjvKuCn5X9GvOs2kTB0jPSy4BnkLRpdh4r\nHz06lqmjYyIiIjJ/TRgKvfLKK4yMjPCLX/yCu+++m29/+9vnXPPzn/+c8vLyM15zu93cf//9hIaG\nBm62IiJyUVkWvwS3z8OJ7sD+cmBxVgzhITbeK287p8DxfHCstosj1Z0sy4mlKCcuIGP6TB/PV/+R\n8q7594sWm9XC7VsWYZrw1B/Lqe31F5k+Xz2hs1kMC3cu+0uynBm83byPP9T8z2xPd1IaXP56QtPt\nPDYaChVmaKeQiIiIzF8ThkL79+9n06ZNAKxcuZLS0tIz3n/vvfcoKSlh69atZ7z+8MMPs23bNpKS\nkgI4XRERuZjMVmt6m9XCykUJdPUN81Zpc0DHninTNHn2NX9wc+vV+QEbt7a3nheq/8hzVS8FbMxA\nKs6NZ3VhIhUnezjY4P/8Wc7MCe7yC7E6+MKKzxAXGsvvq1/ineb3AP+fpccbnLpRjac6j6VHTD0U\n8pkmJ052kxgTSlyUfjkmIiIi85dtogtcLheRkZFjX1utVjweDzabjdbWVr7//e/zyCOP8OKLL45d\n8+tf/5q4uDg2bdrE448/PjszFxGReS8/OgeHxU5Fd3XAx77m8nTeOdbKD58/xnvlbXzqg4uJdYYE\n/DlTdeBEO1WNvaxZnEhualTAxi1pOwJAXW89bq8bu9UesLEDZdsHFnG4qp2G/gaiI6KJDnFO+t7o\nECdfuuyz/H/7v89Tx35Fd6fBG38eobG9n/joUNISIkiJCyc1PpzU+AhS4sOJmsUCzqd3Ck39+Fhj\nWz/9Qx5WLrp0a0mJiIjIpWHCUCgyMpL+/v6xr30+Hzab/7Y//OEPdHV18fnPf562tjaGhobIy8vj\n2WefxTAM3nrrLY4dO8Y999zDY489RmJi4gWflZg4+R8eRaZCa0tmg9bV5OTFZXG8owpnrINQW+BC\nm8REJ99Li+aRX5Vw4EQ7x+u7ufPDS7l+fU7QOn2ZpskLP9mPxYDP3rx82mvkfPcdfde/28pjeumx\ndlCUuGhGc50NiYlOPnJdOi90D+PwpE358ycmOvn00B38x8En+c3JX+HuX09hViYtXQMcquzgUGXH\nGdc7wx1svCyNW67JJy0hcpxRp6d1uJUQq4OirGwsxtT6crxz3F/ras3SlHn378R8m49cOrS2ZLZo\nbcls0drymzAUWrVqFbt37+ZDH/oQBw8epLCwcOy9O+64gzvuuAPw7w6qqqri1ltv5dZbbx27ZseO\nHTzwwAMTBkIAbW190/kMIheUmOjU2pKA07qavLSwNMrMSg5UH6cgJjegY4cY8LVPrOCNkkZ+ubuS\nR589xB/31vLpG5aQlhAR0GdNxtGaTqoae7hiSRKhlul9Xzvf2mrub6Whr5kwWyiDniH21RwlgenV\nupltKWnD0A1NdXYOHGkiI2lyYY1r0M3v3qxm94EGiF2GI/8wiatK+eK6a4lyOHENumnuHKCpo5/m\njgGaOgaoae7lxbdq+MNbNaxenMiN67MDsjvL6/NysqeJDGcaHe39E99wlv3HWgBIjQmdV/9O6N8t\nmS1aWzJbtLZktiy0tXWhAGzCUGjLli3s2bOHbdu2YZomDz30EM899xwDAwPn1BESERE5W06Uv65M\nTW9dwEMh8Leov3plOpcVJPDTP5az/3gbD/zXO9y0IYcPbcjGZp3aLo+Z+MPeOgBuWJcV0HEPtfuP\njl2ffR2/qXyByp7AH8cLlMb+BgC8riieevk499y+6oLd1zxeH68dbOQ3b1TRP+QhKSaMrVffQKMt\nmRdqXmHn/ke5PGkFi2MLyEvJpiD9dDcvr8/H/uNtvPh2HfuOt7HveBtLsmK4YV02y/Pipt31rWWg\nDa/pnVY9IdM0Ka/vJibSQWJM2LSeLyIiIjJXJgyFLBYL//RP/3TGa/n55xbOfP/uoPfbtWvXNKcm\nIiKXguwof0Ay2pFqtsREhnDXx5ZzoLyNXS8f5zdvVvNOWSt33rCEgozZbwte3+qitLqTxZkxAa0l\nBHCo7QgWw8KGtCv4c+M7VHXX4jN9Uz7WNBdqT7WjL07J5VB5D28fbWHDsjPDFdM0qW91UVLZwVul\nzTR3DhAWYuWT1xbwgdUZ2G0WVppb6PcM8kbDW7xcu5uXa3djM6zkRmdTGJtPYWwBOVGZrC1K5ool\nSZTVdvHi3jpKqzspq+smPTGCD2/IZl1R8pTDodEi09OpJ9TaNUhP/whri5KmHUqJiIiIzJUJQyER\nEZGZiA+NJdIeMeuh0KjLCxNZnBXLs69VsvtAA//y1H6uXZXOx6/OJyxk9r7tvfyOf5fQ9QHeJdQz\n3Et1bx2LYvKItEeQF5PD2037aHQ1k+FMC+izZso0Tep6T5IQGsft1xVzrGovv/yfClYWJGC1GJTV\ndVFS0UFJZTudvcOAf6fXNSvTuGVTHlERpwtHG4bBJwtv5qN511PRXU15dyXlXZVUdFdzoruK56v/\niMPqYFvhx1iXupqinDiKcuKoa+njpXfq2Hu0lcd/d5Sy2i4+9cHFU9ox1tDvLzKdPo129MdHW9Fn\nqhW9iIiIzH8KhUREZFYZhkF2VCZHOsroG3HhdAS2IPD5hIfa2HH9YtYtTebHfyjjf95r4MCJdj71\nwUIuXzRxjbsL6R7u4fsHf8hH829gecJSALr6hnn7aAup8eGsyI8PxEcYc7j9KACXJRYDUBCdy9tN\n+6joqZ53oVDHUCf9ngGWxC0iMSaMD63P5rdvVvOtn+yjo2eIEY+/vXxEqI31S5NZURBPcW48kWHj\nd1ILtYVSnFBEcUIRAP3uAU50V1HeVcE7zQd4uuwZkiMSyTm1Iy0r2clff2QZN2/K49H/PszrJU00\ndw7ypY8VT7pbWVVPDQYGGZHpU/4zePdUPaGlOXFTvldERERkrs2/feciInLJyT5VV2iudgsB/Gfp\nT9nT+wIPfGYtH70qh97+Eb737GEe/U0pPa7haY/7TtN7NPY382bD22OvvbKvHq/P5Pq1WVgCfGSo\n5FQ9oRWnAqj8mBwAqrprJj2Gz/Tx3fd+wCMHn6R1oC2g83u/2l7/0bGsqAwAblyXRVJsGE0dAyTE\nhHHjuiz+z+2r+O6XN/L5jy5j/dKUCwZC5xNhD2dlYjGfLLyFzxXfjtf08eThp+gbcZ1xXVJMGN+4\nfTVrFidSXt/Nt368j5OtrnFGPW3E66amp44MZxrh9qnVBGrrHuRITReLMqJJiQuf0r0iIiIiwaBQ\nSEREZt3pYtNzEwrV9tazv7WE/S0lmIaHWzbl8cBnriA/PYp9Za3c+8ReXi9pxDTNKY99oO0QAOVd\nlbh9HgaHPbx6sIGoCAcbliUH9HMMeoYo76wgIzKN+DD/zpPEsAScjkgquqsnPf/K7hpOdFdxrLOc\nh975N16u3Y3X5w3oXAFq+/x/v9lOfyjksFu579Nr+H+/uIFv/dU6PnFtAYWZMVgtgfnxoyiukJvy\nrqdruJv/OvI0PtN3xvshDitfuKWYmzfm0t4zxINP7efAiQuHYtU9tXhML4ti8qY8nzcONQKw+bL5\ntYNLREREZDwKhUREZNZlO+d2p9Du+jcBMDFpcJ2qD5MYyTc+tZpPfbAQn2nyoxfLeObVyimN2zHY\nSV2fv7vWiM9NZXc1b5Q0MjjsPVUg2RrQz3G04zge0zu2Swj8x/Hyo3PpGemlY6hrUuMcbDsMwHWZ\nmwi1hvLbyhf5zr7vUXeqKHSg1PWexMAg03n62FVEqJ2E6NnrwvXB7GtYnrCU410VPFf10jnvWwyD\nmzfm8qVbijF9Jo88e5jn36oZN1A70e1fE4Wx5zbVuBCvz8cbh5oIC7GxZknSlD+HiIiISDAoFBIR\nkVkX6YggITSO2t76ae3OmYqe4V7eaz2Egf8YV/2pEAf8AcF1qzL41l+tIzkunBf31rHncNOkxz7Y\nVgqcru9zpP04L++rx2G3cO3lU68/M5HRVvQrTj1vVEFMLgCV3RO3pveZPg62lRJuC+OW/A9x3/q/\nY33qGupdjXxn3yP8puIFRrwjM56rz/RR39dAcngiobbQGY83WRbDwh1FW0kIi+fl2t2UtB0573Vr\nliTxjU+tJsYZwrOvVfHE74/i9py7W6q8qwoDY+zPeLIOVXTQ4xphw7JkQuyBDQdFREREZotCIRER\nmRPZUZn0ewZoH+yc1ee80fA2XtPLpvT1wJmh0Ki4qFC+ctsKwkNs/PgPZVQ09Exq7INthzEw+HjB\nR7BZbBxoPkpn7zCblqdNuTbORDw+D0c6yogLjSXjrNbo+dE5AFT2TBwK1faepHu4h+UJS7FarETY\nw9lR9En+ZuVfExsSwx/rXuXBd/6N450VM5pv60A7Q97hsXpCcyncHsbnl9+B3WLnJ0d/MW7dpOwU\nJ/d/eg35aVG8faSFHz5/7Iz3R7wj1PTWkelMJ8w2td1Nr5Xo6JiIiIhcfBQKiYjInMgZKzZdN2vP\ncPs8vNnwNmG2MD6afwN2i41617mhEEBKXDhfvKUYnw8eefYQHT1DFxy7e7iHqp5aCmJyiQ+LpSA6\nly5PO4ZjiC1rMwP+WU50VzHoGeKyhGUYZxWvTo9MJcTqoGISxaZHj45dnrT8jNeXxC3i3nV/ywcy\nN9Mx2Mn/f/BxXq7ZPe2dXKNHA0ePCs619MhUti/5OEPeIZ44vIvhcXY/RUeG8L+3X05+WhTvHGvl\nQPnpAKmqpxav6WVR7NTqCXX2DnG4qoPcVCdZyc4ZfQ4RERGRuaRQSERE5kT2qZbhNX2zV1dof8tB\n+twurkpbS5gtjLTIVBpdzXh8nvNevyw3jm0fKKB3wM33nj3E8Mj4xZdHj46tPBWuxBv+HTF5i0dI\nigl8zZxDbaNHx5ad857VYiU3KpuWgdZzum69n2maHGg9TIjVwZLYRee8H2J1cOuim/j6mv9FbEgM\nv616kV+d+N05BZsnY7Q+UTB2Co1am7KKzelX0tjfzNNlz4wbcNltVj7zoSJsVoNdLx9nYMgNwImu\nU/WEYqZWT+jNQ02YpnYJiYiIyMVHoZCIiMyJTGcaFsMya8WmTdPk1fo3MTDYnH6l/5mRaXhNL039\nLePe94HVGVy9Mo26VhdPPn8U3zhBwsFW/46blafq+9RV+oMgZ1J3ID8G4K/Pc6j9KBG28LGjYmcb\nrXlT1VMz7jgnXY10DHVSHF+E3Tr+8bbsqEzuXv0l0iJSeO3kHv7zyNO4ve4pzbm29yQWw0JGZHCD\nkY8vuoncqCz2tRzktYY/j3tdWkIEH7kql27XCL/c7T86V97tryeUP4V6Qj6fyRuHGgmxW1lbFNju\ncyIiIiKzTaGQiIjMCYfVQWpEMvV9DbPSDr2yp4Z6VyOXJRYTHxYLMNYF63x1hUYZhsHtWwpZnBnD\n/uNt/O7Nc+v09I24qOiuJjcqm5iQaE62uSg/4cXqDePkUM20dtZcSH1fA93DPRQnFGG1nL9ocX5M\nDuBvNz+esSDrrKNj5xMbGsPXVn2RgphcDrQe4vslP2TQMzip+Xp9Xk66GkiNSMZxgfBpLtgsNj5X\n/Cki7RH8+sTv6RnuHffaG9dlkZEYyeslTZRUNVPbW0+WM4OwKRTKPlLTSUfvMOuWJhEWYgvERxAR\nERGZMwqFRERkzuREZeL2eWjsbw742KNt6K/N3Dj22ulQqPGC99qsFr70sWISokP53Z4a3jl25s6i\nQ21HMDHH6vK89E4dYJAfVUC/eyDgrd0vdHRsVE5UFhbDQsUFik0faCvFbrGzLH7JpJ4bbg/jf132\nV6xMXM6J7ip27n+M7uGJi3A39bfg9nmCVk/obLGhMXw4dwte08u7LQfGvc5mtfDZDy/BMOAnb/oL\nlE+1Ff3rB/1r6+qVge8+JyIiIjLbFAqJiMicyT5VbLomwEfIOga7KGkrJTMy7YzjVmkRKVgMywV3\nCo1yhjv4ym0rCHFY+c/nj1Fa3UHFyR72lbXySuW7AJSXhrLzlwd5+0gLKXHhXJXjD4mOdZQH9POU\ntB/BbrFRFFc47jUOq4MsZwb1fQ3nLarc1N9Cy0ArS+MXE2J1TPrZdqudzxXfPlab51/3fZ/mCxy/\ng/lRT+hsq5NXYjOs7G3af8Hi2TkpUdywNos+iz+onEqR6R7XMAcr2slMiiQnRQWmRURE5OKjUEhE\nROZMzqli03UBDoXeaHgLE5OrMzee0anLbrWTGpHMSVfjpI54pSdG8v98dBluj4+dvyjhoaf28+hz\nB2gZqcfXH8W7h1yUVnXisFu5dXMeRXGFGBgc7QxcKNTU10pTfwtL4gonDHPyY3LwmT5qes7t6HZ2\nDaSpsBgWPll4Mx/Ju4Gu4W527n+MY53l44YrY53H5lEoFGEPpzhhKY39zeN2oBt188ZcQmO7MU0D\ny0DcpJ/x5uEmvD6TzZelndMhTkRERORioMPvIiIyZ1LCk3BY7AHdKTTsHWFP414i7RGsSbrsnPcz\nnek0uJpoGWgjNWLiQsArCxL44i3FlFS0ExXhoCekigNDJldmXs6Wq9YTHekg1HH622dOVCY1vXUM\nuAcJt8+8C9m7DSUAXJYw/tGxUfnRufyJ16nsqWZxXMEZ7x1oO4zNsLI8oWha8zAMgxtyriM6JIqn\ny57hkYNPkhKexIa0K1ibsooox+mdMXV9J7EZVtIiUqb1rNmyPnU1B9sO83bTfrKc4wdWPsODGdaN\n6Yripy9V8w93JmC3Xfj3Zj7T5I2SJhw2CxuWqcC0iIiIXJy0U0hEROaM1WIl05lBU38LQ57hgIz5\nTvN7DHgG2ZS+/rwdtiZTbPpsa5Yk8bmblvKJawvwRPrv21K4luS48DMCIYCiuEJ8po/jXRUz+BSn\nvdtQgoFB8STCnNGjcmcXm24b6KDB1cSSuEWE2WYWVG1IXcPfrvoiq5Muo32wg/+ueJ579zzI44d+\nzOH2owx7R2hwNZPuTMNmmV+/a1oat5hIewT7Wg7g8XnGva6qpwYfPjLCsmls7+f5t2omHPt4bRet\n3YOsWZJEeGhwi2uLiIiITJdCIRERmVM5UZmYmFMKacZjmiavntyD1bCyKX3Dea/JmkYoNGrIM8Sx\nzhOkRaSQHJ543muWxi8G4Fjn8SmPf7a+ERfl7VXkRefgdEROeH2kI4KU8CSqemvP6Oh2sG306NjE\nXccmIzc6m88W385DG+/jE4tuJjUimZL2I/zg0I+4d8+DeE0v2RfYiRMsVouVK1Iup989wJGOsnGv\nO9FdBcCHl68iLiqE59+qpb7VdcGxXyvxF5jefFla4CYsIiIiMscUComIyJwaLTZd2zfzI2RlXSdo\n7m9hVdIKokOizntNemQaBsa0QqHSjjI8Ps8FW7pnR2USbgvjaMf4NXcm63D7UUxMLrtA17Gz5cfk\nMuId4aTrdIe1A62HsRgWlicundF8zhZhD+eazKv45tqvcc8VX2Zz+gbA/5kXTbFr11xZl7IGgL1N\n+8e9pryrEothYUlCPndcvxivz+TJ3x+lpKKdweFzdxj1DYzwXnkbqfHhLMqInrW5i4iIiMy2+bXP\nW0RELnk5AexA9up52tCfLcTqICk8kfo+f7FpizH534eMFmu+/AI7biyGhcVxizjQeoiWgVZSJlG3\naDyl7ccAWJ4w+TCnICaXPY17qeypITsqk86hLmr76lkSu4hIe8S05zKRLGcGWYsz+FjBTTT3t4wd\n05tvMp1ppEemUtpRhmukn0jHmX8mQ54h6vpOku3MINQWwor8EK5ansKew838+zOHsBgG2SlOlmTH\nUJQVS0FGNG+VNuPxqsC0iIiIXPwUComIyJyKC40l0h4x1rFquloH2ijtKCM3Knts99F4Mp1ptAy0\n0j7YSVJ4wqTGH/GOcKSjjKTwhAkLVC+NW8yB1kMc7Syfdijk9Xk53lVJcmTipOcI768rVM11mZs4\n2FYKwMqkqXcdmw6H1T6vWtGfz7qU1fy64vfsaznINZlXnfFeZU8tPtN3xk6nz9xYxPplKZTVdlFW\n10VNUx/VTb28+HYdVouBzWrBZjW4snh+FdYWERERmSodHxMRkTllGAY5p3a09I70TXuc0fBjU/r6\nCa+dTrHpox3HGfG5WZm4fMLdIEVxiwA41jH91vS1fScZ8g6xPHnJlO6LC40lJiSayu4aTNPkYOth\nDAxWJMxNKHQxuCLlciyGhb3N+85570RXJQCFMadDIYvFYFlOHB+/Op97d6zhe1/dxN9+8jJuXJ9F\nVrKTEY+XK4tTcYY75uwziIiIiMwG7RQSEZE5lx2VSWlHGbW99VM6KvV+ozuNCidRy+b9xaZXJ5/b\ntv58DrRNfHRsVGxoDKkRyZzormLE68Zxni5oEynr9AdKK6YYChmGQX50DvtbS6jorqaqp5a86Byi\nQ5wT37xARDmcLI0rpLSjjEZXM2mRp3f4lHf76wnlxeSMe3+ow0ZxXjzFefEAuD0+bFYdGxMREZGL\nn3YKiYjInMuOygKY0RGymt56ohxOYkImLvSbEekPhd5fjPlC3D4Ppe1lxIfGTrpWTlFcIW6fm8ru\n6kldf7ayzhP+VvTJi6d8b0FMLgD/XfE8JiaXX6Aw9kK1LvVUwenm0wWnBz1D1Pc1kBOVSYh18rt+\n7DaLagmJiIjIJUGhkIiIzLnsUzVopltsunu4h+7hHrKjMif1P+fh9jASQuOo72uYVIew450nGPIO\nTero2KjR1vRHp9GafsgzRHVvHVlRGecUQp6M/FOh0GhHt5WJOjp2tuXxRYTbwni3+T28Pi/gr8Pk\nM30sipmfndNEREREZptCIRERmXOR9ggSQuOo7a2fVhv32t6TwOlOZpOR6UzH5e6ne7hnwmsPnOo6\ndqFW9GcriM7FbrFzrHPqdYVOdFfhM30UxS6a8r0AqRHJhNlCAciJyiI2NGZa41zK7FY7q5NX0jPS\nR1lXBeD/c4fJHUEUERERuRQpFBIRkaDIjspkwDNI22DHlO8dPXY2Udex9xs9BlY3QbFp10g/+1tL\niAuNnVLoZLfaWRSTR1N/C11D3ZO+D/xHxwCWxE0vFLIYFvJOdSHTLqHxrUtZDcDeJn/B6fKuSqyG\nlbzo7GBOS0RERCRoFAqJiEhQjAYu06krNBYKOSffCj1jkh3IXm/4M26fm2szN2IxpvZtcvQI2VR3\nC5V1nsBhsZMzg3BiXcoqEsPiuSLl8mmPcanLicokOTyRkvYjdA51jdUTckyhnpCIiIjIpUShkIiI\nBMV0i037TB+1fSdJCk8g3B4+6fsynWnAhUOhEa+b107+mXBbGFemrp3SvMBfbBrg6BRCoa6hbpoH\nWimIzcNumX5T0NXJK3lgwz2TKry9UBmGwbqU1Xh8Hn5Z/ltMTBbp6JiIiIgsYAqFREQkKDKdaVgM\ny5SLTbcNdjDoGSTbOfmjXcBYp7ILhUJvN+3D5e5nU/oGQm0hUxofIDk8kdiQGMo6T4wVM57IaH2b\n6dYTkqlZm7IKA4PD7UcBWBSTF+QZiYiIiASPQiEREQkKh9VBWkQK9a6GSQcoML16QqMynWn0jPTS\nM9x3zns+08ef6l/HZli5OuOqKY8N/p0oK5OKGfQMcqDt8KTuKTu1q2jJqV1GMrtiQ2NYHFsAgE31\nhERERGSBUygkIiJBkx2VicfnocHVNOl7RncWTaUI9KjMSH9doZOuc3cLHWwrpX2wg3Wpq4kOcU55\n7FGb06/EwODV+jcnvNY0TY53VhDtcJIakTztZ8rUrEv1F5zOjspSPSERERFZ0BQKiYhI0BTE5AJT\nq8FT21uPxbCQEZk25edljlNs2jRNXql7DQODD2RunvK475cUnsCy+CVU99ZR01t3wWsb+5vpc7tY\nHLcIwzBm9FyZvJWJy1mddBl/kTWzv2sRERGRi51CIRERCZql8YsxMChtPzap6z0+Dyf7GsiITMVu\ntU/5eeOFQhXd1dT21rMiYSnJEUlTHvds12ZuBGD3BLuFRruULVE9oTnlsNr5bPHtrEhcFuypiIiI\niASVQiEREQmaSHsEedE51PTW0TfimvD6BlcTHtM71rlsqmJCoom0R5wTCr1S9yoAf5F99bTGPdvi\n2AJSIpJ5r/UQ3cM9415X1nnCf31cQUCeKyIiIiIyFQqFREQkqJYnFGFiUtpRNuG1MykyDf5C0JnO\ndDqGuhhwDwDQ1N9CaUcZedHZ5EXnTGvc8z3nmoyr8Jk+3mx4+7zXuL1uKrqrSY1IVht5EREREQkK\nhUIiIhJUyxOKACZ1hGwmRaZHnT5C1gjAK3WvAfAXWddMe8zzWZcC7JftAAALtUlEQVSyinBbGG80\nvI3b6z7n/aqeWtw+N0vidHRMRERERIJDoZCIiARVcngSCWHxHOs8jtvnueC1tb31hFpDSA5PnPbz\nxkIhVwPdwz2823yA5PDEsXAqUBxWB1elrcPl7mdfa8k575d1+Y+OqZ6QiIiIiASLQiEREQkqwzBY\nnlDEsHeEiq6qca8b9AzSMtBGljMDizH9b1+jbenr+xp4tX4PXtPLBzI3z2jM8WzO2IDFsPBq/ZuY\npnnGe2WdJ7AaVgpi8gL+XBERERGRyVAoJCIiQbc8fikAhzuOjntNXW8DJua06wmNSgiLI8wWSmV3\nDW80vI3TEcnalFUzGnM8caGxXJawjJOuRiq6q8ded7n7qe9rIDc6i1BbyKw8W0RERERkIgqFREQk\n6PJjcgi1hlLafuycHTWjagNQTwj8O5MyItPoGu5myDvENRkbp9XefrKuOdWe/tWTp9vTl3dVYmKy\nJLZw1p4rIiIiIjIRhUIiIhJ0NouNpfGFdAx10dTfct5ravpm1nns/UbrCjmsDjanr5/xeBeSH51D\nZmQaJW1H6BjsAqCssxxARaZFREREJKgUComIyLywPOHUEbL28x8hq+2tJ9rhDEj79tHdRlelrSXc\nHj7j8S7EMAyuydyIicnrDX/GNE3KOk8QZgsjOypjVp8tIiIiInIhCoVERGReWBq/GAODw+dpTd89\n3EP3cA/ZUVkYhjHjZ61MXM4dRVv5aN4NMx5rMlYnr8Rpj2RP4zs09jfTMdTF4tj8WSluLSIiIiIy\nWfppVERE5oVIewR50dnU9NbRN+I6473a3pNAYI6OAVgtVtalrsZhdQRkvInYLTY2pq9n0DPIU8d+\nBejomIiIiIgEn0IhERGZN5YnLMXE5EhH2RmvB6rIdDBtSt+A1bBS1+cPuBbHKhQSERERkeBSKCQi\nIvPG8oQigHOOkI2GQlnOi7cGT3SIk1VJlwEQHxpLYlh8kGckIiIiIgudQiEREZk3ksOTSAiL51jn\ncdw+DwA+00dtXz1J4QmE28OCPMOZuS5zIwYGxQlLA1IbSURERERkJhQKiYjIvGEYBsvjixj2jlDR\nXQVA20A7g54hsp1ZQZ7dzGVFZfD36/6WW/JvDPZUREREREQUComIyPxSfNYRsppLoJ7Q+6VEJM9Z\ngWsRERERkQtRKCQiIvNKQUwuodZQStuPYpomtX3+UChQncdERERERMRPoZCIiMwrNouNpfGFdAx1\n0dTfQk1vPVbDSkZkarCnJiIiIiJySVEoJCIi805xvP8I2cG2wzT0NZIemYrdag/yrERERERELi0K\nhUREZN5ZlrAEA4NX6/fgMb2XTD0hEREREZH5RKGQiIjMO5H2CPKis+n3DACqJyQiIiIiMhsUComI\nyLy0PGHp2H9rp5CIiIiISOApFBIRkXlptDV9qDWEpPDEIM9GREREROTSYwv2BERERM4nJTyJ5QlL\nSQiNw2LodxgiIiIiIoGmUEhEROYlwzD4woo7gz0NEREREZFLln71KiIiIiIiIiKyACkUEhERERER\nERFZgBQKiYiIiIiIiIgsQAqFREREREREREQWIIVCIiIiIiIiIiILkEIhEREREREREZEFSKGQiIiI\niIiIiMgCpFBIRERERERERGQBUigkIiIiIiIiIrIAKRQSEREREREREVmAFAqJiIiIiIiIiCxACoVE\nRERERERERBYghUIiIiIiIiIiIguQQiERERERERERkQVIoZCIiIiIiIiIyAKkUEhEREREREREZAFS\nKCQiIiIiIiIisgApFBIRERERERERWYAUComIiIiIiIiILEAKhUREREREREREFiCFQiIiIiIiIiIi\nC5BCIRERERERERGRBUihkIiIiIiIiIjIAmSYpmkGexIiIiIiIiIiIjK3tFNIRERERERERGQBUigk\nIiIiIiIiIrIAKRQSEREREREREVmAFAqJiIiIiIiIiCxACoVERERERERERBYghUIiIiIiIiIiIgtQ\nUEMhn8/H/fffz9atW9mxYwe1tbXBnI5c5NxuN1//+tfZvn07t912G3/605+ora3lL//yL9m+fTv/\n8A//gM/nC/Y05SLW0dHB1VdfTWVlpdaWBMx//Md/sHXrVm699VZ+9atfaW1JQLjdbu6++262bdvG\n9u3b9e+WBERJSQk7duwAGHc9/fKXv+TWW2/lk5/8JLt37w7mdOUi8f51dezYMbZv386OHTv43Oc+\nR3t7O6B1JdPz/rU16rnnnmPr1q1jX2ttBTkUeuWVVxgZGeEXv/gFd999N9/+9reDOR25yP3ud78j\nJiaGp59+mieffJJ//ud/5l/+5V/46le/ytNPP41pmvzpT38K9jTlIuV2u7n//vsJDQ0F0NqSgNi7\ndy8HDhzgZz/7Gbt27aK5uVlrSwLitddew+Px8POf/5y77rqL7373u1pbMiNPPPEEf//3f8/w8DBw\n/u+DbW1t7Nq1i5///Of88Ic/ZOfOnYyMjAR55jKfnb2uHnzwQe677z527drFli1beOKJJ7SuZFrO\nXlsAR48e5ZlnnsE0TQCtrVOCGgrt37+fTZs2AbBy5UpKS0uDOR25yN1www185StfAcA0TaxWK0eO\nHGHt2rUAbN68mT//+c/BnKJcxB5++GG2bdtGUlISgNaWBMSbb75JYWEhd911F1/4whe45pprtLYk\nIHJzc/F6vfh8PlwuFzabTWtLZiQrK4vvfe97Y1+fbz0dOnSIyy+/HIfDgdPpJCsri7KysmBNWS4C\nZ6+rnTt3UlRUBIDX6yUkJETrSqbl7LXV1dXFzp07+eY3vzn2mtaWX1BDIZfLRWRk5NjXVqsVj8cT\nxBnJxSwiIoLIyEhcLhdf/vKX+epXv4ppmhiGMfZ+X19fkGcpF6Nf//rXxMXFjYXYgNaWBERXVxel\npaX8+7//O//4j//I3/3d32ltSUCEh4fT0NDAjTfeyH333ceOHTu0tmRGrr/+emw229jX51tPLpcL\np9M5dk1ERAQul2vO5yoXj7PX1egv39577z2eeuop7rzzTq0rmZb3ry2v18u9997LN77xDSIiIsau\n0drys018yeyJjIykv79/7Gufz3fGPwoiU9XU1MRdd93F9u3b+chHPsJ3vvOdsff6+/uJiooK4uzk\nYvXss89iGAZvvfUWx44d45577qGzs3Psfa0tma6YmBjy8vJwOBzk5eUREhJCc3Pz2PtaWzJdP/rR\nj9i4cSN33303TU1NfPrTn8btdo+9r7UlM2WxnP7d8uh6Ovtn+/7+/jP+h0tkMl544QUee+wxHn/8\nceLi4rSuZMaOHDlCbW0tDzzwAMPDw1RUVPDggw+yfv16rS2CvFNo1apVvP766wAcPHiQwsLCYE5H\nLnLt7e189rOf5etf/zq33XYbAEuXLmXv3r0AvP7666xZsyaYU5SL1E9/+lOeeuopdu3aRVFREQ8/\n/DCbN2/W2pIZW716NW+88QamadLS0sLg4CAbNmzQ2pIZi4qKGvvBNjo6Go/Ho++JElDnW08rVqxg\n//79DA8P09fXR2VlpX6+lyn57W9/O/YzV2ZmJoDWlczYihUreP7559m1axc7d+6koKCAe++9V2vr\nlKBuy9myZQt79uxh27ZtmKbJQw89FMzpyEXuBz/4Ab29vTz66KM8+uijANx7771861vfYufOneTl\n5XH99dcHeZZyqbjnnnu47777tLZkRq699lreffddbrvtNkzT5P777ycjI0NrS2bszjvv5Jvf/Cbb\nt2/H7Xbzta99jeLiYq0tCZjzfR+0Wq3s2LGD7du3Y5omX/va1wgJCQn2VOUi4fV6efDBB0lNTeVv\n/uZvALjiiiv48pe/rHUlsyIxMVFrCzDM0dLbIiIiIiIiIiKyYAT1+JiIiIiIiIiIiASHQiERERER\nERERkQVIoZCIiIiIiIiIyAKkUEhEREREREREZAFSKCQiIiIiIiIisgApFBIRERERERERWYAUComI\niIiIiIiILEAKhUREREREREREFqD/CyM3fMbHfs4CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAJaCAYAAADpktlZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcU/W9//H3yTpLMivDLojCiKAoLrhQVOq1aKt1qVKl\nxbq0VWtrwUeraG3xikWrrddK1Xp7/d326m0pD5d77XLvraVFWxeKG5sOKLKvs08ySzJJvr8/ZhJA\nYBjmZCbJyev5FzNJTj45k8y8+X6/5/O1jDFGAAAA6DNXpgsAAADIdQQqAAAAmwhUAAAANhGoAAAA\nbCJQAQAA2ESgAgAAsIlABcfYtm2bjj/+eF166aW69NJLdckll+iKK67Qf/3Xf6Xu89Of/nS/rw/m\nZz/7mf785z8f9LZ9H3/cccepoaHhiGpctWqVfvCDH0iSVq9erdtuu+2IHt8X8Xhct9xyi2bMmKFn\nn322x/vedNNNeuGFFyRJl156qVpaWg54/AsvvKDzzjtPN954Y7/Xnq1CoZCuvfZaW8eYN2+enn76\n6T4/vjfv5Ww1efJkbdu2rVefgX0/M0fivvvu06JFi/paInDEPJkuAEingoIC/fd//3fq6+3bt+u6\n665TYWGhZsyYoW9/+9uHPcby5cs1duzYg97Wm8f35KOPPtLu3bslSSeeeKIee+wxW8frjd27d+vv\nf/+73nvvPbnd7l4/Lnked+zYsd/jr732Ws2dO1eXXnppf5Wc9Zqbm7V69eqM1mD3vZgNevMZ2Pcz\nA2QzAhUcbcSIEbrtttv09NNPa8aMGZo3b57GjRunG2+8UY899phefvlleb1elZeX64EHHtDLL7+s\nNWvW6KGHHpLb7dbSpUvV1NSkrVu36rzzzlN9fX3q8ZL06KOPavXq1UokEpozZ46mT5+uF154Qf/3\nf/+np556SpJSX99777167LHHFAqFdNddd+myyy7TggUL9Pvf/16hUEj//M//rJqaGlmWpWnTpun2\n22+Xx+PRiSeeqK9//et67bXXtGfPHl177bW67rrrDnitb731lh566CG1t7fL6/Vqzpw5OuWUU/TV\nr35VsVhMV1xxhRYtWqRRo0alHrN7927NmzdPe/bs0fDhw1VfX5+67bjjjtOyZcv2e/zIkSO1evVq\nbdu2TY2NjZo1a5Z+/OMfa8WKFYrH45owYYLuueceBQIBffrTn9akSZO0bt063X777Zo0aZLuu+8+\n7dy5U52dnfrc5z6nm2++Wdu2bdN1112nc889VytXrlRzc7Pmzp2rz372s4rFYnr44Ye1bNkyud1u\nTZ48WfPnz5fP59OTTz6pP/3pT0okEhoxYoTmz5+vIUOG6E9/+pOefPJJWZYlt9utO+64Q6effrqW\nLl2qxYsX6xe/+MUB5+65557Tb3/7W3V2dqq5uVlf+9rXNGvWLEnSU089pRdffFEej0ejR4/Wgw8+\nqLvuuksdHR269NJL9cILL2jChAl64403VFFRkTp3b7zxhsrKyrRw4UKtXLlSra2tMsbo/vvv16mn\nnnrI9+y8efPk9/u1evVq1dXV6aKLLlJFRYX++te/qra2Vvfff7/OOuus/d7Lh3qPHOq9+NRTT+mt\nt97Sgw8+qEQiIalrdHLGjBn71bJ8+XI99NBDGjJkiLZu3aqCggI9+OCDOvbYYzVv3rz9Phvf/va3\nD/leeOutt7RgwQJZlqUTTzwx9ZzLly9PfQZaW1t1//3365133pHb7dY//dM/6ZprrtnvM/PAAw/o\nL3/5i5588kl1dnaqoKBAd955pyZPnqxwOKzvfe97qqmp0eDBg+V2u3s8z0DaGcAhtm7dak4++eQD\nvr9+/Xpz0kknGWOMufPOO82//du/mR07dphTTjnFRCIRY4wxTz/9tHn55ZeNMcZ8+ctfNv/zP/+T\nuv9XvvKV1LGSjzfGmOrqavPUU08ZY4xZt26dmTJliqmvrzfPP/+8+frXv556zL5f7/vvN99803zu\nc58zxhhzxx13mAULFphEImEikYi54YYbUseurq42zzzzjDHGmNWrV5sTTjjBdHR07PcaGxoazFln\nnWXee++91GueMmWK2bJlyyHPizHGfOMb3zD/8i//YowxZtOmTebkk082zz//fOp56+vrD3j8vudn\n0aJF5sEHHzSJRMIYY8xPfvITM3/+fGOMMdOnTzc/+9nPUo+bPXu2Wbp0qTHGmI6ODjN79mzzhz/8\nwWzdutVUV1ebv/zlL8YYY/73f//XnHfeecYYY371q1+ZL33pS6a9vd3E43Hz7W9/27z44ovmxRdf\nNHPmzDGdnZ3GGGMWL15svvrVrxpjjDn//PPNu+++a4wx5m9/+5tZtGjRQV97UjgcNjNnzjQNDQ3G\nGGPefffd1Ov985//bD7zmc+YpqYmY4wxCxcuNE888cQB5yR5rj759TvvvGO+9a1vmXg8bowx5qmn\nnjI33XSTMWb/99K+7rzzTnPVVVeZaDRq9uzZY6qrq81//Md/GGOM+eUvf2muv/76Ax5/qPdIT+/F\na6+91vz+9783xhjzwQcfmHvvvfeAWt58800zfvx4s2LFCmOMMb/+9a/N5Zdfnnr+fT8bh3ovRCIR\nc/bZZ5vXX3/dGGPM7373O1NdXW22bt2632dg4cKFZu7cuSYWi5lIJGK+9KUvmTfffHO/mjdu3Ggu\nvvji1M9q/fr1ZurUqaa1tdX88Ic/NHfccYdJJBKmvr7enHPOOeaxxx474DUB/YURKjieZVkqKCjY\n73tDhgzR+PHjdfnll+ucc87ROeeco7POOuugj+/pf7nXXHONJKm6ulrHHnus3n333T7V+Oqrr+o3\nv/mNLMuSz+fT1VdfrV/96lf6+te/Lkk6//zzJUkTJ05UNBpVW1ub/H5/6vGrVq3SqFGjdNJJJ0mS\nxo0bp1NOOUX/+Mc/dMYZZxzyeV9//XXdeeedkqTRo0f3eN+DWbZsmUKhkF5//XVJUmdnpyorK1O3\nn3baaZKktrY2rVixQs3NzfrpT3+a+l5NTY0mTZokr9erc889V5I0YcIENTU1peq79NJLUz+/Rx99\nVFLXdNfq1av1hS98QZKUSCTU3t4uSfrc5z6nb37zmzr33HM1depUfe1rX+vxNRQXF+vnP/+5Xnnl\nFW3atEk1NTVqa2uTJL3xxhu68MILVVpaKkm66667JHWt1+uNyZMnq7S0VIsXL9bWrVu1fPlyFRcX\nH/Zx06dPl9frVVVVlYqKijRt2jRJ0qhRo1Ln5pMO9h7pyUUXXaT77rtPf/nLX3T22Wfr9ttvP+j9\nxo8fn/o5fuELX9B9992nxsZGSft/Ng71Xli/fr08Hk/q83XxxRcfdE3U66+/rrvuuktut1tutzu1\n3i+5pk9SagRu3xFay7K0ZcsWvfHGG7r77rtlWZYqKip0wQUX9Pj6gXQjUMHxVq9ererq6v2+53K5\n9Oyzz2r16tV64403tHDhQp1xxhm65557Dnh8UVHRIY/tcu29rsMYI4/HI8uyZPbZIrOzs/OwNSan\nQPb9OhaLpb5OhifLslLP1dPjk/fZ9xgH88laPZ4j+5WQSCR09913p8JQa2urIpFI6vbkuUskEjLG\naPHixSosLJQkNTQ0yO/3q7GxUV6vN3Uuk6/xYPXU1dUpkUgokUjoq1/9ampaLhqNqrm5WZI0d+5c\nXXnllfr73/+uF154Qf/6r/+qF154Yb+f1b527dqlL37xi5o5c6ZOPfVUXXjhhfrrX/8qSXK73fvV\n09LSopaWlh7PSTQaTf172bJl+uEPf6jrr79e559/vo455hi99NJLPT5eknw+335f9+bncrD3SE/v\nxauvvlrTp0/Xa6+9pr/97W/62c9+ppdeeknBYHC/435y3Z0xJvW9fT8bh3ov7Ny584D368FeT/Kz\nk7Rz584D/iOUSCR01llnpYJ18n6DBw9O1XaouoH+xlV+cLSNGzfqiSee0A033LDf92tqanTxxRfr\n2GOP1U033aTrrrtO69atk9T1i/hwQSTpxRdflCStXbtWmzdv1kknnaSKigp9+OGHikQiisViqT/O\nPR37U5/6lP7zP/9TxhhFo1EtWbJEZ599dq9f50knnaSNGzdq1apVkqQPP/xQK1as0JQpU3p83LRp\n0/Tb3/5WUtfi8+XLl/f6OfetOxqNKpFI6Pvf/74eeeSRA+4XCAR08skn69///d8ldQWTa665RkuX\nLu3x+GeddZZ+//vfp45/77336g9/+IM+9alP6bnnnlM4HJbUdcXbHXfcoVgspk9/+tNqa2vTNddc\no/nz52vDhg09/jzXrFmjiooKfeMb39C0adNSP694PK6zzz5bL7/8cup5Fi1apF/+8pfyeDyKx+Op\nP+AVFRWpReovv/xy6tivvfaapk+frlmzZunEE0/Un//8Z8Xj8d6eXtt6ei9effXV+uCDD3TFFVdo\nwYIFamlpSYXSfdXU1KimpkaS9Nvf/lannHKKSkpKDrjfod4L1dXVMsbolVdekSQtXbr0oM9z1lln\n6cUXX1QikVA0GtVtt92mFStW7PeZOfPMM/Xaa69pw4YNkqRXXnlFn//85xWJRDRt2jQ999xzSiQS\nam5uPux7C0g3RqjgKMmFwlLX6JHf79ftt9+u8847b7/7jR8/XhdddJG+8IUvqKioSAUFBanRqenT\np+tHP/pRr0aWtm7dqssuu0yWZemRRx5RWVmZpk6dqtNPP10XXXSRqqqqdMYZZ6TC2uTJk/Xoo4/q\n1ltv3e+y+3vuuUf333+/LrnkEnV2dmratGm6+eabe/26Kyoq9NOf/lQLFixQR0eHLMvSAw88oDFj\nxvQ4PTV//nzddddduuiiizR06FCNHz++188pSd/4xjf0ox/9SJdffrni8biOP/54zZs376D3/fGP\nf6wFCxbokksuUTQa1cUXX6zPf/7zPdZ39dVXa/v27briiitkjNGUKVM0e/ZsuVwu7d69WzNnzpRl\nWRo2bJgefPBBeTwe3X333frOd76TGvFYuHChfD7fIRelT506Vc8995wuvPBCFRYWatKkSaqoqNDm\nzZt17rnn6qOPPkpN7Y4dO1YLFixQYWGhJkyYoIsuuki/+c1vdM899+i+++5TSUmJzj77bFVVVaXq\n/853vqNLLrlEbrdbp512Wmoh/UDo6b34ne98RwsXLtSjjz4ql8ulb37zmxo5cuQBxxg0aJAeffRR\nbd++XRUVFXrooYcO+lyHei94vV49/vjjuvfee/XII4/o+OOP329aOOmb3/ymfvjDH+rSSy9VPB7X\nZz/7WX3mM5/Rli1bUp+Zxx9/XPfdd59uv/321Ijwk08+qaKiIn3rW9/S/PnzU4v4PzkqDfQ3y3xy\nLBYAAO1/FR6AnjHlBwAAYBMjVAAAADYxQgUAAGATgQoAAMAmAhUAAIBNGW2bUFsbyuTTZ1x5eZEa\nG3vuZoze43ymF+czvTif6cX5TC/OZ+9UVQUPeRsjVBnk8dDJN504n+nF+Uwvzmd6cT7Ti/NpH4EK\nAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAA\ngE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACb\nCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABgkyfTBQDIrGXvbT/o94OBAoXCHb0+znknj0hX\nSQCQcxihAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIA\nALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABg\nk6enGzs7O3X33Xdr+/btikajuuWWWzRs2DDddNNNOvrooyVJ11xzjT772c9qyZIlWrx4sTwej265\n5RZNnz59IOoHAADIuB4D1UsvvaSysjI9/PDDampq0mWXXaZbb71V119/vW644YbU/Wpra/XMM8/o\n+eefVyQS0axZszR16lT5fL5+fwEAAACZ1mOguvDCCzVjxgxJkjFGbrdba9as0caNG7V06VKNHj1a\nd999t1atWqXJkyfL5/PJ5/Np1KhRqqmp0aRJkwbkRQAAAGRSj4GquLhYkhQOh3Xbbbdpzpw5ikaj\nuuqqq3TCCSfoySef1OOPP67x48crGAzu97hwOHzYJy8vL5LH47b5EnJbVVXw8HdCr3E+j1wwUNCn\n2z6Jc394nKP04nymF+fTnh4DlSTt3LlTt956q2bNmqVLLrlELS0tKikpkSRdcMEFWrBggU477TS1\ntramHtPa2rpfwDqUxsY2G6XnvqqqoGprQ5kuwzE4n30TCncc9PvBQMEhbzsYzn3PeH+mF+czvTif\nvdNT6OzxKr+6ujrdcMMN+u53v6srr7xSknTjjTdq1apVkqQ33nhDEydO1KRJk/T2228rEokoFApp\nw4YNqq6uTuNLAAAAyF49jlD9/Oc/V0tLi5544gk98cQTkqR58+Zp4cKF8nq9GjRokBYsWKBAIKDZ\ns2dr1qxZMsZo7ty58vv9A/ICAAAAMs0yxphMPXm+Dy8yxJpenM++Wfbe9oN+/0in/M47eUS6SnIk\n3p/pxflML85n7/R5yg8AAACHR6ACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGo\nAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEA\nANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACw\niUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOB\nCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUA\nAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAA\nmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYR\nqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlAB\nAADYRKACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAA\nsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGCT\np6cbOzs7dffdd2v79u2KRqO65ZZbNHbsWM2bN0+WZWncuHGaP3++XC6XlixZosWLF8vj8eiWW27R\n9OnTB+o1AAAAZFSPgeqll15SWVmZHn74YTU1Nemyyy7T+PHjNWfOHJ1xxhn6wQ9+oKVLl+rkk0/W\nM888o+eff16RSESzZs3S1KlT5fP5Bup1AAAAZEyPgerCCy/UjBkzJEnGGLndbq1du1ZTpkyRJJ1z\nzjl67bXX5HK5NHnyZPl8Pvl8Po0aNUo1NTWaNGlS/78CAACADOsxUBUXF0uSwuGwbrvtNs2ZM0c/\n+tGPZFlW6vZQKKRwOKxgMLjf48Lh8GGfvLy8SB6P2079Oa+qKnj4O6HXOJ9HLhgo6NNtn8S5PzzO\nUXpxPtOL82lPj4FKknbu3Klbb71Vs2bN0iWXXKKHH344dVtra6tKSkoUCATU2tq63/f3DViH0tjY\n1seynaGqKqja2lCmy3AMzmffhMIdB/1+MFBwyNsOhnPfM96f6cX5TC/OZ+/0FDp7vMqvrq5ON9xw\ng7773e/qyiuvlCRNmDBBy5cvlyS9+uqrOu200zRp0iS9/fbbikQiCoVC2rBhg6qrq9P4EgAAALJX\njyNUP//5z9XS0qInnnhCTzzxhCTpe9/7nu6//3498sgjOuaYYzRjxgy53W7Nnj1bs2bNkjFGc+fO\nld/vH5AXAAAAkGmWMcZk6snzfXiRIdb04nz2zbL3th/0+0c65XfeySPSVZIj8f5ML85nenE+e6fP\nU34AAAA4PAIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYC\nFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAE4KGOMEsZkugwAyAkEKgAHSCSM/vDaRr34yseKxROZ\nLgcAsh6BCsABVtTs0eZdIbV2xLRldyjT5QBA1iNQAdhPzeZGrdvSpLKAX5K0fmtzhisCgOxHoAKQ\nsqOuVStq9qjA59bnzzlGwyqLtKexXU3hSKZLA4CsRqACIElqDkf0yns7ZMnS9MkjFCzyqfqoMknS\nh4xSAUCPCFQAJElv1dSqM5bQ2ScOUVV5oSRp5OCACnxubdjRzOJ0AOgBgQqAjDHa09SukiKvjhle\nmvq+22Vp7IhSRTsTLE4HgB4QqACopbVTnbGEBpUVHnDbuKO6AhaL0wHg0AhUAFTX3C5JqiwpOOC2\nYJGPxekAcBgEKgCqb+6QJA0qOzBQSWJxOgAcBoEKgOqaO2RZUkXQf9Db912cznY0AHAgAhWQ5+IJ\no4aWiMqDfrndB/+V4HZZGj6oWNHOhMJtnQNcIQBkPwIVkOeaQhEljNGg0oNP9yWVdY9eNYZYRwUA\nn0SgAvJcckH6oNIDr/DbV3n3VjQsTAeAAxGogDxX170gvfIwI1TlQZ8kRqgA4GAIVECeq2/ukMdt\nqTTg6/F+hX6PfF6XmghUAHAAAhWQx9ojMTWFo6osKZDLsnq8r2VZKg/4FWrrZBsaAPgEAhWQxzbv\n6tpO5nDTfUllQb+MpOZwtB+rAoDcQ6AC8tjGXS2SdNAtZw4muTCddVQAsD8CFZDHNu7oDlRHMEIl\ncaUfAHwSgQrIYxt3hlTgc6u4wNOr+5dxpR8AHBSBCshTza1R1bd0qLK0QNZhFqQn+Txd4YtABQD7\nI1ABeWrjziOb7ksqD/rVEY2rIxrrj7IAICcRqIA8tamPgYotaADgQAQqIE9tOsKWCUmpLWhCtE4A\ngCQCFZCndje2K1DoVYGvdwvSk1IjVFzpBwApBCogDyWMUX1zu6rKjmx0SpJKi31yWWILGgDYB4EK\nyENNoYhicaOqXjb03JfLZamk2KemcETGmH6oDgByD4EKyEO1Te2SpEGlRx6opK4r/WJxo3B7ZzrL\nAoCcRaAC8lBdc4ck9WnKT+JKPwD4JAIVkIeSI1R9mfKT9r3Sj0AFABKBCshLtU1dI1S93RT5k/Ze\n6UfrBACQCFRAXqptbpfLslTRHYyOVHGBR16PixEqAOhGoALyUG1TuypK/PK4+/YrwLIslQX8ammN\nKp7gSj8AIFABeSbaGVdzONrn9VNJwSKvjKS2Dq70AwACFZBn7F7hlxQo9EoSrRMAQAQqIO/Y7UGV\nlApUbQQqACBQAXlm7whVmgIVI1QAQKAC8o3dHlRJgSICFQAkEaiAPJOa8rO5hqrI75FlEagAQCJQ\nAXmntqlDfp9bwe4pu75yuSwVF3gJVAAgAhWQV4wxqm1uV1VpoSzLsn28QKFX7ZG44vFEGqoDgNxF\noALySKi9U5Fo3HbLhKS9C9NjaTkeAOQqAhWQR+qa0nOFX1Kg0COJdVQAQKAC8ki6rvBL4ko/AOhC\noALyyN6mnumZ8iumFxUASCJQAXmlrjnNI1TdgaqVQAUgzxGogDxS272GKl0jVEV+j1z0ogIAAhWQ\nT2qb2lUa8MnndafleJZlqbiQXlQAQKAC8kQsnlBDSyRt031JgUKvOqJxRaLxtB4XAHIJgQrIEw2h\niBLGqKo0/YFKkupaOtJ6XADIJQQqIE/sbZmQnvVTSalA1X18AMhHBCogT9SluQdVUipQNTNCBSB/\nEaiAPFGb5i7pScnmnsmWDACQjwhUQJ5IBp50tUxIYoQKAAhUQN6ob+6Q22WpLOBP63ELfG65XVZq\nn0AAyEcEKiBPNIYjKgv45HJZaT2uZVkKFHqZ8gOQ1whUQB5IJIyaQlGVBdM7OpUUKPSqtSOm9kis\nX44PANmOQAXkgZa2qBLGqDyY3vVTScWsowKQ5whUQB5oDEUkSeVpXj+VFCj0SKIXFYD8RaAC8kAq\nUPXXlF+RTxIjVADyF4EKyAP9Hqi6R6hqWZgOIE8RqIA80P+BqmsNVT0jVADyFIEKyAP9Haj8Xrf8\nXjdTfgDyFoEKyAONoa6gk+6mnkmWZWlQWYHqmttljOmX5wCAbEagAvJAYziqYJFXXk//feQrSwrU\nHomrPRLvt+cAgGxFoAIczhijxlBHv7VMSKronk5sCDHtByD/EKgAh2uPxBTtTPTb+qmk8pKupqHJ\n9VoAkE8IVIDDNfTzgvSk1AhVCyNUAPIPgQpwuKYBD1SMUAHIPwQqwOGSI1T9tTFyUgVTfgDyGIEK\ncLjkCFVFP22MnFTGonQAeYxABThcY3hgRqj8XrcChV5GqADkJQIV4HCpLun93DZB6lpH1dASobkn\ngLxDoAIcrjEUkd/nVqHf3e/PVR70K9IZV1sk1u/PBQDZhEAFOFxjKKLygF+WZfX7c6UWpnOlH4A8\nQ6ACHKwzFle4vbPfWyYklbMwHUCe6lWgWrlypWbPni1Jev/99zVt2jTNnj1bs2fP1h//+EdJ0pIl\nS3TFFVdo5syZ+utf/9p/FQPotcYB6kGVVFGSDFSMUAHIL57D3eEXv/iFXnrpJRUWFkqS1q5dq+uv\nv1433HBD6j61tbV65pln9PzzzysSiWjWrFmaOnWqfD5f/1UO4LAGPFB1t2aguSeAfHPYEapRo0Zp\n0aJFqa/XrFmjZcuW6Utf+pLuvvtuhcNhrVq1SpMnT5bP51MwGNSoUaNUU1PTr4UDOLyBDlTl3SNU\njWw/AyDPHHaEasaMGdq2bVvq60mTJumqq67SCSecoCeffFKPP/64xo8fr2AwmLpPcXGxwuHwYZ+8\nvLxIHk9adbg1AAAgAElEQVT/X3mUzaqqgoe/E3qN87m/TrNLknT0iLJDnptg4NANP3u67ZOqqoIq\nLSuSJIUjMX4WB8E5SS/OZ3pxPu05bKD6pAsuuEAlJSWpfy9YsECnnXaaWltbU/dpbW3dL2AdSmNj\n25E+vaNUVQVVWxvKdBmOwfk80NadLZIkl0kc8tyEwgcfTQoGCg5528Ekjx8o9GpXfRs/i0/g/Zle\nnM/04nz2Tk+h84iv8rvxxhu1atUqSdIbb7yhiRMnatKkSXr77bcViUQUCoW0YcMGVVdX971iAGmR\n7JI+EE09kypK/Gps6aC5J4C8csQjVPfee68WLFggr9erQYMGacGCBQoEApo9e7ZmzZolY4zmzp0r\nv3/gfoEDOLimUERul6Vg8cBdIFIRLNCW3WG1dsQUKPQO2PMCQCb1KlCNHDlSS5YskSRNnDhRixcv\nPuA+M2fO1MyZM9NbHQBbGkIRlQV8cg1AU8+k5ML0hpYOAhWAvEFjT8ChEgmj5nBU5cHeLyxPh4ru\nKwrZJBlAPiFQAQ7V3BpVwhiVDVDLhKTk9jM09wSQTwhUgEM1dS9IrxjoQBXcO+UHAPmCQAU4VLJb\nedkAXuEnSeXJDZIZoQKQRwhUgEOlRqhKBjhQBRihApB/CFSAQzWEugLNQI9QeT0ulRR5GaECkFcI\nVIBDNYUys4ZK6pr2awhFaO4JIG8QqACHSo4QlQ7wCJXUFeI6YwmF2zsH/LkBIBMIVIBDNYWjChR6\n5fUM/Me8IsjCdAD5hUAFOFRTODLg66eS9nZLJ1AByA8EKsCB2iMxdUTjKgsO3B5++0r1ogpxpR+A\n/ECgAhyouTUqaeCv8EuqoBcVgDxDoAIcKHmFX8am/OiWDiDPEKgAB0o29SwPZGbKrzzolyVGqADk\nDwIV4EBN4cxO+XncLpUU+1iUDiBveDJdAIC+Wfbe9kPetvrjeknShp3Nam6LDlRJ+ykP+rWttlXG\nGFmWlZEaAGCgMEIFOFB7JCZJKvJn7v9MFSUFisUTCtHcE0AeIFABDtTWHagKfJkLVMmF6Y1M+wHI\nAwQqwIHaIzEV+t1yuTI31VZRQi8qAPmDQAU4jDFGbR0xFWZwuk/au/0MC9MB5AMCFeAwnbGE4gmT\n0fVT0j69qBihApAHCFSAwyTXT2V8hKp7yo9eVADyAYEKcJi2ju4r/AoyG6jKAl3NPZnyA5APCFSA\nw7RnyQiVx+1SScCnRqb8AOQBAhXgMNnQgyqpIligxlBECWMyXQoA9CsCFeAwqTVUGZ7yk6SKoF+x\nuFGojeaeAJyNQAU4THtH9oxQlacWpjPtB8DZCFSAw7RFYrIsqcDnznQp9KICkDcIVIDDtEfiKvR7\nsmJD4lS39BZGqAA4G4EKcJBkl/RsmO6T9o5Q0YsKgNMRqAAHiXQmlDAm4y0TkvZ2SydQAXA2AhXg\nIKmWCVlwhZ8klQV9siypkSk/AA5HoAIcJNklPVtGqNwul8oCfkaoADgegQpwkGxq6plUHvTT3BOA\n4xGoAAfJlo2R91UR9CueMAq1RjNdCgD0GwIV4CDZtoZKksqTvaiY9gPgYAQqwEGybQ2VtG8vKgIV\nAOciUAEO0h6JyWVZ8nuz56NdUZIcoeJKPwDOlT2/dQHY1haJqaggO7qkJyV7UTUyQgXAwQhUgEMY\nY9QeianQn/k9/PZVkWruyQgVAOciUAEO0RGNy5jsapkgSWUBv1yWxaJ0AI5GoAIcItUyIYuu8JMk\nl8tSacDHlB8ARyNQAQ7R3pF9TT2TKkr8agpHlEjQ3BOAMxGoAIfIxqaeSeXBAsUTRs009wTgUAQq\nwCGysalnUnJheiPrqAA4FIEKcIhsbOqZlOpF1cKVfgCciUAFOEQ2boyctLd1AiNUAJyJQAU4RGtH\nTB63Ja8n+z7W5SXJKT9GqAA4U/b95gXQJ+2RmIr82dUlPakiuUEyrRMAOBSBCnCAeCKhjmhcRQXe\nTJdyUKXFPrldFovSATgWgQpwgOSC9Gy8wk/qau5ZFvCx/QwAxyJQAQ7QlsUtE5LKSwrUFIoqnkhk\nuhQASDsCFeAAbVncJT2psqRACWPUFKK5JwDnIVABDpDtU35SV6CSpHp6UQFwIAIV4AB7A1V2LkqX\npMru1gkEKgBORKACHKAti5t6JlWWdo9QNROoADgPgQpwgLaOTlmWVOB3Z7qUQ2LKD4CTEagAB2jr\niKnQ75ErC5t6JlUQqAA4GIEKyHHGGLV1d0nPZoV+j4oLPEz5AXAkAhWQ4zqicRkjFWfxFX5JlSUF\nqm/pkDEm06UAQFoRqIAclwtX+CVVlhYo2plQuL0z06UAQFoRqIAcl7zCrzBHRqgk1lEBcB4CFZDj\nWju6RnuKs3wNlbTPwvRmNkkG4CwEKiDHtedAl/SkQaWMUAFwJgIVkONyYduZJJp7AnAqAhWQ41pz\noEt6EmuoADgVgQrIce0dMfm9brnd2f9xDhZ55fW4CFQAHCf7fwMD6FFrR2dOTPdJkmVZqigpYMoP\ngOMQqIAcFo3FFYubnAlUkjSoxK9we6ci0XimSwGAtCFQATkstSA9B9ZPJVVypR8AByJQATksl67w\nS0ouTG8gUAFwEAIVkMNyMVAlm3vWEagAOAiBCshhbamWCdm/j1/SIHpRAXAgAhWQw9q6t53JpREq\nelEBcCICFZDDklN+xTkUqMqCflmW1MAIFQAHIVABOawtEpPHbcnryZ2PssftUlnAzwgVAEfJnd/C\nAA7Q1hFTod8jy7IyXcoRqSwtUGMoqngikelSACAtCFRAjoonEuqIxlVckDsL0pMGlRQoYYwaQ5FM\nlwIAaUGgAnJUe0dXp/FcWpCelGzu2dBCoALgDAQqIEe1Rbqu8CvMoS7pScleVLROAOAUBCogR7Xm\n4BV+SZU09wTgMAQqIEe152CX9KRKmnsCcBgCFZCjWnM4UA1iPz8ADkOgAnJULm47k+T3uRUo9NKL\nCoBjEKiAHNXa3inLkgr87kyX0icVJX7VN3fIGJPpUgDANgIVkKNaOzpVXOCVK8eaeiZVlRUqGkuo\npTWa6VIAwDYCFZCDOmNxtUfiChTm3nRf0uCyQknSnqb2DFcCAPYRqIAcVN/dELO4MPcWpCdVlXcH\nqkYCFYDcR6ACclCy3UAuj1BVdY9Q1TJCBcABCFRADkpeHZfLgYopPwBOQqACclBdc1cIycWNkZMq\nSvxyuyzVMuUHwAF6tQBj5cqV+vGPf6xnnnlGmzdv1rx582RZlsaNG6f58+fL5XJpyZIlWrx4sTwe\nj2655RZNnz69v2sH8lY2Tvkte2/7ET+mqMCj7XWtqceed/KIdJcFAAPisCNUv/jFL3TPPfcoEula\nBPvAAw9ozpw5+vWvfy1jjJYuXara2lo988wzWrx4sZ5++mk98sgjika5FBroL3XNHbKUm13S9xUs\n8qojGldnLJHpUgDAlsMGqlGjRmnRokWpr9euXaspU6ZIks455xy9/vrrWrVqlSZPniyfz6dgMKhR\no0appqam/6oG8lx9S4eKCjxyuXKzB1VSsMgnSQq18R8wALntsIFqxowZ8nj2/i/YGCOru5FgcXGx\nQqGQwuGwgsFg6j7FxcUKh8P9UC6AWDyhxlBExVk03ddXwe7XEGrrzHAlAGDPEc8XuFx7M1hra6tK\nSkoUCATU2tq63/f3DViHUl5eJI8nN7fNSJeqqsOfJ/RePpzPXfWtMkYqCxYoGCjo1+fq7+NXVRZL\nqlU0bhQMFDj+5+f01zfQOJ/pxfm054gD1YQJE7R8+XKdccYZevXVV3XmmWdq0qRJevTRRxWJRBSN\nRrVhwwZVV1cf9liNjW19KtopqqqCqq0NZboMx8iX87l+c6Mkye91KRTuv82Fg4GCfj2+JHm6Zyzr\nm9oUCnc4+ueXL+/PgcL5TC/OZ+/0FDqPOFDdeeed+v73v69HHnlExxxzjGbMmCG3263Zs2dr1qxZ\nMsZo7ty58vv9tooGcHCpK/xyfEG6tPcqRab8AOS6Xv1GHjlypJYsWSJJGjNmjJ599tkD7jNz5kzN\nnDkzvdUBOECqB5UD1lB5PS4V+t0EKgA5j8aeQI5xQpf0fQUKfWrt6FQiYTJdCgD0GYEKyDHJKb9c\n3hh5X8Eir4yRwu2MUgHIXQQqIMfUNXeoNOCT2+WMj2+wiHVUAHKfM34jA3kikTBqDEU0qLR/2xkM\npFRzz3aaewLIXQQqIIc0hSOKJ4wqS5wUqLpGqMKMUAHIYQQqIIfUda+fGlRamOFK0ocpPwBOQKAC\nckhyQXqlg6b8/F63vG4X+/kByGkEKiCHJHtQOWkNlWVZChR5FW7vlDG0TgCQmwhUQA5J9qBy0hoq\nqWvaLxY3amlllApAbiJQATmkzoFTftLedVR7mtozXAkA9A2BCsgh9c0dChZ55fe6M11KWgULu1on\n7GkkUAHITQQqIEckjFF9S4ej1k8lBbpHqGoZoQKQowhUQI5oaY0qFndWD6okpvwA5DoCFZAjnLp+\nSpKKC7yyLKmWKT8AOYpABeSIegc29UxyuSwFCr2MUAHIWQQqIEcke1A5ccpPkkqKfAq1daqtg47p\nAHIPgQrIEfUtEUnOauq5r9JA15V+O+rbMlwJABw5AhWQI+q6p8OcuIZKkkqLuwLVzrrWDFcCAEeO\nQAXkiF0NbSot9qnQ78l0Kf2ipHuEaicjVAByEIEKyAHRzrjqmzs0tKIo06X0m9JivyRpRz0jVABy\nD4EKyAG7G9tlJA2rdG6gKvC5FSzyahcjVAByEIEKyAG7GrpChpNHqCRpWGWxapvb1RmLZ7oUADgi\nBCogB+zsngYb6uARKkkaXlkkY6RdDfSjApBbCFRADkiNUFUWZ7iS/jWs+/XtZB0VgBxDoAJywK76\nNnncLg1yaFPPpGGDukbgdtA6AUCOIVABWc4Yo50NbRpSXiiXy8p0Of1qeGqEioXpAHILgQrIck3h\nqCLRuOPXT0lSedAvv9fNlB+AnEOgArJcvlzhJ0mWZWloZZF2NbQrkTCZLgcAeo1ABWS5fApUUteV\nfrF4IrUZNADkAgIVkOWS01/DHH6FX1LydbJJMoBcQqACsly+jVDROgFALiJQAVluV32bSop9Kipw\n5qbInzS8u3XCzjpGqADkDgIVkMWSmyIPy5PRKUmqKiuU22UxQgUgpxCogCy2p3tT5HxomZDkcbs0\nuLxQO+rbZAxX+gHIDQQqIIvl2/qppOGVxWqPxNTcGs10KQDQKwQqIIvtvcIvvwJVckRuJ1vQAMgR\nBCogi+XzCJUk7WxgYTqA3ECgArLYroY2edyWBpUWZrqUATWMK/0A5BgCFZCljDHa1dCmweVFjt8U\n+ZOGVSSbezLlByA3EKiALNXcGlV7JJ5XLROS/D63Kkv8tE4AkDMIVECW2tW99Uo+tUzY14iqgJrC\nUYXbOzNdCgAcFoEKyFL5uiA96ajBAUnS5t2hDFcCAIeXH3tZIO8te297Wo5z3skj0nKc3tiZ5yNU\no4cEJUlbd4c18eiKDFcDAD1jhArIUjvqwpKUl2uoJGnUkK4Rqi2MUAHIAQQqIAsZY7RpV0iDywtV\nVODNdDkZMaisUAU+N1N+AHICgQrIQnua2tXaEdMxw0oyXUrGuCxLowYHtKuhTZHOeKbLAYAeEaiA\nLLRxR4sk6eg8DlSSNGpIUMZI22rDmS4FAHpEoAKy0Mc7uwJVPo9QSV2BSpK27CZQAchuBCogC23c\n2dI15dW9MDtfsTAdQK4gUAFZJhZPaPOusEYOLpbP6850ORk1fFCx3C6LQAUg6xGogCyzvbZVsXgi\n76f7JMnjdmlEVbG21bYqnkhkuhwAOCQCFZBlkuunxhCoJHWto+qMJVJb8QBANiJQAVlmYzJQDSdQ\nSXs7prMwHUA2I1ABWWbjzhb5vW4NryzOdClZgT39AOQCAhWQRdojMe2obdXRQ4NyuaxMl5MVjhoc\nkCWu9AOQ3QhUQBbZsjskI6b79lXo92hweaG27gnLGJPpcgDgoAhUQBahoefBjRoSVGtHTPUtHZku\nBQAOikAFZJG9W84EM1xJdtnb4JOF6QCyE4EKyCIbd7aopMirypKCTJeSVfZuQcM6KgDZiUAFZInm\n1qjqWyIaM6xElsWC9H2xpx+AbEegArIE/acOrbTYp9KAj9YJALIWgQrIEsn1UyxIP7gxQ0vUGIqo\nMRTJdCkAcAACFZAl1m1plCXpaALVQY0dWSpJ+mh7c4YrAYADEaiALNAUjujDbc0aN7JUgUJvpsvJ\nSmNHdAWqD7c1ZbgSADgQgQrIAu+sr5WRdOr4wZkuJWsdPTQot8vSR9sYoQKQfQhUQBZ4q2aPJOnU\n6qoMV5K9fF63jh4a1JbdYUWi8UyXAwD7IVABGdbSGtW6rU0aO6JUFfSf6tHYkaVKGJO6IhIAsgWB\nCsiwd9bXyhjptOMYnTqcsSPKJEkfsjAdQJYhUAEZ9ta67um+41g/dTipK/1YRwUgyxCogAwKtUVV\ns7lJY4aVqLKU6b7DKS32aXBZoTZsb1bCmEyXAwApBCogg979sE4JY3TaeKb7emvsyFK1RWLaUdea\n6VIAIIVABWRQ8uq+05ju6zWm/QBkI0+mCwCyUUtrVKs/rldDS0SVJQWqKi/UkPJCGWPStnFxuL1T\nH2xu1OihQVWVFablmPlg3Ii9HdPPmzwiw9UAQBcCFbCPUFtUqzbU6+MdLTJGsiypMRRJbXfy91U7\ndf1nj9fxo8ttP9d7H9YpnjBc3XeEhg0qVpHfwwgVgKxCoAK6fbCpUW+t2yNjpNKATycdW6lRQ4Jq\nCke0p6ldexratWV3WD/+zbu66MzRumzaGHncfZs1jycSWvr2NklM9x0pl2Xp2BGlWv1xvZpboyot\n9mW6JAAgUAGStLuhTW/V7FGB363Txg/W6KFBubqn9ipKClRRUqDxo8p11OCA/vWltfrjm5v1/qYG\n3fT5iRpSUXTEz/enf2zV5t0hnTVxaJ8en+/GjuwKVB9ta6LdBICswKJ05L2OaEyvrtwpWdK5Jw/X\nmGElqTD1SccOL9W910/R1BOGatOukO795Qq9u772iJ5vZ32rXvzbRpUU+3TNP41Lx0vIO+NSGyUz\n7QcgOxCokNeMMXpt1S61R2I6edwgDS4//GhRod+jGy+eoK9fMkHGGC16YbV+9/ommV70RUoYo3//\nnxrF4gl9+YJqBQq96XgZeWfM8JKujZLpmA4gSxCokNfWbmrU9rpWDR9UpBPGVBzRY8+cOFR3f/lU\nVZb49eKrH+upl9Yq0tnzpr1/eXubPtrWrNOOq9Jp45mq6iu/161RQ4LavCuk9kgs0+UAAIEK+au2\nqV3vrq9Vod+tqScO61M7hFFDgvr+V07X2JGl+scHe/TD/3hL731Ud9DRqj1N7XrulQ0qLvDoS585\nLh0vIa9NHFOueMKoZktjpksBABalIz8ZY7Tig64r+qZNGq5Cf98/CiXFPn336sn6zZ/Xa9l7O/TY\nc6s0siqgz501WsePLtfKDXV6e12t3t/UoFjc6CszxnNlWhqcMKZSv399s9ZsbNDkcbSeAJBZBCrk\npd0N7apr7tBRgwMaWmn/Kjuvx6VrLxyvT586Un98c7OWv79bT720dr/7HDU4oE9NGqYzJw6x/XyQ\njhleogKfW2s+rs90KQBAoEJ+WrOxQZJ0wjFHtm7qcEZWBfT1SybqsmnH6P+Wb9HO+ladeEylTjmu\nSkN6seAdvedxuzTh6Aq9s75WuxvbOL8AMopAhbzT0NKhHXWtGlJe2G9bvgwuK9TsGayT6m8njOkK\nVGs+btCQUwlUADKHRenIO2u7R6cmpnl0CgMveWVm8mcKAJlCoEJeCbd1atOukMoCPo0YVJzpcmDT\noLJCDa0o0gebGxWLJzJdDoA8RqBCXlm7qUHGdK2d6kubBGSfE8ZUKNIZp2s6gIwiUCFvdERj+mhb\ns4oLPDp6aEmmy0GaJC8sWLORq/0AZA6BCnlj3ZYmxRNGE8ZUyOVidMopjjuqXB63pbUfs44KQOYQ\nqJAXjDHasL1FHrelsd0b68IZ/D63qo8q05Y9YTWHI5kuB0CeIlAhL9Q2tSvc3qlRQ4LyenjbO80J\nYyol7e0vBgADrc99qC6//HIFAgFJ0siRI3XzzTdr3rx5sixL48aN0/z58+Vy8YcL2eHjHSFJXd21\n4TwnjKnQkr92tU+YeuKwTJcDIA/1KVBFIhEZY/TMM8+kvnfzzTdrzpw5OuOMM/SDH/xAS5cu1QUX\nXJC2QoG+isUT2rwrpAKfW0MraP7oRCOqilUW8GnNxgbFEwm5+c8cgAHWp0BVU1Oj9vZ23XDDDYrF\nYrr99tu1du1aTZkyRZJ0zjnn6LXXXiNQISus2digSGdcx48uZzF6llv23vY+P3ZweZHWb23Skr9+\npGvOr05jVQBweH0KVAUFBbrxxht11VVXadOmTfra174mY0yqr09xcbFCoVBaCwX66s21uyRJY5ju\nc7Sjhwa1fmuTNu/idw+AgdenQDVmzBiNHj1almVpzJgxKisr09q1a1O3t7a2qqTk8H+8ysuL5PG4\n+1KCY1RVBTNdgqN88ny2dXTqvY/qVRbw6+jhpbabeWbTzysYKHDEc6RLcbFfhat2asvusCoqiuV2\nZ9+0Xza9f5yA85lenE97+hSonnvuOa1fv1733nuvdu/erXA4rKlTp2r58uU644wz9Oqrr+rMM888\n7HEaG9v68vSOUVUVVG0t/5tOl4Odz9dW71S0M67jR5cp3Gr/kvps+nmFwh39evxgoKDfnyPdRg0J\naN2WJv3tna2aeHR27dXI5z29OJ/pxfnsnZ5CZ5/+C3fllVcqFArpmmuu0dy5c7Vw4UJ973vf06JF\ni/TFL35RnZ2dmjFjRp8LBtLlzfd3S5LGDGO6Lx8cPbTrl92KD/ZkuBIA+aZPI1Q+n08/+clPDvj+\ns88+a7sgIF2awxG9v6lBxwwvUUmxL9PlYABUlReq0O/WO+tr9eXPVMuThdN+AJyJ3zZwrOUf7JEx\n0pkThmS6FAwQl2Vp1JCgwu2dqtnSmOlyAOQRAhUc6611e2RZ0unHE6jyCdN+ADKBQAVHammNasO2\nZo0dUapSpvvyyuDyQpUGfHpnfa1i8USmywGQJwhUcKSVH9XJSJo8rirTpWCAWZal048brNaOmD7Y\nzLQfgIFBoIIjvfthnSRp8rhBGa4EmXD68YMlMe0HYOAQqOA4kc643t/UoGGVRRrC3n156dgRpSoP\n+vX2+lpFOuOZLgdAHuhT2wQgm72/sUHRWCKrp/vs7FmHw3t15Q6NrCrW6o8b9Oyf1unYEaV9Os55\nJ49Ic2UAnIoRKjgO032QpLEju0LU+q1NGa4EQD4gUMFREgmjlRvqVFrsYzPkPBcs8mn4oCLVNnWo\nMWR/2yEA6AmBCo7y0fZmhdo6ddLYQXLZ3AgZua/6qDJJ0oeMUgHoZwQqOMq7H9ZKkk6pZroP0siq\ngAr9bm3Y0UJPKgD9ikAFxzDG6N0P6+T3unX86PJMl4Ms4HJZGjuiVJ2xhDbvCmW6HAAORqCCY2zd\nHdKexnadcEyFvB53pstBlhjXPe3H4nQA/YlABcdYvnaXJK7uw/4ChV6NGFTM4nQA/YpABcdY8f5u\nWZY06VgCFfY37ihaKADoXwQqOEKoLaqazQ0aO6JUgUJvpstBlulanO7RxztaFKVzOoB+QKCCI6z5\nuEHGSJOOrcx0KchCLpel40eXqTOW0LotjFIBSD8CFRxh5Yau7ugnMd2HQ6geVSavx6UPNjfSQgFA\n2hGokPPiiYTWfNygqvJCjagqznQ5yFI+j1vjR5WpIxrXR9uaM10OAIdhc2RkvcNtJLy7oU1tkZiO\nGVGqV1buyGgtyG7HH12u9zc1au3GBlUfVSaXi276ANKDESrkvG21rZKk0cPYuw89K/B5NO6oUrV2\nxLRxZ0umywHgIAQq5LzttWG5XZZGVAUyXQpywMSjK2RZ0uqPG5QwJtPlAHAIAhVyWritU03hqIZW\nFsnr4e2Mwysu9OrY4aVqaY1q6+5wpssB4BD8BUJO21bb9QdxJIvRcQQmjqmQJK3+uF6GUSoAaUCg\nQk7b3r1+iuk+HInSgE9jhgXV0BLRxztYSwXAPgIVclZnLKGdDW0qC/jojo4jNrm6Sm6XpXfX16kz\nRl8qAPYQqJCzdjW0KZEwGsnoFPogUOjVhKPL1RaJae3GhkyXAyDHEaiQs7Z3r58aMZj1U+ibE46p\nVKHfrbUbG9Ta0ZnpcgDkMAIVcpIxRlv3tMrvdauqtDDT5SBHeT0uTR5XpXjC6N31dZkuB0AOI1Ah\nJzW0RNQeiWlEVTHdrmHLsSNKVFHi18c7WlTb1J7pcgDkKAIVctLWPV3TfUcNZv0U7LEsS6ePHyxJ\nWvHBHpp9AugTAhVy0tY9YbksS8MHsX4K9g2pKNLRw4Kqa+7Qmo9ZoA7gyBGokHPC7Z1qDEXojo60\nOuP4ISrye7TyozrVMfUH4Ajx1wg5Z1tquo/RKaSP3+fWpyYNkzHS31btpDcVgCNCoELO2bvdDOun\nkF5DK4s0cUy5Qm2dWlGzJ9PlAMghBCrklGgsrl31baoo8auY7ujoByePG6SKEr8+2tast9cRqgD0\nDoEKOWVnXZsShtEp9B+3y6VPTRomt8vS//vjB9q8K5TpkgDkAAIVcgrtEjAQygJ+nX3iUHVE4vrJ\nb9/T9rrWTJcEIMsRqJAzEgmjbbVhFfk9qijxZ7ocONyYYSX6ykXjFW7v1I8Xv6s9jW2ZLglAFiNQ\nIWfUNrUr2pnQyMEBWRbd0dH/zjlpuK4+f5yaw1E9/Jv31NDSkemSAGQpAhVyBtN9yITPnH6ULps2\nRvUtHXrwP9/Rhh3NmS4JQBYiUCEnGGO0eVdIXo9LQyvZDBkD65Kzj+4KVc0deuCZd/S71zcpkWCL\nGgB7EaiQE+qaOtTaEdOowQG5XbxtMbAsy9Lnp47Rd6+ZrNKATy+++rEe+s27qm9mChBAF/4yISds\n3DUqgnQAABjcSURBVNUiSTp6WDDDlSCfjR9drn++YYpOra7S+q1Nuutf39Qv/6dGO+u5ChDId55M\nFwAcTqJ7us/ndWlYJdvNILMChV594/IT9PqaXfrda5v06sodenXlDp10bKWmnzJSx48uk9fjznSZ\nAAYYgQpZb09ju9ojcY0dWSqXi6v7kHmWZWnqicN01sShevfDOv3fP7Zo5YZ6rdxQL5/XpQmjKzTp\n2EpNHFOhQaUFXJUK5AECFbLepp1dnaqPHsp0H7KLy2Xp1OOqdOpxVdqwvVkravZo1YZ6vfdRnd77\nqE6SVBbwaeyIUp103BANLfNr9JCgPG5WWwBOQ6BCVosnEtqyO6QCn1tDK4oyXQ5wSMeOKNWxI0p1\n9fnjtKexTas21Gvd1iZ9tK1Zb62r1VvraiVJXo9LY4YGdezIUo39/+3deXCT550H8O8r6dV92pJ8\nyzYGAjYQ7gABmhQIaeolWwilJcv+sU0m6W7T6THTdDqlzQyZlP2jx7QwzbRNurM7mSG0TZspzULI\nEgIUYgMJh20MxCc+JZ86ret99w/ZCk4wJbZsyfb3M6PB9vu+0vP+eGz99JzD15j16jSXnogmigkV\nZbT61gEMReKYX2Rldx9NG06bHptX6rF5ZRFkWUbP4BDc3jA+qO9GQ9sgbrYP4kbbx+tZ5WTpMbfA\njLkFFswttCIvWw8FuwmJphUmVJTRquu6AXB2H01fgiDAYdWhfJ4TFS4rACAUjqGx04uGtkF81D6I\nho5B/P1qF/5+tQsAoNeoUFZgQWmeCYUOIwocBjhtOi4ZQpTBmFBRxorFJXxwwwOdRgmnjYt50syh\n06hQUZKFipIsAIl9Kjt6AviofTD5uNrYi6uNvclrVEoBedkGFDgMKLAbUOAwotBuQJZFy9YsogzA\nhIoyVl1zHwJDMSwotvINg2Y0hUJAodOIQqcRDy0rAAB4AxG0un1o9wQSjx4/2nsCyS2YRmjUykSC\nZTdgboEFy+Y7YNSJ6bgNolmNCRVlrHO1w919ueY0l4Ro6pkNaiwqzcai0uzkzyRZRs9ACO2eANp6\nAmj3JJKsli4fGju8OH2lE/997DoWFNuwaoETK+5zwKBlckU0FZhQUUbyBiK4UO9GXrYeDqs23cUh\nyggKQYDTpofTpsey+Y7kz2NxCV29QVxt7MX5ejdqm/pQ29SHQ/93E4+udmHLqiLoNPxzTzSZ+BtG\nGen0lQ7EJRkPLyvgoohE/4BKqUh2GX5hTTHcAyFU13Xj+IVb+MuZJrxzsQ2Va4vx8PICruJONEk4\nZYQyjiTJOPlhB9SiAusW5aW7OETTjtOqQ+W6Eux/Zi2+tKEUcUnCoRMfYe8r1Wjs8Ka7eEQzEhMq\nyjhXGnvR6x3CmvJc6LVsRCUaL51GhX96sBT/+ew6bFlZBE9/CC/9z0X89WwzJElOd/GIZhS+W1HG\nefeDdgDA55cXpLkkNNudvNSesucyGbXw+YdS9nyfVZ5dj82rCvH3K13486lGnL3aiQeX5I17RuBD\nS/n7SXQ7tlBRRnEPhFDT2IuyAjNcOVzMkyiV8rINqHywBK4cI7r7Q/jb2RZ09wXTXSyiGYEJFWWU\n9z5shwzg4WX89Es0GbRqJT63NB8PlOcgEovj+PlbuNk2kO5iEU17TKgoY0RjcZy+0gmjTsSqBc50\nF4doxhIEAfe5rNiysggqlQLnarpxod4NSea4KqLxYkJFGeN8vRv+UBQbluRxajfRFMjN1uOxNcWw\nGNSoa+7Hux+0IxKLp7tYRNMSEyrKCLG4hL+ebYFCEPA5dvcRTRmzQY0vrHEh365HuyeAo++3wheM\npLtYRNMOEyrKCKcvd6C7L4iNS/PhtHIjZKKppBaV+PzyQiwotmLAH8Fb51o5WJ3oM2JCRWkXCsfw\n5pkmaNRKPL6+NN3FIZqVFAoBqxfmYM1tg9Vv3BqAzHFVRPeECRWl3f9WtcIbjOILD7hgMajTXRyi\nWW3+bYPV36/txunLnYhEOa6K6B9hQkVp1e8L4+3qVliMamxd5Up3cYgIicHqletK4LBq0dzlw5Gz\nLfD0h9JdLKKMxoSK0uovpxsRiUn40oY50Kg5s48oUxh1IraudmFJWTb8oSiOVrfiw5s9iMakdBeN\nKCMxoaK0afP4ceZqJwrsBqxfzE2QiTKNQiFg6Tw7HlldBJ1GhasNvfjzqUZcb+1HLM7Eiuh2TKgo\nLcKROH53pA6yDOx8uAwKhZDuIhHRGHKz9Hh8fSmWlGUjFpdQVefG3t9V4cyVToTCsXQXjygjcHNk\n+pRUbQg71uapsizjlbeuobXbj43352HxnOyUvB4RTR5RpcDSeXbc57LiSkMvbtwawKtvXcN/Ha1H\nocOA0jwz8u0GiKqp+Zx++2bT3KiZMgETKppyfz3bjAv1bswrtOBfHrkPgsDWKaLpQqdR4YHyHJSX\n2NDU4UVTpw+t3X60dvshADAb1cg2a5Ft1sJqUsOoE2HQimyFphmPCRVNqYvXPfjL6SZkmzX4jy8t\nhkrJXmei6cikV2PJXDsWl2VjwB9GU6cP7v4Q+rxDGPRH0NjhTZ4rCIBBK8KoG37oE/9aDGpYjWoo\n+XeAZgAmVDRlmjq9+N2ROqhFBZ7bsQRmrjlFNO0JggCbSQubSQsAkGQZvkAEvd4wvIEI/KEofMEo\n/KEouu6w+rogAGa9GjaTBnaLFjlZetjMGijYck3TDBMqmnSSJONYdSveONWIuCTj3/95EVw5pnQX\ni4gmgUIQYDFqYDFqPnUsFpcQCEWTSdZgIII+bxgDvjAGAxE0d/kAJMZrOW065GcbUOg0wKTnhy/K\nfEyoaFJ5BkJ45UgdbrQNwmxQ498eW4AlZfZ0F4uI0kClVNwx2ZJlGf5QFJ6BELr6QujuC6LdE0C7\nJ4Dz9YDVqEahwwhXjhHZFi3HXVJGYkJFKSdJMtwDIbx+4iZOXupAOBLHivsc+Net9/GTJhF9iiAI\nMOnVMOnVmJNvAQAEhqJo9wTQ5vajszeImqY+1DT1wagTUZJnQsUcO9RKMLmijMGEigAkPiH6QlH0\nDAyh3eNHOCohHI0jFpMgKAQohERTvkIhDP/78R+yaExCNCYhEpPgC0TQ0RNAZHg1Zb1GhacqF2Jt\nRS7/8BHRPTNoRcwvsmJ+kRWxuITO3iCaO7245fajprEPNY19sBjUKMkz4b4iK/KyDekuMs1yTKhm\noXAkjla3D02dPtzq9qGrL4iuviACQ6lZoM+gVaE034zH1hRjgcsKUcUtZYho/FRKBYqcRhQ5jYjF\npUTLlSeA5k4vLn/Ui8sf9cLlNGJ1eQ5WL3DCbtWlu8g0CzGhmuGiMQltHj+aOxPrxTR3edHeE4As\nf3yOUiHAYdVhXqEVTpsOnoEQNKISarUSolKALCdm7kiSDEnG8L+J74HEAFK1qISoUkCnVsFsECEI\nAhfsJKKUUykVKM41YdFcB/oGgrjl9sMXiKCmqQ9/PNmAP55sQFm+GasX5mDVQiesdxgcTzQZmFDN\nIIOBCNrcftxy+9Hm8aPN7UdHbwCx+MfZk1pUYG6BBSW5ZpTmmVCca4LDqhu1HlSqVkonIppMokqB\nOflmPLS0AP5QFB/c8KD6WjeutfSjocOLQyduorwkC+sqcrFsvh1aNd/yaPKwdk1DkWgcnb3BRNI0\nnDjdcvvhDUZHnadWJZrJS3LNKMkzoTTPjLxsPZQKLqJHRDOLUSdi4/352Hh/PgYDEVyod+NcbRdq\nm/pQ29QHjajE8vl2rF2Ui/LiLK7cTiknyPLtnT9Ty+PxpeulM4LDYUrG4E6tQiNTift9YfT7Emu1\n9Psj8AUi+OR/mlEnwmrSwGbSIGv4X6NenFWL492+txdNHOOZWoxnat1rPL2BxKrtjR1e+EOJD506\njRKleWbMyTcjy6xNnptJewJOdU/B3eKZSXFJN4dj7DUU2UKVQSRJRq93CO7+UPIRjsZHnSOqFHDY\ndLAaNbCZ1IkkyqiBWuTAbyKiTzIb1Fg6z47752bDMzCExo5BNHf5UNfcj7rmfmSZNSjLt6A0n4sN\n08QwoUozXzCCq429OHWpY9RyA0Bitlye3YQskyaZOOm1Ki4/QET0GQmCAKdNB6dNh1ULnWj3BNDQ\n7kWbx4/z9W5cvO5GQ7sXDy7Ow+I5WRwaQZ8ZE6o0GIrE8MENDy5cv4rLNz3J7juDVoWSPBNysvRw\nWnUw6MS0lpOIaCZSKhRw5ZjgyjEhFI6hqcOLj9oHcfG6Bxeve2AxqLF2US7WVuSi0GHgh1i6J0yo\npogkyahv7cfZmi5cvO5JduWV5ZuxbL4D4WgcVqOav7hERFNIp1GhvDQLC0tsKM0z48yVTlTVdeNo\nVSuOVrUiL1uPVQucWL0wB/l2Lh5KY+Og9EnW3hPA2ZpOvF/bjX5fGABgt2ixblEuvrixDOJw+LlU\nwcRx0G9qMZ6pxXim1mTEc2TwdTQm4fJHPai61o0rDb2IDg/FcNp0WFhsw8JiGxa4bDAbxreVliTL\nGPRH4BkIjXp4AxH4QzH4Q1F4AxFIw+8PI5+zVUpFYo1AMbH2n0ZUQj28DqBaHDk2/LVKCYVCGF5z\nUIYMIBaXEY3FEztbRKXhXS7iiaEmgoBAKJr4PiohGpcgDL+mw6qDRlTCatLAadUhZ7jrNCdLP2rJ\nndmAg9KnmDcQQdW1bpyt6ULL8O7pOo0KG+/Px7pFuZhXaIEgCHDYjbMiqSQimk5ElQIrFzixcoET\noXAMlxt6cKHeg2stfXjvUgfeu9QBAMg2a5GTlUgscmx6GHUqqJQKKBUClAoFhqIx+IJR+INR+EJR\n9HmHhpOnIcTi0h1fWy0qYNSJiVnaCgG4PSGKSRiKxOENRjCZTSGCkIgBZCAWl9AzeOfEVa1SoDTP\njLmFFpQVWDCv0AKDdvYOVWFClSIjv3TVdW5cbexFXJKhEATcX5aNdYvzsHRuNrdgISKaZnQaFdaU\n52JNeS7ikoSWLj+utfShvqUfbT2B5GzBe2XUiShyGuCw6pIPu0ULu1UHm1GdfJ+4W6+FLMuIxWWE\no3FEookWpZGvwzEJkUgckVgcw5tZYGQgiUqpgFpUQFQpIKoSrVuiSgG1SgGrRYdoJAZRlUgIbx9+\nsn5xHiLROHq9Ybj7g3D3h9DVF0RTpw83bg3g+q2BxOsIQEmuCeUlWSgvtmFuoWVWve8xoZqA4FAM\nNU29OH/NjSuNHzcLF+easK4iFw+U54y7SZiIiDKLUpFYmX1OvhlfXFsCIDHJyN0fQnd/CKFwDPG4\nhFhcRkySoBGVMOnVMOlEmPQibCYt9NqJv+0KggBRJSRakVI0eeluXagqpQIqpQJ6rYgip3HUseBQ\nDE2dXtxsG0D98Ar1TZ0+/O1cC0SVAvMLLVhYkoXyEhtcTtOMXlA1pQmVJEl44YUXcP36dajVarz4\n4osoLi5O5UukVSwuoaXLh9qmPtQ09aGxw5vs487L1if2jlrg5MBFIqJZQqtWJWcMzkZ6rQoVpVmo\nKM0CNiQSzBu3BpItd7XDDyAxk31hsS2ZYDmtuhk1ESulCdU777yDSCSC119/HZcuXcL+/fvx61//\nOpUvMSVkWYYvGIV7IITOngCau31o7vThltuf7PcWBGBOvhkVJVlYucCJAjun1hIR0eymVauwpMyO\nJWV2AIk9Zq+19KGuuR/Xmvtw4boHF657ACS6P105RricJhTlGJGXrYfdooNhmq63mNKE6uLFi9iw\nYQMAYOnSpaipqUnl049LZ28AgaFYcjZDNCYhEhuZ3SAhEo3DF4zCG4wkHv4I3AMhDEVGr1CuVAgo\ndBpRmmdGebENC0tss3rwHRER0T9iMaiTY9BkWYZ7IJRIrlr60dLlveMYNJ1GBYdFC4tRA5M+0V1q\n1InQqlXD478UEEfGgykT48E0aiUKHIa0breW0oTK7/fDaPy4f1WpVCIWi0GlSs9QrYvXPTj456uf\n6RqNqITDqoXDqkOOTQ+nTYfiXBMKHcZEfzURERF9ZoIgIMeWmBH58LLEEhXBoRhuuRM9QO7+EHoG\nEzMhu/qDaHX7P9PzP/FQGR5bk75hRinNdIxGIwKBQPJ7SZLumkzdbT2HVHjUYcKj6+dM6mtM1EgM\ndm5ZkOaSEBFRpphN7wnFRbZ0FyElUtrksnz5cpw6dQoAcOnSJcyfPz+VT09ERESUkVK6UvrILL8b\nN25AlmW89NJLKCsrS9XTExEREWWktG49Q0RERDQTcJQ1ERER0QQxoSIiIiKaICZURERERBPEhGoS\nDA0N4bnnnsPu3bvx9NNPo6+v71PnHD58GNu3b8eXv/xlvPvuu6OOHT9+HN/97neT31+6dAk7d+7E\nV77yFRw4cGDSy59pxhvPsa47fvw4Nm/ejD179mDPnj2orq6e0vtJF0mS8KMf/Qi7du3Cnj170NLS\nMur4iRMnsGPHDuzatQuHDx++6zUtLS346le/it27d+PHP/4xJEma8vtJt1TGs66uDhs2bEjWybfe\nemvK7yfdxhPPEZcvX8aePXuS37N+pjaerJ/3SKaUe/XVV+Vf/vKXsizL8pEjR+R9+/aNOu52u+XK\nyko5HA7LXq83+bUsy/K+ffvkrVu3yt/61reS52/btk1uaWmRJUmSn3rqKbm2tnbqbiYDjDeeY133\ns5/9TD569OjU3kQGOHbsmPz888/LsizLH374ofzss88mj0UiEXnz5s3ywMCAHA6H5e3bt8sej2fM\na5555hn5/fffl2VZlvfu3Su//fbbU3w36ZfKeB4+fFh+5ZVXpv4mMsh44inLsvyb3/xGrqyslHfu\n3Jk8n/UztfFk/bw3bKGaBLdvwbNx40acO3du1PErV65g2bJlUKvVMJlMcLlcqK+vB5BYy+uFF15I\nnuv3+xGJROByuSAIAtavX4+zZ89O2b1kgvHGc6zramtr8ac//Qm7d+/G/v37EYvFpvaG0uRuW0M1\nNDTA5XLBYrFArVZjxYoVOH/+/JjX1NbWYvXq1QASsZ1tdRJIbTxrampw8uRJPPnkk/jBD34Av/+z\nrRA9E4wnngDgcrnwq1/9atRzsX6mNp6sn/eGCdUE/eEPf0BlZeWoh8/ng8mUWAHdYDDA5/ONusbv\n9yePj5wzUkEfe+yxUZtCfnI7nzs930ySynje/vPbr3vwwQexd+9evPbaawgGgzh06NAU3V16jbU1\n1MixsWJ4p2tkWU7W05leJ8eSynguWbIE3/ve9/Daa6+hqKgIBw8enLobyRDjiScAbN269VM7crB+\npjaerJ/3Jj2b7M0gO3fuxM6dO0f97Bvf+EZyC55AIACz2Tzq+Ce36AkEAqMq9z8695PPN5OkMp63\n//z263bs2JH8etOmTTh27Nik3U8mudvWUPcSw9uvUSgUo86dyXVyLKmM55YtW5Ix3LJlC/bt2zdF\nd5E5xhPPsbB+pjaerJ/3hi1Uk2D58uV47733AACnTp3CihUrRh1fsmQJLl68iHA4DJ/Ph4aGhjG3\n6TEajRBFEa2trZBlGWfOnMHKlSsn/R4yyXjjeafrZFnGtm3b0NXVBQA4d+4cKioqpvaG0uRuW0OV\nlZWhpaUFAwMDiEQiuHDhApYtWzbmNeXl5aiqqgKQiO1sq5NAauP5ta99DVeuXAEwu+rk7cYTz7Gw\nfqY2nqyf94YrpU+CUCiE559/Hh6PB6Io4qc//SkcDgd+//vfw+VyYdOmTTh8+DBef/11yLKMZ555\nBlu3bk1eX1VVhUOHDuHnP/85gMQvw0svvYR4PI7169fj29/+drpuLS3GG8+xrjtz5gx+8YtfQKvV\noqysDD/84Q8himK6b3PS3WlrqLq6OgSDQezatQsnTpzAwYMHIcsyduzYgSeffHLM7aSampqwd+9e\nRKNRzJkzBy+++CKUSmW6b3FKpTKetbW12LdvH0RRhN1ux759+0Z118wG44nniLa2NnznO99JzlZj\n/UxtPFk/7w0TKiIiIqIJYpcfERER0QQxoSIiIiKaICZURERERBPEhIqIiIhogphQEREREU0QEyoi\nmhG+//3v4+WXX8bTTz8NAOjo6MCjjz6K7du3w+fzYfv27Xj88cfR1NSU5pIS0UzEhIqIZgyn04nf\n/va3AIDq6mpUVFTgjTfeQH19PdRqNd58802UlpamuZRENBNxHSoimpZkWcb+/ftx8uRJOJ1OxONx\nPPHEEzhw4AAOHjyIr3/96wgGg9i0aRMuXLiAnp4ePPDAA3j55ZfTXXQimoG4lx8RTUvHjh1DXV0d\njhw5Ap/Ph23btiWPLVy4EN/85jdRXV2Nn/zkJ6iqqsKBAweYTBHRpGGXHxFNS9XV1XjkkUcgiiKy\nsrKwcePGdBeJiGYxJlRENC0JggBJkpLfq1RscCei9GFCRUTT0tq1a3H06FFEIhEMDg7i9OnT6S4S\nEc1i/EhHRNPS5s2bcfXqVVRWVsJut6OsrCzdRSKiWYyz/IiIiIgmiF1+RERERBPEhIqIiIhogphQ\nEREREU0QEyoiIiKiCWJCRURERDRBTKiIiIiIJogJFREREdEEMaEiIiIimqD/ByGdJ8mPqkEAAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 1.47740581385e-05\n", + "MAE : 0.00256412901334\n" + ] + }, + { + "data": { + "text/plain": [ + "count 149.000000\n", + "mean 0.000289\n", + "std 0.003846\n", + "min -0.009856\n", + "25% -0.001409\n", + "50% 0.000065\n", + "75% 0.001438\n", + "max 0.015438\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "\n", + "# Benchmark\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + "pred = model.predict(testX) # predict on testset\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['actual'] = testY\n", + "predictions = predictions.astype(float)\n", + "\n", + "predictions.plot(figsize=(20,10))\n", + "plt.title(\"Predicted close vs actual\")\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['actual'] - predictions['predicted']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences: actual minus predicted')\n", + "plt.show()\n", + "# if predicted minus actual is positive, this is \n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + "predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Compare the unscaled values and see if the prediction falls within the Low and High\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJuCAYAAAAe1Z9iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjXX/x/H3WWY3M8xi30sUkZL1lpsUWcKUQrc2qbuS\nSinUHTeitCmKqO6KklsmUf2ikiyRNSNrxjDGzJh9P+fMWa7fHzJ304wZmjMz5PV8PDyYc32vz/d7\nXXPO4zHHec/nazIMwxAAAAAAAAAAAAAAAAAArzJX9wIAAAAAAAAAAAAAAACAvyKCOQAAAAAAAAAA\nAAAAAEAlIJgDAAAAAAAAAAAAAAAAVAKCOQAAAAAAAAAAAAAAAEAlIJgDAAAAAAAAAAAAAAAAVAKC\nOQAAAAAAAAAAAAAAAEAlIJgDAAAAAMBFICEhQZdffrkGDRpU9Ofmm2/Wp59+WuHaDzzwgKKjoyVJ\ngwYNUk5OzhnH5ubm6s477yz6urzxVS0jI0Nt27bVc889d1bj/3g9f8aECRP07rvvlnosLy9Po0aN\nkt1uL3NcddqzZ4969epV4vGEhAS1b9++1HOWLFmiBQsWlFn3p59+0oABA7yyxj87z/l4z5955hn9\n+OOPf/r8F154QT/99JMXVwQAAAAAAMpire4FAAAAAACAquHv76/PP/+86OuTJ09qwIABatOmjVq1\nauWVOX5fvzTZ2dnas2fPWY+vasuXL9f111+vL7/8UuPGjVPNmjXLHP/H6/G2l19+WUOHDpW/v3+l\nzVEdhg8fXt1LuGA9//zzFTr/4Ycf1ogRI7Rs2bK/3PMKAAAAAIDzER1zAAAAAAC4SNWpU0dNmjTR\n0aNHFR0drREjRmjIkCEaOXKkJGnZsmWKiorS4MGDdffddys2NlbSqUDPPffco/79+2v06NFKTU0t\nqtmyZUtlZGRIkt5++2317dtXAwYM0MMPP6zc3FxNnDhRdrtdgwYNktvtLjb+zTffVL9+/TRw4ECN\nHTu2qO7IkSP1yiuv6I477lCvXr00fvx4eTyeYtcSFxenTp06qbCwUJLkdrt13XXX6fDhw1qzZo2G\nDBmiqKgoDR06VNu2bSv1fng8Hi1dulRDhgxRhw4dtHTp0mLHz/V6fn8/PB6Ppk+frqFDh6pfv366\n6aabtGPHjjK/P0lJSVq3bp169+5d4tj27dt12223aeDAgYqKitL69evldrvVuXNnHTt2TJK0YMEC\n9ezZs+ice+65Rz/88EOxOgUFBXrqqad02223qU+fPoqKitKRI0fKve8ff/yx+vTpo1tuuUUff/zx\nGa/B7Xbrueee05AhQ3T99ddr9erVkqQ5c+Zo6tSpkqSYmBhFRUVp4MCBevjhhzVkyJCiji4FBQV6\n/PHHNWjQIPXt21fbt28vMUdZ93b79u269dZbFRUVpaioqKL5/6igoEBjx47VoEGDNHLkSMXFxZUY\nc6bvrSStXbtWQ4cO1eDBgzVs2DDt2rWrxPkJCQnq0aOH7r33XvXp00cpKSnauXNn0esuKipK33//\nfdF9mzlzpm644QZFRUVpypQpRa/LkSNH6uuvv5Ykffvttxo8eLAGDhyo4cOHKyYmpuj+TpgwQaNG\njVLfvn01YsQInTx5UpIUHBys9u3bl3h+AwAAAACAykEwBwAAAACAi9SuXbsUHx+vdu3aSZIOHz6s\nRYsWadGiRdq6datWrFihjz76SCtWrNB9992nRx55RJI0depUtWvXTl9++aWeffbZUkMM3333naKj\no7V06VJ98cUXatiwoRYvXqyZM2cWde6xWCxF45cvX64NGzbo008/1apVq9SiRQtNmDCh6Hh8fLwW\nLVqklStXasuWLdq6dWux+Zo1a6YWLVpo7dq1kqSNGzeqQYMGuvTSSzVr1ixNnjxZ0dHRevTRR8+4\njc+GDRtks9nUtWtXDR48WB999JGcTuefup4/2r17t1JSUrR06VJ99dVXGjJkiBYuXFjm9+e7775T\n586dZbUWb3icmZmpsWPH6plnntGqVav04osvavz48UpMTFTPnj21YcOGoutxOp2Ki4tTbm6u9u/f\nry5duhSrtX79eoWEhOi///2vVq9erTZt2uijjz4q877v379fc+fO1eLFi7V8+XL5+Pic8RocDoe6\ndeumzz77TBMmTNBLL71U7LjL5dIjjzyiRx99VKtWrdLIkSO1f//+ouPJycm6++679fnnn2vYsGGa\nM2fOOd3bOXPm6J577lF0dLRmzJihLVu2lLrOpKSkonkGDBigp5566ozX9EdHjx7Va6+9pgULFmjF\nihWaNm2aHnnkERUUFJQYm5ycrIceekirV6+Wn5+fJk6cqFmzZumzzz7TvHnzNGXKFCUmJmrZsmXa\nu3evvvjiC33yySc6fvx4iVqxsbGaPHmy5syZo1WrVmns2LF66KGHlJeXJ+lUKOn111/X119/rZCQ\nkGJBnF69eumbb74562sEAAAAAAB/HltZAQAAAABwkTjd2UU61ZGjVq1aeumll1SvXj1JpzqA1KhR\nQ5K0bt06HTt2TMOGDSs6Pzs7W1lZWfrxxx/19NNPS5KaNGmiTp06lZhr8+bN6tu3r0JDQyVJEydO\nlHSqa0hp1q9fr6ioKAUGBkqS7rzzTs2fP7+oA07Pnj1lNptVo0YNNWnSRNnZ2SVqDB06VJ999pn6\n9u2r6OhoDR06VJLUv39/jRkzRj169FC3bt00evToUtewZMkSDRw4UFarVddff70mT56sr7/+WgMH\nDjzn6/mj9u3bKzQ0tChk8dNPPykoKKjMc44cOaLGjRuXeDwmJkaNGzcuClS1aNFCV199tbZu3aob\nbrhBn3zyiQYPHqyUlBQNGDBAP/74o0JDQ9W9e3f5+voWq9W3b181atRIixYt0rFjx7R161a1b9++\n6Hhp933fvn3q1q2bIiMjJUm33367Nm7cWOo1+Pj4qE+fPpKkVq1aKT09vdjxQ4cOSZJ69OghSerc\nubNatGhRdLxRo0ZF19mqVSstX768xBxl3dubbrpJU6dO1dq1a9W1a1eNGzeu1HW2bNlSV199tSRp\nyJAhmjJlinJzc0sd+0ebNm1SSkqK7r777qLHTCaT4uPjS2wRZ7VaddVVV0mSfv75Z6Wmpurhhx8u\ndt7Bgwf1ww8/aNCgQfLz85N06h4vWrSoWK0tW7aoc+fOatSokSSpS5cuCgsL0y+//CJJ6tixY9Hr\n+Yorrij2mmnUqFGpgToAAAAAAOB9BHMAAAAAALhInO7scianQzHSqe2BBg0apPHjxxd9nZKSotDQ\nUJlMJhmGUTT2jx1dJMlischkMhV9nZOTo5ycnDPO/ft6p+dzuVzF1n7aH+c/rW/fvpo5c6ZiY2O1\nbds2vfDCC5Kkxx9/XLfeeqs2btyo6OhoLViwQNHR0TKb/9dI+MSJE/rhhx+0d+9erVmzRtKpbi4f\nfPCBBg4ceM7XI6koVCSdCjo9//zzuueee3T99derefPmWrlyZZnnm83mElt2nb43f2QYhlwul7p1\n66Znn31WP/zwgzp16qSuXbtqyZIlCggIUL9+/Uqc9/HHH+u///2v7rjjDg0cOFA1a9YsFjYq7b7/\n8f6X1Sno9910fn//fn/uH7+Xv6/3x/NL+76XdW+HDRumnj17atOmTdqwYYPmzp2rlStXKjg4uFiN\n3z8XTs9V2vP6tN9/bz0ej7p06aLZs2cXPZaUlKTatWuXOM/X17eortvt1iWXXKJly5YVHT958qTC\nwsIUHR1d5vqkkq+Z04+dft2U9ZrxeDyl1gQAAAAAAN7HO3AAAAAAAFBCt27d9OWXXyolJUXSqW4y\nd911lySpe/fuRdviJCYmlro1VNeuXfXNN98UbaszZ84cvf/++7JarXK73SVCBX/7298UHR1dtP3P\nokWLdO2115bo8FIWPz8/9e/fXxMmTNCNN96ogIAAuVwu9erVSwUFBRo+fLgmT56s2NjYYqEfSVq6\ndKmuueYabdiwQWvXrtXatWsVHR2tffv2aceOHWd9PWFhYdqzZ48kFdsqaNOmTerZs6dGjBihK6+8\nUt9++63cbneZ19O0adNStzBq166d4uLiFBMTI0n69ddftW3bNnXs2FF+fn669tprNXfuXHXr1k0d\nO3bUzz//rO3bt6t79+4lam3cuFFDhgzR0KFD1axZM61du7bcdXXt2lWbNm1ScnKyJOmzzz4rc3xZ\nLrnkEvn6+mr9+vWSTnUDOnToUKkhnjMp694OGzZM+/fvV1RUlKZNm6acnJxSuy0dPHiwaAut08+F\ngICAYmPO9L3t3LmzNm3apNjYWEnSDz/8oJtvvlkOh6PMdV911VU6duyYtm3bJknav3+/+vTpo5SU\nFPXo0UMrV65UYWGhXC5Xqff49LynnyObN29WUlJSUYehshw/flzNmzcvdxwAAAAAAKg4OuYAAAAA\nAIASunfvrtGjR+vee++VyWRSjRo1NHfuXJlMJk2ePFkTJ07UTTfdpLp165bYrkc6tTXR4cOHNXz4\ncEnSpZdeqmnTpikgIEBXXHGFbrrpJi1ZsqRo/K233qqkpCQNHTpUHo9HTZo00csvv3zO6x46dKgW\nL16sKVOmSDrVzWfSpEl68sknZbVaZTKZNGPGjGKBn8LCQn366aeaMWNGsVpNmzZV//799cEHH+iN\nN944q+t59tlnNXXqVIWEhKhr165F2z0NGzZMTz75ZFH3nQ4dOmjNmjWldr85rXfv3nrnnXfkdruL\ndZEJCwvT66+/rmnTpslut8tkMmnmzJlq1qyZJOmGG27QmjVr1LlzZ/n7+6tVq1YKDQ0t2hbp9+69\n914999xzio6OlsViUevWrYu2lzqTli1bavz48brrrrsUFBSktm3bljm+LFarVXPmzNHkyZP16quv\nqmnTpoqIiJC/v79sNttZ1Sjr3j755JOaMWOGZs+eLbPZrDFjxqhhw4YlajRv3lxz587V8ePHFR4e\nXtRt6ffO9L1t0aKFpk6dqnHjxskwDFmtVs2bN69YB6rShIWF6Y033tCsWbPkcDhkGIZmzZqlBg0a\nKCoqSnFxcRo8eLACAwPVsGHDEkGhSy+9VJMnT9aYMWPkdrvl7++v+fPnl+gGVJoNGzaob9++5Y4D\nAAAAAAAVZzJK63sLAAAAAACAavevf/1LXbp0KXUbqr+KF198UaNGjVJERISSkpI0aNAgffvttwoJ\nCanupVWbjRs3Kj09XYMGDZIkTZ8+XX5+fkVby1VEbm6uhg8fruXLl5ca1gIAAAAAAN5FMAcAAAAA\nAOA8lZOTo7Fjx2r+/Pny9/ev7uVUisWLF+uTTz6R1WqVYRh6+OGHdeONN1b3sqrVyZMnNWHCBKWn\np8vtdqtVq1aaMmXKWXXDKc/MmTPVo0cPde3a1QsrBQAAAAAA5SGYAwAAAAAAAAAAAAAAAFQCc3Uv\nAAAAAAAAAAAAAAAAAPgrIpgDAAAAAAAAAAAAAAAAVAJrdS+gLC6XW5mZBdW9DAAAAAAXgVq1Ann/\nAQAAAAAAAAA4Z5GRwWc8dl53zLFaLdW9BAAAAAAXCd5/AAAAAAAAAAC87bwO5gAAAAAAAAAAAAAA\nAAAXKoI5AAAAAAAAAAAAAAAAQCUgmAMAAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAAAAAAQCUgmAMA\nAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAAAAAAQCUgmAMAAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAA\nAAAAQCUgmAMAAAAAAAAAAAAAAIBq9dVXqzRv3pxKq79z53ZNnjyxxOOvv/6KkpOTiz127NhRjRlz\nv1fmtXqlCgAAAAAAAAAAAAAAAHCBefTRJyq1PsEcAAAAAAAAAAAAAACAi1jQlGflt2qFV2s6Bg5W\n/pTpZz7usGvGjH8rOTlZTqdTPXteX3RsyZLF+u67NbJYLGrXrr0eemisYmJ+1ty5s2W1WuXv76/p\n01+Ur6+fXnpphhISjsvj8Wj06Ad19dUdzjjn8ePHNW7cGGVnZ2vIkFs0YMBgjRlzv8aPn6SgoBqa\nOvVZGYahsLBwr90HgjkAAAAAAAAAAAAAAACoUitWLFfduvX173/P1PHj8dq8eaPy8vIUG3tYa9d+\no/nz35PFYtEzzzylTZs26Oefd6pXr9667bYR2rhxvXJycrV58/8pNLSmJk58TtnZWXr44fu1ePF/\nzzin2+3Siy++Jo/HrbvuGqFu3XoUHfvww3fVu3cf3XzzEH333Rp99tmnXrlOgjkAAAAAAAAAAAAA\nAAAXsfwp08vsblMZ4uOPqXPnrpKkRo0aa8+eYKWnp+vYsaNq3fpKWa2nIi3t2l2luLhYjRx5jz78\n8D09+uiDioysrSuuaKPY2MOKidmlfft+kXQqeJOVlaWaNWuWOucVV1wpHx8fST5q1qyZkpMTi44d\nPx6vgQOHSJKuvLKd14I5Zq9UAQAAAAAAAAAAAAAAAM5SkybNtH//PknSiRMJevvtN397vKn27ftF\nLpdLhmHo5593qVGjJlqz5iv16zdAc+a8rWbNmmvlymg1adJUvXv30dy5C/TKK2+oZ8/eCgkJOeOc\nv/56UC6XSzabTUePxqlBg4ZFx5o2ba69e2MkqWhd3kDHHAAAAAAAAAAAAAAAAFSpQYOiNHPmVI0Z\nc7/cbrduv/0OZWdn6ZJLLlWvXr314IOjZBiG2rZtp+uu+7v27durF16YroCAAJlMJj311DOKiIjU\niy9O15gx9ys/P09DhgyV2XzmHjW+vr568smxysvL07333q+QkNCiY3fdNUpTpz6rb79do/r1G3jt\nOk2GYRheq1YJUlNzq3sJAAAAAC4CkZHBvP8AAAAAAAAAAJyzyMjgMx6jYw4AAAAAAAAAAAAAAAD+\nEv7zn4XasWNbiccnTZrs1U44Z4uOOQAAAAAgOuYAAAAAAAAAAP6csjrmnHljLQAAAAAAAAAAAAAA\nAAB/GsEcAAAAAAAAAAAAAAAAoBIQzAEAAAAAAAAAAAAAAAAqAcEcAAAAAAAAAAAAAAAAoBIQzAEA\nAAAAAAAAAAAAAMAFafLkidq5c7u2bPlRn38efcZxn38eLZfLdVY1V6z4VO+++7ZX1mf1ShUAAAAA\nAAAAAAAAAACgAmwOl/bGZcjHapa/r0X+vlb5+Vrk72uRn49Ffr4WmU2mUs/t3LlrmbUXLfqP+vbt\nL6u1aqMyBHMAAAAAAAAAAAAAAAAuYlOm+GnVKu9GSAYOdGnKFEeZY776apU2bFingoICZWVl6bob\nh+rLFYsVUbu+LBarBg1/SJ99NEcF+bmSpAG3jlaTppfopw1facuG1aoVFq68nGzlFhRqxecrlJgY\nr4ceHKv3339HGzb8ILfbrcGDb5HValFGRrqmTJmkmTNf0fz5c7V79y55PB7dfvsd6tWrt3bv/lmv\nv/6ygoNDZLFY1Lp1G6/cB4I5AAAAAAAAAAAAAAAAqBY2m02vvfamduw9pimTHpJhePT3vrerfqPm\nWr3iAzVv2U6dut+ktJRERS9+QyPum6C1q1fokUlvyGQ26a0Xxyk2MUdZGTnKTCvQpq27tGXLj1qw\n4H15PB7Nnz9XY8Y8pvfff1dTpszQ5s2blJR0QvPmvSuHw6EHHrhH117bSa+8MlPTp89S48ZN9PLL\nM712fQRzAAAAAAAAAAAAAAAALmJTpjjK7W5TWa666mql5TiU7/ZVQGANpZ48rog6DSRJJxOP6cih\nGO3ZsVGSZCvIVUZakmrXaySrj48kqWGTFkW1XB6PdsQcUFjd5srMK1REaIAeeeTxYvMdOXJYBw8e\n0Jgx9586x+VScnKiMjIy1LhxE0nSlVe2U0LCca9cn9krVQAAAAAAAAAAAAAAAIBztH//fh2Kz1Je\nTpYc9gIF1QiVyWSSJEXUaaCuPW/WfY89r2GjxqvdtX9XeGR9pSQdl7PQIY/HraSEuGL1Ius2VPzR\nXxUTm6Yd+5M15pEHVVhYKJPJLMMw1KRJU7Vv30Fz5y7QG2/MV69evdWgQUNFRkbq6NG439a0z2vX\nR8ccAAAAAAAAAAAAAAAAVDnDMHQi6aQWzH5Gdlu+Bt7+T638ZF7R8b/3GarPPp6rbZvWyGEvUK9+\nwxQUHKrrbrxFC159WoE1QuXj61esZr2GzdXi8qu18NUJMgyPOna/Sb8m5qlNm3Z68smxmjPnbe3a\ntUMPPXSfbLYCXXddTwUGBmn8+EmaPn2ygoKCFBgYqODgYK9co8kwDMMrlSpJampudS8BAAAAwEUg\nMjKY9x8AAAAAAAAAUIX+s3ipDsXGqs+guyp9LrPJpPrhQWpSt4Z8rBav1o6MPHOIh445AAAAAAAA\nAAAAAAAAqFKpWTZl5jmqbD6PYSghLU/JGQVqXKeGGkbWkNlsqvR56ZgDAAAAAKJjDgAAAAAAAABU\nFZvDpR0HU+XyeKptDf4+FjWtF6I6tQJkMlUsoFNWxxxzhSoDAAAAAAAAAAAAAAAAZ8ljGNp3NLNa\nQzmSZHe6dSA+UzsOpiojx15p8xDMAQAAAAAAAAAAAAAAQJU4ciJHubbC6l5GkTy7UzFH0nXgWGal\n1CeYAwAAAAAAAAAAAAAAgEqXlmVTQlpedS+jVMmZBTp8ItvrdQnmAAAAAAAAAAAAAAAAoFLZHC4d\nPJ5V3csoVaPvv1Tvh6KUs3Wn4k/merX2WQVzdu/erZEjR5Z6zGazadiwYYqNjS3znH379ql79+4a\nOXKkRo4cqa+++qoCywYAAAAAAAAAAAAAAMCFwGMY2n8sU063p7qXUkJw/BF1ePVZ1Tq8X93+/YiO\n/5qgpPR8r9W3ljdg4cKFWrlypQICAkoc27NnjyZPnqyTJ0+We87evXt1zz336N577/XCsgEAAAAA\nAAAAAAAAAHAhOJKYo5yCwupeRgnmwkJ1euFJWR12nWzfRXV2bVbHWRP045S58rGYFVGzZFbmjxyO\ncuYor0Djxo01Z86cUo8VFhbqzTffVPPmzcs955dfftG6det0xx13aNKkScrLOz/3DAMAAAAAAAAA\nAAAAAIB3pGXblJB6fmZE2rz/umod3q+4PlFaP2Ohkq/uqvpbvlerJW9r37FMZeWVnbrZudOs3r0D\nyxxTbsecPn36KCEhodRj11xzzVmf07ZtWw0dOlRt2rTRvHnz9Oabb+rpp58ub3pFRgaXOwYAAAAA\nvIH3HwAAAAAAAADgPTaHSzFHMxVcw7+6l1JC+LaNavnpe8pv1FSHx09VcGCQ9k6fo9B7Bqr1h3Nk\nb3e1joX0VJ3aIQoJ8i12rs0mTZ4svfKK5Clnd65ygznecsMNNygkJKTo39OmTTur81JTcytzWQAA\nAAAg6VQoh/cfAAAAAAAAAOAdHsPQz7+mnZdbWPlmZ6rNv8fJY7Fq81OzlOWxSHl2yRqoTf96XT0f\nH6ErJz+qb99crnX5Dl3VIkIBfqciNlu3mvXYY/46fNiiJk08mj3bLunMXXPK3crKW0aNGqWYmBhJ\n0ubNm9W6deuqmhoAAAAAAAAAAAAAAABVKC4x57wM5cgw1OHVfykgI1W/3DVWmS2vLHY487I22jXm\nX/LLzVbXqWPlzM9XTGy6snPceu45Pw0cGKjYWLPuv79Q69blq1s3d5nTnXPHnFWrVqmgoEC33377\nOZ03ZcoUTZs2TT4+PoqIiDjrjjkAAAAAAAAAAAAAAAC4cKRn23U8Na+6l1Gq5l/+Vw02f6eUdh11\ncOi9pY6Ju2mowg7EqPn/faqr507Tohte0QN3BCrxhK+aNz/VJadz57IDOaeZDMMwvHkB3kYreQAA\nAABVga2sAAAAAAAAAKDi0rJtOhifJafbU91LKSE4Pla9H75VHl8/rZm/QrbIumccay50qONjo/Xy\n4Ts0R2Mlk3TLsBzNet6kGjVMxcZGRgafsc45d8wBAAAAAAAAAAAAAAAAfs/p8ujwiWydzCyo7qWU\nylxYqE4zx8vqsOvHp14sM5QjSXv219KYnHVKVqBa6YAefOyE6t3UQEdT/dU6KEwmk6nM808jmAMA\nAAAAAAAAAAAAAIA/LT3brkPHs+Rwnd32TtWhzfuzVSt2v470vUUnut94xnF2m0mL36mtNatqyWQ2\nNLzHbr27vouMRaH6pstypSlMh45nqWXjWmc1r9lbFwAAAAAAAAAAAAAAAICLh8vt0YFjmdoTl35e\nh3Jq79iklp/+R7kNmujnByeecdyeXYF64v5mWrOqlho2cej52cc05Bk/Hb77nwpMS1bnGU/I5HYp\nKaNARxJzzmpuOuYAAAAAAAAAAAAAAADgnFwIXXIkyTc7Ux1fmiiPxaqfJr4sd0BQiTG2ArMWLYzU\nt1/WktlsKGp4mm65I10+voYk6cDt9ynsQIwabP5Obd5/XXtGPaH4lFz5Ws1qWLtGmfMTzAEAAAAA\nAAAAAAAAAMBZcbk9OpyQreTMgupeSvkMQx1efVYBGamKGTVOmZe1KTHkwC8BmjurnlKSfdW4mV0P\nPZGk5pc5ig8ym7X1qZnqPWaoWi19Rxktr9SJv92ow4nZ8vExKzIy+IxLYCsrAAAAAAAAAAAAAAAA\nlCs9265tB1IujFCOpOZf/lcNNq9VSrtOOjh0VLFjLqf08buRmvxEY6Wm+GjI8DS9MPdoyVDO6fFB\nwfrxuTfk8gvQtS9PUnD8EUnSwfisMtdAMAcAAAAAAAAAAAAAAABn5HJ7dDA+U3vi0uVwnt9bV50W\nHB+rdm+/oMLgUG196gXJ/L+IzPGjvpo0tqlWLA1X7bpOTX0lXsPvSZPVp+yaOc0u0/Zx0+RTkK+u\nU8fKWpAvj2GUeQ7BHAAAAAAAAAAAAAAAAJQqI+dUl5ykjAujS44kmQsL1WnmeFkddm1/fKpskXUl\nSR6P9NVntTTh4aY6GuuvXjdlada8o2rZ2nbWtY/37K9DQ+5USHysOrz6rFROMMdaoSsBAAAAAAAA\nAAAAAADAX47L7VHsiewLKpBzWpv3Z6tW7H4duelWnfjbjZKk9FSr3nq5nvbsClJIqEuPPZ6oa7vm\n/an6MaOfVK1f96rR+q+V0aqtdOOLZxxrMoxyojvVLDU1t7qXAAAAAOAiEBkZzPsPAAAAAAAAANCp\nUM72Aylj8w+7AAAgAElEQVSyXyDbVv1e7R2b1GPifcpt2FTfvLlc7oBAbfo+WO/Mqav8PIuu7pSn\nf45LUs1aFbs2v4xU3fDQLfLLypDZ7TrjODrmAAAAAAAAAAAAAAAAoEhiWv4FGcrxzc5Ux5cmymP1\n0ZYJLyvbVUPvzayjjd+Hys/Po/sfTdL1/bJlMlV8LkdYpDb/a7b+/uRdZY4jmAMAAAAAAAAAAAAA\nAABJkscwdCItv7qXce4MQx1efVYBGamKue8Jbci/Vm89UE/paT5qcblNjzyVqLoNnF6dMr311dr1\n8DO6powxBHMAAAAAAAAAAAAAAAAgSUrNsslxAXXLsebnqu62DWq0/ms12LxWx9pep0npE/XlO+Ey\nmw3ddmeqhgxPl8VSOfMfGTCMYA4AAAAAAAAAAAAAAADKl5CSV91LKFdgUoLqb/le9bd8r8iYbTK7\nXZKkjXX6646MpYqPCVL9hg6NeTpJl7a0V+taCeYAAAAAAAAAAAAAAABAWXkO5dq8u92TV3g8Cju4\nR/V+C+PUjDtUdCjjsjY60amn5jtGaUF0W7lcJvW5OVP/uC9Ffv5GNS76FII5AAAAAAAAAAAAAAAA\nUELq+dMtx2K3qfauLaq/Za3qb1kn/8w0SZLbx1eJnXooqVNPJXfpKWvDxlr4Rm0tXxaoiAiPHp2Q\nrJZts6t59f9DMAcAAAAAAAAAAAAAAOAiZ3O4lJ5dvds+WWz5arzuK9Xf/L3q7PxRlkKHJMkeGqa4\nPlFK7NJLGR26qWadMIWH+qup018P3B+oTZusatPGrQ8/tKl+/SD9muBUUkZBtV7LaQRzAAAAAAAA\nAAAAAAAALnIJqXmqzo2fTM5C9ZgwSuH7d0uSsptcqsQuvZTY+e+yt71a4WFBqhPirxZBvjKZTDp4\n0Kx//CNAx46Z1a+fU2++aVdQkCSZ1LJxLdUI9FXsiWx5jOrdzopgDgAAAAAAAAAAAAAAwEXM5fYo\nOb16O8xc+d5rCt+/Wwl/u1F77ntC1hYtFB7qrxah/grwKx5v+e47i+6/P0C5uSY9/rhDTz9dKLO5\neL0GEUEKDvDR3qMZcjjdVXglxRHMAQAAAAAAAAAAAAAAuIglpuXLXY2dZept/l4tl7+vnEbNlTX7\nLbWrHyEfq7nEOMOQ3n7bR1Om+MnHR5o3z6ZbbnGdsW5IkK+uuSxS+45mKivfUZmXcEYEcwAAAAAA\nAAAAAAAAAC5SHsPQibT8aps/ICVRHV+eKLevnxLfWKg6jWuXOq6wUJowwU+LF/uqdm2PPvjApmuu\n8ZRb39fHoraXhuvIiRwlpOV5e/nlIpgDAAAAAAAAAAAAAABwkUrNslXbVk8ml1Ndnh8n39xsHZz0\ngsK7XVvquPR0k+6911+bN1t15ZVuLVpkU/36Z9/hx2wy6dKGoQoO8tGh+Kwq7Q5Usu8PAAAAAAAA\nAAAAAAAALgoJKVXfRea0Nv+ZrfD9u3Wi90CFjHmg1DEHDpjVp0+gNm+2asAAp1auLDinUM7v1akV\nqPaXRcrf11KRZZ8TgjkAAAAAAAAAAAAAAAAXoaw8h3JtzmqZu+5P69Rq2XvKbdhUhbPfkNVaMizz\nzTcW9esXqPh4s8aNc+idd+wKCqrYvDUCfHTNZbUVFuxXsUJniWAOAAAAAAAAAAAAAADARSghtXq6\n5QSkJKnjrAly+/jqxOsLVaN2eLHjhiG99ZaP/vGPALlc0oIFNk2YUCizl1IuPlazrmweriZ1gr1T\nsAzWSp8BAAAAAAAAAAAAAAAA5xWbw6X0bHuVz2tyOdV5xhPyy83WwaefV3j3TsWOOxzSU0/5a8kS\nH9Wp49GHH9rUvr3H++swmdSsXoiCA3x0ID5LLo/355DomAMAAAAAAAAAAAAAAHDRSUjNk1EN87b5\n4A1F7NulEz37KeTRh4odS0sz6dZbA7RkiY/atXNrzZqCSgnl/F5EzQBdfVmEAnwrp7cNwRwAAAAA\nAAAAAAAAAICLiMvtUXJ6QZXPW3frerVa+o7y6jeR4403ZbVaio7FxZnUr1+gfvrJqptvdurzzwtU\nr17VRIcC/X3UrH5IpdQmmAMAAAAAAAAAAAAAAHARSUzLl9uo2n45AanJ6vjSBLl9fJTw+gIF1wkv\nOhYTY1b//oE6etSsxx5zaOFCuwIDq3R5igj1l5+PpfyB54hgDgAAAAAAAAAAAAAAwEXCYxg6kZZf\npXOa3C51mvmk/LIzdfixfym8R5eiYz/8YNGgQYFKTzdp5ky7Jk0qlMlUpcuTJJlNJtUPD/J+Xa9X\nBAAAAAAAAAAAAAAAwHkpNcsmh9NdpXO2/nCuIn/ZocQefRX82CNFjy9fbtWIEQFyOqV33rFr1Chn\nla7rj+qFB8rs5VQQwRwAAAAAAAAAAAAAAICLREJKXpXOV2f7Rl2+5G3l1Wskxxtvyee37aLmzfPR\ngw8GyN9fWrrUpoEDXVW6rtL4+lgUGerv1ZpWr1YDAAAAAAAAAAAAAADAeSkrz6FcW9V1pfFPT1HH\nF5+W28dHx2cvVES9CHk80tSpfnrrLV/VqePRJ5/Y1Lq1p8rWVJ76kTV0MsvmtXoEcwAAAAAAAAAA\nAAAAAC4CCalV1y3H5Hap08wn5Z+doUPjJiuiZ1cVFkqPPuqv5ct9dOmlbi1dalOjRkaVrelshAb5\nKjjAx2sBJrayAgAAAAAAAAAAAAAA+IuzOVxKz7ZX2XxXLHpTtWO2Kan7jarxxGPKy5P+8Y8ALV/u\no2uuceuLLwrOu1DOafUjgrxWi2AOAAAAAAAAAAAAAADAX1xCap6qKgZTe+ePunzJ28qv21C2ufOU\nlWVVVFSg1q2z6oYbXPr00wKFhVXRYv6EOrUC5WPxTqSGYA4AAAAAAAAAAAAAAMBfmMvtUXJ6QZXM\n5Z+eok4vPCXDYlX8a28rzV5b/fsH6uefLRo+3Kn337cpyHsNaSqF2WxS3fBA79TyShUAAAAAAAAA\nAAAAAACclxLT8uU2Kr9fTs1De3XdhHvln5Wuw49MVGJkD/XvH6ijR816/HGHZs+2y8en0pfhFfXD\ng2TyQh2rF2oAAAAAAAAAAAAAAADgPOQxDJ1Iy6/UOUzOQl3x0Ty1+mShzB63jkTdqZ0dn9R9gwJV\nUCDNnGnXqFHOSl2DtwX4WRUe4q+0HHuF6hDMAQAAAAAAAAAAAAAA+ItKzbLJ4XRXWv2av+7VtS9P\nUs24Q8qvXU87n3he23xv1YQ7a8hkkt55x66BA12VNn9lqh8RRDAHAAAAAAAAAAAAAAAApUtIyauU\nuiZnoa74eL5aLVkgs8et2H63KWb0eG3Z1kKzZgQrONjQhx/a1K1b5YWCKltYiL8C/awqcPz5YBHB\nHAAAAAAAAAAAAAAAgL+grDyHcm3e30Kq5uF9p7rkHDmogsh62jZumlKu6aZdmyI0a0aoatf2aOlS\nm1q39nh97qpWPyJIh09k/+nzCeYAAAAAAAAAAAAAAACch/JsTiWm5ctqMctqMcny299Ws1lW6+//\nbZLFbC5xfkKqd7vlmJyFunzJ27p8yQKZ3S4duWmodt//lFxBNbR3Z6hmTQ9XzZqGli2z6fLLL/xQ\njiTVDQtUXFKO3B7jT51PMAcAAAAAAAAAAFzwPIYht9sjl9uQ0+2R223I5fb89ufUv4se83jUtG6I\nagT4VPeyAQAAynT4RLay8hxnNdZsMsliNhUL8WSf5blnIzR2vzq+NEk1jxxQQWQ9bX98mk526CZJ\n+nVvoF6YXFe+vtLixQV/mVCOJFktZtWpFajE9Pw/d76X1wMAAAAAAAAAAFBpHE630rPtysixq8Dh\nKgrbuI1z+w3m7LxCtb0kXMGBvpW0UgAAgIrJyLGfdShHOhVU9vwWUvYmk7NQl3+yUJd/PP+3Ljm3\n/tYlJ1iSdOyIn154rqHcbun9923q2PGvE8o5rUFkEMEcAAAAAAAAAADw15Rncyo92660bLtybYVe\nqel0e7T7cLraXhKukCDCOQAA4PxiGIaOJOZU9zIUGntAHV+aeKpLTkRdbR83TSc7/K3o+MkkH73w\nbGPl5pr11ls2XX+9uxpXW3mC/H1Us4bfOQWlTiOYAwAAAAAAAAAAzisew1BWrkPpOXalZ9tld1bO\nBzwuj0e7Y9PUtnm4Qmv4VcocAAAAf0ZyRoHy7M5qm9/kcuryJQv+1yWn7y3a/cDTRV1yJCkrw6KZ\nkxorPc2i55+369ZbXdW23qrQICKIYA4AAAAAAAAAALgwOV0eZeTYlZZjV2aOQy5P1WyB4PYYiolN\nV5vm4aoVTDgHAABUP7fHo6PJudU2v8VuU/dJoxX5y45TXXIen6qT13YvNqYg36yZzzRW4gkfjRvn\n0OjR1RciqioRof7y97Gcc2icYA4AAAAAAAAAAKgWTpdbyRk2pWfblZ3vkFFN63Abhn45kq7WzcIU\nFuJfTasAAAA4JSElX45K6hhYHpPLqS7TH1PkLzuU8LcbtO2J54t1yZGkQodJs55rqLhYP915Z6Ge\nfto7W42e70wmk+qFByku+dy2GDNX0noAAAAAAAAAAADKdCghW7GJ2cqqxlDOaW7D0C9xGUrPtlfz\nSgAAwMXM6XLreEpe9Uzu8ajDq8+q3tb1SurQXVsmvlwilON2S7Nn1Ne+PYEaONCpF190yGSqnuVW\nh/oRgTKf4wUTzAEAAAAAAAAAAFUut6BQqVm26l5GMR7D0N6jGUo7z9YFAAAuHkeTc6tsS89iDENt\nF76kpt+uVHqrttr8r9kyfHz/OEQLZtfV9s3B6t7dpbfesstiqfqlVicfq0WRNQPO6RyCOQAAAAAA\nAAAAoMrFJZ3bFgBVxWMY2ncsUymZBdW9FAAAcJEpsLuUlF49P4O0XPauWi5/XzmNL9HG6fPlDggs\nMeajdyP1/eqaatfOrQ8+sMnPrxoWeh5oEBF0TuOtlbQOAAAAAAAAAACAUmXmOpSR66jyeX2zMlTz\nyAGFHv1VaVe0V2artqWO8xiG9h/LlGFIdcJKfigFAABQGeKScuQxqn6Dz6ZfL1fbd15RQWQ9rZ+x\nUIUhtUqMWbksTCv/G65LLnFryRKbatSo8mWeN0KCfBUc4KtcW+FZjSeYAwAAAAAAAAA4LzmcbjkK\n3QoJ8i1/MC4old0tx+RyKvh4nGoeOajQuIOn/j5yQAEZaUVjHMGhWv3OF3LUiii1hiHpQHymPIah\neuHn9lvRAAAA5yo7v1Cp2VW/nWa9zWvVYfZzcoTU1PqZ78hWu16JMevWhGrxwtqqU9etZctsioio\n+vDQ+aZBZJAOxBPMAQAAAAAAAABcwA4dz1JOfqGuahGhIH+f6l4OvCQty6acgrP7EONsFHXBOXLo\n1N9xhxQSf1gWp7PYuPza9ZTYuaeyml0mn4J8tfh8sdrPna4t/5p9xtqGpIPHs+Qxzn3LAgAAgHNx\nJDG7yueMiNmmLs+Pk9vXXxumv63cxs1LjNm+uYbmv1pXoaEefbrMroYNCeVIUu2aAYo9kS2n21Pu\nWII5AAAAAAAAAHABcns8crkMuTweudyGXC5P0b/d7t8ec3t++2PIYxi6snmYLGZzdS/9rCSl5ys9\nxy5JiolNV/sWEfL35b+0L3SGYSguObfihdxuXfvKJNXZ+WOxLjiS5PLzV3bzVspq3lLZzVqe+rt5\nSzlrhPxvkMejWof3qdGG1Tq+frVOXNenzOl+TciS4THUsHbl79lgGIYKnR7ZC12y/9Y1yl7olr3Q\npeBAXzWpGyyzyVTp6wAAAFUnLcum7HzvBZfPRmjsAXWb/LBMHo82TXmz1C0+98UE6LXp9eXra2jJ\nEptatiw/hHKxMJtNqhcepPiU8n+25V0MAAAAAAAAAFwgYhOzlZxeILfnVNDmXCWlF6hhZOUHCyrK\n5nDp8In//caww+kuCuf4WC3VuDJU1MlMm/LtzvIHlqPOzh/V9NuVstcML+qCk31JK2U1a6m8+o0l\nSznPE7NZ256Yrhv/OURXz52m1HYdVRhaq8xTDidmy2MYalwnuEJr9xhGsbCNw+mW3eGW3Xnq60Kn\n54yv74xch7JyHbq8aS2CagAA/EV4DENHKnmbzz8KSjqu7s+Mlm9+rrZMfFknO3QrMeZorJ9efK6h\nDMOk994rUIcOhHL+qH5EoI6n5Kq8d2b81AYAAAAAAAAAF4Ck9HwdT8mrUI2ElDzVjwg677ttHIzP\nkttT/L+3CxwuxcRmqN2l4bJaLoyuPyjOYxg66qUPnZqtjpYkbZw2T5ktr/xTNfIaNtMvd41Vu4Uv\n6ap5M7V1wqxyzzmSlCOPYahBRNDvulL9rzuV2/1bFyvXb4+doYtVRTaAyC4o1PYDqbqscU3VrhlQ\ngUoAAOB8kJReoAKHq8rm88tM03UT71NARpp2PThJx3v2LzEmM92imc82lN1m1uw38tW7N9tXlcbf\n16rwUH+lZdvLHEcwBwAAAAAAAADOc9l5Dv2akF3+wHLYnW6lZNpUNyzQC6uqHAkpecrKd5R6LNdW\nqH1HM9Smefh5Hy5CSYlp+bI73RWu45udqQY/fqfspi2UeVmbCtU6FHWXGq5frSZrV+l4j5uU1KVn\nueccTc7VUW9sx1UBLo9H+45mKCs8SJc0CLlgtqgDAADFudweHUuuum451vxcdZ90v2okxmvfiH/q\n8JCRJcY4C016eWpDZab7aNxTeRp+O6GcsjSIqFFuMIef1AAAAAAAAADgPGYvdGnv0Yw/tXVVaeJP\nVm+goCwFdme5bfwzch06cCxThpfuB6rGqQ+dvPPca7z2C5ldTsX1iZIqGtCyWLT9iely+/jomtcn\nyyevcj8Ys9htsuZ77zWYmJ6vnYfSlGer+PZgAACg6h1PyVOhq2q2iDIXOtRtyhjVit2v2H63ae9d\nY0uMMQxp4Zw6+nV/gPrfbNfTT/Azd3lqBfspyN+nzDEEcwAAAAAAAADgPOX2ePTLkQyv/md9gcOl\ntCyb1+p5i8cwtP9Y5lkFkFKybDp8ouIdhFB1ElLz5HR74XlsGGq2erk8FquOXX9zxetJymnaQvvu\neEgBGalq9/aLXqlZmoDUZN34wCDdfNvfdO1LE1Xz0F6v1M23O7XzUKpOpOV7pR4AAKgaDqdbCRXc\nqvasud3qNPNJ1d69VQl/u0E7H3mu1IDz15/X0rrVNdXmSpfemuOscAb6YlE/IqjM4wRzAAAAAAAA\nAOA8dSA+S3l273fCiK+qDwDOQfzJXOWeQ9ePE2n5XuvAgsrldLl13EvPuZqH96nmkYNK7NJThTXD\nvFJTkg7eNkqZl16uZqujVWf7Rq/VPc0/PUU9nrpbNZKOqzA4VE2/WaEbxtyqno8NV6Pvv5TJWVih\n+h7D0K8JWdoblyFnFf3WPQAAqJijSTlyV0UXSMPQNW/8Ww03fauUdp3004SXJIulxLBfdgXqg7dr\nKzLSo8WL7AoIqPyl/VXUqVX2zSKYAwAAAAAAAADnoaPJOUqtpM42OQWFysx1VErtPyOnoFDxJ889\nuBGXnEOXkAvAsZN5cnu886FTs9XRkqSjNw7xSr3TDKuPtj3xvDwWqzq89pys+d4Lr/lmZei6Cfcq\n+MQx7b99tL74eJ3WP79ASR2vU/j+3eo880n1H3m9rlj0pvwyUis0V2q2TTsOpig77/x5fQMAgJLy\n7U4lZxRUyVyt339dzf9vmTIvvVybpsyVx9evxJiUJB+99nwDWczSe+/ZVb8+W1idC6ul7OiNZcqU\nKVOqZil/TkFBxVLiAAAAAHA2goL8eP8BAADOG6lZNv2aULlbNTldbtUJC6zUOc6Gx2MoJjb9T2/X\nlZljV6C/j4L8fby8MniDvdClA/FZ8sZHO+ZChzq+NFGFNYK165HnJLN3f/fYERYps9ul+lu+l29+\njpI6/b3CNX1ystRjwijVjDukQ0Pu1J7R4yWzWfkNmii+10Ad6zVAhsWisIO/qN72jWqxYrFC4mNl\nC4+ULaJuqVtMlMflMXQyo0AmmRQa5CsTe1AAAHDeORifpQKHq1LnMDvsavXJArX+6C3l1m+sH2a9\nL2dIzRLj7DaTXnimiZKTfPTSSw7161e56/qrCgoqGXg6jY45AAAAAAAAAHAeybM5deBYZqXPk5Hr\nUO55EEw+kpRToQ8lDEkHjmWeVx2A8D/HknPl8dIWDfV//E6+eTk6dsNgGRarV2r+0b4R/1R20xa6\n5Iulity1pUK1rPm5uu6Z+1Urdr9iB9yu3f+cUCJok9+giXb/c4K++Ph77Rg7WbkNGqvx91/q+sdG\n6PoxQ9VkzQqZC8/9uW3oVEep3YfT5Sh0V+g6AACAd2XmOpSeY6+0+oEnT+jKd17WgBF/V5sP58gW\nFqH1M9+Vo1ZEibGGR/pgbmPFHvbVvfcWauRI72+jC8lkGFWxadmfl5rKHsEAAAAAKl9kZDDvPwAA\nQLUrdLq181Cq7M6q+SA9smaAWjcNq5K5SpOV59DPh9O8UstiNumqSyMUHOjrlXqouAK7U9sOpHil\nW44kdZ94n+ru2KT/e/cr5TVq5qWqJdU6uEfXPzpM+bXra83bn8sdcO6dpSy2fF03cbQi9u1S3I1D\ntH3c9LPr8GMYivz5J7X4fLH+n737DnOqTPs4/k2bJJPpvQADDAwdBBVBVMCGqODay1qwru6urLhi\nV1zLur7WtbtWlCI2pIiISBFQREDpMJTpvSQz6e2c948RpAzDTJIZUO/PdXEBSc5znmSSk0ye37nv\nrNVL0SgK3vhE9px7GbvPvwJ3akab52LQaenVJYGUeHObtxVCCCFE5K3bUYPdHeGAfAufIXaNvwpP\nctohm+g0GpbNz+al/8Zw8skBPv7YjUGKUIYsNTX2sNdJMEcIIYQQQgghkGCOEEIIIY4+RVXZsKuW\nBmfHVbHRAEP7pGM2tk/1kZYEggprd1TjiWA1D4NOy+CeqUSbOv7+iENtLqijtiEyZ4Obq8s575oz\nqes7mKXPT4/ImC0Z8Paz9J71FvkXXsOG2+5v07Y6j5tTHrqVtA1rKB59Hj/c/RTodG2eQ3RlGbnz\nZ9Lty08w2htQtDpKRo5lw633NHvG+5H075pESoKEc4QQQoijqcrqYlsEq2Pq3C5yvplLjznTiS/a\nBUB9z37suuBqSkaNRYlqvr2S0aCjYmc6t94SR+fOCl995SIl5ZiOjhzzJJgjhBBCCCGEEEcgwRwh\nhBBCHG07iq1U1Ls6fL+ZSdH06pLY4fttr/tritIxuGcqRkPbgxAichqdPtbvrInYeH2mvUr/91/i\nxzsfp/CciyM27uFofV7OuvVCYssKWfrcNOr6DWn1diOm/I2MdasoPeVsVj/wbNhtt7ReD12WzKfn\nnGkk7NmBNy6B9X9/iNKRYw9pjdWSeEsUg3umhjUXIYQQQoROUVXWbKuKSDDdUl5Mj7kz6PrVZ0Q5\n7Sg6PaWnjWHnBX+mvs9xLX5GiDUbMPhTuWBcLKoK8+a5GDBACXtOf3QSzBFCCCGEEEKII5BgjhBC\nCCGOptIaB7vKGo7KvrUaDSf1Te/QIEtdg4dNBXXtNn6MycCgHikY9K1oHSTaxc+7arE5vJEZTFEY\nO2EMJls98z78lkC0JTLjHkHylp8YfeefcWTnsOi12ShGU4u31/h9nPzYHWStXkr5SaP47uH/ohoi\n2FpNUegxZzoD3nkOvddD6Slns/72h/EmJrd6iOPzUqXdmxBCCHGUlFQ72F0exmd+VSV93Xf0mDON\nzDXL0agqnsQUdp93GXvOu7zZdlUHS4k3kRGXxLljYygs1PLWW27Gjw+EPiexT0vBHPmtRAghhBBC\nCCGEEEIIIY6i+kYPu49SKAeaztwtrXZ02P78gSD5JbZ23YfD42dzQR1BRc78PRrqGz2RC+UAqRt/\nJKaylJKR53RYKAegrt9gdv7pGmJLC+n3/kst3lYTDDDsyclkrV5K5ZCT+f6hFyIbygHQatl14TUs\nev1zavofT6eVixhzyzg6fbuw1UOU1TgjOychhPgd8fqCbNpTR31jZNowCrG/QFChuCq0kwL1Lie5\nc6Yz5sbzOO3+m8j6YRn1vQbwwz3/x/xp37D12ttbFcrpnBpDr05J3HZrNIWFWiZN8koop4NIo10h\nhBBCCCGEEEIIIYQ4SlyeANuKrBztsubldU66pMd2SIWZ/NIGvIHwy/cfSWODk6JdPrrnZbf7vsSB\nCioiW4my21efNo075qKIjtsam6+/g6wfltHr0/coPXUM1t4DD71RMMiJ/3cfnVYuonrgiXz3yMso\nUcaI7D/gB49bi8ejxePWYjQpqFk5LHvmfXp+/gH9332B4Y9PouS0r1j/94fwJSS1OF61zU33rDii\npNWbEOIYFwgq6LQaNG1o2ReOynoXu0obCCgKPn+QpLiWq6QJ0Va7yxrwB9seGte5XZx965+wVJYS\nNBgoOvMCdl7wZ6y9BrR6DK1GQ4/seLJSLDz8sJHly/WMGRPgnnt8bZ6PCI0Ec4QQQgghhBBCCCGE\nEOIoCAQVNhfUhfQFfaQFFZXyWic5GYcvvx4JVVYXNTZ3u+6DYJCui+fQb+qLaINBypetITYzpX33\nKfaptrmxuyO3yKN32um0YhH27Bzq+g2J2LitFTSZWTvpMUZNvo4Tn72fxa98hhK1XyUcReGEFx4m\nZ+l8avsex8rHXiNoMh8yjqpCdaWB7ZvNVFca9oVt3K6mwI33l+CN2930d9P1GgL+Q8NyCUkB8vq6\n6dV3EsfddQGXf3YHnb9dSOqGNayfOIWyU88+7P1RVJWKOle7v9aFECJU6i/HqYKKRowGHd0y40iO\nb7+QjNffVMmvbr8qOXa3n2qbm7SEQ4/nQoSivtFDRb0rpG17zJ2OpbIUz2VX4nj4MaLT0hioqgSC\nKoGg8ssflWBQIaCoBAIKAeXXy/xBhaxkC0lxJmbN0vP661Hk5QV59VU3Wumv1GEkmCOEEEIIIYQQ\nQgghhBAdTFVVthZacXmPndLxpTUOOqVZ0LXTN/Ref5Bdpe3YsktVyfhxBQPfeob4wp37Lna9OxXL\nvSetEw8AACAASURBVHei1XbMGfd/ZIqqUljRGNExuyxdgM7npfDsi6CDqiYcrGbQUHaNu5Ie82bS\nZ8ZrbJnwj6YrVJXBLz9Gt68+oz6vPyue+B9Bc1OrrWAQinYb2b4lmu1bzOzYbMZab2hxPwaDgsms\nYDKrJCb7MZlVTKa9lymYzQqNDTp2bDWzZmUsa1bG8gFp3KP/jn7pxZxR8xmnPLaU7sNXU3rn7fji\nE5vdT3mtk87pMWiP0uMphBCHY3f52FnaQKOrKeDpDypsKqgjIcZIblYcsdGRbRG4f5WcgxVWNJIS\nb5JjpQhbIKiE3MZV73TQ66O3UeLjcTzxFGp8AgAajQaDXtOmapfr12u56y4T8fEq77/vJlYyuh1K\ngjlCCCGEEEIIIYQQQgjRwfaUN1Jv9xz5hh3IH1SorHORnRrTLuPvKLa2W3WghPwtDHzrGdJ/Xo2q\n0VAw5iJ2jb+KM/5xJZ1nT2P7dTfRPTu+XfYtflVV74p42KzrV5+harUUnnVBRMdtq003/pPMNcvp\n/eGblJ1yFrbcPgx64yl6zP8QW/defPXQ22zLT2f7ZjPbN0eTv82M1/PrYllikp/hIxvp1ddN565e\nzNG/BG72C97oW7lio6pQV6NnxxYzO7aayd9qZtPuHDYod/Icd8L30O3yAvL6eek8KoG8vm66dPWi\n/aV7lTcQpMbqJj0puh0eKSGEaLtAUKGgopHyWmez7T1tDi/r8mtISzDTLTMOszG8Je7mquQczOUN\nUFnnIivFEta+hNhT3ojHH1ob156zp2K0N+C8/+F9oZxQVFVpmDDBjN8PU6e66d79aDfS/eORYI4Q\nQgghhBBCCCGEEEJ0oPpGDyU1jqM9jWaVVDvITLFE/Ozwslon9XZvRMcEiK4opf97/yVn6XwAKoae\nxsYb/0ljtzwASk85iy7LFuD+ZimNl5xLXITPtBe/UhSVwkp7RMeMK9xJ8o6NVAw9DU9KekTHbqtA\ntIW1dzzKyPtu4sRnHmBT/3PZONfBf2PfYZHmUvZcZ0FRfn3ddMrx0rufi9793fTu5yY1w49GA3qt\nFo2GsEJqGg2kpAVISbMzYnTTY+5xa9i1w0z+ZiOlS+vZUpLOV5uSYFPTNuboIL36uhl2qp0TR9gp\nrXFKMEcIcUyoqnexu7wBX+DIx8Vqm5vaBg9ZKRZy0mPbVC1k//3tKmto1XG4qMpOepK53aoJit8/\nm8NLeZ0zpG0NjTZ6ffIewaRkXDfdGvIcvF6YMMFMZaWWKVM8nH56aCEhER4J5gghhBBCCCGEEEII\nIUQHqrG5j/YUDsvjj3wlDZvDy56yyLawMjTa6DPzDXrMnY7O78faoy8bbp5MzeBhB9xu9/lX0GXZ\nArrP/5AtQ09mSK9UaUnRDLc3QEWdC40GTFE6TFF6TFE6jAZdq1uAldU68YZ4NvjhdF00G4CCMRdH\ndNxQVR8/go1n/pk7F0/gmz1nNl1oB51bpWdvN71+CeH06uciNq75Bd+umbEEgkrEQ0wms0r/41z0\nP84FV2uwFK4m8T9vsnVPEiuiTmep+Vx+XpvIz2tjePPFDPoPdnL5pXDxn1QSm+94JYQQ7crp8bOz\npAGbs23BXUVVKa1xUFnnokt6DJ1SY1r1XuX1B9lZYqO2hSo5zW1TVuOkS7r0/BFtF1QUdhSH1sIK\noNen72FwOXDcfR/EhFbRUlXh7rtNrFun4+KL/fz1r/6Q5yPCI8EcIYQQQgghhBBCCCGE6EDWdqgc\nE0nF1Y6IBXNKqh0UVDSiqJEpl6/1eenx+TT6fPg/ohyNONOz2XTDJEpGjoVmzmavHXACDTk96LTy\na36uqKAo3kS3zLiIzOX3wOUJUFxlp9rmPuzPyKjXYYzSNQV19oZ2DL9eptdpCQQViqsiGzTRBPzk\nfD0Hb3wi5cNGNXub5DgT0UY91VY33kD7n/3t9Wi4svxVthLHMMOP5F2YRO5JenLzPEQZj/wcjzEZ\nyEqxEAwqFFc5Iva6aI6za3ecrzzOCZ++x4SpN6Cr87H81Nt4M28K338bx4a1MWxYCw8/oHLaaUEu\nuMDP2LEBEkLvkiGEEK0SVJrCiWU1zrCOgwFFYc8v7a+6ZsaRnmhGc5jwbZXVxa7S1lXJOVhJtYOs\nFAt6nVTNEW1TUGHH7QutxWeUrZ6esz8gkJaOe8KNIc/h7bcNzJxpYNCgIM8950Hy6UePBHOEEEII\nIYQQQgghhBCig7g8fjwRrioSaU6Pn9oGNynx5pDH2HuGcHWkqgMpCjnfzKX/ey8SXVOBLzaen/9y\nD7vHXYUS1UJ7Ko2G3eOuYMjLj9Nt4afkJ91KaoKZGLMhMvP6jXJ6/BRXNgVyjrQk6g0E8QaCNLqa\nv96g06LTasJqzdSczB+WY2qoJ//Ca1ENh/6M9VoteZ0TMBp0dM+Kw2r3UlXvorbBQ7AdAi9+n4Zn\nH81m69YYhp9s5R/3GtGa/EDrzzzPzY5Hq9Gg1etITzRTUX+YBzVSdDryL7uRimGjOOk/kxm54jU0\nY4/ngstHUFVhYPW3cWxck8iSJXqWLNFz112/hnTOOUdCOkKIyKuxudld1hDRz0Ief5DtxVZKqx10\nz4ojKc607zqfP0h+qY3ahtZXyTmYP6hQUu2QYK9okwanj7IwWtf2/ugt9B4X9imPQnRogfkVK3Q8\n9JCR1FSFqVPdmEP/aC8iQKOq7RjJjoCamsim7IUQQgghhBCiOampsfL7hxBCCCHaXVmNg50htnXS\n+nwMf/wOjNY6/JYY/DFxTX9bYvf98cXs/XcMfktc079jYvGbLaDTtXpf8dFRDM5LDWmebm+ALQX1\nODyRKZWftm4Vg958hoQ92wkaoth54TVsv/xm/LHxrdpe73Qw7sqReOPiWTD1a2JjTAzO+2O2tLK7\nfBRXOahpOHbbqe014uG/krV6KV+9MYfGbnmHXN+zUwLZKZZDLg8EFWobPFTWu2hweI8YPGqNYBCe\nfzybNatiGTzUweQppejbmO1KTTDTr2vSvv87PX5+3F4dgdm1TmL+Zs78+6WUDxvNqkdf3Xd5l7RY\nNN545s0zMGeOnk2bmo4TBoPKqFFBxo1rqqQT37qXmxBCNMvtDbCztIF6e+gBmdbQu5zkrV1Kt1WL\n8BtNbBsxltIhI5oNeLaFTqNhaN90jIbWf5YSf1yKorJ2RzUub2jVckx11Zx73dkoySnY1vwMRmOb\nxygq0nD22RYcDvjsMzcnnXRsnxjwe5Gaevi2d1IxRwghhBBCCCGEEEIIITpIOG2sknZsJGv1UlSN\nBk0I51v6o2PYdsUt7Lji5iPetsHlw+bwkhDTtoWAugYP24qsBJTwq6fE797GwLeeJWPdKlSNhsIz\nL2DzhIm407LaNE7AEkPRGePI/WIWmWu+pWL4aEqqHORkHP6L89+bRqePoio7dY3tuyAaKaa6ajLW\nfEt9z37NhnLiLVHNhnIA9DotGUnRZCRF4/UFqbK6qLK6cYYYFFMUeOXpTNasiqX/cU7++VBZm0M5\nOo2G3KwDKy1YTAaSYo3Ud1BrO2tef+p6DyTzh2VEV5TiyuwEQEWdk2H9Ypg4UWXiRB979mj2hXS+\n/rrpj8Ggcs45AZ57ziMBHSFEmyiKSnG1vV3b92mCAdJ+Wk3O13PI/m4xeu+v73XDFs7DG5dA8ejz\nKDpjPNZeAwill09QVSmqtJPXWUqJiSMrrLSHHMoB6DPzDXQ+L67J94YUynE44NprzVitGp591iOh\nnGOEBHOEEEIIIYQQQgghhBCiAyiqis3hC3n7xPzNAPxw79OUjTgTg9OOwWHH4LQT5bBjcNkxOBox\nOB1N1zn3u85pJzF/C70+eYf8SyagtiJZUFzlaFMwp7CykcLK8CsQmqvL6f/ei+R8MxeNqlJ/0qms\nnTCJhtw+IY+5+/wryP1iFrnzZ1IxfDRFVXZSEkxYTL/vllY2h5eiSjtWR8eEPyIl55u5aJUghWMu\nOuQ6rUbT6oVRY5SOLumxdEmPxe7yUVXvptrmwhdoXXBMVeGtF9NZuSSevL4u7v5XKVHGti8sd0mP\nxRR16HJMp9SYDgvmAOwa/2dO+r97yJ0/k003TwaaWrRUW91kJjcFnbp3V/nHP3z84x9NIZ25cw3M\nnq1n3jwDFRVaPvrIRUxMh01ZCPEb5vT42VZojVgFvYPF795Ozjdz6bJkHub6WgDsWV0oOnM8xWeM\nx+BoJGfxHLosXUDPOdPpOWc69k5dKTzzAorPGIcrPbtN+6usd9E5LQazUZbXjwVFlXY6pVnQabVH\neyoHaHT5KKkO/fNwdFUZ3Rd8jK9zDp7Lr2rz9ooCEyea2LZNx/XX+7jmmvZ5/Ym2kyOHEEIIIYQQ\nQgghhBBCdAC70xdWJZnE/C0A1Of1R4ky4o0y4k1MafX2x73yBD3nTCPtp9VUnXjqEW9fb/fgcPuJ\nMbccXgkEFbYXWakNsxqLwd5A7w//R8/Pp6Hz+/D17Y9rymPYh59GY5gtfxpye1Pb9zgy1q7cVy1k\nR7GNwT1T0PwOW1rVN3ooqrLT4Aw9CHbUqCpdF35G0BBF8ejzDrm6c1pMSIGq2OgoYqOj6J4dh7XR\nS6XVRY3t8C29VBWmvp7G4gWJdOvh4b7HSzGZ2x7KMUXp6JzWfJIlKc5EjMnQbovWBys97RwGvfEU\n3Rd+ytZr/k7QZAagrMa5L5izv+7dVe64w8fEiT7+9jcTn35q4LrrzEyf7sZk6pApCyF+o8prnewu\nayAY4So5prpquiyZT87iOSQU5APgi41n1/lXUHTmeOr7HHdARRxbz35svHky6eu/I2fxXLK/+4YB\n7/2XAe/9l5oBJ1B45gWUnjaGgOXIVfQUVaWwopE++7UlPFhdnYaaGg1ZWQqxsSEV5xGtEFQUiqvt\nBBWV7gdVpDuaFFUlv9gWVhvNPjNeRxvw47nnfjC0/fPO889HMX++geHDAzz++G8rmP17J8EcIYQQ\nQgghhBBCCCGE6ADhVi1J2rkZnyUWZ1aXkLYvGXUuPedMo8uyBa0K5gAUV9np28IClNPjZ0tBfVjl\n+rU+H7lzZ9B35utE2RvwZmTheOBhfJdcDjod0UB6YjSVVlfI+4CmqjkpW38md8EsNt34z1/OaHbQ\nJf2329IqEFQIBlUCikIgqOL1BSitcdLo+g0Gcn6RvPVn4koLKB59Hv7YA/smRRv15IT589JqNCTH\nm0iON7G7vIGSakezt/vo/RQWzE6iU46XB54swRITWqguNyserfbwK7PZqRZ2lNhCGrutlKgo9px7\nKX1nvkHnZQsoPOdiABweP1a7l8TY5itkabXw4osenE5YuNDALbeYePttTyjrhUKI37lAUGFHia3F\n4GNb6dwuslctJmfxHNJ/Xo1GUVD0BkpHnEnRGeOpHDoSJSrqsNuregOVQ0dSOXQkeqedTisWkfPN\nXNI2rCF101qGvPI45cNHU3jmBVQdP6LFqoLVNjedDwotV1Vp+OILPfPn6/nuOx2K0nTMt1hUsrMV\nMjNVsrJUMjMVsrNVsrL2XqYQHy/hnVDUNXoJKiqlNQ7SEs1HDJF3lKJKe1hhW0tZEV2/mo2new+8\nF1/W5u2//FLPU08Z6dRJkffpY5AEc4QQQgghhBBCCCGEEKIDWBtDD+bonXZiSwupGjws5BWcuj6D\ncKVmkr1qMev+8a8WF7H2qrG5cXsDzbZtqLa52VFsJaiEeF6wotB52QIGvPsClqoy/JZYqic/hObv\nfwez+YCb5mTEUm1zo4Rx5n3paedw3Ov/odvCT9lyze0oUVEUVtpJiTcTbTo2vir3+oPY7F78AWVf\n2Caw37+DwV8uCyoEFTWsx+NY1fWrTwEoaKaNVV7nhBZDLm3VPTMOlydA3UHVnj6flcSn01NIz/Lx\n4H9KiIsPhjR+YoyR1ARzi7dJT4ymoKKx1e21wrXnvMvpPestesyZ3tQq7JfjSVmt47DBHGg6af9/\n//Nw9dUaFi40cPvt8OqrHo6xDiJCiKOoweljW2E9Hn9ox8yDpWxaS7cvP6bTysXoPU3h3Nq+x1F0\nxnhKR56DLy6xzWMGLLEUnnMxhedcTHRV2S/Vd+bSeflCOi9fiCc+ieLTz2P3+Vfi6NztkO1VoKCi\nkRRzCl98oWfePD2rV+tQ1aZj6QknBOnTJ0hlpZbycg3l5Vry8w//vhUdvX9QR6VnT4UxYwLk5SkS\n2GlB9S9hbUVVyS85NiogOtz+w4Z9W6vv9FfRKkE89z4AOl2btt2+Xctf/2rCbFaZOtVNSsrv7zPi\nb12rftvYsGEDzzzzDB988MEh17ndbq6//nqeeOIJcnNzj7jNvHnzmDZtGrNmzQpz6kIIIYQQQggh\nhBBCCPHbEAgq2N2hn0GbuHMrANa8/qFPQqulZORYen3yDhlrV1B+8hlH3EQFSqod5HVO+PUyVWVP\neSMlNaEvPqT+tJpBbz5N4q6tBA0Giq64EcMD92NIT2329majnoykaMrrnCHvU4kyUjDmInp//A6d\nVnxF8RnjUFSVHSVWjutx9BZ0HG4/dQ0eahvcYT1Hfg90bhedl3+JMy2T6uOGHXBdZlI0CTGHD46E\nQqPR0CcnkfX5NfuqPi2cm8CMt9NITvXz8FPFJCWHVg1Kq9HQs1P8kW+n1ZCVYqGw0h7SftrKnZZJ\n+cln0GnlIpK3/kxdv8EA1DV4DhvC28tkgqlT3Vx2WTSffWYgJkbl6ae9sngsxB+cqqoUVzkoqrJH\nJDBqcDQy6PX/0G3RbAAcGZ0oOnMCxWeMw5HdNezx93KlZ7P9yr+w/YpbSMzfTM7iuXRZ9gV5sz+g\n+5efsuLx16gdOHTf7Wur9axeEcsPK2LZsTUaAI1G5aSTgowbF+C88wJkZR16/10uqKxsCumUl2uo\nqNBSVtb0d9P/Neza9WsI4/HHjeTmKowd6+fccwMMGaJICHI/gaBC/X5h90aXj7JaJ51Sm28b2REU\nVWVHsTWs539s8W5yvpmHO68v/vEXtmlbqxWuvdaM06nhzTfdDBjQMWFf0TZHDOa8+eabzJ07F7P5\n0FT3pk2bmDJlClVVVa3aZuvWrXzyySeov8MUvxBCCCGEEEIIIYQQQhyOze4N68v6xPzNANT3DCOY\nAxSPOpden7xD52ULWhXMAaisd5GTEYvRoMMfCLK10BpyW664gnwGvvUMmT+uaJrP6edju+sBMo7v\ne8RgTE56LJX1rrAexz3nXU7vj98hd/6HFJ8xDmg6w78jF3QUVcVm91Lb4KG+0ROxygK/B51WLMLg\ndpF/8fXsvwoZpdfSPevIIZdQ6HVaBnRPZn1+DV9/Gcs7L2cQnxjgoaeKSU0PvUVbVoqFaFPrekhk\np1gornJ0WAWkXRf8mU4rF9Fj7vR9wRwVKKt10iO75cfZYoEZM1xceGE0778fRUwMTJki4Rwh/qi8\n/iDbiqzYwmzXuVfGmm85/oWHia6twjdgEOX3/ou1KXmo7XmQ0Wiw9hqAtdcANvzlbros+YITXniY\nUx/4Cx9PfJ8F1pGsXhHLrh1N694arcqgIW6uvEzDeecFSE9v+dgdHQ3du6t0737493uPByoqNKxb\np2PBAj1Lluh5+WUjL79sJCND4ZxzApx7boARI4J/+PZENc1UUCyoaCQl3oQp6uhUQCypcoQdru73\nwctoVBXP/Q/QliRWIAC33GKmsFDLHXd4ueCC0D+7iPZ1xGdnly5deOmll7j77rsPuc7n8/HKK68c\ncl1z21itVp577jnuv/9+HnrooVZPMDX1t9vfVwghhBBCCPHbIr9/CCGEEKK91Dh8xMaYQt4+rWAb\nAP7Bx4c1TnDwEJydupK1eikJOoWgObpV27kCKrFxUWzJryGAps1zMFZX0PPN58le8AkaVaVuyHAK\n7nyQ3PGn0yW29WPZfQpFlY1t2vcB8vKoGTaS1NXLyawswNGjDwC1dh+9uptaHaRoK38gSI3VTbXV\nRa3NTSDYtKBkMBowGP/gK2z76bG4qTpC7YVXHPAcG9QzlcwUS7vue9HXFl5/zkBsXJAnX6yiW64O\naFsbib2iDDpO6J+FQd/6hbVergClYbbAaC3Pyadi75ZHp2+/Yvekh/GmpAHg9CkkJlnQ61qed2oq\nLFkCp50Gr74aRWZmFA8+2BEzF0IcS6qtLvKLrARD+FxwML2jkd4vPkGn+R+h6A0EHvkXUfffR1eD\nAV2VnS176iI06yMxsW34n/lgy5l8t1DL+qeHAKDVqQw+0c0po52cfJqLhCSFIb3TSEuMXKi3c2cY\nOhRuuw3cbli8GGbPhrlztbz3XhTvvRdFQgKcfz5ceCGMGdMUlvyjKaxxNvt8q7H7GdK77e3NwuVw\n+ah31Yf1GojdubWpldrAwSRee2Wb2tbedRcsX970vHj2WSNabWSrC4rIOWIwZ8yYMZSWljZ73fHH\nH9+qbYLBIA888AD33XcfRmPbngw1NR1TvlEIIYQQQgjxx5aaGiu/fwghhBCi3RSUWPe1yglF7NaN\neOMSqI5JBocnrLkUnTqGvjPfIGbJV5SOHNuqbTbne9kEIVX06DH7Awa+/Sw6n5eGrj3ZeNNdBM86\nm15dEgl4/NR4Wn+GcaxRi8vpJRhGZZEdYy9rCuZ8NJX1Ex/Zd/mqn0o5rkdKyOMezOUJUNfooa7B\nQ4PTi9SRb1lMWSFJP6+h6rhhVMem7HueJ8eZ0KtKu35W/+orHbfdYsZsVrn/3yWkpHuwh5GR6dU5\nAZu1bW3XYqK02MN8bbdF/rgrOf7Ff5H6yQdsu/pv+y7fvKOK7FZWj/rwQw3jx0fz0ENaNBoPt9zy\nx27FJsQfhaKq7ClrpLQ2MmHC9LUrOeG5h4iuraShRx88r/0P7aBBYPMAHkxaSImJoiCcYG4rWOt0\nfDo9hW++TCAY7IxOqzCGr7hE8wlZ/zwJ55mn7Lut3QHrNldwQu+0dpvPsGFNf554An74oamSzoIF\neqZN0zJtGphMKqNGNVXSOfvsAElJ7TaVY4bXH6SozNbsZyq7w4NJB6kJh3YBai+qqvLTzloaXb6w\nxhnw+rMAOO99EHsbXlcffaTn2WfN9OwZ5IUXXNR1VH5NHFZLJ312SEe6LVu2UFRUxCOPPMKdd97J\nrl27eOKJJzpi10IIIYQQQgghhBBCCHFUeXyBsEI5hkYbMRUlWPP6t+kM2sMpGXUuAJ2XLWj1NkFV\nDSmUY6qtYtAbT+E3W/jxzsf55vXPibtoPP26JR+xKkdzjAYdWWFWTqkYOhJXaiZdvpmH3vnr4ofN\n4aW8tm1hiv2pqkqDw8vu8gbWbKtizfYqdpc3YJNQTqt0XfQ5AIVjLtp3mU6joWen9mlhtdfy5Tpu\nusmMwQAzZ3o4ZVh4yyZx0VFkJrf9OWoxGUiK7biz3IvOGIc/Oobc+bPQBH4N1JS14TWQlaXy8ccu\n0tMVHnzQxIwZR6eFiBCi47g8AX7Kr4lIKEfvdHD88w9x2v03Y7LWsn3CRBq/XtYUyjlITkZsu7Wc\ndNi1TH87ldsn5LJofiJpGX5uvbOCNz/exb3/V8WEqBmc8+xtdPp24YHbefxUWV3tMqf96fUwYkSQ\nJ57wsn69k6+/djJpkpecHIWFCw1MnGimX78YLr/czIYNHbL0f9TU2NwtfqbaVdpAIKh02HxKa5xh\nh3ISd2wi+/slNB53IsoZZ7Z6u59+0vLPf5qIi1N5/303cXFhTUN0gA55dQ4cOJAvvviCDz74gOee\ne44ePXrwwAMPdMSuhRBCCCGEEEIIIYQQ4qiy2r1hbZ+4cwsA9T37EW+JQhtmOKexWx4NOT3IXPPt\nAcGU9pD7xSy0SpDN1/+D2j9dwZC+GWEHa7qkx6DThvEY6HTsOfdSDG4XOd/MPeCq3eUNeHytD1EF\nggo1Njfbi6x8t7mSn3bVUlLtCCuI9YcUDNJ10Wx8llhKTzlr38VdM+MwRbVf2OOHH3Rcd50ZVYWp\nU90MGxakZ+cE4i1RIY/ZIzv0IFF7LTo3J2i2UDDmQsz1NWSvWrzvcpc3QH1j6yv3dOum8vHHbpKS\nFO6808ScORLOESJS3N4ANTY3BRWNbC6oY31+DTU291GbT2W9i3X51djd4VfHSlu3ijG3jKf7l59g\n696bb1/7hOjHHsFkOXy1kx7Z8aRHsBqK16Ph8w+TuP26XObMSsYSE+SWOyp49s09nH5OAzGxCjWD\nhvLtk28SNBoZ9u9/0nnJ/APGKKywhxRcDpVGA4MGKdx3n48VK1x8/72Dhx7yctxxCkuX6jn77Ggm\nTTJSXR1+kPtYVG1t+fnvDQTZU96+lZX2cnkCFFSEv6/+U18EwHv/w60O4FdVabjuOjN+P/zvf25y\ncyUC/lvQ5mDOvHnzmDVrVnvMRQghhBBCCCGEEEIIIX53wg3mJOU3BXOsef1JTTCTHG8Ke04lo85F\n5/eR9f03YY91OFqfj+5ffIQvJg7/JZczOC8Fi8kQ9rgGvS7sAMOesZeg6PTkzv8Q9ltQCyoq+SW2\nFrf1+oKU1TrZuLuO7zZXsqWwnkqrC38HnqF91CkKcQX55M6dzrAnJjF2whhOnvI3un75CUZrbZuH\ny1i3CnNdNSWjz0UxNj2/Y80GOqWGF+JqyYYNWq66yozPB2+95WbUqCAAWo2G/t2SMBl0bR4zIzGa\nuDBCPUlxJmIi8Bpprd3jrgSgx5zpB1xeWtO2wF7v3gqzZrmJjobbbjOxeHHbHzsh/sgCQYUGp4+y\nWif5JTZ+yq9hxcZyfthWxZbCeoqq7NQ2eGh0+dhSWM9P+TU0OMOr0tHW+W0rrGd7sZWgEl4AQO90\nMOSFKYy87yZM9TVsufpvfPvax3Q751TMxiMH+3rlJJIUG97noIAfvpqbwO0TcpnxThoaDVx9czUv\nvbeHM89tQH/QNOr6DeHbJ9/Gb7Zw0lN30/Wrz/Zd5/YFqAij2l64cnNVbr/dx5dfuvj0Uxe9eytM\nnx7FsGEWXn7ZgDe8j6DHFLc30KrqNOV1Thoc7XvHVVVlR4k17FBW8uZ1ZKxdiW3oCBg1slXbcU0Y\nIQAAIABJREFUeL1w/fVmKiu1PPigl9NPD4Y1B9FxNKragTG+ELRn31ghhBBCCCGE2Cs1NVZ+/xBC\nCCFEu1i1qSKs0MbwRyfSaeXXzJ++lL4jBqAoKj/tanv4YX8xZYWMvX4sFUNPY+Xjb4Q11uF0XjKf\nYf+ZTOEVN2J58fmIjh0IKqzeUkVACf1xHfbEJDovX8iS56ZR1//4A67r1TnhgHZEdpePukYPdQ2e\nVlUK0AQDqLrfT+UQTTBAwu7tpGxcS+qmtaRsXovR3rDven90DAZXU5hD1Wio7z2Q8mGnUz58NI05\nPY54Bviwx+6g84qvWPzSR1h7DUADDMlLJTY69JBLS3bt0nD++dFYrRreeMPDn/50aIUjh9vPT/k1\nBFu5hKLXahnaJ42oEAI9+6uoc7LjCOGwSDr1/pvJWLuSRa/NpiG3977Lh/ZOI7qNIaHVq3VcfnlT\nBaKZM92MGCGLhUIczOsLYnf5cHj8ONx+nO4A7jZUattfSryJ7pnxRJva5/3G7Q1QXueksi4y4dO0\n9d9xwnMPYqmuwNYtjx8nP4mzV38G9Ughxtz6401QUdiwq67NLYQUBVYtjeOj91OoqojCaFI476J6\nxl9aT7TlyPcvYecWTrv3Roz2BtZNfIQ9518OgFGvY2jfNHTao99GKhCADz4w8NRTUdTXa+nWTeHR\nRz2cfXYwEt1Qj6qiSjsFla2rUGMxGTi+V2rYVSYPp7TGwa6yhiPfsCWqysjJ15G28UcqZi9EP+Lk\n1mzCnXcamT49iosu8vPaa57f/M/19yY1Nfaw1/1+fjMQQgghhBBCCCGEEEKIY4zd5Qt7MSsxfzOe\nxBR8aRnEmA1oNBpizYawWkk4srti7dGX9HXfEdVoxReXGNYcm9Nj7nRUjQb/DTdFfGy9TkvntJhW\nL9A0Z/f5V9J5+UJy5314SDBnd1kjOp0Wm91LXaMHr7+VAQNFYchLj9J10Wx2XHYj2664ZV8FmN8S\njd9HUv4WUjf+SMqmtaRsXY/B9WtFAGd6NhUnjaJm4InUDDgBZ1YXYsqLyPx+GVmrl5CyeT3J2zYw\n4N3ncWR2pnzYaMqHn05t/yGo+gMXX6MarGR/v4SGrj2x5vUHmlo6tVcop6pKwxVXRFNfr+XZZ5sP\n5QDEmA30yUlkc2F9q8bNyYgNO5QDkJ4YTUFFI75Ax1Rg2jX+KjLWrqTH3Bmsm/TovstLa5zkdU5o\n01jDhgV5910311xj5uqrzXz6qYshQ/5AlaSEaEEgqFBYaaesxkGkKibUNniob/SSkRRN1wgdg6Cp\n0l9ZrYO6Bk9E5qp3ORn45tPkfjELRatj659vY+tVt6IzmhiUm9ymUA6ATqtlQPdkft5Vi9Nz5M9C\nqgrrf7Dw4XupFO0xodOrnHNBPRddVUdCYusDhLae/Vj+9FROu+cGjn/xEbQBP7v+dDXeQJDSaic5\nGYdfkO8oej1cf72fCy/088wzRt5+28A110QzalSAxx7z0qvXb/eYXN2GNm5Oj5+SKke7/ExcngAF\nEWiXlfbzatI2/kjdyaNbFcoBeOcdA9OnRzFwYJDnn5dQzm+NVMwRQgghhBBCCKRijhBCCCHaR3GV\nnT0VoX95b7TWMf7yUyg/aSRbn3+XQT1SAKiqd7Gt2BrW3PI+eptBbz3D2kmPUjD20rDGOlhC/hbO\n+vslVJ00EubObZczlgNBhR+2VoUefFJVxtw8jpjyYuZPX4o3MTm8Cakqg19+jB7zZqJqNGhUFUdG\nJ376+4NUDm1de4KjRlVJ2byOtJ9/IHXjjyRt34De69l3dWOnbtQOOIGaASdQM/AE3GlZLQ5naLSR\n+eMKslYvIePHFftCPb6YOCpPPJXyYaOpPPFU/DFx9Jj9PoNfe5Kf/3IPOy+egClKx4m926fygN0O\nF1wQzebNOiZP9jJ58pGrLbTmDP1oo54TeqdF7HleWNlIYWUH/W4SDDL2+nMwWWuZP2MZ/th4AHQa\nDcP7Z6DXtf3nMH++nptuMhEXB59/7qJv36OzEBwIKiHNX4hIq7a62F3WiDfQflWkdFoNXdJi6ZRm\nCen4GVQUKuvdlNc6WxV2aa3Un1Zz4nMPYKkqp6FrT9bc9SS2vH7otBoG5aaE1f7P6wvy084aPC2E\nZ7dtMjPjnVR2bIlGo1E59YxGLru2lrSM0O9jbNEuRt5zPeb6WjbcPJn8S29Ar9VyUt90DPrQjzlu\nb1NQtDUtvVprxw4tDz9sZOlSPTqdyvXX+5k82Uti5PPY7crh9rN2R3WbttFqNJzQKy2iFaVqbW52\nlNjCryClqoyedBUpW3+mZN5iTCcNPeImK1fquPRSM4mJKl9/7SI7+5iOePxhtVQxR/fII4880nFT\naTtXG8uQCSGEEEIIIUQoLBaj/P4hhBBCiIgrrLTj8YW+EJe6aS05S+ZTPPp8dKNHkRBjBCDapKey\nzkVQCf1LeXdKOnmz30fndVN01p9CHqc5/d/7L4m7t1F+/6NE9+sT0bH30mqbQhBWhze0ATQaNIpC\n1g/L8MYlHFI1p01UlYH/+z/yPp+GrXsvlrz4IapOR8baVXT9Zh4Ju7dT2/c4Apajfzb9wTR+Hye8\nMIXBr/6btI1rsFSV0dilOyUjzyH/0hv46a8PsOOKW6gYPpqG7r1adR8Uo4mG7r0oPe0cdlw8gZoB\nJ+CPicVSVUbqlvV0WrmIvE/eI3XTj2SuWYHe42bN5P8QNJnpm5OEpY0tlFrD54NrrzXz4496rrnG\nxyOP+Fp1pnlCjBGnJ4DLc/hWM31yEtvc9qklFpOeshpnxKpqtEirRRsIkLXmWzwJydT3PQ4AFTDo\ndcSHsGiel6fQubPC7NkGvvhCz9ixgQ5fBHZ6/KzPryEx1hSxKiJCtJXL42droZWSGkdY79fQ1FIw\nacdG3Emp0EzwRlXB5vBSVedGp9Xsq7B3JG5vgKIqO9uLbNQ2uPFHsFpXl2/mMeJft6N3udh2xS2s\nufdp3GmZ6DQaBuYmE//LZ5pQ6XVakuKMVFvdKAfVodiz08jrz2cy89006moMnDDczp0PlnHW+Q1Y\nYsK7j76EJMqHjSZ71WI6r1yEotNT/ctniKTY1lfJc3n81Ng8lFY72F3WQFGVnbJaJ41OPwa9NiIB\nnZQUlUsuCTB4cJD16/V8842e6dOjiI5WGThQae6pdEwqrXHS4Gzbd3Yq4HQHyEiODnv/iqKys7SB\n3RWNhzzXQpHx47f0mfUWVSPPxjBp0hFvv2iRjptvNhMMwowZnqMWeBVHZrEc/rgmFXOEEEIIIYQQ\nAqmYI4QQQojICyoKqzZVhvUFfp9pr9L//ZdY+eirpF51CUlxvy74RKKqxug7riR5+0bmzVyONzEl\nrLH2imq0cv5Vo3Enp2Fb8zNGY+RDFnsFFYU1W6tDrkKgd9oZd8VIvAlJLHjvK9CFtoDf790X6Dvz\nDRq75LLs6an7qu/EFeQz5KVHSd28joDRzNarbyP/outQDe3TpqmtDI02Tn7sH6RtWEN9z35s+/Nt\n1PQ/Hn9c21oYtZqqEr9nB1nfLyFr9VKS8jcDUHrKWXz/8IukJ5jp0zUp4rtVFPjb30x8+qmBMWMC\nvPuuG30b1juDisLPO2ubbR+XEm+if7cwqy01Y0exlYp6V8THbY6h0ca4q0bhTk7jy3cX7lv0N0Xp\nOKlPeqsW95vz9tsG7rvPRHa2wsKFLtLTO2Y5yh8Isj6/FrcvgDlKz/G9UqVyjuhQQUWhuMpBSbUj\nIov4Oo+bYU9MIuuH5ew+73LWT5zCkZKF0UY93bPiSIk3N3t9faOH0hon9XZPs9eHK/vbrxj2738S\nMEez4ok3qO87GGiqYjKgezKJseGFcvbX6PKxYVctLhd8tzyOxV8ksHN70/3uN8jJlTfUkNcn8vfT\nUlHCyLsnYKkqZ+ufb2P7dRMZ2jcDY1TznyUcbj82h5cGp48Gh/eILQujjXqyUixkJEVH5Bjm88Fb\nbxl49lkjdruG3r2DPP64l9NOa79KTpGyektli5WRWtKrcwKZyZaQ9+30+NlWaMURqUpSqsqZf7uE\nhN3bKJy/lJgThxz2psEgPP10FM89Z8RkUnnxxcO34BTHBqmYI4QQQgghhBBHIBVzhBBCCBFpNruX\nSmt4C+t5n75HXGkBG2+5m2552fuqxEDTgk1ZbXhVNfRuN5k/foszIxtrr4FhzXWv3DkzyPxxBSU3\nTsQy+rSIjHk4Wo0GjQbq7aFVzVGijFiqykj/eTX1vQfg6NS1zWP0mf4a/aa9ij2rC8ufnoo3KXXf\ndd7EZArPvhBnRidSN64h+/sldFr5NY1dcnFldAppzpESU1bIqHuuJ2nnFkpHnMmqf71KY/deKMbW\nn+3fZhoN3qQUageeSMG5l7Hn3Muw5vVn1wV/RhsTQ//uyejaIUDx2GNRTJ0axfHHB/ngAzfGNq4H\nazWafVUZ9q96odVo6N8tOazWJYdjNuopr3VGfNzmKEYT0ZWlv7wOBuLI7gpAIKgSazaEXA1oyBAF\nnQ6+/NJAfr6Wiy8OtKpKUTgUVWVzQT2OX0JUgaCC0xMgPTH8iglCtEZtg5vNBfXUNXoiUvXK0Gjj\n1Af+QvrPqwkaDCRv34g3IfGI79n+oEK1zY3N7iPapMcYpSMQVCivc7K92EpprRO3r30W+DO/X8rw\nJyYRNBpZ8eTb+ypxNR0zkw4IGUfCnl0Gpr2bwNOPp/L98jisdXoGD3Vy498quey6OlJS2+d++mPj\nKRtxJlmrl5L93TdovB7KB55ESoIZRVWxu/xU29yUVNnZWdpAaY2DersXlyew771E77QTW1JA0o6N\nZKxbRXRVGY1dezaNH1Sot3spq3Xi9QUxG3UY9KFXANPp4MQTFa66yo/dDkuX6vnooyg2bdIyaFDw\nmG1v1eDwUhrG+2Gj00dGUnRIny/Ka51sLaiPaBu6rFWLyZv9PpVnnI9p4t8PezurFW64wcyMGVF0\n6aLw0UduRo489kNUf3RSMUcIIYQQQgghjkAq5gghhBAi0naXNVBS4whrjPOvHImq0fDt7FUc3yvt\nkOu3FVmpCiP8Y6qr5vyrRlHbbwjLnpsWzlSbBIOcO2EMRlsdxas3EZudHv6YR6AoKmu2VYV8JnXC\nrq2c9deLKT9pJKsee71N2+Z9/A6D3nwaZ3o2S5/9AHda5mFva7A30P/dF8j9YhYaVaXo9HFsuGXy\nAUGejpKy8UdO/tftGO0NbL/sRjbdcGezrVE6UrhntB/Om28aeOABE7m5CvPnu0hODn1JpMHZVJVh\nbwWMnPRYumXGRWqqh9i4u67dqlkcbO/roOLEU1n5xP9+vdxi5LieoVfTUhS44gozy5bpefJJDzfe\nGKGKA4eRX2KjvO7QBdxuGXHkZBx7reTE74fbG2B3WQO1jZF7zZprKjn1/puJL9pF8ejz2Hzt7Zx+\nx1VE2Rv49sm3qBk8rNVjJcQYsbt8YbfUOpL0tSsZMeWvqFo9K/79P2oHnAA0hXL65iSSktB8BZ+2\ncrth3jw9779vYM2aphJoqalBTjvLyuljbaSmd1xVEVNtFaPunkBsaSE7L7yW4slTaHD5CQYVjLZ6\noqvLia4qx1JVRnR1OZaq8n2XRTkP/R5q1cMvUn7KWc3uKzHGSHaqheQ4U8jVzPbatEnLgw8a+f77\npscvK0uhb1+FPn2Cv/yt0KOHQtRRLvJ3uON6W6QlmOnbhop8gaDCjhIbNTZ3WPs9RDDI2bf+ibiS\nPexasIKEIQOavdnGjVpuuMFMcbGWM84I8Oqr7mM2OCUO1FLFHAnmCCGEEEIIIQQSzBFCCCFE5K3d\nXh1W2XtTXTXjrhxJ2fAzKHrlXXp2OrS9kN3lY11+TTjTZOTk60jbsIb505a0GCxpjczvl3LKlL9S\nPO5yzG+/GdZYbVFe6yS/1Bby9qdPvJykHZtYMPVrXBnZrdomd850hrzyOK6UDJY++wGuzNZVwEnc\nsYkhLz1KUv5m/NExbJ7wD3aPuwJV14beSmHI+fpzTnj+YVBV1k2cQuHYSzpkvy1JiDFyXI/ItFLb\n37x5em66yURqqsoXX7jIyQl/OaSizsmOEhsmg44T+6Sha8dAU32jh4176tpt/IONnvRnUrasZ8G7\nC3Fm5+y7/IReacSYQ29JV1mpYdSoaFwuDYsXu8jLa7l9S6jKap3sPMxxQAMM6J4c8UodIjT+QJAG\nhw+b04eiqMRbooiPicIU1THHwUhSVJWSKgfFVXaCEVxyjS3ew6n334SluoL8C69hw1/uBa2W5C3r\nGTV5An5zNN+89BHOrC4R22e4Ujes4dQHbgFVZeXjr1M9eDjQ9Prr0zWJtAiEcnbu1PL++wZmzTJg\ns2nQaFRGjQpy7bV+zj47QLXNwc6yhrD301bG+hpG3nM98UW7qe/ZD73bRXRNBXpv80Etf7QFV1oW\nzvQsXGlZuNKz8MXGM/iVJwgYTSx6Yw6elMOHm01ROrKSLWQmW8Kq2qaqTe+VM2YY2LpVS2XlgWMZ\nDCo9eij7gjr9+gXp00chM1Nt9wpo0PT6+n5zJf5g+O8bA1v5HtDg9LGtsD7kwHdLOi/9gmFP3kXJ\nORdinPpes+GqmTP13H23CZ8P7rrLxz//6Tva2WnRBi0Fc35773BCCCGEEEIIIYQQQghxjPP5g2GF\ncgAS87cAYM3rR7yl+dOVY6OjiLdE0eAMvSVnychzSduwhs7fLiT/kutDHgegx9zpAHhuuJnInBPf\nOhnJ0ZRUO0Juy7H7/CtJ3r6R7gs+YvMNk454+24LPmLIK4/jTkph+f+90+pQDoC11wC++e+HdF/w\nEQPefYHBrz5B10Wfsf72h6nvc1xI828VRaHf1BfpO/MNfDFxfPfQf9tUbaG9aDUa8poJnYXr++91\n/PWvJqKjYeZMd0RCOQCZyRacngBxlqh2DeUAJMWZiDEZwj6WtNau8VeRsmU9PebNZMOt9+67vKzG\nQa8uoZ+qn5Gh8swzXm64wcxtt5n48ktXxCsw2BxedrewGK/SVGFsSF4qZqMsjXU0rz9Ig8OLzeGj\nwenDedBzem81DFOUjgSLkfiYKOItRqJNx/bPymr3srPUhssb2eosids3cuqDf8HYaGPT9ZPYfsXN\n7E1B1PUbwrqJUzjxuQcZMeWvLHnhQwKWmIjuPxTJW9ZzykO3oVEUVj3y8gGhnN5dEsMK5Xi9MH9+\nU3WcvdVdUlIUJk70cfXVfrp2/fX4np0agy+gUFTVsSdeeZNSWfb0+5z60K0k7diENy6hqW3lL8Gb\n/QM4zvRs/DFxNJds0QQCHP/Sowx9+l6+ffLtw1az8/iC7KlopKjSTlqimezUmJAClBoNjB8fYPz4\npudwfT1s26Zj2zYt27Zp2bp1778PbKGVkKDSp09TSKdXL4W0NJXkZJWUFIXkZJWEhGbvXpvZ7N6I\nhHIA8kttnNj78IFaVVUprnJQVGXfVxkvkuIKd9L/vf+i6PQ477wH00EPkNcL999v5IMPooiPV3n3\nXTdnnimtq35PpGKOEEIIIYQQQiAVc4QQQggRWVVWF9uKrGGN0ff9l+g37VW+feJ/dL/uUoxRumZv\nV21zs7WwPuT9RDVYGXf5qdh69uWblz4KeZyYkgLG3ngutQNOIPD14nYPLRysst7F9uLQHnOt18P5\nV41C1er4YvpSlBZSAzlff86Jz9yPLy6Bpc+8jz2nR6hTxmitY+Bbz9D1688B2DP2UjbdOAlfXGT7\nFWi9HoY+cx+dly/EkdWFlY++hr1L94juI1S5WfF0TovsovK2bVrGjYvG5YIZM9yMGhXZhS1VVcNu\nIdJaeyv0dASN38d515yBzutl/oxlBM3RQFN4ani/dAz65o9BrXXHHUZmzIhi4kQvDz4YepjwYG5v\ngPX5Na1avI0xGRicl9Lhx6c/Grc3QIPTR4PDS4PTF3JwxajXNYV0YozEW6LCqty0vx9/1DJ3roGk\nJJWMDIX0dJW0NJX09KZwwZGeHl5/kN1lDVRHus0NkL52FSc/OhGdz8O6fzxCwdhLm73doNf+Td7s\nDyg/aRSrHnkZdOG9PsORuH0jI++9AZ3Xy/cPvUD5yWcATT+/vM4JJMe3vVKVwwEFBVo+/dTArFl6\n6uqafiinnhrguuv8nHNOoMWAXyTaH4VEVdF5PQRNIQaRVJWTH/k72d8vYcNNd5F/2Y2t3tRk0DUl\nodooc9mX5Cz4hKpJ92EePpS46AMfWEWBoiIN27bp2LpVuy+0s2ePFkVpfod6vUpS0t6wTtPfe//s\n/X9Kikp6ukK3boevvhNuy9aDdU6NITc7/pDLvf4g24qs2BzeiO1rL1NdNf3ef4luX32GRlHYdfmN\nxL74HNr97nRpqYYbbzTz0086+vcP8s477gMCZ+K3QyrmCCGEEEIIIYQQQgghRAeyNob/xX5S/mYA\n3H0HHjaUA5ASb8Jk0IVcct8Xn0j1kOFkrF2Jpbw45LYYPebNBKD+6htIPAqL3umJZoqr7CEtACtG\nE4VjLqLXJ++SveprSkaf1+ztOi1bwInPPoA/Jo7l/3knrFAOgDcxmR8nP0nBmIsY8tKjdP/yYzqt\nXEThmeMpOuMCbD37hn3KudFay4gpfyN5+0Zq+h/Pd1Newhcf2eBPqBJjjBEP5ZSVabjySjONjRpe\neSXyoRzg/9m77+ioqrWP498zfSaTTCa9QxJI6F2lqUhR4drAfu0FOzbsDUXRK3a9FtRXvdgbKIKi\nUqSLgvQWIEB6TybT63n/GIoIIcnMJCDuz1pZE5hz9tlh2iH7d56n3UI5AMlmA7vKG/H42qb905/J\nag2FYy6m+0evk7VgNrv+dREQbCVSUGKhe8e4sMZ/6ik3y5ereO01DcOH+xk8OPzHxucPsGlXXYsr\nKthcXrYXW+jS4dh4DRwrai0uthbVo1Iq9n5Jf7lVoNz3vUJCpdr7dwoJtUqBxxvAYt9bEcfmjlgL\nGLfPT1WDc38ARq1UYDJq9lfVMerVrX49fvKJinvv1eH1Nh0o2BfSSU4O7L098OdYs5c6Tw26qMhW\nyYFgm5sTn3sQWZJY/ugrlA0Z2eS262+4j5g9O0lb+Qs9P3iZDddNjPh8WsK0cwunPDQelcvJrw8+\nvz+Uk2I2kJtuarLNks0GxcUKiosliosVFBUFvy8pCd7uC+IAxMcHuPVWD1dc4SEnp2VhhbzMWHLS\nYkL+uYqrbKFV3ZGk0EM5e/dfddeTxG1bT88PXqGq70AaOndv0a6hvO4S1/xKvycnovD7iL/iV9Zf\ndzebLr6WeJOe+Bgd5mgtCoVEdrZMdraPMWMO7Ot0QkGBgu3bFdTUSNTWBr9qaiRqahTU1kqUlirY\nsuXIr9Hs7ABjx3oZN853UKtDfyBAjSWy4beSahtJZj3Rfwof7Xv/i1Rlnn1Udhv5X/4feV9/gMrt\nwtIhlw3XTcQw9lxMf3rfWrxYyY036qitVXDRRV6mTnVhMER0KsIxQlTMEQRBEARBEARBQFTMEQRB\nEAQhslZsrMDtC2NhUpY5++KT8Wu1rP5uOV2bWRAvqrRSWN4Y8uE6/DSTE59/iA3X3MnWS29s9f4q\nh52z/j0Mn05P9aqN6I3t2cjqgKp6B5tDrFRkLN3N6GtGU92jP7+8+NEh96ctm8egJ+/Er9Oz6Nn3\nqM/vGe50DyL5vHSe+SFdPn8HbWOwQkpjVi67R55L0fCzcCaltnrMmF0FDH3sZqIqy9gz4mxW3fXU\nEasBtSe1UsGALklo1ZGr8mCxwNlnG9i6Vcmjj7qZMCFyVVmOpj0VVnZVhP76bg1dbRX/unwEjVk5\n/PzWNwcFwzKTjOSmHVppoDVWrQpWM0pNlVm40I4pvOHYuKuWGour1ft1zoglPSEqvIMfR1Zvq8Lq\nbJ+WaZGUaNLTtaP5oMoTTfH74ckntbzxhgazWeb5511ERclUVkpUVCiorJT2fh343uM5/LgKhczp\nZ9dz0ZU1GKMjs5jfaeaH9H3zabwGI0snv05NrxOb3UdttTDi9ouJLt3DyvunUjTi7IjMBUCWwW5V\nUFerwtKgwu+TkOVgWzj2rizrK8vo8d7LKB0OCsZeSXXvk1ApFKTGG4g2aIPby1BVJe0P3uwL49TV\nHT6wo9XKZGYGyMyUycgIMHSonzFjfGi1EfvRWqy02sb2I7TIa0tJq5dx6oPXY83oyM+vf72/glkk\nRe/ZwfA7/43K7WLjVRPI+/p/6BpqKT/xFH6f+DRuczxKScIcoyU+RkeCSRdS5TSPB+rq9gV2DgR4\namslduxQMG+eCqcz+Frr3t3P2LE+xo71oo12hFURsinRejX98hKRgcKyRkqqbREdX/J5yfn+C7p9\n+AY6Sx3OuEQ2XTWB3aePRaXRcFK3ZFRKBbIMr72m4emnNSiVMGWKm6uu8kakBZhw9BypYo4I5giC\nIAiCIAiCICCCOYIgCIIgRI7d5eX3rVVhjaGvKuesy4dTMvR0at7+X7MLyF5fgF83VeAP8de9alsj\nZ188FGvm3sX4Vsr57lP6vzaZwvF3ET3liZDmECmrtlZhc4W2wHzyg9eTsnoZP077lsbsvP1/n/Lb\nIoY8PoGASs3iZ96ltnvfSE33EJLXQ8qqpXSYN4u0Xxeg9HqRJYnqXieye9S5lA49HZ+h+UBB8qql\nDHrqTtQOOxuvnMCWy24Ou/pOJPXoGEdCbOQCXC4XXHyxnhUrVIwf7+Gpp9zH0o8bFq/Pz4pNlQTa\naTnnpCl3k7XoBxY+P52aXiccdF8kAi1Tp2p4/nkt55/v5c03Wx+q2WdXeWNoFS0Itufq0ymBmKhj\nI6h2NFU3ONnUBovfbU1ltyL5/cRlpdKlg/mIlXNsNrjlFh1z56rp1MnPRx85m628IsvQ0ACVlQoq\nKiTKymHtZieVlRJrfjNSUaYh2uTj0muqGX6GBUWoGUNZpvsHr9Dt02k44xJYMuUdLLldWrx7dFEh\nw++4BKXHzcIXPqS+S68jbh8IgNWipL5ORUOdivo6FfW1e2/3ft9Qp6KhTonXG/nqdzrn2UhNAAAg\nAElEQVTdwcGbrKx9fw7+XWJi863E2lNVvYOtRQ3t9v77Z72mPUv+1x9QOPpCVt81OaJja+uqGXHH\nJURVlu0PdWnrqjlx6gOk/LEcZ1wCv90/laq+g/bvIwExBg3xJh3xJh1Rusi0lrPZ4McfVcycqWbh\nQuX+albde7k46eQGBp5iJdYc2ep3GYlGLDZ3ZAOJskz60p/p+d6LRJfuwas3sO2i6ykYdxV+vYHE\nWD2d0kxoNUoaG2HCBB0//KAmNTXAe+856d+/7SvjCW1PBHMEQRAEQRAEQRCaIYI5giAIgiBESkm1\njR1hXmGdtvRnhky+nfXX3k30pIcx6ptf/NhWVE95nSPkYw6edBvpK+Yz953vWteiSZY5/YaziS4t\nonDJH5hyO4Q8h0ioaXCyMcRF5rRl8xjyxAR2nH0payY8BkDSmhUMfeQmZIWCJVOmtaiKQaSorRYy\nFv9Ih/mzSNy4GgCfVkfZ4BHsHnkuVf0GIStVh+yX892n9H19CrJSye/3PN1ka66jJS0+irzM2IiN\nFwjA+PE6vvtOzdlne3n7bRfKyBXiOSaE+/pujfiNqxl+9+UUn3Imvz7y0kH3SUDPnHjiYnQhj+/z\nBSsbrV6t5K23nIwb1/qWQOFUx9pHq1bSPy8RTQSrNv3dyLLMqm3V2EMMM7aLQABjeRGmnduI3bUN\nU+E2Ygu3ElVZhtdg5Me3Z2HKz22yPVlpqcTll+vZtEnJKaf4ePddJ7GtfPvxBwKs31GLxRGswuX1\nSHz/jZmvP47H5VSS3cnFtbdWkt+9dW13JL+Pfq8G2xha07JY8sy72FMzWzc5IPn3JZz86E24YuOZ\n9/pXuOKT9t/n88LShSYWzDVRXaGmoV6F3990iEmplIk1+4iN92GO82GO9xFr9qFW711OlkBrbSB3\n9mdoHFZKB4+gsVd/Es3BoIYkHciA7vs+MVE+KHjzdwtN1jW62LS7Dn+gfZfUFR4Pw++4BPPOLSx7\n7FXKho6KyLhKp4Nh915FXMHGYHD38lsO3BkIkPfV+/R8/2WkgJ+tF49n05W3IasOPQ/Va1TEm3Sk\nxhsiFtKpr4fZs9XMmKFi+XIlsiwhKWR69nEw5LRGThpqxRB17AVY4jeupvc7zxG/ZR0BpYrCf13E\n5stuwW2OR69R0TnDtP9zc+tWBddco2fnTgVDh/qYNs1FYuIxHdcQWkEEcwRBEARBEARBEJohgjmC\nIAiCIETKhsJaahtDrwIB0OP9l+n66TSWPvs+eVePO2IlgH1sTi+rtoVeqSdz4RwGPnMPmy6/hc1X\nTmjxfolrVzLsvqspHXEWmk8/Cfn4kRRqWxbJ72PMFaNQO6zM/mQRsTu3cPJD45ECfpY98SaVA4a0\nwWxbJqq8mKz5s+gwbxbRZUUAuMwJFJ32L3aPOhdLThcIBOj99lTyZk7HZYpj2RP/pa5b21X3CYVB\nq6J/fiLKCJVEkGV45BEt77yjYdAgH59/7kQXembkmBWJSlwtJsuMunkcMbu3M+ej+bgSkg+6W6mQ\n6Ns5sUWBwaYUFkoMHx6FSgW//GInI6PlS1VWh4e122tCrhD2Z7FGLb1z41v0Hns8qqx3sCXMgJOh\nvATT7u14jdF4o6Lx7L316aNobekTld2GaXcBsTu3BgM4u7Zh2rUdlevgUJorNh5Hchpx2zZQdOpo\nVj784mEDf3/8oeDKK/VUVSm4+moPU6a4UbfyaRuQZTbtqjvs53pdrYqP301kyfxgT7aTR1i47Ppq\n4uKbD5spPG4GPj2R9OXzqe/UlSVT3sZtTmjd5P6k81cf0OftZ6nL78nC56fjCOhZMDeW776Ko7Za\njUIhE5/owxzvJTbOHwzd7A3emON8xO79c7TJf8SHTV9VxmkTrySqspR14+/FMv5WOmXEolYdQ2Vu\n2kCj3cOGwlq8/vYNhUQX7WTkrRfg12j5+a1vcCamhDeg38/gyXeQvmI+u04fy6qJUw5bTc+8dT0D\nn7kHY3kxtV178+sDz+NIzTjskGqlgv75ieg0hwaFQ1Vea2fFWhu/Lo5m2cIYtm8NVthTqQP0PcHO\n0OGN9D/JhkZ7dGMO0UWF9HzvRdKXzwegZOjpbLj2TmwZ2SgkiQ7J0WQmGVEogq3gZsxQMXGiDodD\n4rbb3Dz0kAdV5P7ZhGOACOYIgiAIgiAIgiA0QwRzBEEQhH86r8+PPyBH9Jfq/0QBWWbZhvKwr6re\n11Jp0Y9r6NY3t8X7rdtRQ73NHdIxlU4751w0FEdiKj/+35wWtz0aNPl2Mpb+TMGH32I+47SQjh1p\ntRYXG3bVhrRv14/eoMf019h25iXkLJqF0uNh+aRXKR94bPxsyDJxW9fR4edvyVz0A1prsDqTpWNn\n3DGxJK3/HUuHXJZOfqvJRbSjRSFJ9MsLL9DxV//9r5rJk3V06eJn1ixHqyth/J2s31lLnTW80F9L\nZf/wJQNeeozNl93MpqtuP+R+rVpJv86JaDWhV5v5+GM1d92lY/BgH19/7WxRlSO3188fBdW4vZFr\na5KZaCQ33RSx8f4uZFnm961VONytr1i0j+TzMubK0zHUVBw6viThNRj3B3aCoZ0YvFFGvFF7b40x\nqBx2YguDQRxjRclBYwSUKhqzcrDk5NOQnY8lpwsNufnBAEsgwPA7LyV+63oWPv8/anqdSEaikU57\nH8tvvlFx++06PB546ik3113nDalSy5Y99VTWH7la1dZNet5/PZldO3To9H7Ov6yWMefVo9Yc/lxA\nZbcyZNKtJK3/nareJ7Hs8f/iizK2fnJ/JssMeOFhTD/9wlPZr/Fu7cVYG1VotQFGjGngrPPrSEgK\n/bEG0NVWMWziFUSXFbHlmjvgwYci2pLwWOdweVm/sxZXBN9/WiJn9mf0f/UJqnqfxKL//B/hlITr\n/eYz5M2cTmXfgSx5ahqyuul2fiq7jf6vPk7Wwjl4DUZW3TWZklNHH3Zbo05N37yEiIVu/3o+W1mu\nZtkvMSxbGE3x7mD6Vqf3M2K0hbMvqCMuIbzndmtp66rp/tHrZH//FYqAn5ru/Vg3/p79Yei4aB2d\nM0zotcH/Vy1frmTKFC2//64kKkrm1VddnH12+85ZaB8imCMIgiAIgiAIgtAMEcwRBEEQ/smqGpxs\nL24gPkbXZCsIoWUabG7W7qgJbxBZ5pwLBuGNNrF17go6pDT9C96/qrE42bgrtDZOAAOn3EXmorn8\n9OYMLLldm91eX1XGv64chSWnC87Fy1Cpjp2WMGsKqve3HWmNwmUuvn7Cyx/0ZSAr6XqqguxxqeTm\nuVAcOz8eAJLXQ+pvi+kw71vSVi5C4fNS0W8wKx59GV9Uy5837SU3zURmUpiLz3vJMnzxhYoJE/Sk\npQX4/nsHaWnH9HJH2OoaXawvDC1w1lpKl5Oz/j2MgErNnI8WENAcunhr1Knp0zkBlTK0hVhZhquv\n1vHDD2oee8zFbbcducpVICCzdkcNjSG8rpvTrWMcSf+ggAEEK1JsK24Ia4yMRT8waMrdVAwYSl3n\n7mjsVtR2K2rb3tu9XxqbFbXDdsSx3CYzDTn5NOR0CQZxcvKxZuYe9rm3j3nbBkZOuIiG7DzmvfE1\nslJFZmI0Mz9NYOpULUajzDvvOBkxIrQgxc5SC8XVR573PgE/LJhr4tP3E7E2qkhN93D1zZX0PdF+\n0HbaumpOeegGYgu3UjL0dFY+MJWARhvS/P6srkbFnC9MzP82CodsIEbj4PSLHJx5bj0xpvCDJNr6\nWobdcyUxxYXsueY21FOeRH0Mfea3F7fHz/rC2vZt/ybLDH58Aukr5rP+urvZdvH4kIbpNPND+r75\nNJYOuSx86RO8xpgWHbvDz9/Q77UnUbmdFI6+gLU3PYhfbzhk00STnu7ZcSHN7c/cXj+/bqqgqU/0\nol0alv0Sw+KfTdTWqFGqZE4dZeHci2pJTW/jx0WW6fLZ23T99G1ULgfWjI6sv24iZYNHgCShUyvp\nlG7aH1hbt07B009rWbgwGNAZPdrLpElucnKO7/OVfzIRzBEEQRAEQRAEQWiGCOYIgiAI/0Ren5/t\nJRaqGpxAsJrFiV2TRNWcMOwqb2RPZXjnFIbyEv511SiKTh2N673pmKNbvmAnyzK/banC6QntKtz0\npT8xePIdbL34ejZcN7HZ7fe13Nr+2HPE3nZjSMdsK/VWN+t2tjwkVVWu5qP/S+TXxcGFqu5sZIvU\njYAcDB1ERfvp2cdO7wF2eve3h115INLUjQ3EFWykqs9JyKrIVaSJlLhoLb1yQ2/Tss/OnRIzZ6r5\n9lsV27YpMZlkZs1y0LVr+7YXOVr2VFipsThDatXWWr3enkr+V+/z6wPPUTz8rMNuExetpUdOPIoQ\nW0HV1kqceqqB+nqJuXMd9OzZ9OO4dU89Fc1ULgmVUiHRPy8Rg+7Ye+20hYAs89uWSlye8AIbw+6+\nnMSNq/nhve+xZWQfeWO/H7XT/qfQTiNqu42ASo0lJx9XXGKLK7X92YAXHib7xxn8cdsjbDnjct58\nMYVlC01kZQX48ENnyO8NRZVWCssbW72fzargi+kJ/PSdmUBAot9JNq6+qZKUdC+GylJOve8ajOXF\n7DzrYv649dGwqp8AlJWomfVFPIvmmfD7JOLMbu71PMMt9hdZ/8SzlA8Kv9qbprGeU++9mthdBdRe\nezOBZ/4T0mN1vPD6AmwsrA0p/BsqjaWe0288F62lngWvfEp9Xo9W7Z+6YgFDHr8NlzmeBa98hiM5\nvVX7G4t3MfDpiZh3bqExM4dfH34RS07+Idt1TImmY0oLAj9HUFJtY0eppdntfF5YssDEN5/HUV6i\nRVLIDDrZynmX1NIxN7Tqkc3Z1/bVFRvPpitvY9eZ5yOr1CgkiYxEIx1SjCgVCgoKFDz7rIbvvgt+\nppx8so+HH3bTr98/41zln0wEcwRBEARBEARBEJohgjmCIAjCP011g5PtJQ14fAf/gjgjwUinjGO/\npYfL46PW4kKpVJASd+hVu0fLHwXVYVdzyFg8l0FP3cX6G+4lafLDrW4LUFJlY0dZ8wsah6Nwuzjn\n4qF4omP5fvrPR1x4U3jcnHXZaRAIUL5qE1Hm8BZi2kJVvQOrw4vd5cXm9B7yfAdw2BXM/CyeOTPM\n+LwKOndxctX1pfROKaZan87GtVGsX21g3Woj1ZUHFu3TMtz06h8M6XTv7UCnP6Z/1X5UqZUKBnRJ\nQqsObQG6qEjim2+CYZwNG4JjaLUyI0f6uPNOD717//MWutwePzWNLmotLhpsbgJtsNQTVVbE6GvO\npLZrbxa+/GmT26XGGcjPCr3a2oIFSi65xEBenp+ff3agP0zhmuIqGztDfF9rKYNWRb+8xJArAP2d\nlNbY2V4SXrUc086tnH7zWCoGDGXJ0+9EaGatp62vYfQ1oymXUhmVtpqC7dHkd3fw2uuN9OkWFdKY\nkagmVLRLy/tvJLFpXRQqdYCzxtbx4sZxZG9eEmwRd+WEsMIthdu1fPNZPCuXRiPLEqnpHs69qJaT\nRzSSuGcjp919ObJCwYJXPqOxY+fWH0CWiS7eRcKGVXT67hNiC7dhv/p6HM++8I8O5ezjDwTYvLue\n2sb2aS8IkPTHck594Dqs6R34+Y2v8etb9vw2F2xk2MQrAfjlhemtDvXso/B46Pl/z5M380P8ag3r\nbryPnWf/+5DnQ7gVyFp7Lh3ww2/Lopn5WTy7dgTbXPU90cbYS2vp0t0Z8jz+SuHxcMb1/8JQU8nc\n/5uDPTUTgFijlrwMEwadmuJiieef1/L556pgMK+fn4cecnPKKe3b/kw4ekQwRxAEQRAEQRAEoRki\nmCMIgiD8U/y1Ss5fKSWJgd2Tj8n2BI0OD7WW4EK0bW8LAa1KyUndk0Ou1hBJPn+AZRvKmyy931I9\n332eLl/8H7+9+jHZl5wd0jxWbKrAHwhtJidMvZ+O82Yx/5XPqOvau8ntsuZ9y0lTH2D3v28g6uXn\nQzpWe/N4/dicwZBOo93HzK90TH83DkuDivhEL5ddX8WQYdbDrjnKMpSXqlm/Ooq1q4xsWmfA7Qou\n4CtVMl26O+jVLxjU6djJTSvzVMe1HtlxJJhat0hXUSExa5aKmTPVrF4dfD9SqWROO83Peed5OfNM\nH9HHXreuo8LnD1BvdQffHxtdeP2RCyoNefQm0lYu4uf/fkVDXvcmt8tJjSErOfQH5KGHtLz7robr\nr/fw9NMHVzqoa3SxobA27PfWlohUK5ZjWSAgs3JLJW5veAvF/V96jJwfvmTp5DcoHxisyqKQJJQK\nCZVSgUopodx7q1Yq9n8fvE+BShG8v7jKSp01vOoW8js/cu+X51FEB04ZaeHGOytQa2Q6pZvISGxd\n+7yaBiebdtdF5Pkmy/DrkmimT0uitlpNGqXc3elTXLedj1YHWm0AjVZGs/dWrZaPmHmRZdi0zsC3\nn8exbnXw58ru5GLsJbWcOMR6ULvFfW3GbKmZzH/tczwxzYTn/H5Mu7eTuP53EjesImHDKnSWA60x\nnVdcg+25lxAfbgcEZJmCooY2q+R1OL3efo78r96j8MzzWX33U81ub6gsZcTtl6BtqGXZ4/+lfNDw\nsOeQ+utCTnjhYbSWekoHjWDVxCcPen4pJYm+eYkY9a2vQOZ0+1i5pTKkeckyrFsVxcxP49myMRja\n79rTwdhLa+nd3x52nqzzjP/R563/UDD2Stbd/CBalZKc9BiSzQaqqiReeUXD//6nxuOR6NLFzwMP\neBg92idybP8wIpgjCIIgCIIgCILQDBHMEQRBEP4JahqcFBymSs5fdUiOJjv16Fc/CQTk4GLz3qoQ\nbt/hFxG7d4wjMYwrcyOleu9iXrhOue8aktf+ym+LN5PdJSOkMXaUWCipsYW0b8pvizj5kZv2Lzw0\nZfiEi4kr2MD2eSsx9+wS0rGOlkWLlDz2mJYtW5QYDDI33+Lk4sut+GXv/uBOc+EGnxcKtuhZuyqK\n9aujKNx+4DkYbfLRraeD7n0c9OjtID3L849dmEmLjyIvM7ZF29bUSMyereKbb1SsWKFEliUUCpmh\nQ/2MHetjzBgv5tALs/wjyLJMo92zv5qOwx1ey7Xk35dwysM3sOuMcayaOOWI24ZTJcHphNNPN7Bt\nm5LPPnMwfHjw/d7h8vJHQQ2+QPtVRepmLaXzy09hv/dBfAMHtdtx20tL28Qcidpq4ax/D8NlTmDx\np/Pp1TkJlUpqdYU3CFbAW7W1OuTHeNUKI6/+JxWXU8lTPMwJr/fH0rnb/vvzMmJJS2hZZRGLzc26\nnbURr0Cl2FPO2ptW8Jz/btzomtxOkuT9QR2tVj44uKORsTYq2b0zuH/33nbGXlJLz36OJj9fun/w\nCt0+eYuq3iex+Jl3DmpzKPm8mLdvJmHDqmAQZ9MfaGwHWnc5EpKp7X0C2tOGoRp2Kv68Q9sWCUE7\nSy0UV4d2ztVaktfDiDsuwbxjC8sffYXSk09vclu1rZHT7roM054drLnlYXacd3nE5qGrreKk/9xH\n0rqVOBJSWPTse9gyD7Sz06mV9MtLRNPKSnl7Kqzsqmh9C7m/2rpRz8zP4lnz25EDbC2ltjUy+qrT\nkQIB5v7vRxJzMumYGo3dpuCNNzRMm6bB4ZDIygpw331uzj/fF26XOuFvSgRzBEEQBEEQBEEQmiGC\nOYIgCMLxzOsLsKOkgcomquT8lVqpYGD35JAW2MLl9fmp2Vv1ob7Rjb8Fv740G7X07pTQDrM7soLi\nBspq7eENEghw7vkDcZkTKF7wa8iL3A6Xj9+2hnbFseT1cM4lp+DXaJn98cLDXh1v3rqekbdfTMXg\n4UgzZx4TFYtaYscOiccf1/HTTyokSebSS708+KCH5ORDn2e7KxrZXdHy88PGBiXr1xhYvzqK9X9E\nUVdzYAHUFOujW28H3XsHgzqpGcdOUEcCks0G0hOjKK22R/TK/yidmn55CUd8L7FY4PvvVXzzjZrF\ni5X4/cF/mIEDfZx7ro+zz/aRlHRML2Mc0xwu3/5wo8Xubn0VkECAM68djaG6gu+n/4wrPqnJTRWS\nRO/ceExGbUhz3bBBwZlnGjCbZeb+1IhbtlFe62jXUE7s9k2c8sB1aK0W3P86h8b3P2q3Y7cHfyDA\nys2VzQZ0m9P5qw/o8/azrLv+HpT33kOyObyWkmU1dgpa2VpLlmHO12Y+fCcJtUbm4QsW8tjHI6np\n3o+FL350UHudLlnmZtte2pxe1m5vgxCYLHPyg9eT8sdyvhn/Bp97L8DhUOBxK3C7JDweCbdLgdcj\n4XYrcLsUeDzSwfe7FciB4M9zwmAr511cS+euLWihFAgw6Mk7yFg2jx1nXULxsDEkblhF4vrfid+8\nFpX7wHmhLS2L6p4D9n6dAB060DM3Ab1WFdl/j+NUUaWVwvLwAyUtEV1UyMhbzyeg0fLTmzNxJqUe\nso3k9XDyIzeSvOZXCsZewbqbH4r8RPx+un46jR7TX8OWmsmClz/FbY7ff7cpSkPvTgmtOkf8fWsV\n9r1VMSNh1w4t33wez6+L97Z8y3Bz3sV1nDzcgqoVBX32VbNcf/1EvHfcTUJ0NO++q+G11zRYLBJJ\nSQHuvtvD5Zd70WgiNn3hb0gEcwRBEARBEARBEJohgjmCIAjC8aqmwcn2EkuT1Waa0inNREZS69o/\nhMrh8lFjcVJrcdHo8ITUPuLELskYdEd38Wjl5kqcnvCqUxhLdzP6mtHsGX42yg+no23llcZ/tqGw\nltrGFizcHUb/lx4l54evWPj8dGp6nXDI/SdMfYCO876l4K1PMI87K+Q5tpf6enj+eS3vv6/G55MY\nPNjHk0+66dmz6QXYQEDm961VIT2msgyVZWo2rjOwaZ2BTeuiaKg78Pw0x3kPCuokp3mPSlAnLlpL\nTprpoHYTFpub7SWW/e3iQqWQJPo10crC44H581V8+aWKn35S4fEEf/h+/fyce66Xc87xkZ5+TC9d\n/C1tK6qnvK71wavsOV8w4JVJFJ96Jr8+/NIRt1UrFfTLSwx5Mf+5FySee9bICYOt3DOptF1fF+at\n6znlofGo7VZ8UdGo/F5qNhdCVMuqrfwdRCQ8EAgw+poz0ddWMe/LJfQdmI8UgQdq7Y4aGmwta2kl\nyzB9WhJzZsRhjvdy/xMl5OS5GTT5djKW/szK+6dSNOJAK0gJ6NLB3GSAyOn2sXZ7TavPlVqi4w9f\nccJLj1J+4iksffItQnlSyzL4fSDLCtSa1gWHlE47w+/8N7G7Cg76e0uHXGr2hnCqew7AlZC8/75Y\no5buHeNQq0TbqtaoqHNQUNwQ8YpLh7Pvfbmq94ks+s97HFSeRZYZ8OIjZP84g9JBI1j+2CscrnyL\nUiGRaNKTHGfA5fGxrbh14bh9uk1/je4fvUFtl1788tz/CGgPVIVKjTOQn9WyUnc2p5dV26pCmkNz\nykrUfPt5PIvnm/D7JOISvGRkeVCpZZRK+aBblUpGpQq2z1SqZPTuRrrM+h8KvZqiy68hPjaO99/X\nUFWlIDZW5rbbPFx3ned4+qgQwnCkYI6IOQqCIAiCIAiCIAiCIAjCcai1VXL+qrjaRlpiVJtXQvF4\n/fxREHoLi33Kau10SjdFaFat53T7wg7lAJgLNgFg7dqT5DBCOQDpCVEhB3OKh40h54evyPzl+0OC\nOZqGOjIXfY81oyNR/zojrDm2Na8XPvhAzXPPaWlokOjYMcCkSS7GjPE1uzaqUEh0zjCxvrC21ceV\nJEhJ95KSbmHkGAuyDOUlmv1Bnc3rDCxbaGLZwuBzNj7hQFCnSw8HsWY/ekOgzUIJRp2anLQY4mIO\nbaliMmrpl59IabWd3RWN+AOhLTDmpMYcFMqRZVizRsEXX6j55hsVdXXBBd8uXfyMG+fjvPO8dOwo\nwjhtKTnOEFIwZ9foC+j480wyF81lz4hzKB94WpPbev0BNhTW0rdzAmpVy97DfP4AlXUOSmvs9B/m\no/vcTH5fHs2CuSZGjA6v5VJLxW9aw8kPj0flcvLbvf8hpriQrp9OQ7NgHp6zz22XObQ1nz9AcVX4\n7XZSVi3BWF7MrjPGkZqXGZFQDkB+Ziyrtla1qFLe9zPNzJkRR0YHN488U0xcQvDzd90N95P622J6\nvfMcZYOG4zMEV8plYFtRAwpJOqT1pcfrZ/3O2jYJ5eirK+gz7Vm8BiOr73gipFAOBHeL0ivp0zmB\nqnoneyqtLQ5/+PVRLHviDfq8+Qz2lDSqe55ATY/+eGLjDrt9apyBzpmxf5tKeMeSlDgDaqWCLXvq\n27zS164xF5KyagkZy+aR/+V7bLtk/P77un7yFtk/zqAuvycrH5h6UChHAszRWpLjDCSYdPsr2smy\nhrIaO1Zn60O5m6+4DWN5MR3mf8dJz97Pikde2l9tsbzOQZRO3aKwf1V9aP9naYm0DC83T6zgwitq\nmP11HPN/iGX9Hy1N0sQDj4MdmBb8G4NB5q673NxyiwfT0fvvh/A3IyrmCIIgCIIgCIIgICrmCIIg\nCMeXGouT7cWtr5LzV/mZsaTGt+3ln1t214UcHvqzo9l+C0Jrw3E4vaY9S/7XH7D2na9IP/f0sMf7\nbUslDnfrA0OS38dZlw4DWWb2Z4uQlQeu8ezy6dv0fP8ldkychOn+iWHPsS3YbMH2SC+/rGHHDiUx\nMTJ33+3muuu8aFvZZWfT7jqqI/Ac/TNZhtKivUGdtQY2rzdgbTz4OlqFQiYq2o8x2o/RGCDKGPw+\nKjoQvN37Z+Of/hxj8hMT629y7VenVpKdGkNyMy1d9nF7/Owos7T654+L1tIrN9herrhY4quv1Hzx\nhZqdO4Ovz4SEAOef7+Oii7z06NF2ASThUL9uqsDlbf1nQ8yuAkbdcj6uuETmvvsdfv2RPxtMURp6\n5yagUDT94DpcPspq7FTUHdyuqqZKxT03ZuP3SUx9axep6ZFra3I4Cet/4+RHbkbhcbPywecoOXU0\nsQWbGHXbBbjGXYj1rf9r0+O3lz0VVnZVhN9qZ+jDN5D6+xIWT5tJ/nnDIxrgKL6AIjEAACAASURB\nVKm2saP0yGGs35YZeWFyOrFmH1Ne3UNC0sGfcd2m/5fuH73O1ouvZ8N1B39GKSSJ7h3jiDcFQ4k+\nf4B1O2pCCiM0S5YZ+uhNpP62mFV3TWbX6AtDHkohSfTpnECMIdgjx+n2saPUEnL4tik5qTFkJTdd\n7UFoGZ8/QGW9k7Iae0TbMv2VprGe0288D21DHQte/oT6/J5kzf+Ok569D3tyGvNf/Ry3OfhZbNSp\nSY4zkGTWN1mNsd7qZt3OmpDmovB4OPmh60la/zvbLriW9Tfcu/8+CeiZE3/YMPCfhfr5FIpAAPw+\nCb8ffF4Jn1/C55Xw7731+ST8PtDt3kOf5ydRn5LLpolTyEyKxe+HE0/0izabwmGJVlaCIAiCIAiC\nIAjNEMEcQRAE4XgRaquSwzFoVZzQJSliV8P/VTgLAIfTHkGipkQqvDFs4hUkbPqDjSsLSOmQFPZ4\npTV2tocYGOr73yfpNOsTFj3zLlX9hwDBwM6YK09HY7VQvHIjxtSEsOcYKW43LFyoZMYMNT/+qMLp\nlFAqZa680su993pISAjtV+Fuj5/ftlaGXDmmJQIBKNmjZeNaA4XbddisSmxWBXarEptNic2qxO9r\n2evQFOsjJ89FTmcXuXkucvJcJCUGyEo2kpFoPGJQoil1jS52lFpaFPJSKxXkpyfx01wtX3yhZvny\nYOBIp5MZPdrHhRd6GTbMj0rU8z8qCssaKaoK7f893d9/mW6fTqNg7JWsu/nBZrdPitXTreOhVTlq\nLS5Ka+zUWZsOFSxbGM0rz6TTKd/J5Jf2tNnzJemP5QyZdCsKv58VD79I2ZCRwTtkmTFXjUJvt1K7\neSetTvQdY7y+ACs3V4ZdxSOqdA+jrx1Nbdc+lHw5h/TEyLe8XLO9Govdc9j7dmzT8fg9WUgSPPHC\nHnI6H9r6Sulycsb1/0JfV8OP78zClt7xoPsVkkSP7DhijVrWF9a2uH1Wa2XN+5aTpj5AZd9BLP7P\n/4VcLQegaxNtuGoanOwotYQdZlBKEl06mA+pJiSEr97qprTGRq3FFVKr1uYkrVnBKQ9chy0ti7U3\nP8jgJybg1+hY8PIneHLzSTIHW1Udrq3k4WzcVUuNJbTAl9pqYfgdlxJTsovVEx6j8OxL99+nUgTb\nHDbVdtZic7NmR+T+TxARsswpD1xH8poVLHrmXTIvPY/oveE4QWiKaGUlCIIgCIIgCIIgCIIgCP8A\nPn8gYqEcAIfbR43F1SYLNQFZDjkw0pSyGsdRCebIskyDNQILe34/sTs205iZgzHJHP54QEqcnt3l\njXj9rV+MLRo2hk6zPiHrl+/3B3NSVyzEUF1O0XmXHROhHL8fVqxQMmOGiu++U2OxBBc+c3MDjBvn\n4YILvGRnh7cUptUo6ZgSw86ytmupo1BAVrabrOzDP49kGdwuCZtViX1vUMduVewP7dhtCmxWJfW1\nKnbv1LHmNyNrfjuwYJ6UFKBPnwC9evnp08dP794BkpNb/u8SF6NjgFFLcZWNokrrYVvN+P2wbnUU\n61cksmC+Fpcr+FgMHhysjHPWWT5iYlr5DyNEXJJZH3IwZ8tlN5O5eC6dv/2IouFnUZ/f84jbVzU4\n0ZU1kpMWg88foKI22K6qJW3/hpxmZfVKC0sXmJj2Uio3Tywn0gXRUn5bzOAnJgCwbNKrVJw07MCd\nkkTJkFHkf/0BmiW/4Bl5bLfta05JtS0irXVyZ3+GJMvsGXsFGW30eZufaWb1tkNbWlVVqHn20Qy8\nXon7Hi85bCgHwK/Ts+7GBxj85B30fus/LHvyrYPuD8gym3bVEW3Q0GBvm1COtq6avm8+g09nYNVd\nT4YVyslKij5sKAcgIVaPOUbLngobJdW2Fre3OmiuKiXdc+L2V+MRIsscrcUcrcXp9lFWa6ei1hHS\nOVlTqvoOYtsF19Dly/c4+ZGbCChVbJ06jezTTsIcrW11uD43zURdozuk55I32sTSKdMYfvsl9Hv9\nKRzJaVSceCoAvkCAjbtq6ZeXiEp56Jt5ZRu2sQpV8uplJK9ZQcWAoShGjhKhHCFsIpgjCIIgCIIg\nCIIgCIIgCMcJWxu0YiiqtLVJMKekyhZSi6UjsTo9NDo87b64ZHV6I7LIEl26G7XTQUN+zxZf2dwc\npUJBSpyB4mpbq/et7dYXR0IK6cvm8ceESQQ0GjrN+gQA13XjOVrX1csyrFun4Ouv1Xz7rYqKiuAC\nT0pKgH//28v553vp2TOy7ZHSE6OorHNga8OWFEciSaDTy+j0vkPathxOY4OSuvIYqkpi2LRRxbp1\nSn76ScVPPx1YEkhJCdCnj59evYK33bsHUCqDlYdcLgmX68D3B/7OjNVmorjSRUOjH69HwuOWaGxU\n8vvyaCz1wfE7dfJz4YU+zj/fS1bWMV20/x/HqFdj1KlDei4HNFpW3/EEw+67mgEvPca8/36BrDry\ne1VRlRWHy0u91X3YQNeRjL+9ksoyDYt+NqHTB7j21sqIva5TVyxg0FN3gqRg2eOvUzlgyCHblA7d\nG8yZPetvHczx+vyUhPAZ8FdKp4PsH2fgMieguGBcSNW3WsKgU9Ex9eAwpN2m4JlHMrA0qLj2tgr6\nD7QfcYzSoaOo7DOQtJWLSFn5y8GhK8Avy20WykGW6ffaZDRWC3/c9giOlPSQh0qI0ZGdeuTWUkqF\ngpy0GFLi9BSUWFpVAcioU9MjJw6dRiwXtzW9VkVumomOKdFU1TsprbZH5JxCKUkU3XIvGRt+w7h1\nI40vvkrqhWeFNc/0hKiQzhsB7KmZLJv8BsPuvYpBT93Nwhc/pKFTNyAY+N+8u56eOXEHBYYCshzx\nlqFh8/vp9e7zyJLEpuvvIT9NJIuF8Il3WkEQBEEQBEEQBEEQBEE4TrRFMMfq9FBvdWOOjlwbD5fH\nx56KtmkhWV5jJyarfYM59Y2RWdwzF2wEwNWzN4e/Nj406YlRlFTbWt9CQaGg+NQzyf/6A5JXL8OW\nnkXy2l+p7nMSphP6RnCGLbNjh8SMGWpmzFBTWBgM48TGylxxhYdx43wMHOhHqWybYyskic4ZpmOv\nzcJhxBq19M+L2Xtlt2/vF1RVSaxfr2DdOiXr1gVv585VM3duKEc5tFJGjMnPtde6uegiH337RjYY\nJURWklmPrTy0z4vqPiex64xxZP84g84zplNw0XXN7lPTGFpbFL0hwINPFfPEfVn8OMuM3uDn39eG\n/xpMX/wjA5+5h4BKzdIn36S6z0mH3a62ax+ccQlofpgDz7/C37X/WlGlLSKt+LIWzkZja2TrFbeS\nmhobgZk1LSMxiuoGJ40ODz4vPP9EOqVFWv41ro4zz2lBtT1JYu0tDzHqprH0efMZfuo7mICmfc4N\nMhbPJWPZPKp7DmDnWZc2v0MTonRqunQwt7jiiUGnpk+nBCrrHRSWNuL2Hbm9VXyMjq4dzIetXiK0\nHaVCQWp8FKnxUTTY3JTW2Km1uFpUoUanVmLUq4na+2XUqdFrlUiShGvOXLyFO/H1Dv/8rENKNBV1\noVf2qevam5UPTGXQk3cy9JGbmP/q5ziTUoP3WV0UljWSm27av32D1R3RKkKR0GH+LGILt7F71HmY\nBp+AVt1GJ5jCP8rf8yxCEARBEARBEARBEARBEIRD2NsgmANQVGmNaDBnR6ml1ZUTWqqq3kluuqld\nF5rqW3F1+pHEFWwCINCnX0TG20enUZFg0lNtaf3VyMXDxpD/9QdkLvoBrzF41X79FddhbqNKCX+1\nZ4/EnDkqZsxQs359cFFEr5cZO9bLuHFeTjvNTzuttWIyakkxG6ioj1y7uEjrmmUmOe7wsa6kJJmR\nI/2MHHlgsbayMhjWWbtWydatChQK0GpBp5PR6UCr3Xd78N/p9cFbtUamweHA6rJz9sgY4kyRqfQk\ntK1ks4Fd5Y2tD+vttX78PaT++gvdP/wvpSefjj01M6Lz+zNjTICHnylm0t0d+OazBPT6AGMvrQt5\nvMwFszlx6gP4dTqWPDWN2h79m95YoaB08Eg6zf4M9YpleE8+NeTjHi1ur5+ymiNXl2kRWabTrE8I\nKFW4r7oWZaT7iv2FJEnkZ8Wyams1015OYdO6KE4cYuWK8VUtHqOxY2d2nPtv8mZ+SOcZ/2PbJePb\ncMZBmoY6+v73KXxaHb/f/RSh9l9TKxX0yI4L6Vwm2WwgPkbH7nIrpTWHD+VmJBjJTY9pdZsjIbJi\njVpijVrcHj9ltXbKaux4/QGUkoRBp8aoVwUDOHu/jvR8kKNjIhLKAVApFXRMjQmr5Wzp0NNZN/4+\n+rz9LEMfvYmFL36MLyrYYrO42kaUXk3K3vOVqmOsjZXC7aLHB6/g12jZfv1d9Exq/za5wvFJBHME\nQRAEQRAEQRAEQRAE4Thhc0a2NdQ+9TZ3xFpE1Vpc1FhCq57QEn5ZpqLOQUaisc2OcdDxAgEa7Z6I\njGUu2EhAoUTdv09Exvuz9MSokII59Xk9sKVmkr58PrIEjoQU9OefF/H57VNSIrF0qZJly1QsX66k\nuDi4CKVSyYwa5WPcOC9nnOHD2D4P7yFy02OobXQdc1d2A2SnxDQZymlKcrLMqFF+Ro06cmWFI9Ph\n82tE1YW/Ea1GicmobVXLmz/zxJhZe/ODDPzPvfR79QmWPP0ObVkiKdbs59Fni3js7g58+n4SekOA\nM89t/YJxh5++4YQXHsJrMLLk6Xeo69q72X1KTz6dTrM/Qztn1t8ymFNUaY1IEDZh42piC7dRcupo\nkrrnRmBmzYvSqZn3bSqLfo4hN9/JhPvLULSyaMXmK24ja8Ecun3yFntGnoMrIbltJrtX3zemoLPU\nsfaG+7GndwhpDIUk0a1jHHpt6Eu4KqWCThkmkuP0bC+x0OgInqdIQKd0E+ntdI4ktIxWoyQ7NYYO\nydG4PP79VXCOprR4A2U1duxhtNvafv5VGMuL6PTdpwx66k6WPvnm/vaHBcUN6LUqovXqkM5P21Ln\nmR9iqKlky8XjSe2T3+ZBROGfQzyTBEEQBEEQBEEQBEEQBOE4IMsyjjB+ed6c4kpb2GP4AwG2l4Z+\n9W1LRaQ6QAtZbJ4WtR9ojuT3EbtzC40dO2OMi4nAzA4Wa9Ri1IVQzUSSKB42BpXLgdrpoOLCy9EZ\ndBGbV3m5xJdfqrjzTi0nnBBFv35Gbr9dz+efq7HZJMaM8fLccy42bLDz8cdOzj//6IVyANSq4OLZ\nsSYxVk+HlOijdnwRyvn7STbrw9q/+LR/UTFgKCmrl5G1YHaEZtW0hCQfjz5bhMns473XU/jlp9a9\nDrO//4ITXngIjzGGRc++36JQDkB1zwG4o02oZ8+CwLEXyDsSl8dHeW1kKnx1mvUxAI1XX99ur/cv\nv1Qx7fUYklO93D+5BK2u9Z+1XmMMG669C5XLQa93X2iDWR6QtmweWb98T23X3mwfe0XI4+SmxUSs\nSmG0QUO/vETyM2PRaZT0zIkXoZxjmEIhYdCpjnooB4JVq3LTwjzf2dtSruykU0lZvYx+r02GvefM\nAVlm8646ymrsEWm1Fymahjq6fvY27phYyq65lWRzJJvLCv904mxZEARBEARBEARBEARBEI4DTrev\nzdpDAdRYnGEHf4oqbbg84VTmaBmH20e9NTLtpZpTF6HjRBcVonK7sHXr1WZX5mYkhbYYV3zqaAD8\najXy1deGNYfKSokZM1RMnKhl4MAoevc2cuutej75REN9vcSZZ3p58kkXCxbY2bLFxgcfuLjqKi/x\n8cfOok1qvCEi1aMiJVqvpktW7NGehvA3kxirRxHO4q8ksXrCJHxaHX3eegZNY33kJteE1HQvj/6n\nGGO0nzdfTOXXJS0Lo+XO+pgBL0/CExPLoqkf0JDXvcXHlFVqygaPQFVViWrV76FO/ajYU2GNSHBU\nV1NJ+tJ5NOTkE3v6aRGYWfOWL1dy5506YmJkpk+3ExcXeihq9xnjqMvrQYcF3xG/cXUEZ3mAurGB\nfq89gV+t4feJU0DZytI+e6XFR7VJcCY1PoqB3VKIi4lcsFY4/sXF6IiLDu85IytV/PrQC9R36krO\nD1+R//m7++9z+/zsKLOEO82I6vbJW6gdNjZfdgsd8jOO9nSE44wI5giCIAiCIAiCIAiCIAjCccDm\nbLtqOQAyUFwVetUch8sX1v6tVVbbPlVzGiIUzIkr2AiAp1fk21jtkxJnYFD3FHrlxJOTGkNyrB6j\nTt3s4rwlO4/C0Rey/Zo7iMlu3SKFLMOCBUruvVfL4MEGevY0ctNNej78UENVlcSoUT4ef9zFvHl2\ntm2zMX26ixtv9NKjR4BjtXOAJEl0zjBx9K9nB41KQffsONFmQWg1lVJBfJiL9I7UDDZdOQGtpZ5e\nbz8XoZkdTOF2gf9AoDMr281DTxej1QZ45Zk01v4edcT9O3/1Af3++xQucwK/PPc/LLldWj2H0iEj\nAVDP/rbV+x4tTrePyvrItIfJ+f4LFH4fdZddi1odenulltq+XcFVVwUrOr3/vpO+vZVkhhgsBUCh\nYM2tDwPQ9/UpBz2fIqXPtGfR19Ww6YrbsGaF1uorNkpLpwxThGcmCOHplB4TXogT8OujWPrkWzgS\nUuj13otkLpwTodlFVlTpHnK/+xRbaibWy6/GFHXshLCF40Pbf4IKgiAIgiAIgiAIgiAIgtDmbE5f\nmx+jst5Jx5QYtJrWXwm+vaQhIlfut1StxYXb60erDu2q9ZZwe/3YItQ+zLw3mEP//hEZrylatRKt\nWnnQVfMBWcbh8mFzerE7vdj2fnn9eysUSBKr75pMp/SWLxjKMvz4o5IXXtCybl3wMTAYZIYP9zFk\niJ+hQ3307BlA9Tf9DXW0QUNaQhSl7dg27a8UkkT37Hh0mr/pP6Jw1CWb9VRbwgtvbB93JVkLZpP9\n00z2jDiH6r4DIzI3hdtF72nPkjvncyRZxqs34I2KwWuM5rSoaPI6DuWybVN54dFk3hn2Kr1zKvBE\nxeCNMuI1Bm+TVy+nx/TXcMYn8cvUD7BlZoc0l8p+Q/AaolB/9y3OJ6bAMdBmpjm7I1QtR/J6yJ3z\nBR5jDNorL4vAzI6sulri0kv1WCwSr77q5OSTgyGaDinR1FpcIX/m1nXtw+5R59Hx52/I+eFLCs+6\nJGJzTvltMR1//oa6zt0puPCakMbQaZR0zzaHHYAQhEgz6NSkxhvCPt9xxSexZMo0ht/1b054/iEc\niSnU9mjbc97W6vn+yyj8PjZedzfZHRKO9nSE45A4YxcEQRAEQRAEQRAEQRCE44A9QgGRIwnIMsXV\ntlYFNACq6h3U29qntdQ+AVmmotZBh5SWtToJRaSq5QCYCzYRUKnR9u0dsTFbSiFJGPVqjHr1QX/v\n9vr3B3XsLh8pcYZmxwoE4PvvVbz4ooaNG5VIksw553i5/nov/fv7UaubHeJvIzs1hpoGF25f27dn\nO5zOGSZxNbcQljiTDrVScSCEFwJZqWL1XZMZcfvF9H9lEj9N+5aANrxKPDG7tzPw6YmYdm/HmpaF\nMzEFtc2K2m5FX1tFTNFOzg/8gYECzuVbbl1wA/MXjOAEVh0ylj0plUVTP8CelhXyfAIaDeUnDSNr\n4RxUG9fj69n+79Ot4XB5qap3RGSsjKU/o6uvofSy8WhMMREZsylOJ1x5pZ6iIgUTJ7q55JIDgWOF\nJJGXFcuagmpCjRutv+5u0pf9TI/3X6b4lDPxxoTfAlBlt9L/5UkEVGpWTZyCrGz9sqtSIdEjOx61\nqu2CxIIQjo4p0VTWOfEFQv+sAGjMzmPFI68w9JEbGTLpVha8+hm29I6RmWSY4rasI3PxXGrzeyGd\nf4EIPQttQjyrBEEQBEEQBEEQBEEQBOE40NatrPYpr7XTITkataplrXN8/gA7SxvbeFaHV1ZrJyvZ\niNRGV6DXRSiYI3k9xBZupTEnH42x+fBLezlcdZ2mBAIwe7aKF17QsGVLMJAzbpyXO+/00KVLeAs5\nxyqVUkFOegxb9tS3+7EzEo2kxh+5hY8gNEchSSTG6sNu/Vef14Pt511B3oz/0e2Tt9h4zZ2hDSTL\nZH//JX3eegaV28WOsy9l3Q33HRr0kWVUTgdqu5X7Fq3jmXf6M1K3hDcv/ZQuhl2o7VbUtkYkGbaf\ndxnOpLSwfj6AkiGjyFo4B+mbmXCMB3N2VVhDDq/8VadvP0aWJBQ33RihEQ8vEIBbb9WxerWSCy/0\nct99nkO2iTFoyEyKpqjKGtIx3HGJbL78Vnq/PZUe019jzW2Phjtter3zPIaaCjZdcRuWnPyQxuia\nZT4kGCsIxxK1SkmHlGh2llnCHqtywBD+uGMSA156jKEP38iCVz7DYzJHYJZhkGV6vRNsx7jlpvvJ\nbcNQv/DPJhrPCoIgCIIgCIIgCIIgCMLfnNcXwO1tn6od/oBMWSvK2e8utx61iiJur59ai6vNxo9U\nxRzTnh0ovR6cPY7txd7D8fth5kwVp55q4Prr9WzbpuCCC7wsXergrbdcx20oZ59ks4FYo7ZdjxkX\nrSU3rW0rVwj/HMlmfUTG2XjVBOxJqeR/8X/E7Cpo9f5qq4WBT93FgFcmEdBoWTbpNdZMeOzw1Xck\nCZ8hCmdiCr0viOamiZU0OnXc+s0VLO1/FVsvvZEN4+9l/Q33RiSUA1Bxwsn4NVo0s7+LyHhtxeb0\nUt0QXnuyfWK3byJh8xrqBw9DlZ8XkTGbMnmyltmz1Qwe7OPFF11NdgvrmBKNQRt6zYHt515GY0Y2\nubM/w7Rza8jjACStWUHu91/QkJPPlkvGhzRGdkoMCbGReQ0KQltKT4wK67X3Z7tGX8iWS24guqyI\nIZNuRdNQF5FxQ5W2YgGJG1dTOmg4MWcOR6UU8QmhbYhnliAIgiAIgiAIgiAIgiD8zbVXtZx9Sqpt\n+FtQzt7m9FJaY2uHGTUt3EoQTbE5vRELHJkLNgLg79M3IuO1B58PvvpKxSmnGLjxRj07dii45BIv\ny5fbeeMNF507H9+BnD/LyzChaKOqTH9l0Kro1jGuzapACf88JqMWnTr8Fjp+fRR/3D4Jhd/HgJce\nDab2Wih+0x+MunksmUt+pLrnAH56cyZlQ0a2eP9hp1u45pZKGupUPHl/FjVVkW8W4dcbqBgwFMOu\n7Ujbwgt0tKXdFZGrUNdp1icA+G68KWJjHs7776t54w0NnTr5+eADJ9ojZB0VCon8LDOhvgPKag1r\nb3kYKRBgwMuPkblwDvGb1qCrqQyW7WkhpdPOgBcfJaBQ8vvdU5DVrW8rmBSrb9N2m4IQSQpJIic1\ncqHgjVffQdGwMSRsXsNZl53GCc89SGzBpoiN31KS30fPd/+fvfsOk6o+2zj+PWd62d5ggaV36SAo\nRGNXLCGa2I29d14LRmOLvSaWGAtq1Nh7jUbRWAFBqdJ732UXdnfKTn//WEWRBXZ3zja4P9e115o5\nZ57zGyBzZubc8zz3kjRtLLng6nqNbRVpLI2yEhERERERERERaeOCzRzMiSWSrCsP0bHAv8P9Fq3a\nbNk4jcaqqI4QjsTxWPQt35+sszDwk/PjhQhzxHDLajaVeBxee83O/fe7WLrUxG5PcdJJUS65JErX\nri39t90yvG4HHQv8jR6vUl9202SPrnn6JrdYrjDHa8m/3/V77svKfQ+j5H8f0P29F1ly1Ek7vkMi\nQd8XH6Pfsw9jkGLuKRfxw4nnga3hQaHDxm0iHDZ58akCbrumhEeeLCMrO8H6TaFGPpptrR5zMB2+\n/oTk669jXPPnOvdZscJg4kQn4TD4/ZCRkcLv/+mH7f63s+G5jm1UBqNstKhLnLNqEyWfvke4Y2eM\ngw+xpGZdPv7YxjXXuMjPT/L882Gys3d+nyyfkw4FflaXNS74u2H4aFaPOZiOX37EqNuv2HJ7wuEg\nXNCeYGExoaJiQoXFBIuKCRV1IFhYTLigiJS9duTUgCfvx7dhDfOOP4fNvfo3eA0ZHge9S+rxYEVa\nkfxsD9l+F5sDFnSMNE2mXnk75X0H0+Ptf9Plv2/S5b9vsrHfYBb/7mRWjzmoUYG3hur6wWtkrl7G\nksOPo93eQxV8liZlpFKpVv1uqaysad/MiIiIiIiIABQUZOj9h4iItFnzV2yy9OJjfbgdNvbsV7Td\nTiHryoMsWLW5Wde0PZ0K/HTvkGVZvRXrq1lmYVeCAy84hswVi6lYvg4cDsvqWikWq+2Qc//9LpYv\nN3E4Uhx/fIxLLonSuXOr/oi5WSSSSb6dV0pNE42UM4AB3fLIzaxjrI9ImoI1Mb6dX2pJLVdFGYee\ndQRGMsGHj79LuKBdnfu5N25g5J1XUThzKqH8dky55m42Dqh/ONEAPC47Po8Dv9uBz2PH73Fwz11e\nHnjARb9+CV59LcC81etJWHQZzBGo4qhjxxDs1ouaL7/ZaltFBdx/v4unnnIQjTb8wq7TmSIjI0VG\nBhx/fIzLLotiNiCDl0yl+G5BGYEaa4K6vV6eyKAn7qHi+ltIXHSJJTV/bf58k8MO85JIwOuvhxg+\nvP4daxLJJNPmlxGOxht1bCMeo+i7r/GtX413w1p8pWtrf29Yi3vTxjrvkzJNwrmFhArbk//D91SV\ndOe//3iNpLNh4wxddhtDexXgcqbfqUqkuQXCMaYvKLU2eJ9MUjT9K3q+9Rztp34OQDi3gKWHH8eS\nw48lkltg5dG2sIeCHHb6odjDIaa8/hm9hvdpkuPI7qWgYPud0BTMERERERERQcEcERFp26YvKKW6\nmbvmAPQpyamz5XssnmDqvFJiidYxzshhM9mrfztMM/1vwa7cUM3SddaFcsxohN+PG0F17/5EP/3c\nsrpWisXg8MO9zJhhw+lMceKJtYGcjh1b9UfLzW7j5jBzllc0Se0exVl0LNxxhyqRdEybX2pZqKPr\nB68w/P7rWbP3AXx940PbbG//zaeMuPfPuKo2s2bvA/h2/C3EMrffPcRumvg8dnxuB35P7Y/PY8dW\nR3IllYIJE1w89ZSTYcMSXHPTepJO697njfnzObSf9gXrvv4ee4/uhMPwWJt+JwAAIABJREFU+ONO\nHnjASVWVQUlJkgkTIuyxR5JAAAIB48efrf+7unrr24NBg+pqWL/epLra4IgjYjz4YA0+X/3WZWlg\nNJFg7GmH4K6sYNOs+aSyc6yp+wvl5QaHHuplxQqTxx4LM25cwwM2mwMRZiyuO0STDjMawftTUGdL\nYGdN7e+ydXjK1pOyO1jz4ltEhjS8053LYeJ2aqCJtF0LVm5iXUXTfCHAv2Y53d9+nq4fvoEjFCBp\nd7Bqn0NZ/LuTqOg7yNJj9XvmIfo/9zA//Oki/LfebHl3Tdk97SiYo39hIiIiIiIiIiIibVgylSJY\n07hvjKdr5YbqOoM5S9dWtZpQDtSO3irdHK5zrQ2xuixgaSgHIGvZQsx4jMiAwbTW5vkvveRgxgwb\nBx8c5667aiguViCnLvnZHvIy3ZRXWTNK5iftc70K5UiTK8r1ElhbaUmtZYccQ+eP36bD159Q/OV/\nWTvmIKA28DDwiXvp+eazJBxOpl98PUuPOB7q6LxmGgbtcr10LPDhdde/k5hhwO23RwgEDF55xcGx\nRxUzeESQA8duZsiegcZMydrKmjEH0n7aF0RefYNXu0zgjjtcrF1rkp2d4uabazj99BiuhjVQ2Up5\nucEZZ7h5910HK1eaPPNMeKfPuaGaOCs2WBc+aj/1c3wb1lB1wilNEsqJRuHMM92sWGEyfnykUaEc\ngGy/iyE9C9hYGaa8soZQxJrXQkmni0DHrgQ6dgXAZhoUZHkoyvWS8jsJJhIQieD2+VAPM9kddWmf\nSenmMImk9a8HAx26MPP8PzPntEvp8t+36PH283Se9A6dJ71DRe8BLPrdSaze5zCSac7/c5eX0vvV\np6jJySdw7kUUKJQjzcB244033tjSi9iRUCja0ksQEREREZHdgM/n0vsPERFpk0KROGs2Blvk2LFE\nEr/bsdVF08pglEVrrLm4a6VoLEn7vHq2HqjDuvIgi1Zb/7iKv5lE8dT/EfjTGRiDB1teP12RCJx1\nlodoFF55JUz79grl7Eim18n68pBlIx6yvE76dc3F2M7IOBGruJ021pQFrClmGJT3HUzXD16hcNa3\nLD3sD/jWr2GfP59Dh28mUdm5O5/fPpH1I3+7TSjHZhh0yPfTr0suRbleHPaGJ2kMAw49NE6nTkk2\nbDD5bpqbrz7L5LMPswgFbRS1j+L1NS48Gsprx7LX1nH6d1fxzLvtiEbh/POjPPFEmDFjktjTvLbr\n9cIxx8TZsMHg448dvPGGnVGjEjt87p27vKLRI53qMuQft+Jft4rgA4+QKiyyrC783NHo3XcdHH54\njLvuitSVy6o3t9NGboabDgV+CrO9uJ12UkmIpDlW0AByM9x0aZ9B75JsCnO8eFz22udi04Q0QwEi\nbZndZmIAmwKRJjtGyuFkU+8BLDnyBDbuMRRHMEDhzKl0/Opjur3/Co5gNdUduxL3Ni64PPCxu8if\nN4M5511N8ZEHWtJVUwRqP1/eHo2yEhERERERQaOsRESk7dqwKcS8FZta7PiZXidDexUAkEqlmL6g\nzLJxKFYb1quADG/DL6atrwixYOUmy8IWvzT83mvp+uHrbPz0G1L9+zfBEdLz5JMOJkxwc+65Uf76\n16a7ALMrsWqkjNthY2ivApyONFt8iNTTjMUb2Wzhhda+zz3MHs88RNmA4eQsnIs9EmbJ2GOZed4E\nEm7PVvvaDIPifB+dCv2W/5v/7KsoTzxp8sUnmYRDNgwzxZBGdNFZusjFv58oZPb3PgySHD22kmtv\ncTTJWL9UCh591MGNN7pwOuHvf6/h97/fNnyzrjzIglWbLTuuf9UyDjtzLOERowi895FldX8ycaKD\na65x079/gnffDdV7VFdDxeJJKqpq2FhVQ0VVTb07e/jdDopyvRTmeHDpuVdku5LJFFPnbaAmzRCc\nw2bWOxTjXbeKLm89T8l7r+AM1L7OStoal4Y0E3GqOnVj6buf0aH99kcpijTUjkZZKZgjIiIiIiKC\ngjkiItJ2LVlbyapSi7ocNNKg7vnkZLhYXRpgsUWjUJpC+1wvvUsaNpaj9MfgU1N9iHrQeePIWLuS\niqVrSLvVgsXCYRg50kdVlcG33wYpKGjVHyW3GslUilmLy6kORxs95sFmGAzumd+oIJlIY1kd8jCj\nUQ664GgyVy4h6stg+uU3s3qfQ7fax26adCjw0bHA16juOPWRTKb4Zu56qgMpvv5fJp+8n82i+bXB\noNz8GPsfWsn+h24mv7DurjOl6x28+HQ+X07KAmCvTgt5ZNUf8V/1BzKvuKxJ1vyTjz+2cc45HgIB\ng//7vwhXXhnFNGu3xeIJps4rtXR05OB/3EbPN5+l6vGnifzuaMvqAvzvfzaOP95DTk6KDz8M0alT\n85xTkqkUm6sjlFfVUF5Zs02QwGW3UZjroSjHi99T/7FpIru70k0hfmjglwM8TjvZfidZfhdZPiee\nxoyQCoVwv/Yyrjdfh5owiWSSRCJFMpkikaz9vbNnl5TNxqKzx9P9uMMx1ZVQLKRgjoiIiIiIyE4o\nmCMiIm3VrCXlVFTXtOgacjNc9C7JYeq8DY0OIjQHm2Gw1x7tsNvMeu2/cXOYH1ZsItlEH6HaasKM\nGzeCwMChRD76pEmOkY5HH3Xwl7+4ufjiCH/5i0Z+NkYsnqQmGicSTVATS1ATTfz8v6OJ7V5Q79cl\nl8JsT53bRJpKPJHk6znrLX3Oy1y2kG7vv8zCY04n1K7DltsdNpOOBX46FPjq/ZycjiVrKln1i1Fd\ny5e4+Pj97J+76BgpBo8IctDhP3fRCVSZvP5CPv95O5t4zKRrjxpOOquUkZ2WcsRJ+1E6ZBTJD/6D\nzWza9c+fb3LyyR5WrjQ58sgYDz5Yg9cL85ZXsGFz2LLj2ENBjjjxtxh+H5u+/wEc1oVUli41OOQQ\nH6EQvP56mJEj0+uykY5AOFYb0InGKcj2kJPh0rhAkUb6fmEZlTsYC+9zO8jyObeEcZqjE1UqlSIc\niROoiRMMxwiEYwTDsW1CeQO75ZGb6W7y9cjuZUfBnNb1FQwRERERERERERFpkGC45cdGVVRHmLus\notlDOd4Na/CtX0PZwBFQj4tqiVSK9RUhOhb4d7pvRVVNk4ZyALKWzsdMJogPGtxkx2isYBD+/ncn\nfn+KCy9UKKexHHYTh91Jhrfu7Ylkkppogkg0QfjH3y6nTaEcaRF2m0lelpsyC8MeVV17MePC67b8\nb6e9NpBTnN88gZyfFOf7tgrmdOke4ayLN3DyWaV883kmH7+fzfdT/Xw/1U9OXoyhewaZ/EUGwYCN\ngqIYx5+2ntH7VWGaEKYd5X0Gkj/zW+YvW0NB905NuvY+fZJ8+GGI00938847DlauNHng4c1sCFn3\n9wRQ8snbOEIBghddYmkop7ISTj7ZQ2WlwQMPtGwoB8DvcagzjohFunfI4rtFZQAY1P7/K8vvItvn\nJMvvbLJOaDtiGAZetwOv2wG/eD0ViycJ1tQGdRKJlEI50uwUzBEREREREREREWmjYvEEkXjLXuD6\nSdUOvi1riVQK/5rlFMyeRv7saRTM+hZf6ToAfjjpfOaeekm9yqwr33kwZ1N1hDnLKpo0lAOQu3Au\nAMbwYU16nMZ48kknGzeajB8fITe3pVez67KZJj63ic+ti8TSOhTleCwN5vzE5bDRqdBP+zxvk3eY\nqYvHZSc3w0VFdWSr292eFPsdUsl+h1SyfImLTz7I5vOPM/nkg2x8GQn+dM4GDj5qM07n1ueD1WMO\nJm/+LJJvvwOXX9Dk68/LS/Hqq2GuusrF8887+f3vsrjypmq697KoY14qRY+3/03K4SB8yunW1AQS\nCTj3XA+LF9s4//woxx9f97gwEWmbMn1OenfKxuWwkelzNmvgsqEcdpNsv4tsv6ullyK7KQVzRERE\nRERERERE2qhAeBe+wJVMkrliMQWzv90SxvFUbNyyOZKZzerRB5KzeB79/v0IlV16snrfw3ZaNlgT\nY1N1hJyMuj+UrwxEmLO0vMlDOQA5C+cAkBo6vMmP1RCBADz8sIOsrBTnn69uOSK7k9xMNw6bud0x\naw1lAN2Lsygu8GG28Lig4jzfNsGcX+rSPcKZF23gpDNLWTTfQ9ceNfgz6v5zWDPmIAY9cQ95n7xP\n6Pxz8Lqb/nKb0wn33x8hv12IB+/P4vrxJVx45Tr23jf9kcwFM6eStWIJNUf/gVRRkQWrrXXTTS4m\nTbJzwAFxrr9++3/2ItJ2tc/ztfQSRNoEBXNERERERERERETaqEArGGNlFSMRJ2vJgtogzqxp5M+Z\nhqu6csv2cG4BK387lrIBw9k4YDhVJd3BNMlcvoj9LzuBEff8mUBxCZt79t/psdaWB+sM5lQFo8xa\nWk6iGUI5ADmL5hD3+kh079Esx6uvxx5zUlFhMmFChKysll6NiDQn0zAoyPawtjxoSa0+nXNazWi2\nvCw3boeNmtiOO825PSkGDAntcJ9gcQmbu/Wh8Ptv+H7Fejr37mjlUrcrEI7ym0PL8OZU8/fbi/nb\nrR1YvWIjfzxlY30mOtYtlaLnG88AED7jXMvW+vzzdv75Tyc9eyZ49NEwtuafaCMiItJqKJgjIiIi\nIiIiIiLSRgV3gWBO5rKFDJx4L/lzpuMI/XwhOFjUgXUjf0vZwBGUDRhOsLiEuq46VnXpyZSr72b0\njRcy+oaL+Pihl4nkFuzwmOWVNURiCVyOn68SVoeizFpSTiLZPKEcWzhI5sqlBIePghYY67I9lZXw\nyCNOcnOTnHOOuuWI7I6KctIP5piGQb8uOeRntY5QDoBhGLTP87FsfZUl9VaPOZA9npmP8Z8PSPU6\nC6OJOwKlUikWrqokBQwdGeSWv63gzus78upz+axZ5eSC/1uHy93Ac1gyyeBHbqfDN5OIDRlKfMSe\nlqx18mQbV17pJjs7xbPPhsnMtKSsiIhIm9V63vGJiIiIiIiIiIhIg7T1jjlGLMqo28bTfurnhHML\nWXrYH5ly1Z28+9wnvP/sx3x71R0sP/QYgh061xnK+cm6vfZj9umX4924nr1vvgQzuuNASTKVYn35\nz90QAuEYs5aUE09aM7qlPnIWz8NIpUgMGdpsx6yPRx5xUllpcOGFMfz+ll6NiLSELL8Lt7Px7U1M\nw2CPrrmtKpTzk3Z5XstGaq0ZczAARf/7DxVVTT+maU1ZkOrwz+e3Tl2i3PbACvrsEeKb/2Vy4xUl\nlJfV//v4RizKyDuupOdbzxHr3Zeqp5/f4bm2vlatMjjjDDfJJEycGKZbt+YJvIqIiLRmCuaIiIiI\niIiIiIi0QclUilAk3tLLSEuvN54ha8USlhxxHB8++T7TL7+ZlQceRbiwuMG1Fhx3Fiv2O4L8H2Yw\n9IEbYSfjqNaVB0mlUoRqYsxaspFYovlCOQA5C+cAYAwb1qzH3ZHycoPHHnOSn5/kjDPULUdkd1aU\n423U/WyGwYBueeRmui1ekTVcDht5WdasrapzD6o7dqHdt19QurbckprbUxONs2zdtp1+MrMT/OWO\nVfz2kM0sWejhsjO68cJT+QQDO778ZwsHGXP9BZR89j7RESOpfPsDku0bfu79tUAATjnFw8aNJrfe\nGuE3v9nx2DAREZHdhYI5IiIiIiIiIiIibVCoJk5yJ+GT1sxTupZ+z/6DmqxcZp9+efoFDYNp4/9K\nRe8BdP3oDXq+/q8d7l4TS7C6LMjMxeVE480bygHIWTgXgNigIc1+7O15+GEHgYDBpZdG8flaejUi\n0pKKchre7cZmGgzonkdOhqsJVmSd4jyLnuAMg9VjDsYeqcHxyX+JxZsuhLJodSWJ7ZzzHc4U549f\nz3mXr8PrS/DGC/lcdGp33nwpl0jNth1wnJsr+O1Vp9Nu+lfUHHQIla+8RSonN+01JpNw4YVufvjB\nxqmnRjnjjLbd1U9ERMRKCuaIiIiIiIiIiIi0QUGLx1j1fe5hDjpvHM7KTZbW3Z7Bj9yOPRJm1tlX\nEsvIsqRm0uXmqxseJJxbwKDH76Zo2pc73H/J2koiTXghdUdyF80hnpFJsmu3Fjn+r5WWGjz5pJN2\n7ZKceqoupors7rxuBxkeR733t5smA7vnk+1v3aEcgJwMF15X/Uc+7cjqH8dZFX/5XzZsCltS89dK\nN4Uor6rZ4T6GAfsfVskDTy/l5LNKAXh+YiEXn9adD9/OJv7j07p3wxr2G38yuQtmEzr2BKqffh68\njeuO9Gt33eXkgw8cjB4d57bbmn60l4iISFuiYI6IiIiIiIiIiEgbFLAymJNK0e2D18heuoDh9/1l\np2Og0tVuymd0/OpjyvYYxoqDfmdp7Zr8Ir668SGSNjujbh2Pf9UyS+v/xBGoqm0P0Aj2YDUZq5cT\nHTi49mpqK/Dgg05CIYPLL4/ibp0TaESkmRXWc5yVw2YysEceWT5nE6/IOsX51nTN2dyzH8GiYoon\nf0rpOuuDrfFEksVrKuu9v8ud4qhjK3j4mSUcfeJGwiGTiQ+147IzuzH1hTD7XHYKmauXUX3BJQQf\n/Cc46h++2pE33rBz330uOndOMnFi2KqyIiIiuwwFc0RERERERERERNqgYI11wRzf2pV4y9YB0OGb\nT+j23kuW1f41M1LDkIdvJWna+O7i65skmLKpz0CmXf5XnMFqxtxwAY7q+l/U3BlXRRl73nEV444e\nyZEn7Muw+66j/TeTsNXUv1NCzqIfAEgNGWrZutKxbp3B00876NQpyUknqVuOiNQqzPGws2doh81k\nYPc8Mr1tJ5QD0C7Xi82K849hsGb0QThCAbyTv6Q6FE2/5i8sWVPZqHGLXl+S40/byIP/WsJh4yrY\nVGbjnqeGsFf5Rzx/7IuEb7jFkvNvMglff23j0kvd+P0pnnsuTG76U7FERER2OQrmiIiIiIiIiIiI\ntEFWdswpnDEFgHknnEs0I4tBj95JxsolltX/pT4vPY5//WoWHf0nqrr2apJjAKw88CjmH3smGauX\nM+r2KzAS8bTqGYk4Pd58jsPOGEvnSe9QVdIdkkm6/ec1xtxwIb/7w16Mvv4Cun7wCq6Ksh3Wylk4\nB4B4Kwnm/O1vTiIRg/Hjozjb1rV1EWlCLodth6OpnHaTQT3yyWhjoRwAu82kMMdjSa3VYw4CoMOX\nH7GuPGRJTYDNgQjrKtKrl52T4JphLzPP1o/TeIp5Rj9Oevk4xo718sUXtgbVisVgzhyTF1+0c+21\nLo46ykOPHn7GjfMSicCjj4bp3btxneRERER2ddYM0RQREREREREREZFmE4klGvUN+u0pnFkbzFl+\n4O/Y1LMfe998KaNuu4JPHniJpIVJDf+a5fR56XFC+UX8cPKFW27P8DiotnI0149mn345mSsWUzzl\nfwx8/B5mnjehUXVy581g6IM3k7N4HlF/JtMvvp6lY4+t3bZgFsXffErx5EkUT/6U4smfAlDeeyBr\n99qPtXvtT1WXnlt1Jshd9GMwZ9CQNB9h+latMnjuOQdduiQ59lh1yxGRrRXletkUiGxzu8tuY1CP\nPLzutjuzqDjfl3bwBaC83xDCufl0+GYSs8ur6dEhC9NMrxtNMpli4arNaa+t83/fZPi915FyOLjr\nX17O6h7mjjucvPuug2OO8bLPPnGuvTbCkCFbv6YIBmHuXJPZs23MmVP7e/58k2j058dlmil69Eiy\nxx5Jxo2LcdBBibTXKyIisqtSMEdERERERERERKSNCVoZYkmlKJwxhXBeIYGOXQh06srSw/5Atw9e\nZY+n7mfWuVdbdpwhD92CLRZjxnnXEPf6AOiY76d7h0yWrq1iVVnAmmP9xGZjyoR7OODS4+n1+r+o\n7NKT5YceU++7O6s2MWDi/XT74BUAlh80jllnXUEkJ2/LPhX9hlDRbwhzzhyPb+3K2nDON5+SP3sa\neQtmMeDpvxMsKmbtqP1Zu9d+lA0YTs7CucRzckl2KrH28TbC/fc7icUMrriiBkfbvb4uIk0kP8uN\nzTBIpFJbbnM5bAzqno/X3bYvMWV4nWR4nFSH0xw/ZZqs3fsAur/7ElkzvqWscx5FOd60Sq7YUE0o\nkl6nt16vPMmgx+8mmpFFxTMvYhs9ml4kefLJGmbMiHLbbS4++8zO55/bGTs2xrBhyR9DOCZLlpik\nUj+HcFyuFP36JRkwIMEee9T+7ts3ic+X1hJFRER2G0Yq9YtXU61QWVl1Sy9BRERERER2AwUFGXr/\nISIibcbKDdUsXVdlSa3M5Ys45JyjWHHAkUy9+i4AbOEQB114DBmrl/P5bU+wYfjotI/T8fP/sNct\nl7N++Bi+uPUxMAxyM1wM6JaH8WM3mXXlQRatriRp8UeWvjUrOPCS47CHQ3x299OU99/JCKlkki4f\nvs7AiffiqtpMZecefHfx9WwcOKLex3RUV9Ju2pcUfzOJdt9+gTNY+zoj5vXjCAWo+e0BVL/8RjoP\nK23LlhnsvbePbt2SfP55CFvDppqIyG7ih+UVlG4OA+B21oZyPK62Hcr5yfqKEPNXbkq7TuF3X7Pv\nhDNZfNSJLPi/myjI9uB22nA77bgcNtxOW7276IRqYkxbUNb4c2EqxYAn7qHPK08Szi9i0wuv4xg0\noM5dv/rKxi23uJg+/ecTQEZGigEDEgwYkGSPPWp/9+yZVHhTRERkJwoKMra7bdd45SQiIiIiIiIi\nIrIbsbJjTuGM2jFWpYNGbrkt4fEyecI9HHDZCYy4ZwIf/fMtotm5jT6GPRRk8CO3k3A4+e7C68Aw\n8Lrs9O2cuyWUA9A+z4fbaWfusgriSetGdQU7dOab6+7nN9eczd43XcLHD71MuLC4zn2zlsxn6IM3\nkf/DDOJuLzPPuYpF404mZW/YFclYRhar9jucVfsdjhGPkT97eu24q28+xREKEN93PyseWlruvddF\nImFw5ZVRhXJEZLsKczyUbg7jcdoZ1CMPt3PXubRUkO1myRqTWCK9c07ZwBFEM7Lo8NXHfH/Btayo\no9uNy27D5awN6bh+DO24HT/fZreZACxYtbnRoRwjHmP4/dfT5b9vUt2pK5teehNPj67b3X/06ATv\nvx/iiy9sVFYaDBiQoHPn1C+nL4qIiIgFdp1XTyIiIiIiIiIiIruJYE164y1+qXDGZABKB4/a6vbN\nvfoz+7RLGfTEPYy47zq+uulhGnulrt+zD+EpL2XuyRcS7NAZu2myR9dcHHZzm31zMlwM7ZXP7KUV\nhKPWPc7SIXsx87wJDPnHrYy+4SI+ve85Ep6fR43YgwH6P/MAPd/6N0YyyarfHMLM8yYQLmi309qm\nYeCwmdhsBnabid1mYLOZP99mmtg7H0J03GGsNgx8lRtxd6w7GNRcFi0yefVVO337JjjqKOv+nEVk\n15Ob6SbL56Rfl1xcjl0rxWczTYpyvaxOc5Riyu5gzV770/WjN8idP5OKfkO22ScSTxCJJ6gK1V3D\nYTNx2M1Gj7Cy1YQZdet4iqd8RkXvAVS98Cq+ju13ej/DgH32STTqmCIiIlI/CuaIiIiIiIiIiIi0\nIclUqtEX7baRSFAwexqBdh0JteuwzeaFfziddtO/pHjyp3R790WWHnlCgw+RtXQBPd94lkBxCfOP\nOwsD6NclB697+x1ovG4HQ3vlM2dpBZWhaIOPuT2Lf3cSWcsW0u2DVxhx77VMvvY+ADp99j6DHr0T\nT0UZ1cUlfH/RX9gwfMwOa3UvzqIox4PdbmI2NLCU3amxD8Ey99zjJJk0uOqqKOa2+SgRkS1Mw2Bw\nj/ytOpztSorzfGkHcwDWjDmIrh+9QccvP64zmLMzsUSy0Z17jESc31x7DgWzp7Fh2GiC//o3GYWN\n73QnIiIi1lIwR0REREREREREpA0J1cQbPeLi17KXzsdZXcnq0QfWvYNpMvXKOzj43N8x+NE7KRs4\ngurOPep/gGSSoQ/chJlM8P0F15J0uelenEVupnund3XYbQzqkc+ClZvYsDlc/2PuiGHw3UXXkbFq\nKZ0+/w81OflkrlxM0feTSThdzPnTxSw49kySTtcOy7gdNjoU+BoeyGkl5s0zefNNOwMHJhg7Vt1y\nRGTndtVQDoDXbSfH72JTIJJWnQ1D9ybm8dLhy4+YdfYVje4y1xg93vo3BbOnsXbvAwg++QzZuRnN\ndmwRERHZOX0XQkREREREREREpA0JhGOW1SqcMQWAskEjt7tPTX4R08bfgi0aYdTtV2JG69/Bpst/\n3yT/h+9ZPeZg1u+5D+1yvHQq9Nf7/qZp0LdLLl3aWXeBMeVw8vX1DxAsKqbnW89R9P1k1u25Dx8+\n/g7zTr5gp6EcgE5FGW02lANw111OUimDq6+ONOd1YxGRVqs435d2jaTTxbqRv8W/fjVZS+dbsKr6\ncW/cQP9/PUAkI4vQ3x9WKEdERKQVUjBHRERERERERESkDbE2mDMZgNLB2w/mAKwdfSBLxh5L9tL5\nDHjyvnrVdlZtYuDjdxN3e5lx3gQyvU56dcpu1Dq7tMukb+ccy8Iw0excvrz5EdbsfQBf3fAgX/71\nnwTb12+8lNtho32e15J1tITZs03ee8/BsGEJDjww0dLLERFpFfKy3LgctrTrrBlzEABd//Na2rXq\na9Cjd+IIh1h7+Z/J6lzcbMcVERGR+lMwR0REREREREREpA2xKphjxGMUzJ5OVadu1OQV7nT/mede\nTVXHrvR6/V8UTftqp/vv8eTfcFVtZu4pF5Ls0JH+XXMxzcYHa4pyvAzqnofDZs1HmlVde/H1jQ+x\ndvSBDRo30ta75dx5Z21HIHXLERH5mWkYloQu1478LdXFJfR4+3ny5ky3YGU7Vjj9K0r+9wEVfQfh\nOe/sJj+eiIiINI6COSIiIiIiIiIiIm1I0KJgTs7COdhrQjvtlvOThMfLlD/fQ9LuYMQ9E3Burtju\nvrnzZtDtg1eo7NyDpUf/iT265lrSiSDL72JorwK8LnvatRrD1ca75UyfbvLRR3ZGjYqz777qliMi\n8kvt83xpBy+TLjffXnkHGAZ73n0NtnDQotVty4xGGfrQX0mZJuXvH4/WAAAgAElEQVS33oPN3jLn\nRhEREdk5BXNERERERERERETaiEgsQSyRtKRW4YwpAJQOHlXv+2zu0Y/Zp1+Gp2IjI+69FlKpbfYx\nEnGGPngzRirFd5fcQK9uBWR4nZasGcDjsjO0VwHZfpdlNeurZBfpljNhQlTdckREfsXlsJGX6U67\nTnn/Icz/45n4161i0GN3W7CyuvV+ZSIZa1aw4uhTyB5Tv5CtiIiItAwFc0RERERERERERNoIq7rl\nwM/BnLKBIxp0v4XHnMaGIXtRPOUzur/zwjbbu7/zIjmL57H8oHH4DtyPwhzrO8zYbSYDu+fRPrf5\nute4HLZmPZ7VJk2y8dlndn7zmzh7761uOSIidSnO91lS54dTLmJzt950f+8l2k393JKav+Rbt4q+\nLzxKODef5HXXW15fRERErKVgjoiIiIiIiIiISBsRsCiYY0Yj5M/9js3d+hDNymngnU2mXnUHkcxs\nBj12F5nLF23Z5C4vZY+n/07Un8nqy6+la/tMS9Zb5zIMg94lOXQq8DfZMX6ppNCPabbNNjPRKFx3\nnQvTTHHzzZGWXo6ISKuVk+GyZFxi0ulk6pV3kLQ7GH7fdTiqNluwuh+lUgx5+BZs0QjLLvsLGcUF\n1tUWERGRJqFgjoiIiIiIiIiISBthVTAnb95MbLEopYMbN/qiJq+QaeNrLwqOvONKzGht2GPg4/fg\nCAVYeO4VdB/S05K17kzX4kwyPI4mPYbLYaN9njVdFFrCxIkOFi+2ceqpMfr3t2YUmojIrqrYouf7\nyu59mHvKRXgqyhj68C2W1AQo/voT2k/9nNLBo/CfdrJldUVERKTpKJgjIiIiIiIiIiLSRgRr4pbU\nKZwxGaDRwRyAtXsfwJLDjyN76QIGTLyXghlT6DzpHTb1HkDmxedjtzXPR4+mYdCncw6m0XTdbNpy\nt5wNGwzuvttFTk6Kq69WtxwRkZ0pyvVis+icsuDYMyjvO4iST9+j4/8+SLueLRxiyD9uI2l3sPaG\n2/G4mzaYKiIiItZQMEdERERERERERKQNSCZThGqs6ZhTOGMKSdNG2YARadWZee7VVHXqRq83nmXk\nHVeQMgyq7rwfj9dlyTrry+d2NNnYrLbeLee221wEAgYTJkTIzW3p1YiItH4Ou0lhjseSWimbnalX\n3UHc5WHoAzfhLi9Nq16/5x/BW7aOxcedSdGoIZasUURERJqegjkiIiIiIiIiIiJtQLAmRsqCOrZw\nkNz5s9jUsz9xnz+tWgm3hynX3E3S7sBTsZGNJ5yGd+89LVhlw3Us8JHtsz4Q1KkNd8v57juTF15w\n0K9fgj/9yZpQl4jI7qBTod+yTmyBDl2Ydfb/4aquZPj9f4FU487mGSsW0+vVpwkWFVMz/spm60wn\nIiIi6dNZW0REREREREREpA0IhK0JVuTP+Q4zEU9rjNUvbe7Rj2/H30LFvgdh3HSTJTUbwzAMepdk\nY7MwROOy2yhuo91ykkm49lo3ALfdFsFma+EFiYi0IV63w9Ln/yVHnMD6oXvTfurndP3Pqw0vkEox\n9MGbMRNx5l92A+065lu2NhEREWl6CuaIiIiIiIiIiIi0AcFw3JI6hTOnAKQVzDEAv9tBx3w//bvk\n0umyc0i88hqprGxL1thYHpedHh2yLKvXqajtdst5+WU706fbGDcuxt57J1p6OSIibU7ndhk4rOpK\nY5pM+79bifoyGPTPO/CuW92gu5d88g6Fs75lzV774//j7zEs6uYjIiIizUPBHBERERERERERkTYg\nUGNNx5zCGVNI2h2U9x9a7/uYhkGm10mnQj8DuuYxekB7hvcppEfHLAqyPTjsracdS/s8H3mZ7rTr\ntOVuOdXV8Ne/uvB4UtxwQ6SllyMi0iY57CadizIsqxcuaMf3F16LIxxiz7snQKJ+oUlHoIpBj91F\n3OVmxZU3kWvBOU5ERESal4I5IiIiIiIiIiIibUDQglFWjupKchb/QHnfQSTcnu3uZxoG2T4XnYsy\nGNQ9n9ED2jG0VwHdi7PIy3Jjt6qDQBPp1Sl7h10OUilYusjFO6/m8sMsT53XRttyt5x773VRVmZy\nySVROnRItfRyRETarOICH16X3bJ6Kw84itVjDqJgznR6vfFMve7T/18P4N5czvyTzqfD8H6WrUVE\nRESaj3WvJkRERERERERERKRJ1ETjxBLJtOsUzJ6GkUxSOqjuMVYlhRnkZbrI8DrbbCgFwOWw0bNT\nNj8sr9jq9spNNr6YlMlnH2WxctnPHQf8GQmGjgwwfFSAQcODZGcabbZbzuLFBo8/7qCkJMkFF0Rb\nejkiIm2aaRh0K85kzrKKne9cH4bB9EtuJH/Od+zx1N9YP3wMVV16bnf37IVz6fHOC1R17Erg3Iso\ncjusWYeIiIg0KwVzREREREREREREWrlgOG5JncIZUwAoHbxtMMflsNGtONOS47QGhdkeNmZ7WFsW\n5rupfj77KIvvp/pJJAxsthR7jq5m2KgAixe4mfaNn88/zuLzj7OwO5LsOTLK746EQw+N07592+k4\nk0rBdde5icUMbrqpBs/2myKJiEg95Wd5yPG72BSwZjRgNDuX6ZfdxOgbL2LPuybwyQMvkrLXEbhJ\nJBj24E0YySSzLr2Bbp3yLDm+iIiIND8Fc0RERERERERERFq5gAVjrAAKZk4h7nJT0WfQNtvyMt11\n3KPtmjPH5PkX2vHyyzaqKms/Bu3ao4Z9D6pkzH5VZGbXzq/a75BKzrp4A8sWuZg2OYPp32Tw9Zdu\nvv4Srr4aBg1KcMghcQ49NE7//kmMVtxI6L//tTFpkp3f/CbO2LHWhLlERAS6d8hi+oJSrIpqrt37\nAJYd/Hu6fvQGfZ//Jz/86eJt9un2wavkLpjNyv0Oxzf2YBz21j1GUkRERLavXmfxmTNncsopp9S5\nLRwOc/zxx7NkyZId3mfx4sWccMIJHH/88UyYMIF4XG8MRURERERERERE6iNQk34wx7WpnOxlC9nY\nfyhJp3Ob7btCMKe83OCxxxzsv7+X/ff38cTjLmymydjfV3DXI8u48x/LGfv7TVtCOT8xDOjWK8Kx\nf9rIa29VMH16gNtvr2GffeLMnWty110u9t/fx7BhPq65xsVnn9mItrIpUZFIbbccmy3FrbdGWnWA\nSESkrfF7HLTL9Vpac8b51xAsbE/f5x8lZ8Hsrba5NpUz4Kn7iXl9LLz4zxTnt83xiiIiIlJrp8Gc\nxx9/nOuuu45IZNsWfbNnz+akk05i1apVO73Pfffdx/jx43nxxRcB+PTTT9Ndu4iIiIiIiIiIyG4h\naEHHnIJZUwEoG7TtGCubYZCdsW1Ypy2IxeDDD22cdpqbgQN9XHedm/nzTQ49NMbTT4eZPTvIn68L\n0qX7zkeQuOw22ud76dQpxZlnxnj11TDz5wd47LEwRx8do6rKYOJEJ8ce66VvXz9XXuli3rzW0cHg\n0UedLF9ucuaZMfr0Sbb0ckREdjld22diM61LPcZ9GXx7xe2YyQR73jUBM1KzZduAiffirK5kzqmX\n0nFAT0ylLUVERNq0nb5rLCkp4cEHH6xzWzQa5eGHH6Zbt247vc+DDz7IiBEjiEajlJWV4ff701i2\niIiIiIiIiIjI7iGRTBKOpN99unDGFABKB28bzMnOqO0s09ZMmmRj8GAfp5zi5f33HfTsmeSvf61h\n5swgzzxTw9ixcZxO6Facicdp32m9ToX+bf4cMjNh3Lg4//xnDfPmBXjttRDnnBMlIyPFv/7lZN99\nffz+9x7eecdOSzUJX7/e4L77nOTlJbnyyp0HkEREpOGcDhudizIsrVk2eCSLxp1C5qqlDHjyfgDy\nZ0+j60dvsKl7XypOOI28rLbf0U5ERGR3t9N3o4cccgirV6+uc9uwYcPqfR+bzcaaNWs4/fTT8fv9\n9OnTp14LLCiw9kWOiIiIiIjI9uj9h4iItEabqyP4/elflGs3eypxr5/4kGFk2Lf+WLBnl7w2dx78\n+ms4/XRIpeCSS+C002DwYBuGYatz/9FeF1N/WE8qVXc9l9PGwD5F2Gw7DigdfXTtTzwO77wDDz0E\nkybZ+eorOx07wnnnwdlnQ2Fhmg+wAcaPh1AI/vY3gx492tbfo4hIW5Kb5ycQtSYw+5Nll1xD++++\notcbz1C574H0efhWABZMuJU9h3Umw9s2O9qJiIjIz3b+NRELdejQgY8++ohXXnmFO+64gzvvvHOn\n9ykrq26GlYmIiIiIyO6uoCBD7z9ERKRVWlcepDpQs/Mdd8BTth7fymWsHflbqmriwNYXFI14ok2d\nB+fNMznqKC/RKDz7bJgDD0wAsHHjju+X5bGzqjRQ57ai4iwqKoINWseYMbU/CxaYPPWUg5decnDd\ndQY335ziyCPjnHlmlGHDkjTlBJIpU2w895yXgQMTHHlkiLKypjuWiIhAfoaTH8rrPpc0jsHkK25n\n/8tOZOiVZ2KLxVh62B9JDB1OTTBCTVCd0ERERNqCHX3Zpdn605533nksX74cAJ/Ph9kGW+OKiIiI\niIiIiIg0t0A4lnaNgpnbH2OV4XHgctbdZaY1WrXK4LjjPFRWGvz97zVbQjn10bVdJn63Y5vbXXYb\n7fO9jV5T795J7rgjwqxZAW6/vYbOnZO89pqDsWN9HHywlxdftBMON7r8diUScO21LgBuvTWCre38\nNYqItFmF2R6yfNZ2sdnUZyDzTzgHWyxGJDObeWf9H13aqQOaiIjIrqLBHXPeeecdQqEQxx13XIPu\nd8455zBhwgQcDgcej4dbbrmloYcWERERERERERHZ7VgRzCmcsf1gTm5m+mOymsvGjQbHHutl/XqT\nm26q4dhjGzZKxDQN+nTO4buFZSR/MdOqY6EfmwVfJMzIgDPPjHHGGTG++MLGxIkOPvzQziWXeLjx\nxiQnnhjjtNNilJRsZ55WAz3/vINZs2z84Q8xRo6sf0BJRETS071DFt8ttLZF2Q8nnoeRTLJ+2N60\n69UJp0NpSxERkV2FkUptb6py69CWWuiKiIiIiEjbpVFWIiLSWn05ax3xZLLxBVIpxp5yAPZwiLdf\n+Rp+FUAZ2quATK+13/xvCoEAHH20lxkzbFx8cYS//CXa6For1lezbH0VAE67ych+RZYEc+qyerXB\nv/7l4LnnHJSXmxhGikMOifPHP8bZf/84Pl/j6lZWwqhRPsJhg8mTg7Rr16o/5hUR2eXMW7GJDZtC\nltd1O23s2acI02zCOYgiIiJiuVYxykpEREREREREREQaJhyJpxfKAXzrV+MrXUfZoJHbhHJcdlub\nCOVEInDqqR5mzLBx4olRrruu8aEcgJIi/5bH3akwo8lCOQAdO6a49too338f5MEHwwwenOQ//3Fw\n5pke+vb186c/uXnxRTubNjWs7t13uygvNxk/PqpQjohIC+jWPhObYX14pltxlkI5IiIiuxgFc0RE\nRERERERERFqpoCVjrCYD2xtj5Uq7flNLJODCC9188YWdQw+Ncc89EdK9DmoYBn1KcnA7bRTne61Z\n6E643XDccXE+/DDEJ58EGT8+QufOtSGdSy7x0K+fn2OO8fDkkw7Wr9/xA5w/32TiRAdduiQ599z0\nQkoiItI4LqeNTkV+S2u2z/VSmO2xtKaIiIi0PHtLL0BERERERERERETqFqyJp12jcMYUAEoHj9pm\nW16mO+36TSmVgj//2cXbbzsYNSrOo4/WYLfoE02v287QngVN2i1newYMSDJgQJQJE6IsXmzw/vsO\n3n/fzhdf1P5MmADDhiUYOzbO4YfH6Nbt5444qRRce62LRMLgllvCuFp/tkpEZJfVqdDPuvIQkVgi\nrTpel52eHbPJydCTuoiIyK7ISKVSrbrPaVlZdUsvQUREREREdgMFBRl6/yEiIq3O3GUVlFWGG18g\nleLI4/chZcC7L3zOL1vNmIbB6AHtWiSYUl933+3k7rtd9OuX4K23QmRltfSKmtbatQYffGDn/fft\nfP21jUSi9u+rb98Ehx0W5/DD46xYYXLGGR723z/OCy+E0+4eJCIi6dlQEWLeygbOI/yRzTDo3C6D\njoV+TD2hi4iItGkFBRnb3aZgjoiIiIiICArmiIhI6zTlhw2Eo43vmpOxYjGHnn0kK/Y7gqnX3L3V\nttwMNwO756W7xCbz5JMOJkxwU1KS5L33QhQVteqPMS1XUQEffWTnvfccfPaZjUik9oKtaaYwTfj8\n8yA9euxefyYiIq3V9AVlVIcbNlowP8tNjw5ZuJ0abiEiIrIr2FEwR2d7ERERERERERGRViiRTKYV\nygEonPnTGKuR22zLy2q9Y6zeesvONde4yM9P8vLLu18oByA3F44/Ps7xx8cJBGDSpNpOOp99ZuPs\ns2MK5YiItCI9OmTy/eKN9drX7bTRs0N2qz4Pi4iIiLUUzBEREREREREREWmFguH0QjkAhTN+CuaM\n2mZbXqYr7fpN4X//s3HBBW58PnjppTDduimA4vfDUUfFOeqo9P9NiIiI9bL8LgqyPZRt3v74SdMw\n6FTop6TI36rHSIqIiIj1FMwRERERERERERFphQLhWHoFkkkKZ04lWNSBUPuOW23yux2tcnTG99+b\nnHqqB8OAZ58NM2BAsqWXJCIiUi/d2mdSXllDMrVtoDQ3w0WPDtl43a3v3CsiIiJNT68ARERERERE\nREREWqF0gznZS+fjrK5kzd4HbLOtNY7PWLzY4MQTPdTUwBNP1DB6dKKllyQiIlJvHpedjgV+VpZW\nb7nN5bDRvUMWhdmeFlyZiIiItDQFc0RERERERERERFqhYJrBnIIZUwEoHTRym215ma0rmLNuncGx\nx3opLze5994ajjhCI5tERKTtKSnys74iSDyRokO+j87tMrDbNLZKRERkd6dgjoiIiIiIiIiISCsU\nqEkvmFM4czIApYO3DuY47SaZPmdata20eTMcd5yH1atNrrkmwimnpDnCS0REpIXYbSa9O+Xgctrw\nexwtvRwRERFpJRTMERERERERERERaWXCkTiJZKrR9zfiMQpmfUtVx67U5Bdtta21dcu56SYX8+fb\nOPvsKJddFm3p5YiIiKSlNY6LFBERkZal/nkiIiIiIiIiIiKtTLpjrHIWzcURDlE2eM9ttrWmYM6a\nNQYvv+ygR48EN98cwTBaekUiIiIiIiIi1lIwR0REREREREREpJVJe4zVjCkAlA4etdXtpmGQneFK\nq7aVHnnESSxmcMklUWy2ll6NiIiIiIiIiPUUzBEREREREREREWllAml2zNkSzBm4dcecbL8Tu611\nfCS4caPBs8866NgxyTHHxFt6OSIiIiIiIiJNonW8CxcREREREREREZEt0gnmmNEo+XO/Y3O33kSz\nc7fa1prGWD32mINw2ODCC6M4HC29GhEREREREZGmYW/pBYiIiIiIiIiIiOzukskU1aEomwNRKoMR\naqKJRtfKnT8DWzRC6aCR22zLy2odwZyqKpg40Ul+fpITT0yvO5CIiIiIiIhIa6ZgjoiIiIiIiIiI\nSDNLJJNUBWNsDkSoDESpCkVJplKW1N4yxmrw1sEcv9uB29k6Pg586ikn1dUGl14axeNp6dWIiIiI\niIiINJ3W8U5cRERERERERERkFxZPJKkMRNkcrA3iBMIxy4I4v1Y4Ywop02TjgOFb3Z7bSsZYhULw\n6KMOMjNTnH56tKWXIyIiIiIiItKkFMwRERERERERERGxWCqVoryyZstoqkA4RtPEcLZmC4fImz+L\nTT37E/NnbrWttYyxev55Bxs3mowfHyEjo6VXIyIiIiIiItK0FMwRERERERERERGxWCAcY87yimY/\nbv7c7zHjsW3GWDlsJpleR7Ov59eiUXj4YSdeb4qzz4619HJEREREREREmpzZ0gsQERERERERERHZ\n1VSHWiZ0UjhzMgClg0ZtdXtephvDMFpiSVt57TU7a9aYnHJKjLy85ughJCIiIiIiItKyFMwRERER\nERERERGxWHUo2iLHbfftlyTtDjb2H7LV7a1hjFUiAQ884MLhSHH++S3z5yMiIiIiIiLS3BTMERER\nERERERERsVgg3PwdczKXLyJ76XzWDx9DwuPdcrtpGORkuJp9Pb/23nt2liwxOe64GMXF6pYjIiIi\nIiIiuwcFc0RERERERERERCyUTKUI1sSb/bglk94FYMUBR251e7bfid3Wsh8DplJw//1OTDPFRRep\nW46IiIiIiIjsPhTMERERERERERERsVAgHCOZauaOMMkkJZ++S8zrY+2o/bbalJvZ8mOsPvnExty5\nNsaNi9Otm7rliIiIiIiIyO5DwRwRERERERERERELBULNP8Yqf+53+DasZfWYg0m6tg7i5LVwMKe2\nW07tKK2LL1a3HBEREREREdm9KJgjIiIiIiIiIiJioepQ84dPfhpjtXL/I7a63ed24HHZm309vzR5\nso1vv7VxyCFx+vdPtuhaRERERERERJqbgjkiIiIiIiIiIiIWCoSbt2OOEYvS6fP/EM4toHTQyK22\ntXS3HIC//c0JwKWXRlp4JSIiIiIiIiLNT8EcERERERERERERiySTKYI18WY9Zvtvv8BZXcnK/Q4H\nm22rbXmZrmZdy6/NnGny6ad2xoyJM3y4uuWIiIiIiIjI7kfBHBEREREREREREYsEamIkU6lmPWbJ\nJ+8AsPKAI7e63WEzyfQ5m3Utv/b3v//ULef/2bvvMKnqs//jnzN1e1+WulRBOkoHC2IUCyomKtZo\nNBoxah6fGI3tieZJniQaTeyJXcHYor8oiB1BsYBI36VJXWDZwtbp5ZzfH6sossDulN1F3q/rmmuW\nOed8v/dgrjA785n7bvvxXgAAAAAAdAQEcwAAAAAAAIAEafS17Rgrh7dRXT//UA3FfVXXd+Bex/Ky\nUmQYRpvW813r19v05psOHX10VMcdF223OgAAAAAAaE8EcwAAAAAAAIAE8fjatjNM94/flT0c0tYT\nz5C+F8LJz05p01q+74EHXLIsQ7/6Vej7pQEAAAAAcNggmAMAAAAAAAAkSFt3zCmeN0eStO2EqXs9\nbjMM5WW627SW79q2zdCrrzp05JFRTZkSabc6AAAAAABobwRzAAAAAAAAgAQwTUu+YNuFUFKqK9Rp\nxSJVDRkpX+duex3LSnfJYW+/t/4eftilaNTQ9deHZOMdSAAAAADAYYxfiwEAAAAAAIAE8ATCMi2r\nzfYr/vBNGZalbZPP2OdYQVb7jbGqqDD0r385VVxsato0uuUAAAAAAA5vBHMAAAAAAACABGjrMVY9\nP5gt0+FU2XFT9jmWn91+wZx//tOpYNDQddeF5HC0WxkAAAAAAHQIBHMAAAAAAACABPD4Qm22V9bm\n9crZtFblo49TOCtnr2NpbodS3e2TiKmrk55+2qWiIlPTp7dtUAkAAAAAgI6IYA4AAAAAAACQAG3Z\nMad43hxJ0rYTp+5zrD275Tz5pEter6Frrgkppf3KAAAAAACgwyCYAwAAAAAAAMTJNC35gpG22kzF\nH85ROC1DO8dO2udwflb7JGI8Humxx1zKzbV0ySV0ywEAAAAAQCKYAwAAAAAAAMTN4w/LtKw22atg\n9ZdKryzX9mNPluneO4STmepSToa7Ter4vlmznKqtNXTllSFlZLRLCQAAAAAAdDgEcwAAAAAAAIA4\nNfrbrkNMzw9mS5K2Tj5jn2NHdM9uszq+KxiUHnnEpfR0S1dcEWqXGgAAAAAA6IgI5gAAAAAAAABx\n8vjaJoxiC4XU/eN35M/vpKpho/c61jk3TVnprjap4/teftmpXbtsuuyysHJz26UEAAAAAAA6JII5\nAAAAAAAAQJwafW3TMafz4gVyeRq07YSpkt2+53GHzaY+XbPapIbmvPCCUzabpauvplsOAAAAAADf\nRTAHAAAAAAAAiINpWvIFI22yV895cyRJW0+cuvfjnTPlctqbuyTpdu40tGSJXRMmRFVUZLVLDQAA\nAAAAdFQEcwAAAAAAAIA4ePxhmVbyAylOT4O6LPpQ9T37qb7PkXseT3M71K0wPen778/cuQ5J0tSp\nbRNOAgAAAADgUEIwBwAAAAAAAIhDo79txlh1+/hd2cNhbZt8hmQYex7v1y1btu/8ua3NmeOQYVg6\n/XSCOQAAAAAAfB/BHAAAAAAAACAOHl+oTfbpOW+2JGnb5NP3PFaQnaK8rJQ22b85lZWGPvvMrtGj\nGWMFAAAAAEBzCOYAAAAAAAAAcWj0Jb9jTmpluQpXfqGqISPlK+omSbIZhvp2zU763gfy1lsOWZah\nM86gWw4AAAAAAM0hmAMAAAAAAADEyDQt+YLJD6UUz39ThmVp64ln7nmsR6cMpbodSd/7QObMadqf\nMVYAAAAAADSPYA4AAAAAAAAQI48/LNNK/gin4nlzZDqc2n7syZKkFKddxUUZSd/3QGpqpIUL7Trq\nqKi6d2eMFQAAAAAAzSGYAwAAAAAAAMSo0RdK+h5Zm9crZ9M6lY85TuGsHElSn27Zstva9629d95x\nKBo1NHUq3XIAAAAAANgfgjkAAAAAAABAjDz+cNL36DlvtiTtGWOVk+FWp5zUpO97MHPmOCVJU6cm\n/+8AAAAAAIBDFcEcAAAAAAAAIEaNviSHUkxTxfPeVCg9U+Vjj5chqV+37OTu2QINDdKCBXYNHhxV\n796MsQIAAAAAYH8I5gAAAAAAAAAxiJqmvIHkBnMKVi9RWlW5th97skyXW90KMpSR6kzqni3x7rsO\nhUKMsQIAAAAA4GAI5gAAAAAAAAAx8PojSnavmJ4fNI2x2jb5DDntNvXqkpnkHVtmzhyHJOmMMwjm\nAAAAAABwIARzAAAAAAAAgBg0+kJJXd8WCqr7R+/IV9BZVcNGq3eXLDns7f92nscjzZvnUP/+UfXv\nb7Z3OQAAAAAAdGjt/5s8AAAAAAAAcAhq9CV3jFWXxQvk8jZq2wmnKTPdrS75aUndr6XmzXMoEGCM\nFQAAAAAALUEwBwAAAAAAAIiBx5/cYE7xN2OsTjxT/brnyNPyBdUAACAASURBVDCMpO7XUt+MsSKY\nAwAAAADAwRHMAQAAAAAAAFopapryBpIXzHE21qvL4gWq73WEUkYepex0V9L2ag2/X3rvPYd69TI1\neDBjrAAAAAAAOBiCOQAAAAAAAEArefwRWUlcv/vH78geDqvsR2eqT9esJO7UOvPnO+T1Gpo6NawO\n0sAHAAAAAIAOjWAOAAAAAAAA0EqNvlBS1y+eN0eSZJ43XW6nPal7tcY3Y6zOOIMxVgAAAAAAtATB\nHAAAAAAAAKCVPL7kjbFKrdypTiu/0O4RY1Q0fEDS9mmtUEh65x2Hunc3NWIEY6wAAAAAAGgJgjkA\nAAAAAABAK3n8yQvmFH/4piQpfM502TrQvKiPP7arocHQ6adHGGMFAAAAAEALEcwBAAAAAAAAWiFq\nmvIGkhfM6TH/LZlOlxznnZO0PWLxzRir009njBUAAAAAAC1FMAcAAAAAAABoBY8/IitJazs9Dcrd\nuEah0WNl5eQmaZfWi0Skt95yqKjI1Jgx0fYuBwAAAACAQwbBHAAAAAAAAKAVGn2hpK2dX7pckhQd\nOzZpe8Tis8/sqqmx6bTTIrLxjiIAAAAAAC3maO8CAAAAAAAAgESxLEuhsKlAOKpAKKJIxFS3woyE\n7uHxJW+MVX7pMklSZMy4pO0Ri9mzm95GnDqVMVYAAAAAALQGwRwAAAAAAAAcMkzLUjAUVSAUVfDr\n8E0wFJU/FFXw68dMa+9BUy6nXYU5qQmrodGfzGBOU8ec8MjRSdujtUxTmjvXofx8U+PHM8YKAAAA\nAIDWIJgDAAAAAACADm1HtVeVtT4FQlGFwlFZB79kL5vLG5SfnSKbYcRdS9Q05QskJ5hjRCPKX7tS\nof5HysrJTcoesVi82K7KSpsuvjgkB+8mAgAAAADQKkyEBgAAAAAAQIdVWefXhu11qveGFIwhlCNJ\nvmBE5dXehNTj8YVjqqElsjetkyPgU3TM2CTtEJs5cxhjBQAAAABArAjmAAAAAAAAoEOq94a0dmtt\nzNfb/T6N/dON6j5/rrZWNCoSNeOuKZljrApKlkmSwmPGJW2P1rIs6c03HcrOtnTMMYyxAgAAAACg\ntQjmAAAAAAAAoMPxByNavWm3TCv2/jRDn7pPxR++qZEP/l5WXZ3KKj1x19XoS14wJ7+0KZgT6UAd\nc5Yts2nHDpumTInI5WrvagAAAAAAOPQQzAEAAAAAAECHEo6YWrVpt8JxdLjptPRTHfH684o6XXI1\n1qv/K09pe6VHwXB8XV88Se6YE8nLV7R336Tt0VqzZzslSVOnJu95AwAAAADwQ0YwBwAAAAAAAB2G\naVpavXm3fMFIzGs4PQ0a/dfbZNodWvCXp+TPK1T/156TY3eltpQ3xLxu1DTlCyQnoJJaWa60qnKF\nR4+VDCMpe7SWZUlz5jiUnm5p0iTGWAEAAAAAEAuCOQAAAAAAAOgw1m2rVb03FNcaIx75o9Kqd6n0\noqu1e8hIlV78SzmCfg361z+0q8YXc9cbjy+s2AdrHdg3Y6yiY8cnaYfWW73apq1bbTr55IhSUtq7\nGgAAAAAADk0EcwAAAAAAANAhbC5vUEWdP641ui18V73ef0M1/Ydo7flXNa17yo/V2LVYfea+orTy\nMm2OsWtOYzLHWJUul6SmjjkdxJw5DknS1Kmxdy8CAAAAAOBwRzAHAAAAAAAA7a58t1dbKxrjWsNd\nW62R99+pqMutxTf9WZbDKUmyHE6VXHq9bJGwBj/3oHY3BFTbGGz1+o2+5AVz8kuWynS6FBk+Iml7\ntNacOQ6lplqaPJlgDgAAAAAAsSKYAwAAAAAAgHZV2xjUhu318S1iWRr59zvlrq/VqstvUGNx370O\nlx1/qmr7DlTxvDnK3rROm3a2fr9GX3wjtvbH7vcpZ+NaBYcOV0eZGbVunU0bNtg1eXJE6entXQ0A\nAAAAAIcugjkAAAAAAABoNx5/WCWba2RaVlzr9HzvP+r22QeqHD5GG6Zdsu8JNptWXX6DDMvSkKf/\nrkZ/WBW1vhavH4ma8geT0zkmb90q2cyozLHjkrJ+LGbPZowVAAAAAACJQDAHAAAAAAAA7SIYjmr1\npt2KmGZc66RV7NBRj/yfwmnp+uLG/5Nszb/lVTHqGFUOG62ui+Yrf/WX2lzeINNsWSDI6w8rvujQ\n/uWXLpMkRcZ0nGDOnDkOuVyWTj6ZYA4AAAAAAPEgmAMAAAAAAIA2FzVNrd60W4FwNL6FTFOj/3qb\nnD6Pls+4Vb6ibvs/1zC06vIbJEnDnrxPgWBEO6q9Ldqm0ReOr84DKChZKkkKjx6btD1aY9MmQ6Wl\ndk2aFFVmZntXAwAAAADAoY1gDgAAAAAAANqUZVlas6VWjf74wy79Xn9enVYs0s5xJ2jLyWcf9Pya\nQUdpx/jJKihZqs6LF2hbRaPCkYN37ElErc0yTeWvWaFgcS9ZnTolZ49WmjPHKUmaOjV5YSQAAAAA\nAA4XBHMAAAAAAADQpr7aUa/qhkDc62Ru26RhT96rYHaultzwe8kwWnTd6st+JcswNPTpvyscjmhb\nReNBr2n0heItt1lZ2zbK5WnoMN1ypKYxVg6HpSlTGGMFAAAAAEC8WhTMWbFihS655JJmj/n9fp1/\n/vnauHHjAa9Zs2aNLrzwQl1yySW64oorVF1dHUfZAAAAAAAAOBRtr/S0eHzUgRjRiEbfc4vsoaC+\nvP5OBXMLWnxtQ+/+2nrimcrZtE495s/VjmqvAqH9h1AiUVP+YHJCKvmlyyRJ1rjxSVm/tcrKDC1f\nbtcxx0SVm9ve1QAAAAAAcOg7aDDn8ccf1+23365gMLjPsVWrVumiiy5SWVnZQa/54x//qDvuuEMz\nZ87USSedpMcffzwB5QMAAAAAAOBQUV3n18ad9QlZ68gXH1f+upXaeuIZ2nHsya2+vuSn18l0ODXk\n2QdkhYLavLNhv+d6/WFZ8RR7AAUlTcGc8JhxSdqhdd580yFJmjqVbjkAAAAAACTCQYM5xcXFevDB\nB5s9FgqF9PDDD6tPnz4Hvea+++7TwIEDJUnRaFRutzvWmgEAAAAAAHCIafSFtGZrbUICLjkbSjRo\n1iPyFRRp2S9vj2kNX+du2jj1fGWUl6nPW/9WRZ1/v+OqGn3heMo9oPzSZYpkZik64Mik7dEas2c7\nZbNZOvVUgjkAAAAAACSC42AnTJkyRdu3b2/22MiRI1t8TadOnSRJS5cu1axZs/T888+3qMDCwswW\nnQcAAAAA8eL3DwBInk2ry5WWHv8XtWzBoMb99VbZohGV3H6PUjp3UkqMa5X9/Hr1fudVDf7Xo9p9\n9vmq9obVp2f+PuftrAsoMyPWXfbPVVOtzB1bFTzxJBUWZSd8/dbauVP64gvp+OOlQYMy2rscAAAA\nAAB+EA4azEmkuXPn6tFHH9Vjjz2mvLy8Fl1TVdWY5KoAAAAAoCmUw+8fAJActY1BbStPzAirYY/d\no8zN6/XVGRdoy6DRkicQ+2KuDK37yWUaPOsRdZ71uNZe8Atlu+3Ky9o7hLO9vF6+YOI7yHRdskiS\nFDx6tBo6wL9Bzz3nlJSiU04JqKoqeV2CAAAAAAD4oTnQlz4POsoqUV5//XXNmjVLM2fOVI8ePdpq\nWwAAAAAAALSzLbsaErJOwaol6v/q02rsWqyVP78xIWuu/8nPFMzK0YCXn5SzoU6bdjbIsr4duBWJ\nmvInIZQjSfklSyVJ5rjxSVm/NYJB6amnnDIMS6edxhgrAAAAAAASpdXBnNmzZ+ull15q1TXRaFR/\n/OMf5fV6dd111+mSSy7RAw880NqtAQAAAAAAcIipbQyq3huKex2Hz6vR99wiGYYW3/RnRVPTElCd\nFEnP0JrzfyGXt1FHvvyEPIGwdtX49hz3+MOyDnB9PApKl8uy2xU+qvlx8W3p7393acMGuy6/PKwu\nXZL1jAEAAAAAOPwY1ne/AtQB0UoeAAAAQFtglBUAJMfyDdWq8wbjXufov/9Ofee+rDXnX6XVl9+Q\ngMq+ZQsFdeplp8jdUKu5z7wjq0tXjRnYSXabTdsrPfpqZ2LGcO29Z0jTzh6t4BED5J3/ScLXb421\na2068cQ0FRZaWrjQq4yMdi0HAAAAAIBDTocYZQUAAAAAAIDDS21jMCGhnM6LF6jv3JdV12eASi/+\nZQIq25vpcqvkp9fKHgpq0KxHFAxHtb3SK0lq9MXf7ac5OV+VyB4OKTx6bFLWb6loVLrhhhSFw4bu\nvjtAKAcAAAAAgAQjmAMAAAAAAICk2Lor/k5kTk+DRt13h0yHU4tv+otMlysBle1r60lnqaFHH/V+\n+1VlbN+sskqPwpGoGv3hpOxXULJMkmSNH5+U9VvqmWec+vJLu6ZNC+vkk6PtWgsAAAAAAD9EBHMA\nAAAAAACQcInqltP/1WeUWlOl0guvVn2fAQmorHmW3aHVP/uVbGZUQ559QBHT1MYdDfIFI0nZL7+0\nKZgTHTMuKeu3xI4dhv7wB7dyciz94Q/x/7cCAAAAAAD7IpgDAAAAAACAhEtEtxxXfa2OeO1ZBXLy\ntf4nl8Vf1EHsmHiSagYMVY8FbytnQ4l21fqSs5FlqaBkmYJFXWR275GcPQ5egm6+OUVer6G77gqo\nUyerXeoAAAAAAOCHjmAOAAAAAAAAEqrOk5huOQNeeVJOv09rLrhK0dS0BFR2EIahVZffIEka+vTf\nk7ZNenmZUup2K3D06KTtcTCvv+7Qu+86dOyxEZ1/fnK6AgEAAAAAAMnR3gUAAAAAAADgh2VLArrl\nuGuq1O/15+UrKNKm06cnoKqWqTxqvCqOGq/OSxaqcPkiVY0Y2+JrIxGpdGWalnyWqS8/T1fvI4K6\n4bYdstv3Pq+gZKkkKTpufCJLb7HaWunWW91KSbF0zz0BGUa7lAEAAAAAwGGBYA4AAAAAAAASps4T\nVJ0n/m45A198XI5gQCt+cbNMlzsBlbXcqstvUNF1n2noU/dp3v0v6kDJFb/PpuVL0vXFpxlatjhD\nXk9TCsdms1RV4dILTxXq4iur9romv3S5JMkY3z7BnDvvTFF1tU133BFUnz6MsAIAAAAAIJkI5gAA\nAAAAACBhEtEtJ7WyXH3efFHeom7aPOXHCaiqdWoHDFXZsVPU4+N31PXTD7Rz4o/2Ol5XY9eSzzL0\nxWeZWrUsTZFw07T4/MKwjj2xXqMneNSrb0B3/FdPvfFKvnr1C+iYE779eykoWapoSqoig4e26fOS\npI8+suuFF5waMiSqGTNCbb4/AAAAAACHG4I5AAAAAAAASIiEdct54Z+yh8MqvfgaWU5XAiprvdWX\n/UrdPnlfQ565XzvHT9bOHSla/GmGvvg0U1+tTZFlNXXR6dknoNETPBo9oVG9+gb3aq5z0107dMt1\nPfWP+7qoW4+QevcLyulpUNbWr+QZNU5yOtv0Ofl80o03pshms/S3vwXk4J1BAAAAAACSjl+/AQAA\nAAAAkBCJ6JaTVr5dvd9+VY3demrrj85MQFWx8fTorQ/GztAHn3XTCxd11rbdeZIkw2Zp0DCfRo33\naPR4jzp1Ce93ja49Qrru5nLd/bvuuufO7vrzQ1t0xIYVMixLodHj2uqp7PHXv7q0ZYtN11wT0vDh\nZpvvDwAAAADA4YhgDgAAAAAAAOJWn6BuOYOef0S2aEQll1wry95+b11Vljt18ZK/KyS7Umv8GjOh\nQaMmeHT0WK+ysqMtXmfUeI/O+2mVXn6uUH/7Y1c9P2iFJMmYMD5ZpTdr1SqbHn3UpeJiUzfdFP9/\nJwAAAAAA0DK29i4AAAAAAAAAh77NCeiWk1G2Wb3ef131Pfup7PhTE1BV7P71dKFCYbtuOeJpVVv5\n+tuJz2jSyQ2tCuV848cX7taYiY0qWZGuh987VpJkjhmb6JL3KxKRbrghRdGoob/+NaC0tDbbGgAA\nAACAwx7BHAAAAAAAAMQlUd1yBs96WIZpquTS6yS7PQGVxeartSn6dH6W+vb3a+JvuyjVFtSgWQ9L\nZmzjn2w26Ze/KVf34oAer56uxwt/IysnN8FV798//+nUypV2TZ8e1qRJrQ8WAQAAAACA2BHMAQAA\nAAAAQFy2JKBbTtbm9eoxf65q+w3UjoknJaCq2FiWNPOxTpKkS66qlK9HL22dPFU5m9er2yfvx7xu\napqp//3ZfOWoVtft/oOWL2+bt+W2bDF0991uFRSYuuuuQJvsCQAAAAAAvkUwBwAAAAAAADGr9wRV\nm4huOTMfkmFZWn3p9ZJhJKCy2HzxaYbWrE7TqPGNGjTML0lac+HVsmw2DXr+kZi75kjSsOpP9IIu\nUMhy6rLLUlVZmdznaVnSjTemyO839Ic/BJWXl9TtAAAAAABAMwjmAAAAAAAAIGaJ6JaTs75E3Re+\np91HDtOuMccnoKrYRCLS8090ks1m6eKfV+153NO9t7adcLpyNq1Tt09j75pTULpMp+gd3X51uXbu\ntOmKK1IUCiWi8ua99JJDH33k0IknRnT22ZHkbQQAAAAAAPaLYA4AAAAAAABikqhuOUOee0CStPqy\nX7Vrt5z35+aofIdLPzq9Tl177J2YKb1wRlPXnFmxd83JL1mqUE6+rv1dhs48M6xFixy64w53Ikrf\nR1WVod/9LkVpaZbuvjvQnn+tAAAAAAAc1gjmAAAAAAAAICZbK+LvlpNXukxdFn+kymGjVXnU+ARU\nFRuf16ZXZhYoNS2qcy+u3ue4p0dvbZvU1DWn66cftHr91KpdSq8sl2fEKBk2Q/ffH9DAgVE9/bRL\ns2Y5E/EU9nLHHW7V1hq67bagevSwEr4+AAAAAABoGYI5AAAAAAAAaLV6b0g1jQnolvNsU7eckkuv\nb9duOf95MV+N9Q5Nm75b2bnRZs9Zc+HVsmw2DY6ha05+6TJJUnj0GElSerr07LN+5eZa+u1v3fri\ni8S9Tff++3a99ppTI0dGdfnl4YStCwAAAAAAWo9gDgAAAAAAAFpt666GuNcoXLFYRcs+166RE1U9\ndFQCqopNdaVDb/6/XOUXhHX6j2v3e15jcZ+vu+asVdfP5rVqj2+COcbECXse69XL0mOP+RWJSJdf\nnqpdu+IPJnk80m9+kyKHw9K99wZkt8e9JAAAAAAAiAPBHAAAAAAAALRKQrrlWJYGf90tZ/Wl1yeg\nqti9+EyhwiGbzv9ZlVzuA499WnPh1bIMQ4NmPSJZLR8RVVCyTFGnU8bRI/d6/Pjjo/qf/wmqosKm\nn/0sVcEY/lojEWnFCpsee8ypCy9M1Y4dNl13XUiDBrWuqw8AAAAAAEg8R3sXAAAAAAAAgENLIrrl\nFH35iQpXf6md405Q7ZHDElBVbDZtcOuj97PVq29Ax5548Of1Tdecnh/OUddPP9DOiT866DV2v085\nX61R4+DhUkrKPsdnzAhr5cqm8VO33OLWvfcGDzjVy+eTli61a9Eiuz7/3K4lS+zyer+9YPToqG64\nIXTQugAAAAAAQPIRzAEAAAAAAECLNSSoW86QPd1yrktAVTGXoZmPdZIkXXJVpWwt7C295qKrVTz/\nTQ2a9Yh2TjhRB0zRSMpbv1o2M6rA0aObbV9tGNJ99wW0YYNNs2a5NGyYqcsuC+85XlMjLVrk0KJF\nTWGcFStsikS+3fOII6IaO/bbW8+e1sFKAgAAAAAAbYRgDgAAAAAAAFpsSwK65XT5/EPlrVulsmOn\nqL7vwARUFZtli9NVsiJdR43xaOhRvhZf11jcV2WTTlPxh2+q62fzmsI5B5BfukySZI6fsN+58mlp\n0jPP+HXyyWm69Va3vF5p0yabFi2ya/16+57z7HZLw4ebGjMmqnHjohozJqqCgpaP1AIAAAAAAG2L\nYA4AAAAAAABaJCHdckxTQ559UJZhqOSn1yamsBhEo9LMxzvJsFm6+OeVrb6+9KIZ6jF/rgbNelg7\nx08+YNecgpKlkiTHxAkHXLNHD0tPPBHQOeek6q67mkZepaVZOu64iMaObQriHH10VOnprS4XAAAA\nAAC0E4I5AAAAAAAAaJGtFY1xr9F94bvK2bRWWyefocae/RJQVWw+fDtbO7a5deKpderRK9Tq6xuL\n+6rs+FNVPH+uunz+ocrHT27+RNNU/poV8nYrloqKDrruxIlRzZrl18aNNo0ZE9XgwaaczlaXBwAA\nAAAAOogWTs4GAAAAAADA4czjD2t3QyC+RaJRDX7uIZk2u0ovuSYxhcXA77PppecK5U4xdd5Pq2Je\np/SiGbIMQ4NnPiRZzY+TyizbJFdjvbwjRrV43RNPjOqqq8IaMYJQDgAAAAAAhzqCOQAAAAAAADio\nsgR0yyn+8E1lbduoLSdPk6dbr/iLitEbr+Spvtahs87brdz8aMzrNPbsp7LjTlHuV2vU5fP5zZ5T\nULpMkhQePS7mfQAAAAAAwKGLYA4AAAAAAAAOyB+MqLLOH9caRiSswbMelulwas1FMxJUWevVVDs0\n+995ys0La+pPauJeb81BuubklzQFc4wJE+LeCwAAAAAAHHoI5gAAAAAAAOCAyio9an5QU8v1fO91\nZezcpk2nniNfUbcWX2czDBVkpSjFaY+zgiYvPVugUNCm6ZdWKyU13mclNfQ64uuuOaXNds0pKF2m\ncHqGnMOGxL0XAAAAAAA49DjauwAAAAAAAAB0XKFwVBU1vrjWsIVCGvT8I4o6XVpzwS9adE1OultF\neakqzEmVw9703bI6T1AVNT5V1QUUMc1W17F1k1vz381Wj14BTTq5vtXX78+ai2aox0dva9Csh1U+\nbpJkGJIkV12NMrdv0e6xx0k2vh8HAAAAAMDhiGAOAAAAAAAA9mtHtVfRZkY0tUa/12cpvbJc6398\nqQIFRfs9L83tUFFumoryUpXi2vdtq5wMt3Iy3OrX3dTu+oAqav2qbQzKbGF9s54olGUZuuTKKtkS\n04BHUlPXnO3HTVGPBW+ry6L5Kh93giQpf81ySZJ/1Bi5E7cdAAAAAAA4hBDMAQAAAAAAQLMiUVM7\nqrxxrZGyu1KDZj2sYGa2Si+8ep/jTrtNnXJTVZSbpqx0V4vWtNts6pSbpk65aQqFo6qs86uixqdG\nf3i/1yxfkq4VSzI07Givho+K7zk1p/TCGeqx4G0NmvmwysdOkgxDBSVLJUnW2HEJ3w8AAAAAABwa\nCOYAAAAAAACgWTurvTGNjPquoU/eJ6ffpy+v/53CWTmSJJthKD87RUW5qcrLSpHt69FPsXA57epe\nmKHuhRnyBsKqqPGrotanYDi65xwzKs16vFCGYeniKysVx3b71dC7v8qOO0U9PnpbnRcv0K6xk5Rf\nulyWzSbHuLGJ3xAAAAAAABwSCOYAAAAAAABgH6Zpxd0tJ690mXq9/7pq+w7UplPPVXa6S0W5aeqU\nmyqH3ZagSr+VnuJUn65O9e6SqTpPSBU1PlXV+/XhO1natjlFk06uU6++wYTv+43Si2aox0dva/DM\nh1V51ATlrVulhr5HypGTnbQ9AQAAAABAx0YwBwAAAAAAAPvYVeNTMBI9+In7Y5o66uE/SpKW/fI2\n9emeq+KizARVd2CGYSg3063cTLe6NmbrqmfT5XKbmn5pdVL3bejdX2XHTlGPj9/RwBf+IXs4JM+I\nUWrZgC4AAAAAAPBDlPivJgEAAAAHYFpWe5cAAAAOwrIslVV64lqj9zuvKm9DibaeMFU1Q0aqKDct\nQdW1zuOPpWh3tUPTL2pQfmEk6fuVXnyNJGngv/4hSQqPGZf0PQEAAAAAQMdFxxwAAAAkTTAcldcf\nlscfbroPROQPRmS3GcrJcCs7w6WcDLfSUxwyDKO9ywUAAF+rqvPLH4o9xOL0NGjoU39TJCVNK6+8\nUTkZbrld9gRW2DK7dxt68EGXCgpM3XmbTbvq07WjOr7xXAfT0Lu/th9zsrovfFeSZBs/Pqn7AQAA\nAACAjo1gDgAAAOJmWpZ8gci3AZyvb+GoKUmyLGlHmUsly9O1ZlWaAgGbXG5Tbrclt9tUSmpE2Vk2\nZWfalJdtV062TenpUmqqpdTUb+/T0y117WopJaWdnzAAAD9w2yri65YzaOZDctfXauXl/61AQZF6\n57VPt5wnnnDK5zN0661BZWYayszMkcth1+ZdDUndt/Tia9R94bvyFxTJ3a93UvcCAAAAAAAdG8Ec\nAAAAHJBlWYpELUWipqJm030kYsoXjMjrD8sbiMgXjOw1osqypF07nSpZnqnVK9JVujJNdTWJeemZ\nmWlp2rSwzjsvojFjoqLRDgAAiVXTEJAnEI75+qzN69Xv9X+psWuxNvz4UtkNQwU5bZ+q9XikJ590\nKS/P1EUXfft8enbOlNNh04btdUrWgM36PgP0xX//QY6iTupuY5I8AAAAAACHM4I5AAAAhyHTtLS7\nISB/MLJX2Cby9c/Rr4M44a/DOAdjWVLlLqdKlqdp9Yo0la5MU021c8/xnLyIJp5Qr8HDfRoy3Kec\nvIiCAVvTLWgoGLQpFDT2fSzwzTGbrKhDkZBDS79I1cyZLs2c6VLv3qamTw/rvPPC6t49WR+tAQBw\neImrW45lacSjf5LNjGr5jFtkulwqykmVvR3CKc8/71RdnaGbbgopPX3vY10L0uV02LRma+1e4eJE\n2nLKT9SjMCMpawMAAAAAgEMHwRwAAIDDSJ0nqIoan6rqAoqYZlxrVVc6tHp5mkpWpKtkRZqqK78N\n4mRlRzT++AYNHubT4OE+de0R2qezTUpqVFK01fv+d2aqdm8v1IsvOjV3rkN//rNbf/mLS8ccE9X0\n6WGdfnpknw/fAABAy9R7Q6rzBmO+vtvC91S0/HOVjzlOu8ZOkiR1bocxVqGQ9OijLqWlWbr88lCz\n5xTmpMpht6lkc03cr4v2JzPdlZR1AQAAAADAoYNgDgAAwA+cLxBRRa1PFbU+BUKtD8J8l6fRpvnv\nZOuDt3K0o8y95/GMzKjGHNOoIcO9Gjzcp+499w3iJEp1o1/9BtXr0Ucz1NgovfGGUy+95NDHHzfd\nbr7Z0plnRjR9eljjxkXF9AgAAFqurKIx5mvtAb+GsKtRCwAAIABJREFU//PPMh1OLZ9xiyTJ7bQr\nJ6PtwymvvebQzp02/eIXIeXl7f+83Ey3hvfL16pNuxWKJD6ck5XmPPhJAAAAAADgB82wrCT1602Q\nqqrY3xACAAA4XIUjUVXW+lVR61eDr/lvibfGlo1uvf1GrhbOy1IoaJPTZWr4yKYQzuDhPhX3DrZp\nAMZmGBreN1/ZGd+GgzZtMvTyy0698opTZWVNxRQXmzrvvKZRV716deiXvegACgsz+f0DwGHNGwjr\ni7WVMV8/6LmHNHjWw1o7/edadcWvJUk9OmWob9fsRJXYIqYpHXtsmjZvtumLL7zq1u3grwH8wYhW\nbtwtfyiSkBpSXQ51zktTz86ZCVkPAAAAAAB0bIWF+38PgGAOAADAD4RpWtrdEFBFjU81jUGZcb7M\ni4Slzz/O0jtv5GhdadMIiqIuIZ00tU4nTKlTZlZyRj60lNth19EDCuV22vd63DSlTz+166WXnJo9\n2yGfr6l1z/jxEZ19dkSTJkUI6aBZBHMAHO7WbK1VRa0vpmvTdu3QKT8/XaGMLL391FuKpDXNlRx9\nZCelp7Rt15i33nLo0ktTdf75YT3wQKDF1wXDUa3auFueQDimfZ12mwpzUlWUm7pXeBgAAAAAAPzw\nEcwBAAD4Aav3BFVR61dVnV/haPxhmd1VDr33Zo4+eCtH9bUOGYalEaO8mnJWrUaM8nao0VDZ6S4N\n71cg237mZnk80pw5Dr30klOffPLtFNeePU0dd1xEkyZFdcwxEeXmtlXF6MgI5gA4nAVCES1eUxlz\nsHf8769X94XvadHNd2vbiWdIkjJTnRo5oFMiyzwoy5JOOy1NX35p18KFXvXv37rXRpGoqdWbalTn\nDbbofJthKC/LraLcNOVnpchmS9IsTwAAAAAA0KERzAEAAEiylRt3KxI1leKyy+2yK8XlUIrzm5/t\ncthjT7NETVOBUFTBUFT+r++DoYgCoaj8oYhCkZZ/4JRWsUMFq5aocNUS5a9ZIUkKZWQplJahj0LH\n6JldZ+qDipGKWnZluf06fUSJzjhmozoVS+H0TIUyMhXOyJLp6jjfAu9emKF+3Q4+ImPbNkPvv+/Q\nggV2LVzoUGNj0wdnhmFpxAhTxx8f0fHHRzVqVFTujvP00IYI5gA4nH21vV7bqz0xXdtp6ac6/rdX\nqHrQUfrwb89LXwdm+3XNVvdOGYks86A+/dSuadPSdMopYT33XMu75XyXaVoq3Vqj6vr9X5+V5lJR\nbqo65abK6bDv9zwAAAAAAHB4IJgDAACQROW7vVpXVnfAc5x2m9xOu1LcdqU4Hd8J8NjlctgVijQF\nbgLhqAKhqAKhSNOfQ9HYu+BYljJ2blXhyi/2hHHSK3buORxOTVO9PU8ves/SI9Y1WqNBkqQRWqZr\n9ZAu0AtKk7/ZpaNOl7ZNnqrlM27dM6qiPQ3qmatOuWktPj8SkZYvt2nBgqagzpIldkUiTR8ipqVZ\nGjcuuieoM3Cgqf005MEPDMEcAIercCSqz0sqFI3hLSIjEtbJV5+tzLJNev+hV1R3xGBJTZ1kxg0q\nksvZtqGV889P1bx5Ds2d69WoUbF3ErQsS+vL6lRe8+1orxSXXUW5aSrKTVNaiuMAVwMAAAAAgMMN\nwRwAAIAkiURNLV5T0aquNUljmsra+pUKVy1R4aqmME5qTfWew8GsHFUPGamqYaO1vGiSXlw6Sgve\nz1HAb5fDYWrimEqddcwGDSvaJre3QU6vR85v7j1N9y5vg5yeRmWUlylj5zY1duupz2+9d8+HcO3F\nbhg6qn+hMlKdMV3v8TR9w37BAoc++siudeu+/RCxsNDUccdFNXVqRKedFiGk8wNGMAfA4WpzeYO2\nVsT2/39HvPasRvzjz9p4+nQt/dWdex7Pz0rR0D75CaqwZVavtmny5HRNmBDRf/7TfLi4tTaXNygU\njqooL005GbTUAwAAAAAAzSOYAwAAkCRf7ajX9qrYxj7EzbKUs3GNClcsVuGqJSpY/aXcDd927vHn\nFahq6GhVDx2lqmGj1VDcV+vXpumNf+fri08yZFmG8gvCOmlqnSafWqec3GiLtzbCIQ155n4d+cpT\nMh1Orfz5r7Xh7J+qPVMraW6Hju5fGNfYsG+UlxtasODboE5VVdOaEydG9Kc/BXXkkR0giIWEI5gD\n4HAUiZpaVFoRU4c+d+1unfqzU2TZ7XrrqbcUys7dc6y13ewS4eqrU/Taa069+KJPkye3/HUNAAAA\nAABAvAjmAAAAJIEvENaSdVUy2/jlVFr5dvX84A31/OANZe7Yuudxb1FXVQ0draqvgzjersWSYciM\nSks+z9DsV/K0rrTpA7J+AwI698J6DRtTK3scEyaKlnyiMXffrJS63Sofc5wW3/gnhXLy4n2KMSvI\nTtGQ3on9dr5lNX0D/557XHr7baccDktXXhnWb34TVEZGQrdCOyOYA+BwVFbp0cad9TFdO+re29T7\nnde09NrbtfHMi/Y87rDZNGFIZ9lsbRfY3bLF0Lhx6Ro40NS8eT463AEAAAAAgDZFMAcAACAJVm6s\nVk1jsE32cnoa1P2jt9Xz/TdUuPpLSVLEnaKd4yerfMzxqh46Ur6ibk3n2m1KcTlkmA598E6mXno+\nU9u2OiRJP/pRWNdeG9b48VEZhrS+rE47d3vjqs1dW60xd/9Wnb/8RP68Qi26+W5VHTUuvicch96d\ns9Sz8/5fAMfj3XftuvXWFG3bZlPnzqbuuiuoadMYb/VDQTAHwOHGtCwtKqlQMNL67jK5a1fqR9dP\nV13v/nr/kVdl2R17jnXJS9OA4twDXJ14N93k1jPPuPSPf/j14x9H2nRvAAAAAAAAgjkAAAAJVl3n\n1+otNUndw4iE1fmLher5wRvq+tk82cMhWYahqmFjtO2ks1R30mnK6JSvVLdDKS67Ulx2uV121dbY\n9fTTTj31lFO7d9vkclk699ywrr46rAED9h5TYVqWVm+qUU1jIL5iTVP9//20hj79dxlmVGunX6mS\nn14ry+GMb90YGJKG9slXXlZKUtb3+6WHHnLpgQdcCgYNHXNM03ir7//d4tBDMAfA4aZ8t1fryuoO\nfuL3maYm/9cFyl+7Uh/+9VlVDxuz1+ER/QqUk+FOUJUHV1lpaNSodHXqZOnzz71yOA5+DQAAAAAA\nQCIdKJjDWxUAAACtZJqWvopx5MNBWZZy169Wz/ffUI/5c5VS3xT+aSjuq4pTz5b37HOVdkQfdU93\nqqfNttelmzYZevRRl156yalAwFBOjqX/+q+grrgirKKi5rPYNsPQoF65Wr6hWp5AOPa6bTatP+8K\nVQ0brXF/ulEDX3xMnVYs0ue33Ctf526xrxsDS9KarbUaOaBQKa7Ev9xNTZV+85uQzj03rNtvT9G7\n7zp0wgl2XXVVWDfeyHgrAMChwbIslVV6Yrq25/uvK3/tSm07/tR9QjkpTnubhnIk6Yknml77/PKX\nQUI5AAAAAACgw6FjDgAAQCtt3dWozbsaErpmauVO9fxgtnq+/4ayyjZJkkK5+ao9dZpC0y+Qa8wo\n2ey2Zq9dvNimRx5x6a23HLIsQ8XFpq6+OqTzzw+3OCQSDEW1dEOVguHWj7L4PofXo5EP3KniD99U\nKD1TX97we20/7pS4122tzFSXjjqiQDZbcudMvfOOXbfd9u14q9//PqizzmK81aGIjjkADieVdX6V\nxtD9z+Ft1KmXnyaHz6O3n5wrf6cuex3vWZSp3l2yElXmQTU2SkcdlSGXy9KXX3qVmtpmWwMAAAAA\nAOxBxxwAAIAECYQi2laRuA/u03ds1cj771TR8s8lSabLLc/pZyl8wUWKnHCibE6nmhvIVF1taM4c\nh156yakvv7RLkkaMiOqXvwzp9NMjrf62uNtl19A++Vq2oUpRM77cdiQ9Q4t+e492jZyoox/8X43/\nww3adOqnWj7jFkVT2u7TskZ/SBu212lAcW5S95kyJarjjvPqwQddevBBl666KlUzZzaNt+rfn/FW\nAICOqSzG1zODnn9UKbXVWn3p9fuEciSpKDct3tJa5bnnnGpoMHTrrSFCOQAAAAAAoEOiYw4AAEAr\nlGypUVWdPyFrpe3aoRN+fYnSqsoVGj9RwfMuUPCMs2RlZTd7fm2tNHeuU//5j0MLF9oVjTa1ZDn5\n5IiuuSak8eOjcXdpqWkIaPXmGpkJeomYUbZZ4/7v18rduEYNxX312W33qaF3/4Ss3VIDeuSoS356\nm+y1ebOh229P0XvvOeRwWPrFL8L69a8Zb3WooGMOgMNFTUNAKzftbvV1Gds3a8qVZ8pX2FnvPDFH\npmvvkVVZaS4d3b8wUWUeVDAojRqVLq/X0LJlHmU3/xIKAAAAAAAg6Q7UMaf5eQgAAADYR21jMGGh\nnNSqXTr+psuUVlUuz+13qf71txS46Kf7hHIaG6WXX3boootSNWRIhm64IUULFjg0fLipu+4KaNky\nj2bN8mvChPhDOZKUl5Wift0S96mWp0dvzbv/BW2Ydomytm3Uj649V33f+JfUhtnwDdvr1eALtcle\nvXtbev55v2bO9KlrV0sPP+zSxInpmj2bRpUAgI5jW6Unpuv6v/asbNGIVv381/uEciSpKLdtW9a8\n8opTFRU2XXppmFAOAAAAAADosOiYAwAA0AKmZWnpuip5AuG413LXVOmEG3+qzO1b5L3xt/LddOte\nx71e6b33HPrPfxz64AOHgsGmxM2QIVFNmxbRmWeG1atXcl/CbdxZr7IYP7Tbny6ffajR994qd0Od\ntk/8kZbc8L8KZ+UkdI/9SXHaNXJAoZwOe5vsJ0l+v/TAAy499JBLwaCh//mfgK69Nv7//SB56JgD\n4HDQ4A1p6YaqVl/n9DRo6gWTFMzO0dxn35Pse/+bajMMjR9c1Gb/1kaj0sSJ6dq+3dCSJV517tyh\n394CAAAAAAA/cAfqmMNXdwEAAFpgZ7U3IaEcV12Njr/5Z8rcvkW+626Q7ze3SJICAemDD5rCOO+9\n55DP1xTGGTAgqrPOimjatLD69Wu7D5z6ds1WIBRNWIcgSSoff4Le/cd/NPYvN6n7J+8rb32JFv32\nblUPHZWwPfYnEI6qdEuthvXNl5GI1kItkJoq3XxzSGefHdF556Xq979Pkddr6KabQgnpbgQAQCy2\nVcYWQOz53n/kCPpVesaMfUI5kpSX5W7TAOzcuQ5t2mTTxReHCOUAAAAAAIAOjY45AAAABxGORLWo\ntFIR05TUNIUpEjYUDBgKBGwKBmwKBg1FwobCYZvC4W9+3vve9ATV4/V/y15TJ89RE+QZP1mhkKHq\nakPvv++Qx9OU1ujTx9S0aWGddVZEAwea7fa8TdPSiq+qVZ/oMVDRqAa++JgGz3xIklRy8TVac8HV\nzX7Il0gOr0edc1PUb1DPpO7TnG3bDP3kJ2nautWmGTNCuvPOIOGcDoiOOQB+6HyBsBavrWz9haap\nU644TWmV5Zrzr/kKZefuc8rgXnkqzGmbUVaWJU2ZkqYVK2z69FOv+vbt0G9tAQAAAACAwwAdcwAA\nACSFw1JdnaH6+qb7b2719YZqaw01NBjyeiWfz5DP9829odr6qDyeXnsFcUwz1lTFr5vuln19+1qP\nHqYuu6ypu8qQIWaHCG3YbIaG9MnT0vXV8ociiVvYbteai2aocsRYjf3TjRry3EMqWva5Fv32HvkL\nOydun2+28/vU/7VnNeDlJxROz9LaF+eqx7B+Cd/nQIqLLb3xhk/nnJOqRx91yeeT/vKXoGy2Ni0D\nAHCY21YR25jKoqWfKnPHVm0++exmQzlOu0352SnxltdiH39s1/Lldp1xRphQDgAAAAAA6PDomAMA\nAA4ppik1NEi1tU2BmuYCNt8P3nxz83pbn3ax2y253KZSUky5Uyy5U8ymm7vp5+8+7nRZcjotOZxf\n3zssOZ2mXApo2KuPqWD7Wum4CYpeO0PuFJtcLksul5SWZql3b6tDhHGa4wtEtGxDlcLRxHfvcTbW\na9Tf7lD3he8pmJmtJb/+o3ZOODEhaxvRiHq9+/80+NkHlVpTpUhKmhwBn6qGjtL2515V9277frCY\nbFVVhs47L1UlJXade25Y998fkIOofIdBxxwAP2SBUESL11TKjOFtoIl3zFDXRfP13kP/Vl3/wfsc\n75qfrv49chJRZoucc06qPvrIoXff9WrEiPbrLggAAAAAAPCNA3XMIZgDAABiZllSMCgFAlIwaMjv\nlwIBY8+fIxHtuYXDUjhsKBpt+rnpMUPhsL7zWNOfAwF9L2jzbbimoUGyrJYnWDIzLeXkfHvLzraU\nm9t0n5OjvR7PzraUnt4UlGm6SSVbqtTgj32Ukz3g1zF3XK1OKxbLP+0n8jz6RNJHNiVDvSeoFRt3\nx/Rh3kFZlvq8+bJG/ONPsoeC2nDWRVp55W9kutwxr9dl0XwNffJeZW/dqIg7VevPuUzrzrlco++9\nVd0Xvqd1P7lM4f/7s4py0xL7XFqgrk664II0ffll0zf9H300IJerzctAMwjmAPgh+2p7vbZXt75j\nTnp5mU69bIpqjhymefe/2Ow5Rx1RqOz0tvnHbMUKm046KV3HHhvRq6/622RPAAAAAACAg2GUFQAA\nkNQUgGlslOrrm8Y2fXOrr9d3fjb2nOP1NoVsAgFDwaDk9+/950CgdSGZWKWlNYVmunY1NWjQN+Ea\nfR2uaf6Wnd10PJ5uJP+fvfuOj6LO/zj+mu0lvUDovQmCiHqWU89ez3p2zysqigXrz/M8e7tTz9M7\n7HqevXdsZ8EueiBIkSaEXtLbZvvO/P5YAoQkkGyyIcD7+XjMY2dnvvOdb5LdTbLz3s93XWWwXaEc\nWzTKvrdcmgzlHP1rAg8+tl2GcgCyM9wM65vD/OVVHd+5YVB87GmUjxzL3ndexZC3n6dwznS+u+5e\n6voOalNXuQvnMPrxe+g2exqWzUbxUafw0zmXEM7vBsC0q+4ka/kShr3+FN8PH03lH84mL6vzpt4A\nyMmBV18NctZZXiZPdhIKGfz73yG83k4dhoiI7ERi8QRrK+pTOnbQ5JcwLIvFx53V7H6vy9FpoRyA\nSZOS55o4MfW/0UREREREREREOpMq5oiIiGxHwmEaBWc2DdPU1m4ermkauAkEUgvReDwWHk9rbpPr\nbnfy1uEAhwOcTtZP69T4/sZ11k/9lFz3eJLVbBqCN+4UC6e0RzxhMm1+KZF4IqXjjViUfW+7nJ7f\nfUbokMMJPP0CO0JZlOXr6li6rjZt/dvDIcY8eheD3nuZuNvLzIuuY9mRJ7O1eb78a1cy6sn76PvF\nBwCs2fsgZp97JXX9Bjdpm7liCYdceiqGBZ9NepmBh+5DVideUGwQDMIf/uDls88c7L9/nKefDpGR\n0enDkE2oYo6I7KiWratl2bq2v77ZwyGOPesgTLuD956bgtnM3zL9izLpX5TVEcPcquJig3328TN6\ntMlHHwW77DSgIiIiIiIiIrLzUcUcERGRNorHIRCAurpkmKWuDgIBg3DYIBpNTt8UjW5cj8WM9duS\nUzhFo6xfNrZJJJLTOCUSYJpsWE8kjM3ub7o/eUwwmBxLJNK2qw+GYZGVlQy49Otnkp1tkZW1cVtm\nprV+G+u3W43aZGQkQzE740WP5SV1qYdyEnF+8bdrkqGcXx5I4D/P7RChHIB+RZmEo3HWVgbT0n/C\n42XGZTdTMnYf9rj/Rva87wa6z/iWHy6/hbi/6R+1rtoqRjz/CIMnv4gtHqNy2K7MOv9qykfv1eI5\n6voOYtpVd7Lv7Zez9y2X8kW31xg1dgB+jzMtX1NLfD545pkQ48d7+OADJ6ed5uOFF4JkZ3fqMERE\nZAeXME1Wl6VWLafPZ+/hqqth3pkXNhvKATp1WsgHH3RhWQaXXhrdKf8+FREREREREZHtkyrmiIjI\nDsOyIBRqCNOwPlDTsGwM2TQEbhq2N7TbNIATDHbOO/2GYWG3s2Gx2RrWrU3Wwetlk8CMtT5U03Tb\n5gEbvz/Zp7RNMBxj+sIyzFT+TEok2OueP9NvymRCe+1D4JU3kwmMHYhpWcwtrqCyLpLW8/hKVvOL\nv/4fBfNmEijqzfd//juVI8YAYIuEGfLWswx/6XFc9XUEevRhzh+vYNUBR7Y6STb6sXsY9tqTrN73\nEH64/SHGDi3E4+r83HosBpde6uGNN5yMHp3g5ZdD5Od36T/Rd1iqmCMiO6JVpQEWr6lp+4GWxaEX\nnUz20kW8/+wnhAqLmjTJ9rsYO6SwA0a5dSUlBuPG+enVy+Lbb+u319lBRURERERERGQHpYo5IiKS\nMstKTp9UX29QX9/4Nhg0iMeTF5VjMYjHjfW3rN++cX/D/URi433LaryYptFkW3OLaSbP3zSAk6ww\nkwqfz8LvT4ZdevQwycy0yMiwyMiAzExr/f3kFEsuF7jd4HIlq8k4neB2J7c3bGtYT94m9zscNArb\n2O07ZyWa7cHi1bWphXJMk3H/vCkZyhm7B/UvvbbDhXIAbIbByAF5rCkPsqo0kHJloa0Jdu/F5/c+\nwy7PPsiIFx/loCvPZu7vJhLOK2TUU//EV76OSFYOMyf8meJjTm/xk/wtmXPuFeT+PJde335KxXOP\nMvt3Exg7pACno3Ov9Dmd8OCDYXw+i+eec3HiiV5efTVE9+4K54iISPuYlsXKskBKx+bPm0nukvms\n3P+IZkM50LnVch591Ek0anDJJRGFckRERERERERku6KKOSIiO5CGKY8ah2iaBmpaWt94bONjTLNr\npkfs9mSQprkQTUOQJiOj4f7GfX5/03YORVVlvfKaEHOXVrb9QMti7AO3MXjyi4RGjqb+rXexsnM6\nfoBdjGlarK2oZ2VpgHAsPQEdgO6zvucXd/8Jd1kJAAmXm0UnnsPC084jlpGVcr/uqgoOvfhkvJVl\nfHnn44T2+xVjBufjsHd+qSnLghtucPPYYy4GDDB5/fUgvXt36T/VdziqmCMiO5q1FfUsXFmd0rG/\nuPMq+n7+Pp/9/elmp4i0GQb7jirqlN+ZtbWw224Z+P0W06fX43an/ZQiIiIiIiIiIm2y3VbM+e8r\nNVSW1OJxmckKBC4Lj9vC5TSTty4Lj8vC7TZxOlR1QETaLpGAYNhGKGwQWn8bDNsIhWwEQw3bbAQ3\n2d+wrX6T/Q3bI1GDhAlmInmbWH9rmslKMQnTwDTX3yZo1AZr/YuYYWEYydc0AzauN2zfZBvr1zd+\nHe1/U9zvS+D3mfi9JoU9zQ3rfl9y8Xk33vd6LFxOC4fDwrl+cTjA6bCw29dvc9Jov92e3O+wWxi2\nhq8zOW3Txq81ua3R/U2+DzYb+L3J87f7tb9+/SJCMmSyekkF3mi8zccOfePpZChn6C7Uv/72ThHK\nAbDZDHoVZtCjwE9JZZDlJXWEox0X0PE47fQs8NNj1PHUHXsg1g3XErE5+eq4PxLq1qPd/Udy85l6\nw/0cdNU57P3Xq/n4wdeY5zAYNTAfWyf/cWkYcNttEXw+i/vvd3PccT5eey3IwIEK54iISNtZlsXK\n0tSq5XgqSun91UfU9B9C+a57NtsmP9vTaUHWZ55xEggYXH55VKEcEREREREREdnudOmKOW29FuIh\nhIcwbiJ4COMjSAYB/NS3eskggI8gBhYmtg2LhdHofirbW9PWTgInMVxEcRJrtN7ctk3XPYTxEsJL\nCBdRumpOycQggZ04DiwM7CQ2LF11zKlIYCOGkyguorjW/7ScwPrAwWaLDbPZ7ZvudxDHSQwH8Q79\nXsWxE8bTZIngbnZ7W9oksG/4KoAtfIWNl4bvU8Njw4bZ6LGy+f3Nt8VwEsTX4lKPnyA+onTcu7oG\nJm4iTcbV3NLS+Nvy/dn0vg2TDALtXryEsNFlfy2IdHmhgUOon/whVmHhth7KNmNaFqVVIVaU1BGM\ntD3g1CDH76ZXoZ+CbA9GM38UzimuoKI23J6hNjJw8ouMm3QrlUNH8dk/nqOgWw679M/rsP7b6v77\nXdx5p5vu3U1eey3EsGHmNhvLzkQVc0RkR1JWHeKnZSlUAQR2efZBRj77AD9MvIniY09vts2oAXkU\nZHvbM8RWicVgzz39VFcbzJoVIDs77acUEREREREREWmz7bZizmP7P0tptY1owknYdBJOOImYTiLr\nb8MJJ1HTQTjhIrLh1knEdBBK+CmL57Es4SaU2Pk+TmVg4rVH8dqjeOyxDetee6TZ7TbDJG7aiVt2\nEpaNuGVbf99GwrJvWI9vtp6wbMn264/d2nEJKxlAaokNE7th4rAlkrdG8nbzxWFL4DBM3LYYLlsc\ntz22YX3j/Xhymz2Gy0g0amM3TOKWnZhpJ2o6Nixxq/H9mOlo1CbWcLu+XWxDWzvxTY6Lmo4tfp0d\nwW4kcBoJnLY4TltyPfl9SSTv2+KNtsVMx/rnkavRcydsOklY9rSOtStwGnF8jgheewSfPUquoxav\nvRzf+vs+RyS57kg+R3zrnyvJ7cnnjn99m823N6y7bbHtpHKXE8hdvzQW7fSxiHRtFslPm1tWMnBi\nWcmqOhu2YWGZyX1kZ+P4y3U7dSgHktNaFOX56J7rpaw6xIqSAIFwrFXH2g2DbrleehVmkOF1brHt\nwJ5ZVNaGOyxKWHzs6eQvmE3/j99i7IN38MMVt+JaVcPg3tvm6t/ll0fx+Syuv97DCSd4eeWVELvu\nqnCOiIi03oqS1KrlGLEoA997iZgvg+WH/LrZNk67jbwsT3uG12rvvONgzRob558fVShHRERERERE\nRLZLXTqYc/6Xv+2AT6xGSSSihEJQX28QDEIwmLxN3m+6LRRKHmmzsWFqlU1vG2+3muxrbbvN+zYM\nMM3kp8GSi7HJOsTjBtEoxOMQjRrE4xv3RaPJfeEwhEIG4TCEw07CYSehkEFNCErCBuFgst/2sNmS\nU9U4HMmxOxzgcCenp3E4wG4HnyM5dU3Dto1tTRwOc8N2SE7BY5rJ23g8Oa2PaTrWr2+6JKcCiicg\nHN/4fYiGIRLpnDSEYVi43cmxu1zJKXpcLvDYzJpQAAAgAElEQVRudt/hMHG5zE3uW7hcye8NgGUl\nl03Xkxd7G9/ftJ1pbvyZJxLJn2M8bicWs6/fntwfj0MoxsZt6x8zLhd4PBYuP7jdkO1Jfi1ut4Xb\nHcfjaVjf9DZ5TMO2ZJvk17pp+8br1vo2yW12e+NpiJLfx60vDd+bTR8fDeumufHx0LCv8a2Bw2Hh\n84HPlxyrc8P1Xef6xd+hj43Y+kVEdk4NUUzFJjYyDINuuT665foorw6xvKSOulDzr5Qel51eBRkU\n5flwOloXbPV7nBTl+VhbGeyoAfPDxJvILl7IwA9epWL4aJYd9RucDhv9ilpOuafT+PExfD646io3\nJ5/s45VXguy2mx5lIiKydVV1EepCqcXue33zCd7Kchad+FsS3ub/b+qe6+uUKR8tCx5+2IXNZnH+\n+foYgYiIiIiIiIhsn7p0MKej2O2QkQEZGQ2fqd65p2lJJCAUgnC4IcADlmVgt1sbgjUbb5tus3XO\nFPJtYlkNAaWGxSAS2RhYikaT4Z2G9UQiGdRoWBpCNZuvb37fvuMXlulSDGNjgKupLT2Pd+7nuIhI\nV1OQ46Ugx0tlbZjl6+qoCSYvrOVmJKerys9qfrqqrenfI4vSqhCJDpqZ1XR7mHrjPzn0klPY/YHb\nqBk0nKWMwumw0bOgYwOdrXX22TFcLouJEz2cfLKPl14KsueeCueIiMiWrShJ/UNOg995AYAlvz6j\nxTbd8tI/hRXA1Kl2Zs+2c+yxMfr31/95IiIiIiIiIrJ92imCOdJY06ASbO9BBsNIVmhxuRq2KIQl\nIiLS1eRlecjL8lBVF8HttOHzbHm6qq1xO+307pbB8nZcfNxcfY8+fP+nu/nlDReyz60T+eTB1/kZ\ncDpsFOZ0zkXIzZ16ahyXK8yECR5OPdXHCy+E2GefxDYZi4iIdH11wShVgUhKx2YvmU/h3B9Yt8cv\nCfQe0Gwbn9tBls/V7L6O9vDDyfNMmKBqOSIiIiIiIiKy/eqCtU9EREREZEeWm+ludyinQZ9uGbha\nOf1Va63b6wB++u3F+EvX8ou/Xo2VSDB/eRWl1aEOPU9rhCJxFq6oYuQe5dxxdyWRCJx2mpd33o9T\nWRumtj5KMBwnGktgmgoki4gIrCgJpHxsQ7Wcxced2WKbojxfyv23xZIlBv/9r4M99kioWpyIiIiI\niIiIbNdUMUdEREREtlsOu41+RVn8vKq6Q/udf+YE8hbOoef3XzDymUn89IfLmbeskrrCDAb2zEpp\n6q22qqwNM395FbFE8mLkwF3ruerGIPfe1osJ47P5v5tWs9ue9Y2OsRkGDruBw27DYbfRLcdL724Z\naR+riIh0DcFwnPKa1IKkztpq+k55l0BRb9bueUCzbeyG0WnTOz7yiKrliIiIiIiIiMiOQRVzRERE\nRGS71iPfh8/dwXlzm43/XXMXgR592OXFR+n57acArCwLMHtJBbF4eqeSWlFSx5ziig2hnAbj9q7n\nT7esAuDum3sxfWrj0I1pWUTjJsFInNpglOK1tdQGdUFTRGRnsbK0LuUJnQd89CaOSJglvz4jOQd2\nM4ryfTjs6X8rqaLC4OWXnfTta3L00fG0n09EREREREREJJ0UzBERERGR7ZrNMBjYI6vD+41lZvPt\njf8i7vaw193XkrFqKQBVgQg/LCyjLg2Bl3jC5KellRSvrW3xwuqYPYL8+bZV2G1w7629+O6rzBb7\nMy2LBcurNM2ViMhOIBJNUFKV4rSLpsmgyS+ScLlZesRJzTYxgN6FnVOF7emnnYTDBuPHR1vKCImI\niIiIiIiIbDcUzBERERGR7V5Bjpdsv6vD+60ZNJwfLrsFZzDAvrdMxB4KAhCOJZj5cznrKoMddq5g\nOMaMRWWUtWIKklFjg1x350qcLpP77+jJ11NaDiYFI3GK19Z22DhFRKRrWlUWwLRSC2IWTf+KjLUr\nWX7wscSycpptk5/twdvRFeqaEQ7Dv//tJCvL4swzY2k/n4iIiIiIiIhIuimYIyIiIiI7hIE9s9PS\n74pDj+Pn488ie/li9rjvBlh/0dO0LBasqGLRyuqUL4Q2KK8OMWNROcFI66frGLFriOv/thKP12TS\nXT34/KOWwzmrygJU1UXaNUYREem6YnGTNRX1KR8/+O3nAVhy3JkttunTSdVy3nzTQVmZjXPOiZLR\nOacUEREREREREUkrBXNEREREZIeQ7XdRmO1NS9+zxl9D+S5j6fv5+wx+69lG+9ZU1DPr53IisUSb\n+7Usi6Vra5m7rJK4abb5+KEjwtx41wp8GSYP39uDT95vOZy0cGUV8UTbzyEiIl3fmvJ6EilOW+hf\nvZwe076ifOTuVA/epdk2mV4X2Rnu9gyxVSwLHnnEhcNhcd55qpYjIiIiIiIiIjsGBXNEREREZIcx\noEcWNsPo8H4tp4upN9xPOLeAMY/dQ8Gc6Y321wSjzFhYRk2g9VVpYnGTOcWVLC+pa9fYBg6NcNPd\nK8jISvDY/T348O3mpyAJRxMsWV3TrnOJiEjXkzBNVpUFUj5+8OQXAVi8hWo5vbv5U+6/LT77zM78\n+XaOPz5Oz57tq0YnIiIiIiIiItJVtCqYM2vWLH772982uy8UCnH66aezZMmSVh1z55138uKLL6Yw\nVBERERGRLfN5HPTI96Wl73B+N6b+5V6wLPa+4wo8FaWN9kfiCWYtqWjVxdFAKMaMRWVU1oU7ZGz9\nB0W4+Z4VZOfGefLBIia/loctGiFv3swNU28BrK0MUlHTMecUEZGuYW1FkFiKFdHsoSD9//sGobwC\nVv3ysGbbuJ12CnPSU5Fuc4884gJgwoRop5xPRERERERERKQzbDWY8/jjj3P99dcTiTT99O+cOXM4\n66yzWLly5VaPqays5LzzzmPKlCkdMGwRERERkeb1L8rEYUtPYcjy0Xsx+/yr8VaWs8/tV2DEGl84\nNC2LxatrmL+8ikQLU1OVVAWZuaiMUDTeoWPr0z/KLX9fQW5+jGcf68a0i6ZzyOVnMvzFRxu1W7iy\nili87dNutVY8DhUVxqZ5IBERSRPTslhVmnq1nL5T3sVVX0fx0adhOV3NtulV4E9LNbrNzZtn4/PP\nHey3X5zRozX1ooiIiIiIiIjsOBxba9C3b18mTZrENddc02RfNBrlwQcfbLKvuWPq6+u59NJL+fLL\nL9s0wMLCzDa1FxEREREZnYCfV1anpe9151zA2sU/0ePTd9njqftYcMVNTdoEYyZLSuoZO7QQn8cJ\ngGlaLFxexaqKED6/Oy1jGzYC/v5wCX8Zn81dK87FpIJfPzUZm3c64SMPJCPLxO22KK2LstvQbimd\no74eVqxILsuXJ5dN11evhkQCuneHfffduOy+O3g8HfwFp4H+/xCR7cnqsgBOtxOn29n2gy2LYe++\ngGl3UHrKb8nMaPoi7bAbjB5ehNOR/pnQn346eXvttQ69FouIiIiIiIjIDmWrwZwjjjiCVatWNbtv\n3LhxrT6mT58+9OnTp83BnLKyuja1FxERERHxOw2ikRiRWHoqw0ydeDOHLJ5P/1efYt2gkaw8+Ngm\nbeoCYcrKA4zol0uG18m8ZVVU1zetQtnRcp11fM7xHMWr3MM13MM18DDJBXA6TfyZJnm5cfLzDHJy\nLLKzrQ23ubnJW48H1q41WL3axsqVBqtW2Vi92qCiovmLs4ZhUVRksfvuyb7mzLHx5ps23nwzud/l\nshg92mSPPRLsuWeCvfZK0L171yqrU1iYqf8/RGS7MmtBKfXhWErHFsyeRuaShaw48CjKvdkQaDrV\nYe+CDKqr6ts7zK0qKTF4/nk/gweb7LlnkLKytJ9SRERERERERKRDbemDRlsN5oiIiIiIbG/sNhv9\nizJZmKaqOQmvn29vnMShl57CHvfdQG3/IdQMHNakXSxhMqe4AofdRizROdNy7PrkfQyunsGTpzzB\nU/mXkVi4jozPp1JpL2DJ8AOpiWVQH7BTXm5j+TIbiUTrpifxeCx69bIYNSpOnz4mvXpZ9O5t0rt3\n8rZnTwvnJgUbLAtWrzaYNs2+YZk508b06XYeeSTZpm/fxkGdESNMHPoPRUSkVcqrQymHcgAGv/MC\nAIuPP6vZ/QbQq9Cfcv9t8eSTTqJRgwsuiJGm2ShFRERERERERLYZve0tIiIiIjukojwfq8vqCbTj\nouWWBPoM4H//9zf2u+VS9r11Ip888CqxjKwm7SzotFBO3ryZDHr3JWr7DqLid6dzjKsKcNNvXBV7\n/X0CgYo+TLn/RSK5+QDkZrgZ2L2A6mqD6mqDmpqNt6EQdO9ubQjhFBRYGK3L8ABgGKwP7cQ58cQ4\nkJwGa9Yse6OwzhtvOHnjjWSix+ezGDcuwY03RhgzpnO+ZyIi26tVZalXsvGUl9Dr64+pHjicipG7\nN9smP9uD153+t42CQXjqKRd5eSannJKe39kiIiIiIiIiIttSm99hmTx5MsFgkNNOOy0d4xERERER\n6RCGYTCwZxaziyvSdo41+x3K/NPHM+Klx9jr7mv55uYH2FYf9TdiUfa4/yYMy2L65bdgulwb9i0/\n/ET861Yx8rmH2O/mi/n87qcw3R6qAhFqc+rp08dPnz7pn1bK74d9902w777JKcYsC5YsSVbVmT49\nGdT56isHJ59s59VXg4wdq3COiEhzQpF4u6ZHHPTey9jMBIuPP5OWUpd9CjNS7r8tXn7ZSVWVwZVX\nRvH5OuWUIiIiIiIiIiKdyrAsK/3vwLdDWVndth6CiIiIiGzHZi0upyqQ+sXLrUokOOC68+k+cypz\nfzeR+WdNSN+5tmD4i4+y63/uZ8kxpzHjspubNrAs9rznWvp/8g6rfnk4U6+/D2w27IbBHsO7dUpV\nhNZ44w0HF13kISODTg/nFBZm6v8PEdkuLF1by/KS1F6vbNEox5x9MLZ4jHdf+JyEx9ukTabXxbhh\nhe0c5daZJuy7r59VqwxmzKinW7cu/RaViIiIiIiIiEiLCgszW9ynmbtFREREZIc2sGfT6aU6lN3O\nd9fdS323Hox8ZhLdp3+d3vM1I2P1MnZ57iFCeQXMOffK5hsZBj9cfhulo/ek99cfMfqJewFIWBYL\nllfRVfL6J50U56GHwgQCcMopPmbO1L8sIiKbsiyLdZXBlI/v9c3HeKorWHrkyc2GcgB6d/On3H9b\nfPSRneJiG7/5TUyhHBERERERERHZYeldbhERERHZoWX6XHTPaf7CY0eJZucy9YZ/Yjoc/OKvV+Nb\ntzqt52vEshh3/83YY1FmXnQ9sYyWg0imy8W3N02its9Ahr32JIPeeQGAmmCUlaWBzhrxVimcIyLS\nsqq6CJFYIuXj+//3DQCKjz6l2f1up53CNP/ebPDww8lpFy+8MNYp5xMRERERERER2Rb0DreIiIiI\n7PAG9MzCZhhpPUfVsF2ZeckNuOtq2PfWidgi4bSer0G/j9+i26zvWbP3Qaze//Ctto9lZvPV7Y8S\nzsln7EN3UPT95wAsW1dHINR1LowqnCMi0ry17aiW4y1dS/eZUykfuTuB3gOabdOrwJ/235kAP/5o\nY+pUBwcdFGf48M6btlBEREREREREpLM5tvUARERERETSzeNy0KvAz8qy9FaFWXrUKeTNn8XAD19n\n9wduY/qVt0MaL266qyoY8+hdxLw+ZlxyQ6vPFezRm69vfYhf/d/v2OeOq/jsH89SPXgXFiyvYvdh\nhZ1yQbY1TjopDoS56CIPp5zi49VXg4wdq4u30rnef9/BAw+4sCzweCy83sa3Pl/j+x4P+HzJW6/X\nIiMDdtstgb9zZgaSHVwsnqCiJvXgZ79P38GwLJYddnyz++02g54FnfNgfeSRZLWcCROinXI+ERER\nEREREZFtRcEcEREREdkp9CvKJBxLUFkbJmFaaTvPzEtuIGfJAgb89w0qho9h6TGnpu1cYx69C3dd\nDTMnXEeoW482HVs1fDTf/+lu9r3tMn55/YV8+q+XCXTrwfJ1dQzo0fJ0WJ1N4RzZViIRuPVWN48/\n7sJms3A4IBpNLbTm8Vj86ldxjj46zuGHx8nL6+DByk6jpCqEaaX4O8yy6P/xWyRcblYeeFSzTXrk\n+XHY01+hbNUqg7ffdjBiRIIDD0x9Wi4RERERERERke2BgjkiIiIislNw2G2M7J+HaVlU10WoqA1T\nURMmHOvYC4Kmy83UG//JoRf/hrEP3U71oOFUDR/doecA6D79a/pNmUzlsF1ZfNyZKfWx5peHMWv8\nNez26F3sf/0FTLnveVaUQH6Whyy/q4NHnDqFc6SzFRcbjB/vZfZsO0OHJnj88TAjRpgkEhAKQThs\nbLgNhyEYTN42t62szMYnn9j58EMnH37oxG632HffBEcfHeeoo+L07Jm+oKDseNZVpD6NVd78H8lc\ntYzlBx1L3J/ZZL8B9CrsnGo5TzzhIpEwmDAhms7CciIiIiIiIiIiXYJhWal+1KpzlJXVbeshiIiI\niMgOLBCKUVETprwmTF2o46bT6PbDNxxw3fmE8rvzyYOvEcnN77C+7aEgR4w/Dm/ZOj558DVqBg1P\nvTPLYreH7mDI28+zbvd9+fr2R/D6vYwbVojdlv6qCW3xxhsOLrrIQ0YGaQnnFBZm6v8P4e23HVxx\nhYdAwOCMM2LceWe4Q6ahWrLE4L33nHzwgYMffrBv2D52bDKkc/TRcYYMUeBMWlYXjPLDorKUj9/9\n/psY9P4rfHnnE5TssV+T/QXZHkYN6LjfVS2pq4PddsvA67X44Yd63O60n1JEREREREREJO0KC5t+\nEKpB13qnXURERESkk2V4nfQrymTcsEL2GVnE0N455Gd5sLXzI/yl4/Zj7u8vw1e+jn1uuwx3ZeoX\nUze3y3MP4i9ZzaJT/tC+UA6AYfDjhX9mzd4HUTTjW3b/1y0EwzGWret6AZWTTorz0ENhAgE45RQf\nM2fq3xnpOKEQXH21m/PP92Ka8MADIf75z44J5QAMGmQxcWKUDz4IMmtWgL/9LcwBB8SZM8fGHXe4\n2W8/P/vt5+OOO1zMnGmja3+ERraFdZWpV8uxRcL0+eIDggXdKRm7d7Nt+hRmpNx/W7zwgpO6OoNz\nz40plCMiIiIiIiIiOwVVzBERERERaUbCNKmqXT/lVW2YaDyFShamyT63X0Hvrz8i5stg7u8vY8mv\nT8eypz6jbM7ieRxyyakEu/fko0ffJuHxptzXpuyheg666hxyF89jzh+uYNGZF/CLEd1xu+xbP7iT\npatyjirm7LwWLzY47zwv8+bZ2WWX5NRVnVW9proaPvrIwXvvOfj8cwehUDIU2LOnydFHxznvvCgD\nB3bpf9ulE5imxdSf1hFLpPa47PPZe+z916uZf/p45v7xiib7M70uxg0rbO8wtyoeh1/8wk95ucHM\nmQHy8tJ+ShERERERERGRTqGKOSIiIiIibWS32SjI8TKsby77jCyif1HLf1S3yGZj6l/+wQ8Tb8Ky\n2Rj70B0ccump5M3/MbVBJRKMu+9GbGaCHybe1GGhHICE18/Xtz1MsLAHu/7nPnpNeZdl62o7rP+O\npMo50pFeecXBoYf6mTfPzjnnJCvadOaUUjk5cOqpcZ5+Osz8+QH+858Qp5wSo77e4IknXOy/v59b\nb3URCHTakKQLKq8JpRzKAej/8VsALDvshGb39+7WQaWhtuK99xysXGnj9NNjCuWIiIiIiIiIyE5D\n72CLiIiIiGyFYRj0L8piYI+sth9st1N87Ol8+O/3WXbYCeQuns8hl53BuPtuxFVb1aauhrz9HHk/\n/8SyQ4+jdNx+bR/LVoTzu/HV7Y8Q82Ww59//TOR/0wmG4x1+no6gcI60V309TJzo4ZJLvNhs8Nhj\nIf7+9wjejsu7tZnPB8ccE+fBB8PMmxfg8cdDFBVZPPCAm7339vPyyw7MzssMSRfSnmmsPOUldJ/x\nLRUjxhDoM6Dpfqedwpz0P/AtCx5+2IVhWFxwQTTt5xMRERERERER6Sr07rWIiIiISCv17Z7J4J7Z\nKR0byc1n2v/9lc/ufZaa/kMY+MGrHPnHo+n/wWu05kq7r2Q1o576F5GsHGaN/1NKY2iN2gFD+e66\ne7HHYoz9580sXd228FBnUjhHUrVggY0jj/Tx0ktORo9O8Mkn9ZxwQtcKoTmdcPzxcb7+up5rrolQ\nV2dw6aVejjlGj/WdTTgap6oukvLx/T59B8M0WXbYic3u71ngx2YYKfffWt99Z2fGDDtHHBHX9Gwi\nIiIiIiIislPRu3kiIiIiIm3Qu1sGQ3rnpHx8+a578PFDrzNr/DXYo1H2vO8GDrryLLKXLGj5IMti\n7AO34QgHmTX+T0Rztj7/hwE47an9ub9urwNYcdAx5C2cQ+aLz1IX7LqVDTYP58yZo39xpGWWBc8/\n7+SII3wsXGjn/POjvPdesEuHBLxeuPrqKN98U8/xx8f44Qc7Rxzh57LLPJSWpj9MIdteSWWIlB+h\nlkX/j94i4XSx8ldHNdlttxn0LOicaazuvtsFwMSJXfd3ioiIiIiIiIhIOuhdaxERERGRNupV4GdY\nnxxSvSRuOZws+s0f+PDf77Fy/yMomPcjh118MmMevhNHfaBJ+95ffkjP77+gZLe9WX7Y8VvsO9Pr\nZHDPbPYeWcTgXqlV9wGYNf4aYj4/u/7nPlb9VJxyP52hIZxTVwfjx3sJpj7ji+zAAgG46CIPV1zh\nweWCp54KcccdEdzubT2y1und2+Lxx8O89VaQXXZJ8OKLTvbZx89DDzmJdqGcQ10wSn04tq2HsUNZ\nW1mf8rF5C2aTtbKY1fseQiyj6XSMPfL8OFIMcbbFV1/Z+eYbB4ceGmePPTQfm4iIiIiIiIjsXOw3\n33zzzdt6EFsS7MKfzhURERGRnVemz4XH5aCiJpxyH3F/BqsOPJKKEbuRP+9Hek77iv4fv0Uovxu1\n/YeAYeCsq2H/GyZgmAm+uv1RYllNq/W4nXZ6FvgZ2juH/kVZZPldOOw2fG4Ha8rrMa2211qI+/zE\n3V56f/MJZnk59YcdjdftSPlrTbcRI0xqaw0+/thBKGRw8MGJNvfh97v1/8cOKBCAyZMdTJjg5Ztv\nHIwbl+DVV4PbbTigTx+Ls8+O0a2bxbffOvjwQyfvvONgwACTAQM6v/KPaVpU1UVYWRpg0apqVpYF\nWFNez+qyeuqCMaLxBIYBLocNoxOmS9rRVNVFWF2eejBn+IuPkrdoLrPGX0N9r36N9hnAiH65OB3p\nDeZYFlx8sYfVq2088kiIoqKuW6FKRERERERERCRVfn/LnwA0LCuFd+k7UVlZ3bYegoiIiIhIi0qr\ngixYUZ1S+GVTtmiEYa88wYgXH8Mei1Ky297MvOQGhr7+FAM/eJU5f7iCBWeM39DebjMozPbSPc9H\nToarxQveS9bUsLK0aRWe1jAScQ655FRyl8zn+wdfYuApR6fUT2cJheDgg/0UFxu8/XaIvfduWzin\nsDBT/3/sIOrr4ZNPHLz1loNPP3UQDiefHxddFOUvf4ngdG7jAXaQykq46y43Tz/txDQNjjgizi23\nhNM+NVcsnqCiNkJ5TYiquggJc+vnc9hsZGe4yPa7yMlwk+FzYlNQZ6vmL6ukpDqU0rG2aIRfn34A\nCbeHd5+bAnZ7o/0F2R5GDcjviGFu0ZQpdk4/3ceRR8Z45pnUw6wiIiIiIiIiIl1ZYWFmi/sUzBER\nERERaaey6hDzl1e1O5wD4F+zgrEP3UGP/32J6XBii8eo6T+Ejx96HRxOcjPddM/1UZDjwW7bepWD\nUCTO9/NLUh5P3vwfOeSyM6jpP4Q1731GQWHTqVC6kunTbRx7rI8+fSw++6yejIzWH6tgzvYtFIJP\nP3Xw9tsOPv7YQTCYDH0MGZLg+OPjnHhinCFDts8qOVvz0082/vIXN99+68DlsrjwwiiXXx5t0+N/\na4LhGOU1YSpqw9TWR2nvq53dMMhaH9LJznCR5XNhsymos6l4wmTq3HUkUvzd0vuLD9jnjitZcOq5\nzDnv6ib7xw4uIDsjvXO5WRYcdZSPGTPsTJlSz6hRO+ZzUEREREREREREwRwRERERkTSrqAnz07LK\nDgnnYFn0/OYTxj78VzyVZXz/wIu499+Pbrle3E771o/fzOwlFVTWpV6lYNx9NzLwg1eZf9G15N/0\n5y4/Hc1tt7mYNMnNH/4Q5a67Iq0+TsGc7U8kAp99Zuett5z8978O6uuTj80BA0xOOCHG8cfHGTHC\npIs/ZDuEZcE77zi4+WY3q1fbKCoyuffeMIcd1vZp3ZL9WdTUR6lYH8YJRuIdPOLGbIZBls/F0D7Z\n+Dw7SEmjdlpTXs+iVdUpH//L6y+gx/++5MPHJ1PXb3CjfZleF+OGFbZ3iFv10Ud2zj7bx69/HePf\n/1a1HBERERERERHZcSmYIyIiIiLSCSprw/y0tDLl6gabcjvsdPdCD8J4B/VvV1/lNSHmLq1M+XhX\nbRVH/vFobLEoi9//ioKRQ9o1nnSLROCww3wsWGDntdeCHHDA1oMJpVVBBvTNo74dASbpHNEofPll\nMozzwQcO6uqSqZu+fU2OPz7GCSfEGTVq5wjjNCcYhAcecDFpkotoFK67LsrEidE2fT/KqkMsWllN\nLNH51U08Lju7DynElUIIcUczY1EZtcFoSsd6Kko59qyDqBwyiimTXm6yf3jfXIryfO0d4hZZFhx6\nqI+5c2188UWQ4cNVLUdEREREREREdlxbCuZsvfa9iIiIiIi0Sl6Wh1ED87GnmAiwGwbdc7yMHpjP\n3iO7M3BQUbtDOQD5WR487bjIHc3KZfZ5V+MMBcm++XpMs0tn+3G7YdKkMHa7xeWXe6jbSta/Phxj\nwYpqvv9pHYFQrHMGKa1mmrB4scFrrzm4/HI3o0ZlcOaZPl55xUl2tsVFF0X573/rmTatnhtuiLLr\nrjtvKAfA54Nrrony3ntBeva0uOMONxde6CEYbN3x0Vhim4VyAMLRBHOXVpIwd+4QR304lnIoB6Dv\np5MxTJNlh5/QZJ/dMCjI9rRneK3y/jMWm98AACAASURBVPsO5syxc+KJcYVyRERERERERGSnpoo5\nIiIiIiIdrCYQYXZxBYlWBFgMICfDTfc8HwXZHhz29GTnl6+rY+m62tQ7ME0OuvJsCubNZPGjL5B9\n4rEdN7g0uesuF/fe6+ass6Lcd1/zU1qZpsWMRWUEwjEyMzyEglFGDcwjJ8PdyaMVSIZwli0z+PFH\nO7Nm2Zk1y8bs2XYCgY1Jm6Iik+OPj3PccTHGjTOx6eMmLSotNfjDH7xMm2Zn9OgETz8dolevLb8u\n/bSskrLqUCeNsGWF2V526Z/b5afOS5clq2tYWRZI7WDL4vDxx5GxZjmTX/ySWFZOo92FOV5G9s/r\ngFG2zDThoIN8LFxo4+uv6xk8uEu/9SQiIiIiIiIi0m6aykpEREREpJPV1keZvaSCeAtVH/weJ91z\nvXTP9eF2pX/KlmgswXfzSjDb8ed/9pIFHHbxydT36EPd19/j8Kd3GpT2ikbhyCN9zJ1r54UXghx6\naNMprRavqmFVefLid2aGh7pAGJthsEu/XApyvJ095J2KZSVDOMkAzsYQTm3txiCGYVgMGWIyZozJ\nmDEJdt89we67K4zTFpEIXHutm+efd1FYaPKf/4TYa6/mX5fKqkP8tCz1ae9IJPjljRMwnS5mjb+G\n+p59U+8L6FOYwaBe2e3qY3tkWhbf/bSOaDy1KjO5i+Zy6CWnsPKAI/nu+vua7B/VPy/tr29vv+3g\n/PO9nHpqjAce0BSBIiIiIiIiIrLj21Iwx9GJ4xARERER2Wlk+V2MGZzP7CUVG6aEcTlsdMv10T3X\nS6bP1anjcTntFGR7KG1HJYyaQcP5+fizGfrmM9Tccw/cfFMHjrDjuVzwwANhDjvMx5VXevjyy3py\nNikcUVkb3hDK2ZRpWfy0rJKhfXLoke/vxBHv+JYsMXjhBSc//mhn9mw7NTWNQziDBpkcdlgyhLPb\nbiajRiXIyNiGA94BuN3wj39EGDnS5IYb3Jx0ko+77w5z5pnxRu1i8QQ/r6pu17l6Tp1Cj2lfAVA0\n7SsWnD6eBaedh+lKrQLVyrIAHreDXgU71/OwsiaccigHoP9HbwI0O42Vw2YjLyu901glEnDPPS7s\ndosrr2y+WpmIiIiIiIiIyM5EFXNERERERNIoEIqxsjRAtxwvuVlubNtwWpbqQIQfF5e3qw9HfYAj\nzz0aV10N5V98h23w4A4aXfrcf7+LO+9085vfxHjooWTlhmgswfSFpY0ufjdUzNnUgKIs+hW1/EkH\nab1vv7VzzjneDRVxBg402W23BKNHJ0M4u+6aIFPf6rT64gs755/vpbra4IILotx0UwTH+o/rzF9W\nSUk7p7A68Opz6DZ7GrPPu4ohbzyDt7KMQM++zLj4ekr23D+lPg1g1IB88rPTGybpSuYUV1BRm1qV\nGVs0yrFnHIDpdPLe859h2Rt/HqtHno9hfXM7Ypgteu01Bxdd5N3iNIIiIiIiIiIiIjuaLVXMUQFw\nEREREZE0yvA6GdEvl/xszzYN5QDkZLjxe5zt6iPuz+DHC6/FHoviuvrK5HxEXdwll0QZOzbBa685\nef/95EXqhSurW1WRYum6Whavqkn3EHd477zj4NRTvQSD8Pe/h1m8uI7vvqvnkUfCXHRRjH33VSin\nMxx4YIIPP6xn2LAEjz7q4owzvFRVQUVNuN2hnOwl8+k2exrrdt+Xhaeex4f/fp9FJ56Db91qDvjL\nePa59TK8pWvb3K8FzFtWSV0w2q7xbS8isQSVKYZyAHp8/znuuhpWHHxck1AOQLfc9E5BGI/D3//u\nxum0uOKKneNnJiIiIiIiIiKyNQrmiIiIiIjsRHrkt/+i7KoDj6Jk7D7kfvs5xttvtX9QaeZwwKRJ\nYdxui6uvdjN3UX2bqlGsKg8wf1kl5nYQQuqKnnjCyfnne3A64YUXQpxzToysrG09qp3XwIEW778f\n5PDD43zxhYMjj/Tx6df17e53yFvPAfDzib8FkiG+WRP+zCcPvkb5LmPp/fVHHHnesQx99UmMeKxN\nfScsi7nFlYSj8a033s6VVAZpzyvNhmmsDju+yT63w05ORnqnUXztNQfFxTbOPDNG3756zRQRERER\nERERAQVzRERERER2KkV5PuztrdxjGMy49AYSTieZ118LgUDHDC6Nhg41ufbaCOXlNq7/S9vDSSXV\nIeYWV5Awt15lR5IsC26/3cV113koKLB4++0gv/pVYlsPS4DMTHj66RCXXRZh6VI7/3dxH2Z870+5\nP1d1JX2nvEtdz76s2/OARvtqBg3ns388x7QrbyfhcjHm8Xs4bMJJFMye1qZzROIJ5hZXEk/s2M/B\ndZXBlI91V5VTNO0rKoeMpHbA0Cb7C3O8GGms3BaLJavluFwWl1+uajkiIiIiIiIiIg0UzBERERER\n2Yk47Da65Xrb3U+g9wAWnnIu7tK1uO76aweMLP3Gj4+yy64hvv0ii2+/aPu8SZV1EWYtriAWV7hk\na2IxuPRSD//6l5uBA03eey/I6NE7dqBie2O3w4RLa5n459XE4wZ33dibt17OS2l2uoHvv4I9FmXx\n8WeDrZm3GWw2lh15Mh8++T5Ljj6VrBVLOOjqc9jz7mtxV5W3+jyBcIx5O3D1qppAhGAk9apAfT99\nF5uZYNnhJza7vyNe+7fkpZecrFhh45xzYvTqtWP+jEREREREREREUqFgjoiIiIjITqZnQeqVMTY1\n/4wLCBT1JvOJh7EvmN8hfabT8pJaLrhyDS63yb8ndae6yt7mPmqDUWb+XL5TTKmTqkAAzj7byyuv\nONl99wTvvhukf39dpO9q4gmTRSur+eVBddz6jxXk5sd54d/dmPS3HkQjra+qYsRjDJ78IjGfv8VA\nSINoVi4zLr+FKfe/SNXgEfT/5G2O/OPRDHrnBUi0LvBWWRfh55XVrR7f9qQ91XKwLAZ89Aamw8nK\ng45ustvrcpDlT980VpEI/OMfLjwei8suU7UcEREREREREZFNKZgjIiIiIrKTyfS5yPK1/wKt6fbw\n40XXYUvE8V59OSmV2ugklbVhVpUH6NErxlnnllFX6+Cx+4tSGnIwEmfmz+XUh2MdP9A2CEXirK2o\n36Zj2FxpqcGJJ/r47DMHhx4a5/XXgxQUdNzjonhNLbX1289F/4RpsnRtLdFY16uyVLymlvD6cQ0a\nGuZvDyxj6C5Bvv4sm5uu6ktFmaNV/fT+6iO8FaUsPeIk4v6MVh1TOWIMn0x6lRmXXA/A7g/cxiET\nTyN34ZxWHb+2MsiKkrpWtd1eJEyT0upQysfnLJ5H9rKfWbP3QUSzcpvsT3e1nOefd7J6tY3f/z5G\n9+5d93eBiIiIiIiIiMi2YL/55ptv3taD2JJgcPt501VEREREZHthGAblNeF29xPoPYCcJQvI++5L\nEv0HkBi5aweMrmNFYwlmF1eQMJMXiwcNDTN/jpdZ0zMo6hml38AIAG6Xg2grK+EkTIuyqhDZGW48\nrrZX3ukIy9fVsXRdLbX1MXIy3Djs2/ZzF8XFBied5GPhQjtnnhnl4YfDeDwd139JVZAla2pYWxmk\noiaCzWbgczswjNZXd+lMkViCOcWVlFaHKK0Oke134d5Gj5XNVdVFWLy6ptE2j9di/4NrqSx3MPN/\nmXz9WRZDhoco7L7l58Qe992At6KU/11zF7GsnNYPwmajatholh1+Ap6qcnpM/5oBH76Gt7yEqqEj\nifu2XNmrKhDB53bg9zpbf84urLQqRFk7gjnDX36C/AWzmX3uVQT6DGiyf2ifHFyO9Dz+QiE47zwv\npglPPBHG3zFF2UREREREREREtit+v7vFfaqYIyIiIiKyE+qW48XZQUGOHyf8mbjbi++mv2BUV3VI\nnx1p4cpqonFzw32bDSZctQ6PN8GTD3ansrx1lUE2F0uYzF5cTkUHBJzafO64uaFaTmVdmGkLSts3\nDU47/fijjWOP9bFsmY0rr4xw330RHKl9W5tlmhZL19RuuF8XirJgRRVTf1rH0rW1RKJdqyJNIBRj\n5qIyatd/0CQSS/Dj4nLWlG/7CkcJMzmFVXOcLosJV63j9xNKqKuxc+s1fXn/zdwWK0vlzZ9F/oLZ\nrN3rQOp79UtpPJG8Qv73p7v5/J6nqe07kIEfvMpRvz+SXZ6ZhCO45e/XghXV1AQiKZ23q2lP9Ssj\nFqXvlMmEc/JZt+cvm+zP8Djxe9IXYHr2WSfr1tk499wohYWqliMiIiIiIiIisjlVzBERERER2QkZ\nhkEsbm4IDrRHLCMLy26jxzefYgQCRA87ogNG2DFWlQVY3UwYwp9hkpmV4Luvsli13MUvD67F7W59\nxZwGFlBeE6Yo39epFWtWlQao3CSQYFoW5TVh6oKdXz1nyhQ7Z5zho67O4K67IlxySYyOLmKzqqye\nspqm1URMy6KmPsqa8noC4Rhuhw2PqwMTQSmorA0zp7iSaMJstN0CKmrDRKIJ8jI926zST/HqWirr\nWg6TGQYMGRFml9FBZnyfwfdfZ1G6zsmYcfVNwla7PnEvOcsWMePSG6jv0add4woW9aL4mFMJFhRR\nMG8mPf/3BQP++wZxr4/qgcPA1rTaiwVU1IQpyPbidGy/nzsKhuMUr63desMW9Jw6hQEfvcmSY06j\nZK8DmuzvXZhBdkbLn9hqj2AQzj3Xi2HA44+H8fnSchoRERERERERkS5PFXNERERERKSJngUdN9/I\nopN+R23fQXie+jeOH2d0WL/tEQjFKF7T8sXuQ46uYcweAX6cnsGUD7NTPo9pWawsDaR8fJvPZ1qs\nLm/+fBW1YabN77zqOS+95ODss5NT2Dz5ZJjf/z7W4eeIxU1WlNRtsY1pWZRVh5i5uJzpC0pZW1FP\nwmwcjCGU+jRBrbW6LMCc4grim597E2srg/y4uHybVPmpqY+2+NjZ3C6jQ/ztwWUMHhbiy0+yueGK\nfpSu21h1xVNRSp8vP6Sm32BKx+7TIeOz7A6WHnMq7z/1IXPPuQRHKMi4f93C4eOPp+c3n9Bc6Z5Y\nwmROcQWxeNeqmtQW7X2+9v/4bQCWH3ZCs/u75Xrb1f+WPPmkk7IyGxdcECU/X9VyRERERERERESa\no2COiIiIiMhOyut2kJfZMVUULKeLGZfcgGFZZFxzBSS27UVy07RYsLwKs6U5eEhWBrnwinX4/Ame\nebQbq5anXmllbXk9kVjnfM0lVcFGU3NtLm6aLFhRxZziirSNybLgn/90MXGil4wMePXVEEcf3bZq\nQ621oqSOWKLlr3dzgXCMhSur+e6nEpasqSEcjeN9aBIFg3vjmPZ9WsZoWRaLV9Xw8+oaWhNNqA1G\n+WFRKVV1nTcNk2laLFxR1arxNcgvjHPLvSs4+Khqli3xcO3F/Zn9Q7IkyqDJL2JLxPn5hN/S0SWS\nEl4/88++mPef+pDFx55OxpoV7HfLpRx05dnkzZvZpH0oGmducSX14RjxNjxWugLLsiipSj2Y466q\noMf/vqBq8AhqBg5rsj/b70pbFalAAB54wEVWlsWFF6rasYiIiIiIiIhISzSVlYiIiIjITsxuMyit\n7phKIsGi3mSsXkHe1C9I9OtPYtToDuk3FYtX11BR2/J0PQ18fpOcvARTv8hi8utZ/PCdn+oqB16f\nSU5uotV5g4awQ16WJ/VBt9L85VWtCqqEInFKKoO4nXYyvM6ttm+tRAKuu87Nv/7lplcvkzfeCDFm\nTHrCEKFInAUrqtsUJmlgWha19VHqpv3IsGsvxhaLYV+5kshpZ3ToGOMJk3nLqtocrkiYySo/NptB\ntt/VoWNqTvHa2lY9JzZnt8Me+wTIzY8xbWoGX3ySjcsW45y3L8FyuZh29Z1Yjo57fG0q4fWz7he/\nYtUBR+ItL6FoxrcM/PB1spf+TPXgEUSzcjBNWLbEzccfZPDW2wZffBNj6vQYc+ZFWbwsytqyGHX1\ncSziYFjYDLDbus5nlCprI6ypaDrdXmsN/OBVekz7kgWnjadyxJgm+/t2yyArTY+vhx5y8dFHTi67\nLMrBB2+/FYtERERERERERDrClqayMixrCx8h7QLKyrZcslxERERERFJnWRbfzSvpsMoq3tI1HH3O\n4SSGDaP686kdXkmjNSpqwsxZWtHq9pYFn3+UzdQvcpgz00MikRxzfmGMcb8IsMc+AUaOCeJ0bflf\nJ7th8ItduuNy2ts1/i0prw4xd1llm48ryPIwpE8O7naOLZGAiy/28MYbTkaMSPDSSyF69Ejfv5Tz\nl1VS0p7gWCLBwZefSf7C2dR374W/ZDU/P/sWmYf9qkPCGeH1lVoC4fZN4dUtx8uwvjlpC4zUBqPM\nXFSWUsBpU4vme/jHbb2oLHfyG17l2hM/p3jCpR0yxtbIn/sDYx6/h9D8cv5rHMmbPf/I13V7UFPb\nuuCJx5sgM8skMytBTo5Jdo5JXp5FXh4M7G+w794GQ4ea2NP3FG4knjD5aWklVYHUKycdOuEkspf9\nzOQXvyCak9don80w2Gdkd5yOjv+Camthjz0yAPjhhwCZmR1+ChERERERERGR7UphYctvkKSnnrGI\niIiIiGwXDMOgZ76fpetqO6S/ULeerPp/9u47PKoybQP4feZMn8lMJjOTMumVJPRelK6CivopuwoW\ndC1rw7arghV73V27a28rdlQUGyrSpBN6CyUkkN6TKZn+/RFBAimTmROw3L/r4sLlvO9z3pTJtTPz\n5H7GTELK4q+hWLoY3rHjJakbKo/Xj50l9d3aIwjA+EmNOHuqG5WVHmxcq8O6VXpsWKvHwgUmLFxg\ngkodQP8hDgwZYcegYXYYoo9tZPIHgyipsiMr0SjVh3OMA9X2sPbVNLWgcWcVshKNiIvRhlUjEABu\nuaW1KWfYMB/mznXB2HMfKpqdnsiacgDkfPYOzLs2o2T8mdhz9kWYcMuFMPzncaxIyEO8WYtEiw4a\nVXhPi5ucHmzbVwe3L/KmtqoGF5wtPvROjwn7PB0JBIMoDDN16Gg5eS147PkivHlZEz5p+StWrzkd\nt55diYTEyBqTuuJyyrBtkxabC07HFvtfUApVa0xVKWBDGcZmHkDGObGwpgqwN4tobvr1j71JRHPz\nL383iWhuFHGwRIl9u9tvgtLrgxg40I8hQ/wYNMiPQYMCsFqlbT4LBIMor3WiuKKp07F0XTHu3QHT\n3h0oHTXxmKYcAIjWK3ukKQcAXn5ZiYYGAXfd5WZTDhERERERERFRF5iYQ0RERET0J+f2+rF6eyUC\nEj01MO3cjFNuvAAtE05F8wfzJKkZqs17a1HX3P1xPQAQpVej2f7rXr8f2LVNg3Uro7BupR4VZa2p\nHIIQRE6eC4NHtKbpJKZ4DgcD9WRqTqPDgw27qyOuYzGqkZ3UvfScYBCYPVuFN99UYuBAPz75xNnj\nb8Zv3FODhgiSRPQHi3DaNefCq9Hhu9cWwGM0YfTsKxBfsAKL/vMuavsMBgCYDWokWnTdGkNW0+DC\njuJ6+CV+Oi2XyZCXaoLZKN1ItKLyJhRXSve82rJ5LU6+9XJcbfsYb5b9HzRaP26cXYbBI8Ifx3Q0\nvx/YW6jG5vU6bCnQoXCH5nCSlUodQO/+TvTr34Qz7Z/gzAX3Q9NUB1eMFXunTIM9MRXOWBsccTa0\nxFiBDlKIPG6hTfNOWakSe3aqsXuHBqUH2sYOp6YGMHhwa7PO4MF+9O4dgDLM6VDVDS4UlTfB6faF\nV+AI/f/7KHI+ewc/3/c8ykZNPOZ6booJ8WE24nWmoQEYPFgPpTKItWsd0OslvwURERERERER0e9O\nZ4k5bMwhIiIiIiJs21+H6gjTSY407h8Xw7p1PeqWrYG/V65kdTtTWuPA7oMNYe8/ujHnSMEgUHZA\nifWr9Fi/So+d2zUIBlobBeISPK1NOiPsyO3rRHqCHpk9kJqztagWNY3hNR0dTSHKMDDbAq1a0eXa\nYBB44AEVXnhBifx8Pz77zAmTSZJjdKi748iOEQhg3K0zYN26Hivv+g8Ojj0dAGDeVoAJt1yEyoEj\nsfTxN9ps0arksFl0iI/RQi52PFKqpLIZ+8qlSZjqSFp8FNLiDRHXsbu8KCislqzpDgBGPnAjkpZ/\nj0X/eRefVYzHy0/Hw+uR4S8X1+AvF9d01AfTIY9HQFWFAhWlSjTWaLBpoxJbNmjhsLc2jgmyIDKz\nW9BvkAP9BjuQk+eC/IhvW7nDjl4fv46ceW9B7m77+PArFHBZE+CItcEZZzvcsOOMS4Qj1gaXNQ5B\n+bGPAXuzDPt3a1FZYkThDg02bBDR0PDrWD6VKoh+/VqbdQYP9mP4cD/i4zv/HDc6PNhX2ohGp6d7\nn6AOCD4vpkwfBwBY8P7iYz4OURAwsk98p9/L4Xr0USWeekqFOXNacP31PZuWRERERERERET0e8HG\nHCIiIiIi6lR9sxub9tZIVi9x+UKMeuAm2C+6FK6nnpOsbkc8Xj/W7KiCLxD+WJjOGnOO1tQoto68\nWqnHpvU6uJytTQRanR8Dhzow/a8iTjs1gOjosI/ThrPFh7U7KyUZR3SI1ahB7/Rjx98c7cknlXjy\nSRWysvyYP98l+VifowWDQazbVQ1HS/hv+GfOn4tBLzyEgyefipX3PIPDkUbAr6k5T81Fbe9Bx+wV\nZQLiY1rHXB3ZuBQIBrH7QAPK65xhn6s7zAY18lJNYTdWBIJBbCisRrNLusYJbUUpzrjsNDRk9MIP\nL8wDBAFFe1T41/2JqK5UYtBwO26YVQadvu3j0N0ioLJcgYoy5S9/FKgsU6K8VInaajmCQaHN+th4\nT2sjziAn+gxwQG/o+nGtqq9BzK4t0FaWQVdZBm1VWet/V5VBXd/+z7agTAZXTCyccTbU5vbDzul/\nh8fQtutMrRSRFm+Ao16HdetErF/f+mf7dtnhFB9BCGLcOD8uvtiLSZN8bdJ0nC0+7CtvlKyp7hDb\nih9x0n0zUXjuJdh07Z3HXLdGa9A7revHd3fV1AgYOlQHrbY1LUcrfSAPEREREREREdHvEhtziIiI\niIioS2t2VEoyXgUA4Pfj9L9Nhqa+GvUbdiBosUhTtwM7iutRWR9Zw0R3GnOO5PUI2L5Zg/WrW0de\n1VS1NnOIYhAjR/px2mk+nHaaDxkZ4T/1KjzQgLJa6UYFZSz4EOq6aqgfvA8GnarDdS+8oMD996uR\nkhLAl186kZDQ808fy2sd2HUg/OQjbflBTLr6HPgVCnz36pdwx1jbXD+UmlMxaBSWPfZ6p7ViolSw\nWXQw6pTYtr8+otFa4VDJRSgV4TXm+ANB6R7Pv+j3ypPo9ckbWHProyg+7f8O/3tzkwzPPJKIzQU6\nJCR6MO60BlRWKFFZ1pqEU1vTfjJTjMWLeJsX2VlA33wR6ekB9O7jQ5WzAi1ev2TnlrlboK0q/6Vh\np/Rww86hJh5NbSWEQABuQzQ2X/FP7J903jEjsKI0CmTYjDBFtT5eHA5g82YR69aJ+OYbOdata23O\ns1gCOP98Hy64oAWivhEVdU5JE4sAAMEgJtw0Deadm7Hwpc/RmNHrmCV90mJgidZIeluvF5g+XYOl\nS+V4+OEWXHUV03KIiIiIiIiIiA5hYw4REREREXXpYLUde0obJauX9dn/MPC/j6Dhn3fAO+sOyeoe\nrcHuxsY9kaf9hNOYo7A3YfDTc1Ax5GTsnzwVwSBQUqRCwSo9dmwyYeMG+eG1OTmtTTqTJvkxZIgf\nohjaPTxeP1Ztr5Tszf3YDSsxdtblAIBNj70M2+XT2133xhsKzJ6ths0WwPz5TqSm9vxTR38ggDXb\nq+D2hdmUEQxizKzLEbdxFVbf/jhKTjm73WVjZl2OuA0rseip91Dbe2CXZWWCENbn37B/N4Y8dQ8a\n07JRNmICqgaOgF8tbbPE8SK6nJhy0XgE5Ap89e4iBI6MhQEQ8APvv2XF/A/Nh/9NEIIwW32It3l+\n+eNt/TvRg7gEL7QaIC/VdEwDSUWdEztL6o/LxwUAgteD7Plzkf+/56FwOVGTPwAFN8xBY+axY/hi\notTIsBmg17RtNtq5U4a5cxX46GM56utam3ry+jgx8YwGDD+5GSq1dI8f288/4KT7b8CB0ZOw6p6n\nj7kul8kwqk88ZDKhnd3hmz1bhTfeUGLSJB/eessV8s8wIiIiIiIiIqI/AzbmEBERERFRl3z+AFZu\nrYBfoqcIcqcDZ140HlCp0LhxO6BWS1L3SIFgEOsjHHt0SHcbc2TuFoy540pYt66HR2/AgvcWt2m6\nSLbqoZdH4/vv5Vi4UMSSJXK4XK1vlJvNAUyc6MekST5MmOCDTtfxfYrKm1BcKc3zIrmjGZP+fg7U\ntVWAIMBpjUf5jysQbW07c+uDD+S48UYNLJYAvvjCiays4/O0sbiiGUUVTWHvT//6Iwx5eg7Kho/F\nzw/8t80IqyOZt67HhH9cjIrBJ2HZo6+Ffb/OCF4PTrnhAkTv23n433wqNSoHjULZiPEoHzEOblPP\nJklJKWPBBxj87P3YdvF12D7jhg7X7d6hRkO9HAmJHsQmeKFUtv+9o5KL6JMRgyit8phrUowzC4em\nugL9X34cyUu/RVAmw+5zLsK2GTfCp9O3WScAiDNpkZ5ggEopHj5zRZ0Tu4vtWL5Ugx+/icaWDa0P\nbK3Oj9ETmzDx9AakZUaYuuT3Y9LV50B/cD++e/VL2JPTj1mSEKNFrxRTO5vD9+abCsyapUZenh9f\nfeWEXt/1HiIiIiIiIiKiP5POGnPE++67777jd5Tuczo9J/oIRERERER/CjKZgBaPD3aXNG+GBxRK\nKJsbELf+ZzhtycCAAZLUPdKBKjuqGlyS1FIp5fB4Qhv9I/h9GPXgzYgvWIEWYwxUzQ2w21LQkJV3\neI3D5UV2qhYDBwRx7rk+XH21B0OG+KHTBVFUJMOaNXJ88YUC772ngMkURH5+4OjpOfAHAthRXC9Z\nWs7gZ+6Ddcs6bL/4ejRk5cO2ZglqPYBm4vjDaz7/XI6ZM9WIjgY+/dSFXr2OT1OOx+vH9uI6hPuh\naqrKcdJ9MxFQqLD84Vfg03X8UN//sgAAIABJREFURNgVa4Nl63rEF6xExeCT4LImhHnqjvV55zkk\nL/sORZPOQ8EN98BtjIG6oRbWrQVIXPUTcua9hfh1y6BqqIMnygC3MabDRqITLhjEsCfvgMJhx5pZ\nT8Cn7biTzGz1ITHZA0N0x6lQerUCA7Is0KrbH3ElCAJUcplkj+1Q+XR6HBwzGbV5A2HevgG2tcuQ\n9v3ncJlj0ZSW3ebrY2/xorzGAX8gCJ8/gO3F9SivcyIoBJCc5sHYU5sw5pRGaDQBHChWYetGHb7/\nyoT1q3QIBgUkJHqg6KBpqTOpP8xHxjefoGjyVBRPOq/dNRkJBmhU8navhWPpUhHXXquG2RzEp5+6\nYLV2vYeIiIiIiIiI6M9Gp1N1eI2JOUREREREdFiz04P1hdWS1dNUleOMGafCmZ4F14o1kjYetHh8\nWLujSrKEn5ATc4JBDPn3XUhf+BkqBo1CwQ334vQrzkB9Vj5+fP7jNkuTrXpkJhqPKREIAJs2yfDl\nl3K88YYSTqeAvn39ePhhN0aM+HWMU2m1HbslGi92aPxNXXZvLHrmfYhuNyZfcToUDjv2ffczTPnZ\n+PZbEZdfroFGA8yb58SAAQFJ7h2KwgMNKKt1hLc5GMTJd1+NhLXLsPaWB7H/9L90ucWyZR3G//MS\nVAw5GcseeTW8+3YgZsdGTLjlIjitCVj48vw2jSy60mLYVv0E26qfYNmyHrJA69fbHp+EspHjUTZi\nAmr6DkZQ3n7TyokQt+5njLnzShRPOAtrZj8RUS2zQY28VBPkoqzLtQWF1Wg6Qb+sI/O40euj15H3\nwSsQPW5UDhiBDTPvQXNKRrdr+f3AhjV6LPrWiILVegQCAlSqAEaObcKpZzYgOy+0pC6Zx43Jl58O\ndX0tvnnrO7is8cesUclFjOgdB0Gin7X79gmYPFkHpxOYN8+F4cPDHDNHRERERERERPQHx8QcIiIi\nIiIKiUohorbRDY9PmjdffbooGEr2wrphFRr6DYGYlSlJXQDYWVIPR0toCTehCDUxp+/r/0b2F++h\nrldfLH/oZbjNVkTv3o64TatRPnwcWsyxh9c6XF7YLFqIR0XhCAKQkBDE2LF+nH++FzU1AhYvluP9\n9xXYtUuGAQP8MBiC2F5cD58/8sYjVX0tRt91NYSAH8sefQ1ukwUBpRJuYwySl34Hd/FBLLWcj7/9\nTQuFAvjgAxeGDDl+TTnOFh8KDzYg3I809Yf5yP34DVQOHIlN18wOqQHMGWeDZct6xBesQMWQk9tt\ncgiH2OLCmDuvgrK5ET/f9xzsSW1HDXkN0ajLH4Di087FnrMvRGN6LwTkckQXFSJ2yzqk/TAfWZ+/\ni+iiXZD5vHDEJyGoOLFNOgNffBhRpcVY94+H0GKJC7tOklWP3JToYx4PHdGo5Kioc4Z9v0gERTlq\n+g1FyfgzoS8rRvz6n5Hx9ccQPW7U5vXvVuOUTAbYkj04aXwzJpzeCL3Bj4pSJbZt0mHRt9FobhLR\ne4Czw4ShQ7Lmz0XKkm+x+7xLUTpmUrtrEmJ0MBulGRvY0ACcd54O5eUyPPVUCyZPZlMOERERERER\nEVFHOkvMYWMOERERERG1IQhAbVNoCQ6hcFoTkPHNJ3CXVwLTL5SkZm1jC/ZXSJuuGUpjTs7Hb6DP\n/55HU1I6ljz+BrxRrWk4Hr0BqYu+hOD3o2zUxMPrDzWaxER1/EZ5VBRw5pk+jB/vw86dIhYvluPt\ntxWobfAjLrkREQenBIMY/vjtiNmzHZuvuhXlIyccvtSYnoP49T9j11oBU7+4AhBkePddF0466fi+\nAV94oAGOlvBGqKlrq3DyvdchKBOx7JFX4Y0yhLzXEZeI9IWfQVNThZKJZ4V1/6P1f/lxJKxdhsKp\nl6HozAs6XRtQqdGY0QulYyZh19TLUN1vKLw6A3RVZbBuLUDS8oXIXPABVI31sNtSDn+/HU/6g0UY\n+OIjqMkfgB0XXxdWDZkgICspGmnxUd1KclEr5WhyeODynLiGEG+UESXjp6AhMxfWrethW70YKYu+\nhD0hBfbk9K4LHEWjDSCvrwuTz6lHbh8n9u1Wo2C1HutX6dG7nxMGY/sfq9xhx6iHbkZQlGPlPU/B\nr9K0uy4r0QiVsosOnxD4fMCMGRps3Cji+us9mDlTmhGHRERERERERER/VGzMISIiIiKikGnVcpTX\nOBGQaERUiyUOsRtWwVqwEpXjz4DKFlkyiT8QwJaiWkmSZI7UVWNO6sLPMfj5B+C0xGHJk2+1SQ5x\nJCQj9ccvYd6xCXvPmo6A6tdGHIez/dSco9lsQVx4oRcZGQGsXStiyWIVfloYjSiDHynp7rCngKX+\nMB95H76Kqn5DUXDjnLZpMoKAVeJIXL7idnj9Il5/w4WJpxzfaceNDg/2loU5risYxLDHZ8O0byc2\nXjMbVYNP6tZ2Z1wirJvXIX7DClQMGR1xak5swQoMeuEhNKVkYtXdTyEoykPfLIpwJCSjYtgY7D53\nBkpPPhXuKCOi9+1CfMEKZM1/F6bd2+A2RMORkCzpWLjO5P/vRZh3bcamq25DU1p2t/fLZTL0To9B\nnEkb1v21ajnKa09Mas5hgoDmlAzsO+OvQDCI+HU/I3XRlzDt3o7avAHw6kNvBjuiJOISvBh3WiOa\nG0VsWBOFxd8ZER3jQ1rmsY/33A9eQcLapdh+0bWoHDK63Zoapbzd0XnhuOsuFT7/XIHTTvPhqada\nEGLIERERERERERHRnxYbc4iIiIiIKGQyQYDXH0CTQ7r/L+7RRSFlyTdobnJCfvZZ3UrNOFpxRbOk\niT6HdNaYk7DqJwx/9DZ49QYseeJN2JPS2i4QBMi8HtjWLkVLjAV1eQMOXwolNeeIMsjPD+Ds8+yo\nbXZi60YtVi0zoGC1DkmpHlhiuze6S1NVhpPvvQ4BhQLLHnntmMSV/XtVuOfR/nB5lPgA03BSfgnk\nI4Z36x6R2rG/Dm5veIkoyYu/Rv77L6Oq31BsuP7usJpVHPE2pC/8HJrayohScxT2Joy54yqI7hYs\ne+hluGITwq4FQYDbZEH1wBHYc87FaE7OgKamEnEbVyPtxy+QvPhrAEBzSiYCCmX49+mC3NGMYU/M\ngjs6BgU33QfIupfEolaI6J9tgbGTFyW6olKIcLb4JB1bF66gQoGqQSNxcPRpMJTs/WW81UcIyuWo\nzR8Y1vefXA4MHuFAUqobBWv0WLnUgLKDSvQb5IBC2frTQ9lQhxGP/ANevQGr73gSwQ6+5okWHUxR\n4X+uD3nrLQWeeEKFvDw/3n/fBbU0k7GIiIiIiIiIiP7Q2JhDRERERETdEqVRoqJWutSc5sQ0pC76\nEjFb1uPgOdOgjQkv1cHZ4sPOknr0RKZLR4055q3rW0cliSKWPvIqGrJ7t7u/OSkd2Z//D/qyEuw9\n+8I2b9KHmppzSHFVIzJymzDmlEY01ovYtF6Pn76LRmmJEpm9XNDpA10XCQQw6sGbYDiwDwUz70X1\nwBFtLh8sUeKB21PgsIu46fo9mLl9FvRrVsA17WIIel1I54xUdYMLB6rtYe1VNtRh9L3XAgCWPfwK\nvEZTWHVaU3PWIr5gZUSpOYOfngPr1vXYfvF1ODDhzLBqtCcoimjM6IWi0/+K8mFjIfO6YdlWgMRV\ni5H1xVyoa6thtyXDYwjv4+9M5oIPkLjqJ+y84CrU9B/Wrb0GrRL9syzQqLqRGtQBnVqB8lpnjzzu\nw+GJjkHxqf+H5qQ0xG5ei8QVP8JtNKE+t1/YNZNTPRg1rhl7dqmxca0eK5ZEITvXBbPVhz5vPo3Y\nLeuw+Yp/orbP4A5r5CRHQymPbIzVsmUirrlGDbM5iE8/dcFqjagcEREREREREdGfBhtziIiIiIio\nW0SZAEEQUN/slqbgLw0pttWLURdUQDVxfFipOTuK6+B090xyRnuNOYaiQoy940qIHg9WzHkO1QNG\ndLAb8Ks1iDpYhLhNq1HddwicCUmHrwUBCBBCSrNwtHixp7R1tJNWF8Dw0Xb0H2xHSZEKm9br8f1X\n0fB6BGT1ckGu6LhO1vy5yPryfZQNH4dNl98Gl0uEvVmGhno5DuxX4Yk5SWisV+CqGysx7mwX/Co1\nklb8AGdVLYQpU7o8Z6QCwSC276+D1x9Ck1E7hvz7Lph3bcHmK/+JiuHjIjqLMy4Rad+Hn5pjW/49\n+r35NOqye2PtbY92O1kmVC2WOJSddCr2nfFXeHVRiC4qRNyGlciePxfmHZvg0Rtgt6VIM+bK78fw\nJ2ZB9LixevaT8Ks1IW+1RmvQN90MuVya+UcKuQxurx/NLq8k9SQhCGhKz8GBcWcgZdECJK74EVUD\nR0aUlKTTBzDmlEYEAkDBaj0WL4yG1t2IGZ9fhxZrPNbe+gggtv+9pVcrkBbf/ZFaR9q3T8D552vh\n8wHvvdeC3r3De2wSEREREREREf0ZddaYIwSDEv0KbA+prm4+0UcgIiIiIvpTCgSCWLOjEi1hjhk6\nmtzpwJkXjUdAocSuRWthS7J0a39VvRPbi+slOUt7ovRqNNt/HZGlrSjFhJunQ1NXjdW3P46SU87u\nsoZ52wZMuOVCHBg9CavuebrNNVEmYER+HBRdJFrsLK5HRb3zmH8PBIDliwyY+7oV9bUKmMxejBjd\nDK9HQEuLDC0uGdwtMrS0yOBp8kEorYVd0KNJYYLH0/49Z1xdiSlTWz+ngs+LU689D4aSvaj+ehGE\nwR0nc0ihtNqO3b80IHWXbfn3OOmBG1GTPwA//fvdDpsVumPsrTMQu3ktfnj2w24ln6jqa3Ha38+G\nwmnH9//9FM0pmRGfJVSCz4vEn39A1vy5sG5dDwCw21Kw56zp2D/pPHj14TdqJKxchJPnXI99k6di\n/T8eCn1fjBa9UqRP73F7/VizvRL+HngJw6hVQiYTUG8PrxHRumkNxsy6HO7oGHz/4jy4YyKPmdm6\nQYvnHk9AfZ0Cp2Ihbr5uNxz/N7HD9RkJBqTERYV9v8ZG4PTTtdizR8Szz7owbdqJHx1GRERERERE\nRPR7YrV2/NoME3OIiIiIiKhdgiBAoZChprGl68UhCCiUUDY3IL5gBcoN8dCNHAJZiMkePn8AW/fV\nwR/oud8rODIxR1Vfi3G3XwpdVRk2XjMbRWdeEFINlzUeiSt+hHXLOhSd/hf4tL+OhAoGu07NcXv9\nKDzQ0O7IHkEAUjPcOPXMBohyYMsGHXZt02Lfbg1KitQoO6hCVYUSjQ0igs1uKIIeqMwqmGwy2JI8\nSE7zID2rBdl5LuT2cWLK1DpMPP2IxhiZiKbkDKR//zkCW7bCd8ml0iSvtMPnD2BbUV1Yo9IUTQ0Y\nc/c1EPw+LH/4FXhMZknO9GtqThVKJoSYmhMMYvjjtyNmz3ZsvupWlI+c0OayWimid5oZcSYNdGoF\nlHIZAAF+f1CasUwyEU1p2dg/6TyUjpoIwe+DZdsG2NYsQdbnc2Hdug7GokKo62sRFAR4ogwhp/kM\nev4B6CsOYu2tj8JtCq2JzqRXIS8tJqw0rK7IRRl8gQCaHNK+RhClUaBflgUGnRLltY6wajjjE1sT\np37+HjG7tqB44lkRpybFJnhxZq+NcC4sxHeYjK92D0JKuhvxtvZTg3qlREMuhpdQ5PMBl12mQUGB\nHNdd58HMmb+hZCIiIiIiIiIiot8JJuYQEREREVHY1u+qkmyEjKaqHGfMOBVNqZnY8/kipCaEluix\np7QRB6vtkpyhI4cSc+ROB8bedilidm/Djml/x9bLb+lWnYwFH2Lws/dh64yZ2HHx9W2udZWas7es\nEQeqQvs4G+tFVFcpoNYEoFYHDv/d5+OX0PetZ1A8fgrW3PFkt84OACMevBnJy75DzdP/RfDCi7q9\nPxRF5U0orgzvud7QJ2Yj7Yf52Hz5P7Br2lWSnutwas5zH6G+V98u16d+/zmGPXkHqvoNxZIn3jo8\nsg0AYqJUyEuNgaKdcU6BQBCOFi8cLT7YXV7YXV44XN6wx3odSdlUj/Rv5yH9m08QVVrc5ppfoUBT\nahYa03uhIaMXGjJy0ZjRCx5j24QbQ1EhJl19Dqr6D8OSJ98O6b56tQIDsi1hN4eEwusLYPX2SvgC\n0oxY0qsV6J9lOfw12lVSj/K6Y9OqQhIMYsRDtyB52XcoPO9SbLpmdsTnG3XfTNhW/IibJi/Hiz+M\ngt8n4Ky/1GL636rbjLEzapUYmBN+Ss+dd6rw2mtKnHaaD2+/7ZIigIqIiIiIiIiI6E+ns8QcNuYQ\nEREREVGn6pvd2LS3RrJ6wx+9FSk/fYXlj7+JjEvObbdx4Uh2lxfrd1VJkzDSiSi9Go66Jpx8z9WI\n27CqdYTPLQ92OzVGdDlw1vSx8Gr1+Pp/PyAoyttcT4mNQobt2IYknz+AVdsiazqI3rMdE2+4AO7o\nGHz3yhfwRhm7XUNbWYpJV06BXx+F5rUbEdSHPx6nPZGMJIpfvRij77kWddm9sejZD4753EbKunE1\nxt1+GcqGj8XPD77U6VpNVRkm/f0cIBjAwpe/gDM+8fC1lNgopCdEdTs5xu3xtzbptHgPN+w43eGP\nFFI0N8JYtAvR+wph3LcT0ft2wbh/N0RP25FNLnMsGjJ6ofGXZh3bykVIWfw1fp7zHMpOOqXL+6jk\nIgbmWKBWSvv1aE9xRTOKKpoirqNVyTEgywKl4tculEjHZcmdDky88QIYSvZi5Z3/xsFxZ4R9vpgd\nGzHxpumoyR+In56ai3171HjmkUSUlyqRmePCTXeUIT6xtWEyO9GIRKs+rPu8/bYCt92mRm6uH199\n5USUtA93IiIiIiIiIqI/DY6yIiIiIiKisGlUcjQ5vHB5wm8QOJIzNgEZ33wMRWMdSiachRiDutP1\n24rq0OL1S3LvzqhEAQMfuAW21UtQOmoi1t7+WFjjaIIKJTTVFYjbuAr1mXloTslsc93u8sJm1kKU\ntW1IKq1xoLYp/LFhMo8bo++6Gpr6Gqy852k0peeEVcerN0AI+GFbtRgetxeB8RPDPlN79hxsDCuB\nSe5oxui7robo8WDZwy/DHRN+QkhHnHGJiN20GvEFK1E+bCxaLHHtLwwEMOrBm2A4sA8FN9yL6oEj\nALQmIuWnxiDJqg9rnJNclEGrlsOoV8EarUGiVQ9TlBqBQBAut7/bzWkBlRrOuETU5fZD+cgJKDrj\nfOy44CocGH8mqvsMhj0xDV6dHur6OsTs2Q7LtgIkLV8I4/7dsMcnYcPMe9qkALVHFAT0yzJDp1Z0\nuk4qUVoFKmtdEY210yjlGJBtgUrR9vEtF2UIBINoDHNcVkChRNWAEUj9/nMkrvwJZSMnwB0dxqi1\nYBDDHp8FXWUZVs9+Es64RJjMfow7rRF1NXJsXKvH4u+NMEb7YTQG0D/HAHkXDY7tWbZMxDXXqGEy\nBfHppy7Exnb/qERERERERERE1IqjrIiIiIiIKCJSp9aM+8fFsG5dj4WvLUD+5JOgUrbfAFNe68Cu\nAw0S3bUTwSCGv/QwUj6bi6p+Q7HskVcRUHb8RKorh0YBVQwahWWPvX7M9aNTcwLBIFZvr4Q7ggak\nvq8+idyP38CeKdOw4cY5YdcBAJm7BZOvnAJNbRUalq6CPys7onpA6xiiXQfqUdMYXvPRwOcfRNYX\n72HbJTOx/ZLru94QJuuGVRg3628oGz4OPz/433bXZH3+Lga++HDrmgdeBAQBWpUcfdJjoO2hBhW3\n14+yGgfKax3w+KQZ5XQkZVM9jPsKYSzaBUPxXhwcOxlVA0d2ukcA0CfdDLOx8+Y6qZXWOLD7YHg/\nF9RKEQOyOk738flbx2VFMlYscdlCjHrwJjQnpuKH5z+GT9e9GJq4dcsx5s6rUD5sDJY/9PIx15f+\nYMBrz8WhxdX6c1MUg7DZgkhKCiApKYjk5Na/ExMDSE4OIDExCI2mbY19+wRMnqyDwwHMm+fCiBE9\n3/xIRERERERERPRH1lliTs/nTBMRERER0e+eXqNAfIwW5XVOSeoVnncprFvXI2ve29g/oC96pZiO\nWeP1BbCvLPKRNaHI/98LSPlsLhoycvHz/S9E1JQDAE3pOajuMxjxBSugL90Pe2Jam+ulNXYkx+qg\nkLe+sV5d74qoKce8dT16ffIm7LYUbL7qtkiODqA1aWXj1bNw0gM3QnXH7XB+9Gm3R3odqdHuxo7i\n+rCTj6KK9yBjwYdoTkzFjmlXhX2OUFQPGI7qPoNhW70YpsKtqM/p0+a6/mAR+r7+b7gN0Vh3ywOA\nIMBiVCM3xQS52P3UklCpFCLSEwxIjY9CdYMLpdUONEmYMOsxmFo/9gHDQ96TlWg87k05AJBg1uJg\nlb3bKV4qhYj+mZ2P3JKLMqTFR2F3aWPY5ysdfRp2nn8Fcj96HcOeuAMr5jzbZfLQYYEA+r7xFABg\ny99uaXfJmFOakJPvwqJvjWhp0qOmSoGDBwWsWiUiGGz/cWqxBJCc3Nqsk5QUxPffy9HQIOCZZ9iU\nQ0RERERERETU03ruVUMiIiIiIvpDSYs3QIygOeNIZSMnwJ6QjNQf5qO+qBTOlmPfYN9X1hhRakWo\nogu3ofe7L8BpS8HSR17pdrpFR/aeNR0AkPHVR8dc8weCOFjtOPy/D1TZw76P6HJg2JN3AIKANbc9\nCr9GG3atI5WddAoqB46EbsmPUC78NqwawWAQ+yuasHFPTUTjyPq//ARkAT82/X0Wggpl2HVCIgiH\nE3ny332x7SW/D8OemA25uwUFN86BJ8aK9HgD+qSbe7Qp50gyQUCcSYtBOVYMyrEizqSFTKLHZXck\nWfVItOqP+32B1s9BWkL3HqcqeWtTjkbV9e8nJVh00IawrjNb/3YzqvoPR+LKH5H74Wsh70ta9h1M\ne7ajePwUNGbmdrgu3ubFxVfU4o3X3fj6ayc2b3bgwAE71qyx49NPnXj2WRduu82N6dO9GD3ah6go\nYNs2GRYsUOCll5TYu1eGa6/1YPp0aUYUEhERERERERFRx9iYQ0REREREIVEpRSTFSvRGvChi97kz\nIHo9SP/yfRRVtE3GaXJ4JEvn6UrOvLcAANtuexDuGKtkdUtPOhUt0Wakf/cpZO5jxzcdrLbD6wug\nrqkF9hZv2Pfp/8qT0JcfwK6/Xo7a3oMiOXJbgoAN19+FgCiH5s7bgZbujaBye/zYtKcW+yuaIxqB\nFr9mKRLWLUPlwBEoHzEugkqhqxowojU1Z9VPiC7cdvjfe334Gsw7N6N4/BRUjj8DfTPMSI2XppEr\nHAatEnmpJozIj0N6vAEqRfsj4aRmMaqRecQothMhzqSFPsSxYQpRhn5ZZmjVoTXbyAQB6QmRfXxB\nUY5Vd/4bTks8+rz9DGLX/9zlHsHnRZ+3nkFAlGPbpTd0ud5sVLdpCFMqgbS0IE4+2Y9p03y47TYP\nnnmmBfPmubB6tQMlJXZs2WLH11878OWXTsyZ447oYyQiIiIiIiIiotCwMYeIiIiIiEKWHKuHQqJk\nkKJJ58Kji0LWF++htqoBzb+M5QkGg9h9sEGSe3RFU12B5KXfojEtG7XDRktaO6BUomjyVCibG5G8\n5NjEmdbUHHtEaTnxa5Yi86sP0ZCeg22XdP1Gfnc1p2RizzkXQXmgGNqXng95X02DC+t2VaHBEdkb\n/4LPi/6vPIGgTIZNV8+OaJxW924sYPvF1wEA8ue2puYY9+5A73dfhMsci8Jb78egHCtiDMd/jFN7\nlAoRqfFRGJ4fh/y0GBh1PZcqdKgZSDgBKT1HC6V5RiHK0D/LAl2ITTyHWKM1MGoj+zy6TWasvOdp\nBEQRIx69FdrK0k7Xp333GaJKi7HvjL/CYUvpdK1aISKlm42SMhkQFxfEkCEBDB/uD3m6FhERERER\nERERRYYvwxARERERUcjkogxpEiWE+DU67Dvjr1A31CLlp69QVN6amlNa40CzK/wEme7I+mIuZH4f\nCqde1iNNH/vOOB9BQUDmgvfbvX6wyo56e3jNK4qmBgz5z90IyBVYc/vjCCh7phlj2yXXoyXaDM1T\nT0JW1nljQSDQ2lS1dX+dJGPIMr7+CIaSvSiaNBWNGb0irtcdVQNHoqb3ICSuXISY7Rsw/PFZkPm8\n2HPvk+g7ODOkkUjHm0wQEButwcBsKwbnWGGN1kDK72q1UkSf9BiIv5GODrNR3WkTklwmQ99MM/Sa\n7jXlHJKRaAz3aIfV5fXHxmvvgqqpASMfvBkyT/uPd7HFhd7vvgCfSo0dF17Tac2EGC2G5MYiKsLG\nISIiIiIiIiIiOj5+G6+mERERERHR70aCRQetRE0Je865GAGZiOxP30ZdUwsq653YX94sSe2uiC4H\nMr76CC3RZpSMP7NH7uGMT0T5sDEw79yM6N3bjrnuD4Y55CkQwJCn50BTV41tl8xEY2ZuhCftmE8X\nhS1X/AMylwva++/pcJ2zxYuCwmqU1jgkua+iuRG933keXq0OWy+7UZKa3SII2HbJ9QCAMXdeBeP+\n3ai+YAbip5/7m2lM6UyUVoneaTEYmhuLOJM24gYdhShDvwwzlMdpXFaoMjpIzREFAX0zYmCIoHnF\nqFPCYow8FWnfmeejaNJ5iCncioEvPNTumqwv5kJTW4Xd585Aizm23TUqhYh+GWb0SjG1GWFFRERE\nRERERES/bXwlh4iIiIiIukUmCCGNkAmFKzYBB8dORnRRIWI3rMSO4nr4ApEnrYQibeHnUNqbsOfs\n6QgoVT12n71nTQcAZC74QJqCwSAGP3MfkpYvRHWfwdh1/uXS1O3E/lP/D7W9+kHz2SdQrPz5mOvl\ntQ6s31UNe4t0SUd5770EVVMDdky/Gm6TRbK63VE1cCRq8gdC4XTAm5IGPPrYCTlHJLRqBfJSTRiW\nF4eEGC1kYSRDyQQB+Wkx0HZzHNTxYNSrYD5qpJgoCOiTYYZRH/njOiPBGNbnrA1BQMHMe1CflY+M\nbz5B+jcft7msaG5E7gevwhNlxK7zr2i3REKMFkNzY38z49OIiIiIiIiIiCh0bMwhIiIiIqJus0Zr\nYJRojErh1MsAADnz3pIZ8fQoAAAgAElEQVSkXkj8fuR89g78CiX2Tpneo7eqGHwyHHGJSFn0FeSO\nCNOAgkEMePERZHzzMeoz8/Dz/S8gKB6HkUoyGTZcfxcAQHfHrYDPBwDw+QPYvr8Ouw40hJ/+0w59\n6X5kz58LR1widp87Q7K63SYIKP7H3fDm5sH+0muAXn/izhIhjUqOXikmDMuLRaJF161mk17J0TBF\n9VzzWqTSEwyHE4FkgoDe6TGSnVerliM+RhtxnYBKjRX3Pgt3lBEDn38Qpl1bDl/r9fEbUNqbsPOC\nK+HVt216VClE9E1nSg4RERERERER0e8ZX9UhIiIiIqKwZNikSc2pz+mD6j6DkbB2GaKK90hSsyu2\nVT9BX1aC4lPOgSc6JuIxP50SRew98wLI3S6kfT8//DrBIPq+9i9kz38XjalZWPrY6/BGGaU7Zxfq\nc/uhaNJ5UGzfBvU7b6LJ4cG6XVWoanBJfq9+r/wLMp8Xm6+6tUfTjDqjEGXISzUh5exT0bB0NXxD\nhp2Qc0hNrZQjOykaw/PjkGzVQ+yiQSctPgpxEjSm9CS9RoHYaM0vyT4myVNl0uKjIMoi/ynhjE/E\n6jv+BZnPh5EP3gRlYz3UtVXI/uwduMyx2HP2RW3Wx5taU3LMEozTIiIiIiIiIiKiE4eNOURERERE\nFBajXgWLRG8YF553KQAg59N3JKnXlZxP3/7lvq1pLJmJRiTHRfXY/fZPOg8BuaJ1nFWYyTL5/3se\nuR+/geakNCx54k14jCaJT9m1LZffAq9WD83DD2Dvj6vR4vFLfg/rxtVIXPkjqvsMxsHRkySvHwqL\nUY2hubGIM/22G1IioVKIyEw0YkTvOKTEtt94Em/SIi1emga8npaWYEBuqgkWo0by2kqFiJRYaX4+\nVA45Gdtm3ABdVTlGPPJP5L/7IuTuFmy7+Hr41a1nV8lbU3JyU5mSQ0RERERERET0R8BXeIiIiIiI\nKGwZCcZujcTpSNnICbAnJCP1h/lQNtRJcLKOmQq3wrplHcqHjEZzahZUchE2sw69M8xIsvTMqCK3\nyYwDoyfBULIX1s1ru70/9/1X0PvdF2FPSMbiJ96C22TpgVN2zW2yoGDm3ZA3N+LkO66Epqpc2hv4\n/Rjw0mMAgE3XzAYk+N7qjkMpOX3SzVAqxON67xNFIReRYTNgRH480uKjoPilESRar0JOSvQJPl3o\nNCo5YqOlb8o5JClWB5Vcmu+JHdOvRtmI8YjbsBKZX32IZlsK9k86F8AvKTl5TMkhIiIiIiIiIvoj\nYWMOERERERGFTauWI16KMTeiiN3nzoDo9SD3w1cjr9eJ7Hm/pOVMbU3pSY7TQ/ZLWkhWkhHJ1p5p\nztl71jQAQOaC97u1L3veW+j75lNwxCZgyRNvosUS1xPHC1nJKedg85X/hLa6HGPuvArKpnrJaqcv\n/BTR+3Zi/ynnoD6nj2R1Q2ExqDHkD56S0xmFXIa0eAOG58chK9GIPukxkjTd/VGIMhnSEiRK1ZLJ\nsOb2x2C3pQAAtl52E5RqNVNyiIiIiIiIiIj+oPhqDxERERERRSQtvv0xON217/S/wG5LQc5n7yB6\n9zYJTnYsTVU5kpd+i8a0bFQNGnU4LedImYlGpPbAWKva3oPQmJaNxOU/QFVXHdKezC/ew4CXH4fL\nHIslj78JZ1zi4WuiTDicbnK87frrFdj1l7/BULIXJ999DUSXM+KacqcDfd56Fj6VBlsuv0WCU4ZG\nIcqQl2JCnwwzVH+SlJzOyEUZkqx6Noe0Iz5GC71aIUktr96AxU++jRX3PAPv/03FkFym5BARERER\nERER/VHxlTYiIiIiIoqIUiEiJTbyRpaASo31N86BEAhgyFP3QvD7JDhdW1lfzIXM70Ph1MsAQWiT\nlnOk9AQD0uMN0t5cELDnrOmQ+X3I+OaTLpenfTsPg55/EC3RZix5/E04ElPbXI8zaZGfFoMTkmki\nCNh85a3Yf8o5MO/cjFEP3gTB64moZO4Hr0BdX4OdF1xx3FKBzIdScqRIfaI/PEEQkJ4g4c+FxCSY\nZkxDXloMFHK+PENERERERERE9EfFV36IiIiIiChiSbE6qOSRp41UDRqF/aecA9Oe7cj67F0JTvYr\n0eVAxlcfocVkQcn4KVDJRSSYO27ISI2PQoaUb8IDKJl4NrwaLTK+/hjw+ztcl7xoAYY8dQ/cUUYs\nefwNNKdkHLMmyaqDKUolbaNAd8hkWPePB1E2fCzi1y3H0H/dBQQCYZXSVpQiZ95bcFriUfiXyyU+\n6LHkMhlyU0zoy5Qc6iazUY1ovSqiGgpRhqxEI4bmxcJi1Eh0MiIiIiIiIiIi+q1iYw4REREREUVM\nlMmQliDN+KdNV8+C2xCNPm8/C21FqSQ1ASBt4edQOpqx56xpCCiVSI7VQ5R1/pQoJS4KWTajZGfw\naXUomXgWtNXlSFizpN01iUu/w7AnZsOr1WPpY6+jKT3nmDXRehW0v4zUSYmLguUEjcAJyhVYdddT\nqMkfiNSfFmDAS48BwWC36/R7/V8QvR5sufwW+NU926hgNqgxNC8W8UzJoTBl2sJrhhMFAalxURie\nH4ckqx4y4YTkXRERERERERER0XHGxhwiIiIiIpJEfIwWul+aRSLhMZqw8ZrZkLtdGPTc/WE1ehzD\n70fOZ+/Ar1Bi75TprWk5ltAaM5Ji9chOio78DL/YO2U6ACDzyw+OuZaw8ieMePRW+FUqLHvkFTRk\n927/TBZdm/+dm2KCViWX7Izd4VdrsPzB/6IxLRvZn/8PuR+80q395m0FSF7yLep69UXJhCk9dEqm\n5JB0orRKxEWH3kAmAEiI0WJYXhzSEwyQi3wphoiIiIiIiIjoz+TEvHJLRERERER/OIIgICPBgC1F\ntRHXKpl4NtK+n4+EtcuQtOQbHBx3RkT1bKt+gr6sBPtO/ys80THICiEt50iJFh1kAlB4oAGRtgk1\nZvRCTe9BSFi3DLqyEjhsKQCAuHXLMfKhmxCQK7D8oZdRlzeg3f1qhQjzUQk5clGG3ukxKNhVDb8U\njUzd5I0yYukjr2LCLRei75tPw200oeiM87veGAi0puwA2HjNHUAnXxNrtAbp8YbOlnRKLsrYEEGS\nSUswoLqxBYEuHm8xUWpk2AzQayJvWiQiIiIiIiIiot8nvipJRERERESSMRvViNarIi8kCFh/033w\nK1UY+OIjUDQ3RlQuZ95bAIDC82Z0Ky3nSAlmHXJTTJBi+MzeKdMAABlffQgAsG5ag5PumwlAwM8P\nvICavkM63Guz6CC0MwJHp1agV6pJgtOFp8USh6WPvga30YTBz96PxOULu9yTsmgBYnZtQcnY01Hb\ne2C7axSiDPlpMeidFgOtWg61Mrw/bMohKWlUciQelVx1pCiNAv0zLeiXaWZTDhERERERERHRnxxf\nmSQiIiIiIkll2AyS1HHYUrDtkuuhbqhFv9f+FXYdU+FWWLeuR/nQ0WhOzUJSN9NyjhQXo0VeWgxk\n7TTGdMfB0ZPgNpqQ/t2niN2wEiffcy2EQAAr5jyHqoEjO9wnEwQkmDtuKoqN1iDJqo/obJGwJ6Vj\n2cOvwKdSY/ijt8K6cXWHa0WXE33f+A/8CiW2XPnPdtdYozUYlheL2G6MDSI6XlLioqA4quFLrRSR\nl2rC4F6xMEVJ0KRIRERERERERES/e2zMISIiIiIiSRm0SsRJ1EhROPUyNGT0QsY3n8CyeU1YNbLn\nvd1a67xLoZTLYAsjLedIsdEa5KeaImrOCSiVKJo8FaqmBoy540rIPG6svOs/qBg2pst7K+Rip2sy\nbAZE605cQ0B9Th+smPMchCBw0n3XI3rP9nbX9frkTWhrKlE49TI44xLbXDsyJaerj5foRFHIZUiJ\ni2r9b1GGTJsRw/LiEGeK7GcMERERERERERH9sbAxh4iIiIiIJJeWYIg4VQYAgnIF1t38AIKCgMFP\n3weZx92t/ZqqciQv/RaNadmoGjQKybFRYaflHMkSrUHvCJNz9p5xAYK/7F89+wmUnXRKl3ts1o5H\n5xwiEwTkp5mgOoENLVWDRmH1rMchdzkx+s6/Q1da3Oa6uqYSvT56HS0mC3ZO+3uba0zJod+TRIsO\n6fEGDM+PQ3KsXpKfe0RERERERERE9MfCxhwiIiIiIpKcRiVHoqXrJpJQ1Of2w55zLobhYBFyP3il\nW3uzvpgLmd+HwqmXQakQI07LOZLZqEaf9BiIYb4R70xIwsq7nsLSR1/DwXFndLneoFXCoFWGVFup\nEJGfHvnIrUgcHHs6CmbeA3VDLcbceRXUtVWHr/V94ynI3S5suewm+LSt3ycKUYb8VBNTcuh3RSYT\nkBofBbnIl1eIiIiIiIiIiKh9fOWIiIiIiIh6REpcFBQSvVm99bKb4LTEI++DVxFVvCekPaLLgYyv\nPkKLyYKS8VMkS8s5UoxBjT4ZZoTb/lI6ZhKqBo4MaW13G52MOiUybYZwjiWZfWdNx7ZLZkJffgCj\n77oaCnsTTIVbkfbDfNRn5mH/aecCAKxGDYbmxiKWI4CIiIiIiIiIiIjoD4aNOURERERE1CMUchmS\nY/WS1PJpdSi44V7IfF4MeXoOEAh0uSf9u8+gdDRjz1nTIdeqJU3LOZIpSoUEszTpQB1RymWwhjHa\nKdGqR9wJbnbZfvF12HPWdETv24mT7r0OA158BACw6epZUCgVyEs1oXd6DJQKpuQQERERERERERHR\nH09IjTmbNm3CJZdc0u41l8uFadOmYe/evZ3uKS4uxvTp03HhhRdizpw5CITwQjoREREREf2+JVn1\nUEvUcFE+cjwOjJ4Ey7YCZHz9ceeL/X5kf/YO/Aol9k6Z1iNpOUfKsBmglPdc/QSzDjJZeLk8OclG\n6NUKiU/UDYKADdfdhQNjJ8O6dT0s2zegdNREBMeOxdDc2BPeOERERERERERERETUk7p85fjVV1/F\n3XffDbfbfcy1LVu24KKLLsKBAwe63PPoo4/i5ptvxnvvvYdgMIgff/xRguMTEREREdFvmUwmID1B\nunFKG6+7Ex5dFPq99i+oa6s6XGdb9RP05QdQfMo5CJotPZaWc4hclCHDZuyR2gIAWwSJPKJMht7p\nMZD3YGNS14cQsea2x1Ex5GR4dVFwzHkQfdLNTMkhIiIiIiIiIiKiP7wuX5lNSUnBc8891+41j8eD\nF154ARkZGV3u2bZtG4YNGwYAGDNmDFasWBHumYmIiIiI6HckLkaLKI00iS0t5lhsueKfUDjth0ci\ntSdn3lsAgMLzZiA5Vt+jaTmHxMdoEa1TSV7XYtRApYysgUWjkiMv1STRicITVCqx57/vorpgG0wD\n+5zQsxAREREREREREREdL/KuFkyaNAkHDx5s99rgwYND3hMMBiEIrdHrOp0Ozc3NIR3Qao0KaR0R\nEREREf12DVXKsXZ7pSS1qs+/BPWLFyB52Xeo2rAM1aNPbXPdsH0TrFvXo3rkOCgH9MOAvHiIYmiN\nOZE+/xipU+HnzeUIBoMR1TlS316xMBs1EdexWqMgquTYe7BRglN1T6xJi5xUE/QSNWgRERERERER\nERER/V502ZgjFdkRv6HqcDhgMIQWZ19dHVoDDxERERER/bYpBKCuuUWSWmtm3otTr5uKvCfvRUmv\nQfBpfx31lD/3VQDA9rMvhlEtR12dI6SaVmuUJM8/jBoRB6rsEdcBAJ1agYDHJ9nzIqNKlPTr0BWD\nVokMmwHRehVc9ha47MfnvkRERERERERERETHU2e/9Nnzee6/yM/Px+rVqwEAS5cuxZAhQ47XrYmI\niIiI6Dcgw2aAIFGtprRs7LzgSmhrKtDnrWcO/7umqhxJS75FY1o26oeejESrrpMqPSMtPgpqRWSj\npw6xWaQ9vyAIyEs1QR3haKyuaJRy5KfFYFCOFdF66cd7EREREREREREREf1edLsx58svv8SHH37Y\n7RvNmjULzz33HC644AJ4vV5MmjSp2zWIiIiIiOj3S69RID5GK1m9HdOvRnNSGrLmvwvTzs0AgKwv\n5kIW8KNw6mVIjouCKDtuv4twmCiTITPRGHEduUyGOFPkI6yOppDL0DstBiqJmofa1BZlyEo0Ymhe\nLGKjpT87ERERERERERER0e+NEAwGgyf6EJ3hKCsiIiIioj8Ot8ePNTsq4ZfoaYhl8xqMv/VSNGT0\nwuIn38YZM05FQKnCwvd+wrCByd1qzJFqlNUhW/bVorYp/NFNSRY9spIib/DpjMvtQ4PdjUa7B40O\nD1weX1h1REFAolWPlDg95OLxb4YiIiIiIiIiIiIiOpE6G2UlP47nICIiIiKiPzmVUkRSrB7FldI0\nwNT0G4Z9k6ci49t5GHv736B0NGPr1MuQmBRzQtJyjpSVaER9sxuBMJuQbBbp0oU6olHJoVHJkWBu\nHZnl9vjR4Ght1Gmwu+F0d96oIwCIM2mRnmCAqofHYxERERERERERERH9HrExh4iIiIiIjqvkWD3K\nahzw+gOS1Nt85a2wrVoM094d8CuUKDnnQgy06P6/vXuPsbI6/wX+3XsPM1yGYUAYhDrUA1irvZlK\n4LRNLVJEGyV6UltBS2O1NSWNFVMrjIrYCKJV26hNWi+1JnhrWi+IUUygVaBaevHYU2mN5xRFqv1Z\nEUEZggN79vmjcRoQRX9lz2Xz+fy33/ddk2eF5GXtle9ez3752/+JAQ11+eDIwXnuv15/32OHDW7I\nwP79qlDVu2uoL2Vk/cCMHPqvUNDOXeVs2dbRFdRp37Ezb8WMhg3un7Gjm9I4oPvrBAAAAADoKwRz\nAACAblVXKubQgwfn/764db/8vZ1NzXlqdlv+5+IL8vy0/5WRHxrTa9optbY05uXXtu/z5Jk9je4F\nwaIk6VdXyojmARnRPCBJsqvcma3bOlIsFjJ0cEMPVwcAAAAA0PsJ5gAAAN1u1PBBeXFT+/sOrLyT\njceemPaDD8n28R/OhF4SakmSYrGQ8R8Ykv+z/tX3PKZ/fSkHNfWvYlX/fXWlYg4a0jtrAwAAAADo\njXrHz0gBAIADSrFQyKGjmvbr39x8xCcyesyIXnNazluGNfXvOnHmvRh90KAUCoUqVgQAAAAAQHfp\nXTvWAADAAaOleUCGDKzfb3+vX6nYa1pA7Wn8B4akVNx32KZUKGTUQb1zDgAAAAAAvH+COQAAQI8Z\nO3r/nJozfEj/fHzcQb3utJy3NPQr5dCD9z3XlqED0q+ud84BAAAAAID3r66nCwAAAA5cQxobMnxI\n/2zauuN9jy0kGd48IB8cOTiNA/rt/+L2sw+MGJSXN2/Pth073/GZ3nriDwAAAAAA/z2COQAAQI8a\nO2pINr/+Zjorlff0fLFQyIjmAfngyMYM7N/7AzlvKRYKOeyQIfnf/2/TXu8PGVifwfuxtRcAAAAA\nAD1PMAcAAOhRA/vX5eBhA/PSq+3v+lyxUMjIoQMyZuTgDGjom19lhjQ2ZNSwgfnH5u1vuzd6hNNy\nAAAAAABqTd/czQYAAGrKoQcPzsuvbU+58+2n5hQLhYw6aGBaWxrTv77vf4UZO7opm7buyM5yZ9e1\nhrpSRjQP6MGqAAAAAACohmJPFwAAAFDfr5QxLYN3u1YqFNI6ojGTjhyZww5prolQTpL0qyvlf4xq\n2u3awQcNTLFQ6KGKAAAAAAColtrY2QYAAPq8Q1oG5aVN7Sl3VjJ6+KC0tgxKv7pST5dVFaMOGpj/\n2rw9r2/vSLFQyOjh2lgBAAAAANQiwRwAAKBXKBWL+cjYYRlQX5d+dbV9uGehUMhhhwzJk8++koOG\n9E9Dv9oMIAEAAAAAHOgEcwAAgF6jaWB9T5fQbQYPrM/o4YMyonlAT5cCAAAAAECVCOYAAAD0kLGj\nm1Iq1vbpQAAAAAAABzI7wAAAAD1EKAcAAAAAoLbZBQYAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEA\nAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQ\nzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAA\ngCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAA\nAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEA\nAAAAAAAAgCoQzAEAAAAAAAAAgCooVCqVSk8XAQAAAAAAAAAAtcaJOQAAAAAAAAAAUAWCOQAAAAAA\nAAAAUAWCOQAAAAAAAAAAUAWCOb3cn/70p8yaNStJ8te//jWnn356Zs2albPPPjubNm3a7dnOzs5c\neumlOe200zJr1qxs2LAhSbJhw4bMnDkzp59+ehYsWJDOzs5unwdArdrzPf3lL385M2fOTFtb29ve\nt97TAADwL3tbG7/66quZPXt2zjjjjMyYMSMvvPDCPsck1tMA1WR/GqB3sz8N0DcI5vRiN998cy65\n5JK8+eabSZJFixZl/vz5WbJkSY477rjcfPPNuz2/YsWKdHR05Oc//3m+853v5Morr0ySLF68OHPm\nzMmdd96ZSqWSlStXdvtcAGrRnu/pH/3oR/nWt76Vu+66Kx0dHXn00Ud3e957GgAA/mVva+Orr746\n06dPzx133JE5c+Zk/fr1+xyTWE8DVIv9aYDezf40QN8hmNOLjRkzJjfccEPX5x/84Ac54ogjkiTl\ncjkNDQ1JkgsvvDAvvfRS/vjHP+azn/1skuSoo47K008/nSRZt25dJk6cmCQ55phj8vjjj3fnNABq\n1p7v6SOOOCJbtmxJpVJJe3t76urqknhPAwDAnva2Nn7yySfz8ssv58wzz8yyZcu61sjW0wA9w/40\nQO9mfxqg7xDM6cWOP/74rv80k6SlpSVJ8uSTT+b222/PmWeemST5/ve/n9GjR2fbtm1pbGzser5U\nKmXXrl2pVCopFApJkkGDBuWNN97ovkkA1LA939OHHnpoFi1alC984Qt59dVXM2nSpCTe0wAAsKe9\nrY03bNiQpqam3HbbbRk1alTXSQzW0wA9w/40QO9mfxqg7xDM6WMeeuihLFiwIDfddFOGDRu2273G\nxsa0t7d3fe7s7ExdXV2KxX//M7e3t6epqanb6gU4kCxatCh33HFHli9fnlNOOaXrKNC3eE8DdJ+9\n9U3fV890vdYBus/e1sbDhw/PlClTkiRTpkzp+gXvu42xngboXvanAXov+9MAvZdgTh+ydOnS3H77\n7VmyZElaW1vfdv+Tn/xkVq1alSR56qmn8qEPfShJcuSRR2bt2rVJklWrVmXChAndVzTAAWTIkCFd\nvzhoaWnJ66+/vtt972mA7rO3vun76pmu1zpA99nb2vjoo4/OY489liT5/e9/n/Hjx+9zTGI9DdBd\n7E8D9G72pwF6L8GcPqJcLmfRokVpb2/Pueeem1mzZuX6669P8u/ekMcdd1zq6+szY8aMLF68OG1t\nbUmSuXPn5oYbbshpp52WnTt35vjjj+/JqQDUrIULF+b888/PV77yldx55505//zzk3hPA/SEvfVN\nf6ee6XqtA3S/va2N586dm6VLl2bGjBlZvXp1vvnNbyaxngboDexPA/R+9qcBeq9CpVKp9HQRAAAA\n+9PFF1+cadOm5XOf+1ySZPLkydm1a1fWrFmTJHniiSdyzz335JprrnnXMStWrMjkyZPfdRwAAAAA\nALwTJ+YAAAA1Z2990/fVM12vdQAAAAAA9jfBHAAAoObsrW/6vnqm67UOAAAAAMD+ppUVAABQczo7\nO3PZZZfl2WefTaVSyRVXXJFisZj58+dn586dGTt2bBYuXJhSqZQLL7wwc+bMycEHH/y2MePGjctz\nzz2313EAAAAAALAvgjkAAAAAAAAAAFAFWlkBAAAAAAAAAEAVCOYAAAAAAAAAAEAVCOYAAAB9Xrlc\nTltbW2bMmJGZM2fm2Wef7bp3xRVX5K677trruHnz5mXChAnp6OjourZu3bocfvjhWbt2bdXrBgAA\nAACgtgnmAAAAfd6vf/3rJMndd9+dOXPm5Ic//GE2b96cr3/96/nVr371rmNHjBiRVatWdX1etmxZ\nWltbq1ovAAAAAAAHBsEcAACgz5s6dWouv/zyJMlLL72UpqamtLe359xzz83JJ5/8rmNPPPHEPPjg\ng0mSzs7OrFu3Lh/72MeSJNu2bct5552Xs846KyeddFLuvPPOvPHGG5k6dWrK5XKS5Oqrr85DDz1U\nxdkBAAAAANBXCeYAAAA1oa6uLnPnzs3ll1+e6dOnp7W1NZ/4xCf2Oe7jH/941q9fn+3bt+e3v/1t\nJk2a1HVvw4YNOfHEE3Prrbfmpz/9aW677bYMHjw4Rx99dNasWZNyuZxVq1Zl6tSp1ZwaAAAAAAB9\nlGAOAABQM6666qo88sgjmT9/frZv3/62+8uXL8+sWbMya9asPP30013XP//5z2flypVZtmzZbifs\nDB8+PCtWrMgFF1yQH//4x9m1a1eS5Etf+lLuvfferFq1Kp/+9KdTX19f/ckBAAAAANDnCOYAAAB9\n3v33358bb7wxSTJgwIAUCoUUi2//unPCCSdkyZIlWbJkST760Y92XT/ppJNy//3355VXXklra2vX\n9VtvvTVHHXVUrrnmmpxwwgmpVCpJkgkTJmTjxo355S9/mVNPPbXKswMAAAAAoK+q6+kCAAAA/lPT\npk1LW1tbzjjjjOzatSsXXXRR+vfv/57Hjxs3Lq+99lq++MUv7nb92GOPzcKFC/PQQw9l8ODBKZVK\n6ejoSH19faZPn57ly5fnsMMO29/TAQAAAACgRhQqb/3kEwAAgPfslltuSXNzsxNzAAAAAAB4R07M\nAQAAeJ/mzZuXf/7zn/nJT37S06UAAAAAANCLOTEHAAAAAAAAAACqoNjTBQAAAAAAAAAAQC3SygoA\nAKhZO3fuzEUXXeoahOsAAAUqSURBVJQXX3wxHR0dmT17dsaPH5958+alUCjksMMOy4IFC1Is/us3\nC5s3b87MmTPzwAMPpKGhIeVyOYsXL87TTz+djo6OnHvuuTn22GN7eFYAAAAAAPQVgjkAAEDNeuCB\nB9Lc3Jyrr746W7ZsySmnnJIPf/jDmTNnTiZNmpRLL700K1euzHHHHZfVq1fn2muvzSuvvNI1funS\npdm1a1fuvvvuvPzyy3n44Yd7cDYAAAAAAPQ1WlkBAAA164QTTsh5552XJKlUKimVSlm3bl0mTpyY\nJDnmmGPy+OOPJ0mKxWJ+9rOfpbm5uWv8mjVrMnLkyJxzzjm55JJLMmXKlO6fBAAAAAAAfZZgDgAA\nULMGDRqUxsbGbNu2Ld/+9rczZ86cVCqVFAqFrvtvvPFGkuQzn/lMhg4dutv41157LS+88EJuvPHG\nfOMb30hbW1u3zwEAAAAAgL5LMAcAAKhp//jHP/LVr341J598cqZPn55i8d9fg9rb29PU1PSOY5ub\nmzN58uQUCoVMnDgxzz//fDdUDAAAAABArRDMAQAAatamTZty1lln5bvf/W5OPfXUJMmRRx6ZtWvX\nJklWrVqVCRMmvOP4o48+Oo899liS5JlnnsmoUaOqXzQAAAAAADWjUKlUKj1dBAAAQDUsXLgwDz/8\ncMaOHdt17eKLL87ChQuzc+fOjB07NgsXLkypVOq6P2XKlDz88MNpaGhIR0dHFixYkL/97W+pVCq5\n7LLL8pGPfKQnpgIAAAAAQB8kmAMAAAAAAAAAAFWglRUAAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4A\nAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4AAABADZo3b17uvffed7zf1taWF198\nsRsrAgAAADjwCOYAAAAAHIDWrl2bSqXS02UAAAAA1LRCxQ4MAAAAQJ9XqVRy5ZVX5tFHH01LS0vK\n5XJOPfXUbNiwIU888US2bt2aoUOH5oYbbsh9992X66+/PmPGjMkdd9yRjRs3ZvHixdmxY0eGDh2a\n733ve2ltbe3pKQEAAAD0eU7MAQAAAKgBjzzySP7yl7/kwQcfzHXXXZcXXngh5XI569evz913351H\nHnkkY8aMybJly3LOOeekpaUlN910UwYNGpRLLrkk1157be6777587Wtfy/z583t6OgAAAAA1oa6n\nCwAAAADgP/e73/0u06ZNS79+/TJs2LAcc8wxKZVKmTt3bn7xi1/kueeey1NPPZUxY8bsNu7555/P\nxo0bM3v27K5r27Zt6+7yAQAAAGqSYA4AAABADSgUCuns7Oz6XFdXly1btuTss8/OmWeemeOPPz7F\nYjF7djXv7OzMIYcckqVLlyZJyuVyNm3a1K21AwAAANQqrawAAAAAasCnPvWpLF++PB0dHdm6dWtW\nr16dQqGQiRMnZubMmRk/fnx+85vfpFwuJ0lKpVLK5XLGjh2brVu35g9/+EOS5J577skFF1zQk1MB\nAAAAqBlOzAEAAACoAVOnTs2f//znnHTSSRk+fHjGjRuXHTt25Jlnnsn06dPTr1+/HH744fn73/+e\nJJk8eXLOOeec3HLLLbnuuuuyaNGivPnmm2lsbMxVV13Vw7MBAAAAqA2Fyp7nFwMAAAAAAAAAAP8x\nrawAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAA\nAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAK/j9FTXzeTL/yawAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAJaCAYAAAAcbFLpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8VNW9///33HKdyT1yFQUlomgUUBARFG9UqxVtyynx\nUO8X6lHBnwqlICpFi1aK0KK9eGwPVpGK7Wlrzzm1VESBWuVXBWxBRS4CEXLPTJKZSTLr+0eYASQk\nJMyePUlez8ejj0czs/fM2msm8c1aa3+WwxhjBAAAgLhy2t0AAACA7oiQBQAAYAFCFgAAgAUIWQAA\nABYgZAEAAFiAkAUAAGABQhaSzu7du3X66afr2muv1bXXXqtrrrlG119/vX73u9/FjnnmmWcO+7k1\nP/7xj/WXv/yl1ecOPf+0005TZWVlh9q4ceNGPfzww5KkTZs26d577+3Q+Z3R3NysqVOnasKECXrx\nxRfbPPbOO+/Ua6+9Jkm69tprVVtbe8T5r732mi6++GLdeuutlrfdKq+99pruvPPODp/X1nejK/jN\nb36jX//6150+f/fu3Ro2bFgcW3S4YcOGaffu3Za9/qEee+wxLVmyRJJ0++2369NPP23z+FtuuSX2\n+34sxwPHw213A4DWpKWl6b//+79jP+/Zs0c33XST0tPTNWHCBN13333tvsa7776rU089tdXnjuX8\ntnz66afat2+fJOmss87S4sWLj+v1jsW+ffv0zjvv6IMPPpDL5Trm86L9uHfv3sPO//a3v63p06fr\n2muvtarJSaut70ZXsGHDBg0ePNjuZiSdn//85+0es3bt2g4dDxwPQha6hH79+unee+/V888/rwkT\nJmjmzJkaPHiwbr31Vi1evFhvvPGGPB6PcnNz9cQTT+iNN97Q5s2b9eSTT8rlcmnVqlWqrq7W559/\nrosvvlgVFRWx8yVp0aJF2rRpkyKRiKZNm6bx48frtdde0//93//ppz/9qSTFfn7kkUe0ePFi+f1+\nffe739XEiRM1b948/fGPf5Tf79ejjz6qLVu2yOFwaOzYsbr//vvldrt11lln6Y477tDatWu1f/9+\nffvb39ZNN910xLW+//77evLJJ9XQ0CCPx6Np06Zp+PDhuu2229TU1KTrr79eS5Ys0YABA2Ln7Nu3\nTzNnztT+/fvVt29fVVRUxJ477bTTtHr16sPO79+/vzZt2qTdu3erqqpKJSUl+uEPf6j33ntPzc3N\nOuOMMzR79mx5vV5dcsklKi4u1tatW3X//feruLhYjz32mEpLS9XY2KivfvWruuuuu7R7927ddNNN\nuuiii/Thhx+qpqZG06dP11VXXaWmpiY99dRTWr16tVwul4YNG6a5c+cqJSVFzz77rP785z8rEomo\nX79+mjt3rnr16qU///nPevbZZ+VwOORyufTQQw/pvPPOO6K/ysrKdOutt2r//v3q16+f5s2bp8LC\nQvn9fs2fP18ff/yxGhsbNXr0aD300EN65ZVXYt+NTz/9VL/5zW/01ltvSZJuvfVW5efn68knn1Q4\nHNbYsWP1xhtvqKysTPPnz1d1dbWam5s1ZcoUfeMb35Ak/fWvf9Wzzz6rxsZGpaWlacaMGRo2bJiW\nLFmiPXv2qKysTHv27FFeXp5+9KMfqVevXoe1v7y8XA8//LAqKipUVlamfv36adGiRcrPz9f27dv1\n8MMPq7KyUk6nU1OnTpXH49Ff//pXrV27VmlpaaqsrFRVVVVsZHXJkiWxnz/44AM99dRTCofDKisr\n0wUXXKDHH3+8zd+15557Tn/5y18UCoXU0NCgGTNm6PLLL2/zet5//33NmzdPDodDZ511liKRSKuv\nfckll+iyyy7T+++/L7/fr5tvvlklJSV69913NX/+fGVkZKi+vl6vvvqq3nnnnVb7NRAI6Hvf+562\nbNmiE044QS6XSyNGjIi9/jPPPKOzzjpLr776ql544QU5nU7l5uZqwYIFsX8M3XjjjfrZz36mG264\nIXb8K6+8omXLlsnpdKqgoEBz5szRwIEDNXPmTHm9Xm3dulVffPGFBg0apIULFyozM7PNfgQkSQZI\nMp9//rk555xzjnj8448/NmeffbYxxpgZM2aYX/ziF2bv3r1m+PDhJhQKGWOMef75580bb7xhjDHm\n3//9383//M//xI6/8cYbY68VPd8YY4qKisxPf/pTY4wxW7duNSNHjjQVFRVm5cqV5o477oidc+jP\nh/7/v/3tb+arX/2qMcaYhx56yMybN89EIhETCoXMLbfcEnvtoqIis2zZMmOMMZs2bTJnnnmmCQaD\nh11jZWWlGT16tPnggw9i1zxy5Eiza9euo/aLMcZ85zvfMT/60Y+MMcbs2LHDnHPOOWblypWx962o\nqDji/EP7Z8mSJeYHP/iBiUQixhhjnn76aTN37lxjjDHjx483P/7xj2PnTZkyxaxatcoYY0wwGDRT\npkwxr7/+uvn8889NUVGR+etf/2qMMeZ///d/zcUXX2yMMeZXv/qVueGGG0xDQ4Npbm429913n/nt\nb39rfvvb35pp06aZxsZGY4wxy5cvN7fddpsxxphLL73U/OMf/zDGGPP222+bJUuWHHHdK1euNOec\nc47ZsWNHrN333XefMcaYmTNnmv/6r/8yxhjT1NRkHnjgAfOzn/3siGu/5JJLzNatW01DQ4MZP368\nGTdunDHGmNWrV5vbbrvNNDY2mquuusps3rzZGGNMbW2tufLKK80//vEPs337dnP11VebysrK2Oc1\nZswYU1dXZxYvXmwuvfRS4/f7jTHG3HnnneaZZ5454hp++ctfxr4jkUjE3Hbbbeb55583xhgzceJE\n8+KLLxpjjNm7d2/s9Q79/i5evNg8+uijsdc79Ofp06ebv/3tb8YYYwKBgBk1apTZtGnTUb9Lu3fv\nNlOmTDENDQ3GGGP++Mc/mquvvjr2uq1dTygUMhdccIFZt26dMcaYP/zhD6aoqMh8/vnnR7z++PHj\nzZw5c0wkEjGlpaVm1KhRZsuWLeZvf/ubGTJkiNm9e7cxxrTZr/PnzzcPPfSQiUQipqKiwowbN84s\nXrw49vobN240//rXv8yoUaPM3r17jTHGvPDCC2bOnDnGmIO/D4cev27dOnPZZZfFHl+5cqW58sor\nTSQSMTNmzDD/9m//ZkKhkAmHw2bixInm1VdfPeLagNYwkoUuw+FwKC0t7bDHevXqpSFDhui6667T\nuHHjNG7cOI0ePbrV86P/2m3N5MmTJUlFRUU65ZRT9I9//KNTbVyzZo1efvllORwOpaSk6Fvf+pZ+\n9atf6Y477pAkXXrppZKkoUOHKhwOq76+XqmpqbHzN27cqAEDBujss8+WJA0ePFjDhw/X3//+d40a\nNeqo77tu3TrNmDFDknTSSSe1eWxrVq9eLb/fr3Xr1kmSGhsblZ+fH3v+3HPPlSTV19frvffeU01N\njZ555pnYY1u2bFFxcbE8Ho8uuugiSdIZZ5yh6urqWPuuvfba2Oe3aNEiSS3Ttps2bdLXv/51SVIk\nElFDQ4Mk6atf/ar+4z/+QxdddJHGjBmj22+/vdW2X3DBBTrppJMkSd/4xjdiI0yrV6/Wpk2b9Oqr\nr0qSgsFgq+dffvnlWrNmjYqKijRq1Cht3bpVn3zyiVatWqUrrrhCO3bs0K5duzRr1qzYOcFgUP/8\n5z9ljNH+/fsPG5F0OBzatWuXJGnkyJHyer2x/qipqTni/W+88Ua9//77euGFF7Rjxw598sknOvvs\ns1VdXa0tW7bom9/8piSpT58+HV5H9oMf/EBr1qzRc889p88++0zBYFD19fXKyclp9fh+/fppwYIF\n+sMf/qCdO3fqww8/VF1dXez51q7n448/ltvtjv3eXX311bFRtdaUlJTI4XCod+/eGjt2rNauXauh\nQ4eqT58+6tevnyTFRntb69f169dr1qxZcjgcysvL0+WXX37Ee6xfv14XXnih+vTpI0mtjhgf6u23\n39ZVV12lvLw8SdL111+v+fPnx9aVjR07VikpKZJa/ka09jkCrSFkocvYtGmTioqKDnvM6XTqxRdf\n1KZNm7R+/Xo9/vjjGjVqlGbPnn3E+RkZGUd9bafz4D0gxhi53W45HA6ZQ7b2bGxsbLeNX54miUQi\nampqiv0cDVQOhyP2Xm2dHz3m0NdozZfb6nZ37Fc7Eolo1qxZsYBUV1enUCgUez7ad5FIRMYYLV++\nXOnp6ZKkyspKpaamqqqqSh6PJ9aX0WtsrT3l5eWKRCKKRCK67bbbVFJSIkkKh8Ox/4BNnz5d3/jG\nN/TOO+/otdde089+9jO99tprh31Wkg5bnxb97KJtfeaZZ3TKKadIkmpraw9rU9Tll1+uRYsWaf/+\n/RozZozy8/P1zjvvaM2aNZo2bZrKysqUlZV12BrB8vJy+Xw+rVixQqNHj46FRkkqLS3VCSecoDfe\neOOwfxR8+TOKeuqpp7Rx40Z9/etf16hRo9TU1HTYdRza5s8++0x9+/Y97Py2vqc33HCDhgwZorFj\nx+rKK6/Uhx9+2Goboj766CN95zvf0U033aQxY8bovPPO06OPPhp7vrXrae262vr+HfpcJBKJfZ6H\n/n5GIpGj9qt0+O9Na+sTXS7XYf0WDAa1Z8+e2Hfhy1rrk0N/747lcwRaw92F6BK2b9+upUuX6pZb\nbjns8S1btujqq6/WKaecojvvvFM33XSTtm7dKqnlD2174STqt7/9raSW/8js3LlTZ599tvLy8vTJ\nJ58oFAqpqalJb775Zuz4o732hRdeqF//+tcyxigcDmvFihW64IILjvk6zz77bG3fvl0bN26UJH3y\nySd67733NHLkyDbPGzt2rF555RVJLQvc33333WN+z0PbHQ6HFYlENGfOHC1cuPCI47xer8455xy9\n8MILklqCy+TJk7Vq1ao2X3/06NH64x//GHv9Rx55RK+//rouvPBCvfrqqwoEApJa7vp86KGH1NTU\npEsuuUT19fWaPHmy5s6dq23btrXa5++++6727t0rSXr55Zc1bty42DX98pe/jH0WU6dOjd2Veejn\nN2zYMO3atUurV6/WBRdcoDFjxuhXv/qVTj75ZOXl5WngwIFKTU2NhazS0lJdffXV2rx5s84//3yt\nXbtW27ZtkyS99dZb+trXvnZYQG3PO++8oxtvvFETJ05Ufn6+1q1bp+bmZnm9Xg0dOjR2F2xpaakm\nT54sv99/WPtzc3P10UcfyRij+vp6vfPOO5Kkmpoabd68WQ888ICuuOIK7du3T7t27TrqeilJeu+9\n93TmmWfq5ptv1siRI7Vq1So1Nze32f6ioiIZY2Lr2latWtXmSE/0evbu3au1a9fGPq9DtdWvY8eO\n1auvvqpIJKKamppWv3ujRo3S+vXrtX//fknS8uXL9dRTT0lq/Xf3wgsv1J/+9KfYXYcrV65UTk5O\nbIQU6CxGspCUgsFg7K43p9Op1NRU3X///br44osPO27IkCG68sor9fWvf10ZGRlKS0uLjWKNHz9e\nCxYsOKYRqM8//1wTJ06Uw+HQwoULlZOTE/uX/JVXXqnCwsLYVJLU8h/mRYsW6e6779a3v/3t2OvM\nnj1b3//+93XNNdeosbFRY8eO1V133XXM152Xl6dnnnlG8+bNUzAYlMPh0BNPPKGBAwe2eUv83Llz\n9d3vfldXXnmlevfurSFDhhzze0rSd77zHS1YsEDXXXedmpubdfrpp2vmzJmtHvvDH/5Q8+bN0zXX\nXKNwOKyrr75aX/va19ps37e+9S3t2bNH119/vYwxGjlypKZMmSKn06l9+/Zp0qRJcjgc6tOnj37w\ngx/I7XZr1qxZeuCBB2Kjio8//nhsyuZQRUVFmjVrlsrLyzVo0CA99thjkqTvfe97mj9/fuyzuOCC\nC3TbbbdJOvy7cd111+miiy7Spk2blJeXpxEjRqimpkZXXHGFJCklJUVLly7V/Pnz9Ytf/EJNTU26\n7777YtPPjz32mO6///7Y6NOzzz7b5qjpl91999168skntXTpUrlcLg0fPjw23fj000/r0Ucf1bJl\ny+RwODR//nwVFhZq3LhxmjdvnqSW6be3335bV1xxhXr16qVhw4bJGKPs7Gzdcccduu6665STk6Pc\n3FwNHz5cO3fu1IknnthqW66++mr9+c9/1lVXXSWPx6PRo0erpqYmFoJb4/F49JOf/ESPPPKIFi5c\nqNNPP/2wqeYv2717t66//noFg0HNnj1bgwYNUllZ2WHHDB48+Kj9es8992ju3Lm68sorlZeXd8To\nttRys8eDDz4Y+7wLCwtjC/4vv/xylZSUaOnSpbHjx4wZo5tuukk33nijIpGI8vLy9NOf/vSIUVOg\noxyGcU8AQAIcevcf0BMQ0wEAACzASBYAAIAFGMkCAACwACELAADAAoQsAAAACyRlCYeyMr/dTTgm\nubkZqqqqt7sZPQ79bh/63j70vT3od/t0pb4vLPS1+jgjWcfB7T6y0jCsR7/bh763D31vD/rdPt2h\n7wlZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAW\nIGQBAABYoN29C5ubmzV79mxt375dDodDjz76qFJTUzVz5kw5HA4NHjxYc+fOldPp1IoVK7R8+XK5\n3W5NnTpV48ePVzAY1IMPPqiKigplZmZqwYIFysvLS8S1AQAA2Kbdkaw333xTkrR8+XJNmzZNP/rR\nj/TEE09o2rRpeumll2SM0apVq1RWVqZly5Zp+fLlev7557Vw4UKFw2G9/PLLKioq0ksvvaSJEydq\n6dKlll8UAACA3dodybrssst08cUXS5L27t2rrKwsrVu3TiNHjpQkjRs3TmvXrpXT6dSwYcOUkpKi\nlJQUDRgwQFu2bNGGDRt02223xY4lZAEAgJ7gmNZkud1uzZgxQ/PmzdM111wjY4wcDockKTMzU36/\nX4FAQD6fL3ZOZmamAoHAYY9HjwUAAOju2h3JilqwYIEeeOABTZo0SaFQKPZ4XV2dsrKy5PV6VVdX\nd9jjPp/vsMejx7YnNzdDbrerI9dhm8JCX/sHIe7od/vQ9/ah7+1Bv9unq/d9uyHrd7/7nfbt26c7\n77xT6enpcjgcOvPMM/Xuu+9q1KhRWrNmjc4//3wVFxdr0aJFCoVCCofD2rZtm4qKijR8+HC99dZb\nKi4u1po1azRixIh2G1VVVR+Xi7NaYaFPZWWMzCUa/W4f+t4+9L096Hf7dKW+P1oYdBhjTFsn1tfX\n67vf/a7Ky8vV1NSk22+/XaeccormzJmjxsZGDRo0SN///vflcrm0YsUKvfLKKzLG6M4779SECRPU\n0NCgGTNmqKysTB6PR08//bQKCwvbbGxX6tSu0tbuhH63D31vH/reHvS7fbpS33c6ZNmhK3VqV2lr\nd0K/24e+tw99bw/63T5dqe+PFrIoRgoAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACA\nBY654jsAIH5Wf7CnQ8f7vGnyB4JHPH7xOf3i1SQAccZIFgAAgAUIWQAAABYgZAEAAFiAkAUAAGAB\nQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUI\nWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBk\nAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAF\nAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYA\nAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAA\nABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAA\nWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABg\nAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAXcbT3Z2NioWbNmac+ePQqHw5o6dar69Omj\nO++8UyeffLIkafLkybrqqqu0YsUKLV++XG63W1OnTtX48eMVDAb14IMPqqKiQpmZmVqwYIHy8vIS\ncV0AAAC2ajNk/f73v1dOTo6eeuopVVdXa+LEibr77rt1880365ZbbokdV1ZWpmXLlmnlypUKhUIq\nKSnRmDFj9PLLL6uoqEj33HOPXn/9dS1dulSzZ8+2/KIAAADs1uZ04Ve+8hXdd999kiRjjFwulzZv\n3qzVq1frhhtu0KxZsxQIBLRx40YNGzZMKSkp8vl8GjBggLZs2aINGzZo7NixkqRx48Zp/fr11l8R\nAABAEmhzJCszM1OSFAgEdO+992ratGkKh8P65je/qTPPPFPPPvusfvKTn2jIkCHy+XyHnRcIBBQI\nBGKPZ2Zmyu/3W3gpAAAAyaPNkCVJpaWluvvuu1VSUqJrrrlGtbW1ysrKkiRdfvnlmjdvns4991zV\n1dXFzqmrq5PP55PX6409XldXFzuvPbm5GXK7XZ25noQrLPS1fxDijn63D30fHz5vWlzO4fOwHn1s\nn67e922GrPLyct1yyy16+OGHNXr0aEnSrbfeqjlz5qi4uFjr16/X0KFDVVxcrEWLFikUCikcDmvb\ntm0qKirS8OHD9dZbb6m4uFhr1qzRiBEjjqlRVVX1x39lCVBY6FNZGaNziUa/24e+jx9/INih433e\ntFbP4fOwFt95+3Slvj9aGGwzZD333HOqra3V0qVLtXTpUknSzJkz9fjjj8vj8aigoEDz5s2T1+vV\nlClTVFJSImOMpk+frtTUVE2ePFkzZszQ5MmT5fF49PTTT8f/ygAAAJKQwxhj7G7El3Wl5NpV2tqd\n0O/2oe/jZ/UHezp0/NFGsi4+p1+8moRW8J23T1fq+6ONZFGMFAAAwAKELAAAAAsQsgAAACxAyAIA\nALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAA\nwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAA\nCxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAs\nQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAA\nIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKE\nLAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAEhiDaEm\nGWPsbgaATiBkAUCSKq9p0KtvbtO7/9xH0AK6IEIWACSprTurZSR9/HmNPvyk3O7mAOggQhYAJKFQ\nY7N2fOFXZppb6akurdu4V7v3B+xuFoAOIGQBQBLavrdWzRGj0wbkaPzwfnI6HXr7w1JV+UN2Nw3A\nMSJkAUCSMcbo48+r5XRIp/TLVkF2ui49b4AamyP664bdagg12d1EAMeAkAUASaa8JqjqQFgn9vIp\nPdUtSRp8Yo6KT8lXXbBJW3ZW2dxCAMeCkAUASebjz6slSYP7Zx/2+Bkn50qSymqCCW8TgI4jZAFA\nEgk3NmtHqV/edI/65Gcc9lyKx6WszBRV1AQp6QB0AYQsAEgin5W2LHgffGK2HA7HEc8XZKepsSmi\n2rqwDa0D0BGELABIEsYYffJ5jRwO6dR+2a0ek5+dJqll3RaA5EbIAoAkUeUPqcof0okneGML3r+s\ngJAFdBmELABIEhW1LcGpX0HmUY/J86XK6ZAqCFlA0iNkAUCSqPa3rLPK8aUe9RiXy6lcX6oqa0Nq\njrD4HUhmhCwASBLRau453qOHLEnKz05XxBiqvwNJjpAFAEmiOhCSN90jj7vtP80H12U1JKJZADqJ\nkAUASaAh1KRguLnNqcKoaMhiXRaQ3AhZAJAEolN/ud6Udo/N8qbI7XJwhyGQ5AhZAJAEqgMH1mMd\nw0iW0+FQfnaaagJhNosGkhghCwCSQGwk6xhClnRwynDnF37L2gTg+BCyACAJVAfCcjocyspof7pQ\nkgqy0yVJ20trrWwWgONAyAIAmxljVBMIKdubIqfzyP0KWxPdXuczQhaQtAhZAGAzf32jmprNMU8V\nSlJmmltpKS7tIGQBSav1zbEOaGxs1KxZs7Rnzx6Fw2FNnTpVp556qmbOnCmHw6HBgwdr7ty5cjqd\nWrFihZYvXy63262pU6dq/PjxCgaDevDBB1VRUaHMzEwtWLBAeXl5ibo2AOgSYovej+HOwiiHw6GC\n7DTtLqs7MAp27AENQGK0OZL1+9//Xjk5OXrppZf0i1/8QvPmzdMTTzyhadOm6aWXXpIxRqtWrVJZ\nWZmWLVum5cuX6/nnn9fChQsVDof18ssvq6ioSC+99JImTpyopUuXJuq6AKDL6Oii96jolOH2Uha/\nA8mozZD1la98Rffdd5+kljUDLpdLH330kUaOHClJGjdunNatW6eNGzdq2LBhSklJkc/n04ABA7Rl\nyxZt2LBBY8eOjR27fv16iy8HALqeav+xl284VOwOw32ELCAZtRmyMjMz5fV6FQgEdO+992ratGky\nxsjhcMSe9/v9CgQC8vl8h50XCAQOezx6LADgcFWBsDxupzJS21zBcYSszJbpxbJqttcBklG7v9Gl\npaW6++67VVJSomuuuUZPPfVU7Lm6ujplZWXJ6/Wqrq7usMd9Pt9hj0ePPRa5uRlyu10dvRZbFBb6\n2j8IcUe/24e+jw+ft2UUqqk5In9dWL3zM5XlSz+mc6IyMlLldEjVdWE+FwvRt/bp6n3fZsgqLy/X\nLbfcooeMB80RAAAgAElEQVQfflijR4+WJJ1xxhl69913NWrUKK1Zs0bnn3++iouLtWjRIoVCIYXD\nYW3btk1FRUUaPny43nrrLRUXF2vNmjUaMWLEMTWqqqr++K8sAQoLfSorY3Qu0eh3+9D38eMPtGyJ\nU1ETlJHky/DEHmuNz5vW6vN5WWnaWxbgc7EI33n7dKW+P1oYbDNkPffcc6qtrdXSpUtji9a/973v\n6fvf/74WLlyoQYMGacKECXK5XJoyZYpKSkpkjNH06dOVmpqqyZMna8aMGZo8ebI8Ho+efvrp+F8Z\nAHRh0TsLc33HfmfhoQqy07RlV7Uam5rl6SIzAEBP4TDGGLsb8WVdKbl2lbZ2J/S7fej7+Fn9wR5J\n0vtb9uufO6o0YdSJ6pWbcdTjjzaStX1vrd7eWKr5t49Sn/xMy9rbU/Gdt09X6vujjWRRjBQAbBQr\n39DJOleFOS3ruFj8DiQfQhYA2Kg6EFJGmlspns5N9RXktCyGL6s++nouAPYgZAGATYLhZjWEmjtc\nhPRQjGQByYuQBQA2qYltp0PIArojQhYA2CTQ0CippXxDZ/nSPUr1uFRew3QhkGwIWQBgk2jI8qZ3\nPmQ5HA4V5qSprLpBSXizONCjEbIAwCbxCFlSy5RhMNysumBTPJoFIE4IWQBgk2jIykzv2J6FX1aQ\nzbosIBkRsgDAJoH6RmWkuuVyHt+f4sJYGQdCFpBMCFkAYINIxKg+1KTM45wqlLjDEEhWhCwAsEFd\nsFHGHN+dhVEFsZDFHYZAMiFkAYAN6hpaFqnHYySrIJvpQiAZEbIAwAb+ON1ZKEmpHpeyvSkqryFk\nAcmEkAUANqiLhazju7MwqjA7XRU1ITVHInF5PQDHj5AFADaIV42sqMKcNEWMUWVtKC6vB+D4EbIA\nwAaBhkY5JGWmxStktSx+L2ddFpA0CFkAYINAfaMy0txyOh1xeb1YQVL2MASSBiELABKssSmi+lBT\n3KYKJQqSAsmIkAUACVbpbxltim/IoiApkGwIWQCQYOUHioZ641CINCrHlyq3y0FBUiCJELIAIMGi\n9aziOZLldDiUn51OrSwgiRCyACDBymviP10otazL8tc3qiHUFNfXBdA5hCwASLBoyIrHljqHKjxw\nh2E5dxgCSYGQBQAJVl7dIIdDykiLT7X3KGplAcmFkAUACVZeE1RmmkdOR3xqZEVFyzjsJ2QBSYGQ\nBQAJFG5sVk1dOK53FkblZbWELLbWAZIDIQsAEqii1ppF75KU50uVJFUFCFlAMiBkAUACRetYWRGy\nfJkpcjkdqvYTsoBkQMgCgASqsKBGVpTT4VCON0VVfu4uBJIBIQsAEqgsViMrvncWRuX4UlUdCCti\njCWvD+DYEbIAIIEOFiJNseT1c72pao4Y+evClrw+gGNHyAKABCqvbpDb5VR6qsuS18/1tdxhyOJ3\nwH6ELABIoPKaoPKz0+SIc42sqNzoHYaUcQBsR8gCgAQJhpsUaGhUQXaaZe+RSxkHIGkQsgAgQaLr\nsQoTEbIo4wDYjpAFAAlSeaAQabQyuxUIWUDyIGQBQIJEt7vJy0q17D1yvIQsIFkQsgAgQSoPBJ88\nn3UjWR63U950DyELSAKELABIkKoD04W5Fo5kSS17GFb5QzIUJAVsRcgCgAQ5OJJlbcjK8aUq1Nis\nhlCzpe8DoG2ELABIkEp/SL4MjzxuawqRRuVRxgFICoQsAEgAY4yqaoOxu/+slBO7w5CNogE7EbIA\nIAHqgk0KN0UsXfQeRRkHIDkQsgAgASoTtOhdOhiyqglZgK0IWQCQAFUJWvQuSbnUygKSAiELABIg\ndmehhdXeo3IPTEkSsgB7EbIAIAFiW+okYCQrPdWlVI+LkAXYjJAFAAkQDTy5CRjJcjgcyvWlUsIB\nsBkhCwASILbw3Wv9SJbUsvjdX9+oxqZIQt4PwJEIWQCQAFX+kLIyPPK4E/NnN3aHIaNZgG0IWQBg\nMWOMKv2hhEwVRlErC7AfIQsALBZoaJm2S8Si96gcyjgAtiNkAYDFDtbIStxIVh4jWYDtCFkAYLHK\n2uidhQkcySJkAbYjZAGAxaIbNSdyujA2ksXCd8A2hCwAsFgiq71H+TJT5HI6YgEPQOIRsgDAYrEa\nWQkcyXI6HMrxprBJNGAjQhYAWCxW7T2BIUtqWZdVHQgrYkxC3xdAC0IWAFissjakrMwUuV2J/ZOb\n601Vc8TIXxdO6PsCaEHIAgALRQuRJnLRe1TugZIRlUwZArYgZAGAhfwNjWpqjiR00XtUbGsdQhZg\nC0IWAFioqtae9ViHvidlHAB7ELIAwEKV0RpZCSxEGsX+hYC9CFkAYKFKG0eycrwpkqRqRrIAWxCy\nAMBCduxbGJV9YJPo6gB3FwJ2IGQBgIXsnC5M9biUkepmJAuwCSELACxUWRuSQ1KON/EhSzpQkJQ1\nWYAtCFkAYKEqf1BZ3sQXIo3K8aaoLtikxqZmW94f6MkIWQBgkYgxqrKpEGlUDuuyANsQsgDAIoH6\nRjU1G1sWvUcdDFlMGQKJ5ra7AQDQXUUXvedauOh99Qd72ny+rKZBkrR28xfaU17X6jEXn9Mv7u0C\nwEgWAFgmWiPLzpGsjNSWf0s3BJtsawPQUxGyAMAisRpZNpRviIqGrPoQIQtINEIWAFiksvbAdKGN\nC9/T0w6MZBGygIQjZAGAReys9h6VnuqSJNUzXQgkHCELACxSWRuUwyFlH9hD0A4up1OpHhcjWYAN\nCFkAYJFKf0jZmfYVIo3KSHOzJguwASELACwQK0SaZd9UYVR6qluNTRE1NkXsbgrQoxCyAMAC/rqw\nmiPG1kXvUbEyDoxmAQlFyAIAC1QmwaL3qOgdhkwZAol1TCHrww8/1JQpUyRJ//znPzV27FhNmTJF\nU6ZM0Z/+9CdJ0ooVK3T99ddr0qRJevPNNyVJwWBQ99xzj0pKSnT77bersrLSossAgOQSK0RqY42s\nqIwDdxhSkBRIrHa31fn5z3+u3//+90pPT5ckffTRR7r55pt1yy23xI4pKyvTsmXLtHLlSoVCIZWU\nlGjMmDF6+eWXVVRUpHvuuUevv/66li5dqtmzZ1t3NQCQJGJb6iTBdGE6BUkBW7Q7kjVgwAAtWbIk\n9vPmzZu1evVq3XDDDZo1a5YCgYA2btyoYcOGKSUlRT6fTwMGDNCWLVu0YcMGjR07VpI0btw4rV+/\n3rorAYAkcrDau/3ThazJAuzRbsiaMGGC3O6DA17FxcV66KGH9Otf/1onnniifvKTnygQCMjn88WO\nyczMVCAQOOzxzMxM+f1+Cy4BAJJPtNp7XjKMZEXXZDFdCCRUu9OFX3b55ZcrKysr9v/nzZunc889\nV3V1B3d3r6urk8/nk9frjT1eV1cXO689ubkZcrtdHW2aLQoLfe0fhLij3+1D3x+bQLBJTod06sn5\ncrVSJ8vn7fgIV2fOkaSMjJagF26KtPoafKZto3/s09X7vsMh69Zbb9WcOXNUXFys9evXa+jQoSou\nLtaiRYsUCoUUDoe1bds2FRUVafjw4XrrrbdUXFysNWvWaMSIEcf0HlVV9R2+EDsUFvpUVsboXKLR\n7/ah74/dvop6ZXtTVVlZ1+rz/kCwQ6/n86Z1+JxDpaW45K8Pt/oafKZHx3fePl2p748WBjscsh55\n5BHNmzdPHo9HBQUFmjdvnrxer6ZMmaKSkhIZYzR9+nSlpqZq8uTJmjFjhiZPniyPx6Onn376uC8E\nAJJdJGJUHQjp5N7J86/wjDS3auvCMsbI4XDY3RygRzimkNW/f3+tWLFCkjR06FAtX778iGMmTZqk\nSZMmHfZYenq6Fi9eHIdmAkDXUVt/oBBpEix6j0pPdauyNqTGpohSPF1jOQbQ1VGMFADiLFYjKwkW\nvUdlUMYBSDhCFgDEWZU/ee4sjEqnjAOQcIQsAIizg9Xek2e6MIMyDkDCEbIAIM6Sqdp7FAVJgcQj\nZAFAnCVTtfcottYBEo+QBQBxVlkbktPhUHZmit1NiYlOF7JJNJA4hCwAiLMqf1A5vhQ5nclTjyo1\nxSWHg5EsIJEIWQAQR5GIUZU/nFTrsSTJ6XAoPcWthlCz3U0BegxCFgDEUU1dWBFjlOdLnvVYUelp\nbtWHmmSMsbspQI9AyAKAOIreWZiXlVwjWVLLHYaRiFG4MWJ3U4AegZAFAHFUdaBGVm4yjmRxhyGQ\nUIQsAIijSn/ybakTFbvDkJAFJAQhCwDiqLL2QCHSJJwujI1kUcYBSAhCFgDEUawQaRJOF7JJNJBY\nhCwAiKNKf1AuZ3IVIo1i/0IgsQhZABBHlbUh5XiTqxBpFCNZQGIRsgAgTpojEdUEwspNoj0LD5Xi\nccrldKg+2Gh3U4AegZAFAHFSE4gWIk2+Re+S5HA4lJHmZroQSBBCFgDESWUSL3qPykh1KxhuVnOE\nqu+A1QhZABAnFTUt5Rvys5M4ZFErC0gYQhYAxEm0RlYybqkTlZHmkcQdhkAiELIAIE7KD4Ss/CRd\n+C4dcochi98ByxGyACBOotOFBV1gupAyDoD1CFkAECcVtUGlp7piU3LJiIKkQOIQsgAgTiprg8pL\n4qlCiZAFJBIhCwDioD7YqIZQc1Kvx5Kk9BS3HGK6EEgEQhYAxEF5FyjfIElOp0NpqRQkBRKBkAUA\ncVBx4M7CgiQfyZIUq/puDAVJASsRsgAgDiprD1R77wIhKzPNrYgxCjU2290UoFsjZAFAHHSFau9R\n6aksfgcSgZAFAHHQFQqRRnGHIZAYhCwAiIOKmqBcToeyvSl2N6VdmYQsICEIWQAQBy01slLldDjs\nbkq7MlJbiqXWUcYBsBQhCwCOU2NTs2rqwl1iqlA6dLqQ/QsBKxGyAOA4Re8s7AqL3iXWZAGJQsgC\ngOPUlRa9S5Lb5VSK20nVd8BihCwAOE6VNV0rZEkHC5ICsA4hCwCOU7Tae1eZLpRaQlZjU0SNTRG7\nmwJ0W4QsADhOXakQaVT0DkNGswDrELIA4DhFR7LyfF0oZEUXv4e4wxCwCiELAI5TRW1Q2d4Uedxd\n508qdxgC1us6fxEAIAlFjFFlbahLLXqXCFlAIhCyAOA41ATCao6YrheyoptEU8YBsAwhCwCOQ1dc\n9C4xkgUkAiELAI5DRRcrRBqV6nHJ6XQQsgALEbIA4Dh01ZDlcDiUkerm7kLAQoQsADgOXXW6UGqZ\nMmwINaupmYKkgBUIWQBwHLrqSJZ0cF1WbV3Y5pYA3RMhCwCOQ0VtUOmp7lhg6UqidxhW+UM2twTo\nnghZANBJxhhV1ASVn5Vqd1M6JRoMCVmANQhZANBJ9aEmBcPNXXKqUJIy01r2LyRkAdYgZAFAJ3Xl\nRe/SwZGs6LoyAPFFyAKATiqrbpAkFWSn29ySzvGmt4xkEbIAaxCyAKCT9h8IWSfkds2QlZbiksvp\nUHkNIQuwAiELADqprOpAyMrpmiHL4XAoM90Tm/YEEF+ELADopOhIVmEXDVmSlJnmVqChUaFws91N\nAbodQhYAdNL+qgZlZ6YoNcVld1M6Lbouq5x1WUDcEbIAoBOamiOqrA2psIuux4qKLX6vabC5JUD3\n0/VKFAOAjVZ/sEeS5K8PK2KMIhETe6wryoyFLEaygHhjJAsAOsFf3yhJ8mV4bG7J8fGmt/xbmzsM\ngfgjZAFAJ/jrWzZV7uohK5NaWYBlCFkA0Amxkaz0FJtbcnzSU93UygIsQsgCgE6IhixvFx/Jcjoc\nystKZU0WYAFCFgB0gr8+LLfLobQuXL4hqiA7XTV1YTU2USsLiCdCFgB0kDFGgYZG+TJS5HA47G7O\nccvPatnguqI2ZHNLgO6FkAUAHRQMN6up2XT5Re9RBdkHQhZThkBcEbIAoIO6y52FUfkHQlY5BUmB\nuCJkAUAHdZc7C6MOThcykgXEEyELADqou9xZGFUQG8kiZAHxRMgCgA4KNHSPau9ROb5UORysyQLi\njZAFAB3krw/L4ZAy07pHyHK7nMrzpTKSBcQZIQsAOshf3yhvukdOZ9cv3xCVn5Wm6kBITc0Ru5sC\ndBuELADogMamiILhZnnTu8coVlR+drqMkSr91MoC4oWQBQAdcLB8Q/e4szAqn1pZQNwRsgCgA2Ll\nG7rJoveoAmplAXFHyAKADvB3szsLoxjJAuKPkAUAHRDoptOFBVmELCDeCFkA0AGxQqTdbOF7HlXf\ngbgjZAFAB/jrG5WW4pLH3b3+fHrcTmV7U6iVBcRR9/orAQAWamqOqC7Y2O3WY0UVZKepyh9SJGLs\nbgrQLRxTyPrwww81ZcoUSdLOnTs1efJklZSUaO7cuYpEWgrXrVixQtdff70mTZqkN998U5IUDAZ1\nzz33qKSkRLfffrsqKystugwAsF5lbVDGdL/1WFH5WWlqjhhVB6iVBcRDuyHr5z//uWbPnq1QqOWX\n7oknntC0adP00ksvyRijVatWqaysTMuWLdPy5cv1/PPPa+HChQqHw3r55ZdVVFSkl156SRMnTtTS\npUstvyAAsMoXlS3lDbK67UhWuiQ2igbipd2QNWDAAC1ZsiT280cffaSRI0dKksaNG6d169Zp48aN\nGjZsmFJSUuTz+TRgwABt2bJFGzZs0NixY2PHrl+/3qLLAADrlVbUSZKyvak2t8QalHEA4qvdkDVh\nwgS53e7Yz8YYORwt+3VlZmbK7/crEAjI5/PFjsnMzFQgEDjs8eixANBVxUJWZvecLowWJC2rpiAp\nEA/u9g85nNN5MJfV1dUpKytLXq9XdXV1hz3u8/kOezx67LHIzc2Q2+3qaNNsUVjoa/8gxB39bp+e\n3PdlNSE5HFLfE3xyuRJ/35DPm2bJ60Y/0zMO/H2vqmvs0Z/zl9EX9unqfd/hkHXGGWfo3Xff1ahR\no7RmzRqdf/75Ki4u1qJFixQKhRQOh7Vt2zYVFRVp+PDheuutt1RcXKw1a9ZoxIgRx/QeVVX1Hb4Q\nOxQW+lRWxuhcotHv9unJfW+M0a4vauVN96i+IZzw9/d50+QPWDONF/1MHREjt8upHaU1PfZz/rKe\n/J23W1fq+6OFwQ6HrBkzZmjOnDlauHChBg0apAkTJsjlcmnKlCkqKSmRMUbTp09XamqqJk+erBkz\nZmjy5MnyeDx6+umnj/tCAMAO/vpG1QWb1P8Er91NsYzT6VCvvHR9UVl/2NIQAJ1zTCGrf//+WrFi\nhSRp4MCBevHFF484ZtKkSZo0adJhj6Wnp2vx4sVxaCYA2Ku7r8eK6p2XoT1ldaoOhJXr654L/IFE\noRgpAByDvRUtyxhyvN07ZPXJz5AkfVFR186RANpDyAKAY1Ba3nNGsiTpi8qusTYWSGaELAA4BqUH\nQkdWNx/J6p2XKeng9QLoPEIWAByD0oo65fpSldJFyst0Vmwkq4KQBRwvQhYAtCMYblJlbSgWQLqz\njDS3sjNTmC4E4oCQBQDtKD0wqtM3P9PmliRG77wMVdQEFW5strspQJdGyAKAdkTLN/Qp6P4jWZLU\nOz9DRtL+KrbXAY4HIQsA2hEdyerTQ0ay+hyYFmXxO3B8CFkA0I69B8o39M3vOSNZErWygONFyAKA\ndpRW1Csj1a2sbl4jK4paWUB8ELIAoA1NzRHtr2pQn4KMHrOXX0F2utwuR2yaFEDnELIAoA37qxoU\nMabHrMeSDmwUnZsR2ygaQOcQsgCgDbE7C3vIeqyo3nkZCoabVVMXtrspQJdFyAKANuztYXcWRh1c\n/M6UIdBZhCwAaEN0JKun3FkY1ZsyDsBxI2QBQBtKy+vldjlVkJ1ud1MSipEs4PgRsgDgKCLGqLSy\nTr3zMuR09ow7C6P6UMYBOG6ELAA4israoMKNEfXtIdvpHCojzaOsDI++qKQgKdBZhCwAOIrdZQfW\nYxX0rEXvUb3zM1VeHVRjExtFA51ByAKAo9i1zy9JGtDLZ3NL7NE7r2Wj6H1sFA10itvuBgBAstq1\nLyBJGnCC1+aW2CO2vU5FvfoXJq4PVn+wJy6vc/E5/eLyOkBnMZIFAEexa59f3nSPcn2pdjfFFtG1\naHvKWZcFdAYhCwBaUR9sVHlNUCf18vaYPQu/7KQD06Q7SmttbgnQNRGyAKAVsanCHroeS5KyvanK\nz0rV9tJa9jAEOoGQBQCt6OmL3qMG9slSbX2jKmqDdjcF6HIIWQDQip2xkayeueg9amDfLEnS9lK/\nzS0Buh5CFgC0Ytd+v1I8TvXK7XmFSA81sHc0ZLEuC+goQhYAfEljU7NKy+t14gneHredzped1Nsn\nh6TtewlZQEcRsgDgS3aX1SliTI9fjyVJ6alu9S3I1I4v/IpEWPwOdAQhCwC+JLro/SRClqSWxe+h\nxmbtraBeFtARhCwA+JJo+YYTe2il9y+LLX5nyhDoEEIWAHzJrn1+OR0O9S/smRtDf9mgPix+BzqD\nkAUAh4hEjD4vC6hvQYY8bpfdzUkK/Qoz5XY59RkhC+gQQhYAHGJfVb3CjREWvR/C7XLqpF5e7d5f\np3Bjs93NAboMQhYAHGInld5bNbBPliLGaNf+gN1NAboMQhYAHCK2ZyGL3g/D4neg4whZAHCIg3sW\nErIOxeJ3oOMIWQBwgDFGu/YFVJCdpow0j93NSSon5KYrI9XN4negAwhZAHBAlT+kQEMjRUhb4XA4\nNLBvlvZXNSjQ0Gh3c4AugZAFAAd8dmC90Um9CVmtGXhgynAHo1nAMSFkAcABn+6pkSQN7p9tc0uS\n06ADi9+37Kq2uSVA10DIAoADPtldI5fToZMPjNjgcKeflKsUj1Mbtu6XMWwWDbSHkAUAkkKNzdq1\nz68BvXxK9VDpvTWpHpeKB+VrX1WD9pSxWTTQHkIWAKhlnVFzxDBV2I5zh5wgSXp/636bWwIkP0IW\nAKhlqlCSTu1HyGpL8Sn58ridem8LIQtoDyELAMSi92OVluLWWYPyVVpRrz3lTBkCbSFkAejxIsZo\n254aFeakKdubandzkt65pxVKkjYwmgW0iZAFoMcrrahXXbBJp/bLsbspXcLZpxbI7XKwLgtoByEL\nQI/36e6Wuk9MFR6b9FS3zhyYr91ldSqtYMoQOBpCFoAe71MWvXfYiOiU4dYym1sCJC+33Q0AALt9\nsqdG6alu9S3MtLspXcawwQVyOVumDK++4OS4vW5Tc0Rl1Q3aX9Xyv5q6sE48wauhA3OVlsJ/stC1\n8I0F0KPV1IW1v6pBZw7Kk9PhsLs5XUZGmkdDB+Zp47YK7a+q1wm5Gcf1esYYrf7HHv1m9TYFw82x\nx51Ohz7aXqmtu6o0ZECuziBsoQvhmwqgR9sWLd3AVGGHjTitUBu3VegvG3ar5LKiTr+Ovz6sF/60\nRR98Wq7MNLeKTszWCbkZOiE3XWkpLn3yeY02b6/Q5u2V2rKrShcP66e+BYw6IvmxJgtAjxZbj9Wf\nOws7atTpvdQrN12r3t8dC6sd9c8dlXr4P/+uDz4t1+kn5eqxW0fp/KG9NahvlrzpHrldTp1+cq6u\nGzdI5w05QZGI9PaHpaoPNsb5aoD4I2QB6NE+2VMtp8OhQWwK3WEpHpduvup0GUn/+ad/qbGpud1z\noowx+uO6HXp6+QcK1Dfq6xcN0v/3b+co19d6nbJo2Dp3SKFCjc1a82GpIhE2qUZyI2QB6LEam5q1\n8wu/BvTyKjWFTaE7o+jEHF06vL9KK+r1+7U7jumccGOzfvr7j/Tams+Um5Wq7/77CH119MlyOttf\nE3fagByd1Mur/VUN+nBbxXG2HrAWIQtAj7VtT62amo1OpT7Wcfn6xYOUn5Wm//nbLu38wt/msVX+\nkJ749f+vv/9rv07tl605N56nQX2PfRTR4XBo9Jm95U33aNO2Cu1lax8kMUIWgB5r8/ZKSdKZA/Ns\nbknXlpbi1k1XDVHEGP3nn/6lpubIEcc0NUf09od79dgv39POL/y68Kw+enDyMGVnpnT4/VI8Lo07\np4+cDumdjaVqCDXF4zKAuOPuQgA91ubtFXK7HDrtxFy7m9LlDT05T2OL++jtjaV64CdrNbyoUMNP\nK9QpfbO1dlOp/vfvu1RZG5LL6dC3LjlVl593ohzHUTKjIDtdw4sK9f7WMm3cVqFRZ/SK49UA8UHI\nAtAj1dSFtWtfQKeflMt6rDj51qWD5XE79d6W/Vr9wV6t/mBv7LkUj1NXnHeiJowccNTF7R015KRc\n/WtnlT7dXaOzT82nfhaSDt9IAD3SR9tbFk2fOYipwnhJT3Xr3684TSWXFemT3dXasLVMn+6p0ZmD\n8nXZuf2VldHxqcG2OJ0OnXFynt7bsl9bdlbrnMEFcX194HgRsgD0SNH1WGcNzLe5Jd2P0+nQaQNy\nddoA66dhT+2frY3bKrRlV5WGDsyTx81SYyQPvo0AepyIMdr8WaVyvCnqx36FXZrH7dRpA3IUbozE\nCssCyYKQBaDH2bXPr0BDo4YOzDuuxddIDkNOypHL6dBHOyopUIqkQsgC0ONs/ixauoGpwu4gLcWt\nwf2zVR9s0vbSWrubA8QQsgD0OJs/q5BD0lDqY3UbZ5ycJ4dD+mh7pYxhNAvJgZAFoEdpCDVp295a\nndynZQNidA/eDI9O7u1TdSCsPVSBR5IgZAHoUf61s0rNEUOV927o9JNbPtNte5gyRHIgZAHoUTZ/\n1lIf66xBrMfqbvKzUpWVmaLd+wMKNzXb3RyAkAWg5zDGaPP2SqWnujWwr8/u5iDOHA6HBvXxqTli\ntOuLgN3NAQhZAHqOLyrrVV4T1Bkn58rl5M9fdzSwb5YkcZchkgIV3wH0GL9ZvU2SlJbi0uoP9tjc\nGljBl5Giguw0fVFRr+pASDne+OyTCHQG/5QD0GPsKK2V0+HQiSd47W4KLDSob5aMpL//c5/dTUEP\nR8gC0CPsLa9TdSCsvoWZSvG47G4OLHRSb58cDmk9IQs2I2QB6BHe37JfknRybxa8d3fpqW71LcjU\nzi/8Kq2gZhbsQ8gC0CO8t2W/nE6H+p/AhtA9wcA+LQvg13/EaBbsQ8gC0O3tKQtoT3md+hVkKsXN\nVE6MsRcAACAASURBVGFPcOIJXqV6XHr3n1+wzQ5sQ8gC0O29x1Rhj+NxOzWsqEBl1UFt20s5B9iD\nkAWgWzPG6L0t++VxO9Wfuwp7lFGn95J0cD0ekGiELADd2p7yOpVW1Kt4UL48bv7k9SRnnJyrVI9L\nH3xSzpQhbNHpYqTXXXedvN6WfxX2799fd911l2bOnCmHw6HBgwdr7ty5cjqdWrFihZYvXy63262p\nU6dq/PjxcWs8ALTnvX+1jGKcd/oJqg812dwaJJLH7dKZg/K0YWuZ9pbXqV8hI5lIrE6FrFAoJGOM\nli1bFnvsrrvu0rRp0zRq1Cg9/PDDWrVqlc455xwtW7ZMK1euVCgUUklJicaMGaOUlJS4XQAAHE10\nqjDF7VTxKfn6G3WTepxhgwu0Yev/a+/Og+Oq7nyBf2/vq7pb6ta+S95tecGxDV7GjD045DF4xhs4\nCc4LSwHvkaT4IwWkhoR6AYdUPfJSARLmhUleajKpsEwyIbwKkLwANghkvMi2ZGuxLGtfWkurV/V2\nz/ujbWENlrFltW4v30+VynZ336vfPX19+9v3nnuOGyfaRxiyaN7N6tx5S0sLQqEQ7r33Xhw4cACN\njY1obm7GunXrAABbtmxBfX09Tp06hdWrV0On08FqtaK8vBwtLS1zugFERDPpHvJjcCyIupo8GHSc\nRSwb1dU4oZIknGgfUboUykKzOuoYDAbcd9992Lt3Ly5cuIAHHngAQghIkgQAMJvN8Pl88Pv9sFo/\nvZvHbDbD7+fM6ER0fWY7z+DHzYMAgByzjnMVXsVctc3WVSVzsp65ZDFqsbDMhpZuD8Z9YTisnMuQ\n5s+sQlZVVRUqKiogSRKqqqpgt9vR3Nw89XwgEEBOTg4sFgsCgcC0xy8PXTNxOEzQpMlYNi4XbwlX\nAttdOUq0vdViuO5lIrE4Ogd8sBi1WFSVB9XFL4HpbDbtMJ/mat+Yq+28VM/m1aVo6fagY8iP26ud\ns14Pzb90b/tZhazXX38dbW1teOqppzA0NAS/34+NGzeioaEB69evx6FDh7BhwwbU1dXhxz/+McLh\nMCKRCDo6OrBw4cLPXf/4eHA2Zc07l8sKt9undBlZh+2uHKXa3uefvO5l2no8iMZkLK10IBAIJ6Gq\n+WW1GGbVDvNprvaNudrOS/UsKEp8UB8+3ou1tXnXtQ4eb5STTm0/UxicVcjas2cPnnjiCezfvx+S\nJOHgwYNwOBx48skn8aMf/QjV1dXYsWMH1Go17rnnHnz5y1+GEAKPPvoo9HqeqiWi5Gvv8UACsKDU\npnQppDCn3YhSlwVnu8YQCsdg1LN/Hs2PWe1pOp0Ozz333Gce//Wvf/2Zx/bt24d9+/bN5tcQEc3K\n6MQkRr1hlOZbYDJolS6HUsDqBU78sd6P5s4xrF2cr3Q5lCU4Mh8RZZy2Hg8AYGEZz2JRwuqFib5Y\nJ9rdCldC2YQhi4gySjQmo3PAC7NBg2KnWelyKEVUFFjhsOpxqmMUsbisdDmUJRiyiCijdPZ7EYsL\nLCi1ZcQdhTQ3JEnCqgVOBCZjaO+dULocyhIMWUSUMYQQaOv1QJKA2lK70uVQilldm7hkePIcByal\n+cGQRUQZw+2ZxJg3jFKXBSYD7yCj6RaV26HXqnGyY1TpUihLMGQRUcZoOp/48Fxa6VC4EkpFWo0a\nSysdGBoLYihNxmOk9MaQRUQZYdw3iV53AC67EfkOo9LlUIqqq0kMRnrqHM9mUfIxZBFRRjh9fgwA\nsKImd2oeVaL/rK7mYr+sDvbLouRjpwUiSnveQARdAz44rHqUcNgGxaTaJNwz1ZObo0dL1zj+fLQH\nWs3VzzXs/bvFySiNsgTPZBFR2mvuHIMAsLyaZ7Ho85W4LJAFMDAaULoUynAMWUSU1oKTUXT0eWE1\naVFReOVJWokuV+pKnO3sdTNkUXIxZBFRWjtzYRyyEFhelcvBR+ma5NkMMOjU6HP7IYRQuhzKYAxZ\nRJS2JiMxtPV4YNJrUF2So3Q5lCZUkoRipxmhcBxj3rDS5VAGY8giorTV2D6KWFxgWXUu1Coezuja\nfXrJ0K9wJZTJeFQiorQ07gujvceDHLMOi8o4hQ5dn2KnGZLEflmUXAxZRJR2hBA42jIMAWDtYhdU\nKvbFouuj06qR7zBidGISoXBM6XIoQzFkEVHa6XMHMDAaRFGeieNi0ayVuiwAEvsTUTIwZBFRWpFl\ngaOtbkgAvrA4n+Ni0axdClnsl0XJwpBFRGmltdsDbyCCheV22K16pcuhNGaz6JBj0qJ/JIB4XFa6\nHMpADFlElDZC4RhOdoxAq1FhZW2e0uVQBijNtyAWFxgYCypdCmUghiwiSgtCCNQ3DSISlbGq1gmD\njlOv0o0ry794yXCYlwxp7jFkEVFaaO3xoM8dQFGeCYsrOGQDzQ2X3QidVoWe4QBHf6c5x5BFRCnP\n4w/jWIsbOq0KG1cUsbM7zRmVSkKpy4JQOMbR32nOMWQRUUqLxmQcPjmAuCxwy/JCmAy8TEhz69Il\nwx5eMqQ5xpBFRCnt94fPY9wXRm2pDeUFVqXLoQxU7DRDJUkMWTTnGLKIKGV91DSItxq6YTVp8YXF\n+UqXQxlKq1GhMM+IcV8Y/lBU6XIogzBkEVFKOtbqxr/837Mw6TX4m1XF0Gp4uKLk4cCklAw8ahFR\nymnqHMU/v9EErUaFR/etRG6OQemSKMOVcigHSgKGLCJKKW09Hrzw76cBSPjm7hWoKbEpXRJlAYtR\nC4dVj8HRICKxuNLlUIZgyCKilNFwZgj/67WTiMsC//0fl2NJZa7SJVEWKcu3QBZAPyeMpjnCkEVE\niguFY3j5zTP45zeaAQE8tHMZVtY6lS6Lskx5QeKSYdegT+FKKFNwwBkiUtT5fi/+9xvNGPaEUFlo\nxYN3LkNBrknpsigLOax65Ji06HUHEI3JvNmCbhhDFhHNOyEE2nsn8PaRbjS2jwAAvrShAv+wuQoa\nNT/YSBmSJKGyKAenOkbRO+xHVXGO0iVRmmPIIqJ5E5yM4VTHCP58tBedA14AQFVRDvZsrcGSCofC\n1REBlYVWnOoYxYVBH0MW3TCGLCJKGlkIDIwEcPr8GE51jKC9dwJxWUACsHqBEzvWlWNBqY1zEVLK\nsFv1sFt06HMHEInyLkO6MQxZRDRnorE4Ogd8ONc3gfYeD871TSAwGZt6vqrIihXVediwrBCF7HdF\nKaqy0IrGc6OcZoduGEMWEc2aNxBBR98E2vsm0N7rQdegD7G4mHreaTOgriYPSytzsbw6DzazTsFq\nia5NZVEOGs8lLhkS3QiGLCK6JrG4jHM9HhxtHkBH3wTO9U1gZGJy6nmVJKG8wILaUhsWlNpRW2KD\nw6pXsGKi2ckx6+Cw6tE/EoAvGFG6HEpjDFlE9Bn+UBSDo0EMjAbQPxpAZ78XFwZ9iMTkqdeYDRrU\n1eShujgHC0psqCrOgUHHQwplhsoiK060hfHR6QGsruaguDQ7PCISZTFvMILuQR/6RwIYGAtiYDSI\nwdEAvMHotNdJElDitGB5rRMluUZUF+egMNfEDuuUsSoLrTjRNoLDjX0MWTRrDFlEWWRoLIjjbW6c\n65tA15APY97wtOclAE67AXVFOSjKM6Eoz4zCXBPK8i0w6jVwuaxwu9lPhTKf1aRDns2AU+dG4A1G\nkGNif0K6fgxZRBlueDyII2eH8UnL8LS7pXJMWqyozkNFoRWlLvPFQGWEVqNWsFqi1FFVaMXoxCSO\nnBnC9rVlSpdDaYghiyhDuT0h/MfhTnzcPAgBQK2SUFeThy8szsfSylzYLTpe7iO6iqriHDSeG8G7\nJ/qw7aZS/n+h68aQRZRhPP4w/lh/AYca+xGXBUpdFuxYV4bVC5wwGbRKl0eUNox6DTbWleD9E71o\n7fZgMWcloOvEkEWUIYQQqG8axK//3IZwJI58hxH/sLkK65YUQMVv4ESzcvstlXj/RC/ePdHHkEXX\njSGLKAMEJqP417dbceTsMIx6Ne7ZsQib64o42TLRDVpalYtSlxnH29zw+MOwWzj2G107hiyiFPFe\nY9+slhsaC+LwqQEEJ2Nw2Q3YVFcESQI+OD0wxxUCVosBPv/k57+QKENIkoRb15TiX99uxeGT/fj7\njVVKl0RphF9zidKUEAJnu8bxzpEehCZjWFmbhx3rymHlreZEc2rD0gLodWq819iPuCx//gJEFzFk\nEaUhWRZoODOET84OQ69T47b1ZVhZ64RKxb5XRHPNqNfgluWFGPeFcfLcqNLlUBphyCJKM+FIHH85\n2ou2ngk4rHp86eYKFDhMSpdFlNFuXV0CAHj3xOwu61N2Yp8sojQy4Y/gr8d74QtGUZZvwaa6Img1\n/K5ElGylLgsWltrQ3DmGwbEgCnP5xYY+H4/ORGmifySAP33cBV8wiuVVudi6upgBi2ge/e1NpQCA\nNz7sVLgSShc8QhOlgZbucfy/Y72IxQU2rijEmkUujj5NNM/WLs5HeYEFHzcPoWuQc3jS52PIIkph\ncVlGw5khHDkzDL1WjdvWlaKmxKZ0WURZSSVJ2HdrLQDg1XfPQQihcEWU6tgniyhFeQMRHDrZjzFv\nGHaLDn+7phQWE6fFIVLS0spcLK/ORdP5MZw+P4q6GqfSJVEK45ksohQjhMC53gm8WX8BY94wakts\nuH1DBQMWUYrYt7UWkgS89m4Hx82iq2LIIkohgVAUh04OoL5pEJIkYfPKItyyopAd3IlSSGm+BRtX\nFKFvJIAPTw8qXQ6lMB65iVJAYDKKY63D+P3hTnQN+uC0GXDHLRWoKspRujQiuoJ/3FwNnUaF3x8+\nj3AkrnQ5lKLYJ4tIQeO+MOqbBvBWQzcCkzGYDBqsqnWiuiQHKt49SJSyHFY9bltXhjfru/Drd1px\n739Zwjt+6TMYsiirzXZS5hsxGYmhe9CPzgEvhsZDAACdRoU1C51YXOGARs0TzETp4I6bK9F0fgwf\nNg2iLN+C29aVz/jauTrWbF1VMifrofnBkEWUJPG4DH8oCl8oinFvGKPeSYx5w/CHolOvyXcYUVVk\nRWVRDvRatYLVEtH10mnV+MbuOvyP//MJXnn3HIqdZiyvzlO6LEohDFlENyASjWPcH4YvEIU/lPjx\nBSPwh6IIhT/bT0OvVaPYaUJRnhmVhVaYjbxjkCidOax6PLJ7BX74byfw0h+a8U9fW8spd2gKQxbR\nNYrFZYx4JjE0HsSoN4xx7yQCk7HPvE6SALNBi8JcPSxGLSwmLewWHXJzDDAbNOy3QZRhaopt+K+3\nL8LLb57FT14/hce/sgY5Zp3SZVEKYMgimoEQAqPeMHqH/RgcC2LEMwn5shGeDTo1ivJMcFj1sJl1\nsJi0sBi1MBu0UKkYpIiyyS3Li9DrDuCthm58918a8LXbF2P1ApfSZZHCGLKILhOXBQZGA+gZ8qPX\n7Z+65CcByM3RoyDXhIJcE5w2A4x6/vchok/t2VoDu1mH198/j+f//TQ21RVh/7YFPFZkMb7zlPVk\nITA0FkTngA/dQz5EookRnPVaNWqKc1Cab0FRngk6dkwnoqtQSRJuW1eOZVW5+Pkfz+CDUwNo6RrH\n5pXFiMXjsFv07C6QZRiyKCvJF6euaTgzhK5BHyYvDiZo1GuwpMKGikILnHYjx6oioutW4rLgn762\nFn/4oBNvNXTj94fOAwBMBg1KnGYY9RrotCpoNWpoNSoIISDLArIAhCwgi4s/soBAYogXnVYNvVaN\n7iEfXHYjz46lCb5LlDWEELgw6MORs0M4cnYY474wgMQZq4VldlQVWZHvMPKbJhHdMI1ahd1/U4Md\n68rR1DmKdz7pQb87gPbeiRta71+O9gIAbBYdinITdyqXF1hQWZiDEpeZ4+ylGIYsynh9bj8azg7h\nyJlhDHsSg38a9RpsWlEEg16NwlwTO6oTUVJYjFpsWFqIyUgcsizg8YcRjsYRjcmIRGXE4jIkKXGp\nUaWSIF38U3XxMUhANCojHI0jEo0jN8eAobEgBseCaOn2oKXbM/W7NGoJpS4LKotyUFloRWWhFcVO\nBi8lMWRRRvIGI2hoHkJ90yC6hnwAEmesNiwtwBeW5GN5VR60GpUiI74TUXZSqSTk5hhuaB2Xj/ge\nicYxMBpE15APFwa8uDDoQ6/bjwuDvqnXaNQqlOVbpkJXRaEVRXlmTjo/TxiyKGNEYzJOnhtBfdMg\nTp8fRVwWUKskrKp1YsOyAqysdXJUdSLKGDqtGhUXg9OWlcUAEuP59bkDuDCYCF0XBhM39HQOeKeW\nU0kSCnKNKHVZUOIyo8RpQWm+GS6bkWf155gkxGUD/6QIt9v3+S9KAS6XNam1ptpZllSZM8vlsuK1\nP7cASPSzGpmYREefFxcGvVN3Bubm6FFTbENlkZUdROeQ1WKAzz+pdBlZiW2vjExo97gsw+OLYHRi\nEmO+SYz7wvD4I4jG5GmvU6sk2C162K062C16OKx62C16mAxXPoYm+zMh2Z+xc8nlsl7xcX76UFoK\nhKI43+9FR78X3kAEAGDUq7G00oGaEhscVr3CFRIRpQa1SoU8mwF5tk8vVQohEJyMYdwfhudi6Br3\nhTHuT8yzejmLUQuX3YB8hwkFDiNsFh1vELpGDFmUNiYjMRxrdeNo2ymcbB8BkPjmVVloRU2JDUV5\n7MBORHQtJEmC2aiF2ahFqcsy9bgsC/iCkanQNeadhNszic4BHzoHEmeVTAYNSl1m2M16LKl0sBvG\nVTBkUUqLyzJauz2obxrEsVY3wtHEeFb5DiNqinNQUWjlIKFERHNEpZJgs+hhs+hRUZi4BCaEgDcQ\nwfB4CANjQfSPBNDWM4G2nlPQalRYWZOH9UsLUFeTB62Gx+PLMWRRypFlgfZeD460DONYyzC8wSgA\nwGkzYMfyMtyxpRYfnOhRuEoiouwgSZ8GrwVldsiywMhECGqVCsfb3Djamvgx6NRYs9CFjcsLsajC\nwcGcwZCVEiYjMQyMBjE8HsLweOJPXyiKobEgYnGBmJzonKhRqaBRS1CrVdBqVJeNAvzpaMA6rQo6\njRpqtQQJEi7t43FZIBqTEz9xGZFoHOFIHOHoxZ/I5X/KiMsyLr8lQq2W8FZDN8yGxCTIdosOLrsR\n+Q4jXPbEj9mgmdV1eiEEhj0hnO0aR0vXOM52jcN3MVhZTVpsXV2C9UvysaDMDpUkweU033CbExHR\n7KhUEvIdJmxdVYJdW6rRM+xHw5khHDmbGDanvmkQeTkGbFxRiFtWFCHfblS6ZMUwZClgzDuJ1h4P\nzvVNoKNvAj3Dfsx0j6daJU0NJBeLRxGXk3czqCQlxpIy6NTQqDUAEgPhAUA8LiMciWN0YnLGGox6\nNVy2ROByWPWwmLSwmnSwGrXQqFWIy3IiNMZlePxhDI2FMDSeGFTvUqgCAIdVjy0ri/CFJQVYXG6H\nWsXxXIiIUpEkSSgvsKK8wIrdW2vQ3uPBh02D+KRlGG98eAFvfHgBC8vs2LSiCGsXu2DQZVfsyK6t\nVUg4EkdrzziaOsfQ3DmGgdHg1HMatQq1JTaUF1hR4DBOu3vjo+bBz5wZEkJMBZVLIwBHpkYDlhGJ\nxadGEQaAS3FIJUlTZ7+0GhV0WhX0F89+6XWJP7Ua1VXPRG1dVQIhBMLROMZ9Ybg9IQyPh+D2TMLt\nCcE9EcLgeBDdw/5rbhtJAlw2IxaW2bG0woHFFQ4U5pp45woRUZpRSRIWlTuwqNyBL29fgGOtbnx4\negAt3R609Xjwb39uw02LXFi/tABLKhxZMRI9Q1YSCCHQM+xHc+cYmjrH0N7rQSyeiDt6rRora/Kw\npMKB2lI7ygssM+5oVwoakiRBq0kEJiXGf5IkCQadBkV5GhTlffaynRAC3mAUHl8YvlAEvmAUvmAU\nsiygVkvQqBKXO60mLQpzTXDZjVnxH42IKJsYdBpsXFGEjSuKMOIJ4cOmQXx4emDqcqLZoMFNi1xY\nuzgfi8ocGTsCfdI/pWVZxlNPPYXW1lbodDo8/fTTqKioSPavnVeyLNDr9qP1Ylpv7fHAH/r08ld5\ngQXLq/KwrCoXtSW2jN2ZgIsdJM062Mw6pUshIqIU4LQbsXNTFf5+YyU6+ibwydlhfNI6jEMnB3Do\n5AB0WhUWlTmwvCoXS6tyE8PxZMjVjKSHrL/85S+IRCJ45ZVX0NjYiGeffRY/+9nPkv1rk0IWAhP+\nCEYmQugbCcDtDaOtaww9w/6pkcaBRJ+im5cVYnl1LpZW5jJwEBFR1lNJEhaU2rGg1I67ty1Ae68H\nJ9pH0NQ5htPnR3H6/CiARP/eigIrllY7kW/To8BhQr7DmJazdyS94mPHjmHz5s0AgFWrVqGpqSnZ\nv/JzRWNx9I0EEIkm7rSbuusuFp/6eygcS1zqCkXhC0Yu9kGanOrrdIlaJaEoz4zKIisWldmxsMwO\np83APkVEREQzUKk+7b8FJG4Ia+4cQ0v3OC4M+tDa7UFLt2faMlaTFk6bETazDlaTFjlmHcwGLfRa\nFTSX+htr1FP9jzUaFRwW/Q1Pyn0jkh6y/H4/LJZPR5NVq9WIxWLQaJRLpD/7j2Y0nhu5rmXMBg1K\nXObEcAU2AwpyTVi5uAAmNTj4GhER0Q3IzTFg88pibL440XUoHMPEZByn2obhHg9hyBOEezyE7iHf\ndd1lL0nA//xvGxWbai3pScdisSAQCEz9W5blzw1YM020OFe+//DGpK5/ruz9u8VKl5Cy2DZERJlv\nRa1T6RJuSNJ7YK9ZswaHDh0CADQ2NmLhwoXJ/pVEREREipOEmGkYzLlx6e7CtrY2CCFw8OBB1NTU\nJPNXEhERESku6SGLiIiIKBtl7oBNRERERApiyCIiIiJKAoYsIiIioiRIv+FTk2RychLf/va3MTo6\nCrPZjB/+8IfIzc2d9ppXX30Vv/3tb6HRaPDwww/j1ltvvepy8Xgcjz76KPbs2YMtW7YAAB5++GGM\nj49Dq9VCr9fj5ZdfnvdtTTXz1fYvvPAC3nvvPWg0GnznO99BXV3dvG9rKpnrdm9sbMQzzzwDtVqN\nTZs24ZFHHgHAff6Sz5ti7K9//StefPFFaDQa7N69G/v27Ztxma6uLjz++OOQJAkLFizA9773PahU\nqiu+XzQ/bf/000/j+PHjMJsTc7r+9Kc/hdWa3OGI0sFctv0lBw8eRFVVFfbv3w/gyseplCFICCHE\nL37xC/GTn/xECCHEm2++Kb7//e9Pe354eFjccccdIhwOC6/XO/X3mZbr6uoSd911l9i6dat4//33\np9Zz++23C1mW52mr0sN8tH1TU5O45557hCzLoq+vT+zatWsetzA1zXW733nnnaKrq0vIsizuv/9+\n0dzcLITgPn/J22+/LR577DEhhBAnTpwQDz300NRzkUhEbN++XXg8HhEOh8WuXbuE2+2ecZkHH3xQ\nfPzxx0IIIZ588knxzjvvzPh+UfLbXggh7r77bjE6Ojqfm5UW5rLtR0dHxX333Se2bdsmfvOb3wgh\nZj5OpQpeLrzo8ul/tmzZgo8++mja86dOncLq1auh0+lgtVpRXl6OlpaWGZcLBoN45plnsH79+ql1\njIyMwOv14qGHHsL+/fvx7rvvztPWpbb5aPtjx45h06ZNkCQJxcXFiMfjGBsbm6ctTE1z2e5+vx+R\nSATl5eWQJAmbNm1CfX099/nLXG2KsY6ODpSXl8Nms0Gn0+Gmm27CJ598MuMyzc3NWLduHYDEe1Bf\nXz/j+0XJb3tZltHV1YXvfve7uPvuu/H666/P8xamrrls+0AggG984xvYuXPn1DpSfb/PysuFr732\nGn71q19NeywvL2/q1K7ZbIbP55v2vN/vn3bq12w2w+/3T3v88uUWL/7siOTRaBT33nsvDhw4gImJ\nCezfvx91dXXIy8ub0+1LZUq1vd/vh91un7YOn8/3mctjmSrZ7f6fp88ym83o6enhPn+Zq00xdrW2\nvtIyQoip+VEvfw+utA5KftsHg0F89atfxde//nXE43EcOHAAy5cvv+KxKNvMZduXlZWhrKxsaoDz\nS+tP5f0+K0PW3r17sXfv3mmPPfLII1PT/wQCAeTk5Ex7/j9PDxQIBGC1Wqc9fqXlLud0OnH33XdD\no9EgLy8PS5YsQWdnZ1Z94CjV9jOtI1sku92v9NqcnBzu85e52hRj19LWly+jUqmmvXam9yCb9vGr\nSXbbG41GHDhwAEajEQCwYcMGtLS0MGRhbtv+Wtafavs9LxdetGbNGrz//vsAgEOHDuGmm26a9nxd\nXR2OHTuGcDgMn8+Hjo4OLFy48HOXu1x9fT2+9a1vAUjsCO3t7aiurk7SFqWP+Wj7NWvW4IMPPoAs\ny+jv74csy1lzFmsmc9nuFosFWq0W3d3dEELggw8+wNq1a7nPX+ZqU4zV1NSgq6sLHo8HkUgER48e\nxerVq2dcZunSpWhoaACQeA/Wrl074/tFyW/7CxcuYP/+/YjH44hGozh+/DiWLVs2z1uZmuay7a8k\n1fd7jvh+USgUwmOPPQa32w2tVovnnnsOLpcLv/zlL1FeXo5t27bh1VdfxSuvvAIhBB588EHs2LFj\nxuUuefzxx/GlL31p6g63Z555BidPnoRKpcL999+P7du3K7XJKWO+2v7555/HoUOHIMsynnjiCaxd\nu1apTU4Jc93ujY2NOHjwIOLxODZt2oRHH30UAPf5S640xdiZM2cQDAZx1113Td1lJYTA7t278ZWv\nfGXGack6Ozvx5JNPIhqNorq6Gk8//TTUavUV3y+an7Z/+eWX8ac//QlarRY7d+6cuvMt281l21/y\n/PPPw+l0Tru7MFX3e4YsIiIioiTg5UIiIiKiJGDIIiIiIkoChiwiIiKiJGDIIiIiIkoChiwiIiKi\nJGDIIqKM9vjjj+Oll17CAw88AADo7+/HF7/4RezatQs+nw+7du3Czp070dnZqXClRJRpGLKIKOPl\n5+fj5z//OQDgyJEjWLZsGX73u9+hpaUFOp0Of/jDH1BVVaVwlUSUaThOFhFlFCEEnn32Wbz3Mm4q\n4wAAAR9JREFU3nvIz89HPB7Hnj178MILL+DFF1/Eww8/jGAwiG3btuHo0aMYGRnB+vXr8dJLLyld\nOhFlmKycu5CIMtfbb7+NM2fO4M0334TP58Odd9459dySJUvwzW9+E0eOHMEPfvADNDQ04IUXXmDA\nIqKk4OVCIsooR44cwW233QatVovc3NypaZWIiOYbQxYRZRRJkiDL8tS/NRqesCciZTBkEVFGufnm\nm/HWW28hEolgYmIChw8fVrokIspS/IpHRBll+/btOH36NO644w44nU7U1NQoXRIRZSneXUhERESU\nBLxcSERERJQEDFlEREREScCQRURERJQEDFlEREREScCQRURERJQEDFlEREREScCQRURERJQEDFlE\nRERESfD/AXZaow4oj9opAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAGkCAYAAABw5S9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVPX+B/D3mY0Z9n0RRQXcchc1TU3DzHZNKy0jS8tr\ndatbv3tLLa8tamU3b2W22ap1S0tTUTMrzS3NLXFHBZFFZN8ZmO38/kAIcIABZubM8n49Dw8MZ5nP\noPCez/d8zzmCKIoiiIiIyG5kUhdARETkbhi+REREdsbwJSIisjOGLxERkZ0xfImIiOyM4UtERGRn\nCqkLsIW8vDKL1w0I8ERRUaUNq5GeO7xGgK/TlbjDawRa9zpDQnxsXA3Zk9t3vgqFXOoSbM4dXiPg\n+q+zqKwaaZdLIchc/9fW1f8ta7nL66SruWTnS+RKDEYTfjqQjo1706A3mODrpULfroGYNDoGAT4e\nUpdHRG3g+m+hiZxYSYUOL39+EGt3pkKlkKFP10CIooi9Jy7j7e+SUKUzSF0iEbUBO18iByWKIj7d\nfApZ+RXo2zUQNwyKhFqlgJ+fBmt+TkZSSgE+3ngKf5/UFzKZIHW5RNQK7HyJHNT2I1k4kVqILuE+\nuPnaKKhVNe+VBUHAjYM7oXOYN46ez8cPu1MlrpSIWovhS+SAsvLKsWbHeWg85Lh1WGcIQsPOVi4T\nMGFkV/h7q/Dj/ovIKXT9mcFEroThS+RgRFHEV9vOQm8w4eahUfDWKM2up1YpMLp/B5hEsPslcjIM\nXyIHc/piEZIzihHdwRfdOvo3u273Tv4IC9TgwOlcXLxs+fntRCQthi+RAxFFsa6LHdk3osX1BUHA\n6P4dAABrd6XYtDYish6GL5EDOZ5aiJSsUnTr6IfwQE+LtukS7ouoMG+cSC3EucxiG1dIRNbA8CVy\nEKIoYv2VrndEn5a73vpq1//5YIbV6yIi62P4EjmIU2lFSLtchh6d/BEaoGnVth1DvBDqr8GRs3ko\nKKmyUYVEZC0MXyIHsfVAOgBgaK+wVm8rCALieoTAJALb/8y0dmlEZGUMXyIHkJFbjpMXCtEp1BsR\nQZYd622sV+cAeHoosPPoJVTrjVaukIisieFL5AC2Xel6h/QMbfM+FHIZ+scGobLKgP0nL1urNCKy\nAYYvkcSKyqqx/1QOAn09ENPBt137GhAbApkA/Ho4E6IoWqlCIrI2hi+RxLYfyYTRJGJwj9CrLiPZ\nWj6eSnTr6I/MvAqkZJVaqUIisjaGL5GEqnQG7DiSBU8PBXp3CbTKPgfEBgMAdnDiFZHDYvgSSWjP\nsWxUVhswsFswlArr/DpGhXkj0NcDB8/koqxSZ5V9EpF1MXyJJGIyidh2MAMKuYCB3YKttl9BEDAg\nJhgGo4i9xznxisgRMXyJJHLkbB7yS6rQu2sgPNXm71zUVr27BkIhF/Dbn1kwceIVkcNh+BJJQBTF\nuotqDO7R9tOLmqLxUKBXVAByi7U4kVpo9f0TUfswfIkkcCa9GKmXShEb6YcgX7VNnmNg9xAAwC+H\neb1nIkfD8CWSwKbf0wAAw3u3/lKSlgoP9ETHEC+cSC1EdkGFzZ6HiFqP4UtkZ+czS3D6YhG6hPsg\nIsjLps8Vd6X7/fUwTzsiciQMXyI727QvDQAwvHe4zZ+rW0d/+Hgqsfd4NiqrDDZ/PiKyDMOXyI7S\nLpfiWEoBOoZ4o1Oot82fTyYTMKhbCKr1Juw+dsnmz0dElmH4EtmJKIr4/rcUAMCIPrbvemv1iwmC\nSiHD1j/SoTfwbkdEjoDhS2QnJy4U4lRaEbqG+6BzuI/dnlfjocDAbsEoqdBh51F2v0SOgOFLZAcm\nk4g1288DAEYPiLT78w/pGQqlXIYt+y+y+yVyAAxfIjvYeyIbWfkV6NM1EKEBGrs/v6daiYHdglFc\nrsPuY9l2f34iaojhS2RjFVV6rNuZCoVcwKh+EZLVMaRXTfe7+feLqNax+yWSEsOXyMZWbz+Pkgod\nrusdDh9PlWR1eKmViOsRgqLyamz8/YJkdRARw5fIpk6lFWLPsWyEBmgwpJftrmZlqeG9w+HnpcJP\nBzKQmVcudTlEbovhS2Qj1Tojvtx6BoIA3Dw0CnKZIHVJUCpkuHFwR5hMIlb+lMw7HhFJhOFLZAOi\nWBNuecVVGNIjFOGBnlKXVCemgx96dPLH+cwS/HyQN10gkgLDl8gGdiZdwr6TlxER5ImREk6yakr8\noI7wUiuwZsd5HD2fL3U5RG6H4UtkZWmXS/G/n89CrZLjzhFdoZA73q+Zj6cSk66Phlwm4KMNJ5Ce\nUyZ1SURuxfH+KhA5sdxiLd757hgMRhG3D+8CPy/pZje3JCLIC7cN64xqvQn/+fYoTlwokLokIreh\nkLoAIldRXF6Nt779EyUVOsQPikR0B1+pS2pRj6gAjNcZ8fPhTPx3dRJuu64zbh3WGWpV838aKqsM\nyMgtQ2ZeBcq1emirDZDLBAT7qRESoEG3jv7wUMrt9CqInA/Dl8gKSip0WLr6KPKKq3Bdn3AM7hEq\ndUkW6x8bjNAAT2zcewGbfr+Inw9mYEjPMPSIqrkdoVIuQ2FZNQpKqpCRV470nDLkFVc1u08PpQz9\nYoJxff8OuKZLAARB+pneRI6E4UvUTpcLK7F09VHkl1RhUPcQu96xyFoigjwx/eYeOJSchxMXCrHn\neDb2HDd/GUqNhxydw3wQFqBBaIAGXmolVEo5jCYTSip0yCvW4lxGCQ6eycXBM7noGeWPyWNiENPB\nz86vishxMXyJ2uFsRjHeW3cM5VoDrusTjhF9wp22y1OrFBjZNwIj+oQjM68CRWXVqKzWw2AU4aNR\nwtdLhSBfNXw8lU2+xo4hNZ9H9++Ay4WV2HviMs6kF2PRysO4cXBH3D06BioORxMxfInawiSK2LLv\nItbvToUIYPyQTugfGyx1WVYhCAI6hXqjU6h3u/YREeSFu0fHID23DNsOZuCXQ5k4eaEQf7uzN6LC\n7HdLRSJHxNnORK2UW1SJt749inW7UuGlVmJqfDeXCV5biAr1wfTxPRHXPQTZBZVYtOow9p28LHVZ\nRJJi50tkIb3BiK1/pCPx9zQYjCJiIn1xy7Wd4enBX6OWKBUyjI3riM7hPti8Lw0rEk8hLbsM98bH\nQC5jD0Duh381iFpgMJqw93g2Nu5NQ1FZNbw1SsQPikSPTv5Oe3xXKrGRfki4qQd+2H0BPx/KQEZu\nGWZP7ANfCe/2RCQFhi9REyqr9NiVlI3tRzKRX1IFhVzA0F6hGH5NODxUnDTUVoG+ajxwU3ds2X8R\nZ9KL8crnB/H3yX3RJdzxz4smshaO9xDVYzCakHQ+Hx8nnsSzy/dizY7zKCnXYVC3YMy6ozfGDIhk\n8FqBh1KOiSO7YlS/CBSVVWPxqsPY28SpTdaSnX0J118/FA89dD8eeuh+TJ8+FTNmPIAff9xUt84n\nn3zY4LE5n3++Art3/2Z2Wf3tR44cjOLi4lbVePr0Sbz55uK6x88880TdPh599FGcP3++Vftri3Xr\n1mHMmDGYOXOmzZ/LHrZu3YqEhIR27eOdd97B+vXrrVRRDXa+5LZEUURxuQ5ZeeW4mFOG5PRinM0s\nhk5vAgD4e6sw/Jpg9IsJgobHda1OEAQM7x2O0AANNv1+EZ9uPo20y2WYEh9rs+f08PDAF1/8r+7x\n5cvZePrpx6DRaDBmzFg88sjsFvdx+PBBdOnS1ewyS7ZvzoULqcjLy617fPDgH3Vfr1ixol37ttT6\n9evxzDPPYMKECXZ5Pmfw9NNPW32f/ItCTksURegNJlTpjajWGVFhEJGdU4pqnRFVOgMqqw3QVtV8\nrqz/uUqP4godisqqoTeYGuwzyFeNLtE+6BUVgIggTx7TtYOYDn5IGN8d63dfwK+HM5GRW44XZ15r\nl+cOD4/AzJmz8b//rcKYMWOxaNFL6No1Bvffn4BPP/0Iu3btgEKhhJ+fH+bNewk7d25HcvJpvP/+\nu5DJ5NizZydKS0uQlZWF664biaKiwrrtAeDjj5fjzJlTMJlEPProYxgxYhS2bEnEb7/9iiVL3gaA\nusf/939z8MknH6KiohyLF79cV+NTT/0Nb775DqZMmYB33nkHffv2xerVq7Fq1SrIZDIEBwdj/vz5\n6Nq1K+bMmQNvb28kJyfj8uXLiI6OxtKlS+Hl5dXgdZeVleHll1/GmTNnIAgCRo0ahWeffRZLlizB\n8ePHkZmZiaKiIjz00EMNttu+fTs++OAD6PV6qNVqPP/88xg4cCCWLVuGo0ePIjc3Fz169EDnzp0b\nPH7ttdfw+uuvY9++fZDL5ejXrx/mzp0Lb29vxMfHo1+/fkhOTsazzz6LcePG1T1ffn4+/v3vf6Og\noAB5eXmIjIzE22+/jaCgIMTHx+Ouu+7Cvn37kJ2djVtuuQXPPfccgJpONTExEf7+/ujcubPZf/s/\n/vgDS5YsQVhYGDIyMqBWq/H6668jJiYGc+bMQXFxMTIyMjBmzBgUFBSgW7dumDlzJpKSkrBw4UJo\ntVoolUo899xzGD58OFJSUrBo0SIUFxfDaDQiISEBd999d5P/9xi+5FC01QZk5pUjr1iL/OIqlFTq\nrgRmTWhWVBlQpTPUBKzeiLbeC95TrUCgrwf8PFUI9tcgxF+DyGAveGuU1n1BZJFAHzWmjeuOH/9I\nx9mMYjzz35146Oae6N010ObPHRvbDampDYdzc3IuY82a/yEx8WeoVCp8881XOHXqBCZPvhc7dvyC\nyZPvxejRN2DPnp2oqqrGV1+tAQAsWvRSg/106BCJ5557Aamp5/H3v/8NX3/9fZN1hIWF45FHZuO3\n337FvHkLANQE87vvfgR/f/+69fbt24dPPvkEq1evRmBgINatW4cnnngCmzdvBgCcOHECK1euhCAI\nuPfee7F161ZMnjy5wXMtXLgQ/v7+SExMhF6vx2OPPYbPPvsM8+bNw+nTpzFt2jTcfPPNDbZJS0vD\nf//7X6xcuRIBAQE4d+4cHn74YWzbtg0AkJWVhU2bNkGhUGDZsmUNHr/77rvIzc3Fhg0bIJfL8cIL\nL2DJkiV45ZVXAADdunXD22+/fdXPZPPmzRgwYABmzZoFURQxa9YsbNiwATNmzAAAVFZW4n//+x9y\ncnIwbtw43HfffUhOTsa2bduwfv16qNVqPPHEE03+zE+dOoW5c+di8ODB+Oabb/Cvf/0L69atAwBU\nVVXV/UznzJkDANDr9XjiiSewcOFCjBkzBidOnMDcuXOxdu1aPPXUU1iyZAl69+6NsrIyTJkyBbGx\nsRgwYIDZ52b4kmQqqvRIv1yGtJwyXLxc85FTpG1yfZlQcxUmlVIGH08VAhUyqBQyKJVyqBQyeHt5\nQDSaoFLKoJTL4KGSQ62Sw0Mpr/n6ymeVQg6ZjB2to/FQyjFhRBf8cSoHu49n463VRzG4RwjujY9F\nsJ/GZs8rCALUanWD74WEhCI2tjtmzHgAw4Zdh2HDrsPgwUPNbt+vX/8m9z1xYk3nEx0diy5duuLk\nyWPtrnf37t249dZbERhY88Zk0qRJWLRoETIzMwEAo0aNgkpVM3u8e/fuKCkpuWofu3btwjfffANB\nEKBSqTB16lR8+eWXmDVrVpPPu3fvXuTm5jbohgVBQHp6OgBgwIABUCj+ipT6j3ft2oVnnnkGSmXN\nm9uEhIQGoTh48GCzzzl9+nQcOnQIn3/+OdLS0nDu3Dn07//Xz3vs2LEAgLCwMAQFBaGkpAT79u3D\nuHHj4O1dc5GYyZMnY9WqVWb337Nnz7rnnjx5Ml555RUUFRUBAOLi4q5a/+zZs5DJZBgzZgwAoE+f\nPkhMTMT58+eRnp6OefPm1a1bVVWFU6dOMXxJOpVVBmQXVuByQSUuFdR8ruluG16c30MpR1SoN0ID\nNAj0VcPPSwVvjbImQFVyKOWyZoeB/f09UVxcaeuXQzYkCAKG9Q5Hvx6h+GHHeRxKzsORc/m4tlco\nbhoShagwb6sfCjhz5hSioxseZ5bJZHjvvY9x5swpHDp0AMuWLcXAgYPxj3/886rtNRrPJvctq3cO\nsyiKkMsVEAQBYr0hG71e36p6RTPDPaIowmAwAECDNxKNn6uWyWS66nHt9k0xmUwYPnx4gw41Ozsb\noaGh+Pnnn+Hp2fDnUP+xueer/7obb1vrzTffxLFjxzB58mRce+21MBgMDV6Ph4dH3de1r7Xxa5bL\nm54g2XhZzb+RvMma5HL5Vf//zp49C1EU4evriw0bNtR9Pz8/Hz4+TV/JjeFLzRJFETq9CWWVOpRp\n9Sir1Nd8XalHRZUe1TojdAYjdHoTdAYTdHojdHojqg0mVFbpUVqhR7XeeNV+NR5ydAn3QViAJ8IC\nNQgP9ISfl4rHWAkA0CHYG/ff2A2n0oqw/3QO9p2s+QgN0GBAbDC6d/JHZIgXQvw07RrFSE+/iC++\n+ARPP90wVM+dO4uXX34RH3/8BXr16o3AwKC6WcxyuaLFoKr144+JmDx5CpKTzyAzMwO9e/fByZPH\nkZqagurqahgMGuzdu7tufblc3mDfjR8DwMiRI/HSSy9h+vTpCAwMxNq1a5s9tmnOyJEj8fXXX2Pe\nvHnQ6/VYs2YNrrvuuma3GTZsGN59912kpKQgJiYGO3fuxD//+U/s3LmzxecbNWoUvv32WwwdOhRy\nuRxff/01RowY0eJ2e/bswZNPPokbb7wROTk5+P3331ucCDZq1CgsXrwYM2fOhLe3d4NAbOzMmTM4\nc+YMevbsidWrV2PQoEHw9W36lLfo6GgIgoC9e/dixIgROHnyJB555BHs3LkTHh4e2LBhAyZMmIDs\n7GzcddddWL58udkOGmD4uh2TKKJCq0d5/SCt93Xd9ytqvl9eqYfeaGp5x40o5ALUKkVd9xrg64Eg\nXzUCr3z29FAwaKlZgiCgd9dAXNMlABeyS3EspQAXLtdcJ3rbwQwAgEwmwFujhJdaUXc4QS4XoJAJ\nNV/LZJDLBMhlArTl+aiqqsKdkyZd2VYGuUKJQSPvRoEYiZ8PZSCnqBIq73IMUAZj4NBReOjhB+Dp\nqYFarcYz//gXAGDEiFFYvvwdiwL40qUsPPzw/RAEAS+/vBi+vn4YMmQYBgwYhGnT7kZ4eBj69h2I\nlJRzAIA+ffrh44/fx9y5/8Rrr/0H119/Ax5/fCZef/2tun2OGDECDz30EKZPnw6TyYTAwEB89NFH\nDbrslrz44otYuHAh7rjjDuj1eowaNQqzZzc/U7tbt2545ZVX8Oyzz0IURSgUCnzwwQdNdq31PfbY\nY3jjjTcwceJEGAwG9OvXD/Pnz29xuyeeeAJLlizB+++/D7lcjkGDBtUNczdl9OjRSE5OxuTJk+Hr\n64uePXvWDSU3FhwcjLfffhtZWVkIDAzEkiVLmt23SqXCsmXLsHjxYixZsgRKpRLLli2DSqXC+++/\nj0WLFuGTTz6BwWDA008/3WTwAoAgmhuTcHJ5eWUWrxsS4tPk+iZRRFW1EZXVelRWGaCtNsBgEmE0\nmmAwijCaRBhNJggQIAg1fywE4K+vBdRb9tdyk1izrclU01n+9Vi88gfjyh+NK39E5DIBcnnt4yt/\nTOQ13zeaRFTpjKiqNtR81hlrAlSrR/mVDrXKYEJhiRbllXqUV+ktmqSkVMig8VDA88qHxkNe81it\nqPu+xkMBlUIGhaLmGKtCLoNSUVOfFMHqLsPO7vA6m3qNBqMJmbnlyCnSIq9Ei+Kyamiv/L83Gk01\nv0ei2OaJeM2RyQRoVHKoVX/9PtR9qORQX/naW6OsuwuUj6cSPp4qeKnNv9ls7u+PuXXJev744w+8\n+uqr2LSp+fO6bcUlO9+k8/morDbAdOUXseYz6h7rDSZU6WpOTxHkMhSXalGtM6Jab4T2SthWXAlb\nV3hrIgBQe8ihUSkQGexV9wfDs16INg5VpYLXXyHHo5DL0CXCF10imr8altjo995Y+9jU8M2uSRRh\nNIp1h0qqdbWHTWoOpVTra/4u1BxO+etxudb84ZSmyGUCvD2V8NGo4OtVE8geSjn8/dQwGYzwUP41\nEVAmEyATAJlQ+7UApUKGWxi+LsUlO987/q/pMf6WKBUyaFQ172rVV97R1oaVh1IOhby265RBIRMg\nyARAFCECEEVc+VzzRe3XNQ+vfE8EBNmVXyyhZvvaX7TaiQI1HXXNH4fa7vqvr8UGX8tlQs1s3rqZ\nvDJ4qhXwUivhpan5HBnhhxIX75QAIDDQG4WF5VKXYXPu8Dqd4TWaRBF6/V/nmVfpakafKqsMKK/S\nXzm8Y0BFVc1hngpt7alylod2fYlv8aIXrsQlO99Hb78G1QZjXcDJZUKDwFMpZfBQ1gwfRYT7oqKs\nqu6UFFc8BSUkxAcerveyrhIS7AWF2Prj087GHV6nK79GvcGIssqaztnTW42c3LIr3bWp3khdw06d\n8yNcj0uG7/A+4RavGxLijTy4XPNPRA5KqZAj0LfmdJaQEB/4efBa4e7IJYedS8qrpS6BiMiqdFod\nTlwowNLVSXjgpu6IH9RR6pLswlUnmnFWDRGRk6i9FnntzT/IeTF8iYicRM3JiuQKGL5ERM6C2esy\nGL5ERE5G5CRRp8fwJSJyEnWNL7PX6TF8iYicRO3pvsxe58fwJSJyGjXp64JniLodhi8RkZPgha5c\nB8OXiIjIzlzy8pJE5PiOH0/C0jffgFyhwLXDhuPRWY+ZXW/H9l/x6y/bsHDxGwCA2bNm1C1LS7uA\n22+fgL8/9Q/J6qyqqsKC+XNRWFgILy8vLHh5IQICAuuWf/7ZCpw/dw6LXqu5V+y7b7+Fo0f/hNFo\nxF13TcbESXdbXEtt48tRZ+fHzpeIJPH64oV4ddEbWPHplzh54jiSz5y+ap233nwd77/3ToNjnB9+\n/Bk+/PgzzP/3KwgNDcOMR2ZJWufa79cgJrYbVnz6JW697Q589snHdct+37sbe/fsrnt86OABZGRk\n4LMvvsKKT7/Eyi8/R2lpqeXFcMKVy2DnS+TANm3cgN9+247KygoUFxfjkUf/hvix43Dk8CF8sHwZ\nZHIZOnbshLnz5qOquhqLXn0J5WVlyMvPxd33TMXd90zB7FkzEBAQiNLSEjz3/Dy8+soCyOVymEwm\nLFz0BsLCw/H20v8g6egRAMD4m2/F1PsfwMsLXoRKpcKlS5dQkJ+Hf7/0Knr2ugZ33jYenbt0Rdfo\naDz7f8/V1frM03+HVvvXrSu7do3G83NfNPu6ysvLodfp0LFTJwDAsGHX4cCB/ejRs1eD9fr1H4DR\nY+Lxw7rvr9rH0rfewN+f+gc8PT0B1HTEH378WYN1Zs+agc5duuJi2gWIoohFr72J4ODguuVrVn+D\n7b/+3GCbl15ehPCICIvrTDr6JxKmPwQAuO66kfj0SvhmZKRj3drvMetvj2PD+nUAgL79+qN7j54A\nAEEQYDQZoVBY/me47gpXbH2dHsOXyMFVVWnx3vsfo6ioCA8/eD+uv34MFi18GSs+/QKBgUH48P33\nsClxA3r2ugY3jb8ZN8TfiLy8XMx+dAbuvmcKAOCm8bfghvix+G7Nt7imdx889dQz+PPPIygvL8PZ\nXcm4dCkLn335NYwGAx6dOR2DhwwFAIRHRGDuC//G+nXf44cf1mJur2uQk3MZK79eDX9//wZ1/ved\n9yx+TRUV5fDy8qp77OnlhayszKvWG3fTzTh86OBV3z937iwqKiowdOiwuu81Dt5a/fr1x9x58/H9\nmm/xxWef4J/Pzalbdu+U+3DvlPvaVWdFRTm8vX3qlleUl6GyshJLXl+Ml15ZhLQLqXXrenh4wMPD\nAwa9Hi8veAF33XV33ZsHS9Te8tRoYvg6O4YvkYMbOGgwZDIZgoKC4OPri7z8PBTk52HenH8BAKqr\nqjB02HBcN3IUvvnmK+zY/iu8vLxgMBjq9tG5SxcAwJ0T7sLKLz/DU08+Bm9vHzz+xFNIS0vFgIGD\nIAgCFEol+vTthwtXAqPHlS4tLDwcSUlHAQD+/v5XBS/Qcudbv8tc8PJCVFb+tW5lRQV8vC2/e82P\nWzZh4sTJFq1b+0aiX/8B2LnztwbLWup8vby8W6zTy8sblRUVdcu9fXzwx/7fUVCQjxfm/gtlZWXI\nz8vFl59/iukPz0RpaSnmPPcs4uKG4KEZj1j8mgFAIWf4ugqGL5GDO3P6FACgoKAAFRXlCA0NQ2ho\nGP7z1jvw9vHBrp07oNF44uuvVqJv3/64+54pOHTwQINjjTKhZnrHrp07MGDAIDw66zH8tHULVn75\nGW6IvxGbEtfj/mkJMOj1OHYsCbfdficAmL2JuyAzP1Wkpc63cZepUCqRmZGByI4dsX//73jk0dkW\n/0wOHfgDD06f0fKKAM6cPo2wsJo3D9ExMc3W1Ji3t3eLdfbvPwB79+5G7z598fvvezBgwCDcEH8j\nboi/EQBw+NBBrFv7HaY/PBNVVVV4YvYjmPbAdNx8620Wv95a8is/e6OR4evsGL5EDq6gIB+Pz34E\n5eXleH7OC5DL5Xj2n8/jmaf/DpNogpeXF156ZREEQcB/3nwNP2/bCh8fH8jlcuh0ugb76tWrN15e\n8CI++/RjmEwmPPPsv9Cz1zU4cvggZjz0AAx6PcaOG4+eva6x+euaM+9F/PvFOTCaTLh22HD06dsP\nAPDk43/D0nfeg1KpbHLbgoKCq7pvc8d8AWBT4gb87+uV0Gg0eOmVxVavc/Ld9+KlBS/i0RnToVAq\n8OqiN5rc17q13yErKwvr16/F+vVrAQDzF7yCyEjL7s0rvzLsbDDxloLOThBd8FIpJeXVUpdAZBWb\nNm5AWtoFm55K4yqW/ucNPPvP5xt8b/asGZgzdz66dO0qUVXWo9PqkJVXjvmfHsANgyKRcFMPqUuy\ni5AQyw9HOBOeakRELmHaA9OlLsHm5PLaYWd2vs6Ow85EDuz2OydIXYLTCAsPv+p7Tc2Adla1w848\n5uv82PkSETkJxZXO18DZzk6P4UtE5CT+6nw57OzsbBq+SUlJSEhIMLtMq9Vi6tSpSElJaXabgoIC\nPPbYY5g2bRqmTp2K9PR0W5ZMROSwas/zNXDY2enZ7JjvihUrsHHjRmg0mquWHT9+HAsWLEBOTk6L\n27z55psXWPqqAAAgAElEQVS44447cOutt2L//v1ITU1FVFSUrcomInJYKqUcAKAzGCWuhNrLZp1v\nVFQUli1bZnaZTqfD8uXLER0d3eI2R44cQU5ODh566CEkJiZi6NChtiqZiMihKeQyyGUCqnUMX2dn\ns853/PjxyMy8+lqtABAXF2fxNllZWfD19cUXX3yB9957DytWrMDTTz9t9XqJiBxZQIAnFAo51Co5\nDCbRZc9/dRcOf6qRv78/4uPjAQDx8fH473//K3FFRET2V1RUc41ppUKGCq0eeXllEldkH676JsPh\nZzvHxcVh586dAICDBw8iNjZW4oqIiKSjUshRreews7OzW/gmJiZi9erVrd7u+eefx4YNGzB16lTs\n3r0bs2dbfvF1IiJXo1LKUMVjvk6P13YmInICOm3NTTIWrjyE1Eul+OS5G+ru7+vKOOxMRESS06hq\nTjeqrDa0sCY5MoYvEZET8VLX3GqxrFLXwprkyBi+REROxEtTG756iSuh9mD4EhE5ES91zRmi5VqG\nrzNj+BIROZG/Ol8OOzszhi8RkRPxvtL5ctjZuTF8iYiciKeax3xdAcOXiMiJeF8Zdi7lsLNTY/gS\nETkRXy8VBAEoKK2SuhRqB4YvEZETkcsE+GiUKChh+Dozhi8RkZPx9VKhuLwaBqNJ6lKojRi+RERO\nxtdLBVEEisp4HXtnxfAlInIyfl4eAIDcYq3ElVBbMXyJiJxMkG9N+GbnV0hcCbUVw5eIyMkE+6kB\nAJcKKiWuhNqK4UtE5GQCfNQQBOASO1+nxfAlInIySoUMfl4eDF8nxvAlInJCIf5qlGv1KOTFNpwS\nw5eIyAlFBHkCAFIvlUpcCbUFw5eIyAl1CPICwPB1VgxfIiInFB7oCUEAUi6VSF0KtQHDl4jICamU\ncoT4aZB2uYyXmXRCDF8iIicVGeIFvcHEoWcnxPAlInJSXcJ9AQDHUwskroRai+FLROSkOod5Qy4T\nGL5OiOFLROSkVEo5OoZ4Iz2nHMXlvMORM2H4EhE5segOHHp2RgxfIiInFnMlfA+eyZW4EmoNhi8R\nkRML9FUjIsgTJy8UcujZiSikLoDInaVlmz9FpEuEr50rIWfWp2sgsgsqsf9kDm6+NkrqcsgC7HyJ\nJJCWXdpk8NZf3tw6RLV6RgVAJhOw90Q2RFGUuhyyAMOXyM5aG6gMYGqJxkOB2A6+yMqrQHpOudTl\nkAVsGr5JSUlISEgwu0yr1WLq1KlISUlpdptTp05h1KhRSEhIQEJCArZs2WLLkolsqq1Byi6YWtI3\nOggA8OuRTIkrIUvY7JjvihUrsHHjRmg0mquWHT9+HAsWLEBOTk6L25w8eRIPP/wwZsyYYatSiWzO\nWsGZll3K48FkVnQHXwT4eGD/ycuYPDoGfl4qqUuiZtis842KisKyZcvMLtPpdFi+fDmio6Nb3ObE\niRP47bffMG3aNMybNw/l5RxSIffGDpjMEQQBcd1DYDCK+OVQhtTlUAts1vmOHz8emZnmhz/i4uIs\n3qZfv36455570KdPH3zwwQdYvnw5nn/+eavXS2QrtghLdsDuJyDAEwqFHCa5HAbBfN80cmBH7D+V\ng+1HsjDt1mvg48nu11E5/KlG48aNg6+vb93Xr776qsQVEVnOll0qA9i9FBVVAgAKi7UoLqlqcr3B\nPULw29FL+N+PpzDp+hh7lWczISE+UpdgEw4/23nmzJk4duwYAGDfvn3o3bu3xBURETmuAd2C4aVW\nYNuBDBSV8aIbjspu4ZuYmIjVq1e3eruXXnoJixcvRkJCAo4cOYLHH3/cBtURWZ89js3y+C81plLI\nMbJfBHQGE9bvTpW6HGqCILrgGdklvMQaSczeocjhZ9en0+oAAPnFWuQ3M+wMACaTiC+2nkFBSRVe\nnD4YXZ34/weHnYnIYbEDpvpkMgFj4zpCBLDyp2SYTC7XYzk9hi+RlUkVhAxgqq9zmA96dwnAxctl\nvPCGA2L4ErkQBjDVN2ZgJDQecqz9LQU5V2ZLk2Ng+BJZUVvCLzWr9KoPe9dArslLrcSNcZ2gM5jw\n6ebTHH52IAxfIitpbeg1F7TtDWEGMNXq1TkAPTr543xmCTbvS5O6HLqC4UtkZ60J1vaEMAOYat00\npBN8PJVYv+cCzmYUS10OgeFLZBWWBl1bg7Q9AcwQJo2HAndc1wUA8NHGkyit0ElbEDF8ieylvcdy\nOQxN7dExxBuj+kagqKwaH244AaPJJHVJbo3hS9RO9gw2BjC1x7XXhKFbRz+cSS/GdztSWt6AbIbh\nS2QH7e16rbUvDkO7N0EQcOuwzgj09cC2gxnYeTRL6pLcFsOXqB0sCTJrBq+19skAdl8eSjkmXx8D\njYcCq35KxonUAqlLcksMX6I2kip4rYVdsPsK8PHApOujIQgC3l9/Auk5ZVKX5HYYvkROylrBzhB2\nT5HBXrh9eGdU6Yx457tjvP2gnfGuRkRt4Ehdb3Skde9YY+4OSZa8Xt5ZybZac1ej1jhwOge/Hb2E\nTqHemDNtEDQeCqvt2xpc9a5GDF+iVrJV8Nbuty0hZu0Abg+GsG3YKnxFUcTPhzJx9Hw+enTyxzP3\n9odKKbfa/tvLVcOXw85EEqod8q0f6M4+DOzMtbsjQRBwY1xH9Ojkj+SMYnyw/gQMRp4DbGsMX6JW\nsFbXa0nAtiaEHW1iFwPYuchkAm4b3hldwn2QlFKAzzafhsn1BkUdCsOXyELWCpTW7ocBTPagkMsw\ncVRXRAZ7Yf+pHHz981m44FFJh8HwJbKAtQKwrYHkrEHmrHW7K5VCjsmjoxHir8aOI1lYtytV6pJc\nFsOXyE7sEUSO1v2S81GrFLh3TCwCvD2wed9FbP0jXeqSXBLDl6gF1uh6rRG8HH4me/HSKHFvfCx8\nNEqs2XEeu5IuSV2Sy2H4EjXD0QLP0eoh1+XnpcK9N8RC46HAlz+eweHkXKlLcikMX6ImSDXByhXx\nZ+CcgvzUuGdMDJQKGT7aeBLJ6UVSl+QyGL5EZrQmLOzdZbL7JXsKD/TExJFdYRKBd9ceQ2ZuudQl\nuQSGL1Ej1uzSbNXxOWMAs/t1Xl0ifHHrtVHQVhuxdM1R5JdopS7J6TF8ieppbUDYepIVkaO4pksg\n4gdGorhch6Wrk1BWqZO6JKfG8CWC81/SsTmO1P2ScxvcMxRDe4XicmEllq07Dr2Bl6FsK4YvubX2\nhK41ut7613ZubS2OfFyaXNfo/h3QM8of5zNL8NW2ZF4Fq40c695RRDbmSN1tU7WkZZe67J2BXPm1\nuQtBEHDLtZ1RVFaN3cey0SnUGzcO7iR1WU6HnS+5vLZ0lS1pb9dryU0VLMHul6SgVMhw16hoeKoV\nWL39PC440JtaZ8HwJZdlq+O47Q0xWwQrkb35eqlw27DOMJpEfLjhBCqrDFKX5FRsGr5JSUlISEgw\nu0yr1WLq1KlISUmxaJvExERMmTLFJnWS63HU4JK6Lna/ZE1dI3xxba8w5BVX4dvt56Qux6nYLHxX\nrFiBF198EdXV1VctO378OKZNm4aMjAyLtjl16hS+//57Htgni9gy4Gx11yJ77c8RuOJrcmcj+0Ug\n1F+DPceycTqtUOpynIbNwjcqKgrLli0zu0yn02H58uWIjo5ucZuioiIsXboU8+bNs1Wp5EIc+Q+7\n1BfcILIFuUzA+KFREATgy5+SefqRhWw223n8+PHIzMw0uywuLs6ibYxGI1544QXMnTsXHh4eNqmT\nXIetQ8jeXa+tpGaVIjqSM46dTUCAJxQKOUxyOQyCY03X8ff3xLDsUuw7no0/Uwpw28joljdycw59\nqtHJkydx8eJFvPTSS6iursb58+exaNEivPDCC1KXRg7G0YPP0etri9o3Iwxy+ygqqgQAFBZrUVxS\nJXE1VxsUG4RDp3LwzbZk9I8OhIdSbpX9hoT4WGU/jsax3j410q9fP2zevBmrVq3C0qVLERsby+Al\ncgD1RwE4iYsAwEutRFyPEJRU6LDvxGWpy3F4dgvfxMRErF692l5PR27EHl2lqww5WwPDlpoysFsw\nBAHYfSxb6lIcniC64BTikvKrZ1iT63KG8G1PjZZcEaq1V41qz1CxuZ9Fa/fHq1y1nk5bcyOD/GIt\n8h1w2LnW97+lIDW7FK8+ci0ig73avT8OOxO5KXZ6f+HPglrSM8ofAHDqAk87ag7Dl5yaOw33OjKG\nMtXqGOoNADiXWSxxJY6N4UvUDGuECt8gkDvx81LBU61A2uUyqUtxaAxfonZiuPJ0I/qLIAjw1ihR\nWqmTuhSHxvAlp8XQq2HPyUsMWbKEp4cCOr0J1Xqj1KU4LIYvUROsdRyzPeHIWcHkjGrPoZEJgrSF\nODCGLxG1SuPul90wNabVGeChlEGpYMQ0hT8ZIjdjjbCMjvRl6JJZoiiirFIPH0+V1KU4NIYvOSWp\nb6JgD7a4uIa1tSWApa6ZbKu4XAdttQHRHfjv3ByGLxERWU1mXjkAIKaDn8SVODaGL5EdtLbbs1XX\ny6FisrUz6UUAgD7RgRJX4tgYvkR2YmlYOsNwM5E55Vo90i6XoWuELyKC2n9dZ1fG8CVqp9YEYUvr\n2jJU2fWSrf15Lg+iCIzoGy51KQ6P4UtkZ+YCtkuEr1U748YcJXjZsbsubbUBh8/mwddLhZF9I6Qu\nx+EppC6AyB0xhMjV/HE6Bzq9CZNGRUGllEtdjsNj50tkBfYKU2fuesl15ZdocehMLoJ81Rg9MFLq\ncpwCw5fISTh78LLbd02iKOLnQ5kwicC0cd3hwa7XIgxfIiuxZbg4e/CS6zqcnIeM3HIM7BaMAd2C\npS7HaTB8iVwQg5fsIa9Yi51Jl+DjqcSDN/eUuhynwglXRFbUJcLX6pe+bE3X66ihyyFn16PTG7Hx\n9zQYTSIevrUX/Lx4LefWYOdLZGXWDBpXCF5yPaIo4scD6SgoqcKNcR0xIJbDza3F8CUyo71BZo0A\ndpXgZdfreg6eyUVyejFiO/rh3vhYqctxSgxfIhtpzYUzzG1rKQYv2dO5zGL8dvQS/LxUeHxiHyjk\njJG24E+NqAnWCrXWXn7SVYKXXM/lwkps+v0iVAoZnr6nH/y9PaQuyWlxwhWRHdQGalOTsVrbITpD\n6LLrdS2lFTqs3ZkCg9GEv0/qiy7h/PdtD4YvOSVbzCo2JzrSF6lZ1nseawQSg5fsrVpnxPc7U1BR\nZcB9Y7thYPcQqUtyehx2JmqBI4WdI9XSFAavazGaRGzYewH5JVUYG9cR44Z0krokl8DOl8gC1u6A\n21qDrTQVmK0dXWDwupaaS0dmIO1yGQbEBuO+sd2kLsllNBu+CQkJEAShyeUrV660ekFEjqo2/KQI\nYVsFr6X3F7YkhBm8rufA6VwcSylAVJg3Zt15DWSypvOAWqfZ8H3yyScBAGvWrIFarcbEiROhUCiw\nadMmVFdX26VAoqbY67hvY/YOYamCt7l16//cGbqu6Ux6EXYmXUKgjweevrs/1CoOlFpTsz/NoUOH\nAgDeeOMNrF27tu77AwYMwKRJk2xbGZGDs0cI2yJ47X0BEHI+WfkV2LzvItQqOf5xT38E+PCUImuz\naMJVdXU1Lly4UPc4OTkZBoOhxe2SkpKQkJBgdplWq8XUqVORkpLS7Dbnz5/Hfffdh6lTp2LOnDkW\nPS+RPUVH+tokJB01eMm1FZdXY92uVIiiiMcn9kHHUG+pS3JJFo0jzJkzBwkJCQgLC4PJZEJhYSHe\neuutZrdZsWIFNm7cCI1Gc9Wy48ePY8GCBcjJyWlxm6VLl+LZZ5/FkCFDMGfOHOzYsQPjxo2zpGxy\nA1INPZtTPyzb2w1bO3gZumQJnd6IH3anQlttwIPje6BPdJDUJbksi8J35MiR2L59O86ePQtBENCj\nRw8oFM1vGhUVhWXLluG55567aplOp8Py5cuvWmZum2XLlkEul0On0yEvLw/e3nwXRo6vrUPSDF2S\niiiK2PJHOvKKqxA/KBJjBkZKXZJLsyh8S0pK8OabbyI9PR3vvPMO5s+fjzlz5sDPz6/JbcaPH4/M\nzEyzy+Li4izeRi6XIysrCw8//DC8vb3RsyfvGUkNOVL321jjMG0qjBm61JKAAE8oFHKY5HIYBOtf\nomH7oQyczShG35hgPDl1EK/ZbGMWhe/8+fMxYsQIHDt2DF5eXggNDcW//vUvfPzxx7auDwAQGRmJ\nbdu24bvvvsPrr7+ON954wy7PS87DkQO4PltfJIOh67qKiioBAIXFWhSXVFl13+cyi/HLwXQE+arx\nyG09UVRYYdX9t0dIiI/UJdiERW9tMjMzMWXKFMhkMqhUKjzzzDO4fPmyrWsDAMyePRtpaWkAAC8v\nL8hkfDdG5rlz8LTnDkrk3gpKq7B5X83NEp6c3Bc+niqpS3ILFnW+crkcZWVldRfcSEtLa3UIJiYm\norKyElOmTGnVdrNmzcKcOXOgVCqh0WiwcOHCVm1P5MoYuNQeBqMJiXvToDOYMHtCb0SFuWaX6YgE\nURTFllbatWsXli5diuzsbMTFxeHo0aNYvHgxxowZY4cSW6+knBcAcXfOMATdXgxe96LT6gAA+cVa\n5Ftp2PnXw5k4fDYPowd0wPSbHXM+jasOO1sUvgBQWFiIY8eOwWg0on///vD19YVK5ZjDEwxfAlw7\ngBm87sfa4XvxchlW7ziPiCBP/PuhIfBQytu9T1tw1fC1aOx4ypQpCAwMxJgxYzB27FgEBgZi8uTJ\ntq6NqF1c9TioK74msi+dwYifDqZDEIBH77jGYYPXlTV7zPfBBx/EgQMHAAA9e/asO+Yrl8sRHx9v\n++qIrKA1NwdwdAxesoa9xy+juFyHW66NQpdw/p+SQrPhW3vXooULF+LFF1+0S0FEtuLsIczgJWso\nKqvG4bN5CPZTY8LIrlKX47YsGna+55578MwzzwAAUlJSMG3aNKSmptq0MCJbccbhaGerlxzXzqRL\nMJlE3D0mBioON0vGovCdP38+Jk6cCACIiYnB448/jhdeeMGmhRHZmrOEsDPUSM4hp6gSZzOKEdPB\nF0N6hkpdjluzKHy1Wi1Gjx5d93jEiBHQarU2K4rInhw5hB21LnJOB07nAgDuHNm1bg4PScOii2wE\nBgbim2++wZ133gkA2LJlC4KCeLcLci3N3TC+qXVa0p7jywxesqbSCh3OpBehY4gX+nQNlLoct2dR\n+L722mt4+eWXsWTJEiiVSgwZMgSLFi2ydW1EkrLFTectDWMGL1nbqbRCiCIwNq4ju14HYFH4dujQ\nAR999JGtayFyeQxVkoIoijh1sQgKucBjvQ6i2fD929/+ho8++gjx8fFm3yn9+uuvNiuMiIiso6RC\nh/ySKgzsFgxPtVLqcggthO+rr74KAFi1apVdiiEiIuvLyC0HAPTqHCBxJVSr2fD9/fffm904MjLS\nqsUQEZH1ZeXX3J+3eyd/iSuhWs2G7x9//AEASE9Px8WLFzF69GjI5XLs2bMHsbGxdef+EhGR4yoq\nq4YAoEOwl9Sl0BXNhu9rr70GAEhISMDGjRsRGFgzPb2kpARPPPGE7asjIqJ2K6vUwddbBYW8dfdh\nJ9uxaLZzbm4u/P3/Gq7QaDTIy8uzWVFE1PJpSZw5TZbSVhsQ4u8pdRlUj0XhO2bMGDz88MO46aab\nYDKZsHXrVtxyyy22ro3IbVlyPnDtOgxhapEgALDo1u1kJxaF79y5c/HTTz/hwIEDEAQBM2bMwNix\nY21dG5Fbau1VsRjC1BKZABhNDF9HYlH4AkBwcDBiY2MxadIkHDt2zJY1Ebmt9lyOkiFMTfHWKFFY\nWgVRFHl1Kwdh0dH3L7/8Em+//Ta++OILaLVa/Pvf/8ann35q69qIqA2c9X7FZDsBPmpU600oqdBJ\nXQpdYVH4/vDDD/j000+h0Wjg7++P77//HmvXrrV1bURuxZqhyQCm+oL91ACA1Ev8f+EoLApfmUwG\nlUpV99jDwwNyOW/CTOTIGMBUq2u4DwDgRGqBxJVQLYvCd+jQoXjjjTeg1Wrxyy+/4LHHHsOwYcNs\nXRuR27BVUDKACQAigrygVsmRdL4ARpNJ6nIIFobvc889h86dO6NHjx5Yv349Ro8ejeeff97WtRGR\nFTCASSYT0DMqAEXl1Th6jt2vIxBEUWxx/vmMGTPw2Wef2aMeqygpr5a6BCKL2SscOQvauem0NZOl\n8ou1yC+pavX2+SVafLblDHpG+eO5+wdZuzybCQnxkboEm7Co862qqkJ2dratayGiFqRmldZ9tBY7\nYPcW7KdBl3AfnEkvxskLhVKX4/YsOs+3sLAQ8fHxCAoKgoeHR933eT9fovaxJBCbCtr634+OtKyr\nTcsuZQfsxq7v3wFpl5Oxevs5vPTwUMhkPOdXKhaF7wcffICdO3di//79kMvlGD16NIYPH27r2ojc\nnqUdbu16loYwuafwQE/06RqIExcK8cuhDNw0NErqktyWRcPOH374IY4ePYp7770Xd911F3bv3o2V\nK1faujYil9ZS19uWoWVLtuHws3sb3b8DPD0U+H5nCrLyyqUux21ZNOHq5ptvxtatW+sem0wm3H77\n7diyZYtNi2srTrgiZ9BcCLYleOuzpAPm8LNzae+Eq/rOZRbjh90X0CnUGy8kxEGldNzrNrj1hKuI\niAhcvHix7nF+fj7CwsJsVhSRO2tv8Nbuo6X9sAN2X906+qN/TBAycsvx2ZbTsKAHIyuzKHwNBgMm\nTJiARx55BLNnz8Ztt92GnJwcPPjgg3jwwQeb3C4pKQkJCQlml2m1WkydOhUpKSnNbnP69Gncf//9\nSEhIwMyZM5Gfn29JyUQOrangay4w07JLzX4QtcXYuI6IDPbCgdO52PR7mtTluB2LJlw9+eSTDR7P\nmDGjxW1WrFiBjRs3QqPRXLXs+PHjWLBgAXJyclrcZtGiRZg/fz569eqFb7/9FitWrMDcuXMtKZvI\nJbQUsM3dzSg1q7TZIWjOfnZfCrkME0d2xaptyfhh9wX4e3tgVP8OUpflNiy+vGRzH+ZERUVh2bJl\nZpfpdDosX74c0dHRLW6zdOlS9OrVCwBgNBobnOpE5ErMdb2t6Wzb0k239jnItXhplLh7TAzUKjm+\n2HoGB07ntLwRWYXF9/NtrfHjxyMzM9Pssri4OIu3CQ0NBQAcOXIEX331Fb7++mvrFkpkZ+bCrr3B\nW3+btnTA5PgCAjyhUMhhksthECzqmyzi7++JmXd64JONJ7Ai8RQC/D1xXT92wLZms/C1pi1btuCD\nDz7Axx9/jMDAQKnLIbK55oK3uWHm2uWtHUrm8LPjKyqqBAAUFmtR3M7Zzo15KWWYfH00vvstBW+s\nPIgZt/XCdX0irPocbeXWs52ltGHDBnz11VdYtWoVOnXqJHU5RDZnLnjNTbBqbtKVpd11S9uQ++gY\n4o0pN8RCpZTjk02nsf2I+ZFLsg67hW9iYiJWr17dqm2MRiMWLVqEiooKPPnkk0hISMC7775rowqJ\npGGNUGQAkzV0CPbC1PhYeKoV+GrbWazZcR4mE09DsgWLLrLhbHiRDXJULQVi4+VtCcPGw8eNH7d0\n7Lctw88t1ckh7faz5kU2WlJUVo21O1NQWFaNgd2C8egd10CtkuYoJYedicjqWjqv15yM7AJkZLf9\nnqzW7n7b2pmT4wrw8cADN3VHVJg3/jyXj9e/OoLCUtsGvrth50tkR41DqKmut/F6LYVtp4igBo/b\n2/2a26Yxa3TlZDl7dr61jCYRPx/KwLGUAvh5q/DU5H7oaud/Q3a+RCQJS7rcxutY46YNlsy4bi12\nwM5FLhMwfkgn3DAwEiXlOrz+9REcOpMrdVkugZ0vkZ20pett7fBycx1wW7rf+ttaMzjZAbeeFJ1v\nfeezSpD4exr0BhNuHdYZk66Ptsv9gNn5EpFdmQvewtzMqz5a2qZWc+HfEmt3rOyAnU9spB8eGNcd\n/t4qbNl/EUvXHEVppU7qspwWw5fIgTQVSuaCtv6y+uoHsCOHnCPXRuaF+Gvw4PgeiIn0xam0Irzy\n+UFc4L9jmzB8iSRmLoTqB2hToVufJeuYY43bF5J7UasUmDQqGiP7RqCwrBqvfXUYu5IuSV2W02H4\nEknA0ms5mwvV0rw0lOalNbtuU92vo3WbjlYPWUYQBFzXJxx3j46BQi7DFz+ewRc/nobeYJK6NKfB\n8CWyg9aETG1wNg7exqFb+7j+95oKYCJbiO7giwfH90BogAa7krLxxtdHUFTGCa+WYPgSScjSUDbX\n6TbFXLfcXPcr9dAzu1/n5u/tgWk3dkfvLgFIzS7Fy18cwNmMYqnLcngMXyIHUBtA5rpeS4K3NeFM\nZG1KhQy3DuuM+EGRKKvUY8k3f2LHn1lwwTNZrYbhS2Rnrek0G4dq/aFmc8tq1Ya3sww9s/t1foIg\nYHCPUNx7Qyw8lHKs+ikZX249w+PATWD4EjmBpiZZmTsO3BRHHnom19E5zOeq48DFvPDRVRi+RDbW\nVFfX1PWba7tWaw0ls/sle/PzUmHajd1xzZXjwAtXHkJWXrnUZTkUhi+RxFoKndYe8639uq3n/hJZ\ng1Ihw23DOmNUvwgUllZj8VeHcTqtUOqyHAbDl8gBNRW4pXmpDT4s2aa+5oKeQ89kbYIgYHjvcNw+\nvDN0ehPeWpOEg7wxAwCGL5FDMXdu719fp6Ixc9+zlCMO8zpiTdR+13QJxD03xEAhF/DhhhPYezxb\n6pIkx/AlsqO2dpfNhWz9ZbVh3Xjo2VmO+5Lrigr1wZQrM6E/3XwaO49mSV2SpBi+RA7AXDjy3F1y\nNRFBXpga3w2eHgqs3JqMA6dzpC5JMgxfIgdz9fm7LQ8tt2f4uT5HOO7LoWfXFhqgwT1jYqBUyrAi\n8RROuekkLIYvkQ21dJpRW4KmqXN+iZxFWKAn7hoVDQB4b91x5BRVSlyR/TF8iZxIcxfUqO1+Gx/3\nbcwenWVqVulVH0T1dQ7zwc1Do1ClM+KD9SegNxilLsmuGL5EDsL87QOvnkzVcPnV32tqv+aOK9si\niAwUglMAABdbSURBVJsKWgYwNda7ayD6xQQhPacca7anSF2OXTF8iRxQa4aVrT0E3Z6QbGlbBjA1\nNnZQRwT5qrH9SCYuXi6Tuhy7YfgSOQFXOsZrSQBz0pX7UCpkGDsoEiKAb3895zZ3QmL4EpFVsKul\ntuoS4YuYSF8kZxTj1MUiqcuxC4YvEbUbg5faa1ivMADA3mPucfUrhi+RC7HW+b62xrCmxjoEeyHA\nxwOHz+ZBW22QuhybY/gS2YkzBU5ranWm10WOSxAEdO/oD73BhAtucMyf4UtERA4hxF8NAMjKr5C4\nEttj+BIRkUMI9K0J39wircSV2B7Dl8hGpDhdxjck2q7PZ8tzgnm6kfuSywSpS7A5m4ZvUlISEhIS\nzC7TarWYOnUqUlJSLNpm8eLF+Oabb2xSJxERSU9vMAEAVErX7wtt9gpXrFiBF198EdXV1VctO378\nOKZNm4aMjIwWtyksLMQjjzyC7du326pUIiJyAIWlVQCAAB+1xJXYns3CNyoqCsuWLTO7TKfTYfny\n5YiOjm5xm4qKCjz55JOYMGGCrUolcni+IV3atMyWOMuZrC0jrxwA0L2Tv8SV2J7CVjseP348MjOv\nvlA8AMTFxVm8TadOndCpUyfs2rXL6jUSOSrfkC4ozUuDb0i005y7S7YVEOAJhUIOk1wOg+B6w7J6\ngwkXc8rh56VC/55hEATXPu5rs/AlIuuqDeTG3/vra/OTrQJDOwIAOkUE2ao0soOiK/e8LSzWorik\nSuJqrO94agEqtHrccm0U8vPL674fEuIjYVW243pvn4icVG1INqdh2HZpdh2phqOJWstkEnHwTC5k\nAhA/qOXfA1dgt843MTERlZWVmDJlir2eksglMVTJ1Rw9n4/8kiqM6BOOID/Xn2wFAILogvdvKim/\neoY1kb01Pk+1/gSl2mW1n2tvdF974/va4eW/Pjd/3Lf+kHPjzrfxsHOXCN8G2zZ+XCs60vz3G7+W\n9mjuOYCma3NHOq0OAJBfrEW+Cw07l1Xq8emWU1DIZFg8axh8vVQNlnPYmYhcDsONpGQyidi8Lw06\nvQl3j4m5KnhdGcOXSEK14dfSZCjfkOgmJ1RZ0vU6I74xcH27j11Cem45BnYLxugBHaQux64YvkR2\nUn+ItalgqQ3LpiZNNQzaaLPBaw5nOpOjOZVWiD9O5yIsQIOZt13j8qcWNcZTjYhswJbXJbb39ZuJ\nrC31Uim27L8ItUqOJyb1hafa/aKInS+Rg7NkdrMlpyABlg/ltjQRqqXl1ngOck1Z+RXYsOcC5HIZ\n/nFPf3QM8Za6JEkwfIkcTOOh58ZfN9bUspYursFjqmRvGbnl+G7HeRhNJjw2oY9bXEayKQxfIok1\nN+mqcQA397jx+kSOJO1yKb7/LQVGk4jZE/pgQLdgqUuSlPsNtBM5uZaubAW0b5Yzh4PJ2s6kF2Hz\nvosQBOCJSX0xINa9gxdg50skGXPDvrXdb/3wbO0xX3P7a+r52qM9Ic2Adw+iKOKPUznYuDcNSoUM\nT9/dn8F7BcOXyEFZGsCNl1nS9bblqlb2xOPRzs9oEvHTwQzsTLqEAB8PzH0gDr27BkpdlsPgsDOR\nHUVH+pq9NGOXCN8WT0+ypAOuH7y27HprNfV6WtqGXFu1zogNey8g7XIZosK88fTd/RHg4yF1WQ6F\nnS+Rg6kfmra4QhW7SrKlkgodvv7lLNIul2FAbDDmTBvE4DWD4UskofpB2NJVr5oTGNqx3V1vWzvS\n1mzHrte1ZeaV46ttycgvqcLYuI74+6S+UKs4wGoOw5fIATU+7ahxuDZeJjVLQpXB67pEUcSf5/Lw\n7a/noK024P4bu2HauO6QydzrkpGtwbckRA6k/rHfThFBdbcarGVJ0DbX9dpyolXtPswdA27N/jks\n7lwMRhN+PpSJ46kF8NYo8fjEPujZOUDqshwew5fIBpqbQNV4klJz65oL4Oa05QYK1u5I2eG6j7JK\nHdbvuYDsgkp0DvPGE5P6IthPI3VZToHhS+RgGoexJQFsLnQt7XqJ2iIzrxwb9lxARZUBw3uHYfrN\nPaFSyqUuy2kwfIkcQOPANRfAAMyGsCXB2xRH61L5BsHxiaKIo+cL8OuRTEAUMXVsN4wb3NHtbgnY\nXgxfIgm05fxYoO335WWokTUYjCb8cjgTx1IK4K1R4LGJfdGLx3fbhOFL5CDMdb9A6+8NbM9JVuQ+\nyrV6rN+diksFlegU6o0nJ/VFsD+P77YVTzUikoi58DMXlJZ2rV0ifJ26w3Xm2l1ddkElVv2UjEsF\nlRh2TRjmJcQxeNuJnS+RjVhyycjW7AtougtuKrjY9VJ7nb5YhB//uAijUcQ9Y2Jw87VRPL5rBQxf\nIgmZO/bbXGi3pjt0puBl1+t4RFHEnuPZ2HcyB2qVHI/f1Zt3JLIihi+RA2pv18wwo/bQ6Y3YvP8i\nzmWWIMRfjacm90NkiLfUZbkUHvMlklhTnWhbA7S57dj1UkvKKmtujHAuswQ9o/wxf/oQBq8NsPMl\nsiFLO9jmbjUIWDbjuaUQc8TgJceSX6LFd7+loKxSjxsGReK+sd2gkLNHswWGL5GD+P/27jUmqnNf\nA/gDcxFkwAsXW09AxSO7qOXowIFe0NYNlrYxsjdqAS2mFxt1H3sxTY/UVG2ioE3aL0UaE00bv5hq\nm+60eNLa3VZBxUJFoYCluikdRa0Ccplhhhlm1ns+KKNU7s6sNWt8fomJzMu7+P9ZMA/vmjVrDfXe\n3zuD9c9BPJKVo68GL1e9vqO5xYIvyn5Dj8OFFYtm4ulknljlTQxfIi/z5FnPfdsbDQYvDedCcwdK\nyn+HJIA1S+Lx2NwHlS7J7zF8iXzIUHcGupftEQ3m7IVWfFd1CXptIF77+8OYGzu2q6jR6PBgPpEM\nlFit+nLwctXrG8rr/sC/Tl+CIViH/11pZPDKiOFLJBM5A5jBS0MRQuD4z1dxovYqIiYEYXNeImZw\nv8jKq+FbU1ODvLy8AcdsNhtycnLQ2Ng45ByTyYTc3FysXLkS27ZtgyRJ3iyZyKvGEsCjDdKxBm/f\n5Sn//M9T1H75S3/RF7yn6v9A5MRg5K8yYsqk8UqXdd/x2mu+e/fuxVdffYXg4Luv/1lbW4tt27bh\n2rVrw87ZuXMn3njjDaSkpGDr1q34/vvvsXjxYm+VTeST7gzUgV4PvpeV7nCB+OfxsZw8xtD1Hafq\nr+HHc9cwZVIw3sqdj8lhQUqXdF/y2so3JiYGRUVFA445HA4UFxcjNjZ22Dn19fVITk4GACxcuBDl\n5eXeKZhIJvcaRH2r4Tv/yVnLSFbH3lo9072pOt/iPtTM4FWW11a+GRkZaG5uHnAsMTFxxHOEEO73\nmoWEhMBsNnu2UCIFjPV2gd6owde2RQObNGk8tFoNJI0GzoDRr5tqLrTg+6pmTDSMQ8E/HsfUCF61\nSkk+/1ajwMDbP2Td3d0IC+MvOfkPT78HeKRfk9Snvd0KALjRYUNHZ8+o5ja3WPD5D/9GkF6Djc/9\nF3RCoKVFHQuZyMhQpUvwCp8/23n27NmoqKgAAJSVlSEpKUnhiog8S84wZPDef9rNdvzz+G8QQuB/\n/v4woqO44vUFsoVvSUkJDh48OOp5mzZtQlFREbKzs9Hb24uMjAwvVEekLDleG2Xw3n8cThf+efw3\n2Owu5GX8BXNmTFa6JLolQAghlC7C0zotdqVLILonSl6OknyTw+YAALR22NA6gsPOQggcPmXCL6Z2\n/NX4H3j+qb94u0Sv4GFnIpKNpwKTwXv/qmlswy+mdsRODUNO2iyly6E/8fkTrojuV0PdyWg0c+n+\nc8Pcg6NnLmN8kBb/+Ntc3hbQBzF8iVRguCBm2FIfSRL4v1Mm9LokvLwknu/l9VEMXyKVYdDSUKrO\nt+BqmxUps6cgOX6K0uXQIHgsgojIT5itDpysvYqQIC1WpvN1Xl/G8CUi8hNHz16GwylhxaL/ROh4\nvdLl0BAYvkREfuCPG1Y0XOzA9AdCkZrwoNLl0DAYvkREfqC0+goAYMWTMxF463r45LsYvkREKne5\nxQLTNTPmTJ+E+Om8ipUaMHyJiFSu4pfrAIAlj01XthAaMYYvEZGK3ejqwb8vd2Lm1DDERU9Uuhwa\nIYYvEZGK1TS2AQAW/3e0+97n5PsYvkREKuV0SahraoMhWIf5syKVLodGgeFLRKRSTVe7YLO78Njc\nB6DT8ulcTbi3iIhUquFiBwAgZTYvI6k2DF8iIhVyuiQ0Xu5ExIQgTH/AP+95688YvkREKnS5pRsO\np4T5syJ5opUKMXyJiFSo6datJR+O5UU11IjhS0SkQpdaLNAEBvC9vSrF8CUiUhmnS8L1dhuiowzQ\n6zRKl0NjwPAlIlKZlg4bXJLAjKlhSpdCY8TwJSJSmattVgBA7IMMX7Vi+BIRqYw7fLnyVS2GLxGR\nyrR22qDTBmLK5PFKl0JjxPAlIlIRIQQ6LHZETQxGIN/fq1oMXyIiFbH2OGHvlRA5MVjpUugeMHyJ\niFSkrasHABA1ieGrZgxfIiIVae28Gb5c+aobw5eISEW6uh0AgPCwIIUroXvB8CUiUhFLTy8AICxE\nr3AldC8YvkREKmKx3Qrf8TqFK6F74dXwrampQV5e3oBjNpsNOTk5aGxsBABIkoStW7ciOzsbeXl5\nMJlMAID6+nosX74cK1euxPbt2yFJkjdLJiLyaX3hGzqeK18181r47t27F++88w7sdvtdY7W1tVi1\nahUuXbrkfuy7776Dw+HAwYMH8eabb2LXrl0AgC1btmDz5s04cOAADAYDSkpKvFUyEZHP67Y5odcF\nYpyeN1RQM6+Fb0xMDIqKigYcczgcKC4uRmxsrPuxqqoqLFiwAAAwb9481NXVAQCuXbsGo9EIADAa\njaiqqvJWyUREPs9mdyIkiIec1U7rrQ1nZGSgubl5wLHExMS7HrNYLDAYDO6PNRoNnE4noqOjUVlZ\nieTkZBw9ehQ2m81bJRMR+axJk8ZDq9XA4ZIwKXQcIiNDlS6J7oHXwne0DAYDuru73R9LkgStVovC\nwkIUFBSguLgYSUlJ0Ov5OgcR3X/a22/eTKHH7oR2QhBaWswKVyQPf/0jw2fOdjYajSgrKwMAVFdX\nIy4uDgBQWlqK999/H/v370dHRwcef/xxJcskIlKM0yXB6RII0vvMuonGSLY9WFJSAqvViuzs7AHH\nFy9ejJMnTyInJwdCCBQWFgIApk2bhhdeeAHBwcFISUnBE088IVfJREQ+pcfhAgAE8WQr1QsQQgil\ni/C0TsvdZ1gTEamZw+ZAu9mON4tPIjk+Cusy5ypdkix42JmIiBTlunWdA00gn7rVjnuQiEglXK6b\nByq1Gt7HV+0YvkREKuGUboavRsOnbrXjHiQiUgmXq++wM1e+asfwJSJSCVffypfhq3oMXyIilbj9\nmi+futWOe5CISCVun+3Mla/aMXyJiFTi9glXDF+1Y/gSEamEuBW+Oh52Vj2/vMIVERGRL+OfT0RE\nRDJj+BIREcmM4UtERCQzhi8REZHMGL5EREQyY/gSERHJTKt0AZ7U09ODt956C21tbQgJCcF7772H\nyZMn9/ucQ4cO4dNPP4VWq8X69euxaNGiIee5XC5s3LgRy5cvx8KFCwEA69evR3t7O3Q6HcaNG4d9\n+/b5ZZ+7d+/GsWPHoNVqsXnzZiQkJKi2x+rqahQUFECj0SA1NRUbNmwAoNy+lCQJ7777Ln799Vfo\n9Xrs2LED06ZNc4//8MMPKC4uhlarxbJly/Dcc88NOsdkMiE/Px8BAQGYNWsWtm3bhsDAwAG/P3KS\no8cdO3bgzJkzCAkJAQB89NFHCA2V9+brnuyzT2FhIWbMmIHc3FwAA/+sk8oJP/Lxxx+LDz/8UAgh\nxOHDh8X27dv7jV+/fl0sWbJE2O120dXV5f7/YPNMJpPIzs4WTz75pCgtLXVv55lnnhGSJMnU1d3k\n6LOurk7k5eUJSZLE5cuXRVZWlowder7HpUuXCpPJJCRJEmvWrBH19fVCCOX25ZEjR8SmTZuEEEKc\nPXtWrFu3zj3mcDhEenq66OjoEHa7XWRlZYmWlpZB56xdu1b8+OOPQgghtmzZIr799ttBvz/+1KMQ\nQuTk5Ii2tjY527qLJ/tsa2sTL7/8skhLSxMHDhwQQgz+s07q5leHnauqqrBgwQIAwMKFC3Hq1Kl+\n4z///DPmz58PvV6P0NBQxMTEoKGhYdB5VqsVBQUFSElJcW+jtbUVXV1dWLduHXJzc3H06FGZurtN\njj6rqqqQmpqKgIAATJ06FS6XCzdu3JCpQ8/2aLFY4HA4EBMTg4CAAKSmpqK8vFzRfXlnnfPmzUNd\nXZ17rLGxETExMZgwYQL0ej0SExPx008/DTqnvr4eycnJ7p7Ly8sH/f7Iyds9SpIEk8mErVu3Iicn\nB59//rms/fXxZJ/d3d149dVXkZmZ6d6GL+xL8jzVHnb+7LPPsH///n6PhYeHuw85hYSEwGw29xu3\nWCz9DkmFhITAYrH0e/zOeQ899NBdX7e3txcvvfQSVq9ejc7OTuTm5iIhIQHh4eEe7a+PUn1aLBZM\nnDix3zbMZvNdh349wds9WiwWGAyGfp976dIl2ffln+u/syaNRgOn0wmtVjtkbwPNEUIgICDgrp4H\n2oacvN2j1WrF888/jxdffBEulwurV6/G3LlzB/x59iZP9hkdHY3o6GiUlZX1277S+5I8T7Xhu2LF\nCqxYsaLfYxs2bEB3dzeAm39BhoWF9Rs3GAzu8b7PCQ0N7ff4QPPuFBERgZycHGi1WoSHhyM+Ph5N\nTU1ee8JWqs/BtuEN3u5xoM8NCwuTfV8OVb8kSdBqtSPu7c45gYGB/T53sJ7lfi3U2z0GBwdj9erV\nCA4OBgA88sgjaGhokD18PdnnSLavxL4kz/Orw85GoxGlpaUAgLKyMiQmJvYbT0hIQFVVFex2O8xm\nMxobGxEXFzfsvDuVl5fj9ddfB3Dzl+DChQuIjY31UkcDk6NPo9GIEydOQJIkXLlyBZIkeWXVO9TX\n91SPBoMBOp0OFy9ehBACJ06cQFJSkqL70mg0ulc31dXViIuLc4/NnDkTJpMJHR0dcDgcOH36NObP\nnz/onNmzZ6OiosLdc1JS0qDfHzl5u8fff/8dubm5cLlc6O3txZkzZzBnzhxZewQ82+dAfGFfkuf5\n1Y0VbDYbNm3ahJaWFuh0OnzwwQeIjIzEJ598gpiYGKSlpeHQoUM4ePAghBBYu3YtMjIyBp3XJz8/\nH88++6z7LOCCggLU1NQgMDAQa9asQXp6ul/2WVRUhLKyMkiShLfffhtJSUmq7bG6uhqFhYVwuVxI\nTU3Fxo0bASi3L/vOdj1//jyEECgsLMS5c+dgtVqRnZ3tPkNWCIFly5Zh1apVA86ZOXMmmpqasGXL\nFvT29iI2NhY7duyARqMZ8PsjJzl63LdvH77++mvodDpkZma6zw5Wa599ioqKEBER0e9sZyX3JXme\nX4UvERGRGvjVYWciIiI1YPgSERHJjOFLREQkM4YvERGRzBi+REREMmP4Eo1Sfn4+9uzZg1deeQUA\ncOXKFTz99NPIysqC2WxGVlYWMjMz0dTUpHClROSrGL5EYxAVFYW9e/cCACorKzFnzhx88cUXaGho\ngF6vx5dffokZM2YoXCUR+Sq+z5doGEII7Nq1C8eOHUNUVBRcLheWL1+O3bt3o7i4GOvXr4fVakVa\nWhpOnz6N1tZWpKSkYM+ePUqXTkQ+SrXXdiaSy5EjR3Du3DkcPnwYZrMZS5cudY/Fx8fjtddeQ2Vl\nJXbu3ImKigrs3r2bwUtEQ+JhZ6JhVFZW4qmnnoJOp8PkyZPdl98kIhorhi/RMAICAiBJkvvjwe4+\nQ0Q0UgxfomE8+uij+Oabb+BwONDZ2Ynjx48rXRIRqRz/hCcaRnp6Ompra7FkyRJERET0u/sMEdFY\n8GxnIiIimfGwMxERkcwYvkRERDJj+BIREcmM4UtERCQzhi8REZHMGL5EREQyY/gSERHJjOFLREQk\ns/8HkrAgsxv62WMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 1.16343369599e-07\n", + "MAE : 0.000227541731508\n" + ] + }, + { + "data": { + "text/plain": [ + "count 149.000000\n", + "mean -0.000026\n", + "std 0.000341\n", + "min -0.001370\n", + "25% -0.000128\n", + "50% -0.000006\n", + "75% 0.000125\n", + "max 0.000875\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(testX)\n", + "pred = y_scaler.inverse_transform(pred)\n", + "close = y_scaler.inverse_transform(np.reshape(testY, (testY.shape[0], 1)))\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['close_bid'] = pd.Series(np.reshape(close, (close.shape[0])))\n", + "\n", + "p = df[-pred.shape[0]:].copy()\n", + "predictions.index = p.index\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low_bid', 'high_bid']], right_index=True, left_index=True)\n", + "\n", + "ax = predictions.plot(x=predictions.index, y='close_bid', c='red', figsize=(40,10))\n", + "ax = predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=ax)\n", + "index = [str(item) for item in predictions.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('Prediction vs Actual (low and high as blue region)')\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['close_bid']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction ')\n", + "plt.show()\n", + "\n", + "g = sns.jointplot(\"diff\", \"predicted\", data=predictions, kind=\"kde\", space=0)\n", + "plt.title('Distributtion of error and price')\n", + "plt.show()\n", + "\n", + "# predictions['correct'] = (predictions['predicted'] <= predictions['high']) & (predictions['predicted'] >= predictions['low'])\n", + "# sns.factorplot(data=predictions, x='correct', kind='count')\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + "predictions['diff'].describe()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "so it looks i improved on the previous results, by using lookback of 1 tick, 100 iterations, and my additional features. However, can i predict fast enough to make trading decisions?\n", + "\n", + "Sim results:\n", + "\n", + "- it got a lot worse when i changed lookback to 20 ticks" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/log_results.xlsx b/capstone_project/log_results.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..edf63df69a935e91912c2027825559ea7a5e4d28 GIT binary patch literal 7487 zcmZ`;1yEbv)(ueHCAhl;ZE)A(5TLjeN%7!?;$EaUv{0mIf#TlcQrs)So#GC~<)`2G zzt{IM@8wSJ$z*2jJ9nME&slpNO%+&T81v!7iy*R^x4)RYdI zP5hbIy|`U(U5y~{BB^li#8C^2W=*iA)jb8T{7Qr}W+s|UfMt6KA|VmG7kzVdduGp@#mSsT z#N9>qM$(VEMQujZ2$#V)`pQ->wdw!WxsdV3-7Q4On}_oH>FAHOM$>I%;SqR zq4`$Cd$rIq2Ap&>y(g6X_^q)*F#4icAzOMGDwlVWq?lUfK?p~{X0hj5kcT0P&9l}Bv( zOtPzGJaC`vv{how34BwZ;yO)rc1{rSK!o=@1^HKtieXYC-aD~uJks9wna8miE(2&; zm2N46hw?9K-%_;<#h%vW=}nDGzc>*Q^-iK{8IGMl949~a$hr_Qmq_|iuHHY4F?|0L zmYc1ne3D+!3`R%AAW6C|-*i^?787p87Xcp z?3v3C&BYQj+Eiq;Gc$UT8$Tl#=1q}XkuxPnibBjPx#(A}bC*Vkrlg?7EqyVgTS~4Z zsK`7N!HDJ!Kmb!w(PH*#V@#$FuC7|_?)*xG(n}E+$PqRxv3142wO{|-CbfmL7BrZ^ zL>B)+HNO0#Fr+IZzC)3wEbWXY1S8y-L1Y87(q|ESbkNc(XA^y7Zqi;hBLD4dN_%NKcL^-->d*lkky%m_5aFZI zbIWSY$S8Wq%~AuSW^AejAtSYNk2h%>@w^L*_!&n)=(@7Ij!h&R%T!&`gi01pK&VwF zOSCn`ZRdgO9Qf>JI;!kLtw(^BG|hRbxUOKH1qDw>wt-aD(o#$Ryzk$I`3qv|ms}JV z=I~bQR~66hxSqe#U<1dat!z}p!DZooelv#a?57=ZWlSUBfk*mj)@c&i8as&uw?P`L zUq-%k4x0g~nKfjBn1X=9=giZ>%;JWd=zHssA9?r#`dev71o`d#NhLRf)*$XKfcPANz$j&Lw+zc^BFVFV`Xu%k< zX)lZ2s$R@{|9XlMqFoZh9ZyklHKFGG9u7C*X9B+t0bHiBLU%GY%Y%hSnLm}6A0X|i zc}Uy(kM8z5Fxm&Gh5%LlQH&z0)2}T~1$@~@!jlTey{5g{sB_pI%I4mI{GX-YNpdW# z-7V>ymt+hNOl-}#@%pkdAEv_^s0Uqj{UX~|{H`57AJb_5LotMq+A%32007L0008bE z#bDv&WdD~?fDEd4@!&Nd1L5(VH^7Wic&%#ZbGmVp}m>kJ5Pl3wHtSAt@^R_B^NV^ zTAAsh*GYEKf3}_q57mHh*2cNdmi#TD-e_mk&N6pITklR;97qxaO`@%wNqd#cm6Ztx z#!}U-`ziH*uz5V0F7X%e?E5WCVfpTRoo9k(`L_?M-UM^N1__ zXB)%*^b3SEOm^O9liw?I+u=Y<82a6g5@|1dps7s3JfK{;Pi&`Y3bXi{ z+?Q@O&~fvGaQYc`Q1MvGqc=fyaV=n@odc7vzzjt&b&R{dtO7leR5EH}I$bRhmM}sY z$FY_)42f*~c<@fC+~X%4?dQHyrepSDQ0z~}e!Ml@g$DVKo9l_NfssL@Eqj{tY}cC# z`=HtmoT$ZgJxqU+9}UnRrRr>W`qs}B`P~~n*&1VC<&hA(ZM2YqlprtBZ>DP#JA~Ty z&f~)6jk!g|o_=TS*bu(Ap2lqBmpb~mdg6AXp9b1 zv@a!vO~S|`%4gPV&Y~|5hEO`T%)2rR^_*wvPpHUc##*V6M)Y_`e}Tp7o`@>b*=YPC zPBPfa16&dX665ss?(Q`B^C7wtiQ)HN>f{F?{4<|S8w&Y z-MG!2oqy+2W@3l>HV>ZsnXmk+xQ7xo;|Zm43t{ za#S}ycJuJ#tN%1zC$LSMdsuGO4YDQ^+T~cOXY!ez&AhWDOLR@Co|o=F4ct-AihO#4 zKu^{VViE!w$Py7} zKG4aBJZNa}sH2U1nOdiQu#j+1k0?q;4Bw4ml7UQWzUuj(D@IRo^ zxO~%c;;6~R86UUR@k!7ZgCZagEp}VXG0G#4US|`f$0H8g<^8AJ-J3y$&zw3>Mn|Os zE=FIWaz$T&G!~rKd$ShJoDBRC|2avjJ$<1}_miY~U-O<&BhpHmb6emqQJfqdY#T67%leR5;+K+m~=0wI5T1+kjPhNnq~qA(7{`qErlAV zq;Swr(asi7XRbMtp&Z^4Rszox`s`_{-c!C^4HM9}^beNQ<96!$Sp5B_SSY)ZD8m&M zM5_1pygA~PeHw0w*K*9G!%uOSDGgopmNXHJDA|^?c}KiH-lp6Tlhsu&CPq$bxV&_< zaLaJpWdg|!OSTBsh2S9?shgR9@Fng)IW;#?64AKlH0}`qKzProk*pKU9SU9~G3RtJDA42;DFM2ea5Z1Z_X~ywi;7~y1(x|SLuXZNI0BFa{3@Cs_mlVau#ZRE z=`*Q~tq{>G!%1G5oPNQ23gxftZC-kVI4y;uN7G78OFIt;{#6qo&{iXic#UOyir=~OwX5EKoON4c(bFP%&h_@Y zWXR5S9M#J*f>c3eUu@&+)ixg|x4u0IGXDn)k8OD<>D4{|;>Z91_Wy5W?k^pnf9+r` zIt$SmJb3>5X81?`>+B~s(cUK*m|^uqFigJ~a{hRl#MjaDW(!KoA2B^av$AGGL#ydd z&s)E&#w8`L4wVrqkbqkxH9I{V$#a^5Z-uG$B_PXzo8d}%FQu*bHY_jbJb6@ZXWeif zk=1h8;PUt?5$K&6^Ljd=l)Du2>+(uXyojU#S;rhJDKk$k9mKOTgE^1kHqQA1dEvp& zRkDZXFohpSIu?N0j;9qZ(P_m`@#){OQR6S95~TnoCi$3FDZA2eLt}|E2&VOER4u~J z%M$M(93Y&e(Bz3Oi|ip(l=d=-Tv_5PFs{C7-a!KMA}m{Ua1DI*Nd*lPUiRAYAp0!E zvS^6O34yS5!@Dh*jGztu84-ERv&?Z-?*Ww_iKNg$P0fuibA{bWwC4$2huL8_%mUdm zn1VSGpWR;)QkYkaR+F+qh6{X8RRd<877|^2c(Vba0{S{(M72do_D4r9b3M8_oJmoUvtK+ycn%bn8+I*un$G$1Yz8Y*TFK;@XS>a;I+Xd&MBY ziUXvjzDoqZA_#v!Eg$4@PTQSQYM*@GR+8OzZAs_psGAp0d%}@OZ~fTOF5Ki9uvJO# zX?)%iCk0amd^i|(sxcn{@iT?Abx*YiPw&v&s(--E3E5rZxOEl1n@B3ed)UJVA+>9J)>oJEyYeOud=y3VFGJ&c5u-*ESx!R)MNb#ydGN014 zewdr=EsxiG zys}T^6bF*(e;St?L@-L=+7Q&2iH6)3ya~(iR0<^1P@H*3U~4jSxyU}RgCB{Gcq9i~ zt_QNEz^3a@%qa#3#hB1%DO~U^kyY@ggW7xB1)jfX(Y2rE{SX;OK#4RllZXEco!kmk zRz`MA9a16J@6ctvJT}U-MI%Y zsayAGBLUwIHaGECtmz(--}Mmq=Y8Asq5%3@26?_cC^P&vSFU%khq%wVy)d=+A|2S= z&@TA);D&=jts!bu8b7b!3q7;jjXF)(>dO>1Lo@OL9E3p3YBX3LECDHT zg0Fus3&YVVQHEKYa1bWPZnyV1LI6iehG<~#ke3dn+9z4}y77r$2NMmOdt5Hg2Zgs- z8=7g6urbnQK7KZ|obvPM`&?Vj&n?HZiGAB*A(Yx;q5lg&0>wGq3X*D`|s z3$LvY9KFD4%FFJUreRk!0`pX2N~h?nmshPcqA5%pIb{wS=RN2STyCl$6j|hddlh{9rL=Qv6EbHUOiPCFp<3G_1tzo z?W@CZx+XT7HEKYi0k@oN&ohPKp?%~K1AQ(rIlfK=Hp^8~Y!`C-#*pisfh)w*6g|VjBZUf2*MHK)f5nxo@O>YX zl+x88nO_SAwXat8^C7`y8H9U8iZ4b2c zc8b>yKNue6Wwv@yEZkJpIb|K~<7VxHV&-GrG;PWSF%s=tEh&)9IzN!;n-2>48p>wS ztmX}PGQ79LjkIXVt=Mpj@=qCd^j>Lt^M3nRxtF$>_oJCB)WMCL>-W9vzV+zh!IIj) zZ#}Nw!4%PQ3Yuv1=a|6~?Tj#rx|qB#A$$9g@lseZwy3c#JL}ei+rwfpTQORvlvtn= zaw6oxkyj(_gSWOWxa^oHuNYAIob$2L*Ph>~GAI}Kx5OC$75h-U6V9_e>c!PkIbw+h zGzM*D*har^M!aZ`J^5I^?|#`IxE5MmKO!~V$W(O0`<34TX5_S)uxp-6Yi)Qvz-pyR z6&dvM`+i2a-dYa3=GeN4?nKkIcwv^}SWb3*h7G=UvHJ3$VVei#j0yVs=xY_3hP%&{ z@4|u^JPpt-ulc^R2#)yz{>g}(hta{tJrker86p2$82wGk@8g(%nJfPy$nIYC%kAG_ zRGk^VAW&vYaAONIo;g7Zt*uveP_k*Ty*a~2SEEA9L4E(_^<)}q)AsP_STqvzRr)@}d-z`mR}Z5+w6Fe-0RYqo@uB@Y z%D?!22!3e8`~erD|94a7VT6Z`_n!!7_jT~F4S$G!*b)9gXWWbFf204^A3lUXY<~X0 z4{-i#EA%kHL-qbAfb+eJ@Y|I7x0ZhheJJVvK;IDj1$`*+9tL>0Wc&%>d4F*E9}CDs k;KR!L1B@j5>&gG4&NNk!@7*>40OS4&ysygQ-(?B-KkqSBTL1t6 literal 0 HcmV?d00001 diff --git a/capstone_project/main_fx_spot_prediction_notebook.ipynb b/capstone_project/main_fx_spot_prediction_notebook.ipynb new file mode 100644 index 0000000..ad1113a --- /dev/null +++ b/capstone_project/main_fx_spot_prediction_notebook.ipynb @@ -0,0 +1,3605 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "# Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "I will use 1 year of data, from 1Jan16 to 1Jan17, also in 15 minute intervals, but with tick data features.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "To run on EC2:\n", + "- Enter the repo directory: cd aind2-cnn\n", + "- Activate the new environment: source activate aind2\n", + "- Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "- Find this line in output and copy url to browser: \n", + "- Copy/paste this URL into your browser when you connect for the first time to login with a token: http://0.0.0.0:8888/?token=3156e...\n", + "- change the 0.0.0.0 with EC2 IP.\n", + "- you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd, numpy as np\n", + "import pypyodbc\n", + "import io, datetime, os\n", + "import matplotlib.colors as colors, matplotlib.cm as cm, pylab, matplotlib.pyplot as plt\n", + "from collections import OrderedDict\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "initval = True" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "#kaggle dates: 2015-12-29 00:00:00 to 2016-05-31 23:45:00\n", + "min_date = \"29Dec15\"\n", + "max_date = \"31May16\"\n", + "\n", + "if initval:\n", + " rerunSQL = False\n", + " log = False\n", + " useKaggle = False\n", + " runLSTMBinary = False\n", + " simname = \"500_epochs\"\n", + " sim_desc = \"\"\"\n", + " kaggle params but with 500 epochs to account for more features\n", + " \"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load data" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if log:\n", + " #log = {\"simname\": [\"mine_initial\", simname], \"sim_desc\": [\"kaggle params\", sim_desc]}\n", + " #df_log = pd.DataFrame(log)\n", + " if os.path.isfile(\"sim_log.xlsx\"):\n", + " df_log = pd.read_excel(\"sim_log.xlsx\")\n", + " df_log.loc[len(df_log)]= [simname, sim_desc] \n", + " df_log.to_excel(\"sim_log.xlsx\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      01234
      simname500_epochs500_epoch_lookback_40linear regressionlinear regression500_epochs_40_lookback_pca_unshuffled
      sim_desc\\nkaggle params but with 500 epochs to account...500 iterations, lookback 401 row lookback1 row lookbackadded directional errors checking and pca as f...
      MSE1.59188e-071.97246e-076.79626e-076.55241e-084.82937e-07
      MAE0.0002857810.0003408460.0005363070.0002029050.000594482
      count102102103103102
      mean-9.29131e-07-3.83515e-05-5.08408e-05-2.90581e-050.000506372
      std0.0004009530.000444650.0008268490.0002555660.000478296
      min-0.00135148-0.00127888-0.00317997-0.000772953-0.00072515
      25%-0.000158489-0.000304043-0.000402606-0.0002006290.000192821
      50%6.07371e-05-5.84126e-06-3.07747e-05-2.43187e-050.000540495
      75%0.0002399680.000177890.000316920.0001162290.000830978
      max0.0007556680.001287820.003273720.00053370.00159335
      mse train all feature:004.3917e-074.45245e-075.16241e-07
      mse test all feature:006.79626e-076.55241e-084.82937e-07
      mae train all feature:000.0004235650.0004267730.000505385
      mae test all feature:000.0005363070.0002029050.000594482
      mean avg bo spread:003.98687e-053.98687e-053.98687e-05
      how often sign of price change is same:000.4466020.5339810.882353
      if same sign, how often is actual better than 0.1 percent in both directions:000.15217400.655556
      if same sign, how often is actual better than predicted in both directions:000.97826110.366667
      if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions:000.15217400.0666667
      if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions000.10526300.333333
      if not same sign, how often is actual worse than -0.1 percent return in both directions000.10526300
      \n", + "
      " + ], + "text/plain": [ + " 0 \\\n", + "simname 500_epochs \n", + "sim_desc \\nkaggle params but with 500 epochs to account... \n", + "MSE 1.59188e-07 \n", + "MAE 0.000285781 \n", + "count 102 \n", + "mean -9.29131e-07 \n", + "std 0.000400953 \n", + "min -0.00135148 \n", + "25% -0.000158489 \n", + "50% 6.07371e-05 \n", + "75% 0.000239968 \n", + "max 0.000755668 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 1 \\\n", + "simname 500_epoch_lookback_40 \n", + "sim_desc 500 iterations, lookback 40 \n", + "MSE 1.97246e-07 \n", + "MAE 0.000340846 \n", + "count 102 \n", + "mean -3.83515e-05 \n", + "std 0.00044465 \n", + "min -0.00127888 \n", + "25% -0.000304043 \n", + "50% -5.84126e-06 \n", + "75% 0.00017789 \n", + "max 0.00128782 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 2 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.79626e-07 \n", + "MAE 0.000536307 \n", + "count 103 \n", + "mean -5.08408e-05 \n", + "std 0.000826849 \n", + "min -0.00317997 \n", + "25% -0.000402606 \n", + "50% -3.07747e-05 \n", + "75% 0.00031692 \n", + "max 0.00327372 \n", + "mse train all feature: 4.3917e-07 \n", + "mse test all feature: 6.79626e-07 \n", + "mae train all feature: 0.000423565 \n", + "mae test all feature: 0.000536307 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.446602 \n", + "if same sign, how often is actual better than 0... 0.152174 \n", + "if same sign, how often is actual better than p... 0.978261 \n", + "if same sign, how often is actual better than p... 0.152174 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "\n", + " 3 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.55241e-08 \n", + "MAE 0.000202905 \n", + "count 103 \n", + "mean -2.90581e-05 \n", + "std 0.000255566 \n", + "min -0.000772953 \n", + "25% -0.000200629 \n", + "50% -2.43187e-05 \n", + "75% 0.000116229 \n", + "max 0.0005337 \n", + "mse train all feature: 4.45245e-07 \n", + "mse test all feature: 6.55241e-08 \n", + "mae train all feature: 0.000426773 \n", + "mae test all feature: 0.000202905 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.533981 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 1 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 4 \n", + "simname 500_epochs_40_lookback_pca_unshuffled \n", + "sim_desc added directional errors checking and pca as f... \n", + "MSE 4.82937e-07 \n", + "MAE 0.000594482 \n", + "count 102 \n", + "mean 0.000506372 \n", + "std 0.000478296 \n", + "min -0.00072515 \n", + "25% 0.000192821 \n", + "50% 0.000540495 \n", + "75% 0.000830978 \n", + "max 0.00159335 \n", + "mse train all feature: 5.16241e-07 \n", + "mse test all feature: 4.82937e-07 \n", + "mae train all feature: 0.000505385 \n", + "mae test all feature: 0.000594482 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.882353 \n", + "if same sign, how often is actual better than 0... 0.655556 \n", + "if same sign, how often is actual better than p... 0.366667 \n", + "if same sign, how often is actual better than p... 0.0666667 \n", + "if not same sign, how often is actual worse tha... 0.333333 \n", + "if not same sign, how often is actual worse tha... 0 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_log = pd.read_excel(\"sim_log.xlsx\")\n", + "display(pd.read_excel(\"log_results.xlsx\").T)\n", + "#display(df_log)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# create 15 minute data - this fills the 15 minutes table\n", + "if rerunSQL:\n", + " str_query = open(\"get_data.sql\", \"r\").read() # returns prepared data\n", + " str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "\n", + " df = getQueryDataframe(str_query, [min_date, max_date])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# dates only have an effect if a subset of dates is needed.\n", + "if rerunSQL:\n", + " str_query = open(\"get_data_1y.sql\", \"r\").read() # returns prepared data\n", + " str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + " #print(str_query)\n", + " df = getQueryDataframe(str_query, [min_date, max_date])\n", + " df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if rerunSQL:\n", + " df.set_index('datestamp', inplace=True)\n", + " df.index = pd.to_datetime(df.index) # else fill betweeen doesnt work\n", + " print(\"min date\", min(df.index))\n", + " print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if rerunSQL:\n", + " df.to_csv(\"data/eurusd_features.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Create features" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "df = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df.set_index('datestamp', inplace=True)\n", + "df.index = pd.to_datetime(df.index) # else fill betweeen doesnt work" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if useKaggle:\n", + " # load kaggle reference dataset for comparison\n", + " df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + " #df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + " # Rename bid OHLC columns\n", + " df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open_bid', 'Close' : 'close_bid', \n", + " 'High' : 'high_bid', 'Low' : 'low_bid', 'Volume' : 'volume'}, inplace=True)\n", + " df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + " df_kaggle.set_index('date', inplace=True)\n", + " df_kaggle = df_kaggle.astype(float)\n", + "\n", + " simname = \"bm_kaggle\"\n", + "\n", + " df = df_kaggle\n", + " print(\"min date\", min(df.index))\n", + " print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# to include seasonality as a feature\n", + "if simname == \"bm_kaggle\":\n", + " df['hour'] = df.index.hour\n", + " df['day'] = df.index.weekday\n", + " df['week'] = df.index.week\n", + " df['month'] = df.index.month\n", + " df['momentum'] = df['volume'] * (df['open_bid'] - df['close_bid'])\n", + " \n", + "df['avg_price'] = (df['low_bid'] + df['high_bid'])/2\n", + "df['range'] = df['high_bid'] - df['low_bid']\n", + "df['ohlc_price'] = (df['low_bid'] + df['high_bid'] + df['open_bid'] + df['close_bid'])/4\n", + "df['oc_diff'] = df['open_bid'] - df['close_bid']\n", + "df['period_return'] = df.close_bid / df.open_bid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Explore dataset - show some graphs" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOEAAAJKCAYAAABgNMM7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vH7TEvvBJBeFFAUVFwLiCiysijoAnZFrHzt\nZe1lLSwL4i5WcFV+wi5SRFdUUGygoIKyYqOI9JJQQgjpbdr5/ZEwyZBJn2RS3q/r2otTnvOcz4xe\nJy7nzucxTNM0BQAAAAAAAAAAAAAAAKDOLKEuAAAAAAAAAAAAAAAAAGjuCOEAAAAAAAAAAAAAAAAA\n9UQIBwAAAAAAAAAAAAAAAKgnQjgAAAAAAAAAAAAAAABAPRHCAQAAAAAAAAAAAAAAAOqJEA4AAAAA\nAAAAAAAAAABQT4RwAAAAAAAAAnA6ndq+fXuF46mpqerdu7d69+6tJ598MgSV1Uww6ly0aJFvjo8/\n/jjIFUr5+flKSUkJ+rwAAAAAAAChQAgHAAAAAADgKKtXr9bFF1+spUuXhrqUFmvp0qUaMWKEfvjh\nh1CXAgAAAAAAEBS2UBcAAAAAAADQlOzfv1833HBDqMto0dauXav77rsv1GUAAAAAAAAEFSEcAAAA\nAACAcjweT5XnO3XqpM2bNzdSNaE1ZswYjRkzJujzVvcdAwAAAAAANEcsRwUAAAAAAAAAAAAAAADU\nEyEcAAAAAAAAAAAAAAAAoJ4M0zTNUBcBAAAAAABQXmFhoRYsWKBly5Zpx44dysvLU3x8vE488USN\nGjVKI0aMkMVS8XeL1qxZo+uuu06S9MEHH6hnz56aP3++li5dqp07d8rpdKpjx44699xzdeONN6pN\nmzZ+1/fu3bvSmubMmaMzzjhDqampOv/88yVJV1xxhSZOnOgbs2jRIj366KOSpB9++EHLly/X66+/\nrtTUVF/9L730ksLCwnzX7N+/X2+99Za+/fZb7d27Vy6XS8nJyTrttNN05ZVX6pRTTqnTd3h0nc88\n84w+/PBDLVq0SJs3b1ZhYaHatWunwYMHa/z48eratWuFOcp/nueff14XXXSR3/mioiK98847+uKL\nL7Rlyxbl5+crOjpanTt31qBBg3T11Verbdu2AWsKZPny5erUqZPfsa1bt2revHlas2aNDhw4INM0\n1bZtW/3hD3/QVVddpRNPPDHgXK+88oqmT5+umJgY/fDDD5o1a5bmzZungwcPKikpSWeccYays7O1\nYsUKSdKyZcvUuXPnSmubOXOm/vnPf0qSlixZol69elU6FgAAAAAAtE62UBcAAAAAAABQ3rp163Tn\nnXcqLS3N73h6erq++uorffXVV3rrrbf08ssv+wU8jpaRkaGHHnpIW7Zs8Tu+fft2bd++Xe+++65m\nz55daYijvt5++21NmzbNr/78/Hy/AM67776rv/3tbyouLva7NjU1Vampqfrggw90xRVX6K9//avs\ndnuda8nPz9cNN9yg7777zu/4nj17NG/ePL3//vt6+eWXNXjw4BrPuX//ft14443asWOH3/HMzExl\nZmZq3bp1mj17tqZNm6Zhw4bVumbTNDVt2jS9+eab8nq9fud2796t3bt367333tM111yjRx99VDZb\n5X/NNW3aNM2cOdO3f+DAAVmtVo0ePdoXwlmyZIluv/32SudYvHixJKlv374EcAAAAAAAQECEcAAA\nAAAAQJOxdetWjR8/XgUFBYqKitLVV1+ts846SzExMdq7d68++ugjLVu2TD///LNuuukmLVy4UJGR\nkQHneuSRR5Senq7Bgwfr0ksvVYcOHZSamqpZs2Zp/fr1ysnJ0cMPP6yPPvpIhmFIKumec/DgQU2Y\nMEFSSQeZq666SpLUpUuXWn2WF154Qcccc4zuvfdede7cWb/++qu6d+/uO79o0SI98cQTkqROnTrp\n2muv1UknnSSr1apt27Zp3rx52rRpkxYuXCiXy6UpU6bU+vs84qOPPpJU0uln3Lhx6tmzp9LS0rRg\nwQKtWbNGBQUFevjhh/X5558rOjq6RnM+8sgj2rFjh6xWq8aPH69BgwYpLi5Ohw8f1sqVK7Vw4UIV\nFRXpwQcf1Geffaa2bduqbdu2+uCDD7RhwwbfZ7/rrrt83XHKh6omT56sOXPmSJISEhJ0/fXXa8CA\nAbJYLFq3bp1mzZqlgwcPau7cucrPz9ezzz4bsM78/HzNnDlTxx13nO688061adNG33//vc455xz1\n6dNH8fHxysrKqjKEs2nTJl+Ya/To0TX6fgAAAAAAQOtDCAcAAAAAADQZDz74oAoKCtS+fXu99dZb\nfsGXfv36acSIEZo3b54mTpyoLVu26NVXX9UDDzwQcK709HTdeuutuu+++/zmGDZsmC677DL9/vvv\n2rZtm9atW6f+/ftLko4//njFxMT4xicnJ+v444+v02cxDENvvvmmevbsKUkaMGCA71xaWppvGauz\nzjpLr776ql+Y6JRTTtHo0aN9IaFFixZpxIgROuecc+pUiyRdcMEFmjZtmhwOh+/Yn/70J02YMEFf\nf/21MjIy9M0332jEiBHVzrV37159//33kkpCNLfddpvf+SFDhqhnz56aOHGiCgoK9NFHH+nGG2+U\nw+HQ8ccfr5ycHN/YDh06VPiOf/zxR18Ap3v37pozZ45fQGfAgAEaPXq0brzxRm3cuFHvv/++hg4d\nqgsuuKBCrV6vVzExMZozZ44SExMlSaeddprv/MiRIzV37lzt2LFDGzZsCNgZ6cMPP5Qk2e32Ckty\nAQAAAAAAHFFx8XQAAAAAAIAQWLVqlTZt2iRJevjhhyvtPHPNNdfo9NNPlyQtWLBALpcr4Ljk5GTd\nddddFY47HA6/bia///57fUsP6PTTT/cFcI42f/58FRYWymazaerUqQG7+dhsNj399NO+UNCRUEpd\nOBwOTZw40S+AI5UEhY50+pFKOhHVxKFDh3zbXbt2DTjm0ksv1WWXXaZ77rlH/fr1q1W9b775pm/7\nueeeC7jsWHx8vF588UVZrVZJ8ltu6mjDhw/3BXCONmbMGN/2kiVLKpz3eDy+TkJDhgypdB4AAAAA\nAABCOAAAAAAAoElYsWKFb3vQoEFVjh0yZIgkKS8vT+vXrw845swzz5TNFrgJcPmAT35+fi0rrZkj\n3XUCOfJZe/bsqXbt2lU6LiYmRqeeeqokae3atZUGjqrTr18/JSQkBDxXPkSTnZ1do/m6dOni+26f\nffZZLVu2rEJtYWFhmjRpkm6//Xa/zjPVcbvdvi47ffv2rTLA06VLF5199tmSpPXr1yszMzPguJNP\nPrnSOfr27atevXpJkj7++GN5PB6/86tXr1Z6eroklqICAAAAAABVYzkqAAAAAADQJBzpgiPJ1+mm\nJlJSUnxBlfI6duxY6TXlO8+43e4a36s2jjnmmIDH3W63tmzZIknavHmzevfuXaP5CgsLlZGRofbt\n29e6lqquCQsL86utJhISEnTZZZdpwYIFSktL0x133KGoqCidccYZGjhwoAYNGqQePXrUuk5J2rdv\nny8YVVWQ6Yj+/ftr5cqVMk1TW7duDfjvTnXf2dixYzVlyhSlp6fr+++/9wuBHVmKKiEhwRf+AgAA\nAAAACIROOAAAAAAAoEmorItJdXJycgIej4qKqvQawzDqdK/aiI6ODng8JydHXq+3TnPWtFPN0ar6\nLsozTbPGcz7++OMaP368ryNOfn6+vvzyS02aNEkjRozQH//4R73wwgs6fPhwrWrNysrybSclJVU7\nvk2bNr7tyr6fyv5ZHDFq1Cjf5yi/JFV+fr6WLVsmSRo5cqTsdnu19QAAAAAAgNaLTjgAAAAAAKBJ\nONKFJSEhQbNnz67xdVUt5xRKlQV9ynebGTx4sO6///4az1l+6ahQs9vteuyxx3TLLbfos88+01df\nfaW1a9eqqKhIkrRnzx699tprmj9/vt58880ql5UqrzZBIEl+y0dV9p1XF7pKSkrSkCFDtHz5cn3+\n+ed6+umnFR4eri+++EKFhYWSWIoKAAAAAABUjxAOAAAAAABoEuLj4yVJBQUF6t27tyyWltnA98jn\nlCSv16vjjz8+hNXUX3Jysq699lpde+21cjqd+umnn7Rq1Sp9/PHH2rt3r3JycvTggw/qk08+qdE/\n07i4ON92RkZGtePLjyn/3dbWmDFjtHz5cuXn5+vrr7/WBRdcoKVLl0qSevXqpb59+9Z5bgAAAAAA\n0Dq0zL/NAgAAAAAAzc5xxx0nSSouLtamTZuqHPv1119r1qxZ+uyzz2q93FGoORwOX0ebjRs3+nXG\nCWTBggWaN2+eVqxYUe3YxuL1epWSkqLvvvvO77jD4dCZZ56p+++/X59++qlOPvlkSdKuXbu0c+fO\nGs3duXNnRUZGSpJ+/fXXasf/8ssvvu3u3bvX9CNUMGTIECUmJkqSL4xz5PPRBQcAAAAAANQEIRwA\nAAAAANAknH322b7t+fPnVzrO4/HomWee0dSpU3X33Xf7lgsKlsbowHPks2ZlZenjjz+udNzu3bs1\nceJETZw4UX/7299kszWNpsZ//etfNWzYMF1//fVKSUkJOOZIIOeI4uJi33ZV37HVavVdt3HjRm3Y\nsKHSsbt37/YFZfr06aOkpKRafY7y7Ha7Ro0aJUlasWKFVq5cKafTKavV6jsOAAAAAABQFUI4AAAA\nAACgSRg2bJg6d+4sSXrvvfe0ePHigOOmTJmi1NRUSdL555+vjh07BrUOh8Ph2y4oKAjq3Edcd911\nslqtkqTJkydr8+bNFcYUFhbqwQcflNfrlSSNGzeuQWqpi/POO8+3PWXKFJmmWWFMYWGhli9fLkmK\niory61JT3Xd8ww03+LYfeughHTp0qMKY7Oxs3XffffJ4PJKkG2+8sQ6fxN+YMWMklYSjXnrpJUkl\ngank5OR6zw0AAAAAAFq+pvHrUwAAAAAAoNWz2WyaOnWqxo8fL5fLpYceekhfffWVLrroIiUnJ2vv\n3r1auHChvv/+e0lSXFycHnvssaDXkZCQILvdLpfLpY8++kgDBw5UbGysunbtqvj4+KDco1u3brrv\nvvv0z3/+U1lZWbr88st19dVX65xzzpHD4dCWLVv073//W7t27ZIk9evXT9dcc01Q7h0MQ4cO1Ukn\nnaT169dr+fLlGjt2rK666ip169ZNpmlqx44dmjt3rrZu3SpJuummmxQREeG7vnyo5e2331avXr1k\ns9l0/PHHKyIiQqeffrrGjRunt956S9u3b9fFF1+s8ePHa8CAATIMQ+vXr9fs2bN14MABSdLIkSN1\nySWX1Ptz9enTRyeccIJ+++0333f/5z//ud7zAgAAAACA1oEQDgAAAAAAaDIGDBigN954Q/fdd5+y\nsrK0dOlSLV26tMK49u3ba8aMGerUqVPQa7BarRo6dKg+++wzHTx4UDfffLOkko41Y8eODdp9brnl\nFhmGoRdeeEFFRUWaNWuWZs2aVWHcaaedpunTp8tutwft3vVlsVg0ffp03XTTTdq2bZs2btyoJ554\nosI4wzB01VVX6fbbb/c73qFDB/Xt21cbN27U1q1bfV1+/vOf//iWonrsscdkt9s1e/ZsZWRk6Pnn\nnw84//XXX6/7778/aJ9tzJgx+u233ySVBL2GDRsWtLkBAAAAAEDLRggHAAAAAAA0KQMHDtTy5cu1\nYMECrVixQtu3b1dubq4iIyN17LHH6vzzz9eVV16p6OjoBqth8uTJSkpK0vLly3X48GHFxsYqMzMz\n6Pe5+eabNXz4cM2bN0+rV6/Wvn37VFhYqPj4ePXt21cXX3yxLrzwQlksTW9F8fbt2+v999/Xe++9\npy+++EJbtmxRVlaW7Ha72rZtqzPOOENjx45V//79A17/2muv6bnnntPq1auVk5Oj+Ph4v2WnLBaL\nHn74YV1yySWaP3++1qxZo7S0NFksFnXo0EFnnHGGLrvsMvXp0yeon2vEiBGaNGmSb7v80lkAAAAA\nAABVMcxAi3YDAAAAAAAArdDKlSs1YcIESdLChQt18sknh7giAAAAAADQXDS9X6MCAAAAAAAAQmTR\nokWSpGOPPZYADgAAAAAAqBVCOAAAAAAAAICk1atXa9myZZKkq666KsTVAAAAAACA5sYW6gIAAAAA\nAACAUJk0aZLy8/OVm5urlStXyu12q3379ho7dmyoSwMAAAAAAM0MIRwAAAAAAAC0WhkZGVq6dKlv\n3263a/LkyYqIiAhhVQAAAAAAoDlqMiGc9PTcUJcAoAVISIhUZmZBqMsAgAbH8w5Aa8HzDkBD69Pn\nJK1atUrFxcXq1auPbr75VvXq1a/R/66K5x2A1oRnHoDWgucdgNaitT3vkpNjKj3XZEI4ABAMNps1\n1CUAQKPgeQegteB5B6ChjRlzmcaMuSzUZfC8A9Cq8MwD0FrwvAPQWvC8K2MJdQEAAAAAAAAAAAAA\nAABAc0cIBwAAAAAAAAAAAAAAAKgnQjgAAAAAAAAAAAAAAABAPRHCAQAAAAAAAAAAAAAAAOqJEA4A\nAAAAAAAAAAAAAABQT4RwAAAAAAAAAAAAAAAAgHoihAMAAAAAAAAAAAAAAADUEyEcAAAAAAAAAAAA\nAAAAoJ4I4QAAAAAAAAAAAAAAAKDRLF26RP/61ysNNv9PP63VU089WuH4Sy9N04EDB/yO7d69S3fe\nOSEo97UFZRYAAAAAAAAAAAAAAACgCbvnnvsbdH5COAAAAAAAAAAAAAAAAK1A1NNPKGzJB8Gd9IrL\npYeerHJIcXGRJk9+RgcOHJDL5dJ5553vO7dgwVwtX/65rFar+vc/RbfffrfWrftF06e/KJvNpvDw\ncE2aNFUOR5j+8Y/JSk1Nkdfr1S233KZTTz2t0numpKToL3+5U9nZ2Ro9eqxGjvyz7rxzgh588DFF\nRUVr4sQnZJqmEhOTgvZVEMIBAAAAAAAAAAAAAABAg/ngg/fUvn0HPfPMFKWk7NF3332rvLw8bd++\nTV9++YVee22WrFarHn/8Ia1a9Y1++eUnDR06TJdffrW+/fZr5eTk6rvvPlFcXLweffRJZWdn6Y47\nJmju3HcqvafH49bUqS/I6/Vo/PirNWjQEN+5OXPe1LBhw3XxxaO1fPnnev/9/wblcxLCAQAAAAAA\nAAAAAAAAaAXyn56k/KcnBXXO5OQYKT23yjF79uzWmWcOlCR17txF69fHKCMjQ7t371LfvifJZiuJ\nr/Tvf7J27tyuceNu0Jw5s3TPPbcpObmtTjjhRG3fvk3r1v2s337bIKkkZJOVlaX4+PiA9zzhhJNk\nt9sl2dW9e3cdOLDPdy4lZY9GjRotSTrppP5BC+FYgjILAAAAAAAAAAAAAAAAEEDXrt21adNvkqS9\ne1P1+uszSo9302+/bZDb7ZZpmvrll5/VuXNXff75Ul144Ui98srr6t69hxYvXqSuXbtp2LDhmj79\nDU2b9rLOO2+YYmNjK73n1q2b5Xa7VVhYqF27dqpjx06+c9269dDGjeskyVdXMNAJBwAAAAAAAAAA\nAAAAAA3mkkvGaMqUibrzzgnyeDy64oprlJ2dpZ49j9XQocN02203yTRN9evXX+ecc65++22jnn12\nkiIiImQYhh566HG1aZOsqVMn6c47Jyg/P0+jR18mi6Xy3jMOh0MPPHC38vLydOONExQbG+c7N378\nTZo48QktW/a5OnToGLTPaZimaQZttnpIr6Y1EQDURHJyDM8TAK0CzzsArQXPOwCtBc87AK0JzzwA\nrQXPOwCtRWt73iUnx1R6jk44AAAAAAAAAAAAAAAAaHZmz56pH3/8ocLxxx57KqgdbmqKEA4AAAAA\nAAAAAAAAAACanRtuuEU33HBLqMvwqXxxLAAAAAAAAAAAAAAAAAA1QggHAAAAAAAAAAAAAAAAqCdC\nOAAAAAAAAAAAAAAAAEA9EcIBAAAAAAAAAAAA0Cy4Pd5QlwAAQKUI4QAAAAAAAAAAAABo8kzTJIQD\nAGjSCOEAAAAAAAAAAAAAaPJMU3J7zFCXAQBApQjhAAAAAAAAAAAAAGjyvKYpr5cQDgCg6SKEAwAA\nAAAAAAAAAKBZ8BDCAQA0YTUK4fz6668aN25cwHOFhYW68sortX37dt+x119/XVdccYXGjBmjd999\nNziVAgAAAAAAAAAAAGi1LFu3yL7l91CXAQBApWzVDZg5c6YWL16siIiICufWr1+vp556Smlpab5j\na9as0c8//6wFCxaosLBQs2bNCm7FAAAAAAAAAAAAAFqdduecLklK358pWa0hrgYAgIqq7YTTpUsX\nvfLKKwHPOZ1OzZgxQz169PAd+/bbb9WrVy/dcccduvXWW3XuuecGrVgAAAAAAAAAAAAArZt1985Q\nlwAAQEDVdsIZPny4UlNTA54bMGBAhWOZmZnat2+fXnvtNaWmpuq2227Tp59+KsMwqrxPQkKkbDYS\nqwDqLzk5JtQlAECj4HkHoLXgeQegteB5B6A14ZkHoD7istJlTT4l1GXUCM87AK0Fz7sS1YZwais+\nPl49evSQw+FQjx49FBYWpsOHDyspKanK6zIzC4JdCoBWKDk5RunpuaEuAwAaHM87AK0FzzsArQXP\nOwCtCc88AHWVXPqn9U/DlX4wJ6S11ATPOwCtRWt73lUVOKp2OaraGjBggL755huZpqm0tDQVFhYq\nPj4+2LcBAAAAAAAAAAAA0FqYZqgrAACgWrXuhLNkyRIVFBToiiuuCHj+vPPO0w8//KBLL71Upmnq\nySeflNXKMlMAAAAAAAAAAAAA6saSssf/gNcrWYLebwAAgHoxTLNpxEZbU2siAA2ntbU6A9B68bwD\n0FrwvAPQWvC8A9Ca8MwDUBfW9euUeP7Zvv1Dm3fJTEgMYUXV43kHoLVobc+7Rl2OCgAAAAAAAAAA\nAACCyXC7/PYtBw+GqBIAACpHCAcAAAAAAAAAAABA0+Y8KoSzb2+ICgEAoHKEcAAAAAAAAAAAAAA0\naUc64Xi6dJUkmXv2hLIcAAACIoQDAAAAAAAAAAAAoGlzlYZwuveQJNk/+ySU1QAAEBAhHAAAAAAA\nAAAAAABN2pFOOO7jekmSopd9GspyAAAIiBAOAAAAAAAAAAAAgKbNWRLC8bbvEOJCAACoHCEcAAAA\nAAAAAAAAAE1baSccMyqy7JjTGaJiAAAIjBAOAAAAAAAAAAAAgCbNcJWEcGSzq3jEyJJj+XkhrAgA\ngIoI4QAAAAAAAAAAAABo2kpDOKbDITMqSpJk5BHCAQA0LYRwAAAAAAAAAAAAADRpZZ1wbAp7/7+S\npMgX/xnCigAAqIgQDgAAAAAAAAAAAICm7UgIx26X4fFIksLffTuEBQEAUBEhHAAAAAAAAAAAAABN\nmuPTjyVJpsUiT+cukiTXGWeFsiQAACoghAMAAAAAAAAAAACgSQtb8aUkyf7Lz8p77nlJkvN0QjgA\ngKaFEA4AAAAAAAAAAACA5sHrlTcqRpIU/Y/JkmmGuCAAAMoQwgEAAAAAAAAAAADQLBTeeocUHubb\nN7IyQ1gNAAD+bKEuAAAAAAAAAAAAAAAqVa7bjbf9MTLtDt++UVAgMyExFFUBAFABnXAAAAAAAAAA\nAAAANF1Op9+umZTk2zby8hq7GgAAKkUIBwAAAAAAAAAAAECTZeSXBG2KLhpV4Zx91TeNXQ4AAJUi\nhAMAAAAAAAAAAACgyTLy80s2IiIrnIt55P5GrgYAgMoRwgEAAAAAAAAAAADQZBnFxZIkMyIixJUA\nAFA1QjgAAAAAAAAAAAAAmq6iIkmSGRbmO5T92puSpOI/XRSSkgAACIQQDgAAAAAAAAAAAIAmyygu\nCeEovKwTjufEfpIkb9t2oSgJAICACOEAAAAAAAAAAAAAaLKMAJ1wTIej5JyzOCQ1AQAQCCEcAAAA\nAAAAAAAAAE2OkZUp+8zXZOTlSZLM8PCyk6UhHDmdIagMAIDAbKEuAAAAAAAAAAAAAADKM9LTFTdm\npOybN8kbF1dysFwIx3SUdMUxCOEAAJoQOuEAAAAAAAAAAAAAaFIShp8r++ZNkiRLdrYkyQwr1wkn\n7EgnnGIVpuyV3O7GLhEAgArohAMAAAAAAAAAAACgSYi+6TqZiUmypqZUOFd+OSrTXhLCsa1fpy4D\njlfBteOV//wrjVYnAACB0AkHAAAAAAAAAAAAQEh4vaYkyeP1ysjKVMSSDxT5nzcDDw4LK9t2lIRw\nrPv3SZIi5/6nQesEAKAmCOEAAAAAAAAAAAAACAmP1yu53bJNfVaWTb+VHe/UucJYMzKqbMdikWm3\nN0aJAADUGCEcAAAAAAAAAAAAACHh8ZoKn/sftXnhWSVeMsJ33JqaInf7Y1R4zXUl46Jj5Bo4yO9a\n0xEmAACaEkI4AAAAAAAAAAAAAELC4zVlFBYGPGd4vcp7Ybp27cnQwa0pMmNi/c6bERF1uqfb463T\ndQAAVIcQDgAAAAAAAAAAAICQ8HhNmVFRAc9ZD6ZJkmxWi2zWiq81zeho/wOVhHkC3RMAgIZACAcA\nAAAAAAAAAABA43M6Ff32XFm3b/M7nP/AIzItFhVcO16SZLcFfqVpxsT47VsOZ9Totl5COACABmIL\ndQEAAAAAAAAAAAAAWp+IN99Q9FOPVTjuOfY4pW3cIWtCvCTJYhgBrz96eSrL4Qx5O3aq9r50wgEA\nNBQ64QAAAAAAAAAAAABodNad2wMeN+12WZMSJUvVrzKPXsbKyKhZJxxjx3bFXTlG1u1ba1YoAAA1\nRAgHAAAAAAAAAAAAQKMzHY6Ax50XjqrR9faf1vrt12Q5KiMjQ93OO12OL5cp5p47anQfAABqihAO\nAAAAAAAAAAAAgMZns/vt5o8arbSUdMlqrdHl3uS2fvtGdnb1t/z157IdZ3GN7gMAQE0RwgEAAAAA\nAAAAAADQ+Oz+IZyC6a/JEhZW48udQ//ot2/kVB/CqW6JKwAA6oOfMgAAAAAAAAAAAAAanWmz+R8I\nD6/V9QX3PeC3b/32m8rvZZolG+VDOIZRq/sBAFAdQjgAAAAAAAAAAAAAGp/D4dvcs2FnrUMxZmSU\n337Eyi8l05ScTkU9cK/f0lMeb2kIh+ANAKABEcIBAAAAAAAAAAAA0OhMW9lyVBHJibWfoLSTjiep\nje9Q7JWW3buEAAAgAElEQVRjFTnjJUXOmaX4UcN9x90eryTJknHId8z+80+1vycAAFUghAMAAAAA\nAAAAAACg8TnKQjh16lBjGEpZt037/7de2TdMkCSFfbVMUVP+VnK6qMg39EgnnJhbb6p7vQAAVIMQ\nDgAAAAAAAAAAAIBGV74TTl052iXLGhkh59R/yiy3vFV5ln17FfvUYzKys2R4vRXOew6kScXF9a4F\nAABCOAAAAAAAAAAAAAAanddirfccFsOQzVryytNwOv3OFY0eK6mk+03i7NcV8dI0Fdx6p98Y+zcr\n1b7fcYp+9IF61wIAACEcAAAAAAAAAAAAAI2u2F2xK01QWW2SJNuG9ZKkqOkvKeL1GX5D4seOkiRF\nzP1Pw9YCAGgVCOEAAAAAAAAAAAAAaFwulxL/8XdJ0qHpMxvmHh63JMmSl+s7ZJhmw9wLAAARwgEA\nAAAAAAAAAADQyCLe+JdsWYclSRabLShzFl90sSQpe/Y8SZLhctduAper5M/SoI5l5w4lDjhRtv+t\nCUp9AICWLzg/0QAAAAAAAAAAAACgBixrf1D0M0/49q12qzxBmDdn9lzJ5ZJRkC9JMt1uGVmZNb4+\n9prLFLbiS0lS9jOTFbbuF1lT9ij29lt0eO26IFQIAGjp6IQDAAAAAAAAAAAAoNEkXXi+/wEjiK8s\n7XaZ1pI+BF6nUzF331ZhiGkYAS89EsCRpLinHpPl4EFJknXPLsldy646AIBWiU44AAAAAAAAAAAA\nABqH11vxmNUa3HtEREiSIr/8IuBpMzZWRnZ2tdM4vlnh27Zu2SzPCX2DUh4AoOWiEw4AAAAAAAAA\nAACARmHk5lQ8aAnyK8tqQj3e6Bi//ZwXplc7pZEToG4AAI5CCAcAAAAAAAAAAABAozCysioetARe\nHqrBxMb5NjNf+peKr7lOh/67RJJUPPKSgJcYLmejlAYAaN5YjgoAAAAAAAAAAABAo4j+y10VjpkR\nkQ16z4IzByny+1VlBzxu36b7qmtKajhniNIPlnW7sezepfihZ8ta2rnHcBY3aI0AgJaBTjgAAAAA\nAAAAAAAAGoTXNOVye337Yd+srDDGjIoK+n0LL7/Kt13wl4f8zhl5edVe7+3aTYe3pSjvmcklB5yu\noNYHAGiZCOEAAAAAAAAAAAAAaBCFu1PkOZxZ5RgzOibo981/8NGy+c89z++ckZNz9PDADENyl3TN\nibljQtBqAwC0XIRwAAAAAAAAAAAAAARdxBuvqtvpJ6rzid2rHOeNiw/6vc2u3ZT5zgfK+GVThXOu\n886v8TzWPbslSZa83PrXZJoyTbPe8wAAmi5COAAAAAAAAAAAAACCLvqJR8p2XCXLOZkWi4pPP1Ou\nE/r6TplJSQ1yf/e5Q+Xt0NHv2IHX/q38R/9a4zmKLrsyaPWYpf8DALRctlAXAAAAAAAAAAAAAKBl\ns6bslqdLNxler+RwKGvFd7Ju2SxnWrqsVmvj1TFmjDzFxZIk18mnVjve3f9kSZJzyHnVjKyBIwkc\no/5TAQCaJkI4AAAAAAAAAAAAABqUdcN6GdnZJTthYZIkT6/eMnse1yj3z/pgqcxDh3z337VxlyIT\nYqvPw9hKX6e63fWuwSSFAwAtHiEcAAAAAAAAAAAAAEHnTW4rS/pBSVLczePLTjjCfJs2q6VRanEN\nPNtv3xoXK8NWg1elltL6PJ5612CakkH+BgBatMb5qQYAAAAAAAAAAACg1fB4vfJGRckTE1vhnDc+\nPgQV+Qt31LBXgWHItNmCEsKRSoI4AICWixAOAAAAAAAAAADNnNvjDXUJAOBT7PKoaNUa2XbtlBkT\no9zHn/I7byYkhqiyOrJag7IcFQCg5WM5KgAAAAAAAAAAmjGv15TL7W20JV0A4AiP16v8Qrfycwvk\n2bZDxtYtsm3bou6L5ysqbZ8kybZvr4ruuV9Fd9yj5A4l4RtvQkIoy64102oLSgiHLjgA0PIRwgEA\nAAAAAAAAoBnzeL3yeHmzC6DhmKapwmKPCg8ekvf332Vs2SL7tq2K2LVNySk71X3fHlk8gUMqzlMG\nlGzYyl5LGt5m1r3LZg3SclQ8qwGgpSOEAwAAAAAAAABAM+Y1JQ/LUQEolVfoUnSEvc7Xu5wuFW3f\nJe+m32XZukW20rBN25Qdijh8qMJ4Z1SMMnv1VV7nHnIde5yMPn0U3vtYdRx+jiSp4NG/ls19yqmy\n//yTnEOH1bm+UDCtNhmVhIxqNQ8ZHABo8QjhAAAAAAAAAADQnJmiEw4An4zsIkVH2OU1TVkMo9Jx\nnrw8uTdtlvf3zTK2bPZ1tklI3SVbcZHfWNMwlN+uo/afNli5nbsrt3MP5XTpLu+xvRXVpYMSYsMV\nHx2mSEvF+3m7dPFtZy1drkO79qlNz87B+8CNwIyIlGX//pIUTRXfabXzBLEmAEDTRAgHAAAAAAAA\nANCkmKYpox4vOVubxAnXqe0vPyv7l99CXQqAEAufN0fH/PqbjPvvk+Wtt+To1VPuU0+Te+s2X2cb\n+/atCt+1XZEH9la43h0WURayKf0zt3MP5XbsKm9YuBw2ixKiw5QQG67jYsIUZrdWWotzyHmybNgg\nT8dygRurVfZ2bRviozcoT48eCvv2a8ntlux17zIkiSQOALRwhHAAAAAAAAAAAE2Ky+2Vo4oXu/AX\nuXRJyUZBgRQZGdpiAIRUzH13KkaS/v1qleMKk9oq7eQzldupmy9ok9OluwrbtJcsFt84i2EoNsqh\nbjFhSowNr9UyV9kL3pOKi6WwML/jdpulkiuaLjM8QpJkFBfJrEcIx2Q9KgBo8QjhAAAAAAAAAACa\nFFf6ITmS4iu8uEXVLIcz5CWEAyCATVf9X1lnm07d5Y6KrnRsZJhNiTHhSogJU3yMQ1ZLHUMzNlvJ\n/45itzW/kKVx5OdRsVOq/KsDAIAQDgAAAAAAAACg6TDyctXt5ONUNOoS5b75VqjLaV5crlBXAKCJ\n2nDDvZWes1stio8JU2JMmBJiwhTuaNjXh82yE05pCMdwFtdrNSka4QBAy9f8fsoBAAAAAAAAAFos\nS2qqJCl8yYchriS0ip0eebzeWl1jEMIBEMDOC0b77VsMQ3FRDnVvH6tTj0vWwBPbq2+3RB2TFNXg\nAZzmKuzjxZIk29r/hbiS1sf2688Ke/Qhye0OdSkAUCP8JAUAAAAAAAAANB28ZJMkRT/9uBybNir/\n/SU1v8jpbLiCADRbP97ztCIcNiWUdruJjwmTzcrv6deGabPLKC5W3E3XKf1gTt3noRNOrSX8cYgk\nKXvwOXJeODLE1QBA9QjhAAAAAAAAAACaDMNDCMf+zUrF/79XJUn5pikZRo2uM1yEcIDWzPa/NRWO\nZSz6WKf366yIMF4J1kfRNeMU+ca/JEluj7ceISZTRU6PIsP551FbRk52qEsAgBoh5goAAAAAAAAA\naDrohKOo5yaX7VTX3aZ8WwUny1EBrVnCyD9WOOY9ezABnGAwyr1Sfe+/MjIP12mayPlvyfIDS1rV\nCd3eADQThHAAAAAAAAAAoA5M05SXdSWCz+0JdQUh501q49s2iouqHlwutEQnHABoGEXXjvdtH3Pn\nzYq9+fpaz2Hk5ij5kXt13FUsqVQXsQ/cQ1AXQLNACAcAAAAAAAAA6sDtMeVyeUNdRovDclSSNy6u\nbKeouOrBxeXO0yUAaNU8bZIlSc7zzi/5c/C5IaymZfH07qPc62707Tu+WVH7SQrLQpVGXm4QqmoF\njgo72375KUSFAEDN0X8OAAAAAAAAAOrA/snHcnbpJvU/KdSltCz8lru8nbv4to2iQlXVb8koF8Ix\nXCxHBbRm3qQ2sh5KV/bcd+Q9fFiWpKRQl9SiWCxH9TYwTckwany94S57RhsZGTKjY4JVWosVtuhd\nv30jl/ASgKaPTjgAAAAAAAAAUFtFRUq+6Rp1/OOgUFfS7LiqW26KEI7MsHDfdvmQTSCGs3wnnGq6\n5gBo2ZxOOZPbSXa7LO3aSTZ+Fz+Y3KUdho6wbt1Sq+vNcs9zb2ZmUGpq6cI+eM9vP+7qS0NUCQDU\nHCEcAAAAAAAAAKglw8WyP3VhHDyosL89IyMnu/IxLEclecsFlYqKKh8nKXz+W77t6KefaKiKADQH\nRUUywsJCXUWLZYaH++1HvvCPGl8btnC+2pxxsm/feyhDHi9LWlbH/t1qv33D45FjyYdSQYGSenZU\n/LBzZF/1TYiqA4DACOEAAAAAAAAAQG05WfanLmIeuFtJ/3pRUX9/pvJB1XXKaYG8Xv8FpwxP2Xdg\nFFcdwoma+nfftjVlT3ALA9CsWDMPS4RwGo7D4b9fiyUAIydP9NuP/fvTSt+xLxhVtWiW0tBuwcDB\nvmNxN41Tcrf2suTmyr7uF8WPvkjJbWMlQk0AmghCOAAAAAAAAABQSwbL/tSJNSVFkhS+cH6lY4yi\nwsYqJ6S8Zlnwxnl08Kh8CCcvr7FKAtCM2X79WZaiQtm3bw11KS2Wke//PDZjY2t0nSXtgGz7/QM3\nERvX6aSBJyji5eeDVl9Llj/vnWrHRN92s2Sa1Y4DgIZGCAcAAAAAAAAAain8P2+GuoRmyVr6ctgo\nKKh0jH3Vt41VTkh5PKUvCl0utfnzCIW/9e/yJ32b9jXfVTmP6+RTGqA6AM2N48tloS6hxfMmtfHb\n9/Q4tkbXxf75okrPRU96uh4VtXyeuHi5OnSSoqJUNObSKsdGvP/fan9mAkBjIIQDAAAAAAAAALUU\ntviDUJfQPBlGtUMi5sxqhEJCz1O6bIbttw2KWLtGMfff7TtnlgvhmOHhVU9ktfnvu91BqxFA82Fa\nraEuocVzD/iD8ocN9+0b7hosR2WaVXYn8iQmBaO0Fstwu2QmJEiS8p57Qdn3P6KcV2cq/94HlL4/\nU9lz3vYbb9nPEl8AQo8QDgAAAAAAAADUknnUb8OjhpzO2o0P0rIS1q1bFPbmG0GZK1i8XlPm4QxF\n/fXRCuc85Zaniv77M5VPUlgo+48/SJIKRv1ZkmTZszu4hQJoHliGp1EUzH9X++YuKtmpSeixqKjK\n06bdHoSqgs+Tnx/qEiRJRnGxFBEhSTJj4+R8+DEVX3qFCh57UrJa5fzThcpYt7lsfMahUJUKAD6E\ncAAAAAAAAACgltx9Twx1Cc2Sc+gw37ansLD6C1w16DJQA4mDTlPsow/I9vOPQZkvGLymFP3kY3J8\nv9r/hMejuBkv+h0ycrIDzmE5sL9sTGk3Bfv/vg9uoQCaBaNcBy00rPDo0g5lNemE80wVQUpJltyc\nIFQUXPYvl6l992MUPm9OaAtxu2W43VI1HeG87Y+RWRrUseTlNUZlAFAlQjgAAAAAAAAAUEtG5uGy\nHV581pj7pH6+bdvixf7nPN4AFwR3aSUjKyuo89WW01X670pRkTqf2luR7yyoMMax7PMKxyz79vmu\ns6SmyP6PqbJu3ypLerokqWDoH+UacJokyahJuAlAi2M6wkJdQqthHOle43TJrK4D0dSpvs3DH33h\nd8p51iBZCgqa3DKC4fPfkiRFzHgppHUYu3aVbNRgqbWsdz4suSY7W2a5II6XDlEAQoAQDgAAAAAA\nAADUkiWjXAintksstWJGuWWW2tx1i2/b8fknsv9rhiTJdDjKjQ9OJ5wjwmc17pJUxS6P0jILtCUl\nS//blKbVGw/I7fHKujdFtsqWzCiuuHRJ5MP3y3Jgv6KfeERJp/ZV/D/+rsSzBihy+guSJG/3HjKT\nSjrhNLVltwA0LFfpc9XTpYskqeiyK0NZTutQ+nMqavqLCn/kQVl27azRZZ7Tz/DbN+PiJUlGXm5w\n66sH29r/KXzx+yU7R4VfAoZlG1CbgadKkhwrv6p2rBkdLUmKnPGS2vboICMrU/bvVsl8550GrREA\nArGFugAAAAAAAAAACKXwJx6VJe2ACmbOrvE1xuGMsm1nsW8ZhCbB7VZhRrYi2iWFupKKKvlt/7hr\nr5AkpU/4PxnlQ02u4HYHCP/sEzXkq84ip1vZeU5l5RUrK8+pQmdZ/YbbpcQtG+SOLlZYVd2TIiMr\nHAr/7ltZ7rxVjq/9X0SGfbpUkuQ9qZ/MqJIXkI4tv8tIS5PZrl0QPhGApq7Y5ZXdZi1ZtkeS6/Qz\nQ1xRy2fa7L7t2NlvyPP5Uh3++bcK46wbN8iMjpaRl6esD0qe1we27FHUxReq+E8jFb13lyTJyMmR\nGZ/QKLVXJ+HCsmUjZS17jWzk5cr2+RfSJZfUqDNNYzOjovz2I6c9p8jXS8K96ZdfLhlGKMoC0EoR\nwgEAAAAAAADQqsW8UfKSpsYhHK9X9g3ryvadwe3WUl+Rjzyg5DmzlPHzb/J27FThvNvjlc0aoibp\nR3e2KSyUygWYLEd1hzHcLgV9IQnTDNrLuMJit7LzncrKLVZWfrGKnP7hmqj9KWr34yq1X/ut2v6y\nRvaCPDk7dJJnyLmBJ3S7ZVrKXm7mDvuTYpZ9KkkVAjjluYYOk+Vgmm/fkp0lDyEcoMVzLH5fiV98\nIefLM8pCjjZe/TU4u91v17o3tcIQy9oflHjh+ZKk4l7HyzXwbEmSERunjQs+UbvESEU980jJsdym\n0wmnPLNc2Cbm7tsV9tGHys1/WUXjrq/1XA393x5HgqhHWMqHpbOzmkzICUDrwHJUAAAAAAAAAFAL\nRy9pZDiLQ1RJYFFzZkmS7Gu+C3jevWu3nFk5kiSPt3GXljCO6oTjWPaZVK4G+4ov/c5bf98U/Boy\nD1c/qBKFxW7tz8jXpt2Z+n7jAa3ZlKbf92TqQGaBipwe2Qrydcx3X+qU6X/Tn64frgvHX6ABLz+j\njquXqzg+UZLk2JeqiAVzfXPm3n2/b9uxYrkMV1lQqeiGm6utyZ3cVt627fy7ALBEGtAqxN08XnEL\n58qyN1VGfr4k/+AEGoY3sWKnOSMnW5b9+2RJ2SPl5yupNIAjSUZUWYczw5DC7FbZrRaZkSXP7djr\nr5b9268bvvBqGLk5/gdsVhmbN0uFhQr76ENJkvn773Wa++iQam0U3Px/1Y45shyVj6XsFXjU5Il1\nvjcA1EWNQji//vqrxo0bF/BcYWGhrrzySm3fvt3veEZGhoYMGVLhOAAAAAAAAAA0Z5EvPe9/oCkF\nHsyyvjH25V9UOG3k5arzWf3V5sLzpcJCJR/XRRH/nOo7b92wXhGPP1zpslH15vZ/CRd303UKW/y+\nbz/2ntv9zsc8eG/Qg0IRb/yrxmMLilzadyhfm3Yd1neloZvNKVlKyyxQkcsjeb2K37JRfRa8oSEP\nXKdLLj1LZz91h45dPF/hWRnae9b5+vGuJ7X035/pk39/pl8mPOw3f9bL/1LRE0/59i0pKbKs/rZs\nv2fPamvMXrpMslj8lkcxXE3o30kADc/pVMzDf5EkGcVNKxjaEplt2lQ4FnvN5Urq30dJA05Ucvdj\n/E+W605kGIYiwmyyWg2ZpcsP2nbvUvyYkfJOmSLP3Hnyfv2NlLKn4X4WB+L1ynJUwMb+809qM/gP\nSu5a1lktduartf7vHsue3Ur6y+0y0tPrVFrhXfdVPyg8XM4zB5btLpxfdo6lqAA0smp70s2cOVOL\nFy9WRIA1jdevX6+nnnpKaWlpfsddLpeefPJJhYeHB69SAAAAAAAAAGhIHo9Ugw4C1rQDfvuWzMMy\nPloi73Xj5Y2NkxHClz1h777t2454923lzTiqa8/hki4wYds2K2rSU7Lm5ij6ub+r8IGScEji0EGS\nJLN3HxVdd0PwC/RUfKFo5OVVOtx0ueR0eRURVo+m7qb/glZRzz8n59nnyH32ORWG5he5lJXnVFZe\nsXLynCp2V/zN/fCMg2r302q1W7tK7X5arfDsku/UNAxlHtdXBwYMUtppZyvj+P5+wRhJ2jp6nLoY\nBUp8/RVJklG6PEbexMmKfvIxedu0UVzpi3Sp5EXv3lkLlPziVNk3bfTrknOEt0PHkj+7dC072MSW\nSAPQsAxP2bPKm5gYwkpaL0cl3eckyfHDGr/96Ai7bFaLzIhIv+PtXpjit29aLCpq007Fx3SUq0Mn\nuTt2krdTZ6lTZxldu8ravYsssXFBqT9y2lRF/WNK9QMlhb/7toquua7Gc8fce4cc336tIptVua+8\nVrOLSgO4xWcOlPeYDtWPNwxlL/5URnq62vQ9KsBKMA1AI6s2hNOlSxe98soreuihhyqcczqdmjFj\nRoVzU6dO1ZVXXqk33nijwjUAAAAAAAAA0CQ5nVKAX0asdPjgc+X4ZoWin3pc9jXfqXDr7zr83Ety\nhNkb9beuPV6vnC6vDEOKOJzhf9I0/WqxHCgLENk2rC8b5/X6Ld0Q88A91YZw3B6vbNZahmMC/Fa/\nUVhQ6XDTNOV0eRQRVu1fZdfqngljRip9f6bynF5l5RUruzR44/JU7LpjcRarzYYf1e7HVWr/4yrF\n79jsO1eYmKydF4xW2oBBSjt1oJxxCVXXYrWq8PGnpNIQjkqXMjOjY0ruleO/FIgZHiHn+Rcoe+RF\nkkr+WcfffZvC31mgrP8ulpmbI9lLgz6GocP3PqTEF5+Tded2uU4/I6SBMACNyOWSp1t3WXftlHPk\nJaGuptVyd+osW2pKteMc9pKfnUc64RzxzaTXFHlwvyLT9pX8mb5fUWn7FLf+Jxm/rg04lzM6VkXt\nO6q4fQe5jukoT6cu8nbqJHXpIkvXLrJ17CCbveqfoV7TVMRrM2r4KVUh3Hq0o//7wMjKKv0zs8a3\nCPtwUcmf36+ueV0KsCyV6A4FoPFV+/9chg8frtTU1IDnBgwYUOHYokWLlJiYqMGDB9cqhJOQECmb\njXUqAdRfcnJMqEsAgEbB8w5Aa8HzDkBrwfMuRD7/3LeZnLlf6tK/2ku8cfHyduwox5l/kL5ZIfum\njZKkiLfnqePb82SOGiVj8eI6l+T1mnK6/z979x3mNpW1AfyVZLl7aiaVJJBQkpDQwtI7LL0mhITe\n69JhKUvobUNZYOlLh4WPvvQOgQChhNCS0Elv06u7JX1/yJYtd8/Y45nM+3uePCNdXUl3JjO2rHt0\njoJQWEUorJiWg2FFb4ttCytQVH0ybEiNEyOt0UkvQQA0DXU2DaisiB/83NONReuo9YDog/t1994O\nXHedaRx1g9wZg4mC996PyG9/wHXX7fl/Y62t0KKTasHLZ8J28w0AAPcVl2bcRV69CmMmbwLxySeA\nDTZA4MuvYT+5wAw9SYEtMYHzL8Cv58VLQdkdVtgBQNPgWvYnBn01B4O+/hQ1334JKRgAAChWK5r+\nshOatt0FTdvujK4xmxg/I1v0Xy7DRsSzVFTaJaDOA9RVAQA8gc74+G65DXUjauEJRmBPDEJ69mng\n2adRleb/RlnyGwCg4twzYRU12I+cDq2qCoLYg0xCJcLXvPLQNI3BWesKv99YrHFZEK6phbBmNeoG\nV2TZiUrJ8ucfgNOpZ9YDgBdeAKZNA447Lv1r3tBaY7H1+0UYM3wUQmEF4YiKjrCC5rCKYFhBOBCE\nuHo15NUrYa9fDcfaVfrX+tWwr10F56plqPjj57RjUi0yAkOGITRsBCLD14MychQwKpZJZ33YG9bA\nddD+BX2fHpcVniyv4f7WDlhkEbLbpTfY9GBRmyTk99qvqsDpJxmrBb1fqK6UJrugws73HKJewes7\nXQ8eH0jvpZdegiAI+OKLL/Dzzz/j0ksvxf3334+6urqs+7W2Zn7agYgoX3V1HjQ2dubuSETUz/H1\njogGCr7eEdFAwde78qnbZx9jOTLjSLTO+SpLbwDBIOra2xCcuBmCCuACoAUCSJzSFl5/HY3LGyCE\nQ0AoDCEUhBIIIuwLQPEHEAkEofgDUAN6uxIMQvUHoQYC0IIhqKEQxEgYYjgMKRxdjq7bI2E4w/Ht\nxtdwCJIaAb7Vo2rCEzeDvOAHtH3yBcLb72iMrbahEUY4xnPPxQd9/fVoPP08JN7F9Z94KrpuvSP1\nZxCJoO7ss2AD0HzqGVCHDM3jJw1UTjkU1oAezNIw9WiMjAbhJFNtdojRoBdAL/eFgw4CANgBNP8l\nz9IUUUJ9AwYB8B5wCFxvvmq0D/rgLXSerAcAyZ3tGPLdF3q2m28+h7NxjdGvffRY1E/eCWu33glN\nEydDsSdkS/Kan66XBAGyLMJqkWCNfpUtIqwWEbIswWYR0dzcZfycO1o6EWzshDWkoRKAb+lKxPIi\neN1V6GzshKKqkPIMoqlathyxR13tZ58F5YbroYXCCJx3Ifxnnp33z6zU+JpXPuGIApkPRK8TaiZP\nNP7e239djMpv9Uwp/NvqHcmznqHtd0R7exCOmdfCfe1MBPb4Kzp33Qc1EQUtLV4gzf+LNSIgVkwq\nMnwkrND0LDmyCDgSp3DdwPq1ULWJCEdUhCMqAhEVHRE9YCccVqC1tEJatQKWVasgr1kJ6xo9YCeW\nVafqm8zlsgrVtWIN/Fl+z+oG699VyxfzoYzdCFUQIAMI+QJoz/H7GVFUuP99O2LT+P6jjkVXgb/T\nyf83wS4fOvh3QVRyA+36LlvAUdGDcJ5++mlj+dhjj8U111yTMwCHiIiIiIiIiIiIqNzyCSYRGxsA\nANrgwYBsBQAIoVBKv7rRQ4o7uAIpG20MecEPEFpaEAwrsMn6VG3wsKlwPPV42n08Z51qWnc88Uja\nIBx5XjxQSaxfm3cQjvWzOfFj2GR03P0AKs45w9QnPG4COp55Ac6774DjsYfTHygQSN+egbhsCQBA\nGz4c7U89B+eF50JurEfTplthwpN3Y+j8z1Hz6wIIql6KKuSpxIpd98XayTuhfvKOCA8ZDqssQraI\nqIkG1dhkc3CN1aJvz7c8V+dNt8Dzj0sQ2n0vvcGiZwlwPPyA0cciCAgBeQfgAID3uptQdfC+xrq0\nVg8mcl/9jz4VhEPlE4qoDMJZFygKpBXLjVX3ReeVcTAEAKG99wMA+M88GwF3BbC/XkZQyvq+UFhW\nKlEQYJMl4z3dZHglMHF9U5OmaQgqKroiKsJeP7RVqyCsWAFp5XJYVq3CkOefgLWlKeVQ/mkz4Hjh\n2TEArScAACAASURBVMzjaDaXvhSXLgEEAepo8/lrtp+MxoYOyPOjpbTSlHxMJHS0w3X9NXC8/47R\n5r32xqz75IPlqIiotxUchPP666/D5/Nh+vTppRgPERERERERERERUVkIa9ZA1TREIiqs6Sa4YA7C\n0ayZiw/Vb70TVNkKVZb1fxYrVIsMTZaNds0S3WasJ/Q31q3QrDJUi5ywjxWa1Wosx46xxxG7Qm5r\nAaAH4QCAZeGPiAwbDdtWm+nfY1LAUHDCRNh+WggAsL/2v9SfSX09tCHmgKKqQ/aLb89Q6ikX0SYj\nOP0oIBqE01jfDvXPxRDHbACIIoL7HpA5CCdP3kAYLrsM64fvAwCU8RMQ2mc/RJ55AbV/3QUj5+iT\nfJokoXOzyejccVf4dtkDyuZbQrbLGGoRMcoiQRSLX7oncMoZCJx8erzcVzQoQoiVMAEgRMIFHzey\n0SaZNwaDgC2fglm0LguFVbjs5R4F9ZS4do1pXapfW6aRDFzK0GGQ1q5By+y5sH7wLvynn6VvEEUo\nxx0PMY+yb2rd4JKOURAEyBZJD7yzy0BtBbDZeGN7+5X/QOiOuzDitng5yq5zL0Tg/IuyBuEITY2m\n0na12+ilPBsbOkxl0pKJq1ZkHa/j/nvgeuIRU5tWUZmhdwHq63t+DCKiAuQVhLPeeuvh+eefBwAc\nFE37meipp55Ku1+mdiIiIiIiIiIiIqK+Rv7tF2DePISGrQfryNRyR0J7G+wP6ZlKtMFDIQQzZ2QR\n33oL+ecvKY5YAA4ARMZNAAC4bp8F1+2zsHZtm55RJWwO7AiccDIsd/0LUsLEWOft/4bnonMBALaH\nH0TgiqsynlPwebs1ViGa+aX1nY/0QB5BgLjh2HgHS+Zb10I4d3CK0NQE6e13gWOOgvuOW/XGQXrG\ndnXCpghMPQKay43Q7nsivNPO0CqrYAVg7dZ3000JE7Ra9OeRKLLV1oUfU878c5M/eBeRCROhNDZB\n3Gabwo9N/Z7jwXvhefJxdM7+HLD26m87FZm0bGna9rYTT+/dgQxgrR/PhffXP+HcdCL8m040bcsn\nAAcAIttuh4Z/XAd5z91LMcTcZBnSxRdCfeBfELu6EBk8BP6Z1+TcTVi7Bp2dflRUOFO2ua+dmXE/\ny+I/07aHwgqssgTX7bPSnKzwQNjQrrvD+slsAIAmCJCWLyv4GEREPVH0clRERERERERERERE/YG4\nZnVK25AD94LidKLlp8WA02l60tvzt9Nge0/PnqLW1cGy8Me0x2355MvSDToLzWqFEAqh+Z3ZEJMD\nVX77Axi3cUoAi1BVha4bZ6HyhKNMx4kJCtnL1riuvwaazY7wrgVOIEaDbDIGmmQJwhEb6qFsnCXj\nC4BBE8YAANpGDjPatFgWGFlG5/09y7JTdEnf75KX3oU7ms2oEOmCeWIqTj8ZYkgvydG4tg0ooMwV\nrRvcV14OAPD9+guUSZuVeTTUbYqCqkP3T2kOjxyNlqtvhKcMQxqItJpaKJv38KctCPCf8TcI9syv\n3aUmiSLEri59xZ47TZZmt8P+6ScYu+FQNC5ZAyG2LwD4fLB+8L55h0gk6/GExkaM2HRs2m3hDQt/\nHwQA71XXwbrnzgAAZcxYWP78A53NbfDUVnXreEREheJVNhEREREREREREQ1IzliGlCSSzwdpzSrI\nX86F4/ijAa+e7SX2VDUAqIMHQ3O6Uvb177UPlPETSjPgHFo//gId9z8MdavJUMaPN22rPe4IfSEp\nCEetrEJo/wPRPHuu0aZVVxvLg+6cBaG9LeM5Lb/+jKpph6DimOmwz7w8/8HmyMKhSZmDcNzRLD35\nELwJmXrymFwsm6QgHPkv3ciCAwBy5oncWAAOAAgd7d07PpWdqmpQVLVHx0hXeo76D0vCe1EiqbUZ\nFonTfr3JYet5rgN7EY5RLJYcGWM6jjwOQiCeBVD+ai4GTdrIWBdbmqEOqjXtY33jVdO60NBgWpe/\nnItM2j77OueY09Gc8Qw9WjQL3gabrt+tYxERdQffjYmIiIiIiIiIiGhA0rJlW1m7FpUzpsDzzhtw\n3XwdoGkQgvEgBq1uMCClZokRrOV7ml3ZcCMEp+rBNlpFpWmbvHSxvhAOmfeJZltRN52IxiVr0P7k\nswj9dV9ENoxPqg3aaFTOc9veexue/9wL4f778htsriwslswZeExP3edg+XmRsaz15fI7SUEVtu5m\nRcjyO51IbGnu3vGpqMIRpeB9IoqKcKRnQTjOu27v0f5UXtUzpqRtF7u6YJEKL91D3VeMoKd8S1f1\nBi1hLO0PP4GOE041bW+/9U7TetWMqeb1vXeD/O18U1vlaSea1u0vP29aFzs7TOv+v2wH1WaHUjuo\n2xnbNEc8CEcZMhQAIKgq4PN163hERIViEA4RERERERERERENSEqVnvGl7ebbUrZVHXYAhOhkjfzl\nXIhLFpu2q4OHAEkTZ5osw3fJFSUabeHaH/2vuUHTIHZ2mprU9UbGV1wuhPbdHxAEdN7zYNpjapqW\n9ZyDrr4MyNEnL2mCSVSPXvYjsvEmWctbSAsXGMuuW24ylpWRo3s+rlIJhXL3yUeGyVzfQYeZuzUz\nCKfchOZmDNl0LCpnTIH76CNSslRltHgxsGRJaQdHfVfS74mW9DcvMRMOdUPgED2wK7THXkZb6ODD\nEJxlvj6yyRI67v1PxuNITY3Gcsf1N6ft477qH8ay0NQEz/l/M20XamrQvKIBLT8vTt41b5rDYSwn\nBp2KDfXdPiYRUSH4bkxEREREREREREQDj6rCc9s/9cVJm8F77oUZuwqdnVD9fvPuaZ7Qbv51KZQJ\nmxZ/rN0UOvBgdDzwiLFuf+JRoD1ehqht7wMy7hvZKrUckvX1V1GbkBUntN0OUOXU7DLW995JPWCB\ngTlpy1FFs8XYPv8UdcNrYHv1ZYhLU4MRKo+cmtIW3HATaIMHFzSG3iSEixSEA8B3+PSUNu+Dj6Dx\n+dfgO0sv5SW2tBTtfNQ94ttvQmptgfWjD+B4/x1UHHNEXvuN2HkyRu48uUfnTg7coP5DXL3KWA4c\nfBi818UDDX2nnNGnsqpQ/9F1y7/QeexJ8F51vXmDIKDp16Xo2Hp7tD37EgRBQHDaDKz4OHeZKC0h\nox4AhEeMTOnjui01UCe8z36FDT7duaPlQtXqGlg/m2O0Wxb+CPH33yB/9AGkn3/q8XmIiDJhEA4R\nERERERERERENPIFAfNntgW/mNVi+ogUtc75K6WpZshh1u++Q1GhJzYRjd6DPSQgUsv/fUxDa2hAZ\nvT5+X7gMHY88lXVXzW43rVecchykjngQT3D6UWhYugaNq5qx6tufEanTg1wqj50O6c/fzQfLkrkm\nrTSZcESv1zyeU09A7Tabp/RLDGjxx8pzDR9e2PnLaO2KxtydslC32DK10WIBdtsNkXHjAQBic1OP\nzkE9V33xuaZ12+wPgWyl1hQFka9yT3znhYEa/ZaQkM3Me+MsKGPGGuvhnXYpx5BoHaBV1yBw+51Q\nxk9Iu63h+dcQ3uOvRpt9wjjUL1mDpsWr0PnP29F13kWmfZTKKj1YOYGQeE0RK8GYkNmp4+4HENp5\nNwRmHN3zb8hmw9rP5qP5q+/QNfMao7nypGNRu+PWqJoxBTW7bgdp0ULA6zUFtxERFQODcIiIiIj6\noFwp3omIiIiIqGeEYDwIR6vWy1I5bBYo48aj7dW3Edoyc6aJlc+9Hj1IfCJbk6S0gSPlpiUE4Qhd\nXRDb26BWVsFa4YHdKmXdt3X25wCA4H4H6g1JQTmBI4+BJMuALMO63gh0/TNetkL+6kvzwYLBwgZu\nyT62ROLyZfEVr9eU5cXx0vMAAMFmK+z8vSy0+17onHIE2l59G1IPx6pZM++vDhkKALC98GyPzkE9\npGkQYpPQCbIFR3lOPwnDDtor4/aCSPn/fVHfIvj1Mom+cy6AOmQoQnvtg6ZZd2LtnQ8itF/m7GZE\nPeG0yyltossFze1B4KRT4b/8StM2QQCUpMw3WlWVsWx7/RUIDQ2wvfKy0RY84ki0v/Ra0a6lpI03\nAqqqoVVWZexTs/sOqNtgGGq3GA9x9kdFOS8REcAgHCIiIqI+KaKk3owjIiIiIqLiEULxbClqTa1p\nW3j7HdH+7mw0NnSk7Nf07CvATjsBAAJHH2e0J2eN6SvCu+xmLFt+/w1iwA+tpgZWWYSQIxuGGs1s\noykRtHQEoCUHhySV4xISSlNJv/8GKEp8W6iwIBzNkjrhl0nt1pPguuhcQFHgvuKS9J2sqWWz+hRZ\nRvvdDyK8/Y49PlTK/1MCZZNxAADr559CnvNxj89F3RRKX35MbG8zli0LfoD9kQeNjBH21/5n7lxo\ndqkE/hNO7va+VF5CtDSi5ohmXhME+I46DpgxnRmOqGRkS47p5KTrAbGtDVpdnanNf9KpxrLrkgsx\naOKGEDsTrrNK9fubcC2STe30QwsunUlElAmDcIiIiIj6oHCEQThERERERCUVLUcVmDINKCDziLb7\n7rDJehYJdchQhIfpZY40W98MwtGqqtFxgTkwRR0zFhYp961hTdS/T/t772CTDQfnnCATEibTnPfe\nBde18SfjE4Oemv/7Qu6BF/gkvPOpx2F79WVYfv3FaAtvEC/TolnzD+opl5yTnPnKEnCkeTzGctXh\nBxfnfFSwjEFpPr+x6Dn3LHgu/zvkLz5PfwyfN217PrJlhqC+LR6E4zTaLJIAkQE4VGa+ww6HUqVn\nFgwcPj1le/Dw6eh48FEAgNTaYtoW2WR8ycYVPPAQKDW18F58GQA9c6F/tz3Td84QIElEVCgG4RAR\nERH1MZbv5mPw1AMgrlld7qEQEREREa2zYkEhmtuTtV/7488Yy13X3JgSiCJEn/5W+2gmHADQNt3U\nvO6pyG/HpJI1YmursRzYZfeU7qE9/2padz5wT3wlGvTkPeIohPcy98vn3PkQm5sgz59nrGvrxUth\nWN97t+Dj9bZiTaInlqNqWrwKTX+ujG9zukx9bdFyXdTLguknehODcyyLFgAAxBXL0/f1+bp/fmZ7\n6LdiwVeaMx6EI0m5M5sRlVrnA4+g6ZelaPjye3TeeW9qB0FA8MBD0u7b+skXJRuXNngwWn5ZAt8l\n/0BDfTsaVreg6/n/oe35V4w+yqj19SEWmLWPiCgTBuEQERER9TEVpxwPx7wv4bxtVrmHQkRERES0\nzlKbmgCYM4OkkxhYEjjuhNQOsRIMfTQTDgCEkia9tHxLM4mZbx8rW2+d0qbV1GLNnHnmtjY9cEfs\naNcbKishZTlu/AT5lY8IDR1uLLuumWnaJsTOCUD0duV1vHWCLf7/q7k95qArSUJk+AhjteLMU3pz\nZBQldHWa1mMBFbEJ4MoZU4xtYmcHFDU1W64wkH6nyZBSjgrFC+Aj6glRECCKAoQxYzJnZJPNWel8\n51ygZ8fJ57qgCAQhnjUqvNseWPnS2+j49/2IbL6F3iHAIBwiKg4G4RARERH1IYk31oRgoIwjISIi\nIiJat9mjGUAim4zL3tFmw5ola9G4ti191pzoxJHWhzPhJE9uCUllIDLKko0msRRKIsu4Tcyn/vY7\n/Zwt0XPW1OR16sRsLukoo9dH46pmeO++32gTwmFzJ7nvl6AqBc2S/ftunb8QHcee2EujoXTs//eU\nsdx17U3wXnKFvhLNkGP96ANju+25/4N8yd9TjtGdTDhaLFiDmXD6nIiSZ1lyv/7/npgJh6g/aXrt\nXYQ2HofW9z+B98prETzs8LKNxbrTDgjOONoITmYmHCIqFgbhEBEREfUhiqJBi90oDvKDHxERERFR\nIcLhSN593U8+CgAI7bVPzr4WlzPjU9rSyhUAACGS/7nLzf7yC/l1zFYSKiELQ7LGNa3wH3cSAGDQ\njEMBAEK0HFVyOaRMtLo6NNzzMFrmfJV+u90OyDK0ocMyHkMZNTqvc61rBK83ewdJQvD2u6BWV0PJ\nUY6NSiP2dxCaMBH+088CJP31xfHQ/Sl95R+/R+2TD6UexNuNclRGEE6eAR/UK9Qff4TS2Awg9/uY\n2NYGANDc7pKPi6hYWt+KBxZq222P9s++RmTzLcs4Il2sjJtmiwb+8l4sERUJg3CIiIiI+hBF1aC5\n9Jtx0rIlZR4NEREREVH/4XjgHgwfUQOxfm3uzglZILTa2h6dV4iWTZJ//7VHxym19seeNpYDM47J\nb6csJU40e+YgHEhS6gRxLEjJkiWwJ0no0KlQxo1Hx7/jgQnBfQ/Qv+5/IABAGTkq4/6+cy80ltW6\nwXmft78T/PkFZ6g1tZC6OqF2J5iDekQI6Rlv2q++UQ/wi078Wud+BgSyZ8XtvEDPiiP4ulGOKvo3\nLeSbdYVKTmhvw5C9dsKwXbZG3eAKDB9RE3+9TMM160YAgLL+mN4aIlG3KaPXBwBEJv+lvAPJxciE\nEyrzQIhoXcEgHCIiIqI+RFE1hEfoN5FzPr1IREREREQG91X/AADIH3+Uu3N0kkW1O7IGmqxLQgcc\nBP9ofdLWe8XVPT+gxZJ9u2qe5BcieqmoXKWSEsmyfvs6svU2RlvgmOPQ+vq78MXK9zidaHnxNf2U\nSQFVmt2O4H56sI5aXZ33efu7yOStAQAdRx6btZ/lzz8AAEM2GArLd/NLPi6KE6JBNxanXsYucOIp\nxra6UfGAsdarbjDtF9xrbwiDBunH6EkmHJVBOL1Jy1L+S2htBQBIba1Gm+vaK03BohFFRYc3BHHF\ncqNNHaCZvqh/aflsHlYuWtLnr7VimXBYjoqIioVBOERERER9SNU/r4PznTf0Fd4UIyIiIiIqXLYS\nSlGCV88gEdxjr1KPpk9pnvM1li9pAOT8A2G6Swj4jWVt4YKETDg5gncSiLEyEQmlwDRPBSLbbm/6\nf1Z22Q0tX8xHy1ffo+PWO+MHkKR4vwzlxNZFytiNsOiLn9A2686s/cKbbWEsV+27R6mHRQnkT2br\nC9GJX81TkbafNm6caT286+5GKSvB14MHd6IZvKh3qFmCcJBmm/PBe2GZ97WxXnHB2ai+4u8Qmxrj\nnQp4LSUqG5sNtrqeZRzsFVaWoyKi4ho4nzyIiIiI+oHq+++KrzAIh4iIiIiocHk8bS22tugLFekn\nvtdVNocVDpe9KMfScv2c1fjEcsWZp0B+5y19v+5MHCcE3MSeVk+mjN0IWkUlgsefFG+0WOKfq4QB\ndiu8thaynD0gre2N94xlIVuQABWd/MN3+kLC35H3nAtMfVrfnQ2sN9LU5j/tLKOEdXey5wqxYDiV\nQTi9Kdufl5Dh/0Lo6jSWXc/+FzXPPAbXZXopMt/pZxV1fEQDnRYtR6UFg4hEy/WpKt8Xiaj7Btgn\nDyIiIqL+Q1NUfuAjIiIiIipUHhkexGXLAADq6PVLPJiBy3/G34xl+68/w/Ha//SV7gThJGbCsTty\ndo8FCKlDhsaDcAZQJhwAkAQBFinH92wvTkAWdZ9mjQeV+a681lhu/v5nRLacDGWTcWi95kbU33o3\nGr77CRAEaE4nAEDwdaMcVQwf+ulVmqZlLkkVyfGeFQgYi9bvvgEAhLfdoVhDIyLAyErmvuISOK+4\nFLWjh0L44P0yD4qI+jPmqyMiIiIqM1XVIIppniLVNCiqClHMnU6fiIiIiIh0Qh6lBGLlqNSqqlIP\np99b+/WPCIgyxMGD4fn5R1QdtA+EUChj+ZwYZcON0HHbXai4+DzzhjzKhaVI3MeePhNOopbvfkJ7\nQys8Fgt8514A2ztvouuq6wo/bz8mSbkzQlH5qBWVEDvaoYyfYGpvbOgwdxQERM46B6FQBHarPp2j\nudz6pujrWN4SgkAElqPqVaoGaADS/VUKnR1pWmFkSTIytyVQxm5YvMERETRZz4Rj/fknWH/+CQAw\n+JjDU1+TiYjyxCAcIiIiojJTNQ1imlsxmtWKiKJB5hUbEREREVHe8pmYFrr0PrHJbMpMXW8kEFHh\nsMuIbDkZrR98CvWZp6Htd0DOfZUttkxpk7+ci+CUaYUNIrEcVR7/Z+rwERCqBwMAIltvMyAn0aR0\nD3qkERkzFpbFf5Z4NJRMrauDGi1/kg/ZkpANqruZcBIDbxRmwulNGbPgALC99kq2HVG7+biUZmXc\n+GIMi4iiYq+rRETFMrBycBIRERH1QbGbMclPP4ntbVDb28sxJCIiIiKifkvwevPoEwvCcRXtvFp3\nMrz0A6IoQBTiAR3KuPFo+fuVeWW00Wyp5Y7EpqaCx6BJ8ScT1DwDp9wOueDzrEsSgzayUWtqSzwS\nSisUglZAEI6UWJIt9jfgy/1aZ5IYhKMyE05v0rTMgTjKqFEZd0oOKm2bea0eVCgw0xVRMWnV1eUe\nQp+gZgkYJKLCMAiHiIiIqMxipdgrD9rX1G5pasT6Ezcw3ygjIiIiIqLsQrnLUUmrVwMobiYcze0p\n2rH6EkkUU8rn5ptlRbOllo4KHHVMwWPQahMCRYoYOLUus8r5BYVpiUE4nHzrNVowBMj5B+GY9o1l\nbOgqsBxVJBJfVpkJpzdl/dMS0k/TeS69EEJbm7He8tk8hM+9oMgjIyIAUKsyBOEMsNdKXyCSuxMR\n5YVBOERERERlFnvKQP5pYfoOfn8vjoaIiIiIqH8TQmEAgOX7b2GZ/UHaPs577tQX7KmZWrorlEd5\npv4qOauKJOUXhKMOHYbAuAmIjIxneghvtXXhAxAErHrhDTTe+wgzQORJzPPn1HXLv+L7LF9WquEQ\nAFWNR2IIgQA0uXvZmoxyVN7CylEJSiRhmQ/79CZV09IG4kQUFUI4lHYfadlSCK2txrrmWTcDPYn6\nAq2mJm270NXZyyMpH6GlGZ7zzoJQX1/uoRCtExiEQ0RERFRmipr9aUMhmPtJXiIiIhpYxB++g7Iw\nQwAv0UAXCkLoaEf13ruhevoUAFnS64fDPT5d+2NPo3Pn3dE561+5O/dTyQEd+QZ4wG5H/XufwXvD\nrHhbASV4EkW23R7K1Knd2pcyU4ePQOfpZwMAxJbmMo9m3RYM64EvypIlsHS0ITJ2w24dx8jg5S0w\nE05i4A2DcHpVOKKmLUflC0aAcDw4Krjjzljy/e/6PhMmwnXrzcY2ddjw0g+UaIBSBw8xr8deZ/2B\nMoyme8S1a+A+7USIy5Z2a3/Pxedj0CvPYdCkjYo7MKIBikE4RERERGUWjqiQ536WcbsQYCYcIiIi\nMqv9664YuscO5R4GUZ8khMLwnHNmfL21BYFvf0jbN7zTLj0+X+iAg1D/5AuAw9HjY/UXljwz4QCA\n024xlXPQLN3L/iFJIiSRt7NLQfTok41CoeWNKG+W+fMwfNKGsN9wDWzPPwsAUCdu1r2DWa3QJAnw\negvbL5IQeDPASqyUWzCsIKIkBeGEwxg27UA4HnkQALDykf9D+0uvw1Y3CKrFAtXhgO2dN/Wuk7uR\nQYyI8qYOHWYsN338BUL77AsAENT+E7DonHUjHK+8BPcZJ+e3g6JAfuQhCG16xi3Lwh+NTa6Lzy/F\nEIkGFH5qISIiIsoi4xOzRRSOKHA89EDG7UKhN9aIiIiIAAj19fCcdWq3n4Yk6jcUBeJDD8bXwyHY\n3n7DWK04ahpG77cLpAXxyYXIiPUQWm8kIElFGYLVMrBus4piYSWhTA8WdLMET3JJLCoeza2XuWEQ\nTum4r5kJS1sLPP/+F6pvj2Y3cbu7dzBBgOZyQSvwXkFiOSr0o4nlcoooalHuCykNjQgHzFmOpT9+\nh3Pel5BWrwIAWD0uCKIIWZagWa0I+4MIHHEkAKDzjnt7PAYiyo/gcgFi9PqwP2UNi75W2ebPy6u7\n9Z23UHX5Rag6KBpw1NlhbHM++Wjxx0c0wPCTCxEREVEW4scfQ1yzuqTnCCsakKXklPvi80p6fiIi\nIurfgqH0N4fd11wB+4vPwXMRryVo3ea4727UXvH3eEPStbU1Ohlh/fgjo03weqE5uzkBnsZACxAp\nNCONEEgo59DNwKe8S2BRwTSnEwAg+H1lHsk6LE3ATOzn3l3OX3+C7YVn89+B5agKpmkaAr4elgj3\nerHFLpMw4tB9zMe2203rFofNWJZ8Prh/+hHy7A8BAOqIET0bAxHlTautjV+r9KPXSq2yylj2nHkK\nhIaGrP3F1hYAgOXXnwHwIVCiYhtYnw6JiIiICiDWr0Xd9ENQs+0WJT1PJKJCyZIK2vrlXABIWz+c\niIiIKBBOf3NYbG4CAAhdHWm3E/V30p+/w33x+ZC/mmtqlz/7NG3/xCd89SCcnk2AJ7JIvM2aFYM7\n+rRYMIApWIqKSk4o8xGjuVzdPp7Yob+eVfztNKOUSE6RhEw4/WhiuZyGjRmG0RsMhuX7b/Pqny5r\nTuw9yr4o6XcguW80I1UiqVGfRNfSbCOi4uq64mq0TjsamtsDzWIBkJRBrI/TquJBOPaXnkftFuOy\n9hebGk3rakIQj2p3pL5GEVFB+OmQiIiIKAMhelOr1Dciw4oKNZL7BlgowprtRERElERVoSgqpHlf\nQ1z8p3lbbLLN0r3SL0R9nevKy+F48lHY3nvH1G6pX5O2v+CLPuEbDkMMh7pfCoYKptUOAgBExo0v\n80goHSMgjcFS3aJEujdJq9YNLsr5nbfenFc/czkqTq7mI3Y/yPbic7n7NjTAOfUQSH/8bmqvmjHV\n1MdYTvq90bK9JzETGFHJ+c+7CM233KWvGOWo+s+92OTg8uTXGHNnDa6brouvd3UhvMOOAAC1shJi\nwA9x5YpSDJNowGAQDhEREVEGsaceSkpVMemIveGe81HWbuLqVRC+/7704yEiIqL+ZdFC2D77BDUH\n7IXa7bY0bRJCIQCAZrWWY2REJWf74L2s2zWLBV03zkJ4zIYAALG9HQAgxQLWamtLOj6KCx58GJpv\nvBXtL7xa7qFQOg4HAEDw+cs8kP7H+s5bGDq8BpbP02fgyiayxZa5O+XB+dAD+XVMnEzuR9kd+gSr\nLWcX183XwfPZx6g46ZiMfWxvvIqK44+C9f13zJmJAGie9Nlu/MefXNhYiajbnLboveBYhsN+2tiA\nAQAAIABJREFUkDUsEIq+lhQQMCQ0mrPgVB34VwgBvfReaI+99D4sT0XUIwzCISIiIspAUEv/QUtc\ntRLu33/O2a92i/EYccDuQJayVURERDRAJFwP1O25E9Y/YVr6fpGw/rU3AouJ+iDvVdfBf+qZaH/n\nQ70hWrJFrF8LAFA2yZ6mn4pIkhA66VSoQ4aWeySUhmaPBuEEGIRTqFgWGvs9d2XtFxk5ylj2HzoV\na1Y2Q6uuKenYUgeRWI6K9xYKoSaUecnE8ot+b0dojZYHi0TgmHaYqY/jP/fB9vYbqDz6CMhz44Fb\nzS+8Cq0mfWBorFwcEZWebNGnzY0HM/tBEI74zTfQli2Nf/ZLlBxIoyiQFi1Meb+Xf1pktKnR7IWC\nt6sUwyUaMBiEQ0RERJRJKM2HlyJzX3l5YTtEn2gnIiKiASzPm8Fa9KltoaG+lKMh6rM0mz5xqVVU\nAgDs774NBAIQOjuj7RVlG9tAZJF4K7qv0mKZcPx+aBrLFBUkmm3O8eF7kOd+lrJZ+uN31A2ugGXF\ncqPN8cpLsFjLUCoyMQiHD/gURHPlLl8oz5+nL0Tv21i+mw/3Jx+a+lgSSod6/nEJAKDr2BOh7rq7\nqZ/vrHONZXFt+hKLRFQ6QlD/O7Z++H6ZR5JDKIQRh+6NwX/ZDNbXXgEAdFxzo7FZSiop5bx9Fmp2\n3wGOR/6Teiy/H5ogGAGiQkdH6cZNNADwkw8RERFRBkK6JwiKzPbW6wX1T3xSIcIn14iIiAamSOYS\nEraXXzCWtehTjNLixSUfElGfJIrmrwDcMy+D9L5exkrt7SwURH2U5nDqCwE/IoqGcISfNfOl2eJl\niqoO3R8Im+8jVB66f8o+vjPO7vF51epqYzm0cX5ZvRKz/Qr9ILtDXyIEAnn3lVpbAABi9GsuYk3q\ne1F4ux3iK3IZAraIBjjb2/r9WvcNV5d5JNkJbW3GsvXH7wEA2tgN4Tv1DACA7bmnTf3t/31C7/ve\n2ynHklathGZ3ILLpJABAxdmnmz5bElFhGIRDRERElIEa7HtZZ4Rg0FjmjVEiIqKBSVAyB+G4rr4i\n3i+aQlwM+GFP97QjUX+WRxYHIVp+KpHtzVfhfkafgFDGjS/6sIj6JYeeNUrw+RBRVPiCmd9nKElS\ngIRl4Y/GsrhmNaQ02ejCf9m2x6dtfWc21t52DyIj1oPo8+beAYDl++/iK71QfrvfS3ifKbRUm9DV\nCc/Zp2fcrkUzKAEJZW+S9o8JHHFkQecmop6LZVPs66TFf6S0hfbYC+rQ4QAA1z13oW5wBeQvPodt\n5uWQopm1hOhDHcEDD4Ea/V6lFcuh2e2IbLY5AEBsbEDFGSf3xrdBtE5iEA4RERFRBloJgnDyDZzR\nBCH9Bn/8xo/2889AAU9jERER0ToiSyYcqX4tXGedCucdt8L68UdGu+fyi3thYES9R8hj0jm8487x\n5eikt9jcbLSp0TJVRAOdWlGlL7S1IaKoCIUZoJEPRVVTPpNXHbKfsVy7uTlDjRYN2FGHDu3xudUN\nxiAy42jAbgcCwdw7APD8/fz4CjPh5JZwveWadSOEhobMfZPKuIn1ayEmZKhI1PnP26GsNzLekCYI\nRx02PH5opyvPARNRsWj21CActczlGh0P3ouq3XaA0B5/bak+eN/UjrKM4GFTTU1Vh+yHiv/ca6xL\ny5YCAMJbbIXW/z4X7yiK0KqqijpuooGKQThEREREGYjRDyRFE4nA9ffzYYnVCc+i7fX30PjNQqxe\n2WLcqAMSMuHMnYvRe+9ovolGREREA0Mk+8SZ88Xn4Lr5+tQN/sKe4ibqywRv+iCcwKHxSYfI1tsY\nyx3/eSylr+bxFH9gRP2QVlMDTZIgNtRDW7ESrrcLK5s8UFVOORjWr74wtRlli5ImaxtXNKLlmwVo\nvOdhRIqQCQcAbFYJsNkhBLvxcE4e2cQGOqHVnE3NfeWlmTsnBTXVbD85Y1etpgZaZTwIVEtTbiq8\nw07x7XyvIup1yoYbmRt8PtgvuQhCfWp2s97ivvJyyD8thO2lFwBVhZAQWB6z9sW3AADq0GF5HVNz\nOaEmlL+TmpugudxJncobfETUXzEIh4iIiCgDIc/63fmyfvQ+Kp9+HNX77Zm137LXPkRkm22BUaNg\nkSVocjxNsfzeO/rC23rtXvtzzxR1jERERNT3ZStHlU3tpI2LPBKi8omVW0umuVzomHU7uq642tzu\ndKb2dXNikwgAIIqIDKqD0NCA9Q/YFaPPOwXSooW9PoyIokJV+8lkn6bBMXdO2k3ug/aFuHKFse69\n4GLAZoM6bDjUw6cVdxh2G6TOjsJ3ZCacnNwzzUE3YlNT5s5ZshQmU6uqoTkS3pOk1Ew4SMiOrGzE\n6zei3tZ5z4MAgMjIUQCAymOOQOUTD2PQpI2y7VY6XfHrXs9lF6Hqr7vAc8HfUroJO+2oL6TJsJWO\n5qkAbDZ03nFPwkHM2dkd112FusEVcF52UeHjJhrA8vsrJCIiIhqIivy0eGIwTUxwr71h++A9Y71+\n4R9QPdXGuiAIiGyzLWLlJDzXX6XXe/fpN9lUpgglIiIaeAqY6EkkdrQXeSBE5SN0pQ/CgSgieOKp\nKc2apyK1rzX1+pxowLLIsC5faqyKHe3o7TCNcESFRRIgilIvn7kwwvJlkBb/YawrngrUz1uA4eNG\nAwAcX82FY/JEAIA6qA6+y640+opihtLT3SR/Ox8A4PznDfBdNjP/HRVmwsnF8vMi07pms2XuXMC1\nmVZVZQ4MtaT/fW948HGEwipseU6mE1HxaJVViFRWQ40GzEl//pFjj26cQ9MQiqgIR/QykGFFRSic\nbl1B5aqlqEvYV17wI7Dgx5RjJr7HdNz9ABz3/RudDzyKml23AwB0XnAJ7G+8Avn33wAAkYmbAQCU\nYebMOeFNJ0FetAAA4L73LgCA69GHEJpyhP7gKBHlxHdvIiIiogyqb7nBWBY62qFV6OmCVU2DKHTj\nxpnDkdKUnFZYrKyE02q+ROu4/xHU7DgZYouemcd1+yxgxgx9/zSBPURERLSOyzDR45t6BKyffwrL\n2jUIjZsA6y8/AQBCO+wE69zPAACWb742legh6q8ylaOSli5Nv4PFAs1uj5eKISITedUK03rWgINS\n0DRUXnUZQltOhjp9Rvc+c/eSQVtPMq1rdjvkmuq0fQNTDk/JKlAKrn/dUlgQDstR5SaZg2O0qtT/\nY2H+N/q9nhEj8j6s5nRBc7ri65bUclQAoB16GJRg9wKviajnEq8bA0cdq9+PzUFREwJpIko0oCa+\nnhh0E1FU5Jv77a9nz8jZJ5JUgio4/SgEpx8FAGhsiGdMC1w+E9W7bg/Lz4uMslvJr28dTz8P+fNP\nUfG300ztjsceQieDcIjywiAcIiIionR8PtOqWF8PJRqEEworECDo9dcLEQ6nNAnhpBsqspxys1Gr\nrUVor31gf/7/4m0LFkAA+PQuERHRAJSpHFXg3Avhvf9hAID1rTdgPUG/6dr+wquoG1ELALD8+AOD\ncGjdEM2E4730CnhHjUHVc/+Fdc5sCJ2ZMz41/bIU0orl0Gw2CGmuzYkoQW8Hafh8qHzsP8BjgO/x\nh+F/4mmoQ4b27hjyoGqpU6aazQ4A6Pjb+ai4907ztsrSZq/tnPUveC69MGufiKLCIolQRqwHadVK\nAIC85A/YL7kIwauuSSnNZ3viESjjJzLbQVLQs/3F59B530PGuvzZHFRNORAA0PytOWtOMqV2EKRm\nvZyVstHGQGJGpAyZbkRBgNOePkCHiEpPs9sh+vX7w7EM5QBgO/RARJxuhJxuhJ1uBB0uhOwuBOxO\nBB0uhF0eRJxuhJ0uhF1ufdnhSgnsK4S9rSXjtsChU9D4t4uAESNgz/N4rZ98YVqPbDkZq2feAPu+\n+wAA1OEjEDz4MIRefA6BAw5GxcXnAQDExsZujZ9oIGIQDhEREVEa4to1pnUhEC9NFY6o6PSFMXyQ\nK3m37MIh06qqadCiN/9XvfoelE4vHKKYdlf/6WeZgnCERfoNHk3mDRkiIqIBJ5K+QIiWkHVPrUtI\nWC7LaP/vc6g8ZjqEpEBjov5K+vEHAIBaVQ1h2jR0Tt4KzhOOgf+OezPv5HRC2WRcL42QqH8TQqHc\nnYp5voQAU+e384C774D3htxZB0pJWrgAjvv+ja5b7gDcbgBAOJQaCCs16ZOS2vbbA/feicDh02F/\n8TkAgNDeVtIxBk44Ga4rLkVk8y0y9lH/XAxUeqCJIsJDh0PydkLs6IDn8YcgDq6D7+LLjL7i6lWo\n+PsFAMyZEwaiXAFU7ovONZalpUuy9q3/39sYfMg+8N7+b0AQYH/l5fhG3tch6pMEpwNCqx78Is+f\nZ7RXzJ3TreOFHc5ocI7+LxIN0gk73fFgneRtLg8idmfW43bdfDvstbVQ1Xzz6qQhCOg68XTInoQs\neDYb2p/7HwAg8MXnsL/0PCLjJ3T/HEQDDINwiIiIiNIQuzrNDbG09ZqGwaceC1fdMODOO1N3zEII\nmm9iVpxyPOzvvgUAsEyaCIszc1BPZNLmads1T0VBYyAiIqJ1QIZyVFplZbzLX7ZF5023ILzTrvq2\n6HWG4DOX8AmGlMKz+xH1AZ5ZeulYed5XCJx8GtQxY7H6nU9Q4WSmSKKiCAZ793xJ723O/9xf9iCc\nqikHQGxrgzJpc/jPPBsAEGpuTekXKzMd2ns/tH74KSLjJsSDcIIlDmYSBKhuN4QOPQuYfO/dEEaN\nQuigQ4wuI3bayrSLWhUPLhE6zIE2YjRTjtG3u+W41wHB/Q+C/M3XGbdbliw2lmMZcQAgOHw92Fbr\nP8fW199Fx3obQKwbhNU//gGHLc2UnJ8B0kR9kt2RtozpR3c8g84RoyH7uiD7umDxdUH2Rv/5umDx\neVO3Rb9afF2wdrbDVb8KUqjn77ONyxsAu57/RhR79lotW9I/GAoA/rPOgf2l5wE1/cMgRJSKQThE\nRERE6SjmDxWum65D+//ehNDSAvf7b8MNoLHQIJykGyuO118xlkWbzZyOOE9aD1KZEhERUf+UqRyV\nVlFpWg+cckZ8WzRLjuCPZ/eDz4fqE49B+KxzEN519+IPlKiHrG++jopTj0fLZ/Ogjhmbtk9w2nRj\n2WHlrU6i7uq87S54ouUmAEAI924mHCi9XP4qD2JbNItNws8i8u33Kf1MQbDRB2g67n8YFWeegsCx\nx5d2kNDf/4WODiAQQNW1V+htNhuafltuTM6a+gsJE61J9xScd9xqLFfuuTNaL78G2GvPkoy7z4uW\nHus8/2K47r8HmjUhY02Gcm2hXXbHsseex8Zj9YyEyvgJkJ0eKKqKxFimzn/eDs9lFwEApGXLSjN+\nIuoRob0NYigI+1OPm9qDVdUIVdUgVFXTo+PLSgTOkA+OgA/2oA+2gBe2gA9Wfxesfi+s3k5YfF5Y\nvF3wPP6Qad+mP1cW/cFMm5z5HrPmij3QwaBBonzxkykRERFROtGn8DRBgKBpsH7+KQBzWSqEQoBV\nf9JW0zQIOZ4OE1euiK8kBflkqgGeqGXOV6icMQXS6lVGmxAtZ0VEREQDSIZMOMkTaYlimXCQkAnH\n9s6bcM3+AJj9wYAvOUF9U8VZp0CIROB4/BH4zj4ftjdfQ+D4kyAuWwoAUFxuhPbc2+if7QleIsou\neOgUUxAOSp3BJUmmANNeFQpB/vYbiLM/gtCWUEZKin5e7+rCxicdbt5l+Hrw3vNgyqGCU49A49Qj\nSjnauMoKCH80wHPmyUaTEAyibvQQNC5dm9o/4XpB+v5b0ybbB+8Zy9YFP2DwcdPQtLql+GPuD6IZ\nHyLbbI/wJ7NhXbQAAOALhFH9yvNpdwnudwCqPTYE9tkfWLoUWkUlZABqSIOGeKmYwEmnwr/tDnBf\nfD78p59V8m+FiApnWfwnAMCTUHrut1vuR9eI9VP6CtCvQ2WLFP0qQpb0r9bYeuI2i5hXlrFI9J+6\nx56wPfUYuu68D4LPW5LM6NmuozWrXqZK6O0seUT9GINwiIiIiNJQwtEgHJcbQkJpKiEYT0PqPvdM\niC3N8F18OQKT/wKLlOHDUzgMy+dzICakeU68oadZLEAeH7yUceOhbDLOFIQDJZJXABARERGtQ5KC\ncHxHH4+Go09C5sKWgOZ06l+74kE4msyyPdS3GZmbVAUV55wO6+wPIYRDcNytZ6SUvF1lHB3RuiU5\nm1qvZ8LJFGBaSpoG6ZefIc7+CNLsD+H8+gtIaUoDaXZ98lFOClgBgKWffodqj63kQ81Gq6iE5PdB\nevP1lG32Z582rXsvvgyu2/5prNs+/xTw+QCnE0jzkI9Qjv+XPsAXCMMZzXYjWCTAbocQCkFob8Po\njUYZ/cKbbwFp8WKIndH7PTb9d6HzqWfR7g3B+KsSAAHm+zbCppti7UtvwsMyikR9Unjb7SF/9YWx\nrro9kKZNwyaBsBFgkxhcU0qhffdHaN/9AQAa6kp6rnRiQTgI9fK1AVE/xiAcIiIiojQi0af+NJcL\niAbh2O79N8SEp/McL78AAJC//gre31fCkuHhc+c9d8J18/WmNmnZkvhKAQE0mtV8c8ayZDHw5JPA\nMcdkffqdiIiI1h2xTHj+o49DQ+1w2C+7BEowexmPWCYczZsQhONylm6QREUlQPpTfxrZPfMyo1V1\n8HeYqJjaXnsHVQfvq6/09kRbcrbYEhFXr4I4ezaE2R/C+fkcWJsbjW0dI8egfqsd4GlcjaFzPzLa\nPZf/HYGTT4eQkE0OAIJ77wu3ow9MsdjMQUCazW48QBQreRQT3nlXICEIBwDEtauhjtkQ1g/fT3/8\nSCSv7L3rCseD96L6tlkIzThabxBFCNGyXhUnm8uLKRtuDFhkiPPn6V0b6o1tspR7Ut5u5X0cor4q\nvOVkUxBO6+zPUeGyosI1AAPnbPr3bH/tf+jUHi/oXjbRQMUcrURERERpBFfrN05iT40DQMW1M+G+\n4ZqUvqLPC0XRUtpj7I8/ktJmiZa3ApCxlng6XbP+ZVoXgkEM/vs5qN1wZN7HICIiov4t5NOzg6gj\nR6Hp1HMgWiyZM/JFaQ4HAMD91muwvvY/AID006LSDpSoSJz/uQ/KyNTr3fo5X5dhNETrrvB2O6D1\n3ocAALboe0UhlAI+26bsGzJnYYkMGdrtYyUSOtohvfE6xAvPh2ubrVC7xXhUX3AWql57CYqmYdme\nB+GHy2/BvLe+wooP5sJx392oGjE49UCaBgTimXG7rrgaHQ8+BjnT0zi9yPLtN8ZyaMed0bS8Hisf\nfTZtX83tTmmr3W4rWL79BkJbKwDAe9lM03b35X8v4mj7PveVl8PS3gb5i8/1BkmCZtevo9TqagCA\nJssITtwMvvMuQtd1Nxn7KqNGG8uyJX5tJkT/JesLvz9ElF5g+lGmdXXkqAw9131GJhwA4to1ZRwJ\nUf8xcMKXiYiIiAow+oLTAOSfejnbzUZpzeqUNs/1V8dXtMwBPMnU4SPQ8dDjcP7fUxAWLYJUr9d3\nF5mKn4iIaMBwPfMUAP1maOwJ6pwp0BOy6VWcfTqaDj4Mnuuuim/3+4FooA5RX5QYHA8AkY02gWX0\nwJ0MISoVMVp6yfbBewXvGwwpsNsEiN14Ql5JyrxjlPcpVCgE4esvoX34EWyffgL3ou8hRrPsROxO\nrNl2V7T9ZScEd9kN1s0nocpjw/CkQAi1sjLlsNJvv0JICMIJ7XsA4MpWCLL3BI47Cc5/6w/stD/7\nMiAICO2+Z9q+yoj1EJ44CfLCBaZ2+xOPwvF//wUARDYZb9rmeOIRdN16RwlG3k+IIsTmJgCA/dWX\nAQDtz7yI8K67G10a17QiNPtjWPfcw2izJGXCYeIIov5FGT/B3CAO4LwWCZ8lLQt/RGjY8DIOhqh/\nGMCvGEREREQZJNxYi2y8SV67VN12U+5OmRQQhAMAwUOmwPLhB3qpLCIiIhpYIhG43nhFX7ZZjQme\n5ImeFLIcX05T8sN95eXFGiFRcSQFw9vef9e03jXr9t4cDdHAkfC0e1ObP//9VBXDd94a7qu6936i\nhMx/86LPBwSDuXfUNGgLFkC94w5YphyK6o1GYdCUA1F377/gXvg9WjbZDH+ceA4WPfoi/pj/G/DK\nqxh01aUYsdu2qKt2ps1E4vvHVSltQlcnxIYGAIB/m+2hbDKuW99nKQT32ie+Ei1NZbFIiIwZm9JX\nq66B4A+ktMsJ2XTU2kFo+fAz03Zx+bIijbb/EKKBYJooQVyx3LQt5X6MJMGy5x6mSBvBtAykz4VD\nRH1WQtBN28lnlnEgfYAUf6+sPPqIrPeyg6HeKS9J1NcxCIeIiIgoiePRh4zl8C67p+3TtOhPtO6y\nl7Fec8+/0vbLh1BgEI5hANVkJyIioqhwvFyHJlshifqEjpDr8erE7aoKV2JWPgCWBd8XbYhExWB/\n8rGM29RBgxDeaZdeHA3RwKElPO2uvP8+PEdNg+2Wm3PuJ/i8kJctgevB+7p1XjXx/S36Wbdms03S\nBo4qy5Yj/OhjwPHHoWL8WAzec0cMuflqVH/2EXx1w7Ds8OPw212P4c/5vyHy0WxUzroRgw/cG7V1\nFbmDVgFobg/aH37C1Ca2tsB93ZUAgM7jT+nW91gqke22R/vjz6Bpwe9Gm0US0frR52j88Tf4zj4/\n3lkQIAT04Cr/EfFSK5Zff4kfb5ttoUzaDJGxGxpt7pmXlfA76EMS7s9YlizWF0QBQthcLk2tSy1Z\nlisDFDPhEPVfwSnTyj2EsotsOslYtr38gmmbFgxCvnUWhPp6DB87DLZ77urt4RH1OQzCISIiIkoi\nLV0cX8lQn1urq0Prk8/Cd1oZn4SwyLn7EBER0TpFCMfLdWg2G6Q8JhNTjqEocN5tLishtrT0eGxE\nRSVnvtb1n9C3JsCJ1ikJQTgT/3YM7B+8i4rbbk4bDJNI60GWDzUSwdDjjgAAtEw/1igLLbW2QFq6\nGEpLCwIvvgTlnHPg2HoLDP3LRAy/7DzUvf0KNAhYs8+hWHLDnVg890f4v/4WzvvuQfWRU1E1og5S\nN8uHhA4+DK0ffgrvxXrwSeVR8QnY7rz3llpo/wOhDRlirFskAXA6gaFD4b3oUtQffzpW//AbAEDw\n+/ROztQylE2L/jSyP3TNij9sJHS0l3D0fUggNUuQ0NmJyGabm9rU4SMKPDAjcIj6M3HwoHIPoeyE\ntlZj2fpSPAgn3OmF/M+bUHXrjRg0aSOIwQAqokGrRAMZH58mIiIiShLeams4Hn8EAKBJFvhOPQPO\nhx4wtvv2OwgA4LLL5qefNC310SZNgyaKEFS16OPUkicmVHVg1ycmIiIaCMLxch1aRWXOp67z1Vcm\n11RNg2fmpdDCCny3mMsNacEgBJstw560rtHcbgBA17U3oeWoE+Bsb4ZWOwiOp5+A//iTyzw6onWX\nJqWfMrB8Mw9Cw1qEDzo07XYB3czwCkB+7RVYW5oAAGJVlWlbzfaTTZ+pww4nmnbcA/6ddoW2x56w\nbT4RFlGEu9tnzywyaXPIn3yc0i4KQPE/4ReXKUOey4Wua26E26nfQ4hsuDGsX38JZeRoNC5ejYoT\njoJtzscA9AeOYpT1N+jNIfcJgs+X0ia2t6HjwUdRs/l4iD6v3pglUDTtcQVmwiHqj+rnLUD4y69h\nG71+uYdSdl3X3YzKk48FANg/eBeB999FeMedMXzssDKPjKhv4iwNERERURLNlXD7zmKB98ZbsPin\n5Wha+Afql9XD+8TTAABRFKAOjj9phkgEKcLhjAE4/qOP69lAk8pRWb6b37PjERERUZ8nRBLKdVRV\nQZKKM6MT3m5H/WtEhVKC4OF8dXUF4XzoAbgefwhi/Vqj3frGaxg8sg7Wd98u29iod3kuOAcAIDY2\nwFHphjZqNOBywX/aWQCDsYhKJvF9JlH1QXuj6uTjIDQ0pN+xB+8dNWecZCxrU6ag+ZsFpu3tE7fC\nmjMvxKoX3kDr78uh/e8V2C+6AI4tN4NY4gdRhFjQRYJYKcj+xO2UjcDdtsefwZpTzoH/xFMAtxsd\nL76Gptmfo37OPPNOCVmRNK/XVKppXWX95KOUtsiEidAqq9Cy4NceHVtgNhyifkccPRqWaVPLPYw+\nIXTQIWh/5CloDj2LWtXR02D5vWevi0TrMmbCISIiIkoiqPE021r0ppNnUBU0pEYwa4MS0pEGgylP\nQ9lefyXl+G0zr4UwYj0om20Ox9NPdnuciRNTACA2Nnb7WERERNRPhOOTo+FttivaRKAQ8AMA1qxo\nxJL2CJx2GR6HDLdThsdphdth6XZJj7zO39kB+z9vRN1D9xtt8mdzEJyqlydxPnAPAMDx4L0I7bNf\nycZBfUds4tvyw3dlHgnRAJPu4ZIEYkM9lMGDUzcklKuSP/4I4d32yO98SWWuNJsd6qjRqF9aD+sz\nT0E55DBodXXlm8hQU8twaf0wpUli5jytthaNF/0Dw9yueNumk1LvdySUwLb98B3qhlSicWWTKThn\nXeO6ZmZKm7LJOACA5tR/XsqgupQ+eel/vzZEBJT0M1B/EzroELRsOhG1220JzW4HgqHcOxENUHzl\nICIiIkqWeBMwx1O2mhy/+SQEgynbK848JaUtfNY5CE2dlvPmZi7SyhWmdbG5qUfHIyIion4gpN/o\nbD/8SECWexyEo6y/AVSbHdbZH8JzxkmYvO1GqJv/ObyBMNa2+vDHqnZ893sjPl+wFt/80oBfl7di\nVZMXHb4Q1CI+Ee+66Tq4EwJwAED67RdjOVaG0/rZnKKdk/oHhen/iXqVqeRyGq5bbsqwY/w9oeqI\n9CWr0rG98lJSg/4ZW3Q6EDnlNFN5pHIIHnSYsRzaeTcAgLLxuDKNpjgEADZZytkvlu0gke3lF0ow\not4h1Nej4sipkH7LnLlBHbFe5gNIEpq//xmtX3/fvfN3ay8ior5FHTMWqseD8JgNIQQD6fs4XWnb\niQYSBuEQERERJUsIjtGs2YNwwjvsZCxn+uCRIlpGSh2m18wN7b5ngQPMoKEeqrrup4fv284DAAAg\nAElEQVQmIiIayITodYolOkkp9PBp/NY33ocYvYaxv/wiAGD0h6+n9FM1DV2BMNa0+PD7yjZ8+1sj\nPvtxDeb/2oDfVrRhTbMXnT0IzBE6O1PanP++I76S8ASqNgDKYRAQ3moyAMB7aWpWAiIqHWXTieg8\nMHMQje2dN9NvSCpHJXR15pXJynXTdab1xAdd+gJlwqbouPxqtL71Adqffh6rP5wLZdz4cg+rRwRB\ngMWSx9SQK3USVezsKMGISk9oaIDn6Gmwffg+POecnrFf8NApAADvBRen3a4OHwHN7Sn8/ELPr9mI\niPoKze2BtHYNPGkePgWgZ8khGuAYhENERESULOHmYbr67yZWK/xHHasvB7IH4fiPPxmBXXY31rWq\najT8tgzt//dSlr3y57n5eij19UU5FhEREfVNgt+nf3W7C9639cNPTeua1QotXUkR5BfkomoaOv1h\nrG724tcVbZgfDcz59rdGIzCnyx/OK2hGraxMaRMUBZYFPwAAIhM2Ndq9y1blNT7q34TWVkTcnrJn\nwSAaiFrvvB/tBx6Wu2OipCCcyhlT8f/s3Xd4HNXVBvD3zmwvqparLBs3bGObgKnGQAjNlNCrCT0Q\nykcLJRB6D5BgQq+BQIBATK8JAQIYML2Zaty7JVll++6U74/Zna2SVtJKu1q9v+fxo5k7d2bvytJq\nyrnnVO+5K+RF33S6W/jwo9IbushG2++EQOS886Fssx3gcEBMnVrsERWEpaflVaKxrvuUoNoZk2D/\n2shgI0KhtG2Of/wd1jv+aqzEjGBnZfovCvr6DMAhonKiu92QNzVD3pj7PnSuTGpEg03RSqkSERER\nlSqRUo5KXrO66x3iNwlFJAJN16Hres56wf5b5mW1iarqHo8ztvVMWD//DOFDj4DjmaeN8X7yMXDA\nAT0+JhEREZU24fcDAPQeBOEo07dMW/f9+a8dvUq3j52g6Trag1G0B6NAs9EmCwGP0wqvywavywqv\nywqn3ZL2QEqvrjGXgwcdCle8PEn17jujccWGtDE17LYtNi1b1+Mx0sAgmpsRHTU6LQsSEfUPu9cF\n331/Q9T6d2gbNmDY9Ilp2xVVg0VO/m7GFA12PT0Ix/rxQgCAvHwZ1GnTO36x+O946ORToYbC0IYO\nK9C76Bup73sgs8g9/FuvDMwgHJEaJBaLIaaosFpkBDY0o+73ZwEAfG4XPNdcDgDQXS40P/wEtAIF\nzzAEh4jKSVfXorqDQThEDMIhIiIiypQShBM6/qQuu+t2I8WmiIRhv+Fa6OEwlGtv6LPhJbQ/8gRC\nl14Bx3V/MoNwVE1nqkMiIqIylijb1JNSCFnHSjnnSVW19Ads96eLoNrtUG0OqDYbVLvDWLbboVnt\nxja7A6rNbvxLLNsdUFO2a1Y7VKsVbcEo2oJR8zVkScDrNIJyPC4r6qPJcqDB626CHInA/trLRt9V\nKyFSMg7KgYCRcYHBGeVL1yEF/JC83Q82I6Lek4SA3Soby0OHov3EU6HvvAs8f7wQqsUK/f33IY8c\nDnWCEZyzqS2IERmZcEyW3I8gtP++CTkYgwgaGd7Chx8FZettCv9mKKeeBhOJaLTrTiVO+P3QXnsd\neoUHYw//tdnuvfj8ZCerFepuu0NHYcpJMBMOEZWTQlyLEpU7BuEQERERZVKSD4H0PDLVmHVuwxFU\n/fXPAIDGjCCc4FnnFW58cdrwEVh59S2YWFuVbNPyKx9BREREA1OiHJXucvX+YPEgnOApp8H1wL1m\nc9XSH1G19MfeHz9OF8IM4EkP2nFAiwf4VH26INl/yBCETj3dDMJB40YgnF46QjQ2Qh9W2tkSqBci\nEQhV5Q1+olIgBII33gxZkqDecwdsn3yEkYftBwDYsKEN9rffxLSjDoHv5uzMrwBgWfgBfL/YFs5v\nv4a2225mAKW05x6oAeA77mQAgO4swN81ypsk5RcU4rvtLuA//4b31RcBGBmAE1lkBoyMspjyhvWo\nP/noTncRbW0QQjCDDRFRDrrbnbbeftnVqLjuSvj+9Be4/nJT1ucu0WDEIBwiIiKiTFrKrPB8ZivZ\nbAAA5/13Z22KzpoN2wcLEPjjFYUaXZqGoekPJrTYwEwNTURERHmKRACkBAH3QiKQJ3D9zcDKlXD9\n+1WoDWPQ8vrb0ENBRHwBhNv8iLT7EW0PIOoPQg0EIEcikKIRyNEI5EgYcjQMORqNL8fbYhHIEWNZ\nikWT/SIRWMIh2Ntb4/3SZ9S3vPIGIEmIzZqN0DHHwfn4o9C+/gZ6MD0IR1q5AiqDcMqWWXYt4wY/\nERVHotyynlEqSn3933DPuxEA4L0o98QT9923w3337QCA8G57wPfUs2nbvY8+ZBy7EMGlVHDhucci\nstd+ySCclk2IRJSBE4Sj61BXrir2KIiIyoqIX5MmRM4+D0t/eya8Lhtc825hEA4RGIRDRERElKWj\n0gwdSZSjcrz8QvaxAgFoTicg980NKps1PTGyrnRv7ERERDSwmGWZ7PZeHaft6OMQPfAQcz127PHA\nv19F4NIroQ8ZYrxE/F8qVdMQCCkIhGMIhBUEQjEEwjFElQ7KkHRF0yDFohj+1ceYLvugbLu90S4E\nYjvvCufjj2LIlRcjsMectN1q9tsDjWuaAau1Z69LJU0EjCAcMAiHqKTotvTP3JHHH9Gt/R1v/xfh\nDxbAc84Z2cd28fe9VFkdNnPZ+dgj2OyxR9D004q8MgcXW8UJxyQz63VDdL9fd92JiGiQsv3vLXO5\n5bU3AaSUORTCKB1MNMixeDYRERFRJtW4UFhz9c359XfkeAgWj/gXfh+0PryZmKgrHvj9hQCAMeed\nCmn5sj57PSIiIiouEY1nwrH3LBNO+90PoPGCyxCed0daAEt0r32w8edViBx8WKf7y5KECrcNI2rd\nmDCqEltOGIJZ00Zgp2nDseX4IZgwqhIjalyodNkg51PqQpKg2R3YsMOuiJx8atomdbNx5rL1x++z\ndnXNu6Xr49OAZGbCYTkqopISOfDQXu0faxiLqoP2hWXF8qxtzHxVuqQc2fesn3xUhJHkL1GqOzUA\nJzprdlqf8BFHw3/NDVCHj0Bk733SD5BPVmQiokFKq6pKLg8bDgCwWuIhB5LETDhEYCYcIiIiomyK\nAgCQGkbn1V235QjCiUQAhwPw+6G5PYUcXU7aqORYvRefj7Z/PttJbyIiIhqwwvHU37mCgPMQOexI\ntAejqMgRICMqKns8LKtFRrVXRrU3fVzhqJLMnBMysucEIwq0jBuzUo6HXcpWMxFtGAvbyuWwrVoB\nAIhttTWsX3wOAJAX/5RzLJaFH8Ky+EfExoyFNn0G9OqaHr8vKg4RCBgLnr4/jyai/One3gXGWVcu\n73gjy1GVLosFjfPuRt15KRmMtNJ+wGq76QZI9aPS2vw3z0PFycfC8uMPAADfrXcANhtCp/0fbG/+\nB/Z/v1aMoRIRDTgt732M2umT0Hbkb6DVG/ekUzPhCJ2ZcIgYhENERESUQWhGSSeb3Yp8Lhl0my2r\nTUTC0BUFcuNGKFvMKPAIc4zBkjytS6Txtnz5OWLrN0DsPYezuIiIiMqEiBjlqHqaCQcAbJb+S4zs\nsFngsFlQW5kcr6brCEUUMygnEI5BUXI/zIvusx9s991lrrff/whqtzXOrbSGMTn3qT5g7+T+O85G\n2wuvFuKtUD8Sfh8AQGcQDlFJSWQoi42qR/vzr5qfxx1RJk+B5Qcjk5lWNxRS48ac/Va9/i56/leN\n+kPg0CNRedstsK2IZ94t5SwHioLqeTdlt8sSWp95GUOmTUB0x52AlHs50V/ujvbD58K1cAECB/Qu\n4xMRUbnThg3HshXNcNjk7EADZsIhAsAgHCIiIqJsqhGEI1vzC8JRtts+uzEcgRxogtA0KFOnFnZ8\nuUjJh2nasGGwvfQ8Kk8+DgDw6V8eRuSXu8PjtMLjssLjsELKpzwEERERlZ5wPAgnVya+PNmscqFG\n0yOSEHA7rHA7rF32FdXV5nLw9LOgjRmb3BYMQNd1szxnLrYPF/RqrFQciUw4LE9DVFq0+tFYO/9V\naGPHwt5QD12WIeLXz5l0m80MwAGQFoCjDRkCqakJABDZfkfYt9qybwdOvWa3yskAHACIxYo3mC50\nFOylNowFrFY0bmzP3ijLCN15DyJCQNN09F+4MhHRwORyWHJmM4UQ5r11osGM5xJEREREmRIXCpb8\n4pXV8RMR2G7HtDYRCUO0tRnLKXVy+0xqJhyLFY7nk+Wotjn/RDj/dj9aX3oN3334LRZ8vRaf/rAR\nP6xowepGP9r8ESgq04QSERENBHo8CKen5aiA3KWfSpVWmTyP0oYOAwCseulNAIC0di1iGxuLMi7q\nWyLgBwBont6VviGiwhM7zYJttFHmJ3TibzvsF9tuB7TfdT8AYNObC6DVDQUAtF9zA5q/Wwrsuadx\nvFis02BKKg1mmZE4EY0UaSRds73139wbrJ0H/ybOjzhpiYioax1fUwpmwiECM+EQERERZVMV46uc\n/yxxMXo08PGH5roeDkP+6UdjpXZIIUeXW8pYdV2DlhH4s/Vd15nLUbcXvoZxaG8Yj/bR47A+vqw3\njIHH4zAy5jit8LqssFqKO1OeiIiIMoR7X45qIBHBoLmcyIqi19cDAOyvvYxRr70M383zED7hZACA\ntGZ1/w+SCi4RhMNMOESlJzUYQ2pMBkK2Xn8zqi69CKFjjkNb/ThYfnsS9MoqNB5+FADAd9udUJ57\nHtqJpxg7xEsBiUjpBnNQutZ/PoOqo+KlmqLR4g6mE47HHi72EIiIBi+JQThEAINwiIiIiLKIeFYY\nXepGEE5KLXEAUANBSG2tAABl/ITCDa4Dupw8rdM0HaKmNrluseLjC25Axcol8X9LUf3Tt6j9/qv0\nMdvs8NVvhvaGcWhvGIcVDeMRGTcRmDAB7iqPEZjjtMFuY2AOERFR0ZhBOD3PhDOg6MlsfbrDCDyS\nvOnZUbwXnWcG4cjLl4EGPuGPB+F4PEUeCRF1RmptMZdjc4/F2tHjYP3lLghqEryu9Gvk6J5z4J+9\nOzz2eDaSI48EXnkFkYMP688hUy+oU6eZyyKRma8UMbMSEVHR6EIAGjOuEzEIh4iIiChTohyV3I3K\nnRmlq9RACIjEZ4Y5+mGmekomHOtXXyLiNB5YBGbtgndPvwL+YaPSugslBs/aVfCuXIKKVUtRscII\n0PGuWoaqpT+k9dUkGYGRo9E+ejzaG8Zhw9gJUCdNgpg8Ba66angcVrgcGaeVqoqgPwRXJR+cEBER\nFZLrxeeMhf44vygBoVNOh+e6qwAA8soVAACL25nVz/L5p1C23gaipSVrm+3F5xA94OC+HCYVmAgG\njAWnq7gDIaLOKUYW2cj4iYDbDeucvQAAbi33DHiPM6Uc0LHHYsWwcXBtMbnPh0mFoXkrzGURChVx\nJJ3TA8G09RXz7ofzwP3A0Bwion4gSQAT4RAxCIeIiIgoixmE042MLxlBOFooBD0xU93W9zPVU2cg\nOj5ZiMRjufDtd2Hr0Q3wh2LwBaLwBWNoD0YRBOBrGAdfwzisTRu4BlfjOnhXLk3LnONduQSjVr+J\nUR++mfa6wboRaG8Yh7Yx4xEdPxHapMmQpk3FmCvOR90br6NxxQbAmf2gjIiIiHpGigyyTDgp5xFq\nwxgAgJzjHK3yN0eg+bulkFavyj7EY48wCGeAEfEH+KnZHomo9Ih4SSJt+Ii0dknKL9zBseV0o2wF\nDQyuZGCk56pLETrjrCIOJp387SLU7DYL0VmzYfvhO7M9tvlkqAcfApGRmYmIiPqIEBA6M+EQ8UqW\niIiIKJNqzObrzk1/3WpNbwiHoYXi6Zn74SGZVl2Ts133eiEJgQqXDRUpN50UVTMCcgJR+EJR+AIx\nRBQVkCQEh41CcNgobNh255QD6bC3boJ3lRGUk8ycsxTDP3sf+Oz9nK8vbVgPbexmBX2vREREBOj2\nwZEJBwA2XXQZxEcfQTlybod9pKYmyIu+gfeKSwAALa+/heo5vwIAKJM275dxUgElUtjz4TxRaVNi\nxtfM6+E85RusQyVCCPgvu8rMUIdwuGQy89XsNgsAYPtgQVp78OLL4Xb07OeTiIh6QAhAZyocIgbh\nEBERUV40XYc0SOpqix5kwlEnpafQ9rz2IirnPwkA0G19P+MqOmffnO26x5uz3SJLqPbaUe1NBghF\noirag8lsOb5gFGoijbgQiFTXIlJdi6YZ26UfK+CHd9VSIzhn5c+oWLkUIxe+DcDI0KOBQThERETd\noes6RK7zrtSbmYMlEw4A3/+dB/UMHd6U74kuBETGzd2aX+1kLqvjxqP9vr+h4ncnQRuWnqGBBgAz\nCKcb5WGJqN9po0YDX3wOfQQ/ZwcLbdhwc1n4fNBLJAgnl8b1rYAkgX9JiIj6kSQxCCdOUTVYZP4V\nGqwYhENERER50XXdiGQfDNT4Tf9uBOGEjzkOUdkKR+N6uG+4BlXxABygf8pRdfh/040ZiXabjDqb\nE3VVRtkHXdcRjCjJjDnBKAJhBVrGhZTi9qBl8gy0TJ5htk1+8n5Mf3gepOam7r8XIiKiQU7VdFjk\nHH/bY7HkcnfKZg5wQgg47Rnv124HwmFEd90NtnfeztpHd3ugDakz9o+X8KIBJBGEM1iuP4gGqMBl\nVyJYUQ316muKPRTqJ1pdnbks+dqgpqwXi2hszL2BgZxERP1PiOS5/CAmrVwB8fGnwGGHFnsoVCQ8\nCyEiIhpEMoMnumNQBbBHI8ZXazfilWUZ0aPmQh05KntbP81UX3fPI2nrSm3vboYJIeB2WDG8xoVJ\no6swc/OhmD19BLaeWIcJoyoxrMoJpy339yhSUWUsLFqE0I+LezUOIiKiwcbMRJcpGu3fgZQIiyyy\nZxBKRlCOMnkK/Gf9Pnsnq9Us2SUiEbNZ1TSovClc+hIXH3yASlTS1HET0HjtLdArq4o9FOonsd32\ngOb2AABEIFDk0Rhsz803lxOlwmObTynWcIiIBjfBTDgAUL3nLhh+xomwfPYJWnyRrnegssMrWSIi\nokFE6+iBziBl+fB9iPfezWoX7W0AAK2iezcSLbIEPX4zKpXeT0E44X1/Dd8OswEAytBh2PDJNwV/\nDUkSqHDbUF/nwZSxNdh+6jDsNG0EZoyrxWbDK1Bb4YDNIkGNP/SqvP4qNOw8s+DjICIiKmeaphtZ\nCDOImBGEE5yzf38PqajkHCm8w4ceDgBQZm6L0OVXIXTwYdk7OuLnYCmZcNz/dzocd93eJ+OkAtJZ\njopooLBa+Hs6qAiB8AknAwDsTz+J2vGjIJYtKdpw5MU/oeKyPwAA/Oecj/BRxxjL11xftDEREQ1q\nQkDo/TPpQTQ3I/LBwn55re6SWloAGH8r/QEG4QxGPEMmIiIaRDqcVZ2HXA+CBrrqA/fBkEOzH2KJ\n1lYAgF5Z2f2D5sqe009BOLIk4F24AACgTJsBm8fVL69rtUioqXBgzHAvpo+rxaxpIzB+XEYWnjL8\n+SEiIuorUUWDoub42xk1ylEJW/7lJsuBlKMkkf+GW9D08huIHHgIACBwzY1QPV6E9tkfm97+AACy\nMuGIxkZ45z+Jqmuv6KeRU4/FsxXpgrcuiUpdVrlAKnu63QYAcN13NySfD/Z5txZnIMEganbaxlxV\nZ24L/3U3YeUrb0PZbY/ijImIaJDTJQl6P00E9lx+MeoP2gvyosJPRO0N2+uvmsuuhx/E1jPq00tL\n06DAK1kiIqJBpDeZcAZTDIVobYXqcgPW7j/gUqZvmdWm22yFGFaXZCn5gCq215x+ec2OWJ3O9IZw\nOHdHIiIiyjJ87sEYObLKzM6XIPnajYWKiiKMqsTY7dC32x6IB+jow4bhp88Xw/fwP6BuMc1oSwRC\nx4Nwgus2FmWo1H0iUTIsRwAWEZUWmRmrBp94kGtCdO16rFjvw8aWIHzBKBS1fzIgOFLKUAHxey9O\nJyxb/aJfXp+IiHIQwgyo72uO+U8BAOQVy/vl9fIhrVuLyuOOymqv3mOXIoyGiolnyERERINIrzLh\nFHAcpU5qb4NW0YMsOAC0ESPRPmvXtDbd2k9BOHLKQ4oeBBAVUmJmXEKp1IonIiIqeYEAPB++BwCw\n/+ufaZukjRsAANrQof0+rIGg0mOHSH0Y7EhkwjGCgYO+YHLbYIowH4g0lqMiIipZ0Wjaau27b2Dl\n8g34bkULPvupEQu+WYcPFq3DF4sb8ePKFqzc4MPG1hD8oRjUAj6YldatTVtXJ08BAFgtzM5ERFQ0\nug45GIDw+4x1vx/eU09My1ZTjhn3E2q3nJyz3fL9tznbY4ral8OhIuKVLBER0SDSu0w45XtynEm0\ntUHz9nyGeXRkfXqDq3/KQqXNQCz2rOGMwKPEhVe7L1SM0RAREQ0YiUAbAICcLHMpzf8XLF98DgDQ\n6hiEk0vmQ7dEJhwRCgPRKCrnP2luc959R7+Ojbopce3BIBwiopJj+Ta77Id73aq09aiioS0QxbpN\nQSxd147vlm/Cpz9uxHtfr8OHi9bjy8VNZoBOUzxAp7v3rEQo/f6CNnJU998MEREVlHXR1wAA17w/\nAwA8V14Kx/PPoOZXOwEAlJiCaETp8fE1Xc/KuCaUGOSlP8Nx/TWAWppBLdGdd83Z7g/1/HtBpc3S\ndRciIiIqF1ovAmnKOgZH15NBK7oOKeAHvJ4eH06yJk+xtMrKfn14oNXUQtrUDK12SL+9Zu6BpF8M\nOR+4F/bXX0HdqpVo+nYJ9Lq6Ig2MiIiotKVlj4tntrM9/igqz/s/s1kbOqy/hzUwJTIDKgrc114B\n1+MPmpvsL7+A0JlnF2lg1CWNQThERKXKf82NsL/+alqbHIt20DtbRFERUVS05kiY67DKcNotKf9k\nuOwWOOwWSBmTjURrKwAgeMxxiFbVdP+NEBFRwfluvQPe358F5713IrL3vnA+9rC5Tfr0Yww7eH9I\nkTA0twctH34GbfgIeE44Blp9PYLX3dTl8ZvbwrCsX4taT8oE0FAIVb/aGVIwAH2LLRA56NC+eGvd\nEpu+JZTttofzofsBALo7+1mD/MP3cL6/EDjx+JzXPaqmseznAMYgHCIiokGkN5lwyk5qVJGqApb4\naVE4DKGqgNfb40NbU0sx9fOJcsur/4U6/xmIvffp19fNpGyZXoPd9cA95rLtrTcQOXJufw+JiIho\nQBCpD7FiMYimprQAHADQmQknL7oUz4yjKrA/90zaNnXCRACAomqwKDE4/vYAIsceD93T83NAKgxV\n0wA9UY6qyNkdiYgoizZmbFab1I0gnM6EYyrCMRUt/kiyUddhDQXhifjhDfvhDvvhCvpQF3+wG7z4\ncih1dWARKiKi4lMmGeWYRCyG6v33TNtWu+8e5rIU8MPx5D8QPO9COF99CQC6DMKxvfQ8pp58XFa7\nCIchBY3ITudNN0D928PQXC7oLhfgdEN3OSHcbuhuN4T5zwXh8RjtLhd0lxu602l8dbmMzPa9uK8f\nvOBiROfsC/92s1D3uxOAcHZ2+IoT5qJm6RK0brE5YjvMytoeUzTINgbhDFQMwiEiIhpE1EQQjqLA\nfvGF0PbZF7Hd9+x8p7iyK0eVmpoyEjGDcDxXXwYAsH7ycY8PLduSp1iBP1zW4+P0hDZuPNrOOAdV\nRY6S16uqO9yWNsOfiIiI0kWSD7Gk1hazpGMqbSiDcPKSCLJWVcRmbgv5tZfNTY6nnoBYvw4brrkZ\nFa+/CPeN18L26cdof+jRIg2WElRVT2ZVLHaJVSIiypbjs1mKdh2EI0WjsPrbYPO1weZvh629Dbb4\nutXfbrT72mHztcLmb4fV1272ldSOy3XotbXMFEBEVCKUbbfLu6/7xmsRPO/CvPtX5gjAAQARDJrL\n1iWLUb1kcd7H7IzqcEBzOKE7XfGgHjfgckF3ugC3C4gH9CQCeMJTpxv71Q1FdJ/9jIMcdDD0004E\nQtlBOJalSwAAnj+cD8v33yJwyeVp3w/pyy8gRo2APqq+IO+H+heDcIiIiAYJ74nHwNHuR3D+87B/\n9CEqHn0IePQhNG5sz2v/ckuiY/14obksohHobjcAwPm3BwDAjJ7vETl5ihU56JCeH6eHLHJp33wS\n0UjXnYiIiAap1Ew47huuQXDLmVl9NGbCyY8cnxOvKJCWLc3abH/nbTTsui20qioAgOXzT9PLlFKv\n9DR9uqLqZtZKXZT2eS0R0WAV2e8A2F950VyvX/Af1H7/pRFc42sz/6UG11gi2Q8gO6LJFkS9lYh6\nK+Ef1YCYp8JY9xhtmtWK6Q/fZnS28DEXEVHJ6OBaKnzI4XA8+6++ecm2lrT1ZXsfgq9PuQByOARL\nOAQ5HIYlHIwvG22WcBByJBxvC8bb4tsjqf3i25uaYAmvgiUS7nAc7sR4lJTAUSGgO5wQGUE40vp1\n5rLl+2+N/W+8Fmp1NSIn/BZQVYzaf3cAyPv5DZUWnp0QERENEo5XXoIDgE/VIULBLvuXO/cN1yRX\norHCHlxOJkHWHc7CHjsPFrk0Hhxteut9hH/4CSPPODF9Q6G/30RE1OdYi7z/ZAar1h15YNq6OroB\nureiP4c0cMV/ZuV1a81Zhjm7tbYa/dashvOO2xA6+7x+GV5ZCwah33MvxO9O6XaJL0XTIBKZcPi5\nQ0RUktof/gfUDRvh/vcr8F5wDia89GTOfoq3EkpFJcJ1E6BUVEGtrITirYJSWQmlosrYXlkFtSK+\nXmGsa05Xl0GxS2bPQvWU8X3x9oiIqEDChx4B/zU3wvnQfX32GlJLehCOMnkqRO0QhGJqB3v0gqZB\njoTSg3bCIWx7yyWoWL0MABA885z0fRwOMxOOpuuQhIBobMx5+IqLfo/G35wAEfAXfuzUrxiEQ0RE\nNMhomg6EkhHbQxqGYtPHXwH/+Q+0Y4/r8CZHOZSj0jQdkmS8P2XS5mY2HBGNQAeAWDI4RM1R4zxf\neuosLLu9x8fpqVLJhKNOmw5p6hZQr7gIclPywkINdTxjgIiISlMoosLbtNpIg9zpdSMAACAASURB\nVMyH4n2rk2DV4G9PQ+D6m/pxMAOcENAtlk4DcDJ5rrsS2ogRiBx+VB8OrPx5Lr8YzsceQdDfgsCV\n1+a9n/bFl3D+8GOyHBU/b4iISpY8bCjChx4B3eEArFZolVXQq6vNr3pFZdokpQQJgC3+r1dGzUEf\nPF4lIqJeCv3meDj/8XcAgP+WedA9XkT33R/uW2/O7pw47wd6npW0eVPaau2RB2PHCcMRU1T4Qwr8\noRj8wSj8YQXBcAy9esohSVCdbqhON1Knz7w973EcePgsAEDod2ek7aK7XEYmHEWB9b57oc2dCxHu\nODuc2LQJ3jN+m2wIhQBn/0/0TRWJqrDbsv+mU8cYhENERDTIqKqWlglHhMOo2n9vyCuXw6fGED7x\ntzn3G+gxOMLvQ+zLb2CfbZwMK7/YGohfDOhh45RZpETN+/5ye89fLPVhQY4bTn2tVIJwAECWJGz6\n9mfUDas02xiEQ0Q0sIiWTRhxxCFwfPU5gr87E4Frbyz2kMpaZ2UbA9feyFJJ3SXLQGo68Ayx8ROh\nRKJwrl5htlWceSoaGYTTK3K8/Jf1gwV572N//hlUnGpkUAztsbfRyJ93IqLS5nYjcsTRxR4FERGV\nEP+f/wrd60Vs+1lmVkxlxi9yd06ZFOv5w+/hv3le7n45Hk5EttwK9q++gPOl5wAAWnU1/Mf9FuqE\niQAAq0VGtVdGtTc5SVbTdPjDMQRCMfiCxld/KAa1lw8/opXVCE2dDqm6KmtSru5wwLrkZ9SNrDHG\n/dH7CJ1yGgAgeM75iO2wI9SR9ajZdQcAgGP+U7C/+z9zfxEMQi9yEE57MIo6W3HHMNCUzhMaIiIi\n6hf2hQsggunlqOSVywEAlm8XdbjfQM+EU/GbI1F/yBxYvvgMABAJJgNBLLffBv377yC1JoNwtBEj\ne/5iRQi8KWlCYNObC9B+9wMAgIp/PlrkARERUXe4r7kCjq8+BwA4H36gyKMZBKLRnM3Bc87nOUYP\niEjHQU0A0H7TX9C88Eu0XvDHtHbLV1/05bDKnlY7xFhobs57n0QADgBYFn1jLDATDhERERHRwCJJ\nCFx9A6L77p9zs1pRieiv9gAAiLY2s935yEMdHtL+zNPmcvDMc7B6/qtou/3etD7tDz6KyKWXdzE0\ngQqXDSNq3Zg0ugpbTarD7BkjsN3kYZg6tgYNQ72o8Tpgt3T/2nvli2+i/dmXc71o2qr8808QEePZ\nhOatQHT3vaBOnmJu91x1aVp/oXScLbc/SBvWw/uPh9OzFlGXeCVLREQ0yAw/8kBIm3LfDBe+tpzt\nzvvuQs31V/TlsPqcLT4LNxFoVPWX5Cz+qqcew9BddzDTQCpDhkKdOKnnL2ZhssFM6vQZiO28KwDA\nsqkZCAQgOvg5JCKi0iKvXZOykrwRNdADdEuViAfhBP/vXLTP+TVCk7cw1s/5fTGHVTZWvftp2ro+\nbTrsNhmRC/6A9etbzZKk1XvuOvBTQRZTzPg5tq5c3qPvo3X9WmOBQThERERERGVBq6oCAAQOPMRc\nllrSS0llTkqRli2F7d670iZJBK68FvZdZkMaMiStb+Lec3cJIeByWDC0yolxIyswY3wtdpw2HLO2\nGI4Z42oxbkQFhlY54bJb0FmeTlkSOTN5Whb/lLauTtwcwu8HAOhuV2IQ8N16R+4DdzBRp794fn8W\nRl9zMZx3dzA+yolXskRERINBRpSyvmFDzm7C50vuknKz3HP5Jah56J6+GVs/E6EgpNWrYGlrzd4Y\nL5MUPebYXr2GzlnqOWlDh5nLdZuNwJDJm0H+/rsijoiIiLpLl5J/4xSVAQp9In6DTZk+A+G//wMr\nX34by1Y0m2m8qXe0sZuZyz+/sRB6TS0AY0akLEmI7Lm3ud1zEQOfekprSQb3O/54EUQ3MuKk0gVv\nXRIRERERlYPw3OMAAMo220H3VgLIDsKx/fc/aeuVxx2Fyisugeu+u7OOp3v79hrZZpVRU+FAwzAv\npo6twXZThmH2jBHYamIdJtZXYWStG16nDXI88EaS8iulK61bA+/vTgIAaMOT2fgj++TOHJRasqsY\npOYmAIDtzf900ZNS5XUl+9VXX+HYY3M/jAqFQjjqqKOwZMkSAEAsFsOFF16IuXPn4rDDDsObb75Z\nuNESERFRz2RGS3cQhJNKVcs0vWAoBMuP3+fcJMdn3OoZdVu7TWYmnJxyzASwfv5pjo5ERFSy5NQg\nnDI9Vygy+8svAAB0mx1CCHhdNnic1iKPqnxIkkB01mwAgHfKhKzt1o8/Mpedf+84HTp1IhSC68P3\nzFXvQ/eh8oS5ne4irVyRe0OO80ciIiIiIhp4ApdfjeZX34Ry5NFmAI3j9lvT+lSeMBe2e+8CdB2R\nb76F5ccf0ra3/zUlGMfhQHj7WQAA303px+krsiSh0m3DqCFGOauZmxvlrLadPBROe37PBKxffgER\nnwCt19SY7Xptbc7+jvlP9X7gvaBXVQMARDBQ1HEMNF0G4TzwwAO47LLLEMlRQ/ubb77BMcccg1Wr\nVpltL774IqqqqvDEE0/gwQcfxLXXXlvYERMREVG3iVhGGsfGjTn76R6P8UBNUaAoxoM1XVH6fHz9\nyfL1V5A/zR344XjofgCAbnf07kVkztjtiP/s9BnluttdpJEQEVGPpPyNiykMwukLtvfeiS8YgTdW\nC88rCqXtyfmwyBLa/vUCGpevh2SzZfXx3ZsMvFFSsuZQ/uzPP5PVZv3oQwCAtGE9EMi+eVtxxim5\nD8ZyVERERERE5UGWoW2zLYQkQVq9EgDg+G92dpXKKy5B3bBK1O++Y9Y2dcLEtPX2F19D48Z2hE/8\nbd+MOQ9CCLgdVlh68ExAy8h4G5u+JQCg9dF/mm2ORx/u3QB7SY9fN4tocTPyDDRd/jQ0NDTgjjty\n1/iKRqO46667MG7cOLNtzpw5OOeccwAY9eFllmMgIiIqvkh6EI7rk4U5uzmefxb+Fh/qRtag5rQT\ngXAYQ0fW5Ow70Oguo76q48Xn4PnLn8z21SuazGXbwg+Mvs7eBeHoFmbC6YiI/z8k6BnrRERU4hI3\nXfx+iOXLijuWMqdbmP2mEJQxY83l6A47GTdGrVagg3MQdcJENG5sh+b1QnMxWLgnRCiUu725GVWz\nZsJ73NGQVq2E65YbAVU1trW35dxHr6jos3ESEREREVFxhE/oWdCMNnxE2roYAJkzW155A20XXILG\nbxZnbdM9nrT11hdeQ+uzLyM2Z99kn8rKPh9jp6xGEI6eWW2BOtXlE6K9994bq1evzrlt5syZWW3u\n+Gxmv9+Ps88+G+eee25eA6mudsFiYcAOEfVeXV3f1oEkGpCi7Xl3HX3ikQAAz6svwh7zp20b0L9f\nLhcQDKa3ffgh6huy0zx6h1TB25v3WpF8qNOX37MB+f9RV522Wul1AAPxfRBRvxqQn3dlJZnxRowc\nYfx/7L8H6j7+GFizBhg5spN9qaeq6ir5N7IA1D33BB58AKHrbkTd2OF576dXV8Pib0ddnReKqvVo\nVmNPlMXnnTP37cYhU4zMQvJ7/4PjoH2AVavgnjoJOOEEwOXM6q+5PagblTslOxGVh7L4zCMiygM/\n74gyHLgP1F9sBfnLL7rue8klgKIAPh9qt5o68ErW7ruH8Q+AvtlmEMuSE5pqx45Iv+6v8wKb7Wcs\n33YbcO65sBx5RHE/Q7zGsw7r4h9zjiOmqLCmxHhUVrlgszLmo0+maa9btw5nnnkm5s6di1//+td5\n7dPSEuy6ExFRF+rqvGhs9BV7GEQlR1rbjFy3rzdsaIP47lvU7bEzRHwWquOjD8zt6+54EA0p/Qfy\n71eNw4nMU79myQmt0Ye6jPb2qI5IL96rs9WPRAx7X33PBurnnUMRSD1Vb2tsRXQAvg8i6j8D9fOu\nnFRvaDRvHkQrq9He6DMCcAC0LvwcsZ15Q7mQEuclLVFA4c9+ryl/vAatY6ah8oTfwN+N72eVpwLW\n7xah5Za/wvXQ/QjusSciV/ZtyfVy+bxzbWhGlzmE4qXtI08/g/D/3odt86lwfv55eh+LXBbfDyLK\nrVw+84iIusLPO6Lc6lICcNY8/RIcm09E7ZaTzTZ1VD3CU6YhfPQJyQw4Tf7MwwwolcNHwpYShNMY\nBtDB54Nl0jRUAwi2+hEo4meIV9GRqBvQ8vpbUGZua26T1q1F6KNPYT/oAABA7bmnQ12+Eo3Pv1KE\nkfa/zoKjCh6E09TUhJNOOglXXHEFdtwxu1YbERER9T8Ry67XGZu5DSQhgC2moWnlxpyzTBtuu6E/\nhtenNE2HJIncJaLs9pz76M7smbjdoqi927+cqUraqmAaSyKikid8yYx6IhxO39aWu4QM9Z6yVXb2\nYeoBpxP+Aw/FEFv3ynslUn5XX2RkeLb/+B3WXXZ1v2XEGdBCxkQ7dcxYyCuWd9rV/trLsANQtpie\nvVHi95qIiIiIaDBQd9wJmt2C6KzZsH2wAJF99ofv9ruhV1YVe2gFpXszgjYcjtwdAejx8sgiGOjL\nIXVNSd7PT9wDktathevG6+D85z8AAC0Nb0HZcitITzwOJwC/ogC5nscMIt2+mn3ppZfw1FNPdbj9\n3nvvRXt7O+6++24ce+yxOPbYYxHOuElHRERE/UtatzarTR07LrlitUJz9DLwpERpug5N02FZvixr\nm24zgnC0qoyT+Q6Cc/KmZAc9kUEEQ+nrba1QNa2D3kREVAqUyVOTK+GMz/GM9UyarvfFkMqa5nYj\nOGXawEuxXaKEQFpq7HxZvvs2q621tcg3PweIxPmeMmlzAEBkzn5oefF1ROsb0PzVD7n32dSc1Sa1\ntPTdIImIiIiIqGQkJju0Pf4vNH/6Ddr//kTZBeAAgG3Bu+kNnVz36y6jDJQIFrmaUEoQDux2yN8u\nQu2Wk80AHACw338PnPfcaa5La1b35whLUl4hSPX19Xj66acBIGd5qccee8xcvuyyy3DZZZcVaHhE\nRERUCFJTY3ajlp6tpe2FV1F52AGQfOWVHtX6/nvQ29pzb7TbAAD+G/+MitN/azYnosx7KlfmITKI\nUPpFg1ixAqqqI99J5ZqmQwhA8MEkEVG/USZMhP2N1wEAIpSRCaeLSTdi0SKoDifkiRP6bHxlR9Mh\nZNZPLxQBAZul+xlVpLbWrDbbRx8C++5ViGGVtcRN4sAlV8A3YybEb34DbVQ92j5fBHQQfJ04R9z0\n77dRs/du/TZWIiIiIiIqDrV+NOTVRplaixy/1+t2Q3P37t58KetOQI35jKJYQTiKAsstN0FOmdws\nwiHU7LZfVlfXs/+C9s5b5rpl8Y+IjhnbH6MsWczrSkRENBjkKPkjAukzeZWtZqJ5yZrOjzMAZ7MP\nOezXqDv5GHM9PHM7czmRCSfxNUEbNrx3L8ognA6Fj5wLAPBfdT0AwLrgXahaN36uNm5AxZzdYV34\nQV8Mj4iIctBT/q5JkYwgnC7SIg/dfScM32nrPhlX2dJ1CJbhKRhJEnA7up8GO3zE0Vlt4084DNKy\npYUYVllLBNToVVVQLrwI2qj65MYOfrYTac314SOg1dT0+RiJiIiIiKi4Aldeay4PlgmX0VmzAQCB\nSy5H0/fZmftT6fFgJOv77/XfdaiqQn7rv4CmwfbWG6iedxOsX39pbhYZE7jD+x9oLkvNyeym0oYN\nfT/WEse7OkRERIOAyBGEEz7ymBw9k9p22T27cYCXDWr9y+3Y8NzryQabLf1rnDa8d0E4QjWyDOlW\na6+OU460sZthw4Y2hE40Mg/ZF30NvRs/V66H7ofji09RedgBfTVEIiLKFE89rFssWeWnMm/AUAFo\nGktRFZjL0f1zMnXkqJztliWL4bz9VniPOBhQVQi/Lz09dwY9I4hdWrcW0orl3R7PQCJCxueE7nJB\nzhF0EzjjLLQfeFj6PvHvk26zo+XNBfDP2qXD0lVERERERDTw6WWc8aYj7Y88jpb7H0Hw3Aug19Z2\n3tnlgi4E5OYm1G7/i34Zn/PO21Bz1CFw3XIjhN+ftV1e8rO57Lv1Dvj+9hgCc4/LPlAXWZMHAwbh\nEBERlTtNg+fCc7Oao/vnDmJoefM9tN8yD02PPoXo2HFZxxrIJJcLFlmg+Zuf0PjOR+YDLj0jCEf3\neHv3QomMAZbuz7oeDCQhAIfDXNdDoU56p/P+9c8A4oFloRDknxcXfHxERJQukQlH93oh+f2w3HVH\ncmN7W5FGVb4E9A6zhVD/CZ57Qc52y5NPwHPdVXD8701Y33kbQ8aNMkq6PvGPnP0VNf38ueKEuajd\ndgbQjfOfgcbMhON05dwevOp6BO59EBsXLcneaLdBG1WPtY89A23EyL4cJhERERERFVFH1wvlTK+q\nhnLQIflNvBEi7d6AEsmeaF1Ilm++guf6qwEA9ldfzjnpyn2Tkd0+8PsLEf7N8QCA0KVXJjvcfz8A\nINyWHcAz2PCuDhERUZmzvfWGObM0TQcnesr0LRE5/mR4nFa0vfQ6Nt3yV0R32c3YOADKUamahmA4\n92xk3WaDzSob5aamTElukOX0jr2dfR4zToh1CzPhdCj1e9ze3mE3rZOfuarDDkDNrJksC0FE1MdE\nIstH/O9a9dWXmtvc99xZjCGVN2bCKQ0uF1Z+vyKr2f3Sc+Zy1VGHAABsHyxA7blnQF6SHRwcU9LP\nZaxffA4AkDaWcXruRIBRStB1JossQQytQ9NDj6e1J8rEWi28ZUlEREREVM70Tq4XyJDIuA8Alr8/\n3KevVb37zuayvHwpvDkmdifoNcksPvqQIQgecxza77wPGDsWAFD3p6uAZ57p9N5+ueMVLRERUZnz\nnnFKVpueGXSSgyQEMGw41ONPBKT4g6BSz4QTDqNyzu7A44/l3t5BUIy0bm1Bh6GOnwgAiO00u6DH\nLVdDzzi5w22xWMc/c9ZPPgIAyGvXFHxMRESUlMiEIzVuzN0hEIBa6ucIA4nOTDilwlpVCf/l1+Td\nX7S2pjcoCuTPPgVSbpwm1G47A5UH7mOUsyozIhiE5nTlFUxmcTvTG+LlXO1W/g4QEREREZUzdfwE\n4yszYOal7rIL++/FEpn+OxA++jfJFSEQmHcnIkccnTYRo+70ExFemj2xZbDgFS0REVGZk1IeBqj1\no42vkyZ38yDxU4YSj1y2fvQhnF9+hjGXnNNBh9zloaJ7zSnoOMLHnYi1f7kbvjvvK+hxy03gkssB\nAK5PF+bcHomqiCrZD60y6a6uU5cO5qh7IqJe6+Lmi7RxAwKhHFnoUj97GaSTP2bCKRkWWULorHPR\n+sxLefUXbW0Q7W2Qv/8OorkZrttvRf3Be8F5/z1Gh4zfJduH72PIuFGwfPZJoYdeVCIUhOZ0dt0R\nAOx2czE2eoz5s2+1dD1pgIiIiIiIBi69qhqb3lmIljfeLfZQBo4+usctmprS15XclQYAQJkwEbq3\nIvfG7bZLW5XffrPXYxuoGIRDRERU5tSxm5nLyhbT4gudP0zLpCeCcEr8AZpekXLyF4lkb7facu9X\nXVPYgVgs8B90OPSKysIet8wEz0uJ3s84sbc/+y/U11dj3NghyZIGHckjs1M4oiAS6zqgh4iIcoh/\nRms1uf9euu78K2pO/g20aEZ98tTsH119lpNJMBNOydE9ng63+Q8/2lyuOuoQDJkwGjW77oDKow6G\n+0/XAQBs77wFALB++H7OY1i+/KKAoy0BwSB0Z9dB0gCAlM8NKRbtpCMREREREZUbdcpU6EOHFnsY\nA4ZobOyT4zpSSo1HZ3WR3b+zQKCUSRYAUP/H84AyzP6aD97VISIiKnORlCwvutttLHQSyZxTfEaq\n0Es7CCf1fUlrVmdvt+YuRwUA0UmbF3QoksQZ7PkI77s/AEC0t6W1V5yWLFHlvv4qY6GjILAuMjQA\ngOtv90MqtwdcRET9RMSMv68tb3+AlnseytrufOxhVL/1OizxMoGmlCAcEQ736RjzoQRDJR9QbN7M\nYiackqK7s4NwAhdcjKY/zUPgjnugjKrP2m796ktzWWw0SrnpdkdWPwAQuQLkFQXOy/8Iyzdf9XDU\nxSNCIeh5ZsIRavL83XfbnZ30JCIiIiIiGtzkVX1T3inqMK7fdIsF2rBhZrs6bLi5HDzwEGOhi/sq\n/iuvS1vXfl5SoFEOLAzCISIiKnMidRa6xZrdlo8BUo5KpARjWBb/lLVdGzosqy0hvN+BBR0LY3Dy\no1dWATDKN3REaopH+HcUbNNFySppw3rUXXUJRu73K1i+/rLTvkRElEP8IbnmrYBy6OFQNp8CAPDd\ncHN6v3BGFrqU4FgRDPTpEPMxYuwwVP1qp2IPo3OJcy1mwikpZiB7ith2O0A94SRIkoTYnH073d+6\n6Gvj68L0TDih/Q4AAIhA9u+H/cXn4LnvTlTvvnNPh92v3KeeBM8JxwCaBhEMAnmUCwWA6C67mcvK\nNtt10pOIiIiIiGhwik00JhDLq1cV/NiisRE1t1wPAGh7Yj60YSPMbeqkyeayJBv3KUQXQTihM8/G\nxncWJo+RUepqsOBdHSIionIXSz4A0y2WeFv3ylFBDIxyVGnp7Bs3Zm1OjeLOlDh51Av00EtmFE5e\nEiW7pPaOg3ASfeQcgVVA+gzqnPuvTmZFss9/urtDJCIa9Dxvv2EsxM8jWt54B+t+WonY9rPS+mUG\n2qR+Phc9E048uMX63bfFHUdX4ucjgucRJSVXEI5eVWVmPswVRJOL5/qrAQDq6AY0rmtB+PSzjP2D\nQbOP2NQMedE3kFatNNssH39knr9LG9bD9rcHSio43rrgXbienw/nqy/Bc+6ZkELBvL8nsNmw7KNF\naHnjHZZyJSIiIiIiShHZfU8AQPSQwwAA0qrCB+G47rzNXNY9Hmh1yfJgypa/MJcTwTlqjkywmcSU\nqfBf9ydjpaW1QCMdWBiEQ0REVO4iKQ+9EplweliOqtSDcEQ0ZQZ+JJz1cEJ3ZT9AMXmMMgPaiJGF\nGQvLSORF93oBAMLXcW1Y0WacqEsbN+Tu0ElQmeXjjzBkn18lGzopSUZERDmk/i1NfIY6HLBUVUEb\nMyatq/zTj+n7ppWjCvXVCPPT3XOfYkmcazETTknRvRUAgPC2O5htWjybn7Gh659vy0fJmYCt818E\nZDkZ3PPzz+a22q2mouZXO5kBOwBQvf+e8J52EixffYHa6ZNQefH5sL7zdk/fTsHZ/veWuez85+MA\nAOuSxXnv7xxTD2XLrQo9LCIiIiIiogHN98Aj2PDWB4jsbWRf9VxzecFfQxuezHyjV1ZBr6011yP7\n7GcuB/5wKfyn/R/a738kr+PqTiM76sgzTyrMQAcY3tUhIiIqc3oo+VAgeMZZiA0bgfa77u/eQQZI\nOSpEk8EYIhzJHq8sd7hr+ORT0Xr0cWh7+vmCDEXiDPb8JB7opmQxyiQ1NQHRKKqOMurOJtJvmjrJ\nhFO9/55p61pdXc/GSUQ0WKV+PmcEhmRmrZA2ZmShSy0XGCxuEI4jHhiQSivF85r4mASDcEqLLGPZ\nD6vR/K8XzSa9KhmEE/zDpQhvMQMbX3sbTf/+X85DVP96L3NZ22yccYx4ySbXqy8a//fvvQcRyv27\n4njpBVTvuau5bnnoAbQHovAFo/CHYgiGYwhFFISjCiJRFdGYipiiQVE1qJpWmJ93vx/Wf7+Wdo4t\nmpvhuv3WXh1W5s87ERERERFRFt3jhTRtGtRx4wt6XEVNTrZOzWqs1o+GOnx4st/W22DjSWdg/XOv\nAS4XQtfcAH3oUORDtGxKrpTi/Zc+Zin2AIiIiKhvWT/5GADQ/Pm30OpHY9kHX6Paa+/eQRI3xrXk\nyZL1icegr1gJ5ZJLCzXUXkvNhCMi4e5l7vF4sOnGW+F12QoyFomZcPKim9mZkgFU0soVaX1s770D\n27vJ2d7a5CnA4mS2he5kdsq7NAIREQHIyDLX1d+2TZvSVuVlS5Mra1ajmDwXnmsui8ZGwG6D7Zqr\nIQ46CLHZuxRxZBkS5y48jyg5Nq8bspz8f0kNQlPHT8TaV96C12WDDiB8yGFwPDu/y2MmMuwAgPPe\nu4Ar/5j/eD5YgK+/XJY4EgBAJG5spt7gTAR2xftIQkDoAIQxM08IQCD+TwgI6EYf6Ma6AIRu9Jvx\nxzNQtehzRGbNRvvzr0JsakbNdlvmHF9s5jZ5vxciIiIiIiLqhMuFSMNmsAQ6ziafj5iiwvnff8Py\n3LNQb7gJem2tmaG+7aFHAacTsZ1/idAhRyB6yKGALCN6zfXQoaPj6c25RXfbA7juKmNFUQZdhnoG\n4RAREZUx4WuHdd0aAIA2xMgAYpG7/1BHjz8I0lPKSlSdeyYAoPEPl5ROyYTU2frh9CCcwKyuH7A5\n7YU7NSqVb0nJs8VPvmPJQBp51cqsbqnZFZTJU2B/KSVjUazjIBxldAMsqcfztfd8rEREg1Gk40xl\nAOC75Ta4r78KUmsr0Nycti01G1n1aSehadfd0tIa9ye9ogKi1ShvKK9aAc/ll8D6yUfAow+i+bNF\n0EY3FGVcWeIBEzpPJEqOzZpxyzEjw2JqILfuqUA+9CFDzGVPjgCc4CmnI6poqHr4PrOt/a77UXHm\nqbD52nDwwdvm9TqFZv9gARCJwHXrzZBSzq1an3kJVYf+2hjnPQ8VZWxERERERETlSK+qgtiwrhcH\n0CHdNg/VN19jrD/3NBpXbICIX9OpU7Yw2q1W+O990NzNapHSMufkS50+A9Htd4Ttow+BSIRBOERE\nRFQ+hN+fXLEZDwaslh481EkE4SgxZIbwCL8vqxxFsYhYLH05/iArPHY8mu7/O1xd7G+RC/fAi5lw\n8pOaCcf67v8Q22EWRHNTVr/Eg1MA0Cszft46KUeVWdJBXrqkF6MlIhp8RCTc6fbw8SchfPxJqB0z\nHHJLc6d9LQveQezAQwo5vLzFttsB9v+8DgCoOOEYSBs3JMf1w3eIlkoQDjPhlLy2fzyFUFNrp7MA\npXgQfC7td9zb5WvodjtiEzdH4MprEZMs0PbfHzXx4JbI4UehrbUVoVde8ih53QAAIABJREFUT+6Q\n9vMistp00XE/PbVN5NjXPJ7xZdRbrwAA6kanl/hse+QJxGbNTu6XUq6LiIiIiIiIekf3eiFFwrCd\nfiqit90B2LtX7UD+6UfUJQJw4qwfLzSDcHSvN+d+kiQg6T27R6HXGhNPRDQCHZ4eHWOgYhAOERFR\nGROpZSHiM6p7EmgiLzdS3cs//ghtVH3atp8XLYd1/Dh4XTZ4XdaCBrJ0l/f8s5Mrqmo+yIqNboCt\ntrpfxyL48Cw/8Qh4xz/+Dts7byN0zHFwPv6ouVmrqYG0aRM8V6WUPcuoIZsafJVG0yA1NyG87Q7w\nvfIfDBlRDamxseBvgYiorEUiXfeB8Xktt2zqtE/laSejqUhBOKkp6uT16TPHRHvpZElLlAxiSr3S\nFd1rn2TZpw6kZvDL2n/3vdLXZ/wCtq+/TGtbs3Q9LLKALEmwAlB33hWt81+EssV0Y59TToN8ymk9\newO9FPzjhXA9mMzME2sYi9YPPjUD/pXNxsGybCn0SgbhEBERERERFYrz/XcBAJXP/BOBMQ0IXnxZ\n7o5+P+DJDngRoWBWm+vySyDFjAzImrfjjK49feaj243rRBGLofOr6PLDuzpERERlzHPlpVltPTlh\niu6+Z3pDyoMH39qNWLquHV8tacKCb9bh4+834IcVLVjT6Ed7IApNK9LplZYMwrFYLUUNDqKO6fEg\nHOuH7wNAWgBO25PzEbj0qqx9lImbp69HcgfhiGDAeEhWYVxA6C4XkJEZh4iIOifipR4jGZ+9mbTq\nGlhaWzo/lqoa5SKLQHTyuplZ04qKmXAGhK4yHsZmd1wGNbUEFQBseu6VtPXWp583A3DSjrnLL4tW\nzi1V6Kzz0tZjc/YxA3AAoPW/76Jp8Ur+DBMREREREfUR960352y3vf4q6saNhP3Zf0HPmLiaeu9D\nq6kx+v/wHSxLfjYanc7CD9QWz9ZTpHtBxcSnUURERGWsoxSC3T5O/ARM2rjeaEiZFb/rH07Cr84+\nEtv96SJMfewu1L72PCIfLsTyH1bi88WNWPDNOnz240b8tKoV65oD8Idi0LuYPVwIQlUhdONBlmTp\nrGAAFZXFSMyYeMibKvaLmdCqsjMYqVO3wKb3P4Xv5nkAAPsLz2RlxwFSyrFVGL8HutPV4YPWntS1\nJSIaDBLlqMK77NZpP72qCnIwAHSUnSyurmEoPBefD9vLL0J0kTmnoHJk9Gm//R4AgP25Z/pvHF1J\n/D0TvF0zkAUuuTzvvrLXi9CvD0LbeRcBuo7YL3+VFYBTSrThI4zA5rjY9rPStuveCmbBISIiIiIi\nKrCW//yvyz6um28AAFScdjK8B+2XvjHlvrjuyBFw0wcTKbQhRhljkZGReKDLZ+I5y1ERERGVsejs\nnWF/5UW0zruzV8cRigIAqD77dDQedQyEz2duU2tqUb34O9T+8HXWfpGKKvhHNsA/agz8I8fAN2oM\nNo4ag9CoMbAPG4KKeAkrr8sGp73ApyUp5ahY0qGExTPh5KLX1gJ2W3a7kKBNnARLvHSD++3/Qn3h\nWUQOOjStX+LnVPfEM+E4HBDh3EE4qqaDsVpERDlE4kGSDkfn/azxz+tYLOuzfcN5l2DYvBvNdeff\nHoDzbw9AFwKRKdMQ3XkX6LvsitgOs6B3kv64NxLBRAmBiy+DvGolAMD23v/65DV7hJlwyoMt+/wF\nANbfOA+5Tjf8Dz2ao7VECYGm5euBdWvhfPkFRPfdv9gjIiIiIiIiKnvqhInmcviwI7vs7/xkIQLf\nfoPo5lvAapFgeepJc1vgymtR8buT+mScqdQxYwEA3vPOMsoYlwFp3Vq0Wt2oWbMU2KPjLLgMwiEi\nIipjImrMRhe1Q7ro2YV4EI55XF87ACA091j4b7sLfkWBWLUS6uKfof70E8TPS2BZvhSOlcvyCtBp\nHzUGG+vHQhs/HvKkiXANr4PXZYPd2ouoCFVLPsgCH2SVKt2SOwin7ZEnAADq+Alp7b4//xX6sGHG\niiV5Kisv/inrGMKfCMIxauDqDiekeGCOputmKQlF1aCqGtCbnzciojIlokYGGclu77yjzfg8F6qS\nXee7sjJt9Z0/PYTa77/C0C8/Qu13X8Dx3TfAfXdBk2X4p85AcIedEdt5F4gdd4S9sjBZ/UQ4ArWi\nAnJ7/Bzm+JMBScB9y43QSylYN5EJp5TGRD2y9rPvYAkF4fj2a1jvuQv+F16FZrXnDMIZkEaMROiU\n04s9CiIiIiIiokEhNXuNY/5TUMeMRfi4E6GNGGm2i4xs8UN22wlrbn8QdWf/1mzzn3sBIgcfho3D\nRsL9n1fgvvsOM1im0LS6oQAA68/Z9+4HIstnn6B6n91hForupOIDg3CIiIjKWcyYva7bOs420hPe\n444yFhIPiCwW6JuNg7TZOEh77WX2CwPY5A8jvHQZtB9/ApYugXXZUrjWrIB3zYrOA3RGjUGwfgyU\nseOhjx8PefNJsE+ZBDler1T8vBhDZs1E8HdnInDtjVnHgKowE85A0EEmnOhecwAA6viJ0OwOSJEw\nfDfegvBxJ5p9UgN4NFXNOob92fkAAGntGqPB5YQIhxGOxBAJhFFZEy9T9f77UDefCjhqs44h/D5Y\n592K2NnnsLQCEQ1KZgYZRxdBOInP5FzlqCoq0PbQY6g8+VgAwMatdsTGrWfh+2NOhxQJo/a7LzH0\ny4UY+tVHqPn2a1R88wXwwO1QrVZsmrIV2radheCOs6HN3AZOrwtuhxV2WzdDGSJh6HYHQscfDuu/\nX4VeWQlYLFArKqGOHNW9Y/WlREpjZsIZ8Cz1oyCEQGTSJDTtfQC8ThsKe0ZOREREREREg4bFAmV0\nAyzxrL7uv9wEx9NPYtNni8wuonFj1m6jUgJwAECbOMnoO2sWgrNmIbbLblC3mNY3Y5bLZhoKAMD+\n3Py8+zIIh4iIqIyJaLyEhDV3Svy86Vpyed1a2H76EQBgyZF9JJPL44BrxhRgxhSzLRRRsDL0/+zd\nd5hcddnG8fuc6TPbk91NIyEJvcbQFRBsCAiKCsSCIqCoYEEExAIiL4gNVOyKgqgUEV8RXrECSm+G\n3lIhfZNNtk0/57x/TN+Z3Z3dnd2Z2f1+rotrzvmd9iSZnR3m3PP8EurrDctavVbGyhXyr1ujhvVr\n1bDh1VRA5+XnNOOFp4rOF29ulbdne+78P/1hKoRj2wX7GZal7FfxCeHULMdT/Ha097SPFHS56Xp1\ns4x4XMbgLgx5+yQTlmzHkffZp9VywjEKn3aG9NprkiRr0aLUtfwBmZGwdtopFbbpvudBmZs3qX3Z\nu9X39ncofMNvs91xMhq+eKH8N/9WuvY76trSW5E/MwDUE3PNakmS0zlr2P1cLzyXelyxQsmDC0ON\n0RPfLbMxb77xvNda2+dX1+sOVdfrDtVzktzhAc189gl1LH9EHcsf1sxnHlP7049K131XSV9AW/dZ\nqi1LDtG21x2m5D77KdDgV8jvUdDvHjacY8Tjcnw+9X/rGulb1+Q2+HzZbj81If0tqprqzoMxMfKe\n517mvAQAAAAAjNP2+x9T+4LO7Hpmmm1JCl7zLbm2bFbsgIPke+KxIc+R31FHkhJvekvlC01L7r5H\nwXpfOK7G4DjvVVWRuX37yDulEcIBAKCO5U+pU1KmE864Qzi5tnrue/6VXe6/4htjOl3A51bA51ZH\nS0CaP0N641JFYkn1RRJ6LZxQfySu/r6IPBvXp4M5a9WQ7p7T+NrqghBORvDqbxYOWJaMZOrb+A43\nPmrXoOmoNt73iNx77lkwZhqGVGIalPwAT+u139FGudR6bep5EPrpD7Lboss+mFrw+wuO9/7jrzJi\nqRuvjXffqW2xpEL+VD2R3gEFGoNyP10cBAOA6cQYGJAk2Z2dw+7nXrVSkhT62iXqufOvkiTH41F0\nnyXyBH2SYajrtS4ZibgO8wUVjiY1EE1oIJJILyeVtG0lgyFtOvhIbTo4Na+2p3eH2p95PBvKmfXE\nA5r1xAOSpHioUVv3PVBblhyitUsOVc/Ou8rtdivkd2dDOUG/WyGXI3PzJiUXLiqq2/F6pVi8Yn9f\n45YJFdMJZ0rxeAhVAQAAAADGKRAoGjI3bpA9e45CX79ckmS9/nDtuOhLajnlXaXPESw+x0SxFy5S\ncu48udevU9OpJ6np1VfV+9ATk3b9MbFtNZ70Dqm5SX2/vrlgk+vp5dnl/ksuV8MwpyGEAwBAHbMs\nW+YwARMjnp4SYpzTURlWrstM62c/KUmKz5qj5H5LxnXefAXBnLToXrPVF95f/elwTl84Lqe3Vyed\ndFDhwY6j0DevLByzLSkSSS37J++NJUZp0HRU7sWLyz/WWxjMmX3tN0vuZu+8UJLkBIIF487MdjWc\nd252venSL8r6xrek/n7N32WOIieeJGN7d25/xyn4VjsATAdGMplacJX38YGdCZHYtoxEQvL55Hal\nAwg+nxyfTz5JPo9LrY2Fr+OxuJUK5kSTCqcfB8xWbXjDW7ThDalvZvm2b1XH8kfU/tSj6lj+sOY8\nfI/mPHxP6vjmVm3Z/xBt2f9gbVlyqDbO21kyDPm3bta8eFz2boXfwJIk9/p1qYWBASkUGtXfzUQw\nMm38TH7fTCXDhuYBAAAAACiTEwjIyNz3kDRj/8LPOsKf+uywMwPYDU0TVlsp1j77yr1+nXz3/HNS\nrztqtq3gh96v0N/+LzsUfuF5WXvuJc9998humyH3Ky8rdsBB6v71rXK3zyCEAwDAVJW0HJWYzSen\nUp1wBk31JEl9Z59bYsfK8nvd8nvdas8L5sTiHdpw658155QTsmPev9xVfLBly4hGJUnOoA4oqCHx\nQd0HvOU/Vx1vcXecwRK775ntJuA0DHpbPOiGWNuvfqquq74p98pXJEmBO/5YsH3H+q1qnddedn0A\nMCVkQjju8j4+8D/+iPq7t2WDj0bAV3aA0ed1yed1qW3Q50GRWDLXOac1qB1zZmvDm94hy3EU2LJB\nHctTgZyO5Y9op3/frZ3+fXfquBkd2rLkEPXN3VmSZLe0Dnlt98pXKhouHjM64QAAAAAAgCF03/ew\nEq+t16z3HFdyu9PSKjmOokceLf+/7yne3tg40SUWXq9hcq83Vu6nlxcEcCTJe/99ch68X40Xfz47\nljzyjXK3zxh8ePH5Kl4hAACYNJbtDLvdyAQcRhFsKKlECMczb45i4zvrmPi8LumoNxaMNZ/+/qL9\nDMuS+6UXJEnmtm2TUhtGz+jtzS5brW2jO9hXxvM6L4A1OITjeuH54v0HBmT8+98lT7Xb0sXacdsd\nShx51GiqlG07MuloAKBeWakQjlNmJxxJClz3M0U++vHUim/8QdhMt7wZzXmv6Y6jaNzSwM5tGthv\nD716yvv0QiQhY/Uqzfzvw6lQzlOPasE//5w7ZpgPmgbPiV41mSlADaYvAgAAAAAAheydF8q180JF\nPnymAjdcV3onw1DfbX9S//InNfNtR2ngs59X6LvfllSFEE5o0BdjLUtyDT27Q7VkvtCdr+FLFxWN\nWQvL6+TPpzoAANSxkUI4mS4jjmd801GVCuFYCxeN75wTpO+b16QWLEu+36fm7PQ8/GAVK8JwrL33\nzi53PfHsqI4t64ZwXgBtcOre3Li+aHezr1ctl39lyNMFfvWL8gtMS1jFPz+S5Fq1Qu6vfEnu/9b4\nPLgApjUjaaUWhpn+UpIGPndB4UAsHQT2jdy1bCwMw1DA59bMloAWzGrUnju36cA9O7X02EPVfv65\n6v/59Xr2vqf06E1/03OfuUSbTjhF0WUfKDpP/I1HpxYSiQmpc9TohAMAAAAAAEbQ/61r9Op/nlTP\nL27IjvVc9+uCfZwlS7Xpvy8ofHHu8+7JD+EMmvq7Vj5/GSS+clVZ+xHCAQBgivPe9WctXtQu14sv\nDLmPHatUJxyraGjcU1yNU88NNxWNbf/z3xR7z8mpFSupxCGvlyT1X3bFZJaGUbAW7aJVf/y7Nj7y\ntFyDp4sagRGNFI1F3vdB2a256UacvJu/g/8Hw3/H/xYdb27aOPxFh5lPdyjJIUI4bYcuVetPr1Xr\nMUeP+pwAMFmczIcjI0xHlTzokNwx/oCMeLpf3gSFcIZiGIaCfo/aWwJaMLtJC998qDq+9Hm5rvuF\nrD32LNo/uWcqDBoPp36n2M4IAeeJlgnhjOH3DQAAAAAAmD7MRQsVP/EkRU56r8KnvF/xE95VtI9r\n7tyCL/o4jU1F+0wke9bsgnUjWYMhnP5+dZz3SUlSYv/Xaf1LrxZsjr731OyytcuuZZ2ST3UAAKhT\njZ87V4bjKHD9MJ05sp1wxheYMSLFrfg03u464xQ/9nh1rd1cMOa0tckx09/Utyz5f5dKftudsya7\nPIxCcr8lci/cefTHve4AbX/3MvV98tPZsf7v/UgDX7w0uz5wydeyy54H7x/xnI3nnp1d7r73IfW/\n930F250x3ExOJkuHcPJ1//g6rd3Upy07IuoLx4cM7gDApEuWNx2V4817fXS5ZMRSIRynAtNRTah0\nUDk+kHqvkyjjNXtCZUJAhHAAAAAAAMAwvO7UZwf9P/2lBn7wk2H3TRxwYGphkqeCsmfOHFRI7YVw\ngtdenV2OnPsZeVtbFDvyqOxY39XXauvKdeq+72E5M2aUdU4+1QEAoF5l0svDfWM7numEM77AjBEJ\nF6xHDjtc1uJdxnXOiggEFHv78dlVe9as3JtIy5J75YrsMmqX3zvGN/4ulzZ/4/tKvOvdheN5yf7k\nkqXZZWvnhSVPk985x/3Ky5Kk/uPfKWuvvRX50U8L9nUixd13hmP09mjOKe+Q519/Lxg3M8/NtN0v\nPU+rN/Xq+TXdeuLlLt3/zEY9+OxG/feVLr24djsBHQDVk/kdOkInnILAr21L2RBOdTvnjSQzZef8\nU46XEonqh3DSnXAcpqMCAAAAAADDMEbx2cGOu/6hVS9vmMBqSst8SSsrkZz0GkZiz90puxx7Z+pe\nQ+LNb5MkJRfvIvn9chqbZO25V9nnHP5TNAAAUNdCf71L0vg74VjzF2SXt33yPMW+fKk8NXJzKPLJ\nT8l3912Knrws1UoxnaT23fsvWTPb5drapcQbme6nlvk8Y0/f+7wuyR8oGEsc9gZZwaAin7uwYDx8\nzmcUuP66onNYu+wm87FHCsbMOXNKX3D9+mHrcRxHztq18r/4vKxYTJ6tXQo+/oiCy96jri292f1m\nHLa06NgjL/qIBjrnKtw5VwOdc7KPPTM6i76h4HWbCvjcCnjdqUe/WwGvSwGfW24XOXsAFZTuhDNS\nCEe+whCOMTCQWg6GSu9fK/Km7DQ3b1KiuaOKxYhOOAAAAAAAoPJMUw3Nk/8ZTeLAgwvWjURcVZ4I\nvFj6C1G9P8ndO4ic8VFp00bFzvzYmE5JCAcAgKkqv0OOd3whnPCnP6fQ1d+UJFkLdpbHXTs3hhKH\nvl7bnn4pN+VUXljBtbVLyaaWgs4oqD2mOfZ/H6/blLVwkeK77Kb4yam5Wa1dd9PKR19Qa3tLwb5O\nQ+NQBRQN5U9htuP3f5Ln5z+R/8nH5Xv2afXHYtIQ01JZlq3ZB+83fNGZG9P51/P61Pnfh0vubrvc\nCrfPUrhzTiqk0zFHA7NSj72dc7W5vVOOO9ftKhPQCfrc8nsJ6AAYHyMzteUI7YoLA7+O3M8/m1pq\naJio0ioiv+7AT3+kXW78lbbf/5jseTsNc9TEMZx0Jx7euwAAAAAAgAoaTeecSrH22FMrH3lOc37w\nbQVu/JWMnh5p7rxJr2M4Rl+fJMlpzLt/4PMpctkVYz4nIRwAAOrVSNNR5U/B5BnfdFQKBnOn8ntV\naw0D7VmzcyuDAhV2Q41/Ax/j4nGbkuFT9/2PypX3b+9qCBXdwHRmzNC2y78p16KFavnAydnx2Anv\nlOeRhwr2tWflQjiJNx6t2JFHyfXJj8r/h1tldm0Z8uZs20nHjViz/0+3Z5e3/+PfUjSm5MGHSOGw\n9Nqrir68SvGVq2SvWSPfxvUKbl6v0OYN6njq0ZLnc0xTkRmd6e456aBO+nFL51xF2mfLTgfxBgd0\ndrnuuwo+cJ96/vSX8b9OAJiSjHAqOOiERgjT5IUTDdtWw4XnpZa3b5+w2ioib8rO4E9/KEny3/I7\nhc+/aNSnsmy74HfRmGTe1hmEJgEAAAAAQP1rWriT7I5U52Gze5usEfafbMZAOoQz1Jd4x4AQDgAA\n9SobwhliezIvKlPBhLPZ1FSxc02GEW8aoq5l0vuDb3p6huj4Yp/9cdnRaMFY5KyPa9tBh6vl979T\n8y9+JKn4eWMahuyZM1PL3duyIZykZRd0l/ENCvOUYm7ITWmV3G9JbkMwKO2+h/y77yF/eigcTei1\n3pi29UbVt71P/i0bFNy8QaHN6wc9btDM5/8r49kniq7nGIaibe25Ka460o+z5qrle9+SJIWu/JoG\nLr18xNoBTD9Gf+aDiOF/nzr5Qb50G996UGrKTnPdawp+7tOKfPVyOU3NZZ3HtfIVuf7xT1kfO3t8\n77tsOuEAAAAAAICpJRNwyXzZq2ZEIgpdnfqM3CaEAwAApFF0wqkga+eFE3LeCROiE850NOyUaX5/\n4bppyt5jT8WvvEpKh3Cs+QuKDnPaZkiSjG3bsmPRuKWGQPpaeT+L3ad+SO6gX02/+lnxeUYxNUvQ\n71HQ79G8jgZZdpu2981Sd+/e2tgbVTRR+DNuJBMKdG1WaPP6wpDOlg0KbVqvthef0cznl5e+zg+/\npx1f+qo87uGnmwEw/Rj9/XJMs6ArXilOMO/3bd7roRPwl9i7hpSYsjPw219LkowZMzTwpUuHPtZx\nlFz7mtw7z1frm4+QEQ5rx/77KXHo68deT+bvbhxTNQIAAAAAANQSx5/qoGx2dVW5kkKuDeuyy5Wc\nUp0QDgAAU5RhTcykUU4gMCHnnTAVfOOE+uEeohNOhjVjplzbtmbXQ/7U2+K+r31drjWrZe27X9Ex\ndjqEY+YdF4kl1RBId3+IxVLnWHqwold/V42/+3V2PyeQunltO052Ofzxc0f1Z3KZpmY2BzSzOfUz\nOBBNqDvdJad3IC7b7VF49jyFZ89Tqf+VMayk/Nu2KLQpFcyZ+8A/NO+Bf2S3m7f/QTr5ZDWf8HbF\nDz5UkUsuG1V9AKYms79fdqhhxM4sTnt7djn0jbw5s2t8WiVnmKn4jO7uYY8N/OhaNVz2ZfX85hYZ\n4bAkydy4YXwF0QkHAAAAAABMMe6XX5IkNZ53rqInLyv5pahqMLpyn/UzHRUAAJBjFHfCsW1HZuab\n08mJCeHI55uY804QpqNCKVv/9YA69989u56Z1ir68XOGPCYbwulOdcIxN2/SXvvupvguu6nnwcdl\nDKRaaZqdHfJ43AXTsdiNjZLjqL8/ppZ7/ilJShx40Lj+DCG/RyG/Rzt1NChp2drRlwrkdPfFFEsU\nd8JyXG5FOuYo0jFHkrTuyLdr3jty02HNOvcsde+zt7yPPiTvow8RwgEgKTUdlV1OoHWI0Ejk9LMq\nXFFluZ8u3SFMkjRCoDl47dWSJO/f/5Ydy/wuiMSSCvjG8JFLthNObYeXAAAAAAAAyuVauya7bG7Z\nLHveTpNbgOMo+N1vK7r/UtlvenOulq7NuV0aCeEAAID0zS7LtpVI2jIMKRxNqimUThBbqQBA7OBD\nK3pZx1tfIRymo0Ip5uzZWv3AU2psLv/54cxIT0eVDuH4/vB7SZJ3xcup8fR8tq70m3UjEc8ea3d0\nqvWIg9WybZs8mU46rsq9FXe7TM1sCWhmS6pLTn8koe7eqLp7Y+oNx2WXmLbO9vr0xPV36IDTT8yO\ntR11WMVqAjA1GAMD2RDiaFnNLXI6OytcUWVFT/uIgj/7ccltRolAcyJpyWWaqdBzLPU6b/ty394y\ntm+XcfPNcj3zrLzz5yh5/Amj+2ApHeB06IQDAAAAAACmiNjxJ8r7r1RX9vgll+qZL3xj0B6OzFhU\nrmgk+58ZjcgdjcgVjcoVCcsVSz2asfRYNJx9NKPDj3n6eiVJIUlbn1uZ7ehsbt6UK6GCX0AnhAMA\nQJ1zPfSgPDfeIO+WjQq88KISv7pBMozsdFTO3LkVuU7P9b+Tff/9BdNN1AM64WBI8+bJCQw9Dclg\njt8vSTKiqWmn7PyfrURC4W07NEOSkw5+JQ7JC7REo3Knwzq5ExYHYyqlIeBRQ8Cj+Z2NSlq2uvti\n2p4O5cSSeV1yDjhgwmoAMDUYVlKOu7yPDvo+eLoaf3N9bsAu7spVa6zd99D6dd2aO6+teGOJEE50\n/Sa1XnmpQps3ynBSgRn/LTdltzdcfokK3nl85Qvaumq9rEBI5ghTJUqiEw4AAAAAAJhyoh/8sBrP\n/7Qkafadt6lh+eMyE/FsyMYdi1TsWo5pyvIHZAWCsnwBJZqaFZ6/SM3PpbohN31omXr+kupWb27Z\nIknaccfdFZ0anBAOAAB1LrDqFQUu+kx2fWtXl5yODslK3/iqULeN+HHv0MCbjlG99ZVxyplCA9OS\n2zXKN9WedGAnmUg9JhLZTU1nfFDtf/2LJMkJpn5Kkvu/Tusff06zjn+zjGjx/0QY/X2jL3oM3C5T\nHS0BdaS75PSF4+rujam7Nyr3EDeErdYSN6MBTE+OU/aHEH2fvbAghGPkTctXy7zeId4rWYUhInPN\nai06eP+i3Vw9O+S4XDKs0qGjmYtSoc3ey7+u+LIPyGluGbKWTLCnkh/8AAAAAAAAVJVhqGtLrwI/\n/aEC37hCgYE+OYGA7JkzlQwElQgE5ARDcgIBOcGgnGBQSo8pmHkMSoGgFMrsl3rMbM+MyeMp+bnK\njnv/pZZT3iXvE4+lPvNxubKdcOyOjor+cQnhAABQr4a4OWPEY3Kk3Le3Xa6KXTLkL79rSDX1/Ppm\nNX9omaRcVxJgsKECKENx3KnnvxNPhW+cvBCOLx3AkSRz44bssnf+TrIbGmX27Cg6n5lugTnZGoNe\nNQa9WjBr6DlujVh0EisCUNMcR0aZgRBz7uzCMIo9cR2/Ki12+Bs+hq43AAAgAElEQVTlu/++wsFk\n7nXesm3NeMuRQx7vBEMyRnhdb/rKxUrcerN2/PM/Q++U6YRj0AkHAAAAAABMLZGzz1Hk7HOqcu3E\nG4/OLrtWr5L/pt8ocNNvJElWx6yKXotPdQAAqFdDhXAGBlIL6Rtg5U4hMZXE335cdpnpqDAUlznG\nTjjp8E3zZz5Zcjejt6dwIOCX2b2taD+7pXV0158gPb/8jZLNLer9/o8Vfu8yJZYeICMSmdDpsgDU\nkVF0wnG5XLIbcgE/ow6mo8ro/e2t2vae9xWMOYmkPPf+S+allyj84KMyB7++53OXF3r2PPPU8DvY\ndMIBAAAAAACoOMNQ9JTUZz9trz9AwWuvyW2r8IwKhHAAAKhTjoYK4fSnHjPfQjcr1wmnHjnBYLVL\nQI0qt7NDRibQ5sTjsoaZYsXI65AjSY4/UHJKlthJ7x3V9SdK/B0nquvFNYot+4AGfvQzOc0tMhxH\nitINB4BGFcKRJDs//DrE9Ew1KRDQju9cq+TsObmhv/1FLae8SzN+/F0tevfbhj/eLP3xSu9V31H/\nRweFNocLOWZ+XwxxPgAAAAAAAIxN/A1HTMp1+FQHAIC6VfoGjhEOpxYy01GV+c3sqYoQDiomrxNO\nrDc85G6Rsz5esO74/UX7hE95v1RDXaryp+Zygqkp3LKvJQCmN9sZVSDEacyb6m6YwGIt8rjM4sDM\nIMnZc7Th2VVF40Zv8VRU3dfdqNgZH1XkiqsKxtv22VVOd3fpC2QCOoRwAAAAAAAAKsppb5+U6/Cp\nDgAAdcq9aWPJ8aLpqFzTPYQTqnYJmCIcdyqE4yQSarn4c0Xbwx8+Q12vdSl+zLGFG0qEcNRaG1NR\nlZIJrhnhgSpXAqAmjLYTTsF0VPUVwvF6TDmHHz7sPu6NG+SZ2VY0PrgLmiRZJ7yz5DlcXVsUPPvM\ngjEnE76x049MRwUAAAAAAFBRTt7nVnYwpB233aHu+x+r+HUI4QAAMMXkpqNKd8Jx1U63jaoIBqpd\nAaYKbyqE03jXn9T8h5uLNjvtHZLPV3ycv/g5WNAposY4gXQIJxKpciUAasIoQzhOhefQnkwu01Ry\nyVI5JbrQRE77iCTJmtkumaa6H3xiXNdquO+fcj/+qBzHkfeOP8r1/e+mNqTDOKVqAAAAAAAAwNgl\nDjlMfRdcrB033KTuZ15S4sijZO22e8Wvw6c6AABMMYM74dTSlDfV4Hi81S4BU4TT3DLsdmv+gtLH\nleqEU8MdquiEA6DAKEM4pYKH9ea1F9aq/83HZNcjZ35MA1/4svoPO0K9N90mSbJnzRr2HLHDjyxY\n33H7nUX7GBs3yrzxBjWf9WHNuOJSaWBAhpPuHkQjHAAAAAAAgMoyDEUvuFiJY4+X09g0YZeZ3nfl\nAACYgszVK+X09EjJdAinhm/2T4ppHkJCBY3QlSBx6OtLjjuBEjeka3iakVwIJ1zlSgDUAkOORpMI\nca9dPXHFTBJfc5OcJUukf/5VkjRw8VfkNDVr4I93yjRTfxeOr0TAMs3xetVz2x0Ff2uJw49U19rN\ncr/0gnx/uFXBn/5ILWeeVnCcEY9lO+HI4DtTAAAAAAAA9YhPdQAAmGJCP/ieZizdW4adCuE47ukd\nwnHcnmqXgCkk/JGPFo2tf2aVVj21UvbOC0sfZNsTXFVlZUI40e29Va4EQE1wHMksP4TjefH5CSxm\ncpimISM9NZ8kOcFQdjyrRMjXntmeWnC5ZZQKbgYCSi5ZKru9o/SF44nc74waDmsCAAAAAABgaIRw\nAACoU84wHW5cfb1qOfHtqRVzmodwGhqqXQKmECMRLxrzds6Ud2bb0MdEo5JSnRFygzV8czXdhWHW\nR5bJ9fxzVS4GQNVlOrOMQeRDZ1SwkEnm9+WWS3XVK/E6ntxzL0mSM0LnNHPL5pLjRiKe+/se4RwA\nAAAAAACoTXyqAwDAVDdNp2Pa/pd/atvnvygrfUMMqIRMoCYj0zXG4x76bbURi0mS7Nahgzq1xLVu\nXXa56aMfrmIlAGqC48gZY6C3/9vfrXAxk2gs4SNPuvuezzvsbvFj3zHEhrhkpacTJYQDAAAAAABQ\nl/hUBwCAOmVkbtKMYLiOOVNZ8oCDZF/4hdruOIL6Ey/shNPzm1slSeYwzzMjPCBJcmbMzA2Oo7PE\nRBu44OLscnKffatYCYCaYNsypuHvUmP79lEfE3/zWyVJkRJTF+ZLvOEI9Z/3+aJx73/ukyIRSZLj\nD4z6+gAAAAAAAKg+QjgAANSj0dzAd03PTjjARIh+sLAzTOKQw0Y8Jn74G1PHLnt/dszo7a1sYRXk\ndHRo4z8fSC03tVS5GgDVZjiOnFFkcGLHnzhxxUyi8GfOl2MY2n7V1UPu0/XMK4rk/V6InPVxrb/r\nHoUv/OLIF8gPZqb5f3uDQpd+SVKu0xoAAAAAAADqCyEcAADqUboLTnLnhdp07c8lSfEDDspujnzo\njNy+7unZCQeYCImj3lQ4kJl6ZBiRsz+pFTffpcjZ52THYie+q9KlVZS7sVFSrosPgGluFJ1w+q/6\n9gQWMokCAb326jZFP3zG0Pt0dsppaMytG4bcBy4t6+/L8eSmrIoenAp0OqEGeVavTC0H6IQDAAAA\nAABQj/hqPAAA9ci2JUnWgp2VOOk9Wr/X3vLPaFXrW46UubVLyT32yO5qzZ1XrSoBSJLHI9dhh0qG\noVdXblI8nlDzjOZqVzUs0+9LLSQT1S0EQHVlOu+NIoRjd85Szw03Kbn7HiPvXOPcLlOmOfyf3YjH\nJElWS6uk4acnzBc99f2y7rlHzqc+LWPNavkffUhm97bsdicUGmPVAAAAAAAAqCZCOAAA1CE7kUwt\nmKa8Hpe0996yTUPb//FvWQ8/LPfuu2f3ddpmVKlKABlBX+ptt+HzylNG95xqc9ypGo2kVeVKAFTV\nGEI4khQ/9vgJKGbyedxlNA+Ox1OPPt/oTh4MqutHv1RLg0++9eskSUYkkttu0LgYAAAAAACgHvGp\nDgAAdci20iEcl0umYWS/pW3PmSvrnSdJAX92X6YzACorfO5nJUnbLr607GMyP6OGDLnMOngLnpnG\nLpmsbh0AqmuMIZzpxIilOuGMOoQjKeRPBTQdV+o119i+PbfRJgQJAAAAAABQj+rgDgAAABgsHktP\nEVPiZr7bZcpx5ZrdOX5COEAlDXzlMq17eoUi53x21Mcahkac2qQmuNOvIUxHBUxvhHBGlNxnP0lS\n/I1Hj/pYTzrwaESjkiSzZ0d2m2ERwgEAAAAAAKhHTEcFAEAdshLpGzOmq+R2e/6C7LITCk1GScD0\nYRjydrbLGduhpbJzNScT5DN7eqpcCYCqyoRw6uGFq0oiZ50ta9FixY88asznMDduLBpLHHzoOKoC\nAAAAAABAtRDCAQCgDiWH6YQjSTIM9V3zA5nPPl0QyAFQGYZhaCx9IQyjTqaj8nhSD48+LKN7m5y2\nGVUuCEBV2HbqkU44Q/N4FD/m2PGdw1340cy2m26XPXfe+M4JAAAAAACAqiCEAwBAPXrttdSjq3Qn\nHEmKfuBDk1QMgHK56mEqKqngtcW1YoWSB0/NEE6sb0C+xpCUTBbdBAcgpqOaLIN+N9jz51epEAAA\nAAAAAIxXHXwNFwAA5HO98Lx2e+/bJElOMFjlagCMhlEvN7Lz63TGMvFW7fPf8EvNWzxb7R1Nap/T\nJt9tt1S7JKDmNH7uU5Ik9ysvV7mSKS6RLFg1fL4qFQIAAAAAAIDxIoQDAECdcS9/Mruc3GXXKlYC\nYDowYtFql1B5iYQaL/hswVDoqiuqVAxQu/zpcJpr/boqVzK1JY44snDA569OIQAAAAAAABg3QjgA\nANSb/A4VdMIBMMGM/v5ql1BxrpdeLB6sl6nCAEw5ySVL1X362dl1p6WlitUAAAAAAABgPAjhAABQ\nx5xgqNolAJiidlz5LUmS0d9X5Uoqz47Fi8Ycl6sKlQDlM1etVOD710i2Xe1SMAHCV1yl6CGvV3Sf\n/SWmowIAAAAAAKhb7moXAAAARimvE45DJxwAE8To6JAkmVu3VrmSyrP6Ut194oe9Qd6HHkgNejxV\nrAgYWetxb5bZ3S1r190UP/b4apeDCvN5XOq94y8yDLpyAQAAAAAA1DM64QAAUGcC11+XXXYChHAA\nTAxrr30kSe4Xn69yJZXnevq/kqTkvvtlxwg1otaZ3d2px21TLxiHFAI4AAAAAAAA9Y8QDgAAdcbz\nxGO5lWSyeoUAmNKsOXMlScamjaM6znGciSinYozubZr5P5dIkqyFi7PjTlNztUoCRseyql0BAAAA\nAAAAgCEQwgEAoI4Z8Vi1SwAwVQUCkiQjNrrXmcTdf5VqeAorz2OPZpddmzYqdujrJUlOY1O1SgJG\nx7arXQEAAAAAAACAIRDCAQCgjsWOfUe1SwAwVRmGHJdLSozccctOd79xP/OU5n74FLW+420TXd2o\nWenggrl+XW4wPKC+X9+UWk4kqlAVUB738idzK4RwAAAAAAAAgJrlrnYBAABgbAY+eHq2UwUATAiP\nR7JGDuE4d9wh+bwy0/u6V62Y6MpGLZG05fKaMsLh7Fj40+fLcXtSK0lCOKhdoa9+ObfiEMIBAAAA\nAAAAahUhHAAA6kzs7cfJd/f/KXLxV6pdCoApznG5R+wQ4/niRWr/xY8lSVZ7R8VriCUs+TyuUR2T\ntGy5XYVNP+MJW36vZIQHJEk7br9TTmenlJ5uy6ATDmqM4zgyDEOSZG7tyo4bcZ6rAAAAAAAAQK1i\nOioAAOpNetoX+X3VrQPA1Od2ScmhO+EYW7aoJR3AkSRX15bKXt9x1PT5T8t99/+VfYi5cYNCH/2I\njC2pWqxIRNq8Wcaf/yQ5joyBVAjHCYVSB3jSnXDKmHYLtcWa4tMyxRJWdtnx5n7nZ4JkAAAAAAAA\nAGoPnXAAAKg36Rvijjm6zhAAMFqO2zNsCMe1eeOEXt9cvUpNN90o3XSjurb0lnVM4yfOkvfB+xVp\nDKn/ez/SrAWdkqR2Sdv3WCzvX1OBHieYDuGYphzTZDqqOhSNWwr5p+73SmJxS35v+n/Zfd7suBGJ\nVKkiAAAAAAAAACOZup9YAgAwRRmZG+JusrQAJpYRj8u9Yd2Q292PPjyxBZT5OmdnOoRJMjelgkFG\nJKzEr64v2M/ctEnuVSsl5XXCkVLdcOLx8dWKSRdPTO1OONGEJSf93K52Jxxr1uxJvyYAAAAAAABQ\njwjhAABQbzLTbxDCATDBzL5emeGwNETnjeAPvy9JGvj4ubIbm4Y8TyI5xrDEMF14shxHA+s25dZ9\nqbCCa8MGzbno0wW7Gtu7c4f5/Lllj0dGgk449SZpTd0QjvnqWjX97gYlk+kpqTLTpklSODz5BRnG\n5F8TAAAAAAAAqEOEcAAAqDeZm9Imv8YBTJLeXtnhSLYrR0biDUdIkuInnyq7vb3wmLwATSxhjemy\nRhkhHN8fbtWiA3aX89vfSsp1DDFXryra1+zLTWnlzJiRW3Z7mI6qDtm2M/JOdar1TYdr/mUXyXXf\nvZIk28j9zjfGEcKxnTH+nRHCAQAAAAAAAMrC3TsAAOqMYVlyXC5uiAGYcE4gIEkKXfFVde7cKWf5\ncklSdFOXolu7pfQNfbupWU6oofDgWCy7OOaOJSNNEWVZavrkRyVJ7eefI0nyPPVfSZK5tatod6Ov\nT3YgqPj+rysMMno8UqKMrjuoKWMOlNQBs7dHkuRs3yFJMrZty24z1q4Z83mjsTE+z3nPAQAAAAAA\nAJSFEA4AAPUmmUyFcABgghnpaaiCN6e6zPju+KNczz6jnfZbrI7j3iT/rTdJkhx/QH3X/qTw2Fg0\nu5yMjRCmGer6ed1povHi8IBr5YrcvrYtRXPXNEoENIze3lRdeVNRSUqHcBJyP/m4mt5zoowd28dU\nLyaXNYU74WTMOueM1EI0omRziyTJt/zJMZ8v9sxzI4fbSiGEAwAAAAAAAJSFEA4AAPXGtiSXu9pV\nAJiGWn74XbW96Q2SJN+avOmeAn5Ze+0tu7EpN5buLGNs3ao995yr5nceK98fbh3V9Tz/vje73HHI\n/tLgaXh27ChYbT3qMDnDhAWCP742Fdbx+wrGHbdbRjKh5lNOku8/96rh4gtGVSeqw7adoinS6l2p\nKbbMzZvkW/GyXOGB3OAY/tze66/TbscfqcD1vxh9YYRwAAAAAAAAgLIQwgEAoN7QCQfAJOm5/ndl\n7ec0NUuSBi67IjuW6WLjeSrVtcP70ANq+sRZBd1qpOGnqmr4n69ml33rX5Pn0Ydz69+7Wr6f/7hg\nf/eqlSU74BTVmx8WkiSvV4rGslMA+UcZFsLkMzdv0oKLP634pi3VLqVizB/9QMaPf1g0PmPf3SRJ\nRiLXGUqWNerz+25LPa+9f/j96IsjhAMAAAAAAACUhRAOAAD1xrIkQjgAJkH8rceMuE/fN67OLkc/\n+GH1v+fU1EomMGAXhmyMaETGtm3yXvR5matWKvH8C3LKnP7JtWZ19pxNV3xVoT/dXtZxgzmNjQXr\ndken3Nu35bb7fIMPQY1puPBzmnnnHzTr6EPHNr1SlfVHEoMG+jXjq19Ux2VflLF+3ZDHxQ88OLWQ\nSAy5z1D8jz6UWkgWT+02MkI4AAAAAAAAQDkI4QAAUG+SluRmOioAk8DjUXTXPYqGEwccpNjb3i5J\nir37vQXbjIA/9ZgN4RR2pjHCYc3cc6Gaf/Uzhb5+uea/+TB17LagrHKMntT0U0Zfb8F477U/Gfa4\nHbf+b8G6ue61gnV73k4F64mlB5ZVD6rHSWdC3N3b1PCVL1S3mFHy/f5mLVwwQ8aWXBcf39/vzi67\nfz90JyanrU1SrtNUufJ/Zoz+/lEdK0kyCeEAAAAAAAAA5SCEAwBAnTGspByTTjgAJofhL+4Kk9xn\nP/X+5lZt3tQjp7mlYJvp9aYWMiGcQdPmNJz/6exyfvDAc989I9Zi7kiHcHp6CsZj7z11yGO67/6X\nEke9ScmFi7Jjdnt7wT5256zCgwz+N6nWWYt2yS57/3JXFSsZvaZzPiZJajn1JEmS98471HT2Gdnt\nLVd+deiD3Z7UYyQ69D6lhCPZxcEhtnI4TEcFAAAAAAAAlIVPlwEAqDeWJbkJ4QCYJCWmZrI7OiRJ\nZonuGI4nFcJxYjHZtiNz08bC0/3z79llIxzOLrvvu7foXIlDDpMk9RxyeGr/Hdtlrlkt6/Y/Zvfp\nWrOpaIo+a6f5uZXGptS5jjw6O9R/1XcKax70Z/Q++J+iWlBbnEzYS5Jr0HOsXrife0bNb3+TGi77\nctnH+P7vz5Kk0Le/Pqprmf254I17a5fMDevLOs5uT/2sRz5+7qiuBwAAAAAAAExXhHAAAKg3ySTT\nUQGYNK4d24vG7JntJfZM86Q6dVgrViph2Wr8wvllXafhB9co9K7jpUiuY4eSCdker3b85JepWl5+\nSTMO3l8dV14iSRo4/yIpGCw6l7Vg5+yyEwpJkvq/dqW23HCLujZ0y2ltKzygxGuq0dtTNIYa4oy8\nSz3wPvm4XGvXlNwWOXlZwXrs7cfljvvb3YN3H5b/xhsK1geH44YSO+ZYSVLijUeN6noAAAAAAADA\ndEUIBwCAemPZRV0fAGCiuFe8UjTmtLYOub/jTYVwOs45U9bAwKiuFXzwP3L/3525gXToMNgxQ5Lk\nfeyRwgPyOtgMnHV2drkghNPQkFoIBGQce2zpwE1/f3ExieSoasdkK5HCyQ9w1amBz39Bkbe+XVuf\nXyU7v6OTJGvX3ZXYd39JUuKwN4zqvPbs2QXr5tau8g50pkjaCQAAAAAAAJgkhHAAAKgzhpWUXHTC\nAVA9jj8w9Ea3J7u4YLd52eXIh87ILkff9e5smGAwK2HlVpKWHLc7211nsMQBB+Uuu2lT7hx77Z2r\nNdQwdK3Z66QCN7bPP/K+qAn50ZDEAQfKc++/1L6gU76bflO1msplzZg55LbYCe9S/29vlTNzpsKf\nOq9gW/iz56v/mmslSXZrq8zXXpXrxRfKuqaTDp/F3vI2SZJrzepR1eyoeOo5AAAAAAAAAMUI4QAA\nUG8sSw6dcABMsu5vf199510gSUocfMiQ+zlDBGYKutO0zZDnmady5773odx+eZ03jERi+On3bDu3\nb2+vJCn2ugNkt3fk9inn9dJKhXCcvM46sqwhdkatsRYsVOD66yRJ/h98T3aNd2+x23LTofUf/VZt\nu+V/1XPjLdr+l3/K2nOv3I7pqdQynMambGcn18svacYB+6jtyEPKmlrKiMYkSdaee6ePf7m8Ymv8\n7xIAAAAAAACoNYRwAACoM4aVlNyEcABMLiMUUvTir6hrS6+cthlD7+jxlhy229uzy9H3n1a4bV6u\nY07nZ3LTSslKZkM44c+cnx3u/Z9vqPeDpytx+JG5+vpTIRyjuVlOIDjyHyhfen/Dkwv8GBbTUdU0\nOxcOcT/3jIxoaiqqfrn1wNMbtXzFVq3e2Kvu3qiSlj3UWaojHYiRpPj5F8g++k2KH3OsknmdnYbi\nBFPBHN+/782OeR56YMTjMn8/yV13kyQFfv3LghDbyCegEw4AAAAAAABQDkI4AADUm6Q1fGcIAKgg\nu7EptTB33vA7ZnhKvz4l99lPA0e9Rf0fPkvJ/ZbI8eemfnIaGgt3znTfSCaz0+gMpLvwSFLs9DMV\nu/r7BV1ukrvvKUlKLD1Qco3uf3Ni7zhRiY5Z6rv2J3kFE8KpaXmditwvvSijq0uSZHu8shxHO/pj\nWru5T0+v2qYHntmox1/copdf26HN28OKxqv7b2vEotllp3NWWcdY6f2cYHHAzP3QgyNfs3ubJMnu\n6MyONb/3xJEvTCccAAAAAAAAYFTK+nT6qaee0mmnnVZyWyQS0bJly7Ry5UpJkm3buuSSS3Tqqafq\ntNNO09q1aytXLQAASN14NOmEA2BybP/7fdp65XeUPOTQsvZ3hnh9svbZVwO3/EGRb10tSeq5/re5\njaapvm9cnVuPpkMK+dNRBYPavKlHmzf3SN7ibjsDl39dvd/5vsLnXSDHHF0IJ7lkqbY/85Libzkm\nb5AQTi0b3KnI3LFdkjTz+f9q19tvUOfjDyjQtUlyHDmS+qMJbdg2oBfWbtfDz2/Ww89t0vNrurW+\nq1994bicSQybGLGYHNPU+p/eKDtvmrZSuh94XD0f/Ii6n3hWkkp2eQpe/wuZq1cNex7Xpk2SJGvR\n4uyY9/5/j1xr5u+FTjgAAAAAAABAWUb8Gv3Pf/5z3XHHHQoEAkXbnnnmGV166aXavHlzduwf//iH\n4vG4brnlFi1fvlxXXXWVfvzjH1e2agAApjEjb3oWAJho9qLFUt6N+5G4Nm4YcpuRdyPfnrtT4ca8\nYI0RDssJBOQkk5LXlx03zaGDAE5Ts2KnnZ5abm4pu97BtUVOO12BG6+XkddpBTUoWfjvk98hZslP\nrsouJ4Ih9c5frN4Fu6QfF6t3/i4Kd8xWNGFpy47UNE0u01BzyKvmkE9NIa+aQh65RhnmKpcRjyu5\n7/7yvGvkTjTWrrsp9q1r5M50d/J4Su7XcOkX1fvrm4c+UTpU5mQ6W2UvYBV0lBq6aEI4AAAAAAAA\nQDlGvIM3f/58XXvttbrwwguLtsXjcf3whz8s2PbEE0/oiCOOkCQtWbJEzz77bAXLBQAAZd8wA4Aq\niL73VBl33anAypeH3c/adTf1fObzcpYeIEky+nqz24xIWOpxybNlsxKLdx11DcmlB2rD+V+W+9hj\nNOroQOb1lRBOTXPswn8f90svSpJe/P71ivf0yfPyS2pYu0JNa1eodcULmvHi0wX7J30B9c5flA3l\npB4Xa/WseZLLJdMwFPK7U6GcBq+aQ175PBX43es4MmJROT5fQShtOO4hplfrv/R/1HDZlyVJrleG\n/3lTpnOQ16Mtv/iNOs76oCSp6fT3q/fGW4atFwAAAAAAAED5RgzhHHPMMVq3bl3JbQcccEDRWH9/\nvxoaGrLrLpdLyWRS7hG+sd/aGpTbzQ1FAOPX3t5Y7RKAieM4km3LE/DxXAfPAdSm9oO17sHHNa+z\nsONGyefrd7+VW/bl/l9gRrNf+viZkiTPylfG9Fzf+IUvqK01MGSAYUiNqY4qbU0+iZ+xmjH4OZB0\nlw6w7PGBE6S2NknSQCSh3oG4Nu7oV/zFl+U897wCK19Ww5oValjziprXvqK2V54rON7yejWwYLH6\nd95V/TvvooGFu6p75121bt58+UMBtTb51NroV2ujTw3B4mnR5DjDd41JJCTblrcxNO7X8IZ9dpe+\n/nXp4otlLlgw/PlcqZpmdrYo/qFlUjqE4/vrX4Y/zp/qvDNjZiM/D8Ak4f0dgOmE1zwA0wWvdwCm\nC17vUio+l0VDQ4MGBgay67ZtjxjAkaTt28OVLgXANNTe3qiurr5qlwFMnGRS7ZLitqEenuvTGq93\nqGX9vdGC9chpp6t/hOercfIHNfOiiyRJ3Zt3qO3vf89uG8tzvbc3KtO2ZI5yGp1Q3FZQ0vauHiX5\nGasJpV7vAgNRNUiKLD1IgScfy453hW3Jyu3rljSjOSgdskQ6ZInC0YS6IwmtDSfU3xeVvXqVQmtW\nqGntSjW9mnlcpaZXXii4nu32qG/uguy0VusWLFZ44a4yd9tVbXZM+x+1f66GjduH7Fhn9PdppqSY\n6VbvGJ9f7enH3g1dip15jtquuFLWho3Dvi9oDkflldS1PSL5bLnv+rtaj39rqt5hjmuMxOWXtG1b\nv+wQPw/AROP9HYDphNc8ANMFr3cApovp9no3XOCo4iGcpUuX6p577tFxxx2n5cuXa7fddqv0JQAA\nmL6S6ekkRtvZAQAmkcede43a/OoWmX7/iMc4DY3q/dAZavr1L3OvdePgcpmjDuCkD0w9VqAGTKD0\nv8+OC7+swLJ35sa9JbrT5An6PQr6PepslaRmObt3KBI7UH3hhDaGE3o5Eld/f0y+zRvyQjkr1bR2\nhZpeXanmtSsKzmebLpmDpsYy16/TjAP3lSR1beiW8r+UEp2iZgsAACAASURBVIunHn0j/0wMZeC8\nzyt0zbcVe/fJqRo6OmV2bRn+INtOPaaf38mDDpHd1iY7ECzvomP5WQIAAAAAAACmoVGHcP785z8r\nHA7r1FNPLbn9rW99qx544AEtW7ZMjuPoyiuvHHeRAAAgzUrd6HPK6DIHANUS9LtlhxpkDvSXFcDJ\ncHlSU99UIgDjdo0xNJB5fbWs4fdDVRnp4IvT3p4d6/3YOaMOixiGkQvmpGaxkuM4Csc61RfeR/3h\nhDaH4+qPJGTZtgJbNw/qmrNSM597suCcmQCOJPl/c4Oip5+Zu14s1SXKGSEsNJzwxZcofPEl2XWn\no0OeVStSQRtziJBuNsSb69Bjt7TKtWb18FNoOc6Y6wQAAAAAAACmo7Lu4M2bN0+33nqrJOmEE04o\n2n7jjTdml03T1Ne+9rUKlQcAAPIZVvFNNACoNW6Xqe5nXlIyHNVoXq2MdAgn+1o3zhrGwnG70jUQ\nwqlVtuNIydS/j6uxQRsfe1ZGS7Nczc0VOb9hGAr5PQr5PVJeMGcgmlR/pE19ey7W5vDRWhVJyHIc\nyXF08jF7lTyXa/26gnVzw/rU+UKhitQqSU5juvVtOCw1NJTcx7AsOaZZELZxr1opSfLf8MuCoFDh\nydMhHDrhAAAAAAAAAGXha/QAANST7DfZ+RUOoLY5DY1yNQw9L25JtdAJJ/P6ynRUNcn18ksy77oz\n++9j+rwyZ8+Z8OsahqGGgEcNAY9mtaWmcLIdR+FoUn3huLZf/g21fuWiEc9jbtokSbIW7VKx2jKB\nHmNgQE46hBOJJRXw5b1XsJKF02LlabzwPLmf+q8in/psrq6BAZn9fbJsQjgAAAAAAADAaIzt66EA\nAKA6LFuS5NAJB8AUlOkSYvzj7+M+l2uoaXlGPDD9+koIpya1HX6QZnz9MgXv+pMkyahiKNVMB3Nm\nzwgpefYn1HPjLdltAxd/JbUQixUes2WzpAp3wgmlgjfGQL8kqeWYozR/pzaZmzbmdrIsOWbhewcn\nGMwuB377awWu/W52fcZB+2nGvrvJStIRCgAAAAAAABgNQjjAODmZFu0AMAmyU7S4CeEAmHr8f0hN\ngdvynauqVoOT7hZSiSmxMHGy04XV0O/D+DHHauP6bnVt6VXsmOMkSUa8MITT+IXzJUmu116t2HWN\naFSS5Hn0Ycmy5Pnvk5Ik77/+kdvJsrNTrWVs/+u9Betmb29qSitJ5tauwjrphAMAAAAAAACUhRAO\nME52OoQTiXGjBsAkyNx0ZDoqAFOQNWdutUvIvb5adACpOfF48ViNdYZze9LPH6839ZhIlNzP3Lih\nYtfMhNeaPv0JuZ5/Ljte8POUTEiDOuFYiwunxPL9+X/VvvOsgu49of8+VrE6AQAAAAAAgOmAEA4w\nTrYtKR5X4uUV1S4FwHSQuZlXYzcdAaASen/1m2qXkO2s4iQIWNcao6eneLBGfx866RCOk+5SU2Ss\n06WNoO3Nh+dqSD/akYiMcLhg+ilJkrt0oLfxgs8WD9IJBwAAAAAAACgLIRxgnGzHUfCH39PiNx8s\n7z//Vu1yAExxRroLgOP3V7kSAKi85OsOqHYJ2emorHjpDiaoHiNWHGhxAsESe1af09goSTI3lO54\nE132gYpda8cf7yo57rrt9wpedbk6F3TKvXaN7FBD8bG336no3vsWjHn/9peK1QYAAAAAAABMN4Rw\ngHGybUeBH3xPkuT5z7+rXE1t8f/mBvkvu6TaZQBTSyQsSXJ8hHAATE39X72iYL3n1zdPbgHpKXva\nPnHG5F4XIxocwuk74uja7YTT2iaruUVm15aC8fjBh0qSEm84omLXGupcTbf+VqGrv5WrqaGx+NjD\nj9Smm+8oGHOSJaZioxMOAAAAAAAAUBZCOMA42Y4jw2K6glIaP/cpNf7wu9UuA5hSstNa0AkHwBRl\nd3RklyMfPlPxtx83uQWkO+EYtj2518XIorHC9RoN4GQFAtLg6ajCYVmhhoqHWmJvO7aMekq/d3A1\nhgrXe0tM+0UIBwAAAAAAACgLIRxgnGzbya04ztA7AkAlRFI38xyfr8qFAMDEiJ303uyy43FP+vUd\nj2fSrznd2WW+hzbihSGc4OOPTEQ5FWMk4vK+uia7btuOFInI8Qcqfq3+73xv5J283pLDbp9X0SOP\nVviU91e4KgAAAAAAAGD6IYSDspX74fi04jhyP/ygFI9n11EC3yQHKsa17lVJkt3SUuVKAGCC5HU3\ncW3YMOmXN6wSU/FgQtm2I/e9/5J7+ZPD7ud++qmCdVd/30SWNW7mtm2pxw3rJUmJpC0jEpETqHwI\nx+6clV0e+PwXSu80VAjHZarvtj9p4Ac/GfL8juiEAwAAAAAAAJSDEA7KFotzQ2Iw3+2/1/xlJ8pI\nMh3VsBKJaleASeYQSJsw5rZuSZK9YOfqFgIAk8Bz/78n/6L57+syQWtMKMdx1HrKu9T6tqOG3a/x\ngs9KkhL77j8JVVWO0dsrx3GUSCRl9vXKCVY+hFN4vRLTSUmSp3QIBwAAAAAAAEDlEMJB+VavklHj\n3zadbO4nHy8cIHhQGiGlace5+255bvhVtcuYkvx33C5JcrxMRwVg6hs8/dCkSObCw4GfD90ZBJVj\n5U3v6tx8cxUrmSAul5yuLrkfeUiuvl5ZCxdPyGW2PfWitj31omSU/t98Z4hOOGUx6IQDAAAAAAAA\nlIMQDspi9Pdp/pEHqvXwg6tdSo0jhJORP32Z2bWlipWgGjo/fKpaLvgMAawJ4H0mPRXHeG6kAUC9\nqMKUlkZeBz/X2tWTfv3pyE7mOm52fPpj8t3yu+EPcLuG314jImd8NLWQTKrt3e/QTstOTK2HQhNy\nPXv2HNmz5yh84cXa+rFPFe/g8Yx8jvaOCagMAAAAAAAAmD4I4aAsRm+vJMm1YX2VK6kxdL4pLRpV\nZ2dzdjX4g+9VsRhMNmPz5uwyAayJ45RxIw0A6l343M9O/kXjedNoumo37OE4jmx7arwXdWKF0341\nferjw+4fPXnZRJZTMY7bLUmKhaPyvPxidtyY4N/hTmOTEpddrr4LLi4cLyPA2/3AYxo4/SxJUuyY\nY3Mb6IQDAAAAAAAAlIUQDsrDh64lGYNCOI5lDbHn9OJ+8fmCdSMaqVIlqAYjkbuR5vv9LVWsZIqj\nEw6AaSB84Rcn/ZqxU9+XXXZqOISTtOyCzoP1LHj7rQXr8Te9peR+VucsxRcslALByShr/NypsI19\nzz0Fw5MRpHW7TEXPu0Bbz/xkbtAz8nsHp6VV4W9erS2be5R83QETWCEAAAAAAAAwNRHCQXmmyAf8\nlRa47mcF64kdfVWqpLb4/vf2wgGTl5ppJS+E47/991UsZGpzyriRBgD1atsjy7Xtrr9X5T2E3Tkr\nu2zU6rSKjqOZRx2mxi9dWO1Kxs3z0APquPi8wsHwQOmdLUtGurtMXUjXOvebl5Ucn4zrh7/6P9lV\nx1t++McwjMIvYvClDAAAAAAAAKAs3BlHeWr1BkSNabntd9UuoSYEf/T9gvXkvvtVqRJUQzwSyy4n\n99q7ipVMbU4gUO0SAGDC2AsXyT7okKpdP3ziSZIka9HiqtUwrFhM3pdfVMMvfzbyvjUucO01RWPe\nhx+SbdmplWhUMgy1HLifDMtKdSeqk0CIsb275Lj3r3+ZtBp8nlw3J2O0XTsJ4QAAAAAAAACjRggH\n5SGEUz7brnYF1VXiw33HVUffWMb4OI7aPvKB7KrR21vFYqY2e95O1S4BAKas+LveXe0ShmVu2Vzt\nEionL9wRX7xrdjm6ao1kWfI89IAkyfPqGjnJhFTDU4QNFrjx+pLjro0bJq0G08z9/boff2zSrgsA\nAAAAAABMV4RwUJZRf2tyGjP6p/eUVGbXlqIxIxYrsSemIt/Nv5Vv9crcQInnA8YvvmDh5E1lAQDT\nkOFNT/mXqM0getMnzqp2CZWTF8IZ+Pq3FD3lfZKkBW9YotBXviAjnpvm0tXXV1chnOjJy6pdQgEn\nGBzd/gWdcCpcDAAAAAAAADBFEcJBeRKJaldQN1wvvFDtEqrK/ejDxYNxQjjThWv9uoJ194pXqlTJ\n1OWYpuyOzmqXAQBTmuP2SJKMRHyEPavD89gj1S6hcvKCHobfX7Ae/MVPFbr0i4X7m2ZhOKSGhc/5\nTOnxz5w/yZWkOO0dozugTv6eAQAAAAAAgFpCCAdlMaza/BZwLQr8/MfVLqGqPM88XTRmRKNVqATV\n4AQKv2Ht6ustmqIsaU3zKdvGw3Fk2LYMF7++AWBCZTvhEESfcPlBj3BY1qLFBZvdq1YW7p6sn38T\na9fdNHDYEQVjG59dqYEvXjKpdXTf86Biu+6uyJkfG/tJCOQAAAAAAAAAZan5u3iRGOGPmpB3A4Ib\n6MPz3/HHapdQVeZrayVJvdf+JDvGdFTTh9HXWzy2Y0fBOq8h42Cn/+7qaCoOAKhHmU44hHAmQy7c\nYe80X+FPfGr43WPx+gmEeDzaftsdSuy3RJIUe8vb5O5on/T6rb33Ue8Djynx+sNHeWSd/D0DAAAA\nAAAANaSmQzjm+nXy3HlHtcuAJCMczi7bv/yl5DhVrKZy7Ar+OeJLD6zYueqZ//bbJEn2rNm5wRid\ncKaN3v9n777j26jPP4B/bmh6ryxiZwEhgQAh7Bn2HoEyCoVCgTIKlLIplKaUTdmUvSmj8GOHssLe\nYQYIIUD29rZla97d9/fHaZ2GLdmSJSWf9+sFuvve905PZEmWdc89j5mE03v6WdA23AgA4L71X5BX\nrQQA6IYBw1g33j8KIlJViEk4RET5ZY+0oyq+JBx1XWpFBQBy7E9SfaONAacTnmv/ZZli7LprdFkq\nsTanDpsCyRf+WyqhYmDRi08WKpXEJyIiIiIiIiIiogIr6iScml23x8gzToQy/8dCh7Lekzye6PIG\nl50Hx/PPFjCaHBECjisuh332G7k5XH19To6zrhCVldFlyV9aJ0to4MoeMCsg+f9wKtRffwEAuO/9\nN+q2nAQAUD/9GPa33yxYfCWPlXCIiIaGLVIJJwhoGiqOmoGyq2YWMqIoZcni6LJeVV3ASHIkRXKH\n/+Q/ovfcC6Lr8vvvw3/Y4WnnF7vgHnuZt7tOL2wgg1GCjzsREREREREREVEhFHUSjhxuayK3tRY4\nktwJaQYCgeK7orY/UneXZV39/rsCRZI78prVqL73DlQde+SAj6FN2hQAsGrW24DMk+LQzPZxocmb\nQdt4k+iw3NpSqIhoKMVVljIahqHn6ustmwNLV6B+xoEYedJvhzqy4uP3Q8SdRM1YpBKOVNS/vomI\nSp6w2c2Fnh4oC36C87234b795tj7cAEJhyO6XIyVerIl0iSWBg47wrKurFoFADBGjsp7TLnWe/k/\n0PnSa/Aff2KhQ8kOE2+IiIiIiIiIiIiyVhpn8dahL//q9tsdoxvrclZ9ZahI4YSoCH306AJFkkOR\nihKDIQxoNbWQpk2D96xzzSF3iZWZH4RgyHoiKpKsZYwZC5SVoWXuAgCA47VZSc8hWgf5zbZj3s2n\nAmVlCBx4iGXz6G0mFyKqolR92P4Ytu0WsH3yUVb7SQbbURERDQmbCgBwP/k4lOXLosPK0gEkUOZK\nKATbZ59A6u2NDkmhYOHiyRE93PbWcJdZxydZPzfIqyNJOCNRchwOhHbYydJ6qySwHRURERERERER\nEVHWSuJbQCMXyRLFQAg4vvsGAOB84vECB5MdOa4dFQBI4YonpUwEc3DSQtcBWYGqyNAnme12gjvv\nOvjjlgjnHbdA/frL6LrUFU7CqTZbI0huV3SbvGSJZV9NX0de1xQl+X0AAL1hOADAGLUBWlZ3wPe7\n3ydPXlfe1wfI9vVXAIDqww5I3ujzQXrrzZTVFuSlSwEAjrdez2t8RETru2glHADq/HnR5YVf/YzF\nq7vR4QlAH+LfZWWXXYTqQ/ZD+czLo2NSKGSpRFeKpLY2AMDy735N2CCh44130frupwAA3ymnAwD8\nvzuRCSFERERERERERERUtEoiCSdU+KrvOSF1dkSXHa++XMBIsid1J1QxCWlAIICys063JGGUEsPn\ny8FBDEA2TwII1QZg3UhQyoTr37ej7rorUbPfHuaAEKg84RhzsbLKvHU4o/Pl7i4YQpjJaLfdDPXD\nD4Y8Zsov0WNemS+Xx1WDUhSEttsheXIgMERRlZ7yv/8V9cf9Bs5HHrRu6OmB48nHAAB605gCREZE\ntB6x2aKL8tIl0WV/RyeWrvVg7sJWfPz9Gny1oAW/ruxCa6cPIS2Pf7SsWgl3+PeC3NEOIUkIbr+j\nua3EW1LJ7e3Q6hvgrEiuJqlNnQaxqdn+1Xfamfj1ywUI7Tp9iCNcj7ESDhERERERERERUdbUQgeQ\nCeWLzyGm71boMAZN+eWXnBxHCAFpiL8ElRIr4egaHK+8CPczT8L9zJNoaS69VkOGPwdJAIYByOG2\nMGr45RRaP5Jwyv9xuWVd6vHAtuAnAIAIV8KBwxHb3tEBf0BD+dqVqLx6JgCU5POG0vD70TDNPEkm\nJ7Rk0ydukjRd8vsgXK6kcQJs779r3s75FP6T/xgdbxg/Krrs+/3JQx4XEdH6JL4SjuvJWAXL4V9/\nikBVLTyN46G5y+DxBeHxBbGixdzudqioKrOjqtyBqjI7XI7c/LnVsOUky7pRXQNRXm6uBIOA3Z5i\nr9KgdLZDHzYCcn9/38gybMMazGUmhAwNPs5ERERERERERERZK4kknPobr0L74TOgT9io0KEMiuTz\nDvoYvoCGz+evhSxJkCRAliQosgRZliBL8beILUfGw+uKHN5XDu8rSZBkCYquw9bZBltrM2ytLbC1\nNkNtaYbS2gzbe28DANbeejeGn3uGecVtqVd8SazuMxC6DijhglKRJByttK9GHqj4RK1o1ae4L+7l\nNatQffFfIO2QoioKlTx59arYitNp2aZtOgWhseNhW7IoOqYsWQytpnaowist4eQ15wvPwXPvwwhp\nOmyqYpkiXM5UexIRUa7YUv+ZtPHzj2Lj5x8FAHjrR6C7aTw8TRPQ3TTeXG6cgNXVtVjdbn7ud9gU\nMyknnJhT5lRzkkwvqmsAp5nMKvl8sYScEiOvWglbVyeMDD8/O+3m70N9o40BAKGtt81bbJSACTlE\nREREREREREQZKYkkHACQly0r/SSchC+XbTdej9CFF2d+AMNA1cXnYcTkHbBm210BAegQfbfrEgK2\nXg+c7a1wdrTC2d4CtSOybK5Hlh1d7ZCESHso/+gxkEduYK5oIUAuiW5maZU9+/SgjyEJARF5HCQJ\nQlGgF6gSjhACuiGiyVZDyu+3tixL8TxyPf4o1PnzgKceG8LAaMgosSQR4UyocGOzoXPOt6g46zQ4\nn3kKgFkZiZIp99wN9af5lrGuniDqqxMe08THmIiIciq+Ek7Ezzfdh57Fy1GxfBEqly1CxfJFGPH1\nJxjx9SeWeYGKqlhiTuMEeJrGY2XTBPwybCRUVUVVuT2amFPhtkOWs//cZtTWwqipAQDInR3QGxoG\n9g8tsPLLzL+F5N7ejOZHHitt6jQsf+41uKZunrfYCEDcU1OASThERERERERERESZKJkkHN1InxxS\nMjRrtkz1jVej5U9nAwmtW9JR536DqicfwS54BM/NmgtHp5k842pviSXZdMQth2+VYN9tl0Lucvhr\n6+FpHAd/bT38NQ3w19TDX1sPX21DeKweYzcbj9FLzXZDyrJl0CdO6vO4xa7i2SdjK0IM6OpOoWmW\n8v9CVSGCwVyEl/4+hYAvoMPrD6HXr8VuAxpG1LrROKw8Z60P0kqogiS3NFuScLxnn5e0i7xmVdIY\nlT7DEAhpBlxxSXnpqrSI+PZkfn90OaQZsKmlndSXFT0hczIUAmw2yCuWo/YKa2Km4+knMO7G6+G/\n+TbLOFt5ERHlWYr2TsYhh6G9pQdLvSFohgEAUHt7okk5lcsXomLZIlQuW4i6+d+ift7Xlv01hwue\nxrHRxJzmpglYNGYCpA0noLK6AtXldlSW2aEq1t+JyrwfkmKRDB0iXFFOamsDSvRaBb2xCQAQ3Ghi\n1vsGttoGzrLSbcNVElj9hoiIiIiIiIiIKGslk4QT7PGWTrDppGjfJLe1wnA3ZbR7fOWIIw7aos+5\nhqLCX1OPrnEbmwk14aSa2G0DfLUNCNTUQc+wooLDaYdktwEAnM89A23qVhntVxICgaQWOhkxDGtF\nIEUFMryStz9CCPiDOnp9yck2RpqKRZXvvoGmC06F98BD0Pvwf3ISRyqS1/pvlFua4b7hmljscVdj\nG5WVkLu7IaV6XMLJB1S6avadDhHS0PPoE7HBtO8psRM5kt8XXfYGNFSp689JNPd1V1nW5ZZmyM1r\nod56S9LcynPOAAAo/7wCek0tlI52ACmqDRERUW4pStJQXZUTdVXm50WvPwSPNwSPtxyehlosn7SF\n5fOZHAyifOUSVC5fhIplC80knfB/Nb9aK54ZsoKeUU3wNI1HV9MEBCZsBEzaBPbJk1ExvBajd98x\nKRbbN19Dm7IlAKDmkH3R0pyDNqsFIKqrAQCdM6/Ous4K00OGGBNyiIiIiIiIiIiIMlLUeS1GdTXk\nzk5z2efvZ3YJ0M0kHP+MI+B84TkAgNHcAjRmloRTfczh0eWeHXZBsK4BgboGBGrNyjXe6jp4q+vR\nW1UHr6sCuW6KJMuSpTS/4+UXc3wPQ8f5+COWdcnnhRhoEk7cSRrZ2wv3wp/hW7IYxthxGR0immzj\nD8Hr12JJN30k26Ri7+rAlAtOBQC4X30ZuUkFSsNvra4kt7fB8cG7AIDOCy+zJCatfeNDjNxhC0gp\nKgTJ7W0who9IeReGEEPfVouyZp/7DQDAE5dkmMlryfbBewgcfiR0w0DP8tWov+Uq6H+7AsboxrzF\nWhBeL+zvzEbwwIOjJ6/KbrvJMkVevhw1B+/T52Fs382FHq54AKSvNkRERDkiSfDuugfcH7yTcrPb\naYPbacPw8FuzIQR6fZHEnCA8Xhs89o3RPW5j6466jrLmVXGJOQtjlXRWLAY+edsy3Vtv/ZwU3G13\n2N9/F8Hd9wSMvnrSlojw5wfZbkfWdU/5MTH/+FmciIiIiIiIiIgoa0WdhCNcbiCchFN7z23o3XN3\nS4WNUiOFv2QO7bQrjMYxcN9+M6ouOQ9db72f1XFaf/gVYtgwAOYPUAVQBqAuYZ4QAppuIKRFbg3z\nNm5Z0yLrcXPC5fUTyZIEY0TsRIBtzmdZxV1MKs4/x7Iu+XwQNdkfRwoEYNiSK3g4n30a3gsvTRr3\nBbRYsk24uo3Xr0HPItkmneFff2IdSKzSk0NSICEpLi4pxzjoYMsmpbyPdmv+9Ml1gaBuaavFpJzi\n5lvdHF1WFi7sf4dwaypjbTO23HUKAMAvQvDc90g+wiuYikvOh/PpJ+C55gb4TzkdPb4QEn+LVf3h\nd0n7+U46Ba6HH7CMRargAOij2hAREeXKmseeQfUDd6H2qivQ8ca7fc6VJQkVbjsq3HaYn8xhJpp6\n4xJzfCF4A0DvyEb0jmzEmu2mxw4gBBwdrQmJOWaiTjzfyafBe9a50LbYEnJbK1z/eTTH/+ohFv77\nSHE4sr6AgJ8Lh0D8Y8zHm4iIiIiIiIiIKCNFnYSDuGQQ14/fAzdeg54bktt1lIxIpQhVhbx8KYBY\nFYm+CCEgSRJCW06F8tNP0QSc/kiSBJuqwJblTzld8o7LoUCU1SGw7/5wvPFadgctcv6ObthHbZDx\nfI83iAqXDXKPB0ZlZdL2shuvxYrfnwFfVw/83T0IdPci6PECQT+UQAByMAAlFEBlIICaYHg94b/E\nseT1IJSAH0ooACUYhLOj1RKD5O2FKK8Y9GOTihSwVsIpuyKWcKRPmmzZJpelT8JJPE50n2VLUXfa\nKQjcdif0jSeagwK84rkAIu8//Wk8fL/YSgZX5otwe7KGuAowcmtruuklS/3icwCA7bNPoY2bgKqr\nrk6aI7c0W9a9J5yE3n9el5SEE0+Ek5iIiCh/ZFlC4E/nYOUZZ8NuS25P1R9FllFV7kBVeew9O6QZ\n4Uo5IXh85m0gpAOShEBtA1pqG9Cy5XaW4xy5zyQAgLbxRAT33T+aDCF6egbxrysOUihkLmT7BwsA\nmZ8LhxaTcIiIiIiIiIiIiDJS3Ek4CSfolZ8XFCiQ3IhUwhGKAmP4yIz30w0BVZEgBQIDa5mUpf6S\nd3ovvcKShKNXD6CETJEJtbRC1TTIamYviV6PD/YfvoNkGDAqUie6TNwsszZjA6HbbDBsDuh2B3SH\nA6HyChhOJ9yrV0TnSD09eUvCiVSwMSoqIXu6oa5YDgAI7JXcUkf0UbEjqaJOmPuu2+H66nM4jz0S\n7V9+B0MIsxIOs3CGnPzkE1A2nwJtyhY5Pa7e7QE0DbZlS6Jj6ZKySpmoqgIAOF9+Ac6XX8hon95/\n3Zb+eKqK3r33h7bF1JzER0RE6SmyBFWRgezzb9KyqTJqK52orYx9pg+EdHh6zUo5kQSdkB67GKF7\n3MaoXPwzfCeebEmEMGoT62CWHhF3kUK2MkkSpsERrIRDRERERERERESUtaJOwpGCQQibLXqFpCgr\nK3BEgxT3JbP3wkvgvudO6MOG97ubrguoCgCfryiqH+gTNrSsC3cf7YZKxNijDkRw6jR09dNqAADs\ns17GlLj2MSJFJRwAaNlsGoIV1dDtdhjhZBk9LnHGsIfXHeaYYQ9vs6deh9MJe3kZHOVuON12uB0q\nnHYVLocCh02BpOtwj6qN3r+Ux6ujI8kzoqoK8HTHxvUUFVD6OqmSrh2VZh5H8pr/hlDIyFdnLeqD\n1NmB+r+cCQBoae7uZ3aM/9jj0xwwdvLG+cVnCHR0WLeX4A+5v0pBRgbv8fG6b7+7z+2+k05B58xr\n4VBzeEaYiIhSsqlD83vJYVPgqHahvjqWuOwLaOgOJ+T8dPcTmPjOiwieeIp1R7cbgU2nwDHve0DX\nAaX0fjeIQNC8VW1Z78uckCEQ/yCX4Oc0IiIiIiIirenVOwAAIABJREFUIiKiQijyJJwAjKpqKG1m\nixJRVl7giAbH/s5sAICw2yEqKmE4nNBG9tMCKRSCaO8A6mogr1kDbczY/Afan4REICkukcIwDMgl\n+gWt/ZuvMppXdkNCOxktdeudTy+/BYHahqxisClyNLGm3KHC5VDhsitwOlQ4+muDkJDsIvV4rNuF\nyNnZikjFEpFQBUjqzjxRI/44SUT46m/JfC55vEGUuWwD6VRAWQoEdTjs5nNNSpck1YeOP54Fbdo2\nqTfGPf9sba1Qv//Wuj1YepVwNF3ApqZ/XaWrRuU9ZAawwWi4774jOrZqZQdsca/zjrc/hNTejuoj\nD43t6HTBPkQnhYmI1ndKAT/TusKfA4fXANigCsGtLk49ccQIYN73kLo6IUqtMo6mofyR+81lW/ZJ\nODKzcIYWH28iIiIiIiIiIqKMFO+ZPMOApGnRVh4A4HzxuQIGNEheLxz/e8VcjrSUUlXzqtU+1G05\nCY2bbwjll58h+30wxk/Ic6CZ6frr3wGYJcolvw9SVyeqD9wbw0dUQ2ppKXB0+ZV4pa4cThJLpLlS\nVwiyqzKq3HaMqHFj3IhKTBpTg602asBOm43ETlNGYtrEBkweW4txIysxotaNqnJH/wk4YStnfwz/\nvgeYccYnxPT0oGF4Fcr+dmlGx+mP4fMBAPTx1qpI2SZtKIsXpd4ghHkjSXA89wwaLjwbeppkJ8od\nqbkZtUcdAvXrL82B8M85rfDPyXKMLCqW2eZ8Zj1cZVWamcVLNwwYKR6HCKOnN+V47+13Q28aYxlT\nE5JrtClbILTb7gjuslt0TDgcbL9BRERRjrffAgBU/OXsAkeSPfftN0eXxUCScGT+Psw/tqMiIiIi\nIiIiIiLKVvEm4YQrZBgleFI2FUkLRZeFM1xqXpYhGX0nFsgtzQCAinPOMAeKpCVX8Nzz0dLcjdDW\n20Hy+1F54nGwffE5AMD22ccFji7PEtrAxFf9aF24Ar7jT0LbNjujor4GI2vdGD+yEpPH1mLricOw\n85SR2HGzkZi6cQM2GVODMSMqMLzGjcoye05aHtimbAZt510AALW/OQTy6lVmyIt+BQC47/33oO8D\nADxtZoJPaLvtEdhq6+i4UZX69RrcceeU4xXnn5P6DoxIJRwJlWecgvqXnoG8ZPHAA6aMuO+/G+5P\nPkTV0YcDAKS4JByptRX6gp+tO6RIIlRE5slSekcXACC42+4AAGPEyGxDLjjDEDCMFEk4vb2wX3c1\n3K/PsgwHDjwEq39dAbjdgN0eHddHjkqbXOM75fTY/gcdmnIOERGt3xyvzep/UpEpu+6q6LJI8xmy\nL8wJGWJ8wImIiIiIiIiIiDJStEk4IlxRQwwfDv/2OxU4mhyIJBUAEJFKOIpsGe+LsmihuW+a6iqF\nItwuSIYB+8cfRsekfqr7lDq9aaxlvffiy6LLoqISPTfdBuPV/2HLjRowsakGTcMrMKzahXKXDaqS\n35ecJEnQNpkcXXc89yx0w4Cwx1qIiT6qdgAwq1DNm9fnlLJXXjAXgkH0PPgYtLHjIFwu9Fx9Q8r5\n2uRNM/sHhElLlpixxl0VLa1endUxKHsi/PyUus3kGDl8CwD1k8djxC5bQ5n/Y2wHTUs6hm35sozv\nr/Lh+wAAeqTCVwm+d4ieHmgrzWS3QCgWf8VFf0HVzdcnzVd/+A5qZaW5b9zzW7jTv7cH9z8Qqxev\nwfJlrdCzfC0REdH6oa/fI6VgINXwWBluCEishENERERERERERJStok3C8fd4AQDC4UTLY8/ENpTg\nSVoAQFwrHeEOV7OR5Iz/PXKPJ7yvK+ehDYaorU0eLNWfUYZEQ4N1YADl8/NJb2yKrdhUVB59BNSf\nYokTwVDfiV9lV81E/e47wHXnbWnn1L/xsnlf4ybA2GA0OubMRevStdA33SzlfFHfkHI8HecnZlJX\nSIpVHXJ98E5Wx6ABCFfpksKJWvZZLyVNsb/5WnRZXpOcGBU44sis79aorg4vlN57R+NOU9G49WTY\n/jcLfn+s4pn6w3epdwjF5sRXwumvlZta5obTae9zDhERrX+6HvoPACC46+4FjmSQVDXrXWQmheQf\nk3CIiIiIiIiIiIiyVpxJOIYB9emnzGW7HUpZXOJJMFiYmAZJ0mMVI4yGYQAAoSgZV8KJEGXlOY1r\nsERNchKOvOCnaDux/hj9VWXJE23ChgAA79l/yXrfYm+LFJ8k5L7perjffxuVfzwpOua67SbohgE9\n7rmnfvMV5LVrzH3uvBUAUH7l31Iev/zcP0WX9UmTU85J5D3tT/1PCpM83bFYly+JLjfckz4piHIj\nWqUrzH3f3cmTbLFEELmt1bLp128XIrjXvtnfb2U4CUfP7v2wGCgd7QCA6hOPxYSNR0L+5isAgBpf\nMSiO1BWrLhRfCaf38pn5C5KIiNZZwb3N37uSt7fAkQyc5/CjCx0CZYJJOERERERERERERBkpyiQc\n55OPY9SNVwIAhMMBRYlVw5CCmSV3FJ24ti2ivt5ckGWIhKoxWj8noQNHHZPz0AZDOJxJY+W3/gtV\nJxwD9esvIb//bp/7t3T68hVan6RgENqoDaxVYzLd1+vNQ0S5I8orostyZ2fS9robr8KIEdWo2WU7\nQAg47rsHNfvujuo9d8no+K4nH48uGxWVmQVVVgb/LtMtQ3qkIlQCZfGifg+nZ5m8RpkRzv4rbcnt\nbbEVzfr+JVdn30oCAES4PZOUor1VUUtICpV0HTUzDoK8YrllPDRlC4jwiSvP/Q/H5sftHzjiqDwG\nSkRE6yyHA4bDCYSTPENa6VWVk0v177v1ARNviIiIiIiIiIiIslaUSTiSxxNbsdshyxJEpG1HMJR6\np2IXTrbpOvxoQA4/7IqS1LopGIpbT9GeRB83IW8hDkiaVkz2d99GzX57oO7IQ9Pv+s5sNB15QNIJ\n65wTAlK4nZdhhCvvaBqEzW5pB5Px4QJxJ853yixxZUhJEvzTtu13muOXBag+YC9UXn4RAEBpXouG\nYRkm1QAwXG6I4cMznu955gUs+XoBltz/FJrnzIW2ySQIVYVIqIYktzT3f99GYSooreuEw9HvHKmt\nFbZ/3wF58aJoha/ALrthzVsfQVX6+ZWS7jxOIPxeV2Kt7FK145K9vbB9/qllzBg+HKtXtmPNmk5L\npSDL7zoiIqIBEm43JJ8PQgj4AqX1uxRgEk5RYxIOERERERERERFR1ooyCUdUxCp5RNqTBA6ZAaD0\nK+HYnLGkD2X1KjiWLwV6Y+XjQ1qswof97beSj1NkX4QKVc1gUuqEiepjDkfld1+jbqtNcxyVleum\n61E/fgM4H7wP9Rs1Qvl5gVnBwm7LLP54ug7H118AAJa+8RE8jz6Zh4gHz3fxpRnNs331Rdpt+shR\nfe675q0Ps4oJigJlWAMCu+8Jo2kMUF4BSdPgPPUkGP7Y61pqaUl/jPBzSWcSTl5IGSTBuJ54DNX/\nuAx1220ZTZrRdtwZmLIZVGVg70/a1GnmglFiJw7TVO6pPOMUy3po+51gUxUosvVXrtTTk7fQiIho\n/SHcbsDrhTZnDqqvuzLrdreFFto7+1aWRERERERERERERMWqKJNw4k9suh57CABilXACpZmEEzm5\nLanJlWPU+fPM2y/noP6iPwOhcLUfR/ZVWoZcJpVkUlT0Ub+fm4dgksmrVqL8hmsAABWXXgDF0w33\nTddBCgUhVBuUX3/J6nhSR0dsefJkiMqBtd/JN236noM/iK/vVmG2cWOzPqRdVWBTZciSBH3iRABA\n5cvPY3hTA+RVKwEAFeefk/4A4VZg3d4QjDTJXTQI2baDCs8XqgpFlvuvhJNC13EnQZsUTsQrsUo4\nUj+vkdbPv0XXU/8H31l/Trndf9RvoY3fEF2PPpWP8IiIaD0hd3TAtmIZRh28N+ruvR22zz4BgD4/\nK/XXAncoCFmGUVuHwAknFToUSqfILgAhIiIiIiIiIiIqBUWahJOi5VQ42UMKlWg7qsjJ7RQnqUX4\nS/CaA/ZC9f89Ga2AY5Rn3hqoUERcUpF/l91SzklV7cH179vzFpPlfh64N2lM7uiAFAwCdofZEiwb\ncUk4DnuW+5YYpbOj76o0aVqR9UWWJThsCiRJgqiwPr+VRQsBvz/6Gu989qWk/SPPpUBQR2htC/TW\ntqxjoPSkQFzCXNyJu54tpqHl8+TEuUg7Ksjma0HK8ESNCL/u/JOnwH/TrdHXYSaVeIqJ5PP2uV00\nNiG45z6xFoSJ24cNQ8dnXyO4/4H5CI+IiNYTsrfXsh75/dTjS/93U3z1zYIIhSAZBkKbTWGiRzHj\nz4aIiIiIiIiIiChrRZmEI4Vi1RjaP/4SQKwSTqm3o0rV/sh2y7+sA5FEHdWa5OH51215CW0w4k9C\nq62tqef0eDIayzXnow/B9unHyffd2wsEAhAOe1ZJXcbbb6N+p2nRdbnIv5Ru+24BVsz53jLWftHl\nWPLhN/DceKtlvPWXZQhtuVXSMeo3nQAA8AVir0khywhutc2A41LV8PM7IYlH8nlRecoJ0XVts82x\n4ufl+OWbX+E79ngAgNxrPm/GXHIWRm++IUZMHjfgOCiZsmRxdNn58AMITTWfEy0vvg6MS36sJU/4\ndZxhW7fI+59RV4/VX/yA5udfhSxLsWS4kkvC6bsSTqaPCxERUU4JAQgBafZsSC0tEP/7H5y33Iiq\nnbaB1NkB9f57UHn+OWlbxg4FyR/+Hep2FywGIiIiIiIiIiIionwozjOE4cSIhXc/jsqNNjbH7A7z\ntlTbUUWq+6RoR1XxzpsItMUqeginy1wwrF+Mh7baOm/xDZRtzmfR5UhbrURyjweJ19pGT97ni66j\n4sJzU28TApIQgN0OvWlMRodzPvYwKi5I3VKmWBkjRsKRMKYfdzwcw4bDWPBddKzrzvsgqqrR+eZ7\naBiWXH1J+fUX1J91Ovx33A19w40gGQaEPfsqOBHR5KWEEz+S1wvHm69H10VdHVTDQGVVZex1o+mA\n14u6Wc8P+P6pD95YUp3tk48gHE4AgNNpPv6e625CxSXnw6ithdzeDttss2pXYsJg2sP/+QJI8+fD\nP/OfUMc0AZFWGCWahON45MGkMd8fToXrofvhPbOPtmpERER5Zn/7TYw/5Zik8fIjZ8A592sAQMv5\nFwDjxg91aCavmYQjXK7C3D9lpsgvOiAiIiIiIiIiIipGxVkJJ5yw4nA7o2Oi1NtRBc24hSMxLcLk\nvugvsZVwcoJkWE9Ii5qa/MQ2CD3Xxqr4dP73hZRzktpR6TrsKSrU5JLU2Zl2m+3LOeaC3QH/scfD\nN34jS2ypJCbgeI9MPqlREioqoCoyJC1W2UbfbErStNCYWNWTmj13hvvrL+C+8ZpogtxAWlElMRJS\ns3p6oE3YEADgP/w3AABFls2knbjEHbk9oQVVMDj4WAiA9f1V0nUz4UpRoIarc/lPOgUrf1yC4B57\nAwBczz4FABByZkk4YvhwND/1ArQtpgJA9LiQJAhZLqkkHNuH78P1youWsa4ZR6Hnn9dhzfwl6L3i\nygJFRkRE672QBvf116TcFEnAAYCG7bYEAEiebohXXhnSyjiRaprRiw+oODEJh4iIiIiIiIiIKGtF\nmYSj+c1qN66yuISVcBJOyVbCibTRSpO84I47meu67WZzIeGEdDF+Sa1vPBGLHn4Wq667DaHd90w9\nye+3rLpPPSlv8YjwyYP6Sf23KRIOB6CqaP3gc/i33cEcTJHQYXtndtKYVFY2uEALJVLyP+4ki77x\nxKRpXY8+GV2OtNyRV66MJeGkqOiUtYQkHN3TCz18NXbPDbdY50a+/xcCytIl1k3e3sHHsh4T8Sfc\n9FhyFgwD0HUzOSZCkmCvr4Wy6FfrQbJou+R2pnnuKEpJJeHIa9ckjQXuuR+w2aDU1QJyUf56JSKi\ndVBomrVNqOT3wTb3m4z3rzjrdAw7+Tg4n3w816GlZX/CvC9lxYohu08iIiIiIiIiIiKioVCUZwmr\nbr0RACDV1kXHRKRdiVE6J2ktQmZyR7pKOPEcH75nLiQkKWSybyH4dtwF0u9/n35CXJKE1NmBslkv\npp87SIGQDnnRQsuY/+hjU08OJ3Y57SqkSrMNkxSfhBBWfczhSWORxJSSE0kMiE+8iEug6L77AfiO\nOQ5ik0nwH3GUZVdpzRrUTtvMXMlBJRxRXmFd72iH1NkJIcsQFQltseIq4Ujd3ZZNMk/eDEpIi73P\nSKHY819ua4Xtqy8gp6g+1jvzautAFkk46QhZAbTk118pkXi1OBERFUDXsy+i+f3Po+vK4kUZ76v8\n8D0cr80CAFT85ayk7fa334R6792DDzKO1NmBitvMapraVtNyemzKMX62ISIiIiIiIiIiylrxJeHE\nnYQ1xoyJjSvmSV6phColxJMC4QorNntmO+h6clUIpzP13AKTJQmynP4L2uqTfhddrjre2sYpMGEj\nGPbcJRcFNQNSQvJScLfd0fny6wjV1kHEJ4/EJzVFkggyfX6V+hfSadoNBI44Cj233w3IMnquvdGy\nzbZ8KZRwKyhRWZlq96z4TjwZPUcfC8/1ZuWn2luuh/3LOebPL/HxjUvCSUxOK7v+qkHHsj5zPHgf\n1DmfQ3r9NThmvRQdl7rSt3QLbb8jhCtWmcuobxh8IKVWCWf16kKHQEREBMBMbJYmTYquu+66I+U8\no64uaax2j536PHbVb3+Dmr9dnNNEWXek6ieAwMGH5uy4lHui1P/mISIiIiIiIiIiKoCiS8KR2tsB\nAL7tdrRWw4hUwtFK5yStRaQSjj2WhNP681I0//XKlNNrN9sI6o/zrIM5qDaRD4oiQ87wC1rb559a\n1kVdPeRgICmxAjCr2mTD+eC9GLPtppBbW6zH2e9AhLbfEcu/+gmBw46I3bcjLqkp8tgmPL/kuNZH\nvSecFK1GVEpfSItIC6p4KR7vpP2qa6CF20Ml0puaBhsWUF4O3x33ILTTLv3PtSThWH9GoU2nDD6W\n9ZTU0Y76Ky5GzUF7o/6Eoy3b1AU/9b1vXDUofczYwQejyKWVhNPdBQDovORvBY6EiIjIKvI7Kt6i\n2Z+hbd5CrHrpDfh/c3SKvZKTdETc50V5jTX51EiT0N0fZcFPcP/7tth9FGG7XSIiIiIiIiIiIqLB\nKLoknNCqNQAAsckk6wYlHGoJnaT1BcwrRg0hIAUC5mBc9RVRXQPf6WchuNvuSfsqba0on3kZACCw\n1z5YMeeH/Ac8QIqSOiElOH2PtPsEDjoUnbfdBZSFE0Qij0/8nGB2P+uKSy+E2rwWtndmR8fWzrwO\nKC83t5c5oMQlFghXLAlHqJEkL+tVvuWXXxxd9t5wC4za5CuIi137Z9+g66HH0frT4thgpidO3GWp\nx3N4wkRvGmNZ9579l6Q5Ir4dVfiEkLbhRgCA8ptvyFkspUrPIKkqpWByq6lM+Y85Lnb/EzcZ8HGi\nVLWk3t/hN5OQtOl7wHf8Seh84dUCB0REROu77sR2kXFcm24CyDJsO+wAUVaeco7c1gb4/eaKpkFr\naYtuK7voPMvcju5ARok4znv+jYpD9ofU4wEA2N94zTqhhBLb10v8+RAREREREREREWWtuJJwfD6M\n3GdnAICor7dsEtF2VLkrhZ5vvoAGr1+DphmA1wsA1nZIAJx2BV2PPoXgjjunPY7U2wt59Oi8xjoY\nbkfqCj3xVX8itLHjAADdDz6G0G9/BymczCH5fZZ5yqJfUXfpeZBSXMnbn0jC04o/XQhx+umWbbbv\nvo2txFfCSXh+SZ5uoLfX2mZHlmPJKyX0hbQxYiSCBx0KEZdAFDzwYAQ2mYzu+x/pc18RqUCVOO7I\nYWs0pxNGXHsrqb0teU6KdlTBfQ+IblZ++Tl38ZQg98y/wXHX7X3Osb33DpSf5lvGJG3gSTie625C\n818uxbJPv8vJ60HISkm9v7vvvQsAIJeXo+em2zKr6ERERJRH+rbbWdZ7z7sIAOD94xlQldiffcKW\nvrpmzT67Qf3iczSMqsWoKROi49LqVdFl93X/xITtJ0OaPTtpf8fzz8J52imQfvwR/q+/RcUVl8L5\n2cdwPvIQAEBuWRudG9hrH+jhpGoiIiIiIiIiIiKidUXRJOH4O7ogx325qydVwgknA5RQpYRASEd3\ntxfuO29F5YXnmoNxlXAAQJYlwO2GPqHvL6BtatH8qJLEf6nfHykYRKhxTPSkfaQajZRQCafi1JNQ\n/fRjcN/yr6zjkYLmsSobqqDI1ti6734guizifxbhdlRG0GwbVj9hNBrGjYTU2wMAaL3/sYQ7KZ0k\nnFRERSWaZ3+EwKGH9znPkrQUv3+KBKvBaPnqB3i22BoA4L3or8kTwo+3hFgSjh7XKssx66WcxlNS\nNA2V99yBypmX9zmn+qjDULvrdpA6zJZ/0scfRdv/9WXJi2+l3uB2Q7/oYjjGjUm9PVuKAugDrOhD\nREREEC5rC1Lv+Rej5Ydf0fuPa6wTVetFAZZNP81HzYF7Jx87FEvcLbv5RtjaWjHsuCMgL15kmVd5\n+smoeOEZ1E/fHo377Rodl1uaAcSSWAHAe8ElJf+ZmoiIiIiIiIiIiChR0WR2jNh5a8gdsRPCgQMP\nsU4IJ0mURBJOby+01nZseMgemLLZaNRc+4/opkhFnyR9XJEqhRNDSk6qEvWBABCXwBGtqBIpfR8m\nd3Wat2vXZH+/4cdLStFKSR8zNnbfzvh2VObjX/GH4y3Vd5wvPm/GscEG5rxwxRZRZ63UVIqc9vTP\nuf6ovyzIYSSAXFWNzlffREtzN4yRo5InxFfCibwHxCVYGTW1OY2nlEhtKSoHJc7x9kaX6yeOhf21\nV1E/4wBUnnVa0tyV85ZY1o1w9apUVEU2EwlzQVFK4/0dsLy3xb+nEBERFZJwJbQLtdmAYcNiFzOE\npfys1Q/nzz9BamlJGpfXxirb9PV73H33HcmDctH8KUrpMEmKiIiIiIiIiIgoa0XzzaetZS0cs14G\nAPT8/apY0k2YKKFKOPUbjsbIyWPh/mV+0rZIZZVEiW2qLEooCUfEf1Eb/8W6rkP+9htIwYC1iko4\nEUbqjSUJAIBwm1fySuE2XtmQwgk9kWPEs1RYiq+EE06Ocv7wHdzXXZV80PBJje67H0T7YUeh99wL\nso5rXRLcbY+cH7PPpCAp/FwyjGglHMgyPDfcYm7u7s55PKUiUvmpzzk91vedigv+DABQ58+zjHtu\nvBX2BmtCk1yW/DrKixJKwlHeegMA4N1jn6TqZkRERIUiKqsymuc76ZSsjus/5jgAgPum61Bx1AzL\nNknEqthJvn4+tyck6DORtQQwCYeIiIiIiIiIiChrRZOEAwBKuLqGtulmyRvDCR3qj/OStxUZqY8T\nyZEKL0n6KAsf2nX6ICMqjMDhR0aX3Sf/HnX77AbZ47GctNYbzVY2ytIlln1jSTjW5JxMOF59xTyG\nKzl5QJRXxJYdsUo4UGNXCLsfuDdpP6Ox0Yx3yuZovvFOoLw867hKUev3vyBYW4/ev14RHVt4830I\n7nfA0AYSXwknfAJHyDK0zaYAgKWK1vpGCsUl6Wla6jkJSW6RlhDxQlO3gv/3fwAAdL7wanRccQ5R\nkomipI2/2NT+7ihzoaH0K2IREdG6Q1RlloQDpxOhadtkdkyHA8Hd9wQAuB+6H8733rZsV+d8Flvx\nWStb+n73e7R89UN0vezvl0WXl/26GmI9rmRIRERERERERERE667iSsJZvAhAmhLp4eoX7nvuHMqQ\nci64066pN8RV/lm6YDm6/xBrE9N76d/yHVbOBGYcEV02qqoQ2Hd/AEDZ/16Ojovq6tichgYAyUkU\nItxKakCVcCKJO/EVd/oh1PRVWPTyCsuVxVXlmR+31Inhw/HrZ/PgPfcCdD3+X3TPOAr2ww8b+qti\n45JwpLhKOKLWPHkjdXYk7RLSjKSxdVIwFF10Pv1EyinpKnBZxFWuCu20C9rf/ggd/3kWqqr0sVPu\nCJcLUsDf/8QiIjld/U8iIiIaKnGVNSPVa9LpfPUty7pIqOzmn74n2j/+Em1fzUPg4MPSHkcsWQo9\n/NlM/dFMuBHuMnTMegs9198MNDbBCLdzjfwd13XIEXBVJreNpSLESjhERERERERERERZK64knHA1\nFGPYsKRtUqD/livFzrvXftDDlTsSBXfcObpsr6yAPn16bGMWySSF5rn1rtiKJAO25NhFTU1sucpM\nyKn4y1kQzzyDkGZWEYpUwlG/nwvlrjuTytdnQvL7+t4ef8JfSZ+Eo/R4LOuqUlQvm7yrqTBPygT3\n3R++u++H0+3sZ488iK+EE6k0Jcswqs3nkrR6ddIu/mBpVFUZLMeLz0WXbR9/mHJOzT7TMziS9SSL\nPmVzaPvsO2TPd+F2Qx5A0t1Qk1Ysjy6HdtixgJEQEREla2nuxqpvfoLnptv7nijL6Dnp1OiqkVCV\nxj73a+gbbQwxbBigqvCeeU7Kw1Q88Qg0zfycHqlqqo8dB23b7aJJQXJC21Cbs3T+tlnvMQmHiIiI\niIiIiIgoa0WVTSAFzbYqYl2tLjA8ObkoIrTdDgAAo6YGqiKXboUFZ1yChhCQVyxLmqL+ND82JXxl\nLAAMO+sU+PwahBCxdlQ+H2pn/hXqt19nH4uRuhKKPmoD83Z0U1xQ6ZNw1nfxSRiyXKAv4uOTcOIr\n4VRVQzgcUH76MWkXTc8+catU+IMa8O03kFpaUHbzDdHx+CpTUaFYpRwhp3/LF67CvucIdxnkYCCW\nZFWMhED9VptGVwMzflPAYIiIiFKzbTDKUhUnHd/1N8G/824wXG7o4ydYtmkTJ1nWQ1tNs67Xxloy\nll9wjlmtMNxWsvfCS633c9Ip1vULLun/H0HFIe5zJBEREREREREREWWmqJJwolJ8aWw5uTyAqijF\nQEoo827hduOXVz9A+yfhZBNlaFrA5JNk6FAWLUoaV+fHEiYSS99PGN8AzP8Rtk8+tozL7W1Z33/g\ngINTjne++D80//0aBA84KBaHLTkJRx8zFgDAQdJGAAAgAElEQVTQ849rsr5vyrFUSTiKAigK9MYm\n2FatBPxxlY00DbXXXwnl5wVDH2ueuG++AbY/nw0IAWP1GjTssxtq9tjJMkffoNGyrukG5NaW6Lox\nOra95+9XWeb6/nhmHqLOXKQqVny8xUb4E9pl8epwIiIqcZ7nX0HLopUQ5eWW8e5HrC0ugwcdalkP\n7bxLdLn66cchL1sKuc38vG7U1Vvm9vz9KmhjxwMAOp55EcbYcTmLn/LL8fr/Ch0CERERERERERFR\nySnOJJwUCSiBAw+JLkudHUMZTc7YZ73c5/bqbbaEqKszV9aFJJze3mhLqOAee0XHPdf+K7oc35oq\nwvHc/0FpXms9VnNz9gGkSXoyxo6DOPNPlhPokt/a7qztqx/QMestdN12F3yn/yn7+6bciibhABBm\nEk6kqov66y8AgKpjDo9Od7zyIurvuwPV++0xpGHmU9l1V6H6qUdRfukFGLPNZACAsnYNtHHjo3Mk\nb69lH39Qh7x2TXTdc+Ot0eXAoTPQOn8xup76P6yZuwDB/Q7I87+gb3o4QUhetbKgcaRif/kFyMuX\nrVPPJyIioghZUQA59reHNnIURG1dwiQZIv6zc7X1M7zc1QmprRUAYn/PRLjd6JjzLVav6oA2nb9L\nS4rGSjhERERERERERETZKs4knFTVBTIoqV7sEhNL+tRH25hiF6luI1QbAocdAQDwH3lMdLu29TbR\nZX38hkn7GxUVSWNyNo9dBuSE55jU02ONobEJYvhwBH/7O1a7KAZxlXCkSLsiyfoasX/yEaQej7nJ\n6wUAyOH1dYnrofst6+riWLUpyeeLjc/5HBvsNBW2Tz8BAHgu/wdCu++JtutvQee9D8MY3QhRV4fg\nnvtAGTlyaILvi91u3oZbWRQLZcFPqDrl96ibthns8+cVOhwiIqL8iLsAQF29KuWU1mWxpHhRWYmO\nl9+IrsurVsVVwqlL2hcAVLX0LzJY76wDF4YQERERERERERENtdLM9ND0QkeQd0Iu3S88O2Z/iO6z\nz0Nw3/3RM/NqdDz+XwQOPzK6XZSV97E3UHPNzKSx8qv/keswLSIVe4zqaiz6+ue83hdlT6RqR5Ui\nUU1eZZ40EpGEjvVMfCWcmoP2hn3FMpT//a8AADFiBADAOOlkhGYcUZD4+hJpCRdNsioS6vdzU44H\nd5k+tIEQERHlkcgk2cLhQO+FlwIAAocdDm37HaKbKv58BtSvvjCPVZ1c6ZJKVAn/TUpERERERERE\nRFQoJZWE4z3UPHEs6cVVKSFTPZfPzHyyXLrVV/SJmyDwt5mAqkLU10Pbd39LNZlI25mI0OZbJh1D\nm7Rp8oEjyRcpyCtXWNZXP/pMdkEHzHZURsMwOEc0ZLcv5Z8UuRGAIcyVFCeLnHffYW5aumSIAisu\nkQpAqRgjiqDaTV8UMwkHoSJqe+D3o/LMU1Nu8p3BNnVERLQOUTL7s9B7/sVYs2AptPDn9+5LrwAA\n6MNHxKp+lnBFT7ISqlroEIiIiIiIiIiIiEpO0XxDqmVwgliyh1tSFVm7kkyFdtkt88nrYOnvtq9+\nwOIX3gKcTst451vvo3vrHayTdQ16bR3WLlkLvWkMAMD2+adpj60sWxpd7r7gUoi998kqtkglHOF0\nwcZS+cUnnMQlDAP21181x8KJap3PvhSd5n7iMWDlSpTdcE1s3z6St4qdIcIJR+H3vNCWU6FN3CRp\nnu+gQ82F3t6kbdFjDR+R8/hyKnKSR9MgIv/uApO7OlOOt8y8DsG99h3iaIiIiPIo04onsgylJlbp\nRt9zLwCA7af5+YiKCkybOg0A0HNo8VVRJCIiIiIiIiIiKlZFk4QT2nu//ifFnaQtFUZdXXRZ2B2Z\n77gOXkFqNDYBW22VvEGSgB1iSTiG3WGeiFcUyG4X5PBVtWVXXpH+4OHqGd6TT0PgokthU7N7/CSf\n31xISBCiYmEm3GiaAftnnwAA9NFN5u0mk6xTZ8+2rFb8+cz8h5cnPT7zea0sXgQAMIYNR8eHc9A+\n6030zLwavomTsXD+cvTcfhcAwDnrpbTHMkYUdxKOCFfCUZYsRtWBe0P5pfBt4dzXXRVd7jn0N/Ae\nfBg8hx8F3wknFTAqIiKiPBhgxRPhclvWgzvslItoqEj4TjsTC+/5D9puvL3QoRAREREREREREZWM\nosn0CBx0SP+Twl8OSyWUhNP11HOxFbs94/1Eplejlhi3I/UX/EqkyhHMdmPqooVAuBiG54ZbAADB\nvfqobhN+Tgw00UAKmEk4gkk4xSlcCcfo7o4O6ZMmm2PDR8Bwl8XmnniiZVfnf5/Me3j5IDU3o+ao\nw6B+Pxe1O20NIHaiS992e/jOPBvdH3wKd3UFEHcCTJn3A/QU1X9EZdXQBD5Q4ff3iovPg+PLOag8\n/ugCBwS4nngsutx774PwPPAo/Pc8AIeb7xNERLRu0UeOii4Ht9ku8/022tiyHtxjr5zFREVAVeHf\nY2/A6Sp0JERERERERERERCWjaJJw4MigSkykRVMJJeFoW8Yqv4gsknDWxUo4ACCHWwglscUn4egA\nALW1GQBgjG4EACg/fJf2uJJmVgyBMrCreL1/NKul+E4r3aop67RwEk75Yw+l3Bzcd/+hjGZIVFxy\nPmrnfITy886JDSYkicmSBFWRLe3ranffEaEly5IPKKV57RUJx6svW9bl1tYCRZJMSBJkWYIcfgzT\nvo8RERGVKO8558G79fZYePl16HrptQEfR1RV5zAqKgYOVS72j5FERERERERERERFpWgyPURcEka/\nc8JJOPLyZajeZzrUr7+E+o+ZUD//DADgvu6fcBRj9YtsknCEyF8cRUj0UQJfhBO0nK++AsD8uTcM\nq0TlicfFJoXCiVm2gSXhBA8+FAsXrEJwn3UvmWOdEE5KK3tvdsrNks/b7yGMEntNOSKtpUSsqo3U\n2ZF2fnDqtOhy4/abW7a1v/1RboPLA3nNaut6dxeM5csLFI2VVGLPHSIioqyVl6P5+Vfh+92JWbem\n8p58WnRZVDMJZ11jYxIOERERERERERFRVgaWsZAHkqe7/0nhKieSrgGhEOqmbQYAqNlvD3P7v29G\ny6p2lN18IwCg5ehj8xJrn8Ina7UNRqPj5detm+wZVPsJkww9p2EVu9B2O6bfmFAlqWaf6ebw/14x\nH29JAnQzCaevZJ7+OMtZZr1o9ffNv5Q+nzAUrqQUDOlw2ovmLS8lwxCQZcmSbGP7bm502XvWX9Lu\n2/XCq2gYm9yOrfvOe6FP2TzFHsUltPU2UJZbK/gMn7YpVv31KnSceCpkyaz8E6lIY94CkmXMnCMN\n5EyRrkNqb4fc2gK5rdXS0stoGDbYfx4REVHRczlUSMj+d6j3sivgfvBeAIBR7O0vKWs2VYbBfGQi\nIiIiIiIiIqKMFc0Z6dB2O8I3dWuETjsj/aRIgoWmwfnogymnSF1deYguC+ETt/q48UBjk3Wbvf9q\nP1H6+pWEo223PVo+/hINO22dtE3foDG67Lr9ZshtcW1qgkHA4YDr8UcAAHJ7+4BjsNuU/idRYfST\nVOE9/yIYa9bA9c2XSdtsK5ZD8nRDU13QDQNKEbd66/YGUV3ugO2D95K29V5yObTttk+/s9udNNRz\n5TUIHPXbHEaYPz033ALnC88ljY+89m/4ePoRWR1LliRIhgGH1wNXVzucXe1wdLXD2dkOR1cH7J1t\ncHS0wd7ZDntHG+wdbVC7OtJWvOl89qUB/ZuIiIhKiSxJcDuz//NQuMtiy6yEsw6SIIFZOERERERE\nRERERJkqmiQclJVhzYtvoNyVPlElWuVE0yF3dqacY/tqTj6iy1wkeUZJTujIphLO+paEAwDYaOOU\nw6KuDr499obrnbdQftVMyzbJ74NwOGB//10AgP2N1+C98NI8B0pDLiEJp3ffAyzr2uZbouXlNzHy\n8P1h++LzpN1tH30IfbtdoSluKFl0hRtq3b1mEo4oL0/eOID3BGPEyBxENTREVTWCTWNhX7bEMq65\nwslFQkD19sDZ2QZHZwccnW1wdLXD0RlJrmkPj4W3dXZAzqCiWKCiCr7qOgQaxyNQVQt/dS02nPV0\ndLv3rHOhT940l/9UIiKidUtcgrM2cVIBA6F8YCsqIiIiIiIiIiKi7BRPEg4Au9pPhYpwYovk90FU\npS51LsVVQpF6PBDlFTmLr18/zoMcvvpTSpGEA1sWlXC09TAJJ0HHm+9Fl6XK1D9Hye9HsCz2WOmT\nJuc7LCqEhG//ey6bicR3C5dDRfe9D6Fuq+SECbmtFRtusgH8U7eG54138hjo4ISWLoehDIPk8ydt\ns7//btYJZoGDD8tVaEMiVSUaJRjEgcdOh6OrHUoo1O8xQuUVCFXXonuDMQjV1iFUUwettg5aTR20\nunpotfXQ6+qg1zVAr66BbLdDCre2kmWzldWS43+HsUcfBICtqIiIiLJSVtb/HCop5sdwZuIQERER\nERERERFlqqiScGz9JOHYvjSr3FSeeSp8J/8x5Rzni7F2Jsq8eX23b8klrxcN03eIVusRcVeE+o47\nAbaPPrRcJdoffVMzkcB7xtm5jbOE6E1jYiu21OVLHPf8G+p330O4yyB5e9Fz1XVDFB0NJZGQhCNv\nsknKecboRmh/vQzqNVdbxtUfvgMAOL/5Ep78hDhotndmY/tjDgcAdN9jttvzHXcCXE88BgAwho/I\n/qCpkgGLmBQKJg/a7bC7ndAbN4dW3wCjvh6ivgFGfQOMujoY9Q0QDQ0w6uph1NUDDmvFMVv4v6zi\nmDolumzU12f/DyEiIiJaR0iSBLAdFRERERERERERUcaKKglH6qfWtTrvewCA3NIMqbkZAND1+H9R\ndfzR0Tn2d2bHjuftzUOUqdmeNduXSJpmDsSd/O655c6sjycqKrHgl7WorXLlJL5SoY8cBWX1KnNF\njT091R++Tzm//N+3RZdDtXUQVdV5jY8KJIs6+Gq4BZFQVXhuuROVZ5+er6hyyvHma7EVnw8AENpu\nB6gffQjb0sXwXHNjv8fwH3QInLNeBgD0HjwjL3HmU/T9M6zriWcQ3Hu/IY9DuGNX8RvDhg/5/RMR\nEZWa9g/nQNeNQodBeSDF/Z+IiIiIiIiIiIj6l3lpliIgXO7osvuh+wAA2sRNENhzn5TzpUBgSOKy\nv/4/VF94rnVQHnwFCimLyjnriq7nX0Fg4mS0n3MBRGWs5Zg6f150uWP2BwhutnnSvlrj2KEIkQoi\n9sW/6O91EXnd2+2xZAp/cnunYiPiWi0pn31qLrhc6PxiLprXdkEM7z8ZpPdvV8JwOOE590J47n84\nX6HmjaSZj0H3b36L1gVLCpKAAwCwxypv6ePGFyYGIiKiEqJP3ASYzLaw6yJJkrLJhyciIiIiIiIi\nIlrvFVUlnP4IpzN5rLoa3U/9H/Q33sSI439j3RgcmiScqhOOSR7MQRsYWV7/vu3UJ2yE1W99CLsq\np20ho22+JYz6hqRxwbYx6674b/77e20FzZZGwm6HKDMT9+zvvJ2vyHLG6OqOLpf99wkAgHCY73n9\nVQmLHmPceCz9eSXKXTaUViOqsFC4Ek5lJURNbWFjCROVlYUOgYiIiKigMv0sSkRERERERERERCVW\nCQdqclpGpP2QUhU7Uao3NgEApAJWvxC5SMJZT7/rdDtU2FTr49f10H8s65LTkbxjmTt5jNYN8V/8\n91cJJ9LSyGYHwtWzlDWrYtuFyHFwgyQE5LfeQPnLzydvcqR4nvfD5SjJ9BsAsUo4aqrXd4HEV2Aj\nIiIiIiIiIiIiIiIiIupLaSXhJJx8D245LXpyXt5gVHQ8cMgMAIBYtmzoYkukDP6hXV+vOEz17w5t\nv6N1QEku4iTKyvMVEhVa3HOi3zZzl1wC/+Qp6Hr4CQh3igQKw8hxcIOjfPIR6o47MuU2ee2a7I9X\nwm3sRCTRMhQsbCDx4lpTERERERERERERERERERH1paTO1gZ33tWy3nvdjdFlo7EJPaefBe8RRyG0\n1TQAQNUNVwOhUH6D8nohwgkCRm1c+xRp8A+tvJ4m4aQi6uux+uGn0Pb5t+a6LUUntZrqIY6Khkw2\nr4WxY7H6tfegbbsd9DFjkzbLH7yfu7gGSVq1ErUzDky7PbTDTkMYTeH5zvozACC45z4FjiQO34eJ\niIiIiIiIiIiIiIiIKEMllYTTe9nfLevaVltb1n1XXoPeux8A7LFWJpLPm9eYJI8HkhDwH3gwPDfe\nGtuQi3ZUJfXTyT99n/1gjBtvrqSqhLPB6CGOiIZMli2k3E7z+SGqa5K21R19WKxlVYHVbznJsi4k\nCe3Pz4quGymSiNZl3vMuwo9vf4nQHnsVOhS0zf0J7R9/WegwiIiIiIiIiIiIiIiIiKiEpCgnUsSc\nzszmBfyxZZ8fqKzKTzwApGC4NY67DIhrfSNykISzvrajSseuxmUlqclPXX3EyCGMhoaUrmc1vb8q\nUlJXF0Rd3WAiGjR5zeqkMe95F0HfcecCRFMkJAlSY2OhowAAGCNH9T+JiIiIiIiIiIiIiIiIiChO\nydZa8e+zX9ptUiAQW85zJRzXg/cBAITNBuGKJeHkpBIOk3As4pOSvOeeH10ObTLZvE1oV0brDsnI\nLgmn3+N1d+X0eANRt/nEpDHJ7wdkGe2vzkbrS68XIKrCq692FToEIiIiIiIiIiIiIiIiIqIBKa1K\nOPGcmZ2olfz+/icNgvuu2wEAti/nwH/iybENci4q4Qz6EOssfcJGaF2wBNq770GZMQM9vhDK3fZC\nh0X5YhjRxa4HHh304WRPN4z+pw0J37HHQ+7qguPVl6FP2BAAoG+zbYGjIiIiIiIiIiIiIiIiIiKi\nbGVUCWfu3Lk4/vjjk8bfeecdHHHEETj66KPxzDPPAABCoRDOP/98HHPMMTj22GOxcOHC3EYc4XCk\n3RQ48JDocr4r4USoPy+AcJfFBpTBFxmSZWbh9EXU1AKHHQZIEtwuW6HDoXyKa0cVPGRGVruGtppm\n7jdhI3jPPAcAIHV35y62QZL8fnTfeS+673sY/uNOKHQ4REREREREREREREREREQ0QP1mitx///24\n/PLLEYhr8QSYyTbXXnstHnroITz++OP473//i9bWVrz//vvQNA1PP/00/vSnP+HWW2/NS+B6Y2P6\njW43es+7CAAg+Xx5uf9UhCuuOo+cgyQclsLplxJ+nPlYreP0gbejChxxlHl7xlkwRowAAEgd7ZBX\nrshJaIOm60BZGQKHHcHyV0REREREREREREREREREJazfTJGmpibccccdSeMLFy5EU1MTqqqqYLfb\nMW3aNHzxxRcYN24cdF2HYRjo6emBquan45UxbESf24XbbS7485uEI5xOAEDnsy9ZKuEIZfDtqIgo\nTJjNo8QAktt8p5yOJe9/Cf/xJ8IYOQoAUHXyCaibOhnKl1/kNMyB0MeNL3QIRERERERERERERERE\nRESUA/1myOy7775YsSK5YkRPT8//t3fn0VHV9//HX3eW7CEL2VkjS2QH/QFiBDGlWixQtiJ1Vywq\nVVtFRFy+pR61li/8vl8UBKz+oLYKqNEqhUIBBalEZRNZo+xhkQYIWQhJJjP390dgDBAgySRMJvf5\nOIeTe+/c3Pu+c05eZ+7cN5+PIiMjvevh4eEqKipSWFiYDh06pIEDByovL0+zZ8+uViExMWFyOKrf\nuBKZGKvI+MiL7xAXLUmKdkq61H61UFJarpDgM29dly7ybNmq6JFDpEqj7oRFhCqsjs8LWNaZvzfD\nbld8Nf6uzt8nNLKrIkKdUp//c872E5mf6EB8WzkddgU5bHI67Qp22uV02Cp+Om0KclRet8teF9PE\n3XOPdzH8lRcVfonp9QDgUqqTiQDQGJB3AKyCvANgJWQeAKsg7wBYBXlXodbD1EREROjUqVPe9VOn\nTikyMlLz5s3TDTfcoPHjx+vIkSO65557tGjRIgVf5iFzXl5xtc4bf+ZnvtumstzCi+4X4rYpUlLB\nD8dVeon9auOHE8VKiq0YaSemuESGw6Hc3ELJNL31FZe6daqOzwtYVXjhaYWpYoSpY5f5u4qPj6z4\ne6ykzOXW6SK71CRBcYYhwzQlSSkfL5Bz3x65wiPlCouQKyxCpWHhKgqLkCs8QuVnfp59rTwsQkZI\nsJyOH5tznHZbxc8z/7zbz/xz2M8dvce+Z5di337bu55bUCaprE7eJwDWUlXeAUBjRN4BsAryDoCV\nkHkArIK8A2AVVsu7SzUc1boJp02bNtq/f79OnjypsLAwrV+/XmPGjNHu3bvldDolSVFRUSovL5fb\n7a7taS4uNPSSL5tnXjdO1+10VI7Nm+Tcvkf61YiKDeUumY6K65VRaYQMpqMC6s7ZDLHV7u/K4TjT\nCBMSIjMsTMaZBsKwY0fVauWimpXidJ5pzomUKyzc25xT0agTrvLwCBWHRcoVXvGaOzxSZmSkFNlE\nimqi9FEZ3mOdvuveWl0PAAAAAAAAAAAAAKDhqXETzqJFi1RcXKzbbrtNTz/9tMaMGSPTNDVixAgl\nJibq3nvv1TPPPKPbb79dLpdLjz/+uMLCwuq8cDP00sc8+7pRUrdNODE/vVExknLPNuG4XFKQ88Lz\nnzf6BQAfeCqacMxaNrfZKjXIld5wo0KXLZEkrf7XZqmgQCoskFFYIFthoeynCuUsLpKz+JQcxUVy\nniqqWD9VVLFe6bWIk8flLD51sdNeVnnnrrX+XQAAAAAAAAAAAABAw1KtJpzmzZvrvffekyQNHjzY\nuz0jI0MZGRnn7BseHq7p06fXYYlVMy87Ek6IJClsyss6PXZcnZ/f/l223O3TKppwnBc24cigCQeo\nK2U3D1TYG7N0euzDPh/LVu7yLnfsnnrB6+Vuz5l/plzlHrndHpWcWS93e7zbXGfWy8tcMguLZCuq\naOBxnGnSqWjcKZTj1Jnl4oomnqj9u9R0x2ZJUukvb/P5egAAAAAAAAAAAAAADUOtp6Pyt8uOhBPR\nRJJkKyiol/PH3tBTuXuPyHC55AkOuXAHpqMC6oyrX39t+fcWJbVr6fOxiv5nhhw3patw2qtVvu6w\n2+So5UhWlRt4yt0elZd75HJ7VOo2depMA89h01RayxhfLgEAAAAAAAAAAAAA0AAFbhNOzKUfYnta\ntKj3GkIy36sYCSci4sIXacIB6pTZNE6qNK1UbXmSknVix546qOhCvjTwAAAAAAAAAAAAAAACW8A1\n4RQ9N1n66mt5kpIvuZ8nOaXiZ1BwvdXi2LZF9uPH5E5IuPDFOmgWAPAjg78pAAAAAAAAAAAAAEAD\nFnBNOKcfe0KlZW4FV+OBvKtjJ9lycuqtltC5b0qSHJXOYdpsMjweqbS03s4LWBE9OAAAAAAAAAAA\nAACAhiwg500JDqreVE9mSKiMkpJ6rkayFRX+uBJcMfLOlTgvYCU2unAAAAAAAAAAAAAAAA1YQDbh\nVFtYmGyuMsntvmKnNB1OSZJRShMOUJciQp3+LgEAAAAAAAAAAAAAgItq1E04ZkiIJMk4dqxez+OO\ni/9xuV07SZInPqFezwlYTWhwwM2eBwAAAAAAAAAAAACwkEbdhOPYvk2S1OTRB+v82J7IJt7lk/9a\n5V0umPuOcsc+quLf/LbOzwkAAAAAAAAAAAAAAICGqVE34XhatJQkBa369NL7mWaNj5234nMVPfcH\n5ebkytO8xY/HSk5R8XOTpeDgGh8TAAAAAAAAAAAAAAAAgalRN+EUzPl/kqSy9L6X3M/j9qjM5a7W\nMd0tWqosIUme1Kt0+rHHq2y2CQtx1rxYAAAAAAAAAAAAAAAABKxG3YTjSWkmd1i4dPLkJfeLT79W\nzZrFKHTG9Msf1DSlIJpsAAAAAAAAAAAAAAAA8KNG3YQjSZ7YWAVt2yKVl190H8fePZKkiBeev+g+\nZS63PB5T8nhk2Ox1XicAAAAAAAAAAAAAAAACl8PfBdS7sHBJknHypMy4uFofJuTPs6VWLWWWu2UG\nBdVVdQAAAAAAAAAAAAAAAGgEGn0TjrtrNzm/2ynb8WNy+9CE03TypDqsCgAAAAAAAAAAAAAAAI1J\no5+Oyvn1V5KkJnePrtXvm6YpmWZdlgQAAAAAAAAAAAAAAIBGptGPhGM/sE+S5Ni754LXbD8cUcRD\nY7zrptN5wT6utV8qYvfOeqsPAAAAAAAAAAAAAAAAga/RN+GU9b1RQWtWS5JcZeVyBp25ZNNUk9tH\nyrl1i3dfw+WS3G7Jbq9YLypUs2G3XPGaAQAAAAAAAAAAAAAAEFga/XRUBX+e510Oe2mydzk4871z\nGnDOMvLyVJ57TJJk37atvssDAAAAAAAAAAAAAABAI9Dom3DM2Kbe5ehZr3qXw2a+WtXuatqlnZI7\nXSVJMkpOX/B6wbN/0MFvd9VxlQAAAAAAAAAAAAAAAAhkjb4J5wKmKUlybLtwFBxJMtzuioXSUhkF\nBRe87r7xRqlp0wu2AwAAAAAAAAAAAAAAwLos14RjnMyTq9R1+f0KC2UrvLAJxxMVLafdcm8bAAAA\nAAAAAAAAAAAALsFy3STRwwYppcXlR7Kx79kt25HDF2z3JCTKZjPqozQAAAAAAAAAAAAAAAAEKEs0\n4Zx6+jnvsmP7Vu9y8S0/V/Gjj3vXyzIGeJdtx4/JvnfPOccp7dlbCg+vx0oBAAAAAAAAAAAAAAAQ\niCzRhHP63jFVbnfdNlolQ0d41/MXfKjyxCRJkqe0VEZx8Tn7F87/oP6KBAAAAAAAAAAAAAAAQMCy\nRBOOGdtUp4b98oLt7rbt5W7TVpJU8ovhkqTTTz0jSfKUlEqlJeceJyKynisFAAAAAAAAAAAAAABA\nIHL4u4Arpk2bCzaZwcFSWJhyc3KloKCKbU6nJMnYtFHBy5dJko798k6pVSvJZomeJQAAAAAAAAAA\nAAAAANSQZZpwyntcc8E2T+vUioXg4B83nmnGiZ07x7vp6ItTFRkWpNB6rRAAAAAAAAAAAAAAAACB\nyjJDu5hBweeuh4RIhnHBfo71X1+wzWGI1LYAAByPSURBVOmwK8hpmbcKAAAAAAAAAAAAAAAANWSd\nzpIzI9xIUsFrs3X8mx1V7ua+uuMF22w2Q3amogIAAAAAAAAAAAAAAMBFWKazxKzUhONulSoztmmV\n+5WMvuOCbXbbhSPmAAAAAAAAAAAAAAAAAGdZqAnnx+mobKcKL75jUJBKul/rXS38v6+JHhwAAAAA\nAAAAAAAAAABcimWacBT8YxNO5Yacqhx9+z3vcskdd8tGFw4AAAAAAAAAAAAAAAAuweHvAq6UytNR\nuW7od8l9jagoFQ74mcpu6CcZBtNRAQAAAAAAAAAAAAAA4JIs04SjSk04Mi7dVOMMcujYW+8o2GmX\nU5Jxmf0BAAAAAAAAAAAAAABgbZZpwrncFFSVOew2hQUb3mmoGAkHAAAAAAAAAAAAAAAAl2LzdwFX\nTHDQ5fepxFap8YaRcAAAAAAAAAAAAAAAAHAplmnCqclIOAAAAAAAAAAAAAAAAEBNWGY6KgUH6/gr\n/yOzQwd/VwIAAAAAAAAAAAAAAIBGxjpNOJLK7rlPNpthneF/AAAAAAAAAAAAAAAAcEVYqgnHYaf9\nBgAAAAAAAAAAAAAAAHWPrhQAAAAAAAAAAAAAAADARzThAAAAAAAAAAAAAAAAAD6iCQcAAAAAAAAA\nAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAAAAAAAAAAB8RBMOAAAAAAAAAAAAAAAA4COa\ncAAAAAAAAAAAAAAAAAAf0YQDAAAAAAAAAAAAAAAA+IgmHAAAAAAAAAAAAAAAAMBHNOEAAAAAAAAA\nAAAAAAAAPqIJBwAAAAAAAAAAAAAAAPARTTgAAAAAAAAAAAAAAACAj2jCAQAAAAAAAAAAAAAAAHxE\nEw4AAAAAAAAAAAAAAADgI5pwAAAAAAAAAAAAAAAAAB/RhAMAAAAAAAAAAAAAAAD4iCYcAAAAAAAA\nAAAAAAAAwEc04QAAAAAAAAAAAAAAAAA+ogkHAAAAAAAAAAAAAAAA8BFNOAAAAAAAAAAAAAAAAICP\naMIBAAAAAAAAAAAAAAAAfGSYpmn6uwgAAAAAAAAAAAAAAAAgkDESDgAAAAAAAAAAAAAAAOAjmnAA\nAAAAAAAAAAAAAAAAH9GEAwAAAAAAAAAAAAAAAPiIJhwAAAAAAAAAAAAAAADARzThAAAAAAAAAAAA\nAAAAAD6iCQcAAAAAAAAAAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAAAAAAAAAMBFud1u\nf5cQEGjCARBw1q5dq927d/u7DACod+QdgMbONE1J0hdffKG8vDw/VwMA9e+tt95SZmamv8sAgHpH\n3gGwiqVLl+qbb77xdxkAUO9mzpypSZMmSfrxOz1UjSYcAAHj22+/1ejRo5WZmakJEyZo48aN/i4J\nAOoFeQfAKgzD0P79+zVx4kRt2LBBLpfL3yUBQL3IysrS/fffrxMnTqhv377+LgcA6g15B8Aqdu/e\nreHDh2vdunVatmyZ8vPz/V0SANSLlStX6tFHH9VXX30ll8sl0zRlGIa/y2rQaMIBEDA++eQTDRs2\nTNOmTdOQIUP0zjvv+LskAKgXn3zyiYYPH07eAbCEXbt2KS4uTt9++62OHj3q73IAoF789a9/1eDB\ngzV+/HitWbNG//73v/1dEgDUi7fffltDhgwh7wA0ellZWbrrrrv0/PPPKyYmRvv37/d3SQBQ5zZs\n2KAlS5bo/vvv19ixY5WcnCzDMOTxePxdWoNmnzx58mR/FwEAVSkuLtZf/vIXFRYWKjQ0VHl5eUpJ\nSVHr1q21a9cuSVLv3r0liY5LAAHLNE25XC5t2rRJERERCg4O1s6dO5WamqpWrVqRdwAaleLiYq1c\nuVKSFBsbK0nauXOnunXrpiNHjqiwsFAFBQVKSkqS3W73Z6kA4JPi4mLNmzdPRUVFat26tUJDQ/Wn\nP/1J69atU3x8vObOnSu32622bdvK6XT6u1wAqJXK97Ph4eEKCQmRx+PR//7v/+rrr78m7wA0Kmfv\nZz0ej5o2barNmzdr/fr1WrRokVq0aKHXX39dhmGoffv23M8CCGhn72ddLpeSk5P1y1/+UsnJycrP\nz9fatWt144038rnuMmjCAdAgbdiwQb/73e8UGRmpnJwc7d27VyNHjlRaWpokacGCBerevbvat2/P\nA2kAAc0wDK1fv17Tpk1Tt27dlJiYqC5duuiqq66SRN4BaDw2bdqkhx56SDabTUuXLlVoaKhSU1O1\ndu1aXXPNNdq/f7/mzJmjiIgI9evXz9/lAkCtnb2fbdKkiQ4cOKCtW7fq1ltv1Z49ezR69GgNGjRI\naWlpWrBggX72s58pKCjI3yUDQK1Uvp/t0qWLkpKS1K5dO23btk233347eQeg0ajqftY0TeXk5Kh3\n796666671KZNG/3tb3/ToEGDeDgNIGBVfj67d+9e5eTkqGvXrnI4HPrmm2904sQJZWRkyOPx8Lzi\nEhz+LgAAqvLFF1/o0UcfVUZGhj777DN9+eWXioqKkiSdPn1a+fn5ysjI0JdffqnDhw9r2LBhhD2A\ngFRWVqbMzEzl5eUpKytLSUlJio+Pl0TeAWhcduzYoUceeUS33nqrVqxYoc2bN6uoqEiFhYWaOHGi\n0tLS9NOf/lTNmzdXYWGhIiMj/V0yANTK+fezWVlZioiI0COPPKLExERJUo8ePRQcHKyjR48qIiLC\nzxUDQO1Uvp/96quvlJKSovj4eD3++OPe+1ryDkBjUPl+9l//+pe+//572Ww2xcbGau/evZKkXr16\nKTg4WPv379fVV1/t54oBoHaqej4bHBwsSerTp49mzJihH374QUlJSTJNk2cVF0ETDoAGyTAMhYSE\nSJJCQkK0a9cueTwe2Ww2ff755zpy5Ij++7//W3v27NHYsWMJeQAB4WIfSocOHaq7775b7777rrKz\nsxUbGyu73a7Vq1eTdwAajZycHG3evFm33nqr+vTpo4KCAh05ckQul0vPPvusrr32WmVnZ+vvf/+7\nXC6Xv8sFgFo7/3529+7d8ng8io+P17x581RQUKCTJ08qPDxcKSkpfq4WAHxT1f1sQkKC5s6dq8LC\nQuXl5ZF3AAJe5fvZ9PR0FRUV6fDhw+revbtWrlyp//qv/9KpU6cUGhqqZs2a+btcAKixs88uLvZ8\n1jRNNWnSRBkZGfr444/14IMP8qziEmz+LgCAtZ2dO/osj8cjSXr00Ud1/fXXS5JWrVql/v37y2ar\niKzTp0/r8OHDuvrqqzV37lz16dPnyhcOADXkdruVn5/vXT/7wTUoKEhpaWnq3Lmz2rdvr6ysLB06\ndEhSxdyrhw4dIu8ABBSPx6OSkpJz1iVp7Nix2rt3r7Zv367w8HC1atVKubm5uvPOO3XttddKktLS\n0jRx4kTFxsb6pXYAqInz887tdku6+P2sYRhKT0+X3W5Xp06dNHXqVIWGhvqldgCoCbfbrdzcXEk/\nfra72P3sf/7zHzkcDl133XWy2Wzq3LkzeQcgYLhcLmVlZamoqEhSRdZJF97Ptm7dWrm5uerZs6cm\nTJigzp07q3fv3nrttdcY1RVAQDg/78662P2s3W6XJHXt2lVdu3a94vUGGvvkyZMn+7sIANZjmqZO\nnjypKVOmKCEhQQkJCd7XKndOFhcXa82aNRozZoyWL1+uFStWqH379ho/fry6d+/uj9IBoMY++OAD\nTZ061Tv1Sps2beRwOLx5FxYWJklKTU3VihUrZJqmOnTooLCwMD344IPq0aOHP8sHgGpbsGCBZs6c\nqS1btig1NVVRUVHerAsNDVVZWZkWLFigIUOGKCUlRe+++65uuOEGNWnSxM+VA0DNVJV3Z//jyFnn\n38/+85//1C233KK+ffuqS5cufqocAGrm9OnTmjJlir788kvddNNNMgzDO1q1dOH9rNvtVqtWrdSi\nRQtdd9115B2AgPH+++9rypQpioiI0DXXXCO73e4dGeL8+9nk5GTNnz9f6enpatasmTp16qROnTr5\n+xIAoFqqyjvp4s9nV6xYoUWLFqljx47q0KGDWrRo4a/SAwYj4QC4os52jhuGoYMHD+qf//yn1q1b\n5x0dwjAMbdy4UU888YQOHjyoXbt2ae3atXryySe9X1j27t1b4eHh/rwMALiss3m3Y8cOrVy5Ui+8\n8IJ+8pOfaNu2bTp+/LgkefMuJydHpmkqKipKvXr10smTJ+VyudS6dWtFRET48zIA4LLO5t3333+v\nTz/9VJMmTZJpmlq4cKF3nw0bNmj8+PEaOHCgTp06palTp+quu+5SUlKSoqOj/VU6ANRIdfLuYvez\nS5cu1eDBg73DegNAQ3Y27yTJbrfr4MGDOnjwoD799FNJks1mu+j9bH5+vhwOhyQxRQGABs80TZmm\nqdWrV+u9997Tyy+/rFGjRnm/u7PZbFq/fn2V97PJycmKiYnx8xUAQPVcLu8Mw9D69esv+nx28ODB\nioqK8vNVBA6HvwsAYB15eXkKCgryNtBs2LBBP//5z7Vnzx5lZ2erV69eWr9+vRYsWKD+/furefPm\n2rdvn/Ly8nTnnXcqPT3dz1cAANVTOe/WrFmjVq1aqWXLlrLZbHrzzTcVHR2tjRs3av78+crIyDin\nc3zo0KF+rBwAaqZy3q1du1Zt27ZVq1atdP3112v+/PnKzc3Vjh07tGLFCl1//fWKjY3VjBkzdODA\nAXXv3l0DBgzw9yUAQLXUJO/69evH/SyAgHX+93dHjhxRVFSUhg4dqiVLlqhbt27avn27li5dqptu\nuon7WQABKy8vT06nUxEREYqMjFTPnj01f/58bd26VTExMWrXrp1SU1P19ddfKz09nftZAAGrJnnH\n/WzdMMzKbe0AUE/mzZunxYsX65prrlF8fLweeOABfffdd2rfvr1mzZql0tJS3XPPPQoLC1NwcLC/\nywWAWjubd927d1dqaqpuv/12HT9+XE2bNtWuXbs0a9YsTZs2TSUlJfxPaAABrXLetW7dWnfccYd3\nytGnnnpKUVFRio6OVmxsrMaNG+fvcgGg1sg7AFZR+fu7uLg4/frXv9bhw4f1xRdf6MYbb9TDDz+s\niIgIPfXUU+rYsSMj3QAIWGfzrkePHmrWrJnuuecePfzww2rbtq3Gjx+v7OxsffbZZ7LZbBo7dqy/\nywWAWiPv/IORcADUu3379mnNmjWaNWuWXC6XnnnmGcXExGjEiBGSpGHDhmn69OnauHGj+vbtK0ly\nu93eOQgBIFBUlXcOh0OjRo2SaZpasmSJd37onTt3qmXLloqNjfVz1QBQc1Xlnd1u1+jRoxUTE6MZ\nM2YoODhY8+fP905n4HK55HQ6/Vw5ANQMeQfAKs7Pu2effVZJSUmKi4tTZmamPvvsMyUmJsowDDVr\n1kyGYai8vNw79RQABIrz827ixIlKSUnRhAkTVFxcLElKS0vTqlWrlJycLInPdwACE3nnPzZ/FwCg\n8Tt+/Ljat2+vkJAQJScn65FHHtHs2bNVXl4uSUpKSlLXrl21YsUKHTt2TJJowAEQkKrKuz//+c8q\nLy+XYRj6z3/+o+joaE2aNEmZmZnyeDz+LhkAaqWqvHvrrbdUXl6unJwc7dq1SwcPHtTq1au9o35x\nAw8gEJF3AKzi/LwbN26cZsyYobKyMnXs2FEPPfSQXn31VV111VVasmSJJNGAAyAgnZ93jz32mKZO\nnapWrVrJ6XQqKytLP/zwg7799luFhoZK4vMdgMBE3vmPffLkyZP9XQSAxuPsg2bDMOTxeGQYhoqL\ni7Vs2TJ169ZN0dHRSklJ0bZt23T06FF169ZNUkWnZXx8vNq3b+/nKwCA6qlJ3h0/flxJSUmaMGGC\nXC6XBgwYoIceekhhYWH+vgwAuKya5F1xcbGCgoL0t7/9Te+//75GjBihoUOH+vsSAKBayDsAVlGd\nvGvWrJmys7NVUlKiJ598UomJiZIqvsPr3bu3n68AAKqnunm3detWFRcXy263a/78+frggw80bNgw\nDRw40N+XAADVQt41LDThAKgzs2fP1uLFiyVJqamp3pBv2rSptm/frr1796pdu3YKDQ1VQUGBwsPD\nlZaWJo/HI4fD4R3qDAAauprmXWhoqK655hqFhobq2WefVYcOHfx8BQBQPTXJu/z8fDmdTvXv3199\n+/bVqFGjdPXVV/v5CgCgesg7AFZRk7zLy8tTTEyM0tLSVF5eLrvdzn8mARAwavr5zuFwaMCAAbrl\nlls0cuRIPt8BCBjkXcPDdFQAfFZWVqYXX3xR+fn5uu+++1RWViapYkopwzC0detWtW7dWocOHdL8\n+fO1ePFiLViwQE2aNJEk2WxEEYDAUJu8mz9/viIjIyVJY8aMYbhuAAGhNnm3cOFC7+e7kJAQPuMB\nCAjkHQCr8PX7O+5lAQQKXz/f2Ww2Pt8BCAjkXcPFJ2cAPrPb7d7pVd5991253W7t379fv/71r/Xy\nyy9rx44dmjJlinr37q1Nmzbp008/1RNPPKE+ffr4u3QAqJHa5N348ePJOwABh893AKyCvANgFeQd\nAKsg7wBYBXnXcBmmaZr+LgJA4FmwYIEMw9Btt92mw4cPa/bs2UpJSVFCQoL69eunxx9/XD179tSd\nd96p2NhYf5cLALVG3gGwCvIOgFWQdwCsgrwDYBXkHQCrIO8CA+MLAaiVdevWac6cOTp9+rRSUlIU\nHh6u5cuXq127doqLi9Pvf/97rVq1yjukmdvt9nPFAFA75B0AqyDvAFgFeQfAKsg7AFZB3gGwCvIu\nMNCEA6BacnNzvcvff/+9IiIilJqaqqlTp0qSRo8erfj4eGVnZ8vtduvQoUO67rrrvPNF2+12v9QN\nADVF3gGwCvIOgFWQdwCsgrwDYBXkHQCrIO8CE9NRAbikH374Qa+99pqOHz+ujIwMpaenq0mTJsrN\nzVViYqKGDBmiOXPmqG3btlqxYoWysrK0b98+nT59WuPGjdMNN9zg70sAgGoh7wBYBXkHwCrIOwBW\nQd4BsAryDoBVkHeBjSYcAJf0+uuvy+Vyafjw4fr444+Vl5enJ554QuHh4ZKkGTNmaMeOHZo5c6ZM\n05RhGNq8ebO6devm58oBoGbIOwBWQd4BsAryDoBVkHcArIK8A2AV5F1gs0+ePHmyv4sA0LBkZmbq\nL3/5i7Kzs3Xw4EHdfffdatGihRITE7Vz504dOHBA3bt3lyT16tVLr7zyilq2bKk2bdpIkpKSkvxZ\nPgBUG3kHwCrIOwBWQd4BsAryDoBVkHcArIK8azxowgFwjqlTp2rLli26//77tWzZMi1evFhBQUFK\nT09XaGio7Ha7tm3bpi5duigkJESS1KFDBzVv3lyxsbF+rh4Aqo+8A2AV5B0AqyDvAFgFeQfAKsg7\nAFZB3jUuDn8XAKBhKSws1G233aZOnTrpjjvuUEJCgv7xj39o0KBB6tChg5o2barS0lKFhYV5hzfr\n06ePv8sGgBoj7wBYBXkHwCrIOwBWQd4BsAryDoBVkHeNi83fBQBoODwej26++WZ17dpVkrRkyRL1\n69dP48aN00svvaS9e/dq7dq1OnnypDwejwzD8HPFAFA75B0AqyDvAFgFeQfAKsg7AFZB3gGwCvKu\n8TFM0zT9XQSAhqeoqEj33nuvZs2apfj4eM2aNUv5+fk6duyYJk6cqPj4eH+XCAB1grwDYBXkHQCr\nIO8AWAV5B8AqyDsAVkHeNQ5MRwWgSkePHtX111+vwsJCvfjii2rXrp3Gjx8vp9Pp79IAoE6RdwCs\ngrwDYBXkHQCrIO8AWAV5B8AqyLvGgSYcAFVat26d3njjDW3btk2/+MUvNGTIEH+XBAD1grwDYBXk\nHQCrIO8AWAV5B8AqyDsAVkHeNQ5MRwWgSpmZmcrNzdX999+voKAgf5cDAPWGvANgFeQdAKsg7wBY\nBXkHwCrIOwBWQd41DjThAKiSaZoyDMPfZQBAvSPvAFgFeQfAKsg7AFZB3gGwCvIOgFWQd40DTTgA\nAAAAAAAAAAAAAACAj2z+LgAAAAAAAAAAAAAAAAAIdDThAAAAAAAAAAAAAAAAAD6iCQcAAAAAAAAA\nAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAPCzp59+Wh9++OFFX580aZIOHTpU4+Pm5OTo\nmWee8aU0AAAAAAAAVBNNOAAAAAAAAA3cV199JdM0a/x7hw8fVk5OTj1UBAAAAAAAgPMZZm2+wQEA\nAAAAAECtmaapV155RatWrVJCQoLcbrdGjhyp/fv3KysrS/n5+YqJidFrr72mjz76SK+++qpatmyp\nd955Rzk5OfrjH/+okpISxcTE6A9/+INatGihuXPn6qOPPpLNZlPXrl31wgsvaPDgwTp48KCGDh2q\nZ599VpMnT9b333+vY8eOKTU1VTNmzNCxY8f0m9/8Ri1atNB3332nzp07q1evXvroo4+Un5+vmTNn\nqk2bNsrIyFBGRobWr18vSXr55ZfVsWNHP7+TAAAAAAAADQcj4QAAAAAAAFxhy5Yt0/bt2/WPf/xD\n06dP14EDB+R2u7Vnzx4tWLBAy5YtU8uWLbVo0SKNHTtWCQkJeuONNxQeHq7nnntO06ZN00cffaT7\n7rtPzz//vMrLyzVnzhxlZmbqww8/lGEYOnr0qJ577jl17txZv//977Vp0yY5nU4tXLhQy5cvV2lp\nqVavXi1Jys7O1rhx47R06VJt2bJFhw4d0sKFCzVo0CAtXLjQW3d0dLT+/ve/67HHHtPEiRP99fYB\nAAAAAAA0SA5/FwAAAAAAAGA1X3/9tW6++WY5nU7FxsaqX79+stvtmjhxot5//33t3btX33zzjVq2\nbHnO7+3bt085OTl6+OGHvduKiorkcDjUo0cPjRw5Uj/5yU90xx13KDExUfv27fPu17NnT0VHR+ud\nd97Rnj17tG/fPhUXF0uS4uLivKPaJCUlqU+fPpKklJQUHTx40HuMUaNGSZIyMjL09NNP68SJE4qN\nja2X9wgAAAAAACDQ0IQDAAAAAABwhRmGIY/H4113OBw6efKkxowZo3vvvVe33HKLbDabzp9F3OPx\nqHnz5vr4448lSW63W8eOHZMkvf766/rmm2/0+eef64EHHtDUqVPP+d2VK1fq1Vdf1d13363hw4cr\nLy/Pe/ygoKBz9rXb7VXW7XD8+FWSx+O56H4AAAAAAABWxHRUAAAAAAAAV1ifPn20dOlSlZWVKT8/\nX2vWrJFhGOrVq5d+9atfqW3btvriiy/kdrslVTTFuN1uXXXVVcrPz9f69eslSZmZmXryySd14sQJ\nDRw4UO3bt9dvf/tbpaenKzs7W3a7XeXl5ZKkrKwsDRw4UCNGjFBcXJzWrVvnPX51LV68WJK0fPly\ntWnTRlFRUXX4rgAAAAAAAAQ2RsIBAAAAAAC4wgYMGKAtW7Zo0KBBiouLU5s2bVRSUqKdO3dq8ODB\ncjqdSktL804F1b9/f40dO1Zvvvmmpk+frpdeekmlpaWKiIjQn/70J8XGxmr06NEaOXKkQkNDlZyc\nrGHDhsnlcqmwsFATJkzQAw88oCeffFJLly5VUFCQunfvfs5UU9WxceNGffDBBwoNDdUrr7xSH28N\nAAAAAABAwDLM88c1BgAAAAAAAM6TkZGht99+W82bN/d3KQAAAAAAAA0S01EBAAAAAAAAAAAAAAAA\nPmIkHAAAAAAAAAAAAAAAAMBHjIQDAAAAAAAAAAAAAAAA+IgmHAAAAAAAAAAAAAAAAMBHNOEAAAAA\nAAAAAAAAAAAAPqIJBwAAAAAAAAAAAAAAAPARTTgAAAAAAAAAAAAAAACAj/4/LMZTXjsASL8AAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJ8CAYAAABQyzzyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vF7Jj0hPaEEQq/SRJCiqFRxVURhkaUpoivq\nYt/VRVkLYP8hFlR0RV1BUWysKIoFQfALCEiTToCQQHoyaZNM//2RzZiQnkxIAu/Xde2VM+ec5/N8\nzhAhO9w8j8HlcrkEAAAAAAAAAAAAAAAAwKOMDd0AAAAAAAAAAAAAAAAAcC4imAMAAAAAAAAAAAAA\nAADUA4I5AAAAAAAAAAAAAAAAQD0gmAMAAAAAAAAAAAAAAADUA4I5AAAAAAAAAAAAAAAAQD0gmAMA\nAAAAAAAAAAAAAADUA++GbgAAAAAAAAC1M2LECJ06dUoDBw7UsmXL6mWOvXv36vXXX9eePXuUnZ2t\n8PBwDR48WPfee69GjhwpSZo0aZLmzZtXL/NXx8GDB9W9e/daj3e5XPrxxx/13//+V3v37lVGRoa8\nvb0VExOjIUOGaPr06WrXrl2VNVavXq3PPvtMBw4ckNlsVvPmzdW/f39Nnz5dffr0qbKPzMxMvffe\ne1q3bp0SEhLk5eWlNm3a6Morr9S0adMUFhZW62cEAAAAAAANg2AOAAAAAAAAyrVv3z5NnTpVFovF\nfS41NVXe3o3jI6X4+HjNnz9fFoul1sGknJwc3X///dq0aVOp81arVUePHtXRo0f10Ucfac6cOZo6\ndWq5NQoLC3Xvvfdq/fr1pc6fOnVKp06d0ldffaX77rtPs2bNqrCPvXv3atasWcrIyCh1/tChQzp0\n6JA++eQTvf766+rZs2etnhMAAAAAADSMxvEpCgAAAAAAABqdt99+2x3KmTJliq6++moZDAZFREQ0\ncGdFbr31ViUkJGjgwIG1Gu9yuXT33Xdry5YtkqRevXpp6tSp6tSpkwoLC7V582a9//77ys/P17x5\n89SsWTONGzeuTJ25c+e6QzlDhgzRtGnTFBUVpX379unNN99USkqKXnzxRbVo0ULXX399mfGpqam6\n/fbblZmZKR8fH82YMUNXXHGFHA6HvvvuO61YsULJycm644479MUXXygqKqpWzwsAAAAAAM4+gjkA\nAAAAAAAo19GjRyVJLVq00GOPPSaDwVDq+qFDhxqiLTen01mn8WvWrHGHcq666iotXLiw1GpAgwYN\n0rXXXqspU6YoOztbTz/9tEaOHKlmzZq579myZYtWr17trvHSSy+536cLL7xQY8aM0aRJk5SYmKjn\nn39eo0ePVlBQUKk+Fi5cqMzMTEnS4sWLNWzYMPe1wYMHa8CAAXrggQeUmpqqxYsX64knnqjTcwMA\nAAAAgLPH2NANAAAAAAAAoHEym82SpNatW5cJ5ZwLPvvsM0mSv7+/nnjiiXK36OrcubPuvPNOSZLJ\nZNKGDRtKXX/vvfckSX5+fnrkkUfKvE9RUVF69NFHJUkZGRlatWpVqetpaWn66quvJEnDhw8vFcop\ndvXVV2v06NGSpE8//VTZ2dk1fFIAAAAAANBQCOYAAAAAAACgXC6XS5LKDaw0dS6XS7/99psk6aKL\nLlJ4eHiF915yySXu44MHD7qPzWazNm3aJKloC6sWLVqUO37EiBGKjIyUJH377belrv3000+y2+2S\nVO42V8X+/Oc/S5JsNpt+/PHHCu8DAAAAAACNy7n3qQoAAAAAAKgX06dP16+//lqjMeVtdZSRkaEV\nK1Zow4YNOnHihAoKChQREaE+ffpo7NixuvLKK6tcneXIkSP64IMPtHXrViUnJ8vlcql58+a6+OKL\nNXnyZPXq1avcca+++qoWL16ssLAwbd26VYmJiXrnnXe0YcMGpaamKiwsTP369dNf//pX9e7dW5KU\nn5+vd999V2vXrlVCQoKMRqN69OihqVOn6uqrr660z127dunjjz/Wtm3blJqaKm9vb7Vu3VpDhw7V\n9OnTFRMTU+n4tLQ0LVu2TOvXr1dCQoJ8fX3Vu3dvzZgxQ0OHDq10bG1t3bpVN910U6lzv/76q7p1\n6yZJGjhwoJYtW6bExESNHDlSkjRp0iTNmzfPff/nn3+uOXPmSJK2bdumH3/8UW+++aYSExMVFham\nXr166eWXX5afn58kafPmzfr000+1c+dOpaamysfHR9HR0erfv7+uv/56DRo0qFQ/Z34vluxv9uzZ\nuvvuu6t8TqvVqrvuukspKSnq2LFjpfcWB5QkyWKxuI/37t0rm83mfl8qM2DAAK1du1Y7d+6U1WqV\nr6+vJLnDQVXV6N+/vwwGg1wul7Zs2aLx48dXOh8AAAAAAGgcCOYAAAAAAIB64eXlVebcmjVr9Nhj\njyk3N7fU+ZSUFH3//ff6/vvvdfHFF+uVV15RREREmfEul0sLFy7U0qVL5XQ6S12Lj49XfHy8Pvvs\nM02dOlVz5sypdKWXjRs36r777lNeXp77XGpqqtauXauffvpJS5YsUWxsrG677TbFx8eXGrt9+3Zt\n375dR48e1T333FOmtt1u14IFC7RixYpS5y0Wiw4fPqzDhw9r+fLlmjt3riZNmlRuf7/88ovuvvtu\n5efnu8+ZzWZt3LhRGzdu1B133FHhszUmH330kRYuXOh+nZaWpvz8fHcoZ968efrggw9KjbHZbO5f\nz88//1zXXXednnnmGY+u3OPn56fbb7+9WveWDAGVDFPFxcW5j9u1a1dpjdjYWEl/PFuXLl1K1QgJ\nCSn3e75Ys2bNFBERoYyMjFLzAgAAAACAxo1gDgAAAAAAqJYFCxbIbDZXeN3lcumxxx7T3r17JUkP\nPfRQqevfffedHnzwQTmdTvn4+GjixIkaMWKEQkJCdOzYMX344Yfas2ePtm3bpptuukkff/yxgoKC\nStV4+umn9f7770uSwsPDNWPGDPXv319Go1F79uzRO++8o9TUVC1fvlz5+fl69tlny+3VbDbr3nvv\nld1u12233abLLrtMFotFX3zxhb755htZrVY9+eSTMhgMSkxM1JQpUzRq1CgFBATol19+0Ztvvimb\nzaY33nhDN9xwgzt0UWzu3Ln64osvJBWtdHLjjTeqQ4cOslgs2rlzp5YtW6a0tDQ99thj8vX11Q03\n3FBq/P79+zVr1izZbDb5+PhoypQpGjFihHx8fPTrr79q6dKlWrJkiYxGz+9S3qtXL61atUqS9Ne/\n/lVpaWnq2bOnnnrqKUlSYGBgjeotWrRIrVq10n333afY2Fjt3r1bHTp0kCStWrXKHcoZOHCg/vKX\nvyg2NlYWi0UHDx7UO++8o9OnT+vLL79Unz59NH36dEl/fC+W119UVJRH3odiFotF//nPf9yvL7vs\nMvdxSkqK+7iq1Y9atWpValxxMKe4RsnrFWnZsqUyMjJKzQsAAAAAABo3gjkAAAAAAKBaqloRZNGi\nRe5Qzvjx4zVjxgz3tby8PP3rX/+S0+lUQECA3n77bQ0YMMB9vW/fvho3bpz+9a9/6dNPP9WRI0e0\naNEizZ07133Pjh073KGcDh066P3331fz5s3d1/v3768bbrhBM2fO1L59+/TFF19oxIgRuvLKK8v0\narVaZbPZ9O6772rIkCHu81dccYVOnTqlPXv2uFfJWbRoUaktqy666CKFh4dr/vz5cjqdWrdunW6+\n+Wb39R9++MEdypk1a5YeeOCBUnMPHDhQEydO1PTp03X06FHNmzdPw4YNU3h4uPueefPmyWazyWg0\n6o033igVBunfv7/GjBmjKVOmKCsrq7JfkloJCgpSjx49JMm93VLJczVlMBi0dOlSderUSVJR/8U+\n++wzSVLnzp21dOlS93ySdPHFF2v06NG67rrrlJ2drZUrV7qDOcXfi57oryrPPfecEhMTJUmXX365\n+zkkKTs72318ZojsTAEBAe7jnJycMjWqGi/9EYo6c8UpAAAAAADQeHn+n1UBAAAAAIDzzqpVq7Rk\nyRJJUr9+/fTkk0+Wuv7pp5/KZDJJku6+++5SoZxiRqNRjz/+uNq3by9JWrlypXuMJC1dutR9/Pzz\nz5cK5RQLCwvTSy+95N5G69///neFPY8ePbpUKKdYySDPwIEDS4Vyio0cOdJ9fPLkyVLX3n77bUlS\nly5ddP/995c7d0REhB5//HFJRav3fPLJJ+5rhw8f1s6dOyVJEyZMKBXKKdaxY0f94x//qPDZGpOB\nAweWCrOUlJ6eLqlotZmSoZxiLVu21D333KPbbrtN06ZNk8vlqtdez/Tee++5V/QJDAzUnDlzSl23\nWq3u4+KtuSri7+9f7rji46rGl7yn5HgAAAAAANC4EcwBAAAAAAB1sm3bNvfKNjExMXrttdfKhCw2\nbdokSfLy8tLEiRMrrOXr6+u+brFY9Ouvv0qS7Ha7tmzZIknq2bOn+vTpU2GNtm3baujQoZKkvXv3\nVriqTHmhHElq0aKF+3jw4MHl3hMZGek+Lrm9V3Z2tnbt2uUeazAYKuyzf//+7lVSip9NkjZs2OA+\nvvbaayscf80115QKezRWffv2rfBax44dJUkbN27UokWLlJGRUeaeadOm6R//+IcmTZpU6fvpacuW\nLXNvhWYwGLRgwQJ3v8WKA2DF91RXyXuLa9R2PAAAAAAAaNwI5gAAAAAAgFqLj4/X7NmzZbPZFBAQ\noNdff71UaKXYkSNHJBVtQRUSElJpzQsvvNB9fPjwYUnS6dOnlZ+fL6nyoEex4ntcLpd77jO1bt26\n3PMlQ0Xlrcpz5j0lV3E5cOCA+/WyZcvUrVu3Cv93wQUXuJ8pISHBXePYsWPu48q2Z/L391fXrl0r\nvN5YtGrVqsJrM2fOlLe3t1wul5YsWaKhQ4dqwoQJWrhwoTZv3txgK8MsXrxYCxYscP9a/vOf/9Q1\n11xT5r7iraWkoiBZZQoLC93HJVfHKa5R1fiS91RndR0AAAAAANA4EMwBAAAAAAC1kp2drVmzZslk\nMslgMOjZZ5+tMEhSvCVVRERElXVLBnuKx5Xc0qq84M+ZoqKiSvVZnuLVaipTckWU6qhodZ6q5OTk\nuI+LV40xGo0KDQ2tdFx13ouG1qxZswqv9e/fX4sXL1bLli0lSU6nU7///rveeustzZgxQ4MGDdL9\n99+v7du3n5VebTab5syZo1dffVVS0co0jzzyiGbMmFHu/SW/h0qunFSegoIC93HJX9fiGiWvV6R4\njqq+LwAAAAAAQOPh3dANAAAAAACApsdms+mee+7R8ePHJUmzZ8/WVVddVeH9JVeVqYrT6XQfG43G\nGo+XJIfD4T6uaNsfb2/PfyxSct4777xTY8aMqda44ueUSvfrcrkq3bbIx8enFl2eXVVtuzR8+HAN\nHTpUGzdu1A8//KBNmzYpJSVFUlEQZc2aNVqzZo1mzZqlBx54oN76zM3N1ezZs93binl7e2v+/Pka\nP358hWNiYmLcx8nJyerevXuF9yYlJbmPS67EFBMTo9OnT5e6XpHk5OQy4wEAAAAAQONGMAcAAAAA\nANTYE0884Q4wjBkzRn/7298qvT80NFSpqanKzMyssnZ6enqpcSW/Sn+sKFOZkveEhYVVeb+nlOzT\n39+/0q2oKhIdHS2pKKCUlZVV6SpDJVcSasp8fHw0YsQIjRgxQpIUFxenzZs364cfftCWLVvkcrn0\n5ptv6vLLL9eAAQM8Pn96erpmzpypQ4cOSSraXuqll17SFVdcUem4Ll26uI9PnjxZ6b3F25X5+Pio\nXbt27vOdO3fW9u3blZWVpdzcXAUHB5c7Pi8vz/3fT6dOnap+KAAAAAAA0CiwlRUAAAAAAKiRt99+\nW59++qkkqUePHnruueeqXBWlW7dukqTjx4+X2rapPLt373Yfd+zYUZIUGxurwMDAMtcrsmvXLvdx\nhw4dqrzfU7p27VpuD+WxWq1avHixPvnkE+3cudN9vnPnzu7jvXv3Vjje6XTq8OHDdei24ZlMJv32\n229KTU0tdb5Tp06aNm2a3nvvPT3yyCPu8z/99JPHe8jKytLNN9/sDuVERkbq/fffrzKUIxV9XwcE\nBEhSldttFV+/8MILS63WdOGFF7qPd+zYUeH4HTt2uFeOqo9wEgAAAAAAqB8EcwAAAAAAQLX98MMP\nWrhwoSQpKipKb7zxhjuYUJmhQ4dKKtrqqTjUUx6r1arPPvtMUtFWQoMGDZIkeXl5afDgwZKkffv2\n6ffff6+wRnx8vDZv3ixJ6t69uyIjI6vxZJ7RokUL9yoqmzZtcq+SUp4vv/xSr776qubOnauVK1e6\nz1955ZXu4+L3ojzr169v0ivmbN++XYMGDdLkyZO1YsWKCu8rGZCxWCylrlUVCKuK0+nUPffco6NH\nj0qSWrdurRUrVqh3797VGu/v76/LL79ckvTzzz9XuJrTunXr3NdGjRpV6trIkSPdW5J9/vnnFc5V\n/N+Nj4+Phg0bVq3+AAAAAABAwyOYAwAAAAAAqmXfvn36+9//LqfTKX9/f73++utq1apVtcZOmDBB\nISEhkqRXX3211AoxxZxOp+bNm6cTJ05Ikq6//vpS2zjdcsst7uOHHnqo1JZXxbKzs3X//ffL4XBI\nkmbOnFnt5/OU4j5tNpseeOCBclcIOn78uF544QVJReGS6dOnu6/FxMRozJgxkqS1a9eWG9ZISUnR\nggUL6qP9s6ZPnz7u0NQHH3yg+Pj4cu9bvXq1+/jMwIyvr68kKT8/v1Y9vPPOO/r1118lFW159v77\n75faZqo6pk2bJkkqKCjQ3LlzZbfbS11PT0/XU089Jaloq7Px48eXuh4SEqKxY8dKkr777jutWbOm\nzBxr1qzR999/L0kaO3bsWQ2bAQAAAACAuvGu+hYAAAAAAHC+S0lJ0R133KGCggJJ0qOPPqqoqCjF\nxcXJZrO5t9g5U6tWrRQWFqbg4GAtWLBA99xzj8xms6ZPn65JkyZp+PDhCg4O1vHjx/Xhhx+6t6lq\n3759qS2MJGngwIGaPn26li1bpri4OF133XW6+eab1b9/fxkMBu3du1fvvvuukpOTJUnXXnutxo0b\nV4/vSvnGjx+v7777TuvXr9eePXs0duxYzZgxQ3369JHVatWOHTv0n//8xx3Yufnmm3XBBReUqjF3\n7lxt3bpVJpNJjzzyiLZu3aprr71WwcHB2rVrl95++22lpaUpMDBQZrO53D5effVVLV68WJI0e/Zs\n3X333fX74DXk6+uru+66S/Pnz1d2drYmTpyoadOmqW/fvgoNDVVqaqrWrl2rr7/+WlLRtmZXX311\nqRrR0dE6duyYDh06pE8++UTdu3dXaGio2rZtW+X8eXl5euutt9yvZ8yYodzcXB04cKDScaGhoYqJ\niXG/HjhwoK677jp9+eWXWrdunaZOnaoZM2aoVatWOnDggN544w2lpKRIKgqUFQfUSvr73/+udevW\nyWQy6cEHH9Rvv/2m0aNHS5K+//57ffDBB3K5XIqMjNT9999f5bMBAAAAAIDGg2AOAAAAAACo0i+/\n/KLU1FT363/961/VGvfMM8+4VwgZM2aMXnzxRc2dO1dms1nLly/X8uXLy4y59NJL9fzzzysoKKjM\ntUceeUQ+Pj569913lZGRoRdffLHMPQaDQTNmzNCDDz5Y3cfzKIPBoJdfflmPPvqovvrqKyUnJ+vZ\nZ58t996pU6fq4YcfLnO+efPm+uCDD3T77bfr1KlTWrVqlVatWlXqnkmTJiklJUXr16+vj8c4K6ZO\nnaoTJ05o2bJlys7O1muvvVbufZ07d9Zbb73l3vKp2JVXXqmtW7fKbrdr7ty5kopWWnruueeqnPvb\nb79Vdna2+/VLL72kl156qcpxN9xwQ5lfzwULFshkMunnn3/Wrl27dN9995W6bjAYNHv2bP35z38u\nt2ZkZKTefvtt3X777crMzNSyZcu0bNmyMve89dZbat68eZU9AgAAAACAxoNgDgAAAAAAOGuuueYa\nDRo0SMuXL9fPP/+shIQEWSwWtWzZUj169ND48eN1+eWXy2AwlDveaDTq4Ycf1rhx4/Thhx9q69at\nSklJkdFoVExMjAYNGqSJEyeqe/fuZ/nJSvP399fChQv1l7/8RZ999pl27NihtLQ0ORwORUdHa8CA\nAZo0aZL69+9fYY3OnTtr9erVWrlypb7++mvFx8fL6XSqS5cumjx5ssaNG6dZs2adxafyPIPBoLlz\n5+qqq67SJ598ol27diklJUV2u13h4eHq3r27rrzySt1www3y9i77MdbUqVNltVr1ySef6NSpU/L1\n9a1wBaEz7d+/32PP4efnp3//+99avXq1vvjiC+3fv195eXkKCwtT//79ddNNN1X6ay0VbdP1zTff\n6N1339W6deuUmJgoh8Oh2NhYjRgxQrfcckuprd0AAAAAAEDTYHBVtNY0AAAAAAAAmrSsrCwNHjxY\nDz/8sGbOnNnQ7QAAAAAAAJx3jA3dAAAAAAAAAOrHkSNHJEmxsbEN3AkAAAAAAMD5iWAOAAAAAADA\nOSg3N1cvvviiwsLCdNlllzV0OwAAAAAAAOclgjkAAAAAAADnoC+//FLHjx/XK6+8In9//4ZuBwAA\nAAAA4LxkcLlcroZuAgAAAAAAAJ7ldDqVk5OjsLCwhm4FAAAAAADgvNWogzl2u0NZWeaGbgMA6lV4\neCC/1wEAAAAAgCaFzzMAAAAA4A/R0cEVXmvUW1l5e3s1dAsAUO/4vQ4AAAAAADQ1fJ4BAAAAANXT\nqIM5AAAAAAAAAAAAAAAAQFNFMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAAgHpAMAcAAAAA\nAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAAgHpAMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAA\ngHpAMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAA0KDWrFmtN954td7q//bbdj3++Jwy519+\neaGSk5NLnYuPP6HZs2/3yLzeHqkCAAAAAAAAAAAAAAAANDH33vtgvdYnmAMAAAAAAAAAAAAAAHAe\nC3pirvxWr/JoTcvY65X/xIKKr1sK9fTTTyo5OVk2m03Dh490X1uxYrl+/PE7eXl5qW/ffrrrrnu0\nZ88uLV78kry9veXv768FC56Tr6+fXnjhaSUmJsjpdOqvf71TF100oMI5ExIS9MADs5Wdna0bbpig\na6+9XrNn365//OMRBQU107x5c+VyuRQREemx94FgDgAAAAAAAAAAAAAAAM6qVas+U8uWMXryyWeU\nkHBSmzdvUl5enuLijmrduu+1ZMk78vLy0qOPPqRfftmoXbt+04gRo3TjjVO0adPPysnJ1ebN3yg0\nNExz5jym7GyT/va327V8+coK53Q47HruuUVyOh26+eYpuvTSK9zX3n9/qUaNGqPrrrtBP/74nb74\n4lOPPCfBHAAAAAAAAAAAAAAAgPNY/hMLKl3dpj6cPBmvwYMvkSTFxrbV3r3BysjIUHz8CfXs2Vve\n3kWRlr59L9Tx43GaPv0Wvf/+O7r33jsVHd1cF1zQS3FxR7Vnz07t3/+7pKLgjclkUlhYWLlzXnBB\nb/n4+EjyUYcOHZScfNp9LSHhpMaOvUGS1Lt3X48Fc4zVuWn37t2aPn16mfPr1q3ThAkTNGnSJK1c\nWZQ4slqtevDBB3XjjTdq5syZOnHihCRp//79uuyyyzR9+nRNnz5da9as8cgDAAAAAAAAAAAAAAAA\noGlp166DDhzYL0k6dSpRb7752v/Ot9f+/b/LbrfL5XJp166dio1tp+++W6Orr75Wr776pjp06Kgv\nv/xc7dq116hRY7R48VtauPAVDR8+SiEhIRXOeeTIIdntdhUUFOjEieNq3bqN+1r79h21b98eSXL3\n5QlVrpjz73//W19++aUCAgJKnbfZbHrmmWf06aefKiAgQJMnT9aIESP07bffKjAwUCtXrtSxY8c0\nf/58LV26VPv27dMtt9yimTNneqx5AAAAAAAAAAAAAAAAND3jxo3XM8/M0+zZt8vhcGjSpKnKzjap\nU6fOGjFilO6881a5XC716dNXl18+TPv379Ozzy5QQECADAaDHnroUUVFReu55xZo9uzblZ+fpxtu\nmCijseI1anx9ffX3v9+jvLw8zZx5u0JCQt3Xbr75Vs2bN1c//PCdYmJae+w5DS6Xy1XZDWvXrlW3\nbt300EMPuVfFkaSDBw/qhRde0NKlSyVJTz/9tPr166etW7fq0ksv1ejRoyVJw4YN0/r16/X444/r\n+PHjcjgcateunR555BE1a9asygbT0nLr8nwA0OhFRwfzex0AAAAAAGhS+DwDAAAAAP4QHR1c4bUq\nV8wZM2aMEhMTy5zPy8tTcPAfhYOCgpSXl6cePXrop59+0qhRo7R7926lpKTI4XCoT58+mjhxonr1\n6qU33nhDr732mh5++OE6NQ8A5wp+rwMAAAAAAE0Nn2cAAAAAaIwWL16srVu3ljn/9NNPKzY29qz3\nU2UwpyLNmjVTfn6++3V+fr6Cg4M1atQoxcXFacqUKbrooovUs2dPeXl5afTo0e59vEaPHq358+dX\nax7+1QWAcx3/wgwAAAAAADQ1fJ4BAAAAoLGaNOlmTZp0c7nX6uv/x1T2Dxcq3lirCp06dVJ8fLxM\nJpOsVqu2b9+ufv36ae/evRoyZIhWrFihq666yp02uvXWW7Vnzx5J0ubNm9WzZ8/aTg0AAAAAAAAA\nAAAAAAA0ejVeMWf16tUym82aNGmS/vnPf+rWW2+Vy+XShAkT1KJFC/n4+Ojll1/WkiVLFBwcrKee\nekqS9MQTT2j+/Pny8fFRVFRUtVfMAQAAAAAAAAAAAAAAAJoig8vlcjV0E5VhOVQA5zqWfgYAAAAA\nAE0Nn2cAAAAAwB/qZSsrAAAAAAAAAAAAAAAAABUjmAMAAAAAAAAAAAAAAADUA++GbgAAANSey+XS\nriPp8vf1UkgzP4U181WQv09DtwUAAAAAAAAAAABABHMAAGjSMrILlW22KtsspZgKJEk+XkaFNvNV\nWJCfQpv5qlmAjwwGQwN3CgAAAAAAAAAAAJx/COYAANCEJabllzlncziVnl2o9OxCSZK3sSioExrk\nq6hQfwW9CcuRAAAgAElEQVSyog4AAAAAAAAAAABwVhgbugEAAFA7eQU2mfItVd5ndzqVkVOoY0k5\n2n00Q3aH8yx0BwAAAAAAAAAAAIBgDgAATVRial6Nx1jsDp1Iyq2HbgAAAAAAAAAAAACciWAOAABN\nkNXmUKqpoFZjT6XnKa/A5uGOAAAAAAAAAAAAAJyJYA4AAE1QUoZZTperVmNdko4kmDzbEAAAAAAA\nAAAAAIAyCOYAANDEOF0unU7Pr1ONbLNVSRl1qwEAAAAAAAAAAACgcgRzAABoYtKyCmSxO+pc59jp\nHNk8UAcAAAAAAAAAAABA+QjmAADQxCSm5f3xwuWS0VJYqzo2h1PHTud4qCsAAAAAAAAAAAAAZyKY\nAwBAE5KdZ1Fugc39utvHb2vcny9RYPKpWtVLyjQrJ9/qqfYAAAAAAAAAAAAAlEAwBwCAJiQxPf+P\nFy6XOn39sbwtBWqz6bta1zycYJLL5fJAdwAAAAAAAAAAAABKIpgDAEATUWi1K91U4H4dcXCPglKK\nVsqJ2byu1nXzCm06VTLwAwAAAAAAAAAAAMAjCOYAANBEnErPV8l1bWI3fCNJsgUEKnLfTvnmZNW6\n9omkXFlsjjp2CAAAAAAAAAAAAKAkgjkAADQBDqdTyRnmP044nWrz87eyNgvRoYkzZXQ61PLXjbWu\nb3c6dexUtgc6BQAAAAAAAAAAAFCMYA4AAE1AcmaBbA6n+3XUvt8UmJ6iU5eOUuJlYyRJMVt+qtMc\nKaYCZeVa6lQDAAAAAAAAAAAAwB8I5gAA0AScSssr9bp4G6uEK65WbttOyotpq5bbN8potdZpniOJ\nJjldrqpvBAAAAAAAAAAAAFAlgjkAADRymTmFMlvs7tcGh11tfl4rS2i4UvsNkgwGnR48XD7mfEXv\n2VanucwWuxJT86q+EQAAAAAAAAAAAECVCOYAANDIJabll3odvWeb/E0ZShx6pVxe3pKk00NGSJJi\ntqyr83zxybkqtNqrvhEAAAAAAAAAAABApQjmAADQiJkLbcrMLSx1Lnb9/7axGna1+1x6z36yBocq\nZvNPUh23onK4XDp6KrtONQAAAAAAAAAAAAAQzAEAoFE7c7Ucg92m1pu+U0FElNJ69Xefd3n7KGnA\nZQpMS1LosYN1njc9u1AZ2YVV3wgAAAAAAAAAAACgQgRzAABopOwOp1IyzaXOtfhts/xys5V42VWS\nl1epa6eHDJekolVzPOBIokl2h9MjtQAAAAAAAAAAAIDzEcEcAAAaqaQMsxxnbEsVu6F4G6s/lbk/\n+eLL5PTyVswWzwRzCm0OHUoweaRWY5RrtspZx22/AAAAAAAAAAAAgMoQzAEAoBFyuVw6lZZX6pzR\nalXM//0oc3QrZfS4sMwYe1Cw0vpcrIjDv8s/PcUjfaSZCnQ6Pb/qG5uY7DyLdh1N17HTOQ3dCgAA\nAAAAAAAAAM5hBHMAAGiE0rMLVWhzlDrXYscm+ebnKuGKqyRj+X+Enx4yQpIUs2W9x3qJO5WtvAKb\nx+o1tOx8q/Ycy5DD6VJiWp4ysgsbuiUAAAAAAAAAAACcowjmAADQCCWesVqOJLVdv0aSlHBF2W2s\nip0ePFySFLNlncd6cbhcOhCfJYfT6bGaDSUn36o9celyOP/YwurgySxZrI5KRgEAAAAAAAAAAAC1\nQzAHAIBGJr/Qpux8a6lzXoUFitn8k/JaxSqra68Kx5pbtpapQ1c137lFXgWe24Iqv9Cmo4nZHqvX\nEIpCORmlQjmSZHM4dSA+Sy6Xq4KRAAAAAAAAAAAAQO0QzAEAoJFJyjCXOdfy15/lXWguWi3HYKh0\n/OnBw+Vls6rFjv/zbF+ZZqWaCjxa82zJMReFcuwVrPpjyrfoZErZVYoAAAAAAAAAAACAuiCYAwBA\nI+J0uZSSWTaYE7vhG0mVb2NV7PSQEZKkmK3rPdqbJB0+aVKBxe7xuvUpx2zVnqMVh3KKnUjOUXae\n5Sx1BQAAAAAAAAAAgPMBwRwAABqRdFOBbI7SARJvc75itq5XTpsOyu7YrcoaWV17qSAiSq22rJcc\nDo/2Z3cWbfvkbCLbPuWardpbyUo5Jbkk7Y/Pks1e9b0AAAAAAAAAAABAdRDMAQCgEUkuZ7WcVlt+\nkpfVooRhVW9jJUkyGpU0aLj8szMVeXCPx3vMMVt1PCnH43U9Lfd/21edGXSqjMXm0KGTWfXYFQAA\nAAAAAAAAAM4nBHMAAGgkCix2ZeaW3UqpJttYFTs9ZLgkKWbLOs80d4aE1Dxl5hTWS21PyCuw1TiU\nUyw9p1CJaXn10BUAAAAAAAAAAADONwRzAABoJMpbLccnL0ettm2UqUNX5bbrXO1aKf2GyO7nr5jN\nP3myxVIOnsyS1ebZrbI8Ia/Apt1H02sVyil27HSO8gpsHuwKAAAAAAAAAAAA5yOCOQAANAIul6vc\nYE7M//0oo91Wo9VyJMnp56+Uiy5RyMk4NTt1wkNdlma1O3WwkW37lF9Y91COJDldLu0/kSl7HesA\nAAAAAAAAAADg/EYwBwCARiAzxyJLOavPxK6v+TZWxU4PLtrOqtXm9XXqrTKZuRadTMmtt/o14XS5\ndOBEVp1DOcXMFruOJmZ7pBYAAAAAAAAAAADOTwRzAABoBJIy88uc883OUoudm5XZpafyW7erec3B\nw+QyGBSztf62s5KkE8m5ysm31usc1ZGQnKvAX9Yr7Mg+Ga0Wj9RMzjIrpZyVjAAAAAAAAAAAAIDq\n8G7oBgAAON9ZbQ5l5pQNkrTe9L2MDnutVsuRJEt4lDK791HU3h3yyTHJFhJW11bL5XS5tD8+U/26\nRMvPx6te5qiKudAmr7ff0hWvzivqyctbubEdZOrUXaZOPYq+duwua2h4jWsfTjQpONBXgf782AQA\nAAAAAAAAAICa4W+YAABoYMmZZjldrjLnYzcUbWOVeMVVta59evAIRR7YrVbbNurkyLG1rlOVQqtD\nu46kq0+nSAX4nd0fL1wul05sP6BLli6UtVmITg67WmHHDins2CGFnjiidj+udt9rjmr5v5BON5k6\n9VDSoCvk9POvtL7D6dKB+Ez16xoto8FQ348DAAAAAAAAAACAcwjBHAAAGlhyOVsl+WWlq/meX5XR\no6/MLVrXuvbpwcPU+91Fitmyrl6DOZJUYLUXhXM6RyrI36de5yrpdFqeOr/wmHzM+dp2/3yd+NOf\niy44nWqWdFJhcQcVGndQYccOKizuoGK2rlfM1vWSpKSLL9Omp96qco7cAptOJOWqY0xIPT4JAAAA\nAAAAAAAAzjUEcwAAaECmPIvMFnuZ8202rpXB6dTJYVfXqX5O+y7Ka9lGLbdtlMFmlcvHt071qmKx\nF62c07tjpEKC6ncuSSq02lW48hO13rxOqX0H6sRVE/64aDQqr3V75bVur8TL/1h1yNeUqbBjB9Xz\n/cVqtW2jIvftVEbPflXOlZCaq8hQf4WehecCAAAAAAAAAADAucHY0A0AAHA+S8oou1qOJMWu/0Yu\ng6FUoKRWDAadHjJcPuZ8Re/ZVrda1WRzOLU7Ll1ZuZZ6n+vYvpPqu3iBHD6+2nHfk1I1tpqyhkUo\n9aJLtOe2ByVJPT54o1pzuSQdjM+Sw+msS8sAAAAAAAAAAAA4jxDMAQCggdgdTqWbCsqcD0hLVvTv\nO5Teq78KI5vXeZ7Tg0dIkmK2/FTnWtXlcLq091hGuc/nKSlZZsW+9JQCMtO1f9pdymvdvkbjM3r1\nV2rfQWq1faPCD+6p1pgCq11xp3Jq0S0AAAAAAAAAAADORwRzAABoIClZBXK4XGXOt/n5W0lSwhV/\n8sg86b37yxoUrJjN66Ry5qsvTpdL++OzlJJZ/qpAdWGzO5T19ffq+M0nMnXoqkMTZ9aqzv5pd0mS\nLvhwSbXHnM7IV2ZOYa3mAwAAAAAAAAAAwPmFYA4AAA0kOSO/3PNt130ll9GoxMuu9Mg8Lm8fJQ+8\nXEGpSQo9ftgjNavL6XLpwMksnUrL82jduLgUXfjiv+QyGLTjvnlyefvUqk5an4uV1qu/Yrb8pLCj\n+6s97lCCSXYHW1oBAAAAAAAAAACgcgRzAABoALlmq3ILbGXOhx/aq4gj+3R60DBZwqOqVcvXu+o/\nzk8PHi5JRavmNIAjp7IVn5zrkVoZ2YWKfH2RghNP6Oi4acrs0bf2xQwG7Z96pySpxwdvVHuYxebQ\nkQRT7ecFAAAAAAAAAADAeYFgDgAADSApo/ztnTp/+aEkKW7s5GrV8TIYNLBHC3VpEyYfr4r/WE8e\nMFROL2/FbPmp5s16yPHkHMWdyq5TDbvDqeSft6r7yqXKb95Kv8+4t859pV50iTJ69FWbX35Q6LFD\n1R6XYipQqqmgzvOf6wosduWarSqw2GW1OeR0nr3t1AAAAAAAAAAAABqad0M3AADA+cbhdCo1q2yg\nwzcnS7Hr1yg3pq1SLrqkWrWiQv3l7WVU66ggNQ/z17HTOUrKLBv6sQWHKq33ALXYtUWtN34nl9Eo\nL0uhvC0F8rJY5FXiq7elUF6WQhmtVplbxCira09ldu2tguiWksFQp2dPSMuT3eFU19gwGWpR63hi\nlnq/8KiMDrt+u+dx2QOD6tSPJPeqOZfNvUM9VizRlkcXVXvokQSTQoN85efjVfc+zkFWm0M7j6TJ\nai+97ZfRYJCX0SBvL6O8vQzyMhZ99ffzVufWoQ3ULQAAAAAAAAAAgOcRzAEA4CxLMxXK7nSWOd9+\n7RfyslkVd+1kyVi9Re1aRAS6j328vdStbbhaRQbpSKKpzFZZp4cMV4tdW3TJ/NqtMlMYHqXMrj2V\n1bW3Mrv1UlaXXrKER9a4TlKmWaY8q1pEBKhFeKAC/Kr340h2nkUB776tyIN7dHLY1UoeeEWN5y4p\ntnkzJaWbZXc6lXzx5crs0lNtfl6r4GlHlduuc7Vq2BxOHU4wqXfHmr8P54ODJ01lQjmS5HS55HS4\nZHOUvdY6Kqja3xMAAAAAAAAAAACNHX/rAQDAWZaUkV/2pNOpTl99JIevn05ceX216vh5eyk82K/M\n+ZAgX13UNVpJGWYdT8pxhx+O/2mivGxWGRwOOfz8ZfcLkMPPTw6/ADn8/P93zt997PT2UXDicYUf\n3qeIw3sVceh3xWzdoJitG9xz5TdvpayuvZTZtbdOXzJSuW07Vqv3AqtdJ5JzdSI5V2FBfmoZGehe\n/ac8TqdL8TsO6PJ3F8kaHKpdd86p1jzlMRoM6hobppYRgfLz9tLR09lFq+ZMu0tDH/+benz4pn6d\n80K162XkFCopI1+tIj2wes85JDE1T5m5hTUel5pVoHYtg+uhIwAAAAAAAAAAgLOPYA4AAGeRudCu\n7HxrmfMtdvyiZkkJOj5mvGwhYdWq1TwioMLtoAwGg2KighQd5q/jSblKysiXwz9Ah268rUb9FjRv\npdQS22r5ZaUr/PDvijj0u8KPFH1ts+l7tdn0vXouf03bHnxKCcOvqdEcpnyLTPkWeRkMig4LUIuI\nwDKBo/jkHPX4f4/Jp8CsbQ8+JUt4VI3mKOZlNKhn+whFhPhLkmKig3Q6I19mi11Jg4fL1LG72m5Y\no/3T71Jemw7Vrnv0VLbCmvmx0sv/5BXYdCwpp1Zj00wEcwAAAAAAAAAAwLmjevtkAAAAj0jKLGe1\nHEmdV6+QJB0dO6XatVqW2MaqIj7eXuoaG6Z+XaMVHOBb7doVsYRHKXnQMO2/abZ+mb9Eqz/eqK+W\n/6htDz4lp7ePBj/zd/V69yWpnK26quJwuZScZdbuuHRt2Zes40k5KrDYlVdgk/PTTxWzdb1SLhys\nE1feUKve/by91K9LtDuUIxWtntMpJrTohcGg/VPvlMHpVI8Vb9Wsd6dLh06aatXXucbhdGr/iUw5\nXa5ajc8rtMlcaKv6RgAAAAAAAAAAgCaAYA4AAGeJ0+VSSqa5zPnA5FNqtXW9Mrr1kalrz2rVCg7w\nUZC/T7XnDgn01UVdo9QtNkx+3l7VHlclg0EFzWN0Ysx4/fjKR8qNaaseK97UJU/eLW9z+SGk6ii0\nORSfkqutB1K077c4XfjaU3L4+mnHvU9IFawSVJlm/j7q1zVKzQLKvmeRof6KCC4K65y6dJSy23VW\n2x9XK+j0yRrNYcq3KCE1r8a9nWuOJmbLbLHXqUaqqcBD3QAAAAAAAAAAADQsgjkAAJwlGdmFstrL\nriTT8euPZXC5FDd2crVrtajGajlnMhgMahUZpIEXNFeHliHyNnr2x4Dctp304ysfK6XfELXevE4j\n7v2LgpIS6lz3gjefk39WuvZN+5vyW7er8fiwZn66sEuU/H0r3maqc+sQGQ0GyWjU/ql3yuh0qPtH\nNVs1R5KOJ+Uo/zxe7SXVVKCkcsJnNa6TRTAHAAAAAAAAAACcGwjmAABwliRllA0sGK1Wdfz2U1mC\nQ5VwxVXVqmM0GNQiPKDWfXgZjWrXMliDLmiuNlHNigIpHmILCdPGp9/SkXHTFBp/VCPvvlHRu3+t\nVS3fnCx1X/GWOn77mUwdu+vwn2fUuEaL8ED16RQpb6/Kf+QJ9PdRTGSQJCnxsjHKadNB7b//rwJT\nTtVoPqfLpYPxWbXexqkpK7TaddhD23mZ/7eFGQAAAAAAAAAAQFNHMAcAgLPAYnMoK7ewzPk2G9fK\nLztLx6+aIKeff7VqRQT7yccD21H5eHupc5tQXdy9uVqE1T7ocyaXl7d2/e1Rbb/vSfmY83X5P29V\nx9UrqjnYpYgDu3Tx8//UtZOHqfe7i2QLCNT2B+bL5V39rbskqV2LYPVoF17t4FG7lsHy8TJKXl46\nMOUOGR12df/43zWaU5JyC2w6mphd43FNmcvl0oH4LNmdZVeEqq00trMCAAAAAAAAAADnAII5AACc\nBenZhSpvDZVOq1fIZTDo2DWTql2rNttYVSbAz1s92keof9doRQT7eazu8atv1Ibn3pG1WYj6vzpP\nF73yhAz28ldB8SrIV4evV2rUXRM08t7Jav/Df2Vu3kq7Zj2sr5f9qKyuvao9r0FS1zZh6tAqpEb9\n+ngb1f5/YxKGX63cmLZqv/ZzBaQl16iOJJ3OyNfJlNwaj2uq4lNylZ1v9WhNgjkAAAAAAAAAAOBc\nQDAHAICzICO77Go5oXEHFLV/p5IHDFV+TNtq1fHxMioytHor69RUcKCv+nSKUp+OkQoOqNnqNBVJ\n7z1APy5eKVPHbur01ce6fM5t8s3O+mPO+KO68LUFGjt5mAa8/LhCjx9W4tDR2vDsUn27dI2OTJgh\nW0hYtefzMhjUq0OkYqKCatVvTGSgmvn7yOXlrYOTZ8nLZlO3lUtrVetYUo6SM8tuX3auyc6zKD7Z\n8yEks8WuXLNnwz4AAAAAAAAAAABnm3dDNwAAwLnO4XTKlGcpc77zl0XbO8WNnVztWtFhAdXemqm2\nIkL8FRHir1RTgfILbHI6XXI4XUVfXUVfi//ncLrkdBV9tdgc5dYzt2itdYs+0MAX5qjNpu81avZE\nHZx0m9r+9LWi926XJBVENtfh8Tfr2NUTVRjVolZ9Gw0G9eoYqfA6rPpjMBjUqXWodselK37kWF2w\n/HV1XLNSB//yVxVGNq9xvcMJJvl6GxURUj9hqoZmdzh1ID6r3NWgPCHNVKjgQN96qg4AAAAAAAAA\nAFD/DC6Xq77+LsUj0tLOn20gAJyfoqOD+b3uHJduKtDvJzJLnfPJy9G1k4fJEhahNe+tlby8qlXr\noi7RCglqnEGFxLQ8HT2VXfENTqcuWP66ei5/zX0qpd9gxV07WaeHDJfLu26r9HRpHarW0c3qVKPY\n78czlJ5dqA5rVmrAS4/r8PibtfuOf9aqlpfRoAs7R52TAZN9JzLrdcspf18vDb6gZb3VBwAAAFB7\nfJ4BAAAAAH+Ijg6u8Bor5gAAUM8ycspuY9Xu+//K21Kg/ddOqnYoJ9DPu9GGciSpTXQzeRkNOpxg\nKn8FFaNR+2+arawuPRV5cLdOjBqnvNgOHpk7JjLIY6EcSeoUE6rMHItOjL5eF3ywRB2//lgHJ/1V\nlvDIGtdyOF3aeyxD/bpEK8Dv3PnRKykjv15DOZJUaHUox2xVyDkYagIAAAAAAAAAAOeHc+dvhwAA\naIRcLlfZYI7LpU6rV8jh46PjYyZUu1aL8EAPd+d5rSKD5GU06OBJk5wVLMqXNGS4koYM99icYUF+\n6twm1GP1JCnAz1uto4OUkOrSwUm36aLF89VjxZvadeccqRZbiVntzv+Fc6Lk4129IFaj5XTKtmev\n0o+mKqwaCy86vX2U075Lrd43SUrLKiCYAwAAAAAAAAAAmiyCOQAA1KMcs01Wu7PUuea7tigk8bji\nR46VNSyiWnUMklpEBNRDh57XPDxQRqNB+09kVRjO8RR/Xy/17BAuYy1DH5Vp1yJYKZlmHb9qgrp/\n9Ja6rFqmyP07dWDKHTo9eLhkNNaontli195jmerbOVJeNRzbWBSmZSp05jRFb92kmBqM2zXrYR2Z\nMKNWc6aZCtSptWeDVwAAAAAAAAAAAGcLwRwAAOpRRnbZbaw6rV4hSTp63ZRq1wlt5id/36bzx3ZU\naIB6dzTq92MZctRTOMfLaFCvDpH1tgKNt5dRHVqF6FCCUxuef1e93ntFbTau1aVPzJapQ1cdmDxL\niZeNqfZWZJKUY7Zq/4ks9eoQIUM9hInqQ6HVrjRToXIOxqnf32cq5MQRpVw4WNkdu1VrfPvvV+mC\n5a8rftQ4WUPDaz6/zaHsfKtCG/E2bgAAAAAAAAAAABVpOn/DBwBAE3TmNlYBacmK+b91yurcQ5nd\n+1a7TsuIxr+N1ZnCg/3Up1Ok9h7LlN3prHpADfVoG65mAT4er1tSy4hAnU7PV26bDtoyd5GCT8ap\nx4o31fanrzXk6QeV02axDk6+XSdHXCuXV/V+rMrIKdThBJO6ta15SOVsKQ7jpJkKlGO2KvTYIQ2d\nO0uB6Sk6et0U7bzzkWoHkgqat1LfJc/qguWva9ffHq1VP2lZBQRzAAAAAAAAAABAk9Q091EAAKAJ\nKLDYlV9oK3WuwzefyOh0KG7sZKmaK6Z4GQyKDvOvjxbrXWgzP/XtHCkfL8/+yNGhZYiiwup/ay+D\nwaDOJbZRym3bSb8+/Ly+WbpGx66aoGZJCRr4whxddcuf1GHNShmt1mrVTco060RyTn21XSsWq0OJ\nqXnaeThNW/anKO50tnLMVjXf8YuGPzBVgekp2n37Q9r5t7k1WiUo4N67lRfTVp2++kjNEo/Xqrc0\nU4Fc9bwtGgAAAAAAAADg/7N33/F11uX/x99n75O9Z9M9obR0gAwZsgS/iD+WgqCIqDi+XxXFicpQ\ncQOCgMhQEBQHe+9VCnSvtGmbdKTZ4+x5//7ogNKRc9KkzXg9H48+Qs+5r899pZak9n5zXQAGA8Ec\nAAAGyYen5ZiSCdU98ZDiHp+ajj8j43OKcl2ymIfvt2yf267DxxfKMUArp4pzXaop9Q3IWZnI8TpU\n/KEQUKiiRu/+37V64p6nte6sC+XqaNXs3/1Yp11yisb9568yx/ZcYfZhG7cF1NwRGqy2s9LaHdFb\nK7dp3dYe9YTfDxfVPPNvHfODK2ROxPXm936t+k9dmnGgTNr+ezevwKfWb/9Q5lRSM+78db/6iyW3\nr7MCAAAAAAAAAAAYbobvUz4AAIa4jp7dwxkVbzwvV2e7Nn7sbKVcma+mKhmGa6w+zOO06fDxhXLa\nDiyc43PZNLE6d4C6ylxduV85bvsek38ixeVadOUP9cS9z2rNOZfIHujRzD9ep1M/f7ocXe19nlu/\nqXuP3ycHW2dvVKsbu7TbPBrD0OS/3qI5v/qekm6PXvn5Xdp8/OlZnWuSVLsjQOW54P+pc/osVbzx\nvAqXvt2vPtu6I/2qAwAAAAAAAAAAOJQI5gAAMAiSqfQeEz7GPnK/JKnh4+dnfI7TZlGu1z6gvR0q\nLodVh48vlMtu7Ve9w2rRtDEFh2R6kNNu1cwJRTp6epmOnlaqmeOLNKk6TzUlPhXluGStqNCKK76r\nx+97Tg0fP0+e1uaMpsMYklY3dSmeSA3+J7EXPcGYVmzoVPoDa6JMyYRm/faHmnbvzQqVlOuF3/5N\n7dNnZ312ca5LHqdNkmQ2mxW85jpJ0mG33yil01mfxzorAAAAAAAAAAAwHPXvyRgAANivzt7obmEH\n/8a1Kl66UC0z5ytYNSbjc4rz3DJlsTpoqHPat4dz1m/pUSCSUCSWVCZRC7PJpKlj8uWwD8w6rANh\ns1qUY7Uox7NnYCoaL1b4sN+pt365ap/9j9af9il1TJu13/MSqbTqN3VrWl3BYLW8V4FwXMvWdyr1\ngd+n1nBI86/9hkrfeU1d46bo1WtvUyy/KOuzTdIe68ZcxxyllpPPVMmzj6r6xcfVdOKZWZ0ZT6bV\nHYwrz+fIuh8AAAAAAAAAAIBDhYk5AAAMgg+vJxr72N8lSevOvCCrc0rzXQPW01DhsFk0uTZfcyaX\n6CMzynTE+CJNqMxVeYFHOW67LHsJIk2oypV/L0GYocZptyo/z6Pojb+RJB1x889kSiX7rGvvjaq5\nIzTY7e0Sjia0tKFDyQ9MrnF2tOr4b16k0ndeU/OcY/Xir+/tVyhHkkry3HLvmJbzQamf/kwpm03T\n7/qtzLHsV3ixzgoAAAAAAAAAAAw3BHMAABhgacNQZyC26+fWUFA1z/1X4cJSNc//aMbn+N32vYYb\nRhKL2Sy/x67yQo8mVOVq5oQifWRGmeZMKtGU2nxVF/s0tjxHpfnuQ91qVkzz56v9f85T7vo1GvvI\nAxnVrNvSo0is7xDPgYrEklrS0KFE6v1Qjn9DvU74+vnKa1ilhtPP1es/uUUpl6df55tNpj2m5exk\nG1un1k9/Xu62Zo3/931Zn93WHdltEhUAAAAAAAAAAMBQRzAHAIAB1huK7xZ6GPPUP2ULh9Rw5gUy\nLJlvkSwZZmGUgWIymeR2WlWc61JduV9Vxd5D3VK/pK+9TgmvX9Pu+YMcnW19Xp9KG1qzqXtQe4ol\nUiz3z9kAACAASURBVFra0KFYIiVJsvd06fBbrtXJXz5HntZmLbv0G3rv69dk9fv0w0ryXHI59l1v\nufpqxf25mvz3P8nR1ZHV2YlUWt0fCL0BAAAAAAAAAAAMdQRzAAAYYLutsUqlNP4/f1XS4VTDGedm\nfIbZZFJx7shbYzWamIqL1fXt78sWDmrGnb/KqKY7GNPm1uCg9JNIprWsoUOReFLmeFwT/nGXTrvk\nFI3/798ULinXaz/5o1Zf8EVpL6vEMrW/aTk7mfLy1Pn1q2QLhzTlvpuzvgfrrAAAAAAAAAAAwHBC\nMAcAgAHW0ft+MKfijefladmixpM/oYQ/N+MzCvxO2ax8mx7uTJdfrsDEqap97hEVLl2YUc365l6F\no4kB7SOZSmvZ+g4FI3FVvvKUTrnsDB12x42S2azFV3xXT93xaFZr1valNN8tp73vaTuWK76oUPUY\n1T3xD/maGrK6R3tPlHVWAAAAAAAAAABg2OCJHwAAAygcTSgcS+76+YSH75Yk1Z/92azOKcljWs6I\nYLEocuNvJUkzb7lWplSyjwIpbRha1dg1YOGTdNrQ8g2dsr67UB/9309r/rX/K3fbNtWffbGe+MtT\nWvvJz8qw2Q/4PmaTSTUl+5+Ws4vNptCPfipzOqUZd2Q2TWinRCqtrl7WWQEAAAAAAAAAgOGBYA4A\nAAOo/QNrrPJWL1XhykXaOvc4BavGZHyGy25Vfo5zMNrDIWCaN08d51yg3A31GvvI/RnVBCIJNbUE\nDvjeacPQ+jeWauL3rtSJXz9fhSsXafPRJ+npOx/Vki9dndUUp76UF3jksFsyvt505lnqmTVP5Qte\nUtGit7K6V7brrLqDMfWG41nVAAAAAAAAAAAADASCOQAADKAPrrGa8K97JElrP5ndtJyaUp/MJtOA\n9oVDK/3TaxX35WjaPTfJ2dGaUU1TS/DAwiS9PYpd9V3NOe9EVb/0hDrHT9WLv7pXb/74JgUravt/\n7l5YTCZVlXizKzKZFL/u55Kkw27/pZROZ1za3hNVOr3/iULBSELrt/bqrRXbtHhdu5asa1d3kEk7\nAAAAAAAAAADg4CKYAwDAAEkkU+oNbQ9SuFqbVfnK0+qum6jWw+dlfIbbYWWN1UhUVKSe7/xAtnBQ\nM+7MbHVT2jC0urGrzwDK3kSffk6+ubNUfc+tiuXka8FVP9fzNz2k9hlHZn1WJsoLPXLYMp+Ws8sR\nR6jrzHOU17BKNc89knFZMp1WZyC6x+vReFJNLQG9s7pV76xpVVNrQNFESpKUShta1tBBOAcAAAAA\nAAAAABxUBHMAABggnb0x7YxQjHvkbzKnU1p79sVSFtNvakp9MjEtZ2T6/GUKTp6umucfVeHShRmV\nhGNJrW/uzfgWwd6wQt/6jiovPkf27k6tuOhKPXXXE2o66ROSeXD+2GcxmVRVnOW0nA9I//RnStkd\nmnb372SJZr6iqq1r+7WJZFpb20NatLZNb61s0frmXgWjib3WpIzt4ZyuAOEcAAAAAAAAAABwcBDM\nAQBggLTvWGNliYRU9/hDiuYVqumjH8+43uO0qTiXaTkjlsWiyK9+J8Nk0hE3/0ym5N7DIx+2uS3Y\nZ5AkEktq/RtL5D/zFNXee6tCJRV68Td/1cqLvqKUc3B/T1UUeWXvz7ScHdIVler9wpflbm/RhIfv\nzriuvTeq5es79OaKbarf3K2eUGZrv1KGoeXrCecAAAAAAAAAAICDg2AOAAADIG0Y6twRzKl95j+y\nhwJad+b5StvtGZ/BtJxR4Mgj1fmpC5Wzca3G/fdvGZetaepSMpXe4/VEMqV1W3q09U/3aOanT1fB\nqiVq+ugZevbWf6lz8mED2fleWcwmVRV7Dvic1De/pXh+oSY9eKccnW2Z1aQNtfdGlTayX/W1M5yz\n899ZAAAAAAAAAACAwUIwBwCAAdAdiCmVNqR0WuP/fa9SNrvWn3F+xvVepuWMGsZPr1Xcn6up990s\nZ0drRjXRREoNW3p2/TyVTqupJaB33t2oku/9r+Zd+78yJ5N6+1vXa8F3b1TS4xus9ndTWeSVzdr/\naTk7GV6fQt++WtZoWNPu+cMAdLa74vfe0JT7bpHS74ebUoah5Rs6CecAAAAAAAAAAIBBRTAHAIAB\n0LHj4X7Zgpfk29qkxhPPVCyvIOP62tKDE6TAoWcUFKj36h/JFg5pxu03ZlzX3BlWe3dEzR0hvb2q\nVR2vva3jv3yO6p78p7rGTtazf3xYjR87WzpIU5esZrOqir0Ddl7ys5cqMm6ixjz1sHLXrRywc22B\nHs27/puaet/NKlvw8m7vpQnnAAAAAAAAAACAQUYwBwCAAdDRs/3B/oSH75Ykrf3kZzOu9blsKmRa\nzqhiXHKpglMPU82Lj6loydsZ1y3f2Kk1TV2q/Oe9OvFr58m/ab3qz75IL/z+7wpWjRnEjvdUVeyV\n1TKAf5S0WhW9/hcyGYYOv/UGqR8rqvZm6r03ydHbLUma9ODte5y7M5yz899hAAAAAAAAAACAgUQw\nBwCAAxSMJBRNpJS7bqWKly7UtllHq7d2fMb1taX+QewOQ5LFouivfivDZNLMm3+qkndeV8Hyd5Vb\nv0K+pga5W7bI0dUhSyQkpVK7yuy9XTrqmit1xC3XKun26LWf/lFLvvQ9pe32g9q+zWJWRZFnwM9N\nHn+CAieeqqJl76ji1WcO+Dz/hnqNe/QBBSpq1HzkMSpcuViFyxbucV3aMLRiI+EcAAAAAAAAAAAw\n8KyHugEAAIa7nQ/zx//rHklSfRbTcvxuuwpynIPSF4Y2Y9ZsdZ37GeU/eJ+O/d5l+702ZbMp5XDJ\nnEjIGouo9bC5WvDdXypaUHyQut3ObDLJbjOrqmiAp+V8QOK665V++Xkddscv1Tz3OKUd/fz3wzA0\n85ZrZUqntfhL31Pc51fZwlc1+YHb9eqMOXtcvjOcM6U2T4U5TLACAAAAAAAAAAADg2AOAAAHqKM3\nKmdHq6pfelK91WPVMvsjGdfWlvoGsTMMdakbf61VYyYr1bxNlnhMlmhk+8dYRNZoVJZ4VJbY+z/M\nqZQaTzxLq8/9vGSxDGgvZpNJdqtZDrtFDptl10enzSK7fcdH28Dec29SdeMUvOwK+W+7SRMevlur\nL7yiX+dUvvKUipcu1NZ5H9W2OcdKkloPm6vSd19Xbv0KdU+YukdN2jC0cmOXptSI9XIAAAAAAAAA\nAGBAEMwBgFGuKxBTLJFSab77ULcyLMUSKfWG45r2yP0yJxOqP/tiyWTKqDbHY1e+n2k5o5rTKe+V\nV+jdNW1KpNIH5ZZmk0luh1Uep1Uel01up1Uep01Ou0WmDH/vDrb4t7+jxEMPaPIDt2vjx85WtLAk\nq3pLJKzD/vRLpWw2Lf7id3a9vur8L6h4yQJNevAOvfXD3+21Nm0YWtnYpakmE9OsAAAAAAAAAADA\nASOYAwCjWOO2gDZu65Wx4+eEc7LX2RuVJRpR3WN/V8yfq8aTzsq4trbUP4idYbhw2q2aUJWrFRs7\nB/RckySP0yaP0yr3Bz66HEMngLMvhs+v0Pd+pNxvfU3T7/qNFl71i6zqJ/39drnbt2nVBV9UqKJm\n1+utRxylzvFTVfnaM/I1rVegum6v9TvXWk0bk094DgAAAAAAAAAAHBDzoW4AAHDwJZIpLW3o0IYP\nhHLWNHWppSt8SPsajjp6oqp57hE5Aj1q+Pj5Sjsye4if63Uoz+cY5O4wXBTlulRe4BnQM8dV5Gj2\npGJNrs1XTalPhbkuuZ3WIR/K2Snx6YsUmTJdtc89ovxVSzKu82xt0sR/3qVwYYlWnf+F3d80mbT6\n/MtlMgxN/Mef93tO2jC0YkOnugKx/rQPAAAAAAAAAAAgiWAOAIw6vaG43l3Tps5AdLfXDUlrmrrV\n1h05NI0NQ+m0oa6eiMb/+16lrTY1nHlBxrVjSn2D2BmGo7EVfrkdAzPMsLzAo4oi74CcdchYLIr9\n/EZJ0uG3Xi+lM1v1ddiffiFLIqGlX/i2Uq49w05bjj5JvVV1qnnuEblam/d7VsowtHx9h3qChHMA\nAAAAAAAAAED/EMwBgFFkc1tQi9e1K5pI7fX9tGFoVWOX2nsI52SiozeqooWvyr9pvZqOP13RguKM\n6vK8DuV4mZaD3VnMZk2pzZf5ACfa5PscGleZM0BdHVqJeUcpeMYnVLB6qapfeKzP60sWvqqKN19Q\n2/TZ2nT86Xu/yGzW6vMukzmV1ISH/9LnmSnD0NL1HeoNxbNtHwAAAAAAAAAAgGAOAIwGyVRaKzZ2\nat2WHqUNY7/Xpg1DKzd2qbM3ut/r+hKJJbWhuVdGH/cbruKJlNZt7tGEh++WJNWf89mMa8eU+Qep\nKwx3XpdNdeX9//3hdlgHJNwzlMR+cq1SDodm/PnXskRC+7zOlIhr5q3XyzCbtejL35f282vQ9NEz\nFC4qU90T/5C9u7PPHlJpQ0sbOhQIE84BAAAAAAAAAADZIZgDACNcMJLQe/VtWa2oShuGlm/oVFcg\n+/UtqXRaG5p7tXB1qxpbAtq4LZD1GUOdYRha3dQlx9pVKln0ploPm6uesZMzqs33OeX32Ae5Qwxn\nlUVeFfidWdfZLGZNryuQ1TKy/niXrq5R6IqvytXRqkkP3rnP68b/56/ybd6oho+fr56xk/Z7pmGz\na82nLpU1FtX4/9yXUR/JdFpLGzoUjCSy6h8AAAAAAAAAAIxuI+vJDQBgNy2dYS2qb1M4lsy6Nm0Y\nWr6+Q93BzMM5LZ1hvb1yeyBn52SexpbAAU/fGWqaWoLqDMQ04V/3SJLqP5n5tJzaMt9gtYURZFJ1\nrhxWS8bXm00mTanNl8thHcSuDp3Y1/9P8eJSTfznX+Ru2bLH+86OVk356y2K+XO1/OKvZnTmhtM+\npVhOnsY9cr+soWBGNYlUWkvWtSsUJZwDAAAAAAAAAAAyk1EwZ8mSJbrooov2eP2FF17QOeeco/PO\nO08PPfSQJCkej+ub3/ymzj33XH3uc5/Txo0bJUmNjY264IILdOGFF+rHP/6x0un0wH0WAIDdpA1D\n9Zu6taqpS6kDWCWVMgwtW9+hntD+17f0huNaVN+mVU1diiVTe7y/qrFL0Xj24aChqCsQ08ZtvXJ0\ntav6hccUqKhR89zjMqot9DvldzMtB32zWS2aVJOX8fXjKnKU53MMYkeHmNeryI9+Iks8phl3/mqP\nt6f/+TeyRcJafsk3lPDnZnRkyulS/dkXyx7sVd3jD2bcSiKV1tJ1HQpHR8bXNAAAAAAAAAAAMLj6\nDObccccd+sEPfqBYbPeJCYlEQjfccIPuuusu3XfffXrwwQfV3t6uhx56SG63Ww899JB+8IMf6Gc/\n+5kk6YYbbtA3vvEN3X///TIMQ88///zgfEYAAHUHYtraERqQs1JpQ8saOtQb3jOcE0uktLqxS+/V\nt6lnL+/vlEiltXJj164pOsPVzs/XkDTp73fIkoir/pxLJHNmA+hqy/yD2h9GljyfQ1XF3j6vqyz0\nqrzQcxA6OrTinzpPkcNmqerlp1S4dOGu1wtWLFLtc/9V17jJWn/ap7I6s+GsC5VwezThX3fLHM98\nOlgsmdKShnZF+jGNDAAAAAAAAAAAjC597juorq7WTTfdpKuuumq31xsaGlRdXa2cnBxJ0qxZs7Rw\n4UKtW7dOxx57rCSprq5ODQ0NkqQVK1Zozpw5kqRjjz1Wr7/+uk4++eQ+GywqYuUHgJFvoL/WtQbi\n8nmdA3rmxtaQZk/2KsfrUCptqLG5V+u39CiZMjK6lyGpI5TQlDEFA9rXwWIYhhauapHdaZOvrUNj\nH/+7IqUVaj/nQvlsfU/BKc5za0x1/kHoFCNJQYFXxopm9QT3HnwrzHVp1qRimUymg9zZIfKnW6R5\n83TE7b/Qm3/+ryRp1m3XS5LWfOun8uVkGVDyOrXp7M+o7m9/0qSXH9Omsz+dVfn61pDmTi0dsSvE\nAAAAgL7wd7cAAAAA0Lc+nyKccsop2rx58x6vB4NB+Xzv/x8vj8ejYDCoyZMn68UXX9RJJ52kJUuW\nqKWlRalUSoZh7Hpo5PF4FAgEMmqwrS2z6wBguCoq8g3417qGpk7FEnuulDpQL77dqNoyvza3BhXp\nx2qqFeuiMpIpFee6Bry3wbahuVeNLdv/dxp3x+9lice1/NNfVm8sLcWifdaPLfXyPQ39UpHnUnNr\nQKn07hOnPE6bKvKcam8PHqLODoG6KXKdfa5y/v2QCv91v2QYylmzXI0nnqlNddOkYN//Ln7Y8jM/\nrZqH/qKa+27TqhM+IcOSecgmEJRee3eTDh9fmPV9AQAAgOFuMP4+AwAAAACGq/39hwuZ7d7YC6/X\nq1Do/TUpoVBIPp9P55xzjrxery688EI9++yzmjp1qiwWi8wfWPMRCoXk97POAwAGQyAcl9HeLnfL\nFmmAV0clUmmt3dzdr1DOTmuauhSOJgawq8HX2RtV045Qjrt5s+qeeliBiho1nnRWRvV+t125Xsdg\ntogRzOWwakJl7m6v2SxmTRuTL6ul33+UG7Zi1/xUKadL0/7ye03/y++UcLm19LJv9f+8/CJtOOWT\n8m7brKqXnsy6vjsUY6UVAAAAAAAAAADYp34/zRk7dqwaGxvV3d2teDyud955RzNnztSyZcs0f/58\nPfDAAzr11FNVVVUlSZoyZYoWLFggSXrllVc0e/bsgfkMAAC7ae8I6uQvfVJnXHSSzjz3I/rI9y/X\nlHtvUtmbL8rR2Zb1eeZ4TP4N9ap47RlNeuB2Tb3793J2tPa7v1Ta0MqNXUql0/0+42CKJVJa3dSl\nnRGnKfffKnMyoRUXXZnxZI3KYu/gNYhRoSTfrZIdk6bMJpOmjckfteuT0mXlCn/t/+Ts7pCjp0ur\nPv0lRQuKD+jMNf/v80qbLZr04B1SP742tXZFDuj+AAAAAAAAAABg5Mr6ic6jjz6qcDis8847T9/9\n7nf1+c9/XoZh6JxzzlFJSYlsNpt+//vf67bbbpPP59N1110nSfrOd76jH/7wh/rNb36juro6nXLK\nKQP+yQAAJOOVV+Vu36ZAebXMqaTKFr6qsoWv7no/XFiqrglT1TlxurrGT1PnhKlKeHxyt22Tb/MG\n+TZvlHfLRvk2b5Rv8wa5W5tl+tDknfH/+auWXfoNNXz8fMliybrHYDSh+k09mlyTd8Cf72AyDEOr\nNnYpntz+oN67eYNqnv2vemrGadNxp2V0hstuVVGOczDbxCgxvipXveGEqku8yhnlE5iiX/ma7A8+\noKjMqj/74gM+L1xWqU3Hn66aFx5V2YKX1Tz/o1nVt3SFVVO67xGVAAAAAAAAAABg9DIZxgDvORlg\n7CkGMNIN5E72SCyp2JVf1fj//k0v//zPaj3iKDm6OpS3doXy6pcpv377R1dn+251KZtNlsSe66Ui\nBcUKVNYqUFGrYGWtApW1crc2a9rdv5c92KvO8VP13tevUdeEaf3qd2JVrsoKPP2qPRg2NPeqseX9\n/23m3PBt1bz4mN744e+15ZiPZXTGuIocVRYxMQcDI55IyW7LPgw3IoVCCkQS6pVNoUhCwUhCoUhC\nqX7+0da/oV6nfPET6ph8mF743QOSyZRV/RHji+T32Pt1bwAAAGA4Gsi/zwAAAACA4a6oaN//Ae/o\n3IEAACNUR3dEE19/XnFfjtpmHClJiuUVaNucY7VtzrHbLzIMOTtalb9mmfLqlyu/frnswV4Fymt2\nhW8ClbUKVtQq6d57aGbzMadoxh2/VO1zj+jEr56rdWddqOWXfF1JT3YTI9Zu7pHXZZPPPfQeZnf2\nRncL5fg31Kv6pcfVNW6ythx9UkZn2CxmlRW4B6tFjEKEcj7A45HPI33wq45hGIrEkgpGEgpGkrvC\nOrFkqs/jesdM0Jb5J6jizRdUtHSh2g6bk1U7LV1hgjkAAAAAAAAAAGAPBHMAYASJL3hb7vZt2njS\nWTKstr1fZDIpWliirYUl2pphwOTDYnkFWnjVL7TxY5/UEX/4icb/92+qfPVpLfnid7Xp+NMznjSR\nNgyt3NilWROLZLWY+9VLX5KptLa0heRyWuV12uR29v2tLxZPaVVj126vTb3vZpkMQ8s/+zXJnFmv\n5YUeWTK8FsCBM5lMcjttcjttKv7Aprx4IqVQNKlwLKnIzo+xpKLxpD44X2f1+V9QxZsvaNLfb886\nmNPaFdHYihyZs5y0AwAAAAAAAAAARjaCOQAwQiSSaeU896QkactR/QvcZKvt8Ll69rb/aMI/79KU\n+2/TvBu+pdqn/6X3vvojhSpqMjojEk9qdVOXpo0pGPD+Esm0lja0KxB5f02XxWyS12mTx2WTd8cP\nj8u6K0CTNgytbOxUIpXeVZO7doUqX3tWHZMP07Y5x2V0b7PJpPLCobumCxhN7DaL7DaL8nyO3V5P\n75iwsyusk3+UOmfOVem7ryt33Up1j5uS8T0SqbQ6e6IqzHUNdPsAAAAAAAAAAGAY4z/jB4ARoqM3\nqvLXn1PS4VTL7I9kVWs7gGk1abtdqy+8Qk/f/oiaZx+j0vfe0CmXn6XJf71F5ng8ozPae6La1Brs\ndw97k0imtGTd7qEcSUqlDfWE49raEVL95m69t7ZNry1t1turWrRyY6dWbuxUT2j3vqfee5MkbZ+W\nk+E0jJI8lxysHQKGNLPJJI/TpsJcl6pLfJpYnSfLt74pSap77MGsz2vpigx0iwAAAAAAAAAAYJgj\nmAMAI0RkyXL5N61Xy6yjlXJmPrHB7bBq7pQSVRV5D2gFS6i8Wq9d9ye9+YPfKu7P1bR7b9bHrviE\nipa8nVF9w9Yerd/aq7Rh9H1xH2KJlBav61Awmuj7YkmGpHAsqdbuiNp7oru9l79ykcoXvKzWGUeq\ndeb8jHuoKvZm0zKAISJ+wslKlVeq+sXHZA2Hsqrt6I0q+YFpWwAAAAAAAAAAAARzAGAESKcNuZ9+\nXJK05ejs1liVF3hktZg1tiJHsycWKdfr6LtoX0wmbT72VD115+OqP/siebc26fhvf1ZH/OEaWUN9\nT8Rpag1oybp2xeKpfrcQi2+flBPKMJTTl2n3/EGStCKLaTkFfqfcTtuA3B/AQWaxKPqZi2WLhFX1\n4uNZlaYNQ61MzQEAAAAAAAAAAB9AMAcARoCuQEzlrz+ntNmirXOPz7jObDKpJN+96+dup02HjyvU\nlNr8A1rDlPR4teRL39Pzv3tAPTXjNPaxB3XK5WepZOGrfdb2hOJ6Z02rOj40uSYT0XhSi9e1KxxL\n9qftPRQteVsli97StllHq3367IzrKouYlgMMZ9FPXyzDbFbdEw9lXdvSFR6EjgAAAAAAAAAAwHBF\nMAcARoDe+vXKX7NMbYcdqYQ/N+O6ohynbNY9vxUU57o0Z3Kxqot9B7TeqmvSDD13y8Na8Zkvy9nZ\npmO/f7mOvPFq2Xq791uXSKW1bEOHGrb2ZLzaKhJLavHadkXiAxPKkWFo6o5pOcs/+7WMy3wuu/J8\nBzB1CMAhly4rV/zkU5W/doVy61dkVdsTiisyQOFAAAAAAAAAAAAw/BHMAYBhzjAMOZ/q3xqrskLP\nPt+zmM2qK/dr9sQi5WcRNLFZzMrzOlRV5NXY8hyZnA6tvPireu7mf6hz/FTVPvsfnfqFM1X+2rN9\nnrWpNagla9sV7SNsE44mtHhtu6KJPVdg+TfUq/aph2WJZDfFouTd11W0/F1tmX+CuibNyLiuqnjf\nv6YAho/oxZdIkuqe/EfWtayzAgAAAAAAAAAAO5kMI8NRBIdIW1vgULcAAIOqqMh3QF/rekJx+c7+\nuEoWv6VH739J0cKSjOrcDqvmTM7sWklq646oYUvPbuEXt8Mqj8smr9Mmr2v7D4d99xVYwUhCy9Z3\nKJZIyZRKasI//6Kp994sSyKuTceeqkVf+b5ieYX7vbfNYtak6jwV5Dj3eC8UTWjJunbFk+nd3zAM\n1T32dx1+289lScQVy8lT/Scv0bqzLlTS08eqKcPQiV89V/n1y/XMrf9Wz9hJ+79+B6fNorlTSmQ6\ngClDAIaIVEp5s6bJ6OrSYw+8oqQ789Cdy27V3CmZf30FAAAAhqMD/fsMAAAAABhJiop8+3yPiTkA\nMMz1NDaraOlCdUyakXEoR5LKCrKb7FKU69KRk4s1uTpPM8cX6SPTyzRncomm1uarptSnghznHqEc\nSfK6bDpifJG8TpsMi1VrzvuCnrntP2qfMlNVrzylUy77uKqff1TaT05012qrLbuvtgpGtk/K+XAo\nxxoKaN71/6dZN/1USZdba//nIplSKU3/y291xkUnasq9N+13nVbZWy8qv365Nh17asahHEmqLPIS\nygFGCotFsc98VrZIWFUvPZ5VaSSeVG8oPkiNAQAAAAAAAACA4YRgDgAMc5ann5A5ncpqjZXZZFJp\nviv7e5nNKsl3K8djl9WS+bcQh92iw8cXqsC/feJNsGqMXvz1fVr0pe/JEo9r7i+u0tE/+pLc27bs\n95xNbcHtK6viSfWG41qyrl2J1O6hnNy1K3TyVz6lqpefUtu0WXr21n9r8Ze/p8fve17LLv1fGRaL\npv71jzrjohM1/c+/lqOrY/ebpNOads8fZJjNWnHxlRl/jlazWaUF7oyvBzD0RS+8SIbZrLonsl9n\nta0zu/V5AAAAAAAAAABgZCKYAwDDWDiaUNFLT0tSVsGcohynbNY9p9sMJqvFrGlj8lVRuGNSj8Wi\ndWdfpKdvf0QtM+epfMHLOu3SU3XkL78j/4b6fZ7TG47r3TVtWrquY/dQjmFo7CN/0wnfuEDerU1a\ndf7levnGuxUpKpUkJT1erb7gcj1+73Na/MXvKOnyaNKDd+r0i0/SYbfeIGd7iySp8tWnlbt+jRpP\n+LgC1WMz/vzKCz1ZhZUADH3p8gpFT/yY8uuXK3ftiqxq27oju034AgAAAAAAAAAAo5PJMIb2EwP2\nFAMY6Q5kJ/vmDS2accw0Bcsq9cwdj2Vcd/i4QuV6Hf2650DY3BZUw5Ye7foGZBiqfuExTfr7YS9p\nogAAIABJREFU7cppXCdJ2jr3eK0+/wvqmHpEn+dZQwHN/s0PVfXq04rl5GnBVb9Qy5HH7LfGHI9p\nzFMPa9KDd8rd1qyUzaaNp3xSRYvflndrk5768+MKVdRk9PmYTSbNnVIih+3ghp0ADD77M08q5zPn\nqeGM8/Te16/JqnZabb4Kc7OfTgYAAAAMBwfy9xkAAAAAMNIUFfn2+Z71IPYBABhgpmefkSUe05aj\nMp+W43ZYD2koR5Iqi7xy2i1atbFLKcOQTCY1nXimmj56hsoWvKxJD96h8gUvqXzBS2qfeoRWn3eZ\nmuccJ5n3nEiTV79c8677P3mbN6lt+my9dfWvFC0s6bOHtN2hhrMu1PrTPqWa5x7R5L/frrGPPShJ\nWn/apzIO5UhSca6LUA4wQsVP/JgSpeWqfuFRLbn820q5PBnXtnRFCOYAAAAAAAAAADDKWa655ppr\nDnUT+xMOxw91CwAwqDweR7++1sUTKTl+c6NyN9Rr8RVXK1pQnFFddYlPOR571vcbaG6nTfl+hzp7\nYkqld8zOMZkUrBqjjaeeo5aZ8+Xo7lDJordU/eLjqnztWSVcbvVWj5XMFskwNO6/f9P86/5P9kC3\nVl14hd751nVKev3ZNWKxqHv8FDWcdYECFbVKur1aduk3snr4Prk2T/aDvBoMwEFiNkuBXrleeVGh\nskp1j5+acWk0nlJ5oUcWs2kQGwQAAAAOjf7+fQYAAAAAjEQez74HI7DKCgAOsf6Oft7W3KWJR01T\nwuPVE/c9L5n6fvBrNpk0f2qJbEMoRBKNJ7V8faeC0cRe3/dvqNekh+5U1YtPyJxOKVRcpvpzLlHR\nsndU+dqziubka8F3f6nWWUcf5M63y/c5NWNswSG5N4CDw7xls/JnTVPX+Kl6/qaHsqqdUJmr8sLM\ng34AAADAcMEqKwAAAAB43/5WWe25EwQAMCykXnpJ9lBAW486KaNQjiQV5TiHVChHkpx2qw4fX6h8\nn3Ov7/eOmaC3v/NLPXn301r7ic/I0dOlmbfeoMrXnlXrYXP07G3/PmShHEmqKvYesnsDODjSFZUK\nHXeS8tcsU+66lVnVtnSFB6krAAAAAAAAAAAwHBDMAYBhKJVOy//sk5KkLUeflHFdacHQnNpgtZg1\nvS5fVUX7DrmESyu0+Cvf1+P3Pa/lF39VS77wbb3887syXuE1GPxuu/J8+x5LB2DkSH7u85Kkuiey\nm5jTE4orEksORksAAAAAAAAAAGAYIJgDAMNQV3dEZW88r5g/V+3Tjsioxu2wDukQiclk0tiKHE2u\nyZNlPxOA4rn5WvWZL6v+/31Oshya6T9mk0k1JT4dNo4VVsBokTjxZMVKylT9wmOyREJZ1TI1BwAA\nAAAAAACA0YtgDgAMQ7HX35Srs01b558gw2LNqKZsiE7L+bCSPLcOH18op21ordzaKd/n1OyJxRpT\n5pfFzLdRYNSwWhW+4CLZwiFVvfRkVqUtnZFBagoAAAAAAAAAAAx1PFEEgGHGMAx5nn5ckrTlqMzW\nWJlNJpXmuwazrQHlc9s1a2KRcr1DZ8KP027RtNp8zRhbILczszAUgJEl/dlLZJjNqnviH1nVReJJ\n9YTig9QVAAAAAAAAAAAYygjmAMAw0xOMqfS1Z5V0utUy66iMagpznLJZh+YEmn2xWS2aMbZAlYXe\nQ9rHzrVVR04qVmHu8Ak3ARh46YpK9R5zggrWLFVOw6qsals6WWcFAAAAAAAAAMBoRDAHAIaZ0HtL\n5NvapOYjj1HantlEmeGyxurDzCaTxlXmaFJ1nswm00G/f4HfqSMnsbYKwPsSl3xOklT3+ENZ1bV1\nR5Q2jMFoCQAAAAAAAAAADGE8ZQSAYcb15GOSpC1HZ7bGyu2wKs83dFZC9UdpvluHjy+Uw3Zwpv64\n7FZNH1Og6XUFcjlYWwXgfcYppypaVKqaFx6VJZL5FJxEKq3OnuggdgYAAAAAAAAAAIYigjkAMIwE\nIwkVv/KM0labmucel1FNab57kLs6OPxuu2ZNKFKOxz5o9zCbTKot3b62qiDHOWj3ATCMWa3qPfdC\n2cIhVb38ZFal27pYZwUAAAAAAAAAwGhDMAcAhpHAinrlrVullsPnKenx9Xm92WRSWcHICOZIkt1m\n0WHjClU+CKu5/G67Zk0sUm2pX2bzwV+bBWAYufRSGWZz1uusugIxGayzAgAAAAAAAABgVCGYAwDD\niO2J7NZYFeY4ZbMenPVPB4vZZNKEqlwdNrZQOe4Dn55jMZk0tjxHM8cXyuO0DUCHAEY6U3WNOo86\nXgVrliqnYVXGdam0oVA0OYidAQAAAAAAAACAoYZgDgAME7F4SoUvPSXDZNLWo07IqKZsECbLDBV5\nPodmTijStDH58vYzUJPrcWjWxGJVFXtlMjElB0DmohddKkmqe+IfWdUFwvHBaAcAAAAAAAAAAAxR\nBHMAoA+b24JatLZNm1qDisQO3qQDwzAUjCS0pT2kVY1dWrFwtQpXvKeOKTMVyyvss97tsCrP5zgI\nnR5ahTkuzZ5UrCk1eXI7rBnVWMwmja/I0eHjC+V2ZlYDAB9k+/jpihQWq+b5R2WJhDOuC4QTg9gV\nAAAAAAAAAAAYangaCQD7kDYMrdvco60dIUlSTyiuhq098jptKsx1qjDHJa9r4FYfJZJp9Ybi6g3H\n1ROKKxCOK5U2dr0/5pVnZTKMjNdYlea7B6y34aA4z63CXJdaOsNq3BZQNJHa63X5PocmVOXKaedb\nIID+M9ls6vjkBaq8/feqfPVpNX7s7IzqekNMzAEAAAAAAAAAYDThqSQA7EUyldaKDZ3qCsb2eC8Y\nTSi4LaGN2wJy2a0qzHGqMNelHI+9z3PThqF4IqV4Mq14IqVYIq1tvTE1belWuI9pPBWvPydJGQVz\nLCaTygpGVzBHkswmk8oKPCrJc2tre0iNLQElUmlJktVs1tgK/4he7wXgIDvvfOn236vk3TcyDuaE\nY0ml0mlZzAyuBAAAAAAAAABgNCCYAwAfEokltWx9R59BGUmKxJPa1BbUpragHFaLCnKc8nvsiidS\nSuwM3yTTu/55Z0jkg3xeZ5/3Klz2jooXvanuuokKlVXt91qX3aqpY/Jls1r67H+kMptNqiz2qrTA\nrS1tIYWiCY2tyJHDNnp/TQAMPMe0KYr7c1WwanHGNWnDUDCcUI535K8aBAAAAAAAAAAABHMAYDfd\nwZhWbOjca4CmL7FkSls7QrtWXw0EV+tWzbjjV6p++UlJ0rpPfHq/1xfluDSxOldWC5MYJMlqMaum\n1Heo2wAwUplMihw+WzmvPCdHZ5ti+UUZlQUI5gAAAAAAAAAAMGoQzAGAHZo7Qlq7uUdpwzjUrcgS\njWjiP+7SxIfulDUWVefE6Vr0pavVOWXmXq83m0waU+ZXVbH3IHcKAKNbcu5c6ZXnVLBysbZ+5OSM\nanrD8UHuCgAAAAAAAAAADBUEcwCMeoZhaP3WXm1qCx7qViTDUOUrT2nGHTfK09qsSH6h3vvqj9V4\n0lmSee9TcBxWi6bU5jF9AQAOAdO8eZKkwiyCOYFwYjBbAgAAAAAAAAAAQwjBHACjWjKV1urGLrX3\nRg/4LHM8JmdXu8zxuEJllTKstqzqc9et1OF/vF5Fy99VymbT6vMu06oLrlDS7dlnTZ7Xock1ebLb\nLAfaPgCgH1IzZyltsahg5aKMayLxpBLJlGxWvnYDAAAAAAAAADDSEcwBMGpF40ktX9+pYHT/kwss\n0Yi8WzbK2dkuZ9eOH3v5Z3uwd1dN2mJVoLJGvTXj1VszTj212z8GK6plWHb/0mvr6tARt/xSdU/+\nQybD0Jb5J2rJ5d9WqKJmv33VlPhUW+qTyWTq/y8CAODAeL0Kj5usvLUrZI7HlbbbMyrrDSVUkEMw\nBwAAAAAAAACAkY5gDoBRKRhJaFlDh2LJ1F7ft0QjKn37FVW98pTKFrwka2zfE3ViOXmKFJaoa/xU\nRfMLlbZY5W9qkL+pQTmNDbtdm7LZFKgco96aceqtGSfDZNKkf94lWzCgnpqxWnzF1WqddfR+e7dZ\nzJpck6d8vzP7TxwAMOCis46Ud81y5TasVOfkwzOqCUTiKsjh6zgAAAAAAAAAACMdwRwAo048kdLy\n9XuGcsyxqEoXvqqqV55S+VsvyRoNS5ICFTVqOeIoRQqKFc0rVDS/UNG8IkXzCxXLzd/3yirDkKut\nWTkb18nfuP1HTuM6+RsblLuhftdlCZ9fi778fTWcef4e03Q+zO+2a0ptnpx2vnwDwFCRnjtPuv8v\nKli5OONgTm9o/9PaAAAAAAAAAADAyMCTXQCjSjptaMWGTkUT20M55nhMpe+8psqXn1L5Wy/IFtke\nxgmWV2vTcadp07GnqqduotSfdVEmkyLF5YoUl2vbnGM/2ITcrc3yN66Vq7NNPSefoU6ru8/jKgu9\nqqvwy8zqKgAYUkzz50mSClYu1tpzMqsJhOOD2BEAAAAAAAAAABgqCOYAGFXWbOpWTziuwqVva8xT\nD6vijRdkCwclScHSSjWcdaE2HXeausdO7l8YJxNms8KlFQqXVkiSfF6nFNz3qiyr2ayJ1bkqynUN\nTj8AgANTU6tYQZEKVy6SDCOj7x+JVFqRWFIuB38cBwAAAAAAAABgJONJAIBRo6kloJausCpfflLz\nrv+mTIahUEm5Gs44V5uPO01d46cOXhinn3yu7aureHALAEOYyaTgjFkqePEpudqaFSkuz6gsEI7z\n9R0AAAAAAAAAgBGOJwEARoX27ojWN/eqeNGbmvuL7yjpcuuNH9+k1sPnDbkwzk6VRV7VlbO6CgCG\ng/jsOdKLT6lwxSJtyjCY0xtOqDhvkBsDAAAAAAAAAACHlPlQNwAAgy0YSWhVY5dy167QUT/5qgyT\n9PqPb1brzPkDFsoxSSrwOzV9TIHmTy1VbalPDqulX2fZLGZNq83XuIocQjkAMFzMmydJKli1JOOS\nQCg+WN0AAAAAAAAAAIAhgok5wCjS1h2R32OXw9a/wMhwFEuktHx9h5xbGnXM978oaySst77/G7XN\nnDcg59ssZpUVeFRW4N5tHUltqV/VJT61dUe0pS2k3nBmD1/97u2rq5x2vjwDwHBimT1LaatNBSsX\nZVwTjCSUNgxCmAAAAAAAAAAAjGA8+QVGifbuiFZs7JTFZFJ5oUfVJV7Z+jnRZbhIpw2t2NApo7VF\nx159mZzdHXrvyh9q87GnHvDZOR67ygs9Ksp17fOBqtlkUkmeWyV5bvWG4trSFlRbT1Rpw9jr9VVF\nXo1hdRUADEsml0u9E6Yqd81yWaIRpZyuPmtShqFQJCGf234QOgQAAAAAAAAAAIcCwRxgFAhFE1rV\n1CVp+0PATW1BNXeEVVnsUWWRV1bLyNxqt6apS+G2Th3//cvlbd6kFZ/5shrOurDf51nM24M25YUe\neV22rGr9Hrv8nnzVJVLa2h5Sc0dI8WRakmSzmjVtTL4Kc/p+iAsAGLoiM2crd+Vi5dUvV/uMIzOq\nCYQJ5gAAAAAAAAAAMJKNzKfxAHZJJNNavr5TqfTuU1qS6bQ2bgtowcoWbWoNKp3e+xSX4apxW0Bt\nrT06+porlbdulRpOP1crL7qyX2e57FaNr8zV/KmlmlCVm3Uo54McNovGlPk1b2qpJlXnqSTXpaNm\nlBPKAYARIDFnriSpYNXijGsCGa46BAAAAAAAAAAAwxMTc4ARzDAMrWrsVCSe3Oc1iVRaDVt7tLkt\nqJoSn0oL3MN+lVJrd0QbtnRp3i+uUvGSBdp89El676s/krL8vBw2y6D9mphNJpXmu1Wa75bLYVVw\nQE8HABwK5vnzJUkFK7MJ5iQGqx0AAAAAAAAAADAEEMwBRrD1W3vVGYhldG0skVL95m5tag2qtsyn\n4lyXTMMwoNMbjmvNxk7NvPV6Vb36tNqmz9aCq38lWSwZn2GzmFVd4lNFoUdm8/D7NQAAHBqO2mqF\ni8tVuHKRZBgZBUJD0YSSqfSIXSsJAAAAAAAAAMBoRzAHGKFaOsPa1Jb9HJZIPKlVjV1qagmqwO+U\n32NTjscumzXzYMtACEcT6gzE1BuKy2wyyWIxyWoxy2I2yWIxy2oxyWre/tGy43XDMLRifacm/O1W\njXvkfnXXTdTrP7lFabsjo3tazWZVFntUWeTlASkAoF96px+h0ucfk2drk0IVNX1eb2j71Jw8X2bf\nqwAAAAAAAAAAwPAypIM52zpC2tISkMdpk9tplcsxpNsFhozecFxrNnUf0BmhaEKh6PvrNdwOq/xu\nu3weu3I8dnmc1gGdqJNMpdUdiKkzEFNnIKpoPNWvc8Y88ZCm3fMHhUoq9Op1tyvh9fdZYzGZVF7o\nUXWJ96AHkAAAI0t01pHS84+pcOWijII5khQIxwnmAAAAAAAAAAAwQg3ppEt3MKb1zb27fm4xmeR2\n2uRxWuVxbf/odlrltA/pTwM4qOKJlFZs6FTaMHZ73dneogkP360tR5+kjmmzsj43HEsqHEtqW1dY\nkmQxm+R32+XfEdRx2q07ptqYZDFnNm0mEI6rKxBTZ29MveH4Hj1nq/z15zTrDz9RLCdPr9xwh6IF\nxfu93mwyqTTfrZpSnxw2AjkAgAOXnjNXklSwarEaT/6fjGoC4UTfFwEAAAAAAAAAgGFpWCVaUoah\nQCSuQCQudb3/usVsktdpU47XoXy/Q36PXeYBnOQBDBdpw9CKjZ2KJXafNuNrXKdjv3e53G3Nmvjw\n3dr8kY9p6WXfVKi8ut/3SqUNdQVj6grG9njPbDLtWDm1c92Uecc/b187lUob6gpEFU+m9zzYMOTf\nuFZlC15W+VsvqmD1EpnSe7luH5JOt1699k8KVo7Z5zU2i1lFuS5VFXuZxAUAGFC2WTOVdDhVsHJx\nxjWBcHwQOwIAAAAAAAAAAIfSiHginUob6gnH1ROOq6k1IKvZrFyfXfk+p/L9DibqYNRYu6lbPaHd\nH+4VrHhPH/nRl2UP9GjNpy5V4Yr3VPnaMyp/60Wt/cSnterCK5Tw5QxoH2nDUDplaHs+qO+VVOZ4\nXEVLF6pswYsqf+sleVq2SJIMs1ldYycr6XJndl+bXasuuFxdE6fveQ+TSXk+h0ry3SrMcRLeAwAM\nCqfHpe4J01Sw/F1ZQ0ElPd4+a6KJlGKJFNPbAAAAAAAAAAAYgUZkYiWZTqu9J6r2nqgkye2w7grp\n5HjtGa/ZAYaTLe0hNXeGd3ut/PXnNO+Gb8mUSuntb9+wfaWGYajy5Sc148+/0cSH71btM//Wys98\nRQ1nni/Dajto/Tq6OlT29ssqW/CSSt59XbbI9t4Tbq82HXeqts79qLYdeYziOXkHdB+v06aSfLeK\n81w88AQAHBTBw2ercNk7yl+zVK1HHJVRTSAclyPHNcidAQAAAAAAAACAg21EBnM+LBxLKhwLanN7\nUGaTSbleu3I821de+T02gjoY9rqDMTVs6dnttbrHHtQRN/9UKbtTr//4JrUcecz2N0wmbT7+dG09\n6kSN/899mnz/nzTz1us17tH7tfSyb2nr/BOkAZ4mY4mE5G9sUE7jOvkb16lw+bvKX7NMJsOQJAXK\nq7XhtI9q69zj1T591gEHhGwWs0ry3CrJd8nntg/EpwAAQMbis+dI992mgpWLsgjmJFRIMAcAAAAA\nAAAAgBFnVARzPihtGOoMxNQZiEnavt7G47TuCOnY5Xfb5XKMul8WDGPReFIrNnQqvSPkIsPQlPtu\n1tS//lHRnHy9du1te13tlLY7tObcy7ThY5/U1PtuVt3jD+noa65U62FztOTyq9Q9fmrWvViiEfma\n1iunca38G9fuCuJ4Wrbufm+zRW3TZ6t57vHaOu+jClbWHnAYyGYxK9frUHGeSwWsqgIAHEpz50iS\nClYuybik90OrKAEAAAAAAAAAwMhgMoydT/OHntWNnVpW33rQ7+uwWuTz2OR325XjscvnsfOQHwck\nmUrLMCSbdWCnM/1/9u47Tq663OP450zdqbuzfVM2vYckm1ASQKqggCiKgCIKgoiI5dIEQZGOinrx\nIgJ2RVQUVECvXrqUNNJJ75tsrzM7vZ77x0IgpOxsSbKbfN+vV16bPef8fr9nNpnds+c853naQwm2\nNISIJTMAGNkMs//nDsb+60kiVSN59d6fEx0+Kq+5fDu2MOPn9zNs0X8wDYPaD36MlpnHYk0msCUT\nWN//J5XAluj+aE0mcLc04mmq21UF5x2JQCmhUePpevtPaMwEQqMnkPH4+vXarYZBoddBkddJwOfE\n67JjDNH3aVmZj9bW8KEOQ0REBkgynaXwmJk4Q508/dRCyKM6o81i4cQZVQchOhERERGRgaHrGSIi\nIiIiIu8qK9v3/W+VhtmLZCZLMpSlLZQAwGGzUFXioarETYFDXzLpvfU7OukMJxle6mVkuQe7zdqv\n+UKRJFsbuwi95+l6ayLO3HuuY9iiV+gcP5XX7nmUZKA07znD1eN4465HKF82n5k/+z6jn/87o5//\ne97jU4ES2mYcQ2jU+HcTcUaPJ+UP9Oq17YvFMPC57bsScfxKmBMRkUHKabcSnFbDyOefxrdzK+FR\n43sck8nliCXSuAv6185RREREREREREREREQGl8Miy8QWi+Kv3Ywlncx7TLysimjliLza56QyOWqb\nw+xoDlPsL2B4qYeAzzlkq3PIwVXXEtmV5LWjJUx9a4SqUg8jy7047b1L0AnHUmxr7NrViu0djlAn\nJ952NSXrVtI0+3gW3PY/ZNyePsXbfvQJbP7Q84xf8RqWrhAUFGC63JguF2aBC9zdH9/53HS5oKAA\nrNbudlrRFNlwkmRXglQ83acYoLs1lcdlx+fqTsYp9DqwWQe24pCIiMiBEqs5Bp5/mtK1y/NKzAEI\nx5SYIyIiIiIiIiIiIiJyuBlaiTmmiau1iaIt6ynaun7XR2/Djj5NlygqoX3qLNqnzqJtag2dE6aR\ncxbse3mgvStBe1eCAoeVYW9X0elv9RM5fHXFUmxt7NptW9Y0qWuN0NAWpbLYTXWFt8dKTLFEmm2N\nYVpD8T32uZvq+cAtV+Kv20btaefy5vV3Y9odfYq3IuBm7DA/TruV9PBzez3eYhgUep0Uep2MqfKT\nzmTpCCfp6ErSGU6QyuT2Oq7AYcXrsnf/KbDjddtVnUpERIa0zDHHAlCydgXbzrogrzFdsRQVxe4D\nGZaIiIiIiIiIiIiIiBxkg/rOt2PzBqpfeLU7AWfLeoq2rMMZDu12TNJfRHPNXEKjJ5L2ePc6jwHY\nbRbsNgsOqxW7FWxbNuNa9ibD57/I8PkvApCz2giOn0Lb1Fm0T5lF+9Qa4uVVe50zkcqytbGL7U1h\nygoLGFbqodDrHNDXL0NbJptj3fbO7ioye5EzTRraozR1xKgIuKiu8OFy7v6WjCcz1DaFae6M8c4s\nRjqFt3Envrrt+Oq2MeGvv8PV0cr6Cy7nrSuuB0vvq8r43Q7GDy/E7+lbQs++2G1WKgJuKgLdNxnD\nsRQdXUkSqQyedxJxXHZVwhERkcOObcZRpF1uStauyHtMONb3SnMiIiIiIiIiIiIiIjI4Gaa5j6yB\nweB9raLCw6oJjptCcNxkguMmExo7mXhpxa7jLIaBy2nDXWDDU2DDXWDHW2CjwGnDso+2U7kdO0i9\nPh9j0SLcy9+kaPM6LJl3b4rESivYcfq5vHX5dT22vfIW2Bk3vJCATwk6Amu2d9Aa3LPCzb4YQHmR\ni+pKHzYDmt7aROytdXjqtu1KwvHV1+JpqsPIvVt5xjQMVn7xG2w6/7Jex+i0WRkzzE+lns4/pMrK\nfLS2hg91GCIiMoDSmSzWc86iYvlC/v7kAtL+oh7HWAyDE2dU7fO8VURERERkMNH1DBERERERkXeV\nlfn2uW9QV8xJXncD7b5SUlOmk5o0FdPnxTAMXAa4DYPhBhiGgWF038hwOqy9vpFhqa6m4OJquPhT\nZEyTbe0hEouWYlm8EN+qpZStXsrkJ35B57gp1J1y9n7niiTSrN7WTs2EMrwue39eugxx9W3RXiXl\nQHertMwbb2D/8y+pWL6AEYk9xyeKSmibWkN4xGgiI0YTHj6a4LgpxCqH92oti2EwosxLdYVX1WpE\nREQOALvNSuf0OVQsX0jJ+pU0HXtyj2Nypkkklh7wCnYiIiIiIiIiIiIiInLoDOrEHOcP78feGsYO\neA7CeoZh4C8twn/O6XDO6cSTGTavXs/kj57CrEe+S9MxJ5HZR7usd2RzJqu3tTNnYhl2m/UgRC2D\nTSSeZkt9qOcD35HLUbX4P0x+4heUrlkGQFf1OEJjJhAeMYbw8NG7EnHSXn+/4ystLGDcsMI92maJ\niIjIwErMOQYeg5I1y/NKzIHuto9KzBEREREREREREREROXzozvx+uJw2XHOm03DFVxj5yI+Y9thP\nWPmlm3scl0hlWbO9kxnjStSK4AiTyeZYu72DXB4d4oxMmpGv/C+Tn/gFhbWbAWg47mTWX3Ql7dPn\nDGhcNouFsqICKovdFHrVak1ERORgyB19DAAl61bmPaYrlqZ3dfBERERERERERERERGQwU2JOHszr\nbyDyzJOM//vv2X7GeYTGTe5xTDCSZHNdiIkjiw5ChDJYbNoZJJbM7PcYazzGmH8/xcSnfo2npZGc\nxUrt6eey/sIv0DVm4oDFYjEMSvwFVARcFPsLsFiUJCYiInIwuavKCY0aR8n6VRjZDKa151PvcCx1\nECITEREREREREREREZGDRYk5eXAVetl0wx3UXPd5Zj94Jy//6PdgsfQ4rqE9isdlZ3jpwWjEJYda\nY3uU5mB8n/sdXZ2Mf/oPjH/69zi7gmScBWz62CVsPP8yYpUD82y8ARR6nVQEXJQVubBZe/5/KiIi\nIgeGz22nfcosCmu3ULhtI8HxU3scE0tmyGRz+hkuIiIiIiIiIiIiInKYUGJOnhwfOZu6v57JiNef\nY/Tzf2f7hz6R17gt9SHcThsBn9oHHc6iiTSb60J73WdJJpj22E8Y//QfsCXjpHyFrLnSNWdgAAAg\nAElEQVTky2z+6GdIFRUPyPo+l53ygJvyIhdOh3VA5hQREZH+sVkthGfMgX8/RcnaFXkl5gCEY2md\nO4qIiIiIiIiIiIiIHCb0KG6eSgsLWPuVW8kUuJnx8/txdHXmNS5nmqzd3kG8h/ZGMnRlcznWbu8k\na5p77AtsXM0ZXz6fyX/+JSlfISu+dDP/+P2LrP3cVwckKafAbmXOxDLmTCpnZLlXSTkiIiKDTGrO\nsQCUrF2R95iuaO/aWeVMk46uBKl0tlfjRERERERERERERETkwFPFnDxZDIOiKeNY89lrmPnz+5n+\nqwdY9l935DU2nc2xelsHNRNK1ZbgMLS5LkQ0kd5tm5HNMPmPjzL18UewZDNs/Phneevy68g5CwZs\nXbfTxoxxJRQ49DYWEREZrKxTJpPyFVKyLv/EnHAs/8ScrmiKDTuDu85FXA4bfo8Dv8dBoceBp8CG\nYRi9jltERERERERERERERAaG7uj3QlWJm8Uf/yyjn/sbY//1F7Z/6BN0TJmZ19hoIs262k6mjynW\nzZHDSHNnjMaO2G7bvHXbOPZ7N1OyYRWx0krevPFeWmrmDei63gI7M8aV4LCrQo6IiMhg5vM6aZ88\ng6o3X8PZ2UYyUNrjmHAs3eMx2VyO7Y1h6lojjPvb7xj93N959bu/JF4YIJ7K0NzZfX5itRj43N1J\nOn53d8KO3aZEcRERERERERERERGRg0VX5XuhwGEjUOxj2VdvwzBNZj94B2TzbxnQ3pVgW2P4AEYo\nB1M8mWHjzuC7G0yTcc88zhlXf4KSDauoPf1cnvvZ0wOelFPocTBrQqmSckRERIYAr8tO+9QaIP92\nVslMlkRq321Qg5EkSze0srM1QumKRcx69HsEtqxj/NO/3+PYbM4kGElS2xzmrW3tvLG6kcXrmtm4\nM0hrME46k+vbCxMRERERERERERERkbwoMaeXqkrctM04hu0f/BiBzesY948/9Wr8jpYwze+rsCJD\nU0NblGzOBKCgrZkP3HIls39yN1mHk/nfeoDFN32ftNc/oGsW+wqYMa5ELdFERESGCJvVQnTWMQCU\nrF2e97i9Vc3JZHNs3BlkxeY2YskMzs42jvvuDZiGhZTHx4SnH8caj/Y4dyyZoaE9yprtHcxf3cjS\nDS1saQjR0ZUgm1OijoiIiIiIiIiIiIjIQNLd/V4q8RdQYLey6sobSHn9TP/Nj3F2tPZqjg07g3RF\nUwcoQjlYWkNxAEa+/E8+dNXHqFz6Bo3HfIDnfvYM9Sd9aMDXKytyMX1sMVaL3rYiIiJDSWb2HEyL\nhdI8K+YAdMV2P1fs6EqwZH0LDe1vJ95ksxx33424Otp46/Jr2Xj+ZTjCIcb+7196FZsJhONpdrZE\nWLW1nTfeamLFpjZqm8KEoilyptmr+UREREREREREREREZHe6w99LhmFQVeIhGShl9WVfxxENM/Pn\n9/dqjpxpsmZbB8lU/m2wZHDpiqXItrVz3L3XM/e+G7CkUiz92u28fvejJErKB3y9qmI3U0cFsBjG\ngM8tIiIiB5a7tIjgmEkENq7GSOeXnP1OxZxMNsf62k5WbW0nkX733HHq4w9TsWIhDXNPZeMnP8/m\nj15MpsDNxKd+gyXV9wTwnGkSjCbZ1tTF8k2tLFjdRCS+Z/UeERERERERERERERHJjxJz+qCyxI3F\nMNhyzkV0TJjGqBefpXTV4l7NkcxkeWtrO5ms2gUMRR21DZzx5U9Q/cr/0jZ1Fs898je2fuQiOACJ\nMyPLvUyqDmAoKUdERGRI8rsdtE+ZiTWdIrB5XV5jwrEUrcE4b65roalz9zao5cvmM/XxnxKtGMbi\nG+4FwyDtL2LLORfibmum+qVnByz2dDbHqi1txBKZAZtTRERERERERERERORIosScPnDarRT7nWC1\nsuxr38E0DGY/eGfeT0C/I5JIs3prB7mcWgQMNY5nn8HT0siWj1zEKz98jOjwUQdknbFVfsYNKzwg\nc4uIiMjB4XXZ6Zg2G4CSdfm1s8rmTNZs7yCZ2b3CYkF7C8d99xuYVhsLb/kRaX/Rrn2bPnEpOZud\nSX/+JWQHrjJjKpNj5ZY24kkl54iIiIiIiIiIiIiI9JYSc/poWIkHgM5JR7H1nAsprN3CxL/9rtfz\nBKNJ1m7vIGcqOWeoCMdSlL32AgAbPnk5ptXW4xi308b0McWMH1bIiFIvJf4CPAV2rPupgjNhRBHV\nFb4Bi1tEREQODYvFID5rDgCjn/s7rpbGPs1jZDMcd98NFATbWfWF6+mYMnO3/fGySmpPPxd/3TaG\nL3ix33G/VzKdZdWWdpJptWIVEREREREREREREekNJeb0UbG/AJejOyHjrc9fS6KwmKmP/bRPN1ra\nuhJs3BEc6BDlAGlvaKdi2XxCoycQHVad15iyIhelhS5GlHsZP6KQo8aWcMzkcj4wcxjHT6ukZkIZ\nU0YFGFPpp6rYzdRRAYaXeg7wKxEREZGDxTp+HLWnfoSires580vnMeLVf/d6jqm/+wnlq96k7oQP\nsunjn9vrMesv/AKmYTD5iV/AACd+x1MZVm5uI51Rco6IiIiIiIiIiIiISL6UmNMPVSVuANK+QlZd\neSO2ZJxZj9zXp7maOmNsrg8NZHhygBgvPI81naJ+3ml5jynxF+xzn8NupdDjoCLgZlSlj0nVAcoD\n7oEIVURERAYJn8fJ4pu/z5Kv34ElnWLe3ddy9A9uwRaL5jW+YsnrTPnTz4hUjmDJ9ffAPqruRUaO\nof6EMyje8BblKxYO5EsAIJbMsHJzO+lMbsDnFhERERERERERERE5HCkxpx+qStxY3r4pUnvGx2id\nPocRrz9P1YKX+zRfXWuE2qbwQIa4X6FoilVb2nl9VSNvbW2nriVCJJ4+aOsPRZF4mtJXnweg4fjT\n8xrjsFnwexwHMiwREREZ5HxuOxgG2865kBceeorO8VMZ89zfOOPqj1O8bsV+x7pamzjue98gZ7Ox\n4FsPkPb693v8+ou+AMDkP/18wOJ/r0gizVtb28lklZwjIiIiIiIiIiIiItITJeb0g91mpbTw7Uoo\nhsHSr99OzmZn9oN3YIv2LcFmW1MXDW35PTndV53hJCs2t7F8Uysd4QSZXI72rgSbG0Is2dDC/NWN\nrN3eQWN7lHgyc0BjGWpa28JULXqFeEk5nROm5TVmf9VyRERE5Mjgcdl3JXSHq8fy4o//yLqLrsTT\nVMep117ClN8/hJHd87zLyGY47r4bcIY6WXnVTQQn9nz+0TnpKJpr5lKxfAGBjasH/LUAdMVSrN7a\nQTan5BwRERERERERERERkf1RYk4/DSv17Pp7eNR41n36Ktxtzcz45Q/7POemuiAtwfhAhLebjq4E\nyze2snJLG8FIcp/HpTI5WoJxNuwMsmhdMwvXNrFhRyctnTHSmeyAxzWUZF9/HWc4RMO8U8GS39tH\niTkiIiJiMQw8BfZdn5t2B6uvuI7/fP83JIrLmP67n3DK9Z/D3Vi327jpv/kxZauXsvOkD7Pl3Ivz\nXm/9RVcCMOmJXwzMC9iLYDTJmm0d5EzzgK0hIiIiIiIiIiIiIjLUKTGnn4q8TtxO267P133qSkKj\nxjPuH09QuurNPs1pAutrO+noSgxIjG3BOEs3tLBqazuhWKrX4xOpLI0dMdbWdrJwbTO1TeEj8uno\nSDxNyX+621jVH//BvMZYDIOA33kgwxIREZEhwue277GtdeaxPPfo39l50ocpXbucM68+j+oXngHT\npHLRK0x+4heEh1Wz5Nq74O2KO/loqZlHx4RpjHj9Obx12wbyZeymI5xk7XYl54iIiIiIiIiIiIiI\n7IsScwbAe6vmmHYHS667C9MwOPqB27Ck9l2ZZn9ypsmabR10RXufSANgmiYtnTGWrG9h9fYOwvH0\n3g5i9P/9lWm/fgCy+VXCyeZMtjV1sXhdC00dsT7FNlS1dsYYNv9F0m4PrTOOzWtMwOfEmmdlHRER\nETm87S0xByDtK2ThrT9i8Q33gWly3PdvYu7d13Ls928ma3ew4NsPkPF4e7eYYbD+U1/EME0m/fmX\nAxD9vrWFEmyo7cRUco6IiIiIiIiIiIiIyB6UMTAAKgJurO95grljyiw2nfdZfHXbmfr7n/Z53qxp\n8tbWdqKJvSTVvE8uZxKJp2nujLGtsYs317ewtraTyD7GFrS3cOK3ruKYH97K1D8+yrTHftKr2JLp\nLOt3dLJ0Q8t+22IdThLLVuJtqqPpmA+QczjyGqM2ViIiIvKOQs9+zh8Mg9ozz+P5h/9G+5SZjHzt\n/3CGQ6y4+hZC46b0ab36408nPGI0o194hoK25t5PkM1SufhV7OFQj4c2B+Ns3BnsQ5QiIiIiIiIi\nIiIiIoc36+233377oQ5if2J9aL10sFktBvFkZrckmLbpc6h++Z9UvvkaDfNOJVlc1qe5c6ZJeyhB\nWVEBNquFnGkSTWQIRpK0BOM0tEXZ3tTFloYQDe1R2kIJQtEU6ey+W02NePXfnPitqyjatpGm2ceD\naTJ8wUt0TJpBZPioXsWXyuRo6ogRiafxuhzYbYdnrlcknsb2m19RvnIR6z59FV1jJuY1buKIImzW\nw/NrIgPH43EOie91IiLSP3ablXgiQzSR2ecxaV8h2888j7TbS+vM49j0ic/1qoXVbiwWMo4CRsx/\nAQyD5jkn5D3U2dnGCXd8jal/eBhnqIOG40/vcUwknsZmteDfXwKSiIiIiBw2dD1DRERERETkXR6P\nc5/7DHOQ15xvbQ0f6hDy0hVNsWxT627bKpa8wUm3fIHO8VN58cEnMK22Ps/vtFuxWgwSqSy5Pv6T\n2SNd1Pzkbka99CwZZwGrrryBLedeTNHmtZz2XxeTKXDx/MN/JV4+rE/zWwyDYSUeRlX6DrsEne1N\nXYz75Icp2rKeZ/7yBmmvv8cxPpedOZPKD0J0MtSVlfmGzPc6ERHpn2Qqy+J1zWQP0im4JZXi7EvP\nwBaL8M/HXiTtL+pxTNmKRRz33RtwdbQBECut4J+Pv5xXgpDFMKiZUIrPreQcERERkcOdrmeIiIiI\niIi8q6zMt899h1f2xCHk9zjwFth329Z89AlsP+M8ApvXMuGp3/Zr/mQ6SyyZ6XNSTvnyBZz5xY8x\n6qVn6Zh0FM//9K9s+ehnwDAITpjGiqtvwRkOMe+uazHSfXvSJWea1LVFWLyumbqWSJ9jHYzCG7dR\nvHE1rTOOzispB6CkUG2sREREZHdOh5Xqin2fnA+0nMPBxvMvwx6PMf7ZP+7/4GyWqY89xMk3X44z\nFGTFF29i58kfxt3WjG/ntvzWM03Wbu8ks5/qjSIiIiIiIiIiIiIiRxIl5gygqlLPHttWXHUTiaIS\npv/uQTz1tQc9JksywcyH7+Xkmy6noKOVNZ/9Ci/99+NERo7Z7bit51xI7ennUrJhFTN/dn+/1kxn\nc2xuCLF8YyvZ3NC/KRNLpCl65TkA6o//YN7jSvxKzBEREZE9jSz34nL0vZJib209+0JSvkIm/P0x\nrIn4Xo9xdrRy0je/wLTHfkKstIKXf/QYmz55Gc018wAoX7Eg7/XiqQwbdwYHJHYRERERERERERER\nkaFOiTkDqCLgwmrZvcR/2l/E8mtuxZpKcvQD34G+VJHJZqlc9ApVC17Gv20j1ngsr2GBjas548vn\nM/Fvj9E1ciwv/c+fWPvZazBt9j0PNgyWfu12QqPGM+Hp3zPilf/tfZzvE46n2VwX6vc8h1prMMGw\nBS8B0DDv1LzGOO1WtXAQERGRvbJYDMYNy68C30DIuD1s/ujFOEOdjPn3U3vsL1++gDOv/gQVKxZS\nP+80nv/pX+mYMguA5prjAahYln9iDkBLME5DW7T/wYuIiIiIiIiIiIiIDHEH71HdI4DNamFEmZfa\n5t17K9ed9GHqX/oHwxe8xJh/P8m2sy7Ie86S1Uup+em9BDav3W17oqiEaOVwolUjiVaOIFI5gmjl\nCKJVI0kUlzHpz79g6uMPY8lm2HTeZ1l1xXXknPuv4JJ1uVnw7R/zwa9cwNH//W2C46bsUVmntxo7\nYvg9DqpK9qwmNFR01rUwe+ViOsdPIV4+LK8xqpYjIiIi+1Na5CLgddIZSR6U9TZ97BImPvlrJj75\nK7Z85KLuRO1slqmP/5Spjz+MabWx4ks3s+njnwPj3UTzWFX3eWbZysWQzYLVmveam+tD3e1eXXtJ\nChcREREREREREREROUIoMWeAja70EYwkCUVT7240DJZ99TbKVy5mxs/up/HYk0mUlO93HldLIzN+\n+UOqX/4nALWnnUtozAQ8TfV4GnfiaaojsGktJetX7XOOWGklb95wD+1zTsButWC1GlgtFmxWA6vV\nwGaxYLNaiMTTBKPdN4XC1WNZcu2dzL3vBo6/82u8+D9PkHW5+/U12VwXwucemjdlYok03tdfwpJJ\n0zDv9LzHlRYqMUdERET2b/yIQpZuaCXXl4qKvZQqKmbbhz/JhKd/z8hX/peWmnkc990bKV+5mGjF\ncBbc+iM6J8/Y69iWmnmM/ddfCGxas89j9iZnmqzd3sGcSWVYLSrUKSIiIiIiIiIiIiJHprwSc1au\nXMkPfvADHnvssd22v/TSSzz00EPYbDbOP/98LrzwQtLpNDfffDP19fVYLBbuuusuxo0bx9q1a7nq\nqqsYPXo0AJ/+9Kc5++yzB/wFHWqGYTB1VDFLNrSQzuZ2bU+UVrDqCzcw539uZ/aDdzL/Ow/u9jTy\nO6yJOBOf/BWTn/gFtmSCjklHsfzqb9IxtWbPxbJZXO3NeJrq8DbW4Wmqw9NYR1F7I5bp04jcegeT\nSwJY9rLO+9W3Rtja0EXWNNl56jmUrlnG+Gf+wOwH7+TNG+/ba6z5ypoma7Z135SxWYfWTZnWYILh\nb7exqj/+tLzGWA2DIq/zQIYlIiIihwFPgZ1hJR7q2iIHZb2Nn7yMcc/+kem/fRDro9+nINRB/fGn\n8+b195D2Fe5zXHPNXMb+6y9ULF/Yq8QcgFgyw6adISaPCvQ3fBERERERERERERGRIanHxJyf//zn\nPPPMM7hcrt22p9Np7rvvPp588klcLhef/vSnOe2001ixYgWZTIY//elPvPHGGzzwwAM8+OCDrFmz\nhs9//vNcfvnlB+zFDBZOh5XJ1QHe2ta+2/atZ19A9cv/YPj8Fxn+2nPUn/Shd3eaJiNe/Tczfn4/\nnpZGEoFSln31Nmo/+DHY1xPGVivx8mHEy4fRNuNYAArdDmaOL8ViMXpVDml4mZdifwEbdgQJRpOs\n/OJNFG94i9EvPE3bUXN61X5rb+KpDBt2BJk2prhf8xxsba0hZix+lWjFMEJjJ+c1JuB3YrH0PZFJ\nREREjhyjq3w0d8Z2S+g+UGIVw9lx2jmMfuEZcjY7y6++hc3nXdJjAnbLrLkAlC9fwPpPf7HX6zZ1\nxijyOaks7l8VRhERERERERERERGRoajH8iXV1dU8+OCDe2zfsmUL1dXVFBYW4nA4mDNnDm+++SZj\nxowhm82Sy+WIRCLYbN3pIatXr+aVV17hM5/5DLfccguRyMF5MvhQKSksYGSZd/eNFgtLrr2TrMPJ\n7Ifuxt4VBKBwyzpOueFzzLvnOgo621h/0Rf416/+Re2ZH993Us5euBw2po8t7nNSiMtpY9aEUsYP\nK8RwOlnwrf8m5Suk5id3U7R5bZ/mfK/WUJy6lqHz7x5LZHAtno8jGu5uY5Vn1aASv9pYiYiISH5s\nVgtjqvwHbb3Vn7+WrWddwEv//TibP/7ZvM5vUkXFBMdOpnTNMizJRJ/W3bQzSCyR7tNYERERERER\nEREREZGhrMeiKh/60Ieoq6vbY3skEsHn8+363OPxEIlEcLvd1NfXc9ZZZ9HZ2ckjjzwCwIwZM7jg\ngguYPn06Dz/8MA899BA33XRTjwGWlfl6PGawKinxYq5pIhRJvrtx8hQ2X/FfTHr4exz3yL1kPF5G\nPPMnDNOk+cQPsuFrtxIbMRrXvqfdK7vNwtzpVXhc9n7HXVbmY+LYUt7a4uet237EnBuv4IS7r2X+\nr58l4+vfjaOWcIrR1XYCvsGfvLK1PsToJf8BoPO0D+Pz9hyzYcCkcWU47dYDHZ4cZoby9zoREemf\n0lIvkXSOcDR1wNYwjO6Wq5bCMWz5zv1kcya9+cnTedyJFG1dT/XW1bQfc2KfYqjrSDB3ehHWIdba\nVERERET2TdczREREREREetabbke78Xq9RKPRXZ9Ho1F8Ph+/+c1vOPHEE7n++utpbGzk0ksv5dln\nn+WMM87A7+9O6jjjjDO466678lqntTXc1xAHheGBAppawmRy77YneOujl1D+/DNUvfAsAF3V41jx\npW/SfPQJ3QdEevckssUwmDmuhFgkQayXY/dnbLmHurPOYv2yq5j8x0eZcsd1zP/Og3lXjtmX15bu\n5OhJZdhtgzt5ZePWVk569QVSXj87xh+FmcfX1u920BWMHYTo5HBSVuYb8t/rRESkfyp8Dhqau/o0\ntqzQxZgqHxaL0Z1883YSzq5knPedu5mmSVc0RXtXkvauBNE8KtnUTTuGMfwC7/xX2T7l6D7FGY4k\nWLAiw6TqQJ/Gi4iIiMjgousZIiIiIiIi79rfgwt9flx13Lhx1NbWEgwGSaVSLFmyhJqaGvx+/65K\nOoWFhWQyGbLZLFdccQWrVq0CYMGCBUybNq2vSw8pLqeNydVFu20zrTYW3/hdWqfPYfnVt/DcI397\nNymnDyZVF1HodfY31D0YhsHIci+ue+6kffZchs9/kYlP/abf8ybTWdbVdmKaZv+DPEDiyQzWt1bi\nbm2k8diTMW35VSIqLRz8lYBERERk8Cn0Oikv6l3NRJvFwpTqANPGFOMusFPgsOG0W7HbrNisFqwW\nyx5JOdB9jlfodTJ2mJ9jJpdz3JQKxg8vpNjn3OvxAK1HzSFns1OxfEGfXt87GjtiNHcqiVlERERE\nREREREREjhy9rpjz7LPPEovFuOiii7j55pu54oorME2T888/n4qKCi677DJuueUWLr74YtLpNNde\ney1ut5vbb7+du+66C7vdTmlpad4Vcw4HpUUuhpd6qG97t8JQ15iJvPKj3/d77jGVfioC7n7Psz9u\nrwvzt78jddoHOOoXPyRT4GbrORf2q3JORzhJbXOY0ZX9a411oLQG4wxb8BIA9cefnve4Yr8Sc0RE\nRKRvxg7z0x5KkM0jebnI62RydREFjj4XwNzF5bQxoszLiDIvmWyOznCS9lCC9q4E6Wx31cesy0P7\n5BmUrlmGPRwi7Svs83obdwbxuRy4C/ofu4iIiIiIiIiIiIjIYGeYg7lsCUO/ldU7cjmT5ZtaCcd7\nbhWQr6pi90FtBWBbvAj/JRdiDXay45SzWfr1O8h4vH2ezwCOGlsyKJNZlm5oYe6l5+DbuZVn/rKA\njNvT45gCh5W5UysPQnRyuFHpZxERecf2pi62N+37Z4LFMBhb5WdEed/PwfJlmiZtoQRrtncAMOX3\nDzH9dz9h/m0/pv7EM/s1t89lp2ZCGRZL/1qkioiIiMiho+sZIiIiIiIi7zograykdywWg6mji7FZ\nBuZLHvA6mTCyqOcDB1Dm2OMIvvwGiTnHUv3K//LBa86naPPaPs9nAutqO0mmsgMX5ACIJzNkt26j\naOsGWmbNzSspB6DU37v2EyIiIiLvN7LcS4Hdutd9PpedOZPKDkpSDnS3vCorcuF6uypPS808AMqX\nL+z33OF4ms5wst/ziIiIiIiIiIiIiIgMdkrMOYhcThsTR/a97P87PAV2po0pxtKPVlJ9lRs+gvAz\n/yL85a/ha9jBaV//FGOf/SP0sfBSOptj7fYOcoOocFNrMM6whd1trBrm5d/GqqRw8FX+ERERkaHF\narEwdvju54sGMKrCR83EMjwF9oMeU0Vxd/Jxx6SjSLvcVCxfMCDzBiNKzBERERERERERERGRw5/t\nUAdwpCkPuAlGUjS0R/s03mGzcNTYYmzWQ5hTZbeTuP1u0sefiPeaq5jz4J2Ur1zMkmvvJOPZd3mm\nfQnFUmypD1FZ7CabM8lkc2SzJpmcSTabI5N9Z1vu7f0m44b78bkdB+DFQVsoQc38dxJzTs1rjM1i\nodB7YOIRERGRI0t5kYsGr5NgJInbaWNydQC/59CdZ5QXudneFMa02WmdcQzDFv0HV0sj8fKqfs2r\nijkiIiIiIiIiIiIiciRQYs4hMH54IV3RFJFEulfjrIbB9LElFDgGxz9b9swPE3rlDRyXXcrIV/9N\nYNMaFtz63wQnTuv1XPVtUerb8k9W2tLQxazxpb1epyeJVIZ4Uwulby2hffIMEiXleY0L+J2HpIKR\niIiIHJ7GDy+koS3KuOF+rAPUCrWv3AU2/G4HXbEULTXzGLboP5SvWEjtmR/v17yRRJp0JovdtvfW\nXSIiIiIiIiIiIiIihwO1sjoELBaDqaMDWHuRyGEAU0YF8B+gKjF9NnwEqX/9H/WXX4O3cSenXftp\nxj39eI+trezhEOVL32DyHx9l3h1f5axLz2TK4w/nvWwwkqSjK9Hf6PfQGkxQtfg/WHLZXrWxKlUb\nKxERERlAXpediSOLDnlSzjvKA93trJpr5gEMWDurzkhqQOYRERERERERERERERmsBkfplSOQu8DO\nzPGlJFIZDMPAMMBiGLv+bsC7fzcMrBYDl3OQ/nPZbDi+ex+bjjuB6m9cw+yH7qZ85SKWXHc3aa8f\nazxKYNNaijeuJrBxNcUbV+Nt2LHbFKZhMOUPj7Dtw+fnXaVma0MXAZ8TY4Aq1aQzWXY0hzn67TZW\n9cefltc4Ayj2KTFHREREDl/lRS62NnTRNXoCiaISypcv6E7E7ud5WDCcpLzINUBRioiIiIiIiIiI\niIgMPoM00+PI4Pc48HsGWQWcfij6+EfYNmUKJddcyYjXn6d4w2rSbjf+HVsx3lNBJ+UrpGn28XRO\nOoqOidPpnDidysWvcvSPv8PEp37Dqi9+I6/1Iok0TR0xqko8AxL/lvousvE4lWKtSZQAACAASURB\nVEteJzysmnD1uLzGFXqc2G2D42l2ERERkQPBYbdS5HXSEU7QUjOX6pf/iW/HFsKjxvdr3mAkOUAR\nioiIiIiIiIiIiIgMTkrMkQFVMnkcnU8+S/uddzLpj49ijxTQNn0OHe9JwolWjdzj6eraM85j6uM/\nZdw/nmD9RVeSKgzktd72pjDlAVe/2zx0hpM0dcaoXLEQWyJGw/Gn5/0EeInaWImIiMgRoCLgoiOc\noHlWd2JOxbIF/U7MiSUzJNNZnHbrAEUpIiIiIiIiIiIiIjK4KDFHBlwg4CF8z1388+IvErfYwdrz\njZacw8GGCy6n5uH7mPC337Hmsq/ntVYynaW+NUp1ha/P8eZMk011QQCGvd3GqmFefm2sAEr8SswR\nERGRw19pUQHWnQYts+cBUL5iIZs//tl+zxsMJ6kodvd7HhERERERERERERGRwUiJOXJA+NwO5swe\nQyqdw8TENLsTYEwTzL18zOZMNp99IVP+8Cjjn36cDRdcTsaTX7LNjuYIVSVu7La+PWm9szlCLJmB\nXI5hC18iWRigbWpNXmPdThvuAr2NRERE5PBntVgoLSyg2RxOZFg15SsXY2QzmNb+nQt1KjFHRERE\nRERERERERA5j/ev/I7IfNqsFd4ENT4Edr8uO3+2g0OOgyOsk4HNS7C+gpLCA0iIXFcVuKkaUsvH8\ny3BEw4x/5g95r5PJ5ahtivQpxlgiQ21zGICSdStwdbTRMPfUvKr8gKrliIiIyJGlPNCdQNNcMw97\nLEJg4+p+zxmMJPs9h4iIiIiIiIiIiIjIYKXEHBk0RlV42f6xi0l5/Uz862+xxmN5j21ojxJPZnq9\n5qa6IDnTxNXaxHHfvRGAHaecnff4kkIl5oiIiMiRI+B3YrdaaKmZC0DFsgX9njORzvbpPE5ERERE\nREREREREZChQYo4MGnablaoxlWw67xKcoU7G/usveY/NmSbbGrt6tV5zR4zOSBJHsIOTbr4CT3MD\nqy/9Gi1zTsgvXquFQo+jV2uKiIiIDGUWw6A84KJl5nGYhkH5ioUDMq+q5oiIiIiIiIiIiIjI4UqJ\nOTKojCjzsv0TnyNT4GbSX36FJZXKe2xLME5XLL/j05kcWxpC2KJhTrrlSvw7t7Lhk59n3cVfynu9\nkeVeDMPI+3gRERGRw0FFwE2qMEBw3GRK1i7Hmoj3e87OsBJzREREREREREREROTwpMQcGVRsVgvD\nJlaz+dxP4WpvYfRzf+vV+K0N+VXN2doQIhuJcuK3ryaweS1bz/okq668EfJMtBlb5ae6wter2ERE\nREQOB36PA5fDRnPNPKzpNKWrl/V7TlXMEREREREREREREZHDlRJzZNAZVuphx6euIGt3MPmJn2Nk\n0nmPDUaStIcS+z0mFEnS1Bxk3p1fp2z1Unae/GGWfu32vJNyJowoUlKOiIiIHNHKAy5aauZ1/335\n/H7Pl8rkiMTzP+cTERERERERERERERkqlJgjg47FYlA5dSxbz74AT3M91S//s1fjtzZ2YZrmXvfl\nTJONtR0c972bqFryGo3HfIBF3/geWK09zmsAk6sDDC/19CoeERERkcNNRcBN27TZZO12KpYvHJA5\nVTVHRERERERERERERA5HSsyRQamy2M2Oz3yRnNXG5D/+DLLZvMdGE2maOmJ73VfXHGby925h5Kv/\npvWoo1nw7R9j2h09zmkxDKaMLqay2J13HCIiIiKHK3eBDXdxEe1TZlG0ZR2Ors5+z6nEHBERERER\nERERERE5HCkxRwYlwzComjWZ7Wd8DH/dNka88Xyvxm9vCpPN5XbbFk+k8d9xK2P//RQdE6bx+p0P\nky1w9TiXxTCYNrqY8qKejxURERE5UlQUd7ezMkyTshWL+z1fMJzaZ9VDERGRI008maElGCeezBzq\nUERERERERESkn5SYI4NWWZGLuku/jGmxMOUPj0IvbtQk01nqWqK7bcvceTcTnvotXdXjeO3en5Px\neHucx2oxOGpsCSWFBb2OX0RERORwVl7koqVmLgAVyxf0e75MLkc4nu73PCIiIkNNMp2lLRRnW2MX\nq7a088ZbjSxa18za7R0s3dBKS+feqwKLiIiIiIiIyNBgO9QBiOxP5bEz2HnyWVS//E+qFr1C49xT\n8x67syXCsFI3dpuVzI9/zNhf/DfRiuH857u/JFUY6HG8zWLhqHElFHp6bnUlIiIicqRx2K0w52jS\nbg/lA5CYAxAMJ/G7de4lIiKHr0w2R1c0RTiWJhxPEY6mSWb23b47k8uxtraTznCS8SMKsVr0jJ2I\niIiIiIjIUKPf5mVQC/ic1F/+FQCm/OGRXlXNyeRy1DZFsD/+O6ru+Tbx4lL+871fkSit6HGs3Wph\n5ngl5YiIiIjsT3mZn9YZx+Jr2IG7ub7f8wUjyQGISkREZPDJ5nLsaA6zaG0zq7a2s62pi7ZQYr9J\nOe/V2BFj6YZWIqouJyIiIiIiIjLkKDFHBr3yDxxD/fGnU7J+FeUrFuY9zhaN4H3oAQqv/xpJXyGv\n3vdLosOqexzntFmZNaEUn57WFhEREdmvksICWmfPA6B8ef7nafsSiqTI9SIRW0T6JpnKYuq9BoBl\ny2Yy0RiZbI50JksynSWRyhBPZogl0kTiacKxFF3RFKFIklxOXzfpnZxpUt8WZfHaFrY2dpHO5vo8\nVyyZYdnGVupaIwMYoYiIiIiIiIgcaGplJYOe3+1gxxe/zvD5LzLlD4/SUjNvv8e7WhqY8LfHGPuv\nv2CPRUl5fLx2z8/oGjOxx7UK7FZmji/F5dRbQ0RERKQnNquF1AdOgZ/eS8XyBWz/8Pn9mi9rmoSj\nKQq9zoEJUET2kM7kWLKhBdPsrlBa7HcS8DkpcBxZvwMlUhlSv/kd4771X7RPmckr9/+OnKPnhzO8\nBXamji7GXXBkfb2k90zTpLkzzvamLhKp7DsbqXzzVYxslvYps0gVFfd63pxpsrk+RDCcZFJ1EXab\ndYAjFzk8ZVMprN+6FWPnTjZ+5wfk3J4exxR5nVQUuw9CdCIiIiIicrjTlSQZEkpPO4Gmo0+kcsnr\nlKxZTvu0mj2OCWxczcQnf82IV/8PSy5LvLiU9RddyZZzLiLtL+pxDQOYNqZYSTkiIiIiveCbM5N4\ncWl3xRzTBMPo13ydkaQSc0QOoG3vqdjRGorTGooD4CmwU+zrTtIp8jqxWPr3Xh6sOroSNLRFKfjH\n35l77/UAlKxbycxH7mP5177T4/hIIs3SjS1MHFlERUA3a2XvWoNxtjeFiSbebTtlSaWY88BtjH7h\n6V3bwsOqaZ9aQ/vUWbRPmUVo9ASw5pdo09aVILyhlcnVAQI+/dwU2ZdwLEVTYyejbryGytefAyDb\n0cHrdz1CzrH/905TRwyrxaC0yHUwQhURERERkcOYYQ7y+tWtreFDHYIMEo1P/x8zrryAxmNP4vW7\nH+3emMtRtegVJj35a8reWgJAcMxENp7/eXaecnZeTzy+Y1iJh4kje07gERloZWU+fa8TEZEhK2ea\npC6+hJEvPsv/Pfp0XlUK96fQ46BmQtkARSci79UVTbF8Uys9XQSwGgaF3u5qOsW+giFfHSadydLY\nHqOxPUY8laFy0SuccPtXyTqdvH7nT6n56b0Ubd3A4hvupfbMj+c9b1Wxm/EjCrFa1CVcunV0JdjW\nGCYcT+223RHs4IQ7vkrpmmW0T5pB43EnUbJ2JSXrV+KIdO06Lu320DHpqO5knSmzaJ8yk7SvcL9r\nGkB1hY/RlT6MfibHivTWYL2ekcnmaO6M09QeJdYR4vg7vkrlsvm0zDyWtNvL8AUvUT/vdBbc9gCm\ndf8/46yGwczxpfg9ankvIiIiIiL7V1bm2+e+oX11TY4ogbNOp/Woo6la/Cola5ZRuG0jE//6W3x1\n2wFoOvpENpx/GS2zj+/1k9p2q4UxVf4DELWIiIjI4c1iGCROPAVefJaK5Qv6nZgTjqXJ5nK60S0y\nwEzTZFNdsMekHOhuK9cRTtARTgAhHDYLfrcDv6f7j89tHxLv0VA0RUNblNZgnNzbzySVL1/A8Xd+\nnZzNxut3PULbUUcz/7b/4YNfuYA5P76d0JiJBCdMy2v+xo4Y4ViaqaMDuAvsB/KlyCAXiae720tF\nknvs82/fxAm3fRlvUx07Tj6LN2+4l5yzoHtnLodv51ZK1q6gdO1yStatpGL5QiqWL9w1vn7eaSy8\n9Uf7rOxhArXNYYLhJFNGB464tnQi7xWKJGlsj9EajJM1TezhECd9+0uUrl1Bw9xTWXDrj8AwOPHb\nX2L4ghc5+oe38uYN98F+fqZlTZO3trYze2KZqmyLiIiIiEifqWKODCmtTz7D1C9fsuvzrN3OjtPO\nZeMnLu3XTaCJI4oYVtpzb2mRA2GwPmEmIiKSr+imbYw+YSYNx53MG3c90u/5ZowtodhfMACRicg7\n6lsjbKoPdX/Sz7ZzFsPAU2Cn0OPA77Hj9zgGTTJANJGmM5ykqT1G5D1thABK1izjpJu/gJHL8Pqd\nD9My54Rd+yoX/4cTv301sfIqXnjoSVL+QN5rWg2DCSOLqCxWa6sjUTqTY8n6FpKZ7B77Kt58jXn3\nXIc9FmHNJdew9rPX9Pjes4dDlKxbScm6FVQufpXiTWvyruxht1qYOrpYra3koBkM1zOS6SwtnXEa\n26PEkpld250drZx0y5UUbd1A7Wnn8uYN92DaupMorfEoJ998BSXrVrL5oxez/Jpv9fjedDtt1Ewo\nxW7Lr92ciIiIiIgcefZXMcd6++23337wQum9WCzV80FyxHBMGEf85VexxSJsPP8yFn3zB+w8/VyS\ngZI+z+lz2Zk4skgln+WQ8Xic+l4nIiJDmqMkgPmnJyjcupENn/w8WPt3w8Jpt+mmosgASqWzrNnW\nSc40Gf2vJznlhs9hi8domzYHsw/vVxNIZbJ0xVK0hhLUtUZpbIvRFU2RSGXI5kwsFgOb9cBW1TFN\nk0g8TWtnnB0tYTbVhdjZGqEjnCSVye12bNHGNZz8zS9gTSVZcNuPaT725N32R4aPBmD4/Bcp2ryO\nHad+ZL8VFHaLA2gLJUgkswT8Tiz63fKIsr62k673ta7CNBn/9OMcd//NYJosvul7bDnvkrwS4nLO\nAiLDR9E66zhqzziPknUrqHrzNVytTTTMO22/c+RMk5bOGJa329GJHGiH6npGOJaisT3KlvoQWxq6\n6AwnSWff/b7vbqrnlBsvpXDHVjZ/9GKW/ted8J7ENtPuoO7EM6h881WGLXoFI5uhtWbuftdMZ3N0\nRVJUBNy6higiIiIiInvl8ez7d3El5siQYrVaqD39XBaddQmtNfPIuvpf5Wb6mJJB83SnHJmUmCMi\nIoeD5Np1+Fe8ScusucQqR/RrrlwOVTMUGUAb60KE4ynKli9k3r3XY0slKVu9lOHzX6R90gwSJeX9\nXiObM4klM3RGkjR3xqlrjdDQFqUznCSSSJPO5DCM7ooefb2hmTNNumJpWjpj1DZH2FwXor4tSkc4\nSSyZ2dWu6v382zZy8k2fxx6LsPjm71P/gQ/t9bjWo44msGktVUtew5LL0tLDTdr3iyTStIeSFHkd\nOFRR4YjQ1BFjR8vu1UKMTJqah+5m2uMPkywq4bV7f0bzMSf1aX7TaqX+hDOoWL6AYYv/gy0RozmP\n9t2dkSSReJpifwEWixII5MA5WNczsrkcHV0JdrZE2LSzOwkzGEntkYQJ4NuxhVNuvBRvcwNrP30V\nq774jb0mWuacBdSf8EGGzX+REQteIuN00T5t9n7jSKazxBIZyooKlJwjIiIiIiJ7UGKOHFa8bgct\noQSZbP+7sFUVuxle5h2AqET6Tok5IiJyODByOTxPP0WiuJSW2cf3a650JsuIMq9uJooMgGAkyZaG\nEN767Zz8zS9gyXS3cUq7vQxb/Cpj/v0URi5L29Safle7er9sziSeytIVTdEWStDQFqWuJUJbKEE4\nliIS72471RlO0tGVoKMrSVsoQVsoTlswQWswTmtLEO/dt+O/7Zu0L1/LFqufZquHeGrfiTjv5a3f\nzik3XkZBqJMl19/Djg9+bN8HGwZNx57EiNeeY/iClwiOnUy4emyvXnM6k6O5PYY72EZhQy25ispe\njZehI57MsHpbO+/9b2iPdHHCd75C9av/Jjh2Eq/c/xvCoyf0a52c3dGdPLDwZYYvfJmsw0n79Dk9\njoslM7SFEgR8TrXekQPmQF7PSKayNHfGqW0Ks2lniObOOJF4mmxu39/7AxtXc/I3Po+rs52VX/wG\n6z9z9X4T2bIuDw3zTmPEa88x8vXniBeXE5w4bb9xxZIZsllTbVdFRERERGQP+0vMMUwzjytZh9Ch\n7lMsg1MskWH5ptbdytT2ls1i4dgp5TjsukAlh9Zg6MkuIiLSb9EoxROr6aoezwsP/7Xf000fXUxp\nkWsAAhM5cuVMk6UbWkm1tnH61z+Fr247i2+4l9ozPw5A+bL5HP2jb+FpaSQ4djKLb7yP0LjJhzjq\nd3nrtjH33hsIbF6LabFg5Lp//2ubNputZ32Sug98iKzLvc/x7uZ6Tr3us7hbG1l2zbfY8rHP5LVu\n4dYNnPb1T2Farbzw4F+IjByTd8zWeIxJT/6aSX/+JbZknPoPnceGr3+bbFEAq8XAYjGwGm9/fPtz\ni2HgsFsI+Jyq5jpEmKbJik1thN6TkOCpr+XEb1+Nv24bDXNPZdHN95NxD1z1N1dLI6dd+xncrY0s\n+a872Hb2hXmNs1oMJlUHKNfPVDkABvp6RjKdpbUzTnNnnPD7W8T1oHTVYk687cvYEvH/Z+++w+Oo\nrj6Of2d7r+rVtuTejSs2zRgCwZQECKEkQAqEkoQkQEhoIZQk9BBCIAECeektFIMpwQUMtsHg3pss\nW71rtX135v1DxthYlnZl2Zbl83kePStp5965K6200sxvzmHJL2+j7NRzUh7rLN/C8b/5AebWJhbf\ncA/bTzityzGleW4KsuRiPyGEEEIIIcTXMjOd+7xPKuaIw5LRoMPjNFPbFKa70bIBeS68Trm6RRx6\nUjFHCCFEn2AykZw7D8+qL9k88/udnixPaTqDXq5EFmI/ba9to66+lal/uBrfhlWsO/dHbPjej3fd\nH8wtZOu3zsbc2kTu5+3VcwAaho0B3aG9gKH4g9eZduvV2Gsr2fqt7zL/z0/QNGgExmAbmSs+p+DT\nDyl98zlstZWEfZl7teOyNNRy/HWXYK+pYMWPf83Gsy9Jed9RbwbBnAKK575N9rJFbJtxJqrR1Pkg\nVaX4g9eZetvPyVs0l5jLQyC/mKzPF5D7zms0+HKoySkmFEnQFokTCMdpDcVoCcZobovS0BphR12Q\n+uYI0XgSva49rCOtUnqn8po2qptCuz7OWPEZx93wY+z11aw/50cs+dXtqOZ9XyXXHQm7k+oJx1A4\nfzaFH79HS1EpgeLSLsdpGtQ1h0kmNbxOszynRI/qieMZiaRKbXOYzRUtbKpooTEQJZZIpjVH7qK5\nTLv1anSJBIt+dx/bZ5yR1viY20vtuCkUznuHwvnv0jRwGG0F/Tod0xSIYrcYsVuMae1LCCGEEEII\n0XdJKyvRJ5mNepxWI3XNEdLN5jgsRgYXeeSAlOgVJJgjhBCir0hWVmP/ZD7NAwbTMmD/qm6oqkZe\nRs9VGhDiSBOJJVhT1sToR+6kaP5sKiefwJJf3Q463R7bqSYTVVOm0zBkNFnLFpG/cA45n31Ew7Ax\nRL3+lPalJOI4d5SRuXIJ+khkr5BMOgyhIOPvv4nhzzxC0mTi82v/xLoLfoZqttBaXEr5jDMoO+ks\nEjY7rvLNZC9bTMk7L5G3cA6oKoGCfhhCQY6//hKcO8pYc+EVrL3wyrTX0dp/EMa2VvIWz8NRsY0d\nx35rn+1QMpcu4ujbf0np2y+iqEnWnfcTFt14P5vPOJ+E1UbO5x9TPPdtXGWbqBs1vtPgYiyh0hKM\nUdUYoqohSDCcQKP9/9902/upmkY8oaLX67reWKSsNRRjfXnzruMQ/We/zJS7rkUfj7HkmttY//2f\n7vVz1lNibi+1YyZRNGcWhR+/S8PQ0QRzC1Ned0swht9lRn+A1ieOPN09nqFqGg0tEbZWB9iwvZm6\nljCR2NdhHFtNBfbqHVhrq7DXVGKv3o6jYhvO7Vtxlm/GvW0j7i3r8WxaS+7ieRz10G1oej2f3PZ3\nqqZM79ZjifgyqR95FEVzZlE0/13qh48jlJPf6ZiGlggepxmLSapxCyGEEEIIIaSVlejjappCrN3W\nlNaYsaUZuB09e/WaEN0lrayEEEL0FbpVK/BPn8a26afz2Q137/d8Rw/PkbajQnTT6q2NuP7vccY9\nfAfN/Qcx94HnumyrY2xrZfSjf6b/+/8laTSy+gc/Z8O5l6Lp29srKckE9srtuLdtxFW2Cde2Tbi3\nbcK5owxdIr5rnsaBw9k88/tsP+E0kpbU2+d4N6xi8l2/wVFZTsPgUSz+/b2dhg6UZILsJQsY8M4r\n5C6eh05NkjBbiLm82OqqWH/2Jay47Pp9Bmq6oiTiHHf9pWSu+oLlP7l2j2pDAI7tWxn9r3vIWzQX\ngLIZZ7DqkmsIZ+Xutd2E+28iY/WXRJ1ull3xe8pPPD2tdekUBY/DhN9lweu0oKERi6vEEsn223iS\nWKL9Np5QicaTu1o/e+xmSgvcOKxS1WF/JVWVL9bXEYomUJIJRj/6Fwa+8QxRp5uFtzxE3eiJB2Ud\nmUsXccxNl6Hpjcy7+980DRmV8lizUc/wfj5c9i6qQAmRgnSPZzS3RalpDFHfEtmrPb2ptYnCue/Q\n7/3/4tu4Oq11xOxOFtzxKA3Dx6U1riPZSxYw7ZYrSRqNzL/7KZoGj+x0e6Nex9iBmdgs0opQCCGE\nEEKII11nrawkmCP6hB11bWyqaElp22yPlaH9fAd4RUKkToI5Qggh+gxNwzWsFC2R5K0XP97vigHD\nir1kefevJZYQR6LG1gjVL7/JMTdeTszl4cO/vUgou/Or/neXu2guRz14C9bGehoHj6QtrwjXtk04\nt29FH9+zMkLcaqO1qJTWfqUECvvjX72MvMVzUVSVmMNF2UlnsuW07xMoGrDvHaoqg157mpFPPoAu\nEWfdeT9h1cW/QDOkHiSxNNRS/MEbDHj3FRyV5Ww+7Ty+/MWt6PU6jAYdxt1uDYbd3tfraAvHaWiN\nEIom9prX3FjHSVedg6Wpnvl/eoK6sZMxtTQx7Jm/UzLrRXTJBLWjJrD8st/SPGh4p4+x5K3nGfXE\n/RgiIaomHssXv/jDXiGefVEScbwb15CxcgnezWtpGjic8uO/TSQjO7XxQK7fTv9cJ0aDBB67a315\nE1WNIYytzUy581dkL11ES3Epn/zxkZQr1+T6bKiqRl1LBHU/DsnlLfiAo++4hpjdydwHniVQVJLy\nWJ2i0C/HSa7fjtEg1XNE96V6PEPVNJZvrKflG9V1lEScnM8X0O+D/5K3aB66RBxVp6fmqKNpy++H\najCg6g1oBgOqXo+mN7Z/zmBA0399X+3oSV1Wt0lH/sfvM+XOXxG3O1lzwc/Y8u3vdVrtzGoyMG5Q\nxl6/XzVNI6lqqOrOW639fVUDh9Ug1auEEEIIIYToYySYI44IWypbKa/t/Pmi1ylMHJqNWa68Fr2I\nBHOEEEL0Jfqf/hjfGy/zwd9foXlgJyepU5DrszG4yNtDKxPiyKCqGmveW8jUK89FH4sw/+6naRg+\nNu15jK3NjH3kLornvAVAwmyltbiE1uJSWorbgzitxaWEsvL2qvxira1iwDsv0f/dV7A21gNQO3oS\nm04/n8qjp+8RuDE31TPxnt+Rs2QBEW8Gi6//M7VHTe3WY3dYjGS4TGQ1V6MvLcVo1KNLoypNKJKg\noTVCQ2uE1mBsV2jCv3opx193MXG7g41nXsSgV5/CFAwQyCtixU+vo/LoE1OufmOrrmD8AzeTvXQh\ncZud5T+9nq3fPnev8bpYFN+65WSuWELmyiX41yzDEA3vsY2mKNSOnkT59JlUTDuJuMPV5f4NOh39\ncpzkZdrT+toIqG8Js2prI87yzUy95UqcleVUTJnOZ7+9u8tqVF8ZkOuiKLv9IF0klqCiLkhVQ4iE\nqnYxsmP93n2VCfffRCgjm7kPPJtWAA/aAzqZbgs5fjtep1QVFulL9XjG1qpWttV8vZ17y3r6vf9f\niubMwtLcAEBLcSllJ3+H8ukz02qJ6LKZUBQIhOL7FXb7pqL/vclRD92GIRIi4vax4exL2Hz6+STs\njg63Nxl06HW6PUM4naxHr1PIdFvJ8lrxOs0o8jtZCCGEEEKIw54Ec8QR46ur1/alJM9NYVbH/0AL\ncahIMEcIIURfonvxBfw/v4yVl/6Kdedftl9zWU0GJg1LrRoEQDyhUt8SJtef2glSIfqi7eu2Mej7\np+GoLGfx9X+mfMaZ3Z7LbjEyIlZLS1xhk97D3vVkOqck4uR/+iElb71A1vLFAIR9mWw99Ry2fPt7\nuLZtZuI9N2Bpqqdq/DF8ft2fiHr9ae3DbTOR4bGS4bZgNfdcG5FEUqWxNUJDS4TGQJSi/z7DuIdv\nByDmdLP6oivZPPP7aMZutAPSNPq9+yqj/3k3pmCA2tGTWHrl77E21JGx8nMyVy7Bt34F+vjX7cFa\nikupGzme+pHjaS4ZSubyxRTPmUXG6i8BSBpNVE06jvLpM6maeByqqfOQhc1soDTfjc9lSX/9R6BY\nPMnn62rxfzqHyX+6FmMoyNrzL2fVxb9IqTqcTlEYUuTpsApcIqlS1RCioq6NSDyZ9toGvfQEox+/\nl0BBP+be90zaP0NfsZoM5PptZPtscjGTSFkqxzOa26Is31SPsbmRormz6PfB63g3rQUg6nRTPv10\nyk46i+aBw9Jq8edxmCnOdu4KlSWSKk2BKI2tEZoC0W79PH1FryjYLEYMzY3kvfAkpa8/gykYIOZ0\ns/GsH7DxrIuIO93dnv+bzAY9mR4rWT4rLpu0mRNCCCGEEOJwJcEcccTQmdQ19QAAIABJREFUNI3V\nWxupb43sdZ/NbGD8kCy5KlD0OhLMEUII0Zco9fX4h5dQN3I88+/9z37PN3lYNhZT5yfbE0mVirog\n22vbSKgqeX47gwo9+71vIQ434UAIy3fPIGv5Z6z9/mWs+tGvuj1Xnt9OSb5rV5uNeCLJ1qoAVQ1B\nunMQwVm+mZJZL1L8weuYggE0nQ5FVVENRlb86Nds/O4PUw44eBwm/O72MM7BCBBomkZLWxTz/feQ\naG1j9VkXE+mBE7KW+hqOeug28hbN3XN/Oh3NA4ZQN3I8daMmUD/iKGLujquH2aorKJo7i6I5b+He\nthmAmN3JjmNOpnz66dSNmtDp19XvslCa70471KTbugVdYwOJceNRgWRSJZFsrxKRSKokkurO9zWS\nyfZqMB6n+bA94bxycz0ZT/ydkU/cj2o08flv7mT7CaelNNao1zG8vw+Po/OwlKpp1DeH2V4bJBCO\ndbrtN418/F6GvPQETaVD+eiux4l5ut++W6co+Fxmcn12fC6p4iE619XxjHhC5Yv1tWR88BaT7r6h\nvVWV3kDVxGMpO+ksqiYdl3bA0edsD+S4u/iZCkXiNLZGaQxEaG6L7bN6jcmgw2E1Yrcacex8s5kN\nKIqCqmqsLW+iqaKW0jeeZdBrT2NubSZus7Pp9AvYcPYl+/Xz1hGb2UCW10qWx4bN0nOBUyGEEEII\nIcSBJ8EccURJqiorNjXs1bd6dEmGlGYWvZIEc4QQQvQ11uOnYVu/hjdeXZRye499GVLkJce3d4UB\naG/ZU1kfZFtNgHhyzzYghZkOSvJ77kpmIXo9TSN22eXkv/ECFUefyKe3PJRS0OWbjHodgwo9ZHqs\nHd4fjMTZUtlKQwcXQ6RCHw5ROO8dSt5+EX00wufX/YmmQSM6HfNVUCDTbcXvtmDQp/+4epKmaYSj\nCdrCcdrC7bfBcJxoohvVGTSNwnnvUDRnFq39SqkbOYH64WNJ2Pd9IGdf87i3rKdozlsUzX0HW301\nAKGMbCqmnUzlpOOoGzWhwxPgOkUhP9NOcbZzj6+tqmpE48n2t1iSZHUNzrdfxz/7ddyrlgKw49hT\nWHLNbSm10QKwGPVk7Pw+ehymwyL0UVnRgPu6X9Lvf28Sysjm0z883OVz9isWo55RJX5sFmPXG++m\npS3K9ro2GloiqQXhNI2jHryVAbNfJpBXxMd3/pNgfnFa++yI2agnx2cjx2fr0YpUou/o6njG6rJG\nEos/44RfX4RqNLH6h1dTfsLMblV2ynBZKMpxdivgl1RVWtpiNLZGiSWSuwI4dqsxpYDn5ooWtte1\noQ8HKXn7JQa//CSWpnoSZgtbTjuP9ef+KK32W6lyWk1k+6wUZEr1byGEEEIIIQ4HEswRR5x4QmXZ\npnqCkfbS35luK8P79+wVLEL0FAnmCCGE6Gv0f7gF3yMPsuC2v1M1Zfp+zZXttTG0eM9KEaqmUdMY\nYlt1oNM2BcXZTvrnpnayWIjDXfKvfyXnzptpKhnK3Pv/j6Q1/VCc225iaLG3yypVAI2tEbZUttIW\niXe5bXcZ9TryMuzk+e2YTb2/tU4sntwZ1mkP6gTCcULRdBuA9QBVJW/tl/Sf9zZZc2djaG0BIG6z\nU33UNKomHU/VxGP3qvJgMuhw2U1EY+1hnFhCRR8Okv/JhxTNmUX2l5+iU5NoOh01YyZjiITJWLOU\nYHYei2+4l4bhY9NaplGvI8NtIcNtxes0o9P1vpBOdNt2bD84H9+6FTQMGcWnt/4t5ZPvTquREQP8\n+1XVKRRJsLmyJbUgnKYx4qm/MvT5x4i6vSz44yM0Dh3T7X1/k8NixOsy43NacDtMUo1YAJ0fz6hu\nDFG2dD0zrjoHS3MDH9/+KDUTjklrfgXI8FgpznbisKYXcOtpO+ra2FzRggboohH6v/sqQ158HFt9\nNUmjibKTzqJlwGDiNgdxe/tbwubY+bGTuM3evfaHwKgBfmk9KIQQQgghxGFAgjniiBSNJVm6sY54\nQmXC0KyUDi4LcShIMEcIIURfY/h0Ad6zvs2m089n6c9v2a+5zEY9U4bn7Pq4pilEWVWAcCy1k90D\ncl0UZadZeUKIw4iaTBJ9/N8U3notUbeP//3tJcJZuWnNoQBF2U765TjTqmCiaVr7ideqQPeqxeyD\n02okL8NOttfWK8Ma6YgnkrQG47SGYrQEYwSCMZI9fBhGpyg4rEZcdhMuuwm3zfR1kCkWw7joU5R3\n3sb03mysFeUAaIpCw9DRVE06gcrJx9PabyDs/N4riTjZX3xC8ZxZ5H06B0M0DEDjoBGUT5/J9uNO\nJeLPQkkmGPrsowx77h9oKKz+4dWsO++noE8/iKLXKfhcFjLdFnyuQ18VCUD35RLsF52Ppb6Gshln\n8MU1f0Q1pVaF1+e0MKyft8ceR1VDkE0VLSTVrp87/d9+iXF/+yOawcCi391L5dQZPbKG3ekVBY/T\njM9pxueySDWdI9i+jmeEowm+XFHOsb/+Ab71K1l22W/ZeM4lKc+rAFleG8XZjrQrTh1I9c1h1m5r\n2vV7XInH6PfB6wx54V84qnd0OT5pNLWHdOwOVv/garZPn5nSfjM9Vob3kwsOhRBCCCGE6O0kmCOO\nWKFInKZAlHwp+Sp6MQnmCCGE6HPicbyDigm7fbz71Hv7NZWloZapaz+m9pwL2dqc7FZ1joH5bvl7\nUPQ5mqoSfu0NvPfehWvLehJmC/PvforGoaPTmsds1DO02IvH0f22v4mkyvbaNnbUtnU7dKJTFPxu\nCwUZdtz7sZbeTtM02sJxWoMxWoMxWkIxIrHUQk16RUGnU9DrdwZxbCbcdhNOmym1AJOmEVu1hugb\nb+Kc+wEZq79EUdvbAAaz86iadHx7a62P3sXc0gRAW14R26bPpPyEmbQV9u9w2owVnzHpz9djq6+h\ndvQkFv/2L0QyslN6TB3RKQoumwmv04zHYcJp75nqLKqmEY0l0TTQ0NC09s9pWvv35atb46aNuF59\nHu9//oUuFmPFT65lwzmX7goudSXXZ2NgoafHK8qEownWlTfREox1uW3OZ/OZcsev0UfDLLvi92w6\n66Ju79dWXUG/91+jauJxNA0Z1eE2VpMB385qOh6nCX032uiJw1NHxzNUTWPZhjqG3HINxXNnsfXk\n77DkN3em/DOk1ymMHODfr9elA6k1GGPlloY92qgqyQSZKz7H1NKEMdSGMdiGMdSGIdSGMRTEGAxg\nDLZh2Pm+o7KcYG4B7z45O6Wvi05RmDwsG9N+VOASQgghhBBCHHgSzBFCiF5MgjlCCCH6IvP538P1\n4bu88/T7BHMLuz3P0bdeRf7COeyYdhILb3oQunmyb3Chh1x/+q19hOiNQrPfx/WX2/GuWY6m07Ht\nxDNYfdFVhHIL0ponw2VhcJEHo6FnTvRFY0ma26JE40kiO9shfdUWafcTmLsz6nXk+u3kZdiO2Cqn\nX7XAUhQFvW5n+EanoFN2e7+HKweFowmqNu5Aef89chbNJefzjzEF2/8niXj8bD/uVMqnz6RxyKiU\nThqbWpsYf9/N5C/8kKjLw+fX3kXV5BN6ZK16nYLHYcbjMON1mlNqZxNPqLvain3VWiwUTaDu4xCY\nMdBC4bx36PfB6/jXrQAg6vLw2fV/pnricSmvtX+Oi+KcA1elTdM0tte2UVYd2Odj+Ypnw2qOufln\nWJrqWX/Opaz4ybVpvYbaaioY+txj9Hv/v+iSCTRFYdOZF7Hqkl+SsO379VSnKBRnOynMdki7qyNA\nR8cztla1YnnofkY9cT/1w8Yw/+6nUU2ptXAy6nWMLPHjsnWv5dPBEo4mWLG5IeUKjt806a7fUDTv\nHf73t5doGjwypTFSBVIIIYQQQojeT4I5QgjRi0kwRwghRF9kfOKfeH53LV/8/Ba2nH5+t+Zw7NjK\nKT8+DWXnvyzrzvsJK3/8m27NpQBDi71keW3dGi9EbxD66BPsf7qdjC8+BWDHtJNZdfHPCRSXpjWP\nTlEYkOei4CBWkkqqKtGY2h7W2RnYMRl1faJd1eEsGkuyvbaN6ppmPKu/REmq1I8aj6bvRkhK0yh5\n63lGP/YX9PEYG8/6ASt+cm3KJ+RTZdTr8DjNeHcGdYC9QjiReNdViJRkguwvPqHfB6+T9+kc9PEY\nmk5H9VFTKTv5O1ROmZ5y6yqdojC40EO27+C8xrSF46zb1tRlFTlb1Q6OuelyXNu3sP24U/jsuj93\n+ZistZUMff6f9H/vNXSJOK0F/dly2vcY8PZLuHZsJZSZy5c/v7nL4JXTamRIsRd7L2pDJHreN49n\nNLdFqf2/lzn6D1cR9mfzv4dfIurLTGkuk0HHqJKMlMJ3vUE8kWTllkZaQ11Xsfqm3EVzmXbLlWz4\nzg9YfsXvUxpjMxuYOLT71ciEEEIIIYQQB54Ec4QQoheTYI4QQoi+SFe2Ff/E0VRMOZFPb3u4W3OM\nfeg2Sme9wBe/uJVBrz6Fs2Ibn//mTsq+9d3urUlRGNbPS4bb2q3xQhwq4S+WYbnrdrI+/gCA6vHT\nWHXJL2kaNCLtuVw2E4MKPYfNiU9xcMTiSbbXtdEciKIoCooCiqKg23m762OAnZ9PqBqtbTGiiT1D\nMO4t65l8129wlW+mqWQoi35/3z7bYB0KrrKNFH/wOsUfvom1sR6AluISyk76DuUnnk7En5XWfB6H\nmQF5roNe4UNVNbZWtbKjro3ODuwZW5uZ+oeryVz1BXUjjuKTPzxM3OXZaztrXTVDnn+MAe++ii4R\nJ5BXxJqLrqL8hNNAr0cXizL0+ccY8uLj6BJxth93Ckuv+H2noQudotAvx0lhlgNFquccFqKxJAaD\nknI7st2PZySSKutmf8K0q85FUVXm3v8MzQOHpzSP2ahndEkGNsvhVTktqaqs3dZEfUsk5TE6RcFE\nkpPPnoqm0zPr+XkphyFHl2TsCiQKIYQQQggheh8J5gghRC8mwRwhhBB9lXP8KPT1dbzxykI0Q3oh\nAFNrE6ddOJ2ox8fsp97DXr2D6b/4PsZQkI/+9Dh1YyZ1a006RWFEfx8+l6Vb44U4mCJr12O86w6y\n338TRdOoHz6OlZf+kvpRE9OeS69T6J/rIj/DLifIRY8KRxM0t0VpaYvRHIwSiSXRh0OMefTPDJj9\nMgmzlaVX/p7yE8/o8eo5nVGSCay11Tiqt2Ov3oG9agfZX36Kb8MqAGJON+UnnEbZSWe1h9zS/Llw\n2Uz0z3Ud8pPkzW1R1pU3EYntu0qQLhZl4j03UDj/XVoLB/Dxnf8klJMPgKW+hqEv/JP+s19GH4/T\nllfEmguuoPzEmR2GBVxlGznqwVvIWLOMmMPFip9ey9ZTzun06+eymRhS5MEm1XN6hURSJRRJEI4m\nCO18C+/8OKlpu1oM5mfaMRs7b3W4+/GM9cs2M+biM3BUbWfhjfez47hTU1qP1WRgVIkfq/nwCuV8\nRdM0NlW0UFEf3OPzZoMeq8WAzWzAav761mLWgwbBy65gwJvP8dFd/6Jm/LSU9pXlsTKsn+9APAwh\nhBBCCCFED5BgjhBC9GISzBFCCNFXma79Fe7/PMHce/9D/agJaY0d8vxjjPz3gyy7/LdsPPsSADJW\nfMZxN/yEhNXGh399nraC7lVg0CsKo0r8uB1yxbHonRob27D+8RYKXnwKXTJBU8lQVl36S6onHJt2\neADA77IwsMCNxXR4nvQUh5dILEFLMEZzIIp11huMvOdGTMEAqt5Aa3EJzQMG0zxgKM0lQ2gpGUzM\n5e3WfpRkAnNzI7baqvbgTfUO7FXbsVdX4KjajrWuGp26Z1hF1empnnAMZSedRdXkE7oVFHJYjPTL\ncZLh6T3V1xJJlc0VLVQ1hva9kaoy6vH7GPzKk0S8GXz+mzvJWbKAAW+/iD4eoy2ngLUXXsG2GWd0\nXb1DVSmZ9QIjn7wfYyhI7agJfPHL2zqtjKRT2sOBBZkSDjxYIrEEwXCCYCT+dQgnkiCeVFMar1MU\nMj1WCrMc+6yy9tXxjOqaFrIvOoes5YtZc+EVrL74Fyntw2Y2MLo0o8sA0OGgtqn958+6M4Bj0Hde\ndaj67Q8Zeel3KJtxBp9f/5eU9qFTFKYMz8ZoOPy/XkIIIYQQQvRFEswRQoheTII5Qggh+irTe7Nx\n/+A81p5/OasuvSblcbpYjG//8EQMkTCznp1Hwu7YdV/x+68z8d7fEcgrYs5DL3T7hK5epzC6NOOg\ntx4Rh0ZrMEZtUxiP04TXaU65RUdX2sJxAqEYDqsR534+l5KqSnVjmOpt1Yy+5Rfkfv4xgbwiVl16\nDTuO+RZ0Y81mg56SAjdZvShAII48yS1bMf3trxhXLMO6cS2GSHiP+0OZue1hnZIhNJcMpaX/QJRk\nEktjPZbmBiyNdVia6ts/bqrf9b65pRFlH4e0wr5MgrmFBHPyacstJJjT/n5rcSkxd/deN6wmA/1y\nnWR5rL02WNLcFqWsOkBzW3Sf25S88SxjH7lz19cumJ3HmguuYNtJZ6Zd3c5aV83Yh+8gf+GHJI0m\n1l7wM9Z978doxn3/PnTbTQwp8h621VF6o0isPXATjCQIReIEI+1hnKTac4d8vQ4zhVmOvSoOZmY6\nKd/RRPyqqyl58zl2TJ3Bwpv/mtJrlsNiZHSp/4gNmYTCMfyTxmBpbuTNFz8mabWlNK4kz01hlqPr\nDYUQQgghhBAHnQRzhBCiF5NgjhBCiD6rrQ3/oGKa+w/iw7+/kvKw4g9eZ+I9v2P92Zew4vLf7nX/\niH8/yNDnH6Nu5Hg++tMT3W6NYjbomTQsG52ud55gFftP0zTKa9rYVhNA3fmvr05RcNlN+JxmfC7L\nPqsAdOSrlj1NgSjNbVFiia+rDpiNevwuC36XBY/TlHL4JxxNUFEfpLohhLGmkmk3/wzPlvVUjT+G\nRTfev0cwLR25Phsl+e4ur9gX4qBKJlG2bCHx5VJYvhzj6pXYNqzB2lCb8hRxm52IN6P9zZdJOCO7\nPXyTW0Awp4Bgdj6quefaFZqNeoqzneT4beh6aSDnm1qCMbZVB2gMRDq8P+/TDxn0yr/ZduIZlJ18\n1j6DNDazgbwMOzk+G0lV2xn+iO+6DYYTJFSV/AXvM/bhO7A21tFSXMpn1/2Z5kHD97k+vaLQP89F\nQaaEC1KlahrhnS2nQtH2tlPtQZz278G+2Cu2UTLrBVB0NA4eQdOgEQRzCrpVfQ3AbjFSkGkn22tD\np1Pw+x2s/e2dDL/3ZpoHDGbOA8+StNq7nMdlMzGqxH/Ev0YFrvs9A55+mEW/u5ftJ5yW0hib2cDE\nodkHeGVCCCGEEEKI7pBgjhBC9GISzBFCCNGX2U4/BdtnC3nzxQXEPL6uB2gaJ13xXVxlG5n99HuE\nsvP33kZVmXznryn8+D3KTjqLz6+9q9snmAYXesj1d30CSRx+wtEE68qbaAnGOt3ObNDjdZrxucx4\nnRaMhq9PEsbiSZraojQHojS1RYnEkp3M9DW9ouBxmncFdcymvasBNAWiVNS10dAaQQM8G1cz7ZYr\nsTbUsnnmeSy96qau28l0wGY2MKjQg0datYnDSKyyiviXy1CWr0C/fi1RnYGIL2O3AE4GEW8mUa+f\npKV7FaB0ikKG24KqaaiqhqpCUtVQNY2kqqLt9rGqaRj1OoqyneRn2A/bAGcgFGNbTYD6lo4DOh3R\nKQp+t4U8vx2vs+vfI9F4kmA4TqSukax77yD31WeIOVzMefA5AkUlnY712M0M7eftE22M9pdh+VLM\nr75M24xTaBo9gXAsSTiabG8/FY0TjSVJ5wCuc9smhj7/T4rmvY3yjeBO1OWhadAIGgcOp2nwSBoH\njyTiz0prvSaDjvwMB1mrl1Bw0dnEHC4+fPiljv9u+waPw8yI/r4jPpQD0LxkOQO/fQyVk47jk9sf\nTXnc2NIMackqhBBCCCFELyTBHCGE6MUkmCOEEKIvMz94H667bmPRDfewffrMLrfPWrqQ4377I8qP\nO5XFN96/z+30kTDHX3cxvvUrWXnpNaw7//Jurc9uMTJhSHono0TqVFVjS2UrTruRTLf1oJ3crmkM\nsXFHy64qAta6arwbVhHKziOYU0Dc4epwnAI4bSbsFgOBUJy2SLxH1uO0GvHtDOkEwnEq64MEd5s7\nd9FcJt91LfpomOU/vZ6NZ1+cdthMpygUZjkoznYetiECIaC90tXabU3UNoe73jhFCjC0ny/ltm67\nV9jqC9rCccprAtQ1h/cZ7rAY9eT67eT4bfsVlDG/9Dyuqy+nLaeAOX99gajX3+n2NrOB0aUZR244\nR9NQ/v4wvrv+gC7R/roQKOjHllPOYdtJZxL1ZqQ1nXvzWoY+9xgFC95H0TSa+w9i7fmXE/Fl4Fu/\nCu+GVfg2rMJRtX2PcWF/Fo2DdlbUyc5P6TVISSYY8697MATbmP+XJ6kfOb7LMX6XheH9fPI6tZOq\naZinHY1r8zreeuGj1ELsQLbXxtDi7rXlE0IIIYQQQhw4EswRQoheTII5Qggh+jLDyuV4TzyGshln\n8vn1f+5y+2k3XU7uZx/xv4depGnIqE63NTfWceIvzsNeW8XCmx5gx7GndGuNowb48bl6ru2JaJdU\nVVZtaaSpLQqAUa8j22sjx29Lq31UOhJJlY3bm6nZ7YS+sbWZGVefi6N6x67PxZxugtn57e1vcvIJ\n5ha2t8DJySeUld/t9mjdUfr6M4x59E8kjSYW//ZuKqedlPYcPqeFknwXdsuB+boKcbCpmsaassa0\nKr10RqqjtQtFEpTXBKhtDqNqGgrgdVrIy7Dhd1lQeiiIZLn7Lpz3/pmGIaOYd8/TXbYWs5oMjCnN\n6LC6WF8VT6jUl1WS9dtfkvPxB0TcPlZd8ksyVy6h4OP30MdjqHoDlVOms+XUc6gZdzTo9/318a5b\nwbDnHiVv0VwAGgeNYM2FV1A16XjooLWiqbUJ74Y1eDesxLehPbBjq6/p1mNZ8qs/svXUczvdRqco\nZHutDCz09JnAW08J/eU+iu+7jS+vvonNZ1yY0hidojBleM4eVf6EEEIIIYQQh54Ec4QQoheTYI4Q\nQog+TVXxDCslAcx6/qNOr8B2lm/mlJ/MpH74OOY+8GxK07u3rOeEX12ALplk3j1P0zh0dNpL9DnN\njCpJ74p00blEUmXl5gZaQh23kXLZTOT6bWR6rD3WyqKlLcrabU1E4ru1m0ommXbzFeQu+ZhtJ8wk\n5nJjr96Bo2oH9uod6GPRvebRFIWox4/ayQnQPbbX6agfOZ7tx55KzVFTUw/1JJOMeewvDHz9/4h4\nM1jwx0doGjwytbE7Oa0mBuS5Umo3I8ThRlU1Vm1toDGw989pOkrz3BRkOXpoVX1DOJqgviVChtuC\n1Zx+y7wuaRrmK36K67WX2DHtZBbe9ECH4ZDdWU0GRpf6sZgOwHp6kaZAlOqGIInFnzHpjmuw11RS\nO3oii2+4Z1c7KWNrM8VzZtF/9st4tm4AIJiVS9m3zmbrt75LOCt313wZK5cw9Nl/kPPlpwDUDx/H\nmguvoOaoqWlXXrM01OLdsApLU33KY9QBpWwbMq7D+8wGPT5Xe1tHr8uMvovnwJEqWr6D/IkjaBgy\nirkPPp/yuNJ8NwWZ8rtNCCGEEEKI3kSCOUII0YtJMEcIIURfZ738xzj++zLv/+O/tJQM2ed24x68\nlZJ3XuLTW/5KxbSTU54/57P5TLvlSqJuHx8+9AKh7Py01zh+cNYBq+JypIknkqzY3EAg3HUbKL1O\nIctjJddvx2XvXpUaVdMoqwqwvTawV4uW4U8/xLBn/0HVhGNY8Md/7FltQNOwNNZhr67AXrUde/WO\nXW/WhlqUFP9VNoSCWJobAIjbHFQcfSLbjzuFmnFHoxk7fkz6cJDJf7qOvEVzaSkuZcEdj6b1vLWa\nDPTPc6XclkeIw1VSVVmxuYGWYMchv64UZzvpn9tx6zpxgMVimM86HdeShaw/50esuOy6Lof01XBO\nLJ6kujFEdWOIUCTOwNeeZtTj96GoSdZceCVrLryi42o4moZ3/UoGzH6FwnlvYwyH0BSF6vHTqJwy\nnaK5b5O5cgkANWMns/aCK6gbNSGtQI5ep2DU6zAadr7pdagaRGIJwtHkrpaQ++J0WAi0fV3Zalfr\nRrcFl+3gVZ873OlOOxX/55/wzlPvEcwrSmmMw2JkvLRjFUIIIYQQoleRYI4QQvRiEswRQgjR15lf\nfgHXVZex4ie/Yf33ftLhNqbmRmZeNJ2wP4vZT87utF1DR0pff4axj9xJc/9BzL3/WRL29K4gzvXZ\nGFzkTWuM2Fs03h7KCUa6DuV8k8NiJMdnw2o2oNcrGPQ69DoFg15Br9d12PoiFEmwdlsTgfDeJ+1z\nF85l2q1X0pZTwP8efpm4y9Otx9QlTcO7YRWF82dTOP9dbHVVAMQcLiqmzmD7sadQO3YymqE9+GVp\nqGXazT/Du2kt1eOOZuHND5Kw7/uf9t2ZDDqKs53kZtilFYg4YiSS7eGc1n1U4NqXggwHpQXuA7Qq\nkQqtqRHbSdNxlG/hi1/cypaZ3+9yjMWkZ3RJxoGp5HMQxeJJmgJR6lrCNLZGUTUNY2szE+67kfyF\nc4h4M1h8w93Ujp2S0nz6cJDCebMZMPtl/OtW7Pp81cRjWXPBz2gcNnbX5ww6HRaTHpNRj8Wkx2zU\n7wreGHYP4Rg6fm3dXTyhtod0Ykki0QSRWJJI7KvbJC6nBT0afpcFv8tyRLUj60nxJ58i74ZfsOqH\nP2ftRVemPG7cwMxuB5uFEEIIIYQQPU+COUII0YtJMEcIIURfp9TVkTG8hJoxk/no7n93uM3QZx5h\nxH/+xtIrb2TTWRd1az9jH76d0jefY+Wl17Du/MvTGqtTFCYPy8ZklBNK3RWJJVi+qYFwLHFA5tcr\nym6BHR0GvUJrMEayg39pHRVlzLjqXJRkgjkPPt9ppaYepWn41i2ncP67FHz0Hrb6agBiTjc7ps6g\nbtRERj75ALb6araceg5f/vyWXYGdzugVhYIsB4VZjh5r/SXE4SS7q7deAAAgAElEQVSeUFm+qZ62\nFEN/ErbsPWIbNuGfOQNzazML/vgPqice2+UYi1HP6NLDK5yjahqtwRiNrVGaApG9qsb51i5j8p2/\nxl5bRc2YySy+4W6ivsxu7ctTtoHi5YsITp5KcvRYTEYd5p0hHJNRf9BeJzRNIyPDSUND20HZX1+m\ntbbgH1ZKMCuP9554O+WqR/K7TgghhBBCiN5FgjlCCNGLSTBHCCHEkcB5/FSMG9fxxiuLSFpte9yn\ni0U57aIT0cVjzHpuLkmrvVv7MLY2c+b3plI/bCzz7n8m7fHS8qT7QpEEKzbXE4knD/VS0IeDnPjL\n83GXbWTx9X+hfMYZh2Yhqop/7XIKPppN4UfvYW2o3XXXip/8hvXn/rjLE286RSHHZ6NfjlNCY+KI\nF4snWbapnlC08/BfptvKsH5eFKkq1Wu0fPgR/S8+G1WvZ+79z6YUljyQ4ZykqhKOJglFE4QjCSKx\nBDqdgtmox2zSYzG2B1zMJn2nFWUisQSNrVEaAxGaA7GO2z6pKoNefYqRTz6AoqmsvuhK1p7/s7Qr\nAxr1ul0tonxOc68JacrxjJ6ju+hC/O+/xf8efpmmQSNSGqNXFKaMyOk1zwchhBBCCCGOdJ0Fcw6f\nS0+EEEIIIYQQh63kiTOwrFlJ5orPqJ50/B73Fc2ZhaW5gXXf+3G3QzkAcZeHxsEj8a9ZhiEYSLk9\n0Fcq64MUZzvR6eRkbjrawnFWbm4gmjj0oRw0jfH334y7bCMbz7zogIdybGYDNrOB+tbI3nfqdDQM\nH0vD8LEsv/wG/GuWkv/ph9SNHE/VlOldzu2ymRhS5MVmkX/bhQAwGdtbHC3dVEck1vHvG5/TzFAJ\n5fQ67hOPZd1tDzD8d1cy7eaf8eFDLxLJyO50TGRnEGtMN8M5mqYRiSUJRxOEoglCkQThaPtbOiFS\ns2HPllBmk55oPElja6TLkJi5qYHx999E3uJ5hH0ZLL7hXurGTEp533aLcWeLKDMuu0me132cev75\n8P5bFH34VsrBnKSmUdMUJj+j+38/CyGEEEIIIQ4OOcInhBBCCCGEOODi02fA3x4gZ8knewZzNI1B\nrz6Fqjew6czutbDaXevRx+Nfu5zspQupmHZyemtMqlQ3hsiTkxspC4RirNjcQDzZQZWAQ2Dga09T\nNH829cPHsfyy63p0br1OwWUz4bKbdt0aDe1XqDe0RFhX3rTvr4NOR8OIo2gYcVRK+8rz2yktcHda\nqUGII5HZ1B7OWbapnug3whVuu4nh/X3yc9NLeS++gDVlZQx77G6m3XwF8+77PxK2zl9vozvDOaNL\nMroMKSZVldZgnJZglOa2GIF9tDr8JmtdNf1nv0LU46Ny8vGEs/L2XEMiSTSRJBDu+jEC6CNh8hbO\noWjOLHKWLECXTFA97mg+++1fiHozOh2rUxQ8DlN7ZRyX5bBq5SV6wEknE3d5KJz/Disuuw5Nn9r3\nv7ohKMEcIYQQQgghDgPyH54QQgghhBDigItPmETSZifniwV7fD77i09xb9vEthNmEs7M2a99ZHus\nOM48DZ74K9lLPkk7mAOwo65NgjkpammLsnJLY8etOw6BzOWfMepf9xL2ZbDwpgfQjKb9ms9qMrSH\ncOwm3HYTdothn9UK/G4LRw3OZPXWJgLhWLf3qVcUBhZ6yPHZut5YiCOU1WxgdImfZZvqiSXaf/84\nrUZGDvCj10k7l97KaNBhuO5aNu/YRsnbLzL5rl/zyW1/7zJ8EI0nWb6pntGlfmwW467PJ5IqrcEY\nzW0xWtqiBMJx1BSCOF8xNTcy5MV/Ufrmc+jj7b+3xz18O80DBlM56XiqJh9P4+BRkMJzSkkmyFq6\niKI5b5H/yf8whkMANJUMZeupZ7N55vmdzmMx6snPdJDrt0lLoiOZyUTbaWfiff5pspYupmb81JSG\nBcJxAqEYTtv+/d0jhBBCCCGEOLAkmCOEEEIIIYQ48EwmYlOPwfnBu9iqKwjl5AMw6LWnANhw9iX7\nNb3FpGdgoQcKxhN3utsDQJoGaVZOCEUTNLRE8Lst+7Wevq6xNcLqrY1dVyNQVTJWLcHc2oySSKBL\nJlGSCXSJOLpEov39ZLL9vkQcRVVpGDaWmnFTUjoZ+hVrXTWT7/w1KAoLb/4rEX9Wtx6XTlHI8dko\nznZiNunTGmsxGRg7KINNO1qobAimvW+LSc+I/n4cVmPXGwtxhLNZjIwqyWD5pnqMBh2jSvwSaDgM\neF0Wttz2F2w1leR+9hFjHrmLpVff3OVrdTSRZPmmBgbkuQiE47S0RWkLx0k9hvM1QzDAoFefYtCr\nT2EMhwhm57H2gp+hi8fJXTyPrGWLGbZlPcOef4yIx0/VpOOomnQcNeOm7lnhR9Pwrl9J8ZxZFM6f\njaWpHoBgdj4bz/oB5dNnEigu7XQtTquRgiwHmR6rVHoS7S64AJ5/mqI5b6UczAGoagj1qmBOXXMY\nnaLI39NCCCGEEELsRoI5QgghhBBCiIMiMX0GfPAuOUsWsGXmebi2biBnyQJqR02gedDwbs+rUxSG\nFft2npTVEZhyDL73Z+HcvpVA0YC059te1yYnEjqgaRoNLREqG4I0BqKpDGDcQ7dR8s5Lae8rmJ3H\n1m+dTdm3vttlJSVdLMaUO67B0tzAl1fdRMPwcWnvDyDTY6V/jqvLdimdrkVRGFTowe0wsaG8OaU2\nKgA+p4Whxd5drbGEEF1zWI2MKvFjNOgwGtIL0olDp1+hlxV3/A3rledR+tbzqAYjdaMnEsrMIZSZ\nS8zt7TCoE00kWVve1O396iNhSt58jiEv/gtzoIWIN4OVP/o1W089F9XUHmjYfMYF6MNBsr9cSO7i\neeQtnk//916j/3uvkTQaqRs1kapJx2NqbaZozls4K8vb1+b2sun08ymffjoNw8Z0GTTKcFkoyHLg\ncZi7/XhE35SYOJloXiH5n3zAl5FbSVqsKY2raQpRku/qFVXDGloirN3WhKpp+JwWSvNde1S7EkII\nIYQQ4kglwRwhhBBCCCHEQRE74UQAsr9oD+YM/O9/gP2vllOc7cRl//oq4eSJJ8H7s8j+YkG3gjnN\nO6/El8ol7aLxJNUNIaoagkTiyZTHDfu/hyl55yWaBwxh67e+g6Y3oOoNaIb2W9Xw9fvazo91iQT5\nn3xA0dx3GPGfvzH8mb9TNeEYtp5yDlWTjkMz7P09GfPoXfjXLmfbiaez+YwL0n58HruZAXmuPZ5D\n+yvba8NpNbJqayOhaKLTbYuznfTLce6zTZYQYt96U4UIkRqdojBoWBEL73iM43/+PQb99z8M2vn3\nAEDSaCKcmUMoM4dwRjahzNyd7+cQysolmFNAwu5IeX9KPEb/d19l2LP/wNpYR8zhYsWPfs2mMy8k\nad27bWDSaqdy6gwqp87gC1XFu2EVeYvnkbtoHjlffELOF58AkDBb2XbCTMqnn0bNUVM7fH3anV5R\nyPbZKMi0S0hB7JuiED37XFx/u5+8hXPYfsJpKQ1Lqhq1TWFy/Ye2HWtzW5Q1ZY272so1BiIsWR8l\nL8NOvxynVDYTQgghhBBHNEXT0mjAfAjU1QUO9RKEEOKAysx0yu86IYQQRwz3+FEo9fW8+/gsvn3x\nSYQyc3n3ydlptS3ancdhZnSJf49Qg66yAv+YoVRNOIYFd/6zW/PmeG0MKfZ2a2xf0RSIUtkQpKEl\nsusES6pK3nyOcQ/fTltOAXMefI6oLzOt8YZQkML579D/nVfwr18BQNiXQdlJ32HrKWcTzC8GoN97\nrzHhvhtpHjCEOQ8+l/KV5QAOi5H+ua4DWh0pqapsKG+mpjm8130GnY6hxV6pziSEOCJVNQTZunIL\n2UsXYq2vwVZXjbWuqv22vhprY/0+x0ZdHoI5BQRzCwjmFNCWU0gwJ59gbiGhrNz2kEwySdHcWQz/\nz8M4qneQsNjY8J0fsOHcHxF3uNJer16nUBBtpt+KhehdDgInnEzUZCWWUInFk8TiKrHEnrcJVcVk\n0JGf4SAvw9YnKzvJ8Yyep1+/Dt8xE6mcdDyf3P6PlMe5bCbGDUrv762e1BqKsXxTPUm1478ZjXod\n/XNd5PptEkYWQgghhBB9Vmamc5/3STBHCCEOMTmQJYQQ4khiv/5X2J56gpqxU8heupAvr765W1VO\noP0A//jBWZhNe5/osk0Zj3lHOW+8ugjVlH6rCJ2iMGlYNmZj3zuJ1plEUqW6MURlfbDLSi/7kv/R\ne0y581dE3T7mPPDsrhBNd7m3rKf/7Fco/vBNTG2tANSOnkTl5OMZ+eQDJM0W/vf3VwjmFqY0n8Wo\npzjHSY7v4J0YqqgPsrmiZVfAyWExMry/D6tZitgKIY5cq7c2Uteyd3AR2ivdWOtrsdVXY62rxlZX\nha22Cnv1DuxVO7DXVKCPx/Yap+l0hDJzAAV7TQVJo5HNM7/Puu9fRtSbkfYaXTYTuX4bmR5r2tU+\nVFUDpf1vir5KjmccGM4TpmJat5a3Xviovb1bisYPzjokFR+DkTjLNtYTT6pdbuuwGCktcEsrNyGE\nEEII0SdJMEcIIXoxOZAlhBDiSGKa/Tbui88HIOp08/YzczpsJZGKEf18ZHg6rpCiv+F6fE8+yvw/\nPU7tUVO7NX9RlpMBeelfVX84UjWNjdubqW0Kk9yPfxEzly3mmBt/imowMu/e/9A8cHiPrVEXjZD/\nyf8YMPtlspZ/BoCmKCy4/VGqJx7b5XiDTkdRtoOCTAc63cE/SdoairFmayNuu4lBRR703awSJYQQ\nfUU8obK1qpVILEk0niQaS5JQuz6xD4CqYmmsw169A0fVdtx1lThrKrBX78BaUY6hpZn6b5/Fhh9e\nRYM7i1gixXlpD/5me23k+G3S1rILcjzjwLA+8jccf7gx7QB7foadgQWeA7iyvYWjCZZtrCeaSL3d\nKUCmx0pJnguLSULKQgghhBCi75BgjhBC9GJyIEsIIcSRRAm04h/cDyWRYO35l7Pq0mu6NU+e386g\nwn2feNDP/RDfed9h/dmXsOLy33ZrH0a9jsnDs4+IAEV5TYAtVa37NYdn0xqOv/aH6GMxPr7zMWrH\nTumh1e3NUVFG8f/eJJBfTPmMMzvcxmLS47Aa298sRjxOc9rVDnpaUlWPiOeTEEJ0VyKp7grpROPJ\nPd5PJDUsJj0WkwGruf3WYtJjNun3rkqjabDb56LxJMFwnLbd3sLRBLsfFPU4zO3VcdzWQxLgPBzJ\n8YwDQ1ddhW/0EBqGjmHug8+lPM6g0zFlxMH72zUaT7J0Yx2RWHqhnK/oFYWCLAfF2U75mRNCCCGE\nEH1CZ8EciaQLIYQQQgghDhrN6SJ69DEYF33Kpm62sLJbjJTkd17JJjllKkmzhZwlC7odzIknVaob\nw+Rn2Ls1/nARjSXZVr1/J9XsleUcc+PlGMIhFv3+vgMaygFoy+/H6ot/AbS3CLFbDNgtRhw2464w\nzqEO4XREQjlCCNE5g16HQa/DbtnPSjXfCOqYjXrMRj0+l2XX55KqSjCcIBiJ47absVnkMKnoHdSc\nXGJTjyVjwXzsVdtTbteZUFVWbG5gcKH3gD+f44kkKzY37BXK0UfCjP37HdSNmsC2k87qdI6kprGt\nJkBzW5QR/f0YDfJ3khBCCCGE6Lvkr10hhBBCCCHEQdX26BOsf+0D1OyctMfqFIWhxd6uAw4WC8GJ\nR+PetglrXXU3VwoVdW3dHnu42FTZghqPoYtGujXe3FTPsb//KZamepZd8Xt2HHdqD69wbzazgQG5\nLsYPzmLaqFyOGpzFkGIvBZkOPI5DXxlHCCFE76fX6XDZTeT67RLKEb1O9NzzACiaMyutcS3BGEvW\n11JeE+BAFcpPJFVWbG4kGInveYeqMvHuG+j/3msc9eCt2GoqUpqvJRhj6cY6wtHEAVitEEIIIYQQ\nvYMcrRRCCCGEEEIcVFpGBpkTxzBpWDal+W7MRn3KY0vyXDisqV1FnzxxBgDZSxZ0a50AoWiC+pZw\nt8f3dk2BKHVNIY658TLO+u4kJt35a7I//xiSqbUkMATbOObGy3BUlrPm/MvZdNZFB2ytekUh22tj\nTGkGE4dmU5TtxGE17t2+RAghhBDiMBc77XRUs6U9mJNmwEbVNLZUtfLlhnrawvGuB6Qzt6qxaksj\ngXBsr/tGPPVXCha8TygzF308xsjH70t53lA0wdKNdQRCe88rhBBCCCFEXyDBHCGEEEIIIcQhodfp\nKMh0MGlYNoMKPFhMnQd0MlwW8jMdKc+vnXQyADlffLJf69xRG9yv8b2Vqmlsqmghd9E8spcuQtPp\nKJo/m2NvvIyZF57AyMfvxblt0z7H62Ixjv7jz/FuWsuWU89h9SW/PCDrdFiMDMx3M2VEDkOLvXgc\n5gOyHyGEEEKI3kJzuYl961Rc27fg2bSmW3MEwjG+3FBHWXUrag9Uz1E1jdVljTQHo3vd1++91xj6\nwj8J5BfzwSOv0jh4JEXzZ+NfvTTl+WMJlWUb62lo6V4VRyGEEEIIIXozCeYIIYQQQgghDimdopCX\nYWfi0GyGFHmxmfduJ2E26Blc5Elr3mTpQKK5BWQvXYiS7H5p/OZgtE9evVtRF/x/9u47Su66+v/4\na3rf3rMpm56QkAAJRYr0JgKCSJEuICKKihR/FmIFRaRKEaSIUhUQvtIUKdISIAXS+ya72Wzf2en1\n8/sjJJRkN7Mzsy15Ps7h7Ml8Pu/7vsMfe2bfcz/3KhSKavoDN8swm/WfO57UK7c+ptUnnCFLPKbJ\nT/xZx178ZR3xna9p3LOPyNbd9cnidFr73niNKhe8q8YDjtD8714n5bFzjcVsUk2pR3tPLNesyRUa\nUe5lPBUAANitxE79miRp9CvPZR0jbRhavzmg+Sta1Z3D51nDMLS8vlPt3dsXzZQvmqd9bp2juK9Q\nb/7yLsULi7Xw0h9Jkmbefb2UTme8T8owtHhduza17ZqF8QAAANh9WebMmTNnsJPoTXgXPAAHgE/z\neBz8rgMAQJLJZJLXZVNNmUcep1WRWErxZFomSXvUlcqT4QirTwVUetkyeebPU9PsgxUpr846t3TK\nUHmRK+v1Q00skdLS9Z2qfeU5jfvX41p/9Fe0/rjTFCmv0ub9DtWqr5wrf91EWWMRlS/+QDVzX9eE\np/+iwrUrlHI4NP7ZR1T30tNqnbaP3vr5HTJs9rzk5XHaNLa6QJNHF6u8yNWnMWcAAGBgcZ7Rv1Kj\nx8j1wH0qWvahNu1/mGLFpVnHiifT2tweViptqMjjkGknBdWGYSgSS6ozEFNzZ0T1zQF1BLbvlONt\nWKcv/ugimZMJvfnLu9Q1cZokKVJRLd/Gdar64C0Fa0bJP3Zyn/Jt744qnZaKfXRKBAAAwPDh8fT8\n+dVkGHnoY9mPWlsDg50CAPSr8nIfv+sAAOhBW1dE0URKtX0YYfVptv/7p4ouPEdLzv62lp57edZ5\nmE0mfWFa1S7TtWVZfadaWrp03IXHy9nRohceeFGRipod3utsb9GoV57TmH8/o8JPjbbyj5mgV296\nWAlfYc75mCTVVnhVV10gcx477wAAgP7DeUb/sz/7tAovOk/B6pH6z+1PKFHQtw6SO+J2WDVpZJEK\nbZIcDqXSaYUiSQUiCYUiCQU//pnaydcG9u5OHX7FmfI11uu9K3+t9cec8tl9mht17De+pLivUC/c\n/4JSLnefc60sdmvSqCI+HwIAAGBYKC/39XiNjjkAMMh4wgwAgJ65nTYVeLLvxmJUVcv1x9tkiUe1\n7rivZh9HUpHXIdcOxmwNN/5gTKs3+TXu/x7T6Ff/pdUnna2GQ4/v8f6k26P2PfbWmi+fqab9D1Xa\nalO8oEjv/ORmxXN4cnsrp92i6XWlqi717PTpbQAAMHRwntH/UpOmSMmEvP9+UcWrlmrD4V+SzLkV\niieSKZXf+EuNuuTralu2RvOLxqohbKijO6pAJKFYIqWdPclrSsR10M8uU8nqpVp2+sVaedqF2+/j\nLZA5FlXNvDeUttrUOmPfPucaiibkD8VVVuiU2cznRAAAAAxtvXXM2TUe9wQAAACAHTAKChWeOUsl\nKz6Srbsrp1j+0PD/4skwDK1q8MsSCWnqI3cr4XJr2ZnfzGyxyaTOidO0+qpfSM89p9F7TZLTntuo\nqeoSt2ZNqlChlzEFAAAAOxK+5ieKHXOcKhe8o+n33ZRbMMPQtAdv1eQn/izDZNbo5x7XsRccqwlP\nPSRTMpFxjFm3XKeKD99Tw0FHa/EF3+vx1uVnXKxISZkmPflnuVqaskq5KxjTwlVtisVTWa0HAAAA\nhgIKcwAAAADs0lKHHylTOq3KBe/kFGdXKMzZ1BZSMJrQhKcflrOzTStPvUDxopKM15tNJk0eXSyL\n2azqUo/2nVKpSSOL5LT1rUDHbjVrWl2JJo0q3mXGgwEAAPQLs1mBO+9VYvxETfrHgxr972eyDjXl\nb3dqyqP3KDBitJ5/6GUtuOzHksmkmXffoKO/ebIq3/vfTmNMfuxejfn3M+qYNF3zrr6h1w4+KZdH\nH134A1ljUU2//+as8w5GE5q/qlXhaIbFQwAAAMAQwwkoAAAAgF1a6qijJElV77+ZU5xAOC7D2Flj\n/6ErkUxp/eaA7N2dmvzEnxUrLNbKU8/vU4wxVT55nLZt/zabTFsKdKZWamJtZgU6ZYVOzZ5cobJC\nV1/fAgAAwG7J8BUo8PCjSvkKtM8t16l4xUd9jjHp8Xs17S93KFhVq9d/96AiFdVaffLZeuGBF7X6\nhDPka1yvQ358iQ786bfkbVy/wxgj3nhJ0x+4WeHyar015w6lnDv/PFd/5EnqHD9Vo//7nEqWLepz\n3lvFEiktXtehZCqddQwAAABgsFCYAwAAAGCXltxzphLFJVsKc3IorEmlDQUjw/cp3bWbupVIpTXp\n8ftkCwe17IxLlPR4M15f6LZrZMWO7zebTKop21KgM6G2SI4dFOhYzWZNHlWsaXWlsllzG4EFAACw\nu0mNm6DAvQ/InEzowDmXy9nekvHaCf94UHv++Q8KVVRvKcopr9p2LV5YrAXfvU7/vvMptczYVzVz\nX9MxF5+o6ffeKGsouO2+4uUfar/fXaOEy603f3mXoqUVmW1uNmvht34kSZp59/U5fR4Px5JatTG3\n8bQAAADAYLDMmTNnzmAn0ZtwePi3iweA3ng8Dn7XAQDQn0wmadFCeRa+r4aDj1asuDTrUB6nTQUe\nex6TGxjdobhWNfrlbGvW/r+9WtGSCs27+gYZFmtG6y0mk6aPK5N9Jx1xTCaTCtx2jSjzyG41KxRN\nKpU2VORxaM/xpSryOvLxdgAAwBDAecbAS9eNk+F0yfPi/6l02UJtOPxEGZbeP5+Ne/YR7XXXbxQp\nrdBrv/+LwtUjd3hfrLhM9UedLP/YiSpdulA1895Q3UtPKe4rVNxbqEOvuVC2SEhv/+xWtU+f1ae8\nw5U1Kli/WlUfvKXAyDp1103s0/pPC0WTslst8rmH32dyAAAA7No8np7PPumYAwAAAGCXZxx1tKTc\nx1l1h4bfl0+GYWhVg1+SNPWvd8oSj2nJuZcrbc+8SKaupkBuZ2ZFPJJkNps0otyr/aZUanpdqWaM\nL5XTnvl6AAAA7Fjk8isU+cpXVbZ0ofa64xe9dqCpe+FJ7X3HLxUtLtNrv3tQoZpRvQc3mdR40NF6\n8b7/00fnXyFrJKzZf/iJjv3G8XJ2tmnhN6/V5v0OzSrvDy/6oVI2m/a87yZZopGsYmy1utE/rDtZ\nAgAAYPdDYQ4AAACAXV780CMk7Z6FOZs7wgpE4vI2rFPdi/9Q98ixqj/yxIzXF3kdqi3PfOTVp5nN\nJpUWOmUymbJaDwAAgM8xmRS8+Q7Fpu2psS/+Q+Oee2SHt43+9zPa55brFCss1uu/vV/BkXUZb5F2\nOLX8rEv1wgMvqP7wL8uSiGvVSWdr9clnZ512uLpWK085X+7WJk38+wNZx5GktGFo6foOJVPpnOIA\nAAAAA4XCHAAAAAC7PKOyUtHJe6hs8fuyRMJZx4kmUorGk3nMrH8lkmmt3dQtSZr20G0yp1NafMEV\nmY+wMps0aWRRf6YIAACAvnK7FfzLo0qWlGrmXTeofNG8z1yufe15zb7px0p4C/T6Dfere8yErLaJ\nllVq3rW/0zN/f0cLL/t/W0bE5mD5GZcoWlymyY/fJ2d7S06xwrGkVmzsyikGAAAAMFAozAEAAACw\nW0geeZQsiYTKP3ovpzjDqWvOuqZuJVJpFa1aopGvv6iOSdPVeOBRGa8fP6JQLgcjqAAAAIaadO1I\nBR/4qyTpgF99T+7NjZKkEW++rP1uuFpJp1tvXH+f/OMm57xXoqBop0U5DqtF5YUuja0uUJFnxyNT\nkx6vFp//XVljEU2//+ac82rtiqixLZRzHAAAAKC/UZgDAAAAYLeQPPxISVLV+2/lFMc/TApzWroi\namrf8kXF9AdukSR9dOH3M37SucTnVHWpp9/yAwAAQG4SBxyo4G9+J4e/UwfOuVy1rz2v/X/zQ6Uc\nDr1x/b3qnDitX/Y1m0zyueyqLfNq6uhi7T+1UgdMq9IedSUaVenTzAllmjqmRE6bZbu1644+RV1j\nJ2vMv59R8crFOeeyptGvQHh4fD4HAADA7ovCHAAAAAC7hcS++yvlcqvy/TdzijPUO+YkU2ktq+/U\n0vUdMiSVL5qnqvffVPNeB6hlrwMyimE1mxlhBQAAMAzELrhIga+fp6K1y3XAb65U2mLVm7+6Rx1T\nZuZtD5vFrLICp8ZWF2jm+DIdOL1K+0wq1/jaQlUUu+W0b99hsaLIpdlTKjSmyifLpwvDLRYtvPRa\nSdLMu66XDCOn3NKGoaXrO5VMpXOKAwAAAPQnCnMAAAAA7B7sdsUOPEQFDeu2tfrPRjCSGLIH/52B\nmN5f3qLmzvCWFwxD0+//g6SPu+VkaEJtoRz27Z9wBgAAwNAT/e1NCs0+QEmHU2/+4k61TZ+Vc0yz\nyaSyQqemjSnRAdOqNG1sqUZV+lTkdchizuxrBYvZrDFVBf1+PKcAACAASURBVJo9pUIVRa5tr7fO\n3E8NBx6psiXzVfu/l3LONRJPasWGrpzjAAAAAP2FwhwAAAAAu43UEVvHWWXfNceQFAgn8pRRfqTT\nhlY3+rVoTZuiidS212ve+a9Kly1Sw0FHq3PS9IxilRU6VVni7q9UAQAAkG92u8LPPq+NcxfLe9zR\nKvI6ZM5wfOnn+Vw2jR9RqAP2qNS0ulKVFbmyjrWV027V1DEl2mt8mXwumyTpw4t+qLTVppl3/lq+\n+tU5xZekVn9EDa3BnOMAAAAA/YHCHAAAAAC7jfhhR0iSKj/YdcZZBcJxfbCydfsvIlIpTXvgFhlm\nsxaff0VGsWwWsybWMsIKAABg2LFY5K2p0Ogq37ZxU3uOLdWoCp98Lrt6K62xW80aWe7VrEkV2mdS\nhWrLvbJZ8989sdDr0N4TyzVpZJESo+u06JKr5epo02E/OFslyxbmHH/tpu4h9TkdAAAA2Gr74a8A\nAAAAsItKjx2n+KgxqlzwjkzJhAyrLas4/lBMki+/yfWRYRja0BxUfXNAacPY7vro/z6nwvrVWnfM\nKQqMGptRzAkji2S3McIKAABguLOYzSopcKqkwClJSiTT8gdj6gzG1BmIKRpPqbTAqaoSt4oLsu+w\n01cmk0nVpR6VF7lUf/Glet/l1j43/1RfvPpCvX3dbWqedVDWsdOGoaX1HdpnYoVsVp5JBgAAwNBB\nYQ4AAACA3Ury8CPlfvA+lS5bpLbps7KK0R1KyDAMmQboC4zPC0eTWrlqsxIbNqi0rVmu1ia5WzfL\n1bp5y8+2Zvka1ills2vJOd/OKGZFkUsVRa5+zhwAAACDwWY1q6zIpbKPP++lDWPAinF2xGoxa9yI\nQnVedonmFhVr9i++p4N++i3Nu/oGbTzsS1nHjcZTWrGxU9PqSvOYLQAAAJAbCnMAAAAA7FYShx8p\nPXifKt9/M+vCnGQ6rVA0Ka8ru4472TD5u+T52f+TsXChfE2bNLqro+f8nG6FK2q04rQLFamo2Wns\nEp9DExhhBQAAsNsYzKKcTyv2OeQ8/wzNKyzSrGsv0f7X/1AOf6dWn3x21jHb/FHVbw5odNXgdrgE\nAAAAtqIwBwAAAMBuJXHQwUpbbap6/00tueB7Wcfxh+IDV5hjGPJe/X05n/6HUnaHwuVV8o+ZqEh5\nlcJllYqUVytcUaVwebUiZZVKeAukDL5ssZhNGldTqJoyzwC8CQAAAGB7LodVY047XguKH9ee3z1P\ne935azn8HVpy7ncy+ky7I+s2dyuZSmvciMI8ZwsAAAD0HYU5AAAAAHYrhten+Oz9VPLOm3J0titW\nnF2b++5gTCMGqKDF8cSjcj79D7VNnanXbnpYhiX3P+WKvA5NGlkkl4M/CwEAADC4rBazxhx9kJY/\n/E+Nv/gMTf3bXXJ0dWj+5T+VLJasYm5sDSqeTGvSqKIh0yEIAAAAuyfzYCcAAAAAAAMtecSRkqTK\n+W9nHcMfjucrnV6Z162V99orlXB7NPeaG3MuyrGYTJowolAzx5dRlAMAAIAhw2QyacS+09Xw5L/U\nNXayxv3rce3/mytljmf/ubu5M6zFa9uVTKXzmCkAAADQNxTmAAAAANjtxA/bUphT9d7/so4RjacU\nS6TyldKOJRLyXXaxzKGQ5l/+M4Wra3MKV+ixa9bkCo0o9+YpQQAAACC/SieOUeczz6ttz9ka+b+X\ndNBPvilrOJR1vI5ATItWtyne35/dAQAAgB5kVJizaNEinXPOOdu9/t///lennnqqTj/9dD3xxBOS\npEQioSuvvFJnnHGGzjrrLK1Zs0aSVF9frzPPPFNnnXWWrrvuOqXTVKgDAAAAGBypadOVqKlVzbuv\n5vQErj/Uv11z3Df9VvYP3lP9YSdow5EnZh3HYjJpfA1dcgAAADA8eKvKFH36WTUffKQqF76rL151\nnhyd7VnHC0QSWrCqTZFYMo9ZAgAAAJnZaWHOvffeq5/85CeKxWKfeT2RSOj666/X/fffr4cffliP\nP/642tra9PrrryuZTOqxxx7Tt7/9bd1yyy2SpOuvv17f+9739Mgjj8gwDL3yyiv9844AAAAAYGdM\nJiVOPFm2cFCV89/KOkx3PxbmWN99R+5bfq9QZY3mf/dnWccpdNu1z6QK1VZ4ZTKZ8pghAAAA0H8c\nPo/06OPafOLXVLJqiQ698pycOudE4knNX9mq7gEaSQsAAABstdPCnFGjRun222/f7vU1a9Zo1KhR\nKiwslN1u1z777KP33ntPdXV1SqVSSqfTCgaDslq3PI25ZMkS7bvvvpKkQw45RG+//Xae3woAAAAA\nZC524smSpNo3Xsw6hj/YP4f6Jn+XvN+6SJI099oblfT4+hzDbDJpbHWBZk4ok9tJlxwAAAAMP2a7\nTZZ771XL6eepoGGdxj33SE7xEqm0Fq1qU0d3NE8ZAgAAADu309PZY445Rg0NDdu9HgwG5fN9cjjs\n8XgUDAbldrvV2Nio4447Tp2dnbr77rslSYZhbHs60+PxKBAIZJRgeXnfD6ABYLjhdx0AAIPg2MOV\nGlGrEe+8qhV2kwy7o88hTCaTSko8slgymhKcGcNQ+ruXyNy4Uasv/K7i+31B2XxSGFnp0x5jS/OX\nFwAAwOdwnoEBc8+tSj3/tCb/40E1n/UNpVzunMKtbw3LW+DSiHJvnhIEAAAAepb1Y5Ner1eh0Cdt\nI0OhkHw+nx588EEddNBBuvLKK9XU1KTzzjtPzz33nMxm82fuLSgoyGif1tbMCngAYLgqL/fxuw4A\ngEHiPuEkee75ozxv/FdN+x+WVYw19R0q9vW9qKcnjicfU8Fjj6l9ygwtPO1iGcG+P81rkuQbWchn\nDAAA0G84z8DAMstywSUque33qnj8Ia386gU5R3x7YYPGVhdoVCUFZgAAAMhdbw8uZP1Y57hx41Rf\nX6+uri7F43G9//772muvvVRQULCtk05hYaGSyaRSqZSmTp2quXPnSpLeeOMNzZo1K9utAQAAACAv\n4tvGWb2UdYzuUP7GWZnXr5Pn6h8o4fZo7rU3yrBk9yxFWaFLLgfjqwAAALDrSH/7ciXcHk168n6Z\nY/kZRbW2qVurG/15iQUAAAD0pM+FOc8995wef/xx2Ww2XXvttfrGN76hM844Q6eeeqoqKyt1/vnn\na8mSJTrrrLN03nnn6fvf/77cbreuueYa3X777Tr99NOVSCR0zDHH9Mf7AQAAAICMJfeZrUT1CNW8\n81+Z49kV2HSH81SYk0zK/c2LZAkFNf/ynypUPTLrUCMraMkPAACAXYtRXKK2My+Qs7NNY59/Mm9x\nG1qDau4M5y0eAAAA8HkmwzCMwU6iN7RDBbCro/UzAACDy/3Ta+W5507975d3afN+h/Z5vc1i1oHT\nq3POw3HDr1Xwh99qw2Ff0txrb5RMpqziFHkcmjmhLOd8AAAAesN5BgZDrKlZVfvNUMLj1fMPvay0\nPT8jZS1mk2ZNqqDrJAAAALLWL6OsAAAAAGBXED/xK5KkkVmOs0qk0gpFEznlYJ37jny33KhQZY3m\nf+dnWRflSHTLAQAAwK7LUV2pjad8Xa72FtW9+I+8xU2lDS1d36H00H6OGQAAAMMUhTkAAAAAdmvJ\nfWYrXlWjmnf+K1Miu7FU/mD246xM3X65L/mGJGnuNb9TwluQdSy3w6rSQmfW6wEAAIChLnzpd5R0\nODX58fuy/vy+I4FIQms3dectHgAAALAVhTkAAAAAdm9ms+JfPkn2YLcqF7yTVYjuUPZfCNi+f4Uc\nTQ1aduY31T5tn6zjSHTLAQAAwK6vZMIorfvS6XK3NmnMv5/Ja+yG1qDa/dG8xgQAAAAozAEAAACw\n20ucdIokqTbLcVb+LAtzzH9/UoXPPaX2KTO09OzLsoqxlcNqUWWJO6cYAAAAwFBntZjVeuFlStns\nmvLon2RK5jZW9vOWb+hULJHKa0wAAADs3ijMAQAAALDbS86arXhltUa8/UpW7fAj8aTifT287+qU\n96fXKmV3aO7Vv5VhsfZ5308bUe6R2WTKKQYAAAAwHBRPGqO1x58mT3OjRv33//IaO5FKa1l9pwzD\nyGtcAAAA7L4ozAEAAAAAs1mxEwZ2nFX6pz+To71VS7/+LYVGjM5qz60sZpNqyjw5xQAAAACGi5IC\np9aecbHSVpumPHK3TKlkXuN3BWPa0BzMa0wAAADsvijMAQAAAABJyZMHbpxV+K25qnjiL+oeOVYr\nvnpBVvt9WnWpR1YLf94BAABg92A2meSbNFbrjjlFvk0bNPLV5/O+x/rN3fIHY3mPCwAAgN0PJ7cA\nAAAAICk5e9+cxlll2jEnEYur8Jrvy2QYmv/d62TY7H3e69PMJpNqy+mWAwAAgN1LZbFby0+/WGmL\nVVMeuVtK9XG07E4YkpbVdyqRTOc1LgAAAHY/FOYAAAAAgLRlnNWXvvzxOKt3+7w8EEkonTZ2ft8t\nd6ho5WKtP/JEtc7YN5tMP6O80Cmn3ZpzHAAAAGA4KfDYpdGjVX/kiSpoWKfa/2XX+bI30URKKzZ2\n5j0uAAAAdi8U5gAAAADAx5Jf+aokZXWonzYMBcK9d83ZvHi1xt51o+LeAn148dVZ5fh5Iyt9eYkD\nAAAADDeVxW4tO/ObSpstmvq3u6R0/rvbtPmjamwN5j0uAAAAdh8U5gAAAADAx5Kz91W8omrLOKtk\nos/r/b2MswqE4yr6xU9kC4f00YU/UKy4NJdUJUklPoe8LlvOcQAAAIDhqKLYpVDNKG04/AQV1q/W\niLf+0y/7rNnUrWCk738fAAAAABKFOQAAAADwCbNZkS+dKHvAr4osxll191CYk0yl1fLksxr52vNq\nnzJDa48/LddMJUkjK+iWAwAAgN2Xy2FVoceuZWd+U4bZvKVrjrHz8bJ9lTYMLV3foVQ/dOQBAADA\nro/CHAAAAAD4lPRXTpUkjXzjxT6v7aljzurVm7XHzXNkmM364LvXSebc/xTzuWwq9jlyjgMAAAAM\nZ1UlbgVH1mnjF49T0drlqn731X7ZJxxLatVGv4x+KPwBAADAro3CHAAAAAD4lOS++yleXpnVOKtE\nKq1w9LNrNneEVXLP7fJt2qBVJ58j/7gpecmztsKblzgAAADAcFZe5JLZZNrSNcdk0tS/3tkvXXMk\naXNnWG8v3qzF69rV2Brc7rM/AAAAsCMU5gAAAADAp5nNCh+f/TirT3fNCUeTanpngSY//ieFyyq1\n5Nzv5CVFp82i8iJXXmIBAAAAw5nVYlZpoVPdYyao4eBjVLJqiaree6Pf9kuk0mrzR7Wq0a95y1v0\nzpLNWlbfqc0dYcXiqX7bFwAAAMMXhTkAAAAA8HmnZj/Oqvvjwpx02tDSde2acdsvZEkktPDSHynp\n9uQlvdpyr8wmU15iAQAAAMNdZfGWovVlZ10qSf3WNccW8MsSCX/mtVgipebOsJZv6NQ7Szdr3rJm\nrdzYpdauiNJpxl4BAACAwhwAAAAA2E5i3/0VL6tQTRbjrLZ2zFmzya/iF/+pygXvqGn2wWo8+Oi8\n5GY1m1VV6s5LLAAAAGBXUFLglM1iln/sJDV+4QiVLv9Qe/3xV7L7O/MS3xoKaPp9v9eXzzhYX7z6\nAimd7vHecCypTe0hLVnfofrmQF72BwAAwPBGYQ4AAAAAfJ7ZrNBxX5Yj4FfFwrl9WhqOJdXUHlLL\n+ibNuOcGpewOLbj8p1KeOtzUlHlktfCnHAAAALCV2WRSxcddcz686EoFq2o1/tlHdPx5R2vyo/fI\nEo1kFdeUSmrcs4/o+POP0eQn/ixTKq3SFR9q5OsvZLR+Y0tQkVgyq70BAACw6+A0FwAAAAB2wPh4\nnFVtFuOsVm7s0rQHb5Wro01Lz7pUoeqRecnJbDJpRHl+xmEBAAAAu5LK4i1dJYO1dXrpvn9pwbd+\npLTVqukP3KLjzj9Gdc8/IVMqwyIZw1DV3Nd09CUnae87filzPKaPLvi+Xr7nGaWtNk178FaZEvGd\nhkkbhtZu6s7lbQEAAGAXQGEOAAAAAOxAar8DFCur0Ii3/tPncVZFKxdr3HOPqru2Tiu/emFe8nHZ\nrZpQWyiHzZKXeAAAAMCupMBjl9thlSSl7Xat/sq5ev6hl7X0zG/KFgpo1i3X6ehLTlLNW/+RDKPH\nOIVrluuQay/UwT/9lnyN67Xm+K/phQdf0vIzL1Fg9Hit+dLp8jZt1NgXnswor1Z/RJ2BWF7eIwAA\nAIYnCnMAAAAAYEcsFoWOPeHjcVbzMl+XSmnvW+fIZBia/93rlLbbs07BJKmswKk9x5Zqv6mVqi6l\nWw4AAADQk61dc7ZKenxacsH39MKDL2ntcafJ17heB/78OzrsB2erdMn8z9zrbG/RrJt+rKMuO0WV\nC97V5lkH6eW7ntb87/1cseKybfctO+tSJVxuTf3rXbJEQhnltabRL6OXYiAAAADs2ixz5syZM9hJ\n9CYc3nk7SAAYzjweB7/rAAAYokxej9yPP6KU3a6mAw7v9V5zPK6KBe9oj4f/qOoP3lL9EV/Wqq9e\nkNW+dqtZteVeTR5drJoyr1wfP/kLAAAwVHCegaHIabeooXX7Ypmk26OmAw7TxkOOlautWVXz31bd\nS0+paPVyBWpHq+6Fv+uA31yp0hUfqnv0eM27+gYtPfdyxYpLt4uVcrllTiRUM+91pewOte05e6d5\nxZNp2a1mFXiyL9oHAADA0ObxOHq8ZjKGeJl2a2tgsFMAgH5VXu7jdx0AAENVKqWCaROlRELPPfaG\nDKvtM5cdnW2qnveGqt99VVUfvC1rNCxJClXW6JXbHv/Mk7WZKPI4VFPmVlmRS2aTKW9vAwAAIN84\nz8BQtXBVm7pCvY+OKl0yX3ve+3uVLV2w7bVoUakWn/ddrT/2FBmW3gvjreGQjjvvaFkSMT3/4MuK\nF5XsNC+bxax9p1TIZmU0LQAAwK6ovNzX4zUeuwQAAACAnlgsCh5zgkofeUDli+apZe8vqHDtClXP\nfU01776qkhUfyfTxsw6BmlFq2v8wbdr/MLVN23u7Ip6eWM1mVZa4VFPmkceZ2RoAAAAAO1ZZ4tpp\nYU77Hnvr1Zv/ppp3/qux/3pcXeOnavnXLlLS481oj6Tbo2VnXaq97vqNpjx6jxZ960c7XZNIpbWu\nKaCJI4sy2gMAAAC7DjrmAMAg4wkzAACGNvP/3lDpqSfIP3qcrJGwPC1NkqS02aK2aXurab9DtWn/\nwxQcWdfn2F6nTdPHlcph46lZAAAwvHCegaEqmUrr7cWbld7BVx9mk0lOu0Uuh1Vuh1Uuh3Xb+KuO\nQLRP+5jjcR37jePl7GjRi/e/oHDliJ2uMUnaZ1KFvC4K8gEAAHY1vXXMoTAHAAYZB1kAAAxxqZR8\nM6bK2dKkuLdAm2cfrE37H6bN+xyoREH2T7sWuO2aPrZUNqs5j8kCAAAMDM4zMJSt3NilcCy5rfhm\nWxGOw9LjyNiWrojWNPgVS6Yy3mfUf57Vfr+7RuuPPEnvXX1DRmuKvA7NHN+3kbcAAAAY+ijMAYAh\njIMsAACGvrYPFqtp2Vp1TN4z4xFVvSn2OjRtbIksZopyAADA8MR5BnZFyVRa65sCamwLKqMvTtJp\nHXXZKSpct1Iv3/2MuusmZrTP1DElqihy5ZQrAAAAhpbeCnM4BQYAAACAnSjYc4q6ps/KS1FOeaFL\n08eVUpQDAAAADDFWi1njawu198Ry+Vz2nS8wm/XRhd+XyTA0/f6bM95nbaNfqXQ6qxw7uqN6b3mL\nwtFEVusBAAAw8DgJBgAAAICdsNssmj2lQuWFuT3VWlXs1tQxxT22zwcAAAAw+Hxuu/aeWKYJtUWy\n7qSgfvPsQ9Q6fZZq5r6m0sUfZBQ/mkipoSXUp5zShqE1jX59uLZdoWhCH65pVzSe7FMMAAAADA4K\ncwAAAAAgA067VXvUlWjPsaVyO6x9Xl9b7tXk0cUyUZQDAAAADHkmk0kjyjyaPaVClb2NnTKZ9OFF\nV0qS9rzvJsnIaAiWNjQHMi6sicSSWrCyTRtbg9teiyZS+nBNuxLJVEYxAAAAMHgozAEAAACAPigp\ncGrW5AqNrS6QJcMim7qqAo0fUdjPmQEAAADIN4fNoiljSjRjXFmPBfodU2aq8QtHqGzpAlW/+2pG\ncVOGobWbund6X3NHWO+vaFEgEt/uWjiW1IdrOpRMZTcWCwAAAAODwhwAAAAA6COzyaRRlb4t4616\ne3pW0vgRhRpd5RugzAAAAAD0h2KfQ7MmVchpt+zw+kcXfl+G2azp998spTLrYtPSFVFXMLbDa8lU\nWsvqO7VsQ6dS6Z678AQicS1Z16F0L/cAAABgcFGYAwAAAABZctqt2qOHp2fNJpOmjCpWbbl3kLID\nAAAAkE9ms0ljqgp2eC0wapzWH3WyCutXa/Qrz2Ycc3WDX8bnxl8FwnF9sKJVzZ3hjGJ0BmNaVt+5\nXRwAAAAMDRTmAAAAAECOin2OT8ZbmU0ym0yaOrpYlSXuwU4NAAAAQB5VFrt6HGm15JzLlbLZNe2h\n22WO77gTzucFowk1tX9SgLOxJagFq9oUiSf7lFerP6KVG7v6tAYAAAADg8IcAAAAAMiDreOt9p1c\nqRnjy1S2kxFXAAAAAIYfk8mkMdU77poTqajW6pPOlru1SeOefTTjmOuauhWOJvXhmnat2eRXOsvO\nN00dYa3d1J3VWgAAAPQfCnMAAAAAII8cdosKPfbBTgMAAABAP6kocsnrtO3w2rIzLlbc49OUR++W\nNRTIKF4ildZ7y5vVEYjmnNuGloA2NGe2LwAAAAYGhTkAAAAAAAAAAAB9UNdD15xEQZGWn36xHAG/\nJj3x54zjZdcjZ8fWNnWrqT2Ux4gAAADIBYU5AAAAAAAAAAAAfVBa6FSBe8edMleffLYipRWa+NRD\n8tWvHuDMtli5sUttXZF+i98djqvdn3uHHwAAgN0BhTkAAAAAAAAAAAB91FPXnJTTpfnf/omssaj2\n/82VMscGvoDFkLS0vlOdgVjeY7d1RbRoVZvWNXXnPTYAAMCuiMIcAAAAAAAAAACAPir2OVTkdezw\n2qaDjtLqE85Q0bqVmvGn3w1wZlukDUOL17ZrU1v+xlptbAlqyfoOpQxDwWiiX7vyAAAA7CoozAEA\nAAAAAAAAAMjC2B665kjSom9eo666iRr/3KMa8ebLA5jVJ1KGoZUNXfpobbtiiVTWcQzD0MqNXVqz\nyS/jU6/XNwdzTxIAAGAXR2EOAAAAAAAAAABAFgo8dpUWOHd4Le1w6t0f/0FJh1Oz/vBTuZsbBzi7\nT7R3R/X+8ha1ZtHhJplK66O1HdrUvn3nnUAkro7ugR/VBQAAMJxQmAMAAAAAAAAAAJClul665gRG\njdOCy34se7Bb+11/lUyp5ABm9lmJVFpL1ndoWX2nkql0Rmui8aQWrmpTR6Dn4pv65kC+UgQAANgl\nUZgDAAAAAAAAAACQJa/LpvIiV4/X1x97qjYcerzKli7Q1L/cMYCZ7VhzZ1jvL29RZyDW632BcFwL\nVrYpGE30ep8/FJc/2HssAACA3RmFOQAAAAAAAAAAADmoq/LJ1NNFk0kfXDFHwapaTXnsTypf8O5A\nprZD0URKi9a0aXWjX+m0sd31Nn9EC1e1KZZMZRSPrjkAAAA9ozAHAAAAAAAAAAAgB26nTZXF7h6v\nJz0+vfv/bpJhtmi/314lR2f7AGbXs4bWoD5Y2apAOP6Z15as61DK2L5gpycdgZi6PxUDAAAAn6Aw\nBwAAAAAAAAAAIEejq3wym3rsm6POyXvqowu/L1dHm2b//kdSOj2A2fUsFE1owao21W8OaHWDX6sb\n/cq8JOcTG+iaAwAAsEMU5gAAAAAAAAAAAOTI5bCqqqTnrjmStPLU87V51kGqfu9/mvjUQwOU2c6l\nDUPrNneroS2YdYw2f1TBSCKPWQEAAOwaKMwBAAAAAAAAAADIg9FVPll66Zojs1nzrrpBkZIyTb//\nZhWv+Gjgkvt8KrGoSpYu0PinH9bs312jYy46QQf84gqZktkX19A1BwAAYHsmw+jDkNBB0NrKhzgA\nu7bych+/6wAAAAAAwLDCeQbQszWNfm1s7b3zTMX8t3XIjy5SqKpW/77zKSU93n7NyZSIq3DdKpWs\nXKzilR+pZOUSFaxfJXM6te2etMUqcyqpNcd/TfOvmCP1VmDU0z6SZk+ulNtpzV/yAAAAw0B5ua/H\na3wyAgAAAAAAAAAAyJNRlV5tag8ple75ueiWvb+g5adfrCmP/Un73DZHc6+9MatCmB0xx6IqXL9K\nRWuWqWj1MpWsWqLCtctlSXzSCSfpcKpj8p7qmDRNnROmqWPSdEVLK3Toledo3PNPqHv0eK3+yjl9\n3tuQtLEloEmjivPyXgAAAHYFFOYAAAAAAAAAAADkic1qUW25V/U7Geu05NzLVf7hPI169V9q3vsL\nWn/MKX3ey9HZrqI1y1W0dtmWn2uWy9ewTqZ0ets9aatNXXUT1TlpmjomTFPnpOnqHj1OhmX7r4je\n+vkfdeR3vqaZ99ygQO0YNc8+uM85NXdGNLrKJ6edr6AAAAAkRlkBwKCj9TMAAAAAABhuOM8AepdM\npbV0fafSaUOGDBmGZBhbfqaNT/7tbGrQoRefJEskrFhRiVIOp1IOp5IOl1IOx7Z/pxxOpexOJZ1O\nyWSWb+NaFa1ZLldH62f2Tbg96ho7WV3jJqtr7GT5x02Wf8xEpe32jHMvWbZIh/7wXKVtdr1y66MK\njB7f5/c/osyjCbVFfV4HAAAwXPU2yorCHAAYZBxkAQAAAACA4YbzDCB/bK++Iuevfq5ER6cssags\nsaissags8Viv68Ll1VsKcLb9N0WhyhGS2ZxzTiNf/Zf2v/6HClaP1Cu3Pa54Yd9GU5lNJu03tVIO\nmyXnXAAAAIYDCnMAYAjjIAsAAAAAAAw3nGcA+bdmk18bW4KfvJBOyxKPfVysE5ElFpM1FpE5kVBg\nxGglCvq3I80eD92mqX+7S63TZ+n1G/4sw5Z51x1JKfiMGQAAIABJREFUGlnu1bgRhf2UHQAAwNDS\nW2EOAz4BAAAAAAAAAAAGWV11gboCMQUiiS0vmM1KOV1KOV2S+taxJh+WnHO5fBvWauT/XtI+t/1c\n7//gV5LJlPH6Te0hjar0ymalaw4AANi95d7PEAAAAAAAAAAAADkxm0yaMrpElj4Uv/Qrs1nvXXW9\nOibsobqXntKEfzzUp+WptKGG1lA/JQcAADB8UJgDAAAAAAAAAAAwBLidVo2vHTrjn1JOl976+R8V\nKa3QjHt/p+p3X+3T+sbWkJKpdD9lBwAAMDxQmAMAAAAAAAAAADBEVJd6VF7oykussdUFmjK6WDWl\nHnmctqxiRMsq9dbP/6iU3aH9rv+hCtatzHhtMp3Wpja65gAAgN0bhTkAAAAAAAAAAABDyMSRRXLY\nLFmvN0maPKpYoyp9qix2a+LIIs2eXKEDp1VpjzElqi3zyueyKdOhWZ0Tp+m9q66XLRLWQT+7TI7O\n9oxz2dgSVCpN1xwAALD7ssyZM2fOYCfRm3A4PtgpAEC/8ngc/K4DAAAAAADDCucZQP+ymE3yumxq\n7gz3ea3ZZNIeY0pUUezeQVyzPE6bSgqcqinzqLbcq0KPQw67RTKkeCLVY9zu0eNlmMyqffs/Kl22\nUBsO/7IMy86Lh9KGoWgspXgipWgipWQyLcOQzOYtuQIAAOwKPB5Hj9dMhmEYA5hLn7W2BgY7BQDo\nV+XlPn7XAQAAAACAYYXzDGBgrNnk18aWYMb3W0wmTRtbqmJfz18M9SaRTKm1K6qWroj8wZi2+wLJ\nMLTf9T/UqNee14ZDj9eCy3+ieEFxVnttzddus8huNctus8hmNctpt6jI65DPbZOJwh0AADBMlJf7\nerxGYQ4ADDIOsgAAAAAAwHDDeQYwMNKGoQUrWxWIJHZ6r81i1vSxpSrw2POydzyRUqs/qtbOiPyh\nT4p0zLGoDr3qPJUu/1Apu0P1R3xZq086W/6xk/Ky71Z2q1mlBU6VFDhV7HPIajHnNT4AAEA+UZgD\nAEMYB1kAAAAAAGC44TwDGDjhaEIfrGhVqpevcxxWi6aPK5XXZeuXHGKJlNq6Imrpiqg7FJc5EtLY\n55/U+H/+Td7NDZKklhn7atVJZ2vTAYdLGYy46guzyaQir12lBU6VFjrltFvzGh8AACBXFOYAwBDG\nQRYAAAAAABhuOM8ABtamtpBWNnTt8JrTbtGMcWVyOQamWCWWSKm1K6KG1qCikbiq572hCc88rMoF\n70iSQpU1Wn3i17Xu2FOV8BX2Sw5ep00lBU6VFTrz1iEIAAAgFxTmAMAQxkEWAAAAAAAYbjjPAAbe\n4nXtavNHP/Oax2nTnuNK5bDlt0NNJmKJlBatblM4lpQkFaxfpfHP/k2j//2srLGIkg6n6o88SatP\n+rq6x0zotzxmTarot05BAAAAmaIwBwCGMA6yAAAAAADAcMN5BjDwEsmU3l/eqlgyJUnyuezac1yJ\nbNaBL8rZ6vPFOZJkC/hV99JTGv/Pv8nT3ChJattjb0WLy5S2WpW2WmVYrEpbrDKsH/+0WLddS9sc\nWn/0yYqWVmSUQ2mBU9PHlvbL+wMAAMgUhTkAMIRxkAUAAAAAAIYbzjOAwdEZiGnRmjYVeR2aVlci\nq8U82CntsDhHkpRKqWbuaxr/zF9VufDdPsVsmn2w3vz1nzK+f+8J5Yy0AgAAg4rCHAAYwjjIAgAA\nAAAAww3nGcDgaekMq6zQJbPZNNipbBNPpLRoTbtC0cQOr1vDIZnjMZlTSZmTCZlSKZmTSZk+/e9U\nUuZkUlMfvkMVH76nN379JzXPPjij/Yu8Ds0cX5bPtyR/KC6P0zokip8AAMDQR2EOAAxhHGQBAAAA\nAIDhhvMMAJ+XSKa0aHW7gj0U52SqcO0KHXXZKQrU1unle56RYbFmtG7GuDIV+xw57b1VVzCmhavb\nZJLkcdpU5HWowGtXkccuu23wRocBAIChq7fCHMp8AQAAAAAAAAAAkBOb1aIZ40vlddpyiuMfO0lr\njztNBRvWaOy/Hs943bqm7pz23SqdNrRyY5ckyZAUjCbU0BbU0vUdenvJZs1b1qyVG7vU3BlWLJ7K\ny54AAGDXRmEOAAAAAAAAAAAAcpav4pwl535HCbdXezx0u2wBf0ZrusNxtfujOe0rSRtaAgrHkj1e\nD8eS2tQe0rL6Tr2zdLPeXbpZazd1a4gPqAAAAIOIwhwAAAAAAAAAAADkxZbinDL5XNkX58SKS7X0\nrEvlCPg19a93Zrwu16454WhCG5qDfVoTjae0oSWwrcsOAADA51GYAwAAAAAAAAAAgLyxWc3ac1xu\nxTmrTz5HweqRGv/sI/I2rMtoTTCaUEtXJOs9V270K51l55umjrBWbOjMem8AALDrojAHAAAAAAAA\nAAAAeWWzmj/unGPPan3abteii6+SOZXUjD/dmPG69U3ZjZVqag+pKxTr87rPxOgI0zkHAABsh8Ic\nAAAAAAAAAAAA5J3VYtaM8aUqdGdXnLPpwCPVsuds1bz7qio+eCujNeFYUs2dfeuaE0+ktHZTbmOw\nttrUHqI4BwAAfAaFOQAAAAAAAAAAAOgXVotZMyeUadLIItksffxaymTSokuvlWEyaeY9v5Uplcxo\n2frN3X0aSbWm0a9EKt233HpBcQ4AAPg0CnMAAAAAAAAAAADQb0wmk6pLPdpvaqVqy70ym0wZr+0a\nP1XrjjlFhetXqe6Fv2e0JhpPqak9nNG9Hd1RNXd9tsOO3d+p8oVzpSxGYm21qT2kVQ0U5wAAAApz\nAAAAAAAAAAAAMACsFrPGjyjUrEnlKvE5M163+PwrlHC5Ne2h22QNBTJas2FzQKl0711wUum0Vn6u\neKZ4+Yc6+tKTdejV52vaA7fkVJzT2BbS6gZ/1usBAMCugcIcAAAAAAAAAAAADBi306Y9x5Vqel2p\n3A7rTu+PlZRr+RnflMPfqal/uzujPWLJlDa19d41Z/3mgKLx1LZ/j3npKR125dlydrYpUlKuKY/9\nSXs8eGtOxTkNbUGtbqQ4BwCA3RmFOQAAAAAAAAAAABhwpYVOzZpcoXE1hbKae//KauWp5ylUWaMJ\nzzwsT2N9RvE3NAeUTO24a04wklBja0iSZEomNPOPv9Lsm36slNOt//3qT/rPHU8qUDNKUx+9R1Mf\nvqNvb+xzGlqDWkNxDgAAuy0KcwAAAAAAAAAAADAozCaTRlZ4te+UClWXuGXq4b603aEPL75K5mRC\nM+69MaPYiVR6W/HNpxmGoZUbu5Q2DDk62/XFay7UhH/+Tf4xE/Sf259Q86wDFS2r1Os3PqRg9Ujt\n8dc7NfXhP+bwLqWNrUGt2URxDgAAuyMKcwAAAAAAAAAAADCo7DaLJo0q1t4Ty1VZ5JLZtH2JTsPB\nx6h12j4a8fYrKl84N6O4G1uCSiQ/2zWnsS2k7nBcRSuX6MjLT1P5R++r4aCj9cqtjypUM2rbfZHy\nKr1244MKVtVqj4fv0JS/3pnTe9zYsmWsVU9dfAAAQP+IJVLqDMTU0BpUR3d0wPc3GUYOgzEHQGtr\nYLBTAIB+VV7u43cdAAAAAAAYVjjPANDfYomUNrWF1NQeUvxThTXFKxfryMtPU9fYyfr3H/8uWSw7\njTWqwqexNQVb4sZTmre8WSNefkazbrlO5kRci8+/QsvPuETaQTGQJLmbG3XoD8+Tp7lRH51/hZaf\ndWlO781iNqmiyKXqUo8KPPacYgEAgE8kkikFI0mFowmFokmFo0mFogklPlcU63PZNbrSq7IiV972\nLi/39XjNMmfOnDl526kfhMPxwU4BAPqVx+Pgdx0AAAAAABhWOM8A0N+sFrOKfQ6NKPfK7bAqFk8r\nnkwpWlohz+ZGVX3wpiIVVeqasMdOYwXDCVWVumW1mLVibavG3fprzfjzTUo63XrnZ7dq/bGn9liU\nI0kJb4Eav3CERrz9H9W+9R+lbA61T9sn6/dmGFIwklBTR1htXVGlDUMuh1UWc885QApFE7Jbd16I\nBQDYfcSXLJPz0ouUeuLv2tDk11IVqimYVEcgpkAkoWgipfQOetXEkym1dEXU1hWV1WKS22mVqZfP\nApnweBw9XqNjDgAMMp4wAwAAAAAAww3nGQAGgz8UV2NrUME19Trm/GOVdLn1wgMvKunx7nRtbZlX\npfGACi+9UJUL31X3qHF6a87tCtbWZby/u6lBh151rjwtTfrwoiu14msX5fJ2PsNsMqm80KmqUo+K\nfT1/sTfUBSMJeV22fon7wYoWjSjzqq7GJ4vZnPc9AADDQzKVVktnRMbTT2uPX18lWzi07VrKZlfT\nvoeo4ZBjtWn/Q5VyeTKK6XZYNarSp4riHY/TzERvHXMozAGAQcZBFgAAAAAAGG44zwAwmGKJlPSb\n36j2jzfKP3qcImVVSjmcSjmcSn78c8t/LqUcDiUdLslq1eTH7pW7uVGNBxyheVffkFFBz+d5mjbq\n0CvPlbttsxZdfJVWnnZh3t+fy25VdalblSVuOWzDo0NMuz+qDS0B+UNx7TWhXIV5HtG1bH2Hmrsi\nkrb8/5k8qkiF3uFbwAQA6BvDMNQZiKm5I6y2jpCmPHirpjz2JyUdLr3/g1+qa9xk1b7xoka+/oIK\n69dIkpIOp5r2/aIavnismmYfopTLvdN9XHarRlV6VVni7nOBDoU5ADCEcZAFAAAAAACGG84zAAy6\nSERFJxwl6+KPZOrDV11LzrlcS7/+Lf1/9u47PKoybQP4fc70nplk0ishIaEjRRAFe19dBdfVVSyL\nuoqr7oqiiIK66q69oWtZ3XV1XfvaPntDQOm9hBDSezKZ3mfO90cggqTMJAGSeP+uKxeTOed9zzuJ\nTOQ9d54H3VRckYkCLEY1Wh3+Tttf6OqqcPz8OdC2NGLj1QtQOvvyzieKRqFpaYShtgL6mgoYasqh\nbapH7fRTUHXyOT2uVRQEpCVqkZtqhEI+8CrERCUJzW0+VDe54faHOp5PNKoxZlhiv13HHwxj9Y6m\nA74XAoBMqx55aUaIbAFGRDRkef0hNNh8aGzzIhCKQOlow9EPzEfq+pVwp2djxeKn4MwrPGCMsaK0\nPaTz7Scw1pQDAMIqDeqnzkT1jDPQeNQxPYZz1QoZMpP1SEvUxlyljcEcIqIBjBtZRERERERERDTY\ncD+DiAYMSUJLkx1luxsh+byQB3yQBQKQBXyQ+f2QBf2QB/yQBfxwZebBVjyu2+lMWiWKcszQqOQI\nhCKoaXKjrtWDSPTA22m62kqcMH8ONK1N2HTVLWgZPRH62goYan760NdWQh7wdXqdilN+jfXX3xnT\nb+8rZCJyUw1IT9JB6GV7jf4UiUZR3+pFTZMb/lCk03MmjUjut5ZWu2sdqGl2d3pMq5KjKNsMYz9X\n6CEiGugkSUIk2v4RjUqISvs93ve81P4YANISY2vpNBB4/aH26jhtPji9wY7nzbu2Yto9N0DXVI+6\no4/H6gV/Q0hv7HoiSYKxohRZ332CrO8+gaG2suNQwGSGOzULntQMeFIz4UnL3PtnFrzWVEjyn36G\nqeQyqJV7P1RyqJUyaPb+qVLIOn42M5hDRDSAcSOLiIiIiIiIiAYb7mcQ0UDjC4SxvaINLl+w55M7\nIQDISTUgJ8VwUPglHImittmD2hY3guFox/P62gocf/McaGzNB80XVmngysyFOzMHrsw8uDJy4crM\nRUSlxuRHF8FSsgXO7Hz8sOgxOHMLYlqjXq1AfoYJZsORaeEUCkdR1+JBTbMboUi023OTEzQYmWvp\n8zXDkSh+2NZwUDBqfwKAzGQ98lJZPYeIfhl8gTA27W7pMhzZmbxUI3JSuw6OHEmBYARt7gDaXAHY\n3YH2lpU/k/vJ2zjq6XshhkPYdun12HHxH7qtfncQSYJpTwlyl3+GxLLtUNVWQ9NQA1kodPCpogiv\nNRWe1CzYCkdh+yXXIaLpPNgkCgJUChk0KhlOmprX5eUZzCEiOsK4kUVEREREREREgw33M4hoIIpK\nEvbUOlHT0nl1la5olHIU5Zhh6qHqSjQqod7WXinGFwwDAPQ15Rjx5j8Q1ujgymoP4Lgzc+FLSgG6\nqG4jhIIY++IjKHzvFYRVamyYtwgVp53f5fk/l2RSIz/dBI1KHtfr7C1/MIyaZg/qWzyIxHhbUQAw\nuSgFWnXf1ljV6MKeemdM5+rUCozIToBRy+o5RDR0+QJh1Lz9MXLfeAlbL7sBjvyimMeOyUtEokl9\nCFcXm1A4Cvt+QRxvINzluWIwiAlL/4Jhn7yFoMGEH297CI2Tj+vVdc16FYpzzFAqZAAAKRJBqLoG\nkbJySHv2QKysgLyqEsraKmjrqqFpbQIA2PMKsXLJ0/CkZXU7/wWndP29YDCHiOgI40YWERERERER\nEQ023M8gooGsxe7Dzio7wtHuq7oAQKpZi+GZJshlsf/WvSRJaLL7UN3ohtt/8G/axyp9xZeY/Mgd\nULqdqDj5HKz/411d/kb+z4mCgEyrHtkp+rjWHiunJ4jWNg/0/3wR2W//CxuuuwMNU2bENUeaRYsR\n2eZeryEqSVi1rRGBcOwVIURBQFayHjmpBogDoO0XEVF/8gfDaHvkSYx+8i8QI2F4UjLwxdK3ETIm\nxDReLoo4qjAJWnX/tBqMRSgcgTcQgS8QhscXgt0dgNsXQiwhFU1TPY6590ZYSragLb8YK+96Et60\nzLjXIADITTUiO0Ufc0vISDQKv90F9eI7kfrGPxE0mPDDwkfQNHF6l2MYzCEiGsC4kUVERERERERE\ngw33M4hooPMFwthR2Qant/PWVnJRRGF2ApITNH26js3pR22LB25vKK4AyT7ahlpMve/PSCzZDGfW\nsPbWVnmFMY9XyWXISzci1aKN+9r7i0SjaHMG0Or0w+YMQL1rOyY+dhcSSzYDABy5Bfj8ufdjruoD\ntIdkphQnQ63sXdWc+lYPSqrtvRqrVcmRnWJAslnDgA4RDQl+jw+RG29C7gevI2Ayo37yccj98gPU\nT5mB5fc8G3NbJ61KjqMKrf0a6oxGJXgDYXgDYfj8Yfj2PQ6Ee2x92BkhEoZ14ypM/estUDnaUHHK\nr7HuhsWIquKv9qOSy1Cca0aCvvdtID3PvYisexZAjESw+fc3Y9fsKzr9echgDhHRAMaNLCIiIiIi\nIiIabLifQUSDQVSSsKfOiZrmA1tbJehVKMpO6HVgpCvhSPSAm5E+f7jjRmUk2vXtOCEUxJiXHsOI\nd/6JiFKFDfPuQPnps+MKwRi1SqQlaiGTiZCLAuQyETKZALm4989ObsD6g2G0OgNodfhhdwcQlSSI\nAT9GvvYsRrz1EsRIGFUnnAWZ34+MH77C9/c+i4ajj4/ra5KZpMfwTFNcY/ZZvaOx2/YmsdAo5chO\n0SPFomVAh4j6zOsPodnuhygKMBtU0GsOT+WZUEMTlHN+h6SNq2AfNgIr7l4KrzUNxy76A9LWfo+t\nc/6IHZdcF/N8FoMaY4ZZYq4e05VWhx+ltXb4g90HU5V2Gyy7tsJYVQaF2wmF1wO51w2FxwWF1w2F\n1wOFx7X3OQ/kAR8AICpXYMO1t2PP2b+N62fiPhaDCkXZP7Wu6gvHN8uRcd3l0LQ2oeqEs7D2T/ci\noj4w3MtgDhHRAMaNLCIiIiIiIiIabLifQUSDSYvDh5IqOyJRCbmpBmQlx97Kor8EQnvbePjDaLJ5\n4eikkk/aD19jysMLoXQ5UHnC2Vh/4xKEtbG1tuqJAEAmipDLBMhkIiRJOij0Yt3wIyY+sRiGuip4\nUtKx/o+L0TBlBkx7SnDqH36N5tET8e2jr8Z1XZkgYOqoFCjk8d0UbXX4saW8Na4x3VErZMhM1iM9\nUQdRZECHiGK3L4zTZPfB87P2hQqZiASDCma9CmaDChpV/wY+ASCyeQsMl14IXX0Nao49BatveaCj\n7aHS2YaT582Gtqke39/3PBonHRvzvFnJeuSn9y44CQBVjS6U1zsPakkl97hg3rUNll1bYCnZCnPp\nVuga67qdK6xSI6zVI6TVIaQzIKTVI2hMwK5Zl8FWPD7ute1rXZWTaoh7bHfsuythmTsHids3tLfW\nWvwUvKkZHccZzCEiGsC4kUVEREREREREgw33M4hosPEHwwiFozBolUd6KQAAhyeImiY3Why+A25q\nahtrMfX+m5G4YxNcmbn4YdHjcAwbcUjXonS2YewLDyPvs3chiSJ2nTcH2+Zc33HjFwCOveNqpK35\nHl89/h/YRk6Ia/7sZAOGpRvjGrOxtAV2TyCuMbFQyfcGdJK0kMXY9oWIfnm8/jCa7T40231w/yyM\n0x21QgazQYUEgwoJehVUfazUInz0IRLmXQ25z4Ntl8zD9kuuO6hllXnXVpzwp4sRVmvx5TPvwJuS\n0cVsByvOMSPFHF8rxGhUQklVGxrtPgjhECwlW2Ap2QJzyVZYSrfCUFNxwPl+kwVtI0bDVjga9mFF\nCBoTENLpEdIaENbpENLoICkO/tksCgKivYiyqBQyFOf0rXVVdxw2F8T5N2PYR/9FwJiAH+54DM0T\npgJgMIeIaEDjRhYRERERERERDTbczyAi6h++QBi1zR7U2zwd7a6EcAhjXnocI95+CQGTGV8+/VZc\nN1pjJknI+vb/MP6Z+6F22NA2vBhrb7oX9sJRB52atHk1Tph/GWqnnYSVdz8d12Xkooipo1I6bafV\nGacniPWlzXFdI14KmYhMqx4ZVl3M6yKioc0XaA/jNLXFF8bpjk6tQKJRjWSzJr62V5IE5aMPwfjg\nfYgoVVhzywOomXF6l6fnffwmJj2xGLYRY/DNI68iqowthCoTBIwvSIo5tBoIRbB1jw0uXxD66nIc\nc88NMFXu7jge0uphKxy9N4gzBm2Fo+BNTo+7DZVKLsP4giTIZSLcvhA8vhDcez+8gXCXgR2LQY3i\nnIS4q7TFy+0LwfnEUox58l4gGsXmq29B6XlzcMGpxV2OiSmYs2nTJjz88MP497//fcDzX3/9NZYu\nXQq5XI5Zs2bhN7/5Dd5991289957AIBAIIAdO3ZgxYoVqKmpwTXXXIPc3FwAwEUXXYQzzzyzxxfF\nf9wR0VDHjSwiIiIiIiIiGmy4n0FE1L/CkSjqWjyobfEgEIoAAIZ9+DomPnUP2oYX45tHX0NErem3\n62kbanHUU3cjbc33CKvU2Hbp9SiddRkkWRdtWCQJJ974WyTu3IxPX/wIruz8uK6XF0dLkW3lNjQ7\nfAc8p6uvhmXHJtTMPL3rNfaCXBSRs7e9GRH9MgVCEZRU2WFz+Q/pdfRqBZLNGiSbNVAru3kf83qh\nu/E6aN9/F15rGlbc/TTsw0d2P7kkYdIjdyDv8/dQdtaFWH/jkpjXpVbIMHGEtccwi9MTxLZyGwLh\nCDK/+wSTHl0Ehc+LyhN/hYbJx8E2YjTc6TkHVfSJl1wUMb4gqcsgU1SS4PGF4PGH4fa2h3U8/hCy\nkvXITunf1lXd8QXCqPngC0y4cx40thZUnHwOcr94v8vzewzmvPDCC/jggw+g0Wjw5ptvdjwfCoVw\n5pln4u2334ZGo8FFF12E5557DklJSR3n3H333SgqKsKFF16It956Cy6XC1deeWVcL4j/uCOioY4b\nWUREREREREQ02HA/g4jo0IhKEprbfKhucsPtC2Li43dh2Cdvo/LEX2H1gr/FXXWgMxnLPsOUh26H\nPOBDw1HHYP2NS+BJy+pxXPryLzD9nhtQfup5WDv//riuqZC1V83pqX2ULxDG6h2NB7T30leX44Sb\nL4Xa3gpbwSisvfm+fm/vNXZYIixGdb/OSUQDX6vDj907qpH/+vNQeFwIafV72yzpEd7v8QGtl7R6\nSPI4qt90IkGnQrJZA2uCBgr5T++LYl0tDHMugnLzRrSMnICVi59EwJzUzUw/kfl9OPGmi5GwZydW\nz38Alaf+Oq71jB2eCLGLnzGNbV6UVNkhBQMY9/xDKHj/VYQ0Wqz9072oOb7nYiyxEgUBY4Ylwmw4\nNG2o+lswFMGu1dsx9vZrkbhzM9BN9KbHSGl2djaeeuop3HrrrQc8X1ZWhuzsbJhMJgDAxIkTsWbN\nGpxxxhkAgC1btmD37t1YvHgxAGDr1q0oLy/HV199hZycHCxcuBB6PdOnRERERERERERERERERED7\nTckUixYpFi3aXAFsvWExTOW7kPP1h2grHIXS8y/r0/zpy7/A1PtvRkStxqpb/4qqk86JOexTd8xJ\ncGbmIefrj7Dtshvgs6bGfN1QJIr6Vi8yrd3fG6xuch8QytHW12DmgiugtreiadwUJG9ajZPnzcaO\ni67GjouugaSIrf1KT3bV2DG5KLnH4BARDQ1RScKeOidqG+yYfs9NSFv7fVzjW0ZOwPZL5qFx4jG9\nCkzaPQHYPQHsrnXAYlAhOUGN9FXfwHjLnyBrakT5aedj/R8Xd9uSShSEA1o6RdQarLzrCZw8bzYm\nPrkE9vwiOPKLYl7P7hoHCrMSDnhekiTsqXeiuskNTVMdpv3lT0jcuRmOnOH44c4n4MoeFvdr74oA\noDjHPGhCOQCgVMhQNHUUNvz9DQz76yJ099XoMZhz2mmnoaam5qDn3W43DIafSgHpdDq43e6Oz597\n7jnMmzev4/OxY8figgsuwOjRo/Hss89i6dKlWLBgQY8vxmo9fOWGiIiOFL7XEREREREREdFgw/0M\nIqJDy2o1QG9UY/PfnsO0K8/B2BceQnDUWNgmTuvdfCu+woT7b0ZUpcK6x/4F+5iJiPedvHLOHzDm\n/gUY9eGrKLlhUVxjHb4wxiXqIYqd38QOhiLw7rHBoG+vXKNqbsDRt18JbUsjdl5/OyouvhpJK7/B\nqAfvwKhXn0H2yq+wZeHf4Bw5Ls5X0Tm7L4KiXFO/zEVEA5fHF8Km0mY4vSFMee4BpK39Hk3TTsCu\n626F3ONu/3C7IPe4IPfue7z3eY8LKlsLkrasw4yFc9E2ZiJ2z70JrZOm9yqgI4RDSPz4HWS/+jwM\n5bsgiSJ23HgnKn9zBXRdzKdRyZGfaUJakh5ykmawAAAgAElEQVT1LW6U1TjgC4TbDxYWYsviRzHx\n1qsw/S834YeXPkDYYIxpLa5ABP4okLW3HVQoHMXm3c2we8PI27oKY5fcBKXTjrpTz8W2BfcDGm3c\nP0O6MzLPguzU2NY60CQnG7E59Zluz+l1E0a9Xg+Px9Pxucfj6QjqOJ1OlJeXY+rUqR3HTznlFBiN\nxo7H9957b0zXYTlUIhrqWPqZiIiIiIiIiAYb7mcQER0eCgBiWhpWLnocx8+/DOMWzcOXT78Fb0pG\nXPOkrF2B8YuvRVQmw/f3/h0teaMAtz/u9ew65nQMT3wEme+/jk0XXIWQIfYgiwvA1l2NSEvUdXq8\nosEJu9MHAFC1teKY+XOgravGtkuvx/Zz5gBuP1xjp6H6uQ8w9sWHkf/xG5h29fkomXU5ts35I6Kq\nvrWi2lrqhwISjLr+qcJDRANPg82L0ho7IlEJhW/+A9n/+w/a8oux/LaHENF0/t7UmYTd2zHy388g\n44evMPnGS9E8eiK2zfkjmscfHdN4mc+LvE/fQeE7L0PXVI+oKEPFyeeg5ILfw5lXCHgCB41RK2TI\nSTUgxaKFKAC2VjdUAlCUaUSjzYvKRhf8wQhc44+F9qJrUPz6cyhe8iesXPwUEGM1sNVb6hDwJkKp\nkGHLnlZ4vQGMfO0ZjHztWUTlcqy7YQn2nPUbICL06mdIV3JSDNDIhEH974sMc/c/g2RLlixZ0tMk\nTqcTn332GS644IKO50wmE5555hn86le/giiKePLJJzF37lzo9XosX74cADBjxoyO8y+55BIUFRUh\nJSUFH3/8MTQaDaZPn97jC/B6gz2eQ0Q0mOl0Kr7XEREREREREdGgwv0MIqLDJ0GvQoU8AR6DCVnL\nPoN1y1pUnHwuJHlsv39v3bgKx951LQBgxT3PoHn81B5GdE2SyQBJQvqq7xDS6tAyZlJc473+MDKS\ndBB+VgkiEo1iR0UbopIEhdOOmbddCVPlbpTMvhJbr7jxgEoUUaUS9VOPR/OYybBuWYv0Vd8ha9mn\nsOcXwZuS3uvXBgAubwipidqD1ke/TOFItMsKTzS4hCNRlFS1obLRBUkCMpZ9hsmP3wVvUgq+e+if\nCJnMcc3nt1hRfcKZqDv6BGham5C64QfkfvE/WDethic1o8vwpNLRhhFv/gNT/zofmSu+gBgOo+xX\nF2HVwodRedr5CJgTDxqjVsgwLN2EETlmGLXKg96fBEGAQatEepIOKoUMHl8IdaMmIWn7eqSt+R5R\nhQotYybG9LokADanH/WtXkjNzZh+9x+R9/l78KZkYNn9L6J+2gm9qgzUnfREHYZnDP5qZYIgQKfr\nug1X3MGcDz/8EBs3bsTYsWORkZGBRYsW4e2338asWbMwbVp76byvv/4aCQkJGD9+fMcco0aNwn33\n3Yf3338fDocDCxYsgLKbnmj78B93RDTUcSOLiIiIiIiIiAYb7mcQER0+MlGAViVHiXUYNC0NSF+9\nDNrmetQdc3KPN0gTt67DcXdcA0GKYOXip9E46dg+r8eRW4D8j/4Ly66t2H3u72IOCAHtN8d1ajl0\nGsUBz9e3etHs8EHucWPGwqtg2b0du391ETZde3uXr9Gbmony02dBFgwgbc0y5H32LlSONrSMnoSo\nondVb4LhKERBQIK+65urNPT5AmHsqGxDaY0D/mAYWpUCCnlsFUdo4HF6g9hc1gq7p/3/XS07NuLY\nJdcjolRh2d9ehiczt9dz+xOTUX3i2aifMhOa1kakrv8BeZ//D9bNa+FJy+wIC2qa6jD6X09hyoO3\nIXXDSkSUKpT85vdYtfAR1B53KkL6g1s4qfYGcopyzDDqDg7k/FxHQMeqg1KpQNnoaUj/6iNk/Pg1\nWkYdBU9aVkyvKRKVYN66HjNvuxLmPTtRd/Tx+P7+F+BNj218PKwmDYqyE4ZMGLK7YI4gSZJ0GNcS\nt8FcroiIKBYs/UxEREREREREgw33M4iIDr+SqjY0Nthx/PxLkbhzMzZcuxC7z7u0y/MtOzZixu1z\nIQsEsPKuJ1A/7cR+W8volx5D8X+fx/rr70TZORfHNVavVmBSUXLH55IkYfWOJgSdLhy38CpYt65D\nxSm/xpqb74u5/Ypl+wZMfvROGKvK4ElJx9qb7kHTxJ47d3RGFARMGmGFVq3o+WQaUqKShOpGN6oa\nXYjsdwtdAJBk0iArRQ+jlq3OBpOqRhcqGlyI7v1+6uqrceINv4XS5cDye59F4+Tj4p5TIRMhl4nw\nBcMHHbPs2ISR/16KtLXfAwAaJ0yDL9GK7G/+D2IkDG9SKnbNvhx7zpjdZesslUKG7GQ90hJ1farY\nFJUkOL7+HsMvPQ9BnQGbr74FkAAxEoIQDkMMhyFEIhAjob2PwxAjEShdduR98g4EKYotV9yEkgt+\nH/N7cTwSdCqMzU8cUlWprFZDl8cYzCEiOsK4kUVEREREREREgw33M4iIDr9wJIp1Jc2Q6mpxyrzZ\nUDrasOxvL6F53JSDzk3YtQ0zF1wBuc+LHxc+gtoZp/XrWlRtLTjrkpPgS0zGpy9/AkkWe9UcABid\nZ0GSSQMAaLL7sHNXA6Yvvg6p61agesbpWHX7Q3HPKQYDKH7tWRS98SLEaAQ/LHoMNTNOj2uOfUxa\nJcYXJA2ZKg7UszZXAKU1dngDB4ct9pegVyE7WQ+LUX2YVkadkSQJ4UgUofDej72PwxFp73MRePxh\nOPer8Khw2nHiTRfDWFOOdTcswZ6zL4z7unJRxPiCJOg1CvgCYdjdAdhdAbS5AwiGox3nWbZvwKhX\nnkbq+pUAAEdOPkoumIuqE86E1ElFL7VSBr1GAbNe1edAzs+pXnwexoXz4xrjNyfhx4WPdPrzpT/o\n1QqML0iCXDa0KlExmENENIBxI4uIiIiIiIiIBhvuZxARHRkOdwAbd7fAsnUdjr/lcgT1Rny59C34\nktM7zjGV7cTxt14OhduJVQseRPWJZ/f6egKA0XmJqG52w+4OHHDsqCeWIP/jN/Dj7Q+j+oSz4prX\nqFXiqEIrAGDD9jqMun0eMn74CnVHH4+Vdz3R6Y3rWJl3bcXxN1+KiFqDT1/4CMEES6/mKcgwIcOq\n7/U6aHAIhSPYXetEY5s3rnEGjQJZKQZYTWoGuPogEIyg2eFDNCohEpUO+DMqSQc9H4nuDeREoj1P\nvh8xGMRxC+ciefMa7LzgSmy56pa41yoTBIzNT4Spi1Z3bl+oI6hjdwcRjkZhLtkCudfTHnARRYiC\nAJ1aDr1GAZ1GAf3ej0MaUJEkKL/+At7SctQ6gojIZJBkckTlCkTl8vbHMhmkvZ9HZXK4svMR1nZe\n0Wd/mUl65KUb4PaG4PKG4PIG4fKFug24qZUyTCiwQqWQ9eerHBAYzCEiGsC4kUVEREREREREgw33\nM4iIjpyyWgeqm93I/+A/OOrpe2ErGIVvHn0VUZUaxopSHH/LZVA52rB6/v2oPPW8Pl0r06rH8AwT\nolEJO6ra0Gz3dRzT1VbijN+fCXveCHz5zDtAnOGEcflJEKIRqK66Etnf/h8aJ0zF8nv/jqiy85ve\n8Sh4558Y/9zfUD3zdPx4x2O9mkMmCphclAy1Mr7KPTR41LV4UF7vjDvksT+NUo6sZD1SLVoIAjqC\nI+HI3iBJJIpwJLr3+fZj0agEs0EFs0H1iw71ONwBbKuwHVBp5pCQJEx+6DbkfvkBqo87DT/e8Wjc\nrZlEQcDoPEvMlZIkSYLLG0KbK4BwJNoRxNGq5RCP4Pe81eHHtgpbR2uvvshNNSA31djpsXAkekBQ\nx+UJwh+KQCkXMaHACo1qaL6vdhfMkS1ZsmTJ4VtK/Lz7lZciIhqKdDoV3+uIiIiIiIiIaFDhfgYR\n0ZGToFeh1eFH47CR0DbXI331MmibG+DMzsfxt14Otd2GtTfejYozZvfpOlqVHCNzzRAFAYIgIDlB\ng3BY6mgNEzImwFi5GykbfkTryAnwpGfHNX8wEELGXfOR+fn/0DLqqPZQjlrTpzXvYxsxBikbViJt\n7XI48grhys6Pew5JArz+CFIs2n5ZEw0cbl8I28ptqGv1dBpQEIMBmHdthaGmHJ7k9G5DHOFIFK1O\nP6qb3KhocKGqyY2aZg/qWj1osHnR2OZDs8OPVqcfba4AHJ4gnN4gGtt8aLB5EQpHoVKIUMiHXvWQ\n7tS2eLCjsg3h6KGvITLy30tR+L9X0Vo8DiuWPA1JoYh7jqIcM6wJsb8/CYIAlVKGBL0KFqMaeo0C\nSoXsiAextGo5DFoFWux+9OUrPzzDhOyUrkMooihAo5LDpFchOUGDzGQ9MpJ0SLVoh2woB2j/N1JX\nWDGHiOgI42+YEREREREREdFgw/0MIqIjy+UNYkNpCxDw4/ib5yCxZDNCGi0UPi/WX78IZef8rk/z\nCwDGF1hh0h3cUqqq0YU99U4AQELpNpwybzYax0/Fsgdfjnl+VVsLxr7wEHK//AC2glH47sGXEdZ1\nfZM3VqIgQAAgAdBVluGUa89DSGfAZy9+iKDR3Ks5i3PMSDEznHO4eP1huP0hJMcRgohVVJJQXudE\nbctPgRwhHIKpohTmXVthKdkK866tMFWUQoy0t+JxZg3DjouuRvUJZ0GSHbpAgVGrRIpFixSz5tC2\nNTrCopKE0mo76m3xtQ7rrZwv/ocpD90Od2omvn7ivwiYE+OeY3iGCZlDrK2d3R3Alj2tiMQZjBIA\njMg2I5WBxU6xlRUR0QDGjSwiIiIiIiIiGmy4n0FEdORVNrhQ3uCEprkBJ8+bDbW9FRuvXoDS2Zf3\nee4sqx75GaYujzfavCiptiMqSZix4EqkbPgBXz71JtpGjOl2XoXLgRFvv4yCd1+BPOCDfVgRvnvw\npR5DM2qFDKOHJUIua6/eI6C9IoUg7A3jCDigEoUvEMb6Xc3Ie/0FjHvxYVSe+Cusvu3BuL4GHWuW\niZhSnPyLq2hyuEQlCQ53EDZne1UZb6A9EFOQmYCMJF2/XmtXpQ2ujVtg2bV1bxBnCxLKdkIW+qkK\nYESpQtvwYrQVjIbc70XOlx9AjIThTsvCzgvnouKUX0NSHBxY6y+iICDRpEaaRTvkWl0FQhFsK7d1\nVN061KybVmPG7XMR1mjx9WP/gSt7WNxzdNeuabBzeILYUtaKcDS2VmKiIGBkjhlJhyA0N1QwmENE\nNIBxI4uIiIiIiIiIBhvuZxARHXmSJGFDaQuc3iB0dVXQ11WjcdL0Ps+rVckxaUQyRLH7QIDN6ce2\nChsS167AzNt+j5pjT8UPdz3R6bkynxcF/3sVI976B5RuJ3wWK7b/7lqUnz6rx5CDTBAwviAJBm18\nYQiHO4BNu5pw/I0XIbFkM5bfvRT1006Ma459UhI0KM619GrsUOYPhiGXiXFXeAmFo7C5/Gh1+GFz\nBjoNBoiCgHH5iTDpu24NE4/aJhdSLv8t0tZ+3/FcVCaHI68AtsIxaBsxGrbC0XDmDIck/6nVkaap\nDkVv/gN5n7wNWSgIb1Iqdl44F+Wnz0JUpY5vEZEIjFVlSCjbgcaJ0xEwJ3V7ukouQ7JFg9xUA2Td\ntNMaDByeILaX2xAIR+IbKElQOu3QNdRAV18Ntd0GIRyGGAlBDIchRMIQIxEI4fbPxUh47/EwMlZ8\nCbnfh+/++iJaxk6Je80ZSToUZCbEPW4wcXrbwzmhSPfhHJkoYHReIsyG/vn7OFQxmENENIBxI4uI\niIiIiIiIBhvuZxARDQxefxjrSpoQ6afbfQKACQVWGDtpYdUZpzeIrWUtmHHN+Ugo24FP//Ex3Jl5\nHcfFYBDDPn4Dxa8/B7W9FQGDCTsvvApl51yMiDq2qgvF2Wak9LJtSlObF9XL1uCU685H0JCAz174\nECFD15WAujMmLxGJpjiDGEOY/5XXIHvrv2geMxnNU46Dv6AYSoUMSoUMCrkI1d4/lQoRSrkMoijA\n5mwP4jg8AcTyX6xSLuKoQivUyr61kGpzBeD4+4uY/NDtaC0ai8qTzkFb4WjY84sQVcYWNFC3NqHw\n7ZeR/9EbkAd88FmSsGv2lSg76zeIaDqv7KNwO2HZuRmJ2zcgcftGJO7cBIXXAwBoLR6Hbx59Nab2\nWGa9CmOGJfYYlhuo6ls9KK1xdLQP+zkx4IeusRa6+mroGmqhr69uD+Ls/dj3NYtXVCbHmpvvQ9XJ\n58Q99pcUxnN5g9jcTThHIRMxZlhizD8XfskYzCEiGsC4kUVEREREREREgw33M4iIBo6aZjd21zr6\nZa6sZD3y0+MLrvgCYTS/+G9MvPtG7DnjAqz70z0QImHkfPE+Rr66FLqmeoQ0WuyadQV2zboMYV3X\nNy5/LtOqx/BuWmrFoqrRBeWjD2HMy4+j4pRfY80tD/RqHrVChklFyXFXhxmKnN4gkqdPhKG2suM5\nX2IyGiYdi4ZJx6JxwjSEjP1TacSgUWB8QVKvK8b4AmFsWV+Gky47HXKfF5/+42P4ktN6vR6l3YbC\nd/+F4R+8BoXXg4AxAbvOvwxl51wMta2lPYSzYyMSt2+AsWoPhP1uxTsz89A6agI0zQ1IXb8SWy+7\nATt+d21M17UY1BidZzki4ZyoJKHR5oVcJkKvUUCjii0oFZUk7K5xoK51v2CNJEHXUIOkLWth3bwG\n1i1roa+v7nR8WK2FOy0TntSfPnyJyYgqFJBkckRlMkhyBaJyOaIyORQqJTR6NbR6LbR6NRRJFrTI\ndGiy++Jqn2UxqDF6mAXiEGoj1hO3L4TNZS0Ihg8M56jkMozJT4Reo+hiJO2PwRwiogGMG1lERERE\nRERENNhwP4OIaGDZtLsFbe5An+aItYVVZ4L+IBKmHQV1Uz02XLcII955GYaaCkQUSuw+93fY+Zu5\nCCbEV30iQa/C2PzEfrk5vmtPE0Zecg7Mu7fj+788h4YpM3o1T3qiDoVZQ7u1TU8CoQhKvl6Dky49\nFQ0Tp6PypHOQunY5Utcth8rRBgCQRBGtRWPROLE9qGMrHA3IZL2+Zm+rl4QjUWwobcHwx+5G4Xv/\nxpYr/oSdF13d63XsT+G0o+D911Dw3itQup2QBOGAEE5YrUVr0Vi0Fo9D68jxsBWPQ9Bobh/rcuDU\na34NdVsLvn7idbQVjo7pmklGNUbmHd7ASIvDh7JaJ3zBcMdzclGETiOHXqOAXqOATqOAXq044L0j\nEIpge4UNDncAhuo9sG5eC+uWNUjashbalsaO84I6A+zDR7YHcNKyOgI47rQsBE1moIvXqpCJMGiV\nMGgVMGqV0GsVUCm6/m/MHwyj2e5HU5sPLl/XIR2TVomxwxMHfeuw3vD6Q9i0u7Wj3ZhaKcO4/KSY\ng1jEYA4R0YDGjSwiIiIiIiIiGmy4n0FENLD4g2GsK2nushVJT+JtYdUZ5UsvwnTbnwG0t5ApP30W\ndlz8B/isqXHPpVbIMHGEFQp578Mc+4tKEio+X47JV/wa/gQLPnvhw7gq9+zPYlAjL80Ag/aX19Yl\nKknYVNoC62svYsKzD2Dtn+5B+RkX7D0YhXn3dqSsXY7UtcuRuH0jxGj7Df6AwYT6o4/Hxj/c1utK\nOsPSjMhOif17JkkStpXbENy0Gadcez48qRn4/PkPEVX27/dN7nEj/6PXkbH8S7gzc9BaPB4toybA\nmVvQZZsqg0YBzcplmLngSjizhuHLpW/H3NrNatKgONd8yMM5Hn8IZbUO2FyxBf5EQYBGJYdeLYe5\noQr4/HOYN65C0pZ1UDtsHef5ExLRPGYSWsZMQvOYSXDkFvQY2hIFAQaNAkadEgadEkatok/tzXyB\nMJrtPjTbfXD5Qh3P69UKjBueBIX8lxfK2ccXCGPT7hbIZCLG5id2G3aigzGYQ0Q0gHEji4iIiIiI\niIgGG+5nEBENPMFQBGV1TjS2eeMe25sWVgfx+2G8/GK4tCasmXUV3Bk5vZpGFARMKEjq9+BLOBKF\n+47FKHjpCew5YzbW/enePs1nTdAgL9UArfqX0+KlpKoN9TYvjrt9LlLXrcCH//kW/qSUTs9VuJ1I\n3vBjezWdtcuhba5H3dEzseLuZ4BeVCMRAIwZlgiLUR3T+XvqnKhqdGLmLZchefOaPlVK6i8KmYj8\nDBNSLVrsqXPCfPdCFL73CkrPvQQb590R8zwpCRoU5ZghHIJwTjgSRUW9C3WtHkR7ESPI+eJ/mPTI\noo5QljcpFc1jJ3eEcVxZeV1WwdlHpZDBqFPCpFXCqGuvhnOogkj7Qjp2dxAjshMYREF70FMmCv0W\njPwlYTCHiGgA40YWEREREREREQ023M8gIhq42lwBlNbY4Q2Eez4ZgE6twMRCa69aWHW3hp2VbR0t\nUeJRnG1GikXbb2vZn9/jg/HkmTCV7cSy+19E46TpfZpPAJBq0SIn1dCnCh6DQW2zG6W1Dsh8Hpw7\nexqc2cPx5bPvxjY4EsFxi65B6roVfWonJRdFHFVohVbd/de6sc2LHZVtyPrmY0x9YD5qp52IlXcv\n7dU1+0uSSY2CzAODHzt31mHspWfBVFkW93+PqWYtinLM/bY+SZJQ1+pFRb2z15W3hv/vVUx45j4E\nDSZsmjsfTROmwZuS3mMQx6hVtn/o+14Nh+hI6i6Y88utw0REREREREREREREREQ0xJgNKkwqSkZe\nqrHHKhMCgBHZCf0ayvlpDVYkxljdZJ/MJP0hC+UAgFqngeuJZxCVyTHx8Tsh93r6NJ8EoN7mxeod\nTdhd40AwFH8QaTCwuwMoq3MCAJI3roIsFIqv+oxMhlULHoQ3KRWj//UErBtX9Wod4WgUW8tbEe4m\nOOL0BlFSZYfc68G45x9ERKHEpj/c1qvr9QeFTMTIXAtG5x3cFqiwMA3bFz+GqFyByY8shMJpj3ne\nhjYvSqra+mWNba4A1pU0o7TG3rtQjiSh+NWlmPDMffBZrPjm4VdQccZseFMzug3liIKAkbkWHFVo\nxfBME5ITNAzl0JDFYA4RERERERERERERERHRECIKAnJSDZhclAyLoetwTFayAcZ+bhm1j0Iuw5hh\niRieYYqpDU2CXoVhGcZDspb9qaZMgu2aP0LXVI+xLz7UL3NGJQk1LW6s2t6IPXXOboMjg40/GMa2\ncltHW6O0Vd8BAOqnzIxrnmCCBT8sehSSIGLqA/Ohbm3q1Xq8gTB2VLahs6YwgVAE2/a0r7X4P89C\n09qEnRdeBU9aVq+u1VcpCRpMKU5GcoKm0+OiKCDn9ONQcsUN0LQ2YeJTdwNxNLupt3lRWhN7mGd/\n8k0boL71ZuxZth6bylrg9od6NQ+iUYz7+18x+pWn4U7NxDePvgpnXmGPwxQyEePyE7v82hANNQzm\nEBEREREREREREREREQ1BGpUcY/MTMTLXApX8wGodOrUCualdt93oL5lWPSYUJEGr6roShlohw6hc\nc0wBnv4g3b4QvuEjkP/RG7Bu+LHf5o1IEqqaXPhxWyMqG1wdYZbBKhKNYuse209VVCQJaauXIWAw\nobVobNzz2UZOwOar5kPd1oKp998MIRJbu7Wfa3X6UdFwYEvNaFTC1j02BMIRGKr2oPDdV+BJycDO\nC+f26hp9oZLLMDrPguJcCxQ/+3v3cwq5DNqFt6F11ARkffcpsr75OK5r1bZ4UFbriPl8pzeI+rXb\noLvgPBj++QImXXQqil9dCjEYjOu6ACBEwpj06CIUvvcKHDn5+Oax1+BJz+5xnFopw4SCJJj0qriv\nSTRYsRYUERERERERERERERER0RCWnKCBxaBCRb0LtS1uCIJwSFpYdcWgVWLiCCtKqx1oaPMecEwU\nBIzM6znA0K9UKviX/h3qM07CpMfuxI8LH4Hc74PC44LC64bC44bc6+54rPDu/dzjRtWJZ2PP2b/t\ndvpwNIryBifUStkhbc11qJVU2Q+opGKsKIW2pQGVJ5wNyHr3/So9bw6Stq5H5vLPMfqfT2DL72/u\n1TyVjS7oNIqOiislVW1w+YKAJGH8M/dBDIew8Q+3IaqKr51aX6VZtMjPMEEui70+hlangmvp8zCe\nMRNHPXUPWkZPhC85Lebx1c3tf6eHpR9ccSoYiqDNFYDN6YfNFYDkdOLEmy6F0m5D2dkXIn3l1xj9\nytPI+fojrP/jXWiaMC2ma4rBII7+63xkLv8CthFj8P19zyFoNPc4zqBRYPSwg9t6EQ11DOYQERER\nERERERERERERDXFymYjhmSakWDRweUOHrIVVV2SiiKIcM8xGFUqrHQhH26uwFGYlHPa1AEB4wkR4\nr7sB+qcfx8k3XBjzuIQ9Jag8+VxE1D234Klr9QzaYE5VowtNdt8Bz+1rY9UwZUbvJxYErLn5LzDt\n2YmiN15Ey8gJqJ92Yq+mKqlsg1Ylh83pR+PetWas+AKp61eiYdKxqDvmpN6vM05qpQwjsswwG3pX\nBUY3cgSa7vgLMhb9GZMfXohlf/0HIMYe7qlqckEUgewUA5yeIGzOANpcfrh8+7WoikRw7AM3w1S5\nG6XnXoKN8+7A5t/Px+h/PYnhH7yGmQuuROWJv8Kma25FwJzU5bVkPg+OufsGpK5fiaZxR2PF3UsR\n1up6XGOiUY2RuWbI4nhdREOFIHXWgG8AaW529XwSEdEgZrUa+F5HRERERERERIMK9zOIiKgvfIEw\ntle0wahToCAz4cgtxO+H+pEH0VTXCr9ah5BWh5DOgJBWj7BWj5Bu78fex0X/fQEjX38Oq279K6pO\nPjemS0wpSoZWrTjEL6R/tTr82Freip/fRD7+z5cgadt6fPDWipiqo3THVLYTJ934W0SUKnyx9B14\n0zJ7NY9SLiIUjkICIPP7cNrcs6CxteCz596HOyuvT2vsiSgISDSqkWrRwmxU9b0VmyRBfuEFMH/7\nOTb+4TaUnn9Z3FPIRAGRaOe3/8c+9zeMeOefaJg4Hcv/8ndIsp9qeCSUbsPEJ5bAsmsrgjoDtvz+\nz9hz5m8OCgcpXA4ct+gaJO7YhNppJ+HHOx5BVNlzGCnNokVhVgKEw9SujuhIsFq7bg/JYA4R0RHG\njSwiIiIiIiIiGmy4n0FERH0V3XuLstPb6BkAACAASURBVM9hhn7Q5gpgU1lLj+fp6qtx5mWnomns\nZHz38CsxzZ1l1SM/w9TXJR42Xn8I63e1dFQ02kfhcuCcC6bDVjQG3zz+er9cK/ezdzH5kTvQNnwk\nvn78PzEFPLoz6l9PYuRrz2LnhXN73SIrFgaNEqkWDZLNWijk/Vv9RWhuhvHYKZC5XfjimXfgyhne\nL/PmffIWJj12F5xZw/D1E68jpD+47RUiEeR//AbGvPQYFF43WovGYt2NS+DILwYAqGzNmHH7XCSU\n70LFyedg7c33HRDu6fLaqUbkpHYdWCAaKroL5rBOFBEREREREREREREREREdVqIgDIhQDgCYDSpk\nJul7PM+TloWmcUcjefMa6GorY5q7webtCCENdOFIFFvLbQeFcgAgZd0KiNEI6qfM7LfrVZx2PspP\nOx/m3dsx/u8P9GkuXV0VRrz5D3iTUrD94j/00wp/opLLkJWsx+SiZEwcYUWGVd/voRwAkKxWeB9/\nGrJQEEf/7VYIoWCf57RuWo2jnrwHAYMJy+99tvNQDgDIZCg752J8+o+PUXXCWUjcuRmnzJuNcc8+\nAGP5Lpz450uQUL4Lpef+DmvmP9BjKEcUBBRnmxnKIQKDOURERERERERERERERET0C5eXboBW1XP1\nj/LTZ7Wf//l7Mc0bikTRYvf1aW2HS2WDC95AuNNjaau/AwA0TJnRr9dcf/2dsA8bgfyP3kD2Vx/2\nep7xzz4AWSiITVffiohG1y9rEwUB1gQNxg5LxNRRKchPN0F3GNqShc44C96L58C8ewdGvfpMn+bS\n1VVh2j03AABWLn4SnvTsHsf4E5Ox6vaH8d0DL8KdmonC917BadecC31dFbb/7lpsvO6Og1pc/Zxc\nFDFmWCJSLNo+rZ9oqGAwh4iIiIiIiIiIiIiIiIh+0WSiiKJsM3qq4VNz7CkI6gzI/fw9IBKJae66\nVm/fF3iIuX0h1LZ4Oj8YjSJtzffwWayw721r1F+iKjV+uPNxhLQ6THx8MQyVu+OeI+3Hb5C+6ls0\njZuCmpln9Gk9clFESoIGxTlmHDM6FaNyLbAY1RAOc3Un718eQDgnF0VvvICkLWt7NYfc48Kxd14L\nlcuBdTcsRsvYKXGNb5o4HZ8//wG2XTIPAZMZG69ZgG2X3QB087VQyESYtEqML0iC2dC31mREQwmD\nOURERERERERERERERET0i2fUKZGd0n3bnahKjaoTzoKmtQmp65bHNK/dHYCvi0o0A0Vptb3LlluW\nki1QOdpQP2VGt6GM3nJn5GLNzfdDHvDhmHtuhMzXRUCoE2IwgPF//yuiogwbrrujV+vTquTIsuox\nLj8Jx4xJRXGuBSlmLeSyI3crXdIb4Hr6eQDAzFsux9H3/Rnmki0xjxciYUy7788wVu9ByazLUXHG\n7F6tI6pUYfuc6/HBWytROutyyAQBWpUciUY1MpJ0GJ5uwuhcCyaNSMaxY9IwfUwaJhRaodcc+spC\nRINJz/XYiIiIiIiIiIiIiIiIiIh+AXJSDbA5/XD5Ql2eU3H6LAz/6L/I+/QdNEyZGdO89a1eDEs3\n9tcy+1V9qwcOb7DL46lrlgHoWxsrURC6DP4AQO1xp2LX+Zeh8N1/YdLji7HqtocgRCMQwmGIkQiE\ncAhiJAwxHIYQiUCMhCCEw8j98n3o66qw67w5cOYVxrwWo06JRKMaiUY1tOqBecs8fPRUOF9+Ddq/\n/QXZ332C7O8+QfPoidg1+wrUHX08IJN1OXbccw8ide1y1E+Zgc1z5/dpHSZte2BNr1VApej6mkTU\ntYH5LkNEREREREREREREREREdJiJgoCiHDPWlTR3GSRpKxgF+7ARSP/hGyjtNgQTLD3O22DzIDfN\nAPEwt0TqSSgcwZ46Z7fnpK36DlG5Ao0TjunVNURBwJTiZDjcQVQ3ueH2dx562jz3Zlh2bkL2Nx8j\n+5uPY57fb07CtjnXd3uORilHgl4Js0EFi1F9RKvhxCN4xlkInn4mFMu+heqZp2D95ktYt66DKz0b\npedfhopTz0NErTlgzLCP/ouC//0bjpzh+PH2R7oN8HRHr1YgL82IRJO6P14K0S+aIEndRBMHgOZm\n15FeAhHRIWW1GvheR0RERERERESDCvcziIhoqKtucqOsztHl8eHvvYIJzz6AjVcvQOnsy2Oac1Su\nBdYETc8nHkY7K9vQ0Obt8rjK1oxzfjsDjeOnYtmDL/fqGplJegzPNHV83urwo6rJBYfn4Co9muYG\njH/2fqjsNkTlCkhyOaIyOaJyOSRZ+2NJ3v55+2MFqmeejtZRRx0wj16tgFGnRIJeCZNeNWQqvch2\n7oDs6SdheO9NiKEQAgYTys7+LXaf+zsELFZYN/yIGbfPRchgxJdPvglvWmbc19Cq5MhNNSDZrD0E\nr4Bo6LJau26FyGAOEdERxo0sIiIiIiIiIhpsuJ9BRERDnSRJ2LS7FXZPoNPjSmcbzr5oJtzp2fj8\n+Q+BGCrhWAwqjM1P6u+l9prdHcDG3S3dnpPz+XuY8vDCuAJI+xMFAUePTOk0GONwB1DV5Ear0x/3\nvPsTAOg1CiToVTDp2oM4CvngqIjTa42NiDzzDMyvvQyV046IQoHqmWcgfdV3kPu8+PbBl9E6emJc\nU6oVMuSkGpBi0Q64yk5Eg0F3wRy2siIiIiIiIiIiIiIiIiIi2o8gCBiRnYC1JU2IRA+ucxA0mlE3\n7SRkLfsUlp2bYSse1+OcNlcAvkAYGtWRv0UblSSU1nRdEWiftFXfAQAapszo1XXSE3VdVqsx6VUY\no1fB4w+hqtGNZruvy/Zh+yhkIrRqOXRqBXRqObRqBQxaxaBpTdVvUlIgu/tu2G6+Bd6X/oXkV55D\n7pcfAABWz78/rlCOUi4iO9mA9CQdRJGBHKJD4ci/6xMRERERERERERERERERDTAalRzDM0woqbZ3\nerz89FnIWvYpcj97N6ZgDgA02LzISzP25zJ7pabJDY8/1O05QjiE1HUr4E7LgisrL+5riIKArBR9\nj+fp1AoU55iRl2ZATZMH9a0eCIKwN3gjh06jgE6tgFYtHzItqfqL3KiH8aZ5sF09F2Vvvw+v04Pa\nY0+NbawoIitZj8xkHWTiLyzYRHSYMZhDRERERERERERERERERNSJtEQdWhz+TtstNU6YBq81Ddnf\nfoxN1yxARKPtcb6GVi9yUw0QjmCrIF8gjMqGnltSJm3bAIXXjYpTzo2pVdfPdVctpzNqpRzDM00Y\nlm5k5ZY4abUqaOf8BqFwBDndFx3qIJMJDOQQHSb8m0ZERERERERERERERERE1IXCrAQoOmuVJJOh\n4tRfQ+H1IHP55zHNFQhH0Oo4OORzOO2udSDSQ8soAEhdvbeN1eT421jFWi2n07EM5fSaQi6DUhHb\nB0M5RIcP/7YREREREREREREREREREXVBpZChICuh02Plp54PAMj79J2Y56u3eftlXb3RYvd1Wv2n\nM2mrv0NYpUbTuClxXyfeajlEREMZgzlERERERERERERERERERN1ITtAgOUFz0PPetEw0jp8K65a1\n0NdWxDSXzemHPxju5xX2LByJYnetI6ZztQ21MFWWoWn80Yiq1HFdpy/VcoiIhiIGc4iIiIiIiIiI\niIiIiIiIelCQmQCV/OAqMOWnzwIA5H72XkzzSAAajkDVnMoGF/yhSEznpu1tY1U/ZWbc12G1HCKi\nAzGYQ0RERERERERERERERETUA4VcREGm6aDna6efjKDOgNzP34MQia0STkOrF5Ik9fcSu+T2hVDb\n4on5/NQ1ywAADVNmxHUdVsshIjoYgzlERERERERERERERERERDFIStDA+rOWVlGVGlUnng2NrRkp\na5fHNI8/FIHNGTgUS+xUabUd0RiDQGLAj+SNq+DIGQ5vSkZc12G1HCKigzGYQ0RERERERERERERE\nREQUo4IMExSyA2+zlp/W3s4q79N3Yp6n3hZ7BZu+qG/1wOENxnx+8qbVkAf8qGe1HCKifsFgDhER\nERERERERERERERFRjJQKGYZnHNjSyl4wEvZhRUj/8Vuo2lpjmsfmDCAQihyKJXYIhSPYU+eMa8y+\nNlb1R8+Maxyr5RARdY7BHCIiIiIiIiIiIiIiIiKiOKRYtEg0qn96QhBQftr5ECNh5Hz1QUxzRCUJ\nDa3eQ7TC9vm3VbQhFInGPkiSkLbqO4S0erSOnBDzMFbLISLqGoM5RERERERERERERERERERxKsxM\ngFz86XZr1UlnI6JQIPezdwBJimmOQ9nOane1HYYP34V55+aYxxiqy6FvqEHDxOmQ5IqYx7FaDhFR\n1xjMISIiIiIiIiIi+v/27j1cy7LOF/j3XUeBxeIQRwVEQE1wOySKOW7JoQhtYsbSEc1wa5g78tKw\nTEBBLEFsMvckWlvtqtkhFtekjllJO5kUT0OecDyglhwEDyhyEFBYrLXe/Yd7loOCsBbrBdTP57/3\nfZ/7fn7Py3U91/P++K77BgCAZqquKk+/fWubXtfVdspLf/3pdFj2fDo/8/hOzbGpriGr39jU6rWt\neG1DOv2vK/PJGRfmM+ePzqe+fWa6P3zfDgNDPf90T5LmbWNltRyA9yeYAwAAAAAAANAC+3Zpl441\n1U2vl4w8OUlywNxbdnqOl1t5O6vVb2xK4/U3ZODsH2dDz955Zcgx6fb4ggy7+Kv5zNdPSu8//jaF\nhvptju3xp/lJkleO+O87fT6r5QC8P8EcAAAAAAAAgBY6uHfHlBcKSZKVn/hk3uzaM73v/l3K39q5\nwM3rb2xK3ZaGVqll46YtWTP7X3L4td/N5g6dcu8VN+TeGT/JH677VV741AnpuOTZfHLGhTn+K59L\nv9/8MmWb31mtp2LjhnR94uGsPujQbO7cdafOZ7UcgB0TzAEAAAAAAABooTbVFenb8/9vaVVeniUj\nv5DKt95Mr3t/v1PjG4vFLFq2Jpt3MZyzpb4hK+6YlyOnfzMNldW59/L/nQ379U2SrD1wUBZccnXu\n/Omdef7zo9Nm1coMueY7+dsxn8nHf3FDKje8ke6PPZCyhvq8PHTYTp/TajkAOyaYAwAAAAAAALAL\nenVtl9q2VUmSpSO+kKR521mt2bA5jzz7ala/sWnHB29DY7GYJXc/kiMnfjWF+vo8OPnqrPn4Ye85\nbuO+ffLo+Zflt7PuyqJTz0l53eb8t5/9r/ztl4fn0J/+U5Lk5aGf2qlzWi0HYOcI5gAAAAAAAADs\ngkKhkIP7dExZoZA3e/bKK0OOSdcnH0nnpx/b6Tnq6hvzH4tfz/Mvrktjsdis8y997NkMvuCMVK9f\nl0fGfyevHHXc+x6/uXPXPPmVC/Kb2X/M42dfmPp92qZ2xZJs6tA5aw46dKfOabUcgJ1TKBabeVff\nzV57bf2eLgGgpLp2be9eBwAAAHyg6GcAwLYte2V9lrzyRj725CMZ/s0vZ+Unjs787/202fO0b1OZ\ngX07p011xQ6PfXHxy9n/9BPT6flFefKM87Loy19v9vnK6urS697fZ2OP/fL6oMO3e1x5oZAONdXp\n1L46PTq3TWWFdSAAkrd/I23Pju/kAAAAAAAAAOxQ7+41eW3tW3n90CF5Zcgx6fHI/enyHw9l1WFH\nNmue9W9tycPPvpqDenVM985tt3vc66+9kZ7j/kc6Pb8oz3/ulCw6fVyL6m6sqsoLnx71nvfLCoXU\ntq1Kp/bV6VhTlfbtqlJWKLToHAAfVSKMAAAAAAAAAK2g7L9safXUGeclSQ79P9ckLdjEpKGxmEUv\nrMmiZWtS39D4ns83bNyctuePS/fH/j0vHj08j503JdnF0Ewhb6/W07tbTQ7r97Ec8996ZPCBXbJ/\nj/bpUFMtlAPQAlbMAQAAAAAAAGgl7dtWpVfXmrxwyF/lpaM+lX0X3JNuC/89r37i6BbNt3LNm3lj\nY10G9u2U9m2rkiRb6hvScPHFOWDeHXn9kL/KgklXpVje8v/6LSTp1a0mfbq1tz0VQCtzVwUAAAAA\nAABoRX17tE+bqoo8NebtVXMG/Z+ZLVo15z+9VVefx/68Kstf3ZDGxmLe+MerM+AXN2Z9r76577s/\nTsM+bVo8d3VleQ7r3yX99+0glANQAu6sAAAAAAAAAK2orKyQvj3aZ+1Bg/LiX386XZ5+LN0fvm+X\n5mwsFvP8S+vywo/+OQf/cFre6twl86/4Seo6dGrxnF07tskRB3dLp/bVu1QbANsnmAMAAAAAAADQ\nyrp1apN2+1TmqTPeXjXn0J/v2qo5SfKxpx7L4TMuTP0+bXLftOvzZo/9WjRPeVkhH+/TKYP6drZK\nDkCJucsCAAAAAAAAtLJC4e1Vc9b1OzjLhx2fzs8+kZ7/fneL56te/VqOvvwbKWtoyINTrsnaAQNb\nNE9t26occXC39OjctsW1ALDzBHMAAAAAAAAASqBrxzZp36YyT3/56ykWChnUwlVzCvVbcvS0C9Jm\n9Wv5j7Hfysojjmn+HEn2794+gw/skjbVFc0eD0DLCOYAAAAAAAAAlMgBPWvzRt8D88Jxf5tOzy/K\nfvf/odlz/NUN30/XJx/J8mHH57mTz2r2+H2qyjN4QJcc0LM2ZYVCs8cD0HKCOQAAAAAAAAAl0rl2\nn3RoV/X2qjllZRn082uTxsadHt9n3h058F9nZd3+/fPQt6YlzQzWdO/UNkcc3C0daqqbWzoArUAw\nBwAAAAAAAKCEDuhZmw29D8iyT/9dOiz9c3rNn7tT4zo8/0yG/NOl2dK2XR64dGYa2rRr1nl7danJ\nIft3SkW5/xYG2FPcgQEAAAAAAABKqGNNdTq3r87Tp49LY1l5Bs26LmloeN8xlevX5a+/e34qNm/K\nn759ZTb0PqBZ56yqKEvfnu13pWwAWoFgDgAAAAAAAECJ9e1Zm4379snSkV9I7fLF6fPH327/4MbG\nHPW9i1Lz8vIsOu1/5qVjPtPs8x3Qs9ZKOQB7AXdiAAAAAAAAgBKrbVuVLh32yaIvfS2NFZUZeNN1\nKTTUb/PYgTf9KD3/ND+vDDkmT55xXovO1fNjzdv2CoDSEMwBAAAAAAAA2A369qjNW933y+LjT0r7\nl17I/nf9+j3H9Pz3P2bQTddlY/f9smDS95Py8mafZ0CvDq1RLgCtQDAHAAAAAAAAYDeoaVOZbh3b\n5JnT/mcaKqsy8KYfpVC/penzdi8uy9DvTUhDVXUeuPSHqavt1Oxz9OzcNrVtq1qzbAB2gWAOAAAA\nAAAAwG7St2dtNnfrmcV/OzrtVr6Yvv/3tiRJ+Vtv5q+/e36qNq7PI+dflrUHDmr23BVlZTmgZ21r\nlwzALhDMAQAAAAAAANhN2lRXpHunNnlm9NlpqKrOwNn/O2V1dTniny5NxyXP5S+jTsuyz57Yorn7\n9mifqsrmb30FQOkI5gAAAAAAAADsRvv3aJ+6Lt3zl1Gnpe1rL2fYpLHp88ffZtXAwVn4tYktmrPd\nPpXZt2u7Vq4UgF0lmAMAAAAAAACwG+1TVZF9P9Yuz55yduqr26TrEw9nU6cueXDyP6VYWdWiOQfs\n1yFlhUIrVwrArhLMAQAAAAAAANjN+nSvSX3nLnn6y+OypW1NHrzk6mzq0r1Fc3Xt0Cad2le3coUA\ntIaKPV0AAAAAAAAAwEdNVWV59utak2dHfzXPffF/tHilnPJCIf33q23l6gBoLVbMAQAAAAAAANgD\nenerSUVZWYtDOUnSu3tN9qmyHgPA3kowBwAAAAAAAGAPqKwoS+9uNS0ev09Vefp0a9+KFQHQ2gRz\nAAAAAAAAAPaQ/bq2S2V5y/7btv++HVJWVmjligBoTYI5AAAAAAAAAHtIRXlZhhzcNQf0qE2bZmxJ\n1ammOl07tilhZQC0BpsNAgAAAAAAAOxB+1RVZP8e7bN/j/ZZt2FzXln9Zl5d+1YaGovbPL6sUMiA\nXh12c5UAtIRgDgAAAAAAAMBeokNNdTrUVGdArw5ZtXZTXln9ZtZu2Jz/GtHZt0u7tNunco/VCMDO\nE8wBAAAAAAAA2MuUl5Wle+e26d65bTbV1Wfl6reycs2bqW9oTN8e7fd0eQDsJMEcAAAAAAAAgL3Y\nf93qqm5LQyrKy/Z0SQDsJHdsAAAAAAAAgA+IqsryPV0CAM0gmAMAAAAAAAAAACUgmAMAAAAAAAAA\nACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAA\nAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMA\nAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUg\nmAMAAAAAAAAAACUgmAMAAAAAAAAAACVQsTMHPf7447nqqqsya9asrd7/t3/7t1x33XWpqKjISSed\nlFNOOSW33nprbrvttiTJ5s2bs2jRotx///1Zs2ZNJk6cmEKhkAMPPDBTp05NWZlcEAAAAAAAAAAA\nH047TMbceOONmTx5cjZv3rzV+1u2bMmMGTPy05/+NLNmzcqcOXOyatWqfPGLX8ysWbMya9asDBo0\nKJMnT05tbW1mzJiR8ePH5+abb06xWMy8efNKdlEAAAAAAAAAALCn7XDFnD59+mTmzJm56KKLtnr/\n+eefT58+fdKhQ4ckyZAhQ/LQQw/lhBNOSJI88cQT+ctf/pKpU6cmSZ566qkMHTo0STJs2LDcf//9\nGTFixA4L7Nq1ffOuCOADyL0OAAAA+KDRzwAAANixHQZzRo4cmRUrVrzn/Q0bNqR9+3d+eLVr1y4b\nNmxoen399dfn3HPPbXpdLBZTKBSajl2/fv1OFfjaazt3HMAHVdeu7d3rAAAAgA8U/QwAAIB3vN8f\nLuxwK6vtqampycaNG5teb9y4sSmo88Ybb2TJkiX55Cc/+c6Jysq2Ora2tralpwYAAAAAAAAAgL3e\nDlfM2Z7+/ftn2bJlWbt2bdq2bZuHH344Y8eOTZI89NBDOfroo7c6fuDAgVmwYEGOOuqozJ8/f6vQ\nzvuxHCrwUeBeBwAAAHzQ6GcAAADsWLODOXfccUfefPPNjB49OhMnTszYsWNTLBZz0kknpXv37kmS\nJUuWpFevXluNmzBhQqZMmZKrr746/fr1y8iRI1vnCgAAAAAAAAAAYC9UKBaLxT1dBAAAAAAAAAAA\nfNiU7ekCAAAAAAAAAADgw0gwZyc9/vjjGTNmTJJk0aJFOeWUU3Laaadl0qRJaWxs3OrYxsbGXHrp\npRk9enTGjBmTZcuWJUmWLVuW0047LV/60pcyderU94wDAD5atvXM8Prrr2fcuHE5/fTTc+qpp+aF\nF17Y4ZjEcwZ8lLz7t8mXvvSljBkzJmPHjs2qVau2OtY9A0j0NACA1qenAbSEngbQHB+mfoZgzk64\n8cYbM3ny5GzevDlJcu211+bcc8/NL37xi9TV1eXuu+/e6vi77rordXV1mTNnTr71rW/lyiuvTJLM\nmDEj48ePz80335xisZh58+bt7ksBAPYi23pm+P73v59Ro0Zl9uzZGT9+fBYvXrzDMYnnDPioePdv\nk+nTp2fKlCmZNWtWRowYkRtvvHGr490zAD0NAKAU9DSA5tLTAJrjw9bPEMzZCX369MnMmTObXh9y\nyCFZu3ZtisViNm7cmIqKiiTJRRddlJdeeimPPPJIjj322CTJ4MGD8+STTyZJnnrqqQwdOjRJMmzY\nsDzwwAO7+UoAgL3Jtp4ZHn300axcuTJnnnlm7rjjjqZnB88ZQPLe3yZXX311DjnkkCRJQ0NDqqur\nk7hnAO/Q0wAASkFPA2guPQ2gOT5s/QzBnJ0wcuTIpn/YJOnbt2+mT5+eE044Ia+//nqOOuqoJMk/\n/uM/Zt99982GDRtSU1PTdHx5eXnq6+tTLBZTKBSSJO3atcv69et374UAAHuVbT0zLFu2LLW1tfnn\nf/7n9OzZs+kvRTxnAMl7f5t069YtSfLoo4/mpptuyplnnpnEPQN4h54GAFAKehpAc+lpAM3xYetn\nCOa0wPTp0zN79uzMnTs3J554YtMySP+ppqYmGzdubHrd2NiYioqKlJW983Vv3LgxtbW1u61mYPfY\n1v6FO9q7cG/f8xAonW09M3Tp0iXDhw9PkgwfPrwp1f1+YzxnwEfb7373u0ydOjU33HBDOnfuvNVn\n7hnAu+lpANujpwE0h54G0Br0NICd9UHvZwjmtECHDh2a0lbdunXLG2+8sdXnhx9+eObPn58kWbhw\nYQ466KAkycCBA7NgwYIkyfz583PEEUfsxqqB3WFb+xfuaO/CvX3PQ6B0tvXMMGTIkNxzzz1Jkoce\neigDBgzY4ZjEcwZ8VN1+++256aabMmvWrPTu3fs9n7tnAO+mpwFsj54G0Bx6GsCu0tMAmuOD3s8Q\nzGmBadOm5YILLsiXv/zl3HzzzbnggguSvLN/2YgRI1JVVZVTTz01M2bMyKRJk5IkEyZMyMyZMzN6\n9Ohs2bIlI0eO3JOXAZTAtvYv3N7ehR+UPQ+B0tnWM8OECRNy++2359RTT829996br33ta0k8ZwDv\n1dDQkOnTp2fjxo0577zzMmbMmFxzzTVJ3DOA7dPTALZHTwNoDj0NYFfoaQDN9UHvZxSKxWJxj5wZ\n4EPokksuyWc/+9l86lOfSpIcd9xxqa+vz3333ZckefDBB3PLLbfkqquuet8xd911V4477rj3HQcA\nAADQWvQ0AAAASsOKOQCtaFv7F+5o78K9fc9DAAAA4MNPTwMAAKA0BHMAWtG29i/c0d6Fe/uehwAA\nAMCHn54GAABAadjKCqAVNTY25rLLLstzzz2XYrGYK664ImVlZZkyZUq2bNmSfv36Zdq0aSkvL89F\nF12U8ePHp0ePHu8Z079//yxZsmSb4wAAAABam54GAABAaQjmAAAAAAAAAABACdjKCgAAAAAAAAAA\nSkAwBwAAAAAAAAAASkAwB6AV4CuOHgAACspJREFUNDY25tJLL83o0aMzZsyYLFu2rOmzO+64I6NH\nj37f8StWrMgpp5xS6jIBAAAAmmyrn/H000/n2GOPzZgxYzJmzJj87ne/2+54/QwAAIAdq9jTBQB8\nGNx1112pq6vLnDlzsnDhwlx55ZX58Y9/nKeffjq/+tWvUiwW93SJAAAAAFvZVj9j+PDhOeuss/KV\nr3xlT5cHAADwoSCYA9AKHnnkkRx77LFJksGDB+fJJ5/MmjVrcvXVV+fiiy/OlClTdnquuXPnZvbs\n2amvr0+hUMi1116bP//5z7nxxhtTWVmZFStW5HOf+1zGjRtXqssBAAAAPgK21c/o1q1blixZknnz\n5mX//ffPxRdfnJqamh3OpZ8BAACwbbayAmgFGzZs2KpJVVZWlokTJ2bSpElp165ds+ZaunRpbrjh\nhvziF7/IgAEDct999yVJXnrppcycOTNz5szJT37yk1atHwAAAPjoeXc/o7y8PIMGDcpFF12U2bNn\np3fv3rnuuut2ai79DAAAgG2zYg5AK6ipqcnGjRubXq9duzYrVqzIZZddls2bN+cvf/lLpk+fniFD\nhmT27NlJkgkTJqR3797p0KFDkqRQKCRJPvaxj2XChAlp165dFi9enMGDBydJDjrooFRUVKSioiL7\n7LPPbr5CAAAA4MPm3f2MxsbGHH/88amtrU2SjBgxIpdffnnTajiJfgYAAEBzCeYAtILDDz88f/zj\nH/O5z30uCxcuzJFHHtn0V2ArVqzIN7/5zVxyySVJkuOPPz7J23+V9nd/93eZN29eXn311XTu3Dnr\n16/PNddck7vvvjtJctZZZ6VYLCZ5p9EFAAAA0Bre3c846KCDMnbs2EyZMiWHHXZYHnzwwQwaNCjH\nH3+8fgYAAEALCeYAtIIRI0bk/vvvz6mnnppisZgrrrhih2NqamoyatSo/MM//EMaGxtz6aWXpqam\nJocffnhGjx6dioqK1NbW5tVXX02vXr12w1UAAAAAHyXb6mds2rQpl19+eSorK9OlS5dcfvnlW43R\nzwAAAGieQvE//3QBAAAAAAAAAABoNWV7ugAAAAAAAAAAAPgwEswBAAAAAAAAAIASEMwBAAAAAAAA\nAIASqNjTBQB8GG3ZsiUXX3xxXnzxxdTV1WXcuHEZMGBAJk6cmEKhkAMPPDBTp05NWdnb+cjVq1fn\ntNNOy69//etUV1enoaEhM2bMyJNPPpm6urqcd955+Zu/+Zs9fFUAAAAAAAAANIdgDkAJ/PrXv07H\njh3z/e9/P2vXrs2JJ56Yj3/84xk/fnyOOuqoXHrppZk3b15GjBiRe++9Nz/4wQ/y2muvNY2//fbb\nU19fn1/+8pdZuXJl7rzzzj14NQAAAAAAAAC0hK2sAErg+OOPzze+8Y0kSbFYTHl5eZ566qkMHTo0\nSTJs2LA88MADSZKysrL87Gc/S8eOHZvG33fffenevXvOOeecTJ48OcOHD9/9FwEAAAAAAADALhHM\nASiBdu3apaamJhs2bMj555+f8ePHp1gsplAoNH2+fv36JMkxxxyTTp06bTV+zZo1eeGFF3L99dfn\nq1/9aiZNmrTbrwEAAAAAAACAXSOYA1AiL7/8cs4444z8/d//fUaNGpWysnduuRs3bkxtbe12x3bs\n2DHHHXdcCoVChg4dmqVLl+6GigEAAAAAAABoTYI5ACWwatWqfOUrX8m3v/3tnHzyyUmSgQMHZsGC\nBUmS+fPn54gjjtju+CFDhuSee+5JkjzzzDPp2bNn6YsGAAAAAAAAoFUVisVicU8XAfBhM23atNx5\n553p169f03uXXHJJpk2bli1btqRfv36ZNm1aysvLmz4fPnx47rzzzlRXV6euri5Tp07N888/n2Kx\nmMsuuyyDBg3aE5cCAAAAAAAAQAsJ5gAAAAAAAAAAQAnYygoAAAAAAAAAAEpAMAcAAAAAAAAAAEpA\nMAcAAAAAAAAAAEpAMAcAAAAAAAAAAEpAMAcAAAAAAAAAAEpAMAcAAABgLzVx4sTceuut2/180qRJ\nefHFF5s97/Lly3PxxRfvSmkAAAAA7ATBHAAAAIAPqAULFqRYLDZ73EsvvZTly5eXoCIAAAAA/qtC\nsSXdGwAAAABaXbFYzJVXXpm777473bp1S0NDQ04++eQsW7YsDz74YNatW5dOnTpl5syZue2223LN\nNdekT58+mT17dpYvX54ZM2Zk06ZN6dSpU77zne+kd+/e+dnPfpbbbrstZWVlOeyww/Ld7343o0aN\nyooVK3LiiSfmkksuyWWXXZY///nPWbVqVQ444IBce+21WbVqVc4999z07t07zz33XA499NAMHTo0\nt912W9atW5frrrsu/fv3z/DhwzN8+PA8/PDDSZIrrrgiAwcO3MPfJAAAAMDewYo5AAAAAHuJ3//+\n93n66afzm9/8Jj/84Q/zwgsvpKGhIYsXL84vf/nL/P73v0+fPn1yxx135Jxzzkm3bt1yww03pF27\ndpk8eXJ+8IMf5LbbbstZZ52VKVOmpL6+Ptdff31uueWW3HrrrSkUClm5cmUmT56cQw89NFOnTs1j\njz2WysrKzJkzJ3/4wx+yefPm3HPPPUmSZ599Nl//+tczd+7cPPHEE3nxxRczZ86cfP7zn8+cOXOa\n6u7YsWP+9V//Neeff34mTJiwp74+AAAAgL1OxZ4uAAAAAIC3/elPf8pnP/vZVFZWpnPnzhk2bFjK\ny8szYcKE/Mu//EuWLFmShQsXpk+fPluNW7p0aZYvX55x48Y1vbdhw4ZUVFTkE5/4RE4++eR8+tOf\nzumnn57u3btn6dKlTccdeeSR6dixY2bPnp3Fixdn6dKlefPNN5MkXbp0aVr9pkePHjn66KOTJPvu\nu29WrFjRNMcpp5ySJBk+fHgmTpyY1atXp3PnziX5jgAAAAA+SARzAAAAAPYShUIhjY2NTa8rKiqy\ndu3ajB07NmeeeWZGjhyZsrKyvHtn8sbGxvTq1Su33357kqShoSGrVq1KkvzoRz/KwoULM3/+/Jx9\n9tm56qqrtho7b968XHPNNTnjjDPyxS9+MWvWrGmav6qqaqtjy8vLt1l3RcU7LabGxsbtHgcAAADw\nUWMrKwAAAIC9xNFHH525c+emrq4u69aty7333ptCoZChQ4fmtNNOy4ABA3L//fenoaEhydtBmYaG\nhvTr1y/r1q3Lww8/nCS55ZZbcuGFF2b16tU54YQTctBBB+Ub3/hGjjnmmDz77LMpLy9PfX19kuTB\nBx/MCSeckJNOOildunTJQw891DT/zvrtb3+bJPnDH/6Q/v37p0OHDq34rQAAAAB8cFkxBwAAAGAv\n8ZnPfCZPPPFEPv/5z6dLly7p379/Nm3alGeeeSajRo1KZWVlDj744KZtpI477ricc845+clPfpIf\n/vCHmT59ejZv3pyampp873vfS+fOnXPqqafm5JNPTps2bdKzZ8984QtfyJYtW7J+/fp8+9vfztln\nn50LL7wwc+fOTVVVVQYPHrzVNlU749FHH82vfvWrtGnTJldeeWUpvhoAAACAD6RC8d1rHwMAAADA\nTho+fHh+/vOfp1evXnu6FAAAAIC9jq2sAAAAAAAAAACgBKyYAwAAAAAAAAAAJWDFHAAAAAAAAAAA\nKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKIH/B9d82iYe\n1IBXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low_bid',y2='high_bid', data=df, alpha=0.4)\n", + "plt.title(\"entire history\", fontsize=30)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200', fontsize=30)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- there are periods where the price doesnt move, probably weekends. Maybe dont consider these for training" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def pltGraph(xname, yname, irow, icol, df, xval=None, yval=None, title=None, norm_axis=None):\n", + " x_axis_col = xname\n", + " y_axis_col = yname\n", + " if xval is None:\n", + " xval = df[x_axis_col]\n", + " if yval is None:\n", + " yval = df[y_axis_col]\n", + " if title is None:\n", + " title = x_axis_col + \" vs \" + y_axis_col\n", + " if norm_axis is None:\n", + " norm_axis = \"x\"\n", + " \n", + " axarr[irow, icol].scatter(xval.values, yval.values, color=\"green\", lw=0, cmap=pylab.cm.cool, alpha=0.8, s=2)\n", + " axarr[irow, icol].set_xlim(xval.values.min(), xval.values.max())\n", + " axarr[irow, icol].set_ylim(yval.values.min(), yval.values.max())\n", + " axarr[irow, icol].set_xlabel(x_axis_col)\n", + " axarr[irow, icol].set_ylabel(yname)\n", + " axarr[irow, icol].set_title(title)\n", + " axarr[irow, icol].grid(False)\n", + " return icol + 1" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQEAAAT7CAYAAAAkHuRgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WeYVdWhBuBvaAoOiBiDiteGCteOEo0FiUQfURERRBEf\nIrYUvfYkgg3FhsbYUK/lWlFQVEQp9m5AYtRYg4mNCCqCogIKMzBzf3A5lzYwJjIzB9/3Tzhn7732\nWuscM+tZ+ztrlVRWVlYGAAAAAAAAAAAoWvVquwIAAAAAAAAAAMC/RwgIAAAAAAAAAACKnBAQAAAA\nAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAHXOX/7yl+y1\n117ZZpttMmzYsNquTp0ye/bstGnTJhMmTEiS9OnTJ5dccskKr6usrMzw4cMzd+7cKs/p169fTjzx\nxCTJiBEjsvPOO/9bdX388cfzySefJEkmTJiQNm3aZPbs2f9WmQAAAAAsW4PargAAAADAkq699tps\nvPHGue2229K8efPark6dNnjw4DRosOIpnpdeeilnn3129t9//6y22mrLPOfMM89MZWXl91KvKVOm\n5L/+678yatSorLfeemnXrl1eeOGFNGnS5HspHwAAAIDFCQEBAAAAdc7XX3+djh07ZoMNNqjtqtR5\n1Q1JVSfc07Rp03+3OlXer1GjRllnnXW+t/IBAAAAWJztwAAAAIA6pVOnTnnzzTdz7bXXpk2bNkmS\nNm3a5Morr8yuu+6arl27Zv78+fnggw9y9NFHZ7vttsuee+6ZSy+9NGVlZYVyXn/99Rx66KHZbrvt\n0qtXr9xxxx3p1KlTkmVvTTV48OB079698Hp55U+ePDlt2rTJI488ks6dO2ebbbbJYYcdlvfff79w\n/cSJE9O3b9+0a9cuHTt2zA033JAkOffcc9O7d+/F2nz//fenU6dOywzqfPvttznzzDOz4447pkOH\nDnn44YcXO77odmBTp07Nr3/96+y4445p3759TjzxxHz++eeZPHlyfvGLXyRJdthhh4wYMSKDBw/O\nMccck6OPPjo77rhjHnjggcW2A1vo+uuvz84775ydd945F110UebNm5dk2duFLXr9z3/+8yTJAQcc\nkMGDBy/V59OnT8/pp5+eXXbZJTvssENOOumkfPbZZ4Wy2rRpkxEjRqR79+7ZZptt0rVr17z66quF\n4/fcc0/23nvvbL311uncuXNGjhy5VN8BAAAA/JAIAQEAAAB1yn333Ze2bdvmqKOOygsvvFB4f8yY\nMbnjjjtyySWXZN68eTn66KOz8cYb54EHHsill16a559/PhdccEGS5IsvvsjRRx9dCJJ07do1V1xx\nRbXrMHfu3OWWv9C1116bCy64IPfdd19mzJiRP/zhD4X7H3HEEfnxj3+ce++9NwMHDsyNN96Y++67\nL127ds0rr7ySTz/9dLG2denSJSUlJUvV5bzzzsvLL7+cm266Kddcc03uuOOOKut93nnnpby8PMOH\nD8+dd96ZKVOmZNCgQVlvvfUyePDgJMkTTzyR/fbbL0ny/PPPZ6eddsrw4cPTsWPHpcr78ssv88IL\nL+T222/PpZdemtGjR+d//ud/qtWH9957b5JkyJAhOeqooxY7Nm/evPTt2zdTpkzJTTfdlNtvvz1T\np07N8ccfv1gQ6uqrr85JJ52UBx98MKWlpRkwYECS5O233865556b0047LY8++mh+8YtfpF+/fvnw\nww+rVTcAAACAVZEQEAAAAFCntGjRIvXr10+TJk0W2z6qZ8+e2WyzzfKf//mfGT16dBo2bJizzz47\nm266aX7yk5/kvPPOy7333ptZs2Zl7NixWW211XL22WendevW6d27dyH4Uh0rKn+h3/zmN2nfvn3a\ntGmT3r1754033kiSPPzww2nYsGEuuOCCbLbZZunYsWMGDBiQJk2aZIcddsgGG2xQWNFn+vTpefHF\nF9O1a9el6jFr1qyMHj06/fr1yw477JDtttsuAwcOrLLekydPTmlpaTbYYIO0bds2l19+eY488sjU\nr18/a665ZqF/V1999SRJ48aN88tf/jKtW7dOixYtliqvfv36ueyyy9K2bdt07Ngxv/nNbzJ06NBq\n9eHC8po3b5411lhjsWPPP/98Pvzww/zxj3/M1ltvnW222SZXXnll3n777YwbN65wXu/evdOxY8ds\nuummOfroo/POO++krKwsU6ZMSUlJSdZbb720atUqvXv3zs0337zMNgAAAAD8UDSo7QoAAAAAVMd/\n/Md/FP797rvv5qOPPkq7du0K71VWVqaioiIffvhh3n333bRp0yYNGzYsHG/fvn3Gjx9frXutqPzm\nzZsnSTbaaKPC8dLS0sJWWQvv36hRo8LxRUM+Xbt2zdixY3PkkUfm4YcfzhZbbJHNNttsqXq8//77\nKS8vz5Zbbll4b+utt069esv+Xdevf/3rnH766dl5553z05/+NHvttdcyw0ULtWrVapmrDy3UsmXL\nrLvuuoXXW221VaZOnZqvv/66ymuq4913383666+fli1bFt5bd91106pVq/zjH//IbrvtliTZeOON\nC8dLS0uTLFhFqEOHDtl2221zyCGHZNNNN83PfvazHHTQQWnWrNm/VS8AAACAYiYEBAAAABSFhavX\nJAuCINtvv30uvvjipc5r2bJlGjdunIqKisXeXzSQs6zgy8IAT3XKnz59epIsFjJKUtjKqmHDhott\na7Wkrl275rrrrsvkyZMzZsyYKoM6C+u5aFn169dP/fr1l3n+fvvtl5/+9Kd5+umn8/zzz+fCCy/M\nqFGjcvvtty/z/NVWW63KOiZZKmy0sE8bNGiwwj5cnqruW1FRsdjntmT/Jgv6YvXVV8+wYcPy6quv\n5tlnn81TTz2VO++8M9dff30hQAQAAADwQ2M7MAAAAKDotG7dOpMmTcq6666bjTbaKBtttFFmzJiR\nSy+9NOXl5dl8880zceLEzJkzp3DNm2++Wfj3wnDJ7NmzC+9Nnjy52uWvyMYbb5y///3vi517zTXX\n5KSTTioc32abbXL//ffnzTffzP7777/McjbZZJM0bNgwr7/+euG9d955p8o6XHnllZk8eXJ69OiR\nK6+8Mtdcc01efPHFTJ8+fbkr/lRl6tSp+fLLLwuv//rXv6ZVq1Zp0qRJGjZsmG+//XaxgNKifbi8\n+7Vu3Toff/xxpk6dWnjv008/zSeffJLWrVuvsF6vvvpqBg8enB122CGnnHJKRo0ala222iqPPfbY\nd20iAAAAwCpDCAgAAAAoOl27dk29evVy+umn5+9//3teeeWV9O/fP+Xl5WnatGm6dOmSxo0b58wz\nz8x7772X0aNHZ9iwYYXrN99886y++uq54YYb8tFHH+W+++7LM888U+3yq1O/+fPn57zzzsv777+f\nZ599Nrfffns6duxYOOfAAw/MzTffnPbt2y+2LdaiSktL07Nnz1x88cWZMGFC3nrrrZxzzjlVBmze\nf//9DBw4MG+88UYmTZqU0aNHp1WrVmnRokWaNGmSJHnrrbcWCz8tz/z583Paaadl4sSJefzxx3PD\nDTfk2GOPTbJgW7K5c+fmpptuykcffZQbb7wxb7/9duHahff729/+lpkzZy5W7q677po2bdrktNNO\ny5tvvpk33ngjp556ajbeeOPssssuK6xX48aNc8MNN+SOO+7I5MmT88ILL+S9997LtttuW612AQAA\nAKyKhIAAAACAotOkSZPccsst+frrr9OzZ88cd9xx2X777XPZZZclWbD110033ZTPPvss3bp1y623\n3ppDDjmkcH1paWkuuuiiPPPMM9l///3zxBNP5L/+67+qXf6KlJaW5qabbsr777+fAw88MOeee26O\nO+64dO/evXDOfvvtl/Ly8hxwwAHLLat///7p1KlTTjjhhBx99NHp1q3bMrfJSpLzzjsvG220UY45\n5ph07do1H3/8cW644YbUq1cvW2yxRfbcc88cddRRGT58eLXa0bp162y99dY5/PDDc84556Rv377p\n1atXkgWrGfXv3z933HFHunbtmvfeey9HHHFE4dq11lorPXv2zFlnnZWrr756sXJLSkpy3XXXpUWL\nFunTp0+OPPLIrLvuurntttsW27atKm3bts0f/vCHDB8+PPvuu2/OPPPMHHnkkenRo0e12gUAAACw\nKiqpXN4G9QAAAACriDvvvDO33HJLnnrqqdquSpLkH//4Rw4++OD86U9/SmlpaW1XBwAAAIAi16C2\nKwAAAADwQ/L555/npZdeyp133pkuXboIAAEAAADwvbAdGAAAAEAN+uabb3LGGWdkzpw5OeWUU2q7\nOgAAAACsImwHBgAAAAAAAAAARc5KQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJAQEAAAAAAAAAQJET\nAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAAABQ5ISAAAAAAAAAA\nAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAAAAAAAIAiJwQEAAAA\nAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAAAABQ5ISA\nAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAARU4ICAAAAAAAAAAA\nipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJAQEAAAAA\nAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAAABQ5ISAA\nAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAAAAAAAIAi\nJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAA\nAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAARU4ICAAA\nAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJ\nAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAA\nABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAA\nAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJA\nAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAA\nRU4ICAAAAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAA\nAAAAoMgJAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAA\nAAAAAAAAABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECR\nEwICAAAAAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAA\nAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAA\nAAAAAAAARU4ICAAAAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSE\ngAAAAAAAAAAAoMgJAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAA\nAIqcEBAAAAAAAAAAABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAA\nAAAAAECREwICAAAAAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEg\nAAAAAAAAAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCApIkjzzySPr0\n6ZMkueqqqzJy5Mjlnn/NNdfkiSeeWGn1OfbYY/Puu+9+p2t+9atfZcSIEd9bHV5//fWcc84531t5\nAEDdU9fGQCsyYsSI/OpXv6q1+68sAwcOzODBg2u7GgBQ5/Xr1y8333zzMo+1adMmX3zxxUq9/9Sp\nU9OrV6+Veo+6ZPLkyWnXrl1tV+N7t+gYGABWBZ4p1Q0TJkxIly5darsa37ubb745/fr1q+1qQLU1\nqO0KAHXPSSedtMJzJkyYkM0222yl1eGmm25aaWVX17vvvpupU6fWdjUAgBpSF8ZAAAB1WcuWLXP3\n3XfXdjUAABbjmRLA/xMCgh+wq666KqNGjUrz5s2z0UYbFd7v169fNt988xx99NG5+uqr8/jjj6dh\nw4ZZa621cvHFF+fxxx/Pm2++mUsvvTT169fP3nvvXbh2woQJufTSS9OyZct89NFHWX311TNo0KC0\nbt06ZWVlueyyy/LSSy9l/vz52XLLLXPWWWeltLQ0nTp1yrbbbpt33nknp556ai6++OJcddVV2Wab\nbXLPPfdkyJAhqVevXn70ox/l7LPPziabbJKpU6emX79++eyzz7L++uvn888/X2GbR4wYkfvuuy/f\nfvttSktLM2TIkNx7770ZNmxYKioq0rx585x99tlp0qRJrr766sycOTP9+/dPt27dcv7552f06NGF\ndi58PXjw4Pz1r3/NZ599ljZt2mSjjTbKlClTMm3atEyZMiUtWrTIFVdckZYtW37/HyIA8J2tjDFQ\nRUVFLrroorz22muZPXt2Kisrc8EFF2SLLbZIx44d8+ijj2adddZJkhxyyCE5/vjjs80226R///75\n5z//mebNm2edddbJ5ptvnhNOOGG59Z82bVqOPvrofPbZZ2nVqlXOP//8rLPOOvn0009z7rnnZsqU\nKamsrEy3bt1yzDHHLLes9957L2eeeWbKyspSWVmZgw8+OIcffngGDx6cf/zjH5k+fXo+//zztG3b\nNhdeeOEyx23bbrttBg4cmE8++STl5eXZf//98+tf/zpJcv311+eJJ57I3Llz8+233+b000/P3nvv\nnVmzZuXMM8/MxIkT8+Mf/zj169fPjjvu+K9+pACwyqlqLiRJXn311fTq1SvTp0/P5ptvnj/+8Y9p\n0qTJYtffcMMNeeCBB9KgQYNstNFGGTRoUJo2bVrl/fr06ZPWrVvnzTffzIwZM3LggQfmxBNPzOTJ\nk3P44YendevWmTJlSgYNGpSjjjoqr776aubNm5c//OEPeeaZZ1K/fv20a9cuAwYMSKNGjfLf//3f\neeyxx1JRUZFWrVplwIABS82L9OrVK3379k3nzp2TJJdddlkqKyvTt2/fnH766ZkxY0aSpGPHjjn5\n5JOXqvN9992Xe+65J+Xl5fnqq69y7LHHpnfv3lWWe+qpp+bSSy/NU089laZNm2bbbbfNe++9lyFD\nhiz3s6ioqMiZZ56Zt956Kw0aNMhZZ52V7bffPuXl5Rk0aFDGjx+f+vXrZ9ttt03//v1TWlpaZVmz\nZ89O//79M2nSpNSrVy9bbbVVBg4cmJdeeqnK+bR+/frlyy+/zEcffZSf/exnOemkk6qcX3v66adz\nww03pKysLF988UW6detW6LuqxsAAUJs8U6reM6WKiorsueeeueaaa7LNNtskSU455ZT85Cc/yc47\n77zMuZ0lLWuO5uc//3mV5R500EEZMGBAXnvttTRt2rTwo7hBgwYtt8+++eabnHjiiZk0aVKaNWuW\ngQMHZpNNNsnMmTNz3nnnZeLEiSkpKUmHDh1y6qmnpkGDquMK06ZNW+a4cMSIERkzZkwqKioyderU\ntGzZMoMGDUrLli3Tp0+frLnmmnn//fdz2GGHpVu3brnwwgvz97//PeXl5dlll13y+9//Pg0aNKhy\nPFleXp4LLrgg48aNy9prr5211157uWNpqGtsBwY/UE888UQee+yxjBw5MnfffXdmzZq11DmffPJJ\nbr/99tx///0ZMWJEdtttt7z++us5/PDDs/XWW+f3v//9Yg+/Fnr77bdz1FFHZdSoUenevXt+97vf\nJUluvPHG1K9fPyNGjMhDDz2UH//4x7nssssK122++eZ5+OGHFytz/Pjx+Z//+Z/ccccdeeihh9Kl\nS5ccf/zxqayszMCBA7PddttlzJgxOeuss/LBBx9Uq+3vvvtuhgwZkiFDhuTPf/5zRo4cmbvuuisj\nR47MMccckxNOOCHrrbdeTjzxxLRv3z4XX3zxCsucMmVKHnjggUJ7/vKXv+Sqq67KI488kmbNmuWe\ne+6pVt0AgJVrZY2BXnvttXz22We55557Mnbs2Bx00EG56aab0rRp0+y999556KGHkiwI3UybNi0d\nOnTIBRdckM022ywPP/xwrrrqqrzyyivVasMHH3yQc845J6NGjcoWW2yRCy+8MEny29/+NjvvvHNG\njRqVYcOG5aGHHsqYMWOWW9bNN9+cTp06ZcSIEbnxxhvzl7/8JRUVFYU2XX311Xn44YfToEGDXHvt\ntYXrFh23/e53v0uPHj0KE2Pjxo3L2LFjM2XKlIwbNy533nlnRo0alVNOOSVXX311kuTqq6/O6quv\nnkceeSRXXXVVtcdxAPBDsLy5kGTBlly33nprHn300UydOjWPPfbYYtc/+eSTGTFiRO65556MHj06\nG2ywQe68884V3vfjjz/OsGHD8sADD2Ts2LF5+umnkySffvppjjvuuMVCzUkydOjQvPXWW3nwwQcz\nevTozJ49O2PHjs3IkSPz97//Pffee28efPDBdOzYMWedddZS9+vZs2ceeOCBJMn8+fPz0EMPpWfP\nnhk+fHg22GCDPPDAA7nrrrsyadKkzJw5c7FrZ8+enXvvvTc33nhjRo4cmSuuuCJ/+MMfllvuvffe\nm7feeiujR4/O3XffnY8++qhan8ecOXOy2267ZeTIkTnppJNy8sknp6ysLP/93/+dzz77LA8++GAe\nfPDBVFRU5NJLL11uWY8//nhmz56dBx98MPfdd1+SFOpR1XzawjqMGTMmv/vd76qcX6usrMwtt9yS\nQYMGFT7/G2+8MV988UW1xsAAUFs8U1rxM6V69eqlR48ehTHOV199lXHjxuWAAw5Y7tzOovdb1hzN\n8sq97rrrMn/+/Dz88MO57bbb8vbbb1ervz755JP07ds3Dz74YLp06ZLf//73SZILLrggzZs3z6hR\no3L//ffnnXfeyS233LLcspY3LnzllVdyzjnnZOzYsdlqq60K82NJ0qxZs4wdOzZ9+vTJRRddlK22\n2iojRozIyJEjM2PGjNx6663LHU8OHTo0H374YcaMGZNbbrkln3zySbXaDnWFlYDgB2r8+PHZe++9\nC79O6tGjx1K/fGrZsmXatm2bgw46KHvssUf22GOP7LLLLissu23btmnfvn2h3IEDB2bGjBl55pln\nMnPmzIwbNy5JUl5enrXXXrtw3cJrFvX8889nv/32S4sWLZIk3bt3z4UXXpjJkydn3LhxOf3005Mk\nG220UXbeeedqtb1NmzaFdj/zzDOZNGnSYvvZf/XVV/nyyy+rVdZC22+//WJp5Z122qlwjy233DJf\nffXVdyoPAFg5VtYYqF27dllzzTULD5QmTJiQNdZYI8mCB1HnnXdejj766Nx///3p3r176tWrl2ef\nfbYwyfLjH/+48Gv1Fdl1110Lv94++OCDc/DBB+ebb77JK6+8Upg8adq0abp3757nnnsu+++/f5Vl\n7b333jn99NPz+uuvZ5dddslZZ52VevUW/Fakc+fO+dGPflS4z0UXXVQYey0ct33zzTd56aWX8tVX\nX+Wqq64qvDdx4sTst99+ueSSSzJq1KhMmjSpsEpSsuBzOOOMM1JSUpIWLVosM1gOAD9Uy5sLSZK9\n9torjRs3TrLg4dcXX3yx2PXjx49P586ds+aaayZJ+vfvX637HnrooWnYsGEaNmyYzp0754UXXsjm\nm2+eBg0aZPvtt1/q/HHjxuXAAw/M6quvniS58sorkyzYYvWNN95Ijx49kiz45fq333671PX77rtv\nLr300kybNi1vv/12Ntpoo2y88cbp0KFDfvnLX+aTTz7JrrvumtNOO22pX16vscYauf766/Pss8/m\nww8/zMSJE/PNN98st9xLLrkkBx54YFZbbbVCe1e0ClCy4CHSfvvtlyTp0KFDKisr8/777+e5557L\nKaeckoYNGyZZsJrS8ccfv9yydtxxx1xxxRXp06dPdt111xxxxBHZaKON8umnn1Y5n7bwuoWqml8r\nKSnJ9ddfn2eeeSajR4/Oe++9l8rKynz77bfVGgMDQG3xTKl6z5R69OiRgw8+OP369cvo0aOz5557\nFn58VtXczkKtWrWqco6mqnKfffbZ9O/fP/Xq1UtpaWkOOuigvPPOO9Xqrx122CFJctBBB+Xcc8/N\nzJkz89xzz2XYsGEpKSlJo0aN0qtXr9x+++355S9/WWVZyxsX7rbbboWVMg855JAceOCBhesW/W48\n88wzeeONNwoB7Dlz5iRZ/nhy/Pjx6dKlSxo1apRGjRrlgAMOqFbboa4QAoIfqJKSksIvyJKkfv36\nS51Tr1693HnnnXnjjTcyfvz4XHTRRdl5552X+eutRS1ZVmVlZerXr5+KioqcccYZ6dixY5IFv9qa\nO3du4bwll65eeO2y3ps3b95SbVjekoGLWvQ+FRUVOfDAAwvJ8oqKinz22WeFibKFlrxXeXl5lWUm\nKUyALetaAKD2rKwx0DPPPJMLL7wwRx55ZH7+859n0003Laz+0759+8ybNy+vv/564ZfnyYKxy6J1\nWXKCpirJFqEeAAAgAElEQVSL1rmysjINGjRIRUXFUuONioqKzJs3b7ll7bnnnnn00Uczbty4jB8/\nPtdee22hfovep6KiYrH6LRz7LLzv3XffXXgY+cUXX2S11VbLW2+9leOOOy59+/bNbrvtlp/85Cc5\n77zzFqv7stoEAD90y5sLSRaf/1jWnEP9+vVTUlJSeP3111/n66+/zgYbbLDc+y5abmVlZeFvf6NG\njZY557Lke9OnT09FRUUqKipyzDHHpHfv3kmSsrKyZT7IatKkSfbZZ5+MHj06r776anr27Jkk2Xbb\nbfPkk09m/PjxefHFF9OzZ89ce+21hYdJyYLViQ499NAccsgh2XHHHdO5c+fCykVVlbtkfas79lry\nvMrKyjRs2HCpX9hXVFQsNV+0pP/4j//I448/ngkTJuTFF1/MkUcembPOOitrrbVWlfNpC9u06H2W\nNb/2zTff5KCDDspee+2V9u3bp0ePHnniiSdSWVlZrTEwANQWz5Sq90ypVatW2XLLLfPMM89kxIgR\nOeOMM5JUPbez4YYbFq5d3hxNVeX+q/NWS55XUlJSmLtaVHXmraoaFyZLz1st+nrJz+yqq65K69at\nkywYG5eUlCx3PLkkYyeKje3A4AeqQ4cOeeSRR/L111+noqIiDz744FLnTJw4MV26dEnr1q3zq1/9\nKn379i0kXevXr1/lH+eJEydm4sSJSRbsYb/DDjukWbNm2X333XPXXXelrKwsFRUVOfvss3P55Zcv\nt5677757xo4dW/hV2/3331/Yu7xDhw6FJRE//vjjTJgw4Tv3w2677ZYxY8bks88+S5IMGzYsRxxx\nxFJtbNGiRT7++ON8/vnnqayszBNPPPGd7wUA1L6VNQb605/+lD333DO9e/fONttskyeeeCLz588v\nHO/Zs2fOP//8tGnTJuuvv36SBfuYL/wV0owZM/LEE08s9sCuKhMmTMjHH3+cZMHYZY899khpaWm2\n22673HXXXUmSmTNnZuTIkdl1112XW9Zpp52WsWPHZv/998+AAQNSWlpaWOL4ySefzMyZM1NRUZHh\nw4dnzz33XOr60tLSbL/99rn11luTLJhIOeyww/Lkk0/mpZdeytZbb50jjzwyO+20U5588slCn3To\n0CH33XdfKioq8tVXX+XJJ59cYbsB4IdieXMh1bHrrrvm8ccfL2z5NHjw4Nx2220rvO6hhx4q/G1+\n+OGH06lTp+Wev8suu2T06NGFeZ5zzz03Y8aMye6775777ruvcP+rrrqqsA3Ekg455JCMGDEir776\navbZZ58kyWWXXZbrrrsue+21V84888xsttlm+fDDDxe77s0330yLFi1y3HHHpUOHDoUHNgvHGssq\nt2PHjnnooYdSVlaWefPmFVZkXJEvv/yyUP5TTz2V1VZbrTAvdffdd6e8vDwVFRW56667sttuuy23\nrKFDh6Z///7Zfffd87vf/S677757/vGPfySpej5tSVXNr02aNCmzZs3KySefnE6dOuXPf/5z4Zzq\njIEBoLZ4plR9hxxySG666abMmTOnsFLg8uZ2FlreHE1V5Xbs2DH3339/YVXH0aNHV2ve6p133snf\n/va3JAs+zx133DGNGzcufJ6VlZUpKyvL8OHDVzhvtbxx4YsvvpipU6cmSe6+++5lzlslC74Tt912\nW+G+v/nNb3LnnXcudzzZoUOHjBw5MnPnzs3cuXMzduzYFbYb6hIrAcEPVMeOHfPOO++kR48eadas\nWdq2bVtYYnihtm3bZt99902PHj3SpEmTrL766oVfwO+555655JJLUl5enoMOOmix6370ox/lyiuv\nzJQpU9KiRYvCfujHHXdcLrnkkhx00EGZP39+/vM//zP9+vVbbj1322239O3bN0cccUQqKirSokWL\n3HDDDalXr14GDBiQ/v37Z9999826666btm3bfud+6NChQ4499tgcddRRKSkpSWlpaa655pqUlJSk\nXbt2ufLKK3P88cfn2muvTa9evdKjR4+ss846+dnPfvad7wUA1L6VNQbq1atXfvvb3+aAAw5I/fr1\n0759+zz22GOFFXS6deuWyy+/fLHJqv79++ess87KAQcckObNm2f99ddf7JdfVdliiy1yxhlnZPr0\n6dl0000zcODAJAsmRgYOHJgRI0akrKwsBxxwQLp3777cso477riceeaZueeee1K/fv3stdde2Wmn\nnfLnP/85P/rRj3LsscdmxowZ+clPfpJf//rXyyzjsssuy/nnn58DDjggZWVl6dKlS7p27Zrp06fn\nsccey3777ZeGDRtml112yVdffZVZs2blhBNOyIABA7LvvvumRYsW2WKLLVbYbgD4oVjeXEh1dOzY\nMe+++24OO+ywJMlmm22W888/f4XXzZkzJwcffHBmz56d3r17Z5dddilsQbYsvXr1ypQpU9K9e/dU\nVlZmp512Sp8+fVKvXr1MnTo1hxxySEpKSrLeeutl0KBByyxj6623ToMGDbLPPvsUtuk64ogj0q9f\nv8IWDG3atEmXLl2W6qP77rsvnTt3TuPGjbPtttumRYsWmTRpUjbddNNlltu9e/d88MEH6datW5o0\naZINNtigsJLh8qy99tp57LHHcuWVV6Zx48YZPHhwGjRokN/85je55JJL0q1bt8ybNy/bbrttzj77\n7OWW1a1bt/z5z3/Ofvvtl8aNG2f99dfPL37xi0ycOLHK+bQlVTW/1qRJk/zsZz/Lvvvum2bNmmXD\nDTfMZpttlkmTJlVrDAwAtcUzperr1KlTzjvvvBx77LGF96qa21lUly5dqpyjKS0tXWa5v/rVrzJw\n4MAccMABadq0adZee+1qzVttuummueaaa/LRRx9l7bXXLowDzzrrrFxwwQU54IADUl5eng4dOlQ5\n17RQVePC0aNHp2XLlvnd736XadOmZbPNNivMjy3pzDPPzIUXXli476677ppjjjkm8+bNq3I82atX\nr/zzn/9Mly5dvlMYH+qKkkp71ADfowkTJuT888/P6NGja7sqAAB12l133ZUtt9wy7dq1S1lZWXr3\n7p0TTjihsMx1bRo8eHBmzJiRc845p7arAgDUgD59+uTwww9P586da7sqK80LL7yQzz//PAceeGCS\n5IILLshqq61W2M6jNplPA+CHyt/AumvMmDEpLS1Nx44dU1FRkRNOOCG77bZbYcvX2jRixIg8+uij\nueGGG2q7KlAnWQkIWOX07t07s2fPXuaxu+66K6WlpTVcIwCApS38VX5FRUXKy8vTuXPndOzY8Xsd\ny8yaNSuHH374Mo+tscYaGTp06L9UdwCguLz44ou5+OKLl3ls5513ruHa1I7NN988N998c26++ebM\nnz8/bdu2zbnnnpuLLrqoyu1A+vfvn5/+9Kff6T4nn3xyPvjgg2Ueu+KKK7Lpppt+57oDACuPZ0rL\ntvnmm+ecc87J5ZdfnvLy8uy8887p2bPn9z7W0f/w/bMSEAAAAAAAAAAAFLnqbSQNAAAAAAAAAADU\nWUJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyDWo7QrUpGnTZtZ2Fb53a63VJDNmfFPb1Vhl6d+VR9+u\nXPp35dK//7511mla21X4wavuuMj3vebo65qjr2uOvq45+rpmrKx+NjaqfavinBH80EyZOTl9Hzk8\nt3W+K62ablDb1QH+RcZFtc+4CFaeKTMn1+lxyqo6nlpV28Wq718dF1kJqMg1aFC/tquwStO/K4++\nXbn078qlf/kh8X2vOfq65ujrmqOva46+rhn6GaDuatV0Aw92AIA6acrMyYUgypSZk2u7OlVaVcdT\nq2q7oCpCQAAANai8vDynnXZaevXqld69e+e9997LpEmTcthhh6V3794ZMGBAKioqkiTDhw9P9+7d\nc8ghh+Tpp59OksyZMycnnHBCevfunWOPPTZffPFFkuSvf/1revbsmV69euWaa66ptfYBAADUFg92\nAIC6ZmH4J8lKD6J8HwGjVXU8taq2C5ZFCAgAoAY9++yzmTdvXu6+++4cf/zxufLKK3PxxRfn5JNP\nztChQ1NZWZknn3wy06ZNy5AhQ3L33Xfn5ptvzuWXX56ysrIMGzYsW2yxRYYOHZpu3brluuuuS5IM\nGDAgf/zjHzNs2LC89tprefvtt2u5pQAAAAAAP2yLrkKzMoMoL3/60ndaaagur0gE/HuEgAAAatAm\nm2yS+fPnp6KiIrNmzUqDBg3y1ltvZaeddkqS7LHHHhk3blxef/31tGvXLo0aNUrTpk2z4YYbZuLE\niXn55ZfToUOHwrnjx4/PrFmzUlZWlg033DAlJSXZfffdM27cuNpsJgAAAAAAWfmr0EyZOTn9nv9t\nBnW4rHCvhVuQVXV+Xd+aDPjXNajtCgAA/JA0adIkU6ZMyb777psZM2bk+uuvz0svvZSSkpIkyRpr\nrJGZM2dm1qxZadq0aeG6NdZYI7NmzVrs/UXPLS0tXezcjz76aLn1WGutJmnQoH616rzOOk1XfBLf\nC31dc/R1zdHXNUdf1wz9DAAAQF2y6GpDyYKQT+8xPZMkQ/e/d6kQ0pLnA6sWISAAgBp02223Zffd\nd89pp52WTz75JEcccUTKy8sLx2fPnp1mzZqltLQ0s2fPXuz9pk2bLvb+8s5t1qzZcusxY8Y31arv\nOus0zbRpM79LE/kX6euao69rjr6uOfq6ZqysfhYsAgAA4N+xaKCnVdMNMnT/e5d6v6rzV6YpMycL\nG0ENsx0YAEANatasWWElnzXXXDPz5s3LlltumQkTJiRJnnvuubRv3z7bbrttXn755cydOzczZ87M\ne++9ly222CI77LBDnn322cK5O+64Y0pLS9OwYcP885//TGVlZV544YW0b9++1toIAAAAAEDtadV0\ng1oP39h2DGqHlYAAAGpQ3759c8YZZ6R3794pLy/PKaeckq233jpnn312Lr/88my66abZZ599Ur9+\n/fTp0ye9e/dOZWVlTjnllKy22mo57LDDcvrpp+ewww5Lw4YN88c//jFJct555+W3v/1t5s+fn913\n3z3bbbddLbcUAAAAAIDvYlVaOce2Y1A7SiorKytruxI1ZVVcGt2S7yuX/l159O3KpX9XLv3777Pl\nRe2r7ne4Nr7vlZWVKSkpqdF71gX+v6Xm6Ouao69rjr6uGbYDW3X57wcA6gbjotpnXAS1Z+HKOYIz\nQPKvj4tsBwbUqHue+kf+MOzV2q4GAHXUvPkVOeOmCRn1pw9quyoAAAAA34uKioqcc845OfTQQ9On\nT59MmjRpseNPPfVUevTokUMPPTTDhw9f7jWTJk3KYYcdlt69e2fAgAGpqKgolPPFF19kn332ydy5\ncxcr/7333suOO+641PtA3VKdlXNsrQWsiBAQUKP+9uGM/G3SjMz+try2qwJAHTTzm/JM/eKbvDvl\n69quCgAAAMD34oknnkhZWVnuueeenHbaaRk0aFDhWHl5eS6++OLccsstGTJkSO65555Mnz69ymsu\nvvjinHzyyRk6dGgqKyvz5JNPJkmef/75HHXUUZk2bdpi9541a1YuueSSNGrUqOYaDPzLVhQA6vvI\n4YUg0JKBIAEhIBECAmrY3PL5SZLpX35byzUBoC4qm7fg78TCvxcAAAAAxe7ll19Ohw4dkiTbb799\n3nzzzcKx9957LxtuuGHWXHPNNGrUKDvuuGNeeumlKq956623stNOOyVJ9thjj4wbNy5JUq9evdx6\n661p3rx5oezKysqcffbZOfXUU9O4ceMaaSt1j2DIqmPRlYKWFQha9DXwwyUEBNSoOf/3UPezGd/U\nck0AqIvmls1f7H8BAAAAit2sWbNSWlpaeF2/fv3MmzevcKxp06aFY2ussUZmzZpV5TWVlZUpKSkp\nnDtz5swkyW677Za11lprsftec8016dixY9q2bbvS2kbdJhiy6lm4UtCSW4dVZysx4IdBCAioUWX/\nFwKaZiUgAJahbN6CfeznWAkIAAAAWEWUlpZm9uzZhdcVFRVp0KDBMo/Nnj07TZs2rfKaevXqLXZu\ns2bNqrzvQw89lPvvvz99+vTJtGnTctRRR32fzaIIrErBEEGmpS35ua4Kn3Ndsuh3zvePYiIEBNSY\nysrKzPm/lR2mzRACAmBpC8OiZUJAAAAAwCpihx12yHPPPZck+etf/5otttiicKx169aZNGlSvvzy\ny5SVleUvf/lL2rVrV+U1W265ZSZMmJAkee6559K+ffsq7/v4449nyJAhGTJkSNZZZ53ccsstK6uJ\n1GGrQjCkLq5oVJfqwvdv0e9cXfz+wfI0qO0KAD8c8+ZXpLJywb+FgABYlrn/F/6ZYzswAAAAYBWx\n9957509/+lN69eqVysrKXHTRRRk1alS++eabHHrooenXr1+OPvroVFZWpkePHmnZsuUyr0mS008/\nPWeffXYuv/zybLrpptlnn31quXWw8tW1FY0WhkLqUp2KyZSZk+t8vy35nfNZU0yEgIAas+gD3Wlf\nflOLNQGgriorX7Ad2Nyy+YvtcQ8AAABQrOrVq5eBAwcu9l7r1q0L/+7UqVM6deq0wmuSZJNNNsmd\nd95Z5b2eeuqp7/Q+FIvaDGAsGVqpK6GkYgjTLKlYAlTL+syhWNgODKgxcxfZ2uUzKwEBsAwLtwGr\nqKzMvPkVtVwbAACg2NimAQD4PlW1FVRth0KKdYuquhKgWp5i7VtYSAgIqDFzF1kJ6Iuvvs38Cg93\nAVjcooHRueX+TgAAANXngQ0AFJ+6/ne7roZW6mq9quNfqXNNfk+KuW8hEQICatCcRR7sVlQmX84s\nq8XaAFAXlc37/+DPnLJ5tVgTAACg2HhgAwDFpVgCvHVlbFHX+2llqY3vSV35zOFfIQQE1Jiy/1sJ\nqOT/Xn/+9ZzaqwwAddKiq8Yt+m8AAIDq8MAGAIpHsQZ4lwyjrCicUtXx7xJqWTIIUywBqu9DsX5P\noLYIAQE1ZuFKQOs0b5wk+UIICIAllM2zHRgAAPCv+yE8CAOAVUmxBTu+axinquPfNcSzZBCmqmDM\nsspbFcZHxfY9gdokBATUmLn/FwJa/0drJLESEABLK1sk+DPXdmAAAMB38EP6RTwAqy5/x+q26oZx\nqjp/Re+v6N7Le72ssZDxEfzwCAEBNWbhti7rrd0kSfL513NrszoA1EELA6PJ/68gBwAAUB22igCg\n2AlsFIcVhXGqOn/Jz/X7HrMsayz0746PivG7WIx1hu+TEBBQYxZu67JwJSDbgQGwpLLyRbcDEwIC\nAAC+GwEgAIqZQOv3qy6FQWoq4LWs786/EwAqtlDayqxzMfUDP2xCQECNWbitS/PS1bJG44a2AwNg\nKXMX2w5MCAgAAACAHxYBoO9HXQqwTJk5uSgDXur8/+rS9wlWRAgIqDELH+yu1rB+1mne2EpAACxl\nsZWAhIAAAAAAgH9BXQmwLBoeqe26/CvU+f/LrAvfJ6iOWg8Bvfbaa+nTp0+SZNKkSTnssMPSu3fv\nDBgwIBUVCwIDw4cPT/fu3XPIIYfk6aefTpLMmTMnJ5xwQnr37p1jjz02X3zxRa21AaiehQ9zV2tU\nP+us1Tjfzp2fb+aU13KtAKhLyubZDgwAAAAA+PfVZGCjqhViFoZHKH4CQBSLWg0B3XTTTTnrrLMy\nd+7cJMnFF1+ck08+OUOHDk1lZWWefPLJTJs2LUOGDMndd9+dm2++OZdffnnKysoybNiwbLHFFhk6\ndGi6deuW6667rjabAlTDwoe5qzWsl3WaN06SfP713NqsEgB1zKLbgc0RAgIAAAAA6rjqbBVlKymg\nptRqCGjDDTfM4MGDC6/feuut7LTTTkmSPfbYI+PGjcvrr7+edu3apVGjRmnatGk23HDDTJw4MS+/\n/HI6dOhQOHf8+PG10gag+hY+zF2tUYOss1aTJMnntgQDYBG2AwMAAAAAismKtoqqqa2kiilkVEx1\nhWLToDZvvs8++2Ty5P//D7yysjIlJSVJkjXWWCMzZ87MrFmz0rRp08I5a6yxRmb9L3t3Hxxlfe//\n/7W3iSYb1PNDsdJ0kGNOpTMKBGgdgVZ6KG3tt1UCCYmlMtV2yoinWFBwxpKjrQZbYVqx1vYUtQ0N\nSWytR2rHmSOooHhozCm10tJjOZ4oKB68oewGsve/P5Jr2Sx7n7322uw+HzOdJnvdfa4rca8Pe73y\nfvt8o1431s3k3HPPltPpKPBZWG/iRE/mlZA3rm/hREf+/6ILJ+itD05JkgIRrrFZuK7m4voiX48/\n/rh+85vfSJL8fr/+8pe/qKurS/fcc49sNpsuueQStbe3y263q7e3V93d3XI6nVq5cqWuuuoqDQ0N\n6dZbb9V7772nmpoa3XvvvTrvvPO0f/9+3X333XI4HJo7d65WrVpl8Znmxx8My+mwKRSOEgICAAAA\nAAAAMC5kCvgUIwC04unr0oaNjngPl0RLq2zGCiB/loaAEtntpwsTDQ4Oqq6uTrW1tRocHBz1usfj\nGfW6sW4mH3xwsvCDttjEiR4dO5Y5AIX8cH0LyzsYkCSd+PtJTTxnuBLQwFvHucYm4HfXXFzfsavk\nENXixYu1ePFiSdKdd96ppqYm/ehHP9Lq1av18Y9/XBs2bNDOnTs1ffp0dXZ26te//rX8fr/a2tp0\n5ZVXxlqi3nzzzXrqqaf04IMP6o477lB7e7u2bNmiD3/4w/r617+uP//5z5o2bZrFZ5u7QDAiz9lu\nfeD1x9pIAgAAAAAAAABSS1ZtKD70kxi8sTIQVKzKSEClsrQdWKJp06Zp3759kqTdu3dr1qxZuuyy\ny9Tf3y+/3y+v16tDhw6poaFBM2fO1PPPPx9bt7Gx0cqhA8iCPxCW22WX3WbTxHPPkiS993fagQGo\nTH/605/0t7/9TS0tLWNuierz+RQIBFRfXy+bzaa5c+dq7969Vp5eXqLRqALBsOpq3JJOt5EEAAAA\nAAAAgHI31hZZiQGgFU9fF9tnfPAmcZkVCACVDlqzlZ+SqgS0bt06ffvb39bmzZt18cUXa9GiRXI4\nHFq+fLna2toUjUZ1yy23qKqqSq2trVq3bp1aW1vlcrm0adMmq4cPIAN/MKxq13BLvnPrqmW32fT+\nCb/FowIAa/zkJz/RTTfdJGnsLVF9Pp9qa2tHrfvmm2+mPX4ubVKLVbnJHwwrKum8umq98Y5XkWjl\nVY2qtPO1Ete6eLjWxcO1Lg6uMwAAAACg0JK1yBpLtZ5k1XaMr6nEAwOt2cqT5SGgyZMnq7e3V5I0\nZcoUbdu27Yx1mpub1dzcPOq1s846S/fff39RxgigMPzBsKrcww+cHXabzvVU6b0TVAICUHlOnDih\n119/XZ/4xCckjb0larJ1M7VKzbZNajHb3/lOBSVJNklul0O+k4GKar1Hq8Hi4VoXD9e6eLjWxWHW\ndSZYBAAAAACVLTGYU4hwRrrtCHxAIhBWrkqqHRiA8uYPhFXlOl114h8mVOu4z69QOGLhqACg+Pr6\n+nTFFVfEvh9rS9Ta2lq5XC698cYbikajeuGFFzRr1ixLzm0s/IHh9l9VLruqXY7Y9wAAAAAAAABQ\n7hKr9lgVzqA9VGUhAFR+CAEBKJr4SkCS9A91VYpGpeM+WoIBqCyvv/66Jk8+PbFet26dtmzZopaW\nFgWDQS1atEgTJ06MtUS9/vrrR7VEfe2119Ta2qqenh6tWrVKknTnnXdq7dq1WrJkiaZNm6bLL7/c\nqtPLWyA0HPpxuxyqcjs0FCQEBAAAAAAAAKAyWRUAWvH0dQSBgHHM8nZgACpDKBxROBIdVQnovLpq\nSdJ7fx/S/zfhLKuGBgBFd+ONN476vhAtUadPnx5rsTpeBYLDleGqXA5VuRzyngxYPCIAAAAAAAAA\nKE9HvIfPCBoZFYhKSbJxAkiNSkAAimIo1uIlvhLQcAjo/RNUAgIADFeMkyS3yz5cCSgQVjQatXhU\nAAAAAAAAAMpNfKUbq6ve5Hv8sYw7U8WfUqkGRGUiIHeEgAAURWDkwe5xn1/P7T+ip1/6Xx0+5pMk\n9b92TM/tP6Ln9h+xcIQAAKsZ9wq306Fql0PRqBQMRSweFQAAAAAAAIByEh8ssSpkYhwv3+OPddxG\nxZ9kFXbSLSu2UhoLMF4QAgJQFEYlIJfz9NuO0zH8dYgHvAAASf6EdmDDr4WtHBIAAAAAAACAMhMf\nLClmyCRZ8Cff4xdi3Om2LaXQTSmNBRgPCAEBKArjIa4R/JEk50ggKBQmBAQAiKsENNIOTJL8AUJA\nAAAAAAAAAAorPlhSrABQquBPvsc3c9xWtt+i9RcwNoSAABSF8RB3VAjIYZNECAgAMMwfGr5XVLkc\nsRDQEJWAAAAAAAAAABRYsYMmhQr+FINVLdKsPjZQLggBASgK4yGuM1k7sHDUkjEBAEpLIGBUAopr\nB0YlIAAAykokEtGGDRvU0tKi5cuXa2BgYNTyXbt2qampSS0tLert7U27zcDAgFpbW9XW1qb29nZF\nIpFRx7nxxhu1ffv24p0cAAAAgHEhXdCkkOGTxH0lC/7Er5Pp2MUKxhSzRVopHRsoF4SAABRFINYO\nzBZ7zeWgHRgA4DR/aPh+4HbZVW2EgKgEBABAWXnmmWcUCATU09OjNWvWaOPGjbFlwWBQHR0devjh\nh9XZ2amenh69++67Kbfp6OjQ6tWr1dXVpWg0qp07d8b29YMf/EAnTpwo+vkBAAAAKH3JgiZHvIez\nqkKTbRAn232tePo69R/ty7h+sSvkWBnCIQAEjA0hIABFMTRSycEV3w7MORwICoYIAQEATgdG49uB\nUQkIAIDy0t/fr3nz5kmSpk+frldffTW27NChQ6qvr9eECRPkdrvV2Niovr6+lNscOHBAc+bMkSTN\nnz9fe/fulSQ9/fTTstlssW0AAAAAIFFiAGjF09dJUtoqNPFBnExhnGwq2lzkmayN8+7T+j1rMx67\n1Cvk0L4LKB2EgAAUhT9WCej0247dZpPNRiUgAMAw417hdp4OAQ1RCQgAgLLi8/lUW1sb+97hcCgU\nCv3WtfgAACAASURBVMWWeTye2LKamhr5fL6U20SjUdlstti6Xq9X//3f/63f/va3+uY3v1mkMwIA\nAAAw3sUHbNIFgIz1JGVVlSebwE7jpNkZj53L/sYqnzBPsasUAUiPEBCAojAqOcSHgGw2m5wOu0Lh\nqFXDAgCUkEDwdDuwKtqBAQBQlmprazU4OBj7PhKJyOl0Jl02ODgoj8eTchu73T5q3bq6Oj3xxBN6\n5513dP311+s3v/mNHn30Ue3evbsIZwYAAABAGr8VYdIFbOJDLkZYZyxVeRKvkRXVfZL9nPIN82S6\nHmP5nRivv0+AlQgBASiKWCWgkRZgBpfDTiUgAICk0e3Aql20AwMAoBzNnDkzFsrZv3+/GhoaYsum\nTp2qgYEBHT9+XIFAQC+//LJmzJiRcptp06Zp3759kqTdu3dr1qxZuu222/TYY4+ps7NT1157rVas\nWKH58+cX+SwBAABGi0Qi2rBhg1paWrR8+XINDAyMWr5r1y41NTWppaVFvb29abcZGBhQa2ur2tra\n1N7erkjk9Ofr77//vhYtWiS/3y9J8nq9+sY3vqEvf/nLamlp0R/+8IcinTEqVblWhEkWchlLAMjM\na5TNflONYSzhpmxaqOWqXH+fALMRAgJQFMZDXJdj9NuO02EjBAQAkBTXDsx1uh0YISAAAMrLwoUL\n5Xa7tWzZMnV0dOj222/Xjh071NPTI5fLpfXr1+uGG27QsmXL1NTUpAsuuCDpNpK0bt06bdmyRS0t\nLQoGg1q0aJHFZwcAAJDcM888o0AgoJ6eHq1Zs0YbN26MLQsGg+ro6NDDDz+szs5O9fT06N133025\nTUdHh1avXq2uri5Fo1Ht3LlTkrRnzx599atf1bFjx2L7fuSRR/SJT3xC27ZtU0dHh+66667injgq\nzlgr5JSyQp1TIa9RYjgm29BMujEU+mc31mBRuf4+AWZyWj0AAJUhVgkoMQTktOukP2TFkAAAJSYQ\nGg6FVrkctAMDAKBM2e32Mx4+TZ06Nfb1ggULtGDBgozbSNKUKVO0bdu2lMe6+eabxzhaAACAwujv\n79e8efMkSdOnT9err74aW3bo0CHV19drwoQJkqTGxkb19fVp//79Sbc5cOCA5syZI0maP3++Xnzx\nRS1cuFB2u12PPPKImpqaYvtesWKF3G63JCkcDquqqsr8k0XZMVpgZWs8BDZyPadCy/bY6cZpBH7i\nQzK5hGbMPv/4sY/lWOPh9wkoNVQCAlAUKUNADrtC4aii0agVwwIAlBB/MCybbbhKnFEJaIgQEAAA\nAAAAGOd8Pp9qa2tj3zscDoVCodgyj8cTW1ZTUyOfz5dym2g0KpvNFlvX6/VKkq688kqde+65o45b\nV1en6upqHTt2TLfeequ+9a1vmXaOKE/l2I7JqnPK9XjJxhn/darAT7rQULGU4+8NMJ4QAgJQFENG\nOzDnmSEgSQpHCAEBQKULBMNyuxyy2WyqdtEODAAAAAAAlIfa2loNDg7Gvo9EInI6nUmXDQ4OyuPx\npNzGbrePWreuri7tsf/6179qxYoVuuWWW2IVhIBslWM7pos8k7Vx3n1FPScjFNN/tC/r9ROv/ViC\nNcUO5ZTj7w0wnhACAlAUgZFKDg6HbdTrrpHvQ+FI0ccEACgt/mAk1gbM7SYEBAAAAAAAysPMmTO1\ne/duSdL+/fvV0NAQWzZ16lQNDAzo+PHjCgQCevnllzVjxoyU20ybNk379u2TJO3evVuzZs1Kedy/\n/e1v+uY3v6lNmzbpk5/8pFmnhzJnZZDDjNDKEe9hrd+z1rR9J2MEj1IdN7HajxHYib/2YwkF5RvK\nGcs1IgAEWIcQEICiGAqE5bDbZLeNDgEZlYCCIUJAAFDpAsGw3CMV42KVgGgHBgAAAAAAxrmFCxfK\n7XZr2bJl6ujo0O23364dO3aop6dHLpdL69ev1w033KBly5apqalJF1xwQdJtJGndunXasmWLWlpa\nFAwGtWjRopTH3bRpkwKBgO6++24tX75cK1euLNYpA2NmVvUas6rUZBpv46TZSY+buF268aULBWWS\nTwAo3fnQ6gsoXU6rBwCgMviD4VjgJ55z5GFvKEw7MACodIFgWOd4qiQNt4+02aQhQkAAAAAAAGCc\ns9vtuuuuu0a9NnXq1NjXCxYs0IIFCzJuI0lTpkzRtm3bUh5r165dsa9//OMf5ztkwHJmtpQya5+Z\nxpsq2JO4nVnBHkmjKgwlVhvKNK74fax4+rq8fz7pjgtg7KgEBKAo/MGwXM4kISCHEQKiEhAAVDp/\nMCK3c7gCkM1mU7XbQTswAAAAAAAAoEKNt6BIvuNNtV2hq+3EV/dJ/DqXcY0loGVWhScApxECAlAU\n/kBYToftjNeN1wgBAUBli0SiCoUjqnKdnp66XQ7agQEAAAAAAADISykETfIdgxlhmfjwjvG1pLyO\nM5bAk1kVngAMIwQEoChStQNzOWgHBgBQLOzjdjlir1W7qAQEAAAAAAAAIHdmVpzJdp9jGYNZYZnE\ntmNWhHIIAAHmIgQEwHShcEShcFTONO3AgiEqAQGoHD/5yU/U0tKixYsX67HHHtPAwIBaW1vV1tam\n9vZ2RSLD74m9vb1avHixmpub9eyzz0qShoaGdPPNN6utrU1f+9rX9P7770uS9u/fr6VLl2rZsmV6\n4IEHLDu3fAVG7gPxIaAqt0NDVAICAAAAAAAAkCOzwi25BHvGOoZct4sfUy7BI0I5QHkhBATAdIGR\nB7jJKgEZwSDagQGoFPv27dMf/vAHbd++XZ2dnTp69Kg6Ojq0evVqdXV1KRqNaufOnTp27Jg6OzvV\n3d2trVu3avPmzQoEAtq+fbsaGhrU1dWla665Rg8++KAkqb29XZs2bdL27dv1xz/+UX/+858tPtPc\nGPeKqrjAaJXLoUAgrGiUanEAAAAAAAAAcmNGuCXXYI+xntmtyeLDSWZWQQJQ+pxWDwBA+fMHhwM+\nLoftjGXOkdcIAQGoFC+88IIaGhp00003yefz6bbbblNvb6/mzJkjSZo/f75efPFF2e12zZgxQ263\nW263W/X19Tp48KD6+/t14403xtZ98MEH5fP5FAgEVF9fL0maO3eu9u7dq2nTpqUcx7nnni2n05Fy\nebyJEz1jPOvMToaGgz4T6qpjx/PUVikqqe6cs1XtroxpazGuNYZxrYuHa108XOvi4DoDAAAAQGXL\np0LPiqevM7XtVmI4aeO8+0qmws8R7+G8rlmpjB8YbyrjaQoASw0FQpJSVAJyGJWAqPIAoDJ88MEH\neuutt/TQQw/p8OHDWrlypaLRqGy24VBkTU2NvF6vfD6fPJ7TDxlramrk8/lGvR6/bm1t7ah133zz\nzQzjOJnVeCdO9OjYMW+up5m15/YfkSS9e/yUJOl/3/q7HvuPg5Kk90bGeOStv6uuxm3aGEqF2dca\np3Gti4drXTxc6+Iw6zoTLAIAAACA0lSIMIpZrcmSHUcaHvP6PWu1cd59apw029RjZpJPAKoYoSmg\nnNEODIDpAiOVgJKFgFxGCChEJSAAleGcc87R3Llz5Xa7dfHFF6uqqkpe7+mHiYODg6qrq1Ntba0G\nBwdHve7xeEa9nm7durq64p1UARhh0Ph7hfG1f6RVGAAAAAAAAAAUSyHbahUzzHKRZ7I2zrtP6/es\ntbwlWD4BqGKFpoByRQgIgOlilYCcSSoBOYcrXwRpBwagQjQ2NmrPnj2KRqN65513dOrUKV1xxRXa\nt2+fJGn37t2aNWuWLrvsMvX398vv98vr9erQoUNqaGjQzJkz9fzzz8fWbWxsVG1trVwul9544w1F\no1G98MILmjVrlpWnmTOjLaQzrnWkcd/wBwgBAQAAAAAAANmyOviRq1Idb75hlMTzseL8GifNPmPs\nZowjm33mE+YhAATkjxAQANMZFRxccQ92DafbgRECAlAZrrrqKl166aVasmSJVq5cqQ0bNmjdunXa\nsmWLWlpaFAwGtWjRIk2cOFHLly9XW1ubrr/+et1yyy2qqqpSa2urXnvtNbW2tqqnp0erVq2SJN15\n551au3atlixZomnTpunyyy+3+ExzE4qkrgQ0RCUgAAAAAAAAICuFrF5TDONtvJkkno+V55cYACr0\nOMrtZweUC6fVAwBQ/vxp2oGdDgFFizomALDSbbfddsZr27ZtO+O15uZmNTc3j3rtrLPO0v3333/G\nutOnT1dvb2/hBllkRlvI+HuFER6lEhAAAAAAAACQnfHWSqmUx2uEXHIZX+L5mHl+R7yH8x5XvvvJ\ndp8ArEMlIACmi7UDSxsCohIQAFSyUGT4PuBI1g6MSkAAAAAAAABA1sZbKKNUx5tvyCVxfbMCQIkV\nh3IdV7L95DoGY59UAwJKR8mFgILBoNasWaNly5apra1Nhw4d0sDAgFpbW9XW1qb29nZFRh4S9fb2\navHixWpubtazzz5r8cgBpBIYqQTkciYLAQ0/7DUqQAAAKlN4pCKcK0k7MCoBAQAAAAAAALCC1QGl\nVOGa+IDSWII8uQSd+o/2jRqXcUzaggGlpeRCQM8//7xCoZC6u7t100036Qc/+IE6Ojq0evVqdXV1\nKRqNaufOnTp27Jg6OzvV3d2trVu3avPmzQoEAlYPH0ASpysB2c5YZrPZ5HTYqAQEABXOuA/EVwIy\nAkFDVAICAAAAAAAAUGEyVfspVMuxbANAi5/8QiwIFH9M2oIBpaXkQkBTpkxROBxWJBKRz+eT0+nU\ngQMHNGfOHEnS/PnztXfvXr3yyiuaMWOG3G63PB6P6uvrdfDgQYtHDyAZ/0gloGTtwIzXgyMVIAAA\nlSk0ch+Iv1fE2oFRCQgAAAAATMdf7wMAUFhjvbfmUu3H7ABO46TZevyLv1XjpNmSRrcCK8bxAWTP\nafUAEp199tk6cuSIPve5z+mDDz7QQw89pL6+Ptlsw38VXlNTI6/XK5/PJ4/HE9uupqZGPp8v7b7P\nPfdsOZ0OU8dvhYkTPZlXQt64vmNnH3mIO8FTLU9tdex142u3y6FIJCpPbTXXu4C4lubi+gKFZVQC\nGhUCGqkK5KcSEAAAAACYyniwyF/xAwCQv/hgTKHurYWq9lMI8QEg5g1A6Sq5ENCjjz6quXPnas2a\nNXr77bd1/fXXKxgMxpYPDg6qrq5OtbW1GhwcHPV6fCgomQ8+OGnauK0ycaJHx455rR5G2eL6Fsbx\nvw9JkgKBkLy+4a89tdWxr+02aSgUltc3xPUuEH53zcX1HTtCVEh0OgR0ZjswKgEBAAAAgLlK4cEi\nAADZSKxAUyrHSwzGmHFvzXYcZl8f5g1AaSu5dmB1dXWxMM+ECRMUCoU0bdo07du3T5K0e/duzZo1\nS5dddpn6+/vl9/vl9Xp16NAhNTQ0WDl0ACkYFRziH+zGczrsCoUixRwSAKDEhEfagTns8ZWARkJA\nVAICAAAAUOLKoZUWD/IAAKUuU0ssK4+XLBgTXxUo2b7zHVOqfRTz+hR63pDtmMthzgWYreRCQCtW\nrNCBAwfU1tam66+/Xrfccos2bNigLVu2qKWlRcFgUIsWLdLEiRO1fPnyUetVVVVZPXwASRgVHOJb\nvMRzOu2KRKVwJFrMYQEASkisEpDzdGDUOdJOcohKQAAAAABKWLEfSAIAUKmKXYEm1+MlWy/ZPCHf\nuUP8dsn2MV4r9GR7PfK5bszPUIlKrh1YTU2NfvjDH57x+rZt2854rbm5Wc3NzcUYFoAxOF0JKHkI\nyGj3YjwABgBUntBIJSAnlYAAAAAAjEGxW4RI4/eBGwAA45EV9/l4uc41UlUIymfuEL/dEe/hpPsY\n63izUeh9Zns9cr1uiS3a4l9n3oZyVnKVgACUn6FAWE6HXXZ7qnZgw68TAgKAyhUKR2S32UbdK1wj\n9wdCQAAAAEDlyeevtq2syMODJAAAyl/iXGMsc45Mc4dU+zYCQCuevi7jMcYyN0q1jVnzrVyqLWV7\n7GShISo4ohIQAgJgukAwrGq3I+Vyo9JDKEQICAAqVSgciYVCDXa7TTbb6baSAAAAACpDvg9nqMgD\nAEB64yn4UIpjTazEY2YLq3TbmFU5J93xja+tnm/lej2TVUpivohyRwgIgOmGAmFVuVK/3cRCQCOt\nYAAAlSccicqR0DbSZrPJ6bBriBAQAAAAUFHG8nCGBzoAACQ3niqglPJYjblGqvlK4pjzmddks00u\nlXNylXj8xJ+HlfOtQoR4mC+i3BECAmA6fzCsKrcz5XKXc/itKEg7MACoWMkqAUmSy2GXPxiyYEQA\nAAAArMTDGQAACms8VUAp1FjNDhElCwAlCy+Nx2Bz/PGzDTwVi9XXBih1hIAAmM4fzFQJaPihb4gQ\nEABUrFA4GqsMF8/psMkf5P4AAAAAAAAAjNV4Ck8UIgBU7GpCuYaXSqHSUb5ttUq5WhNQ6VKX5gCA\nAohEogqGIqpyOVKuQzswAKhs0Wg0ZSUgp9OuwVNUAgIAoJT09fWlXT579uwijQQAznTEe3hcPeAE\nMH4wBwLGF6sqH+USAFrx9HUZx5hpbpPL3Cdx3f6jfVq/Z21e12k8VZYCKg0hIACm8gfDkpRdCChE\npQcAqESRqBSNKmkloOF2YGFFolHZbWeGhAAAQPHdf//9kqTjx4/rjTfe0MyZM2W32/WHP/xBDQ0N\n6u7utniEACpVtg/TACAfzIGA8aeU5wPZhGgyzW2yWX6RZ3KsWk/8uke8h7V+z1ptnHdf3tepVK8v\noXBUOtqBATBVLATkThMCchqVgAgBAUAlCo+8/zuStgMbfi1ISzAAAEpGZ2enOjs7NWnSJD355JN6\n5JFHtHXrVu3YsUM1NTVWDw9ABeMv0gGYiTkQgELLNGfJNLdJt9wICPUf7dOKp6+TpFHrGts2Tiqv\nKmbl2qas3M4H5iIEBMBU/sBwCKg6TQjINdL+JUgICAAqkhECTdUOTJKGRkKlAACgdLz11lv6yEc+\nEvv+Qx/6kN566y0LRwQApfsX6QDKB3MgAMWUTVAo1etGyMcI/ySua8a8yeqwipWhcLPOvVyDTTAP\nISAApjIqAbmzaQcWjhZlTACA0mK8/ydrB2YEg/yBUFHHBAAAMvvYxz6mdevW6bnnntOuXbu0Zs0a\nzZo1y+phAQAAmIo5EIBCMCPQ0X+0b9T3RtuvbAIxhRiPWWGVXPdnVQDIrKAO1S6RK0JAAEw1NFIJ\nqCqbEFCISkAAUIlilYDsSSoBjdwj/LQDAwCg5Hz3u9/VP/3TP6m7u1u9vb2aPn262tvbrR4WAACA\nqZgDAZUnMdgx1qBHusBIvvvuP9qna//96lFBIKMVWKZ9xrcOy3c8Rtio0GGV8VIFx+ygDgEg5MJp\n9QAAlDejElC6dmCnKwHxgBdAZbj22mtVW1srSZo8ebK+8Y1vaP369bLZbLrkkkvU3t4uu92u3t5e\ndXd3y+l0auXKlbrqqqs0NDSkW2+9Ve+9955qamp077336rzzztP+/ft19913y+FwaO7cuVq1apXF\nZ5m9dJWAXEYIKEA7MAAASo3b7dbixYv1uc99TtFoVOFwWH19fbriiiusHhoAAIBp8pkDRSIR/eu/\n/qv++te/yu1267vf/e6olmK7du3Sj370IzmdTjU1Nam5uTnlNgMDA0k/R5Kk999/X62trXryySdV\nVVWV8nMkANkzQihGwCPx+3ykCowc8R5W21NL1XX1Y0mXpTvepJoLNbm2XpNqLoytv37PWm2cd19W\nLcU2zrtP6/esHXWekrI610Jck3RjGy9VcMbDGFEZqAQEwFRGJaBqd+rModM5XPmBEBCASuD3+xWN\nRtXZ2anOzk51dHSoo6NDq1evVldXl6LRqHbu3Kljx46ps7NT3d3d2rp1qzZv3qxAIKDt27eroaFB\nXV1duuaaa/Tggw9Kktrb27Vp0yZt375df/zjH/XnP//Z4jPNXqwSkCNJJSDn8HR1KEg7MAAASs2m\nTZv06U9/Wp/97GfV1tamz3zmM9q8ebPVwwIAADBVPnOgZ555RoFAQD09PVqzZo02btwYWxYMBtXR\n0aGHH35YnZ2d6unp0bvvvptym2SfI0nSnj179NWvflXHjh2L7TvV50gAspcYQsk1lJKqgk0ugZFs\nKgdd5Jmsx774xBnjbpw0O6tjNE6afUbQSdKoc013LlTBAUoHISAAphryDz+0TVcJyKjyEBypBAEA\n5ezgwYM6deqUvvrVr+orX/mK9u/frwMHDmjOnDmSpPnz52vv3r165ZVXNGPGDLndbnk8HtXX1+vg\nwYPq7+/XvHnzYuu+9NJL8vl8CgQCqq+vl81m09y5c7V3714rTzMnp0NAVAICAGA8eeqpp/T888/r\n85//vH7xi1/okUce4S/LARRMqbd8AFC58pkDxX+eM336dL366quxZYcOHVJ9fb0mTJggt9utxsZG\n9fX1pdwm2edIkmS32/XII4/onHPOSXpc43MkALlLDKHkEgDKpZXVRZ7JSasApasclLj/+O9zDc8k\nCzoZoaBM55KpUhBKHz+n8kE7MACmGoprBxY8lbzSD+3AAFSS6upq3XDDDVq6dKn+93//V1/72tcU\njUZlsw1XwampqZHX65XP55PH44ltV1NTI5/PN+r1+HWN9mLG62+++WbacZx77tlyOlMHNONNnOjJ\nvFKePLXVcr1/SpJUc7ZbntrqUctra9ySJHe129RxlIpKOMdSwbUuHq518XCti4PrfNr555+v2tpa\nXXLJJTp48KA+85nP6Pvf/77VwwJQBsxsKYHUMrUZATAsnzlQ4mc3DodDoVBITqcz7WdAybZJ9jmS\nJF155ZVJj5v4ORKAwsl078ynQk78usb+Ux1nrFWKshE/L0u371RjTDevY+5ROph/lxdCQABMZbQD\nq3I75D0VTLqO3W6T3WZTKEQICED5mzJlij7ykY/IZrNpypQpOuecc3TgwIHY8sHBQdXV1am2tlaD\ng4OjXvd4PKNeT7duXV1d2nF88MHJrMY7caJHx46Z9wGR1zck30m/JCkUCsvrGxq1PBQavo+8+57P\n1HGUArOvNU7jWhcP17p4uNbFYdZ1Hq/BotraWj3xxBP62Mc+pm3btun888/XiRMnrB4WgDJgdksJ\nnIkHP0D28pkDJX52E4lE5HQ6ky5L9hlQ/DZ2u33Uuuk+A0r2ORKAwjjiPay2p5YmrdwTL9/7qnFv\n3jjvPn3ruX9JeZxcQkO5HtuYF2SaH6SbR2SqYsTcozQw/y4vtAMDYKqhgNEOLH3m0Om0UQkIQEX4\n1a9+Fevh/s4778jn8+nKK6/Uvn37JEm7d+/WrFmzdNlll6m/v19+v19er1eHDh1SQ0ODZs6cqeef\nfz62bmNjo2pra+VyufTGG28oGo3qhRde0KxZsyw7x1yFQsPtINO1AzMqywEAgNJx99136/3339fH\nP/5xXXTRRdqwYYNWr16ddptIJKINGzaopaVFy5cv18DAwKjlu3btUlNTk1paWtTb25t2m4GBAbW2\ntqqtrU3t7e2KRIb/TfnLX/5STU1NWrJkiX73u9+ZcOYAioEHEKmZ0aqBBz9A9vKZA82cOVO7d++W\nJO3fv18NDQ2xZVOnTtXAwICOHz+uQCCgl19+WTNmzEi5zbRp0874HCndcRM/RwIwPhj35kk1F2a1\nvhGq6T/al3ULsnStvRIrDGUz1lTrZVPFCNbjZ1E+qAQEwFT+kUpA1a70LWecDrtC4WgxhgQAllqy\nZIluv/12tba2ymaz6Z577tG5556rb3/729q8ebMuvvhiLVq0SA6HQ8uXL1dbW5ui0ahuueUWVVVV\nqbW1VevWrVNra6tcLpc2bdokSbrzzju1du1ahcNhzZ07V5dffrnFZ5q90MgDO6fDdsYyIxhk3E8A\nAEDpuOCCC7Rs2TIdPHhQt912m4aGhnT22Wen3eaZZ55RIBBQT0+P9u/fr40bN+rHP/6xJCkYDKqj\no0O/+tWvdNZZZ6m1tVULFizQf/3XfyXdpqOjQ6tXr9bHP/5xbdiwQTt37lRjY6O2b9+u3/zmN/L7\n/br66qv1uc99LtYyAwDGOzP/ap4HP0B28pkDLVy4UC+++KKWLVumaDSqe+65Rzt27NDJkyfV0tKi\n9evX64YbblA0GlVTU5MuuOCCpNtI0rp16874HCmVVJ8jARi7izyTU1bnMcI12dxb01XtMV7PVG3I\nWDebyj3x1YIKOacw9pFLFSLmHoA5CAEBMJXRDqzanT4E5HLY5afKA4AK4Ha7k37gsm3btjNea25u\nVnNz86jXzjrrLN1///1nrDt9+vTYX8uPN0YINFklIKdz+IEd9wgAAErPSy+9pA0bNigcDqu7u1tf\n+tKX9P3vf19z585NuU1/f7/mzZsnaXj+8uqrr8aWHTp0SPX19ZowYYIkqbGxUX19fdq/f3/SbQ4c\nOKA5c+ZIkubPn68XX3xRCxcu1BNPPCGn06kjR46oqqqKABCAssJfzQPWy2cOZLfbddddd416berU\nqbGvFyxYoAULFmTcRhpuNZ/scyTDrl27Yl+n+hwJQGGkCgC1PbVU0unwTqpgTLZBnFxDNamOmW2b\nr3wDQoUMFo21pRlQyWgHBsBUsRBQVYZ2YA6bgiHagQFAJQqPtIN0UAkIAIBxZfPmzerq6lJdXZ3O\nP/98dXZ26nvf+17abXw+n2pra2PfOxwOhUKh2DKPxxNbVlNTI5/Pl3KbaDQaC/jU1NTI6/VKkpxO\np7Zt26aWlhZ98YtfLNj5AkCp4IEYYK185kAAKodRISg+AJSqPZdZ4d5Ux8z2ePmOq1Dnk+6aobj4\nGYxPhIAAmMofGP4wtyqLdmDhSFSRKC3BAKDShCPD7/0Oe5JKQEYIiEpAAACUnEgkookTJ8a+/8d/\n/MeM29TW1mpwcHDUPpxOZ9Jlg4OD8ng8Kbexx80dBgcHVVdXF/v+y1/+svbs2aO+vj7953/+Z34n\nCAAAkEQ+cyAAleUiz+RRVXnSBWPyDcykC2ekO2Z82650QZv49XIJghSqtRiVD61HGGv8IgQEEtJz\nJgAAIABJREFUwFRDgbAcdptczvRvN86R5QEe8gJAxQmHjRDQmZWAXCMhoCEqAQEAUHImTZqkZ599\nVjabTSdOnNCPf/xjfehDH0q7zcyZM7V7925J0v79+9XQ0BBbNnXqVA0MDOj48eMKBAJ6+eWXNWPG\njJTbTJs2Tfv27ZMk7d69W7NmzdL//M//aNWqVYpGo3K5XHK73aPCQgAAAGOVzxwIgHkKHVAwI/Aw\nljBLsvGMJZxhbJNN0MZobdb21NKiB0EIAFmPMNb4xacgAEw1FAyr2p2+CpBEuxcAqGThSJp2YE4q\nAQEAUKruuusu7dixQ2+//bYWLlyov/zlL7rrrrvSbrNw4UK53W4tW7ZMHR0duv3227Vjxw719PTI\n5XJp/fr1uuGGG7Rs2TI1NTXpggsuSLqNJK1bt05btmxRS0uLgsGgFi1apIsvvlgf/ehH1dLSomXL\nlunyyy/XnDlzinE5AABAhchnDgTAHIWuVFJqlU+MEE6ubb1SnUfi6/Hbp2pXFt/aDJWHn/v45LR6\nAADK25A/2xDQ8INfHvICQOU53Q7szBCQw26Tw27j/gAAQAn6xS9+oc2bN+e0jd1uP+Mh2dSpU2Nf\nL1iwQAsWLMi4jSRNmTJF27ZtO+P1VatWadWqVTmNCwAAIFv5zIEAmKOQlUqOeA9bVvnEOHYu0q2f\n7jySvW6Eg5ItK+S1yOc8AeSOSkAATDUUCKnanTlv6KTdCwBUrNMhoORT0yqXg0pxAACUoGeffVbR\naNTqYQAAABQVcyCgtBSi1VZ8hRwrAkDGsZNV48m3Co+xTeI5plo3VTioUEqtyhJQzqgEBMBU/izb\ngblGQkCBYMTsIQEASkw4nLoSkCRVuR2ERAEAKEHnnHOOPvvZz+pjH/uYqqqqYq93dHRYOCoAAABz\nMQcCykNi9RsrKgBJpwM4kkaNJ358+cr2HJOFn9JVB8qHldcYqDSEgACYJhSOKBSOqiqbdmDOkUpA\nwZDZwwIAlJhwJCKbTbKnCAFVux3ynQoWeVQAACCTa6+91uohAACQFdqPoJCYAwHlITGUYvZ9IlXQ\nJv7YiePJFJrJdH9LdY7x2xlhn43z7lPjpNlJty3UfZR7MVActAMDYBqjakN27cCGH/z6A1QCAoBK\nE45EU1YBkiS3yyF/kEpAAACUmmuvvVYf/ehHdfz4cXm9Xl122WU8FAMAlBzaj6DQmAMBubPyPTjd\nseNDKfHrFXq8ye5FR7yH1fbUUrU9tXRUGCh+nVRVe1LtM5lUFX7ij7lx3n1av2et+o/2nbFtqdxH\nC92aDChnhIAAmGYoMFzVp8qVRSWgWDswHvICQKUZDgGlnpZWuxwKBCOKRKJFHBUAAMjk4Ycf1je/\n+U393//9nw4fPqyVK1fq17/+tdXDAgBgFNqPoNCYAwG5sTJEku2x+4/2xcI4idsUYtzxLb/iwzdd\nVz+mrqsfO6MqT6pjxi/P9/6WbLvGSbNjQaDEY5fCfbSQv0OlEmoqJVyL8kM7MACmiVUCqso+BDRE\nCAgAKk44nL4SkNFW0h8M66wqpq8AAJSKnp4ePf7446qtrZUk3XTTTWptbVVTU5PFIwMAYDQCQCgk\n5kBAbqwMkWTbUutbz/2LguHgGdsYgZFCjb/tqaWSFAv+JO4z03iNqj1jbWGWrDpQ46TZlod90inU\n2Eoh1FRKCv07jtJAJSAApjndDixzCMjlHH478gcIAQFApQlHonI40oSARirKUS0OAIDSMmHCBDmd\npwO6Z599tmpqaiwcEQAAgPmYAwG5szJckOnYRkWex774xBnhmkIGRpJV/sl1vEe8h5NW68nXEe9h\n9R/t04qnr1P/0b6U7cesrJxjHL+QCLucRiiqPPGn1ABMYwR6qrNqBzb88NfPA14AqDjhSERVrtTT\nUqMS0FAwrAnFGhQAAMjowx/+sFpaWnT11VfL6XTqP/7jP1RbW6sHHnhAkrRq1SqLRwgAxWO05QBQ\n/pgDAYVTKvfPXEM5+Y57rOeaKbCRy7iOeA/HKhPdPucOfeu5f0kaUMo3JFKony0hFfNxbcsPlYAA\nmGYoEJIkVbsz5w2NdmCEgACg8kQi6duBGWFSqsUBAFBapkyZooULFyoQCOjkyZO68sor1djYaPWw\nUEGs+mtkIJHVfyEPoLiYAwGFMV7vn+nGbfa5pDtmrtczvjLRxLPPz7huujEkG1Mhf7Zmh1TG2+8g\nkElJVgL6yU9+ol27dikYDKq1tVVz5szR+vXrZbPZdMkll6i9vV12u129vb3q7u6W0+nUypUrddVV\nV1k9dABxcmkHFgsB8YAXACpKNBpVOByV3Z46m25UAiIoCgBAaVm1apUCgYDcbrcGBgb0+uuva/78\n+Wnv60ChGA8W+KtglAL+Qh2oLMyBgMIo5funUcUmVTWbZOM2e34aX7nHqNiTeMxcj23sY/2etdr8\nqfszbpvtOZbyzzYR/65AOSq5Gcm+ffv0hz/8Qdu3b1dnZ6eOHj2qjo4OrV69Wl1dXYpGo9q5c6eO\nHTumzs5OdXd3a+vWrdq8ebMCgYDVwwcQxwgBVWURAnJRCQgAKlI0KkUlORypKwFVUQkIAICS9KMf\n/Uh33HGH3nrrLV133XX6+c9/rvb2dquHhQoxnh4soDLwuwhUDuZAQOGU4v3TCIX0H+07o5qNsSwZ\nY35qlqODb8cq91zkmaz+o32j5sSZ2m+lqnZj7KNx0uyMY8imHVn8uuMB/65AOSq5ENALL7yghoYG\n3XTTTfrGN76hT33qUzpw4IDmzJkjSZo/f7727t2rV155RTNmzJDb7ZbH41F9fb0OHjxo8egBxMup\nHZhz+OEvD3gBoLKEI1FJStsOzAiTDnGPAACgpOzcuVPf/e539dvf/lZf/OIX9cgjj+jAgQNWDwsV\nhA/qUUpoIwFUDuZAQHmLD8UkhkOyCYyMtQ1Wsm37j/Zp8ZNf0NHBt2MBoMVPfiEWBMrUfivT8lza\nfaULAI3H9m4S/65A+Sm5dmAffPCB3nrrLT300EM6fPiwVq5cqWg0Kptt+MFQTU2NvF6vfD6fPB5P\nbLuamhr5fL60+z733LPldGauSDLeTJzoybwS8sb1zZ/DNfwWM+l8jyZO9MhTWz1qefz31aGIJClq\ns3HNC4TraC6uL1AY4cjw+3+6EFC1i3ZgAACUokgkIrfbrWeffVarV69WJBLRqVOnrB4WABQdbSSA\nysIcCChfRjUd436e7L5uZhusVHOKxkmz9fgXf6tJNRfqiPdw7Hujek+m42Y7rsTjZ6oulM8xAJiv\n5EJA55xzji6++GK53W5dfPHFqqqq0tGjR2PLBwcHVVdXp9raWg0ODo56PT4UlMwHH5w0bdxWmTjR\no2PHvFYPo2xxfcfm/ZH/5oZO+nXsmFde31Bsmae2etT30ehwJQjvoJ9rXgD87pqL6zt2hKhgCIez\nrwRECAgAgNJyxRVX6Atf+IKqq6s1e/ZsffnLX9aCBQusHhYAFB0PvYDKwhyo/OUSfED5yDfUm/j7\nMpbfnXRzikk1F6rtqaWSpK6rH9OkmgvP2DbTvrM9vpTf9eC/G6A0lFw7sMbGRu3Zs0fRaFTvvPOO\nTp06pSuuuEL79u2TJO3evVuzZs3SZZddpv7+fvn9fnm9Xh06dEgNDQ0Wjx5APKNtS7U7cwUum80m\np8NGOzAAqDCxdmCO1NPSKqMSEPcIAABKyrp16/TTn/5UPT09stvt+va3v61bb71VktTT02Px6ACg\nuHjoBVQO5kDlbTy3NMLY5BPqzfb3JZffp3TVfLqufkxdVz8maextx9JZ8fR1kkTIGRinSi4EdNVV\nV+nSSy/VkiVLtHLlSm3YsEHr1q3Tli1b1NLSomAwqEWLFmnixIlavny52tradP311+uWW25RVVWV\n1cMHEGdopGJDlTu7omMup50qDwBQYWIhoHTtwEbCpEOEgAAAKDkf+tCH5HAM36svvfTS2Ovd3d1W\nDQkAAMB0zIHKF9Xdxp9CBmFy/blf5JmsjfPuS7tdIYNlRquy+Io9yY6XjVTrxf83wH8HwPhUciEg\nSbrtttv061//Wo8//rjmzZunKVOmaNu2berp6VFHR0dsYtXc3Bxbb9GiRRaPGkCioUBIUnaVgCTJ\n6bDHgkMAUM7ee+89ffKTn9ShQ4c0MDCg1tZWtbW1qb29XZFIRJLU29urxYsXq7m5Wc8++6wkaWho\nSDfffLPa2tr0ta99Te+//74kaf/+/Vq6dKmWLVumBx54wLLzykd45HzThYDcLtqBAQAw3hgtnwFg\nvKmUyg+Vcp5AsTEHKg8EH8YPqys3HfEe1vo9a9MefyzBskznlXju6a5HtuvlOqZc98EcBDBfSYaA\nAJSHoUBYNpvkdmb3VuNy2jXk5wEvgPIWDAa1YcMGVVdXS5I6Ojq0evVqdXV1KRqNaufOnTp27Jg6\nOzvV3d2trVu3avPmzQoEAtq+fbsaGhrU1dWla665Rg8++KAkqb29XZs2bdL27dv1xz/+UX/+85+t\nPMWchMPZVwIiBAQAwPhhs6W+twNAMeT7UGs8tIAZ6/jGy3kC4xFzIKC4rK7clOz4ye6v+QaA0t2v\nkx071fVI3Fe665YpSBS/LNc5BXMQoDgIAQEwjT8QVrXbkfU/fNxOh/zBsELhiMkjAwDr3HvvvVq2\nbJnOP/98SdKBAwc0Z84cSdL8+fO1d+9evfLKK5oxY4bcbrc8Ho/q6+t18OBB9ff3a968ebF1X3rp\nJfl8PgUCAdXX18tms2nu3Lnau3evZeeXq1g7MEfqaWmVUQmIdmAAAAAAspDvAyarHyRmoxAPz8bD\neQIAkC2r72eJAaB09+lc7t+JrcayCRcd8R4+Y33jtWSBoWRjSzdPSFyW65yCOQhQHE6rBwCgfA0F\nQqp2Z/82U+UafgA8OBTShBq3WcMCAMs8/vjjOu+88zRv3jz99Kc/lTRcJtoIS9bU1Mjr9crn88nj\n8cS2q6mpkc/nG/V6/Lq1tbWj1n3zzTczjuXcc8+W05ldu8aJEz2ZV8qTe+Q+cXa1S57a6qTrXHTh\nBElS1GYzdSyloNzPr5RwrYuHa108XOvi4DoDQOkbywOmUn8oVaiHZ6V+ngCA8hUfVCmH48QfK5sK\nO9nex41WY49+9peSlHFbY/8b592nSTUXxr429pHumIljS7du4rJcr3GpzkGK+fsCmI0QEADT+ANh\nnV3tynp990ilh5NDQUJAAMrSr3/9a9lsNr300kv6y1/+onXr1un999+PLR8cHFRdXZ1qa2s1ODg4\n6nWPxzPq9XTr1tXVZRzLBx+czGrMEyd6dOyYN9tTzJnvZECSFAqF5fUNJV3He+KUJOmEz2/qWKxm\n9rXGaVzr4uFaFw/XujjMus7lGCyKDzQDgBXK+SFOOZ8bMN4xBwLSyzUIk7htttuM5Ti5yhSgySYg\nlEzi+kYYKN368aEfY9t0oaSLPJNTVgqqJMX8fQGKgXZgAEwzNNIOLFtGCGjwVMisIQGApX75y19q\n27Zt6uzs1KWXXqp7771X8+fP1759+yRJu3fv1qxZs3TZZZepv79ffr9fXq9Xhw4dUkNDg2bOnKnn\nn38+tm5jY6Nqa2vlcrn0xhtvKBqN6oUXXtCsWbOsPM2chEdaQDrsqVtHOh12OR02+YO0AwMAoJSc\nOnVK3/ve97R48WJ96Utf0j333KOTJ4eDxr/4xS8sHh0AAIA5mAMB+cs2bJLY+qr/aF9O7TCLGWrJ\nFLRpe2qpjngPF6TSjLGvVBonzR4VRkp1TCP0En9dC3mtxtK21AqVHoJC+SEEBMAU4UhEgVAkpxDQ\n6XZgQbOGBQAlZ926ddqyZYtaWloUDAa1aNEiTZw4UcuXL1dbW5uuv/563XLLLaqqqlJra6tee+01\ntba2qqenR6tWrZIk3XnnnVq7dq2WLFmiadOm6fLLL7f4rLIXjkQlSQ5H6hCQJFW5HISAAAAoMXfd\ndZeGhoZ0zz336N5771UoFFJ7e7vVwwKAcWG8PRwDcBpzIGBssgkAxQd+jLZYG+fdl1NIw6xAR7J7\neKZjHR18O2WIKdWc4Ij3sJY+eU3OcwZjLPEBpMTjGKGX+NBQOrmMIdfAVqkgAIRyQjswAKbwB4Yr\nO1S7s3+biVUCIgQEoAJ0dnbGvt62bdsZy5ubm9Xc3DzqtbPOOkv333//GetOnz5dvb29hR9kEcRC\nQPb02fQqt0P+ACEgAABKyYEDB/Tkk0/Gvt+wYYM+//nPWzgiABgf8m05Uei/0geQH+ZAgLkSq7KU\nUpWWXO/hF3kmq+vqx1KeQ7L9Gff7o4Nv603vgI4Ovh2r7GPsayzjNsYVf33TbScNVyDK5tj5BrYA\nFBaVgACYYigw3NIrt0pARgiIdmAAUClOh4AyVwIaIgQEAEBJiUajOnHiROz7EydOyOHI/t+AAFCp\n8nmYmVgVAYB1mAMB5ku8R5ZKoCTTPTzXKkGJ+4u/30+quVD1dR/RpJoLU+7riPew+o/2pdy3Edwx\njiPpjCpLqc7DGMvRwbdTjj/ZMTfOu0+Nk2afsT8AxUMICIApjAe1uYSA3EY7sFNUAgKAShEJD1eO\ns2cIAVW7HQrQDgwAgJKyYsUKLVmyRBs3blRHR4eWLFmi66+/3uphAcC4kOvDzFKqggBUunzmQJFI\nRBs2bFBLS4uWL1+ugYGBUct37dqlpqYmtbS0xKo9p9pmYGBAra2tamtrU3t7uyKR4c9Went7tXjx\nYjU3N+vZZ5+VJHm9Xt14441qa2vTihUrdOzYsUJfDqBspAuqJLbSSrVOupZfqZbF7y/+fn+RZ7Lu\nX/DjlOM74j2s5h3X6Jp//3zaIFD81/H7TzUm43VJsZZhmz91f2ybZGOJ33b9nrWjlhNkBoqPEBAA\nU/hHHtRW5RQCGl73JJWAAKBixCoBOTJXAgqEIoqMrA8AAKzX1NSkBx54QB/+8If14Q9/WFu2bNGS\nJUusHhYAlC2zAkA8lANyk88c6JlnnlEgEFBPT4/WrFmjjRs3xpYFg0F1dHTo4YcfVmdnp3p6evTu\nu++m3Kajo0OrV69WV1eXotGodu7cqWPHjqmzs1Pd3d3aunWrNm/erEAgoMcff1wNDQ3q6urS5z//\neW3dutXUa4PyV673jHSBmGxDLOkCu4nhm0z7MY79ref+RW1PLVX/0b4zxnCRZ7J6/98TeuJLvzuj\n8k42Uo03MYhkBHuMMSQbS7p9EmQGio8QEABTDPmNdmDOrLc53Q6MSkAAUClOtwNLPy017hF+qgEB\nAFBSDh8+rDfeeENHjx7Ve++9Z/VwAAA5KtZf55frQ2NUrlznQP39/Zo3b54kafr06Xr11Vdjyw4d\nOqT6+npNmDBBbrdbjY2N6uvrS7nNgQMHNGfOHEnS/PnztXfvXr3yyiuaMWOG3G63PB6P6uvrdfDg\nQTU0NGhwcFCS5PP55HRm/3k9kKicK7okC6okVsQZa4glvvpOqso9iet3Xf2Yuq5+TI2TZqcM7KQK\nAGVTkSjVOSWGeIwWX0ZloHTXIz7ElGx/mcYIYOwIAQEwhdEOzHhom41YOzAqAQFAxTgdAspQCWik\nspxxfwEAANbbtGmTfvazn2ny5Mk6//zz9cMf/lA/+clPrB4WShAf7gOlqxh/nW/1Q2Peg1Bo+cyB\nfD6famtrY987HA6FQqHYMo/HE1tWU1Mjn8+XcptoNCqbzRZb1+v1ptzHueeeqxdffDFWBYiqjRiL\ncqjoku6ekKkiTjb7znS/MwI1iS2zUo0t/tjZXvd01Yvy+RnGt/jKdizZXAur5wdAOSMEBMAUQyOV\nGqqrsg8BuRx22W02KgEBQAUJh7MMAY2ESgNUAgIAoGQ899xz+vnPf67ly5frK1/5in7xi19ox44d\nVg8LJYYP94HSZ/bDXCsfGvMeBDPkMweqra2NVeSRpEgkEqvKk7hscHBQHo8n5Tb2uGrKg4ODqqur\nS7mPBx54QDfeeKN+97vfaevWrbr55pvHfP6obOM9AJTrPSGX8832fpeskk4uFYLShYeyqV6U688w\n3XmlupbZXItyCJUBpYoQEABTGJUaqt3Zh4BsNpvOrnbqJJWAAKBihCMRSZLDQSUgAADGmwkTJox6\n2BQMBkf9tTog8eE+gGFWvQfwHgQz5DMHmjlzpnbv3i1J2r9/vxoaGmLLpk6dqoGBAR0/flyBQEAv\nv/yyZsyYkXKbadOmad++fZKk3bt3a9asWbrsssvU398vv98vr9erQ4cOqaGhQXV1dbEKQf/wD/8w\natxApTHznpCpvVaysSR+n6pCUOJx4oNMydp75VK9KJ1M7byOeA+r7amlaYNAmZh1fyb8i0pH808A\npvAbISBXbm8zNWe5NHiKSkAAUCmybQdmhEr9VAICAMByt99+u6Thv0b/0pe+pAULFsjhcGj37t26\n+OKLLR4dShEP31Gu4ttiWLE9ssM1RqGMZQ60cOFCvfjii1q2bJmi0ajuuece7dixQydPnlRLS4vW\nr1+vG264QdFoVE1NTbrggguSbiNJ69at07e//W1t3rxZF198sRYtWiSHw6Hly5erra1N0WhUt9xy\ni6qqqvTNb35Td9xxh7q6uhQKhfSd73zH9OsElDLjnlDIe7ARxBlrwGhSzYVZ7cNYxziHxG0KcV7Z\nnlMoYs3zvHQ/v0L9PIDxjBAQAFMMBYar+eRSCUiSaqqdevf4qVF9jQEA5et0CCh9gUqjHRghIAAA\nrDdnzpxR/2/42Mc+ZsVwAMASY33AxAMqYPwZyxzIbrfrrrvuGvXa1KlTY18vWLBACxYsyLiNJE2Z\nMkXbtm074/Xm5mY1NzePeu2CCy7Qv/3bv2UcHxCv3EOqhb4HF6LCUPyYslnH7HlEtufktLsKfuxM\nMp07VQABQkAATBJrB1aVawjIpXAkKn8wrGo3b1EAUO7C4ewqAcVCQLQDAwDActdee21W6/zmN78p\nwmgAwBpjfcDEAypg/GEOhEpQCSFVM+7BmfaVKVhljCndNonjNvtnlK7SjtFurOvqx4r+e5LNz69c\nf3eBbKX/k2sAyMFz+4/E/vf62yckSX/823ux17JRUz0c/Dk5FDJtnACA0hGORGSzSfZMIaCRynJD\nhIAAABgXotGo1UMAANON9QETD6hSO+I9bPUQgLwwB8J4Vykh1WKenxGsSnVvi3/dWC/VNkYbMOPr\nxO3NljguM65jNudT7r+fwFgRAgJgimAoIklyOXN7m6mpHi4dOEgICAAqQjgSzVgFSFKsOhztwAAA\nGB9o7wwAyFemh6VAKWMOhHJAwKLwUgWr4u958QGsVGGs+PX7j/YV/Z6Zb0gs2/ExBwAKgxAQAFME\nw8MhIKczt3/0nD1SCWjwVLDgYwIAlJ7hEFDmKWmVa3gdQkAAAAAAUN4qpQoFAKD8GaGWVNLd81K9\n9uhnf6mjg2/rmn//vI4Ovn3G9mYGaDK1NUu1TbbBHuYAQGEQAgJgipBRCciRYyWgs6gEBACVJBzO\nrhJQlYt2YAAAAAAwnuXyUJKHfwCAcpBNqCW+rVc2YZmLPJM1qeZC1Xs+okk1F54RADKrks4R72G1\nPbU0476TtTB79LO/zPo4qa4V1YGA7BECAmCKYDgip8OWc/nTGqMS0BCVgACgEoQjUTkcObQDIwQE\nAMC4EI1GrR4CAKCEWNne44j3MA8OUTTMgQDrldp7frbB1lyq4Fzkmaze//fEGevmU0mnkNcr3f1+\nLPMA2oQBuSEEBMAUwVBEzhyrAEmn24GdpBIQAFSEcCSSVSUgN+3AAAAYV77+9a9bPQQAQAkpRnuP\nZA8GjaoF2VQuAAqBORBKXbm/F44lLFIK12as98lc2nUZIdlcWnV1Xf1YxqpGye73Y50H0CYMyA0h\nIACmCIUjcjlzf4upqTbagVEJCAAqQSSSXTuwWCUgQkAAAJSMT37yk7r00kv18Y9/XHPmzIl93dTU\npClTplg9PABAiTE7AJTsIabxwDLTQ0sgF8yBMF6VWzWVZOeRLCySzfnmem2svobJxtt/tC/rczBC\nspKShmtS7SPbKkX5bpvPfgGciRAQAFMEQ/mGgIx2YFQCAoByF41GFQ5HZbdnvl9UuRySaAcGAEAp\nmT17trZs2aJ9+/bp97//vR566CEtWLBA3/nOd3TnnXdaPTwAQIVJVSGAh4YoNOZAsEIhQiflVE0l\nXWgnMQCUTTAml2tj7LP/aN+o1/KVz7aJ4z3iPaz1e9Zq47z7cvr5Hh18Wxd5Jo8aQ+I1MzPwZHWY\nCihXhIAAFFw0GlUoHM2rHVjNWSOVgE5RCQgAyl04ElVUksORuRJQlZt2YAAAlJrXXntN//zP/xz7\n/pOf/KT++te/atq0afL7/Um3iUQi2rBhg1paWrR8+XINDAyMWr5r1y41NTWppaVFvb29abcZGBhQ\na2ur2tra1N7erkgkIkl69NFHtXTpUi1dulQPPPCAGacOACghxsPKTMt50IhCyWcOBIxFId/HyiEA\nJGUf2skl3BMfqMm03sZ592n9nrU64j2cUwWeRLn8bJNVuzNeN86zcdLsrLfd/Kn7tX7P2jPGH3/N\n0o1vrL+P3J8B8xACAlBwoXBUksZUCegk7cAAoOwFQ8MP6rJpB+aw2+V02DVEJSAAAEpGXV2duru7\ndfLkSfl8Pm3fvl0TJkzQoUOHYoGcRM8884wCgYB6enq0Zs0abdy4MbYsGAyqo6NDDz/8sDo7O9XT\n06N333035TYdHR1avXq1urq6FI1GtXPnTr355pt68skn1d3drd7eXr3wwgs6ePBgUa4HAKB44h8Y\nZnrAW06VL1Aa8pkDAWPB+1hy2V6PXK5btsGUxkmz9ehnfylJeVXgiR9bYkWfZGNKVn0ocbypjp8q\npGScQ+Ok2WeM3/g61e9eIQI8/F4D5iEEBKDgjIe6+VQCcjkdcjvt8tEODADKXjCcfQhIkqrdDioB\nAQBQQu677z7t3btX8+bN06c//Wn9/ve/17333qu9e/dqzZo1Sbfp7+/XvHnzJEnTp09WiA4RAAAg\nAElEQVTXq6++Glt26NAh1dfXa8KECXK73WpsbFRfX1/KbQ4cOKA5c+ZIkubPn6+9e/dq0qRJ+tnP\nfiaHwyGbzaZQKKSqqiozLwMAoEji25IkPnjMphIEUCj5zIGAseJ9LDf5hlOyCabEV8zJVIEn22Ma\n+028v8VXu9s47z5967l/ySkI23+0L2VIyQgOGa3EUl2zVK02CxHg4fcaMIfT6gEAKD+hkYe6+VQC\nkqSzq51UAgJQtsLhsO644w69/vrrstlsuvPOO1VVVaX169fLZrPpkksuUXt7u+x2u3p7e9Xd3S2n\n06mVK1fqqquu0tDQkG699Va99957qqmp0b333qvzzjtP+/fv19133y2Hw6G5c+dq1apVVp9qRqEc\nKgFJUpXLIT+VgAAAKBl/+tOftGnTJrlcrlGvL1++POU2Pp9PtbW1se8dDodCoZCcTqd8Pp88Hk9s\nWU1NjXw+X8ptotHo/8/e+8dHUd37/6/N72Sz8QcuJIVGxcpVevnlAp/2q2C+KAVNhQgmQLxUCqKX\nekkxiRC8/LgoNYAkrcErFYHSUiOQhxqwsakCRqJwJe79gCjS9sI1CGZlQSzJ5tcm2c8f4YxnJzOz\nM7OzP/N+Ph48SGbOnPM+Z87MnMz7Ne83TCaTULa5uRnx8fG4/vrr4fF4sGHDBgwfPhw333yzUV0m\nIgilr6EJgpAmnK8b5gRlDkeKHECEEj1rIILo7wTzGSN+ZmjFlwBIXLfWNuTGQur55uuZJ1UX28YE\nQEW2pYJIiRf++PtcjYbncDivfQjCHygSEEEQhsMiAcXriAQEAObkeLjaKBIQQRDRyXvvvQcA2LVr\nF5YsWYJf//rXkqksnE4ndu7ciV27dmHbtm0oLy9HZ2cnXnvtNQwbNgyVlZXIycnBSy+9BABYvXo1\nysrK8Nprr+H48eM4efJkKLupCiEdmMrnRSJFAiIIgiCIsGLfvn245557sGrVKnz88ceqjklNTYXL\n5RJ+7+npQVxcnOQ+l8sFi8Uie0xMTIxX2bS0NABAR0cHiouL4XK5sHr1ar/6SEQmRqQnIIj+Rrhf\nN2IHJTnsiFCiZw1EEMEmnO7nwXjGaImO4w9SdYsj9/iyU2ksxGnBeJHKYMsQVGZXeZXJr8n1Ksun\nDWMCoDL7BpxvPueVFoyeq+G/9iEIfyAREEEQhsPSu8TpjARkToxDW0cXeno8RppFEAQRFtx77714\n9tlnAQBfffUV0tLSJFNZfPLJJxgzZgwSEhJgsViQmZmJU6dOeaXDmDhxIo4cOYKWlhZ0dnYiMzMT\nJpMJd911Fw4fPhyyPqrFrSMSUDtFAiIIgiCIsKGiogJvv/027rjjDrzyyiuYOnUqfvOb3ygec8cd\nd+DQoUMAgGPHjmHYsGHCvltuuQWNjY349ttv0dnZiY8//hhjxoyRPWb48OH46KOPAACHDh3C2LFj\n4fF48Itf/AL/9E//hGeeeQaxsbGB6DoR5lCUEILQTiRcN+FsG9G/0LMGIohgolXcEGgRRKCfMXrS\nRLLjjGxbzbirTTfGhDx8feKoNQ5XU59jAAjpyXZMfRVTh2Zjx9RXAaBPWjApIZOc7VrHSoswKlQY\nPS/DtZ9E/4TSgREEYThdQiQgdU5dMebkeHgAtHZ0ITU53md5giCISCMuLg7Lli3Du+++i4qKCnz4\n4Yd9UlkopcNg2/myfIoMs9mML7/8UtGG665LQVycOqeY1WrxXUgHl69GfUtOjIclNcln+xZzArq6\ne3D99WbV0YMijUCNNdEXGuvgQWMdPGisgwONszepqamw2WxwOBxoamrCsWPHFMtPnjwZH374IWbP\nng2Px4PnnnsOb731FlpbWzFr1iyUlJRgwYIF8Hg8mDlzJgYNGiR5DAAsW7YMK1euRHl5OYYOHYop\nU6Zg//79OHr0KDo7O1FfXw8AKCwsxJgxYwI+FkRoUEqnQBDhSDinnQhXuwgiHNG6BiKIYKJF3OBv\n6iwtNhmB1HNUj5hDb7/Fx4nbVlOfmv3iNF3ids83n0NJfTGWj18h27ZY7CNlGxOuzKt9GOsmbERJ\nfbFkpCMtY8WXZ3WHq9DYyHkZzv0k+h8kAiIIwnBYJKB4nZGAUpJ6b02t7W4SAREEEbWsX78excXF\nyMvLQ0dHh7CdpbJQkw5DqSxLhyHH5cutquy0Wi1wOpu1dE01zostAIDu7m40t7TLl7vaPnuqnPvq\nH8KzIpoI5FgT3tBYBw8a6+BBYx0cAjXOkSos2r59O95++210dHRg2rRp2LJlC9LT0xWPiYmJwTPP\nPOO17ZZbbhF+njRpEiZNmuTzGAC4+eab8cc//tFr2+TJk3HixAmtXSEiFHrZTigRCrGNrzZpzgaW\ncBZYEdGFnjUQQQQbtfdDf6KhBPu+689zVGyr3n4PtgzxiqbDtvE/qxkXu6MBtvRxiu2I6xOn72Ki\nnRHWUYIgyZftPCydWGV2VR/Rkfg4LWOlRxgV6URCREWifxGWn1BfunQJd999N06fPo3GxkbMmTMH\n+fn5WL16NXp6esUFe/bswYwZM5CXl4f33nsvxBYTBMHD0rvE6YzSYE7qFf642rsMs4kgCCJcqK6u\nxssvvwwASE5Ohslkwj//8z/3SWUxcuRI2O12dHR0oLm5GadPn8awYcNwxx134P333xfK2mw2pKam\nIj4+HmfPnoXH48EHH3yAsWPHhqyPahHSgal8XiQm9EYu6nBTSjCCIAiCCAe+/vpr/PSnP8WCBQtg\ntVrx4Ycf4oUXXgi1WUQ/gH2xTC/bI59ApU3QmgYlWG3SnA0coTjnRP+F1kBEtKFXAOTPfVfPcXLP\nUV+2yO3X2++S+mIh/ZfatnjsjgbM2PdT1J6pUdUeq09sL0v5pbYfvtYo/P9y+9W2IyeSimb6Sz+J\nyCDsREButxurVq1CUlJvSojS0lIsWbIElZWV8Hg8OHDgAJxOJ3bu3Ildu3Zh27ZtKC8vR2dnZ4gt\nJwiC0eVnJCDz1egOrna3YTYRBEGECz/5yU9w8uRJPPzww1iwYAGefvpprFq1Cps2bcKsWbPgdrsx\nZcoUWK1WzJ07F/n5+XjkkUfw5JNPIjExEXPmzMHf//53zJkzB7t378a//du/AQDWrFmD4uJiPPTQ\nQxg+fDhGjRoV4p76RhABxahLH5kY3ysCau8kkShBEARBhANnzpzBgQMH8Otf/xr19fV44YUXcPr0\n6VCbRUQ5YscKvWyPXAIp2giF2EZtm772k4hFHySwIoIJrYGIUBBuzwd/IwjpXQPIpYFVssXIZwSL\nwANAtg++2rKlj8PL925HmX2DzzFQ0zcxasVJgy1DUJ5VIdRhxBzTc27DbW4TRDQQdnkU1q9fj9mz\nZ2PLli0AgM8++wzjx48HAEycOBEffvghYmJiMGbMGCQkJCAhIQGZmZk4deoURo4cGUrTCYK4CnPq\n6hYBXU0B1kqRgAiCiEJSUlIkvw4Tp7IAgLy8POTl5XltS05ORkVFRZ+yo0ePxp49e4wzNAiw9JFa\nRUCd7p6A2UQQBEEQhHq++OILvPPOO/jVr36FmTNnYunSpfjlL38ZarOIKIcc/dFDIM9lqNJC+dsm\npQvzDxozIljQGogINuH6fNBrSyDWAP6KcNXCIgHtmPoqdkx9FQ5Xk5eIhp0nX0wdmo0RVnUfcWqN\nwiM1V6TSmPF9AWDIHNN6bsN1bhNEpBNWIqA33ngD119/PSZMmCCIgDweD0ymXseQ2WxGc3MzWlpa\nYLFYhOPMZjNaWlp81n/ddSmIi4sNjPEhxGq1+C5E6IbGVz2W1N4IXjExveKftNQkYZtSeR6r1YL0\nq2Nuioul8fcDGrvAQuNLEP7j7upN66VaBJRAkYAIgiAIIpwYMGAATCYTbr75Zvz1r39FTk4ORWqO\nMIIhlAhEG+QgiEyk5kKgBECR6kwikZt/hEr8RfQ/aA1EBJtofD6Eui96nxn8uWBpvd6Y9ifY0sdJ\nnidf7fCiITX2qLFbLPZhxzHBD5/6i//dyGhJWsqyduk5ThDGEVYioNdffx0mkwlHjhzB559/jmXL\nluGbb74R9rtcLqSlpSE1NRUul8trOy8KkuPy5daA2B1KrFYLnM7mUJsRtdD4aqO5pR0A4Grr/YPH\n7e4StomxpCZJ7nM6m9Hj7nXufu1sofHXCc3dwELj6z8koiIALh1YrDoRUNJVEVCHuztgNhEEQRAE\noZ5bb70Vzz77LObMmYPi4mJcuHABbjeldY4UgiGUiGQxBmEswZwLke4ojVS7Q8355nPIr8lFZXYV\njSERcGgNRIQCvfe2UAkrQino8NW2v+sSdowtfZwgABLvU9MOW7MA6qLwiOsT95M9CwGgMrvKyx41\nAiWtY2HUOWZ9EQuiSBREEPrRl6snQLz66qv44x//iJ07d+L222/H+vXrMXHiRHz00UcAgEOHDmHs\n2LEYOXIk7HY7Ojo60NzcjNOnT2PYsGEhtp4gCAZz6sbF6rvFpCT1pgNztdMfTgRBENGMIAKKUfe8\nYOnAOigdGEEQBEGEBf/xH/+B++67Dz/4wQ+wePFiXLhwAWVlZaE2i1BJMIQSkS7GIIwj2HOB5hxB\nEIGE1kBEpMCEFeebz/WLdtW27e+6hK+bFwDpaYftk4reI25PHDWH9ZPfX5ldJQiAxOPApy3z9xwZ\nfY7FgqjaMzVBnUOhmKsEEUjCSgQkxbJly7Bp0ybMmjULbrcbU6ZMgdVqxdy5c5Gfn49HHnkETz75\nJBITE0NtKkEQV+nq9gAA4uP03WLMyb1BylztlO6FIAgimnF3MxGQciSgumPnUXfsPP636QoA4Pj/\nXBS21R07H3A7CYIgCIKQJjY2FmPHjgUA3HPPPVixYkW//Egrkl8YB0MoQWIMgqHn63KCUAtzfNI9\nhwgGtAYiIoVQCbJDKQRX27Y/AiAlcYp4u692WPSewroCyTrZfl7ow/7nRTP8fvZPahyY/Q5Xk1/n\niG9fL1JjNdgyBOsmbESZfYOiMMpIQilaI4hAEbYioJ07d+KWW27BzTffjD/+8Y/YvXs3SktLERvb\n+wV4Xl4eXn/9dbzxxhuYMmVKiK0lCIKHpWmJ1xkJyMwiAbVRJCCCIIhohkUCivEhAmIwcSkTDxEE\nQRAEQYSaSH9hHKl2E+GNEfNKy7VF87h/IxXhgCAIgviOUN0bQ3lPDlWkS73rFxa9R43d4ueekj1y\n29ZN2IiS+mKfbalB799CSmNlSx+HHVNfVYyyZCQUvZSIRsJWBEQQROTS2t6F5MQ41U5dMSmJcUI9\nBEEQRPQipAOLVfe8YGkmu0gERBAEQRBEmBDJL4wjXcBEhCdGzSu111a4zuNwsydakTr/NPYEQRD+\n0Z/uo3r7Krc+4dcvdkeDYrvzah+G3dEgROVRqpMJhPjj+Lqkov0owUQ2/v4NoxRtSO+x/P5gEol/\nzxGEEiQCIgjCUDweD1rbu2BOitNdR0yMCcmJcXC1UyQggiCIaEYQAcWoW5LGXRULdXWRCIggCIIg\niPAhUl8YR7KAKRqIVgebUfNKyqEVyPbkbNB7nFZhUrTOh0AjPv/hJgoLFzsIgggukXzth9t9NJDo\n7aua8nZHA2bs+6msEIg9v2zp44SoPErpxfgUYHx5OTEs26YkkuWfnWr6Ky4nTk8m1b4v6O8Qgggc\nJAIiCMJQOtzd6PF4kOKHCAgAzElxcFEkIIIgiKiGpfWKVRk5Li6ORQLyBMwmgiAIgiCI/gS9eA8N\n0e5g83desa/i1Y6P1vbUpujQe460CpOifT4EGn6cw0ncSOeVIPonkX7th9N9NNBICUl94ev8sv3p\n5gy8Me1PSDdnyJZl7bKoPGrb46P4SJ0vtg2AlxhIHEFIqn4poQ8fsYgvJzcOWuYQRfIjiMBBIiCC\nIAyFCXdYSi+9mJPiKRIQQRBElPNdJCB1IqD4q+nA3JQOjCAIgiAIImyhF/i+6U8ONq2cbz6Hkvpi\nrJuwUZOIRkv9apyz/p4jLceFYj5E83UaLtcVXecE0T+JhmvfKNsj4VmjNZKcmhRWbH+6OQP5NbnI\n3ZejSuwijt7DIgBJtScW/UjZwR8rjiDEw8pIjQEfsYi3w4hUXuKIRZEmnoskW4n+CYmACIIwlFYm\nAvI3ElByHDrdPYKDmCAIgog+WFqv2Fh1IqCE+FgAQEdnd8BsIgiCIAiC6E8Y/fLa19fERtQfLUSy\nczCQ8M4mNWh1GmlxzgbzHAWyLbmv+qPpegpX6DoniP4JXfvh86wJxfqA31+eVYH42Hgve8QReXix\nD4A+kXeYQEcv7FiWekxsC2+3kuBISYikB7FIKdzEc0pjHi7zmyCUIBEQQRCG0no1ek9KUryPksqw\n41spGhBBEETUojUSUGJ8DGJMJrR1ULpIgiAIgiAIfwnEy2v+Bb7R9atJv0BEB1odQFqdRlrTU0Qy\nctdNqBxt0TKuaulv/SX6HzTHCTmkRB3Bni9q1qLiqDdK+/W0nW7OwPLxK7yENCwij93R4CUK4sUw\nfOQdrf3gt+XX5CK/JleItlNYVyD8LpdKLJiEsm2G3NgpjXk4ipYIQgyJgAiCMBQWCcjsZySg1KvH\ns/RiBEEQRPTB0nrFxqhbkppMJiQnxqKVREAEQRAEQRB+E6iX12rTBOipV64++hq3/8GnjghE3dEy\nn8TXTaDGTA3RNK5q6G/9JXzT09ODVatWYdasWZg7dy4aGxu99h88eBAzZ87ErFmzsGfPHsVjGhsb\nMWfOHOTn52P16tXo6el9v7Jnzx7MmDEDeXl5eO+99wAA3d3dWLt2LWbPno0ZM2YI2/2F5jjhC7EA\nKNjzxddaVI3AXG6/2rRhDlcTHt8/3yvyD4vIU1JfDAB90nSJI+/o7cdgyxCUZ1WgMrtKEBhVZlcJ\nv/NtaEGrGMnXMUaU13us0tj5+juGBEBEuEMiIIIgDMVlUDqw7yIBkaOXIAgiWtEaCQgAkhPj0N7R\nBY/HEyizCIIgCIIg+g2BfnkdKIGR1Hb6Grf/wAtZAiVki5b5xL70Z4Syb9E0rmrob/0lfLN//350\ndnZi9+7dKCoqwrp164R9brcbpaWl2L59O3bu3Indu3fj4sWLsseUlpZiyZIlqKyshMfjwYEDB+B0\nOrFz507s2rUL27ZtQ3l5OTo7O7F37150dXVh165d2Lx5cx/xkV5ojhNaCNV88SXiUBKYy+2XEo5I\nCU8GW4bAlj4Ob0z7E9LNGV77+Eg//M9q+qFWsHK++ZwgNOLLSpXjf9abBktun1YBmD+CMSPTxNK9\njYh0SAREEIShsOgMKYn+iYDMyb3Ht1A6MIIgiKjF3dUDkwmI0SgC6vEAHe6eAFpGEARBEAQRGvrb\n1/RGpyIj+ge8wyZQ592fesPlOlb6uj1U9LfrtL/1l1DGbrdjwoQJAIDRo0fj008/FfadPn0amZmZ\nuOaaa5CQkACbzYaGhgbZYz777DOMHz8eADBx4kQcPnwYn3zyCcaMGYOEhARYLBZkZmbi1KlT+OCD\nDzBo0CA89thjWLFiBSZNmmRYn2iOE+GKFhGI1LHs+SknDlk3YWOfKHtybaabM5BfkytEAxJH/JGy\ng5VRK6jhbeG3+RIX8fWx9GF5b+VoSoPFjhWPixY7lMqztGl6jlV7TKgIlzUjEZ2QCIggCENpbe9C\nYnwsYmP9u72Yr0YCcrWRCIggCCJacXf1aIoCBADJibEAgDZKCUYQBEEQRJTBXrz3l5fB/qaF6C/j\nREij9BV7KAmn9Dj9MUpHOIw7QcjR0tKC1NRU4ffY2Fh0dXUJ+ywWi7DPbDajpaVF9hiPxwOTySSU\nbW5ulq3j8uXLOHv2LF5++WUsXLgQy5cvD3RXCaIPaqPnqNnnq6yWZ7FcBB+xyEd8jDh9l6/nrbvb\njYKDi2B3NPi0jZWRKqs1Pa6vNYBYWF2eVYG4mPg+9YqP4ffl1+QKIid+XLTYIWUX0DsWD+7NRu4+\neWGS3LHhTjitGYnohERABEEYhsfjQWu72+9UYACQZk4AAPzD1el3XQRBEER44u7uQWyMtuVo8tVI\ncyQCIgiCIAiCiGz8ESiocaAQ/YdwEtCFm/BGKn1IOIxTIAineUAQUqSmpsLlcgm/9/T0IC4uTnKf\ny+WCxWKRPSaGe5ficrmQlpYmW8e1116LrKwsmEwmjB8/Hl988UUAe0kQ0oifj0wAwaLj8GgV8agV\nyiiJhcTiJCZmkbJTqn4pwRAvEtp0z2bExcQj3ZyhuE5gba+bsFE2TZhcajBfAiE12NLHoTK7SnWU\nIwAoz6pAZXaVl716UoDJ2fPm9BpUTav2ubaKtOd/uK0ZieiDREAEQRiGu6sHXd0emA0QAQ1ISwIA\nXPpHu991EQRBEOGJu6tbRyQgEgERBEEQBBGdDLYM8XrpHmmIHShq0NpX1gZzjkSbM4AwjlCe+0Bf\nw3quNd6JGckCukizO9LsJQLLHXfcgUOHDgEAjh07hmHDhgn7brnlFjQ2NuLbb79FZ2cnPv74Y4wZ\nM0b2mOHDh+Ojjz4CABw6dAhjx47FyJEjYbfb0dHRgebmZpw+fRrDhg2DzWbD+++/DwA4deoUMjIy\ngtltIgKQulcF4v4lFs2sm7DRK3IMv0+tOIKVVWoL6CtmYemr2LH8PnF0HCk75YQ2TIwqbo8X1yj1\ni7WXbs6QbYe1JSdQkiorF4VJblzE9jhcTbL9Lawr6NO+FkGSkmDofPM52NLHqVrzaxECh8vzmQmm\nCCIQkAiIIAjDcLX3OmSNiAQkiICukAiIIAgiWnF39SA2lkRABEEQBEEQQN+X7uGM1Mt7lgogUC+y\nmYMAAHZMfRW29HGqytOL9ehHLKCL5nNvdzQgd1+O5muNOePkogpEAnIRGxjhJqSM5nlI6GPy5MlI\nSEjA7NmzUVpaiuXLl+Ott97C7t27ER8fj5KSEixYsACzZ8/GzJkzMWjQIMljAGDZsmXYtGkTZs2a\nBbfbjSlTpsBqtWLu3LnIz8/HI488gieffBKJiYnIy8uDx+NBXl4eVq5ciTVr1oR4JIhwQk4goub+\n5e/9TemZpPVe7steXpTC94+JcuQi+yjZqRRhT0+UF/Z8K6wr8BITSZVja2I5IZWSLeL+K0XvOd98\nDosPLMKDe7P7RG1iz125Z6/UNi0pzgL1HA3281mpHV9rm0C0SfQfTB6PxxNqI4KF09kcahMMx2q1\nRGW/wgUaX228+u7fcMB+DqNvvQEjbxmgWNaSmoTmlr4Cn6zRg4Wfn/j1+xiQloRnFvwfw22Ndmju\nBhYaX/+xWi2+CxEBRe0cDuR8X/ybQ4iPi8G0u25WfczFf7Tj7SONuP3G6zDu9oEAvJ8dkQzdW4IH\njXXwoLEOHjTWwSFQ40xro9AT6uuHvQCOBOe8nK3819OBbFurMyXcx7O/E6hzFI3nnontunrcqJi0\nWZUQTimCgPj6jYTxYvcZuftluPUj3OyJFGhdFHpCvS4igovUvcrX/UtpPcgEJXJRYPREglQTCcbo\nNSLfF6BvGq55tQ8LIhxeSCM3HkprfbujQaiH4XA1CdEv080ZXvXz7dgdDT7XBOJ+ifujNC7nm8/B\n4WrS1IZcm2zM1Nal5bwGqqw/qPkbz9faJhBtEpGF3nURRQIiCMIwWjvcAICURP8jAQHA9WlJFAmI\nIAgiinF392hOB5aSGAuAIgERBEEQBBFd6PlaOFTI2eorvYFRbQeyPBFcAvkltpHnPly+pmZf3O95\noFrWeSaX3kNcRpz6I1Ii1shFbADCsx90DyKI/k043Y+U0BOJR+pezKenkrofq7lP6zlGjb1ay/N9\n4aNd8naII+xJCYCkIu7w/eSj/7BUt6xMYV0BimxLhchAtWdqvOpjx/uKBCTVL7l9cuPirwBIKZqn\nryhGaglUWX9Q8zee0tomUG0S/QMSAREEYRitBqYDA3pTgrV1dAv1EgRBENGDx+OBu6sHMTHalqNJ\nCZQOjCAIgiCI6CQUL2r1Oqd8fclKEGrwx0mhlILDSMJNWCIntmNORDlno7gOfl8kOovU9IsgCCKU\nhNPzI1A2SAnC5VJP+no2sTJqU0UFGr4vLOUVAC9hELNZLpWW1POWHZNfkyuIpRyuJgBAujmjjx0j\nrKNQnlWB8qwKlNk3oMi2tE/aMrnonEr9Eo8n65NeEZYSfJuRIOA1GrVz18g5TmshAiAREEEQBuK6\nKtYx+yECqjt2XvjX3tkNAPhLQ6PXdoIgiEjG7XbjqaeeQn5+Ph566CEcOHAAjY2NmDNnDvLz87F6\n9Wr09PQAAPbs2YMZM2YgLy8P7733HgCgvb0dixcvRn5+PhYuXIhvvvkGAHDs2DHk5uZi9uzZePHF\nF0PWP7V093jg8QCxsdoiAcXEmJCUEItWEgERBEEQBEH4Bf+Fsz91iOsL15f44WpXf0fNl/hS25Qi\nDRiJGuejlMMsmIi/sBc7G6WQctxGA9HSD4IgIp9wESYGe30m9QwSi1SVjpWLNmkUWsaB7wsfrYWJ\ndRyuJp/iWznbu3p6s2rwQiNxWSY8KqkvRro5A+smbESZfUOfiET8cWrWRlJCnMK6ArR1tUqWXTdh\nY5/tWueT3Djw42bkHKV1P0GQCIggCAP5LhJQvCH1pSb3iolcbeToJQgieti3bx+uvfZaVFZWYuvW\nrXj22WdRWlqKJUuWoLKyEh6PBwcOHIDT6cTOnTuxa9cubNu2DeXl5ejs7MRrr72GYcOGobKyEjk5\nOXjppZcAAKtXr0ZZWRlee+01HD9+HCdPngxxT5Vxd/UKnbSmAwOA5MQ4tHd0G20SQRAEQRBE2BKo\ndEnrJmzUlEJAbBPvZAiVs0uN7aESKJEDQhqtKSvE5ZUiDahBq/DNlwAoWKm1xE4/3j65L+yJXuha\nJAgiFITDPTmQ6zO191YtNgRyzPSkIxPDnrWV2VV91iFykfqk8Hh6033x9TKYkIdtZ22w9gDIplsr\nqS8W0opJ2SG3jlg+fgWS41L6HMMEQnyUIKm1jz/IRVLSQjA/TKA1BREpkAiIIB5+sAwAACAASURB\nVAjDaG13Iz4uBvFxxtxazFfFRC1tbkPqIwiCCAemTp2KX/7ylwB6U2LFxsbis88+w/jx4wEAEydO\nxOHDh/HJJ59gzJgxSEhIgMViQWZmJk6dOgW73Y4JEyYIZY8cOYKWlhZ0dnYiMzMTJpMJd911Fw4f\nPhyyPqrB3e2PCCgW7u4eQUhEEARBEAQRzQTyRbZeEYXcF8+hEADJjU2oU0mEe2QkI9HSR63jIvd1\nuJpoN1LYHQ14cG+2XxGwxHYEI7UWSx0ilaqDtdvf8FdMFmw7CIIgQkWgBEBa7q1abPC1rtOL1nRk\naqLpKPVLLirPYMsQVE2rloz+w4Q8fNov8Vpb3A8m1mECf1v6OMl+MXvYGojvZ5l9A8qzKoQ1Fx9l\nsDyrQrBV/DeAXGRRPZGC/EkRG6wPE/rT+p6IfPTn7CEIghDR2t7lVyowMebkXhEQSzNGEAQRDZjN\nZgBAS0sLCgoKsGTJEqxfvx4mk0nY39zcjJaWFlgsFq/jWlpavLbzZVNTU73Kfvnll4p2XHddCuLi\nYlXZbLVafBfSyuU2AEBSYhwsqUmaDk0zJ+Kri62IiYuFJTUxMPaFiGjqS7hDYx08aKyDB411cKBx\nJoJNoAUsegRA82ofDosUF3JjI2VjsG016rz5Sp0RarTOB7Xjwtdr5JxLN2dgSGqmkMrDCIKRWotF\nHQhU/ZEAfy1omRPBcAaGw/2QIIj+SajWCVL3ViNskbqvGnmvVZuOzFebvvoqF5WHHaeUHmvdhI0o\nrCvACOsoWZvZNrujQYgoVJ5VgcK6AklxEesHiwJaZFuKMvsGYTuLMGR3NAh2s20l9cVe6zFeaMTX\nKTV2cvZLjaPaclJjEawPE0IV+VQKLddbOP89Ec62RTokAiIIwhA6OrvR2dWDAYlGioBYOjCKBEQQ\nRHTR1NSEJ554Avn5+XjggQfw/PPPC/tcLhfS0tKQmpoKl8vltd1isXhtVyqblpamaMPly33zPEth\ntVrgdDZr6Z4qvv6mt/2eHg+aW9o1HRsX2yuYuviNC7HwBMS+UBCosSb6QmMdPGisgweNdXAI1DiT\nsIjwRTi9GNX78jtQL3j5r5L5beHwgt7fMYoEgYGesdYjFlLbhlgoInVM1bRqQ8czWM6LUMyBcHHM\niK8FrfOuPzgDCYLof4RinSAn2jDKFjlBh68IPlojDSkJSny1yYQySiIosaBIShzDt8cfm27OgLvb\nDYerSbIdvr2S+mIsH79CEAyx4/h682tyBSExAMwbvgBl9g19BEr5NbkAgOXjV3i1y7fPBErlWRWC\nECjdnCEZFRFAH9GQ2H65OaMk/JU6f8F8DofDM1/L9RYOf0/IXXPhYFs0Q+nACIIwhMstHQC+S+Fl\nBMmJcTCZAFc7iYAIgogeLl68iPnz5+Opp57CQw89BAAYPnw4PvroIwDAoUOHMHbsWIwcORJ2ux0d\nHR1obm7G6dOnMWzYMNxxxx14//33hbI2mw2pqamIj4/H2bNn4fF48MEHH2Ds2LEh66MaWCovfenA\nekWibR0UKY4gCIIgCCIU6I0eFIjQ+XJ1R9qLZKl+RIrAIBhRqnx9Hc7+Z2MoNZ58agujiOa0EOHU\nt2B+5a+VQEUYIgiC8EWw1wlKzwWx6MUflCLfqLFJqX3xWkGrHVLpuvh1h93RALujoY/wh6XL2jH1\nVThcTV4pPu2Ohj7pPuNj4/uIa6TsYxF9GCYTUFhXIJn21O5oQE71/Sj5oAhFtqVewpzBlt6Ig5XZ\nVZg6NFtS4AR8J1AqrCsQbJdaWzHBLosSJGWP3PxVSu9l1NpEzfkP52exlms/1H9PqL1vsLKEcZg8\nHo8n1EYEi2j8KpK+9gwsNL7q+fyLb/D8rmMYecsAjL71Bp/lLalJqiI/vPH+GfT0ePDQ/3+LsC1r\n9GC/bO0P0NwNLDS+/tOfv3Zfu3Yt/vznP2Po0KHCtn//93/H2rVr4Xa7MXToUKxduxaxsbHYs2cP\ndu/eDY/Hg8cffxxTpkxBW1sbli1bBqfTifj4eJSVlcFqteLYsWN47rnn0N3djbvuugtPPvmkoh1q\n53Cg5vv/Nl3Bs7//GMNvug5jbxuo6dgvHM04dOwrjLttIG6/6bqoeS7QvSV40FgHDxrr4EFjHRwo\nElD0QtdP4FH66trfaCPhEq3EX+yOBskvpSMRqXMSiPOk9HU474DzFR3IXxvCff7pHYNI6BsjkmxV\ngr6Kp3VROBDp66JouR+EC1qeIf7cw/SeN63pIpnQQEskFb4MHwmI1bNuwkYAQMHBRTh7pRHft9wo\nRB4Up+xi6bZYatL8mly4u91ekQql1jBSdokj7TCxjTg9F6uj9kwNAGDq0GzFPvNtsAhBfDQhh6sJ\n6eYMr/blbBVHTlLzNwEvAJIro8Z2ueP5PlGEmsCj5pxF85j7+0zSuy4iEVCEQy96AwuNr3o+PNGE\nbTWf40c/HIRh37/WZ3m1IqC/fHQWX19uw8M/GSZEi4gWZ28gobkbWGh8/Yde6ISeUIuA/vblt1j3\n6n9jxNDrMWaYVdOxX19uxV8++hL/fPP1uOOfrFHzXKB7S/CgsQ4eNNbBg8Y6OJAIKHrpj9dPsB1k\nUqmuxKkRou2FrxaiaRykhDmAemebXJ1qRGRipxmfBiNQ4xruzmZx+hG9Tk+1bYViLKLp+gHCf04F\nGloXhZ5IXheFOkVWtKFnPPUIT408b/6IRKTWq1IprfhyTOTChD1MIAN4p/tiv0u1wZdliMVGUnXx\nAnLx814quoqU+MWX4Ig/no0Fbxe/T9y2eLzkbJSy35/1iq/5pCQyUqqXCCzROOZG3Nv0rosoHRhB\nEIZwuZmlA4sztF5zcm96sVZKCUYQBBFVCOnAYrUvR1MoHRhBEARBEFFGsEOfGxlKX097/O+BCFEf\nKaHkeTtDHarfSKTSNgDQ3D+p+SLXHl9OKq2GVvTO7XCEPx9q55mefgVyLHzVGa7Xj96xMCKdDkH0\nV4J9P4iE54A/aHlu8MewbWrHRu9582fcfaWhYmWY6EWqjwBgSx8nlGG/O1xNfVJasWN48ZB4H28L\nSzsG9Ip3WKqx/Jpc5O7LEURCfPoxFpGIryd3Xw7ya3LhcDWhPKuijwCIrZ2UUjbxawjWX1bHvNqH\n4XA1CanO+Hr4PjKYyCd3X06f9nhxEKtPCbk55ms+SY25VBkiuETjmIdyjUoiIIIgDIGJgFKS4g2t\nl4mKXG3k6CUIgogmBBHQ1ShvWki+KgJqJREQQRAEQRBRQCicR0a8jFSy+3zzOUWBi9TvRhEpzjg5\nR1O0IHWutQqAtArFWDkAaHW34oTzOAZbhnilr2B1q23bF2LBUySg5jzouUcY7eRQKwLj2w8n/LkX\nRcp9jCDClWDeDwJ17/O1jYcJLQLRNiAdUYb/Xa8QQ64dtXZJicy1rE+l2hdHtwF6RT2++sGXYQIe\nXigjxu5owIx9PxXSc0mxbsJGlNk3wOFqgrvbjcUHFqGwrgDLx69AfGw80s0ZWDdhIwrrCgSRUGFd\nAfLeyvES2JhMQO6ts1FYV4DFBxZJ9jndnKF6PcPER7zwqKS+GA5Xk1e/WR/Z/GTRGYHedGLnWs7i\nhPO4sI+Jidj5O+E87nW8HMEWWNCzOXyIlHMRqjUqiYAIgjAEQQSUGJhIQC6KBEQQBBFVuLv1i4Di\nYmMQHxdDkYAIgiAIgogKQvV1oL/tydnNXvCLI7GIywWqv+EaEURMpNhpBHr6yJxKWoViDlcTHv3L\nPHzlOodH33lEcK4xh5IacYUep2U4iDbUOknVIuf0VXOMv0iJwHyVDzf8ucb70/2BIKIBXymU1CJ1\nv/Z1DxcLLfTiqx29UR39vY8p2cW3yyLZANKiEPH6VOn8KImIlBALoPn0YWJs6ePw8r3bUWbfgPPN\n57zOH+szE+akmzNQNa0aVdOqUZ5VgalDs4VoPrb0cUJ0H1v6OFRmV6Fi0mZ0eXr9aQ5XE1rdbdjw\n8a/w2IhFiI+V/oifjZ0vEVV+TS4K6wq81mhMAMX/z7a/Me1PkuNgSx+HLZN/J/SfHzP2zC+zb8DL\n926XHUc+2qTcPqPXB0bWqzXaIuFNOKy9wx2Tx+PxhNqIYBHJeUzlsFotUdmvcIHGVz1rfteAc84W\n5E++FSaTb4euJTUJzS3tPsudd7pwwH4Oo2+9ASNvGQAAyBo92G97ox2au4GFxtd/KL976FE7hwM1\n3w9/2oStf/ocP/7hINz6/Ws1H1996Aw6u3qQN+kHUfNcoHtL8KCxDh401sGDxjo4BGqcaW0Ueuj6\nMRY+9QFB6IG92NcihGApL842f4HrEgfg8ZG/wN4zb3illgB6HaZKjjl/bA7VnPc1Xnpt03Me1NSp\npi6+HIs6IOfYNdpGIrTQuij0RMO6KNzuyXrufUrbeGrP1GDq0Gz/jObakWtPvD1YY+yrHSZOKc+q\nUHy+2x0NSDdnAIDX+RHXL14n8BFsmPiGP0Zp3SsuJ16LsIg3C9+dh+rpbwvt8udiXu3DKLItxQjr\nqD79FPediYly9t6PVybvQOnRtXB3u7Hqx2swdWi27FiysWGCKvazVH/k+qoGLXNIzfxSul78rVuu\nvBHzXsvahdY58oTyPh9M9K6LKBIQQRCGcLm5HSlJcaoEQFowJ/dGFmppo0hABEEQ0YSQDixW33Mj\nOTEO7Z3d6OnpN3p2giAIgiCIiEFr6ieC8JVCRG1qrlU/XoP1E8qRlmhB1d93CV+q8/WwFBZ6bVNq\nP1QoRWHwx0ESiDQ3WlKtsWP49CJyc4UgCIKh9l4TiAgSUpFx9Nz7tLTHoqn4i6/IdsGK6uirXUA6\nBRoT+EjBniWsPl4AJI5wJLVOqMyu8hIAsYhCdkeDZARMVpdUJEK7owE5e+/Hq5/9AQBQenQtMszf\n87KfjypUZFuKx979OU44j6Orx43CugKvttq6WlFYV4DaMzV4cG82Tl36HN9PvREjrKNQmV2FqmnV\ngkhMLMBh/4tTivERk8SRPfl5LY5i5Astc0jN/JITBkuJtKTKqEFc3oh5r2V9JY6OSXyHkevTaIRE\nQARB+I27qwdXWt0wJ0mHEvQHVqeLREAEQRBRhSACitG3HE2+mn6yrZNSghEEQRAE0b8w6iWl0WHs\no/XlKRF45JwxWp2ndkcDHnv35/jPYxWomLRZSI0hrlOLI0VL26FGTgCk1tElV0bKYagXPaIidky6\nOUOxP5QSgiAIhpp7TSBSyUgJENTao9dOo8WawRYc6FlLilOgDbYMEQQ6cnWJx0mcukvudz7lFNvm\ncDUJ/5fUF2P5+BUoz6qQjHDD6hLX29PTg5L6IjhcTajMrsKb02tkx9yaMhBDUjMxwjoKFZM292kr\nzhSP8qwKjLCOwqCUDGw5sRmrfrymj2CHt008V/mUYuxnAIoCp/yaXDy4Nxs5e+/vk85M6pz5i1oR\nHS/wkhJ5ab1mjL7G+HrVoEfAHkjCxQ6jCMSzQKmtYEIiIIIg/Obblg4AQEpSnOF1x8fFIDE+Fq52\ncvISBEFEE+5uJgLSHwkIANo66PlAEARBEET/waiXlEbUI/d1M0EA2l5y+3KuqHW+2NLH4c3pNaia\nVi0cJ2WX+At6KfivvX21LXZGhhNqx07qGhb3x6jrXK8TjTlhpfoTKAcdQRCRi6/7QSDuG0p1SkUy\n87dOvoxRqBUcGCUmV7uW5Lfb0sfhjWl/8hL6igU4SuJiMVLPFLl1AEtPydJvrZuwEaVH16KwrkB4\nbtodDV4CG3EEGVv6OOx7sBbVOW/3STsm1e+S+mKs+vEaAEBhXUGfdUx8bLxQf3VODZaPX4HSo2sl\nIxXxoibWr9ozNSisK/DqH6uPRUCSgomXWBozOdENv05Smje+9s2rfVh2rSWOVsTKO1xNklGftAqc\neVGRluOMIJzWOKH8my9QbQZrfEMxdiQCIgjCby582wYAMCcbHwmot944uNrc8Hgo5QtBEES0wCIB\nxegVASUxEVC3YTYRBEEQBEGEO0a9pDSiHnEd/nzhTkQXel5yywl2tLR5vvkcbOnj4HA14cG92ZLO\nJvb1vq+6tKR94J2RkRQdS+wwEzs5xcKmQDhJ1I6ROJqCXBm99YcbkWo3ET3IiRHk9kUqelJv6a3T\nHwdwMJ3/wYyipBQpx1d74kh/WvvA6pXbLl4HMDELS0/J2relj0NldhXKsypQUl/sVYYXnojFK7b0\nccK6Ie+tHOTuy+kTcYeJVdZN2Igy+wYAvcKb5eNXePWNtX2++RwcriaUHl0Ld7fbK1IRHymJpdAc\nbBkiRFFsdbcK5flIUOx/sbAn760cr75IiYv4bW9M+xPSzRmy80ZuTvG/r5uwUVKgJnXsYEtvGjUm\naGLbxPNC7VxmkY9y9+WE5AOIQKS9CpQo0Z/6leoK5HgHYnyl2gi2mItEQARB+M1XThcA4NrUhIDU\nb06KR3ePBx1ucvQSBEFEC0I6sFidIqCEWAAUCYggCIIgiPAh0l4C661H7ktbvXVRBKHow4iX3Fqj\nA/COmXRzBm5ItsLZesHrOP7rfV8RFbTazzvAwik6lpJTTexs5PsrFWUhWLZJlRPbZ2T94Uak2k1E\nF+I5yAsZ+uP8lItwIlVObpvWZ4u/Y+zP8cGMosTX4W9EQLl6GeKUVUqRZcQpwfJrclFYV4Ai21LJ\nVKMsKpAtfZyQwpLtyxp8jyAQ4tsHesXJcTHxeGJ0gSDUEc83W/o4FNmWYrBlCByuJjy+fz5qz9QI\nZdLNGYKwh61zqqZVCzaV2TfA4Wryio6TX5MLu6NBiKJYnVMj2C717OfH44TzOM42N6Lu7EGvyDq8\noIsXMJXUFyPdnNEnVRcv1mb7+PER33dYP8WCbjlxT5l9Q5/UduKIXGrn1mBLb8o0PuqS1HFS661w\nuV/y4xloUaLRa5lwioYkh5o+B9v+sBMBud1uPPXUU8jPz8dDDz2EAwcOoLGxEXPmzEF+fj5Wr16N\nnp5ep9GePXswY8YM5OXl4b333gux5QTRfzl/sQUAcG1qYkDqNyf3RntwtZGjlyAIIloQREAx+paj\nlA6MIAiCICKTnp4erFq1CrNmzcLcuXPR2Njotf/gwYOYOXMmZs2ahT179igeI/e+CAC++eYbTJky\nBR0dHUHpV7Q7bXmHFy9yAPx7KRsJL3T9xZ85EcnzychoVb7mCXPMmEy9zjSHqwnOtgt45shqry/x\nxV/vy2F3NPg9n4M9t+Xmij92MAcm30awHTr+Oqki8f4SqXYT0YV4DrJ5yUQC/Wl+KkU4kRJKKW3T\nIgDy536rJFgy4h7OBB6RAC8E5lNS8QIVqXPGM9gyRIj2U2bfICnsYELj2jM1ACCIbF797A944dhG\nQQgkFreU1BfjsRGL8PSHTwlCnfyaXDhcTYLwx+5owMJ358HuaEC6OQMv37sdpUfXAvCO6jPYMgTz\nhi+ALX2ccH5s6eMwb/gCISIOEyi1dbUKacX48rwISWo87I6GXnHNXWXYcmKzZNQgsYCJv2ew+nP3\n5SBn7/2CgJvBxo1P5cXX4XA1SaZgFQuA+HuWeD4oiaClYGVZ1Cdxf/ly4uuOT8XG1+WLQPwNwM95\nPk2aP8j1KxBrGSPrCtT4htvzMexEQPv27cO1116LyspKbN26Fc8++yxKS0uxZMkSVFZWwuPx4MCB\nA3A6ndi5cyd27dqFbdu2oby8HJ2dnaE2nyD6JeedLsTGmJBmDkwkoNSkXnWtq90dkPoJgiCI4OPu\nZiIgfZGAUkgERBAEQRARyf79+9HZ2Yndu3ejqKgI69atE/a53W6UlpZi+/bt2LlzJ3bv3o2LFy/K\nHiP1vggA6uvrMX/+fDidzqD1Kxgv/UIlCOFfaPNf6Uo5teS+plZCb6oGrYRi/Pxx4kk5KfobvDPJ\nl1Ak3ZwBjwcorCsAAKy7q0z4Cl7JGSRGKg2WlnPAf2EeTAGQ0jyTsoM5NOVslKqTpdYIpkNHrVAo\n2ggnBxLRP5G7b8jti3bE6Qil7k1qt6nB33WlOOKKEVHqpAThwUJvm2IxijglFS8u8SVuZ9F+pNbB\nTGg8fegMPL5/Pk44jwsimwHJAzDY/H3MGzG/j1CYRbZ5+Ic/84q+19XjxqL9jwrCHwDItNwotGtN\nGQh393e+MmZL7ZkaFL6/GK9+9gfBttozNXj6w6eE5zfrV3JcCsqzKvqMl5RwhdnNpzq7bcDtAPoK\nhhlKUXIGW4agalo1qqe/japp1X3KpZszvFJ58etAX5EKxX+3SLXvC1/iPiXEgqfK7CqvCE9qIyAG\n6hpj0aH4NGl6EUdqkhIChSNazoNWwq3PYScCmjp1Kn75y18CADweD2JjY/HZZ59h/PjxAICJEyfi\n8OHD+OSTTzBmzBgkJCTAYrEgMzMTp06dCqXpBNEv8Xg8OH/RhfTrU3Q7cn1hTu4VAbW0kQiIIAgi\nWvguEpDOdGBXRUCtHZQqkiAIgiAiCbvdjgkTJgAARo8ejU8//VTYd/r0aWRmZuKaa65BQkICbDYb\nGhoaZI+Rel8EADExMfjd736Ha6+9Nphd8xIsGE0oIw2JnSFyUU6kxBNi/HHeSO3T8jI/FONntDgs\nGsUOvuAdDEr7AWDTPZtRnlWBf333USyrL/RKfcE7g5TmqNi5pFWMFYpUOf44mZWQusYf3z9fl9jP\nH6TsVOOMDuV9kyCI6EAqKgxDSSgltU3rvUjtcb4EoHqj1MkJIUIR7YIXoUvZqDQGvMhHnJKKr0fp\nWSKuU2ptvG7CRuw98wZevnc7rCkDkRyXguXjV6DMvgFbp+zwEuAw+LnFpw/b80B1b4qu6W/D2XoB\nJfXFWPmjNQB6n83O1gte9aybsBEAMHVoNsrv3oT/PFYhRNQpPboWz935PKYOzfbqT2V2lWDD+eZz\nXtF3yrMqUJldBYerSdjGhE7rJmxEujlDiGAkhtUjHtvaMzVe6zkmqhILsJhdLJUXs5FfeygJusXn\nnNnAX8u8CFp8fsVzQU5QJ0bNvULttRPoa8yoiG68wF6uvnBcg8ndA3jCbQ355T++1HVcnMF2+I3Z\nbAYAtLS0oKCgAEuWLMH69ethMpmE/c3NzWhpaYHFYvE6rqWlRbHu665LQVxcbOCMDxFWq8V3IUI3\nNL7KXLjcivbObgwdci0sqUmajlVb3np9r6PY3e2BJTWJzolKaJwCC40vQfhHFxMBxeoTASXExyDG\nZKJIQARBEAQRYbS0tCA1NVX4PTY2Fl1dXYiLi5N91yN3jMfj6fO+CADuvPPOIPWmL+yFYSDCn4cy\nvLgaR5faL3P5F+l6X4IzYQYAxWgmfD18uoJgoibSkZpILYGaW75Qc57kjgP095/Bzl1JfbHsl/nM\nMVhSX4wi21KYTH33s+Nqz9Tg8f3zFeeqr2hBSn1hDrJgnyOj62NzjYe/xvXOCyNgkQjYeZW7JkJ9\n3yQIIvIx6j6i9xnu6zi19YqjE2ltNxzupw5Xk9e9n9lYZFuKMvsGL/v4ZxQrK143smcn66e4XvYM\nzK/JlVxrSq2D+ShB5VkVQqQfKbtOOI97pSzl2+Tte3z/fDxlexrP/tdqnG1uxLq7ylDyQRGsyQPh\ncDVh8YFFaO9uQ3JcMvY8UI2szEl46XiF0H5XjxtbTmxGVuYkoT9dPW6s/NEalB5dK0QDYmuogoOL\n4PH0CqvZtsUHFmHTPZu9xqjIthQL352HTMuN2PNAtbC9sK4A5VkVXuPPzlGRbSkK6wok17d8ulbx\nfFNaB0rBn/PyrArhWDnxl1jQJRXRy5cATrxPPL/4+vn25foT6GvNqPrF15n4/1D87aIGPfMgVJxv\nPodH98/Fx499rPnYsBMBAUBTUxOeeOIJ5Ofn44EHHsDzzz8v7HO5XEhLS0NqaipcLpfXdv5FkRSX\nL7cGzOZQYbVa4HQ2h9qMqIXG1zcnTl8EAAywJKC5pV31cZbUJNXlTZ5eR/HlK+1obmmnc6ICmruB\nhcbXf0hERfgbCchkMiE5MZZEQARBEAQRYYjf5/T09CAuLk5yH3vXI3dMTEyMV9m0tLQg9ECZQL4w\nDIeXkEqwtApySH1JKyfw8eWs4r8UVuvM0uI8CBa+Xo6LxyEUAiAtL+/tjgZBIKJGpKWmfjavlIQ1\nbDtzMm2+dysAeDmTWF1l9g147s7nFcVq4nFnc80XwTxHvINFiyDOH/EdAOH8hsqpIyW08uX41iJY\nCqW4iSCI8MSIe4Le54Oa48TiaiPuY+I1GxMCAcaJkuXSNcmJnaTu/UwcwotpAGnhBb9u5PuglMKN\n1edwNQn7fPWDFyczkRKDtXnCeRyP1OYj03ITfjt5q5eASCxcefne7Sizb0DFpM0Aep/DA5IHoPTo\nWgBAl8eNr10OfC/1O3FRXEy8YMueB6rhcDUJNi4fvwLPHFmNZ46shskEr+hIAODx9NrKBEwOVxPO\nXvkCBQcXCdGImI3V09+WTAfGb7M7GoSoPnKpw/jzyERCJ5zHBZv58ZEbdyWUBGJS+/hzz1Dzd4vU\nNSJnt5T4SU/f/EVrW0rXKOuPGqF2OCFnp9ScCQWDLUPw5qw3dR0bdunALl68iPnz5+Opp57CQw89\nBAAYPnw4PvroIwDAoUOHMHbsWIwcORJ2ux0dHR1obm7G6dOnMWzYsFCaThD9kvPO3hexg29I9VFS\nP0kJsYiJMcHVRo5egiCIaMHdzURA+pejyYlxaO/ojQJAEARBEERkcMcdd+DQoUMAgGPHjnm9y7nl\nllvQ2NiIb7/9Fp2dnfj4448xZswY2WOk3heFA+H+ojMQ+EqZJI4KI/eyVUvodd4hpaZsqF5CK/VF\nrV0sjUGw7WcONrUCIJYOjjnbpEQp/Hj46j+bD3ZHAwrrChTHkjmZimxLYUsfJ+loYv3ZcXKb5vRR\nWuZloBGnZanMrhK+uleyUW9qA3F5h6spZNcTmzNSDjMpfN2bxGXDKfUDQRDhj5b7hd57pq9nJPBd\nCiYjU1LyQgWlZ7dUGh1fSNUrdw/mI7CI7/1MHGJLH+eVzkoq4ot43chHiScYtQAAIABJREFUOZLr\n+2DLECwfvwIFBxcJz5LzzeeE1FR2R4OwnR97Jhoqsi3FY+/+HLn7crzanDo0G7+fWonfTt6Kkvpi\noa0TzuMA4BVBaOrQbOyY+irSzRlC/6cOzUZldhVs6eOw+d6tuD7pBjx753NwuJqw8J15yL11tlAv\ni6DEbCw9uhbZN0/Dpns2CxF8WJ8driZsumczqqZVe43LjdfchF+MKsDj++fjhPM4Wt2tKKwrAAAh\nZRi//mNjzsRbRbalgtiIF1azc876y9ZudWcP4pHafNSeqfE6L2x8pZ7t4nkz2DJEEFMxlK4Pvk72\nc+6+HEForfXvFr48bze/fmOCGXa8uAzfL1/XlZ5rXu26h7dBrjx/jSpFPgpXfN1nQ23796/5vq7j\nwk4E9Nvf/hZXrlzBSy+9hLlz52Lu3LlYsmQJNm3ahFmzZsHtdmPKlCmwWq2YO3cu8vPz8cgjj+DJ\nJ59EYmJiqM0niH7HuasioCFWc8DaMJlMsCTH44qrkxy9BEEQUYK/kYCAXhFQjwdobnUbZRZBEARB\nEAFm8uTJSEhIwOzZs1FaWorly5fjrbfewu7duxEfH4+SkhIsWLAAs2fPxsyZMzFo0CDJYwBg2bJl\nfd4XEeEH//JU7ESSemEfTZGUxH2Xe2nuq478mlzVQgYjYc4bNe1KpYNT4yxReunOHCRyX46zcryT\nqfToWsHJU3umpo/tSlGFpBybvPNRSzSZQCJlT0l9saxzixfhqRWdSTmsgO/EXszBGQr8EQ/6qjcS\nvlj3l1A7soj+hb+iw2DhS0Apt13LvcfovvHRW1gUFbED3qg25CJkiJ87asdEql72zOfhxcBs3SgW\nRbDtJfXFmDd8AQrrCoRnlJRghBcLidvixT2s3WeOrEZnt1tIm5W7LwcP7s1G7ZkaLNr/KFrdrTjh\nPC6cA4erCTl770dOdTZGWEdhy+TfCaIafn0xwjpKWJOwNh/fPx/Lx6/oM94nnMdlx/XUpc/xdVsT\nltUXwdl6Ad2eHlSe2inUy9tVWFeAi61OvHBsIxa+M89rnGrP1CBn7/1YtP9RYVvuvhwU1hVg5Y/W\nICtzEp6783mMsI5CSnwKHhuxCIV1BVh8YBGKbEuFdQgAYd3qcDVh3vAFKD261uscsL6ccB73SoHG\nREIP//Bn+P3USoywjpKcM/y5k1qrMPgIQmyO8FGjpIRbrK3K7CpUTasWBO1y60Z+Tcnbwpcpsi0V\n6uDnPX+98seJt/kS92kRPIvxdb8QC5eUyksJf6TqCWeC9bdpsMbB5OlHHvVoTN1CKWkCC42vb/7j\nd0fRdKkVmwvvxqFPvlJ9nJZ0YABQf/wr/G9TM3Im3Ixpd96sx9R+Bc3dwELj6z+UDiz0qJ3DgZrv\nz+2048xXV/AvU/RHcvzvvzrx6f9+g6dmj8btN11voHWhge4twYPGOnjQWAcPGuvgEKhxprVR6KHr\nxz94R4zSfj6UPnsZLE43IXVsuIbEV1snAOFL4vKsCsW0aVJjyZwTSscFCi1jwsqKz614n1oRCp9S\nAJAXf/CpFliKilOXPsey+kLcmHaT15fuUrbJ2aA2pZn4XIUiVRabN/w84ecem3dqzydfTnwMS/sW\nKqT6oNQvX/en/kSo5qdWaF0UeoxYF2mdb6G8fyql+lGyScs9Ve656Ksetc/NQKxffK3PpNIZabnn\n8s8TJjqJj433eu7aHQ1eqaIACBFe+LZZ1MC2rlZ4PMCzdz6H0qNrsXz8CpQeXSuIeArrCrB8/Aoh\nRRV7Nua9lYOzzY14ZfIO4TgAePa/VsPjgSDkYUIXAJj+5n0YaB4ES0Ka13M2pzobCbHx+MWoAuw4\nuQ1FtqWYOjRb6CdbXzDbgN61Rt3Zg3j4hz/zGlsAyNl7P9bdVYaHf/izPmPyr+8+ipxbZmLzJxVY\nP6Ecy+oLsfUnvxfaqz1TgxHWUUJ96eYMvPm31/GD634gjAEb18dGLML6hl/hzzMPoO7sQWw5sVlI\nH9blcaPJ9RWqp78tjGPurbPx2l93CqnKWCovoFe49PQHS+Fsu4BXJu+ANWWg17lytl7AI7X5KL97\nE3ac3CY5j6T+TuDHJt2c4bUO5D8w4K+t/JrcPung+HU5q6fIthTWlIEA4HPNJP7bhkVcEq9ZmXha\nLJSXq1PqHsRQsoVf66lBvIb2tSY24v4SzL/p9BCsZ5CedvSui8IuEhBBEJFDT48HTZda8b0BZsT4\nEclBDQPSkgAAl66oFw4RBEEQ4Yu7qwfxcf4tRa9P640C2fh1ixEmEQRBEARBEDoQf/Eq9WWj1Nev\n/O9yX4cqbQ9UPwLxpT77opg5reT6w17iS33NqzYij9FoEQDJfSks3qemTXFEA1+Re9i/8qwKFNYV\n4Df/XYaBKYNQMWlzn0gDal66s3PmSwDEvtBWU3+gz19+Ta6QNo3Z5nA1wd3tRmFdgaY0MeIx4wmW\nAEjKTrnr1Nf5jISvz31hhP39JdoRER5ouR8qRZlQM/f9uT6U7FQb+UJrG/y9TGn9oTbCh1EOeoaa\n9GKsT0wswSOV6kv8c+2ZGiGNKNArYo2PjRfSWzJs6eOEVJ9sLcUi6PCpQtn+Z/6/5+BwfYVVh5/G\nlY4rgqCn4OAiLD6wCK3uVoywjhKi17C5t+eBalRPfxvWlIFwd7vx9AdLsfDdeVj5ozWCAIhFk0k3\nZyDdnIEbr7kJz921QUjNxfpRnVODX4wqwNMfPoWswffg8f3zhX6ytUrurbNRZt+Ax0YswvLxK1B3\n9iCWf1AspMBiUY0AwJo8EL/57zJhvjABkLP1As42f4FrEq/B91IH47YBt8OaPEgQstgdDVj4zjwh\n4o4tfRwcriZU/X0XSo+uFYQ0bL0DAI7WJpT+11oUvr8YP8m8DyOsoxAfG4/N927FK5N3wJY+Ds7W\nC2h1t2L9x2vR6m5DYV2BsI1F1HnmyGpcaP0a6+4qwwjrKOFcMbHWCOso/H5qJR7+4c/6pMXi5xcv\n2mERofjUcEyAw+aWUvRM/m8Q1mdb+jhh3fnMkdWYXn0fcvbej9ozNX3WePwc5qP2APCKMiSev2oE\nQLx9Yvi/s6RsYXOKjaHadR6zXa6fvuzSip56grl2C9YaKZhrMRIBEQShG+e3bXB39eB7NwQuFRjj\n+mt6RUDfkAiIIAgiKnB3GyEC6n02nL1AX+4TBEEQBNE/CEcnNv8i05fIQPyyU0oQJFc3Q0p44S9K\nzkejGGwZIpmmQyyQkRKeRILjXuys8cd+5uCSm0diJxH/e7o5A8vHr4DJBMSa4iRTifFOWF91K9nM\nnEZSjitxnUaLzKREMPzc4Z1kLJ2FOO2E1jYCYbfSOZZyIuu5FkJ9/RgxjkbOn3C+jxDRh1IEGV4A\nKycUVTP31a4LlOrwda83Arnnotp7lLh/Rt6jxaIkcXoxOaTWfr4ET0zMUXp0LV6+d7sgIiqpL8by\n8Sv6iCVYmqzaMzVCtJXzzedkn+9Th2ajOudtbL53K9ISeyP0jLCOQlxMPJ4YXYCU+BQ4XE0os2/A\nvOELhGMdriacuvQ5SuqLserHaxBrisO6u8owdWi217nhhR4rf7QGZfYNwr7aMzWYXn0f6s4exI6T\n2/Dcnc+j7vwBPHfn80I/zzefw8J35uGZj1Yia/A9WFZfiAV/+RmW1j+JaxKuw8oPn8YDb07BskOF\nuNJxBUDveuYr13cpq4psS5FuzsDUodkov3sT/vD5dng8gLP1Ai62XcDCd+YJ58MDD545slo4F2yc\nWQQclrZrsGUIsjInwZo0EP/X+TF+Pnwhtnz6n3C4moQoSmX2Dag9U4PH3v05nr3zOVRPfxtbp+xA\neVYFltcvRZPrPAoOLgIArPrxGmRabsJtA273GuPCugJ09bgBQIhWJF4fi6P5AEBXz3eCZl4YdMJ5\nHA/uzUbuvhwAEIRi/N8YYmEZ2863l27OQNW0auzN+TOqp7+NqUOzJdd47GexCJ0XJonxVzwtl8aW\nv7b4a1VJhCdGbi2rBf5e7i9iu4Mt4g7WGilY7ZAIiCAI3ZxzugAAQ6xBEAFZeqM9XLrSEfC2CIIg\niMDj7ur2WwRkSYlHfGwMzlIkIIIgCIIg+gGheBHKt60E/3W03ItqX/Wq/creiJfVPLzzKhgvZOWE\nTvzvctEIwh02D/ydp/yY8F9z8w5EKecx27f0UCHa3O0wKQStlhOZ+Io8Jd4ndlxJOWn5r8WNitYg\ndqADfecO7wDjf+YjPKhtwwjE50qpDSUnsh5CKQAyYhyNEjKFo5CUiAy0zh1fTme5yIC+ysrV52td\nEMo1lBy8IJOJO6TKVGZXweFq8oqa429/pISkYlESL1yQa4tPS8XXKz5fcudwhHWUUH7dhI0os2/o\n88y1pY/Dy/duR+nRtSisK0CRbalgJy+a5o+zpY8TIgOxSC/lWRXYcXKbIDQqsi3F8g+KkbsvB7Vn\najDtzakofH8xpg+dAWvKQDhav8J/HqsQnld2R4MQcc/uaMCL9hdQenQtimxL4XA1we5owDNHVsMD\nD37z32VYN2EjbhtwO+YNX4AtJzbD7mhA3ls5cLiaYElIw6/vfhHzRszH1p/8Htum/AEDkm7A83eX\nCyLma5OuA9Arbn5k+HzEIAanLn2OvLdysPCdeXhwb/Z364CWc+jq6cII6ygsG7cCF1q/xpt/ex22\n9HHYm/NnVE2r9hpnNpYOVxO6etxYfGAR7I4GnHAehznBjM5uN444PsRzdz6PdHMGCusKhLEfYR2F\nQSkZuNR2CenmDJTUF8PZegHOtq9RMm4lKiZthsPVhNKja7Hqx2tQUl8MAMK5qMyuEqI08lFr+N+l\nIvnseaBaiPbI9nX1uDHCOgpvTq8R+gjAqwz7+8TuaPBqj59jLHoQP3fYz+K1SN5bOYLgiEcs8DcC\nZhubc1Jtiu+latdPUgIivZF6fEUN01qXnKAwFITTM0MPJAIiCEI35y/2Ol0HB0EElBAfC0tKPL65\n0g6PxxPw9giCIIjA4u7qQXysf0tRk8mE69IS0XTJhQ53t0GWEQRBEARBhCehehGq1tHk6ytYcZ1q\nv9znj2HoeVktZT8vXAoVzK55tQ+j9kxNxL9sVorepKVvctEgpByl/Ff5ubfOxtetDlxqc0Lu9RET\nfInt9GW7XD94ARDvpBXXKdUnLUg5RaREUVLHiJ1hRbalXk4yMYG43/DiLjXCKKlzw45VGjt/HVBG\nonccpRyVaiM4KdUZbiKI/kZPTw9WrVqFWbNmYe7cuWhsbPTaf/DgQcycOROzZs3Cnj17FI9pbGzE\nnDlzkJ+fj9WrV6OnpwcAsGfPHsyYMQN5eXl47733vOo/ffo0bDYbOjq0fWSrde6oKS8liFVbVgqW\nHkrpfhJqZ7IYNk7itFhiBluG9EkpJOXo19qu3LNM6me5NG2FdQVCSimpNEziZzcT7jAxCC/8EJ9D\nfp04dWi2EOGlzL5BVnArJY5lPzPhDzt+6tBsQTxiTRmIm665GSv/zzPYe+YNpJszUD39bVRNq4bD\n1SQIMVgEnUf/0hvJ51LbRaz88GlMr74Piw8swqofr8G2n/wBKfEpOHXpc0yvvg9LDz2JKx1Xrqbu\n6r1+l49fgdsG3I4H92aj9Oha/M/l/4GjtQmX2i4hOS4FObfMxOWOb3Ch1YG6swfxvP05PHzbI9hx\nchsqJm3GugllSI5LwQnncSytfxI9PT0wmXrFZL8/uR2WhDQ889FK1J6pQbo5Ayecx73W3MvHrxDO\nw5x/mosujxsL35mHR995BFc6ruC3k7eiPKsCLx2vgMPVhMrsKjw2YhHK7BvgcDWho7sdT77/b3jz\nb69jx9RXhfRjvz+5HYsPLELBwUVo7rwCa8pArzUQOxdMlMPPGbl1Hi+mZtGfHK4mOFxNiIuJF86t\nw9XkdbzD1SS0x1LH5e7LESJR8fObT4fGBF9S14LD1SSsLfn6leYiPx+Vfpb6ndkml05YbJ/UNib8\nkvsIgRcQSdngC/7vP3/vsVK26q3PiLVONKybSAREEIRuzl+NBDT4htSgtDcgLQmd7h5c/AelBCMI\nIrI5fvw45s6dC0Dbi5v29nYsXrwY+fn5WLhwIb755hsAwLFjx5Cbm4vZs2fjxRdfDE2nNOLu8j8d\nGNAbKc7jAc45KRoQQRAEQRDRTyicV2odZ0xY4Qv+ZX6RbanwUtuXU1/8ElarAEjO4bVj6qtIN2cE\n7CWvmn4BvWPx2Ls/R+6+nLB+2azGNrEjQa/zlX25z45j54p3HDLHHHPaVP19F75nHoLn7/4Nfjt5\nq6yYSEn8Iv5dbcoWsZNWCX+c6nLXmpQTVPx1NusDc9gp4a/oRK5OJWGUlmOl8MdhEyhnjx4BkJIz\nXa994SiC6G/s378fnZ2d2L17N4qKirBu3Tphn9vtRmlpKbZv346dO3di9+7duHjxouwxpaWlWLJk\nCSorK+HxeHDgwAE4nU7s3LkTu3btwrZt21BeXo7Ozk4AQEtLC9avX4+EhATNdmudO6GYa0zgqEV4\nZHT7asrw5RyuJqybsBFTh2YLabGUEO/3FelDyj72HBA72vlj5SKOyImUmDCjPKtCMp2pOEoTv58X\ngrCoQvxzjok32O9MKFRSX4zaMzVCvx2uJkEoyotj+eff+eZzeObIaswbvkAQoTDxSEl9MVb+aA0e\nHDZTmLvp5gwhfdVjIxYJAiRn6wVsnbIDv777Rfzloffw28lbkWm5CU+MLkCZfQOsKQNRnlWBLSc2\nY2DKIFybeB1S4pMxwjoK1dPfBgA89u7P8fPaf0FTy1d4bMQiVP19F65LvB5ZmZOwfPwKbP6kAtcm\nXIfvpfam6JozbC4q//oHFNmWAgC2nNiMx0Ys6n2We4AbkgciKTYZztYLaHKdR3xMPFb9n2cxwjoK\nP6nKwqPvPILpQ2fgX999FNOr78PCd+fhhPM4as/U4NmPVqHN3Y6k2GT8y23z8E3HJRw5fxjO1gto\nvPIF/vXdR3HCeRwlHxQJachS4y0YmDwIGz7+lSC62ZvzZ/x28lZsumczVv5oDS64vsbiA4twwnnc\n67wAEEQj5VkVWD5+hdc6jxeIMfg1A4sGVFhXIKwReYFzujlDKJP3Vq/oh22rmlYtCGqk5nN+TS4e\n3JuNnL33e0XdYv+X1Bdj0z2bsemezSg4uMhLwMRfQ3KReMTzUS4tovhaZvNeK6wutQIiI9YZ/qBk\nqxFCR61Ew7qJREAEQejmq4suJCXE4vq0xKC0x9ppdDQHpT2CIIhA8Morr2DFihXCl1daXty89tpr\nGDZsGCorK5GTk4OXXnoJALB69WqUlZXhtddew/Hjx3Hy5MlQdlEV7u4exBkhAkpLAgBKCUYQBEEQ\nBBFA1AiApEL3y9XFHDVl9g3CS21fwgwtL2HlxD5yX8sG6iWvGsEJa5f/Ij1cXzZreakuTgugp0/M\nGcDqYl95M8Rfb5fUF+OxEYuwdcoObDmxWTLSDT//tMxZqZ+lEDtpfQnQtDrVxXazMZCax7zIjd/O\nHJ68wEqKQH4BrVYwqKdeqWhOeo8NBfy8FtvCpw7UWzcjnMWG0YrdbseECRMAAKNHj8ann34q7Dt9\n+jQyMzNxzTXXICEhATabDQ0NDbLHfPbZZxg/fjwAYOLEiTh8+DA++eQTjBkzBgkJCbBYLMjMzMSp\nU6fg8XiwcuVKFBYWIjk5WZftekScgUYsDA7V9csLLpXK8OI+u6MBD+7NxuIDi1B7pgalR9f2iWKj\nFl/3PT4FJPufd7Qz2+yOBiGiXe2ZGq82pCLdARBSleW9lYPCugJZG6XsYyLe8qwKlGdVCOVOOI9L\nPp/Z7+nmDCGiz7oJG4VUaSzaDR8Jhk9T63A14cvmRrzwf8uEaHivfvYHlNQXY97wBSg9uhZ5b+UI\n/c3d15t2q7nzCpbVF8LZegFFtqVY+M48LNr/KLIyJwnCpE33bMaOk9sEgZGz9QIqs6sw/4eP4Urn\nP3D/TdMA9K4R0s0Z2DL5d0iNt+CVn+zAwz/8GXJvnY3LHd/gzb+9LvQ3ITYRv528FSecx/G7k6/A\nEp8Ga8pAFNYVoLnzCkrqi+BsvYAb027Gjvv+iKpp1RhhHYXrkwbgYqsT2z/bgjf/9jqc7Rfg7nFj\n+2dbYDIB/3LbPKy7qwwrP3wal9ouwQMPSsb/OzbdsxkjrCMBAFtOvIRn/2s1rMmDYDIBl9ouAVx0\nxSdGF+AvD72HLZN/BwDI2Xs/nK0XUFhXgMUHesVJN17TK4x6fP98Yd5c6bjiNacWH1iEhe/Ow4v2\nF7zWd+x8M6EXDxMJsUhGDJbmjAmNKrOrsOeBamGNyOYnLyTj22ARjzbfuxXfT70R6eYMr3UQH/EG\nADweCPOWF7KJ7WViNgCCUElpzcbq44VCtWdqUFhX0CeKEX9diBGLrtQ8//XcR7WIEH0h177W9ag/\nzwOp9XokQyIggiB00dXdA8c3rRh8gxkmpSTrBjLgml5Hb+PXJAIiCCJyyczMxKZNm4Tftby44V/+\nTJw4EUeOHEFLSws6OzuRmZkJk8mEu+66C4cPHw5J39Ti8XiMiwR0VSB6lp4NBEEQBEEQmvDHAWzE\nl5X8y3Txy1q5r1XVfmnvK82FnE1Go+YlNL+PjUW4oiUqFEsRonRO1bbHUgxIpRrgnSdFtqV4+sOn\nAEBInyAn/JJKKxYIfAnQtNbla7tUGd4hxX8t7yvqRDg41aWcwHlvqY+WpcdxFA6IoySxfjAhnL/3\n4EAKvAh5WlpakJr6XUT92NhYdHV1CfssFouwz2w2o6WlRfYYj8cjvJM3m81obm6WrePFF1/E3Xff\njdtuuy3QXQQQHIGZ1Bz253kjrlsLUtFu/h97Zx4XdbX//+cMM+yLOIIgpmUuaCFeSVvM8uteVFKG\nGV3LzCwqscDcfi7X5bolVlhxM6+Z3WzxukeaW7hlapTGN7M0UwQZGUBlmIFhtt8f4/n0mXFYVNTq\n+3n58AF8lnPO53zO8v6c9+u8X96ukZP7EqK6sWZQDov6ZDNn/yxsDquUd0P7puez1xZRRD7m1zaX\nWu1W0nPTiAqK5t2+S8nMm++WnmekO/mYlJ6b5kaIkCNPf4CkdfdLc668zGKejgqKJnXrSB5el0hu\nwXae3TIcs9Xsij6zaywTu08GXMSIt/LeZMiGJGbsnSY9U0JUN97tu5SBbRLdIsmI54wKipai/ggZ\nrYjASM5ZzjJu5yv0iunDssP/ZmL3yWjUWvSmYkZvS6XaXoW+spgRt4yiRXAMU/ZMIiIwkqYBOpxO\n3OyIqKBo5vZcIBGBnts6gjW/rGLugZkEa0PIOphJ0tpEKfJRRGAkKhXERcRTZCykbXhbekTdw8qj\nnzBn/ywmdJtCqF8oUUHRRARG4oMPfho/DOYSFvbKYsQto2ji15S4iHim3jldiloEYLFbsGGjxHyG\n85bzADhxUllTSYWlgqWHF/OPvZMpMJ5wlT3QFclpwq6x6AJ0RAe1YP49C/nswbWMvW08GpWWdw5l\nMb7bZGZ+M40HVg8gfcdoFuW9wZz9swCIDmpBRGAkye2GovVxSXQ93mEYsbqOUpSr3ILtnDYVsuaX\nVSSvd5HGEm96iFBtGPO//adEjhHklQfXDGDkl09Jx+XQm4rd+rsguwhC2YRdY92u87T5RNvINxzi\n2S3DJfKWOLeoT3atRB1h46pUv0fBkpOSRLQmeR8Qac/tucCtb3k+lyir1W6V/hb3yJ/NW1+vC57R\nty4lIqY31EXA9Ga3Xakddjn26OUSgP5qtpHmehdAgQIFf07oy83YHU5iIoKuWZ5NQy6QgJRIQAoU\nKPgTY8CAARQW/m5MXsrCjfy4/Fr5glBQUBCnTp2qtxzh4YFoND4NKnNEREj9F10CLFY7TicEB/oS\nEux/RWkFBvqi8VFxuszc6OW8HvgrPMOfBUpdXzsodX3toNT1tYFSzwrqgtgp+kdNX9wvFjkvx8Hv\nea9IUzh/LreMnmHzvS0oN7TMte0ivZ4O/uudf2PhUp5BOEfqa2911Y3c8eItf3naA9skSk5K4aTx\nFk1FOEXri4TTUNT3bhvzvcsj/zT0ek8HVkbCOObsn0VEYGSdRCDP57qWbbg2h4/eVEyB8ST5hkNe\n3yu4HMXy6EiXI6HxR4M8QkBjELP+KFGP/q8hODgYk8kk/e1wONBoNF7PmUwmQkJCar1HrVa7XRsa\nGlprGuvXrycqKopVq1ZhMBgYMWIEH310ZVGlasOV2BeXAnmfuNL85bYRNMzW8BwPvRFrvJVZDjH+\nikgl4nxDybaetpj8b/lxQVCKi4j3SqiOCWnJoj7Z0u8xIS3drhXpyucLeR6i/KLu5vZc4D63OMFg\nLpHSEuURUl8Tu08mQBPI4n7vExEYyQ3BrZl653Qy8+ZLEX8yEsZhMBmYuW8qTXybovXRMGf/LOIi\n4tGbisnMm+9WZvFTbyrm+S0jOWMuZs7dC3j7YBYvdnFFhCk1GXDg4F/5i3iv3zLiIuKlZ9H6aEmJ\nHcbcAzNZceRDxvwtg4m7x7K36GtKzQZ0Ac2kssdFxEvzjphvHm8/zCVPGhzDmL9l8OqOl3m5awZR\nQdESwcPphDW/rGLpj4sprHSt447oNIperf6HOftnkdxuKOCypaKCo7HabTy7eTjBviGUVZcCrvvn\nHZhFs4BISqtLeKLDU5y1lAOQdPOjDI8bwWdHV9Ap/Fa2F24hMiCKpn46Qv1CCda6vmnLq8oYt+sV\n5vd8nSl7JuGr9uPVHem8du9CJu15lVcTJrHiyId8cHgpWrWWsbeN55/fzGDp4cW0DL4Bg7kEpxNG\nfDmMYtNpxnQZy7Obh1NYeQqNSiPZgssO/5spt89g5dFPqLJVkRI7jBn7pqBVa5nYbSoD2yRK725U\nXCqZefNAFntAELlEVKrVD30upW21W0ndOpIATSArEleybOBHUt2813+ZRKLxxNSvJ+FwONAF6KT2\nLEg7nrKlnhEYAYkEJ2yOPP0BRm15mpbBraQ+JY9GJWyS2vq3sF17bvCDAAAgAElEQVTlkI8tRcZC\nr9GDaiPOeNqLwv6trQzyvlNXGeV2lshLnBPjhTheVxlry8fb8Wthr/wVbSOFBKRAgYLLQpHB9UER\n0yy4nisbD36+PgQHaDmhN7o5zRUoUKDgz4xLWbiRH6/r2tDQ0HrzPXvW3KDyRUSEYDA0LvnydKmr\nvCH+GoyV1VecXotmQZworkB/5jw+6j9voMurUdcKvEOp62sHpa6vHZS6vja4WvWsEIv+Grjajq8r\nTd/z/roWoT3v84w04ul0Eo4cq92K1kcrLQzXt4jszVnkbUepKHd9i8iei8+1Pfu1gqfD66+2sOwJ\n8R68OR7qcjhcLkEILm6PggAESI42b+nV9S7kedbnEKmtHXum1ZgEmksl5nheP2f/LKps5lpJUuK6\nuhzM3q5vzLbt6ZQXaSdEdeO9fsvcHL7y8nruwJc71C6FPPVHhbfx7XLxZ6+LPyO6du3KV199xf33\n38/Bgwdp3769dO7mm2/m5MmTnDt3jsDAQL799lueeeYZVCqV13s6derEvn37uP3229m5cyd33HEH\nnTt35o033sBisVBTU8Ovv/5K+/bt2bJli5RP7969Wbp06VV7xmvtRPUcly41f2/zdEMIQN7Gwyt5\n5ktNx3Pu8yRFeY7b4pw8aoqcuDB6WypaH60UmaehJAP5TznhaNnAj9Cbil1jdv9lzPxmGlPumC7N\nleK8zWFlxt5pLOqTTVRQNMnrk1jUJ5uEqG5uRNUZe6dx3nqWpzs9y4dH3sdaY2Vi9ylukl/we9QV\nuV1qd9oYd9v/451DWZw4f5zxu9KZ13MhzYOjcDphTs/5RARG8sDqAXz+yJcATOw+mRl7pzGv50Ji\ndR0BeC7uJVYc+RCnCvx8/EluN5RRW57mubiXMNZUkG84xKTd4zhdWYQDB2O6jGV43Aj0pmJUahVv\nfJdJrK4jwqV13nKOGfum0NRPhwYNQb5BxEV0Zs7+WZRXlTNz31SW/riY9/ovQ6PWoFFrSLzpKZYf\nXgqo8EFN2/C2RAe3YMzfMnj7YBbJsY+x7tfV3BTahvXHV/PAzQ9is9vYVriZMN8mvHbvQsZsf4kZ\nd80mIjCStO2ppMankX0oi3zDD5wxF5MQ0Z09+p2UVZUxu8drLM7P5sUuaSzOz2Zi98nM2T+LF7qM\nZumPi8lIGM+c/bOotlXjr/FnTJex5BZtY/bd810SYsC4Ha8w9etJZPddQkJUN8L9w5m4eyx3xtzF\n6/e+xdnqs6w7vpo7Y+6SiFUTdmcQERDJvJ4LpWhDz24ZztpBX0hRqeB30tmiPtmM3pYqRY1a88sq\nZuybgkblikok2r/oDyIykEalZf49r5OZN59lAz9yI8kI5OkPEBUUfVG/EfZFle339XUR4Qtc8mM2\nh5Upd0x3I8V7+x7wtJ/l/Uren1NykpnYfXKDxwtPW1Z8/9Vmr17pN4t8HJKPkZdi/18JkbMx8Fez\njf68XhIFChRcVxSVVgJc00hA4JJ9qayyctZouab5KlCgQMHVgli4Adi5cye33XYbnTt3Ji8vD4vF\ngtFolBZuunbtyo4dO6RrExISCA4ORqvVUlBQgNPpZPfu3dx2223X85HqheFcFQARTS5Pi94TrZqH\nYLU5KC5rGLFJgQIFChQoUKDgaqAxHF91hR+/3PTlTnS5w6gu2Qr5vfKw6J4OeZGmkF5Y+dBat4hA\n9YVUF+H3ve1K9/bcns8upC5EPrXV0fXa2Smvn4Y47vP0B65Bqa4OxHvYdNzl/JA7HlJykknPTfPa\nFry9G3Gdp2RBXdIF4lrxU28qliQpPMtYV5uUX+OZZm3lr00GRqRVn/TC5eJyZAuEg2nNoJx6STFy\np3F9O7kv5/lqu15ebyk5yaTkJLtdKyRf5GXRm4rdJDPk5xb2yvpLEID+ijvU/6+hX79++Pr6MnTo\nUObMmcPEiRPZsGEDn376KVqtlgkTJvDMM88wdOhQBg8eTPPmzb3eAzB+/HgWLVrEY489htVqZcCA\nAURERDBs2DBSUlJ46qmneOWVV/Dz87vmz3mt2mhdc/6lwFMiqyHEysbqiw0dP4W941kOz/s952F5\nOcXcKJcly9MfIG17KuAivqTnppG8PqnOedfzWJ7+gDTXRwVFSzJLD69zyV9FBEZysuIEIzYNI217\nKkXGQknqa8od09H6aCU5q1OVJ6U003PT2HQ8h8y8+bzYJQ2VU0Vy7GP8u/9ybgy9iVhdR9Jz0xje\n6RmJpJGem0ZGwjiigqJZkbiSF7ukYTCX8MHhpS4yRnA04X463j6YJRFrIgIjeXbzcIpMp1jzyyoe\nWD2AcTvT+a3iV974LpPUrSNJXN2PrIOZJN70EDFBLXm5awYrjnxIiDaUNw8uoLDyFON2pnPGpAdU\nNPXTsblgI+CK5NPUr5lUXxq1lpVHPqXc4iLJBGgCebHLy2hVfkzYnUH/Vvex7L7/MOX2GfioNBwp\n+wmr3UZ5VTkf/vQ+Yf5NACdN/XVEBEZSbavmje8ypQhHZy3lfGvYj1btsoHKq8tQo8ZcY+LzXzdw\ntqaMF7eNYm/R15ysOMGnv3xEoG8QSw8vpu8NA9ij30mYbxN0ATre/D6T8qpy3jnkkqKKi4invKqc\n2funY7XbeOdQFqPiUjlrKcNUYyLnt/X0iulDZt58YnUdidV1xOkRzWdxfjaL+71PVFA0bx/MYt6B\nWQzv9AwGcwngkkibe3cm/j4BxOo6YrVbiQiMpFVIa6KCoikyFhIVFC29a0H0Valgyp5JPLwukXnf\nzmLq7TNZOmA5c/bPkkg/ggD08LpEhm/8OyoV9GrV263vCwm5lJxkNh3P4ZH1D5BbsN2rLTEqLpUA\nTaBbfxASdRO7T8bphJnfTCMlJ5k8/QGvGx08+7B8DBLnxTmz1czIzU9d0veCPP26vv8a+s3ijegv\n8pGXX25D1paO/LvU23Fvz+LtmLATL9fObgz7vLFt/MaCQgJSoEDBZeG3Ytfu15iIaxcJCEAXqkiC\nKVCg4K+FS1m4efzxxzl69CiPP/44n376KS+99BIA06dPZ+zYsTz66KN06tSJ+Pj46/xUdaOxSUCt\nm7uiJxScUeYGBQoUKFCgQMH1xZUSgOpzBF0OAchzYVn8bIgDy3OB1lv5PNNIz02TdsvWlkee/gBD\nNiQxYXfGRZE7aitHbc/mmc+1iFJyKZDnW9f7FfIGdS3s/1EXmOF3mannto5we4aYkJYNJmHInSHC\nASh2Y9fVP8RubHmEAUFM88xTvkPZ02HgGU1B7AavT+altvOeDpXGboOCgFRbunU5XupydIu61puK\nJRKOcF7Vlt6l7tiu633K621hryyJ1FNf34HfnfkiH+EU/qtA7hhU8OeDWq1mxowZfPLJJ3z66afc\nfPPNPPjggzz22GOAK0rPqlWrWL16NU888USt9wDcdNNN/Oc//+HTTz9lzpw5+Pi45N6HDBkipTFg\nwICLyrB9+/bLIgZdzTbnjUDZUFzJuCoImvK0LiXvxnA4N2T8FGOZJyFSzFlyqSHPeVgeKUgQVuXH\n03PTcDphUZ9sBrZJdJNM2nQ8h+T1SW4OdrnDXVzzyPoHyDccwmq3ojcVozcVM2f/LHT+EUQFRZMQ\n1Y0l/T/gpiZtmHLHdPINh3hu6wgyEsYxsE0iE7tPlkgaUYEtABi9LZUqm5kZe6cxt+cCYnUdaRV6\nI+Aiicy4azZRQdEYayqYsDsDvamYhb2ypEg1KTnJ6E3FLM7PZny3yfjKSMH+Gn+m3jmd7L5LCNQG\nYjCXMPvu+YzpMpZw/3BOmwrRm4uxO+0k3TyYGXfNRq1So/OLIOe39didNubu/ycqFaTEPklM0A00\n84tkfLf/x/x7XsdHpealLi+zsFcW+YZD6E3FlFeXShGA+re6j6WHF2N32gEY0Po+3jr4OqWWEjQq\nDW8eXMCIL4exOP8dioynGLfzFYrNp6mwnifEN5QX48cAUOOwcKTsJ/TmYgqMJxi38xUM5hKig2IA\nMFqN5OnzsGPHCTTxDye2aUfp3Ox900ntnEap2YCxpgIVKobEDiUqMJoBre9n0u5xFFacotxSirHG\niMFcQr7hEIaqM9icNpw4cDpdzxSsDeG89Sxnq8vJOpjJoDaPMGHXWAzmEnxUasb8LYP03DSe3zIS\nY02F1Aan3jmdiMBI3vguk2e3DKd/q/vINxzi7YNZ2JxWDOYSVCoXkSqrdzZ6U7Fkn5itZo6dPQa4\n5OZeiE8jUBtIdt8lrB30BQ+3Hwy4okI+v2Wk9G0SFRTNnLsXcM5SzgvxaVJZBERbFG1tdo/XGL8r\nnZFfDnfre8nrk5i4e+xFkXlEv8jMm8+iPtl89qBrg8SEXWPd7GP5d4w3W070NdEHAV7umkFdqI0s\nKB8j6hpvvH2z1GaneebrzabzNm55pnMpRMi6NgaItnE5hPSG5l/Xubqe81LRmPOtyukU3fSvj79i\naHQl5PvVhVK/3mGutjImazcxEUH84+nu0vHcg0UNTiMk2P+yJGCKDCa25RXy4F038vA9bS75/v8r\nUNru1YVSv1cORfLi+qOhbfhqtPePtx5ly7enmPzkbRSUXHnaMc2CmPOf7+jf7QaG9mnXCCW8PlDG\nlmsHpa6vHZS6vnZQ6vraQJED++vij9J/rgZZpTHT9ExL/C0WUOf2XCCFvK+PYDC35wIM5hLiIuLr\nDfvuSWLyln9teYr8/ggRNGp7F+L4puM5DGyTWOu9f4TnqK895ekPuMkM1FdueXsQ8gPgWswfvS2V\nRX2y3Y7LSRDyd5+Sk1zrzmR5G5WT2oSMiKd0gRye+V1uvVwqGpKet2eSQ/48l0MglNdTXdJhlwIh\n1dKQcgknm5Co8fauxP2e7U6eBiDJ0vwV8EcZC64mFLvo+sNgMNY6fgo0xrjnbRzzHM8vJZ+GXiuf\ne+TEwYb0LVFGuFhmsCFzZG1jYF33eto53uZOb+OhZ30KaSORlrd0H16XyIy7ZjNqy9NEBUWT3XcJ\ngCTVNGf/LEk2bPimJxje6Rl6terNkA1JOJ2uiCwvxLvkoxb2ypLKIsi94Iqg0qtVb/SmYpLW3Y/d\nbicqOFqS55q4axxzes6X8pqwaywZCeOYs38WFZYKyqoNLO73PnP2z5LSEu9kVFwqugAdcRHxDPxv\nHwK0/jidYHfaOGPSE+oXRrhfUxb1yWbT8Y38K38RNrsNH7UPTf112Ox2ztWU80jbIeSXHSK53VBm\n7JvC6/e+hS5Ax7id6ejNxfRp2Z/thVtcEmU/vQ8qmN/zdV7d8TIqtYowbTillhJGdBrFf44sI7Vz\nGpsLNlJlM1NQcRIHDgDUqKXfAR64cRDfG76jpEpP88Ao+re6j89++RizzcSygR9RVlXG1K8nYbRW\nMKLTKN4//B5OnPjgw+ePbCYqKJrcgu2cOH+CgW3u477VfQEnPiofFtzzJlO/nkSl1UhEQCS9Wvbh\nv8c+weF0oFVrmd/zdWbt+wdl1aX4qHyICmzBM7eOYs7+GahUKsL9dJRZSgn3DSc1fjTh/uGM35VO\njaMGnV8zbE4b52vOMfX2mRIJZ80vq2gb3paIwEie/OJxzlnOolapea//Mubsn4WxpoKMhPH885sZ\nEhEqKsjVFjRqDeAivyzOz8bmsPJCfBqxuo48uGYANqdNql+csGTABwxsk0iRsZCktYkUm4qY13Mh\nbx/MkiTnhKTWpN3jcDoh1C/UrX88sv4B3u27VJKjy9Mf4ME1A1Ch4t8Dlkt2epHRFdHKU5pUkNze\n7bvUzaYX7d/msPLZg2sbZMOK/qo3FUtlN1vN/KvfEjfZPs/+JSTFBFJyki+S+pOPLXVF3fG0Jev6\nFqwrOlBdkN8rH4c9763Lpq+tDA1BQ2z8uuYGUfeNYSfXltfl2kVKJCAFChQ0CLkHi6T/n2w/ht3h\npGmov9vxa4Gmoa6dCieVaA8KFChQ8KeFiAQUGd44kYBuiAxGhRIJSIECBQoUKFDw58fVcOg21BnW\nkPOeC7EiYovYZTp6Wyp6U/FF13lChNrPzJsv/V2X40u+E11+XCz4PrhmAEM2JHnNS5StPlyLyBp1\nkWDy9AfIzJtf6w7XS422cjXQkN2yngQgb9Fq5BEFaouWk56bhs1plaRF5JFr5HUmlzepa2eyt/oT\nkX7ku6Ph953L+YZDDXruhu4ibigamp78mYSjd8iGJLdIXOJ5PNNqSNqi3oTD2Fs5LwVFxsKL6ry+\nNAQByFOqx/Nd1kbwiQlpKUl/XGu5vas1pjTGWHAtxjsFf27UN35eybgnv6e+9nwp+TTkWrk9I+Ye\nz2O1zdXy6+SSWnXlL/9dEIDm9lwgRa0Q45LnvZ7jlXwOFPCMVCfukY+H8qgmRcZCSe5LPi/I51a9\nqZhi02kiAiNZ3O991gzKkaSXSs0G5uyfxcTuk6WIQhkJ41h2+N8AZPXOZlGfbJxOePP7TOk6kU9U\nULQUrWdxfrYkHzb37kzUajU19hpKzHoycsdQZDoFuAg9CVHdmNtzAXER8UzsPhmNWsPifu8TFxHP\nwl5ZUv4i7Qm7Mhi5+SnW/LKKM1XF2Bw2nuo0AqcTAjVBlFWXUlFznpFfDifrYCZPdHgKtVpN0s2P\nUl5dxkM3J2Fz2thZ9BXGmgo+OLyUlsE3EKvryNSvJ+Gv8WdIuxS2FW6mqZ+OL09uJNQ3DKfDSayu\nI6/d+wYtglqi8fHBR6Xhg8P/JunmR3k3/y0mdp/MjLtmM/n26UT4RzKmy1giA5sTrHE5+FWo2Hgy\nB7vTRhPfcClqUKXNiAMHx84eI33H6AvXutz7TpwX6rcFUUHRrPllFRk70njz4AJWHvkULpy3O+38\nY+9kjFZX1J/SKgOfHV2Bw+kgzDeMid2msuDbeQRrQ9D5NyMiIJI5PefTNrwtrUNvYkK3KWh9NDQP\niCIl9klm7pvKvAP/ZEK3KTT106FWqamoOU+QJph5B2ZJknAz9k3hyU2Ps+n4RkqrDQzr+DRrk75g\nYJtERsWlYjCX8Ob3mQT5BhEZ0BwVKjISxqP10WCxV1PjsDB+Vzqj4lKxOqyM35XOkbKfaBlyA0Pa\npbBXv4eIgOa0CIkhLiJeascCugCd1P70pmKsdiszv5mG1W7DUHVGiuRTZHTJjM3u8Rpz9s+SZGyj\ngqJpFhCBLqAZc/bPkuTvAGbsncbD6xKl8SF5fRJz9s/i3b5LiYuId+vfIrqhRv17VCp5OT3HC2Ez\nCek8cJF7nuo0grTtqRdF6Jqwa6wUeRPcbVmbw8robakX2YP1yd2CewTNTcdzLorGI58nvKVRH7FR\nnpf43TNqp/yctznpSghAnvnXdr6uuSE9N+0iKdrLRWN/7ykkIAUKFFwyhJO1VeS1lQIDCPDTEB7i\np8iBKVCgQMGfGIbzVQT4+RDkr2mU9Px9NUQ2DaTgTCX/h4JcKlCgQIECBQoUNAoul+AgyB3CwWMw\nl3Cq8iSjt6W6ObG8LRYLyJ36dTntBBHAkwQidtwWVp6iylZVa/mFRNm1InFcCryRYOqq8+sFUZaG\nRGwSDgnh4JQ7AQVZRe6E9LaIv7BXFgGaQK/5iLaXENWNjIRxpOemoTcV10uc8uZkkDtLRVtckbiS\nid0nS5Iq9S3IeyM6yeujNtR2viFOcW/EvBWJK/nswbWSY1oQYOBiR3BDHOXy9+Pp3LicPuNZ5w1J\nY0XiygZFF6vrWFRQNC2DW9VKZroauNIxpT7C0pUSgK7XeKfgz4O6xk9v5xsKb+3Pc2z2JNc0NJ9L\nJRR5zre1OZHFeOiNOFNb/vJ5UO6kz0gYR1RQNBN2jWV4p2ek+VF+b57+AEnr7ncjEMjLkqc/IEkd\nyu0tT0lRkacgOYixfFGfbFYkrnQjIolnjAqKZu2gL9yI2npTMaPiUimtNjAqLpW4iHiWDfwIvamY\nzLz5kqyrICpMvXO6RCSSS3qm5CTz/JaRUnQfMa88ccuTzOu5kFDfMJoHRRHkG0TL4Bskwss/v57B\n8I1/Z8iGJCbuGkexqYiyqjKGb3qCqKBoKf/R21xlG99tMq1CbuTh9oMZ02UsI24Zxex90zljKsZk\nMzGi0yh0Ac14tN1jaFVaWobcAA5YfewzHE4H205tITKgOTa7nWqrhRqHhdl3z2fT8Y2crizCYrew\n5/QuVKh4scsYzpiLOV9zjmaBERwp+4m3D2Yxs8dsNGoNodow7NhZffQzQn3DAHh283Bm7JuCobqE\nFUeWU2o2UGkzokLlut5pw2w1Y6gu4YMLBCeB85bzqFU+GK0VOC9EDwpQu2ylAa1dUloz9k3BgYPO\nTeOl+9Wo0fk3I1gbQog2lABNIA4cxIZdkAerqeRfP7xFkekUT3UawaA2j1BWVcorX41m1JanSYl1\nyZPpK4ux2CysOvYpYb5NKKsq5e2Db1JuKcPhdJDWJQOro4ZQ3zAiAiNZMyiH1+99i9fvfYvhcSOY\ncvsMPjzyPgZzCXn6A7x9MIv3+i9jxl2zeblrBgvufYN/D1hOrK4jNoeNUrMBp9NJZGBzYnUdye67\nhBbBMSz4dh5mq5nPjq5gVFwqSwYsY8zfMsgt2C71jX/1W8KS/h8QERiJzWkl33CI9Nw0XuySRlbv\nbEJ8Q2gRHCORdQSRWkSwEuNQvuEQZ6vL8df4k9xuKOm5aQzZkITeVEy1vYrTlUWS7Jv4XomLiGfI\nhiSS1t4vEWdEhC7R7kWfzTcckmT45MRAYVtm5s2XbMx8wyFm7ptKhcXodg/8Locqt2UX9soiM2++\nRNCTj61yUqI3yL/ZPMvibcyrC96I6J7fh/XZ8PL7PG2ka2HX1PeMjWljNub3ns8//vGPfzRaan9w\nmM0117sIjY6gIL+/5HP9UaDU7+84cYF0Y7M7+ObHMwQHaIlv1wyVEDO9RPj5aqipsV3WvTVWOyf0\nRu7t0gJ/38ZxIP/VoLTdqwulfq8cQUGXrj+uoHHR0Dbc2O3d6XTy2VfHaN4kkP/p2lKaX64EN0aF\ncvTUOU6eMXJ3XDSB/tr6b/oDQhlbrh2Uur52UOr62kGp62uDq1XPim10/XG9+0+RsZBQv9Drkrex\npoI7ou+ig66j1/OhfqHcorvV63mn00lSW1e4//G7MhibMIFx3SdK6Y7aMoLX7n1dujfUL5Q+rfoB\nrh2qPWJ6Ulx5GqfTyfBNT9CnVb+L6iHUL5TOzeKl3fqhfqFu6XSNuo0WgTFMumOq5HiTpxHqF0r/\n1gPR+TejR8uebml7S68x34O8LHW9Y3Fc/tOzPNezjQjn3aqjKxncfojXcohrOjeL56Xtz5PUdjBJ\nbQfTQdeRPq36SQvaxpoKBrcfwpAOQxncfgjg/oyiHXTQdaR/64HkFmznH3snu7WNImMhL21/nlt0\ntzJlz0TMVjNfntjI2mOr6N96oNt1dS2k1/U+AjSBJLZ5iKigaIw1FV6vF+9EyABEB0YToAkk1C9U\nqo/+rQdirKnweq94Vm/nayubSPeTIysYeNP9Ul7DNz1BUtvBxIS0vKiexnWbyMxvpkl1KNpXXXVz\n9OzPfHlio9RH03PT6NwsHqfTWWsaDWmj8metqxzime6IvouXtj9/0fuX16187CgyFl50LNQvlIE3\n3d9gp0pj9LWG1HFt2HQ8h2EbH+OemF60CI65onI0dtmuFRS76PrDbK6ptx/UNibWd4+39ie/13NO\nSGo7uMF9sq7rvOUtn2897RC5jdC/9UAGtx/iRkZOWptIYpsHLxrXxBg1uP0QyUaKCWkpzVmD2w/h\njui7WJA3j7k9F7jZSADFlaf5+vRunr71Wbfx7OjZnxm1ZQRfntjIwl5ZDLjxPoJ9Qxi+6Qn6tu7P\nYx1S3Iitwr6b+c00btHdSnHlaUZvS2XTiRx6tryX9Nw0aX64I/ouacxPiOom1Uu+4RB//2IIfVv1\nJ6XjMAK1gbySO5r24R2Y+c00SaJLPFN6bhqPtHuUobEugs6oLSNYdXQlPWJ6MuDG+9h+aisTu0/m\n5iZtpbHdWFPBP/ZOZmGvLB66OYmRcc8R16wz7x9ewv03Psi/8/9Fhe08w2Kf5qezP+Ln488hw0FG\nxaVy4vxvvJz7Ijq/ZuT8th6typc3v1/ApNuncuL8b0zfN5k9p3dhw8aj7YbyU9mPnK85z9AOT5B1\nMJPnO49mw29rea7zi5wynuKF+DQebZ/M1oLNlFSfwWw3UWk1knvqK3KLtjG47WOcMRdTWVNJld3M\nzWHtOFT6PXannQCfANYfX8P5mnOcqzrH/5b+wNjbJrC7aCdPdXqGffq9DGr7MNXWan459zMA4X5N\n+cdds/hWvx+z3UywNpgahwWLvRqAxBsfwmQ106FJLKfNRRw9+zPP3ppKXskBNE4tT3R6ks9PrAPg\ne0Mecbou7CzKBcBQZSDENxSLvZqmfjpC/EIwW02cqzmL1VFDmG8YZ8x6HDho5h+Bw+mgym7mUOlB\n9ur34MD194vxL/PB4aWcqSpGpVJjsVVRUVNBjcOKv08AFdbzAFTZzdzS9Fb05mJKqwxsPvEl8RFd\nyMybx/ZTW1l3bA3hfk3JKznA3tNf89nPH1NWZUCND/MO/JMvTnzOhmPr2Kf/hi0nvsTmtOGvCUCj\n1qBRa9hesJUBN95H27B2rPt1NQGaIEJ8Q7g75h4m75nIp798zJcnv+CJDk/Rp1U/SqtKefP7haw5\nuopiUxEH9Aeotlex4fha+rTqx63NOjPh9skA/P2LoSzqk83Ttz5Lj5ieEqHj6NmfmfnNNOb0fI3/\nuaEPE/eMZdxtk9iv30ebsJv5vuQ7fNQ+7D39NRt/y2HyHdO454ZehPqF0iXib+Se+orHYh+nb+v+\nTNg1llt0tzJh11j6tOpHsG8I3aPuYM7+Waw5uopeN/QmPqILU/ZMlGzZFsExkk0MEKAJpEN4R34o\nPcjTtz5LTEhLaUzzNm6J77Rg3xBe2v48d0TfRYvgGMk+FDLOnnaUNztPlKXSWinZ4C2CY9zu8Qa5\nvSuulZdb/o3Rv/VAjp79WRobPMd08U2anpsmXS/KWtu3qtMXf8AAACAASURBVLwcV+M7SswPl2JT\nXU5ZLtcuUiIBKVCg4JJwutSEze7khuYhl00AulK0bu4Kj3is8Px1yV+BAgUKFFw+KsxWaqwOIpo0\njhSYQKvmruh0J89UNmq6ChQoUKBAgQIFVxu17Wr0dt2V5FHb8eT1SW67yT3hGclFfq/nDtFlh/8t\n7SwXkUfEQrrn7nmr3Urq1pE8vC4Rvam4zjDrE3aN9RqyXtSbyLe2naC5Bdt5ZcdLbDqec1H5PdPz\nthv1cuAZAaAuiZDaIO6pK1z/tUBt0ifeEBUU7TUqDvxeJ3LJOM+oDOLeImMha35ZRfqO0Qzv9Ixb\nGmJ3cFRQNCsSV7I2KYeVD62VdkXL87qUOhPXfvTjcklSyzNqESBFTRDtLz03jfKqckZufork9e6y\ndJ6SL/I6rU3uwFuZ5Pct7JWF1kfrdsxbnYs8BrZJdItOIc7VVQ8Tdo1lVFwq6blpjPxyOGar2U1+\nwts9DYkuVFcEEG9lF3JwtcEzekZKTjJ6U/FF9XEpBKDG6muXQ7IpMhaSmTefd/surVXi7Erg+f6V\naEAKGguX0ne8EYC8jS1XIotSWzlqi+BTVxQfb8g3HKLAeILcgu1u0XS8wfPZ9KZiSeLKU0JTjL9T\n7pgulU2MgULuZ2GvLCmaECDJscojUYjyizl59LZURm9Lxea04nSCwVwCIEX1SYjqxqi4VMney9Mf\nQG8qZuY30wjWhDJ+ZzrHzh5j1JanMdZUMGOviwAUFxHv9qzGmgqe3zJSKouIrJeemybJgc3ZP+ui\ncXpuzwUYzCWSrOyc/bPISBhHnuEA8+99nam3zyQhKoES8xk0ag0Gcwnjdr3C2B1jCNIEs/THxTic\nDt7+4U1qHFbe/D6TzLx56PyaMan7NJr66din34tarSYldhgrjnxIs4AIcn5bT6nZwIojH5ISO4zZ\n+6Yz9etJ+Kg0hPs1BWBIuxR8cG1E31H4FZUWE2H+oYzoNIqdRbkuKTCc1NhrcDgdqPFhW+Fm7NjZ\ndnILarWaL05swOF0MHHXOL448blUXw7s6AJ0lFlKASizlBKkCZYkvjadyKHGbuFbw34Ayi1l/Oen\nZagcUIOFfMMPqPjdR+eKFORy+6tUKgI0AQRpgrE5bAxqM5izlnLXOdQMaJ2I40I+NY4ayi1lhPvq\nUKMmzLcJOr9mTL19JjeG3Ui5pRQ1ap7qOIIXu7yMj9oHu9NGpc1IE9+mPHDjINT48P7h9+jQpCM2\np40zVcWM25mOscaI3lzM2epylh9eCsAtTeM4aynntsjb+ezoCgK1gTT10xERFImPSsPUO6fjdIK/\nxh+nE2bcNVuySTLz5hHm20QiB03YlcHLXTNo5hdBhH8kbx18nVd2vET6jtH0b3Ufa5NyWJe0kX/1\nW8J7/ZexuN/7TNo9jld2vES+4RBrfllFgfEEm45vBFwRpYZsSCJ5fRJp21Oldj6wTSKrH/qcXq16\nU22vYsLuDF7skka4f1Om3jkdm9PKjL3T3Pq6r4+W0dtSAZd0noj6mW84xPBNT0gSd3rzaVK3jmTG\n3mlU2cxexxHRp2N1HSVJsdq+zfL0B6RvBzGOyKO3iu8uETnIU1pWbivIo/WAS643I2GclJa371j5\nt5SnnebNDhTjmt5ULEVMA+/2cUJUt4u+ScS4WZct3djfUQ2xZb1dey2iFsmhkIAUKFBwSTh1wbna\nuvm1lwIT6NKuGQCbD5xSZF8UKFCg4E8GwzmXTENjk4AEQfRo4blGTVeBAgUKFChQoOBS4LlQ2hDE\nhLR0W0ytLd265KzqK1NdBBRPqS3Pe4VkhVxOSJRb7pwTznqxwJ0Q1U2SoPAsQ0xIS1Y+tJY1g3KY\nc/eCi0Koey6sespleR4XC9vgLhsiFqEX52cTHdTCzVnlTeqkIaSMhkKevmdeDSF+eTr+aiPWXCuI\n56jr/IrElYDLQSAW+oUMgiDviHflTWZLEM7y9AcYsiGJeQdmofOLQBegk+pL/m7kzg2Rb/L6JDYd\nzyHfcMir87g+B8FHPy4nfcdoKiyu6D9COkW05U3Hc3hk/QOSA0U4NUP9QogOimFRn2w3KQZ5+/SW\nd11Obs9+I34KB0hDnB/C6eKtH3rLT0CQ+lwSMCXM7DHbTWrMW5/2JBp5K4tnO66vnwnSmDwvvanY\nbcwSeabnplFhqSBte6pEbJQ7ohpKTrhc0kFjQE7cakh5L5Xk5k2eUSECKfCG2myGS+nfDU2/Ieca\n2k4bQuCpDXInOOBGSvWUAxvYJpEPBq7giVueZG7PBZLsqBhvPUmzwrk9sftkaZ7zlMoUc9rcnguY\ns38WKTnJEnlZToycsGvsRXPcKeNJNztNTq4WNtbUO6ezZlAOi/pkk5k3300mLE9/gPG70hne6Rny\nDYdIWnc/qVtHUmO34q/1w6lysuLIhyzu9z7v9V+GSgUz9k6TxmOAkV8O54xJz2lToSTLlG84xIy9\n06SIegBVNjPPbh5Oem4aH/24nOT1SaRuHcmITcMoMJ6QCEpCTuztg1l8/POHzNg7jXk9FzK47WOc\nt57DV+WHHTvnLK51wNfueYNw33CcOOjdsh/6ymLKLWW8dfANyi1lJN08mAndprDy6CfYnFbe67+M\ne2J6UVptwFBVwjsHF2HDxq1NOxOoDcBX7UdTPx25hdsosxgAF8mpzGLAVGMi57cNmGyV2J12ACpt\nRhw4sDmt0rPu0e9Eq/IFQKVSExveEQeu633wwWw1k1vwlVs7rLD+Xld+Gn/aN4l1O19mKcWKK4+W\nITe4nQvzC5PK87dmCdjsdky2Ss5bz5F1MBPHBQkxJw4+O7pCKsv5mnM4cVJlM1NuKeN8zTnKLKUs\n+v4Nxu9Kx98nACew9PBiFh1ciBofKU8flQ9fF+8mOqgFd0X1ZHvhFtSoCffV4a/x57H2T6BCha/G\nl0m3TyM6qAVHzv5EhH8kj3YYgho1xhojFTUVWGwWVCo4dvYYJVV6BrUZjKHqDON3ZTB+VzpxunjO\nmPWcrS5H66NhxC2jaBXa2vVurOdJiX1SClwQ6htK9g9Z5BZsx2AukWyDiEAX0cgHH46dPcZrebPp\n3bIfWQczyS3YDsDjHYbxYpc0nE6Y+c00qS8mRHUj33AIf58A5t6dSa9WvSXbV6P6nZwt7LIX4tNQ\nqSB160ie3TycPP0Bcgu289zWEWQkjCMmpCUD2ySydtAXZPddwqI+2RelI5dmFd89Is+H1yW6jRPg\nIhuN3uZ6VvmYLAiBelOxZMcK1Ga7iXFJ2PL5hkPA7+RBMX54koLEeCmXNhN1IuTExHlhv4kyZySM\nk6QIvcmBifTkNnB9tpu377Da0FDbq6FzTF32smd+V8MeU+TA/uRQQr5fXSj1+ztO6I04HE72/qjH\nT+tDQmzEFUUCuhI5sPi2zTipN3L45Fk63NCk0R3JfwUobffqQqnfK4cS2vn643rJgf186hzf/WLg\nzluac1N0aKPJgYUG+bL7h2J+LjhH13YRhAb5NkJpry2UseXaQanrawelrq8dlLq+NlDkwP66aIz3\nKhb5btHdepF8TV33GGsqGL8rw00SwhPGmoo6pZjqgmc4d7E4K0KX9289sE4pMB98eHXHy3z2y8fc\n2/J/pDDyIvy6/NmFZIeQSBKSNsG+IRdJjoX6hbpkDbYM5/Nf17P66Eq6RPwNp9NJSk4y0YHRtA1v\nL10r/ylPA34PUS8Ph5+nPyDJUvWI6cnWk1sY0mGoW5k902yoVFJD4Zm2/PfIgEhJouno2Z+9yv7I\ny3M9QtxfKsQ7/fLERrpGJnBXix5k5s13a9stgmPc5BDk7VJIEyREdWPgjffTtkl7vjd8yzfFe3nt\n3tdJiOomyQPkGw4xqO3DdNB1lN5lj5ierD76X1b8tJzVx/7LXS3upm14e6l+5G3fW1vq06ofPVr2\npEVgDCPinmX0tlQ2HF/L57+uZ8WR5ZRUlrDq2EoyEsYzoM39kmTB3zs9RXKHofS6obcU1UE4JYqM\nhW6SaPKyCHmE2ghAnnIJnhJX4jqAm8Pa0jXqNsDV9oVsV57+AI+sf4B7Ynrx2/njPBf/gvS88rzE\ns0QGRDJ+VwZ/7/QUSW0Hc+L8b/xc/jMvdX3ZrX8ZayokmRtvMjje6li8Y7kkRG0ygPJ3Iq+/PP0B\nktbdT+6pr0hs86Bb3p2bxbO14Euyemfz1C0jACSJCSFTJ+QraoOo90uBt/53JX2yIXUj8qjvGs90\nPaX5hITcHw2KXXT9MfDjAZJUk1y6sLY2J+/fnhKHnv1B3naNNRWSLSIn3Mjl/hpqV8ltEdG2L7Uv\nCnurR0xP0nPT3GwluRwYINkoTqeTwe2H0D68A1P2TKRzs3g3ia/+rQcS7BtCUtvBdI26TZICEmOo\nqAPRP1sEx0gypmO+eoEvT2ySJA2NNRXcHNaW57aOILHNQ7QIjsHpdJLz2wZGxj0njfuD1t7HHdF3\nEqAJBOC/v3zC16f3MLj9EDroOnKL7lY3mcgfSg7y36Of8WNZPnuKdpN575ukdU1naOwT9G7Vl8dj\n/879bR7gnht64XQ6iW3akR2FuWw6kcP6X9dyi+5WPvtlBRO6TeH4+V/Zp9+L1W5lz+mdGGuMlFUb\nuCP6Tl7a9hxOJ5RWlTAq7gWm751MkG8QM+6azQ+lh8i8903iIuLpEdOTCbvG0rd1f7YWbOb5zi+x\nqyiX70u+43D5/zKg9f2ctZQToAkg2DeYQE0Q9910P9+V5PHQTQ+zsygXrUbLK13H8a3+ABZHNQfO\n7GNnYS6PdxhGgfEkodow3jjoIiRY7NUEaAKospv55dzPDIt9mh1FX2G2mTDZKgnUBGJ1WAn1C2No\n+7+TX3qIcksplVajJN0V17QzZ6rOSFF8ekTdw6nKk1idVqw2KzanjeMVxwBQo6Z9WAeKzIX8UHrw\nggxYDX4qf5r6N8VsMxHgE4jZbuJU5Um3NqpW+Uh5mGpMnDYXSefubdmbHUVfoUVLkbmQ3jf0laTH\nALRoJSJQiDaUIE0w1fYqQjShdNbFU2mrpMpehY/Kh0CfIIL8ggAuSH658nTixO50+fX81P44sFNh\nPU+VtYqTlb+hQkVTfx12px2tWsu2gi04cWC2mjh2/ihWu5UySynJ7R7ng5/+jclaiVrtQ7A2mLM1\n5TidsL1gCzanjV/KfybEN+RCPzHyY3k+Yb5NaOLflKdvGcm8b2fxeIcn+ezoxzicDgqMJwnSBtOz\nxb0YqkrQqLR8fnwdq4+tRKPyZUzXdJoFRqDzb0Zu0TZOGk/wRIenWHv8v7zQeQw3h99Mzm8byDmx\nnq9ObSWz15u89LeXaR/egVFbnkar8mXC7gzUKjWHDAf57y+fENu0I89uGc6k7lMZ132iZCvdoruV\nBXnzyOyVxQNtHiL31Fe0bdKOSXte5dWESXTQxUq2mtPp5OlNw7i/zQNsLdgsfe95fv+JsfXo2Z/Z\ncmIzm07mMCruBSbuGUvH8E68kjua3FPbsDqsLOqTTVRQtJttlnN8PU/f+iyJbR6SZJaNNRUYaypI\nXp8kSfWKcU48x5Q9E3mkbTLv5r/Dwl5ZdNB1dLND5d+xYswTfdhTijb4wvv85MgK6VnlMsFdo26T\npL3qmjcaYkvL4fnNWts81hDbS4zX8nS9XVfbd6VnWW7R3VqnNDYocmAKFCi4Bjhz1kyN1cENzYOv\nmxSYwIM9bgRgw9cnrms5FChQoEDBpeFqRQLy99Uw/L5Y7A4nSz4/jM3uaNT0FShQoECBAgUK6kNt\nEWtqg3zXt7jP87wcYtenOHep0Ya8pVkfioyFvPFdJnbsjL9tsrRgnLTWPUqFtx2YCVHdeLfvUqKC\noknJSXaTHBM7QxOiurG43/u83DUDq8NKem4aelMxFZYKRm15utZIOfIIH0XGwouuEzvsxQ5YsQte\n7HoVi+Ge0k2e9XW1kKc/IJFjxI5c8QyXWh75DtPrHdFD7PIdFZfKs1uGM/XrSRfJnQBSdBw55P0H\nXO/qze8z0ai0kvSJwMPrEnly0+PSrmqx49hgLnE5BP1CUKMmIjCyTik1z2PCYbw4PxsAq8O10z7p\n5sHUOKwsPbyYhIhuvH0wizz9AVK3jpTamN5ULEVAEu9ElE1OCJJHRZLLnHmWS9zvGanKc0d0Sk4y\nSWsTpf4inL/J65PI0x8gIaobs3u8xqbjG3lqUwrL8pe67c4WaYzelirtvhbPlG84RPqO0bzYJU26\nVvwfsiHJTepMXpdWu9WtjPL6le9Kl0e7qq0e5NeCS8KmiW9TxLKkZ/93Ol273cX1KxJXsrBXVr0R\nmeT1fqXRdRojwk5tu9rrG3cbkq683AoU1AZvkezqanO1RdPz1h+8XVtXmqL/1hfZzbOsl9MX5VHt\nAElqVJzzhMhDSFhV2cxeJVY9+5u4R8hNbjqec1H6i/OziQ5uwaI+rjlJzClxEfGsfuhzt7lVkH3k\nmLJnEklrEwGkSG4CnlKLA9sksnzgx2QkjEfro5UiJ4oIRgZzCRN2jWXT8RxScpKZsmcSKbHDeCHe\n9azHzh5jzaAcHm4/mH/1W4LNYeNf/ZbwQnwaIb4hhPvpyNPnoTcX82i7x1ib9AV3xtzFDSGtye67\nhIjASD57cC0RgZGk5CRzpOwnhnd6hoSobizslcWb32eirywm8aaHOG0qZM3RldidNkbFvUATv3Cm\n3jmdKXsmMSoulf8cWUZZVRnlVWUUGk9RZjEQrA0h1DcMO3beOfQmcbp4Pv75Q8Z0GUtkQHMA/t5x\nOOG+Opr4hpMQlYDT6cCJkxBtCOYLEk0Wm4Vlh5dcIMWABg09ou5BhYofyg/RI+oeAAJ9gth7Zg8A\nPmiwOC04JfJNCA4cHDn/EwAqp4oRtzxHkCYYi7Mai92CDz6E+oYRog11k/vq07I/kQGR0t9tmrSV\nfteipdB4CgArVpw4ublJO+l866DWUgQhcBGf+rUeQBPfcIy2Cr417KfcUiaV2Ww3ccak53zN7xHX\n+7Tsj1pGK7A4qjHZXMohNqwEaoJI65JBWXUp52vO0Tr4Jum5Q33DACivLsPmsLH08GKKTadRq9Q8\nGfs0YX5NaOqno7LGSNMAHSGaUM7WlOFwuu5v6teMpzs9iy5Ah0atYflPS7HarfwrfxFxunjO15wj\nJXYYT3Uawecn1qE3F3POchat2hcnTkqq9Izb9QqD1t7HWwffAGBQm8HkFm1jdo/X+OLEep758kmc\nTtCqtEzoNoWBbRKJCWlJRGAkzQOjWXn0E56Le4lw/6ZSpKCIwEgiAiJZnJ/tFl1HHhlVYHF+Nq8m\nTGL5T0tJWnu/9B2SbzhEYWUB4P69J/6Wj2dv5b3JoLX3MWPfFJ6PG81LCWNY/dDnxEXEs7BXFlm9\nswnUusYD+fi6sFeWJCMWFRTt9i0k8hdyvZ7fJMaaCuZ9Owuz1Szd6xnZRnwjimPi+T0hxsKVD/0+\nJokxW+TtzVbznDc8I4rKy9yQSKveoh/VF9FO1Jm4z1u0TvG7Z/Qf+Tl5fiKKElCnTXy5UEhAChQo\naDAKLkiBtbqOUmACN0WHcutNTTlScE6RflGgQIGCPxGuFgkIXJHienaOpqCkkg17TjR6+goUKFCg\nQIECBfVBLCg2xCnrzVklICcuiBDscoe7pyxFQyB3+nqT9KmNfPKvfktoFXIjD7cfTJHRJfFQYDwh\nhYT3fHb5Yuic/bOk/ESeefoDPLwukTz9AT76cTmTdo9j/K50nE4YFZdKVFA0gdoAFvd7/yLyiKib\nlJxkhmxI4oHVA3h4XaLbQrqcAJQQ1U1aCFapkBxzYjFc66O9KP2rDVE+4dxKiOomOfPki8uei8m1\nvevaHK/XC8sGfuSSR7k7kwBN4EVSb+B6HiGd4lleQShJ3TqS08YiUmKHERUULUl1xYS0JLvvEloG\n34BGrQFckl2j4lLJzJtPSuwwzl+QBjlS9hMTdo2VJBfkzt26nMNWu5UjZT+hUkGFpYK3Dr4OOAnz\nbcLnv62jwHiCvUVfc6LiNwzmEoqMhYzelkqFpYLUrSMBLiI5iXYnjm86nkP6jtFSX/B2nacTRPQx\nubzCisSVrE3KYc2gHLf+8mKXNCbsGstHPy5n3K5XePPgApLbPU72D1lSOYUDRfSFuIh4N9JWXEQ8\nzQOjiNV1JCUnmQdWD2DIBpezqMB4EoO5hLk9F5C2PdWNWCQn6Hg6SLw5dry9B2/vJ09/gGe+fJJy\nSyk2h418wyGGbEgiad39rvrMdcluCKd9Sk6y5MAWhKi65CAul1QjdyaJsfpqSIrVRqa4HFzOsyr4\nvwV526jtd2/3eLat2tqa+NvznBjX5Pd7GztqG8Pl9pQ3B7EnapszhXSXkJmUz83eyI1RQdGsSFzJ\nmkE5F0msCkev3EYU0l5aHy2j4lIlIqdIX9RDdt8lRAVF8/C6RJ7fMpKqC2QU+XjvWWcJUd1Yl7SR\nmT1mc8ZcLEkc6U3F0lgtxke5DRgRGMnE3a7nFgSl9Nw0BrV5hDn7Z5GRMI45+2cxKi6V06ZCZuyb\nwpz9M7E6rczYN4W9RV+TkpPM3qKvKaosZNPxjUzYnUFK7DDKLaV88vNHjOkyls0FGwF4fstIiWT6\nyPoHyC3YTnpuGucsZ3llx0u8suMlPvpxuSQPplKr+O/RT9H5N0MX2IwqaxVz988kud1QyqrKLtim\nP+DESaW1guc7j2b54aWuv2uMJN3sirw0oPX9fHZ0Bb+eO8aqY5/i6+NLmG8TPvppOWdryjhXc5bP\nf91AVFALdP7N0FyQ8+rcNF6S/PJT+6FChb82gD36nTgv2AgnK39Diy8WRzWOC7JcqFwRdFSo8EHD\nK13HoVb97poP0gbzzg9vUmUz46f2p9JqxI4dk7USo7UCfx9/6dofSg9y/40Pem2zVqx8q9/ndqzY\ndFoi7Zw0naRPy/74qVwRRTrruvDZ0RWcqzl7UVo2rOj8IgjwcZFJ/NR+qPHhq8KtEuFMg5Y+LfsD\n4O8TgC9+1DhqeP/H96R0RN30admfML8mDG77GD5qH5r5RzCkXQo++DCwdSIf/vQ+dqcNq8OK/YJE\nmclWiRo1apUavbmYUksJHx55nxfi0/hXvyX0btkPjVrDoDaDWXn0Y3CqmPftLML9w9GotIT6hqFS\nqfDX+NOnZX9aBLVkfs/XWdL/AwK1gahRM7DNfcztuYBerXoz5Y7poILX7l3IvwcsZ93x1eTpD7Dp\neA6jt6Uys8dsRsWl8m7+WyS3GyoRxgFCfEOZ2H0yadtT3cYIYY+M3paKr4+Wid0ns/LoJwDM7ZnJ\noj7ZEoFQ/t0j76cCYhx5LW82E7pNoWXwDWwu2CiNbaK/irFIbvMUGQslGTHR7/MNh9zsP2FHigiS\ngvA3elsq/j4BvNdvGWuTXLJjQzYkXWTDywnscngek3/7ivOedqJ8vJRD3Ce3kcX4LsqcvD7Jq23t\nmU5tdmZdZHHPNMT3lzfST21Ebs/nlZPvPeujMaCQgBQoUNAgOJ1OCs5U4qtV0zz8Ymb59cADd90I\noDh6FShQoOBPBMO5alSALsy/3msbityDRdL/mMgggvw1fL73BP/dcUw6rkCBAgUKFChQcC1wqbvO\nPaMyiIVjsQCabzjEc1tHkJEwTlrMjQqKZmGvLDeHjye8Obs8FyTljiiofdExIaqbtOibkpPM4vxs\nptw+g4FtEvnox+VSfsLpLhaFxW5YsatUXtYw33COlP3EKzteothUTLifjpe7ZjBpz6vkFmxHo3Yt\nSHs63MTi7MJeWUy5Yzpl1Qae7DhCWkgHF9FHOOTEorDeVCztgpc7yeqqw6sBOQFo0p5X3SIiyess\n33BIiuQinADib2+oL0JDY8EbUUP8lJPMioyFvH0wi+R2Q93am3xx3JMYVmQs5OF1iQxaex+L8t5A\no9ISpA1h/rf/ZM0vqxje6RnSd4xm03GXk+K9/svQqLSkbh3J8I1/Z+LusQxq8wgPtx9Mq5AbWXDv\nmyzOz2Z4p2fIzJvvVneCqOG521e8gypbFeN3pWOqMVFuKSfMrwkaNAxuO4SSqjMEa0O4M+Yulg/8\nmLiIePSmYmxOK3anjWLTacmRmZ6bxsJeWQDS+xu9LVWK5PDBwBVk910ikVREH5ITVuS7yvP0B0he\nn8Sgtfe5EYFiQn6PdiWcv71a9WZuzwW88V0mIdpQIvwjubPFXeCER9s9xmljEc9uHi7Vp3AMiUgP\nefoD5BZs56ylHHAR9EqrS6ixWymrKuO9fsskkp/TCcnthjJh11j0pmJpp7m3NultDBLvwZtjXR69\nC0CtVjMs9mn8fQKY+c00ptwxnbl3ZxIXEc+KxJVk9c5mwq6xbiTFuT0XXBSZw3M3d13tvD7IyQrC\nMXWlqI3w05i7xBUCkIKG4nL7RG1/e84Z9d0P3slCDXGyyh3EnlHLBOHac24VaQ9sk8iKxJWsfGit\nNJZ7krAFqTV5fZI0XomocPJ8nts6QiJ1i7FPzIWxuo60DG51UfpiTM43HOJ0ZRF2pw2NSutWh7XV\nWUJUNwa2SWTO3QuYsDuDB9cMYPS2VKx2q0SqEfUKrnnRYC6hZXArIgIjGb0tlWp7FaPiUpn/7T85\nW11ORKArAk2sriPrkzaxfODHTOw+BV+VLyM6jWLl0U+ospl594d3cOLk018+wuFwRXGxO+yUVOkJ\n83NFgzlS9hMFxhO8uuNlNh3fyLt9l7I4P5uFvbJYOuBDIvwjUePD/G9n8+zm4QxqM5h/91+ORq1B\no9ZQZa2izFKKzWljzoEZzN3/T57u9Cwf//IhL3Qew41hNxHmF4YNl2yVHTsf//wfAKpsVYT76ph8\n+3R8VBrMVjMVNec5ZyknzDcMFSo+O7qCGrsFjUorRf35ofz3ecXqsPJ0p2cJ0gQzpF0KYb5NACis\nPIWVGuxOOyHaEDQqDfYLZCC1Sk2obxjh/uFSdBuA89ZzWB1WHDhc5KELkXMqbUYAqi/IjYl8Pzzy\nPioXPYbooBZu793Xx10yaN2x1VJ6ANsLt2BxWlzthw2BbwAAIABJREFU0nAAX1zX3xbRHZ1/M0K1\nrvfjcDqIj+iCyV6JFi0WhwUHdhw4GHnr8wRqArFh5Rv914T7NaXaXkUNFmwOKyabiWBtCGO6jOX1\ne99iSLsUdhZ9xSnjSd4+9AbdIu/gnOUsq45+ih07n59Yh9VppUuzrhitFfSIuoeJ3afguPBPkJ7C\nfMOIDIgiM28eT21MYenhxQRpg9lR+BVOnFgc1fj7BNCrVW9ejB+DucaE3Wmn3FJGbtF2Ssx63j7o\n6sc+Kg0+ah/2Fn0tkdLLqsqE4hlxEfFkJIwjdetIRm5+ihPnjzNp9zjeOZRFE79wVhz5kIW9slj5\n0FrpuywiMJIC40lyC7aTkpPMW3lv8sj6B1iU9wZaHy0vxKcxsE2iKyKPSss7h7IYvvHvpG4didVu\nlaJvwe8RFeWRFcEVsevdvkt5uP1gNjz85f9n77zjoyi3N/7dlk2yKYSQkJAAAQIhQOggRYqCdBFF\nOggCRlBARESjFBWvogIqXsV27SCKSA0EQiAQCDW00AMhkLakl+1tfn8sM25CQK4K3nt/+/jxs2F3\n5p13zrxz5sx7nvc5xMZMZ2bSdGcbDitxneff0ieKPunlFGe8/PROZ9lUMRYX30XExQliXLV26AbW\nDt0gqSIBKOUqiewo+lFAioFcY1Txu1VnvrvJ59fkx5f0WCrF7TURjYCbSN0hmlB+HbqFAY0Hs3bo\nBtY/Ei/FxbcjjLq2UV1F1vWY1d9fXH93VfX9PcLsrUiyIvnrdipFfxRuEpAbbrhxR8grMmA026gf\n7INc/veWAhMTunnFeurW9uL0lRJ+SXYnet1www03/htQWGaktp8apeLuhKEeSgXdY0IRBNh/Sovd\n4S4L5oYbbrjhhhtu3Dv80cm76pOCS3os5Y0Di3j78Jt81vcrBjQeLG0rltYSUZOSimt5KddtxMla\nMcnkuk1Nk56u/RMnPpf3XsHGzF/5Z9qHPL9nBv9IfUMi2sR1ni8prYir6GcmOVfFJmTGk1uZw5MJ\n47ludCbK/D1qgSBgd9jp3eBBXuzwCp+cXFEl2eZaKkMkR4Fzgv7pmBm8c+RN5qU8z9Ttk6ok/sfG\njyBEEyqVJBN/+7MqGndyXasnGcXvxP6Pa/lEFfUfkZAwJ3kWsTHTWZj6Ctcqspi+cypzkmcR13k+\nNsFaJbFYUz9uN+5uReC51XY1bV9dCWFSwjhppbCr+kl64UmuVl7hjUMLpOvumtgUFWjCfMNZdeY7\nSQEAwEfly1dnP6ehbwQ6WwUdgjrzxqEFZJVnoZApnEkanAmAj/qsxGq3UWouZmjjx3j78Bto9flM\nbDGZ5oHRWO1WPj6xgt5hfaqsGF7SYykzk6bfZM9HNw5mZtJ0VAoloZowpreZiRwZHzzwT97r9QEH\ntPuZ3CKWSksFT+2YBDjJPRO3jaXSXIlCpmRazEy+OfsviagXoglFq88nW+dUzlEpfkuciPe1mCDR\n6vOx2q3MTJpOmvYI6YUnGbZhkEQGc1VNcL0urokS8bqJ5VRyddmUmIspNZfw1qE3UMk92Ji5Do3K\nl3xdHlMSniAh00nyExNDk7dP4OH1A3gpZQ5+Kn8KDQV8nr6SJfcvY3b7F5izZyaXSi9JfTDZjSw5\nslhSt3ItZVGd6Oh6H4rEKDFhVH119Myk6ZLKj7gafsn9y1h1/lvGNp+AIDjL3byUMkcqZxGiCWVS\niym8ffhN4jrPl8rYGG0G0gtPMjZ+hERerI6aVNbu1I/XlJj6vX1v9/vtCD//CYpfbvz/we+Rm//d\nsSg+D+DmpOntjl8TbpdkdYWY1BZV5aoTrm9Vesb1U/TRrgRWEWLMIpY0td0ob+rqF8SkevWks9j2\nR31WSv7TlZT5Qod5xAS1oYFvBF/0+4a1QzdIvkyM425X+mZcyyf44qFv8PXw46M+K/moz0qWpb0r\nxWcicUksBykSqm2CFa0un+aB0bx9/1KJECruB8447INjy3in53LSCo+wvPcKVvb9Ei+VJ0qUvNTp\nVf7V/zt+vPA9MmT4e9Ri9fnvies8n94NHmR5r4+o7RXIhyeWknxtN+BM5odoQlEr1chlchQyBRqV\nDytOLKPYWOxUi7HbqLCWMyTiERr4NcRfFUCBUUtSdiKxrZ4lOTeJMVETWJuxhiERjwAwuUUsnz30\nL2TIOVOSTpmlhM9OfYLRZqDSXEFd7xAeazoSg9UAN8pvCQLI5TJJtUZU1JEjx4GDdRk/c92Yz88Z\nqym3lFUpmwWgtxok1RwZMoZHjqLUUsz8/S/f8noBUp9FdAj6TfWpzFKKw+HA38OfOl5BEqlKRPew\nntLfKjyY1maG9O8Q71AGRwytsr1dZkctU3Oi6BjFpiJMNifhqGNQZ1K1KQyJeKRKCTFwloay2C3O\nc7TpMFmd+6hlnjdKqwnorJV8dPJ93jr0Bj9nrMaBs7SaTbCxX7sXpVxFkHcwgeo6hHiHEuQZzCHt\nAXxVvuzX7iXpaqJ03WZ2mE1tdSB6i57Hm47iul4rHR9BdiNmq8fkFrEEeweTXniST9OdY6uudwi1\n1YGEakL5V//v+KjPShbsf4XZ7V+glkcA7x79B3Gd5xPXeT4fHFuGgCCV0VuY+gomm4mXOy0gzLc+\nCpmSMVET8FH5YhOsUnwnxu+FhgKW3L+MpUffodJSwbtH/8HDjR7lq7Of0zWku0T+F+PXZ9rM4rox\nH7PdLN13AMnXdmETbpCAHFbSC09WiUnePvwmY+NHkF54krh9c9FZK7E5nGS3tw+/WYXcKCl+tZgi\nvTsu6bGUtRlr+KzvV3QI6VTjghS4uYShuA0gKQ2JflR8h6xeelXc/oUOTtXXWyn8uB5fLFUYogmV\nSFCu7x2uBKPq+4nfu/r66oo9rqhOABIX3bj2qXpceCsy6p08y6rvf6t/V18c9GegeO211177Uy38\nF8FgsPzdXfjLodGo/yfP6z8Fbvv+hh+TLqI32ugWE4K3Wvmn21N7KLFYbH+6HY2nksy8CowWO41C\n/QCICPH70+3+t8M9du8u3Pb989Bo1L+/kRt3FXc6hv/K8W612fkl+TIN6vrSPcYZnGdpK/+Stl3h\n463CZLGTW6THQ6kgOMDrv+LZ4PYt9w5uW987uG197+C29b3B3bKzOzb6+/HvXNfcyhz81DfHFuL3\nfmo/EjLjeSnlBfo0eKjGbWuCn9pPmvTr27AfO6/tYHnvFTSpFSm14af2I9Q7lMeaPk5UYDRp2iPM\n2DWtynHq+YQRHdCCnvV7S/2alDCOloGtEATBuX39foyMGs3cPc+x5vxqfs1Yy9bMeNoGt6OeT5i0\nT7BXMJEBzaR2tPp8QjShdAntRqfQztT1CmFMi3EMbjyUQkMBTyVO4r6QrrQP6Uiwl3PF+Krz36FE\nRdy+uZQYS0m7fgSZTI6vyo9jhUcQAINdj6fci/ePvUu5uZwIv8YEeAbQP2Igk2OeollAFG8cWOSc\nqE+Zx5enP+XXjF/Yl7eHaa1ncq74HKXmYk4VneDV+xahUWmIz9xEkFcwS4++w1fpX7Dq/Lesz/iV\nrVe20LpOG+k87/T6uNrydtfVdZuM0gs8tmkIPcN6ExUYTcvAViw+uIiWga2kyfNJCePoEtqN/hED\naegbwefpKzFajax48BNGRo2hf8RANCoNGy/9ymtdF7Ngfxyt67Spct3F83C91vV8wqQ+pWmPEJs4\nucp513QervtXbx9gXcZauof1YMauaQyLHE6X0G4s2B+H0WZgy+VN9K7/IKcKTvD24TfpFfYgL3V+\nhQGNB+On9qN1nTb0jxiIzqrj0Y2Dia7dgnJzOVMTJzKv46t8duoTdNZK+jboj1afz5nSdByCg2zd\nVQAyyy6ht+nYlb2TXuEPUM8njHxdHjuvbcdgMXCy6Dh27GSVZvHDhW9IzNrOY5EjOV54lF3ZibzU\n6VW6h/cgITMejUrDzms7iI2ZztK0d2gZ2AqdVceX6Z8yvfVM2gS1o21QOz5P/4RKayUNfBrxzdl/\nobNWklF2Eb1Vh8Gq55D2ACWmEkrMxRjtBnRWHWnXD/NixzhaBbUGnCShTiGdOVFwnMejRjGx5WSi\nAqMBZ0mw8VtH0qfBQzwS+agzGeMTRlJ2ItuvbCMpO5FKSwXtgjowd8/z5OlzGBs9gSkxTxOiCaXS\nUsGjGwez5fImrA4rves/yIRto9lyeRNlpjJOF58EQYaX0gtPhSdF5kKsggWb3Y7eVimV3DhWkMbo\n5uOo5RHAxydWUG4po7a6DiOajeZg/n725+7DZDdytuQM41o8QWO/SL49+xULu76OwaonNW8fCpmC\nsyVnaF2nDTqr7ia/5Kf2Q4GC5/fMoGdYb3RWHV+kr2R083GMbzFRuj9E2/ip/Wgb3I6dVxMZEz2O\nLZc3senyBqICotmbl0xm+WVe7/Ymo5qPITV3P8+2ncWMpKf56cJq4i9vQi6XMzZ6Am2C2jJv7xy0\nunzSCo5SbChmY+avRAVE80Knl6okkWITJ7O89womtnSujq+0VEj3SaWl4o7uefEZ8Hu+4k58ievx\nXe3Yp8FDf1jF59/1eX8X3HHR3w8xLqq0VDAscniNY676OL6T8VVpqWBdxlqGNxt5E/G4pjZuN+Zd\ntxX/TtMeqdEH1fMJw0/tR7BXMO1DOuKn9qNlYCt61u9dpf2azkHc9uWUuZItcitzyCi9wIxd0xjf\nYiIjo0YzvNlIogKjGRAxiOHNRkr7AuTr8ohNnEz3sB7U8wmTCNuDGw+VfKD4rBUJQJNaTGHlqX8y\nLHI4PcN7SaSD8VtH8lKnVxnX4glm7ZrOZ6c+oVf4AwiCcFNM4Kf2w0vpLfWtnk8YfRo8xLnis/x6\n6WeSs3fz04XV7M5O4tX7FtKkViQzdk1jVLOxJOfuol/DATwWNYIWtVtisOqJS5lHni6HvbnJmKxm\ndlzbxtjoCdIzrJ5PGN4KDenFJzldnM5jTR9nYKMhbM/aRoWlHBkyDuUf5JeLa5jQchLRtVuw8+p2\nThWfJK7TfLqH9yA1N4X9ufvQqHyY0+FFjhccw1PpSbhPA/bk7OLJlk9xRHuIzPJLzGg7m34RAzhe\ncJzHm47is/R/0r/BID45uQK7w8G5sjMMjxzFQW0qYT712Z+3l9ntX+RM0Wkcgp1SUwkBnrXpHd6H\nnzNW4+vhi7dSg9FuxMfDhyJDIQabnnOlZyRFndrqQB5uPIx8Qy46a81zmhqlDzaHFYdgx0fli9lh\nIl+fh9FuxOq4/TvHxbILVf6dZ6i66N1bqaHSWoHepqeJf1OOF6ZJvylRSnGTAzuXSi9itDtLyA2K\nGMqRgkNUWCqkPpodJuzYaeYfRZG5SIoLrhu0TG89izmdXmTT5fXMaT+PYwVpWBxmThefwt+jFkq5\nEovDzICGg270WUCj8kEuk2O2mxAQQAC7YCdAXRvDjX6Ak2SmkCmptFYwu/2LpObto8RSjEblg8Vu\nJrP8MjJklJiLUcs9Sbq6Axs2rlVm4aX0psJczvCmo0gvPoG30gdvpYYhTYZyvPAYjzV9nD4NHiLx\n6g5kMtB4aHAIDtoGtafIWMTPF3/kROFxysylLOmxDG+VN28ffhO9TYevyo8nW07lVNFxdGY9Babr\nXC6/xD/uX0JyThIJV+OZ3nomh7QH6NuwHy+nzOW9Xu/T0DeC2cnPclR7BK0hj9e7/oNRUWPoHt6D\nHVcSmN91EaOixkrltl5OmUufBg/RM+wBjl4/zJDGQ4lNnIyHzIPn98xAZ9bRPrgj6y/9wsZL69l6\nZQvtgzsSFRhNv4YDGN5sJAWG60TXbsXp4nTUCjWf9P2c/hED6RDSiT4NHsLHw5efLqxm0+UNbLi0\nDk+lJ6Obj8PHw5d1GWt5pu3MKv4zzDecPg0eAmDGrmks6bEUnVXHkwkT+OXiGtoGtSM2cbL0LiD6\nVPFYYpwk+hhwxsBfpK+kW70eJGXvYEpMLIIgVImtxL/F44f5huOn9qPSUsGGS+tueu8QbecaF7nG\nj+J3rn690lLB2PgRrMtYS7+GA6qcd6Wlghm7pklEyOpti/a+Vdx1u9jQ9Tg1vZ/dCmL/Ack+IQFB\nv7tfTXCTgP7L4Z7ovbtw29eJy7nlbDt0jXp1vGnVKPAvafOvIgH5eKnIL9ajLTZQP9gHL7XyvyLR\ne7fhHrt3F277/nm4J3T+fvwdJKCCUiNJx3Jp3jCAdk2dwevdIAEBBNXy4lJOOdpiA5Hh/jQNr3VX\njvNXwu1b7h3ctr53cNv63sFt63sDNwnofxd3el1vlfByndzL1+UxYdsoXujwEp5Kzzua7BMhTvqJ\nk7w+Hr5MShiHAgWBXoFklF5gbPzj7M1Jpn1wR+Ykz+K9Xu9LE59iUmrB/jhpkrN68kpwwLtp/2DX\ntSRKDMV4e3jzRre32H51G8nZu/CQeRDh34gyYzmLDrxCi9ot8VJ68/D6/nx56lM2Xd7AD2e+ZfW5\nH0gvPsn6jHUMajyEGUlPo7NUsi93L6XGMl478Cqpeak8ET2ZdZd+osJSzpmSdASciYkzJek094+m\nyFyIt0LjJFfYdPQKe5Bvzn3JmnOrSMndQ4h3KEuPvkNWeSb+HgEc0O7D4XCgkCuY2nIa35z9knJL\nGbXUAUxuFctn6Z+wPmMdZeYytmVtQY4CP7Uvz7aZzZWKy8R1ns/ig4uoMFWw+OAiWtdpIyXORBtW\nJ8ZUT8CDc0K5JmKA6zY6q44H6/elZ/3e5FbmEBUYjQIFrx9YSNvgdkQFRlNhquC9o2+x7uIvbLq8\nnlHNxrE3bzdDmwzj5b1z2Zy5gZ/P/4jWkE8Dn0acLznHoMZDGN9iopSIHLl5GAMiBhHmGy5da3Fy\nPaP0AnOSZ2G0Gdh1bSf9Gg6oMtHv2v9KSwVN/COrJEWrE5U6hHQi2CuYupoQfDx86R7Wg0B1HRKy\ntpB0dSerL3yP2WbiWOERAjwCiQ5sQWpuCi/vncv6S7/QNbQbR64fZte1JIY0GUpq3j5i6rRhc+YG\nDDY9Z0rSqeddj1JLKb4qXyw3kmUGmx6AOp7BDGv6GIIgMCb+cZr4NeVC+TlAoE94P/bkORWF9DYD\nh7UHkCHjpU7zGdh4MN+d/prZe54lIXMrfRv055eMnxjRdDTvHnmLQY2HkHBlGwlZW0jO3cWe3N14\nyr0x202cKTlNsbEQo92IwaInQB3IlFZPc+z6UcospQR61uHhRsO4VpmFxW7lXOkZNl3eQKBnHdZl\n/MTR60d4rdubLNgfR6BnHVoHO0vdPZ88E7vDzr7cFHZl7yTUO5Q3DixCLlOwsOvrzGo/h6a1mvHJ\nyRVoDflMjJ7Cw5HDSMzaweKDi5CjYFvWFjwUHnirvGjk14T1l35BEKDEUkS3kPs5U5KO3qantlcg\narkngkNAJpNhdpjRKDV4KrywOxz4qnx5LfVVvFRemGxGPBQepGr3ISCgt+kw2808HfMs7x97j0Pa\nVLJ1V0nNTWVtxo/EdV7IycITzO+yiAX749ietY33er2Pj4dvlfvqtQPzeev+d+lZv7eTrFjbSVYU\nx+msXdNpG9QOQRBIzU1Bo9LwRfpKHmrYHx+VH0nXdrAvby92wY5SpmJP7m5iW09nZNRojl8/xu7c\nJIx2IwBGq4GU3D0kXt1Onj4XBw7uD+3FudLT2AU7p4vSqacJI9ArkMobCdF1GWvpHzFQ8rvDIocz\nLHI4wG0JO5WWCrqEdqsxAVX9Hqv+++3IPK7bVPdDd0K2SNMeqUJ2rIk0+p8Kd1z098NgsEj+f1jk\n8N8dx6JiQr+GA25LmhOTqtUJQNUJqGIbYnK6OqoTbmfsmkawVzDjt45kT85uPnjgnxKxRuzLqjPf\nSUREiRTt0v+aiHfi/mJi2/VcXX2dmLgGJJ/i2r/qz+GowGh6hvWmQ0gn6f6MTZzMTxdWk3h1B/M6\nxbHy1D+lRPyc5FmsOb+aQY2dhJqzJWfoHzGQgY2G0KfBQzSpFVnFhq6fTyZMYGTUaKl/GaUXiN35\nJPM6vsr0ts8Sn7mJnIpsThWdpHntaJ5u8wx9I/oRE9iamKA2ZJRe4OW9c/n23NcYrDoCveogCJCS\nl8yzbWZTz6eeFHdmlF5gauJEvJUaXuu2mMUHF9EmqC1rM9Ywvvkk0goOE9d5AYe1h0jIimdvbjIA\nRpuB00XpRPhFEJv4JHGdFzCp1RReP7AQAQc2h41d2YkEetYh35DHkEaPcKroBPvynH5eb9Nz9Poh\nPBVeHL1+GIdMwNfDBy+lF8cKjlJqKiElbw92wcapopNUmMvQ23XOMlJ2E6eLTwFgtptxCA7sgp3B\njR7hfOlZfNV+GG1OAosMOQq5ghOFaXgqvPBX+2N32LAJNmTI8FJ4YxOsWB0WBATaB3VEb9Ojt+lv\nkGZu/76hUWqwOpzqJ2q5GrtglwhFIlxJRN4KjUT6AWhTp20VEtGYqPEcLzwGQLGpCJ1Fh9nhLAdm\nc1iRIaOhpiGXKy/RMagzJrsJo92IDBlHtAcJ8qrLjqxtnCw8ToWlHJDxeOQojhUcwSZYERCk4wkI\neCo9USvUtAlsT47uGlbBggwZgiBI6jYiPBWeGO0GThQcp9xahkbpg6+H09ZxnRfSJqgd50vOkZC1\nhQnRT3K8MA1PuRdLe3/A0YIjXDdcR61UM6VVLI82Hc5zyc8wqtk4vjz9GVEBzVl36WdMNhPDmjxO\nat4+tmXFk3b9KCabiTe6vcWZ4tN0Ce3Gc8nPEBvzDIlXE5DL5OzKTsRT4Y1DsGOwGfBV+fF8x7mM\nbj6OSP9mvJ/2HgXG6zTxa0rcffO5Up7Jh8eX81KnV5na+mlScvYyqdUUXt47l7UX11BmKmVPTjJD\nmgwlX5cnqS7G7Z9Lnwb9WH/pF/o26Me+3L30ixhATGBbcvTZvNg5jqa1mjG6+ThScvay89oOWtdp\nQ1RgNKm5KUxMGEtqXgp+aj8+7vs5IZpQYhMnS/7VT+1H26B2DGk8lNHNxzE15mnAqTTTr+EAoOoC\nFFcCjkjsiU2cjMVhRo6CyTFPMbzZSLqH9ahCxKmJYCP+P6DRIIY0Hkr/xoPoFf6A5O+qH0v08a7x\njfiscCWJu/ph12dBTbFN9b/7NRxA97AeVd6Zx8aPYHizkQyLHE77kI41xmViX/4d1EQOd30/u5P2\nxP3EPv3RuMhNAvovh3ui9+7CbV8nViVeRFtioGvLEHy8VX9Jm38VCUgmk+GtVnElvwKzxU5EqJ+b\nBIR77N5tuO375+Ge0Pn78XeQgK7kV3Dw7HU6RAUTVd9JyrlbJCClQo5KKedagQ6L1UGPNvV+f6e/\nGW7fcu/gtvW9g9vW9w5uW98buElA/7v4vesqTki6JnvFcjYDGjnJF8FewSw+uIjxLSbSOaQLS4++\nwxfpK4mu3UJS07kTuCa9XNUz4jM3EeQZzL68vfio/BjSZCjbs7bRPrgDkQHNSMiMZ0bSNDZnbgAB\nRkaNlogqOquO8S0mAs5J/02XN2CxW9CofFAr1TT0bUTC1XhGNxvPG4cW8MPZ70jJS8Zb6c3+vBTq\nacJYm/ETDuwYLSaMDgMGux6dRY9NsFFp1nHo+oEbhAE9h7SptK3TnktlGRy5fhCL3Yr1xuS/l8IT\nm+CcDxBk4LDb6RDciYzyC9gFO1cqLt+whAw5cjZf3kAjv8bkGLI5XpiGl8IbBGcJgkPaVMx2E0pU\nmO0m9uXvZXSz8ZwpSee6UessvWAuZsWDKxnW7DFa12mDwaon2Ksuiw8tRHDAlisbic/cTKh3KOXm\ncsZvHU2Huh0lIoKo6CQmJDNKLxCbOJkfzn3LpssbqqwoFVFpqWDEpmF8dupjDuQdoFNIZ2bsmoYC\nBS+nvECppZS92clkll7mwxPLcDickv8KuYKsiivIBDn9Gw0k/spmTFYzlbZyBjYcwpoLP+Cp9GTn\n1e2MuHF90wtP8sPZbxnS5BHq+YRJE+RafT5PJkyQFKWGNB7KxJaTpcltMWnqSmgbsWkYq85/R8/w\n3tKqXoAuod2YmTSdndd2kJZ/lKVpS/jlws/8cvFn4q9sIv7KJmqpAxgVNY4D+fuYFjODU4UnOFl4\njF8u/sSP539AhhytMZ+U7BRe7BTH+oxf6NuwH60CWzN//0vIZTLnqnGg1FKCChVGh7GKXQM967Cs\n94csPrgIwQGbr2xwGS8wtPGjnC85i8VuZkjEUK6WZ2Gw6zleeIzVZ38gKXsH7ep04HJFBscL0ygx\nF7M/bx/l5jIi/Bpzqug45ZYKlChx4GB01DgiazXjWOFRBAQGNXyYUnMZJeZiDmr3Y7AbGdl0LI39\nm7Du0k+Y7CZkyFjY5Q0CPYNYdf47BAFUCg8ebNCHbVe2sDZjDV5ybwI8A2joG8GWKxvxU/sxOGIo\nK0/+EwEH46Mn8fXZL2niH8nKU//koQYDySy/xEFtKj+eW832a/HYHXaSs5MIUAfip/ZlTNQEvj7z\nBXaHHQd2zHYTF8suoECJHTsxtdtSYi6m3FomJRCtDitmhxmDXU9K7h6QyZjdbi4apQ+nik9IdpUj\nx9+jFqeLT/Fwo2EMajSEXdcSmd1+LpfLLtEltBsH8vdJylUTW06WiDTivSMS1ERCnJhUbhvcjgnb\nRrPx0q/kVuawJyeZL9M/Y/X578kqzeKq7gpbM+PZn78XgIERQ7hYdh6j3UCFpRxPuRchPiG8dfh1\nyszOUixymYKlvT5gcOOHqeVRm8PaA4BTXeGBsL4Mbfwop0tO8UvGT8RnbmJ9xjp6hvfCT+XP+8fe\no3tYD4lk55qE0erzydflScTONO0RBEGQyADVfYGYGBO/T8iMr/IsuN3qcdF3iyUcxWS+qCAiJvpc\niRKu7aVpj0iKWy+lvCAln5b0WFqFrPSfCndc9PfDYLDUSFarSakHflP4EVUbbpfovBV5Niowuor6\nQXVVupr2gd9UK3rW70107RYczD/AxJaTq5B6ROLLW93fo3/jQTeRel2Twa6qQK73cHV1iO5hPaTj\ni30U70+xLfH393q9z9SYp6soSoi+RExiv9f9pnloAAAgAElEQVTrfZ5s9RTdw3rQs35vWga2IkQT\nyoxd05jXKY49Ocl0CunM2otriI15hnePvMXmzA2k5OylZ3gv+jbsR4gmlGGRw9FZdfRt2A+Az099\nIsUI4nGjA1rwWfonTGw5md71H+RgfirPtJnF83tmMLjxUARBoMBwnRlJ09h5bQejo8aRmpfCy50X\nMKr5GMZEj6OhbyN+uriaHy98j0Km5MEGfQFIzt6NgIPZHebSJbQbGpWGpGuJFBgLeLfnch6LGsGA\nRoNQylRsz9qKVbAQqK6Dp8qTB+r3ITUvlROFxxjYaAibMzfwRre3mNNxHlEB0TzVehrtgzvw5qHX\niOu8kCdbTeH+sJ6cLT6DUq6kxFwMMhlyQYaXUsPLnV/liPYwGpUvBqsePw8/yixlDIp4mCtlmUxq\nMZUeYb3pEtKNQ9pUwKlcI0PG+ZKz2LHjIVfjrXQq1HgrvdDb9HgqvPBV+zK11TSSsncAzqjVLtil\nWAacKj76GyRmf49atKvToQpppzrsjt/2twt2/FW1JBK0n4cfHjI1lhskHoAnW07ldFE6dsGGXbAz\nMOJh6TwA2gV14HhhGt5KDTPbPs+JwmNSf0BG95AepJeeorl/NKdKTmJxWJDLFGhU3pgcJk4VnsLk\nMEl9GNl0LNuztmJyGBEQkCHDz8Mfm93GiKZjOFl4jApreZVzdJYBs6KWqSWlIQCb3Sr95qP0RWer\nZHLLWC6VZ3CswKnieH+9nlwqy6BNUDuOF6ZhFSw80uRRRkaNYVDjIWy6tIH4KxuJCWzDxdLz7L62\nk3mdXqF5YDRrzq9CEOBMcTovd17AsMjHOHz9IJWWCvpHDCTt+lFScpPRmSuZd18cEb6NScreQbBX\nCFNaxZJVeYVnWs/k2XYziQqMptJSwezdMyg2FzExegobMtcR4h3KrN3TUclVnC5Ol+6nEE0o35/9\nmkJDAROinyRHl01CVjyJV3cwpVUsP11czVv3v8t99bqSeDWBGe1mI0fBy/te4GrFVT7qsxKdVUfs\nzid5uPEjzGg/m2YBUSw+uIg+DR6ifUhHYgJbM7X100yNeVoiBu3L3cvwZiOluCA2cTLbs7ZJCoei\nP0wvPCm937gq8Lj610pLBcObjWR083GMjBot/Sb6aVfiTk1qOeK7rOh3XJXKXMnN1RdeuPpcMRZy\n9bG3Umr7vdimejuuzyxx39sRWO8ErudU3aY1EZjuBGJ/3CSgO8D/4oSoe6L37sJtX8gr0rN6ZwZ1\n/D1p27QOMpnsL2n3ryIBAfh6q8gt1JNfYqBhiC/NGwT8Je3+N8M9du8u3Pb983BP6Pz9+DtIQKev\nlJCeWUzPNqGEB/kAd48EBFDbT012gY68Ij2tmwQS4PufPe7cvuXewW3rewe3re8d3La+N3CTgP53\nUdN1FROxmy9t4JV982hdp400meoh88BT6SklVgRB4PnkmdKK8PYhHRnQaBCB6jp8ffbL3y2VISaT\nxclO19WDrYPbUM87jMPaQ+y4upUlPZYxqdUUQjShBHrW4fk9Mwj2rMtzyc+AAHKZnAfrP4S3youZ\nu6ax6tz3/Ov0ZwSq67Ao9RUSrmzDYrdgESyYHSYqLJWk5CZjF+z4KH3IrLiMxWFBhQdGh5EKSwWJ\nVxOkpITDZQJfXEF9piT9pnPKM+Qi4MCBQyIAAShkSuw3SEBGmwE7drJ1V6skTcTWjXZnkiHPkIuX\nwguV3AODXV8lieDskwMFSqyClSPagwyPHEXPsAdYdf4bZCgk5ZjxW0fzzdkvOVdyFrPNhEIhp8hU\nxIPhD/H24cVsy9yK1pBHYtYOVp//np/Or+bFjnF4Kj0llYHFBxfxWOQIzhSfZnqbGXQP7yGRGkTV\njTDfcNoGt2PXtZ0UGq/Tt0E/ogKa83n6SmJjniGz/DIV5goOavcjIGCyGzHZjZjtJkCg1FLCjqzt\nlJpLMNtNTIh+knUZP4NcxsToKZwpPk3v+g8SmziZ9RfXEegdyH0hXSg3lyMITjvGJk5GwMEHD3wM\nwMspzmScOM5m7JrGpBZT6B7uTGK6rtgN0YQyNn4Ea86v5vuzXzO0yTDWX/qFjsGd+TljNS0CWpKt\nv4qX0pvHIkdwQLsPs83E+ZLzmO0mzpWcRWerRIESna0SBw66hnanxFRMmaWEziFdSc7Zxb7cFJKu\nJmJyGPGUe1VZJS6W3XBFbKtn6N9oIMMih3O++BwpeXuq7He2OJ0Kq5O4dLHsAnac48xsdxJd7IJd\nKqsRoArA5DDho/LFQ6Fid/ZOKi2V0pgFuFR2kczyyzeui7NNuUyG6ca/5cg5XXLqhsKV0+6DI4ay\n6vx3JOcmYXPY0Nkq8VZ5sydnN8+3f5EwTTifnFrBmnOrOFtyGjkKRjQdw4oTy6i0VCAgsDt7Jy92\njGPp0XfoGtKdT9M/QhDAYreglDnLb3gpvBnZbAwf9V1J89rRvLRvDoIAxeYiqb+u92u27qpL4u83\neEhJORm+Hj7suLbtplIkwo17scJSwSFtKntzkgnyDuZgfiomu4ktmZsot5SzOzuJrZlbGN18HOAk\njyVm7eCdI/8g2CuYl/fOJcwnjGk7p9xQt8pDJfMgJWcPCpkShVxJq8DWkj8Rk4iivxAQyCrLqnL/\nH9KmsuXyJgZHDOVSWcaN5KhAVEALXt03jwPa/ciQoVH6YHVYuFJxmaPXD6OUKfHzqMU7PZeyNzeZ\nn86vYVvWZow2IwfzU6UkmoiM0gsM2ziIH8/9QK/6D5Cvy+OxTUPoHNKFZ9rOrLFUhGvZI3HVfj3v\nMEkJSvQZrhCVvb47+zXrM9YR5hPG7N3PsqDLa1IpwTnJs7A5rPQI7yX5perlJwVBYPuVbfSq/wBP\nt3lGStqJ6kyiStCdoKaSS3cb7rjo74cYF1VP0N5KFctVteHPJDpdE6i/11b1bQEiA5pJShiupczq\n+YTRM6w3/RsPkvYXybBdQruxPWvbTfdxpaWCny6spkd4r5vul0pLhRQTioqMadojzNo1HbvDwcio\n0VWULqICo2+pKOG6jdhu6zptJAXHLqHdaFIrkg2X1kmljj5L/wSz3ez0jzLYfmUb267Es+HSOpoF\nRDF+60j25+4jQF2bbN1Vnmz1VBXSYF1NiOSfxBJmEf6NGHwjBhi5eRjfn/0GjYeGhV1e57P0T3ip\nk7N0548XvifpWiLbr27FT+3H+OaTyKrMZGtmPJszNzC7/QtsvPwrXUK78vLeuWy7Eg8y+OjBlRIR\nNL3wJHH75/JSp/nM6xzHo00fJz5zEyk5e7ELNpQyFZ1COrPq3HecLDxBj/BevHV4MduzthHqXY9d\nOTu5VHaJA/n72J+3j8Xd3+KFTi9R1yuE1LwUnmnzHHvzdrM/dx+llhKmtHqaI9pDeCs1mOxGMssu\n4av241LZRXblJNK/4UBOF6djs1tp5h+FxsOHme2eZ0/ubswOM74qXx4I78OZknQ8ZGrMDhN6i57G\n/k04cUNpJ9grmECvOgyPHEmuLofBjR7hWuVVibRjtBkkZTqoOccmIODBb2QZQRCw4STLOBwOHm7y\nKOdLzyLcUD9894HlJGUlklWZCUD/hgPZk7sbcJKS2gW1d5JnHFb256XgrfTBaDNIMUuuLhsBgXJL\nuTPvJ4CPypdKayUy5Ph6+OIp92J01DhOF58iV5dDmaXUOW5V/tgEG1aHlTpewRQYtXzwwD+pMFVK\nBO0gz2BJBai2Z6D0t7+HP2/d/x5hmnBOF51CqVBgcVg4W3yaMnMp/h61GBAxmA2Z6xCAk4XHCfYK\n4cmWT/Ht2a9Ye+EnmgVE8UqXhQR7hbAx81d61OvFscKjnC89R6R/UxKvbqeOVzDPtX+BjZm/0jao\nPTuyEjA5jJwoOO4s8ZW9G4VcgZdCw08XV1NpqeCxyBF8dvpj5nV8he/PfVPlvW971jaW9fqQCP9G\nfH3mS9K0R/H39OeLft9IRBux7N/Oq9sBGWkFh1na6wNmtJtN97AevHV4Me/1ep+e9Xs7Y++IQWj1\n+TyXPJ15HV8lts10OoR0QhAEOod0YVnau3QJ7cbig4uY1GIKEf6N8FP7ERnQjHo+YWSUXuBUwQme\nSpzEuz2XU1cTIpH4u4f1kBYAuBKaJ2wbxVv3v0v7kI5V/K8IVzKj6EvF9wJRybS6QqFrnFD9Xba6\n2tutCJ6ucZPYhqjKeKvnwK2UgG7lZ13JS6KfrV6a7I/EOTWp/9TUhz8KNwnoDvC/OCHqnui9u3Db\nF37efYnsAh2dWwRTy+evewH7K0lAMpkMTw8FWdpKLFY7vdreudT6/yrcY/fuwm3fPw/3hM7fj7+D\nBHT43HUu51Uw8L6GEiHnbpKAZDIZ/hoPLudVkFuko0fr0L+MzHo34PYt9w5uW987uG197+C29b2B\nmwT0vwvX6ypOXo6NH8E3Z/7F2ow1qOQqogKiGdfiCRr6RjBnz0w6BHfiZNEJuoZ2Q0Bgw6V1DGk8\nVEre6Kw6Zu5+mrkdXsZT6cnuq0m8sm/eTWoRadojDNswiPgrm1l3cS0jo0bftBK9e3gPGvg24OEm\nw7ivXlcmb5/AqnPfk3b9KHGdF9A8MJqka4kUGQsps5RxvDCNjZfWo7NU0jygBfU0Yfx44XusDiuF\npoKbJPlFuKqqVCf7/BEoZcqbyBxiQv/fhU2w3bLf8Ft/BQSOF6Zxtug0Hgo1ZZZSDuanMiJqNCHe\nodwX0pW060fpFf4Ap4tPOVVPio7jwIHdYUPj4SSrlxiLscscnCs+y67snczrFMcbBxbRxC+S785/\nhUKmYHPmBup6hTAjaRpfnv4Uk8XMu0ffItQ7lCa1IqmnCeNYwVF2Zyex/tIvyGVyMisuM7jRUFLz\nUxjYcAj5unxsDptkY6VMhRyZVNYIIKcyG52tkloeAezJ3YXepmNM8/EIDtidm0i/BoNYcvhN1lxY\nxdYrThLG8GYj6RHeC3ASgF7oMI8F++P4/uy39K7/IOE+9Xll/4v0DOtdhbxUzydMWv2rkqnYfGUD\n5cZyjhYcJkeXjRw5uYYcEECtUJN2/Qhmh0kiMwHY7TanPbEjQ46AwJUKJ5nmubZzKTIWcqzwKHqb\nXrqmcZ0XcrLoBCa7CblMjhJVlTEITsLHugtrySi5wBdnVkoryEVYHBYUKBFukMKcnwoEBOlThMnh\nJMqYHWZn+Q8cCNXGqsVhqUKoEb8T0SGok0QqEnGx7IJ07cwOM4HqOrSsHcPp4lMkZG3jVNEJanvW\n4fGmo2jk14TU/BQyyy/jpfBGqVBQbikj2Lsufip/9ubtJq3gCCCTSouIyUST3cjxwjTqeoUQFdic\n7VnbaOofdVuFgZrwG6FGwGx3tt1Q05Bya/kt97EJVgJUAeQZ8zDajZLtFKgoNhdSxzOYuJQX+fXS\nWuKvOAk6/zr9BTm6a+zLSSFPn4PepseBg+OFaQgIGOwGzHZTFR90+/7+BrPdxPHCtCrqCIe0qVWu\nt7fSW7qWcuQY7QY0Kh861O1Ip5D7OJh/gGa1osiqvMK4qIkMjnxYehaIpYDqeoVwsfQCgxoPcZbF\n86zLylP/lNQ+qqvyiPdRmG84kQHNuFp2lW1ZW2hdpw0Tto3my/RPaVG7paTkFhnQjEpLBZ+f/JRi\nU5GUcMzT59Iz7AFmd5grleB7stVTUomMuJS5vNx5Pu1DOkp9BmdCenbys9wX0gUvpTfphSd5Pnkm\nod6hTNg2iuiAFngpvW+blHJNarkmyP6q1fK3gjsu+vtRU7x7qxJ1rr+7frreQ/8uqrdVE1xVF2oq\nmVe9lJlreTwxcbykx1I6hHS6qUQZOElCWzPj2Xltx02xm5hAnthyspQQj02cjMlm5pO+n99UHvBO\nzjdNewQfD1/WnF/N5JinqigJNfGP5LGmjztLCUU+SvvgDoxqPobk7F0s7PI6M9rPpmd4L/pHDJQU\nkcJ86rP40ELm3/c6Ef6NqiThm/hH8kzbmdI5i/d334b9JFLQw00eYWrM09TVhPDDuW+Z1GoKu7J3\nEhvzDM+0m8nenGSea/cC7xx9k6W9PqBX/QdYff57Iv2jSLt+mO71enD0+iEWdn2dXdeSmNr6aSm+\n3n0tiWmtZ7Ax81fGt5iIj4cv6y6uZWHX1zmsPcSHD36MRqVhTPPxdKzbmZ71e0vqSwtT49BZdTzf\n/kUa+Eaw89p2UvP20SaoLb0aPMDDTR4hMqApq85+h8lh4skWT9EtrBubMjdgtBmRy+T4q2tRYi7G\nW6HBT+1H34b92JK5EY2HDzn6bDzkHjQLaM5h7QFGNh1LviGXk4XHXWJaGWqFmiMFh5Ajx0fly4cP\nfEwD34Z8cnIFMpmc44VHiQlsI8UJSpT0Cn+QKxWXUcs9sQs2OgZ1xmgzoVFqAOfztfpzTnyWCQic\nLTnNA+F9uVJxmSsVl7ladpWEa1tQyz3xVKhpGRjjogQk0LRWlESs1ag0LOjyOgfy92GxO+9vH6Uv\nFoeZSS2mkqvLRaVQUWlxkrd9lD5UWirQ23UUGguYGD2FjLKLVN4gW5sdZnxUGix2C1NaPS0p93x9\n9gunaicCI5qO5kjBQdRyT6eiksoLD7maWp612JebwiFtKuOjJ1FsKsbmsDG5ZSxXyq/wTs+lrLu0\nFsEBU2OmcVCbyqBGD/Pjxe8Y2HAIe/N2s/3qVpoHRPP9uW/oU78fX535DD9VLV7q9AqfnFxBqakE\njYeGC6XniY2ZzkspczDY9YxsOpYSUzG96j/Azmvb0RryOaRNRSFT4K305mjBId6+fynjWj5Bv4YD\nCPSsw5w9M0nM2oFCLmdk1BinutXVREotJdRS12JI46H4ePii1eezPWsb/SMG0sivCedKz/Juz+XE\nBLUhzDccQRCk+1tUCKyrCSEqMJpgz7p8dfoLErLiaRvUjhm7pvFI5KP0bdhPKsX7XPIz7MhKYEDE\nIKmU6qMbB3NYexhfD19GRo0hNnEya86vZu2FNey8toPhzUZKpONKSwU+Hr4MbjyUnvV71+hP07RH\nmJM8C6vdSs8bBEg/tR+h3qEkZSey69pOWtdpc1PpRrGN6qpq4vuFSEQeFjlc+qyp9FZNJM7qZNTq\nvvhWZNFbKdeJcFXncVWH+6PPrN8jwP4ZIvUfjYvkf2gvN9xw4/8FSipMHDxzndBAb+oH+/zd3bkt\n6gf7EOCrJiu/kuslhr+7O2644YYbbtSAwjLnZHhQLc97dsyQQG8a1PXhcm4FH/5yiqS0HHIKdTiE\nP5bIcsMNN9xwww03/rchJo0AlvdeweZHt7PwvsU4HAJz9sxk0rbxBHoF0sA3AoB8XR6TEybwxNYx\n5OlyOV98DpvDypzkWQAEeQXz4fFlDP11AM/vmUGZubTK8dK0RwjRhBLqU48noiejUqjQ6vOr/D4p\nYRwJmfE8lTiJhamvkF54EkEAmcyZLFiW9g4zk6YzuWUsDsGBHAXgVFIxO8zs1+5lv3YvduyUW2pO\n7P9Rks/vwfYHCT9/BSptFZRZSrELNsZETWD9xXU8v2cGS48u4boxny1ZG53kgxtkBACzYKbcUkax\nuYj7QrrhEOzcF9KV5b1XUGws5krFZbZkbUQl8yA25hmsDitvHFxIvj4Xq8PKhyeWkVeZy5TtT9Br\nTVde3DubYmMRFeYKbIINu8NOvwYD+eTkh1gcVrZkbaTSVlGF7KK36TC7kBkEBMpMzjJH7YI6OFeJ\ny9UUGgrYcHkdQZ7BJOckYcOGh1yNUvZbGfeZSdOZtWs6S3osJSaoDSOajkarz2P81lF8fGIFb3V/\njxBNqDTucytzpL+1+nw2Zv5Kn/B+bMnaCEC5pQyH4Oyrv7oWJSZneSkRzf2dSU8bv1336kSez9M/\n5quzn0v/tgsOfFS+/Ov05wiOG2pTggMrNRMui8wFUn8AZMhQoPytvRvH/u3TXuXzr8TRwsO/u02h\nqYCknB3gcNrCJtgw2gx8dfZzvjr7OQICRcZCBJlDuj/DvMP56uznWB0iwanq/Sl3mdJflvYOo7Y8\nhtaQz37t3r/kvK7qb08kClAFcFV/lSa+kVW+L7OUYnfY+ceh18jX59KjXm8ANmduoMhYiL8qgDJT\nyU3+5m75H1eUW34bp3ZseMg8MNj0PL9nBs/vmUGuPrvK9UzIjOfh9f0ZGz+ChMx40rRH+Obsvxjb\nfAJzkmeRkBnP5+krWdJjKcnXdjE2fgQjNg0jITOeSQnjJN8t+vNVZ77j54zVlJpKACfZb8n9y1h8\ncBGrznzHEwljWHXmO75J/4oicwFeSm++6PcNo5o5n0eBXoEADNswmOk7p6LV55NbmUOhoYBrFVd5\n48Ai0rRHGBs/gpGbhzFi0zA+PrGCOl5BvHFgEQ+v78/U7RMpNZUQ5B3Mix1ekb7Prcy5pd3CfMP5\nZsAqwnzDpb8ByV/cCapvJ/qYNO0RAOnTjf8OiEnd3xsDYjJ4bPwIabs7HTN3gpqeW67tu47dmvYR\nf+8Q0qnK765/v5wyl4/6rGT14LU3JXbF312Pt7z3CrxV3oRoQmts83bfpWmP8NimIaQXnqzSZphv\nOC90mMfTO50qI0t6LGVm0nSm7phIoaGA5b1XsCztXbT6fOYkz2Jm0nTStEd4+/CbrM1Yw/JeHzGu\n5ROE+YazpMdSQjShUnvphScl+4ltz0meJdmnQ0gnwnzDnaUQ9XkAxMZM552jb1JocPopgHCfBgR5\nBzOg8WCW3L+MladW8FKn+XyevhKL3fkcu27IJ73wpGQnmQzWZqxhSY+l0jFUChUxQW1YPXgtAMM2\nDuJ88Tme3jlZ8hMhmlB8PXwJ8gwG4MMTS7FjR2vIZ3LCBEZuHkaIJpQQTSj1/RpQ1zuElLxk3jiw\niLhOCwn3bUBd71B+GPwTC+9bTJAmiJc6vcqHx5eBABOjpxDsVRe5TMGn6R+x4L43aF47Gk+FF7XU\nAYRq6lHHKxhRrRKcT+hKawXP7IxlyZHF2AUHBpuewRFDpdKaQZ7BPNFiMntvqPTYHTa8FN4cL0qj\n1OIkwFgdN8c97YI6SH+L8d/Rgt+eVQarU+FPEJzleE8XnQJAo3Tm8kI19aRtK62VLEx9hXJLOYMj\nhvJc27l0DukCwOoL31FsKkRnrWRgxGAAjDYj7/X6gOW9PsJqt/Fp+kdUmJ1xSsegzlKbDhx8e/Zf\nWB1WSk2lfP7Q13zc9zPe6bGcmR1mU0sdgNlhoshcQLGpiAVdXmdl3y/xVnnh5+HPqgvf0j64Iwab\nng9PLKXEXESxsZi4zvOpsJbRIaQDC+57g81X1vNih1eIv7K5io2MNgMrT61wqi9aK/j4xArGRE1A\nIVMgk8mwCVaaB0bzZb9vCfepT9d63QBYmPoKX/T7hoX3LaaOOhg/tR/eKg1fPPQN41o+Id2D41o+\nwfJeH+Gl8sRqtzFr13TmJM/i3Z7LaejbiOfavcCc5FmM3DyMmUnTies8nycTxvNSyhziOs8nyDtY\neua5vuMlZMYzMWEsj24cTJr2CJ+nr8TqsCIISPfpnORZ0j0ZE9SGDY9s5eeHNwAwNn4EIZpQ1j8S\nz4Zh8ax/JJ4OIZ1YPXgta4duYO3QDSzvvQKtPp/HNg0hITNe8smuPgqqvm/OSZ7F8t4r+KjPSl5O\nmSv5iLcPvwk43487hHSS4gFXHy9eD9F21X2zGBeJ79o1wXW/6qgeP7juU327O3lO1bTvvxPf/F5b\n1fv0Z9r+o5AJwv+fDEhh4d1baf53ISjI93/yvP5T8P/ZvjqjlU83nuZsVimTB0Vjc9wsw/xn4Ovj\nSaXO9Psb/hvI0lay90Qe98eEMnnwf35967uJ/89j917Abd8/j6Ag37+7C//vcadj+M+M9+QTVVfF\nbtp3Bb3Rxui+kfdUkUdntHLgtJb84t9IoiG1vZk+rNV/FMnV7VvuHdy2vndw2/rewW3re4O7ZWd3\nbPT3w/W6uk5UiskWmQwGRQzl01Mf0cCvIQu6vM4Lyc9RaCpAjhwZMnw8fAnyCuajPisBpJJKy3uv\noNBQQLGxmM/Tf0smpWmPMGzjIL546BsW7H+F64Z83r5/KZ+nO/eP6zyfZWnv8kKHeQxoPJiEzHje\nOLAIlULF8t4rCNGEkl54kqk7JhLsXReAHF02MmS/m1RXocKKMzGjRHmDtCFDiQIbNsK8wsg15t62\njf90eCq8MNudCjX+Hv7oLLoqRBC5TI5DqDrX4YEHXipvFHIFeqsOuUyB0W4gQF2bcnMZcpmcSL+m\nnC8/h1ruidnx27yGWq7GU+mFwaaXlH3kyBkU8TDxWZvw8/BHZ61Ejhy1whOdrZKOQZ3viEgiQqP0\nwWAzIOCglkcAOkslr9y3iLcOvy4Rrhbet5hHmw1Hq89n+s6pmGwm3u25nMUHF3Gt8ioP1R/AlqyN\nBKrr4OPhi0quYmHX16VVyuBMTMQEtWH9xXW8cWhBjX3x96hVhVjx76CmMaqQKRAEAfG/fxceeGC5\nBXHoPwUyZIxoOoaUvGQMVgMVlnLpXH2VflTaKu7o/v13oJFr0DtuLgN2txDsVRez3czwyJF8ffYL\nBIS//Jz+LBQoJBWI38PkFrGsuvAtvkp/xkU/wafpH6FR+hDoFYggwLNtZzFnz0yebPEUe3OTJf/c\nIaST5LM/6rOS88XneH7PDJ5rO5dJMZMZGz+CuM7zmbL9Cd7t+T5z9z6Hj8qXcksZvjdKsfQJ70dK\nbjI2wcayXisI9Apkyo4nEASBcN/6CAJ4q7yJjZlO7wYPotXnE6IJrfFz6vZJWB0WSozFhPiEcl2v\nxc/Dn2JzEQvvW0zXsG5VyBC3g/iM/L1yT+J2Y+NHVCFR5FbmoNXn83LKXCa1mMIr+1/k16FbpKRk\nmG84Jo8y6vvXv6P+uHF38HvxrkgUudW/xe+galK3OjHnTpCmPVLj+HQ9pvh3Tf24Xb/F78bGjwC4\naaz+kbZc93c9Z9exX5MdRGK46B8GNB5cow1WnfmOeXufJ8K/kUQIACQi0OrBa6X7H36zv+s5phee\n5O3Db2K0GVDKVJLvEgkA1clRYnsjNrHcZqMAACAASURBVA3DJlhZ/0g86YUneXrnZGJbPcvWrE38\n/PAGtPp8hm4YwKZhCYCTjPxRn5UUGgpYlvaupLxU09gQ411wxiELU1+RjhMT1IYRm4axdugGkq/t\n4oNjy/BWedOvwUB+OPcNKoUKpVzJF/2+IUQTKsXZAAdyU/ns1CfU9qpNbMx0Pjm5gkERQ9lxbRtx\nnefz9uE3MVgNGKx6yi1lBHnVRaVQYnPYiKoVTVLODoZEPMKOa9sI8qrLlFaxlJvL+fDEUpRyFb3q\nPeAk+wJDIh6hfd2OfHbqE0rMRXjKvai0VeCvqoXBpsdT6YXJZqRn2G/7aJQ+WOxmaqkDsDjM/B97\n9x0eRfU1cPy7LZteCKE3QaQJSFE60gVBqrQoiKDYABWQ3pQioFiwYENRXvipiIQqRRDpgihFBaQI\nASQhhCSkb5v3j2XGTUgn2YTkfJ7HR7K7M3vv3Tszd+eePTfOEqeNzY0Y8fXw05bgUsdefkZ/HqzU\nns8fXs6kneP58sRS7IqdHtV6seH8WnyMviTaEnj7wfeJSYnh7cNv4GXywsvozdWkCOeY0QEV/Sth\nUAycjT9DKXMw05u/SrsqHVh2/HO6Vu+mXUP6rO1OaK2h7Li0jYTURDpU6cS3p1cS4BFAv7sH8uVf\nn2PHhlFvorRnaaKTr6HT6Vjb+4ebn+cPvHfkLcp4l9U+p6ikq8w+MJPYlFiupURRyhxMrxp9qR/S\ngCl7X2Feqze0fr64w3/frQas783D1XrSpFwTulZ3BtCcjD7BKz+/xJRmM2lRsaUzY1b1vqw86cyC\n6m3y5q12i3l66zCikq8ysek0Fvw6h/mtF/HJ8SXYHFaebzgmzfc0te+r+q/rjdVh5aPOnxGVdFV7\nb/WYARi7cwxdqnRj8ZFFlDIH83b793j94Jw0/UyngzW9NlLRrxKbz20kOjmadlU63HJ+Ub+HqvV2\nPUbU4zn9sZr+XKSefyISr2R43KU//mYfmImiwKqeYbecT9W6pm8f12v8ij+/YtKecYT12qSVK33Q\nS07O0+p2Gb3mcMShTM+hrvVWgx5ze73JSdly8zpXm89t1D6/3NY/r/eLJBOQEOIWZy7HMeuLg/x1\nPoZ7q5eieb2yhV2kHKla1pcAHw/2/xnB9sOXSE4tvF8cCiGESEtRFBKSrfh6m9y+JJevl4k5TzVj\n/rMteLJbbR6oU4aI60nM/epX9v8Z4dayCCGEEKLoU2+4qb9wNBlMLO6whKktZxDWexOLOywhxLsM\n11OcE8gOFBSdQpwllrjUWKKSrvL01mHsDN+hBessOryQdlU6pLlxWs6nPFX8qjp/2XnzF5yP1RvK\nyu6rtF92j2sygUWHF3I44hBdq3dnVc8wVnZfpf06u2v17qzt/QPr+2xhfZ8tvHjfeG2yvVW5tlqd\nWpVriwHDzfT8YMV68986bNjQoQMULRgoMjlSy+pSGDzwyPDxATVDb5bVSf13+rJ6GbyxKc5AHLPe\nTKIlEZ1Oh5/JmYI9wBTIw1Ufcf7bIxAPnTPFugULcdZYvIzePFb7CZLtSejQE5N6HQcObIqNk3En\nALQAILPefPNvZxah5xu86FJGHVsubGJ6s9d4sdE47IodPw9/Uh0pBJgCORL1W5r6ZCfRlqAtWRVr\nidEy7pTzKY8BA8PrjqTPPf3ov875a+RkawqRSRFM3zuFxR2W8GnnZfwe9Rvg/EW5TgcJ1nie2vpE\nmowlI7c9Se+w7vzv1HJ6VOuVYVniLTcI8AjMUbnV7FQdK3UBnMtoudKho5Q5GIPekKv2cJVRAFBu\n9qXL4DZ5g1IN81QWAFMGfVhBYdXp/93MqJA22CnBlkCIZxk6VOqsPRZgDMj1+6avszsDgABiU2KJ\ns8RqAUDgDMgrSuzYSbE5j9+sPmMfow/bL27DpPPgWupV3j/6Dh56MzGp13m4Wk9W9QyjXZUOBHqU\nYuWpr3jhvjHa+fly/CVe2z+T8PjzjN7+HMFewQSbS7M13Dkhqma6ADgedQy7YteC6sp4Ou/Dbr+0\nFaPehAMHr+x6iVd+HkuwZ2nKepd3Zo7Tm5j8wDQ+OLKYneE76LuuB2v+Xs3o7c9pgQZqVpGryRHo\n0FPJvzLjmkwEwMvkxfC6I5l/cDa91z58yy/rM8tg4vrr/MMRh9JkeXH997DNj6XJanI5/pKWbUDN\ncvDJ8SV83OlzLfAhdGN/Dkccos83fXLyUQo3yCxrQWYZdjJ7XUaZeXJCzZCz+dzGLF+X0wxFGb2/\nmp0mfcaf7Mqa2b5c/63WWc3UNXbnGG1iPz11bDf5gWlpst+4BgBdjr/EJ8eXUNGvEos7LNHeTz2u\n1HPLpN3jtYwb6mSyax27Vu/OW+0WY9KbtGxHTcrdrwUCqcez6zF7POooJoOJ11rO0/bxSpMpLDm2\nmPNx/2jjCDVbnRqENGbHc8B/mYbUz9K1b8xv8yaLDi/U3nPktidRFGdg0+sH57Dm79VcSghnzd+r\nmbRnHDqdM1h+a/gPGPUmJt4/FU+DF/sv79MymozZ8RxPbx3G7F9mEJl8hf41B/HJ8SVcS4rm3SNv\nci0pivohDXmr3WJmt5qHt8mHMt5lGd90Iks6fYbFbtECdbZc2ESARyAWeyqv/TKd94++gxEjpT1L\ncyH+PIEeQQBsPL+Oub/MQsGBw+Eg2Z5EoEcQSdZE7NiJt97ggbIt2HFpG0EewQR4BBLkGUSQZykC\nzIG81+EjAs1B6PQ6AjwC+bzrcvre7Qze6lGtF+91WIJBZyDBFs/G8+tY8edX7P53J6XMwfSo1ovZ\nbV6ntLkMZsN/Swe9f+QdEmzxmPQe9K7Rj2R7Mn4mfwI9g0i2phAef4Egcym8Td58cGQxA9b35rvT\n33Ay+oQWODah6VSWn/yCFFsKU5vPYPXpbwDwNHiz/eI2QrxDMOqMTLl/Br4mP/zNAYR4ldX6YoA5\nAAcO2lZsz+WESwzdNJjX9s9kevNX+erh/1HaM4TY1Bi++OtTAD7u9Dm1g+tQ1f8upjd/lbE7xxCV\ndJWIxCsoCqw9t5r6IQ3ZfG4jk3aPJ9grGJ1ex8qTyynnU575bd5k7bnvmdHiVcJ6b9SCdPw8/Pm0\n8zJGNXmR+a0XseyvpbzVbjGLOyxh2V9LmfzANO04U49ZtQ3e67gEb5M3UUlX0xyfAFFJV2lS7n4m\nPzCNT/74gCfrPk2CNZ7Juydgc1gJ8S6jZcAy6U3aewC8/PMo+qztrh0Lrpn3yvmU1zKOqRm8Dkcc\n0o5n10w96bmef9Tzh7pv9bhWt1vWdQX1QxpivHk+cD02Xc9PGZ0jXX/cMmXvK8xvveiWwCTXdky/\n38xk9ho1C1Fmz6vnE9dMbbmR/tqWkbxk9TkccYhnfhyuZYzMLpNefmUNMsyaNWvWbe/lDpHROqZ3\nOh8fc7GsV1FRUto3xWIj8noS/1y5wb4/Ilj2w0mSU230aXMXQ7vWxqDXcz4if3/tavYwYrHkb5CO\nTqfD18vEhYh4jp6NZvvhS1y/kULpAE/8fTK+gVhclZS+W1ikfW+frO9e+HLah2+nv7teO1Isdv44\nd50yQV5UK5+39W9vx4XIeKJik1GA0oFeBPmZCb+awKGTVzkVHkNsQio1KwW4PUDJlZxb3Efa2n2k\nrd1H2to9CqqdZWxU+E5HnsPf7ByjqDfempd3/pL0jQffppxPeeItN/D18GPUjmfpVLULuy//jEnn\ngY/Rh0RbAn4mfxJtCfx8cScRSVfYcmETO8N/IrTOEHrf3Y+KfpW09wDwN/tzX0gjagXXwd/sTwXf\nitrjFXwr0rFKZxqXa0q94HuZtHs8Hat0vmUfABV8K+Jv9ifecoP7yjaidlAdTsWc4KuH/0dZr3Ls\n+3cPQ+sNp22ldpyJPY3FbkGnwGN1nuD3qMPAf4EDHSt1IcEST6ItAQcOku3J1PC7mxiLcwkbL4MX\nZoMnNm2ZIjDrPbFnsOxXg1INiUyOTPOYCQ8c2LXn1PfVY6C0ZwgWe6pzmQfvsvS7ewDHrx0l0BxE\ngDmQsY0n8nTDZ/nhn014m7wZUe8ZZracTQ3/mmz4Zy3+pkBeb/0Gzcq14N/Ey7zZ9m2q+N7Fvit7\nGFb3Ka6lXOPLbiup4V+Tv67/weGrh3jxvvHUCLg7TTaeEM8yjGzwPKtOf0OCNf6WDCa1A+pwLfUa\nrcq15UriZTyNXlhuLt9lwMCAWoP5MXwrDhwEeARiU6wMu3cEbx6ezw3LDV5pOoVzcWeZ9MA0tlzY\npO3fiFFbliwrPkZfbA4boKDXGbgUf5GhdYez78puIpKu0KFKJ34M38q7HT6gd82+7Lm8i486f0aT\ncvfjZfQm7Mxq9IpzAmlas1kcjTqCj4cPT9V/htMxpxj545O83vpNht07gk3nNnIt5Rp6DBj1RlId\nqfga/XiuwRguJYQTlxrLqIYv88e1Y1gdlpvBV9Y05a0dUIeo1KtaW5h0Hnzbcw0xyTGcijnB6PvG\nMrPlbJ67bzSP1OhNl6pdOXjlIBa7RetXBoz4mny1dgbw0HmgoDDmvnH8ErEvTb/zMnmjKKTJ1uRj\n9MXb4E2qIwVPvVeapeoCPAKcx0W6jDXXU67jZfTWlujwMnhlusRd+uAbdRk0AwZ8TM7PTIcOo97I\nsDpP8fvVw3gavLA6LHSs1IVZLWez8+JPHI3+nR7VenExPpwEe4JWvlR7apr9e+g8blnirLAz7pj1\nZixKKl4G5xIfziA6HXbFnqZcTUMe4N+ky1qbZVS/gqK22+QHZnDk6u9YFAsJ1oRbXteqXFvO3jiD\nUW8kzhJLx0pdSLInEp96g0BzEPsj9tCjek8SrAn834llTGg6lW/+Xknvu/vhb/bH3+xP17se5pEa\nvXi4eg8m7x5PVPJVFrZ9i8blmhJvucGo7c8SmxrLkajfUFAYUDOUSwnhXEl2TqTX8LubqJQoQMGs\n9yTRnoC30RuDXs/W8B/wMfnQvnJHvvrrC07H/s2ge4bw9u8LiU2NIbTOEBqG3MczPw6nYelG/Bi+\nlSDPUnzU+TPuDWnApn82oNfpORfnvPa90PBF7i//gHZ9ORxxiFE7nqVjlc5prjmnY07xeN0ntAm/\nPmu7s+WfH7ivTCNGbhvO6tOr6FK1KxX9KlEv+F5mH5jJGw++ja+HH6Eb+7Pl/A/a3y/vHI3VbmVU\n45eo6FeJLlW70u+eAdQKrsOjDXsT4Jn7IDiRf5KSLNp4KH0/SM/f7K+NUVQZbZvVPjJTwbcidYLq\nsujwwjT7ymz/6cvh6nL8pQzLcDn+EqN2PKsdv/nJ3+yv7f+NB9/moWrdtKwembXr3UH30LZiO8r5\nlOd0zCn6rutB24rtUBRFO1YG1X6MWsF1tAAf1zGi2g61gutoj7vWMd5yA3+zP1cS/mXbha08UW+4\n1maKorD69CpaVWzDyG3D2XB2HW+1W0yCNYEhPwxkQtMpLDn2Ph2rdCbecoMZe6eg1xkI8izFUw2e\noVZwHR6s1J4m5e53jnPLNGLd2TD+768v6VS1C1vPb+Z/J5ez9cJmulZ7WCuLOu6t6FcJRVHoUb0n\nTzV4Bl8PP774Yynbwn/g2fqjWf9PGAvbvsWYxmNpXK4pHjoPvj+ziuPXjpNqT2HT+fWMrP88Hx//\nkBRbKnNbz6d+cENG1B9JreDaPFStGzsv7sCoNxJgDqRtpQcZvf05tl/cRqo9BbvDwYZ/1jKo9mO0\nrtiGNWdWAzCs7lNcTY5ArzNg1Bkp7RXCjBav8VSDZ3i4eg8erNSODWfX8UTdERyPOkqAZwDeJm+S\nLIkEeQbzRL0RHIjYi16nJzzhPMPrjmRArUH8cH4DOvTEpcbyfMMxPFilPWvPfI/VbiXeeoMqvtX4\n4k/n0qHn4s7S6+4+7Pt3DwnWeF68bzy97+nLJ0c/4lrqVU7H/k2toDocijxAdPI1pjV7FS+jF2Fn\nVzOgZihLOn9KbGoMOy5u46l7n2XPvz/jZfQm0Z6Iv4c/doeDua3nU9GnMhv+CbsZBGti24UtHIjY\nR5wljhRbCuW9K/Bb1K+AjjmtXufYtaO82Ggsp2P+ZkbL1zDpTGy+sJEAcwAjGzxH8/It6X1PXyp4\nV6SyX2WORP1ObGoMZqOZgxG/0LhME/Zc3o2/OYAxjcay/MQydl7czrYLzrGsj8mHr0+u4JtTK9l3\neS8v3DeGtWe/5+6Amrz88yjmtV5I/ZCGbD2/hRktXqVxuaZU8K1IveB7mb53MvcE1WLSrvH8GL6V\nt9otpm3ldlyOv8Ss/dO0zFSur//65EpWnljOhnPrmNHiVfrWfJQEawJNyt1Pl6pdaVyuqXZ8jtw2\nnJH1n+Pln0fRtmI72lZuR52gujzbaBR1S9XjUOQvPNtgFG8eXkCnql3YEf4jU5vNREFh1I5neabh\n89QOqsOwe0dQK7hOmvNUvOVGmmNbPS+oATbqMQPOIJsuVbvecj7J7Hw3cttw7Vo8bPNj2vfULlW7\nauXI7HyW2WPqubpvrf5pno+33KBVxTZpzjO3K7vztOv5JK+yuv5ld63JrExqH8lu24z2n9f7RbIc\n2B1OUr4XrOLevleiE/lu51l+P30tzeNeZgNtGlSgXLB3gb13QSwHpmpUM4Q9x/5l5++Xib7hvIlw\n392l6d6iKjUqlowvkMW97xY2ad/bJ0teFD53LwcWFZvMDwfCqVstiKa1y+Rpf/ntRqKFn36/TFyC\n86a+t9lIpRAf/H3NWKx2Uix2HIpCg+rBtGlQngDfjAfcV6IT2XIwHINBz0MPVKFMYN5+6SrnFveR\ntnYfaWv3kbZ2D1kOrPi678PG2o1gSLusBJBmCQUgzXPqUiveJi+mN3cuq7QzfAfALWnlXeVmaYyc\nLEmhllHNPqSWset3HYlMvoJJb6Ksdzk8DV6E1h7C2nPfM6zuCIK9ggnxLsPmcz+w+MgiKvhUYnzT\nibSr0oE1f69m5cnl3LDE4XAoxFvj+LTLMkK8y/DF8aV8d/prHDgw6Iy82fYdYlKcyxW0qNgSgB7f\nd2Fqs1l8eOQ9PE1mxjWZyIRdL7P0oa+YsmcC45pM5J3fFjG71Tyt3SbuHksF34qs6bVR+1W5a/r5\n9EvRXI6/xID1vVncYUmGn9/O8B1aqn/XZTPU5SWGbX6MWoF1OBi5n0RLIlOazWDSnnHY7c7ABQcO\nnqz7NH4e/nx7eiWb+v7Imr9X06JiS3qt6UZ534r0rtGPagHV+PDoYm05jJPRJ/jk+BImPzBNW8Yi\nxZ7Mp12WMXbnGG3SwHX5hTV/r2bv5d2cij1By/JtOBi5n3tLNaBGYE2qBVRj/sG5+Jv9mN78Vc7E\nnGHlyeXMaPEqiw4vpFf1viz4dQ5hvTalSX+f0ZItar9NvzQA3JpxwJVa70m7xzOuyQSm752CSW9y\nZsBKucrwuiNZ9tdn2pJePar14oXGY+gZ1pWlXb6ifkhD7b0ORxyiV1g3qvhV05YdUG0+t5Gntj6B\nxWHFpDeysM3bxKTE8Nov0+lRrRc/X/4Jf48AopIj+azLl8w+MJPnG47hfNx5dl7enibLwuANj5Jg\njUen6KjgV4mXGo8D0JZmalKuCZN3T+BqcgR+Jn/iUmPxNnkTb41nRrPZAMz+ZQZ6nZ43277LnAOz\nuJ4aTctybdgbsYumIQ9wOOoQZb3LsbDtW+wM/4mvTnyOTbFh0pkYUudJ/u/kMsp4l2Ve64WEeJeh\nSbn7tSUT/E0BlPYO0ZZveXrrMBTFmblFXVZOXd5D9d8Sfmn5GHxJtCfgafAkxX7rPTcvgxfJ9uT/\nXn9zuRBwBr3sjdh1M6gx++xB6utvfQ9vku1JlDaXwWgwYNAZGXHvSN4/8g4eBg8G3vMYOy9vp0nI\n/Sw/8QUKCm+0fYd3fluEzWGjVYU2lPepwKd/LCEpB+XIi+F1R9K/9kD6rO3OhKZTmfPLTBw4tHbr\nUa0Xp2JPcC72LG8++C4LDs3leko0FXwr8lrLeQDa5wj/HTNZnacvx1/ieNTRNMv7qEvsRCVdZcqe\nCXzaZZm2bJjajnoM+Jp8SbEnE2QOxt/sl2ZZlIjEK/QOe5j5bRbxwZHFnL9xDh061vXZTJNy92tl\nU5cZSr8k19idY+hfcxALf51LJd8qrOrpPEeqS2m41ktdwtJ1mQ/X/Wa0TFj6pZFcn89qWTEZFxU+\ndbyblyVPVLezbU72lZv9Zzfmyu2+sjrWM9s/oJUBss6GkX4pHzVwyLX8uV1izXU5MjUrT0bLCbmO\nE1zHX+rxrpZdHX8pijNLSmbLEqnX9LW9f0izVKFre7iOQVyX+jkccYgxO57jRmo8JoMRT4PXLWOG\nFX9+Re3gOlq2ovohDTkedZTX9s/E6rBqy+1O2fsKH3f6HID6IQ21cvRZ2x2r3UZkUgSlPEvhYfBg\nfZ8t2jXZrtjxMfoyo8WrRCdHM3nPeCY0ncqXf32Oh8GEUW9iZP3nmLRnHJ92XsbsA84MNyHeZbRr\n+qM1B/LukTd58b7xVAuoxifHlzgDfSzxXE+9ht1hx6g38lmXL9MsNxziVZZBtR5j9Rln5p31fbaw\n7PjnvHvkTe1a1iusG4HmIJ5tMIo+9/Sj87ftuJYaxdsPvkft4Do8EtaVYHNp3njwLUZuexIvgw+l\nvYOx2K281Hgcr+x6mQCPAK6nRhNsDsHX7MOl+Iv4mvxY3OFDgDRlKuNdlsikCBQUbRylZi8FeP3g\nHK4lRbGo3bvUD2moLVt1MvoEY38ezVs3ywXODDqvH5yD1W7V+lD6sWeP7x8iKjmSEK+yfPbQMm07\ndTku9RoHaH1H1TusOx4GE4oCM1q8ql2DM1oWS338eNRRpu+dwr+Jl6jo63z834TLLGjzFo/VG5rm\nOFGXwnIdU7teP9X+7Pr32J1jgP++r6X/jqlun9GSV1ktZ5jZ98300i/rlV/n6YzOR5kttXinyGjJ\nycKS13GRBAHd4eRGb8Eqru2bkGxl3Z5/+On3y9gdCqX8zQT7e+LrZcLHy0SF0j54ehgKtAwFGQSk\ncigKl64m8Oc/14mKdb5XSKAnIYFeNKtTlgqlfagU4ou5gOtaGIpr3y0qpH1vn9zQKXzuDgI69+8N\n9hy7wgN1y1C7SlCe9lcQrDYHp8JjiL6RSkx8KvGJljS/nXUujAE6HTSpVYbG95SmtL8XpfzNWGwO\nNuw7z/4/I1BH1Hqdjpb3lqNT00rcSLJwISKei1cTUBQI8jNTyt+TYH9PypbyomyQFyaj4WY57DgM\nBq5E3qBSiC9Gg6zaW5DkPO4+0tbuI23tHhIEVHxtPr4jw5utqqwmK9Xn1RvA6R/PbpInPyfI1Mmd\n9Ddgj0cdJcS7jDb54npD2tXmcxupH9Lwlpu36o1q15vcoRv7k2xL4sVG46gdXCfDyR/XyXH4L/jD\ndWI5fRukn6zOSTtldlPcdbJNlf4G9eZzG1l0eCHD6o5g8p7xrOmVdskRdaIho/fJaGI9JxPg6uPp\n2zv9dpvPbeSZH4fzfc8NGQbspG9D1wCegpQ+SA5gZ/gO2lXpQP91vbWJMnWyJLNyZfRZqzaf26hN\npKntv+LPrwj2CuaJzaHaJFL64IuMJlrVYDL4b4JoZ/gOlv21VJsIHVn/OT44spgZLV7VJhBDvMvQ\nZ213As1BeBo9WdLpM8bseI54Szw/9NvOmr9XM6rJi7d8jnP3vaZN0O26vBObYmVJp89uaYP0E6rq\nY2N3jtGWpJixbwpLOn3G0E2DsSt2rqdGU9pcBp0ODHoDEUnOuvkZ/Xmt1Txe+fklKvpVpn5wAw5H\nHaJJyP1sOL+Wct7lWdj2LSbsGsvE+6fy5q8LeL3NQqbsmUC/uwey8Z91/HPjHKU9Q7g7oCZ7I3ah\nQ0cZr3LEpcbSs0YfVp3+Gm+jNz4mH2JTY/Az+XM9NRqj3oiv0R+TwUhsagzPNRjDsPrDiUi8wujt\nz6HTgdVhxagzaUEman/df3kffe7pp31OrpPTXap049vTK5nQdArHo46x/K8v8DCa8TR48nb795i8\newIj7h1JkGcQk3aP47HaT7Dj0jZebDSOOQdmEZ16jY6VurD78k7QQZsK7TgVe4L1fbakOV4ORxzi\nZPQJPjiymJjU6yRY4pnfZpEW1KeWTT0H9l3XQzsmcyq7yXrXie/jUUeJTo5mwq6XWdj2bdpV6ZBm\n0jz99q7nVLWv57Rs6vuOazLhlnO/eoy7Hkt91nZnTa+NBT4RJuOiwlccv1fkx5grfZBK+v1ndpxn\nNubJTXnzKxBqfps3KedTnv7ret8SUJPR69KPCdMHZUP2AU391/VOEyiUvj1cx7Djmkyga/XuWjnG\nNZnAjH1T+DfhMp91+fKWQI70QRSugUlRSVe1oM33D7/L/04tJzz+grYUlHq96V9zEPN+efVmXSoz\nu9U8Xj84h3jLDea1Xshr+2ei06EF/HxwZDHh8edZ0OYtgr2Cef3gHCY/ME0LTBm9/Tne67iEp7YM\nIyLpCjqdDofDTvWAu7VxhnpePx51lBn7pgDwWst5PLX1CfxM/tgUG3GWWOeyY94h+Jr8WNUzjJ3h\nO3j551GYdCaWPvQVE3aNxWzwxKQ3MaPFqwzfMhS7YqOKXzXCem9k2fHPWXxkEW89+B6AFsSkBuz3\nXNOVsj7liE+NJ8WRzPzWizgfd553j7xJOe/yeBo9uXTjIgoKQeZgzEYzJoORB8q2YO3Z1ZT3rcCL\njcbxwZHFXEoIJ7TWUFac/JIQ7zJ82mUZo7c7l4PT6eDhaj2Z2nJGmuAQdbyTPkjWNePcM/VH0bV6\nNwB6r32Y8j4VtGvR5nMbeXrbMC0IPqNAN0gbIOR6XUvfp9U+99r+mbzX0Rl0+/TWYUQlXyWs1yat\njJl9l1G/V6jngcyC8dNLP47N6DHXAKP0x1hOglXSBynlt8zOUZB5gPCdIKcBl3mpV063KZFBQA6H\ng1mzZnHq1Ck8PDyYM2cOVatWzfT1xXHgIjd6C1ZxaN+kFCvhkQmER8ZzITKe8MgErkQn4VAUygR6\n0b99DW4kWdy+/Ik7goBUiqIQxczPsQAAIABJREFUGZPMH+ei+fdaUprn9Dodlcr4UKNCANUr+FOh\ntA/lg73x9DC6pWwFpTj03aJM2vf2yQ2d/FdQ46L8CAKKjkthz7ErxCVa6NS0EhVK++Rpf+5gszuw\n2hwYDXqMBh1Wu4N//r3BqfBYYhMyXv4l0NeD+2qWxu5QOHYmmrjEnC0TowOCAzyx2h1aNiIAs8lA\nzcoB1KkahI+niRSLnZRUGw5FITjAk9IBXgQHeOJh1ONwKCgKWGx24hIsxCVauJFkwWTU42024u1p\nJNDHTNlS3piMmQcWKYpCisWOp4ch2zGB+vWhMJdOu11yHncfaWv3kbZ2DwkCKr6iouJv+9fuufk1\ndkHKST3y4xfv2QVG5UZB3QzObsIso1/suiOIJjeKYpmyUtCZH8A5weI6WZSbbTOaKHGdSEz/S+X0\ngTrpf0Gd0Xtdjr/EI2se0rI+ZZRpIadlT1/GneE7+ODIYnQ6tIww+y/vY+Gvc7UANtdf1q/qGaZl\nRkg/4Zo+gOzJzY8TlXRVW2ZsRrPZ9LmnH8ejjjL7wEzOx/1DGe9ymAxGFAU+6vyZVma1jdIHQ6af\n7Eqf8emJzaHaRGX68qiTeGoGDDVQRd2PaztlFFy4M3wHtYPraBl/Vp3+OsvPQp24tTqshPXeeEt5\nXV+Xl2Myp8GM6uSoOqGc1/3ltEyQ/QS+a7nc8Wt+GRcVvtyOd4v6pG5Oy3e7E+jZBSWnv77k9toA\n2Y+7sqtDTo7nzec28vrBObdc69Rt4Nag6qzK4RoYoW7rmm3MNSDE9XVqfQ9HHOLZbU+luVakD/RW\nH++/rjfgzPyiBoeAM4jxk85fALDo8MI0Y7/R25/jhiUOb5M3LzYaxyfHl9C/5iDmH5qtZTCC/65x\nm89tZMa+KRh1Ju391YAqNXDl9dZv8u7vi7gcf4lSnqXxNHryUuNxWkai1w/O0a5J6mcbkXiFYT88\njoKDmJTrBN3MTORp8OKF+8bQrkoHQjf251pSFN4mH2a3msfT24Yxsek0Vp3+mskPTGPE5qEoOoVy\nPuX5tMsynt46jFRbqpZ1cM3fq1n461yCPUP47KFljNnxHINrDWHhr3OZ0HQqa899rwVLt6vSgZ3h\nO3j390VaoI9OB9Obv8rrB+cQk3IdT6MnXkZvJj8wjTMxZ3jj8DxG3vsCHx17j7De/wXNPLVlGNEp\nUXzS+QstyEvN2HQpIZw1vTZm+GOF9w+/myZb3fGoo1rfVLNVJduStDFQRpns0vfHzI6DjAL21der\nmfue3joMdPBp52VpgtUy6tsZUceVmWXISX++cP07ox97pD/mcnpcFtY5uyh9Z86NnIzhcluv3GxT\nIoOAtm7dyo4dO5g/fz5Hjhzh448/ZsmSJZm+vjjeEC1ON3rVrqh1SJeeqa4bnb63KulerP6d5mXa\nYznch8tzwcG+XLuW4PLajMv439//ba3c+lCafQCYPQx4ehgw6G+dlFMUBYvVQbLFRnKqTZsATLHa\n0aFDr3dOviWn2oiJv5m9IMmC1ebAZlew2h1cjUnSMuCojAYdQX6eVC3nS60qgRm+tzu4MwjIVar1\n5iRpQiqxCRauxSUTfSMVhyPtB+XjaaR8aR/8vEz4eXvg6WFwLg1jtZNqsWuTq15mIz5eJgJ8PAjw\n9SDAx4zRkHZSVJ0k1QGeHga8PY1a5gdFUbDYHKRa7VgsdlKtdlKtDgx6HX7eJvx9PPKUDaKgzw0O\nRcFmc/zXv3XO+jmrerO+N5tB+//NF6mtI5PHRY9DUbBaHej1YDToC/Qzkhs6+a+gxkW57e9Wm8P5\n6xiDnu2/XeL42WiOn4tGUaBWlUAeqFPmjjz+FUXhWlwK0XEpJKbYSEqxYrE5qF7Bn2rl/LQ6ORSF\nCxHxXLqagJ+3B6X8zZTy80Sv15GYYiUpxUZCspUbiRbnf0kWDHo9vl4mgvw9sdvtRF5PznEgUU7p\ndTrKlvKiYmkfzKb/MuAlpdqIik3hWlwyKTevb8H+npQOdGYs8vd2Xt88PQxcjkrknys3uBAZj82u\nUCbIizKBXpQJ8sLXy4S3pwlvsxEPk/P8odfpUBRFq3NCshWdDrxuXj89TM4gJptdwW53YDDo8fQw\nYDY5x0fOcZIRs8mAze7QxkM2uwMfTxPens4gp5RUO3GJFuISU7HZFWf5Azzx83bejEmx2ElKsWFz\nOPAwGjCb9FQoH0hk5A2sN4O+AO299XodNruDpBQbiSlWAHw8Tfh4GbVxk6Io2B2Ky7hOh2u31unA\n4VCw2pxjMrV+JoPuZoCZHr3+vw0UxdkOFpsdvU6Hh0mf4RjNcbM945MsWKwOfDyd45CcBG+l30+q\nxbnknYdJn+l4ND+kP4coijNwzZHDr6HZVUvtaznh+t46nfO4SN9udodzfGPQ3/pcUVdcxydFjQQB\nFV/58bkW9QmwoqqwbwbL5yZUeZkkzm5ytyD6V0YTwa7vl1EGh5zsM3Rjf7pU6Ua1gGoEewWnmdxS\nl1hTJ0LTv39eZZYNSy1TTn7Znh3XCbfsAljyM7gxr3ISbJMf5828Tli5o21kXFT4cjMuKuzreHZy\nk8UhN4EtuS1D+oCCrLKKZRRcmj5oIDcBR7mpi/peaiBpZhk8chIwlT4wQr0uuWZUcuUaiJE+EGLA\n+t58+0hYtu/vGlAzZsdzfPtImBZs4hqo45qVqHdYdyIS/2V+m0V8cnwJSdYkdDr4N/4ya/v8kCZY\n6a12i7Uglaikq2mCU1Vq0JPr8qRqZkn1utc7rDveJu80gUB91jqvu4qiUM7XGcRTzqc8a/5ezRuH\n5/F9zw0AWoBxOZ/y2n5G1n+Ox+oN1bImztg3hRcbjWPsz6Op4FOJzx5apl0L1WUg1cAZ1wxMrm2j\nLgOpZt5x/ZzUoOi32i1OE3ysBiv1DuvOR50/S5OVp3/NQVqQkWu/UNsxdGN/kqxJzG41T1tiTM2y\n5LoMZ/rMOOkzVqX/PLLiGhST1fjJNXMekCZILrtgI9d9qMd9Ztn9MtouswCmnGybWZ0LKrNNTtxp\n373yI4j0drcpkUFAr7/+Og0aNKB7d2dEfJs2bdi9e3emry+IG3VbD11k3Z5/yGsj5uW2ctoJBh25\n+QiVNIE1af91SwBNuuCZtI+l3192ATYu+8koUKeEMxmdk0HqR6vg/DX+7R6dZpPBOfno76kt+eXn\nbSoSExqFFQSUEbtDIeZGCtE3UohLsBCbaCEuwUJKqq3A+qnRoMeg12Gx2rN9Dy+zIceTWyq9XndL\nYFN+cCjOJWts9vzbt87lH7oMJlFdg4pc/kwTVKRz2UnavwtGbs+9RV1Gn6sOMJn0lAn0ZurQJmmC\nBvKD3NDJfwU1LsrNZOcf/0Tz7qpj2B0KhpsBDnaHgo+nkRb3livSGYCKAtdrY1KKjciYJBwORRsn\nACSm2Ei8GVDjcDgDGXQ6HXq9zhlc42HA02zE4VCwWO1YrHYSU2zE3gx+VQNeXBkNuptBPEZSLXbi\nk61YrLe+TuUMUNURn2jFas/8dYXNdDNTkj2X10OjQY8tk3p5ehhuBvc4bnuMoNfpMBqdASwWq+OW\noBijQXcze5NOu1amWOwZBs8Y9DoMBjXoOOvro83hDABKz8Ood7aZ8l+wjKIo2t/w33XZ9Zp86/vp\n0myvgJaxSv07v6ltadTrUUgb7KMoCg5Hxu+tA4xGZ9Yvu0PBZlO09tXpwHQzYKsIDJ1zpKDGf+I/\nHiYD04Y3I8gr/7OGytio8EkQXeG6024GC+Eqo0merH6p7e7y5NSKP79i7M+j+bLrygyX5bjT3Un1\nyOkkXn5kAiqKbSLjosKX0bgoJxlmiqqCnMTNbTnUyffjUUczzPaV2QR9+iwl2S09drvlVN/rdvaR\nPjAjo6wr2dVV/Ts3mcjSB7D2XdeDjzt9fkvmlvSBWa5ZeSBtdrv0mZByGsilZie6lBDOJ52/0IKD\n1KU/1b/VAB014EUNRFGXhp3X6o0Ml1lVM+qM3PYkr7d+kyl7X2FeqzeYtGccYb02cTL6BO2qdLgl\n8036umXWrzJbutW1ndRsfbMPzMSoN/FWu8Va1kT1c3QNokm/pJtrMNDIbU9qAUdjd47BarfyXscl\nGY6rbicQLqNt1cAm4JYsWBllr8pLsG5+ZPjMr0Dg/M5sUxwVlXYokUFAU6dOpUuXLjz44IMAtGvX\njh9//BGj8c5exkcIIYQQIrdkXCSEEEIIIYQQheti3EX6fNOHDx7+gGaVmhV2cXJt3cl19Kzds7CL\nIYQoYtRz25qBa6gcULmwi3NHuxh3ESDL9rwYdzHbds7Ja4qSi3EX6b6yOxtDN6Ypd/p6ZNbXcltf\n19f/cumXNNfkvLZd+u3S7zer7f6N/5dmlZpp+1D//8ulX3hh0wusGbgGIMO2mNF2hnZtzqh9LsZd\npPPyzmwbsk17n18u/UIFvwoZvjaruue077nu17VOah0y2o9rXdO3o/q4Wn71fbLaX17rkNX5zPU9\ns9pnYR+j7jj+77RzTEG5k9vhjg4Cev3112nYsCEPP/wwAG3btmXXrl2FXCohhBBCCPeTcZEQQggh\nhBBCCCGEEEIIIUTJpi/sAtyOxo0ba5NbR44c4Z577inkEgkhhBBCFA4ZFwkhhBBCCCGEEEIIIYQQ\nQpRsd3QmIIfDwaxZs/j7779RFIV58+ZRo0aNwi6WEEIIIYTbybhICCGEEEIIIYQQQgghhBCiZLuj\ng4CEEEIIIYQQQgghhBBCCCGEEEIIIYQQd/hyYEIIIYQQQgghhBBCCCGEEEIIIYQQQggJAhJCCCGE\nEEIIIYQQQgghhBBCCCGEEOKOJ0FAQgghhBBCCCGEEEIIIYQQQgghhBBC3OEkCKiISklJYfTo0YSG\nhvL0009z/fr1W17z7bff0rdvXwYMGMBPP/2U5rlt27Yxbtw47e8jR47Qv39/Bg0axPvvv1/g5S/q\n8tq+mW23bds2OnXqxJAhQxgyZAgHDx50a32KAofDwYwZMxg4cCBDhgzhwoULaZ7fsWMH/fr1Y+DA\ngXz77bdZbnPhwgUGDx5MaGgoM2fOxOFwuL0+RU1+tu9ff/1FmzZttP66adMmt9enKMlL26qOHj3K\nkCFDtL+l74qiyh3n6KzGJSWJu66H169f56GHHiI1NdV9lSti3NHWy5Yto3///vTv379Ej6Hd0dYr\nVqygX79+PProoyV2bOKu84fD4eCpp57if//7n/sqV8S4o63nzJlD3759tTF3fHy8eyspioX03zdU\nGfVRq9XKuHHjGDRoEKGhoZw9e9bdxc2V3NTNYrEwbtw4BgwYwPDhwzl//rybS5s7mdUNIDk5mUGD\nBmmfT3bno6IkN/XKyTZFSW7qZrVaeeWVVwgNDeXRRx9l+/bt7ixqruWmbna7ncmTJzNo0CAGDx7M\n33//7c6i5lpe+mR0dDQPPvjgHXuOhIzr1qdPH23MMXnyZHcVM9dyW6+PP/6YgQMH0rdvX1atWuWu\nYpY42V2LwsLCeOSRRwgNDdU+h8yuzSdOnGDAgAEMHjyYyZMnF7uxcX621Z9//smjjz5KaGgos2fP\nLnb319zRVsWlX7nKzRi5pN+7Lci2kr6V9fE7b968NPeUpG/lvK3c2rcUUSR9/vnnyuLFixVFUZQN\nGzYos2fPTvP81atXlR49eiipqanKjRs3tH8riqLMnj1beeihh5SXXnpJe33Pnj2VCxcuKA6HQ3nq\nqaeUP//8032VKYLy2r6ZbffWW28pmzdvdm8lipgtW7YoEydOVBRFUX7//Xfl2Wef1Z6zWCxKp06d\nlNjYWCU1NVXp27evEhUVlek2zzzzjHLgwAFFURRl+vTpytatW91cm6InP9v322+/VZYuXer+ShRR\neWlbRVGUTz75ROnRo4fSv39/7fXSd0VRVdDn6KzGJSWNO66Hu3btUnr16qU0atRISUlJcWf1ipSC\nbuvw8HClT58+is1mUxwOhzJw4EDlxIkTbq5l0VDQbR0dHa10795dsVgsSnx8vNK2bVvF4XC4uZaF\nz13j6UWLFin9+/dXVq5c6a6qFTnuaOtBgwYp0dHR7qyWKGYy+r6hKJn30W3btiljxoxRFEVR9uzZ\no4waNaowip0jua3b8uXLlWnTpimKoihnz55Vhg8fXhjFzpHM6qYoinLs2DGlT58+SsuWLZUzZ84o\nipL1+agoyW29stumKMlt3b777jtlzpw5iqIoSkxMjPLggw+6s7i5ktu6bdu2TZk0aZKiKIpy4MCB\nItsfFSVvfdJisSjPP/+80qVLlzSPFzW5rVtKSorSq1cvdxcz13JbrwMHDijPPPOMYrfblYSEBO2e\nvMh/WV2LoqOjlfbt2ysxMTGK3W5XhgwZoly8eDHTa/Pzzz+v7Ny5U1EURRk7dqyyfft2RVGKz9g4\nP9uqT58+yuHDhxVFcc4vhYWFFav7awXdVopSfPqVKrdj5JJ877Yg20pRpG9l1l7R0dHKiBEjlI4d\nO2r3lKRv5bytFMW9fUsyARVRhw8fpk2bNgC0bduW/fv3p3n+2LFjNGrUCA8PD/z8/KhSpQonT54E\noHHjxsyaNUt7bUJCAhaLhSpVqqDT6WjdujX79u1zW12Kory2b2bb/fnnn6xevZrQ0FDmz5+PzWZz\nb4WKANe2ue+++/jjjz+0586ePUuVKlUICAjAw8ODJk2acOjQoUy3+fPPP3nggQcAZzuX9P4K+du+\nf/zxBzt37uSxxx5jypQpJCQkuL9CRUhe2hagSpUqvPfee2n2JX1XFFUFfY7OalxS0rjjeqjX6/ni\niy8IDAx0Z9WKnIJu63LlyvHZZ59hMBjQ6XTYbDbMZrOba1k0FHRblypVirCwMEwmE9euXcNsNqPT\n6dxcy8LnjvPH5s2b0el02jYlVUG3tcPh4MKFC8yYMYNBgwbx3XffubmGojjI6PsGZN5H77rrLux2\nOw6Hg4SEBIxGYyGUOmdyW7czZ87Qtm1bAKpXr16kM3hkVjdw/rr9gw8+oHr16tpjWZ2PipLc1iu7\nbYqS3Nata9euvPjiiwAoioLBYHBLOfMit3Xr1KkTs2fPBuDff//F39/fLeXMi7z0yQULFjBo0CDK\nlCnjjiLmWW7rdvLkSZKTkxk+fDhDhw7lyJEj7ipqruS2Xnv27OGee+7hhRde4Nlnn6Vdu3ZuKmnJ\nk9W16NKlS9SqVYvAwED0ej3169fn6NGjmV6b69SpQ2xsLIqikJiYiNFoLFZj4/xsq8jISBo3bgw4\n5/QOHz5crO6vFXRbFad+pcrtGLkk37styLaSvpV5eyUmJjJ69Gh69eql7UP6Vs7byt19S4KAioBV\nq1bRo0ePNP/Fx8fj5+cHgI+Pzy3poBISErTn1deoE/kPP/xwmpvmCQkJ+Pr6pnltcUhdllP52b6u\nj7tu16pVK6ZPn86KFStISkri66+/dlPtio70/cxgMGjBUFm1Z0bbKIqi9eGS1l8zk5/t26BBAyZM\nmMCKFSuoXLkyH3zwgfsqUgTlpW0BHnrooVturEvfFUVVQZ+jszpWShp3XA9btWpFUFCQO6pTpBV0\nW5tMJkqVKoWiKCxYsIC6dety1113ual2RYs7+rXRaOT//u//GDhwID179nRHtYqcgm7nv//+mw0b\nNmgTlyVZQbd1UlISjz/+OG+88QafffYZK1euvKNvgonCkdH3Dci8j3p7e3P58mW6devG9OnTi/QS\nTLmtW506dfjpp59QFIUjR44QGRmJ3W53Z5FzLLO6ATRp0oTy5cuneSyr81FRktt6ZbdNUZLbuvn4\n+ODr60tCQgJjxozhpZdeckcx8yQvn5vRaGTixInMnj2bRx55pKCLmGe5rdv3339PqVKl7ohA6NzW\nzdPTkxEjRrB06VJeffVVxo8fXyzOIzExMfzxxx+8++67Wr0URXFHUUucrK5FVatW5cyZM1y7do3k\n5GT2799PUlJSptfmatWqMXfuXLp160Z0dDTNmjUrVmPj/GyrypUrc/DgQQB++uknkpOTi9X9tYJu\nq+LUr1S5HSOX5Hu3BdlW0rcyb6/KlSvTsGHDHO3jTlWQbeXuvlX0v4mVAP3796d///5pHhs1ahSJ\niYmAM1os/S8vfH19tefV17h2vuxeW5R/yZHf8rN9XR933a5fv37avzt27MiWLVsKrD5FVfo2czgc\n2okyJ+3puo1er0/z2pLUXzOTn+3buXNnrU07d+6s/cqrpMpL22ZG+q4oqgr6HJ3bY6U4k+uh+7ij\nrVNTU5kyZQo+Pj7MnDmzoKtUZLmrXz/++OMMGDCAp59+mgMHDtC8efOCrFaRU9DtHBYWRmRkJE88\n8QSXL1/GZDJRsWJF7ZeWJUlBt7WXlxdDhw7Fy8sLgObNm3Py5Elq165d0FUTJUBmfXTZsmW0bt2a\ncePGceXKFZ544gnWr19/R2Wxy6xunTp14uzZs4SGhtK4cWPq1atXpLOv5EZW5yNRdF25coUXXniB\n0NDQIh0ok1cLFixg/PjxDBgwgI0bN+Lt7V3YRbptq1evRqfTsX//fk6cOMHEiRNZsmQJISEhhV20\n23bXXXdRtWpVdDodd911F4GBgURFRWUY5HUnCQwMpHr16nh4eFC9enXMZjPXr18nODi4sItW7GR1\nLQoICGDy5MmMHj2awMBA6tWrR1BQEO3atcvw2jx37lxWrFhBzZo1WbFiBfPnz2fatGnFZmycn201\nb9485s6dywcffEDTpk3x8PAoVvfXCrqtStJ3Lrl3m3PyfT53ctteudlHcZMfbeXuviWZgIqoxo0b\n8/PPPwOwa9cumjRpkub5Bg0acPjwYVJTU4mPj+fs2bPcc889Ge7L19cXk8lEeHg4iqKwZ88emjZt\nWuB1KMry2r4ZbacoCj179iQiIgKA/fv3U69ePfdWqAho3Lgxu3btAuDIkSNp+mONGjW4cOECsbGx\nWCwWfv31Vxo1apTpNnXr1uWXX34BnO1c0vsr5G/7jhgxgmPHjgElt7+6ykvbZkb6riiqCvocnZtx\nSXEn10P3Kei2VhSF559/nlq1avHaa68Vm8nGvCjotj537hyjRo1CURRMJhMeHh5pbsSUFAXdzhMm\nTGDVqlUsX76cPn36MGzYsBIZAAQF39bnz59n8ODB2O12rFYrv/32W4kfc4v8k1kf9ff31262BgQE\nYLPZimy2nMxkVrfjx4/TokUL/ve//9G1a1cqV65c2EXNN1mdj0TRdO3aNYYPH84rr7zCo48+WtjF\nyVdhYWF8/PHHgHOSQqfTFZsx2YoVK/i///s/li9fTp06dViwYEGxCAAC+O6775g/fz7gXDInISGh\nWNStSZMm7N69G0VRiIyMJDk5ucQviV1QsroW2Ww2/vrrL1auXMm7777LuXPnaNy4cabX5oCAAC0j\nQpkyZbhx40axGhvnZ1v9/PPPvPnmm3z55ZfExsbSqlWrYnV/raDbqjj1q+zIvduck+/zuZPb9sqI\n9K2ct5W7+5b8tKSIGjx4MBMnTmTw4MGYTCYWLVoEwBdffEGVKlXo2LEjQ4YMITQ0FEVRePnll7P8\ndZeaMtNut9O6detbUlCVNHlt34y20+l0zJkzh1GjRuHp6UmNGjUYMGBAIdfQ/Tp37szevXsZNGgQ\niqIwb9481q9fT1JSEgMHDmTSpEmMGDECRVHo168fZcuWzXAbgIkTJzJ9+nTeeustqlevzkMPPVTI\ntSt8+dm+s2bNYvbs2ZhMJkqXLl3iMwHlpW0zI31XFFUFfY42GAy5GpcUZ3I9dJ+Cbusff/yRgwcP\nYrFY2L17NwBjx47NMhi0uHLHOaR27doMHDgQnU5HmzZttDXZSxI5f7iPO/p0r169GDBgACaTiV69\nelGzZs1CrrW402XXR4cNG8aUKVMIDQ3FarXy8ssv3zHZO7Krm8lk4t133+Wjjz7Cz8+PuXPnFnaR\nc8y1bhnJ7NxS1GVXrztZdnX76KOPuHHjBh9++CEffvghAJ9++imenp7uLGaeZFe3Ll26MHnyZB57\n7DFsNhtTpky5I+oFJbtPPvroo0yePJnBgwej0+mYN2/eHZFRLLt6tW/fnkOHDvHoo4+iKAozZswo\n0T/MKEjZjY0B+vTpg9ls5sknn6RUqVIAGV6b58yZw8svv4zRaMRkMjF79mwqVapUbMbG+dlWVatW\nZdiwYXh5edGsWTMefPBBgGJzf80dbVVc+lVm5N5tzsn3+dzJa3tlJCQkRPpWDtuqRo0abu1bOkUW\nUhVCCCGEEEIIIYQQQgghhBBCCCGEEOKOVjzyeQohhBBCCCGEEEIIIYQQQgghhBBCCFGCSRCQEEII\nIYQQQgghhBBCCCGEEEIIIYQQdzgJAhJCCCGEEEIIIYQQQgghhBBCCCGEEOIOJ0FAQgghhBBCCCGE\nEEIIIYQQQgghhBBC3OEkCEgIIYQQQgghhBBCCCGEEEIIIYQQQog7nAQBCSHc6vjx40ydOjVX29Sq\nVStf3vvYsWO88cYb+bIvIYQQQoj88v333zNp0qTCLsZtGzJkCL/88kthF0MIIYQQd4hLly7RoUOH\nDJ/Lr3tBmenVq1eB7l8IIYQQIq9kHk0IcbuMhV0AIUTJUr9+ferXr18o733mzBmio6ML5b2FEEII\nIYQQQgghRNGwdu3awi6CEEIIIUSGZB5NCHG7JAhICJFrv/zyC++99x5Go5ErV67QoEED5s6dy6ZN\nm/jyyy9xOBzUq1ePmTNnYjabad68OfXq1ePatWtMmDCBjz76iOXLl/PPP/8wY8YMYmNj8fb2ZurU\nqTRo0IBLly7xyiuvkJSURMOGDbMtz/fff8+aNWuIjY2lffv2DB06lBkzZhAREYFOp2PcuHHce++9\nLF68mKSkJJYsWULZsmU5ePAg8+fPB5y/XB81ahQAb7zxBg6Hg5o1a1KpUiUiIyO5cOECly9fpn//\n/jz33HMF2r5CCCGEKHpsNhuzZs3i9OnTXLt2jbvuuovq1atTtmxZRowYAcCYMWPo0aMHDRo0YPz4\n8cTFxXHPPfdw6NAhdu3drtABAAAgAElEQVTaleX+L1y4wGOPPaaNZ8aNG4dOp2P16tV88cUX6HQ6\n6tWrx/Tp0/Hx8cl0PwsWLGDv3r0YDAY6duzIqFGjeO+99zh//jzh4eHExsYycOBAnnrqqRyNoVq2\nbElkZCRTpkwhPj6eqKgounfvzvjx47FYLEydOpU//viDihUrEhMTk69tLoQQQoji5aOPPmLdunUY\nDAZatWpFaGgoKSkpvPzyy5w+fRp/f38++OADgoKCtG1iY2OZOnUq586dw8PDg0mTJtGiRYtM36ND\nhw506NCBX3/9FYB58+ZRt25dhgwZQkBAAKdPn+add96hd+/enDp1KtP979q1i8WLF2Oz2ahUqRKz\nZ89OUy4hhBBCiKzIPJrMowlRmGQ5MCFEnhw7dowZM2awefNmUlNTWbp0Kd9++y1ff/01a9euJTg4\nmKVLlwIQExPDyJEjWbt2LUbjf7GHr7zyCkOGDGH9+vVMnjyZF198EYvFwuzZs+nbty9r166lcePG\nOSpPZGQka9asYezYscydO5d+/frx/fffs2TJEmbMmIFer2fMmDF06NAh28HH+fPn+fLLL1mwYAEA\np06dYunSpaxatYpPPvmEGzdu5LHVhBBCCHGn+v333zGZTHzzzTds27aN1NRUypUrx8aNGwFISEjg\nt99+o127dsydO5du3bqxfv16unbtSmRkZLb7v3TpEu+99x5r1qzh8OHDbN++nVOnTmk3fdavX4+X\nlxfvv/9+pvu4fPkyu3btYt26dXz99decP3+e1NRUAP7++2+WLVvG999/zzfffMOff/4JZD+GSkhI\nYMOGDfTo0YNvv/2WdevWsXLlSq5fv87y5csB+OGHH5g2bRrh4eG328xCCCGEKKZ+/vlnduzYoU1A\nXbhwgd27d3P9+nWefPJJNmzYQOnSpdm0aVOa7d59912qVKnCDz/8wMKFC3nnnXeyfa/AwEDCwsIY\nM2YMEydO1B6vVasWW7ZsoU6dOlnu//r16yxatIilS5cSFhZG69atefPNN/OvMYQQQghRIsg8mhCi\nsEgmICFEntx///1Ur14dcK6jPnr0aIKCghgwYAAAVquVunXraq9PH4mcmJhIeHg4Xbp0AeC+++4j\nICCAc+fOcfDgQRYtWgRAz549mTZtWrblqVu3rjYw2rdvH+fOnWPx4sWA85f7Fy9ezHHd7rrrLvz8\n/LS/mzVrhoeHB8HBwQQGBhIfH4+/v3+O9yeEEEKIO9/9999PYGAgK1as4Ny5c5w/f56goCAsFgsX\nLlzg999/p3379nh4eLB3715ef/11ADp37pyjcUOHDh0oVaoUAN26dePgwYNERETQvn177VfnAwcO\nZPLkyZnuo2zZspjNZgYNGkT79u156aWXMJvNAPTo0UPLINShQwcOHDhAUFBQjsZQI0aM4MCBAyxd\nupTTp09jtVpJTk7m4MGDDBw4EIBq1arRqFGjvDStEEIIIUqAAwcO0L17dzw9PQHo168fYWFhlClT\nhgYNGgBw991335JZ8NChQ1oATq1atfjmm2+yfS/13lSHDh2YNGkS169fB9DeJ7v9//TTT1y5coWh\nQ4cC4HA4CAgIyEu1hRBCCFGCyTyazKMJUVgkCEgIkScGg0H7t6Io2O12unXrpg00EhMTsdvt2mvU\nmzyu2yiKcstj6jbqczqdDp1Ol215XPfvcDj48ssvCQwMBJzRzaVLl+bEiRPaa3Q6XZr3t1qtmZZV\nnTzLaDshhBBClAzbt29n8eLFDB06lL59+xITE4OiKPTs2ZNNmzbx+++/8/TTTwPOcVJuxwuuv/JS\nFAWj0YjD4UjzGkVRsNlsWe5j1apVHDx4kF27djFo0CAtW4/r2M3hcGh/52QMNX/+fC5evEiPHj3o\n1KkT+/btQ1EUdDpdmjK61kEIIYQQwlX6cQ04J5tcxw8Z3XNJP744e/Ysd911F3p95gnuXbfJbNyT\n1f7tdjuNGzfmo48+AiA1NZXExMRM308IIYQQIiMyjyaEKCyyHJgQIk8OHz5MZGQkDoeDsLAwpkyZ\nwrZt24iOjkZRFGbNmsWXX36Z6fa+vr5UrlyZrVu3AnDkyBGuXbtGzZo1admyJevWrQNg69atWCyW\nXJWtefPmrFy5EoAzZ87Qs2dPkpOTMRgM2sRZUFAQZ8+eRVEULl68yKlTp/LSDEIIIYQoIfbv30+3\nbt3o168fpUuX5tChQ9jtdh555BE2bdrEhQsXaNq0KQAtW7Zk/fr1gHPpi5ykQFZfl5qaysaNG2nZ\nsiUPPPAAO3bsIDY2FoBvv/2WZs2aZbqPv/76i8cff5z777+fiRMnUqNGDf755x8AfvzxRywWC3Fx\ncfz000+0bt36lu0zG0Pt3buXESNG0K1bN65cuaKNAVu0aMGGDRtwOBxcvnyZ3377LXeNKoQQQogS\no3nz5mzcuJGUlBRsNhurV6+mefPm2W7XtGlTbYmws2fP8vTTT2c7yaUu17pt2zZq1KiRZRafjPbf\noEEDjhw5oo2jPvzwQxYuXJijegohhBBCqGQeTQhRWOSnmkKIPClTpgwTJkwgMjKSVq1a8fjjj+Pt\n7c0TTzyBw+GgTp06jBw5Mst9vPHGG8ya9f/s3XtclGX+//H3AIIKQy2FJ0jXY6VlJmqZodvBJDPB\nA4IYabad1bQ0DxmamqfULP1W1mZ+MxU0FY9r5qHM1TWig8VqmboUeAizdAAVlPn90Y/5RgIiM8M9\nN/N6Ph772JiZ+5rrvhnnfnNfn/u6JmrevHmqUaOG5s2bJ39/fyUlJWnUqFFKTk7WjTfe6Fi6oqLG\njx+vpKQk3X///ZKkmTNnKigoSK1bt9b8+fM1a9YsDRs2TCtXrlRUVJQaN26siIiISh8LAABQ/cXG\nxmrkyJHatGmT/P391aZNG2VlZal+/fr6y1/+ojZt2jgGpMaNG6fRo0dr+fLluu666yo0/XGTJk30\n6KOP6vTp0+rRo4ejSOexxx5TYmKiCgsL1apVK7344otlttGyZUu1adNGPXr0UK1atXT99derc+fO\nysjIUEBAgBISEpSbm6vHHntMzZo10969e0tsX1aGeuyxx/Tcc88pODhYV111lW644QZlZWUpISFB\nBw4c0L333quwsDC1aNGisocXAABUc3fccYf27dunPn366Pz584qMjNQdd9yh9957r9zthg0bpvHj\nx6tnz57y8/PTzJkzL1kE9MUXX+iDDz5QrVq1NH369Mtuv06dOpo6daqGDx+uoqIi1a1bVy+//PJl\n7zMAAPBujKMBMIrFznxcAC7Tnj17NH/+fMfyEgAAAPg/7733nm677TY1a9ZMGRkZeuGFF7Rq1SrD\n+jNv3jxJ0tChQw3rAwAAQFW488479d577yk8PNzorgAAAC/GOBoAIzETEABT2LhxoxYsWFDqc2vW\nrKni3gAAAJStUaNGeuaZZ+Tj46OAgABNnjzZpVkmMTGx1CXG4uPj1b9//0r1GQAAwCzKy0IAAADe\ninE0AMWYCQgAAAAAAAAAAAAAAAAwOR+jOwAAAAAAAAAAAAAAAADAORQBAQAAAAAAAAAAAAAAACZH\nERDgocaMGaN33nmn1OeuvfZanTx50q3vf/z4ca9aSz0rK0s333yz0d1wuU2bNikxMdHobgAA4FZ7\n9uxRjx49jO6GRykvS5pZjx49tGfPHqO7AQCA16guOevOO+/UN998c1nb7N27V0lJSZKkb775RsOG\nDSv39dU1fwEAgEszw1hMZbKKzWbTgw8+6Pg5Ojpap0+fLvP1q1at0mOPPVbpPgJwDT+jOwDAM9Wt\nW1fJyclGdwMAAAAAAACocj/88IOOHz8uSbrxxhv12muvGdwjAACAqnXq1KkShdRr1qwxsDcAKooi\nIMBgKSkpWrx4sXx8fHT11VfrhRdeUOPGjSVJX375peLj43XixAk1b95cs2fPVu3atUtsv2DBAq1e\nvVp+fn5q1KiRpk+fLqvVWub7JSYmqmnTpvr222/166+/Kjo6WsOGDVNWVpYGDBigpk2bKjs7W9On\nT9fgwYP15Zdf6vz583r55Zf18ccfy9fXVzfffLMmTJggf39/vfHGG9q8ebOKiooUFhamCRMmqG7d\nuiXeMz4+XoMGDVJUVJQkadasWbLb7Ro0aJBGjx6tX3/9VZLUpUsXDR8+/KI+f/DBB0pJSVFhYaFO\nnTqlRx55RAkJCWW2+8wzz2jmzJnatm2brFarWrdurYMHD2rx4sXl/i6Kior0/PPPKyMjQ35+fho/\nfrzatGmjwsJCTZ8+Xbt375avr69at26tsWPHKigoqMy28vLyNHbsWGVmZsrHx0etWrXSpEmTlJaW\nppkzZ6pu3br66aefVLNmTU2fPl1NmzbVmDFj9Ntvv+mnn37S3/72Nz399NOaNWuW0tLSdOHCBbVs\n2VLjx49XUFCQtm/frgULFqigoEAnT55UTEyM49i9+uqrWrduna688ko1atSo3H0GAKC6yM/P14gR\nI3To0CGdO3dOU6ZMUbt27WSz2fTiiy9q//79slgsioyM1DPPPCM/Pz9de+212r17t0JCQiTJ8fOB\nAwf00ksvqXbt2srPz9cHH3wgf39/SdLOnTs1Y8YMrVu3TpJ0+vRp3XXXXdqyZYs2bNig5ORk1ahR\nQwEBAZo0aZKaNWtWop8nTpxQUlKSfvnlF+Xk5CgsLExz587Vvn37ymw3MzNTEydOVGFhoRo2bKgj\nR45ozJgxuuWWW8o9Junp6frwww+Vm5urTp06afTo0fLz89Pnn3+umTNn6syZM6pRo4aGDx+uzp07\nl9vW5s2b9cYbb8hiscjX11fPPfec2rdvX+FsuXjxYmVlZWnWrFk6c+aMLBaLhg4dqjvuuEP5+fma\nOHGi/vvf/+rUqVMKDAzUrFmz1KRJE/3www8aN26czpw5oyZNmig/P79Snw8AAFB5ZslZ8+bNU3Z2\ntnJycpSdna2QkBC98sorjutUS5cu1f79+1VQUKCHHnpIffv2LXOfjx49qtdee002m01jx45VTEyM\nJk+erPXr1ysvL09TpkzRF198IV9fX919990aMWJEie2nTZum/fv36/XXX9e+ffs0ffp0FRUVSZIe\ne+wxdevWzTW/HAAAYJiyxmIOHz6sSZMmKT8/Xz///LOuu+46zZ07Vx9++KGWLl3quAH/yJEj6tev\nn7Zt2+bIQzabTV26dNGHH36o0NBQSVK/fv301FNPKTAw8JKZYs+ePXrllVd0zTXX6MCBAyooKFBS\nUpJuvfVWSWVfKyrL2LFjdfbsWUVHR2vVqlVq2bKlI+OVNj75R5s2bdKsWbP01ltvyWq1Vmg8EIBr\nsBwYYKDdu3frH//4h9577z2tXbtWPXr00FNPPSW73S7p9yW53n33XX344Yc6fvy4Nm/eXGL7rVu3\natWqVUpJSdH69esVHh6u999//5Lve+TIES1btkyrV6/Wxo0btX37dknSsWPH9OSTT5YIF9LvF0ky\nMjK0Zs0ax8WOjRs3KjU1Vd9//71WrFihNWvWqEuXLho/fvxF7xcbG6vVq1dLki5cuKC1a9cqNjZW\ny5cvV3h4uFavXq0lS5YoMzNTNputxLZ5eXlasWKF3nrrLaWmpuqVV17Ryy+/XG67K1asUEZGhtav\nX6/k5GT99NNPFfp9nD17Vp06dVJqaqqefvppDR8+XAUFBXrjjTf0888/a82aNVqzZo2Kioo0c+bM\nctv66KOPlJeXpzVr1uiDDz6QJEc//vOf/2jw4MFat26devfurVGjRpXow4YNGzRq1Ci99dZb8vX1\n1apVq7R27VrVqVPHUei0cOFCTZ8+3fH7f+utt3Ty5Elt2bJFmzdvVmpqqpKTk5Wbm1uhfQcAwOyO\nHTumQYMGac2aNYqPj9e8efMkSVOmTNGVV16pdevWaeXKlfruu++0cOHCS7Z34MABzZ49W2vXrnVc\niJGkTp06KS8vz3EX1Pr169WlSxcFBQVp6tSp+sc//qGVK1eqX79+Sk9Pv6jdDRs2qE2bNkpJSdHW\nrVtVs2ZNrVmzpsx2AwMDNXToUD399NNat26dEhMTtW/fvgofk0WLFik1NVX79+/X8uXL9euvv2rY\nsGF6/vnntW7dOs2YMUOjRo26ZF6aOXOmJkyYoFWrVunpp58usSRXRbJlQECAxo4dq5kzZ2r16tV6\n4403NHHiRB05ckQ7duxQcHCwli9frg8//FA33HCDlixZIkkaOXKkYmNjtW7dOj344IM6cuRIhfYd\nAAC4jllyliR9/vnnevXVV7Vp0yYFBwcrJSXF8VxAQIBWr16thQsXavbs2Tpw4ECZfaxfv76GDRum\ndu3aadq0aSWee+2113Tu3DnHtbEvvvhCn332mSTJbrfrxRdfVHZ2tt5++20FBgZq3rx5euihh7Rq\n1SpNnTpV//73vy95jAAAgGcrbyxm+fLliomJUUpKijZv3qysrCx9/PHHioqK0o8//qgffvhBkrRi\nxQr16tWrRB6yWq3q2rWr1q5dK0k6ePCgcnJyFBkZWeFMsXfvXg0ePFipqanq27ev5s+f73iutGtF\n5Zk2bZrj2pWvr6/j8UuNT65bt07z58/X4sWL1aRJkwqNBwJwHYqAAAN9+umn6t69u+OuqN69e+v4\n8ePKysqSJN19992qVauWfH191bx5c508ebLE9rt371ZUVJSuuOIKSb9X5D7xxBOXfN+4uDjVqFFD\nwcHBioqK0s6dOyVJfn5+atOmzUWv37Vrl6Kjo1WzZk35+Pho7ty5iomJ0fbt2/X111+rT58+io6O\n1vvvv6/Dhw9ftP29996rr776Sjk5Odq5c6caNWqkv/71r4qMjNTmzZv1yCOPKCUlRc8+++xFsxgF\nBgbqzTff1CeffKK5c+fqzTffdNwBXla7n3zyiaKjoxUQECB/f3/FxcVd8phIUnBwsLp37y5JioyM\nlN1u16FDh7Rjxw7Fx8erRo0a8vHxUWJioj799NNy24qIiNAPP/ygxMREvfXWWxo4cKCjEvy6665T\nu3btJEl9+vTRvn37HNXPERERjjY+/vhjbdu2TTExMYqOjtaWLVt08OBBWSwWvfnmm8rIyND8+fM1\nffp02e12nTlzRrt371bXrl0VFBQkPz8/9enTp0L7DgCA2V1zzTW66aabJP1+ri3OTTt27NADDzwg\ni8Uif39/xcfHa8eOHZdsr379+goLC7vocYvFor59+zoKkVetWqXY2Fj5+voqKipK8fHxmjRpkqxW\na6l3lw8cOFBt27bVu+++q4kTJ+rAgQPKz88vs93vv/9e0u93SEnSrbfequbNm1fomERHR6t27dry\n9/dXz549tWvXLu3du1cNGzZ0HKvmzZurbdu2joGrstx3330aMmSInn/+eZ0+fVqPPPKI47mKZMvi\nzPbUU08pOjpajz76qCwWi7777jtFRUWpV69eWrx4saZMmaLPPvtM+fn5+vXXX/Xdd98pJiZG0u85\nqaL7DgAAXMcsOUuSOnTo4Ji5uWXLljp16pTjufj4eElS3bp1dfvtt2v37t2XcRT+z65du9S3b1/5\n+vrK399f77//vmOGxkWLFik5OVlDhw51DOjde++9mjRpkp599lllZGTomWeeqdT7AgAAz1HeWMyo\nUaMUEhKit99+WxMnTtTPP/+s/Px8+fv7O26Qv3DhglavXl3q+FVsbKxSU1MlSStXrlTv3r3l4+NT\n4UzRoEEDXX/99ZIuzkOlXSuq7P6XNT75zTffaPTo0YqPj1f9+vUlqULjgQBchyIgwEDFM/78+bHz\n589LUokp+CwWy0Wv9/X1lcVicfx8+vRpRwFRef7Yrt1ul4/P718F/v7+pU779+fHTpw4oZ9//llF\nRUX6+9//7pghZ+XKlVq2bNlF29euXVvdunXT+vXrtXLlSsXGxkqSWrdura1btyouLk7Z2dmKjY3V\nF198UWLbY8eOKSYmRtnZ2YqIiCgxPWBZ7f65v8X7dyl/fp3dbleNGjUcUysWKyoqUmFhYbltXXPN\nNfroo4/06KOPKjc3Vw899JA2bdokSSWqpYvfp/ixPy73VlRUpHHjxjmO74oVK/Tqq68qPz9fvXr1\nUkZGhlq2bKnnnntOfn5+stvtF31O/vxeAABUVzVq1HD89x/Ph6Wdx4uz1h8VFBSU+PnPS7D+UZ8+\nffTPf/5T+/btk81mcwz6zJo1S2+++aYaNmyot99+W0OGDLlo25dfflmvvvqq/vKXvyguLk6dOnVy\n9LW0dn19fUvNgBXx59f5+flddDykkvmzLCNGjNCyZct0ww03aNWqVYqLi3O0VZFseeHCBTVt2tSR\na9asWaOUlBTdfvvtWrp0qZ5//nnVrFlT999/v3r06OHINcVt/nEfAABA1TJLzpKkmjVrltpXqeR1\nH7vdXulc4efnV+J63NGjRx03d7Vv317jxo3T2LFjHdeO4uPjtXbtWnXq1Ek7d+5Uz549ufMdAACT\nK28s5plnntHy5csVFhamQYMGqVWrVo7XxsXFacOGDdq+fbuaN2+u8PDwi9pu166dzp8/r71792r9\n+vWOAqOKZory8lBp14oqo7zxSavVqnfeeUfz5s1zPFaR8UAArkMREGCg22+/XRs3bnTcQbVy5cqL\n1g4tz2233aaPPvrIMc3gvHnztGjRoktut3btWhUVFenUqVP65z//qTvvvLPc13fs2FHr169XQUGB\nioqKNHHiRG3YsEG33367PvjgA8f7v/rqq3ruuedKbaNfv35atWqVvvzyS8capbNmzdLrr7+uu+++\nW88//7yaNWum//73vyW2+/bbbxUSEqInn3xSkZGRjuUlLly4UGa7Xbp00dq1a1VQUKDz58877iC7\nlN9++83R/rZt2xQQEKBGjRopMjJSycnJKiwsVFFRkZYsWaJOnTqV29bSpUs1duxY3X777Ro1apRu\nv/12xzTT+/fv1/79+yVJKSkpatu2rYKDgy9q4/bbb9eSJUscx/2FF17QnDlzlJmZqdzcXA0fPlx3\n3nmnPvvsM8drIiMjtWnTJp0+fVpFRUVas2ZNhfYdAIDqqvh8arfbVVBQoOXLl+u2226TJIWEhDiW\nm/joo48q3GbdunV10003KSkpyXEX+smTJ9WlSxddeeWVGjRokIYPH67vvvvuom137typgQMHKiYm\nRldddZV27drlyDWltdu0aVP5+/s77qrfu3evvv/++xIXWsqyYcMGFRQU6Ny5c1q1apU6d+6sm266\nSYcPH9bevXsl/b4cR1pamjp06FBmO+fPn9edd96p/Px89e/fXxMmTNDBgwcdg3wVyZZt2rRRZmam\n0tLSJEn79u1Tt27d9PPPP2vnzp3q1auXYmNj1bhxY23btk0XLlzQlVdeqVatWmnFihWSpIyMDMfM\nSAAAwHielrMupfj60JEjR7Rr1y517Nix3Nf7+vqWWtTUsWNHrV69WkVFRSooKNCwYcMcGeeGG27Q\nAw88IKvV6lh6Iz4+Xvv27VPv3r01efJknT59usQd+QAAwHzKG4vZuXOnnnrqKXXv3l0Wi0Vff/21\n49pPgwYN1KZNG02dOlX9+/cvs/3Y2FhNnjxZ1157rRo0aCDJNZmitGtF5fHz89OFCxcuukGtvPHJ\nv/71r+rYsaMSExM1evRoFRUVVWg8EIDrcBslYKBOnTpp0KBBGjhwoIqKihQSEqIFCxZUeOaaLl26\n6IcffnAEhWbNmmny5MmX3O7s2bPq27ev8vLylJCQoI4dO5Y7g1B8fLyys7PVu3dv2e12dejQQYmJ\nifLx8dHx48fVr18/WSwW1a9fX9OnTy+1jRtuuEF+fn7q1q2bAgICJP2+HMaYMWPUo0cP+fv769pr\nr1WPHj0uOkYffPCBoqKiVKtWLbVu3VohISHKzMxUkyZNSm23d+/eOnz4sGJiYlS7dm2Fh4erVq1a\nlzwuV111lTZv3qy5c+eqVq1amjdvnvz8/PTEE09oxowZiomJ0fnz59W6dWu98MIL5bYVExOjzz77\nTN27d1etWrXUoEEDPfjgg9q/f7+uvvpqzZ07V9nZ2QoJCdHMmTNLbePJJ5/UjBkz1KtXL124cEHX\nX3+9xowZo9q1a+tvf/ub7r33XgUHB6thw4Zq1qyZMjMz1aVLF3333Xfq06ePgoODdd111znuRgMA\nwBuNHz9eU6ZM0f3336/CwkJFRkbq8ccfdzw3adIkBQcH67bbblNoaGiF242NjdXTTz+tN954Q9Lv\nA11PPPGEBg0apJo1a8rX11dTpky5aLunnnpKM2fO1Ouvvy5fX1+1bdtWP/74Y5nt+vn5ad68eZow\nYYLmzJmjv/71r7r66qtL3NVVlvDwcPXv31/5+fnq2rWrevXqJYvFoldffVWTJ0/W2bNnZbFYNG3a\nNDVu3LjMdvz8/DRu3DiNHDnScef71KlTHUtcVCRbhoSE6LXXXtPMmTN17tw52e12zZw5U2FhYRo8\neLCSkpK0atUq+fr6qlWrVo5inzlz5mjs2LFKTk5Ww4YN1aRJk0vuNwAAqBqelrMu5dy5c+rVq5cK\nCws1fvz4cvOPJN18882aO3eunnrqKT344IOOx4cMGaKXXnpJ0dHRunDhgrp376577rlH27ZtkyRH\nVoqJiVGXLl00cuRITZ06VXPnzpWPj4+GDBlS6l3/AADAPMobixkxYoSeeuopXXHFFapVq5bat29f\n4tpPcRFP8dLvpYmJidGcOXM0Z84cx2OuyBSlXSsqT2hoqFq2bKl77723xEogZY1Pbt682fGaxx9/\nXNu2bdM//vGPCo0HAnAdi7209YgAVFuJiYkaMGCAoqKijO6K2+zcuVO//PKLoqOjJUlTpkxRQECA\nRo0aZXDPpD179mjy5Mlav3690V0BAAAmMWPGDD388MO6+uqrdfToUUVHR2vLli2lziRY1bwhWwIA\nAAAAALhCUVGRXnzxRYWFhenRRx81ujsAqilmAgKqmX//+9+aNm1aqc8Vr6Ne3TVv3lzvvPOO3nnn\nHV24cEHXXXedJjIfLk0AACAASURBVE6cqKlTp2rPnj2lbjN27Fjdeuutl/U+w4cP1+HDh0t97pVX\nXuFOdQAA4BLFa8j7+fnJbrdrypQpOnHihBITE0t9fePGjTV37tzLeo9LZchx48Zddr8BAAA82aFD\nhzRixIhSn6tMngIAAChPbm6u7rjjDrVu3VqjR482ujsOCQkJysvLK/W5JUuWKCgoqIp7BMBZzAQE\nAAAAAAAAAAAAAAAAmJyP0R0AAAAAAAAAAAAAAAAA4ByKgAAAAAAAAAAAAAAAAACT8zO6A1UpJ8dm\ndBcAuEC2LUuDNg3QoqglCrOGG90dAJUQGmo1ugtej1wEAJ6FjOvdyEbGIxsBznPXuSzblsW5EfAi\n5CLjkYvg7bJtWUrYEKul960ggwAwVGVzETMBATCdMGs4gyMAAACoVsi4AACzc8e5rLiwKNuW5bI2\nAQAAAKA6s9jtdrvRnagqVC8DAOAZuKvLeOQiAAA8B9nIeGQjwHMxExDgXchFxiMXAeQPAJ6BmYAA\nAAAAAAAAANUKA3AAAKCqkT8AmBlFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAA\nAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAA\nAAAAmBxFQAAAAAAAAAAAAAAAAIDJ+RndAQAAAAAAAOCPevXqpaCgIElSeHi4Hn/8cY0ZM0YWi0XN\nmzfXhAkT5OPjo+XLlys5OVl+fn564okndMcdd+js2bMaNWqUfvnlFwUGBmrGjBkKCQkxeI8AAAAq\nh1wEAAAuB0VAAAAAAAAA8Bjnzp2T3W7X4sWLHY89/vjjGj58uG655RYlJSVp69atatOmjRYvXqyV\nK1fq3LlzSkhIUKdOnbRs2TK1aNFCQ4cO1YYNG/T6669r/PjxBu4RAABA5ZCLAADA5WI5MAAAAAAA\nAHiM/fv368yZMxo8eLAefPBBffXVV8rIyFCHDh0kSZ07d9auXbu0d+9e3XzzzfL395fValXDhg21\nf/9+paenKzIy0vHa3bt3G7k7AAAAlUYuAgAAl4uZgAAAAAAAAOAxatasqYcfflixsbH673//q0ce\neUR2u10Wi0WSFBgYKJvNptzcXFmtVsd2gYGBys3NLfF48WsBVI1sW5bCrOFGdwMAqg1yEWAMMg0A\nM2MmIAAAAAAAAHiMxo0bq2fPnrJYLGrcuLGuvPJK/fLLL47n8/LyFBwcrKCgIOXl5ZV43Gq1lni8\n+LUA3C/blqVBmwYo25ZldFcAoNogFwFVj0wDwOwoAgIAAAAAAIDH+OCDDzR9+nRJ0vHjx5Wbm6tO\nnTppz549kqQdO3aoXbt2at26tdLT03Xu3DnZbDYdPHhQLVq0UNu2bfXJJ584XhsREWHYvgDeJMwa\nrkVRS7hrHgBciFwEVD0yDQCzs9jtdrvRnagqOTlMcwgAgCcIDbVe+kVwK3IRAACeg2xUUkFBgcaO\nHasjR47IYrFo5MiR+stf/qIXXnhBhYWFatKkiaZMmSJfX18tX75cKSkpstvteuyxx9StWzedOXNG\no0ePVk5OjmrUqKHZs2crNDS03PckGwEA4BnIRSWRiwAA8F6VzUUUAQEwLdZkBcyLCzrGIxcBgOch\n33ovspHxyEYAAHgGcpHxyEUAAHiGyuYilgMDYEqsyQoAAIDqhHwLAAAAAAAAwFkUAQEwJdZkBQAA\nQHVCvgUAVDUKTwEAAEpHTgJgZhQBATAtBkgAAABQnZBvAQBVhRnoAAAASkdOAmB2Frvdbje6E1WF\ndUwBAPAMrO9uPHIRAACeg2xkPLIRvFG2LYsCVAAeh1xkPHIRQE4C4Bkqm4uYCQiAaVGFDQAAgOqE\nfAsAqEoMbAEAAJSOnATAzCgCAmBKTMcIAACA6oR8CwAAAAAAAMBZLAcGwLSYjhEwL6Z2Nh65CAA8\nD/nWe5GNjEc2AgDAM5CLjEcuAgDAM7AcGACvwwAJAAAAqhPyLQAAAAAAAABnUAQEAAAAAAAAAAAA\nAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQE\nAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAA\nAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxF\nQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAA\nAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJ\nua0IqKioSElJSYqLi1NiYqIyMzNLPL9t2zb16dNHcXFxWr58ebnbZGZmqn///kpISNCECRNUVFRU\n4n3+/ve/a9myZe7aFQAAAKeQiwAAAAAAAAAAAOBubisC2rJliwoKCpSSkqJnn31W06dPdzxXWFio\nadOmaeHChVq8eLFSUlJ04sSJMreZNm2ahg8frqVLl8put2vr1q2OtubOnavTp0+7azcAAACcRi4C\nAAAAAAAAAACAu7mtCCg9PV2RkZGSpDZt2ujbb791PHfw4EE1bNhQV1xxhfz9/RUREaG0tLQyt8nI\nyFCHDh0kSZ07d9auXbskSZs2bZLFYnFsAwAA4InIRQAAAAAAAAAAAHA3txUB5ebmKigoyPGzr6+v\nzp8/73jOarU6ngsMDFRubm6Z29jtdlksFsdrbTabvv/+e61fv15PP/20u3YBAADAJchFAAAAAFA5\n2bYso7sAAABMhvwAwJv5uavhoKAg5eXlOX4uKiqSn59fqc/l5eXJarWWuY2Pj0+J1wYHBys1NVXH\njx/XwIEDlZ2drRo1aigsLEydO3d21y4BAABUCrkIAAAAAC5fti1LgzYN0KKoJQqzhhvdHQAAYALk\nBwDezm1FQG3bttX27dvVvXt3ffXVV2rRooXjuaZNmyozM1O//fabateurc8//1wPP/ywLBZLqdu0\nbNlSe/bs0S233KIdO3bo1ltvVffu3R3tzZs3T1dffTUDXQAAwCORiwAAAADg8oVZwxnAAwAAl4X8\nAMDbua0IqGvXrvrXv/6l+Ph42e12TZ06VevWrVN+fr7i4uI0ZswYPfzww7Lb7erTp4/q1q1b6jaS\nNHr0aL3wwguaM2eOmjRpom7durmr2wAAAC5HLgIAAACAymEADwAAXC7yAwBvZrHb7XajO1FVcnJs\nRncBAABICg21Gt0Fr0cuAgDAc5CNjEc2AgDAM5CLjEcuAgDAM1Q2F/m4uB8AAAAAAAAAAAAAAAAA\nqhhFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAPAov/zyi7p06aKDBw8q\nMzNT/fv3V0JCgiZMmKCioiJJ0vLly9W7d2/169dP27dvlySdPXtWQ4cOVUJCgh555BGdPHnSyN0A\nAABwCbIRAACoKIqAAAAAAAAA4DEKCwuVlJSkmjVrSpKmTZum4cOHa+nSpbLb7dq6datycnK0ePFi\nJScn65133tGcOXNUUFCgZcuWqUWLFlq6dKliYmL0+uuvG7w3AJyVbcsyugsAYCiyEVD1yB8AzIwi\nIAAAAAAAAHiMGTNmKD4+XnXq1JEkZWRkqEOHDpKkzp07a9euXdq7d69uvvlm+fv7y2q1qmHDhtq/\nf7/S09MVGRnpeO3u3bsN2w8Azsu2ZWnQpgEMxAHwamQjoGqRPwCYHUVAAAAAAAAA8AirVq1SSEiI\nY7BKkux2uywWiyQpMDBQNptNubm5slqtjtcEBgYqNze3xOPFrwVgXmHWcC2KWqIwa7jRXQEAQ5CN\ngKpH/gBgdn5GdwAAAAAAAACQpJUrV8pisWj37t3at2+fRo8erZMnTzqez8vLU3BwsIKCgpSXl1fi\ncavVWuLx4tcCMDcG4AB4M7IRYAzyBwAzYyYgAAAAAAAAeIQlS5bo/fff1+LFi3X99ddrxowZ6ty5\ns/bs2SNJ2rFjh9q1a6fWrVsrPT1d586dk81m08GDB9WiRQu1bdtWn3zyieO1ERERRu4O4NFY4gIA\nPB/ZCDAGOQmAmVEEBAAAAAAAAI81evRozZs3T3FxcSosLFS3bt0UGhqqxMREJSQkaODAgRoxYoQC\nAgLUv39/HThwQP3791dKSoqGDBlidPcBj5Rty9KgTQMY4AIAEyIbAe5FTgJgdha73W43uhNVJSeH\ntU4BAPAEoaHWS78IbkUuAgDAc5CNjEc2gjfKtmWx1AUAj0MuMh65CCAnAfAMlc1FzAQEAAAAAAAA\nAF6GgS0AAIDSkZMAmBlFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAA\nAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxF\nQADghbJtWUZ3AQAAAH9CRgMAmB3nMgAAUB2QaQCYGUVAAOBlsm1ZGrRpACEWAADAg5DRAABmx7kM\nAABUB2QaAGZnsdvtdqM7UVVycmxGdwEAPEK2LUth1nCjuwEvFhpqNboLXo9cBACeh4zmvchGxiMb\nAa7BuQyAs8hFxiMXAWQaAJ6hsrmImYAA4DJUl8pvwisAAAAAAHA1rjcAAIDqgEwDwMwoAgKACmIK\nSAAAALgLWRMAgNJxbgQAAJeL/ADAm1EEBMCUjAhwYdZwLYpaQgU4AAAAXC7MGq7pkbPImgAA/AFF\nsgAA4HKRHwB4O4qAAJiOkQGOQRkAAAC4Q7YtS2M+HclFSgAA/oAbsgAAwOUiPwDwdha73W43uhNV\nJSfHZnQXAPxJti2rUkGsstsB8AyhoVaju+D1yEUA4HnSj6Upol57o7sBA5CNjEc2AgDAM5CLjEcu\nAgDAM1Q2FzETEADDODOjDwVAAAAAqE6YCQgAAAAAAACAs5gJCIChmNEH8E7c1WU8chEAeB6ysfci\nGxmPbAQAgGcgFxmPXAQAgGdgJiAApsQgBwAAAPA7sjEAAAAAAAAAZ1AEBAAAAAAAAADwSCyVCQAA\nqhr5A4CZ+ZX3ZFpaWrkbt2/f3qWdAYCKYqkEAFWNXAQA+CPyKAAA7pdty9KgTQO0KGoJ510AAFAl\nyB8AzM5it9vtZT2ZmJgoSfrtt9/0448/qm3btvLx8dGXX36pFi1aKDk5uco66gqsYwpUDwQwwPzM\nuL47uQgAUIw8ClczYzaqbshGgOfy5sJbb953eC9ykfHIRUD1OAdXh30AvF1lc1G5y4EtXrxYixcv\nVr169bR27Vq9++67euedd7Ru3ToFBgZW6g0BwFlh1nAGXABUOXIRAKAYeRRAdcJSB57P239H3nq+\nLS469vbfPwAYge9emB05AvBu5RYBFTty5IgaNWrk+LlBgwY6cuSI2zoFAJfirReAABiPXAQAkMij\nAKoHBgc8nzt/R2Zp01tRdAwAxiAfOc/sxy7blqWEDbGm3g9yBODdKlQE1KpVK40ePVoff/yxtm3b\npmeffVbt2rVzd98AAAA8DrkIAAAA1QWDA57PXb8jdwxuMWjqevzbBICqRz5yTnUooKku+AwD3suv\nIi+aMmWK3n//fSUnJ0uSbrvtNiUkJLi1YwAAAJ6IXAQAAIDqhMEBz2eW3xGDpgCA6oJzmXcLs4Zr\n6X0r+BwAMC2L3W63V+SFv/32m86cOSO73a4LFy4oKytLHTt2dHf/XConx2Z0FwAAgKTQUKvRXXAK\nuQgAALiS2bNRdUA2gqtk27LcMmuPOwah3NUuADiDXGQ8chGclX4sTRH12hvdDcApZGV4gsrmogot\nBzZ79mzdddddioqKUkJCgu655x7NmTOnUm8IAABgZuQiAAAAAKVxx3JY2bYsxa6NccuSGu4qLAIA\nmBvf5XBGti1LQ7c+wecIpsYytzC7ChUBbdiwQZ988om6d++u9957T++++65CQkLc3TcAXoKTaNXi\neAPOIRcBANwl/Via0V0AADjBHcthHcs7qqzcH3Us76jL2izm6usDDJYAQPXAdzmccSzvqH7KzXRL\ndgGqCsvcwuwqVARUp04dBQUFqXnz5tq/f79uvfVWnThxwt19A+AFuEBUtTjegPPIRQAAd0g/lqbe\na3tQCASgyvH3oWu5eqAgol57rY7e4PIlNdxxfYDBEgCoHvguhzPqBdbXNUGNVC+wvtFdcQoZGXwP\nwswqVAQUFBSk1NRUtWrVSuvWrdNXX32l06dPu7tvALwAF4jK5q6pvjnegHPIRQAAd4io114L7l7o\n8kFeACgPN4qYgzvODe66PsD1Btfi3yYAI/BdDmeEWcO1omeqqT9HZGTAM/BvsPIqVAT00ksv6eTJ\nk7rlllsUFhampKQkDR8+vNxtioqKlJSUpLi4OCUmJiozM7PE89u2bVOfPn0UFxen5cuXl7tNZmam\n+vfvr4SEBE2YMEFFRUWSpCVLlqhPnz7q27evNm7ceNk7D8AzmDkMuos7QybHG3AOuQgA4A7ZtizN\nTp/JBQ4AVYobRczBXbPEueP37o7zmLeeGxmABOCtqsP3ntH7YPT7mx0ZGTAeWdg5FSoCqlu3ruLj\n47V//34999xzSk5O1n333VfuNlu2bFFBQYFSUlL07LPPavr06Y7nCgsLNW3aNC1cuFCLFy9WSkqK\nTpw4UeY206ZN0/Dhw7V06VLZ7XZt3bpVJ0+e1LJly5ScnKxFixZpxowZstvtThwKAPAchEzAc5GL\nAADuQP4DYBS+dzybO5eLdPUFdXdcqPfmi/9kAwDeqDp87xu9D9Xl/Y3+DHD+BYxFFnZOhYqAdu/e\nrejoaD355JM6ceKE7rrrLu3cubPcbdLT0xUZGSlJatOmjb799lvHcwcPHlTDhg11xRVXyN/fXxER\nEUpLSytzm4yMDHXo0EGS1LlzZ+3atUshISFKTU1VjRo1dOLECQUEBMhisVz+EQAAD8WJDfBM5CIA\ngLuQ/wAAfxZRr72mdnrZ5UuCuWOAMMwarumRs1x6PvP2i//eut8AvJcrvvc9oXjEyHOXJ7z/sxHP\nOf07NHsxGADnkYUrr0JFQHPmzNHSpUsVHBysOnXqaPHixZo5c2a52+Tm5iooKMjxs6+vr86fP+94\nzmq1Op4LDAxUbm5umdvY7XbHQFZgYKBsNpskyc/PT++//77i4uLUs2fPCu4yAABA5ZGLAAAAAFSV\n9GNpGvevUS6fCcgdA4TZtiyN+XSkywfsuPgPAN6lOhSPGH3uMvL904+l6bEtg53KLkYXMgGA2VWo\nCKioqEihoaGOn5s1a3bJbYKCgpSXl1eiDT8/v1Kfy8vLk9VqLXMbHx+fEq8NDg52/PzAAw/o008/\nVVpamv79739XZHcAAAAqjVwEAAAAoKpE1GuvBXcvdPlMQJLrBwhdcec/AADOcFXxiNFFRGbmzuwC\nAKiYChUB1atXT9u3b5fFYtHp06f1xhtvqEGDBuVu07ZtW+3YsUOS9NVXX6lFixaO55o2barMzEz9\n9ttvKigo0Oeff66bb765zG1atmypPXv2SJJ27Nihdu3a6dChQxoyZIjsdrtq1Kghf3//EoNiAAAA\n7kAuAgAAAFBVsm1ZmvbZFLcMRrq6TVfc+V8aBmIBAJfDFQVAnjCbkFll27I0afcEp45fti1LCRti\n+R0AQCX5VeRFkyZN0ksvvaSjR4+qa9euuuWWWzRp0qRyt+natav+9a9/KT4+Xna7XVOnTtW6deuU\nn5+vuLg4jRkzRg8//LDsdrv69OmjunXrlrqNJI0ePVovvPCC5syZoyZNmqhbt27y9fXVddddp7i4\nOFksFkVGRqpDhw7OHxEAAIBykIsAAAAq789LnpbmwoULGj9+vA4fPiyLxaIXX3xRAQEBGjNmjCwW\ni5o3b64JEybIx8dHy5cvV3Jysvz8/PTEE0/ojjvu0NmzZzVq1Cj98ssvCgwM1IwZMxQSElJFe2g+\n6cfSuFPbw50vKnR5m8WDa0vvW+GymXvcced/8UAsS4IAqI7IRZ6JpaiccyzvqDJth3Us76hTx7Dw\nguvzz+XItmXxGQBgWha73W6/1IteeeUVjRgxoir641Y5OTajuwAAACSFhlqN7kKlkYsAAICrmTkb\nXcr27dv1+eef68knn1Tfvn118uRJDRs2TAMGDChzmy1btmjr1q2aNm2a9uzZo0WLFslut+uhhx7S\nLbfcoqSkJEVGRqpNmzYaPHiwVq5cqXPnzikhIUErV67UkiVLlJubq6FDh2rDhg368ssvNX78+HL7\n6a3ZKP1YmmLWdFdq9EYKgTxUti1LsWtjtKJnqksHotxRBOSONovbZRAO8B7kopK8MRfxvW9umw5t\n0IOb+uu9qGWKanJfpdpwV/65nPenCBl8F8ETVDYXVWidiO3bt6sCtUIAAADVHrkIAACg4ubPn6/e\nvXtr48aNat26tbZt26aVK1eWu83dd9+tyZMnS5KOHDmi4OBgZWRkOGY67Ny5s3bt2qW9e/fq5ptv\nlr+/v6xWqxo2bKj9+/crPT1dkZGRjtfu3r3bvTtpYvUC66uhtZHqBdY3uisoRw3fGi5vM8warjl/\ne83lAxvuuGufwRd4I5bAqZ7IRZfGUlyewZnjH9XkPr3SZX6lC4CKOZt/nNkHZoMC30UwuwoVAV15\n5ZWKiorSM888o7Fjxzr+BwAA4G3IRQAAAJenadOm+vjjj3XnnXcqMDBQhYWXLhLw8/PT6NGjNXny\nZN1///2y2+2yWCySpMDAQNlsNuXm5spq/b+74gIDA5Wbm1vi8eLXonRh1nAtv9+YO6xRMWHWcJfP\nrCP9PrAx5tORLh/YcEfBEuBtzDTwaIY+ehpyUfkovjCes99B2bYsLfrPO04X4TiTf1zxPcpn0Lvx\nXVR9eGtW8avIi3r16uXufgAA4DSmZ0RVIBcBANyFLIPq6Oqrr9bkyZP17bff6uWXX9b06dPVoEGD\nCm07Y8YMjRw5Uv369dO5c+ccj+fl5Sk4OFhBQUHKy8sr8bjVai3xePFrUTa+d7xTmDVcz0Y859Lf\nv7tmF/JmZAPvZJaBR5bLuXzkoopx9vPkCd+dntCHynL2OyjMGq7pkbOc3n9ntndVHwCYmzdnlQrN\nBNSrVy9dd911+u2332Sz2dS6dWsGwAAAHsVMd0nB3MhFAAB3IMugupo9e7ZuvPFGvffee6pdu7au\nueYazZ49u9xtUlNTtWDBAklSrVq1ZLFYdMMNN2jPnj2SpB07dqhdu3Zq3bq10tPTde7cOdlsNh08\neFAtWrRQ27Zt9cknnzheGxER4d6dBNzIXeeH9GNpeuSjQUo/luayNrNtWXr8o7+7vK/eem7MtmWp\nx6puXrv/3s4MA1VmKVbyJOQi98u2ZSl2bYyh352e8Leds+/tzL/rbFuWhm59wvD9d3bGw+pw/nVl\nzqsMMx9DT/h3DOd5c1apUBHQwoUL9fTTT+vnn39WVlaWnnjiiUuuUwoAQFXy5pM5qha5CADgDmQZ\nVFdr165VTEyMGjVqJEmKiIjQQw89VO4299xzj/7zn/9owIABevjhhzVu3DglJSVp3rx5iouLU2Fh\nobp166bQ0FAlJiYqISFBAwcO1IgRIxQQEKD+/fvrwIED6t+/v1JSUjRkyJCq2FXALdx1J3u9wPqq\nH9hA9QLru6zNb3K+1o+2/+qbnK9d1qa7BmDMMKDz8Y/blJ33kz7+cZvRXQHKRHa9POQi9zuWd1RZ\nuT/qWN5Rw/pg9N92RhcveMrvwJn8ZPQxdIX0Y2nqvbaHYYVAZj+G7pg1E8bw1t+hxW632y/1om7d\numnlypUKCgqSJJ06dUr9+/fXxo0b3d5BV8rJ8ey1TgEA8BahodZLv8hDkYsAAICrmTkbXUpCQoLu\nvfde9evXT6+++qrWrVunZ599VjExMUZ3rQSyETxVti1L/dbFaPn9qS69gO2udjcd2qCoJve5rD3p\n90GsiHrtXdaemZYFeGnXJD1/W5LR3QCqFLnIeGbPRe44F5mN0cuRLcl4TwNaPehUG87sgyvO9UYf\nQ1e8v6sz1OUy+hg6o7iIalXP9YYeQ29n5s+Qq1Q2F1VoJqArrrhCfn5+jp9r166twMDASr0hAACA\nmZGLAAAAKm7hwoX65JNPdPfdd8tms2n9+vUeN9AFeLJjeUf1oy3TLXfTX/rW0Mvn6kHXbFuWnvl4\nmEvvIjd6hoaKSj+Wpre+/R/Dl/IA4DrkIvfLtmVpdvpM084+4irOnuOcOX7px9I0dudIp85fzs4i\n44pzvdEFQK6YRcfo4hVPz1rliajXngIgg5l9Nimj+V36JdI111yjuLg43XffffLz89NHH32koKAg\nzZ8/X5Kq/fSBMB6VfvAkfB4B70YuAgC4i9F36QGulJqa6vjve+65R/v27VPt2rW1fft2SWLAC6ig\niHrtNbrdeLecHywWlzdpGma4rhNRr70W3L2QbABUA+SiquOqQk9vHgNwdhadeoH1FR7U0KklR12x\nHKqZPwN8jj2DK5fNxeUzS+G+p6rQTECNGzdW165dVVBQoPz8fHXq1EkRERHu7hsgiUo/eBY+jwDI\nRQAAdyieapq7/VFd7Nmzx/G/L7/8Up07d9bp06cdjwGomE2HNmjyniRtOrTB5W3nF55xeZuu7meY\nNVxjO4z3yov/2bYsTftsCteggGrAbLnI6O8dT3j/hA2xhvfDKM4W4IRZwzXvrjecOne7YiZAZ7c1\n+2eAsSzncPw8gzf+DeAqFZoJaMiQISooKJC/v78yMzN1+PBhde7cWT4+FaohApxCpR88CZ9HAOQi\nAIA7MNU0qptp06Y5/vs///mPWrZsKZvNpm+//VYdO3Y0sGf4M+4Qdi1XH88bQ29Sg8Bw3Rh6k8va\nlKRvcr7WcEe+RwAAIABJREFUkbwsfZPztcv6u+nQBg3clKD/jVrqsmXB0o+l6bEtgzlHAjA1s+Ui\nZ2aBcZazs9A4u3114UweybZlacynI536HTizfbHzRYWV3tYVn4PCC5V/f2e5ov+MZTmH4wez8504\nceLES73of/7nf7R69Wq1atVK/fv3108//aQvvvhCd955ZxV00XXy8wuM7gIqKTgg2OguAA58HgHn\nBQYGGN2FSiMXAQDcpUFQmNFdgEHMnI0uZfbs2VqzZo2io6N16tQpvfTSS8rOztYtt9xidNdK8NZs\nVDzAcFfDrvyt6wLuOJ62gtNafWCl+l0b79LfUbO/tNCNV7V2WbFOcZsFhYUa3PoRl7XZIChMdWrW\nVbcm3V3WplkEBwTrnkZRDD7B65CLjBdYdIXa1mtnyHsHBwTrroZdK/3dFxwQrFZX3aBrr7reqT6Y\n+fvX2Tziit9BnVp1nPoM2QpOa/l3yZXOP87ug63gtFJ/WKk+LfoZkpGd7f8f20HlcfzgCSqbiyp0\ny/rWrVs1ZcoUrV+/Xj179tS7776rjIyMSr0hAJgZU/8BIBcBANyFrInqaPv27Xr77bclSXXq1NG7\n776rzZs3G9wrFAuzhuvZiOdMO8jladx1x3AN3xouba+Yq2cX2nRog177arZLlwRLP5amsTtHeu1y\nmfzbBKoXs+Six7YMNvR719llpMZ8OtLpv63M/P3rinznzLbFs/g5+xmyWJzaXMfyjlZ62zBruJbe\nt8LQz4GZP4MAjFehIqCioiL5+/tr+/bt6tKli4qKinTmjOvXjAYAT8YaoAAkchEAwD3Imqiuzp8/\nr7Nnzzp+Liw0blp9XMxVgzSltQvXCLOGa2yH8S4fCMq2ZSkm9T6XnnfcsXRZvcD6Cg9qqHqB9V3W\nJgAYxSy5yMxLMLKEj/vyXUVF1GuvBXcvdPozdPqcrdLbph9LU8ya7k4dA2/+DHkKo6+P8DcNzKxC\nRUAdO3ZUjx49VFhYqPbt2+uBBx4w3ZIXAOAs/oAAIJGLAADuQdZEdRUfH6/evXtrxowZmjFjhvr2\n7av+/fsb3S38fxH12rt8oC/9WJp6r+3hlRfN3VHQmX4sTY9+9JDLj+c3OV/rR9t/9U3O1y5tt3aN\nWi5tL8warhU9Uzk/AqgWzJKLjC4Acvac5+3nDHfku8uRbcvS7PSZTuWhj3/cpuNnjurjH7dVavt6\ngfXV0NrI1EXERhfAGM3oG6W8+W8aVA8Wu91ur8gLjxw5orp168rX11f79u3T9df/vp5mSkqK4uLi\n3NpJV8nJqXzVKAAAcJ3QUKvRXXAKuQgAALiS2bPRpezdu1eff/65/Pz81K5dO7Vs2dLoLl2EbORa\n6cfSDB9ANEq2Lculg4/ZtizFro1xeSFMti1L9668S//ss9Vl7WbbstRjVTet7/2hy/vqrQO63rzv\n8F7kIuMZmYuKZ3BJjd7otVnCEzh7/nFFFlyS8Z4GtHqw0tt7wj5UVrYtSwkbYg1fksxoRueg6vA3\njdHHEM6rbC6q0ExAktSgQQP5+vpKkmOgS5KSk5Mr9cYAgKrh7RXjgDuQiwAA7kBuQ3Wyfft2SVJq\naqoOHTqkkJAQBQcH6/vvv1dqaqrBvYO7mf1iuTNcfZE9zBqueXe94fJ2j+Ud1S9nTuhY3lGXtflN\nztfKzvvJpbMLFQ+CeeM50pv3HeTC6oZcVHH1AuurfmADp2Zw8YR/P872wcjtnZ2BJduWpWc+Hub0\nPjhTACQ5l8k8YRaYwgvOLxdo9llsKF5xjtGzKcFYFS4CKksFJxICAI9ihpOeK/rISR6oWuQiAEBl\nFc/0QG5DdfHNN99Ikvbs2VPq/wBUjKsG0v4sJ/9nnbefV07+zy5r85czv5T4fzjPFQOAMB93Xc8j\nZxrH23KRs5+1Wn61nXpvo6+HO1vE6YoiHGfe31OWqt50aINT2zvzGTB6STVJquFbw6ntPaGQyczS\nj6Wp15r7TH38POXfMozh52wDFovFFf0AgEqpzFR2xSHak09+ruojJ3mgapGLAMB7uHpK5WN5R5WV\n+6OO5R0lu6FaGDZsmCSpR48e6tSpU4nnNm/ebESXAPzBjaE3qU6terox9Caju1KuMGu41y+FAe/j\njut5ZrgeWp15Uy5y9rPm7Pd+dbge7gn74OyYhLPn7k2HNmjgpgT9b9RSRTW577K3d8V3npEFQK44\nhhH12mvB3Qu9eoZOZ9QLrK/woIZOzUrmCcz8XSixnJkk/XTqJ11zxTWXvZ3TRUAAYJTKBjlPCNGX\n4so+evJ+AgAAmJE7BlEi6rXX6ugNXKBDtbFx40YVFBTotddecwx8SdL58+e1YMEC3XPPPQb2DjCP\nMGu4xnYY75blwE6eO+HS4tMBrR7UNzl7nV6+48/ccV3DLAMKzs4CAPNyx9KCnn49tDrzplzkis+a\nJ3xOnTlPuKKAw9lt5/ztNaeXw3Lmb1Nnf4dRTe7TnC7zKlUAVPz+3v6dl23L0uz0mbox9CavPg6V\nFWYN14qeqRw7JznzXeopBcxG/t2QbcvS37ck6vNHP7/sbf8fe28fH1V17f9/8sRDJkPAOGGGGSKg\n0kQbYx2DhdbKjaWNjRUQRcWfaG21114RrdhqVbxFf6JefEDsk1pEekXRa1E0NbcqRa1QjHNrTBF8\nIIUwwxwyRB4mM4E8zHz/iMPNyU1wZq91cuZM1vv18rVU2Hv2OWeffdbe+7PXIqcDEwRBMAuKI2eF\nD7cV2igIgiAIgjAUMWpBUQRAQibR1taGLVu2IBKJ6NJdfPDBB7jpppvMbp7QC0kPk974tHpc+/oP\n2FMRhKIt6Ix1sqYDq2uqxcqPHien7zAaapqUwUKiIAncSF8yj6HmF5m9WTv3FVqaZY6UYmbfg1vf\nWaTcfp9Wj1kvf4/ke1C/sYGwH6s++r1lnwFAuwdcfdBs8YRgPmanRqT043Tow2bPG9x2D9Zdsk6p\nLDkSkN1up1YhCIKgjDgwgiCkE+IXCYIgDB3EDxWEYzN37lzMnTsXmzdvxtSpU/v9OytWrMCCBQsG\nuWVCb9LldKUwME6bC2PzXeypCBz5xchGDhz5xaz1WoWuWKfZTRAEYQghftHgoUWCaD60ixTpzm33\n4L6zl1nWN6K232lzwWUbp+x7JDbNzU7rVtdUqxxJCDA3ggmX+MGqfTgdyIR5Ese7SIFjLE2He2/2\nvEElFRiQZCSg9vZ2PPDAA7jwwgsxc+ZM3HvvvYhGowCA1atXK/2wIAiCIAiCFRG/SBAEQRAEIXkG\n2ugCgA0bNgxiSzID7hOIVt/kGip0x7vY69zeug0xdGN76za2Oj/b/5nOcsEdBQkA4nH2KtnhiAIg\nCEYj/TM1rOIXcURxMQunzQUnQcAC0CPpJOowC472j8zNJ7WBY9NciwSVy9Y11eLKunnK0Qmp0T8y\nKS3eUP19LiGW2ffQTDjGIq52UMjNtmZ63qREQEuWLMHhw4dx77334v7770dXVxfuuusuo9smCIJg\neVQ/LmZ/FAVBGBjxiwRBEASjMGKTUxDSmbgVduHTCCMEAemyMCsMTGOoAf623WgMNbDWW1pUhpys\nXJQWlbHVOdU9DdnIxlT3NLY6fVo9Llx/Pvs3Mi8n/Rfz0yEFgiAcCxGq8ZJOfhHluaZDv8gjbthS\nRdJm3wPq98Nt9+C2KXeQvj/UTXOfVo/ZL9cof//LHRU4YdQElDsqlNsQ7Ywql80EzO7HZv8+B2Zf\nA0dqWaunpONISWbV9LxJiYC2bt2KxYsXo7S0FKWlpVi8eDG2bt1qdNsEQRAsjerHxWzHQBCEYyN+\nkSAIgmAERm1yCkI6k5WVZXYTLIURi6hGLczKfJaP1vZWneUiFG1Bd7wLoWgLa50xxFjr9Dor8btv\nr4TXWclWp9vuwUPTH7XEYr4V2igMXdJhcy+TSCe/iCogofYLqh9BvZVUkbTV3w2fVo9rXr9KeW7K\nsWnutLlQNMKhHNHJbfdg3cxa5TZokSC0yB7laESZsMdjdj82O2IpNRoUYP49TLRBFa57YCaZEpVL\nhaREQPF4HIcOHTr634cOHUJOTo5hjRIEQcgEVD8u6eAYCIIwMOIXCYIgCEbgdVbijxe8yrrJKQhC\n5mGFeWIg7MfF62dZetMjnZheUoWxI12YXlLFWm+5owKegvGkE/J9MSIdWCDsx53v/kIiYAlCmmKF\n75KQOtTnSt10poonqEGVrL5pTL2HTpsLJfYTSCnVqBEMtUgQrYdDpJRgFJw2F0pGqd+DdBDDcdVh\nFpnir5n9nTT7/pn9+4D5z4DK7oO7lcolJQK66qqrcNFFF+G+++7D0qVLcdFFF+HKK69U+kFBEISh\nBOXEhBGkwwdXEKyO+EWCIAiCUVAWWQVBEFTgON3ZFy0SxO62XaZt2mQiI3JHGFNvzkjW+k4ac5LO\nctAYakBzeCdrOjSzT5YLgnBsVDe7hMwgXQ7Imv37FNx2D272/oy0N/Fo1W+Uy9c11WJ+3WWoa6pV\nKg/0HJJZN7NW+ZAM1cel3gMqHGI4ah0c8wQrR9GxchqoBGanwjK7D6UL1OufvXa2UtmkREBz5szB\nY489hvHjx2P8+PFYsWIFLrroIqUfFARBEMwhE0JQCkI6IH6RIAiCYATiqwlDkRNPPNHsJggG4LS5\nML6AdnrcynCP41okCC2qno7iWBzubmetz4jUZY78YuRl58GRX8xWp5VOlluhjYLACWWzy+qIX/S/\nUDfd83LymFpiTXxaPX78xtXK6byo38lyRwUmjJpIjjZI9SU7uzuVy1LvATUyJlc0KmodXTHaPeQ+\nbDDYpIMAyGwhlZWjmqUDHEKsdZesUyqblAgIAPx+P5qbm6FpGlpbeXNQC5mBlV9CQRgKDJZyWsYC\nYSggfpEgCILADfW0piCkK+FwGEuXLsWFF16IuXPn4uGHH0Z7e4/wYNmyZSa3TjDihKvb7sELF7w0\nJMczIxaqnTYXXLZx7KKqxlAD/G27WSPslBaVITsrB6VFZWx1ep2VuLXyTtZ0mVaJBGTU5pms2wjp\nDGWzywpYxS+y8jjhtnvw0PRHyWO8qoAmgZn30OusxC3eXyh/O6n7CG67B+tm1pqeFq4rri5gofoK\nWiQIf1uz5SNjdhCEVFTSQURk9ljI8R6Y6e9S55pmR4PigGPeMb5wvFK5pERADz74IJ588kl4PB4U\nFxdj+fLl+N3vfqf0g0JmkglqPEEYCgyGAMjMsUDGIGEwEL9IEARBMAKfVo9rX/8BebFZENKN22+/\nHbm5uVi6dCmWLFmCaDSKO++80+xmCb2w8qIqFe45pFEL1fE4a3UAAJ/m01kONgc2IRbvxubAJrY6\n65pqcfeWxaSUIn2xUiQgbsxetxGEZFDd7LICVvGLzN54pxAI+3HdGz8itd+n1ePC9eeTIumYeQ85\nvp1UX4ajPMWn0iJBBCPqkRSpvgJHOjNKJKFEHZRvPjUaZTqk06Ksr3C9x1QBjxWE68fC7LGEA2o/\nMmvekZQIaOPGjXj66adxxRVXYP78+Vi9ejVeeeUVo9smWIhMUOMJgkDHzLFAFrKEwUL8IkEQBMEI\nnDYXPAUlQzZ9jpC57Nq1C7fccgu+8pWvoLS0FLfffjs+/vhjs5slGIhV5mZWaadR6cAKhxfqbLpS\n7qjA6GHHkVOK9MYq65hGReqywrULQqYiflFyUL7NjaEG7Dz0T1KkO6+zEn+84FXWKHSDSfWkGjxd\nvQbVk2rMbgoJ6jN8aeafTIuGBNDSmXFEEqJeA0eKX2oaKoof5NPqMfvlGlMPWlHnG4GwHz/deEPa\nz1fSHaoodOZL5yn3I46xZPfB3UrlkhIBFRYWIhKJHP3vzs5OFBQUKP2gkLnI5FHIZMxU+1oNs8YC\nWcgSBgvxiwRBEAQjcNs9WDz1l+LLCBnHxIkT8fe///3of2/fvh0TJkwwr0GC4VhlbmZEO62UDuyk\nMSfpLAdjRozRWQ42Nm/A/o5WbGzewFanlTDiPUr3d1MQMhmr+EUc6bRUoUbfcOQXIy87D478YlI7\nqMIH6j2k+hJUAZDZ+xl1TbW4sm4eKZoRVcRlZjozr7MSj894ytRrsPoahdPmwth8l/K7zPEeW2Ve\ndCzMHguocER0ioMWlpUi5guE/Zi9drZS2WOKgG677TbcdtttiMVimDlzJn75y1/innvuwYUXXojR\no0cr/aAgCILV4FDrWuF0YSZgZWdKSH/ELxIEQRCMxKfV48dvXC3pwISMoaqqCueeey7ef/99XH75\n5aipqcEFF1yAOXPmYMeOHWY3TzAYI+ZmRsypudtp1EJ/blYea30A8LsPfqOzHDSGPtRZDkqLypCN\nbJQWlbHVadQ6jaz7CIIwEFbzixa8eZ2pY1pXrFO5rNPmwgn2iSQRD8d+ACX9C8emdTqkQaJC3Xin\nYmYap0DYjwd9D5h6OJ0jZbmZ6cwAID8vn/T7HFF4zIyGRIXjGTyzdTVji0wipl6Uml7Sbfdg3SXr\nlMrmHusPp0yZorMJTj31VKUfEwRBsCLURbxMUPsKgiB+kSAIgmAsVg85Lwh9+cMf/gCgJ2riX//6\nVxw4cAButxsAkJWVZWbTBAuSWIC2wtzaiPbl5fCLgH58+nV4t+5t/Pj069jqbOts01kONgc2IYYY\nNgc2sX0jjYoCNa/2YlM3agRBSF+s5hftbtsFLRI0bTyLE7QfbrsHL1zwkqnRO6gCEADo7FYXQvm0\nesxcdx5env2a8reT8vscVE+qwcPnPEaKaBQI+0kiHIrvmRCCqZbn6EPUa3DaXDh+pENZUBcI+zH3\nlVl4/vtq7yP1HnBE8mnviiqX5cJMv5I6Fj6zdTVueut6AMDlp87nbFrScAipsnOSSqzVL2au9R1T\nBDR79peHF5o9ezbWrVNTIAmCIFgF6odWFoD6h+KIC8JgI36RIAiCYDTcqV4EwUwSG1sLFy7Enj17\ncOKJJyIQCBz981mzZpnVNKEPRszLfFo960LnUD5c47Z7cPHJl7Jf+2f7P9NZDhKnhDkjBxiRtgyw\nzjqNrJsIQmZgNb9ofMEJps5NqOLXxlCDqWMnVQBCJRRtQWe8E6Foi3IdZmvTAmE/fvXBo5heUqUs\nwqGIc912D2ZOutC0g+EcfYjaBi0SRKi9RVkQqEWCaA6rCwqp94BaXosEj/5DeY/rmmrJ6fmsSkL4\nY5YAKAHl+Xmdlbjvmw+S5raUsoGwHz964wq8f+37KZc9pggoGeIUSa4gCIIwZLHSSU5BSBbxiwRB\nEARVxDcSMpWPP/4Yr732Wlqechd6xp6L188in5jvjU+rx6yXv4eXZv6JXQg0FHlm62os2XInxowY\nw7qAPtU9TWc5cNs9gDY0n5UR6RokupAwVNl9cDfGF443uxmGYBW/iNMvSBWq+LWuqRZX1s3D09Vr\nlDfeqf4Rh3iZIoQqd1TAXeBBuaNCuY7cbJoQiypi7RGQ7DQtIhWH/2VmNCqONjhtLjhGFisLAr3O\nSjwxY5XyfMBt9+CqU35omgjK66zE4zOeIs1nOMYjM+HwRTlT+qpCGY98Wj1u/evNKC0qMyWaDyUd\nmHr8oi9Id2dFEARBSE+G8klOIXMRv0gQBEFQRXwjIVM58cQTEQqFzG6GMABaJHg05QcnsViMtb6h\nTGlRGXKzctkX0OuaXtNZDgryCnSWg9b2Vp3lwqfVs9YHgP09AsxPxyIIg00g7MfstV8eidmqWMUv\nos5JKGNsQnzxzNbVSuUd+cXIQQ4c+cXKbTDKP0oWt92D26bcQXoOOVnqMSCowtaEiIoaGTBGOGxJ\nvYeXnzofC09fZHoEEyqUd1GLBLGvPaT8HgTCfjzoe0C5H9Q11eKnby1AXVOtUnmANpZR2w/wCPKo\nGOHzpvLbF64/n9QG6jiSOHCnWo/T5oLLNs6SkbvJIiBBEARBUEU2uQRBEARBEP4X8Y2ETOTw4cOo\nrq7GpZdeivnz5x/9R0gPqCd8B0LE8bzE4tYQVbV1tuksBzsP7tRZDhLRqjg3RTg2OfqDmhJHsC6c\nafWsBOXEuxWwil9E6X/U8bC0qAzZyCaJX3NycpTLAj3+ESUlWiJ6hup99Gn1uPb1HyjfQy0SxN5o\n0DQRE4eIKhRtQRchpRn1Hvq0evzmw0dJ33Wq8IEiXEj8PsXf8TorsfSby0iRfCgHnaon1eChc1aY\nFkHHbffgvrOXkddp7MNGMbUodajjsdvuwUPTHyVFU/rjBa8q9yGO94DrOZoFRRxNTgcmCIIgCL0x\nK1+9Wb8rCIIgCILAhU+rNyW8sCAYyY9//GOzm5BRcM97tEgQLZG9rKkWvM5KPPmdp4fseMb9jDYH\nNiGGGDYHNqX9PXXZxuksB1eVX41VHz2Bq8qvZqsTAMCcydnrrMS93/gP9hR4kgpsaCJpYjMXq/hF\nlP5H3fQFaAJIr7MS/1q+gPT7brvH1JRoTpsLnoISUhqmdTNryRvvqn2AKqICvoigYhuvHEHFaXOh\ncNgY5TaEoi3ojNFESJT0uBzCBarY36fV4xfv3kJKg0SNxLPqo99jekkVKSoVpeyt7ywifYs5onpR\nrsHrrMTvvr2SNBb8dOMNJH+UOhZTfaFA2I8Fb16nPKZrkSACYb9pqQlNTQcWJ4RjEwRBEDILDmVu\nMr9xrN8dqielhPRA/CJBEARBFZ9Wj1kv8UYlEIR0YMqUKf3+I6SOUfOtOLMagiN0/mDB3UYjntFU\n9zRkIxtT3dPY6gSAwuGFOstBMLJHZzloDDXgYMdBNIYa2Or0OivxxHdWsQp2Ehtl3N9xEYAMTYZy\nmthMTwdmFb+IKj6gjK9eZyWemKE+Rj+zdTWWf7BMOZ0YB1QRp9vuwYpzf0MWgKjitntw1Sk/JLWf\nQ0Q1MnekctnGUANa2jVl/8GRX4zcrFxSWjnKOnFCgELxKbVIEKH2FuWITByCPgpuuwc3e39GEvFQ\nInJxfIt9Wj2u+fNVyv4hdW7BMS+jpqalzouo44gWCcLf1qz8HoSiLegkRCUD6PdgfOF4pXJkEdC1\n115LrUIQBEHIEIxepBjI6Un8LgDDRUiCcCzELxIEQRBISPYcQRCOgVHzLW4RkFU2r6kbA/1hVLj5\n3Gz+YO4HjxzUWQ4K8gp0loPW9lad5cAIoRr1pPVgImsm1iDdx1CjyPR0YFaBKj6glqWM0ZefOh+L\nz7obl5+qnmZtMA66ftnv37DhOtLGP8XHqWuqxU/fWoC6plql8gBYUpFRs8tSfFynzYUTRk0kRWOi\nRMbk8KepgjqAJiajQhXQAEBXjCZg4YDSD6lzC7PnZWaPpQA9Mpojvxh52XnKgkAz70FSIqBzzjkH\nZWVlOOusszBlypSj/z5nzhxMnDjR6DYKgiAIFsJIh+JYTovb7jHdqRGGBuIXCYIgCEbgdVYqhwoX\nBGHowD3X2d66DV3xLmxv3cZar1XmZNSTrX3hOLXdl55NqAnsmzATCifoLAf2YaN0loPSojJkIwel\nRWVsdRqxdmCVCFhGiN8EgRvVE+8CH5QxkiP6BmXTOxD244VPnyONc9TvBPUeaJEgmsO7SEIaio9T\nPakGd561BNWTapTK+7R6XLj+fHJ0vA7iNayuflb5GqjRjDj8AqqfQm1DWvgMRCFYbrZ6akEO8YbT\n5kKJXd2P55hbUPsRJT0jVzovKuR1NsKZGY57sPvgbqVySYmAKisrsWLFCmzZsgXvvfcefvvb36Kq\nqgp33303fvnLX/ZbJhaLYfHixbjkkktwxRVXYNeuXbo/37BhA+bMmYNLLrkEzz///DHL7Nq1C5dd\ndhnmzZuHu+66C7FYDACwatUqXHzxxbj44ovx2GOPKd0AQRAEIXOg5EcVhGQRv0gQBEEQBEHIFC4/\ndT7OnzCTdFq+Pygnx60MNW3BQHX+pOIGS8x1jRAWhaItiCNGCsHfH9z306hDSSLWEQTBDDiiuKhC\njYIDAO1dUXI7qOM5RYTDcUCEsnHv0+rxwPv/v7KIhyONlBYJQovsIfVFSiqvRBtUMSo65GC3Idxx\niNQGihCMGsnIbffg2vLrSFF0qH49NbUfxzOkCogemv4o+R6okg5CNKfNBbfdQ06xqAolTWpSIqBP\nP/0U3/72t4/+9znnnIOPP/4Yp5xyCo4cOdJvmTfeeAMdHR1Yu3Ytbr75Ztx3331H/6yzsxNLly7F\nypUr8Yc//AFr167Fvn37BiyzdOlS3HjjjVizZg3i8TjefPNN7N69G+vXr8dzzz2H559/Hn/961+x\nfft2pZsgCIIgWINjqa/TIbSgMDQQv0gQBEEwAq7TkoIgZDbc853HfMvx6s6X8ZhvOVuddU21uLJu\nHrsQyIi5HmWDrD98Wj1+/MbVrGN5XVMtbnrreksIq/7r4+d1lgNHfjFykEPeyBsMjBAAGZGyjrqZ\nIwhC5jP75Rrlbxl1nNEiQTQfUo+Co0WC2NMWIAuZqGMvNZUVBbfdgzU1Lyg/A6fNBU9BCWnTmxrB\n0GlzoWTUCcr1+LR6Uj/2afWY+dJ5yuWNiA452G1oDDUg0OZHY6hBqTx1jYMayYia1o7Dr6c+g0DY\nj59uvIFUnrJnxtGPqe8AR+RWahvivNmzU4KSJjUpEdCoUaPw3HPPIRqNoq2tDc8++ywKCwuxY8eO\no6fP++Lz+XD22WcDAE4//XT84x//OPpnO3bsQElJCQoLCzFs2DB4vV7U19cPWGbr1q2YMmUKAOBb\n3/oWNm3aBKfTiSeffBI5OTnIyspCV1cXhg8frnQTBEEQhPSh9we578f5y9KBSSowYTAQv0gQBEEw\nAq+zEvd+4z8kHZgw5Ons7MQtt9yCefPm4aKLLsKbb745YCTE559/HhdeeCHmzp2Lv/zlLwCAw4cP\nY8GCBZg3bx6uueYafP7552ZeDitGHHyYPXkOikeOxezJc9jqLHdUYPSw41DuqGCr04hrp26Q9YfX\nWYnffXulJcbyopFFOsvBmc4pOstFdnZSS9gpMVQPEFE3kwRBGHzM8I0oAhDqOOO0ueC0jSOJSLpj\n3crzQuWDAAAgAElEQVRlgZ5rmPVSDWmspKQhMvuACEcqLKrfRo2E6LS5cPxIh3I/CkVb0BHrUI5E\nmC6RgCj7JdS0cFS/mBqJp3pSDZ6uXkNqP3WNxux+QP19jvSMF6+fRRoLqIc2qG3QIkHsjQZJwlLq\nWK6aJjWpGdSyZcuwadMmnH322Tj33HPx3nvv4f7778emTZtw880391umra0NBQUFR/87JycHXV1d\nR//Mbrcf/TObzYa2trYBy8TjcWR9IZu12WwIh8PIy8vDcccdh3g8jvvvvx+nnHIKJk6cmPodECyN\nTFgFIbPoPUEYaLJwLIdDBEDCYCB+kSAIggDwz0V8Wj1+8e4tEglIGPKsX78eo0ePxpo1a/Dkk0/i\n7rvv7jcSYigUwh/+8Ac899xz+P3vf4+HHnoIHR0dePbZZzF58mSsWbMGs2bNwq9//WuzL4kNow4+\nZGfxCiw2Nm/A/o5WbGzewFanUQvoRkRuoZxY7o/W9lad5cKn+XSWg//+Z63OcuC0uZCdlUOOKNCb\ndEgtkAwStWdok+79Uxg8zPCNFk/9paljT35evnLZ7a3b0I1ubG/dplxHY6gBzeGdyhFQ3HYPbpty\nh/I9pKbT4th4p8CRRokaCVGLBNES3au8cV/uqMCEUROVRe3pIrqlPAOfVo/737/HtEg+Pq0eP/rz\nlaatkfi0etz615vJkYD+9fUfKd8Dqi/IEUmIUl6LBLG7TT2yG8ehDS0ShL+tWbkNXmclfnbm7crj\nsZmizqRm+Y2NjXjwwQfh8/mwZcsWPPzwwyguLsYVV1yBb33rW/2WKSgoQCQSOfrfsVgMubm5/f5Z\nJBKB3W4fsEzv0x6RSASjRo0CABw5cgSLFi1CJBLBXXfdlcJlC5mApP4RBHXS9b3pvagtkX2EdEX8\nIkEQBMGIuYiVokcIgpFUV1dj4cKFAIB4PI6cnJx+IyF++OGH+NrXvoZhw4bBbrejpKQE27dv10VT\n/Na3voXNmzebdi1GwD0/2ti8AVo0yCrYmV5SBbdtPKaXVLHVmQ4pFZLBCLHS/sP7dZaLcMchneXg\npDGTdZaDRX+5EYe727HoLzey1WkVjNhAHOrConQfQxLIurfQGzN8I0oKHLfdg2vLryNFnqCMUxzf\nTUd+MfKy8pRTUfq0elz7+g9Im74U8St105sqIuK4frNx2z1YMu1eU7+XHN8Aah0DRb1PBo79nSxC\nXj1qimKnzYUSu3pKOoAuKEwXMZkqTpsL4wto95Ca2tHrrMS6mbXKa211TbW4e8ti5X5EFXVSSEoE\ntH79epx77rlYvHgx3n///aQqPuOMM/D2228DAD744ANMnvy/k78TTzwRu3btwoEDB9DR0YH3338f\nX/va1wYsc8opp2DLli0AgLfffhtnnnkm4vE4fvKTn+ArX/kKlixZgpycnOSvWsgIRCAgCGqk+0JC\n73da3m8hHRG/SBAEQTBiLmJE9AhBsCI2mw0FBQVoa2vDDTfcgBtvvLHfSIjHiqaY+P+JvysMzPSS\nKowd6WIV7LjtHiw68+esY6TZofSTxQix0lT3NGQhG1Pd09jqNIpzT5ihsxxc+dUf6CwHVhLCdHZ3\nstZnFUGdEaT7elhvZN1b6I0ZvhHlcEJdUy1++tYC5Q3TQNiP695Qj5xxvXchFp6+CNd7FyqVB3o2\nbW+dcqfyPXDaXCgaoZ6KijpeeZ2VeHzGU8rtp4qIelK6uUgb/+WOCngKxitH4ukRcExQboNPq8c1\nr19FEsNRI7ic/8fvkr5Z1H7ktLngtntIz5HyHfM6K/HEjFXK/bh6Ug0eOmeFcjowt92DR6t+Q7qG\nckcFSuwTSGmSKb4gtR9So5pRUwuanRoR6HmG42we0jOkCoB2H9ytVC4pEdCjjz6KP/3pTzjjjDPw\nxBNPoLq6Go888sgxy8yYMQPDhg3DpZdeiqVLl+K2227DK6+8grVr1yIvLw+33norfvjDH+LSSy/F\nnDlzMHbs2H7LAMDPf/5zrFixApdccgk6Ozvx3e9+F2+88Qbee+89vPPOO7jiiitwxRVX4O9//7vS\nTRCsQX8fKpkICULqyEKCINAQv0gQBEEA+OciVtngFoTBIBgMYv78+Zg5cya+//3v9xsJMZloir2j\nJgoDMzJvBGt91PQN/WEV4YIR8+1QtAVxxBCKtrDVaRTPfLRaZzlw5BcjNytXORpDfxh1qtqI/pmX\nk8da31BeE7LatVulncLgMNi+0ZLNdymPadSN98ZQA3YdokXO+HPza6QxmRr5QYsEEWpXT0VFHa8C\nYT/pGVJFRAAQjysXZcFt95DS2lGjwFB9143NGxCI7CZF6+T47uVm0fwQqoiJclAqEPZj1Ue/J5Wn\nzj/cdg9uPONm0jPoiquLgKg+r0+rJ0WGA6A8lgM8EbM5hES52bnKZQH6ezB77Wylskm3uqCgAF6v\nF5qmIRgM4oMPPjjm38/OzsaSJUt0/+/EE088+u9VVVWoqqr60jIAMHHiRPznf/6n7v/NmDEDjY2N\nyTZfsDgJxaqVJmpC5hII+7+0Hybzd8wkndsmCFZA/CJBEASBm0DYjwVvXkc6JSUImcC+fftw9dVX\nY/HixZg6dSqA/42EeNZZZ+Htt9/G17/+dZx22ml45JFHcOTIEXR0dGDHjh2YPHkyzjjjDLz11ls4\n7bTT8Pbbb8Pr9Zp8RbxwzzW1SBD+8G5okSBrvVlQD93fH1bavG8MNbC205FfjGHZw1hFMADQEt2r\nsxwMzxmhsxyEoi3oinexi6C6YvwRdrjXLqmnr49V71DFStee7muLwuBhhm+0u22Xsm8QCPvxeONv\netKDKpSvnlSDG06/WVlEBADRzqhyWaAn8sPYfCcp8gOVdZ+8qBzNSIsE0RzeSXqGd//tLpQ7KpTK\na5EgtMgekn/ZGGpAoM2v7FclUpKppgGiRoGhHvK5/NT5OqsK1ceniJEDYT/mvjILz39fbY2Deg85\nyt/s/Rnp/iUORxSNLFIa07RIEP5D/HO1ZKGmsqprqsX8usuwuvpZpetPCMFUxyKg5xru/cZ/kCKj\nBSMB0nhKmSO47R6su2RdyuWAJCMBrVy5EhdddBF+8pOfICcnB48//jhWrVql9IOCoIKVFnuE/4vR\nJ/UG8yRgMiEUrRRe2IrIfRXMRvwiQRAEAQB7OGItEjy62C4IQ5nf/va3OHToEH79618fjXB44403\n/p9IiA6HA1dccQXmzZuHK6+8EjfddBOGDx+Oyy67DJ9++ikuu+wyrF27Ftdff73Zl8SGEXPN7a3b\n0BXvwvbWbWx1ljsqUJBnZ984M2JNiHt+WddUiyvr5rFGQfI6K3HdaTeQw8j3Zf/h/TrLwZHuwzrL\nwcbmv+gsF7nZ/BF2uCP6UVORHKteIb2RtUWhN2b4RuML1COgALT0NXVNtXj0gwdJUXj2RoOkeZUW\nCeLzw62kdFiUVFSP+ZZjyZY78ZhvuVJ5gCbI1iJB7Dq0k3T9jvxiUh+iisE4UrJRosBQ09oBdAGQ\nT6vHrJe+R0ppdvHJlyr7NlokiOZD6msc1Cg2gbAfN2y4jhQF59rXf2Cq37S9dRu6oD5X40iBS03r\nN2HUROV5IYd/7dPq8Yt3bzHtOXKIycYXjlcql1QkoL179+L888/H6NGjAQDvvvsu/H4/Fi5Uz6kp\nCMnQ+8SDCICsidFRnAY7SlQygjQRrRmHRAUT0gHxiwRBEIREOGHKiai+OG0uuGzjSAssgpAJ3HHH\nHbjjjjv+z//vGwkRAObOnYu5c+fq/t/IkSPx6KOPGtY+MzFCZLDz4E6d5WBV40qEOw9hVeNK3D5t\nMVu93FExAmE/5tVejDU1L7DVWz2pBk9XryFFL+jLM1tXY/kHyzChcAJ5M6g3Zzqn4F3tbZzpnMJW\n5zfc38L7offwDfe32Oo0ImKRERF2EhtVnP3JCN/Ap9Vj9ss1ypERhMFB0sQKvTHDN1pxrnoEFADI\nIgQEbG1vRRxxtLa3KpXnSGVFxW334N9Ov0H5Hp405iSdTRWvsxL3nf2g8j1w2lw4bkSR8venJx1a\nCyl6SUIM5nV6lSOo7CO0gToO905rR7kHZJ+S8C4+s3U1lmy5E2NGjFHyQZ02F5wmrnH0FiGpPAOq\nkAygR/QsLSpDXlYeSovKlMpT/VOWKDYza0mpDan+NTWlmNPmwujhY5T7QSKlGuf6YbIkFQmoqakJ\nb775Jh5++GG88847WL58OXbs2GF024Qhjpx4yAyMFsSYIbhJ5reS+TvSt1NHBFZCOiB+kSAIgsCR\nl7w/Rubms9YnCEJmQT0N2x/hjkM6y8GEwgk6y0FCsGOFeTSnAAgAppdUoWj48ZheUvXlfzkFdhz4\nVGfTlXNPmKGzHPi0evzwv+eznwjmfI8S5GbxRixy2lzwFJSI6DjNoUagEAQqVH8jHlf/7eklVXDb\nxit/9wJhP+589xek9lMj+dQ11eKnby1Qjmb02f7PdDZVqJEvGkMN2BvV0BhqUCrvdVbipZl/Is2X\nHfnFyMvKUxZPOG0uHDdSXchE9bsd+cXIRrZy+zmiS1KfQ2lRGfKy1QUoAC06pNvuwbXl1ynvBTlt\nLhw/Uj0ilRYJovVwiBRVzOusxJPfeVr5GXidlVg/u840USPHfhx1L4+awjcQ9uMXf/2Z8ru8sXkD\nWtr3YmPzBqXy1JRqFJISAe3cuROrV6/GjBkz8KMf/QgvvPACWlp48zAL1saICYls9mcORj5Dq+bH\nFpGbOlZ83kJmIX6RIAiCEAj7sfS9e1h9OY4wzYIgCKmywHsjbLkFWOC90eymfCmU1CL94bZ7WKO2\nJOCe5zeGGtB6ZJ/yRtxA5OfZdJYDI0RlRqQt2966DZ3xTtY0eI2hBvjbdrM/p07ixkdf3HYPOcKH\nYDxGrYvLOqRgBdx2D1698L9JEViawztJ4zF1rCx3VMBd4FFOgcMRCejeb/wHadM5DoKSC7QUQkDP\nNdw65U7la2gMNSAY2cP+XU6WULQF3ehGKKq2ZlzuqMDxIxzk9LqU5+B1VuKBsx9WfgYbmzdAiwaV\nxRNUMV1PRKq9yiIejqhiHGtHlGdo1HwnFaii+3BHmFR+Y/MG+Nt2K/fDopFFyEIWikYWKbeBKgDa\nfXC3UrmkREBFRUXIysrCxIkT8fHHH2Ps2LHo6OhQ+kFh8DHauTdSzCATUusxmJNJKwtpROSmjhWf\nt5BZiF8kCIIgAPTTSH0JhP1Y8KZ6vnpBEDIfI8SCjaEGRLraTNsgyTSMiFi0sfkvOsuFyzZOZzlo\n62zTWQ4OHjmosxyUFpUhBzmkk+19qZ5Ug9XVz7JGgtIiQeyNBkkn0PtiRESxoY5R99IIAZBV11GF\nwYfqb+Tl0KKYUca96kk1uPOsJaTxmGOstA8bpVyWCjUSkCO/GHnZ6lF4OMabuqZa3L1lsbIAJJFO\nTjWtHDV1aLmjAs58l7KIpzHUgNDhFpKPTvVLfVo9bv3rzcr9aHpJFYpGqEezdOQXIxe5yv0QoInZ\nAmE/HvQ9QP5uUtaOOOYWlPGU+i77tHrMfOk85T5EFZIBPf2weORY5X7I8U2hEAj7UbNG7beTEgGd\nfPLJuPvuu3HWWWdh1apVePzxx9HZybvgKRjDYDj3ImYQEgz2ZNLqfc+q7TYTK4WAFzIX8YsEQRAE\nAMjN5k3PoUWC2N22i3WjTxCEzMKIzXuf5tNZDqaXVKEwbzR7+qqsLNbqEAj7cfH6Wezzy/2HP2et\nr9xxms5yYUQ6sNLjynSWAyOiCwFAbk4ua30AyKf1++J1VmLdzFrTUkAIX46Ra6HcdVp9HVUYXCj+\nBjWFj0+rx+yXa5Q3jX1aPe6vv4ccfaK9K6pclircduQXY1j2MGXxg9dZicsmX6H8/XDaXCge6VSO\nQOK2e3Cz92ek8aZ6Ug0eOmeF8sZ7ImqHavQOn1aPH/5ZPXWoFgniwJH9ps/vqYeXYrGYctnGUANa\nD6tHs3TaXHCP8tCiShECWrntHtx39jLyd7O9q51YXn0s8mn1mPXy95T7MfVdDkVb0BHrUI6Idfmp\n87Hw9EW4/NT5SuWBL97Fw+rvok+rx/3v074p3CmIkyUpEdC///u/47zzzsNJJ52EBQsWoKWlBQ8+\n+KDRbUs7rLjpPFjOvUweBECtv1HfK+l7giAMNuIXCYIgCEaEVHbaXHAQ8tULgjA0iHaqLwL3hxEC\ni43NG3Cw8wDpxGZ/UBfQ+2KE+JLjtGpfqJtYA/HZ/k90loN3A+/obLridVbivm8+yCquMerQErdf\nMNTTj1pFWGOUuGioPndhcKlrqsVNb12vHMHFaXNhbL6LNP51xbqUywI9PkLgkF/ZR6AKt73OSrw8\n6zXl79RjvuVY+dHjeMy3XKm8FgmiJaqRNs2vff0HpI3vnigs9yvfQ0d+MXIJ0Yy2t25DZ0w9dSg1\nlRRXhMFop7r/7LS5cHy+Q/ldrJ5Ug4fPeYx0DSNz85XLAkA8TosEdMMGWrRmarpYLRJEMLKHNF+h\n3AOfVo9rXr+KIMqkHTjxafV4/B+/IotoqOkNqfeQImx12z2onaf2PU1KBJSTk4MzzzwTAHDuuefi\njjvuwOTJk5V+0KpYOVymOPfCYJKqAMiq75UwuCT6SDrkMBUE8YsEQRAEgH+e1ZOvvsX0k4KCIKQv\nWiQILUpbBO7L9JJ/0VkOjBCtUBfQ+8Npc2F8wQmsIovpJVVwjChmjYJkRLQmAHDbx+ssB0Ujj9dZ\nDozoo9T0FgPR2c2fKpRbWDSU04EZJdQyYo1qqEft2X1wt9lNGPJQxILljgp4CsaToqNRov9tb92G\nbnQrizeAnugVXehSjl4B0COwUPyTqe5pyEEOprqnKZUPRVvQGe9Uvn6nzQV73ijSNWxs3gB/226S\nsDonuS3wfqH6s4GwH0vfu8fU721jqAGBiLr/3BhqQDCyR7k8Vcjltntw8cmXkr6F2dnqfUCLBPHP\nA02kuZcjvxg5WTmkqF4U4TpVUEg9rOZ1enU29fKVuMX7C7pwn/BN4biHnoIS0ng4vlBtvqbe+4cY\nVne8h+LETjAejig+yb5X0oeHLn3FYlYdhwVBEARByCyMOOkvkYAEQTgWTpsLzvxxrOPEqzte0VkO\nPtv/mc6mK267B4un/pJ1jqlFgjjYcYBVqPWPfR/qLBdfPf40neUg2hnRWQ5a21t1lgOnzYXCYaPZ\nv7l5ObypQgHg0BHeNGgAfWNaGByG6vpXIOzH7LWzzW7GkOfWdxaR5js5WeopF7VIEP5Du5W/pdNL\nqnD8cJogt9xRgbH5TpKQiZI+mpqy1GlzwWlT9xmpwoWNzRsQOtzCHhUyFbzOStx3trp4wpFfjFzk\nKt8DgBbBs66pFvPrLlOOqAX09OMJoyYq9+NyRwWOH16sXJ4q5Hpm62os2XInntm6Wqm80+bCuAK3\n8nsQiragG90kMeDmwCZ0x7uxObBJqbxPq8cv3r2FJFyn+LtaJIg9bQHl8ZjaB+uaanH3lsWk9wAA\nsigqICJuuwcvXPCSKX6diIBSwKqOt0RbEYyAq18lKwBK1z6cSpvSsf1WoD+xWDrdy3RqiyAIgiAI\ng4MRJ8m1SBB729RDrguCMDTII2wo9YfLNk5nOdj++TadTVc4UlX0R3esm7W+E0ZN0Fkudhz4VGc5\nKM4fq7PpysbmDWhp38u6OclxWr0v1BP8A0HZmLYyRkWXNmpdaKiuN7ntHqy7ZJ3ZzRjyUA7E96Sv\nUd803t66DV3oUo7ko0WCOHDkc9K8SosE8fnhVuU63HYPbptyB+keUlKW9kSZ3Ut6Bt1x9WhKpUVl\nyEYOSovKlMpz4NPqcdtfF9H8PIJuQIsEEWhTF7NxiKDddg9+8+0nlfthY6gBrUdChEhCH+psqkwv\nqULR8ONJgj5KOrFyRwVK7BNIYsDrvQsx9+R5uN67UKm811mJe7/xH8pitkDYj1kv1Sj7FHVNryGG\nGOqaXlMqT+2D1ZNq8HT1GlJKOafNheL8scpiKJ9Wj5kvnUcaS6jrfOu3r1cqJyKgIYDVoxhZmUye\nrHH0q2QHTSP7MOUZpSJOSmchkxXoKwBKl3uZTm0RBEEQBGFw4T5FH4q2oBPqIdcFQRgadMV5x54J\nhRN0loPS48p0lgOjosGMzXexRoPhSEHSl5boXp3l4sTRJ+ssB22dbTrLwX99/LzOcjC9pAqegvGs\naduop9X7o9xRAZdtHGnzqS+SZp0Xo9aFrLTeZEQbVdNeCHyQDybE1Yv2CEiylQUkVBFRglgsplyW\nKjTmiP7ILUpOhVC0BTFiBBUqTpsLo4ePUb6H21u3oSuu3o+o5aeXVOG44UUkX4WaArTcUYHjRziU\n/ZAF3htROKwQC7w3KpXvESHtUxYhUcV4brsHv52hLmABeiLZPP/ps8qRbKiRgBpDDWgO71S+h1eV\nXw173ihcVX61UvlA2E+OLEf1g7VIEKFoC+m7FovTvgcXrj9f+RnWNdVi1tpZSmVFBDREkInd4GOl\nyZoqVAFQKgOfym992b2nPqNUxEkixuMjne5lOrVFEARBEITBxYhT9GaGKBYEIf3RIsGj/3Cxec8m\nneVg9uQ5GJE9ErMnz2Grc//h/TrLBXdkpaKRRTqbzoQ7DuksB0ZElkrMtznn3W67B/d+8wHWOkuL\nypCLXNaoB1okiNb2fexRArkjC1kFI9ZqjVoXMqreoSxWElKDsmHptLlwQuEEUgqeGGLKApLpJVVw\njKClAwOA7Gz17VOnzQVPQQlJxDOMkGKSmsbo8lPn4+pTrsXlp85XbgOV0qIy5BCiCTWGGrA3qil/\n86aXVGHsSJdyP6IKjhtDDfj8SCv5m93ZrX6AoDHUgNDhFuU2aJEg2jvblf0YR34xcqCelo4qxguE\n/bjmz1eRvnE96ZHjymmSvc5K/PGCV5UjAQFAnKDKbAw1INx5iCTEuuqUHyr7MxxRuJ02F8bbTzBN\nEEh9huWOCkwcPVGprIiAhgBGOOG96xQnv39EHHBsUh34Uu1nyUxCOZ5RKmWN7gt9rzWT3810eq/S\nqS2CIAiCIAwORpyiL3dUwJ43ivW0vyAImYXXWYkfl19PWgTuy9Rx03SWgxW+R3A41o4VvkfY6rze\nuxBXn3Ktcij9gTjc3c5anyO/GLlZucqbFYNJueM0neXAiBRjRuDT6nHN61expoJz2lw4Pt/BGlnK\naXNhXIGbtc66plpcWTdP+US6laFuRA02RgiArCKC2n1wN2t9Qur87tsrlf0Nt92D57//knK/oEb/\n0yJBHOjYTxJQUtPHuO0ezCu9gvRudBDEG1Tqmmrx1EdPKH8rqOKNBFlZ6odkqFFsAMA+zK5c1m33\nYM5Jlyj3gXJHBYpHjiWvD1CiiCaEK6oCFgCIQT2CClXMRo36ubF5A/xtu0npY2dPnoPCYaNJhyM4\n/cBUofaBuqZa/PStBSS/M9oZVS4L9LyLi6f+UvldLC0qQ252HknoT5m/u+0erJmzRqmsiIAyHCOc\n+951GlV/pmCVSaVZpCIASrWfJTsJzZRn1PcemXkSJ5PeYUEQBEEQhMFiVeNKHOo8iFWNK81uiiAM\nSawwj3lm62os/2AZa7qhpxqf0FkO7MNG6SwHPq0e/7ltFatoozHUAH/bbvaoKJQNq/4wIm0XAOw8\nuFNnOWjvatdZDgryCnSWA6fNhRLCieD+aAw1QIsG2ftTnJBSpz+qJ9Xg6eo1qJ5Uw1uxBeDYiOqL\nlSLhGBm1iJNA2I/Za2ez1imkzpLNd5H6NaVfTC+pQtHw45UjqISiLeiM0dIsa5EgtDb16IvUFJFa\nJAgtuoc9ElyyOPKLkQt1UTNHetRQtAVd8S7l59gYasC+wyHSdzncEVYu+5hvOZZ/sAyP+ZYrlW8M\nNaClfS+p/VokiEDYr9yPrvcuxMLTFymL8KkRVDg40n1YuWxpURlysmhRHhtDDTjUcVD5OXJEwqFw\n0piTdDZVWttbEUecJOpsDu8kjYVU8b/T5sKovFGmibECYT/+7U//plRWREAZjhHOfe86uetPZuJk\nhUmVwEPiWbvtHtx39rKU+1kyfz9T+lN/76IZkaistPjBxVC6VkEQBEEQejBiIaYn17pdOdf6QIiv\nIgjJYYV5jBEpsUpGTdBZDiYUTtBZDkLRFnTEO0gbeoMGs2jj1R0v6SwXRkTt+erxp+ksB0aIytx2\nDy77Ci1Cw2CgRYLYG+VNAQhgyEYdNEIAZbVI8FZop9vuwbpL1pndjCHPrkP/JI09FJ+KKw0ShVC0\nBV1QF6BML6lC8cixykImp80Fe26haZvOTpsLhcPHKP++ESkyU8WRX4y87DxlIdPG5g3Y2x5UjgIz\ne/IcOEYUs6bHVSFOUBMHwn683PSi8vuceP6q/YAaFWxj8wZoUfVnCAA5RBlFuaMC7gIPyfeipHSj\nQo3qRU0t+ML2tYgjjhe2r1Uqn4DyHqz75EV8fqQV6z55UbkOykEWt92DX33vV0plRQQ0BDDCue9d\np1ECo/4YigKDoUrfiFO3vrNI8lZ/CYn3JnFdZrXBSosfVDKtDwmCIAiCYB4bmzcg3BkmLVD1RXwV\nQUgeK8xjxowYo7Mc5OfZdJYDIyLMcKQj6At1c2ggYnH1tAf9MWbEcTrLhRHPPhjZo7PpCjVCQ384\n8ouRjWzW/uR1VuJnZ97OmgLQSr6BEW00IgJSun87emPEPTWizvGF49nrFFKjM64eSYd6YIKaWrPc\nUYExw4pIm+5UH0GLBHHwyAFlIdXG5g3Yd6RFeW7IIZ6g/L7T5oKzQD0NE0D3/bzOSpw9brryN7S0\nqAzZyCYJmXJzcpXLckBNp9UYasDOQ/9UFuTVNb2ms6lCFZNNL6nCccOLSGK8cXZ6WlZqVMfOmLoI\nyJFfjLws9bEsFG1BDDHlPkRNLXjf9GU41/Md3Dd9mVJ5oOc5umzqz5EaDcmn1WPWS99TFgIFwn5c\n88o1SmVFBCSkHceaOA01gcFQxsiIU/39hpXpO6Ey+7qsfj9Twex7LQiCIAiCObjtHqypeYHVB60P\n6FYAACAASURBVLj81PlYfNbdyiek+kN8FUFIHiu8J6VFZchCFuup6mhnRGfTFSMEUAAQj/GG7eFI\nf9GXSaNP0lkujHj2RqTu+se+D3WWA+rJ9P7Y3roNMcRYn31dUy2WbLmTNX2V2+7Bzd6fpf2YZyWx\nklUw4p4a9Zx2H9zNWp8w+FAiV3idlfj9d1crizc2Nm/A/o5W0uEKp82F4pFO5U1jp80FW16Bcnlq\n9EdqeWr0Di0SRCjaQoomRY2kc/3r/4o3/X/G9a//q1L5zYFNiCGGzYFNSuU3Nm9AMLJHuR9SU7Id\nrYMgqKOKyajRQZ02Fxy2YuX3qDHUgP1HPidFFeuKdSmXTbRhT8Sv3AYtEkSgbbfyu+S0uXB8vkP5\nHlL7UPWkGjx0zgplEXZdUy02+F8n+8LdcfXnWO6ogKdgPC2SJm+26KQREZAJDLXJC/V6+xM4CEOD\n/iJOcb8/lP6UDu/yQJPtTH9P0uHeJ8j0ey1kLun0HgmCIFgRbh8gEPbj8cZfp5W/KwhDCUqI7sEi\ncQKTMyVWcf5YnU1XjIguRE31MVi4bON0lgsjnv30kn/RWQ6KRh6vsxwse+9+neWgtKgMuVm8qU+o\nGy/94dPqcc3rV6X9mCdCZmPWQLnvqRF1BsJ+1Kzhj9gkpI5P8ymX7Yqri4ACYT+WvneP8jswvaQK\nxw8vVo7+AXwhYmnfq7zxTk0fM9U9DdnIxlT3NFPKU6N3OG0ujMgZSY6gkp2Vo1x26rhpOpsqsyfP\nwXHDi5RFSKVFZchBDskvyMlRv36g5zmMtamL2YpGFunsYJdvDDUgGNlDEvHECXl6G0MNCLSpC3g4\n2rA5sAld8S5lMRr1HjptLowapp6aMBD241cfPEryaSj3D+i5B/623aTnmJutHtXL66zEEzNWKQtb\n3XYPnvj+E0plRQQ0yFBDIVoN6mkAn1Yvpz6Eo6TT+5MuJ5KG4qJIutx7QbA66TKeCoIgCD2s++RF\naNEgKc+4IAjqzHpZPUT3YFE9qQYXn3wZazqbD0Mf6CwH1FO/gh4jIuEAQLnjNJ3lILFhTNk47suH\nLX/XWQ4WTfm5znLgtLkwNp+W+qQvoWgLuuK8QjWnzYXjRhSxttMorLLWZVSKLSPm7Fa5p0J64HV6\nlcppkSACYT8pCkxr+z7lslokiP1HWkm/DwBxQg6f670LsfD0Rbjeu1C5juxsmgAkm7D9W+6owJjh\nxylHvljVuBIHOw9gVeNK5TZsbN6Ave1B5Ug6VHGuFgki2hUh9aPsbPVn4HVW4udn3kFKCapFgtgb\n0ZSvodxRgbEjXcr9gBpJiJqWr9xRAZdtHCmCC1WAQr0HB48c1NlUod7DdZ+8iNYj+5TXqbRIEDsP\nNin3Qer944D6TaMKWyUdmDDoJNtZKQKFQNiPW99ZhPvOXiYTFKFfzNy8TifxTe829L4nmby5ny73\nHsjs+ywIgiAIX4Z8B/lInNJUPa0pCAKNEvsJab8p/phvOZ7/dA0e8y1nq7OtI6yzHDSGPtRZDowQ\nFpU7KmDPG0UL7d6Hy0+dj7knz2NN7WhEJBzAmOhKiQ1j1Y3j/nDbx+ssBz2imixWcQ01akR/lDsq\nMGZYEWsf5ThVL/wvVjuoxt1OI67fbfegdh5fCjxBDWe++sZ/KNqCznin8hi77pMX0dK+V3nTeXNg\nE7rRrRw5g4NA2I8/N7+m/G6Eoi3oiqnfQ2q0w43NG/D5EfWUatWTztNZFagpzQCakMvrrMTSby4j\niXCyCDmA6ppqcfeWxeQ0SFlZ6m2gCuqokYCcNheKRhyvPEfTIkG0tu9Tbr8jvxjDsoeRIjJS78Ht\n0xZj7snzcPu0xUrlnTYXRubkK9/Dk8acpLOpsr11G7rQpZwulyOymyO/GHlZ6kIogC4GC3ccIpVX\nRURAg4zb7sGamhfSZvP6y+jrpATC/pSd+1SvNVFvQmSRzEfWKhMtgUbv9ycdJtlGv8c+rT6l6+t9\nT9Lh/lAYqN2J60oXrH6fhaGNlfwRQRDSE/kO8pJYpDZzsVoQhjLPf/+lIekbGSGw2HVop85yQF1A\n749VjSsR7jxEOqXel2e2rsbzn67BM1tXs9XZdOAzneUisRjNuShd7qhAfq6NVbTy1eNP01k+aIv5\n/RGLxVjr29i8Afs71DdhBeMx6pCgEXsIRgl2jLj+8YV83yRBjX2EjXOzI1+MGTFGZ83i0BH172v1\npBosPH0Ra/THVJheUoXCvNHKG+8cKWypz3F76zZ0o1tZfODT6nHLWzcqRwp12lwoHDZaWXxR7qjA\n8SMcJJ/KaXOhOH+saQcdqBEiG0MN0KJBknC5O9atXNbrrMR1p91AEoIlhCeqAhSfVo+Xm15U7ocr\nfI/gUOdBrPA9olS+3FEBT8F45X5IncNpkSAOdRwgieydNhfcdo/ye7C9dRu64upCJmo6Mrfdg4Vn\nqUWVExGQMCB9Jwa9N9+NisLR9zeT+Q3ZfEh/uCeXCZtO0WA4CYT98Gn1mP1yDS5eP+uY96/3n/W+\nJ4l/tyKJd7o/xybdriuT+6GQ+Ui/FQSBylD/DnLPP7Z/vk1nBUEYXKwwlhmxqRUI79ZZDoyIXPP8\n9ud0lgMjogtxnFofLFqie3WWg6V/uwfRrgiW/u0etjqDkT06y8HT/3hKZzkIRVvQjW7W6ELTS6ow\ndqSLdPq5L478YmQhm3QaWtBjhe8HYKxgScg8uuKdyhuepUVlyM3OU07DRI0qV1pUhmxkK/8+B42h\nBgQi6pu+dU21WP7BMnIUGFU2Nm/Awc4DyiLUz/Z/prMqUH0qqvhgc2ATutClfEhnY/MGhA63KN/D\nxlAD9h0OkQQwWiSIlqh6lEKnzQXHSHUREfVdpqayogrBntm6Gss/WEYS99c1vaazKsRj6sJ1jvS/\nI3JGKpdlQT2Y1VEIQcGwec8mnU2V6kk1WF39rLKos66pFte+eq1SWREBDTJWEqz0nRj0FRgMxm8a\nVUYYPIzs85n4zBP3y2lzYd3MWrxwwcCnUfu7t33/bl8hnxVw2z247+xluPWdRQO2OZ3G0Uzsh4Ig\nCIKQLEP1O2iEj+uyjdNZLtLFZxIEgY4R0XCG5QzTWQ5a2/fpLAfnnjBDZ9OV/9n7vs5y0NF9RGe5\nOHH0yTrLwW1fvwPDsobjtq/fwVanEd/HK7/6A53loNxRgbH5TtYoSAAwaridtb66ptcQR4y0GSUY\nTyDsx+yXa9j9OKMO9QpCb5w2F8YMG6MsHHDkFyMXuaSN/xhiyhv/CTrjncplqdGQAFoqKaoI5/JT\n5+PqU65VTm/KIVyf6p6GbGQrp8ve2PwXnU2V2ZPnwDGiGLMnz1Eqz5LOjCNqIaEKaqpT6jMAaAIY\n6tyJQ1BITY3ntLlQOFw9olRpURlys3JJ13C4u125LBWnzQWXzU2KZqVFgghE/Mr9eOq4aTqrAiWq\nW/WkGqybu06prIiABhmzBCuqznjfdib+20jnXuXeDNXNBytgFZFWukxYe98vr7PymAKgL7u3vf/c\nSgJEoCfU4kDXZpU+JQiCIAhC5mKEP3L7tMU41/Md5Vzv/WE1H1AQzMQK7wnHhlJfSkZN0FkOvuE+\nW2c5sEqEnbmll+osB6VFp+osF0akA1v3yYvoiB/Buk9eZKvz3cDbOsvBqzte0VkOqKftByLcEWat\nj3oqfzAxYlxWTacx2DSGGrDr0E5SBIjBQHzNzMUxolg5Chk1AgoAZGWrC2Cml1ThuOFFpChq1Ogd\nl586H4vPultZRFPuqEBBrl1ZWEoV4dQ11WLlR48rRyLiEK6Hoi2IIaYcYY8jAsrw3OHKZdMhLZ3T\n5sI4O01AQUmnRX0GoWgLutBF6AMVcIwoVn6PQtEWxBEnRXlMiBFVRYkc42l2lroUhJrKiiMqGHWu\nsr11G7pi6tHtOMYzqp80tmCsUjkRAZmAGQKgebUXsznj6e7cp2u7hjKqfb73szTyuaZbnz6W8Cdh\nE+39sntr5fRpx2qrla5DEARBEITMhHtT5pmtq/Gm/8+kUNN9saIPKAhmkU5zwoEwIr3FttatOsuB\nEekNjYiwU1pUhixksd5PI8QlRkRWAoDpJf+isxwYseF1muN0nU1X6ppeQ4w5ws7G5g3QokHSxk9f\nyh0VcOa72CMWcWPEWp1Pq8esl75nCSEQNQXKYGGUr7n7IF+KSkGNgx0HlEWN1HRgAEjRSxpDDfj8\nyOek+Vr1pPOQhSzl6B2BsB/PfvwH5TFsVeNKhLsOYVXjSqXyVBz5xcgljEGO/GLkZdHGMGoUGaqA\nnCp+KC0qQw7UI7BwiCcAoCvWpVyWmk6LKp6g3oPGUANCh1uUn6Ejvxg5yCH148TzV+0HpUVlyCX0\nI45IOhSmuqchBznKEb1WNa7E50daSWMh9R76NJ/OpgpVo+HT6lG1Wk3UKiIg4Uvp2zHNWEhO9uUw\nQ8yR7ouEVqHvfez9LI1+rsn26f7aOFj0Ff6ovIOZvvkj76IgCIIgCINFXVMtrqybp3wysj+oi0OC\nINAwYp2De6OZK71FbyYUTtJZDjhCpvfFiHRgmwObEEccmwOb2OosPa5MZzkIhHfrLBdcm0tGY4RY\nyYjnZESEHeoGYn9okSA+P9zKHrGIG6PWn2PxGGt9gDHrUV5nJZ78ztPwOivZ6+aG+xkFwn7MXjub\ntU4hdeJxdRWO0+aC2+ahRR+Jq0cf6YmYGCdFTqT6CFokiObwLuWxlppCiEU4TkjD5LS54LbT+sAC\n742w5RRggfdGpfJUYXK5owKegvEk0Wwc6t8c/xd+n5/g/zWGGhBo85OETJR+5MgvRm6Wemq/g0cO\n6myqlDsqMGHUROIzpKVkS4whqmOJ0+aCw1ZMepc6YuophamRaJ02F8YML1Juf/Wk85CTlas8Fiba\n4CxwKbeBw8dv74oql/U6K/Fo9aNKZUUElGYYMWlw2z1YU/OCkkM+kPhisAVAyQpABluglG4RZIwm\nletMRbjV333s/SxVnmuqi63JCIB6t9GoZ9+7/r7t630PMl3QkypD7V0UBEEQBMFcqifV4KFzVpDy\neveFGnK+P7ijwgpCJmOEAOjC9eezCoGml1RhZHY+Kb1FX0LRvTrLwVONT+gsB42hD3WWg9mT5+C4\n4UWYPXkOW53UzYr++O7EGp3l4k9Nr+gsBz2ilRxW0crz25/TWQ6MiCzlyC/GsOxh7JFbcrJ5l++d\nNheOG6G+GTOYGLH2lZWlnmKoP4zytQJhPx70PTAkfTi33YN1l6wzuxlDHqpgjvKqbQ5sQgwx5U1z\nDp9hqnsaspClHL3C66zEEzNWKQv5qMIBqnCcmoYJAHKz8pTLAj0Clkh3m7KAhSOFD0ELR+7HC7w3\nYnjWCGURVAKKiIWakg2gjSXU1LVuuwfzy65W9ieokZAA+ljSGGpAMLJH+T3Y2LwBwcge1qiSqf7+\nviPq6cy8zkrcPuUukihaiwTRElFP2Us9OKFFgghG9ij/vk+rx4LXFiiVFRFQGmHkJjZl0mR2+Pgv\nE4CYKVAaSuH1U+mfyf7dxN8DevpZX3rf11QFQBeuP5/1ZHZ/IhzuZ5+4Hz6t3nTxXbqQ7Hho9Ls4\nFBddBEEQBEEYmEDYj8cbfyM+giBkENzvs9dZid99eyVrFIcVvkfQHotihe8Rtjrtwwp1loODRw7o\nLAdv7vpvneVAiwRxqOMQa0SUdwNv6ywHL336gs5ykRCBcItBssArsmjvatdZDs4Ye6bOcuB1VuL/\nK72K9Z132lwosU9gfUaNoQZo0SB7WlMrpNhy2lwYPXwMe5+nnO4eCKPWuaziu44vHG92E4Y83egm\nRcEJhP2mRRwrd5ymsypsb92GOOLKm/+BsB+LN/1C+Z0zQlScCtToHwCw73CI1AbqxjtHKqk9EfUo\nOrMnz0FBrl1ZbL7ukxdxJH4Y6z55Uak8YH7Uxxe2r0UMMbywfa1Seeq7/MzW1Viy5U7llOscQrKn\nGn+POOJ4qvH3SuUd+cXIhXo0Jeo1cNwDCnVNtViy5U7yXm+MEJWLGlWsJyXbOGX/02lzwZHvUCor\nIqA0It0EJb0FGqmUMYJjCYDMjv6R6vMaqK3pPglLpX8m+3f7/j2uZ5lYbOU+MdP3erjf1cT98Dor\n02osGGxUoy0ZKQAye5wRBEEQBCHzKRxeqLMcUKLCCsJQg9vnNyKKA8emVl+0yB6d5aBw+Gid5cBj\nP0FnOdjeug1d8U7W9GpGCGvOGvcNneXi3864QWc54Igc0JedB5t0lgMjNlcf8y3Hyo8ex2O+5Wx1\nuu0e/NvpN7B+xx35xchBDmvEIiMinxnBxuYNaGnfy3oaXosEj/6T7hgZtUjITFQjV4SiLeiMdyp/\nC6a6pyEbOcq/v//wfp1Vgbrx3RhqwM5D/1QWkPSkvslSToFjRATFVFjhewQHjuxnFa6nCkc6sFHD\nCpVTSa375EW0dYWVRTwcvspJY07S2VRx5BcjG9nKPoMRc5dU4BgLqNz29TswMicft339DuU6sglR\nIV/d8YrOpgo1pVtpURlysnhT26ZKKNqCrjjv/CRVRubmK5fVIkHsjahF7RURUJqRTouzqYqSjN4o\n76/edBNOfRkD3SOriAxSuc/J/l2VyDq971N/9ywQ9qN6Ug1r3xisZ2NWuq906Xu934V0eb/TpR2C\nIAiCIKjD7esYIa6hLlIOhPgw/KSL7yzwwu3zGzGPKC0qQxayWBdRnbZxOstBR3eHznJw0Vfm6iwH\nOw/u1FkOjNhsiHZGdJaTPNBSdQwGXucUnU1X/OHdOstBXVMtbnrretZI16FoC7rRzboR4nVW4o8X\nvMoaBckIppdU4bjhRawpFb3OSjw+4yn2aw+E/Tj/j99l9zm6Yp2s9RklLNri38Jan6CGaprickcF\nJoyaqCyeAGjpxKjCB+ALwWSWumCyelINFp91t3L66J4oTHHlaEwXl16is6nS42uq+5we+3idVYEq\ngpleUoUROSOVx/x1n7yIgx0HSJF4KHAcEip3VMBtG6/8LlLTylH94tKiMmQjW7kfUseCjc1/0VkV\nGkMNaO+OKgsCqVEhOURIlLR4oWgLuk0W4FCjKVFx2z14aPqjpqzNiQhIOCapij5SSduVCscSyVhp\nUTtxjwb6/1a6FsCYzZQv+63efaHvv/f9c04BkBVEWoDaM0mn6+sv7VpvzGqjpBkTBEE4NjKeCemM\nUb6OFU58C/ykk+8s8GKEz89dZ13Ta4gjrrwp1x9Hug/rLAeJ1DicKXL+6+PndZaDCYUTdJYDI+7n\nuSfM0FlOKKHx+6PcUQFnvou08duX80/8vs5yYET0PfuwUTqbrhiVGoQ7xZYRNIYasP/I56yp0AJh\nP+7+213sfsHG5g0IRHazRi0CgNzs9Bf++bR6VK3mE2oJ6nidXqVybrsH88uuVvaDNgc2oTuuno6M\nY+Oe2gafVo/76+9RjpBGjYaU8BVVfUaqCInjgEui/6n2w6V/uweHu9ux9G/3KJWnXgNVgHK9dyHm\nnjwP13sXKpVPQBHUUaEKuULRFsQQUxaQVE+qwcLTFymL8aaX/IvOqkBNree2e7Di3N8oj6eNoQYc\n7m5X9n22t25DN7qUhWDU6+dITQgABB0T+eBIIOzHTzfeoOwrep2VeOuqt5TKighIMBTVtD59sapI\nZiD6uxdWu7ZjPVMjwsr2Fx2mt6jKyOgxVul//YmikiHdri+d0/9xkmnXIwjC0EXGMyHdMcLXMSLt\nhVGhquXd5CXdfGeBDyPS2HDXaYRo5TTH6TrLwUljvqKzHHzU2qizHDzz0Wqd5WDS6JN0loNXd6zX\nWS42BzahG+obnP2hRYL4/HArq1DWCNHKu4F3dJaD6knnIYuQuqU/uDY+ejPVPQ3ZWdnKG8v9YZX5\nQLmjAiX2CawiNS0SRPOhXezi8NKiMuSCN32GESfRjYiO6XVWYsN8XvGTMLg8s3U1lmy5E89sVfu+\nUsUTHFFoOEQsXfEu5bI94gf1qG1Un5H6DKjp1ADAp/l0NlWmjpums6lCvQZq+s26plq88OmzpGiA\njaEG+Nt2s4pfU4Equqb6gHVNtVj+wTLle0jtgwCwec8mnU0VqoAEAOIECQw1Ei1VQMMxllCFTFeV\nX41hWcNxVfnVym2gRmLc2ybpwIQBGKwJWN8JH3dan0xZZM2UReO+16Eq+OovNdqX/Zbb7tEJXfpG\nWLL6vVWlP1FUMqQaNcnMaDyZ8O4kcNs9uO/sZRlzPYIAGDc+pPti8lBHxrOhjVXeT+7+6XVW4nff\nXsma+oEjbH1frLIpZzVkvMtMZr38PVbRjhFiwcf+5xGd5aCts01nOWho+R+d5eDE0SfrLAdGCHaa\nDnymsxx8w322znIxe/IcHDe8CLMnz2Gtlxsj0mWOzB2psxyEoi2II86a7qAx9KHOcrC9dRticfXU\nHv1hlfUat92D3854krWdTpsLTts49khITpsLnlHjWevl2EjsDyOe+zg7X4pKYfDh2LSl8D9739dZ\nM6BGEjIqaluyOPKLkZulnj6HKoAB6JGAqFCfATX9ZuLeUe4hVUw8vaQKznyXcko1aiQganlqP759\n2mKcP2Embp+2WKk8F9ypPFNhc2AT4oSoYNT32AhBfKos/ds96IgfUY4qBgAd3erPsK6pFrPWzlIq\nKyKgQWawF1+5Fn2TKd+fUONYaX04sMpittWj/gxEbwGQiuDrWMKxgX4r8ffm1V6Mua/MwsXrZx39\n+yp9PZm/b6XNk94RklSeAfffT4Vkx5l0RDUN263vLLJEvxKEZDBqfLDSGDxUkfFs6GKl99OIselB\n3wOs9XKEre+LVTblBCEtoMQI7wcjxILnjK/SWQ6MEK18fdw3dJaDUHSvznIQ7YzoLAdGCIu2f75N\nZ7nQIkG0dYZZI5h4nZV48jtPs/Z7I1LBGcGrO17RWQ440lAMFlbwNYyat+QZlGIrN4u/XjM3EpMl\nEPajZo1a6haBF7PSt1DLnzH2TJ1VgRq9gypgpYofeqJ3ZNOiiRF8Y6oAhgOqGI36DB35xcghCFCe\navw94ojjqcbfK5UHeAR5cUI/CHcc0tlUSURXpERZjBMuoK6pFq/ufJkUjan33qcqh46ElctSxWQ9\nqQl5I0gONqVFZchBjvJ4WHpcmc6mihYJYm80qDznKndUoKSwRKmsiIAGETMWyTkWfY/V7r4n2vr+\njpETQKtsOlilnRRUBV/9RfBJpr+67R7cNuUO/KTiBmRl9QyifaMQcIp7ercrnZ9j77apPoNk/z7X\nu82VMtBMVNsum3JCpmFUnx7q74oRqUmMOPkpkYB4scr30CrvpxF+hlWuHQA2NlsjnYJV+r2Qubw0\n60+swoVA2I+l793D2rd3HdqpsxwYIVqpD/5NZznI/WKTPZdxs729q11nOXDZxulsutMV62atzwiR\nrBGHC5u/eIeaGd8lI0RlRpx+nl5SBceIYuVT/YOJVeYteTnGiIAOd/ONTQkoJ9EHQny4zEU1Chk1\n/Us6UJBXoLODDTXF5PbWbYhDPeobVcRT7qiAyzaOlH7R7GhIl586H4vPuhuXnzpfqXwo2oJYXP0e\nnn/i93XWDDY2b8De9qDymoJ92CidTZVf/c+jOpsqPWmgupXfA44+eMe0uwBkfWFTh/oMXti+VmdT\nZXvrNsQIYwn1HlIFPAlyc3KVy1KjdnudlXh8xlOktYbcbLX2iwhoEDFroZj6ewO124jQ1hztSjes\n0k4qlOvrvSmTTD11TbW45vWr8LO3b0K0sx0L3rwOPq3+6GkeFXHPl5EQAJktVBnot6ltS6Vsss/6\ny+rrG0EqsRBzrGtMRyjveKaPC4LAxVB9V4zwtYz4lhl1ojZdx32jSQd/IxWs8H4ateHDXZ/HPl5n\nOXhm62rc9Nb1eGbrarY6jcBq/V7ITLhTuRjBCaMm6CwHRohWvvrFhs9XCRs/fZlQOElnOSgaebzO\ncvC+9p7OckA9fToQmwObEIN6qpL+MGINzIhNsJIv3qESxnfp3BNm6CwHRqQD0yJB7D+ynzUClBEY\nNW9Z8OZ17CK1NTUvsPuFjaEG+Nt2ozHUwFanFgki2BZgffZGie1r56lHXRC4yMLFpZcolaSmf6FG\nL+mJXJFjauQK6jVQU/BQceQXIwtZytFDtEgQre37SOPN7MlzMDxruHLaUqqQNhD24+mPViqPb+WO\nChSPdCoLoXqeQTYpHZgjvxjZhDpKi8qQTYgoVTi8UGdTxYh0wGaQQ5BiUJ8BNaokdSyjRjVz2lwo\nHD6aNFf3Oivxr+ULlEU4T//jKZ1NlUDYj7v/dpfyWKJFgtgT3qNUVkRAg4wVFsn7o792e52V+OMF\nr7KelEsVq9xPq7TTDPouECUjHHnQ9wDu++aDOGHURCw68+fIyur5GCTqSWWjJ5XIQWYLur5sYk0R\nonBfVzKLAH0jLN36ziL4tPp+y/WuLx03h+QdFwTZwDUCI3wtI8Z8s74j6YIRJ5SHgoD8WBghKBuq\nKesuP3U+Hj7nMeXTiwMh/V7IRIzYxHxo+qOs/brli1RYLYwpsYKRPTrLwcEjB3SWg50Hm3SWg+2t\nW3WWA2rqiP6gnj4dCCPaClhjfmxEFKinGp/Q2XRle+s2dMU7lU90DxZG+AZaJAh/WzO7AMoIQZVR\nETBiWby5L43y4cYX8oniBVXiyuOE2enAQtEWxIipqKgHNBz5xcglpIKa6p6GnCx1IROHCCmGmLII\nyWlzYfTwMaSN+6V/uwdH4kew9G/3KJXff3i/zqZKY6gBu8L/VBZjapEgDnR8rvyNqGt6DXHEUNf0\nmlL5RB0xQh2haAviiCu/S1Rfc0LhBJ1NFbNTwgH0aETUSDw+zaezqfL89ud0NlWoUc3WffIiPj/S\ninWfvKhUHug5HLf8g2XKh+Ou/OoPdDZVtEgQzeFdymOB11mJ5+ao3X8RAaUp3KccjKrDTAGQYE36\n60u9hTjJCEfuO3sZSovKsOLc3+Dxxt8czUvau55UNnqS3WhMRKwxi4Em1on2U+vmJJXUAXFcGwAA\nIABJREFUbr3/vtdZ2W/qtd5py6yyKSwIQw3ZwDUGI3wtI56REd8RK6QYM0qsZNR1W+H7aaXUXdwR\nUY3ajKWGTe6Llfq9Ffq8kD5wf3cCYT9+uvEG1n5YnD9WZzm47et3IAe5uO3rd7DVaQS2PJvOcrDj\nwGc6y4ERqdCMorSoDLnIZf9OcGOEGMKIqFpGRBcyQvg3vaQK9txR7OnAjPjmcvsGHOkY+uLT6vH9\ndd9l9wupJ+f7IxRtQVeskySMEIYWqlHIqGkHqeKNdCAUbUFXvEv5fQtFW9BNSCVlRDrJVNjYvAEt\n7Xv/H3tvHh9Fle7/f7qzkTRhix06JKKGEUGNqBEUlJkMbtEgBv0FFa8YQRj5DqACg8IAXhEFHWAE\nnMuMXhH1wgxwkUUzZkAwyBVGYjvEqGRcIktiN2nClnS23n5/JKet01R3us6SdJN6v17zepzQdfpU\n1anqqvN8zufhKk0tywkxXHifPyymNJhiuzMLoUQI9XlFNLmZeci7dAxyM/OYtt99dBcVtcJ7L+B1\ntBJRQvXAT/upyNKHnvG9mPvA68zGew54hWTTsp/ExCunYFr2k0zbA/z7wHsvyLYMxRu3r2N+/qyu\nq8LT/3iaaVtdBBSBiJxUFdFWYBv6RKoOK+2Nx3ASNMS6d+z2PDgaarAhbzM2j9lGbaMlcUiEPeF8\nb2Hxw51W/o6g1kctiS21Yx/u37SidbJG+Xm1sUJcnnSRgY5O5NKVhQs6YokW55Zo+l2KFnclWcdU\nhgAof/vdQp8NSRJWZDJWRj+jZdxHy5jXiRxEC3YA4FTjKaHtyRAELPnnYnjgZl5lrUbPhF5UFEFy\nfE8qiuCmfjdTUQQX97iEiiIoOfYxFUVhMaXB0j1NeCk80ddRxanDVBTB3uN7qCgCGSUrxg16kIoi\n2PrtFtS5z3GtqA6kuq4KBTvyI/43t7quCosOsJdjUKO48kO4fW4upwY1eBO3amSZhyCl20XMpWnU\nqK6rwviigog/9zpssJYDszttONXE7oDCuzhCxO8mbx+yzEOQHNdD6PWmBd5yktOyn8ST185mTrzz\nOrCIgPccjh14P3rHpzCXI+N1MBnebwQVWeAVP7y4fxE+OLIdL+5fxNwHHnjPAW9ZPbvThtomvrJ2\nvGVtS47twdmWM1yCOgMMzNvyXke8gkSrvRT/U7GOa06L11X1ixOfU1ErvM+f5Y4yVJ5hc8PVRUAR\niMhJVRFtKR04WCdS9ReBCxct5zaUkw2J4TjHbB6zDa/f/haWW19BuaNMtT1SWqq9vpPxHM73Lh25\nLGITkoHOOQTl39SuX7XyW6ITJlraUboaBbt3RXrCSUdHRyx6ErdrEi0iA0CO/b8MoumYRkMfLaY0\npJn6CU2ckuSRyCSSjH4C0XGOomnM66hTVlaGRx55BABw9OhRPPTQQxg/fjyee+45eL1eAMCmTZtw\n3333Ydy4cfj449ZET1NTE6ZPn47x48dj8uTJOHUqPCGOy+MS2v+SY3twotHGNWEbCPnNEfnbwzsx\nrYYMl5Ur+gyiogiq645TUQSZvX5BRREkx/egoijsThtOOO1Cx5MMQUCaqR8VRWBpa8sisM26lnNU\nFMGyg0upGKm0ljk4EvHPxXanDcfr2csxqCFDrAPwOweoUXJsD2qbTgr9XZLF8bPi7ssXEh39bMRa\nfuZA9X544GZOvPOSZb6Gip3BuvK1qHOdw7rytUzb8zpPEAEXq5Cruq4KG79dz/x7zluCSAS8Ahi7\n04Y69znm3wxSyo21pJsIR6yxA++HuVsqs4imZ0JPKmqF18XU7rThnOsM8zngFX+8Vf4mvPDirfI3\nmbYH+EWJR84eoaJWcjPzUHD5Q8xuTrwidxFOQi3eFi4XQ9770fV9b6CiVuxOG47W/cg8js1JqYgz\nxjFtq4uAGOiIJJTIiUpRbbWXmA+Gnry7cGE5t8FKWamJUYJ9p91pQ25mHmZlz8GUXY/Bai+ltrM7\nbWEJdrQmBtRKVUXKuFY7F4GTb4H7S8RSga5JIhMmWseI8rvD/f5IOQcsRHPfdaKfaBl/ehI3OogG\n+38ZWO2luG/H6E53CgyXaDim0URibJLQ9kTYfavBOlkQiq4+5qPlNzSaeeONNzB//nw0NzcDAJYs\nWYKnnnoKGzZsgM/nw+7du+FwOPDuu+/ib3/7G958802sWLECLS0t+Otf/4qBAwdiw4YNyM/Px3/9\n13+F9Z1xMWKvlYevmoAnr52Nh6+aILRd0Wyq+BsVRSDDsejouSNUFEF8TDwVRfBlzb+oKALeBEww\nHA01cPkivzSQjP3vFtuNiiL43P4ZFUUgo8SYLAwG9lXmHYXFlIZe8X2EiqMfvmoCJl45Rfi9vntc\ndyqKIKf/KPRJSBFaCi49OQMrclYJL6c5duNYYe1dKHTGs1FnMShlMGIN7OUqeZPmItrg/e3iFS8s\nO/gyFbWy9dstsDfYmF1seEsQiWB4+ggYYGAW4VTUHobb6+ISwyljZxFjjGHedlr2k7g14w5mRyhe\nIfvmio3w+DzYXLGRaXteF5q5N81HPOK5yiZnJF9MRa3w3ktes67Epu824DXrSqbtecXOMhw9tZKb\neRcVtcJbotXRUAMXRzlWiykNA/oMYNpWmgjI6/Vi4cKFeOCBB/DII4/g6NGj1L/v2bMH999/Px54\n4AFs2rQp5DbBVM0AcOrUKdx5553+hx/ZXMiClsB9CizDozUxr7atzoWFSKcppcAmGNV1VRj3fr6/\npEGWeQj6JqXB0VDjvy5JMg4ILVgjiQuW8axVuCQSnlJq5HPK/146ctl5tSjDcUYKF5ZSZV1FZBjN\nfdfRTiQ+F0XT+NOfIcQi+rx35ftZtmUo3hvzAXNd5wuBrnjeATkJDxnJHgCIFSwCijbxm2i68j2v\nI+nfvz9Wr17t//9ff/01hg0bBgD45S9/if379+PLL7/Eddddh/j4eCQnJ6N///6oqKiA1WrFyJEj\n/Z89cOBAWN8p+pq22kvxX1+uFHqttHiaqSgC3pWNanx/+lsqiqCi9msqiuDfpyqoKIKURDMVRcCb\nCAxGlnkILu1xmdBSJenJGdiQt1notSRr/0UTH5NARRHIKAfGW9JAjWzLUDyRNT3in4nLHWWoabSj\n3FEmrM3iyiKs/eZ1FFcWCWsTkOMAVu4ow6nmWqH7X11XJbycZnpyBhb+cqGw9i4UOuPZiLWUE+99\nxmJKw0WJZmbB3g9nvqMiC7wLNHiTxrzOFbOHPUNFrYwdeD/iEMfsIMMrvgD4nXR4S0HxljTjLaMk\nQjxRcmwP7A3szqSvWVdid9VOZgEJr0si72/h7qO7qKiVdeVr0YIWZkcvgH8c8G7f2c/Rg/oMpqJW\nRLiKESEfq6Cvs0WN6ckZWHfvOqZtpYmAPvroI7S0tGDjxo2YNWsWli792bbU5XJhyZIlWLt2Ld59\n911s3LgRJ0+eDLqNmqoZAPbt24eJEyfC4XDI2o3z6AhBS2dMJgZOZCpFDgSle4hWtAgAohWe/kfz\nvosqWxdOW+nJGdh0zzYsvWU5si1DYXfaEB8ThyUHF/vdbJTJuFACIJ7EhRbhkkjaSzgE9qO9yTfi\nBBTKPUgE4V7/LMkUImSKRoGALpDsWkTic5E+/romMpLXXf1+FunJDpl0ZTGEjISHDGSIlWSJ36JF\nVNTV73kdxZ133onY2Fj///f5fH6XCZPJhLq6OtTX1yM5Odn/GZPJhPr6eurv5LPhMH33VKHXdEXt\nYbg4Vg+rcbb5DBUjlV/0HkhFEaR1T6eiCGKNsVSMVEQk0tRIT87Amtv+W/j9THR7WeYh6JOQIlSs\nJKMUHElWi3SZkeHUJUNYtP7rd7Dy0DKs//odYW3KwgdfZ3chLGSUl+MtL9RRWO2lGPe/4zq7GxFH\nZzwbscJbPqbcUQZ7g41ZsMb7/QB/KUrepDG3+wZn0nv2x0/BBRdmf/wU0/a8AhqAv1w2r4iG9/mr\n3PElFbUiohzqoJTBiEEMs6vW8PQRMMLILMSSVdI2XHjLkYmAtxwW77VkTkpFDGJgTkpl2p63PGlV\n27N2FeMzd27mXTDAwOziA/AfQ96SbrmZefjjr15jLslWXVeFye9PZtpWmghIqS6+9tpr8dVXX/n/\n7YcffkD//v3Rs2dPxMfHIzs7G6WlpUG3UVM1A4DRaMRbb72FXr16ydoNVWQLgDpjIj1wIpMk1tUE\nAoHiIBGE2m8tx6KzJuF5zlug6CLSEwkyCbcU2LxPf4fiyiJM3z0VC256HhvyNlOTLNmWoaiuqwra\nnlrignWcdeTkP0vCIdRnQ7XX0XXcw9m3YPeH9sq+RTJ68qjrEInPRTLGX7Rei10JWeLJaLmfdfUx\nKnr/dTFE5CPrWUmGAEiGu5Csa14f8x2P0fjz9JXT6USPHj3QvXt3OJ1O6u/JycnU38lnw+FY3ZEO\nfw/Syi96X0FFEYwdeD96xvdiXumtxm+vn0FFEdjqq6kogl4Jvagogi8d/6KiCHL6j0LfxDShJXwA\neYJW0e2VHNuDU821zKvY1ZBRCu5wm0vVYYFuVTJctXgTGWrwlu4JRjQ8u0eLsAbgT+aqkZ6cgbnD\n5gt/NvL5okOs1Zl0xLMR67jmdeLhva5ElFnmFeLxulfwliPj3X70gDFU7IrwCgeyzNdQUSsiyqE6\nGmrggYer9CtPOTFeMRvvdchbikuEAwyvK5g5KRWxiGUW8fCOAV4nH95zUFz5IXzwMYsBAf7flHpX\nPRW1Ul1XhdfL13A9155rZrsGpImA6uvr0b37zzbmMTExcLvd/n8LpkhW20ZN1QwAN998M3r3ZrPA\nEoGMF5HOnEgP/E41l5Ng4iAlocqKhfputf3WUm6pM1ciizpvnbkPnf1i3Z4DDTk2APDemA8AtE7S\nLtw/D3an7Twnq4Id+SHbCxQAhet+Qz4r2i0nXGTfG8hq8c4Q1ij3LVDEFeza0JOPOtFCJD4X6SWh\nogMZ5ymaxZM8dPUxKsPtrysjo9zJ5/bPqCiCaHFNlOEu1NWv+QuNK6+8Ep991nptfPLJJ7jhhhtw\nzTXXwGq1orm5GXV1dfjhhx8wcOBAXH/99di7d6//s9nZnWPbndN/FNJM/YQKN74//W8qiqDcUYZz\nLWcFl8fhW7mtxqRrnqCiCGSsTk7vnkFFUSTGdRPanixkPG/wJjLVMLetCDcLXBnu9rqoKIIR6SOp\nKALepGQwjILTDNHyOy6rzAZv0qyjsNpL8ZuPJgoVcltMacjskymsvQsV2c9Goy+9F9Oyn2TqG6/j\nGG/5m8oz31ORhZz+v6aiVnjFD78fsRATr5yC349gK43HK17gdS8R4WLIK+Ya3m8EFbXCuw+8zy+i\nhJsGGJi3dTTUwOV1MQtIeI8B7zMLb0m5LPMQpHS7iMuNUoQo0QMP87a84m/e+zHvOeC9lwL8bkTd\n47pTsaMpd5Th6NmjTNtKEwEFqo69Xq/frjAcRbJyGzVVc2cj80UkkiZo1foSqgRSsLJi4QiDAtsj\nSapwJ62JGKCz0OpgotyOJBA6S9DAOp5Due0Efq49yIrLYCsvlQI0AFhycDFSk/oi1hAHiylN9biJ\nLn1A+rEhb7PwpE84hPtCHe55DHbeyTXeWagJrUJdG5F0z9TRCUYkPhfpJaEiH710l1i68r7LIlqS\nM9GCjIRkdV0VHv9HYVScI9HuQvo1f2HxzDPPYPXq1XjggQfgcrlw5513wmw245FHHsH48ePx6KOP\n4umnn0ZCQgIeeughfPfdd3jooYewceNGTJs2LazvSDOlCy3jAwDxxgSh7cm4T5iTUmGEkXl1qRoi\nVi4HsvvoLiqKoLq+iooikFEKze60web8SbhTlQxBKwC4POJEMEBrGQAjjFxlAAK5pMelVBRBrDGO\niiKQIdjhTeyqYTGlIa272HuojN9xGaX1ZJXr4y1jo8aB6v3wwosD1WwlPdTItgzFQwMfEfocl56c\ngXX3rhPW3oWK7GejD45sZy7xx3td8Dqw3J15DxVZ4HXy4b3XVtdVoejH95nf48xJqTDAwPx8N3bg\n/UiO68HsFCmiHBivA0lnl2HiFS84GmrghZfLxSfLPARJsSZmEQvvtSzCSYcHcuxYj2HJsT2obTrJ\n5UbJK0bjdcKpaThBRa3wCrneKn+Tih39/QC/qJN3+/TkDNzR/y6uZ1pWMZ80EdD111+PTz75BABw\n6NAhDBz488vvgAEDcPToUZw5cwYtLS34/PPPcd111wXdRk3V3Nl05QnF6rqqoAIgtbJigccp3GQB\n2VbrS0SkJSLC2d/05Ay/oKazXKDCHc+kn+E64oSz/0TwNXfY/JDuBEScYjGlYUPeZrw/9h/YPGab\nX0ClJC4mLuTkQ2BJLzLxFa5zVUedJ9KfwBIJ7Tkm8ThwATjPXakjCSa0YhXa8XxWR0cUkfhcJOM5\npis+F8lE1vNmVz5PXX3fRSf6uvo7kehnpZTEi6gogpJje1DtPC60hEo0IWts6s+THUNGRgY2bdoE\nALjsssvwP//zP9i4cSOWLFmCmJhWW/px48Zhy5YteO+993DnnXcCABITE7Fq1Sr89a9/xTvvvAOz\n2RzW97V4m4X23+60obq+Sqhwo2db2aqeAstXiUgwBMK7YlSNupazVBTBFW1JpSsYk0tqtLfAiQWL\nKQ2WpH7CRWqAnPtkXIw4EQzBYBA7hc2bEFGjyd1IRRH85dCfqCgCGeISAPD43ELbk4GIpLRamwYY\nhLYJAA0uJxVFIOPe/Jp1JdZ+8zpes64U1mZ1XRUefu9hYe1dSHT0s1FniSd44S2/A/ALOKZlP8nl\nprT12y040WjD1m+3MG3PKxwoObYHda5zzO+RvCIqgP+e9Wn1PipqhVcAMyhlMIyIYS6VKaJ852rr\nq3C667Ha+irT9uWOL6moFd5xwHsv4S0DNShlMGI4y50+fNUEPHntbDx81QSm7XmFVNf3vYGKWuG9\nF/KK+cgiAJ7FAB/88D4VWeBx1HrNuhIrDy1jflbKMg/BZb0uY9pWmgjo9ttvR3x8PB588EEsWbIE\nc+fOxfvvv4+NGzciLi4Ozz77LCZNmoQHH3wQ999/P/r27au6DaCuao4EuuJkd7DyXMpJ8MDjovb/\nw00WaD3Gnemko/zvQIFJe33q7BJT4aLsJwBsyNsc1G0nHAcXAvlMbmaeqvOT8pjYnTb/95PPqZWI\n2pC3OeR+tDeOIwFlf7ItQ/GX29Yi2zI0ZP95rgGlg9fMkhmdWjpCTWgVSvikpZxbJJ1jWVzo+xeN\nROJzkYzrWx974umKz5vRRjSNexnjqauOURlltpTPYqIYlDIYRoORa9JKjWga96KR9Tx5/CybNbWO\nOGzOn4QK5ipqD8Ptc6GiVlyivbrNwrya0cpcDXNSKnzwCXUCkuE0khzfk4qRSounmYqiiBPoLqNE\n9L1Mhui4ovYwPD630Gvp1ktup6IIusUmUlEEKYlmKopAhrik3FGGqvrjQssKRsv8TZZ5CFISzFyl\nQjoKGffm4ekjEGuI5S5Xo6TcUYbK05XC2tNhh7V0yqaKv1FRK+SZhPXZRIT7CK/7xPqv3+FyU5Ih\n2tPCoJTBiOEQsIhwhSTfzdqHR69+jIodTUXtYXjhYX5+ESFY5i19y1uasrOdgHjLQDkaauDxubkW\nS1jtpXit7I/MZTN5hUy89xLeZwfec8DrJATwC5GyzEMQizjmZ73h6SMQY4hhflZKT87AH+/8I9O2\n0kRARqMRixYtwt/+9jds3LgRAwYMwD333IMHHngAADBq1Ci/Ivnhhx8Oug0QXNVM2LNnDxISxFos\n65xPKGFAoPAgVPkv2W434brZiEL5UhpMzBNMzKAUyhDnk85AiztToPBHzbknsL32BFBkTBBHoMDx\nojy+M0tmoNHd4P+38UUFKNiRr/ojGmyflOOVtFtY3Hof0uKIJJvAfi63vuL/XuXfSX/IuAv3+go8\ntoHHS8YqQ1ZETf50BceCaJko62p0hecimWNPH89i0Y+nOPR7btcdT+S5VOT+N3uaqCiC4soP4fV5\nmVeAqtHVx72M58nquiqM3ThWWHs67IhcsS4j2SqjfBW5P4i8T5AJTpFJ4SNnf6CiCGQIdmSJlWS4\n68i6n4t+387pPwrppouR03+UsDZfPPCfVBTB6AH5VBRBt9huVBTB96e/pWKkkp6cgVnZc4SOJ3NS\nKmIQI1T0WO4ow8nmGqECKABIbSv7mCqw/OMXJz6noggspjT0TUoTOodoTkpFjCGm/Q/qSIe1FGFS\nnImKWtlcsZGKWuFNmgP8IhbeMqa8IqQfznxHRRZijOzX4S96/4KKLPCOA14xWWc7WvE6uAD8Li68\nrlq8gkBeNyTesqoi3Jg2V2yEx+dhHsfD00fACCPzexXvOOa9lnmFaLzl1IDW8oam2O7M5Q2n7XoC\nLrRg2q4nmLZvFZN5mMVkVnspxv3vOKZtpYmAdC5cLKa0oMIK4PxJhPaEBuQzashKJIqc5FBOAquJ\nZIJ9f6CrEvl8Z0yoa53IJkKdYOKvcNuz2ksp0ZTadoHHd0XOKiTGJgFodQVakbMKLq/rvCRMe30g\nAppA8U8oVyPl/++o8xRYWg+A3wkpsB8ujyton4O1rdzvwHHc0SXPQv091PlkKecWqYgYU11B6KQT\nmcgae1092Swa/XiKpavfc6NpPEVDH2UgY+WdDBckWcg67zLKNG59YKvQNnW0w2PxrYaMFdzp3TOo\nKILfj1iIJ6+djd+PWCiszQPV+6kogknXPEFFEbR4WqgoAuU7vMg2Zbyjy3x+F0l6cgZm3/CM0H6a\n2hLTJsYEtRqfVn9CRRE42lb/OwSWLXN5XVQUgYiEeyBWeyke3/ko88p5NSpqD8PD4cqgxttfvUVF\nUXzpOERFEQzodTkVRWB32uBoPCG0BKKjoQbuKCgv1xVgLQHUPa47FbXCm7gXwfD0ETDAwJx453Wc\nq2s5R8WOxmJKgzmxL7PAT8TvAq8TDq+IiFcAktN/FJJjezCLmEUIqQalDIYB7M7AvGIy3t8dXgEJ\nrwCG9/sBMfcznvdU3muRV8jFey8TsbBm67db4HTXM5dXfO32PyMe8Xjt9j8z90H0XEO46CKgCCRS\nJ6iVJZZCTfYHTiIEExoQ2ivNJPJlj7dcUjAC2wrmjkM+uy53PbItQ0MKXjqacL9T7fwC2tx/yOef\n3TcbK3JWUZNZam5SSnFHtmUoNuRtht1pw73b7oKjoQbxMXGqwqv2+hA4NoP1UyliUzsGgZ+XRXsO\nXGRloFqfQ7Wpds54x2Cgm1Ooz4Vbmi1Un5Sirs64h4r4TpH9j4aknM6FiaxSQ9EisojUZzglXf14\nymgzGo6lLKJlPCkdE0UhIyHbM6EXFUVQ21hLRRGouXdGIjLOu0wu7slmsa4jjou6RX45FxmlgQCg\nMGui0PZEJC0C4bWSV0NGgm3vsd1UjHRkCIBE33uLK4swc+90FFcWCWszI/kSKorgdNMpKorA3OYC\nYxboBnNpz0wqikDGNe9oqEGLt4WrBEcgg1IGI8bAXt5GjdEDxlAxkhHhDKKG1+sV2p7uBBQ5sCa+\n/32qgopa4XXBESHEPlC9Hz74mAXNvE5AOf1/TUWt8LrI2J02nGiwCRX4aYXXEa1g0ANU1AqveGPr\nt1tQ5z7HLDyw2q1UZKGi9jB88DKLXxvdjVTUCq8TEe+iJl4BTCSUFjxQvR8eeJjvRbxuTrxCrkgQ\ndfI+p5Y7yuCCi9n1MTczDwtuXITczDym7S2mNFi6W5i21UVAEUakr6YlYon2Vn6GEmO0J2RQ/n3p\nyGXCJpiVx1ZmoiIcoVOolWGRnkQBggt1tCSBlGIoZVtKxygiAAt2XRgMBnx/+nvEGuOCqtLbc5lR\n2xe1fgKghDVq+xno7sSLmpAmMOGkjOTvan0O9R2i7znhuH8Rgl0vLEnFzkpE6qXKdHTkEw3XRTQl\nm6PleMr8fdIRh4zxFC3nSPSEaEriRVQU06Z4C/NocY7Q0dHKySaH0HIusq4/ZRSBjGeYLPMQ9E1M\nEyqqqnfVU1EE17Ulxq7jKLMQSN6Ae6kogmh7hlG6FIsgyzwEqYkWoeNJhlNXU1uCrIkxUaZGRe3X\nVIxURCQqA8nNzMMff/Uac8JEjYraw/D4xDoBySoXY6uvpqIIZJQYczTUwA23ULEWOU86nQ+rSPaK\nPoOoqBVe4QBxMGJ1MgL4k8a8TkAy7qtaOFC9H26fm1l4IEIcyisekOFMqQXeZw3e60AEvELXAz/t\np6JWeN2YeAUwIhZV8Z7HilOHqaiVwqyJ6Bnfi3nRB6+AOKf/KKR0u4jZEUvGM7tWssxDkJLAvmDI\nai/F0oMvMBue2J022OrY5h91EVCE0dlJ4HAmFLSu/OQpz6PmlsPyXUpRQUcQSugUjjtLNCBiEooc\nD1ISjIhoAFACMCIII99LymE9fMWjeOXzFzEla+p5xzyUACXw72qfCxQ4KceP2gQpuS5ElUZQE9KQ\nHwm1fSV/D+x3e/XTZTljKdtsr301wZzVXsrUp85y0RJ1DAPPISsXwj1GR0c2+nUS2YQjOo+ENmUh\na3xGw7iXkeiU4dpjtZcif/vdQl1LeW3z1ZBRnkMG0XLedS5sfPAJbU/G9VfbeJKKonALLAsEtE5U\nnm05LVQsObzfCCqKQIS9fCAyVrtG0zMM8LNLsShkjKektjJgSQLLgaV1T6eiCO68LI+KImhyN1FR\nBD0TelJRBNV1VVj3zZtCnw1kXPOrrH+koiga3A1U7EqIdGrS4YPVCSgj+WIqaoVXxHP03BEqsmBO\nSoURRpiTUpm2573f5GbeBQMMyM28i2l7XgdFGQ5vWuF1UBmePgJGGJlLuvGKPGWJRDsS3nOQZupH\nRa3wPlcXZk2EKba7cNdTLfAKoUYPuIeKWrE7bXC6nczP0bwC4nJHGWqbTjIvtuF1VQNa7+cGGJjv\n5+WOMtQ2sy8YcjTUwOVzMQumiTsmC7oIKALpTAFQOBOvWhLeRNQRrmWv2ndrEQA4I8xCAAAgAElE\nQVSFI/jozNVT1XVVKNiRj3Hv50d0EiZc4ZZSVMU6cZ+enOEvCWYxpfnHlvK/q+uqMLNkBsYXFcDu\ntMHtdWHyzkK89c0bSI7rgT8dWnWegIeIiYK5TAUrWRdqX8IR0xBnI2VftKAU9ChLlQW6YqkJmJQC\nGnLd/eajie0mp0QJT9TaJOdBy3bhOoDx9FnG/rIQeG5EJMCibZWojk5nEC2lgboyMsoNkeeJSL8/\nyrqPR8vvQ7QkOi2mNJgTU4O6UbJQ9MN2KkYqsgQ7MhbDRPo40ok8RJbOe/PLP1NRBDenj6SiKGKN\nYkUb2ZaheP32t857P+ZBxKr+QGSsLOVNlqgh47lIFjKeiWWMpwaXk4oiIM8EIp8NeEvqqFHb6KBi\npJKenIF7M+8TOpZklBVMiOlGRVHwlt9Qo6bhBBVF8MEP71NRBJsrNgprS4cPm/Mnpu14BSS8if9L\nelxKRRYOVO+HF15mFxneZ4ziyg/hgw/FlR8ybc8rxOJ1IhLhoELGH+s4BAAv2MsVZpmHwNwtldn9\ng3dBgIhnX942eMthiTiHPGz9dguc7nrmkmy8Ah4AmHvTfCTGJGHuTfOZticlMlkFLBW1h+H2uphd\nEHlFlbzXgQgXQ97yjgDfgiHecwgABhiYttNFQDp+wpl4DSyhFAoySVF45SRKiBDKrYdnMjlUWTGl\nmKIzrOvJvtmdNhgMgE/sAkOhaD0PyhJrLMeWjBO70+YXjASKR8gkEhEKbbpnG1665RX0T74U825c\neN4qs3D60l7JumDba5nQ0nosAwU9SpSuWMrPqY3vbMtQLB25DFnmIXhvzAftTpTJSgqGOybU9rW9\n5B9PnyMlCWq1l+K+HaMpIZAIx7LOdpTT0enK6NedOLryvUyWCCZajqkMsZaM336704YTDXahrgRX\nt00uXi2w3Amv/bUaumBHDsfPiktI6rAjUrgho9QUrx28GunJGZg7bL7wEmPLra8Ive9Oz34KplgT\npmc/JaxNGUl2UjqFtYSKGtHyG06QMee25OBioeNJRlkkGe5C3WK7UVEErjbnL5dABzAZjhHrv34H\niz5bgPVfvyOsTd6kuBq8JX+C0TOhFxUjFRmCOpFOajp8PJY1qVO+l9dFJ6f/r6nIwvD0EYgxxDK7\nyPBSmDURiTGJzA4mvKLHwqyJSDQmMX+/CPcOXv70xSoqaqXcUcZVLpj3XVzEOOYtpytCzMWDDAc/\nLYhwIi05tgeNngaUHNvDtD1vKdOc/qPQPTaZuRwXb0k43nvR9Oyn0DO+F9c74LTsJzHu8vGYlv0k\n0/YirgNWEQ/QVhrZxCYg0kVAOhTBygyR/9ayap5MUjx81QS/ECHUBDzLpEa4Ti2BAg+RhJNUUIoz\nNt2zDZvHbIvYyRut50GZpGIt30SOTThircLih1HuKMNy6yt44eaXsO6bN7EiZ5WqqIc44rCUadAi\nIALUx4HWYxlYcizwegvmXKR08gl0TgpnBZrMCcVwBEBqpdjaS/6puTdp6VMkTKBmW4aeJ9IS5VjG\nclx0dLoSumtPdCBDYBAN512mY1Gk77ssZPz2Oxpq4PKy2/mqIcPhg7f+fDC66liSRXVdFcZuHNvZ\n3dCBWOHG9W3in+sFioB4LfXVsNpLw3KQ1UJ6cvulqbVScmwPnG4n8wS6GqTEBmupDTVkiAx0xCMi\nsRaIjLKe1W0Jk2qBzjWnmmqpKAIZbjCDUgYjzhgX8aWhPq3eR0VRnG0+Q0URlNr+ScVIJaf/qKgu\nn3MhIfJdRwu8Ljq8LjZAq6tb99juzO5uvA4sq62votHTiNXWV5m253VT2vrtFjR6G5gdVF4YuQQx\niMULI5cwbQ/w/66+MHIJ4hDP1Qce9w9eFx0RpYUH9RlMRa3wjmPeUsa89wIZrp9a4T2GvG5E68rX\not5dh3Xla5m2jwR4z19xZRE2fbch7IpFgQhxeuUwBil3lKHGyfZ7rIuALlACSwaxtiEqEU0elkIl\n7omrCYtrSmcSblJBKdiI9EnzcF1uxhcVUEkqHhenwO9V/rfSGWjpyGVYbn0FS0cuQ25mHpaOXKbq\ndEMchmZlz+kQ2+xQTlRa21E6H4UjbAu8FtKTW0usrchZ5f/3cL63Mwh23Fye0CvSrPZS6j6i9V4Q\nKddgoACIOIaJSFRGyj1SRydSiZT7gE7Hop/3yIc8x0S6y4yMFXEySlQMShkMAwwRn0CLNmQ4aG59\nYKvQNnXYECnc2FSxgYoikCHsy7YMxV9uWyu01JIMYZEs4gxiS6HJcETp6u92Mp4NiB0/jy1/IDJK\nLf2i90AqiuDi5P5UFMHoAfdQUQTZlqF48453hN6bZJAYm0hFURw5W0lFEfyi9xVUFIEMwWvJsT2d\n5jqhQ8N6HnjFC7zuHyKel9aVr8VZ1xnmxDmvKLhg0ANU1AoR0rEK6ogDEqsT0mrrq/DAzSxiAviP\n4dZvt8CFFmYhE+87P+91IGJ+gNeNiHccPnr1Y1TUSmfPZ/BeRwD/MeR1I8rNvAtGGJkXPcgoyawF\nu9OGI+d+5HLh5r0WRfymeA3sKqDczDzMvWUu07a6CIgB2S/dvO2TyQHigiKyvNaGvM3+i02rWIdM\n/qgl7rX2OVT5qc6YFFGKl7rKpEygUKW9SSleMRk518QxiDhLzSyZoTqxSLbJzcwTtvK7vX3QImJr\nDy1iMTVx3cySGZi+eyoKduSHdPBS+3tHj2G14xYXE6f6w15dV4XiyiKqjBbZf5HlODoDUv7l2X2z\nhbUXCY5HOjoi6Cq/rTo6QPQ4FsmCCLkj/boflDIYsYZYoZNRvFbdalTUHoYPPmbraJ3zkZWMv7in\n7hoSCXxx4vPO7kJIRExEByKjdJcMYZEsVxDR1dpliERllQqVhej7o4xng7fK36SiCGSUrJDRpgyH\nGRlOQNV1VVi4f57Q8y7DEUBWOTCPz0NFEVTVHaWiCMjvpsjfT5GlOXXYMcDI/Js7duD9iDckYOzA\n+5m25y1/KuLeaXP+REWt8IqCiys/pKJWeJ9HeL8/Ob4HFVmQUQZXC50tpBIxP8Dresk7Dnh5q/xN\n+OBjfl7jPYfmpFQYYeQSjR+o3k9FrfC60FTUHoYXXo5yYnzumUfPHaGiVkQ8sw9PHwEDDMzXoohz\n4PG5mc9BcWURXvq/l5i21UVAGhE14RcqIS/CfUdZXklrn9TKD5F+lTvKcN+O0SiuLKL62V7ZHjU3\nFmWCWq0kVGDflN9Fvlvtc52xOipQxBRqtZtyX6IVpeOM0sUnmN13sPMS6ASl9t8E5Vgk/2132uDy\nuFRLZig/F6xPgf8/1HkJFLOptSVr/Gl18iHJw81jWkvPBUskqpX4Ey3mCkfQF9gPssov8J5htZdi\nfFEBlhxcTE0oV9dVwe60UcKgaCXYPZCVaJkk1tEJRTStfI6GPupEB135/i0r0Snj+vT6vELbqzzz\nPRVFsPvoLiqKItqfuXjQhdY64RIfE09FEbz91VtUFIGMMS1LWCTaFcTRUAO3T2xpRxki0WgRyAJy\nnt3TkzNQeOUkoWOUtzxGRyFDtCED3nIfapQ7ynDk3I8od5QJbFP8anbeMh3B6JtkoaIInC4nFUWQ\nFGeios6Fg48jabzkn4vR4mvGkn8uZtp+7k3zEYc4zL1pPtP2IsRpvO4bvCIcXvEGb9K6Z0JPKmqF\nV0QF8JcD6+xSUMsOvkxFrYgoM8or4iGlkllLJvM6sHT2dXigej+88DILeAD+cfj7EQtxg3kYfj9i\nIdP2vPcCGUJvLYi4DhwNNfDBx/zOx3s/5BWj8Swu0UVAGhExORLqhZi1/cC2lNuH66wTyolH6ary\n3pgPkGUe4p+cb+8Fv7iyyF++KVSppGCCDSIQICKBUA5AnTUhqxQxESePYA4ryn2JRsg+BE78W+2l\nmLyrMKQrT2A7ZMypuUKFOn7kc8/um43Vt66hRC6BbagJ1QL/PZzzonRpCdaWrMlTFlEOEWiF4yhk\nd9ooAU6wfdA6mRdO34m4MPDvgWIY4m60ImcVNuRtRm5mHtUGALw35oOIt4kOB7VyiTo6XZloSbZG\nk1hJR0ck0bDaX8b1WVz5IbzwCl0R1+JppmKkYrWXIn/73cKFQNF0/4z03yQddsYNelBYWz/VV1NR\nBKMHjKGiKGSUYJTxbrzk4GKh9wpzUirijHFCS0IBQIwhRmh70fI8DMjpa3FlEWbunY7iyiJhbcpI\nDNa1nKWiCGSUb3J73VQUgaOtBJpDYCk03sShGjJcF2WRkmimoghMbUIdk0DBjgwR+w9nvhPWlg47\nMYhhFrTOvWk+4g0JzCKeJf9cDBdczCKi1KS+VGSBN3HOC694IzfzLhg4SgDx8ljWJBhgwGNZk5jb\n4L1nk/HLOo5Ljn1MRa3wlsIS8ZvFK17gLXXKW9KMV7zLex2LKPPLuw8v7l+Ezx0H8eL+RUzbZ1uy\nqaiVhjbhcAOjgJi3bCqvExEAWO1WKnY0vGK0h6+agHm3zGPaVhcBMcD7ItveCzGLAIhXVBSOEw8R\n/FhMaRhfVOB3XwklyiF14Gdlz4HFlBbWvqj1TVl2ivwt2DHorEkR8r3tHcPAfQkkEia/2+uD23u+\n+47FlIb+yZeEPM+BZeFmZc/BzJIZAOAXCbVX5s3tdVGfy7YMPc+xStkeESwFXiPk38nn2zsvAPwi\nr0DxmrK/WsZfuA4/agK6QPFUuO0Ftr0iZxVmlszwH6dQ15CWyTyrvTSse93Skcuw3PoK5g6bH5ao\n0GJKO+/4iyyhFSnoYgIdHZqumvDQ0Yl0quuqULAjX/hqf9HXkow2eVfEqZF/+f9HxUjFYkpD74Q+\nYb3fhUu0Pft0ZSekCx3WSX41XG3vriSKQJa7lwyi4ZnIYkpDP1OG0PtZtmUotuX/XfgClWg4ngTR\nfc3NzMPbuRv8i4FEIKPM1g2WG6kYqVzX9wYqikCGwwxv6QY1Kmq/pmIk86XjX1QUwck2p6aTAh2b\njpytpKIIdFehyMADD7NrwtZvt6DF14yt325h2p7XrU2EeIL3fa+zRUStzhde5nPIK34QUZaaV2TI\nK6TKMl9DRa3wiojSTP2oyAKvCIfX7Y1XwJGRfDEVtcIrgpIhSNbKpT0vpaJWePfB7rRRUSuN7kYq\nakWEgKcwayLikYDCrIlM23f2O7jVXoo/7P8D07a6CKiT6MhJba3fFUxgQ0qA2Z02vxuHUvig5o5i\nMaXhvTEfwJyU2u6kLin1E6oUVLBVP0qhRCRMHLdXpiyUAKizJ7/b60N6cgY23XN+iSny9/YEH2Rl\nN1nF1+hu8P+AqAm5lM4+dqcNscY4qk3yGfL/lSXmCBZTmv/vyrYAqH4+1LFRW5nOcj2He64Dv5OI\n6+7bMRp2p43aLxaHKYspDRvyNlNioMBrWUm4AiBSmqu9zxNhFVnRqXSNCrxmgom0lA5cF0pCRpTr\nnI6OTscSTckZ0ci45+j3scjH7rShqv4Y82RARyK6j7wr4joKGSUayh1lONFgF1qeI5qElMpnXZ0L\nj6Iftgtrq1dCLyqK4NZLbqdiVyLUOyEPcYo5BlGIFBURuvpzUZZ5iND2xg68H30SUjB24P3C2kyO\n70HFSOXYuSNUFEFTW2KniTHBo8aB6v3wwcdVgiMQGUItGaXQAOBXF4+iogiMBiMVRcCb3FMj0sv0\n6bTP8PQRiDHECBXxaUGEeIJXAMLrvlGYNRHd45KZk9a8AhRe54q3yt+gIgvXmK+lYkfDW8KHd86A\ndwwB/CIaXhcY3lJSvCKms81nqaiVadlP4taMOzAt+0mm7QH+c8ArKKw4dZiKWrk78x4qaiUl8SIq\naiU38y4YOV3NVltfRQuasdr6KtP2N1iGUVErvIsPKmoPMy8s0kVAFwjhChhC/VsoNyHi1jErew4m\n7yz0u7eE2p5M4lpMaXh232xVNxPl9jNLZvhdXgL/rbquCqPfuxOPFo9XFQIRoUSwcmbhHgdZBBM2\nBPYnEia/gznPqH2OEKrck3JyXOmSRFxo4oxxlBtQYLvEqWdW9hxkW4ZiRc4q1c+oCayUk4RKwdrS\nkcv8ghdA3VUn2D6r9ZGFcM51oNMWEfoQcZ3SBSlUG6H+jRzfbMvQ89yQWEVp2Zah55XmCtWGxZQG\nl+fna5+cr8AScmr9V37nrOw5wsuHhAPr97W3Ha8AqLMFhTo6Ol0HGfcc/T4WHWRbhmLrvUVC3Q5k\nnHsZoo3r21bPXy9wFb2M1UUi6qcHkmUegr5JFuEJ2WgQAAGt4/4vt60V7vJx/CzbxKaOWIam3SSs\nrcTYJCrq8CPjPuH2iXNqAugy5iLblPVcFA3PWjL23+60wemuFyoS5l1trgZv4kSN5PieVBRBc1sp\n02aBJU1llGyTIdSS4YQDAKW2f1JRBEltv0dJAn+Xft3/NiqKIBrc7roKrAIQR0MNPD52JyHexL0I\neBPvvCKakmN7UO+qQ8mxPUzbH20Teh4VKPjUwuxhz1KRBV7xBK+IhldI9dvrZ1BRKyIcUHivJVIq\nmbVkMq+r1+f2z6ioFV5Hr9esK7G7aides65k2h7gf57hfb7kFXLx9n/0gHuoqJWK2sPwwsvlKsb7\n/Md7DniPYU7/UejXnU3UqouAugjhuLuEEiQQ8QYAVNdXoeDyBymhQKBQgQgLCETAEer7N+RtxqZ7\ntqn22+60IS4mFv1MGf7JZjXxjFq5JjWHos4SAgUeZ7X+dPbkt9VeGlJIQSa0SBKF7EOgAKu6rgrj\n3s9H/va7KeGWct+zLUP9rkLBWJe7HnanDZN3FbbWgQ8oQ8bihKUUvNidNr+rTjDxU2C5LWUMV3QW\nyuFKDeXxDLYPyu8g11Dgd7fXP3J81frNI3oK7F+ofrRe3+qrL8l2gW2o/f/l1lfCErBp3Zf22mC5\np1TXiS+foiQSBIU6Ojpdh2gp36QTHYk+Gedehmjj0+p9VBTBFX0GUVEEvJNmatidNpxscESFA5QM\niKOp6AT/2I1jhbWnw45IJwMZ5PQfhZSEi5DTX5wzRFfG7rThp7rqiL+fyXoukiFYIu2KRMb+W0xp\nuLh76JL2WuFdra4Gb+Kmoxh1yR1UFIGMkm3/+LGIiiIgC1rVFrby0LtbHyqKwNHsoKIIyh2HqCgC\nkcIvHT5YBTBvf/UWFbXCW/6Gd3sR8IqIDvy0n4pauTl9JBU7GhFllHgdTHj7wOsG9Vb5m1TUiohx\nzNsG77XMO2/ycs4KKmqF9xzyjkER8Jbm62x4BZGDUgYjBjEYlMLuEsh7HfA+44soD9mjG5uASRcB\ndSCyJ93ba39W9pyQL8zBSmkpHVZyM/Ow4lersb3yPb97CpkwUDqtkJdzq70U497Px+M7H/WXE2uv\nn4GuLkR8lBibhCUjX6GERoFiEKu9FNN3Tw0qFAjX5UYroYQegQQ61fjFVRrakAVxVGrvGLm9Lr8Y\nh+xDYMktANh0zza8cfs6LLe+cp4YiwiJyPfkb8ujJp8CxWT9ky+BOSlVyD4C9Hl4b8wHcDTUUOKn\nQJFTcWURxhcVIH9bHsa9n+/fd2UZusBzF0wgFU4fyXlQomZ/HjjGyfeRzwebKCPblTvKcN+O0XjN\nuhLjiwpQsCM/qABJi+AlXKEW2ddAhyeC0jkqcHwpx6lSCBgOogSBrJORMsunqI1xHR2d84kGMUQ0\nod9zIh9ZDjv52+4WXhaJdbVjMGSINprcTVQUQbSUGKuoPQw33FwrsdToyvfl9OQMLPzlws7uhg7E\nXtMnGuxUFEG5owy1zSeFluPr6hiMBqHtySpbJkuoxLoyOhiyhEWiSU/OwG+vnSH0POX0/zUVRSDD\neVAGn1btpaIIZCS94mPiqSiCrLYyNVmdVK5GCxebLqaiCM40n6GiCEQKv3T4YP2NmD3sGSpqhTdh\nWu74koos2Jw/UVErvA4kvA4qvPAeQxHCWF4HEVKOjrUsHa8Ylbf/IuA9j49e/RgVtcLraFhc+SEV\ntSJCfMELbx94HaF43Zx4BYkizoGPectWeK9lXjGZCEGfz8d2FHQREAMsL7LKSfdQ27NOoKtN6ivF\nFAU78jFl12Mh21cT6ai1+/BVE7B05DI8u292SAcRktxfcNPzuKTHpcgyDwnqKqIUfKgl1J/dNxtz\nh833i0nUEu9Weylm7JmK43VH/f1Sc94hQg9RExLtCT3C+Z7xRQV+UUxnlr4IR0iRnpyBTfdso0Qb\ndqfNf/7IhM/4ogLYnTbkZuapnlOXp1VIZLWXouTYHpxosGFK1lTqc0Qg9ey+2Vg1ao3fwcfutKG6\nripoGa9QLkbks1Z7KcZuz0P+9rtRUXsYv/loIgqvnOQXk5GSEcpyeHOHzYfH5wa535LxZLWX+vdZ\nTfyiFEgF65faebCY0s5zuwlsQykkI31VipkCPx8osMsyD8FLN/8BL3++GFOypiIuJk5V0KXcRnk9\nBdsftWOhBulzoFMYuRaU9xjSn4Id+SjYke8fPyyiF5ErCVnakFE+BQj9W6CjE83IWJ0cDcmJrowM\nwUpXR5q7ktjcKdZ//Q6e3jsN679+R2i7je4Goe1V1R2loghuveR2Korgu9PfUlEEOf1HoU9CilAn\nkmi6L8tI8FvtpXjovYeEtafDTl2LuLITMYYYKopARFkAnZ/JtgzFtnv/Lvy9TLRgR0ZZS6BVVFZV\nfzziRWUynguLK4swc+90yrmal9zMPPzxV68hNzNPWJsyVqArF1OJ4uaMX1FRBDLud7WNJ6koAhnP\nbwAwos29Y4RAFw+7005FEXSL6UZFEYh8vtbhg7UM0+L9z1NRK1+d/JKKWvmyzZnqSw6HquH9RlBR\nK7zC0LED74cptjvGDryfaXteISVvKa6CQQ9QkQVeJ5/NFRupqBXeY8jrgCJCPMF7HnnPAa+jIW9J\nN17xhQgxHm8pKd7tecva8Z5D3nNwoHo/vPDgQDWbCAngL4s3KGUwjDAyuxGRMqc85U5dHjbHSV0E\npJFwxTyBkEl3IpZQ25bnpT5YmSkiYtg8ZlvIhLPVXorHdz6KnPRbg5b5In8Dfi4PphRlkH9XOgOt\ny12P3Mw8bLpnG8odZUhPzvC/YCuPpfJ7gokcAsUkyj4pBUdv3LGO2s9gzjuiJhCUwhk1kRM5D8G+\ni0wib8jbrNpGRxPudysFGM/um+13miL7syJnlV+MEnhMyJhckbMK03dPxTOfzMRvsqbh9fI1/vNJ\nXGqUIhGgdTItf/vduHXTSORvvxvljrJ2S6wp942c/5klMxBriMPSW5ZjUMpgvHTzH7DyX8ux/ut3\nkG0Zipdu/gM1jtblroc5KRWOxhosHP68//vIuV+RsypoMiCwPJ6SYKINNfcb4kBEPqPchowztZJ4\nys+T67O6rsp/P0pJTEGaqR9y+o/y70Mox632jrPaPob6NyKkUt5bZ5bMQOGVk84r/0ZYfesarMhZ\nhZklM84rTxdufzrbtYKML95jqCTYb0E0JNR0Oh7RCXZZBN7/dLoG0gQrXRzRDjvZlqF44/Z1QpOn\ng1IGI9YQy2X1G4jdaUNV3XGhSVln2wSIU2B5DhErVgO5vPdAKoqg3FGGU821wpPGooVaMhGd4M+2\nDMWeCWKvTx02TghMjHp8HiqKoDBrIszdUlGYNVFYm10dkeWgADmCHRllLQEgyzwElyRfhizzEGFt\nyhBKynD1zs3Mw9u5G4QKdqrrqrDumzeFvrd0j+tORRF8WfMvKopgz9GdVBQBb+JPjVhjLBVF8L//\n3kRFUcgo6Zocn0xFEchwAtKJHFhLs/GWOb6kx6VU1ErPhF5UZIFXgLGp4m9U1Mq68rVwuuuxrnwt\n0/a8Qkpy7lnHAEnY8yTueUU4vO4dvCIe3t8HXjcqgF/8wCtG5nVg4RUhDUoZDAOHeIP3+ImA9zr4\n96kKKnY0vPNcIpwheYVUjoYaeOGFo6GGafsBvS6nolbsThuOnT3GtK0uAtIIq4iEfC5UqSXel/rA\nNpWOIOnJGSEnNhwNNfD6vFh5aBmKK4vOE/OQfQgsrQW0DkAywaGcDFVuW+4ow6PF4/Hi/kV4tHi8\nXwi0dOQyyrVHiZqjjtpnxhcV+NtadOA5vPDP585zFAkUMYhOLIVaRbN05DLMLJmBgh3BE5hK8VO4\nbjGdjdvrwvTdU1HuKMOs7DlUya/05IyQoihyLrMtQ/Hba2cABmB75Rb/xH96cgZmZc/BlF2P4TXr\nSv84JiKXZ26Yj1PNtUiMTcKiA8/52ybbkmtUDaVQaeHw5/GnQ6uQv+1uvPL5Szhy7kc8vXcapu16\nAvM+/R2s9lIUVxbhvh2jYXfa/Iku5b6Q/35232xqPwl2p63dsRZKtKG8ho7VHUW5o8yfECdjihyv\nmSUzWleztQm0AkuakWvN7rRhfFEBZpbMwKzsOVh04Dn4fK1/DxTNKcudBR7HYCUGlZN+7YlQgono\n6lrO4U+HVqkmgwxtjgNEfEUEZ0RIFGqylUcUw+LyFU6b7fVHa58Dz4meRNcJhgynDRm/VXanDUfO\n/Cg04SqrTIOM/Re94rurE2nPUx2JDIed6rqq8569RSAyYQ60la/yiS1fVddSR0URTM9+CkkxJkzP\nfkpYmzImfHhXkqlhd9pw7NxRaeVuRCLLkaNfcj+h7emw0S1WnJOBjLKB6ckZGD9oQlQ830fDb66M\nRRMyBDvVdeLLWgKt42lbfpHw8STjGTvYAiEeRAqAgNDzJKzwJjDVmDd8IRVFIMP57O2v3qKiCEQI\nAwIhDnIineQAwJzUl4oiuKLPlVSMVNxed2d3QacN1vIvvPcuXiefqy+6hoos8Jbz+u31M6jY0d/P\n676RkphCRa2IKAfGK2TiFaA8fNUE3GAehoevmsC0Pa9TnHIxeGfBK0bmPQa8IqSK2sPwwcs8FyRC\nkMxblo53/kWGA6QWeF3ReMV4AL+Yy5yUihhDDMxJqUzbF2ZNRCximRfyHKjeD7eP7dlIFwExoFVE\nohQLkBI/yn9T/m+59RVqMpFlYpF8X2BJn2DJcTKZkN79Yiy88QX/S3Bg8ryCj38AACAASURBVD3Q\nlYRgMaXhL7ethcWUhmf3zcaKnFUAQDmOZJmHYMGNi5CbeRfezt0Ac1IqxhcV4Ildj2Ps9rzz+hXo\noJO/LQ/j3s8/z6ZXOUlsMaXBYACUpfFIySc1AY7smx4RJADAipxViIuJo/5dy483qwOVLNKTM7Bq\n1Bq4vC5M3lWIRQeeC7kqK5hAh6ySenboAqy57b+RGJvk/7cs8xBclGjGy6WLUXjlpFYHoG13o7iy\nCMPTRyDWGIe65nNw+1wod5SdN74Dy2ipseTgYowf9AiWjlyOcZePRyxiEWOIwabvNuChgY/4P0Nc\ngarrqjDv/+bg0eLxlAORUiyjFKIUVxZh7Pa8oKukA8U5ymMUKJ5abn0FS29ZjuXWV2B32uDyttq/\nkdJoC/fPw7nmc3hm3yycaz6HyTsLkb+99XgphTYrclb5Hbw25G1GlnkI3L7WtoiIiIyz4soiqtyZ\nUlBntZfiNx9NbNeBpz1RVuBngVbBk6OhBuMHPYI4Y+t1Q659u9MGn+9nJ6pn982GxZTmd4ualT2H\nKocW2DdWAWDg5LCo0n3Bznd7n9HSZx2dYMQZ4oQ6bchy7HE01MAFF7PavqNQCqhFISvRLAPR5726\nrgr3bL1TaLvVdVUhRdmRhIw+5vQfhZ7xvYSWcLI7bag884NQ4cafvlgFH3z40xerhLXJO4GpBq+t\ntholx/agweMU6tjkhZeKIqhpOEFFERRXfggvvCiu/FBYm4Cca0lWgv/2d8WWEdFh47iTPVERSGrb\nJGEq42ShGq9ZV2LloWV4zbpSWJsyiBZHUhkOM+T9PdL3XUe82D5wnkQEMlwCP/jhfSqKoKFtDrlB\noKtfYmwiFUWQHN+TiiKQIdYBAEfbc5ZD4PPWl45/UVEE8THxVBRBs6dZWFs6fLAm/slcE+uc0zXm\na6nYGSTH96CiVsgcFutcFm/inPf3Q4YQUys/nPmOilrhdRCZtusJfO44iGm7nmDanrcE0PwRz1GR\nBV4RS72rnopa+eLE51TUyugB91Cxo+F1IgL4yyPyzr/wlkJtdDdSsaMRURbvc/tBKmrlQPV+eHzs\nJclmf/wU3HBj9sdsC/6Gp49gFtrrIiBG1FxpghGYwFWKOQp25GPc+/kYX1QAu9NGufcQBxKtL49q\npbXIxEZgcpz824a8zfjz7f+N7ZXv+R19bPU/we60Ud9PBAdE5EDEAUsOLvY7npDJULe3VZxRsCMf\nd2zOwYuf/Sfyt92N2sZazCyZgbnD5mNbfpG/TFlgv0gyv9xRBnvDTzjXXIfJuwr9/SECgLnD5vu3\n2XTPNmwes82/39mWodh6bxH1t45AWc6IiBSUjgPFlUWqop5gZcNklDHTSqCoItsyFC/c/BKW3rIc\nq29dc945VI4TpUCHlKAiq9Bz0m/Fy58vhqOhBhvyNgNoXamenpyBN+5YB4upH/50aBUOVO+HDz4s\n3D8PFlMa/jDyjzAajHjyullYdOA5vxMOuTbJ8Qol1jjZ4MCizxZg9idPYeWhZfjttU/h98P+EzGG\nWLz7zVuYvLMQje4Gf5kyoFVk1jfJQtllk7FIIunLogPPIaWb2b9iTymYIf0k12WgmEY5Nsj+PHzV\nBL+QMDE2CQuHP4+ZJTP87kBN7kbYnD/BCw/cXjcu6paKRQee8wuB1FbPlTvKEGuIwws3v4QpWVMx\neVch7tl6J8Zuz8PjOx9F4ZWTYDGlwe114fF/FPoT3BZTGt4b84H/vAcTyJC/hRIhBgq2Fh14Dj3i\ne2JDxbvw+VoTYhOKH/K7Qq2+dY1/rJAyi+QYLre+gqUjlwVtnxxPnvsqcX4SscIv8LckmGCT5Xv0\nUjo67TF32EKhCUy704aj545EhYuDDMGODGSVfpAh2BF9PEuO7UFV/XGhYgi704aq+mMRP0ZliZVK\nju3B2ZYzQo/pger98HDW5g6Ed7WeGjKSXcfrjlExUok1xFJRBLxWxh2FDDEhaVd0gt/utOHHMz8K\na0+HneRYcSVSZDgB8ZZm6Cii5V2EvNuJvJ5lCItkulhGi1hL9P5b7aW4d+tdwsu2BZaW52V69lPo\nGd9LqEugjBJjqW0CmFSBQhilm7UoquqOUjGSGZRyFRVFcEWfwVQUgYwSa6daTglrS4cPViefzRUb\nqdjR8LroAK3ODYkxiczODbziAV73i6PnjlBRK8t+/SoSYxKx7NevMm0vwsnu+r43UFErvE5Cw/uN\noKJWeMviEfcaHkdj3nHE+8xwrG38HWMch7zXUSQ4WvGKub4//S0VtcLrjPb96X9TUSsinHx44XWk\n4mX2sGeoqBVHQw2zY7ouAmKA5SVZKcYhEyF2pw1xMXFYcNPz/nI2xL3H7rRhufWVkImfUC+qytJC\n5HNq5ZmUn8+2DPULEgDg4uRLUFF7GGO356G4ssi/Gp2IlWaWzMDMkhn+cjwzS2hrw9ONZ7Dg03lw\nuuvhaKqBBx48cc10vF6+Bo3uBiw5uNjfLyImIqIBIixaOnIZcjPzsPSW5fjDr1bAktQPFlOaX2xR\neOUkLDm42C+mUu47IdsylMlBQ+vnAl1nXB4XXi9f45/8IeIBsjKo8MpJAICCHfmUa0z+trygQqCO\nmEgLFCaRPivPDxHxTN5ZiDn7nsb03VPPE/so3WeUpaqe3TcbOem34um90zBq40isPLQMLZ4WLNw/\nD+WOMtz93m14eu80vGZdiWzLUPz59v+G2+fC0oMvYOo1M/xOT4NSBvuPw/F69Zf38UUFmL576nkT\ncFZ7KcodZTjbcgYXJaSiT0IfxCAG237YgncOr4XBB/RM6I0YQywmDJ7oF5yUO8pwosGGWGMs5T5E\nyvyRfc0yD8GGvM3YPGYbPrjvH9iQtxnljjLct2M0iiuLML6owO+sQ6474mwzvqgABTtaS32N3Z53\n3rlQljMj9nO1jbXw+XxIjEvEwhtfwOSrp+JUUy0mXT0FTZ5GPPaPRygXLbvT5hfnTfrHBDjd9fjd\n3pl4vXwNnrlhPpLje2DC4ImAD1hufRkAsOCm53GysQZTsqYCgN9tTHmulQIZIsQhTjRKEWKgIIdc\nC/5rx+vCmZbTWDj8eay+dQ1y+o+CuVsq/vrvd/3HudxRhrHb81BybI9fkEPunxZTGnWPDrxmWJ01\nyP6RSd1wkj+h/j2YQCmYYJOFSJ901+lcXvhs4XkOezxYTGmIMcSGLD/KAu9LezBcHpfQ9tKTM7Ai\nZ1XErySvrqs67/dFBKKPZ2vdboNQtyoiDo90UZXdacORs5XCxUrEyp3V0l0N3pVtapBSPCJL8nxZ\n8y8qisAHHxVFMChlMGINsULHPbEMZrUOVoN3FZUaNudPVBSBDDEh8PPzq8j7vaOhBi2eFmHt6bCT\nZhJXlq13tz5UjGRkiECi4V1ExhyLDGERIOd4yppjkjGeRD8XORpq4PKJdRu12kv9peVF0q97utD2\nluYsw60Zd2BpzrL2PxwmJxsdVBRBZq9fUFEETpeTiiLgTY4Fgzf5rIaMYxpvjKeiCGIhTlCkwwdr\n4pxXAMLrfCHCtXVd+Vo0ehqxrnwt0/a8wm3exTE3p4+kolbsThuaPc2duoiKd76hs0uiRQKdvQ/9\ne1xKRa3wXkdZ5iFISbiIWtCvBV5HLoDfFew31/6WilrhnWv5851rqagV3rlIEaLOzmbZwZepqBUe\nAZUuAtKI0mWExU0CAJUonztsPpYcXOwvZ0NevGeWzPALYMj3KlFLYqt9hggJlKV0Aj+rTMoToVC2\nZShW37oGr5ev8TuZEOcPktwj4h9lIqXk2B4UVxZhtfVVnGyuQbOnCXddMhoxhhgkx/bApT0vxZSs\nqdh6bxGmZE31H8OZJTOo5NGGvM1YkbMKFbWH8Zp1Jeb+32ws+HQePD43lfRf982bWJGzCr+9tlUc\nUu4o8+8r66RDuCIv5eeUAhhS3om4lRCnFGV5sN9lz8Pr5WtQ7ijDsbojmLyzsLU01RUTkBSXdN55\nUe6PUuAV2EdSyilwm2D9VxsHSoEK+f/Td0+F2+uC3WnzixTWffMmlo5cjn6mDL8TkFK8YLWX+sf6\nkoOLca75HJYcbC3t9b/fbURqYl/EGmNggBEGGHCu+RxmfvwkfD4fxl0+Htsr3/M7Di0a8RJ88OHt\nb97EsbojKDm2B5N3FsLtdeO/ylbBktQPtY21/uQruU6nZE1FXEwcLKY0//5Z7aW4d9tdmPPJTJgT\n++L3Ny1EUpwJ5qRUPHX9LDx53SykJJrRLS4BzZ4mvPDZQqy2voqx2/Pw5Me/hdvnRqO70e8+RIQ/\nFlMaiiuLMGXXYxi7Pc9/rojgj4j6cjPz/ON7+u6pqK6rap188rROPk3JmorVt67BwuHPw+b8ye++\nRYRu5LzYnTbMLJmBKVlT8adDq2AwGlqPx6HVePHgf8LtdWPt16/D4XTA43NjziczYXfa/IKmU021\ncDTVwAsv3B43TjTaMNxyMzZ/9zdMyZqK7ZXv4dlhC1DTcAJ2pw21jbUwJ6Xi1S+W+12/lKUBA4WO\n5L+JGIjcWwDazaq4sghP752Ge7beifFFBSh3lOGp62eB5NOI09E511m0eFyoqD0Mq70UCz6dh5Ru\nZrxevgazsufghX8+h7u23Oq/x92beR/sThvGFxWojn/iYtTedRJ4zZC+K0WVwbZv714SrFRaKMGm\njo5IkmJMzC9Basz++Ck0ehqYrS2D8dXJL6koCpET1EDbNf/hf0T8SvJyRxmOnPsxaKlKVkTbwrbW\n7fZxrXhSQ2SJKaD1vN+xOUfoea+oPQw33ML3nSS2RSa4mz1NVBRBSuJFVBTB6aZTVBRBt5huVBSF\nAQah7clIzNjbJo/sAgU7MhJdvGUIgkGeX0UKaXnsxXXEUnn2B2Ftybj3yJjIl+UGE+nuMgTR713R\n4oJEiAZ3IRklcs1JqYg1xPoXV4lAhounDBek4soi7K7aKfR3zOvzUlEEgYstRWCKM1FRBBnJl1BR\nFDJKwX3206dUFIGj2UFFEbRAF0ZHCn85tKZTvjep7RpNEnitaoV34QNvCRsRDiQ88JZr/uCHHVRk\nQZlvYGFQymAYYWR+H+R1oeEVw4lYyMXriiyjDLoWeMdRybE9qG0+ybwwSISrtKzFrR1FZzu78Zak\nEwHv/fiSNhHcJYxiOB50EVAIAl8ylC+yRLwydnsesxBoXe56f/KNlLMhyf1GRQ1lZekoAhHkBPZN\nWVJoZskM5F02Br/JmoYlBxfjNetKjN2eh/Vfv0OV8xq7Pc9fciCwJFFWyhDMvuEZFFz+INKTM2Ax\npeGerXfi3q13YfLOQswsmYH1X7+DZ/fNxh3978LTe6dhQvFDWPvN6wCAAT0ux9pvXofH50Gd+xye\n3jsNT++dhiX/XIyn907Di/sX+d2ENo/ZhnJHGfK3tbp7FH74H3h67zQs+mwBxmTeh/wB98Neb8Mz\n+2ai8MpJyM3Mw6zsOaioPYxn/28W6lrqMGnnBEwofui8fWzv3Kqdm/YeLsjnyLkjDiVKlyTyXURI\nMyt7Dp7Y9The/nwxGlwNqG2sRZopHbHGWBRc/iDe+uYNFFz+oL+MWqD7jvIFmIh1yL8XVxbh0eLx\nfiehYBMvSmefwPaJSIQ4U9mdNqzIWYXVt67BqlFr/G41joYaFF45CTn9R6HJ3eQX2VhMaZiVPQcl\nx/ZQ18bcYfPRI6EH7uh/F5ZbX0a18zicLU7UNp2EwWCAF16caq7FyeYa2BtseO+7Tf7VtdV1Vcgy\nD0FSXBLOtJyGDz48d+D3qKo/jiZXMx664hHkD7gfT++dhqkfPY7iyiIU7Mhvcx2ahbnD5vudb8YX\nFcDRUAOv1wtHYw08PjdeLn0Rbq8bJxtPYtbeGZjzydM42ViDGEMspmT9P/RO6IO137yOY+eO4nRz\n6+StwWf0C4GKK4sweVchxm7Pw4JP52HJLcuQGJtEHe8Ze1rPfW4m7bxwvP5oq6BpVyHONp/BpH9M\nwMy90zF5ZyEAYOkty5FtGQq704YmTyMaXI14YtfjuGvLrXhi1+M41XgKSw++iLzLxqCbsbVG+snm\nn63hTjedRrOvCQmGBEzJ+n/+czp5ZyFONddi9KX3wggjxg+agJ7xPfHuN2+hruWcX1gzduD9SE3q\niwPV+zFz73S0eFpgc1Zj+u6p55UGVO6v3Wnzux7NLJmBce/nUy5GJKFdXVcFc1IqLElpmJX9DKZk\nTcWUXY9h6cEXcVGSGVa7Feeaz8GclIpt9/4dT10/CzP3TseEvz+EqvpjmHT1FKzIWQVzUirONJ2B\nvaFV9HP7phws+mwBHil6yF+WkBx3MnlIUCtdFgrlvYHsQ7AJznDvJWrbK8V+4SJjgkznwsbpqcdq\nK5utrxqJsYlUFMWRs5VUFMFq66s403Ja6P5v/XYLTjTasPXbLcLarK6r8gtGRZGbmYeFN77gF5qL\noNxRhp+cVUKFRTJKQk38+yP44Mh2TPz7I8LaXFe+Fo6mGubVgR3Juq/eoKIIbPXVVBTBlu82UlEE\nMpITRoORisLaNYptT0ZS7kjdj1QUwfpv3qGiCJ4pmUlFUbz91VtUFEFnTe7rnE+P+B7C2pLhbCYD\nWW440VBmCtDfn0QjYzxlW4ZSC3lEYDGloV/3DKEupmQRXKS7QJmTUmGEUagAirjZiXS1k+WwI5ov\nTpRSURQi3AcCefTqx6kogp5xPakoApOx84QfOjS/uXYq03a87/OD2krWDWIsXSeifCrZd9ZjwAtv\nOS9eeBfkiUh6844DR0PrAmiRrn9a4BXxzL1pPuIQj7k3zWfuA+9isOHpIxCDGAxPZ1usQxYMsi4c\n5C1lxesmVdt4koos8DpS8cJb0o3XmY13DM69aT4SjAlc18EXJz6nolZ4xXC8gkCeuXHdWzEAkqgm\nExZKlwalqwXQ+sLYNymN2k4L5HvIio51uetRcmwPVv5rOarOHcfUjx7HohEv4TcfTcRfbvs5sUCc\nc+YOm4/ffDTRLwaalT0Hz+6b7e/zqcZTWHmotb+941Pw8ueLYYrtjj8dWoWFw5/H4/8oBNC6gjOt\nez+UO8owZddjMMV2h9FghKOp9cdx03cbALROTCbH90BVfRWS45Lh8wF39L8Lc/Y+jTsvvRtbvt+I\ncZePx6bvNsAII4ZbbsGn9k9wg3kY/nXSClNsd8QZ49DkacL/fvc3AMCqQ8uR3j0DFbWHUVF7GL/b\n+xTccON3nzwNU5wJyXE9UOc65++DEUb0ju+DV79YDgB45pOZgAHoHpeMP/xqBRYdeA7jBz2Ch6+a\ngJTEFEzfPRVH637E3KELMS37Sb9AQSnaUTt/5L9JuaZg55e4sRRc/qB/4sBiSsPcYfNhTkqF3WlD\ntmUoVuSswuSdhX7brieypuPSnpdi3qe/w++y5+Gdw2vRu1tvGGDAG1+tQW3DSaSa+mL1rWv836sc\ne2QlkLIPG/I24+3cDcgyD/FvQ8aCclwTZ5S5w+ZTnyUuPuty18PRUINZ2XMwfXfrQ67BAPy/ITNQ\n13IOhR/+B2oa7fDBh9GX3osTjTastr6KA/ZPcbrpFE42OGA0Gv11wPO35SE+Jg4j++Vg1aHlfrGK\n09Oq3OwZ1wstnhY0ehoQi1h44AWMBvzp0CqkJKZgwafzkJVyDc62nAUAJBqTkHtJHjZ9twEnm2uw\n6LMFiDHEwhTbHU9eNwsL98/DT/XV+P709/D4PLDardhQ8Q56deuFKVlTYU5KRc+EXqhtPomTDSfh\ngRsLblyE1w69ilPNtfh1+m3Y91MJbrQMx5LSRUiO64E0Uz94vT7UNjng9nlwpuUULooxw+1rda96\n4/Z1AIApux5DSmKKv2QW0Ko2PnruCBZ8Og/fn/4eb3/TZp93+38jzdQPOf1HYekty/F6+RrMu3Eh\nAOClzxZh4j8eAXytN/gNFe+ixnkCvbr1hsfnhr3BBnO3VNQ21cILj/86H2a5Cb9M/7X/emn0tIoJ\nm33NeOmz5zHvxufgaKiBz9f6o/svxxfw+DxYfWgFvPDCCCMmXjUFvbv1xnLrK7g38z44Gmvw9jdr\nseDGRRg78H6/apqMFeW4IdfWutz1ftcwUiqQuEhZ7aWYsWcqHrriEbz51euIi4mFo6EGc/Y9jdRE\nCwb2vAIVpw/D7ft5v6Z+9Di23lsER0MNjDCiwdUAj8+DFz5biEt6XAq3142E2AQkxSbhdPMp9ElI\ngRExMMWbcPelYzB5ZyEuTr7E71j10s1/8F/XgaXLlO4+SiGOct+UpCdnYFb2nKD3/3DFhMrrlBBY\nai7YfchqL/WXQCMiRNErBXUuXJIFJrpKbf+koigq636gogg6ezIlXOxOG47U/ei/h4rAai/FkoOL\nMDx9hLBESpZ5CHrF9xHqLHW2+SwVRTBu0IP44Mh2jBv0oLA2ZZQwkoXb66aiCE40nqCiCDzwUFEE\nXnipKIKz7rNUFEG2ZSjeuH2d0CRns6+ZiiKQUQqtxdNMRRGYk/oCp9qiQM42n6GiCFgn1HQim/zL\nC7Dy0DLkX67uTspClnkIMrpfLPQ3VwbR4oajnPsT1VcZbUYbMvZbdDlXAH4nbpFEQ6mCA9X74YUX\nB6r3CzuuvRJ64UTzCfRK6CWkPQCINcZSUQQynodNcSY0tjQKdReSxS96/4KKIugR3wOnXaeFimib\nveKeB3X4YHVAGZ4+AgYYmIUDvGNV6R7y8FUTmNrgdYHh5dGrH8Puqp149OrHmLYfnj4CMYZY5nMw\nesAY7K7aidEDxjBtT+YbeeYdeccB7znk/f7HsiZh03cb8FjWJKbt15WvhQstWFe+Fr8fsZCpjZ4J\nPamoFYspDb269WYWTfOKwXj7z+sqJmLBK6+TK68zoCgBCqsQhXfedOu3W9DsbcbWb7dgWvaTTG2Q\nXHUq49wQr7CUdwzwCFq7vBOQ0jlB6QgBAIVXtt6cC3bko2BHvl98Q0olAUCcMQ4z9kxF/rb2HYGC\nOQsRyh1lmLl3OprcTeiTmIJYQxyyzEPwl9vWwpyU6nfcmPrR43476b/cthaOhhqM3Z6HRQee87un\nAEDeZfcAAOINCTDFJ+HezPtxrvksnO56fPDD+6h2Hke9qw4eePyuNOlJGahtPukXABHijfFY+83r\nbUl5H+pc52BrqMaqQ8vhggsfHNmOqvrjfvGBF158av8EAPC54yA8Pg/Ouc6itvkknO56/wS8Dz7Y\n621+hyAPPEjpdhHijfE423KGmgQ2oNUxpsHdgKr6Y1hufRmppr74j0GFON18CrWNtVh96xpsr3wP\nxZVFWPDpPORdNgYurwuLPluA9V+/g9Hv3YnJOwtxb+Z9eHbfbBRXFmH91+/4HXGU57C4sgj37RiN\nF/cvUl3BRsbDmebTWPTZAuRvay27Nvq9O/H4zkcx4e8PYez2PLy4fxEOVO9HVf1xPL13Go7VHcWq\nQ8ux6MBzeOnmP2Dt16+j6txxvFz6IowGI7xeH3p3S6F+WNZ//Q6m755Kleki53nGnqn+Umq5mXl+\nhxaC0vGHiIdW5KzCcusr/nFIXHzW5a7H1m+34NHi8Xj64+lw+1xYOPx5NLga8bu9T8HutMPlbcFj\nV06GuVsqPjzSKkD7n4p1GG65GSca7PAZfJh6zQy8ccc6AMBPdVWoa6nDO9+shQ8+NHvpchFnW874\nxSpuuAH4MG/oQqy+dQ0WfDoPR+t+xP/P3n0HRlGmDxz/7qYnJKElBClSLJRD0AgISi8JBEho0i6I\nYAFFQEApUo4iIAJKURSV4+BABQkJvQiiCIgYDeYEfnpwlIQEQmjJpm37/bHZIRtCye5sNoHn889L\nQmb2ndkp78w88zxbz8QppRY83T05cGE/AFqNG77ufhjNBnSGTGYcnsr1nBv4ewYw/5c5GMwGFics\nIC3nEoEe5Xn7hzd5fktPruZewQ03DOgxY+Z67nWy9ZZo5O+SvsVD48n6v75Eb9JzJTedLg93o031\ndjSv0hIwYzAbyDPmkWvM5cWdf+et78cS5BvMik7/ZPKPbzP2+zfovimMtX+sZtKP4/Fx8yXXmMPM\nI1NJyjjHhcwkDicfwl3jQWLaMVYkLqfvo/35+NgSDl84RFrOJYxmEwYMzD0yk4H1onmv9SKu513j\nlUavUdkrmBGN38gPdtHilh/PuTdpNzF/rVf2lYJvfJs0ZuYcmcGQnYO4mJXK848O5EbeNcvfKQ/G\nzMw+Mp2x379BDb+azDs6i0GPv4CH1oMNf33FqsSVTDgwlgkHxjIu9G3AtsyXtUyftSTXkJ2DOJl+\nglcajWDUvhHsPL2NF3f+ndPXTjHzyFSSdeepG/AoAHqTnmTdeX6/coymVZ5Rjr8AkXV6szT+Qyb/\n+DYaNLi7uQFQ2TuIwfWHclGXyvXc62TlZ1DLNmRjxsQLDYby8bHFVPSpxLQWMxi7fxQ7T29jwoGx\nrP1jtXJjOjSkqc1NamsmMeu+0XdzlFKisfDNzPjUo7z67VDl2GHdP++lnKA1U1mqLoWecRE2mbms\n2dyswZ2Fz09W1uOUtURb4QG5munSxf3J3rTGRUnPTbdp1eKMh83OeKtUjTfNCjuZfgKDSa9qWaiT\n6SfQm9Wd5/5z+7ial253et2ifHduj02rhvUnv7Jp1ZCl19m0alAj5XNRdCadTasGy9jtZvsgcc8f\nf7mr+F6NMzIIVPWpatOqwRlBVb9fOWbTquG7pG9tWrWcv3HWplXDifQ/VJuXcMyVPPVKd5269pdN\nqxY1g7jhZqbh0p69xBmcEazkrAAoyVikLmeU2UpMO0ZyprrZMZ3BGYEgVfxCbFo1XMm/931FxZKK\nZUmQbzDuqFuyLsg3GDeVy+DdyA98u6FiAJy/h79q8xKusfP0DsyY7S4lZX2R2toWlxoP7h0t/xIa\nEmrTFpej6wBAa1a31HRxWINiHQmOdfQezsHkAzZtSbNu//buB2q8dOZoJp9Nf24kPeey3VnPHQ0G\nc3Q/XNbpEx72e5hlnT6xa3rrS4RqvkxYXP935aRNW1yOBhE5mt3W34BXvwAAIABJREFU0YxeLaq1\ntCQdsXMbBscz+TgaCOVoQGLbmu2pGVDTrmkf6CCggqVsesZF8MbeEUpGiKjYCMZ+/4ZycMsxWgIE\nFrVdwqRmU5RSTxt6xDL1mRmk6i4w4tuXbErOFPVZO09vswniKHhjoFFQYxa1Wcr81ou4lnuV15tY\nPmPm4elK39KyLnH+xjlSs1IYtnswY74byaQDb9OxRhgD60Uz6cfxjNwznJ5xEaw6/jkAeeZcJUDH\ngIEU3QUlWMfqSm46b34/klMZRW+EeaZb07mazCZVHsgVfGhgxkyWXkeW0fJwomDkv6fGCwCdIROj\n2Uh6djq5hlz2nt/DqCbjWHX8C8CSEentH8ZyLuMM/z6xigBPS5To1lObSdadJynzPPOOzuLx8vV5\nadcLvPn9SK7mXCEx7ZhSwig5I4mZh6cz4LFoliQsJLJOLyWwYefpbfmlpsazqO0Stvf6ltFNxjPm\nqXFMPTiZtOyLlPeqwPXca3SsEcbihAXMOlIwUteMh8aTq3np7D27h5TMC/h4+GIwGjGZTWi1lsHZ\ngMejlXJrb34/kkx9Bn0f7c/wPS/Z3KBz13owrcUMAJvybvGpR6nmX51FbZewqO0SmxJG1rJlYAkS\n6hkXQZeNHdh/bh+zj0xHg4b03MvcyLUM0jQay3fj5ebFldx0Vp9YiU6vU97Q1mrcWHX8c8yYMZqN\nLEv4kBHfvsSGk19jwkS/xwbhl59uzkt755OFGTPLEj4kxK8qY54ah7+7ZYCQm59S+HreNWXgYzIb\nyTLo0GBZZ9fyrnI1L530nMvKPuuOB2AJRtOb9WTob2DCZPN2+eKEBWSbLAEkJkzojJl44gmAr5sf\nK4+vYP1f65TANrDsM9dyrmHEyMXsFIbvsaTSNZsholYP9EYDi39bSI86vbihv87Twc3w0HjwQoNh\nVPSuzJyjM8nUZzD14GQu6lJ598g/+Ovan6z/ax11/R+B/H3L292HuT/PpJJPJQI8AvkoYTGXcy8x\n+8h0Ludeyl8Wyz6kRUuToKeK3C9NZqMSHGQw61mSsIgMfcYta9+EZb/eeiYOg8nA6uMraV2tLY0q\nNWZJwkJ83H0J9q1Cena6EpS2/9w+UnUpzGu1gKkHJxMV15UhO/5OaFBTJcDv9LVTjNs/mtSsFNy1\nHoxuMp6ng5qxN2n3LW/6/3rpF/ae3WXz/aw8voLkzCS0GjclK1RaziU+TliKwWwgQ2/ZVp+o2Jhs\nYxZmzBxMPoDerEeLG0G+wRhMeuJT48kz5TH++9G3HKer+Ve3lDD7/g0i6/RS9hmDWc+itktuCbBJ\nzkiySUtu3f+6bwqzCdgreLO2YGBR901h9NgUzku7hnAhM5m+j1oGk0N2DlJuGjYKaqwE9xQso2ad\n19yfZ/NW6GSlb9Z9Hm4eD+4lEKioIFXxYCh4XHNUWQoGuJyfxvWyA+lcC5tyYIJNq4Z3D//DplXD\nsl8/tGnV4IwyPs4oKWAdy1lbNVgf3Kv5AH/f2d02rXiwWIP71XItP1vNNRWz1pQVzghWAucEvd7u\nOlyUPH939R48Opr+vijW8b7aASZqH3vKkrIQrFSWyquVJWp/942CGlOtXHXVM3Wp/XJPkG8w7hoP\nVQNBnJFp1dPN06ZVgzOyCzUOfsqmVZNb/ktwajmZfgKj2aDqCyF1yz9q06pBzUxNwn6jm4y3O+uC\nq8vfOGO7LK6tp7bYtMXlaBkjAI3W/iAgRzNXOJp9BBzP4vJstVY2bXGpEYjlCEeDJ8CSycfXw8/u\nTD7WwAtHAjAc4WhpzJF7hnNWd5aRe4bbNf3+c9/ZtPZwNACkz+PP27TF5WgAjKMl2Rx9aVaNsn4n\nr5ywaUuao4FM1fyrs77verumfaCDgOBmiaXkjCQMZj1pWZdITDtGbNQ2RjUZR9zpGAbWiyZVl8KL\nO//OG3tHMPXgZAymmzdIGgU15rPOq5SsHmv/WE2vzd1sLtJSdSkMaTCMl/cMIXJTF/pujrql3MzA\nbX1ZkbgcgIfKVeOjhCUkph1Db9KjyT9fzzw8HVP+A/66/o9wJTedZN15tp6JY+aRqZhMJtb/tY4L\nGRfu6WanmlH6ask22t4g0+ZvprnmnEJ/l0VaziXOZ5xl/V/riKzTi7H7RzH5x7e5mnOFliGtuJKb\njtlsRoOGvUk3H6Q0DX6G9X+tI+qRPoAlcKNRUGPmPPs+C+PnszT+Q/53/TT7kvYQ4BnIp79/TI/Y\ncCbuH8/gnQMYtnswbat1IC3rkqWEW8IC3j7wJll6He+1WsSkZlMJ9qvCL5csGRYKBmWYMZOXn45/\n65k4jBjJ0N9QAjqy9dlczE7h3SMzyNJnKdPlGfOY+/NMkjLPMamZpf6h9QbgzMPT6bs5ihC/qmyK\n3MbSDst5adcQpfTS2P2jbAIHrGWQwFIWLDNXR2pWCtMOTcKECQ+tJwEegVzJTWfc/tFk5mVixIjO\nkGldCCVQCyxBctbtTYMGXw9fMnN1rDy+AmN+uarr+msEepYnz2x5mPdsSOvbbgNXctMZsLk3b37/\nBhmGG/kfaZm/p+bWi/87BaMZuLmvuhXjTe08LN+RNUuRv9utN4Ot/wfQPKQFo/eNVPbHi9kpnLtx\nlpi/1tMypBXbzmzG282HNSf/ic6QicGkR6fP5Ebeda7kptsEwpzK+K+yTDpDJnqznq2ntpCWc4n0\nXMsDa1NRgT6Y+CXt9lk99AXWhfkOxweP/MApE5ZsRNYgKDNmruddQ6fX8fb3b5KRd4PB2wfw5vcj\n6bapMztP7yDPlMvTQc25mJ3CyuMrlHkaMSqZenJNOSxOWHDbvmabsjiru/XN6oL7jtXl3Es23/+p\nGzcHU3uTdhPoWZ4+j/bjZPoJbuRm8PGxxUp/dp7ewcBtfZXAv+SMJCUY05pRLFWXQqouhbSsS0pw\nnfVvrUGk1vTZoSFNGfj4YLzdfJTsRwUzycWnHlXK8bWu1haD2UAln8qMf3oCAR7lee/obCWYau7P\ns5nUbIpyjhi4rS8jvn3JJiNQqi6FLH0W847OoltMmLIsI759ie6bwgCo4luVtKxLd7xZXPiGcsGf\nHbnJLIFFojRzRkYUZ8zzct5lm1YN1gfNaj5wtgYuqvnW88nrJ2xaNfyWFm/TquFydppNqwZnPDQW\n6nNW4KOHm4eq82sSHGrTCseVpaBXUXzWDLRqUOMt9MKs1/JlYWztjKykZWG5nRGwU1bKq5U1zthG\nvd3U29/B0seouK6q99VNo+4jgXL5L/5Z29I6z2Rdsk2rhjPXT9u0agkNaUps5HZVS+HVq1QfN407\n9SrZ/0C5sMD8EnCBKpaC83LzUm1ewn77k/fafS5zNICkNHA0iKXFQy1t2uLq8HAnm7a4QvyqEuxb\nxe7gD0epsQ38fuk3m7akOboMjpayUiNz39yfZpOhv8Hcn2bbNf2Gk1/btMXlaECgo4FY3ep2t2mL\ny9EgJDWcuX7Gpi0uRwNg1MhI5QhXl2YEx/dFRwOZkjOSeHnLy3ZN+8AGAVmDbqwZfWoF1mZw/aGW\nMk47B7Dpz42s+M9HRNbpxco/VmAwG7iUdZGI2j3QaMjP/pOilFoCSzmbYbsGM/HAON4KnawM0q3Z\nGD5KWMKEp6cQ13MHSzssv6VP1owtc3+ezegnxwGWoB9PNw+mPjODEL+qTGsxg2CfKnhpvYt8KGIN\nsCj8oLwwNyxvEtwpEKC0uFswkwkTKboLvHvkH/R9tL8loKdSYw6m/oA5v3RZ4SARa+YD64WkwaRn\nVeJKViQuJzSoaX7wioHKXkFcz7vGxewU9CY9K4+vQIsb3lofFicsYPDOAfzj0BQ8tB60fqgdaTmX\nmHZoEhMOjMVsBjeNO24aN7w0N28kau+y2+Xml0AzYSSqbm+u5lylml8NPN088XbzwWg2svXUFiUA\nIS3rEjnGbCVQLC3rEifTT5CsO8+Gk1+TZ9QzqdkUUnUpSgABwKrwtSSmHWPm4emU8/LDz70c2vyb\nALmmHG7oLdlW0nMucy3PNs3ZnW54W9d5rUJ1PrVoeTq4Geb8ElWHUn+843qwbN83vzcvrRdPBzVT\ntnF7GO/Q7woeRUeiWredDGPhrDm21v+1jqt5NwcjFb0qEeAViAGDsi3qDJnoTXoy8zPwZOgzuJp7\n57TGmvztpXD2Lu4Q+OQoa7CQn3vRN1qu5l7BiJHONbvg6+GHl9YLo9kS7JWiu6DsX4VvoOeUwMNM\nncH24XumPoPFCQt48/uRpGVfxF1rebCmxY1lxz7kas4VXtr9At03hdF9Uxh9N0dRr1J92lbrwKvf\nDuVk+gk2RW4D4FzGGSUTlzVYxxpgt/aP1az9YzUrj6/gSk46HyUswWxGyeg24tuXeGnXEK7mXGFp\n/IesPL4CN40bXWt1Z97P73Jdf5UK3hWVfmfk3WDWT9OVcmGvNBpBiu4CaVmXbMqvzXp2Dg+Vq4aP\nuw+Tmk1h2qHJnLtxluTMJE6mnyDXmMNLu18gKjbithfuhW8oV/OvrgTI3uvN66IyHlmPUdb/K5jB\nrCzcvBdC3Lvc/MBZa1taWQNuC2egc8R1w3WbVg3OCCgT6rOOHW83hrSHM0qTCCGKR81SNo4+vCmK\ndayu9nFC7QDE+NSjt7wc5yhnlS1zRhm0caFvq/4dOevc8KBemzljGwX196UQv6rU9H9Y1Ye4oSFN\n+azzKlWDS56s8rRNqwZnZDN82L+WTauGKznpNq2anPHw3l2jbnah8c0m2LRqkCCg0sGRc1mQbzAe\nWvszjg1qOJjnHx3IoIaD7ZpeDY4GgLh6+lRdChd1qapmQi4ONbLofNljIxo0fNnDvlJUjmoU1Jgg\n72DVM/zdKzWCH15sNMymLS5Xl1FytJRVkG8wbvlVIuzhaEk6cDwTjqOBVI4GQjnK0QDk67nXbVp7\nOBpY3iioMSG+Ve0+FqhxPLQ3U/4DGwRkvcG6LmIDoSFNmfrMDOJOxzCx6VQ8tZ60qNaSTzuuJO50\nDC2rWtLFmTGzJGERyRlJTD04mbH7R9G5ZhcmNZvCwvj5zHp2DrUCazOv1ULiTscoF9LW7CzTWszg\n/fg5pGVdYuz+UTblYqwBSWlZl9Ab9axIXM7SDsvZ0COWJe2XM/fn2fTdHMW0Q5O5nH2JXFNOkcvl\nXijTye0CTowYlRJKZcXDfg8X+fsnKlp2PCNGlh9bSrLuPL+k/YyXtugLBk888XcPoHq5Gkotyqu5\nV1icsIBzN86y/s8vlb8tmKnEGozhhht55lyeDmoGwHX9NcJqdmVf0h6eDmpGhj4DL60345+eQJ9H\n+2E0G22yGN0tqMlaxsqMmcUJC5h5ZCpPBj3FlZx0dIZMAj0DWf/XOtpW68CofSN4adcLpOpSmfrM\nDPaf28cLOwcCUNkrmJXHV3BBl8Rb348lKrYro/bdLHmXqkvhlT0vkm3IJrJOb3SGTKXMUkGmQoE4\nhbcxK2tgmdWvhd6yN2Fib9JuTJgo5+5f7AC0XFPuLZljqnhVUcp93YvCfSzoqt6+gUhRtGhx17qT\nkXuDQM/ySvYid9xxw41KXpXpUL3zPc3rToFLzqZkfipEgwYzZlYeX8GlrIvkmnLx0ty6v+UYbY9T\naj50vVcNK/xN+bcJk5K9yYQRo9nA08HNCPKpQq4hl9TMFDL1GQzePoDFCQvoXrsnE38cR1rWJeb+\nPJtg3yrMenYOi9ouUTJpgaU2rqWs4FX8PQII8ApgaQfLMXzV8S+IqG0pD5equ0BqliVDkgYtJrOJ\nlcdXcDE7BS83b4wmIy/vHsLLu4eQmpnCtZxrvLx7CFGxXVn820ImPG0511izE40LfZtGQY2V7F8A\n2foc3LXuTG0+E7AE8VX0roSH1kMJBCxKwYv6gpnC7uVtU2uGI+sNeeu5zxokZQ2aAstxxxogdCTp\nSLG+SyGEEMJe1useNa9/nq3W2qZViwQACXH/cPSmd1GSM5JsMv2qwRklxgqWTVZThsrZrJ0RWBSf\nepRX9ryoenCJM4J1HuQyY87YRp0RzFvNvzpTn5mh6jytpcXV/N6dUXon25Rt05ZWbvlBNW4qB9c4\n4/gUGtKU2Ch1swsBeGjVDX7r8/gAVecn7OPIuSzEryqBHhXsDmRb+8dq1v+1jrV/2Fdy3DpecGTc\n4OpSUOF1IhjdZDzhdSLsmj4t6xL6/Mon9nA0eKJepfq44eZQ5rFNf27EjJlNf9oXBORo8EVi2jEu\n56TZnfXa0ewhLaq1xA03h0px7Ty9w6YtLjUCMBzRt14/m7a40rIuYcRo934wq9Vc/D0CmNVqrl3T\ng+szo8Wnxtu0xZWl19m0xZWWdQmj2WD3dxAaEmrT2sPRYLZUXQpXc6/YHVQ5qOFghjZ4xSWBrQ9s\nEJBVNf/qxKceZWH8fMaFvk3Px3oTF7WDEL+qhNeJYFzo2xxJPQyAr7sfZkz0fKQvn3T6nM41u1jK\nQP0wlnGhbxNeJ4L13WMZ1HCw8uDUOmC3zi+mx1bC60SwLmKDzYNk688L4+eztMNyJTipmn91QkOa\nsi5iAxt6xLK84+f8M/zfTGs+iyDvYCp7BRPkbTkR+7r5saXXLqXMkq+bHzX8H8bf42YZo3qBlpPu\nsyGtmdp85m2DIqr5VHPK+tagVQKTfLS+RQZCjG4yntFNLOvFTePOsyGtqeRVmQtZN9ONlXP3Z2iD\nV/DUeNKupuWtuvKeFZjcfBrTms9Ci5Yg32AqelkOrIGegcrFWB55ZBhu0LJqK5b/vgR/D39MmPDS\neqEzZJJpuDXji1/+dw+W8lLDG73BscuWNITuGncSLv+KFi2p2SkEepYn25jFW9+PUUoPFUfBrEWe\n+YEV285s5u/1hmDCxD9avMvoJuPZn7yXJe2X817rRWjzH2isOv4Fi9ospW3N9vSoGwVAWM2uBHj5\nM6/VQtZ3jyXEr6qSDWhFp38S4BVAaEgowT5VCPS4mbrVW+uDFi3BPsFo0ODn7keuKfe2WYCMGJWA\nLICutboBlkAdsATGVPSqxLTms6harip+bvcedWl5YGP70KaCRwUu5l4s8u2Q4j7gsQZ0FZeHpuiL\n3IpelTGYDBgxkZF3Q8leFOBVHq1WiwatTXm64vLUeOHnbl8tXDW0r94JM2Z83HzJNmbxbEhrgvxs\nLwis34FHMYK0nOGG4QbPhrS+bUDktjObyTFkcyXXckFnNBlJz7GU3TmUcoCqfg9ZSoS1tWT2mfuz\nJXXmqvC1yrF5ZOhoPmizjAreFcjQ3yBbn0OIX1VCQ5oypMEwFicsIMugw4hR6Ye3m7eyr3viRaY+\ng7ScSyRnJpFryKWybxBXc67grnVnXquFGEwGNvz1FeNC32b4npfoERvOsF2D6bs5isS0Y4zaN4Jh\nuwZzNSed91otokW1lkz8cRxmk5kJTd9hWosZvLF3BD3jIm65gC98Q6ng28XWc2TBvysY6GMNGJrU\nbArrIjYA8PyWKOW8ty5iA5OaTSE0pKnNOW9eqwW8vv11B75Z8SCxlmMsqiyjEMK1nLF/OmOennja\ntGpwRoYPZ3i1yQibVghxZ0+HNFdtXi2qtUSDxqEb90VxRiCM2oFFoH4Gi8S0YyRnJqlafhQg25B1\n9z8qhhC/qlTxrarq8jsrWOdBLzOmdiAEqB/MG596lFe/Hap6UNmNXHWPI84oFWF9ifJuL1MWR/1K\nDW1aNfh5+Nm0pZ0zsguZTc7LVi5cp3q5mnZvL/vP7eNy7iX2n9tn1/T1KtXHHfszR6hRwsfRYG5H\nsyHtPL2NJQkL2Xl6m13TNwpqTPVyNezOXOFo+RoAN61jwZGOBtHUq1QfD42H3dtReJ0IpjafaXcg\nVpBvMJ5aT7u3AQCt1rFH+OF1uuCmcSO8The7ph/SaCjlPPwZ0mioXdM7GkR0OPmQTVvSqvlX56MO\nnzo0vtt6aotNW9IczSQU7FvFpi2Ltp/eYtMWV2hIUz7rZH8WzZ2nt7Hy+Aq7j+cABpN9ySIeqCCg\nwg8uraVKJh4Yz7jQt5n782yltJf1/6wZfqqXq0F5rwpo0XIo5QBv7B1B7KmN+eWe3JU3KAqWUymK\ndSOxBvdYL7YL/mwN/inI+vPY/aOY+/NsWlRrSWXfINZEfMnuvvsZ3WQ82cYsTqafYErL6QR6lsdo\nNhBVt7flgbJXMCG+Vckx56DFjVM3/mLlHyswYsQNNzRoCfQorzy4n9tmARU8K+GlvVnOx9fdT8mG\nA9CtViSVvYLxcfPFTeOmZDuxTKOhW61I/N0tmXaeDWmNh9YDN7RU9avG0AavYMLIucwzjG4ynh29\n9rI6/EumNZ/FOy2nMaTRUB4t/xj/DFvDpl5b+XfE19QKrM3q8C9ZHf4lG3rEEp92lM/D/kV4nS5U\n8alKOc9yTPpxPC2qtWRV+Fq29NzF3ucPsDr8S77qFsML9S0p7zpU74wbbhxKOUBF70rkGCzZSnJN\nN0tYBHpa6nQObfAK1cvVoIJ3RQI8LL+r7B1k+Uy/EDy1nkxuNp3POq+iRkBNvN18+EeL2WjRElKu\nKpOaTcND44Gbxg0tWp5/dOAtwQj+HgF4ab2V4C2wBEsFeQfzkP9D+LsH8HBALRoFPYGn1rKOP01c\nxrjQtwkNaUrbmu15OLAWjYIasyp8LW1rtmfIzkH0rdePIO9gXn9qFGYzrEhcrmxL81otYOKB8Upw\nw9yfZxPgGcjSDsup4lOV6uVqsKLzSmoGPMzwJ0YCoM0PovJz96NbrUibvnppvRna4BX+7/pJS3CW\n1pPXnxrFtOazqOhXmecfHci2XnvY+/wBRoaOZkn75VQt9xAVvSpRzt0fD40H5b0qUMWnqs2bM4Ge\n5fMDkUKoXq56/udZtq2a5WvRrVYkFXwqKNsYgL97ANXKVae8ZwWGNnglv8/lcNe480KDYco8rNt6\nJa/KpOWkKT9bt1/rz1q0ynbv516OoQ1eYVrzWQDozXplX/DQePD8o5YsTIPqDybLoGNa85m80WQs\nYCkPtibiSzZH7eSdZ6bZ9PlOAt1vrRmbZ84l6x5La90ug9a9uF0w1dFLlgwu1jd9fk49TO9H+tlM\n82KDl3HTuCulxazbf2F1/e2vaXsnWrRMaz6LmS3ncCknlUBPy3ZSMPDRA0/MmC3lzcxGXm8yBrPZ\nEoj3/KMD2dJzF5sitynH3/ScNF5pNMImC5D1/wY1HMyghoOZ1nwWO/vstfn9tOazyMzLQIOGN5qM\nJdinCnrTzfR9Hu6W9ejvEYAZM9dyr/JKo9eoXb4Oyzt+Tr1K9bmUdZFJzabQKKgxGo0l0KyKXwjT\nWsxgYfx8pj4zg4cDavN52L8Y1HCwMjCpHlCDD39dyNyfZ/N6k1Gs6PRPm8GKtURgwRuK1vNickaS\nkiJ95+ltyt8VzPpjPZ4sjJ+vTO+u9VDeJE7VpSg3LAue80JDmrKp3ya1vm5RSvhofGxatTSr2sKm\nVYOz+loWWIMzXR2kKUqeNTDb2qphaKNXbVo1OOMGw2fhq2xaNbSt2Z4g72Da1myv2jydwdG0xUWx\njt/UHMdZr5HuVjq5OOR4J4pLg8but0yLcjj5EGbMqt60Tkw7RlLmedUDYQwmvarzc0bQSnidCEY1\nGWf3g5iipOpSSNFdUL1Uhq+Hr6rzc2awjjPmqXbACjy4ZcuckbEoMe0YF3TqBtQ5WmahKF542bRq\nyM6/l5atYrl6H3dfm1Ytzsgs5YzsQmlZlzBg/xv+RQmv06XMVTC4H23oEWv39te2ZntCfKvafa0U\n4leVav417A5CcnUWHyuN2f7tOMjX8mK2IwEk1ioY9n6+u8bd7s+3lLOs5VDgoaPfY2hIU74IW233\nOTQ+9Sjzf3nX7nFNaEhTPu/8L4fO4SaT44Gwjlxj7z+3j0x9ht0BfY5mcWlRrSXuGnfVX6q4V2oE\nY9erWN+mLWmOZiJyNIuOo9Q4nj8R1MSmLa7kjCQWxs932fVIqi6FpBv2fXbRdX3uU9YAH+sA2noB\nbW2tN0bv9H/7z+1jReJyFrVdQohfVVJ1KcqJrKhB0d0G7LcL9rnd31ozLRRcDrAMjj9OWMzi3xbi\nrvEg2DeY1xqPYkXich7yr8byjp8r/dx/bh8TfxzHZ51WKfOaeXg6rzcZxdsH3gSz5SS/r98BUnUp\nvLBjIFdy0jGY9CxqswSwRNGGhjQlPvUoY/ePUh5Ob/pzIy2qtWT4npeUFGmrEleyP3kvX3RerQwa\nJh4Yz2edV9EoqLGyDNYdqedjvanmX5313W8ONENDmtr8DJZMHGAJ2FrV5d8238fEA+NtbpAM3NaX\nbEMWwT5VOJtxhmC/Kni7+bC083LSsi4x7dBkDCYDvR/pR9zpjSzv+DlpWZdoFNSYH5L3YzDrCfat\nwph649nw11eE+FVlS89dJKYdU/q8KXKb8j3Vq1Q/f7BanQreFZh4YBzzWi9kUMPBSv3NDSe/Zl/S\nHma2nMPcn2czpeV0TqafoJJPJYJ8g5Xlsa7fhfHz+bzzv/KjuGvabK9FrZtq/tXZ3Xc/1fyrs6FH\nrM32VTgAzbpdFdzWwXIB2/Ox3jxS4RFLkFHiSmJPbWT3uR2U96yAzpBJFd8QPuu8ihC/qhy4sJ83\nQsfQt14/QkOaEuJXldUnVrL5dAwvNhpm8/kbesSy/9w+xn7/Bi82eJnDqQeZ1GwKk398m5TMCxgx\nMvrJcaw7uYalHZYr68M6vTVQ4bPOqziZfoJVx79gdJPxbD+zGbMZxrWYwIrE5VQvV4M5z81n5uHp\nvBE6Bn/PABYnLKCSV2Vu5F3ng3ZLCfINZvD2AVzNu8q8Vgu4mnOVmUemMrTBK+w6u4O07IuMeGIU\nQxoNVTJ8ffr7x1zOuQRmSLj8K1X8Qpj0zBS61e1OeJ0Iwut0Ufr58bHFfNhumc2Az1PryZSW09l5\negf/OvEFXlpvNBq4mJWqZIjxcy/HdYNtlHSgZ3laPdSGrWfi0KK97RtRWrRoNBo83L0Y3WQ8SxMW\n0bVWd7ad2UzLkFYcTv3xrm9TmTHj6+ZHllGHn1s5dEZLeTAaW+q1AAAgAElEQVSz2dK/AK8Axjw1\nnnUn11ArsBa1Amoz+slxfPjrQmU7OJx8iJV/rGBow1fY8NdXfNBmGWeunyH21EYy8m5wKuO/uGnc\nMJqNBHoGFlmSDiDAM5DwhyPYcWYrGfobPFGxMb9fuf0NKxMmKnhXYO7PszGbYVqLGbx94E1ee2I0\nixMW8HRQM3RGHa80GqEMgIJ8g/k0cRkvNniZL/9cw4uNhinfWWhIUzZFblMC74o6VidnJBF3Ooae\nj/W2+f3I0NG0qNZSOabsPreD4U+MZO7RmXi7+ZCpz8ANN2a2nMPi3xYy+slxrDr+BUvaLyc0pCnJ\nGUn5gYCWfdNd44GPh6W1Bv9Z992C/QqvE0GQbzBj94+i76P9mfTjeOXYYd2OrUGw1mMmoBxzrMcH\n6w1H63QFjxfWdVPweFvw3FT4hmXB/tUIdM3AUdjy06r3tqKfhx/ZedmqvwHZrW4P9ibtplvdHqrN\n861mk5l5ZCpvNZus2jyfDWnNwdQf7inA815V86lGcnayqhka61dswO9XjlG/YgPV5lnFqwoXcy+q\nGlzihRe55Kp6098TT/LIUzUbjLVEppo3qZ0xT4BXm4xk5pGpvNpkpGrzVCPNemHTn53F4J0DmP7s\nLNXm6QypuhQy9DdI1aWU6gwKqboUruVeVbWfgxq8wMwjUxnU4AVV5gdQw68GZ3VnqeGn3vigoldF\nLuZepKJXRdXmCc45Nvu7+ZNhvDUjrShZagahAfR8rDcrEj++5frAEeF1Ilgd/qWqgTBgCeRXU8Hs\nomqxvhEfGhKq2vKHhjQlNlLd0jjOeHBvnW9ZYH2RRM3AFWvggjPWa1lwOPmQqttoo6DGNvcY1Jnn\nEzatGnLJtWnV8LfKT7A3aTd/q6xePz/osIwuMR34oMMy1eZpVRa2dzUyXRTldtULRMlxdPur4O3Y\nGNyRMnNqlGR1tJRUiF9VagbYHwRzMv0EJkycTD9h1znA0XKvIX5VeTigtt39tz6TcmQ7qlepPu5a\n+zP5WMtfFr5nfq8cze7o6OefTD+BEaPd24CVRmP/vaV6lerjprE/K1ejoMYEeATaPeYIDWnK+60/\ntHv5w+tEMK35LLuvHdQIxrZkh9XaHcjkaGY0R/168RebtrgcDeI5c/2MTWuPtjXbsfL4Cruzwzn6\nQoaj6yDEryq1K9S2a9oHKgio8IPL27W3+7/kjCRLuaW2S4p8oHk7ateCtr5RZX1gC5aD0eZeO21O\nSNX8qyvR1gX7MKjhYCWIx8p6IrIeSAr+XyWfyixo8yFBvsG3HOys5XCs8x8ZOhqA2Kib2TPeaTmN\nIRk3gydut8MU/v3dAqSsPxc1TeHfLWq7hLH7R7G84+eA5SF3we+xYECNNdDDyhpAY/1/a5CS9eei\nTuIF11Ph9V2wta6PIN/gWwKXrPO3rt+Cn1N4AHW7dXOnzFS3m77gv62fXfC7DK/ThTf2jmBpB0tm\nIWuwE6AEIxX83E2R20jVpdyy7VTzr67UQCy4XzUKakxi2jGmHZpMz8d637K+C67jgllFrIEZQxoN\nJVWXwsQD45VgvYLrb0ijoUqgl3U+8alHydDfYHLTaaw6/gWrwtcqgU9vhI5RgssK9uP9NosYtmsw\nk5pPY93JNRjyswJZBxQFv+fNPXfaLH9oSFPionYogVK7z+1Q+pqYdoy3fxiLt7s3o58cx7yf36X/\n44NYffyfeLl7MqHpO6xIXE41vxoM+5sl09HcozOp5F0Zo8nI5ObTlEAy6/cDsP3MZl5/ahQHL/zI\n0Us/KQFAz4a05tUmIxj73Wja1+zI+r/W4ePmi96Yx+tNxrD9zGay9Nn4evjwWuNRXM25Ss/HepOY\ndkxZp49UeIRXvx3Kpx1XEl4nQvkurN/NIxUeYebh6QC3fE/D97zEmKfG8fGxJUx9ZgZTD04m25DF\npGZTWfzbQsxmGPPUOOpVqs/Y/aOo6F2JQK9A/hXxJYlpx/jv1f/yxX9WoNNn4unmiZvWjbefnkwl\nn0pKX6zfmXU/DPQKZP4v77Ki0z9pFNRYOZ5at9fQkKZKIFtBdzvu32kwUHBe1v2qgncFViQu55VG\nI5S+WddPwUCjwoF+hY9JRf274Odagwity1twvoUDiJIzkjCY9DYXKIWXuzjHk8LLLkqf5Z0/V21e\n77T4B29+P5J3WvxDtXlC/nHDr4aq2Tas4xVrq4YpLacTEdOJKS2nqzbPz7uspktMBz7vslq1eUY9\n2offjxwj6tE+qs3TGcEl519L46GPK3L+tTTV5jmx+VRmHpnKxOZTVZvn1OYzmXlkKlObz1RtnhG1\nerD1TBwRtdQLfAPHU2kXxRkPfJyhUVBjagXUVvVhV8EA4dLMGf10xrb0SdhKusR04JOwlarNs2nV\nZ9h6Jo6mVZ9RbZ7gnGPz0EavsjhhgWrzE/ZR4yZ7QdX8q7Oj997bXj/YS81jGTgv28Qbe0c4/PCn\noPA6EfwrfJ3qAVCl/ThuVTD7eGnmjMw1zuKMdWrNgquWZfGLmXnEMnZV69qlmn91lnf8XNVld8Y1\nmwce6NGrmtHP0ZIYt+Plpt6LC87kjON9wXucajmZfgID9pW9EOpx5BipxraWY7Q/Y9fI0NFcz73u\n0HHT+tzC2hZXNf/qLO2w3O510LZmeyp5Vbb7uOroWEyNIB5HhfhVpZa//YFIalA7u2NxOFrODCzr\nsKpfNYfWoZvG/hclViWu5Ib+OqsSV/JOy2nFnj4+9SiTfhx/y/Ps4kz/3i+Wyjr2nqccPb+lZV3C\n7EBpvRC/qlQPsD8zWnxqvNLacx3laLZuR4+laozd1Mgm5MiLdY4GNFbzr87uv++2a1qN2ZrS4QGQ\nlub4m3Wl5aK7JPuh1mcVDF5yxTosuByl5XssqDT26XbU7mtR83P0M+40fVH/Z71RY/2/wsF2hbfd\n5IwkesZFKEFOY/ePsvvipnB/kjOSlHkaTHrWd7cEfViDm+a1WkBa1iVe/XYoMT22AtwxI1nBefaM\ni2Dg44NZeXwF5T0rULXcQ0qQ3LqIDew/t4+Pjy0hz6gnNsq2RuWdlu12N7qsb+wZTHols01Ry16w\ntX5WwX9b/7aovhRcXwUDv24nOSOJvpujlAsZV+x71vVSMBjxTn9rb/+s2/G8VgvuecBaeL07S1CQ\nv1PnL+7uw/0f2T0AL0pyRhLdYsLY2muX6ttPWTlHqn3T3xnzTM5IIvybDjalC0vjPHee3sYLOweq\n/rBvWfxiVYO/kjOS6LKxg6oPeZMzkmj91TP80P8n1bf7nae3qf7wdO0fq1U9loBz+llWjiNlQcFx\nsFrr9N1DM1mcsIDRTcbbdXOwKGv/WM2b34/kgzbLVN1GrQ9kpzWfpdrxJD71KBExnTBON6oyP2Gf\nqu8/5JSgHTW5+r7KvYpPPaocJ8pCMIianPEdlZXv3ZmccR9K7XXqjO0+OSOJzhvaKpm+1ZqnM7Yn\nta9banwcpGQGVevFgPjUo/SICWdzr52q9tUZ14EPus3n1zPsqWGu7sYD7bHFj99SfaCkOHo/oDSc\nNx3NYufoOohPPUpkbBfVg/TulVpZ/Jz5jOheOHq/w9HPd/TeiKPX7oWfo9gzfbv1z/Ld8wdd8vnx\nqUeJiu1KbJT9mT/VGIM68j06ui85ev9iwOY+7E3aTYfqnfmyxzfFnl4NauyH3TeFsaWnfc8sHB3j\nq3Hf3N5naRIEJEqU3HwXZcmdAscKn3ydsW0XFYxR8HPsuclgrV/68u4hShm3wv1XOwikpIJKrJ9z\nLxd5rj4W3evgTY2LVlcv6+1IEJDrNfn4KdVviJTW7U3YctY5qywErDhDWVmfQqhJ7W00PvUo3TaF\nsbXnLlVvUjsjSA1g4v7xzGurXuae+NSjRMV1JWdKjmrzFMXXYOnfykS5obJyjniQH4rL2KBscEZg\nkSMPqm43T2eUQnPGiwZqP3B//LOHuaq/SgWPCvzfy2dVmSeUnWuMB53cM3I979neqpfMLA41gh/K\nwr3fO03vSPCG9frCVd/h/VDK01kvp90rNc6tamwHjuxLagRIO7ovOzLmKS3bsaPr4N1DM+1+2cpZ\nL1cVhxrHc0dftI+KjbCpgFQcahxLJAjoHkgQkBBCTWXxpqZ14KI36l2e0tNZXH2Rd6/utZ9lZXmK\nS27ouF7C6RP35bYlhBCibCorD+XiU4/Sa3M31cvdnM49TvPqzVWbnyg+GRsJIRxVFgLAnJUhQ+1+\nOuOhU2nIDiLujdwzcr2difvK3H3v0sbVWWxc/ezifrin7eprVDXWoau3A1d/viNKSxCQIxwd+zia\nRcdRpeE7UCOo05EgIpAgICGEKFHnr5+n59c92dRvEzUCa7i6O8Vy/vp5gDLXbyGEEEIIcX8qa2Pr\nI0lHJGBHCCFEmXX++vlSf749f/08z618jh+H/qhqX8vCsgshhBCidLgfxg2OLoMr18H56+eJWBfB\ntoHbXPo9lNV1KEFAQgghhBBCCCGEEEIIIYQQQgghhBBClHFaV3dACCGEEEIIIYQQQgghhBBCCCGE\nEEII4RgJAhJCCCGEEEIIIYQQQgghhBBCCCGEEKKMkyAgIYQQQgghhBBCCCGEEEIIIYQQQgghyjgJ\nAhJCCCGEEEIIIYQQQgghhBBCCCGEEKKMkyAgIYQQQgghhBBCCCGEEEIIIYQQQgghyjgJAioFjh07\nRnR09C2/37dvH71796Zfv36sX78eAL1ez7hx4+jfvz8DBw7k1KlTJd3de1ac5crLy2PcuHE8//zz\nDB06lDNnzpRwb4vndssGkJ2dTf/+/ZXvxmQyMW3aNPr160d0dDRnz54tya4WW3GW7V6mKU2Ks2x6\nvZ633nqLgQMH0qdPH/bu3VuSXS2W4iyX0Whk0qRJ9O/fnwEDBvDnn3+WZFeLzZ7tMT09nTZt2pTq\n4yMUf9l69uxJdHQ00dHRTJo0qaS6aZfiLtunn35Kv3796NWrFxs2bCipbj6wytp56UFVlvb5B1HB\n49zZs2cZMGAAAwcOZPr06ZhMJhf3ToDtd3T8+HFatWql7FPbt293ce9EUWNt2ZeEK8i4qOyQsVHp\nJeOiskHGRqWXjIuEKF1kzGE/GRM4Ts7X9pPzqeOKWoeyHRZPUc9gXbUdupfIp4jb+uyzz9i8eTM+\nPj42v9fr9cydO5dvvvkGHx8fBgwYQPv27UlISMBgMPDVV19x8OBBPvzwQ5YuXeqi3t9ecZdr586d\n+Pr6sn79ek6fPs2sWbP44osvXNT7O7vdsgEkJiYyffp0Ll68qPzu22+/JS8vj6+//pqEhATmzZvH\n8uXLS7LL96y4y3a3aUqT4i7b5s2bKV++PO+//z7Xrl0jKiqKDh06lGSX70lxl+u7774D4KuvvuLI\nkSN88MEH99X2qNfrmTZtGt7e3iXVTbsUd9lyc3Mxm82sWbOmJLtpl+Iu25EjR/jtt9/48ssvyc7O\nZuXKlSXZ3QdSWTovPajK0j7/ICp8nJs7dy5jxoyhefPmTJs2jb1799KpUycX9/LBVvg7+uOPP3jx\nxRcZOnSoi3smrIoaa9erV0/2JVHiZFxUNsjYqPSScVHZIGOj0k3GRUKUHjLmsJ+MCRwn52vHyPnU\ncUWtw9dff122w2Io6hms2Wx2yXYomYBcrGbNmkUG8Zw6dYqaNWsSGBiIp6cnoaGhHD16lNq1a2M0\nGjGZTGRmZuLuXjrjuIq7XP/9739p3bo1AHXq1CnVGTxut2xgyWj00UcfUadOHeV38fHxtGrVCoAm\nTZrwn//8p0T6aY/iLtvdpilNirts4eHhjB49GgCz2Yybm1uJ9LO4irtcHTt2ZNasWQBcuHCBgICA\nEumnPezZHt977z369+9PcHBwSXTRbsVdtpMnT5Kdnc3QoUMZPHgwCQkJJdXVYivusv3444889thj\nvP766wwfPpy2bduWUE8fXGXpvPSgKkv7/IOo8HHujz/+oFmzZgC0bt2aQ4cOuaprIl/h7+g///kP\n+/fvZ9CgQUyePJnMzEwX9k5A0WNt2ZeEK8i4qGyQsVHpJeOiskHGRqWbjIuEKD1kzGE/GRM4Ts7X\njpHzqeOKWoeyHRZPUc9gXbUdShCQi4WFhRUZyJOZmYm/v7/ys5+fH5mZmfj6+pKcnEyXLl2YOnVq\nqS3BVNzlql+/Pt999x1ms5mEhAQuXryI0WgsyS7fs9stG0BoaChVq1a1+V1mZiblypVTfnZzc8Ng\nMDi1j/Yq7rLdbZrSpLjL5ufnR7ly5cjMzGTUqFGMGTOmJLpZbPZ8Z+7u7kyYMIFZs2bRvXt3Z3fR\nbsVdtpiYGCpWrKjcxC/Nirts3t7eDBs2jC+++IIZM2Ywfvz4++Y4cvXqVf7zn/+wePFiZdnMZnNJ\ndPWBVZbOSw+qsrTPP4gKH+fMZjMajQawjB8yMjJc1TWRr/B39MQTT/D222+zdu1aatSowUcffeTC\n3gkoeqwt+5JwBRkXlQ0yNiq9ZFxUNsjYqHSTcZEQpYeMOewnYwLHyfnaMXI+dVxR61C2w+Ir/AzW\nVduhBAGVUuXKlUOn0yk/63Q6/P39WbVqFc899xy7du0iLi6OiRMnkpub68KeFs/tlqt3796UK1eO\ngQMHsmfPHho2bFhqM68UV+FlNplMZSJoRkBKSgqDBw8mMjKyVAfL2OO9995j165dTJ06laysLFd3\nRxUbN27k0KFDREdHc+LECSZMmEBaWpqru6WK2rVr06NHDzQaDbVr16Z8+fL3zbKVL1+e5557Dk9P\nT+rUqYOXlxdXrlxxdbfua3JeKv3u533+fqTV3ryk0ul0pTrL3oOqU6dO/O1vf1P+ffz4cRf3SMCt\nY23Zl4QryLiobJCxUdkhx/KyQcZGpY+Mi4QoHWTMoR45jjlOztfFJ+dTxxVeh7Id2qfgM9iCcRwl\nuR1KEFApVbduXc6ePcu1a9fIy8vjl19+4cknnyQgIEDJpBMYGIjBYCi1GXOKcrvlSkxMpEWLFnz5\n5ZeEh4dTo0YNV3dVNU899RQ//PADAAkJCTz22GMu7pG4F5cvX2bo0KG89dZb9OnTx9XdUU1sbCyf\nfvopAD4+Pmg0GpuBUFm2du1a/v3vf7NmzRrq16/Pe++9R1BQkKu7pYpvvvmGefPmAXDx4kUyMzPv\nm2ULDQ3lwIEDmM1mLl68SHZ2NuXLl3d1t+5rcl4q/e7nff5+1KBBA44cOQLADz/8wNNPP+3iHonC\nhg0bxu+//w7A4cOHadiwoYt7JIoaa8u+JFxBxkVlg4yNyg45lpcNMjYqXWRcJETpIWMO9chxzHFy\nvi4eOZ86rqh1KNth8RT1DPZvf/ubS7ZDeb2plNmyZQtZWVn069ePiRMnMmzYMMxmM71796ZKlSoM\nGTKEyZMnM3DgQPR6PW+++Sa+vr6u7vZd3W25PDw8WLx4MZ988gn+/v68++67ru7yPSu4bEXp1KkT\nBw8epH///pjNZubMmVPCPbTf3ZatLLvbsn3yySfcuHGDjz/+mI8//hiAzz77DG9v75LsZrHdbbk6\nd+7MpEmTGDRoEAaDgcmTJ5f6ZbJ6kLfHPn36MGnSJAYMGIBGo2HOnDll5g3luy1bu3btOHr0KH36\n9MFsNjNt2rT7JhNcaVWWz0sPirK8zz+IJkyYwNSpU1m0aBF16tQhLCzM1V0ShfzjH/9g1qxZeHh4\nULlyZaU2t3Cdosba77zzDrNnz5Z9SZQoGReVDTI2KjtkXFQ2yNiodJFxkRClh4w51CNjAsfJ+bp4\n5HzquKLW4cSJE5kzZ45sh/eoqGewdevWdcnxUGM2m80l8klCCCGEEEIIIYQQQgghhBBCCCGEEEII\np7g/asAIIYQQQgghhBBCCCGEEEIIIYQQQgjxAJMgICGEEEIIIYQQQgghhBBCCCGEEEIIIco4CQIS\nQgghhBBCCCGEEEIIIYQQQgghhBCijJMgICGEEEIIIYQQQgghhBBCCCGEEEIIIco4CQISQgghhBBC\nCCGEEEIIIYQQQgghhBCijJMgICGE0yUlJdG+ffsi/+/xxx936mdHRkY6df5CCCGEEM5w5MgRoqOj\nXd0NIYQQQgiXk3GREEIIIcSdTZw4kZiYGFd3QwhRSkgQkBDivhYXF+fqLgghhBBCCCGEEEIIIYQQ\nQgghhBBOJ0FAQgjVffLJJ3Tt2pXu3bszb948TCYTOTk5vPnmm3Tr1o2BAwdy9epVm2muXbvG66+/\nTpcuXYiMjOTw4cN3/Iz27dsze/ZsoqKiiIqK4vjx4wBER0czcuRIwsLCOHHihJJp6Hbz/+GHH+jT\npw9RUVGMHDnyln4JIYQQQrjKlStXePnllwkLC2P48OHk5eWxceNGunXrRvfu3Zk4cSI6nQ6wza4Y\nExPDxIkTAcuYacyYMYSFhZGenu6S5RBCCCGEcJSMi4QQQgghbjKbzcydO5ewsDCio6M5d+4cAB98\n8AHPP/88YWFh9O/fn7S0NDZs2MC4ceOUaZctW8aKFStc1XUhRAmQICAhhKq+//579u3bR0xMDJs2\nbeLs2bMcOHCAK1eu8OKLL7J161YqV67M9u3bbaZbvHgxNWvWZMeOHcyfP58PP/zwrp9Vvnx5YmNj\nGTVqFBMmTFB+//jjj7Nr1y7q169/x/lfuXKFhQsX8sUXXxAbG8tzzz3HggUL1FsZQgghhBAOuHDh\nAtOmTWPHjh1cvnyZL7/8kk8++YQ1a9awZcsWfHx8WLZs2V3n07p1a3bt2kWlSpVKoNdCCCGEEOqT\ncZEQQgghxE27du3i+PHjbN26lcWLF3Pu3DmMRiOnT5/mq6++YteuXdSsWZMtW7bQtWtXDh8+jE6n\nw2w2s2XLFiIjI129CEIIJ5IgICGEqn766SciIiLw9vbG3d2d3r17c/jwYYKDg3niiScAeOSRR27J\nuHP06FFl0PH444/z9ddf3/Wznn/+ecDyJtfFixe5cuUKgPI5d5v/sWPHSElJYfDgwURGRrJ27VrO\nnj1r/8ILIYQQQqioXr161KhRA61WS926dcnIyKBdu3ZUqFABgH79+vHTTz/ddT6NGzd2dleFEEII\nIZxKxkVCCCGEEDf9/PPPdO7cGQ8PDypWrEjr1q1xc3NjwoQJbNiwgXnz5pGQkEBWVhZ+fn60adOG\n3bt3Ex8fT40aNahSpYqrF0EI4UTuru6AEOL+YjKZbvmdwWDA3f3m4Uaj0WA2m23+puD/A5w6dYra\ntWuj1d4+VrHgNCaTCTc3NwC8vb3v+LfW+RuNRp566ik++eQTAHJzc5XU0UIIIYQQrlZ4/BQQEMCN\nGzeU35nNZgwGg83PGo3G5ncAXl5ezu+sEEIIIYQTybhICCGEEOImjUZj8zzO3d2da9euMWzYMIYM\nGUJYWBharVZ5Fte7d2+WL19O9erV6dWrl6u6LYQoIZIJSAihqmeeeYZt27aRk5ODwWBg48aNPPPM\nM3ed7umnn1ZKhJ06dYqXX34ZjUZzx2m2bdsGwJ49e6hbty6BgYHFmv8TTzxBQkIC//vf/wD4+OOP\nmT9//j0tpxBCCCGEK+zbt49r164BsH79epo3bw5AhQoV+OuvvzCbzezbt8+VXRRCCCGEKBEyLhJC\nCCHEg6pFixbs3LmTvLw8rl+/zoEDB9BoNDRr1owBAwbwyCOPcPDgQYxGI2B5RpaamsqRI0fo2LGj\ni3svhHA2yQQkhFBVu3btOHHiBL1798ZgMNCqVSvatWvH6tWr7zjdqFGjmDJlCj169MDd3Z358+ff\nNQjo119/5ZtvvsHHx4d58+YVe/7BwcHMmTOHMWPGYDKZqFKlCu+//36xl1kIIYQQoiSUK1eOV199\nlejoaPR6PQ0bNmTGjBkAjBs3juHDh1O5cmVCQ0NvKb0qhBBCCHE/kXGREEIIIR5kHTt2JDExkW7d\nulG5cmXq1q1LTk4OJ0+epHv37nh4ePD444+TlJRkM83169fx9PR0Yc+FECVBYy5ck0cIIcqA9u3b\ns3r1aqpXr+7qrgghhBBCCCGEEEIIIYQQQghR6pjNZvR6PUOGDOGdd96hYcOGru6SEMLJJBOQEKLU\nio6OtqnvbtW/f38X9EYIIYQQQgghhBBCCCGEEEKIsiMtLY2IiAj69u0rAUBCPCAkE5AQQgghhBBC\nCCGEEEIIIYQQQgghhBBlnNbVHRBCCCGEEEIIIYQQQgghhBBCCCGEEEI4RoKAhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEKOMkCEiI+8yRI0fo1q2bq7tRYi5evEj//v2LPd2TTz5JUlKSav3YsGEDa9euVW1+\nQgghhHC++2Xc1L59exITE2/5fUkt3969e5k9e7bTP0cIIYQQJSMpKYknn3zyrn+XmJhI+/btS6BH\nJeOdd97h0KFDxZpm5syZLF26VLU+nD9/njfeeEO1+QkhhBDCNe6n8dTSpUuZOXNmsacbOnQoV65c\nAeDll1/mv//9723/9n65RydEaeHu6g4IIYQjqlSpwldffeXqbhAfH8+jjz7q6m4IIYQQQpS4Dh06\n0KFDB1d3QwghhBDCIe+++66ru8CFCxf43//+5+puCCGEEEI47ODBg8q/P/vsMxf2RIgHj2QCEuI+\nlJWVxZtvvklkZCTh4eH88ssvAGRkZDB+/Hi6detG9+7dmT9/PgaDAYDHH39cicgt+PORI0fo0aMH\n/fv3p0ePHuTl5Sl/8+OPP9K9e3fl5xs3btC0aVOuX7/OunXr6NGjB71792bgwIFFRvguXbqUUaNG\nMXDgQMLCwhg9ejSZmZmAJcPP66+/Tq9evejevTuffPIJYImebtOmDUOHDiUsLIzffvtNiabW6/XM\nmjWLrl270r17d9555x1lfr/88guRkZFERUUxdepUTCbTXdfjxIkTGT58OBEREbz//vvk5eUxZ84c\nevbsSY8ePZg4cSKZmZns2bOHffv2sWrVKtauXXtLVHTBn6Ojoxk5ciRdu3ZlzZo1REdHs3DhQgYN\nGkT79u1566237qlvQgghhFBHWRk33WmcA/D111/Tq3+aQBsAACAASURBVFcv2rZtywcffHDL9Dqd\njkmTJhEWFkbXrl1ZtGgRZrP5juumQYMGvPfee/Tq1Yvw8HB2794NQExMDAMHDqRnz55ER0cTExPD\nq6++CkBaWhqvvfYa4eHhdO3aldWrVyvrc+LEicrYbs6cOcr6FEIIIYR9oqKilMw127Zto1GjRuTk\n5AAwZcoU1q5de9t7GXD7ey8FnTp1ivbt27Nnzx4A1q1bR1hYGL1792bdunXK312+fJnXXnuNfv36\n0b59e6Kjo0lPTyc+Pp42bdoo9zqys7Np0aIF6enpyrQmk4k2bdrYZDZ88803WbduHadOnaJ///70\n6tWLnj17FpmFOSkpiXbt2jFhwgQiIyPp0aOHMqYDWL58OT179iQyMpLXXnuNixcvAkXfo9m5cycA\n3377LVFRUXTv3p0BAwbw+++/A5CZmcno0aMJCwsjOjqa06dP3/V7KmqMuG/fPvr27UtUVBT9+/fn\nt99+w2g0MmXKFM6dO8ewYcNuySBQ8OeixmMjRozg9ddfp1u3bvTs2ZM///zzrn0TQgghHnQynrJI\nSkqiY8eOzJo1iz59+tCpUye2b99uswyDBg2iW7duvPXWWzb3pIoyadIkAF544QVSUlJsslh/8803\nRERE0L17dwYPHkxKSorNtL/88gvt2rXj119/RafTMWrUKCIjI+nZsydTpkyRZ2hC3AMJAhLiPpSa\nmsqQIUOIi4ujf//+Slri2bNnU758ebZs2cLGjRv5v//7P1auXHnX+f31118sXLiQzZs34+npqfz+\n2WefRafTKSfurVu30qZNG8qVK8ecOXP4/PPP2bhxI88//zzx8fFFzvvYsWMsWbKEHTt24O7uzkcf\nfQTAW2+9Re/evYmJieGbb77h0KFDyoAjNTWV1157jV27dhEUFKTMa/ny5Vy6dIm4uDji4uIwmUzM\nnz+fvLw8Ro8ezcSJE4mNjaV58+bKIO5ucnJy2LZtG2+99RYrVqzAzc2NmJgYNm/eTHBwMAsWLKBT\np060b9+eIUOGMGjQoLvOMyAggO3btxMdHQ3AuXPnWLNmDZs3b+ann37i559/vqe+CSGEEMJxZWXc\ndLtxjpWXlxcxMTFs2LCBlStX3nIDZcmSJeTm5rJ9+3ZiY2P59ddf7zrmMBqNBAYGEhMTw4cffsjk\nyZOV4Kf//ve/rFmzhjVr1thMM2PGDGrVqsXOnTv5+uuvWb9+PWfPnmXOnDk0bNiQmJgYYmNjuXr1\nKv/85z/vuj6FEEIIcXsdO3bkwIEDABw4cIDAwEB++eUXTCYT+/fvp3Pnzre9lwF3vvcC8OeffzJ8\n+HDeffddOnXqxIkTJ1i2bBn//ve/2bhxIx4eHsrfbtu2jSZNmvD111+zd+9evL29iYuLIzQ0lPLl\nyyv93LZtGy1atKBSpUrKtFqtlt69e7Np0yYArl+/zqFDh+jevTtffPEF7du3JyYmhhUrVijLV9iF\nCxd47rnniIuLY9y4cYwZMwa9Xk9sbCx//vknGzZsIC4ujjZt2jBlyhRlusL3aMDykGv69OksXbqU\nLVu2MGrUKF577TUyMzNZsmQJ3t7e7Ny5k8WLF99z1p6CY8QLFy7wwQcfsGLFCmJjY5k1axZvvPEG\nubm5zJ49m5o1a/LFF1/cdZ6Fx2NHjx5l6tSpbN26laeeeuqe5iGEEEI86GQ8ddP58+d57rnn+Oab\nbxg/fjzvv/++8n/nzp1TxkZms5nly5ffcb3OnTsX/p+9Ow9vqkz7B/7tCjQNeyA1oUjRDsjUKrE6\noCwyItUKbSkUWiyggMsMOOAuIoyMP0AHUUTGURCXSqXsi9WOCgIqDFPjWCsvdaGyJCYSC0KaFpq2\n+f3Rt32NUGS5H5pDvp/rmuuMaXvznJyT5Ml57nPfAN544w3ExMQ0Pl5aWor58+dj6dKl2LRpEwYN\nGuQX69///jcee+wxvPTSS+jduzc++OADeDwebNiwAatXr24cJxGdHpOAiC5CXbp0QWJiIgCgR48e\njYs127dvx+23346QkBBERkZi9OjR2L59+2/Gi4mJgclkOunxkJAQjBgxonFSsXbtWowcORJhYWFI\nTk7G6NGjMXv2bOj1eowYMeKUsZOTk9GxY0eEhoZixIgR+OSTT1BZWYmioiIsXLgQqampyMzMhMPh\nQGlpKQAgPDwcV1111Umxtm/fjtGjRyMiIgKhoaHIycnBxx9/jG+++Qbh4eHo06cPAOC2226DTqc7\ng2cSsFgsjf9/69at2LJlC9LS0pCamooPP/wQe/fuPaM4v3TNNdf4/feNN96I0NBQREdHo2vXrjh6\n9OhZxyQiIqJzo5V5U1PznAYNfdMNBgM6duzodzcYAOzYsQMjRoxAWFgYIiMj8dZbb+G66677zf25\n/fbbG5+b+Ph4FBUVAaivfhQdHX3S7+/YsQOjRo0CAOj1erzzzjvo2rUrtm7divz8fKSmpmL48OH4\n8ssveXc6ERHReRo8eHDj/OSzzz7D+PHj8emnn6K4uBixsbEwGAxNXsv4rWsv1dXVGDt2LHr27Nl4\nPWXnzp24/vrrG2/IavjMB+rv8u7duzdee+01/PWvf8W3336LyspKAMCYMWOwcuVKAPXVC7Oysk7a\nl4yMDLz33nuorq7GO++8gxtvvBF6vR6DBw/G0qVLMXnyZLz//vuYMWMGQkNPvqTdpk2bxqqLAwYM\nQFhYGL7++mt89NFHKC4uRkZGBlJTU/HWW2/5Je78+hoNUL/49Ic//AFdunQBAPTp0wft27fHV199\nhZ07dyItLQ0hISFo3749Bg8efEbH6pdzxE8//RSHDh3C+PHjkZqaigcffBAhISE4cODAGcVq8Ov5\nWK9evWA0GgHUV3Tk9SUiIqLfxvnU/4mIiMCAAQMA1M8lfv75Z7/nqX379ggJCUFGRkZj9aSztXPn\nTtxwww2NiUHjx49v7KThdDpxzz334KabbkKPHj0A1K/Rfffdd8jJycErr7yCcePGoWvXruf0bxMF\nk/DmHgARyftl5nBISEhjq4dfZ/bW1dWdsg3DL1tXAEBUVFST/1ZGRgbS0tIwcuRIuN3uxsWk+fPn\n45tvvsGOHTuwZMkSrF69+pSZwWFhYX7jCQ0NRV1dHXw+H1asWIFWrVoBAA4fPowWLVrgyJEjiIyM\nRHj4yW9fp9o/r9fr9xw0ONXfn8ov972urg7Tp09vnAR5PB6cOHHipL/59b/n9XqbjAkALVu2bPJv\niYiISC2tzJuamuc0+OXcpqm5T0hISON/OxwOtGzZEu3atWtyvMDJc7WG/25qP3/97xw8eBDt2rVD\nXV0dFi5ciO7duwOob4f2y98jIiKis/e73/0OXq8XmzdvRteuXXHjjTdi2rRpCA8Px8033wyg6WsZ\nv3XtBQAWL16Mhx9+GO+//z5uvvnmk+YYv5wn/P3vf8eXX36JjIwMXHfddaipqWn83aFDh2LBggX4\n97//jcrKSiQlJZ20LyaTCVdccQW2bt2KtWvXYvr06QDqb5z617/+hR07dmDnzp1YvHgxVqxYgdjY\nWL+//+VYGvY7LCwMdXV1mDhxIrKzswHUz91+mRxzqjnNqa7L+Hy+xrlgU8/B6fz6+lKfPn3w/PPP\nNz7mcDjQqVMnvzZmvL5ERESkHudT/6fhxjMAJ12z+eU4fT7fGa+x/VpYWJhf7OPHj8Nutzf+7JVX\nXsGf/vQn3HLLLbjyyivRpUsXfPDBB9i1axf+/e9/44477sCMGTOQnJx8Tv8+UbBgJSCiIHLDDTdg\n+fLl8Pl8qK6uxsqVK9G3b18AQPv27RvbUzT0JT0TnTt3RmJiImbOnNl41/rhw4cxYMAAtG3bFuPH\nj8fUqVPx9ddfn/LvN2/eDLfbjbq6OqxcuRI33ngjoqOjcdVVVzW2iDh27BiysrKwefPm046lX79+\nWLFiBbxeL+rq6rB8+XJcf/31iI+Ph8/nw7Zt2xr/zXO5G6rh+auurkZdXR2eeOIJLFiwAED95KTh\nYlC7du2we/du+Hw+VFZW4pNPPjnrf4uIiIiaV6DNm5qa55ypPn36YN26dairq0N1dTXuu+++xqo+\np7N+/XoAwO7du/H999+f8iLTr/+dNWvWAADcbjfGjRuHffv24YYbbsDrr7/e+Hzee++9eOutt854\n/ERERHRqN910E+bPn4/rr78e3bt3R0VFBTZt2oQhQ4YAaPpaxm9de4mMjITFYsGcOXMwa9YsuFwu\n9O3bF59++imcTicANFY4BIBPPvkE48aNQ1paGjp06IAdO3agtrYWANCqVSsMGzYM06dPx+jRo5vc\nl8zMTCxZsgTHjx9vrMz8wAMP4N1330VKSgpmzZqF6Ojok9qeAvVzqoa7+Lds2YKIiAjEx8c3trSo\nqKgAACxcuBAPP/zwaZ/TP/zhD/j0008bW03s3LkTDocDiYmJ6NevH1avXo26ujocPXr0N69VnS5+\nQ3Xpbdu2YdiwYThx4gTCwsIak31at24Nr9eL7777DsDZzTuJiIjozHE+9du2bNmCo0ePora2Fvn5\n+ejfv/9v/s0v180aXHfdddi5cycOHToEAFixYkVj2zGDwYDevXvjkUcewUMPPYSqqirk5eXhscce\nww033ICHHnoIN9xwA7799tuzGjtRMGISEFEQmTFjBg4fPoyhQ4di6NCh6NatG+65557Gn82ePRvp\n6en4n//5n8ZShGdi5MiR2LNnD9LT0wHUL4zde++9GD9+PIYPH45nn30WTz311Cn/tmPHjpg0aRJu\nueUW6PX6xvHMnz8fxcXFGDp0KEaOHInbbrsNw4YNO+047r33XnTs2BFpaWm45ZZbUFNTg8cffxwR\nERFYvHhxY0nGDz74wK9X6pn605/+BJPJhPT0dNx6663w+Xx49NFHAQD9+/dHbm4uXn75ZQwbNgzt\n27fHzTffjLvuugtXX331Wf9bRERE1LwCbd7U1DznTE2ePBkRERFITU1FWloaBgwY0HhH2+l8/vnn\nSE9Px/Tp0/Hcc8+hTZs2p/39mTNnoqysDEOHDkVWVhbuvvtu/P73v8fjjz+OysrKxuczPj4eEydO\nPOPxExER0akNHjwYZWVljcnKffv2hcFgaGyxcLprGWdy7eW6665DSkoKpk+fjt/97nd46KGHMG7c\nOAwfPtyvOvKf//xnPPPMMxg+fDgmT56M3r17+7W3Gj58OA4fPoy0tLQm92XQoEGw2+1+rVH/9Kc/\nYdOmTRg2bBgyMzNx00034dprrz3pb1u0aIENGzZg2LBh+Oc//4nFixcjLCwMI0eOxMCBA5GZmYmU\nlBR8/fXXmDdv3mmf08suuwyzZs3C5MmTcdttt+HZZ5/FP//5T+j1ekyZMgXh4eG45ZZbcM899yA+\nPv60sU7l8ssvx+zZs3H//fdj2LBhWLhwIV566SVERUXh8ssvR1hYGEaMGIHo6Gg89NBDmDRpEjIy\nMlhFkYiISBHOp35b9+7dcffdd2Po0KFo3bo17rrrrt/8m8GDByM7O9uvHXzD/k+cOBHDhg3Dxx9/\njCeffNLv79LT09GtWzfMmzcPaWlpqK2txa233orhw4ejoqICY8eOPauxEwWjEB/rghJRM1m0aBGO\nHDmCmTNnNvdQiIiIiOhXfve732Hnzp1o3759cw+FiIiINMzn82HJkiWw2+0nLfJIsNlsGDp0KP77\n3/+KxyYiIiIKBKrnU0R0cTm3hn1ERBeBsrIyTJs27ZQ/69atm19vdiIiIqKLzdKlS7Fp06ZT/mzC\nhAkXeDRERER0sfrjH/+I9u3b46WXXmruoSgzdepUfP/996f82XPPPYe4uLgLPCIiIiK6mATifIrz\nH6LAxUpAREREREREREREREREREREREQaF9rcAyAiIiIiIiIiIiIiIiIiIiIiovPDJCAiIiKiAFRc\nXIycnJxT/qyqqgqjR4/G3r17Gx97+eWXMWrUKAwfPhyrVq26UMMkIiIiIiIiIiIiIiKiABHe3AMg\nIiIiIn9LlizBxo0b0apVq5N+VlJSglmzZuHHH39sfGzXrl3473//i7fffhtVVVVYtmzZhRwuERER\nERERERERERERBYCgSgJyudzNPQSii4LdbYNJb27uYdBp2N02jC8cg9eTl/NYUUAyGPTNPYSAFhsb\ni0WLFuHhhx8+6WfV1dVYvHix388++eQTxMfH489//jMqKipO+Xe/xnmRLLvbhpEb07Bq2Hq+7xIR\n0Vnj3Kj5cW5ERES8nhYYOC9qfpwXEVFzszqLMHzjbVg77B1YjEnNPRyiZnOu8yK2AyM6R3a3rbmH\ncEakx9nwZVhFXJJj0pt5wYJIw4YMGYLw8FPnalssFsTExPg9duTIEXz11VdYuHAhnnzySTz44IPw\n+XwXYqj0v5weBw6698PpcYjG5ecjERERERHRhcHraURERIHBYkxiAhDReWASENE50EoijIpxqvgy\nrOr5DHa8YBH4eM6TlLZt2+KGG25AZGQk4uLi0KJFCxw+fLi5hxXQpF9/Rl0MYlt3hVEX89u/fIbs\nbhvSN6TwvYKIiIiIiOgC4fU0IiKiwMAEIKJzxyQgonOglUQYrdy9opVxEkli8htJslgs+Pjjj+Hz\n+fDjjz+iqqoKbdu2be5hBSxVn7krh8q2AitxFWP/sX0ocRWLxQTqy+kSEREREREREREREdHFh0lA\nRAFCVSKMirYkKhIXmABEwYbJb3Q2Nm3ahPz8/CZ/fuONN6Jnz54YMWIE7r33XsycORNhYWEXcITa\nYtKbMa/ffPHXn3S85LgUvJGch+S4FLGYVmcR0jbcykQgIiIiIiIiIiIiIqKLUIjP5/M19yAuFJfL\n3dxDaDZ2t00zC81aGGtDIkygL+BbnUVI35CCdakFomXztHCMiCiwGQz65h5C0Av2eZEWPsdVaGgx\nti61QHTfrc4iluglIjoPnBs1v2CeGxEREQUSzouaH+dFREREgeFc50WsBBSApCusaKnljN1tQ3bB\nyIAfq6oKHtL7bdTFoENLA4y6GNG4KhZMA/2YN9DKOImIqGnBXomrVXiUaDxWFyIiIiIiIiIiIiIi\nCgxMAgowKhJ2gn2hSytUHHunx4Hy4y7xlmDStJKoppVxkho87kR0MTDpzchLWSU6LzTqYhCr7yqe\ndExERERERERERERERGdHaTuw4uJizJ8/H7m5uX6Pb9myBYsXL0Z4eDgyMjKQmZmJuro6/PWvf8XX\nX3+NyMhIPPXUU+jatWvj38yZMwfdunVDVlYWAOCpp57C559/Dp1OBwD4xz/+Ab3+9OWQtFLCMNhb\nLWlh/1W1EVGx71ppz6GF4w5oZ5wkK5hbB6nC0s7NTyvzIhX4mpanlfkGEVGg4tyo+QXz3IiIiCiQ\ncF7U/DgvIiIiCgznOi8KFx5HoyVLlmDjxo1o1aqV3+Nerxdz587F6tWr0apVK2RlZWHQoEH4/PPP\nUV1djfz8fHzxxReYN28eXnrpJRw+fBgPP/ww9u3bhwkTJjTG2b17N5YuXYr27dur2oVmE+yLUVrY\nf1XVlbSw78GOxyg4saIa0cWFr2lZdrcNj378oPhzysQiIiIiIiIiIiIiIqKzo6wdWGxsLBYtWnTS\n43v37kVsbCzatGmDyMhIWCwWFBUVwWq1ol+/fgCAq666Cl999RUAwOPxYMqUKUhNTW2MUVdXh/37\n92PmzJkYPXo0Vq9efUZjYisXkqSFhUOrswjDN94Gq7NINK70a4lttkgLtPCaJ7pY8fMhsKlIqlI1\nhyEiIiIiIiIiIiIiupgpSwIaMmQIwsNPLjRUUVHh17ZLp9OhoqICFRUViI6Obnw8LCwMNTU16NKl\nCxITE/1iVFZW4vbbb8ff//53LF26FHl5eSgtLf3NMQVzkgEXUIKTxZiEtcPeEb2LXkXCjklvxvgr\nJmgiySJY30OIiJqL3W1D5qY00fdfJp/Kk/4MtxiT8PJNy8QrAXFOTERERERERFqTnp6OnJwc5OTk\n4LHHHsP+/fuRlZWF7OxszJo1C3V1dQCAlStXYvjw4cjMzMRHH30EADh+/DimTJmC7OxsTJo0CYcP\nH27OXSEiIqILQFkSUFOio6Ph8Xga/9vj8UCv15/0eF1d3SmTiACgVatWGDt2LFq1aoXo6Gj84Q9/\nOKMkoGBt+6C1O6m5ICfLqIsRjafibv/CsgLcv20KCssKxGKqwEVjIqILz+lx4IB7P5weh1hMtgML\nfHa3DXP/85ToZ67W5sREREREREREJ06cgM/nQ25uLnJzczF37lzMnTsXU6dORV5eHnw+HzZv3gyX\ny4Xc3FysWLECr776KhYsWIDq6mq8/fbbiI+PR15eHtLS0vCPf/yjuXeJiIiIFLvgSUDdu3fH/v37\n8fPPP6O6uhqfffYZrr76avTu3Rvbt28HAHzxxReIj49vMsa+ffuQlZWF2tpaeL1efP755+jVq9dv\n/tvButCjohqMKkyykGV32zByo2z1BED+tZQcl4I3kvOQHJciGlcaF42JiC48izEJSwa/Lj6P4Xt5\n8FFVXYiIiIiIiIhIldLSUlRVVeHOO+/E2LFj8cUXX2D37t249tprAQD9+/fHjh078OWXX+Lqq69G\nZGQk9Ho9YmNjUVpaCqvVin79+jX+7s6dO5tzd4iIiOgCOHWpHQU2bdqEyspKjBo1Co8++igmTJgA\nn8+HjIwMdO7cGYMHD8ann36K0aNHw+fzYc6cOU3G6t69O1JTU5GZmYmIiAikpqbi8ssvv1C7okla\nWeww6c2Y128+F+aEOD0O2CoOwOlxBPxzqiIByO62ie93oD+PREQXG7vbhmetzyDBkMj34CBi0puR\nl7JK9Jg3VBeSPpdUzDeIiIiIiIiIAKBly5aYMGECRo4ciX379mHSpEnw+XwICQkBAOh0OrjdblRU\nVECv1zf+nU6nQ0VFhd/jDb9LRKQFvOZGdO6UJgGZzWasXLkSADB06NDGxwcNGoRBgwb5/W5oaChm\nz57dZKwpU6b4/ffEiRMxceJEwdFe3LTyRml32/Doxw+y2ooQizEJc2+YL54EpoXzqaGqFM8lCmRa\neC0RNTdWYQteWjjmnG8QERERERGRSt26dUPXrl0REhKCbt26oW3btti9e3fjzz0eD1q3bo3o6Gh4\nPB6/x/V6vd/jDb9LRBToeM2N6Pxc8HZgFxsttK2yu23ILhipibFyoU+W1VmE6Z8+BKuzSCymVlq2\nsaoUBTqtvJaIzoaq85nv5SRBRXUhzl2JgtPy3W829xCIiIiIKEisXr0a8+bNAwD8+OOPqKiowPXX\nX49du3YBALZv345rrrkGV155JaxWK06cOAG32429e/ciPj4evXv3xrZt2xp/12KxNNu+EBGdKV5z\nIzo/TAI6D1zAVbPYxzd0ORZjEl6+aZloJSCtfPA2VJUK5tcnBTZVryWe83SmpM8VzotIC1TMXwJ9\nTqRaML/mg3nfVZC8caGBimSd5bvfxLRtk8Vj77LtEo1HRERERBeHESNGwO12IysrC9OmTcOcOXPw\n+OOPY9GiRRg1ahS8Xi+GDBkCg8GAnJwcZGdnY9y4cZg2bRpatGiBrKwsfPvtt8jKykJ+fj4mT57c\n3LtERHRGgv2aG9H5CPH5fL7mHsSF4nLJ9zrVSisXq7NISUuo7IKR4ndUkxwtHSMVr6VgjknBSUsl\nMg0G/W//EinV7bk4rEstED1Xlu9+E2N6jRWLR6QFwfw5bnfbMHJjGlYNWx90z4GqebaK721aYHUW\nIX1DCtalFojtf0OyznMDXhT/bJL+vLM6i5C24VYcn3FcLCadPRXXjIiIiOjs8ZpR8+O8iIiIKDCc\n67yIlYDOkxYudrMiCklTUT1CCy3rVFS5aFg8C/R9J23QSqUuCgz7jn2PElexWLzCsgLcv20KCssK\nxGISBbpgr4Dl9Diw71gZnB5Hcw+lWXhrvaLxrM4ipK6/RbwijopqONLnvFEXg85RMTDqYsRijuk1\nVkkCUENsaSEhIeIxiYiIiIiIiLQqWK+3EUlgElAQULUobNKbNVFhRhUVHz7SMVUco2BO2DHpzZjX\nb77o8+n0OGCrOBC0i2ckL1jfk+nsvZn8NpLjUsTiJcel4I3kPNGYRIFOxdxAJenkktLyPajx1aC0\nfI9oXK0kE0aERYjHlE4EUdG6yu62IW19ivj3gaiIKNF4gJpkHRUsxiRsHbe1uYdBREREREREFBCC\n/cY7ovPFJKAgoZWFCa1QVRFGxQeaFo69imQlFclvKqpqWYxJom0PiIjOlIpkHSYAUbCxu224f+t9\nmrgg0dBuSTIRaEyvsZh53d9EEy0KywowtjBLPBFIOp5Jb8aCgS+IzjUtxiSsT31XdF6oohpOiasY\nB9z7RKvJBfsNJgBwnfm65h4CERERERERUUBg1wOi88MkIDpnqpJWtLCIouKub1UfaCqSiqQXPBri\nSlMxRhXHiAlARERE2lVTJ9sSClAzHzbqYhr/J8XutmFD2VrR8RqiOiE8JByGqE5iMQvLCjCuMFs0\nEUhVy2UV80LpajiqKr/xwh4RERERERERNeB1AqJzxyQgOmeqKq1oobybqov+KhKAVFQsUrHvgX7M\nG3DSQUREdGFoZW4QHirbEsrutuGPK/sp2f+auhrReKoSpMNCw0TjJRgSEau/FAmGRLGYwX5HGiu/\nERERERERERERBSYmAQUgrSx4ANqptCJN1Tgl2zMAasapogpSMFeVIiIiopNpZW6gooXRIuvzOHyi\nHIusz4vFBOpbONkrbKItnAD57wMWYxKWDH5dtCKOSW/G366fo4lKlkRERERERERERETng0lAAUYr\nlXBU0srFdBUJQOkbUpQkAklSUQkomKtKkXaoOJd4ftLpFBcXIycn55Q/q6qqwujRo7F3797Gx9LT\n05GTk4OcnBw89thjF2qYREqY9GY8YHlYfG6QuSkt4N975w2cjzuvuAvzBs4XjZtgSETX1rLVcFSw\nu2141vqM6HGyOosw8f1x4vNsyfZixLkWERERPigi1QAAIABJREFUERERERGRBCYBBRitVJjRGi1c\n/DXqYtA5KgZGXUxzD+W0VJ2jKuJJVyyi4KWqtR4T1agpS5YswYwZM3DixImTflZSUoIxY8bg4MGD\njY+dOHECPp8Pubm5yM3Nxdy5cy/kcInE38usziLc/eGdonNYp8eBA+79cHocYjFVJRZJJwAB9XOj\ndakFAT83UjWHCwkJEY1XWFaAsYVZmkgEUjHXkP5+aXfbkL4hhXMtIiIiIiIiIiKi88QkoACkIgFo\n+MbblCQCaeGCqt1tQ3bBSE2MVXhtAoCaY6Ri8UhFu4/7t96nieNOgU9Vaz0ttD+k5hEbG4tFixad\n8mfV1dVYvHgx4uLiGh8rLS1FVVUV7rzzTowdOxZffPHFhRqqZgV7grQkFXMtizEJL9+0TLQllMWY\nhPWp74rGVJFYBKibY2vhM8futuG+LfeKn0/SLcYSDIm4tHU38cpKWkiusTqLkLr+FtGxlriKse/Y\n96Lt6nhTABERERERERERBSMmAQUBFYsogLburPTWesVjSu+30+No/J8UrSRAaelcInlaOe4qFpC4\nKEVNGTJkCMLDw0/5M4vFgpgY/6pxLVu2xIQJE/Dqq6/iySefxIMPPoiampoLMdQLQkWVmbQNtzIR\nSJD0XMvutmHuf54K+M8IFcklKudvWrgpwOlx4MAx+YpNT3w6XbydrXRlJVXJNfuP7RNNrgHkKysl\nx6XgzeS3kRyXIhZTRRtjujCaaom6ZcsWZGRkYNSoUVi5cuVp/2b//v3IyspCdnY2Zs2ahbq6OuXj\nJiIiIiIiIiIKBEwCCkAqKqI8a31GPK6qKhYqLtJGhEWIxlORtGIxJmFdaoF4spaKBChpJr0ZD1ge\nFq+ysmDgC5o4P4MZE8CIZHTr1g3Dhg1DSEgIunXrhrZt28Llcl3wcbxoXSgeU0UVCwCATzacKlpI\n2lBFeg6jojqmqnl2pbdSNB6gJvlNxevTqItBF31X0Ra5Ja5iHHDLJ8JIV4AC1CTXPHHdbNHkGosx\nCfckTBH/3iJdVUnFdwxSr6mWqF6vF3PnzsWyZcuQm5uL/Px8/PTTT03+zdy5czF16lTk5eXB5/Nh\n8+bNF3Q/iIiIiIiIiIiaC5OAAoyKBXGVZdBVJFio2H/pZBBVCVDSF9IB+QQoQE1Fhrs/vFN8UUr6\nzl9VCStaWYxVgS2xiGSsXr0a8+bNAwD8+OOPqKiogMFgOO3fFJYViI7hRetCzN71hHgikIoWMRZj\nEtanybaFAtR8PkpXBbG7bRi5MU18rCrmGzU+2SQgizEJa4e9I3rcVSQZOD0O/FgpWx2ykXDym6oW\nTquGrRd9TpPjUvBGcp5oIoyK16eK5BqrswhPf/aU6DiX734TC7+Yj+W73xSLaXfbkLZevm3ZhH+N\nVZJMKbnvDV79/FXxmFrUVEvUvXv3IjY2Fm3atEFkZCQsFguKioqa/Jvdu3fj2muvBQD0798fO3bs\nUD94IiIiIiIiIqIAwCSgAKNiQdzutmHK5nuVJBqoqC4knbCkqgy8FpIWVCRAqaqCpGJRTvpcUvX6\nDPZKOFp4LRE1t02bNiE/P7/Jn48YMQJutxtZWVmYNm0a5syZ02Q7sQZjC7NEE4Eua3eZ3zbQqUgA\nytwkm1zjqjyE6rpquCoPicV0ehywVRwQTTAx6c3IS1klnggj3SYVgGh1GaA+yeCuD+4QTwRRUR1S\nRfKbihZOgJq5gfQYAfmqPSqSawDA55PN/hrTayyeG/AixvQaKxZTRbWm0vI98Pq8KC3fIxYTqD9O\n07ZNFj1Oy3e/iYmbJorF07KmWqJWVFRAr9c3/rdOp0NFRUWTf+Pz+RpfozqdDm63W+GoiYiIiIiI\niIgCB5OAApD0RW8Viz2AmuQFFQk7Wqo0In2Xqt1tw/1b79PE86liMVYLyV9aOj9JG4I5oexiYzab\nsXLlSgDA0KFDMWrUKL+f5+bmonv37gCAyMhIPPvss3j77beRl5eH3r17n9G/8d2R78TGqyoZIMGQ\niK76buJtYqRfK06PA/uOfi863zJEdUJEaAQMUZ3EYlqMSbg7YbL45650myUViTB2tw3ZBSPFW1eZ\no2PFk4tUVIdUFVdFco0WWIxJWJ8qm1SlIrnGYkzChrT3xI+95BgBNdWaVDyfANChVQe/rYQeHXoi\nDGFi8S5G0dHR8Hg8jf/t8Xj8koJ+LTQ01O93W7durXR8RERERERERESBgklAAUh6UcpiTMLD1zwu\nfuHXpDdj/BUTAr7SSkPcQGd1FiFtw63iiUBVNZWi8bRCS8k1WhgjaSO5hi3r6GzMvO5vmGz5i2hM\nFckAJr0Z69MKxKuwSbfEclUegtfnFa3aY9TFoKu+m2iCiYpKI4VlBRhXmC3eYk5Fwoq3VrbFmIrW\nVaQdKs5R6YQVQF1SmTTpZE8AGBg7SDxmgiER5ugu4uMNDzt9Bb9g1717d+zfvx8///wzqqur8dln\nn+Hqq69u8vevuOIK7Nq1CwCwfft2XHPNNRdqqEREREREREREzYpJQAFGxQJuYVkB/rZrpvjCTGFZ\nAe7fNkU8brAy6mIQo7tEdKHP6XHA4flBtCqBlpIMuCBHUrRy3qtqqRjsLesuVtIJQCppoUqiIaoT\nIkMjRav2qEgwGRg7COboLqIL4wmGRMTqL1WygC8tIixCPCbnG0TnT0WlLhVtGhu0DGslGs9iTMK2\n8dtEY14sGlqiRkRE4NFHH8WECRMwevRoZGRkoHPnzk3+3SOPPIJFixZh1KhR8Hq9GDJkyAUcNRER\nERERERFR8wnx+Xy+5h7EheJyaaMHvN1tE1/ATVufIn4XPVCfCCR513/DYrN0BRfp51SFhgvfeSmr\nRMdqdRaJ3/0rHTOYjztph4r3ZunzXkuvpeORP6NLmy6iMens5O5aIV65Z/nuN5VUsVBxDkrPYQA1\nn7kqqHg+tfKZq5VxEgUbFd+FrM4ipK2/FevTZNu2qfp+vbP8IwzrMUwsHp09rVwzIiIiutgZDE23\n/KQLg/MiIiKiwHCu8yJWAgpAKlph/XPwUiULHtKLZ1qqYqGigseCgS+IHyfpxUi724b7t94nuv8m\nvRkPWB4WP+7SdxNTcFPx3iydrKOVlop2tw3p+emiMensSbdvWr77TUzbNlm0zRSgrjrE3P88paQF\nqxaomBNqJbFGK+MkkqSF+bCK70JGXQy66LuKVloF6qvJ/VjpEK0mV1hWgLT8NLF4REREREREREQU\nvJgEFATsbhse/fhBTVz8VTFWFYviDXd/Si9ITtl8ryaOk7fWKxrP6izC3R/eCauzSDQuUaAL1oV4\nk96MdaPWNfcwgl7X1rLtm8b0GovnBryopBJQpbdSPGZVjXxMIqLzpYVESgDiLaFV3Wgg3VIRqE/4\nXJdaIJr4mWBIRLe23cTiERERERERERFR8GISUABSUWFGusqKKlqpYlHiKsZ+9/cocRWLxXR6HDhY\nsV/0jlIAShJrQkJk41mMSXjIMl30QrqqykpEgU4ryXRsBdb81qXKtwlVkQCkouKC0+OAo+IH8c9c\nIqLzoaqimnQCf2FZgXg1OVVUfReQrvxm0puxdfxW0ZhERERERERERBScmAQUYFTcqWl1FuGuD+7Q\nzMKwFiQYEmGO7iJaQcGoi4Ex6hLRcvVWZxHSN6SIH3ufTzQcCssKMHvXE6ILCVqqrKSFMZI2WJ1F\nGL7xNr7f0xnRSpKkiooLqlrEaGFBnEgLgnVupLKimqQEQyJi9bLV5Ex6M/JSVmnms0kFJkgTERER\nEREREZEEJgEFAaMupvF/0qQv0KsqV6+CPrK1eEzpCjtGXQzM0bHixz4iLEI0XoIhEZe27ia6kOD0\nOGCrOCBe5UHFOT++cIwmznkKfBZjEtYOe0f87nSi5qai4oJ0i5jCsgKMLcxiIlAQUvEZHsznkd1t\nw8iNaQHfvgqQb90FqKmoJj13N+nNWJ8mX00umBOAiIiIiIiIiIiIpDAJKMCougOyVXiUaDxAXcKO\ndLl6FVQcJ6fHAYdHtjWJSW/GzD5Pio7TpDfjsWtniMec3XeOaEyLMQmvDH5NdOFYxTlv0psxr998\nJYseTCwKTkwAoouRivcz6fddFVUCKfCpSObVWkKZdPU5FYncKtpXqWrdJU3V90sm7BARERERERER\nEQUmJgEFIBUXaBcMfEEzF2qP11Y19xDOiPTzaTEmYX3qu6IL+FZnESa9P150ccbqLMLdH94pHlO6\nZZ3dbcOz1mfEF44rvZWi8exuGx79+EFWGNIAPpdEzSPY38+0kggSrEx6M8ZfMUF0XqgyoUz6daSi\nDaWKRG4V7au00roLYMIOERERERERERFRMGESUBBQlWSg4q7SElcxbBUHUeIqFoupJSpatvngE41n\nMSbh5ZuWiS7MqGhbZtKb8XrycvFqTc5K+WpN0uNUGVcrmFRFdPFQWTFNUomrGPYKm+gcRmsVYbRA\numpNYVkBpm2bLH6MwkPDReMB9Z9lQ9cNEf0ssxiTMOf6v4tXXpRO5FbVvkoLCUBEREREREREREQU\nXJgEdJ60sCBs0pvxgOVhJYtnKlppXNq6m/idz9ILPiqoSDIw6mLQtfWlosk1drcNc//zlPjCzKph\n6wO+TYFRF4OOLTuJJ2sF+sK21qh4LWklCYHoYqSyYpqk5LgUvJGch+S4FLGYquZFWpi/AvJVkKzO\nIqStvzXg54VOjwOOCtmkYwDYemALbBUHsfXAFrGYVmcRHvn4ftHnVGWCNBEREREREREREdHFTmkS\nUHFxMXJyck56fMuWLcjIyMCoUaOwcuVKAEBdXR1mzpyJUaNGIScnB/v37/f7mzlz5uDtt99u/O+V\nK1di+PDhyMzMxEcffaRyN5pkd9uQuSkt4BdSVLRvaqCiutBLNy0VvUhvdRYhbYP8go/0wpSKZC2T\n3owXBr0kvugh3RJLK5weB346fkh8UU6FYK5co2LxUCtJCEQXI1WvaRXvkZIJQED9vq9Lla1eYnfb\nkF0wMuDfzwrLCjCuMFt8vlXrqxWNZ4jqhPCQCBiiOonFNOpiYNRdIp50PDB2EAwtO2Fg7CDRuD6f\nbNVJAJqYaxEREREREREREREFImVJQEuWLMGMGTNw4sQJv8e9Xi/mzp2LZcuWITc3F/n5+fjpp5/w\n4Ycforq6Gvn5+XjggQcwb948AMDhw4cxceJEbNnyf3esulwu5ObmYsWKFXj11VexYMECVFdXq9qV\nJjk9Dhxw7w/4i9QqyvQDahaRVC2019XWicZTsTBldRbhrg/uEE1WsrttuG/LvaLPp9PjwA8VNtHz\nXisJK0ZdDLpEd1XStk1asLcDk6alJASiMxXo1VB+SUVFEFVVEqWpaJEqncyros1UeVU5fPChvKpc\nLKar8hBqfbVwVR4SiwkAIaLR6kWGRYjHdHocOOY9Kv7dJSRE9hmwOouQuv6WgE/gB9Qk82ql/Z+K\nz5Dlu9/URExAzf5vLN0oHpOIiIiIiIiIiIKPsiSg2NhYLFq06KTH9+7di9jYWLRp0waRkZGwWCwo\nKiqC1WpFv379AABXXXUVvvrqKwCAx+PBlClTkJqa2hjjyy+/xNVXX43IyEjo9XrExsaitLRU1a40\nyWJMwvrUd8WTa6RZnUWY/ulDmljsU5W4EBIquziRHJeCBQMWid7xb9TFoHNUjGiCidPjwP6j+0QX\ne1yVh1DjqxFdQFN13FVUqlLRtkwVrYxTmqrkGhVJCEzUouakoi2SqrmGirZQkz4YH/D7X1hWgLGF\nWaL77/Q4YHcfFJ0bqGgz1aNDT4QjHD069BSLaYjqhDCEiVbtAeSTYACgutYrHtOoi4EuPFp0rmnU\nxSBWL9t6FpB/TlUk8NvdNqRvSBGdb6h4zQPyiTAqKq0u3/0mpm2bLDpWFTEBNYlqhWUFSMtPE4tH\nRERERERERETBS1kS0JAhQxAeHn7S4xUVFdDr9Y3/rdPpUFFRgYqKCkRHRzc+HhYWhpqaGnTp0gWJ\niYlnFKM5qEgAkl64thiT8PJNy8THatKbkZeyKuAXsI26GMToTKKLE3a3Da//z6vix0rFXd/St6cb\nojohHOHiC2jSd6VrJREEYEsoaSa9GfP6zQ/49yYgeBO1KEAIfz5YnUUYti5ZE4kwAOCrk21hpKr9\nqPSBKi3fgxrUoLR8j1jMI8eP+G0lGHUxMLfuIp9cIpwYbjEmYenNb4jOs50eB+wVsolaALDumzU4\nfKIc675ZIxbTpDdj0R9lW8+quNEiwZCIWP2lSDAk/vYvn6ESVzH2HftetFpXgiERl7buJjpOVYkw\n0m3gxvQai+cGvIgxvcYGdMwG0olqCYZExLWLE41JRERERERE547rNkSkZcqSgJoSHR0Nj8fT+N8e\njwd6vf6kx+vq6k6ZRHS6GBcDFYkLdrcNz1qf0cQHlooWYwAQFRElGk9VkoH0Xd9GXQw6RXUWv+Pb\n1NosGtPqLEL6hhTRhVOtVFlRdc5rifSCuaq2gsF8jIJ53y9mj1wzQ3SRvbR8D7w+r2hyCYDGdlCS\nbaGMuhh0iOoo395Rdk0chqhOiAyJEE287dCqg99WQnp8Bjq3ikF6fIZYTGWEj5HdbcPc/zwl+j5Z\nWr4HNT7ZRC0A6GPqixCEoI+pr1hMu9uGOwpvV3ITgyST3oz1aQWi88LkuBS8mfy2aGVQk96Mdamy\n41SRCGMxJmFD2nvix0lFss7A2EHiMVUkqpn0Znw07iOxeERERERERHTuVN1kTkR0oVzwJKDu3btj\n//79+Pnnn1FdXY3PPvsMV199NXr37o3t27cDAL744gvEx8c3GePKK6+E1WrFiRMn4Ha7sXfv3tP+\nvpaoSC5RlbCi6kPQK5wIo6Jikd1tw/1b7xPdd6fHgR8rHaJ3fTs9DriqDonfSS5846+SVmgAq/Zo\ngdVZhOEbbwv4BLBgnvQH875f7GbvekK0us6YXmNxvbG/+CJuietLv61MzGI4PD+IVvCwGJOwPk12\nUdhiTMK9ifeJV0SRrjRi0pvx9wELRN93nR4HbMfkq+GoUOmtFI03MHYQjFEx4skLDa1cJVu6rvtm\nDZyVDtHqQoCa1oIq5oWSCUANVIxTRSKMdJKaCna3DWnrZVu2NSgse0885n8d/xWPSURERERERGdP\nKzeZExE15YIlAW3atAn5+fmIiIjAo48+igkTJmD06NHIyMhA586dMXjwYERGRmL06NGYO3cuHnvs\nsSZjGQwG5OTkIDs7G+PGjcO0adPQokWLC7UrStndNtzzwUTxSkAqqmKoSi6KUNESSwMsxiS8Mvg1\n0YU+oy4GxqhLRJNrVCQrAfLVmgD5hB0VyRAq2+ppIWnDYkzC2mHvKLnjXzqeVlqMSeMXnuZTXFyM\nnJycU/6sqqoKo0ePxt69e/0eLy8vx4ABA056/FRCESpaYebRrQ/iU+d2PLr1QbGYADAw9ka/rYQE\nQyJ04dGiiTCA/KL48t1vYuEX80Xb+Jj0Zvzl6gdEX9NWZxEmvj9ONHFDRdsyAPAJt8Fzehz4wW0T\nnxdFR8hXOTVEdUIIQkRf95e1u8xvK8HqLMLQdUPEE4Gk22EBapKV/t+O2aLx7G4bMjelic4LVbUY\nk34+S1zF2O+WbdkG1B+jhV/MFz1WhWUFSM1PFYtHRERERERE54fXw4lIy5QmAZnNZqxcuRIAMHTo\nUIwaNQoAMGjQIKxZswZr167FmDFj6gcSGorZs2djxYoVyM/PR/fu3f1iTZkyBVlZWY3/nZmZ2Rhj\nyJAhKnfjgipxFeOAe5/ohUqVlYCkq+GY9GYsGPhCwFfwUDVO6XYSABARKptUZTEm4e6EyeLl71U8\nnyM3yi54mPRmjL9igiYmf1qq3iKdAKSCqmRKFVSMUQvn/MVmyZIlmDFjBk6cOHHSz0pKSjBmzBgc\nPHjQ73Gv14uZM2eiZcuWZ/Rv1KEOq0rzRcYLAGZ9F7+tlARDIjq26CSasLPI+jw8NRVYZH1eLKaK\nRfExvcbizivuEq2uVFhWgPu3TRGtAuWqPITqumrRCjMDYwdBFx4tWsHEVXkINXVe0XG6Kg/BC9mY\nAPDz8Z9F4wH1iVV1qBNNrEowJKJ1ZBvR12dh2Xuo8dWIVlpR8fq0Ootw69qbRBNXVCSXOD0OfPvz\nN6KJamN6jcU1hmtF35usziLcsvaPos/nO3s3+W2lJMfd4rclIiIiIiIiIiIKJBe8HdjFRnqx1RDV\nCWEhYaJ36KpI1lFFxUK7iiQoVQkBNXWyrdAAoMYnG1NFVQJV7dVsFQdEFzxULJyqStYJ5so1Kmil\nGo6Wkr/o9GJjY7Fo0aJT/qy6uhqLFy9GXFyc3+NPP/00Ro8ejU6dznwOIZmwM9nyF/zRfDMmW/4i\nFhOoT5AuP+ESTZCeYpmKlqGtMMUyVSzmmF5j8dyAF8UTdl77nyWinzuGqE4Ig+xcUyuJWip8d+Q7\nv62Edd+swU8nDom32OrRoSfCEIYeHXqKxXy9ZBmOVR/F6yXLxGJajBa/rYR9R/f5bSW8VvIqfPDh\ntZJXxWKqsPjzF/y2EiZ/cA8+c/0Hkz+4Ryzm/P887beVcFv3oX5bKQ3HXPLYW51WsVhERERERERE\nRBTcmAR0HlQttoZAuE8BAG+tfHKJSW/GY9fOEF0UV7HQrqpikYoEi6qaKtF4To8DP1TYRRNhBsYO\ngjm6i+id+QBQ6a0UjaeivVpyXAreSM5DclyKWExVySVaqlyjFVpo2aaVZCX6bUOGDEF4ePgpf2ax\nWBAT49/mce3atWjfvj369et3xv9G+xYdkB6fcV7j/KUXrQux2fY+XrQuFIsJ1CeYxOovFU0wWffN\nGhyvq1KSZCEpwZCI1hGyVVYAICREdq5Z4irGTycOiSZqjewxCqEIxcgeo8RiNiyyB/pi+9ETR/22\nUlyVh1CLWvGqRVrw1U9f+m0l9Lmkr99WwuN9Z6K7/jI83nemWMxlt+bC1MqEZbfmisW8I2GC31ZC\n19aX+m0lrCxd4beV0qN9T7+tBFYVIiIiIiIiIiIiKUwCOg8qFluNuhh01hlh1MX89i+fBeG1HgD1\nJdvv/vBO0ZLtWqEiwaLEVQxbxUHRBTSjLgaXRJtEzyeT3oxN6f8SPe+dHgfs7oOiyUqq2qtJJgCp\nxEpAgY9Ve0jSmjVrsGPHDuTk5GDPnj145JFH4HK5Tvs3FV636PtuH1NfhIWEoY9JbkEcqH8/++fg\npaLvZyqqFlmdRRi2Lll0XrTumzU46v1ZPFmp1lcrGu+Nr17z20pQ0bpKRYWZy9pd5reVkBx3C0IQ\nIp4UoCIJ6tI2l/ptJahI3Ph9xyv9thJKXF/6bSXc+W4O9rq/w53v5ojFnPzBPbBX2UWr9jS8LiVf\nnwNjb/TbSvhz7/sQglD8ufd9YjEBwOY+6LeVEOgVpYiI6MLhNQIiakp5eTkGDBiAvXv3Yv/+/cjK\nykJ2djZmzZqFuro6AMDKlSsxfPhwZGZm4qOPPgIAHD9+HFOmTEF2djYmTZqEw4cPN+duEBER0QXA\nJKDzJL3A7vQ44Ko6JLooBwDhoRGi8YD6Sisv37RMtNKK3W1DdsFI8ao9Cwa+IF6xSDrBwhDVCZGh\nkaLtOQAgQsGxl1Zavgc1qBFdSADUtFeTpuKcb4jLSkCBTVXlMyYWBafly5fjrbfeQm5uLnr27Imn\nn34aBoPhtH/TtkU78aTjUAVTS7vbhtvfHSV6XquoWlRavgden1f0s0xFgsniz19AHepEWwON+/0d\nfttA1TDHkpxrqWgHVlj2HnzwobDsPbGYANCmRRu/rYSBsYPQLrKDaIXI3p2v8dsGkz92Hey3laCi\nJdaR40f8thISDIno3CpGtPKZUReDS3SyN0QAwLyB85F5eTbmDZwvFlOyohQREWkXv9MTUVO8Xi9m\nzpyJli1bAgDmzp2LqVOnIi8vDz6fD5s3b4bL5UJubi5WrFiBV199FQsWLEB1dTXefvttxMfHIy8v\nD2lpafjHP/7RzHtDREREqjEJKMAYdTHoEt1VvHKLdBIMUP/FdOaO6eJfTKVbl6lIhrC7bZiy+V7R\nmBZjEjakvSeaVAUAlV7ZFmMqklZUtRjz+UTDAdDOHVnB3hZKS8dJOl4wH/eL2aZNm5Cfny8a81DV\nj9h6YItozBpfjWg8AFhkfR7lx3/CIuvz4rElvVayxG8rQUWCiYokA0NUJ4QiVDS5Zt/RfX5bCQ2J\nT5IJUCqoqFgEAO1atvPbSihxFeNIdbloJUsV7dAaqipJVldqaFUn2bKuQ6sOflsJKt5HVJxLTo8D\nh6qcojfDOD0OHKqUjQnUzzN3OD4WnW9KHnMiItIufqcnoqY8/fTTGD16NDp1qv/evXv3blx77bUA\ngP79+2PHjh348ssvcfXVVyMyMhJ6vR6xsbEoLS2F1WptbB/fv39/7Ny5s9n2g4jobGhlnYcoEDEJ\n6DxJvwGZ9GasGrZevDLE/VvvEx9riasY+459L3rRH5BvXaaiao/T48BB937xC8rSd6mWuIph98i2\nGAOAnypP32LmbJn0Zsy54RnxixwRYbJVkFTckWXSm5GXsooXeARp6c45FWPkuXTxMJvNWLlyJQBg\n6NChGDXKf6E5NzcX3bt3P+nvmnr8VCTb2LxW8ip88Im3NKnwVvhtJaiosJN2+Qi/rQQVLWdUUNG6\nKznuFoQiVDRpo3vby/22EtLjM9AusgPS4zPEYr78xUt+WykqEqve2bvJbyth78/f+m0l7LTv8NtK\naKjUJFmxSSsJO6u/Xum3lbCqNB8++LCqVC7h1VV5CF6fF67KQ2IxAWDrgS2wVRwUTaQtryoXi0VE\nRNrG7/RE9Gtr165F+/btGxN5AMDn8yHkfxdSdDod3G43KioqoNfrG39Hp9OhoqLC7/GG3yUiCnRa\nWuchCkRMAjoPqt6AVHzZO3bimHjMBEMiDC07iZZsB+Srt6ioBGTUxaBdy/aiSTt2tw0jN6aJjrPh\nYrLkReV136yB6/ghrPtmjVhMq7MIkz5T+4NDAAAgAElEQVQYD6uzSCymSW/GXQn3ireBU3FHlorX\nvKr3Jy1MuLRy55yWJrEqxnjwaGAnNQQLs76LWKwY3SV+WynREdF+WwlWp9VvG6j0ka39thJ6dOiJ\nsJAw9OjQUzRmKEJFY7oqD6EOdaKL9yoSi5weByq8x0QTw1VUawIAh+cHv62E8qqf/LYS/tZvrt82\nUKl4PksP7/HbSti8/wO/rYQZfWf5bSV86frCbytBRVIVoKYdmmQsIiIiIrq4rFmzBjt27EBOTg72\n7NmDRx55BIcPH278ucfjQevWrREdHQ2Px+P3uF6v93u84XeJiAKdVtZ5iAIVk4DOg4oKM4D8Yquq\najAlrmL8dNwlHle6eotJb8YDlodFj1OJqxg/VjpF993pceBghWx1oTG9xmLmdX/DmF5jxWKmx2eg\nQ8uOone8A0Btba1ovMKyAty/bQoKywpE46qYcEgmPzVQ8f6kpaQVFVQkfKr4DJGmogWg3W1Den66\nWDw6d5KVcMYn3IkIRGJ8wp1iMQFgimUq2kS2xRTLVLGYKtotqaguVJ+0EiaatFJavge1vlrRqj0q\nKgGpWLxXkVikotKIinMJAHq07+m3lfD7jlf6bSVMKhzvt5WgohrOHQkTEIpQ3JEwQSymimOkIqlM\nRRUkFclfKpKqgPrvQ7pwnej3oT6mvmKxiIiIiOjisnz5crz11lvIzc1Fz5498fTTT6N///7YtWsX\nAGD79u245pprcOWVV8JqteLEiRNwu93Yu3cv4uPj0bt3b2zbtq3xdy0W2dbTREREFHiYBHQeVFSY\nUbHYCgAhEO6xhfpKQJ1aGUUrAZn0ZiwY+ILooriKKjMJhkRcojOL7rtRF4O2kfLVhVZ9u0L0fHJ6\nHHBXy97xDgAhobLnaIIhEZ2jZM9PFazOIqRtuFU8EUhFG0CtZF6rSlqRToBS1apRC0x6M9aNWtfc\nwyDItvCZ+++n4EU15v77KbGYDSQX7gEgOS4Fzw14EclxKaJxpRl1MegU1Ul0bqCigkWHVh38thJU\nJMIYojohFGEwRHUK6Jiqqpekx2egTWRb0cQFFdWVliS/jghEYEny62IxVZz3KpLKVCSt7Pxhh982\nUKlILFJVoe71kmXw1HjweskysZiS+01EREREF79HHnkEixYtwqhRo+D1ejFkyBAYDAbk5OQgOzsb\n48aNw7Rp09CiRQtkZWXh22+/RVZWFvLz8zF58uTmHj4R0W8K9pvSic5XeHMPQMtULYhXeitF4yUY\nEhGrv1Q8GcLpceBo9RE4PQ6x56AhsUryeTXqYhCr7yq6gAYArVvIls0scRXjUFV9dSHJc0r6fDLq\nYqCPaC3+fNbV1YnGc3ocKD/+k+j5qYpPugfe//LWesVjBvpzqYpWEqBUMOnNyEtZJb7vXdrItaGi\nc9fnErnKA30u6YuV3+aJxgTq389txw6KzzdeKXkJA2MHicU0RHVCZGikaDJIiasYzkqH6NxARUUU\nFe1HVdhp34E61GKnfQcsxiSRmPVVkOorK0nFnGz5C2zug5hs+YtIvAYlrmIcqz4qPtcMD5X9Slni\nKkYNagL+vN964KPGrVRC4R0JE7Dq27dFqwvd1n0oVn6bh9u6DxWLeWmbS/22Eh7vOxMOzw94vO9M\nsZiqfPXTl35bCZ85/yMWi4iIiM6P1VkkNrcnkpabm9v4/996662Tfp6ZmYnMzEy/x1q1aoUXXnhB\n+diIiCQF85oMkQRWAjpP0tVQnB4HnJU/iMY16c2Y2vsB8TdKizEJ61ILRL8UqWiPY9Kb8cKgl8Rj\nSi+KG6I6ISI0QnTx0OlxwOmRPZ/WfbMG5Sd+wrpv1ojFLC3fg1rItiZxVR6Ct062PQcg37qrPknt\nUvGkKkC+tZ5WqEpaURFPxThV0MIY6dxIVobo0aEnwkPC0aODXBsboP4zogY1op8RgHySrMWYhEeT\nnhCdF6moCKOias++o/v8thJU7LuK6kIqnk+rswhvf5MrPudIjkvBggGLRCtgWYxJWHrzG6LnfXJc\nCt5IzhMdp4r3p3kD5yPz8mzMGzhfLKbFmIR3h38o/ny+mfy26PM5ptdYPDfgRdGWw1ZnEdbvXS16\n3qto/QgAt3Uf5reVcI3xWrFYREREdO6sziIM33ib+FyciIiIzh7XJYjOHZOAzoOKLwVGXQy6RMtW\nrSksK8C0bZNRWFYgFlMVFe1xVLXcUZFUJb2IYtTFoF1L2RZj6fEZ6NCio2griYGxg9ChRUcMjB0k\nFhOQb4OnonWXSW/GzD5PBnWCSTCTTiQlOlvSVXtqfbWi8YD6xftQhIou3js9DtjcB0Rfg4VlBZi9\n6wlNzLekNbSCkmwJpSJhRyssxiTMuf7v4ncf2902vP4/r4rPs5+1PiM+z5Zu1WfUxeDS1nHibXd3\nOXeK77t0AjsAJe1xpRM+XZWHUF1XLb7/Ktpiq2gvNz7hTnSO6iwWj4iIiM6NxZiEtcPeYSUgIiIi\nItI0JgGdB4sxCS/ftEy8Es6iP8pWrQHUXPxUkRABADV18i2MVLRFkr7gb3fbMPc/T4nGLXEV48fK\n+hZjUpweBzw1FaILpyWuYhw+US46TlVt8KTbllmdRZj4/jjN3GGkov+qiteSil6x0vG0dHcZ++5e\nnKSrOBSWvQcffCgse08sJtDQwqkOO+1yVYsKy95DLWpFx6qico2KFkaqRITKVp9LMCTCGBUj+jlu\niOqEiBDZqosqWqFZnUWY/ulD4p8PqipuaqE0s4qk6xJXMfa7vxedvxaWFWBsYZZoMqHdbUP6hhTR\nz3Krswip628RPUd/2V5NiqrvA5Mtf8HM6/4m2rLPpDej6K7AnxMSEREFAyYAEREREZHWMQnoPKi4\n89XutuG+LfeKxlRR+r9BTW2NeMxw4UUkQL4tkt1tw8iNaeIL4yqSlXzwicazGJPwyuDXRL8Qq7hA\nb9KbMe6KO8UXpXw+2ecTAEJC5JP07G4bsgtGir8/SSfXqIipYpFTxThVVnqQjid9LlFgkEwAAuqr\nwISHhItWg9GSPqa+CEUo+pjkqiv16NATIQgRrbihIlkJkE+SdXoccFUeEk06NupiYNKblbTglKTq\n7mOtVMdUweoswqQPxosmrSQYEmFo2Uk8US0MYaKJaiWuYuw7JpuspKJqz7yB83HnFXeJtlcz6c1Y\nn1ag5ByVTABq0KVNF/GYREREREREREQUfJgEdB5U3Pnq9Diw/9g+0QUPu9uGhf99Vkmp+jrUiV78\nNenNWDDwBfE7lB+7doaC4/S9eCuf47VVovGS41Lw3IAXRRPAVFQsMunN+OfgpaLHaPnuNzF71xNY\nvvtNsZiuykOoRa3oOW8xJmF96ruauMtIKxUE7G4bHv34QfFzVHqcKio9MGGHmpPFmIRN6f8Sfz/r\nY+qLMISJJte0adHGbyuhtHwP6lCH0vI9YjF32nfAB59oFaT0+Ay0CosSbetZWr4HtagV3/da1Iru\nOwBI5/IOjB0EY1SMeEtTFS2hVFHxmaOiSp50IneJqxg/HXeJJ9dIf79SUa1KFckEoAZaSFIjIiIi\nIiIiIiKSFFRJQFpYFDXqYtChVUfRO5RV3P0J1N+pGh4SLnqnqt1tw5TNspWQrM4i3PXBHaKLCa7K\nQ/D6vKIX6EtcxbBX2ESPk91twyslL4mf+4c8P4rGs7ttmPT+eNFxdmjVwW8rITkuBW8k54lX1VJR\nkcCkNyMvZVXAJ9cA8oszqlqTSMezGJPwkGW6eMKEdEUxFecSXbxUJDQadTGIib5E9L2yj6kvwkPC\nRROLjhw/4reVUJ8AJTvORdbnUVVbiUXW58ViqnBZu8v8thKcHgdsFQfFk7jbtWwvGq+wrADjCrNF\nW0IB6uYG0smnKloOW4xJ2JD2nuh7lIp5oYqYY3qNFW//mByXgjeT31ZSaZaIiIiIiIiIiIjOT1Al\nAWmhjU2JqxgOzw+iiSCGqE6ICI0QTdYB6hflLomWbalQvzhzQLz1Q+vINgHf+iHBkAhTtFm0pQAA\n/FTpEo33eskylJ/4Ca+XLBOLufXAFtgqDmLrgS1iMVUtTkgfH1Wt5QA1yTXSlYBUUTFG6WNUWFaA\nv+2aKb7IK93+EOBd9NS8nB4Hfqpyic4NLMYkTL92VsBXYTPqYhDXNk50DjPFMhUdWnbEFMtUsZg9\nOvREKEIDvm3ZTvsO1PpqRKsLmfRmjLx8tOj7ZIIhEZ1aGcXnHKpU1VSKx5RuLweoSbqW/n4FQEli\njXT7R0DNOImIiIiIiIiIiOj8BVUSkHRlCJPejAcsD4vGVJGwY9TFoH0L2epCDUJCZONZjEl4ZfBr\nootyWw9swaGqH0UTTAxRnRAZEil+4V+6RcW6b9bAdfwQ1n2zRizm431n4i9XPYjH+84UizkwdhA6\ntugk3kpDRcJO+oYU0WQQp8eBA27ZFoANpJNWVFUC0kKVNhWVDlQk/pn0ZtyVcK940o6KY7TLtks8\nJp0dFcdVRUwVcwMVSXgqKteY9GY88Ycnxeevzw1cJBpTRQsjFc9nenwGYnSXiLZCU9F+1Olx4MiJ\ncvG5gd1tw21rh4jPYxwVP4iPNQSyXzJUJF1bnUUYvvE28dZlKlqhaYV0YrTWHDx6sLmHQERERERE\nRBQwtLB2RBSogioJSHpRVEWbKQCAcCJIiasYP1Y5xNuBOT0O2NyyLRXsbhuetT4j+sY+MHYQjFEx\nogkmFmMSlg55Q3RBssRVDLvnoOhx6mPqi1CEirYRAYBL21wqGs/pceDnE4fFz6W09bIJOyWuYuw/\ntk/8tSS90AWoqVSmIvFRxThVkW6zBQD6yNai8QrLCnD/timii2gqjpHVWYRBb8om/dHZy9wkuyCu\nqrKZ3W3D3P88JZ6Ep49oLZqEZ4jqhMhQ2QRhq7MIE98fJzrXtDqLMOFfY0VjJhgSYWjZSfT5TDAk\nwhzdRTxRMvPybE1UN6vzyVfC2XpgC+we2cqLRl0MOrbqJHqzgVEXA0NUZ/Fqo/vd34tXFJtz/d9F\nvw9YnUVIXX+L+PdLySQ1VTFVtcHTSlKV3W1DSh6rKxEREREREREB2lo7IgpEQZUEJM2oi0HnqBjx\ni96ddUbRmCoWpQCgtHwPanw1KC3fIxZTRZIBALRr2V40nt1tw/RPHhb/8FGRDCLdGmj57jcxbdtk\n0Qv/peV7UAPZc6nEVYwDbtmEnQRDIrq2vlR0QdJiTML6tHfFW9KoaN1ldRZh0vvjRRdTVL3mVUwM\npV9LJr0Zj107Q3Tfk+NS8MR1s0VbdKg4lyzGJLyQ/IJYPDo3B47tF10Qd3ocOFghG7NBpVe23dDr\nJctwzHtUtLWlxZiEtO4jRN/PXZWHUF1XLVphp7R8D7w+r/hnruv4IfEkWWkvWhdi4Rfz8aJ1YXMP\n5bRUzLFVcXocOFTpFH8vkY7pqjwEb51X9LVkdRZh+qcPiSeZhAiXWlUxd1cRMzkuBQsGLBKdw6iq\n1qRKdW11cw+BiIiIiIiIKCCY9GbxDj9EwYRJQOcpKiJKNJ7T44Cr8pD4Xaob0t4TTzIY02ssnhvw\nIsb0GisW0+oswqQP5JMMpNvjbD2wBbYK2TupVSzeW4xJeOSaGaLH/sjxI35bCR1adfDbSlCxkGDS\nmzG77xzxSYf0axOoT4K5f+t98skwwnlqVmcR7v7wTtHXvKoqSHkpq8STqqSrcVidRXj6s6fEn0/p\nNnBWZxHuK7xPLB6dG6PuEvnqHcIVQYD6udEPHpuS5CJJ/2/HbKz8Ng//b8dssZgJhkR0atVZNPm0\nR4eeCEMYenToKRbzuyPf+W0llLiKYauQrZCows4fdvhtJZS4vvTbSln99Uq/rQRX5SF4fbLJNa7K\nQ6jx1YjGTI5LwXMDXhSfZ68d9o7oPM5iTMKSwa+LxuzRoSfCQ8JFX/Njeo1F5uXZot8D7W4bFn/x\nguh8Q0W1pgYqEs6lE8CIiIiIiIiItIwJQETnjklA50FFFQejLgZtW7QXX0CTjtdAMmkDULOAWFhW\ngGnbJouXlpdmdRZhzq4nRRfvC8sKMHvXE6L7nh7//9k7+7Aoy/T9nzMMqAwDvjQ4OEiGxWIuak3U\namsRpWKaSqT4srqmW9++pWlppWW2P60lv5mlaG8WmawWmoulFr2IVBvm0rQhKiytrOKMMzKSwjAg\nDMz8/iDcnnVLoPN2Brg/xzHHdTQ5F8/M83Y/93Xe55WCnkG9kByTQsspojBjdVrwWtHLdOECW6TW\nklcE7PZVJkM8dk7kuhaJKKB1FIW4iCKnQRuBXuR7iCgnoNxZPBGlpH00eRup+ewuG065uO4dgBgH\nD2dDtSIysLlOKiKDIkchKupO+X0bynmmBYgNG4R5pgW0nPrgcGhUGqqTZXJMCrSaEOoYZni/EYrI\nYHJsKlRQY3JsKi0nANz1qymKyGD30V2KyCBOPxR9gw1U8ZvVacGL3zxPF26w3ZqsTgse/fxh+nYG\nqAOo+bYc3oxt322lOgHZXTaUVx+j3kPM9gI8+tlD9LG21WlBwjsj6PvJWe+k5pNIJBKJRCKRSCQS\nSfuRbagkEklHRoqAfgEiHCyaiz12arHH6rRg8vuT6DesnLI9mJUzjSowsbtsOFXDLSBW1lUqIoMZ\ng2dhztX3Ule/imiJJYIiRyHONpyhH6Pslb8AXwQjIqfZXoAJf0kSIgRye/jfXwSiRIpMRLgLxemH\nop82klrkLHIU4lQt/x4iwlXqhsgbqPkkbYftsiLCEQT4QRDQI4J6rrSIK5gii9jegxTRX3HUVqAR\nXAHinA9moqSqGHM+mEnLCfDFStmlO+BqrEF26Q5aThEOiQZtBHoLWBQgwmGo7Ow/FZGB3WWDvdZG\nfR4ochTiuPNf1GueiJZY2aU7YK+1UY9RkyEeE6NT6O5CP44sPPBQ85VUFsMNbvtDAEj76mlUuc8i\n7aunaTnzynNhdVpp+To6hYWFmDnzwntKbm4uUlJSkJqaim3bml3NPB4Pli9fjtTUVMycORPHjx8H\nABw5cgQjR47EzJkzMXPmTHzwwQeX9DtIJBKJRCKRSCSSjouIeoBEIpFcSqQI6BcgwsEiKXoc3kra\nSnVEsbtsKHdyV1UCYlpUiChMJUQloldQHyREJdJy5pTtQcaRjVQBVGyfQdCAa9VvtpsVkYEIUZXd\nZcNx57/ox6irsYaab781Hx54sN/Ka/khqjjRXEA7SV9NPem92/2+dZeodmBsNxwRiHBPEMUBywFf\nb4IEXPcOUdhdNjjOnaJez1quucxr75W9rlREBiJcVkTcxwf2vEoRWTR5m6j5enXvpYgMROz37NId\nqKw/TRWCAECkrr8iMphx9SxFZPBm0RuKyEDEuSRCVGVxnlBEBiJaFW4vyVJEBiIcEkW11hMh+jxW\ndYyWq6OzceNGLFu2DPX19Yr33W430tLSkJGRgczMTGRlZeH06dP49NNP0dDQgKysLCxatAjPPvss\nAODw4cO4++67kZmZiczMTNx+++2++DoSiUQikUgkEomkA9JRug1IJBLJT9GlREAi2kExBUAiafJw\niyhA84paR10FdUVtUvQ4PHnDCqoIqshRiDMNldTt/OeZfwLw/hA5GLQRMOr6U1d9z46bg7CgMMyO\nm0PLmRCViPAefamiKhGtXvLKc2FznUReOa/lkIji4YzBs7D8hpVUVylATGs9gH8tESGuETFAtzot\nuO+TP1CFRUWOQlhdXCcWu8uGs/VnqGIJoy4SaxLWUX9Ps70AiZt51xBJ+2G2MBIhPAWahQAer4cq\nCBBx7U2KHofNSW9TxzAiCs0iiuImg0kRGWwvyYIHHqrIYO/xTxSRQZx+KHp360MVX4oYbwDAcOMI\naFSBGG7knfci3DFr3S5F9FeOVx9TRAb/+L5EERkcPfudIjKocdcoIgMRQq35poXopuqO+aaFtJyA\nuHNU0kxUVBTS09MveP/o0aOIiopCWFgYgoKCYDKZUFBQALPZjJEjRwIAhg0bhkOHDgEADh06hLy8\nPMyYMQOPP/44amq4C0QkEolEIpFIJBJJ50YKgCQSSUemS4mAfp8znS4E6ggttkoqi9GEJrrTiD44\nHBqVBvrgcFpOs70AzxaspDqNxOmHIjKkP7U4kxyTgvAefZEck0LLCQAqbtcLFDkKUdVQRRcZVDdU\nUUUGIo4lEQ5QsX0GIYDs1mR1WrC1JJN+LbG7bDjl4rbWE7FCW1SrKfYAvchRiHLnMeq5JMKNw2SI\nR/bEPVSBqtVpwZIvFlP3kckQj9xZPIFeZ+WnWmEAQF1dHaZOnYqjR48CAJqamrB06VJMnToV06ZN\nQ2lp6UXz9+l+GfUa6WyoVkQWLUIlpmDJ6rRg+3fv0K89TAEQ0DzeCA7QUscbuqBQRWSgDw6HGmrq\nfVwEU2KnKiKDvPJcfF9fSRUd7z+Zr4gsTIZ4PHfTC9R7RE7ZHrxJdsd84NoHFZFBhLafIjIYP3CC\nIjJYP+oVdFN3w/pRr9Byhgf3VUQGIq7LIsRf2aU7UO89R3fVEsETI5bj9oHSqQYAxowZA41Gc8H7\nNTU10Ol05/9bq9WipqYGNTU1CAkJOf9+QEAAGhsbMWTIEDz66KPYsmUL+vfvjw0bNlyS7ZdIJBKJ\nRCKRSCQSiUQi8TVdSgTEbrNldVowfc9kagEpr3yfIjJIiEqEITiCWugDmp1Gugf0oDqNOGor0OBp\noIoMAECjvnAS8ZcSGhRGzWd32XCyxkoVbSRFj8PyG1ZSj3uTIR7TfzWL7oKlVnEvRyIcoABADa5S\ny+6y4UTNcXorNABQkVVlcfqh6NsjokO0mmIjSqh2Wbdw+rWZff0U1Qqtn45XiO2M/FQrDAAoKirC\njBkzcOLEv9vF7NvXPG545513sHDhQrzwwgsX/RuV505Tr5GTY1MVkUWfHn0UkUWtu5aaD+CLwzcV\nZaC2yYVNRRm0nEnRYxWRQU7Zh/DAg5yyD2k5J8emQg019XgS4VYl4vi8O26uIrIw2wvwyOcL6WL7\n8B7cNpSO2gqooKLez54YsRwLhi3GEyOW03LG9hkEjYorDm8ZDzLHhfNNC9EzqBfVDUfEcS9CrCTC\n/UtU3i2HN+ODox/Q8nVGQkJC4HL9WyTmcrmg0+kueN/j8UCj0WDUqFH49a9/DQAYNWoUjhw5csm3\nWSKRSCQSiUQikUgkEonEF3QpEZCIwrW7yU3NlxB1iyL6M+nmF+FsrEa6+UVazqTocVgwbDFVtGJ3\n2WCpPkEXWZxrqqPmE4HZXoBVBU9Tiz3rzWuRceQ1rDevpeU0GeLx+ui3qMKiOP1Q9Ol+Gf2895Kv\nmgZtBC7rzm/bZdBGoFe3PtS8dpcNZxu+9/tWUwC/EG/QRiA82ED/PasbzlJ/z5yyPXTXOxFOQFan\nBeO2ch1TOhs/1QoDABoaGrBhwwZER0eff++2227DypUrAQAnT55EaOjFXV56BvXqEKI+Ea5ZdpcN\n1hru2ECEOPyJEcsx5+p7qcKFFqEOU7AzIGyAIrJQkYW3SdFjEYAAqgBKHxyOALJIFAC6qbtR8wHA\nfms+Gr2N2G/lOQzZXTZUnnPQHSIDEED/TcO6cQX8Bm0EjCHcVr4GbQRCgnT0caEXHmq+lpbIzNbI\nFbWnFJHBdYbrFZHFrZePUkQGbOevzsjAgQNx/PhxnD17Fg0NDfj6669xzTXX4Nprr8Xnn38OAPj2\n228RExMDAJg7dy4OHmxufbl//34MHjzYZ9sukUgkEomkbZyoOnHxfySRSCQSiUQi+Um6lAhods4M\nemHY7eGKgES0rsorz4W91kZtUwAAkbr+isggp2wP1n37PLWA7aitQCO4LYyKHIWw1JygOigYtBHQ\n9+hLn/RvIk/6J8ekQKsJobYmsTotWJ7/ONlVKxeV505Tj3tHbQUaPW7qsWR32VBRx23bBTQfoxV1\ndvoxyhYsiRKYsK/3dpcNjrpT9P3kVXmp+eL0Q9E3mOvIYNRFYlPSFrpQS4QLS2fip1phAIDJZEJE\nxIXnoUajwWOPPYaVK1fijjvuuOjfONtwhtoiZfXfVikiCxGOEyWVxWj0NtJbpbJboVmdFnxuzaNe\nz0QIYWYMnoUXbl6PGYNn0XKKaGdrMsRj950fU0XHjtoKNJFbZZoM8bhvyHy66+KVva5URAYihEUA\n381wvXktVhx4kipiB4DTdQ5qvuzSHag8d5p6bU776mlUNVQh7aunaTmHG0dABRWGG3ntwERw9Ox3\nisjizLkzisggJDDk4v+oi7Jr1y5kZWUhMDAQS5Yswdy5czF16lSkpKSgb9++GDVqFIKCgjB16lSk\npaVh6dKlAIA//vGP+NOf/oSZM2fim2++wf333+/jbyKRSCQSiaQ1WJ0WJGcl+3ozJBKJRCKRSDo0\n/B5JP6KwsBCrV69GZmam4v3c3Fxs2LABGo0GKSkpmDJlCjweD/74xz/iH//4B4KCgvD000/j8ssv\nx/Hjx7FkyRKoVCpcddVVeOqpp6BWq/H000/jm2++gVarBQC89NJLiv7w/w12EdPussHmam7fxMzb\nPaAHLRfQ3HImQtuP3nJmnmkBquqrMM+0gJZTxMpffXA4NOpAas44/VAMCL2CWmi3u2w49YMYhHU8\niRCtZJfugKuxBtmlO2j7vshRiGPV/0KRo5D23WcMnoUz585QC5Jx+qEwBHPbYTlqK+Am76MWvOAK\nTH682p+1n0S0mjLqIrHI9ChdtOL1cH/P5qTcdM1iJe4+EkGzQxtXlCtpZtWqVVi8eDGmTJmCPXv2\nIDg4+Gf//Qdlu2jX8huNI7HX8jFuNI6k5Gvhxy2cWE6BCVGJ6N2tD3Vs9GOBMOv8s7ts+Fd1GfWc\nFiGEAUC93wLN+8io7U8fv7IR4Yiy5fBmrP12NQaEDaD+riJctXp176WILDxeroi9qr5KERks3rcQ\nrsYaLN63EG9PeJeS0+I8oYgMhvcbgW3fbcXwfjzBTkllMbzwoqSymHYtufXyUdh97D2qu44oRBz3\ncfohtFydgcjISGzbtg0AFMLmxJ5aHL0AACAASURBVMREJCYq7wtqtRorVqy4IMfgwYPxzjvviN1Q\niUQikUgkdIy6SGSnZvt6MyQSiUTiB1idFr+uc0gk/owwJ6CNGzdi2bJlqK+vV7zvdruRlpaGjIwM\nZGZmIisrC6dPn8ann36KhoYGZGVlYdGiRXj22WcBAGlpaVi4cCG2bt0Kr9eLvXv3AgAOHz6M119/\nHZmZmcjMzLyoAAgA3QkHAL2ACwA1bic9Z5CAlgJWpwUfl39Id1dSqwUcll7ujjLqIrFixJ+oN5+S\nymI0etzUFe/64HAEqYOoAigRq8hFFNCsTgveOpIhwA2G2/IC4Lc7EYXJEI/XRr1JLRxbnRY8nPcg\ndT+Z7QX4n0/nUNvgAYA6gHttMmgjYNRFUp2V9lvz0UR2ZBDR4sigjUDPbj1p+STAzp078eqrrwIA\nevToAZVK1ar7aXRP3rW85PtiRWSRFD0WaqipzjVFjkKcqf+e6pb2Y7ESCxHndEfBqIvE4useo461\nzPYCTMhOot4fWpxQmI4oRY6DisgiISoRfbpdRhVWiXBEEeECJaJl3a8vG6KIDCbHpioigxmDZ+Fy\n7eVUQdne458oIgMRrm8PXPugIrIQcdwzf0uJRCKRSCSSjk7/MF7nAYlEIpF0TER0fJBIuhLCREBR\nUVFIT0+/4P2jR48iKioKYWFhCAoKgslkQkFBAcxmM0aObF45PmzYMBw6dAhAs9jn+uuvBwDcdNNN\nyM/Ph8fjwfHjx7F8+XJMnToV777bupWXD302D1sObyZ9w+Yi5uVhA6gFXBGtu+wuG+y1J+nCBQA4\nc+57aj4RLbEctRVoJLdpECEyEDGZbDLEY9XINVTRhj44HAEqDVVYNNw4AhpoyAW0Qhx3/ota4BVR\njBXRvgkQJ6xasf8p+qCrkdxW0WSIx18m7KYe9yZDPDaO2kR3zghUB1LzNbfnUNPbc7Bbd+WV5+JU\n7Slqzs5OSyuMn2L06NE4cuQIZsyYgblz5+Lxxx9H9+7dL5o3tvcg2jYu/c0yBCIQS3+zjJYTaL6P\ne+Ch3sfj9EPRM6g39dob1i1MERmIaLljthdg4s6xdKHkkrzF1Hw5ZXvw0GfzqS1iSyqL4fZyBdct\nYwLm2EBEy12geWxUWX+aOjYS4YgiQgQlSljF5s2iNxSRwe3bb8Nx13Hcvv02Ws6BPa9SRAZJ0eOw\nOeltmuNbC90C+IthRDhLdQQHJIlEIpFIJBKJRCKRSC4Vojo+SCRdBWEioDFjxkCjubDbWE1NjcK1\nR6vVoqamBjU1NQgJCTn/fkBAABobG+H1eqFSqc7/W6fTidraWvzud7/Dc889h9dffx1bt25FSUlJ\nq7aLubLQqIvEk7/5f9QLkIgVkAZtBLSaEKqwBhAnWDr5Q4s1LlynFZMhHvf++gGqICA5JgW6QB2S\nY1JoOc32Aiz5YhG10FdSWYwmbyO1gGYyxCMjKZMusGAz3DgCAQigFmPtLhvO1H9PP+bnmRbgRsNN\n1HZ9dpcNJ2qO07dVQxbCAKBf76xOC9L+9jRdAEU2KftBJOGliiVECElnDJ6F1+94nZavs/KfrTBS\nU5XOEJmZmRg4cCAAIDg4GGvXrsWWLVuQlZWF227jFXtbS7r5RbjhRrr5RWrevPJ9isjJmYszDZXU\nMYwIp7ycsg/hhRc5ZR/ScjpqK9DgaaBeJ5bkLUbGkdeoQqBmEauXKmaN7TMIaqgR24cnfhOx30WI\no4FmIXegitsiV8Sziy4oVBH9FSHCvx9adjFbd21M2gQ11NiYtImW84kRyzF+wEQ8MWI5LScAuije\nZIjHs799nv6MIWLfSyQSiUQikUgkEolEIvk3ZnsB7v3kbvpCRomko3Gi6kS7PidMBPRThISEwOVy\nnf9vl8sFnU53wfsejwcajUbRysLlciE0NBQ9evTArFmz0KNHD4SEhOA3v/lNq0RAL9y8nrqy0Gwv\nwB8+/j31AqQPDoeG7LKSXboD39dXIrt0By0nIMa5ZntJFrzwYHvJT7sdtJXm39JL/U23HN6Mtd+u\npjpLZZfugNPtpO+nJm8TNZ+IYo/VacEjnz1MFVhU1lUqIgODNgLBgVqqwMSgjcBl3cPpopVn8lfg\nS/vneCZ/BS2nQRuBEI2Ouq1GXSS2jttOFVNanRZMfn8SXbBT18h1wwEAZwO3/WNS9DisuTmdeq8T\ndYyOHjiamk/SdpbfsJIqFHw2YTXmXH0vnk1YTcsJiBEEiLiXiSApeiwCEEBthSbi/ijCuUaEw0xJ\nZTE88FCFzAC/rafJEI8Hhi2kCxeaWzH2ol7P9cHhUENNHWe3HO/M436+aSF6BfXBfNNCWs55pgWY\nctV06nVUhFBtU1EGPPBgU1EGLWdO2R7sPvYe1anL6rRg0s5x9BaxS/7KXRABiLk+JUQlol9IP1o+\niUQiaS+y3YJEAllslEgkEonEDzBoIxAZEkWvS0jahnw+8C1WpwXJWcnt+uwlFwENHDgQx48fx9mz\nZ9HQ0ICvv/4a11xzDa699lp8/vnnAIBvv/0WMTExAICrr74aBw4cAAB8/vnnuO6663Ds2DFMmzYN\nTU1NcLvd+OabbzB48OCL/u3Xil6mHqyO2gq4PW7qSmoAgIpbSBAxQQ384FyjCaU618Tphygig5bV\n88xV9CJaCiTHpMAQHEH9PUsqi9FIdu0RQXbpDpyqs1EFUCL2Ubr5RTjd1VSXC7vLBkfdKbq7zoCw\nAYrIILt0ByrrT9OFamw7R7vLhnLnMepvanfZcNLJdSnLK8/FqTqum5rVacGGb9dR73V2lw0VtXbq\nd7c6LRi3ldvuQ9J22C4jAOgCIKDZcWLBsMVUxwkRwgURGLQRCAnkii9FUPJ9sSIyiO0zCCqoqGII\nEQKLOP1Q9NNGUh1MRIjNgeb7juNcBfW+s9+aDw881HZoLeNW5vjVqIvE8uFcB9ecsj3Y9t1WqhDG\nUVsBL9nRz2QwKaK/IqKVLwCA7LoINDsaLhi2GDMGz6Lm1agvdFKWSLoacoLZt1idFszOmSH3g6RL\nY7YX4M73x0shkEQikUgkPsaoi8T2CTtlOzAfYnVaMH3PZPl84EOMukhkp2a367OtFgHV1NTAZrPh\n5MmT519tYdeuXcjKykJgYCCWLFmCuXPnYurUqUhJSUHfvn0xatQoBAUFYerUqUhLS8PSpUsBAI89\n9hjS09ORmpoKt9uNMWPGYODAgZg4cSKmTJmCmTNnYuLEibjqqqva9s0JJEWPw4PDFlEdFxy1FWgk\nC4tyyvZg+3dvUyeogeZCgrOxmlpIEIEIu/aEqFsUkYFRF4n/u2kN9YYmwq0pTj8UhuAIarFLRCsN\nEftIRE4AaPJw3ZqAluIpt9A53DgCanI7NEDMRC/blQEAVGpuzoSoRIQF9URCVCItp91lw7+qj1IF\nO47aCri9fMFrQ1MDNZ+k7UzITqJPbLJFCy0wHUEAMcKFOP1QRIb0p94fNxVloMp9lurgcazqmCIy\nGD/wDkVkIKIVmoj9DgCBAdzCvYjxGyBGBCXCEUXE988p24OHP5tPfR5qaVXHbFkXpx+Ky7rrqdcR\nEW3gRDiKxemHIiyoJ/W7mwzx2DnpA7qrltlegFcOplPvoUWOQpRXl9Py+Qu/dB5J0rWQAhTfY9RF\nYlPSFllokXRpTIZ4/GXCbvr4QSKRSCQSSduR41Lf0+hx+3oTujz9w9rnvt+qGetXXnkFr732Gnr2\n7Hn+PZVKhb179/7s5yIjI7Ft2zYAwB13/LsokJiYiMREZdFTrVZjxYoL29ZcccUV+POf/3zB+3/4\nwx/whz/8oTWbfx52y5mcsj1Y9+3zMBlMNCFQUvQ43Gi4iSosEjGZDDQXEgIQQF+hrYGGmlOEwCRO\nPxQR2n7U39RsL8A9H8+mTlTPMy2AxXmC6gJld9lwpv572F022vnUUpToCMUJtgCqpLIYTWhCSWUx\ndYJhvzUf3h8Kncy8GnUALRfw74le5kSjiIKPyRCPnRO5OfPKc1HVcBZ55bm0leTbS7LQ5G3C9pIs\n2rbqg8MRAG6bSgBw1nNboUnaDlvcteXwZjz02TwAoLojmO0FuCN7DHYlf0Q7rkWMDQB+i7/ZcXPw\netErmB03h5ZThDhaxD03KXos0r9dQxeAsfmxUxzrPpYck4JXD75EdYcElO3QWOeSCMFOs+hYTRUd\nx+mHIjQojDqGS45JwYbCtdT9VOQohONcBYochbTjyaCNQK/uvamOYiJaKmaX7kBVw1lkl+6gPruw\nx9gteOCh5mOKyfyF9s4jSbouUoDiH8jfXyKBFABJJBKJROInWJ0WOT71MV4BDsuStnGi6kS7hECt\ncgJ699138emnnyI3N/f8qyNO3LDb7cTph0IXGEqdTJ73yX340v455n1yHy1nkaMQp885+NbqAFRq\nbkc5gzYChpAI6iS1iNWvdpcN35+rpB9TbPMSs70Ab5dmUlepGrQR0PcIp+6j7SVZishgxuBZuDVy\nNLUQbXfZUHnuNHW/J0QlQhcYSnWDAZoLU7279aEWpgzaCERojdR9b9RFYpHpUfpATkTrnI4wCSSi\npaKjtgJNaKSKRfLKc3GyRq4E72wkRCWie0B3+vVsvzUfjd5GqnuLPjgcAaoA6tgg3fwiqhrOUltG\n5pXnwtVUQ3VdTI5JgVYTQr0/iBCCGLQR6NP9Mur1PDkmBfru4XRxTaO3kZrPqIvEkuufoN8bRQg3\nhhtHIIDsEvhjsRKLHwtMWNhdNlTXV5Fbhe5TRE7OXFTUnaJeR0S4IA03joBGpaEeSy3iVBEudV4P\ndxZsuHGEECdLX9JZ5pEklxY5wS+RSCQSiUQikUgA6RQqkQDN50FyVnK7PtsqBUdERATCwnirhX1F\n8nvjqGKITUUZqHZXUVs0iGinUFlXCS+81NXZgJjWZXaXDRW1p6iT6QZtBMKDDdQikskQj/vi5tOd\nRh67bhk956u3ZVBz2l02nHLZqftovmkhdIGhmG9aSMv5TP4K7LV8jGfyL3QYay+O2gq4ycd8dukO\nON3V1KIU0LyfatxOulCtrrGWms9sL8Dcj2ZRr82i+pSyWyqKKMaKaPMjwuGD3eJG0n6YhebF+xbi\nXNM5LN7Hu5YDQMn3xYpIyVlZjCZvE1VkIEKEV+Q4qIgMNhVlwNVYQx2/Nhevuc4teeW5cJyroLed\n7dm958X/URvY8M06eODBhm/W0XKKaF0FNIvfgtRBVPGbQRuB/qFR1HF2s9so1xlURNsyEe0yJ8em\nQg01Jsem0nKKGG/MMy3A8htWUh17DNoIDAiNph9LP44sHLUVaCQLpEsqi+FF51pe11nmkSQSieRS\nIwtdEolEIpFIJM0LBJ4duVouFPAxqs61XqnDYdRFIjs1u12fbZUIaMCAAZg+fTrWrFmD9evXn391\nNMKCepGFICZFZNC8Mp3fdkUEcfqhiAzpT3VCMmgj0LMbdz/ZXTZUkEUrWw5vxtpvV1NXleaU7cHK\nA8upBR+r04Inv3ycOoHgqK1Ao5c76W132XCuqY66jwaEDVBEf2WeaQGmXDWdWkRpwUMuJGSX7kBF\n3SmqYKmkshhur5taiAf4fUpzyvbg9znTqeenCHGNCEQIi5JjUtBX25eWT9I+QgPDqOLL1be8CK1G\ni9W38JxwAGB4vxGKyKCjiPCahQAqqiBARDswR20FvPBQxwYi3IUAoNZdR803JXaqIjIQJeA3GeLx\n+ui36M52GlUgNR8ABJDdRhOiEtG7Wx+qU1lzu0yuo5jJEI89d35C3UdJ0eOwOeltartpAPSxq1EX\niQeGPUid3GtxkGM6yYkiISqx042NOss8kkQikVxK5Ip3iUQikUgkkmasTguWfLFYjot8jEbNn/eT\ntI32tAIDWikC6tu3L0aOHImgoKB2/RF/4VSdjdoSSx8cDjXU1IlfR20FmsgCi4SoROg0/HZDANA9\noAc1nwi7ekdtBdzgrtIVUUiI0w9FP20kVVRV5CjEcee/qMd9nH4oenXrTd1OEQ47sX0GQQUVdeVv\nnH4oDMER1O+eU7YH2797m77aX4RT1zzTAowfMFGIYIlNdb2Tmk8fHA41uXWQCBFCUvRYqBGApOix\ntJwiBK8AEKAKoOaTtJ26xlq6W1iE1kjNBzTfc43a/tR7rohWNqLOFTW5PYyI9k0A6G1sRDi3FDkK\nYXWdoI+LLtddQR0bJEQlIjKEe8wDzZMnaX972u8nTwzaCIQG9qQuCihyFOL7+krqvm9ul9lEHWsB\nYtqPsgVAIhDhgJUckwJDcAS9BaAIYZXdZcPZc2dp+fyBzjKPJJFIJJcSoy4Sm5K2yBXvPoY9RyeR\nSCQSiaTtGHWRWGR6VI6LfIhRF4mt47bLfdBBaZUIyGq1Yt68eRe8OhqB6kBqAbekshgeeKgOFi1t\nOZjtObJLd8DZyG83BAB1jdzV1AlRiYjQ9qMWPcx2syIyEFFIAIDgQK6oSkSRM688F9/XV1KFWvrg\ncKigop+fXnip56eIdnVx+qHo001PLR625L2sWzg175bDm7H72HtUBywR5JXn4lSdjS4mZAs0W453\ndluWCG0/auE0KXocFgxbTC105ZXn4mTNSVo+SftQk502AKDRy3XhApofNnbf+VGXfNjYb82HBx66\ni4UmQEPNlxQ9Dm8lbaVeJ2L7DEIgAqliXhEObEZdJFbe+Cfq8WnURWJXsphjnt3Wszkn93kgrzwX\np+v5reDYiHBFBbpuCxAR1xGjLhIfpuwVci6x97tBG4EBPQdQc/qazjKPJLm0dNVroETyY7ric48/\nIcIJWiKRSCQSSdsx2wtw7yd3w2wv8PWmSCQ+5YDlQLs+16rqT2lpKVwuV7v+gD/Rp/tl1MKoCBeH\nOP0QRWQgasW3iNXUAOBubKTmE9EWKk4/FH26X0af/PVyuzchOSYFvbv1oa5+je0zCAEIoBblcso+\nhBde5JR9SMspgpyyD+GBh7qdRY5CnK6voJ9HRY5CVNY76HnZiHDVEnFtFlE43vDNOkVkYHfZUFHH\nbX+YU7YH6759njoBFttnENStG4JIBHJf3Hyq44TdZYOl+gTdXQjoGBPh+uBwBKq4gvPhxhHQQEMd\nw5kM8dg58QO62wjbacRkiMcbSZup25kQlYheQdx7jqgJCRECGLvLhpNOK/UcLXIU4qTLQh1vJEQl\nom+PCLrjpgjBDhur04LpeybTi+AiiuoicopwLBJxT7I6LZi0cxz1NzDqIjH3mrm0fP5AZ5lHklw6\nZBskiUTiD4gQJkskEolEImk7Bm0EIkOiqHV9SdsQNU8laT1mewFueeuWdn22VRU4tVqNW265Bamp\nqZg1a9b5V0fDXstvB6ZRaejtYVRQUYvXBm0EenXrQ79QiiiKZ5fuwOn6Cqpr0bGqY4rIIK88F5Xn\nTtMLNNUNVdR8dpcNrsYa+uS3SsVt+TE7bg56BvXC7Lg5tJwzBs/CgmGLMWMw71oV1i1MERmIcKpq\nwQuuqkyEAEyEq5aIa/OZc2cUkcGU2KmKyEBEaz2Afyy1OOl1BaqqqrBs2TLMmjULZ86cwdKlS1FV\nxb3Wt5e1366mOnuJao0DgO5AJqLVlMkQj/eTc6iiFZMhHrvu/Igu2BHRboiN1WnB8+b/oz5kFjkK\ncbbhe+o9R8SExJbDm/HQZ/OEOO95VWTFOfj3CADQBekE5Ayl5ityFMJawxVAAcDpWgc1nwjBitVp\nQfJ73JwteZmY7QWYmD2WLtIrchSi3HmMuu+3HN6MRz99lJbPH+gs80iSS4dsgySRSPwF5nySpH2c\nqDrh602QSCQSiY8x6iKxfcJO+XzgY9xNfOd/SesxaCMQFRbVrs+2qhfAI4880q7k/gizLZKjtgKN\n5PYwcfqhCA0Ko65S/bGlPlMQIQIRRTkRTkAinEayS3egou4Uskt3YJ5pASWnQRsBQzC3NVBzWyRu\nkdfussHprobdZaPd0M32AmwofBFJ0WNpxc7kmBSs+/saqrOSiONTJCpy+yB9cDgCEECdYBFxbRZx\nbeooiBB8Mq+d/s6TTz6JG2+8EQcPHoRWq0V4eDgeeeQRvPbaa77eNMy5+l7quCBOPxRRugF0p40W\nQQQA2vYmRCUiMqQ/1WkEgJCVKR1BsCMCoy4Ss6+eS33QT4oehydvWEFvN5R+68vU7RThhHMesl5H\nHxxOb7kMAIEBgdR8Rl0k1iSsox9P7FXi2aU74DhXQX0e+LFghfX9ixyFOF7NzWl1WnDbtpvw6ZTP\naTkdtRVwe/niaIAvfkuISoRRZ6Tm9DWdaR5JcumQE/y+x+q0yP3gY+Q+8C1mewHufH88/jJhd5d9\nFvM1VqcFsz5KxcH/PejrTZFIJBKJj5FjIt9D9oSQtBGjLhKfzPykXZ9tVTVXpVL911dH5MpeV9Jy\ntQiKmMKi7NIdqGo4S3XCEdH6ABDjjCFCXCMipwhajk3mMQoAgWpuEaWlyMMs9mwvyUKTtwnbS7Jo\nOXPKPkSjt5Heuutswxnqqt8ix0FF9GcctRVoJLvMiHAOySvfp4hdCZHOUkz8ffuYWCwWpKamQq1W\nIygoCA899BDsdruvNwsAkHHkNWqbN6MuEjsn7aE/nIlwdjPqIrHI9Bh1W2ULCy45ZXvw8Gfzqceo\n2V6AVQVPU11BrE4LHs57kL7fQ7vxnXAAwOPlurAZtBG4XHcFVQBn1EVi6fXL6Ofn/L3/S99PbNFj\nckwK+vaIoArOk6LH4e6r76GKlZKix2HcgAnUnOnmF1FZfxrp5hdpOeP0Q9GrW2/6forTD8Vl3cLp\nebtrulPz+ZrONI8kkXQVpN2/77E6LZj8/iS5D3yIyRAvBUASiUQikfgJckzke7x8A3DJJaJVIqB1\n69adf61Zswb/8z//g40bN4reNjpst4nkmBT06X4ZdZJ2uHGEIjIochTiTAO33Q4gTrTCRoSLhQgh\njD44HBoBK6nPNdVR8+235sMLL/Zb82k54/RDFJGByWBSRH8lIeoWRWQh4rgXgYjtnBybChVUmByb\nSsuZEJWI8B59qWJKEYKdjuIslRQ9FmoV11XKXwkICIDT6Txf9Dp27BjUZEet9jIg9Ap6AZPdJhNo\nFm68dHAtVbghQmDS1VtYsB/Kk6LHYc3N6VSRAQA0eZuo+QCg0cO3xa0Q4FxSUlmMJjShpLKYllOE\nNbPZXoC5ObOo57zdZUO58xi1Ra6IllhGXSRy7tpL/T23HN6MjCOvUdvLPZO/AruPvYdn8lfQcraM\n25jjt7zyXHxfX0m/NxU5ClFZ76A+X9tdNlidVlo+f6CzzCNJLi1ykt/3SLt/32J32WCpKaeOWSRt\nR4TDq6T1GHWR2HiHHDNIJBJJV0eKo/2DRq98PvAlVqcFyVnJ7fpsq6pQmZmZ519vv/023nvvPWg0\nreok5lew3SbsLhuq66uoD2YtriVM9xJRYgAReeP0QxGs0VKLkseqjikigxbHGqZzDQB4PdzV2UWO\nQlhqTlAnqEWIv0S4SokQWIg45kW51ohwwNp9dJciMkiISoQuUEcV15RUFsMLL7XIaXfZUFl32u8n\n4kScSyIoqSymu1H4K/Pnz8fMmTNx8uRJ3H///Zg+fToWLlzo680CAGRP5Lr2tLTtYhaagebjxe1x\nU89pUQITEdeIjvCgK8IFyeq0YPXXq6g5RbQ0BQAN2XUx3fwiqhrOUh1RAHHumOyFBiWVxXCDe84D\nQJOHKwArchTiWPW/6N+fzYzBs3Br5Giqm9rsuDnQakIwO24OLWfL/mbud5GOsOx2YCZDPFKv5gmg\n/IHOMo8kuXRIV0X/gN2SU9I2TIZ4ZE/cI11ofIgIobekbVidFjzwwQO+3oxLRk1NzUX/TVNTE5Yu\nXYqpU6di2rRpKC0txfHjxzFt2jRMnz4dTz31FDw/1BW2bduGO++8E1OmTMG+fc3zzefOncP8+fMx\nffp03HPPPfj++++FfieJRCJhIGJBl6RtNC9Yssh94EOMukhkp2a367PtWorev39/lJWVtesP+hqm\nIMBRWwG3l9saRwSxfQZBAw1i+wzy9aZclLSvnkZtowtpXz1NyxnWLUwRGeiCQhWRgYjV2SLQB4cj\nSB1EdSyyOE8oIoOk6LGKyEBEIUHEqmegeT+x3c/GD7xDERlsKsqA0+3EpqIMWk4RiDg/Z8fNQRC6\ncQto3xcrIgORbRq7AjfddBMyMjKwatUqpKSk4P3330dCQoKvNwsAqPdaQFyxVUReq9OCtX9/njqx\na7YXYOLOsfRWU5N28ieg2fma26s9ShWV5ZXnwuo6QXXw0AeHQ6PSUO+NIlpXPZuwGnOuvhfPJqym\n5QTEjOFyyvZgVs40qquWCAG/iPu4CHG41WnBze8Mp56jz+SvwF7Lx1TXnrzyXLgaa6jnpwghc0da\nDPNM/gq8dfAtWj5/pCPPI0kuDV3dVdEfMOoisSZhndwHki5NkaMQx6uP+b3QuzNj1EViw+0bfL0Z\nwti3bx+ee+45uFwujB07Frfeeiu2bNly0c8AwDvvvIOFCxfihRdeQFpaGhYuXIitW7fC6/Vi7969\ncDgcyMzMxDvvvIM33ngDa9asQUNDA95++23ExMRg69atmDRpEl566aVL8VUlkg6PFIRKujqO2go0\nehv9XgfR2ekf1r9dn2uVCGjp0qWK15QpUxATE9OuP+hrDp0+SMvVUdrtGLQR6NW9N93KVMRE7fB+\nIxSRktM4AmqoqS3WRLSaErlSlYnJEI/XR79FXZUkoiVWS7syZtsyfXA41FBTi2ciVj0DP7gdkN3P\nRFzzRLSvEnEuFTkOKiKDdPOLaEA91elh6W+WIRBBWPqbZbScIl21ugJfffUV7r//fiQkJOCKK65A\namoqvvnmG19vFgBg23dbMe+T+2j5/nnmn4rIQsS1V4SDh6O2Ag2eBup1t8hRiONO7nZanRaM3XEr\nXQA15yNu+yYRmAzxeGPMZuoYxmwvwD2fzKZ/d7Y4GBAzhhNxjxAh4Bfx3CIi55NfLEW1uwpPfrGU\nllPE7yliXJQckwJdYCi1JIutCAAAIABJREFU1bao5ysR+77ZXUlLy+cPdKZ5JImkq2B1WrDki8Wy\n4OVDzPYC3Pn+eL8fV3dmkqLH4ckbVtBdYyWtx+q04J5d9/h6M4Sxfv163Hnnnfjggw8wZMgQ5Obm\nYseOHT/7mdtuuw0rV64EAJw8eRKhoaE4fPgwrr/+egDNC9Dy8/Nx8OBBXHPNNQgKCoJOp0NUVBRK\nSkpgNpsxcuTI8/92//79Yr+kRNIJsDotmL5nshwX+RCDNgJRugGyTacPkeOijk2rREDXX3/9+dcN\nN9yABx54AM8//7zobRPCjcaRtFwiVqmKEJfklefCca6CulITaBbXqMjiGhETtY7aCnjgoRblRBQ6\nRQgs9MHhCFQHUgunVqcFy/Mf9/vBjwjxV0llMTzwUAU7Iq4jQEvRnOsEJIL9J/MVkYE+OBwBKu53\nj9T1V0R/zbmpKANuNFCdlUQUD9nHuz+zatUqrFjR7L4QHR2N1157Dc8884yPt+rf+LvoFhBz7e0o\niBgbZJfugL3WhuzSn59kbAv7rflo9LqpwtsZg2dhwbDF1BZGVqcFK/Y/RR/DNDVx20yZ7QWY8Jck\nevHH6rTgyS+5YzgRzy4iWs+KcMrbe/wTRWRQ11iniAy+tH6hiAxq3DWKyCCvPBdOdzX9mVUEvbr3\nUkQG2aU74Gp00fL5A51pHklyaZDtwHyPdGPyPSZDPF69LUO2A/MhZnsBVhU8LYVYPqbWXevrTRDK\nwIEDkZeXh8TERGi1Wrjd7ot+RqPR4LHHHsPKlStxxx13wOv1QqVSAQC0Wi2cTidqamqg0+nOf0ar\n1aKmpkbxfsu/lUgkEn/HqItE+q0vy7GpDzHbC/Cc+U9yXORjDlgOtOtzrRIBVVRUIDk5GcnJyZg0\naRJuvvlmpKent+sP+hrmRJ0IRIhLRK2AzCn7EF54kFP2IS2niO8vYoVyh8LLTSfCPUGUe4SqfR0P\nfxJRgh0RNBfNuW0vRFxLYnsPUkQGJZXFaPJyv3tVfZUiMhBRQBIh2JH8Murr6xWr3gcOHIjGxkYf\nbpESfxfdAs1tTVVQUduaihDJ6oPDoQG31dSMwbNwa+RoqhBGxLVHRE6zvQAvH1xHfci0u2w4XvUv\nah9rR20FGsG1xS2pLIYbbrrwTYSzlAhEtDRdP+oV3Bo5GutHvULLuWzEU4rIYPzACYrI4Pe/vlsR\nGdwdNxcBqgDcHTeXllOEqErUc6AIJyCm6M1f6EzzSJJLgxSg+Afy9/ctVqcFj3z2sBTD+RqVrzeg\na2N32XDSedLXmyGMyy67DCtXrsShQ4cwcuRIPPvss+jXr1+rPrtq1Sp89NFHePLJJ1FfX3/+fZfL\nhdDQUISEhMDlcine1+l0ivdb/q1EIvl5ZJtU32N1WjB/7//KcZEPMRni8acbn5MCdR9ithfglrfa\n10XnZyvkq1evxtKlS5GRkaGwcX700Ufx0UcftesPdiacDdWKyEBEEUUUItr4iPj+IlYoiyC2zyAE\nqAKoRU4A8Hg91HwiBDsi9ntJZTGa0EgtoIk4lkRcR0SRV75PERmIWO3fURBRQBIhVhKR0+bqvJM5\n/0l0dDSee+45lJaWorS0FC+88AIGDBjQqs8WFhZi5syZ//X/1dXVYerUqTh69CgAwO1245FHHsH0\n6dNx1113Ye/evayv0Gp2H92liCyaRcdequjYoI1AP20k306WPFn8TP4K7LV8jGfyV9ByihB0ihDJ\nOmor4Pa4qeIaR20F3GTBTkdCxBhORLs+ES1NzfYC/NX2GVVUZtBG4HLdFdTryIzBs7D8hpVU4V9S\n9DhsTnqbat1sMsRjd/LH1EmgB659UBEZiHheBbr2+LU1yHkkyS9BFll8T07ZHl9vQpcmu3QHTtVx\nXTslbcNkiMfGUZtkscuHmAzxSB/beYXDzz//POLi4rB582YEBwejf//+F3VL3LlzJ1599VUAQI8e\nPaBSqfDrX/8aBw40OwN8/vnnuO666zBkyBCYzWbU19fD6XTi6NGjiImJwbXXXovPPvvs/L81mfy7\nTiJpRgoffIvVacHDeQ/K/eBD7C4bjldzF/NJ2obZXoAlf10knYB8iEEbgYiQ9s09/qwIaPTo0bj+\n+usRHByssHL+7W9/e37Q0dFgriwU0cpFRFFYlMuKCEQUkUQUJ4SJVsjuJSKKKMkxKQgNDENyTAot\np4iCpCgHLDZx+iGKyKLIcVARGeiCQhWRgQjRwJYjmxWRgQgBmMV5QhEZHD37nSIyEPHda92dq93F\nz/HMM8+gtrYWixYtwmOPPYba2lo8/fTTF/3cxo0bsWzZMsXKrhaKioowY8YMnDjx72Pn/fffR8+e\nPbF161a8/vrr53vFXwymO8L4gXcoIgtRRdyggEBqvpLKYjR6ueLT2XFzEBygxey4ObScIpwxkqLH\nKiIDEeO3ZsgWiR0IEaJOEe36RLTBA4D6pguvp/6G1WlB+t9fpE8yMgXcLTz5xVJqvpZjqCO0fhTx\nfP3WoTdpuXxNZ5xHkki6CjllezArZ5oUAvmQ4cYRCFAF0FssS1qP1WnB4399VBZ9fYjZXoB5H87z\n9WYI4/3338ekSZNw+eWXAwBMJhPuvvvnXTtHjx6NI0eOYMaMGZg7dy4ef/xxLF++HOnp6UhNTYXb\n7caYMWOg1+sxc+ZMTJ8+Hb///e/x0EMPoVu3bpg2bRq+++47TJs2DVlZWZg3r/P+vp0F2SZVIvnB\nfdvbdRfz+QMGbQR6d+/DX0graRNBmqB2fU7zc/9zyJAhGDJkCG677TYEBASgvLwcMTExOHfuHIKD\ng9v1BzsTP7Ysn2daQMkpoigsyl0ots8gqKGmOteIaGUjoj2JCIGFCEQUUfLKc1HtrkJeeS5tlbKw\ntiwqbk4Rv+fuo++fj8xV3yJEiiLOzxYxCFMUEt3zSnzt+Buie/JWZ//YBYm5kp7NwJ5XKSIDUcXY\nrkJYWBieeqrtrWKioqKQnp6ORx999IL/19DQgA0bNij+X1JSEsaMGQMA8Hq9CAgIaNXfYQtrRJAQ\nlYjLuoUjISqRmrehyU3NlxCVCKO2P3U7s0t3oLbJhezSHbSxZosTF9ORq2WMxXbtaSKP30Rcy38s\nqvLn+wPQLNJa++1qqliruV0f93lAxDh7wzfrzseM2zMpOe0uG066LLC7bDTninTzizjTUIl084t4\nNmE1JeeSvMXIOPIaANBy3r79Nnzt+Btu334bPpj8KSWniMUwItpJAsA80wJU1VfRrssA8PaEd/Hb\nt6+j5fMlch5JIum4iJibkbQNR20FmrzcxXyStpFXngtLzQnqvKekbRi0EZ26zf3u3bvR1NSEKVOm\nYO3atdi1axcWLVr0s58JDg7G2rVrL3j/z3/+8wXvTZkyBVOmTFG816NHD6xbt+6XbbjkkiLbpPoe\noy4SW8dtl/vAh8Tph6KfNhJx+qG+3pQuS5GjEDbXSRQ5CuW54EO83vYtav1ZJ6AWDh06hIkTJ+L+\n++/H6dOnkZiYiL/+9a/t+oOdiV/1jlVEBglRtygiAxETqkDzg6kXXuqDqYgVyiKYHJuqiAxEuCCJ\nICEqEaFBYdQip4h2CgDg8TZR84lwFxo/cIIisugorQVFiFYitP0UkcE/vi9RRAYihFoiHFNEOCt1\nBZKTkwEAsbGxGDRo0PlXy39fjDFjxkCj+e9abZPJhIgI5fVSq9UiJCQENTU1ePDBB7Fw4cKL/o0F\nwxZTJzX1weFQQUUvGthdNpyud1CtX+0uG6w1J6g5jbpI3HVVKvWBaLhxBDTQUFcC3x03VxEZxOmH\nQhcYKuChnOvaM9+0EN0DemC+6eLnR2sR4YIkSvgmwmlle0kWvPBge0kWLed800LoAkOp++nWy0cp\nIoOSymK4PW7q7yniWVAEG5M2QQMNNiZt8vWm/Cz7rfnwwov91nxqXqvTgqzSLdRVuevNa1F6ppSW\nzx/oiPNIcqW175H7wLcYtBHo3e0yudLXh8hFOL6noziLd2byynNxynXK15shjIyMDHz22We47bbb\n4HQ6sXv3bkyaNMnXmyXxQ2TBXSIBemh6+HoTujRx+qG4XHeFFGJ1UFolAlqzZg22bt2K0NBQhIeH\n489//jP+7//+T/S2CSE8uC8tlwghSEdq3dVS5GMW+0S0shHxAC2iiCLCZUUE2aU7UN1QRe1PbtRF\nIv3Wl6kD25yyD+GBBzllH9JyijiWOor4C+g47aucDdWKyOCuX01RRAbDjSOghppa3BdxPLVMADMn\ngplFWH8lOzsbQHPf9uLi4vOvkpISFBeLaXVis9kwa9YsTJw4EXfccfGWXOu/fYHaz1dUsfXNojcA\neH+IHES07lpvXou1367GevOFq/Pai8kQjzuvmgKTIZ6WU8QYJt38IpzuaqSbX6TlFEF26Q6ca6qj\njmFaxhnM8YbdZUOV+0yH6Hk+OTYVKqipz0N2lw3nGuuo3z8hKhG6wFCqsErEPffHblUsRAiL8spz\n0YhG5JXn0nKKELC3jLHYLVWyS3fAXmujXkuu7MVzsPQXOuI8kmy54Ftk2wvfU+QoREWdHUWOQl9v\nSpelxb2O7WInaT0i2idLJEDz/NDOnTuRk5OD0aNHw+PxIDg4GPv27cPOnTt9vXkSieQ/sDotmL5n\nshyb+pjAgEBfb0KXxqiLxMob/yRFiT7G3c6OBq0SAXk8Huj1+vP/feWVnW+Cqj382FaeRcvkH3MS\nMDkmBT3UwUiOSaHlBJqLHV54qUWPB659UBH9lYSoRAQHaKmFhHmmBRg/YCLVVl6EC5SIY9TqtOAP\nH82mDqhmx81Bz6BemB03h5ZTRAu8pOixUENNdRAQRY27RhEZiHACErGdovCSXS5EiAmDA7WKKGkb\nDz300CX5O6dPn8acOXPwyCOP4K677mrVZ5rQRL2Hi7g/AMD4gXcoIoOO0tbzmfwV2PbdVjyTv4KW\nMyEqEX26X0Ydw4gQGeiDwxFIbuspQmSQFD0WAaoA6n3cUVsBt8dNbwMhomWdQRuBgWFXUoWijtoK\nuL3c759dugNOdzVVtCHCfW9ybCoCEEAVVYlAxAr52D6DoFEFUsfZIkR6gJj7XVL0OMyLn0fL5w90\nxHmkZ0eulpObPsSoi8Qi06NyH/gY9jOqpG20LKhgL6yQtB4RTp8SCQAcOHDg/Ovvf/87brrpJlRX\nV59/TyKRSCRKjLpI3Bv3v/L5wIeY7QW495O7qQuJJW3D7rLhRHX7jBlaJQIyGAzYt28fVCoVqqur\n8fLLL6NfP16blUuJLiiUlmtK7FRFZCDCCWhTUQbqPLXYVJRBywkANtdJRWTQ0kqA2VIgts8gBCCA\nOqGcbn4RtU0u6or3LYc3Y/ex97DlMK/ljohiV5x+KCJD+lPt3/LKc2F1naCuJra7bKhqOEtdRe6o\nrYAHHnpRTq0KoOYDxBS4Y3sPUkQGIlx7RGyniGJXcwsVL/V6JwIRv6e/Cy+YXHnllVi/fj2++OIL\nFBQUnH+1lV27diEr66ePlVdeeQXV1dV46aWXMHPmTMycORPnzp27aF5m8VqUm2GcfigMwRHU+46I\ndnzJMSkIC+pJF12zKXIUovLcab9f4W3QRqCv1kAVl8T2GYRAcEUGBm0EIkOiqNsZpx8KnYbfXs2o\ni8TuOz+iTp4YdZEYd8UEv5+QmWdagClXTaeK7WcMnoU5V99LbatoMsRj9c1rqe5fSdHjMOfqe5EU\nPY6a84Wb11NzGrQRMIZEUs+lJ0Ysx/gBE/HEiOW0nC2ooKLm23J4M9YXrKfm9DUdcR5pyReL5Upf\nH2K2F2Dux7PkBLOkS1NVX6WIkkuPKBGxpPUkRCWiVzfeXLa/kJaWdv41c+ZMpKWl4fHHH8eECROQ\nlpbm682TSCT/gVEXia3jtvv9fEdnJqdsDx7+bD5yyvb4elO6LAZtxPmXxDeUVBbD7RHoBLRixQrs\n2rULNpsNo0aNQnFxMVas4K1IvpQw3RFEFLtEWJaLWKUKAMP7jVBEBi0iLaZYy1FbgSY0UYUbcfoh\nisggISoRIRoddXW2CCcgAHA3NVLz7T+Zr4gMns7/f/DCi6fz/x8tp4gWDY7aCjSSV7uL4oOyXYrI\nIN/6hSIyEDFptvvoLkX0V0q+L1ZEf83JvHb6O2fPnsWBAwfw2muvYd26dVi3bh3S09Nb9dnIyEhs\n27YNAHDHHXcgNVXpDJGZmYmBAwcCAJYtW4Yvv/wSmZmZ51/du3fnfpmLMNw4Ahp1IL3tit1lQ2Xd\naaqoMzkmBaFBYVTBTpGjEFUNZ6nimkOnDyoig47SetbussFWc5K6302GeCy9YTlVYAEA9U0XF9y1\nhU1FGXA2VtMF/ADoLcZEtMETMd7KKduDbd9tpU4c5ZTtQcaR16g5zfYCLP5sAbUAvuXwZmQceY26\n0MDqtGB5/uN0sUQQ2eY7p2wPdh97jz5hmBQ9DmtuTqeKoFoWrnQmOuI80qakLXKS34e0TG4yW5ZK\nJB0NUXO4ktYjYtGrpG3klefiTD13LtufeP7557F69WoAQF1dHV566aVWzxNJJBJJVyJOPxT9tJH0\nRXKStlHn5s57StpGQlQi+oW0b0FVq0RAmzdvxpo1a/DVV1/hwIEDWLduHcLDedb8lxJmEVOEDbgI\n29eEqEToAkOp4hJAjNOIyWBSRAaVdZWKyOBY1TFFZLCpKAM1jU5qwUfEque88lycqrNRXXsitP0U\nkcF1husVkYEI54i3Dr2piCxEtMQK69ZTERmMMI5URAYiiuZlZ/+piAxEHE8hgSGKyECEE9Cr326g\n5fJ3WgQ56enpeOmll5CZmYnNm3mF2F/CgmGL6Q4WGaM30wUWAODxeqj58spzUd1QRb2XbSt5RxEZ\nXB46QBEZiBi/ihAW5ZR9SG9Zl1O2BysPLKcKAvLKc2Gv5Y6LRGG2F2Bi9liqwESE6+R800L0DOqF\n+aaFtJxmu1kRGYgQK20vyUITmqgugSIWBTz5xVI43dV48oultJwA3/VAhJMc0CyCevGb5+kiKLW6\nVdMzHYbONI8kuTSImGeRtI2OIhbvzIhYJCeRdDSYLtz+yL59+7Bx40YAQHh4ON588018/PHHPt4q\niT8iHSp9i9VpwfQ9k+V+8DGh3XiGEZK2I6IeLGk7PQJ7tOtzrZpl2rdvH7zeztET+u64ubRcIiZ+\nRZBdugNOdzWyS3dQ8yZE3aKI/oqIiW8RYiUROXPK9mD7d29Ti12xfQZBDTW1lUaLQxfTqevo2e8U\nkYGIwumvLxuiiCxECDdEbKsI96/xAycoIgMRAigRx5OI6/I3p75WRAZGovDJ3ykpKcGECRMwZswY\n3HrrrZg6dSrKy8t9vVkAgJcL11HFAFanBY989jD94Xi/NR9NaKIKpEXcy4IDtYrIQITzoAixkojr\n2RMjluNGw03UNj764HBoVBrog3lF6ISoRESG9KeK7ZOixyIAAUiKHkvLCTS7DzZ4G6jugyLa7gJA\nRDtXuPwUIn7TybGpCFAFYHJs6sX/cSsRcR8XcX4+cO2DUEONB659kJYzu3QHKupOUZ9Z7S4bHLUV\ndAesIkchjjv/RXV+c9RWtNve2V/piPNIU3ZNkpP8PkREq2hJ2xDhAiuRdDRELAKTtI3OLkRsbGxU\ntG93uzvXGFDCweq0YHbODDk2lXRpjLpIrElYJ91afUhsn0FQQUWf95O0HrvLhvKz7asntUoE1LNn\nTyQlJeHhhx/G0qVLz786Ihu+WUfLJcJpQwQiJn4BMe1xRKzSFYGI1VH64HAEkAtTlXWV8MJLdUFy\n1FbAC6/ft68KD+6riAxECP9ETXSKmLwTIawSkbPFZcbf3WY6ipBUhLCBLXrzZx5//HE89NBDOHDg\nAP72t79h7ty5WLJkia83CwDoYoDs0h04VWeji45FjGMctRXwwEP9/iKcuFpWQDJXQg7seZUiMhAx\nfltvXosv7Z9T20wZtBHo3f0yah9roy4Si0yPUSckDNoIRIT0o/fbFjF+FdF216iLxNLrl1F/U5Mh\nHk/c8EeqU5nJEI/VN62l5kyKHofNSW9T20zF6YfCqO1PdcMxaCPQuxv3XBpuHAGNSkNtKSlCRAqI\nuebpg8M7XTuwjjiPdLz6GF00Jmk9x6uPKaLk0mO2/00RJZeeWrdLESWXnpoGpyJKLj1bjrzl600Q\nytSpU3HnnXdi1apVWLVqFe666y5MmzbN15sl8TOMukjZqtbHGHWR2Dpuu9wHPsTqtODunN9JMZwP\nKakshhde2bLZhzhqK9DobWzXZ1slAkpOTsZ9992HkSNH4vrrrz//6ojUNdbRcoloYZQck4KwoJ5I\njkmh5RTF8H4jFNFfEdGmQITAwlFbgSZvo9+La/TB4fDCSxUriSjwzjcthC5QR20lMd+0ED0CelBz\ninLUGj/wDkVkcOvloxTRX6lrrFVEBiJckETsexEOHy2DbOZgm9mqzd/xer245ZZ/7+NRo0ahtpZ3\nbP5SmCLRlsIts4ALiBEuiDhXRLj2iBBci3DfE5Hzg7JdisigyFGIijo71b0jp2wPHvpsHtV10e6y\n4WSNlV6IFjEmjtMPhU4TShWYmO0FmPvRLKpTmYhWcGZ7AR77/GHqdoqioamemi+vPBen6yuodtDN\nIr0+VGGRiGMeaHaWUkNNdZZqEdR1JjriPFITuf2opG2cazyniJJLj/aHhR9a4gIQSdv40vq5Ikou\nPSec5YooufQEqgN9vQlCmT17Np577jno9XpERETgueeew/Tp0329WRI/RIpPfI9cIOBbskt3wF7L\nX3AqaT0zBs/CgmGLMWPwLF9vSpclKXoclv62fQuqWi0C+m+vlv/XkThWVUbLNSBsgCIyKHIUoqrh\nLLU40VLgYxb6AKDIcVARGYgoIonop93SVo7ZXk7Efmpud8Jt0ZBT9qEiMhBR4C1yFMLpdlLPpezS\nHahrqqMOOl799mVFZPHWoTcVkcGxqmOKyODavtcpIoPqH1yVqonuSh/9a48iMhAhQmh5MGE+oHTX\ndFdEBl1pYv+6667DSy+9hNOnT+PMmTPYsmULBg4ciJMnT+LkyZO+3jzqPXz131YpIgsRwlsRbnEi\nECG4FuG2IaLQPkQ/TBFZeMFtTSPCyTGn7EN44KGOtQAxY+JNRRlwNlZjU1EGLaejtgJur5sqjI/T\nD0WfbnqqWEnEduaU7cHvc6ZTxUrZpTvgOFdBHb+KcCnLK89FRd0pqrBIVLs6gzYCYUG96G5dnY2O\nOI/U5G2UKxx9yJHKIkWUXHoq604rouTS0+hpVETJpafl/i7v876jswqw9u1rdgLfuXMnysrK0Lt3\nb4SGhqK0tBQ7d+708dZJJJL/xGwvwKT3bu8QC386K8kxKQjv0bdDmGZ0Vsz2Arx0cK08D3xITtke\npP01rV2fbZUI6Of4uR7vhYWFmDlz5gXv5+bmIiUlBampqdi2bRsAwOPxYPny5UhNTcXMmTNx/Phx\nAMDx48cxbdo0TJ8+HU899RQ8nuaVWdu2bcOdd96JKVOmnB9AtYbxAye15ev9LC2TicxJRRFiCBGT\ntAAwOTZVERkMN46AGmpqYWrpb5ZBBRWW/mYZLef2kixFZCBiPzW3O+G2aBAhfhPhHiFCVCWiyHnX\nr6YoIosemh6KyEBE67Kq+ipFZDD/2ocVkcGQ8GsU0V950PSQIjK40ThSERmwV+T7M3v37sW7776L\nKVOmICUlBW+88Qb+/ve/43e/+91/HSN1ZEQ4ZgFihDAiXHtE9EhOiEpE3x4RSIhKpOU0aCMwIDTa\n7ye1J8emQq1SU8eZIsYGIpwcRYjigRbxuooqYhexraLE4afrK6ji8Dj9UIQGhVGFRSIcN0WMX1ta\nVzG3UxRs4R/QLKw601BJFVYxj/eOwM/NI/mSYI2Wes+VtI2z7rOKKLn0VNRVKKLk0iNFQL6nzHlU\nESWXngZPg683QQhFRc0i1wMHDvzXl0Tyn8gWSL7FoI1AhJbfql3SNkKDuHNjkrZRUlkMt8ctF8v4\nkDj9UESFRbXrs79YBKRSqf7r+xs3bsSyZctQX6+0Hne73UhLS0NGRgYyMzORlZWF06dP49NPP0VD\nQwOysrKwaNEiPPvsswCAtLQ0LFy4EFu3boXX68XevXvhcDiQmZmJd955B2+88QbWrFmDhobWDQ7f\nKc78ZV/4RzyW97Ai+iuinIBaTnrmyV9SWQwPPNSc8z65D154Me+T+2g5dUGhishAxH4SUUSJ7TMI\ngapAapFzvzVfERmIcK3Ze/wTRfTXnAAwsOdVishgz9H3FJHBu/94WxEZtPQOZ/YQF7EickrsVEVk\n8OQXSxSRwTenvlZEBkWOb2m5/J3c3NyffN1zzz0+3TZtQAi1vaEIkSggRiSbEJUIXaCOWujbb82H\nF17qvQwAevfoTc1n1EVi+4SdVFvpGYNnYfkNK+nWsBqVhppPxNhA1DhbFBpVADWfiJauIhYF6IPD\noSE7NmWX7kBVw1mqEESE42Zsn0HQqDTUsXtL6yqm+E3E+SnKVUvE2IiZqyPwU/NIvqa20YV084u+\n3owuS4toT4R4T9I63HArouTSU+etU0TJpUdei3xPZ2uR2sKDDz4IABg/fjzS0tIUrx+3kZdIgGYB\n0OycGVII5GPcTVKUK+nanDl3RhElvqG9XTp+sQjop4iKikJ6evoF7x89ehRRUVEICwtDUFAQTCYT\nCgoKYDabMXJks8vAsGHDcOjQIQDA4cOHz/eNv+mmm5Cfn4+DBw/immuuQVBQEHQ6HaKiolBSUtKq\n7Zo6iLfq/paoUYrIQMRKTVEkRCWiR0AwtYAm4oKybMRTisjg6NnvFJFBc+suNXWCPjkmBfru4VS7\nPJMhHslXTobJEE/LOc+0AOMHTMQ80wJaThGuNbdePkoRGYgQggCAyWBSRAb9Qy9XRAZ3/WqaIjIw\nGa5XRAbjB05QRAb64HCooaYWJG/od6MiMggO1Coigzhye5+OSlYWz02uPbiaaqiuGKKcB0UU7zcV\nZcDpdlJbGIm45xqON4dNAAAgAElEQVR1kbg37n/pfeDZ+axOC94r+wt1cspkiMfro9+ijjeSoscq\nIgMRx31yTAp6BATT7Y5LKovRSG51ow8OR6AqkHp+NjtZeqgCE0dtBRrJjk0imB03B/ru4ZgdN4ea\nV60S9thP44kRyzF+wEQ8MWI5LaeI8TAAPHDtg4rIgNkaV/LLYLb/lUgkEolE0nY88Ph6E4TwwQcf\nYOfOnXjyySexc+fO8693330Xzz33nK83T+JnGHWReHbkavr8jaT1FDkKcdJloc6dStpOYECgrzeh\nS9O8UC+AulBP0nba6xIqbDZwzJgx0GguXL1bU1MDnU53/r+1Wi1qampQU1ODkJCQ8+8HBASgsbER\nXq/3/CoxrVYLp9P5kzlaw5fWz9v7lS5g99Gdishg/8l8RWQgSqmXbn4RdU211JVyFucJRWTwZtEb\nisjA7rIpIgNHbQW88NKLEz2796TmeyZ/BbZ9txXP5K+g5dxyeDN2H3sPWw5vpuWscdcoIgMRK5RF\nuDUBwKvfvqyIDGoanIrIoMWdjenSduDkl4rI4Jn9f1REBvut+f+fvXMPi7pM//97OArDiEqDM86I\nhq1BLtE6UqutyeL6lSJTs9RwQbO2rd9qWdrBPHSt2trBzQzbbTuYaVpqpmZstBVRffMQTl9pMsmS\nBGdiZETBYQY5zfz+YMfts50A388c4Hldl9dd6Nw8n/mcn/v9vG944KG6hsRFxikiA3eLSxEZfH36\nCC1XKBMMrTCY1540bToSY/pTW+MAYor3i0YtxVjj/1CLzQAQHsZ1WSmqKMQ9H8xFUQW3IMnOZ9AY\ncXGfVOrklM1pxdI9D1KFRSKcB0U4AYl4xgbaBefhCKcKznVqPTRRvan22O0iWW6rKRHPWyIWbxg0\nRtyRPpd6LunUesRH9aHuo+zkHCy9Yjmyk3NoOYsqCvHmsV3065MIRDjiMlvjSs6PM8RFJBKJRCKR\nSCQ+GhoasH//frhcLkUbsIMHD+Luu+8O9PAkQYbNacUDHy2QTkABRBubCBVUIdEGu7sianGkpHOE\nITidfHsKdlc1rGe6di84bxFQZwtYcXFxcLn+U0h0uVzQaDTf+7nH40FERATCwsIU/7Z3794/mqMj\nxEfzBBEPXblcERmsHfcMrtRdhbXjnqHlFOUu9EjmKlypuwqPZK6i5RQh3Lg57RZFZDDjknxFZKCN\nTUSYilvwAIAzTTzBBiCucMpGxH4X4SAw0jAKKqjoSlrfNYR5LRllGK2IDDL0v1ZEBiLccHz3DuY9\nJFQQsdp9/IW8omEoE+hWGHddtoDqwGZxlKGm8URIrJDZdGgD3rP+iyo+Lakqht1djZKqYlrONG06\nkjSDqcKqoopC5BfdRC20P1CyAFu/2owHShbQclocZTh25hvq8SSiddWMYfm4tF86tRXajSnToIIK\nN6ZMo+X0wbbW33FkO0411VJbYrWLZNuoYi0R70MzhuVjrPF/qPt+06ENWLZ/Cf3a5DhbQ702me2l\nWFm6DGZ7KS2nKGG8CCyOzxSRwaJRS/Hgbx6k5Qt2gkEI/WNEh0cHeggSiUQikUi6IVOnTsXKlSvx\n5JNPKlqBrVixAtdccw0A/GBnDUnPxKAxYtYlt0jxQwAprz0MDzzUxR+SziFqcaSk44hoBy/pHDq1\nHr2je3fps+ctArrttts69e+HDBmCyspK1NXVobm5GQcOHMCvfvUrDB8+HB9+2O7Sc/DgQQwdOhQA\ncMkll2D//v0AgA8//BAjRozApZdeCrPZjKamJjidThw9evTcv/85Dtj3d2q8P8WfP16iiAyKKgrx\nsf1D6kVNlBPQpkMb8LH9Q+oktQgXi6c/fUoRGYj4Th3uGrSRnQ5KqopxopFbkBRROBUxkV5U8ZYi\nBmvOFy0vwAsv1akKABa8P08RGdS4TygiA587G9OlraLua0VkIKLF2HuV7ygigy9PlSsiAxHOGcw2\nfZKus6tiO3VFkTY2EeFk9w5ATGFYhCNKZlIW+kT3pbZJNWiM2DmpkDrpI8K5JjPpt4rIIE2bjr5R\nCVQBlIhtn/3PPHx2qgyz/8lrOVxeexheeOkTTSv2/FkRGYgQ14hwBhXxrPnwnmV4z/ovqjumCFdY\nITlte9DiaaE+G/gE8Uxh/JtHdysii7mmeYgJj8VcE+85GwCS+yZT8wUzPzePVFZWhry8719Xi4uL\nMWXKFEybNg1bt24F0L6AbOnSpZg2bRry8vJQWVkJAKisrMRNN92E3NxcPPTQQ/B4OtZa5GTzyU5u\njUQikUgkEknHGTly5I/+XXExbw5fEtpI8UPgyUzKgjFuIHWeT9J5vAjeBSQ9gTRtOnpHxdOd/yUd\nZ8eR7XC4HV367E+KgFJSUpCamnruT1paGtLT05GamoqMjAwAOKdS/jl2796NLVu2IDIyEg888ABu\nueUWTJ8+HVOmTEH//v0xbtw4REVFYfr06Vi5ciUWLlwIALj//vtRUFCAadOmoaWlBePHj4dWq0Ve\nXh5yc3Mxc+ZM3H333YiO7thqLab7wIxLZipisNLesy+M7jSSEJOgiAx8K56ZK5+H9PmFIjIQMUkt\nongqon2VCETs92rXt4rIID46XhEZiBC+AUBCzAWKyEDEuTRQk6SIDE6fPaWIDMprDykigxH/FhSN\nIAqLROQUIVZiur1Jug7bZUXUyoA5prvorkUAFG6TDEqqilHXdJoqvPXlZSJCyKyNTURUWBT1Gaak\nqhinm2up25+ZlAVdrD7oJ3BECfjHDhqniAxEiGtEiMpCBb16gCIyGDlglCIGKyJExyn9UhWRRUlV\nMRrb3PSFFrfuvpWWL5Cc7zzSc889h8WLF6OpqUnx85aWFqxcuRLr1q3Dxo0bsWXLFpw8eRLvvvsu\nmpubsWXLFsyfPx+PPPIIAGDlypWYN28eNm/eDK/Xi/fee0/cRkskEolEIpEQCGa3RIl/yU7OwUvZ\nm6ktmCWdw6AxYr7pfunGFHBkK6pAsuPIdtQ311EdwCWdY/LQKeiv7t+lz0b81F+Wl7c7CTz00EMY\nPnw4rrvuOqhUKrz99tv46KOPfja50Wg8tzprwoQJ536elZWFrCzl5HtYWBiWLfv+KsoLL7wQL7/8\n8vd+PnXqVEydOvVnx/DfuFtcP/+POsjHto/ORVZhqqTq/XORdYP/rm2dSZdByQmIWZn/3clf1lgH\nxw9WRAa+ldnM71RE8VSEaEUEIr5PEUWU8lOHFZGBCHcdQEzR42jdV4rIQBMVr4gMxgzMwtEvvsaY\ngbwib0rCMHx2qgwpCcNoOUUI1UTso6a2s4rIgCmmCmU62spUFBGqCKpoIzs5BxuyX6FPUNicVpTY\n3sMs52zqi7eK/BIpQni76dAG3P3BHACgtRyaY7oL9U31VFGVSZeBXZPeoj5nzhiWj9NnT1NbLQFA\nXCT3vBvefwTePLYLw/uPoOUU4YQDAPVN9YrIQBPVWxEZiHjHeCRzFSrPHKO2MV40aikO2D+htsjN\nTr4aT5c9SW096zuHmOfS5KFTUHBwNSYPnULLKYLJQ6fgH5/9jT5OEYthfA513YHznUdKSkpCQUEB\n7rvvPsXPjx49iqSkJMTHt783mEwmlJaW4uDBgxg9ur1d8WWXXYbPP/8cAHDo0CFcfnm7MP6qq67C\nxx9/jHHjeCJIiUQikUgkEjaBbhsvCS6k80Zg8bkxJcQkSDFWgNDGJiJCgOu8RBJq9Iro1aXPdWgJ\n9GeffYaJEyeeewgZP348LBZLl35hoGGuqBXhtCFiIl3EJCUgpkAhojghoiiXmZSF+Kh46kpys92s\niAxEiFZEHE8icooQf9U2nlREBiJW5QPApycOKCKD2Ei1IjLw3by6ehP7IT44XqyIDESIqkQcTyL2\nUXR4L0VkoI3tmnI5FNm3bx+mT58OAKioqMDYsWPx6aefAgA2bOC1VewKYSquEw4AIS/FBo0R67M3\nUQVAOrUe2pj+0Kn1tJzZyVcjDOHU4r2IZxifqIrZCg4AVQAEtI9z21ev0sfpbHZS87U7boZT3SFv\nTJmGMIRRHRIBwKQzKSID3/HOPO4v6nuRIjIoqihEsfUdqpX6WvMafGz/EGvNa2g5TboMPHj5Q/Tz\nie1+ZXGU4XTTKaqb3BzTXVh6xXKqQNGgMWL91S/TV26KEr2Gh3UPEZCPrs4jjR8/HhER31+v1tDQ\noBBQq9VqNDQ0oKGhAXFx/3FVDQ8PR2trK7xe77nfrVar4XRyr/8SiUQikUgkEokobE4rcgtvpM+J\nSDpOmjYdhjijFGMFmDa0BXoIPRoRXXEkncPiKENlfWWXPtuh6k9MTAy2b98Ot9uNhoYGbNq0CX36\n9OnSLww0fXv1DfQQ/I6INlMAYNQMVEQGIpxrRORst0Crp1qgiRCtiLD/bz+euO4RvlzBrugd1Huw\nIjLITMpCn6i+9OJMY2ujIjIQcTzVN9UpIoPUf7v1pBJde0QIFK8dcp0iMhCxj264eKoiSjrHo48+\nes7pMDk5Gc8++ywefvjhAI+qnTsuvZNeaDbbS6n5fLALuHZXNeyub2F3VdNy6tR6DIgbQBUWiXiG\nabczvo/+nYrY942tbmq+kqpinGisprdYY7tKmXQZWHzFn+nnpwi+6+bIQhubiEhVJP1ZMzKMm3Ok\nYRTCyQKwoopCLN+/lCpWsjmtmLQzJyQmj9mTSjanFXe8e6uQba9trKXn7G6w55Hi4uLgcv3H2dnl\nckGj0Xzv5x6PBxEREYq2ny6XC7178xZaSSQSiUQikUgkku5PuOonm+lIBFNU8Ra88KKo4q1AD6XH\nIqJ1u6RznM/8U4dEQI8//jjeeecdXHnllRgzZgz27duHxx57rMu/NJAkEt0HfJOJzElFESt0He4a\neOChtpkCQscJyCf8YgrARGx7SkKqIjLwOV8xHbDa25a1Uo8n302ceTMX4wD1W0VkUFJVjLrm0/SC\npAhe+3KrIgYrItxw3v6mUBEZWByfKSIDEcf9kwceV0QGNnKLm2CmqakJQ4cOPff/Q4YMQWtrawBH\n9B/WHFyFTYd4bkRmeymuf+NaIWIQds69tj1oQxv1BcbuqobDXUMVFs0x3YW7LltAdcYw20vxh3dm\nUb9Ts70UE3deTc1pd1Xj2wYb9fsUQXntYbShlSqCESEEAcS4l8wYlo/VY9ZSW02ZdBl4YfwGqghK\nRMs6nVqPC+OHUIV/adp09I/VUVcaWhxlqHR+Q3Xt0cYm0ltKmu2lmLTrGup1xOIoQ+WZY9RtB/7T\nqpF5DwWgEK10B9jzSEOGDEFlZSXq6urQ3NyMAwcO4Fe/+hWGDx+ODz/8EABw8ODBc89dl1xyCfbv\n3w8A+PDDDzFiBK9to0QikUgkEokIhgwZEughSIIEg8aIJzKfoi/gknQcu6sa37qsQT8v1Z3JTr4a\n4Squ67qkc4hw65Z0jpSEVESqIrv02Q7NMhkMBhQUFODVV1/Fxo0bsXr1avTvH5qtPGrcJ2i5Rugu\nV0QGadp0RIf1ok78tvdN5E7SAmIEESJaCogQ14jY9lWfPKqIDERYtWljExGGMOrxJGK/z0qbjdgI\nNWalzablFIEI0QYA/PKCSxWRgYhr3qXayxSRgbvFpYgMHhy5VBEZVJ45pogMnM1nFJHBRX0vVkRO\nzqE//4+6CcnJyXj88cdx5MgRHDlyBKtXr8bgwYMDPSwAEFK4v9f0oBB3oet2ZlMLwyIEwjq1Hn2i\n+1EFAaJad7W28YVovpYrTDweDzVfZlIWtL0Sqe57mUlZuCCamzM7OQdPjCkQ0l5PhI01u+WwzWnF\nko8fDHrnGoPGiG3X7aROyooQE/pWDNGda7zcdADg9XCTZifn4OZL/kA/l0SJ30pmltDyBQOseaTd\nu3djy5YtiIyMxAMPPIBbbrkF06dPx5QpU9C/f3+MGzcOUVFRmD59OlauXImFCxcCAO6//34UFBRg\n2rRpaGlpwfjx49mbKJFIJBKJRNJpnE4nVq5cieuvvx5Tp07F6tWr0djY7uS+atWqAI9OEizYnFY8\n8NGCoH8v7s443DVo8bTQzRUkncPrFTD5IOkwojoNSTqOTq1HbGRslz7bIRGQxWLB+PHjsXDhQjz4\n4IPIzMxEWRl3NZ2/OFx7iJZr51fbFJHBgvfnoclzFgven0fLqVProYnuTS1KAe1FhJjwWGox4UXL\nC4rIYMWePysiA7PdrIgMFlx+vyIyEOGws618CzzwYFv5FlpOEa0kdhzZDneri9qy7R8H/66IDI7W\nfaWILESIQT4/+ZkiMhDRVlCEA9bW8lcVkcHMX96siAxuTJmmiAyuNIxWRAYWx0FarmDn4Ycfhtvt\nxvz583H//ffD7XZjxYoVgR4WAK44FhDnXlJeexgtnhbqPSIlIRXhqgjqd2BxlOFEYzXVccKgMWJ9\n9iaqyKDduaaN+n2adBmYmDyFKgBrdx5so0622F3VqG+uowos7K5q1Lecpua0Oa141vJ3+mSfzWlF\nbuGN1LxFFYXIL7qJet5bHGWocnLdW8z2UkzcwXWrAkB9zgTEuJTNGJaPqb/IpQpWRJyfOrUeg+IH\nU99ZNx3agHVfPEt37AH4Av7uyPnMIxmNRmzd2u4+OmHCBEyb1v5sm5WVhe3bt+P111/HjBkzALQ7\nKC1btgyvvvoqtmzZcm4F/YUXXoiXX34ZW7ZswcqVKxEeHt6h322IMXR2UyUSiUQikUg6zKJFixAR\nEYGVK1di2bJlcLvdWLJkSaCHJQkyRLVyl3QcUeYKko6z17YHHnhkK6oAImIeWdI5CsxPor65a92T\nOiQCevjhh7F69Wq8/vrr2LlzJ9auXYvly5d36RcGmjnDeeKaKwZcqYgMVv32SUSporHqt0/Scu44\nsh2nmmrpk9Qr961AY5sbK/fxipk3p92iiAxEuJfMSpuNSETRXWYiwO0xumjUUlw7eCIWjeK5l4gQ\nGYhARGs5EcdSY2ujIrIQ4lb12ycRpYqiXp8+PXFAERlc3C9FERlMTZmuiAy0sYlQQUV9kRAh/Cs/\ndVgRGcwbcS8tV7ATHx+Phx56CLt378aOHTuwaNEiaDSaDn22rKwMeXl5P/h3jY2NmD59Oo4ePdrh\nz/w3Oa+PoxfEvQKsIUQIdgAgQtWxYmBHSdOmQxerpzutsG2HUxJSERkWSf0+H96zDFu/2oyH9yyj\n5RTRbggA2sjuQqG2MuxU4ylqPhEuM2nadCTGcFtiOdw1aPY2U/fTWvMaLNu/BGvNa2g5Jw+dgpjw\nGEweOoWWc9OhDdj61WaqECY7OQcXx6dQHXYMGiOS4gZTJ7lnDMvH0iuWUwVQQPs1b83BVdRrntle\nit+88BtavmAgVOeRzhAXUUgkEolEIpH8N5WVlbj33ntx8cUXIyUlBYsWLcKXX34Z6GFJggwRrdwl\nncfLN72WdILJQ6dAHR5HnSORSEKN8zFQ6JAIyO12Iz39P5Owl112GZqamrr8SwPJm0ffoOUaOWCU\nIjKwOMrQ7G2irnwV1bNv4a8XIxKRWPjrxbScIhxhTDqTIjJYuW8FWtBMFUA53DVoRSu1OFFUUYg3\nj+2irs72jY85Tl8bCXY7CTaD4wcrIoNBvQcrIgsRblXrLevQ7G3Gess6Wk6fIwzTGaahpUERGXx9\n+mtFZFBU8Ra88FIFOyKOURFYHDw3qWAlJSUFqamp3/vj+/nP8dxzz2Hx4sU/+LxlsVgwY8YMHD9+\nvMOf+SHYrm5p2nSoI+KEtBtia4tMugzsnPRPqnON3VWNuiauI4zZXorJu3Kokz4mXQYeG72auu0i\nnrV0aj0GxBmpriDtq1daqc+ZIkQwBo0RCy9fTF/xV1JVjBON1SipKqblFNEOze6qxqmzJ6nnkoj7\nuAgKzE+isa0RBWae4Np3z2Xeeye/fi3K6w9j8uvX0nLO/mce3rP+C7P/2TEha0ewOa1Y839/pbtq\niWhlvNe2B63gt2oMJKE6j3R18oRAD0EikUgkEkk35sILL8T//d//nfv/8vLyoGkbLwku2O2SJZ2j\nvPYw2rzcOSRJ59hxZDtcbQ10gwtJxxHRdUPSOc7H6KJDIqD4+Hi8++675/7/3XffRZ8+fbr8SwMJ\ns9DuswBnWoGLmKAWUZwAgCUfLUQLWrDko4W0nCIuKCK2X4RjkQhEbLuInCKOexFiiFC64cVHxysi\nAxEtxib94kZFZFDbeFIRGVidxxWRgYh9JKLQV1H3tSIy0ET1puUKVsrLy3H48OHv/fH9/OdISkpC\nQUHBD/5dc3Mznn76aSQnJ3f4Mz8G0y2swPwkXK0N1OI1IEa4IQKTLgPPjnuRKq7RqfXoE92XKoQx\n20tx/4f3UIVF2thERIVF8V17vNyCeGZSFhKiL6AKVlISUhGp4jorme2luOVf+fQVfykJqYggu2rZ\nXdVoaD1DFew43DVo9XKF8XNMd+GuyxZgjukuWk4R3JgyDWEIozpuimi9+sfL7lBEBstHr0RMeCyW\nj15Jy7ly3wrUN9dRF24AYpwXuyOhOo8UFxkX6CH0WOIj4hVRIpFIJJLuRFZWFsaOHYsDBw5gxowZ\nyMnJwXXXXYcpU6Z8z+VZItGp9UhU96fOB0kkoYYogwtJx+nbq68iSvzP+dS4O9R7aNmyZbjvvvuw\naNEieL1eJCUl4bHHHuvyLw0klWeO0XKJKOCKKDSLclmZmjIdbx7bRW2PI2L7RRGpiqTmEyGEEbHv\nUxJSEYYwagFppGGUIjIQIdgR0RbJJ4ZgiyJEtEMTUUQSISwSQY37hCIyEHG9uzFlGtZ98Sy1eDjj\nknwc+OATzLiE20qjp1BfX4/CwkKcPn0aXu9/VvDMmTPnJz83fvx4WK0/7FxgMv2w28pPfebHYAo6\n55rmYcuRzZhr4rVeBdrbuVgcn1HbuZjtpZi06xrsnMhzA7I5rVj5yQqkadNpDi4WRxlOuO2wOMpo\nOR3uGrR4ue2rTLoM/D5lFlUAZXGUwdpwnLrtFkcZTjXVUnOadBl4Y3IRddvLaw+jxdOC8trD1LwA\nhLhq3TdiEXWcadp0XNBLS3UVszmt2PDFi5iVNpu270VMhDjcNfDAQxdAfTeyUIHri25xlKGxrZF6\nfl47ZAK2frUZ1w7hOrtkJ1+Np8uepDoBjTSMQji4bSoDTajOIzEF0hJJqKGCCl546dd4ScdRh6nh\n8rigDlMHeigSScCIRjSaEPzugZ1l48aNAICWlhb87//+L+rq6mAwGAAAKpW87kqU2F3VcDTWwO6q\nprsESzpGqHSv6M58t9sFsx25pOOEkjGC5Pt0yAnowgsvxLZt2/D++++juLgYr7322vdWn4cK7JY7\nbOaa5kEdoaYW0EQ5AYnAN+HGnHjLTMpCfFQ8ddU3AHjZVRQBiNj3e2174IEHe217aDl97WiYbWlE\niGBEtAAUJYKpdn2riAxEiKBECItEtFgb3n+EIjIQIQATcS6JcBc6WvcVLVew86c//Qn79u2Dx+MJ\n9FC+x+oxa6nCGoujDO5WF7WlKdDe2nLdF89SW1vq1HpoYxKDfkVVmjYdvSPjqWKI7OQc3HnZfOrL\n81rzGqz74lmsNa+h5RRBmjYdSZrBYlrWEclMyoK2F7fFlo/wcK7IoKiiEMv3L6WenxZHGU6edVCv\nJQXmJ3G6uZbqVJaZlAWDeiB1P6Vp0zFIcyH9GGULgLKTc/DEmALqdaT9fcVLfW/JTs7BhuxX6JOF\nJl0Gdk9+my7Siwjv0BqtkCEU55G0vRKD/h7RnRmhu0IRJf4nLjxOESX+x+P1KKLE/0T8e810RMfW\nTksE0CuiV6CHIASDwQCDwYDVq1dj165dsFqt+OSTT/DJJ59g//79gR6eJMgw6TJw/4jF/IVBkg6j\njU2ECiq667Wk44gw4pB0jk9PHFBEif/JTMqCJkrTpc/+5NPskiVLsHz5cuTl5f2gGnnDhg1d+qXd\nBREig5KqYrhaXSipKqYV5mYMy8drX26lFvqA9ptgGMKoN8GSqvfPRdZk7Y4j21HfXI8dR7bTJsDL\naw+j9d/9QFkPYpOHTsGjnzyMyUOnUPIBYlrWzTHdhfqmemoxITPpt1j3xbNU8ZdJZ1JEBiJUr3NN\n87Dxi/V05wy9eoAiMkjpl6qIDELF/UvE9T47+Wo8dfCv1FXkIoRFDS0Nishg7KBxePPYLlq+YKa+\nvh4vv/xyoIfxg7AFBtnJOXgpezO92JqmTYcuVk8tytld1ahu+Ja6osqgMeK2tDuoK7R2HNmO+pY6\n6jNMUUUh1hxcBZPORNtXk4dOwVMHn6A+w4hwSDRojHhm3PPUfWS2l2LyrhzsmFhIeya0u6pxpqWe\nvuLPpMugul8BYsQg2ck5WHLFMmrOuaZ52PH1durzlkFjxJvXv03dRyKOUaD9vGd+nzanFeu/eKFd\nCEUa64xh+ThWf4z+zhoqgg6TLgNbb9ga6GFQCOV5JMfZGqoblaRz2P79TmgL8nfD7szF/VJxwPEJ\nLia+80s6hzpSjcbmRqgjpRNQoBikGYyjzq8xSDM40EPpscz65R+w5uCqQA9DGF9++SXeeust6f4j\n+Ul8C24u6nuRdEAJEHtte+CFF3tte6QYK0DIdmCBZ3j/EXjz2C7q4nhJ51hvWQdns7NLn/1JJ6Bp\n09rbidxxxx2YM2fO9/6EIswWKSIQIdp4oGQBPrZ/iAdKFtByAmIcYUQUsEXcKN6rfEcRGRSYn0ST\n9yx1hbIIpazNacWWI5tgc3au5cxPIcKxSEROEcdSgflJtKCZut+B0GmzJeKcF+Eolp18NVRQUQU7\nT3/6FLzw4ulPn6LlFEFt40lFlHSOoUOH4vPPPz/vPLt378aWLTyHJwCYtDOHei0HxBRb7a5q1DWd\nht1VTctZVPEW2tCGooq3iDkLcfcHc6iOKL72MMx2mSKwOMpQ13Sa6twiotWSzWnFncV3UI97nVqP\n/rF6qquUTq2HXj1AiFMVe+LK5rTi6YNPUb9Ts70Ujx5YAbO9lJbToDFi87Vb6YV9dj6b04oHPlpA\n/T6LKgoxs2c06doAACAASURBVCiXem0yaIxYn72JLqh79vOnqfvd5rQit/BG+r3OJ/5jj/Xut++m\n5QskoTyPFBUWJVf6BpCL+g5VRIn/iQ7vpYgS//PrAVcqosT/jBmYpYgS//Ox7cNAD0EoQ4YMgcPh\nCPQwJEGOiAU3ks4hBSiBR8QCQUnnEFELl3SOz092vUPHT4qAfvnLXwIAHn/8cVx++eXf+xOKMIs9\nItrtzEqbjZjwGMxKm03LKcLFAcC5ghSzMCXCveW7fSNZiGgNJEK4MNIwChGqCOo+2nFkO+zuauw4\nsp2WUwQiXHu+61TFQkQ7LECMuEZEOzARQjURD4cOdw288MLhrqHlFHEdmZU2G5qI3tR7yC8vuFQR\nGWQmZaFfr360fMFIVlYWxo4di3379mHq1KnIzMzE2LFjz/3pCEajEVu3trsCTJgw4VxRzcfGjRsx\nZMiQH/3Mz1HlPEYVbYgqtpp0GXh23ItU8cKstNnQ9kqkniui2q+Gh3HbN4lCBe4qxpSEVESoIpGS\nwFuJbndVo+pMJVVQBgAiFnDGRMTykwrA7qrG8Qb+d+r1cNvuihDXiMCgMWK+6T6quCZNm45Bvflt\n8NgCKJMuA69f9yZdqOZucVPzAWLEfxZHGb6p+4aWL5CE8jzSrklvyVW+AWTsoHGKKPE/N1w8VREl\n/kfEPIGkc1SeOaaIEv+T3Kd7F9zPnj2L7OxsTJ8+Hfn5+ef+SCTfRcSCG4kk1JAClMAj3w8Cz/nU\n5X5SBOQjISEBBw4cQHNzc5d/UbDAdMW4dsgERWSw3rIOjW2NWG9ZR8t5c9otUEGFm9NuoeUEcM4B\niOkEJKJ4Hyp9I0WIlURMUItYmZ8Qk6CIwYoIoZYoRbkIkWJcZJwiMhCx/SKOURHnpwghpcVRBmfr\nGaqww+d+xHRBKqkqxqmzp2j5gpGNGzdiw4YNePXVV7Fo0SKkpaVh6NChyM/Px4svvhjo4QGAkNZd\nLW0t1HxA+8THX82PUSc+DBoj/nVjCbWILeJeZtJl0AuS2thERKoiqU4HIkQGOrUeg3tfSHfYuSAm\nkZrzu63lWBg0RmzO2SakHQ3TuQRo/051sVzXIp1aj0Hxg6k5RTjXiMBsL8Uf351Nd0HaMbEw6Lcd\n4DtV2V3VOOGupovUACA2kivUy07Owc5pO6k5A00oziNJAVBgsTg+U0SJ/xHhTi7pHCLmMySd40rD\naEWU+B/mvGMw8sc//hHPPPMM7rnnnpBxS5T4H7urGtaGKiHvMpKOIV1oAo8UoAQeKcQKPEfrvury\nZzskAvr888/x+9//HpdeeilSU1ORkpKC1NTQ7A/NdMUQgYjCfXntYXjhRXktz70jlAiVF+jB8YMV\nkUH7xLed+rCYkpCKcIRTV+a/eXS3IjIQIS7RxiYiTBVGLZz6crFt5/XqAYrIQIQISpRzBhsR5+eL\nlhcUkYEIsZIIwSfz+hGsGAwGGAwGbN68GXv27MGkSZMwZcoU7N+/Hy+//HKghwcAIWMpLMIZw5eX\nSXZyDjZkv0L/XtkFSZ1aj0FkcY0IkYFBY8S263ZSc9pd1ag966A+F+nUegzUDKK37hIlAJq08xq6\nECgqPJKaz6AxYusE7r735Q12RLnhhMK2i8Cky8COiYVCvk8RQr3rUq6j5gs0oTiPJFdaBxYRbraS\nztHeBjuMugBEIgk1RLhgSzoH2y092Pghp8Rgd0uU+B+TLgMrf7NKitQDSH1TvSJK/I8UqAee2Ei1\nIkr8z/k4hHZIBLRv3z6Ul5ejvLwchw8fPhd7OiKUoCMHjFJEBqJcVkSILKzO44rIQERbKBHbnpmU\nhcSY/shM4vWcLq89jFZvC10AFhEeQc0n4rjXxiZCBRVVXFNU8RY8Xg+1reC28i2KyMKnDj0flag/\nEHF+ikDEqlQRx70I57PJQ6cgApGYPHQKLSfzHAp2Pv74YxQUFGDs2LH43e9+h6eeegofffRRoIcl\njEiyGABoFy7c9s7NdOGCCEQIq9gFSRHiGl9eNiLaDbEFAQaNEQVj/x46IgsBrcsiwvjnfch8nwKQ\nk7xcRH2fPfkY7SihOI8koq2ppOOIWHgh6RztbbA91DbYks4RKk7Z3Rmfkz7bUV8ikUg6g9leioX/\nuyAk5sK6KyIMGySdw6QzKaLE/4gwG5B0jvMxOOmQCKi5uRnPPPMM7r//fjQ0NGDt2rUhZensQxPZ\nG7PSZtPyfXrigCIyEPGyl6ZNR3xUPLVFw7m8kX2oedO0lyoiAxEtd0Rgd1Wjvqku6C0eTboM3D9i\nMXVCXYQQpKjiLXjhpYoNRAgsbkyZBhVUuDFlGi0nAIwdNE4RGWQn52DqL3KpRW4RgrqUhFSooKK6\nzfj2D3M/iRAWiRBSLnh/HlrRggXvz6Pl7Em0tbWhtbVV8f/h4eEBHJE4RDkj6NR6GOOS6E4roYDN\nacWNb0wSIgSScLA5rZj73h30fSSiCG3SZeC5cevpIihRrcskEklo013mkSSSnoQIZ1lJ5wgVt+Tu\njG8hZU911JdIJMFBeztzbY+cCwsWbk67BSqopCg0gMiWbIFHCrFCmw6JgJYtWwa3241Dhw4hPDwc\nVVVVWLRokeix0XG2nEFJVTEt35A+v1BEBiIuaust61DfXI/1lnW0nACw48h21LfUYceR7bScIsQg\nIlrZiNhPOrUemsh46oOdCFFZUUUhlu1fgqKKQlpOES3bRNycRFhAimrXJ0IIs9a8Blu/2oy15jW0\nnCIQ8Z36VkIyV0SKsLv3WSYzrZOvHXKdIko6x4QJE5Cfn4+NGzdi48aNmDlzJq699tpADwsAsOnQ\nBnpOUW4wIeW0QkT2gOditpdi0i5uOyy7qxrHnZXUfWRzWjF5V44QYdHKT1ZIUZlEQkCEUO+FT3kt\nYoOBUJxHkqLGwCIdUAKPnOQPPPI8CDyZSVnoG92P6tQu6RwjDaMQju65eEoi6Sh2VzUc7ho5HxRA\nRNVtJB1HxIJnSeeQAvXAcz413g6JgA4dOoR77rkHERERiImJwaOPPhr0Ns4/BrN3oIiXYxFiiOzk\nqxGuCqf39BYhiBCRc6RhFMIQRnUCErGfSqqKcbKphipU08YmIhKR1JZYIi76KQmpCEc4VbCijU1E\npIq77SIsIEX1NRXxkDp56BREqaKpbaHStOnoE9WX6igm4jsVcdyHygSriPMzO/lqhKk69AgS8tx+\n++2444478O2338Jms+H222/H7bffHuhhAQDu/mAOXQgkoihqc1pxT8mdPbI9h0mXgWfHvUhvZ9MT\nv0ugXXCdpBlEFVzr1Hro4wZQc1ocZTh25htYHGW0nBKJhIcIod6mQxtw6+5bafmCgVCcR5ICoMCS\npk2HQT2Q7mIt6ThyHwQebWwiwhFOncuSdI6SqmKcbjpFnZ+VdJ7u6qAskXQUnVqP2Ig46QQUQES4\n+Es6h4jOMZLOsffbPYoo8T8r9vy5y5/tUAVOpVIpbJtPnz4NlUrV5V8aKEQIYVTgfg+iBAEer4ea\nDxBTwBbVAz4Uis2ZSVm4IDqRutJEp9YjPrpv0LsLiUCn1qNvr37Ubb92yARF7Gms3LcCzd4mrNy3\ngpZzx5HtqGs+TXUUm5U2G9peidT2j6GCCIGiw10DDzxUF6Ty2sNC7kvBypgxY3D//ffjgQceQGZm\nZqCHc47VY9ZixrB8Wj6b04rcwhuFCExaPS30nKGAzWnFX82PUb9TUS3GQgGDxoitE3bSi7wxEbHU\nfGnadFwQnUgvwBk0RjyR+ZQscksk54kIod6MYfl4fsLztHzBQHeZR5L4l9jImEAPocfTO5rnVCvp\nPCLevyWdI1TmPbszOrUe2lhtoIcRVLS0tODee+9Fbm4ubrjhBrz33nuorKzETTfdhNzcXDz00EPw\neNrn2bZu3Yrrr78eU6dOxfvvvw8AOHv2LObOnYvc3Fz84Q9/wKlTpwK5OZIOsOPIdpxurqXOmUs6\nR2bSbxVR4n9E1cslHSelX6oiSvzP4lEPdfmzHVJG5Ofn4+abb8bJkyfx8MMPY8qUKZg5c2aXf2mg\nUHm5E05p2nTERWioE/QiRDBFFW/BCy+KKt6i5RRFewujMKrjhMNdg1Zva9C/QNtd1TjVdJJq8SjC\nXShNmw5NZG/qcV9eexhtaKO61pRUFaOm8QR120W0gfMJE9kCRRGTFiMHjFJESk4BTl0GjREbrnkl\n6IucW8tfVcRgJU2bDkOckXrOy8m04IApAPLhbnHTcwKA1yskbdBj0BixPnsT9XrW01uMse8NIoQ1\nFkcZTjbV0J2AerKrliQ0YLYbFpkzOzkHG7JfQXZyDjXvLcNvoeYLNN1lHkniX3rqM1+wYNAYZVu8\nAJOdnIMlVyyj32MkHUcbm4gIsrO4pHNYHGX41slzYe8OvPHGG+jTpw82b96M559/HsuXL8fKlSsx\nb948bN68GV6vF++99x4cDgc2btyIV199FS+88AKeeOIJNDc345VXXsHQoUOxefNmTJo0CX/7298C\nvUmSn0FExwxJ5xBRC5JIQo2dX72miBL/s9fWdRemDomArrnmGowePRqnT5/Gyy+/jNmzZ2PKFF47\nGH/RCq4QZL1lHZytZ7Deso6WMyUhFWFkEcystNlIiL6A7oqRpk1HQvQFdDGIFx6qGETEzTolIRVh\nKm57nKKKt+CBhyrWEtHGZ71lHZwt3OP+9NnTihis+HpSMwUr28q3KCILEe2rQmU1lM1pxR/+NSvo\ni5zD+49QRAYi7iEAfzJeG5tId9KTBB67qxon3NVCxCWR4ZH0nMF+jfDBLsKYdBnYMbGQ3mIsVGDv\ndxHCmjRtOoxxshWHpGdRVFGImUW5VNGOiJw+ZHH25+ku80gS/yLimU/SOaQAKLCY7aV49MAKmO2l\ngR5KjyZMOtcFlDRtOpL7Jgd6GEFFdnY27rrrLgCA1+tFeHg4Dh06hMsvvxwAcNVVV2HPnj347LPP\n8Ktf/QpRUVHQaDRISkpCeXk5zGYzRo8efe7f7t27N2DbIukY8dHxiijxP+WnDiuixP+8X/WOIkr8\nz4LLH1BEif+xOo93+bMdEgEtWbIE5eXlKCgoQEFBAT755BP85S9/6fIvDRR69QDqZLqIG7Eo29eo\niChqPqDdaaW26STVaSVURAZ7bXvg8badlwLvvxHRXs3hrkEb2qjHkwi3KhEtjEQdS6owbmu5G1Om\nKSILEVaJIoRF28q3wAMPVQRVUlUMa8Nx6rVJhFAtVFp3WRxlsLmOUx0pfA51ksDCnlgWJS4RsSJZ\nZOuyUKCn9pS3Oa2YtDMnJPa7JorfikOu7pcEM2nadAxQc50HRbgZ+hAhLDpe3/WJnWCku8wjSfyH\nvE8FB1J8Elh0aj2SNIN67PN6MKBT66GN6S/3QQAxaIx44n+eCPQwggq1Wo24uDg0NDTgzjvvxLx5\n8+D1es+1WlWr1XA6nWhoaIBGo1F8rqGhQfFz37+VBDcjDaOggoq6GFnSOUR0RZB0jpSEYYoo8T/S\nESvwpGkv7fJnO1TNLisrw5NPPomsrCz87ne/w5o1a/Dxxx93+ZcGilONtdTV6SIKuCJOqJKqYlS7\nvqUWxAEgMykL/WP0yEzKouUUsf0i9pMIRxgR2y5CtNHuNMJ1FxKBNjYR4Qin2vc63DVo9bRQBRY+\n5yd2uz4RYi0RwqpHMldh6i9y8UjmKlrOGcPysXrMWmqro4v6XqSIDEQIi9ptqyOox72oNnhhHXsE\nkQhk0q5r6JP8oiZKRRSDRLUuC3ZsTitmFc2gC2FCoWBkcZShynmMKmo0aIy4Le0O6jEqosXYd3OH\nAiKEWqFwjIYSIvZRTEQMPaeI1kIiHIZsTisy12fS8gUD3WUeSeJfQuU+1V0x20tx/RvXyntmADFo\njNg6Yac8FwKI3VWN2rOOHts+ORgw20sxbTt3sWR3oLq6Gvn5+Zg4cSImTJiAsO8sVHW5XOjduzfi\n4uLgcrkUP9doNIqf+/6tJLhp75jhpXbMkHSOvd/uUUSJ//HNO4TCYr7uinTECjznUz/sUAVOr9ej\nsrLy3P+fPHkS/fv37/IvDRR9ovtRi1OZSVnQ9kqkimBECFYyk7KgVw+gjtNHZHgENZ+IQrsIdGo9\n+kYnUI8nEX1eM5OykBB9AXXfO9w18JKdRmYMy8ddly2gijZEOKKIEFXNSpuNvlEJ9HZ9ItDGJiKS\n3Bfd5rTiy7rD9Ac5Edc7NpOHToEmojcmD+W1RXC4a9Dq5ba+FNWDOiKMe/+QdB69egD1PmZzWnHj\nG5OEvJixHRfsrmpUN9h65MSuQWPE+uxN1MKC2V6KSTv5ojI2Iu5jRRWFuOeDuXQxALvF2HdzB3tO\nEU5dsqjJJVTc1CyOMnzrslKFf0C7w1CSZjDVYcjiKMM3dd/Q8gUD3WUeSSLpSZh0GfjH79b12Lax\nEgnQfh48O+5FeR4EEJ1aj8F9Bgd6GEHFyZMnMXv2bNx777244YYbAACXXHIJ9u/fDwD48MMPMWLE\nCFx66aUwm81oamqC0+nE0aNHMXToUAwfPhwffPDBuX9rMvE6EUjE4FuAHewLsSUSkVzcL0URJf4n\nLjJOESX+53zqch0SAbW2tmLixIm49dZbcfvttyMnJwcnTpxAfn4+8vN5RXvR1DTaqROAdlc1zrTU\nUwtImUlZiI+KpxewW1pbqfmAf7eIaeBPqrIRITApqSrGyaYaqrtSdvLVUEGF7OSraTktjjLUNp2k\n7iMRTiNmeyn+/tlT1MKMNjYRKqio4xTh3AIA8b34qy9SElIRoYqgviiYdBl4YfwG6kSIQWPEfNN9\n9DY/174+nlqY0sYmIjKMWzguqSqGs/UM9ToiQqgmwlUKAKDippN0nghVJDWf3VWNb+qP0oU1IhwX\nAAg5BoO9IO5DxMpiDzz0nOzv06TLwPPjX6Lex0S1G6pr4j5rAGJcoEQ5S7GRRU0+LW0tgR7Cz5Kd\nnIOXsjcjOzmHmtegMWLnpELqtTQ7OQc7p+2k5QsGuss8kkTSk7A5rfir+bGgv693Z0Ll2ao7I8+D\nwGPQGLF+4vpADyOoeOaZZ3DmzBn87W9/Q15eHvLy8jBv3jwUFBRg2rRpaGlpwfjx46HVapGXl4fc\n3FzMnDkTd999N6Kjo3HTTTfhq6++wk033YQtW7Zgzpw5gd4kyc8gqnuARBJKVJ45pogS/yP3QeCp\ndn3b5c92aBn+3LlzFf8/e3bwO1b8EAnRWuoEvUmXgftHLKZOJu84sh31zfXYcWQ75pjuouU82VRD\nzenDC66/uiiByT8sa5GdfDVtX1kcnykig3aHHS/VwQMAVOQqp06tR0LMBVT3CIe7Bs2eZuq2l9ce\nhgcelNcepu33yUOn4Kn/e4Lq3GJ3VcPmtMLuqqYWEnRqPQxxA+kuHys/WdFe8CSN1WwvxW3v3Iwd\nEwtp+6mkqhg213GUVBXTxH86tR6DNBdSv8/21nphVKGWiJZtIsapU+thlPbmAedsWyM1317bHrSh\nDXtte+iFdvbzhk6thzamP/0aOatoBt1lRwRFFYX0ojh5F51zltp2Ha8dgm9Cn3kfA4BWD1ds/91W\nvkwRu0FjxMTk6+mty0TkZLdDszmtWL7vIfq+F3Eu2ZzWoL+GAEBDi5OeMzKcK04FwL/W/RsR++hX\n+l/RcwaS7jKPJJH0JEQ4Rko6h9wHgUfug8Bjc1rxh7f/gM/u4M27hzqLFy/G4sWLv/fzl19++Xs/\nmzp1KqZOnar4WUxMDJ566ilh45NIuiN69QBFlPgfh/uEIkr8j9wHged8rkEdcgK6/PLLf/JPqFDb\n5KA6ohRVFGL5/qXUleki2oGJarElQrAjAp1aj7iI3tRCn1EzUBEZZCfnYPYlt1EnqtO06dDGJNKt\n6u1urquW2W5WRAaZSVnoE9WX6qplcZShvrmO7n7FLm77iAzjF1KczWeo+XRqPeKj+tJbNRrjBlL3\nvUFjxJ8uu5M6CSSiZZ0IRI3T3eqm5pN0HmvDcer1bI7pLiy9YjldcJymTYcuVk+9l9ld1ahx26mu\nRQaNEY+MXkWfLGavQBXlrOTxcp2A7K5qHKuvoO8j9oR+SVUx7O5qqqubCEEnAGw6tAHL9i/BpkMb\ngjqnzWnFncV3UI99u6sax+q+oR5PRRWFyC+6id4KLvu1sfTznrl/ADHHvUFjxOacbfRrKN1F7t+I\naIOXs1mMYClQdJd5JIl/kc4bgUcKHwKP3AcSCdDc1hzoIUgkAcU3B8+ei5dIQomUhGGKKPE/2tj+\niigJLTokAuouhCOcKljRxiYiXMXNmZmUhX7RCdTi9denv1ZEFg53DVq9rXT3llZvK8prD9Nyimjd\nNdIwCuEIx0jDKFrOTYc2YN0Xz1In6S2OMtQ0nqAWedvbDHmp7YZMOpMiMiipKkZd82nqfgf4gh0R\n55EPtsuHiBaAFkcZTjRWU3MaNEbsnvw2faX/3R/MoReS2E5dadp0DO59Ib0tDZsdR7bD3mAP9DB6\nPKvHrKU7JDCd0nzYXdWoPXuSWrx3uGvQ4m2hXnttTivmvscVLohoB5CmTae7Y5bXHkYb2qjPb+W1\nh9EK7jNhqOB7twh2oT0AHKs/pogM2gVgXMGOw12DVnCft0S04NxxZDtONFZjx5HttJybDm3A3R/M\nob5jiBBci0CU6NHmtOK3W66kixVONZ6i5pNIQg3ZBkkikQQD8loUHKhUsoe8pGcjYhG6pHMcsH+i\niBL/ExcZp4gS/yOdgALP+bQDEyYC8ng8WLp0KaZNm4a8vDxUVlYq/n7nzp2YMGECcnNzsW3bNgBA\nc3Mz5s+fj6lTp2L27Nk4duwYAODQoUO44YYbkJubi+XLl8PjaV9pvGLFClx//fXn+qA6nT9tSR4W\nxt9cr5crCLA4ynCqqZZaEK9vqldEFtrYRESGRVILFCJWPmcmZUHbK5E6Sa1T66GPG0B1LxG16puN\niNZA7QXJC6gFSRFFKRHuVyLEhIAYwY42NhFhCKNvP/s6AvBXzokYZ3ZyDu68bD5VhGHQGJGfOpu6\n/dnJOVh6xXLqOCcPnYL+aqkeDzR/NT9KF6xM3pVDnyx1uGvQ4uEKdkRcz+2uahx3VtKda0zaDOo5\nbXGU0d0xRTxrpSSkIkIVQX3eEDGhL+L5rajiLUVkIaKd7eD4wYrIQIRILzs5B0+MKaDeyzKTstAn\nmus6KcIV9vTZ04rIwKAxYspF0+gt2ybt5N5Dvj79Nbzw0hfDrNy3AnXNp7Fy3wpazpKqYticNlo+\niSQUkS14JBJJMCCvRcGBCHdziSSUEPFuKOkcvSJ6KaLE/3zmOKiIEv8jnYACz7VDJnT5s8JEQO++\n+y6am5uxZcsWzJ8/H4888si5vzt16hSeeuopbNy4ES+//DJ2794Nq9WKrVu3IjY2Flu3bsXixYux\nfPlyAMCSJUvw4IMPYvPmzYiLi8Pu3bsBtIuDnn/+eWzcuBEbN26ERqP5yTElaQZTRRsiVj2LKDTP\nSpuNPlF9MSttNi0n0C6EGaA2Ur/TNG06jHED6S0/6pvqqEU5u6sa1Q3fUnOKQMQKZYe7Bl54qYWZ\nkqpi1DadpLr2iCpKsV179tr2oM3bhr22PbScPkS4FrHbQunUehjiuNcREejUevSLvoA6zqKKQjx1\n8K/U1eki2rKY7aV43PwXmO2ltJwAoI5UU/NJOo+14Tj1umtxlKHyzDF6y8Ts5BxsyH6F7loUpuI+\nBuvUesRH96FeJx7eswzrvngWD+9ZRsuZpk3HoN6D6c9aZ1rqqc9FOrUe/WP11O/ToDFivuk++oQ+\n29UtPjpeEVnU/HvVTg1x9Y4IEVSaNh19ovpSj1Gb04pVB7jCx5KqYtQ1cV0nfaI3pvhNBGvNa7Dm\n4CqsNa+h5bQ4ylDl5N5D5pjuwl2XLaC3qfRNwJzPRMx/w1y4IJGEMrLoLpFIggF5LQosBo0Rhbli\nWrpKJBKJJHRobmtSRIn/Odt6VhEl/sdsN3f5s8JEQGazGaNHjwYAXHbZZfj888/P/Z3VasXFF1+M\nPn36ICwsDGlpaSgrK8PXX3+Nq666CgCQnJyMo0ePAgBOnDiB4cOHAwCGDx8Os9kMj8eDyspKLF26\nFNOnT8drr732s2Padt1O6kO8iBXKIoQ1dlc13K0uIYKVZg//4tvqaeXnBDfnXtsetIEr3NDGJiJS\nxRWAiXDtAfjikpSEVESAey5lJmUhodcF1NXZadp09ItOoBalJg+dgn7RCUJa6LCLkiJW0QNAhCr4\nV/e0t9azUwtTadp0GOKM1OMpJSEVkWGR1HPJpMvA69e9CZMug5azXUgZ3CLKngK7cM9uMyUKky4D\nuya9RT2uS6qKUdN4gioIENEDXoRjmE6tx8C4QfTn1xq3nfr8araX4tZ/zaSKGkU8G4ha8fen4XdC\nBRX+NPxOal42O45sR13zaWpLrJKqYthcXOGjCF60vKCIDES4wopymmW/Y9icVvyr6i26Q50Iceqi\nUUvx4G8epOWTSCQSiUQiCWUGxssWSIFGtsQLLCIcXSWdw+Y8rogS/6OJildEif+pbXQoosT/nE9d\nQJgIqKGhAXFx/+nTFx4ejtbWdiHGoEGD8PXXX+PkyZNobGzE3r174Xa7kZqaivfffx9erxcHDx7E\niRMn0NbWhoEDB+KTT9r7Lr7//vtobGyE2+3G73//ezz++ON4/vnnsXnzZpSXl//kmNgqfp1aD3Vk\nHN3BIiqcWxDXqfXQRPamj7OkqhjVrm+pk+klVcWwu6upOV+0vACP10OdTBexqlSn1mNQ7wup+0mE\na482NhER4LZQ0an10MVxV/tbHGWoPXuSKtooqSrGqaZa6vFpd1XD1dpAF+mJKEranFY8a/k7/SUw\nknzNEwW7MAXwRY8mXQYWZiylChsA0O8fJl0G3p/5PjVnd6SsrAx5eXk/+HeNjY2YPn36OcH0z7Vh\n/SHYBUwRbaaAdtesmUW5VNcsgH9ci3BEmWuah/jIPphrmkfLKcIxzKAxomDs36nP2iLc9xzuGjR7\nmoPec7v+pgAAIABJREFUzXDGsHysHrMWM4bl03ICvmdNrjOqCEQITES0QhPBzWm3QAUVbk67hZZz\n0ailmH3JbVg0aikt56y02UiM6U91mhXxjgEALW0t1Hw+2KJ4AHh47MP0nBKJRCKRSCQSSVdgt9KW\ndI73Kt9RRIn/MWgGKqJE0hOJi9IoosT/aKJ6d/mzwkRAcXFxcLlc5/7f4/EgIiICABAfH4+FCxdi\n7ty5uOeeezBs2DD07dsXU6ZMQVxcHHJzc/HOO+9g2LBhCA8Px1/+8hf84x//wMyZM5GQkIC+ffsi\nJiYG+fn5iImJQVxcHH7961//rAiIzXrLOtQ312G9ZR01r7ulkZpvx5HtqG06SV1NC7Q7rfSP0VOd\nVlISUqGCiupisfDXi6GOiMPCXy+m5bQ5rSj85g3qg7BBY8TSkX+mFtBEuTKEh4dT89ld1Tjh4q72\nF1FIENGiQafWQxc7QIhIj12UBPiFFIPGiIWXL6aLNEWs+F56xXJqwUeE6LGoohDL9i+hiiVsTquQ\nF/8rjFdQ83U3nnvuOSxevBhNTd933LNYLJgxYwaOH//PSpSfasP6Y7ALmNnJOXgpe7OQvGwXMpvT\nihvfmEQ9rrWxiYgKi6IXsAdoDNR8IsRKNqcV95TcSf8+I1R8QQCbzKQsGOMGUp+HAdAFQD7Y7nsi\njnsR7dB8L8zn8+L83+z9do8isogKj6Lmszmt2Gv/mP7e8tLVm+nPb+w2jRKJRCKRSCRdQQofJBJg\nffYm2RovgIhyCJZ0nEG9ByuixP80tZ1VRIn/OX32lCJK/E+169suf1bYLNvw4cPx4YcfAgAOHjyI\noUOHnvu71tZWfPHFF9i8eTPWrFmDiooKDB8+HBaLBSNHjsQrr7yC7OxsDBzYrrD84IMPsGrVKrz0\n0kuoq6vDlVdeiWPHjuGmm25CW1sbWlpa8Omnn2LYsGE/OSb2A7xJZ1JEBhZHGWyu49RV9HNMd2Hp\nFcuprjU+NGT1317bHnjhpbbZsjjK4GptoH6ndlc1qpzH6C0qbnvnZmqLChGuDCZdBh75zV+pTiMi\nVvvr1HoYew+kimt8xyXz+ASAyDC+E46ooqSrtYGaz2wvxR/fnU097kUU9832Ujx24GHqOGcMy8fS\nK5bTC73sNnAGjRGPjF5Ff/Hfb91PzdfdSEpKQkFBwQ/+XXNzM55++mkkJyef+9lPtWH1JyKcEWxO\nK9Z/8QL1nLa7qnG8oZJ6HzfpMvDo6Ceo90eDxojNOduo55+INjYAXyRq0mXgsatWU7/P2sZaRWRg\n0Bjx3P+sD3oxq49WL38/3XHpndT9NHnoFCREX0BtlZqdfDXCEIbs5KtpOUcOGKWIDEy6DNyeNpfu\n6HemiddSEGg/Pue+dwf1ONWp9RgUz3eqChXHSYlEIpFIJMGBzWlFbuGNUggk6fFIAVBg8c1XsbsH\nSDrOl6fKFVHif6obbIoo8T869QBFlPifD6re6/JnhYmAxo0bh6ioKEyfPh0rV67EwoULsXv3bmzZ\nsuWcI9DkyZORl5eHvLw89OvXD4MGDcJLL72EadOmYc2aNXjggQcAtLcPmzVrFqZPn464uDiMGTMG\nQ4YMwcSJEzF16lTk5eVh4sSJ+MUvfvGTYxKx4pu9QllEcQKAEAEQwC8kTB46BbpYPXXSX9TKfI/H\nQ82nU+sRE66mTnxrYxMRGRZJ3XazvRQLPriLKoYQ5R7BXu1+Ud+LFJGFiOKEQWPE7slvU1/YRLQA\nNOky8Pp1b1KLXXZXNawNVdSXJJ1aj/iovtTz0+a0YttXr9LvS2EIo57zNqcVt79zK11UlbWBK1Dr\nbowfP/7c89J/YzKZoNcrj8WfasMa6hg0RvoKNJ1aj4Fxg6jntNleigc/vpd6fwTETLyxHQJFYLaX\nYuH/LqB+nykJqYhABNXRT4QLkigHNrur+twfFpsObcCag6uo7eXsrmqcaa6n38f1agP1nBfRtk3E\n9ylikYmIBREGjRH/L/1O6jVPhJBSIpFIJBKJRCKe4/XHf/4fSYQihXCB5UrDVYoo8T/O5npFlPgf\nfZxBESX+R7oxBZ6L+l7c5c/+cHWJQFhYGJYtW6b42ZAhQ87995w5czBnzhzF3/fr1w/r16//Xq6s\nrCxkZX2/WHjrrbfi1ltv7fCYfEVh1iSgCPeSzKQsXBCdSHfvsDmt9MlPu6saNqeV+p0aNEY8dtUT\n1LGadBl4IGMJ3bmmDW3Ufb/jyHacbq7FjiPbaaItky4Duya9Rd32vbY9aEMb9tr2CFmdz4QtrknT\npuOC6ERq8dSgMeK2tDuEFCeY5ybQXuw6Vn+M7lzDXu1u0mXg2XEvUvNaHGWoabTD4iijfqds54z2\na5OHem2yOMpQ5TxG3XaTLgPF+dxWdT2dn2rD+mOY7aX082/ToQ1C2hixr5EGjRHbrttJf974x+/W\n0b9TNj6BCVtYxb7n6tR6GOOSqKINnVqP/mo93WmEjSgHNpMuAzsmFlKP0cykLOhiue2BHe4atHhb\nqPcyu6saJ8/WCHk2YpKZlIV+0QnU71NUaz0PvNR8RRWFuOeDuUiISaAuDGDvcx8i7qESiUQikUgC\njxQRBx6b04pb383DgdsOBHooPRoR8wYSSSgxQncFPjtVhhG6KwI9lB5LdHgvRZT4n6N1XymiJLQQ\n5gQUjLCLwiLaKbSvfK2jrqq0Oa249vXxdPW2iAl6s70Ut7ydT131XVRRiOX7l6KoopCWM02bjgFq\nI1UMIsplprz2MDXfHNNdmH3JbVR3qU2HNuDuD+ZQVz0bNEbc+Ivp1BcVi6MMJ5tqqCupfQUP5vEJ\ntJ9Lk3flUM8ls70Ufy97iu5ywcbmtOKv5seo17w0bTqSNIPp7hlieqlyi3Kitv0Ko3yBYvJTbVh/\njEm7rqGezyKu5SIR0b6Jfe0RgQhnJRET5QaNEQVj/07N+V0hCAsR225zWvHARwuEHEsiRAt9e/Wj\n5kvTpmOQ5kLqfUeE+5cILI4ynG46RX3WFLFwxeGuQauH+x6Ypk1H/1gddb+b7aX0e50v73U7sul5\nX/j0BWo+iUQikUgkXUOKHgKLQWPEjmk7Aj2MHs98033yXAggb39TqIgS//OZ46AiSvzPsfqjiijx\nP5ckpCmixP9c3C+ly5/tUSIgEYUZdvsiAICKm66kqhg213FqCx9RiBAWiZhQBoCIMK6R1tenv1ZE\nBiIKsmZ7KTZ9+RK/PYcqktqeY9OhDVi2fwl129tXUnPbq9U21sILL90JSYSDgojzE+Dby4pwUDBo\njHhm3PPUnOst61DbdBLrLetoOdO06Rjcm1s4FbHtks7ja6n6Y/xQG9afw+vlCsZEtMbxwRZKisCg\nMWLWJbcIERexCYWe8iKEMKKEICKcqkQ4AYlAlABs56RCek62+5cIRLTIFdEaWRubiEjyM7HdVY3T\nZ0/Rr0+tbfzWmCKEVZsObcCtuzvuciyRSCQSiUQcwb6woycwMH5goIfQ4/nju7ODfiFod2ZqSq4i\nSvyPb/GumEW8ko4g24EFni9qLYoo8T+VZ451+bM9SgQUCpPpOrUefaMTqMWJzKQs9I3i2soD/2nf\nJKKNExO7qxonG09SJ5TtrmpUu2zUnJOHTkFCrwsweegUWs4Zw/Kx9Irl9IJsW1sbNZ9OrYdOraMe\n96KK0SpuzVxIGw2gvdi1dOSfqdc8Ee0kbE4rcgtvpE6w2JxW3FNyJz0nuxi9aNRSTP1FLhaNWkrL\nadAYkZ86m+5Iwf4+JR3DaDRi69atAIAJEyZg2rRpir/fuHHjuVarvjasr776KrZs2aJowfpjPP8/\nL9FdQZhiTh9FFYWYWZQb9EIgEc5uNqcV2a+NpZ5/ZnspJu68mjqZJ+JaLkJUJeLeCIA+MRpq110R\n71ehklME7EUmItoD69R6GDRGeru+3lHxdAG7h9wmFWgXXRviuK6wM4bl4/kJz9PySSQSiUQi6Rq+\n9smh8iwukYji9evelO1vA8jOr15TRIn/GRyfrIgS/3OsvkIRJf5n3OCrFVHif87n+O9RIiARk+ns\nfBZHGWoa7VQLeIujDKeba6k5AZ97S4SQgh+T8trDaPW20NtikTvuwO6qRkOzk94KblfF69Tj1OGu\nQRvaqJPpdlc1Trjs9JW/bGENACFXTU2Uhp7TbC/FH/41i1qY1Kn16E8Wa4mipa2Fmk9E+xyzvRQ7\nj75Gb8fEdsAC+N+nJDhYuudBurjk2tfH0wURIgSIIshOzsETYwqoBfwdR7bjRGM1dhzZTsvpcNeg\nhdzGBwAaW93UfCJEVWZ7KX01o9leiuvfuDZkVkjKYkbPRMTkfUxELDVfSVUxHGdrqO612thEhCEs\n6O8fPn6Z+MtAD0EikUgkkh6PiPkfiSQUkQKgwBIVHq2IEv9TXntIESX+54IYrSJK/M/+bz9WRIn/\n0akHdPmzPUoExEbEyoA0bToSorXUVYUii2cqL7l3mQBEuOHo1HrER/ehr37Vxw2g5hTRTiJNm44B\nau7KVxGW+janFde+Pp4ugBJROCV35PkP5NPT7qqGo7GGKtYyaIxYePli+uRKZHgkNZ8IHO4aNHua\nqcdTSkIqwhBGF2eqBFzqj9cf5yeVdIpjZ76hCoSLKt5CG1pRVPEWLSfQfn9MjOULENnOQjanFU8f\nfIp63xlpGIUIVQRGGkbRcop41rS7qnH8TBX1/iBCVGXSZeC2X/6JOplp0mXgH79bR80posUWIFc1\nS3iIOEYzk7JgjBtIFfGLWLwAtC+ysTVYqfdQs70UV62/ipZPIpFIJBJJ15ECoMAj54wkEkmgSYi5\nQBEl/se34JC98FDScbSx/RVR4n9qGx1d/myPEgGxC80GjRHzTfdRc1ocZahtctBde+hqAB/kI0gb\nm4iosCh6u6ENh9dRCx4iVqoCwOnG09R8NqcVt79zK73YExsZQ83Xvko3nLrfS6qKYXMdp68mDgU3\nCqC9KHn/iMX0Qic7pwhXBoPGiCcyn6K3xGK3uhFxvXO4a+CFN+iFajanFZO3TOYmlXQJZkvPRaOW\n4q7LFlBb3AH/but5litALKooRH7RTVQhkN1VjSrnMeo4TboM5KfOpl53RTxr7rXtQRvasNe2h5bT\n5rTiyU//Sr3ubjq0AWsOrqK6pdmcVqz8ZAX9WUtUOyz2u4uk58I+jgwaI3ZPfpuaNzs5BxuyX6G3\nWNPGJiIyLJL6DFdeexjNbc20fBKJRCKRSCShipwzkkiAhmanIkr8zwmXXREl/ufU2VOKKPE/X53+\nUhEl/ueivkO7/NkeJQISYf9/679mUnOKc1nhu5cAgMfjoeYz6TLw6Ogn6MWuyjPHqMUuEStVC8xP\nor6lDgXmJ2k5LY4yVDm52w4A7pZGar72VbpcJyAR+wgAVAIsUUS41hRVFGL5/qXUAreInCZdBr3H\ntM1pxQMfLaAXZFs93JZYJl0Gdk16i7rtIpwzAL4TkEFjxI5pO7hJJZ1m9Zi1VJc8AHQBENDuBNQn\nqh/VCUgbm4hwsvgUANo8bdR8a81rsO6LZ7HWvIaWUxubiHAVd9v79uqriAxEPMNkJmVBF6unPxuw\n7w+iECG8DSWkA1LwI0Kgxn4mAsQ8w6UkpCJSFfxOlhKJRCKRSCSikXNGwYF8fwoscVEaRZT4n14R\nvRRR4n8u7peqiBL/E6YKU0RJaNGj9hq70CyqNZCItisiKK89jDa0obz2MC2n2V6K+z66m1qcEFHo\nM2iM+MtvHqNOVM81zUN8VDzmmubRcqZp06GNSaSKyiyOMnzr4trfp2nToYvVU8dp0Bjx3P+spxcT\nVGRXLVEtP0SIQdK06UiM0VH3E8DvMS2qf3tEGL8ww75/2JxWrP/iBfqLenMbv8A9MH4gPaekc7AF\nQICYSSKLoww1jXbqfUfEM4yInCMNoxCOcGo7MAAA2d0rISZBERlkJ+fgzsvm0wv4IiZvhLX1JCNC\neAvwW+sBoAuVbE4rbnxjEv0aJWLbJaEB+zwy6TLw0eyPqDklEolEIpFIQhU5ZxR4ZCvpwOJwn1BE\nif8xagYposT/HK37ShEl/qdfrwRFlPif8+k60KNEQMwV5EB7QXxQ78F0gYWtgSuwENXCKDMpC4kx\n/amrqctrD6PF00ItoAGgd0Mz20sx++08aoHC7qqGq8VFbSPSXjg9QRfssIUgdlc1Tp89Rd12m9OK\nO4vvoL6s6NR6JGkG068lzO32YXNa8azl79Ttt7uqUd98Wsh42YhoUcFuMVZUUYiZRbnUAqIIAZTd\nVY0T7mr6fpf93QMPezJHRNs8QIyoMSUhFRGIQEoCbyVJZlIWLohOpD4X6dR66OMGUO87DncNWsnu\ne2nadAzufSH12aCoohBrDq6it2z7tsFGv541tnIdEgFxqy5FCIDY9zKzvRQTXh9Pf84+3lAZ9G0F\nJT2bK4xXBHoIAcfj8WDp0qWYNm0a8vLyUFlZqfj7nTt3YsKECcjNzcW2bdsAAM3NzZg/fz6mTp2K\n2bNn49ixYwCAL774AqNHj0ZeXh7y8vLwz3/+09+bI5FIJBKJRBKyiFhgKek48dF9FFHif47VH1VE\nif9xt7gVUeJ/BscnK6LE/5xPW8geJQJiq5cNGiP+/rvnqQ9DIoRF7e3AuMUe4N/CjUaucENEm4by\n2sNo9bZShUV7bXvQ6m3FXtseWk4R40zTpsMYN5Au2Klr5u53nVqPpN6DqEVO+/9n797DoyrPvfF/\nMzlAMjMEEhMmzpBgqAimEcoYLXaDvLS8RCNCzIZAaBCx9rCFouJuwSLtBi1si9oAfa0nykGCCVs5\nmZpuENC28KNxuonhVAsphxkzJITTZBJymJnfHzHZXW2tmNzPzCzm+7muXk8hzO2zstasWbOee923\ntw6nr5wSnafVbEPeTfeLvucd7io8sOM+XbTmsFty8MqEX4kvIKqgIrlBusWYqgRN6fZ/dksOtk6u\nEG/Zxv7uoTdp60Tx98pFBT2aXR4nfnFolXhS50BjmvjnzuV22URJt7cO9d5zojFzM/Pw4t1rRJOq\nrGYblt7107C/QWgxpsEYaxLd7yoqJKpKqAPkK+yoaC93wLUfHZC9zrYY02BJkE2oU5H8BuijshKR\nKrt370ZbWxvKysqwYMECrFixovtnFy5cwKpVq7Bx40a88cYb2LlzJ5xOJ8rLy5GQkIDy8nIsXrwY\ny5YtAwAcOXIEDz30EDZu3IiNGzfi3nvvDdVmERERERF9IZdbL2lGCr5Ln/7uL3EfUAQ7/On9zsPC\na0507ZLjU3r82ohKAloxZqXo4oSKRWGr2YbJmQXiiUUD42VbLQFqniQHgAF9k0TjXbx6UTNKGG29\nCwbh9hwzs2Zhzq3fFm/PEmOIEY1nMaZhkEk2YcdqtqF80jbR495iTENy/A2i81zjKEHJoZVY4ygR\ni2m35ODlb6xV0hJLunKNy+PE8j88E/alYF0ep5KkzwX2H4gfo1azTfQYVVGRAVDTso393UPP2XQW\n+87sEYu378weuJvrRGMCnYkwZ4STOt3eOpy/Wi8aU1mbWINsOUMVbQMd7ip8Z/ecsG/nuq5mLS62\nXsC6mrViMbNTRmBggnyrzMaW86LxgM79NHnbPaL7ScXDBvlDC5BmvBH5QwvEYgJArHBbT6vZhq2T\nK8SrBEpXF3K4qzBl+71KWqxJC/drTNV2HN8R6imEnMPhwJgxYwAAI0eOxOHDh7t/5nQ6ccstt6B/\n//4wGAzIzs5GdXU1Tpw4gbFjxwIAMjMzcfJk55O6hw8fxr59+zBz5kw89dRTaGpqCv4GEREREekU\n24GFVkrCQM1IwRcXHacZKfi67rVJ33Oja3fVd1UzUvA5Pac//x99hohKAlKRsCNdFlFFkoGKyi1A\n54nXarKJnoCtZhu+nf090d/pXPt8TLu5CHPt88ViAkCMIVo0XmVtBX519FXxthd13k/Eq+FsuV82\nYQeQb4lV01CNOu8nok/m5w8tQFKfZNFFKZfHiecdzympXDPvPdl2aADQ7msXjaeC1WwTT/pUscAN\nAO2+DtF4uZl5WJ9bKlrhQxX2dw896Zaew5KHI9YQK9piq4sPPtF4FmMa+scliVcFyTDLVgWxW3Kw\nbfKvRRPxVCQ12i05ePv+d0Tn2dBcDz/8oskliX0SNaMEFS1Nt378FupbzmHrx2+JxewSCATEY0YJ\n9921mm349QO7w76yFCDfflRFdSGLMQ0D+sie71weJ/K354leZ7o8TkzdMUU3Cw3SCdeVtRWYXDZZ\nNKYeNTU1wWQydf85OjoaHR2d18sZGRk4ceIEzp8/j5aWFhw4cADNzc0YPnw49u7di0AggEOHDuHc\nuXPw+Xy47bbb8IMf/ACbNm3CoEGD8Itf/CJUm0VERESkO9L3VumLOXW5VjNS8A3pf7NmpOCra3Jp\nRgo+Q5RBM1Lwxcck9Pi1EbXXVPQxlY43oO8AzShBReWWLua4fqLxKmsr8MT780RvqlbWVmDLnzeL\nxrQY05BmtIr+TlW0BrJbcrDiX54P+/ZNDncV7t+aK5pgkZuZhyV3LhNNhnB76+BtbxJPqlJxbnJ7\n63C26bR4clWU7DqfEi6PE0/s+77oIpKKBe6ahmq4vGfF23fpIQGIwsPltkui5wi7JQf/dtt88c+c\nytp34Qv4UFn7rljMmoZq1Le4Rd9/VrMNv5wg2yYWkK/E5XBX4du7HhJPapSeZ3bKCNxolE02n2uf\njyV3LhNNDLcY0zDILHud3Vlx0iBacbKb8Oe4ilbGeiKdsKKiulBNQzXONcue72oaqnHqyl9EY7q9\ndTjrkb92VZFUpKLyYmNLo1gsPTOZTPB6vd1/9vv9iInprGybmJiIRYsWYd68eXjiiSeQlZWFAQMG\noKCgACaTCUVFRdi1axeysrIQHR2NCRMm4Mtf/jIAYMKECTh69GhItomI6IvSS0IsEV3fpB+opy/m\nlqRbNSMFX0PzOc1Iwdfqa9WMFHxxhjjNSMHnabvS49dGVBKQHjKXZ2bNwot3rxFtCaWqcovVbMPU\nm6fLty4TbqmQnTIC6Wb5xYm4aNmWAhZjGpL6yravcrirsPB3C0QX+lweJ4oqpop+CVDRSsLhrsJz\nHz4ruu0WYxpSElLFE+pUnJtUJf/FCLfSAPRzg0v6d5mSkIpYQ6xo4p8qetlH9MW8OmGdaOLGpiMb\nUHJoJTYd2SAWEwBmZ8/BDX1SMTt7jljM3Mw8vHD3atGkORUJiCpYjGmwmdKVJIdL69dHNtkcgHhl\nSKvZhiWj/0P8szxW+Dqzi4qqPdJJKyquNQGg3S9bzdDlcSL3v74uPk/pClC5mXl46NZHRM93uZl5\n2JC7WTSmxZiGpPhk8YpFU7bJViwC1LQrHJc+HlazVSyeXo0aNQoffPABAODQoUMYOnRo9886Ojpw\n9OhRlJaWoqSkBLW1tRg1ahRqamowevRobN68Gbm5uRg0qLPa5MMPP4yPPvoIAHDgwAFkZWUFf4OI\niL4gFe3NiYh6QrqCMH0xRxtrNCMF36XWS5qRgu+rN35NM1LwNXc0a0YKvuT4G3r82ohKAlJBxZey\n5Phk8ZgqbDqyAUsPPi262Of21uFiq2xLBavZhgdvnSN+0SrdTaGmoRrnWurEq4IE/PJtH6SpaGFk\nMaZ1/0+K21uH+uZz4k8oq6BiUdJqtqE0b4v4Qp/0DS6r2YYXxq0Sn6d0iwqLMQ03Gm1hvxDPm5DX\nryX7nxLdryoSmYHO9/SuafvE39PPO/4zIo9rVUkr0lScy1VwuKvwyH/PFk06VlXJ0WJMQ7p5sC6S\nmaV1tsh1ibdtO9dSJ5q0s8ZRgqUHnxZtDb3pyAasPfqKeIKmdOUaFa18axqqccZzSvz7FQAYDPK3\nUkxxps//R9e5CRMmIC4uDtOnT8fy5cuxaNEi7Ny5E2VlZd0VgfLz81FcXIzi4mIkJSUhIyMD69ev\nR2FhIUpKSrBw4UIAwE9+8hP89Kc/RXFxMf74xz/i3/7t30K5aURE10RVtWgioi/qkV2y33Ppi+nw\nd2hGokhUVff/aUaiSHS5F4mITALqBRVPqaooLa7qadqZWbOw5M5loot9nW22bhRdnFCRrAQAHQHZ\np4lVVAWxGNOQkSi72GM12/Dt7O+J35BQ0Uaipf2qaDyLMQ0Z/eQXz1RwuKvwnd1zwv7LmoobXC6P\nU7xkrdtbB2fTGfEEsITYnvfzDBar2cY+4Ncp6VYuAMQTgLpIH3/7zuyBs+ks9p3ZIxZTRaIkANFr\nQkDd54P0daaqykpKPheFW2w53FVY9LsnxedqNduw+usviR+jKlpiLbpjsfg8/X6/aDwVbZzzhxYg\nqU8y8ocWiMUcljwcsYZYDEseLhZz05ENePz9uaLfr7qSiqSTiwKQfyBCRWtogDf4gc7kqqVLl+LN\nN99EWVkZhgwZgkmTJqGwsBAAMHfuXGzbtg1lZWXIzc0FACQlJWHdunUoKyvDa6+9hoEDBwIAsrKy\n8Oabb2Ljxo148cUXYTIxyYqI9IHfvYkoHCT1la3SSV+M1WTTjBR8faP7akYKvqu+q5qRgs8f8GtG\nCr7e3CtiElCYUdGeAgCutPa8Z9xncXmc2PLnN8Vv/EtX2BmXPh5W4yCMSx8vFtPtrcMnTbJPE6uo\nCmI121A+SbYVXGVtBR5/f654opp0pZF9Z/bgXEud+ALv01+Vr56gohKF3ZKDl7+xVrSKgKqEQmkq\nEovslhxsnVwh+vtUlTAgTUVSFYUH6VYuejIufTwGxqeJXhsAEE8UrKytwKzKGaKfuXZLDv7d/pQu\nPh/afbIJ1w53FaZsv1e8as/kzALR36fFmIaBCbLVDIHO/fS93d8S3U8ujxOTtk4UjelwV+Fbv3lQ\ndD81NNejA7KtZ1Uk17i9dfC2N4meS+yWHOyYUileWUoPTlw8oRnDmdtbB+cVXmsRERERUXiQrtJJ\nX8y5ZrdmpOBram/SjBR8bb42zUjBx6pkoXelref5HRGVBKTiKVUVrXHWHX1ddK41DdX4xOtUctFi\nVjUMAAAgAElEQVQmvTjj9tbB3fyJeDuw5WOeC/uFdkBNVRDpBcnslBEY3O8m0co9KpI2utrqSbbX\nc7irxEuhujxOTNsp22aqK+7zjufCfkFWT62mIvXpF5Yjv36pqMAmXbWmi4pzRHys7JM8KhJMVFTG\nqKytwNKDT4vvK+nPBwC46msRjxkQzjZ/dv9SlP+5FM/uXyoaV8U1YU1DtXgFMBVVtRqa69EWaBNN\n2FFx/Wq35OC5MS+KJ4D175Mkfs1RWfuuaLxx6eORGJcomkh58epFzRjO3N46uDxnxR8IGWgcKBaP\niIiIiKg3UvqmKrlvRKQXpliTZqTg6xvTVzNS8HEfhF5S36QevzaikoBULDRLL4pazTYssP9ANG52\nygjcaLQpuWiLjY4VjWcxpsGSINsOTEXihsWYhhtNsiXgrWYbXhi3SnTfq1iQtJpteOkbr4V9QoCK\nxR6LMQ3p5gzR/e721uH0lVPiyVqqEjek3/Oq2oFJn+9VxdRDZSWA5civV9LHtIqqNYCa95/bW4c6\nr2zSMQB0+GSfihiWPBwGRItWGgGAKOn+VZBP2KlpqIaz6axowoqKFj65mfcgGtHIzbxHLKaKa8Iu\n0vteRdK1iuQ3q9mGyZkF4tfZC3+3QPQ6u6ahGuda6kSP+2f3L0XJoZWiiWpbP34Ll9suY+vHb4nF\nVNFeTUVMADjeeAwd6MDxxmNiMd3eOpzznhOLR0RERETUG+evNrASUAgNMqdrRgq+C60XNCNRJGJb\nvNC7cLXn56CISgLSQyUDh7sK3971kOjNZACIjY4RjQeoa2UTa5BPLJJO3ADk25a5PE58f8/3xBMC\nfD6faDwVrYFUVMOxmm3YOrlC9Pi0mm1YNf4l0ZgqEsq6qEgsUvGeVxFP+nzPajh0Pbql/3DRYzol\nIRUxUTFISUgViwl0Ld4/IH7uvaFvqui593jjMfjgE10Ubmiuhx8+8Yoo/WITRZNkVSTs5GbmYc6t\n3xZvWedt84rGs1ty8M4D/y3eXk1FG0YV79HslBEYGJ8mejypaNe3xlGCkkMrscZRIhYTkC9Jve/M\nXs0ooc77iWaU8MdzH2pGCTOzZuHFu9dgZtYssZgqktRUsRjTYDFZQj0NIiIiIiIAUPZQOV2bxpbz\nmpGCLzU+VTNS8EVHRWtGCr5LrZc0IwVfSy8evI2oJCAVi7fSN+ctxjQMTEgTrzTianKKJwQAUJIN\nrqLSSPmkbaL7X0XbMre3Dqcu/0U0ZkNzPXzCi4dWsw0rxqwU/32qqIYjHU/Volx8jHzLD4e7Cg/s\nuE88oZDkqKr0oIfKQhQeyv9cioX7nhSL19Bcj45Ah+hnDgBsOrIBSw8+jU1HNojFdHvrUN/sFv2c\nOHX5lGaUoKIiytaP38Ll9kuiFTwcbodmlLDpyAasPfqK6H7f+vFbON9aL7rtKqhKPLVbcrAjv1I0\nYcntrcOltgvi11xRwsWqLrde1owSDrj2I4AADrj2i8XMTrlNM0p4KPthGGDAQ9kPi8UcNfB2zShF\nMvEL6Ewm3JC7WTyZcFjycMQYYkWrtLm9dTh7+axYPCIiIiKi3kiIjQ/1FCJaV+WH3lSAoN650nZF\nM1LwXW67rBkp+BJiEzQjBV9vqrpHVBKQNJfHiak7ZKuXAECccBJMQ3M92v3t4otylbUVeLCySLTt\nh8r2B5JUtC0DgCjhFY/czDx8f+QC0RvfLo8TD1V+U/S4V1ENR1UrNBUVZlRU17FbcvD2/e+IVyZQ\n0VZRmp7agamoqqWHfUThwxzXTyxWbmYelty5TMliaxSiRBdbVSQseT69KeARvDmgooqF03NWM0pI\n7JOoGSWo2Pa59vmYdnMR5trni8VUcb0BqGvDKP19wGJMQ0q8bFWtfWf2wN1ch31n9ojFnJ09B8YY\nE2ZnzxGL+aUBX9KMEoYlD0cMYkTPd3ZLDhbf+R+i14Rz7fOx5M5lou8lVW1SpT+TgE8f3Im3iB73\nW46XwQ+/WDwiIiIiot6Q7oJARPRFJfVJ0owUfHGGOM1IwdebVmxMAuoFt7cOzqYz4k++6uUCKztl\nBFLjLaJlIVUtiqu4oSydrGUxpiHNKJsIU1lbgVWHnhdN1Nr68VtwN9eJP0UvXQ2n8/cpn6ilgqqF\nPsnFHkBNFShAvnKNXtqB6SUmwOpCoVJdXY3i4uK/+/s9e/agoKAAhYWFKC8vBwC0tbVhwYIFmDZt\nGubMmYNTp059bvzkPjeILog73FVY/oel4skQxxuPIYCAaJut7JQRuihtraLCTlfil2QCmArZKSOQ\n1CdZdB9V1lag/M+lotdFFmMakvomi19vqKjkV1lbgVmVM0S33+2tQ0Nzvej3oZlZszB/5JOibaH2\nndkDb0eTaGKRikpdnS2hZKvCVtZWYNnBJaL7HYBoAlCXdl+7eEwV1zBubx3Ot8ge9/PsjyExTi6R\nkoiIiIioNzoC8tfmdO1iDDGakYKv2desGSn42vxtmpGCr29MX81IwZfQi7VzJgH1gt2Sg1cm/Ep8\noV26/H1KQiqiEIWUBNnelW5vHS61ypb/t5ptWGD/gfgCtoobym0KYkqXVEtJSEVMVIzovs8fWoDU\n+IHIH1ogFlNVBagOf4doPFVVVvTSsktPlWtUJFaFe4WyLioSgFTsI7a8+OdeffVVLF68GK2trZq/\nb29vx/Lly7F27Vps3LgRZWVlOH/+PMrLy5GQkIDy8nIsXrwYy5Yt+9z/RqpxoOicG5rr0R6Qrzyo\noiIMAPgCsp8R8+yPwRzTD/Psj4nFVFFdaHDiYM0o4feu32pGCfvO7MGF1kbRpA2gdyVU/5GahmrU\neT8RbZHrcFdh0taJ4tcHKQmpiDHEil4XWoxpuEG4EpDDXYVfVP9cdPuHJQ9HrHD7pplZs/Di3WtE\nk5U6WxWeE/1+lZ0yAgP6JIknPUonFQFAU7tHNJ7L48Q9b31dSQvvNJPswwZubx1vbBIRERFR2Pik\nySX+8DuRnvjg04xEkcjb7tWMpC8RlQQkffPP5XHiecdz4nFjDLIVZg649iOAAA649ovGVXHz0+Gu\nwiO7ZosvesQKV+1xe+vgbv5EPAFq0R2LRRfwO9ts2cSfTpdOVlKRXFLTUA1Xk1N0UU5FkprDXYUH\ndtynJBEoUivs6IVeWnep2EcujxN5pfLtOa4n6enpWL169d/9/cmTJ5Geno7ExETExcXBbrejqqoK\nJ06cwNixYwEAmZmZOHny5Of+N6STL09cPKEZw5mKdkNubx2aOjzCi/e3aUYJF69e1IwSvnzDbZox\nXKmoLpSSkAoDDKKJNZW176Ij0IHK2nfFYnaJEq446vbWoaFFNmnlgGs/OgIdot9d7JYc/Ntt88Uf\n3hiXPl40nooWuSoS6lRUlVJxXlZVwRSQf9jAbsnB3gf3isYkIiIiIuopFRVv6dq1+lo1I1Ekam5v\n1owUfH2i+2hGCr6LrT2/hx9RSUDSi62qFsRL87aIxhxtvQsxiMFo611iMbvERMkm1wBAQLgfmtVs\nw9Sbp4sn10i3mnK4q/Ct/35QPBlEOmHH7a1DnVc+AUr6vZSbmYcX7l6N3Ey5RAOHuwrf2T1HdB/Z\nLTl4+/53xBelVLXBi8RkHVX01LqL+z34Jk6ciJiYvy/529TUBLPZ3P1no9GIpqYmDB8+HHv37kUg\nEMChQ4dw7tw5+Hz//EmV2e9+U/R4udx6WTNGmi3HyxBAAFuOl4nF7KpaIlm9RAUV1YVOXT6lGSXs\nO7MHja3nRZMMDrj2ww+/aMKKigpQXaQrIQFAu1+2OubxC8c0o4RNRzag5NBKbDqyQSymy+PEhPJx\n8g+ECH+/mpk1C3Nu/bZoxSIVVFR9G9B3gGaUUtNQDWfTWdGHDQDgcP1h0XhERERERD3lbq4Tv96l\na8eF99Ab2GegZqTg69+nv2ak4KtvqdeMFHy9+RyIqCQgFYutemg5Y7fk4Gd3/1w8yQCQv+lvt+Rg\n+5R3Ree66cgGLD34tOhNfwCI70Ufvs8SJdwLTkWbLbslB9/Nnid+PEm3+3B5nFh39HXRhRlVCTuR\n/FSFXqrhqKKX1l3SrGYbXp30aqinoUsmkwle7/+W3/R6vTCbzSgoKIDJZEJRURF27dqFrKwsREdH\n/9NY51pkqyPkZt6DKEQhN/MesZiqqKiGMy79/2hGCV2JJZIJJioWxcelj4cpxixaFSWxT6JmlKCq\ntZy0FeNW4uu2/4sV41aKxrUY02Du00/0uqOy9l0EEBCtWjQsabhmlKAiqWxdzVqcb63Hupq1YjEB\noM7rEo1XWVuBtUdfEa3ao6K1XG5mHr5mGSuawD8ufTwSY/uLV2xqbGnUjBI2HdmAb+38llg8IiIi\nIrr+VFdXo7i4GABw+vRpzJgxA0VFRfjxj38Mv98PACgvL8cDDzyAadOmYe/ezkqTV69exbx581BU\nVIRHHnkEFy5c+Nz/VkxUjOj1Pn0xzb5mzUjB19jaqBkp+K76rmpGCr44Q5xmpODrTUW4iEoCitRK\nBg53FRb97knxCjOdFWHke8NKJ1jMzJqFJXcuE336VUXFJhXJNS6PE0/s+75oQoCKJ6k3HdmAx9+f\nKxrTarZhxZiVSpLqJKms2CPdXk6FSG4HpoJefp8ujxOP/vrRUE9Dl4YMGYLTp0/j0qVLaGtrw4cf\nfoivfOUrqKmpwejRo7F582bk5uZi0KBBQZ9bQ3M9AgigoVn2yQAVi60qEmFUtJpSYVz6eNhMg0QX\nxdfVrEVTh0c0GUJFNRgVvjTgS5pRQmVtBd5z/rdo0gbQ2Rqp8ep50eQ/FVWgRlvvgiEqWrSK6Y/u\nWoKvWcbiR3ctEYt58tKfNaOEJ/c+Bm+HF0/ufUwspsPt0Ixi/LLVW+fu+i5+7/4Ac3d9VyzmvjN7\ncLn9kvjDBjUNH2lGCZIJakRERER0/Xn11VexePFitLZ2LgYuX74cjz32GEpLSxEIBPDee++hoaEB\nGzduxJtvvonXX38dL7zwAtra2rB582YMHToUpaWlmDJlCv7f//t/n/vf6wh0iN/foWvnh18zUvD5\n4NOMFHxtvjbNSMHX5m/TjBR8/eL69fi1EZUEpIKKagvSyToWYxpspnQl1UakK9eo4PI4sb327bBv\ni6QiuUaFmVmz8OLda0STqmZmzcL8kU+KxlSRAKUnDncVHtk1W/x8okK4J6x0UXEsRWrrLqvZhq2F\nW0M9DV3ZuXMnysrKEBsbi4ULF+Lhhx/G9OnTUVBQgIEDByIjIwPr169HYWEhSkpKsHDhwmuKK7nI\nrmyhWQEVC7j7zuzBhdZG0cXmufb5WHLnMsy1zxeLaTXbsMD+Q+FEZrtmlHDfkEmaUcKJiyc0o4SU\nhFTEGeIi9glJFdWVjjcegz/gw/FGuQSwNY4S/N79AdY4SsRirr13I4YlDsfaezeKxXzwyw9pRgkq\n2ss1NNejA7KLAqNvvEszSnjv9C7NKEVF5bfD5+U+j4iIiKh3IvVeIoW39PR0rF69uvvPR44cwR13\n3AEAGDt2LPbv34+PPvoIX/nKVxAXFwez2Yz09HQcP34cDocDY8aM6f63Bw4cCMk20LUzfLp0a+AS\nbsj0jeqrGSn4rgauakYKvoRPO+IkKOiMQ9cmLCsB+f1+LFmyBIWFhSguLsbp06c1P9+2bRsmTZqE\noqIibNmyBQDQ1taGBQsWYNq0aZgzZw5OnToFoPOC5l//9V9RVFSEZcuW/dPShsGkou2Kw12F/O15\nogv3VrMNW+7fpqQiyop/eV5JZRRJeqmMoSK5RlU1mGHJcu0ZgM7j/uWaNeIJK83t4V8uU0XLtm6y\nD2hHNBXne7207gLU3AAblBj8SjV6Y7PZUF5eDgCYNGkSCgsLAQDjx4/HW2+9hbfffhszZ84EACQl\nJWHdunUoKyvDa6+9hoEDr61f9dxd3xGbr4r2TYCaJIPslNs0o4RhycMRjWjxz0jJCjNAZ5WZJ96f\nJ1plJjczD/NHPinaxkdFUpmKqj12Sw4W5jwtej2sovoV0Jn0Fw3ZCjsqDEsejugo+feStDWOEhy/\nfEw0sSglIRXRUdGiSWVThxUiClGYOqxQLKaKhDoVbRq/njFBM0p55+ROzSjhyzfIfR4RERFRz+np\nXg1FlokTJyImJqb7z4FAoPsBbaPRCI/Hg6amJpjN5u5/YzQa0dTUpPn7rn97LaS/k9K1i0GMZqTg\nawm0aEYKvihEaUYKvssdlzUjBZ/Hd22f2f+IsiSg3bt3o62tDWVlZViwYAFWrFjR/bMLFy5g1apV\n2LhxI9544w3s3LkTTqcT5eXlSEhIQHl5ORYvXoxly5YBAJ5++mk89dRTKC0thclkws6dOz+ztGEw\nqUguUVW1R7plF9CZuPHU7/9dNHFD1RctVdsvTTIBCOic47d3PSQ6V4e7ClO23Ssa02JMQ3LfFNHj\n3u2tg9v7ifi+lz42VVUssltysG3Kr8WT9CKVivO9XhIUeQPs+mYx3igW63LrZc0oRcWiuIrEoobm\nevjgE62MUVlbgQcri0QTdrJTRmBggkW0bVllbQVKDq0UnaeK6kIqkmsqayuw9ODTots+LHk4Yg2x\n4kkwFmMabGbZ7xkqkkEOuPbDF/DhgGu/WEwVLQA7k6miRJOqjjceg0+4CpLFmAarySa630db70KU\n8Lar+H2OSx+PfnGJou0PAaC53asZJbASEBERUXjQy70aIoPhf5f2vF4v+vXrB5PJBK/Xq/l7s9ms\n+fuuf3stJO+Z0BfDdmCh1wd9NCMFX7whXjNS8MUhTjNS8PXmHKQsCeivSwyOHDkShw8f7v6Z0+nE\nLbfcgv79+8NgMCA7OxvV1dU4ceIExo4dCwDIzMzEyZMnAQDnzp3DqFGjAACjRo2Cw+H4zNKGemc1\n27D66y+JftFwuKsweds94kkrdksOfvq1n4kmGaj4oqWiupLDXYUp22UTYQD5BBNlreCEE2/d3jo0\nXm0QTdixGNOQZrpRdNtVJUO0+9pF43VR0QIwkhNBVNwAUhEzUqup0RcXH52ANRN+KRZPVSUgFQkB\n+87s1YwSVCSYpCSkIoCAaAKU21uH8y2yn7kqfp8qqEj+UpGkZrfk4LkxLypJ5JXu5DvaehcMMIgn\ng8RExYjGVLHvO89JAdFz07Dk4TDAIJoA5vbW4VyzW/Q9f7zxGAIIiCYrqfh9bv34LVxpu4ytH78l\nFhNQU2FIsgUcERER9Q7vf5Ae3HrrrTh48CAA4IMPPsDtt9+O2267DQ6HA62trfB4PDh58iSGDh2K\nUaNG4f333+/+t3b7tT1sw0pAFMla0aoZKfi8fq9mpODrQIdmJH1RlgTU1NQEk8nU/efo6Gh0dHQe\nJBkZGThx4gTOnz+PlpYWHDhwAM3NzRg+fDj27t2LQCCAQ4cO4dy5c/D5fBg0aBD+8Ic/AAD27t2L\nlpaWzyxtGEyq2sNIVwVpaK5Hm79N9Ml0QE0lIBWUJcIIt1pScTypaAVnt+Rg22TZCjN2Sw5emfAr\n8cWumKhY0XiqkiFio2XnCXQeT0UVU8XPT9Ix9UTFdquoLKViH/EG2PVpf9GHovtWRTIAoKbCkDmu\nn2aUoKKVza9qXteMEg649qMj0CG60K6ivVpKQioMMIgm16ioWqOicovDXYUffPC4+DW221sHp+es\neJVEQ5TsV0q7JQe3DsgSvS7MThmB5D43iFbAyh9agPjoeOQPLRCL2dBcDz/8ot/bGprr0e5vF/8u\nKE3FuV5VhbquJC3JZK3slBHI7J8pFo+IiIiIrm8//OEPsXr1ahQWFqK9vR0TJ05ESkoKiouLUVRU\nhAcffBCPP/44+vTpgxkzZuDPf/4zZsyYgbKyMsydO/ea/hunLp9SuxH0meIMcZqRgi8xJlEzUvDd\nEHeDZqTgi0WsZiR9UZYE9LelB/1+f3fP0sTERCxatAjz5s3DE088gaysLAwYMAAFBQUwmUwoKirC\nrl27kJWVhejoaPz0pz/Fyy+/jAcffBDJyckYMGDAZ5Y2DCa9VEfIzczDi3evQW5mnmhcuyUHL39j\nregNel0lwgi3WtLL8QRAPFnH5XHiecdz4okLKpJrpPeP1WxDad4WXex3PVGRXKMi6ZNttiiUVJx3\noqOixWPWeT/RjOFKxWLzsKThmlHCH899qBklqEiAOt54DH74RZNr8ocWIM14o2jShooKM8cbj6E9\n0C667V1xOwIdonEbmuvREegQTTDJf/s+fHShGvlv3ycWc9+ZPWhsPY99Z/aIxVzt+DlafC1Y7fi5\nWMyVf1ihGSW8c3KnZgxXKloAqogJoDuJUjKZ0mq24cWJL4rFIyIiIqLrj81mQ3l5OQDgpptuwhtv\nvIGysjIsX74c0dGd92OmTZuGt956C2+//TYmTpwIAIiPj8eqVauwefNmbNiwASkpKdf03xucOFjJ\ndtDn8wf8mpGCr6WjRTNS8F1qu6QZKfjYmjD0EmITevxaZUlAo0aNwgcffAAAOHToEIYOHdr9s46O\nDhw9ehSlpaUoKSlBbW0tRo0ahZqaGowePRqbN29Gbm4uBg0aBAB4//33sXLlSqxfvx6XLl3C1772\ntc8sbRhsekgIcHmceKXmJSWL4tKJG5GcCKOCy+PEfW9PFN/30k+mq9jvVrMNi+5YrItjSfqJfKBz\n+18Yt0r8d6qHhCVVyYQqjlEVMfWwjyg8rHGUiMdsD8iXBr1vyCTNKKHrRpbkDS1Vi83SRg28XTNK\nGG29C9GIDvv2TVazDY98+Xthf45Use3A/z7FKfk0Z3bKCCT3la2ws/iuHwOI+nSUoSJRTUUFrNst\nd2pGCSrOoSqO0eyUEcgw3yR6LKlKgFKR9OlwV6GgTC5BkYiIiIiotyS/PxHpzYA+AzQjBV8UojQj\nBV872jUjBZ+3veft8JQlAU2YMAFxcXGYPn06li9fjkWLFmHnzp0oKyvrrgiUn5+P4uJiFBcXIykp\nCRkZGVi/fj0KCwtRUlKChQsXAuhsHzZ79mxMnz4dJpMJd99992eWNqR/rKWjWTym1WzDijErlSRC\nSdJLtQ2Xx4mpO6aIznPfmT1wec+KPvXscFfhgR33KWlRIcnhrsJ3ds8J+3Z1qn6fLo8TC3/7ZES2\nhVKVTKiHbQfUzDPcz5/UM0sPPi2aCNTZsiog2roKAF4+9JJmDFcqWk19acCXNKOEAX0HaEYJFmMa\nbohPFW29mpKQitioWNF2YJuObMDSg09j05ENYjGzU0agf9wA0cSF3Mw8zB/5pIIqnvKJavvO7EHj\nVdkKO52VigKiFYu6EtQkE9XUtISSTyxScW5yuB2aUYLVbMODt84RvY5RkQAFqHkvHXDtRwfkE2mJ\niIiIiHrq+AXZ6rR07VoCLZqRgu9C6wXNSMHHJKDQG5Y4XDNS8PWJ7nnuS4zgPDQMBgOWLl2q+bsh\nQ4Z0//+5c+f+Xe/RpKQkrFu37u9ijR8/HuPHj/+7v582bRqmTZsmM+Ew0ZUIItm+yu2tQ533E7i9\ndeIVhr6761vYNqVCPG64V9tQwe2twxnPKdH9NDNrFi5evYiZWbNE4gGdFZB++rWfiVZC6kqEefv+\nd8Ti2i05ovFUUTVPvRz3quhhu7sSFKX3k/Q5VNU8KTw4PWfFYqloXQUAayb8El/d9BWsmfBLsZjD\nkocjGtGii/f5Qwvws6rloq2mVFBRwaOmoRrnWupQ01Atdp6wGNMwoG+SaGKRimowWz9+C5faLmLr\nx29hrn2+SMzK2gqsOvQ87Ba7aCJQSkIq4gxxoolVKqg4RrccL+sepa65fvHHVd3j2ns3isRUVQVK\nmookmK4kvQF9B4h9d0lJSIUB0eLHfG5mHjbkbhZP1CMiIiIiCiemWFOop0AUMqyAEnptaNOMFHx/\nunxcM1Lw9YnuA4/P06PXKqsERD3j9tbB2XRGtCqKxZgGS8KNoosoQOeCzxnPKdQ0VIvFVFW1Ry+V\nMQKBgGg8l8eJ7bVvi87V4a7CU7//d9HKNaoSYaSPeVXCPVGJ1FCRqKWXVmgUHswx/TDP/phYvPyh\nBRgQlyyeBOP21iGAgHjFOINB9jJ4Xc1atPibsa5mrVjMlIRUxCBGdAG7saVRM0pQUWlk35k9qG85\nJ1phRkUVpLn2+bhv8GSxBCCg8/cYQED09wl0Xm98c9hs0esOFS3GcjPzsOTOZaIJFjbzIM0o4dFR\n39eMEnIz83Df4Mmi266iopiK97wKxxuPwQ+faFUpVeba52O0dXSop0FERERE1G3qsMJQTyFixSJW\nM1LwxSFOMxJFogACmpGC70rblR6/lklAYcZuycHWyRXiSQFRCqqlZaeMQLp5sGj7A1WLzdIJOyoW\n2i3GNAw0WkQTV1S0bLNbcvDyN9aKH6PS8fTSBk6VSN9+vVDRsiySW6HRF9Pc4RVNrHF769DUcUU8\nWQcAAn7ZLxoNzfVo97ejobleLGZu5j0wwIDczHvEYgLyyUrj0sfDkpCGcel/X2Wzp0Zb70JMVIxo\nqyUVFVHGpY+HObaf6LZvOrIB75zaLtpiTJU1jhKsPfqKaBvA2dlzYI7th9nZc8RiOtxVeO7DZ0UT\nzvOHFiClb6pokmJDcz2iECV6Hnl2/1K8c2o7nt2/9PP/8TVS0bpLRUJdTcNHmlHCuPTxGBCXLPqe\nBzqrdc2qnIHK2gqxmAv3PYkDrgNi8YiIiIiIequr+ikFH6vQhB6TH0IvGtGakYLv9pQ7NCMFnw++\nHr+WSUBhSDoZwu2twycel/iinNVsE28F1hVXkl4qY7i9dWhorhfdTy6PE0/s+77otrs8TjzveC7s\nk0v0klCmKiart+iDqn1PdC188OGAa79YPBWJNV0M0bKXrLmZeXjx7jXirVwMwpfWFmMa+sX2F69s\nZ4o1i8azW3KwduJG+SR24Z7fWz9+C572K9j68VtiMYclD4cBBtHWcioSLFSpaaiGp/2KaGVQizEN\nAxPSxI/7GxJSROPlZuZhfW6p6HnkR3ctwfyRT+JHdy0Rizk7ew6S+iSLJmqp0PWUseTTxmV6YlEA\nACAASURBVDUN1bjUdkH0+ASAfWf2akYJ8+yPYUCf8H/PExEREVHkkGylTaQ3qfGpmpGCryv5oTdJ\nENQ7Hzb8QTNS8NmMPV/vYxJQhAhEqclWVfG0vzS9VMawGNNgMcq3bZNmNduwwP4D8e2XfNq7ix4S\nylRW7InkZJBwT1IDWK2JQm/JnctEWxipaOEDdCaYbJv8a9EEE5fHiVdqXhJ9/zU018MHn2gS1L4z\ne3C+tV60JRYAxEbLlpNWkSCcm5mH749cIHo8jbbehShEiVYsamiuhx9+0f2uogoSoK+2UK2+q6Lx\nrGYbXhi3SvzaSPp8B0A0AajLQKNFNN7MrFmYP/JJzMyaJRaz6z0k+V5S0VIR6ExUMsAg3h4h1cSb\ny0REREQUPhpbGkI9BaKQOd9yXjNS8MUgRjNS8FnjrZqRgu9qR8/vkTIJKAypSIaQfjId6Jxn/vY8\n8flGcjJEQmyCaDyr2YbSvC2i2+9wV+E7u+eI7neHuwpTtt+r5NiXpKK9Giv2yNNLcg33PYWaZCIA\n0HkuX161VMm5XLrCDAC0+2RLKqtok9r11J3k03cqkiFUnM8qaytQcmilaLudA679CCAgWgFLRUWQ\nlIRURCFKPHFBRcLOaOtdMMAgmli178weuJvrRJPfXB4n5r33PfFrA8nWaqqo+j7w0kerwv7a3WJM\ng7WfTfwhC7slBxUP7BL/bJL+XCIiIiIi6g2reVCop0AUMjGGGM1IwWeMMWpGCr6m9ibNSMHX5m/r\n8WuZBBRmVCTW2C052DZF9gl6oPOmqs2ULnpT1eVxoqhiatgv3qug6gllaXZLDt6+/x3R48liTEOa\ngipI0seRy+PEwt8+KR433Pe53ugpuUYPc6Tr16zKGaIJFscbj6Hd347jjcfEYnYJ94VmQE2b1Pyh\nBUgz3oj8oQViMV0eJ771m9nin2V6qA55ufWyZpSQnXKbZpRwvPEYAgiIv5dUVAI63ngMfvhF56qi\nyozbW4e/XD4pepyucZRg6cGnxROB5u76rmg8QP56o6G5Hm3+NtGqPY0tjZpRSnyM7EMWXaRbX7q9\ndXB5XKIxiYiIiIh6ozfVB6h3uh7qV/FwP12bZn+zZiSKRP6AXzOSvvATJMx0toRKU/K0ojSr2YYt\n928Tv6nc4Y/MJyBVJJioSqqSvukNALEG+dYk0tVg9JRcEum4j4iujWT1ElUc7ipM3nqPeCLQVV+L\naDwAqGmoFo1nNdvw6wd2i57T9p3ZA5f3rGiVFYe7ClO2yVf0i0KUaDy7xa4Zw9V7p3dpRikqKgEl\nxycjClGirctUVJmprH0XPvhQWfuuWEwVSVVzd30X5X8uFU8E2nRkg2i8lIRUREfJttkalz4eKX1T\nMS59vFhMq9mGb2d/T/y6sLK2QjyRFgD8ft5UIyIiIqLw4WmTe4CGvhg//JqRgq9/bH/NSMF3peOK\nZqTgYxJQ6CX04uE2JgH1koqKNSqeVlT1BL30YhcAxAgngwBq9pM0vSSYVNZW4MHKIvGb3tL7XUXr\nrq64FJn0cB4h+qKmDisUizUseTiiEY1hycPFYgKdiaftgXbRBNSahmq4mpyi1zGqFoWlP3eGJQ+H\nAQbx/RRAQDRedsoI3Gi0ibZXS0lIRZwhTjRxoSv5RTIJZtqw6ZpRyoC+AzSjhNzMPLxw92rkZuaJ\nxWxorke7X/Y9/6O7lmD+yCfxo7uWiMXMzczDhtzNotu+ZsIvMe3mIqyZ8EuxmJuObMDj788VTQRq\naK6HL9Ahuo/c3jpcbr0kWq2psrYCT7w/T/y8nJ0yAoP73SR6fgLkz6NERERERL1hjksM9RSIQuZK\n+xXNSMHXN6qvZqTg8/q9mpGCrzctCZkE1AuqKo2U5m0RXfBxuKvwwI77xBOBVCSDqNh+FftJFRUJ\nK9K/z9zMPKzPLRVd8FC131W07qLIpKfzCNEXIdnCx2JMQ5pJvrVjSkIqDDCIJm6kJKQiGtHiMWOE\nK2MAwLP7l4rGa2iuhx9+0cV7izEN/fsMEN/3vkCHaDy7JQev/d/1ohUyOyuiyB5L2SkjYDMNEk8w\nmJk1Cy/evUa0zZbL48QrNS+Jfj6mJKQiBvLvJckEoC6S18NdJBOAgM7Ev5ioGNHEv+yUEcgwyyfB\nRBlkq3/lZubhoVsfEd9PVrMN420TRL+7HHDtR4fwOY+IiIiIqDf4MGzodFVGlq6QTNfOB59mpOBr\nD7RrRgq+GMRoRgq+Dn/P7xUxCagXVFVukY5nt+Tg7fvfEW8JpuLJX0BNIoyKijBMBpClYr/robIS\n6QOPJ7oezbn126LJAG5vHc41uUWrOACfVpyAT7wVpcEgfxlsiJKN+ez+pSg5tFI8EUjavjN7UN9y\nTrTF2L4ze+BurhON6fI4sfwPz4hewx1vPAZfwCeaUAcA0VFqvlxLVizq0tLRLBrPYkxDRuJN4kll\nkSw6Klo0ntVsw7YpFaLXRXZLDrZN/rXod9ZNRzZg7dFXxNuhPbt/KdYefUX03CzZVo6IiIiISMLB\nT34f6ilErK4qoawWSpEsNipWM1LwcR+EXnMv7rsyCaiX9LIgrOImusvjxLqjr4d9MoyKijB6qQri\n8jgxdccU0Xmqagem4nepl/cn6QOPJ7re/Oroq6Ln8obmerRDtoUP0FlxIs14o2jFCYsxDakJA0Wv\njyzGNKQZraIxZ2fPQVKfZMzOniMWMyUhFXFR4d8Sa1z6eNzQJxXj0seLxQQAT5tsGedx6eORGj9Q\ndJ5ubx3czZ+IJ9SpaFnn9tahzis7V6vZhi33b+PnrhC7JQfbpsgm1wBqrouk5zgseThiIFsFCQBy\nM+/RjDIx8zA3Z65YPCIiIiKi3vK2s/0LRa5oRGtGCr6WQItmpODrqljMysWh4w/4e/xaJgFFAJfH\niaKKqeJJFnqpjKFinqq2XTqxxu2tg7PpjOjCTHbKCKSbB4suxuolqYqIKJiqq6tRXFz8d3+/Z88e\nFBQUoLCwEOXl5QCA9vZ2LFiwANOnT0dRURFOnjz5ufGlz+WqWhi5vXVoaK4X/Sxze+vQ0CIbEwAS\nYhNE4wHAQKNFNJ7dkoPt+e+KL7ZLc3vrcKXtkug+qmmohrPpLGoaqsViur11uNR6UXSenQll8q31\nAPlS4nZLDl6dsE4XCSaRLNzf712k21dbjGmwmNLE30tdlb8kK4BtOrIBa6rWiMUjIiIiIuqtPtF9\nQj0FopBhOzAioB3tmpGCj0lAFDJ6uUGvYp4qEoCkK+zYLTnYOrlC9Ma/1WzDLye8Jp5UpaJlm14w\n+YmI/tarr76KxYsXo7W1VfP37e3tWL58OdauXYuNGzeirKwM58+fx/vvv4+Ojg68+eabePTRR/Hz\nn//8c/8b0q1cAMAc1080HtC5yNoR6BBdbFWRuGA121Cat0X881E6JiCfEJCdMgIZ5pvEE8CiDLIJ\nK7mZediQu1m0la3FmIaMfoPFkwziY+QTyrJTRuBGo008kft5x3O8lqFec7irkL89TzQRyO2twzmv\nfJvKmVmz8OLda0Rbas7MmoXXJr0mFo+IiIiIqLdiDGraVNPn64M+mpGIiCKT1dTzdQEmAYUh6Scg\nrWYbXhi3SkmCBW/4y2lsaUQAATS2NIZ6Kv+UqvZqT+z7fkQeT6oqdRGRvqWnp2P16tV/9/cnT55E\neno6EhMTERcXB7vdjqqqKtx0003w+Xzw+/1oampCTMzn36iRvi5QlbAyM2sWlty5THSxVVXigh6S\njlWwmm3iSWWqKsxIJgABndtePkm2dZWq9xIA9Osjm6hnNduwwP4DXRynKvD6TY7FmIbkvimiCXUN\nzfVoD8i3qQQg+pnU5eFRD4vHJCIiIiLqqSvC7bTp2rWiVTMSEYVCfFS8ZqTga/f3vAoTk4DCjMNd\nhQd23CeaCKQiaaMrLls4yVHxRKmK40lV1Z7m9mbReEREejZx4sR/mMjT1NQEs9nc/Wej0YimpiYk\nJCTA5XLhnnvuwdNPP/0P24gFg6qE4+21b4teb+ilpameSP8uVSVqqbhuVXEcSVcuAdQkFzncVXhk\n12zxhxik46ng8jiRvz0vYr8LqWhjfP6qbJvG7JQRGNxPvkoZEREREVEkiDPEhXoKRCEThzjNSMFn\njjZrRgq+ropwrAwXOsOTs3r8WiYBhRm7JQf/bn9KvD2FiqQNLqDJG5c+XjSe3ZKDt+9/R/R4UlG1\nx+2tw7nmOiULXuFO5dP+RHT9MZlM8Hq93X/2er0wm81Yt24d/uVf/gW/+c1vsH37dixcuPDvWonp\nlarrmEj8zNETFdeZeklgV9EWqYv0+8hiTEO6OUO0eovDXYXJ2+4R3/5NRzaIxqtpqMbpK6dQ01At\nGld6nipiqmhjbDGmYZBJ9liymm3YOlm+9SURERERUSRo87eFegpEIdOGNs1IwefxeTQjBV+br00z\nUvCduXKqx69lElCYqaytwLKDS0RvqKqqBAToo0WFXqhamJJuo6GC3ZKDrZMrdDFXFfg+IqJrNWTI\nEJw+fRqXLl1CW1sbPvzwQ3zlK19Bv379uisEJSYmoqOjAz6fL8SzlaEi+VRFpbyuuCQnUhPYLcY0\n2EzposkQqqhoh6bCpiMb8Pj7c0WTYXIz87A+t1S0xZyKeaqImZ0yAunmwaIVdqxmG7bcL38shfux\nSUREREQUrjr8HaGeAhFFsFjEakYKPibDhV5jy/kev5b1m8KMipvJelnw0BuXxyn6O9XLfrKabXhh\n3CrxeUZqAhAR0bXYuXMnmpubUVhYiIULF+Lhhx9GIBBAQUEBBg4ciNmzZ+Opp55CUVER2tvb8fjj\njyMhISHU0w5bKirldSUWScclWeF+nQV0znH111/SxVwBVdWFBosmQQ1LHg4DDBiWPFwspgpdbYEl\n2wOriGk127BtCivsEBERERFdz/rF9Qv1FIhCJgpRCCCAKESFeioRy/BpHRMD65mETAABzUjB95WB\nt8N1ytWj1zIJKAxJPlHZhTdoZXVV7dFD0o50spLL48R3d31LFzf+pbediCiYbDYbysvLAQCTJk3q\n/vvx48dj/Hht+0ij0YiSkpKgzi9YVLVNlK6yYrfk4OVvrGUCEPVaVxVPPVxnqqAqCSo2WvbJscra\nCsyqnIENuZtFH+CQTNZRGVOanr5fkTp+vx8/+clP8Kc//QlxcXF45plnkJGR0f3zbdu24fXXX4fZ\nbEZ+fj6mTp2KtrY2LFq0CGfPnoXJZMKSJUswePBgnD59GgsXLkRUVBRuvvlm/PjHP4bBwJvHRERE\nRNfqStuVUE+BKGSY/BB6rWjVjESR6MTFj3v8Wt4BCTOqWkKpaAUWyVRU7VGx710eJ4oqporGrGmo\nxhnPKdQ0VIvFVEHVe4mIiIJPekHY5XFi6o4p4p+5zzue4+cO9ZpeqkOqoqIFoN2Sg22Tfy2apJed\nMgKD+90k/gCHZNuuLtKtCl0eJ6ZsyxPdR1azDSvGrIzY45467d69G21tbSgrK8OCBQuwYsWK7p9d\nuHABq1atwsaNG/HGG29g586dcDqdKC8vR0JCAsrLy7F48WIsW7YMALB8+XI89thjKC0tRSAQwHvv\nvReqzSIiIiLSpRgDawgQUeh0VWFiNSainmESUJjRS3JJF+kbynoifYNa1YJPh79dNF52ygikmweL\nL3hIH5+RvoBGRESfze2tg7PpDNzeOrGYqhawK2srROORPkT69Yv09Ssg33rWarZh62TZypibjmzA\n4+/PFU0EcrirMGXbvaLf21Q8FNBVAYuJlJHN4XBgzJgxAICRI0fi8OHD3T9zOp245ZZb0L9/fxgM\nBmRnZ6O6uhonTpzA2LFjAQCZmZk4efIkAODIkSO44447AABjx47F/v37g7w1RERERPoWZ4gL9RSI\nQiYOcZqRgo/VmEKPiVihZ4oz9/i1TAKKAKoWpRzuKjyw476ITgSSpmLBJyD8+Wg12/DLCa/pIlEt\n0hfQiIjoH7NbcrB1coVoUoCKBeyudkNMBKJIE2OQbd2livS15sysWXjx7jXy7buE79XkZuZhfW6p\naBs0JvATADQ1NcFkMnX/OTo6Gh0dHQCAjIwMnDhxAufPn0dLSwsOHDiA5uZmDB8+HHv37kUgEMCh\nQ4dw7tw5+Hw+BAIBREV1HvxGoxEejyck20RERESkVxdbL4Z6CkQh04Y2zUgUiZgEFHqZ/b/U49cy\nCSjMqGoJpeKpSrslB2/f/474U7UkqyMg+yS1ihYNvOlPRETBpqIqiPRnmap2Q6y0QeHMarahNG9L\nxF4XSicAqWiFBkA0AaiLin3OB1b0xWQywev1dv/Z7/cjJqazDUViYiIWLVqEefPm4YknnkBWVhYG\nDBiAgoICmEwmFBUVYdeuXcjKykJ0dDQMhv+93eX1etGvX7+gbw8RERGRnsXHxId6CkREFEJ++DUj\nBd9H9f/T49cyCSjMqFhAspptWGD/gZKbqkwACm9ub133/yS1++RbNETqQg8REV0/VLQKlW435PI4\nUVQxlYlAFNZ4XShLL9/ZpM9LDncVpmyXbYXWhedQNUaNGoUPPvgAAHDo0CEMHTq0+2cdHR04evQo\nSktLUVJSgtraWowaNQo1NTUYPXo0Nm/ejNzcXAwaNAgAcOutt+LgwYMAgA8++AC333578DeIiIiI\nSMdidVKhlYiI6Hr1pQFDP/8ffQYmAYUhFW27Htk1m09B6oCKak3S7U4AIDZaH18A9HJzXi/zJCKi\n4FORDKEimZfXmbJUXRuoaC3HdnUkQVWCYkC6NzLUtTImYMKECYiLi8P06dOxfPlyLFq0CDt37kRZ\nWVl3RaD8/HwUFxejuLgYSUlJyMjIwPr161FYWIiSkhIsXLgQAPDDH/4Qq1evRmFhIdrb2zFx4sRQ\nbhoRERGR7vgCvlBPgShkYhGrGSn4ohGtGSn4jAajZqTgS4jt+e8+RnAeFKYsxjSkmzNgMaaFeir0\nT3TdTJauBKWi3YmKFg0uj1O80oGK36c0vcyTiIjoszjcVbh/ay525FfqpuKIJIe7SnS7u5IhpK+3\nKmsrMKtyBjbkbhZr5aQiJsmrrK3Qxf7p8MsmKNotOdg+5V0l34dWjFnJa3cFDAYDli5dqvm7IUOG\ndP//uXPnYu7cuZqfJyUlYd26dX8X66abbsIbb7yhZJ5EREREkWBW1sOhngJRyEQhSjNS8PU19IXX\n70VfQ99QTyVitfhbNCPpCysBRQCr2YbySdsi+ialHp7SVNEKDlCz7SrmKP00rV5+n6rmSURE9Fmk\nK/o1NNejI9CBhuZ60bgqrmFUtBvK356ni0pI2SkjMLjfTchOGRHWMVVRcTyp2O/SMbsStfRQsSlG\nQbsBFYmJLo8TT+z7vi6+YxIRERER9dTeM7tCPQWikGlDm2ak4PMH/JqRgi+AgGak4Gtu9/b4tUwC\nCkO8mShLT+XaVSSsqCirL01VIowekpUANa1eiIg+j14WxEmW1WzDC+NWiX72pCSkIgYxSElIFYvp\n8jiRvz1P9Dh1eZyYtnOKaEyLMQ0DE9JEK25azTYsumOxkuuirZMrROOqiKmCimtih7sKU7bfK3re\nU5FUpipRS8X1sIpqo6qoaKv4+h9fF49JRERERNRTl1svhXoKRCET82kjnRg21KEIlmBI0IwUfEP6\n39zj1zIJqJekb36qSDLQUxKMCnoq1x6p+wjQRyIMq/YQ0fVkyjbZBAuHuwpTtskuiJM8FRUsLMY0\nDO5/k2giTE1DNU5d+QtqGqrFYrq9dfjLpVq4vXViMQEgIVb2i7DDXYXv7J6jm/eS9O8TUHNN3NLR\nLB4zEJB9EkpVUpl0opbL4xT/DAH08X2gi3RFtU1HNuBbO78lGpOIiIiIqDdSEgaGegpEITMwfqBm\npOC70WTVjBR8hiiDZqTgO3z+ox6/Vtle8/v9WLJkCQoLC1FcXIzTp09rfr5t2zZMmjQJRUVF2LJl\nCwCgra0NCxYswLRp0zBnzhycOnUKAHDs2DFMmzYNM2bMwKJFi+D3d5b+euaZZ/DAAw+guLgYxcXF\n8Hg8qjbnH9JLCyOVSTB6SFrRS7l2VceTiidq9bIopYKeFicoMoX7uY7CxxnPKdEECwBgm2x9kK5g\noar1rHTf9eONx9CBDhxvPCYWU8W1lt2Sg5e/sVa8jZGKSkgqquGomKfbW4c67yeiCUt2Sw62T3lX\nfD9JJ5UB8tevNQ3VSj5D9HINo+J9PzNrFl6b9JpYPCIiIiKi3rp49UKop0AUMn1j4jUjUSTqF9dP\nM1LwffmG23r8WmVJQLt370ZbWxvKysqwYMECrFixovtnFy5cwKpVq7Bx40a88cYb2LlzJ5xOJ8rL\ny5GQkIDy8nIsXrwYy5YtAwCsWbMGjz76KDZv3oy2tjbs27cPAHDkyBG89tpr2LhxIzZu3Aiz2axq\nc/4hPbUwWvjbJ3VRtSiS6eV4crir8MCO+8QTgXgcEfWeqvMy35/Xp/W5pcjNzBOLZ7fkYNvkX4sv\niAM8BvVA+nojNzNP/Bgdlz4eNtMgjEsfLxZTBZfHiecdz4kf925vHc5cOS2aCGMxpiHNeKNo5RoV\n81R1fpKOp5eWWCren3r7bqliHz086mHxmEREREREPTU8OSvUU4hYbEVF9L/nIJ6LQic5/gbNSMF3\n8tKfe/xaZUlADocDY8aMAQCMHDkShw8f7v6Z0+nELbfcgv79+8NgMCA7OxvV1dU4ceIExo4dCwDI\nzMzEyZMnAQDDhw/HpUuXEAgE4PV6ERMTA7/fj9OnT2PJkiWYPn06/uu//kvVpvxT4X6DFlCbXKKH\n1kh6uZkOqDmepG+k2y05ePv+d0QXPfR0018Pc6TIpeK8rKf3J30xkou3XVQlABVVTBU/BitrK0Tj\nqaJintJtbFTJThkhGs9qtmFn/m/Ez5HSx6eqKp4WYxoGmTNEE3YAID5GtnKNqnmqOD+poIfvLID8\nZ4hevlsSEREREUWK3zr3hXoKEcsca9aMFHzGWKNmpOC7ePWiZqTgM8clakYKvlEDb+/xa5UlATU1\nNcFkMnX/OTo6Gh0dHQCAjIwMnDhxAufPn0dLSwsOHDiA5uZmDB8+HHv37kUgEMChQ4dw7tw5+Hw+\nDB48GM8++yzuueceNDY24s4770RzczO++c1v4mc/+xlee+01lJaW4vjx46o2J6hULLSqupmql5u0\nepmnNFWL99KLMnq56c8qK6QHkZrwSdc36fZVlbUVeLCySDzBRrpKnop56iU5WtVnbrhvN6Cula3V\nbMOW+2Xbtqk4nlTMk/SB+5yIiIiIKHx8+QbZB3Po2iV8+rBNgvBDN3TtbrfcqRkp+NZM+CViEYc1\nE34Z6qlErFuShmlGCr7jF471+LXKkoBMJhO8Xm/3n/1+P2JiOkvXJSYmYtGiRZg3bx6eeOIJZGVl\nYcCAASgoKIDJZEJRURF27dqFrKwsREdH49lnn8WmTZtQWVmJKVOmYMWKFYiPj8esWbMQHx8Pk8mE\nr371q9dFEhArLkQ2FYs9KqqCqKjIoIcqSHqrssLzCEnhohxdb7JTRiCj32DRSjMOdxWmbL9XNBFI\nxTwBfbyn9ZKAqCqpSjrxrYuK36deYhIREREREdG1O3HxT6GeQsRiC57QG5f+fzQjBV9NQzXa0Yaa\nhupQTyVi2cyDNCMF37Ck4T1+rbIkoFGjRuGDDz4AABw6dAhDhw7t/llHRweOHj2K0tJSlJSUoLa2\nFqNGjUJNTQ1Gjx6NzZs3Izc3F4MGdR5UiYmJ3VWFUlNTceXKFZw6dQozZsyAz+dDe3s7/vjHPyIr\nS/99AfWy4NFFL0kGepinnhLAVC1MSdJLBQFV73k9HU9ERJ9Hun2V1WzD1skV8tdbAdlwyuapE3rZ\nbhXz1EvLNiIiIiIiIro+DeqXEeopRKwpN/+rZiSKXFGhngBRSL13elePX6ssCWjChAmIi4vD9OnT\nsXz5cixatAg7d+5EWVlZd0Wg/Px8FBcXo7i4GElJScjIyMD69etRWFiIkpISLFy4EADwzDPP4PHH\nH8c3v/lNlJaW4vHHH8eQIUMwefJkTJs2DcXFxZg8eTJuvvlmVZsTVHpZ8NBLkoFe5mk127BizEpd\nVJnRw8KUnhLqVD1Br5ftJ1nS7YiIQk1VpRXpeHZLDrZN+TXslhzRuDyPhz/p865eWrYREREREV2P\nwv0eMlGw3Js5KdRTiFiXWy9rRgq+3Mw8bMjdjNzMvFBPJWKlJKQiLioWKQmpoZ5KxMofWoDU+IHI\nH1oQ6qlErO+M/F6PXxsVCASEn1mmSHL28lkMSgz/MmB6mOfZy2eRX5aPrYVbReeqYtv18PskikQH\nnQcxfsN47Jm1B3fa2K+YiEg1nneJiIiIiK4fqu7PEulN3LI4/Pah3/J7bgj96L0f4dmvPxvqaRCF\n1EHnQZ6HQujs5bPIK81DRVEFr4tCaMfxHbh/2P1f+HVMAiIiIiIiIiIiIiIiIiIiIiIi0jll7cCI\niIiIiIiIiIiIiIiIiIiIiCg4mARERERERERERERERERERERERKRzTAIiIiIiIiIiIiIiIiIiIiIi\nItI5JgEREREREREREREREREREREREekck4CIiIiIiIiIiIiIiIiIiIiIiHSOSUBERERERERERERE\nRERERERERDoXE+oJBIPf78dPfvIT/OlPf0JcXByeeeYZZGRkhHpa9Dfy8/NhMpkAADabDcuXLw/x\njOivVVdXY+XKldi4cSNOnz6NhQsXIioqCjfffDN+/OMfw2BgTmGo/fU+Onr0KL7zne9g8ODBAIAZ\nM2bg3nvvDe0EI1x7ezueeuopuFwutLW14Xvf+x6+9KUv8b1EQcfrIn3gdVF443VR+ON1UXjjdRGF\nm78+Z1Bw/aPzwde//vVQTyui+Hw+LF68GH/5y18QFRWF//iP/8DQoUNDPa2I1NjYiAceeABr167F\nkCFDQj2diMPvYKH38ssvY8+ePWhvb8eMGTMwderUUE8pIvG6KHR4XRQeeG0UHnhdlQuqzgAAIABJ\nREFUFHq8Ngq93lwbRUQS0O7du9HW1oaysjIcOnQIK1aswEsvvRTqadFfaW1tRSAQ4IVlmHr11Vex\nY8cOxMfHAwCWL1+Oxx57DHfeeSeWLFmC9957DxMmTAjxLCPb3+6jI0eO4KGHHsKcOXNCPDPqsmPH\nDvTv3x8/+9nPcOnSJUyZMgXDhg3je4mCjtdF4Y/XReGN10Xhj9dF4Y/XRRRO/vacQcH1j84HXOwK\nrr179wIA3nzzTRw8eBAvvvgivx+EQHt7O5YsWYK+ffuGeioRid/BQu/gwYP4n//5H2zevBktLS1Y\nu3ZtqKcUkXhdFFq8LgoPvDYKPV4XhR6vjUKvt9dGEfFYncPhwJgxYwAAI0eOxOHDh0M8I/pbx48f\nR0tLC+bMmYNZs2bh0KFDoZ4S/ZX09HSsXr26+89HjhzBHXfcAQAYO3Ys9u/fH6qp0af+dh8dPnwY\n+/btw8yZM/HUU0+hqakphLMjAMjNzcX8+fMBAIFAANHR0XwvUUjwuij88boovPG6KPzxuij88bqI\nwsnfnjMouP7R+YCC6xvf+AaWLVsGAPjkk0/Qr1+/EM8oMv3nf/4npk+fjtTU1FBPJSLxO1jo/e53\nv8PQoUPx6KOP4rvf/S7GjRsX6ilFJF4XhRavi8IDr41Cj9dFocdro9Dr7bVRRCQBNTU1dZerAoDo\n6Gh0/P/s3XlclWX+//H3gSPK5hpZLvgVUnMZU0jRTE0m3BJTURCMbDKd9nEZBRfAHBUro3LcsnFp\nEANScy2dUotGy0EdcnTCemhSkpm7LMXiuX9/9Jszo4lKB7k58Hr+xTn3fV3nc12XHD/A51xXaamJ\nEeFqderU0ZgxY7R8+XK98MIL+uMf/8gaVSH9+vWT1frfjcMMw5DFYpEkeXp6Ki8vz6zQ8P9dvUYd\nO3bUlClTlJKSoubNm2vRokUmRgfp5+8VLy8v5efn6/nnn9f48eP5XoIpyIuqPvKiqo28qOojL6r6\nyItQlVz9noHKda33A1Q+q9WqmJgY/elPf1JoaKjZ4dQ469evV8OGDe0f1kDl42cw850/f16HDh3S\n66+/bl8DwzDMDqvGIS8yF3lR1UFuZB7yoqqB3Mh8juZGNaIIyMvLSwUFBfbHNpuNRKaKadmypQYP\nHiyLxaKWLVuqfv36On36tNlhoQwuLv996ygoKKASugoKCQlRhw4d7F//+9//NjkiSNLJkyf16KOP\n6uGHH1ZoaCjfSzAFeVHVR17kXHgvr/rIi6om8iIA/3H1+wHM8eKLL2r79u2Ki4tTYWGh2eHUKOvW\nrdOePXsUHR2tL774QjExMeT/lYyfwcxXv3593X///XJzc5Ofn59q166tc+fOmR0WUOnIi6oOciNz\nkBdVDeRG5nM0N6oRRUABAQHKyMiQJGVlZal169YmR4SrrV27VvPmzZMknTp1Svn5+fLx8TE5KpSl\nXbt22rt3ryQpIyND9957r8kR4WpjxozRwYMHJUmffvqp2rdvb3JEOHPmjB5//HFNnjxZw4cPl8T3\nEsxBXlT1kRc5F97Lqz7yoqqHvAjAf1zr/QCVa8OGDXrjjTckSe7u7rJYLFcUZuLWS0lJ0erVq5Wc\nnKy2bdvqxRdfJP+vZPwMZr7AwEB98sknMgxDp06d0o8//qj69eubHRZQqciLqgZyI3ORF1UN5Ebm\nczQ3qhEf+w4JCdHu3bs1cuRIGYahuXPnmh0SrjJ8+HBNnTpVkZGRslgsmjt3LrsSVGExMTGKi4tT\nUlKS/Pz81K9fP7NDwlVmzpypP/3pT6pVq5Zuu+02+xm2MM/SpUt16dIlLV68WIsXL5YkTZ8+XbNn\nz+Z7CZWKvKjqIy9yLuRFVR95UdVDXgTgP671fvDmm2+qTp06JkdWc/Tt21dTp07VqFGjVFpaqmnT\npjH/qHH4Gcx8ffr0UWZmpoYPHy7DMBQfHy9XV1ezwwIqFXlR1UBuBJAbVQWO5kYWg4NVAQAAAAAA\nAAAAAAAAAKfG/mUAAAAAAAAAAAAAAACAk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAAAAAAAAAA\nTo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAAAAAAAAAAAAAAODmKgABUCXv37lV0dLTZYQAAAFQJ5EYA\nAAA3r02bNje8Jzg4WCdOnKiEaAAAAMxDXgSAIiAAAAAAAAAAAAAAAADAyVEEBKDKOHfunMaOHat+\n/frpySefVHFxsdatW6dBgwYpNDRUsbGxKigokHRlJfP69esVGxsr6efq5fHjx6tfv346e/asKeMA\nAACoCORGAACgugoNDdXRo0clSZMmTVJCQoIkKSsrS2PHjtWyZcs0dOhQDR48WC+99JIMw5Akbdiw\nQUOHDtXDDz+sadOmqaio6Ip+Dxw4oH79+iknJ0cXLlzQ2LFjFRoaqvHjx9vvzc/P1/PPP6+IiAj1\n6dNHkydPlmEYmjx5stLS0ux9RUdH6/PPP6+M6QAAADUYeRGAikYREIAq47vvvlN8fLzef/99nTlz\nRm+//baWLl2q5ORkbd68We7u7lq4cOEN++nVq5e2b9+uRo0aVULUAAAAtwa5EQAAqK569+6tTz/9\nVJL05Zdf6sCBA5KkjIwMPfDAAzp06JDWrl2rDRs26NSpU9q0aZO++uorpaenKzU1VRs3blSjRo20\nfPlye59ffPGFpk+friVLlqhFixZasGCB2rVrp82bN2vUqFE6c+aMJOmjjz5S27ZtlZaWpu3btysr\nK0uHDx9WWFiYNm3aJEnKzc3VuXPndM8991TyzAAAgJqGvAhARbOaHQAA/Mfdd9+t5s2bS5L8/f2V\nl5enPn36qEGDBpKkiIgITZ069Yb9kIgAAIDqgNwIAABUVw888IBWrlypbt266a677tKxY8d09uxZ\nZWRkqFWrVjp48KCGDRsmSfrpp5/UpEkT5eXlKScnR+Hh4ZKkkpIStWvXzt7nE088of79+8vPz0+S\n9I9//EOvvPKKJKlLly72vGrQoEE6ePCgVq1apWPHjunChQsqLCxUUFCQ4uLidOLECW3cuFEPP/xw\nZU4JAACoociLAFQ0ioAAVBlW63/fkiwWi+rWratLly7ZnzMMQ6WlpVc8tlgsVzwnSbVr1771wQIA\nANxi5EYAAKC66ty5s6ZMmaI9e/aoa9euatSokbZt26aSkhJ5e3tr9OjR+t3vfidJunTpklxdXbV2\n7VoNGDBAM2bMkCQVFBTo8uXL9j7nz5+vKVOmaMSIEbr77rtlsVjsx2VIkqurqyQpOTlZ27dvV3h4\nuO677z59+eWX9jxqyJAh2rp1q7Zt26a//OUvlTgjAACgpiIvAlDROA4MQJW2c+dOXbhwQZKUnp6u\noKAgSVKDBg301VdfyTAM7dy508wQAQAAKg25EQAAqA5cXV11zz33KDk5WV27dlW3bt20dOlS9e7d\nW926ddPGjRtVUFCg0tJSPfPMM9q+fbuCgoL0wQcf6OzZszIMQzNnztRbb71l77N79+6aNGmSZsyY\nIZvNpu7du2vjxo2SpIMHD+qbb76RJO3evVsREREaPHiwLBaLsrOzZbPZJEnDhg1Tamqq7rjjDjVu\n3LjyJwYAANQ45EUAKho7AQGosry8vPT73/9e0dHRKikpUfv27fXCCy9IkiZNmqQnn3xSt912mwID\nA3X+/HmTowUAALi1yI0AAEB10rt3b2VmZsrf318+Pj46e/asHnjgAQUEBCg7O1vh4eG6fPmyevbs\nqaFDh8pisejZZ5/V6NGjZbPZ1LZtW40bN+6KPocMGaJ169YpOTlZzz//vGJjY/XQQw/Jz8/PfuzF\n6NGjNXPmTK1YsUKenp7q3LmzTpw4IUm68847dccdd2jo0KGVPh8AAKDmIi8CUJEsxv/u/QUAAAAA\nAAAAQA1jGIZ++OEHRUdHa8uWLXJzczM7JAAAAFOQFwHOjePAAAAAAAAAAAA12vbt2/Xwww9r4sSJ\n/KELAADUaORFgHNjJyAAAAAAAAAAAAAAAADAybETEAAAAAAAAAAAAAAAAODkKAICAAAAAAAAAAAA\nAAAAnBxFQAAAAABqjBMnTqhz5843vO9f//qXgoODKyGiqmHv3r0aNGiQ2WFUuOXLlys2NtbsMAAA\nAAAAAACgUlAEBAAAAAAAAAAAAAAAADg5q9kBAAAAAMDVhgwZoilTpui+++7T1q1bFRsbq8zMTNWp\nU0czZsxQ27ZtNWLECM2fP1+ZmZm6fPmy2rVrpxkzZsjLy0unTp3SrFmzdPLkSZWUlOihhx7Sk08+\necVrHD16VGPHjtXUqVMVEhKiNWvW6K233pKXl5dat25tv+/MmTOKj4/X2bNndfr0aTVt2lSvvfaa\njh8/rokTJ2rXrl1ycXHRjz/+qODgYG3ZskWNGjWSJNlsNvXp00cLFy7Ub37zG0nShAkT1KVLFwUF\nBWn69OkqLi6WYRgaPny4Ro0a9Yu5WLp0qT788EMVFRXpxx9/VExMjH7729+W2e/QoUOVkJCgzz//\nXN7e3rrrrrskSfPmzbvunBcWFur5559XTk6O6tatq1mzZqlly5bKy8vTCy+8oOzsbFksFvXs2VMT\nJ06U1Vr2j5OnT59WTEyMzp8/L0nq3bu3xo8fr/Xr12vr1q2y2Ww6deqUGjdurHnz5qlx48aKjo5W\nvXr1dOzYMUVGRmrIkCGaM2eOvvzyS5WUlKh79+6aMmWKrFar1q5dq7S0NJWUlOjixYsaO3asoqKi\nVFJSotmzZ2vPnj1q1KiRGjVqJG9v7xv9cwMAAAAAAACAaoGdgAAAAABUOQ8++KA++eQTSdInn3yi\nevXqad++fbLZbProo4/Ut29fLVu2TK6urlq/fr02bdqk22+/XfPnz5ckTZ48WWFhYVq/fr3Wrl2r\nPXv26L333rP3/+WXX+rJJ5/UnDlzFBISoi+++EILFy7U6tWrtW7dOtWqVct+79atW9WpUyelpaVp\nx44dqlOnjjZu3KjAwEDVr1/fHufWrVvVvXt3ewGQJLm4uCgsLEzvvvuuJOnixYvas2ePQkNDtXz5\ncgUHB2v9+vVatmyZfXz/Kzc3V3v27NHq1au1efNmTZgwQQsWLLhuv4sXL9bly5f1/vvva9WqVfr3\nv/99U3N+8uRJPfbYY9q4caMGDRqkKVOmSJJmz56t+vXra/PmzVq3bp2OHDmiFStWXLev9PR0NWvW\nTO+++65SUlKUk5OjvLw8SdKBAwcUHx+v9957T+3bt9ecOXPs7erWrav33ntP0dHRmjt3rtq3b6/1\n69drw4YNOn/+vFauXKmCggK98847WrZsmTZs2KBXX31VL7/8siRpzZo1On78uLZu3aoVK1bo5MmT\nNzV2AAAAAAAAAKgO2AkIAAAAQJUTEhKiiRMnKiYmRvv27dNjjz2m3bt3y9PTU76+vvLx8dFHH32k\nvLw87dmzR5JUUlKiRo0aqbCwUJmZmbp48aJef/11ST/vcpOdna2OHTuquLhYjz76qLp27aru3btL\nkj799FP16NFDPj4+kqSIiAj9/e9/lySNHj1a+/bt08qVK3X8+HF99dVXuueeeyRJo0aNUnp6unr3\n7q20tDR74cz/CgsL0/DhwxUbG6stW7aoT58+8vb2VkhIiGJiYnTw4EF1795dM2bMkIvLlZ/TaNq0\nqV588UVt3rxZOTk5+vzzz1VQUHDdfj/++GNNnTpVLi4u8vLy0tChQ3XkyJEbznmbNm0UEBAgSRo6\ndKhmzpypvLw8ZWRk6O2335bFYpGbm5tGjhypt956S+PGjSuzr549e2rcuHE6efKk7rvvPk2aNMm+\nI0+PHj3UsmVLSVJ4eLgefvhhe7t7773X/vVHH32kf/3rX1q7dq0k6aeffpIkeXp6aunSpfr44491\n/PhxZWdnq7Cw0L6OgwYNkpubm9zc3BQaGnpTYwcAAAAAAACA6oAiIAAAAABVTps2bVRSUqIdO3ao\nRYsW6tOnjyZMmCCr1aq+fftK+vmorWnTpql3796SpIKCAhUVFclms8kwDKWmpsrd3V2SdO7cOdWu\nXdt+PNWiRYs0ZcoU/e1vf1Pfvn1lsVhkGIb99V1dXe1fv/zyyzp48KDCwsIUFBSk0tJS+72hoaFK\nSkrSZ599psLCQnXp0uUXY2natKnatWunjz76SOvXr9e0adMkSX369NH27du1Z88effrpp1q0aJFS\nU1Pl6+trb3v48GE9/fTTeuyxx9SjRw916dJFL7zwwnX7tVqtV4zl6sKislx9n8VikdVq/cXuRDab\nTaWlpdftq2PHjtqxY4c+/fRTffbZZxoxYoQWLVok6cq5tdlsVzz28PC44trrr78uf39/SdKlS5dk\nsVj0/fffKyIiQuHh4QoMDFT//v21a9eua8bxv30DAAAAAAAAQHXHcWAAAAAAqqQHH3xQ8+fPV48e\nPeTv76/8/Hxt3rxZ/fr1kyTdf//9SklJUXFxsWw2m+Li4pSUlCQvLy916tRJK1eulPRz8UhkZKR2\n7NghSXJzc1NgYKDmzp2rhIQEnT59Wvfdd592796t77//XpLsx2xJ0t///neNHj1aQ4YMUaNGjbRn\nzx5dvnxZkuTu7q7Bgwdr2rRpGjlyZJljCQ8P15tvvqmffvpJgYGBkqRJkybpvffe00MPPaSEhAR5\neXn94viqzMxMdejQQb/73e/UtWtX7dixw/7aZfXbu3dvrVu3TjabTT/++KO2bNkii8Vyw/k+cuSI\nvvjiC0lSWlqaAgMD5e7ubp9nwzBUXFys9PR03Xfffdfta/78+Vq8eLEefPBBTZ8+XXfddZeOHz8u\nSfrss8906tQpSVJqaqr69OlzzT7uv/9+rVq1yv66Tz31lFavXq1Dhw6pYcOGevrpp9WzZ097AdDl\ny5fVs2dPbdiwQUVFRSoqKrriCDgAAAAAAAAAqO4oAgIAAABQJYWEhOjYsWP2gpP77rtPPj4+uvPO\nOyVJTz/9tJo2baqhQ4dq4MCBMgxDsbGxkn4uQvn8888VGhqqESNGaNCgQRo8ePAV/QcFBemhhx7S\ntGnT1KZNG02ePFmjR4/WsGHDVFRUZL/vmWee0UsvvaRhw4bp2WefVUBAgL755hv79WHDhuncuXMa\nMmRImWMJDg5Wbm6uhg8fbn/u6aef1ubNmzV48GCFh4frwQcfVNeuXa9oN2jQIJ0/f14DBw7UsGHD\n5OHhoYsXLyo/P7/Mfn//+9+rdu3aCg0N1e9+9zs1atRIderUueF8+/n5aeHChRo8eLB27typefPm\nSZJmzJihc+fOKTQ0VKGhoWrZsqWefPLJ6/Y1evRoZWdna9CgQQoLC1OzZs00aNAgSVLjxo01efJk\nDRgwQLm5ufYdjK42ffp0FRYW2l+3devWeuKJJ9SjRw81btxY/fv315AhQ3Ty5Ek1bNhQOTk5Gjly\npDp06KBBgwbpkUceUbNmzW44bgAAAAAAAACoLizG/+4TDwAAAAC4aYZh6M0331Rubq79mC6zbd26\nVV5eXurdu7dsNpuee+459ejRQ1FRUWaHpvXr12v79u164403zA4FAAAAAAAAAKodq9kBAAAAAICz\n+u1vf6uGDRtqyZIlZodi16pVK8XHxyspKUklJSUKCgrSiBEjNH78eH399dfXbPPqq6/Kz8+vXK8T\nFRWlgoKCa15LSUmRl5dXuWMHAAAAAAAAAPx67AQEAAAAAAAAAAAAAAAAODkXswMAAAAAAAAAyuvz\nzz9XdHT0L57fuXOnwsLCFBERofT0dBMiAwAAqFzkRQAA4D84DgwAAAAAAABO5c0339SmTZvk7u5+\nxfMlJSVKTEzU2rVr5e7ursjISAUHB+u2224zKVIAAIBbi7wIAAD8rxpVBHT6dJ7ZIdxQgwYeOn++\n0OwwnBbz5zjm0HHMoeOYQ8dV9Tn08fE2O4Qar9PiAK3qn6Km3s3MDgUAgBqP3Kj8fH199ec//1lT\npky54vmjR4/K19dX9erVkyQFBgYqMzNTAwYMuG5/hmHIYrHcsngBAABuFfIiAADwv2pUEZAzsFpd\nzQ7BqTF/jmMOHcccOo45dBxziBuhAAgAADizfv366cSJE794Pj8/X97e/y2q8vT0VH5+/g37s1gs\nTvHhserMx8ebNTAZa2A+1sB8rIH5KI4uP/Ki6of3IvOxBuZjDczHGpjv1+ZFLhUcBwAAAJwABUAA\nAKA68vLyUkFBgf1xQUHBFX/8AgAAqCnIiwAAqJkoAgIAAAAAAEC14O/vr5ycHF24cEHFxcXat2+f\nOnfubHZYAAAAlY68CACAmonjwAAAAAAAAODUNm/erMLCQkVERCg2NlZjxoyRYRgKCwtT48aNzQ4P\nAACg0pAXAQBQs1EEBAAAAAAAAKfTrFkzpaenS5JCQ0PtzwcHBys4ONissAAAACodeREAAPgPjgMD\nAAAAAAAAAAAAAAAAnBxFQAAAAAAAAAAAAAAAAICTowgIAAAAAAAAAAAAAAAAcHJWswMAAKAiPT5v\nZ4X2tyKWM7MBAAAAAAAAAAAAVH3sBAQAQBWzfPkb2rBhrdlhlMtnn+3RnDkzzQ4DAAAAAAAAAAAA\nqLEoAgIAAAAAAAAAAAAAAACcnMPHgdlsNs2cOVNHjhyRm5ubZs+erRYtWtiv79y5U4sWLZLValVY\nWJjCw8PLbJOTk6PY2FhZLBa1atVKCQkJcnFxUXp6ulJTU2W1WvXUU0+pT58+unz5shITE3Xo0CEV\nFxfrueeeU58+fRwdTrlU9JEztwLH2ADArVVQkK9582YrPz9PZ86c1m9/21cffLBNq1e/I4vFoqSk\nFxUY2FU+Pj5KSnpJHh4eatCggdzcamv69Jll9puR8ZF27vxQP/30k8aP/6Pateugv/3tfaWnv61a\ntWqpeXNfTZkyXVbrtf8rT0lJ0TvvrJOLi4vatm2n8eMna86cmTIMQz/8cEo//lioGTNmyc3NTTEx\nE1S3bj11795D3br10GuvvSzDMFSvXj1NnZogd3d3vfzyXP3wwymdPXtGPXr00rhxT+v48a+VmDhL\ndeq4y929jry9696iWQYAAAAAAAAAAABwIw7vBPThhx+quLhYaWlpmjRpkubNm2e/VlJSosTERK1Y\nsULJyclKS0vTmTNnymyTmJio8ePHa82aNTIMQzt27NDp06eVnJys1NRULV++XElJSSouLtbGjRtV\nWlqq1NRULVmyRDk5OY4OBQCAcjtx4oQefLCvXn11kV59dZG2bdsqf/9W+vzzf6q4uFgHDuxXjx49\nNX9+oqZNS9CCBUvVpEmzG/Z7551NtGDBUsXGxmn+/ERdvHhBy5e/oQULlmjJkuXy8vLSxo3rymy/\nfv16TZw4RW+8sVItWrRUaWmpJKlp02ZasGCpHn98nBYvfl2SdO7cWb366iKNGjVaL744WxMnxmjh\nwmXq3r2HUlLe0g8/nFL79r9RUtJCLVv2lv11Fy9+XU888Xu9/vpidejQsQJmEwAAAAAAAAAAAMCv\n5fBOQPv371fPnj0lSZ06ddKhQ4fs144ePSpfX1/Vq1dPkhQYGKjMzExlZWVds83hw4fVtWtXSVKv\nXr20e/duubi4qHPnznJzc5Obm5t8fX2VnZ2tv//972rVqpXGjRsnwzAUFxfn6FAAACi3hg0bKj19\njT7+eJc8PDxVWlqq0NAhev/9LTp79qzuv7+XrFarzpw5Iz8/f0nSPfd01o4df7tuv/fcEyBJ8vPz\n19mzZ/Xdd7lq2dJPHh6e9uuZmZ+V2T4xMVGLF7+hkydfV/v2v7E/HxDQRZLUocM9WrAgSdLPBUe1\natWSJOXkfK1XXvm5OPfy5VI1a+arunXr6osvDuvAgX3y9PRUcXGJJOmbb75R27YdJEm/+U0n5eQc\nL9fcAQAAAAAAAAAAAKg4DhcB5efny8vLy/7Y1dVVpaWlslqtys/Pl7e3t/2ap6en8vPzy2xjGIYs\nFov93ry8vDL7OH/+vL755hu98cYbyszM1NSpU5WSknLdWBs08JDV6urokJ2Kj4/3jW+qZmrimCsa\nc+g45tBxVWUObxTHX/6yUN26dVFUVJQ+++wz/eMfezRgwG/15puLdPHiOSUkJMjHx1tNmtypixdP\n6a677tLx41+qTp1aZfbt6Vlbx49/KR+fETpy5IiaNWuqDh1a69tvc+Tp6SoPDw8dOfIvtW3busw+\n3njjdb344lzVrl1bY8aM0bfffqU6dWopN/eYHnywpw4f3q+7726jhg095eb231j8/Pz06quvqEmT\nJtq/f79Onz6tjIwPdPvtjTR58mTl5ORo06Z3ddttXmrTppW+/fYr9erVSydOHL3umAAAAAAAAAAA\nAADcWg4XAXl5eamgoMD+2GazyWq1XvNaQUGBvL29y2zj4uJyxb1169Yts4/69evrgQcekMViUdeu\nXXX8+PEbxnr+fKEjQ3VKp0/nmR1CpfLx8a5xY65ozKHjmEPHOTKHK2KDKzSWG8URENBNr776kjZu\n3Pz/C1wt+u67c7r//ge0b98/5O7eQKdP5+kPf5isyZNj5O7uoVq1rPLxub3MvgsKinTs2HFFRo5S\nSUmxJk6M1eXLtTR69FhFRY2SxeKiZs2aa/To35fZR5s2bRQePlIeHh7y8fFRkyZ++umnEn344S5t\n2/Y32Ww2TZuWoHPnClRSctnezx/+MEUTJkzS5cuXZbFYFBsbpwYN7lBq6gxlZu5XrVq11KxZc33x\nxTGNG/ecZs9O0NKly1S/fn25udW+6XWjWAgAAAAAAAAAAACoWA4XAQUEBGjXrl0aOHCgsrKy1Lp1\na/s1f39/5eTk6MKFC/Lw8NC+ffs0ZswYWSyWa7Zp166d9u7dq6CgIGVkZKhbt27q2LGjXnvtNRUV\nFam4uFhHjx5V69atFRgYqI8//lj9+vVTdna27rzzTkeHAgBAuQUE3Kvk5PRfPP/oo4/r0Ucftz/+\n978P68UXX1WDBg20bNli+/Fb1zJmzO+v+Xzfvv3Vt2//m4prxIgReuCBX97cMQPcAAAgAElEQVQb\nHh6pbt3uu+K5ZctW2b++++62Wrhw2S/avfXW29d8nSVLlt9UPAAAAAAAAAAAAABuLYeLgEJCQrR7\n926NHDlShmFo7ty52rx5swoLCxUREaHY2FiNGTNGhmEoLCxMjRs3vmYbSYqJiVFcXJySkpLk5+en\nfv36ydXVVdHR0YqKipJhGJowYYJq166t8PBwJSQkKDw8XIZh6IUXXnB4MgAAuFUaNmyoiROfkbu7\nh7y8vDR9+kxNmzZZly5dvOI+Ly8vzZuXdFN9fv/995o9O/4Xz3fuHKjY2D9WSNwAAAAAAAAAAAAA\nnIPFMAzD7CAqS0Ufz/P4vJ0V2t+tUNHH4lR1HMPkOObQccyh45hDx1X1OeQ4MPNlHftCTb2bmR0G\nAAAQuVFVUZXz55qgqv8MUxOwBuZjDczHGpiPvKhq4PvAXLwXmY81MB9rYD7WwHy/Ni9yqeA4AAAA\n4AQe2zZKuXknzA4DAAAAAAAAAAAAFYQiIAAAgBpoVf8UdgICAAAAAAAAAACoRigCAgAAqIEoAAIA\nAAAAAAAAAKheKAICAACogTgKDAAAAAAAAAAAoHqhCAgAAKAGemzbKAqBAAAAAAAAAAAAqhGKgAAA\nAGqgVf1TOBIMAAAAAAAAAACgGqEICAAAoAaiAAgAAAAAAAAAAKB6oQgIAAAAAAAAAAAAAAAAcHIU\nAQEAAAAAAAAAAAAAAABOjiIgAAAAAAAAAAAAAAAAwMlRBAQAAAAAAAAAAAAAAAA4OYqAAAAAAAAA\nAAAAAAAAACdHERAAAAAAAAAAAAAAAADg5CgCAgAAAAAAAAAAAAAAAJwcRUAAAAAAAAAAAAAAAACA\nk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAAAAAAAAAATo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAA\nAAAAAAAAAAAAODmKgAAAAAAAAAAAAAAAAAAnRxEQAAAAAAAAAAAAAAAA4OQoAgIAAAAAAAAAAAAA\nAACcHEVAAAAAAAAAAAAAAAAAgJOjCAgAAAAAAAAAAAAAAABwchQBAQAAAAAAAAAAAAAAAE6OIiAA\nAIBbzGazKT4+XhEREYqOjlZOTs4V13fu3KmwsDBFREQoPT39um1ycnIUGRmpqKgoJSQkyGazXfE6\nTzzxhN5+++3KGxwAAEAlu1FutWnTJg0dOlRhYWFas2aNSVECAADceuRFAADgahQBAQAA3GIffvih\niouLlZaWpkmTJmnevHn2ayUlJUpMTNSKFSuUnJystLQ0nTlzpsw2iYmJGj9+vNasWSPDMLRjxw57\nX6+99pouXbpU6eMDAACoTNfLrSTppZde0sqVK/X2229r5cqVunjxokmRAgAA3FrkRQAA4GoUAQEA\nANxi+/fvV8+ePSVJnTp10qFDh+zXjh49Kl9fX9WrV09ubm4KDAxUZmZmmW0OHz6srl27SpJ69eql\nPXv2SJK2bdsmi8VibwMAAFBdXS+3kqQ2bdooLy9PxcXFMgxDFovFjDABAABuOfIiAABwNavZAQAA\nAFR3+fn58vLysj92dXVVaWmprFar8vPz5e3tbb/m6emp/Pz8Mtv87y9sPD09lZeXpy+//FJbtmzR\nggULtGjRosobGAAAgAmul1tJUqtWrRQWFiZ3d3eFhISobt26N9Wvj4/3jW/CLcUamI81MB9rYD7W\nAM6EvKj6Yg3MxxqYjzUwH2vgnBwuArLZbJo5c6aOHDkiNzc3zZ49Wy1atLBf37lzpxYtWiSr1aqw\nsDCFh4eX2SYnJ0exsbGyWCxq1aqVEhIS5OLiovT0dKWmpspqteqpp55Snz59ZBiGevXqpf/7v/+T\n9HOF86RJkxwdDgAAQIXz8vJSQUGB/bHNZrP/MubqawUFBfL29i6zjYuLyxX31q1bVxs2bNCpU6c0\nevRo5ebmqlatWmratKl69epVCaMDAACoXNfLrbKzs/XRRx9px44d8vDw0OTJk/X+++9rwIABN+z3\n9Om8WxYzbszHx5s1MBlrYD7WwHysgfn4Y2P5kBdVT7wXmY81MB9rYD7WwHy/Ni9yuAjof88bzcrK\n0rx587RkyRJJUklJiRITE7V27Vq5u7srMjJSwcHBOnDgwDXbJCYmavz48QoKClJ8fLx27NihTp06\nKTk5WevWrVNRUZGioqLUo0cPnTx5Uu3bt9fSpUsdHQIAAMAtFRAQoF27dmngwIHKyspS69at7df8\n/f2Vk5OjCxcuyMPDQ/v27dOYMWNksViu2aZdu3bau3evgoKClJGRoW7dumngwIH2/v785z/rtttu\nowAIAABUW9fLrby9vVWnTh3Vrl1brq6uatiwoS5dumRitAAAALcOeREAALiaw0VA1ztv9OjRo/L1\n9VW9evUkSYGBgcrMzFRWVtY12xw+fFhdu3aVJPXq1Uu7d++Wi4uLOnfuLDc3N7m5ucnX11fZ2dk6\nceKETp06pejoaNWpU0dTp06Vn5+fo8MBAACocCEhIdq9e7dGjhwpwzA0d+5cbd68WYWFhYqIiFBs\nbKzGjBkjwzAUFhamxo0bX7ONJMXExCguLk5JSUny8/NTv379TB4dAABA5bpRbhUREaGoqCjVqlVL\nvr6+Gjp0qNkhAwAA3BLkRQAA4GoOFwFd77zR/Px8eXv/d4siT09P5efnl9nGMAxZLBb7vXl5eWX2\n4ePjo3HjxmnAgAHat2+fJk+erHXr1l031gYNPGS1ujo6ZKdSE7fOrIljrmjMoeOYQ8cxh45jDqsO\nFxcXzZo164rn/P397V8HBwcrODj4hm0kqWXLllq9enWZr/Xcc885GC0AAEDVdqPcKjIyUpGRkZUd\nFgAAQKUjLwIAAFdzuAjoeueNXn2toKBA3t7eZbZxcXG54t66deuW2cddd90lV9efC3ruvfde/fDD\nD1cUEV3L+fOFjg7X6dS0c/o4m9BxzKHjmEPHMYeOq+pzSIESAAAAAAAAAAAAULFcbnzL9QUEBCgj\nI0OSfnHeqL+/v3JycnThwgUVFxdr37596ty5c5lt2rVrp71790qSMjIydO+996pjx47av3+/ioqK\nlJeXp6NHj6p169ZauHCh3nrrLUlSdna27rzzzusWAAEAAAAAAAAAAAAAAADVlcM7Ad3ovNHY2FiN\nGTNGhmEoLCxMjRs3vmYbSYqJiVFcXJySkpLk5+enfv36ydXVVdHR0YqKipJhGJowYYJq166tcePG\nafLkyfr444/l6uqqxMREhycDAAAAAAAAAAAAAAAAcEYWwzAMs4OoLBV9LMrj83ZWaH+3worYYLND\nqFRV/fgbZ8AcOo45dBxz6LiqPoccB2a+qvzvAwCAmobcqGogPzJXVf8ZpiZgDczHGpiPNTAfeVHV\nwPeBuXgvMh9rYD7WwHysgfl+bV7k8HFgAAAAAAAAAAAAAAAAAMxFERAAAAAAAAAAAAAAAADg5CgC\nAgAAAAAAAAAAAAAAAJwcRUAAAAAAAAAAAAAAAACAk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAA\nAAAAAAAATo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAAAAAAAAAAAAAAODmKgAAAAAAAAAAAAAAAAAAn\nRxEQAAAAAAAAAAAAAAAA4OQoAgIAAAAAAAAAAAAAAACcHEVAAAAAAAAAAAAAAAAAgJOjCAgAAAAA\nAAAAAAAAAABwchQBAQAAAAAAAAAAAAAAAE6OIiAAAIAaKDfvhNkhAAAAAAAAAAAAoAJRBAQAAFAD\nPbZtFIVAAAAAAAAAAAAA1QhFQAAAADXQqv4paurdzOwwAAAAAAAAAAAAUEEoAgIAAAAAAAAAAAAA\nAACcHEVAAAAANRDHgQEAAAAAAAAAAFQvFAEBAADUQPN6zuc4MAAAAAAAAAAAgGqEIiAAAIAaKPaT\nP7ITEAAAAAAAAAAAQDVCERAAAEANxE5AAAAAAAAAAAAA1QtFQAAAADUQOwEBAAAAAAAAAABULxQB\nAQAA1ECr+qewExAAAAAAAAAAAEA1QhEQAABADUQBEAAAAAAAAAAAQPVCERAAAAAAAAAAAAAAAADg\n5KxmBwAAAOAMMjMzr3u9S5culRQJAACobr69+K2a12tudhgAAAAAAABwchQBAQAA3IQFCxZIki5c\nuKBvvvlGAQEBcnFx0T//+U+1bt1aqampJkcIAACcUW7eCT3xYbT2jdtndigAAAAAAABwchQBAQAA\n3ITk5GRJ0tixY7Vw4UK1aNFCkpSbm6v4+HgzQwMAAE6sqXczvRvxrtlhAAAAAAAAoBpwcbQDm82m\n+Ph4RUREKDo6Wjk5OVdc37lzp8LCwhQREaH09PTrtsnJyVFkZKSioqKUkJAgm80mSUpPT9ewYcMU\nHh6uXbt2XdH/0aNHFRgYqKKiIkeHAgAAcEPfffedvQBIkpo0aaLvvvvOxIgAAICz4ygwAAAAAAAA\nVASHdwL68MMPVVxcrLS0NGVlZWnevHlasmSJJKmkpESJiYlau3at3N3dFRkZqeDgYB04cOCabRIT\nEzV+/HgFBQUpPj5eO3bsUKdOnZScnKx169apqKhIUVFR6tGjh9zc3JSfn68XX3xRbm5uDk8EAADA\nzWjfvr1iYmI0YMAA2Ww2bdmyRffee6/ZYQEAAAAAAAAAAKCGc3gnoP3796tnz56SpE6dOunQoUP2\na0ePHpWvr6/q1asnNzc3BQYGKjMzs8w2hw8fVteuXSVJvXr10p49e3Tw4EF17txZbm5u8vb2lq+v\nr7Kzs2UYhuLi4jRx4kS5u7s7OgwAAICbMnv2bLVp00apqalKT09Xp06dlJCQYHZYAAAAAAAAAAAA\nqOEc3gkoPz9fXl5e9seurq4qLS2V1WpVfn6+vL297dc8PT2Vn59fZhvDMGSxWOz35uXlldnHwoUL\n1bt3b9199903HWuDBh6yWl0dGa7T8fHxvvFN1UxNHHNFYw4dxxw6jjl0HHN4a7i5uWnYsGEaMGCA\nDMPQ5cuXlZmZqe7du5sdGgAAAAAAAAAAAGowh4uAvLy8VFBQYH9ss9lktVqvea2goEDe3t5ltnFx\ncbni3rp165bZx6ZNm3THHXdo3bp1On36tB5//HGlpKRcN9bz5wsdHa7TOX06z+wQKpWPj3eNG3NF\nYw4dxxw6jjl0XFWfQ2cuUHrllVe0Zs0alZaWqkGDBjp16pQ6dOigd955x+zQAAAAAAAAAAAAUIM5\nfBxYQECAMjIyJElZWVlq3bq1/Zq/v79ycnJ04cIFFRcXa9++fercuXOZbdq1a6e9e/dKkjIyMnTv\nvfeqY8eO2r9/v4qKipSXl6ejR4+qdevW+uCDD5ScnKzk5GT5+PhoxYoVjg4FAADghrZu3aqPP/5Y\nAwcO1F//+letXLlSDRs2NDusctv/fabZIQAAAAAAAAAAAKACObwTUEhIiHbv3q2RI0fKMAzNnTtX\nmzdvVmFhoSIiIhQbG6sxY8bIMAyFhYWpcePG12wjSTExMYqLi1NSUpL8/PzUr18/ubq6Kjo6WlFR\nUTIMQxMmTFDt2rUdHjgAAMCvcfvtt8vLy0utWrVSdna2+vbtq5dfftnssMpt2KZBWj94iwLv6GJ2\nKAAAAOVis9k0c+ZMHTlyRG5ubpo9e7ZatGhhv37w4EHNmzdPhmHIx8dHL7/8Mr9LAgAA1RJ5EQAA\nuJrDRUAuLi6aNWvWFc/5+/vbvw4ODlZwcPAN20hSy5YttXr16l88Hx4ervDw8DJj2LlzZ3nDBgAA\n+FW8vLy0YcMGtW/fXqtXr9btt9+uS5cumR1Wub3x4AoKgAAAgFP68MMPVVxcrLS0NGVlZWnevHla\nsmSJJMkwDMXFxWnBggVq0aKF3nnnHeXm5srPz8/kqAEAACoeeREAALiaw8eBAQAA1CRz5szRuXPn\nFBQUpKZNmyo+Pl7jx4+/bhubzab4+HhFREQoOjpaOTk5V1zfuXOnwsLCFBERofT09Ou2ycnJUWRk\npKKiopSQkCCbzSZJSklJUVhYmIYPH6733nvvhuN4Zf9Lys078WumAAAAwFT79+9Xz549JUmdOnXS\noUOH7Ne+/vpr1a9fX6tWrdIjjzyiCxcu8IcuAABQbZEXAQCAqzm8ExAAAEBN0rhxY40cOVLZ2dma\nMmWKfvrpJ3l4eFy3zfU+lVVSUqLExEStXbtW7u7uioyMVHBwsA4cOHDNNomJiRo/fryCgoIUHx+v\nHTt2KDAwUG+//bbeffddFRUV6aGHHtKAAQNksVjKjGlV/xQ19W5WoXMDAABQGfLz8+Xl5WV/7Orq\nqtLSUlmtVp0/f17//Oc/FR8fL19fXz355JPq0KGDunfvfsN+fXy8b2XYuAmsgflYA/OxBuZjDeBM\nyIuqL9bAfKyB+VgD87EGzokiIAAAgHL49NNPFR8fr8uXLys1NVUPP/ywXn75Zd1///1ltrnep7KO\nHj0qX19f1atXT5IUGBiozMxMZWVlXbPN4cOH1bVrV0lSr169tHv3boWEhGjDhg2yWq3Kzc1V7dq1\nr1sAJIkCIAAA4LS8vLxUUFBgf2yz2WS1/vwrrvr166tFixb2o+p79uypQ4cO3dQfu06fzrs1AeOm\n+Ph4swYmYw3MxxqYjzUwH39sLB/youqJ9yLzsQbmYw3MxxqY79fmRRwHBgAAUA5JSUlas2aN6tat\nq9tvv13Jycl66aWXrtumrE9l/eeat/d/EzlPT0/l5+eX2cYwDHuBj6enp/Lyfk7CrVarVq9erYiI\nCA0ePLjCxgsAAFDVBAQEKCMjQ5KUlZWl1q1b2681b95cBQUF9qNU9+3bp1atWpkSJwAAwK1GXgQA\nAK7GTkAAAADlYLPZ5OPjY39811133bDN9T6VdfW1goICeXt7l9nGxcXlinvr1q1rf/zII48oPDxc\nY8eO1WeffaZu3br9ukECAABUYSEhIdq9e7dGjhwpwzA0d+5cbd68WYWFhYqIiNCcOXM0adIkGYah\nzp0764EHHjA7ZAAAgFuCvAgAAFyNIiAAAIByuOOOO7Rr1y5ZLBZdunRJKSkpatKkyXXbBAQEaNeu\nXRo4cOAvPpXl7++vnJwcXbhwQR4eHtq3b5/GjBkji8VyzTbt2rXT3r17FRQUpIyMDHXr1k3Hjh1T\nUlKS/vznP6tWrVpyc3O7olgIAACgOnFxcdGsWbOueO4/x1xIUvfu3bV27drKDgsAAKDSkRcBAICr\nUQQEAABQDrNmzdKcOXN08uRJhYSEKCgo6Be/bLnajT6VFRsbqzFjxsgwDIWFhalx48bXbCNJMTEx\niouLU1JSkvz8/NSvXz+5urrq7rvvVkREhCwWi3r27KmuXbtWxnQAAAAAAAAAAACgiqAICAAAoBz+\n+te/KikpqVxtbvSprODgYAUHB9+wjSS1bNlSq1ev/sXzzz77rJ599tlyxQUAAAAAAAAAAIDqg3Mi\nAAAAymHXrl0yDMPsMAAAAAAAAAAAAIArsBMQAABAOdSvX1/9+/dX+/btVbt2bfvziYmJJkYFAAAA\nAAAAAACAmo4iIAAAgHIYOnSo2SFUiNy8E2rq3czsMAAAAAAAAAAAAFBBOA4MAACgHIYOHaq7775b\nFy5cUF5enjp27OiUhUGPbRul3LwTZocBAAAAAAAAAACACkIREAAAQDmsWLFCf/jDH/TDDz/oxIkT\neuqpp7Ru3Tqzwyq3Vf1T2AkIAAAAAAAAAACgGuE4MAAAgHJIS0vT+vXr5eXlJUl65plnFBkZqbCw\nMJMjKx8KgAAAAAAAAAAAAKoXdgICAAAoh3r16slq/W8dtYeHhzw9PU2MCAAAAAAAAAAAAGAnIAAA\ngHJp3ry5IiIi9NBDD8lqteqDDz6Ql5eXFi5cKEl69tlnTY7w5uz/PlOBd3QxOwwAAAAAAAAAAABU\nEIqAAAAAyqFly5Zq2bKliouLVVxcrB49epgd0q8ybNMgrR+8hUIgAAAAAAAAAACAaoIiIAAAgHJ4\n9tlnVVxcLDc3N+Xk5Ojrr79Wr1695OLiXKesUgAEAAAAAAAAAABQvTjXX6sAAABMtmjRIs2YMUPf\nffedRo0apbfeeksJCQlmh1VuFAABAAAAAAAAAABULxQBAQAAlMOOHTs0e/ZsbdmyRYMHD9bKlSt1\n+PBhs8Mqt9y8E2aHAAAAAAAAAAAAgApEERAAAEA52Gw2ubm5adeuXerdu7dsNpt+/PFHs8Mqt8e2\njaIQCAAAAAAAAAAAoBqhCAgAAKAcunfvrkGDBqmkpERdunTRI488ouDgYLPDKrdV/VPU1LuZ2WEA\nAAAAAAAAAACggljNDgAAAMCZxMTEKDo6Wo0bN5aLi4vi4uLUtm1bSVJaWpoiIiJMjvDmUAAEAAAA\nAAAAAABQvbATEAAAQDk1adJErq6ukmQvAJKk1NRUs0ICAAAAAAAAAABADUcREAAAQAUxDMPsEG5a\nbt4Js0MAAFQR/J8AAAAAAAAAVA8UAQEAAFQQi8Vidgg3LWrrCP7oCwBQbt4JPbZtFP8nmOzbi9+a\nHQIAAAAAAACqAYqAAAAAAACooZp6N9Oq/ilq6t3M7FBqrNy8ExqaNtTsMAAAAAAAAFANUAQEAABQ\nA6156B3+4AsAkCT+PzBZU+9mejfiXbPDAAAAAAAAQDVAERAAAEAF8fb2NjuEm8YffAEAqDqa12tu\ndggAAAAAAACoBqyOdmCz2TRz5kwdOXJEbm5umj17tlq0aGG/vnPnTi1atEjW/8fevcdFWef//38O\nDGjCgOWSmEoJSWZbHvDQ4aMVu3y0k61SoraYZVltJ4tMbRNbK7GDbp/KzpkrZWBppll2y0NLaZ9C\nWjLdNXepKFhRNM2ZIRlgrt8ffprvb1rPg7yZuR73263b2+G63pfP63o38Gaul9fb6VR2drZGjhx5\n0D6VlZWaMmWKHA6HunfvrunTpysqKkqLFi1SUVGRnE6nbrnlFl188cWqq6tTXl6e9u7dq5iYGD3y\nyCPq2LFjqKcDAABwSD/99JOeeuop/e///q+ampo0cOBATZw4Ue3atdOCBQtMxwMAAAAAAAAAAIBN\nhfwkoFWrVsnn86m4uFh5eXmaNWtWYFtDQ4MKCgo0b948FRYWqri4WDt37jxon4KCAk2cOFELFy6U\nZVlavXq1amtrVVhYqKKiIr388suaM2eOfD6fFi1apLPOOkuvvfaahg0bphdffDHUUwEAADisGTNm\naN++fZo5c6YeeeQRNTY2avr06aZjHbWymlLTEQAAAAAAAAAAANCMQn4SUFlZmQYNGiRJ6t27tzZt\n2hTYVlFRoZSUFCUmJkqSMjIyVFpaqvLy8gP22bx5swYMGCBJGjx4sNatW6eoqCj16dNHsbGxio2N\nVUpKirZs2aJx48apqalJkvTvf/9bCQkJoZ4KAADAYW3evFnLli0LvM7Pz9ell15qMNGxGbHsci0Z\n9o4ykvubjgIAAAAAAAAAAIBmEHIRkMfjUXx8fOB1dHS0Ghsb5XQ65fF45HK5Atvi4uLk8XgO2sey\nLDkcjsC+brf7oMf4ud/YsWO1detWvfLKK4fNeuKJ7eR0Rod6ymElKcl1+J0ijB3PublxDUPHNQwd\n1zB0XMPjw7Is7d27N1CAvHfvXkVHh9/8ggIgAAAAAAAAAACAyBJyEVB8fLy8Xm/gtd/vl9PpPOA2\nr9crl8t10D5RUVFB+yYkJBz0GD9bsGCBKioqdNNNN2nVqlWHzLp7d92xn2iYqq11m47QopKSXLY7\n5+bGNQwd1zB0XMPQtfZrGM4FSuPGjdNVV12lzMxMWZaltWvXasKECaZjHbXkuE6mIwAAAAAAAAAA\nAKAZRR1+l0Pr27evSkpKJEnl5eVKT08PbEtLS1NlZaX27Nkjn8+nDRs2qE+fPgft07NnT3366aeS\npJKSEvXr10/nnHOOysrKVF9fL7fbrYqKCqWnp+v555/X0qVLJe1/OlA4/gt8AAAQfrKzs/X000+r\na9eu6tq1q5566ildddVVpmMdtXErr1G1u8p0DAAAAAAAAAAAADSTkJ8ElJWVpXXr1mnUqFGyLEsz\nZ87U8uXLVVdXp5ycHE2ZMkXjx4+XZVnKzs5Wx44dD9hHkiZPnqxp06Zpzpw5Sk1N1ZAhQxQdHa3c\n3FyNGTNGlmXprrvuUps2bZSdna3Jkydr8eLFampqChwDAADgeKuqqtJ3332nmJgY7dq1y3ScYzJ/\n6Gvq7OpiOgYAqNpdxfcjwxgDAAAAAAAAIDI4LMuyTIdoKc29LMr1s9Y06/GOh3lTMk1HaFGtffmb\ncMA1DB3XMHRcw9C19msYzsuBzZ49W2VlZbrkkktkWZZWrFihzMxM3XTTTaajHZXW/P+HXXDTHdj/\nPhi38hoKEw1iDFqHcJ4bRRLmR2a19t9h7IAxMI8xMI8xMI95UevA+8AsvheZxxiYxxiYxxiYd6zz\nopCfBAQAAGAnH374oZYsWaKYmBhJUk5OjrKzs8OuCAhmcdMd2K+zqwvvA8MYAwAAAAAAACByRJkO\nAAAAEE4SExPl9XoDrxsaGhQfH28wEcIRN92B/4f3gXmMAQAAAAAAABAZeBIQAADAEZg6daokye/3\n68orr1RmZqaio6NVUlKi1NRUw+mOXllNqTKS+5uOYWvcdAcAAAAAAAAAAM2JIiAAAIAjMGDAgKD2\nZ2eddZaJOCEbsexyLRn2DoVAAAAAAAAAAAAAEYIiIAAAgCMwfPjwI9rnrbfeaoE0oaMACAAAAAAA\nAAAAILJEmQ4AAAAQKSzLMh3hiFEABAD4WbW7ynQEAAAAAAAAAM2AIiAAAIBm4nA4TEcAAOCoVLur\nNG7lNRQCAQAAAAAAABGAIiAAAAAAAGyqs6uL5g99TZ1dXUxHAQAAAAAAABAiioAAAAAAAAAQNvx+\nv/Lz85WTk6Pc3FxVVlYecL9p06bp8ccfb+F0AAAALYd5EQAA+CWKgAAAAJqJZVmmIxyxlV+vMB0B\nANAKsBwYwtGqVavk8/lUXFysvLw8zZo16z/2KSoq0tatWw2kAwAAaKrZAusAACAASURBVDnMiwAA\nwC9RBAQAANBMJkyYYDrCEbt25RgKgQAALAeGsFRWVqZBgwZJknr37q1NmzYFbf/888/1xRdfKCcn\nx0Q8AACAFsO8CAAA/JLTdAAAAIBwcuGFF2rHjh1KSEiQZVlyu91KSEhQly5d9NBDD5mOd8T+MnSh\nhqZeZjoGAKAVoAAI4cbj8Sg+Pj7wOjo6Wo2NjXI6ndqxY4fmzp2rp59+Wu+9995RHTcpydXcUXGU\nGAPzGAPzGAPzGAOEE+ZFkYsxMI8xMI8xMI8xCE8UAQEAAByF/v37a+jQofrtb38rSfrrX/+qlStX\nKjc3V3/6059UVFT0H338fr8eeOABffXVV4qNjdVDDz2kU089NbB9zZo1mjt3rpxOp7KzszVy5MiD\n9qmsrNSUKVPkcDjUvXt3TZ8+XVFRUZo/f75WrNj/ZJ8LL7xQt9122yHPI6ndyc14VQAAAFpOfHy8\nvF5v4LXf75fTuf8jrpUrV2r37t2aMGGCamtrtW/fPqWmpmrEiBGHPW5trfu4ZcbhJSW5GAPDGAPz\nGAPzGAPzuNl4dJgXRSa+F5nHGJjHGJjHGJh3rPMilgMDAAA4Cv/85z8DBUDS/oKbr776Sj179lR9\nff0B+xxqffaGhgYVFBRo3rx5KiwsVHFxsXbu3HnQPgUFBZo4caIWLlwoy7K0evVqff/991q2bJmK\nioq0aNEiffzxx9qyZcshz2PEsstVVlPaDFcEAACgZfXt21clJSWSpPLycqWnpwe2jR07VkuWLFFh\nYaEmTJigyy+//IhudAEAAIQj5kUAAOCXeBIQAADAUUhISFBRUZGGDRsmv9+v5cuXKzExURUVFfL7\n/Qfsc6j12SsqKpSSkqLExERJUkZGhkpLS1VeXn7APps3b9aAAQMkSYMHD9a6det00UUX6aWXXlJ0\ndLQkqbGxUW3atDnkeSwZ9o4ykvuHcCWA8FftrmIZJAAIQ1lZWVq3bp1GjRoly7I0c+ZMLV++XHV1\ndcrJyTEdDwAAoMUwLwIAAL9EERAAAMBRePzxx/Xwww/rsccek9Pp1Pnnn69HHnlE77//vvLy8g7Y\n51Drs3s8Hrlc/++RjnFxcfJ4PAftY1mWHA5HYF+3262YmBiddNJJsixLjz76qHr27Klu3bod8jwo\nAILdVburNG7lNZo/9DUKgWB7FMQh3ERFRWnGjBlBX0tLS/uP/fiX7gAAINIxLwIAAL9EERAAAMBR\n+PLLLzV79mzFxMQEfT03N/egfQ61Pvsvt3m9XrlcroP2iYqKCto3ISFBklRfX6/77rtPcXFxmj59\n+mHPgxu+sLvOri4UAAGiIK61+P7H79U1savpGAAAAAAAAAhzUYffBQAAAD9btmyZfvOb3yg/P18b\nNmw4oj6HWp89LS1NlZWV2rNnj3w+nzZs2KA+ffoctE/Pnj316aefSpJKSkrUr18/WZalP/zhDzrj\njDM0Y8aMwLJghzJu5TWqdlcd1bkDkYaCB4CCuNag2l2l4cXDTccAAAAAAABABOBJQAAAAEfhySef\nlMfj0apVq/Tiiy/q/vvv19ChQzVx4sSD9jnc+uxTpkzR+PHjZVmWsrOz1bFjxwP2kaTJkydr2rRp\nmjNnjlJTUzVkyBCtWrVKn332mXw+nz766CNJ0t13360+ffocNBM3fAEAP+PngVmdXV30Vs5bpmMA\nAAAAAAAgAlAEBAAAcJTi4+OVkZGhmpoabdu2TeXl5Yfc/3Drs2dmZiozM/OwfSSpW7duevXVV4O+\nlpWVpS+//PKozqHGu42bvgAAtBIsBQYAAAAAAIDmQBEQAACtwPWz1piOcEjzpmQefiebmDdvnt59\n913V19dr2LBheuGFF5ScnGw61lH73duXaumV7yojub/pKABsrtpdRVEibO/Tqk81sMtA0zEAAAAA\nAAAQ5qJMBwAAAAgn27dv1+WXX67x48crKSlJ69at0//8z/+YjnXUOsWdouS4TqZjALC5aneVxq28\nRtXuKtNRAGPKakqVuYCCawAAAAAAAISOJwEBAAAcha+//lp///vf9d1336lfv34qLS1V7969Tcc6\naic425mOAADq7Oqi+UNf40lAsLWM5P56fcTrpmMAAAAAAAAgAvAkIAAAgKPw7bffasGCBcrKytIN\nN9ygN954Qzt27DAd66gtvOwNbroDANAKVLurdP/a+03HAAAAAAAAQASgCAgAAOAodOjQQQ6HQ926\nddNXX32ljh07yufzmY511Gq820xHAACWAwP+T4O/wXQEAAAAAAAARACKgAAAAI5C9+7d9eCDD2rg\nwIGaP3++XnjhBTU0hN+Nu+FvX6aymlLTMQDYHMuBAfvFRMWYjgAAAAAAAIAIQBEQAADAUXjggQd0\nySWX6PTTT9ftt9+uHTt2aPbs2aZjHbUu8SlKjutkOgYAUAAE2+vs6qIVY1aYjgEAAAAAAIAI4DQd\nAAAAIJxER0erX79+kqTf/OY3+s1vfmM40bF5Y9hSbrwbVu2uYgwMYwwAtBZdE7uajgAAAAAAAIAI\nwJOAAAAAgBZW7a7SmBVXq9pdZTqKbTEGAFqT73/83nQEAAAAAAAARICQi4D8fr/y8/OVk5Oj3Nxc\nVVZWBm1fs2aNsrOzlZOTo0WLFh2yT2VlpUaPHq0xY8Zo+vTp8vv9kqRFixZpxIgRGjlypNauXStJ\ncrvduvnmm/X73/9eOTk5+tvf/hbqqQAAANgGxQ8AALQO1e4qXbbwMtMxAAAAAAAAEAFCLgJatWqV\nfD6fiouLlZeXp1mzZgW2NTQ0qKCgQPPmzVNhYaGKi4u1c+fOg/YpKCjQxIkTtXDhQlmWpdWrV6u2\ntlaFhYUqKirSyy+/rDlz5sjn8+mVV17Rueeeq1dffVUFBQWaMWNGqKcCAABgGz811pmOYGudXV00\ndcD9LEVlUGdXFy287A3GAECr0OBvMB0BAAAAAAAAEcAZ6gHKyso0aNAgSVLv3r21adOmwLaKigql\npKQoMTFRkpSRkaHS0lKVl5cfsM/mzZs1YMAASdLgwYO1bt06RUVFqU+fPoqNjVVsbKxSUlK0ZcsW\njRs3TrGxsZKkpqYmtWnTJtRTAQAAsI0a7zbVeLdRAGFIWU2pbvxgnJZe+a4ykvubjmNb/P8P7Fft\nruL9YFhMVIzpCAAAAAAAAIgAIRcBeTwexcfHB15HR0ersbFRTqdTHo9HLpcrsC0uLk4ej+egfSzL\nksPhCOzrdrsPeoyEhARJUm1trSZNmqT77rvvsFlPPLGdnM7oUE85rCQluQ6/U4Sx4zk3N65h6LiG\noeMati6MR+Qp+K/HKT4xKDmukzrFnaLkuE6mowCwuWp3lcatvEbzh75GIZAhnV1dtGLMCtMxAAAA\nAAAAEAFCLgKKj4+X1+sNvPb7/XI6nQfc5vV65XK5DtonKioqaN+EhISDHkOSvvrqK91999269957\nA08QOpTdu+237EVtrdt0hBaVlOSy3Tk3N65h6LiGoeMatj7NPR4UFZl337pJ6tHhTAqBDLIs0wnA\n00+A/QUoFAABAAAAAAAAkSHkIqC+fftq7dq1uvTSS1VeXq709PTAtrS0NFVWVmrPnj1q166dNmzY\noPHjx8vhcBywT8+ePfXpp59q4MCBKikp0bnnnqtzzjlHTzzxhOrr6+Xz+VRRUaH09HT961//0p13\n3qknnnhCPXr0CPU0AAAhuH7WGtMRDmnelEzTEYBWZ+YFj1EAZFCNd5u2eatZks0gnn4CoLWodldp\n7Ps52njLRtNRAAAAAAAAEOZCLgLKysrSunXrNGrUKFmWpZkzZ2r58uWqq6tTTk6OpkyZovHjx8uy\nLGVnZ6tjx44H7CNJkydP1rRp0zRnzhylpqZqyJAhio6OVm5ursaMGSPLsnTXXXepTZs2mj17tnw+\nnx5++GFJ+5869Oyzz4Z6OgAAALYw9eN7eBKQYT8vgwszePoJsB8FcQAAAAAAAEDkCLkIKCoqSjNm\nzAj6WlpaWuDPmZmZyszMPGwfSerWrZteffXV//j6yJEjNXLkyKCvUfADAABw7LrEpyg5rpPpGLaV\nkdxfS698lyIswyh4APa/D2YNepz3g0GdXV20YswK0zEAAAAAAAAQAaJMBwAAAEDLyz/vT9zwNYwC\nIGC/sppS0xFsrdpdpSkf3aNqd5XpKLbWNbGr6QgAAAAAAACIABQBAQAA2NCED67jxjsA48pqSjX8\n7cv4fmQQS+O1Dt//+L3pCAAAAAAAAIgAFAEBAADYUDtnHMuBwfZ48ol5yXGdWJ6wFaAAyKxqd5Uu\nW3iZ6RgAAAAAAACIABQBAQAA2NAP9bv01tbFpmPYGgUoZlW7qzT87csYB8M6u7rojWFLKUIxjPeB\neb4mn+kIAAAAAAAAiAAUAQEAANjU6SeebjqCbVW7qzRu5TXceDfoy9ov9O3eb/Rl7Remo9hejXeb\n6Qi2Vu2u0pgVV/P9yLDY6FjTEQAAAAAAABABnKYDwN6un7XGdITDmjcl03QEAACaXf7ABzU0laVH\nTOns6qL5Q1/j6ScGnZ3US13iu+rspF6mo9haWU2pRiy7XEuGvaOM5P6m4wBGdHZ10YtXvGg6BgAA\nAAAAACIATwICAACwoUc3PKyymlLTMWyNAiDzXLEJpiPYXkZyfz3/23kUABnU2dVFcy56ku9JBlW7\nq3Tru7eajgEAAAAAAIAIQBEQAACADSXGnqjkuE6mY9gaS++Y1dnVRQsve4PCB8Oq3VWaXfYo7weD\nqt1VmvLRPYyBQZ1dXZQ/ON90DAAAAAAAAEQAioAAAABsaPtP2/Rl7RemY9hWtbtKY1ZczU132F5n\nVxfNGvQ4xVgGsTyheWU1pRq9ZLTpGAAAAAAAAIgATtMBAMC062etMR3hkOZNyTQdAUAEat/mRJ2d\n1Mt0DFtraGowHcHWqt1VGrfyGoofDPv5KTSMg1kffrdG15w11nQM28pI7q81Y1v37yQAAAAAAAAI\nDxQBAWGutRewSBSxAEBrtKd+t97auli3ZdxpOoptORymE9hbZ1cX5WXcS+GJYYyDea9tXqC7/nqb\nJFEIZNAprlNMRwAAAAAAAEAEYDkwAAAAG+p4QicNT882HcPWfDwJyKiymlLdtOp6ldWUmo5ia4yD\nedecNVZ39r6HAiCDqt1VGl483HQMAAAAAAAARACKgAAAAGxo/iWv8uQNg2q827S9bptqvNtMR7Gt\njOT+ev6385SR3N90FFvLSO6vJcPeYRwMKqsp1bMbn6QQy6DOri6ae+lc0zEAAAAAAAAQASgCAgAA\nsKEpH92janeV6Ri2lZHcXy9kvULhg0HV7irNLnuU90ErkBzXyXQEW6ut2yGf36fauh2mo9hWtbtK\nNy6/0XQMAAAAAAAARACKgAAAAGwoL+NengRkULW7Sg/+73QKUAzq7OqiWYMe531gWLW7SmNWXM17\nwaCzk3rpVFc3nZ3Uy3QUW2vws0QkAAAAAAAAQkcREAAAgA1N+OA6ln4xqMa7TZU/fstyYAZVu6t0\n94d3UHzSCtQ11JmOYGudXV30XNZLFMQZtvun3aYjAAAAAAAAIAJQBAQAAGBDHdt1YgkewyyHZTqC\n7TU08eQN02q827TNW01BnEHV7irdvvoWCuIMemvrYm33bjcdAwAAAAAAABGAIiAAAAAbiomKMR3B\n9qKYihvXaFEE1Bo4HA7TEWytxrtN3/xYQSGWQbdl3KmLT73YdAwAAAAAAABEAO48AAAA2BD33M3K\nSO6vF/97vjKS+5uOYlv7n0DzbwofDMtI7q8Xs3gvmLTy6/fUpCat/Po901Fs6+H1M7S2cq3pGAAA\nAAAAAIgAFAEBAADYkJMnARlV7a7S7LJHWX7HoIzk/lp65bsUnxjGe8G8oamXKMoRraGpl5iOYlsZ\nyRmmI4Qdv9+v/Px85eTkKDc3V5WVlUHb33nnHV199dUaNWqU8vPz5ff7DSUFAAA4vpgXAQCAX6II\nCAAAwIYmnH2LOru6mI5hW51dXTRr0OOMAWyP94J5tXU75LeaVFu3w3QU20pqd7KcDqfpGGFl1apV\n8vl8Ki4uVl5enmbNmhXYtm/fPj3xxBNasGCBioqK5PF4tHYtT1oCAACRiXkRAAD4JYqAAAAAbOju\nv96ulV+vMB3DtqrdVbp99S08/cSgsppSDX/7MpXVlJqOYmu8F8w7O6mXktt10tlJvUxHsa3auh1q\ntBpNxwgrZWVlGjRokCSpd+/e2rRpU2BbbGysioqKdMIJJ0iSGhsb1aZNGyM5AQAAjjfmRQAA4Jf4\np2YAAAA29JehCzU09TLTMWyrxrtN37m/VY13G09AMSQ5rpM6tuuk5LhOpqPYWo13m6o83/FeMKjG\nu00/7NvFGBiU1O5kxbBM51HxeDyKj48PvI6OjlZjY6OcTqeioqL0q1/9SpJUWFiouro6XXDBBUd0\n3KQk13HJiyPHGJjHGJjHGJjHGCCcMC+KXIyBeYyBeYyBeYxBeKIICAAAADDAsizTEWzP6/OajmB7\nGcn99ULWK8pI7m86iq01+ZtMRwCOSnx8vLze//c93O/3y+l0Br1+7LHH9M033+ipp56Sw+E4ouPW\n1rqbPSuOXFKSizEwjDEwjzEwjzEwj5uNR4d5UWTie5F5jIF5jIF5jIF5xzovYjkwAAAAG7p25RiW\nAzMsKoqpuElvbV2snfU79NbWxaaj2Fq1u0qzyx5lOTCDaut2qElNqq3bYTqKbdXW7VCDv8F0jLDS\nt29flZSUSJLKy8uVnp4etD0/P1/19fV65plnAstfAAAARCLmRQAA4Jd4EhAAAMBx5vf79cADD+ir\nr75SbGysHnroIZ166qmB7WvWrNHcuXPldDqVnZ2tkSNHHrRPZWWlpkyZIofDoe7du2v69OmBYpIf\nfvhBo0eP1rJlyw67xvu0gTNYDsygjOT+uvns23n6iUHD07P1/MZnNDw923QUW+vs6qJZgx5nGSqD\n/rX7X0EtWl5Su5MVGx1rOkZYycrK0rp16zRq1ChZlqWZM2dq+fLlqqur069//Wu9+eab6tevn669\n9lpJ0tixY5WVlWU4NQAAQPNjXgQAAH6JIiAAAIDjbNWqVfL5fCouLlZ5eblmzZqlZ599VpLU0NCg\ngoICvfnmmzrhhBM0evRoZWZm6vPPPz9gn4KCAk2cOFEDBw5Ufn6+Vq9eraysLH300UeaPXu2amtr\njyjTrNIHdV7n8ylCMeS1zQv0P+WP67TE03TNWWNNx7Glzq4ueuzCORSfGFbtrtLtq2/RG8OWMhaG\nnNf5/KAWLS8jub/uOe8e0zHCSlRUlGbMmBH0tbS0tMCft2zZ0tKRAAAAjGBeBAAAfok1CAAAAI6z\nsrIyDRo0SJLUu3dvbdq0KbCtoqJCKSkpSkxMVGxsrDIyMlRaWnrQPps3b9aAAQMkSYMHD9b69esl\n7f/Q55VXXlH79u2PKFODv4GlXwzqcEKHoBYtr6ymVDe8f63KakpNR7G1Gu82Vbq/UY13m+kotrXy\n6/eCWrS81zYv0MyPZ5qOAQAAAAAAgAhAERAAAMBx5vF4FB8fH3gdHR2txsbGwDaXyxXYFhcXJ4/H\nc9A+lmXJ4XAE9nW73ZKkCy64QCeeeOIRZ3I6nEpqd3JI54Vjd3ZSL52W0E1nJ/UyHcW2aut2yGf5\nKIYzrLZuB0WJhg1NvUSS4/9aAAAAAAAAAOEs5CIgv9+v/Px85eTkKDc3V5WVlUHb16xZo+zsbOXk\n5GjRokWH7FNZWanRo0drzJgxmj59uvx+vyRp0aJFGjFihEaOHKm1a9cGHf+DDz5QXl5eqKcBAABw\n3MTHx8vr9QZe+/1+OZ3OA27zer1yuVwH7RMVFRW0b0JCwjFl6uzqouS4TsfUF6Hr7OqisWdez/JH\nsL1dP+0KatHy9hdgWRRiGXRRSqZOTTzVdAwAAAAAAABEgJCLgFatWiWfz6fi4mLl5eVp1qxZgW0N\nDQ0qKCjQvHnzVFhYqOLiYu3cufOgfQoKCjRx4kQtXLhQlmVp9erVqq2tVWFhoYqKivTyyy9rzpw5\n8vl8kqSHHnpIs2fPDhQLAQAAtEZ9+/ZVSUmJJKm8vFzp6emBbWlpaaqsrNSePXvk8/m0YcMG9enT\n56B9evbsqU8//VSSVFJSon79+h1Tph/37Q3llBCi1zYv0IxPp+m1zQtMR7E1hxymI9geS+OZRyGW\neZ1dXfTk0CdNxwAAAAAAAEAECLkIqKysTIMGDZIk9e7dW5s2bQpsq6ioUEpKihITExUbG6uMjAyV\nlpYetM/mzZs1YMAASdLgwYO1fv16bdy4UX369FFsbKxcLpdSUlK0ZcsWSftvqD3wwAOhngIAAMBx\nlZWVpdjYWI0aNUoFBQWaOnWqli9fruLiYsXExGjKlCkaP368Ro0apezsbHXs2PGAfSRp8uTJeuqp\np5STk6OGhgYNGTLkmDLt9u3S/C/nNedpAmHl7KRe+lXbJJZkM+xfu/8V1AJ2VFZTqqvfuNp0DAAA\nAAAAAEQAZ6gH8Hg8io+PD7yOjo5WY2OjnE6nPB6PXC5XYFtcXJw8Hs9B+1iWJYfDEdjX7XYf9BiS\ndOmllwb+JfyROPHEdnI6o4/5XMNRUpLr8DvhkLiGoeMahobrFzquYei4hqGJiorSjBkzgr6WlpYW\n+HNmZqYyMzMP20eSunXrpldfffWgf9eaNWuOKFN8jEvjzr7+iPZF8/v2x2+DWrS8L2u/UO2+Hfqy\n9guWZTPo9BNPD2rR8np0OFNOOdWjw5mmo9hWbd0ONfgbTMcAAAAAAABABAi5CCg+Pl5erzfw2u/3\ny+l0HnCb1+uVy+U6aJ+oqKigfRMSEg56jGOxe3fdMfULZ7W1btMRwh7XMHRcw9Bw/ULHNQxdc19D\niorM8zS49eF3a3TNWWNNR7GloamX6KnyORqaeonpKLZVVlMWaIemXmY4jX3xJCDzkuM6qUtCVyXH\ndTIdxbbOTuqlk+NONh0DAAAAAAAAESDk5cD69u2rkpISSVJ5ebnS09MD29LS0lRZWak9e/bI5/Np\nw4YN6tOnz0H79OzZM/Bkn5KSEvXr10/nnHOOysrKVF9fL7fbrYqKiqC/AwAAAAhH0VH2ekJla5OR\nnBHUwozh6dk6qU0HDU/PNh3F1n7ct9d0BFv7svYLbfduNx0DAAAAAAAAESDkJwFlZWVp3bp1GjVq\nlCzL0syZM7V8+XLV1dUpJydHU6ZM0fjx42VZlrKzs9WxY8cD9pGkyZMna9q0aZozZ45SU1M1ZMgQ\nRUdHKzc3V2PGjJFlWbrrrrvUpk2bkE8cAADAztrHnqiLUjIPvyOOG7/fbzqCrfEEmtahxrtNbt9e\n1Xi3sSybIfO/nKfdvl2a/+U8/fH8fNNxAAAAAAAAAIQg5CKgqKgozZgxI+hraWlpgT9nZmYqMzPz\nsH0kqVu3bnr11Vf/4+sjR47UyJEjD/j3Dxw4UAMHDjyW6AAAALa1x7eb5cAM+qR6vZrUpE+q1ysj\nub/pOLZ0YtsTg1qYUVu3Qw1Wg2rrdpiOYlunJZ4W1KLlUYwIAAAAAACA5hLycmAAAAAIP1GKUo8O\nZ5qOYVs/1v8Y1AJ2tWhLUVCLlrd73+6gFi3vvM7nK4qPZwAAAAAAANAM+JQJAADAhixZPHnDoKGp\nlwS1aHk9OpypaEc0xXCG/ebUrKAWLe/0E08PamFGTHSM6QgAAAAAAACIABQBAQAA2NCcC5/S0NTL\nTMewrU+q1we1aHm1dTvUZDVRDGdYjw5nyiEHxViwteS4TuoY19F0DAAAAAAAAEQAioAAAABsqOCz\nB1XtrjIdw7bO63y+ohWt8zqfbzoKYNQn1etlyaIgzqCzk3qpfeyJOjupl+kotlXj3abt3u2mYwAA\nAAAAACACUAQEAABgQzt+2q75X84zHcPW/PKbjmBru37aFdTCjB/rfwxq0fLe2rpYe3y79dbWxaaj\n2JplWaYjAAAAAAAAIAJQBAQAAAC0sDe2FMuSpTe2FJuOYlsdTugQ1MKM0xJPC2rR8j7fviGoRctL\njuukLgldTMcAAAAAAABABKAICAAAwKbcvr2mIwDGnJ3US8ntOrEEkmEUY5mX1r57UAszHA6H6QgA\nAAAAAACIABQBAQAA2FCUonR1jxzTMWzLFZsQ1KLl1Xi3qbZuh2q820xHsbUPv1sb1KLl/VwQSmGo\nOTXebfr+x+9NxwAAAAAAAEAEoAgIAADAhuJjXEqO62Q6hm1tqPksqEXLW/n1e2pSk1Z+/Z7pKLZ2\ndtI5QS1aHmPQSvAgIAAAAAAAADQDioAAAABsaG/Dj3qq7AnTMWzrpt63BLVoeRRitQ5f1m4MatHy\nvv3x26AWLS85rpOS45JNxwAAAAAAAEAEoAgIAADApi5Kudh0BNt6/LNZQS1a3lVnjAxqYYanwRPU\nouVREGdejXebqvdWm44BAAAAAACACEAREAAAgE19+N1a0xFsy9fkC2rR8nbv2x3Uwoy6Bm9Qi5bX\n1tk2qEXL+3l5QgAAAAAAACBUFAEBAADYlCs2wXQE23L79ga1aHk/1v8Y1AKAKYltEk1HAAAAAAAA\nQISgCAgAAMCmuOkIO9u0c2NQCzNKt/1vUAvYEcWIAAAAAAAAaC4UAQEAANjUu18vNx3Btmp/qg1q\n0fJOTTgtqIUZzihnUIuW92P9nqAWLW9DzWemIwAAAAAAACBCUAQEAABgUxd0Hmw6gm1FO6KDWrS8\nxVuLg1qYsef/Ck/2UIBizBe1fwtq0fLqm/aZjgAAAAAAAIAIQREQAACATfHkAXPiYuKCWrS8KEdU\nUAszvH5vUIuW16SmoBYtr010W9MRAAAAAAAAECH4xBsAAMCmdrEUlTE7fTuDWrS8uoa6oBZmRP3f\nr6RR/GpqjF/+oBYt7/PtpaYjAAAAAAAAIELwSSsAAIBNVXuqTEcAjPHJF9TCDApQAOkn6yfTEQAA\nAAAAABAhKAICAACwqX1N+0xHAIyxZAW1AAAAAAAAAACEO4qAn64wZAAAFdBJREFUAAAAbKpBDaYj\nAAAAAAAAAAAAoJlQBAQAAAAAAAAAAAAAAACEOYqAAAAAAAAAAAAAAAAAgDBHERAAAAAAAAAAAAAA\nAAAQ5igCAgAAAAAAAAAAAAAAAMIcRUAAAAAAAAAAAAAAAABAmKMICAAAwKbiouJMRwAAAAAAAAAA\nAEAzoQgIAADApi5Lu9J0BAAAAAAAAAAAADQTioAAAABsqsdJZ5qOYFsnOE4IatHyGANgvx6JZwa1\naHnnnNTLdAQAAAAAAABEiJCLgPx+v/Lz85WTk6Pc3FxVVlYGbV+zZo2ys7OVk5OjRYsWHbJPZWWl\nRo8erTFjxmj69Ony+/2SpEWLFmnEiBEaOXKk1q5dK0nat2+fbr/9do0ZM0Y33nijfvjhh1BPBQAA\nAGgRkwbcF9Si5U3odWtQCzMuP+3KoBYtb2SPMUEtWt6qUR+pb8e+pmOElWP5LAoAACASMS8CAAC/\nFHIR0KpVq+Tz+VRcXKy8vDzNmjUrsK2hoUEFBQWaN2+eCgsLVVxcrJ07dx60T0FBgSZOnKiFCxfK\nsiytXr1atbW1KiwsVFFRkV5++WXNmTNHPp9Pr7/+utLT07Vw4UL97ne/0zPPPBPqqQAAANjGr9qc\nrOHp2aZj2Nbw9GzGwLCM5IygFmY8OKhA8U6XHhxUYDqKbd2WcafyBz6o2zLuNB3F1spuLjMdIawc\ny2dRAAAAkYh5EQAA+KWQi4DKyso0aNAgSVLv3r21adOmwLaKigqlpKQoMTFRsbGxysjIUGlp6UH7\nbN68WQMGDJAkDR48WOvXr9fGjRvVp08fxcbGyuVyKSUlRVu2bAk6xuDBg/XJJ5+EeioAAAC2kRSX\nZDqC7TEGZp2d1Eunurrp7CSW4TEtOa6T6Qi2RwEQws2xfBYFAAAQiZgXAQCAX3KGegCPx6P4+PjA\n6+joaDU2NsrpdMrj8cjlcgW2xcXFyePxHLSPZVlyOByBfd1u9yGP8fPXf973cJKSXIfd52gsn80j\n60PFNQwd1zB0XMPQcQ1DxzVES3t/7HvqmtjVdAzbSko6kzEwLCnpTH00/q+MgWH7YuN1Qps26tAh\nXkmJzfv7GoDIdSyfRR2J5v7cCEePMTCPMTCPMTCPMUA4YV4UuRgD8xgD8xgD8xiD8BRyEVB8fLy8\nXm/gtd/vl9PpPOA2r9crl8t10D5RUVFB+yYkJBzRMX7eFwAAAEeGwgfzGAPzGAPzuiZ21cZbNpqO\nASDMHMtnUQAAAJGIeREAAPilkJcD69u3r0pKSiRJ5eXlSk9PD2xLS0tTZWWl9uzZI5/Ppw0bNqhP\nnz4H7dOzZ099+umnkqSSkhL169dP55xzjsrKylRfXy+3262Kigqlp6erb9+++utf/xrYNyMjI9RT\nAQAAAAAAQCt3LJ9FAQAARCLmRQAA4JcclmVZoRzA7/frgQce0NatW2VZlmbOnKm///3vqqurU05O\njtasWaO5c+fKsixlZ2frmmuuOWCftLQ0ffPNN5o2bZoaGhqUmpqqhx56SNHR0Vq0aJGKi4tlWZZu\nuukmDRkyRD/99JMmT56s2tpaxcTEaPbs2UpKSmqu6wIAAAAAAIBW6Fg+iwIAAIhEzIsAAMAvhVwE\nBAAAAAAAAAAAAAAAAMCskJcDAwAAAAAAAAAAAAAAAGAWRUAAAAAAAAAAAAAAAABAmKMICAAAwIa+\n+OIL5ebmmo5hSw0NDZo0aZLGjBmjq666SqtXrzYdyXaampo0depUjRo1SqNHj9bWrVtNR7KtXbt2\n6cILL1RFRYXpKLY0fPhw5ebmKjc3V1OnTjUdx5aef/555eTkaMSIEXrjjTdMx4l4fr9f+fn5ysnJ\nUW5uriorK4O2r1mzRtnZ2crJydGiRYsMpYxshxuDd955R1dffbVGjRql/Px8+f1+Q0kj1+HG4GfT\npk3T448/3sLp7OFwY7Bx40aNGTNGo0eP1h133KH6+npDSSPX4cZg2bJlGj58uLKzs7Vw4UJDKe3h\nYJ9N8DP5+GNeZB7zIvOYF5nHvMg85kWtR3POiygCQsTx+XymI4Stffv2cf1CtGvXLtMRwprf79f2\n7dv5hSZEP/zwgyzLMh0DrdiLL76o+++/n1+aDFm2bJnat2+vhQsX6qWXXtKDDz5oOpLtrF27VpJU\nVFSkiRMn6s9//rPhRPbU0NCg/Px8tW3b1nQUW6qvr5dlWSosLFRhYaEKCgpMR7KdTz/9VH/729/0\n+uuvq7CwUDU1NaYjRbxVq1bJ5/OpuLhYeXl5mjVrVmBbQ0ODCgoKNG/ePBUWFqq4uFg7d+40mDYy\nHWoM9u3bpyeeeEILFixQUVGRPB5P4Gc2ms+hxuBnRUVFFEkfR4caA8uyNG3aNBUUFOj111/XoEGD\nVF1dbTBtZDrc++DRRx/VK6+8otdff12vvPKKfvzxR0NJI9vBPpvgZ3LLYF5kHvMi85gXmce8yDzm\nRa1Dc8+LKAJC2FqzZo0uvvhiZWVl6d133w18/YYbbjCYKrz861//0h/+8AdNnTpV69ev16WXXqpL\nL72UyeRR+Oabb4L+u+WWWwJ/xpG57777JO2vcB0yZIhuu+02XX755SovLzecLHwsXrxYTz/9tDZv\n3qyhQ4fquuuu09ChQ7V+/XrT0dBKpaSk6KmnnjIdw7aGDh2qO++8U9L+X2ajo6MNJ7Kf3/72t4Hi\nq3//+99KSEgwnMieHnnkEY0aNUonn3yy6Si2tGXLFv3000+6/vrrNXbsWOZeBnz88cdKT0/Xrbfe\nqptvvlkXXXSR6UgRr6ysTIMGDZIk9e7dW5s2bQpsq6ioUEpKihITExUbG6uMjAyVlpaaihqxDjUG\nsbGxKioq0gknnCBJamxsVJs2bYzkjGSHGgNJ+vzzz/XFF18oJyfHRDxbONQYfPPNN2rfvr3mz5+v\n3//+99qzZ49SU1NNRY1Yh3sfnHHGGXK73fL5fLIsSw6Hw0TMiHewzyb4mdwymBeZx7zIPOZF5jEv\nMo95UevQ3PMi5/EICbSE5557TkuXLpXf79edd96p+vp6DR8+nKdfHIXp06frzjvvVHV1te644w69\n//77atOmjW644QZdfPHFpuOFheuuu05t27bVySefLMuy9M033yg/P18Oh0MLFiwwHS8sVFVVSZL+\n/Oc/68UXX9Rpp52m7du3Ky8vT6+++qrhdOFh4cKFKiws1C233KJnn31W3bp10/bt2/WHP/xB559/\nvul4aIWGDBkSeO+h5cXFxUmSPB6P7rjjDk2cONFwIntyOp2aPHmyPvjgAz355JOm49jOkiVLdNJJ\nJ2nQoEF64YUXTMexpbZt22r8+PG6+uqr9e233+rGG2/UypUr5XTyMUFL2b17t/7973/rueeeU1VV\nlW655RatXLmSD9SOI4/Ho/j4+MDr6OhoNTY2yul0yuPxyOVyBbbFxcXJ4/GYiBnRDjUGUVFR+tWv\nfiVJKiwsVF1dnS644AJTUSPWocZgx44dmjt3rp5++mm99957BlNGtkONwe7du/W3v/1N+fn5SklJ\n0c0336xf//rXOu+88wwmjjyHGgNJ6t69u7Kzs3XCCScoKyuLfzRwnBzsswl+JrcM5kXmMS8yj3mR\necyLzGNe1Do097yIT/cMys3NVUNDQ9DXfq6gKyoqMpQqfMTExCgxMVGS9Mwzz+jaa69Vp06d+MD0\nKPj9fg0YMEDS/kfRd+jQQZL44P8oLF68WNOnT9fo0aN1wQUXKDc3V4WFhaZjhaXo6GiddtppkqSO\nHTuyJNhRiImJUbt27RQXF6euXbtK2n8N+X4ItF7btm3TrbfeqjFjxuiKK64wHce2HnnkEd1zzz0a\nOXKkVqxYoXbt2pmOZBuLFy+Ww+HQJ598on/84x+aPHmynn32WSUlJZmOZhvdunXTqaeeKofDoW7d\nuql9+/aqra1Vp06dTEezjfbt2ys1NVWxsbFKTU1VmzZt9MMPPwR+L0Pzi4+Pl9frDbz2+/2B339/\nuc3r9QZ90Ibmcagx+Pn1Y489pm+++UZPPfUUv9McB4cag5UrV2r37t2aMGGCamtrtW/fPqWmpmrE\niBGm4kakQ41B+/btdeqppyotLU2SNGjQIG3atImbXc3sUGOwZcsWffjhh1q9erXatWunSZMm6b33\n3tMll1xiKq7t8DO5ZTAvMo95kXnMi8xjXmQe86LW7Vh/JrMcmEH33HOPvF6vHn30Uc2ePVuzZ8/W\nnDlzNHv2bNPRwkLnzp1VUFCguro6xcfH6+mnn9aMGTP09ddfm44WNrp166Y//vGP8vv9gTUeX3jh\nhUCFOQ6vQ4cOeuKJJ/Thhx/queeeMx0nLHk8Ho0YMULV1dV64403VF9frz/96U865ZRTTEcLG5mZ\nmbrlllvUvXt33XTTTZo/f77Gjx+vc88913Q0AAewc+dOXX/99Zo0aZKuuuoq03FsaenSpXr++ecl\nSSeccIIcDoeiovjVqCW99tprevXVV1VYWKgzzzxTjzzyCAVALezNN98M/A6wfft2eTwexqCFZWRk\n6KOPPpJlWdq+fbt++ukntW/f3nSsiNa3b1+VlJRIksrLy5Wenh7YlpaWpsrKSu3Zs0c+n08bNmxQ\nnz59TEWNWIcaA0nKz89XfX29nnnmmcDyF2hehxqDsWPHasmSJSosLNSECRN0+eWXc6PrODjUGHTt\n2lVer1eVlZWSpA0bNqh79+5GckayQ42By+VS27Zt1aZNG0VHR+ukk07S3r17TUW1JX4mtwzmReYx\nLzKPeZF5zIvMY17Uuh3rz2Qe92FQr169dOWVV+qrr75SVlaW6ThhZ+bMmVq2bFmg+rlTp05asGBB\n4IYODu+hhx7SmjVrgm56dezYUbm5uQZThR+n06k//vGPWrJkCcvRHYMlS5bI5/Npy5Ytatu2rRwO\nh9LT07kxfhQmTJigzz77TB9//LFOOeUU7dq1S7m5ubroootMRwNwAM8995z27t2rZ555Rs8884wk\n6cUXX1Tbtm0NJ7OP//7v/9bUqVN1zTXXqLGxUffddx/XH7Zz1VVXaerUqRo9erQcDodmzpzJE0Fb\n2MUXX6zS0lJdddVVsixL+fn5io6ONh0romVlZWndunUaNWqULMvSzJkztXz5ctXV1SknJ0dTpkzR\n+PHjZVmWsrOz1bFjR9ORI86hxuDXv/613nzzTfXr10/XXnutpP03X/jMrHkd7n2A4+9wY/Dwww8r\nLy9PlmWpT58+/G5/HBxuDHJycjRmzBjFxMQoJSVFw4cPNx3ZFviZ3LKYF5nHvMg85kXmMS8yj3lR\n6xTqz2SHxR1rAAAAAAAAAAAAAAAAIKzxzHsAAAAAAAAAAAAAAAAgzFEEBAAAAAAAAAAAAAAAAIQ5\nioAAhI0zzjjjsPtkZmaqqqqqBdIAAAAAAAAAAAAAANB6UAQEAAAAAAAAAAAAAAAAhDmKgAAcN1dc\ncYUqKiokSXl5eZo+fbokqby8XDfeeKNeeOEFDR8+XMOGDdOjjz4qy7IkSUuXLtXw4cN15ZVX6r77\n7lN9fX3QcT///HMNGTJElZWV2rNnj2688UZdccUVmjhxYmBfj8ejO+64Qzk5Obr44os1adIkWZal\nSZMmqbi4OHCs3NxcffHFFy1xOQAAAAAAAAAAAAAAOG4oAgJw3Fx44YX65JNPJElbt27V559/Lkkq\nKSnRRRddpE2bNunNN9/U0qVLtX37di1btkz//Oc/tWjRIhUVFentt99Whw4d9PLLLweO+Y9//EN/\n/OMf9eyzz+rUU0/Vk08+qZ49e2r58uW65pprtHPnTknShx9+qDPPPFPFxcV6//33VV5ers2bNys7\nO1vLli2TJFVXV+uHH35Qr169WvjKAAAAhIZlUgEAAAAAAAAAv+Q0HQBA5Lrooov0yiuv6Nxzz9Xp\np5+ur7/+Wrt27VJJSYm6d++ujRs3asSIEZKkffv26ZRTTpHb7VZlZaVGjhwpSWpoaFDPnj0Dx7zh\nhhs0dOhQpaamSpI+++wzzZ49W5LUv39/de3aVZJ0+eWXa+PGjZo/f76+/vpr7dmzR3V1dRo4cKCm\nTZumqqoqvf3227ryyitb8pIAAAAAAAAAAAAAAHBcUAQE4Ljp06eP7r33Xq1fv14DBgxQhw4dtHLl\nSjU0NMjlcunaa6/VddddJ0nau3evoqOj9eabb+qSSy7R/fffL0nyer1qamoKHPPxxx/Xvffeq6uv\nvlo9evSQw+EILCMmSdHR0ZKkwsJCvf/++xo5cqTOP/98bd26VZZlyeFw6He/+51WrFihlStX6qWX\nXmrBKwIAAOzqiiuu0BNPPKG0tDTl5eUpPj5ef/rTn1ReXq65c+eqf//+eu+999TU1KT/+q//0qRJ\nk+RwOLR06VL95S9/kd/v11lnnaXp06erTZs2geN+/vnnmjp1ql544QUlJiZq0qRJqqmpUVpaWtAy\nqffdd5+2b9+uHTt2qF+/fnr00Ud17733ql+/fsrJyZG0f5nUe+65h6ckAgAAAAAAAECYYjkwAMdN\ndHS0evXqpcLCQg0YMEDnnnuunnvuOV144YU699xz9fbbb8vr9aqxsVG33nqr3n//fQ0cOFAffPCB\ndu3aJcuy9MADD+gvf/lL4JjnnXee8vLydP/998vv9+u8887T22+/LUnauHGjvvvuO0nSunXrlJOT\no2HDhsnhcGjLli3y+/2SpBEjRqioqEjJycnq2LFjy18YAABgOyyTCgAAAAAAAAA43ngSEIDj6sIL\nL1RpaanS0tKUlJSkXbt26aKLLlLfvn21ZcsWjRw5Uk1NTRo0aJCGDx8uh8Oh2267Tddee638fr/O\nPPNMTZgwIeiYv/vd77R48WIVFhbqjjvu0JQpU3TZZZcpNTU1sBzYtddeqwceeEDz5s1TXFyc+vTp\no6qqKklSp06dlJycrOHDh7f49QAAAPbEMqkAAAAAAAAAgOPNYf3/19EBgAhnWZZ27Nih3NxcvfPO\nO4qNjTUdCQAA2EBTU5OysrI0btw4xcTEqKKiQt26ddOiRYs0cOBAderU6YDLpH7//ff/sUxqQkKC\nzjjjDM2fP1/33nuvXnzxRfXo0UNXXHGFHnvsMfXo0UOSNGTIEL388stau3ZtYJnUHj16KD8/X3fd\ndZcGDhyouXPnyul06p133tFLL73EUxIBAAAAAAAAIIyxHBgAW3n//fd15ZVX6u6776YACAAAtBiW\nSQUAAAAAAAAAHG8sBwbAVoYOHaqhQ4eajgEAAGyIZVIBAAAAAAAAAMcTy4EBAAAAgA2xTCoAAAAA\nAAAARBaWAwMAAAAAG2KZVAAAAAAAAACILDwJCAAAAAAAAAAAAAAAAAhzPAkIAAAAAAAAAAAAAAAA\nCHMUAQEAAAAAAAAAAAAAAABhjiIgAAAAAAAAAAAAAAAAIMxRBAQAAAAAAAAAAAAAAACEOYqAAAAA\nAAAAAAAAAAAAgDBHERAAAAAAAAAAAP9fe3BAAgAAACDo/+t2BCoAAMBcfBY8uc3WLKMAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb Rows: 10204\n" + ] + } + ], + "source": [ + "# create ohlc prices, analyse distribution, think about feature transformation and de-trending\n", + "\n", + "fig, axarr = plt.subplots(4, 4, figsize=(40,20)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "irow, icol = 0,0\n", + "fig.suptitle(\"frequency distributions\")\n", + "\n", + "\n", + "sns.distplot(df.period_return-1, ax=axarr[irow, icol])\n", + "axarr[irow, icol].set_title(\"dist period_return\")\n", + "#axarr[0, 0].set_title('Axis [0,0] Subtitle')\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " icol+=1\n", + " sns.distplot(df.avg_bo_spread, ax=axarr[irow, icol])\n", + " axarr[irow, icol].set_title(\"dist avg_bo_spread\")\n", + " icol+=1\n", + " icol = pltGraph(\"ohlc_price\", \"avg_bo_spread\", irow, icol, df)\n", + " qlow, qhigh = 0.01, 0.99\n", + " df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)) & (df.avg_bo_spread < df.avg_bo_spread.quantile(qhigh) ) & (df.avg_bo_spread > df.avg_bo_spread.quantile(qlow)),:]\n", + " #df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)) & (df.avg_bo_spread < 0.0001 ) & (df.avg_bo_spread > -0.0001),:]\n", + " icol = pltGraph(\"period_return\", \"avg_bo_spread\", irow, icol, df_mask)\n", + " \n", + " \n", + " \n", + " irow, icol = 1, 0 # move down one row\n", + " \n", + " icol = pltGraph(\"ohlc_price\", \"avg_bo_spread\", irow, icol, df)\n", + " icol = pltGraph(\"hour\", \"avg_bo_spread\", irow, icol, df)\n", + " icol = pltGraph(\"hour\", \"nb_ticks\", irow, icol, df)\n", + " icol = pltGraph(\"day\", \"nb_ticks\", irow, icol, df)\n", + " \n", + " irow, icol = 2, 0\n", + " df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)),:]\n", + " icol = pltGraph(\"hour\", \"period_return\", irow, icol, df_mask)\n", + " icol = pltGraph(\"hour\", \"ohlc_price\", irow, icol, df)\n", + " icol = pltGraph(\"weekday\", \"period_return\", irow, icol, df)\n", + " icol = pltGraph(\"weekday\", \"nb_ticks\", irow, icol, df)\n", + " \n", + " irow, icol = 3, 0\n", + " res = df.loc[:,[\"weekday\", \"avg_bo_spread\"]].groupby(\"weekday\").std()\n", + " res.plot(kind=\"bar\", ax=axarr[irow, icol])\n", + " #display(res)\n", + " \n", + " icol = pltGraph(\"weekday\", \"avg_bo_spread\", irow, icol+1, df)\n", + " \n", + "\n", + "#plt.tight_layout() # reduce overlap\n", + " plt.show()\n", + "\n", + "print(\"Nb Rows: \", df.high_bid.count())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- it seems the hours with the least number of ticks have the highest bo spread. This is expected, as during low activity traders might set spreads wide to avoid surprises.\n", + "- period return is between two closing bids, 15 minutes apart. It might be a spurious measure.\n", + "- do i have to stick to 15 minute intervals to complete this?\n", + "- weekday 1 seems to have higher stdev of avg bo spread" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Add PCA as a feature and show graphs" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "df_np = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(df_np)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABs4AAAKTCAYAAAC5Jf2HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8z/X///H7zmMbwjRtH0JG5diYhBwicj6Nmc8QSvpE\nxbLJYYUKjU8slVSUnCZznFSUqIl9lo+klA9Rm405xDazjb1/f/i9398d3u+d7PDe3K7/zF6v1/P1\nfL7e+1wun0fv++v5fNoYDAaDAAAAAAAAAAAAgDucbXkPAAAAAAAAAAAAALAGBGcAAAAAAAAAAACA\nCM4AAAAAAAAAAAAASQRnAAAAAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAgieAMAAAA\nAIolMDBQCxYsuO37GAwGRUREKD093eI1ixcv1kMPPaQ2bdroypUrt93nV199pYSEhNu+DwAAAABU\nNjYGg8FQ3oMAAAAAgIrm77//lr29vVxdXW/rPocOHVJgYKB+/PFHubi45Dl/7tw5Pfroo5o7d64e\neeQReXl53VZ/8fHx6tatm7Zv3y5vb+/buhcAAAAAVDb25T0AAAAAAKiIatSoUSL3KehdxqtXr0qS\n2rdvf9uhWWH6AwAAAIA7GUs1AgAAACgzTZo00caNG9W3b1+1atVKTz75pP7880/T+b///lshISHy\n9fWVr6+vgoODlZKSIkm6cOGCpk6dqocffljNmjVT9+7d9dlnn1nsq6DrMzIyFBoaqrZt2+rhhx/W\n8uXL1aNHDx08eLBQ7bMv1RgeHq7nnntO8+fPl6+vr9q0aaO5c+fq5s2bkm7NGnvmmWfk4+OjNm3a\naPLkybp48aLi4uI0atQoSdJDDz2kyMjIHM9w8OBB9e3bV5LUvXt3hYSESJKOHDkif39/NW/eXI8/\n/rhWrFihrKwsU7tt27apX79+atasmR566CFNnDhRFy5ckCQ99thjkqR+/fopPDxckZGRateuXY5+\nQ0JCNHnyZElSZGSkBg0apKCgID300EN69913JUlbtmxRz5491bJlSw0aNEh79+41tbf0vAAAAABg\n7QjOAAAAAJSpsLAwPfvss4qIiJCtra2eeuopZWZmSpImTZqk33//XcuXL9eqVat0/PhxzZkzR5I0\nbdo0Xbp0SatWrVJUVJS6deumV155xRQI5VbQ9fPmzdP333+vZcuW6YMPPtCXX36pv/76q9Dtc9u7\nd69SU1O1YcMGzZw5U2vXrtXXX38tSXr11VeVmZmpiIgIffrpp4qPj9f8+fNVt25dhYeHS5J2796t\n3r1757hn69attXr1aknSxo0bNWPGDF28eFHjxo1Tly5dtGPHDs2YMUNr167VBx98IEn68ccf9fLL\nL2vcuHH64osvtGzZMv3666967733TPeRpNWrV2vs2LGF+pv98ssvqlatmjZv3qwBAwZo//79eu21\n1/T8889r+/btGj58uCZPnqzDhw/n+7wAAAAAYO1YqhEAAABAmRo1apQpIFqwYIG6dOmi6Oho3XPP\nPTp06JC2bt2qpk2bSpLmzp2r6OhoSVKXLl3UtWtX/eMf/5AkTZw4UR9//LFOnz6t2rVr5+knv+ur\nVKmiyMhILVmyRL6+vpKkhQsX5giuitqfs7OzZs2aJUdHRzVo0EAff/yxjh49qh49eiguLk4NGjSQ\nl5eXnJyctHjxYqWmpsrOzk7Vq1eXJNWsWVPOzs457uno6GhaErJmzZpyc3PT0qVL1aJFCz3zzDOS\npPr162vKlCl67bXX9PTTT8vJyUlz587VwIEDJUmenp567LHHdOLECdN9pFtLTZrbU82SZ5991vTc\n06ZN07hx40yfV7169XTs2DGtXLlSrVu3tvi8AAAAAGDtCM4AAAAAlKk2bdqY/l27dm15enrqxIkT\nunbtmhwdHdWkSRPT+RYtWqhFixaSpICAAO3atUurVq3S6dOn9csvv0iSaTnE3PK7/tSpU8rMzFTz\n5s1N1zdq1EjVqlUrVHtz6tatK0dHR9Pvrq6uppl0zzzzjIKDg9WuXTs9/PDD6t69u/r371/4Dy2b\n//3vfzp48KBat25tOpaVlaXr16/r8uXLevDBB+Xi4qJly5bp5MmTOnnypE6cOCEfH59i9SdJVatW\nzREWnjhxQkeOHNHy5ctNxzIzM9WgQQNJJfu8AAAAAFCWCM4AAAAAlCk7O7scv9+8eVN2dnZycHCw\n2CYrK0vjx49XYmKi+vTpo+HDh+u+++7TE088UazrjX0ZDIYS6S/7Pc3p3bu3Hn74YX3zzTemZQ63\nb9+ujz/+2GIbS27cuKHHH39cL7zwQp5zbm5uio6O1oQJE9S7d2+1adNGo0aN0o4dO/Tbb7+ZvZ+N\njY3ZPrLLHghKt/5mU6dOVdeuXXMct7e/9Z+YJfm8AAAAAFCWCM4AAAAAlKljx46ZZp2dP39eiYmJ\natq0qerUqaOMjAydOHFC3t7ekqQffvhB06dP11tvvaUDBw5o9+7dpqUTf/rpJ0nmw69ffvkl3+vr\n1asnJycn/fzzz7r77rslSWfOnNHVq1cL1b6o3nrrLXXr1k1DhgzRkCFD9P3332vs2LG6cOGC2eAq\nP40aNdL+/ftVv35907Hdu3dr165dWrhwoT755BM98cQTWrBggen8smXLTOPO3Z+Dg4PS0tJkMBhM\n5+Li4lSnTp18xxAfH59jDMuWLZODg4OefvrpfJ/X3DKXAAAAAGAtbMt7AAAAAADuLO+9956+/fZb\n/fbbbwoODtZ9990nX19fNWrUSB07dtTMmTN19OhR/fzzz1qwYIHatWsnDw8P2dnZKSoqSvHx8fr+\n++8VHBwsScrIyMjTh7u7e77XV61aVcOGDdOCBQsUExOjX375RSEhIZJuBUsFtS+qU6dOac6cOTp6\n9KjOnDmjHTt2yNPTUzVr1lTVqlUl3QoUC7MP2MiRI3X69GnNmzdPp06d0nfffafQ0FC5ubnJ1tZW\nderU0U8//aRjx47pjz/+0L///W/t27fPNG5jf7/++quSk5PVrFkzpaena8WKFfrrr7/0/vvvm5al\ntGT8+PFav3691q1bpz///FPr1q3TsmXL5OXlVeDzAgAAAIA1IzgDAAAAUKaGDRum119/Xf7+/qpa\ntaref/990/KNb775pjw9PTV69GiNHz9ezZs316xZs3T33Xdrzpw5ioiI0BNPPKF58+YpICBATZo0\n0bFjx/L0UZjrg4KC1KZNG02YMEFjx45Vz549ZWNjIwcHhyL3V5BXX31V9evX1/jx49W/f3+dPXtW\ny5cvl62trby9vdW1a1eNHTtWERERBd7Lw8NDH3zwgX7++WcNGDBAISEh6t+/v6ZPny5Jmjx5surV\nq6d//vOfGjFihH7//XcFBwfrf//7n9LT03XXXXfJz89PM2fO1NKlS3Xvvfdq+vTp+uSTT9S/f3+d\nPHlSo0ePzncMPXr00KxZs7Rq1Sr17t1bq1at0pw5c9S7d+8CnxcAAAAArJmNoTjrjAAAAABAMTRp\n0kTvvfdenr2xysNXX32l9u3by9XVVZJ06dIltW/fXt98843uueeech4dAAAAAKA8sMcZAAAAgDvS\nO++8o127dum5557TjRs3FB4erlatWhGaAQAAAMAdjHUyAAAAANyRwsLCdPnyZQ0ZMkQjRoyQjY2N\n3n777fIeFgAAAACgHLFUIwAAAAAAAAAAACBmnAEAAAAAAAAAAACSCM4AAAAAAAAAAAAASQRnAAAA\nAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAgieAMAAAAAAAAAAAAkERwBgAAAAAAAAAA\nAEgiOAMAAAAAAAAAAAAkEZwBAAAAAAAAAAAAkgjOAAAAAAAAAAAAAEkEZwAAAAAAAAAAAIAkgjMA\nAAAAAAAAAABAEsEZAAAAAAAAAAAAIIngDAAAAAAAAAAAAJBEcAYAAAAAAAAAAABIIjgDAAAAAAAA\nAAAAJBGcAQAAAAAAAAAAAJIIzgAAAAAAAAAAAABJBGcAAAAAAAAAAACAJIIzAAAAAAAAAAAAQBLB\nGQAAAAAAAAAAACCJ4AwAAAAAAAAAAACQRHAGAAAAAAAAAAAASCI4AwAAAAAAAAAAACQRnAEAAAAA\nAAAAAACSCM4AAAAAAAAAAAAASQRnAAAAAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAg\nieAMAAAAAAAAAAAAkERwBgAAAAAAAAAAAEgiOAMAAAAAAAAAAAAkEZwBAAAAAAAAAAAAkgjOAAAA\nAAAAAAAAAEkEZwAAAAAAAAAAAIAkgjMAAAAAAAAAAABAEsEZAAAAAAAAAAAAIIngDAAAAAAAAAAA\nAJBEcAYAAAAAAAAAAABIIjgDAAAAAAAAAAAAJBGcAQAAAAAAAAAAAJIIzgAAAAAAAAAAAABJBGcA\nAAAAAAAAAACAJIIzANmEhIToww8/NHuuSZMmunTpUqn2f+7cOfn7+5dqHwAAAKUpMjJSEyZMKO9h\nlLg5c+YoPDy8vIcBAACsCHVPyQgPD9ecOXPMnuvWrZuOHj1a6mMYMGCArl69Wur9ABWFfXkPAACM\n7r77bq1fv768hwEAAAAAAADcMbZu3VreQwCsCsEZcAfasGGDVq9eLVtbW9WuXVuzZs1SgwYNJEmH\nDx+Wv7+/Lly4oMaNG2vRokWqWrVqjvbLly/X5s2bZW9vr/r162v+/Plyc3Oz2F9gYKAaNWqkn3/+\nWZcvX9aAAQM0efJkxcXFaeTIkWrUqJHi4+M1f/58jR07VocPH9aNGzf05ptvau/evbKzs1Pr1q0V\nGhoqR0dHvfvuu/ryyy+VlZUlT09PhYaG6u67787Rp7+/v8aMGaNevXpJksLCwmQwGDRmzBgFBwfr\n8uXLkqTOnTvrhRdeyDPmBx54QKNHj9bBgwd17do1TZkyRY8//rjF57ezs9Mrr7yi06dP68qVK3Jx\ncVFYWJgaNmxY/D8UAAAoMVlZWXr99dd15MgRpaamymAwaN68efL29lbnzp31xRdfyN3dXZI0bNgw\n/etf/1Lz5s01ffp0/fnnn6pRo4bc3d3VuHFjTZo0Kd++kpKSNG7cOJ0/f16enp6aO3eu3N3dlZiY\nqFdeeUXx8fEyGAwaOHCgxo8fn++9Tp48qRkzZigjI0MGg0FDhw7VyJEjFR4erhMnTujChQu6ePGi\nmjZtqtdee02urq7q1q2bWrRood9++01TpkxRixYtNGfOHCUkJCgzM1N9+vTRM888I0l67733tHv3\nbqWnpystLU3BwcHq0aOHUlJSNGPGDB0/flx16tSRnZ2dfHx88nymXbt21dtvv63mzZtLkl588UW1\nbdtW7dq1Mzvu7OLi4hQYGChfX18dP35cBoNBs2fPVps2bSzWglevXtXs2bN18eJFJSUlydPTU2+9\n9ZZq1apVpP89AABQmVH3WF/dI0m7d+/W22+/rZs3b8rV1VXTp09XixYtJEmnTp1SYGCgkpKSVLt2\nbS1evFh16tTJ0f6zzz7TypUrZWtrq7vuuksLFixQ3bp1LX6eISEhsrGx0cmTJ3Xp0iV16NBBM2fO\nlIODg5o1a6bHHntMx48fV1hYmIYOHaoDBw6oZs2aFr/327hxo9atW6esrCzVqFFDs2bNUqNGjfL9\nmwIVFUs1AneYAwcO6IMPPtAnn3yibdu2qW/fvvrXv/4lg8Eg6dZyiStXrtQXX3yhc+fO6csvv8zR\nfs+ePYqMjNSGDRu0Y8cOeXl56dNPPy2w37Nnz2rdunXavHmzdu7cqW+++UaSlJiYqGeffTZH0SZJ\na9eu1bFjx7R161bt2LFDqamp2rlzp7Zs2aLff/9dGzdu1NatW9W5c2fNnDkzT39+fn7avHmzJOnm\nzZvatm2b/Pz8FBERIS8vL23evFlr1qzRmTNnlJycnKf9zZs3Vb16dUVGRuqtt97Syy+/rEuXLll8\n/n379qlatWqKiIjQF198oWbNmmnNmjWF/8MAAIBSdeTIEZ0/f14bNmzQzp07NWjQIK1YsUJubm7q\n0aOHtm3bJunWFzZJSUnq1KmT5s2bp/vuu0+ff/65lixZoh9//LFQff3xxx+aPXu2tm/fLm9vb732\n2muSpKCgILVr107bt2/XunXrtG3bNkVFReV7rw8//FDdunVTZGSk3n//ff3nP/9RVlaW6ZmWLl2q\nzz//XPb29lq2bJmpXePGjfX555+rR48eeumllzRkyBBFRkbqs88+U3R0tHbu3Kn4+HhFR0fr008/\n1fbt2/Xiiy9q6dKlkqSlS5fK2dlZu3bt0pIlS/THH3/kGZutra2GDBliqrmuXLmi6Oho9evXL99x\nZ3f27Fl17NhRW7du1dSpU/XCCy8oMzPTYi0YFRWlVq1aacOGDdqzZ4+cnZ15QxoAgFyoe6yv7jl5\n8qRCQ0MVHh6u7du3a/LkyXr22WeVkpIiSfrrr7+0ZMkS7dq1S9WqVdPGjRtztDcGXB988IG2b9+u\nbt266d133y3w73P8+HGtXLlSO3fu1MmTJ7VhwwZJUmZmprp27aovvvjCFARKlr/3O3TokLZs2aI1\na9Zoy5YtGj9+fIGhKlCRMeMMuMPs379fvXv3Vs2aNSVJgwcP1muvvaa4uDhJUvfu3VWlShVJtwqP\n3PuaHThwQL169VL16tUlSdOnTy9Uv8OHD5eDg4McHBzUq1cvfffdd2rcuLHs7e3VqlWrPNdHR0dr\nwIABcnZ2liS99dZbkqTnn39eR48e1ZAhQyTdeuMnLS0tT/snnnhCCxcuVFJSkn755RfVr19f9957\nrzp16qSnn35aCQkJeuSRRzR16lSLs+X++c9/SpKaNm0qb29vxcTEKCYmxuLz/+Mf/9Dq1at15swZ\nHTp0SK1bty7UZwMAAEpf69atVb16da1fv15//fWXDh48KBcXF0m3Xrh59dVXNW7cOG3atEmDBw+W\nra2tvv32W9OXI3Xq1DHNZC/II488ovr160uShg4dqqFDh+ratWv68ccf9dFHH0mS3NzcNHjwYO3b\nt099+vSxeK8ePXooODhYP/30k9q3b6+ZM2fK1vbW+4+9evVS7dq1Tf28/vrrCg4OliS1adNGknTt\n2jXFxMToypUrWrJkienY8ePH1bt3by1YsEDbt2/XmTNnTG+lS7dqvpdfflk2NjaqWbOmevToYXZ8\nQ4YM0dChQxUSEqIdO3aoa9eupi/lLI07u+rVq6tfv36Sbq0EYGdnp99++81iLShJ//nPf7Ry5Uqd\nPn1aJ06cUMuWLQvzZwEA4I5B3WN9dc8PP/yghx9+WP/4xz8kSe3bt1fNmjX1888/S5I6dOhg+q6u\nadOmZr+P69ixo2mG2ZgxY/L9uxgNGjTI9LcfMGCA9uzZY/q+y/i55e7H3PdeCxcu1JkzZ+Tv72+6\n9sqVK/r7779Vo0aNQo0FqEiYcQbcYYwzy3Ifu3HjhiTJ3v7/8nQbG5s819vZ2cnGxsb0+9WrV02h\nW36y39dgMJgKCEdHxxznzF0vSRcuXND58+eVlZWl8ePHa+vWrdq6das2bdqkdevW5WlftWpV9ezZ\nUzt27NCmTZvk5+cnSWrRooX27Nmj4cOHKz4+Xn5+fhbforKzszP9OysrS3Z2dhaff+3atZoxY4ac\nnZ3Vr18/9e3b1+xnDQAAysfevXtNm9c/9thjGjFihOmccWnAn376STt27DC9oGNvb5/j/8/NBT/m\nZK8hDAaD7O3tlZWVlac2yMrKMtVglhjfBH7iiSf066+/ql+/fvrzzz/z9JOVlZVjfMalto39rl+/\n3lQ/bdiwQRMmTNCxY8fk7++vlJQUdejQIc/ySdnHm72v7Dw9PfXAAw9o7969ioyMNNVc+Y3b0mdl\nHK+dnZ3FWvDNN9/UkiVLdNddd2n48OHq0KEDNRcAALlQ91hf3VPS38ddv35dJ0+eNDvO3O2y92fu\nc8uvH+P3XllZWRowYIDpc928ebM2bdpkCtiAyobgDLjDdOzYUTt37jS9ubJp0ybVqFHD9HZQQR55\n5BF99dVXpqnk4eHhWrVqVYHttm3bpqysLF25ckWff/65unXrlu/17du3144dO5SRkaGsrCy98sor\nioqKUseOHfXZZ5+Z+l+yZImmTZtm9h7Dhg1TZGSkDh8+rJ49e0q6tdfZO++8o+7du2vGjBm67777\ndPr0abPtt2zZIkk6duyY/vjjD7Vt29bi83/33XcaNGiQ/Pz81KBBA3399de6efNmgZ8LAAAoG99/\n/726du2qgIAANW/eXLt3787x/9V+fn6aO3eumjRponvuuUfSrRlQn332mSTp8uXL2r17d44vEiw5\nePCgzp49K0lat26dHn30Ubm6uqply5ampZyTk5O1ZcsWPfLII/nea+rUqdq5c6f69Omj0NBQubq6\nKiEhQdKtpXSSk5OVlZWliIgIde3aNU97V1dXtWrVSitXrpR068uPESNGaM+ePYqJiVGzZs305JNP\nytfXV3v27DF9Jp06ddJnn31mqt/27NljcYzDhg3TihUrdP36ddN+IPmNO7tLly5p3759kqSvv/5a\nDg4O8vb2tlgLfvfddxo9erQGDhyoWrVqKTo6mpoLAIBcqHusr+55+OGH9f333+uvv/6SdGtmV0JC\nQqFnzrdr104HDhzQ+fPnJUnr16/Xm2++WWC7zz//XBkZGUpPT9fmzZvNfm7ZWfreq0OHDoqKijL1\nv27dOo0ePbpQYwcqIpZqBO4wHTp00JgxYzR69GhlZWWZNv0s7JtEnTt31v/+9z/T20r33Xef5s6d\nW2C769eva+jQoUpNTVVAQIDat2+f70w1f39/xcfHa/DgwTIYDPL19VVgYKBsbW117tw5DRs2TDY2\nNqpbt67mz59v9h7NmjWTvb29evbsKScnJ0nS6NGjFRISor59+8rR0VFNmjRR3759zbb/8ccfFRER\noaysLP373/9W9erVLT7/8ePHNXv2bEVGRsrOzk4PPvigfv/99wI/FwAAUDb8/f0VFBSkfv36yc7O\nTm3atNGXX35pemN54MCBWrx4sRYvXmxqM336dM2cOVP9+vVTjRo1dM8995iWDsyPt7e3Xn75ZV24\ncEENGzbUnDlzJN16gWfOnDmKjIxURkaG+vXrp8GDB+d7r2effVYzZszQhg0bZGdnp+7du8vX11eH\nDh1S7dq19dRTT+ny5ctq27ataeP73MLCwjR37lz169dPGRkZ6tu3r/r3768LFy7oyy+/VO/eveXg\n4KD27dvrypUrSklJ0aRJkxQaGqonnnhCNWvWlLe3t8UxduvWTa+++qqeeuqpAsedm5OTk7Zu3aqw\nsDA5Oztr2bJlsrOzs1gLenp6auHChXrnnXdkZ2enhx56yOxMNgAA7mTUPdZX99x3330KDQ3Vc889\np5s3b8rZ2Vnvvfeexe1DcmvSpIleeukl00w5d3d3vf766wW2c3Z2VkBAgK5evaqePXuaZhhaYul7\nL1dXVz311FMaO3asbGxs5OrqqrfffrtQ4SpQEdkYWNcCQCkLDAzUyJEjC70+tjVo0qSJDhw4YFpf\nGgAA3HnWrFmjBx54QK1bt1ZGRoYCAgI0adIkde7cubyHpvDwcF2+fFmzZ88u76EUW1xcnPr166fD\nhw+X91AAALjjUfdUPiEhIWrcuLHGjRtX3kMBKhxmnAG4bT/88IPeeOMNs+fatWtXxqMBAAAoGcY3\nbLOyspSZmalevXqpc+fOCggIMG0mn9uaNWvk6upa6D5SUlI0cuRIs+dcXFy0du3aYo0dAACgKKh7\nKp5Tp07pxRdfNHuuQYMGhZoxCMA8ZpwBAAAAAAAAAAAAkgq3qREAAAAAAAAAAABQyRGcAQAAAAAA\noNI4cuSIAgMDzZ5LS0uTv7+/Tp48aTq2fPlyDR8+XIMHD9bGjRvLapgAAMBKVco9zpKSkst7CBVG\nfHKcPN288hwbs2ukVvVak+ccAAAlyd3drbyHABW+dspdI5irIwAAQOmhdirYihUrtG3bNlWpUiXP\nuaNHjyo0NFTnzp0zHTt48KAOHz6sdevWKS0tTR999FGBfRT3e6f45DgFRPlpbZ+N1FAAAJSy26mb\nmHF2BzN++RWfHJfjuKebF6EZAADII3uNYKmOAAAAKE/16tVTeHi42XMZGRlatmyZGjZsaDr23Xff\nydvbW//617/0zDPPqEuXLqU2tsTUhBw/AQCAdSI4u4PlF5ARmgEAAHOMNQIv2gAAAGvUs2dP2dub\nX2DJx8dHdevWzXHs8uXL+vnnn7VkyRK9+uqrCgoKksFgKNExxSfHKTYxRiH7g/R084kK2R+k2MSY\nEu0DAACUHIKzOxxfdgEAgOKijgAAABVdjRo11LFjRzk6Oqphw4ZycnLSpUuXSuz+xuUZp+ydrKk+\n07Tqlw815oFxhGcAAFgxgjMAAAAAAADckXx8fLR//34ZDAadO3dOaWlpqlGjRond39PNS4u7LNXa\nPhvV3L2l5ncK06pfPtRUn2kK2R/EstcAAFgh83PXAQAAAAAAgApu+/btunbtmoYPH272fNeuXRUT\nE6OhQ4fKYDBo9uzZsrOzK7H+45PjFLI/SFN9pmlR7EKt6rXGtNx1c/eWzOAHAMAK2RhKeuFmK5CU\nlFzeQwAAAIXg7u5W3kOAqJ0AAKgoqJ2sQ1Frp12norQodqHmdwqTh8utPdYIzAAAKF23UzexVCMA\nAAAAAABQCuKT43KEZn7bBiogyo8lGgEAsGIEZwAAAAAAAEAp8HTz0vxOYfLxaCtJcrBz0OIuS5lx\nBgCAFSM4AwAAAAAAAEpBfHKcpuydrPjkOHm6eWltn42mEA0AAFgngjMAAAAAAACglCRnXDX9m5lm\nAABYP4IzAAAAAAAAoBQcTTqi+JQ4HU06kucc+5wBAGCdCM4AAAAAAACAEhCfHJcjEGvu3lIf91qr\nXg37mM4bf47ZNTLH7wAAwDoQnAEAAAAAAAC3KT45TgFRfgqI8lN8cpxiE2M0ZtdINXdvaTpvDMs8\n3by0qtcaebp55QnRAABA+bIxGAyGsujo4sWLGjx4sD766CPZ29srJCRENjY2aty4sUJDQ2Vra6uI\niAitX78dkmAMAAAgAElEQVRe9vb2mjhxorp27arr16/rpZde0sWLF+Xi4qIFCxaoZs2a+faVlJRc\nFo8EAABuk7u7W3kPwWpROwEAgNyonaxDfrWTMfxKTE1QyP4gze8UJh+PtjnOm9vnLDYxJsd1AADg\n9txO3VQmM84yMzM1e/ZsOTs7S5LeeOMNvfDCC1q7dq0MBoP27NmjpKQkrV69WuvXr9eHH36oxYsX\nKyMjQ+vWrZO3t7fWrl2rgQMH6p133imLIcMM3nwCAKBsVITaiboAAAAgL2MoFrI/SFN9psnHo22O\nuslcaBafHKeQ/UHUVwAAWIkyCc4WLFggf39/1alTR5J07Ngx+fr6SpIeffRRRUdH66efflLr1q3l\n6OgoNzc31atXT8ePH1dsbKw6depkuvbAgQNlMWTkwrIBAACUHWuvnagLAAAALPN089L8TmFaFLvQ\ntFxjfnVT9mUbAQBA+Sv14CwyMlI1a9Y0fYEjSQaDQTY2NpIkFxcXJScnKyUlRW5u/zd1zsXFRSkp\nKTmOG69F2aOIAwCgbFSE2om6AAAAIH8+Hm21qtcaebjUNdVNsYkxFq+nrgIAwHqUenC2adMmRUdH\nKzAwUL/++quCg4N16dIl0/nU1FRVq1ZNrq6uSk1NzXHczc0tx3HjtSgfFHEAAJS+ilI7URcAAACY\nZ5xddjTpiMbsGqnE1ATFJsZo0NY+2nUqKs91AADAupR6cLZmzRp9+umnWr16te6//34tWLBAjz76\nqA4ePChJ2rdvn9q0aaMWLVooNjZW6enpSk5O1smTJ+Xt7a2HHnpI3377relaHx+f0h4yAABAuaF2\nAgAAqHiMIZhxSetdp6L09FdPaswD4zRpz0RJUg2nu/TGoXmKTYzRmmOfKCDKzxSkxSfH3VaQlrtt\nQfcqTl8EfQCAO0WZ7HGWW3BwsMLDwzV8+HBlZmaqZ8+ecnd3V2BgoAICAjR69Gi9+OKLcnJy0ogR\nI3TixAmNGDFCGzZs0HPPPVceQwYAACg31E4AAADWK/v+r8YlrZu7t5SXaz3VqlJLcSl/6kB8tC5f\nv6Snm0/UxN3j9eK3z+lcaqKe/upJU4gWEOVX7EAr+z5qBe1HW5z9aktij1uCNwBARWFjMBgM5T2I\nkpaUxD5oRsaiDQAAa+Tu7lbwRSh1Ra2dqC8AACgf1E7WwVztZK4+Mh7bdSpKs6NfliTNeeR1XUy7\nqJf2vahazrU1ocWz2noqUvM7hcnDpa7pHsa2ha27cl9nDKkstS1OPWepTWHuZQze2CcXAFBWbqdu\nKpcZZygbJfE2EAAAQHbUFwAAAHmZC4OyH0tIPatuXj301Jdj9NaPi1S7Sm1dTr+oT379SFN9puUJ\nzQKi/BSbGFPoustc//m1LU54ZSk0K8wYjTPxCM0AABUBM84qOd4IBwBYM96atg7MOAMAoGKgdrIO\nRamdjCGYX2N/LfzPa6rhdJdW9vpUHi51dTTpiF76doqqODirin1VLe6yVD4ebbXrVJTeODRPa/ts\nlFS8kMvYd1nUbNSGAABrxIwzWEThAgAAShr1BQAAQMHik+N0NOmIJOku57v0fo+VcnVwM80uu5h2\nUefSEnQj64am+85UyP4g7ToVpQm7x2q670x5unndVt1VVjUbtSEAoLKxL+8BAAAAAAAAAJVJfHKc\nBm3to4SUsxrZdLSmfDtJs9rNyXF+1S8f6t+d31bTWvfLx6Otmru3lKeblyL775CPR9tyHD0AAHc2\nZpwBAAAAAAAAJcxgkO5yrql98Xv15ANPaeOJ9bphyJR0a5bWVJ9p6lKvm6bsnazYxBjTzC0Pl7rF\n7pN9aAEAuH0EZwAAAAAAAKg0jhw5osDAQLPn0tLS5O/vr5MnT5qODRo0SIGBgQoMDNT06dOL3J+l\nsMrRzkFOds66fjNNa377WE83n6gq9lW198+vFZsYowm7x+po0hFl3szUlL2TFZ8cp9jEGI3ZNbJY\nAVh8clyx2wIAgP/DUo0AAAAAAACoFFasWKFt27apSpUqec4dPXpUoaGhOnfunOlYenq6DAaDVq9e\nXaz+jGHVql5rcuz15enmpaXd3pWHS10dTTqi6funqWmt+/V084ma8u0kLe4cruXdP1Jz95ba2H+L\nJCkxNUEh+4M01WeaPN28FJ8cZ3b/MEvHPd288oyjsM9Q2DZFuRYAgIqKGWcAAAAAAACoFOrVq6fw\n8HCz5zIyMrRs2TI1bNjQdOz48eNKS0vT2LFjNWrUKP33v/8tUn+Wwqr45DiF7A/S3j+/1svfTdP5\na4l65qvxunz9sgwyaFHsAs05EKqAKD9Tmyl7J2uqzzQtil1oceZZ9lll5maWFSc0y2+WWvbj5sZU\nmHYAAFQ0BGcAAAAAAACoFHr27Cl7e/MLLPn4+Khu3Zz7hzk7O2vcuHH68MMP9eqrryooKEg3btwo\nUp+WZn8NaDhYIfunKvFaopzsnJWccVUf/vy+6lS5WyseX6WN/bfo6eYTJUl7//xamTcz1dy9pab6\nTJOPR1uzgZwxqJNUIssy5jdLLXdIF7I/SPM7hZmutRS6sWQkAKCiY6lGAAAAAAAA3JEaNGig+vXr\ny8bGRg0aNFCNGjWUlJSUJ2ArqjXHPtH8Q3M18L6h+urMF7qccVG6ISn9ohxsHZR07bySrp3XlG8n\nqbazu5Kun1edKnfraNIRTdg9VpH9d8jHo63pftmXSDQu42hppltRZ51Zuj53qGZuOcrsQZqldtaA\nJSYBAEXBjDMAAAAAAADckT777DPNnz9fknTu3DmlpKTI3d29SPcwzqwy/oxNjFHwvinKMGQo4sRa\n9ajfU062TpIkW9mpqp2LZke/LEma1W6OFnVZoppOtXT5+iW5V61jNjTLPoPL+Lu5cViaAWYcV1Hl\nDsqyi02MUcj+oBJZMrIgtzN7raDPBQCA3AjOAAAAAAAAUClt375dGzZssHh+6NChSk5O1ogRI/Ti\niy/q9ddft7jUoznGUCb7/l8+Hm214NHFcneuI0mKOLFW6Vnp/7+FQVcy/9bpq39o7JejND9mrqbv\nn6bkjKuSza0rsodmUt4ZXJZmdJk7bhzfrlNRGrytb7HCM0vPnXvpxtJyu0s/5ve5EJ4BAMyxMRgM\nhvIeRElLSkou7yEAAIBCcHd3K+8hQNROAABUFNRO1iF37WRcBjD7zzG7Rmp+pzAdiI/Wez+9rXqu\n9fWfpEM52rk719HElpM0yHuIElMTJOUNzUqCcVyxiTElev+yXP6wNPpi+UYAqNxup24iOAMAAOWG\nL3+sA7UTAAAVA7WTdShM7WScyTRwSx+dSf5DktTB41F9n7hPtZ3qyGCTJXsbB13JuKw3OoZp5IOj\nSnXMAADcaW6nbmKpRgAAAAAAAKAEebp5ydPNS1sGRun5VkGSbBRz7gfNbjdXi7suUXL6VVVxcNaE\n5s/p5e9f0q5TUQXek2UFAQAoG4VftBkAAAAAAABAgYzLAHq6eWnGI7N1b/V7VatKLfVq2EexiTFy\nr3q3BjQcoi///Fyvd3hTi2IXyr1qHXm41DW7fKBx+Udze5sBAICSRXAGAAAAAAAAlJDcIVd8cpyW\nHF4kexsHSdLcH0KVmHpWS/+7SHdX9VCXet3UtNb9euar8arqUFVr+2zME455unlVmNCMvcMAABUd\nSzUCAAAAAAAAJSR3yJWYmqCE1LO6fjNNs75/Wc+2nKyGNRppVrs5usu5pqnduWsJmu47U1LeZRlL\nMowqzSUfjaGhNS0rWdZjKUp/hb3Wmj5PALgTEJwBAAAAAAAAJSh7yOXj0VZbBuzU6x0XKiE1Xsv+\nu1RLu72rQd5DtLbPRtM1mwdEqbl7SwVE+Skgys8UlpgLo8wFa4VR2sGWtc2MK+sgryj9FfZaawwj\nAaCyszEYDIbyHkRJS0pKLu8hAACAQnB3dyvvIUDUTgAAVBTUTtahOLWTMfTw2zZQs9u/KveqdRSy\nP0hTfaZpUezCHGGT8drs4VP2GWfZl4I0Ksr+Z3faUopl/bxF6a+w195pfzMAKAm3UzcRnAEAgHLD\nlz/WgdoJAICKgdrJOhS1dtp1KkqLYhdqqs80uVeto8lfT5TBIP2r1WS9f/RdLe6yVD4ebfO0yx2W\n5A7PpP8LzBJTE8zeAwCAO9Xt1E0s1QgAAAAAAACUgtjEGE3YPVYDGg7WhN1jlXTtvDKzMpWZlal3\njixV5s1MScqxLGNsYkye5fly/+7p5mVaFlGSQvYHsZRfCeKzBIA7GzPOAABAueGtaetA7QQAQMVA\n7WQdClM7ZZ8dFpsYYzru4VJXA7f00dwOr6u5e0sdTTqiNw7NkyQt7rJUk/ZMVFzKn9o8IEoeLnUt\nzjjLrz/cnuxLYfKZAkDFxYwzAAAAAAAAwArEJ8cpIMrPFJgdiI/WoK19dCA+Wnv//FrxqXGacyBU\niakJWhS7UIu7LDUt1xjQNFCbB0TJx6NtntAmvxCHgKfkGGfy8ZkCwJ3LvrwHAAAAAAAAAFQmmTcz\nNWXvZD1e7wkt/e8iVXOsrjkHZ8lWtspSlgKaBsrDpa5pqcUxu0ZqQMPBmnNwlv7d+W35eLRlFlk5\n4nMHgDsbSzUCAIByw3JD1oHaCQCAioHayToUVDsZ98c6mnRE478YrYktJys546o++uV92cpW1R3v\nUnXnajIYpC0Do+Tp5mUKydYc+0QjHxyVZ7lAQjQAAIqGpRoBAAAAAACAcmYMvBJTEyRJmYZMffTz\n+1r5ywpVtXdRLefaqu5cTZevX1ZCarwSUxNyhGIjHxwl6f+WC8x+T2MgV5wxAQCAwiM4AwAAAAAA\nAG6TMaCa6jNNk/ZMlCS5Orgp+cZVGWTQtRupSrp+XrWd3HUl42+5OLgq6dp59dvcU7GJMVpz7BPF\nJ8eZ9kaTZArhsu+5lf28pTFk//12Qrf83M49CfMAANaMpRorIabvAwAqCpYbsg7FqZ2oNwAAKHvU\nTtbBXO0UnxyngCg/Zd7MVGZWphJS41XD6S6dTztn8T42slF1xxr6O+Oyajjepb8zLqumUy1du5Gq\nzQOi5OPRVrGJMZqyd7LW9tkoTzcvxSbGaPC2vorsv0M+Hm3zjCH78o7Zj5d03Wapr9JuCwBAYbFU\nI0xK800iAAAAiXoDAAAgN083L63ts1Eb+2/RloFR+uDxj2Vnayd72au2Y22zbVwd3JSSmSxb2Wpp\nt3f0fKsg1XSupTc6hsnDpa4kmX4a+Xi0NYVmuWsx4/KOucOo0ginLPVV2m0BACgLzDirhHgDHABQ\nUfDWtHVgxhkAABUDtZN1KEztFJsYowFbnpCrg5supV9UFbuqcrB10NXMK5JuzTYzyKDqjjX0Svt5\nqlWlluYcCNX1m2myt7WXwSDN7fC6ejXso9jEGNPsMmMNxqwtAADyx4wz5EDBBAAAShv1BgAAwC2W\nZuHf5VRLgfc/qbur1FU1x+q6abgpSarvUl+2NnaSpKsZVzTnQKjGfTlKV9L/1vXMdKWkp+psapzG\nfzlar0XP0VNfjtGuU1GmsCw2MSbPrC1WAgAAoOQQnAEAAAAAAKDSOHLkiAIDA82eS0tLk7+/v06e\nPJnj+MWLF9W5c+c8xwuSewnr+OQ4xSfHadTOETqXlqAl/w1TSuZVnUtLUOqNFEnSmdQzumm4IUky\nyKDLGRd1M+umLly/oAvp53UxPUk96/XWP5uO0ZL/hiku5S+N3RWoxNQETfWZppD9QTmCsuxjKEyA\nlv26/K6/3TCuMoR5leEZSkN+n0tsYkyZ9leRVdbnAioDgjMAAAAAAABUCitWrNDMmTOVnp6e59zR\no0c1cuRI/fXXXzmOZ2Zmavbs2XJ2di5yf9lnfsUmxiggyk+bf9+kpOvnTdek3kjN9x4dPB5V73v7\nyaAsOdk6ySCDdpzeqk9+/Ugudq6SpFpV3CVJbxyap/mdwpSYmpAjsFvVa40kKSDKL98ALT45TgFR\nfgqI8lNsYozZ0C/7dbkDusIytyduYe9l7lx5BAzs62tefp9LbGKMBm/rW6LhWWX9O1TW5wIqC4Iz\nAAAAAAAAVAr16tVTeHi42XMZGRlatmyZGjZsmOP4ggUL5O/vrzp16hSrT+OeY1P2TlZyxlWtPb5a\njnIqdPvvE/dpx+mtkqT0rFuB37DGAXrZN1QZhnTZy15vdl5suj7p2nmF7A/S/E5hkm6FZdkZQzVL\n4cXaPhu1ts9G+Xi0NYV+2QM1S8FVUb7kN7eUZPZZcZbuZSlwK4+AIfcz4Jb8Phcfj7aK7L/DtCdf\nafdXkVXW5wIqC4IzAAAAAAAAVAo9e/aUvb292XM+Pj6qW7dujmORkZGqWbOmOnXqdFv9erp5aXGX\npXK2q6KApoHKUN4Zb/lpWv1+2chGdznW0vOtgvRk83Fa9t8lMmQZ9HK7ULlXraPJX0/UdN+ZWhS7\nUFN9ppnCicybmUpMTTCNwcejreZ3CtOUvZO161SUqQ9jAGUcb+6fxkDNeGxtn42mdua+5C8oyMp+\nbfb2+QUG5s6VZ8BQmD7zm92X3/miKOwSnEW9trgsfS7xyXElGpoV1F9FV1mfC6gMCM4AAAAAAABw\nR9q0aZOio6MVGBioX3/9VcHBwUpKSirWvTxc6srGRmrv+Yhmt5srOxu7Qrc9fuVXGWTQlYzLeven\npfLbNlAX0y/I2aGKPjr2vsZ/MUZ/Xj0jSZrfKUyLYhcqPjlOiakJkqQpeycrNjHGtP+Zh0tdXU2/\nqqe/etI086ywAZQxYDuadCTHLLTcodntzALLbwyWArWCxmzu34W5/nZY+hyMx3Mvh1mSfRS3v5KY\nwVcSsxIBwJoRnAEAAAAAAOCOtGbNGn366adavXq17r//fi1YsEDu7u7Fvp/BcCvEau/5iJxtqxS5\n/cx2ryqk7Syl3kiRJF2/cV3nUhLlYGev4LYz9caheUq6dt60p9mkPRM1u/2reZZelKRqTtX0fo+V\nphlAucOv7LIv1Sj9Xzi3uMvSHLPQjIo6C6wooUpRg5fCLgNZnLEUxNLnYDye+29SUn3kHntR+rvd\nGXyWPj+WHgRQmdgYDAZDeQ+ipCUlJZf3ECqU/AonAABKk7u7W3kPASp+7UQNAQBA2aJ2Kpy4uDhN\nmTJFERER2r59u65du6bhw4ebzgcGBuqVV15Ro0aNcrSzdDy3/Gon4yywpGvnNWrXiCKPvYptVUUO\n3K7jF3/V6Sun5ePhI0lyr1pHU/ZO1uXrl/R3+mVtHhCl4xd/Vch3U+VR9R5tGXhrSUbjfmXGn9mP\njdk1UvM7heVZSs/c9ZIUmxhTosvuFRTcZR9nUQOY7PcuTI1a0DXFqXPLqjYu7md0u33mDu747wAA\n1u526qZSn3F28+ZNTZ8+Xf7+/hoxYoR+//13nTlzRiNGjFBAQIBCQ0OVlZUlSYqIiNDgwYM1bNgw\nffPNN5Kk69eva9KkSQoICNBTTz2lS5culfaQ7yhMowYAwLpUlNqJGgIAAFgrLy8vRURESJL69euX\nIzSTpNWrV5sNxywdL4rE1ARN2TtZklTVzqXI7dOyrilgxzDN/SFUS/4bpinfPK83Ds2TJE33nSk3\nRze90THMFJo903ySbGxu9RsQ5addp6JMS/ZJMtVrnm5emt8pzLSUo1H2ms64/5jxePZrjfcraD+v\n/I5bClqyLy9YnJlsue9dmLYFhWZFrXOzL5VY2sp6Zpe55R8JzQBUdqU+42z37t3as2eP3njjDR08\neFCrVq2SwWDQk08+qXbt2mn27Nnq1KmTWrVqpbFjx2rTpk1KT09XQECANm3apDVr1iglJUWTJk1S\nVFSUDh8+rJkzZ+bbJzPOioa3RAAA5YW3pvOqSLUTNQQAAGWL2sk6WKqd4pPj5LdtoG4YMnX5+mVd\nyfi7yPe2kY2q2FdV2o1rMsigOlXu1nTfWVpyeJHsbRyUdiNNDnb2Skg9q7ucasrJzlmJ185qRY9V\nmnMgVA52Dprue2tJx7V9NkpSgTOFLM0sM14bmxijwdv6ann3j7QodqHZZQPNzWYrzMyo/GbC5ccY\n4pi7/+3Mjso+862oda5xj7nKtFxhcf8+AGANrHrGWffu3TV37lxJ0tmzZ1WtWjUdO3ZMvr6+kqRH\nH31U0dHR+umnn9S6dWs5OjrKzc1N9erV0/HjxxUbG6tOnTqZrj1w4EBpD/mOwFsiAABYJ2uvnagh\nAAAALHOwc9Co+8cqLfNasdobZNC1G6kyyKC+9w5QFfuqCvvPAiWknFVA00A52Nnr3e4faMuAnfp8\nyB5tGRilLQN2qlfDPtrYf4vW9tmo5u4tdSMrU5Lles1Y08Unx2nK3sk5ZkoZ9woztvXxaKvI/jvU\nq2Efi/t5mZvNVpiZUdn35spvnLmPjdk1UpLy3D/37Kii7q2WfeZbUZXEfmbWpqC/DwBUVqUenEmS\nvb29goODNXfuXPXr108Gg0E2NjaSJBcXFyUnJyslJUVubv+XALq4uCglJSXHceO1uD0srQQAgHWz\n1tqJGgIAAMAyTzcvTfedqa2nIvXP+8cUqa2t7Ez/drJxkr3sdSDhe9nYSFXsq2h+p0Vae3y1zqbE\nS7oV0mQPtoz9G4/Z2zrkuL8xDDMuJ5i9pruRlakpeyebrvHbNlABUX45ar6CghNzoVFhA6iCZqPl\nrj2zB3K5+wvZH6T5ncJyzBorbJhVEksgVqbQzKg0non/ngBg7cokOJOkBQsW6IsvvtCsWbOUnp5u\nOp6amqpq1arJ1dVVqampOY67ubnlOG68FrenrNdCBgAARWeNtRM1BAAAgGXxyXFaFLtQU32mafup\nLZIkV/vCLROVpZumf2caMjW48TBdTL+gUfeP1cb+WzTywVEKf+xd1XO7Vx4udU39WQqW1vbZmGO/\nsuwztLKHXJ5uXorotyXH9Q52DlrcZWmemq+gl6jMLd94OwFJfrWnpWPG5yvu7DHq3NLHy3gAKoJS\nD862bNmi5cuXS5KqVKkiGxsbNWvWTAcPHpQk7du3T23atFGLFi0UGxur9PR0JScn6+TJk/L29tZD\nDz2kb7/91nStj49PaQ/5jkAhAACAdbL22okaAgAAwDxjcNPcvaVqV3XX862CNK7ZhEK3H/vA05Kk\nLGWpac37NbvdXD3n83yOmWXhj71r+r2wwZK5GVq5z2c/vrbPRrMzzMp69lbucRblel74sl78bQBU\nBDYGg8FQmh1cu3ZN06dP14ULF3Tjxg099dRTatSokWbNmqXMzEw1bNhQ8+bNk52dnSIiIrRhwwYZ\nDAZNmDBBPXv2VFpamoKDg5WUlCQHBwctWrRI7u7u+fZZ3A3uAQBA2WKD+7yonQAAgCXUTtbBUu1k\n3CfMOOPpaNIRzfr+ZZ1J/qNQ9x37wNP65NePlGUwqK7LParmVM3szLH5ncJMwVZx9uMq7h5eAABU\nJLdTN5V6cFYe+PIHAICKgS9/rAO1EwAAFQO1k3UwVzvFJsZo4NbeMhgM2jrwc0nS4G19NcI7UBtP\nrFdy5lWL93OQoxztHZV+47pqV3VXcNsZev/ou5ruO1O9GvYxLWnn6eal2MQYTdk7WWv7bJQkjdk1\nskh7ixnDN0szfoobqhnblWYoR+AHACiK26mbymyPMwAAAAAAAKAy8vFoqy0DdmrrwM/l49FWPh5t\n9ZLPy1r5ywpTaOZk62y2baYylHojRTd0Q/a29mpa634t7rJUi2IXKjYxRgFRfhq45VaAZtzfTLoV\npM3vFJYnNAuI8jOFbeb2P8semsUnx+W4tjh7TxnbGcdaGntXFXZsFXHfrIo4ZgCo7AjOAAAAAAAA\ngNtkDMykW2HIIO8hqlPFQ9Uda8jF3lUZWRlm27nYu0qShjUO0OsdFypkf5A8XOpqVa818nCpq+m+\nM3XuWoISUxPk6ealxV2WmmZ3hewPshi8WAqbsodmAVF+prCruHtPGdtlD/VKWmHGVtzgrzxVxDEX\nVkk/U2X8jABYL5ZqBAAA5YblhqwDtRMAABUDtZN1KKh22nUqSm8cmqfpvjMV9O0LOp92zuK1fe8d\noGFN/RX07Qu6kvG3PKreo/d6fGDaJ824rGJiakKeY0a5w6TsSxoWtLxh9mUgS0J5L6dY3v0XR0Uc\nc0EKWhK0vO8H4M7AHme58OUPAAAVA1/+WAdqJwAAKgZqJ+uQX+0UmxijQVv7qHYVdznbVVFKZrKu\npF9R2s1rkmzkYueiazdTZdCtr+Psbf4fe+8eH1V17v+/J5PJhRBQQ2hSIrVYrdovxWOEU1tpUyiK\nRiF4jKWhIFW0RCVqQATKpSLKpYA1VLFo1epPqnKUAKaNChqlViXNOVIq8tIjWgxkTAi3MLlOMr8/\n0j3u2dkzs/dcMrfn3Vdfkr33WuvZ13nW+qznWckMG3g2Hd3t3DryNrZ88jybC7e4I8oUtOkYQX99\nM0GIFkItCMajwCgIQniRNc4EQRAEQRAEQRAEQRAEIcLk54xm6+QqHrx8DSUXTKex9UvaulsZbDuD\njOQMHN2nGZQyGCtWBtvOwOVyMf7sCXzZaufJDzd5pGEsqSrG7mjok8pPEQ8U0Uy9ThlISjshOgi1\nyCWimSAI/YkIZwmKOFGCIAiCIIQC8SkEQRAEQRD6ctOr03ng/V/jAqwWKz304HCeBsBisTA49QwA\nuunmtUN/oeziuaQnp3Og+SMA7I4GAHIycpl50c0eqReVtHV2R0Ofdcq8rZllxmeLV/8uXs9LEARB\nCD0inCUg8bzwqCAIgiAI/Yf4FIIgCIIgCH050PwRTpeTbrpx0UO3q5s2ZysXDL4QgJMdJzjW0czJ\nrhMAtHd1UPnpSzS2NnL3W3fw3IfPsGD3PNYXVLCvaa97W5291i2Yzc2fz4Ld89jXtJfNhVvckWrD\nMvP6pG8047PFq38Xr+clCIIghAdZ4yxBkbzAgiAIQjQg63REB8H4TuJTCIIgCEL/Ib5TdOBvjbPy\nmjK+OHWI007jPlZW6hCOdTRzVmoWO2942x1xdqD5I+5+6w7yBp5NZsogbh1ZyqZ9G+nq7uL2i8tY\n9HzZNlIAACAASURBVM49/P4nT7Jyzwr32mgKaj/N27/1iFf/Ll7PSxAEQdBH1jgTTCOOgiAIgiAI\noUB8CkEQBEEQhK9SKJbXlFF83lROO1tITUrzWeaG80qwYQOg1elgkG0wmamZ2B0N3PLaTCZXXsW6\nutXkDTybx694moVjFrNp30aKz5uKzWqjYPg47slfxMjsUbr2eEvZ6C/yKlz+ndJmKNZjC6Sc+K2C\nIAiCUUQ4i3MkBF0QBEEQhHAhfoYgCIIgCMJXYtS+pr20drVysuMkAB097W5hTI/K/3uJLroAaOtu\n42TXCZpamzjQ/BFNrY0sGL2EzJRBPHj5GgCWv7uMls5TrP77Cm4dWcrWj1/i/veXUnPojT7RZkrK\nRsU+ZQ00b6kcvZ1XqFCukZJu0td6bHX2Wp82SNpFQRAEIdyIcBbHiCMhCIIgCEK4ED9DEARBEASh\nl2GZeczNn8/yd5dxxFHPo3sfJt2aDuAWxvTodHX02eZwnmbJOwvJHfh1vnXmt7hi+FUs3D2fsjdK\naXO28fgVT7Pq8nU88kEFa/7+AGUXz2XTvo3AV1Fvyr/tjga3oNfV/ZUdatFMK2Qp+PP1zPqAimCX\nk5HrFu70RLw6ey3Xbb+GOnutVxv0ygVrnyAIgiCoEeEsjjHiSAiCIAiCIASC+BmCIAiCIAi9HG6p\nZ13dGpZedh/bi6pZOGYpbd1tAdd32tnC/zvru/yi+uc8/MFaDju+4OpzJtHU+iXvHv4bm/ZtZOll\n97FpwlPMHHkTzp4u9jXt5YYdRZRUFVNnr6V4exHlNWXMzZ/Pyj0raNfYowhlC3bPY9XYtQDuqDTw\njFjTO19vopo/wWpm9TSPv9XrrgHk54zm5UmvkJ8zGkDX3/TXhq80ld6OFwRBEAQ1IpzFOTKYJQiC\nIAhCuBA/QxAEQRCEREYtMs286GaWv7uMA80f8cf9T5IU5JDbK59vo5tuAIakDmVw6mC66WblnuU0\ntx1l+bvLWLlnBXZHAy4X3P/eMlwuWDhmMTkZudisNtYXVDBxRCELxyymqa0Ru6PBbbciYD098Tm3\nSAW4j1EwE/HlL0ptWGYeq8au9VsuP2e0h43aY0uqij1EPr129NJRBrrmWyIi10OIBPLcCdGExeVy\nuSJtRKhpamqJtAmCIAiCIBggOzsz0iYIiO8kCIIgCLGC+E7G2Lt3L2vXruXZZ5/ts6+trY1f/OIX\nPPDAA5x77rl0d3ezePFiPvvsMywWC/fddx/nn3++z/qbmlrcAs76ggoAJldeRXdPNxaLhcEpZ9Dc\ncdSjjA2bz7SNCgOTM2nvbuO6b93ABWddyIO1yxmSNoSjbU04XU5uOK+Eyk//myeu+CPZA4aSnzOa\nOnstORm57Gvay7q6Nawau5acjFyPaK7i7UVsmVTpsU0rYNXZa1mwe56H6KR3nC98Ha+IVN5ENyPb\nlO12R4OH4BeMbWbPMd7xdZ+E2CQWnnF57oRwEIzfJBFngiAIgiAIgiAIgiAIQlzw+OOPs3jxYjo6\n+q4ftm/fPqZNm8YXX3zh3vbmm28C8Pzzz3PXXXfx0EMPGW6rq7uL8poyAHIzhnFWWhZOl5OTnSe5\n8+J5nscaEM0A2rrbGJCcwZZP/sTJjpNYemDND9ezY8qrLP3P+1n4vcV8Y9A5ZA8YyoLd89xil93R\nwPJ3lzE3fz4Ldnu2PSwzz0M0U7Zpyc8Z3WfQ2uwAtq/jfaX6NrpNYcHueQGts2ZmuxHiMUImVlKy\nx+O1DwexElUZK8+dkDiIcCYIgiAIgiAIgiAIgiDEBcOHD2fDhg26+zo7O3nkkUcYMWKEe9tPfvIT\n7r//fgCOHDnCoEGDDLWjiFGbC7eQnzOayqIqXiuu4aEf/Y5zBn2T/Jx8rFhN29/tcnLaeRqAFz5+\nDpelN1FUU2sjz3z0JPua9lIxbiMAq8audYtdAPWnD5E9YKju4LN2LTFf56XGyHpiZgbkAxkUV+rX\nrr8W6QF2RZCos9dG1I5wEOlr649wiUHRLi4FQrS8L0aIBRuFxEGEM0EQBEEQBEEQBEEQBCEuuPLK\nK0lOTtbdl5+fT25ubp/tycnJ3Hvvvdx///1ce+21htsalpnnHuhV/j3tOzPYMqmS7AFDuePiuwM6\nhx5XNy5ctDnbcAFz3ijlplen8/mpz7jp1Rnc8tpMiiqvZvbrs6iz12J3NJCTkcvWyVXk54z2myrR\nqDhwuKWeG3YUeQhDaqFMSVdZvL3Io85Qig9qcUptezREiSlrtulFv5m5xuGyL54JhxgUK5FZgSCC\nlCCYR4SzBCcefwwEQRAEQQgv4j8IgiAIghBvrF69mldffZUlS5bQ2toaVF12RwNFlVezad+jJkta\nPP463XWabpeTk50nsFqsJFuSyUobwoOXr2HV2HWkWG3MerVXRJuyrZCm1sY+Nar9NrNig93RwKFT\n/2LOrlK3YFZSVUxJVbF7zaT1BRXYrDaP9tTigy+/0YhPqdisl0YyEEItjujZpVwnI9F6WlviWbwJ\nNaEWg2IpMksQhPAjwlkCIz/GgiAIgiCYRfwHQRAEQRDiicrKSn7/+98DkJ6ejsViISkp8OGywy31\n5GTkkpqcRlu3bwEuqc+wnMvjr4G2gdx00a0AdPR0YLOkYLHAPW+Vs2nfRsZ+vYABtnRmf3cOLhfc\n+vovqD5Y5SFaaUUsbcpGXz5dbwrKP3usj7a5cAubC7e4/87JyPX4Wy0+1NlrPQSkQAUiI0KG0cgt\nxb5QEqjQohVqlPsj4k3kkOsuCIKCCGcJjPwYC5FABloFQRBim0j6D/IbIgiCIAiCWXbs2MELL7zg\ndf8VV1zB/v37mTZtGjfffDOLFi0iLS0toLaUSKOtH7/Eqc6Tfo/voafPNhtfRW+d7DzJjoOV5A08\nm4zkDLpcXTS1NtLYZmdk1iie3L+JxtZGfr/vd9z/gwfZNOEpVu5Z4RERphaxFKFKL/2hNz9LSf2o\nlAHP9dJKqor7lFGOL68po6u7C7ujoY9QZtan9CW0BRK5FcqJYNp6hmXmeYiJ/o7V2ivjdIIgCJHH\n4nK5XP4Piy2amloibUJYkB9PIdZRHMFICrbyHglCdJGdnRlpEwRC4zuF+/tq5DdEvvGCIAhCvCO+\nU3Sg5zsdbqnH7mhgzq5SbFYbXx8wjF31r/msx0oy3Th19yWRxIDkDDq627lt1J1s3FvBWelZrPnh\neprbmikYPo4JLxZwZvoZ3DaqjILh49xrnYFn5IziR60au5b8nNHubYqglpORa6ivrvW1FOHMl0hk\ndzSwYPc8d5RXsGuTmfEDzR4fqE1Gxzn8HSu+rCAIQmgJxm8S4SxGCLfgID/OoUGuo38ieY2iQbgT\nBMETGfyJDgL1nZRveii/r4EOcMg3XhAEQUgExHeKDrS+kzryan1BBU2tjdzzVjlftjW4j8lIHsi5\ng87lH8f2+q0/0zaINmcrTpcTq8VK3sDhtDvbyUzJZMP4jSzYPY9VY9dSXlPGwjGLWblnBa1drXzZ\n2sDWyVVucUxro9ZHqrPXUl5TxubCLYB5UUsdPeYNRZjTCm7hnnDVn/WbaU/GjQRBEPqPYPwmSdUY\nI4QzLZKsVRIawnkd4+neRNJBlPSkgiAIoUObTiZUopmvhdR91S/feEEQBEEQIoWSmm99QQUAK/es\nwEUPKZZU9zEO52m/olkyyQyyDeastCxmXHgTFiyclZrFXZfMZVBqJksvu4/8nNE8PfE58nNGs7lw\nCxNHFLK5cAuPTXiClZev9RDN1D6VMtlJva+8pgxnT5d7vxnUqRu9pXqss9dy3fZrsDsaPI5Tj53U\n2Wt9tmGWcI9xqdNbKpi5duKrCoIgxAYScSYAMuMlVITjOsoMekEQ4hmZNR0dBBtxFir8pfsRBEEQ\nhERHfKfowFuqRiXq7IrhV/HwB2sN1ZVpG0Sr00F2+lCuPudanjvwR7IHDAXgv771U176vxdIs6bT\n1dNFitXGi9dW6qYkvGFHEYdO/YvKoj+TnzO6z1iC3tiCnvhjNnoKcJ+3ng9XZ6/tY4/SniKsvTzp\nlT5RcsGMhYRrjEsv5aUgCIIQvUiqRg0inBkjGsSyaLAhFpDrJAhCvCKDP9FBNPlO/n7z+mOtCkEQ\nBEGIVsR3ig68+U7VB6vIHjCU2a/P4l8tn/mtR1njLD1pAIPTBtPcdpSFY5ZS3/IFT+7fxFmpWTic\np3l8wtNkDxjKnF2lbBi/0S1Eqf2eOnstc3aVsmVSZR8RTBG47I4GnwIVYGhNWei7hpqCUT9Ovcaa\nNxEqGn07f76oQrTZLXgnGp+zYInHcxKEQJBUjYJpoiE9YzTYECuEOze30H/I9e5f5HoLQnSiTRNk\nZrDFm+8gfoUgCIIgCJGkzl7LL3feRFNrIx3d7VixYsHis0w3TgDaelo51tZMl6uL333wW57c/zgW\nLLR0nWLV5evcEWgA5TVlPPfhM33SW+fnjGbLpEqP+hXRrKSqmBt2FFFeU9bHV1Knu/aX+lqpS2lb\nK6L588XUoplyrK/IrWgY+Ne7XnrU2WspqSqmeHuRz9TjQvgxc+3jsQ8Rj+ckCJFAIs4SmGiYfRAN\nNiQykgayf5Hr3b/I9Y4NZNZ0dNCfvpN2VrOv1D7eykvEmSAIgpCoiO8UHXjznZT1uiZXXkVXTxcu\nzA25pSalckbqWRxrP8r0C3/B/3fgaVaPXc+9u8vJzRjGYxOeoKm1kVten0luxtfZOrmqT+SXXh8o\nlJFQ6rr0Uj+aSfMY7X5bnb2WBbvn+e1TqlM45mTkAtEh+iUigYwDxMKzaJZ4PCdBCARJ1aghEYQz\n+QAmBv1xn+VZ6l/kevcvcr2jHxn8iQ5C4TsFOlCil+7HbH2CIAiCkCiI7xQd+POdnvvwGdb+fTVH\nHPVu8Sw1KZWOng6/decMyOXWkbex7eDLzM2fD8Cs125kcMoZPHP1n8jPGU31wSpGZo9yR5RpRTK9\n7eEgnv01s+uZxfO1iDXkXgiCoCCpGhMMCblNDPrrPosz0b9E+/WOt+9KtF9vQYgXzP5mqd9NJS2Q\n0fri7TslCIIgCEJ8cbilnqf3/4Gb/9+tWLG6t/sTzS7NHgPAT8+f5hbNRmaPYuWeFZR+t4yj7U2U\n7pxF9cEq1tWtcbel+EzqyUhmfLNgfKt47m8paSuNiGbK8dFMIvnQ0X4vBEGIDUQ4i0GUH28hvvGX\nW1wIPYnkSOohorwgCIFi5jdL+cb4W/9Crz75TgmCIAiCEO0My8xj1di1bDv4MrdffJd7e2pSGgBJ\nmqE4GylkpQ7haEcT2WlDqfpsO5NHXMfKPSvY17QXgPycfGxJNu78j7msq1vjjkRTjw+pfSSjvpn4\nVr6Jl/EYuc+CIAjmkVSNMYqs3RM/SAh5dCDvVC+BPI/x8gzHy3nEGpJuKDoIh++k904dbqmneHsR\nG8ZvNLRehNF6BUEQBCFREN8pOjDiOykixZRthUwe8V9UfLCOgbZMkixJnOo8hYse97GZyYPIGpBF\nW1c7Fgs0tx0lK30IA22ZbBi/kfyc0dTZa93/nbOrFIAtkyoNry/mbb/4VrFBsPdJ7rMgCImIpGpM\nQGIpGqm/ZrTE4swZmfUTPcTSOxVOAhnAjodnOF7OQxCiBe07pfzX7mig/vQhAFaNXRvQNzfRv9OC\nIAiCIMQGSjrqGRfexDmDz2Foeg5Wi5WTnSf4fs7lWLEyKGUwAC3OU4zLm8Dxjma6e7px4cJqSQbg\nQPNHAORk5HK4pZ6cjFwslt427I4Gj/YUtP0aX/0d8a2in1D0V2PlPkufXBCEaEEizoSw0l9RPLEc\nLZRIs34S6VwTiXi5r/FyHrGGzJqODsIZcab9jVYWs4/V321BEARBiCTiO0UHRn2n5z58hrvfugOA\nQSmDOdV50r0v3TqAtu5WAKwWK3kDh9PR3Y7VksyXjgaenPgszW3NlL81h/U/2sCmfRsB2Fy4BegV\nzcprylhfUAHgXovL2/iIErEWSqQP1X+E61pH0z0M5dheNJ2XIAiRQyLOhKilv6J4YjlaKBZtDgSJ\n6IktzNyneHmG4+U8BCHaUP9GH26pdy9mH6u/24IgCIIg9A8nT55k8eLFzJgxg+PHj7Nw4UJOnjzp\nv2AUMe07M3joR7/jzovn4eg87d5+zTmTcfZ0udc7G2DN4MaLbiIzJZN5l96LxWKhua2Zad+ZwR8n\nbqZg+Dg2F25xi2bDMvPIyciltauV2a/PYsq2QqoPVrn3af2swy31LNg9L6T9cenj9y/hEs2i6R6G\namwv2s5LEITYRISzBCMSPxr9NSgmg2/RTTAOUCDPrThIgSNOpiAIwaL9jiiimb/fAvnuCIIgCIKg\nsGTJEkaOHMmJEyfIyMhg6NCh3HPPPZE2yzQXZF3ItoMvkZU+hHTrAADebXiHzJRBZNoGAb2pGh94\n/9d0dnf1FrLAvbvLqT5YRfaAocysnobd0YDd0UBJVbHbZ7Il2XhswhNsmvAU6+rWePhegMffZvvj\nvvwyb36duoz4ddFPNE5CD4Ut0XhegiDEHiKcJRB6g+HiyAj9SaCimVkRJ5TCT7B1xOo7FujaQ4Ig\nJCaHW+o9vnfazmqdvdb9XVZENPWgj1JeRHtBEARBEBTq6+v56U9/SlJSEikpKdx9993Y7fZIm+UT\nxY+ps9cCUH2witKdszjcUk9j25e0dbeSmpRKc8dRjnU00+I8BYAFC5akJO66ZC7r6lbzhyueYfXY\n9azcs4KyN0qZedHNzNlVStkbpXT9W1yzOxqwWW3kZOQyMnsUT098ro8tim9lJm2dP79MvU8rmqnb\nE78uNojXfn+8npcgCP2HCGdRRKAOhdFy2kEscWSEWCCQmUKhimgI9h2JtXdM6eCUVBVTXlMWM3YL\nghBZ6uy1lFQVewhh4DnTubymzKsgr3wrAfeAj3x/BEEQBEGwWq20tLRgsVgA+Pzzz0lKio5hLL0J\nyYpP89yHz1C07Woe+NtyZr12I84eJ2O+dpn7+I6eDve/e1w9QG+qxiFpQ3j3yN+oP/0FNYfe5On9\nf2DhmMW0drXx6N7edcwqxm1ky6RKAI/1zZSINLU/pvSLAfd2fz6W1i/T89289bfV28MV8RPrPmKi\nTswVBEGIRaLD4xACHmBXyimzmfyhdlokdDm+iGcHKpBn1JdoZvRdC/YdiaV3TN1BUnLnx4LdgiBE\nFmW9jPUFFX6/GzkZuR5/ry+o0B1Y0RPhBEEQBEFIPObMmcP06dM5cuQIt912GyUlJdx1112RNgtA\nN7JqWGYeq8au5dG9FXR3d/PoPx6mu6ebk+0necf+NmlJ6Viw6Nbn6D5NY+uXvPjJZixYePajp5h5\n0c00tzVztK2R20aVsWH8Rg9/Sok8G5aZx9z8+br1DsvMw+5oAHoj1Pz1hbXil6/jtGjr9ZbC0Re+\nxD11BoNIEArRK5om5oqvLQiC4BuLy+VyhbOBrq4uFi1axOHDh+ns7KS0tJRvfetbLFiwAIvFwnnn\nnceyZctISkrixRdf5Pnnnyc5OZnS0lJ+/OMf097ezj333ENzczMZGRmsXr2as846y2ebTU0t4Tyl\nsGEmdF5Nnb2WBbvnxcwAvZpAzzlR8Xa9FAcqFp+BSBBLz11/2hpL10WIH7KzMyNtQtQRa76TkW+H\n+pg6ey3lNWV0dXexZVJln7LatTnCYY8gCIIgxCqJ5jsdO3aMf/zjH3R3dzNq1CiGDBkSaZMA+ODg\nRx7R9VqRyO5ooKm1kSXvLKKju53G1kZ66DZcf0byQM5MOxO7o4Eh6dm4XJCWnEabs5Ws9CEsHLOY\npX9bRLLFxtLL7uOW12YyfNA3qBi3kfyc0R52KJFpTa2NjMwepet7edtm1K9SMpcA7slU6jqMjFfo\n1aHeN7N6GqvGrvU4P182htInVGwLdoJpsDaF6pxkDClwzPZ9hL7I9RH6k2D8prBHnG3fvp0zzjiD\nzZs388QTT3D//fezcuVK7rrrLjZv3ozL5WLXrl00NTXx7LPP8vzzz/OHP/yB9evX09nZyZ/+9CfO\nP/98Nm/eTFFREY8++mi4TY4YgX408nNGx+SPXaylsVOI5Owmb9crliKbooFgBmP7k/5+RxLl+Ym1\nb46QeMSa72R0NrEyg3jB7nksHLMYm9Xmtb5gvtOx6FsIgiAIgtCX9957j9tuu42CggK++c1v8tOf\n/pT/+Z//ibRZQN9sPuA5+Sc/ZzQTRxRy/w8eJDkpmevP+6nhulOT0nA4T3Oq4xTdrm5+OOzHNLbZ\nsZ9uoLHtS64YfhUr96xwH589YChnZ34lmtXZa91Cz5xdvWuiVR/8CzdWl7Cvaa9HW3q+kzqzkZls\nLerMJdp6jYxXaOvQ7nt64nMeopkvG735hP581XATbJ87VH32aB5DimY/3khfQ/ojvpHrI8QSYY84\nczgcuFwuBg4cyPHjx7n++uvp7Ozk7bffxmKxsHPnTt555x0uv/xy3nrrLZYvXw7A7bffzi9/+Us2\nbdrErFmzuPjii2lpaWHq1KlUVVX5bDNWI86CJdSzafrjBzTWZhlEelZOrF2veCJS917ueWiJ9Dss\n9CXRZk0bIVZ9J2/vlxJhBr3pGXMyck3NYA7EDnm/BUEQhHglkXynKVOmsHr1as4//3wAPv30U+bP\nn89LL70UYcv6+k56ftDhlnqmbCvk81OfkWpJo8PVbqju8XlXkJ6czj+P/YMxX7uM/236O5+c+BiA\nJJKouu514Ks02EoqRkU0u277Nbw86RX3/n1Ne/nlzpu4J38Rd+Tf2ae9UESc6aEMjIer/2U24sxX\nX9BIP1F8zPATC/11iTgLHrk+Qn8S1RFnGRkZDBw4kNOnT1NWVsZdd92Fy+VyL+6akZFBS0sLp0+f\nJjMz06Pc6dOnPbYrxwp9CaVi76+uUM4KiLUPpXpWTiivg9G6ovl6RWOecbPPsNFc76HGX7tC6Ijm\nmXWCoBCrvpPeb+ThlnrKa8ooPm8q6wsqWLB7nntwRzs7W0FdNlA7BEEQBEGIfTo6OtyiGcC5556L\n0+k0VHbv3r1Mnz5dd19bWxtTp07l008/BXrTZN9zzz2UlJRw/fXXs2vXLtO26vlBdkcD4/Im9J6L\nAdFsfN4VpFvTebN+J698vo1Dp/7Fi59s5j+yL+WcQd8kM3kQPfRwoPkjymvK2Ne0l5pDbzC58ipm\nvTqT6oNV5GTk8vufPEl+zmi3TzQyexQvT3pFVzRTbPe2zYxfpbfGWTj7X/5s9Ba15u18/dkpPmb4\niYX+uhHbotn+aECujxArhF04A2hoaGDGjBlMnjyZa6+9lqSkr5p1OBwMGjSIgQMH4nA4PLZnZmZ6\nbFeOFfqi/LiEsi5fa2klckitXtqBYIiHaxqpc/DVrq/UDGa2qwmXaBap+2+kzVDbFQ3PuThpQiwQ\nS76Tv+9pS+cplr+/hKbWRlaNXcuC3fM8xDElzY72b7PpdQRBEARBiC9GjBjBb37zGz7++GM+/vhj\nHnroIc455xy/5R5//HEWL15MR0dHn3379u1j2rRpfPHFF+5temmyA0E9VvDch88wZVshOw5WkvTv\n//nCgoVd9a/R1t1GDz2Mz7uC5KRkrjlnMi9+spkxX7uMs9KzyBmQywVZF3Kq4xQ3vzqD+W/fTY+r\nhyOOema9diPjXxzL/e8t80jXWFJVTE5GbljTFvpbWiIUbYQCEcaiH7kPgiBEC2EXzo4ePcpNN93E\nPffcw/XXXw/ARRddxPvvvw/A22+/zaWXXsp3v/td6urq6OjooKWlhU8//ZTzzz+fSy65hLfeest9\nbH5+frhNjmlCNQDva8aOv9D1aEMZjAsloZwFEwszavwRyWgsszPGzG4Ppb16ROr+RyI3dzyIxILQ\nH8SS76R+rxWxC2DV2LXuWcY7przKMxP/xMjsUX3WZR2WmecW0+rstR7rV2i/jf31DZFvlCAIgiBE\nBw888ACtra3MnTuXe++9l9bWVlasWOG33PDhw9mwYYPuvs7OTh555BFGjBjh3jZx4kTuvLM3Gsvl\ncmG1WgO2WfFtHvmggl+OvINTnSc5K3UIadZ0n+VceK6i8mb9TgbaMvng6P+QRBIvfrKZdmc7Vkuy\n+5ivZeRw26g7uX3UXQBcMfwqjnU0Y3fY3WmyNxduYX1BBXZHg9uPUv7vaxJqSVWxKZ9IOW8jKeyU\n/+qtrab+r1kiMZFXEARBiF/CLpw99thjnDp1ikcffZTp06czffp07rrrLjZs2MBPf/pTurq6uPLK\nK8nOzmb69OmUlJRw4403cvfdd5OamsrPfvYzPvnkE372s5/xwgsvcMcdd4Tb5JilvwbgfYlm0TYo\nruT3Dpd4Fo11RYpQnEOoo8B8CcBmZsIZJdB3IJj0F4FiNBVFKL8p8SASC0J/EEu+kzrifcHueawa\nu9b9b+V7NSwzj+wBQ93fR60Ylp8z2iMSzVvanVBG13sjGn0ZQRAEQUhUBg8ezLJly9ixYwdbt27l\nV7/6lUeaam9ceeWVJCcn6+7Lz88nNzfXY5temuxg+eL0v6j6bDv3jl6MxQKt3b3ZAFJI8VnOhg2A\nVGsaJztO0OZsIzOlN3vAj/J+zNH2Rg40f8TR9kZau1qp+GAdz330DMkkc8MFUzkrNYvTXS3cOrKU\nYZl52B0NzNlVSnlNmdtPK6kqBtAVuoIRrdT+nx7qjALavqG/rAPe2lT/u7+WHDHSntm6gtkvCIIg\nhAeLy+Vy+T8stgjFAvdCYETjAo919lryc0ZH2gzBC+oFffUWgQ3HMxXOBWfD+Q5EYqFcs+cTivOP\nxu+IED4SaYH7aCYUvpP63VX/9irfrlVj15KfM9p9XJ29lgW753msB+JvEfr++A7KN0gQBEGIZhLB\nd5oyZQpbt27lggsucK/xCrjXfP3oo4/81lFfX095eTkvvvii7v7p06fz61//mnPPPRfoTZN9++23\nu9c584c/30mZvDvr1Zk0ttlJciXR4eogK20IpztP09Hjf80zCxZcuBia/jU6ujvITh9KV08XfUZs\nIQAAIABJREFUj014ggPNH7H276v50tFA3qCzufM/5jLtOzOoPljFkncWUVlUhd3RwOzXZ2FLsrFh\n/Ea3H1ZSVexee3bV2LXkZOT26ZPbHQ2mx1F8+XLe/EF/5dUTsfTq04pvvpYcCbX/GKq+ry/bIjEG\nkKhIH0AQ4pNg/CYRzgQPYv2HIlbsD8bOWDlHI6idQIVoFYSCqSeU96y/7fbnxOulUQtG/JSOQeKR\nCIM/sUAohbM6ey1lb5Ty4rWVfY6xOxpYsHseMy+6maf3/8E9eKKuw983IJ5+BwVBEATBLInkOx04\ncIALLrggoLJmhLOjR48yffp0li5dymWXXWaofl++k+KrVB+sYtZrN2KzpODoPg3AAGuGO/rMHz/I\n+SF/s+9mSFo2JzqP84crngFg+bvLsFjA5YKll91H9oChbhFMLYYVby/iUMvnPHHFH5k4orCPfXX2\nWo+UjurMLIH2yXz5cv4mzerVpUTHKfbp1WfUrmj1H/3ZFs22xwsyDiEI8UswflPYUzUK4SWUIdux\nnp4oVuwPxs5YOUejqNNuKevi9GfbwRKJdcL6y26lLW956vXq0EvFaPb8JZ2jIMQmysBGnb2WObtK\nOXTqX+xr2utekN7uaKCkqpjymjJmXnQzi965h7n5890zjhWMppEVBEEQBCH+ufvuu0NSz44dO3jh\nhRe87tdLk93e7j8iTA91ysHl7y7jzNQsOnrasfz7fzarDSv+11DLSB7I4u8vY/2PNrDoP5eSRBLN\nbc2s3LMCiwUqxm1ky6RKJo4odK8Nq/7vsMw8NozfyPDMcxiZPcqjbsWXys8ZzebCLR6imbJGbaB9\nMn/rkPs7Rnu82j5v9Rm1K1oxch2E8CLjEIIg6CERZzGM2WgQI/tjfSZLrNif6BFnoX72InlN+jvi\nLFSEMuIs0jPkovH6GiFW7Q41iTRrOpoJxHdSfwMAircXsWVSb5RZzaE3mPadGR7pdQ631LvT/iip\nHLXfGXkvBEEQBME3ieQ7zZkzh29/+9uMGjWKtLQ09/bRoyO/FIO/iDPo9Y2WXnYfd785h5MdJ7BZ\nbbR1t7mPs5JMN84+5a2WZLpdTvIGnk1yUjLpyQO4dWQpm/ZtZH1BBYA7vaLSXqCR+tooMG02AL3z\n8tWu+HKCIAhCNBHRiDOXy8UXX3wRbDVCAPiaEWFkYVS9/b6crVggVhy0YOyMlXP0hhKVYPTZM1Jf\nJKPwjNgdbffMaGfG36wrdQfL1/UPt2gWi1GYsWq3EBriwXdSz6aeWT0Nu6MBm7V3MXu7o4FF79xD\n9cEqwPMboCwar17bQi2ayXshCIIgCILCiRMneP/999m0aRMVFRVUVFSwYcOGSJvll2GZeW7fqLmt\nmeaOo6Qmp3mIZoCuaAZgcfWu63as7RhtXe2sL6jggqwL3fvLa8oo3l7E4Zb6Pv6T2o8yIpopZZVs\nI4qvpvXHlH680pdXl1W3bSQji97fyn+VteH8ldU7XyN/G7VL2aZ3LfoT8YsFQRAih+mIs2effZaH\nHnqItravfvCHDRvGzp07Q25coMRixFk4ZuUos7mDbVNy/cYvkZgNpjjc3tItBFpnvDyb4c7T7i/n\nPPSdQWhmlmIk7kOs3v9YtTvUJMKs6Xj1naoPVjFxRKHuN6D6YBXL312GzWpjfUEFORm57nLKmhoL\nds9jbv58jzU3/PkugiAIgpDoJILvpOXEiRNYrVYyM6Pn3P1FnCnRWzkZudQceoPj7cdZ/v5SwPsQ\n3Jm2MznedRyAFEsqna4OAB760e/c0WZK5L6ynqzaB1P39cDYOmVq/00t0nhbuxroc7zR7AF6mQaU\n66T4hb/ceRMvT3qljz+o+I7qc1PKaetT/21k7EGvj6yU7eruwma1hXT8wigyFicIghA8/Rpx9tRT\nT7Ft2zauvvpqXn/9dR544AFGjRrlv6DglXDMsD7cUu+eKeQNoz+88ZbrN1TXuT9m/oSzjUjN7Ffy\nlIfyeYqWZzPYa2nmngR6/7y9z95mECrRJP6+JZGMFImW+2+WWLVbME88+k519lp+ufMmj1nB6md6\nZPYobFYbC8csprymjKLKQm7YUQT0fm+Utc7UdRjxXQRBEARBSBwOHDjApEmTuPLKKxk/fjxTp07l\n0KFDkTbLL+q1vEuqinnw/eWsqr2fH+SM9VlOEc0sWLjiGxNJIonstKFckHUhrV2tNLU2uo9NTuqN\n9NcKVUpfz8g4jlY0U9Yd91ZWqVf7t/pYf30c7bHqtdkmjijk5UmveEy4UmxThDV1m0o5vbXTfGVf\n0v5b73yVcYstkyojIpp5s0sQBEHoP0wLZ1lZWZx99tl8+9vf5uOPP+a6667js88+C4dtCUM4fgxD\nXae3dJDRitkUlYHUH26RwGwboRJQ+oN4dPzUQlOgGO3cGD3WVzt629QLL3vrjARjuyAkKvHoO+Xn\njHYPbHj7rdpcuAWA9QUV2JJsdPV0eewvGD7OY0axfEcEQRAEQVCzaNEi7r77bt5//3327NnDzTff\nzIIFCyJtlmHKa8ooPm8qR9ub6Ozp5B3724bKjTzru7zy+TZ66AGg+uBfaHAc5pbXZ/Lch8+wYPc8\nFo5ZjN3RwMzqaVQfrHJPeNzXtBfoK6jppTBU+3B6Apg2DaO2vLpsnb2Wwy31Hv1hdVl1em91Xer2\n6uy15GTkUlJV3KdfPfOim1lXt8bdjra8glK/0tbCMYvd++rstbqpJtXnq0bpFwfim4ZqrChYv9hM\n2sxERq6FIAh6mBbO0tPTee+99/j2t7/Nm2++SVNTE6dOnQqHbQlFKAaJ9H7kAy1r5PhoXYfEl22h\nGpQL5eCet2topo1goo8iRbQ4cKF0aNU54YOpxxt6zr0vAnketLPsjLSjPT5QovF7IgihIF59p5yM\nXOyOBlaNXdtnYGZm9TS2fvwSN1aX0NTayIbxG0m29M6MVoR6oE8aHhHNBEEQBEFQcLlc/PjHP3b/\nPWHCBFpbWyNokXmmnP9flF08l5SkFDJtg7Bg8XpsiiUVgH8c6xW/rjlnMgAPf7CWn18wk3svXcyj\neyuYmz+flXtWUPZGKTMvuplbXp/JTa9OZ/KI67jl9Zk88LflHuKT3niBtygrBUVkUupRr2em3ne4\npZ7qg1VMenki1269kinbCt1CXklVMdUHq7hhR5E728CcXaW6a55XH6ziuu3XUHPoDZw9XczZVeoW\nyYq3F7Hwr/OYedHNlNeUccOOIo861HYpdawau5bZr8/i5ldncMOOIurstZTXlNHmbNU9fyUDSyj6\npNEyXubLjmixMRqQa2GcQK+RXNvYJVzBHP3JFycDX1/etHC2ePFi3nzzTcaOHcuJEye46qqr+PnP\nfx6wAfFIJFL4BfOhD8RBUKceMFJ/sARim7/1m4IlVKKZr/sWr+k0o8WBC3VbRqOzAqU/xNRIEcpo\n0EQjEc851ohH30kZxCjadjWzX5/lHrBQnse5+fPZ8snzfD0jj5HZvWkpbVabRx16vode+hxBEARB\nEBKTSy+9lEcffZSjR49y/PhxnnvuOc4991yOHDnCkSNHIm2eT9QThWoO76L0u2XYkmyMyDzXa5lO\nVwffPavXb0oiib837qG5/SgAT+7fxAN7fs3nJ3uzFiwcs5jkJBsFw8cxe+QcGhxHePLDTQxOOYOK\nD9ZxvP0Y5TVlVB+s8uhH6qXZ1vpfynpi6wsq2Fy4xd3PhV7/rbymjIVjFrvPb+Hu+ThxMjf/XjZN\neIqVe1YwZ1cpbc5Wlr+7DJer195N+za6bVdzuKWedXVruCd/EU/v/wNLvncfFgvM2VUKwJZJlWyd\nXEVWehabC7fw4rVfpU883FLvFtJyMnJ58Ae/YdE799DU2ojFAhaLhSXfu4/8nNGsL6ggPXlAn/MP\nNXopIyO1pIG38YNYG0MKJ3ItjBHomE2sjU0JX2H03kXzPT7cUs+UF6YEXN7icrm8r0zqhf3793PR\nRRfR0tLCP//5Ty677LKADQgHgSxwHyqUhyWcH129NoIRhRThzGzeZiPnGorrES11hAttCoVEwdd5\n9+c1iefrH6pzq7PXuqNCwnm9jNbt7bhofs/DRTycc6IscB+PvtPhlnr2Ne1l5Z4VLByzmJV7VtDm\nbHVHlm0Yv9G9RoWygLvyLVFm/ap9D/XzDATkmwiCIAhCvJMovhPAuHHjvO6zWCzs2rWrH63xxIzv\n9NyHzzDvrTvpptvvsVaspCSlMjhtMG3ONpKwcu7gc/l70x4AzkzJIiNlAGnWdG6/uIys9CzW1a1h\n8ojruGzY98nJyGVf015GZo9iX9NefrnzJndq7OqDVdzy+kwen/A0E0cUArhFMrX/Bb2ptrWZAZRx\nJ7ujwaNMUWUhd10yl2nfmeE+zu5o8FirTBGRFN8R8PDzFDtWjV3rzmqg9hWrD1ZxY3UJf5y42W27\n0lZJVbGHvUr/VbFDfR7avqT6byP9UTP9YcW3VTLT+Bs7C5cdghAqAn3u5HmNXYIdp4sG2lNOcPbg\nswMqa1o4W7t2Lfv37+fJJ5+ksbGRuXPnMmbMGObMmROQAeEgksIZ9M/Dov1RDYWwFK6PXyiuR7TU\nIZgj3Nc8Gn60g60rGp5LXzZUH6xyd7aUtYwiKdL4+95Fw/Xsb2L9nBNh8CcefSf1c6cMdChpgxaO\nWcz97y2jYlyvcKbMblYL8CVVxSwcs9hj4ENdb6CTegRBEAQh3kkE38kIzz//PFOnTo1Y+0Z9pzp7\nLXN2lVL4zUk8/MHaPvvTrem0dbf12Z5iSaHT1QmA1WKl29XNDeeVsOfLdznScpiz0rM41t4MwILR\nS9h84Fmgd+KSWiiqPljFxBGFbt/qePsxzkw7yx0tphWdvE3K1vbDFJ+tzl7LlG2FbJ1c5VGHXp9N\nLSQpPqK2DcBjIpX6GOVctAQzLmCmfxvI2Jvat/XWfwXPc+6PCeqCIAiJQjB+k2nh7JprrmHbtm1Y\nrVYAnE4nU6ZMYceOHQEbEWoiLZxFArOOQqwPtBqlv84zUa6nGdQz18JxbQJ1FoNxMvVmpwXjsIZL\nBApkFpy39KYzq6cxN3++u4MSDc96NNgghI5EGPyJF99J3fHXi3xXp/8p3TkLlwtSrDYqxm10zyBW\nZv8Wby/CZrX5FMbkXRcEQRCEviSC72SEKVOmsHXr1oi17893UqKrlryziAbHYc5MzeJYWzNddPos\nZyGJcXk/YVf9awBkpw1l0X8uBWDad2a4fS0lsmzJO4tIsdro6umiq9uJzZrM1slVbr9M3SdXIv4V\noczsRCVv0Vp6GUrU23zVYaSdcGK2LW/nFWjbeiJhtF0jQRCEWCYYv8n0GmdOp5P29nb3311dXQE3\nLoQOde5kBW+5RQPJPRqNeUr9oT7PcNpv5nrG6nUMpIwySBoN6315K2f2HTCyoLKZ58DXOQSaI9hX\nOfU2IzYo+9Sz+qLBOY8GGwTBDPHgOykDK0onXS9d9OGWesprypj9+iycPU4AOrt7z3XV2LWU15S5\ny2+ZVMn6ggqfbWrrFwRBEARBUAhg1ZF+Q5kkdMvrM2lztlL63TK+bGvwKZplJGcwPu8K/jjxOdb+\n+LfcdNGtDMs4m0X/uZTf/s86oDfiqrymzCMd42MTnuDFayvZ+JMnsFmTaTh9BLujQbdPnp8z2r1m\nGXy1Dpu3yC8tepNI1UJSnb3WvW3B7nkBj5H46u/5qjOQ9sy0pVzTUPmmap9abYeR/q70iQVBEMKP\naeFs6tSpXHfddaxevZrVq1dz/fXXRzQ8PpHw5yAUby/yGLzSDp4bGSj3VncsCkPKeQJhXaRQ3Y4v\nAhVCIkmgNg/LzPNYyyZcIm2gzqI6YsJoe97eG/XArpE6lc6E+n301lkIVhhUoxWStTb4qi8eiKX3\nTog/4s130voWRZWF7vUwbh1ZSorVRpo1nft/8CDdLqd7YXfoXRNDmSldXlPmFuP06lb+jrXfTkEQ\nBEEQwo/FYom0CV5RJgnde+liGtu+ZPOBZ7BarD7LOJwOdtW/RunOWyh4/vts/fS/+dLRwP3vLeNf\nLZ9x91t3MLN6Gqc6TrH145eYUf0zrnppPOU1ZUBvBNrWyVVUFv3ZbcPc/Pnk54ymzl7rVwzTjiUp\n/pqvc1TW7lL6mOU1Ze5xAL0+qbYvrJ6YpbVBD3+TRP35jGbHtvSODXVGnXjpbwuCIMQjpoWzkpIS\niouLef7553n66aeZMmUKJSUl4bBNUOHvB97uaKD+9CH3zCJtVI2ZgXItRgfwzToh/TEIpszc6Y/c\nz/7Ovb/sCBZ/EVVG61A70ME6p+EgkHPzl2McfDvSerP+fJ1zMMKg3jb1bLZAou78Eezsv3ARrwPv\n8XY+8Uw8+E7KjGSA4u1F3LCjiDp7LXZHA1+2NnDryFL2Ne1lwV/nsuR797FlUiXZA4byZasdp6uL\nnIxc1hdUMGdXKVO2FWJ3NLC5cIvHLGejkb3BIu+OIAiCIAj9wR35d3LTRbeSmpyKxWUhxZLqt4zD\neZqTXSc43nGMHno40XHcva+HHlo6T/HH/U9yRsqZpFrTWDhmMdDrnwEcaP6I67Zfw3MfPsMtr8/k\ngb8tZ8q2Qoq3F/URrhRxTCtgqQUxX+Rk5PrMXqJGiULzlpVGLdj56h97K280G4xRv1I7QVrd5482\nxLcVjNJfz4o8k0K8YFo4W7JkCf/85z9Zt24dGzZsYO/evTz44IPhsE1QofejrSY/ZzRbJ1eRk5Hr\ndjLUUTUQ3MwYM46FEYGtpKq4zyzzUKMdeAsnRqPOYkE00xu0NIs3kcZIuXCmd9RrzxeBRKP5i956\neuJzHjnRgxkU9jcjT6999b/9CUpG61ULpHozEyMtXMWKaG2GSF9TwRzx4jsp75DT1UVnd5d7hvPK\ny9fyyAcVLP3bInIzvs7I7FHYHQ0AWLCw/Pu955qTkcuWSZXuxeP10tLo/ZaGWjSTd0cQBEEQhHCi\n+BvPffgMT+7fRGd3J4NSB9Pp6gAgzZpmqJ4eesiwDcSChaR/D9+d6jrJiY7jnOg8TmuXg5V7VrCv\naS/1pw9Rc+gNFr1zDw/+4DcUDB9HdvpQHtu3gZWXr2XLpEoPoavOXst1269xT4SC3gnZRsePtELS\nsMw81hdU9BHclL6ier1bdRllEpW6r+xrOQNfgp5eKkltJJ1Z1ONrkepT+or+E99WMEp/PSvyTArx\nhMVlMjH0xIkTqa6udv/d09PDNddcw5///OeQGxcoRha4jzWUD87M6mnu2T++nAllUFz9XyNthNoJ\n8FZnIJFvZttVFlntL8dGu/CuEcJxzYMlkjZF4r7Fgi16KPb5+x74Ku/r+2D0/NXH2R0NXm2Jxmc9\n1omXa5oIC9zHk++kTH5R1icrrynD2dMrpKVYbfzs29P51pnf4tbXf8H8S3/F5gPPsmH8RrfI5m/x\n+f749sbLuyMIgiAkJongOxlhxowZPPPMMxFr35/vpPgbz334DI980Os3/XBYAU/u3wSAlWS6cTIk\nZQhHO4+Sbk2no6eDHlePRz1JliR6XD0kkcTglDOxWZOxkMSXbQ3kDTybBy9fw8QRhe61xursteRk\n5LrFsTm7StkyqRKgj4+lHDuzehpz8+e76zHav9TzqdTb1H4dhGb8x1f/1V8fNBAfMNJ+oyJwvjzp\nFQ/RUU2kbRRih/56VuSZFKKJYPwm08LZL37xC37961/zjW98A4DGxkbuvfdennrqqYCNCDXxJpzp\nORv+PkJmB578HR+ogxHM4FewH1qtwxZOG9QihjdnxlsZvXQCifwDY+T8jTz/gYhI4W7HaFmzYrd6\nQWaj9aufvUDPX++4SDy/if7OxDqJMPgTb76Tevbgvqa9ZA8YSk5GLjWH3qD8rTl8bUAO3T3dnOo8\nyeNXPO3eb3c0+PxWeRP05R0XBEEQhK9IBN9J4b333uO3v/0tzz//PAcPHuSWW27hN7/5DZdcckmk\nTQvYd/rJlh9yrP0Y4CIlKYUeVw9dri6SSMKChdTkNFqdjj51nJFyJmeknYHLBXddMpd1dat58PI1\nrKtb4zGm4Kuv582nUqdRzM8ZHdL+XX/4cdE+6TVY9Pr7giAIgjGC8ZtMp2p0Op1MnjyZWbNmMXv2\nbAoLC/nyyy+ZMWMGM2bMCNgQwTvq1EWKE+DPGTAbRu7r+EDDbI3Y4CtFXLChvVrH0WxdRsqpI+e0\nKfiM2KcnmhltMxwEm7IvFO0ZEc38pRc0c799HW9EnPa3aLLZNr3t82afXroKf9dA/ewFev7ejvMV\nYRoOEikNQCKcY7wSj75TSVUx1269klmv3ciNf+ldr61g+DiGpGWTak0jNTmV7AFDASjadnXv+mc+\nvlXqf5v9XRQEQRAEIT5ZvXo1y5cvB2DEiBFs2rSJBx54IMJWmUPdX7Q7GjjRfhwXPbhw0dHTwW2j\n7iTTNgiAQSln0NXTCVjISM4AICt1CDecV0LuwK+z/PsPYrHAIx9UkGZNZ2T2qD5prrXjDN76Z2rf\nKj9ntMe6ZsGOpWjtMUKwbURaNAunrxoO0Ux8a0EQBP+Yjjjbs2ePz/1jxowJyqBQEG8RZxD5GTTh\nSuMY6ig3b+XDEXEWroi6cLbpzx5vEXCBtunrHoSq3kD2B3u8QiDpOY20qd3nrx0jaSmM2hJIlJm/\n40KdniNQW2KZSP8GhJNEmDUdj75Tnb2W0p2zONl+iuOdzSz9z/v51pnf4uZXZ7Dmhw/x6N4KXC7Y\nMH4jpTtnsXVyFdD3G2Dk+5MI77ggCIIgGCURfCeFq6++uk9q68mTJ7Nt27YIWfQVRnynOnstU7YV\nkpORS3ryAG4dWcrdb93hcUxG8kAcztMAZKUN4fZRd/LA+7/uTc2Yeia/+t5SFv51Hpsm9GYqWLln\nBesLKtzpGA+39KbR1qbD1kbyq7PkzNlVis1q81pGjUSMGRt/iGb7tcSavYIgCMHQr6kaY4F4FM7A\nWHh2OFLHhWJQHrzPdArXQHp/OALBCHLhEo2CIdQp+/TWvgL8DpJGgkDTH4T7HNQdnHCnZ9B7Lr29\n/2ZTwULfnPraY8L9LkTT8xYIsW6/NxJp8CeaMes7HW6pp3h7EbdfXMbKPfeTnjyAzp4OGhxH3CLa\nyOxR2B0N7rU1fKWGVeqMx2dcEARBEEJJIvlOd9xxB9/4xjeYPHkyAFVVVXz++ec8/PDDEbbMuO+k\nrCNmdzTQ1NrIjOqfufelW9Np624DcK9htvSy+5j/9t0sHLOUy4Z9n6bWRhb9dT4PXr6GX+68id//\n5ElGZo/y6K9phTN1H1LdD1dQ1quNVPq/SAl0gbRntO8bbX5sqCcbC4IgxCr9mqpRCD1GQqT10rFp\nywcTRu8rPZx2u5l2FCeupKrYUOq5UKA4AP0xe0Y7O8tMuUDtC+c5eavbjEOpFkoVB13Jlw70OSYa\nqLPXUrTtat20i/7ua388Y2bTgKrxZ796v/a59Pau6x3ni2GZeT6f+Tp7relvl9nvkL/jYyFVRbS8\nL4KgvC9OVxcP/+86bEkpdLuctHd1APDgnvu4qXp675pnNWW0Odvc5byluJWUjIIgCIIgaHnggQdo\nbW1l7ty53HvvvbS2trJixYpIm2UKRTQrrynjtp23urdbsLhFM4D05AEc72xmyd8W4nK5ePLDTdzy\n2kxuqp5OY+uXZA8YysuTXmFk9igPf2pYZl6fyLFhmXnuiZfqfrj6+JyM3D62qseWzI7fGO1n+epj\n9gdG+oZqjI7dRFNfzcj5RZO9giAI0YoIZxHG6A+2tx9rdXl/P+j+2tArq1enGdFHccr0UgDcsKNI\nV1ALBu31CKR8sO0arc+o6GC0/Ujj7VlRCz/9JWgGhE7sbbQM5AYTRWp2PTi9d92XTWY7HXo2KMKq\n2fM08iwp9ukdb2bSgV7nURASEWVCzL6mvTh7nLhcYLFAe1cHp7tOMTT9a2SlZWOxWHj4f9dx68hS\njrY1sq9pL4DH+hlqovr3QRAEQRCEiDB48GCWLVvGjh072Lp1K7/61a/IzIydiDtl3KO8poxzB32L\n084WkkjimnMm49J0QJV0jae7WhicdgYdzg5cLsgZmMuC0UvIzxnt7lPPzZ9P6c5ZHhNS1f0VpY9V\nZ6+lvKYM8OwL2R0NXidI19lr+0x+9tVf8iVEeetveuuXhRtffUNfxJp/Kn61IAhCaBDhLMKYFaHA\nc3FZbXlfopkvR0dxHvT26wk83gbAvdmtd3xyko31BRV96g/GafI10O+PYEQSvftoJIomFMJMtIg7\n0PdZ8fY89bet/trLzxlNZdGf+0R1BepwBiPAhhJ/9iszEf2dn6/nS92GtuOl929v5Y2koVX/W/lm\n+UNtn7ZzZmbSgbfI2XggHs9JCB92RwNd3V0seWcRTa2NjD97Au1dHRzvPEZW+hAK8sZTff0u/nDl\nMyRbbGSlZ/UuZv/uMkqqisnJyHXPfNYinXtBEARBEAAuuOACLrzwwj7/V7YbYe/evUyfPl13X1tb\nG1OnTuXTTz81XCYQ7I4GXC64LOcH/OXzVwDooYdXPtdfoy2JJDJtgxh/9hU0tTfS/u+o/Qffv889\nDlRnr2XJO4v4/NRn1Bx6A/iqv1K8vYjqg73rymrHRdTjSXoTF9X9Mu3kZ+04i1ZQU9rT9gm9iWTa\nv832swLtv2j7hrHcD4p0ZhxBEIREQISzKMDMD1qdvZbrtl/TRzwz0oa3WT1qJ8jbLKFAIlf0jlHb\no86prZ7dZCb9mjd8iYTeMCoi+Cqvbqe8psxvfaGaCRTK2UTBOo/ae1l9sMrjfvRnyjwzaRi8CTeB\niGaBCJnhEkB9dQiUmYhGhC1/z7G6w6M+l1CkidDWYfa90TvO36QD7fdKL3I2Hogm4V2IfpTfttsv\nLuOxCU8w+7tzeHL/Jo52NNLtctLc2syLn2zm6X29a284XV2s3LOCjT95gqWX3cfmwi0AlNeUccOO\nInnuBEEQBEHQ5cCBA3z00Ud9/q9s98fjjz/O4sWL6ejo6LNv3759TJs2jS+++MJwmUD8fW0CAAAg\nAElEQVRQor2a25p5cv8muul277N4GYrroYeWrlO8+Mlmzkg5k1NdJ7l4yCU4cXKg+SN3/+3+HzxI\n3sCzeeSDCrcQtb6gAqeri1tem0nx9iL3OuPKZGWlb6aMU+j1f4dl5nmkgNSiHbPRE6L0Isz0xgIC\nzegRbP8lkMwp0UYs2y4IghBLiHAWY+TnjOblSa/oOjlmZpzoDUTbHQ1eo6YAnyKQkYgNpb06e63u\ngL0yu8lM+jVvEU3eImD8CTb+RASzKHnDAxUN/AmRZiJv/OFN5NATUn1tV89UWzV2Levq1ng8O76e\nlVA6gHqz3/qDQMXQQMoZFZi93VOjbQZzLt5EezP3WE/UNhP16qtePbx1+OJNNANJ4yGYp7WrlQV/\nncsvqn/OS//3AgCZtkFkJA/ESRc/yPkhE0dcxb6mvaQnD2B9QQUAt7w+E7ujwT2wk5xk86hXOv6C\nIAiCIGg5efIkmzdv5pFHHuF3v/ud+//+GD58OBs2bNDd19nZySOPPMKIESMMlzGLMrZw68hSHM4W\nBtkGk5GcAUASVlz0eC1rIYnBKWdw40U309PTw6uH/owFCxdk9UbarRq7lokjCnnw8jXYrF/5U/k5\no9k6uYrKoj+zZVKle2wlP2e0u39jdzQA6K5vBr3jP1O2FVK8ve8EJ3U/39sERG99P63QBrgzegCm\nJiiGqv9ipJ5o9U+lDycIgtA/iHAWA2h/rBXHR73PTKQW9P2hVSLZFEdKqXvB7nnMzZ8PYCgyxV97\ndkeDux21uKUWfwKNoNPuNxulEkrnQ4lQUduhjhI0gi8RKdSikLf6tDZ4iwzUu9aAh7OuRi/yUdke\nzDp96mO8pegzUtZoW97wdn7+6jYrmvkTOZU61aKTt3tlFr2OlDadh3qfupzSSTL6ThgRtUMpuvZ3\nRyTSHTLpcAlGGZaZR2VRFbNHzuFYWzOnOk8B0NJ1ilanAxcu9jS+y7UvX8nNr85g4ZjF5OeMpqm1\nkdyMr7sHafJzRvdJ1Wx2nVBBEARBEOKf22+/nffee4+eHu9Ckx5XXnklycnJuvvy8/PJze0rHPkq\nYxalP1EwfBxnpmZxquskDqeDgcmZWP59jLeoMxc9nOw8yaMfPExW+hBu++6dpFhTaGptpKSqmLI3\nSqk+WMW6ujUe/pTSrrIOmvK32h4lDaM3/18R37ZMqvSatUP9X2/nrnct1GW1GT0CmagZCvyJZtEc\n1SV9OEEQhPAjwlmU421wXC1eeMtR7Q/1sXqRbMMyexedXVe3BghMoFFHlihOnNKOkQgkbV3q/xqJ\nktHWqy2jN/gfKtTnNzd/vnvgP1Bx09u+UAl9erm+9Zxcb7PMfNmqRn0NtKka9I5XlzMSDReoKKS1\nRSsMBoKv9zfYurXX3Fu9WtFJXc5X9KXZ81LqNmL35sItrC+oMBzh6e350oqu3r6BRq+xtr7+oD86\nZNHa2RNiB/UzZHc08Ng/NmAhibbOVganDObMlCwsWLBiZeHopeQMzGVYZh4js0dRfbCKWa/diMv1\nVX2K36L+Lmnf32gfrBAEQRAEIfycPHmSiooK5syZwx133OH+fyyg9K0XjPkVNouNrNQhDBkwhDNT\nswA8os5+kPNDbBYb4/Ou4JxB3+Smi25h4X8u5WTHCSo/fYnHJzzNyOxRrC+owOWClXtWeE236Mse\n9X+9oR6rCRXexgmiWfyRqC5BEARBhLMoRx3Krt2miBc5Gbm6UT1m0ZY/3FLvkWYvENFMiSxRD+Kr\n2zEqcHiLdPJHNMwgUq6jErmnFYp8YWYmV6jwJz5pHW5/EVXqqCK9Z8LX+nrqcv6EIsUmpb5A0vbp\npRc0+px4i/bSE2+1dZuNRlTX5ateveumHOsrwsOfTaHoRBhNy6puU7FPbac3gVBBT5zVw8h9Dse3\nItwdsmCeX0GAvs9QTkYuA2wZdLjasVqttDnbmPCNK+mhh266qW/5AqslmY0/eQK7o4GFu3t/++66\nZK7726Od7FNnr2X267NMRSALgiAIghD/nH/++fzzn/+MtBkBc7ilnqf3/4E1P3yIgSmZjMubgMXy\n1f5keiPcDhzfz6CUweyqf43m1mae2v84G/duYNXYdQywDSB7wFBmVk8jJyOXDeM3eqwXH6hdvv4O\ntJ54Q/xQQRCExEaEsxhBTyBQ7/NGMIPAaoHOVzlvf2vD7/UGuo2mZvIW6RQM/TUop8ykV0fugaeA\nZsThDHdEiiJmmbkueoKmelv1wSqu236NxwLDyjMBuPOs+2pTKwIp23yV0YpzShltvVr0ohONXA9v\nz3KdvdZnFJ7ybJhdW89btJo3m31FLephxCZfEWv+bNfez0DLGol6VJ+nLwHJ330Op9Bu9DoE0nYw\nz68ggP4ztPR7y7GQRHt3O2nJ6bz8yYtkWAeShJWn9j9OfcshDjR/xJxdpTS1fcmC0UvYtG+j+91V\nz5A+3FJP6c5Z/KvlM/Y17XW3Ecg3QhAEQRCE+GDcuHGMHz+e9957jxtuuIGCggLGjx/v/r9ZduzY\nwQsvvBAGS32j+FEXZF3I4dP1PLl/E23dbe79TpxYsNDccZSfXziTs1KzGJw2GLBwtL2JrPQst0i2\nauxaAMpryiivKQvYd/e37IJRpA8hCIIgxDsWl0udPCc+aGpqibQJIcfbAJKviK06ey3lNWW6OawV\nJ0dv4VYjA6zayBZlEEwRYLRtKnbaHQ19Is70UjNpB9XiYfBM71ztjgbKa8oA7wviKtdO736ZbdPX\ncXr3zUwb6rbq7LXM2VWKzWpj4ZjFTBxRqGuTkq7LyMC+NtLMV2qKOnstORm5fcpon9tQCqfaa62s\nG6hOgap3rfTOz9tzoH3njFw7fzZ7uy6AT5u8HWu0XaPPpV67oXhGAyGS36JAv9lm6o/UuWVnZ0ak\nXcETI76T8ltxquMURxz1uPB0Ic9MyeKSofnsqn+NnAG53DryNjYfeJYN4zdSXlPG+oIKcjJy+3w7\nDrfUs69pr/u3IhzfaEEQBEGIFxLBdzp8+DAAPT09vP3227z33ns4nU6+973v8eMf/5jhw4dH2ELz\n406/q3uYFe8vAyz00O3efmn2GP7etIfBKWfQ2uXgtlF3UvXZdm6/uIyC4eP69P0UAvGRvPWlA+0L\nhLJcvIz7CIIgCNFFMH6TCGcxiHpGj7eBJWVwq6u7y+vCrt5EKzMiBniKH0AfAeZwSz3F24twurpI\nTx7gN62Atj5/g/PBOF3hds581a92WrUij57gA4Gt2WUmeiyUIlJJVXGfe61nk5F2fT1zRkRhPYHZ\nWwRnKK9Dnb3Wff7qtQjVtnu7377ezVAKQaB//lqhztcaY77uqbf3U9uunm2hGDj3V0+kO2i+RFQj\nx8aDuJAIgz+xgFHfqc5eS+nOWXxx6hDd/x70Scb273+7cOHCQhJJFgtWi5UnrvgjE0cUeny37Y4G\nAJ/iv/r7KQiCIAjCVySS77R69WoOHTrEddddh8vl4uWXXyYvL49FixZF2jRT407qyUc2azJjvnYZ\nuRlf5+EP1pJiSeGKb1zFvuZ/cLjlC5KSktz+k1JWne0jWL8/Gvo/ev3HeOjXCIIgCNGHCGca4lk4\nUxwuwJ3uzptjoY26UcqrnRN/EWBGbVLboTe4e8OOIlwuWHrZfayrW2M6wgj0RcJAnC4jgkAoMCIS\nBRNxF4jgFMg5BDqDDHwLnWbETbORNv4i1BT71O9SKJ8Jf/fV1zMYzP02e5wvQUxPqDPSplbs1Ts/\n7XX3Vl+4o6ki3UEzEglp5trHKok0+BPNmB382VD3W57cvwkLFo/Is8EpZ3Dnf8xl5Z7lDEoZzOLv\n/Zpp35nhLqeOtPY2kSbS76YgCIIgRDOJ5DtNmjSJyspKkpJ6VxlxOp1ce+21/OUvf4mwZebHnZTl\nCw40f0T5W3P448TN7n3K2vJNrY3c/94yXry2EujtTyuTiZR+VCBZYqINiTgTBEEQ+gsRzjTEs3AG\n5qI11GKBNpKreHsR9acPsXVyVcCzus1EqSk2BzoobkZQMDpQHqpZW0ZsNnqtjKQv7I9BxUDbMCK6\n9Fc0nFLOVxQjhDbizKzQF+y5BfKMGWnbSNRYMGXBu7Dq7/qFOjoy0jMufZ1nf4oHkboWiTT4E80Y\nTdWofFNveW0mDY4j4II0azpt3a1kJA+ko6edJ674I/e8Vc6Xbb2RZc9M/BMTRxR6+CbKxB5vPkGk\n301BEARBiFYSyXcqLCxk69atpKSkANDR0cF//dd/8corr0TYMvOTjoq3F2Gz2thcuIWaQ29QMHyc\n7piEeuLw3Pz5/HLnTbw86RVyMnLjRjgTBEEQhP5ChDMN8SacBRppok4Np6wpoh2s0kacBdK2WUHA\nVwSZmXYDQSvg+bPDWx2B2qYnIAbaRjgHFYON+DES1Rdq+7U2+xLwwj0gG+4BYPXgs1oQDEWUlp7t\nSgdN3YZeBF2w+BpA9xfFFsw7Gc2zHfvLlkhG+CTS4E804893Up6RufnzWfq3RdSf+oLMlMHYrMlc\n883JbP+0kpOdx8lIGcifCv+bdw//jTPTzuTh/13H1slVXgeG9NZsjKZ3UBAEQRCijUTynR577DFq\namooLOxNW1hVVUVBQQGzZ8+OsGWBCWcbxm8EoLymjNauVu7/wYMeGXm0fVbwXCdefCRBEARBMEcw\nflNSCO0QwoAyqKQ4TWaOy88Z7R6MAnh64nNuAU05zp9ophyrrlf5t7+okZKq4j7llDoVe3xFnBg5\nZyOo7VXarrPX+rXDW11GbPNl48zqae72vdVjxJ5wR5oF45Qr5YZl5nm9vtoOgTdbjNir2Ky+rtq2\n1TaEu7OhJ/p4O5dAzl85t/yc0R5ikj+x2l87vmy1Oxo82lC+Lco1V1KPBIL6Hup1FtX3Untfzb6T\n2na1Zf29m/2Nt2i9cLRjNHJYSFxWjV3L8neXcbrDgcsCxzuP0dj2JU/u38SxjqNkpAzkRMdxpr5y\nHcvfX8Lx9uNu0Uz9u6ug/ZaphXmtryEIgiAIQuIxe/ZsSktLOXLkCIcPH2b27NlRIZoFgs1q493D\nf2P267MoPm8qRxz1LPrrfFaNXQt49kPUk3xzMnIBEc0EQRAEob+RiLMYwJdApT3OSEo0ZVtJVbHX\n9UW0x2qjPbSzw/XKqaNUlPb8rcvm7Vy8RaCoU1F6q0cvNaORskZtM9q2tnyoo2RCSTREuRiJgNFG\nIkVrpIIvQcvX+ZtJxRFIG8r+4u1FbJlU6d7mLQLLm6ilTS9q5h7o3UP1du176u2bFop3yeh3pb8x\nEsHZHzaEum3lvBJp1nQ048t3Ur8bpTtn8cWpQ7iAHroBsGAhwzaQm7/zSx7+YC3ZaUM53nGMYQPP\n5rEJT3hEvRuJco+GZ14QBEEQohXxnaIDs+NOv6t7mOXvLwFgSOpQjnc0k2RJ4g9XPsOiv84nM2UQ\nC8csJnvAUN2sIpKmURAEQRDMIxFnARBrM5gDiYBQR1iptymOlrOni/KaMp/1aiM89GaHa+tXyiki\nWUlVMXZHg0ed/uzWSxWntlMd8eLPfm3UkfocjKCt36ij6i2CQy8CygzBRNjo1aWHWmT0Vk5vv1mb\n1NdI7zr7GyzVPpvKNrOoIxu0dvz/7H17fFTVufYzSSaYDAGFBicmosXag9gU2xQsVWo+EKFGYLAn\n1BOOGrlpepp4miACh4tcCogkrYk2CkojHjgt+cQkOJrD7URRqaQ5NU1BW7+misEZM0WFZBLIZDLf\nH+O7WHvN2nv2JCEXXA8/fkn2ZV3ftfZa77Pe9+2NdtYrk1H9I4GM0JLlwd+nn26vC02tJ9HgqdfM\nF3xbUPloHJMM0t9G1iLhIOtDAm/VRvlmOTND5gNZvSPJXywL7wqlvyFa4vUXgdDbeffmPKZw8cGP\njSkp02CBBbk3/RxRiIItxoYAAmj1tWBbw9OwWqwoTH8SO6a/CH+gE9mv/SvcXlfY7y6Nb956tT9l\nXkFBQUFBQUGht3CqpQmVjXvxy9uewuqb1+Pyyy6H3XYVRsZ9DafbT+NUaxMyr78Hm45tQO6hHGye\nvDVkf3T2/Nl+rIGCgoKCgsJXD19J4qw/FHY9cTmkpzjiFdt8nXhlNy24+Gfq3LVITkjBnpkVpk8s\nydzc6VkIiRYhPr8PdluSJi+99oikb/TIO1nZIyG/esNtm1krwe6gtxSJRm0d7p6MvJDJoFHeBCOy\nJVLZNAM9matudIbUK5w8RiIXem2pV38in8PVT3TpYdSO/BxAz6XZJ2DbtN9gxpgMDfmVWeVAZpWD\npZtZ5YCj8k42f4jENT8vlM3YpSHLw0EkynnSn8+H2kScS/h+M2qHSMrS1y4bxbHEl0fP5Whfozfz\nVoTI4ENyQgp+8fY67DixDQEE0NJxFl3ogrfTy55p97fjp+MfRmL8KCTGj4Lb68Kn7S4s2p8NIDiu\n9Ehut9cFn9+HvMM5bO6hfBUUFBQUFBQUBjNo/5Q+egrKP/gtVk9aiwXfWozPz32GkXEjUXRbCeZ8\n88coSi+GNdrK3qO9TYOnHp94gz8VFBQUFBQU+gZ9RpzV19fj3nvvBQB89NFH+Jd/+RdkZWVhzZo1\n6OrqAgDs2bMHd999N+bOnYv/+Z//AQCcO3cOubm5yMrKwqJFi/DZZ5/1uCx9rbCTKasjhUyxnOXM\nxNx9Do0lgtvr0ii7eWsNUdkts/AwqoPsd7GMsnalhZ+R8t4oDSMCwQwBFokSXSR/lh1ZoiEfw+Vl\nlF9vKuB7Q3Zlbc0rKo1ik4nkBUGMtyWDHkkUaay57kBP5jZP3orCui0oSi/W1MuoXN2VK9m1cNaJ\nRunyMhquHWUWo6damlBYtyWEzLZYtO+VTC3F1UOvYT72jYhrt9eFu6vuCol7Fq6t+BhINFfZbUnS\nOYHS4+URQLdiF4qIZOz3BsR5RyajZtIYbFCESHgMlLXTqZYm1Llrse3PT2Pu9VlIGnoVyj/4bchz\nUZYoXDv8WsypzEB142tISbga9vgkbL+jDG6vC3MqMzSkGL8eWHZkCUqmlqJ4SqlGYdSXGIzjSEFB\nQUFBQWHgg/YXbq8LnV0+PPJ6PjbXrscVl43A+t+vwdPvFiPLmQm7LQnLJ65kehw6IJiaOB5Ft5Vg\nxpiM/q6KgoKCgoLCVwZ9EuNs+/btqKqqQlxcHPbs2YOHHnoIDzzwAG6++WasXr0akydPxk033YT5\n8+fjpZdewvnz55GVlYWXXnoJu3btQmtrK3Jzc+F0OvHHP/4RK1euNMyvv2OckTJXdk12L9K0Kd6H\n2+tCfk0eU/SfamnCnMoMuFo/QYXjVaTZJ4TEHhLLZ6Y8fJ7AhXhn4Ugr0bpMJGiSE4Kxkcy4TIy0\n3fgy8/mYrW9320fmLo+3KNKLd9bT+vYG9NrsYrxrtn56Y8lMW8r+Noqx0502NxrrPXm2p2WItDwk\nr1nOTHR2+bBnpjbeWXfmrzp3Ley2JPZ8daMThXVbDGP+if0jypHRXCQrY0/at6/HYE/KrTcmBgtU\nnA45BsraiR+bnrZmrHprBVo6zuKz86cRH23DN4Z/A3/6LHj6ef64xUhN/DbWHl2FLzo+x+qb12NS\n8g/YOK5udCI1cbzheqC/LM0G+zhSUFBQUPjqQK2dBgYi0TvRgUK7LQkNnnosOpANW8xQ7MrYA7st\niXnrsNuSNLHoeb2CXoyz/tAdKCgoKCgoDBYM+Bhno0ePRklJCfv7+PHjmDhxIgDghz/8Id5++238\n6U9/wne+8x3ExsYiISEBo0ePxvvvv4+6ujpMnjyZPXv06NG+KLIGkZxA1rNC6S03W2QdAwQtPsSF\nU4zFiu13lLFFlswqRGb5FS5PPjCtkVJJz2JCZkFBp67CtW933K7x5eQt78ykY0Z5bcZaincfp2fd\npWeZxl830z69Ab6Mde5aqcWQmXfN9KtZ0kzm+tFMW55qkcfFM4pfRWWX3TNbDyNZNWMxGWlf82SR\n3vNmZIys1YrSixETZdVc49sykvnLbkti80uduxYPHpyPgrSlhv0m9g/FYOTLKcZb1CujmXlDr7/7\nY/Mpm6MjeVcp+y89DJS1E607lh1ZgtPtp/Fpmwu3j54OAGjzexlpBgAvvLcDP3/9Z/ii43NYYMG2\nhl8j91AOqhudONUStG4FEDKu+e90ljOz22XtCdQ4UlBQUFBQULgYqHPXwlF5Jx6o/le2znkoNRef\nnT+N8vd/hwZPPXIP5eChAwvR4KlnoS4I4Q5JqrjBCgoKCgoKFwd9QpxNnz4dMTEx7O9AIADLl37A\nbDYbWlpa0NraioSECwygzWZDa2ur5jo925eIdCESzrWb2TyN7uXX5EmVxEDQLWJq4nhNuY3ctvGu\nG/n/snKES493sybG5JG5PNMjQPTKKbPmMgKfPynkxXJESjjo3ZPVTXRnqFd/GXhCgMgHs2XprpxR\n7CogSMrunfWKLslkRAzp9XekZePbx0x7821mlCb9ruc6MRKXqjLyrbuKVz0im/peRg6GK69eecTr\n9K6MjNcrazjw84vdloS9s15BauJ4aTmACy4WRfDuZ+kdMxYpZkh+WfuZPVAw0BDp/Kgw8DGQ1k70\n/Sw78Tyy/uk+7PlgN4AL/ly/lxgk9PyBTgyPvRwJ1mEYFWfHP9o9aPW1YNGBbLi9Ljbes5yZmPny\ndDa3GX0P+xKKNFNQUFBQUFC4GNh8ayG+OP85JtlvwaL92ahsfAkJ1mHYcWIbsqvn4WzHGXzc8hFW\nv70C7Z3taPDUhxwOLEovNr2vU1BQUFBQUOg5+izGmSbTqAvZer1eDBs2DEOHDoXX69VcT0hI0Fyn\nZ/sS3VGE6xEGZpTxelY2fNoiIUPvAGDXZQsoWXpkkQYEFVlzKjOQ5cwMUSaHIybotLhoUUL3yHLE\nbN1laROBIHvGjNUcbwklIyL4dIz6PRLCz0huKC+Z0p5PY/PkrRqy1KgsZq1sxOd4CzOeRJGlGU5G\n+f4Sr0c6BmSyrAeeaAQgHSMyeebfF+N/mSlndaMzpBzic7J3ZeCJbODL04kVd2LuPgcAaBTLZssr\nu873jdif4hinOYfSiYRY5MtGFmgyGdbrj90Z5fC0NaOp9SRzX6JHXOttJPWgR6jzY24gbDwjKYM6\ncXppo7/XTjRWjrrfwhVDRgC44On7D55j7PczHV+gxXcW3xqZCgss+Mk35yHJdhVz3ZqckILFqTlo\nav0YNScPa4jqZUeWSMeygoKCgoKCgsJgBO2zx468AQ+m/gw73/sNEqzDMXvMjxEXE4crYkfiqqHJ\n6OoKoAtdmJIyDZ72T7Hgv+9Dg+eCVb+RTiUSXYCCgoKCgoKCefQLcTZu3Di88847AIA33ngD3/ve\n9/Dtb38bdXV1OH/+PFpaWvC3v/0N3/zmN/Hd734Xr7/+Ons2LS3topVLb4HRG6d3IlH+61nZ8M/I\nFP56RA2dVJIRL3x6RenFiIuJZ/60RashnpiQKb8L0paisG4LqhudLC96rs3XJi1XODKDT3vZkSUA\nEPKMGbeCMgsmMa06dy3mVGZoyLNwMiGrhxlQmekEvmgdx6dPVkB6lkB6sqDXDrK6k4WZjNyQpUnu\nQvVkQSSAxHTCWYV112pLNhYoTZk8y96X3dMbNwVpS/Hgwfm6ssefEuSv6Vm72W1JmrrbbUmw265C\n8ZRSds3IFWw4nGppYnJOVlz8uJCR5qKl3rIjS3QtCvl8xLJ116KksG4LNt16Ie6ZKEdUJ54UN9sW\nMkIdgMY1Sn8i0rmlJ2NHYeBjIKyd0uwTsHziSqz+/jqMGDISVsTqPnuoaT86A534df2ToGi6JMsj\n40YixhKDsSNvYN8LIPhdGijjT0FBQUFBQUGhp6B9tqetGb/+05PoDPjwj/PNePLdrWhu/xQWCzD/\nxsX46U25uCJ2JNJH/x88PrkI1w7/OhLjR6EovRhurwturwudXT7DvNReQEFBQUFBoXdhCQQCgfCP\n9RxNTU3Iz8/Hnj178Pe//x2rVq2Cz+fDmDFjsGHDBkRHR2PPnj343e9+h0AggAcffBDTp09He3s7\nHn30UXg8HlitVhQWFiIxMdEwr0iCtBJIQWnkZrGvg8bzCutI3wOCCvbNk7dqgsqKZAKhzl3LnuMJ\nMll9ZeWi5wvSlmLTsQ1o72xD6e3PMSu0xQcewMuznezEuZiWERHApz1jTEZIfYm0IMW67P6yI0tC\nLLNkdciscqB8VkXYNhDRnb6iNu9rhCur0X0igoCgRRdBz6pJVj+9do30uhnQu6SYzR63APNuvK9b\naejlL9ZTJJpkQZz15E9mxSi+f6qlCW6vi5GcsvYKN4fR+8AFgtjtdSG/Jo/1q2wMiPOImCc/9+jN\nHXSPT0fvOrWvOH75tvX5fbBGW1GUXqzbJiLENMU5k2+biwkz80Z3vwODCSrAvT4G2tqpzl2LmXun\nAxagKxBAF/zS54bHXo4W31l0BbqQeNkoFKY/icT4UWxNsPrtFTjV2oQqR7Xh2uOrIP8KCgoKCgqR\nQq2dBgbM6p1o3zIidiTecr+huRdtiYE/0Mn+jomy4tqEryNr7L34r7+8iDZfOzztn2J47OWwxdpQ\nevtzGv2O2+syrVMIt8/v672P0b5Vrf8UFBQUFHoLPVk39Rlx1pfoDnEGQFcpzN8f6B9wUTlOinCZ\nwpmuk/UTH9OKngtXX5404BdvogK+utGJ1MTxuor+LGcm2jvbEGOxwhptDSmznvJcr+zie0Qgmmk/\nM4s5s+/3Nvorff56nbtWYxHQHbIr0kVyuEU+YGwllpyQgl3HdyL/9Vy8MGM3ZozJiKgtjeRC/F2s\nd3f6TBzH/Bhze11M5kUiWkYIGZU7s8qBkqmlyK/Jg8/vQ8nU0pBxQmOcT5vAK7rJvaFIqOoRgrJ2\nkl3n74kbQ5llWzhSki+vrK75NXkAYBjrrTfGYU8PYwyG75FZKOXPwIDR2onkjebRYbHDYEEUvuj4\nPOTZKEThn6+/By998Dv40QV7vB0JsQmIibIi8/p7UP7Bb5kVeoXDGTIH8MR+X7ZgHs8AACAASURB\nVB9YUlBQUFBQGAxQa6eBgXB6J36v8qOXpsLd5gp5Zrj1crT52uBDB6IQheGxVyD3O/+OLX/4BYbG\nDMNl1iE45zuPf5xvxpVxSRgRNwJF6cXIPZSDc/52eNqbUTH7VUNdB+0hZfoUun+x11yyw1F6B0z5\nA5VA38egvZT2WQoKCgoKPVs39YurxoEMI7dYg+HjybtDI8UTxQbSA7kPEBdbZkgz0UUiuZtbPnEl\nS+NUSxMK67YA0MZo4vMhN5ElU0ulCmvRhZ1R2XkXc5GQZnydw5GoPPj8ZC74jN6JBJG6beut9Pnr\n1KZur0vq8pEgutMTISNFxOt6z4tly6xyhLgG5a8T5t14n4Y04+skKyN/XbaYp/tmYqdFCn4ckxtB\ncqHoaWtmMs/LK08S84SWnry4vS40tZ4EABSlF8MabQ1xkXaqJehLn08bQIjrV5l7NYpbJHP9mZwg\nd50paz+CoyIDcyozUN3oDOkXo/amTRn/jt6cEM4tKhBZjDcjGNU1HC72XBBJORQufZC8VTc68ev6\nYlwxZATOdJzB2Y4ziI+2hTzfhS7s+WA3/PADCMDf5UfxlFIsTs3BE3UbsTg1BxUOJyPNaC7NcmZi\n7j4Hcg/lsLlbkWYKCgoKCgoKgxG0tslyZsLtdeE3M/4T1yV8I+S5M74v4EMHgOAa6vOO03jhxA5k\n/dN9OOv7AoEA8B/fX42UoVej7Ef/id0Z5bDbknDO347LouOw+dbCsKRZljMT+TV5mv2XuD+72Gsu\n2f5P7zk+jIBeuJGLhYGyz1JQUFBQGBhQFmcCeHdBorVEf548icSsXrRW4a1EIq1LuOdkLh7dXhcc\nlXdidMI12DOzIqQ9I3EBSddl7ur0LIz4ZyPpv+6UkS8bgbfMMrLQCReLTK9+F9M6xUy+srGhl4YZ\ny7NITrfptT+56eP7gr+uVyeyjuStrXg5AiCVu96eF4zS4y2xssctwIq3HtGQxbyV1PKJKzXuTPX6\ngkAWXHoEIQDmvpS/T+NcdI0oq4eeTMlOGOqhzl2L3EM5+Leb8vD0u8Ua14x8n+tZAYpzQnesIfk2\njISMv1jo75OQvXkyVZ2aHhgwWjvRPPNZ+2d48Ns/xYZ31qALXYbpxVqGYGjsUHg7W7H51kKUnXge\n2eMW4Nf1xZq1gTgvEQbC2ktBQUFBQWEgQq2dBgbMWJzRfrO9sw0fnv27qXSnptyBNz75HyRYh2FI\nzBDYYobC1+XDM9OeC+bb1oxFB7Kx+dZCbGsoZTHqjcoByN3k99YaK1wYCrM6HaNyXwzo7VXV2lNB\nQUHh0oGyOOtF8Iqc6kanrmVJX0K0mBDvySw66DRPmn0CU0iJljH0vlG+4epMLtzoOcqzYvarGsUY\nXza9BZrZxYmsXHRNtK4TF4d6deHv65XRKA3eAoue1bPQCXeiy6h+3YFZ2dVbNIr5hiPNRFmVuePj\n09Jzy2eUNi/HdOqOD5js9rrYdX4M83UiUnn5xJWwWMAsq6i+ouWRKCN8HcKVXQ/i3KI3nqmd5t14\nn4Y0IzkrSi9GUXoxCuu2aCxAxT6iuYCs8ey2JNS5a5FZ5dCMHWprt9cFa7SVpcWXa9mRJSxN0fKL\nb6Nw49qMXObX5KEz4MPYkTfAGm3F8okrsezIEjR46gEE+5uXDdHCjO9Ho9OO4cYK9cPFIs14GTW6\nT2XpT/TFyVSFgYM0+wQsTs3Bp+0uPPnHwrCkGQB0BM7DH/DjodRcbGsoxebJWzF25A042fIRm2/4\n8ciPUbPf7oGAgVw2BQUFBQUFhf4D6UZ2Z5Rj4pWTTL0zdvgNqGk6BF+XD2c7zqDZ+ymyxt4La5QV\ni/Znw1F5J9YdXYPNtxZi7Mgb4PP7kF+TZ7ge4ddW9LeRdxgAmj1lONS5a5lnkEhgxvrsYpNmA32d\nqaCgoKDQv1DEmQSkyCms26JR6AwkJSGvFJbF/Vp2ZAlb7FD5RWVxOJdjYtp6xJ3oHg4AcyN3qiXo\nMi+zysGU2pG2oUzxLXOHRwptmRVLuP4T7+sRe7J8d2eUM4JSLCP/TFF6sSkywah+3ZE/M+/qLRr1\niC0zLinr3LUaV4lGeYR7hgeRlPwzWc5M5B3OQYffhwZPPRwVd8LtdWn6gSe9CtKWsj6bMSYDq76/\nlp3U48e8jHiSkYv0MxJXEjyBx6cbrq940oaXeyo7jX1+syMSoGSxBQA5BxfiZMuHyD2Ugzp3LTsZ\nSeAttbKcmahz12rkQuw/cV6RtQeNCcDYPS49S65c7bYkFKUXIzVxPJujqR5GEMtI7i9lz4Vr/4v1\nDaA+0puX+2NjpzfnE3rSFmqDOvgwduQNSLJdhTaf1/C5uKh4WGABALR2tOCp+l+xmGZ2WxK2Tytj\nlq78eOQPKxHMHDTpSwyEcamgoKCgoKAwuOD2uvBA6oKwz1kRi7+cef9Ld9fAbclT4IcfO45vw+pJ\na5lrxpKppdjWEIxTLYa6oPVVuLUJf2BcfF4WksMIdlsSvhaXiE3HNkjXSpRfuBjSfQ2zug4FBQUF\nha8uFHGmA1Kqi0rq/oC4yBA/5jKlcEHaUg15JiqLRYso/n0xbz5PcfHEK+6NFhkWC9DgqY84Bpis\njrK/+WtG5JgsTzOEnl45jPJ1e124u+oudvKK7w8xXb00w+UdDmbfNVJOiifRRBJWVPQTkZFfk8cs\nwPTei7QcZEUmkpS7M8pRPKUUsV9aR32ps2X3+XTr3LV48OB8VDc62d+LDmQj73AOI53FzQNPcvGQ\nyXy4mIL0HrUHuVnkrbxkzxP5LEuHfifyLPdQDuZUZmDX8Z3sHZ7IJZLQ7XUhLiYez93xAkqmBjdf\nmVXBGEOLU3OYVRmBP9EoyiiVP78mDwVpSzVkmx5JZVYpToQZEJQrspaj2GpkdUdpGm3KzJDo/QEq\nl148x74+vKFHkPfGRlJtSAcfyPJzx/QXsXziali+XD5a+Mn2S4yKS0QAQS/g8dZ4+AOdmHr1NOQe\nyoGjIgObjm1AdaOTHazYPHkrGjz1ePDgfDZ38DCaH/pSjmT5DbRDVQoKCgoKCgoXUF9fj3vvvVd6\nr729Hffccw/+9re/AQC6urqwevVq/OQnP8G9996Ljz76qFfKQCRUdeNriLZEGz7rQwempExDNKJh\ngQXvf/4eYiwxiImKQWL8KADAtoZS2G1JzDsKH2f6VEsT5u5zSGOAyyA7ZArI48iHQ0LsMM1BYSqP\nnt6KR1+u6YwO8dLfA3Vtp/ZOCgoKCn2PS5o4i8TyQ4a++FjqncgJVxY9SzD60JNFBpEAMosqcZFk\ntGAhJb/MUkOWJn+vfFYFiqeUaiz4AH2LN5nlRXcWCXrWEqI1jFHQWZkFjVmk2Sfg2dt3oLBuCwBI\nycxw6Ro9E648kSxAjYjDUy1NmFOZEUK6UtuILin5eFvkrlP2Hp1iC7d4Fesqc1mZnJACuy0JMVFW\npCaOx/ZpZSGbCErXbkti/XKqpYlZQOyZWaHr2hSAVP5Fy6ui9GLpGBFP8JG88WV0e11o72yTutpw\ne11oaj0Z4k6RXMryYybNPgHlsyqw6datWPZmAWa+PJ0RcvTMsiNLUN3oZITTjDEZzFqzZGopLBYw\n12rUbm6vC+WzKkJIKcobAHMZuenYBlMnFKlfZGQ6bfzq3LWYu8/B5Io2idT+PHnP94us3cX7AxFG\nLlllhPrFQm9bvoZLW2Fw4P3T7+GFEzsQbQkuH4kg4/GR94KiqbPLj2hEY+eJHfB2tsJiCX4bNh3b\nAJ/fx+J+bDq2Ac/evoMphczId1/LkV5+So4VFBQUFBQGHrZv346VK1fi/PnzIfcaGhowb948fPzx\nx+zawYMH0dHRgd/97ncoKCjA5s2be6UcafYJ2HjLE3imoQT/MfExDLdejhFDRiIa0ZiacgcAIME6\nDFFfqub+8sV7SBgyDAEEsOBbi3HFkBEovf05pNknYPWktWwvRusPIslorxMTZWVWaIA57x6yNU4k\npBkdXBTfkemH9N7vizWdWf3IQFzbqYOHCgoKCv2DS5I4C0cCic/2Z+wykcQxS6QYpQEEF0hkuUCQ\nLQB4N4vigkVMU3RHKAPvRo+35BIt+IhE4RXzIkmRZp+AgrSlrD6ict0s4WR0OpwWeTILFSI48g7n\n6MZECocZYzJYHxTWbUH2uAW6ZCblyUNvEWlGVswuQHmrIFm71pw8jA/P/p3Fk+IXwPk1eayv+LZ0\ne1148OB8DdHDl8duS8LeWa/AbksK695QtFoyIo3JKmnTsQ2aOonkcGrieE28r03HNmjS4ctK79ht\nSVJ5FTcY4uZAzD+/Jg8+v4+9S5ua/Jo8xFis0pN6afYJeHm2k1l20rsFaUtZO/NuGpMTUjDvxvuw\nfVoZO/1HZaN6FNZtQUHaUthtSZqxarclYc/MCrb5IbePd1fdhQZPve6pPOBC3DOyTKNYc3pkqF4s\nyTp3LdxeF062fIT3T7+HmCirxqIMkMds1Gv3cO5GBsoGJJIx21/fLbPz4GDckCroIzkhJRhb8M0C\nnPefw4xrMgyfj0EMAKDd34bY6FjYhyZhSPQQxFisSIwfhd0Z5Vg9aS3S7BNQlF7M5kFH5Z3YdXyn\nafnuazlScqugoKCgoDA4MHr0aJSUlEjvdXR04Omnn8aYMWPYtbq6OkyePBkAcNNNN+HPf/5zr5Vl\n7MgbEAgEDxu1+bxByzOLBX8+3YCHb1qCNp8XUYjC6pvXY+OtW9B6vgVJtqsAAJ5zzXj/9HvMa4rb\n69Kskfj4zwDYHk62pzWCTN8g+93s+zzEdZ2e55mLjcF8eG8wl11BQUFhMOOSJM6IWDLzYemLD5CR\nFZnMCsyoLGT5JXuHCAbggls23spELy2ezOJJAVm8HSOLB54MAxBiycWnLVqJ8PmR1VJ1o5MtDkWy\nxMhKjG8Xt9cVlpjhlfFiXZZPXImYKKvGMihSUPqbJ29F2YnnQ/qPUN3olCr3ZfJgVm7NyLXb60Jn\nV/Dk/9x92hNrp1qaUHbiefzytqcwY8wFRSmfLt82VFcixmSnzngiygyIfKO+JIiEGllSAdCQoWJb\nibG5KN6XKNviGAOgceNopNgVx4wY7658VkWIDJC1l2gpx1unifnOGJOBvbNeAQBGNPMWazPGZISc\n/uNJwE3HNrAYhNTv1MbJCSmMcAKgsdKTWQnyY7p8VgWzvqN68D/pnYK0pSGWqEQAkiVg2YnnGfHH\nQ+aPnv/J97vM3UgkBxYuBozmLjPP9MV3K1ysOrPvKgx+nGppQmrieAyzDsc/2j048snrhs93ohOx\nllgAQLu/HXeM/hFenu1EydRSLDuyBDUnDzOXucuOLIHb68KmYxuQGDeKWbt2p4wKCgoKCgoKCgAw\nffp0xMTESO+lpaUhKUm7F21tbcXQoUPZ39HR0ejs7OyVsthtSUiyJeOFEzvQhS5ER0UDgQA+bXfB\n5f0EXejC1+ITccVlV+B0+2l0ohOLvpWDSck/wJVxSUgfPYXtZwCw/SHtLemwrkyvwe+/za6VxIOf\nRt55wkHct1xwXek0VRaz+ZjFYCaeBnPZFRQUFAYrLkniTG/RwENU4Mqu6z0fCfQWKXqWEmYsDWTu\n4vi/yTKICCjeykk8OWREBJASXKagFQk13hqIlNM8ecFbM5GCnk+TV7rTe0QKyMgXPSsxEbx1D5XT\nrHl+2YxdjHgws0gxsoIjF3oiWci/W1i3Bc/eviOEUDKjYNcrT7h7ZAH15QE4xERdOLHGE5zzbrwv\n5H3qBz1rOCNijLdy5GVELDeRYUXpxdL0qG9F0lYc//yGQbSCE0kZcaPAp8fPLTLLMnpWNmYoTb5s\n/Ngjl2Vz92ljmZE7Mz4eEJ+2p60ZcyozUN3oZO7PZOD7EwDzjV8+q4K5YKQ2pjYid6Np9gka60kj\nl66Uj+j2UjZnEGlGpKBI/M8Yk6Eh9/n+4duc0jYi+vX6mAi8SDYiPd28mZmHwj3TFxsn0erSbL31\nxoAiNgYnqP9rTh7GmY4vEEAArR0t0vhmhFjLEPgDflw+5ApEIxovvvcbuL0uRvBvayjFI2krMGNM\nBrN8XT5xJbbfUcbmokiIW0XWKigoKCgoKPQEQ4cOhdfrZX93dXXpEm/dQYXDifvHzUcXunDntTMx\nNDYBUZYo7P1gD64YMgI/TP4/yH89F7/630Ksvnk9yj/4LRbtz0ac9TK2N7PbkqRxxPmfMsj2rkYw\nc0gvkrWXuCfjD2SGw0BZ4/V3/goKCgoK/YNLkjgzQygYxdYye91sWWSWEXpWYD1JDwAWp+YwK63d\nGeUoSi9mVk6A3BJGJAX49Og5Pi+epKDnKQitWB7eEi6zyoEGTz1aOs4ivyYPu47vDKmbmB+5putO\n+xMpUzK1VKPQ13NXILOiEcujB6qjLAjvruM7mSWZzKKPsHnyVqQmjo/YfadeeYxio/GkAZEnRKTw\nJ9Zk9TeSX7GNRfAWhbwc8mnypBXJGe8KUkzX7XWxPEVlKw+y+uPJYiIOxVhrIuGjR3TrxQeUEeJ6\n45YsKsllWUAIGWSNtgK4QKDxxPmpliZsOrYBV8YnITVxfIg1G+XBu0MELliD8uWj/0ScUuw0flMj\ns+Dj5V3WDjwpTu3Kywm563R7XRoXjxTfTKwvv/HjY7YRAWfWEpPmL7JsNevGsaebt3BjhC9jf7nj\nkH0DIi2L3ryhNp2DDzReyk48j2UTViEa0bgsJk4a3wwAohGNjsB5+OFHbFQs7h+3ANcO/zqAoBys\nO7oGLR1n8fgfNmDX8Z1YdCAbP3ppKhbuvx8PHViomdP5NYTRN7u/x8tgw2Ass4KCgoKCwsXEd7/7\nXbzxxhsAgHfffRff/OY3eyVdfs+3+/0XMWLISLxw4nmc6fgCXYEudKITX5z/HOUf/BfybirAM9Oe\nw8/SHsbyiSvhaW+Gz9/J9s60Hy6eUtqtNU+kB+Hop2wP3pO1l6hvCFeO/nZRqPYxCgoKCl9dWAIB\nUU07+OHxtIR9hhYePb3eXZCytzuLAFlZ6COeXT0PBWlLkZo4XqPY5n8HwpNBZCHFp09Ke9lpJUdF\nBiwWsMC19D7lXd3oxLqja9AZ8OFUSxN+Ov5hFL9biBdm7Na4AOTrwVua8OXhLVP0rMHoeV6pzrc3\nLX70/u4O+IUU9UNi/Cg4Ku/E5lsLNVZbp1qa0OCpZxY3+TV5rD4EWf9FWh6998R7de5a5NfkhbWu\no/d2Hd+JbQ2lAMAstmRtyOcjEhziM/Szzl3L7vPXAGhkigjbmCirptyyuslc9JGMPXRgIaxRVuay\nMb8mj9WJ2gWQy5o4tiLtJ3EeONXShMwqRwj5RdZoJB8iAUfXxLbk3yWrPf46kVZiH2aPW4AVbz2C\nZ2/fweYSvXkny5kJn9/HymzUJmKfEbKcmZq/3V4XHBV3YvsdZZr89eSL71OjMcw/T/2/7MgSFKQt\n1cxD/POyNHsyJns6z/QVevubZ5TmudgvcPXwq3s1L4XIEW7tROOspO5X2HFiGwAgClHoQpfBWxYA\nAcwftxhH3W+xOXb5xJUAgNTE8ZhTmYHOrguukBJih4XM6TRHiIcCeDe4/YHBNKYJg7HMCgoKCgpa\nJCYm9HcRBgWampqQn5+PPXv2YN++fWhra8NPfvITdv/ee+/FY489huuuuw5dXV147LHH8Ne//hWB\nQAAbN27EddddZ5i+Gb0TcGE/t2h/Ns75zqMLfpzzn8OQ6CH4/PxnsMCCYbHD8dikDdjWUMrWPLQv\nBiBdA/WGHknBHFTbKSgoKAxe9GTd9JUlzsKhtz6MkZAX4dLQI5VkxJiesle8p6cM5/Mg8qCzy4dV\n31+LGWMyNIRCUXox8g7noMPvQ7w1nsU2IqU0/xMAcg4uxMuznWjw1IeQZpQvAA3JIlOYA3JlGfnN\nJhcApBSXKfHDKcO7KwdkxfLs7Tuw+u0VeHm2M0QJSG1HhAWBJyh7mzDTe57Ij5KppSGuMfnniBCk\nuiXGj9IQTUZEGb3L94WMwBSJmDp3LRwVdyKAAJ674wUU1m0JsRoUSTaecL276i6py0+eVFo+cSVS\nE8fD7XUh73BOCLFDeVwMiONbT0EsuizUq4s4/grSlmLTsQ3sOsX+o2dyDi5EXEx8SB/uOr5TY63K\nE6t8P5OLSPGeHtGV5cxk7S1TfFM7OCoyEG+ND2kLcvfGP2uGvJTJWjiiL1ya3cHFIMIHM061NGHh\nwXvxh8V/6O+ifOVhtHbi55iWjrNoav3YdLpDoobA3+XH1+IT8dqPD7F0Ort8KJ4SPICRX5OHxak5\n2NZQiuUTV4YQ2eEODPUnCdQb67y+xkAtl4KCgoKCOSjibGDArN6pzl2L3EM5+PuZv8EPP7s+csjX\ncFPid/E/TYfQBT+iEY2UhNGocDgNv9PqO66goKCgoGAeijgT0BPirDcVMd05ES0jc4hwIMJAtPyS\nEWlifnxZSPFsZE1BeVC+BWlLseqtFYi3xmNxao5GoS4SP7LTUbySWiQGeBDZQtZaMgslM+AtzsxY\nUslgdJpLZtkjPkNtIKsv30e8dZ5IqEWKcDKnt8jm+9yMxQ5f5rn7HAgEIHURKMotT+zQNbFv+T6j\nOpDFYvmsCilxAkBD6hFRJhItfB3EMvIEL8muGcIqnFyZIWh5yzN+fMoIHZGcJBlr87UhNtqK4iml\nrE1F8pJAVmZ2WxIyqxxYPWltCCFJbcPHTSuZWspIUJ4QpTYSSb5wdaX+5dtGtD7jScUGTz3rXwAa\n8p7Gu8ya0UxfDCQrDL3vgNmyDbbNtLI4GxjQWzvx36blE1eioOZheM41m0ozPtqGNn8wXkiMJQY7\npr+IxPhRAIDcQzmwRgcPKdScPIyyE89rvhlmZdjoIE1/YiDNKQoKCgoKlxYUcTYwYNbTUWaVA/92\nUx7yX8/VuLqOxRB04DwAYLj1crT5vdgy+ZdIHz2FPaPWEAoKCgoKCj1DT9ZNl2SMs+6ClBwAek3R\nwZNbvJLfKH+RhNo8eStT7CcnpLBYQckJKew+H7eJfGjz6SYnpGhIN8qD0hTLYLclsXzJ9WO8NR6Z\n19+DFW89goK0pQDA0qI0SMmdX5PH4hbRdYJoycMjzT4BBWlLsehANivfsiNLWNn4chqBiA6eLNCD\nXlp8m4nP8/G4+LhcfHqkwOfry8dRImJjTmUGu747oxy7M8q7RZrxZQZCZU4mX7zCUYwPRfIkpg9c\naN/khBQUTymFNdoa0k5lM3Zp/JfzfUHtenfVXSHvUaw1vg4zxmSgZGrQMmHZkSUs7lhmlYPJWdmM\nXUhNHI+9s16B3ZbE+oXPlxTA/JigMlL9KZ6abGzx4NPSg/iM2AeUbn5Nnsayi5ctamd+fJ9qaWLW\ndG6vC0XpxYi3xuOn4/PYeKF+4mO/AdAEl3Z7XbBYgu7SxLmA2qYovRjlsypQMrWUEVUFaUvZ75Q+\nlZNvM9kcmmafwPIKN8fyZHtmlQObjm3AxluegN2WhGVHlqAovZgRsbuO74Sj8k7M3ecIaSs+Pb5v\n+Bh1/NjpS8jkSlZuPQtiWXoD2Qe/rFyKNBvYoO/Y7oxypCaOx/Ahl8OKWFPvRlmCy8yRQ76GQCCA\nR48UYNbLM+Bpa8bqSWuxO6Mcbq+LrSv4b0YkMjwQZV42bhUUFBQUFBS+WnB7XWhqPQkAiImKwdSU\nO9g9Is2iEIXY6FiMirOjsO5xzKnMQGZVMIa8XlxxBQUFBQUFhYuPrwRxZnZh0ZtKDp6EM5uu3nOk\n/Ja5ZqT7vCK6IG1pCJHGu1ki0ivLmcmU9DyoDJTupmMbAARPmlc27mVxj8iShQggUliTkm35xJUs\nfVL0E6nHkwJ8m51qaUJi/Cgk2a5iyniRCDJDWPBtyruQk+VnpHAjcqe60RnST3y/iJY6PJlG9a1u\ndOLuqruw6/hOds9uS0LK0NHwtDVr5EUsZyQgORBlSbwmkjCUP93LcmZK21kkCNPsE1jcGr5N+Xzp\nWSI56D3RhaJs3ND1/Jo8uL0uRtq4vS5Yo61YPnEllh1ZwtrZ09aMufscjIwS25OspygPINjPPNFL\neRKZBoD1a082Knwf8OOBR2dXsHwU+04kxPnxSe2XZp+A5RNXMktQsd/5tiTCieaDQAAaQp3vA2p3\n4AIJ7fa6NFZo1Da8PISzWqR6ydqnKL1YkyZdK59VgaL0YpSdeB5ur4tZtdE8VXbieWyfVoY9Myt0\nx4CsL8Ty96UC3ixJRteN3gv3/kDAQCf1FPRBYyo5IQUZX58FHzpMvdfaGTyJPSnpFgBAIBBAIBDA\n8iNLsfjAA6g5eZjNZeSekb4ZesoiWdkGqswPxDIpKCgoKCgo9B3S7BOwbdpvMHbkDejs6sShpv3s\nXtSX6rgudOHz859hwbcWo7ntU3R2dWL1pLUAELJvUutpBQUFBQWFvsMl76qxO65yeupeh5S94dxl\ndcedlqxs/DXggns53l0buWTzdflY3CAg6PqMrNn4WGKEmpOH8ev6YhRPKWVEGR8/ipB7KAcft3yE\nCserABDiPo6Pf0aWLrw7PgAstpXFAgQCwOpJa1ksLYqrRsr7zCqHYTyucO0mthlB1h/VjU7TrqN4\nCy5qH77dKC2xHcW21Su3Xp7dVc4RsSfLn+6RHPHEAlkVibHJ+EDGfP2IfOHdL+qNE7ENqWx5h3NA\ns5XFAuyZWRGSFuVF8dqM3EDy4yfLmYmWjrNIiB3GysjHWgPAZJbqoVd2GfEpu0buEsnFYO6hHJRM\nLWXuy4iM5NtUdKVJMibGkJP1M19fvs/5/uWf4essi18muszUawdeFvT6gH9PdDUqky1ZP9Dz4dpe\nBlndZeldDIh5h5Mn/p7ZMnanHS4WZHkod0MDA2bcDVU3OrFg/32IjRqCzi4fzned1302Lioe7V1t\nsMUMRVunFwEEsPrm9dj53g6U3v4cjp56G5tr1+PxyUWYd+N9IfksOpCNq4deo/utNyOvfSHTCgoK\nCgoKfQ21dhoYMOuqMcuZiUn2W7DjxDbNvbjoOLT72zE8djjafG3Y8sNfRuGZtQAAIABJREFUYusf\nHkdcTBzbgwLd3+MoKCgoKCgoqBhnIRAXMJEsLMySXkbvmyHdIiXnjBTR4jUZwUHWK0RcEcQ4VIQs\nZyY+P/cZPm1zI3loCvbN+W8A0Ch4M6scONnyIUYnXMvc6L1/+j2seOsRPHv7DiTGj2Ik2UMHFuKZ\nac9pYiI9dGAh1t+yMSRvQnJCCp6qexKVjXtZ+YGg1VLe4RzERFkjil0m9qkstphIqOgptPXS5+Mz\n8TFhiMyIRMFvRhaN5MiMYp3el5F21Y1OjbUh309GpBFfJhlBQwQo5SsjssTYY2IcPbFeMmJIFn+L\nj+0lI9SIyOItNPmYbLK8+bY2O6ZFMqi60YlF+7NR4Xg1xL2oSFjRtTp3LRwVdyKAACodrwGANEad\nmBffviLJxueTWeVgFn2pieM19Q4nd5QfWWySlSq1kR5JLNab7xtRRqiPZcRvpP0hlmPuPgdioqzd\njjXYHRiR+7Lyi/1qNt1InuurTblS/gwMGCl/aEzN+L9T8Wl70Eo2Ljoe7f42U2l/e8R4/OmzegyP\nHY7LouNR9qP/xEMHFuKjlr/DarHi+ek7Nd9JmqMo1qlsXjNzqETFGFNQUFBQuBSh1k4DA2aJs5kv\nT8ep1iYuvpkFFgABBDAsdjjWTvoFPj/3OZ7/8zbEW+Pw0/F5GDvyhojjvCsoKCgoKCiEQsU4C4NI\nLc16oiw06zIoEtdCfLlOtTRpYpTRff4auVMiN4KkUBatu4CgOzg+pgiVpyi9GFdcNgKrbl6HfXP+\nW3OPUDK1FFcNTcbqSWuZsn/ZkQI8krYCK968EAPp/dPv4dO2C+7oiIBwez/B+t+vQUHa0pD0iRh4\nom4jCtKWsvIT6bFnZkVYhbHo4klUulGbub0uFr9FJAYiseoQ86LyFtZtYS7+eBeGRqBn69y1hnnr\nyREp1cO5tOTlhEd1oxMPHpyP5RNXsjrwLgBF+ZOlCWit7ahP51RmMJeDdlsSc03Iv8/H9ePLRnIi\nU6DyVlLkDpKPt8VDdAFG8mW3JbH0KNYauR6UgcYk9SvJsh54eSJi6VRLEzYd24CkoVfB09bM3ufd\nJYquBIl83H5HGUYnXAsAGreSPERXkHz71rlrWTuI+RBptunYBszdF4wlRy5L+T6mNpAhzT4BG295\nApuObUBmlYP1u0hw8fLq9rqQWXUhTll+TR6WT1wJICiXPKmZWeVg7mf52HdmYlXqldntdSEm6oIL\n0FMtTabcxZmBmbHIl7c3FP7d/SaJ8qDw1QXJQoOnHqfPeb68ajFNmtlihqLhsz9h7PAbcKbjDJrb\n3fC0NaPC4cTDNy1BckIK1h1do4npSDEW9Vy/mpHrSNZZCgoKCgoKCgoXE9GIxl3Xzkb0l/8ujx2B\naETD29GKR17/d2x45zF84m3CndfOwtI3fo6ZFTMwpzLDcK9lBmotr6CgoKCg0H18JYgzs+gtJUsk\nFmRmFjJ8uWRl1Cs3ERU8QXR31V1o8NQD0MY1EpWl759+D0Xpxahs3BtS7jp3LSPeAgFg9dsrkOXM\nhKetGQEEcOb8GTS1fozFqTlwe11Y8dYjWPq9/2AWQOTi7dEJK1E8pVRDLM2pzGBkj92WpIl74va6\nkHsoh+UdjjS7u+ouXYU3tRm1idvrMtWmRiAyhN5JTgjGoSKlPoAQxTTf5qKLODFWnVG+MohkoAgj\n67fCui3MRSYRMkQqZTkzkVl1gUgRY7pRmjJSzm5LwpXxSZrTczFR1pCy8YQvAJaPXlvwJA6RdZQf\nP3Z2Z5TD09aMj1s+Qt7hnJC0RMKFbxu+3jxhRmSQ2+vCgwfna2SOL6+M4CPZ251RjnU/2IhF+7MZ\nWbp58lYml3wMw82TtyL3UA7m7nMgNXE8c+9IpBPF0+Pboyi9WDPfkFw+dGAh5lRmsDzFtpoxJgO7\nM8qxZ2YFlk9ciQcPztfE+5u7zxHSJvw4qHPXouzE84z4IjKd5hH+oALJKwA0tZ6E2+uC2+uCz+/D\nijeXYubL03Ff9b9g5svTGZlWPquClZMfZ3x76fWFXvw+ai86UED91FPyzAwRJc7DRhDnm3DPmkFP\n50CFSxMkC6mJ43HtsDG4xf5DAOadFXg7WzEsdhjeP/Me5o9bjFU3r8OMMRmoOXkYz/ypBA9/pwCA\nNoaHnlWvWC4zZVdQUFBQUFBQ6A+QDgYAoqKi8N0rv4crhozE8CHDcZl1CP7j5scwfMjlGBJzGbrg\nx7DY4WjpOIuuQBe6uvwsFnV3D7OJB7Bl93sLZtJSJJ6CgoKCwmCDIs4E9IWShbcmMrsI0iPZjJRM\npAQuSFsKIEgiEBlCLsh4KyJKZ/aYu5H/ei48bc0at2FEmOUeymFWQrHRVsRYgtYZifGjkGRLxv6T\nr+GXtz2FeTfehzT7BDx7+w5UNu6F2+tirvl2Hd+J9e+shqetGdnjFmDZkSVo8NTD1foJlk9cyRaI\nZMlGlicAGAlghDT7BOyd9YqhmzUitvSe644s6JFQROTwinFS3MsU1GSFRO9Fsljmle7hXFjpKSPp\ntD9vacC7syyfVaGxROOtAkQCUIQ1yso2EMkJKShKL5aWj7f2efDgfGSPW6BpC5G84kkvuy0JjooM\nZFY5NOm6vS4U1m3B9jvKUDylNKR8sn4gUL2JrOBJLCBU5niSkdLh06exQSRiYvwoBBCAp60Zp1qa\nGKlV3ehk1lR8nD/fl2PQbkuCxRJ0p5lmn4DscQuw+MADGjKM3E/ybbfp2AbERlux6datLM6aOBfw\nP2eMycCzt+9AYd0WVh+KRUiEFy9TPImZmjietR0QJCHJUoxkhto0zT4BL892wm5LwrIjS5A19l54\n2pvx42/8BLFRsdh46xbmOpTvJ5JF/kAAf787Fpjh5ohIECkRNRBIq97MX22UBy/4dcbqSWtR5zmG\n+Gib6fcTrAmwWoZg/rjFOPJJDR6v3YBdx3di2ZEC+AN+jB15A8pnBcl52Td0TmWGZh5VUFBQUFBQ\nUBjoIN1JzsGFiLbEYNmEVfjFO4/hH+eb8dn503B5P8ETtZvw2fnT8Ha2AgDOdpzBjhPb0IUuRFmi\n8O/fLdAcBI0UvJcQce/fm94l9NK6WPkpKCgoKCj0FRRx1g/glbNm4yGR4pcn24wWKHP3BQmDzZO3\nMjdpmVUObDq2gVmhkUKeP4FU565FZeNeFN1WwmIS1blrmUu05RNXomRqKfbMDAar3TOzAiVTS7H6\n7RXIPZSDZ6Y9h90Z5Zh3432sPInxoxg5BgA+vw9jR96AottKkBg/CiveegTZ4xYgNXE8rk64hsU0\nIdKI2mx3RjlKppaGjY1E4J8zWqDJ4mf1FsTFqp7ViuhOj0CkSqSL5UhdWImLWp40IRny+X3sGgAm\nvzzJQPIpWl3xsFiA3EM5Gld8IqHBtxsRTGUnnmd1A6Cx9hIty9xeF9xtn8DX5WNtS3kRkZxfk8fK\nSeWm52TWdFQusV3JOgqAJj4ZkYIWCzTEHt8uNDbJwvKqocnYdGwD3F4X4q3x2DbtN5gxJoMRdI7K\nO+H2ulAytRQxlguWeoEAmKuzbQ2l+FpcIisL35eiRdmq769F2YnnUd3oZFZVoizsOr6TzTOpieM1\nZHtnwMfi4ImyDoDFthPbT3RjKs5jVPbscQuCMQ5vLcT+k6/huTteQGrieGw6toH1o0iY0mEBsZ94\nC0zqG9kYkV2TkWbdmTNkacvmb15W9PLhD2AMdKiN8uCFSDrPGJOBB1N/hnNd7abT8HV14h/nm7Hz\nvR34l3+6F3bbVRg78gY89O1cRFui8f7p9+D2uhjhz8PtdeGT1lPoDPh0UteW1WydFC5AtYeCgoKC\ngkLvgg4QLp+4EjEWKywW4IrLroAffgCALcYGCyxo79K6vbbAgihE4YFxixAIBPDkHwsx4/9OZWma\nyVe0LhO9FvEHonrroJ4sfXH9r7xZKCgoKCgMRijiDMbxmi4WRGsOPfAWPwBCThzJrHwaPPU42fIR\nc4lIljIlU0tZzCYiQ8hCg9y7kdI5ffQUZi2Tc3AhALB4R7mHctDgqWdu5jxtzXC1BkkK3gUfWcg4\nKu7E0iM/Z4puAMg7nINtDaUAoCFFymdVsHqRwp2vm8ySxMj9gPiM3n2RuOltOaB2JcshXnEvIy1E\nN2xmF5hmXLwRKE3eDaKM+EqzT0BRejHKZ1UwWZNZ7hAhK4s3xT9bPKUU1ugLpI+RS0l6l9zm8eWm\n+GUiKUUkVMXsV/HMtOc07r98fh9WvbUCiw5k47P2z5Bfk8fkXkMIdfmw7ugaZk1H40QEWUeJFl0E\nuy0JMVFW3ZOCRenFrC2SE1Lw8mwni7VGLghPtTQhzT4BJVNLcfXQa1i6/HslU4NtarclYfnElUiI\nHSbpca3FIwBmpTVjTAb2znoFdluSxu3izJenI//1XGbtRwQ6yUdcTLyGgOLnJQBSF6X0HBGvfNvw\nlq2Oigwsf/PCfAQESXjqx/W/X6NJm7cC5K3iZBaYRKIanYo0gtGcEsncIaYjWqCGswzVi+E30KA2\nyoMX9C3i3a+W/qkYgYB5V43n/EGS7YohI7Dj+DZYLMCi/dl4tuEpPPTtXKx46xF42ppxZXxSyLtp\n9gmodLyGl2c7DS2ozZKzkZC4PR1XA31cAorUVlBQUFBQuBjgPbisnrQWcTHxSB89Bb+87SmMGDIS\nbZ1tCAhur2+x/xBRiMKVNjte+mAPutCFb434Nj5td6GsYUfYA3O8txPZXl22t+jNtbmYvmz9r/YC\nCgoKCgqDDV954kwkXnpTgdAb6fCKYHJjxC9KKB9aSJ1qCbos2z6tTGMJBICRDMAFiw5PWzOWHVmC\n2WPuRmHdFhSkLWUWJEXpxVg9aS0CAaBkailSE8ezWEWJ8aOwd9Yr8LQ1M9d3FY4Lii2KMQYAmycX\nwgILgKCVz+pJa1E8pRRF6cXIr8lDauJ4tqhye12YU5mhie3Et4VefDc93996izYZ3F5Xt+QgnPKd\nXziTopu3+qN4YjxpoZdWOESqoK5udOLBg/MZqckTX/yJNSJAePBtTs8QCcOTWiIJQKQQAE28Or12\nI5lt8NRrLMCIcBHdRJJ1BBBqAVYytRTPTHsO26eVYUTcCEYGE0FG8kLkHsV1yz2Uw9wmiuXkx5nM\n9Slv5cRbdoptQc8DYGQ5P7aJPKO+4MlGIjfdXhfW/34NMq+/x1DJLFpp8fXg+zchdhiKbivB2JE3\nAACs0VYsTs3RlIF/T7TOE8lOGaivqO/ya/JQlF6MCocT26b9BonxoxjRTO5aS6aWsth4IhnIu6Cl\n/hT7RWwPvl34v/mfPPTGWaRKeb6NeEKaL7uR+1CS/cEAtVEevOAtbe22JCybsAoWi8X0+0NjEjAq\n7koEAsE1x8PfKUBC7DBsunUrZoz5EZ69fQcS40chNtoqJbSN3KSK81k4OePHnBF6uh7sL0LqYq8Z\nFBQUFBQUFMyB1vOFdVvYQcP00VNwpc2OB8YtConz/ftP34J9aBLmXp+FM74vkHHtLPzt7P/Dwzct\nQc2pQyhIW4q8wzmGMdzpsCu/vyTwcbTF/VM4mH1OXFdEsr4YTId4BlNZFRQUFBR6hq88cSa6L+st\nBYKe0qQ7H1lSBPNWFGK5KXYYABZTiM+L4ovx1gnkKi173AJs+cMvUJC2lFl0uL0u5B7Kwaq3VsDd\n9gk8bc3IrHJg3dE16Az4kHsoB562Ziz87/uRPW4BZozJ0CzAyL0eAMy78T7mYq29sw3rjq5h75P7\nP3qPTp0TYUFu/GQu5HiIFkP0DK+IloG3/qK8APPxhWTKdiNXhbx7Q+pTIpvEdM3EZJKVJ5JnibSj\n/iOCj3e51+CpD2kPIkyI2KJ3eRKGl0kgVGbFssjGi9vrwt1Vd+Gpuic1cc6or/lFOfVzUXoxlk9c\nGUIwkTwRWbs7oxypiePh8wctJUWXgTzhVT6rAtum/Qabjm3Q7RM9KyZ+XJBs8PLq9ro0aSYnpCB7\n3AI8eHC+Ji4g3ZcRKZR3zsGFaPzib1j/zmpUNzo1z/BtyhPVYt67M8rR4KnHsiNLUJRejLEjb8Cc\nygw0eOpRlF6MshPPa9qf8hfrRWnS+NUrC99O5MIxzT4Bbq8LK95cCkflnZq6uL2uEMJRPDxA5DTf\n3lROghiXTWbpZRSHUm9+MOt+l0+X3I5S/cTTmnrvES6Ggl5tCBVEnGppQmaVA4V/eBxdgS5T70Qj\nBm2dXnjaPTjr+wKbJxdi3o33YXFqDn71v4VwVNyJFW8uRX5NHoqnlEqtj41IKKPvihHCjZlwpHU4\n9Ach1V2yTpFmCgoKCgoKFwe0HuDjSWdefw+Out9CjCUGQNA9413XzoY/4MePv/ET/McPVuPhm5bg\nb2f/H3x+H7JT57O9+UdnPsSi/dnSvRXtB4HQA67k4UYM1SGzYpPpryI9GBgpZHkM1L1Ifx2OUlBQ\nUFDoH3zliLNwCtDuKklkacqULt39yMriofG/E2Hh9rqQX5OnMdHnrb94QoQsdtJHT8GV8UkstlhR\nejFzBbf+lo2omP0qI9RKppZi3Q82whptxen20/AFfHjyj4UhljR17lqsO7qGWekU1m2B2+uCz9+J\n1ZPWojPgYyTcy399CXP3OeCoyMCi/dmgg+y8Ij3n4EJWJ1GZzS9IqQw89OKHUbuQNQ+5o+IRrq9k\np6p4gnLX8Z0hBBhvJUQxoHgykxSARi4MZYiUbCMCRUbaURl4AofPg1yHNnjqNcQGv0Dnrb3omp41\nFoAQ4pP65dnbd6D8g9/ikbQVePrdYjgq72Qx0vi0Se7ya/KYm0Uxv6L04pA2tUZb4fa6GOnT4KmH\no+JORmDQu0S2yU7wie0qgidmePKUytvma2Pv1blrUXbieWy85Qmk2SewduTdo4rEDhCUnXU/2Iiv\nD78Oq25ex/qVn3dI5imN/Jo8+Pw+1Jw8zJ6lWEPZ4xaw/K+MT8L636/RWPnx8kAuHHnLvSxnJtxe\nF9p8bYz448tCBFdRejGrN3Ah9tyi/dlobvsUD6XmYtOxDcg7nIPFqTmM4OY3hMkJKcxSUox7x1tl\n8fMH9StPlvFyIYtDaTSueMsX2T3+XdmBDbIa1HNvKb5ndK2nuBgbQrW5vDTQ6muB199q+nk/OtGF\nLgTQBcd1/4yxI29AdaMTS9/4OfyBTmyeXBi0bP1y3UHQGy88xG+q7J74O59eOPDjvjsKnb4mpJT1\nmIKCgoKCwsAE7cF+8fY6rH9nNVJHjsc5fztiLbGIQjSuu/x6DLdejlc/rEJ1oxP7T76Gxak5KJla\niuSEFDR46rHu6BokxA5Dc9unmnjh4t6fDkCSR5ksZyY2HdvADsuKh6/5g9Wy9Y7Z9UVP9g9iHgOF\nnAp3aCvSdxUUFBQUBh8sgUgCVQwSeDwt0uv0AY7kw38xFJKRmqybtXwCLljekFUGXdt1fCfm3Xif\nNF1S3pMCmxTfPJmQeygHALB60lpmJZVmn4Bdx3ey+ENAcGG2fOJKFpuJ4qzVuWtx9NTbWP/Oaqy6\neR3KP/gtlk9cieVHluITbxOusqXguell8LQ1A4CGzKlz12JOZQa2TfsNUhPHIzkhGBeMf4bqQ4vS\nvbNeYfeWHVkiDYZLafNuoGjxCYApsc3Ki0iSNnjqcX91FlbdvA5zvvnjkDSo3cnqzmIBYqKsEZFl\nsnLw9ZOVjfKmdhJJEEBrjVOQtlTTn4v2Z8PT3ozt08qw6dgGtHScxWXRcSw+Hb3HKyb5dPkFMfVJ\nljMTnV0+FE8pRZp9AnMhSXG35u5zMJehAFgsPXqXyksykF+TxyynCuu2aAhjspKjZ+g9arvMKgdO\ntnyIxycXoezE8yHv0u80BngQSSxb+MuIdEdFBu4fNx//9ZcXEQhcGF8FaUs16dS5a2G3JaHBU8/k\nnmS3zl0LT1sz1h1dw1wpbmsoDakbPzfwfV5z8jB+/vrPsPrm9ahs3IvZY+7G83/ehmFDhjHrL75N\nZcprcb6hfiFXmJSOKI/0bu6hHHzc+hEe/d5KNjcsOpCNR7+3EpWNe1GQthTrjq7BOX87tt9RBuDC\nPMVbiFG70SZQ7AdeVqisYh+RvIqyysuA3viUjTVxXIV7t7snNXsbvVmOcN/TxMSEXslHoWfQWzsR\n6Lv2b4ceRIvvrOl0Y2BFJ3xf/h6DhNjhaPWdRXJCCkpvf47NHZlVDlijrVg+caVm/tMbV3oyJY5n\nvfnXzBpPTCvcvK7Qu3OHgoKCgoIcau00MGBm7UTrhQZPPTYd24DM6+/BCyd24GTLhyFxzobHXo4o\nSxRsVhua2z7FqPgrsfHWLVh0IBvDrMNxtuMMNk8uxNiRN7A9Wu6hHLYPJ/0Nv5ckGK2pwukOZPXS\nO7jUm/uH3l5PRJJmT9Z6l9o6Ua3tFBQUBjt6sm76ShFnQOQfy0gUpJHA7IJET+Ej/s0reuk9Uh4X\npC1lJISobCZiYfaYu7H7/RdhjbYyt4W8gnlOZQYe/k4Byk48z4gU3jUbEW+5h3JgjbaGKJ3n7nPg\nZMtHeCg1FzWnDiF73ALMu/E+VobUxPEsn09aT6HS8VqIBRn/N5E+pHDj24me55/hCRUglMAhxT9P\noPAw6itqB9nCaNfxnYx84e8RwUIWZ2bzEhFOjowWbUTGiLIkEisiuUUED5FptAng21RGSPLpyhb5\nDx1YiHhrPCMsSc7450umlmpkWI/QoXI9eHA+O13HlyP3UA4sFmDPzAtkH7U9Py6of8SNhqzP+XEn\nqztPLAFB2ch/PRcxlhgsn7gaO9/bgbiYeGZ5Qe3Ft31MlJXdp7xyDi7EJ62nMCr+ShSkPYqn3y2G\nxQKs+v5aRlrJxglfvpkvT0dC7DDcMfpHKH63EFfG27Hlh0Uh7+ttkPj5htKvbnRi3dE1IX0mvpvl\nzMTi1Bxs/cPjOH3OwwjyzCoHymdVsHZ4qu5JRrxXNu7VnRdJ9mQkMsk8bSrF/hPJWH4+DRevLdz3\nQnyXzw8IJesuNRi1j1L+DAyEWztlOTPR5mtDU8tJxEYNQXtXW8R5XBE7Ep93nMbDNy3BjDE/Qn5N\nHpZPXInUxPGYu8+Bn47Pw7aGUka2y+ZVMySzSNDrjb3uvC97RiGIS01RpKCgoDBQodZOAwPhiDMg\ndI9RlF6MB6r/Fe42uVccALjr2tkYFX8ldv9lJx5M/Rl++5ddSIhNwL/dlIexI29ge+VNxzbA5/ex\nONj8fkW2/ukJETTYDw91p9w9Wet1592BuLYcrP2toKCgwEMRZwLMLGAAc6SDkaK4ux8PM++LSmDx\nXVGJJLOQ4JWyvBKe3s87nMPIrGcaSpAYNwrb7yiD3ZaEOZUZeHm2k5Vh1sszcNXQFNw/bj6zCOGJ\nBcqf3M3xZJBo6ULWRM/evoNZkFGZM6scQfeNs52s3HdX3cXID6pXdaMTqYnjWV1EAgjQkjd8vUWC\nLLPKgY9bP8LVQ69B+awKlr6e5YqsL8UyyJRu1AYAMLviR3h8chEjD7tjaRLJiXk9paFYdhkRxcui\nSKDoySNfLt5aZ/PkrQCAhw4shLvtE2yfVsYsrDYd24DFqTmYd+N9GvKD0pi7z8GII5Gw1SP6yPqR\nr3tmlQNA0HqNZJdIKRmhqkew6BGP1D48IeLz+5hFIVl2LjuyhFl3xVvjmEWd3ZbELC945XGDp565\nU+VPD5Ky+el3i+Hr8iE22spIszZfG6xRVkZm8+SlKCPkAqTV14KE2AQUTylF3uEc0BeCxoaRjPE/\nHRUZcLd9gorZr7L6ysgu3sokMX4UK191o5PVl/r6s/bPMCJuBFO0R2JpQjLh8/tC2jaSk5d6z0di\njUbPk9zzhxUGy4akNzd2SvkzMBCOOAOAmpOHkf96LoZEX4Zz/vaI85iacgcONe1HytCrsfHWLVjx\n5lL8o92DTbduxdPvBudGOtRA8sVb8gIwRWQb1cPMWO1LxcqlBtUWCgoKChcfau00MGBW7wRo11I/\nfz0XQHg13F3XzobzwypYEIWVNz+G3e+/yA5Irv/9Gqz6/lq2JyJPQOEO8gFa/QwAqS6Ff0dcFw3W\nb3139X99gYFAUKnDYgoKCpcqFHEmwOzJH6MPk+y+mRPIZhHupLPMgoPAW7sAWiW9nvWEjFwgF2+F\ndVuQPW4Bnn63mFl4zK74ESodr8FuS8LLf30JG99Zi0TbKJxu+weuuGwkU17zljwAmEs9iwXo8PuY\nBRERZvT8ruM78fS7xUxhTqQYAGadQ23gaWtmymVSolP9ZcQGXx6+PcS/iVhJTRyvsTgjizYi9vj3\n9PoLgIaEkskOWd09+r2VWPfOKlw77Osovf25kDpFSp6FU/rzEC2leCs8Ut77/D5GkvCyaOSqTyZ3\n/PsFaUuRGD+KpW+xAD8dn8dIsvyaPGRefw+eqNuIjbc8gbITz4e0iUhK8e4WqS78uCCLJVEG+H4X\nNw0yklq0fOPdl/q6fKhwOKVEokhwARdiEAJgZciscjDCjB+zi1NzmLUiEcjkgtTT1sysPqkNKG0i\n5vi4h7zFGU9y8gQl7w6TTx8A8g7nMOs8M/Ipji8+X9lY5MtObkcclXdidMI1zH0nby3GW47yMiGT\nE/EnWbjy8hkp4aXnHi6SDSfvqpUsL/XIup7gYmx0entjp5Q/AwNm3FwDQPrvfoAzHV9ElPbUlDtQ\n56nFmfNfYKg1ASPjRiLGYoWvywfHdT9mlujk+jnc4QwgvOtUvvyRjq1Ixs1AUHQoKCgoKHy1oNZO\nAwORHNimfeWi/dno7PIDCMAPv+F7w2OH40zHGQBAsu1qWCxAIAAs+d6jePSNfFwz/FrsmVmBl//6\nEta9swopQ6/Gvjn/Ld2nkE6I38t+dObvsERZcM2wazWHlgC5zqmv0B9EjRn94MUu01eduLuUoMhG\nBYWBhZ6sm6J6sRyDArxSNdxHwShAqRmlixFkixn+XtmMXUizTwgpAwB2vcFTrwkGS+WjspLS2+f3\nIb8mL0ShvOzIEiTGj0LZjF1IHz0F1mgrgKBSHgHg/dPvwVGRgXVEan+pAAAgAElEQVTvrMKIuJF4\nfHIhrkpIRkJsArM4o/yIeCDF+6rvr0W8NR6LU3Ow7MgSPFX3JO6vzkJ1oxN17lr8uj5oHZN5/T14\n8OB87Dq+E5lVDhbMFgAjHxLjRwEIEgFlM3bBbkvC5slbkZyQwtpCbMssZyaynJnYdXwnaw8ebq8L\n7Z1tWHQgm1nhUDun2Sdg76xXmMI/HJITtMF1gVDZAYIn6LdPK8PP0h7Gzhn/hXU/2Kipk+wdM3nz\nqHPX6gbSPdXShPyaPNZ2VNfdGeXYnVHOfufJJqqX6E6S0pORCvy15IQU5ioUAEt/1ffXouzE8zjV\n0gS7LSlIHnzwW2y85Qk8/W4xU5KKfUvpEmFalF6skeeCtKXsGYtFW1Y+dt26o2s0Yye/Jo8FWeax\nefJWjZzTRgMAOgM+uL2foMFTz8aabOzy/6mNi9KLUVi3BW6vC9Zoa4iFZlF6MbY1lLL6pNkn4Nnb\nd8BuS8JDBxbi/uosPFX3JJYdWYLlE1dq+hIIujxt8NSzduL7guaC6kYn7q66C9WNQevOmCgr/u2m\nPHjamvHgwfmobnRi2ZEl8LQ1IxAItjk/r9BPmVwkJ6Rgd0Y5ZozJYDLE9wPf9skJKbDbktDZ5WN9\nYLcloWL2q9gzswJ2W1LQreWXZJndlsTa0O11IcuZqZF7/hpPjtG9xQceYPMV/x3g+55+F+d9QD62\nedkU24LmEPF7I443UbFvFBCbL58RwqXTXZj5fipcOuD7u8FTj7iYuIjTONS0H2fOf4GMa2fhvP8c\nHv5OAUqmlqK9sw3PNJRg9pi7sezNAri9rhACnOZU/hpdDwfZGDAjt5HIthoPCgoKCgoKCkagtUJq\n4nhsv6MMCUMSwpJmABhpBgTJsg5/Bz71uvCr/y1E0tBkFE8pRYOnHk/UbcT8cYtxWbTxGo10Dmn2\nCSiZWoprL/86nrvjhRDSjN/3ivsUszC7X5G9x+8V+wpG67me7qnMtkVfrSVl5VDr2d7DxdqDKygo\n9A++UsQZfYTr3LWmLL546H1I9AiKcBOlqKTVU+yQAkl8psFTj0UHstHe2aYpHymdeBKnfFaFxiqH\nni9IW4rcQznsb7JU2XRsA0bZrsS2hlL8+3cLsPrm9RgWOxyJ8aPw8mwnymdVIDVxPMtvTmUGU9QT\n+VZYtwXLJ65kMdEqG/ei6LaSC1ZHXT6c6zyH3e+/yMiSky0fYv3v12jIAlrYUflJKS6SHGL77c4o\nR+b19+Dnr/8MNScPhyi782vyUHr7c6iY/aqUFCIiLZwliviOzPKNiAK318VIGABYdCAbcyozGCFh\nJA9mPrriAlcPsphq/PNi+fNr8uD2ukLcGGZWOdiilsona68ZYzJYfD26t+nYBg3JVTI1GNNm7Mgb\n0NR6UlPn7Op5qG50sjapc9ci73AOI9eIINk8eSs2HdvA3ouJsmrK4fP7GGFisYCRbskJKVg+cSWT\nXco7u3qehtAkebDbkrDsyBKU3v4ctt9RhnVH12BOZYZmbNFPsd9E8ttuS2IEEN/nRCStO7qGte+m\nYxvg9rrwzLTnkDw0BbvffxHpyVOx6dgGOCoyWDvYbUm4Mj4Jq95agdxDOShIWwogSHSR+0aSxUfS\nVjACb3FqDpa/uQTrjq5hrlE3T96KdUfXoDPgY4T1siNLsOv4TtxddVcIeSYjTyk+Hck6EbXifFQ8\npRTWaCsb4wRHRQbyX89FS8dZdq/BU4/8mjzkHc6Bz+8DAEbO5dfkob2zTXNYgPqQ2kbmSlZ28EAk\n1sKNUxG8cl82JkmuxDTMbNyMSHIz6fQUemULB7WBGFyg/nJ7Xdh1fCcWHcjGef95WBEbcVoBBPDK\nh5Xwdfmw6dh6VDe+hub2T3HFkBH4xhXfwOiEa1ieIrmuN976cwyI+SgoKCgoKCgoGCG7eh5Ot5/G\nF+c/N/1OrGUIAODDMx+iuf1TwGLB+ls2osIRPPxYWLcFG295Akfdb+mmQYca6XcguB/dM7OCHXQU\nnyc9DA+z6/hI9isDCXrrue6sJ8WDmGbb4mK3ldEeVq1neweKhFRQuLTwlXLVSAr3QAAs5g9grADU\nu8crciJx20X3zLqB5J+l8tC1grSlmjg/FDuMSAqxDqILwjmVGfik9RRzyUhxysiVWc3Jw1j+5hJc\nGZ8Ef6ATl0XHMZdi2dXzkD1uAbY1lMLn92H1pLXMtRu5ZeTdHFJZyEWAp60ZC/ffjyRbMiocTjR4\n6gEgJIYTKdeJIOED4erFdKM8cg/l4KOWv+MqW0qIOz2qK9WlOwsho77n3TaSqzwibYCg67s2Xzvi\nYuI0btr4eshkIFwZjeQu3H09uaQYVGJ78674KE6YeFpNlueplmD8K3LjmV+Tp4kxxrvq5N1xUnvO\n3efAh2f+jqo51Xj/9HtY8dYj2DvrFXaveEppSCw2fuwTZO4oRVdgYrl5sod/tsFTr4mlJrYnoHXT\nSLLHx1eTuSzl3TDmHc7RtNED1f+KT9vceGDcIuz6ywuwx1+F9bdsZOMw73DQlWQgABbnbHFqDrY1\nlGrirNF4AoDM6+/BpOQfaIilzCoHzvnbmdsPfhzycQdl/c23LXDBfz5Zf5H7SbHdKQ7d6klBv/00\nJ1EctnP+dhaP0e11sQMAJVNLWT6iHPHzg2zuF8k+PTe5ojtPM2My3Hzf3XhKPRnvkaA79ZS9o1dX\n5W5oYEBcO/FrjYX77wcAOK77Z+z54P+zd+5xUVfpH39zl+GihuAghGbmnWhFTEWT1VCUTMzFbe0i\nKaGUUoGpuKB5WTBvu2LGRmZ2s9JfCRqJoSzlrTR2ZdnKsjUjlZGJakVAGWB+f0zn+J2vM1zUSuv7\n6dUL53s533M/z3k+53mezZeVvgsumDDJ386OLnRq14kVd6wh89AyYm+5l7zjb9t1DWyvT2mbUg0a\nNGjQ8FuDJjtdG7icGGcAc/7xOHtOvtfs8zonD+oa62jv2p4f6r9nWt8EIoJ+DyD3e2KPbEv3o4a9\n/Y3Yl9mKg92a90Ua9q5djqx2vct39vZFrdm7/RzuEq/3+tWgQYOGtkKLcaaCLQFGTWYI2FNo2lu0\nlDGFlKROW2FvsbKnxFcvtLYUuILIUMYdU5IPgtBaXbKC5cNXMbMwnkZzAzsm7gKQcZVS980hc9gq\ncsqypRu4JQcXUddQxzv3WJ4tLi9iwf4nreKAifqM6zud+ftSuNGz6yWkkFBaG2oqmFkYz98jNwAW\n13KBnkEy1pMyLfEdkW8hGNqqP2X7gMUyL/PQMqt6Ude/vX+3tg1tvVNiOEzi7nicHVxkHLeHC+Pw\ndffD3dldurRUKvhFmW0pnq9UuGnt+y2d3LdHLoh6VhMS9ohfZdw9EbsKLsbjaq6/FxzPZ+GBBSwZ\nmsHD78UxLyyNiT0nARbCxcGBS4goNZEJF0kc8X3lt9RjXMQCTAmdS0LhQwR6Bl1CvDVnkap0EwlY\nbW5EucXGRxCJIqaYmjgU10RcuK3H3iAhOJG//XM1Z2oryIl8UZbbUFNB4u54su/cYFUGMZaUdS2s\nWPW6LpJoE0T6w4VxLB+2mvv6PWjVHq0R7pXtq47/tu2Lt5gV+tgldVZmLGXBvrlU1p5hw+iX5OYw\nJm8cM4Nnk3VkNS9FbZbljN0eQ4PZJMeb0n+/qG+RtjqGor3529Yce7kbmZaIsraO79YQCFdr49WW\ndNRt3dqNtab8uTZgT3YK8Aqk4Hg+6fsX8PiAFJ54f9Zlpe+AI2aaAHjstjmE6kOpqquit08fZhbG\nY6g9zfORm1odW7S5QyDXGsH2S39fgwYNGjT8uqDJTq1DaWkpq1at4pVXXrG6XlRUxPr163F2dmbS\npElMnjyZ+vp6UlNT+eabb/D09GThwoV069at2fTbGuNs+fBV/OmdP/BDfestzl6Oep13/ruDHV9t\nk7HAxX5OGYu7td9X729it8dw8lw52ybk290X2Xtfea+lvcJvjUC73Lxfz2XWoEGDhmsVWoyzVkBp\nbh7gdTHmkK04ZmoXXQKnqk9Kpbb4PX/vnMsyp7a3GAZ4XXSzqDw1JPJ2qvqkVOwLyxfl95UkliiD\nsOwoMRyW7tf0Hv64OrlIP9gBXhZ3dX/752o6uHVk/ZEs6hpqqaqrYnXJCqb0foBvz1eyqWwjU/Jj\nySnLlqRZmbFUujBLCZ1LTlk2el0X1o3KlveEMlyQZsnFSbj+6BpP7+HPtgn5rBuVfUk8pk2fviDd\nxsX1nS4FNXuko4h7JZ6J6h5N6qA0ZuyeZlVftpRqyjpW16u9tmrunYqa0ywcspg1EVmWeh+2Gi9X\nb9IHL2br3ZbYTcXlRUzMiyZ2ewyGmgrpZvFqujVQ51FdZjWm5McSuz1G/q+MOaN0n6WMQba6ZIVN\nl4OiD8JFl1oBXoEypproy2AhgybkjmXyjphLiAYxHk5Vn5TWUWBx/fXSpxutLJS2jM+1anPl2AeL\nK7/E3fFMyY+Vcb6Ky4vkt2bvSZTuDAuO5zMhdywPvxcnNybCXanIn625QqQlrgn3hGCx8hKuJ0Xd\nKv3Nr4nIsnIzmVycREroXEL1YTKuYXJxEqmD0hgSMBSAiKCRLA3PICfyRSt3oMbaSipqTmOsrZTu\nMYN9Q6xcuYoyBPuGcKNnV/4euYF1o7IlcRjsG8LyYatZsP9J6eZWOT8JcspWvxNzpnBVqoz/JoJY\nixhr4p0p+bEsObgIU2MDZrOZhQcWUHA8/8dYa2ZC9aEEeXWzyvvWu3Nlu4i+JeK5CbeuIm3helSQ\nlLbGgK253V47twbKd2yl01bSzJYrV1vufq/GacXWpqNsa8Bu/CltI3h9QbRXsG8Irk4uZHy05LLT\nMtOEAxeDTz5WNIvk92eTuDuepeEZ3OjZFV+dX4uxRe2tafbuNff8z4Ff+vsaNGjQoEHDbxHPP/88\naWlpXLhwweq6yWQiMzOTjRs38sorr/Dmm2/y7bffsmXLFnQ6HVu2bCEtLY2lS5detbwIHc/Rqs/4\nX/0PbXq3uPwfHDpzkIT+j5JTlk1c3+lWhyGVrvNPVZ+8ZG8lvm/L9aJyH9XcYXDxvq0QF63ZK1yO\nLHS9y0+Xu+fR9koaNGjQcG3hN2Nx1lqoLZbsWZDYsxS4WidE7JE7gLSucHfWWVlWGGsrbbpOE+VS\nWogorW/E9djtMZRXn6CLZwBLhmaQvn8BZ2oryBy2ilUfP0194wW+PW8k/fYl0sJn8o4Yyqu/lqfE\np+THMjpoLKH6UHx1ftI1JMDUgimsGbFOWrJV1VWRU2ZxrSaU9EorLmGVJAim5PdnSysTe/Ul6kh9\n6smehYz4DiC/1ZIVkb1vq90XCHeVohzz986R7i1TB6Wx5OAiTp4rJ3PYKnzcfVh4YIFVmypd4bXW\ntWdr+5Oy3Gp3WMJqROkeMHVQmoxPp35e+Y7aqrO5sXGq2uKysaGpgczhK/DV+TFh21g2jHnJpttD\ntUWYIEgFKSSs+nInvCtJOVsbAPG+sEh77ZOXWbD/STLCV9Lbpw+Ju+Ole0OABrOJJUMzms2TPWsf\npXUVIK1ClZsd8VfZJ0Xdnao+yfhtY3BycGZq32msLMkgI3wlPu4+LDm4SFozqsea0n1mfaOJpeEZ\nLDm4SFrjKfu6ukwin0p3jsr5Rf2cqdFk05Wnsi+UGUutylhiOExM7jgaaWJHTIFVXgqO5+Or8yOp\nKJFHQpJY+6/Vsn4ndJ9EXPA0K4tXtXtL0fdEXSvdugqLM3suX+2178+JyxnPymu/5ClFW4c9WjOH\naqemrw20JDu99snL5JRl4+HkwcfGQ5f1DQ8nT3QuOqrOf0sTTbR36cAb49+ysiS31ZdbI2s1NwZ+\n6dO7v/T3NWjQoEHDrwua7NQydu3aRa9evZg7dy5btmyR148ePcrKlSt54YUXAMjIyOB3v/sdH330\nEeHh4URGRgIQERFBcXFxs99oi8XZxLxo3J113Ozdg4IT+TTQ0KbyODk4o9f54+AAz4/eJL0JZR5a\nJvd2E/OiOXH2KxbevpSJPSddVbd/bZHt7b3fFm8BLb2jQYMGDRo0tBaaq0YV2iLA2FKuKImOtsad\n+al9EqsJJUDG+Dl5rpy5A/9M3vG3W3SdJoiDJQcXWbmcE7GEBPEjMLVgCum3LyGn7Fk6trtButkT\n7wjl9di3RmGorcDZwZmNY17BV+dn5WIv2DeEmNxoHByg4txpnh9tIdyULvqU5UwdlEb6/gW4OLow\npfcDl7h1E8/acgfYGsFMqXBXt7fShV9L6cFFN3RKgk6pnBeWdt+f/46O7W4gITiR3j59AEvMs6//\nd0KSRmoSTp1nZXmvxH2cqC8BW77Sy4yl0j3hulHZzbpnELBHyqnr/O5tUZjNZhwdHZkfls7rn79i\nM06aeE9Jrgh3g4IECfYNYfKOGPm+IEmaI89E/p4pWcvTh5fh79kFZwcXGSsLsCIB1cSuMsabvXg8\n6ndEX1C7ThX1rYzBJazwGpoacHZ0JvHWJN4r30ldQy0NTQ2khM6T7joAln64iPLqr8md8K7Mu5Io\nEhaigsRSt7/Id+z2GExNJlwcXXj0tiRJcNtyeSqg7qclhsPM3pMoLUnV/vfLjKX46vwArFx+ztg9\njefu3CjJUIDpBQ/i7dae7y5U0cUjEG83bxKCE2XZMw8t4/vz3/H9he9krDd7rkOVJHdzrhp/7o2a\nPdK/uedtEdhtiT1wNXElZIWm/Lk20JzsJGKk/qnnA7z46fOYuXzRMVx/BwcMe3HAAX+PADaM2XSJ\n2yDlmgwtj4ufQ/76NeOnmB80ZZcGDRo0/HTQZKfW4eTJkyQnJ1sRZx9//DGvvvoqf/vb3wBYu3Yt\nXbp0oampidLSUv7yl79QWlrKn/70J/7zn//g5ORkN/3m3FwrIVzOT+g+ia3HXsfV0Y0LTedbXQ53\nJx2N5gZGB43lnRN5vBz1ujzUWl1/Fi9Xb6lbOHjqACtLMnjuzo1Wupjm8teae/but3a9b44c+yVl\nOE1e0aBBg4ZfPzRXjW3EqepL3fKJ6wFeF93IqS1AWsLVco2lzqs6f4K0AqRLo6135zKl14OsLMkg\nJXSuXbJCmPKbGk0sPLCAb859zbYv3pIEyeqSFfK5hMKHSN+/AIDOOj1DAobi5tSO0UFjmb93jkxL\nuIYrM5ayc9IeFt6+lA6uN5B5aBnG2kpJwAmFu85Fx2O/S0Hv0QVfnR9lxlIm5kUTkxst0ywzlrIm\nIstilVVdzvnGOrYee0O2nRq23AHaq0cB4S4PsGpv8bxwO9ac20Sl5ZbS/YFwxyBOgIGFxEgITuS7\nuipGB41l3t5kjLWVzN87h/TBiwny7iZdbarzoyyPsp9dSZ8T7yvLIggWZfsK94Rq0ky0hTo/oo8K\n0sJWfYk66+p9EytH/A1f9848/fEy0gcvtlmWEsNhYrfHyG8qyablw1ex9MNFGGoqrEiz2O0xTMyL\npuB4vpULC9EWyjxtPfYGvjo/su/cIOPyJRcnkVSUKN1PKvNgqKmg1lRLQuFDlBlL7dav+KucWwBZ\nv8LiTNSriL8mvqn38Gd+WLrFMsO1A++V7yR1UBpmM1TWnOHZ0izi+k5nxu5p+Or82DI+V5JmwhWj\n3sNfuvQw1FTIujPUVEjXm6Jvi3yuG5WNq5MLpiYTOWXZrInIku4vxXhWEq9KCyPlODl5rhxjbeUl\nxODEvGjpclMQWIaaCjIPLZMuYBOCE5mxexoAXbwC8XT1orNOz4Yxm9gcvZWIoJEsH76K1SUriL3l\nXr6rq2LewDRcHF0k6abs48r8ifHVkh9/ZVnUfehyYW8eiSu4jzJjaatJM5E/ZduJulSPa1vluZL8\nNpcfJbRN6PUP0aah+jAywldSYjxM8A23AuCCS3OvXgIXXAHYb/iA2Fv+RNrti3Fxcmb2nkQKjufL\nvipcqgpZprl1TjkPXc0T1b9WNDf/XM1y/xRpatCgQYMGDVcDnp6e1NTUyN81NTV4eXkxadIkPD09\nmTJlCoWFhfTr169Z0swW7K1/eg9/5g1MY9uXW2nv2kGG/mgNRgWOprNHZ+7vHcc7J/JwdHDky++/\nZP7eOQzRh9POyZ1gnxCeeH8WibvjmdhzEs/duZElBxeRVJRotVcoMRy2Cr2gzLd6f6F8T/y1d+hc\n/U5z9WJrv3Alh4CvBL+UvKLJRxo0aNBw/cDpqaeeeuqXzsTVRm1tvd17YnEPDxjO/X2nSoVvdf1Z\n4gruY1RQpFy0vd28KTEcZlbRTEYFReLt5m0zPeV1W89cLoTyP+qmcTJ/fu5+LP1wkcxnP5/+zN87\nhw6uHXn642Wkhi1kSr8HLklHvHvfu7EcOL2PdaOyiQ+egY+bL0s/Wsjbx/6PrV+8QebwlQzQD6SL\nZwB9buhL8ck9FH69i2/rjHR09aHoZCEHKvYxI/hRVhzOYHKve7m5fQ8qa88wtWAKQ7sM4wb3G3jt\n85e5r9dU0g/M561jWwj2uZUeHXvi7ebNrZ1CSD+QioMD7PpqJwcq9jMv7M98WHGQXSd20s6pHYl7\n4gn1C2OQ/nYKvn6Xx383h/hbE/B09ZLt5O3mLcsW02MSAV6Bsl6U7WIhAacxumuUVT3O2D2NjGEr\nGKAfCMCx7z+ni2eAbMfRXaOY1HMyvXz60M+nP71+tA5Torr+LG9+vpnhgSPo5dNH9iVvN2/MZjNv\nHdvKmG5jSSicxhtHN3OwYh9n689Sfu5rakw1TA+ewf19p9LZQ8/kXvdaCYzN9aWr2edKDIepOHea\nXj59GBUUyQD9QPr59CdxdzxvfbGVqJvG4enqZTUOSgyHeajgAXK/fItbO4XIsos2mVU0k8H+Qy8Z\nO8p69XT14o7AEfT3vZXgTrdypPJfzBrw+CXlOVV9kvvfvZfTNSe5q/sEmU/xzXOmc/z9yHo+OFXM\nvb3vw9vNG283bwI8Axh/cwxLDi7iuX+vZ0Tg72X7VtefZVLPyQR4BVJdf5aeHXtxyPARU/tNo8xY\nSvr+VBKCE/mX8Z+M6TaW+/tO5av/Hee1oy9TV1/HK59t4m+/f4Z7e9/HHTdGcGunEDxdvezOEaLP\nAnLc6j38Gew/VI7n6vqzJBROI/aWe4npeY98vo9PX3adeJcXxrzM1H7TGKAfSHT38Yy/eQJjb7qL\nMd3HcUdABKH6MNnvEgqnMTcslc4eeibmRZP337fJHLaSmzv0oINrR/r73kpC4TRMjSb83P148v0n\nuM3vdyQUTsNf588dN0Zwm+/vuOvmuxnTbSyh+jB6dOyJX7vOZP/7Gfr59CehcBpvHdsqx5UYf6Kd\nxRyy5OAidhzPZYDfQHr59MFf58/ekx+wduR69B7+xPSYhKerFwmF02hoMjEi8Pc8UTybDysOkjoo\nnXt6xeLh7EFc/+l8cLKYMd3Gynng/r5TGew/lIxDi6k2VRPXfzqzBjxOz469WF2ygn4+/a3GtHp+\ntwf1s8La5o6ACJmesn1bMwbV64x4R2xCxZwU3f3uS75hL3+A1bo1KijSqh8q50cxR7YFyr7blvpq\nKzw83C7rPQ1XF2rZSdn+1fVneepgGhEBo9j+1TaAH23OWm951kSj/PfR7z/j/ZNFeDh70mhu4PWj\nr5L35Tam9HmA8IDhjOk2lvT9qYzuGiXndDVE/sQ4b+04bO45W32+tWP8Woe98Xyl49cWfoo0NWjQ\noEHDRWiyU+tw9uxZdu3aRWxsrLzWvn17nn32WcaPH4+joyNZWVnEx8fz3//+F19fX+bMmYO3tzfH\njx8nKiqq2fTVspOt9U/onz4yHOCH+u/xcPakprFGnZRd1JjOYaip4JvqcmobajBj5sDpfQzwHcib\nxzbTaG7gn8aPmdY3gbmDFtDLpw/uzjr+74s3MJthcq97qa4/y+QdMbx7PJ8mcxN3BI6Q+w0hHwz2\nH8r9facCltAgYp8/q2gm/Xz629SJVdef5a1jWwkPGC51A0J2s1UvgF1ZROSltfJca/YoLaWh1B/9\nXLgaedegQYMGDW3DlchNvymLM3Gyw9RoIrk4SV4TVkfqky7C6kh9gl95/2qeUFGnY6ip4OS5cgw1\nFdKCSViLCHJIWNzc1+9B1oxYd4krQyEQLB++iqju0eROeJct43MJ1YcR4BXIxJ6T8HPX4+rkSid3\nP2nxBOCr88PUaHERd0M7H7JLs0gNW0gnNz96dOzByXPlFJcXkVD4EL46Pxl/zFfnh6ujK6H6ULp6\n3cRfRzwj3Q8KnD53isd+l8LWu3NZE5FFb58+NJotfr593H1Iv30Jmz59gYigkSTdlsLWY28we4/F\n+kdtiaV2Z6i0EBNtqDzVtXz4KoJ9Q3j77ndkvgqO53PP9rt47ZOX5XNKS5r5e+fYbWez2WKdJE5w\niVNXwvJK7+HP5uitrBuVzbYJ+WyfWMCOibvIi9lJqD6MMmOp7INXy6qltZBuI3LHWrnmBEsbnW+s\nk/1PWc/JxUk4OEBCcKIsu9LaT1gY2RpT4veU/FhmFsYzMS+a1L1zWThksd186lx0PB+5ycqiT3wT\nwFfXWT5bcDyfguP50lpp4ZDFODg4WOVBWLyJNhOWgcXlRTz8Xhzf1X3H+iNZJAQnMn/vHMqMpWQe\nWsaUXg+y8dMcJnS/B72Hv7SiSi5OktZoSigt8gBpuTazMN7KUjHAKxBDTQXV9WdZ8lG6bAthhSQC\nNotyC4i6V1pOlRlLaWgykb5/AWXGUupM58mJfFG6SU1+f7a06Fw4ZDHz96VQXn0CY20lZy+cJaHw\nIQqO55NUlMjsPYnE74qjxHCYU9UnySnLlm27OXqrtKATlpmGmgom74iReQz2DeF8Yx2nqk+SVJTI\na5+8LGOtifcE1kRkkT54MatLVkgXjc+WZvHaJy+T/P5sjLWV0oWust70Hv64O+t4evgaK6u6lNC5\nJBcn2TwlqR5ntsa2st+G6sN4++537LopbWkNUFum2rKCi+oeTUb4Sit3ls3BniWOMj9qa9C2oi0n\nQDUF+a8P6v6zfPgq4oKn4e3SHgAzTZeV7kDfQUzqMRkzZnDrqGoAACAASURBVHzcbiBj2Arau3bA\nWHuGMmOplM/gohWugHJsiDw1tz6r37V32lmZpr0xer2jufH8U4xfbU7QoEGDBg3XEnbs2MGbb76J\ni4sL8+fPZ/r06dx7771MmjSJzp0707VrV1566SX++Mc/snbtWubPn39Z31Gvf0InkBI6DyecON/Q\neheNAJV1Z2ikkZ4degNwV7cJdNL5UlhewORbptDFM5CFty/loGG/3PsEeAWyZXyuDMkBljjX60Zl\nSzf6Qh5SylMCLk4u0suR8NJhS4YQHlX0Hv7yHXvrv1KebE631hp9yJV6GlDKdz+3vPJTeKnSoEGD\nBg0/Ha6LGGdNTU089dRTfP7557i6urJs2TK6du1q93l7vqbVcZiUihF7i7cy3pC9Z66WayBbvp2V\ncbaU31PHeBJ/leSGiBGyfPgqq3hOSpQYDpO4Ox6zGRwcIPvODdKNXez2GL459zUzg2fTrX035u1N\nZn5YOks/WshLUZupqqsiImgk47eNYcfEXQBWsZuUJJyhpoKYvHHkTngXY20lCw8swN1Zx5qILJKL\nk6g11VJRc4r5Yek8/fEygry6kj7YQqTM2D2NjPCVrP3XatyddXbjZokYY8LdoHANKYQvvYc/U/Jj\nqWuoxd1ZR+qgNHx1fkzMiybQM4gpvR9gZUnGJQpypRLaXtuJ+2rlmlCWpw5KkzGXlG1pqKngnu13\n8WToAoYEDOWe7XfZVNC3hCvphyWGwxyt+oycsmxMjSYpYBccz2fJwUUANt00ith6DWaT7DdKl322\nSDNlLLASw2GSihKprq/GUFtBoOeNODk4kxtjIY2UZKitv8oYYxPzojGb4fEBKTzx/iz8Pbowd+AC\nNn36goydJeLwiVhzgoRZPnyVzOOE3LHc0M4HN6d2ODiAu7OOhOBEcsqyqTXVsjQ8g9S9c5kzcB45\nZdlWscjUY8xWPYjvT8yLJnPYKjZ9+gLLh6+SfTN1UBoLDyxg24R8ArwssdeUfbLEcJgJuWPp4hmA\n2QyN5gbaObnLNhNE6Mzg2fy9bB3tXTtQWXdGBoguM5YSv2sqG8a8xJKDi2QsN2NtpfSTL8ZFcnES\nsbfcy5KP0unmfRNLhmZc0odFmWK3x9BgNmE2Q8W5U3Rt340t4y0uL0W5AB5+L44b3H3YOOYVjLWV\n0qVi5qFlmBpNuDi5yDa1WP4tYGl4hpxrhBLd1vgU7SDiugGyTeBiDELAapzZ66/2oB5rrRl7za0l\nSsL/nu138dydG2UMussZ08r8/BKbwcuBFqfjp8HVkJ0ERPy8uL7TSXk/iabLJM0E/Nw7o3fX8+/v\nSvF2aU9tQw2d3H15MepVOW6F+2hB1tuL4decDAeXjjdoW2xQe66JrnRsXS/jU4MGDRo0XHvQZKdr\nA83JTgJiH/D9+e84U3sGMLcpVqwDjjg6OIDZ8qave2faObej0dyAl6u3Vex5uHjAtDl9hi156Er3\nEK3dE9n7JjQfr/lqQ11H6nxqMtq1C619NGjQ0Fb86mOc7d69m/r6et58801SUlJYvnx5m9NQn5xW\nTrTNEWJKpWtLVglXArVFj4Dew9/qhLQgNGbsniZjIylPAcGPVkS50czekyiV8uqyib/JxUmYGhtY\nGp5BQ1MD8bviJNmz9e5cZgbPJuvIapZ+uAg/XWeGBAxlzYh1+Or8mL83heLyIip/PCU+MS9axpTK\nPLSMKfmxlBlLmZIfi7G2kiCvrhyt+oyEwodYMjRD1u3m6K38PXIDfrrO9OjYg9wJ75I+eDGZh5bJ\nmEcRQSMl0aYW+JT1JyzwVpeskFYyycVJ8gT7mogs3J11xN5yr7RIEvG7ZoU+ZqVMF3UZV3DfJafe\nlXWp7E/CckhYQm2O3mpFDBhqKmS+puTHovfwJyN8JU9/bIkHd7mkWVtOxNt6Lqcsm9RBabg4uciy\nRnWPZt2obBwckKfXlEK3sbZSvq+0EFBaWInvqckNsJAfW8bnsnPSHv464hkyhq3gTG2FtMBTx5ZT\nl9PUaCLz0DIMNRU4O7jg6uRCb58++Ht0oaruW3r79GFT1GvSAklYl83ek2h1gk7v4c/sPYkcrfoM\ngBV3rOHvkRtYMjSDNRFZF+vG0YWlHy5izsB5zN+XQq2pluLyIhmLTH3Czt5pslB9GNsm5BMRNFLG\nkzPUVFDXUIuvzk+SZiWGw6wsyeDJ0AXWY9gMD/aZhovjpfGF9B7++Ht04b3ynSwftpqXxm5m4e1L\n2XrsDWJyLdageRN3AvBN9dckFSUCkHloGUlFlnoJ9g0huTiJhOBEJvacxMtRr5N95wZplWfrpOG6\nUdm4O+t4fEAKeRN3ylhzYBlzUd2jCfYNoZO7H1V133K06jNm7J7G6KCxrC5ZQUJworQ+zTy0jIl5\n0cz9IJnT504S/95UVn38NDG50dydG8XsPYmyT4k2LTOWMnlHDLP3JDJ5Rwzxu+IkOSrGpKhr5ThT\nWgTaUq7bsiBUn4RsrTWWvbVEzPnCqi2qe3SL8ZzsQb3h/bVYymi4PFwN2Qms418+ffgvV0yageX0\n9JxB85l8yxQeHzAHRwdH3Jzaoffwl0R75qFlxPWdLmNCijzYmoNsjVWlBbjy2bae9LV3UOdKxlZr\nrN80aNCgQYMGDdc/ArwCSR2UhrG2EjNNbSLNwEKWTe0zHQcHB5poourCtzw+IIUdE3fJPa3yW+Iw\nnjJ+rNBN2LLcV+oxlPfUz7emnK15RqnzUstT9izbrjaEbGurfNfCHupqf/vXJGteC+2jQYOG3xau\nC+KspKSE4cOHA3Dbbbfxn//857LSsaX8sAX1ZNycYvVqQWlJY+vbcNHNmyCThEWVMl9T8mNJ3B3P\n6eqTnG+sk1ZAQoGsNktPHZRG1XkjVXVVVNacobLOQEJwolQ2v3tiOwDfXaiioamBpCKL9c3Rqs+k\n0OeAxe+au7OOnMgXieoezeborayJyGLph4s4e+EsmYeWkT54MTll2XTW+RPsGyKtrQw1FRhrKzlT\nYyD+vakYaytZXbKCNRFZbI7eSlT3aAw1FWyO3ioFQ6EUUwt/YCEPlO4GRF4CvAIlwZF3/G2eu3Mj\nofow9B7+UjGntEApMRwmuTiJuL7TrVy+KdtMvWgLIUwphArCYd2obOJ3xRGTO47i8iJMjRb3kd+f\n/x5/jy5kHlp2CcnZGjTn8kANdZ4vkqcmgn1DpBWWuC/ILbXSv8RwmIcL41g4ZDHbJuRbWSEJUkHU\n4eQdMcRujwG4JH3xzqZPX5Ckka/Oz4oEFWkB8neAVyBb784ldVAaofow1o3KJmukxSru3Xt2s2H0\nS7IuRXuE6sNYE5FFg9kk74l+Xl59gr/9czVdPAPw1fkRvyuOhMKHrMjBhUMW4+xoIef0ui48PiCF\nBfufJCV0rvyOmnBRzxmi/oSFWeahZSwfvgpjbSUV505LIkvU/XN3bmTrsTekK0S9hz9+Hp3ZeuwN\nFg5ZjLuzO+tGZVtteLZNyCd1UBo5ZdkkFycxJGAoqYPSOH3uJIm74wFYXbKC50dvkm5b10RkIWyP\nDTUV1Jpqmb83hck7Ygj2DZH1YK9/hurDSB2Uxry9yRhrKzHUVEhLNKXLkA1jNuHvEUBE0EgywleS\n85/1TOh+Dwv2P0mZsVTmpc50nu8vfMcjIY/x9PA16FzceXxACo44snDIYorLi5iSH/ujxeJZ0vcv\noNZUx7pR2aQPXkzVeSMJwYnSSiUmbxwLDyxgQvd7JGGudi8q+q1y/NsiudriGk4JobBXutpV9wul\nK1JlP1I/ZwutWbeUz/6c0DY2vwyupuy0Keo1fHV+fFtrvGr5+/L7L9l/ei9PH17G/LB0/h65AUNN\nBTN2W2JNmhpNVu5hxaEYeySZeqwKd7K2xsCVKGTsja3W9HN7sp09xY2Gy4NWdxo0aNCg4VpCsG8I\nvjo/wKHFZy+FmaKThSwYtAi9zp+Vw//Kpk9fkB5PxN5cuZ947s6N8iAzcIk+Sfxtbk/zUxEUyn2r\nPfePVxO2Dik1t09q6wGrq42rXe+/NqLpl24fDRo0/PZwXRBn586dw9PTU/52cnKioaHhitJs7rSv\nLYWGPQX41YCazFIvBMoYUwJKN4giDUGELRmaQWdPPe2c3OU9IRQpFbfCnWJO5ItEBI1k/qB0ungE\nklOWLUmj9MGL8XHzJdDzRlbcsYYt43OlFU4XzwB83H3IjXmXqO7RpA5Kk2SegNkM7s7u8t7m6K0s\nDc8gwCtQWljoPfzJPLQMH/dOtHftQLBviCRORD4FwWav/tR1qffwt6pHQYwp7wnXfQFegdIapeB4\nvqxrvYc/pkYT649kSZJLCVttpbR8U0IQDsa6M7R368D6I1kAbCrbyJKP0nmwz7RmfYI3V257J6Zs\n9U91noVyUbj6U9ebeEZ9Sv9o1WdgtsTBU1rciRNuZcZSWYf1jSYZ00p5ikypQJzQ/R7m753D0arP\niMkbJy3zlPGswGLZJhSkZcZSZuyeRsHxfOJ23k/i7nhOVVtcIS45uEhaIon2OFV9kqNVn1FRc9qq\nL+k9/Onq3Y2l4RksGZqBsbaSqvNGMoetkv06ofAh0vcvICE40eLD/UcCTVgItXR6Tl33SqWu3sPf\nishSItg3RBK/wjLNy9WbhOBEgn1DcHZ0sUlmiThhyphgDg4OmM3INlbOIcbaShwcYPYeS1yzv0du\nIDfGEg9R1LOwAmkOZrOZBfvmEpM3jjJjqfR1L+pb7+GPzkUHwH39HiQjfCWzQh+TmztRZ/+r/57I\nG6PI/ncWTx/+C/WNJiKCRpIb866lH7w/m4TgRLJGZtPOyZ1aUw3fnq+UdSbcYIr0lg9bjbODC1uP\nvcFzd26UZLmYC0W/LTEcthrD9iwGr8SNonIuEvlTzu3KZ1tLhNm7b480+zk3T7+2zdr1hKspO4n1\nYcHti+jo6gNcPDTTGjjggAuu8vfkW6aw+egrck3cfPQVkouT0Hv4y3l13ahsqwMzSst6AWW/UssI\nyrXpakItE4prLRFgtsZ0cyScNm4uD1rdadCgQYOGaxGeLl50dte3+T1HB0ce7DONzUdfASAiaKTc\nZwMyPqzyIK3Qu4gDROK6Mg653sNfWvIr10xxmFC9v20LWqOXEN9obRqXA3G4Sn3AqqVvt1Z+bCmP\nl1OGK6n3ltL7teDXVBYNGjRc+3B66qmnnvqlM9ESDh06xA033MAtt9wCwMaNG5k+fbrd52tr61tM\n09vNm1FBkYCFHBsVFIm3m7fVffGMemK2dx0si6MyndZAnZ7yfaHQvSMgAk9XL2YVzWTliL/Sy6eP\n1Ten5Mfir/MnofAhDhkO4ebkxrpR2fTy6UN1/VliekySi++sopk44UTinnjeOb6d4m/+wRtHN/Pe\n1++SdvtTjO4WhYeLB7tO7MRf14WCr/N5qO/DvP75qwz2H0qoPoxbO4XQo/0tPPH+LP7YawoV505z\n37ux9L2hH+7OOibmRVNUvpu0wYvo3+lWsv/9DH7ufpgx88DOP3JHQARdPAPo4hmAt5s3t3YKIf/4\nds7UGujVsQ/hgcNl2ebtTSEldB5juo+TZa6uP8uknpOt2q+6/iwBXoGyXUV9ivL38ukj69nbzVsq\nV/r59Gfph4uI6zudJ96fxR0BEfTy6YO3mzdRN41jcq97mdzrXpvtXV1/VqYl2k1cU+YzwCuQinOn\nef+bYnTOOtaNymZc97vY8J/nuLfn/fyp730kFE5jdNeoVvUfkXdRHnV/VN5XpmdL4Sf6unhnsP9Q\nungGyDIpy+bt5k2J4TAJux8ic9gqqzYB6OIZQJ+OfVldsoKYHpMA2P7fXP58+yIG6AfKNJT52/Fl\nLn/eP5eE4Ed45bNNtHNuR4/2t7Cq5GmWD1+Fp6sXAV6Bsi5Fuz9RPJunh6+mqq6Kt77cwrkL5xjS\nZSjzP5iDgwNEdb2LxR+mcXP7W/Bx9yF2ewxvf7mFmcGz+WOfKZQYDsv+d5vv75j/wRxePfoShw2H\nSLv9Ke7r9yAAPTr2pM8NffnHN3vY9uX/Mdh/CLvLCyn6ZjdT+02T5VH3N6XVkLL+xG/l//18+nNz\nhx6yP/fz6Y/ZbGZKfizhAcMJ1YfRz6c/ofow/HX+PFb8CHd1n8DUftNs9rmb2/dgdckK7u87lZge\nkxigH0hndz3R3cfT2cOyYZu8I4ZtX76Fv86fhwvjWDViLSNu/D3vnyxmXPe7CNWHcez7z1n64SKm\n9Uugl09vHip4gADPAHp07HlJf5xdNBOdiyd/Gbac6cEJ3HFjBLd2spBzyjksPGA4vXz6yH50R0AE\nN3fowRtHN+Pi4EJMz3s4c+4MW469jtlspsZUQ4d2HYi4cSQAtaYa/nmmhLj+0y0WeO5+vHtiB8uH\nraa/760W67zKj5kblooZMxPzovnPt2U8e2cOU/tNY4B+oJxzxTzaxTOAOwIipIJe2V7KMop6busc\nL6D8rnL9Gew/lFlFM63Gq611pqXvtiZfza1fPwVa8z0PD7efJS+/NVxN2elU9Ukm5kWz88Q76Jx1\nXGi8gDMuNNLY6vw0KZ6trD3D0C7DeKh/PP82lrJwyGLuueUP9PLpI9efWUUz5XokUF1/1mqOjCu4\nj5gekwgPGM78vXPkGLocWaw179hbW+3185bWavGuGj/3OP0lcDlt1Br8FupOgwYNGjTZ6dpAa/RO\nYFmbAjwD2Pbl/2Fqat07AmbMfP79Uc43nudMnYHwLsPkfsbVwZW1/1qDqdHEtOCHrdZVoRuBi/qi\nXSd2MrprFAAT86LZfPQV+t7Qj3l7U+jn05+Kc6flvk3sk8W7t3YKsZLJbOkKxHWlrKT8rdyz2ntf\nmUY/n/5W37QHezKFt5s3o7tGSX3M1YQ9mVDcEzKrrfstQV1vVyov/RTylgYNGjRcT7gSuem6sDgb\nMGAAH3zwAQBHjhyhZ8+eLbzROjR32lf5DGAV00Z5XYnWuNJqLi+2EKoPIyN8pbS+smXNJCBc3eXG\n5LP17lxpZSNM9MV3NkW9xn39HuSlqM08P3oTrk4uLA3PICfyRdYfySJ+11SSihJJHZRG3vG3Sb99\nCcWn9shYI6998jLJxUnklGVL6w2ApqYmFh5YQHF5ERXnTpMQnEj6/gWk7ptDRMAo4t+bCsDbd79z\nSZ2E6sNICZ1HZ52e9UeyrOoqJXSulfWIqGcBpTs/8YxwPyCeVZ9EV1p6CAuc+/o9eEmMMaW1lRoi\nbRFnSVgvKi0Zp+THSrd18/fO4e+RG2TbCJeS75XvlPmzZ1Wnhi3LMZEne5aLzVlZKq0RheWdPXd1\nwv2DIJbUEBaDot7WRGTJGGNKiHZ7tjQLHzdfS/y8iCwe7DNNukAULg1FHSsh3EtGBI3ksdvmsOOe\nXT+6wIBHQpLI+c96Evo/yoL9T2KoqWDdqGw6tfPjubJneKZkLRNyx8o+ovfwZ92obJYPW42Lows5\nZdkUHM+3KtPjA1KkhYXO5WK8PVvtb6/Obc0Rp6pPSks6QI6zMmMpDU0mkouTKDiez8zCeAqOW1xZ\nms1m6T5ReYruVLXFPWLmoWXyBKHI4/x9KUzf9SBj3xpFmbEUs9niOtNX5wdmqKqrssTi+/GbSlel\nKz7+Cw+/F8eJs8d5+L24S9oSLNalS8MzpMtR0eeFBYnew1/GIRNuUcV1gHOmapZ8lM5fDixh8+cv\n06mdL+O6jaeJJgZ1HsLsPYmMz41i+q4HeXxACklFicRuj2H9kSxyIl/kvn4PSks+EStN7+FPTuSL\n0sqtOWssW/Oqcs6xd1pR/WxLEGNcuf6ordiUFimtQXNWLrbwcyuUNQX2L4OrKTsZaipwd9bx9PA1\nNJmbaDQ3UM+Fy0rLzbEd3543suXYZpZ8uJAGs4nUvXPlXCegtARXYvnwVczeY3FrK8aN2pq5rRZH\nyvW8OTQnM9rr57bW6tbk59c8bn5qq7Bfc91p0KBBg4brC6eqT/LaJy8zb28KNQ3nWvWOh7Mnrj9a\n6jvgyLhu43F31hHoeaP0GvLaJy8zf18KqYPSpPcY5TfVVu5qF9buzjqWD1tNVPdolg9fZWX5r9wX\nGWoqMDWarEJXKOUmW67t1bKP2ptTc++Ld1pyj28rL7ag1OVcTbmjJa8BwBVZev0aLcU0aNCg4XrE\ndUGcRUZG4urqyr333ktmZiapqalter+lxVYtZKifUbrxai695ha31ioJ1PcLjuezYP+TVibztr4r\nXLIdrfpMXhNpCTeD6rSDfUOkK73MQ8sI9g3h0duS6Nq+G+mDF0shamLPScT1nc6mT18gru90Fux/\nktRBaWyO3kqwbwix22PQe/iz4o6/4uzgwtp/rcZX54ePuw+N5gYyh60i/6vtmLEo+421lTJgrRBy\nSgyHmbc3GWdHZ+oa6mR+lXGglMLX8uGrMNRUMCU/luTiJAD5TIDXRdeLcFH5JggO8Ve48lMSHfZI\nSXtQu41S9wFTo0nGrRIknWgbNRGkjv/VEmwJaS0p923FVFH2TRFHRhAvaoW+aCulWz3l9wVxo4RI\nU5RN5DO5OAlDTQX1jSbOmn5gZmE88bviWH54KRnhK63cfhprK2loMmGoqZBEqIuTC4aaCu56ewzP\nlT2DsbaS5OIkGswWt37P3bmRuOBpkpwJ1YexYcwmciJf5PXPX5Hpxm6PYWJeNDML48kpy2bhkMUk\nBCdKN5AlhsPEbo8hpyyb50dvku4TRfys5OIkGppMl7S/kpwV+Ra/1QSO2Mhs++ItUvfNIa7vdFaX\nrCBrZDZrIrJI37+A8uoTTCt4gKNVn7Fh9EusLlkBWMfwE0gdlMaSg4ukwjlUH8bzkZtIHbSQM7UG\nUvfOpcFsUrTPatYfySJ1UBq5MZYYaXoPfxqaTPi4+7BtQj7Pj95EoNeNPD960yX9SrSHrf4mlNpg\nIdfON9Yxe0+irB8xDl6MepXHbpvDn4cuJCfyRTq068DR7z/jrm4T+PyHz5jS+wFoMtPZQ09vnz44\nO7pYroEkTNUbJkNNhVXsPntzuD3iSelCt7l4Ser53d74E25nlfkUfUW5oVOTrc3BHhmruSrTcKWy\nk4AgwYW71qoL37bJTaMabk5uMkaqE85M6D6Jb89XMkQfzsOFcRQcz5drf1zf6XIuFv3aWFvJN9Vf\nU2YstUmGX46Lm7YoaNpCfinli9bitzB+NWWQBg0aNGj4LeBU9UnGbxvDE+/P4kyNAcdWqt9qGs5R\nTz0OODAy8E42fppDQ1MDz4/eJA9Fzv3gCZqammTohObIK3FN+e81EVnycLLS9b9SHyJkQOE+W7lv\nac61va3fyjy19L7Ihy139iJfyn1aa2JQX+7Bquau2dPNKfVSVwJNTtKgQYOGXx7XBXHm6OjIkiVL\neOONN3jzzTe5+eabW/2uvQWyNcpG8Vt58qalBbc5y7WWlATqtEsMh1ldsoKM8JU24xgpoffwJ67v\ndJLfn834bWPk6R0RZ0go7pVk1ZT8WIrLi9C56EgdlEaZsZQF+5/kkZAkaSGUVJTIqC3DmfdBMimh\nc4kIGklG+Ep50qnMWMrJc+WWWFKfvsCjtyXh7OCCk4MzKcWPceqcpSwLhyymi0cgSz9cROahZZIY\nSQmdK4kvP11nUkLnUXXeSHF5kZWyWghwwkIouTiJ5OIk1kRksTl6K4AVMbO6ZIW0aBLEm7KuRPwn\n8VxbhRLRVoaaCubvnWMzPlmAVyDrRmXj7OhCmbEUgNjtMVZ9R+/hz5qILHnC60r8WSvrC2yTY+I5\nW6fAxG8R202QY0rSTBBMgihSp6/sD0oI8kxY2yjzmRuTT17MTpaGZ+Ds6IzZbKa3Tx/5bWE9VN9o\nknUUqg+T71edNzJ34J+J6h7Nmogs3J11lBlLWXJwEbHbYzha9Zns88nFSQT7hrBlfC55MTsJ9g2h\nwWzC1NiAgwMkBCeSeWgZ649kkRG+ksxDy5i9JxFTk0kqjUU9in6YOiiNLeNzrepTkIOTd8TIPhLX\nd7rdE28BXoGWPH+UTge3jtJ3vej3uTH5JN2WgoOjA/P2JuOr87OqT0EKKQmsE2ePM33Xg1LhnHlo\nGRN7TiLpthQ2jNmEi6MLMwvjKTEcZv2RLE5Uf8WSg4soLi9ixu5plBlLqW80kVD4kMynu7OOqrqq\nSw4SiHoQsdXgIiGmLKdlPDgDFlIrcXc8pkYTZcZSZu9J5NnStZQYDhPVPZqskdmcM1XzXvlOQn3D\neOnTjeDowLR+CYTqw4i95V6ePryM8411JBcn8donLzMxL5rx28Ywe08isbfcS3JxkiT2ldaUsdtj\nrPLfUkw68bu5eaIlaxcxnwsrXVvEtXIjKuqwOSLcVj7tXbsW8GsmAq5FXInspIRQACz9cBFPH/4L\ngCS+LgdnTf+T//72QiXP/nstbo7tePXoJrxd2kuyO3VQmoyFmHloGYCMz+jv2cXqAIet8as+xdxS\n/2tOedOS7Gfr+uWOw2t1/F5t/FLlu9bmoWstPxo0aNCg4erCy9WbhbcvJci7Kx7Oni2/oIAZM3tO\nvgeAv85f7g31Hv50a38TK+74q5WXIeX+xp4llFh3lHKP0CPY0mcoY8+rCSvxTGth78BTc7DlMUct\nK7UmBnVb5avLPZwoyEZtfdegQYOGXweuC+LsSmBrgVQqJ5tTNip/C4FE/UxbFkT1O/YUteLe/L1z\nSAmdS05ZdosuwuIK7iMiaCRJt6Xg5WrxYbx8+CpWl6xgTUSWJC4EUaT38KfWVEvqvjmSLMg8tEy6\n4BP5+OH8D3x3oYommvjy+y+J3R7D3A+eYGJeNDG50Sz9cBFzB/6ZYN8QaZW2blQ2S8Mz+N+FH0i6\nLYWcsmwyDy1jaXgGW8bnkhCcyPojWZQYDrPk4CLqGmo5WvUZ39YZ8XH3IXPYKptWdsLyz1BTIQkz\nIcQBNk8wKSEILkNNBTN2T5PviLZV16mtf6vbSknkKNtCCHeCpJuxexrF5UWcPFduRR4FeAVakaJt\nUfbZy5f6RJcyv80JqErF/da7cy8RnkP1YeREvsjfO2jx3wAAIABJREFUIzewZXwugJXgLBSaOZEv\nsrpkhZWAe6r6JPG74ojJGyct0gw1Fdyz/S5Jsi05uIil4RkEeAVirK2UfT5UH8aaiCxcfySExPNi\nXOZEvkje8bet6jt9/wLOmaox1p1h/t4U6fZRWU+izZwdXHBxcqahqYGcsmxSB6VJq7U1EVksHLIY\ngIUHFvBwYRxxfS/GCDI1mlhycJFsU6VFwpqILJwdXWTgZWWftiV0B/uGsPD2pbwY9apsQ9Hny4yl\nFJ/aw4rhf5V+3mfvSSQmb5zFarLvdJKLk5hZGM+aiCzAEkja09WL9P0LZJ0VlxeRdWQ1xtpKHglJ\nwlB72lLXvR/AEQem9H5AumCN6h5Nbkw+2ybko/fwl+TYpk9fkO5jRTuK/AtrRfE9QdiLPm2srcTd\nWSfrtKLmNI/eZiHqp/R+gAZzA8baSllP352vor6pnhc/fZ5z9dWYm5p4+uNlPFOylqc/Xoavzo/n\nR2+S+coctgpnR2eq66tZ8fFfSAhOxOFHwxhBngnrPWH1pjwVeDlQkuii7dXpifl8+fBVBPuGWBFi\n4nmwHk8tWbkpYe+047W0YfstWNH8mmGRGepwcHDA8cf/XB0u3094e9f2uDm64ezgjLdLe86a/oeX\nizdnTf+juLyIxN3xJBQ+RMHxfHLKsqXlfIBXIIaaCrZNyJeHJ2y5+VGOOfG7NcSXGDctEenqd+2l\nfbnzyuUc5vkp8WsZt9faPHSt5UeDBg0aNFxdCHm+Y7uOZN+5ATendrg5tmtTGg44cLNXD8q+K7XS\nj2SNzCanLFuuIcLTjTgg/donL1+Sli39l1IGUsLW9dYeBr9aUOrHbLmEVD/bmvTa+u22lv+3cgBK\ngwYNGn4rcDCbzZd/bPgahdFYbfee2KQqrQNas6ip37N3rbXpCOsHe3GohIBgS5ixd4JIEBEZ4SvZ\n9OkL0kWc2txemY64r1YaFZcXsf5IFg1mE3Wm88y49RFWlmTwp54P8NrnL7F82GqeLc2iur6a7y98\nh6ezF9X1Z9kw5iWCfUMoLi9i/r4Uno/cJN2oCaub+ftSMJvNbBj9EksOLsLUZELnoiP2lnvZeuwN\nqfjXe/hf0lZlxlKpeFa6C7DVpmrBSm09pSa71BYjov5stRNY3K4JIlKZllCgzyyMR+eiY3P0VlnP\nJYbDslziPXFN+W1BbgJWZVW2o63rlwORVl1DLe7Oumbd0U3Jj8XUaGLhkMWyXdV5V7pUEL+Ly4tI\n3TeHuQP/TI+OPaQbxoLj+WQeWkZ1/VmMdZXMG5jG5qOv4OBgcesn/LULa7GE4ESS35/NS1Gbieoe\nfYlgHrs9hgaziVPVJ2kwN2DGTHuXDqwblW31vEhT9H1DTYW0YDTWVvJwYRzPR25i6YeLMJuhwWwi\n+84NGGsrpeWDeHbJwUW4OLlId4DqOcJWn1PeE3mK3R5DefUJ/D0CyI3Jl+8VHM8nqns0JYbDGGsr\nSd07lw1jNgGWPtb4I9k0LyyNFR//hbkD/0ze8bfp1aEPW45txgknune4mUdCkujt0wdjbSW+Oj+S\ni5P4ru473F3acfrcKRJvTSL/q+0Al/jJLzEcZvaeRNaNysZYW8nqkhVWmxjRl09VX3TVuW5Utuzf\nofowOV5SQueSeWiZ1bgQdRD1f6NYOWINCYUPkRP5IlV1Vczbm0zirUm8V75TWrOJdHx1fjIOXuqg\nNHx1fszeYyHLHglJIiJopLwnxqogAH11flZWxM3NxS2NMVE2ZZ00F7NMPd8q55uW3MVe6Zr1S27i\n7H3f19frF8iNBjWak51KDIeJyRtHp3Z+fHe+irrGWm726sF/q79s83e8XLypNp0FwBFHVo+wrPkR\nQSPZ9sVbbD32hlxnbM3b92y/S8ZKFRbrQm5Qz7HAJTKVGsr1FC5ay7a0vqrlqZ9qbLWU9uXIom35\nztVK/1rBLz0PqnGt5UeDBg3XBzTZ6dpAc7KTwDMla1nyUTp3dZvAOyfyrOSgluDupMPUZMLBDB3d\nb2DXH/5hJXso9QFiv7wmIov73/0jVee/5eWo1+V+qS37ncvVNfxUMoM9ck+DBg0aNGhoDa5EbvrN\nEWdgrbBuy8KufO9KlCXqdNRpNKe8AKyIFfVzr33yMhFBI61cuCmV2s2RhYJAiN8Vx+mak3TxCGTO\nwHn09ulDqD6M1z55mQX7nyQjfCW9ffoAEL8rjj/c8kfWHlmFs6MLK4f/lVUfPy3d52099gZgUUCV\nGUvJPLRMKq0FMSTymlycJMkbYSUn8ioEQbDEbxKKd3U7KImn5OIkTI0mm8FybRGP6meUda1WZgsl\n4vJhqyVJCUhiqbq+mh/qv+P5yE3SraWAKI8gEhfsf9IqCK/y24JkEPWhzN/VIs7gIoGl/o4ar33y\nMmv/tZqT1Sdx+LEsSrJNSUaJ9hCE7pOhC3j981f4+uwJ8mJ2yudEvxgdNJac/6znuTs3yjoL8Aq0\nIij1Hv5MzItm24R8SXYBUuEZkxvN0vAMquqq6O3Th4LjO8k7/hYVNafJnfCu3DSIen/uzo1WfVG0\n4ffnv2Ne2J/JKcsmITiRnLJsqz4p8gwW944RQSNtlr8lqEmTxN3xODu4yD4r2nlNRBZJRYmc+N9X\nmMwmunnfJOtAuJLMjcmXhPXM4Nk8V/YMns7eeLp58NjvUpi/NwUc4PnITSw5uIhHb0ti7b9WM6H7\nJJ4tXUtnDz3uzu5kjcwGrAnRiXnRmM3g6uSC2YwkTtVlVZKQyjEvSEXRhkoltSCLCo7nS8Isff8C\nXBxdWDcqm5mF8fw90kJaCgJR7+FPmbFU9osH3/0T7d06SAITkCSmyE/qoDQrJXxrDlC0ph2Vc476\nEIK6je3N98q+Z2tes9VfWpOv5vJxLUFT/lwbaEl2ssR8LGHtkVU44HBF7hodccTdWYenixfuLu1w\nd9YxOmgsfy9bJw/cGGsrCfYNuWQ8KA+gpITOJdg3RK4z6oD2ygNCymvNKYeaO82sfOdKx1Nb5peW\nCPArJV9aKo9G7mjQoEHDtQVNdro20Bq9U1zBfUQEjOK98p0c/+G/XGg63+r0/dw786deD/DmF6/x\n/YXv5H62ub1CmbGUBwv+xGO3zSGq+1gpH9nSHdlKQ1y7XF3D1ZYZruU9jAYNGjRouD6gEWcqtObk\nj0BLZJKt567mwm1LYdPSiV+l0l4pzJQYDjMhdyxdPAN+dD/nYmVpIRTXtiyohEWJgwPUN5p4fEAK\nAPP3pdDB9QYK/rAHuOgmb8buaTwZuoClHy1kzYh1+Lj7ALD0w0V8ffYE88PSmdhzkiTFhLK8uv4s\nOybuArCyBFFaKSkV7+K30uWSkgxUt41S6aVUmAvl2+WQpXCp8qzEcJiY3HHkxlgLr8Iq6OHCOJYP\nW01E0EhpgSMs6wQBo7TAEQp9ZTmU90UdtYZgbSuU5IwtgVqprBQEWOahJdzQrhObxr4KIIknochU\n51cQSiWGwyTujif7zg0Ass+lD15sZUWkJKiE9ZewUhOKUGWfEGlPyB2Lr3tnqs4byRy2ivv6PWil\nOFUSO8Jl6Dfnvkav6yKtvF775GWefP9xnJycmDcwjbzjb5MSOpeFBxbIfIvTfEerPpPEp9KS0J6V\nor16Ff1BSRiKehPEkSCLRD6Ucf+OVn3Gff0epMRwmKk7p+Dj3omE4ERJcIv6AWT/7NTOj8o6A5jh\nhnadaOfcjscHpODj7kNC4UMEegax9e5cDDUVxOSNk8rspCILUSfISFuWm2Lcx+SNw9+jC9sm5ANI\ni1GB2O0xnDxXLt17KpXgSUWJZI3MJnF3PGYzGGpPM29gGitLMsgIX0nqvjnSKu2J92cxrW8Cs0Mf\nt5oDxL9jt8fg4uRiRfCq+/qVnGRsaX1Q3rdnLQsW4lf0Q3sK89bksaV8XGvQlD/XBuzJTqLfxeRG\nc/rcSUxm0xV9Z6DvIP5pLKGJRtq7dKBDu47E3DyJtUdWodf582LUqyTujufE2a/o6nUTuTGW+UM5\nv+g9/C+xCLdl1Susx5QHH1ozrlpDWLVWbrT1u60k+M9BgF+r80NzuB7zrEGDBg1XA5rsdG2gNXon\nsf88eOoASz5Kx8vFm9qGGhrNjXbfccWNei7ggAPOjs501unJGLYCX51fq/aZwmMJXOr1pLW4ltbY\naykvGjRo0KDh+sOVyE2/+hhnLUGpoFSeMlZCeT/A66fxWWyoqWg2H+K7gIxbtiYiyyofeg9/ungG\nkH3nBhmjKqp7tIzBpfyrVuYkFydhajLxSEiSjCWVU5aNt0t7KusMbPviLSbviCF9/wIyDy0jI3wl\nE3tOYs2Idaw/kkWwbwjBviE8EpKEv0cAr3/+Cne9PYakokSSi5Mw1FSQEJzIt3VGSb6ZGk1kHlpG\nSuhcArwuxuZS1snkHTEkFydJSxVlOU5Vn5R1poxxIuIqgcU6LaHwIWK3x1BiOHxZ7WerTfQe/uTG\nvGsVY03UI8CNnl2l5Z+LkwsLhyyW7iiTi5MoMRyWhKYgzZTlEPcFqWYrz7YIrrZC/Y74toCyXkP1\nYbx99ztM7DmJAK9AvFy9MNZWMntPolROKuPoKfOnFNadHVxI3B3P7D2JnG+so77RhK/Oj01Rr+Gr\n8+Oe7XdRcDyfKfmxLDm4CH+PLpJsEfmdvSdR9onZexIlERLk1Y05A+dZxckL8LLEkRN1fLTqMwB8\n3H3Yencuy4etRueio8xo8Ru//kgWODgwb2AaW4+9wfLhq6iqq+LE2a+I3xXH7D2JNDSZMNZWynhg\noh/YG2NqKNt5/t45PFOylqkFUyguL5JzUsHxfBJ3x1NRc4rZexLlu9sm5FuRZom743ni/Vn85cAS\n4nfFYayrZIg+nJyybOJ3xcn+FqoPQ+/hT+ahZTwfuYkNYzaRGraQLp6BrByxBgcHmPvBE6TunUvm\nsFXS6i1UH0buhHcJ9g0hVB/GlvG5bJuQb0WaCYg5av7eOZYxMuFdtk2wEEFlxlKmFkwhJteyiQvw\nssTSy4l8kWDfEEmaCaK5vtFSx2YzLA3PQK/rwtZjb/Bk6AJ6+/Qh0DMIX50fvX364NvOj9c+fwlD\nTYWsWwHxndRBaVYEsJiHANnfmosl2RxEW9ubX+z1BeXzhpoKztRWWMVKs+UauLX5aUs+NGhQQ4wD\n0e8MNRW4OLrwSMhjV5z2x8ZDNGFRFv3P9AP1TRfI/e9bBHreyItRrxKqDyP7zg0Eet7I0vAM4GLs\nQENNBTG5lliZIm6hmDPV8UoDvCxxRVIHpTF/75xLZAClDKGGvfFnzxpNPW+on1eu8bbSbw7KZ2y9\ndzlzVkvfuR7QkuyuQYMGDRo0XAsQVvH/u/A/nHHmiQFPMrXP9GbfqecCTg5OtHftQGedHicHZ+Bi\n6IuW9ACCNAMuizSDa0suuJbyokGDBg0afltweuqpp576pTNxtVFbW9/iM6eqT+Lt5g2At5s3o4Ii\n7S7I6vvivSuFEHAccWJ96Vpiekwipscku9/wdvPG282bfj790Xv4M6toJqOCIuWz1fVneeuLrYTp\nBzFAPxBvN2+bFnXKtEUewgOG897XO9l/eh8XGuvZcTyXFXes4f6+U9n99XuUfvsvzGZwcIBHQ5LI\nKcvmlU9folfHPuR/tZ3B/kOYuXs6uV++xV9/v44Rgb9nyxebWTXib9xzyx+YvSeRj898ROqgdLL/\n/QwxPSYxude9hAcMZ+mHixgVFEl1/Vmq688yq2gmc8NSublDD7Z9+Za0hIoruI9+Pv3p5dNHniQP\nDxjOnV1HE6oPo59PfzxdvZhVNJOU0Lks/XARM0Ie4a7udzOu+10kFycxumtUmwQvW31DKGvu7zvV\nqi6r68/yxtHNHKjYz9qR6zlnOsf8vXOY3j+B27sMoWfHXszfl4KbUztu9x/MjJBH8HT1ku06KiiS\nXj595N9+Pv1l3SiVd7b6hshTP5/+dPEMaFXZxDsxPSYxqedkPF29uLl9D9L3pzK6axTV9WdJKJzG\nyhF/pdePlktdPAPwdvNm3E3j8XP3Y+2/1tBkbmLtyPV4unpZ5V+NguP5LP1wEamD0viw4iBpgxex\n/9Q+6hvrKT5ZJPMQ3f1u7rgxgtFdo7gjcATxwTOsCO6b2/fg1c9eYlRQJGbM5JQ9y/5T+7gjcARh\n+kE88f4sHv3dY4y88U5u7tCD6vqzxBXcx2D/oYT43sZjxY+QEPwIqfvnMEg/mOx/P8P0/gk89o9H\nOHB6H1N6P8D+0x8Q1386+059wAC/ULL//Qwzgh/l0d/NZlz3uxh7013M/2AOTeYmZg14HG83bwqO\n59PZQy/bs7l6n1U0U1pN9vPpz/rStSQEP8Irn23C1cGVx/8xi9c/fwVPFy/+9vtnmDXgcbZ98RZP\nvD+LoV2G0aNjT05VnyShcBqPhiRxu34Ia4+sor1be0YHjWXrl68zrtt4PqzYz4xbH+Wv/1zJ6K5R\nGGoqeOe/2xlx4++Z/8Ec8r/ajrebN0kDktHr/Cn8ehc1pnMc++ELhgeOkH3JbDYTV3Cf7Ivebt5U\nnDst7yv7UoBXoHxO9BeAHh17EuxzK3/s/SfZP6rrzzJrz0xeP/oKm4++Qo/2PXn7yy109bqJghPv\n8GHFQc7UVDD91hnE3zoDn3adeOrAn9lTvpup/8/euYdFVa79/zMww2E4eEAQxNDcamqRFmppWrwq\nipKKuTHTUvJAUUkF5mkLbsENakKvmFFqhrZz94tXBY1EUV6K1FLZyeZN3du2qYkgI55wBmQG5vfH\n9KzWDMPBwy6r9b2uLmNmzVrPetZzuNd939/v3WcGyYeWUnB2L0mPpXC08hu6tfkDiV8lkBqcbjUG\nT17+J8/teprH/YPxdfPjD216sPqbNEZ2CZW+WzE0lZf6zbntF7Pmnr2ns2ejNUgc38ndn8c7B1u9\n3MrP1dI+1VI7mlo77ga4uTn/0k1QwE+2k5jPYrwNDwjB3cmD7O+2kjQkBaPJyD8uHr1lqcYubl24\narwq/T2m61jOXDtNytCVPH5PMGBZc7af3Mres/ls/VcW/u7+JH21hBFdRnLg/JesGZ4h7ff3ez1A\nVP4MHuzQl6j8GYzsEmplF80vipNsguEBIdLnYs0S65YtbPd3+XHFFYcbrX9ye8ye3Xi/1wMsKJor\nHdfSPtHU97Y2nO21b+Zcv2bc7JqoQIECBb8lKLbT3YHW+J06ufvj49KRFUeW4e7kQf7Z3RzV/b1Z\nO0qFijFdx1JaVcLzfWbz7aVSDlV8zcwHolj45Vwe7xxs1w6prrvWpK9A+FrE979V++DngOi7X7oP\nf+nrK1CgQMGvBbdjN/0uGWfNZQ43lbnaVFbPzWS6yo8VgZ+x20eR9HWCVeZQS+y3BUVzARqxeir0\n5ZjMRmbviaS44jDFFYeZkhtB3qlc6Zy2bYjYES6xhV7qG4PGQUPK0JWkDFklsXxc1C5U6i8w/J4Q\n1CoN75SkExUYTbm+jJRDiZgx893l7zA1mPB164S31odA775sH2+RCPB188NkNlJXbyQ4YJiULS3Y\nLIKlIrK+BWsJfpJXEtnmgj0DYGowMmdftPSZYHsJFpe4jm2W1c1mJ9tjbciz3OWfrxmewcKBi9EZ\nKqWMsAVfxhGeHYa31oft43NJeiyZ2fmRlOpKrJ6L7XXkfSPaLR8bcmaYaNOCormtvj/bzPWIHeEk\nfbUEY721DJdga4k2FFccpkJfzqL9b7Bw4GKyxmVLgU1bSSnxu7xTubywdwaRfWYS2i1MYkMmDFqK\nq9pVqksVmTfVqvadGOtytqe31gc/904kHlwisZrWDM9gQdFcvLU+kmxiwoFF0tiOC5onnSvAowsT\nek7kvREbpXESHDCMDq4+xD+6lKyTH+Oj7Uigd1/SgtMlVmTWyY+Zsy+amIJoTlQdR+NoqcHl72GR\n1RRsKvFcmltLBDNNPOflQ1cxyH/wj07eWOrNJtaHZPJuyAZCu4VRoS/nzeJkYvrFSRmEFfpyquuu\nseDLOLq36072+M9IHJzMjlPb8NS04cNjH9CgMvP+/62juu6aVA/NZLYwPRMGLcXPzZ/EwclU6MtZ\nV5rBysffYseEPNKHZViNJTG+5GPgqR1PWo1B+Vhqaj0N9O5LbGFMo7UocXAyHVws7DFfbSc2H9+I\nn5s/yUNW0qVNV+m4tUfTMavMXNCXk3xoKeevlxEVGE2gd19e7hfD/KJYzlw93ajPBVtSSMauPZrO\n5dpLVt+Fdgv7j7A4bM/TnJO3pYzQ1jqIW2K/KFDQHOyxmkp1JSwcuJjCswV89M9NNNyGyvcZ/Rlc\nHF2kv7ee/H+U6X8g4cAiiisOS+t9wqClqFQWmeOUQ8ukZINPxmZbsXzlNSrtYflQiz0jtzUq9OVW\ntkhzsGWl2a5/rWV4toaNLL9ea+ZrS8w1e8y33xKUoJkCBQoUKLjbUVZ9juCAYawL+QAHHKk3m3B2\nbN6Bp0HD7jOf0c65PVtObKZCX0FEj8kEBwyjs3uAdF6wViayt+cLv5Pw+8gZ983ZBfbeJ+5m3Gz7\nbvV+7Cke/SfQ0nlv5RkqUKBAgYKbx+8ycNaUo6E1ko3y425ms7Q9t5AQ2jlhN2lPrGHq/dOabJvt\n+eVyaPI2LSiay6sPxXGPRxfAUofpcu0lyfEPNJIiE3XQZu+JZH5RLHrTdeZ9Ecv8L2IJzw4jtjCG\nVx+Kw9OpLR8cW0/YveNQO2jo5dWbnPBd7JiQx8qhb7Hi8DIqDReY3mcGMQU/SfeBxeGmVmmoN5uo\n0JfbdS7J71sEEsQ9CueUr5sfVTUXJenHT8ZmS5KUwnFWqiuRHPNy5/2CorlWwZnWGhHy4+QBEdEu\nW+N0zr5oZu2Zzqw904nsM5PggGH4ajtRbzYRUxCNr5sf3lofAn58RuJZNmfE2pMJtXXcCZkqcb7W\nGFqi7+V4qW+MJNEnxqhoQ96pXMKzw5iQE4bOUCkFnmyfnzi/MNCF7GTyY2+Seex9Pvp2s9Sfolaf\nqDclb/+cfdGM7/aUJL0p2izGueZHSVEhQSgPjpXqSii/fp6oQIvEobxWXPqwDKlOoDhnhb6cqlod\n3lof0oLT8XDylCTzjPVGAr37siUsizXDM6irN7Lwy7lEBUZLgY7QbmGkPbGGd0M22B0btrANLs7Z\nF82cfdGoHdR4u3ZE7aCmqqZKmuNBvgN4b8RGCsv2Wf3GxdGV5UNSSS1eic5QSWi3MFKGrCI1eDUd\n3X15+cFX0Tiq0dVUojNUUltfQ+LgZLaEZRHo3ReNg4bEg0uYvSeS6rprrCvN4ETV8UYO3rJqiwyp\neOHydfNj27hPrWoG2Rtj9vrAWG+UnmmFvhyVyvL5xR/b+NrDcZjN8NrDliBh/KNLpTmfNS6blUPf\nYtEjS/B3v4cFA+JZ/U0qT24bxepvUunk7s+GUZusgr0CwtG+JSyLl/vFcMFQIck12guu22v7zb58\n2BsH/8kXmKbWkFuRqFXw+4Z87odnhzE9bwrP5z3L/KJYXgycQyc3f1Sobvn8ZrMZT00bvF18eKXf\n6/i73cO03jOILYyREhBSDi3DbIZ3QzawJSxLmqdiDxT7opjXQb4DrOq+in1ILicsTzIREtmtgXz+\niGC7bZ3V1qC10owtBcNae05bacq7OYB+t7ZLgQIFChQouFUIW2RKbgRVNVVcM16hjaYtTo5OzdpR\nddRhNBtxwBFdrQ6T2Ujy10sp1ZWwZniG9F4mf6e3t+cLmeotYVmS38Teu7u9dtv6OW5V0v7nwM3a\nOLdjE8mTYP9T71etad/NPkMFChQoUHBrUJnNt5E2fJeiNUVam0JTDhCx8ciNEVsJxJbOZ+9Y2/Pa\nfgdI38v/XziO5I4bwdARtYJKdSXMzo+UajWlBaczZ1+0FBiBn4JB4TljaOvUHpUKKg0X6OTuz/qR\nmYClnpSxwcj0PjPIOvkxUYHRZB57Xwpu+br5UaEvJ+/ULvac3YWx3kjCoKWkFq8kss9MFu1/gzeC\nFrH8cBJ+bv5kh+c222ei7lNm6EeU6kpILV5JZuhHFJ4t4PXPX+HVfnMpLNsn1bgSfQGWYKG4vlzb\nW9TAas0zs9f3QptcsFbAEmyxPad4DjpDpdTuUl0JiQeXAEjMKNEvchaMMGRtC/g21V5xnHwMAZKD\nUO5AtL23yLypUva++GxCThjl+vNWtavEtQWjz9RgZEzXcdJzlo8lW+SdyiXl0DIp+Obv0ZmPvt3M\n65+/Qmf3e3BxdGXN8Azp+CDfAdJ1Fg5czMw90zA2GOnicS/vhmyQxpnoW/H8K/TlEttw4cDFJB5c\ngslsxFhvwtPZU5L6FIEwgAk5YXi5eLNhVCaxhTFsCcuiVFdiVUQ5tjCGGpMBtUpD1rhs6beFZwvw\ncvWSnq9gnCV9tYRPxmZL9yrGghgjzT0Hcc/eWh/LuNv1LFfqLrF8SKoUVLf3PAQjM+9ULlH5zzPl\nvml89M9NtHVqz6Xaizg4OLB8SCpgqek2Le8Z/N3u4dOndkv9caLqOAuK4ujg6sOoLqP54Nh64h9J\n5JWgVxuNazH27a1VTd2jnJlZoS8npiBa6ifx7KICo1n9TSrGehOVhgrqzQ2oHRzZMHIT8fsXUW82\n4eLoSsKgpczOj6ShvoGO7ha9/7LqH0AFHbV+bBiVCVjWLI2jpsk5APDRt5sJDhhm937s3VNza7U9\nNDXP5HO9ub5r6pwtvRyJdeDXFCRTCtzfHWjKdiquOMyJquOs/iaVWlMtYJFX/PifH2Go19/0dRxV\njtSbLTXORNH7tk7tuGa8yvz+i1l55C+sC/mAqpoqVn+TyvbxudJvxXo7Oz8SP7dOUg1Fe2guwCRn\nqYv5eLM2Wmu+v9O43evdzHrzc5xHfr6fsx9/btzp/lKgQIECxXa6O9Aav5Owo9aVZnC59hI6QyX1\nP9Z6lcMRR+lzN7UbxnojG0ZtAuC7y9+RcjiRLh73kjUuW3qHsn3Xke83cp/K7doM9t5h7jbc7F57\nt+/Nd6J9d/s9KlCgQMHPhduxm36XjDN7kEuLzLxCAAAgAElEQVSOgX2Hiz0pspaCZrYsM9vvW2K/\nwU+ZzraMI8FskR8b2WcmKYeWMSHHEgBYH5LJlhMfYqw3ojNUonHUSCwLwSIRcncLBv4JtYOaBhqY\n2P1picmjUoHGQcMg/8GYGoysK80gLmgec/ZFE54zhie3jbI41Y6uIqLHZLLGZRPaLYzIPjNZV5rB\neyM2MqHnRPzc/HH6kSVkr48FW2JB0VwpKCfkmfw9OjP1/mkkPJLEnwYnsHzoKimLPO9ULk/teBKd\noZItYVkkDFrKC3tnkHcq1+o+RZaU3ABs7rmJvgdrqbfIvKmU6kp4aseTUsa6nBUW5DtAkgAEC9tp\nzfAMSdJQSAOKjHWRBSYcd62VW5Rn38vHyJawLNKC05scm/KMe7nU1PbxuY2CZiJTTWTyv9Q3hnX/\nt1ZicjWFsupzpBavZOHAxVK7yqotMhWbQ//G+pGZEmMspsAyjj76drMUrPLW+rBy6Fu89cTbUtAs\nYkc44TljiN+/iMg+loLKU3IjpKCTkOwDUKs0bBiVSVpwOrGFMZTqSgjPGUP03lkArAv5QNIDN9Yb\nKTxbQGrxSit2Y1RgNGqVRY6xVFfCpJ3hPLltFLGfz6GqpkpicRZXHGbWnumcuXbaKjhXoS9nQk6Y\nVTag7XMQ2WppwekkHlxCbGEMJ6qOc/lGFS6OrqwrzbA7TwSDUgSyAr37olW78cGx9Wgd3fF09mDl\n42+xfEgq//33VBZ+OZeqmio0DhrUDmpKdSVMyAlj9p5I1pVmsHxoKioVfPTPTUT0eIblh5PIO5XL\nlNwISfJVOJntjavmxpqcffhi/izMZqR+mrMvmqjAaOYXxTKt9wzUDmq8XDvg6OBAO2cvvrv8HeX6\nMqtzrg/JpEube1k/MpOkx5Jp7+qFyWyi4ccXzdjCGFQq7M4BedbkutIMK8mSlu7J3lrdmizA5uQX\n7bFWxb/2nntLWYNNSc/9XIw3Bb89iP0zOGAYGSM2AFBhKGfjsXW3FDQDqDfXo0LFpB5TUKvUtHfu\ngLPameVDUhnkP5iUIatI+moJcz9/lfPXyyg8WyBlawsG8/z+i3FVa+22V/wrZ5nZzluxp4nEjqbm\nV2vmvVxS2bYN9j6/XdxOcOlOBc3uZAZzc7bwbwFKxrcCBQoU/H5RVm1RCZlfFEtEj8msfDyNzh4B\nzOgThaujtR1Tj8U+csSRjBEb2DBqE95aH0K7hTGh50S6eNwrJZ3asuzFteT7jT0Fkda2GaxtBrm/\n4m7Fzbbtbr4XuDPtu9vvUYECBQp+DVACZ/xUr0LUAmtKXks4gVtrdDTnCLClz7fmt3K2iVQ/S1bv\nLHrvLOZ98TojA0ZTVn2O2Xsipd8mDFpKyqFlRPSYzAt7Z0h1qoRsGsCi/W+QPGQlr/aby7ula8g7\nlUuFvpz0YRmsGZ4h1RYRMm9Z47JZPiSVqlodl2sv4+fWiS0nPqRCX25p45dxGIwGAr374u/Rmezw\nXD4Zm20lHyD60zZYFeQ7gMKzBdSYDFJwoLjiMDmntknsMSEzGdotjPdGbJTqosn/lssT2LI8mnJk\n2Pa9cKzLa6qIa8g/s3ceEaQS9yDk6YTcnbh38Vzl55L3S3NBPnEtAcE8bG6cCjlMcZzcwJa337Zu\nmgiEBgcMQ+OosZK6Kqs+ZxWIE7XqxPlF8CTQu69k7Pu6+fHJWMs4yjz2vhSsit47i/lFsaw6skIK\ndmWNy2bqfdNRqWDeF68TUxDNwoGLWThwMQkHFvH6569I8hVZ47KlexFSi+tDMlGrNMQWxkjSiwAm\ns5EFRXGM7/YUc/ZFU1xxmEk7wyXpUp2hktn5kdTVG0kZupKYfnGkFq/g+bxnmZBjqeG3YeQmcsJ3\nSYFVEWzcPj63WVae+FyMj4UDF/NOSTptnNpyte4KET0mNxqzgFTX58ltoyQ22HVjNQ444OToxEt9\nY1j9TSprj6ZT13CDdSEf0MurNzvC88gOzyXQuy8pQ1bh4uhKVGA0Xq5ekuzj3yuP0GBukNro6+ZH\nWnB6s8HY5iDmX8KgpWg1WhIGLWVB0VxKdSX8cP0Ml2sv/zi23kGlgg9C/8rKoW8BsOLIMrxdO7J+\nZCZTej3HC3tnAJb1DCDpqyVU1lwAoFJv+TctOJ1PxmZbrRu2c8nfozNpwelWkiWtvRdbx3xzQSl7\nwTe5o14whMXfYuyIIIH8fK3ZT+zBdq1VHLgKbgUV+nKCfAfwdE/74+xm4YADB8qL8HLtwOT7pqKr\nqWT5ob8wPns0a4+mM7RTMA008GwvS3B/4cDFUrLA8qGryDm1TVqTxNi2Z7vJ9yh5opE8icY2SckW\n8jXY3nwq1ZU0klu2FxS/3bnX3DwX39/J75r6/GaDXC1d2/Z53A7uxrXttxwUVKBAgQIFzcPfw1Kz\n1Ww2s/xwEgkHFqFSwfbvtlJTb2h0vBkzbZ3bUVVTRcKBRYTnjJHer9cMz7BbV1x+Ldv9pjW+Dzla\n8pEoUKBAgQIFvzc4/vnPf/7zL92IOw2Doa7Vx5ZVn+M+r9487h/M4/cEMzwghPu8ejM8IKSRoXG/\n1wNE5c9g68ksRnYJpbrumsRasYfiisPc59Xb7neezp7c7/UAC4rmcr/XA5Z6Hzbn8nT2tLr2KwUv\n4ogjiV8lsGDgYlZ/k8abT7zFfV69Kb9+nk//vYNrdVc5W32GNs5teeu/1hDo3Zfs77Yy1P9x/vfs\nPk5cPs6Koam4adyIKbBIMO45s4vR9z7JsHtG4K31YcXhv3D9RjVfVxzk/dL3+OJcIQVn9zKySyj+\nHp05efmfROXPoGe7+3ik0yB0eh3vf/seDjiiUqko/KGAh32COFr5DUsHL6Ojmy+ezp7Sf+LehgeE\nABan1aN+g3m2z3T8PTrj6exJ3qlcovfNovpGNYM6DcZVreWVgheJC5pH/P6F9Gx3H0/1+CNJXy1h\neEAID/v2t3pm3dv1lPpXfC5/XuL6TTmhxTEHyor4suwLJvacJD0P4aibXxTH8IAQPJ09qa67xpTc\nCEZ2CbV6jmXV54jKn8Ffj29ici/Lffq6+fHhsU0E3zNMGk9+Wj+e2/U0j/sH4+7kwZTcCLaezOIx\n/6FSv5RVn2t07si8qVIbyqrPUV13jaj8GdK4aA6d3P2lZyCuZ9t+cUyFvhx3Jw+2nszipX5z8Pfo\njJPKieRDSWw9mcWDHfoyY/dzvPePd3ii839hNptxd/IgvPtE6Zn6af04UL6fnu3uo3u7nhwoK+L1\nwjn0bHcfq79JY+YDUawrzWD1sLV0b9ODY5f+D2NDHbqaSrq36cnpq9+z/EgS03vPQldbyUt9Y1h1\nZAW7z+zivZCN9PcZSJc2XYktjOEx/6GYzWaez3sOk9nI5F5Tedi3P/18HmL6/TOk8fBKwYv86ZEE\nvio/wN8riynXl/FMr2cZfe+TtHPyoqisEH+3e7hguMDSwctI+moJe07votpYTT31ODk408/7IVKL\nVzKiy0ju8+qNj6uPNC7v8+otPRvb+S3/rLruGtnfbeWpHn8k/8wepveZyf7zRfxQ/QP9fB6ik7u/\ntGaIc64p/m/yf8ijV7vedNB680yvZ7nX8w/sPZPHV+UHqKq5yJRe09j7w24C3O9lXtHrBLh3pZ1L\nO57bNZmvKw5iMBnY8e/t7PhuOy4aFxY9moBGpeF/z+1jQvc/8lSPP+Lu5EFU/gx2n97Fgx360snd\nv9lxZQ/Vddd4vXAOacHp0jrb0c2XnO+28/fKYqb3mUlRWSEaByce6zSEVUdWUGE4z4IB8bz80BwA\nYv73RV4IfIV3//E2Hx3fzIGy/YTdO45vKo/grvHgvZCNGIx6aX2YXxSHj6sPUz+LYPf3eUy6b7I0\nHsuqz/FKwYvS362FfM4BbD2ZxcSek6iuu0Z13TWr+dhcX0TmTSW8+0T+0KY7iQeXkP3dVib2nER4\n94nc59WbkV1CmdhzEoDVuZo6r3xs2PtOrHXNrXu/JNzcmi+QruDngT3bydPZkwc79GXOvmj6+TzE\n6r+nccN0A6O59XaWPZgxc63uGjXGGoorDxP9YAwnLh/H2dGF2KA3WH10FS89+Cr7ftiNzqDj83OF\n7D27m+3fbWVU19GM6DISgP89s49FX87j4xNb2PV9LgsHLuZh3/5Su2MLY9h6MgsnlRNRe59noO+j\nvND3JWkOyG2R1igIhHefaLWv+bj6kHJoGcZ6I5PusyQ62LMj78Tcs3cOsY/Y2gP22t7cd/d7PWC1\nttuzL1qzFtmiuWs3dU/Nnau567Z0rV8Sd1t7FChQ8OuHYjvdHWjJ71RWfY6HffsTfM8wnun1LE92\nG0f3Nj3IObWNB9v35cKPCYBgkWo0Y8ZZ7cxnp3ai1WhZ/V9rcdO4Se9i4n0BsOuLau5doTX77d36\nrqBAgQIFChTcDm7Hbvpd1zgTL9mtyQSVB0wEmvutYLHJC8jbOwZoVGfD9roComaZucHMhlGbrOpH\nTcmNICowmnlfvI6/R2cyRmyQrltccZg5+6Kt6knFFsZw7cY15vafz9qj6QCoVHDtRjWXb1SxYmga\nvbx682L+LN4NscgziXpaU3IjuFx7iaqai2g1blytu8KTXceTe3oHndw6kzJ0JSmHlrFw4GLJodRS\nLSx5vShx39v/tZXlh5MI8OhqVWMqPDuMC4Zy5vX/E4P8B0ttswf5c2vNsy6rttT6clVrWThwMS/s\nncF7IzZKEoARO8KlfpTXrhJ9LL9PcW1Rj2V+/8XknNpGXNA8ovKfZ13IB9J5BeNMXjNNaJeLLHt7\n7be9P1Ev62alFGyZa/IsNvlYFiyeUl0JL+ydwRtBixjkP1gaG6IOlm2dNcGSHN/tKd4sTib5sTeZ\n98XrdHTzxcXRFWODEZXKIrEopDbfCFrE3/75Ic/c9xwrj/yFlCGreKPodXaG5wGWMXy59hIXDBWk\nPbGGdaUZGIwG6s0mHFVqkh5LZtGX83BxdJXGj7wGVOHZAnr9GGiI3PUsrhoXzGZ4N2QDMQXRnL12\nBq3anSt1l4jpF0dk4AwySzfy7j/WMH/AYtYeXY27kwcqFSQOTibl0DLSgtMlqVHRJ/Lr2gbj5XX6\nxLEV+nKi987ifHUZKx5Ps6onKMYDWOq0TblvGsEB/2XVX1dqr6CrrcTbxYfU4NVU1VTxTkk6Y7qO\nI/1oKh1cvLlSexkvbQecHV2oMRmob6innUt7Xu4XQ2rxCgDWj/yp/pto163o5Iv7Err4YpyVVZ9j\n9NbhVBjK6ex+DxO7P03GP9Lp4tmVMV3HkfGPdLxdO2JqMJE5+q/M2h2JSgWOKjWmBhMzH4jizeJk\noh54mdzvdzCll2WceLl44+nsycKBiwn07ivNWds1wh5bs7X3Yyt50praYvZ+NyU3AlODkfRhGVYS\nqQL2xk1zjLOWCkTfrS/BSp2OuwPN1TibkBPGvP5/YuO367h64wrVxluvJSvQxqkNDqjROKpR4cCl\n2ouggh3heegMlXhrfXjm0z9ype4yjipHPhj1V7y1PkTvtUi+nr9+DpPZRNoTa+jl1Zs5+6JRqbBi\ntgNSrdTIPjPJPPZ+o3nSVA2Q5vZF8bftOt4aNDcXb2ae2s77Wzmv2Lebuv+bsZ+aa+ftrj03Y8Pd\nreucAgUKFNxJKLbT3YHm/E62e5fweSwfuoppnz2DrrZSOtbV0ZXa+lrMmHHAAR9tR9QOapKHrCS1\neKVUw17syy3VNFegQIECBQoU/ASlxtktQsjJtcbYEMdU6Mul/2/uBV7UxGouaPbUjicBi7RYU0Ez\nIe0XmTdVkpvLmbDLSmpOIDhgGO+P2sz28blSgEPg3PWz6AyVxBbGEFsYQ0SPyVysrWTt0XQSBi0l\na1w2QzsFc6XuEm5qD3p59cbXzQ+txqK9HVsYIzmR0oLTcVG70EHrzfU6i7H4h7Y96OTWmQ2jMgn0\n7kuNySAdKyT97KGs+pxkDApDsLjiMOHZFi3vnPBdUjBK/Jcdnsu8/n8i8et4SS7PtkadOLfo05ak\ncuRBi3L9eUkCctu4Twn07ivJMf1w/QyzdkcyISdMkoAqrjgsBT/FueQyTaHdwngxcA4rj/yFyD4z\nCe0WRsoQi4yhqDcHNJJe8HXzw9RgJLYwhgp9ud32296fPb3z5mDPMWgr0eDr5ieN5VJdCRE7wkk5\ntIw3ghax/HASMQXRUv/La7aJ+mZl1T/WyPEfTs6pbbw3YiOXay9jNBuZcX8UCYOWkvRYMhoHDVN6\nPUdotzCSH3uTrJMfYzbDIP/BdNT64eXqRVePe9EZKiX5wF0T97EpdAvBAcNIC07HyVEjOVQXfTmP\nSv0FEgYtlcaOCG6M3jqc1z9/hchdzzJj93NcqClnWu8ZZIdb6uJ9Mjab7PDP2PLkJ3TU+vLuP9Yw\neutw0o+m8uKDc2jn0o7rpmqm95lhNbZFDTshwynGjVhnhFSYWHvktffgJ8kwV7WWDaM2MfX+adJx\nc/ZFYzAaiC2MQWeopKPWj6LzhSQeXMIzPZ9jxZFl1JhqWPRIAmoHDQ4qR2btmQ7AmWunCfINIv6R\nRNq6tMXHzRd3jQfT+8ygquYil25U8bh/MPO+eJ1z138gLmg+vm5+GOuN0viw1clv7fgSa5g8yC+c\ntc6OLjjiiLHexJ6zu3i2VyQv9Y3hvdK3iX7QUu/uQk05B8sOoHFUozNU8trDcagd1Gw58SFvBC0i\n59RWautrWHnkL7wQ+AqfPrWbtOB0SbpVLtsph1hXb1bay1b+RL62NLe+2Na7FPNELispXoTFy7AI\nmNo7h22bmtvLxHnvRhkzBXcPmhofQb4DmNf/T6w4soyy62V3JGgGcLXuGpfrqrhYo+PyjSqe6/08\nPq6+6AyVJH21hMhdz3Kl7jIeGk8cccRb68OJquOU68/z2sNxvD9qMwEeXQkOGEaQ7wDWDM9A7WCp\nnSkkTyv05aQcWkZc0Dym3j/NbnBIJDvYfm4rmWq7T8r33ZsNdtnra9vvmpNQlO8jcjugOXlF23OK\n64l9qyX74lYdc3fCoddcG+T3pDgPFShQoECBHCUlJTz33HONPi8oKGDixIk8/fTTfPLJJwAYjUbi\n4uKYPHkyU6ZM4d///vdtXVu+dxVXHOaFvTOIC5pHkO8A9kQUkvBIEg44oMKB5CFv0lHrSzvn9jiq\nHIkKfIkL+gqSvlpCXNA86b1G7P+2ZSgUKFCgQIECBf8ZKIyzZlg8tsg7lSsxkGwZUrcCwTBqLotW\ntEV+rKg7Jf7NDP2IUl2JFOCRfy5nDQkGTOHZAtYeTeflfjH08urNgqK5BPsPZ/XRVTzZdTyfns6h\nq+e9bB+fKzGIInaEkzBoqZQl9WL+LJIeSybhwCIGdhxEzqmt+Go78W7IBnSGSovD3gw5E3YBSO2V\ns2vkbRPfz9kXTY2phvP6c2wK3YK31seKiSHvo4++3UxwwDCp9oq8zwCpL5oKXsqPlzNGxD1D40xz\n8RxsmVWCFQYWVprGUUNacDpBvgN+DASOwdOpDW5ObmSM2CCxr1YcWUaARxerDHnbsXirTJ+WYHvf\n8sw1ce/yYwrPFjDvi9fp5N6ZpMeSCfTuy6Sd4cQ/upSkr5ZgNiMFOW1ZamO3j6Ls+jmJGTB++2jq\nzHV4u/hwzXiVds7tMdXXU3VDR/wjiWSd/FhiDIGFZajVaBkZMJp3S9fg59ZJYgUGeve1YjNV6MuJ\nKYiW6nxtH5/biF0wa3ck9WYT8wf8ibVH0wm7dxyFZfuIC5rHC3tnWAW9xTMAOFh2gM3HN1J+/Twv\nPjiH0G6jAaTnLMaGfF7Ozo8kwKML8Y8uJSr/eTpq/cgOz23EMhTXAgtDIrRbmBWLT/6vmC86QyUJ\nBxZRobcwMLec+JCEQUuJ37+I1x6OY35RLCuGppFavAK1gxpXtVZirOkMlSz6ch4VhgrcHN1o69KO\nerOJGmMNeyd9IY2J230pyzuVa8WODc8O492QDcQWxkj16dQqDWH3jmP10VV0dPVDpQKzGS7WVNLG\nuS37JhVJ/eKt9WHOvmhMZiO1plqqai6ycGACYKmJtj4kU+o7MY6bGvtxQfMI7RZ2S/d1s8yG1rLF\n5E5g22zSps5hjzEj1nxxDTnz7m5jZShZ03cH+r3zsF17qPBsAZnH3ifYfzjvlKzGydEJvUl/R67Z\nzrk9bho3ZtwfxYojy6hvqKeDqzeOKjV19Te4UnuZ90M3S8e/sHcGUQ+8zJ6zu6z2XTlTG5DWiIwR\nG5izLxr4aX+yt882F5CxF1ADGtVNvdWEFdvvmmN5ya8vGM7ytaMle7IlFuvdtja0hNtlwylQoEDB\nrxWK7dQy1q9fz44dO3B1dZWCY2AJkI0ZM4b/+Z//wdXVlWeeeYb33nuPo0ePsnPnTlavXs3+/fv5\n+OOPWbNmTbPXaK3fCaxtc/F3ePYYlg9NxcvVi9l7IqX/99b6EJ49hvUjLUnJ4j2wNX4jBQoUKFCg\nQIE1bsdu+l0HzqCxgSHYQ/LggThO7mhtyTBpzhFjj1nW0rnkckCAFCwSjiJ5kKI5B2veqVxm7ZmO\n2WzGR+vLp0/tlhzxwf7DiQycQeHZAoIDhgE/BZ/m7IuWgkEnqo6zoCiO+QMWs+nYRioM59E6ujPn\nodfIOvkxABE9JvO3f34oBYSE8xwaO3tEvwNSwGPe56+z8JEEVh75iyRpaE/qwFYeTe5EEVKHrXH8\n2wbbBINMOOZaYqrJrz8lN0IKmonvJ+SEYWowUWm4QE74Lg6WHSDn1DYi+8yU+rop51VTTrY7JX8k\nzi3Gkm2gUTyb8dmjMTYYiX8kkS0nPrSSz3xy2yi0GldJcq6s+pwU/BHXkf9dXHGYE1XHWf1NKsM6\nh/DXE5l0cvdnWu8ZZJ38GIPRgFajZUtYlhQIe+a+51hxeBkdXH3YMCqTE1XHWbT/DZIfe5N1pRlW\nc/ajbzezrjRDksETASeA6L2zKL9+nvkDFltdSzyzvFO5Vu0Wv4sttDCgzGa4duMaemM1qCAnfBcn\nqo6zrjQDY70RjaOGqMBopt4/TbpXMYZsg0i2wZuy6nNM2hnO2eozrA/JJOmrJdL/y4P14rlNyY1g\n4cDF0nOI378IgBv1tcwf8Cf++++pODlqMBhrcFW7SjKjs3ZHonFUc/56GW2c2nK17grtXbx4uudU\nVh9dxebQv1nJiNobN62dU1NyI6gxGcgYYQmqz86PZPmQVFKLV7B+ZKb0bE5UHef1z1/h1X5z+eTk\nFioNldSbTbR39pICZ5N2hmM2Q8KgpQDM3DONBrMZlRnau3rh5OiEi6MrCYOWNlozbCFf6292HrXG\nAd3S723XPnsB/uYc7LZtkScJ2EoFF1ccJqYgGrWDxu76+0tDcf7cHTh66nijfWhCThinr31PwiNJ\n/O2fH3Kp5hJVNy7e9rWcVM7UmW/giCM+bh3ZOOpDTlQdZ8Xhv3Cppoq2Lu24cuOyJBstl5deV5rB\nlRuXaevcThrPcUHzSDm0jBqTAbVKg950HScHZ7LDc61sAWheZlvcN7R+T77Z4I29YPnNrLO2+7at\nDduSzdISM/ZuWhtaA8VRqECBgt8jFNupZezevZv77ruPefPmWQXOTpw4wZtvvsn7778PQHJyMg89\n9BA9e/bkrbfeIj09nfz8fPLy8njrrbeavcbN+J3sIe9UriQtX1tfg4ujK2BJ9pEnA4Hl/cc2qRh+\nsgfuRMLjrxmKPaBAgQIFCpqCItV4G7B1jFgYTwZJxks4NQXVXji4W+PItJUPbEqipzUbvGCRVejL\nmbQznNjCGCuH63sjNtp1lsivVVxxmJRDy/DRdmThwAQu1lZSqivB182P5UNXkfv9Dp7cNop1pRbn\nupAH9HXzY83wnwITC7+ci7vGgxWHl/Haw3G8GDiHy3VVpBxKJKLHZBYOtAQk4h+1OLdFkGvhwMVs\nCctqJPkmpPzm7Iumrt5IL6/e+Ht2ZtOxjXg6tSHl0DIrqULB/IsLmgfQqK+FdJE8yNgSRFvkcodp\nwemNpPSERJKt5Jr8POIe807lStJ7GSM2EBc0Hx9tRw6WHSDp6wSC/YeTeez9RpJx8vEj/t/2HpqT\nXrtZOTZ5/y0omttIymlB0Vx83fzICd9F2hNr6N6uOz9Un6FUV0KFvpwKfTlVtTpe6hvDgqK5kkRW\nyqFlVvNHzuwRz+b0te/ZfOIDfLQdyRixgUH+g0kLTufdkA0SMyq2MIa6eiNbTnyIn3snUoautEhL\nHXufN4IWsa40g4UDF1OhL2dKbgQffbuZRfvfYOHAxaQPyyC2MIax20cxblso0XtnoXHQSEGzqMBo\nssNzrQKdKYeWkXcqV2LphGePYfaeSKICo1GrNEzvM4Oaej3P9o6ki2dXTlQdJ/bzOUQFWmrcLRy4\nmEX735DOIQ+IhHYLk+7L36MzcUHzmJ0fKfVThb6cT8ZmS6ypT8Zmkz3+MwK9+0pBYvHbUl0JpgYj\n8fsXEb9/EbPzLSy6GpOBCkM58754ndcejuOlvjF4OntKwabovbMo0//A+G4T2TByE6nBq1kwIJ5L\ntVXknNrKW0+8LQWd7KE5qTHbY8ASfDY1mJi9J5LEg0vo4OJDavEKzl3/gdl7IqnQl/Ni/izWHk3n\n1X5z+ez0Di7qdfhq/ZjRJ4rLNy5ReLYAsLDQjA1GEg8uwVvrQxePe3ml72uggsqaC8y4Pwpjg5Go\n/OftypvK26wzVHKrsJUNa63Emu2xxRWHCc8ZQ0xBtN3f2q4vzbVFPs7kUsFifU0flmF3/VWgQMB2\nTPh7WOqldna/h+7tumM2g4vaFQ+N/cLzrYGTygmAOvMNwHK+Sv0FZu+JZO3RdItt8XgaWo2Wds5e\neLl6saBoLiMDRnNeb5kbET0mc6mmiqjAaHzd/CQJo4UDF6NWaXi5XwxVNRdRqSzXlEsYi/liD2LP\njdgRbrW/yqWXRb/Y7vs3M6fkxzdlL4rjbCGcQuI72/VNbrPYW4eaa6Ntu34tUNYyBQoUKFBgD6NG\njUKtVjf6/Pr163h4/ORAc3Nz4/r16+BSeGwAACAASURBVGi1WsrKyhg9ejTx8fF2JR7vJMR7p3jP\nTx6ykoRBS9E4WmSndYZKXsyfhclspLqumtl7IqV3BuELsPUH2PMZ3Ik9/VbPcbvXbu3vW/N+qkCB\nAgUKFNwKfveMMzmEwwSQmBlCEq0luT9bCDaDcMjLr3EzzCE5000wQKbkRhDRYzJZJz/GWG9kzXBL\ncED8v62ko3ASReZNJbLPTNaVZpAWnE7krmfxcPJA46hh4cDFzP38Na7euML8AYvp3q47UfnPkzJk\nFf/991Q0Dhop8+lE1XFSi1dgrDfhonah1lTLxVod7Z3bc814FW9XH+rN9bip3TE2GLlgKCdlyCoy\nj73fiCEm7hEsMmxJXy3hk7GW68zeE8kFfQUrH3/L6re2LB0hUybPOBfyfPYkzJrrZzmrz57zaEpu\nBKYGI2YzkuxZU8//qR1P8t6IjVIW2dnq0zQ0NHBv224M7RRMse6wdD05GwuwYtTZY841lVXW2vu1\nbas9lqX8e9En4v5rTDUA6GoqWT4kVaqJJ++3phh/ZdXnCM8O41z1WeqpxwEHUp+wBJMWfBmHt6sP\nLo6uEsNRZ6iUxv72f20l6+THbAnLolRXYsUwADCZjahVGolxBJYXiFm7I9HVXGDF0DQA1h5NR2+6\nzqXaKpYPSSXz2PtSPanZeyLR1VSSPf4zfN38KDxbwPyiWNq7eKFSqXBycGb4PSH87V8fkvzYm0y9\nf5qULSju05ZhKe9fucyXYNOlD8tAZ6iUpGBTDi2T6uzJx7cYE6W6El7YO0Ni20UFWjIRvVy9WFg0\njzL9D7R1bkdb57aU688zv/9iiQ26cOBiiiuKefcfa/DW+lCpv4C3tqOU5fjpU7ulfmtq7Wot40zM\nwXHZoZgbzGwM/bDRs4wKjGbeF6/jo/XF09lTkm9MHGyRAx27fRQeTp5WUpxibdUZKkk5tAyD0cBr\nD8cx9f5p0tizTSSQz3FAmp+3KtVoC7kcbksyKgLi5VbOFG4NE6W1kLP+bPeiuwlK1vTdAWE72c71\niB3hGBuMkjyzvk5PVe1FGmi47WsKxqu3iw+bx/zN0o4fZWQv6Cvo2uZenrnvOXJObWN8t6fY+O06\nKg0XaOfshcZRbbVXCPlksbY2xcBvStpUrAmJB5dYyZraMjpvZv2z/dce7LFfbeWcxDnl8sotrS+3\nyh77tTLPFChQoOD3BMV2ah3OnTtHbGxsI8ZZamoq69evByyMs4cffphvvvkGJycn4uLiKC8vZ/r0\n6ezcuRNnZ+cmz38rfif5O5J4p4kpsCQQCxUUgPCcMZjNZqIfjGHP2V0sHLjYLuNMwPbdW/gLgNti\not2qXXC79sStMPr/U3aLwmZToECBgl83FMbZHUTWuGwpECWYWLYsnNbA180PU4OR2MKYRgwCOVrK\njhGsFMGg8PfozMKBi3mzOJmIHpOljCQ5OweQCs8KQ8Pfw1JEPvPY+0T0mMyJquNcqbvEy/0sxlr8\n/kXoaiqZ2ms6yw8nkXBgEW2c2vHff0+lXF+G3nSdUl0JE3LCWHVkBZWGC6hUUG82cenGRfzc/EgN\nXs3yIamYGkxcqqliSq/neDdkA9vH5xIcMMwq8CVnbglGVcqhZZjNNplSZujl1dvKYJIz/wSWD11F\navFKogKjJRaUQGuMLdE/sYUxhGeHSdlb4ndy9kz6sAypr5t6br5ufrw3YiPeWh/8PTqzZngGCwbE\n09nzHsZ0Hcff/vUhkX1mApaaaFH5z0sZ52XV56RacnLmXKmuxKq99gJSItB7s4adwWiQxpcc8gx2\ncf/xjy4lLmg+rmpX5ve3sKtOVB2XjhHtA6iuu9Yo861UV4JWo+WVfq/jgCMqVKw6soIFX8Yxv/9i\nPJw8eblfDFGB0byYP4vZ+RZWUqmuhMSv46muu0aprkRiGCQOTmbN8AyyxmWTMWIDKhV4a32kLDwA\nT2dPFgyIZ/U3qcz74nVq62twU7szv/9i1pVmEBc0j9jCGGIKonFxdGV9SKbU71Pvn8aKoWlU1V6k\nQl9O2fVz/PV4Jm8ELSLz2PuUVZ+TGFpiTId2C5NYi75ufhjrjVbPTQSBFhTNJf7RpcQWxpByaJk0\nZmpMBmbnR/LRt5utgmYi6COODQ4YRkSPycwvimX+F7EkHFjE3P7z6ejqR43RQOLgZOb3X0zOqW2k\nBacTFRhNyqFlZP97Kx1cfYgLmk8nD3+uG69RVXuRC4ZyCs8WMCU3wmp8265TrRlf4oXN180PH1df\nfN39rIKLOae2sXDgYpYf+gsqlYqZD0SxJSwLb60PAAkHLLKT60dmkhacLv0uyHcAacHpvJg/i5RD\ny0gLTic73LLGyFkbk3aGN5qfYj0H2Dbu0zsWNBNzT6wZIuBt77gpuRGU6kqI2BHOhJzG15cHzSJ2\nWN9DS/uQ7bFibRVydvZYLQoUyGFvricMWsoFQzlVNVWW/b22igZuPudKhcrqb0eVIxqVE200luDZ\nB6XvE1MQzaw906k13sDTuQ0v9Y0h+dBSab/U1VTi7dqRBQP/RKXhAgmDlkrrrBjrYt8UTilbNqjY\nJ+X3LFia3lofNI4aaf0HrBid8v5pKou7rNoiuSuuLf/XHuTXgp+CeLbHy9lyTdmNwt67WRacveso\nDiIFChQoUPBbxB/+8AfOnDnDlStXqKur48iRIzz00EN4enpKTLQ2bdpgMpmor6+/o9cWdkTeqVwW\nFM2VbJj0YRlWpQOCfAeQPf4zVgxNY93/rZXqegt7Xu6nEO+8tmoa8vfO29nTb9UuuF174lYY/f8J\nKGw2BQoUKPh9Q2Gc/Qh5RottPQy4tY24tU7mljJYhANVznASjCQ5C0WgQl/OhJwwto/PbcS6eLt4\nNYlfx6N20NBW0462Lm0lJlnkrmd584k0Eg4skmpNLRy4mO8uf8fyQ0nkTNglnedE1XHeKUnnIe/+\n7D9fxKguo/mirBCT2UhZ9Tme6/08H53YhJ97JzJGbGjUn4BV5rS87SLjSqWySLOJGiX2CuLmncpl\ndn6kxA4SjjIhlfjC3hmSZFlLKKs+J7GYInpMZkLPidL5hGPLHivN9hkK53iNyUC5/jzrQzJJPLiE\nH66foa1Te67cuMSLD85hz9ldEktQsKqaYvTkncolKv95to/PlbLgm5Nxai3E2DpbfZoAj64SY7Ep\nebtJO8M5ffV7ANq7dODNJ9KoqqmS6nvJs/Sf3DaKMv0PdPG4l+zwnxiA4TljpGDO+G5P8f7/rWNu\n//msPZou9cWs3dMxq8x01PpSa7zBh2F/w9fNjwk5Ybz6UByZx94nss9MUostQVw/N3+yw3MBCP2f\n4eT9cR/wE2tK1HgyGGvQOKpJHJwMQOLBJZjMRraPz5Vq+8lrmgFEBUbTy6s3Uz6dxOW6KklOUNRO\nE/cFWI1RUTtQ1AjMGpdtt1/lrCMx/sS8E3Xwpt4/zYrRNCEnjIwRG4jc9SxX6i7RwcXHEng68aFV\nLcJeXr0lFoW31ocJOWGkDFnF6m9SAVCrNDzuH8zGY+sY3nkkhef20cHVhzefSLMaj6K99mrgNTWu\n4Kf5ElMQLbE05fXeqmqqiP18DhE9niHn1FZprlTVVKE3VrNgYDzr/y8DN7W7lNAg2CThOWNYPiRV\nYpmJsenv0RmzGcqvl5EzYVcjFpjt+n6nXrLkc8+2xpj8mIgd4dIzEs9dMMLkLJjiisNMyAljXcgH\nVszD5phstuuj/DdiPN6NDnEla/ruQFOMMzFfUw4t44K+gks3qm7p/I6oMdOAs6MzNfU1uGs8MBj1\nODo44uzgwnVTNTP6RPHZ6Z1UGi7QQAPDO49k37k9eGg8qTZeI+GRJLq364631ofx2aMtDqXSjB+T\nP84T4NmF+EeXSuuoSDiQ1xwVa65Yn22Z+fLj7WU6y5mc8jqaTdkl4potzV9bVlxTa+3NJDDcLlpj\nn95t64kCBQoU/B6g2E6tg5xxtnPnTgwGA08//TQFBQWsXbsWs9nMxIkTmTp1Knq9nkWLFqHT6TAa\njUybNo2xY8c2e/5b8TsJ+3z50FXoDJV267aDNTNNXsdYKA3J642LpNJbUUpS0DIUe0eBAgUKft1Q\nGGd3APJMXpH9Az8xjW7nvM2hNZuwxFj6kdEgGC2CeSVnlYlM687uAVL75ZnWOae2kfBIEr5aX9SO\njpjMRuk6V+ousbBoHgajgRVHLMGjxINL2PjtOlBZ5JN83fyILYxh7dF0dAYdn5zcwnn9OTYeW4fO\nUEni4GT8PTpTcC4fD00baoy10vlFLS/BbJIzo8TnOkMlIpT76kNxJD2WTIW+nKd2PNmoZlFZtUUX\n3M+tEzpDpZVhKVhbovZbS89AOLSTvlpiue+v45mQE0beqVzp2qLNgrEib4dthv6WsCy2j88le/xn\nhHYLI2ucpVbVgoF/wlvrQ+73O4gKjJYYgymHljElN8KqJpgcgd596ewegK+bX7NZT4KpcjMZUVnj\nsskJ3yUFJmy10uVjK/7RpfhofWnn0p5LtReZtXs6q79JJS04nYRBS61YSvVmE/5u9/BuyAbpfnzd\n/PBz60TWyY+J7DOTzcc3cqGmghWH/0LCoKUsKJpLVU0VPm4dae/cgRn3R1F1Q8fsPZGApVbc2qPp\njO/2FGuPplOhL6eNU1ucfuzHzNKNXKgpZ/u/tkoBEtGeunqjFDRLPLiERV/O47qxGrVKw/Z/bSX2\n8zmWfwtjiN47i7TgdCJ6TCb28zlM++wZqo1X8XLuQGi30cQ/upSYAos8oghwvJg/y9IGWZAiss/M\nRuNPPB/BPBqfPZrZeyIpPFvA7PxIquuukXBgESsOLyPYfzgLvoyTmGcieFWuP8/BsgNcqCnnxcA5\npAxdSdbJj61qES7a/wY6Q6UVs6qzewBerl64qrUkDk5GpYIvygrxce3IicvHqaeeCzXlxO9f1Gic\niHnYEmtJjE/RF0G+A/hkbLY0PsKzw3i7eDUzd08jtXgF8Y8kcujCQSmj87qxmit1l3B38uAvX/+Z\ncv15rt64gs5QKTH3fN38aOfcnnWlGRRXHKZCX078o0vx97DUZHo3ZANd2nS1CnCLtUPuyLZldN0O\nbOesvYC9v0dnssZlsyUsC183P4J8B1ChL8dYb7TU7ZOtb0G+A1gX8gGpxSutXrCb2i/sZWXKWcdB\nvgNuiY2q4PcHe3tbaLcwS22xWwyaAdRjooEG6hos83hSj2cwY+a5Xs/j62apaRjR62nUDmo6ufsz\nqccU/n3tJA44oDdel84Tlf88J6qO4+3aUapxmR2eS3b4Z7zU18Lera67RuLBJRL7Xqy5ETvCmbMv\nmpiCaMm5JOaFmEP21g0BYbMJ9r/ZbKkbKa8rlnJoGetDMqX5H5k3tdH8lttl8j4XaMpuka+v/+nM\nZ3GtptZ8JQNbgQIFChTc7ejcubMk0zh27FiefvppAIYNG8bWrVvZtm0bU6da9lU3NzdWr17Nli1b\nyMrKajFodqsQ9jkg1W0XtoVgk8n3WNs6xmnB6WgcNVa+lZRDy5oNmt3KXq3s7z/hZhOTm/tc6VcF\nChQo+HVBCZz9CHkASxgdpbqSJovIt+Z8cjkfe7CVEGoOwukCNJIRtN3IhXNW7jQVn2eGfsSEnhNx\nVKmpqr0oBamCfAewPiQTlQqu3LjM/P6L2Xx8I8YGI2oHNQsGxJNavJIKfTlbwrJ4uV8Mfu6dmNRj\nCn9o04NJPaZwzXgVsAQ3ak21XKm7xIUaSzBMyA4IOUSRLSXuY/nQVUTvtcjyvdwvhhv1tcwvimXW\nnukAvDdio11DcEtYFomDk3lh7ww++nazlWM/M/QjKwk9eb/bPieRgW42Q/d23XFycOLVh+II7RZm\n5QC3dX7J+9X2M9Gvciz4Mo56cz3GBiPvlKRL/SJk/ZqSBRXPtCUJJuEctA1+2YPcASckIZqSc5A7\nBOvqb+Dp1IaVj7/FhlGbcFVrAUvwTwQ2SnUlXDBUMLf//EZ1YTJGbCAtOJ1VR1agr9NjbmjggqEC\nsEiMLiiKo9Z4gyt1lxjkP5iYfnF4OHkCluDtmWvfs/xwElN6PYcDDmg1bqQPy6BCX867/1hDW6d2\nbDnxITEF0RjrjVIATTAYwVILreJ6OVW1F3m5Xww5p7YR/0giOae2EdFjMuX685yoOk7WyY+JfyQR\ntaMazHDNeJUX82cRv38RZ66elhhY60I+QKvR/vSci+YyvttTLPxyLoVnC1CpLIEaMedFsMRb60N7\nFy8q9OWkFq9gfUgmOyfsJnFwMu1c2vPZ6R14u/qwrjRDkhYT0h0Tek7EV+tHzqmtLCyaR3XdNcnZ\n6uvmR/Jjb5JyaBm+bn4UVxxmzr5oEgYtJfHgEtKC0wntFkb6sAxe7hfDptFb+GMPy4vkq/3mSgxB\nOYJ8B7QqEC0fn+IclvuzSKmW68tY9vUSzJg5f72MqzeuYjZDZ8978Nb6WJzmbpYgbWePAF7tN5e2\nLm0ldmDh2QJKdSVU1Vwkosdk5uyLJjxnjBTs0xkqCfIdwEt9YxrNSTEGFw5cDMC562ftSireDgSr\nUg7bQDQgOaTn7IuWxodtn4d2C5P2I7lcXFOwtybIHfW3Ijus4PcLeUJRccVhtpz4EIc7YDZ2de8K\nwJGKr+mo9WXP2V1cN1az74d8Zu+JpNJwgRumG2T/+3+oNdXi5+aPj7Yjbz3xNoP8B9NR60dq8Qpc\n1a4Sq0xg4ZdziQq0SO6azEZSDi2T9vy04HSyxlmC+GoHjbQ22s4LW5tBLssot+tSi1eSMGgprmqt\nJBFZoS/H1GCUajnaWw/lASl7NmBLyTH2ZK9vFq35jTxZyF7w7HYlmBTcGn6pNVzZOxQoUKDgzkEk\ntQlVELDYWuOzRzN2+yig6XIT4p1dvB/I3//kkAdqmkuEsYffanLMz5V01JRtdzP+PwUKFChQcHdA\nCZxhvZFN2hlObGEMH327mel5Uyg8W3BLzgl7zg3ba7a2HpVtcKc199NUUE0g6bFkunjcS9JjydJv\nvLU+uDi6smHkJrq3605Z9TnC/zARtUrD5uMbfwxqWAIBC7+cS0SPyZRWlbBmeAZvh7xL2hNrCPTu\ni85QyaXaKjq4evPWE29TVVMlOabkBp0IsoDF0FOrNPhqO+Hl6sWVG5eJfjAGPzd/AIl1IfqyuOKw\nVL8q0Lsv28Z9ytT7p0mOfREQsnXs2NYOEd8H+Q6Q6tuFdgtjw8hNUv0q29om9p6DvUCTfNyIjPP1\nIZm0dW5H0mPJmM1YZbbbBjqbu0Zzx7RWy7ypgJ/t794uXk1k3lRLXaYek7lYqyPs3nGs/iaVQO++\nEjtzS1iWFNwL7RZG2hNr6OXVW+qPKbkRkp571on/x3n9OS7W6lj1xGqe7zObQO++BHr3pZ1Le9q6\ntGV9SCYnqo7zXunbUqAj8eASOrr54u3akQk9J7JgYDzZ4Rb5Sl83P/zcO9HB1Zs1wzNIH5YhBZC3\nhGWRMWKDdI7EwclsDP2QLh730surN8uHruKVoFeJC5rHpmMbmd9/Me+UpGOsN9K9XXeqai7ycr/X\n6OTWmdcejuPdkA108vCXnl+gd1+pz4WzMevkx3i5ePNOSTp19Ubm7IsmtjBGCoAJtqGzowuYodJw\nAW+tD6W6EpK+WsKl2ipe6hvDzgm7Jf17ERAVY9IidWagXF9Gud5Sn2zSznAidoSz+ptUDEYDpboS\nZu+J5IfrZ6iqqeJs9Wl0hkrKqs8xNXeSxKh7++hbdHT1I7TbaLvjRQROWxOUtf2dWOum3j+NBQPi\ncXRwJLRLGA00sProKmpNtYzvNhGdoRJdTSUzH4hi7dF0nBw1RAbO4JOx2bzcLwZjvYnXP3+F1/73\nFYxmI5uObSRh0FLm91/Maw/HUWuqZdbu6SwonEvs53P46NvNUhvEPBQyaoAkfXon4evmR4BHF4kd\navsCJdbnzNCPpFoE8Y8uteucFn1XXHFYCvzdKuQsX+VlTUFzkI+PCn05U3IjmLXbktTSwdX7ts//\n7+rvAPjHpRKq66op15dz0aDjyo3LGOtNLBgQj9kM7V28cNd4MPOBKC7XXgIsErqvPRwn1TcL9O4r\n2VqCbR8cMIw1wzPYPj6XtOB0iekaWxgjBfHFvmVrh8n3RcFEj9gRLtkb8iCYYP2LBBiRENSSALrc\n7hAMZdvgurwN9n7fko3ZHFrrDBN7TXO1fn+JoNndvH79Ug65/zR+qw5UBQoUKPg5YS8pJ/HgEsJz\nxpB3ylJiw0fbEZ2h0m5CnRxyu0W8/8sTdOTrtjwRprXr+G8xOebn2Mua6jdb2++31K8KFChQ8FuH\nUuPsR4gNNGJHOAmDluKt9SF67yy2j8+VjrFX66K1522KHdTac8lr1QjIpQnl55ySG9Eka2hKbgQG\nowGtRsvIgNFSnS3BxjGZjSQOTrYwaqq/R+Og4aUHX+Xd0jVkj/8MsDiuquuuYTaDq9qVrHHZUm0m\nY72R2voa6urr8HRqw8v9Yoj9fA7xjyTyStCrUjvE8aKd8jpi/h6WeioJBywMEvEM5E6kKbkRUk0t\neb2iiB3hkt53U33bVO0Q4fQSTjB7z0fUlmtJCkHObpF/Jq7j6+bHpJ3hfDI22+4xt4s7dS5RE29G\nnyj+ejyTTh7+TOs9g43frqPs+jnSnljD2qPpnLt+1ioIUVZtqTl1tvqMVOdF1HaK6DGZpK8TGOw7\nlP0VX/Bk1/F8ejqHzu73kDxkJVH5zzOv/58Y5D+YCTlhtHFqR+bov0qBo4gek9l0bCOvPRzH65+/\nwubQv+Gt9bGqYWNP512we2rra3BVu5I+zFJPLemrJagdNCwcuJj4/Ys4W30aH1dfPJw8pJpcY7eP\nwlhvosFcz7W6q6wfmUn8/kVSXTV7a4NtEMS21o28jk6prgRvrQ86QyVR+c+TMmQVp6+eZs/ZXRIT\nMS5oHokHlzTSs5+x+zlMZhMAnd3vwVGl5rWH41h1ZAUaRzXXb+i5ZrxC9IMxBPkGMWvPdHy0HZnY\n/WlWH13Fk13Hc7B8P1U3LvJqv7nkfr9DqvsG1owlUWuwubElXkrkWv1izolncPrqKVQqFW5O7ly5\ncRlXR1dq6mvwdvGh3lyPVqPF1GBi5eOWGnq9vHpL9b6qaqp4pySd6rpqogJfYtOxjZyp/h5HlRqz\nuQFQ4ahyoMHcwD2eAWSM2NBo7ZyQE0bi4GRJwvJOI+9UrsR2lfeDvG9EnTZvVx92TtgtjVl740is\nSzdbo8x2DRL1m+62WmdKnY67AzpddaP5K9bcpK8T8HfvzOWay+jrr7dwppuDAw64ql3Rm/QAtHFq\ny9W6K3g5d2Dxo39mXWkGV25cxsnBGSdHDfGPLmV2fiTrQzIb1TKzrUcq6p2mHFpmFeCyZULb/r/4\nW9QfbKquqTjGtg22885e7RL4Seq3o9avEdNX/lt79p78uJu1MVuyEexdu7m1/07aL83Btl23e647\n2eY72baWrvNLrN3N1d1ToEDBzw/Fdro70Fq/k609IH8fiN47C1e1VvJntLamdGuuY2tX3C22/y8F\npQ8UKFCg4PcJpcbZHYB8A008uISYgmgyRmyQsnhuJetGGC6tuaY4vinYZqcI9s5TO54k71Ruqxhx\n/h6dpSzrkQGjST+aSkSPyRI7Z83wDNQqDSmHlpH0WDK+Wj/aOrXjs9M7WD4k1UrOL3nISi7WVpIw\naCmluhKi8p8nKjCal/vFcMFQwZXay7zcL4bggGGSBJ5oX4W+nBf2zmDhwMWSQ0ZeR6y44jDeWh/O\nXy9r1FfyrKqscf+fvTsPqKLqGzj+vcBlBxcEQcwFTVNDLdz3XQwXzFCzMFNzqaRSUzGX3JfUJ6FC\nbbNMWyjFBXd9TdNUIjVb7LHIBWTLlU3Wef/gmelyvZdNBLTf5x8F7sycMzP3nDNzzu+ciAIRbAlp\n8VxOucjZ5DOFngdzL54mHwoiIye9wBSShqITolgZvVyLvDMeNab+azi6y3h79TgJafFYWegLbF9W\nI6DKal9xKflr4r3ScioBjwwDHaRlpdGwWkOcrJ1Z1TWUbnV6MKf9PJZ0WlHgWng61earAfnruvm4\nt8bTqba2/tbLPq+wqmso17KuUkVfld9v/Mactgt4v896fL38mNbqDZb9sJDk9CTW9f4YO72tds6C\n28xiadQC4lIvA1DPuT5XM67iv/UJraPq0KWDjNv3PIO8niywLuCMI1P/N0WXFenZGUzYN5Y5x2aS\nlZtNwMPDtfv++aYvUN2uOqE9wwrcK4kZ8dzIuk5Vm+pczbhKfFqcFn1oah2cSQcmMnH/WC3STKV2\nghnue8nJhdq/LrauLItaxOrTK7iReR1A6zTT6fI7y9TpOPPPgRdDHx4BwJCGw8hVcljxwzL+vp1E\nm5rtuZqZjIOVE2E/hTD/+7lMbB5EUnoiOy9s45WWUzl79SduZd2kqnU1fL36cTs3g9hbl++Ith0R\nGVAgH4VRHwQNowzVzv/QnmG81fVt6jrX57kmYwDIyM3AQpdfHV3LvMqV1DgS0uOZuP8FXvv2Zb6P\nO0Ztxzq42rvxTLORhPQIIzcvl6VRC1jQcTGvtJzKQ04PUdWmGlYWlgS3mcPHvp9hZ2VfYHpV9Rpl\n5+bwwt5RJZqypLh2x0Qyfv/oAmsymopm8XFvzQTvSThZO3Po0kFtbQLjcsNw+pWSdpoZlwMy0lEU\nxTCSSTW40RA+8d3E6GbjyqzTTIcOAAssUVC0TjMLnQXWFtYAXM+8xupT+e0UBytHdDp4sUUQvl5+\nvN97Pd6uLbiVmb+W2aimY7TyyXiKQXWaWDUK1HDtS+MOLuO2lDoVEvwzTbYa/b47Jn9wQUZOOvO/\nn6t11BlHcavn03hNRTWiy3iqX8O0GXZcmVpjsrBOM3PtAOPOQlOMo96CDk40G21cXtFIhtG6ZdFp\nVtZpLq/R+RUV5SdT/QohROkZ1hGG/3d38GDLoEjGeU/UPns3gxSMj2P8t387OQdCCCFKSjrODHg6\n1dam6zPs1DD8e0n3V9RUjKY6DoLFNgAAIABJREFUXArbnyFv1xa87jOTBcfnalMJJaTFa2ttmNtX\nQvoVvvzvRiyx5JNfP2LSgYkEHcx/qRQ+MIJNfuF4u7bAxtKW61nXuZWZwupTKwu8zPF2bYG7fS1c\n7d1YcnIhNezyp6R7+8eV1HKozYw2s1l3Niw/Auz8FwXOg7uDB5sH7tCiPdSf1ZHhT27rD8BW/11s\nGXTnCGw1DcZTE6hT9c3/fm6Jp5NT96NO7WSq00uNEvL18ivwckS9dup0aqY6UQK2+TN4q5/Wqefu\n4KGNKjO3XWmV1b7U+3fvpV0AzGg9m+TbScz8bhrjvCfSrU4P/CP8GLv3OaYfmXzHS0G1cwD+eemi\ndjQ94tKEPnX6kZGbTtb/pkOcfCiI3TGRbDq3AVc7NxYcnwuAnZU9wW1mMePIVLxdWzCj9WwsdBa8\ndyaEVx6bwntnQsjLzSM5PYnBW/2Y8d0U7Cwd+OiXdYxqOqZAXiA/slJvaUVOXn6UVlZeJkujFnD9\n9jVmfjeNj35dR8DDw7W0ezrVZorPdHToCHzkeZxtnHj7x5VA/npaxtN3qudApwMrnZ7QnmHaPaWm\nY2X08jvuz+T0JDb5hfNB3/VY6qyoYeOGoihMOjBROxcvtgjSphlb1S2EJScXMqf9PH5M+oFqNtXZ\nGvMNSemJ6C2tmN5qFtv+t3bbpv5fUcepHi+1DGLvpV242dckpEcYo7xHk6vk4GxThbSsVM5d/Y3M\nnEx0FjrePR1SYLHq4kwBqn4XziafYfKhINKz01lycqHWUajOw7/+1w+Z034eX/z+zwv6SS0ms7Lb\navToeerh4VhgQVpOKq1c29DeswOhPcO0F3fJ6Ukk304iJy+HqxlXWXv2HdrUbE9K5i1mtJ7Np7/l\nrxdgLr16Sys8HGsVuV5bScWl5K97tLjjW2ajM9Tf7Y6JZPXpFbR370jwd1NJz043mR51wIOpB+Ci\nqOXAxl8+LTCIQx4aRVHU+0X9Dvl6+dHes4PW4XW3FPInO+heuyd6Cz1z2i6gf71BWGLJAC9/rLDC\nQmdBamYay6IW4ld/IADTj0zWIsjOJp/h79tJ3M7N4O0fV5KT98/0z4brAk7xmZY/vfQ2f20NMsMy\nW+2MWtp5BQlp8QXWoIA7p64MOjiRUU3H8MK+UZxNPoOVTo+ukNPi6ZS/9pnhmoqG7QZfLz/tPBu3\nBdXvqroOiuHLNDWN6qAc4/rXVDtgd0yk1j4yPpZxnWS4rZWF3mTbqLDOrLLsZClsUFJpmOogLgsP\natlaXp2CQgjxIDMeWKPW44cuHeS1b1+m79fdC9TRZXEcIYQQQtwd6Tgzor7sV9fFKG3DxTDKxfCl\nhPFoY8MXAcV9KFVfYiekxbP8h0XcykwhtGcYwW1mMflQEJMPBZldeNTHvTXv915PNdvqfOS7gQj/\nSK2j8NClgwU6pBZ0XAx5Crl5ucSnXrkjksteb691AG0fvIeQHmHY6+15rulows9/QXCbWVpHnPpC\nWM2zqZ83/vIp87+fy+s+M7U1q4w7oEzlyTCaI6zXB9oxixpRbeq8AgVGo6vbG06tZ2o7U/OGG774\nCu0ZxrreHxdYCwtg6HZ/LVqqLBu5ZbUvdwcPsnOzC0QapWSlMOPIFA5dOoi93p4P+nzCVv9d2vpm\n5tIzqukYZhyZyu6YSAZu8SXk9EqqWFdlQcfFLDm5kPTsdC2qanGn5SgK2vRahuvYhJ//gg/6fMLs\ndvNY/+uHPN04kHpV6+Nq74adlT3TW80iNesWsamXmfbtawze6sfumEgm7BvL2L3PcTvnNvM7LMbZ\nxplXHptCVZtqTGwehJO1E4s7LcfDoRaf/PqRFk0QlxLLM81GsqprKN8nHGV2u3lE+Eey1X8Xvl5+\nLO28QvvOGUaZfjUggvCBEXwfd6zA+lXGkUOeTrUJbjOLF/aNIiEtnuT0JJLSE1B0eVy/fY057efx\n1YAI5rSfx7qzYdpUYOq1AUjNTuF65jV61O7NVv9dhPX6gIbVGlLVphoNqzXEx701c9rnn6/gNrNw\nsnbG3cGDs8lnSExL4Prtayg6hWVRi0i+nURw6zmE9gwr0MFXnI4bw47BVd1CiPDP74hW96O+QF7v\nuxFv1xZYWVgB+VOzffH7Rlzt3ajh4ErEn1/D/17Q/5B8kv6b+wBo94CrvRtWWOFmXxMXOxecravw\n1flNZJNNbMplLtz6iwn7xmrXz1QkiRpRXJbU/L97OqTIzntv1xbUdnyIA5f3sa73xyanaVP/LelI\nfzVCEPJflE/+dhKjmo4pdECFECrj9oj63Tl39Tetw6ss2FjY8vuN35jRejYAOy5sJVfJ5dNfP+Kl\nlq/mr31qaUk12+qsORvKyCajC3Tcebu2IGLQTt7vsx57vT0hPcIKpFn9v69X/jSvapS6osCkAxO1\n6DH/rU8wYEtfgg4WXIdyis80ziaf0QZHqINdLqVcxMXOhTpOdfF2bUH4wAhCeoSZXKdQ5ePeWpvO\n2LCjzjjCvbBOKMPyWC0XpvhMY/KhIG3wVGFRtLtjIhm79zkyctLvOFZRg7cMI++KE2Ff1hFd96rj\nRtbtKj55ESuEEHdHbU+pz4zq+4VHXJrgauvGzcwbBLeZpbU91PrJVLS5EEIIIcqH5ZtvvvlmRSei\nrKWnZ931PhRF4Zvz4XT07MzLByfQs05vnG2ci7Wt+tJySKOhtPPoQGOXJtrvvjkfTp+6vjjbOONs\n40zPOr21h9GS7N/TqTa1HD3R66w5eHkvPev0ZmX0ct7q+h+eazaaxi5NCuzbUMNqjehT15eaDu7a\nftIy03jj6DS8XZrTsFojAG5m3uSLcxupaluVOe3ms/rUKi3tKVm3cLGtQcfanbW81HL0xFpnzfzj\ns8nNy+W7uCMMfyT/hZN6DgH8Gw4pkOdmLo/y180YJhwYw62smxy9coSm1Zvx2qFJNK/RglqOntpn\nTeUpLiUWZxtn4lJiefngBPwbDtE+r768aebyqLYf9fOmpGTd4pvz4QxpNFT7jHpc9ToeizvCa4cm\naecCoJajp5Y/9XhqnlOybjFu32j2XtjNtj8jtH2nZN0ioPFw+nsNqrTrRqRk3WJo4+E0qtaYEc0C\nycrO5mLKX1jp9JxJPs3qHu/SoGpDGrs00c6FqfMbnRDFuP3Ps7jTcrxdWxAZs4MnGwZwLfMqTz78\nFI+7+fCKz2S61O7K84++wOPurWjp9hjPNRvNXzdjeO3QJBpVa4yCwp4Lu7C3dOCTXz9izKPjWHBi\nDm91eZsuD3XDw96DEc0CaebyKIMbPkUnzy5EJ/7At7GHUMjDUmfFjcxrjPEeT996/Vh8cgHt3Tvy\n0S9rsbawoVfd3hyO/ZYrqbFsj4kgI+s2i07Mw7f+E9ha2RL++5dEJZ6go2dn7ZopisKXv29i38W9\nDGk0VLu/nW2c2f5HBDOPvs7wRs/ywc9rtfvCv+GQAufIzsqevRd2069+f6Z++wo3M2+QnZfNss6r\naFurPQAvH5hAnpLHE179efngBBpUacj+S/s4euUwWblZPFFvIBt//wQv54YsOjGPjec+4VbWTSJj\ntlPTzp2wn95haecVdHmoG33q+gIwft8YdOjIVrKoYefK8i6rGNzwKUY0C6SWoyfNXB6lsUsTLZ2F\nfXdUtRw9cbNzo8tD3bRyQf3eqtONtXFvx+PurajnXI/tf2zFxsqGq7eTqWHjxoVbfzGxxST+uhWD\nlYUVGTn5kViDGj6Jo7UTIyIDeK7ZaFzt3Pj9+jkOxx0iKzcbKwsrMnNvE592BQcrJz7ou167Lw2/\nmw2qNGTjr59Sz9lLu05lKT71Cvsv7WVVt5AC586Ys40zdZ3qsencp4zxHq+VL4bllnrezJXl5hiW\nY4+7t6KWvSfPNBtZYL9lne+74eBgU9FJEBRsOznbOOeX2/tG88W5TXx+bgMHL+0nPScNGwtbcpUc\nrLAij7xSH8/F1oX49Cscjf+OHxN/IDPvNgB55HHx1l9k52ZzPfMa89ov4kzyaR5z82FAg0E82ThA\nK8MauzShlqMnfer68tfNGOys7EnJulWg3o9LieW1Q5MY0mgonk61aen2GLsvRBLQeDiNXZrQtHoz\nTiac4O3u7/Jcs9GkZqcyKKIfEec3s+OvbUz1mcGK6GX4NxxCY5cmdK3dnQZVG9K5dlccrZ20dpTb\n/yKlDdsbqriUWBq7NGF3TCTP7AzQyvs9F3YVaG+o595wO7W9oNYtahuwZ53ePO7eij51fRnaeDgd\nPTsz+VAQfer6audA/a6r58DOyo6wXh/gaO2ktd3UY5oqZ6ITogrUWcUtm4z3V5y6o6jPlXWZZS7P\nRSluXoQQ4l6StlPlUNz3Tuq7oDWn32P9rx8woIE/ver2wd3Bg3H7RqPT6fhPt1Bc7d0I3DWMxZ2W\n87h7K20t1CbVm9KwWiOtXi5OW/5+ra/u13QLIYSovO6m3SQRZ2aoUV3qdD+lkZAWr0UKmJvqrDQP\n7OoIpOiEKLbGbGZJpxVaRI5hlFZh+zacjiguJZbw819QyyF/CkaVj3trPuz7KU7WzrjYuWjbxaXE\n4h/hx+RvJ2lROWra1v/6IdNavcGNrOvEp8Zx6NJBbTQV/DP9k/p5dbSVq70bn/p+zvbBe9jqvwtv\n1xZapJPx9EOGDCPrDKfeMfydYTRYUaOgDad+NP69OuXiC3tHaSO2jT+jpsFwHSF1qjV7vX2BaTTV\nc1FZO80Mp917Yd8o3oleTeRf28jOzcFOb6t9zniqJ3ORjobTc+p0sPH3TxjnPZEJ+8Yybt/znE0+\nw4wjU7X9zDgyNf/Ye0eRnJbMC/tGMXbPKPrU6cfq0ytISk+kW50eLO74Fr5efv97yfu8No3X1Yyr\nrP/1Q0J7hhE+MIKwXh9gZ2WPq11NIH9qxJSsW3z06zpy83LJys1kwfG5vPr4FJZ3+Q/VbFwIOb2S\nP2/+oaXj74wkAh4eXiACyNMpfz03df1Aw3vHxc6F/3R9h1Heo7WIRVOj5j2dajO73TzOXf0NK50e\nV3s3PujzCY+4NNGiHfSWem3dtaWdV7Dk5EJ0Oni6cSAJ6fEciz9CUMsphJ//In8toOavYG1hzYzW\ns7VINcN7LSEtniupsdzMvEHgI89jqbNiwfG5uNq7mYyYjU6IKtYUqOoaX+roSMPPq9ONqZETrvZu\neDo9hJ2VHQBbY74hIyeD8PNf0LDKw+gt9Ogt9ExrNVNb5w7y17FbFrWQl1oGMbvdPK5nXsXW0g53\new9srWwL3J/q+TUsH3KVXBacmMPgrX5lPp3YjCNTCW4zq1jfa1d7twLbmotALmk9YTi9o1oulzSy\nWfy7qffyqm4h2vqnDtYOVLGuiqXOEoAcckq1b1uL/O97devq//vZlpvZN7G3dNAi2nJyc7mRdR3y\n4Prt61xJjWP+idlM+/Y1dsdEam2Yjb98CuSv/Thy99M8sbkXwB1R4IbTM7o7eBSYjludKlH9zro7\neOBmXxNPp4dY2mklzzQbWeB74+7gwdDt/kzYN7bAlEoro5drkdXG0edDt/uzOyaSldHLeb/3er4a\nEKGtGWsc2Wf4f1PTRqrHNCwfPJ1q37HOqHEZok5H7e7gYbIsNzUoSW2/Gf6tuGWTYb4KW2/N8P/F\niQAryzK7JGVhcdqQpSGRA0II8eDzdKpNwMPD+Tsziey8bL6PO8akA/nrmgW3mYWVTp+/FIaDh/Zs\nq3J38GDJyYUFlo4wNUuFIcM2RFkpj/qqOPWs1JtCCCHKk05RlLKbd6eSSE5OKdP9qRV4SV44qi81\nTE1hUxbpgfwOiyk+01hyciEAq7qFEHRwIl8NMD9lnrr9iMgAgtvMYmX0cu1lckJavMmXvWojbYrP\ntAKfP5t8pkCjTv2su4MH/hF+vPr4FNb/+mGBF/aG50U9p2oHo/H5VfdlLi/qPkxNoWh83g1/vptr\nEp0QRXJ6ktbBWJL7wfjz9+LeKGtxKbEkpMXTf3MfdOioYe+Kk7UTs9vNw9XeDR/31oWea3N2x0Qy\n59hMwnp9wORDQYzznqhFxKjbqtd/8FY/0rPTebpxIO+eeZuZbeay6sflZOVmsqzzKmYefZ3NA3cA\n+dNvhfYMY9SuZ7mReY33+6zX7tG4lFgGb/VDUSBXySE5I4mlnVby9o8r8W8whDU/hVLNtjrXM6/h\nbl+LVx+fwrzvZ3Mj6zqjm47js3PrmdF6NltjNt9xz6nfKfhnTaDdMZE8t3sEs9vOJ/z8FwX+Ziw6\nIYqBW3zJUXIIajmFtWffYV3vj1kZvZwpPtPw9fK747xGJ0Qx+VAQq7qFcO7qb7z940rs9faM856o\n/b9PnX74evVj8qGgO9bQWdp5Bc/uHMaN29fR6SzQAW727thZ2ZGjZLNlUKRWJqj5y87NLnRKTnXf\nhmk2Pi/q5wCtHJr53TQSUuN5q+vbrD61kkerN2fHha0A/KfrO3Sr04MRkQGs6hZCcnoS0w5P5urt\nv6nrVJ/QnmG8sHcUVhZWzO+wGID53+evCWecVjU9KVm36FOnH5N8Xi2T76DxfWuqPDO3ze6YSO1c\nmSpTS8M4DZW9rHF1daroJAjubDsZ39fJ6UmM2TOSbCUHCyzII7fIfdrobMhUMgv8TocFikGkWv96\ng9h1YQc6Cwuq6KtwK+smwW3msOncBkY8Esimcxu4lHKBic2DqFelHuvOhgEQ8PBwFpyYw6quoTzi\n0oTndz/L9dvXiPDfqZVbqoBt/ugt9QXKwYS0+AJtDPV7M6rpGNadzZ/+esHxuXw1IELbj+EgGkAb\nzKB+f9XphQ3bPGeTzzBmz0jqValPSI8wk+0adZ86Hdq0j8aDttSoXcPy3Pg6maonTLWPArb5F1qW\nG37WuAPM3LTVxtupaS4sHcZt66LKqpK0x0tT7pnbxvC4hvm6W6V5vhBCCJC2U2VR2Hsn4zp06HZ/\nbty+QY6Sg7N1FWJTL/Nyi1fZe2kXKVm3mOIznffOhHAp5SIRg3ZqA11WdQu5Y3CM4THM1SPFfSYp\njvKsrwqrv6XeNK+yP+8JIURFupt2k0ScFcLwwb+klXNxRuOWdrSMYfSEOlLacO0Nw0XvzcnOzdai\n1NQ0mltHR42S8fXyK/DSwPgFr2GUEEC3Oj20FyzGL1EMz6mpKBx1X0WdBzW6y9TfzP1c2gZFXEos\nkw8FseTkwjvmHi9sG8PoMsPfmRplXllZWuSvM+Ood+LFFkEsOD73jrVZVMYv7VSGI+nnfz8XK50e\ndwcPVnULYf2vHxZY5029/glp8fSo3ZukjEQ++HkNOUoOi06+SWp2CnZW9gBsHrgDdwcPZhyZSmjP\nMJLTk7iRdQ1Xe7cCEZSQPyXigo6LsdRZMb3VLLrV6cGCjovZe2kXE5pP4mPfz1jaaSV6Cz3vnQmh\nhp0rr7Scyp6Lu6hqU43BjYZokZ3GjCNKvV1b4OlYm/DzX7CqW4jZTjNAe5HqZufOKO/RbBkUibdr\nC229MFPnWV2LccaRqTzi0gR7vT3BbWax7mwYegs9AQ8PJ+T0SibsG1sg+gjyIwa+jzvG1dt/U9Wm\nGjXsavBh30/Z8eQeXmoZRHzaFS0CUD32Jr/wIl+0qt9Jb9cW2nbBbWYVGWmbnZuDhUV+dRSfdoXH\na7bCWV+FmnYedKvTA0+n2ozzzl9/KPjINBLTE3ix+SuE9sx/CW1raUd2bg4Ljs9lycmFzGk/D52O\nO6iRWIoCH//6/h3rNpaG8chINSKwOC9/oxOimP/9XKITogjY5s+4fc+bjNQrCXOjUYUoLbU89nZt\nwYd9P8XV1hWFPOws7AvdzgILspSCUxjVdaiLQh42Fv9MlXAs/jtq2LlR3aY6zzYZxfIu/9E6zbbG\nbGZO+3ls9d/FKO/RrP/1Q8Z5T2STXziDGw2hlkNt3v5xJZMPBfGx72dap5n6PVLr3vCB/0QFq51m\n/luf0KJO1TyOajqGmUdfp0+dfgBcunWRs8lntDXEdsfkr0UY2jOsQKdZwDZ/Zh+dWSAafeMvnzJ4\nqx/zv59LTQd3ZrebZzbaC/IjsbNys+9YB1ONOjaMAlTLc+Pyx7j+fXJb/ztGm6sRzMVhXG6bWs/V\nmDpAwTAaz9TascZt6+K88CmsPV6a6DXj7c1tY3jcsixXTeWnsrcHhRBCFM1UnaIooNPpuJ55jYZV\nHiZXyWH16RVUt3YhMS2B6Ucm82KLICIG7dS2ycnL1v5v+D5BVVi9aG6mk9Ioz1krivOsKc84Bd2L\niHghhBD5ZI0zM9TKR50/uqznWVb3b2otjOIyXJtCXUuoa+3uuDt4FJrelKxbRPzxjbbeh7oP4/WM\njLdR19kwt0aOuo8ph14hIf0KDas0YvHJBXjYezD9yJQ7tjH3f/Xn4qw9UZ7zXzvbONOnri+NqjVm\nZfRylnZeUegaRuo19m84pMDaJCMiA/ji3CZ86z9BStatAj9Xpvm81fQ/2/Q52nm058ekaGa1m8vq\nU6u4nZNJaM+wQvOvvrTr4tkNRVG0+wYg4o9v6FevP34NB2hrw8w+Glxg/b9mLo8ycf9Yvos7jE6n\nQ0FhSMNhPNkwgCNx35KZe5vdF3fSyq0N9arUx7/hEBytnXjt0CTGeb/I/E6LC9w/KVm3GNJoKAoK\n6356j6Nxh9n513aOxB4mJfsW+y/v4dvL/8fPV8+yuse7PP/oCwxtPJwbmdcJP/8FaTlp2FrY0bLm\nY4yIDNDSanidDY/nbONMf69BDGk0tMAacKY42zjzuFsrDscdoqNnZ+3l6nPNRt+xX0Pq+mGNXZrQ\np65vgfVumrg0ZUfMNp5vNhb/Rk9q994358NpVK0x07+bjLN1FfQW1tzIusbABv4oKKyIXsaSTvlT\nhBivwVic+zMl6xZDt/uz5Y9v8LD3YPz+0bRxb6etnWiYZw97D+Z/P5ekjARmtJ7N2BbjsdbZsPyH\nRdhZOnAz6zoPV21Edl4WL+wbxfIuq3it1VTc7NzZ8me4tq5cl9pd2R6TPx1n33r9cNA7aH8zTnMt\nR08GNBhEh1qd8HZtcdffOVNr+RS19oCzjTNudm446B1Yd/Y9hj/yDKO9X6C/10DtRXxp1iJTjz3F\nZxoNqjbU1qkq6Tqd5U3W6agcDNtOhvegp9M/a1k1rNaIBlUacCopmg1PfEENGzessCIu9bI2zaKD\nlSPZeVnYWzr8LzpNp/3tZvZN9FiTpWRhqbMk4OGn+SHpJBb/e5F0IuEYp5KiiU+7wrEr3zG11QxW\n/LCMJ7z609ilCW52brxy6EX6ew0iNTuVgQ392XNhF7PazaXLQ/l1zfnrv/Pktv74eQ3k2abPaXlS\n12uL+OMb+tbrR886vTkSe5ihjYdreaxXpT7VbWrwVvRiohJO4GxdhR51enIs/igBDw8n+OhUmlRr\nyuyjwez4cxu+9Z8A4Ov/fkGukodOB3v+2oWtpS2Tv51EamYKb7SbS1TiCY7EHqZL7a4F1jWLTohC\nnfihc+2uHLy832TbbMaRqbTz6MCzTZ/T1kMctfsZ2nl0oFfdPgXq4uiEKGo5elLL0ZMunt20MsVw\nLdi3uv5H20b9mzFTvzdcs9Lc59S20pBGQ7XfqWsGq2vOGd5bcSmxhbYtjZlLq3GbvaTrlxW1zb0o\nP01F7N+LdSjNXeP7zYOSDyHKgrSdKgdz751MrWXf0u0x9lzYhY2lDeeu/UoeedhZ2hOT8gcOekdc\n7Fz4+epZnPVVmPR/42nr3p5vLx9i/6X8Z5p2Hh1MPnsX9YxZVipL+VtZ0lGZlHbdViGE+LeQNc7K\nmKmRsGWtuCN3S0pde6OwfarRI4bUkcymtjMcwVLUeXF38MBeb8/STitZdzaMjJx0lpxcWKroh8pa\n8S85uZApPtPumKrPmKlzpUa8qKO9jX+uTAzTr0Y2+nr55afXQm8y6sqQuq6Zj3vrO0Zrq+uUvbxv\nAtEJUXeM1If8e0lvocdR78wbbd5kWedVRPz5NevOvkcVm6ooKDjpnVkWtUibDhAgIyedZT8s1CIv\njaP+3B08qGHvygd9P2HLoEjCB0awrPNK9Do9izst19a6Ua/burNhuNnVpIp1VUJOr2T92Y/MnidT\n57C497FhBJma9oS0+AIdMqaoLx4N/1Xl5OWw4MQcLUpCjYrzdm3B0k4rSctKxU5vywTvSSw5uZDJ\nh4JY2nmFFk1a1Kh+cxQlf+pYXy8/Fnd8S4uaM97PyujlhPYM4/3e6wk//0WBdRv1VlZUt3Uh+Lup\nJKcn4WLrqm0bfv4L7RieTrVJTk8iNvUy567+xuRDQQQdnKj9zdw5A8psZJ7xd7youiM6IYrx+0eT\nnJ7EQ451te3UMqW09Y9aryw5uZCAbf4SfSZKzfgeNCyHlpxcSFivD0hOT2L16RWcSDyGk/U/LzHs\nLO2xwAJrK2sU8sgjj+o2LoxuOg6AbLLQYUENWzc8HGphgQUp2SmMbjqO/3R9h0/6bcLT8SGWdl6J\ni51L/jSN+8f+EzmlwO6YXfhvfYLk9CRylGxt7Y8RkQG4O3iwttdH+Li3JiEtnhGRAZxNPqOt1xbc\nZpa2tqreUl8gSn/U7mdoWK0hno61eb/Petb0/oCV0csJbjOLrTGbWdvro3/qwf9t6+lUm5AeYUT4\nRxLW6wP0lnoecWnCqq6h1KvihYudC1a6/Dre3cFDi8CNTohiUEQ/BmzpS8A2fy0C2zhqTI1iNVzn\nUf2uTz4UxKQDE7VyzDjKzLAj3rANp9bf5kYoG//e8F9THT3G2xuWsYBWtxm3Iw3rZsNyqqTlsvE+\nDdNQ0v2UF1PnrqyfPUxFJd6vKns+iorCFJWHXA9RXozLcncHD6wt9XzSbxMf+W7A0+EhFndajott\nDZytq/B+n/UEt5nFsh8Wkpubi6u9G+EDI7T3NmX93kg8WORZTwgh7g3pODNi/ILhXirL8HlVQlp8\nsadrNJ7ex3jKHEMlWQx+k1843er00BaiVzsiHhQ5ef+8pIOip/cxNZWb4dR1xj9XJqbS5O7gYXIa\nPFMMr7vhvbX30i761xuguLSDAAAgAElEQVTEV+c38dyuEcSnxpGTl3PHsZ9uHMj1rKssOvEmF25e\noLqtC8kZSVhggQ4dVjo9iekJjPOeqHVShfX6gIhBOwu8MIR/7uGzyWeIT7tS4Diu9m7Uda6fP72i\niY5Oe709tpZ2WOgsCTsTQnCbWYVOPVhaapng496a4DaztOmtCrvHDKf9M/z3bPIZqtlWZ1XX0Ds6\nwkZEBuBi50ItJ09GNhnNup/f1aZUNF4byJC676Ie2vSW+R2rcSmx2jqHxudILXN83Fvj7dpCm4pE\nnQ42Pu0K47xfZF3vjwFIzkhk7N7nSEiLZ1W3EMIHRmj3l7drC+o5189/Wd0tBKsiOnbVjqspPtPu\nyfeuqH2qncq+Xn6E9gwz+SBc2nSpHbDqNTA3na0QRSnsHnR38MDXy485bRdggQXVbKsxp+0C6jrV\nZ1X31Xg4eJKencbopuOwxAp7vT3fJxzVOs8s0HE7N4OQ0ysBsNJZcTjuEN3q9CA5PQmA986EMP/7\nuVS3dUFRYMK+sSw4PpcJzSex5qdQXO3c8ju/LPTa+h/p2ekkpMWzMnq5th5YStYtXtg7imd3DmPS\ngYkFBr8Yd+io68Za6qy0vBpOVa2WpYbbbvzlU21qacPfd6vTg9CeYdoAAcOpbuNSYnF38KCWoyeW\nOitylGwS0uKZfCiI6IQo4lJiC3SCuTt4kJOXrf1dvQaruoUUqI8NB6wYXkfjtqZhOW7c4WS8jVrH\n7I6JvKMzraiOHsMpuQurB+CfF4Kl7SBROyML27YyvXA0d+7Kqk5SzwVwTwcClpfKNj1XcacGrewd\nfv82cj1ERTqbfEZ7RvH18uODvutZdzYMK52e5IxEzl39DW/XFrzfez2eTg9pzzLqM25lKgOFEEKI\nfwudos4R8wApbJHW4iiPTrN7eSxTi7CX5NjqQ4X6MqO4i8gbbj8iMoBNfuEkpMVr6zcVV3me/9KI\nS8lfH8Vwsd2i0lzYNans+YWi74mS5CEuJX9x5Nnt5jHt8GQ+9v2M5PQklpxceEcHYnRCFAM298XR\nxokbmdepYl2Vm1k3ALDUWeLhUIvRzcbxss8r2r7VRZTV821qhLx/hB9ren/AjCNTmeIzTZt609Q1\nik6IYtKBieh08ES9gXzzx5e832f9Pe2MUF/4ZudmEz4wQvu9uXNsHHFmGGlknE41PwC3czNwsnZm\nnPdEnmk2UnuRYGrRZfUeMHeeTKXH+P+FfT5gmz96S7320nmQ15OEn/+CnLxsrCz0BLeZhau9G+4O\nHvhH+BHhH3nHvaLmuThlTnHLyeK6m+/xvSgD7odyRSUL3FcOxW07GUf0qB07xtGv6gAe/4gneL/P\nelzt3fBxb8070av56Jd1JKQn8FLzV4j8axtz2s/D27UFCWnxDN7qRw07V6b4TOcRlyYEHZzIiy2C\nePd0CNl52eQqOSgKfNB3PQCTDkwkfGCEtu2WQZF3dJyvP/sRq0+vYE7bBbT37KDV3yrDDqIpPtOY\nc2ymltdtg3drAwqMI5p2x0Qyfv9oLRJNZXhO1LJG3U6NkF7VLYTk9CRc7d2YfCiIVd1CtLrGykJ/\nRxtKPaeTDkwktGeYts3kQ0Fa3Wnqe2/qd2r6DOt1U+W+4efV46nn1nBbU8c03J9xG8JcHWOu3ihu\nPVJYHWWcppK42/K0LMrjkraziltfl1X6KsLdRBfe7XGN76XCzuH9en4fVA/K9ZC2U+VQ3LaTOhhm\ncce3tGcutY0wcf9Ybufc5vrt/DW6F3dazpKTC7VnIukwE0IIIe7O3bSbJOLMhPLsNLsXo96K+zLY\nXD4NRzQlpMUTm3qpWBFsxs4mn8F/6xNFTh1p6H4YCWhq9HRhD8txKcWbBrMyMx7lZji1ZHGjkAwp\nCsw+OhNHfX7hpU59ZXwefdxb85HvBhysHAHoWzd/PRk7S3tylVwycjIIP/9FgWNn52YTdHCi2Rcq\nnk61ifCP1K6h2mlmKkJJvXahPcN4unEga86GkpiWwMT9Y+/ZNVOPGdxmltZpZmoxaMPPG9+HhpFr\n5vIT2jMMOys7gtvMYv2vH2rRBGB6dLp6DxQ1RadhOoz/X9jnwwdGaB2e63038rLPK2zyC+erARHa\n9JI+7q05m3yGiyl/seW/3xTYh497a6b4TGPyoaAij6d+vqyoHbalvScqIupNiLthHEVtXAap9aSP\ne2si/Hfi7dpCi5baGrOZ0c3GkZOXjY+7D+EDI/D18tO2WdJpBZY6K22aVkXJnzI3tGcYrz4+haT0\nRPSW+RFhQQcnamnycW/NlkGR2hSNannm6VSbNzrMYU7bBQxuNEQrY9R8qNQyztu1BVY6PYO8hpCj\n5HDu6m/ad3x3TCQjIgMYERlAdEIUvl5+bB64A2/XFtp+1E6mEZEBWjSauh3AJr9wrZNs3L7ntd/5\nuLcmfGCEVuZ5OtXWOreiE6K0cxubeolzV38DCk79aKo9Ye53aoSc4RTKpjqyVIblvuHUisb3gvG5\nNLwfDH82F+Vm6v/FbScZRjEX9vfCysaiorpLoyzaeSXdR0nq63vRDi2PNq36nbyburc0xwTzU7Gb\nI/Vx5SLXQ1QEH/fWrO31EevOhhV4dnZ38MBKp2d5l1Us7bySpPRE5hybWeCZSO5ZIYQQouJIxFkF\nux9GvZU0MsPwwdJw1HVJtq/s56Q4I5eNR1iD+TWjKnt+jRmOvFdH6BuOti/K7phIZh+dyYKOi4sc\nUaeOsp+wbywR/pGERr/Np79+RB55WOos+bDvp3eM9DccgV+cvID50fbq8dVRgi52Liaj48qSGj1l\nHNFoahS+Gt1ZkpHo6r4MI0PVaILCvut3M2K/OOkq7BoYfpf6ft2dm1k3tCk51c+MiAzQovTK8zul\nRsyV93EfFDJqunIoSduppPWWYXkD/0RrGdcbhpEyQIFILUCrb9SOqoBt/sxpP6/AfnbHRN4RRWwY\n1WpYXpoqUwEGb/XDSqcnJSuF6nbVWdUthKCDE7H637SQQIGoNeNoqqWdV5CcnsT4/aNZ3PEt1p0N\nu6NsUuuWotpXxvWBYf4Mp3EqLD/motDMXUdT5bFx5FxhEWem9mfYZlDTXliZbyri7F62lwqrg4yv\nQWn2XZ4RZ+rni1tfl+V5vZftBFPHgrvrCClu3sszX6JyqOzPZ9J2qhxK2nYybgsZt0/OJp+558+Z\nQgghxL/N3bSbpONMlKl/04NlcacOMp6m6EE7L6XpqBq63Z9Lty7yfp/12sMBFD7dk8o/wo+4tFh0\nCizv8h+eaTbSZJpKGlFU1PU03Gd5PEybenFoamqgknacmTpGcfdzr6dFKs5UR2pag9vMMvnS/V6m\nz5y7vQ7/dvLyp3K4122nkrygLs6UZ6Y6w9SpkIynTjRXbhjvT+3UMZ6W0DA6ylQnlbn/G3c2lTb/\n5jrEDKPYCqs/i9s5Zu6Y5uqf0nQ4GHZCQdHTPBY3vWWhuPfe/aKi0ny/nKuS3lP3S77E3bsfnttu\nW9/goSoPVXQy/vWK03YybAOYq+PVv6s/V9b7TgghhLgfSceZqFQu37wsDXkTHtTzcvnmZfw2+RE5\nIrLY+bt88zJXUq7QtnbbIs+L4d/VYy3svpCajjVpW7utyc8P/nIwW4ZteeDOt6lzVVb3VXGuQ2U5\nr5Xxu1QZ0yTEg+7yzcsABb57J2JPmKwbTsSe4KWdL2llmKkyTf0eV9T3uaTlrKn8G/+9uPVrcY5V\n2nNivG1p0yXlrChrck8JcyrzvaHWFT+M+6GikyKKoD67AiV6VhZCCCFE5SAdZ0IIIYQQQgghhBBC\nCCGEEEIAFhWdACGEEEIIIYQQQgghhBBCCCEqA+k4E0IIIYQQQgghhBBCCCGEEALpOBNCCCGEEEII\nIYQQQgghhBACkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBACkI4zIYQQQggh\nhBBCCCGEEEIIIQDpOCt3Z86cITAw8I7fHzx4kCFDhjBs2DC++uorALKzs5kyZQrDhw9nxIgR/Pnn\nn+Wd3BIpSd6ysrKYMmUKQ4cOZfTo0Vy4cKGcU1ty5vIHkJGRwfDhw7VrlJeXx5w5cxg2bBiBgYFc\nvHixPJNaYiXJW3G2qWxKkr/s7Gxef/11RowYwVNPPcWBAwfKM6mlUpL85ebmEhwczPDhw3n66af5\n73//W55JLbHS3JtXr16la9eulb7MhJLnb/DgwQQGBhIYGEhwcHB5JbNUSpq3tWvXMmzYMJ588knC\nw8PLK5lCFKmoOt1UO8fcNhcvXuTpp59mxIgRzJ07l7y8PG0/165do2/fvmRmZpZf5u5z5XFt1q9f\nT0BAAAEBAbzzzjvlm8H7VHlcl40bNzJkyBCeeuopdu7cWb4ZvI+VV3mWl5fH2LFj+fzzz8svc0KI\nSkPaTpWXtJ0qJ2k7VV7SdvqXU0S5WbdundK/f38lICCgwO+zsrKUXr16KTdu3FAyMzOVJ598UklO\nTlb27dunBAUFKYqiKN99953y8ssvV0Syi6WkeduwYYMya9YsRVEU5c8//1RGjx5dEckuNnP5UxRF\n+emnn5TBgwcrHTp0UP744w9FURRlz549yvTp0xVFUZRTp04pEyZMKNf0lkRJ81bUNpVNSfP39ddf\nKwsXLlQURVGuX7+udO3atTyTW2Ilzd++ffuUGTNmKIqiKMePH3/g7s2srCzlxRdfVPr06VPg95VR\nSfN3+/ZtZdCgQeWdzFIpad6OHz+ujB8/XsnNzVVSU1OVkJCQ8k6yEGYVVqeba+eY22b8+PHK8ePH\nFUVRlNmzZyt79+5VFEVRDh8+rAwaNEh57LHHlNu3b5dn9u5r9/raXLp0SRk8eLCSk5Oj5OXlKcOG\nDVN+++23cs7l/edeX5erV68qfn5+SlZWlpKSkqJ06dJFycvLK+dc3p/KozxTFEVZuXKlEhAQoGza\ntKm8siaEqESk7VR5SdupcpK2U+Ulbad/N4k4K0d16tQhNDT0jt//+eef1KlThypVqmBtbY2Pjw9R\nUVHUr1+f3Nxc8vLySE1NxcrKqgJSXTwlzdsff/xBly5dAPDy8qr0kSHm8gf50XPvvvsuXl5e2u+i\no6Pp3LkzAC1btuTnn38ul3SWRknzVtQ2lU1J8+fr68srr7wCgKIoWFpalks6S6uk+evVqxcLFiwA\n4MqVKzg7O5dLOkujNPfmsmXLGD58OG5ubuWRxLtS0vydO3eOjIwMRo8ezciRIzl9+nR5JbXESpq3\n7777jkaNGvHSSy8xYcIEunXrVk4pFaJohdXp5to55rb55ZdfaNOmDQBdunTh2LFjAFhYWPDxxx9T\ntWrV8szafe9eXxt3d3c++OADLC0t0el05OTkYGNjU865vP/c6+tSvXp1IiIi0Ov1/P3339jY2KDT\n6co5l/en8ijPdu/ejU6n07YRQvz7SNup8pK2U+UkbafKS9pO/27ScVaO+vbta7LzKzU1FScnJ+1n\nBwcHUlNTsbe3Jy4ujn79+jF79uxKPS1eSfPWpEkT/u///g9FUTh9+jSJiYnk5uaWZ5JLxFz+AHx8\nfPDw8Cjwu9TUVBwdHbWfLS0tycnJuadpLK2S5q2obSqbkubPwcEBR0dHUlNTCQoK4tVXXy2PZJZa\naa6flZUV06dPZ8GCBQwYMOBeJ7HUSpq3zZs3U7169fumsVHS/Nna2jJmzBg+/PBD5s2bx9SpUx+Y\ncuX69ev8/PPPrF69WsuboijlkVQhilRYnW6unWNuG0VRtIdUBwcHUlJSAOjYsSPVqlUrj+w8UO71\ntdHr9VSvXh1FUVi2bBlNmzalfv365ZS7+1d5fGesrKz47LPPGDZsGAMHDiyPbD0Q7vW1+e9//8uO\nHTu0QWhCiH8naTtVXtJ2qpyk7VR5Sdvp3006zioBR0dH0tLStJ/T0tJwcnJi/fr1dOrUiT179rB1\n61ZmzJhx383dbC5vQ4YMwdHRkREjRrBv3z6aNWtW6SN7SsI433l5efdNR5OA+Ph4Ro4cyaBBgyp1\nx9LdWLZsGXv27GH27Nmkp6dXdHLKxDfffMOxY8cIDAzkt99+Y/r06SQnJ1d0sspM/fr1GThwIDqd\njvr161O1atUHJn9Vq1alU6dOWFtb4+XlhY2NDdeuXavoZAkBFF6nm2vnmNvGwsKiwGcrc9Tv/aA8\nrk1mZiZTp04lLS2NuXPn3ussPRDK6zvz7LPPcuTIEaKiojh+/Pi9zNID415fm4iICBITE3nuuefY\nsmUL69ev5/Dhw+WQMyFEZSJtp8pL2k6Vk7SdKi9pO/27ScdZJdCgQQMuXrzIjRs3yMrK4ocffuCx\nxx7D2dlZ67muUqUKOTk5lToqyxRzeTt79izt27fn888/x9fXl4ceeqiik1qmHn/8ca2gO336NI0a\nNargFIni+vvvvxk9ejSvv/46Tz31VEUnp8xFRESwdu1aAOzs7NDpdAUq7/vZxo0b+eyzz9iwYQNN\nmjRh2bJluLq6VnSyyszXX3/N0qVLAUhMTCQ1NfWByZ+Pjw9HjhxBURQSExPJyMiQaVdEpVFYnW6u\nnWNum6ZNm3LixAkADh8+TKtWrco5Nw+We31tFEXhxRdfpHHjxsyfP/+BGuR1L93r6xITE8PLL7+M\noijo9Xqsra0fmLbMvXavr820adMIDw9nw4YNDB48mFGjRmnT8wsh/j2k7VR5SdupcpK2U+Ulbad/\nNwmBqUDbt28nPT2dYcOGMWPGDMaMGYOiKAwZMoSaNWsyatQoZs6cyYgRI8jOzua1117D3t6+opNd\nLEXlTa/Xs3r1atasWYOTkxOLFi2q6CSXiGH+TOnduzdHjx5l+PDhKIrC4sWLyzmFpVdU3u53ReVv\nzZo13Lp1i/fee4/33nsPgPfffx9bW9vyTGapFZW/Pn36EBwczDPPPENOTg4zZ858YPJ2vysqf089\n9RTBwcE8/fTT6HQ6Fi9efN9EshaVt+7duxMVFcVTTz2FoijMmTNHHrJEpWGqTi+qnWOuHTB9+nRm\nz57NqlWr8PLyom/fvhWcu/vbvb42+/fv5+TJk2RlZXHkyBEAJk+ezGOPPVaR2a707vV1sbS05JFH\nHmHYsGHaehDqehGicFKeCSHKg5Q1lZe0nSonaTtVXlKe/bvpFFlERAghhBBCCCGEEEIIIYQQQgiZ\nqlEIIYQQQgghhBBCCCGEEEIIkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBAC\nkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBACkI4zIcQ9FBsbS48ePUz+rXHj\nxvf02IMGDbqn+xdCCCGEKA+bN29mxowZFZ2MuxYYGMiJEycqOhlCCCGEeMBJ20kIURak40wI8UDa\nunVrRSdBCCGEEEIIIYQQQgghxH3GqqITIIR4cKxZs4Zt27ZhaWlJx44dGTFiBLdv3+a1117j/Pnz\nODs78+6771KtWjVtmxs3bvDGG28QExODtbU1M2bMoH379maP0aNHD3r06MEPP/wAwOLFi2natCmB\ngYFUqVKF8+fP8/bbb+Pv78/vv/9udv+HDx8mJCSEnJwcateuzYIFCwqkSwghhBCiuHJycnjzzTc5\nf/48f//9N/Xr18fLy4uaNWsyZswYAIKCgujfvz/Nmzdn6tSp3Lx5k0aNGhEVFcXhw4cL3f/Fixd5\n5plnuHHjBt27d2fKlCnodDq++eYbPv74Y3Q6Hc2aNWP27Nk4ODiY3c+yZcs4evQolpaW9OzZk5df\nfpnQ0FAuXLjApUuXuHHjBsOGDWPs2LFs3ryZLVu2aMccOXIkc+bMISEhAZ1Ox5QpU+jQoQOJiYnM\nnDmTlJQUkpOT8fPzY+rUqWRlZfHGG2/w888/4+npyfXr18v0nAshhBDi/iVtJ2k7CVHZScSZEKJM\nfPvttxw8eFBrKFy8eJEjR45w7do1nn/+eXbs2EGNGjXYuXNnge1Wr15NnTp12LVrF8uXL+ftt98u\n8lhVq1YlIiKCoKAgpk+frv2+cePG7NmzhyZNmhS6/2vXrrFy5Uo+/PBDIiIi6NSpEytWrCi7kyGE\nEEKIf5VTp06h1+v58ssv2bdvH5mZmbi7uxMZGQlAamoqP/74I926dWPRokX069eP7du34+vrS2Ji\nYpH7j42NJTQ0lC1bthAdHc2BAwf4/fffWbNmDRs2bGD79u3Y2dnxzjvvmN1HXFwchw8fZtu2bXzx\nxRdcuHCBzMxMAP773/+yfv16Nm/ezJdffskvv/wCQGJiIlu2bGHy5MksWrSIIUOGsHnzZsLCwpgz\nZw6pqans2LGD/v3789VXX7Ft2zY2bdrEtWvX2LBhAwC7du1i1qxZXLp06W5PsxBCCCEeENJ2kraT\nEJWdRJwJIcrE8ePH8fPzw9bWFoAhQ4YQERGBm5sbzZs3B6Bhw4Z3jJiJiorSOq0aN27Ml19+WeSx\nhg4dCuRHn82YMYNr164BaMcpav//93//R3x8PCNHjgQgLy+PKlWqlCbbQgghhBC0bt2aqlWrsnHj\nRmJiYrhw4QLVqlUjKyuLixcvcurUKbp37461tTVHjx5lyZIlAPTu3RtnZ+ci99+jRw+qV68OQL9+\n/Th58iQJCQl0795di5gfNmwYwcHBZvdRs2ZNbGxsGD58ON27d+fVV1/FxsYGgP79+2ujrXv06MHx\n48epVq0aTZs2xcoq/5Hx2LFjxMTEEBISAuSPFL98+TJjxozh+PHjfPjhh5w/f57s7GwyMjI4efIk\nw4YNA6BevXo89thjpTm1QgghhHgASdtJ2k5CVHbScSaEKBN5eXl3/C4nJ0drMADodDoURSnwGcO/\nA/z555/Ur18fCwvzAbGG2+Tl5WFpaQmgddoVtf/c3Fwef/xx1qxZA0BmZiZpaWlmjyeEEEIIUZgD\nBw4QEhLCyJEjefLJJ7l+/TqKojBw4EB27tzJqVOneOGFFwCwtLS8oz1UFMP2jKIoWFlZ3dH2UhSF\nnJycQvcRHh7OyZMnOXz4MMOHD9dGNqttKTDftsrLy+OTTz6hatWqQP6I6ho1arB06VIuX75M//79\n6dWrF8eOHUNRFHQ6XYE0GrfJhBBCCPHvJW0naTsJUdnJVI1CiDLRrl07IiMjuX37Njk5OXzzzTe0\na9euyO1atWqlTd/4559/8sILL6DT6QrdRg3d37dvHw0aNCg0WszU/ps3b87p06f566+/AHjvvfdY\nvnx5sfIphBBCCGHs+++/p1+/fgwZMoQaNWoQFRVFbm4uAwYMYOfOnVy8eJFWrVoB0KFDB7Zv3w7k\nT3V969atIvevfi4zM5PIyEg6dOhAmzZtOHjwIDdu3ADgq6++om3btmb38euvv/Lss8/SunVrpk+f\nToMGDbS20P79+8nKyuLmzZv83//9H506dbpj+3bt2rFp0yYA/vjjDwYOHEhGRgZHjx5lzJgx9OvX\nj/j4eBITE8nLy6N9+/bs2LGDvLw84uLi+PHHH0t2UoUQQgjxwJK2k7SdhKjspOtaCFEmunfvzm+/\n/caQIUPIycmhc+fOdO/enU8//bTQ7YKCgpg1axYDBw7EysqK5cuXF9lx9uOPP/L1119jZ2fH0qVL\nS7x/Nzc3Fi9ezKuvvkpeXh41a9bkrbfeKnGehRBCCCEAAgICmDp1Krt378ba2pqWLVsSGxuLh4cH\n1apVo2XLllr7ZubMmUyfPp2vvvqKRx55pFjTDXl5eTFu3Dhu3bpF//79tZcz48ePJzAwkOzsbJo1\na8a8efPM7qNp06a0bNmS/v37Y2dnR5MmTejSpQu//PILNjY2jBgxgtTUVMaPH0/Dhg356aefCmw/\na9Ys5syZw4ABAwBYvnw5jo6OjB8/nmnTpuHs7IyLiwuPPvoosbGxjBgxgvPnz9OvXz88PT1p1KhR\naU+vEEIIIR4w0naStpMQlZ1OKWmsqxBCVKAePXrw6aefUrt27YpOihBCCCFEiX366ad06NCBhg0b\n8ssvvzB79mw2b95cYekJDQ0FYNKkSRWWBiGEEEIIc6TtJISoCBJxJoSodAIDA02G3g8fPrwCUiOE\nEEIIUXbq1q3L5MmTsbCwwMbGhgULFrBz507Wrl1r8vNbt24t0f4La0c9/fTTpUqzEEIIIURFkbaT\nEKIiSMSZEEIIIYQQQgghhBBCCCGEEIBFRSdACCGEEEIIIYQQQgghhBBCiMpAOs6EEEIIIYQQQggh\nhBBCCCGEQDrOhBBCCCGEEEIIIYQQQgghhACk40wIIYQQQgghhBBCCCGEEEIIQDrOhBBCCCGEEEII\nIYQQQgghhACk40yI+9bmzZsZP358RSejzM2fP5/Q0NCKToZJb7zxBseOHSvRNmWdn8uXLzNp0qQy\n258QQghxv5oxYwYffvhhRSfjrl27do3GjRuXevv4+Hj69+/PwIEDOXXqlNnP3S9tiBdeeIE//vij\nRNuMHz+ezZs339Vxw8PD2bhx413tQwghhHiQFdb2aty4MdeuXSvxPr/++msmTJhQ4HeTJk2id+/e\nDBo0iEGDBrF48eJSpRfgwIEDLFy4sETb/Pbbb/Tq1YvBgwcTGxtr9nM//fQTc+bMKXXahBCVm1VF\nJ0AIIe4XixYtqugkcOXKFf7666+KToYQQgghKokTJ05Qo0YN1q9fX+jn7pc2xPvvv18hx42Ojubh\nhx+ukGMLIYQQ/zY3btxg1apVbNu2jbZt2xb426lTp/jmm2+oWbPmXR+nZ8+e9OzZs0TbHDhwgLZt\n2xb5DuiPP/4gMTHxbpInhKjEpONMiDKWl5fH4sWLOXPmDGlpaSiKwsKFC2nUqBFdu3Zlz549uLq6\nAjB06FBeeuklvL29CQ4O5tKlS1StWhVXV1cefvjhIkcFJycnM2bMGJKSkvD09GTBggW4urqSkJDA\nm2++SVxcHIqi4O/vz9ixYwvd159//skbb7xBVlYWiqLw1FNP8cwzzxAaGsr58+f5+++/uXr1Ko88\n8giLFi3C0dGRHsojUuYAACAASURBVD160Lx5c37//XcmT55M8+bNmT9/PvHx8WRnZ+Pn56eNHFqz\nZg379+8nMzOTjIwMpk+fTu/evUlNTeWNN97g3LlzuLm5YWlpiY+Pzx3ntHv37rzzzjt4e3sD8Npr\nr9G6dWvatm1rMt2GYmNjCQwMpE2bNpw7dw5FUZgzZw6tWrUCICwsjL1795KXl4enpydz586lZs2a\nBAYGUqVKFWJiYnj66afZu3cvzzzzDL6+vuzfv5933nmH3NxcHB0dCQ4Opnnz5sXKj7ETJ06waNEi\n7O3tSU9P5+uvv+a7774jLCyM7OxsbG1tmT59Os2bN2fWrFkkJiYyZswY5s2bx4ABA7TR5bGxsdrP\nmzdv5uuvvyYjIwNHR0cGDx7Mvn37sLCw4OLFi+j1epYtW0ajRo0KTZsQQghxN+51uyg6Opo9e/aQ\nmppKx44dmT59OlZWVvzwww8sX76cjIwM9Ho9r776Kl26dLlj+5CQEPbt24der6datWosWbIENzc3\nmjZtynPPPceJEydIT09n8uTJ9OnT5476dcOGDYSHh/P555+Tl5dH1apVmT17Ng0aNOCvv/5i/vz5\npKenk5SUxCOPPMLbb7+NjY0Ne/fu5T//+Q92dnY8+uijJs/dl19+ycGDB1m7di2Q31YbNWoUhw4d\nwtLSEoDjx4/z9ttvk5KSQmBgIC+//DILFixgx44dQH4bY8GCBWzdurXUbYjC8mjoxIkTLF++nJo1\na3L58mVsbW1ZunQpDRo0ICsrixUrVhAVFUVubi5NmzZl1qxZJtuTS5YsYfXq1Xh7e/Pll1+yYcMG\nLCwsqFGjBrNnz6Z+/fokJiYyY8YMkpKSqFWrFlevXjV5DmfMmMGNGze4fPky3bp145VXXjGZju+/\n/56DBw9y9OhRbG1tuXbtGtevX9dGkYeGhmo/m2oftmzZkh9//JH4+Hh8fHxYtmwZFhYyuYsQQoj7\nk7n6F/I7tYYPH87ff//Nww8/zMqVK7G3ty+w/dq1a9myZQtWVlbUrVuXpUuX4uTkVOAzu3btws3N\njWnTpvHtt99qv798+TJpaWnMnTuXuLg4Hn30UaZPn07VqlULbL9582b27t3L7du3iYuLw8PDg2ee\neYbPPvuMCxcu8PzzzzN69Gg2b97Mnj17WLt2LYGBgUXW2du2bePzzz8nNzeX27dv07FjR2179bh7\n9uzhzTffJCQkhJSUFIKDg/H39zfZBtuxYwehoaGcPn2apKQkGjduzIoVK8y+hzI0fPhwRo0aha+v\nLwArVqxAURRef/31Ap8z1241dy0sLS158803uXDhAjdv3sTBwYEVK1bg5eVVshtFiAectOaFKGNn\nzpwhKen/2bvzuCjr/f//zwEEFdCiUEzTvh41W829RdzSNM09UvBjUWafLLVyySWXUnPpQ1Z61JN2\nynNMU0tTlNJKcylNkcrMjmXW0SBINBcWZZv5/cFvpmEYYIAZZuFxv926Jddcy/u65lpe83693+/r\njNavX6+PPvpIgwYN0sqVKxUaGqqePXsqPj5eUmHlR3p6uiIjIzV37lw1a9ZMH3/8sd544w19/fXX\nDm3r119/1cyZM7V161a1aNHC0hpm4sSJ6tixo7Zu3ar33ntP8fHxSkhIKHVd//znP9W9e3dt2rRJ\nK1as0OHDh2U0Gi37tHjxYn388ccKCAjQ0qVLLcs1b95cH3/8sXr27KlJkyZpyJAhlgqX/fv366OP\nPlJKSor279+vd999V1u3btVzzz2nxYsXSyqssKpZs6a2b9+uN954w25LaD8/Pw0ZMkQffvihJOni\nxYvav3+/+vXrV2q5rf3+++/q1KmTtmzZogkTJujZZ59VXl6eNm/erJ9++knvv/++tmzZoi5dumj6\n9OmW5erUqaOPPvpII0aMsEw7efKkZs2apSVLlmjr1q0aN26cnnrqKWVmZjq0P/acOHFCr776quLj\n4/X777/rtdde04oVK7R582bNmTNHY8eOVU5OjubOnavGjRs7NDTVzz//rNWrV2v16tWSpMTERM2Y\nMUPbtm1TmzZtfGJ4KwCAZ3N1XJSWlqZVq1Zp8+bNOn78uDZs2KDz589r3LhxeuGFF7R161YtXLhQ\nkyZN0m+//VZk2dTUVP3rX//Sxo0btWnTJt1zzz367rvvJEkFBQWqW7euNm3apNdff13Tpk2zDD9k\n/Xw9dOiQNm/erDVr1mjz5s16/PHHLQm+DRs2aODAgVq/fr0++eQTJScna/fu3Tp79qymTZumJUuW\naNOmTWrYsKHdfevbt6+SkpKUnp4uqbCiZvDgwZakmSTdeeedGjdunNq1a2d53tvj7+9f4RiitH20\n9cMPP+ixxx7T1q1bNXjwYEvFzooVK+Tv769NmzYpPj5e9erVU1xcnGU563jS7MCBA3rrrbf073//\nW/Hx8XrggQf09NNPy2Qyafbs2WrVqpUSEhI0ffr0UuOtK1euKCEhQZMmTSqxHD179lT37t0VGxtb\nrAGWPbbx4enTp7V69WrFx8frq6++0qFDh8pcBwAAnqi0568k/fHHH3rnnXe0Y8cO/fHHH/rkk0+K\nLL9z505t2rRJ69ev17Zt29SoUSO9++67xbYTHR2tMWPGqGbNmkWm//nnn7r77rs1e/Zsbd68WbVr\n19a0adPslvXw4cOaP3++duzYoXPnzikhIUH/+te/tHLlSr3++ut264bKemb3799fw4YNU58+ffTq\nq6+WeJwaNGhgicHmz59f4nxmKSkp+vDDDxUXF1dmPZRZVFSUpR6soKBA8fHxioqKKjZfSXFrSd/F\n3r17VadOHW3YsEE7duzQrbfeynDVgB30OAOcrHXr1qpbt67WrVun3377TQcPHlRwcLCkwofeSy+9\npJEjR2rjxo0aPHiw/Pz8tGfPHsvDsF69epbWJGW5++671aRJE0nSgw8+qAcffFDZ2dn6+uuv9fbb\nb0uSQkNDNXjwYO3du1d9+/YtcV09e/bU5MmT9d133+muu+7S9OnTLa1uevfurWuvvdaynXnz5mny\n5MmSZOm1lZ2drcTERF28eFFvvPGGZdrx48fVp08fLVy4UFu3btWpU6csrc6lwqBs2rRpMhgMCgsL\nK1JhYm3IkCF68MEHNWXKFG3btk3dunWzVLqVVG5rdevWVb9+/SRJXbp0kb+/v3788Ud9/vnnOnr0\nqIYMGSKpsGX85cuXLcuZ98/aV199pTvvvFPXX3+9JOmuu+5SWFiYvv/+e4f3x1aDBg0sFWdffvml\nzpw5o9jYWMvnBoNBp0+fdmhdZjfeeKNCQkIsf99yyy2KiIiQVNgi6dNPPy3X+gAAKC9Xx0UDBgyw\ntHLu37+/9uzZo4YNG6px48Zq1aqVpMKkTJs2bXTo0CHLs1uS6tevr5YtW2rQoEHq3LmzOnfurLvu\nusvy+f/8z/9Iklq2bKkWLVooMTFRUtHn6+7du3Xq1CkNGzbMstzFixd14cIFTZo0SV9++aVWrlyp\n//73vzpz5oyys7OVlJSkFi1aqFmzZpKkoUOHatGiRcX2LSQkRL169VJ8fLxiY2MVHx+vtWvXlvMb\nqBhH99G29XfLli0tsdOQIUM0e/ZsnT9/Xrt371ZGRoblXbF5eXm65pprLMvZi7f27dunPn36KCws\nTJI0ePBgvfzyy0pOTtb+/fstsWiTJk2KDfFkzbrnf1nlcJRtebt16yY/Pz+FhISoSZMmunjxYrnX\nCQCAJyjt+StJPXr0UK1atSQVxli27zU7cOCAevfurbp160qSpk6dWq7tt2rVqkhj7TFjxqhTp07K\nzc1VYGBgkXlvu+02NWjQQJLUqFEjderUSX5+frr++ustox3Zctcz+4477lBAQGE1fFn1UGb333+/\nXnnlFaWnp+uHH35QkyZNdMMNN9hdv724NTExscTv4vrrr9fq1at16tQpHTp0SK1bt3bm7gI+gcQZ\n4GS7d+/Wyy+/rEcffVT33nuvmjZtamlN3a5dO+Xn5+u7777Ttm3btG7dOklSQECApfWOJIeHdrFu\ncWwymRQQECCj0VhkXVLhQzg/P7/UdXXr1k07duzQ/v37deDAAS1dutRSPuvtGI3GIuUzV1aZt7tu\n3TpLEPXnn38qKChIx44d01NPPaXY2Fjdc889at++vV566aUiZbe3T9YaNmyom2++Wbt379amTZss\nLY5KKnfjxo1LPFbm8vr7+8toNOrxxx9XTEyMJCk3N7dI4GQ75IBtea2nmY+xI/tjy3o7RqNRd911\nl15//XXLtNTUVNWrV0+HDx+2TDMYDEW2lZeXV+I6JRVpyWW7LAAAruDquMj2OWuOhWxZP6et1/vu\nu+/q6NGjOnDggObNm6eOHTtaWvzaxj/mv22f2QMGDLD0rDIajTpz5ozq1q2r5557TgUFBbr//vvV\ntWtXpaamymQyFXsGmytR7ImKirIMi9isWbMiiT97yooNHJ3P0X20Zft9mEwmS7w1bdo0denSRZKU\nlZWlnJwcu9uzXtbetPz8/HIdQ9t9Ka0cZsRYAIDqqqz6Dutnrr1nnr+/vwwGg+XvS5cu6dKlS2rU\nqJFD2z98+LAuXrxoeS+ZOXayV7dim0grLR4wK+8z21WxVWn1UNbL9OrVS9u2bdM333xjt7eZmb24\ntaTvYu/evdqwYYOGDx+ufv366aqrrrIkRgH8haEaASf78ssv1a1bN8XExOi2227TZ599poKCAsvn\nUVFRmjNnjm688UZdd911kgp7QH3wwQeSpPPnz+uzzz4r8nArycGDB/X7779Lkt577z117txZISEh\natWqlaWbdUZGhjZv3qy777671HVNmDBBH330kfr27atZs2YpJCREqampkgq72mdkZMhoNGrDhg3q\n1q1bseVDQkJ0xx136J133pFU+ECOjo7Wzp07lZiYqFtvvVWPPvqoOnTooJ07d1qOSWRkpD744AMZ\njUZdvHhRO3fuLLGMDz30kFauXKkrV65YWg+XVm5rf/75p/bu3StJ2rVrl2rUqKEWLVqoU6dO+uCD\nD5SZmSlJeuONN/T888+XeqzuvPNOffnll5Yhnw4cOKDU1FS1atWqXPtT1vpPnjwpSdqzZ4/69++v\nnJwc+fv7WwKwOnXqKC8vTz///LMk0YMMAOBxXB0XJSQkKDc3Vzk5Odq0aZM6d+6sVq1a6ddff7UM\nu3jixAklJiaqQ4cORZY9fvy4HnjgAf3tb3/T//7v/yo2NlY//vij5fPNmzdLko4dO6Zff/1V7du3\nL7b9e+65RwkJCTpz5oykwnjskUcekSR98cUXevrpp9WnTx8ZDAYdOXJEBQUFateunX7++WcdP35c\nUuEQjCW54447JElLly4ttbLELCwsTL///rvOnTsnk8mkzz77zPJZRWOI0vbR1vHjxy37tX79erVp\n00Z16tRRp06dtGbNGuXm5spoNGrGjBl2e9lZ69Spkz766CNLS/aNGzfqqquuUpMmTRQZGan169dL\nKhyO++DBg2UeG/M6SyqHv7+/pVLw6quv1rFjx2QymZSdna0vvvjCofUDAODtSnv+OuLuu+/Wp59+\naqljWbJkiVatWuXw9rOysjR37lxduHBBUuFrRXr16uVwo2RnCwsL04kTJ5STk6P8/Hx9/vnnls+s\nY4fSYjBb5amHeuihh7Rp0yZ988036tWrV4nrtBe3lvRdfPHFFxo0aJCioqL0//7f/9OuXbuKxOcA\nCtHjDHCyYcOGaeLEierXr5/8/f3Vrl07yws//fz8NHDgQC1atKhIZcHUqVM1ffp0S0uP6667rtg4\nz/a0aNFC06ZN09mzZ9W0aVPNnj1bUuELQ2fPnq1NmzYpNzdX/fr10+DBg0td11NPPaUXXnhB69ev\nl7+/v3r06KEOHTro0KFDuvbaazVq1CidP39e7du315NPPml3HXFxcZozZ4769eun3NxcPfDAA+rf\nv7/Onj2rTz75RH369FGNGjV011136eLFi8rMzNTYsWM1a9Ys3X///QoLC1OLFi1KLGP37t310ksv\nadSoUWWW21ZQUJC2bNmiuLg41axZU0uXLpW/v7+ioqL0xx9/6KGHHpLBYFCDBg20YMGCUo9Vs2bN\nNGvWLI0ZM0YFBQWqWbOm/vGPfyg0NLRc+1OS5s2ba/bs2Ro/frylJ+Hy5ctVu3ZtNW/eXP7+/nrw\nwQf1/vvva9KkSRo1apTCwsIcHuITAICq4uq4qFGjRoqOjlZ2drZ69uypQYMGyWAw6I033tCcOXN0\n5coVGQwGzZ8/3/JSe7OWLVvq/vvv15AhQ1S7dm3VrFmzyPslvv76a23YsEFGo1Gvvfaa3R5WkZGR\nGjVqlB577DEZDAaFhITo73//uwwGg5577jk9/fTTqlu3rmrVqqX27dvr9OnTCgsLU1xcnCZOnKga\nNWrYTchZi4qK0rJly9SjR48yj3ezZs00bNgwDRkyROHh4eratavls4rGEKXto61rr71Wr7/+ulJS\nUhQWFqZXXnlFUmG8tnDhQg0aNEgFBQW66aabNGXKlFL35Z577lFsbKweeeQRGY1GhYWF6c0335Sf\nn59mzZqlqVOn6v7771dERIRatmxZ5rEpqxydO3fWnDlzJEkxMTHat2+f7rvvPtWvX1+tW7emFxkA\noFoo7fnriC5duujnn39WdHS0pMLYxPx8dXT5ESNGKDo6WkajUTfeeGO5lnc286hJ999/v8LDw9Wx\nY0dLQ6vWrVvr9ddf19NPP62lS5eWGIPZKk891K233qqAgAD16tVLQUFBJa7TXtxa0ndx/PhxzZw5\nU5s2bZK/v79uueUW/fTTTxU/SICPMpj4BQC43Zo1a3TzzTerdevWys3NVUxMjMaOHWsZRsadlixZ\novPnz2vmzJnuLkqFJScnq1+/fvrmm2/cXRQAAFAGT4iLbrzxRh04cMDyfg+U7eDBg5ozZ462bdvm\n7qIAAABUG8StgGvQ4wzwAOZWH0ajUXl5eerdu7e6dOmimJgYZWVl2V1mzZo1lpe2OyIzM1PDhw+3\n+1lwcHCVvWy+unr22Wf166+/2v3stddeU9OmTau4RAAAeKaS4iIAAAAAAKoCPc4AAAAAAAAAAAAA\nSY4NUAsAAAAAAAAAAAD4OBJnAAAAAAAAAAAAgHz0HWfp6RnuLoIkKSUjWbHbh2tV7zVqGNrI3cUB\nAMDjhIeHursIkOfETmbEUAAA2Efs5Bk8LXbyJiXFecR/AABnq0zc5JPvOPOkACYlI5kHPgAAJaDy\nxzN4UuxkRgwFAEBxxE6ewRNjJ29SUpxH/AcAcKbKxE0M1ehiPPABAADKjxgKAADAN5UU5xH/AQA8\nBYkzAAAAAAAAAAAAQCTOAAAAAAAAAAAAAEkkzgAAAAAAAAAAAABJJM4AAAAAAAAAAAAASSTOAAAA\nAAAAAAAAAEkkzgAAAAAAAAAAAABJJM4AAAAAAAAAAAAASSTOAAAAAAAAAAAAAEkkzgAAAAAAAAAA\nAABJJM4AAAAAAAAAAAAASSTOAAAAAAAA4OXOnTunLl266OTJkzp16pSio6MVExOjWbNmyWg0SpI2\nbNigwYMH66GHHtLnn38uSbpy5YrGjh2rmJgYjRo1Sn/++ac7dwMAAHgAEmcAAAAAAADwWnl5eZo5\nc6Zq1qwpSZo/f76effZZrV27ViaTSTt37lR6erpWr16tdevW6Z///KcWLVqk3Nxcvffee2rRooXW\nrl2rgQMHatmyZW7eG9+UkpHs7iIAAOAwEmcAAAAAAADwWgsXLtSwYcNUr149SdKxY8fUoUMHSVLn\nzp21f/9+fffdd2rdurUCAwMVGhqqxo0b6/jx40pKSlJkZKRl3gMHDrhtP3xVSkayYrcPJ3kGAPAa\nJM4AAAAAAADglTZt2qSwsDBL8kuSTCaTDAaDJCk4OFgZGRnKzMxUaGioZZ7g4GBlZmYWmW6eF87V\nMLSRVvVeo4ahjdxdFAAAHBLg7gIAAAAAAAAAFbFx40YZDAYdOHBA//nPfzR58uQi7ynLyspSnTp1\nFBISoqysrCLTQ0NDi0w3zwvnI2kGAPAm9DgDAAAAAACAV1qzZo3effddrV69WjfddJMWLlyozp07\n6+DBg5KkvXv3ql27drr99tuVlJSknJwcZWRk6OTJk2rRooXatGmjPXv2WOZt27atO3cHAAB4AHqc\nAQAAAAAAwGdMnjxZM2bM0KJFi9S0aVP16tVL/v7+GjFihGJiYmQymfTcc88pKChI0dHRmjx5sqKj\no1WjRg29+uqr7i4+AABwM4PJZDK5uxDOlp7OeNQAAHiD8PDQsmeCyxE7AQDgHYidPEN1jp1SMpIZ\ndhEA4BUqEzcxVCMAAAAAAACAUqVkJCt2+3ClZCS7uygAALgUiTMAAAAAAAAApWoY2kireq+hxxkA\nwOeROAMAAAAAAABQJpJmAIDqgMQZAAAAAAAAAAAAIBJnAAAAAAAAAAAAgCQSZwAAAAAAAAAAAIAk\nEmcAAAAAAAAAAACAJBJnAAAAAAAAAAAAgCQXJ86OHDmiESNGFJu+a9cuDRkyREOHDtWGDRtKXebU\nqVOKjo5WTEyMZs2aJaPR6MoiAwAAuA2xEwAAAAAAgHu5LHG2cuVKTZ8+XTk5OUWm5+Xlaf78+Xr7\n7be1evVqrV+/XmfPni1xmfnz5+vZZ5/V2rVrZTKZtHPnTlcVGQAAwG2InQAAAAAAANzPZYmzxo0b\na8mSJcWmnzx5Uo0bN1bdunUVGBiotm3bKjExscRljh07pg4dOkiSOnfurP3797uqyAAAAG5D7AQA\nAAAAAOB+Lkuc9erVSwEBAcWmZ2ZmKjQ01PJ3cHCwMjMzS1zGZDLJYDBY5s3IyHBVkQEAANyG2AkA\nAAAAAMD9XPqOM3tCQkKUlZVl+TsrK6tIZZAtPz+/IvPWqVPHpeUDAADwJMROAAAAAAAAVafKE2d/\n+9vfdOrUKV24cEG5ubk6fPiwWrduXeL8N998sw4ePChJ2rt3r9q1a1dVRQUAAHA7YicAAAAAAICq\nU3w8IBfZunWrsrOzNXToUE2ZMkUjR46UyWTSkCFDVL9+/RKXmzx5smbMmKFFixapadOm6tWrV1UV\nGQAAwG2InQAAAAAAAKqewWQymdxdCGdLT+ddHgAAeIPw8JKHHETVIXYCAMA7EDt5BmInAAA8X2Xi\npiofqhEAAAAAAAAAAADwRCTOAAAAAAAAAAAAAJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAkkTgD\nAAAAAAAAAAAAJJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAkkTgDAAAAAAAAAAAAJJE4AwAAAAAA\nAAAAACSROAMAAAAAAAAAAAAkkTgDAAAAAAAAAAAAJJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAk\nkTgDAAAAAAAAUIaUjGR3FwEAgCpB4gwAAAAAAABAiVIykhW7fTjJMwBAtUDiDAAAAAAAAECJGoY2\n0qrea9QwtJG7iwIAgMuROAMAAAAAAABQKpJmAIDqgsQZAAAAAAAAAAAAIBJnAAAAAAAAAAAAgCQS\nZwAAAAAAAAAAAIAkEmdul5KR7O4iAAAAeAxiIwAAAAAA4E4kztwoJSNZsduHU0EEAAAgYiMAAAAA\nAOB+BpPJZHJ3IZwtPT3D3UVwWEpGshqGNnJ3MQAAcIvw8FB3FwHyrNiJ2AgAgJIRO3kGT4qdPB2x\nHQDAXSoTNwU4sRyoAIIHAACAvxAbAQCA8igoKND06dP166+/ymAw6KWXXlJQUJCmTJkig8Gg5s2b\na9asWfLz89OGDRu0bt06BQQEaPTo0erWrZuuXLmiSZMm6dy5cwoODtbChQsVFhbm7t3yCebRBFb1\nXkOMBwDwKgzVCAAAAAAAAK/0+eefS5LWrVunZ599Vq+99prmz5+vZ599VmvXrpXJZNLOnTuVnp6u\n1atXa926dfrnP/+pRYsWKTc3V++9955atGihtWvXauDAgVq2bJmb98h3NAxtRNIMAOCV6HEGAAAA\nAAAAr9SjRw917dpVkvT777+rTp062r9/vzp06CBJ6ty5s7788kv5+fmpdevWCgwMVGBgoBo3bqzj\nx48rKSlJjz/+uGVeEmfORdIMAOCN6HEGAAAAAAAArxUQEKDJkydrzpw56tevn0wmkwwGgyQpODhY\nGRkZyszMVGjoX+86CQ4OVmZmZpHp5nnhmJSMZHcXAQAAlyBxBgAAAAAAAK+2cOFC7dixQzNmzFBO\nTo5lelZWlurUqaOQkBBlZWUVmR4aGlpkunlelM38/jKSZwAAX0TirAJsgwKCBAAAgIohrgIAAJWx\nefNmvfnmm5KkWrVqyWAw6NZbb9XBgwclSXv37lW7du10++23KykpSTk5OcrIyNDJkyfVokULtWnT\nRnv27LHM27ZtW7ftizfh/WUAAF9G4qycbFvU0MIGAACgYoirAABAZd1333364YcfNHz4cI0cOVLT\npk3TzJkztWTJEg0dOlR5eXnq1auXwsPDNWLECMXExOiRRx7Rc889p6CgIEVHR+vEiROKjo7W+vXr\nNWbMGHfvktcgaQYA8FUGk8lkcnchnC093bXjUadkJBcJDmz/BgAAjgkPDy17Jricq2On0hBXAQDg\nOGInz+DO2AkAADimMnETPc4qwLYyh8odAACAiiGuAgAAAAAAnoTEGQAAAAAAAAAAACASZwAAAAAA\nAAAAAIAkEmcAAAAAAAAAAACAJBJnAAAAAAAAAAAAgCQSZwAAAAAAAACcJCUj2d1FAACgUkicAQAA\nAAAAAKi0lIxkxW4fTvIMAODVSJwBAAAAAAAAqLSGoY20qvcaNQxt5O6iAABQYSTOAAAAAAAAADgF\nSTMAgLcjcQYAAAAAAAAAAACIxBkAAAAAAAAAB/DuMgBAdeDSxNmRI0c0YsSIYtN37dqlIUOGaOjQ\nodqwYYMkyWg0aubMmRo6dKhGjBihU6dOSZJ++OEHRUZGasSIERoxYoQ++ugjVxYZAADAbYidAAAA\n4KlSMpIV0BvgcgAAIABJREFUu304yTMAgM8LcNWKV65cqfj4eNWqVavI9Ly8PM2fP18ffPCBatWq\npejoaHXv3l1ff/21cnNztX79en377bdasGCBli9frmPHjunRRx/VY4895qqiAgAAuB2xEwAAADxZ\nw9BGWtV7De8wAwD4PJf1OGvcuLGWLFlSbPrJkyfVuHFj1a1bV4GBgWrbtq0SExOVlJSkyMhISdId\nd9yh77//XpL0/fffa/fu3Ro+fLimTZumzMxMVxUZAADAbYidAAAA4OlImgEAqgOXJc569eqlgIDi\nHdoyMzMVGhpq+Ts4OFiZmZnKzMxUSEiIZbq/v7/y8/N1++236/nnn9eaNWt0/fXXa+nSpa4qMgAA\ngNsQOwEAAAAAALifS99xZk9ISIiysrIsf2dlZSk0NLTYdKPRqICAAPXs2VO33nqrJKlnz5764Ycf\nqrrIjN0MAADcxhtjJ3uIpwAAAAAAgDeo8sTZ3/72N506dUoXLlxQbm6uDh8+rNatW6tNmzbau3ev\nJOnbb79VixYtJEkjR47Ud999J0k6cOCAbrnlliotLy8+BQAA7uRtsZM9xFMAAAAAAMBbFB8PyEW2\nbt2q7OxsDR06VFOmTNHIkSNlMpk0ZMgQ1a9fXz179tSXX36pYcOGyWQyad68eZKkF198UXPmzFGN\nGjV07bXXas6cOVVVZEm8+BQAALiHt8ZO9hBPAQAAVF8pGcnEgQAAr2IwmUwmdxfC2dLTM9xdBAAA\n4IDw8NCyZ4LLETsBAOAdiJ08A7GT48wjD9CICgBQ1SoTN1X5UI0AAAAAAAAAfB8jDwAAvBGJMwAA\nAAAAAADFOOMdtSTNwLuOAXgbEmdOwgMAAADAccROAAAAns08zGJF4raqjPWIKz1bZc4jX8MxALwH\niTMnsH0AOPMmyA0VAAD4mtJiJ2IfAAAAz1DRYRarMlFCUsbzMVxnIc5VwLuQOKsA2xuc9QPAmTdB\nbqgAAMAXOBo7EfsAAAB4lookO6oyUUJSpnKqKu7m++FcBbyNwWQymdxdCGdLT89w2brNFTql3ehS\nMpKddhN05roAAPA04eGh7i4C5FmxE7EPAAAlI3byDK6MneAYYsbKcyROBwBvVpm4yeHEWWZmpjIy\nMmQ9+3XXXVfhDbuSqwMYHs4AADiHL1f+EDv9hdgJAADn8OXYyZuQOHMvb074eFpc7GnlgXPx/boX\nx9/9XJ44+8c//qEVK1boqquu+mtBg0E7d+6s8IZdiQAGAADv4KuVP8ROAADAFXw1dvI2xE7u540V\n0p6e8PPGY4qSefr55us4/p7B5YmzHj16aMOGDQoLC6vwhqqSJwYwPHwAACjOVyt/iJ0cQ3wEAED5\n+Grs5G08sd7JGYjNXK+yx9hV3xGV/L6Ja9q9OP7uV5m4yc+RmRo0aKC6detWeCPVHS+6BwCgeiF2\nKhvxEQAAgOcgNqsalU2aueo7ahjaiKSZD+L7dC+Ov3dzqMfZjBkz9NNPP6ljx44KDAy0TB8zZoxL\nC1dRzmj5U1pGuDzZYvO8ZJgBACjOV1tNV7fYyV6cU1bsY/7BT3wEAIDjfDV28jb0OIO78B15B76n\n8uOYwRVc3uOsfv36ioyMLFLx48uS0hJLbMFRntYd1vNy4QMAUH1Up9jJXtxUVrxk/hwAAACeoyrr\nrujZVjZ7x4j6Rc9H783y8/Vj5qv75esc6nE2depUzZ8/vyrK4xSVafljvlAXRMapbUT7Eucpb48z\nAABQnK+2mq4usVNpcZMjPc6IkQAAKB9fjZ28ja/2OKsqvE+rbBwj78ZvnfIr6Zh5+7HkWnYvl/c4\n++mnn5SVlVXhjXgT85i+1pU/tlnh8pzk9oYtAgAAvq26xE724ibJsR835WmEBAAAAO/gSOxWHd+n\nVd6Ytjoeo9J4228CvrfyKylp5u090biWvZdDiTM/Pz9169ZNQ4cO1cMPP2z5z1dZn8jlHZqxrM+9\n/WIHAABlq06xk71GQmUN0+goYicAAADvUZ7YrTpVIlc0pq1Ox6g0/CbwPY5+l76SdPL28ldXDg3V\neOjQIbvTO3To4PQCOUNFu8wnpSXaHZ7Rdrq9l9lbd7u0/cyat3cvBQDAmXx1uKHqGjuZ4xzzdNu4\np6RhKkqLj4idAAD4i6/GTt6GoRpLRuxmH8elcrzp+NmrN8ZfGLoQVcnlQzUaDAa7//kC880sKS1R\ng+MfUFJaYrHPp+ybaJkvJSNZMQlRikmIKpIdN2fAJZXaCoIbAgAAvs+XYqeSYhrb2Mn8AygpLVFT\n9k1UUlpisZjIXovBslqQEjsBAAB4j9IaQ1VnxLSV4y3Hr6R6Y+vPq7vy9iLjmMFdHOpxNmLECMu/\n8/Pz9eOPP6pdu3ZasWKFSwtXUY62/LHNcG//JUG9m/Yt8rm51XREcAOlZaVaWk9L9CoDAKCyfLXV\ntK/ETmW1BrTucZaSkay0rFRFBDewfH40/UiR2KokxE4AADjGV2Mnb+PrPc6cHZu5s4cJcSZcoawR\nM6SSh7Sv7HXgDee0s8pI7zRUVmXiJocSZ7Z+++03zZ8/X8uWLavwhl2pPAGM+UK2vRDNfy+IjNP4\n3eOUnZetP7JT9eGABLtDEnkqTy8fAKB6qy6VP94cOzkSS5hbVmbnZat2jdpa1HWxxu4creTM08Vi\np7IQuwAAULLqEjt5Ol9OnDmzoto6rnNHjEele9mIvcuvMudVZY+3N5zTjpbR0WPBOYrKqPLEmST1\n7t1b27dvr/CGXamiAYx1Es32/5KK9TiTVO73dFQlb7iZAgCqt+pU+eOLsZOZubfZ+N3jtKjrYkuv\nM3PsZDuvvdaX9hoyAQCAoqpT7OTJfDlxJjnecKqsSnFPiOs8pY7OE1l/R5L3DIfoCdx5XnnDOe0t\n9wf4PpcnzqZOnVrk75MnTyoiIkKLFy+u8IZdqTIBjPm9HOaHhqRiSbGYhChJ0tq+79v93JMufG+4\nmQIAqi9frfypDrGTbbJrQtvndVt4K0n2GxaZl7H9zF6vf2IXAADs89XYqTLy8vI0bdo0paSkKDc3\nV6NHj1azZs00ZcoUGQwGNW/eXLNmzZKfn582bNigdevWKSAgQKNHj1a3bt105coVTZo0SefOnVNw\ncLAWLlyosLCwUrfp64mzsji7R4mruHv73sDcOcCT6jJRdUgAwte5PHH24Ycf/rWAwaCrr75ad999\nt2rUqFHhDbtSZXqcWVf8mBNkUztM123hrYpU8Ei84wwAgMry1cofX4+dbCtL1hz7t6Z8MUEre66y\nJM/KEycROwEA4BhfjZ0qY+PGjTp+/LheeOEFXbhwQQMHDlTLli316KOPqmPHjpo5c6YiIyN1xx13\n6LHHHtPGjRuVk5OjmJgYbdy4UWvWrFFmZqbGjh2rhIQEffPNN5o+fXqp26zuiTPJ8+O3qmrY7unH\nwVG+sh/VAe8P815cZ1WvMnGTnyMznTlzRoMGDdKgQYM0cOBAdenSRUuWLKnwRj2RORk2oe3zejXp\nFUnSoq6LNbXDdI36NFYDN/ctMkRjaSe5bQ80AABQvVSH2Mm6h9iKo8sVXqueZnw5TTEJUUrLSlVS\nWqLDcVB5fjwQWwEAAGu9e/fWM888I0kymUzy9/fXsWPH1KFDB0lS586dtX//fn333Xdq3bq1AgMD\nFRoaqsaNG+v48eNKSkpSZGSkZd4DBw64bV/crTxxlqPxm7tit4ahjaokaRa7fXi59rGqjkd5t+Oq\n41TV37/t9tz526G823Zk/oqccyUpzzXCb7DKc+Z3h6pRauIsLi5OU6dO1dtvv62pU6da/nv++ee1\nY8eOqiqjU9m7gZqHX4yKH6jZB2ZpQWScJGnsztEKr11P19asJ4NBlkqgkk5ye+vmggAAoPrwxdjJ\nzBzPmOMbs4ahjTS1w3TN6/SKateorajmwzR252j1/7C3HtjUq0gcVNnYiNgKAADYCg4OVkhIiDIz\nMzVu3Dg9++yzMplMMhgMls8zMjKUmZmp0NDQIstlZmYWmW6etzoqb5zlzEp+V8V2ru7ZUd7kXFXF\nsp4SM1d1OWy3587jUJHryZH5nZ0QdjRp5gnnk7ks3qoqkvlwrlITZ/fdd586dOig2rVrq0OHDpb/\nOnXqpDfffLOqyug0Jd1A07JStbbv+1py73LV8K+hiOAGOpp+RKcv/Vfp2WcU4BcgqTCRNn73OC2I\njLO0sLZdd1JaomUaFwQAANWLr8VOZtYxlDm+SctKlSStOfZvPfHpo5rx5TQ9cdto/V/SPMW0HCGT\nTEq//IdlPqkwNjLHURVBbAUAAOxJTU3Vww8/rAEDBqhfv37y8/uruisrK0t16tRRSEiIsrKyikwP\nDQ0tMt08b3VU3t4nzqrkt7cuT60ct1eu8sSlVRXLekrMXNXlsN2eve1X1blV3n0vz/xlzePsfXTX\n+VRSBxXrundv4+5rEuVTauLs9ttv16BBgxQfH69evXrppptu0oABA9SjRw/dcMMNVVRE5zFf6NZ/\nT2j7vKbsmyhJighuoEVdF0uSZnw5TUZD4evfDAZpeY+39H7/zVrUdbHaRrRXSkayouIHWi5Wc0XQ\nlH0TPfYBDwAAXMvXYicz6x9LKRnJOpp+RIO29LW82+z5di+ohl8NXVPrGm3qv013NbxbDUOu11v3\n/Uvp2Wck/dXL3zpWqkjMxI8NAABg7ezZs3rsscc0adIkPfjgg5Kkm2++WQcPHpQk7d27V+3atdPt\nt9+upKQk5eTkKCMjQydPnlSLFi3Upk0b7dmzxzJv27Zt3bYv7uaOSn7bdXlS7xZrpZXLFUNcVpan\nxMxVXQ7r88h2+1V9bpV335353jJXJM+qkr39oO4dVc2hd5x9//33GjBggJ566imdPXtW3bt31xdf\nfOHqsrmM+cJLyUjW/ENztSAyTmlZqYpJiNK4XaN1NP2IsvOyZDBJ5y6fU2rW75ZKH/PFmZaVqlMZ\nv+rJTx+3JM/aRrR3ysOeix8AAO/ma7GTJEvSLCYhSrMPzNJVQVdLksJqXqO7Gt6tfFOeRn0aq+2/\nfKyxO0erhl8Nnbt8To9sj9GaY/+29PI3x0qlDX9dFmIlAABg9o9//EOXLl3SsmXLNGLECI0YMULP\nPvuslixZoqFDhyovL0+9evVSeHi4RowYoZiYGD3yyCN67rnnFBQUpOjoaJ04cULR0dFav369xowZ\n4+5d8grOrEi3Xpen9JayVVK5PDXRV52V9J2Udm75ym8SV10/rtzXknpy2tsP27p3R9cHVITBZDKZ\nypopKipKy5Yt06hRo7R582b9/PPPGj9+vOLj46uijOWWnl76eNTmYYbMlT9TO0zXq0mvaELb5zXj\ny2nKNeYoNet3XRtUTy/cOVOvJi1UTf9aWnLvckUEN7BU9gz48H7VC66v0MA6Wtv3fUnFWzLYTiuL\n+ebuiUECAADOFh4eWvZMXsjXYidrSWmJSs8+o5E7HpZRRhWYCvRal7+ra+PuWnX0bb3xbZwahVyv\nCW0nq+U1N2n0Z4/rwwEJSstK1ZR9Ey3vkjX/u21E+3KVlVgJAFCd+Wrs5G3KEzvB95nrGeE+tt9B\neb6Tivy+cOZvEk8/f8qzr+XdF2evm9+KsFWZuMmhHmdGo1Hh4eGWv5s1a1bhDXoC6wtnUdfFmn9o\nrmJvHqnw2vUU6F9DV/JyVMOvhnJNOZq8d7yu5OUo35Sn8bvHWZZrG9FeWwZ9rK2DdliGd7RuzZCU\nlqiYhKgi23Uk4+2pLWsAAIDjfC12MjMPtRheu56eavWMDCaD/OSvuMMLdTT9iD44sV71atXXhLaT\nNWXfBI3bNVqz756nhqGN1DaivRZExhV5Z6x10sw8GoC9bVojVgIAAPBentAbxBuGsfOE42TN08pj\nraRh/RxVkd8XzvpN4owei67+bhzd14rsi72hWiuz7vK+qxEojUOJs4iICH3++ecyGAy6dOmSli9f\nruuuu87VZXMp8/BAx8/9R39e/lNTvpigsTtHq88N/XUh90+1uqa1LuVeVFBAkDLyL+qZ1hMU1XxY\nkQuvbUR7S+tpSZYW1CkZyRq/e5zyCvIs85bn5kFFEAAA3s0XYyfpr/fDjv7scS078oZCg+ro6qCr\nlX75D03aM14pWb/pz8vnJEnhtetpxp0v6dWkV4q8wDnPmKdFXRcrIriBZZp5FICHtg4s9mL4koZZ\nAQAAgOvYxmTOWqe7hzX0hDKUxdPK6GnlseWMJFZFlnXGb5LKlr2qvhtH32dYkX2x98qjyjSedDRp\n5snnNDyDQ0M1njt3Ti+//LL2798vk8mkjh07avr06apXr15VlLHcHBmqMXb7cMXePFJTvpggo9Go\nqR1m6uqaVyvu8EI1qN1Ah9MPSZL85a8xdzynD06sV0rWb5rZcY7GtH3G8p6zKfsmakLb53VbeCvF\nJEQpryDPMqRjWlZqsZbUVPQAAPAXXx1uyNdiJ7OktESN2zVaGbkZOpP9h4wyyk9+mt7xJUnS7IMz\nFBpQR3Vr1lVaZqr+r8vruqbWNZp/aK4WdV2s0Z89rtTM37Ug8lWt+uGfRX78JKUlavzucVrb9/0K\nD7MCAICv89XYqSQmk0nJycm6/vrr3V2UInx9qEbr4c4kOXXos6S0xHIP1e1s3hBfeloZPa089lS0\njN6wb6Wp6vK7cnvmRFbs9uEVGta/vNtyxn54+/ljy9f2pzJxk0OJs9dee03PPfdchTdS1RwJYMwn\nwfZfEjRz/zTlFeQrNet3GVVQZD4/+ale7fp64ranlJzxmz45/bFW3rdK43ePU74xTzPufEnzD83V\n2r7vKy0rVeN2jVaAXw3Le9PMQYYvnXCovnzt5gnA/Xy18sdXY6eYhChl52WrwJSvc9nndNmYLUmK\nqN1ABcYC5RnzdCH3vK4KvFqXci/KT34KD66nQL8g/aPnWxq7c7SevmOcVhxdrqkdpqt3075Fni0V\nHV4FQMUQ2wHex1djJ7PVq1frtdde0+XLly3TGjZsqM8++8yNpSrO1xNnkorFaCU9L1zxLimeTygv\n828V20Z4jizHO7EcV9LxcvSadfRddElpiZqyb6LHfy++dv742v5IVfCOs88//1wO5Nc8mr0unikZ\nybotvJVm3z1P2XnZkorvo1FGpWWnavbBGXr7hxVKzvxN23/5WFM7TJf1ITH3LlvcfbnlvWnmoRvN\nXT+T0hLpAgqvRTdmAHCcL8RO9izqulhz7pknk0mKbvk/lukXcy4q/coZZeZmSpIu5J6XUUblK19n\nsv5QgSlf23/5WDX8a+iaWtcoOy9b8w/NtQydbf1siUmIUkxClLb/kiCp7KGBeC4BFUNsB8ATvfPO\nO9qyZYv69OmjTz/9VC+//LJatWrl7mL5hPLe760rTUtLmpXnWeLIcGue/nzy1HJ5G085jt74/uSK\nHDtnHW97x8vRa9ac3DTPZ17Oelh/s7YR7Z36vbjqfPPG86c0vrY/leVQj7OHH35Yf/zxh2655RYF\nBQVZps+fP9+lhaso25Y/9rKl5os1ryBPF3MuKP3KmTLX62fwV7B/sLILshVRu4Fq+AdIkmbfPU/z\nD81VVPNh2vLLJsXePFIrjhYm0NpGtLcM6zhoS181Cmms9/tv9poTsDq38qnO+14SjgkAZ/PVVtPe\nHjvZsu5tllNwRWnZqQ6v209+Cg2so4u5F/TMHRP1yemPlZF7SfM6vWLpcWY9vPX2XxJ07vI5Tfty\nkubd83/FhnS05q6WiBV5HvIMhSfivAS8j6/GTmZRUVF6//33tWLFCjVr1kzdu3fX4MGDtWnTJncX\nrQhv63Hmyl4ErniWeMJwjvZU9ji667lb3u26upyuOh+rQ1xTkWNXFb2IHDn29noFVsXvOV/sRQXH\nVSZu8n/xxRdfdGTGdu3aqUmTJmrYsKHlv5tuuqnCG3al7OzcIn/XCaqjexv3LDYM0D0NI9U+ooO2\nnPxQucbcYuuxZZJJQf6BulJwRTX9ayqqebR2/fapOl3XWZ+d/kQJ/43XsBb/owWJczS0xXC99f2b\nlu1eF9JQnRt1VZ+mD+jGazzzuKVkJKtOUJ0if8duH657G/dUnaA6xT53Z9mqYnvW++7sdbvrOFaW\nt5YbgOcKDg4qeyYv5c2xk606QXV0+7WttOXkJmXkZijXmOPwugP9AhXkX1MBhhp6496luqbmtYr/\n5UMlph1S36b9LI2L6tWqrzxjrv7no4f045/HNbXDDK364Z9aEBlnN3ZKyUjWmF1PakFknEICQ5WR\ne6lKnlMViRFcGVc4yhx/eHMcAufjXAC8jy/HTpK0bds2NWjQQFdddZV27dql2267TWvXrtXDDz/s\n7qIVUVbs5Gls68WcvW5nMsd47oybSuLocbQXb7krHjRv95ZrbtV1IQ0dnt+V5XTV+ehp54sr2Kvj\nLmu/yzrezvh9YF6+tHXVCaqj+5r0LlKO60IauuzeZL1dV28DnqsycZNDPc5KM2jQIH344YeVWYXT\nldbyx5zdvpyfrbyCfBlVoNSs38u9jeCAYOUU5CjflK9rg+rJYJCCAoI0r9MrGrnjYfn5+WlBp1fV\ntXH3Yr3crDPrntIaoqwxam0/r8pyu6tlgCv2kVYOAFCUr7eatsfbYiep8Pm1+/QuTdzzjAps3gdb\nHg81j9E36YfV54b+2vLLRi3v8ZYighvogU29dO5Kuj4ckGCZNyK4gaTShwYyi0mIkqRS32lQ0nO9\nqnqPuTPmM8cfCyLjvOJdAQCAkvl67PTTTz9p48aNmjx5sp555hkdOHBAY8aMUWxsrLuLVoQrepx5\nSv2QVPH3FVVmXZVdpjzrdMb6S4stS6r3cdd3XN5ePZ50LrqKM89xZ2+zPOurbB2jM+spvanOszqc\n4yjk8neclcbb3t/RMLSRpnaYLklKzUpRVm5WudfhL39l5Wcp35Sv0IA6Op/7p9KvnNF9je9X76Z9\n9Urn17Sy5yqtOLpcUfEDSxxHNSUjWQ9tLfzc3WP7ljSGqflv68+rerxpd42v6ortMVbsX9x9zgOA\nu3hb7JSSkayo+IGa8sUEtQ5vW+H11FCgNpxYq5MXftbSI6/rv5d+1eM7YiVJb/Vapfmd4hQR3EAR\nwQ00dudoDdrSt9QyxW4fLqnw2bq27/tlJs3sxS4VjWkq8hx357PfHH84+10BlUEcAACwp0WLFhow\nYID8/Pw0b948LVmyxOOSZq7gSe/1si1LSWWy967astblyLYl58dN1uVwxrEubR2l1fu4KwYrbwzo\nCbGiK5XnnVzOui5dcY07o47RmfWU5V1XWfcYe/M6g7O/V1/gK/vhbJVOnBkMBmeUw+WsL8Y5X81S\nh/p3ySijLuVdLPe6rFtaZxdkqVZALUnS2z+s0JhPn9TkfeP18/mftajrYtXwr6G0rML3gJgrdszS\nslJ1+tIpHU0/4lBQUtZnlVXWjc06ibYgMq5KH6T2WunYU97jU97gzRl8PQBxhCf9KACAquYtsZO1\nJfcul4wGHU4/VOF15KlwSCOTTDKYCkPQ37NStPv0Lj356eOavG+8Hto6UGlZqbqcf1m/ZxZ+Zv2s\nSEpLVFJaYpEfZea/S3u+2v6Is66UWdV7TYX3ycxZcYmr1iEVjePcsX3bdRIHoLI4fwDfFBcXp7i4\nOEnS5cuXtWzZMi1ZssTNpXI9T2pk60jD6ZSMZE3ZN7HMuqHy7Jcr4wPrclRFssETvkdbnlgmd3H0\nHChtvoo0vHPFNe6shJezONIDVfor8e6KBLwjZSypR2h5+MpvGl/ZD1eodOLMG1ifAGlZqTp16b/a\ncGKtU9ZdYCpQZt5fXfQ3nFirXGOuZh+coePn/qMnbhutKfsmKiUjWdt/KRx+yFyWiOAGahBynW4L\nb2W5YLf/klBiEs28H0lpiRUqqyOVOo5m+c375Mj6nc3eBZ2SkezQzbas9ZQ2X0WPO4rzpB8FnoCH\nEwBPlZJROMz09l8+Vo7pilPWaZLJkkSrG1hXCw69LINBqle7vp5qNU4RwQ1Uwz9AVwddo8n7xmvg\n5r6W5/yAzfdr4JY+lpgqKS1Rg+MfsPxt735qnSQrqZWxvbjCUbYtmO1Nt1ceR9ZbVqzi6sScq35E\nEQd4F0+MU7zlB76nlw/wRLt379bKlSslSfXq1dM777yjTz75xM2lqhqe9Fy0N/qQ7efm3uyOrsuR\n+VwZH1iv11XJBnfd9335eePsfStvr8bShuN0pD7R+t/OHPLRlVy1fuv6VXPi3ZHekK64N9hLmpU3\ntvSV3zS+sh+uUC0SZ9YnQNuI9oq8rqvLthVoCJLf/39Y5x58UZP3jdeApoO1+/QuPbI9RrtP79KC\nyDjL/LUCauto+hFL0ux/P3tME9o+b7dlj7mnl72klTV7CZ7SKm/K213dXuvspLRExSREVUlyybbH\nm7lSb/zucWW2drLet/K0MDEfd5JnzsMNuZC3VPwAqL7yjXm6oe4NCjAEyCDn9pa7kHtBf1xOVfdG\nPZVvzNeUfRO0+/QuXcm/oikdXlCtgNoqMOVb5m8ceoMWdHpV8w/NtbzX7M0eb+vVpFeKND6yboAU\nkxBVpIFNWlZqkee/vbjCXiLM/Jkt8/KSisVt9t4dW9I9317STVKRFt+285v3raLKegZV9EeUI2Ui\nDvAOnhqneMMPfE89doCny8/P15UrfzXWycvLc2NpIKlIjGRvurM4M7HgDq6+75fWkMqTnzeujFXd\ntT5H4hBH61vLk3yTHBsitTKc8RujJLbDx5sT745c966+N1Q0tvTme5Y1X9kPZ6s27zgzVzisOfZv\n7Ux2XWulXFOOjDJKki5cOa+6gVfp5YMv6sUD03V1UJgWJr6scbtGKyq+cCiiJ24brSc+fVQv75+t\n+Yfm6s0ebyu8dj3L+mJvHinprxuldSbetleauVJocPwDSkpLLDFJVNJ024ok23XbTrN+AIzfPU6X\n87M1dudohyqDSvq8tPms57FNHi7qulhr+75famsnezf/kgJA2+XaRrTXgsg4jd89zqkPbEc+d2Xw\n444M4XbrAAAgAElEQVTAylODOXfxhoofAM7lLbGTVDisdEZuhpZ+u1hX1bhKJjm77IXre/uHFTqb\nna5aNWpr9oFZSstO1cz903Qx94JSMpM1/6u5GrtztGJajtDwWx5WVPNheuK20Rq/e5zCa9fThLbP\n69WkVzSh7fNKy0q1NOZJy0pVXkGe0rJSNWXfRA1oOlhT9k0sUgLbuMK6gZB1rGP7g9c8zdxiUlKR\n+7m58sde3GX+3Ho95vfemuczJ/PsNaayXqd5SHBH2T6HHWnhWZ5nd2lldbaq2IYreUO5PTlO8cQy\nWfPkYwd4smHDhmnw4MFauHChFi5cqAcffFDDhg1zd7GqvfJU/DvyfCutUbej5fE0JTWaKouj81Tk\nnWruVtlElTOHSjSrqmPlyPCgZR0fe3F1SUOkVvU1UVY9b0msGy96Gk8sE9yr0omzJ554whnlcLk1\nx/6tqPiBejVpYZVts0AF6hhxlwpUoIu5F/RnzjmlZacq8rquMhikJz99XHGHF6qmfy298W2czl0+\nK0kaHP+A/p70hvp92Evj94zV/RvvtVQAmd/jYU4CmXt6bf8lQTEJUYoIbqB59/yfJFmmmyt1rJez\nrWgwJ9zMlS/WFUTmFtzbf0mwbE8q+rBZ2/d9Le/xVpF3upl7Z5mXMa/TdvvmabYtxW0fDua/bZOA\n5t5m9pT28LH+d2kBoPXQmiWtq7wPjLIqlcyfu7IliTtaJbljm96AhzNQvXh67GT9bBr1SazSslN1\n+tJ/dTb3rEu3W6ACXcg5rwu55yXJ0rvNJJM2nFirkxdPaPbBGRrz6ZOafXCGJu55Rmez0/X4jljN\n+WqWBjQdrDlfzdLYnaN1KeeSRn/2uEZ9EitJighuoNibR+r/kuapa8N7Jf0Vp9j+kDUn3Gx7kkmy\n/Ejd/kuCBm7uq4Gb+2rsztGW0QLM6zDHZdYxkLWYhCg9tHWg5Tl/NP2ITmecUlpWqiWuMCfz7MU+\n5vJM7TC9yHz2WCf+rOOKlIxkRcUPLHEZ63+X99ltPk6ufO5XRazkDI5WhFRmXa5GnFJxHDug/GJi\nYhQVFaV169Zp1apVGjRokGJiYtxdrGrFkeSMvboa27/L8wwsT/LHVfGFM9bn6EgD5ZnHvF5ve6ea\nVHxkh5KUtv+VGSrR3jLOUJ7vzd6/raeV9b1aH7+Shkit7DVhey2u7fu+U3rTObK98i7jqTF/abyx\nzChkMJXS7Llly5ZFXmAfEBAgPz8/5ebmKiQkRImJpQ9bd+TIEcXFxWn16tVFpu/atUtLly5VQECA\nhgwZooceekhGo1EvvviifvzxRwUGBmru3Llq0qSJTp06pSlTpshgMKh58+aaNWuW/PxKz/elp//1\nzrGktESlZ5/RI9tjdE1QuK4UXFZmfkYpS7uen8FffZo8oEN/fKU/L59TvgqHIDLIoI8Gf6btv3ys\nZUfe0HUhjfTIzY/pvR9XK/rGEfrXD28rJfM3bR20Q+nZZzTti+f12C1P6O1jKxTgF6AAQw09fcc4\nTfligiJqX6cr+Vf0Z85Z1Q4I1pX8y1p53yqF166nUZ/EauV9q5SefUbzD83VpZxLGnnrE2p2dTNL\nGecfmqupHaZLkmYfmKWn7xinyXvH6+qa18jPr7CcUmEr5/G7x2lqh+nq3bSvpdX1gKaD9crhl7Wi\n5zuaf2iu8o152tBvsyRp0Ja+Wt7jrcJKrO3DtSAyTqM+iVVoYB0t6rpYEcENLJVSt4W3KtLS2bYV\nt/nf1p+ZmW/e5pbdDUMbKSkt0bJde63CbZW2XfPf5kTi2r7vS1KRdSelJdrtBWe9Xuty2q7b/Lmr\ngiBnrbs863Hl/gAoztOvuSuBF3R93evdXQyn8dbY6dtf/lPsmSRJ/T7speTM3yp4NCrPIINMMqll\n3Zt0/OJ/5Cc/hQVdqxuvbqmDfxyQ0VQgf4O/6gZerXM56WoceoMG/m2IPvpvvLLzList63fFdXlD\n/734X+1O2am24e319g8rFBZ0jbLyM7Wy5yr1btpXkizvSRu542EZDAaNvn2cPjn9sdb2fV+7T+9S\n18bdFZMQpajmw7Tg0ByZDCZdU/Na1QyoKZNJ2jywcPmj6Uf0+CePqF7t+prX6RVLHDX8locl/ZWw\ne/LTx/WPnm9JKhxRwDx9yr6JluN/NP2IXk16xe6oAeYYzBw7xSREaVHXxZa4IyUj2TJPXkHhMFc1\n/GtY5klKS9SgLX314YCEIrGKbVxSUpxlntdeXJRXkKf3+28uFsfYm78y9yfrWCktK9Wh96w4a9uO\nbiMmIarEyofyxk/24sXS5vfkez/gDo5eF55+/YSHh7q7CC41efJk5eTkqH///jIajdqyZYsiIiL0\nwgsvuLtoRVjXO/kK8zO/pOeNuX7DXqxgbzSf0p5bzooBnDVveZ+zjnJ02558z6kMR45rRY99RY6b\nM491VcWSjh6b0spT1mclbcPRdboyprVexvwaHVfdV1zBVfcWV/DE4+cMlYmbSk2cmc2aNUtt2rRR\n//79ZTAYtGPHDu3bt09z584tcZmVK1cqPj5etWrV0oYNGyzT8/Ly1KdPH33wwQeqVauWoqOj9eab\nb+rrr7/Wrl27tGDBAn377bd68803tXz5cj355JN69NFH1bFjR82cOVORkZHq2bNnqeU1BzDmXlRv\n9nhb5y6f04sHputi7gVHj02VCA4IVlZ+luXvexvdp73JnytPeZrZcY6urnm15h2crYu5FxTkX1MZ\neZfUsu5N+vniCUvCLcAQoPq1G2hiu8lacXS5Ludn65nWEzT3qxd1LqewdXjdwLoKqVFHuQU5Sr9y\nRhG1G+hCznn1bzpYG06slSRdHXiNLuT+WVgpVfMaXbhyXmG1rtX5nHMaffs4LT3yuowmo4wy6rUu\nf9fCxJcVGhiqy/mXlX75jFb2LEzMpWef0ROfPqqQgDpa3fe9Yvs84MP71bjODZp510tF5l/R8x3d\nFt5KsduHK/bmkZryxQQ1Dm2ixd2Xa9yu0VrcfXmRIG1C2+eLJNasW4pbVxrtPr1LK44u16Kuiy1d\nmtOzz1iWNc9vm+SyvjGXVBFjDgqtK2vMZTG/s25T/21FPpNULKFXmZtTaUm/qrjhedNDwMzdDwN7\n26/KMjm74hKey9Ovz5SMZD3+2QgdfuKwu4vidN4WO92xrE2xRh9JaYmK3vagpQeYpwk0BCnXlKPH\nbn5C639aq6z8TN0T0Vn70/bp0ZtHKTMvUxtOrFUt/9q6XJCth5rHaE/y5/rjcqoCFKCra4bpqppX\naUO/zVp19G298W2crql5rc5dOau6gVfpYu4F1atVX1M7zNBze8bomTsm6oMT63X2yhmFBtRVUECQ\nagXUsjRa+v/YO/e4qOr8/78GGBDGQQ2hQYhatqtGuJF0MYqfl2RFBeuLW/jVzFrTTXEXzNuilvpV\nQ+G7YS1lZmZf/W7yLdGipTSXsqs0368sae2NVoMYxUs6gHKd3x+zn+NnPvM5Z86ZCwzj5/l49Ehm\nzvnczuec85736/N+f5bcUYj//ssbuNBuxdlLp3HVgKGIDDPi7MWzONN+Gjsy7DbRkwdm4+mU5Vh3\neDXiBsYjNFgvLS4iwtz8lIWSHbFu9EZEhUdJi58GBIdj5d3PYs0Xq9DZ04k9WXbBbvKeCTCGRkoL\neUg02eaxZTAZYmFpbZL+Twt1xLZi3wsE3mIj+jvaTqLFOlYsYp9HZkuN7HFqFjPREJuf2Fyu3rNk\noZenTghXuBLO3ClPrdOf1Av47yr0vkYs/LqyUGsT+bvtBAS+cJaRkYGqqirp756eHkyaNAnvvfde\nH7bKmUATzngLj2nUvmvlBDX6mN68tzwRHvz12e+v7ZKjL8TD/jZGgO98e2rFS1f3szdx59lAvlcK\nUPDX93d/mI/+PH6e4ondpCpV45///GdkZWVJK6gnTJiAuro6xXMSEhKwefNmp8//8Y9/ICEhAYMG\nDUJoaChSUlJQU1MDs9mMtLQ0AMDIkSPx9ddfAwCOHj2K1NRUAMB9992Hzz77THXnTIZYvDxuG9Yf\nXouo8CgYQ/3LwAwLCvuXaKZDpH4QwoMj8GHDB9Dp7Jel2PwcfvPRfDRfOgWjPhLtXZcQFx6Hb89/\n4yCaPZX8a3TburD+8BqUpJdi5i2zse7L1ZJoBgDnO87jZFsTzlyyfzYn6Vd4Mmk+/udvbyIYwZg9\nfA5W3v0sghCEwWFDAAA2nQ0hQSEYFDoYLxz5T8AGhAdHAAA+/+EzWNqa8MhNM/DO1Pex5I5CrPxs\nObL3TkR0RAyeTJoPa9d5zN3/BPIOzsPc/U9g6t5MNLedwjBjHHJvnoHH35+JX34wC+sPr8WW8a9J\nbd2Qtglb6srwyvjt2D25At+e+QYnLhyX9k+LM8ajIGUx5ux/DDn7sh1SPBJjbufRHQDsK7XzP1qA\nC+0XpDRNc/c/gV/un4XJeybYUy3tnYidR3cge+9EabU5cDkkWm5fM/JQIQ4i+phGawOKzUV4edw2\nB2cSCQtn906Rc1a5gpTJniP3uS8goeK9gTf605tjo7b+3mwTW5dcewSBAbk//dXwiTPGY88v9vR1\nM3xCf7OdaDFj6aFF9nfrH/8dwUHBmvrdm3TY2gEAb/7FLpoBwNdn/wwbbNh2bIu0MOhS9yUAwPv/\nfA9nLjXDFBGLjff/DoMHDEZHdyc2m3+H0iPFACDZSZe67OecvXgG/zz/T4ToQvDikd+hs6cD0296\nFAPDDNg6YTtyb56Bc5fOITo8Bs99tRYX2q04134Gy1JXAgDShqXjfMePCAKx7YrwdMpyvPr1FnTZ\nOjH2mvGw2S7vU3bu0lms/nIFdh7dgWJzEdaN3ojf/W8xHq3Kxcz3HkFjSwPOt/+INV+sQlvnRXT1\ndMHS2gRLa5N9IVLSPOl+77J1OoxXfnUeqk8clOyeB/dNAsB/D9Q110o2zvaMnVL7SArKae/YRTmy\n6rPRejlNi8kQKwlF9LuGthcarQ0OkXAEufchSXkpt1F5immUgyNP6T3baJXfG4LF0/dznFE+1Y07\nZWp9lltam7xiXwSiXaDl2va17SjwDmptIn+3na4EYmNjcfz4cenv06dP4+qrr+7DFl0Z0HOfjXIH\nHN+15HjA8R3B3j9yjnitz1NPnr9a7mnegh9/e/bzfs9rObcv0Dr2nuKra+fL8VNqszciM+UWwSnV\nQZ/nbt/lznPn2UDaQe9NLddeX9IbNnxfIOwfPqqEs/DwcLz11ltoa2tDS0sLdu7cicGDByueM2HC\nBISEhDh93tLSAqPxsoBlMBjQ0tKClpYWDBw4UPo8ODgYXV1dsNlsktPJYDDAalW3qoestIyOiEFn\ndyfWH16LdfcWwRA80PXJPiYYdidUe4/d4aMDcKHzPNq72xGqC5UcQcQJBABZP30QEaEG/HDxB+j+\nddmCEYynkn+Nin+8BUtbE05dPIkX/7cUa75cieZLp3BHdOq/yrePnz4oFDroEBU2FK9+vcUeQYZu\ndKMbBxv247ma/wB0wPn2H3Gu4xx0Nh0W3bEE3bZu9KAHM4fPRmdPB6IGDMVjSY8jfuA1uDvuHtQ1\n12JDzRp09XRhw73F+PbMN9jy9YvYcG8x1oxeh92TK/DS+K3Yk1WJ6IgYhOj02HZ0C3psPQjWhaAk\nvRRnLp7Bo1W5yK6wi2ud3Z1Iik6GpbUJyz99GhvSilE+pULa+yMpOhl7siqRe/MMFJuLJOdHimkU\n1o3eiOWfPg2zpQYZiZl4PWMXtk7YjrrmWiw5lA+dDlhyRyFOX2wGACQYr8XNUbcg1jAM6w+vdXgI\n8vY1o7/fnrHT4RhWHCPpnwBnQ5T3UNJqBCk92OTCrNWU6w5knxFfYLbUqDZ+PBkzrWW5A6/+3nxB\n8X7MsEaUP/5AELiPvxs+gZSmkaa/2U70D5GClMV4+qN8nLzYhO6eboQiVG23e42hoUOlf7d22+0l\no96Ilg57X4MQhGCEICpsKCL+tejnfOeP6Lb14Bc3Tsf0ETOx4q5n0d59Ca8dewVDwq7CoNDL16e9\n5xKCdMEwhg7Ci0d+B6N+EHrQg1MXT2LbsS1ouPA9yr99E6u/XIHVX67A7BFzsOHeYmy8vwSxhjg0\nWL/HyYtN2HbMbu8QW2zW8MdR/rc/IDwkHAtHLsLOb19HS6cV+dV5qGuuhTHUCFNELKLCo7A9YyfS\nE8agIrsSJfdvxo6J/42YcBMGDxiMiddNQbetC6faTmLBh/PQ3HYKJsMw/L62FI3WBtQ11yI8JAIr\n734WSw8tgqW1CZ3dnfh9bSmGhF2F9IQxkvOLfQ+YLTWYs/8xe/T/oUWoPnFQWpT05IHZmJM0DyFB\negB2O4m36TmZT7w9yIidtCuz3CGdI8B/H5J5WZJeqhi5RTvy5N6z9L95e0OwsIuDvPVDmR4bX0AE\nuxTTKI/tC612ga/sB2+Xq9WR6mqVtqB/oPZe8HfbKdDp6upCVlYWnnjiCcydOxeZmZk4efIkZs6c\niZkzZ/Z18wIa3m9C+hmnZl8lpfvHnd+9SouF1eLOPa1mgbC3FvZqOZYVM9TsoUb+f6X8zvf24m56\ngZivRF+le8MT0YpdrK+1H2RhpZpzWLtWS13uLm5hy+4N0SyQ7yNh/zijSjjbuHEj9u/fj9GjR+P+\n++/HF198gaKiIrcqHDhwIFpbL6cmbG1thdFodPq8p6dH2heEPjYyMtJlHazwUT6lArsyy3Hm4hm0\ndbcqnNk72GDj/t2DbnTYOhy+m3RdFkJ0Idh+bCt+bD+HMfHjAdgw7YZczB/5G3xw4o9YM3od/vP+\nFxATfjW+PfcNhhniMXv4HJibaxCpH4ShA6IRrAtGZ3cHdEFBGBASjgh9OJ5K/jUi9YMQP/AaLPxZ\nAU61nYIOOmy8/3fY9sAOvJqxA1HhUTjXfhY5NzyCBSm/xjBjHAYEh8NkiMUrD2xHfnUeVn++ClHh\nQ2Gz2aPkln5SgHWjN+LmqFswZ/9jqD5xEEsPLUJz2yksPbQIK+9+FsG6EAQHBWPN6HUwGWLx+9pS\nDA69Cr++vcC+J9q/VkmTVU3TR8yEpbUJU/dmIrsiE7mVOfj2zDdY8+VKzBr+OEyGWOm6Tx8x02El\nVFJ0MvKr87Dys+WADVh9zzrMT1mIPVmVyEjMxO7JFUgxjcKerEonhwy7Uph1AhHIMazTiIX9jPe3\nFiOILoM1iFjkHFjegETnya388AQSRUhWvbsK3da6QaunZbmDmrnhS5TmoVhl0r8IVIMtEOhvthNw\n+f5Pik5GZJgRg0OHwNpxAdC5PteXhEDv9NnpjstR9caQSAwKHQRrpxU/v84eRdWDHjx0wzQMCAmX\nhLVJ12XBhh48f2QTXjA/j9Wfr7Iv4Ll/M3Zm7sbmMWUYEhqFYF0IrgqLgs4G6IND0I1uBOl0uMZ4\nLRaOXAS9To/IsEH44MQfJUHs27PfYOknBSioXoiuni7s/PZ1xIRfjZV3rsGCkfnoQQ+e/igfSz8p\nwLLUQpRPqcCspNmIjojBQL0Ry1ILUWwuwoq77DYSsZ9I1NeWujI0t51CZJgRj9w0A88f2YQzl07j\nubQSbB5bhmJzEX59ewFCgvSoa67FkwdmS/vPEpGofEoFfpWchx/bz0lpGwlkYRJgt53jBybg5qhb\nUJCyGFvqyvDyuG2SfTV9xEzsyiyXoplo2HcHqZu2jQpSFjssImLft7x3FEkH6anTmxfpD7h+53vb\nfvKl3UTXQf/fk3K0LDjy1QpvX5SrZWxYMdfXbRMIrmQWLFiALVu2YM6cOZg9ezZefPFFPPPMM5g/\nfz7mz5/f1827IqCFB6VnnDu/HbW+l9QsOObhreeyXD3eeP67G/0stwjW1Tl9vQiEfX96WoYrvBV1\nTy+O94boK4fSYit3+8GKTFrvWbKAzVWmBuK3o8UzrXVpPc6dsfF0Plxp/jJh36rc4wyw769RX1+P\n7u5u3HjjjdwV0SwNDQ3Iz8932qcjMzMTu3fvRkREBB5++GGUlZXhyJEj+NOf/iTt0/HCCy9g69at\nTvt03HXXXZg4caJivWSfDuDyDWW21GDKngx02bqchKveJEw3AD3oRkhQCC52X5Q+10GHIAQjQh+B\nnBsexvvH/4jHb52DXd++gXOXzuJs+xkMCh2MoeHRyL15BrYd3YKGlu8RPSBG2p+DQJwh43en40Ln\nj4g1xGHN6HUAgOiIGJgMsdLG9R09HYgfeA1mj5iD1V+uwJDQKDw/5gWsP2zfg2VXZjn2/PUtbDSv\nw9tT3pX2IyMbyZNVzas/t++zoQ/SY+XdzyIjMRON1gZkV2QiQh8hOYQKUhZL39U11yIpOhkAMOnt\nCfihtQFxA+Ox7t4irP58lbQKmcZsqXHYp2Pq3kyUjduK/Oo8qb1KKzS0bhxPzpX7sQzw9/7wxkNU\nzoEkd6yrXOJs210JUO70gV3J4q1x0HLdvFWvt8vyNf2prQLvwN73/ZVA3qejP9lOZJ8O8iwxW2rw\nyw9moaHle88GwQ2CEIQe9Eh7kxHGxj+AjxoPostmT1cdHhSBDlsHdDoddD3Ar0YuxG/vWYmdR3dg\nw+H/wPmOc8i9aSb+69vtWDpqBe6OuwdT9mRgUOgQDAwzoLO7C80XT+K5tBJsqStDZ3cnOnvsC3d+\nfXsBFn/8G7w6YQf+fu7veO6rtXhl/HZkJGbiBfPz2HB4DWIMV8NmA0YPS8OyuwqR8T9jceqiBSX3\nb8bNUbcAgGSf5NzwMO6Ouwdz9z+BiuxKaYwXfDhPspuIjZNbmYM5SfOw/dir2JC2CSZDLHL2ZaPL\n1gmbDajIrkRdcy2iI2KkdyNJsUkEpqr6Soeod+DyM4PsEUueH2RhUvzABJRPsduTJA01GZOXxm+F\nyRDr9ENVbh9Y+vlEIH2m90ehj3fl9JHbc0ULSvXI7ZdAn+eqnVrb5qt3d1/aBIHYJ7YdvrL9BQK1\nXAr9MWAj9vsTgbbHmRw8f4g/PPNcvdPV7mXqST1afDbulK/2WE/tk974Xcnac+7Up9ROuYVR3vJJ\nuVuON9rgro3J+gjdvcZq61eypdWUpeZ8d9tGjlUaA395tvkLgeJvAjzzOakSzurq6rBw4UIMHjwY\nPT09OH36NF588UUkJycrnkc7f9555x20tbXhF7/4BQ4ePIgXX3wRNpsNDz30EKZPn46enh4888wz\n+Otf/wqbzYZ169bhpz/9Kb777jusWLECnZ2dSExMxNq1axEcrLzfxpH6b5wualV9JR7/YCa6e3rQ\ng24VQ+MZRn0kum3daOtqRRCCYNRHoqWzBbEDY/HQ9b/AByf+iKSoZMQahuH5I5twVVgU5o/8NZ77\nai1iDcMQotNj89gy5B2cB5sNyL15Bl79egsi9OFYcdezWH94LXJueBg7vtmGEJ3eIdUNcWTkV+dh\nWWohkqKTUX3iILYfe9XB6WC21KC57RSSopMRZ4zHC+bn8d9/eQMhQXqUpJcCgINDhvdv1gnDChy0\nIUEbL8QhA0DauLz6xEFsqStDSXopd7N4ukzWgaJWENIK72UDgCtS8b7zVr1qz/GGQeSNh6O3HrCB\n9KD2Jb01TsKQ8D8C4ZoEqnDW32yn5mar07OEiGfWDitaOqzo7gX7iWZI2FX4sf1H5I3Mx976t7An\nyy4YLTu0GJ09Hfix/Ryiw6/GojuW4MUjpdg8tszBVvn2zDdY/unTeDplOabe+JDUJ8AuaM1Jmodi\n83MwhkaiJL3UKQIra8/PsXXC65KoRRYM5VbmoK2zDWtGr8Pqz1dBH6x3sGWmj7icRoos/iCiFrFv\niB3U1tkGfZDd5iM2EgAH+4L0Z8GH86DTAbsnX15YxNogrn4Yyy1wIaIdAAcby9LahAUfzgMAqZ9q\nxALaLpv2TjZCgi6fy/tRrOR4osvy5QblnpTtTbvHG84VYTv5lkB49wr6L43WBjxxYAa+mvNVXzfl\niqc/CmeePr88dTyrWYjiSdtYnxix3XwtBsktJOoN/MkG0VKHNxdrV9VXothc5Fe2jyvb1lf3Aa8e\nub89Kc8bYh6N3OI6b6MkPrt6tgFXXirDQLF5fS6cPfzww1i2bJnk7Dly5AjWrl2L//mf/3G7Yl/C\nGjC0uHPm4hkUfbUOltYmn0WeDQodjCEDhuD8pQs413EGIboQRA2IxtLU3+J3/1uMk21NWHzHb/H6\nsW1YM3odHqv6d0RHxOC1jP+SyiCreukIq+y9E7Hh3mJJXCKrkkvSS7mrdumXyKNVuVhx52pMvfEh\nxVWSPMeJq5uEXuXMW9XDPlxJ2WQVNSs+qXmB8B7YvnIU8MoH+BvHqlkNrVbgUirH1yte3FnJ5M02\n+qKcQKc3jC7hiBP4gkAVzvqr7cQ+S6rqK7H8k8Xo6umCtcPqsP+qLwjWhSAiOAKhwaEI0gWh+dIp\nrLxzjSR8NVrt0ewvjd8KwNFeooUn8ryqa651iKIHLi/mIRFVtOBG3r+W1ib88oNZMIZGOolFBLWC\nFXsMad+GtE0A4CCmKf1QJCIcu3iJZ39pWXXr6ke11sVJrE3Es1XZ43P2ZTsJc2xZrH3oDVtF7Xme\n2E5a6vfWe/ZKsJ2uhD4KBHKIiDP/oL8JZ2oX0arx/7iKNldyTMv5jTxBzl7ojQgTb0a3aW1Xbwkw\n/gjt533ywGy8PG6bU7aFvoIstAOcs2J54z7oi+vN2ve+iF7TEnHmC5+o3O8Mcj07uzsdglY89ft6\n8zyBMp74nFTtcdbW1uawQnrkyJFob293u9LeJs5oz0EaHRGD7cdexeI7lkOn8/6GHUEIwsKRi/CH\nSW9h4c8KcLG7FSvvXIOZt8zG+Y5zAIA1o9dh/b2bsOObbThu/Q5mixmxA4fh7KUz0orepYcWAbDf\nMOTfJkMsTBHDpNQ/xFFENv5m+0v+32htQEZiJkru34y99W8DcM5xS2/6SuojY6bmhiV7V/A2IKfL\nJ+WSslnHD/2AcFUvr/1a2qwFuk1ywhhdt6uHp5pc3Lw9ytjv3d1QXs34KBm6Sm3XWk9vlkNQ25Vv\nnqMAACAASURBVP7+hq9frr66vwSCQKW/2k7sO3zNF6twstWCkKAQ3GW6x+v1DQodhMjQQQCA6AEx\niNQPQkuXFQNCwrH8zpWINQzDrm/fkI63tDbhZFsTmttOOex5lWIaJeXep59XGYmZKEkvlUQz8h5L\nMY3CrsxylE+pcLBHcitzkLMvG3kH52FAcDhK0kudbA5La5ODbcDaCTw7iPybPi7FNEpqB4lKc/WO\noo+hy2Hr5YlmvHc473OejcMTDuXaytpESqIZQR+sl8aabQvdN579p6afalByInpr/1RX53vrPRvo\n72pPrrNAEAgI0UzgDq7eM8QOknu20j4j3jFs+ewxcnaLkm2hxffAsxdoHw4pi/6/N94lpD/eQm27\neH403jHeflf607t3e8ZOZCRm4uVx26RtYPwB4qvlZdFSst/lYO+RvrCBWPveXZuVtfVp5DJSsLh6\nVimhdK7c7wzye0YfrOd+z6tD7T3sznn9nf7WP1XC2aBBg3DgwAHp7wMHDmDw4ME+a5SvWHpoEWYN\nfxzTR8xEYeqzXiuXbAwfpAvCW39/E7/8YBa21JVh/b2bMGTAELx27BXk3jQTSz8pwBMfPIoXj5Ri\n4c8KcHV4LF6q24x19xZhb/YfJecN/QCiN2CM0EcAkN/HC5B/oE4fMZMr7Cg9/NQ+BJUEL7kHKr36\nB9C+yaar8n2J3INMrSClZoWX0jFxRt9vKC9Xb38XTq6UF5Gv6M/XXiDobQLBdoozxmP35Aq8OmEH\nAKC68SBC4HqfNrUM0g/Gwp8twoWO8whCEMJCwmAIjUBMuAmL7lgiLXbSB+thaW0CYP9BtWX8ayg2\nFznZPKyo5GpREM8mImLa7skVkl1Gl0nev3KLV1gnEO2wya3MkX6osc9TNZtu897DWhYc8cpX824n\n40i339X7lB4HV/YKvRBMjZCn1G5f2Cq9af+ose8FgWGTCgQCQV/g7nNTre/G1QIXpYUwZkuNwzne\nXLhLbBhSh9lS4/V3CSmfxt2FPK58RmqPo203b8BeI2+ipUx2Ydr6w2tVib69Cfs7g2fbqhXNWBHH\nHcHN27hz36j5DUEfq2WuebOvvDEmix3VCIdqf1/xfvMEun3bH32yqlI1fvfdd1i8eDFOnDgBm82G\nhIQEFBUVITExsTfaqBm5kPmq+kr8cv8svDJ+OxZ/nA9LW5NH9cSFx6HpYhOCEISnRv4a1o4L+PD7\n/WhqbZQ2mr/QfgGXui7iwLSPYWm1r5COjojB0kOLUJCyGKs/XyWFetKQlxxwObUQvUcGvc8GuXnJ\nBOzNzap5dbLfu3pYeKt9rtriLXw1plrb7+trG6iIcRMI/ItATdUYKLYTYH9uPlCejuZLp3DbVcn4\n89lat+rQIQg29Eh/DwodhM1jXsLTH+Wjx9aN5XeuxItHSnGp+yIGBIdj5d3PothchFnDH5f2aZWz\nb+gfk+Rv8k51lQKR119eOeQzVyl55N7nbBvl6vQF7tqI9HkErTYm7zhXq6PFe/oyvWXfCgSC/kOg\n2k79jf6WqlENnr6fWRtKjc3QaL28H2xBymKHdHtq/UlyNhbve2+lVmT7x6ad9tb725Vd6upcwL1F\n8bzvPN3PTa581reptiwWpbIB5SAEV3V5eg093UtX63neth+VynPnN4U7vyGUni9yv7364neXK+jn\n0pVo2/dFv32+xxmhra0NPT09GDhwoNsV9gZyBkyjtQHT3slG6ZgyTK+chrPtZ2DUG2Ht1G7wBCEI\nkWGD8GP7OQwKHYzQoFA0XzqF2cPn4MPv9+Ol8VvR3HYKs6tmoBvdeD1jF5Kik50eFK5eTATa+UPv\n4cG+XPpiAio9jHy5ibu/PQC9UfeV+uAUCARXLoHu/OnvthNw+QdnUlQydv9tl8d1TbshF43WBjS0\nfg+dDrC2W3G2/QziBsZj3b1FWP35KnTZOrEnqxJ1zbUoNhcp/kiXE3eIHaXVwaBGYOrNhUHewl3H\ni7f70hf2YX8nUPslEAjcI9Btp/5CIApnBDmHtTvCiiuHOfm+IGUxis1Fmm22DWmbkF+dBwBOvjFP\nHP1q6ualnFTjuPe0Hl/4/9QIilrrU2t7kt8aatJ7s+cArgUxrQIie663BdDewtuBCoD8/asmwop3\nvpa61QRtkP97KpB70l5X5fbmgjjxG8KOz4SzFStWYM2aNZgxYwZ3T7AdO3a4XbEvceX8qWuuxaNV\nudBBh9uj78BXzYdVl23UR+KmwTc7nKMP0iNqwFB093RjUNhgXOg4j8jQQVh597NYdmgxAGDrhO1S\nlJjaVTdqlXV/vgl80T5/XHnrj20SCASC/kCgOX8C0XYC7O+5zebfYduxLQjThaHd5t5+bUEIRuGd\nz2DNlysxdEA0AOB8x494IOHn+MeFv0v7feVX56EkvdRh9bGaxUa8H9Ce/MgPZPr7YiNemcIWEwgE\nVwKBZjv1VwJVOGMdzuRvkq5a6T0r56x25fg2W2pgMsQCcO2o5vnDXEWc+YLesqOUREwtUVq+jiaT\nK1NttgN3hA6l6877XK4MdxeReVNc8baf15tRTa5sbLlFhoDjNj3u2OhaItXoeUxna9OKN6IUeWX2\nth/fn34b9fXva58JZ19//TVuvfVWfPbZZwgJcd7TIjU11e2KfYkaA2bn0R1Y9+VqnL7UjAFB4ehB\nN9p7XDuBFo5chDf/uhPNF09hfvJvkJH4czS3ncKKT5fjpfFb8XnjZ1j95QpED4iBIdSAEJ1eSjXE\nvjCUVlv4enL39aT1FH9svz+2SSAQCPydQHP+BLLt1GhtwNjdaZhxy2MoPVLikHZRjoEhRky78REc\nv/BPfNjwAaIHxKA4/Xn8/dzf8fqxbbC0/YDpNz2K1469gpL7N2P6iJlSXUrOmt74ASvofwhbTCAQ\nXAkEmu3UXwlE4YwVUHh/exKpLudg1xI5pDX1tBbbwN+jglgRQa1wpsbH6G7ftV5vJcyWGknoULLp\n2XKJ8EoLigB/PqmNgqPbItc3d8UVnhhKX1dP/cGsgMSKTu5ca63zlN16iODtOSZ3rKf3PZl/gDYB\nlndtAc+vqbv4w28jX0b/qsXnqRqnTp2KPXv2uF1Jb6PW+ZOzLxu5N8/Alrrf42TbSZcOoCAE4WqD\nCU2tP2DhyEWYlTRb2rdszv7HpM3qsxIfxK5v3wAArLz7WWQkZnIfut58wWjBn1RngUAgEFzZBKrz\nJ1Btp+oTB7H449+g09aJEOjRhU7Fc4aERmHQgEisvmcd8v+0EL+9ayWWflKAWMMwrL5nHaIjYmAy\nxCK7IhMV2ZUuU28QhB0jEAgEgiuVQLWd+hv9RTjzRLxw53x3/FzuRgi5ikbRmkaut+1Ld3xzriJX\neGPpzsIytSKpt9IYAnASBQE4pW9k6zRbapC9dyISjNdi9+QKp7JpMYM3X3j9NFtq8OC+SXh7yrsu\nxTNSjjv9VJNljFeGKzGQ7TNdp1z9WlA7NwizqqY77FkN+GaRo7uCoKdBLTyhUm6++aofWultQU1u\n3vbWM9cTuylIzUFRUVH46quv0NHR4XZF/og+WI/rh1yP0xdPwzmZEqD716eTrstCnOEazBr+BJ5L\nK4Y+SI+99W8huyITUyoysOLT5Vh/7yZkJGZie8ZOzE9ZiPIpFdg8tgzF5iJptTT94ACUbxpfTpo4\nY7xwNgkEAoFA4EMCzXYiKwd/X1uKqw0mGPVGdKMLPzVeL3vOoNBBsHaeR6O1Afl/Wghr13kAgCli\nGFraW7H+8FoAdrtETjQj3xNmVU0HAGHHCAQCgUAgELiAOCZZX5TS8azvSo3gpKY+pe/ijPGKQgH9\nf/o44tsCgJx92Wi0Njgcb2ltUu30BnrfvnTHN8f2n4bY67mVOTBbaqTxIP1Ti9p5Q4+/u/DGP84Y\nj12Z5VLadnY+0sJEimkUKrLek0Qzuq+zqqbDbKmR+kK3l/6MJcU0Ci+P2+ZSNFOat2r6SaN0Xdky\n6PGgP2P7Spe1IW2T1F45kUjNc0LL3CD/FaQsxvJPn0ZBin0rI3JdeGWrfVa52y5eO+XuQbXzmxyX\nYholjTNbttZ54u44+LoOd9ulNL7+/pteVcTZXXfdhR9//NF+gk4Hm80GnU6Hb775xucNdAe1K3/I\njTr57QkYHHYVpvw0G9uObQFg34NDH6RHe88lGEMiERwcjB/bz+E/738BN0fdYq+n7RQef38mrjaY\nMCA4HOVTKmSVf7Vqrj+EUQoEAoFA0FsE6qrpQLSdiKG8569vYfWXKzDpuiy8f+I9hAaFobWrRTou\nCEEYGh6NsxfPYGhENOYk/QrP1azFklGF2Fv/NrISH8SaL1dixZ2rsbf+bZf559WuwBQIBAKB4Eog\nUG2n/kagRpxpiSaRi5wBPNt3ij5HzZ5FZksNpu7NlLJAFaQsxopPl+NkWxP2ZFU6RSyx7eBF6fhT\ndIiWuohgmF+dB+Byqjy56CZP6iLH+TKCSSlKUU3kFkFLijh63vHmm9rINS39VItSlCGvzURMBeRT\nSqo5xtN+0JGsvP3seG1w59kFeDcQRcv89mYEprefKWyZrlKRypXRX7O++DxVY39DjQFDbtSClMV4\nrGoGABuCdEHotnWjBz2IChuKkCA9Tl5swtXhsfix4yyyEh/CC+NfkiZLQcpirPliFVbc9SzWH17r\n8ICpqq9ERmKmpnb350koEAgEAoE7COePf6DW+dNotae6/ueF7zAodBDOtJ/GaNN9+NTyMQB7lNmQ\nAVdh4c8KsO7L1QgLCcMrD2xH3sF50krQOGO8ZCdV1Vc62VCkHjbFhbCNBAKBQCAQtpO/0F+EMy2o\nWaxEHNw8QYZ8z9uHTEmIcFVfnDGe62ynIftcEdGoq6cTK+561sEvpyQQyKVbczVenqRa1ILWulgR\ngbWtXS1c09Jed1Pk+UJEor8DtKUlpMtzNd9YsYq3l5iaujyZD2oEa7nvtJzvCa7ua7l2Ks13V+Kh\nt+9HT4R0f1j0yY6lJ7+v/aE/7uDzVI0dHR146aWXsGTJErS0tOCFF17o16mHGq0NWPDhPGxI24Qz\nF88gKEiHqwZE4VfJCxGkC8bg0CEICdLjUvdFAEDmTyZjyR2FeOe7Paiqt6cS2pC2CcXmIpSOKUNS\ndLKDIl5VX4lHq3JRVV/JrVvus/4SpigQCAQCgUCZQLOdgMv2yuaxZVieuhLnO+wRdZ9aPkZ4cDiG\nhEZh85iXUDZuK4rNz6H50ik0tfwAANg9ucIhTUVGYiYarQ1Yf3gtOrsv75NG0sqwKVXUrnwWCAQC\ngUAgEGiHtr+0pGMj59KwohlJ15ZfnSfrE1NK4wjY0+cp2YQmQyxmVU2HyRCLXZnl2D25wmkxe5zR\nngKQF1VDp1tTuyeaVh+eJynStNrEtN3N2tZE6HHVDq3zQC2+TkdHygf4aRHVzEFX84CML52iz9La\n5HAPuWofnVrRnf6R8+j+KrVV7nz6OLYeT66RmvuaPpZup9x855Xp6npraZ9SW9WMhZpx7m3YsXRX\ne/BUNOvrcXAXVRFnhYWFuOqqq3Dw4EGUl5dj1apVsNls2LhxY2+0UTOuVv6QMO7Fd/wWRV/9B4z6\nSPzYfg5DI6JxqvUkoANgA4J0QZh6fQ721r+FoQNi8Pitc7C3/m0HlRZw3mSRhIWz+3UorbwRgplA\nIBAIrkQCddV0oNlOZIVuV08nOro7odMB5y6dk8QzAIgeEPOv1Izz8OKRUpy9dAZn289gR8Z/S0IZ\nb9UrAGklMdmI22SI1fyjR9hSAoFAILgSCFTbqb9xpUac8Y6jI9B4kQ0b0jYhvzoPF7vasCeLv6+t\nNyOQfBkVoTUSRq6Nfd02te3wVXu94YRXsv+VIp20Xj9XbaUjGUvSSyURV+m3iS8izrSUw97DPF+1\np6kTefUA6qJU1Zap9JkaSKSqmig3d35vqpk7/eH3q6e/t/v697rPUzVOnToVe/bsQXZ2NioqKmCz\n2TB58mS8++67blfsS9QYMFX1lSg2F2HW8MeRnjAG2+u2ofK7fbjQcR5nLp5GVPhQhAaH4pUHtuOx\nqn/H2YtncO2g61A6pswpnJl+4FlamxRzL3vzBhcIBAKBoL8TqM6fQLSdGq0NqGuuxerPV6HL1okQ\nnR5Xh5vwqeVjGEMisXr0Opy7dA5FX/0Htox/DdERMWhuOyWJZuxCI57h7E6qa9I2YUsJBAKB4Eog\nUG2n/kagC2dqj6WFM3ZRFLtAKr86T9UeSp60kU2xJ+eslyvLXfGLlw5Nrl5PUWqj1r2LfC3k+dI+\n95bopPQZoC79Hy3AeNI2b6F1/vGEOIKSqKS2n+T+B/j7qMnNW28IT0qCqBZx0JviPvl3f1r86Q2x\n29356Ck+T9Wo0+kc0gudO3cOOp3O7Ur9gYzETGxI24Ttx15F9YmDKD1SjNybZyA0OBQ66KAPCkWw\nLgQAMGTAVXjuvhLsnlwh3ch0SCz9EDEZYqVQXfo4Qn+4GQQCgUAgEHhGINpOAFBsLsLmsWXYk1WJ\nlXc/i/89XYPZw+fAEGrAkkP5WPflsxgUOgTRETFYemgRoiNiAACW1ibpRwFJEcP7cVpsLnIrjYOw\nrwQCgUAgEAjcx1VaMV5qNOIPYx3hdBo6AkmhqDVag9dGktqb1y6ykJ0W9XIrc2TLoj93lTpPSYyg\n05+x9XozRZlSejnSf7X1+TKVXG+kqXN3Lnk7/R8Zd3fb5m2U5r0cvGxp7Oc80czVNSbzf+mhRShJ\nL5UVzZYeWgSzpcbpXFf3I5uykkXpno4zxsu2iYc3RDO2Lf4omsmNt6ft1JpNxpfPDi2oijirqKhA\neXk5jh8/jp///Oc4cOAAnnrqKfzbv/1bb7RRM1pW/pALkV2RiZfGb8WCD+ehy9aJmbfMxq5v30D5\nlAopiowXbk5/zirkatTj/qYwCwQCgUDgTQJ11XSg2k7s6i/yAyd770TMTVqAsj+XYnDYELz/b3+S\n7KeClMV48sBsvDxum1P0mYjCFwgEAoFAG4FqO/U3roSIM/I3G8XFO5ZXDu34pKPS1LaFZy+aLTXI\nOzgPIUF6lKSXOmV8kouccRVxRvv5eGW5k06O4O0Ub0rt0mpLu2N7qz3HX6LZ1PpmPfld4o3IKG8i\nN+/duXZK46cUKQZcnvuW1iakmEY5PBvijPGoqq/E+sNrsSy1EOsPr3V6RvD6wbZNLiKOd0+zbaQz\notDtVapT6TNX3yu119u4e2/7g0bh7v0id54ndlPwM88884yrgxITE3H27Fl89NFHqK2tRV5eHh5+\n+GG/XTnd1tbh+qB/ERkWiciwSGQmTsbAUCPui78fd5ruwpJP8hEWHIYxCeOQYhqFmPAY3G66Q7oI\nYxPG46aoWzA2YbyDITE2YTwiwyKlssn3SvW7OkYgEAgEgkDFYAjr6yb4hEC1nYiNA9gN05uibkFT\nyw+41vgTLLpzCS52XMKfGg7gnmH34r5r0jE2YTxuN92BW4YMR7G5CCOibnWwn5TKFwgEAoFA4Eyg\n2k79DS1+J5ZGa4Nf2jykTY3WBlg7LmBW1XSMiLpVEqduirpFajt9bGRYpEOfyP9JGXfF3oP3//lH\nPHTjNNX9lvOV2Ww27P7LH/D8mBeRYholtW9swnhYOy5ITmm6LXJ1knaT84ifj/RrVtV0ycen1XdH\nzlFzHjsf2Lp5ZcuNk9Z5pfV4V21TW7aae4BcG3ZsyLwi19xVOdaOC8i+/iGXvlkt7Xd1LN0/MmYj\nom6FzWZTPFbN52rbozRuWq4dO8dIWdaOC5h/cK5TeaS/2dc/hOzrHwIAzNk/G7cNTcb8g3MxIupW\nzD84F8EIxq+rn0JY8AAkR4+E+dRXTs8Its28+5Icx15j0m5yT9PQvn0ATu1l68ytzMFtQ5Ol6+fq\nPpD7Xote4Ala7lOayLBI6fd6X+LOvFfqsyd2k6qIsyVLlqC9vR1TpkxBT08P9u7dC5PJhN/+9rdu\nV+xLtK78abTa9yaj863WNddixafLEaGPwLLUQmmldLG5yEmtdqViCwQCgUAg4BOoq6YD0XbirTyc\nNfxxLDmUj86eTpTcvxnbj72KWcMfx/QRM51WfJH9Zft6BZtAIBAIBP2ZQLWdvEFtbS02bdqEN954\nA8ePH8fSpUuh0+lwww03YNWqVQgKCsLu3bvxhz/8ASEhIZg3bx7+3//7f7h06RKefvppnDlzBgaD\nAc899xyuuuoqxbrcjTjzxop+NmrDm9D+LQBOUSK074u2B7cfe5UbkaamrVoje9joNTq6hc0M5ape\ndo8jre3y9Brw+uNOuZ5GTGnBG31WEwHG239KLkLIF5E97kac8eqU2+NLrn3ejPxhx82TZwd7XUh5\nvOPoPubsy0b5lArpePK7sCBlMQA4ZCdRKkvubzURca6i05Si2nL2ZQMA9MF6VfuhsfX1xW9fXmSe\nmnP8IeLMXXwRcaZKOMvIyEBVVZX0d09PDyZNmoT33nvP7Yp9idZUjbmVOejs7sTmsWXSZo7k85L0\nUqSYRkkbPbJpG+ly+uOkEggEAoGgLwlU50+g2U5KPwCXpRYCgJSGUcmxIhYZCQQCgUDgGYFqO3nK\nK6+8gn379iE8PBy7d+/G3Llz8dhjj+HOO+/EypUrkZaWhpEjR2L27Nl466230N7ejtzcXLz11lvY\nuXMnWlpasGDBAlRWVuL//u//UFhYqFifJ6kaPfEf0TYVzzflDeSc/ACk1Grk86r6Sientxbnq5Jw\nIHcuzxlO/1uLaMKmgvNUxNOK1jLkBDKeMKLlGvjSn6lW1GM/I35YJUEDkN+zTGv6SlfiF+94gish\nxlV7XYlPnqK1b67KArT1g57jJGMb/TuRpHJ0F17d5Nn09pR3YTLEOrSBvna8a8YT0tjj1bTBH4Qo\nrW3ojQUDvY0ndlOQmoNiY2Nx/Phx6e/Tp0/j6quvdrtSfyLOGI9lqYXQB+sdHshxxnhJNCPMqpoO\nkyFWWnnDliMQCAQCgUAABJ7tFGeMdzK2TYZYAEB0RAwyEjNhttQ42FEb0jZhwYfzJMN6e8ZOIZoJ\nBAKBQCDwCQkJCdi8ebP099GjR5GamgoAuO+++/DZZ5/hz3/+M372s58hNDQURqMRCQkJ+Pbbb2E2\nm5GWliYd+/nnn/u0rXIOdbXnEptqQ9omrzrWCSmmUdiVWc6Nglp/eC06uzthaW0CYF849faUdx0i\nRUgbleqgjyX9IN8TRy/v+EZrA5YeWoRGa4PscbQ96spZHGeMdxIU1F4PMgZq+qlUvxrRTKm/AKTx\nJt/TfZdrj6syvYGrayR3XKO1QRJveeeR43mw111LpA0ZE1dzh4hBJPqKPVbuPN7nWo6Va4sr2Lax\nIp8W6HuGboPcPKLnOC2amQyx0nnkdyULWx49P3j9o79ff3gtXh63zen3JzmGXD/2PlCas0rzQe4c\nVkPw1b0mh5rnIHu8Er5+ZvgbqoSzrq4uZGVl4YknnsDcuXORmZmJkydPYubMmZg5c6av2+hTGq0N\nKDYXoSS91MkgoF/G5MYGgPzqPIebSyAQCAQCgYAmEG0n1ogmi4yWHlqEqvpKPLhvEqrqKx2OaWg5\nITkVxCIjgUAgEAgEvmLChAkICQmR/rbZbNLesgaDAVarFS0tLTAaL688NxgMaGlpcficHNtbuOOE\nJGII8Vm5Uyf7N/Fx0XXwbL9lqYXYPLbMoW65hVGsEEI7pum6lx5aBLOlhiv68CDf0cfR57Nt5vXf\nlYjnCtLukvRSh8/l2qF0ndQ6qgFngYb+jicYyc0vuTLlxEp3kbuWvOuk1blPxEK5a8kiJ7qw5dHz\nUO54AA7islx0Ev3ZrKrpMFtquG1y9Zkc7ooYdN/Ivc+2zVW9bHly14+MJe1bNxliZec0fR7vGaJ0\nj7GfJ0UnS+0j9yqpl71+5N5nhX/e85FFaZ6zGkJfiE7e/B2u9V7t76hK1Xj48GHF78kqHn9Ba6pG\nwDk0U+5z+hxAPp+uQCAQCAQC1wRquqFAtp1oaJuorrnWaS9YOpWOQCAQCAQCzwlU28kbNDQ0ID8/\nH7t378Z9992Hjz/+GABw4MABfPbZZxg9ejQOHTqEZ555BgDw1FNPYe7cuXj55ZcxZ84c3HbbbbBa\nrXjkkUfw7rvvKtblSapGFnfTXmk5j/Z18dLKqUkXaLbU4MF9k6TUZ1rTeTVaG5y2P6F9b3QblVK+\nsdmh5D6Xa5Pcvma8sXFVFnDZL0j6xqYmJ1E23tjXTut37PfkGpAtadhx5M0NpTFRMwfZY9Tse8z6\nZOWO4V1LXptIP9SkOGXHS8uYKH3HzgPefefOeLPtVTqPd81zK3MwJ2keln/6NN6e8q7DvoZy4yOX\nXhWA02dsikRX14k9n/XFu3pGyB3PpjOlj+e1kz7ek5SsPH2BEEhagrvvsd7A56kaU1NTFf/rr9Ar\nLOi/iXotB1GgrzSVVSAQCAQCgToC1XaiIXaTpbUJs6qmIzoiRvox6moFskAgEAgEAoEvGT58OL78\n8ksAwMcff4w77rgDt912G8xmM9rb22G1WvGPf/wDN954I26//XZ89NFH0rEpKSk+b583nKdaRDO5\naC7ymRqncIpplORY19I+uq/51XkOqRlp3xvtwKajX+jzO7s7kV+dx40ao9O9sVFtdB0l6aXc/rJj\n4yo6iPYLEtGsIGWxkzBBPlcjMMmhFEHlqlwyro3WBkx7JxvZeyeiqr7SKWKR5+N0FUnkKnqGjbQy\nW2rw5IHZ0ngoRWe5gsxbOoOYXJtIP1JMo1Sl72TPY0VeJdFIrny1dcsd4yqqUq7v5HOSIYSe13FG\nexTplroyvDxum0P6RLnrKtd/OvUhgWQe4WUgYa8/r162b+y5cmNBUIpiVeonezwbWcpDabzoei2t\nTdyx6ks8bUdfRdL1BqqEs0CFvRHkHqRKYZm8B6VAIBAIBAJBoEPbTUQwMxliVe2nIBAIBAKBQOBL\nlixZgs2bN+MXv/gFOjs7MWHCBERHR2PGjBnIzc3Fo48+it/85jcICwvDI488gr/97W94t/yAUwAA\nIABJREFU5JFH8Oabb2L+/Pk+bZucA9xX8HxfgLOgpgYSqUTOc5XejedQJQKXnEjAimP0+eVTKrAr\ns1xauEXaTju26XNYfx4RspTGCrgcXWe21HDbwULEsWJzkZPjf0PaJhSbixTHSqvjWcvxtOiwe3IF\nKrLeQ0ZiJnfsefNAbm6oCSYg/SciHRFfMxIzXYpcPGGFhQiWaoQrV/3hQUckKe27R3/HE4x5IieZ\nt2quAZm3cqlE5cQhUt72jJ3SfoSssEv2LYyOiHFInyg3Hrw2EhGTjZ7Lr87DstRCblpZ+jmi1H66\nD6yfPmdfNneceeWx15HMTSJs7cos5/Y3Z182Fnw4T1HoosVJti3scSTFKy/itbdR82xTQyAHFqlK\n1djf8EbIPBve6Sos0xuh1wKBQCAQXGmIdEP+gTu2E+tkYW0nuRQevDQZAoFAIBAI1CFsJ//AkzTX\nJGWcP0Tma02vRbcfgJS6US69W1V9JZKik50i3JQwW2ocUkESh65cSkTiswPAdX4Tfx4gnxKS1y4i\ndBFfHzmfNyZs2bw+aUkRqAYtKdG1lu3peWrLofvAHkPGjOyJJZfWUM29JPfbRO05ABxSXLJzgp1T\ntB8Z4G/zo7ZNvPnqbt+U5jl9D/PGVms9AJCzLxvlUyqkcWLbTO93RoulbPly7c6vznNIr0hStird\na2wf6XqnvZON3ZPt7SXtyzs4D6Vjyrjpael2VdVX4skDs/H2FHuaX7k2yPWvt7eCupJ+l/s8VeOV\nBpk85OFBlGell5uS8i8QCAQCgUAQSPCi8dkVlEorHgF4vLJNIBAIBAKBwF9RSttFIvb9Aa0+LLr9\nJHpILr1bVX0lHq3KRV1zrar6SPQDGxFGIkKIDcnuI0Z8diXppVIkGvk/AAfxghdBxP6bYDLEOvj6\n5JzwRLRT6p+WFIFqo8h4UTy845Ta5epcb9nrSlFUvKgX8l1BymIsPbRISvXHovZeouePljbTe1zl\nV+c5iHmA/JzilRNnjHeKOlQjmhH/tCeRf3RZbIRWfnWe1De6zA1pm6TIT/ozuWtJX7tZVdMV73tS\nFhGjaPGKvRfl2m0yxDqIZgQ6Awo5lq2bHjeCpbUJJ6zHYWltkr4zGWIREqTn9oFtF4noY58bLHJC\nmqusLd6GrrOvI9/8oW45RMSZDFojyLy1CkMgEAgEgisJsWraP9BqO6mJxldThrCdBAKBQCDQhrCd\n/AMl26kvogd8gVKECy/LAOAcdVVVX4mMxExVdSmVQx9HYJ29097JRkiQHiXppdwIOF5EEx1NAzhH\nBilFpZFzSJQLK+C4imhzNQ5qxp43FmrLUoMnwpsalCLOeFFctLDgSQSZ1ihLItyx84o3hwD+/KUj\nktgoKyW8meFM7p6ytDYhvzoPgGPUZs6+bKy8+1mH1Jpy+5uRc4lAmF+dh87uTul8tk42SpQVjejf\nmuy8Z8+Vi5xScz/RkXVstCtwefwLUhZz+6E0Z3mw84e+tn397ujL+n1Ztyd2kxDOFBAOHYFAIBAI\nfItw/vgH3kjVKBAIBAKBwPcI28k/cGU7ydlJPEd7X9pTatO/8dKbAc4CAb24inyvtl45QY79jOyZ\nRX9HHPU8AUuufjkRgNcnAE7jwaaO5LWVzrSgRgyTGxvSR9bJzhMf2HPYPa20ikbecmbz+ulp+kTA\nvT3L5NrDm5O5lTlo62xDhD7CYdEgm7KRnZt0+0i7Zw1/HOkJY7hzzFXkmbeeE3LPHVq0In2Zd+AJ\nWFqbsCer0mFvQldlkr/rmmvx5IHZeHncNkRHxDjNReDyPnVkj0A6Nafc/cyKlEppS12NXVV9pUO9\nPBFu59EdWPbJImwZ/xqSopOdxkGtmMt7LrCpRvv6N3Zf1u+rukWqRh8hnEECgUAgEAgEfISdJBAI\nBAKBQMBHTvh4cN8kmC01kkOeTX3dm8illgOc08vRKelopy9JIceWQVIl8sqWq5ceM17qMjp9Gi1M\nNFrtaf2WpRaqToFJl89+zqaLIykf6ePp83lpGNk0aK4iXtREj/HSv+3KLHdKRcmeQz5Tut5ax0kr\n7Jh6UjY5R2mOybWBFXiVxoYcvyy1EBH6CMxJmid9V1Vf6ZCykfSFzAUADve3pbUJG9I2YUtdmdM9\nr3RdlPqmpd/0v0m72LSRZK7SfdmTVSmJZuQ+YMsm40QLiuTYjMRMvDxuG1Z/vgpT92ZKzz66TbRo\nVpCyWIp8I3uVsf2kr+OsqunStWD7SfdLaWxIvSQlKH39SFu31JUhakA01nyxCtkVmdy5A7hOvcl7\nLrDPLF/+xuaNkdJzuK/x1rvx+/Pfu32uiDgTCAQCgUDQZ4hV0/6BsJ0EAoFAIOgfCNvJP3DXduov\nEWf093RUBC/NGImyYY9RSlumNpUZHcFGR1kRpzot7mmJONMyLr6OwFBbvlJEHj2XeNFy7DG+Ru6a\nA9pTLBLINSZCYW5lDpalFkppBNVEFbHRenQEGW98ydyeNfxxLPtkEeIHJmDl3c86RFGxUYDs2Fta\nm5C9dyJeGb8d0RExUuQWL6KTHS9ehKWWcaTvUfq5U9dcK0VZqYnUIuIf++wiEY8l6aUO/aLTGpJz\nvz3zDdITxmDaO9mw2QB9sB67Msulcslx5BqzzxAC3W+5/mmZY6Ts6hMHsf3Yqw7CGbuHGmkf+5zp\n6ygxNchFu3krDag328dG9XrStkZrA544MANfzfnKrfOFcBYA9IcbVCAQCAQCHsL54x8Eku0k7CKB\nQCAQBDLCdvIP3E3V6G20ilKe1MFzZLLp1nipD+X2DVMSC+QEDvpvwFEQIg758ikVqtLJ8froyRjJ\nlS1XvlJUjJr28MQE+t/0NeOJL1r6q+V4Vw5vUhaJeOIJEOx4kuve2d2J8ikVAOz7b+mD9U4iKguJ\n9Hx53DYkRSfLls8TvujP6P2vyL/pdIJyInOjtQFT92YiRKeX2svbg4831uwcYcUPJXGXCI1zkuZJ\nghBdBony4o0bK1LSY20yxCJnX7Z0HSytTVjw4TzpewAO6SpzK3NwsasNTa0/4JXx27H+8FosSy1E\nUnSyw3MDkE9dmFuZg66eTuyeXIG65lpJLCX1y+0vqEYsbrQ2IGdfNhpaTjikYpQ7TyktpD8itwhA\n6Tksd35vttWbdV8K/RHXDLrGrXNFqkYGb4UB9hZKIb0CgUAgEAgEvsTf7A9hFwkEAoFAIOhrXNkj\n3rJTePV40xZiy40zxkupAlnRhqRPZJ2cbDo+0j46/SNbB5sSkTjveX/TadJKx5RBH6zn9oE43+n0\na/QxvNR1WsZJKe2m3HXKrczBtHeyNaXuY6FTxFlam7jpD+kUgrRwonaOaD1eLgUjLWKYLTXIqvg5\nsvdOlMadnhtsOsE4YzxK0kslUTTOGI/NY8uwK7OcmyqTJsU0ShLN6PItrU1SvaQuup/0HGy0NiDF\nNEr6N4muAuCw9xcRKNmy9mRVonxKhWz6QdIO0hb2/lIaW7n5lV+dh4tdbXjxSKlDik9SRlJ0sux1\nWvDhPHR2dwKwC1P6YD2WpRZi6aFFqGuuRUPLCWn8TIZYh+9NhlipPnK/lo3bilfGb0dGYiZK0ktR\nbC5y2NuMHMtLXQjYI9pCgvTSnmk7j+5AbmUOcvZlI786z2k8aZGdd3/Rz4U4YzzKp1RgT1YlkqKT\npXN4NFqd05/S//c32LlBX2t6Pqg939fw3h/eqNtd0QwQEWcOeBIG2Jerm8XKaoFAIBD0V8Sqaf/A\nHdtJyW4SdpFAIBAIBL5B2E7+QXOzVdHmUIom8Ub6KaV6vGEL0VEp6w+vBXB5zyE6eongaaQVG1nG\nawsbhQbASVRjIyro6BwaNt0biZhhU8S56gf5jI5G0tJnGnciLehoqAf3TcLbU951SlnHS8dHO9LV\n1OXpnCIp9egUfmZLDZrbTklRYHQ9jdYGSVjZkLZJ2mOLF0nnKvqHNw9IBBWd9pGOYpQ7n6TqoyPf\n5OYFGWO5KE3enC5JL3VIVUiXx5atJtUjiQZjozCVUpvSbSHjTq4bPd/Id+T68PoMAHXNtdIzhL2/\nyLxgI+hIG+nrTr4naTdJvZbWJql+GnI+m2KSTi/Jpnmkr4+rZxqbqtbVM703fqP64n3g7XZrKc9b\n70tP7CYRcUYhtyrCFX29ulk4hwQCgUAgEPQ2SqtJhV0kEAgEAoEgkHFl78jZI678TlrtJ1457q7S\nZ8WdDWmbUGwuQkl6qRTZQ5zMRESY9k62YnlyY0RH0bhqEx3pRtq2K7PcQVwgUSX0eFhamxxSwJFz\n6WtAIkhI9BIvIksuood8Rspw1Wc2+oW0hbSPJ66pJcU0ShLN6PI3pG3iRuSQOnmRfzzUCGtyEIFh\n1vDH8eSB2aiqrwRgj1Ra88UqpzEh/yfzjYwtG4lIvpOL3qLbTs5lo9XoqKg4YzwsrU1cQXND2iYA\n9hSEy1ILpchG3r3GRvIoRWKymAyxXPGY9IlcK/Y5IvccINFg9JgQ0ayts02aG+x4LUstlMSorMQH\nUWwucri/SPQdfX3I93TfcvZlY87+xzAnaZ6TyE3KIWNLz0MiBJN7mL5XMhIzHSLT8qvznKLKyPl1\nzbVYemiRNOfoZwc9v+ioR7oudvzNlhqH5wb9PFQSy3vj97FcHUrtUoO3RTP22arUJnd1Gm8S/Mwz\nzzzTZ7X7iLa2DrfPjQyLdOucsQnjhaNGIBAIBAKNGAxhfd0EAdy3nXh2k7CLBAKBQCDwHcJ28g+C\nuwZosncarQ2S3UTbT/TnxKk4NmG8at8UfT79mTvlsOcMGxiHsQnjcVPULYgMi0SjtQHzD87FiKhb\nMTDUiNnvz8A/z3+HyT/Nhs1mc6pLziZkPyfO6tuGJuOmqFukPpE2jYi6FUsPLcLYhPGwdlyAteMC\n4ozxUn3Wjgt462/leOjGadJnxHH+00E3YHR8mlM76GtB95H+zNLahGED4xAZFokRUbfipqhbpPOt\nHReQff1DUjtI+Up9fuDaDDx04zSX4yF3fXjXObcyBw9cmwFrxwVp7Ojr2NTyA97/5x8dxoY4qbOv\nfwg3Rd3CrZtXn1Lb5OYbmTMb0jZhQuJE3DJkOIrNRRibMB4AsOfvb6EkvVQaW7Zem83mMM50uUpt\nJ+NC5hEbzTf/4FxkX/+QwzWvqq/Ev783De9/90dk/GQirB0XEBkWKQl/2dc/hOzrH8LVBhNGx6Vx\nx5s3LnfF3gObzSbNXXK8pbUJ8w/OlfrwwLUZ3H6S4+OM8dL/1UbtkHkH2IWpYARjk/k5bLz/P/HE\nbU9idFwaBoYaHfpgttRI43Cx8yLWfLkSc5J+hXHXPeB0jcgzgu5LZFik9F/GTybiTtNdeP7/SjA6\nLk16fgwbGOd0Lch1JuXeF5eOFNMo6RrS40JftweuzZCuB4Gcf9816QhGMH7z0XzcF5cOm83mMMbD\nBsYhJjwGa75YhZjwGPymeoHDvKHvmWnvZOPlP/8ew68agdtNd0jPDbo97HUjfSX3OO9YObTcg6Rc\nNc8Rre8Gb0K3kR4jeu7wzpFD7Rh5YjeJiDMvIZxDAoFAIBAIBHaEXSQQCAQCgSDQ0Zpuil1Vz36u\ndXW9UoSB1qg29hxeujI6wsTS2oTSMWW4btBP0Nx2SjaaQinyju4DiYKpqq+U/iZtIvunWVqbpH2N\n6EgFEkVC9lwiKdrWjd6I5Z8+jar6SlVRF/RnltYmPLhvEsyWGim6hN2LS66fShF/rsaDBz1GvLZb\nWpucIpGAy5FeJemlDuNNIt/IeHmaPUIpCwV9DYHL0UJ0pBebWpL0k0TDsdBRcmoi4XjRfHQEIzmu\n2FyELeNfk1Iw0vOSPj63MkeK1FLqu6W1SYr4m/T2BOTss0dnkutD7+9F2uXqXuZFRLqCjHVBymIs\n+8ReJxlzEi1G9y/FNAp7siqxeWwZ9ta/jRV3rsbe+reliCte3aQvdP8JSdHJuNjVJu19Rt9LZDx4\nUV5y84IHWyY5v9HagBePlOLlcdtgMsQ67XHYaG3A+sNrMWv441h/eK20rxvv2bx7cgVeGb/dKfpO\njoKUxVJEJClHzXUjx7sToebqOeIPEVz0XGb3X9SC2jHyNMpPCGe9hC/DMQUCgUAgEAgCBWEzCQQC\ngUAgCCTknJW8dG1anIdKTlAl0UxOxKPFFVqcoqHTm5kMsSgdUybtN8QKEa5ghZWunk7JiZ1fnSc5\nwmdVTZf2llqWWgidzrkvROh6wfw8pu7NRM6+bKQnjMG60RslRzftLKfTLOZW5kiCAKmTTn3IpgWU\nExnpfrGp4zxJ1UZEDyIO0KLRrsxySVikIeIOLZKQskrSS7EstVA2zSFvXrlqtyvxjR5vufPocTZb\napB3cB53XrGCE69tRCzk3WOkDFZMmzX8cWn/NZIikAh+5P9k/Oh0iqzgRaKTsvdOBAAsSy1E88WT\n6LJ1SseTvpK5yRszubF1V/xIik5G/MAEREfEOJQDOAtPKaZRkqAx9caHpONYEZEI3BvSNmH94bXI\nrczBzqM7HO6puuZaNLX+gLrmWqf0iGS/MdJ/+v/k3+TaKM1XXkpS8lxoaDkh9RlwFJoBoKunE1vq\nylCSXuqwFxw79+KM8Q7Crxzk/l9/eK1DGkrAOW2n3GIK3rGeQM8tf1rgSt9D7pyr5lrMqpqO789/\n73YbhXDWC3jyghQIBAKBQCC4UhA2k0AgEAgEgkBEybnnie2jJB7IHc86G1nRqK65Fg0tJ1DXXOtw\nLqmDjhAg/6ajQ2h7Ti5KhOfI3T25AstSC7GlrgzWjgvIr85zEjAAICRIL/2bbsfL47Zhb/3bWH/v\nJpRPqbCfe+xVpz2UWDGlq8cuaLB7ZtGCExsVwUZwqRGWXO2DJAeJhpLbT4kIi6ygtiy1EMXmIodI\ntUZrA/Kr8ySnvpoIOFf2uSvxjR5vdp83FtI/ADhhPc49hog0JBqQ3TMptzIHCz6cJ+1rReqlo4fI\nnCBU1Vci/6MF2Hl0B3L2ZWPq3kwpIo+N2CNRWuRvVogl0Ukb7i1GimkUkqKTMWxgHFbfs85hXHlz\nirfvGW+MtQgNdL83jy3Dgg/nOXxGxpSe+3R9RMixtDZJkWOA/bmRvXcizJYapJhGSXNu2SeL0NZ5\nOcIsOiIGsYZhWH94LRqtDVK/iVhO6iPPIDoqbFbVdOw8ugPLP33aQSxloZ8PdHnNbaewJ6tSEsBJ\nhCM9N3dPrkBJeqm0pxuZQ3kH57kUe3mQekhd7L3AtpF+Rsod6yl0uTyxrr+i5lpsz9iJawZd43Yd\nQjjrBdxdDdCfJ69AIBAIBAKBO/R1+giBQCAQCAQCX8JGunhq+/DEAyXkInhIFEixuQjr71WOhqEd\nsLSoQJzsG9I2OaQ7BODkICaOcHKepbUJ6w+vxbLUQgwIDpeiosjxJeml0vfAZYc+ISMxExvSNmFL\nXRnqmmulfrHOa8AuDpI6bTZ7JA2J3OJdCy2RGsRxzoqaPNGMiAQ8gZEVekjqOV6UFivC1DXXothc\n5HBdSXpG2qmvtj9ykTJKohrbTgBS3UpjGWeMh8kQi1fGb3doIz2/Ors7kV+dB8D5t0NJeikudV/E\nL/fPchDP6HLyq/McxLSMxEy8nrEL00fMRPmUCmwZ/5qU2o+OZKLFLTpiinxGR0Au//Rp6bqG6PSS\ncCQ3RoBzNBTdb7Uiq9y5jdYGNLedQkPLCUkUJN8TkSvOGO8U1Uj6Nnf/E2hq+QGW1iY0WhtgMsQi\nwXitQzReRmIm9mRVoiK7UjonvzoPZeO2Svct3W9WBCdlkfZtSNuE7cdexbrRG6VoQDL2dB/Ze448\nX548MNvpON69nF+dJ0XZkmdNSJDe6XrQ40vuW7m5z5v/7DGsYCl3rDegn7Vq7l+a/qxPeDqeQjjr\nJdwRzcSKa4FAIBAIBFcK9I9hgUAgEAgEAn/GXV8Nz9fjqWjGRhO4sz8VSUFGBJj0hDEOZbLiCR0Z\nQkP2IiOiBkl3aLbUOIloTx6Y7bSXGUEfrEdSdLJDBI7JEIuLXW1Yf3gtAEhRQ7QTuLntlJTysSBl\nsVOaRlL3L/fPwqzhjyPFNAqbx5ZJTnc50UxJHOIJQfQ4udqfqa651mFs2DqJuMnbX4r+jtS58+gO\nPHlgNgpSFkvX1WSIdRCbeJEnSshFoKkVfsk51ScOqjqWpLrjicwpplEon1LhdM3IeQBgDI3EhnuL\nUWwuAgCna8QKeI3WBiRFJ0uiF33estRCpzbnVubgifdnSRFTdGQdiYCkU32WT6mQylGK3Ft6aJFD\nJCAZYzZCjj2P7j8bXVeQsljaH3D94bWSKMgKY2QesW0g/4/QR+CVB7ZLgiJgjxJlx4b02dLaBEvr\nD5JgNmf/Yw4pYMm9Q8QpOsJvwYfzkFuZIwl624+9Kp1HP0vYuUiTFJ0sXQMyNrx7KM4Y7yDqkT6w\n0Wn0+JotNcjZZ0/HKZfWlr1GvGPc3d/LVV1ysPer0v2rVVzzN7zVXp3NZrN5pSQ/ornZ2tdN8Apa\nVrQIBAKBQNAfiY429nUTBPAf20nYPgKBQCAQKCNsJ/9g5O9vd9vhKWfvaLWDiEOTFw3kjQg2OoqG\n3dMrtzIHXT2dkuOcnEP2GrrY1YbwkAjJMZ5iGoWq+kqHqJGq+kokRSc71G1pbZIc90Rwy6/Ok8rJ\nr87DnKR5SE8Yg9zKHHR224WLzWPLkHdwHo5f+Ce2PvA6kqKTHUSKnH3Z0AfrsSuzHAAwdW8mQnR6\nbB5bJpVPi10kbRvpL+D+gngi4LFCJKmL9JONAKOPY6Nl2DLImAHAg/smYd3ojZg+YqZTeaQfvLmj\nZd64M8d2Ht2B/I8W4PWMXchIzFQsgwhYRPQg/5ZrB+lbbmWOw5xj62D7TcrOr85DZ3cnOns6EaGP\nQEl6qXRdpu7NlNL9EarqKzFn/2PYMv41aa6xbafnEBF7Xh63DWu+WMUVnMhxdNpT+p4CnAVAXn8A\nR+E2e+9EJBivxYq7nkV0RIyD8MWKh3S72flHQ8ZZae40Wu17vZG+svcV3f6ClMWSIL4stRDrD6+V\nrgGvfHacePcJ3Ub6b3p8SL+mvZMNmw0on1LB/Z73N+868yB1d3Z3Ouyhxh7jjd/Acu8EufqU3kXs\nvNL6burL3/Rs+z2xm0TEmR8jHEcCgUAgEAiuJITtIxAIBAKBoD/giygBLenYAPkUeu62i1curw6S\nyowWzeiosZL0UuzJqkRJeqmUrrGqvtIh9aPZUoP1h9ciZ182pr2TjUlvT0DOvmwpXSIRPYgIR4tm\nSz8pgKW1CctSC7F5bBn0wXqYDLEoHVOGYQPjuGKcPlgv7VUVZ4xH2bit0AfrwUKEhql7M6UoEU8y\nItDRfLRgRaJlSBpAnijES/XGiypMMY1CQcpiKd3k21PedRLNeOWxohlv/vHmo7uRHNNHzMSKO1dL\nopmrSDwSAUX2HGMj8tgoIgCSaEbS39FiEi86M2dfNvKr81CSXorNY8scRDPAHuUYPzDBaQ+t6IgY\n7MmqRHREjFPqOzoSibSZRKBFR8TghPU46ppruWNNp+1j7ym5yEa5vfdIvRVZ76F0TBnWH16LvIPz\nHNJ10uXVNdcie+9EWFqbHCKzyLUikWFknF3NHcAekUaQE5i2Z+xEUnQydmWWY07SPCfRjO0Xe7+w\ngj6vHSS6jSfaWVqbEBJkF9EBOOyxxovgo+cUia5Tgjwvec8buh10u929x5QiyNj6eNF3bDn0367w\npwg1NeOgFiGcCQQCgUAgEAgEAoFAIBAIBCrxRJziORXVOvrY83mOYHcclkrn8iJJyN5j7HlkTygi\nXhAhhxWPlh5ahGWphSifUoEVdz2L05dOoct2Oe0dETlK0ksRHhKB5rZTAIBzl84h1jAMnzd+Ju1f\nRKJIAPteUsTBX1VfKbWnJL0UJkOsg5BBUrHRUSkpplF4Zfx2hIdEwNLaJHtdXI0x7ZRnozvIvkYk\nNZ1W6DYRAW794bXo6ul0iMziCTNyc0dOhOU59FkxQS1mSw02mtdJaSVJJBVPPCPfk7SMdMQXPbYA\nnPamo1MNkpSi7L5dpO1EUE0xjXKYE3Q72CghEj3W3HbKKa0hYI9a2nBvMVbe/awkhJG5lWIahQ33\nFkuiMT2GrKgH2MUsIu7R10AO3vVJMY2SxDeynx+pj5xD5lB0eIzTGNICHhFT2AgvWmShr1Fdc63T\n+NMCC9l3jxy79JMCXOxq4/aLHM+Om5JQxiuHngcFKYthMsRK193S2iTVTwuMrsbYFfRzhu4PaSub\nntMT4Ukugoz+nk7Lq/TOcSVu0+VrTd/KtsvbeGthi89SNfb09OCZZ57BX/7yF4SGhmLt2rW49tpr\npe8rKirw6quvwmg0YurUqcjJyUFHRweWLVuG77//HgMHDsTKlStx3XXX4dixY3jyySdx3XXXAQAe\neeQRTJw4UbZuf0k3JBAIBAKBQBmRbshOX9pNgLCdBAKBQCDoLwjbyT/wxHbyNI2V0vm877R+5ird\nFyu8NFod0+qR79jPWUGApC8EIKU8I9Bp1kgqwqzEB7Hmy5UYOiAaFzrOY0NaMdITxkjHn7t0FsZQ\nI3ZPrpAi1IhgBgDZFZmwtP2Aiqz3HMQR0s6lhxZJfSYRcnKimdz40ONK0kwC9n2b6PJZMc0d6PR/\nSdHJDn0AnFNsknPk0t/xkJsncqkTlc4h15KuP2dfNgB7qk02PaZSGlKl8aPTX5IUjHQKPlL2hrRN\nDmkJ6e9d1UnPV7bNBSmLMWf/Y4gfmCD1i019SlIT8qLIiDCzLLUQc/Y/hqsjYvHS+K3SfcSm0OOl\n3ATgcO+RY6pPHER6whjpWHqe1zXXSm1ioVOo8uYYAIe0jGSM2PFnz2HTJ1bV26P4lh5aJO3Rx0vX\nSt/X5Frynj/suJN0piZDLCytTZi6NxNRA6KxdYJ977Zp72Tj+IV/YumoFdhoXoe3p7wLAFL9pGxe\nOld27vDSr5LP6dSb9Jiw5XkDuTmipnzy7FW7qENLm129Z7yJX6ZqPHDgADo6OvAHYAraAAAgAElE\nQVTmm2+ioKAAGzZskL47e/YsSktL8cYbb+C//uu/8M4776ChoQG7d+9GREQEdu/ejcLCQqxZswYA\ncPToUTz22GN444038MYbb7h0/ggEAoFAIBD0J4TdJBAIBAKBQHBl4KmTUOl8OZGHjdCQi3pTihgg\nURJs6kI6HSPdBvpzErmQW5mD7IpMrP58leTEJvstAXCIJCLRWiQyYn7KQryesQs7Jv43YgcOw81R\nt0jn5tzwME62WfDITTMc2vbtmW+k9uh0wNABMVL0GukTiUqbNfxxaQyKzUVOkUT0OCkJanSkD4lY\nYaM72P+7Q4ppFF4etw3F5iJJJGGjhNj20RFQdAQQHQHD9pUHnVJQaQzYz1jRjqTHm3fgCacIHrb9\nbNQYr32kj8ThT6Ia6WPpqD9yDokgYtPXke/oOUzmP5l7tFhDUnNuGf8ayqdUSKn82OuSkZjJFc1o\nkqKTsSerEhXZl6Pt2LnHu85xxniHe48cU33iIPI/WoDqEwcB2EWzJw/MRkHKYgDA+sNrsSy1UCqb\n3KtT92YivzpPul/pqDPSlrrmWpywHpfu2VlV06VIrs1jy6ToTfocEhVG/k3uO5MhFgUpi/Hkgdmo\nqq+UxDfAPudL0kux4MN50vjPGv64dM2By1FSbF0FKYuRd3CedK7JEIv1927C6UunsODDeQCA0jFl\n2PrA6yj/2x+wbvRGAJDqpyNZ6blD+kvPHSJqs9FaZH7SqTd5zxNvCkls+ew9qhT1pSYqja7Hk3b5\nKz4TzsxmM9LS0gAAI0eOxNdffy1919DQgJtuugmDBw9GUFAQkpKSUFtbi7///e+47777AACJiYn4\nxz/+AQD4+uuvUV1djenTp2P58uVoaWnxVbMFAoFAIBAIeh1hNwkEAoFAIBAIvI2cU5bnsCSOX15q\nLlowIw50gskQi3WjN2L94bWS+ADYna7rRm9EUnSylBqsJL0U+iA9dLrLUR9dPZ1Sekdy3LLUQuRX\n/3/2zj4uyjLf/x8eRmUAy2hoEB86/rZepsvSL5Ky9MRLxcgpGe2Hp6UtKZGcitldMAQXcEUWjIRd\nx2wKUclWto1XCtgUiXIoNUtjV3aOD7t12JXUmZiwPeIM6gzM74/Z7+V139zDgw+b7bner1cvh5n7\nvu7r8Z676zOf79fIRAvaWE+apIM2NAohwWqc6DoOl9uX/6y+fQcK7itC7RdvI6VBj8y9BqTc8QSy\nPspkgp4q0JdjaOnuNBbikDbv8+Lzkbd/uWTDXZ7XSt6vQ+3rayGS+SNpko6JQCQW8Rvh8tCMctED\n8Akki3bphxx6bqAN76HMN7mQtmG2GcEBl3PQ0eckVJA4QeLNYC5ImkPZcTkoOrhKUg5BggCd40/g\nBABPn5sJvfQ5zQ2ro61fH5MARAIw1Z0EFXpP7moDwOY6iSryHFpK40Pt49ctL6qS+6v62GYU3FeE\njUdMLMfgG3O2IGmSTtJOqltFggkjglTweoG8+Hw4XJ1Y2PAoC7/Iu6zKW8uwdkY5qy8v5mXuNUhy\n1A3keqJ7S9IkHXbMfw8xmlhUJJgk4TK1oVEsxKbdacPKAy8x8YzK4HPc0bVKDxXD6/W5G6l/EybM\nwqbEatTOr2Ouuq6eLnj63Nh4xARjs4HlvyNhmkR1AJJ7Ij93KKed3HFGIqp8XId7bxhuiEN/63Gg\nPGfXM4yiUr2uJdey7tdNODt//jzCwsLY30FBQfB4PACAiRMn4ssvv8Q333yDnp4eHDx4EC6XC3fd\ndRf+8z//E16vF0eOHMHXX3+N3t5e/OhHP0JOTg62b9+O8ePHY+PGjder2sPmnzGRBAKBQCAQ/Gvz\nr/zcJJ6VBAKBQCAQCC7zz3428idw8JATIjsuB1ktRr/5lyhUGm2ckyPntTYTKhJ8//EiQe7+bDy2\n82FWDuWsMs3yOY1y9y2HaZYZefH5LO8XbcTnxecjI8aAjKZnsP3oNonbKC8+H7n7s2Fzngbg27he\ncOfjzOHi8boxPfoBjA0dhxhNLKLDx+Gdx+pQ9XA1Joz2hUPny9OoIzEubAITRJTEFr6vhtPXQznv\nauDFHHkoSF4E4h05vNBTo6vFO4/VDeqA4uEFCX+fKb0ndwJRyDtVkIo5AXlxgY7j85kRdG355j+1\nf82nq/BV90kA8Cv08XOA7ze+LNMsM1RBKmhDo9jndqcNFQkmlB4q7pefKjp8HNKmLGHrwOpoA+AT\n2RbU66Cv00nWFwmF249uw+LGVCaeyeGdcfy5ufuWM+GIHw/KKwhczlk2PfoBfNV9kvW1Rh0paWdA\nwOXraUOjfG0PVKHo4ComtMVoYgFcdoTSeFUf29xPtAV8Od8qE7dK3IaUf5DmJLlRM/caWN9oQ6OY\nG1Q+l/i8dDvmv4cnpz4tEa3kueLoHN4FSP1ZeqiYiWZpU5Ygb/9yFNy/Ghtmm0HJrahvqWy5QEhj\nzaMUppEXUa8Uf45h+mywc4HLa0QpRx9/jYGEtRuVgfrnSrhuwllYWBicTif7u6+vD8HBwQCAm266\nCXl5ecjMzERWVhamTp2KMWPG4PHHH0dYWBhSU1PR1NSEqVOnIigoCImJifjhD38IAEhMTMSxY8eu\nV7WHxbUeDIFAIBAIBP87+Vd9bhLPSgKBQCAQCASX4TckbxR4MSNpks7nCgtSKR5LYcbIHUQb0sGB\nPmGBFzbitNOwLCYTjp5OJnwAQEtHM3OHVCdtx4mu4yg9VCxxjZBbaP0fy3FriAaVVjPWzlzHykma\npMOmxGrU6z+ANjSKhV/jwzw6XJ0SIYA21U2zzBLHEW0gb5htHvKGMi9cDGWzeiA339VC1yehgq8j\ntaex3YKFDY8yVx8dz4tGA4lh/q47nOd8qgPNNwpnZ3faWD6vVvthiXOO6k95rehvujaFzVMaq3ce\nq8OmudX93D0EL+DRGPHhGnnnJJ+LavvRbVjY8CgTn7ShUczBSHVasS8LPR4XWjqakdH0DPLi85E0\nSYedyRa8nlglWV8URvDJqU+j4qENTMxSqi8543gXY3ZcDqqPbe7nBKXPeSFSGxqFqLCxzMnFi23a\n0CgE/8OVyYdb3DDbjNr5PmGV3GkkkJOIpxSKlBc9Sw8Vs3FbtEuP9N2L8feL3yKrxcjGuyLBhBfu\nNkIVpGKhHeXtpbrx9eZzKPLt5ucnzSES+wgKmUhusoQJszAubAJiNLFM0CVBmi+bf83fc4YaAvFq\n8Of4HGg98vOTv2eRCOjvGrwY/33hWoeAvG7C2T333IOPP/4YAHDkyBHceeed7DOPx4Njx46hpqYG\n69evR3t7O+655x5YrVZMnz4dv/vd75CUlITx48cDAJYsWYI//elPAICDBw9i6tSp16vaw+L7Eo9T\nIBAIBALBjc2/6nOTeFYSCAQCgUAguAxtYvvLEXWlXGmoLT4XDz2vkVAgF1L4zVQ+VxZ/PDlxSBip\n/K+NWHFvPtucbWy3IOujTCRPWojo8HFo6WjGzz96EV093zBxDPDlW/J43QgOUKFkRhkTLqiuFHqN\nF+pS7ngCufuWQxsahcrErb66nz+Flo7mfg4dEkVSGvSwOtrYBjLv1KK/eeRii9wBpDQGKQ16ZLUY\nkR2Xc83GXe62AqSuKnkdyS2kDY1iYoo8fCL9OxQxTO5oG8rx5a1lrA7A5XCCcdppiNHE4ja1731/\nQhhfPwCSsHn85j8dY3faWKhCf/1H8zTVkoJlTenw9LlZ2fwc5wWoSquZOa9qdLUsn5jdacPameug\nUUdi4ujbUfRACSqtZtymjmIuLXJJ8eur1X6Y5fP6zR/KJWENlfpcqV/XzlwHbWhUP2GEjqG22J02\nhASrYXW0ScRj6gt53i2ro42J2XanjfUVAEmeLvn1qDwSrFxuF3vvncfqUDX3Tdw8cgwqEkxMnHG4\nOpG7P5utY74cHhoH/nqLdukla4KO4+d4j8fFBPZW+2GkNOhhbDZI+ggAE9ABsPsOAMV1wefS48VD\nf04tvo+v9J6t1CdK7aXyeIGaD8/K55b0x1COuVquh8B4LfcerptwlpiYiBEjRuCJJ55AaWkp8vLy\nsGvXLvz+979nv6BesGABnnrqKTz11FO45ZZbMHHiRLz55pv4j//4D6xfvx65ubkAgF/+8pcoKSnB\nU089hT/84Q94/vnnr1e1h43YCBIIBAKBQHC1/Cs/N4lnJYFAIBAIBILLKOVRuhqUxI6hCiAD5eKR\nlyMXEPjcStHh49DYboG+fh6MzQYmqL0xZwtqv3ibbWYnTdKh4qENqG/fgcZ2C6qPbcZP716O0SNu\nYuHXaHPZPKcKG2abUd5aBsDniNkx/z1JbjTC43Wj7PNfIW3KEgA+4Q0AosPGYf0fyyVh4cjZZnW0\noaP7b1i6Ow1WR5vEDSh3rFBf8H0THe4LGTlQiEO70wZVkAp58fmI0cQOmqNrKMjdVtlxOZJQgyQs\nUR1J4NCoI/uFNJSP8VB+9KbkaBtorvHlxmhi2bGt9sOSHFxqlRqA1AVDY8GH8pSH5JMLnLzwyQt7\nSuIgCTt58flQBaow7/b5THyVO/NOd59iop9GHclEBVpD2tAoZLUYkdVihGmWGUmTdKjR1aJOb2Fi\nCl9Hqos2NIoJcWqVWhLWUN7nSmEpSczmQwfyjjn+/dx9y5ERY8DSprR+oTvl42d32vDcnmeRHZcD\nu9OGBfU6pH+Yhu5L52BsNiBz72XRiYQYJcGoIsHExpbQqCNRo6tl4RitjjYUHVwFTUgkar94W5JD\nTF6v092nYGy+HNLR7rSh49xJJuyRuM73MwCEBKtROH01KhJMcLg64fG6canXzdxt1UnbsfMv7zJh\nncRXGmclUYrWHy/Q0pzyt9Z5QZs/x999XN72geDnFe8apHs83SdqdLXsBw7fJUP9nvouCfB6KWLn\nvw4OR/d3XQWBQCAQCARDQKMJ/66rIIB4dhIIBAKB4PuCeHa6MZA/Oym5QQbjSs4ZTlnXqnza1Ey1\npDAHBm0m58Xno/RQMfLi81HeWobsuByWU4zOTWnQw+N1Y2fy5dxN5NSgkIwerxvmOVVMAKANVdrw\np9xqFCLO0+eG1+vLnxQdPg7bj25DREgEc98Y9qTD6wV+dk82Kq1mpNzxBGq/eBvdl87hmx4HKhO3\nIkYTy0I6lreWMYcN72KiPmxst/RzN9EmPYkm8k11wLfxT20MCACCA1WKoeeorUMdL+q/tClLUH1s\nM7LjclgYPbnjJ63xSayduY71H59rij9uOHOFF80GOp+/vvy69D6JJzSXaI7ZnTbo6+dh7YxyvNZm\nQsH9qyWfy4U/eX43vg4pDXoAl+cLX2+69sr9OTh1/iv8+qFX8eTUpyXnU30pzx/gy2ulNJY0p2g8\naLwWNjyKkgdfYWXTtV1uF9QqtcTdpDQu9LrVfljRYUdrhY6h+vHYnTZoQ6OwoF7H1iO/vt29bkkf\n0fG0xjYeMQEAXrjbiEqrecA68/XiQ7Ua9qTD5jyDuuT32d+qQBW8Xp/bi19LSq6zVvthJtrVzq8D\n4HOO0rl2p61f//B94nK7YHedwc0jbkFAADBm1C2o0dVi51/eRdFnBfjp3cvxiwcK2bUX7dLjncfq\nFO+vdC35nJavNTk09nwIUH785OMq78+hCNvU70p9MZyyrre4dr2/B4Gre266bo4zgUAgEAgEAoFA\nIBAIBAKB4F+ZK/nV/LX+pf21Fs14B4pSqDTKPRSjiUWPx4XSQ8VMvJFv9L9wty+3EL95Lg8T5/UC\n6R+mMReG3Plk2JOOcxfPQRsahRpdLd55rI5t8FP4x66eLkmZNudpbDxiQkaMAWWf/woZMQaEjxiN\n0hnrmPNJGxqFpEk6dh6Jf3yOLQqlR0416pc47TSUPPgKAKkzhnd9kctKFaSCaZbZrzvN3wa23O3G\n99/ametQfWwz0qYsYfnBCLmDjCDHFO8SGmiu+JufcqeZv/PJnSgPvce7wuRYHW2s/6JCx2L9H8tx\n8tzf2OfyXFL8XKF2NbZbWEhPAAgIANycQ5F3DVYkmFDeWoZNc6uxLel3EtGMrse7LMlV5s+xY9iT\njsWNqXi1dT17TxsahZIHX8HKAy+hsd0iubZapZaUJXdv8e4pcjnJ3Wu8Q6vVfpiNs9XRhpQGPRbU\n66Cv0yGrxQirow0hwVIHGNWF8otRPzpcnazM6mObUTh9NQqnr0b1sc1IueMJVl++fnzf0twz7EmH\nvn4eljX5RLK1M8rhcHUiq8WI4AAVno81onZ+nWI+Orkzi/IRkmgG+AQ3yrlGOefoeJorFCLz9cQq\nbEqsRnBgMM5e6EJefD4AoObEW4gMuQ317e9K5j3lfeOh/slqMbI20zhoQ6NY/jh/OQ3tTlu/sJj0\nmh8Tf3njBkLuMOT7Tn5/HYx/hiPtWopm18O9JhxnAoFAIBAIvjPEr6ZvDMSzk0AgEAgE3w/Es9ON\nwfVwnF1Lh9hwHUxyZ4vcfQKgn9OFP5Z3C/ECBjnE8uLzmQOnsd2CpEk6NLZb8NyeZ1Hy4CuICIlA\nRtMzKJ2xDk9OfVpyrcZ2C9I/XAwEAFVz35Q4eYjtR7eh+thmidsDAByuTsRoYpHSoEft/DrYnTaW\nQ4t3t5FARk4h+VhQfUiUoOP19fMwIXwiCu5fLamXvD+By8ICuUCoLH9jxbu1cvctVzyGyqD20XWo\nvqe7T8HqaEPpoeJ+Dhh/wqj8+gPNo4GcjkpuKX+veQei3PFnd9qQudcgcSP5u67daYNhTzrOdJ8G\nAoAJ4bejdn4drI42FH6yUuJ6lJ8r74vGdgs06kgsbHgUb8zZwsJ/Ul4uf+2xO204ePoTvNJawtyI\n5C5SGgul+wA/jvKx598DwOY0OYxovWnUkchqMaLH44LXC6gCVcwpRteXu9V4x6Wx2YDgQBU7ttV+\nGMua0qFWqZFyxxNY81khKh7agI1HTGzukcNSvhboHqFRR8Lh6kTRwVX4qvsk1s4sBwCsPPCSJGSs\n3BEoz7nIf0b3KeoLAMwJyrvBeLE3Oy4HK/fnICggGHV6n5CZaklBRowBufuzsSmxmvUDAEWBl78X\n8K49ACz3ndK65Z2q/hxpSvPC33tDOV7uGh6O6+xGYrDvSOE4EwgEAoFAIBAIBAKBQCAQCG4glDYs\nleDfl2+WX6tfyw/VmcBfm3d18O4T/hjevcBfi/Jn8fDuMnevGzGaWJzuPoXtR7cxN055axkyfvgC\nNh4xQaOOROkMn4OKcqW92roep7tPoby1DFUPv4mquW+i9FAxc8O12g8zR8eTU59mm/+U+8zh6sRz\ne56F3Wljohk5tXL3LWftonxh+vp5SN+9mOXV4qENeHK1kIOlLvl9mGb58rApuUuob+k1uX9ebV2P\nhQ2PSnJ2yeFdWfwxcvcN4HPcAGBOpawWI1rth7Folx7puxczt568/IHmyGDzyN9Gvb9cXDRm9Dk/\n72hcYjSxEidadLgvl9mG2WbWVnqfvybvADLPqWLzhQSVNZ+ugu38GbR0NEvqq+TSA3yi2eLGVDhc\nndgx/z2Wr4zPw0fnUxuoDsZmAxbc+biiMBKjiYWnz82cSnxb5I48+lvuDKK+AsDaTHnutKFROHfx\nHDKanoHD1ekLQZhsweuJvnyBlVYzejwuNhd451GqJQWlh4qRPGkhtKFRzCHJz5uvXTbkxedjwZ2P\n4za1FpMj7mL3iejwcciOy8Fze57t54gjd2pWixGlh4pROH01NOpI/OYP5ai0mvHGnC395hDNL7lL\nU+4WpOuTUEU54/i+58uj0Kmdzq+x5sES1t81ulo8OfVpbEqsRtIkHdbOXIfMvQY2Vvy9j8RLek0O\nSconSPNWKc8ZnxPPH0rfBwN9R/Cfyb9jeAcsORuVXL3D4Vq7uoZ6zcG+I6+HACiEM4FAIBAIBAKB\nQCAQCAQCgeAa4G8T099mKHEtf/l/peVQfSisGV8Obdbzwg1wecOaNmVpU5mcOYDPyZJqSUGl1YyC\n+4pQ374DaVOWwNxmwsnuv+Ipy4/xWpuJiSdjRt6CNZ8VoqWjmYU7jNHEsus9tvNhJNc9guS6R9gm\nPbltLvW6sawpHWs+XcU20Clf1vaj2wCACQ3A5XCKmxKrMSH8dsmGtnwTmkJU0rlx2mnQhkZJwjvy\n4pGc2vl1qEzcivr2Haxug4lX/L9yUYEPyWZ1tAEATnQdB+ATDgvuX42xYdEICQ5h5w9n03swN5pS\nWdVJ26ENjeon9qVaUpC518D6ihdXeVFSCbl4KK8Hhb6jnFGlh4qZQwwATLPMWDEtHysPvMTGhZw/\nrfbD/QTMGE0sJoTfjhhNrESA4cPvUZ3dvW7WV3nx+QgOVElyS5HAQ7zzWJ3E9UN14e8ZvMja0tEs\nEbZ50YbEvPLWMvb56JG+cKTlrWUALq9PwCecUJhGpbk9d8IjWPNZIR7d8TCMzQa0dDSzuRynnYad\nyRbEaGJhdbTh7xe/xYmu45L1kDRJJxGt+HsEXaMiwSeUBwUEY0SQCnnx+ejq6cLChkdZGEt5iEJ/\n0H2KxobCaZLATtA6Od19CqWHipE6+SlMvOl2dk8hKJfh6e5T7D5AY0fjQznW6H5I1wV8ee8IpR8b\n0GtyIfpbi3JRSy50Kf2AgdooX5fy+wQ/165UNLseIREH42qEvqtBhGoUCAQCgUDwnSHCDd0YiGcn\ngUAgEAi+H4hnpxuDgZ6d5IKS0gYovR4sFN9wUAr5NhzXGdA/lBcfEs3ldmFEkApeL5gDiOrOh9aj\nNmlDo1iYPVWQShLirrHdtwGvr9Nh9vhEbD22CdFh47BrwYfs85X7cxA+YjTy4vNR3lomCU2nr5+H\nFffmo+bEW8xVRKEhD57+BDUn3oK7z43XE6tYmLmlu9PQ6fwaXngRGBgoCccmD31HbZGHiSNIPKEN\n8O5L51Ayo0wSjpLKpg14PizalW5a+xtXcpllxBiQt385cu79Bco+/xXGhU1gIQ6pjwD4zbU2nHrJ\nQ3cONp+pjiR0KIVz5JHPQX/1kocupDrwYToDAny5qvLi8xGjiZU4xgBAXz8Pdcnv9wu9J7+2vA18\nXflwkwUHVqJOb5Gsnx6PCyHB6n6h8vg1xIfuBMBCO7rcLhZSkM6hOapURz7MJR8Ck8I50nX4sWrp\naMbKAy/hpbiVGDNqDH7zh3LYXWewdkY5C4NK893ldmHxlGcl4ShJCKVQqXRsXnw+ntvzLDtu0S49\n3H1uBAf4QkduPGLCqfMdeC7mRVj+2gBVkMrv/KR5onSfo9CJ8vCN8j5O/zANXRccqEzcysKyAsCj\nOx6WvN/YbukXfhYA9HU62F1nUJf8viQUJIB+IVOV7ve8w0/ezoFcnPy9Y6AQi/JrKpU/0Hoa6PyB\n6vnPZLjXF6EaBQKBQCAQCAQCgUAgEAgEgu8Q2iQn95M8VJf8NR+KT17OcK/LuwCUXE/DCXEldyVU\nJJigVqnxfKwRqiAVcxRR3Xl3DbkvUhr0yGoxonD6ahbyjUSxpbvTYHW0QRWowr4zLYgM0aJkhs8h\nQ6LTprnVqEgwoeDAStaPFI6uLvl9vBj3UxaiEPCFhDzRdRxrPitE6uSnMCJIxUIW5u5bjpIZZahf\n8AEaFjSiLvl9Fo6Nd0dZHW3MheSPVvth6OvmQV8/D3anDRkxBpw+fwqFn6xkbqHy1jKJs0rulhiu\noCkfK7mLhYSxyRF34TZ1FBbc+Th2Jlvwwt1G1u9Kjjn5tYbqJFFy08jns1KIOl404/+l13anDamW\nFBZyUh72Ucm9I78ezb/n9jzrm2NBKphm+fJ6xWhiJW2keRsVOhYOVye7XqolBVZHG1vPdG3qZ6on\njS31R3ZcDgDgZPdf0dLRLFk/IcFq5spU6i+qC90LosPHIWmSDnnx+VCr1P3OkbsPqU9ozgM+EStt\nyhIkTdKxcskVxV/b7rQx0ewHY36AlQdewuIpzyIqdCwSJsxicxkA8uLzYXedwfToB5gYRg7QpbvT\n4HK7kNViZA7IGE0sC1tpd9rg7nPD6wUKp69G9bHN2DDbjJx7f4HdHR/A43UjLz5f0VVF7VO6zzW2\nWyQuPMrNSE5Caqc2NAqjR45m4tj2o9vYWHddcKB0xjpo1JEs/yJfF7o/jAhSYVNiNRPkATDXoyrI\n5zbkx4UXYWme0pyQi1pK60/p3qEUApI/nsqTu9oGu//I3dL+7gfXUjS72u+6Ky1nqAjhTCAQCAQC\ngUAgEAgEAoFAILhGOFydADBgHhuCNvzkG5b+xBt/G5lKm6vy8IH8hrNSGfKwZ3xIwooEE6qPbUZG\njIFt/tJ5fN2yWoww7EkHAGTEGFB6qJgJDY3tFhQdXAUvvOjq6ULt/DqYZpkRohqFooOroK/TYWlT\nGhMgHK5OdHT/jfUnbQbz11q0S882rSdH3IUJ4bdjwZ2PwzTLjLz4fJZrqLy1DNrQKMRppzHhIXOv\ngQkgJHjxIRR5kYnGI047DZvmVjPHyZNTn8abSTUwz6lix1YnbWfCHI2BvJ8GY6ANYj5sHG3ak8tH\nrVLD7rThRNdxZH2UCX2dTrJ574/hhELzd+xQhEESOuTwIT5rdLVs3OK009h88LepTwLFol0+sVYb\nGiXJTaYNjWLhLOUO0KwWI7xeX3jH7Lgclids6e40lhONQo0CYGuEz1VG6628tQwadSTGhY3Ha20m\npDTomROK2uQPahOFR+RFWLng5m8M7E4b3L2+etmdNrjcLuTtXy7J2+fpc8PqaJOUE6edhpIHX0Ht\nF2+j9FAxMn74Amq/eBvBASq0dDSjvLUMaVOWIDp8HGI0sRgfNhHa0CjmNPumx4HcaQUIHzEarydW\noSLBhNJDxazetN6MzQZ4vcCIIBU06khUJ22Hw9WJV1pLkBFjQHCACqWHivvlyPM37/h+l4tJje0W\nLKjXMSccLx7HaGKx/eg2/PyjF/H3i98iRhOLysStmBxxFxbU61B0cBVKHnyFOdLo3rV0dxou9bqh\nUUeyUJ+8OEdzTe4Ok68/ufBMc2igfIf8PFHKN3ktkIt78h908HW4FgxHrNYQKY0AACAASURBVOeR\nr+ErLWcoiFCNAoFAIBAIvjNEuKEbA/HsJBAIBALB9wPx7HRjMNCzEwkAtOnvD14EkoevUwrzSOcM\nFKZL6RrysFtKZciFncZ2Cws7yJ9ndbSxsGv+2kbh7PLi81FwYCVUgSpsmG2GYU86vF7gZ/dk49sL\n3+Llz4tZeLxUSwoyYgyICIlA0cFVKJy+Gs/teRZvzNmCL7/9Ej8Y8wO2iZ3SoGehHwGw0Hm0QU5i\nZUqDHqfOd2BnsoW9x7eR6plyxxOo/eLtfm4oeZsWNjzKHDZK/ecvTKFc3AGUw7T5Gz9CXh6Vkxef\nz/J5UT+QqygjxoDJEXdJBFy6trzca4E8fKMS249uw8oDL0nmEN9/8vey43LYXKCcVEph8KhtfEhQ\n/jN+7gKQXAe4HFp17cx1WNaUjl6vh4UKLfzEN4/feaxOchwAydzi14rdacPS3WkYFRQiCT9IfUSh\nACkUKYWXpLbK199g0P0kLz4fGnWkJFwj31Z9nQ5fu2xsXfD3BHkdunq6WOjPV1pLWL3oXlB0cBU2\nzDbD4eqUhD2kEK3k/KJrpzTomUuUHHrUB/z5VAY/jnw75fctul9RH/R4XAgOUMHjdaPogRLWl3w/\n9XhccF5yQq0KxeuJVWzdklOOwjTy88rYbEDB/av7hb3kxXW6H/Hv8WE1+Tnn7348lLEe7v3/SqC+\n4ttzJfW9VnWUX1septVfOVfz3CSEM4FAIBAIBN8ZYvPnxkA8OwkEAoFA8P1APDvdGAz27KTkMPIn\nyMg3+fk8OP5C6l3thqV8E1e+GUk5nwD0y2UGQHFDW16+1dGGpbvTsGluNWI0sXh0x8Po7LEDXuC2\nUC2CA4NhnlMFbWgUWjqakbd/OW4eOQZbk34LbWgUrI42FH6yEl+d60AverEt6Xcs95BGHck2TEkw\ny9xrwFfnTzInGO/Yk2+uUpvTpixB7r5s3DzyFjT+v70DtokXhZQ2wfmy5QKdvA/lm+sD9aNcXJXn\nSSKhiDbxAZ9IFKOJZSKap8+N4EAVMmIMqLT6whaSuFaRYBpU7JK32V//kLioVB7vrMyOy2G5xgYT\nB0kYkeej87dmqF+ovxbt0sPrBWrn17G54q+ecgGO0NfPw9oZ5UiYMEuSw4/yaSnl5Wq1H0byzkdQ\n9fCbTMhqbLcgo+kZPBfzIsx/MiFSfVu/PH680OUPXqDj+0Ffp8OIIBWCA1WK4g29Bi7n5+PbCYCt\nHT6fWZ3egpaOZpbrzOHqxNKmNPT19WFs2DioVWpJXjNPnxvuPjd2Jlv6hQ6kcaH8bZ4+N955rL/A\nBoAJ5Hzd5fns0qYskQixJEhWJJgkIqA8tx0J+SP+EcqTXK1rPl2FHk8PAGDT3GqJAEn3PV4M49vE\n51ej8SGxUF7vgX64cL0Y7nXk7ftn19dfneRi72DfR0I4kyE2fwQCgUAg+H4gNn9uDMSzk0AgEAgE\n3w/Es9ONgb9nJ6UNRX+/0Je/r7QZPtRrXC18ma32w0iuewRVc99kYgVtpi9rSmfujIEcda32wzA2\nG9jmOXDZHfXlt1+i9ou3mYhDos507YPYemwTCu4rQn37Dub8sTlPI3daARbc+ThzDZU8+ApzUpGw\nlBFjwMYjJtTOrwNwWaAhRwvltyLxDwDLz9Tp+hr1+g+GJCDx/SUXtuTjIncfDmWMlcK6+fubHC4k\nhLncLvR6PXC4OrF2Zjmqj21GdlwONOrIfm4mEjfJWTPYnBuKy0TJccYLZrTJzbu2slqM/cQGpT4d\nSKDkhQzgsnBmd9rwTONPEBQQjPcWfsiEMwCK9eTL452FVkeborAlF1TkfaGvn4dNidVsHWXuNeC8\nuxvfXjiLm0bejHUP/UYiICq5Q+Vt5vuSFxF5kUbuguLdkrwQktKgR/elbnx7sQujVTfjvOccW69y\nwYhcoZVWM9y9brxwt5GtQRJoqVz6Wy7K8oKcp88N0ywzE8l5hx0v6PECuXwt0XvZcTlsTsvFFBLS\n+PnEX8Ph6kTBgZU4c/4UAgICcNOIm3H2QhcCEIB/u3kScxkuqNehdMY6TI64S+Jy5dspd/i12g9j\nQb1O4u6TzzWlv68HV+oU4+ec/LuKP+a7ENKU6qbE1Tw3iRxnAoFAIBAIBAKBQCAQCAQCwVUw1Lw8\nSu/TRu5QRLNrkctFqY6ENjQK9foPkDRJx3L3AMCJruMs3xifu4sv83T3KSbmeL2Q5P2q0dVCo45k\n+YzI+WSa5fv349MtiBipwZvHtrCN7zq9BS/PrMD06AeQaklB6aFivBS3Ern7s2HYkw6row0VCSbk\nxeej+thmFE5fzdpDotnZnrNs4zw7LgfGZgOS6x6BYU867E4bsuNWICo0WrFvlPqZxoDyRtXoav2K\nZlktRonASMfIN53516mWFDYX6Fi5iEKfk8NMGxqFigQTVIEqBAcGY8yoW/BamwnJkxai9FAxjM0G\naNSRLO8XQY6fwfA3h+UoiVFpjU8CAJszcgGkIsEEVZBKkovKX59SWfw6IHGS1h9w2Z1n2JMOu8uG\nzh47WjqakVz3CPR18yQ58+Tlne725ZCiOgNgawHwCTmUo43awreX74u65PcRo4ll89njdaPs3yuw\ndmY5/n7xWxQcWClpN+CbN6mWFGw/ug2plhSkNOiRakmRtI/WJT8mlOeP5gS1JU47rZ+7zu60ITp8\nHAqnr2aiWbfnf5Bz7y/gcHViYcOjaGy3sPa1dDSjx+NCpdWXNxAAKq1mVm+HqxOePjcrVxsahbz4\nfDYuVB/qq7z4fAQHqphotrgxFduPbmP3P3KvURup33nRjJ9X/JymvqbxTJqkQ158fr88cSTMrfl0\nFS54LmBs2DjkTiuAWhWKoMAgrLxvlcQJd9OIMcjdn41lTek4d/Ec6xtqJ409/zpOOw07ky0sZyKh\n9AMKfi5eLUplDHUNKyH/rpLX92q+k4Z7nlxMvpp2DQXhOBMIBAKBQPCdIX41fWMgnp0EAoFAIPh+\nIJ6dbgzkz06804HfoB7MWaQUxmwo4fuuNm+NPLQdbYjKc6vJxZqzPWdZSEN5/Sm8GgAUTl/NnDSt\n9sMs3xHv+OGdUhUJJizdnQaX24Vu9zmUzfw1c0tlND2DW0M02DS3GgBYaMff/KEcdtcZaNVj0ev1\noGRGGRPIKhJMyNxrwAt3G5G7PxubEquhUUcic6+BiWtFB1fB43Xj9LlTuC1Mi/ARo1GRYOrncFHa\nlOVDxsldSrwQyjupBhoLeW4vGhP59fgQgfKcWQCYoFNwYCUu9l7A2QtdyJ1WgJoTbymGE1S61rVG\nyRkmd6ZRKEZ/fc27yeQONN5hRJ/zji2row0adSQAsDlBIQf58Hl0rjyUIQCWg4vqmtH0DCoTt2LN\np6tgmmWWiDnyseTLSN+9GBNH346C+1dj5f4cBAcGIyRYzcalsd2CooOrcKG3B46eTmxKrPab103e\nx3w/pDToERAAeL3Ahtnmfq4vY7OBub0W7dKj4H7fmqD1kxFjwGttJhbeM2//ctymjsLriVUSZ1VW\ni5F9fmuIhq0hchGmTn5Kkj8QuByikXejbT+6jQlxfM4+/hh52+m+Is936O51S1x3je0WLG1KQ1To\nWBY6kkRtl9uFC54LOHvxG+RNK0R9+w5kx+UA8N0fyL1K/Un9ROPP55K7mjCGdI7SfWWo5fH3an8O\n5yspcyiu6KG6pQcr/1ofTwjHmUAgEAgEAoFAIBAIBAKBQPAdEB0+TlE0410scmcR/yt9ctn42xSX\nX+tq68rnyCI3S6olhTmkePGHNv4rEkwYPTJcUg5fP1WQCoXTVyMg4PIGPIV3/Or8SbR0NGNhw6Nw\nuDqZWKYNjYKnz40TXcdhP2/D2YtdcPe5sfbQr5iTpHTGOnzT44DD1YnMvQYs2qVHpdWMn92Tjbrk\n9/Gze7Jx+vwpVseKBBNOdB3HqfMdAIDxYRMBAMua0nHy3F9R+MlKaNSRqJ1fh6IHShAQGICSGWWo\n0dVCGxrVz+Hir7/5kI8Ulm/RLj3rjxpdrST8IN9XNB9o3vAuFXJR8GXn7lv+j3xsy1nZVE5Wi5E5\nr5Y2paHwk5UICABGBY9CpPo21H7xNjbMNvfLZaV0rWsN397GdgtzIPHtPd19CuWtZciOy+lXl+1H\nt2FBvS+vXaolBVZHGzuHd5uQw4g+o7Vld9qY8JTVYsQLdxvx5NSnJY4t4LKTjULrZe41APD1c158\nPp7b8ywT1GI0sRgXNgFdPV04ec7nwCT3IY1lq/0wq2ONrhYVCSbEaGJRr/8ApllmlB4qRlBAMIoe\nKEFFggl2p803frvTcKG3B9lxK6BVj+0nmvmD+oHuP6ogFQru961Fmh/0n8PViY5zJ5H+YRoAsPpo\n1JHM6ZcwYRYTzRImzMLOZAvq9L5wg9RWAHC5fS60nHt/gU1zq1Gjq0WcdhpS7ngCHq8bL39eDJfb\nBaujDWmNT2LnX97F0qY0dF86J5kfkyPuYv1U3lrGHGL8PLE7bf3WkSrIV8esFiMy9xqQF58Pd58b\nWS1G1qdFB1dh7YxyhASr2bnkFFMFqhAYGAD0Ab/781vIjstBeWsZAODU+Q4m9FN/xmhikTRJh8rE\nrSg6uIr17UAhGIcCja/8njNUNxd/r7Y7bRIxmP+c5uVQHWL+nGb+RLPhOs+G6xa73u4yJYTj7Dvm\nan8pJBAIBALB9xnxq+kbgxvp2Uk8GwkEAoFA4B/x7HR96Ovrwy9/+Uv8+c9/xogRI1BcXIyJEyf6\nPV7+7KTkFAAub5zKczYN5vSRb0Ze7WbhQE4Vqof8tdJmPeUF4nP48E4oJZeau9eNwumrkTRJx1xZ\nKQ165kBb1pQOAOi+dA5nL3bh0duT0fRVI+qS35dchxxAJIytPPAS3pizBTGaWLR0NCNhwiykWlLQ\n43HB7rQh595foL59B9KmLEGl1YwejwuePg8AICQ4BO885nOTLKjXwTynCie6jqP62Ga/eXwIEsm0\n6rFQq9QsfxrlggIuOz7oPXID8S47ACxPklKOLBofytXG55ujjXBy1pFAx7ul+PqQO4jcOEPN5XY1\nkKvH3euGx+uG7fwZbJpbzXJR8X3M52rjx1xfNw+3hkSidGYZCj9ZycpQcqfJBQy70wZ9/TzcOioS\nqqBg9Lgv4O8Xz7I6yOtKY9BqPwyHq1OSe4z6knJxUd6sby+cxajgUbCdP4M6/fuSfF/kNgQuO5bI\nnUYi2aigEF/fOM9gWUwm6v77XQQEAMEBKrj73Hg9sUpxzvhrN/8eYXW0IUYTy/KKBQeqkHLHEyj7\n/Fcsn5lhT3o/5xsALG1Kw/iwiawd+jod7K4zWHFvPmpOvIWAAOD5WJ+rk45r6WhG1keZKLivCD8Y\n8wNo1JFM+M3bvxzhqtEIHREKd68Ho0eOZo41CmnI30uByy7ABfU6jAubgBfuNrI8a4XTVzPRlVxs\nWS1G5lo7d/EcOl12NCxolDgSeecjueYSJswCAJajrLHdwuYqjanL7cKaB0tYf/JORH6t8vnWhnPv\n9jeWQ3Vj8Tnf+DVCjuCAALD73pV8nyiJZrzL8kb9/3jhOPuecrVxQAUCgUAgEAj+lRDPRgKBQCAQ\nCL4L9uzZg0uXLuH3v/89srOzsXbt2iGfq+QUIMgVw+ds4nMV+SuP/2X/tRDN/D1fRYePk+RY4jdZ\neWcJ1Zd3gTS2W5DVYkTalCUwNhv6tZnavWG2WSJUWB1tUAWpYHW0IXOvAQEBgKfPA7VKjUV3pOK/\nz30JrXosqzttclsdbcxpVX1sMzJ++AJKDxUjpUGP19pMrH7mOVWoTNyKF+N+irUz17G8TDuTLdg0\ntxqjgkJwqdeX18vutCE4QIWlu9Pw849eRNqUJazN/vpcGxqF8WET8XpiFTJiDMhoegYpDXomvJDz\niBx25ACR5yMj0WxBvU4SwlI+PtVJ2/vlmwMA9z/aQPnBTnf7cp5ltRhhdbQxd5rdaYOx2cByU5FL\nZigM55lc7qjM3bccFQkm1M6vg3lOFbShPgcVL5bRvNSGRsHd63MK8eJfVNhYlM4sQ3lrGYoeKMH4\n8ImI0cQOuiaiw315trTqsVAFBcPrBQICAI06EqWHivs5/7JajJK8ckub0rBol16yVvV1OixuTMWr\nretRdHAV8uLzMWbULaxegHSd8HnbAgKAb3v+zvre4eqEo6cTL9xthHlOFcaMvAXrj6zDz+7JhnlO\nFQqnr8aIIBXLxQZAMe8brW3qM560xifR0tGMjKZnYHW0IS8+H+88VocaXS0W3Pk4diZb2HwJDlCx\n+dHYbsHixlR8+e2XGB82EYXTV7P7hCpQhZtH3IKXPy+Gx+uGaZYZCRNmQasei8Lpq2F32rDxiAmB\nCMSWo5UoPVQMbWgU1s5chyenPo3KxK24Va3BT/9vNr7p6WS5DiNGaVh7+Nxt1FbKFVY4fTVWHngJ\nKXc8AVWQChp1JFsf5HbLiDEgRhOLigQTggODgQBff9idNqQ1PonGdgsy9xrYWGfEGFB9bDN2/uVd\nLNqlx7KmdLTaD6P0UDEbf21oFDJiDLCdP4303Ythd9qQF5+PooOrJD84yI7LkbgTB3KsyteMv/eG\n48aK007D2pnrmMjO38s2zDYjOFA1rDKVriH/m3fM3oii2dUiHGffMf+qE0sgEAgEgqEgfjV9Y3Aj\nPTuJZyOBQCAQCPwjnp2uD6WlpfjRj34Enc4n8MycORP79u3ze7xSjrPh5GiRh3WUl3Gtn4f85aBp\ntR/GwoZHsWP+e1KnT/085iCRn0ebwgvqdYgYpUFAAPC1047ND2+TuC/4cI/kEluxLwsBAQFYcW8+\nar94Gy63C4unPItK62tw9DjQ6/Xg1w+9CgCotJrhcrtgd57Bimn5WPNZISoe2oBKqxkZMQbmOOvq\n6UKl1czcJi63C2qVmglTlAeJ/gak+dXIMUZuIn+hyOT9Se6OtClLkDBhlsRtp6/T4WuXDaUzfIIB\n39+8A43cd+TI8zduSu9TnjNyw/R4XCh6oAQFB1ZCrVIjI8aAiJAIrPl0FU7+z99Qv+ADAPDrblO6\nhtwxM1B9Bjr2dPcplkuLNvVJbOZzWPF55WjsyO0kd0LKx0hfp0Od3qLo+LQ62pDR9AxKZ6xjY8U7\nm+SuPxon3rUHADv/8i5qTryFr86flOQfo7nDOzAB3zyr0dUyF1bFQxswOeIu5O5bjuRJCyU5tbp6\nujA54i7mVrvQ24PwEaOZe8pfKFd/bldyU527eA596MXZC12oS34fAPrlMaS8Y4BPoNv5l3dR+8Xb\nyIvP7zde1C8AWN+Qmyk40CfArdyfg6CAYLyeWCVxivIOSMOedJjnVAEAE9CDA/vn4ZPPM6or1Y0P\nS2h1tOHpxh9jXNh47FrwIayONhQcWInXE6vYWqXciGtnlGPFviwAwE8mp2HrsU0YrboJPb0uVM19\nk/U51ZfO33jEhMLpq1FwYCVsztOomvumZO2SW2/Np6vg9cJvjkP6gQJ/j5U7k6+UoTqMBxP1BqsD\nL4L/M1ysQ0Gp3sJx9j1GbAwJBAKBQCAQXEY8GwkEAoFAIPhnc/78eYSFhbG/g4KC4PF4hnz+QHlt\n+L/luYj4Y+Q5z5TKulL85aCJ007DjvnvsQ1tcnxsSqzGhtnmfu6rVvthZO41QBsahcrErah62Ofg\nulWtYU4e3gVjdbTB0+fGsqZ05O1fjp9MTsOmxGrUt+9ARowBnj4PSg8V4RuXA7eMvAWqfzgiVh54\nCRkxBryeWIUJoydiwZ2P482kGhZOLWHCLJQ8+AoAIHd/NvLi8xGnnYaKBBPUKjXL55W7bzkKp69G\nRYIJVkcbFtT7NrhpE7/70jmUHiqG3WmThFejdgzk1qOQaNXHNkvG0O60Qa1SozJxaz/RjMLtkRBh\nd9rwwt1GiUuFGMwpSJvrcdppyIvPh+38GSz/6GdQ/SMU34p9WVi6Ow3PxxoxYfTtrM5DRe52lNdH\naV7z60D+TO/1+nLfkVgmXwfUFhJCSEzhyyJnHe8OA3yCSUf332B1tPWrV3T4OMRoYlGZuBWVVjOs\njjaJwEWiCE+cdpov1GPdPFgdbUhp0MPqaEN9+w5smG3GpkRfuEi704aUBj2WNqWhsd3CHD+5+5bD\n4epkrsAnpz7N5i+5NOvbdyAhejbSdy9G+u7F+M0fypkzcMNsM0YFhbDcaANB15T3d5x2Gmp0tSid\nWYazF7qwdkY5tKFRiu7Y8tYyiQuy9ou34e51I0YTy8aLD8dKTjXKqVU7v4652TTqSIwKCoEqUMXu\nK+cunkPmXgPLU5fVYoSnz4OsFiO0oVHYMNvMzvdHY7sFaY1PQqOORPelc8x5CPhCwqY06BGjiUXh\nfWsQEhwCu9OG0kPFGBGkYq63SqsZAQHApsRqRIRE4JZREYhU34Z9Z1oQMVKDnl4XIkJuhUYdyRx4\nJEyTa27DbDOKDq5Cr9cDTchtzJlG+cOKDq7C0qY0uNw9kvrL17HdaZPkUZM7k68G+fcRf226Nw8U\n5WUoUWD4+zyfi+675HpErxGOM4FAIBAIBN8Z4lfTNwbi2UkgEAgEgu8H4tnp+lBaWorY2FjMmzcP\nAPDv//7v+Pjjj/0e7+/ZSe68GU6eG3/5YwbK5TRc/LmnyAFFm+pK+ZTIIUFuG3Jk0MayPD9V5l4D\nvuo+ibUzyxEREoEvv/0SRZ8V4NcPvYrJEXfB2GzApV43er0+gbJkRhk06kjEaafh1db1qG/fwTbG\nKe8QbYi2dDQjd182tKFjcanvIrY8/JbEGQRczmXk26R3w+sFPF43zHOqmOOn7PNfoXTGOpbbjIf6\nnsqS9yG5LJRcHEpjmdKgh8frxs5ki6RuACS5kuRjI7++v7H81SdFWH9kHQrvW4PaL95mDjQSBOV9\no1SGv7Ll7w91XstdZ/Lr+7sW9Q3fL+SOfGPOFokDi85vbLcgRhPbr158/rSlu9Pg6OnE+LCJ2DDb\nDAASJxVfN3Jerrg3Hy9/XgyteizWPFjC5ijlQtOoI7GsKZ25HAFIXICUR4xYtEuP4EAV5k54BJX/\ntRElD76CiJAIaNSRTCwsuH81c1UpuSDlfaw0V+UuUd5BJ5+jlM+LRJDsuBxo1JEStxh/TyBIdKT+\nszrasObTVSi4fzUT/CjX3KbEagBg7aKcZPwYOFydivnraOypr55u/DG2Jf2OzQ3KOUf1PHfxHN5b\n+GE/J+H2o9uYY3XFviz09fXh6SnPYlz4eCy483G0dDRj4xET3H1u2JynERUajRFBKlzqdaNOb2Ht\noXEyzfLNIcOedNidNhb+kncqDrRe5E6t6+E0ptx2lNuMr9O1cpzdSBFjhONMIBAIBAKBQCAQCAQC\ngUAguEbcc889TCg7cuQI7rzzzisqR+68UXLiDAYvliiJZkP5Rb2/z5Xqwbvg6F8l5wPlyeFD1JGg\nRfmFiDjtNGyYbUZU2FiUt76MpU1p+MGYHyAqdCx+84dynOg6juBAFV5PrELJjDKMCgpB0cFV0IZG\nodV+GK+0lrB8Yzv/8i4WNjyK7Ue3Ia3xSVgdbVjxcRZuGnkzFk95Fmd7urCsKR2LdumZM4icEFQ3\n0ywzaufXYWeyzxWUNmUJyj7/FXLu/QWenPo0Ex0oRxXl7iHHEu+yUnJZpFpSJDnh+JxldExAgM91\nxfcR9bOSaEYojTdtiJPLpdV+GC2n96LwvjV4Me6nvnB7yRaJW4nccLyjzl/Z8vflAt5Q5jXfV/y5\n/Hv+rkWiWXlrGTuW3JGUz4oXJFrth5E0Safoksvca4C7140TXccBAGtnlDPRjJxEFDIzpUHP+kYb\nGsXckSvuzYcqUIXCT1Yiue4RbD+6DUt3p+Hpxh/jRNdx1OktTEROtaRAGxqFvPh8BAeo2HvkdjTN\nMiPljidQ+V8bkfHDF5AwYRbLBbZhtpk581LueII5Efk5KIfazM8Veb9S+/T185hrjz5vtR/Gc3ue\nRWO7BcZmA9KmLEHpoWJktRhhd9rg6XNDGxqFGl0t8uLz2RyitU9C+4J6HdJ3L0b73/8baz5dxdx4\nADA+bCI06kgUHVwFT58bGnUkE+CyWoxInrQQhj3pWNqUhrQpS/q1URsahTfmbGHuzhGBI6BRRwIA\ny0dGwn1efD66LjiYs41otR9G7v5spNzxBNb/sRyakNsQPnI0thyrRNFnBai2bkGl1YzUyU9hzYMl\niAqNxpoHS2CaZYZapWbjmNVixIbZZphmmRGnnQZtaBRCgn0O0zjtNOacpHvHQOuFF/sHcoEN10HF\nr1dfrjeVZNzos4EYSKiVH3OjiGbAta+LEM4EAoFAIBAIBAKBQCAQCAT/a0lMTMSIESPwxBNPoLS0\nFHl5edes7KGEXeQFAD4MnXwTcDiCxVA3W/2FAlRypmW1GFFwYCXsThsqEkxMPOI39nmhwzynCuEj\nRjOxbUTgSJw+fwq5+7JZKLTy1jIUTl8NVZAvTCO/Sb796Das+awQP77zKVQf24y1M9dBo45EH/rQ\n1fMNth3fgk1zq1Gnt8A0yxeGrfRQMbLjcpDVYmR1yd23HC0dzawdlVYzbh45BrVfvM3qz4tlp7tP\nIXffchaCje9PXmSkPuq+dA5ZLUYmRCxseBSN7RY2FgDYBvxg/Sz/nPJlyXH3upG514BFu/TIajEi\nOy4HtV+8zYQWXiSTi6N0XbnLjq45lBCNA22s0zXJxcifQ+9RPZXCDAJAjCYW2XE5kvPJ6cVv/suP\nITcfoQpS4YW7jVixLwunzn+F8taXYdiTjmVN6XD3uiXihcfrZoLPol16FqqQQjSa51RhbFg0Nh4x\nISggGFGhY1n4R3Ii9XhcLExgQACYiHb6vC8/V+ZeA9YeXoOMH76AN6yvYudf3mXXj9NOQ+38OlQk\nmFDfvgNvzNnCxGRecJT3t3zclAT8DbPNiAodixNdxyVjrw2NQsmDr0CjjsTJc3/D+j+WIy8+HzW6\nWmhDoxD8j/CpdqcNS5vSYGw2sPVFAiMJtS/PrEBwUDAK7l8NADjZdVlOZwAAIABJREFU/VcAwIbZ\nZmhDo9Dj6cHzsUYWpjSrxYizPWfx8ufF8Hp9omal1cxEYX7+0Vho1JGo138AbWgUuyd5+tysP5Im\n6VCZuLVfiEuHqxNRoWOx7fgWnDl/GsvvXYGIUbfilpERCAoIxtt/3o6zPWex5rNCvPRRFruXAGCi\nHAndDlenZA7X6Gr7Xc+fy5P/nBc6lUJoyo8bCLm4z68Z+mGDfD36K2Oga/B1/t+ACNUoEAgEAoHg\nO0OEG7oxEM9OAoFAIBB8PxDPTjcGwwnVqBSqy1/IRMDnXrraPDcDhdoDpGJeqiUFAJgQNpAwt/3o\nNuTuz8b4sIl44W4jyzkG+Nwu2XE5eG7Ps9gx/z0mcgBgIQ2tjjYUHVyFF+42YnLEXcjdtxxpU5Yg\nYcIsFt6M2k/iyImu40w0ozBo6R+m4WuXDRGjNKh+5LcsHBtdTxsahUW79PB6gcLpq9HV04WsjzJx\nm1qLrUm/BYB+4SX5kJVUdwrBRznR5OHWTnefYqHo1s4oR8KEWSxsIIWck/f3UMeVnw9A/7CZBPUT\nuYoohJxSCMKhhgNVqgudP9D85OeTPJQiD/UPbeQrhbAD+o9Rq/0w9HXzgH/kqaLQjDRmNB4LGx5l\nc5Cuv/3oNkSERAAACj9ZieAAFTbMNvcLL7phthmZew0AwD6nUIfUHrvTxsI0OlydWNqUBq16LDx9\nHqiCgvuFZ2zpaMbPP3oR25J+h66eLqz4OAsv/3sFyltfhqOnE5sSqyUhGfnQinw4T3mISgDM1cW3\nRYlW+2Gkf5iGM85TeDOpBjGaWKRaUnDu4jl0XXBgZ7IFje0fwPLXBgBA7fw61k4K4+hwdTKBKNWS\ngowYgyTMKc3FOO00NLZb8HTjj1F43xrUt+9A8qSFWPNZIcaGjkPpzDIkTdKxEIt58fmsL8lJxs8L\nauuiXXp0dJ9kOeaqk7bD7rSxewTvvCPBmfqRX6NWRxtr04mu47A6/oSaP2/DczEvovpYFSLVkTDN\nMuNE13FUWs3ovnQOuxZ8yMYyd182VkzLR82Jt1g/8fUlR+pA93taL4PdG/h79kDH8OE6yQ3Ijz1/\nnxto7Q723UP1GWoI4u8CeRuv5rlJCGcCgUAgEAi+M8Tmz42BeHYSCAQCgeD7gXh2ujEY6NmJ3/xW\n2jwdTKy4VvlilEQSXiTjN1L5HGLyc+TOo+y4HCZEVTy0AZVWc7+8RyQ26OvmISpsLMxzqvoJAABY\nrqGo0Gj0ej0omVGGvH05qHq4Gmkf/AT/c+lbVCZuZZvpVEZGjAE5H/0cCASiw8YhJFiNjBgDKq2+\nEHw1ulpYHW1YuT8Hjp5O1CW/j8b2D7CxbT1uH/1vqJ3vy/cj72fKh0XC3YJ6n3uFQikq9Ud10nZY\nHW2sTbTxTHmjhjqe/som/H3GjykAZO41sPbJP6e2+Rtjf/Xh3xtsc30wRxqtC17skguCqZYUuHvd\nCAgAy81Ex5CAwwsnJA7y4xGjiZWIqZQjq9JqRo/HBfOcKskaAHzCDOXn4vN38fm9eOH2NnUUSmeW\noejgKhROX401n66C1+sTnXihEfDNWcrt53L3QK0KQcH9q1kuMZpDefH5yGh6BpWJW5m4SO1LadCz\nsSVxKHOvAR6vG8EBKnZdpfFIa3wSyZMWYsyoMXhy6tMAIBGuAGBxYyoK7itC7RdvIyPGgNx92UAA\nsOLefKw9vAYTR9+Odx6rY0Jk7r5srJ1ZjskRdyH9wzR8c8G31gCfYPXYzocRFBCM2eMTcdB+AA6n\nA6NUIxE+YjQT6rPjchCjiYW+ToeO7r9h4ujbmfAon6e8kMcLh6fOd7B1SgJ96aFiNoeej/U5DseG\nReOn/zcbG4+YsGG2Gc80/gR2lw0BCIDu9vlo/JsFHnhQeN8aTI9+AAsbHkXGD1/A+iPr8OuHXsX6\nP5bjTPdp9KEPt6mj8M2FTibiyQX31xOr2Pz2d78f7N4gX+uDfW/QHA4OVLE1Sg5YuZCsdP5wfrRx\nrb6nrjVK/S2EMxli80cgEAgEgu8HYvPnxkA8OwkEAoFA8P1APDvdGAz27CR3Lw0mSA0kQlzJ5qR8\nw1XukJILF0obskouOV5gI3Ei1ZKi6Mg63X0K+jodVIEqiZDDO0jsThuS6x7BTyanYeuxTbh1lAaO\nC514dkoGth7bBOPd2djd8QHbAJ85NgGZcT9jwhQAaNSRONF1HCsPvIQ35myRiGw9Hhe8XuD1xCos\n3Z2GU+e/YnnAeBcG32Z+85iOGapjhNpHm9VvzNnCBJ6BxpEX7JTmhZJTkB8Tai8vjhG8sERjpeRM\n8ifcDXezf6By5aKZ/DhaM+QSkgti/lxpLrcLrydWAQBzLQI+kfa5Pc/ijTlb0NXThUqrGRkxBmw8\nYpLMSbrusqZ0fO2ysVx4/Dyluiyo1+HUua/ggQfBAcGIDhuP1xOr2OdyEZovg+r6s3t84o0qSIWK\nBBOeafwJvr1wlonM5Hwjlxu119hsYMKVfA74E0Wp71o6mpH1UaZEmCIhnHdfkSOLBLWuni5sPGKC\nx+tG0QMlbH0Z9qTjq3NfYfzo8ehxX8DZC98gUq1F6cwyZDQ9g53JFpzoOo6X9v0cnj43fnr3ctT9\n97twXnLiLd3vmMhEPy7gXXxK/ZdqSYGnz41LvW7U6S397mlUHi+uT464C5l7DVAFqZARY8Bv/lAO\nm/M0ACB3WgHWHl4D/f/5f/j49H/i24tnceuoSCz5YQZejPsp63NtaBRaOpqRMGEW9HU6LJ7yLDb/\nVyWqHq4GAEldW+2H8eyHT8HmPINtSb/rJ7gPdY35Wz/+xHi5I1S+xvnzhiK+DccVeyVu2uuNcJwN\ngtj8EQgEAoHg+4HY/LkxEM9OAoFAIBB8PxDPTjcGQ3l2GorDbKAQjkPdWB3o+oB/0cFfKDGl17Qh\nTQIFL37IwxIC/fO6yf/mN7qfafwJxoy6BSl3PIHp0Q9g8QepuGnkTei+1I0PHt/LNtSz/vOn+OZi\nJ3ODZLUY0X3pHEYFhcDd58aaB0uYkAf4RBM+79CCeh2+OteBSTf/HxTcv1oSUpLvM3mYM39ODHn4\nPnk/Dia6yct397r7OYZ4V40qSCVxs2nUkchqMcLd60bh9NUsjB/fXlWgCsGBKraRLh/3gdo43E10\nf22TO2ZIqFGCwiVSe0iQ5VFycq34OAtjw6MREqxm486H+qy0muHudeNCbw9GBYUA8IXwlIfTPN19\nCi0dzcyRJXdpAj5HX+rkp/DmsS1YPOVZ1H7xNvLi81HeWobsuByUt5YhbcoSSehAvu2Fn6wEAJjn\nVDGnGTm9Ftz5uGS98WEZF+3SS0SjgcR4+RjwQvaaB0uYiEIienZcDjKansFNI8Zg9MhwXOp1QxXo\nC2VJOcSejzXitTYTTp77G8aGRaPHfQHfXuzCTyan4bcnqhGpvg2b5lZDGxqFR3c8jKqHq5G7bzni\nNNMwLnw8xowag5cP/wp2l42J11Q/QBr6kZx08jFq6WhG3v7lTNiUt48EUIerk61vAJJQrie6jiMi\nJAJFB1fB6TmPsxe6sOLefEyPfgDA5Tx6vNjs7nVD92/zYf6TCZqQ25izTn6fSGnQ46vuk1j2o0z8\n4oFCv2vhSsQmf2K8vFz5DwLkP+IYKGzjcL5z+HsGcGOHbrya56bAa1gPgUAgEAgEAoFAIBAIBAKB\n4H89tIEYHT7O74Yi/xltWvKCxdVsREaHj2NlkIhAxGmnDSjWkZuHPs/dtxwZMQZ87fKJWLSx3Wo/\nzMKUURnyNlAZrfbDSLWkYEG9Dsl1j6Cx3YKlu9Nw9kIX5k54BPXtO3Ci6zi+vXAWz8caEaYKh91p\nw7KmdJQeKsbzd2cCAMaMGoOsFiMyYgzodH2N1MlP4WuXDV09XQB84fT4cJBUh53JFmxN+i3eeawO\nSZN0KHnwFUWBbFlTOqs/D9+HrfbDWFCvQ0qDHq32w6zP+LZT2YONX3T4ONToavuJZlSe3WlDQIBP\nCKQQeYsbU2HYk468+HwEBAAFB1ayz6PDx8HutMHmPIPnY40sJB5tmPNiDrUbADx97n5149tzJdD8\nI9bOXIfy1jK/ZTpcnfjq/Em89FEW/n7xW59IZUmB3WlDqiUFqZYUdm6NrhY1ulokTJiFiTfdDvOc\nKuTF52NpUxqsjjYYmw1IrnsEr7WZkBefj8LpqxE+YjQ2zDbjhbuNbN5SPQH4wnseeEky/2t0tahI\nMCFzrwGGPek4d+l/UPvF21jzYAkTzUoPFTPRLHnSQqw88BKy43JYHwJgIQk9fR6c7j6FE13HAQAx\nmli8mVQjEZIcrk5WH8LrBUYEqdgx/Drl26A0BoBv/r6eWIXy1jK2FrWhUahO2o6kSTqUzliH/7n0\nLZ6PNUKtUqNw+mrEaaehRleLgvtXo/rYZhTcvxovz6xA0QMlCB8RjtxpBdj+5zehCfGJZnHaabA6\n2tB1wQEASIiejS3HKrHxyHpkfZSJjJjncevISNSceEvSxwDQfekccvdnI23KEgDAV+dPoujgKsm9\npfrYZlQmbpUIP7QGAaA6aTu0oVFImqTDjvnvQRsahdx9y2F32phjL3dfNrp6uqAKUmHLw29h7Yxy\nvHy4GCe6jiOrxYjGdguS6x7Bol162J02ZMQYcKG3B6Yj5bhpxM2oergamxKr++UQiw4fh9r5ddg0\ntxotp/f2m+PR4ePYfBtszJTQhkZhx/z3kDRJJ/lekH+H5O5bLrk2XTd333JsP7oNWS1GnO4+1e/7\nRl7WcLja76obGSGcCQQCgUAgEAgEAoFAIBAIBNeBwVwF8g1Qpc+uBqujDQsbHpVssstdGrzQlR2X\nI9l8pXo9OfVplM7wCR8OVydOne8A4Nus5kUiJXdbqiUFmXsNqEgwoeiBEkSqbwMAfO204+aRY2D+\nkwkJ0bOx8YjP1RMREgHAJ6R87bIhLz4fL8b9FL9+6FVMjrgL7l43IkIiMDYsGgvufBylM9Zhxb4s\n6Ot0LMycXAiyO20oPVQMu9OGxnaLRCAhSBwkkYz6icQn6hNtaBQqE7eidn4dE6Mcrs4r2jyma8id\nH+Tq04ZGwesFSg8Vo9V+GNXHNqPioQ0wz6lC0iQdCu5fjTPnT6Ho4Cq2IQ4AmxKrUX1sM7ShUWzj\nnHch0rEkTAUHqiT1ulab4bzoRXWRt5/+LW8tw7KYTJy9+A26XN/ghbsvh50koYzqb3faWL+985hv\nHGI0sdCERCJGE4uC+1ejau6bMM0yo/RQMXOwUVjP7LgcFtaR+qK8tayfoEq4+9xwuV3o7PkaKXc8\nwdyMFLowRhOL7Lgc1LfvQMmDr7AcayRcp3+4GFZHG7xewOv14qWPfwZ9nQ6LdukRo4lFq/0wUhr0\neGznw1jalIa5Ex7Bc3uelYgyFKaRF0N44UMu1lC7yK0EQJIzbedf3mXH0fpOmDALFQkmicBJwmDh\nJyuRuy8bOR9nweN1Y8yoMdCqx6J0ZhlzV5a3lqEycSsA4P2/NaDwvjX4re73mDj6dowZNQajVCNx\nobcHxmaDpL7hI0Zj7YxyVFp9ISrrkt9n6wu4LADx+c3sThu+On8Sy5rSkWpJgdXRxuY2ucwoR13m\nXgMK7l+NqLCxqLSamZtxcsRd6EMf1n3+Mjx9bmjUkRgbFo3nY40w7ElH7v5sZMetwNjQcbh51M0A\nIOkb6lu6l5CwJf+xwunuU8hqMUrE36FC92kaN/ma5P9WWrNx2mnIjstB3v7l6PG42DlKztOhrncS\nlfnvr39FhHAmEAgEAoFAIBAIBAKBQCAQXGOUftU/GFfr8uGvTRvZb8zZwjZd+TrJN09Pd5/Cmk+l\nLg++vOpjm1moPQqXNlgYwtx9y5EXnw9VkAoOVyeKDq6Co8fnqLn9pn9DXnwB+vr68Lp1A1InP4Xb\nb/o3AEBAgK+M0hm+zfJXW9ej0mpG5l6fA6To4CoEB6hgd9owOeIuAECv18MEknceq5PUg0I7Zu41\noPRQMd6Ys6Wfc+W1NhNztDS2W5irh3fokRBIjjYALNweOYSGOn4DzQ8SJEk0qdHVModQwoRZyGox\notV+GBp1JAIC/j975x4WVbX//xeX4Q5ecHAQvGSmohEmimJaHG9RlGIdrDSVvFBUYIEpeACPYqIk\nnMRTlLcwT9aJX4kaSd6ivJXESaLU0jimICOIpjCgDDC/P+as1Z4RvHQ5x/ru1/P4CDN79l577bXX\n7Ge9+bzfNqQEL0RvqCRiSzgTNoehdfGSbVa2X3nNxeK+ztW71Xys1mwjbwRx/TNDstgYloveUEns\n7mjC88KkoKMci0tHLGf7yW34uPmy7O5Mcg6vlcKvUiizFo2UVVVV9WcoPLmbWTsiSf1sATpXbxKD\nkqTVYuLeOSy56yVpF9nUYpT7XjpiOTmH11qIIpPyI4jdHQ2Ah0M7pveLIvfYO4BZzBNVWQCLDiwg\nPnAurxzKkgKJj7sv1fVVGE3G/1Q62TN/yALsbO14bmA8JpO53dE7Z0oryaXDM9h+cpsco631vfKa\ntjaWhCgqBEsxB8TujjaPk9seZdHnyYzNDWHi1nAKyvJJ3DuHBzfdK8eZwNhsFpTsbTTMG5xETcNZ\nDI0GXvj0eXnPKa+h1sWL2N3RnPjx3wT7DCNQN5hFw5aQsCeeMwY9l4yXEcFRygrCkG4j5TGV+W7K\nsaQcM4G6weSN/5C88Hwp9glhVvR/oG4wmSFZGFuM+GsD2DTevG11fRURW8I5WnOELq6+uGicyRpp\nFu2aWppY8WUGJhMsHZ5BX08/5gyax7sP5knxV7QtUDdYVreJ+aK0uoTwvPtlDqN1leRvUdElrn9b\niDl70/j8VsWun/Nd9X8BVThTUVFRUVFRUVFRUVFRUVFRUVH5lfi5doti4fnnChbKRXNRlbN0xHL8\ntQFyUfdqbdIbKjlZ+4PF/pQ5T0tHLJeL5DpXb4uKrWJ9UatWjzmhb6F18ZIL2ynBC1k9Jgd/bQDv\nPpiHp7MnPdr1ZOnwDDaXvc9jfaaw6MACfrz0IzO2T2Xep3EkFM4xL/J3u4+Vo7Jxd/AgJXghK0dl\nk7BnDjpXb9aMXc/qsTlSzAAsRJnMkCxp1bcxLPeKyhUw2+FpXbwo1hfx5M7pRPabYSHQKG0rlQvg\noT3DyLxnJf7agBtagG6r6sN6AVyIXOKaglnwidllFnS8XDpT01BDwp45rByVzaoxb1gIpWIfyv0p\nRS2liKZsg/V4utFFdXF+4nrE7Iqm3tiAvv40pdUlsqpOtE3n6k1mSBabxufT19NPVhhZZ9FZixei\nXdX1VdhgQ19PP/LGf8i7D+ZRWl1C1I4nZF/5unWzEGhMJnO7hMgiBCNh7ZcZkkXWyGzywvNJCV7I\nxm/fpN74U9WOGF+l1SWU152UlqFCqIOf7Bj7evqhN1QS7DOM1WNy6Ovph8ZOw9GaI1TWncbY3MTK\nUdmcv3Refk7cfxM2hzEpP0LeW9bCpvVYEhVBQtRLO7iY0uoSTl78gZhd0QT7DCNlSCrtndrT+B9h\nLG34cs42VMuxELElnNLqEjR2P1Uj9urQi86uOgCaTEam94+S90KxvojonTOJ2RXNY32mYGv3k+zg\nrw0gL/xDEoNSqG26QErwQgAp7ok2i35rzUZQ5HQpz1OIy+J160w8wZn6SkqrS9AbKonZFc2M7VM5\ncaGMeXvieG5gPFkjswnUDZaZisbmJi43X2LFlxmMez+UuE9iyCldx6T8CAu7Q2UbRHXb/L1zaaGF\n5H3zpfiqPEcl13tPXY/l67W+a672hw7X+nxr1Yz/F4Q2VThTUVFRUVFRUVFRUVFRUVFRUVH5FWjN\n/tD6/at91lqoud7FSetKMqVFGWBRpdNWlYqwSBNVLkqhRm+olIvSysqmgrJ8mfklhDpxnIracvSG\nSiZsDuNAxX6zXdges+XbhM1hUtR4ZkAsk/tPJbLfDNK/eJHaxlouNP5IR8dOeLl2Znf5Dmyx5cMT\nW6iuryIzJIu0g4tlZYzeUEnK/vnE7IqWVV/WC8GiMkgsHovKlbe+eVMKTitHmSvaRJ7Q5P5TpZCi\nzKqav++FKzLPVpVmy8XxGxVLrVFWtynHhbDR1BsqSR66UIouVfVnSNgTL3O10g4uljaAygwo6+MK\nUcvabk4p4CorE38OymowjZ1GZkQJSztl1Z+w9CytLmF83n3Szs86iy5iS7gUu5RibUZxusza0rl6\nozdUSutAYfuXOy5P7gdg5ahsC2FIWEtG75zJDxdPUF1fRVxhLGAWSFeNeYPXxqzBx93Xoiox7eBi\n0oYvZ1VpttyXELom5UegdfFC5+rNpvH56Fy9STu4WGb1rSrNZt7gJC40nqegbBuLPk8m4rZHZYVd\nZkgWzvYuJAYlXVF11Vpft/Wa1sWLp+6IYeWobOIKY5nQ+2HzOLLVEFcYS19PP9k+YYOYsn++tDW0\nsTFX1QE42jvi5dyZ9YfXSfvTmF3RnK6roM5YS+6xd1g9Jgedq7fsp6M1R8g99g46ly5oXbyuEPcK\nyvJJ2DMHuPIeUs6Nrc2pShtSwELY1rl6kzbcLPo/tWMmk/pOwQYb5g9ZgJdLZ5Z/sUyKYYG6weSF\nf8icQfM4f/kcU/2mszb0TWIHxPNa6Uqi/KPbFPdEdZu7gwfpI/6Gg51GVnO2VmnW1vx+IxWryp+t\nheQb5WqiWWvt/KPmmimxMZlEceQfh+rq2v91E1RUVFRUVFSuA63W/X/dBBXUZycVFRUVFZXfC+qz\n083BtZ6d2sqKEQuQ1/rLfqVgcSO5M9bbFuuLiCuMlYu2bS06K/POhECi3F65H/ipQqu6voq0g4tJ\nDEoiZf98skevsbCWiyyYzNIRy4nc9jhnGirROnlRfamKDo4dMRjrWDN2PSn750tRIKM4nfjAuTI3\nqrq+Cn9tAKXVJSTvm89zA+NJ3DuHVWPeIO3gYtmeCZvDqLhYTgfnjlxsvMCqMW9IK76rnWtkvxly\nf/7aAApP7iZx7xxpQ6lEWDZW1JZTWl0i91+sL7LIIxN9d71YL3hPyo+QC/MPbXmA10evI7RnmDy+\nuBZgzmQT9plgruqZlB9BYlASaQcXE+UfzaslWZhMkDsu76rtEvsX7RDXLmHPHAvxUFT9XO+4FGNh\n4tZwaYXX2j0gRNbY3eYsqtTPFsjtrbebuDXc4pysF/T1hkrZR4lBSRbXSuSa1Rvr0dhqWDkq26JK\nSZzj0Zoj9PX0k9sL8ShiSzgaOw1R/tHM3/cCS+56ib6efsQVxsrrJoSnuMJYEoOSpNjUZDKyaXy+\nbCOYq91sbCBrpFlwC9QN5sX9i/jLsBSL8ao3VFr0+7X633quKdYXMWt7JOV1p5g9YA4fnthC1shs\nOXYB+bO45iIvUMwfwnow7uPZuDm60tTSxBmDno5OnbjQeJ604cs5f+k8bx5Zx+w74wnpNpKILeHm\nHDL/GFZ9/QpL7noJgJzDa2XbhBhaXneStOHLmdx/apvn1Nr8JQRrcY2s50DxxwPPDIhl7p7n8XLW\nmYWxS+dZ980qztTrWTv2TQB5r8Xsiqa2sZaahmo8nbVo7Ow5U6fHx8MXZ3sXeSxo+48jJuVHXNOa\nsTVL1Gt9R1hvB7T6841+f7TVJuvXrreNNwu/5LnJ7q9//etff72m3BzU1zf+r5ugoqKioqKich24\nujr+r5uggvrspKKioqKi8ntBfXa6ObjWs5OHo0ebr3s5ezFQN+iqnxULk6O6jbnm4qnyWNbHNZlM\nPNx7otyH2Hdrn/Fw9GBUtzGAeeG1v+ft9PlPdpjJZOKdoxvx6+jHkZrDzNg+lQOn9/Hn3o/wwfdb\n2HVqB8bmJgrLd3NHpwDcHNzxcfdlVLcx9PH0o2e7nnxQtoVFw9Lo26EfByr3kjA4mT6efXmg5zju\n7XEfqZ8tkKJZwp45BGgH8OTO6dza7jZWfJlJQ1MDD946ni+rvuTPfR5hWv/p+Lj7Utt4kfeP5WJn\na4+7gweJQclkf/V3+nveThc3H4u+UvbpqG5j6NHuFj74fguP9H2MJwqmsOl4LmnDl3O79g5qGy/K\n/qptvEjUjunc0SmAqB3T+fjkLkJvuZ/axos8u/spKSYdO/8tz+5+ilHdxrQ5BpQU64uI2jGdsd1D\n8XD0oLbxIu8c3cjOk9u5t8d9jOw6mozidPp73k7CnjmyP8d2D+UunxEsL15GfOBc/LUBzNsTz1Dv\nYXx0YhtPD4iR7ycEJbG/ch8P954o22Q9BgCLvhJjoY+nn+wvD0cP2Q4vZy/m7Ym/5nmKPr+1XS/+\ncWQ9j/adbLFPsY3otwDtAD45Vcgn5YWkBC/EVeN6RX96OHoQ2uN+JvZ5VP5e23hRHuf5whg+OrGN\nzJAsurv3YMWXmdzRKYCvqg4xZdsjBOmG8tBtf+ajE9u41NxA4and3OUzgqgd0+ndoQ/DutzFqYsn\nifskhrHdQxmoG4SDjQPLi5cx1HsYO09uVwiW81hVms1HJ7YR5R/NkoOpfHRiG55OnVhevIwZt0eR\n/dXfyQzJYrAuiI1HNzBEFyzbONArkP2V+3jqjmdZXryM0d3HUll3mjmfzqazs475e+fiYOPA/L1z\n+ejENu7oFCDvydrGi3KMtnZNxTUU/dzFzYfu7j3w9xzAP7/bSGNLI1F3RDPU25xB1sXNh1HdxuDm\n4M5Q72H08fSjV4fejO0eio+7L38vXkHC3nh2ndxJzeWzPHTrRBKGJLH9hwI8HN156o5nWff1avL/\nvYULly6w69R2Hrx1PPf3fICdP+yg3HCKWbdHs6r0VfK+f48Z/Z/Ez7MftY0XAZjY51F6tbuNnMNr\n2xxXbb12R6cA7u1xH3GFsTzceyL7K/bgbO9CbeNFpn80hUvNDWjsNDjZOfNV1SEMzXUcOH2Aj07m\ng8mGZlMT/Tr68/wnz+Js68Lf/vUSJloY3e1eiquLuNx8CRvsyB6zmj91HcVDt/2ZhD1zGOo9zGJ8\nimsg/o3tHoreUEkXN59W77nWzkl53dr6jPV2yp9rGy8S3uu5vOf8AAAgAElEQVRhiz8QUM6F1vts\n7XcxTypfV44167Gl/Kxyu5uFX/LcpFo1qqioqKioqKioqKioqKioqKio/MpYV8IUlOXz5M7pV1jn\nKbe7Vg6Z8jNXs3FsLSvrWp8R1nCt2S02mYzM3D6NFz59Dk/nTiQPXUigbjArR2Vjb6NBY2dPlH80\nMbuimbg13KJCwV8bgJezjldLssj/9xY6OXux9utVhOfdT+zun6wkUz9bQFxhrMxle330OnIOryXi\ntkc5e6mK5H3zeWZArLQrFMdIHrqQDk4dWTkqm8n9p8r2K/tZ2afK8xd2arnj8tg0Pl9WyYTnhUlL\nPKUtY2ZIFho7DXpDpYXdobCSE9U710JUjhmbjRZtzB2XR2ZIFnGFsfhrA+T+rcdDoG4wS0csJ6M4\nHTBbSApbOJH5FB8415y/psjbam0MtDYelFlZyiwncUzrLL7WEP0T2jOMvPEfXlGhI6qF4gpjiQ+c\nKzPwhCWgGAttZf4JK0QxZjOK00kMSpKViIl753Dx8kWid85k0YEFLLnrJdIOLgbM1Uf2tvayb+qN\n9czYPpXpBVNIO5hKF1df/LUBFJTlM3/fC0T2myFtQleVZhMfOJfJ/aeSGZJFZkgWOYfXkhmSRWJQ\nktxeVAOKSr5OTuZKSrFdRnE6Uf7RvHIoi8h+M4jdHc3RmiN4aNqRUbyMakM1iXvNmXqJQUkW2Voi\nN0tpV3k160azSPsEAJWGCk7XVVBaXSL3qezTuMJYi3unoCyf1M9TeNL/WVw0LnR09OQfR3M4WnOE\n85fO8VifKeQee4eVo7LZHL6NdaEb8Hb1QefqzdGaI3Ju2Hh0AxpbDfMGJbHsC7Od6APv38uk/AhK\nq0vIObz2usaVEnHfARibjRSe3M20gkmE54VReHI3JhM42Tlzf49xrDu8iin9nmDt2DfxcPSgo6Mn\nl5obWDYik2cDZ5M8ZBG5x94hMySLpwNieevb9XR09MTZ3oXzjTUUnvyYJ3dOB7C4L0U7lPmOAKXV\nJTy05QFpVXm9lrtK0etqn2ktt9B6zl86YvkVtqbi59aO0dp3T1vbWbdbOSb/KKjCmYqKioqKioqK\nioqKioqKioqKyq+I9WJjRW05GcXpvD563RWZTWI7ZdZUaxZ01lxLXLN+33pR1Fo8Uf4u7P/EQnr2\n6DUkDE4GE9hiR9rBxVTUlqNz9Zbi2YovM2hoasBkQgpbAo2dPU8HxPLMgFjSRqTjonFm9dgcskZm\nS1s9e1uNtECLLJiM1sWL+MC5vP3tBp7yj8HGBilaxBXGMik/goKyfDKK08kMyZL9KgQeZV6cOP9i\nfRETt4bLxfrGZiOl1SVSbAKzpZ7ecFr2ocguStgzB52rt/zZ2jYvJ/Qt2farXbuK2nJp7bdyVLbF\ntfZx97WwDlQKWIBFvpVYuNcbKpm5fRrheWFS5BMibUFZvuwrsaivFBDFgve1BFjxvs7VW1bYXQ/K\n8Wd9HGXGldbFi6UjlhPaM4x3H8xj5ahsKYAp2yIW50urS2hqMVpkU0X2m0FGcbq0Ndw0Pp819+Zg\nb6OhyWSkr6cfxmYjMz+KZN6eOCoulssMs9S7ltDRsRMttFDVcIY5g+bJjLQld73Eii8zmFrwGEdr\njtDUYmTRgQUWmVyiT0J7hsl8PCHmFZTlM/OjaZypN1+nmR9FknZw8X/au4wfLv6bjOJllP34PS98\n+hzVl6o4XXeaC43nmTvoL7xakkXinrk0tRiv6DchdrcmCivRuXqbBeJj7zC223200MLx88evuFYb\nw3KlcCvuFYDuHj0I1AVSZTjDswOeo6WlBU9nTzo4dWTj0Q2cv3TOYty6aFwoPLmb5z95lh8unuDl\nf2VgbDGSNTKbYJ9heLt24bmB8dRcqibKP5q0g4st7E6vF+V9p7HTENJtJOtDN5J61xLm73uBZwaY\n55xAXSCdnb3ZXb4DMAvmyUMX4u3qg6ezJ8X6IjYe3UC9sR6A5V8sQ+vshbO9C5eaG5jeL4oD+n28\nPnqdtOJUjmsxBpR/cCDme5Hndy1BUHmvtTZXK79LrtYXShGtur6K8rqTFkI//JQF11q7Wvv9WoKm\n9Zj8o6AKZyoqKioqKioqKioqKioqKioqKr8irf3lvqi+aWu7QN1g3h/3gaxgakuAUVYWXO390uqS\nKwQx65yaYn0RxfoiKUgUlOUTvvl+Zm2PpPDkbrkYCvDmkXXY2tqSNiJdVupMyo+wEM9cNM48MyCW\nmF3R5uyx/1Ssna6rYM4ns4n7JIbEPXNpbDbirw2QC+WiWkoIMvGBc5m1PZK5n8bx/Y/HebVkBcbm\nJplZtTEsl8SgJFI/W9CqkKOsBlH2S1xhLCaTOfsqed98ThvKmbU9UopKPu6+zL4znrzwDwnUDaa0\nusRif+I6WS9QKyvsrjf7p7q+SlbGWVerWItGov2iqs1aUMMETS1NxOyKplhfRNrBxXLRXimGiEV+\n0W69oVIKMm1VninPdVJ+BLG7o2+oqkT0u7K6Trn/0uoSJmwOk5UxAHGFseSUrpNCsthWnEtGcTrJ\nQxda5G+JSq+EPXMoKMtH5+pNoG6wubrMRgNASvBCPBw9SBicTI/2twDIdjnZO2Fva0/KkFRCuo0k\nYc8c4gPn0tfTj9l3xuPj2pWQbiN5OiCWhqYGUj9bQGS/GcQVxlpUbilz/nJC38JfG4DWpTMv3f0y\na8aux8PRgyj/aF7+Vwb6uko6u+qID5yHva09zwQ8h9bJiy5uXeji5kuwzzAam42cvVTFY32mXHnd\nFf1oXVGkvKY+7r5sGp9PYlASO04VYIMNvTr0umKcif0am41U11fxw8UTJO+bz+w746lpqMHG1gaA\nJpooPPkx5y+fY6DXIM7U68kpXcf4vPuYtT2SKP9o+nr64enUCRMmhuiC0dhqpFBpMkFfTz9Z5Smu\nwfVWZinHlmizOJfQnmGE9gzj9dHrWPFlBnGfxDBz+zSevONpTtdVkLJ/PvXGBpZ/sYxmUxMzCqYy\na3skTSYjGlsNBWXbqDCcIj5wHmkj0qEF/LV3AKB18SJiSzjj8+6T41K0XTkvKKstW7terWH9nWFd\nmSnE76tVjCo/mxP6FloXL4vMRmXbhJh2PX1s/UcIbbX/j4aacaaioqKioqLyP0PN6bg5UJ+dVFRU\nVFRUfh+oz043B9f77KTMH4osmEx4r4evmXMjsmjaypFRvge0mkcjstRm7Ygkv2wr732XS+gt91+x\nTX/P24krjOWjE9tIDEriodv+zN1dQ7jH908M0A5k/r4XCOs5DjcHd6J2TKepxcjfQv6OvzZAZkLt\nrfiUh3tPpI+nH6G33E/fjn6s+DKT+iYDekMlD946nkDdYDo76zh09ktc7N2Y2PsxTtb9wMO9JwJw\nl88I3BzcAXOWzqT8CLZ+n8dpQwX1xgYAvFw702Jq4cDp/QzwuhM3B3ee2jmDUxdP8pjf4xYZXQKR\nfSX6R+QO+XX0Q+vixe5TO3np7r8x7tZw7u4aApgrtaJ3zWRs91AKyrbx/CfP4u95B7069G4188c6\nk+hq11nZ994u3mQUpxMfOJe7u4bIa+Ht4s28PfG0d+jA/L1zGds9VOZZ6Q2VPN5vmsy5KtYXYTKZ\n6OPpxz1d/0Rwl2Hsr9zHvT3u44Pvt/DswOdkG7u4+XBHpwCLbLjwXg/j5uDOu9++w92+97SZz6bM\nNrqjUwA7fthukZnWFsrMpzs6BTDdf5aFGCByoebtiWdOYAJzgxLlZ9eUvs6uU9uZP3gBg72DLPq7\ni5sPXs5eZBSnE97rYWobL/J8YQyzbo9mZsCT2GHH7MKn2X6igIbGBhZ+loSDrSNby/LYf3ovfxmy\ngNdLX+UvQxaQdnAx9U0GDuo/Z+WobEZ3G8s93f4EwK3tepH62QJeK3mFnT98RHun9uhcvJn3aRx1\nxjoc7Zz4uqaUzJAs2a/iukRsDeeNr1cz1DuYIzWH2fz9+3xT8zWzA+O4y2cESw6mUmes5VLzJVb8\n6VW6t+vBAO1Acg6v5eylalKGphJ5+wwAHrh1HAO0A0n9PIW7fUJkZpb1vS/Got5QybO7n6K/5+3y\nmtY2XsTH3ZdeHXrT2VnH7lM7OVR1SF73/p63YzKZqG28yJRtj9JCCxP7PMauH3ZyufkSH3y/mZ0n\nP2LZiEzu7DyQfx7dyFdnD/F430hyj7+Nh0M7yutOYW9nz4LgxbxaksWHZfkA2NvaU1x1EAc7B/ZU\nfMIzAbHsO72HHSc+Yrr/LADyjr/HtP7TZT7X9aDM8IraMZ27fEZYjOFeHXrjYufKoeov+Wvwi9zX\nM4yh3sH8qesodp/agd5wmtl3xrO38hPaObTntTFr6NnuVtKKFmGDDYM7D6GPZ1/e+fYtDp/7mkl9\nphDe+yF83HzYWraZR/tOxs3Bnbzj78n7QTnn/xwhqa3vh7HdQ+U8a50R2Np3AMCx89/y0JYHeKTP\npCty1o6d/5bwzfdzj++frsiCvFru2vVcj+vNePxv8Uuem2xMJpPpV2zLTUF1de3/ugkqKioqKioq\n14FW6/6/boIK6rOTioqKiorK7wX12enm4HqfnZSLp9ezkNpWZdi1ss7ael9URMQVxrZpoVVRW05p\ndYnMfhJVG6KKx18bAJitF8V+ACK2hKOx01hYJIqFU2XOl6goi9gSzr8vltHBoSM1l6tJHrKICb0f\nZsLmMOxtNNjY/GTVKNo8ttt9bDjyBucu1zC9XxQbjrxBZ1cd7g4e5iypvWY7ya0TPrKwTGytf8T/\nfy9eQfoXL+Lr1o1nBsQS0m0kkQWTLSo9Csry0bp4Eb75fjo4dmTbw7tazfxprbLsatdDvFesL5LV\nTBnF6bIyTvRplH80iXvn0NnFm9fGrCGuMJaGpnoqDadlVpjeUMmEzWH4unUjd1weekMlT+2YSepd\nS6hpqOGVQ2YbSJ2rt4Wop7RqEz9Pyo+wuO7X4nrHcmvHa60tekMlCXvmML7nQ+Qee0fmfl1qbmD1\n2BxZrZY7Ls+i8k2MvYraclndmH7333jlUBbPDIjl/KXzLC1KpaOTJ1H+T7O0KBUvl85ynxvDcmW/\nvTZmDTpXbyblR2BsNmJsMeKicSEzJIujNUfo+x+xMq4wltrGi9jZ2JN61xK0Ll5XWK+G54VxsvYE\nWmcvNLYOnL1UhYemHe2d2vPug3lyDMQVxpIYlCTHWicnLzR29jS1NAFgMkF1wxm8XX3IC8+ntLqE\n0J5hFmO6tLoEf22AxXwRsSWclOCFclvr6y3ugwm9zSLVW9+8yarSbMBciTlreyQ61y68NmYNs7ZH\nUmU4Q0JQMhuPbiB3XB6l1SXM/TQOe1t77G3tGd/zYbaf3EbEbY+y7IvFrB6TQ/K++Tw3MJ4VX2Zg\nbG7ictNl/jI0hbmfPk8nFy1n66tlFVxb9+71IM5v4tZw3n0wT54fmOe/cZtCwQa8nHW00IyDrVlE\n+fHyeS40/sjE2yaxv3IPq8fmSJvVEJ9RvPPtW1Q16Mm8ZyXnL53nta/+TlXDGd4MfRt/bYC0AxXH\nac1+V1TC/txzE/u6nnvtat8Bygpm5T04cWs4yUMXyqq4653XrmeevZn4Jc9NqnCmoqKioqKi8j9D\nXfy5OVCfnVRUVFRUVH4fqM9ONwfX8+zU1iJkWwuQQgwwNhvR2GmkkNHWQmZbx2xLHLuamCMWeXWu\n3lJEE9Z+TS1GTCbIHWe5KK20gFOiFOsSg5JIO7iYjWG5Mu9o9oA5vHpoBT3a30Ly0IVE7XiCuYP+\nwoTeD1NaXSKFpMKTu3nlUBYnLpbhau+Gu6M7+rpKXrrnZfp6+hGzK5ofLv6bLm6+5IXny76KD5x7\nhR2mOMfxPR8i9fMUYgfE06NdDxL3zmHT+HwpLinPC8yCjvI9630KrvfaCLFH5JtZL6or+7RYX2Qh\neinbI8aE+F1vqCR650x+uHiCTk5azl6qprOLDjeNuxxLykVt62v3Wy12X22x3VrQKTy5m7hPYtA6\ne3Gh8UdWj8kBzLZ7xfoiKW6JPhNCiVLsnLl9GlrnzlQ3nKGjkyfnLtXQ0tJCJxct9rb2xAfO49WS\nLLJG/iQoFuuLGJ93H5vDtxGoG0xBWT7Hzx8n99g7ZIZkUV1fxZM7p/P+uA+uyLYS2XzCPlR5nWZt\nj2TJ8HRSP1vAY32myP1ZCyzieoTnhWFjA9mj13CgYj9Li1Jp79gBja0DGjt7skevIWZXNCnBC+U9\nUlpdwrSCSXT36CEFqGJ9EeGb76erW3cpNAJyPEUWTDbbS34SQ+Y9K+nr6cdDWx7g9dHrLERyIXhP\n2Gy+l2bfGU9It5EUntzNvD1xmEwmEoNSWFqUig02PHVHDIUVu4jsN4O+nn6Eb74frbMXl4yX0djb\nU9NwloTBybx5ZB0mEzSbmlg9Nue6s/LaGlvivCK2hEtRT4yZ6voqZm2PZHLfaWz74QMqDafROnnh\naO+IyQR3agfy0YkPwQbW3vsmoT3DKCjLZ9aOSFaPyaGmoYYVX2ZQXluOCRMdHTuSEbLCQuxWjmHl\n+BbiuMg9u9453PocrQXPG+2fq92DIgdR2AO3to2yHeI7wrpN4n0x995s4tkveW5SrRpVVFRUVFRU\n/meodkM3B+qzk4qKioqKyu8D9dnp5uB6np2sLfyELZ2wsjp2/luidkxnbPdQCxvBiX0e5eHeE/Fx\n972qRVaxvugKi622bLKuZRs4qtsY+nj6cez8tzz+4UQc7ZyYeceTPNx7IiN876HgRD4jfO+RFoHi\nc8r9VtSWU9t4kScKprDt3/nUNxnY+cMO7GxtGeF7D/f2vB9nWxce6zeZB3uF88TtsxioG4SXc2cW\nfpZEr3a9yf7q7ywdsZw6Yx1RO5/gsT5TOKDfSwvN2JhsaWy5zLHz3zHdfxZezl58d/47Fg5bTGdX\nHT7uvng5e/HkzunSzk7Z1v6et/PSF0uwxY6TtT9QpP8cF40Lvdrdxl2+I2T7J+VH8I8j63nvu1xp\nLdiafVlt40UitoSTd/w9eQ2vRm3jRd47lstAr0D2VnzKtP7T8XD0kDaM4mdxrbu4+VhY8AmLQnEu\nfTz96OLmQ23jRZ7d/RRP3fEMQbpgYgOfZ+cP20m/O5M/93mEe3vch5uDu9xHa3aS4vhKRH/8Ess1\na2tQZT+K9vT3vB03B3d6tLuFD8q2sOzuDGb4R+GqcWXyhxH069ifeqOBt7/dwL6KvdKmc5PCHg+g\nV4fe3OP7J6ICohnqHcwXZ4p4tPfjBOmGcvjc15w2VBDa434O6j9ny/d5hHQdSWXdaQD+eXQjj/ad\nzFdVh5jx0VQ+Lt/JX4IW0MlFS+pnC1gyPJ1b2/diUn4EecffY/fJnUzrb7YGHOgVSNSOJ/Dr2I/n\nC2PkNd51cgeP9p3M5uN5HK75mhUjX5Gin4ejB8X6Ivp4+skMwF7tb+OrsyUM9AokYW88k/tOo6jq\nc1KGLqL4zBcM1gXxj6PrOVT1JYlBSQzUDcLZ3oU+HfxIGJJkMW7u8f0T9/d8ADcHdzm+nt39FEO9\nh/F4v2nc5TuCLi4+rCrNZlr/6YT1HMet7XsBZhHo8X7TpJ3nlu/zmNRnCvP3vUBnZx0LDyTxeN9I\nzjToefrOGO7UBjK6+72kF79IfOA8cg6vxdetK6O73cuByn3oGypx07ihsXHk4/KdZIasZGS3URzU\nfy7vAWtau9+s348smIyXsxdTtj1CkG4on5QXorHR8Pwnz+Js60Lsx0/xZdWXTOo7lTcOr8LV3p3n\nB77A4XPfYKKF6oYzXGyspc5YS0dnT4qrvuCOTgHUGw1sPv4+43tNYEiXYN45upHaxgtgMuFk58LB\nM5+REZJFnbGOZ3c/RXivh6+wl6yoLaePpx/9PW9H5+p9Q/aT1vdPa5a819s/wqqzv+ftcq5Qfq5X\nh97c7RNiIV62ZRXZ3/N2EvbMkecL5krVsd1DAbOt6ZM7p+PXoR/z9sTfVHaNv+S5yfZXbIeKioqK\nioqKioqKioqKioqKiooKln+NL/4KPz7QbC8o7OeUFSw+7r7yn/I1a4r1RTy05QFZ3SW2+zlVDYBs\nQ6BuMJvG5/PamDXyPZ2rN8YWI3GFsfJ44n9RYSPOUW+oRGOn4ZkBsdjb2nO2oYrH+kwhYc8cCsry\nWVqUyoOb7qW6vgq9oZKK2nI8nT3xdu3Cy//KkBaPgbrBvD56HYG6QHxcuzKl7xPUN9fRyVlLSvBC\n9IZKc/7aLeNIO7iYiC3hFOuL8NcGWFRPKBHn0c6xPStHZbNyVDZT/aYT90kMb33zJpEFkwHIDMmS\n1pHKc1OeuzhvjZ2GxKCk6+pzH3dfMkOyyChOl3aUogpNtF+ME3EMZVWboKK2nIQ9c+Q2Ykwl7Iln\naVEquUf/yfnL50jeN5/onTOJ3R3NpPwIiyqzpSOWX2HtpzyWaJfyc8r3WmvXtRD7tD5O9M6ZTMqP\nQG+oxMnOmUUHFqBz9Ubn6k0Hx47M3zuXRQcWsHpMDinBC0nYMwdA2iwqCdQNxsfdl9CeYUT5R7Pi\n0HJWHFrOJeNlOjt709fTzzx+6k8z86NIwvPuByAv3Gx/mXbQLMKmDEnF09mTuMJYWUWjN1SSGZKF\ns70LiUFJ0rpU6+KFztUbrYsXmSFZJAYlMffTOCrqyjlQsR8HOw3GFiPV9VUUlOUTWTCZgrJ8Htry\nAAVl+UzcGs64TaHM2xNHlH80x88fx8Xele0nt+Ht2oW+nn5o7DT4awPIG/8hK0dlk3ZwMQVl+UzK\nj2BVaba8l5TE7IomYks4k/IjAIgPnCsr5AA8nT1paKoHkBaVgIWVn4+7LxvDcunVoRd22NHBqQPN\ntLD+8Foq607zRMHjJOyNx9PZk/fHfWC2Pf1PNdvyL5YRHzgPH9euPNJ7Mk4aR9KGm+9vcQ+0Vckp\n7oO2EHNdaM8w3h/3Af7aAJpMRjYe3UBnFx3BPsPYND6flOCFfHhiC+0dOqKxs6eDUwc0thpWj81h\nzdj1rLk3B1+PrvKaxhXGsujAAjq76kj9bMF/xkY+L939MjrXLlw0/khjsxFAVpNZz9ei/QVl+cQV\nxsp+/bmI/VvbnF6rf0R12NIRy+XcLT6n/KwQc69FoG5wq5VvekMlkQWT5dwb2jPsZ38P3YyoVo0q\nKioqKioq/zNUu6GbA/XZSUVFRUVF5feB+ux0c3Cjz05KW7EJm8NYNeYNmZNztfyxqyHyx673c23Z\nZ4k2bRqfLxdRJ+VHcK7hHB2dO0prwcSgJDKK04kPnCutzIRlmXKhvVhfRMyuaJkxlXvsHRKDkgCY\nsX0qLS0mbG1ssMEGL9fOVDdUMbnPNN76dj3zBiWx7IvFLB2ewSuHsjh58QQdnT0511AjM5aE9WDa\nZ4vZ+u9NLLnrJV45lGWRSWUtnImF4Un5ESQGJeGvDWDi1nAuXq7l3KWzbJlQAFy5iKy0AVSee1e3\n7qwcZc6EulEbNuvcOevsOL2hkvDN9+Pt2gVne5dWx0ZBWT5pBxdb5H4VlOXz3MfPcv7yOWIHxBOo\nC5SWm9X1VXKstJYvJsak0uKyNStOMTaA6x6zyoylBzfdK/PoxHvKY4uxIzLbxufdR0tLC74eXVk0\nbAkZxekyN0p8Nm34ckK6jbyincIaFEBjq8HTqRMdnDrK/tC6eBG9cyaLhi2RFoWl1SUk75tv7pf6\n07jbt0PrqiUxKImoHU+wabzZEjRmVzRNJrOF6WtjzBaKNjbmTLKGpgaqG87gpnGns6tOCmnnLtVg\ngw2rx+bIcxX9Io57ufkS+nqzGGiPPetCN1xhfSeETiHaal28pCAmxtCk/AiaWozSklK8Vm+sl6J4\neN79mDCxOXybxXhUjhEhZD9R8Dhn6vUkD1nEum9WoTfowWRC52bet8gcFNfnQMV+3jyyDnsbDecv\nnaPm8lkAOjl6Udt0gdVjclqdu35uTlZFbTkPvH8vaSPSWXRggcxejCuMpd5YT0NTPQ52Dpwx6PFx\n92X2nfHkHF5LfOBc2X/iXhR2nMJOVfSNctyIPm2rjWK+EOLVryEiXc3itzW73Njd0TIzUnku1laL\ncGX+XVsI+0nrOf9GbWv/26gZZ1aoiz8qKioqKiq/D9TFn5sD9dlJRUVFRUXl94H67HRz8HOfnUSW\nkYvGRS5yW2c1Xe9+bkTAaCtvTbwn8oHAvPD51jdvygykyf2nXrFAOmFzGNmj17S6gFysL+KB98di\ngw22trZonTvjbO9Mk8nI7DvjWfFlBouGLQFA6+LFrO2RVNWbhYaOTp5cam7Ayc6ZlOCFzN87l4d7\nPcKrX61gS3iBPMaBiv0s+jyZ2QPmEOk/Hb2h8or8J72h0kII3BiWKzPUlo5YzsyPIqluOEPC4GQm\n9H5Y5o9ZC2EFZfmkfrZAihARW8JbPc71XreILeE0mcxVK0KIse5DIYpav668lpH9ZvBqSZYcOyKb\naXzPh/lX1RdSWAGI2vEEvm7dWDkq20IcVOaL5RxeK0Wpa51Da+1qDVEZ+frodQBMK5jE+tCNFgKd\nEJCU/ZM7Lo9N371Hrw690Lp4UV1fZSGaiW3ve28U5y+fs8jzEtc7MSiJYn0xed+/x7R+03n72w0k\nD10oBceVo7KJ3PY45y/XoHXujMbOXlYaPh1gFn3Tv3iRtOHLZabeylHmMTBxazj1xgZcNM68+6D5\nvtEbKqmurzJXQN72KBuPbiAleCFaFy8p8PX19JOin/LeEXaNBWXbePWrFUzp+wQh3f7Ualaf2F5k\nEYp5RGCdYafMXYvdHS3zCkurSwCkcCRy2sRxxP7rjfVUGipwtnOhi7sPiUFJ1DTU0Fdh2wpmATk+\ncC4p++fLfnyszxTSv3iRSX2m4u7gwdvfbsDBzoElw9MtRHdxzOvNc7QWi8R8tT50oxS2hIh/tOYI\nz3/yLClDUln3zSriA+cxb08c0XfEsurrV3ghcD7BPsPkOYjjF5TlSxHVwU5D1shs4gpjuXj5Is72\n5vmpNfFPiEutZS3+XK6WlynmttayMsX9rhTSlONFmYVIsHcAACAASURBVFsmfm+r/5Viamt/mCCO\nqczVu1n4Jc9NqlWjioqKioqKioqKioqKioqKiorKb4yPuy+vjVljsdBpb6v5WfvZGJZ73VU/V7Nx\n9HH3lRU+wpJwcv+prA/dyOT+U+U2yv9NJnMVhviMsuLgaM0RmmnGzcGdNWPXM2fQPFKCF1JpOI2n\nsycmk3mxPnHPXKrrq1gyPJ32jh2obbzIMwNiWT02R+6rsu40fz/0N4wtRt4oXUv0zpnE7Ipm3Ter\nsLOxp0e7HlJAFHZ2QsyytrLUGypl1ZjO1RsbG+jo5EnusXcsLP+U/VSsL2Lm9mn8cOGE3MfKUdny\nOGBebL+W1ZmwRxPHMTY3yf0Ji0vltmkHF1v0t3hdvLZ0xHJWlWYjSiEqasvJKE7nKf8YNpe9x6Xm\nBhKDkkg7uNj8b/hynhkQK9uqtH8DZPWN9bm0dl7W1nRXQ1huZhSn468NYH3oRikIKrexZmXxyyz6\nPJnnPn5WilHiugkKT+7G0c6J1WNyLBbr9YZK6o31zNoRycajb9LQVM/6w+tkXwkx8WjNEX5sPEdH\nJ0+MLY3Y22hICV7I0wGxJOyN5+1vNzB30F9YVZotRdmEPXPY9N17JA9diIvGmeShC+Vx4wpjpWi2\n7ptVNJmMLDqwgOr6KjaNzyek20gCdYMpKMsnPO9+wvPCmLA5jLe+edNsi/nBRFYcWs6Uvk9wQL+P\nRQcWWIxfYfOoFLWM/7ENFG1QWsIqK1wjtoRTXV9F1shs2XdpBxeTsn8+kdsep6GpnrSDi6X956T8\nCNIOLibKP5q88HwSBidzqbmBsd3uI/WzBSTsjedozRHiCmNltZsYS5WG06QELyRrZDaby97nSf9n\neevb9aw8lElVwxkuGS+TdnCxhV2oOAfx2tXuJ2urworaclaVZuPj5itFwMKTu6moLSeuMBZPZ098\n3brSwakD1fVVnLhwgsaWRt47/k9G+Y4l9fMUnih4nJhd0dJGt1hfRPK++Zw2lNPU0kTy0IUE6gYT\n5R/N2YYqDE11zNoe2arFqRDNlP35S7kRG17x3ZA7Lk+K5DpXb+xtf7KVFf+EjaPyGNdqQ2v3q7Ch\n1djd+HfZzc5vVnHW0tLCX//6V7799lscHBxYvHgx3bt3l+/n5eWxdu1a3N3dmTBhAhERETQ2NpKY\nmMipU6dwc3MjJSWFHj168MMPP5CQkICNjQ233XYbCxYswNa2bc1P/atpFRUVFRWV3wfqX02b+V8+\nN4H67KSioqKiovJ7QX12ujn4uVaNbVUI/JK/0G/L3uxGKoPEYnR84FxZCdLWZ8U5CEvE1tr/4v5F\nZH+VRcLgZFI/T5GVINX1VUTteIJJfaay7vAq7LFH5+aNvq6SDk4d6eSildZiEbc9SurnKXRy0tLY\ncpkLjRewx56X7nmZFV9mcL7hPF6uXrKCRqAUvcQi71vfvElIt5HSgi3KP5p5e+Lo4uZD9ug1sirD\nutpMVECJyqHWLBRF9dDVbOdENYaNDSQPXSirclqze2xrjFhXg1gfV9g3Rtz2KLnH3iEzJEvazsXs\niqa87uQVdoxXG0PXqlJsa3y0hlI8uFpVS7G+iOidM3G2d+FWj17sOFmAzrULzaYmnO2dLaqlphY8\nhsZWw5bwAosqNDE2C8q2seKQ2WrQx7UrM26PYtkXi9E6e2Fva09TSxNLhqdz/PxxFn2eTMqQVHKP\nvUO9sZ7nBsYDZkFxfM+HyD32DhvDcskpXceKQ8vp7OyNs8ZJXkMxfo7WHGHenjiMLUaShyxi7der\nqG44w7IRmbKiL64wltrGi7LyyWQy8XTAbNlWrZMXGSErLCwHAVm5JyrYlHavAjEehEgbuzuaf/9Y\nhpuDO5eaG1g15g3m753L2YZq5g76C+u+WUVFXTmZ96ykr6efhWVoaXUJs3ZEMm9QEhuPbuBi4wUu\nNP7I6jE5AKQdXCxFSCFIZxSnE9lvhrTOFNabKcELeffoO3xwYjOjfMey/E8vt1lJqZyD2hpfbc11\nAPe9N4oz9XpiB8Tz/479k2ZTEzY2NphMJkwm6OjckYjbHmXt16uoMJyio6Mn7g4eNJuasLc1Vx0C\nXGpuwNjchLPGSWagCTExpNtISqtLWq0KFX0/86NI7G3tZXXxr1mFVVCWb1Ed2Na+xZy2dMRyWbVp\nPb8p55obqfprjRudF/5b3JQVZzt37qSxsZF//vOfxMfHs3TpUvneuXPnyMrKYsOGDfzjH/9g69at\nlJeX8+677+Li4sK7775LUlISqampAKSlpfHcc8+xceNGTCYTu3bt+q2araKioqKioqLyX0d9blJR\nUVFRUVFR+WNiXSGhfL2gLL+NT93Yvov1RVdUYUzKj2BSfsR1VTyI6oPQnmFSNGutzYKNYblSrGjN\nqizSfzrdPXowoffDJA9ZRGjPMHSu3rL66YB+H7MHzGFd6AaWDE9H5+ZNO8f2UoxLDErizSPr8HHz\nJSNkBV3cfJk9YA5bH/qIkG4jqbts4ILxR0Z0CSEl+KeqH9FmUWUB5kXm5z95lgmbzQvNTS1GXv5X\nBl4unaVoJrZXildiQToleCGhPcMI1A0mb/yHbBqfb7HQHFcYe0U/K6+HqABZOSpbVhc627vICjDl\ncUV/KvcvXrNe8E7YM8diHAhbPZEpJyoCA3WDzdaH4/PbtI6zrihs7ZjKY93I2BJEFkwGaHOfFbXl\nzNoeibG5iSj/aE4ZTjK57zReG7MGdwcPng6IlRUtoT3DeDP0bdaOfdOiAkaISEdrjpD3/Xt4OnYC\n4N7u97G57H2e8o/B3cGD8T0fpqKunJqGGt7+dgMpQ1J5NnA2iUFJ6OtPs6zoRRL3zmF8z4dI/+JF\nKRBtP7mN2QPmUPDnXWSPXkOTyUhcYSzF+iLiCmN55VAWy0ZkknnPSib0fhh7W3taMPHKoSxpcZcZ\nkoWzvTN9Pf1YM3Y9Pu6+RPpPJ2VIKhNvm0St8SJaFy9WjsomMShJjpH3x30g7yNft274awMorS4h\nPO9+xuWFMj7vPvSGSor1RURsCSeuMJbkoQvp4NSRC40/MnfQX/DXBuDu4EHa8OVsLnuf+MB5dHPv\nQV9PP4tqPh93c/VWB8eOLCtajKGpDo2tgxTNABqa6kn9bAFpBxczvudDpB1cTGS/GSz/YplFJdap\nuh8oPPkx3188ziBtELvKt0ubSOsxuHTEcmnJeTWulqvlpnHHQ9OOV0tWUGk4jb6+kjMGPWfq9bSY\nmskMySLYZxhpI9LxdevKW2Hv8tqYNTjZOcuqQyFoAywatoTMkCzSDi7m/KVzvPyvDDZ99x6pny2g\ntLqk1Xkydnc0VQY9NjaQGZL1q4tm0womye8OZV8o/xdzRGS/GbIaMj5w7hX3uBBKxVz1c0Uzgfg+\n+qPwmwlnxcXFjBgxAoABAwbw9ddfy/fKy8vp06cP7du3x9bWFn9/f0pKSjh+/Dh33303AD179uT7\n778H4JtvviEoKAiAu+++m/379/9WzVZRUVFRUVFR+a+jPjepqKioqKioqPwxUS5GCksrvaGSB96/\nl2kFkwjPC5MLnT9n32JBvjXx5XorHYQA1JqNn7UVmbBGbA2RaaU3VJI8dCGbvnuPl4qXUKwvkqJG\nX08/jM1GNpe9x/y9c5n7aZzMNNO5elNRW07qZws4XVfBkuFmi78o/2i2n9wmF/ft7eyws7Fjw5E3\nmLUjUi4iizYrhR1/bQA9PG6RIlny0IVobDXY29qjc/WmWF8kt1ee46T8CN765k2e3DldLgRbZ7q1\n1s9iwVppRefj7itFk4zidBKDkmQFUmvWhyJjSbkofzVRS7QjL9ws6vlrA6g31hOzK1pe0+vNYbNu\nR2uvbQzLvSFBwPoeUFJQlk/ElnBWFr9Med0pztRXsuLLDEJ8RrHu8CqO1hwhyj+anMNrLY7prw0g\nozhdXnvR7xG3PUrCnnhOG8p5ZsBsHugxnre+Xc/4ng+x6utX5FjKvGclAD9cPMHGoxvkWFk6PIMO\nTh1JG76cXh164evWTbbV2Gwk/99bAPNYcLZ3kWJvZkgWNjaQUbyMVaVm4eW5gfH0cL/FQogBaGw2\nErMrGjCLqIUnd7O0KJX3v88lbbhZNHpqx0wLS0Pl2BMVlmkHF7N6bA5bwgtYNiITQO43MyQLf22A\nuYrzP0KemH9Cuo2Udp+pdy2RIqzoXzEfuGncWToiAzsbO/SG0xTri5lWMInpBVMwNjeRNdIs7i37\nYjFn66tJO5hKheEUl5obZOabk50z6w6vorz2JF+dPYQd9gBX2BhW1JYTqBssM7euJty3Ztco7t9n\nBsTS0FyPu4MHNv/Z/k++ownrMY7zl85xoGI/4/JCmftpnNyfztWblaOyWTkqm7SDi6mur6KyrpIz\nDZVyuyj/aKrrqyivPUnq5ykc//EYiw4skNdHzBE+7r5kjcymR/tbWDRsyc+6765GaM8wC8tT6z+e\nEPMGwNIRy8k5vJYo/2ii/KPJKE5vtU8jtoRLsfOXiGbi+yhhz5w/jHj2mwlndXV1uLm5yd/t7Oxo\najJ7+Hbv3p3jx49z9uxZGhoaOHDgAPX19fj5+fHxxx9jMpk4dOgQZ86cobm5GZPJhI2Nebi7urpS\nW6vaCamoqKioqKj8cVCfm1RUVFRUVFRU/rgoRZW4wliid87E3taezHtWkhduXvi/2kJxWwixoLUF\nT2uR4kb2LRY9lQKUMqOrLQJ1g3l/3AccqNjPzO3TWPR5Mi8EzgfMGVDCdm7lqGyaWprQ11Vypl7P\n3T4hLDqwQC5+v/tgHmvGrkfr4sXEreHM2xNHbeNF9IZKSqtLqGk4i86lC+l3/42lwzNIO7hYflYp\nZgk2jc+XotyiAwtICV6IvY2G0uoS2S4hfimFoZzDa3l99Dr52Un5EURsCbdY9Lfu56tlAYFZ3BMZ\nadbbiH0W64t4cud0iwoRa5HB+nW9oVK2RW+oxEGRN/Rr5CxZcz3ZbkrasmactT2Sf18s443Dq5ne\nL4r5QQuwt9EQ2vM+Ojt74+nsScLeeCL7zbDoLx93X+ID51oIm0tHmCuplo7IoLOLjhc//ysfnNiM\nsdlIsM8wXh+9jpBuI2U2WOLeOWidO/PMAHN13qT8CF4tySLKP5rlXywz24r2nULUjicorS5h5ahs\nbGzMGWGAtMME89h/OiCWKsMZEoOSKK0uIWFvPCnBCzlac4TwzfdTUJbPUztm0mxqoqGpgUUHFpAY\nlMSq0mxc7d1pajFy/tJ5YndHc7qunIjbHpXirrWIKu5FIaAk7p3DUztmYmODtI8Ec3VoSLeRUlSJ\n2RXNxK3hHKjYT22jubpt6Yjl0sZU9OXGsFxSghcS0m0k9cZ6mmnm/x37J8lDFtHR2RN7W3uq66sA\n0Dp78ePl85xrqCFlSCrxgfN4asdMZnw0lYameh7oMZ5aYy3RAbF09ehK3MezGZ93HxO3/nQvCfFH\niHhXq3wSAo01ekMlq0qz8XLpTEcnT54d8DwAu8q388GJzTTRRNahTIwtRs42VHPGoGdK/mNM2BxG\nXGGsPB8AW1sb2jt2oKbhLLO2R7Ks6EWaaebh2x7hiX6zMGHimQGx0qZTmakoxkLawcW/yb2ndfGS\n87JyvlFW7AmxPLLfDBL2xpOwJ/6KijMlNjatvnxdKM9RtONG54ebFfvfasdubm4YDAb5e0tLC/b2\n5sO1a9eOxMREYmJiaN++Pf3796dDhw6EhITw/fffM2nSJAYOHEj//v2xs7OzyOUwGAx4eHj8Vs1W\nUVFRUVFRUfmvoz43qaioqKioqKj88REVHzG7omnCKLOA4OoLxVfbn6iyag1ldtXVsmuU9oBiEfj9\ncR+QGJQkF+YjtoSjsdNI27q2qhOO1hxh0efJTO8Xxa5TO+jg1IG4wliMzUaq66t4cud0Xh+9DncH\nD6YPieLouSO8dXQ93m5dWBmSLdsrrAdfG7OGozVHeOVQFtE7Z2IygckGZtweJSt7hIChzOlSVqGI\nfKLEoCTK607Kti46sADgiowy66o70XeZIeY2xOyKRmOnabOiry2RSORUKXPklO+LrDMhQFpndwkx\nULRH/CwEpPfHfYDO1Zu4wliyRmbLjDPr7LZfyq9h6QbmRfbVY3MAOH7+OOsPr6PSUIGXS2eq66vo\n6NwRAG/XLrxyKMvifgFz9Y04Z9EnogLT09mT+Xvn0tjciMbWATBXaInKsFcOZbFqzBvUNNSQuHcO\nvm7dSAleSPK++WQUL+NsQxXzBicR7DMMz6+1cvxcvFxL3CcxdHH1pdnUhLuDO+8+aK4Ae/lfGYgy\np0UHFmAymTh+/jhLi1Jpbmnm+Pnj6A2naefYHheNC2AWvjJDspi1PZLzjTWs/XoVcwbN44VPnmNp\nUSrrD6/DRWPO2FLm2yXsmSNf83H3lZln4vpY3/MiX63JZKSh8RKLPk8GYNb2SJzsnAFzrpcY24lB\nSUTteIK5g/5CnbEWW2yZM2geAFUNZ9A6eTFj+1RsTDasuXc9NQ01rPgygw5OHUjYG08nJy983H2Z\n6jedXh168cGJzQTqAunRrgdxn8TQyUlL8tCFMldNtPN6xlVFbbnMwovyj2Zy/6nyXlRmtCXvm4/W\nyYvqS2ZBzNOpExpbDRpbDYmDUyivPWXOWrTzZqrfdDKK0+Vc4uWsQ2NnT+yAODYe3cAzgbHM+XQ2\nm46bj+Pl3Jm+nn5yHCvv12J9EXM/ff43yfqqqC0ndnc0JpOlWC7aYZ2DuKo0m3mDzONYaccpUFYw\n/txcM+V81Fo7fs/8ZhVnAwcO5NNPPwXg0KFD9O7dW77X1NTE4cOH2bhxIytWrKCsrIyBAwdSWlpK\ncHAwb7/9NqGhoXTt2hWAfv368fnnnwPw6aefMmjQoN+q2SoqKioqKioq/3XU5yYVFRUVFRUVlf8b\nBOoGy4onJb80V6a1nBtlzta1FjKVi6/vj/sAgCd3Tpd5RMYWoxSgJm4NbzXjqqK2nFWl2ehcvDmg\n38dzA+OZv+8FovyjWTkqG39tgMxqSgxKYmlRKu8e24iHQzsLWzMfd19z3pThNNX1VeQcXktK8EKc\n7V2Y1m86mEysP7xOVoopRTPrbDGRT9TUYq4yEllfuePyWDkqm9xxeRbVW9bZScq+E/Z8K0dlX7cN\npkD0q782wMLGEX4SQpSvt1WxZm17mBP6lhSQrD8jRDPr4/0a/Br7EwLpogML2Hh0AzY20MHREzAL\nTxG3PUpGcTqLhi2R+WbWBOoGy34orS6RNnEp+82VjolByXg4enC05oj8TNbIbLm/VaXZpA1fTu64\nPPy1ATSbmnC2d2be4CRyj71DzK5o7G3t5dh31jiRec9K5gyah76+kguXL8jqLxsbWDYiE39tALnj\n8kgYnEzusXfo6OSJDTa8/e0G5g1O4sfL55l9Z7wce0JA9HHtiovGnH92S/uerBm7nrzwfBKDkqTN\nnqgyjQ+cS0ZxOsX6IgrK8skoTre4Ltb3vMgOXDRsCTn3/YNOjl54u3Zh9dgccsflkRK8EHcHD1aO\nyiYzJAutixedXbzJPfYOCYOTscWWjOJlrPgyA1+3rmSErMDLWYeXa2eOnz8uRexXDmXh7dqFNffm\nsGjYEpZ9sZhifTFgFkc9nT2xs7HD1cEVrYvXFePpesaV3lBJpeE0Y7vdR9wnMRSU5Vt8Xm+oZNGB\nBejrT/Ngz3BsscXLuTPPBMzGzsae9BF/Y1Xpq2w48gYAhkYD6V+8yPieDxGoG4zeUImLxpm6ywbe\n/nYDTSYjJy6cwGQykX7335h9ZzwXLv9IzK5oiyozMabNY8GGRcOW/Cbikb2tRmYkWs/B1tXNZ+ur\nWfaF2X7y51Q1Xw0xz4rqv4gt4RaVcH8EbEwmk+m32HFLSwt//etf+e677zCZTCxZsoTDhw9TX1/P\nI488wt///nd27tyJo6MjTzzxBKGh/7+9Ow+Iqlz/AP4dFpFNcWFLpaSupkZqaLllSi5wQRGRQAwy\n3FPJwARN8Lov99pNLbe0SNNKEnEBMdRM3JJIzcxKJTVNEEFDFmGGOb8/uOf8ZoaZgUEZBvx+/rky\nM+ec9z3bfTvPeZ7XGwUFBYiKikJpaSns7e2xePFiODs7448//kBcXBzkcjnc3d2xaNEimJub69x2\nXh5LEhERETUEjo729d0Ek1Cf4yaAYyciIqKGgmMn0/AwYycxe0ihlGPHMPWgjSEPG7U9MFXNWlLN\nvqqttOwUKdNmYvqbUslD1W3qaldO8S14uvSU1lEiLwEAJI9Ikdp25PphzMp4B842LrBv0kzKFhH7\nMuXgeKwbtEkKjImf3Sy8gSfs2yJ5REqVjCptfc7KycTJmyew4ofF2OWfAk+XnlKQTcxQUs1Q05yz\nTDPIpZmhVtP9rG0bqu1QncdKc52qf2flZFYJkqm2KysnE1FHIgFAmoPLVKmexznFtzDhm7EQhMog\n1O2SXGwa8hk8HLtK55MuadkpUjajo40ThiUNBQC42LkiostE/DtrCd71nIPd2UlI8N4mlSYsVZTA\nQmYpzUPmn+yDKc9HIvXqHsT1mg9HGycpKyqn+BamH5oiZej8M2kQ8kvuwNHGGTN7xGBWxjtwsnZB\nM6tm0jUjzlm2Mms5Ph6SgF/zLyImIwpu9k8hcXgyjlw/jFbWreDh2BXn887Bw7FrlcxJzfMU+P9r\nZHL6eNwqvolNQz6Dt7uv2n5VPX/SslMw4ZuxgAyI6VEZtHayccbegAMAKsuyiqVUVc8d0fBkbzg0\naYHmVg5Y8+o65JXcxpxjs1CmKMOdB3mIe2kBAjoESr8X2x6w2xel8gfILb0FSzNLONu4wFxmgfWD\nN0llDlWPa02vJXG5tOyUKv0W+3Ly5gks/X4B5JDDDOYwNzODXCnH291mYvXZlQj6x2jsuLQdABDR\neSK++H0rNgz6BEtPL8IQNx+sPrsScS8twMbza5FTUhkc9XvKH1cKL0uZt2L2qOaxmpw+Xurjo6Ya\naNe3/m0XtiAmI0rtOGvuW133veqIfY32nCVlcoplb8Xz1FSCZw8zbqqzwFl94sMfIiKihoEPf0wD\nx05EREQNA8dOpuFhx06qD7/Fv/WVUtS2fGhKEOQVcqlkIAC1B+wP2z7xQfBre0dgx7DkagMX2ton\ntiun+BYmp49HTslfSPZPVSutdz7vHBxtnKSgkfjQWwxqWFvYqJWRjDoSKT209nDsqjXopNmHEcm+\nyCn+C442TtgbcED6jRjUUw1iaa5D9bjoC3yJpcqqC1hqbkP1MzGgutprnRSs0RYEFEtpqpaGG7H7\nn3C1fQK7/FOkfaUZ4DNVN+/f+N/cdfmIzYiGi+0TmPFCNNaeWy3tC0D3g33Vh/je7r5SwKZEXoK7\npQV4yqE93uoaiYRfNqtdH1k5mcgruY34E3NgbVFZDvHNtNcr54sWgDb27aTgrBgMUL0egMrSpLEZ\n0XC0cUJucQ6cbV2wpF9l9lfc8Tn/a9+fMDMzw/KX36/MwHxuKsZ6RODI9cN457tpAAAXG1fkl97B\niv7/xZgu4VK/xPMpp/iW2nWjFki+fwObh26RAkjazltx/+SX5mPj+XXIK86DQ1MHKWAoBj3E/3Wx\ndcWR64elffZm2uvIL72DzUO3VB6nY9GoqKhAaxtHTPR4C4mXvqxyfG7ev4Fdv+/EF79tRX5pPuJ6\nzcfac6sR12u+dJy0XV/VBXBUryFt16zqPaSwrBCj/hGMry99hZk9YqQAZljKaLzXKx7/OjEXhfK/\n8Zl3ZQDN0cYJk9PHAwBmvBCNAW5eCE0JQm+Xvki89CXuywvR1q4dlvRbIc0nphn4O593DlHfvg2H\npg5qGa2PkrbgueY+Ck0JQmFZITYNTdB7L9B2T6oJ8f4pr5CrlXs09P/P6trDjJvqrFQjERERERER\nERERqVOdl0b8W99cZdqW3+6biMThydJDZnEdjyJoplqGUZxLRwwcaJYz1Cen+BbGpo2Bi60rkkek\nINk/Va20HlA575QYGFG13TcRu/xT1AJUsRkzpSyYCeljkVN8Cwne2+Bi64rQlCCp3aolGwHAxtIG\nHw9JkIJm4m9USziK+1XfcRH3u+qDfdXfjE0bg6ycTL0l0TS3ofrZ+wNWw8LMEnklt3XuU835lMTP\nlvVbCWuLynmzxH3VEGTlZCJgty/C00bj3e9mwP/pQCzsuwQbz6/Daq918HTpWWWfa1ItWSlaN2gT\nLM2awMnWBXG95mNMl3C160MsZbfg5DxYyCzR26UvAMDMzAxKQYlW1o6QyYAj1w+rlcQThMr5s/yT\nfTDl4HgMcPNC8ohU7A04gBX9/wtzmQXmHJuFCeljMeOFaCzsuwQyMxlie8ZhgJsXJj43FRvOf4jz\neecwwM0LEZ0nwkJmgeAOYyAX5IjJiEJWTqbaOZxTfAsj9/hJ57t4Dk8/NAVvd4/GE3ZtsfT0IrUA\niGrQQvw7KycLH51djYkeU1CkKMTUbpGYfmiKWrAMqJzz73zeOUR9Nx1jO4+Di63r/7IAZbh89zLm\nHH8XMT3mopW1I+6WFaBF0xZaj6tf0lAs/D4e3R17oKAsH1f/vgq5Uo6lpxchKydTKvOnGgCrjnh/\nCk0JQlp2itp1L/Z1u28iPF16/u96ssDu7J24XZoDAGhqbo2TN08gvywP73w3DSWKYsS9tAAejl2x\n9PQiTD80BRWCAn8V30Ar68qyobNfnIttv32GUnkJnKydEe0Zg5VZKxDtOUtredSIA2G4U3YbRfK6\neTlVzDjTt8/E+4m1ReX8deK9SddvDQ1wZeVkSnPCicFBXWVCGzJmnBEREVG94VvTpoFjJyIiooaB\nYyfTUBdjp7p8S9+Qslma2WKv7R0BCzNLKYNDNcutuqwQMUtGXzlKzWwHcb4mbftBXOf0Q1Nw/f5V\n7B6xX21+M9X1qG5L89+qGWKqy+jqR02Pi2qGUG2Podh/MYuuphmImtmG+ko9mgrV7KC07P3Y/usW\n5D24jdZWTrCzspWy5/RRzbwRzwExu2pC+lg4Xrjk+wAAHqVJREFUWjvBvkkzrSUrxay8pacWYcel\n7WjexAHmMnMUlhcivNObSL26F/fK7mLj4E/h7e6rlvEYf2IOLGSWUtBA7EuJvAQVggIRXSZid3YS\noj1nYfyBN+Bk6wx5hQL3ygvg0KQlrC2bwkJmiQcVpcgtzsHmoVuQlZMFTxdPtcwxXeU5xSzDdnZP\nIr73fKnEoy4fZq3Cgu/jYA5z7Bv5jfS5ank9zW2mZadIZTIDdvtiVo/3pD6JJSyHuPngm+v71dYh\nlpAsq3iAnJJbaGvXDsXyYpTIi6VsQjGTTSw5KJZbBarPfBLvA+Jcb7r6Lh6TiR5T8O53M9C2WeWc\n4IIAFDzIx315IVpbOSH9tSNqyyWc/wQfnfsAbe3bSRmvR64fxsqs5TCXWcDG0gYTPaYg4ZfNVe4L\nYlbiy08MQNCzwQa9yFCTa1Qzu7K634rXV17JbbXs2ppuT18b9N1vTAlLNWrgwx8iIqKGgQ9/TAPH\nTkRERA0Dx06m4VGNnYwR3KhNQE4z0ASol0UT/9ZHs6Sg5vxr+tqqq9yk6kNjANLDe0Pn8arNfHLG\neCis+qBbsyxfdW3TLOunGWTRVfqxPon9nf3iXGl+sqycLOzO3qkWlNJF9RxT3V8ApBKgIs3+iwGO\nuF7zEXEgHApBAQszCyiVFQAAAQLMYIY3Oo/DdM8ZUqBmbOdx2Hh+nXSMVNsnln6ckD4W7eyexNRu\nkXi2VSfkldxGTEY08kvvILZnHHq36SMF4BacnIdSRSkqBAVyS3LgZO2CBJ/PdZ7/mtsDUO11JS7r\ns/NVxPR8D2O6hKuda7quHdV7h2rWKVAZnPR3H4llmQvhattGbe7C1/aOwNW//8DsF+PxyYWNiOgy\nEct/WITJHtPh7e6jdS4sQ6+xtOwUONo4ScEzXUEk8Xf+yT7YNOQzAJUlNB8oHiCvNBcJ3tuk9Sx7\n+T/4Nf8i3vluGsxhgU+9t0plZENTglCqKMG6QZuQV3JbyjjTtt207BRMTH8TLrauNQr+au7rmtxb\na3rMz+edw4KT86TPVAO9tX1RQ/MeU9MSm/WFpRqJiIiIiIiIiIgaCM1ygoDhc8xUt35xnYY+HNUs\nV6hagkuc26k6LrauUtBMLB0olmWrrq26HuSLpd0WnJyHhafmYcrB8SgsK0TUkcgal3rT7F9d/P5h\nKJRyKSCjLZtFtZ+q55D4MDxozwgE7PaVgipiSUJ5hbzKtuqbWFbP290XScP3wcOxK765vh8WMkvE\n955f7X5XLVupur+OXD+MN9JCkZa9XyoDqtn/nOJbuH7/Go5c/xYKQQ4XGxdMff5tPGHXBk42zgj6\nx2hABnzyy0b47HwVUUciEe05CxvPr4O8Qo68kttVjk1sxkx4OHbFx4MTMLVbJGIzojFi9z+RX5qP\nOyV5aNm0FRIvfQkXW1ep34nDk7FpaAIAwM7SHvkP8jD90BS9x1q1/54uPWt0fbexb4tPvT9Hwi+b\n1dbhYuuqs/yqailFzTkEoz1nYfuvWyEIAhb2XaJ2j4jrNR8AsOXiJxAE4IvftmKyx3Rs/PkjqQyp\n5voMDZqFp41GXsltRHvOwsT0N7WWIczKycTE9DeRV3IbbvZPwdHGCUtPLwIAKIUKCBBw+e5lKSA6\n/dAUfHR2NZytXdGuWTspoAZUlmu0kFkCABaemodoz1lYmbVC637zdvfFxsGfSr+vCUPu0zU55mIA\nc8HJeVAIcqx5dZ1aILq25RTFIJl4jjZ2DJwREREREREREREZkaHzmhlC8yH7owr8iOXhXts7Qu9D\nU3H7qg/HdQXENOcEq66tLrausDS3RFyv+RAEwMbSGu8PWG2SmQ61IdYF05aNqG0+J82Sk4nDk7HL\nP0Xa12JwqrrsrfoitkkMfm33TcSaV9dhZdYKnXMyqVI9p8TgYcIvmxHZLRrrz6/B7eJc5JXchkxW\ndbll/VZi26+fwdnaFcEdxmD9T2tQIVQgr+Q2Ei99gQqhAs0sm8PKvCneH7Aa3u6+2O6biPje8zHp\nYATSslPUti0eiznHKgNsHw9JQLJ/Kga4eeGp5u3xqffnanMSisvlldxGTkkO7ssLoRAUmNqtMtin\neV3oCnTU9LiqBlzEfQ2gynklEoOBqteoeB4uPb1ICm6qZvbdvH8DHo5dsScgrXKeOXMLlMhL8c31\n/dgw6BNpH+rLOtX2b1Uejl3xVLP28HDsCg/Hrmhr5ybda1S52LqirZ0bPBy7InF4MoDKuRMX9l0C\nh6YOaGHVEl/8tlUKiD6oKEV87/lIG3UI6wZtkvYXAClr69f8i7h+/xocbZz0Bp48HLtq/Vyf2r7c\noIuFWWUAWpz7UHOZ2twPxLnTLM0tpZcoxHPJFO8vD4uBMyIiIiIiIiIionqgmUXyKKg+ZH+U6/Z0\n6Ylk/1TsGKY/CKPtIb+uTDMx26OmD13Fh7SONk6wsbTBW10jtT4018XUsyTEB9LashG3+yZqfUCt\nGWDRFqBsCA+1xWChp0tPRHvOQmzGTIOPl5gl9V6fePi7ByK/7A7e/S4K2iYqGuDmBVe7JxDScQzW\nnlsFGws7THhuCpRQQkDlAiWKYshk6hlSHo5dsWHQJ1UyjtrYt8X5vHO4UfQnJnpMgbe7r5Q9uGNY\nsvQbTY42Tmhj2xaOTZ3Q1q4dnm3VCQBqdA0ZSrwniPta9bzS9lsx4K0ZcNvumwgPx66wkFlKGZ+q\nwd28kttwsXWFQqmAtUVlcLu6YJJqwF9bhp1qu8QSiGKwWFdAUfzufN45jNzjh/N557AyawXe6hqJ\nYkURSuSl8HDsitkvzkVe6W0sODkPOcW3pD6J67U0rwxCbTy/Dh8PTpACvfpYmtc84+xRU83mfH/A\n6lpdS7p4uvSsss6GcH+pDc5xRkRERPWG83SYBo6diIiIGgaOnUzDoxw71eX8WQ8zj42xiPMBqWZJ\nVUfs19jO4xB7LBpu9k9WG8xTXc6U94ehcz5pm9NM83tT7zOg3k4A0lx3YuDJkP0hzoM3Mf1N2FjY\nYpvvDgDq2WniA/8Ryb74q+gG5EJlKcdWVq2RX5YPQICDVQvM67UQA9y8APx/0Clgty92+adIn2lK\ny06Bt7uvWp/O553DpIMRUmlJbe1dcHIeQp8Nw5aLn8DawqZOsnjE4BYAtfnNajtPlWbgRJxXa9LB\nCCzp+2/EHovGx4MT4OHYVZpTTd/8XJpzKj6K/qvuYzF418a+LdKyU7D09CKpz2nZKdL34vx34hxm\nYruqmxdOc7uP6vg97Lrqav5MU76niDjHGRERERERERERUQNTlw8eazuPjTHpK7WmT4L3NozpEl6j\nDDhRQ9gfhgaJQlOC9M7x1hD6DKi3U/y3i60rxqaNQVp2So0zM8VlPRy7YpLHNDjbugCAWnaMGEgB\ngPWDN2Hz0C140r493u42Ey2atsTb3aJhBjPcK7uLVWdWqmUAns87h6uFf+B83jmd+1QMtqiWb1yZ\ntQIbBn1SJeAi/sbRxglypRzLMhfi5v0bmP3i3Do5ZmImkrYsJH3z4Ok7vzSz4sQ56wa4eaGd3ZNV\nMs2qOx9V5+17FFTPCfG4A1ArG3nz/g2szFoBoHL+uxJ5aZW508QyhTWdU/FRBs2qK49rrLbU9TpN\nDTPOiIiIqN7wrWnTwLETERFRw8Cxk2ng2OnRMuQheUPJoKotQ/unWSqwscnKyUTUkcgaZ/kAkLLC\nrhb+gf++8iHGdAnXOmccAGlfi+X5SuQlmPFCNKK+m47IbtEY6xFRJZi57cIWjOkSblA/9J3j4jFf\n9vJ/pM9q2teHodomfRlnWTmZerPEarqNtOwUrMxaoXc9dV36r7rjAFRmlckr5IjvPb9K5qD4vTHn\n9BLnlkz2TzXKedHYPMy4iYEzE9ZQUh6JiIhqiw9/TMPDjp04ZiEiIjIOjp1MQ2N57tRQNfaxp6H9\na8zBxNqWEMzKycSUg+OlubD0rV/8XgzSTfSYgpiMKOwesb9KoKKu9rUpnNPa2qAa1HuYoE1N1mMq\n57G24J1mkNHY7cvKyWTQrJYYOGuE/vz7TwR8FYBdwbvQrnm7+m4OERERkVYcsxARERER1a8///6z\n0Y7Fa9u32iz3/Y3vMTV1KuL7x2P4s8MfaXsaqkfV35qs53Hbt2TaGDgjIiIiIiIiIiIiIiIiAmBW\n3w0gIiIiIiIiIiIiIiIiMgUMnBERERERERERERERERGBgTMiIiIiIiIiIiIiIiIiAAycERERERER\nEREREREREQFg4IyIiIiIiIiIiIiIiIgIAANnRERERERERERERERERAAYOHvsKJVKxMfHIzg4GGFh\nYbh27Zra94cPH0ZgYCCCg4OxY8cOvctcu3YNo0ePRmhoKObNmwelUimtp6CgAEOHDkVZWZnxOtfA\nGePYJCQkICgoCEFBQfjwww+N28EGzBjHZtu2bQgMDMSoUaOQmppq3A42UMa6nymVSowfPx5ffPGF\n8TpHRCaDYyfTxbGTaeK4yXRx7ETU+J07dw5hYWFVPtd2fcvlckRHRyMkJAShoaG4cuWKsZtrMEP6\nV15ejujoaLz22muIiIjA1atXjdxaw+jqGwCUlpYiJCREOkbV3c9NkSH9q8kypsaQ/snlcrz77rsI\nDQ3FqFGjcOjQIWM21WCG9K2iogKzZ89GSEgIRo8ejd9//92YTa2V2pyb+fn5eOWVV0z+vmlo3wIC\nAhAWFoawsDDMnj3bWM2sNUP7t2HDBgQHB2PkyJFITEysfgMCPVYOHDggxMTECIIgCGfOnBEmT54s\nfVdeXi4MGjRIuHfvnlBWViaMHDlSyMvL07nMpEmThFOnTgmCIAhxcXHCN998IwiCIBw9elTw9/cX\nunfvLjx48MCY3WvQ6vrYXL9+XQgICBAUCoWgVCqF4OBg4eLFi0buZcNU18cmPz9f8PX1FcrLy4X7\n9+8L/fv3F5RKpZF72fAY434mCIKwcuVKISgoSNi+fbuxukZEJoRjJ9PFsZNp4rjJdHHsRNS4bdy4\nUfDz8xOCgoLUPtd1faenpwuRkZGCIAjCsWPHhGnTptVHs2vM0P5t3bpVmDt3riAIgnDlyhUhIiKi\nPppdI7r6JgiC8NNPPwkBAQFCnz59hMuXLwuCoP9+booM7V91y5gaQ/v39ddfC4sWLRIEQRDu3r0r\nvPLKK8ZsrkEM7Vt6eroQGxsrCIIgnDp1qlGem+Xl5cJbb70lDBkyRO1zU2No3x48eCD4+/sbu5m1\nZmj/Tp06JUyaNEmoqKgQioqKhNWrV1e7DWacPWaysrLw8ssvAwC6deuGn3/+WfruypUrcHNzQ/Pm\nzdGkSRN4enoiMzNT5zIXLlzAiy++CADo378/Tpw4AQAwMzPDp59+CgcHB2N2rcGr62Pj4uKCTZs2\nwdzcHDKZDAqFAlZWVkbuZcNU18emZcuWSE5OhqWlJe7cuQMrKyvIZDIj97LhMcb9LC0tDTKZTFqG\niB4/HDuZLo6dTBPHTaaLYyeixs3NzQ1r1qyp8rmu67t9+/aoqKiAUqlEUVERLCws6qHVNWdo/y5f\nvoz+/fsDANzd3U06M0RX34DKzLmPPvoI7u7u0mf67uemyND+VbeMqTG0f97e3nj77bcBAIIgwNzc\n3CjtrA1D+zZo0CAsXLgQAPDXX3+hWbNmRmlnbdXm3Fy+fDlCQkLg5ORkjCbWmqF9+/XXX1FaWoqI\niAiEh4fj7NmzxmpqrRjav2PHjqFDhw6YOnUqJk+ejAEDBlS7DQbOHjNFRUWws7OT/jY3N4dCoZC+\ns7e3l76ztbVFUVGRzmUEQZD+I9XW1hb3798HAPTt2xctWrQwRncalbo+NpaWlmjZsiUEQcDy5cvR\nuXNntG/f3ki9a9iMcd1YWFjg888/R3BwMIYPH26MbjV4dX1cfv/9d+zbt08a0BLR44ljJ9PFsZNp\n4rjJdHHsRNS4DR06VGvwS9f1bWNjg5s3b8LHxwdxcXEmXxLP0P516tQJ3377LQRBwNmzZ5Gbm4uK\nigpjNrnGdPUNADw9PeHq6qr2mb77uSkytH/VLWNqDO2fra0t7OzsUFRUhMjISMyYMcMYzayV2hw7\nCwsLxMTEYOHChRg2bFhdN/GhGNq/pKQktGzZskG8IGRo35o2bYpx48Zh8+bNmD9/PmbOnNmo7it3\n797Fzz//jFWrVkn9EwRB7zYYOHvM2NnZobi4WPpbqVRKJ5nmd8XFxbC3t9e5jJmZmdpvTf0tAlNn\njGNTVlaGmTNnori4GPPmzavrLjUaxrpuXn/9dWRkZCAzMxOnTp2qyy41CnV9XJKTk5Gbm4s33ngD\nu3btQkJCAo4ePWqEnhGRKeHYyXRx7GSaOG4yXRw7ET2edF3fCQkJ6NevHw4cOIDdu3cjNja2Qc61\nqqt/gYGBsLOzQ2hoKNLT09GlSxeTzuwxhL77OTUMt27dQnh4OPz9/U0+uFQby5cvx4EDBxAXF4eS\nkpL6bs4js3PnTpw4cQJhYWG4ePEiYmJikJeXV9/NeiTat2+P4cOHQyaToX379nBwcGg0fQMABwcH\n9OvXD02aNIG7uzusrKxQUFCgdxkGzh4zL7zwgvQfL2fPnkWHDh2k755++mlcu3YN9+7dQ3l5OX74\n4Qd0795d5zKdO3fG999/DwA4evQoevToYeTeNC51fWwEQcBbb72Fjh07YsGCBY1mwGgMdX1ssrOz\nMW3aNAiCAEtLSzRp0kTtYQRpV9fHZdasWUhMTMTWrVsREBCAsWPHSqU+iOjxwbGT6eLYyTRx3GS6\nOHYiejzpur6bNWsmZWo1b94cCoXCZDOy9NHVv/Pnz6N379744osv4O3tjXbt2tV3Ux8ZffdzMn13\n7txBREQE3n33XYwaNaq+m/NIJScnY8OGDQAAa2tryGSyRjVO27ZtGz7//HNs3boVnTp1wvLly+Ho\n6FjfzXokvv76ayxbtgwAkJubi6KiokbTN6AyCy0jIwOCICA3NxelpaXVTpXA1xEeM4MHD8bx48cR\nEhICQRCwZMkS7N27FyUlJQgODkZsbCzGjRsHQRAQGBgIZ2dnrcsAQExMDOLi4vD+++/D3d0dQ4cO\nrefeNWx1fWwOHjyI06dPo7y8HBkZGQCAqKgodO/evT673SDU9bExNzfHs88+i+DgYGlOCHHOCNKN\n9zMiMgbea0wXx06mieMm08X7GdHjpbrre+zYsZgzZw5CQ0Mhl8vxzjvvwMbGpr6bXWPV9c/S0hKr\nVq3C+vXrYW9vj8WLF9d3k2tMtW/a6Lo3NxTV9a+hq65/69evR2FhIdauXYu1a9cCAD7++GM0bdrU\nmM2sler6NmTIEMyePRtjxoyBQqHAnDlzGkS/RI353Kyub6NGjcLs2bMxevRoyGQyLFmypEFlslbX\nv4EDByIzMxOjRo2CIAiIj4+v9sVImVBdMUciIiIiIiIiIiIiIiKix0DjyZUkIiIiIiIiIiIiIiIi\neggMnBERERERERERERERERGBgTMiIiIiIiIiIiIiIiIiAAycEREREREREREREREREQFg4IyIiIiI\niIiIiIiIiIgIAANnRGRkSUlJiI2Nre9mPLSwsDB8//339d0MIiIiauQ4diIiIiLS7saNG/Dy8tL6\nXceOHet02/7+/nW6fiKqXwycERERERERERERERHV0O7du+u7CURUhyzquwFEZHoUCgX+9a9/4dKl\nS7hz5w7at28Pd3d3ODs7Y9y4cQCAyMhI+Pn54fnnn8fMmTPx999/o0OHDsjMzMTRo0f1rv/atWsY\nM2YM7t27h4EDByI6OhoymQw7d+7Ep59+CplMhi5duiAuLg62trY617N8+XIcP34c5ubmePXVVzFt\n2jSsWbMGV69exfXr13Hv3j0EBwdj/PjxSEpKwq5du6RthoeHIz4+Hjk5OZDJZIiOjkafPn2Qm5uL\nOXPm4P79+8jLy4Ovry9mzpyJ8vJyvPfee/j555/Rpk0b3L1795HucyIiImq4OHbi2ImIiIjq3vr1\n67Fnzx6Ym5ujb9++CA0NxYMHD/DOO+/g0qVLaNasGT766CO0aNFCWubevXt47733kJ2djSZNmiA2\nNha9e/fWuQ0vLy94eXnhhx9+AAAsWbIEnTt3RlhYGJo3b45Lly7hgw8+wIgRI/Dbb7/pXP/Ro0ex\nevVqKBQKtG3bFgsXLlRrFxGZNmacEVEVZ86cgaWlJb766iukp6ejrKwMLi4uSElJAQAUFRXhxx9/\nxIABA7B48WL4+Phg79698Pb2Rm5ubrXrv3HjBtasWYNdu3YhKysLhw4dwm+//Yb169dj69at2Lt3\nL6ytrfHhhx/qXMfNmzdx9OhR7NmzB19++SWuXr2KsrIyAMDvv/+OhIQEJCUl4auvvsKFCxcAALm5\nudi1axeioqKwePFiBAYGIikpCevWrUN8fDyKioqwb98++Pn5YceOHdizZw+2b9+OgoICbN26FQCw\nf/9+zJ07F9evX3/Y3UxERESNBMdOHDsRERFR3fruu+9w+PBh6eWea9euISMjAwUFBXjzzTexb98+\ntG7dGqmpqWrLrVq1Cm5ubti/fz9WrFiBDz74oNptOTg4IDk5GZGRkYiJiZE+79ixIw4cOIBOnTrp\nXX9BQQFWrlyJzZs3Izk5Gf369cN//vOfR7cziKjOMeOMiKro2bMnHBwcsG3bNmRnZ+Pq1ato0aIF\nysvLce3aNZw5cwYDBw5EkyZNcPz4cSxduhQAMHjwYDRr1qza9Xt5eaFly5YAAB8fH5w+fRo5OTkY\nOHCg9PZNcHAwZs+erXMdzs7OsLKyQkhICAYOHIgZM2bAysoKAODn5ye9be3l5YVTp06hRYsW6Ny5\nMywsKm97J06cQHZ2NlavXg2g8k3xP//8E+PGjcOpU6ewefNmXLp0CXK5HKWlpTh9+jSCg4MBAE89\n9RS6d+9em11LREREjRDHThw7ERERUd06deoUfH190bRpUwBAYGAgkpOT4eTkhOeffx4A8Mwzz1TJ\ncs/MzJSCVh07dsRXX31V7bZee+01AJXjotjYWBQUFACAtJ3q1v/tt9/i1q1bCA8PBwAolUo0b968\nNt0monrCwBkRVXHo0CGsXr0a4eHhGDlyJO7evQtBEDB8+HCkpqbizJkzmDBhAgDA3NwcgiAYtH7x\nAQwACIIACwsLKJVKtd8IggCFQqF3HYmJiTh9+jSOHj2KkJAQ6c1mc3Nz6XdKpVL6WxxciZ9/9tln\ncHBwAFD5RnXr1q2xbNky/Pnnn/Dz88OgQYNw4sQJCIIAmUym1kbVPhAREdHjjWMnjp2IiIiobmmO\nfYDKF3lUxxgymazKOEtzDHLlyhW0b98eZma6C7GpLqNrbKRv/RUVFXjhhRewfv16AEBZWRmKi4t1\nbo+ITA9LNRJRFSdPnoSPjw8CAwPRunVrZGZmoqKiAsOGDUNqaiquXbuGHj16AAD69OmDvXv3AqhM\nmy8sLKx2/eLvysrKkJKSgj59+uDFF1/E4cOHce/ePQDAjh078NJLL+lcxy+//ILXX38dPXv2RExM\nDJ5++mn88ccfAICDBw+ivLwcf//9N7799lv069evyvK9evXC9u3bAQCXL1/G8OHDUVpaiuPHj2Pc\nuHHw8fHBrVu3kJubC6VSid69e2Pfvn1QKpW4efMmfvzxR8N2KhERETVaHDtx7ERERER1q1evXkhJ\nScGDBw+gUCiwc+dO9OrVq9rlevToIZVvvHLlCiZMmACZTKZ3GbHcdnp6Op5++mm92WLa1v/888/j\n7Nmz0lhr7dq1WLFiRY36SUSmga/9EVEVQUFBmDlzJtLS0tCkSRN069YNN27cgKurK1q0aIFu3bpJ\ng4w5c+YgJiYGO3bswLPPPlujckPu7u6YOHEiCgsL4efnJz2cmTRpEsLCwiCXy9GlSxfMnz9f5zo6\nd+6Mbt26wc/PD9bW1ujUqRP69++PCxcuwMrKCqGhoSgqKsKkSZPwzDPP4KefflJbfu7cuYiPj8ew\nYcMAACtWrICdnR0mTZqEWbNmoVmzZmjVqhWee+453LhxA6Ghobh06RJ8fHzQpk0bdOjQoba7l4iI\niBoZjp04diIiIqK6NXDgQFy8eBGBgYFQKBR4+eWXMXDgQGzZskXvcpGRkZg7dy6GDx8OCwsLrFix\notrA2Y8//oivv/4a1tbWWLZsmcHrd3JywpIlSzBjxgwolUo4Ozvj3//+t8F9JqL6IxMMrRNCRKRi\ny5Yt6NOnD5555hlcuHABcXFxSEpKqrf2rFmzBgAwffr0emsDERERkS4cOxERERGZLi8vL2zZsgVt\n27at76YQUT1ixhkRPZQnn3wSUVFRMDMzg5WVFRYuXIjU1FRs2LBB6+93795t0PrDwsK0ljAKCQnB\n6NGja9VmIiIiovrCsRMRERFR/dI3XiIiAphxRkRERERERERERERERAQAMKvvBhARERERERERERER\nERGZAgbOiIiIiIiIiIiIiIiIiMDAGREREREREREREREREREABs6IiIiIiIiIiIiIiIiIADBwRkRE\nRERERERERERERAQA+D9nDXmK/svmdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, axarr = plt.subplots(2, 3, figsize=(30,10)) #1 row, 2 cols, x, y\n", + "irow, icol = 0,0\n", + "fig.suptitle(\"pca against features\")\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " \n", + " icol = pltGraph(\"ohlc_price\", \"pca\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"pca\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"ohlc_price\", irow, icol, df)\n", + " irow+=1\n", + " icol=0\n", + " icol = pltGraph(\"avg_bo_spread\", \"period_return\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"period_return\", irow, icol, df, yval=df['period_return'].shift(periods=1).fillna(method=\"bfill\"), title=\"avg bo spread v future period return\")\n", + " icol = pltGraph(\"ohlc_price\", \"pca\", irow, icol, df, xval=df['ohlc_price'].shift(periods=1).fillna(method=\"bfill\"), title=\"ohlc 15 min future v pca\")\n", + " \n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAN8CAYAAABGOcflAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0FFX/x/H37maTkEI6JBB6iXRCC4ggoohIEbBQQnlQ\n8BFUpEgVEBBBihUeC0VEwJ+CgoCIIk2kg3QILfRQAiSQ3vf3x8pKSDEQyQb9vM7hHHb2zr3fuTNz\nZ+7eOxODxWKxICIiIiIiInKPGe0dgIiIiIiIiPw7qAMqIiIiIiIiBUIdUBERERERESkQ6oCKiIiI\niIhIgVAHVERERERERAqEOqAiIiIiIiJSIBzsHYCIiIiIiMj9Lp2F9g7hL5kItXcIGgEVERERERGR\ngqEOqIiIiIiIiBQITcEVERERERHJp4yMdHuH8JdMhWD4sRCEICIiIiIiIv8G6oCKiIiIiIhIgVAH\nVERERERERAqEngEVERERERHJJ4slzd4h3Bc0AioiIiIiIiIFQh1QERERERERKRCagisiIiIiIpJP\nFkvh/zMshYFGQEVERERERKRAqAMqIiIiIiIiBUJTcEVERERERPIpQ2/BzRONgIqIiIiIiEiBUAdU\nRERERERECoSm4IqIiIiIiOSTRVNw80QjoCIiIiIiIlIg1AEVERERERGRAqEpuCIiIiIiIvmkKbh5\noxFQERERERERKRDqgIqIiIiIiEiBUAdURERERERECoQ6oCIi/1DNmzcnKCjI9q9KlSrUq1eP3r17\nc+TIEXuH948VFBTEsmXL8pTWYrHw/fffc+3aNQC2b99OUFAQly5dupch5ioiIoJnnnmG6tWr89pr\nr2WbZsKECQQHB1O3bl2uXr2a7zITExNZuHBhvvMREbEnS0Zaof9XGKgDKiLyD9anTx82bdrEpk2b\n2LBhA/PmzSMuLo5evXoRFxdn7/D+9Xbv3s2wYcNITEwEIDg4mE2bNlGsWDG7xbRw4UIuXrzIsmXL\nGDNmTJbvT5w4wfz58xk2bBjLli3D19c332V+8cUXzJkzJ9/5iIhI4acOqIjIP5iLiwt+fn74+flR\nvHhxqlWrxrBhw4iKimLbtm32Du9fz2KxZPrs6OiIn58fRqP9Ls8xMTGUK1eOChUq4OPjk+X7Gzdu\nANC4cWMCAwP/ljJvrwcREfnnUgdURORfxmQyAdbODlg7FCNGjCAkJIQGDRrQp08fTp48aUufnJzM\npEmTeOSRR6hevToNGzZkxIgRtlG7JUuW0LJlS8aOHUvdunUZOnQoCQkJjBgxggcffJAaNWrw3HPP\nsXXrVlueiYmJTJs2jebNm1OjRg2effbZTN8PHz6ckSNHMmHCBEJCQggODmbw4MG5jtpevXqVwYMH\n06BBA+rXr0///v2JjIy0ff/tt9/Spk0batasSYsWLViwYIHtu+y2IbtlALt27aJz587UrFmTRx99\nlHfffZfk5ORsY8qt7s6fP09oaCgAjz76KNOnT88yBfde1NOFCxcYOHAgDRs2JDg4mH79+nHu3DkA\nunfvzuLFi9m5cydBQUFs374907pLliyha9euADz22GMMHz4cgGPHjvHCCy9Qq1YtmjZtypgxY4iJ\nibGtd/78efr3709ISAjVqlWjefPmzJ4925bnhx9+SEREhK3M6dOn06JFi0xl37rs/PnzBAUF8emn\nn9KoUSNatWpFSkoKFy9epH///tSpU4cHH3yQgQMHcvnyZVsee/fupXPnztSuXZuQkBCGDBnC9evX\nc6wrEZE7Ykkr/P8KAXVARUT+Rc6dO8e7776Ln58fderUISMjgxdffJHIyEhmz57NV199RYkSJeja\ntSvR0dEATJ48mfXr1zN16lR++uknxowZw8qVK/nmm29s+Z4+fZq4uDi+//57/vvf//LRRx9x4sQJ\n5syZw48//kiVKlV45ZVXSEhIAGDgwIGsWrWKcePG8f3331OrVi169+7Nvn37bHkuX76c9PR0vv76\naz744APWrVvHl19+me12paWl8fzzz3P+/HlmzpzJggULuHr1Kv379wdg7ty5vPXWW/Ts2ZPly5fz\nwgsvMGXKFD7//PMctyG7ZWFhYbzwwgu0aNGCFStWMGHCBNavX8/YsWOzjSu3ugsICODjjz8GYPHi\nxTz//PNZ1v+76ykuLo4uXbpw48YN5syZw/z584mNjaVbt27ExsYyffp02rRpY5sKHBwcnGn9J598\nMlPMb7zxBpcvX6Z79+5UrlyZpUuX2vb9K6+8Yluvb9++pKSk8OWXX/Ljjz/y1FNPMXXqVMLCwnjy\nySfp06cP/v7+2ZaZm5UrV7JgwQKmTZtGWloa3bt3x8nJia+//po5c+aQmppKz549SUlJIT09nb59\n+9KoUSN++OEHZs6cyYEDB5g8eXKeyxMRkfxzsHcAIiJy73z88cfMmjULgNTUVNLS0qhatSozZszA\nzc2NLVu2cODAAXbs2IGbmxsA48aNY9u2bSxatIj//ve/1KpVi9atW1O3bl0AAgMD+eqrrzh27Fim\nsvr160epUqUAOHPmDK6urgQGBuLu7s6wYcNo2bIlJpOJEydOsH79eubMmcNDDz0EwKhRo9i/fz9z\n5szho48+AsDT05NRo0ZhMpkoV64cDz74IHv37s12O7du3crRo0dZs2aNLYYJEyawZMkSkpKSmD17\nNj179uTZZ58FoGzZspw7d47Zs2fTq1evbLfhZifv1mWvv/46Dz/8MC+88AIAZcqUYdy4cXTt2pWB\nAwdmeXYzt7ozmUx4eHgA4O3tjaura6Z170U9LVu2jJiYGN577z08PT0B+PDDD2nevDnLly8nNDQU\nZ2dnzGYzfn5+WdZ3dnbOFLO7uzuzZ88mMDCQYcOG2dK9//77NG3alD179lClShU6dOhA69atKV68\nOAAvv/wyn376KUePHqVKlSq4uLhgMpmyLTM3oaGhVKhQAbB2iBMTE3nnnXdso/zvvfceISEhrF69\nmoceeojo6Gh8fX0pWbIkgYGB/O9//yM1NfWOyhQRkfxRB1RE5B8sNDTUNmXSZDLh6elp62gCHD58\nmPT0dJo0aZJpveTkZMLDwwF46qmn2LRpE1OmTOH06dOcOHGCs2fPZnr+z2AwZPr8wgsv0K9fPxo1\nakRwcDBNmjShXbt2ODk52Tqut4901a1blw0bNtg+ly5d2taRAHB3d880nfJWx44dw9vb29ZRBChf\nvjyvv/46165d4+rVq1nKq1+/PrNnz7a9gfb2bchuWVhYGGfOnMmU183nF8PDw7N0QPNSdzm5F/V0\n/PhxypUrZ+t8grUjWaFChSw/KORVWFgYYWFh2Y5choeHExwcTLdu3fjxxx/Zv38/Z86cISwsjIyM\nDDIyMu6qzJtu3d+HDx8mKiqKevXqZUqTmJhIeHg4bdq0oVevXowfP57p06fTuHFjHnnkEVq2bJmv\nGEREbrIUkimuhZ06oCIi/2AeHh6UKVMmx+/NZjOenp4sWrQoy3cuLi4AvPHGG6xdu5YOHTrw+OOP\nM3DgQMaPH58prdFotD1TClCvXj1+/fVX2xt4Fy5cyCeffMKiRYtwdnbONpaMjAwcHP68LN2a3005\nvazm1vVu5+TklO3y9PT0TOvevg3ZLTObzbRv354+ffpkyS+70bu81F1O7kU95Zan2WzOU1y3M5vN\nNG7cmFGjRmX5ztvbm/j4eEJDQ0lPT6dly5aEhIRQq1YtHnnkkTsqJy0t643drfvWbDZTsWJFZsyY\nkSWdu7s7AMOGDSM0NNR2bI4YMYJFixblOGVZRET+fnoGVETkX6xSpUq2l7CUKVOGMmXKEBgYyAcf\nfMDOnTuJjo7m22+/Zfz48QwbNoz27dtTrlw5zp07l+ubS2fMmMHu3btp0aIF48aNY/Xq1ZjNZjZs\n2EDFihUB658gudXu3btt392pChUqEBUVRUREhG1ZeHg4DRs25Pr16/j7+2cp7/fff8fPz882pTQv\nKlasSHh4uK2uypQpQ1RUFJMnTyY+Pj5T2rzUncFgyLUs+Pvr6dSpU5levBMVFcWpU6dsU1nv1M06\nKVGihK1OjEYjEydO5OLFi2zatImwsDDmz5/PK6+8QsuWLUlISCAjIyPHejCbzVnq88yZM7nGUalS\nJc6fP4+np6ctDh8fHyZNmsSxY8c4e/Ysb775Jn5+foSGhvLJJ58wefJktm/fbhsFFxGRe08dUBGR\nf7FGjRpRu3ZtBgwYwK5duzh16hSjRo1i3bp1VK5cGTc3N9zc3Fi7di1nz57l8OHDDB48mIsXL5KS\nkpJjvhEREYwbN47t27cTERHB8uXLiY2NpVatWpQuXZrWrVszduxYNm3aRHh4OJMmTeLQoUP06NHj\nrrbjwQcfpGrVqgwbNoyDBw9y5MgRRo8eTYUKFQgMDKRv3758+eWXLF68mDNnzrBo0SIWLFjAf/7z\nn1w7gbfr06cP+/fvZ9KkSYSHh7Njxw6GDRtGbGxslhHQvNTdzec+w8LCiI2NzbT+vaindu3a4e3t\nzaBBgzh06BCHDh1i0KBBFC1alNatW99Vnt26dSMmJobhw4dz9OhRDhw4wKBBgzh9+jRly5YlICAA\ngBUrVhAREcHWrVsZMGAAQKZ6uHHjBidPniQ5OZnatWtz7do1vvjiC86fP89XX33Fxo0bc42jbdu2\neHl5MWDAAA4cOMCxY8cYPHgw+/bto1KlSnh5ebFq1SrGjh1LeHg44eHhrFq1itKlS+Pl5XVX2y4i\nkklGauH/VwioAyoi8i9mMBj43//+R8WKFenXrx8dOnTg9OnTzJkzh4oVK2I2m/nggw84dOgQbdq0\noV+/fnh4ePD8889z8ODBHPMdNWoUDRs2ZPDgwbRs2ZIvvviCSZMm0aBBAwDeeustmjRpwpAhQ+jY\nsSP79u1jzpw5d/QG1FsZjUY++eQTvLy86N69Oz179iQgIMD2op7OnTszcOBAPvvsM1q3bs3cuXMZ\nPnw4vXv3vqNygoKC+Oyzz9i9ezft27dnwIAB1K9fP9tpn3mpu4oVK9KyZUsGDhxoi/VWf3c9OTk5\nMWfOHBwdHenWrRs9e/bE3d2dhQsXUrRo0bvK08/Pj7lz53L16lWee+45evfuTUBAAHPnzsXR0ZGa\nNWsydOhQZs2axZNPPsn48eNp164dISEhHDhwAICWLVtSsmRJ2rVrx4YNG2jYsCGvvvoqs2bNonXr\n1mzdutX2RuOcODs7M3fuXJydnenZsyddunQhLS2NefPm4ePjg7u7O7NmzeLcuXM899xzPPPMM6Sk\npDBz5ky7/t1VEZF/G4NFf/1ZREREREQkX2Jjx9g7hL/k7p639xDcS3oJkYiIiIiISD7pLbh5ozkn\nIiIiIiIiUiDUARUREREREZECoQ6oiIiIiIiIFAg9AyoiIiIiIpJfGXoGNC80AioiIiIiIiIFQh1Q\nERERERERKRCagisiIiIiIpJfmoKbJxoBFRERERERkQKhDqiIiIiIiIgUCE3BFRERERERyS+LpuDm\nhUZARUREREREpECoAyoiIiIiIiIFQlNwRURERERE8smgt+DmiUZARUREREREpECoAyoiIiIiIiIF\nQlNwRURERERE8ktTcPNEI6AiIiIiIiJSINQBFRERERERkQKhKbgiIiIiIiL5pSm4eaIRUBERERER\nESkQ6oCKiIiIiIhIgVAHVERERERERAqEngEVERERERHJJ4NFz4DmhUZARUREREREpECoAyoiIiIi\nIiIFQlNwRURERERE8isj3d4R3Bc0AioiIiIiIiIFQh1QERERERERKRCagisiIiIiIpJPhgy9BTcv\nNAIqIiIiIiIiBUIdUBERERERESkQmoIrIiIiIiKSX3oLbp5oBFREREREREQKhDqgIiIiIiIiUiA0\nBVdERERERCS/9BbcPNEIqIiIiIiIiBQIdUBFRERERESkQGgKrty1K1di7R0Cfn7udo+jMMRQWOIo\nDDEUljgKQwyFJY7CEgPYv91SXWSOQzEUnjgKQwyFJY7CEENhiaMwxHAzDvnnUAdUREREREQknwz6\nMyx5oim4IiIiIiIiUiDUARUREREREZECoSm4IiIiIiIi+aUpuHmiEVAREREREZF/uYyMDMaMGUOn\nTp3o3r07Z86cyfT98uXL6dChA08//TRfffXVXZejEVAREREREZF/uTVr1pCSksI333zD3r17eeed\nd/jkk09s30+ZMoUffvgBFxcXWrduTevWrfHw8LjjctQBFRERERERyaf7/S24v//+O02aNAGgdu3a\nHDx4MNP3QUFBxMbG4uDggMViwWAw3FU56oCKiIiIiIj8y8XFxeHm5mb7bDKZSEtLw8HB2mWsVKkS\nTz/9NEWKFKFFixYULVr0rsrRM6AiIiIiIiL/cm5ubsTHx9s+Z2Rk2DqfR44cYcOGDaxdu5Z169YR\nFRXFqlWr7qocdUBFRERERETyKyO98P/LRZ06ddi4cSMAe/fupXLlyrbv3N3dcXZ2xsnJCZPJhLe3\nNzExMXdVTZqCKyIiIiIi8i/XokULNm/eTOfOnbFYLEycOJEVK1aQkJBAp06d6NSpE127dsVsNlO6\ndGk6dOhwV+WoAyoiIiIiIvIvZzQaGT9+fKZlFSpUsP2/S5cudOnSJd/lqAMqIiIiIiKST/f7W3AL\nip4BFRERERERkQKhEdB/mMGDB9O2bVuaNWtGeHg4kydPxtfXlzNnzpCRkcGAAQMICQnhp59+YuHC\nhaSlpWEwGJgxYwbHjx9n2rRpmM1mnnvuOdq3b2/vzRERERERkX8QdUD/YZ599ln+7//+j2bNmvHt\nt98SHBxMXFwcEydOJDo6mm7durFy5UpOnz7NzJkzKVKkCGPGjGHTpk0UL16c5ORkFi9ebO/NEBER\nERG5v2gKbp6oA/oPExISwoQJE4iKimLz5s0EBweze/du9u/fD0BaWhpRUVH4+PgwbNgwXF1dOXny\nJLVr1wagXLly9gxfRERERET+wdQB/YcxGAy0a9eOCRMm0LhxYwICAggICOCll14iKSmJTz75BLPZ\nzEcffcSGDRsA6NWrFxaLBbC+/UpEREREROReUAf0H6hjx440a9aMZcuWUapUKUaNGkW3bt2Ii4uj\na9euuLm5UadOHTp16oSDgwNFixYlMjKSwMBAe4cuIiIiIiL/YOqA/gOlp6dTt25d29/tmTJlSpY0\nH374YbbrhoSE3NPYRERERET+ifRnWPJG8y3/YVavXk3v3r3p37+/vUMRERERERHJRCOg/zCPP/44\njz/+uL3DEBERERERyUIdUBERERERkfzSFNw80RRcERERERERKRDqgIqIiIiIiEiB0BRcERERERGR\nfDJkZNg7hPuCRkBFRERERESkQKgDKiIiIiIiIgVCU3BFRERERETyS2/BzRONgIqIiIiIiEiBUAdU\nRERERERECoSm4IqIiIiIiOSXpuDmicFisVjsHYSIiIiIiMj9LGVbbXuH8JccG+61dwgaAZW7d+VK\nrL1DwM/PnXQW2jUGE6H81KCzXWMAeGLH1/wS8pxdY2ixfZHdY7gZx9qGz9o1hke3LSbp4CN2jQHA\nufp6Eg8/ZtcYilRdw7I63ewaw1O7FwDw6QP/tWscLx35zO7HhXP19QCFIg57txctti/ih7qhdo0B\noM3vCwvF/vi8ah+7xgDw/OFZhaIu7H0NAet1pDCcI/ZuN8Hadso/h54BFRERERERkQKhEVARERER\nEZF8Mlgy7B3CfUEjoCIiIiIiIlIg1AEVERERERGRAqEpuCIiIiIiIvmlP8OSJxoBFRERERERkQKh\nDqiIiIiIiIgUCE3BFRERERERya8MvQU3LzQCKiIiIiIiIgVCHVAREREREREpEJqCK/9qFouFN0Ys\np2IlP55/4cG/LV+/xsFU7tcZo6OZ2BNnOTDhM9LjE+84nXMxHxp+/habQ4eReiMWAO+6VQl6rTtG\nk5GUG3EceX8escfPAuDbOJiKfbtidDQTd+IMh97+NNtyc0xnNBA0oCc+IbUwmEycWbiC80t/AaBo\nlQoEDeyJqYgzGI2cnr+MSz/9liXvh76fQVpc4j2JwaWUP1VH9cXs4U56QhIHx80g4cwFAMp0bUOJ\nto9gSbe+ga5IyeIkRlwGIPCZJyjZ8XGwWEiMuEzYpE9JjY7J+w4FigT6EzS0D46eRTGaHbiwYi1n\nv/oBAJ8H61ChX1eMZuu2hL39Sa55bfw9iY8WxJCSZqFyGTNj+3ni5vLn74ErNiQwf0Wc7XNsgoXI\na+msnlkcB5OBCTOvc/R0KkWcjDzVvAhdn3S7o22xxbErkekLbpCSaqFSGTNjX/HOHMf6eOYvj7V9\njkvIIPJaOj/PLoGDCd7+LJqjp1Ip4mzgqeaudGntnueyiz9UmyqvPofJbObG8bPsHT+btGyOk9zS\nlX32Mcq0b4bJ2cz1sNPsHTeLjNQ027qln2pKwCP12D7gvTzFVPrh6oQM6oDJ0YFrRyPY8MaXpMYn\n5Zj+kUk9iTp+gX2fW49PJw8XmrwZim+VQFITUji6dAsHF6zPc50UmuPCTnG4VShF0ODncXBzgYwM\nDr8zk9gjp+4odrOnO9XffAXnAD9rHpNmcuPAMQAq9+9OsUcbkRZjjT3+j7bjdsUeqs0Dr3TCaHYg\n5sQ59o+fle2xmZd0dacOIPlKNAenzAPAp15VqrzWBaODifTkVA5Nncf1Qydz3abCclwENq1BvYEd\nMTk6EHXsPJtGzcv1/Gjydi+iT0RwcO5q27Ium94jIfK67fOBz3/m5A/b8xxDQdZFdu16ekJi3tIY\njVR+rSfef1zHzn61nIilv+BaNpBq41+zrW8wGnGrWJr9w6fiUqoExVs0tn1n9iwK3Lvrumu5ktS4\nJRaMRtwrlmbfsGm4lA7A/5ZYuv/6DmZXZz6vNyBLufZuNwsdTcHNE42Ayr9WePgVnu85n59WHfpb\n8zV7ulN99EvsGf4+vz07iISISIJe7nLH6Uo82YSQmWNxLuZtW+bgWoTgyYM4On0hm0OHcXjyHGpP\nHIDBbP0tqdqofuwf8S5bnhtAQkQklfp1zbbcnNIFdmiBSyl/tnYdzPZeIyjd+UmKVq0AQM13BhM+\nazHbug9lz8CJBL3WA5dS/rZ8PWoGAeBUzOeexVB9XH/Of7earZ0HET5rEbXeGQyAd/0alGjXnB29\nR7Gt21AAqozqB4B7UHlKh7ZlV59RbA8dTMK5i1R4sXOe9uWtqo5+mcg1m9nRYwg7e79ByfYt8Kpb\nHbNnUaqO6seBEdPY1uk1Ei9cpuLLoTnmE3UjnTEzrvPuEG+WTy9OyeIOfLggc2e4bTMXFr1bjEXv\nFmPhZD98PY0M7+2Bj6eJqV/cwMXZyNIPirFgki+bdyfz666cL/a5xfHm9CimDfVh2f8CCPR34MP5\n1zOlafuIK4ve92fR+/4snFocX08Tw/t4WeP4/DouzkaWfOTP/HeKs2l3Eht3Zr0pyo6jpzvBY/uw\n8/UPWdtxCAkRkVR9tdMdpQtoXo/ynVuwpe8k1j0zHJOTmQqhrQAwF3Wl5she1BjaAwyGPMXk7OXG\nIxN7srr/Z3zd6k1izl2l4eAO2ab1LO9P2y8GUv6JepmWPzjiOVITkvim9ViWdn6H0k2qUbpZjTyV\nX5iOC3vEYXRypM5HozizYDnbewzj5OffUWNc/zuO/4EhvYnee4StnQdx4M3p1Jw4CKOTI2Btow6M\n+oBt3YeyrftQDoz6IMv6jp7u1HrzRX4f8gEbnh5CwvlIHsjh2PyrdBV6tME7OMj22eBgos6kV9g/\nYTYbu4zk+JzvqT2+b67bU1iOC2cvN5q8/R/WDfiE71qPJvbcVeoN6phtWo/y/jzx+WDKPVE30/Ki\nZYuTEpPAso7jbf/upPNZ0HXxV+16bm1/yQ6PUaSUP9tDB7Hz+eGU6tSaolUrEn/6PDt6DLH9u7Zj\nH5d+3sSVDTs4M/972/Ld/d4kI8ka2726rsefirCdC9u6DyVq+z4u/ryJyA07OP3lMttygNTEFH4Z\nOCtLufZuN+X+pQ7ov9jRo0fZuXMnAM2bNyc5OdnOERWs/1u4iw4da/NEq2p/a76+ITW5cTichHOX\nADj33S8EPPHQHaVz8vWi2MP12TXwnUzruJQOIC0ukaidBwHrL/hp8Yl41agMwI2wP/M7v2Q1/k80\nyVKuT0itHNMVe7gBESs2YEnPIC02nku/bCHgiaYYHc2cnL2YqJ0HAEiOjCLlRixOxXwAcPT2oMqQ\nFwDISEq5JzE4+XnhWrYEl37ZAsC1rXsxOTvhHlSO5GvXOTJ5VubRY38/AGKPnmTrM/1Jj0/A6GjG\nyc/bNppscHCg0ms9qT9vMg3mT6XK6JcxuRTJEi/AheVrufTzJgDS4xNIOH8JZ39fvENqEhMWTuIf\n2xKxZDX+LbNu801b9yVTvaKZMiWsPxo819KFH39LxGKxZJt+7vdxeHuYePZxVwAOh6fS5uEimEwG\nzGYDTeo6s2Zr3jp+meLYm0S1So6UKWEG4Nkn3Fi1MSHHOL5YGoO3h5FnWlpHDMLCU2jdzCVTHL9s\nTchT2cUa1SD60Cniz1lHqE8tXktgq6wzEHJLV6r1Q5yYv4rUmHiwWNj39lzOrbTun5ItQki+ep1D\n7/9fnuujVOOqRB44w40zkQAc/vpXKrYNyTZt9dBmHFmyhZM/7cq03K9qaY4v344lw0JGajpnfj1I\nhZZ18lR+oTku7BSHT0gtEiIuc3XLHgCubNzF/jfeB6wdt8oDehIy7x0aLphCtdH9MLlmPU8NJiN+\nD9UhYtkaAOKOnyHh3EV8G9XGYHbAvXJZyoS2peGCKdR8ZzDOxX2y5OHXqAbXD5+0HXNnvl1DyVaN\n7zidT72q+D1YkzPfrbUts6Sls6bVq8QcPQOAS8lipNyIIzeF5bgo0bgaVw+eJuaP8+PI1xuo0Cb7\n86NKl0c4vnQzp376PdPy4sEVsKRn0GruYNovfZPafdtgMObtByIo+Lr4q3Y9t7bf7+EQLv6w3nYd\nu7xmc5ZroWetByj2SEOOTJ6ZpeyK/Xtwbete4N5d1zPFUvsBijVvSNjkrJ1MgHMbD3Lut6w/1tu7\n3ZT7lzqR54WLAAAgAElEQVSg/2KrV6/mxIkT9g7DbkaNaUW79jX/9nydi/uQFHnN9jkp8hpmN5cs\nN0y5pUu+Gs3eYe8Rfyoi0zrxZy9icnHCJ8Qad9Eq5XErH4iTrycAyZf/zC85l3JzSudc3IfkyMzf\nORXzJiMllQsr/pwSU7L9o5iKOHPj4DEwGqg+vj/Hps8HwJKWlm3e+Y3BubgvyVei4ZabjaQrUTgX\n8yb+5Dmi94QB2EaDI9dttaWzpKfj27Q+jZd/imftqlxYad2Wsj3aY0nPYGfPYezoPoSUK1E5jl5e\nXLmBjOQUALwb1sajRhDXtu3FuZgvSZevZorXwc0l2zwALl1Np7ivyfa5uI+JuAQL8YlZb6KiY9L5\ncnkcQ3oVtS2rUcmRH35NJDXNQkJiBmu2JXIl+s6n/Fy+mo6/zx3EsSyWIS94/RlHZSdWbkiwxbF2\nayJX8xhHkeI+JF6+9diPwuzugsNtx0lu6dzKBODkXZSGM4bS7JuJPPBSR1JjrR3g09+t4+jMpaT/\nsb/ywjXAi7hLUbbPcZeicXIvgtnVOUvaTW99zfHlWUduLu8/RaV2IRgdjDi4OFH+8WBc/DzyVH5h\nOS7sFYdL6QBSrl2n6hsvEfLFJOpMH4XBZI2jXM/2WNLT2d5zONu6DSX5anT2o0Ae7mAwkHr9z2nj\nyZFROBXzwcnXi+jfD3Li46/Y1m0oNw4eo9bUoVnycC7uQ9Itx0FSZBRmt6zHZm7pnHw9qfZ6d/aM\n+hjSM2+7JS0dR++iPLZqOlVe60L4lz/kWi+F5bhw8/ci/lK07XP85Wgc3V2yPT+2vf1/hK/YlmW5\nwWQiYuthfn7xQ37sMYWSjatRJbR5nmMo6LrIrl2/9QfKnNp+k0sRnIv5kHT59utY5h88KvbvwcnP\n/i/LtF7XcoH4Na1P+MxvrOveo+v6rSq/2p0Tn36dZWqva7lAAHZ+tDy7KrJ7u1kYGTLSC/2/wkDP\ngN5nlixZwvr160lKSuLKlSv06NGDtWvXcvz4cYYOHUpCQgLz5s3D0dGRsmXLMn78eFasWMGvv/5K\nUlISZ8+epU+fPjRu3JilS5diNpupVs06Ajh27FjOnz8PwIwZM/DwuH8bAHsyGHP4Xee2G5G8psv0\nVXwiu1+fRuW+nQnqH0r0njCu7TqU6bm321luz8+QfbmW9AzI7tfo255nKNvjKUp3epLdAyaSkZxK\npVdCub4njKgdB+5tDDlMpbTcEp/Z051ak6zTcsM/yTz6dXXjTn7buJMSTz1K8Aej2PLMq/g0rovZ\n3QXvBtYOvdHsQEr0jRy3A8D/yYep1L8HB0a+S8q169nHm4scfqwnu8Phu18SeKS+M4HF/2yqB/+n\nKO/Ni6HT61fw8zLSqJYTe4/kvaN1U0YOcZiyi2N1PM0aFKHkLXEM6uXJ+19cp/OgS/h6m2hY25l9\nR/I4iyKHOstynOSSzuBgwi+kOjsGvU96cgp1xr9ElVee5eC0BXmL4TY5nY+WO3ieZ+vkb2k09Bme\nWTKKhCs3OL8ljOLBFfK0bmE5LuwVh9HBhO+DwezqN46YQyfwa1qP4PdH8NtT/fBtXBcHdxd8/jhP\nDWYHUqKynqe57cOki1fYc8uMkjMLVlD++aez5pFTO3N7+53T1G4D1Jn0KofenU/y1evZJkmJimFN\nq1cp+kBZGn4yks0nx2SfF4XnuMi2QO7s/Dj27Z/vDEhJTePgvF+o2q05h+evzWWtW8oqBHWRaXtz\nap8yMrId2b31GPKoURmzh7ttVs2tSnVqzflvfyI9PucZJX/ndd2jRmXMntnHUrrzkwCkxGU/Vdne\n7abcv9QBvQ/Fx8fz+eefs3LlSr744gsWLVrE9u3b+eKLLwgPD2fp0qW4ubkxceJEvvnmG1xcXIiL\ni2POnDmcPn2al156iY4dO9KhQwd8fX2pWdN6UX/66aepV68ew4cPZ/PmzTz55JN23tL7R8UXn6VY\nU+vzLg6uRYg9cc72nZOfNyk34khPynxznnjpKh7VKv5lukwMBtITk9jRd7yt3MCnqtuexXT8YyT0\nZn6pN+LIuC2/pMtX8aheMdt0SZeu4uiTOY+kSOuvmwazA9XHvIxruZLs6D2KpItXAAh8+nEMJhNl\ne7S3br+bKw3nT2Fb96F/awxJlzMvB3C+JT63iqWpPXUokb/uxKtOVep/PgmA+FPnOb/kZ27sOwLA\nhRXreWDoizi4u2IwGTn2/lzbVCdTEWeMjmbcHyhPlZF/Ppu1o8cQa33370GxRxqy59W3iDt+GoDk\ny1fxqFYpy7aYPbJ/uYW/r4kDx1NtnyOvpVPUzYCLc9YL+c+bExn2QuYfguITMhjYvSge7tb0ny+N\npXTAnTflAb4mDh77c79Y4zBSJJs4Vm9OYOgLmes+PiGDAT088HC3jkjMXRJDqVzieOClp/F/2Dqt\nysG1CDG3nCPOxbxyOEeu4VW9Qrbpkq5Ec2n9LttLX87/uJmgPu3zuvkA1Hu1LWWb1wLA0c2Za8f+\nnHHgWtyTpOvxpCXm/QbV0c2ZbdO+I/mG9caxdu+WtimLf6WwHBcFHUfD+VMAMHu4EX86gphD1lk5\nVzbuourIl3ApWRyDycjR97645Tx1wujoSNEHylP1jZdseW3/z3AAHNxdSYuNB8CpmBfJkddwq1ga\n90pluLjq1henWW/MK7/0NMVzaL+dc2y/r+F5Sxt2M51buZK4lPCj6sBu1vJ9PDCYjBidzBx+fyG+\n9atxab11CmLMkdPEHjuDe8VSOdaPPY+L4FfaUbp5bQAcXZ2JOv7n+eFS3JPkG3d2flRo25Coo+eI\n/uM8MxisI8J5VdB14eT754yP7K5lObX9GUnJJF2+mmX9W0chiz/WmEurfs3aqzYa8X+iCYkXI/Fr\n2gC4t9d1AP8WD3Lxx43ZxGKg2CNZp9MWpnZT7l+agnsfqlKlCgDu7u5UqFABg8GAh4cHiYmJVKxY\nETc3641v/fr1OX78OAAPPPAAAAEBAaSkZN8wVK9eHQBfX1+Sku78JQX/ZidmLmZLt+Fs6Tacbc+P\nxrN6RVunsHTHx4jcuCvLOte2789TukwsFuq+P5yiVcoDEBt+loSzF9n07CAAPKpXsuUX2LEFkb/t\nzKbcfTmmu7JxFyXbNsdgMuLg5kLxFg9y5dcdANSaOAiTaxF29B5t63wCrH+kJ+uadmPdw93+CNHC\n/pHv/e0xJEdGkRhxmeItrM8A+oTUwpKRQdyJsxQJLE7dj9/k5OffcewD69smb77MIWLJz1R/a4B1\neh7g3/Ih4k6eJS0mjqhtewl8phUGBwcwGHhgxH+p0K8rsUdOZnpRBEDlQb3wql2Fnb2G2zqft25L\nkT+2pWSHx7mSzTbf1Ki2E/uPpXDmgnXUevHqBJrVzzpdKSYug7OX0qkV5Jhp+eLVCfzva+uLN65d\nT2fJmgRaNcn+udXcNKrt/Ecc1hu6b3+Oo1mDHOK4mEatB5wyx/FzHB//3y1x/BJPqyY5Tz0+8ul3\nbOjyBhu6vMHGnmPxqlER11LFASj79KNc+nV3lnUitx7IMd2FNTso0SIEo5P1GVb/ZnWJPpz720Rv\nt2v6Cr7tMIFvO0xgSafJFK9VHo8yxQCo2rkpp9ftu6P8qnZ+mPr92wFQxMedKs8+xPEfduRp3cJz\nXBRsHDdfdLL9PyMoElAM9wfKAeBZu4r1rdUXIrm2bR+lnn0Cg4MJDAaqjnyJiv26EnPkZKaXqFjS\nM7i6ZQ+BHR4DrD9KuZYLJPr3Q1gyLAQN6mV9Oy7WH87iTlifxTz26Xf81nUkv3Udyeb/vJnpmCvz\nzKNc/vX3LHFf2XYg23TXD5xgbev+tvzOfreWi6u3sf+t2VjSM6g55kW8almf2XcrXxLXsiW4fjC8\n0OyPW+2Zsdz2sqAVXSZRrGZ5iv5xfjzQ6WHOrNubp3xu8qpUkjqvPoXBaMDkZKZK1+acXPUX17xb\nFHRd/FW7nlvbf2XjTgLaPnLLdawxVzb+ub5ncFWidh3MUqZbhdIkX4lme5dBtmvPvbyuA3gFVyVq\nV9YZTG4VSpMWE59leWFqN+X+pRHQ+1BOU38MBgPh4eEkJCTg4uLCjh07KFeuXI7rGAwGMm6ZJpHj\nlCK5IynRMRx461NqvzMQo4MDCRGXOTD2f4D1mc3qb7zIlm7Dc02Xm32jp1N9ZB8MZgeSr15n95B3\nbd8dfusTak4ahMHBgcSIyxwcN8Na7h8jBdu6DyU1OibHdOeXrKZIYHEaLpiK0ezA+aVriN4ThkfN\nIPya1iP+zAUazHrLVt7xGQu5tj3zxSb5yrV7EgPAgVEfUGXEfynfqyMZKansH/k+WCyU7d4ek5MT\npZ9rRennrG9CrTdnIrteGMn1fUc4/cUS6nw8Fkt6BslXo9g/dCoAp+Z+R6VXu9PgyykYjEbijp/m\n+IdfZqlzp2I+BD7zBEmXrhL80Wjb8nPfrOTiyg0cfutjakwcjNHsQOL5yxwaP4MSbR7Jdv/5eJgY\n/7Inr0+LIjUNAv1NvP2qF4dOpDDuk+ssetd6IT97KQ0/LyNmh8zn5Qsd3Xjjw+t0HBCJxQIvPedO\n9YqO2RWVK29PE+Ne9WbI1GukploI9Hdgwmve1jj+F8Wi9603MmcvpuLnZcoax9NFeeODKJ7ufxEL\n8FKnolSv5JRNSVmlRMewZ+xM6k/tj9HsQPz5SHaP/hQAzyrlqD2mNxu6vJFrulOL1+Do4UazhRMw\nGI1cP3KafW9/dcf1cFNSVCwbRs6jxYcvYjI7EHPuCuuGzQXAr3oZHn6rO992mJBrHntmrqL55Od5\nbvkYMBjYNeMHrhw8k6fyC8txYa84UqJusHfoVKoM6Y2piBMZqWnsGz6NjJRUTn7+LZX796DhfOt5\nGnv8NMc+ynqeAhyZMpuqI1+i0VdNsFjg4NgZpMUnknbyHEfenUvwu8PAaCQ5MooDoz+kyfLMfzIp\nJTqGfeM+o+6U1zCYHUg4H8neMdY0HlXKUXN0H37rOjLXdDlJT0xm1+D3qDa4GwYHBzJSU9kz6n+Z\nRqMKy/64XVJULL+Nmkvz91+y/tmZc1fYOGKONcZqZXjorZ4s6zg+1zz2fLyCRqO60H7ZWIwOJk7/\n/Humabl/paDrIrt2/ebsmB09hvxxHcuaBqwvJCpS0p8G86dhNDsQsfQXru85bMvbpZQ/SReyjvK5\nlPIn6VLm5ffqun5rmYm3/Kj85/IAEi9GZnrb/e3s3W4WSvozLHlisOT0+jAplJYsWcLJkyd5/fXX\n2bhxIz/++CPvvPMOYWFhTJs2jfbt2zNv3jyMRiOlS5fm7bffZuXKlbZ1kpOTadWqFevWrWPDhg1M\nmTKFMWPGMHLkSFatWoWTkxPTpk2jfPnydOyY/SvWb7pyJTbX7wuCn5876Sy0awwmQvmpwZ3/WY+/\n2xM7vuaXkOfsGkOL7YvsHsPNONY2fNauMTy6bTFJB7PvhBYk5+rrSTz8mF1jKFJ1DcvqdLNrDE/t\ntj4b+ukD/7VrHC8d+czux4VzdetLuApDHPZuL1psX8QPdXP+s0kFpc3vCwvF/vi8ah+7xgDw/OFZ\nhaIu7H0NAet1pDCcI/ZuN8Hadt4P0taWt3cIf8nh0TubLXRPYrB3AHJnbu0UNm3alKZNra/SrlKl\nCnPmWH+NbNu2bY7rODk5sW7dOgCaNWtGs2bNAGzLAF5//fV7EruIiIiIiPy7qQMqIiIiIiKSX5qC\nmyd6CZGIiIiIiIgUCHVARUREREREpEBoCq6IiIiIiEh+aQpunmgEVERERERERAqEOqAiIiIiIiJS\nIDQFV0REREREJL8y0u0dwX1BI6AiIiIiIiJSINQBFRERERERkQKhKbgiIiIiIiL5ZNBbcPNEI6Ai\nIiIiIiJSIAwWi8Vi7yBERERERETuZ+krA+wdwl8ytb5o7xA0BVfu3pUrsfYOAT8/d35q0NmuMTyx\n42vSWWjXGABMhPJLyHN2jaHF9kVsbNzBrjEANN28lLUNn7VrDI9uW8wPdUPtGgNAm98X2j2ONr8v\ntPtx0XTzUgCWBPewaxwd93xZKPYHUCjiWFW/i11jaLXz/1jX6Bm7xgDQfOu3hWJ/fFPrP3aNAaDT\nvi8KRV0UluNidYNOdo3h8R3f2L3dBGvbeV/QFNw80RRcERERERERKRDqgIqIiIiIiEiBUAdURERE\nRERECoSeARUREREREckvPQOaJxoBFRERERERkQKhDqiIiIiIiIgUCE3BFRERERERyS9Nwc0TjYCK\niIiIiIhIgVAHVERERERERAqEpuCKiIiIiIjkV4bF3hHcFzQCKiIiIiIiIgVCI6Dyj+LXOJjK/Tpj\ndDQTe+IsByZ8Rnp84h2ncy7mQ8PP32Jz6DBSb8QC4F23KkGvdcdoMpJyI44j788j9vjZfMdssVh4\nY8RyKlby4/kXHryLHEpgpDYANScO5NDbn2a7zb6Ng6nYtytGRzNxJ878mc5oIGhAT3xCamEwmTiz\ncAXnl/4CgEspf6qO6ovZw530hCQOjptBwpkLAJTp2oYSbR/Bkp5OSnQMYe/MylSea8Wy1PxoPMlX\nrmF0NBN/4gzHJs0gPSFzbN6N6lL2pW5Z0phcXag84mVcygSCwcDlVes5v3ApAA7ublQc1BuXsqUw\nOjlydt63RP78q7U2nm4FQMjCd0mMuEzYpE9JjY7JUh8V+/egePNGpMbEAZBw9gIHR71/F/UP3g1q\nUvGV7uzoMSTT8mbfTSU9OZW4UxEcnPwFXjUr8cArnTCaHYg5cY7942eRls2+KvZQ7b9MV3fqAJKv\nRHNwyjzrOk2CqT3uJRIvXbOl2dJ7/F3lfbcx3FSq3cP4P1KPnQPfzb6+ctjneUlzt8dFdvwfqkW1\nV5/F6GjmxvFz7B43m7T4pDynC5n6Cq6litvSuZbw4+ruIxz8aBH1J/a1LTcYjXhUKsW2wR9lG8e9\n3Cc+9apS5bUuGB1MpCencmjqvCz52iOG64dOZhuHX+NgKr/cGaOjA7HHz3Jwwsxs48gpndHJTLWh\nz+NRtTwYjdw4eIJDUz4nIzmVYk3qUOPNviRdvppt2QA+D9ahQt9QDGYH4sPPEvb2x1mOzb9K41TM\nh3qzJ7Kj++u264fPQ3WpOvoVki79WfbuvqNJT8h6vN1JXec13d0eFwFNalGz/zMYHR24cew8O8bO\nyfYcySmdY1FX6o7qgWdQadITkzm1bBPH/28NAEXLl6DemP/gUMQZsLD/w8Vc2nKw0NRFvo4Fo5FK\n/Xvi3bA2BpORs1+t4MLS1QB41qlGpf49MZhMpN6I5fgHc4k7cQaAUl3aEtCmOZb0dFKvW69bvo2D\nqdSvi+1+5dCEnK/x2aYzGgga0APfhtZr/OmFKzi/xLoPvOpWI+i17hhMRlL/uK+JO26NxSu4CpVe\nCQWg6ZyR7Bozi4SIK0DhaTvl/qUR0H+R5ORkmjdvbu8w7hmzpzvVR7/EnuHv89uzg0iIiCTo5S53\nnK7Ek00ImTkW52LetmUOrkUInjyIo9MXsjl0GIcnz6H2xAEYzPn7DSc8/ArP95zPT6sO3WUOThhp\nRAa/AZAQEUmlfl2zpDJ7ulNtVD/2j3iXLc8NyJQusEMLXEr5s7XrYLb3GkHpzk9StGoFAKqP68/5\n71aztfMgwmctotY7gwHwrl+DEu2as6P3KLZ1G0rkhh1UG/3HRcNkpGSnttT4YCwORd04/MYUdnV5\nhaQLlyjXt/ttcRWl8huvZpumbJ8uJF+5xu/dX2NP7yGU6PAE7tWCAAga9SrJkdfY3Wsw+18bS4UB\nvXH088EtqDyBXdoDsD10MAnnLlLhxc7Z1pxnjSAOjn6fHT2GsKPHkLvqfBqdHCn/385Uf3sQBtOf\nzalXnWoAbOs7id+6jiRy8z5qj32JWm++yO9DPmDD00NIOB/JA692ypKno6f7X6ar0KMN3sFBmZZ5\n16rMyfkr+a3rSNu/229u85J3fmIwF3WlxojnqTa0BxgM2dZZbvs8L2nu5rjIjqOXO3XG9WHbkOn8\n0mEY8ecjqd4/m7rIJd32ITNY13k06zqPZs/4z0mNS2DvpC+JPXnBtnxd59FEbjvIuVVbubBu113V\n9d3uE4ODiTqTXmH/hNls7DKS43O+p/b4vrdnXShiuJl/jTH/Zc+w9/ntmcEkRkRS+ZWsbXhu6Sr0\n6oDBZGRT1+Fs6jIUo5MjFf7zFACeNStzasEPbA4dYft3K7NnUaq88TIHRkxle+fXSIy4TIV+oXeU\nxr/Vw9T59C2cbjvuPGoEcfarFezsOcT2L7fOZ2HYJ05e7jQY/wKbB89g1VMjiIuIpNZrz95RutpD\nupCWkMxPHUaypttb+DeuQUDTWgDUHdmDU9//xupOY9jx5hwaTemXqR21d13k51go2b4FRUoFsCN0\nILueH06pTq1xr1oRk6sLNSYN4cSM+ezoPpijU2dSbcIgDGYHvOrXoETb5vzeZyQ7e7zOlQ3bAag+\nui/7hr/H5mcHkhhxmcovZ3+NzyldqQ4tcCkVwJYur7PtPyMp88c13sG1CLUnD+LY9AVsDR3K4cmz\nqfXHfY1TMW9qTRlM2JQ5AESs2UXwiJ7Wei4kbWehlZFR+P8VAuqAyj+Gb0hNbhwOJ+HcJQDOffcL\nAU88dEfpnHy9KPZwfXYNfCfTOi6lA0iLSyRqp/XX2fgzF0iLT8SrRuV8xfx/C3fRoWNtnmhV7a7W\nNxAAXAOsv7KfX7Ia/yeaZEnnE1KLG2F/bvOt6Yo93ICIFRuwpGeQFhvPpV+2EPBEU5z8vHAtW4JL\nv2wB4NrWvZicnXAPKkfytescmTzL9itsTFg4zv5+ALhXroBrhTJc/P4nyMgg6fxFAC4s/YlijzfN\nFJdXg9rEhh3PNk34B3M4OeMLABx9vDCYHUiPj8fB3Q3P+rU48/k3AKRcucbeF4eRFhNL3NGT7OzU\nDwCjoxknP2/bCESmejM74Fa5LKVD29Fg/lRqTBqMU3Ff63cODlR6rSf1502mwfypVBn9MiaXItnW\nv3dILUzOToS9/XGm5e4PlAcgKTIKgEvrduLXuCY3wk4Rf+4yAGe+XUPJVo2z5OnXqAbXD5/MMZ1P\nvar4PViTM9+tzVyXNSvhU78aDy2YQKPZo/EOfuCO885vDAEtGpJ09TphH3yVXXVZ48xln+clzd0c\nF9kp3rA61w+dJP6sdRtPLV5HqVaN7iqdwcFE3bdeZP/UhSRejsr0nU9wZUo+Vp89b8/NNo57uU8s\naemsafUqMUetIxouJYuRciOuUMYA4NuwJjcOn7S1U2e/+4UST2SNI7d00XvCOPH5UrBYIMNCzNHT\ntrbJq2ZlfOpX48Ev3yZk5pt43XaOeDeoRUzYCRLPW/ONWPIz/i2b5DmNo68Xvk0bsG/QxCwxe9QI\nwqtuderNnUydT97Cs3aVbOvgpsKwT/wbVSfq4Cni/jj2TyxaT+kns54juaXzrlqW0z9swZJhISMt\nnYu/7afUY/UBMJgMOBZ1BcDs4kxGSmqhqov8HAt+Dzfg4sr1tutq5C+b8W/ZFJdSAaTFJxC96wAA\nCWcukB6fiEf1IFKuXefo1Fm2UdaYI+EAWe5X/LO5r/EJqZVjumLN6nPhh9uu8a2a/HFfk2C7r0n4\n477Gs0ZlijdvyNUte4k9egqAU9+tZ9+0hUDhaTvl/qYO6D9cfHw8ffv2JTQ0lLFjxwKwY8cOevTo\nQffu3enYsSOnTp3im2++YfLkyQCkp6fTtm1bkpOT7Rj5nXMu7kNS5J/TD5Mir2F2c8HkWiTP6ZKv\nRrN32HvEn4rItE782YuYXJzwCakJQNEq5XErH4iTr2e+Yh41phXt2tfMRw4uWEiwfUrOZZuTL1/L\nNp1zcR+SIzN/51TMG+fiviRfibbeyP0h6UoUzsW8iT95jug9YYC1M1fp5VAur9sGQGzYcY5NnIHB\nbMZyy8P4yVeu4eDmmqkz51TMN3PZt6dJzyBozADqzf+QG3sOkXD2AkUCA0i5Gk1g53bU+mQiwXOm\n4la5PBnJKQBY0tMBaLz8UzxrV+XCyvVZas3J15vo3w8S/vFX7Og+hBsHj1NrylAAyvZojyU9g509\nh7Gj+xBSrkRR8eXQLHkAXN24k+MfzrNN470p5vAJAIr4Wzu1pdo1xejgQMr1PztDSZFRmN1ccMju\n+LwUlW06J19Pqr3enT2jPob0zL9iptyI48ziX9jUbRRHZnxDvWkDMo3i/1Xef0cMZ79by/FZS0hP\nzv5GEvKwz/OS5i6Oi9sV8fch4ZYbnsTIKMzuLji4Ot9xurIdHibpynUurP89Szk1Bnbh0Ixvs52e\nBvd+n1jS0nH0Lspjq6ZT5bUuhH/5Q6GMwZb/5Vvb5lziyCHd1e0HSDhrvQl39velbJdWXFprbZtS\nbsRydvFqtvR4g2P/+5o6UwZlyfevjs3c0qRcjebgiKkknD6fZdtSb8Rx/ruf2NVrGOGfLKTGO0Nx\n8vPOki7TNtp5nxTx98587F+OwjHbcyTndNcOnKRsmwcxOJhwKOJE4GN1cfbzAOD3ifOp8nxr2q5+\nj4dnDmXX219iSc86OmOvusjPseBU3JfkW6Z6J0Vew6mYDwlnL2Aq4ox3A+sosHuVCriWL4WTryfx\nJ89xfc9hwHpdrdg31LaurYw83tfcfo2//XxxLubzx32N8y33NRVs9zWupQNIT0ymxoTXAGgw+WUy\nUtOAwtN2yv1NHdB/uK+//prKlSuzcOFCOne2TkU8fvw4U6dOZf78+Tz++OP89NNPtG7dmrVr15Ke\nns5vv/1GSEgITk5Odo7+zhiMORzOt11s8pou01fxiez+f/buOzqKqn3g+Hdbeu9AaEmAEAKhhioI\nSFO6FCmhiVSV3rv0Ik2KgrwKiA0Ey/v+pFpABAJKCB1CIJDeezZld39/LGyy7G4SDCSRcz/ncDS7\nz8x9dubunblz78zO3ID3qL60ObCWam+0J+nSdV2DXHGMT3M0OIhLjH9mjUoNUiPrUKtNTqHUFJm+\noZxzpF8AACAASURBVHCwpdnWhaiylYTt0B/1kpRieaNlPxVz+4PN/PnGSOR2NtQcPQiJXIZlNQ8K\nsnK4MnE+Nxd/iNf7o7Gp56W3jjPd3+b+nm9psnmhwWdRxsRzZfpqsh9q72d9eOBHLD3dsajihnPb\nZri2b07gvvUE7luPa4dArGt7Gs3TlNQQbee8+YdTabd/ORqNhoKcXKMnV0+/Zmq7IYGmq9/j+of7\nyU1MNXj7r1mbif1VO00pJeQOKaF3cWnpX6p1P68cSqUU+/xF1gvdRynjtiga5zOsO7d2/2AQ4xTg\ng5mDDY9+Pmd0Hc8jj9Lsk7zkdE72eI+zo5cSsGR8pcjBuoaHkfWUtj0rOc7Otzatdi8h4ttjJPxx\nGYDLszcR99vj78iV26RevaO/AhPHBv26WYoYI67NW0/i78EApIXeIu3qbV0nxJhKXS/UpfyOqNWE\nfPg1aDR0+2YZbTe9R9y566jzVUjNFLRZN4kLiz/lp67T+XX0apovHImlu2GnvDJsi6KfSaeYumA0\nF7UaVXYOV+espebI/rTYtwGPHh1I+eua3rmEwsGOxlsWUZBTTMfL4LzGxGc3cYzXqNWosnIImbmB\n2qP60vrAOqq+0Z7kS9pcJHIZbh2ac+8T7YyShODrtPrwfW1ZlaTtrLQqenrtv2QKrngI0UvuwYMH\ndOjQAYCAgADkcjnu7u6sXLkSKysr4uLiaNq0KTY2NrRo0YI//viDw4cPM2nSpArOvPTafKGdLiu3\ntiQj7JHudXNXJ/LSMlEp9Udyc2ITsW/gU2KcHokEVY6S4ImFD3Vp982HZD+eelOeJDRCQrXHfymA\nVJ6MM2qnnGaifuqzKOMSsffX/8xP4pSxiZg5O+i9p4xPRhmn/zqAxeP3AGx8atB4/Wzif7/Ina37\nDB49npuYrHcAMndxJj89Qy+33NhEbP3qGo1xDGxMVngEeYkpqHOUJJw8g0uH1sT93y8Auv+69+iI\nzNycBmvmkRZyg+gjR3Xri/7pV3xnj0Nua01BkVFKG58a2PjUIvboab0tqykoQCKTcmfTZySdCwFA\nZmmB1EyBra8X9ecX3if19AOHipJZaa/wxp25jHv7ZtQc+BoyMwUKOxu9bWm8fibhUGRfPYmzqV0N\nq6qu+E0brt1WzvZIZFKk5gpubPqSWgNfI+yzH4t8HAmaAu1o8CtfaqcEPv0deZ45hC7/1OT2KKq4\nfV6amNLWC2VULOmht7CtX4fM2+G6dXX6ejkACmtL0sIKR6os3Bwfbwv9EdPs2CQcG3qbjLOvVxOp\nTEriX7cMPqtn15Y8/O9ZvVkEAHUnvIl7+2bAi90nNzYdwKVFA92FifRbD8i4E4Fzcz+gfOqFqRxs\nfaoDUGf8ANxMbAtTbbMyTj+Pp+OqdGmN35wx3Fj/GTHHtLcQyG2sqDGgC+GfFz3ZferCVGwCdn51\n9Nb7dN0sTczT5DZWVHuzOxF7DxcpWoK6QP8CZmWoF/6T+lG1QxMAFDYWpN0t/I5YujmSm5aJKsfw\nO+Lc0MtonLmHDVc2fUteehYAvqNfJ/NhHPY+1ZBZmBFz+goASVfvkX4vWreeyrAtzJwddet61rqg\njEvEzEV/eWV8kvZcIlvJ5clLdO+1/GqzbhqvtXdNmu78AE1BAbmJKY/z1T8+5xv7Thg5r3kSp4xN\n0putZe7qpB25lUgoyFFyqch5TZtvNpIdGUduQgqpoXd0U3otXBxwqFeTzt+sQG5lUWFtp/DyECOg\nLzlvb29CQrQn0jdu3KCgoIBFixaxatUq1qxZg5ubG5rHX/BBgwZx8OBBkpKS8PU1vH+ssvpz+Fz+\nHD6X82MW4eDvg1V17ZX1Gv1fI/604Y3rSRdCSxWnR6Oh2aa52NXXHhzdO7dEU1DwXJ6C+6w0hKLm\n58f/jgEugC0Anv27EH/mosEySReuYO9fR/eZi8YlnL5EtV6dkMikyG2scO/ShoTfg8mNTyYnKg73\nLton8zq3DECjVpMZ9hBLT3ea7VhC+H++487mvUZ/9yot5AbIpFh4VgGgSr9uJJ0J1otJCQ7BrkFd\nozGundpSc7T2gQUShRzXTm1J/fsqyph4Mm7dw/31jgBEf/d/qJRKrs9bS/T3R6m/rHBanUe3dmSG\nP9TrfAJo1BrqTh+NRRU3AKq92ZXMexHkJiSTfD4EzwE9kMjlIJHgO2883pOGknErXPfAouI6n6Cd\n4gsQvv//ODN0PsmXbvLop9M4NvTRPfmv5oDOxP1uOO0o4fxVo3GpV8M49cb7ugcMPfzuFDHHzxO6\n/FMKsnOoNagLHp2091bZ1auJQwMv4s9pT+6eLHN21JIXlkNpFbfPSxNT2nqhcLTHrmE9Mh7fR/XE\nk4db/DZiGU4NvbGuof2MXgM6EfPb3wb5xp+7WmycSzNfEi7eMPpZXZr5khBs+N6dj78rl32iUalp\ntHgcjgHazryNVzWsa1XVrbMic0i9pt0vdz85pHsg0LnRi3Eo0k7VeNN425x4PtRknEenQOrPHMnF\n91brOp8ABdk51BzYFfeOgQDY1a2FfQNvvfUmB2vbSUtP7Xqr9utK4umLzxzztIJsJZ5vdsP11Zba\nbVC3Nnb1fUg+H6IXVxnqxbUdRzg+eDHHBy/mZNBynBt5Y/O47nsP7Ej0b5cNcog9d81knPfAjvhP\n7geAuZMdXv078PDn82Q+ikdhY4VzgLbTZO3pip1XFVJuRVSabVGWupB4+iJVexY9rrYl8XQwaDQE\nbJyPra+27rl2ao2mQEVmWASWnh403b6UsK17+eP1t7k4YqYuD71jt4nzGlNx8acvUa1XR10uHl3a\nEP/bRdBoaKp3XtMKTUEBmXcjiP8tGIdGdbGsqr1/Oj08irSwSE4NXlihbafw8hAjoC+5IUOGMHv2\nbIYMGYKXlxcKhYIuXbowbNgwLC0tcXFxIT4+HtCOkEZERDBsmPH73Sq7vJR0ri7/mMZrpiGVy8mO\niuPq0u2A9p5N/wXj+HP43GLjinNl0Uf4z38HiUJObmIqf88y/hMT5SsXNeeRon3wgY13Da4t2waA\nna8XfgsmcD5oNvkp6dxYvpNGq6cjkcvJiYrTxUUePo6lpzutvliPVCEn8shJ3f2dVxdupv688XiN\n7o86L5/Q+ZtAo6FWUF9k5ubUGNSDGoO0P3vy9AMkCtIzUOfm4bdiFlKFgpyoWG4v34KNrzd1507m\n71HTyU9N4/aqjwxiAO5t+4w6sybQbP8W0GhIPHOBqG+19+bcmL8Gn+njqNK3GxKJlIeffUvmLe19\nlw/3HqLOrAkE7ltPbmIyobPXA+hGMINHzCIr/BF3Nv6HgA1zkMikKOOTubZIW+79z76jzntBBO5b\nh0QqJfPuA+5u2fdMe+XJ1N62e5chkUhIDrnDtXWfE/tLMM3WTUGikJMdGU/I4p0A2NevTaNF73Bm\n6HzyUtK5suwTo3EmqTVcnL4R/9kjqTv+TTQqNX/P20Z+qn7Hu7h1lzmHUjK1z190vXhabkoGfy3d\nTcv17yGVy8mKjOfSok8AcPCrTdPFY/jlrUXFxgHY1HAnK9r4z3rY1PAgOzqh2O3xIveJKieXSzM2\n0mDGcCRyOer8fC4v3E7rjxdUeA5PZlI8ncfVDz6myZqpSBVysiPjCF2qfcCXXX0vGi58h7PD5hUb\nV3fyW0gkEhoufEe33pQrd7ix7jP+mvkhfjNHUmf8ADQqFSHzt9Ly40W6uPyUdG6u2I7/qplIFdp2\n8sYHH2Hr643vvAlcHDnLZEyx1GpCZ6+j7vQx1B47GI1KxbVFG40+IK0i98nT9SI3OYPgxXtou2Ey\nUoWczMh4LizQ/tyWo18tWiwZw/HBi4uNu7nnf7RcOY7u360AiYTrH39P8nXtg23OTt9K09lDkZor\n0BSouLR8L1mRht+XitoWZakLUUeOYenpTot9HyJVyIn6/oTu/s7rS7bgO28CErmcvKQUQudon79R\nc3hfpBZmeA7sgefAHrocry/fScCaJ8fuWL3zGr8F4zk/fA55Kekm4yK/O45VNXdaH1iHRP7UMX7R\nVvzmj0P6+LwmZNYGADLuRnBz7R4C1mk7wbXf7ETwbO05Q2VpO4V/N4lGI8a3BS21Ws2QIUPYs2cP\nNjY2JcYnJJg+eJYXV1dbjgYa/5mN8tI9+GtUHKjQHABkDONEy0EVmkOXC99yum2/Cs0BoP3ZI5xq\nZfhzAeWp8/mD/LdZxV/M6fnXgQrPo+dfByq8XrQ/q/2t0MNNRlRoHv0v76sU+wOoFHn83MLwZ1bK\nU4+LX/FL6wEVmgNAp3OHKsX++CZgVIXmADD4yueVYltUlnpxPNDwJ07KU9fgbyq83QRt2/lvoPrK\ntqJTKJFsSMWfv4spuAIAjx49ol+/frz++uul6nwKgiAIgiAIgiA8KzEFVwCgevXq/PCD4ZPIBEEQ\nBEEQBEEQnhfRARUEQRAEQRAEQSgrTeX4mZPKTkzBFQRBEARBEARBEMqF6IAKgiAIgiAIgiAI5UJM\nwRUEQRAEQRAEQSgrI7+LLhgSI6CCIAiCIAiCIAhCuRAdUEEQBEEQBEEQBKFciCm4giAIgiAIgiAI\nZSWm4JaKGAEVBEEQBEEQBEEQyoXogAqCIAiCIAiCIAjlQkzBFQRBEARBEARBKCsxBbdUJBqNRmwp\nQRAEQRAEQRCEMlB9blHRKZRINkpZ0SmIEVDhn0tIyKjoFHB1teVEy0EVmkOXC99WeA5P8lBxoEJz\nkDGM9d6TKzQHgFn3tnOq1cAKzaHz+YMVnsOTPH5pPaBCc+h07hDh/dtWaA5eh88CMNtzSoXmsS5y\nS4XXi87nDwJUijwqQw5Xu3Wp0BwAGh47USm2xeY6kyo0B4Cpd3dUim1xPHBwheYA0DX4m0rRfld0\nuwnatlN4eYgOqCAIgiAIgiAIQhlp1BWdwb+DeAiRIAiCIAiCIAiCUC5EB1QQBEEQBEEQBEEoF6ID\nKgiCIAiCIAiCIJQLcQ+oIAiCIAiCIAhCWYmfYSkVMQIqCIIgCIIgCIIglAvRARUEQRAEQRAEQRDK\nhZiCKwiCIAiCIAiCUFbiZ1hKRYyACoIgCIIgCIIgCOVCdEAFQRAEQRAEQRCEciGm4Ar/ei5tm+Az\ncShSMwWZYRFcX/kxqqyc0sdJJdSbOhLnlgFIZDIiDvxE5JETANjV96betJHILC1AKuXB/h+IPXpG\nb30AHU99zuneE59buVbVPfBbOBGFvS2qbCXXlm0jOyIagJpDe1K1V0c0KhV5KencXLObnKi4IiU6\nIKUTag4/03bUaDQsmPcjPnVcGfN2m2datrS8Xm1A+1l9kJnJSbgVxdF5B8jLVBrE+fVpQYt3XgMN\n5CvzOPXBQeKuPtSL6bPjHTLj0ji17NtSl19/0WSy7j3k4Zc//ePP4BTYCJ93gwgeMQsAjx7tqTGk\nl+59uY0V5m5OADi3aYr3pKFIFdp9f3PlTlTZ+nXEZIxUSt0pI3F6XD8efvkjUY/rxxNVenbE9dVA\nQmeu1b3WcPUMbHxqocox3K7ObZriPXEYEoWcrHsPublyh/F8jMVIpdR5fyROrRojkUl5+OVPRB85\nDoBD0wbUeX8kEpmM/LQM7m7+jMywiGfetpbNWuM0bAIShRl5EWEkbF+NJidbL8amfVfs+w4FDWhy\nlSTu2UzevVvPXJYxvp386DGvF3IzGTE3ozk48ytyM3MN4tqMeoVWQW1BA0kRiRya/TVZSZkALL6y\nkvTYVF3s7x//wuUjf+ktH/jFhudeJ1zaNcNv0bso4xJ16/lrwiJU2UpqDO1JlZ6d0KhU5KemV1ge\nxurmi8jhCYsqbgR+vpbLU5aTcSucmkF9ce/SVve+wsHOYN8+zTYwEPfRbyNVKFDev0/kpg9RZ2cb\njfWcMQtlxH0SDx0CQGplhef0GZhXrw4SKSknT5D47Tcmyyrv/eE1/i3cXm0JQPqNsBK3Ra1X/Wk7\nQ9t+J96O4uT8L4y23769A2k29jVAQ35OPr8t/5b4aw+RmSvotHQw7g1rIpFKiL3ygF+WfoMqN/9f\nsS1c2jahzqQhSM0UZIQ95PoK0+caxcWZuznT8j8rODdsNvlpGXrLVu31Ku6vBnJ5xjqjOZSpDS9S\nfvNPVxEcNNOg/Co9O+HaIZDQWWuMlm9MebWb/xpiCm6piBFQ4V+vwcJJhM77kD8HTSU7Kp46k4Ya\nxCgcbE3GefbrglV1D84NncGF0fOo8dbr2Pl5A9BozQzu7T7I+aDZXJ62inpTRmBV3UO3vvDPtZ08\ndX7Bcy3Xf9n7RH53nHNvTefe7m8JWDMDAKcWDanauxPBYxdyfvhs4n8LpsGiibryJPgipRPPem3p\n3r0Exozcz9Gfrz/Tcs/C0smG7uuC+H7ybvZ0+YDUR4m0n9XHIM6xthsd5vbj0Ojt7O21mnPbj9J3\nxzt6MYHjXsOzuXepy7aqVY0m25bg3rn1P85fam6G1/i38F85HYmssOmM/fk0wSNmETxiFhdHzyUv\nKZU7G/YA4LdwElfnbeD84CnkRMfhM3mY3joVDnYmY6r1ew3L6h5cGDadi2PmUn3wG9j5+QAgt7Oh\n3ux3qDdjDBIkeuu096/LXxMX63IqWlb9BZO5Om89F96aQk5UHN6TDPMxFVOtbxcsq1cheNg0Lj3O\nx9bPB5m1FQ1XzyJs236Cg2Zwe/0uGqyYjkTxbHVQaueA27sLiFu/gMj3hlAQF41T0ES9GEXVGjiN\nnEzs8hlEzRhFyqG9eMxe+UzlmGLtZM2gjUPZP+4/rO+wiqSHSfSY19sgrlpDT9qP78iOvpvZ+Noa\nEu8n0G3W6wC4ermRk5bN5m7rdf+KnkRZO1kDvJA6Yd+wHhFf/qjb78EjZqHKVuLYoiFVe3Xm0tgF\nBAfNIv63C7qyyjMP0K+bl99f/sJyAJCaKWiw7D29ehix/3tdTn9PWoJaadh5Kkpmb4/njJk8XP4B\nd8aOIS82Bo8xbxvEmVevQe2167Bv317vdfeRo8hPTOTu+HGEvfcuzm/0xKp+faPllPf+cH01EKfA\nAC4EzeL8kGlILcyL3RaWTjZ0XRPE/97dxb5uy0h/lEjbmX0N4hxru/HKnH4ceXsbB3qvJnjHz/Tc\nPg6AwEndkchkfNFrFV/0XIncQkGLCd0MyqmM20LhYIv/oolcmbuRswOnkRMVR93Jxo/5xcVVeb09\ngbuWYvH4IuUTcjtr6s8dS/2Zo3mqSdf73GVpwwE8enSg6cfLMXd1fqp8G+rNHkfd6WNAYiIBI8qj\n3RReTqID+pI5fPgwGzZsqOg0ylXazXtkP4oFIPLwcTy6v2IQ49wywGScW4dAon76DY1KTUFGFrEn\n/qRK9/ZIzRSEf3qQ5ItXAciNTyYvLQNzN2ecWwaQERaB18h+AOSnZzy3cs1dHbGuVZXYE38CkHQu\nBJmFObb1apOblMqttbt1V1PTb97DwsO1SIkOqDnzzNvwqwOX6Ne/Md17NHjmZUurVrv6xIZGkPog\nAYCQA2fw69PCIE6VV8CxeQfIStCO1MRdjcDaxQ6pQgZA9VZ1qNXej5Cv/ih12Z5vdifmv78Sd+qc\n3usSuZw6U0bSYu9aAvevp/6iycisLI2uw6llADILc26u3GGynJoj+pCXkkbU9ycB7f7Jebzvow4f\nx6Obfh1xatnIZIxrh5bE/PdXXf2IO3lWV3fcO7cmLymFux/t11ufRRU3ZFaW+M4ZR+AXG6i/cFJh\nWYEBpN8MIyfySVnHDPMpJsa1QyAx/yvMJ/7EWTy6tceqehUKsrJJuaT9nmRHRKPKysHev57J7WSM\nVeNAcsNuUhATqd12R49g+0pXvRhNfh4JO9agSkkCIPfeTWQOziAv+2Seuh18eXTlIYn3tfXz/L6z\nNOnXzCAu6mok615ZgTJDidxcjr2HPdkp2hGxms1ro1apGf/tu0w7MYfXpnZDIpXolQG8kDph37Ae\nTs39afH5Wpp9/AEOjbUdnbykVG6t260bAcm4Ga4rqzzzeLpuNlw944XlAFBv5lhi/vcb+WnpGOPz\n/giSzoUYfe8J26bNyL59h7zoKACS/vsTDp06G8Q59+5NyvHjpJ0+rfd6zM4dxOz6BACFsxMShQJV\nVpbRcl7UtjC1PxJ+C+avcQvRFBQgs7LEzNG+2G1Ro1194q5GkBqh/X6Efnka397G2+8TCw6QbaT9\njroYRvCOn0GjQaPWEH8jEruqTgblVMZt4dwygLQbhcfyR9+dwKN7u2eKM3dxxK1DC/6eZji66PFa\na3ITU7m99QuD93Sfu4xtuJmLIy7tA7kyfZXBut06tyE3MYWwj/aZLN+Y8mg3hZeT6IAK/3q5cUmF\n/x+fhMLGCpm1fifCwt3ZZJyFuzO58frvmbs5oc7LJ/qnX3WvV+vbGZmlBWnX7mDh4YJ1rWrcedwB\n0BSonlu5Fu4u5CakgKbwx4yVCclYuDmRFf6IlMs3AZAo5NSZPIy4X87r4jScB4xPDyvOwsU96N23\n0TMv9yxsqziQEZOi+zsjNhVzW0vMbCz04tKjkgn/rXAktuP8Nwk7dRV1vgprN3s6LxrI/6Z9jkZV\n+nkudz7cQ+zR0wav1xrRF41KzcWRcwgOmkVeQrLB1fYnEk9f5O6WveSnZxp9X2FvS40hvbiz6XPd\na0WneuXGJyG3sdLr4Fq4uZiMsXBzRhn3dP3QXrWOOnKC+3sOoc7N08vBzMmO5ItXubXmE4JHzNab\n6mhQ3xKSkNtY6+dTTIy5uwu5RXJVPs4n+2E0MksLnAIDALCt7421V3XMXRyMbidTZM5uFCTG6/4u\nSEpAam2DxNKq8LWEWHL+KryI4DzqfbIu/QEFBc9UljH2VR1Jiy6cApYWk4qlnSXmNoajIeoCNQ26\nNWTBxWXUbuXNpW+1o4pSuZS7Z27z6fCd7HxzK3U7+NJ2dHu9Mop6nnUiPz2DyEPHuDhqDmE7v6TR\n2lmYu2rbjNTLNwBtm/H0iEl55fF03ZTIZC8sh6q9OyGRy4j+4ZTBZwWwru2Ja/sW3NtlejosgMLV\nlfzEBN3f+QkJyKytkVpZ6cVFb99G6qmTxleiVuM5ew51PtlNVmgouZGRRsspqjz2B4BGpcJzQHfa\n/rAThYNtsdvC1sOx1O33g9+u6f5uP38A4b+Eos5X8fCPm6Q+0H7Hbas60WRkR+4e/dugnMq4LSzc\nnVHGl+5cw1RcbmIKV+Z8SNb9KIP1Rx4+Sfinh1Ar8wzeK7rusrTheYkpXJu3nuwHhnUw+shxHvzn\nIKpc0+UbUx7t5r+O5l/wrxIQHdCX0JUrVxgzZgx9+/blm2++4ezZswwcOJDhw4fz7rvvkp6ezoUL\nF5g2bZpumbZttffFzJ07lwkTJvDWW2+RlpZWUR+hzAw6JxLjVV2jUoOxK21q/eVrjeiD9zuDCJm5\nFnVuPi6tG5ObmEpy8NXnX66J6S+aIjkpHGxptnUhqmwlYTu+NBpf2UikxWwLIxSWZvT+6G0carpy\nbN4BpHIpvbaM4ZcVh3Sjo2Xl3LYZru2bE7hvPYH71uPaIRDr2p7/aF1V+75GwplLKGPii40ruh+N\n1oHHMcauAJfU6U6/HsbVuevJS0oFtZrw3dr7YyVyOZja/nr5mI6RGKuXajWq7ByuzllLzZH9abFv\nAx49OpDy1zXU+c/WKTRVP57+LgJIzC1wm7kcRRVPEreX/l6lYss38b1Tq4wfra8fu8qyRgs4sfEo\nb38xAYlEQvCX5/hx8WFUeSqU6Tmc3v0b/j0KL+yYKuN51ImrczeQ8HswAGlXbpF69TZOgYVlKxzs\naLJlkdF7g8sjj6fr5pMRc8lTo9dlzcG2Xm2q9evKrbW7TH7O6oPfIPLQUVRZJVyse8Y2y5TIdWu5\nOfBNZLa2uA0bXvpyyqFeRB46yukuo3QxppgakVKb2BZySzNe3zoWh5qunJx/QO89twbVGfjVdK58\n8Tv3f72m956pcip6W5gckXvq85c27h8pYxv+IpRHuym8nMRDiF5CcrmcPXv2EBUVxTvvvENubi5f\nffUV7u7u7N27l507d/Lqq6+aXL5Vq1aMGjWq3PJ9VlZWZpibF1ZdsyIjLeauTuSnZaJW6t8Ar4xL\nxN7fx2icMjYRM2f9dSjjkwHtiIH/4slY165G3Klz+C+eDICNd3UKcnJptV/7oADLah5oVKrnUq4y\nTv91AIsiOdn41KDx+tnE/36RO1v3gbqSXM4you3UN/DprD2QmNlYkHA7WveerbsDOalZ5OcYXnG1\nreJI/90TSLoXyzfDtlCQm0/VJrWxr+5Mx/lvAmDtaodEKkFuLufYfMNOeOC+9QAknrlE+G7jIx0S\nmZQ7mz7TTcWTWVogNVNg6+tF/fmF9x8WvZfSFPfX2nBn42d6r5m7FF7NN1Y3c+MSsW9Qx2iMMi7R\nYPmiV7aNcQjwRW5nQ+KZS9rP9/jkQKNWo4xNwM7vqbLSM/TyKS5GGZeI2VP5KOOTQCJBla3k8uQl\nuvdafrVZNwWstAoSYjGv46f7W+7sgiojHU2ufodJ5uKOx/y15EdGELP4XTR5z3bFvqiuM3vg18Vf\n+3lsLIi9FaN7z87Dnmwj9dO5lgu2rnY8uKidynrx6/P0Xz0IS3tLfDv7EX0jmtib2noukYAqX6Vb\nNjU6RW9dz6tOyG2sqPZmNyL2HtG9J0GCRqUt28anBo3WzyHht2DufrSfzn/qfx/KI4+n62ZugrY9\ne3Ji/Lxy8OjRAbm1Jc13a+8NNndxosGyKYRt268tWyrFrWNLgkfNoST58fFY+frq/la4uFBgpE6a\nYtOsOcr79ylITkKtVJL626/YtzOctpkfr3/Rqjz2h41PTZBKyLzzAIDoH09Re/Sbenm0mtIT784N\nATCzsSTxduHInY27A8rULApMtN+9P5lI8r1YDg3frPeQobpvNKPT0rf49YNvuP3TJYNlMyrgO2Jq\nW3iPG4hr++YAyK0tyQx7aFCm6uljfmwi9g0Mj/lPx/0TZW3Dn5fybjeFl5MYAX0J+fn5IZFIhNid\n1QAAIABJREFUcHV1JSYmBhsbG9zd3QFo0aIFd+/eNVhGU2S6Z+3atcst138iOzuPlJRsUh7fP2Dv\nXwer6h4AePbvQvyZiwbLJF24YjIu4fQlqvXqhEQmRW5jhXuXNroroAGrpiOztiR47CJub/yc80Gz\nOR80m9/fGI86L4/Q+RsBUOXkEP2z4RTPf1JubnwyOVFxuHfRPonWuWUAGrWazLCHWHq602zHEsL/\n8x13Nu+t1J1PgLOb/8feXqvZ22s1Bwasp2qTWjjU0k43CxjajrCToQbLWNhb8dZXU7l77Ar/nfIZ\nBY9PXqIv3+eTdgt16wv58gy3/ve30c4noHvIhKnOJ0Dy+RA8B/TQjsJIJPjOG4/3pKFk3ArXe1BF\nSeS21lh5epAWelvvdXv/Olg+3vfV+nUl4am6+aR+GItJOH2RKr06FqkfbUk4bVi3i5JZWVB3+hjk\ndtoHedQY/vhhEGo1ycGPy/LUllW1X1cSn1pfcTGJpy9StWcnvXwSTweDRkPAxvnY+mofCuXaqTWa\nAtUzPwU3+0ow5nUbIK+iHYG27dqP7Iv69zNLbWypunwbWed/J37jkjJ1PgGOb/hZ99CLbb03UaNp\nLVxqa+tnq6C2XD92zWAZWzc7hu4YiZWj9oFCTfo1J/Z2DNmp2bjXq0LXGT20F0YsFLQZ9QpXfrqs\nW/bO79qn9T7vOlGQrcTzze64dtQ+xdOmbi3s/HxIOheCpacHTbcv5f6eQ9zdsldvRLk883i6blp5\nafezZTW355rD3c2fc27QFN13NzcxmetLtug6vjbeNchPz0IZk0BJMv76C0vf+phVrQaA0xs9ST93\nroSlCtm3b4/bcO2Ip0ShwKF9BzJDDO87zfhL+8CV8twfNj418Vs4Gam5GQBVenQwyOv8lv9yoPdq\nDvRezdcD1uHRuDYONbXfj0ZDXuHeKcP229zeigEHphF2PISfp/1Hr/Pp070Jry4axOHRHxntfAJE\n/HGj0myLe7sOcn74HM4Pn0PwmIWGx/LThp8h6UJoqeL+ibK24c9Lebeb/zYataTS/6sMxAjoS6jo\nlAhHR0cyMzOJj4/Hzc2N4OBgatWqhbm5OQkJ2gNwVFSU3nRbU1MqKqsby3fSaPV0JHI5OVFxXFu2\nDQA7Xy/8FkzgfNBs8lPSTcZFHj6Opac7rb5Yj1QhJ/LISVIu38S+UT1c2zcnKyKawN3LdeXd3XaA\npAtXdOsDkJqZcWfLvudSLsDVhZupP288XqP7o87LJ3T+JtBoqBXUF5m5OTUG9aDGoB4AqPPyCX57\nQfls7DLITsrk5zlf0GfbWGQKOakPE/i/mdpt5t6wBt1XDWNvr9U0HvYKdlWdqNM1gDpdA3TLfxO0\nFWWq4QM8yuL+Z99R570gAvetQyKVknn3AXe3PNtDGAAsPT3ITUzVjTg9cWP5DhqumoFUIScnMo7r\nH2zTja4Gj5j1uH4YxoD2wRqW1TwI3L8BqUJO1JETunv5TEk6F0Lkwf+j+a7lIJGSda/win1+Sjo3\nV2zHf9VMbVlRcdz44CNsfb3xnTeBiyNnmYwBiDpyDEtPd1rs+1Cbz/eF+VxfsgXfeROQyOXkJaUQ\nOmet0fyKo05LJWHbKtxnrUAiV5AfG0XC1uWYefviOmkuUTNGYdetH3IXd6xbdsC6ZeEJc8yS91Fn\nlm1adlZSJgdnfMnwT0YjU8hIjkji66naB4J4NqrOgPVvsbnbeh4Eh/PL1uNMOPgeapWK9Lh09r79\nKQAnNx6l74oBTD85F5lCRuh/Qwj+8pxeGcALqROhs9dSb8bbeI0dhEal5trCTeSnZWh/qsLcnOqD\nXqf6oNf1PnN55mGqbpbn9wO0P3GljC1+mvwTqrRUoj7cQI1Fi5DIFeTFRBO5fh2WdepSbdp0wiZN\nKHb5mF2fUO39KdT5ZBdoIP3PsyR9f8QgTpWWWu77I/boaSw9PQj8fC1qlYqs8EfFfpac5ExOzN3P\nGx+9g8xM234fm7UXADf/GnRZNYwDvVfTaGh7bKs64dM1AJ8i7fd3I7bSdkYfkECXVYX3IUf/Fc6v\ny77RK6cybou8lHSuL99JwJonx/JYri7dDoBdfS/8Fozn/PA5xcaVVVnb8BehPNpN4eUk0RQd+hL+\n9Q4fPkx4eDgzZ84kNzeXHj16sGLFCrZs2YJEIsHe3p7Vq1djZ2fHe++9R2JiIt7e3ly+fJljx44x\nd+5cXn/9ddq3L/kG8ISEjBJjXjRXV1tOtBxUoTl0ufBthefwJA8VB0oOfIFkDGO99+QKzQFg1r3t\nnGo1sEJz6Hz+YIXn8CSPX1oPqNAcOp07RHj/tiUHvkBeh88CMNtzSoXmsS5yS4XXi87nDwJUijwq\nQw5Xu3Wp0BwAGh47USm2xeY6k0oOfMGm3t1RKbbF8cDBFZoDQNfgbypF+13R7SZo285/g/ztFiUH\nVTDF5NLdRvAiiRHQl0z//v11/29ubs4vv/wCQJs2bQxid+7cafDamjXP54EegiAIgiAIgiAITxMd\nUEEQBEEQBEEQhLJ6MQ8cfumIhxAJgiAIgiAIgiAI5UJ0QAVBEARBEARBEIRyIabgCoIgCIIgCIIg\nlFUl+ZmTyk6MgAqCIAiCIAiCIAjlQnRABUEQBEEQBEEQhHIhpuAKgiAIgiAIgiCUkUZMwS0VMQIq\nCIIgCIIgCIIglAvRARUEQRAEQRAEQRDKhZiCKwiCIAiCIAiCUFZiCm6piBFQQRAEQRAEQRAEoVxI\nNBqNpqKTEARBEARBEARB+DfL+9C6olMokdmMrIpOQUzBFf65hISMik4BV1dbTrQcVKE5dLnwLafb\n9qvQHADanz3Ceu/JFZrDrHvbUXGgQnMAkDGMU60GVmgOnc8f5OwrfSo0B4C2Z37gj3Z9KzSHdn98\nz6HGIys0hwEhewF49FaLCs2j+tcXK7xetD3zA0ClyOO3Nm9WaA6v/vkdxwMHV2gOAF2Dv6kU++N2\nrw4VmgNAvZ9+rxTboqKPIaA9jlSGc5yKbjdB23b+K2jEFNzSEFNwBUEQBEEQBEEQhHIhOqCCIAiC\nIAiCIAhCuRAdUEEQBEEQBEEQBKFciHtABUEQBEEQBEEQykgjfoalVMQIqCAIgiAIgiAIglAuRAdU\nEARBEARBEARBKBdiCq4gCIIgCIIgCEJZqcXYXmmIrSQIgiAIgiAIgiCUC9EBFQRBEARBEARBEMqF\nmIIrCIIgCIIgCIJQVuIpuKUiRkAFQRAEQRAEQRCEciFGQIV/PZe2TfCZOBSpmYLMsAiur/wYVVZO\n6eOkEupNHYlzywAkMhkRB34i8sgJAKyqe+C3cCIKe1tU2UquLdtGdkQ0ADWH9qRqr44ANNy8lLvr\nP0YZFYtT62bUmjAcqZmCrLAI7qzehipbPx9TMTJrK+rOm4xVTU+QSIj7+VciDxwBQG5rg8/0sVjV\nqo7U3IyHew8Rf+z3Um8nr1cb0H5WH2RmchJuRXF03gHyMpUGcX59WtDinddAA/nKPE59cJC4qw/1\nYvrseIfMuDROLfu21OWXhkajYcG8H/Gp48qYt9s813WXlnObpnhPGopUoa0nN1fuNNh/ZeXYuhk1\nx49AqlCQde8BYWs+MiijuJjAn/aRm5Cki43+6nsSTpRcFxxbN6PW+CAkZgqy7z3grpG6WZoY35Vz\nyEtMJnzTbr3Xzau40XjPh1yftpTM2/eKzcXjlQD83xuIzExO2t1HXFq6h4Isw/poMk4qocncEbg2\nqwdA7B+hhG76Wm/ZWn1eoWqnZvw5ZXOJ28aiSVvs35qMRGFG/sO7JH+yAk1Oll6MVbse2PYaDhrQ\n5ClJ+XwD+eE39WKcp69DlZJA6mfrSywTyl4XnvBdMVe7TzbvwrJWdeounq57TyKVYu1di5sLVpN8\n+nylzAHAqU1TvCYMR6qQk3kvgturdhi2nSZipGZm1Jk5Ftv6PkgkUtJv3OHuhk9R5+Xh0NQf78lB\nSORy1Ll53N20h4ybYSb3iUvbJtSZNASpmYKMsIdcX2H6mFJcnLmbMy3/s4Jzw2aTn5YBgGu7pvgv\nmUxOXKIu7uK4JQbrriz7pCjr5q1wHTEOiUJB7oNwYreuRZ2TbTTWY+pcciPuk3LkGwCqzl2Goko1\n3fsK9yrkXLtC1Ir5JZZbUduiNMcCkzFSKXWnjMTp8XnFwy9/JOrxeYVtfW/qThuFzMICiVRKxBff\nE3v0TGEuCjkBH84j+nH8izzHeaJqr464dQgkZOZa3Wve4wfj0UV7HHYcM4eU/ZsgP09vuYpqN4V/\nPzEC+hKIjIxk0KBBxcYMGjSIyMjIcsqofDVYOInQeR/y56CpZEfFU2fSUIMYhYOtyTjPfl2wqu7B\nuaEzuDB6HjXeeh07P28A/Je9T+R3xzn31nTu7f6WgDUzAHBq0ZCqvTsRPHYhAIm/n6fe/HdRONhR\nd8F73FiwjktD3kUZHUvtiUFP5WI6ptY7Q8hNSOKvoClcHjuLqv26Y9tAe4Jdb+F75MYn8ffoGYRO\nWYr31LGYuTqXahtZOtnQfV0Q30/ezZ4uH5D6KJH2s/oYxDnWdqPD3H4cGr2dvb1Wc277UfrueEcv\nJnDca3g29y5Vuc/i3r0Exozcz9Gfrz/3dZeWwsEOv4WTuDpvA+cHTyEnOg6fycOeaxlyBzt85r3P\nrYVr+HvYJJTRsdScMKLUMZbVq1GQkcmVMdN0/0rT+ZQ72FFn/nvcXLiWv4dORhkdR62JhuWWFFNt\naD/sG/kZrF9ipqDeomlI5SVf1zRztKX5srGcn/kRx/rOJSsygYZTDNuw4uJq9myLbS0Pjg9cwInB\ni3BpXo9qXVoAoLCzpsmCkTSeG4REUvJ0KKmtA04TFpO0aQ6x0wdQEB+Fw5B39bdNlZo4DHufhNXv\nEzd3GOmH9+AyfZ1ejG2vIMx9G5dYnm6dZawLT1Qb2g+7gMJ9kvPgkV79SL0YQsKJ3412MipDDqD9\n7vkueJfr89cTPOR9lNFxeE0aXuqYmqPeRCKTcWnEDC6OmI7U3JwaI/ojkcvxWz6d22s/5tLIGUR8\nfoj6i983tUtQONjiv2giV+Zu5OzAaeRExVF3svFjSnFxVV5vT+CupVi4OektZ9+oHg8O/MT54XN0\n/1TZ+hdeKss+KUpmZ4/HlLlErV7E/YlB5MVG4zJqvEGcmWdNPFdswrZdR73Xo9csIWLKWCKmjCVu\n2wbUWZnEfbypxHIrcluUdCwo7nhRrd9rWFb34MKw6VwcM5fqg9/Azs8HgEarZxK++1uCR8wiZNpK\n6rw/EsvqHgDY+delxaercGjkqyvnRZ7jyO2sqT/nHXxnjIYiTWXVnq/i2q4ZF0bNA0CVmoj94Il6\nZVZUu1nZaTSSSv+vMhAdUOFfL+3mPbIfxQIQefg4Ht1fMYhxbhlgMs6tQyBRP/2GRqWmICOL2BN/\nUqV7e8xdHbGuVZXYE38CkHQuBJmFObb1apOblMqttbt1VyEzb93D3MMVx8DGZNy8izIyBoDoI0dx\n69peL5fiYu5t3kP4ts8BMHN2RKKQo8rKQm5rg0OLACL+o72anJeQRMi4ORSkZ5RqG9VqV5/Y0AhS\nHyQAEHLgDH59WhjEqfIKODbvAFkJ6QDEXY3A2sUOqUIGQPVWdajV3o+Qr/4oVbnP4qsDl+jXvzHd\nezR47usuLaeWjUi/eY+cx/Uk6vBxPLoZ1qeycGzRhMxbYbr9H/v9UVy7dCh1jG1DXzQqNf5bVtD4\n8y1UHzUYpCU35Y4tGpN5s3CdMUeO4tql/TPF2Dfxx7FlE2J+OGawfu/p44n7+RfdSE9x3Fv7k3I9\nnMyHcQDcO/gLNXq0fqY4iVSK3NIcmZkCqUKOVC5HnZsPQPWugSgT0wjd+LXBOo2xaNSKvHs3KIh9\nBEDmie+watddL0ZTkEfyrhWoU7Ujz3nhN5E5OINM2+E292uGRUBrMk8eLlWZUPa6AGDfpCEOgU2J\n/f6o0TLsGvnh/Gob7m3YWWlzAHAMDCDjZhg5T9rFw8dw7/pKqWNSQ24Q8fkh0GhArSbzTjgWHi5o\nCgo41/sdMu/cB8Cimjv5xbSbzi0DSLtReKx49N0JPLq3e6Y4cxdH3Dq04O9pawyWc2hUF6fm/rTa\nu5oWu5bi2KS+4baoJPukKKsmLVDevUV+TBQAqT//gF2H1ww/3xt9ST/1Mxl//Gp8RXI5HlPnEb97\nGwWJCSWWW5HboqRjQXHHC9cOLYn576+684q4k2fx6P4KUjMF4XsOknLxKgC5Ccnkp2Vg8fhicvVB\nPbj3ydek37irK+dFneMAeHRuQ25iCne27tdbn62vF/G/X6QgUzvCnR38K1YtO+nFVFS7KbwcRAe0\ngvXv35+kpCTy8/Np2rQp169rR3/69evH3r17GTx4MG+99Rb79u0DICYmhrFjxxIUFMTYsWOJiYnR\nrUulUjFr1ix27doFwKZNm+jfvz+TJk0iJSUFgNjYWCZMmMDo0aPp2bMnJ0+e5P79+wwYMEC3nqlT\npxIaGlpem6DMcuMKpyLmxiehsLFCZm2pF2Ph7mwyzsLdmdx4/ffM3ZywcHchNyFFe0LzmDIhGQs3\nJ7LCH5FyuXAKSe2JQST88ifmbi7660pIQm5jjcyqMJ8SY1Rq6i2eSvP9W0i7fJ3sh9FYelYhLzEF\nz7d6E7BzFU32rMemrhfqXP3pMKbYVnEgIyZF93dGbCrmtpaY2VjoxaVHJRP+W+EIZMf5bxJ26irq\nfBXWbvZ0XjSQ/037HI1KXapyn8XCxT3o3bfRc1/vs7Bwc0FZZGpcbnwSchsrvf1XVmZuLuQVLSMh\n0aCOFBcjkUlJvXSF6zOXcvXd+TgENqHKm2+UWK65uwu58cWXW1yMmbMjXlPGcvuDTaDW3//uPV9D\nKpcR95P+tC5TrNydyI5N1v2dE5eMwtYKubVFqeMe/HiGvPQs3ji+mZ4nt5D5KI6Y0yEAhB/6lZuf\nfI+qlN8PmbM7qqQ43d+qpHikVjZILK0LX0uIQXn5rO5vh6Bp5Px1GlQFSB1dcBg5g6Rti0CtKlWZ\nUPa6YObsRO0pY7mzfCMatfHvZK3Jo3m4+wuT08grQw6Atr3VK8Ow7SwuJiX4CjmPtMdDcw9XPAf1\nJOGXcwBoVCoUjva0/mEX3pNH8OjAD8Xk4YwyvnTHFFNxuYkpXJnzIVn3owzWn5+WyaNDxzg/ch53\nt39FwLoZmD81SlpZ9klRClc3ChLjdX8XJCYgs7ZBammlFxf/yRbSfz1ucj0OXd6gIDmRzPNnTMYU\nVZHboqRjQXHHCws3Z5RxT59XOKPOyyfmp190r1ft8xoySwvSrms7nNcXbyHpz7/18nhR5zgAkUdO\nEL7nkEFbmX79Lq6vNENhbwuAdfvXkTm46MVUVLspvBzEPaAVrFOnTpw5cwYPDw88PT35888/MTc3\np0aNGhw9epQvv/wSgNGjR9OuXTu2bt1KUFAQHTp04Ny5c2zYsIFp06ZRUFDAzJkzad68OcOGDePq\n1atcvHiRQ4cOkZ2dTdeuXQEIDw9n9OjRtGzZkr///puPPvqIzz77DAsLC8LCwnBxcSEyMpJGjSq2\nI1BWBh0kifFrLRqVGqRGpiOo1WBi6l7Rg5jCQds4q3JyePDJATyHGk5rfXoZo+U9FXP7g83cXf8x\nfitnU3P0IFKCQ7Cs5kFBVg5XJs7HopoHATtWkhMZTebtcKPrK0piYoTMVEdSYWlGj3VB2FZx5NDo\n7UjlUnptGcMvKw7pRkdfSqXYN2UlKUUZxcUU7eSp8guI/uYHqgzoSczBn0oquMRyTcUgkVBv2UzC\nt+4hPylF7y3rul549O3O1ckl38tVWIyJz/dUfSwuzm98X3JTMvip03vILMxos2kKdYK6c3e/8VGO\nYpkox9hJkcTcAqeJS5A5u5Ow+n2QyXB+fyWp+zbqrvKXVlnqAhIJdZfO5P7WTw32yRO2/r7I7W1J\nOHG6UufwZF0l5VGaGJt6Xvivnk3Udz+T9OdfutfzU9I412ccNnVrE7B1KVn3H+k6rHppmPqspayb\nT8c97cqcD3X/n3rlNmmhd3AO1D/eVpp9op9UiTmVhmOfgcRu2/AMxVaubVHaY7mxnJ5u32oG9aX6\n4NcJmbqy1BeTTa3rH53jFCPm5zOYuznTbPtiAAqiItAU5OsHVVC7WempxdheaYgOaAXr2rUrH3/8\nMVWqVGHatGns378fjUZDt27dWLt2LaNGjQIgLS2NiIgI7ty5wyeffMKnn36KRqNB/vh+q9u3b2Nj\nY0N2tna6xIMHD/D390cqlWJjY0PdunUBcHV1ZefOnRw6dAiJREJBQQEAAwcO5PDhw1StWpXevXuX\n/4Z4BlZWZpibF1ZdMxcH3f+buzqRn5aJWpmrt4wyLhF7fx+jccrYRMyc9dehjE9GGaf/OoDF4/cA\nbHxq0Hj9bACuz1sLajW5sYnY+tUtXJeLM/npGXr5FBfjGNiYrPAI8hJTUOcoSTh5BpcOrYn7P+0V\n0yf/VUbFkh56C9v6dUx2QNtOfQOfztoTGzMbCxJuR+ves3V3ICc1i/wcw4OebRVH+u+eQNK9WL4Z\ntoWC3HyqNqmNfXVnOs5/EwBrVzskUglycznH5n9ptPx/o9y4ROwb1NH9bao+la2MBGzql1BHiolx\n7fYqWWH3yb4XoX1TIkFTUPLV49y4BGz9inw2E+Uai7GqVR2LKu7Ufm8MAGZODkikUqRmZqhylMit\nLWn0sfbhFWYujtRdMp0H2z8n+exF3br8Jvaj6qtNAJBbW5J+t/CedEs3R/LSMlEp9etjdkwyTv7e\nRuOqdW5OyJr9aApUFGTmEPHTH3i+1uIfdUBViXGY+/jr/pY5uaLKTEOTq39vnszZHZfZGymIekDC\nBxPR5OdiVqchcrdqOARN08Y4OINUikRhRsqulcWWW5a68GSf1Hr3yT5xRCKTIjU3I2ztNgBcOrUj\n4eiverM4KmMO2jISsSvy3TNzNZZH8TFur7Wlzsx3uPvhp8Sf0N4mILO2wrGZP4mngwHIvHOfrLAH\nWHvX1HVAvccNxLV9c0BbNzPDCh+69qQNUD19TIlNxL6B4THl6bii5DZWVB/Qlfuff1/4ogQ0j4/D\nhZ+zcuyTogoS4rCoWzhdWO7sgioj3eA7Uhxzrzogk5FzLaTUy1TktjB3cSz8fyPHguKOF8q4RIPl\nn4xCShRy/BZNxrq2J5feWYAyRn8qstc7g7H19cLnPe2zIV7UOU5x5HbWxB77gwd7v6fLhW/Jjwqn\nIFb/OSIV1W4KLwfRTa9gdevW5dGjR4SGhtKhQweys7M5deoUXl5e+Pj4sG/fPvbv30///v2pV68e\nXl5ezJw5k/3797Ns2TK6d9fOt2/QoAG7du3ixx9/5NatW/j4+BAaGoparSY7O5uwMO0T/7Zs2UKf\nPn1Yv349LVu2RPO40e3evTtnz57lxIkTlb4Dmp2dR0pKNikp2s62vX8drB7fwO/ZvwvxZy4aLJN0\n4YrJuITTl6jWqxMSmRS5jRXuXdqQ8HswufHJ5ETF4f74KXDOLQPQqNVkhj3E0tOdZjuWEP6f77QF\nPL6amBIcgl2Dulh4VgGgSr9uJJ0J1suluBjXTm2pOXowoD1IuXZqS+rfV1HGxJNx6x7ur2sf7KBw\ntMeuYT0ybpl+0ujZzf9jb6/V7O21mgMD1lO1SS0carkCEDC0HWEnDadZW9hb8dZXU7l77Ar/nfIZ\nBY/vqYu+fJ9P2i3UrS/kyzPc+t/fL1XnEwrryZMHQlTr15UEI/WpLFKDQ7BtUE+3/z36dif5j+BS\nx1jVrkGNt4fC4w5glf6vk/hLydPZDNfZjeQzJZWrjcm4fpuLb44lZPQ0QkZPI/aHYyT88gdha7dz\nf+se/hoyWfdeXmIKd5Zt1Ot8AtzYeYSTgxdzcvBifg36AKdG3tjUcAfAa0Anon+7bJBz3LmrJuNS\nb0bg2bUlABK5jKodmpAUWvyTd01Rhp7HzMcfuUd1AGxeexPlJf0REam1HW5LPiEn+FeSti5Ak689\nAcy7e5WYyT2JmzuMuLnDyDz5HdnnTpTqJKosdSHj+m0uDXhb9xCV2B+OknjqD92JNYBd4wak/lX8\n7RSVIQeA5MftouXjMqr27UriU9+94mJcO7bCZ9rbhE5drut8AqBWU2/+ZOwaah/mZlW7OlY1q5Fx\n/Y4u5N6ug7oHAgWPWWh4rDh9ySDfpAuhpYorqiA7h+oDuuHWMRAA27q1sPfzIfHcFb24yrJPisq6\nfBHLen66J9k69OhN5oWzJSylz8o/gOzQv0sOLKIit0VJx4LijhcJpy9SpVfHIucVbUk4rX2v4aoZ\nyK2tuPTOQoPOJ0D47m/IuBVO2Ef7dXm8iHOc4tjV9yZg7UwkMu3zH2z7jCL7rP7FvYpqN4WXgxgB\nrQQCAwOJjIxEKpXSokULwsLC8PX1pXXr1gwZMoS8vDwaNWqEu7s7c+bMYenSpeTm5qJUKlmwYIFu\nPRYWFixZsoQ5c+Zw8OBB2rdvz4ABA3Bzc8PZWXuDe/fu3Vm3bh27du3Cw8NDd2+oubk5LVq0IDk5\nGQcHB6N5VlY3lu+k0erpSORycqLiuLZMe3Cx8/XCb8EEzgfNJj8l3WRc5OHjWHq60+qL9UgVciKP\nnNTd33l14WbqzxuP1+j+qPPyCZ2/CTQaagX1RWZuTo1BPQBo+vlG1Hn5hIybw+1VH+G3YhZShYKc\nqFhuL9+Cja83dedO5u9R08lPTTMaA3Bv22fUmTWBZvu3gEZD4pkLRH37X+3nnL8Gn+njqNK3GxKJ\nlIeffUvmLdM/JVBUdlImP8/5gj7bxiJTyEl9mMD/zdTeV+zesAbdVw1jb6/VNB72CnZVnajTNYA6\nXQN0y38TtBVlapap1b80tPVkBw1XzUCqkJMTGcf1D7aVvOCzlJGaRtjqrfgun4NELkcZHcvdFZux\nqeeD95zJXBkzzWQMwKPPvsZr2nia7N2KRCYj8bezpbr3Mj81jburPqL+itnadUbFcmefGe16AAAg\nAElEQVTFFmzqeeMz911CRk8zGfO85aZkcGnJp7Ra/y5ShZysyHiCF2rvXXf0q0WzJWM4OXhxsXFX\nNhyg8dwguh5ZjUatIf7CdW5//r9/lI86PYXkjz/AedoaJHIFBXGRJG9fisKrPk7jFhI3dxjWXd5E\n5uKBZYuOWLYofMJnwopJqDPT/lG5Za0LJbH0rEpubHyxMZUhB9B+926t3E6DlTORKLR17+YHH2Hr\n6029uRO5NGqmyRiA2hO0T8OtN7fwSZ1pV29x98NPuTZ3LT5TxyCVyVDn53Nj6WZyE4yPAOWlpHN9\n+U4C1jw5VsRydel2AOzqe+G3YDznh88pNs4ktYaQWevxnTkan3GDUKtUXFmwxeDBXZVlnxSlSksl\ndssaqs77AIlcQX5sFDEbV2HuUw+P92YRMWVsietQVPUkPy72mcqtyG1h7Fhg6+tF/fkTCR4xq9jj\nRdTh41hW8yBw/wakCjlRR06QevkG9o3q4fpKc7L+n737jquq/h84/rqLvWQj4kRQBNyomVamlTa1\nzEFiWZkj9565cptWNi3L1Eot+6ZNR8OJ4kJw40AB2Qiyx72/P65cuDJEkWG/9/Px8PGQe9/nfN7n\ncz6fc/ic8zmHyBjafb7AUFbERxtIPhRaRh5V9ztOWZIPnSSxtQ8dN+r/LEr+9Uhu/mp8wbmmjpu1\nnU5bO94yW9spdLq7mIMh/tPmzp3LE088QadOJd9GWZqEhIq9gbUqOTlZs7ND+X+Cpqr1OLSZPZ17\n12gOAF33/8SyJiNrNIdJFz+igI01mgOAikB2d+xbozk8HryF/V1Kfya4OnXe+zP7Hn6hRnN4eN//\n+KHV4BrN4aUT6wC41r/k25+rk8f3ITXeLjrv1b+Epzbk8c9DL9ZoDo8e+JEdAf1qNAeAJw5vqhX7\n49yzj9w5sIp5b/+3VtRFTZ9DQH8eqQ2/49T0cRP0x84HQdZcxzsH1TDzdxLvHFTFZAquAGDIkCGk\npaVVePAphBBCCCGEEHdLpuAKANauXVvTKQghhBBCCCH+42QAKoQQQgghhBCVJc+AVohMwRVCCCGE\nEEIIUS1kACqEEEIIIYQQolrIFFwhhBBCCCGEqCSdTqbgVoTcARVCCCGEEEIIUS1kACqEEEIIIYQQ\nolrIFFwhhBBCCCGEqCyt3NurCKklIYQQQgghhBDVQgagQgghhBBCCCGqhUzBFUIIIYQQQohK0mnl\nLbgVodDpdLqaTkIIIYQQQgghHmQZ091qOoU7slx4vaZTkDug4t4lJNys6RRwcrJmd8e+NZrD48Fb\najyH2pJHbcihMI8CNtZoDioC2dnh5RrNAaDHoc01vk8eD97CjoB+NZrDE4c3AfBru4E1msfTR76t\nFfsDqPH2WVva5qFHn6nRHAA6/PNLrdgfNd0/QN9HakNd/Nu5T43mAPDI/q383n5AjebQM+S7WtMu\nRNXTarXMmTOHc+fOYWJiwoIFC2jQoEGJuFmzZmFra8vEiRPvqRx5BlQIIYQQQgghKkmnU9T6f+XZ\ntWsXubm5bNq0iQkTJrB48eISMd9//z3nz5+vVD3JAFQIIYQQQggh/p87evQoXbp0AaBVq1aEh4cb\nfX/s2DFCQ0Pp169ys5pkACqEEEIIIYQQ/8+lp6djZWVl+FmlUpGfnw9AfHw8H330EbNnz650OfIM\nqBBCCCGEEEL8P2dlZUVGRobhZ61Wi1qtHy7+8ccfpKSkMHToUBISEsjOzqZx48b06XP3z0vLAFQI\nIYQQQgghKkv7YE8ubdOmDX///Te9evXixIkTeHl5Gb4LCgoiKCgIgK1bt3Lp0qV7GnyCDECFEEII\nIYQQ4v+9Hj16sH//fvr3749Op2PhwoVs376dzMzMSj/3WZwMQIUQQgghhBDi/zmlUsm8efOMPmvS\npEmJuHu981lIBqBCCCGEEEIIUUk6bfl/5kToPdgTlYUQQgghhBBCPDBkACqEEEIIIYQQolrIFFzx\nn1Lvpadw7/ME6HRkRcdxZtGn5KWk3dU6zOu54j35TUzsbFBq1MRs383Vb38BwOGhNjQZMRClRkN6\nRCRppy4A0GHjinLL8xwdhEu3TuSlpQOQeTWG8Jkr72kb7QP88Xx7EIeDJhVtd9+nAAj4ZhkZV6I4\nt/xL8m+V1XzWSDIuXuXqt9vvqbzSynTt2ZX6A541fK+2ssDU2f6e11/o9vo98+4nFGRmVXq9d0un\n0zFj2jY8mzox5PWH7nLpuihpBYD/wnGcevdTCjJKboNj59Z4Dh+I0kS/rYY4pQLvsYNx6NAShUpF\n5MbtRP20EwALD1d8Zg5HY2tNQWY24XNXkxkZQ8Og53Ht0dmwblNnBzQ2lmReiwVAZWGOeV1nWq2a\nwb5nhgLl1LVSideYwdjfKv/qt9uIvlW+uYcrPjNGoLG1Jj8zm9PzPiQzMgYAv0UTsPJsSEFWNgAp\nR8O58P46VJYWADz80weYOtYBhYLUsAscn7i0zHppOmIAShMNNyOucmpB8XoJwrGjPq8rG7cTtXUX\nAJaN3PGZNhSVhRnodFz46DuSgkMBqNe7O/X79TSsX2NrTV7qTQCcO7fC++3+KE3U3LxwjZPzPye/\nlJzKilNbmuM/eyhWDeuCQkHUr3u5tE7fzzQ2lrSY9CpWjd0xsbMGHRTk5Bj2x+3turr2h8NDbQxl\ndtuzgX97vlnl7bM4j349qff84xwcOBGAgA3LUWo0ZFy6iqmLI/G7Dhgdq+6lXgqZuTkT8PUSjo+Z\nz82zl2gw6AVcivUTjZ1Nie2269gOjzcHo9BoyLx0hctL3y+xr8qKaTp3GqbuboY4U1cXboaGc37G\nfOw6BdBk2jhy4hMM358eNQX7Lp1wffkFADquX2o4lu59dji5yalG5Vo18cB7whDUVhag1XJ68efc\nPHu5xDaUR2Nnje87b2Pm5qRfx6LPSQ07b/i+2y8fkJuqP3dkRF4n+te9VdJHrBq502rBSMPyCpUS\nG8/6HJ1U8rzo+lQXGr7yrL4PZedwbsVXpJ29dN+222v0IJwf72Q4Z2bc1mYB7Du1pdGwQJQmGjIi\nIjm36KMS7aKsGKWJCZ4T3sS6uScKpYK0UxeIWLEGbW4udm18afz2qyhUSvLTbhLx/ldkRFwpd1uc\nOrfGa2RhXV8lfEHp+6SsOKWphhaTh2Dr0xiUSlLDIzi1dC3anDzs2/rQbOwrKFQq8lJvcua9b0rN\noaqOnXfTLmornU6m4FaE3AEV/xnW3o2pH/gsR96cyaHACWReu06Tof3vej0+s0YSv2s/h4MmEfLG\nDNxf6EGdtr5o7GzwmTmCsGnLCe43hoLsbBq93hfgjuXZ+XkTPmslh4MmcTho0j0NPpWmJjR+qz++\n745HoSrqunXatKDBIP0vMIeDJpF04DjNp76FRUN3Wq9+B5fHO911WXcqM/b3PYZtCXltKrlJNzi/\n/Mt7LgcoUb9ZMXF4jgys1DrvxcWLCQwZvJ4/fj91D0uboqQTWvYCkBkdT9MRA0tEaeysaTFzBCen\nreDAy2ON4ur17oGFhysHB07g0GvTqN+/FzY++hcA+M4dTdSPOzjYfzwX12ym5eIJAFz55meCB00m\neNBkQqeuQGNtwemFn3Hg5bEAtFo5ndYfzERlYX6r/LLr2r13d8w9XDkUOJ6QIVPx6Pc0Nj6eALSY\nM4aorTsIHjCOy19swm/RRMM22fp6cXT4bEO7uPD+ulufNwVAbW7GwYGT2P3wK6SeuoDXyNLrxXfW\ncEKnvsf+vuPIio4zxHn07oGFhxsHBkwk+NXpNChWL80nv0709r8JfmUKp+Z/iv/CsShUSszrOuE5\nvB8hb71jKMPrrRcBMLGzxv+dtzg6eRX/vjiRzOg4mr1dsv+WF+c1vC/Zccns6TeF/UGzaPBid+z8\n9Nvbcs4wsuOTODxyESpTE9RW5hwavhCgRLuurv2hsbPBZ9YIQ4xCqayW9mnIyd+bRoOeN5QBGLbZ\nvK4LVo3r35d6AVCaaGgxdxQKTdF19sj1/zPUx7ER76DNzjYqT21rQ+MpYzk/exEng4aRExOLx9BX\nKxxz4Z1FhL8xmvA3RnN52YcUpGdwZdUnAFj7Nuf6pq2G78PfGI02K4vEHX8R/sZoAA69Oo2cpBuc\nXb62xOBTaWpCmw9mErlhG4eCpnBp7Y/4zR1dYt/dSbNJb5By4iwH+48n7J0P8V84HqWpieH749M/\nZF/gdPYFTufU0q+rrI+kX442lLMvcDqJwWFE/7Gf2L9DjNZtUd8Nr1GvcGzMQoIHTebyV1vxXzKx\nRA6V2W5bf2/CZq4yHEPDZq4yWlZjZ4P3jLc5PWMZIQNGkRUTR6PhgyocU3/wiyhUKo4OHs+RoPGo\nTE2oH9QHlaUFPu9O5tJH6zg6eDznl32Oz/wJRm22tLr2m/0Wx6esZO9LE8iKjsfr7QF3Fdfktd4o\nVEr2DZzKvgGTUZqa0OTV51FbmtNm6TjOfbCR/QOncGrxWlotGlPqumu6XYgHnwxAHwChoaEMGqQ/\nkJ0+fZouXbowaNAgBg0axG+//XbP601ISGDOnDn3Kcuad/PcJQ6+NJqCjEyUJhpMnewNdzoUajVN\nxwym/bolBKxfRvNZIw2/jN8uZttuYv/cB0BBRiaZUbGYuTpi38GftDMXybp1V+nyF1tApwMoUV5x\nCo0aK6+G1A98joD1y/BbNAFTF8e7zsu+Q0tUZqacefdjo8+tmzUmOSTM8HP8P4dwfLgtHn17cv2X\nv4nbfdA4n/tQZnENgp4nNyWV6P/tKjOmIm6v3+itO3B9skul1nkvvtt4hN59WvFUzxZ3vawCNyAJ\n0LeDqK07cH2q5DY4dGhJ6pmLhjuUxeOcHwkgevs/6Aq05N/MIHbnAdye6oqpUx0sG9YlducBAJIO\nnkBlZoq1dyOjdfvMeIvsuCRitv9t+MzGx5OwaSsMP5dX106PdOD6L38byo/btR/Xp7pg6mSPZcO6\nxO3cX1S+ub58MzdnVBbmNJsylIANy2k+cwRqGysAbP289XWjUuG/cCz1XuzBtR934vrUw6XXy+mi\neike5/xoe2J+ua1eena5tW4lGmt9eWpLc7Q5ufoVKpUo1Gqj9q3NzQPAsaM/qacvGcqK/GEXdXsW\n3R0rVF7c6eXfcOb9jQCYOtqhNFGTn56JxsYSxwA/zn++FceO/twIj2B/0EzDnaXb23V17Q/7Dv5k\nXr1eVBf5BdXWPk3sbWk+6XXOf7jBUAZA1rVYXJ/qSnZsgtFFrnutl0LeE9/g+q//kJda+gwYz9FB\nJB08YfSZbfs2pJ+9QE60/g5Y3LbfcOj+6F3HKNRqmkwbR+TqNeQmJAJg1aIZNm1a4vvZKpp/sARr\n/5LHl4aFx9KfSh5LHTq0JDM6jsQDxwFI2HOEkzNW3ipPhdfYwXRYt5iOG5bSYtYIVJYlj+kKlRKn\nh9sQ/bN+/ekXIsm8dh3HTq0Mg57GrzxNl28X0WbpWNyefKjK+khxdVp54/p4AOGL1pZYtzYvn9ML\nPyU36QYAqWcuYupgh0Ktum/bbe3VkAaBz9Jxw1L8F0/AzMXBOL+AVtw8E0FWlL7vxPz0By5PdKlw\nTGroaa6uu/X7glZL+vnLmLo6Ye7hRkFGJjeO6s/fWVejyc/IwsbXu8Q2lFXXV3/cSd2n7rxPisel\nHD9DxNqfbuWjI+3cFcxcnbCo70ZeehZJIfqLrxmRMaXe1azKY6dRnZbTLsSDTwagtdyaNWuYOXMm\nObembp06dYrXXnuN9evXs379enr16nXP63ZycvpPDUABdAUFOHZtT+dtn2LXyoeYX/W/hDcMegFd\ngZaQwVM4PGgSuQnJZd5du/7rP4ZfYO07tsLWz5uk4BOYOTuSHZdoiMuJT9JPhYIS5RVn6mhPytFw\nLn78LYcHTSI1/AItl06+67wS94Rw4f11hmm8hdJOR2Df1tfwc91nHkNpouHy2h+I/WNPifXcjzIL\naWytqT/gWc6v/LrU7+9GWfVb1uC4qsyc3ZPnXvC/x6Ut0FF0Es2JT0JjZVHilyIzFwdy4pJKjTNz\ncSAn3vg7U2d7zFwcyUlIMVz0AMhOSMas2NRny0b1sPHxJPlIuFF5So2avJsZReWXU9dmzg5kx91e\nvgOmzg4lys+JT8bU2QETexuSQ8I4u/gzDgdNpiArG58ZwwF9nwSI3X2Q4+OX0GBAL6ybNSyzXrLj\ny66X4nllxydj5qz/RfHM0rU0evV5um7/mLarZ3JmyZfoCrRkRcVxZcN2Ht5SNOMg4qufATB3sSfr\ntvVprCxQ35bTneJ0BVpazRtB101LSDp6hvTIGCw8XMlJvEHjV3rhPfJlbH2aYNOskeG4cnu7rq79\nYebsSPrFq0Ubp9NVT/tUKvCdN5rzH64nJyHZUAaAZZP6ePTrxal5q1Fq1ChNNJWqF4C6z3VDoVYR\n8/NuSmPZqB5OXdtz8fNNRp+bODsaBowAuQmJqK0sjfZVRWKcevUgNymZlH1FF//y024S99OvhL81\nlmtr1tF0/gxMnIwHOg0GPsO5974uNWeL+m7kJt3AZ8YwOny9iDYfzkShUgHQaPAL6AoKODR4KsGv\nTCYnMaX0O9u21qBQkHej6EJpYZsxdawDwNmPNrF34DRuhEXg+epzVdZHims+NpDzH28udbCTfT2B\nxP3HDT97jxlMwt4j6PIL7tt2pxwNJ+Ljbwl+ZTKp4edpuWyy0fKmzg7kxBdrhwlJJfZ5eTEph0PJ\nuqYfmJq6OOHe7xkS/jpA1tUYVOZm1AnQX4yxbuaJZSMPTBzqlNiGQqUdB0vbJ+XFJR4KI/OqflBo\n5upIwwE9id0dTObV66gtzHDs4AeArU9jrBvXK5FDVR47iyuvXdRqWmXt/1cLyDOgtVz9+vX58MMP\nmTxZf0AMDw/n8uXL7N69mwYNGjB9+nSsrKxKXfbDDz8kMjKSlJQUbty4QWBgIDt27ODy5cssWbIE\nR0dHxo8fz+bNm3n22WcJCAjg3LlzKBQKPv74Y6ytratzU++bxD0h7N0TQt3nH6f1qpkceGkUDp3b\norG2wD5AP7BQatTkpqSWux7XXo/QdHQQYdNX6K++Ksue17/3qdeNyjP6Jex6PKHjFxl+vrpxG42G\nvIiZm/M95XW7GyfOcOnLLfjMGE77rxYT88tf5KXeRJuXX2r8/SizUN0XupOw9wjZ1+PvaXkjZdSv\nTqut/LqrTRnbUHDbNihKPwHoCrSl14NWC4o710/9/r1IDb+ALr+g3Ljy6lpRyne6gtI/L/wu7VQE\nYVOXGT67tGYzXX5bg0Kt5spXP9LkLf20q5yEFKK27sblkfb6wNvqpawyKKNedFotShMN/u+OJXze\nJyTuO4atb1Nar5hM6umLWDVyx+WxAPY8O4JH/1wDQMt3hnFk/HJQlrMPiqtA3InZH6Na9CVtl46j\n6Rt9SDwUhkU9Z/LTs7i69S+sm3jgM/4VMm790leYe1EZ1bM/ynpurqrbZ9MRA7lx/AzJh8Oo08bH\nqIwW74zi1Oz30Wbn3IovOnbeS71YezfCvfcTHB02u9RlATz6PU3UD39QkGF8x0VRgT5WkRjXvi9w\necVqo+8vzF5o+H962GnST53Fpm1rEv8outuZsOcI2dcTKI1SrcLxodYcGTGXtFMROHVtR+uV09j7\n/AgcO7dFbW2Bw61jukKjLjGFF/RTrsvKvbDcjEj9QOnS+l/wGvYS6lIuAN6PPnLh8x8BqOPfFBM7\na6L/OFDqOgxFmJniO3sEpi4OHB+jr8v7td3Hxy02fBa5YTuNh7xY4eXvJsbKuzEtFk4h5sffST5w\nFIDwqYtpNHQgjUcMJjX0NDeOhqHLL/3crS+ooueYO8fZNGtEm2Xjidz8Jwn79IP8oxOW4zWiH96j\nA0k+fpakkFM4d2ljvJIqPHbebbsQDy4ZgNZyTz75JFFRUYaf/f396du3L76+vnzyySd89NFHTJky\npczlzczM+PLLL/n888/5999/+fTTT/nxxx/59ddfGTx4sCEuIyODp59+mlmzZjFhwgT27NnD008/\nXaXbdr8EfKP/RSvjchRRW/8kNfQsADHb/6bZ5KGorS1RqJScX/mVYcqVytwMpYkG62aNaT59uGFd\nhS/Z8RwdhPNjHTk+aj7pF64AkBOXiFuvRwzlZccmkJ+eabgLWry8/GJ3DK0862Pl2fC2u5EKdPn5\nd51XaVQWZtw4flq/VpWKen2eRGlqYpRDcfejzEIu3R/i/Htf3TGuInLiErFt0dTws35Kc7rhF9Pa\nSoE/Ctxv/aQBblD4K3RZ25Adl4itb9HzasXjsmMTMXGwM/ouOz6Z7DjjzwHMbn0HgFKB82MduLT2\nR+zbGk/vy0tNL5qWSvl1nR2XaLgbUvhdTnxSibyKf2fXshlqGysS9x7R14lCgUKhoP3aRYZn/UwL\nl1WAQq0hLzWdgtvrJTYR2xYl66UgO4fs2CRMHY3rJSc+CasmHqjMTEjcdwyA1PALpF+6hp2vJ3Xa\n+JCw5yi5xV4M5vxwKx7euBCNpQVpxe4GmjnZk1tGTna+TUqNc+zoz82Iq+Qk3qAgK4eYPw/g2i2A\nqF/0fT3qlz24dG2DnW8TUk6cx65Fk6L9Uaycqtwfjd/sh9OjASiUKuo+85jxHVBFyVzg/rdPt55d\nyU1JxfnRAFTmZpg62VOvd3cA1NYWtJg3BoVahU6ro95LT6EyNeHSmk33VC+uPR9BbWlOuzXv6j93\ntKfF3DFErF6vb59KJc6PdeDwqyXPmznxCVg1L5r+aOLoQH7aTeN9dYcYC8/GKFQqbp4oeixCZWWJ\ny/O9iNm4BQD31wKxbtkCiyYNMXVzIfor/VTEmF9KzqAxlJuYQsaVaNJORQD6warP9GFYuLugUCk5\n997XxY7ppihNTLBp1hifGcMM6zj06tRbdW5J/q0ZEabOdfT9yFP//K3XWy/h3FU/4FBq1PoXaBXb\nn/erjxRy69GJ6F/3Gl20Bf0LmQAS9h4h+ufdtFoxhYwr0RwdMRdtjn4a/f3abuumDbj++95ipRsP\n3rJjE7D2KdYOHR3Iu61d3CnG6fHONJ04lIj3viB+562yFAoKsrIJHVV0saTdxg/Iiiq6UAXQ9K2X\ncO7aVr8NlubcjLhWVE5Z+yQuCbvb+nDxOLcenfCZMoTTy77i+p8HjPI5PGy+Ybkum5cDxu2iKo+d\nhcpqF+K/o3bchxUV1qNHD3x9fQ3/P336dLnxPj76q83W1tZ4euoPRra2toYpvaXFurm5lfp9bVX4\nUonorX/iO3+sfroN4Prkw6Rfukp+WjrJwSeo91JPFGo1KBQ0m/YWTUYM5ObZS4blCwdcXuNfo06r\n5oS8NtUw+ARIOhSKxtqSsBkrOBw0ifyMLKNnloqXV5xOq8Nr/GuYuTkD4P7iE6RfjCQnIfmu8iqL\nqaM9bT6eY6iLlGOnjZ7/u939KBP0J3OLeq6knjx3x9iKSDoUiq1vU8w9XAFw7/0ECXtr/4sHdJxE\ny++3/v0JOAL6NlivTw/iS9mGwm21uLWtxeMS9hzB/dluKFRK1FYWuPR4iIR/D5MTn0xWdBwuPfRv\n5XXo0BKdVkt6hP4XAasm9clPyyD2z31G6wZK1GN5dZ2wJwS3Zx8rVn5nEvaEkJNwq/zu+vLtC8u/\neBWVhRle44cYnvus/8pzxO06wOGgSYb2YevbFOvmjXB/rhugI37PkVLq5WTJerkVF7/nCO7F8nLt\n8RDx/4SQeS0WtZUFtn5eAJi7u2DZ0J20c1dIO3cZx4dbozI3LSoj5DT7Aqez/7XZ1ClWVv0XHyfu\n36MlckoIDiszrm6PDjQdqr9botSocevRkaQjp8iKSSD1zGXqPdNFv7y/F/atvUk9c6na98elNZtI\nPHCMuJ37CHljuuGlUABKtbpa2ueep98i+BX9C15OL/yUrOhYDr02DYDjo+dzOGgSiXuPkBUdy7Xv\nf+HSmk33XC8XVn3NwZfHGI5jOYnJnHrnfcPFEasm9clLyyj1TmNqyHGsfLwxda8LgMtzvUjZH3xX\nMTatfEk7Hmq0TEFmFi4vPEOdrvq6Sdl7EF1uHuFDxxL91UZUVpYA3Dh5nrIkHjiOuZsz1s30z9Ta\ntWquf9t7TDxJwaF49H0KhVoFCgU+04fhOWIgaWcvGV6sEzxoMroCLYkHjhsG/1ae9bFsVI+Uo6cM\nd56vbf+XfYHTufbTX9w4cwkbrwZV0kcK2bdpRuLhki98K8w58vtfaffpXOL/PkzYzPcNg0/gvm23\n9/jX9G/HBeq9+ATpEZFGuaQcDsWmhRfm9fRvOK7b+wmSbus35cU4PtoJz3FvcHLcvKLBJ4BOh9/y\nGVg10w/SHB/rhC4/v8RbcC989gP7A6exP3AaB1+bjZ1RXXcv9ViaGHyyzDjXbgE0nziYkFGLigaf\nt/Jpt2oKNs0b6+Me74D21mya85/9YHgxUFUeOwuV1S4eBDqtotb/qw3kDugD5vXXX2fWrFn4+/tz\n8OBBWrQo/0UpZU0XqmxsbXQj9CxXvt5Km4/noCvQkpOYzMnJ+ruVl7/6kaajBhHwzVIUSiXpF65w\n4f2Srxc3dXag3ktPkR2bSOsPZhk+v7bpV67/+g+n53+M38IJKDVqsqLiuLhmM16jgwj4ZplReYV3\nEw8HTSLj0jXOv7eWlsunoFApyY5PJnzW+3eVV3kyr8YQ+c3/8J74Oh03vU9q6FnOrSj7jbT3o0zQ\n/7manMQbhmf8KisvJa1E/Z6at/rOC9YqOWgJRon+5RNWTeoTPle/DYVX5YMHTb61rZ/gv2g8CrWa\nrOg4Q1zU1h2Y13Oh44ZlKDVqon7aRcrxMwCEzVxF82lv0fi1Pmhz8zg5faXhCrGFhxtZ1+NLrBvg\nwgffYOfvjcpM/9bH8uo6eusOzN1dCVi/HKVGTfRPOw132MNnraT5tGE0fO1FtLl5hM94D3Q6kg6e\nIGrLb7T7fD4olGRcvMqZRZ8CcG75l7h0fwhtbh4Ba+aTfzMDtYUZYUv1bdSmeXW8N7oAACAASURB\nVGN8ZrxF8CtTyE1J49T8T2i5uLBeYgmb85G+Xn7cgYW7C502LkWhNq6XE5NX0GzCqyhNNOjyCzi9\neA1Z0XFkRcdh7uZEx2+KptiFztXnlZuSRui8z2i7ZAxKjZqMqDhC39G/sdS2eSP8Zr7JvsDp5cad\nXrkRv+mv03XTEnQ6HXH/HOXyd38AcGTie/hOeY36fbrr7z4rFLSaO9ywP4ofI6prf+TfzOD0/I9p\ntXK6vjKUCs7f6vtV3T5vV/jnqopvc+qZi5g6OxDwzbJK1Ut5LDxcyY4t/ZGB/BupXFzyPk3nTkOp\nUZMdc52LC9/D0tuTRpP0b64tK6aQmXtdcm5fv1bL+ZnzaTB6GPVeC0RXUEDE3CXk33pBktmtwezt\nx9Li+yQ3OZUTk5fRfNIbqMxN0eblEzp1OdrcPC6t/QGv0UF0XK8/pt+8cIXzH5R+TD+79At8pg+j\n07dd0OkgfM5q8jOyyL+kv6vWfuVEFEolWfHJHJv8PtaeHlXWRwAs67uSVca0YwCPPk9g5uKI86MB\nOD9adIfs6Mh59227z674itYrpoBSSU58MmGz3qfLtk8My+bdSOXcwtX4LJiEQqMmOzqWs/M/wKpZ\nE7ynjuDoqxPKjAFoNEz/jgXvqUVvoE49eZaI99ZwZs5KvKYM1z8Kk5jCqWlLyqwL0B+3wuZ9SuvF\nY1Fq1GRGxXFyjv4lgTbNG+M38032B04rN85rZH8UCgV+M980rDcl9Dynl35F6KzV+M14E4VGTU5i\nCscmreDR/71fIoeqPHbCnduFePApdDq5v13bRUVFGZ7VPHXqFPPnz0ej0eDo6Mj8+fPLfQbU0dGR\nAQMG8N1335GYmMioUaPYtWsXe/bsYejQoYb1duvWjd9//x1TU1OWL19O48aN6dOnT7l5JSSUfONr\ndXNysmZ3x741msPjwVtqPIfakkdtyKEwjwI21mgOKgLZ2eHlGs0BoMehzTW+Tx4P3sKOgH41msMT\nh/V31X5tV/IlJdXp6SPf1or9AdR4+6wtbfPQo8/UaA4AHf75pVbsj5ruH6DvI7WhLv7tXP7vQNXh\nkf1b+b19yT+zUp16hnxXa9rFgyB1bKM7B9Uw21V39/eDq4LcAX0A1KtXj82bNwPQokULvv/++wot\nN2rUKMP/BwwoOoB1796d7t31U1EK1/vXX38Zvp848e7/xpYQQgghhBD/n+l0D/ZswuoiA9D/gLff\nfpvUVOM3v1lZWfHJJ5+UsYQQQgghhBBCVD8ZgP4HrF79oD0nJ4QQQgghhPj/SN6CK4QQQgghhBCi\nWsgdUCGEEEIIIYSoLK3c26sIqSUhhBBCCCGEENVCBqBCCCGEEEIIIaqFTMEVQgghhBBCiErSaeXP\nsFSE3AEVQgghhBBCCFEtZAAqhBBCCCGEEKJayBRcIYQQQgghhKgknU6m4FaE3AEVQgghhBBCCFEt\nFDqdTlfTSQghhBBCCCHEgyx5hFdNp3BH9h+fr+kUZAquuHcJCTdrOgWcnKzJDn+sRnMw8/2bX9oG\n1mgOAM8c3cjujn1rNIfHg7ewv8vzNZoDQOe9P7Ozw8s1mkOPQ5spYGON5gCgIrDG81ARyB8B/Ws0\nh6cOfw/A1tZBNZpHn+Pf1Ir9AdSKPGpDP63ptgn69lkb9se2WnAue+7oxlpRFzV9PgX9ObU29JGa\nPm6C/tj5IJC34FaMTMEVQgghhBBCCFEtZAAqhBBCCCGEEKJayBRcIYQQQgghhKgknU7u7VWE1JIQ\nQgghhBBCiGohA1AhhBBCCCGEENVCBqBCCCGEEEIIIaqFPAMqhBBCCCGEEJUlf4alQuQOqBBCCCGE\nEEKIaiEDUCGEEEIIIYQQ1UKm4AohhBBCCCFEJel0MgW3IuQOqBBCCCGEEEKIaiF3QMV/1p6j2Xyw\nIY3cfB1eDTTMGWGHlUXRNZft/2Syfnu64eebmTrikwrY8bkLapWCBZ/f4NyVPMxNlTzfzZyBvawq\nXLbzw61o9nY/lBo1aRHXODlvDfkZWfcU13bZWHISUghfuk6/TJfWtJo7jKzYJEPMgTfmARCwYTlK\njYb0iEjOvPsJBZnG63J4qA1NRgwsGaNU4jVmMPYdWqJQqbj67Taif9pptKzbM4/h9GgAJycuMXzm\nt2gCVp4NKcjKvmOd1OnUlgZvBaHUaMi4eIWIxR+WyK+8mIDt35CTULTNMd/9j4Sd/5a6PID/wnGc\nevdTCkqpd8fOrfEcPhClib4eDHFKBd5jB+Nwqx4iN24n6lY9WHi44jNzOBpbawoyswmfu5rMyBga\nBj2Pa4/OhnVr7GxQW5rdVqIdSrqhZesd66mQTqdjxrRteDZ1YsjrD1V4ufutqvJw6twarxH9UZpo\nuBlxlbAFn5W6r+4UZ+bsQMe189kfOIW81JsAaGwsaT7xNawauaM0NeHSV/8rNQfXh1vSYlRflCYa\nUi9c49jcL8jPKNmWy4rrsOxtLD1cDHGWdZ1IPHaWg2NX4diuOX7j+qNQq9Bm5xK6dAMppy5Vttr+\nc+2izL5Y0bhy+mwhMzcnOq5bwrHRC0g7q98H7r27U79fLwBaL5tI+ILPDO2nqtqmZSN3Ws4fZfhe\noVRi7Vmf45NX3HP9FaqqduH8cCt8ip2jTpRzLrtTXPtlY8lOSCHs1rnMoZ0PLcYNRKlSkZuaTvjy\n9aRduFrpnO9XXZR5vqxITDnnVOvmTfAa9yoqMzMUSiWRG/5H7B97aTDoBVxuO5dA1fYRm+ZN8B43\nGJW5GSiVXFn/M7F/7AWM+0jHlWM5NvcLcm/of2d6EI+donaRO6C1xNatW1m+fLnRZ+PGjSM3N7fM\nZTp37lzmd7fr1q0bOTk5Rp/t2bOHTZs2lYh9+eWXiYqKqvC6a6Pk1AJmr77Bikn2bPvQBXcXNe9v\nSDOKefZRCzavcGbzCmc2LnHC0U7J1DdscbBTsezrVCzMlPy0ypkNixzZfyyHf4/ceZAFYGJnTct3\nhnJ00ir+eXESmVHxNBvV757imgQ9g31rb6PP7Ft6cWn9r+wdON3wT2WiASBs2nKC+40hKyYOz5GB\nRstp7GzwmTmi1Bj33t0x93DlUOB4QoZMxaPf09j4eAKgtrHCe/KbeE8YggLjqSW2vl4cHT6bw0GT\nOBw0qcw6UdvZ4DltNGdnLuZY4AiyY2JpMCyowjHmHu7k30wndMg4w7/bB5/FlwfIjI6n6YiBJXLR\n2FnTYuYITk5bwYGXxxrF1evdAwsPVw4OnMCh16ZRv38vbHyaAOA7dzRRP+7gYP/xXFyzmZaLJwBw\n5ZufCR40meBBkzkyfA4F2dmcnLHqVmkKFDRDSTfu5nrfxYsJDBm8nj9+P1XhZapCVeWhsbPGd9Yw\njk9dyd6+48mMjsd75IC7jqvbqwsdPp+DmbO90XJ+s4eTHZ/MgUHTCHn7XZpPGFxi3SZ1rGkz902C\nJ33Izt5TyIiKx3d0Kf20nLhDk1bzV/9Z/NV/FsfnrSUvPZMTi75BoVYRsGQkx+at5a9+Mzn7xTba\nLXirstX2n2wXZfXF4u61zwIoTTT4zR2FQlPU/8zcnPAc1p8jQ2cDkHU9Ac+hLxnKqqq2mXE5mgOv\nTDX8Szx0kpg/9xP3T0il6rCq2oWJnTWt3xlKyKRV/PXiJDKi4mlexrnsTnGet53L1FbmtF82ltOr\nvuOf/tM4uWgt7RaPQqmp3H2R+1kXZZ0vC93rOdV/0UQurdnM4aBJnBj3Lk1HD8bcw5XI9f8znEuP\njXgHbbb+d46q7CP+iydwcc0WggdN5vi4hXiPCcLCw7VEH8mMSaD5sD7Ag3nsrE46raLW/6sNZABa\ni61cuRITE5MqW3/Xrl3p16/kQeO/4GBoDr6eGhrU1Z/MXn7Sgt/2ZqHT6UqN/+p/6djbquj7hCUA\npy/m8cwj5qhUCjQaBV3amrHrYMkrjqVx6uTHjdOXyLgWB0DkD7tw71nyYsGd4hza+eD0kD+RP+42\nWq6Of1Mc2rfg4Q0L6PTFLOxbN8Opkx8AWddiAYjeugPXJ7sYLWffwZ+0MxdLjXF6pAPXf/kbXYGW\n/JsZxO3aj+tT+u9cHu9EblIKFz5cb7Q+MzdnVBbmNJsylIANy2k+c0SZdVKnfWvSz0aQHXUdgNj/\n/YFTj0cqHGPt1wxdgRbf9xfQ6uv38Xi1HyiV5S4ftXWHYRuKc+jQktQzF8m8VQ/F45wfCSB6+z+G\neojdeQC3p7pi6lQHy4Z1id15AICkgydQmZli7d3IaN1eoweRdPAESQdPFNY6YIeWvWXWTWm+23iE\n3n1a8VTPFne13P1WVXk4dvAn9XTRPrj2407cnnr4ruJMHevg/Eh7joxbbLSMxsYShwB/Itb8AEBO\nfDIHh8wqsW6Xjr7cOHWJjKv6/nd5y1949Ox0T3EKtYq284dyctlGsuKS0eUX8PuTY0g9FwmAZT0n\nclPTS6z7bv0X20VZfbG4e+mzhZpNep2YX/8l70bRBUiFSolCrUZlaQ6AyswEbW4eULVts7g6rZrh\n2q0DpxZ/UcGaKltVtYvbz1FXfthFvQqcy26PKzyXXSl2LrP0cCU/PZPEEP1AMf3KdfIysqjj37RS\nOd/PuijrfFnoXs6pShMNl77cQkpIGAA5Ccnkpd7EzMnBaN2eo4MM55Gq6iNKEw2XvthCcmEu8cnk\npt7E1NmhlD5iaugjD+KxU9Q+MgW3FgkNDWXIkCEkJyczYMAAPvvsM37//XdiY2OZOnUqarUad3d3\noqOjWb9+Pbm5uUyYMIGYmBjs7Oz44IMP0Gg0Za5/9uzZREdH4+DgwJIlS/jtt9+4dOkSEydOZOXK\nlezduxdXV1dSUlKqcaurRmxiAS6OKsPPLg4q0jN1ZGTpsLIwvvqTklbAN9vS+X6Zk+Ezv6Ym/PJv\nFq2amZCXp2NXcBZqVcWuGpm5OJAdm2z4OTs+GY2VBWpLc6MpSeXFqcxNaTFxEIfeXkKDPt2M1p+b\nmk70b/uI/fsIdVp50X7FeCK3/m0UkxOfhNrKApWFuWHKkJmzI9lxiaXGmDk7kB2XZPSdlWcDAMO0\nIbenHzUqw8TehuSQMM4tW0NuShpe414ts05MnB3JLV52QiJqK0uj/MqLUaiU3DgSypWPv0JpaorP\n0lnkZ2Ryfcv2ssuIT0JjZYHK0tx4WpyLAzm3bWthnJmLAznxt9dDfcxcHMlJSIFiFzCyE5Ixc7bn\n5rnLAFg2qofTI+3Z36doih0koSMJsCyzbkozc3ZPAIKDL9/VcvdbVeVh5uJAdrF6zi5nX5UVl5OY\nwokp75VYt0U9V3KSUmgY+DROnVqhNFFzecMvJeLMXR3IjCvqf1nxyWisLVBbmhlNJatIXMPej5Cd\ncIOYv48a4nT5BZja29Dtu3mY2FlzeMpHd1tNJfwX20VZfbGyfRbA/bluKNQqon/eTaNXextisqLi\niNywjc6b9TMV7Nv4EPz6LENZVdU2i/Me/QrnP9lU6lTKu1VV7cLcxYGsCpzLyotTmZviN3EQB99e\nQsNi57KMq7GoLMxw6uhHQnAYdj6NsW5SDzNHu0rlfD/roqzzZWXOqdrcPK5v/8vwed3nu6MyNyP1\n1AXDZ5aN6uHUtT0HXhyFR79eVdZHtLl5xGwv+t3B/YXH9bmEn0ebk2fURxzbNuPfwfpHfR7EY6eo\nfeQOaC2iVqv58ssvWb16NevWrTN8vnTpUoYNG8b69etp06aN4fPMzEzGjRvHd999R3p6OmfOnCl3\n/QMGDGDDhg24u7uzefNmw+dhYWGEhITwww8/sHTpUjIyMu7/xlWzMm503n7TDIAfd2byWHsz6rkU\nXY+Z8KoNCgX0m5jAuKXJdGppSkVnBikUpQ9UdQXaCsWhgDaLRnFqxXpyEm+U+PropFXE/n0EgJQT\n50k5eQHLBq6ll6ktVqayjLy0WhSlfHd7vrdLOxVB2NRl5CbdAK2WS2v0bUqhLllRpa3/9vzKi4nb\nvpPL769Bl5dPQXoGMZt+xqFrx4qVcft2KEo/7OkKtKXXkVYLZe3TYvnX79+La1v+LPX5KGFMUVpH\nBLi9j1QwzmgZtQoLdxcK0rM49OY7hM74gGbjgkrGVbKfFo/zDHyKs2t+LhGTk5zG70+O5d/B82g7\n902s6pfeT4Wx+9Fnrb0bUa9PD84sXlPia/sO/jg/1oE9zw0HIP7fI/jNHn6rqKprm4Xs/LwwsbPm\n+p/77xhbk+7HuazdolGEl3Iuy8/IImT8ezR97Tke+W4h9Z5+mMSQ02jz8u9L7lXlfp5TGwx6gcZv\nvkzoxMVoc4oet/Lo9zRRP/xBQUZm2Xncj/NaMQ2DnqfJmy9zYuIStDl5JfrI9X+O0Xbum/qi5NhZ\nLp1OWev/1QZyB7QW8fHxQaFQ4OTkRHZ20VWkixcv0rp1awDatm3L9u36uz62trbUq1cPAEdHR7Ky\nyv7FV6PR0KpVKwDatGnD/v378fPTT9u8cuUKvr6+KJVKrKys8PLyqpLtq06ujirCLuQZfo5PKsDG\nSoGFWcmO9+f+LKa8bmv0WUamlnGDbLC11sev/ekm9d3K7i5ew17EpWtbANSW5tyMuGb4zszJntzU\ndAqyjZ/BzYpNws7Xs0ScVSN3LOo64TPuFQBMHWxRqJQoTTWcXvktDft2J+KrbUUrUijITTZ+vtXU\nyZ681HS0xcrMiUvEtkXTUmOy4xIxdaxj9F3xK6alsWvZDLWNFYl7j9xKQ3+y0WlL/gKWE5eAVfOi\ndmXq6EBe2s3b8is7xunJR8mIuEzmxUjDNuvyC6j/+kDqdG4PgNrSgozC78uoA9Bf1bYtVu9G9RCb\niImDndF32fHJZMcZfw76/ZUdf+vqrlKB82MdODR4arl19v+Z59C+OJfRR0zL7COJ2LbwvGNccTmJ\n+hkcUb/qnxHOjIrjRug5XB/XX7Do9v18ADSW5qRGFD3rbuZc59a6jZ+7z4xNoo5fkzLjbL0boFQp\nSTx61hCjtjLHub2P4ar+jbORpJ6/ik3TeuXW0f8HCvxR4G742cTRuL/drz7r1qsrKktzAr5YYPjc\nd95oLny4HvsOLUnYe4S8FP1xU2mixqlzax7asLhK22Yh1x6diP5tT9lXSmuQ97AXcS3WT9MqcS6z\nvnUua1HKuSx0wZfkZ2Zz4K13Dcs99sNSwzTe2uD2c+L9OqcqNGp8Zo3EslE9jrw5g+zrCUWFKpW4\nPtWFrOvxOHUNAKqujxTm4jt7JJaN3Dn8xkxDLk5d2hn3EY0a1y4t6fb9fDl2ivuidgyDBVD21SIv\nLy+OHz8O6Kfp3im+NHl5eYY7pEeOHKFp06KDpqenJydPnkSr1ZKZmUlERMS9pF+rdGplysnzuUTG\n6K+mbtmRyaPtb38zKaSla7kaW0BLb+NnbbfsyOSj7/UH3qQbBWzdlUnPLuZllnf+0x8NLwTa/+o7\n1PHzNLzhrcFLjxP379ESyyQEh5UadyMsgt1Pjzas7+qPu7m+I5iT878gPzOLhi/3wLWbftBl490A\nuxaNufz9HwCYe+ivErr3foKEvcYvtkg6FIqtb9NSYxL2hOD27GMoVErUVha49OhMwp7yX4yhsjDD\na/wQ1Db6twPXf+U5/RelDEBvHD6BdQtvzOq5AeD6wlMk7ztc4RiLRvWp//pAUCpRmpjg1qcXiX/t\n5eqX3xpeSnTyrclGy9fr04P4vSW3obAeLG7VQ/G4hD1HcH+2W7F6eIiEfw+TE59MVnQcLj30b1R0\n6NASnVZLeoT+jY1WTeqTn5Zh/IuEMBLx+RbDy1eCh8zCztfTsA/q9+lO/J4jJZZJOnSyQnHFZcUk\nkHrmEu5P658DNLG3xc6v6MJG4Ysv/gmai71fEyzr6/tf45e6cf2fYyXWF38wrNw4x7bNSAg5bbSM\nrkBLmzlvYN9Sf5y1buyOdUM3UsIull9J/w/oOImW39HyO0CZfbG4e+mz51eu40DfsYYXhOUkJBM+\n+wMS9h7l5rnLOHVug8rcFICs64kkHTlV5W2zkH2b5iSFhN9NtVWbc5/+yL8Dp/PvwOnsffUd7Iud\noxq+9DixpZzL4oPDSo1LCYtg59OjDeuL/HE3MTuCCZ3/Beh0dPhgErbN9c/Ru3UPQJdfcF/egnu/\nlHW+LHSv51S/hRNQW1pw5M2ZJc4ZVk3qk5OQwqEB4w0v9quqPgLQcuF4VJbmHH5jllEut/eRzNhE\nEkLOyLFT3DdyB/QBMHHiRKZPn87atWuxtrZGXcoUxzvRaDSsX7+eyMhI6taty4QJEwx3Ups3b07X\nrl156aWXcHZ2xsHB4Q5rq/0cbFXMG2nHxOXJ5OVDPVcV746qw6mIXOZ+coPNK5wBuBqbj1MdJRq1\n8WD+9T5WzHj/Bn3GxqPTwbCXrfH1rNgLoXJT0gid+xltl45BoVGTGRXPidmfAGDbvBH+s95k78Dp\n5caVSasjZPx7+E4ejNdbL6Ir0HJs2moyruhfvOO3cAJKjZqsqDhOzVuNdbPGNJ8+nMNBk8hLSeP0\n/I9LxID+5Qnm7q4ErF+OUqMm+qed3Dh+urxMSDp4gqgtv9Hu8/mgUJJxsexfHPJupBKx6AOazZ+C\nQq0mOyaWCwtWYeXtSZMpIwkdMq7MGIBrX31P43Fv0XrdByhUKhL/2U/c9p1llgH6E3n4XP322TRr\njM+MYQQPmnyrHj7Bf9F4FGo1WdFxhriorTswr+dCxw3LUGrURP20i5Tj+gs3YTNX0XzaWzR+rQ/a\n3DxOTl9puINh4eFG1vX48vedMMhNSSNs/qe0WjwOpVpNZnQcYXP0z/nYNG+M74yhHHhlarlx5Tk+\neQU+k4fg0ac7CoWSi1/+SItpbxrF5KTc5OicNXRYNgqlWk1GVDxHZn0GgJ1PI9rMHsJf/WeVGwdg\nVd+FjJhEo3UXZOUQPH4VLScF6v+UQG4+IdM/ISv+wX++/n4rqy/ejz5blpjtf2Pu5kSHdfo/KWXf\n1oewefpjb1W3TdD/SaesB+BiVW5KGsfnfka7pWNQavRt/3ixc1mrWW/y761zWVlx5Tk24yNazXwD\nhUZNTuINDk8o/7nZ6lba+bKy51Rbf2+curQjIzKGdp8vMJQV8dEGkg+FYuHhSnZs/G15VE0fsfX3\nxqmrPpeANfMN5V1YvbFEH3Fq25yjsz8H5Nh5J7XlLbO1nUJX1mtBRa2xbds2WrZsSYMGDdiyZQvH\njh1j0aJFNZ0WCQk3azoFnJysyQ5/rEZzMPP9m1/aBt45sIo9c3Qjuzv2rdEcHg/ewv4uz9doDgCd\n9/7Mzg4v12gOPQ5tpoCNNZoDgIrAGs9DRSB/BPSv0RyeOvw9AFtbl3wetDr1Of5NrdgfQK3Iozb0\n05pum6Bvn7Vhf2yrBeey545urBV1UdPnU9CfU2tDH6np4yboj50PgtjBLWs6hTtyXRd656AqJndA\nHwBubm6MGzcOc3NzlEolCxcuLDXu5MmTLFu2rMTnPXv2ZODAkn83SgghhBBCCCGqkwxAHwDt27dn\n69atd4zz9/dn/fr1d4wTQgghhBBCiJogA1AhhBBCCCGEqCSdTp4BrQh5C64QQgghhBBCiGohA1Ah\nhBBCCCGEENVCpuAKIYQQQgghRCXJFNyKkTugQgghhBBCCCGqhQxAhRBCCCGEEEJUC5mCK4QQQggh\nhBCVpNPKFNyKkDugQgghhBBCCCGqhQxAhRBCCCGEEEJUC5mCK4QQQgghhBCVpNPJvb2KUOh0Ol1N\nJyGEEEIIIYQQD7Koge1qOoU7qvftkZpOQe6AinuXkHCzplPAycmarNPdazQHc59d/NI2sEZzAHjm\n6Eb+6vRSjebQ7eAP7Hv4hRrNAeDhff9jd8e+NZrD48FbKGBjjeYAoCKwxvNQEciOgH41msMThzcB\nsKnlqzWaR7/Qr2vF/gBqRR47O7xcozn0OLS5xtsm6NtnbdgfP7QaXKM5ALx0Yl2tqIuaPoeA/jxS\nG/pITR83QX/sFP8dMgAVQgghhBBCiEqSt+BWjExUFkIIIYQQQghRLWQAKoQQQgghhBCiWsgUXCGE\nEEIIIYSoJJ1OpuBWhNwBFUIIIYQQQghRLWQAKoQQQgghhBCiWsgAVAghhBBCCCFEtZBnQIUQQggh\nhBCikuQZ0IqRO6BCCCGEEEIIIaqFDECFEEIIIYQQQlQLmYIr/rP2HMniww2p5ObpaNpAw5y37bGy\nKLrmsv3vDNZvu2n4OT1TS3xSAX9+URe1Ct79LIVzl/MwN1PwfDdLBjxtXeGynR9uRbO3+6HUqEmL\nuMbJeWvIz8i6p7i2y8aSk5BC+NJ1Rp97PPcIro+1I2TcihLrdXioDU2GB6LQqMm4eJUz735MQWZW\nxWKUSpqOHox9x1YoVEqufrudmJ92AGDXpgVNRw9GoVKRl3qTC6u+Ij0issx6qNOpLQ3fGoTCREPm\nxStcWLS6RB4ViWn27hRyE5O5tHKN0eembs60+nIFp8bNQWNvZ1gPgMrCvPRtHjEQpUZDekQkZ979\nxLDNXmMGY9+hJQqViqvfbiP6p50AmHu44jNjBBpba/Izszk970MyI2MA8Fs0ASvPhhRkZQOQcjSc\nC++vQ2VpAYCSnoaytRwD4sqsq9vpdDpmTNuGZ1Mnhrz+UIWXu9+qKg/Hzq1pOmIAShMNNyOucmrB\npxSU0kfuFGfq7ECHtQs4GDiZvFR9f67TtgVeowNRqtUUZOdydsVXpebg1qUl/qNfQmmiJvV8FIfn\nfEl+RnaF40xsLGk7Mwg77/oUZOVw+ed9XPhuFzaN69Jx0TDD8gqVArumHuwb/2Flq+0/1y4cO7fG\nc/hAlCb6Pnnq3bLbQalxSgXeYwfjcKvvRm7cTtStvlvIzM2JjuuWcGz0AtLOXgLAvXd36vfrBUCr\nZRM5teAzQ/upyrbp9HAbfN8ZSVZcoiEuZOg791x/haqqXbh2aYnvqL6oTNSkXrjGkTL6SJlxSgWt\npwbh1NYbgNh9Jzm58nsAnNo1w29cf5RqFQU5uZxYupGU8EuVzvl+1UWZZMBvtAAAIABJREFU54uK\nxJRzTnF8uC0+s94mu1gbODpsFgWZRfXq8XIv6j7/uD6+CvuI48Nt8Z090iiXkLdmU5CZjf/iCVh7\nNgDgiU3ziA85w4nl3wEP5rGzuui0MgW3IuQOqPhPSk4t4J0Pk1k+2YGfP3Kjnqua99ffMIp59jFL\nNq90ZfNKVzYuc8HRTsXUN+vgYKdi2dobWJgp2fqBK+sXu7DvWDZ7Qkoe8EtjYmdNy3eGcnTSKv55\ncRKZUfE0G9XvnuKaBD2DfWtvo880Npb4TRtCi8lBoCh5oNPY2dB8xkjCpi3jUP8xZEXH0WREYIVj\n3F/ogbmHG4cDx3FkyFQ8+j2NtY8nKksL/BZNImL1eg4PmsC5ZZ/TYsF4FJrSr2Op7WxoOn0UZ2Yu\n4djAkWTHxNFweNBdx7gP7I2tv0+J9StMNHjPGodSrUZlZWm0HgDPkSW32WfmCMKmLSe43xiyYuIM\nMe69u2Pu4cqhwPGE3NpmGx9PAFrMGUPU1h0EDxjH5S824bdoomGdtr5eHB0+m8NBkzgcNIkL76+7\n9XlTALT8bvh3N4PPixcTGDJ4PX/8fqrCy1SFqspDY2eN76zhhE59j/19x5EVHYfXyIF3HefWqysB\nn8/BzNne8JlCraLlu2M4/e7nHAyczKWvtuI39+0S6zatY03AvNfZP2E1vz8/jfToeFqO6XtXca0m\nDSA/M4c/ek9n1yvzce3sh1vXlqRdimFHv9mGf3EHTxH520Gidx+tVL39F9tFi5kjODltBQdeHktm\ndDxNR5TeDsqKq9e7BxYerhwcOIFDr02jfv9e2Pg0MSyrNNHgN3eU0XHKzM0Jz2H9OTJ0NgBZ1xNo\nMrSvoayqapsAtv7eXNm4neBXphj+FR943IuqahcmdaxpN/cNgid+yJ8vTCUjKgG/MS/fVVyDZzpj\n3dCVHX1nsLPfLBzbeePeoz0KtYoOS0dybN5advWbxdk12whYMLTSOd/PuijrfFHoXs8ptn7eRH67\nzXDeOBw0yagN2Pp702DQ84afq7KP2Pl76dvjoMmGf4W52Pk25cgw/cWRHf1mGwafD+KxU9Q+MgCt\npbZu3cry5cvv2/qmTp3Knj17jD5LSEhgzpw5JWKXL1/O1q1b71vZNeHgiWxaNDWhQV393bC+T1nx\n+55MdDpdqfFf/5SGva2Sl560AuDMxVyeftQClUqBRqOgS1szdh7MrFDZTp38uHH6EhnX9AOOyB92\n4d6z813HObTzwekhfyJ/3G20nFuPjmQn3uDMqm9LLd8+oCVpZyLIiooFIHrrn7g+2aXCMU6PBHD9\n17/RFWjJv/l/7N13dBTV28Dx79b03klooQRCILRQRKpUkZ9SBKQKiIAU6YQuoYMFxa6ggIggBBsi\nVXoJKJAQAkKAQAJJNoX0urvvHwtLlt0kGzFF3/s5h6O7+8y9z8zcubMz9+4ki8QDJ/Hs0QHr6l4U\nZmWTej4CgOyYe6izcnAIMLxAfsQpqCmZUTfIjb0PwP3dv+HWrUOZYhyaBeDUuhn3f9xnVH6d6eNI\n2HuYgrQM7Bv5GZQDGK9z6yakR0WTc/fROu8vss6tuf/L43VOOHgSz57tsXBzxqZWNRIOnAQg+fRF\nZFYW2PnVxtLLHZm1FQ3mvE6rb96m4YI3kNvr2o9DY902kdINKb2QUM/kNirOtq3n6duvKT17NSrT\ncv+08srDpXUgaVeiyX64L+7uOoBnz2fLFGfh6oR7xyD+nLbKYBltoZqjvSeQ8ddtAKyruetHn4ry\nbBtAyuVbZN7RHX83dvxOjefblinO2b8Wt385hVajRVOo5v7xcKp3DTJY3rVZfXy6tuT8sk1GZZfV\nf7FdpEU93r+xofvx7NneKMaldWCxce4dWxH38xH9sRt/4BRePR/3IQ1mjeHenqMUPEjXvyeRSZHI\n5chsrACQWVqgyS94XFc5tU3QfeF3bhlAm00rCfr8LZyaNSzjFjNWXu3Co20AqZE39W0/+vvD1Ohl\nfIyUFCeRSpFbWSBTKpAq5EjlcjR5BWgL1ezpPpUH1+4AYOPjTn5a5lPn/E9ui+LOF4/8nXMK6M4P\nzi0DCPp6NS0+DcGx6eM2oHR2wG/ma1z/cIv+vfI8Rhwb++HcshGtN62i5WdL9LlYerkhs7ai4Zyx\nALQKGYPS3gb4d/adQtUjLkD/H3NzczN5AfpfkJCkxtNFpn/t4SIjM1tLVo7xBWhquprNP2Ywa4yT\n/r3G9S3YcySbgkIt2TkaDp3OISlVY1bdlh4u5Man6F/nJqagsLVG/vDLjjlxFq6ONJo5nAsLPga1\nYb13dh3i+hehqPMKiq0/LzFZ/zpPlYzc1gaZtZVZMRYeruQVmY6Tm5iMhbsL2XfuIbOyxLlVIAB2\nDetg41sdC1dHk3lYeLiSl/i4nDxVklEeJcUoXZzwffM1roW8BxrDbeDxQlekchkJP+umESmcHQ3K\nAZDbWhuus7urwTSjvMRkfYyluwu5CckGn1m4u2Dh7kKeKhWK3LjIS0zBwt0FpbM9KeciuLrqM8JG\nzEadk4v//AkAaNVqADQcRMMRJDQAfExuJ1MWLOrF/15qYnZ8eSmvPCw9XMhNNNzeCltr/QWBOXF5\nSalcmvMOWbfijMrXqtUonR3o8Msn1J8yjFtbfjKKsfJ0Jjvh8fGXk5CC0s4auY2l2XHJETep9cIz\nSOQy5FYW+HRtgaWbg8HyTWcMIuLDXSanp5XVf7Fd5CWY1w6KizPqyxKTsXg46uj9vy5I5DLifjS8\niZcTm0DMNz/Rbsc6AJyaN+TW17v1dZVn2yxIy+Tuzn2cGTmX6x9tI3DNDH2+f1d5tQtrD2ey4w3b\nvsLEMVJS3O2fjpOfnkXv/et44eD7ZN5N4P6xi4DuZpGFsz2996+j8bRBXPv616fO+Z/cFsWdLx75\nO+cUgIL0DGJ37uPcq3O48cm3NFk9Cws3Z5BKabTkTW58uIU81ePtWZ7HSH5aBnd37uPsyGBufPwt\ngWtmYuHujNLZgZRzEVxZ9TkAhdl5BC0ZA/w7+86KpNVKqvy/qkBcgFZxGzdupH///gwaNIi1a9ei\nVqvp1q0bhYWFJCYm0rBhQ1JTU8nPz6dv374llvXtt98ycuRIhg0bRkxMDLGxsQwcqJsms2/fPl56\n6SVGjx7NpUuXKmLVypXG9EAnMhMtftf+LDq1ssLb4/EUremjHJFIYPD0eKatTqJNU0uKmWlqRGJi\nWiyA9okLyeLikEDzlZOJfGcLeUkPTMeURGr6sNYWvYgrIcZkXhoN6uwcIuaspubIfgRtfhvPXh1J\n/eMymoJC03lIzMijmBgkEvyWzOTmBxsoSE41+Mimvi+eL/XkxtpPDOJLrUtafIzExGdaten3H32W\nHnmDiOC15Cc/AI2Gm1/swKVdcyRyObe/2vUoEshBy3UkVDe9rv8PFbddn7zZYm6cKfkpaRx7YQJn\nxywkYOEE4xzMaTOlxF185zvQaumxfQnt3ptMwulINAVqfYxLYF0sHO2I+fVMqfkKjz3ZVxbbl6g1\npo9rjQY7v9r49OtG1KovjD52bt0E986tOfY/XbtQHT1PwKI3HlZVvm3z0px3SDxyDoAHl66RFv4X\nLq0q/6aCKSX1f+bG+Y97ibzUDH7uMpk9PaahdLCl3vCe+pi8lHT2dJ/K7yOW0nLJa9jW8PjnVqAc\nPO05BSAi+G1UR8MASLt0lQcR13Bu1YS6bwzhwcUrpISFl57HP3CMAIQHv4PqqHF7TI+8waU5b+vO\nb8DlT3ZTrX0TpHKZ6DuFf4R4CFEVFhMTw9mzZ/nuu++Qy+VMnjyZY8eO0bJlSy5evEhMTAz16tXj\n9OnT2NjY0K6d8TTPopo3b87rr7/O0aNHWbt2LcHBwQAUFBSwatUqQkNDcXR05PXXn/53GJXNy1XG\n5b/y9K8Tk9XY20qxsjTupPefzGb2GMNRvKxsDVNHOOBgpxtF/So0nepexR8u9cf3x6NDCwDkNlZk\n3Lir/8zSzZn8tEzUuXkGy+TEJ+MYUNcozra2N9bV3PCfNgwACxcHJDIpUgsF4Uu/LHXdc+NV2Ps/\nnvJp4eZMQXoGmiL1lxSTm5CE0tXJ4LPcxGSQSFBn53Jh4uMHZrTetk4/jfdJeQkq7IrW4epilEdx\nMda1qmPp5UHtyaMBUDo7IpFKkSqVqHNykdtY0eTT1brPXJ1w6diG/ATDEdCCtMwn6krCodET6/ww\nJjchCYsn1jkvMZnc+CSULoZt49FnjoENkNvbknT8PPDwZKvRotVo8Hm5J4YkgHkj6P9VdV5/GbcO\nLQHdMZJ5447+s0f74sljJDc+CYdGdUuNK0puY4VzUID+S37GtVtkXI/BuYVuSl737SEAKGwtSbse\nq1/Oyt2JvLRM1Dn5BuVlxyfj0tjXZJyFpy2X3ttBfnoWAA1GPa+fbgZQo0crbv980mAE/f87CU2Q\n4K1/rSwyg6LoMVlUbkISDgHG7UCTm2d0jOr6qxS8nu+AzMaKVl8u078fEDKF6+u34Nw6ENXx8xSk\n6qblSpQKXNs1o803q8u3bdpaU31Ad259/UPRDYK2sJibeJXAf0JfqnVqBuiOpfQnjhHdueyJY+R+\nCs4BdUzGeT/XkourtqAtVFOYmUPMzyfw6RrErd1HcQ/y597vut/2PbgaQ9pfd3CoV3Vu1D15Tvgn\nzilyW2u8+/cgZtNu/WcSJGjVajx7diA/NQ3vfj1Q2Nkgkeu+f5TXMSK3tcanfw9uF8kFCWgK1Tg2\nbYDCzgbVcd3+aTjmBSQyGV2/XYzCRvSdwtMTI6BVWFRUFIGBgSgUCiQSCS1btuT69et0796do0eP\ncuLECaZNm8apU6c4dOgQ3bt3L7G8li11X/6aNWvGrVu39O+npKTg4OCAk5MTEomEZs2alet6VYS2\nTS0J/yufmHu6aao792XSqZWlUVx6poY79wsJbGBh8P73+zL5eJvuy0nyAzWhB7Lo1d662Pr++nQX\nx4fM4/iQeZx8dTFOjetiU113J7fmgOdIOGr8A3rVmQiTcQ8ibnCo9xR9eXd2HeL+/jNmXXwCpIRd\nwiGgHlY+ngBU69udpGPnzI5JOnaOai90QSKTIre1xqNbO5KOhYFWS+C787BroPui4dalLdpCdbFP\nwX0QdhG7Rn5Y+ngB4PlSD1KOh5kVkxF5jXP9X+PiqGlcHDWN+B/3oTp8ghurP+LWBxv445WJ+s/y\nk1K5vux9LLzc9eUAqI4brnPy2YfrXF23zt59u+tjVMfO4dWns8E6q46dI0+VQk5cAh5ddU9SdG4d\niFajITP6DjJrS+pPH63/3WeNYf8j8fczoNHgGFj0d11KJNRBS/FPC/7/IPrz7/UPXQkbvQCHgHpY\nP9wXPv26kXjsvNEyyWfDzYorSqvR0GjBeByb6H6Ha+Prg02txxc8jx5ucXD4Ulya1NGPuNR5uTP3\njlwwKi/+9OVi4+q83JmAibqZJxbO9vj268idvY/v2Lu1aEBC2BXzNtD/E1rCizyYC+P9+8RxC4+P\nXVNxqmPn8e5TtL96BtXRMP56bxOnXp6qf7BKniqFy4s+QHX8DzKu3cKtXXNkVrp+P/d+EinnI8u9\nbRZm51B9QA/cO7cCwK5+LRz865J0uurMOrryyW4ODlrEwUGL+H14CM5F2r7vgC4mj5GE0xHFxj2I\nisGne2tA94Cwah2bkRwejVatoeWSMbg01V3A2dfxxq6WFykR0RWxmmYp7nzxyN85pxRm5+LTvydu\nnXXbxLZ+Lez965J8+iInXnidsOGzONF7LBemLiPrVqw+j/I4Rh63R10uj9qj7lkHlvjNGI384e8+\ntRoNd/aeYf9A0XeWRquVVvl/VYEYAa3CGjZsSHh4OIWFhchkMs6dO8dLL71Eu3bt+Oyzz7C0tKRj\nx4588MEHKBQKmjQpeRpPeHg4zZs35/z589Sr9/iunYuLC+np6aSkpODs7ExERASenp7lvXrlytlR\nxpLJzsxam0xBgRYfTznL3nQm8kY+Sz5KYcd7uvW7c78ANycZCrnhVJEx/e2Zvy6F/lPuowXGD7In\noJ6FiZqM5aemc2nJZ7RY8yYShZzs2EQuLtJNF3VoWJsmC8dyfMi8EuOeRkFqOlHLPiJgxUykCjk5\ncQlcCVmPXYM6NJg7nnMjZxUbAxC3ex9WPh4EbX4HqUJO3A8HeHBBdyKIXPw+DeaORyKXk5+cSvic\n1cXn8SCN6yvW03DZbCRyOblx8fy17H1s/epQN3gSF0dNKzamrAozMg3KAbj+wWbsGvjScN4Ewkbo\n1vnK0o9pvGKGbp1jE4gM+VC3zqH7sfL2pNWWt3XrvPvxOl9e+B4N546n1qj+aPILuDz/XdBqST59\nkdjvf6Xl50tBItX9KZuVnwJw7e0NeHR9Bim9ASla/gJMjxT/f5Sfmk7k0k8IXDUdiVxOTlw8EW99\nBIB9Q1/854/jzLA5JcYVR52Tx8VZb+M3fSQSuQxtfgERCz+g5ceLDOLyUjIIW7SBdm9PRKqQkxmb\nyNn5uumaTv61CFo8mv2DFpUYF7VhD62Xv07PXctAIiHy0x9IiXx8c8+upgdZcYYj84KhK0s/ocnK\nR/s3gctLdMekfQNf/OeP58zw2Q+PXdNxsaH7sfLxoM03a5Eq5MTuPkjqhagS67z38+9YebnRepOu\n/3Ju4c/lkI+B8m2baLRcnLWWBjNHUff1gWjUai7Nf9/kQ7KqgrzUDM4v/pI2aychVcjJik0kbIHu\nN4FO/rVosXg0BwctKjHu0ttbaRo8nO67V6LVaEk8G8m1r/egLVRzatr7BM4aglQuQ5NfyNm5n5KT\nmFpSShXK1PninzinhM9ejd+MMfi+NhCtWsPlBe+V2AbK8xi5NGsNfjNHU2fsy2jVGsIXrKMgLYPk\n0xe5u2MvQZ8vBcDWx51zS3R/zkr0ncI/QaIt7rGgQqUKDQ3l5s2buLi48Ouvv6LRaGjRogVz585F\nIpEwdepUqlWrxuzZs5k+fTrOzs4sWLCg2PKCg4PJy8sjOTkZiUTCihUr0Gq1TJ8+nR07dnDkyBHe\nf/99HBwckMvlPP/88/Tr16/EHFWqyj9purnZkXOla6XmYOV/kF9aDC09sJy98MdWDrcdUKk5dDm9\nkxPPvlSpOQA8e+IHDrUxfix8RXruzPeo2VqpOQDIGFrpecgYyv5Wxn+KqCJ1D9sOwPbAVys1j0GX\nvq4S+wOoEnkcaG38Zz0qUrezOyq9bYKufVaF/bGz6chKzQFgwMVNVWJbVPY5BHTnkapwjFR2vwm6\nvvPf4Ga/kn8OVxX4hp6s7BTECGhVVfTib9SoUUafr1u3Tv//7777bqnlrVpl/Dh4gB07dgDQqVMn\nOnXqVMYsBUEQBEEQBEEA0FSRp8xWdeIC9D8kPz+fMWPGGL1fu3ZtQkJCKiEjQRAEQRAEQRCEx8QF\n6H+IUqlky5YtpQcKgiAIgiAIgiBUgqrxKCRBEARBEARBEAThP0+MgAqCIAiCIAiCIDwlrUb8BtQc\nYgRUEARBEARBEARBqBDiAlQQBEEQBEEQBEGoEGIKriAIgiAIgiAIwlPSij/DYhYxAioIgiAIgiAI\ngiBUCHEBKgiCIAiCIAiCIFQIMQVXEARBEARBEAThKYkpuOYRI6CCIAiCIAiCIAhChZBotVptZSch\nCIIgCIIgCILwb3atT8fKTqFUfj8frewUxBRc4e9TqTIqOwXc3Oz4sfmwSs3hxT+/4Vi7vpWaA0CH\nk7u52a9dpebgG3qSnU1HVmoOAAMubmJ/q0GVmkP3sO381mpwpeYA0DPsuyqxLdRsrdQcZAwFYG2d\niZWax6zoj6rE/gCqRB5HnulfqTl0OrWLwr3elZoDgLxXXJXYH6L/1uketp1DbV6u1BwAnjvzPQda\nD6zUHLqd3VHp/Sbo+s5/AzEF1zxiCq4gCIIgCIIgCIJQIcQFqCAIgiAIgiAIglAhxBRcQRAEQRAE\nQRCEp6TRirE9c4itJAiCIAiCIAiCIFQIcQEqCIIgCIIgCIIgVAgxBVcQBEEQBEEQBOEpaTXiKbjm\nECOggiAIgiAIgiAIQoUQF6CCIAiCIAiCIAhChRAXoIIgCIIgCIIgCEKFEL8BFQRBEARBEARBeEpa\nrfgNqDnECKggCIIgCIIgCIJQIcQIqPCf4vFsUxpOHohMoSDt+h0uhnxJYVZOmeJqvdyVmi91Qmap\n4EHUbS4u+QJNQaF+2RovdsCrc0vOTn3XZA7ObVtQa/wwpEoFWTdi+Gvlh6izc8yKkdlYU3/uRKxr\n+oBEQsLe34nduhsAuZ0tdae/hnWt6kgtlNzZtJPEfUfLvI2sWrTFeeh4JAol+TE3UH20Em1OtkGM\nbYfuOLw0BLSgzcslacM68qOvlrkuAM/2gQRMfhmZUk7a9bucf2sDhVm55sdJJTQLHoFbCz8A4k+E\nE/7edwbL1nqxPdW6tODUm+v077m2a0a9N15BqlSQceMOkcs+RW2iLRQbJ5XgN3UErm0Ckchk3N76\nM7GhBwGwqe2N/9zXkVlbglbL9Y+2kXzmEgA+fbtSY1AvAJqtncnlZZ9RkJYBgFu7ZtR/Y7C+rohl\nn5nMqbQ4S3cX2mxcysmhc/RlK+xtaDhzFLa1vZFaKLn51Q/c23vc/PUtY5yFuwutNy7j9NDZ+hyc\nWjSi/pShSOVy1Ln5XH3nK9KvRBuVXVZarZb5c3+ibj03Ro955qnLK45vp0Z0mPUiMqUc1dU4fpu7\nlfxM47bq/2IQQWO7ghYKcvM5FPI9CRF3AJgYtorMhDR9bNgXB4n66VyJ9ZbnPnnEqpobbTat4o8p\ny6tEDulRN43Kdn6mOb7jhyFVyMmMjuHaio+N+85SYizcXWj+xUrOj5ihr9+xeQB1Jo9EIpNRkJbB\njfc3knUjxuR2eNLRSBnrflGSXyihfjUNS1/JxdbSMOave1JW7LIgIxdkUlg8MI9G1TVM/cqSO6rH\noyFxKVJa1lHz0VjjNmVKVWgX5dl/u7VsQONpg5HKZajz8rm4Ziupl43bRWVtC5dnmlPnjSFIFQoy\nb8QQtfwTo/ZYbIxUSv03R+LcWnf+uPPtT8TtPgCAU/NG1J08HIlchiYvn7/e/Yr0KzcA8B03GI+u\nz6DOySMt4pp+nepOGIJUqasjcnnx624yTirBb+pIXB7mErP1Z2If5dKiEfUnD0PycB9cK9Jn1xk3\nCM9uuv6265JB/L58F+r8QqN6K6vfFP7dxAhoOVu/fj3btm2r7DTK5NixYwQHB1d2GmWmdLSj2Vtj\nOTfzfQ71m0V2XCL+kweVKc6rS0t8B3fj1ISVHB4QjMxCQZ2huosJhb0NTeaNovHsESAxPcVC4WhP\n/fmTuTJ/DedfmUTuvXhqTxhudkytsa+Qp0rmj+FvcuG1WVTr2xO7RroTt9+CyeQlJvPnqBmEv/kW\ndaa+htLNpUzbSGrviPuk+SSsnU/s5FcoTLiH8/AJhvlVq4HzyInEL51B3IxXSd25Cc/Zpr+clEbp\nZEfLJa9xZuZ69r0UTFasisZvDixTXM0X2mFXy5P9L8/nwKCFuLb0w7tbkC5XexuazR9J0+DhSJ7Y\nJwELJ3Ap+F1OvjyNnLgE6k8cYlSvwtGu2LjqfbthXd2LU6/M5Myr86g5+Hns/esA0HD2GOJ+/p0z\nw+YQufRTmqyYikQmxaqaG3UnDOLcuMUA5NxXUff1AUXqGs+F4Pc4/vJ0suMS8Zv4SjE5FR9X7fn2\ntP78LSzdnQ2Wa7xoArmJKZwaPpdzk5bTcMZILJ6IKWl9yxLn9XwHWj2Rg0QuI3D5m1xZ/jmnh87m\n5lehNF4yyajssoqOVjF65BZ+2xv51GWVxMrZlp5rhvPDxC/Y0C2EB3eT6DDrRaM4p9rudAzuy85R\nH7Gpz0pOf/QbL308Vv9Zbno2m/qs1P8r7UtUee6TR6RKBQFLJiNRmL7nXDVysKfB/ElEzltL2CtT\nyL2XgO8bw8oU49GzI80+WYZFkX5RZmNNoxWziP5wM+dHTOf625/TaOmMYvMoKiUTFmyzYN3oXPbM\nz8bHRcO7P1sYxOTkw9hPLRn9XD67ZuUwvns+c7borlDXjcoldHYOobNzWDI4DzsrLQsG5JVar25d\nK3+flGf/LZHLaL1mIn+GbOTgoIVc/eInWi17vUptC/8FbxAx923ODHqTnHsJ1J049In67IuN8e7b\nFavqnpwdOp1zo4OpPqg39v51kcjlBCybRtTKTwkbPotbX+3Cf/FkXX69O+HargXnRgUTNmIWeUmp\nADRa8Abhc9/h1MCpZMclUu8N0+teXJxP325YV/fk9JAZnB01lxoPz2USuYwmy6ZyZcVnnBk2m1sb\nQwl4S5dLtRc64fZsC86+OheALFUa7Wf0Maq3svrNqkyrlVT5f1WBuAAV/jPc2zYmNfIWWXcTALj1\n/SF8ehmPlpQUV733s9zYspeC9CzQarm0/Cvu7jkBgHe31uQlPSDyveJvKDi1akpG1HVyY+8DcG/3\nb7h372B2TPS6Ddz88GsAlC5OSBRy1FlZyO1scQwKJGbjdgDyVclcfH0OhemGd3BLY920FXk3oii8\nHwtA+m+7sWvf3SBGW5CP6uNVqFOTAciLjkLm6ALysk+Y8GgbQGrkTTLv6LZ19PeHqdGrbZniJFIp\ncisLZEoFUoUcqVyOJq8AgOrdW5GblEb4u98ZlZl2JZrsu/EA3N11AM+ezxrFuLQOLDbOvVMQ9345\nglatoTAji/gDp/Dq1V6Xk0yKws4WALmNFZq8fF2BUikSuRyZtRUAMkslmnxdrq6tmxjV5WUip5Li\nLFydcO8YxPlpqwyWUdjb4NKqCTe+2AlAXmIKp0cvpCAt0+z1NTfuUQ5/PpGDtlDN0d4TyPjrNgDW\n1dyNRhj+jm1bz9O3X1N69mr01GWVpNazDYkPj+HBbRUAF7cex//FIKM4dX4h++ZuJUuVDkBCRAw2\nrvZIFTK8m/uiVWsZtPVNXt0zj7aTeiGRlnyyL8998kiD2aO598sn/TquAAAgAElEQVQRCh6kV9kc\nnFoFkhF1g5xH/WLoPjy6tzc7RunqhGuHVoTPMLxZZl3dC3VWNg/+iAAgOyaOwuwcHAL8TOZR1Kmr\ncgJqaKjppgVgcLsC9vwhR6stGiOjuouWDv5qADoHqHnnVcPRn/xCmLfVkuC+eXg5aTFHVdgn5dl/\nawvV7Ok+lQfXdCNgNj7u5D/RX1X2tkiPiibnYVlxofvx7GHYHp1bNyk2xq1ja+7/8rv+/JFw8CSe\nPdujLSzkRJ9xZD7sJ628PfT9pF2DOqiOhVGYqZuRpDpyFoC0qMfrFBu6H8+ehnno172YOPeOrYj7\n+YlzWc8OaAvVHHthvL7PNszFl8Sj5/S5/LXvEvV7NjOqt7L6TeHfT0zBLSIzM5P58+eTkZFBYmIi\nvXr14pdffuHXX39FIpEQEhJC27Zt8fDwYMmSJdjY2ODi4oKFhQWrVpnu1AAOHjzI3r17yc3NZcGC\nBTRp0oSffvqJTZs2oVQqqVWrFiEhISgUCpPLb926lR9++AGpVErjxo1ZsGABwcHBaLVa7t+/T3Z2\nNqtXr8bCwoIJEybg6OhIhw4d6NChA8uWLQPA0dGRFStWYG1tzaJFi4iPjycxMZEuXbowbdo0oqOj\nmTdvHlZWVlhZWeHg4FAu27g8WXm4kJOQrH+dm5iCws4auY2VwTTckuJsa3phEXmTNh/OxtLNkZQL\n14hcp7u4ub3rMADV+xh3/o9YuLuSl/i47DxVMnJbG2TWVvqpO6XGqDX4LZqKW6e2JB07S/ade9j5\n1SE/KRWfwf/DqU1zpEoFsd/+SM7de2XaRjIXdwqTEvWvC5NVSG1skVhZ66fhFqriKVTF62NcXp1C\n1vkTUGg89aY01h7OZMen6F/nJDza1pYG07hKirv903F8ugXRe/86JDIpCacvc//YRQBu7vwdgJr/\nM/4yklt0Gycmo7C1RmZjZTiV1cOl2DhLDxdyn2gnrnVrAhC1ZiMtP15IzVeeR+nsQPj899GqNeTE\nJnD7m5959vv3AHBu7s+ZMQtN1pVrZk5F4/KSUrk4x3jqt7WPJ3nJqdQa2hu3tk2RKuXc+uYXsu/c\nN4graX3N3S55SalcmvOOUQ4AWrUapbMDbTavQulox6X560zGlcWCRboZCGfO3Hrqskpi5+VIxv1U\n/euM+AdY2FmhtLU0mE6WHpdCetzjttp5Xn9uHIpAU6BGKpdy++RVjq7ajdxCQf8NE8jPzOWPr38v\ntt7y3ifeL3ZBKpcT9+NhfEf1rcI5uJKXkPS4bBN9Z0kx+UmpRM5ba1Ru9p17yKwscWoVSGrYJewa\n1sGmdnWUrk4m8yjq/gMJno6PLxg9HLVk5krIykM/Dfe2SoqrvZaF2yy4dk+KnZWWGX3yDcoJPSPH\n3UFD1ybqUut8vD0qf5+Ud/+tLVRj4WxP1+9CUDracnbOx1VqW+QWbWuJychtrQ3bo7trsTGW7obn\nj7zEZGwfnj8e9ZNBX69B6WhHxALd+SI98jrVX+lN7Pe/UZCeiefzHXXLJpi37sXFWXq4GH7nSEzG\ntm4Ng1xab1qN0tGO8Id9dnrkdWoM7s3d738DoFHfVti42Rttu8rqN4V/PzECWkRMTAy9e/dm48aN\nbNiwgR9//BE/Pz/Onz9Pfn4+Z8+epXPnzixevJhVq1axefNmatSoUWq53t7ebN68meXLl7N48WJS\nU1NZv349mzZtYtu2bdjZ2bF9+/Zilw8NDWXhwoVs374dX19fCh9eCFSvXp3NmzczefJk1q7VnXhV\nKhUbNmxg7NixLFy4kMWLF7NlyxY6dOjAl19+yf3792natCkbNmxg586dfPed7uJqzZo1TJkyha+/\n/ppmzYzvcv0rFHPHTKvWmB0nkctwax3A+TnrOTp0IQp7WxpOevnpc9BoyhRzLWQdp3qPRG5vS81R\nA5HIZVh5e1KYlcOlCfOIWvQOvlNGYevna35u6O5Gm6TRGL0lsbDEfeZSFF4+JH1U/A2Wkuszb5+U\nFOc/7iXyUjP4uctk9vSYhtLBlnrDe/6tfDCzXtQak/tJq9EgVSposnwql0M+4VifNzg37i38547F\nwt0Fl9ZN8OjcimN93gAg8eh5Gi+a8LCuYra9UU7mxRksI5dh7e2BOjOHs2MXc2n+BzSYNgL7BrXN\nX9+/EWdKfkoax16YwNkxCwlYOAHrGl6lLlMVFLfdjfqPhxRWSv63fgyONd3YN3crAOHbT3E45HvU\n+YXkZeRwfsNh6nUPLKXe8tsndn618enXlSsrv6jyORT3swaDvtOcmCdTy84hYs4qao7oR8tN7+DR\nsxMP/ogw+F1/cbTFDFYW3QyFajh+RcbLbQvYMSOHoe0LGP+5JUV/Krf5qJJx3QpKra+oqrBPKqL/\nzktJZ0/3qfw+Yiktl7yGbQ0Ps/Oo0Pb5kLnnclO5FN1u+SlpnPzfOM6PnY//gjewqu5F/G/HSDx0\nmmYfLabl58vIvh1XfB5PrpOkhP7LVJ4aw1yO9xlP2GsLaLRwAtbVvbi/9zgJh8/Q4qNFAKREJ6Ap\nML6BUln9ZlWm0Uqq/L+qQIyAFuHq6sqmTZvYv38/tra2FBYWMnDgQHbv3o1KpaJLly7I5XISExOp\nV68eAC1atODXX38tsdygIN10hHr16qFSqbh79y5169bF1tZW//mJEyeKXX7lypVs3LiRNWvW0LRp\nU7QPz4pt2rQBoFmzZqxYsQIAHx8flEolANHR0SxZsgSAgoICatWqhaOjIxEREZw5cwZbW1vy83V3\nam/fvk2TJk0AaN68OTdvmn4QQFXUaZtuypXcxor0G3f171u6O5Gflok61/A3NznxyTgF1DEZl6tK\nJf738/oR09hfT+I39iWzc8mLT8LOv77+tYWrCwXpGWiK5FBSjFOrpmTdjCE/KRVNTi6qg8dx7diW\nhF91o6+P/psbF096+FXsGtYj85r5+6pQFY9FPX/9a7mLK+qMdLR5hlPGZK4eeM5bTUFsDPcXTUKb\nn/9kUcXyn9CXap10NzHkNlakX4/Vf2al39aG5WXfT8G5yD4pGuf9XEsurtqCtlBNYWYOMT+fwKdr\nENe3/GZQhm1NT7puD9G/tnBxfPz/bs4UmGgLufFJODSqazIuNz4ZC1fDMvISk7GtUx2ZpZKkE38C\nkHb5Opk37+IYUBen5v6ojv1BfqpumpFUKcetXTOe+WYVchsrMoq0Tws352Lap3FOpuKKevRbodg9\nuodSZccm8ODSNX05bb5ZDej2R+aNO0+1XYojt7HCOSiAxCO63+5kXLtFxvUYbOtUL3aZytZuam/q\nPqfr95S2lqiuPZ5RYOfhSM6DLApyjNu+nZcT/b4YT3J0PNuHvk/hwynh/i+1QhUV+7gciQRNofGX\ntjqvv4xbh5ZA+e6Tas93QG5jRasNS/XLNA6ZrP+8ItpFcTn89cE3BnF5CUnYN6qnf610M9F3mhFj\nRCJBnZPLxUmL9W8Fffu+fhpvSbyctITHPP6ylpgmwd5ai3WRn4G6O2ip7aGhSS3dF+4ujdUs+k7C\n3SQJdTy1RMVKUWsgqG7po59VoV1UVP99a/dR3IP8uff7HwA8uBpD2l93cKhXvcpsC4sio+SPynqy\nPToUaY9FY3ITkoyWz0tMRmZjjXPLAFRHwwBdP5l5IwbbujUoSMsgYf8JZBYWuLZvSa2RutFYpavx\nuezJNp+bkIRDgPG6a3LzyI1PQvnE+TA3MQW5jRVOLQNQHX2iz65bg/y0dOL3neD2ph/odnYHyTfi\nSY3RTbOtrH5T+G8RI6BFbNy4kaZNm/L222/Ts2dPtFotbdu2JSoqil27dvHyy7qRME9PT27c0D2x\n7NKlS6WWGx4eDsC1a9eoVq0aPj4+REdHk52tm/IYFhZG7dq1i11+x44dLFmyhG+++YaoqCguXLgA\nQGSk7qEcf/75p/6CWFrkblTt2rVZvXo1W7ZsYdasWXTq1InQ0FDs7Ox45513GD16NLm5uWi1WurU\nqaMv9/Lly2XabpXtyCvzOfLKfI6NfAunxnWxqa67g1qr/3PEH/3TKD7xdESxcfcOhlGtW2ukFrrp\n0J6dWpB6xfwLvNSwi9g3qo+lj27Ux6tvD5KPh5kd49alHTVH6R6IJFHIcevSjgd/RpB7P5GMq9F4\nPN8ZAIWTA/aN/ci4WrYnjGZfCsOifiPkXj4A2HXvS/Y5wyelSm3tqLb0Q7LOHCXx3cVluvgEuPLJ\nbg4OWsTBQYv4fXgIzk3q6O9q+w7owr0jF4yWSTgdUWzcg6gYfLq3BnQjfdU6NiM53Hi9M2Pi9fUC\nOATUw7q6JwA+/bqReOy80TLJZ8OLjUs8dh7vPp2RyKTIba3x7PYMiUfOkX03HrmtNQ6NdTcRrLw9\nsKnlTfq126Rfu4Xrs82QWem+oebcTyL5fCSnhgVzZvRCHAPq6uuq0a9rsTmZE1dUzj0VaVE38e6t\n+y2x0tkBx8b1SXv4NMMzw+ZwZtgcwkYveOrtUhytRkOjBeNxbKL7bZ2Nrw82tbxJi7xR4nKV6eS6\nPfqHXmwdsJZqzWrhWMsNgMAhz3LjYLjRMpYO1gzeNpXr+y7xy5tf6b9EAbjW96LdtBeQSCXILRQ0\nG96Bq3v+MCoj+vPvK2SfXHtvEycHTNPXladKIWLRev3nlZmD6rjhdkl52C9aPewXq73UnaTj58oc\nY0Srpck787FroLtAcuvcFm2h2qyn4D7jpyb8tpSYh0+y3X5SQZcAw5HTZxuqiUuREnlXd+49Hy1F\nItHi46K7UXzuhozW9dTFDd4aqArtoqL6b61aQ8slY3BpqvvuYl/HG7taXqRERFeZbeEQUA+rh2V5\n9+2O6om2lnz2UrExqmPn8Cpy/vDo1g7VsXOg0dBw/gQcHvWTtX2wrulN+uXr2DfwpfHqWdzauJNz\no+aQdStWn4fBOplo849yMRWnOnYe7z5diuTyDKqjYQ/7bMNcdH32dewb1iFw9UwkMhkArSd01z8Y\nqLL6TeG/RYyAFtG5c2eWLVvGr7/+ip2dHTKZjIKCAnr06MGpU6f0020XL17MvHnzsLa2RqFQ4OFh\nPGWkqNjYWEaMGEF+fj4hISE4OzszefJkRowYgVQqpUaNGsycObPY5f38/BgyZAg2NjZ4eHgQGBhI\naGgox44d49ChQ2g0GlauXGm03FtvvcWcOXMoLCxEIpGwfPly6tSpw4wZM7h48SJKpZKaNWuSmJhI\ncHAwc+bMYcOGDTg7O2NhYWEik6otPzWdC299TtDaKUgVcrJiE/lz4acAODasTdNFr3Hklfklxt36\n/iBKB1s6bV2GRCrlwdXbXFr+rdk5FDxI49qK9fgvm4VUoSAnLp5rS9/HtkEd6gdP5M9XpxcbAxD9\n4VfUmzWeFlveB62WpONnidvxCwBX5q2i7vTX8XqpBxKJlDtf7SDzatm+3GvSHqD6cAUes5YhkSso\niI9D9cFSlHUa4PZGMHEzXsW+R1/krh7YtO6ITeuO+mXvL56CJtP0wyqKk5eawfnFX9Jm7ST9tg5b\n8DkATv61aLF4NAcHLSox7tLbW2kaPJzuu1ei1WhJPBvJta/3lFp35NJPCFw1HYlcTk5cPBFvfQSA\nfUNf/OeP48ywOeSnphcbF7trP9beHrTdugaJXE7s7oOkXogC4OLsd2gw41WkSgXaQjVXVn1BTlwC\nOXEJWHm50Wazbsqycwt/IkI+AXTtM2LppzRdNQ2pXE52XIJBTgHzX+fUsOAS40pyYfY7+M8eTfV+\nXZFIpERv2GX0py5KWl9zt0tx1Dl5XJz1Nn7TRyKRy9DmFxCx8APyElNKXK6qyE7OZO+cb3jxw9eQ\nKeQ8uKPi15mbAfBoXIOeK4ayqc9Kmg5tj301Z+p1DzSYJrZ9+Aec+uBXur41iFd/nY9MIeParxcI\n336qxHrLc5+YqyrkUJCaztXlH9Fo+UwkCjm5cfFEhazHrkEd/IIncP7VmcXGlObK4nXUDx6PVK4g\nPzmVy8GrzcrJxU7LsiF5TP3KksJCCdVdNawYmsvlO1IWfWdB6Owc3Oy1rB+Tw9LvLcjJB6Uc1o3O\n5eE9TGKSJFRzLn3q+pOqwj4pz/5bW6jm1LT3CZw1BKlchia/kLNzPyUnMdUoj8raFleWfkzjFTOQ\nKuTkxCYQGfIhdg18aThvAmEjZlGQmm4yBnQPJLLy9qTVlreRKuTE7T7AgwtXAAifs5b6U19FIpej\nKSggctH75KlSyFOl4Ni8Ea23vg0SKapjYbgBV5Z+QpOVj9YpgctLdHXYN/DFf/54zgyf/TAX03Gx\nofux8vGgzTdrkSoMz2WXZq/Fb9pI3cOh8guIWPg+eYkp5CWmkNTMnzZbdT/vSrmZwPmNh422UWX1\nm1VZVXnKbFUn0WqL+5WDUJytW7fSq1cvnJ2dee+991AoFEya9PR/bqAsgoODef755+nQoUPpweVE\npXr6J1w+LTc3O35sPqz0wHL04p/fcKyd6Yc4VKQOJ3dzs1+7Ss3BN/QkO5uOrNQcAAZc3MT+VsZ/\ngqcidQ/bzm+tBldqDgA9w76rEttCzdZKzUGG7s8jrK0zsVLzmBX9UZXYH0CVyOPIM/0rNYdOp3ZR\nuNe7UnMAkPeKqxL7Q/TfOt3DtnOoTRme/1BOnjvzPQdaG//pm4rU7eyOSu83Qdd3/htc7NajslMo\nVdMD+yo7BTEC+ne4uLgwevRorK2tsbOzY9WqVUyaNIm0tDSDOFtbWz755BOzyrx37x5z5swxej8o\nKIgpU6b8I3kLgiAIgiAIgiBUJnEB+jf07NmTnj0Nn8L54YcfPlWZ1apVY8uWLWbHl/RnXwRBEARB\nEARBqFhiCq55xEOIBEEQBEEQBEEQhAohLkAFQRAEQRAEQRCECiEuQAVBEARBEARBEIQKIX4DKgiC\nIAiCIAiC8JQ04jegZhEjoIIgCIIgCIIgCEKFEBeggiAIgiAIgiAIQoUQU3AFQRAEQRAEQRCekvgz\nLOYRI6CCIAiCIAiCIAhChRAXoIIgCIIgCIIgCEKFkGi1Wm1lJyEIgiAIgiAIgvBvdq5z78pOoVRB\nv++p7BTECKggCIIgCIIgCIJQMcRDiIS/TaXKqOwUcHOz49MG4yo1h/FXPyO02YhKzQGg34XNzPZ5\ns1JzWBP7PncHB1VqDgDVvzvHnpZDKjWH3ue/rTLtYnvgq5Waw6BLX7O2zsRKzWFW9EcAqNlaqXnI\nGMqOwJGVmsPAS5sA2Nm0cvMYcHETB1oPrNQcup3dwdeNXqvUHABejfyySuyPgpONKjUHAEW7yCqx\nLfYGvVKpOQD0OreNo+36VWoOHU+GVnq/Cbq+U/jvEBeggiAIgiAIgiAIT0kjnoJrFjEFVxAEQRAE\nQRAEQagQ4gJUEARBEARBEARBqBBiCq4gCIIgCIIgCMJT0oopuGYRI6CCIAiCIAiCIAhChRAXoIIg\nCIIgCIIgCEKFEBeggiAIgiAIgiAIQoUQvwEVBEEQBEEQBEF4SuI3oOYRI6CCIAiCIAiCIAhChRAX\noIIgCIIgCIIgCEKFEFNwhf+0Gh0DaD29LzKlnORrcRyZv5mCrNxi4zuvHEnK9Xtc2ngAAAsHa9ov\nHoprQx8KsvO5tvsUl7/5vdR6PZ8NpNHkl5EqFaRdv8ufS76k0ES9xcW1XjsJm+oe+jibam4k/XmV\nyx/sIGjFBP37EqkUh3rVOTPjg1JzatDFn15z+yBXyrgfdY/vZ24jLzPPKO6ZV9vTZng70EJyTBI7\nZ39HVnImAIsuLSc9/oE+9uinh7mw+49S6wawbNYOh8ETkSiUFNy5Tspny9DmZBnEWD/bC7s+w0AL\n2vxcUr9+m4KbUQYxLtPXoE5V8eCrtWbVC+Deril+kwYjVcrJuH6X8KWfU5iVY3ac3MaKJotex7ZW\nNZBIiN1znJubfgZAYW9Do1mvYuvrjcxCyY2NPxD36wmTeZRXuzg9dR2uLRvSeNpgJHIZmtx8Lq35\nhtTIm0Zle7UPpMmUAUiVctL+iiXsrQ0mcyguTmlvQ4sFI3D0q4E6J49bP57g+raD2PtWo83K8frl\nJTIJjvWqc2L6+lL3j2+nRnSY9SIypRzV1Th+m7uV/EzjnPxfDCJobFfQQkFuPodCvich4g4AE8NW\nkZmQpo8N++IgUT+dK7XustBqtcyf+xN167kxeswz/1i5Xu0DaTzl5Yfb+i7nStgnpuIkUgnN5o7A\nrYUfAPEnwrn07ncAKO1taBY8DPs63sgsFER9+bPJHDzbBxIw+WVkSjlp1+9yvpgcio2TSmgWbJhD\n+Hu6HLw6NCVo6Viy45P15RwZtQIA13bNqDthCFKlgswbMUQu/xS1iWOz2DipBL+pI3FpHYhEJiNm\n68/E7tb1304tGlF/8jAkchnqvHyuvfMV6VeiAWiyagZ2dWsC8L9di7gfdo1zq7cb1evToTHNp/ZH\nppST+lcsJxd+XeI55Nnlo0i9Hkfk1/uNPuu87g2yVQ84u/zbYpc3a1ubG1fGfVKao5c0rNuloaAA\n6leXEDJKiq3V4+mGP57UsHm/Rv86MwcSUuHg2zJsrWDZNxoib2nRaKGxr4QFw6RYKs2brljVtoVb\nu2bUn/joXHGHy8tMn1OKi5PbWNF44ThsalVDIpEQt+cYNzebPjaL49y2BbXHD0WqVJB1I4ZrKz9C\nnZ1jVozMxhq/uROxrukNEgkJe49wd+vuMtVfFuXVd1ZFGjEF1yxiBFT4z7J0sqXzipHsn/IZ3/Va\nTPrdJNrM6Gsy1tHXkz5fT8O3Z0uD95+ZO5CC7Fy2936L3YNXUaN9I2p0alxivUonO5ovGcuZWes5\n0HcOWbGJBEwZVKa4s7M+5PDghRwevJALIRspyMzm4srNZNy8p3//8OCFJJ65zN29p7l3+HyJOdk4\n2zDw3SFseX0jazuuIPlOMr3m/s8ozruxDx3Gdebjl9bxbtdVJN1S0WPW8wC4+bqTk5bNuh5r9f/M\nvfiU2jniPH4Rye/NIX76AAoT43B8ZZJBjNyrJo5Dp6BaOYWE4KGkh27Adfoagxi7PsOxaNDUrDof\nUTra0WTxOP6YvY6j/WeSHZdAg0mDyxRXf8LL5CakcGzQHE6OWEjN/l1xbFwPgMC3xpObmMyJofM4\n+8YKGs0ciaW7s3H55dguJHIZrVZP5M+QjRwetICrX/5Ey2XjjMq2cLKjVcgYTs74kL0vziUzLpHA\nN18uU1zTWa9QmJ3Hb33ncXDYUjzbNcarQyDpN++xf9Ai/b+E05HE/HqauEMltxErZ1t6rhnODxO/\nYEO3EB7cTaLDrBeN4pxqu9MxuC87R33Epj4rOf3Rb7z08Vj9Z7np2Wzqs1L/75+++IyOVjF65BZ+\n2xv5j5Zr4WRHUMhrnJqxnt9eDCYrTkWTNweWKa7mC+2wq+XJ/gHz2T9wIW4t/PDpFgRA0NKx5CSm\ncmDQIo6+voZmc4YZla10sqPlktc4M3M9+14KJitWRWMTOZQUp8/h5fkcGLQQ15Z+eD/MwSWwHn9t\n3svBQYv0/wqzdRcPjRa8Qfjcdzg1cCrZcYnUe2OIUb0KR7ti43z6dsO6uienh8zg7Ki51Bj8PPb+\ndZDIZTRZNpUrKz7jzLDZ3NoYSsBbk/VlOgbU4/z4xQD81D/E5MWnhZMt7ZaN4vepH7P7hQVkxKpo\nMb2/yf3o4OtFj40zqNWjpcnPA0b3xKNFPZOfmVIZ+6QkKelaFm7UsG6ijF9WyvFxg/d2agxiXmwn\nZdcSObuWyPluoQxXB5g3VIqrg4TPf9GgVsOuJTJCQ2Tk5cOXezTF1Fa1t4XS0Y7Gi8ZxYc57HB8w\ng5y4ROpPeqVMcfXGDyQ3MYUTg2dzauQCqvfvpj+nmEPhaI/f/Elcmb+Wc69MJudeArUnDDc7ptbY\nV8hTJXN++FT+fG021fr2wL5RfbPrL4vy6juFfzdxAVrFDR8+nOjoaLNi7927x+HDhwFYvnw59+7d\nMxm3fv16tm3b9o/lWFVVb+dPYkQMaTGJAFz57ih1+7Q2GRswtBNXQ09x8zfDCzk3/xpc/+ksWo0W\nTYGamKOXqdOjeYn1erQJ4EHkTbLuJABw6/vDVO/V9m/FSeQyWix9nfC1W8lJSDH4zKVZfby7BnFh\n+Vcl5gNQv2MD7l66Q9ItFQBnNp+kWd8WRnFxEbGsab+M3Ixc5BZyHDwdyE7NBqBmy9po1BrG7ZjE\ntANz6Dq1BxKpeXf6LJu0IT/6CoXxdwHIPLAL62d7GsRoC/NJ+XwZmge6u9D5N6OQObqATDdRw8K/\nBZaBbck8GGpWnY+4tmlC2pWbZN+NByBm50Gq9WpXprgrb28m6v2tujxcHZEq5RRmZqOwt8G1VWP+\n+lyXU25iCidfXUh+WqZR+eXZLrSFavb2eJO0azEA2Pi4mczBs20AKZdvkfmw7Bs7fqfG88Y5lBTn\n7F+L27+c0h0ThWruHw+netcgw23ZrD4+XVtyftkmo7KfVOvZhsSHx/Dgtq5tXtx6HP8Xg4zi1PmF\n7Ju7lSxVOgAJETHYuNojVcjwbu6LVq1l0NY3eXXPPNpO6mV22zTXtq3n6duvKT17NfpHy/VoG0DK\n5ZtFtvVhk/ukpDiJTIrcygKpUoFMIUeqkKPOL0Bpb4NHm0ZEfvoDADmJqRwctsRk2amRj8uO/v4w\nNUy1zRLiJFJdDjKlAqlCjlQuR5NXAIBLYF3cgvx57tsldNo4D9fmfvoy06Ki9cdcbOh+PHu2N6rX\npXVgsXHuHVsR9/MRtGoNhRlZxB84hVfPDmgL1Rx7YTwZf90GwMrbg4K0DAAsvdyQWVvRcI7uBka7\nZaNQOtgY1ev9TCOSLt8m447uHHLtuyP49jZ9DmnwSmeu7z7J7X3GNwM9W/nh/Wwjru04YnJZUypz\nn5hyKlJLo9oSanrojqtBnaXsOaNFq9WajN+4V4uznYSBnXRfM1vUlzCujxSpVIJMKqFhTQn3zBxw\nrGrb4slzxZ1dB6jWs/RzStG4qHc2cfX9bwDDc4q5nFo1JXcV11kAACAASURBVCPqBjmx9wG4t/s3\nPLq3Nzsmet0Goj/8GgClixMShYLCLPPrL4vy6juFfzcxBfc/5MyZM9y8eZMuXbowf/78yk6n0tl4\nOZEZ//iiLTM+FQs7KxQ2lkZTqE4s1U3F8WnbwOD9hPBb1Ptfa+L/vIFUqcC3ezM0heoS67XydCG7\nyMViTmIKCjtr5DaWBlOGzImr1bcjuaoH3PvdeBSp8bRXiPxwp8lpSE9yqOZE2r3HU2fT7j/Ayt4K\nC1sLo2m4mkINjXo0ZsDawRTmF7L/nb0ASOVSrh+/xp5lP6KwVDJ60+vkZuRyYsPRUuuXuXigTk7Q\nv1YnJyK1tkViZaOfhqtW3Uetuq+PcRw+jZw/joG6EKmTK44jZ6BaORnbrv1Kra8oKw9nchIef9PJ\nTUxBYWuN3MbKYMpUaXFatYamIW/g+Vwr4o+cJzPmHg4NfclLeoDvsOdxeyYQqULBzW/2kHUn3jiP\ncm4X2kI1Fs72dNkWgtLRjrA5H5nIwdmw7IQUlCZzKD4uOeImtV54hqSL15Ep5Ph0bWF0TDSdMYiI\nD3eZ1TbtvBzJuJ+qf50R/wALOyuUtpYG03DT41JIj3ucU+d5/blxKAJNgRqpXMrtk1c5umo3cgsF\n/TdMID8zlz++Ln26vLkWLOoFwJkzt/6xMgGsPZ0Nbi4Vt09Kirv943F8ugXR58A6JDIpCacvc//o\nRZwDfMlNekD94T3xatcEqVLOtc17jXPwcCY73rBsU22zpLjbP+ly6L2/SA7HLgKQn5ZJzC+nuPf7\nH7g0rccz66ZycOACAPKKHHN5ickobK2R2VgZTMO19HApNs7Sw4W8RMPPbOvWAECrVqN0dqD1ptUo\nHe0In78OAKWzAynnIoha8yUdO7SkMDuXZ5e+yuEphseMjZfh+mYlpKK0szZ5Dnk0rbZam4YG71u5\nOdAq+BUOvP4efgM7Gm374lTGPilJfAp4FpnY4eGkm2KblQu2VoaxqRlaNu3TsGOxTP9eu4DH4x33\nkrRs2a9h8UjzxkCq2raw9HAh14xzSmlxWrWGJiET8ezSioSH5xRzWbi7kJeYpH+dp0pGbmuDzNpK\nPw231Bi1hgaL3sStU1uSjp0l+4759ZdFefWdVZV4Cq55xAhoFRIaGsqbb77JuHHj6NWrF6GhulGV\nDz74gBEjRvDaa6+RkpJiclm1Ws3nn3/OL7/8wqFDh/QjpykpKYwdO5bBgwczaNAgbt++rV8mJiaG\nAQMGcPXqVf744w8GDhzIkCFDGDNmDJmZxqMn/zYSqenmrdWYN+0H4PTqnaCFAaEL6Ll+PLGnolAX\nlHwBKpGY7ny0ak2Z4+oO7cnVL340inEOrIvS0Za7e0+Xtgol1qVRm757HbkvgiVN5nPg3d8Y8814\nJBIJYd+e5qdFoajz1eSm53DsiyME9GpiVv0UNxqlMd6WEgtLXKauRO7pQ8pny0Amw2XKch5sflc/\nOlomxbWDJ/aHOXEXF33Mga7jUNrbUu+1fkjlMqx93CnMzOH0mCVcmLce/+nDsG9Q23i9KqBd5KWk\ns7fHVI6ODPk/9u47vqb7f+D4667svSVBSBARktijRWOUVoc9Y/arKFq1VxAUpUW1RatD8atRtEop\nahYRsRKxg5CQvfe49/fH5cp1b9IYGdrP8/HwaHPP+5zP+37O53Pm55xLk3n/w6yGU9mWrSxjDkol\nFz7bDCoVr2+ZR5vl44g7FYGyWJ+w9fHA0MqcqD+C9S7jSSX20yfXz0MKYwPeXjUCq5r2/DldfVc6\nbMtJDgVtoyi/kLyMHEK/O0Sdzj5lKr+yvYh14jXqXfJSMtj12jh2d56AgaUZdQd3QSKXYebqQGFW\nDoeGLiB46tf4TtId4lrS3WKdtllKnNf76hx+9x/HntfVOdQJUI9yODVxleZiSdKFGyRdvIFDK2+9\ny9JXLpJS2oi+nIrVXX5yGsffGkXIe7NoMHs0JtWrkR5xk4tTl5GfpL4od+GrXbi2bYhUIdNeThnX\nTUkkchntlr1PyJLN5CSm/fMMxeethHVSGqX+XYXezea2oype85Pgaq+bW8QdFYMXF9G/g5T2vmU7\nBK1qdVFiu9Bpt/8cFxb4FX91GonCwhSP9/QP79abQhmOb8oSczVoJSfeHIrcwoyaw3QfxxCE8iLu\ngFYxmZmZfPfdd9y5c4dRo0Zhb29P586defPNN9m0aRNr165l+vTpOvPJZDJGjhzJrVu36NChAz/+\n+CMAX3/9Nf7+/vTv359z584RFhYGwO3bt9m+fTvLli3Dzc2NJUuW0LVrV4YMGcKhQ4dIT0/HzMys\nIr/6C9F03Fu4+asPPA3MjEi6HqOZZupoRW5qFoU5+WVenoGZEcHLtpOXph6a4vve66Q/HNJbXP3R\nPajWzg8AhakxaTejNdOMHKzJT8ukKFe73OzYJKwbupcYZ1mvJlKZlMSzV3XKc+3cgru7T0AJw58A\nOk/qilcn9UGeoZkRsVcf3120cLIkOzWLgifqwtbNDnN7C+6cUb+85szmYHos6oOxpTGeHby4f/k+\nsVfUV0klEv7xZPyRosQ4DD0eH3DKbOwpykxDlad9F0Fm64jdlM8pjLlDQtBoVAV5GNRpiNzBBauA\nCeoYK1uQSpEoDEj5ZmGJZb6ySf2SE4WpCemRdzWfG9nbPKxn7Tu/ubGJWHm7642za9mIjJt3yUtM\npSgnj/t/nsTJvznRu48BaP6bHR1HyoXrWDVQL6ei2oXczBiHZl6ag6jUq1GkXb+LRR1XADpvCVLn\nYGZE2o3HORg7WJOXlklRjm4Otg1r640zdDLj4vKt5Ker71x7DntDM+QNoMbrzbnze+lts81Hb+LR\nQX3xwsDMiIRrj6+8mztakaOnbQKYV7Omx7ejSIqMZcvAlRQ+HELn9W5zEq5EP16ORPKPIxUqU4Mx\n3XF+1C7MjMu0TrJik7Ep1i6Kx7l2aMq5xRtQFhahzMzhzq6/ce3UjJi/1MNBb/92HIDMe/Eknr9O\n9c7NAej4sF3ITY1JfyIHvW3zQTI23u5641w6NOXC4g2oCosozMwh6ve/ce3YjDu/HsO9jz9Xv9sN\ngNfo7tg38cSyTnUADOysNMsztLehIC0T5ZN9My4RS28PvXG5sYkY2GovIzc+GbmpMdZNvUk4qn4W\nOOPabTJuRGHmUQMDW0sU5qYkHH84gkAiQaVSqUc5jH2HGq+p9yEKU2NSitWLiYMVeWll34fYNaiJ\nuYsdzaeon0M0trNEIpUiM1Bwco7u8HSv0d1xbq9uFxW5TtRVUPpdm2q2EF7snWbxKWBhCiaGuvPt\nC1EyfaBM5/M/TitZsFHJzIFS3mxZ+slnVauLOu/3wqFtE00+GTfvaaYZlrRPiUvC6ol2q71PuUde\nYgpFOXk82K/ep5RVbmwC5l6Pnxk1tLOlID1Dq++UFmPd3JesW1HkJ6agzMkl/uDf2LdrWebyBeF5\niTugVYynp3oIaLVq1cjPV29cmzZVv9SgcePG3L79dEMYbt++jZ+fn2b+t99Wv3jm2LFj5ObmIpOp\ndxKjRo0iPj6eIUOGsG/fPuTyl/PaROiq3/ml+wJ+6b6AHX2X4OhTG8uaDgB49WvLnUMXn2p5Xv3a\n0Wy8us6Mbc2p3/sVbuwO0Ym7snqH5uUwRwbPw6ahO6Y11G8rrd3LnwdHzunME38qvNQ4uyaeJJy5\nrDcvuyaeJITon/bI/mV7NS8L+vLt5dRo7IZdLXsAWga0IeLPSzrzmDtYMODrIZhYq5+H8uvelNhr\nD8hOzcaxXjU6T1Q/Wyc3UtB66Ktc/P18qTk8khsWjIGHN3In9UGnWcee5IYe04qRmlrgMGctOSGH\nSfpiJqoC9Y40/0Y4Dz7oRty0gcRNG0jmwe1knzpQ6sknwN8DZ/D3wBmcGBaItXcdTKqr7wbW6NmB\nuKO6Q5oTgsNLjHPu1II6I9VXp6UKOdU6tSQpNIKc+wmkXbmNazf1czUGNhZYN6pD2hX1kVpFtQtV\nkZLGc9/Dxkd9sGFe2wVzt2qkhKufH3/0YqCDAfOxbeSO2cNlu/d+jftHdNdh7KlLJca5934N7w/U\nL/MytLGgdo923N37+G6nfRNP4v6hbZ5YsUfzsqBNvZbi7OeGlZu6bfoMeIWbB8N05jGyNKHfzx9x\n48+L7P7wB83JJ4Bd3Wq0mdBN3TYNFfgFtOXqnrK9IKsyRHy9kwN9AznQN5C/AoKeqGt/vesk7lR4\niXEpV6Ko3ln9bKJELsO5vR9JYZFkxSSSfPkObm+/AqjXl63v4wPSRy9cORwQhE2xZdfuVXIOJcWl\nXonCtXgO7dQ5FGTl4N63Iy4d1Pux+4fOUpRfwF8D1C8AsizW51x7dCL+uO7Lo5JOXywxLuFYKC5v\n+aufgzUzwbFTaxKOhqBSKmkwazSWjdTP85nWcsXUzYW0iBvIjI2oN3E4cgv1ds57+Ovc2X8WlVLF\nhS9/Y1fPIHb1DGLPgE+wb+SOeQ31PqRe3/bcPXShlDWrLeHiLbZ1nKJZ3rUtR7m974zek0+Ay6t3\nVso6sapXA2vv2jrLLq51AwkXb6mIilNfWNpyRIm/r+6JWlqWinvx4Ouu/fn+UCWL/0/JNx/L/vHk\nsyrWxY21v3Bi4HRODJzOqWGBWGntKzoSf0z32d/E4LAS45w6tsTjf+rHSaQKOU4dW5J0puwv6UkJ\nuYhFg7oYu1YDwLl7Z5Ke6Dulxdj7t6bmMPXL7SQKOfb+rUk5F17m8oWSKVWSKv+vKng5zzL+xfRd\neQsPD8fR0ZHQ0FDq1Cn5LWlSqRTlE0OD3N3dCQ8Px9PTkzNnznDkyBGMjIwYMmQINWrUYOrUqWzY\nsIFdu3bRvXt3pk6dytq1a9m6dStjx44toaSXQ25yBkdmrKfTypHIFHLS7yVwaKr6hT323jVpNz+A\nX7ovKHUZ57/Zi/+S4fTZFQgSCaFf7ibhUlSp8+SlZHB27re0WDoOqVxOVnQ8obPXAmDlVYvGgcM5\n1G92qXEAZjUcybqfqLcMsxpOZN9PKHNdZCVlsm3i/zFo7TBkChnJUUls/kj9AgTXRtXptbQfK15f\nyp2QWxz6Yj+jto1DWVREelw660esA+Dg5/t4d0EvPj44DZlCRtjuC4T8X9mGACvTU0heE4TthMVI\n5AoK46JJ/mouitr1sRk5i7hpAzHt1BOZnRPGzV7DuNlrmnkTFoxBmfl0w9eKy09J52LQWpos+RCp\nQk5WdBwX56wGwLJ+LRrO+h9/D5xRatzl5ZtoOGMEbbcsQaVSEXfkLLd/3gdA6KTP8Z46jBo9OiKR\nSrixbgdpl3V//qQ820VRTh7BH6/AZ/JA9c+w5BdyZsZqcuJTtHNIziAk8DvaLPsAqUJOZnQ8p2d+\nC4C1lxvN5gxnf9/AUuOufLeHFgtH0mX7ApBIiFjzK8kRjy+Mmdd0JCtGf7vVJzspk71TN/LOl+8h\nU8hJvZvAH5N+AsCxYQ26fDKQ9W8twnfgq1g421Cns4/W8NotAV9w8os/6Di3L0P/mIlMIePaH+cJ\n23KyzDlUJnVdr6P1srGaug6Z+Q2gXidN5wzngGad6I+7sHQTftMC6PLrIlRKFfGnI7j6wx4ATk5Y\nSeMZg3Hv7Y9EIuHy2l9pOnuYdg4pGYTOWUfLpWMftv14QmY9zqHJnOEc7BtYatzFZZvwnRZA552P\nc7j24x5Qqjj50Qp8pwbgNbo7qqIiTk/5ivxU9WMel+evptGij5HI5eTExHFp3pcAWHjWxmvmKIID\nplCQkl5iXPSO/Ri7OtJy41KkCjnROw+Scl79000Xpyyl3oQh6hfO5BcQPnslefHJ5MUnc2/rXpp9\nMx8A8+r2nJzzk866yU3O4O9ZP/DaitFI5XIy7sVzfMb3ANg2qEmboCHs6hn0glqCtspYJ+3W6Y6u\nesTWQsKC4VImfFVEQRFUt5ew6D0pl26rmPNjEdvnqQ8n78aDnRUo5NrHMit+UaJSwZwfH49M8POQ\nMCtA905pVa+L/JR0woPW4Lf4I6QKOdnRcYTN/RoAi/q1aTjrf5wYOL3UuKsrNtJg+ghe2fwpqFTE\nHQ3lzuZ9/1gXjxSkpnHtky/xWjAZiUJObkwsV+d/gZmnO/WmjeHs0IklxgBEfvkjdSePoumGFahU\nKpKOhxCzdU+ZyxeE5yVRlfQKM6HC7dixg1u3bjFp0iTy8vLo2rUrLi4uuLi4EBMTg6mpKUuWLMHS\n0lLv/JcvX2bChAmMHz+ezZs3M3fuXKytrZkxYwZZWerhcp988gm//vordnZ29O/fn8DAQJydnWnV\nqhULFy7E2NgYqVRKUFAQ1atXLzXfhISMF14HT8ve3pw1nro/N1GRRl1dyw6/wZWaA0CP8z8xxfXD\nSs3h0+iV3Oun+wbTilZ98xn2NNV91q0ivRn6f1WmXWzxGVqpOfS9+CNL3T+o1BwmR6pfMFPEpkrN\nQ8ZAtvoMqdQc+lxU34H7xbdy8+h1YT0HWuj+nEZF6nR6Kz82eK9ScwAYGrGuSqyPghOV/6ZSRZuI\nKlEXe5vp/rRKRet65meOtnm6F++9aO1O7Kj07Saot50vg2Nt9P/cX1XS9kT5/eZrWYk7oFVIjx6P\nNzKGhoaan1QpKy8vL/78808A3nzzTc3na9as0YobN+7xb6EFBT2+ert169anKk8QBEEQBEEQBDUV\nVWOIa1UnTkBfMvn5+YwYMULn81q1ammdTAqCIAiCIAiCIFQ14gT0JWNgYMCGDRsqOw1BEARBEARB\nEISnJk5ABUEQBEEQBEEQnpOqirxltqoTP8MiCIIgCIIgCIIgVAhxAioIgiAIgiAIgiBUCHECKgiC\nIAiCIAiCIFQI8QyoIAiCIAiCIAjCc1KKZ0DLRNwBFQRBEARBEARBECqEOAEVBEEQBEEQBEH4j1Mq\nlQQGBtK3b18CAgKIiorSmn7o0CF69uxJ37592bp16zOXI4bgCoIgCIIgCIIgPKeX/WdYDh48SH5+\nPlu2bOHChQssXryY1atXA1BQUMCiRYv45ZdfMDY2pn///vj7+2NnZ/fU5Yg7oIIgCIIgCIIgCP9x\nZ8+e5dVXXwXA19eXS5cuaaZFRkZSo0YNLC0tMTAwoEmTJpw5c+aZypGoVCrVC8lYEARBEARBEATh\nP+qvlr0rO4V/1CF4W4nTZs6cSefOnWnXrh0A7du35+DBg8jlckJDQ9m4cSMrVqwAYOXKlTg7O9O7\n99N/ZzEEV3hmCQkZlZ0C9vbm5F56rVJzMPI+zO4mAys1B4BuZzdV+oavQ/A2Trz6TqXmANDm+G9V\noi6K2FSpOQDIGFjpecgYyP7mfSs1h84hWwDY6jOkUvPoc3F9lVgfQJXI40CLPpWaQ6fTWyu9bYK6\nfVaF9bHTL6BScwDofn5DlaiLI617VmoOAO1Pbmdf836VmkOXkM2Vvt0E9bbzZfCyvwXXzMyMrKws\nzd9KpRK5XK53WlZWFubm5s9UjhiCKwiCIAiCIAiC8B/XuHFjjh07BsCFCxeoW7euZpq7uztRUVGk\npqaSn59PaGgofn5+z1SOuAMqCIIgCIIgCILwH9epUydOnDhBv379UKlUfPLJJ/z+++9kZ2fTt29f\npk2bxogRI1CpVPTs2RNHR8dnKkecgAqCIAiCIAiCIDynl/0tuFKplKCgIK3P3N3dNf/v7++Pv7//\n85fz3EsQBEEQBEEQBEEQhDIQJ6CCIAiCIAiCIAhChRBDcAVBEARBEARBEJ6Tkpd7CG5FEXdABUEQ\nBEEQBEEQhAohTkAFQRAEQRAEQRCECiFOQAVBEARBEARBEIQKIZ4BFQRBEARBEARBeE4v+8+wVBRx\nB1QQBEEQBEEQBEGoEOIOqPCvdexsLl9sTCe/UEXdmgrmjrHCzOTxNZffj2Sz4fdMzd8Z2Srik4rY\n/40jcpmEBd+kcu1OAcaGUt7xN2bAG2ZlLtvhFV88x/ZFqpCTfvMeYUHfUpiV80xxTZZ+RF5CCpc+\nXQ+AbVMv6n/YH6lcRlFeARFL15MacQuA5huXIVUoyLwZxZWFqynK1l6WbevGuI8ZoBsjlVL3wyHY\ntPBBIpNx9/92EbPzAAB2rzTBa/ZYcuMSNcs5O2o2Rdm51BjQjWrd/FEVFVGQmq7z/axbNaHm+4OR\nKhRkRd7h5uJVOjmVJcZzwTTyE5O5teIbjN2qUzfwY800iVSKqbsb937aik2b5kgVCgBkJsYv5Psb\nV3fCa+YYFJbmFGbncjloFdlR9wFouGgiZh5uFOXkApBy9hI3Vq4vVqIVUvxRskOnbv6JSqVi5vRd\neNSxZ/iI1k89/4tSXnnYtfGjzpj+SA0UZNy8S8SCNRTp6SP/FGfoYEuL7xdwauAUCtIytOY1dran\n5frFnB2/UG8O1V71oeH43kgN5KRdv8eZud9RmJVb5jiJVILf9MHYN6kHQOzfYVz8fDMABham+E0b\nhIW7CzJDBVfW/U7U7pPPXF+P/NvahV0bPzxGD0BqoO6TEQtLbgd646QS6n00BNuHfTdq0+9EP+y7\njxhVs6fl+iWcG7+A9KvqbaX7+31x6qTOu/6UEVxb8RPK/AJNWeXVNuUWptSfNBzTWi7IDA249cNO\nHuw9/sz190h5tQvHV3xoMK4PUgMF6TfucW7et3r7SGlxtXp3wK17e2SGClKu3OH8vHUoCwoxr+2M\n36zhyEyMQKUi4outxJ8Kf+6cy6MubFo3pvaoQUgVcjIjo7j2ydc6+5eSYqQGBtSZ9B7m9T2QSKSk\nX77OjWXrUObnY17fHY8PhyMzMgSZlHsbfyXuz2Ol5mLfxo+6Y/pp2l34grV622dJcVJDBV6Th2Pp\n5Q5SCWmXbnJ56fco8wqwqF+b+h8PQWZsiEQq5dZPu/Tm8DJuO4WqRdwB/Y9YtWoVP//8s87nY8eO\n1fns559/ZtWqVRWRVrlJTisi8MtUPptsw65Vjrg4ylm5UfsE6a32Jmz9zIGtnzmwaYk9dlZSpr1n\nia2VjKU/pmFiJGXnCgc2LrLjxLk8jobqblz1MbAyx2fOSM5OXsGRnpPJjo7Hc1zfZ4pzH9wNG796\nmr8lchmNF40lbME6jvWfwY3vfsU3aDQGVuYAhE9fRnDfD8m5H4fHBwO1lqWwssBr1hi9MS7dO2Jc\n3YnTAz/mzPBpVO/7JhZeHgBYNqxH1P/tImTwZM2/ouxcrJs1xPmtDoS+N5OQgMnEHzmtVZ7cygKP\n6eO5Omsx5waOIfd+LDVHDX7qGJcB3bHw8dL8nXPnHheHT9D8Sz1zgcQjJ3F8q7NmOcAL+/4N5n5I\n9I79BPefwO11W2i4aJJmmZbedTk7OlBTL49OPiUy9aZVij/Pcp0vMjKB4UM2sG9vxFPP+yKVVx4K\nK3O8Z4/m4rTPOdF7AjkxcdT9YMBTx1V7oy3Nv5mLkYONzrxSAwXe88YhUeivf0Nrc5oFvcfJiavY\n9840smISaPRhn6eKq9mtDeZuTuzvNZP9fWZj36Qerp2aAdBs/v/IiU/hQN9Ajo78FL+pgzB2sH6m\n+nrk39guGswaQ9j0zzjZ5yOyY+KpM0Z/OygpzrV7J0yqO3FqwEROD5tOjX5vYOHlrplXaqCg4RPt\nwLlbe+xfacLpodMByEtMwWNUX01Z5dk2vQPHkBufRHDANELHLsBz4lAM9bTfp1Fe7cLA2pwm80Zy\nevIXHOw+hazoeBqM17MvKyXO2b8p7v068feoxRzsNR2ZkQEeg7oA4DN9KFG/HeNwv1mcm7uO5kvG\naradz6o86kJhZYHnzLFEzFhKSP/x5N6Po/aYQWWOqTm0JxKZjNDBEzkz+GOkhobUGNwDgAYLJ3Nn\n3RZCh04i/OMFuI8firFrtVJyMcd79ijOT1vO8d4fkx0TT70P+j9VnPuw7kjkMk4MnMqJAVOQGRpQ\ne8i7APgt+Zib32zj5KBphH60GM+PAnSW/TJuOyuSUiWp8v+qAnEC+h/35ZdfVnYK5eLUxTy8PRTU\ndFYfdPR53YQ/juegUqn0xv/wayY2ljJ6dzYF4HJkAd3aGSOTSVAoJLzaxIiDp3SvMOpj36ohqZdv\nkXUvDoCoXw7i0rXNU8fZNvXCvnUjorb/pflMVVjEwa7jSL8WBYCJiwP5aZnYt2oIQM69WABiduzH\n6fVXtcqzadGI9CuRemPs27Xgwe7DqIqUFGZkEXfwBE5d1NMsG9bDpqk3zX5cQpM1QVj51gcgPymV\nq59+q7kKnHHlllZ51s38yLx6k9zoBwDE/roP+07tnirG0q8hVs0bE/vrPr11bdHIC9v2rUkJPqu1\nHOCFfH9DextM3ZyJO3ACgKRTF5AZG2JerxZG1RyQmRjjOXUkzTcuo/6sMcgt1HfJzevVBkDJs93Z\n+HlTKN17+NKla4Nnmv9FKa88bFv4kHY5kuyH6+Le9gM4dXnlqeIM7axxaNeMcxMW6y3Dc8pw7u8+\novfOPIBjK2+SL90i8666/93ceogab7R6qjiJTIrc2BCpgQKZQo5UIacovwADC1McWzYgYs2vAOTE\np3Bw0Dzy07PKXEf6/BvbRdqVx+s3esd+zXanONsWPiXGObRrTszvRzR9N/bASap1aauZ13PyCO7v\nOarVDsw9axN/9AyFmdkAxB0JwdG/xeOyyqltyi1MsW3eiMhvfwEgLz6Z08NnUZCWyfMor3bh0LIh\nKRG3yHrY9m9v+4vqXXXvKJYWV73bK9zYuJeC9CxQqbiw8Afu7lZvTyVSKQoL9T5XbmpE0cM70M+j\nPOrCurkPGVdukvNw/3J/x584dn61zDGpFy4T9eMvoFKBUknm9VsYOdkhNVBw5/ttpISGAZCXkExB\najqGDrYl5mLXopFOu6ump32WFpd8/iqR3+98mI+K9Ot3MK6mzufmuu0knbmkzic+mYLUDJ1lv4zb\nTqHqEUNwK1FBQQHTp08nOjqaoqIihg0bxs8//0ytWrW4ffs2KpWK5cuXY29vz2effUZoaChKpZKh\nQ4fStWtXAgIC8PT05MaNG2RmZrJy5UpcXFxKLO/gv66AwQAAIABJREFUwYPs3buX3NxcZs2aRaNG\njWjTpg0nTpwgNDSUTz75BAsLC2QyGb6+vhVYEy9ebGIRjnYyzd+OtjIys1Vk5agwM9G++pOSXsRP\nuzLZvNRe81nDOgbsPpqDr6cBBQUqDgbnIJeV7aqRkaMtubHJmr9z45NRmJkgNzXWGl5bWpzM2JAG\nkwI4PXYJNXv4ay1fVViEgY0FbTctRGFlzrnpqzBzc9aKyYtPQm5mojUM1cjBTmsYbfEYIwdbcuOS\ntKaZedQEoCA9g9i9x0g4GoKljyc+n07h9KBJZN26p4mXKOS4j9G+42jgYEd+8fISEpGbmWrlVFqM\nzNiYWh++R8TEuTi9/breunb7YBh3v92Igb32coAX8v0NHWzJS0hR76g105IxdLBFIpeRfCaca0u/\nJT8lnboThuI1czRhU5eSfvnmw+hsvXn/k1mBXQEIDr79TPO/KOWVh5GjLbnx2vWtMDNBZmqsNZSs\ntLi8xBQuTv1M7/Jd3vFHKpcT89shag/rrjfGxMmGnLjH/S8nLhkDcxPkpkZaQ8lKi7vz23FcOzXj\nrQMrkMikxJ26xIOjF7Dxrk1uYip1A7pQrU0jpAZyrv20l8youKevrGL+je0iL65s7aCkOCNHW/Li\nn+y7NQBwedsfiVxGzG9/UWvo43aQHnGDGv3e5N429YUt5zfaYmhnrSmrvNqmiasTeUkp1BzYDbtW\nvkgN5ERt3E323Qc6sU+jvNqFuu0//o458ckoSuwj+uPMajpheMmC1l9OxsjeiqTz17m0Qj3U8uLi\n9byydjoeA7tgaGPBmWlfoSpSPlfO5VEXRo525Gntp5J09mWlxaSEXNR8buhkj2ufblxfsgZlfgGx\nux9fYK72TidkxkakX7peSi7a7S63jO2zeFzS6bDHcU521OzXlYhF61DmFxCz67Bmmuu7HdTDo5/w\nMm47hapH3AGtRFu2bMHGxobNmzfzww8/sGLFClJSUmjcuDEbNmyga9eurF27lqNHjxIdHc3PP//M\nTz/9xJo1a0hPV1/NbdSoET/++CNt2rRhz549pZbn4uLCTz/9xMKFC5kzZ47WtHnz5vHZZ5/x448/\n4urqWm7fuaKUcKMTqZ4Wv/1ANq81M8LV8fH1mIlDLZBIoO+kBCZ8mkwrH0NKGMmnQyLRf6L65I61\npDgk0HjROCI+20BeYqrekPzkdA52HceJYXPxmfM+htYW+stUFitTWkJeSiUSPdMe5Rs+bRkJR0MA\nSLt4ldTwa9g0b6SJU1hZ4LdytuY5SM3XKKW8f4pBIqHu3Enc/mIdBUkpekPMvT2RW5qTcOBYmcp6\nlu9f4nKLlKRH3CR82lLyk1JBqeTWt1uxbdMYiVxc1/snJa73J/tIGeOKM69XC9ceHbm86NvScyip\nnyrL1k9VSiVeo94lLyWDXa+NY3fnCRhYmlF3cBckchlmrg4UZuVwaOgCgqd+je+kAVjXdys1J0FN\n5yREov9QRVWk1N+vlcqH7aATVxbrtoMHe48TdyiYJl8FApB15z7KgsKHRZVf25TK5Zi4OFKUmc2Z\n/wUSNnMl9SYMxtyzVonzVKoS92WqMsdJ5TIcWnoTMnUVhwcGorA0xWtsL6QGCpov/oBzc75hX5cP\nOTZiAb6zhmHs+HzDkctFWbYVZYgxq1cbv6/nE7N9L0knz2rF1QjojtuIvoRPWYQyP7/kVPQdxICe\n9vnPcRaetWjxzVzubttPwt/ntMJqDX4bj5G9ODfxU90cxLazVCqVpMr/qwrEkVIlioyMpHVr9TAV\nMzMz3N3dOXHiBC1btgSgcePGHDp0CEdHRyIiIggIUI/FLywsJCYmBgAvL/WzcU5OTiQmJuop5bFm\nzdTj6+vUqUNCQoLWtMTERGrVqqUp9+7duy/oW1YOJzsZ4TceD+eJTyrCwkyCiZHuRvnPEzlMHWGp\n9VlWtpIJARZYmqvjv9+ZQY1qJXeXuqN64ti2CQByU2Mybj6+O2hkb0N+WiZFuXla8+TEJmHl7aET\nZ1bLBRNne7wmqJ8fMbS1RCKTIjVUcHn5JuyaNSD2cCgA6VfvkHE9Cp54bsbQ3oaCtEyUxcrMi0vE\nskEdvTG5cYmaOwCPpj26Q+jS83Wi1u/UTJMgQVVUBICZRw0aLZ1KwpEQbqzaQIeTW4qVl4BZ/bqP\nl2lnS0F6xhM56Y8xcauOUTVH3MYOB8DAxvphHRhwc4l62Lid/ysk7DsMKpXOcoAX8v1zYxMxsLXS\nqdu8+CSsfDyRW5iReFy9LiQSCShVOjthQc19ZG/s2zYF1H0k8+bjbcyjdfFkH8mNTcSygcc/xhXn\n/EZb5KbGNP9uvmaehkHjNNM7bQkCQGFmTNqNaM3nxg7W5KVlUpSjffCXFZuMTUN3vXGuHZpybvEG\nlIVFKDNzuLPrb1w7NSPmL3WbuP2begh25r14Es9fx8a7dhlq6t9NQiMkPB6pY2D3uH/p224B5MYl\nYumt2w6UuXk6fdTQ3obc+GSqvdEWmakxzdct0HzuHTSeG6s2kHLxKrF//s2d9b/S6fRWrHzqIZFJ\nablxSbm2zbxE9d2gmD1HAciJjiPl4jWt5VS2+qN74NSuMQAKU2PSi+/LHKxL3JcV7yPF43ITUrl/\n+Kzmzti9PSfwHNkdCw9XZMaGxB6/AEBKeCTpkTFYF1tOVZEXl4hFsX2Hgb2+fVnpMQ4d21Bn0v+4\n8dk64g/8rYmTKOR4zhqHqZsr50dOJzdW+9gMwGNkbxxKOL4wLPH4Qrd9Fo9z6tQKrykjuLLsBx78\neUIrn0aBozGt7crpEYHkPFDn02BMd5zb+QFi2ym8GOIOaCVyd3cnNFTd2TIzM7l+/Tqurq5cuqQe\nf3/u3Dk8PDyoXbs2LVq0YMOGDaxfv56uXbtSvXr1py4vLEw97OLatWs4O2sP2XR0dCQyMhKA8PDn\nfwtdZWvla0jY9Xyi7quvam/bn037ZrpDSdIzldyNLcKnnoHW59v2Z/PVZvVd5qTUInYczKbrq8Yl\nlnd9zXaOD5jB8QEzODF0DtYNPTCt7ghAzV4diDt6VmeehOBwvXGp4Tf5683xmuXd3f4XD/YHEzZ/\nHaoiJY0CR2Ltoz7ZMqvtgqmbM/d+Ux/QGFd3AsCle2cSjp/RKi/p9EUsvevojUk4doZqb72mfi7D\nzATHTm1IOHaGwuxcXHt2wf419fNRZnXdsPDyIOnUBYxdnWj81Vxuf/eL+uU7T5x4pYZcwLxBPYwe\nvlDB6d0uJP8dUqaYjIhrhPYaoXnRUOxv+0j862/NySeAhW8DUs+G6V0O8EK+f15CMjkxcTh2VF8o\nsmnhg0qpJDPyLjITI+p+PFzz3GeNQW8TfzhYpx4EtchvthE8aCrBg6YSMnwWlt51MHm4Llx7dCL+\nWKjOPEmnw8oUV9y15es50WuCpqy8hGTCAx+/VO1A30AO9A3kr4AgbBu5Y1ZD3f/ce/tz/8h5neXF\nnQovMS7lShTVO6v7hkQuw7m9H0lhkWTFJJJ8+Q5ubz98JtDGAlvfOiRfrtyhs1WBijCU7EXJXgDd\n9ftEv4XHfVdfXMKxUFze8i/Wd1uTcDSE68vXc7L3RwQHTCE4YAp5CclcCvyChONnsajvjs+SSUhk\n6sc0DKzMubl2a7m3zZz7CaRfuYXzm+rn3A1sLLFqWJf0y7dKna8iXVm9g8P9ZnG43yyODJ6n3kc9\nbPu1enXgwZFzOvPEnbpUYlzMwRBcOjZHaqh+O7nza000z4vKzYyx8VGftJm6OmBey5m0q1EV8TWf\nSnLIBSwa1NW8HMj53c4kPtFOS4uxf60lHhNGEPbRfK2TT4AGCyYhNzXm3Psz9J58ApqXAp0cNI3g\n4bOx8vbQtLsaPTqW2D5LinP0b0H9iUMJHf+J1skngN+ij5CZGmudfAJEfL1TbDuFF0rcAa1Effr0\nYfbs2fTv35+8vDzGjh3Ljh072LlzJz/++CPGxsZ8+umnWFlZERISwoABA8jOzqZjx46YmZX9J0Ee\niY6OZvDgweTn5xMUFKQ1LSgoiClTpmBmZoapqSmWlpYlLOXlYGspI+gDKyYtS6agEFydZCwcZ03E\nzXzmrU5l62cOANyNLcTeWopCrj0kYUQPM2auTKXHR/GoVDCqjzneHgb6itKRn5LOxXlrafLph0gU\ncrKj47kQuBoAy/q1aDT7fxwfMKPUuJIU5eQROvFzGkwchEQuR1lQwPlZX5FxQ33FvuEnE5Eq5ORE\nxxER9CXmnrWpP2M0IYMnU5CSzuX5X+vEgPqFPMYuTjTfsAypQk7MzgOknr8MQNiUJdSbOILa7/VB\nVaTk0qzlFKRlqH/OxNCQ6n3eoHqfN3RyLUhN4+aiL/CcPxWJXE7u/VhuLFiBWT0P3Kd+wMXhE0qM\nKQtjV2fyYuP1lgVw44ufXsj3vzR7OfWnj8JtWE+U+QVcmvk5qFQknbpA9LY/aPrNfJBIyYq8y5VF\na8qU+39dfko6EfNX47P4YyRyOTkxsYTP/QoAi/q18Zr5PsGDppYa97zykjMICVxH62Vj1T+bEB1P\nyMxvALD2cqPpnOEc6BtYatyFpZvwmxZAl18XoVKqiD8dwdUf1I9CnJywksYzBuPe2x+JRMLltb+S\nEiEOop50ef5qGi16tH7juDRP3SctPGvjNXMUwQFTHvZd/XHRO/Zj7OpIy41LkSrkRO88SMr5K6WW\nmXw6jEQ/L1puWgpAVtR9on5Wr7fybpsXpiyj/pQRVO/RESRSbn23nfQrkc9cf+UpPyWdc3O/pcXS\n8UjlMrKi4wmdvRYAK69a+AWO4HC/WaXG3dp6EAMLM177v/lIpFJSr94h/PPvKczK5fTHK2k0eRBS\nAwWqwiIuLPiBrOj4yvzKehWkpHN14Vc0WDgJiUJObkwsV4JWYe7pTr1powkdOqnEGIBao9SjmepN\nG61ZZlr4VeL2H8fu1WZkR8XQeM3jn4qKXL2RlNMX9OaSn5JO+Pw1+C6egFQuJzsmTqt9es8cyclB\n00qNqzumHxKJBO+ZIzXLTbl4jQd/nsChbVOyou7TYt28EutDbDtLJy5Bl41EVdJrQYVKERAQwNy5\nc3F3r3rDUJ6UkKD7drSKZm9vTu6l1yo1ByPvw+xuMvCfA8tZt7Ob+Ktl70rNoUPwNk68+k6l5gDQ\n5vhvVaIuithUqTkAyBhY6XnIGMj+5ro/31CROoeoh4dv9RlSqXn0ubi+SqwPoErkcaCF7s83VKRO\np7dWetsEdfusCutjp5/uz25UtO7nN1SJujjSumel5gDQ/uR29jXvV6k5dAnZXOnbTVBvO18Gu6rA\n8eA/efts5R+biDug/zJjx44lLS1N6zMzMzNWry79zpogCIIgCIIgCEJ5EyegVcyGDRuea/5/6+96\nCoIgCIIgCEJVVlXeMlvViZcQCYIgCIIgCIIgCBVCnIAKgiAIgiAIgiAIFUIMwRUEQRAEQRAEQXhO\nSjEEt0zEHVBBEARBEARBEAShQogTUEEQBEEQBEEQBKFCiBNQQRAEQRAEQRAEoUKIZ0AFQRAEQRAE\nQRCekwrxDGhZiDuggiAIgiAIgiAIQoUQJ6CCIAiCIAiCIAhChZCoVCpVZSchCIIgCIIgCILwMvvF\nd0hlp/CPel1YX9kpiDuggiAIgiAIgiAIQsUQLyESnllCQkZlp4C9vTm5l16r1ByMvA+zu8nASs0B\noNvZTfzVsnel5tAheBsnXn2nUnMAaHP8Nw606FOpOXQ6vZUiNlVqDgAyBlZ6HjIGsr9530rNoXPI\nFqDyr073urC+SqwPoErkURX66b7m/So1B4AuIZurxPrY6RdQqTkAdD+/oUrURWVvs0C93TrUqlel\n5uB/6pdK325C1bhrJ7w44gRUEARBEARBEAThOSnFg41lIobgCoIgCIIgCIIgCBVCnIAKgiAIgiAI\ngiAIFUIMwRUEQRAEQRAEQXhOKiSVncJLQdwBFQRBEARBEARBECqEOAEVBEEQBEEQBEEQKoQYgisI\ngiAIgiAIgvCclCoxBLcsxB1QQRAEQRAEQRAEoUKIE1BBEARBEARBEAShQogTUEEQBEEQBEEQBKFC\niGdAhX+tY2dz+WJjOvmFKurWVDB3jBVmJo+vufx+JJsNv2dq/s7IVhGfVMT+bxyRyyQs+CaVa3cK\nMDaU8o6/MQPeMCtz2Q6v+OI5ti9ShZz0m/cIC/qWwqycZ4prsvQj8hJSuPTpegBsm3pR/8P+SOUy\nivIKiFi6ntSIWwA037gMqUJB5s0orixcTVG29rJsWzfGfcwA3RiplLofDsGmhQ8SmYy7/7eLmJ0H\nALB7pQles8eSG5eoWc7ZUbMpys6l4aKJmHm4UZSTq7cerFs1oeb7g5EqFGRF3uHm4lU6OZUlxnPB\nNPITk7m14huM3apTN/BjzTSJVIqpuxtXZi5CVVBAzfcHA9DokwlELFxDkZ56t2vjh8foAUgN1PWg\niZNKqPfREGwf1kPUpt+JflgPJtWd8Jo1GoWlOUXZuVya9yXZUfe1llu9b1dc3+nAqQGTnihRipRO\nqLiLiit66+pJKpWKmdN34VHHnuEjWpdpnvJQXnnYtfGjzpj+SA0UZNy8S8SCktdVaXGGDra0+H4B\npwZOoSAtQ2teY2d7Wq5fzNnxC/Xm4PSqD97jeiMzkJN24x6hc7+jMEu3LZcYJ5XgN20w9k3qARD7\ndxhhyzcDUK2tL83m/4/s2CTNco4M++TpK+oJ/7Z2UWJfLGtcKX3W7pUmeAd+oLXtOvN+IEXZubi/\n3xenTuq8vaYM5+qKDSjzCwCwb+NH3TH9NG0ufMFavTn9U5yRgy0tv5/PiYFTNW1TYWFK/UnDMKvl\ngtTQgFs//Mr9vcefuf4eKa924fiKDw3G9UFqoCD9xj3OzftWbx8pLa5W7w64dW+PzFBBypU7nJ+3\nDmVBIU5t/WgSNFKrjxwfvuC5c36Zt1nOb7XHsX1zzk/8VG8Otq0b4z56IBKFnKzIu1xZ+LX+/Xwp\nMYYOtjRd9wkhAZN0yq/WzR/7ds0Jm7y41Lp4GbedFUWlquwMXg7iDqjwr5ScVkTgl6l8NtmGXasc\ncXGUs3JjulbMW+1N2PqZA1s/c2DTEnvsrKRMe88SWysZS39Mw8RIys4VDmxcZMeJc3kcDdV/kvUk\nAytzfOaM5OzkFRzpOZns6Hg8x/V9pjj3wd2w8aun+Vsil9F40VjCFqzjWP8Z3PjuV3yDRmNgZQ5A\n+PRlBPf9kJz7cXh8MFBrWQorC7xmjdEb49K9I8bVnTg98GPODJ9G9b5vYuHlAYBlw3pE/d8uQgZP\n1vwrylbXhaV3Xc6ODtR8XpzcygKP6eO5Omsx5waOIfd+LDVHDX7qGJcB3bHw8dL8nXPnHheHT9D8\nSz1zgYQDR0kPu6xZFkB2TDx1xgzQqXeFlTkNZo0hbPpnnOzzkVaca/dOmFR34tSAiZweNp0a/d7A\nwssdAO9544nevp9T/T4m8tut+CyeqLVcy0b1qBXwjk55ABKaAGW/gBEZmcDwIRvYtzeizPOUh/LK\nQ2Fljvfs0Vyc9jknek8gJyaOuh/oX1elxVV7oy3Nv5mLkYONzrxSAwXe88YhUei/zmpgbU7Tee8R\nPGkVf747jazoBBp+2Oep4mp2a4O5mxP7e8/kQN/Z2DWth0unZgDY+tTh+k97Odg3UPOvMLts25CS\n/BvbRUl9sbhn7bNWjepyZ9PvBAdM0fwrys7FuVt77F9pwumh0wHIS0ylzqi+mrK8Z4/i/LTlHO/9\nMdkx8dT7oL/enEqLc37jVVroaZsNA0eTG5/MyYDpnBm7kPoTh2Cop/0+jfJqFwbW5jSZN5LTk7/g\nYPcpZEXH02C8nn1ZKXHO/k1x79eJv0ct5mCv6ciMDPAY1AUAG5863PjpDw73m6X5V1X7SHlvs+QW\nptSf9h71Jw2jpJ+RVFhZUH/mB4RPX8rpfh+SExOH+xjd/XxpMU5d29F4zXwM7W2fKN+MelNGUvfj\n4SAp/SU6L+O2U6h6xAloFbFjxw6WLVtWbss/ffo0EyZM0Pl84cKF3L+vfRcnMjKSgICAcsulIpy6\nmIe3h4KazuqDzz6vm/DH8RxUJVya+uHXTGwsZfTubArA5cgCurUzRiaToFBIeLWJEQdP6V7p1Me+\nVUNSL98i614cAFG/HMSla5unjrNt6oV960ZEbf9L85mqsIiDXceRfi0KABMXB/LTMrFv1RCAnHux\nAMTs2I/T669qlWfTohHpVyL1xti3a8GD3YdRFSkpzMgi7uAJnLqop1k2rIdNU2+a/biEJmuCsPKt\nD4BRNQdkJsZ4Th1J843LqD9rjFZ51s38yLx6k9zoBwDE/roP+07tnirG0q8hVs0bE/vrPr11bdHI\nC9v2rYlctlpnWdE79mu+Q3G2LXxIuxJJ9sN6KB7n0K45Mb8f0dRD7IGTVOvSFkN7a0zdnIk9cBKA\npFMXkBkZYl6vFgAGNpbUnzyC66s26pQnoRagQEWM3u+gz8+bQunew5cuXRuUeZ7yUF552LbwIe3y\n43Vwb/sBnLq88lRxhnbWOLRrxrkJ+q/Ue04Zzv3dRyhITdc73bGVNykRt8i8q+5/kdsOUaNrq6eK\nk0ilyI0NkRkokCrkSOVylHnqu2i2Ph7YN/Oiw//No/33M7BrXE9n2U/r39guSuqLxT1LnwWwalgP\nm6YNaLF+MU3XztNsu8w9axN/9AyFmdkAxB0Jwcm/BQB2LRrptLlqetpmaXGP2mboE21TYWGKbfNG\n3Pz2FwDy4pM5NXw2BWmZPI/yahcOLRuSEnGLrIdt//a2v6jeVfeOYmlx1bu9wo2NeylIzwKVigsL\nf+Du7hOA+kTDvrkX7TcF8ep3s7Ctwn2kvLdZTh1bkZeYyrUvdPchj9g09yH9yk1yoh/tw//U3c+X\nEmNgZ41d2+Zc/Fj3bqJDh9bkJaZwc9VP/1gXL+O2U6h6xBDc/7iZM2dWdgrlIjaxCEc7meZvR1sZ\nmdkqsnJUmJloX91LSS/ip12ZbF5qr/msYR0Ddh/NwdfTgIICFQeDc5DLyvZqbSNHW3JjkzV/58Yn\nozAzQW5qrDW8trQ4mbEhDSYFcHrsEmr28NdavqqwCAMbC9puWojCypxz01dh5uasFZMXn4TczASZ\nibFm6I2Rg53WULTiMUYOtuTGJWlNM/OoCUBBegaxe4+RcDQESx9PfD6dwulBkzCwsSD5TDjXln5L\nfko6dScM1crBwMGO/OLlJSQiNzPVyqm0GJmxMbU+fI+IiXNxevt1vXXt9sEw7n67kaLsHN1lxSeh\nMDNBZmqsPSzO0Za8J77rozgjR1vy4p+shxoYOdqRl5CiNbYmNyEZIwcbMm7cwTtoPNdXbUBVWPRE\nhlZIqIeSA0hopvc76DMrsCsAwcG3yzxPeSivPIwcbcmN178OnlxXJcXlJaZwcepnepfv8o4/Urmc\nmN8OUXtYd70xJo42ZBfrfzlxySjMTZCbGmkNJSst7s6u47h2asab+1cgkUmJO3WJB8cuAJCflknU\n7pPcP3wWW986tF7xEQf7zHrKmtL2b2wXJfXF5+2zAPlpGTzYe4yEo2ew8qmHz9IpBA+aTHrEDWr0\ne5N729QXtpzfaIuhnZWmrOJtLreMbTP3ibZ5YernOt/VxNWJvKQU3Aa+iX0rX6QGcm5v3E323QfP\nXH9Qfu3CxMmGnGL1nhNfQh8pJc6sphOGlyxo/eVkjOytSDp/nUsr1EMt81MzuLvnBA8On8XWty4t\nl3/EX32f75jkZd1mRe84CIDzm+30Tn+0bK22npCks08tLSY/MYVL05fqXfb9nfsBcHqjfYnlP/Iy\nbjsrkrKkW9iCFnECWklyc3OZPn069+/fp6CggNdff3yA/f3337Nnzx7kcjlNmzZl8uTJnD17liVL\nliCXyzE2NmblypUYGhoyZ84coqKiUCqVfPTRR7Ro0aLEMqOiohgxYgQpKSn079+f3r17ExAQwNy5\nczE3N2fSpEmoVCrs7e1LXMbLoqQx+FI99/y3H8jmtWZGuDo+7g4Th1rw+fp0+k5KwN5aSisfQy5c\nzS9T2ZIShq+oipRlikMCjReNI+KzDeQlpuoNyU9O52DXcVh4utFy9Qyidx3VX6ayWJnSEvJSKpHo\nmfYo3/Bpj+/Mp128Smr4NWyaN+LBniOET3u8M7v17Vaq9+6KRC5HVViod5lP5lRSDBIJdedO4vYX\n6yhIStEbYu7tidzSnIQDx0pd1pP1jkT/wA9VkVJ/HSmVJQ5JUimV1BkzgNTzV0gOCce6sZfWdCmt\nUHICePLE9L+txPX+ZB8pY1xx5vVq4dqjI2dGzn2mHHT6aSlxXu+/S15KBr/7j0NmZEDr5R9SJ6AL\nNzbs49TEVZrYpAs3SLp4A4dW3qXmJKi9kD4LhE17fLCfevEaaWHXsW3eiPu7j2DoYEuTrwIByLoT\ng7Kg8GFRJQwM02kXZYvTmkcuw8TFkaLMHE7/bw4mro40/2au5m5ZlVPivkxV5jipXIZDS2+CJyyn\nKK+AJvPfx2tsL8KXbeL0pC80sUkXrpN08SYOLatmHynPbVaZldDmtPfzZYh5TmLbKbwI4gS0kmze\nvBkXFxeWL1/OnTt3OHLkCBkZGVy7do29e/eyefNm5HI548aN4/Dhw4SEhNC1a1eGDBnCoUOHSE9P\n58iRI1hbW/PJJ5+QkpLCoEGD2LNnT4llFhQUsHr1apRKJe+88w4dOnTQTFuzZg3dunWjT58+/PHH\nH/z8888VUQ3lxslORviNAs3f8UlFWJhJMDHS3Tj/eSKHqSMstT7LylYyIcACS3N1/Pc7M6hRreTu\nUndUTxzbNgFAbmpMxs17mmlG9jbkp2VSlJunNU9ObBJW3h46cWa1XDBxtsdrwiAADG0tkcikSA0V\nXF6+CbtmDYg9HApA+tU7ZFyPApn29zK0t6EgLRNlsTLz4hKxbFBHb0xuXCKGdtZa0x7dIXXp+TpR\n63dqpkmQoCoqwsrHE7mFGYnH1bk8OqF+tKNcMrTqAAAgAElEQVTLi0vArH7dx8u0s6UgPeOJnPTH\nmLhVx6iaI25jhwNgYGP9sA4MuLnkSwDs/F8hPz4Rn+8+f1jvJmRFRpVaBwC5cYlYFqt3rXqITcTA\n1kprWm58Mrlx2p8/Wl+58clU69qW/JQ0HNo3R2ZshKG9DS03PHqBhAFSHg2rNgWqoR6OG8Z/jfvI\n3ti3bQqo+0jmzbuaaY/WwZN9JDc2EcsGuuvqybjinN9oi9zUmObfzdfM0zBonGZ6xy1BmhzSb0Rr\nPjd2sH7YT7UvNGU/SMbG211vnEuHplxYrL7zXZiZQ9Tvf+PasRl3fj2Gex9/rn63WzOfRCJBVSAu\nREhohAQXzd8Gdtr97UX1WbmZCa49X+dOsW0XElAWFiG3MCX2z7+5s/5XOp3eirWPJxKZlNYbF+ts\nvw1L3H7rtk19ccXlJaovpkXvUV8wzI6OI/XiNa3lVLb6o3vg1K4xAApTY9KL78s0bV93X2bT0F1v\nXG5CKvcPn9XcGbu35wSeI7ujMDOhVp8OXP/+d818Egl6RpFUnoraZpVVbmwCFl5P7MOf2KeWJeZZ\neI3ujnN7P0BsO4UXQzwDWklu3bqFr68vAG5ublhYWGg+9/HxQaFQIJFIaNq0KTdu3GDUqFHEx8cz\nZMgQ9u3bh1wu5/r16xw7doyAgADGjx9PYWEhycnJJZbp6+uLgYEBRkZGuLu7Ex39eANy584dGjVq\nBEDjxo3L8ZtXjFa+hoRdzyfqvvqq9rb92bRvZqQTl56p5G5sET71DLQ+37Y/m682q58dS0otYsfB\nbLq+alxiedfXbOf4gBkcHzCDE0PnYN3QA9PqjgDU7NWBuKNndeZJCA7XG5cafpO/3hyvWd7d7X/x\nYH8wYfPXoSpS0ihwJNY+6pM2s9oumLo5c+839QGNcXUnAFy6dybh+Bmt8pJOX8TSu47emIRjZ6j2\n1mtIZFLkZiY4dmpDwrEzFGbn4tqzC/avqe+sm9V1w8LLQ/0MpIkRdT8ejtxC/XKdGoPeVhf08AQ0\nNeQC5g3qYeRaDQCnd7uQ/HeIVk4lxWREXCO01wjNi4Zif9tH4l9/a04+ASx8GxD17SZNTNj7U7SW\n5dqjE/FP1EHxejB5WA/F4xKOheLyln+xemhNwtEQ8uKTyYmJw/HhWzNtW/igUirJvHmXY2++T/Ag\n9QtOLn+yhpyYWIIDpqirgt9Qshcle1ERjYqr/8mTT4DIb7YRPGgqwYOmEjJ8lu46OBaqM0/S6bAy\nxRV3bfl6TvSaoCkrLyGZ8MDHV9QfvdTicEAQNo3cMauh7n+1e/lz/8h5neXFnQovMS71ShSundV9\nQyKX4dzOj6SwSAqycnDv2xGXDuqDV6t6NbD2rk3syf/mui9ORZimTwAl9sXinqXPFmbnUL3X6zg8\n3HaZ13XD8uG2y6K+Oz5LJiGRqR/TUFiZcWPtNk4Omkbw8NlYeXtoyqrRo2OJbbMsccXl3E8g7cot\nXN5UP6NqYGOJVcO6pF2OfLpKLEdXVu/QvBDoyOB56n3Uw7Zfq1cHHhw5pzNP3KlLJcbFHAzBpWNz\npIYKAJxfa0JKxC0KsnOo3bcjzg/7iGW9mlh7uxNXhfpIRW2zyio55OE+3FW9bOfunUk8duapY57F\n5dU7xbazjFQqSZX/VxWIO6CVxN3dnfDwcDp27Mi9e/f4/PPPeffdd6lduzY//PADhYWFyGQyzpw5\nw7vvvsuuXbvo3r07U6dOZe3atWzdupXatWvj5OTEqFGjyM3NZfXq1VhZWZVY5uXLlyksLCQ/P5/I\nyEhq1Kihlc/58+fx9PQkPDy8IqqgXNlaygj6wIpJy5IpKARXJxkLx1kTcTOfeatT2fqZAwB3Ywux\nt5aikGt3yBE9zJi5MpUeH8WjUsGoPuZ4exjoK0pHfko6F+etpcmnHyJRyMmOjudC4GoALOvXotHs\n/3F8wIxS40pSlJNH6MTPaTBxEBK5HGVBAednfUXGDfWV2YafTESqkJMTHUdE0JeYe9am/ozRhAye\nTEFKOpfnf60TA+oXEhm7ONF8wzKkCjkxOw+Qev4yAGFTllBv4ghqv9cHVZGSS7OWU5CWQdKpC0Rv\n+4Om3/w/e/cd31T1PnD8kzTdg+4W2rLKaillb2WDgjjYIhtEqwLK3nvJElBUpoCACEj9Ck5wIMpo\nAdmrUHYpHbR0zyS/PwKhIU1bhDbF3/N+vfpHb5577pNzb05ycs49mQ0KJWmRNwxyzbmXxOX5H1Nj\n9ngUKhWZt+9wac4yHKpXwX/8e5wcPNJkTFHY+pYj605svscDcPAvz5mZuufnVKMygZNDONxv3P16\n+Jzg+aNQqFRkRMXo426F7sHW14smmxehtFRx69tfSTyu+9mU01OWETDxbSoP6oomO4dTk5bKeuv/\nUnZiMmdnf07tDx+cgzucnvEpAE4BlQmc/DaH+44vMO5JZSWmcHT6WposGobSUkXarVjCp6wGwCWw\nIvWnD+bXXtMKjDu5eAt1JvSjw7fz0Wq0xIad5eKGH0Cj5eAHy6gzvh+B73RBq1YTNu5Tsu892WIz\n/0WmXotP4zV7cuxCqo8ZjP/QHmjVGk5NWUZOUgoJYaeIrxtIky26WwjSrkdzbatu9lB2YjKnZ6+k\nzocjUapUpEfFGFybQZPf4mDfCQXGFeT4uCUEjhuMX9d2KBRKItftJPn8lader09DdmIy/8xYQ+NF\nI1CqLEi7FcvRqasAcA6sRN1pQ/jj9SkFxl3Z/itWTg60/mo2CqWSexeucfqjL0Cj5fDIZdQe34+A\nkG5o1GrCx68ota+R0tBm5SQmc37OpwTNG6N7D4+K4dysT3Cs4U+NiSEcGTDWZMzTJG2neBoUWlPL\ngopilZWVxaRJk4iJiUGtVtOuXTsSExMZM2YM69ev58cff0Sj0VC/fn0mTpzIqVOnmDt3Lra2tiiV\nSmbNmoWXlxdTpkzh9u3bpKam8sYbb9Czp/FS2KBbBffBfaPJyckMGjSIzp076+8BdXFxYezYsWRn\nZ+Pr68utW7fYtGlTgc8hLi6lwMdLgoeHI5lnWps1B5ugP/i+fp/CA4tZ52Nb+K1JD7Pm0PbwDg48\nn/9PkZSk5n99x97G+b8WSkr7sO2o2WLWHAAs6GP2PCzow55Gxj/fUJI6hG8D4Js6A8yaR/cTG0vF\n+QBKRR6l4XX6c6PXzZoDwIvhX5eK8/FtXfOvgN/l+KZSURfmbrNA12793rS7WXNoc+gbs7eboGs7\nnwWbgoaYO4VC9TuzztwpyAiouVhbW7NkSf6roQ0aNIhBgwYZbKtduzbbt283il24MP8fK35U48aN\n+eqrr4y25+1krltn/gtSCCGEEEKIZ5GmlExxLe2kA/ofs2LFCsLCwoy2z5s3Dz8/PzNkJIQQQggh\nhBA60gH9jxk2bBjDhg0zdxpCCCGEEEIIYUQ6oEIIIYQQQgjxhGRhnaKRn2ERQgghhBBCCFEipAMq\nhBBCCCGEEKJESAdUCCGEEEIIIUSJkHtAhRBCCCGEEOIJyc+wFI2MgAohhBBCCCGEKBHSARVCCCGE\nEEIIUSJkCq4QQgghhBBCPCGNuRN4RsgIqBBCCCGEEEKIEqHQarXym6lCCCGEEEII8QTWBg41dwqF\nevPcGnOnIFNwxb8XF5di7hTw8HBkb+OeZs2hfdh2fmrY26w5AHQ8spXfmvQwaw5tD+9gX7NuZs0B\noNXBnaWiLsx9bYLu+jR3Hu3Dtpv9umh1cCdAqaiL0pADlI66ULPFrDlY0IewVp3NmgNA433fl4rz\nYe52E0pH29k+bDt/Nu9q1hwAWh4INfvni45Htpr9fMDDdqu008oquEUiU3CFEEIIIYQQQpQI6YAK\nIYQQQgghhCgRMgVXCCGEEEIIIZ6QRqbgFomMgAohhBBCCCGEKBHSARVCCCGEEEIIUSJkCq4QQggh\nhBBCPCH5bcuikRFQIYQQQgghhBAlQjqgQgghhBBCCCFKhEzBFUIIIYQQQognJKvgFo2MgAohhBBC\nCCGEKBHSARVCCCGEEEIIUSJkCq74T3Hw96P66MGoHOxAo+Hch6tJuXD1scqwdHYkaPowbMp66MqY\nv5qk0xEAVBvRD8+2TclNTgUg7frtfMvwaF6Xau+9jtJKRcqlG5yZs5rctIwixymtLak5bjBlAiuD\nUknSmcucXfgFmqwcPJ+vR63p75AZE68v5/DQmQA02rwYpaUlqZevc37u56jTDY/p1qwe/u++YRyj\nVFLt/QG4Nq6NwsKCG1/tIurbvQb72pT1pNGGBRx/fzYpF65Qod9reLVvnqfenIyen2uzelQO6YvS\nUkVq5HUuzvvMKCdTMUorK6qOeRPHgCooFEqSz0VwafFaNNnZONcLwv+9fihUKjRZ2Vxauo6U85cN\nyi0NdeHevC5V3nkDpZXuGGfnrkSdz3VgMk6poPoHA3C7n8v1Lbu5ZZSLB002LuCfEXNIvnAFAJ8u\n7SjfqxPaXDUAXu2bU2nAa2bLAyBowXguzvuMnKSUJ7ouHrD2dKPemvkc7T+anKQUAN11MXwACgsL\ncpJSuLz8C9IuXy/ac3wKdeFSvybVhvdFobJAnZXNxSXrST4XCUDwh6NxrFIBgOahn6CytyUnKbVE\nz4f/273wbt9MH+PRsiH+Q3sWS124P1efoGnvGbRTR96ehjo90yAPBQ3RcgzQGB23MFqtlskTd1Gl\nqgeDhzQrfIcicG7SAL+hA1BYWpJ+5RpXFy43ujZNxVSdORFrn7L6OGtvL1JOniFi8myDbUGrl3Fh\n7FTSLhq2WeZqL6qPGYTPq20BeG73Ko6+NYXM6DiD/f5Ne2nr503g5HexLONIbnom52Z9Qvr998zy\nb3SmbOc2aNVqcu4lc+HD1WRExTx8js83IHjO+6gzMkn851yJXZsACkvdR2P3Vk2J33cIANem9akU\n0gellSVpl69zcf6nxm2WiRgLezuqT3wPuwo+oFAQ89M+bm751mBf75fa4N6iMWfGzzd6jo960s8X\nKntbak19G/uK5VAoFET9sJ8rX+422Nf35VZ4tW7AsVGLC6/rp3BOitp2iv+OIo+AhoaGsnjx4sID\n78vKymLHjh2FxqnVakaMGMH+/fv121asWEH37t15/fXXOXXqVIH77927l5iYGOLi4pgxY4bJuDZt\n2pCVlVXk/J82U/U3cuRIsrOzDbbt37+fCRMmPNHx7t27x+7duwsP/A9RWltR7+MpXN+8i7D+47ny\nxU5qzRzx2OXUGPsmiScucOj1UZye/gnB80ahtLYCoExwdU5PWcbhfuM43G8cp6csM9rfytmRWtPe\n5vj4pfzVfTQZUbFUG9b7seL8B3VBYaHk7zcm8HfvcSitrfAf+CoAzsHVuLr5ew70maj/s7CyBOD0\nxMUc7vU+GbdjqPJeH4PjWTo7ETjl3XxjfLq0w9bPm7A+ozgyeAJ+vV7CKbDKw7q1sqTmzOH6N2aA\n65v+R3j/sYT3H8s/705Hk5lpdLwak4dxdtIiwnuPIPN2DJXf7VvkmAoDu6GwsOBo/9Ec6T8KpbU1\n5ft3RaFSETh7FBcXrOTogNFc3/ANAdNGGJRZWuqi5pR3OTVxCQd7fkB6VCxV333D6DqwdHY0Gefb\npT12ft4cemM0YYMmUv71TjgF+hvkUuuRXGzKelAl5HWOvjWNw33H3s8jxKx5AGRGx1HxzV5PfF0A\neL3Ykrqfz8Haw02/zcLejprzxhK54kuO9h/FpcWrqTl7tEFOxXlOFCoLgud8wLl5qzjcdxxXvwgl\naMZwfZnOQVU5GjIdAJWtDUfenFKi56Nc51Z4PFefsIET9dtqzRpRbNeFc3A1rm3ZrW8rD/cbhzo9\nM588MlBQ2+i4hYmMjGPwgE38/NPZx97XFFUZJyqP/4CIafM51T+ErNt38HtrYJFjLk2fz5k3R3Dm\nzRFcXfQJ6tQ0ri37XL+vwsoS/8nG1+QD5mgvHKtXwq/bC/rXaVZ8IrUXT3jkmP+uvaw5431uhe7h\ncO+RXF27jVrzxwDg0rAW5V5uy9E3JxPebyyx+8IImPKuwTGD57yPOiuHa5t2ldi1CVAmqCqN1s01\nev7VJw/j3ORFHOk9nIzbMVR6p1+RYyoO7U1W3F2O9vuAf94cR7kuL+BUsxoAKkcHqo59myoj3wRF\n4fcOPo3PF1VDepIZm8Dfr4/j4IAp+HVrj3Otqrrn4WRPzQlDCBg7AHiYT0F1/aTn5HHazmeB5hn4\nKw2KbQpuXFxcoR3QGzdu0KdPH06fPq3fdvbsWcLDw9mxYwcfffQRM2fOLLCML7/8ktTUVDw8PArs\ngJZWS5cuxcrK6qmXe/HiRX7//fenXm5p5ta4NulRMcQfPA5A3P6jnJq8FACFyoJqHwyg8cYPabJ5\nITWnvouFva1RGQoLJR7P1SPqu18BSL10nfSb0bg3rYPCUoVjtYpU6PMyTTYvJPjD0dh4uRmV4d4k\nmKRzV0i/eQeAGzv3Uu7F5o8Vl3j8PJe/+Ba0WtBoSb54DRtvDwBcgqvh1rAmzb6cS+PV03GpWwP3\nJsEAZNwvKyp0D94vPG9wPNfGwSSfj8w3xqNlY6K//wOtWkNuShoxvx7A+8WH+1cf8ybRP+wjJyk5\n37qvMqI/dw+dMNjm0qg2Kecvk3ErGoDbob/g1eH5IsfcO3GO6xu+uV8HGlIjrmDj7Y42N5dDrwwl\nNUI3sm3j40VOcopBmaWlLpLOR+rP763QPQblPODWuLbJOM+WjYjavU+fy529Byn7Ygv9vjXGDuH2\nD3+Sc+9hLgoLJQqVSnd93/9Ak3X3nnnzAJQ2Vmiyc574urByd8G9RSNOjTb8kGjnVxZ1Wjr3june\nT9KvR5GbnkGZoOoGccV1TrS5avZ3DiEl4hoAtj5e+pFZm7IeWNjZEjB+KACanFyy7z9WUufDsUZl\nYv88Qm5qusFxiuu6cK5VHdcGNWm88UMarJqJc52AfPPQchMF5Y2OW5itW47SpWsdXuxY87H3NaVM\nw3qkXrhEVpRulC5m14+4tWv12DEKlQr/iSO5vmIN2XEPR9kqvv8OcT//Rq6JtsMc7YVLvUC0Gi3Z\n93TXY/rNaOz8ypLXv2kvrT1csa9Yjpi9BwC4e+gEFrbWOFavRPbde1xYuEY/gphy/or+/e2BnOQ0\n4v86Wix1YeraBCjfqxORq742OI5LozqG7dG3P+fTZpmOiVy2jsgVGwCwcnNBYWlJbpru+vdo24zs\n+EQiV2w0en75eRqfL84v2ciF5ZsBsHZ3Rmml0r8evds1JSv+HheXbzEor6C6Lmrc02g7xX/HY3dA\nlyxZwqBBg+jSpQsTJ+q+wTx27Bg9e/bkjTfeYMiQIaSmprJy5UouX77MihUrTJaVnp7O3Llzady4\nsX7bsWPHeO6551AoFJQrVw61Wk1CQkK+++/bt4/z588zfvx4rl69Ss+ePQH4448/6NatG127dmXq\n1KloNA/7+1u3bmXYsGFGo44PqNVqJk+ezJAhQ3j55ZdZunQpOTk5tG/fnvR03Qt03bp1bNiwgevX\nr9O7d2/69evHhAkT6NevX75lPnDixAkGDBhAt27d2LdvH/BwZDYyMpJevXoxcOBAtm7dWmA5oaGh\n9OnTh969e3Po0CF++uknevXqRe/evfWjrCtXruTw4cNs27aNCRMm6EeY846utm7dmiFDhjBv3jwm\nTJjAtGnT9M/77Nmn961ySbErX5bsu/cInBxC4w3zqffJFBQWFgBUGvAaWrWasAETONx3HFnxifl/\ne1fGERQKcu497NBkxSZg7emGtbsLicfOcPmzrzjcdxxJZyKovWicURk2Xm5kxtzV/58Zm4Clgx2q\nRzq8BcXFh50m/YauAbfxdqdi747c+e0wANlJKdzYsYeD/ScT8enX1Fs4Cgd/X4Oys2LvonKww8Lu\n4TFtPN0NphzljbHxNMwlK/Yu1p66znW5V9qgUFlw+7vf8q13+0q+eLRoSOTqbY88P3ey8h4v7i4q\nB3vDnAqISQw/ScZN3Zu5tbcHvj07E/e7bjqUVq3G0qUMTb9bjf97/bm55TuDMktLXWQ9Uo6lg53R\nFx82Xm4m42y83MiKfTQXVwB87ucS9UguGbdiuL55F823L6PFj6sAuHf8nFnzAHCuU5PrG3c+8XWR\nHZ/I2UmLSL92y+B46TduY2Fro/8CwjHAH/tKfli5uxjEFec50arVWLmW4fndK6k2vC/XNu0CwMq1\nDAlHTnPuw9UA5KSmUfP+iE9JnY/ks5fweL6+ro27T5lnJOxp55GdlMLNb34hbMAELn/2FbUXjsHa\n09UoDwWVAOMvAwszZVpHXnkt+LH3K4iVp7tBhzE7Lt7o2ixKjEen9mTfTSDx70MPt73UAYVKRdwP\nv5g8vjnaC6WlipSLV/WvU6calVFaWT5xe2nt6UZWXKLuC0T9Y7r30rQrN/VtksJShf+7fYi937bb\n++u+jIg/dLzY6sLUtQlweupy4g8cNziOtacbWbEFt1mFxqg11Jj2Pg03LSPp+BnSb+i+wIj+3x6u\nr9+OxsRn0kc9jc8XAFq1huBZ7/Hc1wtJOHae1PtTo2+G/srltTtRZ2UblVca2k7x3/FYHdCcnByc\nnJxYv349O3fu5MSJE8TExPDrr7/SsWNHNm/eTO/evUlOTiYkJIQqVaowbNgwk+XVqFEDf39/g22p\nqak4ODjo/7e3tyclJeXRXQFo1aoVAQEBLFiwAEtL3RTE3NxcZs+ezerVqwkNDaV8+fLcuaP7IL9p\n0yaOHj3K8uXLTY46RkdHU6dOHdatW8c333zD119/jaWlJR06dGDPnj0AfP/997z66qssXLiQkJAQ\nNm3aRL169QqtP1tbWzZs2MDq1auZNWuWQcd44cKFjBgxgg0bNlC3bt1Cy3JycmLr1q0EBATwySef\nsGHDBrZu3UpMTAwHDhwgJCSEJk2a0KtXL5NlREdHs3jxYiZNmgRAuXLlWLduHf369WPbtm0m9yut\nlCoL3JvV5db/fiVs4ERu7viZuksnorBU4d68Ph4tGtBk00KabFqIR8uG2FfyNSpDocz/JaHVaMiM\njuP4yA9Jv6HrFF3fvBs7Xy/jYBPTaLRqzWPHOdWoRJM107m+/Rfi/ta9KR4ft5SYfbpvhhNPXuTe\n6QjsypfNv6w81xhKE8fTaFDk85hWrcGxeiV8unTgwgLTjb9fr5e49c3PqNMMR1ZMPr+8ORUhxqF6\nZep+NpuonT9x9+Ax/facxCQOvfoW/7w1keqT3sP2wbf2RTluSdfFI2UZUJi45tSa/PPU6HLx7dqe\n8x+uMXrYtXEwnq0bs/+Vd9jf6W0AXOoHmTUPgPi/jlBjyvCndl08Sp2ewenxH1Khf1cabFyC14ut\nuHfsNJqcXJP76Mt9CnXxQHZCEn+9HEL4m1OoOfUd7PzKknz2MifHLyb77j0AUs5H4t68LgqVxVPN\noaDzEf3TX8T8fpj6n057WJZGaxT3tOri1IQlxP15BIB7Jy+SdCoCt0bB+eSRTGmZFKYownVXlBjv\nHq8Rtenhe6hdVX88X+nItY8+feycivu6sCtfDlsfT/3rNO4vXRv7pO1lftv1ed5n6exE3eVTUWdk\nEvn5Vt00+un3p14++rwp/mvTlII+FzxOzIVZyznw0kBUTg5UGNTD5PEK9BQ/X5ya9im/tX8LSyd7\nqrzZrZDjFlDXRY17Cm3ns0CrVZT6v9LgsRYhUigUJCQkMGrUKOzs7EhPTycnJ4eQkBBWrlzJgAED\n8PLyIjg42OQIY2EcHBxIS0vT/5+Wloajo2MBexhKTEzEyckJNzfdiMXQoQ+H7Q8dOoSFhQUWFham\ndsfZ2ZnTp09z+PBhHBwc9M+jR48ezJgxg8qVK1OpUiVcXFyIjIzUdxbr169f6D2X9evXR6FQ4Obm\nhqOjI/fuPXxBXbt2jeBgXQNYr149rly5UmBZlSpVAnTTmBMSEnjrrbcAXX3duHGDypUr57ufNs+3\nkS4uLri4PBwdCAjQTUPx9vbmn3/+KfD4pUmTTQsBsCzjQNq1KJLP6hZ2iNt/lMBJIdj5eKGwUHLx\now36qZEWttYoraxwqlGZwMkh+rLCBupGh1WO9uSm6K5Da08XsmLv4lClPI5VKxD90195jq57IVd9\nuzueLerr9rW3JeXyTX2EtYcr2UmpqDMN70HOjLmLc1AVk3Fl2zclcPxgzi1aT/QvB3VlO9hRvnt7\nrmz4Lk9JCrITDKd0WXu4kpOUiibPMbNi4ilTs2q+MZkx8VjnGSmy9nAlK/Yu3h1borK3pcEa3XRH\na3dXas58n8srNummRymVeLZuTPjA8UbnJSsmHqc8x7PycCMnOcUop4JiPNs1p+qYoVxaspbYvX8D\nunv9XOoHEb8/HIDUiKukXb6GvX8FMm5GG4yclXRdeL/4PBnRsXi0aKR7Pu7OBeYBkBkTT5lHrgN9\nLnfisXIzLCMzNoGynVpgYW9Lo7Vz9NuDZo3g0iebcG1cm9y0DOp/PMVgP3PkEffXUXISddfm7Z0/\n0XDzUuJ+O/DE10W+FArUGZmcGPbwXqGGXy3HpVFtKg7s/rCsYjonKntbXBoE6T/Yply8Ssql6zhU\nKU/FgV1wrRugXyjEytUZNFq0Gg02nm4lcj4ST17A2s3ZYEQqb5v0VOvCwQ7fbi9wbWOehVYUoMlV\no3Ky584vf3Nt4/9oH7YdLUkoyP9L5pKWFRuHQ8DDKdtW7m7kPnptFhJjV6UyCgsLUk48vLXI/YU2\nWNjZEfjpIgAs3VzxnzyGtMtXsC3vm6eskm8vrD1dyUlK0b9O4/4Mo/wbnZ+4vXw0l7yPAThUKU/w\novHE7Qvn0iebqDykB96dWujL8urQHNQaXBsFY+P19F4jBV2bpmTeicMxMM/zdzdujwqKcWlUh7Qr\n18mOT0STkUnsr3/j0bKJyeM96ml/vnBvEkzK5ZtkxSeizsgies9BvNs0MjqufYWyNN+iWxTJ59U2\npEbeMCivJNpOK7cyWDra678YEf8djw1PdPwAACAASURBVDUCGhYWRnR0NB999BGjRo0iMzMTrVbL\nrl276NKlC5s2baJq1aps374dpVJpMMJXVPXq1ePvv/9Go9Fw+/ZtNBoNrq6uJuMVCoVBp8rNzY3k\n5GR9527OnDn6hYw+++wz/cihKaGhoTg6OrJkyRIGDx6sf44VK1ZEq9Wydu1aevTQfXNVrVo1jh/X\njUqdPHmy0Of24F7XuLg40tPTDTp//v7++rLOnDlTaFnK+9+2+fr6UrZsWb744gs2bdpE3759qVOn\njkH9W1lZERenW9Hu3LlzRmU8YOqb3dLuwSICYQMnYlvWE8caus65c50A0GrJuB3L3cMn8evxom7E\nQaEgcFIIVd59g+QLVwwWItCqNcQfPI5vl3aA7k3SvpIvicfOotVoqT5qkG51XMC3WwdS76+weWnV\nN/oFgQ4NmoZzUFXs/LwBKN+tHbH7jxrlHX/4lMk47zaNCBgzgCPD5+s7nwC56RlU6NEBr9a6Nwun\nahUpU9Ofa1//DOhWHQTw6dKBuL+OGBzvbthJygRVzTcmbv8Ryr7cGoWFEpWDHV7tmxO3/wiXlm3g\nUM/39QvsZMUncHb6cv29OQ7+5clJTjNaMREgIfwETjWrYeurG5ks91oH4h/JqaAYj9ZNqDJyCKc+\nmK3vfAKg0VB90ns41dJ9CLSr5IddBR9SzkboyzRXXWTFJRLWexTh/XWL/5TJc359u7Yn9pE88uaS\nX1zc/qP4vNwmTy7NiPsznIilGznY4wP9dZsVl8CZaR8T99cxUi5eRWVrzZG3pnK43/0p4lqNWfLw\naF4PC1trANxbNyH57KUnvi5M0moJXjIZxxq6WTUerZuizVVzaeEqjg4cow8rrnOi1WioOeUdygTr\nrkv7Sr7YV/Qh6ewlYn49CEolR9/TrWngUjeA+MMnQKMtsfPhFOCPc+0aBosQKSyUxVIXuekZ+HV/\nAc/WuttrHKtVpExgFe4eOoFTgD+1F4zR3x6hpCZarhV8bktI0pHjOARWx9qnHABer3Qi8cDhx4px\nqhNE8nHDzwM3VqzhVL+39QsU5dxNIHLuYiJnLdRvA/O0F/EHjmPr44VDFd3U18pv9SI7PjHfYz5O\ne5kVl0BGVAxe7XSrE7s2ro1WoyE18ga2vt7U+3QGV9d9w6XlG0Gj4cqabRzs8h5/PK+7NUaTnU3C\nP2e58fUPqDOzSuTaNCUx/KRhe9SlA3cfyaegGI82zagwSDcbTWGpwqNNMxL/OU1RPfXPF+2aUGVo\nV0A3Bdu7XRPuHjG+7SrtejQH+ujai/Ahk83SdlrY2uh+2cDJvsj1JZ4NjzUCWqtWLc6ePUufPn1Q\nKBT4+fkRGxtLcHAwU6ZMwdbWFqVSyaxZs3BzcyMnJ4dFixYxduzYIh8jKCiIBg0a0KtXLzQaDdOm\nTSswvm7duowbN47Zs3XLnCuVSqZPn87bb7+NUqkkMDCQWrVq6eOnTJlCjx49aNq0KRUrVjQqr2nT\npowePZoTJ05gZWVFhQoViI2NxcvLi+7du/Pxxx/TpInum6sxY8YwadIkvvjiCxwdHVGpCq7OzMxM\n+vfvT3p6OrNmzTLo8E2YMIHx48ezbt06XF1dsba2LlJ9ubq6MnDgQPr164darcbHx4eOHTuSnJxM\nREQEGzZsoEePHkyaNIndu3fn+5z/K7ITkjgxbhEBY9/EwtYaTU4uJycsRpOdw5UvvqHaiP402bQQ\nhVJJyqVrRHz8Zb7lXFi4lsBJITT96nm0WjgzYwW5aRnkXrnJhSXrqbtkPCiVZMUmcHrqcp7f9blh\nHonJnJ61kroffoDSUkX6rRhOzfgMAKeAytSaMpQDfSYWGFftvddRKBTUmvJwBD/xZATnFq7n2Jgl\nBI4ZQNW3u6NVqzkx6WP90va15o1Gaaki41YMZ2etwLFGZQImvUN4/7HkJCZzbvZnRjGgW1TC1seb\nRpsWo7RUEfXtXoP7Bk2x8/Mm805svo/lJCZzYe6n1Jw7BoWlisyoO5yf9QmONfypPuEdjg4cYzIG\noFKIbtXT6hPe0ZeZdPoCl5as5cyEBVT5YDBKCws0OTmcm7GMrLgE/XFLS12cm/05wfNHoVCpyIiK\n4cxM3TEejLwf7jfufi75x90K3YOtrxdNNi9Caani1re/knj8fIF53N79B7ZlPWi8cQGa7BwAzs5d\nZdY8AJzrBnFhzidPfF0U5Nz0ZVSbEIJSZUn23UTOTFhgHFOM5+TkuEVUHzkApUqFJjuH01OXkxWb\nQFZsAje3/0TD1br3qeSIa9j5eNH0649K7HwkhJ0ivm4gTbYs0m87PWVZ8dXF2IVUHzMY/6E90Ko1\nnJqyjJykFKM8tCSj5UKh57Yk5N5LInLBcqrOnIjSUkXm7Wgi532EffUqVBqr6yiainnAxqccWSba\nxMKYo724ue1HytSsQqP1upEu+8p+HH9v5lNpL89MXUrAxBAqDuqGJjuHM5M/Aq2WCv1eRWltjV/P\nTvj11P1MkyYnh6NDJhnURdDM4TjXrkHyucslcm2aknMviYvzVhA4Z6y+Pbow+2McavhTfcK7HBs4\n2mQMQOSKDVQbG0KDTcvQarXc/SucqO0/PMaV8dDT+HxxYdlmak4cwnNfLwStlpg/j+q/xDZZBwXU\ndUm2nc+C0nFDQemn0OYdPhSPZdeuXdSuXZsKFSqwY8cO/vnnH+bPL/w3nP4r4uLMP23Kw8ORvY17\nmjWH9mHb+amh8TLoJa3jka381uRf3lfylLQ9vIN9zQq5l6QEtDq4s1TUhbmvTdBdn+bOo33YdrNf\nF60O7gQoFXVRGnKA0lEXarYUHliMLOhDWKvOZs0BoPG+70vF+TB3uwmlo+1sH7adP5t3NWsOAC0P\nhJr980XHI1vNfj7gYbtV2i2v9k7hQWb2fsTnhQcVs8caAf03Tp06xaJFi4y2d+zYkTfeMF6FND+/\n/fYbGzZsMNrev39/2rdv/6/yWrFiBWFhYUbb582bh5+fX5HKKFu2LCNHjtSP/M6bN48ZM2YQGRlp\nFLtmzRpsbGweK8enWZYQQgghhBBCmFuxd0CDg4PZtGnTE5XRtm1b2rZt+5Qy0hk2bFiBK/QWRcOG\nDQkNDTXY9jR/i/RZ/F1TIYQQQggh/j8qLavMlnaP/TugQgghhBBCCCHEvyEdUCGEEEIIIYQQJaLY\np+AKIYQQQgghxH+dRpZ2LRIZARVCCCGEEEIIUSKkAyqEEEIIIYQQokRIB1QIIYQQQgghRImQe0CF\nEEIIIYQQ4gnJLaBFIyOgQgghhBBCCCFKhHRAhRBCCCGEEEKUCIVWq5XRYiGEEEIIIYR4Aov83zN3\nCoUaG/mpuVOQe0DFvxcXl2LuFPDwcOT7+n3MmkPnY1v4vWl3s+YA0ObQN5x+ob1Zc6j1y172NOpl\n1hwAOoRvI6xVZ7Pm0Hjf9/zc6HWz5gDwYvjXZj8nHcK3kfuTj1lzUHWMAmBDzTfNmsfAs2tLxfkA\nzH59vhj+dal4narZYtYcACzoUyrOh7nfT0H3nloa6mJfs25mzQGg1cGdpaIuzN1ugq7tFP8dMgVX\nCCGEEEIIIUSJkBFQIYQQQgghhHhCGnMn8IyQEVAhhBBCCCGEECVCOqBCCCGEEEIIIUqETMEVQggh\nhBBCiCek1SrMncIzQUZAhRBCCCGEEEKUCOmACiGEEEIIIYQoETIFVwghhBBCCCGekKyCWzQyAiqE\nEEIIIYQQokRIB1QIIYQQQgghRImQKbhCCCGEEEII8YS0WnNn8GyQDqj4T/F8rg41hvVCaaki+fJN\nTs1aQ25axr+Kq7/oA7LiEjmzcCMAbg0CCXi/N0qVBeqsHM4u2si9s1eMynZrVg//d/qgsFSRFnmD\n83M/Q52e8Vgx1p5uNFg7j/B+Y8hJStHt81x9AqcOI/NOvD7un3emok7PLLReHBs1wmvQEJSWlmRe\nvcqtpUvQpKfnG+s7eiyZ168S/803ACjt7PAdNRprPz9QKEn8dS/x27cVeswH3JvXpeq7vVFaWZJy\n+QZn56xEnc85KSzO2tONxl/M4VCfcfo68XiuHkHT3yMj5mGdHHlrukG5zk0a4Dd0AApLS9KvXOPq\nwuVG58NUTNWZE7H2KfswB28vUk6eIWLybJybNsJ/4kiyYuP0j58bPh5NhvFze8CjeV2qvfu6/jme\nnrMq37ooLM7G040mX8zmQJ/x5CSlYF/Jh9qzh+sfVyiVOFYpz/FxSx67nosa92/Px6P+PGvBsu+t\nyM5VUK2chtm9M3GwMYyJuK1k3k5rUjLBQgnTe2ZR00/DB+ttuBH3cMn7qAQlDfzVfDq08NdEfnxb\n1KLeB92wsFKRGHGLA1M3kJNmuqzn5g4i8VIUZzfsMXqs9bJ3SY+7R9jcrwo9bnGeE5WTPQFjBmNf\nyQcLayuurP823xyK69oEsHSyJ2DMIBwq+aC0tuLK+v9x+6e/jMourtdq3m1Bq5dxYexU0i5ezrce\n/g2tVsvkibuoUtWDwUOaPbVyS/qc5Kc431MtnewJGjcAh0o+WNhYcWndd0T9+HeprYsHXJvVo3JI\nX5SWKlIjr3NxnvF7vKkYpZUVVce8iWNAFRQKJcnnIri0eC2a7OwCj/k060JpbUng2MGUCfQHpYKk\nM5c5t+gLNFk5+n19Xm6FV6uG/DN6UaH5mKvdFM82mYIr/jOsnB2pPf0tjo1dxr5uY0m/FUuN4b3+\nVZx//8641q2u/1+hsqDe/GGcmrOW/b0ncWnd/6gz6x2jsi2dnQiY/B6nJy4i7PX3yYiKwf/dPo8V\n492xJfVWzsbaw81gvzK1qnPjq90cGTBW/1eUzqdFmTL4jh7DjdmziHhzMNl3ovEePMQoztqvPJUW\nLKRMixYG270GDCQnPp5Lb7/F5eHDcHupM3YBAYUeV/dcHQma+g4nJ3zEgR4jyYiKodp7bzx2XNlO\nLWi0egY2nq6GdRJcnWtbdnO473j9X946UZVxovL4D4iYNp9T/UPIun0Hv7cGGpRRUMyl6fM58+YI\nzrw5gquLPkGdmsa1ZZ8D4BgUQPS2UP3jZ94cUWDnU/ccQzg+YSl/9RhFelQs1d/r/dhx5To9T+NH\n6iLtahQH+07Q/8WHneL2LweI2XekVJ2PRyWkwpSt1iwbnMkPk9PxddPw0W5rg5iMbBi60obBbbPZ\nOTaDkA7ZjN+k66EuG5RJ6LgMQsdlMPP1LBxttUzpnmXyeAWxdnGg+ZxB/PHBZ3zbeQopt+KoP6pb\nvrFlKpflhS9GU/GFBvk+HjT4RbzqVy3ScYv7nARNe5fM2Lsc7jeBo8PmUGP0QBNlF8+1CVBr2jtk\nxiZwsN9EjgybS8DoAVg/ElOcr1UAhZUl/pNHo7B8ut+7R0bGMXjAJn7+6exTLdcc5+RRxfmeClB7\nxttkxCTwV5/JHH5nPjXH9jfKs7TUxcNjOFFj8jDOTlpEeO8RZN6OofK7fYscU2FgNxQWFhztP5oj\n/UehtLamfP+uJo9XHHXhP6gLCpUFB/qM58Ab47CwtqLygNd0+znZEzhhCAFjBoKi8N+zNFe7KZ59\nhXZAQ0NDWbx4cZELzMrKYseOHYXGqdVqRowYwf79+/XbVqxYQffu3Xn99dc5depUgfvv3buXmJgY\n4uLimDFjhsm4Nm3akJX17z6QPA2PW3+lQWRkJP369TN3Go/No2kt7p27QtrNGACuf/MrPh2bP3ac\nW4NAPJoFc33nb/pt2lw1v3YcTvLF6wDY+XiSnZRqVLZro9okn79Mxq07AESF/oL3C88XOcbK3QX3\nFo04OWqeUdllalXHpX4QDdYvoN7ns3GuU7ROoGO9+qRfjCD7dhQAd7/fjXObtkZxbq+8QuKePSTl\neU0CRH/+GdGrVwFg6eaKwtISdVpakY7t1rg2SeciSb+pe643d+7F+8XnHivO2t0Fz5YN+Wfkh0b7\nOQdXw7VBEE02zqfh6hm41DWskzIN65F64RJZUbcBiNn1I27tWj12jEKlwn/iSK6vWEN2nG50z6Fm\nDZzq1SZo1TICPl6AY3DNAuvCvXGw0XMsm09dFBT3oC6O5lMXD7jUqYF3m8ac/XCt0WPmPh+POnhB\nRVB5DRU8dHOWXm+eww/HVAZTmA5esMDPTUuLQDUArYPULBlo2KnNzoVJW2yY0CWLsi7/bv6TT7Oa\nxJ+5RsqNWAAufr2Pyi81zje2Ru/WXPr2ANd+OWr0mHej6vg8V5OL2/cV6bjFeU5UTva4NQomco1u\nNkNWbAJhg6cYlV2c16bl/Rwu58nh0OCp5DzSfhbnaxWg4vvvEPfzb+QmJRs9ryexdctRunStw4sd\nC379Py5znJNHFed7qqWTPR6NaxGxJhSAzNgEDgyYRnay8ftqaaiLB1wa1Sbl/GUybkUDcDv0F7w6\nPF/kmHsnznF9wze6eZoaDakRV7Dxdjd5vOKoi4TjF4j84tv7OWhJjriGbVldDt7tmpIVf4+LH28p\nUj7majfFs++pT8GNi4tjx44d9OjRw2TMjRs3GDduHDExMXTv3h2As2fPEh4ezo4dO4iOjmb48OHs\n3LnTZBlffvklM2bMwN/fv8AOqPj/w8bLjcw7Cfr/M2MTsHSwQ2VvazAVqKA4C1trao7pR9iwBVTo\n2sagfG2uGitXJ1psmYulsyP/TPwk3xyyYu/q/8+Ku4vKwR4LO1v9FJ2CYrLjEzkzMf8pLzlJqdz5\n+U/i/wynTHANgheOJ7zfaLLiEvKNf8DSw4Oc+IfTRHPi4rCwt0dpZ2cwDff2pysAcKhT17gQjQbf\nceMp83wLkg8cIOvWrQKP+YCNlxuZeZ9r7F0sHeywsLc1nBZVQFxWfCInxxtPJQVdnUT/tJ/YfUdw\nrl2dOovHcqjPOP3jVp7uBh9Cs+Pijc5HUWI8OrUn+24CiX8f0sflJqcQv+cPEv8+hEOtQKrNmcKZ\nN4eTHffweRRUF5lFrIvMR+rixPiP8i3/geoj+hLx+bZ8p2SZ+3w8KvqeAm/nhx1GL2ctqZkK0rLQ\nT8O9FqfE3UnL1K3WXLytxNFWy+iXDaerhR5W4VlGQ7tgdYF1UxD7sq6k52kX0mISsXK0w9Lexmg6\n2YPpYeWaGHawbT3K0GhCb/a+tZTqPVsW6bjFeU7sfL3JuptIhT6dcW9aB6WViuubvy80h6d5bT7I\noWKfl/C4n8PVzd+TfiPaIK44X6seL3VAoVIR98Mv+PTraZTjk5gyrSMAhw9ffarlmuOc5JtDMb2n\n2vt5kRl/j8p9OuHZrDZKKxVXNv1A2o07pbIuHh7Dnaw8txjk/x5vOiYx/KR+u7W3B749OxOxYKXJ\n4xVHXdwNezjAY+PtToXXO3J2vu4Ly5uhvwLg81LR2i9ztZulmYbCR47FY3RAlyxZwpkzZ7h37x41\natRg/vz5HDt2jAULFqBSqbC1tWX58uWsXLmSy5cvs2LFCoYNG5ZvWenp6cydO5c1a9botx07dozn\nnnsOhUJBuXLlUKvVJCQk4OpqPB1j3759nD9/nvHjx7No0SLGjx/P9u3b+eOPP1ixYgVarZaaNWsy\nc+ZM/T5bt27lwIEDfPTRR1hZWRmVqVarmTZtGnfu3CE2NpY2bdowbNgwOnXqxHfffYednR3r1q3D\nwsKC1q1bM2HCBFQqFT4+PkRFRbFp0yaTdXfixAkGDBhAamoqw4cPp1WrVhw4cIBly5ZhbW2Ns7Mz\n8+bNw8nJKd/99+zZw5o1a1CpVHh6erJ06VI+/fRTrly5wt27d0lOTmbKlCk0aNCA1q1bU7lyZfz9\n/Rk0aBBTp04lKysLa2trZs+eTdmyZfM9l7GxsYwZMwatVouHh4fJ51KaKUxMF9GqNUWKQwH15g/n\n7JJNZMXfyzckOyGZXzsOx6lGRZp8PokDV6YZBijzn1Sg1WgeLyYfeTumSacukHT6Iq6NahP9wx8F\n7mfyeOrH+7WqWwsXcPvj5ZSfOh3PPn2J3fRlofsolCbq+tFzUsS4R+X90H3v5EWSTkXg1ij4Ybmm\nrok8dV2UGO8er3F1yQqDxy9NezhKnXr6HKlnL+BUvy7xP/+ab3kKE+fBuC6KFpcf51rVsHJ2JPqX\nAyZyMO/5eJSpxRryHj5XDX+ds2D9exkEV9Tw+2kLQlbb8Ov0dKzuv4N9+acVM3o+4UyXIlwHBe6u\nsqDl4rcJX/A1GfFJRT9sMZ4TpUqFnY8X6tR0jgydhq2vF41WzzSKK85rU6GyuJ9DBmFDp2Pn60Wj\n1TP0IzP6uGJ6rdpV9cfzlY6cHzHBZI6lkTnOiVFcMb6nKlQq7H09yU3L4OCQmdj5etFs3dR8O6Cl\noS4e7lCEdqIIMQ7VKxM0fxxRO3/i7sFjpo/36OGfYl041ahE3YWjubFjD3F//1PkHAwPZJ52Uzz7\nitQBzcnJwd3dnfXr16PRaHjppZeIiYnh119/pWPHjgwYMIDff/+d5ORkQkJCiIiIMNn5BKhRo4bR\nttTUVJydnfX/29vbk5KSkm8HtFWrVgQEBDBjxgwsLS0ByM3NZfbs2ezYsQM3NzfWrFnDnTu6hmzT\npk2cP3+e5cuXY2FhkW9O0dHR1KlThx49epCVlUWLFi0YOXIkHTp0YM+ePbz22mt8//33fPHFF0yZ\nMoWQkBBatmzJ9u3biYqKKrD+bG1tWb16NQkJCfTo0YPnn3+eqVOnsnXrVry8vNi4cSOff/4548eP\nz3f/77//niFDhvDiiy/yv//9j9RU3RQVGxsbvvzySy5dusTo0aPZtWsX0dHRhIaG4uLiwgcffEC/\nfv1o2bIlhw4dYvHixcycORMnJyejc7lq1So6d+5Mz549+fHHH9m6dWuBz6k0ef4rXUdAZW9LyuWb\n+u02Hq5kJ6WizjT8YJpx5y7OQVWM4hwq+WBXzoPAkbp7NazdyqCwUKK0tuTc0i24N6zJnT90U0eS\nL1wjJeI6jlX8DMrOvBOHU+DDexisPVzJSU5BkyeHosQ8SuVgh0+3F7m+MfThRoUCTW5uofWTExuL\nXZ7XnKW7O7kpyWizirZQi0P9BmRevUpuwl00mZnc2/cHZZ4znvLzgP9bPfBoobvHQ2VvS+rlG/rH\nrD1cycnnnGTeiadMzSqFxuWlcrDDr3sHrm7Is2CEArR56iQrNg6HgIf3HVm5u5H7SF0XFmNXpTIK\nCwtSTpzWx1g42OP1aidub8lzu4ECtGrD81HlrR54tqivr4u816e1yevTuC7yi8uPd/umRP2436hn\n12TzAn0O5jwfjyrrouXU9YcfYGKTFDjZabHLcxuoZxktlbw0BFfUfaBpU0vNtK8V3IxX4O+t5fwt\nJWoNNKzy+KOfdYa9SvnWtQGwtLcl8dLDkX07T2eyktLIzSja4iDuNSvg6ONOo3G6ETZb9zIolEos\nrCw5OH2jQWxJvUay4nUjE1E//AlAxq0YEk9exLttEwCabf5Qn0NxXZtZ8YkA3LqfQ/qtGO6dvGhQ\nDhTfa9X9hTZY2NkR+KnuCzxLN1f8J4/hxsovuHcw3GTe5lBS7YWpc+LdtgnVQrrhZSKHp/meemnd\nd7ocdu/X55BwIgLnIP9SUxf5xsfE41Tz4fu3lYeb0ft3YTGe7ZpTdcxQLi1ZS+ze/Bddyqs46sK7\nfVMCxw3h/OL1Jr+wNMVc7ab4bylSB1ShUJCQkMCoUaOws7MjPT2dnJwcQkJCWLlyJQMGDMDLy4vg\n4GCyH2Mlr7wcHBxIy3NfWVpaGo6OjkXePzExEScnJ9zcdAu3DB06VP/YoUOHsLCwMNn5BHB2dub0\n6dMcPnwYBwcH/fPo0aMHM2bMoHLlylSqVAkXFxciIyOpW1c3TbF+/frs3r27wNzq16+PQqHAzc0N\nR0dHkpKScHBwwMvLC4CGDRvy0Uemp9VNnDiRVatWsXnzZipXrky7du0AaNJE10BWrVqV+HjddA8X\nFxdcXFwAiIiIYNWqVaxduxatVotKpcLa2jrfc3nt2jV69tQ1APXq1XumOqB/vTEJACsXJ1pu+xB7\nPy/SbsZQoXtbYv40/mYx7vBpAkf2MYq7d/oyv700Qh9X7a2uWDk7cmbhRixsrQme9hZZCckknozA\nobIP9hXLce9MpEHZCeEnqTpiALa+3mTcukO5Lh2I33/ksWMelZueiW+3F0i/HkXcvjAcqlXCKaAK\n52evKHA/gJRjx/B+622syvmQfTsK15c6k3zoUKH7PVCmRQucmjfn9sfLUVha4tyiJSn/mP7GNnL1\nDiJX6zpmVi5ONP1qEXZ+3qTfvINv1/bE7je+/+Nu2Cmqvd+v0Li8ctMz8Ov+AmnXbxP7RziO1SpS\nJrAKZ2Y+XHgk6chxKrwzBGufcmRF3cbrlU4kHjhsUE5hMU51gkg+ftJgH3V6Bl6vdSbjZhSJ+w9i\nV6UyDjWqceXDZQZxl1fv4HKeumj+1UL9cyzftZ3Juqjxft9C4/LjWi+Ac4vWG20/3He8Pgdzno9H\nNauuZtH/rLgep6CCh5ZtByxpE2TYYX0uQM3C76w5e1NJTT8NRyOVKBRafN10newjly1oXFVdlPUy\njJxY8R0nVug+CNu4OvLqtzNxLO9Jyo1YqvdqxY3fTxS5rLiTV9jR7uF04zrvvoK1i0O+qzmW1Gsk\n43YcyeevUO6lltzc/jNWrmVwrlVN//jBvhP0ORTXtZlxO46k81fweakFN7b/os/hype7DOKK67V6\nY8Uabqx4ONuqztfriJy7+Kmugvu0lFR7YeqcAESs3EnEyp36HIrrPRXg3vmr+HZ+nmvb9mDl6oRr\ncFUiN35fauoiPwnhJ/AfPgBb37Jk3Iqm3GsdiP/r0fd40zEerZtQZeQQTn0wm5QLkfkdwsjTrguv\nNo0JGD2QoyPmkXzeeCX/wpir3XxWaORnWIqkSB3QsLAwKlSowLJly0hISGDv3r1otVp27dpFly5d\nGD9+PKtWrWL79u107doVTRGH3vOqV68eixYtYsiQIdy5cweNRpPv6OcDCoUCbZ5v+d3c3EhOTube\nvXs4OzszZ84cXnnlFQA+++wzNPLOOAAAIABJREFUJk+ezNatW+nd23i1MNAtFuTo6MisWbO4fv06\n27dvR6vVUrFiRbRaLWvXrtXvW61aNY4fP07Lli05efJkvuXldfq07tvYuLg40tPTcXFxITU1ldjY\nWDw9PQkPD6dixYom99+2bRvDhw/Hzc2NadOmsXfvXkB33+yrr75KRESEvjOrzDPtonLlygwePJh6\n9eoRGRnJkSNH2L9/P9HR0Ubn0t/fn+PHj1OjRg19vs+a7MRkTs5cRf2F76OwVJF+K5YT03QffssE\nVCJ46lD+emNSgXGmqDOyODr6I2qO7otCpUKTk8PxKZ+SGWt4/2VOYjLn53xK0LwxKC1VZETFcG7W\nJzjW8KfGxBCODBhrMqZAGg2nxi2k2qjBVHqzF1q1mjNTP9IvI19g7kn3iFqymPJTp6JQWZIdfZtb\nixZiW7UaPiNHcfndkAL3j169Cp8R71N11WrQQvLBA9z9X/4/5fCo7MRkzs7+nNofjkKhUpERdYfT\nMz4FwCmgMoGT3+Zw3/EFxpmuEy0nxi6ixphBVHmrJxq1mpOTlxvUSe69JCIXLKfqzIkoLVVk3o4m\nct5H2FevQqWxuhUzTcU8YONTjqw7sY8cW0PElNlUGBGC76A+aNVqLs9cUOACJ9mJyZyevZI6H45E\nqVKRHhVjUBdBk9/iYN8JBcYVxs7Pm4zoOJOPm/t8PMrNUcucN7L4YL0NubkK/Nw1zOuTyZkbSqZ9\nbU3ouAw8nLR8MiSD2TusycgGKxUsG5yJtW7yC9fjFZRzffz3nEdlJqTw95T1tF72DkqVipSbsfw1\n6QtdnjUr0HzWAHZ1m/XEx3lUsZ4T4MS4xQSMG4Jf13agUHJl3U4CJw41iCnua/P4uCUEjhuMX9d2\nKBRKItftNPrgW2yv1WeUOc5JzXyui+J6TwU4OmYptcYPpEK3tqBUELHmW5LOGXeISkNdPJCTmMyF\nuZ9Sc+4YFJYqMqPucP7+e3z1Ce9wdOAYkzEAlUJ0o8HVJzxcRT/p9AUuLTFeNC4/T6Muqr37OgqF\ngqDJb+nLTTx5kfP5fHlZGHO1m+LZp9BqC/7J1NDQUE6cOMHZs2exsbFBoVCQmZnJxIkTUalUzJ07\nF1tbW5RKJbNmzcLT05OePXvy3HPPMXbs2AIPPmHCBDp16kSL+z/78Mknn7B//340Gg0TJ06kQYP8\nl2oGWLp0KX/99RezZ89m5syZbN++nT///JPPPvsMpVJJYGAgU6ZMoW3btvz0009kZGTQo0cP1qxZ\nk29n78E0VkdHR6ysrIiOjmbjxo14eXmxe/duPv74Y/bs2YNCoeDGjRtMmjQJCwsLHB0dSUtLY/36\n/F+4oaGh/PDDD+Tk5JCens7o0aNp2rQpBw8eZPny5SgUCsqUKcP8+fNNdrh///13PvvsM+zt7bGz\ns2PevHls3ryZ8PBwlEolGRkZTJs2jaCgIJo3b86BA7rpFDdv3mTGjBlkZWWRmZnJ5MmT8fX1JSQk\nxOhcVqpUibFjx5KdnY2vry+3bt0q8L5WgLi4wjs/xc3Dw5Hv6/cpPLAYdT62hd+bdjdrDgBtDn3D\n6RfamzWHWr/sZU8j42X6S1qH8G2Eteps1hwa7/uenxu9btYcAF4M/9rs56RD+DZyf/Ixaw6qjrpb\nJTbUfNOseQw8u7ZUnA/A7Nfni+Ffl4rXqZqirfhZnCzoUyrOh7nfT0H3nloa6mJfs/x/TqQktTq4\ns1TUhbnbTdC1nc+CmRWHFx5kZtOvFTLoUQIKHQHt2rUrXbua/o2i7du3G2377rvvinTwDz80XA57\n+PDhDB9etBM3cuRIRo4caZBDy5YtadnScAWt33//HQBra2v9yGF+qlatyq5du/J97OWXX+bll1/W\n/3/ixAnmzp1LhQoV2LFjB//8Y/rmbVP116xZM5o1K9oPVrdp04Y2bdoYbe/UqZPRiO6DzieAn58f\n69atM9rP1OrC+cUKIYQQQgghClfwsJ544Kn/DMsDp06dYtEi45+T6NixI2+8Yfwj2/n57bff2LBh\ng9H2/v370779vxvpWbFiBWFhYUbb582bh5+fXz57GCtbtiwjR47Uj/zOmzePGTNmEBlpPJ9/zZo1\n2NjYFFpmdnY2Q4YMMdpeqVIlZs2S6QtCCCGEEEKIZ1+xdUCDg4MLncJZmLZt29K2bdunlJHOsGHD\nClyhtygaNmxIaGiowbYn/S1SKyurx6qvoo4UCyGEEEIIIURpUWwdUCGEEEIIIYT4/0LDv1iS/f8h\nE79UK4QQQgghhBBCPF3SARVCCCGEEEIIUSJkCq4QQgghhBBCPCFZBbdoZARUCCGEEEIIIUSJkA6o\nEEIIIYQQQogSIR1QIYQQQgghhBAlQu4BFUIIIYQQQognpDF3As8IGQEVQgghhBBCCFEiFFqtrNck\nhBBCCCGEEE9icvkR5k6hUHNvfGzuFGQKrvj34uJSzJ0CHh6OZJ5pbdYcbIL+4Pv6fcyaA0DnY1v4\nrUkPs+bQ9vAODjz/qllzAGj+13fsbdzTrDm0D9uOmi1mzQHAgj5mz8OCPuxp1MusOXQI3wbAN3UG\nmDWP7ic2lorzAZSKPErD6/TnRq+bNQeAF8O/LhXn49u6/cyaA0CX45tKRV2Y+/0UdO+ppeE1Yu52\nE3Rt57NAI8N6RSJTcIUQQgghhBBClAjpgAohhBBCCCGEKBEyBVcIIYQQQgghnpDMwC0aGQEVQggh\nhBBCCFEipAMqhBBCCCGEEKJEyBRcIYQQQgghhHhCGq3C3Ck8E2QEVAghhBBCCCFEiZAOqBBCCCGE\nEEKIEiFTcIUQQgghhBDiCWllGdwikRFQIYQQQgghhBAlQjqgQgghhBBCCCFKhEzBFf9Z+49l8vHm\nZLJztVSrYMmMd51xsHv4ncvufels2p2q/z8lXUvsXTV7VnuhslAwZ/U9Ll7LwdZayattbHmjk0OR\nj+35XB1qDOuF0lJF8uWbnJq1hty0jH8VV3/RB2TFJXJm4UYA3BoEEvB+b5QqC9RZ/8fefcfXdP8P\nHH/dmR3ZicSWCJFF7D3bGB3UJqiqPWsTW2u2tHRZpUonWqV8idokNhErhCBk7z3u/f1xuVz3JqLK\njf4+z8fD4+He876f877nfD6fcz/nfM5JARFLN5IaEQVAgx+WIVUoyLwRzZWPv6YoW7cs+yZ1qT6i\nj36MVEqNsQOwa+iHRCbjzpYdxGzfB4BDswC8Zo4iNy5RW86ZYTMpys6l2tBeOLVqCED65Rt638+2\ncQCVh/ZHqlCQdfM2Nxat1MupNDE1F0wlPzGZqBWrMatSkRqzPtIuk0ilWFSvwpUZC5GZmeHa820A\nGm1agtzSHBMnO468NZz85DSdMi2rV8RzwiDkluagUnF50Woyrt7S+w4lUdhY4T17FKblHTVlLFxN\nWvh17XIp7wJ5AKjJQM3RUpetVquZMW0H7h6ODPqgyXPl9W96WXk4NK2Dx4jeSJUKMm7cIWLBNxQZ\naCPPijNxsqfh+gWc6DuZgrQMnc+auTrSaOMizoz52GAOLs398B7dHZlSTlrkXU7PWUdhVm7p46QS\n6kztj2OAJwCxRy9ycflPAJRv4U/9+R+SHZukLefg+588/4Z6yn+tXjg0rYP78D5IlZo+KeLj4uuB\nwTipBM9xA7B/2HdFb/6Tew/7rkdMyzvSaONizo5ZQPpVTV/p1qUdlXp2BKDO0olcWvCttv44Nq1D\njRG9tHUufMG3BnN6Vpypkz2N1s/nWN8p2rIV1hbUmvg+llXdkJooifrud+7vPvKPt98jL6teODfz\no/boHkiVCtIj73J27hqDbaSkuKrd21KlSytkJgpSrtzm3Ny1qAoKUVhb4DelP1bVXJGZKLm2bgd3\ndx174ZxfxrYo9thZmpgSjq+PmJZ3osGGxZwbO5+Mh3X0EWO1kcp9OuP6VmsAmn8zmbMLNpB1Lx54\nPftOoWwRV0D/H1m9ejUXL140dhqvRHJaEbNWpfLpJDt2rHTGzVnO5z+k68S81cqcXz514pdPndi8\n2BEHGylTB5fD3kbG0g1pmJtK2b7CiR8WOnDsbB6HTut3roYobazwmz2EM5NWcPC9SWTfi6fm6J7/\nKK56/87Y1fHUvpbIZdRdOIqLC9ZyuPd0Itf9jv+84ShtrAAIn7aM0J5jybkfh/vIvjplKWys8Qoe\nYTDGrUs7zCq6ENb3I04NmkrFnp2w9nIHoJyPJ9FbdnCy/yTtv6LsXBxbNcCugR9hQZMI7T0eqamJ\nzvrkNta4TxvD1eBFnO07gtz7sVQe1v+5Y9z6dMHaz0v7Ouf2XS4MGq/9l3rqPAn7DpF8OJSE/x3g\nwqDxAIQNnEZeUipXl63XG3xKTZTU/SKY6B92ENZ/ClHrt+Izd0wxe7R4NScNJuX8VU70+ojw2Svx\n/eQjpCZK7XIVR1GxGxW7n2vwefNmAoMGbGLP7ojnzunf9LLyUNhY4T1zOBemfsax7uPJiYmjxsg+\nzx1XvmMLGqyeg6mTnd5npUoF3nNHI1EYPs+qtLWi3tzBhE5cyf/enUrWvQR8xvZ4rrjKnZtiVcWF\nvd1nsK/nTBzqeeLWvj4A9n4eXP9+NyE9Z2n/FWaXrg8pzn+xXtQOHsHFaZ9yvMc4smPi8RhhuB4U\nF1ehS3vMK7pwos8Ewt6fRqVeHbH2qq79rFSpwOepemBa3hH3Yb04PWQWADkPEnAf0k27Lu+Zwzg3\ndTlHun9Edkw8niN7G8yppDjXjs1paKBu+swaTm58MseDpnFq1MfUmjAAEwP193m8rHqhtLUiYO4Q\nwiZ9QUiXyWTdi6f2GAPHshLiXNvUo3qv9hwdtoiQbtOQmSpx7xcIQMC8IeTEJXOg90yODluE7+Qg\nTJ1sXyjnl7EtSjp2liampOMraOpo7RL6KmO0Ebv6Pri+3YaTg4MBiPn7NPXmDgZez77zVVK9Bv/K\nAjEA/X9kyJAh+Pr6GjuNV+LEhTy83RVUdtV0qD3eNOevIzmoi7k7/LvfM7ErJ6P7GxYAXL5ZQOeW\nZshkEhQKCc0DTAk5oX/G0RDHxj6kXo4i624cANG/heDWoelzx9nX88KxiS/RW/dr31MXFhHSYTTp\n16IBMHdzIj8tE8fGPgDk3I0FIGbbXlzebK6zPruGvqRfuWkwxrFlQx7sPIC6SEVhRhZxIcdwCdQs\nK+fjiV09b+pvWEzAN/Ow8a8FQMLBk5wZEoy6sBCZuRlK23I667OtX4fMqzfIvfcAgNjf9+DYvuVz\nxZSr44NNg7rE/r7H4La29vXCvlUTbi77Wm9Zlf7vkJ+SRsz2EL1l9g39yI6JI/H4Oc13OXyaizOW\nA5pBfo1xA2i4cRGNflhC7ZkjkFmY6ZUhkUlxbFaXmD805WdGRpN99wEOjf21B3IptZDSESnNAXOD\n38GQHzefpktXfwI71C71Z16Gl5WHfUM/0i7fJPthXby7dR8ugc2eK87EwRanlvU5O36RwXXUnDyI\n+zsPUpCabnC5c2NvUiKiyLyjaX83f/2bSh0aP1ecRCpFbmaCTKlAqpAjlctR5RVocvdzx7G+F223\nzKXV+uk41PXUK/t5/RfrRdqVx/v33ra92n7nSfYN/YqNc2rZgJg/D2r7rth9xykf2EL72ZqTPuD+\nrkM69UAikyKRy7XtWmaqRJWv2W8ODX316lx5A3WzpLhHdfP0U3VTYW2BfQNfbqz5DYC8+GRODJpJ\nQVomL+Jl1QunRj6kRESR9bDu3/p1PxU76F9RLCmuYudmRP6wm4L0LFCrOf/xd9zZeQyFtQVODb25\nuno7ALnxKRwKmqOJewEvY1uUdOwsTUxJx1cAz4mDebDrIAVphvsqY7SRvKRUri5eo73SmnL5Nubl\n7YHXs+8Uyh4xBdcIMjMzmTFjBhkZGcTHx9OhQwd27tzJX3/9hUQiYd68eTRu3BhnZ2fmzp2LhYUF\n9vb2mJiYsGiR4R9bK1euJCoqiqSkJNLT0wkODqZevXq0bt2aatWqUb16ddLT0+nYsSMNGjRg2rRp\n3L9/n4KCAmbOnIm3tzezZ88mOjoalUrFuHHjaNiw4SveMv+e2MQinB1k2tfO9jIys9Vk5aixNNf9\nI8Ep6UV8vyOTn5Y6at/z8VCy81AO/jWVFBSoCQnNQS4r3R8XNnW2Jzc2Wfs6Nz4ZhaU5cgsznem1\nJcXJzEyoPTGIsFGLqdy1jU756sIilHbWtNj8MQobK85OW4llFVedmLz4JOSW5sjMzbTThEydHHSm\n0T4ZY+pkT25cks4yS/fKABSkZxC7+zAJh05Szq8mfksmE9ZvInkJyaiLiqjQLZBqQ3uRl5Csk4PS\nyYH8J9eXkIjc0kInp5JiZGZmVB07mIgJc3B5+02D27rKyPe5s+YHvalQoJk+FNp/isHPmVcqT35S\nKl4zhmHlUZmCjCwiV20GoOqAd1EXFRE2YCoA7sN74zGiD1eXrtMpQ1HOCiQSClIfT/vMi0/GxMke\nEwfNWXwV54EMJNRCSktU7DaYz9OCZ3UAIDT0+aYE/9teVh6mzvbkxuvWN4WlOTILM90pjCXE5SWm\ncGHKpwbLd3unDVK5nJg//qba+10Mxpg725H9RPvLiUtGYWWO3MJUZypZSXG3dxyhQvv6dNq7AolM\nStyJSzw4fB6A/LRMonce5/6BM9j7e9BkxThCegQ/55bS9V+sF3lxpasHxcWZOtuTF/9031UJALe3\n2yCRy4j5Yz9VBz6uBzn34oj+YQdNf1kBgF1dL0I/mKld15N1LreUdTP3qbp5fspnet/VvIILeUkp\nVOnbCcfG/kiVcm79sJPsOw+ef8M94WXVC3MXO3Ke2O458cW0kRLiLCu7YHLJmiarJmHqaEPSuetc\nWvET1tXdyE1Mxb1fB5yb+iJVyon8fjeZd2JfKOeXsS1KOna+6PHV9WEdvf/HfqoM7Gpw/cZoI1lR\nd3nyVIDPmO7E7DsFvJ59p1D2iAGoEURHR9OpUyfeeOMN4uLiCAoKwsvLi9OnT+Pn50dYWBjTp0+n\ne/fuLFmyBA8PD5YvX05cXFyJ5ZqamvL9998TGRnJhAkT2LFjBw8ePGDbtm3Y2toydarmB/VPP/2E\nm5sby5cv5/bt2xw8eJArV65ga2vLJ598QkpKCv369WPXrl2vYnO8FMU9Bltq4Jr/1n3ZtK5vSgXn\nx81hwkBrPtuYTs+JCTjaSmnsZ8L5q/mlWrdEYnigqi5SlSoOCdRdOJqITzeRl5hqMCQ/OZ2QDqOx\nrlmFRl9P596OQ4bXqXpindJi8lKpkBhY9ijf8KnLtO+lXbhKavg17Br48mDXQQDu/baHe7/todrQ\nXlhWq/j4a5SwvmfFIJFQY85Ebn2xloKkFIMhVt41kZezImHfYYPLEw6fJvdBgsFlUrkMhyZ1OD1i\nLukRN3BsUY86y6dx5J0RODQNQG5ljn0DzWwBiUKuN4VXk7vhCSRqleqJ9WoGp2quIMEHsABe7Az/\nf0Gx+/3pNlLKuCdZeValQtd2nBoy5x/loNdOS4jzGvoueSkZ/NlmNDJTJU2Wj8UjKJDITXs4MWGl\nNjbpfCRJFyJxauxdYk6CxtP7AEkxba1IZbhfU6ke1oP2nBo6W2+xXUNfnFo35PDbw2m1Zy3xh07j\nM2s4ZycsLbZd69fN0sXpfEYuw9zNmaLMHMI+nI15BWcarJ6jvWpV5hR7LFOXOk4ql+HUyJvQ8csp\nyisgYP5QvEZ1I2bfSSwqOFGQlcPh9+djUdGJFutmkvWCA9CXohTHsn9yfLXyrIpblzc4M2zWc6f0\nstvII4qHt/cUZucRvvLXh6sSfWdJxJ9hKR0xADUCBwcHNm7cyN69e7G0tKSwsJAePXqwfft2EhIS\naNOmDXK5nPj4eDw8PAAICAjgr7/+KrHcRo0aAeDh4UFiouZMnK2tLba2uvdUREVF0aKFZvpFlSpV\nGDhwIHPmzOHMmTPae0QLCwtJTk7Gzu7F7k0xFhcHGeGRBdrX8UlFWFtKMDfV76T/dyyHKR/oTh/N\nylYxPsiaclaa+PXbM6hUvvjmUmPYezi3CABAbmFGxo272mWmjnbkp2VSlJun85mc2CRsvN314iyr\numHu6ojX+H4AmNiXQyKTIjVRcHn5Zhzq1yb2wGkA0q/eJuN6NMh0v5eJox0FaZmonlhnXlwi5Wp7\nGIzJjUvUXrV7tOzRGVy3994keuN27TIJEtRFRZozuFIJmddvA3B/x36qvv/eE+tLwLJWjcdlOthT\nkJ7xVE6GY8yrVMS0vDNVRg0CQGln+3AbKLmxeBUADm2akbDnAJUG9ca2qebekZRjp7izbosmn50H\nKE5eYgpZt2NIj9A8OCnh8Gm8pg/D3M0ZiUzKtc82kHRCczZWZmaCVKnEumY1vGYM05YRNlBzQkdu\nZUFhhmZQaeJkq3N2WV9Zufvi1as+pDuOLeoBmjaSeeOOdtmjuvh0G8mNTaRcbfdnxj3JtWML5BZm\nNFg3X/sZn3mjtcvb/TxPm0N65D3t+2ZOtg/bqe6JpuwHydh5VzcY59a2HucXbUJdWERhZg7Rfx6l\nQrv63P79MNV7tOHqup3az0kkEtQFRc/eUP9xEnyR4KZ9rXSw0f7fUL8FkBuXSDlv/Xqgys0jNzYR\npb1uGbnxyZTv2AKZhRkN1i7Qvu89bwyRKzdh19CPhCOnKUjRTDmUKuU4Nq1Dkx8W6fXfJsX23/p1\n01Dck/ISNSfT7u3SnDDMvhdH6oVrOuUYW63hXXFpWRcAhYUZ6U8ey7R1X/9YZudT3WBcbkIq9w+c\n0V4Zu7vrGDWHdOHmlr0A3NmhOYGYdTeepPPXsX2irZUVJR07SxNT3PHVpUNL5BZm1FujeUiaiYMd\nteeOJeP6LSwqG7eNJBw5g6V7JfyXTgYg9fod2m7WDFRF3yn8G8Q9oEawfv16/P39WbZsGYGBgajV\naho3bsyVK1fYunUr3bt3B8DFxYUbNzQ/kC9cuPDMciMiNDfdX79+HWdnZwCkBs7SVq9enfDwcADu\n3r3LhAkTqFatGp06dWLTpk2sWbOGwMBAbGxs9D77umjsb8LF6/lE3y8E4Ne92bSqb6oXl56p4k5s\nEX6eSp33f92bzZc/aX6cJKUWsS0kmw7N9e8DfOT6N1s50mc6R/pM59jA2dj6uGNRUbMPKndrS9yh\nM3qfSQgNNxiXGn6D/Z3GaMu7s3U/D/aGcnH+WtRFKnxnDcHWTzNos6zmhkUVV+7+oflBY1bRBQC3\nLm+QcOSUzvqSwi5QztvDYEzC4VOUf6s1EpkUuaU5zu2bknD4FIXZuVR4LxDH1prp2JY1qmDt5U7S\nifNYulfGK3ik9qE75Tvo3t+ZevI8VrU9Ma1QHgCXdwNJPnqyVDEZEdc43e0D7YOGYv/YQ+L+o9rB\nJ4C1f21Sz1zkzrot2rg767Ygs9Tcx5t68TrFSTx+DrPyTljVrAqgua9VrSbnfjxJoReo2D0QiVwG\nEgle04fhPqIP6VejCA2arP2nLlKRePwcFbq002wb90pYVK1AypkI1KpHp0A1uUjwAFKB0t1H/F90\nc/WvhPabQmi/KZwcFEw5bw/MH9bFCl3bE3/4tN5nksIuliruSdeWb+RYt/HadeUlJBM+6/EZ9UcP\ntTgQNA873+pYVtK0v2rd2nD/4Dm98uJOhBcbl3olmgpvaNqGRC7DtWUdki7epCArh+o92+HWVjPg\ntvGshK13NWKP//94CFxJ1FzUPpgL0N+/T/Vb8LjvMhSXcPg0bm+1eaLvakLCoZNcX76R493Hadtr\nXkIyl2Z9QcKRM2Rcu4Vj07rIzDQPTst5kEjS6QiO95tK6KCZ2Hi7a9dVqWu7YutmaeKelHM/gbQr\nUbh10pwAVtqVw8anBmmXbz73dnxZrny9jQO9gjnQK5iD/edqjlEP637Vbm15cPCs3mfiTlwqNi4m\n5CRu7RogNVEA4No6gJSIKLLvJ5By+RaV3tLcp2hiZ42dnzspEVF65RtbScfO0sQUd3yNXLGBEz3G\nah/ul5eYTMTsz4mYuUL7HhinjZhVcCbgq9lErd8KwOWvtom+U/hXiSugRtC6dWsWLFjAX3/9hZWV\nFTKZjIKCAt58802OHz9OpUqaqyezZ89m+vTpmJubo1AotIPK4ly5coUBAwaQk5PD/Pnzi43r1asX\n06dPp1+/fhQVFTF9+nQ8PT0JDg6mX79+ZGZm0qdPH4OD19eFfTkZ80baMHFZMgWFUMFFxsejbYm4\nkc/cr1P55VMnAO7EFuJoK0Uh150q8kFXS2Z8nkrXcfGo1TCshxXe7kpDq9KTn5LOhbnfErBkLBKF\nnOx78ZyfpXlITrlaVfGd+SFH+kwvMa44RTl5nJ7wGbUn9EMil6MqKOBc8JdkRGquJvl8MgGpQk7O\nvTgi5q3CqmY1ak0fzsn+kyhISefy/K/0YkDzwAQzNxcabFqGVCEnZvs+Us9dBuDi5MV4TviAaoN7\noC5ScSl4OQVpGcTuOYxZBRcabFiMqqiIrKi7OrkWpKZxY+EX1Jw/BYlcTu79WCIXrMDS053qU0Zy\nYdD4YmNKw6yCK3mx8Qbe1wxm1UW6Z0wfXcEMDZpMfnIa5ycvpdakwcjMTFAVFHJh6jJU+QVErf+N\nGmP602jTEiRSKRmRt7n+xfcGc7i6ZC1e04fReEtz1Gq4NGcVhVk5FD7cFlJaARIgG9VzPAX3vy4/\nJZ2I+V/jt+gjJHI5OTGxhM/5EgDrWtXwmjGU0H5TSox7UXkpGZyevZZGS0chVcjJuhfPyeDVANh6\nVSFg9iBCes4qMe7Css34Tw3ije0LUavUxIdFcG3DLlCpOT5uBf5TgvAa3kVzT/HkL8lPfbGHzfwX\nXZ7/Nb4LH+3fOC7N1fRJT7ZXTd9lOO7etr2YVXCm0Q9LkSrk3NseQsq5KyWu8/6fBzAr70jDjYsB\nsAvwInyepu/NT0knfP43+C8aj1QuJzsmTqdues8YwvF+U0uMK8m5yZ/iNXkQFbu2QyKRcnPdVtKv\nlL1BF2i2xdk5a2i4dAxB1S84AAAgAElEQVRSuYyse/GcnvktADZeVakz6wMO9AouMS7qlxCU1pa0\n3jIfiVRK6tXbhH+2HoCwCZ/jN3UAVbu1QSKRcHX176ReNu79zYYUd+z8N46vpWGMNlIl6F1kJiZU\n6qG5p7bdz/NQ5Rfyd9A80Xc+w//feU7PR6Iu7rGggtFt3ryZDh06YGdnx/Lly1EoFIwaNcpg7MqV\nK3FwcKB3b/3Hxb8sCQkZzw56yRwdrci91NqoOZh6H2BnQN9nB75knc9sZn+j7kbNoW3orxxr/o5R\ncwBoeuQP9jXUfyz8q9Q+7BeK2GzUHABk9DV6HjL6sreB/p9veJXeOPkzAL/5DzBqHt3ObywT+wMo\nE3mUhXa6p0Evo+YAEHjypzKxP7bXCTJqDgBdzm0qE9vC2MdT0BxTy0IbMXa/CZq+83UwznWssVN4\nphX3Pzd2CuIKaFlmb2/PoEGDMDc3x8rKikWLFjFq1CjS0nQfiGJpaYmXl1cxpQiCIAiCIAiCIJQN\nYgBahgUGBhIYGKjz3qpVq4qJFgRBEARBEATBWFRiXmmpvL43+QmCIAiCIAiCIAivFTEAFQRBEARB\nEARBEF4JMQAVBEEQBEEQBEF4QerX4N/zys3NZfTo0fTp04cPP/yQ5ORkg3EqlYrBgwfz448/PrNM\nMQAVBEEQBEEQBEEQ9Pz444/UqFGDLVu28O677/LVV18ZjFuxYgXp6emlKlMMQAVBEARBEARBEAQ9\nZ86coXnz5gC0aNGCEydO6MXs2bMHiUSijXsW8RRcQRAEQRAEQRCEF/S6PwX3119/ZeNG3b+5am9v\nj5WVFQAWFhZkZGToLL9+/To7d+7kiy++4MsvvyzVesQAVBAEQRAEQRAE4f+57t270717d533Ro0a\nRVZWFgBZWVlYW1vrLP/999+Ji4tjwIABxMTEoFAocHNzo0WLFsWuRwxABUEQBEEQBEEQBD1169bl\n0KFD+Pr6cvjwYQICAnSWT548Wfv/lStX4uDgUOLgE8Q9oIIgCIIgCIIgCIIBvXv3JjIykt69e/Pz\nzz8zatQoAL777jv279//j8qUqNXq13y2siAIgiAIgiAIgnGNcB5r7BSe6au4z42dgpiCK/xzCQkZ\nzw56yRwdrVjv9aFRcxh0eQ0/+w00ag4APS9sYIXHCKPmMC7yK6691dKoOQB4/nmIXfX6GDWHTqe3\nsCOgr1FzAHj7zGZ+8x9g1By6nd9YJnIAKDhW26h5KJpGsL1OkFFz6HJuE0CZyGN/o+7PDnyJ2ob+\nys4y0E47n9lcJvZHEZuNmgOAjL5lYlsYu88CTb91qnUno+ZQ/8Auo/eboOk7hf8OMQVXEARBEARB\nEARBeCXEFVBBEARBEARBEIQXpDJ2Aq8JcQVUEARBEARBEARBeCXEAFQQBEEQBEEQBEF4JcQUXEEQ\nBEEQBEEQhBekEn9bpFTEFVBBEARBEARBEAThlRADUEEQBEEQBEEQBOGVEFNwBUEQBEEQBEEQXpCY\ngVs64gqoIAiCIAiCIAiC8EqIAaggCIIgCIIgCILwSogpuIIgCIIgCIIgCC9IPAW3dMQAVPhPq9DC\nh3rjuyJTykm+fo+jwRspyMotNr75x++TciOGS9/t1b7X++hnZMenal+Hr/8fUTvDSlxv+eZ++I7p\nhlQpJ+36PU7OWUehgfUWF6e0tiAguD82npUoysnj1h9HifwxBADraq7UmzUQuZkpoObi578Se/zS\nM7dFlVbeNJ3wDjKlnMRrMYRM/4H8TP2car7dgIDB7QA1BTkFHJz/C/GX7iAzUdBmTk+cfSojkUqI\nvXCbv+f8TFFewTPXDWBRrxGO/YcgUSjIux1F7BeLUeVkG4x1GTeVvOhbpGz/GQDXqXNRlHfTLlc4\nlyfn0gViFkwv1bqdmvrjOaoXUqWcjMi7XJy/msKsnFLHyS3M8J01BMsqriCRcG/XEaI2/ollVTf8\nF4zUfl4ik2LtXokzk5YbzqOZP16jeiJVyEm/cZfz89YYzqMUcfWXjiM3IYXwJRsBsK/nRe3xfZDK\nZOSnZXJp2SbSI+/ole3S3A/v0d2RKeWkRd7ldDF1s9g4qYQ6U/vjGOAJQOzRi1xc/hMAjvVq4jO+\nF1K5jKK8fM4v2UzKpSiD2+JV5/Eshy6oWLFVRUEB1KgoYd77UizNJNrlfxxT8f1elfZ1Zg7EpUDI\nMhmWZrDgBxURt9So1OBTTUJwPymmSomhVelxbuZH7dE9kCoVpEfe5ezcNQa3RUlxVbu3pUqXVshM\nFKRcuc25uWtRFRRiVc2VOsGDkJmbglpNxBe/vPIcXFrUIWDeELJjk5BbmGHmaENOXDIAMnMzirJ1\n67Z9k7pUH9EHqUJB5o1ornz8tSZGKqXG2AHYNfRDIpNxZ8sOYrbvA8CsogteM0agKGdFYXYul+et\nJDv6PgCV+nSmfOc2qIuKKEhN5+qi1eTExGnXJ5HLaLJ2Fg/2hxG16S+cmvlT84n2d7GEdvqsuICl\n48hLSOHSw3aqsLbAe/IALKu6ITNVErnuD2L+OvrK94nC2gK/Kf2xquaKzETJtXU7DObwvNRqNTOm\n7cDdw5FBHzT5V8qEsrEtXrTParR0FJaVnLRxFq6OJJy5xvFxK3CsVxPfCb2RPOy/LyzdTNr1u3pl\nl2tUnwqDByBRKMiJus2tpStQPdV+io2RSqk8ZhhWfj4ApIWd5u4363Q+69ChPbbNGhM5Y94z9oiG\nMftN4fUmpuAK/1mmtpY0/3ggf4/7mq2dZpJxN5F6H3U1GFuumguB6ydQNTBA533rKs7kp2fzR9d5\n2n/PGnya2FrRYN4HHJuwit3vTCMzJh6/sd2fK85/Um8Ks/PY02U6If3m49LUh/It/AAImN6fW78f\nYW/PWZycvY7GS0YgkZXclM3sLHljURC7Rq3m+zfnkn43kaYT39WLs63qRPMpXdj+wSo2v72Qk1/t\npvOXQwBoMCIQiUzGD299wg+dP0ZuqqD+sDdLXO8jMutyuIydSszCmdwaHkR+7H0cBg7Vi1NWqEyF\nBcuxatZa5/37i2YTPXYw0WMHE7dqGaqsTOK+MTzI0yvTxgrf2UM5M3kFh96bSHZMHDVH9XquuBrD\nu5Mbl8zhnlM41n8mld9rh42PB5m3Yjjad7r2X2JoODF7jhF74JTB8uvMHsKpSSv4+71JZN2Lp9bo\nnv8ozr1/Z+zqeGpfyy3NqL90HJdX/MjBXtO4uHA99RaNRqrQPceotLWi3tzBhE5cyf/enUrWvQR8\nxvbQz6GEuMqdm2JVxYW93Wewr+dMHOp54ta+PhK5jIZLRnJ23npCes7k6podNFgwxPA+KSN5PJKc\nrmbmehUrRsrYuVBOBUdY/ptKJ+adplK2zpWzda6cn2bKcCgH0/tKcSgnYfVOFUVFsHWujG3zZOTl\nw9pdqmLWpv8dA+YOIWzSF4R0mUzWvXhqjzFQL0qIc21Tj+q92nN02CJCuk1DZqrEvV8gAH7TBhL9\nx2EO9Arm7Jy1NFg86pXnYOfnQeT3f3Fs+GIU5qbs7zGdfe9MAsB9ZF+ddShsrPEKHkH4tGWE9hxL\nzv04bYxbl3aYVXQhrO9HnBo0lYo9O2Ht5Q5A7TljubdtL6G9x3Nr7c/4LJwIgG19H1zfasvpwTM4\nGTSJ+INh1AoeobPO2hODMK+gGRgobazwmz2EM5NWcPC9SWTfi6dmMe30WXHVn2qnAH5zhpITl8yR\nvjMIHb6Q2pP6Y+pk98r3ScC8IeTEJXOg90yODluE7+QgvbKf182bCQwasIk9uyNeuKwnlYVt8W/0\nWaGTVhHScxYhPWdxZt535Gdkc27h98gtzWj82RjCl/9MSI9gzn28kUZLRur13/Jy1lSdPI4bsz/h\n0oCh5D2IpeKQ90sdY9++DaYVK3Dpg5FEDB6FlZ83ti2bASCzsqTy+JFUGj0MJKUbABqz3xRef2IA\nKvxnuTatTeKl26RHxwNw9aeDVO/c0GBsrd6tidx+jFt7zui871ynOuoiFR2+m8C722fjP7wzEmnJ\nnbNLY2+SL90i847mDPuNXw5QqWPj54qz86rC7Z3HUavUqAqLeHDkIhXb1QdAIpOgtLYAQGFuiir/\n2VcgKzWrRVx4NKnRCQBc3HKYmm/X14sryi9k34zNZCekAxAXHo2FgzVShYyYUzc4+dVuUKtRq9TE\nX76Htav+DydDzOvUJzfyKgUPYgBI3f0H1i3b6cXZdHqX9P27yTh6wHBBcjku46YRv2YVhYkJpVq3\nQyNf0i5HkX03FoDo30Jw7dD0ueIuL/ueK59rrqKZONggVcopzNS9emvr74lL2wZcWrjeYB6OjX1I\nvRxF1l3N/r79WwgVDOTxrDj7el44NvHl9tb92vcsKrpQmJlN4inND7/M2w8oyMrB1tdDp2znxt6k\nRERp69zNX/+mUgf9ullSnEQqRW5mgkypQKqQI5XLUeUVoC4sYtcb40i9prnqalHBify0TIPboqzk\n8cjxCDW1q0qo7Kxp2z1bS9kVqkatNjyXav1uNXZWEnq00hxCA2pIGPqWFKlUgkwqoVZlCfeTSlyl\nllMjH1Iiosh6+B1v/bqfih30rxyVFFexczMif9hNQXoWqNWc//g77uw8pt1Oiof9hdzClCID/cXL\nzsHezwPHBl60+n4OEpkUUwcbbZkubzbXWYddQ1/Sr9wk52E7jNm2Vxvj2LIhD3YeQF2kojAji7iQ\nY7gENsfE0Q6LKq7E7dOsL+nEeWRmJlh5ViU/KZWrS9Zor7JmXInC1MVRZ50KS3Pij57XrOOp9hf9\nWwhupWinT8c9aqfRT7RThbUFjg19uL5mGwC58ckcGzCL/HT9+vky94nC2gKnht5cXb39YR4pHAqa\no1f28/px82m6dPUnsEPtFy7rSWVhW/wbfdYjErmM+vM+5MLSLeTEJWNVyZmCzGziT14GIONh/23v\n567zOev6dcm6FklejObKfvwfu7Br26rUMRKZFKmZKVKFAolCgUQhR5WfD4Bdq+YUJCXrXREtiTH7\nTeH1J6bgCv9Zli62ZMWmaF9nxaWgtDJHYWGqNw039OMfAXBtVEvnfYlMRsyJy5xa+htyUwXtvx5D\nfmYOlzftpzhmLnZkP5xeBpATl4zSyhy5hanOdJ2S4pLCo6jSuQmJ5yORKeRUaBeAqrAIgDOfbKL1\nminU6PcGJnbWnJjyNeqiks8aWrnYkvHg8bbIiE3FxMoMpaWpzjTc9Jhk0mMe59Riejei/r6IqqCI\nO0evPC7P1Y46A1qzf+aWEtf7iMLRicLEeO3rwsQEZBaWSM3Mdabhxn/7OQDmfnUNlmPTvhOFyYlk\nhh4p1XoBzJztyIl7fFTLjU9GYWmO3MJMZ7rcs+LURSr8543ApW0DYg+eJvPh9L5Hao3ry/WvfjE4\nVU9Tvj05sY+3bfF5FB8nMzPBZ2IQJ0YtpkrXNtqYrDuxyMxNcWzkQ0JoODZe1bCqXkHnhz6AubMd\n2bG6dU5hoG6WFHd7xxEqtK9Pp70rkMikxJ24xIPDmh/v6sIiTOysaffTPJQ2loRN+crgtjBGHk2W\njzWYC0BsMrg8cS7F2VYzVSwrFyzNdGNTMtRs/J+KX2bLtO819X58Lvd+oppNe1XMHlC687vmLrr1\nLie+mG1RQpxlZRdMLlnTZNUkTB1tSDp3nUsrNNORLyzaSLNvp+HeNxATO2tOTf2Shp/qbouXnUN+\nagZ3dh3Dqkp5bH3cafTpWPb3nAGA3NJcZxquqZMDuXGJ2nXkxSdpY0yd7Ml9Yv158UlYulfGxMme\nvIQUeOKHb158MiZO9iQeOa19T6KQU31EX+L/PgGARfVKAFxcsA7vqQM163e2J7cU7bSkOJmZCbUn\nBhE2ajGVn2inFhWdyU1MpVrfjjg18UOqlBO1aRdZd2J52svcJ9bV3chNTMW9Xwecm/oiVcqJ/H63\nXg7PK3hWBwBCQ2+9cFlPKgvb4t/os7RTgbu0JCchlfsHNCe8M6JjkZuZ4tzYm7gTl7CtXRXram56\n/bfS0ZH8+McnXvMTEpFbWiA1N9NOwy0pJnFPCHYtm+H36/dIZFLSTp8j7cRJABL+1Hxn+zf1TwwX\nx5j9ZllWzPhbeIoYgL7Gtm3bxtatW1GpVAQGBrJ//35ycnKwtbVl1apV7Ny5k0OHDpGbm8udO3f4\n8MMP6dq1KxcvXmTu3LlYWFhgb2+PiYkJixYtYtOmTezcuROJRELHjh3p37+/sb/ii5Ea7sjUqtJP\n8bj+2+OBTn5BIZc27sOrX5sSB6CSYqavPL3ekuLOf/oT/h/15M2f55KTkErciQjs/T2QKhU0WTKC\nsFlreXD4AvY+1Wn2xViSL5V8wC/uqq2qmIGr3EzJG4v7Y1Xelt8HrdJZ5lS7Ip2/GsqFHw5x68Cz\n7z19mIDBt59nXwDYvtOd2FXLnuszxdaDp797KeLOz/oK2cJ1BCwZj8fgrkSu3qrJy9cDpY0VMXuO\nF5tGsfu7qHT1AgnUWziaS59uIi8xVWdRYVYOpz76jJojuuM1tjdJZ6+SeOoyqoJC3SKKqQd6OZQQ\n5zX0XfJSMvizzWhkpkqaLB+LR1AgkZv2AJCXnM6uN8ZhU7MyLVZP4e+bc/W/ihHyKElxD40wVCV+\nPaSmdR0JFRz1c4u4rWbsqiJ6t5XSyr+UP6SKrRfqUsdJ5TKcGnkTOn45RXkFBMwfiteobkR88QsN\nFo3k7OzVxB45j61PdRp//tErzSF82WbCJn4BgNWgt8hLSiXpwg2cGnk//vyT/UBx+1ylMlgf1EWG\n33+07BGFjTU+n0ygMCubm1//iMzCnNqzRwNQlJv3xFd88XZad+FoIgy0U4lcjkUFJwqzcjj+wVzM\nKzjTZN1MgwPQl7lPYvadxKKCEwVZORx+fz4WFZ1osW6m4e9TFpSBbfFv9FmPePR7k7Pzv9O+LszK\n5fj4z/Ee9R4+43qSePYaCaeulLr/5on2U1KM64A+FKSmcb5rX6QmStznz8S5exfift1u+DPPYNR+\nU3jtiQHoa87a2povv/ySr776ig0bNiCVSvnggw8IDw8HIDMzk3Xr1nH79m2GDRtG165dmT17NkuW\nLMHDw4Ply5cTFxfHjRs3+Ouvv9iyRXNF6/3336dZs2ZUq1bNmF/vudUZ9TaV2vgDoLQwJTkyRrvM\n3NmGvLQsCnPyS11e9bcakXztLinXNeVIJJqrK0/zHtEF15Z1AFBYmpIWeU+7zMzJlry0TIqeWm92\nbBL2PtUMxpm4WHJh+S/kp2cBUPP9jmTeiaOcu+bBFQ8OXwAgKfwm6Tfv65TzSKOxnaneVvOwAaWl\nGYnXHm8LS2cbclMNbwur8ra8/e1wkm/G8lu/FToPGarRKYA2c3pxYN7PXPvztN5ni1OYEIdpjcdX\nl+X2DhRlpKPOK/6BUE8zqeYBMhk5l86XKr7Z5k8AUFiYk37z8cN4TB3tyE/L1PnRCZAbm4iNd3WD\ncQ6NfMm4cYe8xFSKcvK4/7/juLRpoI0t374xMbuO6J369Bz2Hi4tNPcVyy3MSL9x12D5T8qJTcLG\n210vzqqqG+aujtQe30+zPezLaaZUmSi4sGAdhdm5HB/6sfZzrX9bop0e2O7neY9zeKpuanJ4qm4+\nSMbuiW3xZJxb23qcX7QJdWERhZk5RP95lArt6nNr+yGc6ntpz+qnXo0m7fodynlUBMBreBdcW9Ux\nWh6O9XRnNzypvD2EP/GspPgUsLYAcxP9H0t7TqqY1lem9/5fYSoW/KBiRl8pnRqV/COq1vCuuLTU\nXOVXPF0vtN9Rv17Y+VQ3GJf78GrKoyssd3cdo+aQLli7V0BmZkLsEU2bSQm/SfrNGBzrWQPQ+qcF\nLz0HhaU5VXu05fr6P7Wff7IfLUjLRPXEevLiEilX+/HUcRNHO21MblwiJg62Osvy4pPIjU1Eaa97\ntejRMgBL90r4Lp1CwsGTRK7cBCoV9i3rI7cyB6Dd/75EaWsFKjWFOXkkn736+Ds+Zzu1fNhOvQy0\n08h1fwBw78/DAGTfiyP5/HVtv/Oq6sXNLZqH7N3Zockj6248Seev49a+AWVFWdgW/3afBWDjWQmJ\nTErC6cd1DImEwuxcDg1epH3rjW0Lybz7+EFZAPlxCVjUenxPsdLRnsL0DJ32U1KMbfPG3PniW9SF\nhRQVFpL4v/3YtWz6jwegr7rfFP5bxN5+zVWtWhWpVIpCoeCjjz5i+vTpxMbGUlioOXNWs2ZNAMqX\nL0/+w7n+8fHxeHhoDvABAZofx9evX+f+/fsMHDiQgQMHkpqaSnR0tBG+0Ys5t2qH9mFBf/ZeiJNv\nNawrax4uUbNnS6L/Lt3g5RFbDzfqjn4HiVSCzERBrT5tiNqtP/C69NV29vacxd6eswgJmo+9b3Us\nKzkDUL17a+4fPKf3mdgTl4qNq969Nd4juwBgYmdNta4tubM7lMy78SgszbX3hlhUcMS6WnlSrurv\nq9DPd7L57YVsfnshP3Vbgot/VWwqa+598u3dnJv7L+p9xqScOd02j+fG3vPsHr9eZ/DpHliHVjN7\nsO39lc81+ATIOncKM08v7ZNsbTq8TWbYsecqw9zbj+yLZ0sd/+jBQMfen4WttwfmFV0AqPReW+IO\nndGLTwgNLzbOtX1DPIa8B4BUIad8+0YknX78oA27ujVJPKn/4I1r32zlUJ/pHOoznSMDZ2Pn445F\nRc3+rtKtLbEG8ogPDTcYlxJ+g32dxmjLi966n/t7Q7kwfy2o1TT8YhLlalUFoHy7BqgLi7RPwX30\n4IsDQfOwe6LOVevWxmDdjDsRXmxc6pVoKryhuZdaIpfh2rIOSRdvoi5SUW/uB9j7a/oW6+puWFUp\nT3L4TQAuf73dqHmUpEltCRei1ETHaU4g/HxQRRt//R9RaVlq7saDf3Xd9/eeVrFoi4rVH8lK9SPq\nytfbONArmAO9gjnYfy62Pu5YPPyOVbu15cFB/Xoed+JSsXExISdxa9cAqYkCANfWAdp74eSWZtj5\nabaFRQUnrKq6ast8FTkUZOdQrWc7XNvWI+7EJez9PbHz9SDuuKb/STii+8CupLALlPP2wOxhO3Tr\n8oY2JuHwKcq/1RqJTIrc0hzn9k1JOHyKvIRkcmLicG6nud/PrqEfapWKzJt3MKvgQt0v53Br3W9E\nfr5Re7Uofv8JjnfRPME65M2RxPx1jKtf/szBrhM13/Fh+6vcrYT+wkBcavgN9ncaw5E+0znSZzp3\ntu7nwd5QLs5fS879BFKv3KJCZ809rUo7a+x8PUi9fOuV1ovs+wmkXL5Fpbc0eZjYWWP31P2GxlYW\ntsW/3WcBONSrScLJK7ofUqtptmoCtl5VAHBrXx9VYZHeU3DTTp/FspYnJm6aNuz0VkdSjoWWOiY7\n8iZ2rTQPHZLIZNg2aUjm5av8U6+633xdqF6Df2WBuAL6mpNKpVy9epWQkBB+/fVXcnJy6Nq1q/Ym\ncEPThFxcXLhx4wbu7u5cuKC5klatWjXc3d1Zu3YtEomEDRs24OnpqffZ10lucgZHgr+jzfJhmsfk\n303g8DTNDfb2tSvTbP4A/uha8qPGz331J42De/PuH3OQymXc/t8ZnWm5huQlZ3By1jqaLtM8xS7z\nXjxhM9YAYOtVhfqzB7G356wS466s20XDj4cQuHUBSCREfPM7yRGaHynHPvqCupP7IDVRoC4s4vT8\njWTdK/mBPDnJmeybuolOKz9EppSTeieB/03S/FkAJ+9KtP+kL5vfXohvnxZYudrh/oYf7m/4aT+/\ntf8XNJ3wDkig/SePn1p5/0wUB+b+XOK6AYrSUon9fBGu0+YhkSsoiI3hwWefYOLuicvoSUSPHfzM\nMhSuFSiIMzBV7RnyU9K5MO9bAhaPRaqQk3UvjguzvwagXK2q+AR/yNG+00uMu7x8Mz7TP6DFz4tR\nq9XEHTzDrR/3aNdhUcmFnAcl74P8lHTOzf2WekselR/PuVmP8/Cf+SGH+kwvMa4kZ2d8iX/wYCQK\nOXmJqZyc8JleTF5KBqdnr6XR0lHask8GrwY0dTNg9iBCes4qMe7Css34Tw3ije0LNQ+jCovg2oZd\nqAuLOD7+c/wm9UEql6HKLyRs2jfkxKeUiTxarpla7Lazt5awYJCU8V8WUVAEFR0lLBws5dItNbM3\nFLF1ruZQeSceHGxAIdftV1f8pkKthtkbHs+OqOMuIThI/4z/0/JT0jk7Zw0Nl45BKpeRdS+e0zO/\nBcDGqyp1Zn3AgV7BJcZF/RKC0tqS1lvmI5FKSb16m/DP1lOYlUvYR5/jO6kfUqWmvzi/4DsaLR/3\nynJApSZ0/Ar8pgRRa9h75GdmgRparAsGIPKL77GqWY1a04dzsv8kClLSuTz/K3w+mYBUISfnXhwR\n8zS3AcRs24uZmwsNNi1DqpATs30fqec0D265NHM5taYNo8r776HKL+DSjM9AraZy0DtITUyo2KMj\nFXt0BEBVUMDpDwz/Caf8lHQuzP2WgCVjkSjkZN+L5/wT7dR35occedhOi4sryemJy/GZMpDK77UF\nqYTra7aTdln/TxW91H0ChE34HL+pA6jarQ0SiYSrq3+nTvCgZ+ZvDGVhW/wbfRaAZSVnsu4n8rSw\naV9Td9YgpAo5uQmpnBj/uV5MYWoat5aswH3uNCRyBXn3HxC18FPMa7hTddJYIj4cXWwMwJ0v11B5\nzDC8N34DKhXpZy8Q++Nv/3i/GLPfFF5/EnVxj6sSyrxt27YRFRXFyJEjGTp0qPYKp1KppFu3bhQW\nFhIVFcXEiRPJy8ujQ4cO/P3331y8eJEFCxZgbm6OQqHA2dmZBQsWsHbtWkJCQsjPz8fX15eZM2ci\nkxXfESQkZLyqr1osR0cr1nt9aNQcBl1ew89+A42aA0DPCxtY4THi2YEv0bjIr7j2Vkuj5gDg+ech\ndtXrY9QcOp3ewo6Avs8OfMnePrOZ3/wHGDWHbuc3lokcAAqO/btP6HxeiqYRbK/z4n/y4kV0ObcJ\noEzksb+R/p+oerqRdZcAACAASURBVJXahv7KzjLQTjuf2Vwm9kcRz/6buS+bjL5lYlsYu88CTb91\nqnUno+ZQ/8Auo/eboOk7XwcDHYp/4F1ZsSFR/wTHqyaugL7GunZ9/Dctv//++xJjTUxM+PvvvwEI\nDw/nm2++wc7OjuXLl6NQaKakDB48mMGDn30lShAEQRAEQRAEXcU9nEnQJQag/w/Z29szaNAgzM3N\nsbKyYtGiRc/+kCAIgiAIgiAIwgsSA9D/hwIDAwkMDDR2GoIgCIIgCIIg/D8jBqCCIAiCIAiCIAgv\nSMzALZ3/znOPBUEQBEEQBEEQhDJNDEAFQRAEQRAEQRCEV0JMwRUEQRAEQRAEQXhB4im4pSOugAqC\nIAiCIAiCIAivhBiACoIgCIIgCIIgCK+EmIIrCIIgCIIgCILwgtRiCm6piCuggiAIgiAIgiAIwish\nBqCCIAiCIAiCIAjCKyFRq8XFYkEQBEEQBEEQhBfRx3assVN4pi0pnxs7BXEPqPDPJSRkGDsFHB2t\nyL3U2qg5mHofYGdAX6PmAND5zGb2N+pu1Bzahv7KsebvGDUHgKZH/mBfwx5GzaF92C8UsdmoOQDI\n6Gv0PGT0ZW+DnkbN4Y2TPwPwm/8Ao+bR7fzGMrE/gDKRR1lop3sa9DJqDgCBJ38qE/tje50go+YA\n0OXcpjKxLYx9PAXNMbUstBFj95ug6TtfBypjJ/CaEFNwBUEQBEEQBEEQhFdCDEAFQRAEQRAEQRCE\nV0JMwRUEQRAEQRAEQXhBKvFonVIRV0AFQRAEQRAEQRCEV0IMQAVBEARBEARBEIRXQkzBFQRBEARB\nEARBeEFiAm7piCuggiAIgiAIgiAIwishBqCCIAiCIAiCIAjCKyGm4AqCIAiCIAiCILwglZiDWyri\nCqggCIIgCIIgCILwSogBqCAIgiAIgiAIgvBKiCm4wn/W4TO5fPFDOvmFampUVjBnhA2W5o/Pufx5\nMJtNf2ZqX2dkq4lPKmLvamfkMgkLVqdy7XYBZiZS3mljRp+OlqVet1Mzf2qO6olUISf9xl0uzltD\nYVbOP4oLWDqOvIQULi3ZCIB9PS9qje2NVC6jKK+AiKUbSY2IAqDBD8uQKhRk3ojmysdfU5StW5Z9\nk7pUH9FHP0YqpcbYAdg19EMik3Fnyw5itu8DwKFZAF4zR5Ebl6gt58ywmRRl51JtaC+cWjUEIP3y\nDb3vZ9s4gMpD+yNVKMi6eZsbi1bq5VSamJoLppKfmEzUitWYValIjVkfaZdJpFIsqlfhyoyFJB8O\nNbg/XAKbU6XfW6CGotw8rn36HelXowzGFkdhY4X37FGYlncElYrLC1eTFn4dgBpjgnBq25jCdE19\nyoq+/1xlG6JWq5kxbQfuHo4M+qDJC5dX1vJwaFoHjxG9kSoVZNy4Q8SCbygy0EaeFWfiZE/D9Qs4\n0XcyBWkZOp81c3Wk0cZFnBnzscEcXJr74T26OzKlnLTIu5yes47CrNzSx0kl1JnaH8cATwBij17k\n4vKfACjfwp/68z8kOzZJW87B9z95/g31lP9avXBoWgf34X2QKjV9UsTHxdcDg3FSCZ7jBmD/sO+K\n3vwn957ou7xnjdTpu04NnUVRtmYfSxSan0DObRoS93eYNsaxaR1qjOilrXPhC741mNOz4kyd7Gm0\nfj7H+k7R1k2FtQW1Jr6PZVU3pCZKor77nfu7j/zj7ffIy6oXzs38qD26B1KlgvTIu5ydu8ZgGykp\nrmr3tlTp0gqZiYKUK7c5N3ctqoJCFNYW+E3pj1U1V2QmSq6t28HdXcdeOOd/a1sUe7wsTUwJx9RH\nTMs70WDDYs6NnU/Gw+ORjX8t3Ef1Q2qipDAzG3i5beRxLo402riYs2MWkH41iir938GlfVPt8k57\nVyA3N+WPZsOA17PvfFXU4jm4pSKugBpRUFAQN2/e1HkvLCyM8ePH/+vr2rZtG/v37//Xyy2rktOK\nmLUqlU8n2bFjpTNuznI+/yFdJ+atVub88qkTv3zqxObFjjjYSJk6uBz2NjKWbkjD3FTK9hVO/LDQ\ngWNn8zh0Wr9zNURpY4Xf7CGcmbSCg+9NIvtePDVH9/xHcdX7d8aujqf2tUQuo+7CUVxcsJbDvacT\nue53/OcNR2ljBUD4tGWE9hxLzv043Ef21SlLYWONV/AIgzFuXdphVtGFsL4fcWrQVCr27IS1lzsA\n5Xw8id6yg5P9J2n/FWXn4tiqAXYN/AgLmkRo7/FITU101ie3scZ92hiuBi/ibN8R5N6PpfKw/s8d\n49anC9Z+XtrXObfvcmHQeO2/1FPnSdh3qNjBp3ml8tQY3Y+zYz8hNGgyt77bhu/iiQZjS1Jz0mBS\nzl/lRK+PCJ+9Et9PPkJqotRsI19PwoNXEBo0mdCgyYQHr3ju8p9082YCgwZsYs/uiBcq50W9rDwU\nNlZ4zxzOhamfcaz7eHJi4qgxss9zx5Xv2IIGq+dg6mSn91mpUoH33NHaQcbTlLZW1Js7mNCJK/nf\nu1PJupeAz9gezxVXuXNTrKq4sLf7DPb1nIlDPU/c2tcHwN7Pg+vf7yak5yztv8Ls0vUhxfkv1ova\nwSO4OO1TjvcYR3ZMPB4jDNeD4uIqdGmPeUUXTvSZQNj706jUqyPWXtUBsPGtwe3Nf2rbZWjQZO3g\ns5y3Bw3W6Z+Y0NS5YZybupwj3T8iOyYez5G9nzvOtWNzGhqomz6zhpMbn8zxoGmcGvUxtSYMwMRA\n/X0eL6teKG2tCJg7hLBJXxDSZTJZ9+KpPcbAsayEONc29ajeqz1Hhy0ipNs0ZKZK3PsFAhAwbwg5\ncckc6D2To8MW4Ts5CFMn2xfK+d/cFsUdLx/5p8dU0PRPtZ/qn0wc7fBdPIlrS9dyMmgSCQc0J0Ve\nZht5lIvPU7nc/v4PbZsBKMzJI2zKV8Dr2XcKZY8YgP4/0bVrV9q2bWvsNF6ZExfy8HZXUNlV06H2\neNOcv47koFYbPjP13e+Z2JWT0f0NCwAu3yygc0szZDIJCoWE5gGmhJzQP+NoiGNjH1IvR5F1Nw6A\n6N9CcOvQ9Lnj7Ot54djEl+itj08cqAuLCOkwmvRr0QCYuzmRn5aJY2MfAHLuxgIQs20vLm8211mf\nXUNf0q/cNBjj2LIhD3YeQF2kojAji7iQY7gEapaV8/HErp439TcsJuCbedj41wIg4eBJzgwJRl1Y\niMzcDKVtOZ312davQ+bV/2PvvsObKtsHjn+zuhfdQCl0QEtbCsgGBZmKmw1CZYnsvZUNKlNRwAWK\nCDiYivqTqQxZbZFRymoLBbr33kl+fwRCQ5JSLB34Pp/38rpekvs8z32edXJyTk4jKYiJByDh5/04\nde/0WDG2zZtg1/oZEn7eb7CtbQL9cHi+PVGrPzf4PoCquIQrH3xBUWoGAJlXozB1sEMilyGRy2g0\nZShttiyn7baV+M8fh8zSXK8MiUyK07PPEPvLYQByIm6Tdzcex3bNkCjkWDdqQP3Br9J220oCl0/H\nzMXBaD7l8cP2UHr1bsaLPf0rVE5FVVYeDm2aknklirx7Y/Hu7kO4vvjsY8WZOtbCuVMr/pm63GAd\nvrNGEPfbUYozsgy+79IugPTwm+Tc0cy/qJ1/4t6z3WPFSaRS5OamyEwUSBVypHI5qsJiTe5NvXFq\n5UfX7xfz/Dfv4viMj17Zj+u/OC4yrz7o35g9B7XrTmkObZoajXPu1JrYX49q166EQ6eo/WJHAOya\n+GDf0p82W5bT8svF2rULwH3AS0R9+aNeXY5tAvXGXG0DY7OsuPtjM/ShsamwscShdSCRG3cBUJiU\nxukR8ynOzKEiKmtcOLdtQnr4TXLvjf1bO49Qr6f+FcWy4uq98iwR2/6gOCsX1GouvL+ZO7+dRGFj\niXObAK59tReAgqR0jgUt0sRVwJNsC2PHy/v+7TEVwGfG28T/fpTizAfrk3OXtqScPk/29Vua8n7W\nXKWszDkC4DtzJHG/HzO6VgIknLxEwslLwNO5dgo1j7gFt4oUFxczd+5cYmJiUCqVDB8+HIANGzaQ\nkpJCfn4+H330kc42O3fu5IcffkClUtGlSxcmTZpksOw9e/Zw+PBhcnNzSU9PZ/z48bzwwgu88sor\nNGjQAIVCgaenJ46OjgwcOJClS5dy6dIliouLmThxIt26dWPNmjWEhoaiUqkYNmwYPXv2rPQ2qUwJ\nKUpcHGXaf7s4yMjJU5Obr8bKQqITm56l5Lt9Ofy4ykn7WpOGJvx2LJ9mviYUF6s5fCYfuUx3O2PM\nXBwoSEjT/rsgKQ2FlQVyS3Od22vLipOZm+I/I4izE1ZQv3cXnfLVJUpM7G3ouP19FHbW/DN3HVYN\n6ujEFCalIreyQGZhrr1lyMzZUedWtNIxZs4OFCSm6rxn5V0fgOKsbBL+OE7ysWBsm/rSdOUszg6Z\nQWFyGmqlEre+L+I5eiCFyWk6OZg4O1JUur7kFORWljo5lRUjMzfHY/LbhE9fhOtrLxhs6wbjh3Nn\n4za926JKK4hPpiA+Wftvn8lDST4RirpEiefIPqiVSs4OnQOA99hBNBz3JtdWfa1ThsLWGiQSijMe\n3OJZmJSGqbMDpo61SD93mcjPvifvTjz1h7xK01WzjOZTHvMWaObfmTO3KlRORVVWHmYuDhQk6Y43\nhZUFMktz3VsYy4grTEnn4uw1Bsuv+3oXpHI5sb/8iefwXgZjLFzsySs1//IT01BYWyC3NNO5lays\nuOh9J3Dr3oqXD65FIpOSePoy8ccvAFCUmcPt304R99c5HJo1pP3aKRzuP+8xW0rXf3FcFCaWbxwY\nizNzcaAw6eG1yx2Aosxs4v84TvKxEOya+tB01SzODJlJYVIaYfM/MZjPw2OuoJxjs+ChsXlhtu7x\nHMDCzZXC1HQaDH4Zp3bNkJrIubXtN/LuxD9Ok+mprHFh4WpPfql2z08yMkfKiLOq74rpZRvar5+J\nmZMdqedvcHntj9h41aUgJQPvIT1x6RCI1EROxHd/kHMnoUI5P8m2MHa8rOgxtc5rXZDIZcT9coQG\nw3prYyzc66DKLyRg6RQs3Otoy67MOVL3Xi6xvxzBY5j+Wmnp4QZA+Gd7HuT5FK6dQs0jTkCryE8/\n/YS9vT2rV68mJyeH3r17Y2JiQt++fXn99ddZt24d+/fvJzAwEIDU1FQ2btzIvn37MDU1Zc2aNeTm\n5mJpaWmw/Pz8fDZv3kxaWhr9+vWja9eu5OXlMW7cOPz8/Fi3bh0Ahw8fJj09nV27dpGZmcnmzZtR\nKBTExMTwww8/UFhYSP/+/enQoQM2NjZV1j5PmpELnUgNXPPffSiPzq3McHN5MB2mD7Phoy1ZDJiR\njFMtKe2amnLhWlG56pZIDJ+oqpWqcsUhgWc+nEj4mq0UpmQYDClKy+Jwz4nY+Dag7efvErPvmOE6\nVaXqlBrJS6VCYuC9+/mGzVmtfS3z4jUywq5j3zqQ+N+PAhCzaz8xu/bjOXogVp71HuxGGfU9KgaJ\nhEaLZnDr000Up6YbDLEO8EVua03yoeOGy3iI1MyUgAXjMHVx4Pxkze9JHDu0QG5tgUNrzbyTKOQU\npWXqp2No4Nzbl4L4ZM6XutJxe9uveI7oU66c/lcZ7feH50g540qz9vHArXc3Qt5Z9K9y0JunZcT5\njX6DwvRsfu0yEZmZCe0/nkzDoBeJ2Lqf09PXaWNTL0SQejEC53YBZeYkaDzcB0iMzD+lyvC6dm+N\nuTTnwRcUGRevk3npBg6tA4n77ajRuo3Ndf2xWb44nW3kMizquqDMyefsqIVYuLnQ+qtF2qtWNY7R\nY5m63HFSuQzntgGcmfoxysJiWiwdjd+EvsQeCsbSzZni3HyOD1+KZT1nOn49n9wKnoBWtooeU619\nPKjbqwfnxizQe18il+H4bEvOjZlP/t0E3Pr3xKljK8N1PIE5olkruxMyeqHBbQHcB74EQEnOg5Nd\nsXaWTfwZlvIRJ6BVJCoqivbtNbekWFlZ4eXlxcmTJwkI0EwqR0dHUlIefJN29+5dGjZsiJmZGQAz\nZpT9m7VWrVohlUpxdHTExsaGtDTNt04eHh46cbdu3aJZs2YA2NraMmXKFDZu3Eh4eDhBQUEAlJSU\nEBsb+1SfgLo6ygiLKNb+OylViY2VBAsz/UX6wMl8Zo/UvX00N0/F1CAbbK018d/szca9tvHp0mhM\nH1w6tgBAbmlOduRd7XtmTvYUZeagLCjU2SY/IRW7AG+9OCuPuljUccJv6hAATB1skcikSE0VXPl4\nO46t/En4KxSArGvRZN+4DTLd/TJ1sqc4MwdVqToLE1Ow9W9oMKYgMQVTx1o6793/Nrdunxe4vWWv\n9j0JEtRKpebbXKmEnBvRAMTtO4LH8D6l6kvGqnGjB2U6OlCclf1QToZjLBrUw6y2Cw0mjADAxL7W\nvTYwIXLFegAcuzxL8v6/jH7b0HbrSgCST4QS+8sRmq2ZTW50LOfGLdbe6iORSbn+0bekntZ88yoz\nN0VqYoKNryd+743RlnV2mOYKqdzakpJszS1ips61tN8kWzesT7zOg0TKd7X8f4nXO/1w6tgS0MyR\nnMg72vfuj8WH50hBQgq2/t6PjCutzksdkVua0/rrpdptmiyZqH2/209LtDlkRcRoXzd3rnVvnup+\n0ZQXn4Z9gJfBuLpdW3Jh+VbUJUpKcvK5/evfuHVrRfTPx/Hq34VrX/+m3U4ikaAuVj66of7jJAQi\noa723yaOdtr/b2jdAs2VKNsA/XGgKiikICEFEwfdMgqS0pBbWeDW5wWiS61dSEBVot8Hrt3b4TVC\nc/Xn4fXb1Oj6rT82DcWVVpii+TIt5nfNF4Z5MYlkXLyuU051azy2N66dngFAYWlOVuljmXbs6x/L\n7Jt4GYwrSM4g7q9z2itjd38/ie87vYj6/iAAd/ZpvkDMvZtE6oUb1Co116rbw8fEJ3FMde3ZCbml\nOS03vn+vDnv8F08mcv1WCpPTyQy7Tu0XO+H4XEvtiWPp3wg/yTlS+6WOyCzNab1pmfb1gCWTiFi3\nleQT50Aqwbmz5iGDfmN7Uef55oBYO4UnQ/wGtIp4eXkRGqo5acjJyeHGjRu4ubkZjXd3d+fmzZsU\nFWkm9KRJk0hMTDQaHx6u+cF9SkoKOTk5ODhofoMmfehbWk9PT8LCwgDIzs5m5MiReHp60qZNG7Zu\n3cqWLVvo2bMn9erV42nWrpkpl24UcTuuBICdB/N4vpWZXlxWjoo7CUqa+pjovL7zYB4bftT8HiI1\nQ8mew3n0fE7/t4H33fhiNyfefJcTb77LyWELqdXEG8t6LgDU79uVxGPn9LZJPhNmMC4jLJIjL0/S\nlndn9xHiD57h0tJNqJUqAhe8Q62mmpM2K8+6WDaow91fNB9ozOu5AlC3Vw+ST4To1Jd69iK2AQ0N\nxiQfD6H2q52RyKTIrSxw6d6B5OMhlOQV4NbnRZzuHYSsGjXAxs+b1NMXsPKuj9+88doH8dTuqfv7\nzozgC1j7+2DmVhsA1zdeJO3v4HLFZIdfJ7TvSO2DhhJ+2U/Kkb+1J58ANs38yTh3yWif3H+Awu0f\nf6flF4tJ+iuYsHmfaE8+AVLPXKRevxeRyGUgkeD37hi8x71J1rWbOg8uUStVpJw6j1uvbpp28HbH\n0sON9HPhqFVqfKYN1zwdF3Dr04OcyNtG8/pfFfXVTs4Mmc2ZIbMJHjEP24CGWNwbi269u5N0PFRv\nm9Szl8oVV9r1j7dwsu9UbV2FyWmELXjwjfr9h1r8FbQE+0AvrNw188+zbxfijp7XKy/xdJjRuIyr\nt3HroZkbErmMOp2ak3opiuLcfLwGdKNuV80Jt52PO7UCPEk4ZXy8/q9QcwkVf6DiDwD9/n1o3YIH\na5ehuOTjodR9tUuptas9yceCKcnLp17fF7QfoK0bNcD23tr1sIRDpzk1ZA6nhszhzIj52AV4a+ty\n793N6NgsT1xp+XHJZF69Sd2XNb+/M7G3xa5JIzKvRJW5XVW6+vke/ho4j78GzuPoW4s1x6h7Y9+j\nb1fij/6jt03i6ctG42IPB1O3W2ukpgoA6nRuQXr4TfLikkm/cgv3VzW/UzS1t8G+qTfp4Y/3dPLK\nZOx4ed+/OaZGrP2W0/0nax/oV5iSRvjCT0g5EUrysWDsAn2I++0vgt+ayZ1t+wCw8fOqlDly4+Mt\nnOo3RXucK0xO4/KCTzUnn4CVlzsl936Te+XzvWLtFJ4ocQW0ivTv35/58+czaNAgCgsLmTBhAnv2\n7DEab29vz6hRoxgyZAgSiYTOnTvj4uJiND4lJYWhQ4eSnZ3NwoULkclkBuO6du3K6dOnGTRoEEql\nkvHjx9OxY0eCg4N58803ycvLo1u3blhZlf9PjtREDrYyloy3Y8bqNIpLwM1VxvsTaxEeWcTizzPY\nscYZgDsJJTjVkqKQ616xGtnbivc+yaD3lCTUahjT35oAbxNDVekpSs/i4uIvabFyMhKFnLyYJC4s\n0Dwkx7axB4HzR3HizXfLjDNGmV9I6PSP8J8+BIlcjqq4mPPzNpAdobma1OSD6UgVcvJjEglfsh5r\nX08avzuW4LdmUpyexZWln+nFgObhCeZ1XWm9dTVShZzYvYfIOH8FgEuzVuAzfSSeb/dHrVRxed7H\nFGdmk7D/OOZurrT+dgUqpZLcm3d1ci3OyCTyw0/xXTobiVxOQVwCEcvWYuXjjdfs8VwcMdVoTHmY\nu9WhMCHpkXH1evfAzMUR5+db4/x8a+3r58Yv4eY3u2g06S3abl2JRColOyKaG59+Z7Ccays34ffu\nGNp9/xxqNVxetJ6S3HxKbt7l2prNNF8zG6RS7e/LnttXdl/+LytKzyJ86ec0XT4NiVxOfmwCYYs2\nAGDT2BO/90ZzZsjsMuMqqjA9m9CFm2i7agJShZzcmCSC530FQC2/BrRYOILDAxaUGXdx9XaazQmi\nx94PUavUJJ0N5/q3v4NKzakpa2k2Owi/sb00vzOetYGijIo9bOa/6MrSzwn88H7/JnJ5sWZNun8X\nwpmgWffWLsNxMXsOYu7mQtttq5Aq5MTsPUz6+asAXJy5Ep8ZI/Aa1Q+1UsWleWv1/lTPw4rSswhb\n+gXNlk9FKpeTF5uoMzYD3nuHU0PmlBlXlvOz1uA3awT1endDIpES9fVusq7WnJOu0orSs/hn0Uba\nrJqEVC4jNyaJ0PlfAmDn50HzBSP5a+C8MuNu7jiMiY0Vnb9fikQqJeNaNGEffQPA2emf0HTOUDz6\ndkEikXDtq5/JuFK9v28uzdDx8kkcU43JiYjm2sqNBK6YiUQu095tU5lzpCwW9WqTH5+kPam9T6yd\nZTN+E75QmkRt7LGgwlNjz5493Lx585G36T5pycllH8irgpOTNQWXO1drDmYBf/Fbi8GPDqxkr5zb\nzpG2/ao1h65ndnLyuderNQeADid+4VAb/cfCV6XuZ3egZHu15gAgY3C15yFjMAdb6//5hqrUI/gn\nAHY1G1qtefS9sKVG9AdQI/KoCfN0f+uB1ZoDwIvBP9aI/tjbPKhacwDodX5rjWiL6j6eguaYWhPm\nSHWvm6BZO58Gr9lMfHRQNduXte7RQZVMXAF9iixatEjv74YCT/0TawVBEARBEARB+N8gTkCfIosW\nLaruFARBEARBEARBMEDcWFo+4iFEgiAIgiAIgiAIQpUQJ6CCIAiCIAiCIAhClRC34AqCIAiCIAiC\nIFSQeApu+YgroIIgCIIgCIIgCEKVECeggiAIgiAIgiAIQpUQt+AKgiAIgiAIgiBUkHgKbvmIK6CC\nIAiCIAiCIAhClRAnoIIgCIIgCIIgCEKVECeggiAIgiAIgiAIQpWQqMXNyoIgCIIgCIIgCBXyotX4\n6k7hkfbnbKjuFMRDiIR/Lzk5u7pTwMnJmiNt+1VrDl3P7OTPdn2rNQeALqd3cbD1gGrNoUfwT9Xe\nH6Dpk2MdeldrDp1O7qkxbVHdedSUHAD+aDWoWvPoGfIDR9v3qdYcnj+1G6BGrBc1YZ5Wd3+Apk9q\nwhzZ1WxoteYA0PfClhrRFkq2V2sOADIGI5EoqjUHtbq42tdN0Kydwn+HuAVXEARBEARBEARBqBLi\nCqggCIIgCIIgCEIFqcQvG8tFXAEVBEEQBEEQBEEQqoQ4ARUEQRAEQRAEQRCqhLgFVxAEQRAEQRAE\noYLUiFtwy0NcARUEQRAEQRAEQRCqhDgBFQRBEARBEARBEKqEuAVXEARBEARBEAShglTVncBTQlwB\nFQRBEARBEARBEKqEOAEVBEEQBEEQBEEQqoS4BVcQBEEQBEEQBKGCVOIpuOUiTkCFp17rbauRKhTk\nRN7m6vufo8zL13nfof0zeI17Uz9GKqXR5KHYt2mKRCbjzvf7iN17CMsGbvgvmazdXiKVYuXtzqU5\nq7CoVweX7h207ynsbB7UMXYwEoWc3Kg7XH3/M8N5GIqRSmk4aSj2bZshkUm58/2vxO09CIDdM/40\nnDQUiUxGcWY2EWs3kxN5G4B6g16l9itdUCuVFGdk6bWLY4fmNBw3CKmJguzIO4Qv+wJlbv5jx5k6\nO9Dmm2WcHjyL4sxsnW3rvPo8Ls+35vz0lY9u7wr0CYB1Yy8aTR2GzMwMiVTK7W0/k7D/xIN+Ushp\numYucffi77Nv1wKPMYORmijIjbzN9Q836OVjLEZqYoL39FFYN/ZGIpWQFR5B5JqNqIqKsHsmAM8J\nw5DIpJRkZRP5yWZyI6PLt5+V1Bb1g94wOD6f9BwBcHy2BX7zJ1CQmKIt59yY+SjzCrT/rtf/Jeq8\n3rVS26LWM/54TwxCIpehKizixkebyboSCYDn6IG4dGuPMr+Q8nDq0JxG4wciNZGTHXGHy8u+osTA\nnDEWJ7c0p8n80Vg2qINEIiH29+Pc/O7XMuu0b/8MnmOGIFXIyYm6zfUP9NcOYzFSExMaznhbMz4l\nUrKu3CBi9SZURUVYN/bCe/IIZGamIJNyd9vPJB44bjSP6lovdPazAnNVZmmBz9zxWNSvCxIJiX8c\n5e72vTrbXPM78wAAIABJREFUur7cBceObbg8+0Oj7aCXUyX1z6NU1ny5z6y2M62/XcH5yUvJvnbT\naB6uzzUlYGI/ZCZyMiPuErroa0pyC8od13bVBKzcnbVxlnWcSD53nVNT1uLU0pfA6YOQyGQUZeZw\ncdV2Mm/cBSpnzSpr3+2aNcZ7whCkpiaU5OQ9sn/KQ61W897cfXg3dGLEyPZPpMx/a/Pmr7l8+TJr\n1nz8xMuujnVTePqJW3CFp5ZEIgEgbO5qzgyYTH5cIt7jB+vEKOxs8Js3zmBM3V7dMK/nytnB0wgZ\nMYd6A17Gxs+b3OgYgt+aqf0vNfgiCQf+JvloMLe3/qx9/Z9xC1EVaA7Ejd8bT9jcVZwdOJn82ES8\nxunnYSym7hvdMa9Xm+DBUwm9l4e1nzcySwuafDiTyPVbCQ6azvVVX+G/bBoShZxarZpQ59UunBv1\nLiFvzSD56NmH6rMmYP5YLs75iJP9ppIfm0ij8W/qteGj4mq/1JHWXy3CzNleZzu5jSWN57xN4xnD\nQaJbprH2rkifAAR+OIObG3cQ/NZMLkx9n4aThmJezxUAm4BGtNr0AXaBvnp1+bw3gSvvrSJk0ETy\n4xLxGBtU7hj3oX2QyGScGzqN0LemITM1wf2t3sgsLfB7fxY3N2zh3NBp3Fj1FX5LpyNR6H6nV9Vt\noTc+733QrYwcbJv4cPv7fTpzpfTJp22gD/WDXq/UtpDI5QQsm8rVD78gOGgmtzbvxm/hRABqv/w8\njh1aEDJ8DsFvzeRRTOysabJgNOdnf8yJvtPJj02i0YRBjxXXcEx/CpLS+HvgLE4NnUe9Pt2xa9LQ\naJ0KOxt835tA+LurCB40iYK4RDzHDSl3TP1hmvEZ+tZ0Qt6ahtTUFPe3egPg//5Mojf9ROiwGYRN\nW4bXpGGYu9U2kkf1rRel97Mic7XBqEEUJqcSGjSFf96eRZ1eL2Dj30hTv7UVDWeOxnvq2yAxkoCR\nnCqrfx5Vb2WtHQBSEwX+iyfqrVcPM6llTcvFb3NmxjoOvDGH3Jhkmkzu/1hxZ2au5/CABRwesIBz\nSzZTlJ3H+Q+/Q25lTruPJhH28U8c7j+P8+9voe3K8Zg52QGVs2YZ23dTJ3sCV8zk+qpNBAfNJPkv\n3ePpvxEVlcyIoVvZ/0d4hcuqCF9fX44cOUj//n0rpfzqWDeF/wZxAvo/qH///sTExLBnzx6OHDkC\nwLRp0+jTpw83btwgKCiIgQMHkpmZWc2Zls3ERAZA/t0EAGL3HMT1hed0YuzbBJJ1NcpgjFOnNsT/\n9hdqpYqS7FwSD5/E9UXd7e2a+uLcuS3XVnylV7/3pLdIPX0BgKyrkeTH3K/jgH4erZsajXHq1Jr4\n3x/kkXToJK4vdMSiXm1KcvNIDw0DIO92HMrcfGwDfChKzeD6qo3ab4WzrkXp1OfQpimZV6LIu7ff\nd3cfwvXFZ/X2oaw4U8daOHdqxT9Tl+tt59qtHYUpGVz/dJvee8baW9sW/6JPpCYKbn69k/QQTVsU\nJqdRnJmNmZMDAPX69yTqyx/JuhKhU1et1s3IvhpJfkw8AHF79+PS47lyx2RevMKdLTtBrQaVipwb\ntzB1dcK8Xm2UuXlknNPkk38nlpLcfGwCfKq9Le7znvSWdrxVxhyxbeKDfcsAWn27ghZfLMGuWWNt\nmSb2tvjMeJuI9VsrtS3UJSX8/epocm5EA2Be10V71c3a14vk48Hlvprh2DaQzCs3tXPhzu5D1Hmx\nw2PFXV2zhWufaOaEqaMdUhN5mfXXat1Ud+ztOWBgfBqPybhwhdvf7io1Pm9i5uqI1ERB9Dc7SQ+9\nBNwbIxlZmDrrjpH7qnO9eLCfFZurUWu/Jmr9twCYONRColBQkqtpe6eu7SlKSSdq/Raj9RvOqXL6\n51HKmgvliXnUsc1nxtvE/36U4kz9O2dKc2kXQHr4TXLuJAIQtfNP3Hu2+1dxErmMVktGcXHV9+Qn\npmHt7kJxTh5JwVcAyI6Opzg3H6/+mjsmqnLfnbu0JeX0ebKv39KU97PuFdN/44ftofTq3YwXe/pX\nuKyKGD9+LJs3b2HHjl2VUn51rJs1nUqtrvH/1QTiBPR/WO/evenaVbPYnzp1it27d2NlZUVubi4/\n/vgjtra21Zxh2aRS3eFbmJSK3MoCmYW59jUzZ0edWwRLx5g5O1CQmKrz3sMf0LwnvcXNL3/Qu/3H\n0sMNp46tiPrqJ+222nKSU5FbWerm4eJgNMbUxZHCUjkW3Msj704cMnMz7Fs3BTS3XVp61sPU0Y7c\nm3fJOK85cEsUcrzH6n5DbObiQEGS7r4prCyQWZqXO64wJZ2Ls9eQeyuWh8XsOczNTbtQFejfSmas\nvbV1/os+URUVE//rn9rX67zeDZm5GZnhmhPO8AWfkHrqH71cTJ0dKEwqVZeBvikrJj34Ivl3NR8s\nTV2cqDvgFZL/PEX+vb6pdb9vfL2x9KiHiUOtam8LeDA+M8Nu6OTzJOdIcVY2MbsOEDJsNpGff0/g\nipmYOtmDVIr/4slErt9KYXJapbYFgFqpxMTelg77vqThhCBub/sFgKzwCByfa4nC1rpcV73MXHTr\nKEhKQ2FlgdzQnCkjTq1UEbhkPM/+uJK0c1fJuR1XRp26c9/w2mE8Rmd8ujrh1v8Vkv88jaqomITf\njmi3qf16d2TmZmRd1h0POvtUTevFfRWdqwAoVfgumEyrrWvJPH+ZvDuato//+SC3N+8o162vuvtb\nOf3zyHrLmAvliSlrvtR5rQsSuYy4Xx6MD2MsXOzJS3gwh/MT01BYWyC3NHvsOI9enchPziDur3MA\nZN9OQG5uhku7AABq+Xtg41kXSzdnnbKrYt8t3Ougyi8kYOkUWm9ZScCyqY9sm0eZt6Anr70RWOFy\nKmrixMls27a90sqvjnVT+G8QvwF9ShQXFzN37lxiYmJQKpUMHz6cunXr8sEHH6BSqXBxcWH16tWY\nmZkZ3P7jjz/mxIkTuLq6kp6eDsC6detwdHTk+vXr5OTkMHbsWEpKSoiOjmbBggUsWbKkKnfxsRn7\nTKlWlforTFLDQWqVComB99TKB9vaNmmEwtaahAN/68XVG/AyMbv2o8w1/i2dbh6Gv+tRq1TaW4l1\nqFQo8/IJm70Cz9Fv4jUhiIwLV0g/dxlVcYk2TGFnQ8AH0/W+LTS0bwAoVf8qrqKeVJ8A1A96g3oD\nXuLClPdRFZb9gVJSRrs/ToyVjyf+H8wmbvcfpJ3SfIC6PGc5Hu+8iee4oWRevELGuTDUJSUGyzJW\nbmW1xf3xqTKSz5PIIWzOau1rmRevkRF2HfvWgVh6uJFx4QppwZewe8bPYNlPMg+AorRMTr42Gmsf\nD5qvW0DIyHdJ2H8cU2d7mm9YiKo8vwE1sqA83Oblibu0YAPhH26i+YqpeL/dh8ivjFx9MFZW6XYp\nR4yVjycBH84idvcfpN4bn/e5B/Wibr+XuTRtqdETsJqwXjypuXptySfcWPUl/u/PpP7wftz++qcK\nJFX5/WNQGXOhPDHG5ou1jwd1e/Xg3JgFj84B4/398JwoT1zDIS/wz9LN2n+X5BZwauonBEzoQ5Mp\nA0j55zrJIVc1V4sNlVWJ+y6Ry3B8tiXnxswn/24Cbv174tSxlcE6hIdUx7op/CeIE9CnxE8//YS9\nvT2rV68mJyeH3r17Y2JiwieffIKXlxc7d+4kKioKf3/92z3CwsIICQlh165d5OXl0aNHD533Fy1a\nxKFDh/j888+JiYlh2rRpNf7kE0D50AJn6mRPcWYOqoIHHzYLE1Ow9W9oMKYgMQVTx1o675W+SunS\nrQMJfxzTPyBKpTh3bkPwsNnal0pf+TJ1sqc4K1snj4KEZGz8GhqMKUhMweShPAqSUkEiQZlXwPnx\nC7Xvtflhrfa2Skuv+gSumk3ysWAi131Hl5M7aLttBQByS3NyIu/o7beyQPeDeEFCCrb+3o+MexwP\nt+mT6hOJQo7f/PFYergROuo9CuKTH5lLQUIy1qXb3dHBYN+UFePUtQMNZ7xD5EebSDp076FHEgnK\n/AIuTnzwYabl9k+1fVOtbVFqfNo11f1N7JPKQW5lQd0+L3B7y4OHvEiQoFYqcX2xI0XpmTh1aoPM\n3ExzVbSS2kJmaYF9ywCSjwUDkH39FjmRt7Hydqc4M5vEg39z+7ufAeh6ZicPazi6L84dWwCaOZMd\neVenjiJDcyYxFbsAb4Nxjm0DyY68S2FKOsr8QuIPnsK1S2u9ekvvs02pfTZx0h+fj4px7taBhjNG\nEbFmE0mHHnxZJlHI8Z03EcsGbpx/Zy4FCfrzpSasFw/KrthcrdW6Gbk3b1OUko4qv4Ckw3/j1Klt\nhXKqzP55VL3G5kJ5YozNF9eenZBbmtNy4/ua1x3ttXcrpJwIBcBvbC/qPN8c0IyLrIgYbTnmzrXu\njXXdLzLy4tOwD/AyGmfn445EJiU59NqDjSQSSvIKOPb2g1u2e+z5kNu/n9Qpuyr2vTA5ncyw69pb\neuP2/YnPtBGADFDyNFm8eCGvvfYqAPv2/crChYufeB3VvW4K/w3iFtynRFRUFK1aab6Rs7KywsvL\ni4iICLy8NIt+v379DJ58AkRHRxMQEIBUKsXKyopGjRpVWd6VqahIc2C4/yCaur16kHwiRCcm9exF\nbAMaGoxJPh5C7Vc7I5FJkVtZ4NK9A8nHH2xv19yPtNDLevVaeblTnJWr86HfNqAh5m6aOur06kHK\ncd080oIvGo1JOR5CnVe66OSRcjwY1GqafvQu1r6aPnbq0g51iZKcyNuYu7nyzIZFRH+zi8hPvoV7\n3w6fGTKbM0NmEzxiHrYBDbG4t99uvbuTdDxUb19Sz14qV9zjMNbeD+r8d33S5IPpyC0tCB01r1wn\nnwDpwRex8W+kffhKnV49SH0on7JiHJ9vh/fUt7k0dcmDk08AtZomq9/D6l7fOHZuh7qkRO8puNXR\nFqXHZ+rZi8CTnyMleQW49XkRp85tNHU2aoCNnzeppy/w9yvvEBykeSjR1Q8/Jz82ofLaQqWi8Xtj\nsQ3U/PbW0sMNi/p1ybocgY2vJ01WzEQikyGRGT7URXy5i5OD53Jy8FxOD1+AXam54N6nm8G5kHLm\nktE4125t8R6leciMVCHHtVtbUkOMP4QkLfiC7th7owcpJx5eO4zHOHVui/fUkVyaslTv5MZ/2Qzk\nlub8M/pdgyefUDPWi/sqOledurSn/vABgObk26lLe9L/CatQTpXZP2Upay6UJ8bYfIlY+y2n+0/W\nPjSsMCWN8IWfaE8+Aa58vlf70KC/gpZgH+iFlbsLAJ59uxB39Lxevomnw8qMc2zpS3LwVd2N1Gqe\nXT+dWn4NNPl3b4WqREn0nmPAk1+zytr35GPB2AX6YFZbc/uv8/Nt7tX0dJ18AixcuJjmzVvSvHnL\nSjn5hOpfN2s69VPwv5pAXAF9Snh5eREaGkr37t3Jycnhxo0buLm5ER0dTYMGDfjqq6/w8PCge/fu\nett6e3uzfft2VCoVBQUFREZGVsMePHnqe1cmm3wwHalCTn5MIuFL1mPt60njd8cS/NZMitOzuLL0\nM70Y0Dy4wLyuK623rkaqkBO795D2d5UAFvVcKYhL0qvXop4rBQm6r19dtoGAD2Zo6ohN5MqSdVj7\neuE7dwwhQzV5GIoBiN17AHM3F1p9t0aTx88P8ghf+Am+c8cgkcspSk3n0mzNFYv6Q95AamaCW7+e\nuPXrqZdjUXoW4Us/p+nyaUjkcvJjEwhbtAEAm8ae+L03mjNDZpcZ928Zau+K9oltoA9Oz7Uk93Yc\nLb9apq0rcsM20u6dZBlSnJHJ9Q/W47dsJhKFnILYBK4t/RQrXy985ozj3LDpRmMAPMZoflvrM2ec\ntszMS9eI/GgjVxd9TKPZY5Eq5BSlpBM+d0WNaIvS47M4XfOgjcqYI5dmrcBn+kg83+6PWqni8ryP\n9f7sRmW3BcCl2atoNGUYErkcVXEx4Qs+oTA5jcLkNOye8afN9tUgefR3rUXpWYQt+YLmy6cgVcjJ\ni0nk0qLPAM2caTJvFCcHzy0z7trabfjPHcmzP64EtZrEY6FE/7jfaJ3F6Vlce38D/u/P0I69q/fW\nDp85YwkdNsNoDIDHGM3TVn3mjNWWmRl2jcSDJ3B8rhV5t2N55ov3te9Ffb6N9LMXDO57da0X2rao\n4FyNWv8tjWaOoeXWtajValJPBBO74/eK5VRJ/ROxZtMj662s+fI4CtOzCV24ibarJiBVyMmNSSJ4\nnuaBfLX8GtBi4QgOD1hQZhyAlbsLuXEpeuWfnfs5zywYgVQhpyA5g9NTP6EwXbOGVOW+50REc23l\nRgJXzEQil1GSnfvYbfW/qjrWTeG/QaJW15DHIQllKioqYv78+dy5c4fCwkKCgoLw8vJi+fLlSKVS\nnJycWLFiBSYmJga3/+yzzzh8+DDOzs7Ex8ezYcMG9u7di6OjI4MGDaJDhw6cPHlSewvujh07HplT\ncrLxD5tVxcnJmiNt+1VrDl3P7OTPdpXziPPH0eX0Lg62HlCtOfQI/qna+wM0fXKsw6P/3EFl6nRy\nT41pi+rOo6bkAPBHK/0/EVCVeob8wNH2fao1h+dP7QaoEetFTZin1d0foOmTmjBHdjUbWq05APS9\nsKVGtIWSynt4T3nJGIxEoqjWHNTq4mpfN0Gzdj4NOlq8U90pPNLxPP2/7FDVxBXQp4SJiQkrVuhf\nYfn+++/Ltf24ceMYN26czmsTJ07U/v+TJzW/u3BzcyvXyacgCIIgCIIgCA+oasgtrjWdOAH9D/np\np5/47bff9F6fNm0azZs3r4aMBEEQBEEQBEEQHhAnoP8hAwYMYMCA6r2lShAEQRAEQRAEwRhxAioI\ngiAIgiAIglBB4hbc8hF/hkUQBEEQBEEQBEGoEuIEVBAEQRAEQRAEQagS4hZcQRAEQRAEQRCEClKL\nW3DLRVwBFQRBEARBEARBEKqEOAEVBEEQBEEQBEEQqoS4BVcQBEEQBEEQBKGCxFNwy0dcARUEQRAE\nQRAEQRCqhDgBFQRBEARBEARBEKqERK1Wi2vFgiAIgiAIgiAIFdDGYkR1p/BIZ/O+qe4UxG9AhX8v\nOTm7ulPAycmaQ236V2sO3c/u4GDrAdWaA0CP4J/4s13fas2hy+ld1d4foOmTP1oNqtYceob8UGPa\norrzqCk5ABzr0Lta8+h0cg/7Ww+s1hxeDP4RoEasFzVhnlZ3f4CmT2rCHAnp/HK15gDQ6q/fa0Rb\nSCSKas0BQK0uRsn2as1BxuBqXzdBs3Y+DVQSVXWn8FQQt+AKgiAIgiAIgiAIVUKcgAqCIAiCIAiC\nIAhVQtyCKwiCIAiCIAiCUEHiz7CUj7gCKgiCIAiCIAiCIFQJcQIqCIIgCIIgCIIgVAlxC64gCIIg\nCIIgCEIFqRFPwS0PcQVUEARBEARBEARBqBLiBFQQBEEQBEEQBEGoEuIWXEEQBEEQBEEQhAoST8Et\nH3EFVBAEQRAEQRAEQagS4gqo8NRz7NAc77FvIjVRkBN5m/D3v0CZm1/+OKkEnylDcWjTFIlMxu3t\nvxKz9xCWHnVpsmTygwKkUqy93bk4ezUW7rVx7d5B+1bH3z5HYW1BXkwiUhMF2ZF3CF9mPI+G4wbp\nx0kl+Ex5C8e2mjyit/9KzJ7DANRq4Y/P5CAkMinFmTlc+3gLORG3Ne81b0zDCYMBeOazJVxZth7L\nBm54jR2MRCEnN+oOV9//DGWebi4O7Z8pM8bU2YGWmz4gOGgGxZnZOtvWfqULTp1ac2nm8irrj9Lq\nvNoZ506tuTBjhfY1r9EDcO3eHmV+oaa7TBSoiooBcOrQnEbjByI1kZMdcYfLy76ixEBOxuKkpgr8\nZ43A1s8TpFIyL0cSvvIbVIXF2Lfww3fKECQyGcWZ2Vz96DuyI+5UelvYNPbCZ+pQZOZmIJUSvfUX\nEvafAKBur264D3gJdYkSAJfuHfAY+kal5OH4bAsCFoynIDFFW07I6AUo8woIXD4da+/6AHTYsw65\npTnFmTlPPIdaLfxpNHEIErkMZWER19dsJutKlM64uE9iokB9b1yUZt+uBR5jBiM1UZAbeZvrH27Q\nmzPGYmSWFvjMHY9F/bogkZD4x1Hubt+rV4cxTh2a02jcQO2aELbsS4NtYyxOaqrAb+YIbP28QCoh\n83IkV1ZpxqdNY08aTxuKzNwUiVTKze/26ZX7qLWgPDH/dr0wuI8VmKtyS3OazB+NZYM6SCQSYn8/\nzs3vftXZ1u3V53Hp3JJz01Ybz6GS+uO+uq8+j8vzrfhn+irta1WxdprVdqLtlhX8M2kZWdduAlD/\nzVeo82pnABqtfp/bH62jMC4B27atcHt7KBKFgvyb0dxatRbVQ+PCaIxUSv1JY7Bu2gSAzLOh3P3i\na9396NmdWs+2I+K9JeXfx0psiwZvva5zXI+Jicba2hpbWwe9eh/H5s1fc/nyZdas+bhC5fwbarWa\n9+buw7uhEyNGtn/0Bo+pOtdN4ekmroAKTz3/eeO4NHcNp/pPIS82iYbj3tSLUdhZG41z69Udi3qu\nnH5zOmeHz8V94EvY+HmReyuWM0GztP+lnb1I/IG/SToaTPR3v2hfB1AWFaEqUXJxzkec7DeV/NhE\nGo03nEfA/LEG4+r16o5FvdqcGjSDM8Pepf69POSW5jRbMY0b67ZxevAsrqzYRNMPpiBRyDF1tqfp\nyulcXak5sCcdPYPv3LE0fm88YXNXcXbgZPJjE/EaN/ihPGzKjHHt2YlnvliKqZPugVduY4XPrHdo\nNG0ESCRV2h+a+i1pPHsUvtOHQ6nq67zyPE7PtuDssLnaPmk4tj8AJnbWNFkwmvOzP+ZE3+nkxybR\naMIgvZzKivMa3guJTMrfb87h70GzkJqa4DXsdeSW5jyzcirXP93OyTdnE778G5p9OBmpQl7pbRG4\nfDpRG3dyJmgW56d+gM/kt7Co54pZbSe8xwwk9J0FnBky814eYyotD7vARkRv/1VnrijzCjTvBTQk\ndMxCTd+ZmxHy9rwnnoNELiNw2RSufPAlZ4bM4tY3ewhYNFFvXNznMcpQvTb4vDeBK++tImTQRPLj\nEvEYG1TumAajBlGYnEpo0BT+eXsWdXq9gI1/I716DNGsCWM4P+djTvSbRl5sEj7j9cdnWXFew3sh\nkcs4OXg2J9+chczUBM+hbwDQfMU0Ir/ayakhcwidshzfKfr7VZ3rRWlPYq42HNOfgqQ0/h44i1ND\n51GvT3fsmjTU7IeNJf5zRtJ45lB0FpBytnN548rqD4WNJX5zRtJ4xjC9NqnM9QI0X8o1WTwRieLB\ntQf7Vk2o81oXgt+eB0D6iVN4zJqK3NYGj1lTiFz4AZeHjqYwPoF67wzXyaWsGIfuXTCr58blkeMJ\nf3sC1k0DqNXpWQBk1lbUnzoe94ljquU4YqwtHj6u5+bmMmCAfr3l5evry5EjB+nfv++/LqMioqKS\nGTF0K/v/CK+U8qtz3azJVBJVjf+vJhAnoFVkwoQJ5Y7t378/MTExFarv0KFDJCYmVqiMp0Xm1Sjy\n7iYAELPnIK4vPqcX49CmqdE4506tif31KGqlipLsXBIOnaL2ix11trdr5otzl7ZcXbHRYA75dxPI\nuHhdW/7d3YdwffFZw3lciTIY5/x8K+J+eyiPns9h4V6bkpw80kIuA5B3O46S3HzsmjTCpUtbUk5d\nIPv6LQDifj5E6unzZF2NJD9GU0fsngO4vqDbJvatmxqNMXGshWPH1lyc9oFe/s5d21OYkk7kuu8M\ntgNUbn+43qv/xqdbdcqz9vUk6VgIJTl52tdcu7QBwLFtIJlXbmrrurP7EHVe7MDDyopLP3+VyG/2\ngloNKjVZ16Mxc3XCwr02xTn5pIZoDvC52r5pWKltITVRcHPTTtJCwgAoTEqjKDMbU2cHJDIpErkc\nmaW59sNdYWpGpfWJXRMf7Fv602bLclp+uRi7Zo0BzdUFmYU5jWePAkBVXELRvStjTzIHdYmS46+M\nIftGNADmdV20V+AMjQunzu306q3VuhnZVyPJj4kHIG7vflx6PFfumKi1XxO1/lsATBxqIVEoKMnN\nozwc2wTqrQm1DawdZcWlnb9GVOnxeSMa89qOSE0URG7aTeq9taMwKY3iDN2rk2WtBeWJqeh6obOP\nT2CuXl2zhWufbAPA1NEOqYlc2/+u3dpRmJLB9U+2G8+hEvtDJ4dP9XOo7GOZ78yRxP1+jOKMLO1r\nhakZXFuxUXt1Me96BCYuzti0eobc6xEUxsYBkPTL79h3fV4nl7JiJDIpUnMzpAoFEoUCiUKOqqgI\nAPvnn6M4NU3vimh1t8XD/vjjAPv3HzD6/qOMHz+WzZu3sGPHrn9dRkX8sD2UXr2b8WJP/0opvzrX\nTeHpJ05Aq8j69eurtL7vvvuOnJycKq2zuhQmpj74/0mpKKwsNB++SzFzcTAaZ+biQGGS7numzvY6\n2zeaGETkFz/q3QJk6eEGQGZYBAVJ5cvDWJyZiwMFpXIsSErDzNmB3DvxyCzMcGgTCGhuvbTydMPU\n0Q5L99oo8wtpskxzq7D/0mmY1LLR3Z/kVORWlsgsHuSit8+lYopS0rk8dxV50fpfgsTtPUj0NztR\nFhbpvactqxL7I2bvIW5+vUuv/qzwCJyea4HC1lp70mXmaKet6+F2VVhZIDfUN0biUs6GkXdH8yHH\nzNWRBoN6knDkDHl34pFbmOHYRnObma2fJ9aebpg61qrUtlAVFRP361/a1+u+0RWZuRmZl2+QH5PI\n7W376LBjLR3/70sAMs5fqbQ+KcrM5u6uA5wdOofIz76n6coZmDrbY2JvS1pIGFeWfwVAcU4u/vPG\nVUoOaqUSE3tbnvv1CxpNHEL0Vs1tpjrj4h4Th1o8zNTZgcKkB7cQG5ozj4xRqvBdMJlWW9eSef4y\neXfi9Oox5OE1oaCca0fpuNSzl8i7o/mAZ+bqSP2BPUk4chZVUTGx+x6ME7c3uiKzMNMrtzrXC719\nrOBph/EqAAAgAElEQVRcBVArVQQuGc+zP64k7dxVcm5r+uLunsNEbtpdZj6V2R/3c4jatBtVgX4O\nlbl21n2tCxK5jNhfjuiUl3vzLunnr2r/7TZqGOnH/sbEyYmipGTt60XJKcitLJGWGhdlxaTsP4wy\nO4emO7+j2e6tFMTGk3k6GIDkX/8g7rsfUFXTccRYW9x3/7i+YMEio/mVx8SJk9m2zfiXHZVt3oKe\nvPZGYKWVX53rpvD0Eyegj2nPnj2MGzeOoUOH8tprr3HgwAGCg4MZNGgQQ4YMYe7cuRQXF7Nnzx4G\nDx7MoEGDOH36NB06aL6dvXLlijZ25MiRxMVpJtvHH39M7969GTduHOnp6WXm8MorrzBhwgSmTp1K\ndnY2kyZNIigoiKCgIK5fv87Ro0e5evUqs2fP5tatW/Tv31+77f2rq+vWrWPEiBEMHDiQqKgoBgwY\nwOTJk+nduzcLFy6svAasImrlQ7cYSAwPdbVSBVIDtwCpHmxv26QRCjtrEg78rRfmPvAlTXhJieFE\nHspDYqiu+3EG3lOrVChz87kwYzUew96g3faV1Hm5I2mhl1EVlyCRy3Du1JKoL38CID00DNeHrt6W\nLktLaqQ9VJVza8aT7A9D4v84QeKfZ2ixYQGtNi7VbFJ8r0+M3OKln9Oj42x8PWi7cSG3dxwg+e/z\nlOTmc276ajyHv0GH7cup81JHUkPCH9Rdrnor1hYN3nodr1H9uTBjheY3qW0Cce7chuOvjeX4S6MB\nqNUioNLyuDRnDcnHQgDIuHidzEs3cGgdSFZ4JBdnr6YoNQOA7KtROHZojkQue+I5ABSlZXLi1TEE\nvz0P//ljsahXW2dcaDcxMFcl5ZgP5Ym5tuQTTr48DLmNFfWH9zMYX9669deOR8fZ+HrQ5qtF3Nl5\nkOS//9EJ83jrNbzf6cs/01fqbl+etaCq1osnOFcvLdjAke7voLCxxPvtPuVPoYr6o7yexByx9vHA\nrXd3ri43fAcPaG5nBVDmFxCzaYvxY5XOnDAeU2fomxRnZHKh92Au9h+K3Noal369jNZfHlXVFveP\n61lZxq+OCtW7btZkqqfgfzWBeAjRv5Cfn8/mzZtJS0ujX79+SKVSduzYgYODA2vXrmXv3r3I5XJs\nbGz4/PPPdbadN28e77//Po0bN+bw4cMsX76cUaNGERISwq5du8jLy6NHjx5l1p+Xl8e4cePw8/Nj\n1apVtG3bljfffJPo6Gjmzp3LDz/8QOPGjVm0aBEKhcJoOZ6ensybN4+YmBiio6P5+uuvMTc3p1u3\nbiQnJ+Pk5PRE2utJs7AwwdT0wdA1uXelC8DUyZ7izBxUBYU62xQkpmAb4G0wriAhBRMH3TIKktK0\n/3bt3p74/zuuuZ2qFK/R/bUPbqj7ehdyIu/ola98OI+EFGz99fNQFhRSkJCK6UP7UpiUChIJJfkF\nhI598KCG9j99RF5MIoXJ6WRcuqG9BSnu1yM0mjYCUyd73TqysnXapCAhGRu/hmXGlJfHqAE4PttS\n++/K7g9D5DaWJBz4m+gtPwPQ/ewOJDIZHbZ/iNzSnOzIuzrlFRnqm8RU7B7KqXRc7e7t8Js9giur\nNhN/4JQmSCJBmV9A8BjNSW/D0X1xaN0Zi3quld4WEoWcgAXjsfSoS/Db8yiI11yJcHquJSW5+bT4\ndJ7OdpWRh9zKArc+LxC9pdSDIySgKlHiN38c9s0bax8gY2JvByo1apUKM2eHJ5eDpTm1WgZoT4Kz\nr98iO+I2Vt7uFGVmacdF97M7ALS3gunUm5CMden54OhgcM4Yi6nVuhm5N29TlJKOKr+ApMN/49Sp\nrV4993m/0w/nji0Ayj0+8w2sHaXjXLu3w2/WSK6u3kz8gZPaOIlCTuCCsVh6unF25ALy45N1yi3P\nWvAk14uHNRzd97Hboqy56tg2kOzIuxSmpKPMLyT+4Clcu7QuM4eq7I/SLN1r037bgwczVdZ6Uful\njsgszWm9aZn29YAlk4hYt5XkE+ew8nan2SrN7x4jFywDlYqixGQsG/s8yM3JgZKH+rysmFrPtePO\np1+iLilBWVJCyoEj2HfqQOJOww+ZqTN8CLXat6n2tkAqwblzG/6NxYsX8tprrwKwb9+vLFy4+F+V\n87So6nVT+G8RV0D/hVatWiGVSnF0dMTc3JyEhASmTJlCUFAQJ0+eJDY2FgAPDw+9bZOSkmjcuLG2\nnIiICKKjowkICEAqlWJlZUWjRo/+Efb9sm/cuMHu3bsJCgpi/vz5ZGZmlrmdutRJVOn83N3dsbKy\nQiaT4eTkRGFhxT9YVJa8vCLS0/NIT9f8VsA2oKH2A79b7+4knQjR2yb17EWjccnHQ6n7ahckMily\nKwtcurcn+Viwdttazf1ICw3TKzPxz7MUxGk+zAWPmKdf/vFQA3lcMhqXdDyUuq921ubh2r09SUdD\nQK3mmY/nYNPYEwCXrm1Rl5SQE3GbpKPB2AU2wryO5ssC5+fbkBsdg42fN+Zumjrq9OpBynHdNkkL\n1rRHWTHldWvjT4QMnUnIUM0Dbyq7PwyxaexF0xUzkMhkSGSaZS3iyx2cHDyX08MXYFeqLvc+3Qz2\nTcqZS0bjXLu0pvGMoYRM/PDBySeAWk3LtbO1fZMdeZfcOwmc6De90tui6QfTkFmaE/z2fO3JJ2hO\nwOTmpoS8M1/7MA3UqkrJoyQvn3p9X9B+YLNu1ABbP29ST18g8fApkEoJHa/5EFareWNSzlwAlfqJ\n5qBWqfCfNxbbQM0HYUsPNywb1CUzPEJnXNyXdPCEXr3pwRex8W+EuVttQDMfUh/Kr6wYpy7tqT98\nAKA54XPq0p70f/TXjPvuPxTo1JA5nBkxH7sA7wfjrrfh8Zl69pLROJcubWg8fRihkz7QO9lp/uEU\nZJbmBk8+oXxrwZNcLx4W8eUuTg6e++Tmare2eI/qDYBUIce1W1vtb7SNqcr+KC33Try2Xqi89eLG\nx1s41W+K9gE7hclpXF7wKcknzmHu5kKLzxZy85vdmgruXZnKDP0Hq8Y+mNatA4Dzqy+RfvKMTi5l\nxeRFRGH/vOY3sRKZjFrt25Bz5ZrRtojbvI3wURMJHzWx2toCwMrLnZKsXKN5lmXhwsU0b96S5s1b\n/udPPqHq103hv0VcAf0XwsM1B7OUlBQKCwtxd3fns88+w9ramiNHjmBhYUF8fDxSA7ceODs7c+3a\nNXx9fQkJCaFBgwZ4e3uzfft2VCoVBQUFREZGPjKH+2V7enry2muv8eqrr5KamsrOnTsBkEgkqNVq\nTE1NSU1NRalUkpubq/Nwo9L5ScrxhMKa6srSzwn8cBoSuZz82EQuL9b83tbG1xO/98ZwJmgWxelZ\nRuNi9hzE3M2FtttWIVXIidl7WOc3MRb1XA1+cLOoV5v8+CQs6rlSlJ5F+NLPabr8fvkJhC3aoMmj\nsSd+743mzJDZZcbF7D6IRV0X2m1fiUSum0fY/E/xe/cdpAo5hSkZXJip+fMB2RG3ubria5qunAFA\nnTe6EzZnFeZ1nAn4YAZShWZfryxZh7WvF75zxxAydCbF6VlcXbZBL+Zp6A9D0s5eIqW5H223r9Le\n8nPr+/8DoCg9i7AlX9B8+RSkCjl5MYlcWvSZtm+azBvFycFzy4xrNH4gEomEJvNGaetMv3iDKys3\nc3H+epq8NwqJQk5hSjr/zFxT6W1hG+iDU8eW5N6Oo/W9W44BItZvJ+7XvzCv7USbLSu0f4Ym/P0v\nK61PLs5cic+MEXiN6odaqeLSvLUUZ2aTevoCd3f8QauvNPll3YjWjO8fP3ryOcxahc/UoUjlclRF\nxYTN/4TCpDQKk9K04+K+mJ90/yQHQHFGJtc/WI/fsplIFHIKYhO4tvRTrHy98JkzjnPDphuNAYha\n/y2NZo6h5da1qNVqUk8EE7vj9zLH7H1F6VmELf2CZsunIpXLyYtN1Fk7At57h1ND5pQZ12icZnwG\nvPdOqfF5nfgDJ3G+N07abDL8gdjYWlBV64VeW1Rwrl5buw3/uSN59seVoFaTeCyU6B/3P14OldQf\nV1dtLrPu6lg7GwS9gczUFPf+PQHw37gOVXExV8dN49bKtXgvnotE/v/s3XdUFFf7wPHv0pEuRVTA\nAjZUVBTLa9RYozH22ILGnhg7lmAFReyxxBZjErsRNZYYexdbYhfsioKK0kF63f39sS8rSBF/iTOb\n1/s5h3Nk9zL3cWZ2Z+7ce5+rT8aLlzyet5hSVV2oNGkst4eNJjvhVaFlAJ6u+okKY4ZTa+MaUCpJ\nvHaTiG0lT8Yjx76A/Nd1oXhyfm8K/34KleqNcYVCsXbv3s327dsxMjIiKSmJcePGoaOjw6pVq1Cp\nVJiYmLBw4ULOnDnD48ePmThR3TBo2rQp58+f586dO8yZMweVSoWuri5z587F0dGR1atXc/z4cezs\n7Hj58iWrVq3CwcGh0BhatWrFoUOHMDQ0JD4+nmnTppGUlERycjKjRo2idevWLF26lLNnz7Ju3TqW\nLFlCcHAwjo6OREVF8d1337Fnzx5sbGzo27cvz58/Z/z48ezYoR6i1qtXL5YsWVJk/bmio5OKfV8K\ntrZmHGvU6+0F36O2f+3gaMPessYA0O7Sdk42kSfde65WF3+T/XiA+pgc8ii4dIKUOlzepjX7Qu44\ntCUGgDNNu8saR4vzuzncsI+sMbS/FACgFd8X2vA5lft4gPqYaMNn5HLLjrLGAOBx6oBW7AuFougp\nTFJRqbLIQb5ERgC6eMr+vQnq785/A1dT+a/7b3MneYfcIYge0P8PDw8PTcMy10cf5U/T3r17/g/r\n+fPqYTiurq5s3Vrwy2TEiBGMGDGiRPWfPHlS828rKytWr15doIyXlxdeXl4A+PkVXOR59OjRmn87\nODhoGp9Avn8LgiAIgiAIgiD8U0QDVEsFBQWxaNGiAq936NCBL774/y+MLAiCIAiCIAiCIBfRAH1H\nb/Zsvi9ubm5s3rxZkroEQRAEQRAEQfh7VFqyzIm2E1lwBUEQBEEQBEEQBEmIBqggCIIgCIIgCIIg\nCTEEVxAEQRAEQRAE4W9SKsQQ3JIQPaCCIAiCIAiCIAiCJEQDVBAEQRAEQRAEQZCEGIIrCIIgCIIg\nCILwNylFFtwSET2ggiAIgiAIgiAIgiREA1QQBEEQBEEQBEGQhBiCKwiCIAiCIAiC8DepyJE7hH8F\nhUqlUskdhCAIgiAIgiAIwr+Zi1knuUN4q0dJf8gdgugBFf7/oqOT5A4BW1sz1lT/WtYYht/7kd31\nvpQ1BoDu1zfxrcNYWWNY+Px7nvXxkDUGAMeAyxxo8IWsMXS88qvWnBfb6wyUNYbeNzewyHmkrDFM\nClkFQA5bZY1DF0921Bkgawy9bm4E4Le68sbx+Y2NHGvUS9YY2v61gw01h8oaA8DA2z9rxfHIOl9T\n1hgA9Jve1op9ccijr6wxAHS4vI0zTbvLGkOL87tl/94E9Xen8L9DzAEVBEEQBEEQBEEQJCF6QAVB\nEARBEARBEP4msQxLyYgeUEEQBEEQBEEQBEESogEqCIIgCIIgCIIgSEIMwRUEQRAEQRAEQfibxBDc\nkhE9oIIgCIIgCIIgCIIkRANUEARBEARBEARBkIQYgisIgiAIgiAIgvA3qciRO4R/BdEDKgiCIAiC\nIAiCIEhCNEAFQRAEQRAEQRAESYghuIIgCIIgCIIgCH+TyIJbMqIBKvxPc2pRi0bju6FroEfs/XBO\nT9tEVkp6keVbzhtA3MMX3Fx3DABDi1I08/XEpoYDWamZ3N9zgVtbTr21XvuP6lBzdE90DPR59fAZ\n12b9THYh9RZVrtGiUZg4ltGUMylnS8y1e9xavgOPud9oXlfo6GBRxZE/Jyx/a0zVW7nSYUon9Ax0\neXn3BTsnbiMjOaNAuf8MbEbj/k1BBbFhMfz2bQApsckA+NycQ2JEgqbsmTUnub7n6lvrBjCq1xSL\nPiNR6BuQ9fQhcT/6o0pLyVem1EcdMOvUD1SgykwnfsN3ZD2+m6+M9fiF5MRHk7B+UYnqBbBrWpdq\no/qgY6BH0sNnBM1eS3ZKWonL6ZkY4+bzFaYVy4FCwfMDZ3m88Q9MK5Wnrv9Izd8rdHUwd3Hi6qSl\nhcbxvs6Li+OWYdOgBrW9+qDQ00WZnsnNhVuIv/24wLbLNquD25jP0THQ49WD51ya+UuhMRRVzsDc\nhPrTv8SymhM5aRk8+f0cD7cdx7xyORrPG55nXyiwrOLIufErij84QOWPa9J8Uhd0DfSIvhfO4Slb\nyUwuGJNrFw88hrUBFWSlZ3LCbyeRwU8BGHlpPsmRrzRlL/10nLv7Lr+17nehUqmYNmUfLlVsGTzk\nP//Ydss2q0PtMT3/u6+fcbmYY1JYOYWOgnpTvsS2fjUAIs4FcXNJAAAG5ibUm9wPc+fy6Brqc/fn\nPwqNwb5ZHWqN7omugR6vHj7jShExFFlOR0G9yfljCFqqjqFs87p4zB5GakSsZjunB80FwKZpPVy+\n+QIdA32SH4Vxe84acgr5bBZZTkdBtXEDsG5UB4WuLmFb/+D5HvX3t1X9mlQd3Q+Fni45GZncX7ye\nxDshALjNn4CZSwUAOu/y4eWl+1xesL1AvQ7Na+M+rge6BnrEP3jO+Rkbir2GfDRnEPEPw7m94WiB\n91ouG0FqdAJ/zfm1yL8v0b4uabl3PCZvc+amkmW7lGRlQVVHBX6DdDA1Vmje//28kk1HX998J6dB\nZDwc/04XU2Pw36Lk9hMVShXUrqxgej8djAwUhVWl9fvCtmk9qo7MvVY85ZZ/4deUosrpmRhTe8bX\nmFQsh0KhIPxAII83Ff7ZLErpJvWpNNwTHQN9Uh6FcX/eKnJS00pURtekFNWmjKRUhfKgUBB56DTP\ntu55p/rfxfv67hT+vcQQXOF/lpGVKS3nDuDomB8J6OBL4rMYGk/oVmhZy8r2dNrgReX2DfK9/p8p\nvchKTWd7x5ns6TMfp2Y1cfq4drH1GliZ4T5rGH9OWsGxbt6kPI+i1pje71Tur0krOdlnBif7zOC6\n3zqyklO5MW8TSY9faF4/2WcGUX/e4tmhi7w4eaXYmExKm9BryRds/modi1rMJfZpLB2mdC5Qrnxt\nB5p/3ZLVXZexpM18Yp5E88mkTwGwrWxH2qtUln2ySPNT0sanjpklpYf7ELvUm4jxn5MdFY5l31H5\nyuiVrYCl5xii540hcrInibt/wWb8wnxlzDr1x7B63RLVmcvA0gw336+5+u0yzvSYSGp4JNVH9Xmn\nclW/6Ul6ZByBvb05/+UMKvRog2XtKiQ/Ceec51TNT8yfwYQfPk/EqYINn/d5Xij0dGm4YCTX/NZx\nsvd07v28jwb+XxfYtqGVGQ39hnB+wkoOdZlCcngUdcb2fKdydSf1JTs1g8PdpnK832zsm9ambPM6\nJD5+wdHePpqfyIu3CTt4kfATxZ8jxqVNab+wP3tH/sQvbf1IeBZD80ldCpSzqmRHi8nd+G3QKjZ2\nmsfFVYfpunqY5r30xFQ2dpqn+fmnG58hIdEMHrCZw4du/6PbNbQyw8NvKBcmrOBwl8mkhEfjNrbX\nO5Wr8FlTzCrac/TzaRztNQPb+tVwaOsBgMfsYaRFxXOstw9nvlpIPe9+BbZtYGVGg1lD+XPiCo50\nnUzK82hqFxJDceU0MfScxrHeM7BpUI3y/43Buk4VHmw6xPHePpqf7FR146Hm9BEETVnMhV7jSA2P\nosqILwrUq29pVmQ5h25tKeVoz8UvJvDXoCk49fkUc1dnFHq6uPmP487cH/mz37c8WbebWjNHa7Zp\nWasKV4b7ArCvh1+hjU9DK1Oa+g/i1LjV7PlsOknPo6k/vkehx9Giclk+WTeBip80KPT9WoPbU6Z+\nlULfK4wcx6Q4cYkqZqxTsmykLvvn6eFgC0t/y9/T06WpDrtm6bFrlh4BM3SxsYCpnjrYWChYu19J\nTg7smqXLbj9dMjLh5wMl6ynStn1hYGlGbZ+vue69lLOfTyAtPIqqo/q+U7kqw3uRHhXHuT7fcmHA\ndBx7tMWydsnPD31Lc6pNG8WdaYu43Hc0aS8iqfRN/xKXqTisLxnRsVzpP45rQ7+lXLdPMK9ZtcT1\nv4v39d0p/LuJBqjwP8uxqStRwWG8CosC4E7AGVw6NSq0bC3Pj7m3+wKPD+dvyNm6OvFw31+olCqU\nWTmEnbmF8yfuxdZbpnEtEm4/JuVpJABPdp7EsUOT/1c5hZ4u9Wd/RdCiraRFxuV7z7peVcq38eD6\nnPXFxgNQtUV1nt18SsyTaAD+3HSeet3qFygXHvychc38SU9KR89QDwt7C1LjUwGo0KASyhwlX+8Y\nhdcxb9qM+wSFTsmeXhu5NSYz5A7ZEc8ASD62i1Iftc9XRpWdSdxaf5QJ6qfQmY/vomtpDbrqgRqG\nrvUxqtOE5OO7S1RnLpvGbry685jUZxEAhP12nHIdmr5TuTvfbeLu91vVcdhYomOgR3Zyar6/t6pb\nDfvWDbk1b12hcbzP80KVncOhT8by6n4YACYOtmS+Si6wbfsmtYi79YTk/2770Y5TOH1aMIbiypV2\nrUjo/gvqz0R2Di/PBuHYxiP/vqxXFYc2Dbjiv7HQfZFXxY9qEBEURkKo+ty8sfUsrl08CpTLyczm\nyJStpEQnAhAZHIaJjTk6+rqUd6+MKkdF761jGXhgKk1GdSjxuVlS27ZeoVv3urTvUPMf3W6ZJrWI\nu/U4z74+WegxKa6cQlcHPWNDdAz00dXXQ0dfj5zMLAzMTSjTuCa31+wFIC0qnuP9ZhW67fjbr7cd\nsvMkToWdm8WUU+ioY9A10EdHXw8dPT2UGVkAWNdxwdbDlda/zuLjdVOxca+m2earuyGaz9zz3Uex\nb9+sQL3WjeoUWc6uRUPC/ziNKkdJdlIKEccuULZ9c1TZOQR+NpykB6EAGJcvQ9arJACMytqiW8qY\nGt7qBxhN/QdhYGFSoN7y/6lJzK1Qkp6qryH3A05TuWPh15DqfVvycM95Qo8UfBho37Aa5T+qyf0d\npwv928LIeUwKc+G2ipqVFFQoo/5c9W6pw4E/VahUqkLLrzukorSZgl4fq28z61dV8HUnHXR0FOjq\nKKhRQcGLEnY4atu+ePNa8XTXMcq1f/s1JW+5u4s3cu/7LUDR15TiWDWsS9LdR6Q9fwnAiz2HKdOu\nWYnLhCz7hZCVGwAwsLZCoa9PdkrJ638X7+u7U1upUGr9jzYQQ3D/x+3evZvjx4+TkpJCfHw8I0eO\nxMDAgJUrV6JSqahZsyazZs3i6NGjbN26lezsbBQKBStXrqR06dJyh/+3mJS1IjnidaMtOSIeQzNj\n9E2MCgyhOjdbPRTHoUn1fK9HBj2hSudGRFx7hI6BPpXb1UOZXXyKbWN7a1LzNBbTouLQNyuFnolR\nviFDJSlXsVsL0qMTeHGqYC9Sba++3F75W6HDkN5kUc6KVy9eD5199TIBY3NjDE0NCwzDVWYrqflJ\nbT5f1IfszGyOLj4EgI6eDg/P3ueA/+/oGxkweONXpCelc+6XM2+tX9e6DDmxkZrfc2Kj0CllisLY\nRDMMNyf6JTnRLzVlLPt7kXY1EHKy0bGywXLABKLnjca0Tfe31peXcZnSpEW+vtNJj4pD37QUeibG\n+YZMva2cKkdJXb8R2LduSMTpKySHvchXT41xnjxYvaPQYVjw/s8LVXYOhqXNabXNDwNLMy55ryok\nhtL5tx0Zh0GhMRRdLjb4MRU/+w8xNx6iq6+HQ5v6BT4TdSf0JnjlrhKdm2ZlLUl6Ga/5PSkiAUMz\nYwxMjfINw00MjyMx/HVMLaf24NGJYJRZOejo6RB6/h5n5u9Bz1CfHr98Q2ZyOlc3vH24fElN9+kA\nwJ9/PvnHtglQyr50vodLRR2T4sqF/n4Wh7YedDq2DIWuDpEXb/HyzA1K16pMekwCVfu3p2xTN3QM\n9Li/6VDBGMqUJjUi/7YLOzeLKxe6Tx1Dx6N5Ygi8AUDmq2TC9l/gxamrWNetwn+WjeN4r+kAZOT5\nzGVExaJvWgpdE+N8w3CNylgXWc6ojDUZUfnfM3VxAkCVk4NBaQsabVyAgaUZQdOWAWBQ2oK4y8Hc\nXfgzLZo3IDs1nY9mD+TkmPyfGZOy+f+/KZHxGJiVKvQakjustlzjGvleN7a1oOHkvhz7ainVerUo\nsO+LIscxKU5EHNjnuSUoY6UeYpuSDqbG+cvGJ6nYeETJDl9dzWtNa73u73gRo2LzUSW+A0rWB6Jt\n+8KojDXpJbimvK2cKkeJm99I7Fs1JLKQa0pxDO2syYiK0fyeER2LnqkJuqWMNcNw31omR0l1n7HY\nftyEmMC/SH1a8vrfxfv67hT+3UQP6AcgLS2N9evXs27dOvz9/fH19WXt2rXs3r0bJycnIiIiCA0N\nZe3atWzbtg0XFxfOnTsnd9h/m0Kn8NNbpSz505+LC34DFXy+ezrtVwzn+YW75GQV3wBVKArveVHl\nKN+5nItne+799HuBMqXruGBgacqzQxff9l8oti5lTuFPr28fCWaW2zSOLTnMkC3DUSgUXPr1Ivt8\ndpOTmUN6YhqBP52mVge3EtVPUb1RyoL7UmFohPW4eejZOxD3oz/o6mI9Zg4Jm5ZoekffSVHnwRvH\noyTlbvis5librzEwN6XK0NcNYSu3KhhYmhF++EKRYUhxXmTEJXLok3GcGeBH/VnDMHWyL9m2lSWM\nQankxuIAUKn4ZPssmi4dTeTF2yjzfCas67hgaGlG2ME/C93Gm4r8nL55fP5L39iAziuGYFnBliNT\n1L3SQdsvcNJvJzmZ2WQkpXHll5NUaVenRPXL7Z84Jq7Du5IRn8S+lqPZ384LAwtTqn7ZHoWeLqYO\ndmSnpHFyoD9/eq+m7sSCQ1yL6i0ucG4WU871a3UMf7QazYFP1DFU6a8e5XBxwgrNw5LYGw+JvfkQ\nuya1Ct1WYfWiKOYcKSymPPsuM+4VZzsN59LQ6dSc8Q2lHMuSePsRN72/IzNW/VDuxqp9ODSvjZ0B\nLjwAACAASURBVI6+bv7tlPDYFEWhp0uL777m0oIA0mJevf0P8v6tDMekOMrCLxWFfm3uPKOiZT0F\nDrYFY7sdquLL+Tn0ba3Dx3VLdguqbfuiyPOiwHn79nJBPqs40fYr9M1NcBla+PDuQkMowf1NScrc\n8/ue8x0HomduSoVBBadjCML7InpAPwAeHh7o6OhgY2ODiYkJmZmZWFtbAzBsmHoIkrW1Nd7e3piY\nmPD48WPq1n23eXbaosHoTlRspb7xNDA1IvZBuOY9kzKWpCekkJ2WWeLtGZga8ed3u8h4pR6aUnfo\nJyT+d0hvXjW+6U7ZFvUA0Dcx5tWj55r3jOysyHyVTE56/npTI2Kxqu1cZDmLahXQ0dUh5uq9AvU5\ntGvE0/3noYjhTwDtJnbAta36Js/Q1IiIe697F83tLUhNSCHrjX1hXdEGM1tzQi+rk9dcDviT7vN6\nYWxhTPXWrry484KIu+qnpAoFb22M58qJicTQ5fUNp25pW3KSX6HKyN+LoGtdBptvl5AdHkq03zeo\nsjIwqFIbPbvyWPb3UpextAYdHRT6BsSvnVNknR9tVSc50TcpRWLIU83rRral/7uf8/f8pkfEYFnL\nudByNo3dSHr0lIyYBHLSMnhx5AL2rRpqypZt24TwA2cLHA+pzgs9U2PsPFw1N1EJ98J49eAp5lUc\nAGi33U8dg6kRrx6+jsHYzoqMV8nkpBWMwbp25ULLGdqbcnPpDjIT1T3X1Qd9qhnyBuD0SUNC/yj+\n3Gw6riMurdUPLwxMjYi+//rJu1kZS9IKOTcBzMpa0f2n4cSGRLDd83uy/zuEzrVrQ6LvPn+9HYXi\nrSMV5FRzRDfK5Z4XpsYlOiYpEXGUznNe5C3n0LoB1+ZvRpmdgzI5jdB953Bo60H4CfVw0Ce/nwUg\n+VkUMdcf4NhOfe62+e95oWdiTOIbMRR6br6Mo3Qt50LLlW/dgBvzN6PKziE7OY2wP87h0MaD0L2B\nOPdqxb1f9gPg+k03bOtXx6KKIwAGNpaa7RnalibrVTLKNz+bkTFY1HIptFx6RAwG1vm3kR4Vh56J\nMVYNahF9Rj0XOOn+E5IehmHq4oSBtQX6ZiZEn/3vCAKFApVKpR7lMKoLTi3V1xB9E2Pi8+yXUnaW\nZLwq+TXEpmYFzMrb0PBb9TxEYxsLFDo66Broc8G34PB012+6Ue5j9Xkh5TFR74Lih6yXtYbgPDnN\nouLB3ARKGRb8u8OXlEzx1C3w+sG/lPhvUTLNU4eOjYtvfGrbvqjy9efYNa+viSfp0TPNe4ZFXVMi\nY7F847zNf015RkZMPDlpGbw8mv+a8jbpEdGYub6eM2poY01WYlK+z05xZawa1iXlcRiZMfEo09KJ\nOn4O2xaNS1y/IPxdogf0A3D7tnrid0xMDFlZ6hu2hAT1k19/f38uXbrE8uXLWbp0Kf7+/hgaGhY5\nr0PbXVnxB7918+e3bv7s7r2AMnUqY1HBDgDXPs0JPXnznbbn2qcFHmPUyXqMrc2o0fMjHu6/VKDc\n3R92a5LDnP5yFqVrO2PipM5WWvnzVrw8fa3A30RdDC62nE396kRfvlNoXDb1qxN9qfD3ch397pAm\nWdDKzktxcq+ITSVbABr3b8rtI7cK/I2ZnTlfrB5AKSv1fKh63RoQcf8lqQmplKlWlnYT1HPr9Iz0\n+c/AZtz843qxMeRKD/oTA5da6NmrbzpN2/Qg/UpgvjI6JubY+f5I2qVTxC6fhipLfSHNfBjMy5Gf\nETnZk8jJniQf30XqxWPFNj4BTWKg84N8sKpVhVKO6t5Apx6tiTxTcEhz9J/BRZYr17YRVb5SP53W\n0dejbNvGxF55nVChtHt1Yi4VTLAg1XmhylHiPnMopeuobzbMKpfHrGJZ4oPVGT9zEwMd7z8bazdn\nTP+7beeeLXlxuuAxjLh4q8hyzj1bUmukOpmXYWlzKndvwdNDr3s7betXJ/It5+b5ZQc0yYK2fr6I\ncvUqYllRfW7W+eIjHh0PKvA3Rhal6LNtHA+P3GT/2PWaxieATdWyNPX6TH1uGupTr39z7h0oWYIs\nOdxevYdjvX041tuHE/393tjXrQo9JpEXg4ssF383DMd26rmJCj1dyn1cj9igEFLCY4i7E0rFzh8B\n6uNlXff1DWluwpVT/f0onWfblT8vOoaiyiXcDcMhbwwt1DFkpaTh3LsN5Vurk/O8OHmVnMwsTnyh\nTgBkkecz59C9LVFnCyaPiv3rZpHlogOvUL5TK/U8WNNSlGn7H6LPXEKlVFJz+jdYuKnn85lUcsCk\nYnle3X6IrrER1SYMRs9c/T1Xa/AnhB69ikqp4sbK39nXw499Pfw48MVcbN2cMXNSX0Oq9f6Ypydv\nFHNk84u++Zidbb7VbO/+9jM8OXy50MYnwJ0f9shyTCyrOWFVq3KBbef1n5oKbj5WERapvjfYflpJ\nq7oFG2qvUlQ8i4K6zvlfP3pFyfxflawdr/vWxqc27ouHP/7Gec8pnPecwsVBPljmu1a0ISqw4Nzf\nmD+Diixn36YxLsPUo2h09PWwb9OY2MslT9ITf+km5jWrYuxQFoBy3doR+8Znp7gytq3+Q4VB6uR2\nCn09bFv9h/hrwSWuXyiakhyt/9EGogf0AxATE8OAAQNISkrC19cXlUrF119/jY6ODq6urnh4eODu\n7k7v3r3R09PD3NycqKiCvXz/NulxSZyeupG233+Frr4eic+iOemtTthjW6sCLWb357du/sVu4/ra\nQ7RaMJhe+3xAoeDKyv1E3wor9m8y4pO4OvMnGi0ajY6eHinPo7gy40cALF0r4e4zmJN9ZhRbDsDU\nqQwpL2IKrcPUyZ7UF9El3hcpscnsnPAr/X4chK6+LnFhsQSMUydAcHBz5PNFfVj2ySJCLz3m5PKj\nDN85GmVODomRiWwc8jMAx5ccpqv/54w/PhldfV2C9t/g0q8lGwKsTIwnbo0f1l7zUejpkx35nLhV\nM9GvXIPSX00ncrInJm17oGtjj7FHS4w9Wmr+Ntp/BMrkdxu+lldmfCI3/X6k/oKx6OjrkfI8kpu+\nPwBgUaMStacP45zn1GLL3Vm6ldpTh9B8+wJUKhWRp6/yZNthTR0mTvakvSz+eLzP8yInLYM/xy+j\nziRP9TIsmdlcnvoDaVHx+WOIS+KSzy80/W4kOvp6JD+P4q9pPwFg5VoRD9/BHO3tU2y5u78coNGc\nr2i/yx8UCm6v2Uvc7ddze8wqlCElvPDztjCpsckc8t5Cl5VD0dXXI+FpNAcnbgKgTG0n2s/1ZGOn\nedT1bIZ5udJUaVcn3/Da7f2Xc2H5QdrM7M3Ag9PQ1dfl/sHrBG0veji0NlHv65/5z3ejNPv60rS1\ngPqYNPAdzDHNMSm83I1FW6k3uT/t985DpVQR9ddt7q0/AMAFr+9xn/olzj1boVAouPPjXhrMGJQ/\nhvgkrvj+TONFo/577kdxafrrGOr7DuZ4b59iy938bit1J/en3Z7XMdzfcACUKi6MW0Zd7/64ftMN\nVU4Of327iswEdZKsO7N/wG3eeBR6eqSFR3Jr1koAzKtXxnXacP7s/y1Z8YlFlnu++yjGDmVovGUR\nOvp6PN9znPjr6qWbbn67iGpeA9QJZzKzCJ7xPRlRcWRExfFsxyE81s4GwMzRlgu+mwocm/S4JM5N\nX0/LZd+go6dH0rMozk5VJxmzrlmBpn4D2NfD7x86E/KT45i0+HlKkfFYmyvwH6yD16ocsnLA0VbB\nvKE63HqiwndDDrtmqW8nn0aBjSXo6+VvnC77TYlKBb4bXt/81nNRML1/wZ5Sbd8XmfGJBPutod78\ncejo65H6PJKgmasBMK9RmdrTh3Hec0qx5e4t20LNKUP4KGAhqFREnrlCaMDhIut8U1bCK+7PXYmr\n/yQU+nqkh0dwb/ZyTKs7U23yCK4OnFBkGYCQlRuoOmk4DTYvQ6VSEXv2EuE7DpS4fkH4uxSqf2tX\nl1Aiu3fv5vHjx0ycOPEf33Z0dNI/vs13ZWtrxprqBZebkNLwez+yu96XssYA0P36Jr51GCtrDAuf\nf8+zPgUzmErNMeAyBxoUnOsmpY5XftWa82J7nYGyxtD75gYWOY98e8H3aFKIOsFMDltljUMXT3bU\nGSBrDL1uqnvgfqsrbxyf39jIsUYFl9OQUtu/drCh5lBZYwAYePtnrTgeWeflz1Sq3/S2VuyLQx4F\nl1aRWofL2zjT9N0S7/3TWpzfLfv3Jqi/O/8NypmVPNmYXF4kvT155PsmekAFQRAEQRAEQRD+Jm1Z\n5kTbiQbo/7ju3eV9ciYIgiAIgiAIwr9Teno6kyZNIjY2FhMTExYsWFBgqcZ169axf/9+FAoFw4cP\np23btsVuUyQhEgRBEARBEARBEArYtm0bVatW5ddff6Vr166sXr063/uJiYls2rSJgIAA1q1bx9y5\nc9+6TdEAFQRBEARBEARB+JuUqhyt/3lXV69epVmzZgA0b96cixfzJ6A0NjamXLlypKWlkZaW9tZl\nnUAMwRUEQRAEQRAEQfjg7dy5k40b8y8VZW1tjZmZGQAmJiYkJRVMQlq2bFk6duxITk4OX3/99uSg\nogEqCIIgCIIgCILwgevZsyc9e/bM99qoUaNISUkBICUlBXNz83zvBwYGEhUVxYkTJwAYMmQI7u7u\nuLm5FVmPGIIrCIIgCIIgCILwN6lQav3Pu3J3d+fMGfXSLYGBgdSvXz/f+xYWFhgZGWFgYIChoSFm\nZmYkJiYWu03RAyoIgiAIgiAIgiAU0LdvX7y9venbty/6+vosXrwYgPXr1+Pk5ETr1q25cOECvXr1\nQkdHB3d3d5o2bVrsNkUDVBAEQRAEQRAEQSjA2NiY5cuXF3h90KBBmn+PGTOGMWPGlHibogEqCIIg\nCIIgCILwN6l49yyzHyIxB1QQBEEQBEEQBEGQhGiACoIgCIIgCIIgCJJQqFQqldxBCIIgCIIgCIIg\n/JtZm9R/eyGZxaZclTsE0QMqCIIgCIIgCIIgSEM0QAVBEARBEARBEARJiAaoIAiCIAiCIAiCIAmx\nDIsgCIIgCIIgCMLfpEIpdwj/CqIHVBAEQRAEQRAEQZCEaIAKgiAIgiAIgiAIkhBDcAVBEARBEARB\nEP4mlSpH7hD+FUQPqCAIgiAIgiAIgiAJ0QAVJLVv3z65Q9AamZmZcocAQFJSktwhEBwcLHcIgiAI\n/1oJCQlyh0BoaChnzpwhIiIClUolSwzJycncu3eP1NRUSevVhuuoIPybiCG4gqR27NhB586d5Q6D\npKQkzp8/T3p6uua1rl27ShpDjx49aNy4MT179qRq1aqS1p3XV199xbZt22SrH2DdunWEh4fTuXNn\nOnfujLm5uazxyOHFixdFvleuXDnJ4ti7d2+R70n1GZkyZUqR782bN0+SGPJKTU0lMTERPT09tm/f\nTteuXSlfvrwkda9cubLI90aNGiVJDAD9+/dHoVAU+t6mTZskiwPg7t27bN++nYyMDM1rUp4X2rQv\nLl26hJ+fHzk5ObRv355y5crRs2dPSWMA2LJlC8eOHePVq1d07dqVp0+f4uPjI2kMhw8fZs2aNZp9\noVAoGDFihCR1515HfX19mTVrliR1vk1sbGy+z4iU15FcCQkJnDt3juzsbFQqFVFRUXz99deSxyEl\npciCWyKiASpIKjMzk65du1KpUiV0dNQd8IsXL5Y8jpEjR1K+fHlsbGwAiryZeJ9+//13zp49y8qV\nK4mPj6dz5858+umnmJiYSBqHhYUFGzduzHdMPvroI0ljWLp0Ka9evWL//v2MHTuW0qVL06tXLxo1\naiRpHMnJyQQGBubrnZaq0eXl5QWoL9gpKSlUqVKFR48eYWNjw549eySJASAkJASAGzduYGxsTL16\n9QgODiY7O1uyffHpp58CsG3bNurVq4e7uzvBwcGy9ZSPGTOGPn36cPToUVxcXPDx8eGXX36RpO7c\n76jjx4/j4OCg2RcvX76UpP5cuTfVq1atonXr1tSvX5+goCBOnTolaRwAkydPpl+/ftjb20teN2jX\nvvj+++/ZsmULo0ePZvjw4fTt21eWBuiBAwfYunUrAwYMYODAgfTo0UPyGDZs2MCOHTsYMmQII0aM\noEePHpI1QPX09OjRowdhYWHcv38fAJVKhUKhICAgQJIY8po5cyaBgYHY2dnJGseoUaOoXLkyDx48\nwNDQEGNjY8ljELSTaIAKkpo4caLcIQDqC4McPSl56ejo0Lx5cwB+++03Nm/ezK5du/jss8/o16+f\nZHFYWVlx79497t27p3lN6gYoQExMDC9evCA+Ph5nZ2eOHDnCzp07+e677ySLYcSIEdjZ2VG2bFlA\n2gcT27dvB9QPRxYsWICpqSmpqamMHz9eshgAJkyYAMCQIUNYu3at5vXBgwdLFkOzZs0AWL9+PcOG\nDQOgfv36DBo0SLIY8kpPT6d169Zs2rSJhQsXcuHCBcnq7tOnDwBHjx5l5syZAHTu3FnyfVG5cmVA\n/TnNfUDQtm1bNm/eLGkcoG6Uy9HIyqVN+0JHRwdLS0sUCgWGhoaSP8DMldvIyf3ONDAwkDwGXV1d\nDAwMNHFI2djx9fWlVKlSzJw5E19fX8nqLUpQUBDHjx/XPFSWi0qlws/PjylTpjBnzhy++OILWeMR\ntIdogAqSqlq1aoHhGA0bNpSs/tyeLUdHR65fv07NmjU170l9wVy4cCEnTpygYcOGDBs2DDc3N5RK\nJd27d5e0ASp3QxygZ8+eGBkZ0bNnT8aOHas5FkOGDJE0DpVKJWmDtzARERGYmpoCUKpUKaKjo2WJ\nIy4ujsTERMzNzYmPj5dljllqaioXL16kdu3aXL9+Pd9wMillZWWxceNGatasyaNHj0hLS5M8hoSE\nBJ4+fYqTkxOPHz+Wdc7Zzp07cXNz4/r16+jr60tef/ny5Vm7di01atTQNHjkeGgG8u8LJycnFi9e\nTEJCAmvXrpVlmCVAx44d8fT05MWLFwwbNow2bdpIHkP9+vUZP348kZGR+Pj4ULt2bcnqnjJlCjt3\n7kRfX1+y4fnFqVChAhkZGbL3OOrq6pKRkUFaWhoKhYKcnP/9DLEqlRiCWxIKlVwzxYUPUr9+/QoM\nx1izZo1k9bdq1QqFQlEgQYJCoeDEiROSxQHq+bAdO3Ys8MT6+fPnODg4SBZH3hu3hIQEHB0dOXTo\nkGT1gzp5RcWKFSWtszD+/v506tSJGjVqaF6T+sHE0qVLuXr1KrVq1SIoKIhmzZrxzTffSBoDwJEj\nR1iwYAEWFhYkJSUxY8YMWrRoIWkMISEhLFq0iCdPnlClShW8vb1xdHSUNAaAa9eucfz4cYYPH86+\nfftwc3PDzc1N0hiuXLnCrFmziI2Nxd7enpkzZ0oeA0B0dDRr1qwhNDQUFxcXhg8fjpWVlaQxFDZH\nWI4HadqwL7Kzs9m5cycPHjzA2dmZXr16ydL7COrP64MHD6hcuTLVqlWTJYbAwEDNvmjZsqVk9Y4f\nP56LFy+SnJyMhYVFvvfOnTsnWRy5+vTpQ2hoKBUqVACQbQjukSNHCAsLw8rKihUrVlC/fn2WLl0q\neRxSMjd2lTuEt0pMuyN3CKIBKkjL09OTrVu35huOIceXYlBQUL6bt7/++kvy+YahoaEcOXKErKws\nAKKiovDz85M0hjeFh4ezcuVKyW/mTpw4wa+//kpWVhYqlYqEhAT++OMPSWMA9dDG5ORkze9yPJgA\nuHXrluamtnr16pLXnys7O5u4uDisra3R1dWVLY5cUVFR2NnZSV7vgwcPNInClEolP//8M1999ZXk\nccgpIiICe3t7njx5ArwecglQqVIlSWOZP38+kydPlrTOokRFReUb0VOvXj1J67958yY3b97kyy+/\nZMKECQwZMgRXV+lvgN98KKCvr4+9vT2enp4FGmTvy8mTJ7l16xZjxoxhyJAhDBo0SPKe8VmzZmnF\nENyQkBCMjIzyvSZXz2zud8fly5fx8PCQJQYpiQZoyYghuIKk5B6OceXKFUJCQli/fr1mDpVSqWTr\n1q3s379f0lgmTpxI27ZtuXbtGnZ2dpKnjS9M+fLlefz4seT1Llu2DD8/PwICAmjUqJGkc+zyknOZ\noJ07d9KzZ08WL16subF/8OABBw8elHQeqJ+fHz4+PvTu3bvAHFipHxYtW7aMgIAAsrKySE9Pp2LF\nihw4cEDSGACmTZvGkiVLUCgUeHt74+LiIlndY8aMYfny5YXeSEvZs7J+/XqmTJmCj4+P5rzIbYRK\nnfn10aNHmuHhcpo6dSo3btwgLS2N9PR0HB0d2bFjh6Qx+Pn5aXqUxo0bx+TJk9m6daukMQBkZGTg\n6OhIgwYNuHnzJsHBwZQuXRpvb2/JRjmtWLFCcy4uW7aMYcOGSdYAPXXqFC1btqRatWqa+fy5evfu\nLUkMeU2fPl327PYAPj4+VKhQgSFDhnDkyBGOHj3KtGnT5A7rvVLxvz/M+J8gGqCCpDw9PdmwYQNN\nmzalRYsW1K9fX9L6zc3NiY6OJjMzUzO3TqFQMGnSJEnjAPX8vq+//prQ0FDmzZsn2+T88ePHa24o\no6KisLa2ljwGOzs76tWrR0BAAN27d5c06ytoR6MrN6NnboKTwoaKSyE3a+SSJUskr/tNp06dIjAw\nkLlz5zJo0CDZljdYvHgx48ePJz09nalTp9KkSRPJ6l6+fDkgzzC+vHJ7uDZv3kxcXBzh4eFUqFBB\nlkZgSEgIjRo1onTp0prPqxz75969exw4cAAfHx+8vLwYO3as5DHo6+vj5OQEqHMbyJV0Ji4uTvOd\n0axZMwYPHsy4cePw9PSULAY9PT3MzMwAMDMzk3Rf5M6Rj4mJkazO4pQqVYq5c+fmy24vR0P4zp07\nmpFd06dPl/R8ELSbaIAKkvrkk08A9Zd1hw4dNMlWpFK1alWqVq1Kz549KVOmjKR1v0mhUBAdHU1K\nSgqpqamy9YDmZtkEMDQ0pFatWpLHoK+vz+XLl8nOzubs2bPEx8dLWr82NLpyM79++umn7Nixg9DQ\nUKpUqSJ5ts/cZT+USiULFy7UxCHHQxpbW1sMDAxISUmhQoUKmuHqUsnbk+Hu7k5gYCBPnz7l6dOn\nkt/MBQcH4+vrS0xMDOXKlcPPz0+W9YN37drFTz/9hLOzM48fP2b06NGaTLBSkWO5k8JYWVmhUChI\nTU2ldOnSssRQrlw5lixZQt26dQkKCpJliDqol7AKCQnB2dmZkJAQUlJSiI+Pl/S65ubmxoQJEzT7\nQsqhyI0aNeLFixd0795dsjqLkzsUPDY2VuZIID4+HisrKxITEz+IJERCyYg5oIKkLl++zKxZs2Rf\nNHvv3r38+OOPZGZmaoaRST3X7/Llyzx69Ag7Ozt8fHzo3Lkz3t7eksYA6huHVatWERISQsWKFRkx\nYgSWlpaSxhAZGcnjx4+xtbXl+++/p3379nTs2FHSGEA9N/jAgQP5sq3mLn0hFS8vL8qXL0/dunW5\nevUqcXFxLFiwQNIYAPr378/QoUNxd3fn8uXLbN68mfXr10saw/Tp0zU3kxYWFgQGBvL7779LVv/K\nlSuLfG/UqFGSxQHqB0X+/v64uLhw//59Zs2axa+//ippDACff/45W7duxdDQkNTUVAYMGMDOnTsl\njUFbkhAtWbIECwsLYmJiiIiI4Pnz55Lvi4yMDLZt28aTJ09wcXGhd+/esiQhCgoKYubMmURFRVG2\nbFl8fHwICgrCxsZG8+BZCsePH+fx48e4uLjQqlUryerNfSCVu45z1apVefjwIba2tuzevVuyOHK9\nePGiwGtyZEg+ffo0M2fORE9P3d/l6+uredj6v8rMWJ4EXO8iKe2+3CGIHlBBWsuWLdOKRbN/+ukn\n1qxZo1nvUUq5mXhBPYdKX18fQ0NDTp8+LUsDdOrUqXh4eNC5c2cuXbrE5MmTJZuzk/cimZutr7Cb\nS6l4e3szbNgwWeeWxcTEaOZ0tWnTRtIlefLS1dXVZL1t1aoVGzdulDwGPz8/IiIiaN++PXv27GHx\n4sWS1p/byAwLCyM4OJjPPvuM7777Lt+oAakYGhpq5p5Wq1ZNliU/ACwtLTU3k0ZGRrJ8VnJ7XFUq\nFXfu3CEqKkryGEA9fSElJQVDQ0MCAwMlzUocHBxM7dq1uXz5Mi4uLppz49KlS7IsSePm5lagoSXV\nMii58y9zRyxYWFgQHR3N9u3bJRupoC3rOOfy8vJCoVCgVCp5/vw5FSpUkGVOaGZmJkqlEn19fbKy\nsiRdW1suYhmWkhENUEFSCoVCKxbNdnR01DR4pHb48GFUKhWzZs2iT58+uLm5cefOHdkSBsTHx9O/\nf38AatSowZEjRySr28vLC3j91LhKlSo8evQIGxsbyeeBgroRLNcQqtw1ah0cHDRZmu/duyf58jS5\nc+mMjY356aef8PDw0PRkSC01NZXt27cTFRVFy5YtZWt0eXt7a7KutmjRgmnTpknWIM+9sdXT02Pm\nzJma4yH19IXcueJxcXF0796dOnXqcOfOnQKZNqWQtwelefPmDB48WPIYQD1yY9GiRcTFxdG+fXvC\nw8Ml+5zkro9bWFIuORqge/fuZe3atflGj0g1qih3/qVcaybnpS3rOOedPpCYmMiMGTNkiWP16tXs\n2bMHa2trYmJiGD58uGxr9graRTRABUlVqFCBxYsXEx8fL+ui2UZGRgwdOjTfQuZSPanMHR717Nkz\nzRNzV1dXWbLPgnoIV3R0NLa2tkRHR6NUSvf0TtueGn/yySd4eXnh7OyseU2qoZbt27fXJB7666+/\nMDAwIDMzE0NDQ0nqz5V7Q2tpacnjx48156Ucw/qmTp1K8+bNuXz5MjY2NkybNo0tW7ZIHgdA3bp1\nAfDw8JD0M5J7A5s7p+vJkyeYmZnlW6tWCoX1+n722Weaf4eHh0u2zEPehEPR0dGyJX6ZMWMGgwYN\nYvXq1TRo0IDJkydLlgU3dxkgCwsLrViS5qeffuKHH36QZVRRt27dAPVnQ+pREm/66KOPN5a1mAAA\nIABJREFU6Nevn2Yd5zZt2sgaD6gTMj179kyWui0tLTWJDW1sbCR/cCZoL9EAFSQVExODk5MTDRo0\noFSpUsyePVuWOHKHFsrJzMyMZcuW4ebmxvXr17G1tZUljnHjxtG3b19MTU1JTk6W5Zhoy1PjrVu3\n0q5dO1mGFZ48ebLY9wMCAiQZ+vm2uXS+vr6SZaNNSEjg888/Z9++fbi7u0va8MvL3Nyc7du3a+aj\nSjly420PQEaOHMmqVaveexwNGzYs9v0pU6ZIthxL3l4/AwMDWeZ/AqSnp9OkSRN++OEHKleuLPnD\nItCeJWnkHFWUKysri3v37lGpUiXNg2WpH5x5eXlp1nHu2rWrZh3nmzdvUqdOHcniyM3orlKpiIuL\nkzRzd14mJiYMGTIEDw8Pbt++TXp6uibZn1wPmt83FWIIbkmIBqggqW+//ZZdu3Zx7do1SpUqxYsX\nLyQfYgjQqVMntm/fzqNHj6hYsSJ9+/aVPIbvvvuOgIAATp8+jbOzM6NHj5Y8BoDnz59jYGBAWFgY\nVlZWTJ8+XfKETNry1NjS0lLTs6BtDh48KMvcwzc9efJE0vpCQkIA9UMKXV1dSevONX/+fH744QeO\nHTuGi4sLc+fOlSWOwiQmJsodAoCkSwa5u7vnyx2wadMmatasKVn9uQwNDTl79ixKpZIbN27IMkog\nd0kaKysrzXIbcixJI+eoolxPnjzRZDQHZEkuCFCrVq0C2eQXL14s6Xq5CxYs0ExZMDQ0lOXcBPJd\ny+VeeUDQLiILriCLuLg45syZw5EjR/Dw8GDMmDGaIWZSmDp1Kubm5jRo0IBLly6RkJDAwoULJatf\nm3Tv3p0VK1bk64GV42KV+9TYxcUFZ2dnWeb7TZo0CWNjY1xdXTU3UXKsnVaY/v37s3nzZrnD4Msv\nv5TsRurBgwfMmDGDkJAQKleujK+vr6QNjYiICOzt7QttdFeqVEmyOIoj5fGQO479+/dz8uRJ/vrr\nLxo3bgyolwt68OBBoXMh37eIiAgWLFjAgwcPcHZ2ZtKkSTg6OkoehzYobM5+7tBYKeXk5BAXF4e1\ntbVsa6IWRqrv7+joaJKTk/H29mbhwoWoVCqUSiXe3t789ttv771+AUyMnN9eSGYp6SFyhyB6QAVp\nnTlzhj179hASEkKXLl2YOnUq2dnZDBs2jH379kkWR1hYGFu3bgXUT+i0oWdJLlZWVpLN3SrKTz/9\nxLBhw6hVqxb379+nV69esiUhAu1ZTDyvDyF74JvOnj2bL5mG1NavX8+UKVPw8fHRDGcD9bHQhkbf\nh6ZZs2bY2tqSkJCgeTCko6MjW6Nvw4YNmozVcrl27RqzZs0iNjYWOzs75syZI/n8YFCPKgoODiY7\nOxuVSiVLZuJjx44xb948LCwsSE5OZubMmTRt2lTyOAoj1ff3zZs32bhxI0+ePNEkHtLR0RGJfySk\nUom1TktCNEAFSe3bt4++ffvSqFGjfK9LPfw0IyODtLQ0jI2NSUtL+yAXR86dh5GZmcmQIUPy9fpJ\nPXTq4cOHbNu2jdTUVPbu3Sv52pu5ippvJ9U8OyG/M2fOMHDgQNmG3uYuCTRo0KB8awoePHhQlni0\nmRSDqSwsLGjUqBGNGjXi4sWLPH36lDp16ki+bnEubZh/6e/vz+LFi3FxceHBgwf4+PgQEBAgeRyj\nRo0iKyuLqKgocnJysLOzy5ekSgqrVq1i586d+TKuaksDVCpt2rShTZs2nDlzRityXQhCUUQDVJBU\nURnq2rZtK2kcAwYMoGvXrri4uPDo0SPGjBkjaf3aIHcIoTYMJZw/fz4TJ04kLi6OXbt2yTZfpSja\nMM9OW2ZLSBlHfHw8zZo1w8HBAYVCgUKhkPTm+tSpU1y7do0DBw5w48YNQD3k88SJE5q1KOVmYWEh\nS70JCQn5Gn65Q2KlsGTJEiIiIggJCcHAwIC1a9dqHqhJSRvmX5qZmWnWAK1ataosy+KA+rO6fft2\npk2bpskOLDVtzrgq9fd32bJl+eKLL0hMTKRz585UqVKFli1bShqDIBRHNECFD1KpUqWoVKkSKSkp\nlCtXjr1799KxY0e5w5KUHPNz3pSbqQ/UGQzv37/Pl19+CSDLU/yiSDn8NScnhzt37pCenq55zcPD\ng0mTJkkWA6jnBn/00Ue0a9cuX0KNdevWSRbDmjVrJKurMNWrVychIQFDQ0PNgxqFQiHLd8XLly/Z\nv39/vnUWR40axYoVKySN49KlS/j5+ZGTk0P79u0pV64cPXv2ZOTIkZLFcPXqVbZu3Ur//v3p1q2b\nbGsonzp1SpZ687K2tmbatGk0btyY27dvo1QqNcPWpZy/ntvwTUtLw8jISJYpA9qQcTUzM5OQkBBq\n1KjB8ePHadGiBfr6+nTq1EmS+nPNmTOHefPmMX36dD7//HOGDh0qGqASUalEFtySEA1Q4YO0cOFC\nZs+eLXvq+g+dHL0W2m7MmDEkJiZqkkIpFAo8PDw0a8ZKJSAggIsXL7Jz5078/f2pU6cOU6ZMkTQ5\nVGZmJgsXLiQ0NJQqVarg7e0tWd2g7kXo1q0bXbp0KTShiZRL0owdO5YmTZrIss5iXt9//z1btmxh\n9OjRDB8+nL59++bLSCuFnJwcMjIyUCgU5OTkyJZsRhvmX1auXBlQ5zUwNTWlYcOGsixj1bp1a1au\nXEn16tXp1asXpUqVkjyGojKu5n1o875NnDiRFi1aUKNGDZ48ecKhQ4dYvHgxvXr1kiyGXBUqVECh\nUFC6dGlJl44ShJIQDVDhg1SlSpW3rmsnvH+5yY8iIyNZtGgRcXFxtG/fnmrVqsmeGEku8fHx/Prr\nr3KHQVpaGmlpaSiVSjIzM2VJzOTt7c3IkSNxd3fn6tWrTJ48WZZMwEU1cKRcksbExAQvLy/J6iuK\njo4OlpaWKBQKDA0NZbmxHThwIN27dycuLo6ePXvKMtwTtGP+ZXHz1qV05MgRTWK/Fi1ayLK8WlGj\ner788kvJEg1GRkbSo0cPAIYNG0b//v0lqfdNFhYWBAQEkJaWxoEDB8TDdkHriAao8EFq3bo1vXv3\n1jw9BmRbzFxAM2do9erVNGjQgMmTJ7Njxw65w9KQcp5duXLlePnypew9XU2aNKFq1ap4eXkxe/Zs\nWWIwNjbWJNL4+OOPWb9+vSxxaIMqVapw4MCBfOssyjF/28nJicWLF5OQkMDatWspV66c5DFYWlry\n66+/EhYWhoODA6VLl5Y8BtCe+ZeFSUpKkrQ+hULByJEjqVSpkuaBjdTJ7Ioi5fxLhULBkydPqFSp\nEmFhYSiV8gzHnDt3LmvWrMHKyopbt24xZ84cWeL4EKkQQ3BLQjRAhQ/S5s2bGTp0KGZmZnKHIgDp\n6ek0adKEH374gcqVK2NoaChp/YcOHaJDhw6kpqayYsUK7t27R82aNfnmm28wMTGRZJ5dbpr8zMxM\nDh8+jIWFhaahIcfC8qdPn+bcuXPs27ePjRs3UrNmTSZMmCBpDGXLlmX16tWa+W0GBgaaffGhLStw\n9+5d7t69q/ldrqVgZs2axc6dO6lfvz6lSpWS5eHEihUr2Lp1q+TD0t+kLfMvtUFur582knI+6tSp\nUxkzZgyPHj3C0dFRtmkmvr6+RSZ9FARtIBqgwgfJxsZGa7JYCmBoaMjZs2dRKpXcuHFD8iy427Zt\no0OHDsyZMwdHR0emT5/OxYsX8fHxkewiLkcjszg2NjY4OTkRGhpKeHg44eHhksegUCh49uwZz549\n08R04MAB4MNrgG7evJmkpCTCw8NxdHSUbU5XZmYmLVu2pE2bNuzYsYPo6GjJh8trS2+btsy/1Aba\nkNROGzx//lzzGXnw4AEhISH5krhJJTMzk3v37lGpUiVNA1zbsssLHzbRABU+SEZGRrKvfSm8Nnv2\nbBYsWEB8fDzr1q2TbR3QsLAwzVAlZ2dnjh49KnkMuVmAc+nr62Nvb88333yDg4ODZHG0b98eDw8P\n2rVrx6hRo2S5eZk3bx45OTmoVCpu3LiBm5ubVt1ESTm078iRI/zwww+a7LMKhYIRI0ZIVn+uMWPG\n0LdvX44cOYKLiws+Pj788ssvksZQVG9bZmampOfHqFGjSE5OBuD48eO0bNlStmVxhKJJ+TnduHEj\nu3fvxsTEhOTkZAYMGECXLl0kqz9XaGgoI0aMQKFQoFKpUCgUnDhxQvI4PkQiC27JiAao8EES6ci1\ni729PWPGjCEsLIzq1avny2AohdDQUDZs2ICenh537tzB1dWV4OBgsrKyJI0D1ImZ3N3dqV+/Pjdu\n3ODUqVPUrVuXadOmsXHjRsniOHz4MIGBgTx8+JCsrKx8GSalMmfOHJydnXnx4gW3b9/G1taW+fPn\nSx5HfHw8P/74oyYb71dffYWZmZmkS9KsX7+eHTt2MGTIEEaMGEGPHj1kaYCmp6fTqlUrNm7cyMKF\nC7lw4YLkMRTV2zZ06FBJhyV7eXnx8ccfc/36dZRKJceOHWPVqlWS1V+cD7UhnJaWhrGxMVFRUdjZ\n2QFo5ulKQaFQaEYnmJqaSj6dJNcff/xR6OsBAQGSJWQShOKIBqjwQRLDhbTLli1bOHbsGK9evaJb\nt26EhYXh4+MjWf0//vgjt27domLFity/fx9HR0dmz54tS0/sixcvNAmxKleuzB9//EHPnj35/fff\nJY1j6dKlhIWF4e7uzt69e7ly5QqTJ0+WNIbg4GCmTZtG//792bx5MwMGDJC0/lze3t58/PHHdO3a\nlStXruDt7c3q1aslXZJGV1cXAwMDFAoFCoUCY2NjyerOKysrSzMn+NGjR6SlpckSR2Gk7OkCiIqK\nokuXLvz2229s3ryZgQMHSlo/wJQpU/L9njtiwt/fX/JY5LZy5UoyMzMZP348/v7+1KpVi6+++gpf\nX1/JYnB0dGT+/Pk0aNCAK1eu4OTkJFndJXHw4EHRABW0gjyLZwmCIORx4MAB1q9fj5mZGQMGDODm\nzZuS1l+jRg169uzJzJkz6datG2ZmZuzYsQNXV1dJ4wD1Df7Zs2dJTk4mMDCQ7Oxsnj17JvmN/uXL\nl1m+fDkDBw5kxYoVXL16VdL6AZRKJbdu3cLBwYHMzExSUlIkjwHU6wh+8cUXVK9enX79+kmeYRSg\nfv36jB8/nsjISHx8fKhdu7bkMYC6MR4VFcWIESP4888/mTZtmixxFEbKZDOg/qwePXoUFxcX4uLi\nZDk/MzIysLOz49NPP6V8+fJERkaSmZkp+Zq52uDkyZOaqTTLly/n5MmTkscwb948HB0duXDhguZB\npjaR+iGNIBRF9IAKgiC73DkqciVL6N+/f5HDbaVe12/+/PksXLiQuXPnUrVqVebOncuNGzcK9HS8\nb9nZ2SiVSnR0dFAqlZLf3AN06dKFWbNmMXfuXBYtWiR5ZtHcdT6trKw4ePAgHh4eBAUFSToXN9f4\n8eMJDAzE1dUVZ2dn2aYRuLu7k5iYyPbt26lYsaLsmWjlNHToUA4ePKhZn1aOIdFxcXGaTKvNmjVj\n8ODBjBs3Dk9PT8ljkZtCodDMA87KypKlsaWnp6fV+16O7/EPjViGpWREA1QQBNl9+umn9OvXj/Dw\ncIYNGyb5fMOJEycyffp0Vq1aha6urqR158rOzkZPTw97e/sCqfs7deokeTwdO3akb9++1KlTh6Cg\nIFmyRnt6empu5vL2tK1cuZJRo0a99/rzDgMPCAiQ/GFEXrGxsQQGBvLkyRNiY2Nxd3eXZZ7f4sWL\nZR+aXRSpGxzt2rWjXbt2AIwdO1bzuq+vL7NmzZIkhuTkZEJCQnB2diYkJISUlBTi4+NJTU2VpH5t\n0qdPHzp16kTVqlV5/PgxQ4cOlTskQRCKIBqggiDIbu/evTg5OeHp6Ymz8/+1d6/BVVb328evDYQU\nSCRCCAYIhyScLeVYoCKUgKXDlMopEIogiO0goQhBQA4TBIlROrGlBSq0iIGxhENDsSUWG3CgGaJW\nFDZIwSFFA0ZMlETIOdns5wWT2IAg/p96r3Wb72fGGXb2i3XJ7Bny29e614pS165dHV3/e9/7nh58\n8EGdPXtWDzzwgKNr11iyZIlSUlJqTzit4fF4lJmZ6ViOlJSU2vVbt26t119/Xd27d9fly5cdy/BV\n3nrrLUfW2b59uyRp79692rx5syoqKiSZaRHmz5+v0aNHa+LEiTp27JgWL16sTZs2OZ7jX//6V+0g\n/vDDD2vSpEmOZ7gVJw+buZ2a5twJiYmJWrRokfLz8xUeHq7ExERlZGRo9uzZjmWwRWxsrEaMGKEL\nFy4oIiJCLVq0MB3JOmzBhS0YQAEYl56erpycHB06dEjbtm1TaGio1q9f72gG09+W19w3Onv2bKWm\nptY+8+n0Lww1dxtKUqdOnaw8Mdrpv5M//vGPeuGFFxQeHu7oujeaMmWKJKlbt276+9//biTDf2/N\nrtk675TbbUNPTk529LAZW+Tn52vPnj2196FKMvZ8sCkJCQm3/Bw6dY+zLfLy8m75Xps2bbRo0SIH\n09RPfr/PdARXYAAFYNy///1vHT16VG+88YakukNQfZOWlqbNmzerVatWRtZ3wwnRTjeQERER6tCh\ng6Nr3igyMlL79u3ToEGD9N577ykkJKS2aevUqZNjOUaPHm1sa3bNWjt27FCfPn3Ut29fnTx5UidP\nnnQsg22ys7O1bt06xcTEaOLEiYqIiDAdyXGc6vqFBQsWSJKKiopUUlKizp0769y5cwoNDdXevXvr\n9TPbsIvHTx8PwLB+/fopIiJCCxYs0LBhw0zHMWrWrFnasmWL6RhWmz59uqP3Pc6fP1/FxcXq3r17\n7fBbc9qmU6ZNm6aioiJduHBB7dq109133y3p+jDu5N+FJL3//vv6z3/+o8jISHXp0sXRtSXpkUce\nqXMH68yZM7V161bHc9yK05/PyspKHTx4UOnp6aqqqtJLL73k2No2uXjxog4cOFDnxHAnnhW3UXx8\nvJ577jkFBQWptLRUCQkJeuGFF0zHqhcCGpn58vjrqKouMB2BBhSAeW+++aaOHTumrKwsvfjii2rZ\nsuVNB/F829X8/1ZWVmrWrFnq0aOHsWHHdk5/b2rDlyJTpkzRunXr9IMf/EDvv/++JkyYoLFjxzq2\n/n8/G1zj9OnTkpz/fJaWlio7O1vf/e539e6779Y+m2sLpz+fXq9XWVlZ+uyzzzRq1ChH17bJwoUL\ndf/99ys0NNR0FOMuXbqkoKAgSVLTpk1VUGB+4Kg/OAX3TjCAAjDuypUr+uSTT5SXl6eysjK1adPG\ndCTH1WyjdHI7pe18Pp/S0tJ07tw5dezYUVOmTFHjxo21du1aR3PYsC05NTVV6enpatasmYqLi/Xw\nww87OoDWbIsvKChQYGCg7rrrLj3//PN65JFHHMtQIykpSb/61a90/vx5de7cWc8995zjGaTrJ9Bu\n2LBBOTk56tixo+bMmaOQkJA67ew3bfTo0erWrZtiY2OVlJR0y+uk6oPvfOc79bbxvNGQIUP00EMP\n6d5779WJEyccP1ke+CpswQVg3Pjx4zVy5Eg98MAD6ty5s+k4sMSyZcsUHBysAQMG6K233lJRUZHj\nw6ct4uLi6lwD87Of/Ux/+tOfHM8xYcIE/frXv1b79u114cIFPfnkk3r55ZcdWbvmqqLKysqb3nP6\n7mBJmjdvnvr371/7+czOznZ8m+PGjRu1b98+VVdXy+/3KyAgQAcOHHA0g2k1z0KvX79eP/zhD9Wz\nZ8/atr4+f6F36tQpffjhh4qKilK3bt1Mx6k3Ahq1NB3hK1VVf2Y6Ag0oAPPS09NNR4CFPvzww9rh\nZuTIkfX6sJGIiAg9++yz6t+/v95++221b9/eSI6AgIDatSMiIuqcvvpN+7KrimpO4j148KBjOWoU\nFhZq+vTpkqTu3bsbGfxeffVVbd++Xb///e/14x//WKmpqY5nMO2/7+vdvHlz7XPSLVq0cPz5aFtc\nunRJmzdv1rlz59SpUyctXbpU7dq1Mx2rXvD72YJ7JxhAAQBWqqioUFlZmZo0aaLy8nL5fPX3ePvk\n5GTt3LlTR48eVVRUlBYuXGgkR5s2bfT888+rd+/e8nq9CgsLc2ztmis1Dh06JL/fr8LCQqN3PVZU\nVKigoECtWrXSp59+qmvXnP/FMywsTGFhYSopKdHAgQMdv77KBjX39WZkZNR5Tnr8+PGGk5mzYsUK\nTZkypbadX758eb38cgL2YgAFAFhp+vTpevDBB2uvEpg3b57pSMY0atRIU6dONR1DycnJ2rFjhw4f\nPqyoqCjNmTPH8QyHDx/W008/reDgYJWWlmr16tUaOHCg4zkef/xxxcXFKSgoSCUlJXr66acdzxAc\nHKzMzEx5PB6lpaWpqKjI8Qy2MP2ctE0qKio0YsQISdd3j9TXk5FhLwZQAICVfvrTn2ro0KG6ePGi\n2rVrp5CQENOR6r3AwEDNmDHDaIb169dr165datGihQoKChQfH69du3Y5nuO+++7TP/7xDxUVFRlr\nYtesWaPc3FwlJCRo69atWrFihZEcNvB4PGrWrJkkKSgoSIGBgYYTmePz+XT27Fl17dpVZ8+eNR2n\nXvFzCu4dYQAFAFjp5MmTWrlypQoKCtS2bVutWrVKXbt2NR0LhjVr1qx24GvVqpWaNGliJIcNTWxQ\nUJB69OghSXryyScdXds2tjwnbYMVK1Zo2bJlys/PV+vWrY2088DtcAouAMBKcXFxWrNmjaKjo3X2\n7FmtWrXKyMmvsEPNXbnvvvuumjZtqn79+snr9aqiokJ/+MMfHM8TGxurTZs2GW9icV11dbV27typ\nnJwcRUVFadKkSQoICDAdC/VMw4bNTUf4Sj7f56Yj0IACAOwUGBio6OhoSVLXrl35ZbKe+7K7cmue\nc5OkyspKR69jsaWJxXW2PCdt0rx58/Tb3/5WQ4YMuem9rKwsA4mAL0cDCgCwys6dOyVJr732miIi\nIjRgwAB5vV5dvHhRGzZsMJwOtpo+fboj127Y1sQCN8rOztbgwYNNx6iXGjYMNh3hK/l8V01HoAEF\nANiloKBAktSnTx9J1y+aDw4OVvfu3U3GguWc+j7dtiYWuNH69esZQGE1BlAAgFXmzp172/fj4+Np\nQnETj8fjyDrjxo277fuPPvqoI00scCsej0fx8fHq1KmTGjRoIElKSEgwnAr4AgMoAMBVrly5YjoC\ncEs82QTTJkyYYDpC/eXnGpY70cB0AAAAvg6nmi64iy2DH59PmDZmzBhVV1crNzdXbdq00bBhw0xH\nAupgAAUAAK5Xc2IyUN+tXLlSeXl5Onr0qEpKSrRkyRLTkYA62IILAABcY9q0aXVaxoCAAN1zzz16\n7LHHDKb6gi1NLOqv3NxcJSUl6e2331ZMTIw2b95sOlK94RdbcO8EDSgAwFWaN7f/om98c9q1a6cx\nY8boqaee0tixY9W0aVP17t1by5cvNx1NEk0szPP5fLp8+bI8Ho+Ki4trDyICbEEDCgCw0tKlS+u8\nrmm61qxZYygRbJCXl6fk5GRJUmRkpP76178qNjZW+/btczSH7U0s6q8FCxZo8uTJ+vjjjxUXF6dl\ny5aZjgTUwVciAAArVVRUKCwsTKNHj1bbtm31ySefqLKykueZ6rmqqir985//VHFxsY4cOaLq6mpd\nuHBBZWVljuawvYlF/VVYWCifz6cOHTqovLxc166xLdQ511zwn3kMoAAAK12+fFkLFizQ/fffr7lz\n56qqqkrz58/X1atXTUeDQc8++6x27typ2NhY/fnPf9Yzzzyj48eP39SYf9Py8vIUGxuryMhIjR8/\nXsXFxYqNjZXP53M0B3CjjRs3avfu3dq/f7/S0tL0m9/8xnQkoA624AIArFRcXKycnBxFRUUpJydH\nJSUlKiwsVGlpqeloMOj1119XUlJSnWeBIyIiHM9R08T26dNH77zzjrEmFrhRSEiIWrZsKUkKDQ1V\nUFCQ4URAXR4/x7UBACzk9Xr11FNPKT8/X+Hh4UpMTJTX61VoaKhGjRplOh4MefHFF/W3v/1NnTp1\n0qRJkzRw4EAjOXJzc7V27Vrl5OSoS5cueuKJJ3T8+HGFh4erf//+RjIBkhQfH6/y8nINGDBA7733\nngoKCvT9739fkpSQkGA43bdbA09j0xG+0jV/pekIDKAAADtlZmYqJiaGExzxpbxer7Zs2aIzZ87o\nwIEDjq+fmpqqsWPHciozrLN3795bvjdu3DgHk9Q/DKB3hi24AAArZWdna926dYqJidHEiRONbLOE\nfcrLy3XgwAH95S9/kd/v1y9/+UsjOXw+n2bOnGm8iQVuxJAJ29GAAgCsVVlZqYMHDyo9PV1VVVV6\n6aWXTEeCYT/60Y80atQoTZw4UR06dDAdx3gTC8AeNKB3hgYUAGAtr9errKwsffbZZzz3CUlSRkaG\nGjX64teX/Px8hYWFOZ7DliYWgD38ote7EzSgAAArjR49Wt26dVNsbKwGDx6sqqoqBQQEmI4Fw9at\nW6cdO3aoqqpK5eXl6tixo/bv3+94DtuaWADmeTz2/xvl91eZjkADCgCw009+8hPt27dPJ06ckN/v\nV0BAAFscoUOHDunIkSN65plnNHPmTK1atcpIDluaWAD2sGG4cwOOFgQAWOnVV1/V9u3bNXToUCUn\nJysqKsp0JFigVatWaty4sUpKStShQwdVVZn5hW/Dhg0aNGiQ+vXrp549e2rmzJlGcgCA2zCAAgCs\nFBYWprCwMJWUlGjgwIG6evWq6UiwwD333KM9e/aoSZMmSklJ0ZUrV4zkqGlix4wZo4yMDLVu3dpI\nDgBwGwZQAICVgoODlZmZKY/Ho7S0NBUVFZmOBAusXr1agwcP1uLFixUWFqaUlBRJ0kcffeRoDlua\nWABwGw4hAgBYqbi4WLm5uWrZsqW2bt2q4cOHc9cibmn69Onatm2bY+utWLFCvXv3ltfrVfPmzXXk\nyBHt27fPsfUBwK0YQAEAgOtNmzZN27dvd2y9a9eu6eOPP1bz5s21d+9eDR48WNFs40+iAAAH70lE\nQVTR0froo4/Utm1bx3IAgNuwBRcAALiex+NxdL0GDRqobdu2CgoK0rRp0xQdHS1JWrp0qaM5AMBt\nGEABAAD+R9hYBgC3xwAKAABcz5bBz+kmFgDchgEUAAC4xo2nzebm5kqSBg0aZCIOAOBrYgAFAACu\nsXDhwtq2My0tTT//+c8lSfHx8SZj1bKliQUAWzUyHQAAAOBO1dwBevXqVd11113atWuXkRxVVVUK\nCAiofZ2bm6v27dvTxALAV6ABBQAA1qusrFRlZaUmTJigbt26qbq6WmvWrFGTJk2M5LG9iQUAW3EP\nKAAAsF5MTIw8Hk+dLa41B/4cPHjQ8Tw7duzQO++8U9vELl++XM2bN3c8BwC4DQMoAABwDb/fr0uX\nLik8PFxer1e9evVydP3KysraP2/fvl3Z2dnauHGjJKlx48aOZgEAN2IABQAArpGYmKgOHTpo1qxZ\nWrNmjTwej5YvX+7Y+rY1sQDgNgygAADANSZOnKg9e/bUvp46dapefvllx3OYbmIBwK04hAgAALhK\nYWGhJOnKlSvy+XxGMqxcuVIZGRmSpFdeeUVJSUlGcgCA23ANCwAAcI34+HhNmDBBzZs319WrV5WY\nmGgkx+nTp7V69WpJ0ooVKzR16lQjOQDAbRhAAQCAawwfPlxDhw5VYWGhWrZsWfv8pQmFhYW6++67\njTaxAOA2DKAAAMB6q1evVmJioiZPnnzT0JmWluZ4HluaWABwGw4hAgAA1vv0008VGhqqDz74QAEB\nAbU///zzz9WjRw8jmXw+nxVNLAC4CYcQAQAA6/n9fp0/f16LFy9WVVWVKisrVV5e7njzWPPc5+TJ\nkzV16lTNnTtXU6ZMUVxcnKM5AMCtaEABAID1MjMzlZqaqjNnzqh79+7y+/1q0KCB+vTpo/nz5zuW\nw8YmFgDchAEUAAC4xuHDhzVs2LCbfp6ZmamRI0d+4+sXFBSouLhYS5Ys0dq1a+X3+3Xt2jUtWbKk\nzv2kAIAvxyFEAADANb5s+JSkbdu2OTKAnjhxQqmpqTp//rwSExNrm9ghQ4Z842sDwLcBAygAAHA9\npzZ0jRw5UiNHjjTexAKAW3EIEQAAcD2nT6G9XRMLALg1BlAAAID/EY7WAIDbYwAFAACuZ8vgx32g\nAHB7PAMKAABco7CwUMXFxQoODlZISEjtz2fOnGkwFQDgTjGAAgAA63m9Xq1evVrXrl1T06ZNVVJS\nIr/fr8TERPXt21cxMTGmI0qyp4kFAFsxgAIAAOslJyfrd7/7ncLDw2t/lpeXp8cff1y7d+92PA9N\nLAD83zCAAgAA61VXV9cZPiUpPDzc8Wcu3dLEAoCtGEABAID1hg0bphkzZui+++5TcHCwSkpKlJWV\npaFDhzqaw7YmFgDchgEUAABYb+7cuTp9+rSOHTumwsJCBQUF6YknnlDPnj0dzWFLEwsAbsUACgAA\nXKFHjx7q0aOH0Qy2NLEA4FYeP8e1AQAAy2VlZd3yvSFDhjiYRLVNbHFxsYKCgtS3b1/Hm1gAcCsa\nUAAAYL1du3bp1KlTGjhw4E3vOT2A2tDEAoBb0YACAADr+Xw+PfTQQ0pKSlJkZKSxHDY1sQDgRjSg\nAADAeg0bNtTatWtVWlpqNIdNTSwAuBENKAAAcL20tDTFxcV94+vY0sQCgFs1MB0AAADg/1dGRoYj\n69Q0sVVVVY6sBwDfNgygAADA9Zzc0BUREaGuXbt+6XtpaWmO5QAAN2IABQAArufxeExHkORcEwsA\nbsUACgAA8D/C0RoAcHsMoAAAwPVsGfxsaWIBwFYMoAAAwDU2btxY53VKSookadGiRSbiAAC+Ju4B\nBQAA1tu9e7f27NmjnJwcHTlyRNL1K1Gqq6u1cOFC9erVy3DC62xpYgHAVtwDCgAArFdZWan8/Hxt\n2rRJs2fPliQ1aNBALVu2VOPGjR3Ps3HjRs2ZM6f2dUpKihYuXCiv12vNMAwANmIABQAArlFaWqor\nV66oUaNG2rlzp8aOHau2bds6tv5/N7HR0dGSvmhi9+7d61gOAHArBlAAAOAajz76qOLi4vTaa68p\nOjpab775prZs2eLY+rY1sQDgNhxCBAAAXKO8vFwjRozQpUuX9Itf/EI+n8/R9Rs3bqx27dpp6dKl\natiwoQIDA5Wenq6CggJHcwCAWzGAAgAA16iqqlJqaqp69uypc+fOqayszEiOefPm6dSpU1q7dq0C\nAgKUmJhoJAcAuA0DKAAAcI3FixcrPz9fjz32mN544w0tX77cSA7TTSwAuBXXsAAAANfo16+fIiIi\nVFxcrOHDhys/P99IDluaWABwGw4hAgAArrFs2TIdP35cZWVlKisrU/v27bVr1y7Hcxw7dkwHDx7U\n7Nmz9corr6hXr15cvwIAd4AtuAAAwDXOnDmj/fv3a8iQIcrIyFBgYKCRHP369dOMGTNqm1i24ALA\nnWELLgAAcI2QkBB5PB6VlpaqRYsWxnLY0sQCgNvQgAIAANe49957tWXLFoWFhSkhIUHl5eVGctjS\nxAKA29CAAgAA66WkpMjj8cjv96ugoEAej0cffPCBsecubWliAcBtGEABAID1IiMjb/pZly5dDCS5\nzpYmFgDchgEUAABYb9y4caYjSLKviQUAt2EABQAAuEO2NbEA4DbcAwoAAAAAcASn4AIAAAAAHMEA\nCgAAAABwBAMoAAAAAMARDKAAAAAAAEcwgAIAAAAAHPH/AF3rYPUR87AOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAEuCAYAAAAncUVSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU9f/B/B3IEyZCoggooKoOFCoq61aV3+uunGvuuq2\nruJEcY+itmq1+m2tVetqq3UPHMVatyK4FQUVqyBDZI/k90eaCDIC1pwb9P16njwtyUnOx5t7b+65\n53POkSmVSiWIiIiIiIgKYSB1AEREREREpP/YcCAiIiIiIq3YcCAiIiIiIq3YcCAiIiIiIq3YcCAi\nIiIiIq3YcCAiIiIiIq3kUgdARERERPS+yMaWYr/HEH10EEnxseFARERERCSIQpFd7PcY6kmOEBsO\nRERERESCKJVZUofwxthwICIiIiISRKksfo+DvmDDgYiIiIhIEAV7HIiIiIiISJuSnKqkJ0MtiIiI\niIhIn7HHgYiIiIhIkJLc48CGAxERERGRIEoFGw5ERERERKQNexyIiIiIiEgbpioREREREZF2ikyp\nI3hjbDgQEREREQnCHgciIiIiItKOg6OJiIiIiEgrNhyIiIiIiEgrpioREREREZE2MvY4EBERERGR\nVmw4EBERERGRVmw4EBERERGRNjKOcSAiIiIiIq0U2VJH8MbYcCAiIiIiEoSDo4mIiIiISLsS3ONg\nIHUARERERESk/9jjQEREREQkig5SlRQKBWbPno3bt2/D2NgY8+bNg6urq+b1PXv2YMOGDTAwMEDX\nrl3Ru3fvN6qHDQciIiIiIkFkOkhVCgoKQkZGBrZv346QkBAsWrQIa9as0by+ZMkS7Nu3D+bm5mjX\nrh3atWsHa2vrYtfDhgMRERERkSg6aDhcunQJjRs3BgDUqVMH165dy/V61apV8fLlS8jlciiVSshk\nsjeqhw0HIiIiIiJBdNHjkJSUBAsLC83fhoaGyMrKglyuutSvUqUKunbtCjMzM7Rq1QpWVlZvVA8H\nRxMRERERiaLILv5DCwsLCyQnJ7+qQqHQNBpu3bqFkydP4tixYzh+/Dji4uJw8ODBNwqdDQciIiIi\nIkFkiuxiP7Tx9vZGcHAwACAkJAQeHh6a1ywtLWFqagoTExMYGhqidOnSSExMfKPYmapERERERCSK\nDlKVWrVqhdOnT6Nnz55QKpVYsGAB9u7di5SUFPTo0QM9evRA7969YWRkhAoVKqBz585vVI9MqVQq\n33LsRERERESUj/SQj4r9HpM6p3UQSfGxx4GIiIiISJQSvHI0Gw5ERERERILIFAqpQ3hjbDgQERER\nEYnCHgciIiIiItKKDQciIiIiItJGpmSqEhERERERacMeByIiIiIi0oqDo4mIiIiISKsS3HAwkDoA\nIiIiIiLSf+xxICIiIiISRMYxDkREREREpFUJTlViw4GIiIiISBQ2HIiIiIiISCs2HIiIiIiISCuO\ncSAiIiIiIm1k7HEgIiIiIiKt2HAgIiIiIiKt2HAgIiIiIiKt2HAgIiIiIiKtFEqpI3hjbDgQERER\nEYnCHgciIiIiItKKDQciIiIiItKKqUpERERERKSVkj0ORERERESkDXsciIiIiIhIKzYciIiIiIhI\nqxLccDCQOgAiIiIiItJ/7HEgIiIiIhKkBI+NZsOBiIiIiEiYEpyqxIYDEREREZEo7HEgIiIiIiKt\n2HAgIiIiIiKtSm6mEhsORERERESiKBUyqUN4Y2w4EBERERGJwlQlIiIiIiLSij0ORERERESkDVOV\niIiIiIhIOzYciIiIiIhIKyUbDkREREREpAVTlYiIiIiISDuFgdQRvDE2HIiIiIiIRGGPAxERERER\naaPkGAciIiIiItKqBKcqldzIiYiIiIhIGPY4EBEREREJwlmViIiIiIhIOzYciIiIiIhIG10MjlYo\nFJg9ezZu374NY2NjzJs3D66urnnKzZw5E9bW1pg0adIb1cMxDkREREREoigMiv/QIigoCBkZGdi+\nfTsmTpyIRYsW5Smzbds23Llz5z+FzoYDEREREZEgSoWs2A9tLl26hMaNGwMA6tSpg2vXruV6/fLl\ny7h69Sp69Ojxn2Jnw4GIiIiISBClUlbshzZJSUmwsLDQ/G1oaIisrCwAQHR0NFavXg1/f///HDvH\nOBARERERiaKDdRwsLCyQnJz8qgqFAnK56jL/0KFDiI+Px7BhwxATE4O0tDRUrlwZXbp0KXY9bDgQ\nEREREQmii+lYvb29ceLECbRt2xYhISHw8PDQvNa/f3/0798fAPD777/j/v37b9RoANhwICIiIiIS\nRhezKrVq1QqnT59Gz549oVQqsWDBAuzduxcpKSn/eVxDTjKlUql8a59GREREREQFSpxQsdjvsVoW\n8dbjeBPscSAiIiIiEoQrRxMRERERkVa6SFUShQ0HIiIiIiJRdDCrkihsOBARERERCcJUJSIiIiIi\n0oqpSkREREREpFVJ7nEouUlWREREREQkDHsciIiIiIgEUSpL7n17NhyIiIiIiEQpwalKbDgQERER\nEQnCwdFERERERKRVSR4czYYDEREREZEgHONARERERERasceBiIiIiIi04hgHIiIiIiLSig0HIiIi\nIiLSiqlKRERERESkFQdHExERERGRVuxxICIiIiIirTjGgYiIiIiItGLDgYiIiIiItGKqEhERERER\nacUeByIiIiIi0qokz6pUciMnIiIiIiJh2ONARERERCSIgqlKRERERESkDQdHExERERGRVhwcTURE\nREREWrHhQEREREREWrHhQEREREREWilK8HSsbDgQEREREQnCwdFERERERKQVU5WIiIiIiEgrNhwK\nERPzUtdVFMre3hJp15pJGgMAmNY8gX0+fSSNof2lLTjW0FfSGACgxdmdON24o6QxfHTqDxxt0F3S\nGACg1bkdyMYWSWMwRB+9iAEAjtTvIWkcn57fjl/rDJA0hm4hGwFAL74TfYgBgOTHaqtzO3Cofk9J\nY2h9fpvk3weg+k521e0naQydr2zSm22hD+es4426SRoDADQ/86venDtLAi4AR0REREREWrHHgYiI\niIiItGLDgYiIiIiItGKqEhERERERacUeByIiIiIi0ooNByIiIiIi0qokpyqV3DWviYiIiIhIGPY4\nEBEREREJwlQlIiIiIiLSig0HIiIiIiLSqiSPcWDDgYiIiIhIEPY4lFDBl9Lw7eZEZGQp4eFqhNkj\nbWBh/mq8+N6TKdi0N0nz98sUJaJjs3FkXVnIDWWYty4BtyMyYWZigI7NzdC7rUWR63b4uA6qje4B\nAyM5Eu89Quic9chKTn2jcj5Lv0R6TDyuLdkIACjzgSeqj+sFA7khstMzcX3pRiRcv6967UNvuI3s\nDQMjIyTdi8TN+WuQnZL78wosY2AAj3EDULqBF2SGhnj4yx5E7ToKALD72AeeM0cj7dlzzedcGj4T\n2SlpqLVwIizcKyI7NS3Pv8+2kQ9cv+gPAyMjJIdH4N6ilXniKUqZavOmION5HO6vWAezii7w8J+g\neU1mYIBSbhVxc/pCKDMz4fpFfwBA7QXjcX3+WmTns93tPqoL9xG9YWCs2gaacgYyVP1yAMr8uw0i\nt+zF43+3gbmLIzxnjICRtSWyU9JwLWAVUiKf5Ppclx5tUL5jC5zpPem1Gg1ggFZQ4iGUuJknnoIo\nlUpMn7oH7lXsMWjwh0V+39ukqxjsPqqLKiN7wcDYCC/vPcT1eQV/V4WVM3EogwY/zsOZPl8h88XL\nXO81c7JHw42LcGnsfCTevJ9vHI6NvVBzjC8MjeV4cfcRLs7+AVnJefflAssZyFB3Sn/Y+1QFADz9\nKxShy7cBAMo1qYN6c4ci5WnsG2+n/Lxr+0WBx2NRyxVy3Np97IOa/qNynbsufOGP7JQ0uH3RA46t\nVLF7fjUIt1ZsgiIjEwBg/1FdeIzsqdnvwuZ9n29M2sqZOpRBwx/n4nQfP83+aWRVCtUnfQ6LSs4w\nMDHG/Q27/9P2U9PVflH2Yy/UGNMdBsZGSLz7CJcD1ud7jBRWrpJvC1Ts/AkMTYwQfzMCVwL+B0Vm\nFhyb1IXPnGEl5hgRcd5y+uwTlP2kPq5MXJLnc8t86A23EX0gM5IjOfwhbs7/Lv/f+ELKmDiUwQf/\nW4Dz/Sblqbtc++awb1ofoZMXFbodRJ83T36+oNB49E1J7nF4b2dVinuRDf9VCQicXBp7VpaFc1k5\nvtmcmKvMZ5+YY0egA3YEOmDLYnvY2RhgyhBrlLExxNKfXsDc1AC7Vjhg80I7nL6cjj8v5j0o8mNs\nYwmvWcNwafIKnOw6GSmPo1FtTI83KufWvz1K162q+VsmN4T3wtEInfc/BPeahrs/7EadOSM0r3vO\nGImwqV/jbI9xSH3yDO6j+uT6PCMbqwLLOHduCTMXR5zrMwEXBk2BS492sPJ0BwBY16qKyF/24Hz/\nyZpHdopqe1jX9MClEf6a59XkNlZwnzoWt2YswuU+I5H25Clch/fPFU9Ryjj37gwrL0/N36kRj3B1\n0HjNI+FCCGKO/onE0BuazwKAlKhoVBnZO892N7KxRI0ZIxE6NRB/d/8yV7nynVvB3MURZ3pPxLnP\np6JCz7aw8nQDANQMGIvHvx3BmZ4TEL5+B7wWTcz1uda1q6JSv4556gMAGXwAFL3hCQDh4TEYNGAT\nDh28Xqz3vU26isHIxhI1Z47A1SnLcNp3PFKjnsFjVP7fVWHlyrVtgvrrZsPUoXSe9xoYG6FmwBjI\njAq+f2Jsa4kPAobg7KSVONxpCpIfx6DWuO7FKufa/iNYVnTEEd/pONpjJuw+qArnVvUAAGW8quDO\nzwcR1MNf8/iv3sX9oqDjMac3PW5tansgYstenO33leaRnZIGp/afwP5jH5wbOBUAkP48AVWG99DU\nVXPmcFyZshynfCcgJSoaVUf1yjemwso5tW2MBvnsn7X8RyAtOg5/95uKC6Pno/rEAf95G+pqvzC2\ntYRPwDCcm/wtgjp/heTH0agxNp/fs0LKOTX/AG49W+Gv4YsQ1G0qDE2N4d63NQCgtFcV3P35AE70\nnKF5/Fcl9bwltyqF6lOGoPqkz4F8rjuNbKxQffoohE1dinM9xyE16hncRub9jS+sjGObpvBeOxcm\n9mVeq9sCVb8aBo8JgwBZ4Re9Upw3s1KKdv2lL5SQFfuhL97bhsOZq+mo6W4EVyfVRUP3/zPHgVOp\nUCqV+ZbfsDsJpa0N4ftpKQDAjfBMtG9qBkNDGYyMZGjsY4qgM3nvKuTHvlEtJNy4j+RHzwAAkb8G\nwbnNR8UuV+YDT9h/WBuRvx3TPKfMykZQmzFIvB0JADB3dkDGi1e9Jok3w5H66CkAIOr3I3D8v8a5\n6izdoHaBZeybNsA/+05Ama1A1stkPAs6DcfWqtesa1VF6Q9qot5Pi+Gzdg5s6lQHAJiWc4ChuRmq\n+Q1D/c1fo/qMkZq6bOvVRdKte0h7/A8A4OnuQ7Bv1TRXPNrKWNetBZv63ni6+1C+29qqtifKfPIh\nwr9ek+ezHv9+RBN/TmUaeOHFzXCk/LsNcpZzaFofUXtParbB06N/o1zrJjCxt0Wpik54evRvAEDs\nmRAYmprAsmolAIBxaWtUnzwYd1ZuzlOfDJUAGEGJqHz/DQXZuuUiOnepg9ZtahTrfW+TrmIo08AL\nL268+g4e/XYUjq0/LlY5EztbODSth8vj878zVu2rQXiy7yQyExLzfR0Ayjaqifjr95H0UHUMhu88\njgptGhWrnMzAAHIzExgaG8HASA4DuRyKdNVd6zJe7rCv54kWvwTgkx+nwc67ap7PLq53cb8o6HjM\n6U2OWwCwqVUVpT+ogQYbF+GD7wM05y7LapUR/ecFZCWlAACenTwPx+YNAAB2DWrn2e/K5bN/FlZO\nvX9efG3/NLIqhTL1a+Pe+l8BAOnRcTgzaOabbjoNXe0XDg1rIf76fST/u+8/2HkMLm3y3sEvrJxL\n+49xd/NBZCYmA0olQuZvwMN9pwGoLhLt63viky1z0PiHGSijx8eIrs9bji0bIf15Am5/m/d3BABK\n1/dC4s17SH2s/v0+nPc3vpAyxna2sGtSH1cn5L1779DiQ6Q/j8e9lT9r3Q4l8bwpmlIpK/ZDG4VC\nAX9/f/To0QP9+vVDZGRkrtePHz+Orl27okePHtixY8cbx/7epio9fZ6NsnaGmr/LljFEUooSyalK\nWJjn/oLiE7Px854kbFtqr3muVhVj7PszFXWqGSMzU4mgs6mQGxatRWhatgzSnsZp/k6LjoORhTnk\npcxypSEVVs7QzAQ1JvXDudGL4dqlea7PV2Zlw7i0FZpsmQ8jG0tcnrry1Wfk6I5Pj46F3MIchuZm\nmm5KUwe7AsuYOpRB2rPYXK9ZuLsCADITX+LpwWDE/Hke1l7V4LXkK5zrOwnGpa0QdyEMt5euR0Z8\nIjzGD9S839jBDhk564p5DrlFqVzxFFbG0MwMlcYNwfWJs+HY4f/y3dYVR32Oh+s3IzslNe9nRcfC\nyMIchqXMcqcOlC2D9Nf+nepypmXLID369W1QAaZl7ZAeEw/kaHimxcTB1KE0Xt6NQM05Y3Fn5SYo\ns7LzxChDVShwFDLUy/ffUJAZ/m0AAGfPPijW+94mXcVgWrYM0qLz/w5e/64KKpf+PB5X/QLz/Xzn\njs1hIJcj6o/jqPx55wLjMC9bGik5jsHUZ3EwsjSHvJRprm73wspF7DmF8q3qod2RFZAZGuDZmWv4\nJzgEAJDxIgmR+/7GkxOXUKZOFXy44stibKX8vYv7RUHH4389bgEg48VL/HMwGDF/XoCNV1V4Lf0K\nZ/tORuL1u6jQsx0e7VTdlHBq2wQmdjaaunLud2lF3D/TXts/Q/yW5fm3mpd3RHpsPCr2aQf7RnVg\nYCzHg8373njbqelqvzB3LI3UHNs9NbqAY6SQchaujjC5ZoUPV02Gqb0NYq/cwbUVqrSUjISXeLj/\nNP45cQll6nig4XL9PUZ0fd56/HsQAMCpXdN8X8+zn8fE5vlNLaxMxvN4XJu6NN/PfrLrCADAse0n\nhW0CANKcN4O6//eeKJF0kaoUFBSEjIwMbN++HSEhIVi0aBHWrFkDAMjMzMTChQvx66+/wszMDL16\n9ULz5s1hZ2dX7HoKbTj069cPsgK6pH7+WXurU58V0LEAg3z6YH47moJm9UxRvuyrzTVxoBWWbUxE\nj0kxsLc1QCMvE4TcyihS3QVtU2W2okjlIAO8F47B9cBNSH+ekG+RjLhEBLUZA6tqFdFwzTScvl9w\nCoRSkaNegwJiUyggy+c1dcxhU77WPPfi6i0khN1G6fq18c/+kwib8upEdH/9Drj4toFMLs/3816P\np6AykMngMXsSHnz7P2TGxudbxLJmNcitLRFzNLjQz3p9u0OWf0ecMluR//ZRKArsulUqFKgysjcS\nrtxE3Pkw2Hq/SqmSlzJTvR1/A8jboHifFfi9v36MFLFcTpZVK6F8l5a4MGz2G8eR51gtpJznF52Q\nHv8Se5uPgaGpMT5cPg5V+rXG3U2HcGbiq0Z9bMhdxF69C6emdbXGRW/puAUQOuXVRVrC1dt4EXoH\nZerXxpN9J2HiUAY+q1XnzuSIKCgys/6tqoDO+jz7RdHK5XqP3BDmzmWRnZSKc0Nnwbx8WdRfN7vA\n8pIr8PdMWeRyBnJDODSsibPjlyM7PRM+c7+A5+huCPt6C85N+lZTNjbkDmKv3kM5PT1GdHneKpIC\n9rfcv/FFKPMfSXHedGhU863FL4IuBkdfunQJjRureo/q1KmDa9euaV4LDw9HhQoVYG1tDQDw8fHB\nhQsX0KZNm2LXU2jDISAgAACwevVqtGjRAj4+PggNDcWJEyeKXZG+cbQzRNjdTM3f0bHZsLKQwdw0\n70F1+HQq/AZb53ouOUWB8f2sYG2pKv/jrpeoUK7wDpzGv6i6/+SlzPDy3iPN86b2pZHxIgnZaem5\nyqc+jYVNTfc85SwqOcPcyR6e4/sCAEzKWENmaAADEyPcWL4FdvVq4OmJiwCAxFsReHknEpbuLqqy\ndraazzOxL43MF0lQ5Kg3/dlzWNeokm+ZtGfP87xf3SPh3PX/ELlxl+Y1GWRQZmfDxqsa5FYWeH5K\nFY+6MaRUKJD+LAYW1T1efZ5dGWQmvnwtnvzLmFd0gWm5sqg4ehAAwLi07b/bwBj3Fq8CANg1/xgZ\n0c/h9cOyf7e7OZLDX3Xd5ffvB1S9MtY5tnuubfD0OYzL2OR6LS06DmnPcj+v/r7SouNQrk0TZMS/\ngMMn9WFoZgoT+9JouGkJHvyk2l4GUKeflQJQDqq0pVC8jxpuXgxAdYwk3XuoeV79Hbx+jKQ9fQ7r\nGnm/q9fL5eTUtgnkpcxQ/4e5mvfUmjMGd/7t/vcc0RlOn9TVxJF497HmvWYOtv8eq7lvEqT8E4fS\nNd3yLefc4gOELFL1NmUlpSJy718o37IeInYHw617c9z64dXd5AJvFrxnZKgNGZw1fxvb5T7m3tZx\nK7cwR/mu/4eIHOcuyABFVjbkVqXw9PBfiNi4G63O7YCtVzXIDA3w4eZFec7hJgWew/Pun/mVyyn9\nuepGyOP9fwIAUh4/Q8LV23Bs0bDQbSZS9RFd4NjUGwBgVMoMiTl/zzT7ft7fs9K13PItlxaTgCcn\nLmnuRj/afxrVhnWGkYU5KnVvgTs/7tW8T98OEbdhvrBv8gEA3Z63iiLtaQysPF/7/X7tN7UoZd5U\ny+1zAEhz3lRmlqybb7rocUhKSoKFxauxkoaGhsjKyoJcLkdSUhIsLS01r5UqVQpJSUn5fYxWhY5x\nqFy5MipXroznz5+jbdu2KFu2LFq1aoXHjx8X9rYSoVEdE4TeyUDkE9UdpJ1HUvBJPdM85RKTFHj4\nNBteVY1zPb/zSApWb1PlRscmZOP3oBS0aWxWaJ2nek/Dqd7TcHrgLNjWckcpl7IAANduLfDsz0t5\nysecDcu3XELYPRxrN1bzeQ9/O4Z/jpxF6Nz/QZmtQG3/YbD1Ul1sW1R2RqmKTki4Fg4AsK5ZBWYu\njgAA586fIubUhVx1xp67WmCZmOALKPdZM8gMDSC3MEfZVh8hJvgCslLSUL5ra9g3U+X/WnhUhJWn\nuyrP39wUHhMGQW6l2pkr9O2gqkihQML5EFjWqArT8uUAAI6dWiPur/O54imozMvrt3Gx22DNAOin\nfxzC82N/aRoNAGBVpwYi12/RlAn94qtcn1W+SytEv/bvz7kNzP/dBjnLxQRfhPNnzXNsgw8R8+d5\npEfHITXqGcr+OwNLmQZeUCoUSLr3EMHtvsDZvqpBlzcWrEVq1FOc7fcVnh07o9oUOAgFDkKJx1Di\n1nvbaACAs339cLavH84PmpH3Owi+mKd87LnQIpXL6fbyjTjdbbymrvSYOIT5r0TMKdUxeGPNLs2A\nuxP95qB0bTdYVFAdg5W7NceTk1fyfOazM2EFlku4GYnyn6qODZncEE5N6yI2NByZyalw69ESzi1U\nFx02VSvAtmblYm+zd5ESoVDgoObvgo7HnN7kuM1KSYVLt/+Dw7/nLkuPirD+99xlVd0NXosnQWao\nSmk1srHA3e934u++U3B20EzY1HTX1FWhS8sC98+ilMsp9UkMXty8D+d2qjEYxqWtYVPLo9D3iHZz\nze+agcon+weofqf+3fcrdWuBf05ezvOeZ2euFVguKug8nFvWh4GJEQDAqZkP4q/fR2ZKKir3aAmn\nf48R66qusM1xoakPwtftFHLeKoq48//+fpdXfa5T50/xPPhCscu8KSnPm0//Llm/m7oY42BhYYHk\n5GTN3wqFAnK5PN/XkpOTczUkiqPIYxx27tyJ2rVr48qVKzAyMnqjyvRJGWtDzBllg0lfxyEzCyjv\naIj5Y2xx/V4GAtYkYEegAwDg4dMs2NsawEie+0sb3MUC079JQJcvo6FUAsO7W6Kmu3F+VeWREZ+I\nqwHfw2fJOMiM5Eh5HI0Qf1UemnX1Sqg9cyhO9Z5WaLmCZKem4+LEZagxsS9kcjkUmZm4MmM10qJV\neYQ35n6HWgsmwsBIjtTHz3B9zipYVquM6tNG4Hz/yciMT8y3DKAaKG3m7Ij6m76GgZEcUbuOIuHK\nDQBA6FeLUXXiYFQe0h3KbAWuzViOzBcvEXsmBI93HsAH6+YCMgMkh7+6G5OZ8AL3Fn6LanP9IJPL\nkfbkKe7OWwGLqu5w8xuFq4PGF1imKMzKOyH9aXS+9QGAhVsFXAtQ/dusqlWG5/ThONvvq3+3wRrU\nXjgBMrkcqVHPNOUe/34EZuXLouHmpTAwkuPxriDEX1FNnxo2YwWqT/0ClT/vAkVGJkKnLS84J44K\nlRGfiOtz18Brkfo7eIqw2asBAFbVK8Nz+hc429ev0HJvQ3r8S1yc9T80XDoaBkZyJD+OxvkZ6wAA\ntp4V4TNrEIJ6+Bda7urXW1BnSj98umshlAolos9dx+2f9gMKJf7+cgXq+PWD54jOUGZn49xXq9H0\nf1PfWvzvioKOx7dx3F6dvARVJw2C21BfKLMVCJ2xApkvXiLuXCie1/VEwy2qVMvkyH8QsXU/ANX+\nGTZ3LeosGg8DuRwpUc9y7Z81pw/D332nFFquMFe+CoTnV4Pg0qUlZDIDhP/wG2pMHfrWt+vbkBGf\niMuz16PB0rEwkBsi+XE0Ls78HgBg41kJdf0H40TPGYWWu78jCMZWFmj2y1zIDAyQcCsCYct+BBRK\nnB2/Al5+/VB9eFcosrNx3m8VGq+fJuU/uUBSn7cy4xNxc95q1FwwSfX7HfUMN+ashGU1N1SbOhwX\nBkwusMzbJMV5MyPhze6eS0Whg1mSvL29ceLECbRt2xYhISHw8Hh1w8HNzQ2RkZFISEiAubk5Ll68\niMGDB79RPTJlQdMI5RATE4O1a9ciIiIC7u7uGD58OGxtbbW97d/3vtReSIfs7S2Rdq2ZpDEAgGnN\nE9jn00d7QR1qf2kLjjX0lTQGAGhxdidON85/WlJRPjr1B442yDs9nGitzu1ANrZIGoMh+uhFDABw\npH7eaRxF+vT8dvxa579PfflfdAtRrceiD9+JPsQAQPJjtdW5HThUv6ekMbQ+v03y7wNQfSe76vaT\nNIbOVzaXtLEEAAAgAElEQVTpzbbQh3PW8UbdJI0BAJqf+VVvzp0lwcF6eadv1qbNha2Fvq5QKDB7\n9mzcuXMHSqUSCxYswI0bN5CSkoIePXrg+PHjWL16NZRKJbp27Yo+fd7smrTQHoenT5/C0dERSUlJ\n6Nu3L5RKJWQyGRISEorccCAiIiIiIhVdjHEwMDDAnDlzcj3n5vYqta958+Zo3rz5628rtkIbDhs2\nbMDUqVPh7+//alDrv42Hkj6rEhERERGRaLqYVUmUQhsOU6eqcm03bdqEuLg4REVFwdXVFVZWVkKC\nIyIiIiJ6l7y9yW/FK9Lg6N9++w3r16+Hm5sb7t+/jzFjxqBt27a6jo2IiIiI6J3yzvY4qG3duhV/\n/PEHTExMkJKSggEDBrDhQERERET0HilSw8HGxkYzF6ypqSlTlYiIiIiI3oAuBkeLUmjDYcKECZDJ\nZIiLi0OXLl3g5eWFGzduwNQ070JpRERERERUOKUO1nEQpdCGQ8+eeeetbt++veb/o6Ki4Ozs/Paj\nIiIiIiJ6B72zPQ7169cv9M1Tp07ltKxEREREREWk0Lr0sv4q0hiHghRh0WkiIiIiIvrXO5uqpI16\nUTgiIiIiItLunU1VIiIiIiKit6ckJ+zIlP8h36hfv37YtGnT24yHiIiIiOidtbnWoGK/p2/YjzqI\npPgMilM4ISEh198NGzZ8q8EQEREREb3LlEpZsR/6okipSufPn8ecOXOQnZ2N1q1bw8nJCb6+vhg1\napSu4yMiIiIiemeU5DEORepx+Oabb7B582bY2dlh+PDh2Lp1q67jIiIiIiJ65yjf4KEvitTjYGBg\nABsbG8hkMpiYmKBUqVK6jouIiIiI6J1TknscitRwqFChAgIDA5GQkIB169bByclJ13EREREREb1z\nFFIH8B8UKVUpICAATk5O8PHxgbm5OebOnavruIiIiIiI3jkleXB0kRoOGRkZaNasGUaOHIkXL14g\nJiZG13EREREREb1zFEpZsR/6okgNh7Fjx+L69etYunQpjIyM4O/vr+u4iIiIiIjeOSV5cHSRGg5p\naWlo3rw5nj59imHDhiE7O1unQe3Zs0enn1+SZGRkSB0CAODly5eS1h8WFiZp/UREJd3razG9j5KS\nknDr1i2kpKQIr1vq31Git6FIg6MzMzOxceNG1KhRA/fu3UNqaqpOg9qxYwc6dOig0zqK4uXLlzh9\n+jTS0tI0z3Xq1EloDF27dkXDhg3h6+sLDw8PoXXnNGzYMEmn4f3xxx8RFRWFDh06oEOHDrCyspIs\nFik9efKkwNdETVqwe/fuAl8TeXxMnTq1wNcWLlwoLA4ASElJQWJiIuRyObZv345OnTrB2dlZWP2r\nVq0q8LXRo0cLiaFfv36QyfLvTv/555+FxJDTzZs3sX37dqSnp2ueE7Vf6Nu2KGgtJtEiIiIQGRmJ\nqlWromzZsgVuI105dOgQ1q5dq9kOMpkMI0eOFFa/+nd01qxZCAgIEFZvYWJjY3MdI6Inv0lISMBf\nf/2FrKwsKJVKREdH44svvhAagxT0KfWouIrUcPDz80NQUBBGjhyJP/74A9OnT9dpUBkZGejUqRMq\nVaoEAwNVp0hgYKBO68zPqFGj4OzsDDs7OwAQfpIDgD/++AOnTp3CqlWrEB8fjw4dOqBt27bCp8S1\ntrbGxo0bc30nH3/8sbD6ly9fjhcvXmDfvn0YN24cSpcuje7du6NBgwbCYlBLSkpCcHBwrt4gURfM\n48ePB6A62SYnJ6NKlSq4d+8e7OzssGvXLiExhIeHAwBCQkJgZmaGunXrIiwsDFlZWUIbDm3btgUA\nbN26FXXr1oW3tzfCwsIk6Z0aO3YsevbsiSNHjsDd3R3+/v744YcfhNWvPkcFBQWhfPnymm3xzz//\nCItBfSG0evVqtGjRAj4+PggNDcWJEyeExZDTlClT0LdvXzg6OgqvW9+2hXotpjFjxmD48OHo1auX\n8IbD5s2bcfToUbx48QKdOnXCw4cPhac9//TTT9ixYwcGDx6MkSNHomvXrkIbDnK5HF27dkVkZCRu\n374NAFAqlZDJZNi2bZuwONRmz56N4OBgODg4SBbH6NGjUblyZdy5cwcmJiYwMzMTWr9USvKsSkVq\nOHh7eyMxMRHbt29HxYoVUbt2bZ0GNWnSJJ1+flEplUrhdy5fZ2BggCZNmgAAfv31V2zatAm//fYb\n2rdvj759+wqLw9bWFrdu3cKtW7c0z4lsOADA8+fP8eTJE8THx8PNzQ2HDx/Gzp078fXXXwuNY+TI\nkXBwcEC5cuUAiG1Qbt++HYCqUbt48WJYWFggJSUFEyZMEBbDxIkTAQCDBw/GunXrNM8PGjRIWAwA\n0LhxYwDAhg0bMHToUACAj48PPv/8c6FxAKp0zhYtWuDnn3/GkiVL8Pfffwutv2fPngCAI0eOYPbs\n2QCADh06CN0WlStXBqA6TtWNulatWmHTpk3CYsjJzs5OkrvqgP5tC31Yi2n//v3YsmULBgwYgIED\nB6Jr167CYzA0NISxsTFkMhlkMpnwi9RZs2bB3Nwcs2fPxqxZs4TWnZ/Q0FAEBQVpbgZKQalUYs6c\nOZg6dSrmz5+P3r17SxaLSPo0S1JxFanhEBgYiMjISHh7e2P37t24ePEipkyZorOgPDw88nRd1a9f\nX2f1vU59J9nFxQVXrlxBjRo1NK8ZGxsLiwMAlixZgmPHjqF+/foYOnQoateuDYVCgS5dughtOEjd\ngPL19YWpqSl8fX0xbtw4zfcwePBg4bEolUrhjZXXPX36FBYWFgAAc3NzSWY6i4uLQ2JiIqysrBAf\nHy9Z/nRKSgrOnDmDWrVq4cqVK7m63UURnc5ZkISEBDx8+BAVKlTA/fv3Jcup3rlzJ2rXro0rV67A\nyMhIkhicnZ2xbt06VK9eXdO4F32zA9CPbaEPazGp72irvwvRv6WA6sbChAkT8OzZM/j7+6NWrVpC\n6586dSp27twJIyMjoamMBXF1dUV6erqkd/kNDQ2Rnp6O1NRUyGQynY+h1RclucdBplQqtQ7W7tmz\np6b7SqlUonv37ti5c6fOgurbt2+erqu1a9fqrL7XNW/eHDKZDK9vGplMhmPHjgmLA1CN92jXrl2e\nO0SPHz9G+fLlhcWR8wc3ISEBLi4uOHjwoLD6IyIiULFiRWH1FWbevHn47LPPUL16dc1zon8Ely9f\njkuXLqFmzZoIDQ1F48aNMWLECKExHD58GIsXL4a1tTVevnyJmTNnomnTpkJjAFSpU0uXLsWDBw9Q\npUoV+Pn5wcXFRWgMly9fRlBQEIYPH449e/agdu3aOu+Zzc/FixcREBCA2NhYODo6Yvbs2cLjiImJ\nwdq1axEREQF3d3cMHz4ctra2QmMA8h8DI/oGiL5si6ysLOzcuRN37tyBm5sbunfvLvyctWnTJhw8\neBBPnjxBlSpV0LBhQ0lu/AQHB2u2Q7NmzYTWPWHCBJw5cwZJSUmwtrbO9dpff/0lNBZAdW0XEREB\nV1dXAJAkVenw4cOIjIyEra0tVq5cCR8fHyxfvlxoDFJYUaX4KXJf3v1OB5EUX5EaDt26dcOOHTtg\nYGAAhUKBnj17YseOHToLqk+fPtiyZUuurisp8v9CQ0Nz/eieO3dOeE59REQEDh8+jMzMTABAdHQ0\n5syZIzSG10VFRWHVqlVCf4SPHTuGX375BZmZmVAqlUhISMDevXuF1Z9Thw4dkJSUpPlbigYlAFy7\ndk1zQVKtWjXh9QOqC5K4uDiUKVMGhoaGksTwuujoaDg4OAit886dO5rJCxQKBf73v/9h2LBhQmOQ\n2tOnT+Ho6IgHDx4AeHWHGQAqVaokPJ5FixbptGe8qKKjo3P1ntetW1d4DFevXsXVq1fRv39/TJw4\nEYMHD4anp6fwOMLDw3Hnzh1UrlwZVatWFV7/8ePHce3aNYwdOxaDBw/G559/LkkvVEBAgF6kKoWH\nh8PU1DTXc1L0hKjPHRcuXEC9evWE1y+FZe7FbzhMuKcfDYcipSq1bdsWvXr1gpeXF0JDQzU5m7oi\nddfVxYsXER4ejg0bNmhyhBUKBbZs2YJ9+/YJjWXSpElo1aoVLl++DAcHB0mmkHuds7Mz7t+/L7TO\nFStWYM6cOdi2bRsaNGggPIc8JymnC965cyd8fX0RGBiouSi7c+cODhw4IGycw5w5c+Dv748ePXrk\nGd8hRQN/xYoV2LZtGzIzM5GWloaKFSti//79QmOYPn06li1bBplMBj8/P7i7uwutf+zYsfj222/z\nvQgSdSdzw4YNmDp1Kvz9/TX7hbrxIMVMQvfu3dOk0kll2rRpCAkJQWpqKtLS0uDi4qLTm24FmTNn\njuYu7pdffokpU6Zgy5YtQmPI2QMUHBwMIyMjODo6ok+fPnnuvuvKypUrNfviihUrMHToUKENhxMn\nTqBZs2aoWrWqZryaWo8ePYTFoTZjxgxJZ0sEAH9/f7i6umLw4ME4fPgwjhw5ovMJePSBPq3LUFxF\najgMGjQIH3/8Me7fv49u3brpfFrQPn364KeffsJHH32Epk2bwsfHR6f1vc7KygoxMTHIyMjQ5I7L\nZDJMnjxZaByAKn/9iy++QEREBBYuXCjZwKEJEyZoLgaio6NRpkwZofU7ODigbt262LZtG7p06SJs\nBqGc9OGCWT1DjHrwZX4pdbqmnoVk2bJlQustyIkTJxAcHIwFCxbg888/l2Saw8DAQEyYMAFpaWmY\nNm0aGjVqJLT+b7/9FoA06Q5q6gvDTZs2IS4uDlFRUXB1dZXswj08PBwNGjRA6dKlNcer6O1z69Yt\n7N+/H/7+/hg/fjzGjRsntH41IyMjVKhQAYBq7J4Ug2HT09Ph4uKCDz74AFevXkVYWBhKly4NPz8/\nYanIcrkclpaWAABLS0vh20E9Duz58+dC6y2Iubk5FixYkGu2RNENmBs3bmiyKGbMmIE+ffoIrV8q\n7+x0rDnvaqrduHEDAHR6d/P//u//AKgOsjZt2mgGgYri4eEBDw8P+Pr6omzZskLrfp1MJkNMTAyS\nk5ORkpIiWY+DetYWADAxMUHNmjWF1m9kZIQLFy4gKysLp06dQnx8vND6Af24YFbPJNS2bVvs2LED\nERERqFKlitDZY9RTfyoUCixZskQTgxQNawCwt7eHsbExkpOT4erqqknrEyHnXUNvb28EBwfj4cOH\nePjwoSR3EMPCwjBr1iw8f/4cTk5OmDNnjvD1X3777TesX78ebm5uuH//PsaMGaPzXur8SDX1aU62\ntraQyWRISUlB6dKlJYvDyckJy5YtQ506dRAaGio8lQ9QTaagPnc2btwYgwYNwpdffin0QrF27dqY\nOHGiZjuITtdq0KABnjx5gi5dugittyDqtLnY2FhJ44iPj4etrS0SExM5OLoEKLThoL6rGRMTAxMT\nE1hZWWHZsmU6n3bxwoULCAgIkHyxmjNnzuD7779HRkaGpstddC776NGjERQUhI4dO6JVq1aSLYzn\n6emJ1atXIzw8HBUrVoSrqytsbGyE1R8QEID79+9jxIgR+Oabb4QPBAZeXTDHxsZi//79uWbvUU+B\nKcqUKVPg7OyMRo0a4dKlS5g2bRoWL14sNIZp06ZhyJAh8Pb2xoULFzBt2jRs2LBBaAyAqhfm119/\nhZmZGQIDA5GYmCis7pyzWVlaWqJdu3aSzHClNn/+fCxZsgTu7u64ffs2Zs+ejV9++UVoDFu3bsUf\nf/wBExMTpKSkYMCAAZI0HPRhcHSNGjXwww8/wMHBAePHj8+1mKhICxcuxNatW/Hnn3/C3d1d6NoF\naklJSQgPD4ebmxvCw8ORnJyM+Ph4oTfDZs6ciaCgINy/fx9t2rRB8+bNhdUN5F2Hx8PDA3fv3oW9\nvT1+//13obEA0IsGzOjRo9G5c2fI5arLUX0Y+yHCOzsda+fOnQGoVi9evnw5KlSogA8++ABTpkzR\n6fzgK1askHyxGgBYv3491q5dq5mvXyT1zE6AKk/YyMgIJiYmOHnyJPz8/ITHM23aNNSrVw8dOnTA\n+fPnMWXKFCHdyzlXSlbP/FDYisEi+Pn5YejQoZLmTj9//lyTs9yyZUuhU/OqGRoaamZRat68OTZu\n3Cg8BkCVQvb06VO0bt0au3btErpYpHpV5sjISISFhaF9+/b4+uuvc/XQiWRiYqIZX1G1alVJpv+0\nsbHRXASYmppKdpyoGytKpRI3btxAdHS08BgmTJiA5ORkmJiYIDg4WPgMV2FhYahVqxYuXLgAd3d3\nzb5x/vx54YOC/f39MXnyZERHR6NcuXLw9/fHgQMHMHz4cJ3XrR5boO4htLa2RkxMDLZv3y60Z1Af\n1uHJafz48ZDJZFAoFHj8+DFcXV2Fj3nIyMiAQqGAkZERMjMzJVloVwrvbI+Dmuj8SJlMJvliNYDq\n36q+WBXt0KFDUCqVCAgIQM+ePVG7dm3cuHFDsoFM8fHx6NevHwCgevXqOHz4sJB69WGl5Ne5urpK\ndqdGvcZI+fLlNbN+3bp1S+hUteo8cTMzM6xfvx716tVDaGiopkdGtJSUFGzfvh3R0dFo1qyZJBfL\nfn5+mhl8mjZtiunTpwttSKkvSORyOWbPnq35TkSmearHQcXFxaFLly7w8vLCjRs38szaIoo6rQ8A\nmjRpInyBQgB49uwZli5diri4OLRu3RpRUVFCjxP1+ib5TRYguuFQu3btPHfVRa2joB5bIGVvYE76\nsA4PkDvVMjExETNnzhQew3fffYddu3ahTJkyeP78OYYPHy7JTFeiCR6a+FYVqeEgOj/S1dUVgYGB\niI+Pl2yxGkB1t2zIkCG5FhASdWdAPcf2o0ePNHepPD09hc9mpJaeno6YmBjY29sjJiYGCoWY9rK+\n3aEBVGNwxo8fDzc3N81z6jvPuta6dWvNgOhz587B2NgYGRkZMDExEVI/AM1FiI2NDe7fv6/ZJ6VY\n0AlQ9YY1adIEFy5cgJ2dHaZPn47NmzcLj6NOnToAgHr16gk7PtTUFx7qnOUHDx7A0tIy11ojupZf\nL0v79u01/x8VFSV0qsecA6FjYmIkGZA6c+ZMfP755/juu+80vfUiZ1VSTwlsbW0t+dS0u3fvxrp1\n63KleIpK/VVnTzx48EBoj2RBPv74Y/Tt21ezDk/Lli2lDgmWlpZ49OiR8HptbGw0k63Y2dkJH9Mq\nFQVKbs9KkRoOOfMj3dzcdJ4f+fz5c01alLm5OebOnavT+goixWJWr7O0tMSKFSs0K4/a29tLEseX\nX36JXr16wcLCAklJScK/E325QwMAW7ZswaeffipJCsbx48cLfX3btm06T5PRlic+a9YsoTMbJSQk\noFu3btizZw+8vb2FX7QDqpnYtm/frrm5IrqXVFvDddSoUVi9erVOY6hfv36hr0+dOlXotKw577Ib\nGxsLH98AAGlpaWjUqBHWrFmDypUrC23g56QPU9OuX78ea9askST1Vy0zMxO3bt1CpUqVJF3Bevz4\n8Zp1eDp16qRZh+fq1avw8vISFod6hkClUom4uDjhs8EBQKlSpTB48GDUq1cP169fR1pammYQvZQ3\nCHVN8a73OJiYmGDgwIE6DuWVr776Cr/99hsuX74Mc3NzPHnyRJJVgz/77DNs374d9+7dQ8WKFdGr\nVy/hMXz99dfYtm0bTp48CTc3N4wZM0Z4DIBqpWpjY2PNCo8zZswQOlBcn+7Q2NjY6O3iXgcOHJAs\nv15NvQCYSOHh4QBUDUwpFqJbtGgR1qxZg6NHj8Ld3R0LFiwQHkNhRA4YL4joaYO9vb1zjY37+eef\nUaNGDaExmJiY4NSpU1AoFAgJCZGsV049Na2tra0m1Vj01LRSpv6qPXjwINeNT6kW7wSAmjVr5pmd\nMDAwUGjjevHixZrUThMTE0n2z5y/5VLPYinSO5+qJJqbmxu++uorxMXFYf78+Wjfvj3q1auHsWPH\nCl1109/fH1ZWVvjoo49w/vx5zJgxA0uWLBFWP6C6uy5Fbu7rtm3bhvXr10vW4/H6HZqcaUKi2dra\nwt/fH56enpq7VlJMvZkf0Rdn+mDGjBmYNm0awsPDMXbsWKGzcqhXPH3x4kWuNVZevHgh6fSbr9OH\nAYeiYti3bx+OHz+Oc+fO4ezZswBUUwffuXMH/fv3FxKD2ty5c7F48WLEx8fjxx9/FD77mpo+TE0r\nZeqv2t69e5Gdna1Z7V6K9SwKI+r8HRMTg6SkJPj5+WHJkiVQKpVIS0uDn58ffv31VyExqKnTyN43\n73yqkmh//vkndu3ahfDwcHTs2BHTpk1DVlYWhg4dKnTV3sjISM3qmi1btpT8Tq6UbG1tJVmKXm39\n+vUYOnQoatasidu3b6N79+6SDo4G9GcRn5z04QJRtFOnTuVZhVWU11dLVv/wS7VaMqkGRdvb2yMh\nIUHToDcwMICLi4vwWH766SfN7GdSunz5MgICAhAbGwsHBwfMnz9f6PgXQD9Sf48ePYqFCxfC2toa\nSUlJmD17Nj766COpw9IQdf6+evUqNm7ciAcPHmgGRBsYGLwXg5Lpv9PLhsOePXvQq1cvNGjQINfz\notN00tPTkZqaCjMzM6Smpr43C5PkpM41zMjIwODBg3PdZRd5t+ju3bvYunUrUlJSsHv3bsnu3AEF\n55OLyCOnvP78808MHDhQkhQl9dTAn3/+ea454Q8cOCA8Fn0n6m6qtbU1GjRogAYNGuDMmTN4+PAh\nvLy8hK47o6YPYwsAYN68eQgMDIS7uzvu3LkDf39/Yavdq3322WcICwtDVlYWlEqlJNPjrl69Gjt3\n7sw1g48+NRxEadmyJVq2bIk///xTLxp076OSnByglw2HgmY9aNWqldA4BgwYgE6dOsHd3R337t3D\n2LFjhdavDypVqpTrv1JZtGgRJk2ahLi4OPz222+S5QoX5n3MI9eHGOLj49G4cWOUL18eMpkMMplM\n2EXRiRMncPnyZezfvx8hISEAVGkxx44dk2TRs4JYW1sLrzMhISHXxXrDhg2F1r9s2TI8ffoU4eHh\nMDY2xrp164Sv+q4PYwsA1SQb6jUcPDw8JJkid/To0cjMzER0dDSys7Ph4OCQa9YtEfR9Bh/R585y\n5cqhd+/eSExMRIcOHVClShU0a9ZMaAzvq3d+HYf3lbm5OSpVqoTk5GQ4OTlh9+7daNeundRhCSV1\n/qF61gdANSPG7du3NXnKou+YaSMyTSg7Oxs3btzItRJtvXr1MHnyZGExdOnSBR9//DE+/fTTXIP8\nfvzxR2ExABCyEGFBqlWrhoSEBJiYmGga1zKZTLLzxD///IN9+/blmvJy9OjRWLlypbAYzp8/jzlz\n5iA7OxutW7eGk5MTfH19MWrUKGExAMClS5ewZcsW9OvXD507d5ZkDRx9GFsAAGXKlMH06dPRsGFD\nXL9+HQqFQpPeJ2p8Vnx8PLZv347p06drpqkVTV9m8MnIyEB4eDiqV6+OoKAgNG3aFEZGRvjss8+E\nxQCoVppfuHAhZsyYgW7dumHIkCFsOAjyzs+q9L5asmQJ5s6dK3k38/tM9B3CkmLs2LFITEzUDFaX\nyWSoV6+e0JVpt23bhjNnzmDnzp2YN28evLy8MHXqVOELsGVkZGDJkiWIiIhAlSpVhK6sXq5cOXTu\n3BkdO3bMd6Cl6Klpx40bh0aNGkk65eU333yDzZs3Y8yYMRg+fDh69eqVa3YjUbKzs5Geng6ZTIbs\n7GxJBsLqw9gCAKhcuTIA1bg9CwsL1K9fX/iU1upejtTUVJiamkoyHqugGXxyNrRFmDRpEpo2bYrq\n1avjwYMHOHjwIAIDA9G9e3ehcQCqMXsymQylS5eWbLHd91EJbjew4VCYKlWqaJ2bnHRLPSD79RVY\nq1atKulgbanFx8fjl19+kTSG1NRUpKamQqFQICMjQ7LB4n5+fhg1ahS8vb1x6dIlTJkyBZs2bRIa\nQ0EXpaKnpi1VqpRmtXWpGBgYwMbGBjKZDCYmJpJdjAwcOBBdunRBXFwcfH19JbnDrQ9jC4DCx2WJ\n0qJFC6xatQrVqlVD9+7dYW5uLqxutYJ60Pv37y908pNnz56ha9euAIChQ4eiX79+wurOydraGtu2\nbUNqair279/Pm6QCKZQldyITNhwK0aJFC/To0UNztwbQvvgV6YbUK7AWhcg8cicnJ/zzzz+S3llu\n1KgRPDw8MH78eMkWaQQAMzMzzQC/Tz75BBs2bJAsFqlVqVIF+/fvzzXlpejxSRUqVEBgYCASEhKw\nbt06ODk5Ca1fzcbGBr/88gsiIyNRvnx5SabH1YexBYV5+fKlsLoOHz6smaWwadOmkqzNVBDRYwtk\nMhkePHiASpUqITIyUpJFKwFgwYIFWLt2LWxtbXHt2jXMnz9fkjjeR3owHPGNseFQiE2bNmHIkCGw\ntLSUOpT3nj6swHrw4EG0adMGKSkpWLlyJW7duoUaNWpgxIgRKFWqlJA8cvV0eRkZGTh06BCsra01\nF4iiB12ePHkSf/31F/bs2YONGzeiRo0amDhxotAYAFW60HfffafJ3zY2NtZsi/dtesGbN2/i5s2b\nmr+lmBY2ICAAO3fuhI+PD8zNzSVrVK5cuRJbtmwRmr73On0YW6AvZDIZRo0ahUqVKml66PRlZWDR\naVPTpk3D2LFjce/ePbi4uEiWkjtr1qwCJ6Mh3eLg6HeUnZ2dXs2M8j7ThxVYt27dijZt2mD+/Plw\ncXHBjBkzcObMGfj7+ws7+UoxI0tB7OzsUKFCBURERCAqKgpRUVGSxCGTyfDo0SM8evRIE9f+/fsB\nvH8Nh02bNuHly5eIioqCi4uLJGlCGRkZaNasGVq2bIkdO3YgJiZGkrRCfbhQ1YexBfpCnZpDwOPH\njzXHyZ07dxAeHp5nFWkRMjIycOvWLVSqVEnTeNLHGQvfRexxeEeZmppKunYBvaIvK7ACqosAdZeu\nm5sbjhw5IjyG11fANTIygqOjI0aMGIHy5csLiaF169aoV68ePv30U4wePVqyH5yFCxciOzsbSqUS\nITcEn54AAB81SURBVCEhqF27tt78+IlOgTh8+DDWrFmjmdFIJpNh5MiRQmMYO3YsevXqhcOHD8Pd\n3R3+/v744YcfhMYAFHyhmpGRIWz/GD16NJKSkgAAQUFBaNasmSRT4+oDqWfoK4zo43Tjxo34/fff\nUapUKSQlJWHAgAHo2LGj0BgAICIiAiNHjtQsXimTyXDs2DHhcbyPRPU4pKWlYfLkyYiNjUWpUqWw\nePHifNM2FQoFhg0bhhYtWqBXr16FfiYbDoXgtGT6w9HREWPHjkVkZCSqVauWa0YMUSIiIvDTTz9B\nLpfjxo0b8PT0RFhYGDIzM4XH4uzsDG9vb/j4+CAkJAQnTpxAnTp1MH36dGzcuFFIDIcOHUJwcDDu\n3r2LzMzMXDOWiDR//ny4ubnhyZMnuH79Ouzt7bFo0SKhMcTHx+P777/XzOw0bNgwWFpaCp+adsOG\nDdixYwcGDx6MkSNHomvXrsIbDmlpaWjevDk2btyIJUuW4O+//xZav1pBF6pDhgwRlr41fvx4fPLJ\nJ7hy5QoUCgWOHj2qV4tEvo+NGPWirtHR0XBwcAAAzTgUUWQymaY30MLCQpLUWwDYu3dvvs9v27ZN\n6GDx95Go6Vi3bt0KDw8PjBkzBvv378d3332HGTNm5Cm3YsWKIq9FxYZDIfT5Dsn7ZvPmzTh69Che\nvHiBzp07IzIyEv7+/kJj+P7773Ht2jVUrFgRt2/fhouLC+bOnStJ78eTJ080A/UrV66MvXv3wtfX\nF3/88YewGJYvX47IyEh4e3tj9+7duHjxIqZMmSKsfrWwsDBMnz4d/fr1w6ZNmzBgwADhMfj5+eGT\nTz5Bp06dcPHiRfj5+eG7774TPjWtoaEhjI2NNQvhmZmZCa0fUK23oh7zcu/ePaSmpgqPoTAi7y5H\nR0ejY8eO+PXXX7Fp0yYMHDhQWN05qVc4V1P3UM6bN0+SeKSyatUqZGRkYMKECZg3bx5q1qyJYcOG\nYdasWULjcHFxwaJFi/DBBx/g4sWLqFChgtD6tTlw4AAbDjom6ix06dIlDBkyBADQpEkTfPfdd3nK\nHDp0CDKZDI0bNy7SZ4qf2JroDezfvx8bNmyApaUlBgwYgKtXrwqPoXr16vD19cXs2bPRuXNnWFpa\nYseOHfD09BQeS2ZmJk6dOoWkpCQEBwcjKysLjx49EnqRduHCBXz77bcYOHAgVq5ciUuXLgmrOyeF\nQoFr166hfPnyyMjIQHJysvAY0tPT0bt3b1SrVg19+/YVOltNTj4+PpgwYQKePXsGf39/1KpVS3gM\nfn5+iI6OxsiRI3H27FlMnz5deAyFETkQNjMzE0eOHIG7uzvi4uIk2TcB1f7p4OCAtm3bwtnZGc+e\nPUNGRobQNU/0wfHjxzXpxt9++y2OHz8uSRwLFy6Ei4sL/v77b80NKH0iOnXrfaRQFv+hzc6dO9G+\nfftcj5cvX2om+ClVqlSe36Y7d+5g3759GDduXJFjZ48DlQjq/EspB3D169evwLQk0XOzL1q0CEuW\nLMGCBQvg4eGBBQsWICQkJM+dRV3KysqCQqGAgYEBFAqFJAs6AUDHjh0REBCABQsWYOnSpUJnq1Gv\n02Bra4sDBw6gXr16CA0NFTbO5HUTJkxAcHAwPD094ebmJkm6pbe3NxITE7F9+3ZUrFhR0lmNpDZk\nyBAcOHBAs7aI6LQxtbi4OM3MPY0bN8agQYPw5Zdfok+fPpLEIxWZTKYZ45KZmSnZBbJcLtfrbS/V\nufx9ootdz9fXN89im6NHj9bcsEhOTs6zVsfu3bvx7NkzDBgwAFFRUTAyMoKzszOaNGlSYD1sOFCJ\n0LZtW/Tt2xdRUVEYOnSoJPn0kyZNwowZM7B69WoYGhoKrx9QXazL5XI4OjrmmcLvs88+ExpLu3bt\n0KtXL3h5eSE0NFSyGcj69Omj+RHOeXd71apVBS589bbkTJfbtm2bJIt75RQbG4vg4GA8ePAAsbGx\n8Pb2Fp7HHhgYqBcpbAURebH46aef/n979x4VdZmHAfwZdUBuioIYykUE7y2roJEr4oqYrrtuXsCg\n1DStTMy8pOZlx0siaYd2NXXTTQ09Jagr2SatLdqB5Ui1UTq6ru4RLWzRIIWFGe7D7B+emWK9NR7n\nfd+ZeT6dOUfm52/epw7BfOf7XvDYY48BQKtP9ESfKG4wGFBSUoLw8HCUlJTAaDSisrIStbW1wjKo\nIDk5GePHj0fv3r1x6dIl6xQOItFELY6OiopCfn4+IiMjUVBQgOjo6FbXly5dav3zm2++CX9//7sW\nDQALB3IQ77//PkJCQvDUU08hPDwcffr0EZ7h5z//OR5//HFcuHABo0ePFj4+cHMaSEZGhnXHHAuN\nRoO8vDwhGTIyMqxjd+3aFZ988gn69euHGzduCBn/p/r888/tPoblhOqcnBzs3LkTDQ0NAOR9Yrdg\nwQKMGzcOiYmJKC4uxtKlS7Fjxw6hGf7xj39YC6inn34aU6ZMETr+vYheCHs7ok8U1+l0WLJkCcrL\nyxEYGAidTofc3FzMmTNHaA7ZkpKSMGrUKFy5cgXBwcFSDgV0BJyqZH+iFkenpKRg2bJlSElJgVar\ntW4dv2fPHoSEhGDUqFE2vyYLB3IIhw8fRklJCU6cOIG9e/fC398fW7duFZ5D9idUlv/p58yZg8zM\nTOuaBpE/6H98knpYWJiyu4+J/G/y9ttv46233pJ6kreFZSu9vn374q9//avw8X88hc0yxVCku03X\nS09PF74QVgXl5eU4dOiQ9TwLAFLWv8iyaNGiO34fuuIBaGVlZXe81q1bNyxZskRgGtck6reTh4cH\ntmzZcsvzM2fOvOW5F1988Se9JgsHcgj/+te/cPLkSXz66acAWr95dUVZWVnYuXMnunTpInxsR9lt\nTOQb1uDgYISGhgob70569uyJI0eOWE8q9vX1tX66HRYWJiTDuHHjpE5hs4y3f/9+DBo0CFFRUThz\n5gzOnDkjNIdKioqKsHnzZsTHxyMxMRHBwcGyIwnFHYJaW7hwIQCgqqoKRqMRvXr1wsWLF+Hv74+c\nnByXXpdE98bCgRzC1KlTERwcjIULF2LEiBGy40jXqVMnKafx0u21b98es2fPRr9+/aQeFnnp0iV8\n+eWXWL16NYKCgtCpUyfodDpoNBphZxc888wziI2NxaVLl5CYmIjevXsLGdfCsqXgnj178OyzzwK4\nudvU7T5hcxW/+93v0NjYiOPHj2PdunVoamrCO++8IzuWMI888giAmyc2Hzt2rNXuc5ZrriQ7OxsA\nkJqaio0bN8Lb2xu1tbU84FYgUVOV7IGFAzmEzz77DMXFxSgsLMTu3bvh5+d3y+JgV2D5d25sbOSp\n5vcgcqqSKsVsSkoKNm/ejF/84hf497//jcmTJ2PChAlCxv7x2heLc+fOAZDzvVlbW4uioiL87Gc/\nw1dffWVdf6ICGXPI9Xo9CgsLcf36dYwZM0b4+CpYvHgxhg8fDn9/f9lRlHDt2jV4e3sDADw9PVFR\nUSE5ketw5GUkLBzIIVRXV+O7775DWVkZ6urq0K1bN9mRpLBMNxE17cQRmEwmZGVl4eLFi+jRowdS\nUlLg5uaGTZs2CcugyvStzMxMHD58GF5eXjAYDHj66aeFFQ6W6YMVFRVwd3dHhw4d8MYbb+CZZ54R\nMv7/S0tLw+uvv47Lly+jV69e2Lhxo/AMBoMB27ZtQ0lJCXr06IG5c+fC19dX+Ini48aNQ9++fZGU\nlIS0tDQpp92roH379nbfac2RxMbGYurUqXj44Ydx+vRpKbsVuipRuyrZg8bM5fPkACZNmoSEhASM\nHj0avXr1kh2HFLJixQr4+PhgyJAh+Pzzz1FVVSW0aFBJcnJyqy1hn3zySbz33ntCM0yePBm///3v\nERISgitXruCVV17Bu+++K2x8y5bFjY2Nt1wTff7L/PnzMXjwYOv3ZlFREd566y2hGQBg+/btOHLk\nCJqbm2E2m6HVanHs2DHhOWSxrPPZunUrfvnLX2LAgAHW7pirfwhz9uxZfPPNNwgPD0ffvn1lx3EZ\n0/1++oFrFnuvb7ZDEtux40AO4fDhw7IjkKK++eYb6xvThIQEl14IGRwcjNdeew2DBw/GF198gZCQ\nEOEZtFqtddzg4OBWO/mIcLstiy27Ox0/flxolsrKSkyfPh3AzZPnZb1Z/+ijj7Bv3z788Y9/xNix\nY5GZmSklhyw/Pm9l586duHLlCoKCgtC5c2dha39UdO3aNezcuRMXL15EWFgYli9fLu3wSlfjyJ/Y\ns3AgIofW0NCAuro6eHh4oL6+HiaTSXYkadLT05GdnY2TJ08iPDwcixcvFp6hW7dueOONNzBw4EDo\n9XoEBAQIHd+yveaJEydgNptRWVkpbb/+hoYGVFRUoEuXLvj+++/R0iJngkJAQAACAgJgNBoRExMj\nZStrmSznreTm5rZaAzRp0iTJyeRatWoVUlJSrB2xlStXulxRKQsXRxMRSTJ9+nQ8/vjj1i0F58+f\nLzuSNO3atbOeoi1Leno69u/fj/z8fISHh2Pu3LlScuTn5+PVV1+Fj48PamtrsW7dOsTExAjN8NJL\nLyE5ORne3t4wGo149dVXhY5v4ePjg7y8PGg0GmRlZaGqqkpKDtlkrgFSUUNDg/UAsISEBJfaaUs2\nR14kwMKBiBzab3/7W8TFxeHbb79FUFAQfH19ZUdyae7u7pgxY4bsGNi6dSsOHDiAzp07o6KiAqmp\nqThw4IDQDMOGDcPf/vY3VFVVST2leP369SgtLcWiRYuwZ88erFq1SloWmTQaDby8vAAA3t7ecHd3\nl5xILpPJhAsXLqBPnz64cOGC7DguxZEXR7NwICKHdubMGaxevRoVFRXo3r071q5diz59+siORZJ5\neXlZ36x36dIFHh4ewjOo0PUAbr5J7t+/PwDglVdeET6+KlRYA6SSVatWYcWKFSgvL0fXrl2ldcRc\nUYsDtxy4qxIRObTk5GSsX78eERERuHDhAtauXSt8JyFSh+Wsk6+++gqenp6Ijo6GXq9HQ0MD/vSn\nPwnNkpSUhB07dkjtetAPmpubkZ2djZKSEoSHh2PKlCnQarWyY5ELSvK1fUrtwaotdkhiO3YciMih\nubu7IyIiAgDQp08fvhFwcbc768Qyjxu4eXiiqG1ZVeh60A9UWAOkgvnz52PLli2IjY295VphYaGE\nRK6Hi6OJiATLzs4GcPPNwJo1azBkyBDo9XrrSajkmu51GN/s2bPtvgWnpethMpnw/PPPW7seos+R\nILqdLVtufnL9+uuvY+jQoZLTuCazA2/IysKBiBxSRUUFAGDQoEEAbh7y5OPjg379+smMRYoTMTtX\npa4H0Z1s3bqVhYMk7DgQEQk2b968u15PTU3Ftm3bBKUhR2E5FM6eVOh6EN2LRqNBamoqwsLCrAc1\nLlq0SHIq18BdlYiIFFNdXS07AtFtcU8SUsHkyZNlR3BZjvwzoI3sAERE9iDik2VyPCr8wub3Jqlg\n/PjxaG5uRmlpKbp164YRI0bIjuQyWu7joQoWDkRE5DIsO3ARubrVq1ejrKwMJ0+ehNFoxLJly2RH\nIgfAqUpEROR0pk2b1uqTfa1Wi4ceeggvvPCCxFQ3qdD1ICotLUVaWhq++OILxMfHY+fOnbIjuQxH\n/hnAjgMROaWOHTvKjkASBQUFYfz48VizZg0mTJgAT09PDBw4ECtXrpQdjV0PUoLJZMKNGzeg0Whg\nMBisC6TJ/hx5qhI7DkTk0JYvX97qa8sny+vXr5eUiFRQVlaG9PR0AEDPnj3xl7/8BUlJSThy5Iiw\nDCp3PYgWLlyIJ554AlevXkVycjJWrFghO5LLaGHHgYhIjoaGBgQEBGDcuHHo3r07vvvuOzQ2NnK+\nrotramrC3//+dxgMBhQUFKC5uRlXrlxBXV2dsAwqdz2IKisrYTKZEBoaivr6erS0qPS5tnMz38c/\nqmDhQEQO7caNG1i4cCGGDx+OefPmoampCQsWLEBNTY3saCTRa6+9huzsbCQlJeHPf/4zNmzYgFOn\nTt3SobKnsrIyJCUloWfPnpg0aRIMBgOSkpJgMpmEZSC6k+3bt+PgwYM4evQosrKy8Ic//EF2JJfB\nqUpERJIYDAaUlJQgPDwcJSUlMBqNqKysRG1trexoJNEnn3yCtLS0VmtdgoODhWawdD0GDRqEL7/8\nUkrXg+hOfH194efnBwDw9/eHt7e35ESuo0WhDoKtNGZHXtpNRC5Pr9djzZo1KC8vR2BgIHQ6HfR6\nPfz9/TFmzBjZ8UiS3bt348MPP0RYWBimTJmCmJgY4RlKS0uxadMmlJSUoHfv3nj55Zdx6tQpBAYG\nYvDgwcLzEP1Yamoq6uvrMWTIEPzzn/9ERUUFHnnkEQA8QdreRng+b/M9+bU77JDEdiwciMih5eXl\nIT4+njuC0G3p9Xrs2rUL58+fx7Fjx4SOnZmZiQkTJnCHL1JSTk7OHa9NnDhRYBLXE+f5nM33FNSq\nsV0upyoRkUMrKirC5s2bER8fj8TEROHTUUhN9fX1OHbsGN5//32YzWa8+OKLwjOYTCbMnDlTateD\n6E5YHMjDqUpERBI1Njbi+PHjOHz4MJqamvDOO+/IjkSSPfbYYxgzZgwSExMRGhoqNYvMrgcRqecX\nnrNtvudk7dt2SGI7dhyIyOHp9XoUFhbi+vXrXNdAAIDc3Fy0a/fDr7jy8nIEBAQIzaBC14OI1KPS\n9qq2YseBiBzauHHj0LdvXyQlJWHo0KFoamqCVquVHYsk27x5M/bv34+mpibU19ejR48eOHr0qNAM\nKnU9iEgdMZ7P2HzPZ7W77ZDEduw4EJFD+81vfoMjR47g9OnTMJvN0Gq1nA5COHHiBAoKCrBhwwbM\nnDkTa9euFZ5Bha4HEamnRaPSyQy24TYkROTQPvroI+zbtw9xcXFIT09HeHi47EikgC5dusDNzQ1G\noxGhoaFoamoSnmHbtm149NFHER0djQEDBmDmzJnCMxCRelpgtvmhChYOROTQAgICEBAQAKPRiJiY\nGJ4YTQCAhx56CIcOHYKHhwcyMjJQXV0tPIOl6zF+/Hjk5uaia9euwjMQkXpsLxvU6VBwqhIROTQf\nHx/k5eVBo9EgKysLVVVVsiORAtatW4erV69i7NixyMnJQUZGBgDgP//5D7p37y4kgwpdDyJSj0od\nBFtxcTQROTSDwYDS0lL4+flhz549GDlyJPfLpzuaPn069u7dK2SsVatWYeDAgdDr9ejYsSMKCgpw\n5MgRIWMTkboivZ+0+R694T07JLEdCwciInIZ06ZNw759+4SM1dLSgqtXr6Jjx47IycnB0KFDERER\nIbTrQUTqceTCgWsciIjIZWg0GmFjtWnTBt27d4e3tzemTZuGiIgIAMDy5cuFZSAi9bTcxz+q4BoH\nIiIigdjoJ3JtKhUCtmLhQERELkOFN+0iux5EpB6VdkmyFacqERGR0/n/HYxKS0sBAI8++qiMOERE\nVi2aFpsfqmDhQERETmfx4sXW7kJWVhaeffZZAEBqaqrMWADU6HoQkTxc40BERKSQoUOHYunSpaip\nqUGHDh1w4MAB4Rmampqg1WqtX5eWliIkJIRdDyIXZ4ZJdoT7xo4DERE5jcbGRjQ2NmLy5Mno27cv\nmpubsX79enh4eAjPonLXg4jkYceBiIhIAWPHjoVGo2k1HehXv/oVAOD48eNCs6jQ9SAi9ahUCNiK\nB8AREZHTMZvNuHbtGgIDA6HX6xEZGSls7MbGRuuf9+3bh6KiImzfvh0A4ObmJiwHEakp1Ocxm+/5\npuZjOySxHQsHIiJyOjqdDqGhoZg1axbWr18PjUaDlStXChk7Pj7+lq6HZQtW0V0PIlJPsE+Czfdc\nqcmzQxLbsXAgIiKnk5iYiEOHDlm/fuqpp/Duu+8KzSCz60FE6gryibf5nm9rTth8T319PZYsWYLr\n16/Dy8sLGzduROfOnVv9nd27d+PDDz+ERqPBnDlzMHr06Lu+JhdHExGRU6qsrAQAVFdXw2QSv4vJ\n6tWrkZubCwD44IMPkJaWJjwDEamnBSabH/dj//796N27N9577z1MmDDBOmXSorq6Gnv37kVWVhZ2\n796NDRs23PM1WTgQEZHTSU1NxeTJkzFx4kRMmjQJc+fOFZ7h3LlzmDVrFgBg1apVOHfunPAMRKQe\nM1psftyP4uJiDB8+HAAQFxeHoqKiVtc9PDzQrVs31NXVoa6u7iedas9dlYiIyOmMHDkScXFxqKys\nhJ+f30/6hWgPlZWV6NSpk7SuBxGpp8X84H8WHDx4EJmZma2e8/Pzg4+PDwDAy8sLNTU1t9wXGBiI\nX//61zCZTHj++efvOQ4LByIichrr1q2DTqfDE088cUuxkJWVJTSLpevRsWNH1NTUQKfTCR2fiNR0\nvx2Eu0lKSkJSUlKr5+bNmwej0QgAMBqN6NChQ6vrBQUFKC8vt27aMGvWLERFRd11PRYLByIichqW\nKUkbN25sdWrzf//7X+FZVOl6EJFaRJ0cHRUVhfz8fERGRqKgoADR0dGtrnfs2BHt27eHm5sbNBoN\nfHx8UF1dfdfXZOFAREROw2w24/Lly1i2bBk2bdoEs9mMlpYW6HS6Vrss2ZNKXQ8icl0pKSlYtmwZ\nUlJSoNVqkZGRAQDYs2cPQkJCMGrUKJw8eRJTpkxBmzZtEBUVhWHDht31NbkdKxEROY28vDxkZmbi\n/Pnz6NevH8xmM9q0aYNBgwZhwYIFQjJ8//338Pf3x9dff31L16N///5CMhCRuvy8ou/9l/7PdWOx\nHZLYjoUDERE5nfz8fIwYMeKW5/Py8pCQYPvhS7aoqKiAwWC4peuxbNkyYV0PIlJXZ69BNt9zw/iV\nHZLYjlOViIjI6dyuaACAvXv32r1wOH36NDIzM3H58mXodDpr1yM2Ntau4xKRYzDbYVclUVg4EBGR\nyxDRZE9ISEBCQoLUrgcRqavFDrsqicID4IiIyGWI3Nnobl0PInJdZnOLzQ9VsONAREQkEJcWErk2\nUdux2gMLByIichkqvGnneQ5Erk2lDoKtWDgQEZHTqayshMFggI+PD3x9fa3Pz5w5U2IqIiL7nBwt\nCgsHIiJyGnq9HuvWrUNLSws8PT1hNBphNpuh0+kQFRWF+Ph42RGV6HoQkTzcVYmIiEgB6enpePPN\nNxEYGGh9rqysDC+99BIOHjwoNAu7HkR0O5yqREREpIDm5uZWRQMABAYGCl1X4AhdDyKSh1OViIiI\nFDBixAjMmDEDw4YNg4+PD4xGIwoLCxEXFycsg0pdDyJSDzsORERECpg3bx7OnTuH4uJiVFZWwtvb\nGy+//DIGDBggLIMKXQ8iUhc7DkRERIro378/+vfvL218FboeRKQuR14crTFzewciInIShYWFd7wW\nGxsrLIel62EwGODt7Y2oqCihXQ8iUpe2nZ/N9zQ1X7dDEtux40BERE7jwIEDOHv2LGJiYm65JrJw\nkN31ICJ1OfIaB3YciIjIaZhMJkydOhVpaWno2bOnlAyqdD2ISE3t2nay+Z5mU6UdktiOHQciInIa\nbdu2xaZNm1BbWystgypdDyJSkyMvjmbHgYiIXEZWVhaSk5PtOoYKXQ8iUlfbtj4232My1dghie3a\nyA5AREQkSm5urt3HsHQ9mpqa7D4WETkgc4vtD0WwcCAiIpchqskeHByMPn363PZaVlaWkAxEpCYz\nWmx+qIKFAxERuQwVDmET0fUgIpW13MdDDVwcTUREJBCXFhK5OAf+GcDCgYiIXIYKb9pV6HoQkTwt\n5kbZEe4bpyoREZHT2b59e6uvMzIyAABLliyREYeIyCmw40BERE7j4MGDOHToEEpKSlBQUADg5vao\nzc3NWLx4MSIjIyUnVKPrQUR0P3iOAxEROY3GxkaUl5djx44dmDNnDgCgTZs28PPzg5ubm9As27dv\nx9y5c61fZ2RkYPHixdDr9UoUMEREtmLhQERETqe2thbV1dVo164dsrOzMWHCBHTv3l3I2D/uekRE\nRAD4oeuRk5MjJAMRkT2wcCAiIqcze/ZsJCcn4+OPP0ZERAQ+++wz7Nq1S8jYKnU9iIgeJC6OJiIi\np1NfX49Ro0bh2rVreO6552AymYSN7ebmhqCgICxfvhxt27aFu7s7Dh8+jIqKCmEZiIjsgYUDERE5\nnaamJmRmZmLAgAG4ePEi6urqhGeYP38+zp49i02bNkGr1UKn0wnPQET0ILFwICIip7N06VKUl5fj\nhRdewKeffoqVK1cKzyCz60FEZA/cjpWIiJxOdHQ0goODYTAYMHLkSJSXlwvPoELXg4joQeLiaCIi\ncjorVqzAqVOnUFdXh7q6OoSEhODAgQNCMxQXF+P48eOYM2cOPvjgA0RGRnIbViJyaJyqRERETuf8\n+fM4evQoYmNjkZubC3d3d+EZoqOjMWPGDGvXg1OViMjRcaoSERE5HV9fX2g0GtTW1qJz585SMqjQ\n9SAiepDYcSAiIqfz8MMPY9euXQgICMCiRYtQX18vPIMKXQ8iogeJHQciInIaGRkZ0Gg0MJvNqKio\ngEajwddffy1lbYEKXQ8iogeJhQMRETmNnj173vJc7969JSRRo+tBRPQgsXAgIiKnMXHiRNkRlOp6\nEBE9SCwciIiIHiCVuh5ERA8Sz3EgIiIiIqJ74q5KRERERER0TywciIiIiIjonlg4EBERERHRPbFw\nICIiIiKie2LhQERERERE9/Q/QpkTAwOFubsAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close_bid'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Start running datascience methods" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "def check_shape(*argv):\n", + " for el in argv:\n", + " print(el.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "\"\"\"\n", + "this creates training examples and actuals for the model\n", + "if nb_lookback_rows is above 1, X will have examples each of which is a 20 row dataframe\n", + "so the regression model needs to be able to use all those rows to train on\n", + "\"\"\"\n", + "\n", + "def create_training_set(df, nb_lookback_rows=1):\n", + " \n", + " dataX, dataY = [], [] # for training\n", + " \n", + " # it creates for each row a 20 row lookback dataset\n", + " # this expands the dataset by 20 faculty\n", + " for iRow in range(len(df)-nb_lookback_rows-1): \n", + " \n", + " df_lookback_rows = df[iRow:(iRow+nb_lookback_rows)] # from example 1 to 21\n", + " dataX.append(df_lookback_rows)\n", + " next_row = df[iRow + nb_lookback_rows] #get example 1+20, so the next point that is to be forecasted\n", + " dataY.append(next_row) \n", + " \n", + " return np.array(dataX), np.array(dataY) # convert to numpy arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Use Random Forest for feature importance:\n", + "Check which feature is most important, based on predicting the next closing price using just one example as training\n", + "Do this for each example, and check which features are the best on average\n", + "Looking back more than 1 example for each example requires a decision how to use the features. Do recent examples features get more weight?\n", + "\n", + "- scale all features to range 0-1 for faster convergence\n", + "- use random forest to find best decision tree to explain closing price" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "idx_close_bid = df.columns.tolist().index('close_bid') # predict this, should it be return?\n", + "df_np = df.values.astype('float32') # so regressor can use it\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "df_scaled = scaler.fit_transform(df_np) # scale features to between 0 and 1 for faster convergence\n", + "\n", + "# Set look_back to 100 which is 100 ticks\n", + "# look back is 1 period, to check which features predict best a 1 period return\n", + "look_back_rows = 1 # to work with more than one, use alternative reshape\n", + "X, y = create_training_set(df_scaled, nb_lookback_rows=look_back_rows) # look back only 1 row\n", + "y = y[:,idx_close_bid]\n", + "#TODO:X = np.reshape(X, (X.shape[0], X.shape[2]* look_back_rows)) # to get back rows and columns\n", + "X = np.reshape(X, (X.shape[0], X.shape[2])) # to get back rows and columns\n", + "# extend extra rows into columns, as all the prices during lookback periodd should be used as features." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10202, 20)\n" + ] + } + ], + "source": [ + "check_shape(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n" + ] + }, + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      close_bidavg_priceohlc_pricehigh_bidlow_bidopen_bidlast_10_tick_avg_bo_spreadlast_10_tick_avg_bid_returnrangeavg_bo_spreadnb_tickspcaoc_diffperiod_returndayhourweekday15_minmonth
      00.9355660.026430.0197240.014650.0025170.0005040.0000920.0000880.0000630.0000580.0000540.0000520.000040.0000390.0000380.0000380.000020.0000180.000008
      \n", + "
      " + ], + "text/plain": [ + " close_bid avg_price ohlc_price high_bid low_bid open_bid \\\n", + "0 0.935566 0.02643 0.019724 0.01465 0.002517 0.000504 \n", + "\n", + " last_10_tick_avg_bo_spread last_10_tick_avg_bid_return range \\\n", + "0 0.000092 0.000088 0.000063 \n", + "\n", + " avg_bo_spread nb_ticks pca oc_diff period_return day \\\n", + "0 0.000058 0.000054 0.000052 0.00004 0.000039 0.000038 \n", + "\n", + " hour weekday 15_min month \n", + "0 0.000038 0.00002 0.000018 0.000008 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1] # get indices for importances\n", + "#print(indices)\n", + "\n", + "column_list = df.columns.tolist()\n", + "#print(column_list)\n", + "print(\"Feature ranking:\")\n", + "feature_dict = OrderedDict()\n", + "for f in range(X.shape[1]-1):\n", + " #print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + " feature_dict[column_list[indices[f]]] = importances[indices[f]]\n", + "display(pd.DataFrame([feature_dict]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Try linear regression\n", + "- sklearn requires numpy arrays as input\n", + "- check how close we can get with linear regression\n", + "- resources: http://bigdata-madesimple.com/how-to-run-linear-regression-in-python-scikit-learn/\n", + "- problem: my features are note independent of each other, eg ohlc price, open bid, close bid etc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAJLCAYAAACv2/w2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtYlGX+x/HPcFJOaSoGC6FB2pE0WWrVTNYy8ZRHRHE1\n0rLM0kozO3j45TGzg6FZuVusrlaaaCBFlmlrZi6xyVJpmpY1E4N4SIeDDsj8/nBnVuQgKgMDvF//\n5Dz3/Tzzzfu69pr9dN/fx2Cz2WwCAAAAAAAALpFbXRcAAAAAAACAhoGgCQAAAAAAADWCoAkAAAAA\nAAA1gqAJAAAAAAAANYKgCQAAAAAAADWCoAkAAAAAAAA1gqAJaKCmTZumv/3tbxWOXXPNNTp69KhT\nvz83N1fDhw936ndcqtr4ezhbcnKyHnjggQrHnnnmGX355ZflrmdnZ6tHjx7OLg0AAAAAaoRHXRcA\noGG64oor9O6779Z1GfXG3Llz67oEAAAAALhkBE1APffee+9p5cqVcnNzU6tWrTR9+nRdddVVkqRv\nvvlGw4cP1+HDh9WuXTu9+OKL8vHxKXP/G2+8ofXr18vDw0Nt2rTRggUL5O/vX+n3jRo1SuHh4fr2\n22917NgxDRgwQBMnTpTRaNTIkSMVHh4uk8mkBQsWaMyYMfrmm29UUlKiF154QVu3bpW7u7tuvvlm\nzZw5U15eXlq2bJk2bdqk0tJSBQcHa+bMmbriiivKfOfw4cOVkJCgmJgYSdKiRYtks9mUkJCgJ598\nUseOHZMkde/eXY8++mi5mrOysjRnzhwVFRXJ09NTU6dOVefOncvMWbp0qdLS0uTu7q6rrrpK06dP\nV0BAgDZt2qRly5bJYDDI3d1dU6dOVVRUlCwWi+bOnau9e/equLhYnTt31tSpU+XhUfX/rObl5Wns\n2LE6dOiQgoODNXv2bAUEBGjUqFEaOXKkYmJitHr1av3973+Xn5+f2rdvX+XzAAAAAMCVcHQOqMd2\n7Nihv/71r1qxYoVSUlLUr18/TZgwQTabTdKZ42tvv/22Pv74Y+Xm5mrTpk1l7t+8ebOSk5P13nvv\naePGjQoJCdE//vGP837vb7/9pnfeeUfr16/Xhx9+qC1btkiSzGazHnroIX388ccKCAhwzF+9erW+\n++47ffDBB9q4caMKCgr04YcfasOGDdq7d6/Wrl2rDz74QN27d9ezzz5b7vtiY2O1fv16SdLp06eV\nkpKi2NhYrVmzRiEhIVq/fr1WrVqlgwcPymKxlLm3uLhYEyZM0IQJE7Rx40bNnj1b8+bNU2lpqWPO\nunXrtG3bNr3//vtKTU1Vu3btNG3aNEnSwoULNXPmTCUnJ2vSpEnauXOnJGnevHm64YYblJycrA0b\nNujYsWN6++23z/t399NPP2nGjBlKTU1V+/bty+1k2r17t5YsWaJ//OMfWrdunTw9Pc/7TAAAAABw\nFexoAuqxbdu2qU+fPmrRooUkafDgwZo7d66MRqMk6c4775S3t7ckqV27duX6Ee3YsUMxMTFq1qyZ\nJOmpp56q1vfGxcXJ09NTnp6eiomJ0RdffKF27drJw8NDHTt2LDf/yy+/1IABA9S0aVNJ0iuvvCJJ\nmjRpkrKzszVkyBBJUmlpqYqKisrd37t3by1cuFB5eXn6/vvv1aZNG7Vt21bdunXTuHHjlJOToy5d\numjy5MnldmPt3btXbm5uio6OliTdeOONSk1NLTPnn//8pwYPHuzY7TV69Gi9/vrrslqt6tu3rx5+\n+GF1795dXbt21f333y9J2rp1q7Kzs/X+++9Lkk6ePFmtv7suXbqoTZs2kqShQ4dq6NChZcZ37Nih\nrl27OoK6uLg4ffHFF9V6NgAAAADUNYImoB6z71w691pJSYkklTnGZTAYys13d3eXwWBwfD5x4oRO\nnDihkJCQKr/37OfabDa5uZ3ZHOnl5VXh0bFzrx0+fFilpaUqLS3Vfffdp/j4eEmS1WrV8ePHy93v\n4+OjXr16aePGjfrmm28UGxsrSbrpppu0efNm7dixQ1999ZViY2O1dOlSderUqdJ/R+lM+BQWFlbm\n3+FspaWljr/Dxx57TEOHDtUXX3yh5ORkvfnmm0pOTlZpaakWL16s8PBwx9/dud9TEXd39zLfe+7f\nzbnrdPZ8AAAAAHB1HJ0D6rHbbrtNH374oWOn0rp169S8eXPHjpnz6dKliz755BPl5+dLkhITE5WU\nlHTe+1JSUlRaWqrjx4/ro48+Ou9b0Tp37qyNGzfKarWqtLRUs2bNUlpamm677Ta9//77ju9fvHix\npk6dWuEzhg0bpuTkZH3zzTfq1auXpDO9ml577TXdeeedeuaZZ3T11Vfr559/LnNfWFiYDAaDtm/f\nLkn67rvvdM8995Q5OnfbbbcpOTlZhYWFkqSVK1cqKipKbm5u6tGjhwoLCzVixAjNnDlT+/fvV0lJ\niW677TYlJSXJZrPJarVq/Pjx1Tp2uHPnTv3222+SpHfeeUe33357mfEuXbpo+/btMpvNkuQ4MggA\nAAAA9QE7moB6rGvXrkpISHAEJy1atNAbb7zh2GF0Pt27d9ePP/6oESNGSJKuvvpqzZ49+7z3nTx5\nUkOHDlVBQYHi4+PVuXNnx3G9igwfPlwmk0mDBw+WzWbTLbfcolGjRsnNzU25ubkaNmyYDAaDgoKC\ntGDBggqfceONN8rDw0O9evVSkyZNJEn33HOPpk2bpn79+snLy0vXXHON+vXrV+Y+Ly8vJSYmat68\neVq4cKE8PT2VmJgoLy8vx5yhQ4cqJydHsbGxKi0tVZs2bbRo0SJ5eHjo6aef1pQpU+Th4SGDwaB5\n8+bJy8tLzzzzjObOnav+/furuLhYXbp00X333Xfev7v27dvr6aef1uHDhxUWFqbnnnuuzPg111yj\nJ554Qvfcc498fX110003nfeZAAAAAOAqDLaKzt4AQCXOfjsaAAAAAABnY0cTgDK++uorzZ8/v8Kx\nW2+9tZarqX/i4+NVUFBQ4diqVavk5+dXyxUBAAAAQO1hRxMAAAAAAABqhFObgWdlZWnUqFEVjhUV\nFWn48OHav3+/49obb7yhuLg4DR48WGvXrnVmaQAAAI1OZb/NPvvsMw0ZMkRxcXFas2ZNHVQGAAAa\nCqcdnVu+fLlSUlLk7e1dbiw7O1szZ85Ubm6u49rOnTv1zTff6J133lFRUZHeeustZ5UGAADQ6FT2\n26y4uFjz58/X+++/L29vb40YMUI9evRQq1at6qhSAABQnzktaAoNDVViYmKFryq3Wq1aunRpmbEv\nvvhC7du314QJE5Sfn1/pK87PlZdnqbGaAQCAa8g0Z2jatilKilmlli39dGWzK+u6pHqvst9m+/fv\nV2hoqJo1ayZJioyMVEZGhnr37l3l82w2mwwGg9PqBQAA9ZPTgqZevXpV+rrzyMjIcteOHTum3377\nTa+//rqMRqPGjx+v9PR0fsAAANCImCxnfjtM2zZFC7otkiQNem+Qvh73dV2W1SBU9tssPz9f/v7+\njs++vr7Kz88/7/MMBgP/wc/FBAT4syYuhjVxTayL62FNXFNAgP/5J1XAqT2aLkTz5s112223ycvL\nS2FhYWrSpImOHj1a12UBAAAnsAdKZ39OP5Cm+LRYSVJSzCpFBkYp2D9E6+PW10WJjYafn1+Zt2UW\nFBSUCZ4AAAAuhMsETZGRkdq2bZtsNptyc3NVVFSk5s2b13VZAACghpksRiWkj3SETZnmDA36oK/u\n/yRBhcWFkqRg/xDHfI7NOVd4eLgOHjyo33//XVarVV9//bVuvvnmui4LAADUU047Oneu1NRUFRYW\nKi4ursLxP//5z8rIyNDQoUNls9k0Y8YMubu711Z5AACglgT7hygpZpWkM6HT41snysPgqeU9kxQR\n0KFMyATnOfu32bRp0zR27FjZbDYNGTJEV1xxRV2XBwAA6imDzWaz1XURl4JznAAA1A/2HUzB/iFl\nmn3bVRYwXWx/ADgfv8NcCz1OXA9r4ppYF9fDmrimi/0NVms7mgAAQONishgd4ZHJYtSw1IHycPPU\nS9GvOpp9s3sJAACgYXGZHk0AAKDhOLcPk7kgxxEyRQZGOZp9AwAAoGEhaAIAADXm7ONxSTGrFOwf\nIpPFqGnbpjhCJvs4AAAAGh6CJgAAUCPO3sV09rE5e+jEDiYAAICGj6AJAABcNPsOJqns2+TOPjZn\nHwMAAEDDR9AEAAAuSvqBNEeglGnOkHQmUDr72BwAAAAaF4ImAABwwdIPpGncJ/dqcuRUmQtyNDil\nnyNsktjBBAAA0Fh51HUBAADA9Z3d5NtkMWr69qd1hU+QIgI6KNg/RMl3b6QHEwAAAAiaAABA1TLN\nGXp860RJ0uq+a2UuyFFuYY7e7Pm2Y+cSIRMAAAAkgiYAAHCWs98WZ/88bdsUvRT9qgJ9gxw9mNYP\nSCNcAgAAQDn0aAIAAJLOhEoVvS0uKWaVIgOjygRQhEwAAACoCEETAACNmMliLBMsTY6cWq6RN429\nAQAAUF0cnQMAoJHKNGdo4mfjVVhcpLE3jtPfvn1TR07mlTkWd+5ROgAAAKAq7GgCAKARSj+Qpvs3\nJeiX47/IVPCrnts5XYeKzJp/26IyIdO5R+kAAACAqrCjCQCARsIeGCVmvqIV37+lEpU4xlp7X6FF\n3V9RTFhfxzV7fyZ2NAEAAKC6CJoAAGgE7MfkzPlmWUpOyCCDJnWcon/sSdKzt85SdGiPCgMlQiYA\nAABcCIImAADqsap6KNl3MGXnZWn+v+boSNERWUpOSJICvFsrIWKMEiLGECYBAACgxhA0AQBQT9l7\nKCXFrJL0v91HJotR6/eu09p97+rYyaM6UnRYo667V6t/WKEZt87W5U0vr3QHEwAAAHApCJoAAKin\n7D2UJGlY6kCt6b9BknTn2tt15ORhDWsXr+R9a1SiEq3c/bYW3v6yRt4wui5LBgAAQANH0AQAQD0W\n7B+iTHOGDp74WeaCHO0wfakjJw+rmVdzZR/J0lsxKyVJAT6tHW+TAwAAAJzFqUFTVlaWFi1apJUr\nV5YbKyoq0r333qu5c+cqPDxckjRo0CD5+flJkkJCQjR//nxnlgcAgEs7X/8le8i0w/SlWvtcoT1H\nduv5r+doUscpSogY45jLETkAAADUFqcFTcuXL1dKSoq8vb3LjWVnZ2vmzJnKzc11XDt16pRsNluF\noRQAAI3N2f2Xzg2KTBaj+q/vpSFXx+m1rMUqthXLTW5a9PXzCvBurU2/fOQImip7BgAAAOAMbs56\ncGhoqBITEyscs1qtWrp0qcLCwhzX9uzZo6KiIo0ZM0ajR4/Wrl27nFUaAAAuz95/6eyAKP1AmlZ9\nt0KJma/ImP+rFu9apIc6TFKgT5D+4BcsH09vLb8rSav7rlWwf0iFzwAAAACcyWk7mnr16iWj0Vjh\nWGRkZLlrTZs21dixYxUbG6uff/5Z999/v9LT0+XhQRspAEDjZD8aJ0k7TF/quZ3Ty4xf7tVSCRFj\nqjwmR8gEAACA2uQyKc5VV12lNm3ayGAw6KqrrlLz5s2Vl5enoKCgui4NAIBaZ7IYlZT9lpbselmn\ndbrMWHOvyzXx5se1dt+7kgiTAAAA4DpcJmh6//33tXfvXs2aNUu5ubnKz89XQEBAXZcFAECtMlmM\nMhfkqH9yjEpUXGasa+Dt2n9inxbe/pJiwvpqUPshhEwAAABwKbUWNKWmpqqwsFBxcXEVjg8dOlRP\nPfWURowYIYPBoHnz5nFsDgDQaNgDptEfjtBx6+/lQqZh7eK1pOfryjRnaNq2KYoI6EDIBAAAAJdj\nsNlstrou4lLk5VnqugQAAC6ayXKmn2Gf5DtVaC3U8eLfy4z3aztA3x79j7w9fBxNvk0WY6MKmQIC\n/Ou6BFSC32GuJSDAnzVxMayJa2JdXA9r4pou9jcYW4YAAKgD9oCpX3Ivjb1xnHIKfpPbf18G2zXw\ndm03/1Mzbp2thyMnOebaw6XGFDIBAACgfiFoAgCglpksRsWnxSqiZQeZCn7V5oOfSJJ8Pf005oZx\nSogYI3NBjiIDoyQRLAEAAKD+cKvrAgAAaExMFqOy87J04tQJrd33jgwy6NBJs4a1i1eI/5WKCeut\n+LRYBfry1lUAAADUP+xoAgCgFkzbOkWHCnP1Td6/deRknt7s+bYkKcCntQJ9gxy9lwAAAID6jKAJ\nAAAnyTRnaM+R3drx25das2+14/rL3ZcoJqxvufn2I3L2pt8AAABAfUPQBABADTNZjNr6y2ea8vkk\nndZphfhdqWHt4iVJ90aMdfReqgwhEwAAAOorgiYAAGpQ+oE0Pf3FVB0qzFWpSiVJY24Yp0HthxAg\nAQAAoMEjaAIA4BKkH0jTkaIjig7toa2/fKZpX0yWrdSm529/Sde2vE57juxWdGgPJaSPVFLMKsIm\nAAAANGgETQAAXASTxaj1e9fpuZ3TJUktm7ZSfrFFC257Ude2vM5xPM7+T0ImAAAANAYETQAAVIPJ\nYlSwf4gyzRnKKzyk6duflrngNzX3ulxuBjdd3qSFXo5OrLDJt0TfJQAAADQOBE0AAJzDHiqd/Tk2\nZaA6tf6jNux/X6WlpQrwba0no57VgozZCvINVuIdy87b5BsAAABo6AiaAAA4i8lidPRTskvKfksH\njv+oH4/vlbe7j1r4NNORosO6+vKrFerflpAJAAAA+C+CJgAA9L9dTMH+IVrQbZG2/vKZlu56VSes\nx3WoKFduBnfJJhWdLtS49g8pJqy3IgOjFBHQgWNxAAAAwH8RNAEAGj2Txaj4tFiNixiva1tep/s3\nJciY/6su92opSWrVpLWaejaRu8FDA8OHaKtpsxIixkii9xLqh9LSUs2aNUs//PCDvLy8NGfOHLVp\n08YxnpKSorfffltubm4aMmSI4uPj67BaAABQnxE0AQAaLZPF6PhzboFZj33+sCSD/D39JUm/W4/K\nJpsmdZxSJlhKsIwhYEK98umnn8pqteq9997Trl27tGDBAi1btswxvnDhQm3cuFE+Pj7q27ev+vbt\nq2bNmtVhxQAAoL5yq+sCAACoC+kH0hSfFquea6I1/6s5OnrqyH9HbLIUn9DlTVrope6JCvQJUtpP\nKZL+t3uJkAn1TWZmprp16yZJ6tixo7799tsy49dcc40sFousVqtsNpsMBkNdlAkAABoAdjQBABqd\n9ANpuu/jexR1xZ+0++h3WrNvdZlxd7mrWZNmig7toWtbXqfHt06so0qBmpGfny8/Pz/HZ3d3d5WU\nlMjD48xPwXbt2mnIkCHy9vZWz549ddlll1XruQEB/k6pFxePNXE9rIlrYl1cD2vScBA0AQAaBZPF\nqOy8LB0pOqJ5O5+T1WbVdvM/HeNucpNN0kvdX9W1La9ToG+Qozn46r5r2cWEes3Pz08FBQWOz6Wl\npY6Qac+ePdq6das2b94sHx8fPfHEE/roo4/Uu3fv8z43L8/itJpx4QIC/FkTF8OauCbWxfWwJq7p\nYsM/giYAQINmD5ju33SvTpWerHCOp7x0dYt2ein6VUUGRtVyhYDzderUSVu2bFGfPn20a9cutW/f\n3jHm7++vpk2bqkmTJnJ3d1eLFi104sSJOqwWAADUZwRNAIAGxWQxKtg/RJnmDOUVHtKY9NEqUXGF\nc/8YcIvMRTlafleSYwdTRc9LSB+ppJhV7GpCvdWzZ09t375dw4cPl81m07x585SamqrCwkLFxcUp\nLi5O8fHx8vT0VGhoqAYNGlTXJQMAgHrKYLPZbM56eFZWlhYtWqSVK1eWGysqKtK9996ruXPnKjw8\n3HH9yJEjGjx4sN56660y1yvD9joAgF2mOUMPfnKfrm7WTpuNmyqd17JJKw0IH6wF0YscwVRVqjMH\nzkPPBtfF7zDXwtET18OauCbWxfWwJq7J5Y7OLV++XCkpKfL29i43lp2drZkzZyo3N7fM9eLiYs2Y\nMUNNmzZ1VlkAgAYq/UCaJm+dpLyTh3TQ8lOFcwxy099jVinAp7WmbZtS7QCJkAkAAACoHjdnPTg0\nNFSJiYkVjlmtVi1dulRhYWFlrj///PMaPny4Wrdu7ayyAAANTPqBNI1IGarR6SOUd/JQhXMMctOM\nW2fr36O+VUxYX0UGRnEUDgAAAHACpwVNvXr1crzN5FyRkZEKCgoqcy05OVktWrRQt27dnFUSAKCe\nyzRnOP68JHOxI2Cq6pjcpI5TdG2L6zSo/ZAywRIhEwAAAFDzXKYZ+Lp162QwGLRjxw7t3r1bTz75\npJYtW6aAgIC6Lg0A4ETVPb6Wac7QgA29NS1quvYc3a01+1ZXOtcgg2yyacz14/RMlxlKiBhDsAQA\nAADUAqftaLpQq1at0j/+8Q+tXLlS1113nZ5//nlCJgBo4OxvdDNZjFXOkaQ9R3bLWmrVczunVxoy\nGWRQoE+Q/h6zWm0vu0qPRD4qid1LAAAAQG2ptR1NZ79CFwAA6UwAVFWvJJPFqEEf9NWAsCFavGtR\nlc8yyKBQ/7Z6vedfFRkYpYiADgRMAAAAQC0z2Gw2W10XcSl4BSIANBz2Y3Qmi1HZeVk6UnREj33+\n8Hnvm3HrbHUO7qJA3yDCpQboYl+tC+fjd5hr4fXgroc1cU2si+thTVzTxf4Gc5keTQCAxs1kMSo2\nZaDirx2lZVmJlb5Bzu7l7kskSde2vE6RgVG1USIAAACA8yBoAgC4hPV712n/8X16buf0KufdEXKX\ntuf8k4AJAAAAcEEETQCAOmE/Jpd+IE1bf9mit75/s9K5bnJXwvVjFXttnCIDo5RpziBkAgAAAFwQ\nQRMAoFaZLEaZC3L0yObxir921Hl3MM24dbYGtR9SpvcSIRMAAADgmgiaAAC1JtOcofs3JehI0WEV\nnS6qNGQa1i5eQb5/0OvZieoc3IUG3wAAAEA9QdAEAKhxZ789Ltg/RJnmDAX6BikudbBOFB+v9L5w\n/6tlcHPTN3lfK/uIp5b3TGL3EgAAAFCPEDQBAGqMyWKUJCWkj9SCbos0bdsUTY6cqnvT/6IbWtxY\nYcjU1M1bTTy8NKvzXEWH9igzxk4mAAAAoH5xq+sCAAANQ6Y5QwnpI2UuyNGCboskSdHBd2jNnnd1\nWqf1n6NZ59xhUBv/q7R+4EZtjduh6NAeSkgfKelMwETIBAAAANQ/7GgCAFwyk8Xo2L30+NaJyi0w\n69ipo7LJVm5uE0MT3RbcXVNueVITPxuvQN8gR6iUFLOKgAkAAACox9jRBAC4IPbjcWcL9g/R5Mip\nigjooD/4BOvoqSPlQqY7Qu7Sy92XKOzyqzXllicV6BskDzfPcs8BAAAAUH+xowkAUG0mi1EJ6SOV\nFLNK5oIcRQZGadV3K3Ts5DHN/9dzMtjcZNWpcvcZZNCPx/cpOrSHrm15naZtm6KkmFVa3Xct4RIA\nAADQgBA0AQCqLdg/REkxq5Sdl6UxH4/WrVd01nbzPyucO6njFElSTFhvPfjJfXq9518dvZc4IgcA\nAAA0TARNAIDzMlmMCvYPUaY5Q29n/02p+zeoxFZcLmTy8/DX7K7z1dK7pSICOighfaQSIsZow8C0\nMsESIRMAAADQMBE0AQAc7IHSudeGpQ7UzQF/1Jp9qyu91yCDXrvzTQX4tFZkYJQkmnsDAAAAjQ3N\nwAEAkv7Xfyn9QJokKdOcofQDaZr/1Rzt+31vpSFT18DbNeb6cfJ089SRoiManNJPmeYMSexcAgAA\nABobdjQBACT9781xD3w6RiPaj9Jb379Z5fym7t56IGKCnukyQ5IUe22cIgOjdG3L6xw7mgAAAAA0\nLgRNAACHiIAO6tQq6rwhk7e7j5IHpJYJlOx/JmQCAAAAGi+CJgBoZCrrwzR0w93ab9kvyVbl/WOu\nH6dHIh/lWBwAAACAcgiaAKARsfdhsjfpNlmMSsp+S4t3Lar0Hm+Dt1r4tNL8bgslSTFhfWurXAAA\nAAD1DEETADQy9pDp4U8e1Np978hWxQ4mP09/FZdaNb/bQgImAAAAAOfl1LfOZWVladSoURWOFRUV\nafjw4dq/f78k6fTp03rqqac0fPhwjRgxQnv37nVmaQDQaJgsRsc/B33QV+v3rtP1fw3Tmn2rKw2Z\n3OSuFTHvaNvwndow4ENCJgAAAADV4rSgafny5Xr22Wd16tSpcmPZ2dkaOXKkfv31V8e1LVu2SJLe\nffddPfroo3r55ZedVRoANBrpB9KUkD5SJotRU7Y8qp9P/KTndk7XYevhcnOvbXadJnWcoibuTfRi\n98WKCeurYP8QmnsDAAAAqDanHZ0LDQ1VYmKipk6dWm7MarVq6dKlZcbuvPNORUdHS5J+++03XXbZ\nZc4qDQAahUxzhu7bdI8Ghg/VzSuvr3Luy92XKDq0h4L9QxQT1ptwCQAAAMBFcVrQ1KtXLxmNxgrH\nIiMjKy7Gw0NPPvmkPvnkE7366qvOKg0AGjSTxaitv3ymN3YtlbXUqjX7Vlc4b8ats7Xn6G499adn\nJcnRJJyQCQAAAMDFcrlm4M8//7ymTJmiYcOGKS0tTT4+PnVdEgC4DJPFqGD/kAqvS9L6vev0/L/m\n6pTtZJXPmXHrbD0cOanMNXuTcAAAAAC4WC4TNG3YsEG5ubl64IEH5O3tLYPBIDc3p/YqB4B6xWQx\nOnYd2QOhTHOGJOm+jxN09OQRFZ0urPR+D4OnJnSYpA3712lQ+yHlxgmZAAAAAFyqWguaUlNTVVhY\nqLi4uArH77rrLj311FMaOXKkSkpK9PTTT6tp06a1VR4AuLxg/xBHyGSyGGUuyFG/9XfJw+ChU6Xl\nX7xg5+3mo+SBqZKkyMAoJUSMIVQCAAAA4BQGm81W8but64m8PEtdlwAAtSr9QJqmfP6oQv3a6Ou8\nf1U4x0MeKlGJhrWL11N/epZgCfVaQIB/XZeASvA7zLUEBPizJi6GNXFNrIvrYU1c08X+BuNsGgDU\nE5nmDI35cJRGp4/QoaLcSkOmgKatlTr4Y7Vr3p6QCQAAAECtcpkeTQCAitnfIvfY5w9XOc/Xw1et\nvFvr9Z5/VWRglNb030DIBAAAAKBWETQBgIuo6I1ySzIXa/7O2SqWtcJ7vAxe+st1CYoIuEnRoT0k\n/a+pNyGvEcaxAAAgAElEQVQTAAAAgNpG0AQALsD+RrmE68cqOrSH5n81R/859I32HN9d6T392g7Q\nhE4TFRkYVYuVAgAAAEDlCJoAwAUE+4doQNhgPf75I7Kp8nc0GGRQbLsR6hfeXxEBHZSQPtLxJjoA\nAAAAqGsETQBQR+xH5UwWo8wFOVqatbjKkKllk1Z6+c+Jignr67hGyAQAAADAlRA0AUAtM1mMkqT4\ntFiNixiv2V/N1IlTx1WiknJzL/Nspv/rMlfXtrxOgb5B5UIlQiYAAAAAroSgCQBqkcliVHxarJ66\n5VkdLsyr8E1ybnJXkHegxt70oAa1H0KYBOCSlZaWatasWfrhhx/k5eWlOXPmqE2bNo7x//znP1qw\nYIFsNpsCAgL0wgsvqEmTJnVYMQAAqK8ImgCghlT01rizr6UfSNOPx35UboFZj3z2oI5bj5d7xh0h\nd2nRn18hXAJQoz799FNZrVa999572rVrlxYsWKBly5ZJkmw2m6ZPn65XX31Vbdq00dq1a2UymRQW\nFlbHVQMAgPqIoAkAaoD9rXFn90w6+9r0bU9p488fVHjvTS06KLfokLqH/FlLer5em2UDaCQyMzPV\nrVs3SVLHjh317bffOsZ++uknNW/eXElJSdq3b5+6d+9e7ZApIMDfKfXi4rEmroc1cU2si+thTRoO\ngiYAqAHB/iGOkMm+i8lckHPekGlSxylKiBjjeAYAOEN+fr78/Pwcn93d3VVSUiIPDw8dO3ZM33zz\njWbMmKHQ0FA9+OCDuvHGG9W5c+fzPjcvz+LMsnGBAgL8WRMXw5q4JtbF9bAmruliwz+3Gq4DABot\ne8gUnxarJZmL1X99L92fnlBhyDSp4xS93H2JNv3ykeLTYuugWgCNiZ+fnwoKChyfS0tL5eFx5r83\nNm/eXG3atFF4eLg8PT3VrVu3MjueAAAALgQ7mgCghqQfSNPWX7bowO/79dzO6ZKkr/P+5Ri/ttl1\nuvry9prQaaIiA6MkSdGhPSSxmwmAc3Xq1ElbtmxRnz59tGvXLrVv394xduWVV6qgoEAHDx5UmzZt\n9PXXX2vo0KF1WC0AAKjPCJoA4BKZLEYlZr6it75/s9xYE0MTPdjhETVr0kwPR04qN15V83AAqCk9\ne/bU9u3bNXz4cNlsNs2bN0+pqakqLCxUXFyc5s6dq8mTJ8tms+nmm29WdHR0XZcMAADqKYPNZrNV\nNtijRw8ZDIZKb968ebNTiroQnOMEUJvODoIyzRlKP/CRlu5arBIVl5vr73GZ1ty93rF7qTrPPreh\nOACag7oyfoe5FnqcuB7WxDWxLq6HNXFNF/sbrModTStXrpTNZtPSpUt15ZVXavDgwXJ3d1dqaqqM\nRuNFfSEA1Df2cMnef+mu0N7a8ssn+s/RrArne8hTBoPU0qelAn2Dqv09ZzcUBwAAAID6qMqgKTg4\nWJL0ww8/aP78+Y7rY8aM0eDBg51bGQC4APsuo4Trx+rYyWP68eg+7T76XaXz+7UdoNnd5stckKNA\n36ALDo0ImQAAAADUZ9Xu0fTVV1/pT3/6kyTp888/l7u7u9OKAgBXcqVvqB77/OEq53i7+Whet4Ua\necNoSQRGAAAAABqnagVNc+bM0ZNPPqm8vDzZbDYFBwdr4cKFzq4NAGrFuQ24M80ZCvQNUmLmK/rH\n90myylrpvcPaxeveiLEXtXsJAAAAABqaagVN119/vVJTU3Xs2DEZDAY1b97c2XUBQK04twF3pjlD\nAzf00anSU1Xe1zXwdj3bZWa1G30DAAAAQGNQZdA0ffp0zZ49W6NGjarw7XMrVqyo8uFZWVlatGiR\nVq5cWW6sqKhI9957r+bOnavw8HAVFxfr6aeflslkktVq1fjx43XHHXdc4L8OAFyYYP8QLei2SJK0\n6rsVWvLvVyoNmTzkoQkdH1WzJs30wYHkC2r0DQAAAACNQZVBU1xcnCTpkUceueAHL1++XCkpKfL2\n9i43lp2drZkzZyo3N9dxLSUlRc2bN9cLL7yg33//XQMHDiRoAlDjMs0ZigyMksliVHbembfGPf3F\nVB0qOCSrrfJdTCF+V6qpu7diwnpr2rYpWtBtEUflAAAAAOAcVQZNN954oyTplltu0Z49e5SRkSEP\nDw/deuutCgsLq/LBoaGhSkxM1NSpU8uNWa1WLV26tMxYTEyMevXqJUmy2Ww0GwdQ4zLNGRqc0k9v\n3PmWnv5iqoz5v1brvhm3ztag9kMkndkBZT9mBwAAAAAoq1o9mlasWKFVq1bpz3/+s2w2m5KSkvTg\ngw9q0KBBld7Tq1cvGY3GCsciIyPLXfP19ZUk5efna+LEiXr00UerUxoAnJe92Xegb5DmdX1BPx77\nUTn5v1U6/4omV8jT00vL70rSniO7HW+SsyNkAgAAAICKVStoWrt2rdatWyc/Pz9J0kMPPaS//OUv\nVQZNFyMnJ0cTJkxQfHy8+vfvX6PPBtBwnfvWuLOvb/3lM72ZvUwvRb+q+z5OkKng/LuYkvqudrxF\njmbfAAAAAFB9btWZ5O3tLU9PzzKfvby8arSQw4cPa8yYMXriiSc0dOjQGn02gIbL/tY4k6XsDspM\nc4YGfdBXj33+sA4X5mnRv56vNGTydvfRpI5T1Payq7Qi5h1FBkaxawkAAAAALkKVO5qWLFkiSWre\nvLlGjBihPn36yMPDQ+np6Wrbtu0FfVFqaqoKCwsdDcbP9frrr+vEiRN67bXX9Nprr0k601C8adOm\nF/Q9ABqXinommSxGPb51osIva6efT/ykvJOHtNm4qcL7h7WLV/aRLCVEjFFMWG92MAEAAADAJTDY\nbDZbZYP2oKkyDz/8cI0XdKHy8ix1XQIAF5JpztAO05d6buf0Csc95KESndaMW5/TOz+s1Ks9linQ\nN0iSlJA+kkbfgAsKCPCv6xJQCX6HuZaAAH/WxMWwJq6JdXE9rIlrutjfYFXuaKpOkPTAAw/ojTfe\nuKgvB4CLdXZfJpPFKHNBjt7O/pvW7Ftd6T1uBje91WulAnxaKzIwSp2Du2jatimOcImQCQAAAAAu\nTbWagVclNze3JuoAgGozWYyKT4vV6r5rlZ2XpUc2j9fx4t+rvGfM9eP0T9NWRQR0cIRJkYFRZcIl\nQiYAAAAAuDSXHDQZDIaaqANAI1LZW+Kqy1yQo+LTxZq+7Slt/PmDSud5yFOpg9MlnQmVKvpewiUA\nAAAAqDmXHDQBwIWwvyXuQo+p2UOi9ANpjh1MPx7fW+n8l7svUXRojzLfQagEAAAAAM5F0ASgVl1M\nLyT7UTlPeeg/R7MqnXdTiw6acss0Rw8mAAAAAEDtuuSgqYqX1gFAhaobMtnfIHd508u1++h3lc67\nqUUHPR/90gWHS5d6hA8AAAAAUNYFBU3Hjx9Xs2bNylwbOHBgjRYEoHEzWYySpPV71+m5ndOrnBvu\nf7Vmdp1dpsH3hXzPxRzhAwAAAABUzq06k3bv3q2YmBgNGDBAubm56tmzp7777szugoSEBGfWB6AR\nyTRnKD4tVl1W/7HSkMnL4KU7Qu7Sy92XaMeofysioIMS0kc6AqrqupgjfAAAAACAqlUraJozZ46W\nLl2q5s2b64orrtCsWbM0c+ZMZ9cGoIGzh0Mmi1Fzv3xOQz8YoL1H96jodGGF84e1i9fOv+zSO3e/\nr5E3jJZ0aYERIRMAAAAA1KxqBU1FRUUKDw93fO7atausVqvTigLQsJksRmWaM5SQPlLpB9J088rr\ntXjXIhWcztdpnS4z11Ne8pCHAn2ClH2k4kbgBEYAAAAA4Bqq1aOpefPm2rNnjwwGgyQpJSWlXK8m\nAKgOk8Wo2JSBKijJV2nJaY1OH1Hp3Je7L1F0aA+ZC3IU6BskiVAJAAAAAFxZtYKmWbNm6cknn9S+\nffsUGRmptm3b6oUXXnB2bQAaGPtRuV9OHJTVdqrCOeH+V+vhTo+qpXdLxYT1lUS4BAAAAAD1RbWC\nptDQUL3zzjsqLCxUaWmpJMnPz8+phQGo/0wWo4L9Q5R+IE2S9MTnjyv/1IlKQiaDJnWcrISIMYpP\ni5Wki3qbHAAAAACg7lQraNqyZYu+/vprPfTQQ4qNjdXRo0c1ceJEjRw50tn1AainMs0ZmrZtiiID\novTW929WMdOgZl6XKbHH644dTC9Fv6pA3yBCJgAAAACoZ6rVDHzJkiUaPHiwPvzwQ91000367LPP\ntG7dOmfXBqCesR+NyzRn6PGtE9WqSUClIZNBBg1rF6+PBn+qAO8rNP9fc2SyGGWyGDVt25TaLBsA\nAAAAUEOqtaNJksLDw/XSSy/p7rvvlq+vr4qLi51ZF4B6wH40LtOcoUDfIMWnxWpcxHg9nzFXuYVm\n7T76Xbl7DDKotXegXuj+kmMH09q7N0j6Xy+mpJhV7GYCAAAAgHqoWkFTq1atNHv2bGVnZ+uFF17Q\nggUL9Ic//MHZtQFwYSaLUQnpI5Vw/Vg99cUUTf3jMzrw+4967POHy829I+Qu7Tm2W2NvHKfOwV3K\nHYs7N1QiZAIAAACA+qlaQdOLL76oTz/9VPfcc498fHx05ZVX6uGHy/+fSQD1j31X0sXMmRw5VZO3\nTpKnwUvP7Zxe4b1uclO/8Lu1KPQVAiQAAAAAaOCq1aPJ19dXBQUFWrRokR566CGVlJTIx8fH2bUB\ncDL7riR7b6XqzMk0Zyj9QJqi3+2i0ekjlHfykCwlJ8rdZ5BBwb5X6tlb/09Pb39C5oIcp/17AAAA\nAABcQ7V2NC1cuFAHDx7UkCFDZLPZlJycLKPRqGeeecbZ9QFwomD/kGr1Q0qKWSVJSj+QpjEfj1KJ\nraTCeV6GJmrWpJnGd3hEq/esVOIdyxQZGKXOwV0UGRhV4/UDAAAAAFxLtYKm7du3a8OGDXJzO7MB\nKjo6Wv379z/vfVlZWVq0aJFWrlxZbqyoqEj33nuv5s6dq/Dw8GrdA6DmVRQymSxGmQtyFOgb5OjD\ntOjr5/VbgVE22Sp8zqSOU5QQMcbxzEHthzieTcgEAAAAAI1DtYKm06dPq6SkRF5eXo7P7u7uVd6z\nfPlypaSkyNvbu9xYdna2Zs6cqdzc3GrfA6B2mCxGDfqgr3Lyf9Pyu5KUcP1YTfl8kk7rdIXzh7WL\n178Pfa2EiDFVNvgGAAAAADR81erR1L9/f40ePVorV67UypUrdc8996hv375V3hMaGqrExMQKx6xW\nq5YuXaqwsLBq3wPAuTLNGZIkc0GOPAye8vP016NbHtbjn0+sNGQK9r1ST/3pWa29ewPBEgAAAACg\nejuaHnzwQV133XX66quvZLPZ9OCDDyo6OrrKe3r16iWjseIGw5GRkRd8DwDnyTRnaHBKP83r+oJm\nfzVTl3tdriOnDpeb5yEPDW43TNt/26Ypf3xS0aE9CJgAAAAAAA5VBk0ZGRmOP/v4+KhHjx5lxqKi\n6LsCNASRgVHqf9UgTf58kkp1WkdPHVErr1Y6bP1f2OTt7qPkAamKDIySyWIkYAIAAAAAlFNl0PTq\nq686/nzkyBG1bNlSRUVFOnTokNq2basVK1Y4vUAAzmEPizLNGVr0r+e12bipzPjvJcclSTNunS1J\nZZp7EzIBAAAAACpSZdBkf/PbihUrlJycrJUrV8poNOr+++9Xnz59LuiLUlNTVVhYqLi4uIuvFkCN\nyDRn6JHN49Wp9R+1Zt/qcuNuctOEmyZp2X9eVefgLrw1DgAAAABQLQabzVbxu8rP0q9fP61du9bx\nNriioiINGzZMqampTi/wfPLyLHVdAlBvmCxGmQtyNPGz8dr/+48qVWm5Of3aDtCEThMVGRilTHMG\nIROAOhcQ4F/XJaAS/A5zLQEB/qyJi2FNXBPr4npYE9d0sb/BqtUMvLi4WJ6eno7PZ/8ZgGuzH5Ez\nWYwa9EFfeXv46KEOE/Vi5vPKyf9N0SF3qF/43Y75I28Y7fgzIRMANAylpaWaNWuWfvjhB3l5eWnO\nnDlq06ZNuXnTp09Xs2bNNGXKlDqoEgAANATVCpruvPNO3XPPPerdu7ckadOmTbrjjjucWhiAS2ey\nGDUsdaDW9N+g7Lws/WYxadot0/Vm9jItvytJkhToG6SE9JFKillF7yUAaKA+/fRTWa1Wvffee9q1\na5cWLFigZcuWlZnz7rvvau/evbzsBQAAXJJqBU1PPPGE0tPTlZGRIQ8PD40ePVp33nmns2sDcAlM\nFqOy87L0i+WgsvOy9NyOmbIZbFqx+y15GDwV6BvkCJYImQCgYcvMzFS3bt0kSR07dtS3335bZvzf\n//63srKyFBcXpwMHDlT7uRxrdD2siethTVwT6+J6WJOGo1pBkyTFxMQoJibGmbUA9Zr9iFpdf/+S\nzMU6fuq4NuxfJy93Ty3vmaSYsL6KCOggc0GOJJUJmSTeIgcADV1+fr78/Pwcn93d3VVSUiIPDw8d\nOnRIS5cu1ZIlS/TRRx9d0HPpp+Fa6HHielgT18S6uB7WxDU5tUcTgKqZLMY6O35mb/D9+NaJCr/s\nam38+QNJkrvBXYE+f1BEQIcyIZi9TgBA4+Hn56eCggLH59LSUnl4nPkZmJ6ermPHjmncuHHKy8vT\nyZMnFRYWpsGDB9dVuQAAoB4jaAJqQLB/iFNDpop2S5ksRklSbMpAldiKVWAt0O6j30mS3OSmVk1b\ny8fTW+aCHE3bNsVRH8fkAKDx6dSpk7Zs2aI+ffpo165dat++vWNs9OjRGj36zIsgkpOTdeDAAUIm\nAABw0QiagBrizJDp3N1SmeYMPb51osZFjFdRSZEkyd3NXZ5unnoqaoY6B3dRoG+Qo66z7yVkAoDG\np2fPntq+fbuGDx8um82mefPmKTU1VYWFhYqLi6vr8gAAQANisNlstrou4lJwjhMNmX0nk333UrB/\niCNk+vn4TzptK5Gt1KZWvgHy9fDTjM7/p5iwvnVcNQDULJqDui5+h7kWepy4HtbENbEuroc1cU0X\n+xvMrYbrAFBD7DuZ0g+kSZLi02KVac7QI5vH6w8+wSo6Xai7QnvrbzEr1LzJ5Uq8YxkhEwAAAACg\nTnF0DnAhZ/diCvYPUcL1YzV202gNCo/V0aKj2nNkt37NPyhJGtYuXkt6vi5JigjowJE4AAAAAECd\nI2gCXIR9B9PkyKmSpACf1nruqxkqLi3Wmn2rJUkvZj6v5T2TFODTWpGBUY57CZkAAAAAAK6AoAmo\nY2fvYooMiNK96X/RaZ2Wn6e/8ov/d055zPXj9Ejko5JUrjk4AAAAAACugB5NQB3KNGcoNmWgVn23\nQre9E6W3vn9Tp3Vakhwh0x0hd8nLzUux18Yp2D+k3FvkAAAAAABwFexoAuqAyWLU1l8+07Pbp6mg\nJF+Pff6wJMkgg2yyydfDT6dKTmpCx0f1TJcZyjRncFQOAAAAAODyCJqAWmQPmJ7ZPlWFJYXlxm2y\nqV/bAdp/4kc9dcuzjrfInR0yAQAAAADgqgiagFqSfiBN932cIKvtVKVzWjZtpdnd5kti1xIAAAAA\noP4haAKcxGQxylyQo7zCQ3pj1zJtN/+z0rkzbp2tzsFdFOgbVCZgOrtROAAAAAAAro6gCXACk8Wo\nO9Z009FTR6qcZw+YKjoaZ7IYebscAAAAAKBeIWgCLsK5O41MFqOkM8fdTBajpmx5tNKQycvgpRJb\niV7s/qpG3jC60u/g7XIAAAAAgPrGzZkPz8rK0qhRoyocKyoq0vDhw7V//35JUmlpqWbMmKG4uDiN\nGjVKBw8edGZpwEWz7zSyh0smi1GxKQM16IO+mvvlc4pa2UGbjZvK3edl8FKgT5D+2uvvCmt2taJD\ne5z3uwiZAAAAAAD1idOCpuXLl+vZZ5/VqVPlGx9nZ2dr5MiR+vXXXx3XPv30U1mtVr333nuaPHmy\nFixY4KzSgEsS7B+iBd0WSfrfW+ROni7Szyd+0uJdi1Si4nL32AOmy5u2UERAB629ewMhEgAAAACg\nwXHa0bnQ0FAlJiZq6tSp5casVquWLl1aZiwzM1PdunWTJHXs2FHffvuts0oDLonJYtTjWyeqqKRQ\nJ06d0NFTR+Qhz3Lzugberme7zNSeI7sVHdpDwf4higjoQMAEAAAAAGiwnBY09erVS0ajscKxyMjI\nctfy8/Pl5+fn+Ozu7q6SkhJ5eNBGCq4ntt1wLf73izpe/LskqUTF8jJ4qdRWKn+vZprR+f8c4dLZ\njb4JmQAAAAAADZnLpDh+fn4qKChwfC4tLSVkgksxWYwyF+RoaMoAFZTklxsP8gvW7K7zFBHQQZJ4\nYxwAAAAAoNFxmSSnU6dO2rJli/r06aNdu3apffv2dV0SIOlMwJSdl6XHt0zSsVNHdFqnJUnh/lfr\noOVnPX3rTHUO7qJA36AyoRIhEwAAAACgsam1oCk1NVWFhYWKi4urcLxnz57avn27hg8fLpvNpnnz\n5tVWaYCDyWJUsH+IMs0ZkqQdpi/1t2/fVE6BSaUqdczz8fDR+wNTZC7IKRcw2REyAQAAAAAaG4PN\nZrPVdRGXIi/PUtclwEXZQ6MLmR+fFqvYdsM1Z+cslf5355Kb3Bwh07XNrlNR6Um93vOvigyMksli\n5IgcADhZQIB/XZeASvA7zLUEBPizJi6GNXFNrIvrYU1c08X+BnOr4ToAl2APgEyWihvS29l3LqUf\nSJO5IEe/HD+oOTtnOkImSWri3lQvd1+il7svkcHdzREySWd2LREyAQAAAABwhsv0aAJqUmUB0Nm7\nnDLNGRqwobcGhg/Vmn2r5SFPlahYkuRp8FSxrVju8lCIf4iiQ3tIkt7MXqZA36By3wUAAAAAANjR\nhAasopApIX2k0g+kyWQxKq/wkIpLS7Rm32pJcoRMkvRQh0m63KulNg7+WGv6b1Cwf4iC/UO0uu9a\ngiUAAAAAACrBjiY0WPZjc8H+IY4/J1w/Vvd9fI/8vS5TYUmhbGc1+Jakfm0H6Ju8fyshYowSIsaU\nC5UImQAAAAAAqBxBExoce6g0LHWgPNw8NS5ivF7LelU2m5RXdEhWm1VHTh0+6w6D3A1uerjDY3qm\ny4wLbiIOAAAAAADO4OgcGhT7m+PMBTnycPNU58CumrrtMR0r+l3NvZrruPV3x1xvd295GjwV7Bui\nRbcv1lbTZkImAAAAAAAuATua0GB1Duyqt75/U5J0+NQhHc47JEnyMjTR+A6P6PXsRC28/WVFh/ZQ\n8H8bfhMyAQAAAABw8Qia0CDYj8uZC3I0LmK8Bn/QX0WnCx3jXgYveXv66IT1uAJ8WmvTLx9pec8k\nxYT1dcwhZAIAAAAA4NIQNKFeswdMsSkDlVd0SCesx2WTrcwcD3mq2FasaTdP1js/rNSrPZYp0DeI\nYAkAAAAAgBpG0IR6K9OcoYmfjVeftnfrlxM/y2qzlpvj7e6j1j5X6NFOkzXyhtEa1H4IARMAAAAA\nAE5CM3DUK/YdTJnmDMVvHKZ9v+/V4l2LyoRMzTyaySCD+rUdoGC/EHm5eyo6tIckjscBAAAAAOBM\n7GhCvWGyGDVwQ19FtLxJm35Ol1WnHGPucpcM0mnbabX2u0KzOsxV0vd/U+IdHJMDAAAAAKC2EDTB\npWWaMyRJO0xfas/R3Tpo+UkHLT+VmXNHyF36IudzLbjtRV3b8jpHsMRb5AAAAAAAqF0ETah1Joux\n0gAo05yhyMAoZZozlFd4SGM/Hq1iW3G5eR7y0Gmd1sSOk/VMlxmO+85GyAQAAAAAQO0iaEKtMlmM\nSkgfqaSYVeWCoPQDaXrg0zHqf9Ugrf9xrdwNHpWETJ5KHZyuvMJDejFzoWLMvcuFTAAAAAAAoPYR\nNKFWBfuHVBgymSxGzf/XHHVqFaU1+1ZLUrmQyU1u+nPInfol/2cF+gYpMjBKAT6tNW3blAqfCQAA\nAAAAahdBE5yiquNxZ1/PNGc4+i/tP7ZPu23fVXiPv+dlusyrmabc8qQe3zrRcT0yMIqQCQAAAAAA\nF+FW1wWg4bEfjzNZjFXOW5K5WL2T79BzO6drzb7Vstqs5eZ4yFNt/K/S0jve0GVNLlOgb5BW911b\nJlgiZAIAAAAAwDWwowk1rqLjcfYdTiaLUev3rtOeo7sdR+Qq0sStiZ6MelaD2g9xPDMioAOhEgAA\nAAAALoygCU5hD5WC/UOUac7Q41sn6qlbntXY9NEqVvkG33ZuclNSzKoKQyVCJgAAAAAAXJtTj85l\nZWVp1KhR5a5/9tlnGjJkiOLi4rRmzRpJktVq1eTJkzVs2DCNGTNGP//8szNLg5OZLEbFpgz8//bu\nP07Lus4X/2uYARyYETLROum4QuKxrEWws3mMMpK0pU1xskEUMt312z52j/2gEi0nd03EH53VyB9l\nmkdOCkhmgCtuiKbLVgskJKcfFhodSI0SkplRhmHu7x8eJkkBgYt7bmaez8ejx6Prvu4f78u3M9d7\nXn6u687CJ+/L3y/62zy5YXU+unDiDkOmflX9c95bLsjySaty6tBxQiUAAADYD+2zFU233HJL5s2b\nl9ra2u0e37JlS6688srMnTs3tbW1OeusszJmzJgsXLgwAwYMyJw5c/Lkk0/m8ssvz6233rqvyqNA\nL78sbltA9Pj6lfn1H5/MBd/7WF7c+uIOX1tdVZ3P/7fLMn54o3AJAAAA9nP7bEVTQ0NDZsyY8YrH\nV69enYaGhgwaNCj9+vXLqFGjsnTp0vzqV7/Ku9/97iTJ0KFDs3r16n1VGgXaduPvhU/el4n3nZnl\nzyzNt/7PHfnbB85NRzp2GDIN7v+6NP/V5Vkw/t/yj6M+IWQCgH2os7Mzzc3NaWpqyqRJk7JmzZrt\n9i9YsCBnnnlmJkyYkObm5nR2dnZTpQDA/m6frWg65ZRTsnbtK791rKWlJfX19V3bAwcOTEtLS445\n5pg89NBDOfnkk7Ny5co8++yz2bp1a6qrq/dVieyhl69cSpIpoz6XK//zS3nuhedy+nf+OptLm3f4\n2iMGHpF7z7g/iXsuAUC5LFq0KO3t7Zk9e3ZWrFiR6dOn56abbkqSvPjii7nuuusyf/781NbW5tOf\n/p3ukEwAACAASURBVHQeeuihvO997+vmqgGA/VHZbwZeV1eX1tbWru3W1tbU19fn5JNPzurVqzNx\n4sSMHDkyb33rW4VMFWjbCqbbT/1WkuRvvnNKOjo7UtramWc3P7vD173vsPdn1R8ez71n3C9gAoAy\nW758eUaPHp0kGTFiRFatWtW1r1+/fpk1a1bX7Q46OjrSv3//bqkTANj/lT1oGjZsWNasWZONGzdm\nwIABWbZsWc4///w8/vjjOeGEE3LJJZfk8ccfz29/+9tyl8Zr8Kb6wzJl1OfyTOvTufvns7O25f/u\n8jXnveWC3PXEzHzt5NtecS8nAGDfa2lpSV1dXdd2dXV1Ojo6UlNTkz59+uTggw9OksycOTNtbW05\n8cQTX9P7DhlSv+snUVZ6Unn0pDLpS+XRk56jbEHT/Pnz09bWlqampkydOjXnn39+SqVSGhsbc+ih\nh6Zv3765/vrrc/PNN6e+vj5XXHFFuUpjF9Zt+tMlkI+vX5nzHpiUjlLHTl9z3lsuyH1Pzc/U//b5\nnNQwJmf+16aMesM7tlsRJWwCgPL48xXlnZ2dqamp2W77mmuuyVNPPZUZM2akqqrqNb3v+vWbCq+V\nPTdkSL2eVBg9qUz6Unn0pDLtafhXVSqVSgXXUlb+ZSzWn3+D3LpNazPxvjOz4cXnUtOnJs+0PJ2O\n7Dhk6tunb259/x05dei4roDqz4MlK5oA2B3+C+fee+CBB/LQQw9l+vTpWbFiRb761a/mG9/4Rtf+\nL3zhC+nXr1++8IUvpE+f1/5dMeawyuIPtcqjJ5VJXyqPnlQmQRN7bdtqo+mjr82nH74wd467Ow//\nZnEeX/+T3PbTr+/wdbVVtXmh9ELeNPDwXDn66q6QSbAEQBEETXuvs7Mzl112WZ544omUSqVMmzYt\nP/3pT9PW1pZjjz02jY2NOf7447tWMk2ePDljx47d5fuawyqLP9Qqj55UJn2pPHpSmQRNFGLbKqSP\nzD897Vs2Z03rmp0+v77mwBx24OG54G1/n5MaxnStgnJ5HABFETRVLnNYZfGHWuXRk8qkL5VHTyrT\nns5gZb8ZOJVj+TNLM+oN70iy/aqjzzz0yfxy4xM7fW1VqvI/3zMjJzWMSZLtAqU31R8mZAIAAIBe\nSNDUC63btDbPtD6dM+Z9MF87+ba8bchf5sx5p2fkIcdn7i9npTOdr/q6YfVvzj+O/GReX/v6DBlw\nSFdI9WqETAAAAND7CJp6mZdf1vbZUZfkn3/wxQzuNzi/+uMT+dUfd7yKaXD/12Xu6fMESAAAAMAO\nCZp6oemjr83Dv1mcL/3oiztcvbRNVapy4Ygp+bff3F+m6gAAAID9laCpF1m3aW3OnHd6fvPHNWnP\n5h0+rzrVObDf4Gza8sdc8+7rcvZbJ+fct51nNRMAAACwU4KmHm7bt8g90/p0Fj55/04vj+tX1T9v\nrPsvuXnsN5IkFy7++1e92TcAAADAqxE09WDLn1mav33g3Pxx88a0dOz4qyKrU5PP/9UXM354Y5I/\nhUpz/uZeARMAAADwmgmaepjlzyzNGwa+Md954tu5YcX1+cPm3+/0+c1/dfkrAqZt9mXItG7TWiEW\nAAAA9DCCph5k4ZP35fyFk9Ovpn9aO1p2+tx/ec9X8/ra1+fUoeO2+ya6coQ/5f48AAAAoDwETT3A\nwifvyx9e+EO+vPyqbMmWbOnY8qrPq051BvQdmBve97WcOnRc1+Nvqj+srKFPuT8PAAAAKA9B035q\n26VnX11+ff75R5fu8HkDagbm5pO/kSEDDkmSvGHgG1814Cl36CNkAgAAgJ5H0LQfWrdpbc6cd3pG\nHnJ85vzyzh0+b3C/12VQ/8G58j+/lDvH3S3cAQAAAPYpQdN+YuGT92XIgEPyhoFvzOPrV+ZXf3wi\nv/rjE6/63Oa/ujxvft2bu56fWEEEAAAA7HuCpgq27fK4b/2fO/Kp7/9jkqS2ujYvbn3xFc+tSlUa\n6v8inxw5Jbf/9NZMH31tpj76GfdCAgAAAMpG0FShtn0z2/TR1+bz/35R1+MvbH3hFc/94F+clstH\nX5nkpZVLJzWMccNtAAAAoOwETRVm2yqmJJky6nP5x+/9f2nb2vqK59VWD8hnj784rzvgdTn7rZO3\n27ft9UImAAAAoJwETRVk+TNL8/eL/janDW3Mbau+npaOTSmltN1zqqtq8tFjzssPnlmSE9703zP1\n0c90rWB6LV4eZAEAAAAUSdDUzbYFP+s2rc3HFp6TZ9qezvUrru3af2j/Q/Ps5mfz9oP+Mn/c8nwu\nP3FaTh06rut1u3N53LbL8VxSBwAAAOwLffblm69cuTKTJk16xeOLFy9OY2NjmpqaMmfOnCTJli1b\nMmXKlEyYMCETJ07M6tWr92Vp3WLdprXb/f9twc+6TWvz+PqV2bD5udSk73avmfrOS3PHqXdl0YRH\nc+/p9+XUoeOS7Nnlce7bBAAAAOxL+yxouuWWW/KFL3whmzdv3u7xLVu25Morr8xtt92WmTNnZvbs\n2fn973+f73//++no6MisWbPyD//wD7nuuuv2VWnd4uWh0rpNa3PmvNPzTOvTmTLqc/nOE9/Ol5df\nnbOP/mi2piNJMrj/69L8V5fnpIYx+fLyqwu75E3IBAAAAOwr++zSuYaGhsyYMSOf+9zntnt89erV\naWhoyKBBg5Iko0aNytKlSzN8+PBs3bo1nZ2daWlpSU1Nz7qqb9tqomdan876tt9lzfNP5WMLz8nv\nX1ifjlJHPjHiM3l43YP5n++ZkdfXvj5X/ueXMn54o1VIAAAAwH5jn6U5p5xyStauXfuKx1taWlJf\nX9+1PXDgwLS0tGTAgAFZt25dPvCBD2TDhg25+eab91VpZfPyVUjrNq3Nw79ZnIse/XRqa2qTJDV9\nanJw7ZBUVVXl3Ledl3Pfdl7X89825C99exwAAACwX9mn92h6NXV1dWltbe3abm1tTX19fW6//fa8\n613vygMPPJDvfve7mTp16isuu6tEL7/v0p8/fu7Cs7P8maVZt2ltxs45KZ/+/v9Ie2d7/tj+x4x/\n85m55f2353UHHJTbTpmZN9Uftl2gJFwCAAAA9jdlD5qGDRuWNWvWZOPGjWlvb8+yZcty3HHH5cAD\nD+xa6TRo0KB0dHRk69at5S5vt7z8vkvbtl/u3Lecn08/fGEuffTi/H7z71JKKdVV1fnIURPzi40/\nyxsGvjF3jrs7o97wju4oHwAAAKBQZbsR0vz589PW1pampqZMnTo1559/fkqlUhobG3PooYfm3HPP\nzSWXXJKJEydmy5Yt+dSnPpUBAwaUq7w98vL7J63btDYT7zszd467O0ky/rvj8nTrb1NXU5+fPfd/\n8pGjJuaNA/9L7ntqXj72tvPzhoFvtGoJAAAA6FGqSqVSqbuL2Bvr12/q7hKSvLSa6W++c0puef/t\nSZL/8eDfp/mEf8qQAYfk7/7t3Mwf/0DeVH9Ylj+zNFMf/YwbfAPAazRkSP2un0S3qJQ5jJcMGVKv\nJxVGTyqTvlQePalMezqD9ayvdusmy59Zmm8+fmvWtvzfTLrvrAw+YHCqqv50Q+9tIVOSjHrDO4RM\nAAAAQI8kaNoL275J7jPf/0S25qX7ST2/ZWM+/87mnNQwZoffGidkAgAAAHoiQdMeWrdpbT4y//T8\n5vk1Obj2kGzt3Jr/+d7rkyRfXn51TmoY080VAgAAAJSXoOlVrNu09lVXHS1/ZmmSly5/e1P9YfnK\nmJuSJG8Y+MYkf1qptO2SOQAAAIDepE93F1Bp1m1am3MXnt0VKi1/ZmnWbVqbhU/el9O+84Gc/t2/\n7nps6qOf6fr2uJcHS0ImAAAAoDeyounPvKn+sEwffW2mPvqZnDb0jEz/z8tzyMBDU11Vk/9S/6b8\n83+fllFveEeSuKk3AAAAwMtY0fQyC5+87/+tXro/o4a8I1f+5z9na2lrOjo70rdP39x08jdy6tBx\nXc8XMgEAAAD8iRVNeSlgWv7M8nxlxZfTr0//bO58MUlSXVWdIQMOSV3f+sx4301dK5kAAAAAeKVe\nHTSt27Q233ni2/nnH12aJDmgT21e7HwhB/YblE8e95mc8Kb//oobfQMAAADw6npN0LTtm+TWbVqb\nJHl8/cr83b+dmy2dW7qe82LnCznvLRfkzP/aZPUSAAAAwG7q8UHTtmDp3IVnZ8qoz6X5Py5JR2dH\n1rWsTSmlruf1qeqT//GXn86//eb+/OCZJblz3N1WMQEAAADshh59M/B1m9bm3IVnJ0mmj742//yD\nL2bdprXZsrUjBx8wJEnyiRGfyR2n3pWhB745577tvNw57m4hEwAAAMAe6NFBU5JMGfW5PL5+Zda3\n/S7NJ/xTDh34htT3q88lf9Wcfn365dShH8ipQ8fl7g/dmzfVH9b1PwAAAAB2T4+8dG7b5XLjvzsu\n61rWdt2H6bC6w1NdVdP1DXL/9fXHdN2LSbgEAAAAsHd63IqmhU/el4n3nZnH169MqZRcPfpf8i/v\n+Wr+4sAjM+1dV2dA3wFd3yTnht8AAAAAxakqlUqlXT+tcq148mddq5GWP7M0p3/3rzOk9pBUV9Xk\nt61rc0T9kbn7Q/cmSde3zlm9BAD7jyFD6ru7BHZg/fpN3V0CLzNkSL2eVBg9qUz6Unn0pDLt6Qy2\n369oOnfh2V2Xyo16wzty72n/mvnjH8jNY7+RI+qPzIz33bTdfZeETABAb9PZ2Znm5uY0NTVl0qRJ\nWbNmzXb7Fy9enMbGxjQ1NWXOnDndVCUA0BPs9/douv3Ub223/fJ7Lm27wTcAQG+2aNGitLe3Z/bs\n2VmxYkWmT5+em266KUmyZcuWXHnllZk7d25qa2tz1llnZcyYMTn44IO7uWoAYH+03wdNr399XcbP\nHp/vNH0nhw86fLt9Q4Yc001VAQBUjuXLl2f06NFJkhEjRmTVqlVd+1avXp2GhoYMGjQoSTJq1Kgs\nXbo0H/jAB3b5vi5rrDx6Unn0pDLpS+XRk55jvw+aDh90eJZdsKy7ywAAqFgtLS2pq6vr2q6urk5H\nR0dqamrS0tKS+vo/DfcDBw5MS0tLd5QJAPQA+/09mgAA2Lm6urq0trZ2bXd2dqampuZV97W2tm4X\nPAEA7A5BEwBADzdy5Mg88sgjSZIVK1Zk+PDhXfuGDRuWNWvWZOPGjWlvb8+yZcty3HHHdVepAMB+\nrqpUKpW6uwgAAPadzs7OXHbZZXniiSdSKpUybdq0/PSnP01bW1uampqyePHi3HDDDSmVSmlsbMzZ\nZ5/d3SUDAPspQRMAAAAAhXDpHAAAAACFEDQBAAAAUAhB0z60cuXKTJo06RWPL168OI2NjWlqasqc\nOXOSJFu2bMmUKVMyYcKETJw4MatXry53uXtsd46zvb09U6ZMyUc+8pGcd955+fWvf13mavfMjo4x\nSV544YVMmDChq2ednZ1pbm5OU1NTJk2alDVr1pSz1D22O8f4Wl5TiXbnGLds2ZLPfvazmThxYj78\n4Q/nwQcfLGepe2V3jnPr1q25+OKLM2HChJx11ll54oknylnqHtuTf1//8Ic/5D3vec9+8/t1d49x\n/PjxmTRpUiZNmpSLL764XGXuld09xq997WtpamrKGWeckbvvvrtcZfZquzqnvdq5nn1rVz1ZsGBB\nzjzzzEyYMCHNzc3p7Ozspkp7l9c6/1166aW59tpry1xd77SrnvzkJz/JxIkTc9ZZZ+XCCy/M5s2b\nu6nS3mVXfZk3b17Gjx+fxsbG3Hnnnd1UZe+0O3/X70pN0cXxkltuuSXz5s1LbW3tdo9v2bIlV155\nZebOnZva2tqcddZZGTNmTFasWJGOjo7MmjUrS5YsyXXXXZcZM2Z0U/Wv3e4e58KFCzNgwIDMmTMn\nTz75ZC6//PLceuut3VT9a7OjY0ySxx9/PF/84hfz7LPPdj22aNGitLe3Z/bs2VmxYkWmT5+em266\nqZwl77bdPcZdvaYS7e4xzps3L4MHD84111yTjRs35vTTT8/73ve+cpa8R3b3OB966KEkyaxZs/Kj\nH/0o//Iv/9Ij/33dsmVLmpubc8ABB5SrzL2yu8e4efPmlEqlzJw5s5xl7pXdPcYf/ehHeeyxx3LX\nXXflhRdeyG233VbOcnutnZ3TdnSuP/jgg7u56p5tZz158cUXc91112X+/Pmpra3Npz/96Tz00EP7\nxflrf/da5r9Zs2bliSeeyDve8Y5uqrJ32VlPSqVSLr300nzlK1/JEUcckbvvvjvr1q3L0KFDu7nq\nnm9XPytXX311FixYkAEDBmTcuHEZN25cBg0a1I0V9w67+3f9rs71VjTtIw0NDa8aFK1evToNDQ0Z\nNGhQ+vXrl1GjRmXp0qU58sgjs3Xr1nR2dqalpSU1NftHBri7x/mrX/0q7373u5MkQ4cO3S9WFuzo\nGJOXVmjdcMMN252Uli9fntGjRydJRowYkVWrVpWlzr2xu8e4q9dUot09xlNPPTWf+MQnkrw0jFRX\nV5elzr21u8d58skn5/LLL0+S/Pa3v82BBx5Yljr3xp78+3rVVVdlwoQJOeSQQ8pR4l7b3WP8+c9/\nnhdeeCHnnXdeJk+enBUrVpSr1D22u8f47//+7xk+fHj+4R/+IR//+Mdz0kknlanS3m1n57QdnevZ\nt3bWk379+mXWrFldfyh0dHSkf//+3VJnb7Or+e/HP/5xVq5cmaampu4or1faWU+eeuqpDB48OLff\nfnvOOeecbNy4UchUJrv6WTn66KOzadOmtLe3p1QqpaqqqjvK7HV29+/6XRE07SOnnHLKq4ZFLS0t\nqa+v79oeOHBgWlpaMmDAgKxbty4f+MAHcumll+43lyPt7nEec8wxeeihh1IqlbJixYo8++yz2bp1\nazlL3m07OsYkGTVqVN74xjdu91hLS0vq6uq6tqurq9PR0bFPa9xbu3uMu3pNJdrdYxw4cGDq6urS\n0tKSCy+8MJ/85CfLUeZe25Ne1tTU5KKLLsrll1+ev/mbv9nXJe613T3Ge+65JwcddFDXULM/2N1j\nPOCAA3L++efn1ltvzT/90z/lM5/5TI/7vbNhw4asWrUq119/fdcx+uLcfW9n57QdnevZt3bWkz59\n+nT9V+aZM2emra0tJ554YrfU2dvsrC+/+93vcsMNN6S5ubm7yuuVdtaTDRs25LHHHss555yTb37z\nm/nhD3+YH/zgB91Vaq+yq7+VjjrqqDQ2NmbcuHE56aST9ov/CNoT7O7f9bsiaCqzurq6tLa2dm23\ntramvr4+t99+e971rnflgQceyHe/+91MnTp1v75OeEfH2djYmLq6ukycODHf+9738ta3vnW/WSny\nWv35sXd2du5XgQx/8vTTT2fy5Mk57bTT9osAZm9cddVVeeCBB3LppZemra2tu8sp1Le//e38x3/8\nRyZNmpSf/exnueiii7J+/fruLqtQRx55ZD70oQ+lqqoqRx55ZAYPHtzjjnHw4MF517velX79+mXo\n0KHp379/nnvuue4uq8fb2TltR+d69q1dzRmdnZ256qqrsmTJksyYMcNqgDLZWV8WLlyYDRs25IIL\nLsjXv/71LFiwIPfcc093ldpr7KwngwcPzhFHHJFhw4alb9++GT169H5xFUJPsLO+/PznP8/DDz+c\nBx98MIsXL85zzz2X+++/v7tKJXt+rhc0ldmwYcOyZs2abNy4Me3t7Vm2bFmOO+64HHjggV0NGzRo\nUDo6Oip+pc/O7Og4H3/88Zxwwgm56667cuqpp+bwww/v7lILN3LkyDzyyCNJkhUrVmT48OHdXBF7\n4ve//33OO++8fPazn82HP/zh7i5nn7n33nvzta99LUlSW1ubqqqq9OnTs04N3/rWt/K///f/zsyZ\nM3PMMcfkqquuypAhQ7q7rELNnTs306dPT5I8++yzaWlp6XHHOGrUqDz66KMplUp59tln88ILL2Tw\n4MHdXVaPt7Nz2o7O9exbu5ozmpubs3nz5tx44437zX0Ue4Kd9WXy5Mm55557MnPmzFxwwQX54Ac/\nmDPOOKO7Su01dtaTww8/PK2trV03ol62bFmOOuqobqmzt9lZX+rr63PAAQekf//+qa6uzkEHHZTn\nn3++u0ole36ut8yiTObPn5+2trY0NTVl6tSpOf/881MqldLY2JhDDz005557bi655JJMnDgxW7Zs\nyac+9akMGDCgu8vebbs6zr59++b666/PzTffnPr6+lxxxRXdXfJue/kxvpqxY8dmyZIlmTBhQkql\nUqZNm1bmCvfero6xJ9jVMd588815/vnnc+ONN+bGG29M8tJN8vaXm0lvs6vjfP/735+LL744Z599\ndjo6OnLJJZf0uGPsCXZ1jB/+8Idz8cUX56yzzkpVVVWmTZu2362k3NUxvve9783SpUvz4Q9/OKVS\nKc3NzT1uRWwlerVz2q7O9exbO+vJsccem7lz5+b444/PRz/60SQvhRxjx47t5qp7vl39rFB+u+rJ\nFVdckSlTpqRUKuW4445z778y2VVfmpqaMnHixPTt2zcNDQ0ZP358d5fcK+3tub6q5AYHAAAAABSg\nZ10fAQAAAEC3ETQBAAAAUAhBEwAAAACFEDQBAAAAUAhBEwAAAACFEDQB+9zatWszZsyYV9139NFH\n79PPPu200/bp+wMAAPAngiagR/vud7/b3SUAAAD0GjXdXQDQ89x8882ZN29eqqurc+KJJ2bixIl5\n8cUX86lPfSq//OUvc+CBB+aGG27I6173uq7XbNy4MZ///Ofz5JNPpl+/fpk6dWpOOOGEHX7GmDFj\nMmbMmCxbtixJMm3atLzlLW/JpEmTMmjQoPzyl7/Mddddl9NPPz2/+MUvdvj+jzzySL7yla+ko6Mj\nhx12WC6//PLt6gIAAOC1s6IJKNT3v//9LF68OPfcc0++853vZM2aNXn00Ufz3HPP5WMf+1gWLFiQ\ngw8+OP/6r/+63euuv/76NDQ05P7778/VV1+d6667bpefNXjw4Nx777258MILc9FFF3U9fvTRR+eB\nBx7IMcccs9P3f+655/LlL385t956a+699968613vyrXXXlvcPwwAAIBeRtAEFOqHP/xhxo0blwMO\nOCA1NTVpbGzMD37wgxxyyCF5+9vfniR585vfnA0bNmz3uqVLl3bdT+noo4/O7Nmzd/lZH/nIR5K8\ntLrp2WefzXPPPZckXZ+zq/dfuXJlnn766UyePDmnnXZavvWtb2XNmjV7fvAAAAC9nEvngEJ1dna+\n4rGOjo7U1Pzp101VVVVKpdJ2z3n5/iRZvXp1jjzyyPTps+M8/OWv6ezsTHV1dZLkgAMO2Olzt73/\n1q1bM3LkyNx8881Jks2bN6e1tXWHnwcAAMDOWdEEFOqd73xn7rvvvrz44ovp6OjIt7/97bzzne/c\n5euOP/74rsvpVq9enb/7u79LVVXVTl9z3333JUm+973vZdiwYRk0aNBuvf/b3/72rFixIk899VSS\n5MYbb8zVV1/9mo4TAACAV7KiCSjUe9/73vzsZz9LY2NjOjo6Mnr06Lz3ve/NHXfcsdPXXXjhhfnC\nF76QD33oQ6mpqcnVV1+9y6Dpxz/+cebOnZva2tpMnz59t9//kEMOybRp0/LJT34ynZ2dOfTQQ3PN\nNdfs9jEDAADwkqrSn1+/ArAfGDNmTO64444cdthh3V0KAAAA/48VTUDFmjRpUp5//vlXPD5hwoRu\nqAYAAIBdsaIJAAAAgEK4GTgAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAA\nAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0\nAQAAAFAIQRMAAAAAheiWoGnlypWZNGnSKx5fvHhxGhsb09TUlDlz5nRDZQAAPZcZDADY12rK/YG3\n3HJL5s2bl9ra2u0e37JlS6688srMnTs3tbW1OeusszJmzJgcfPDB5S4RAKDHMYMBAOVQ9hVNDQ0N\nmTFjxiseX716dRoaGjJo0KD069cvo0aNytKlS8tdHgBAj2QGAwDKoexB0ymnnJKamlcupGppaUl9\nfX3X9sCBA9PS0rLL9yuVSoXWBwDQE5nBAIByKPulcztSV1eX1tbWru3W1tbthp4dqaqqyvr1m/Zl\naeymIUPq9aQC6Uvl0ZPKpC+VZ8iQXc8D7DkzWM/h91fl0ZPKpC+VR08q057OYBXzrXPDhg3LmjVr\nsnHjxrS3t2fZsmU57rjjurssAIAezQwGABSp21c0zZ8/P21tbWlqasrUqVNz/vnnp1QqpbGxMYce\nemh3lwcA0COZwQCAfaGq1AMusLfErrJY9liZ9KXy6Ell0pfK49K5yuVnpbL4/VV59KQy6Uvl0ZPK\ntN9fOgcAAADA/k3QBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQ\nBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAA\nFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0A\nAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAh\nBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAA\nAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhyho0dXZ2prm5OU1NTZk0aVLWrFmz3f55\n8+Zl/PjxaWxszJ133lnO0gAAeiwzGABQLjXl/LBFixalvb09s2fPzooVKzJ9+vTcdNNNXfuvvvrq\nLFiwIAMGDMi4ceMybty4DBo0qJwlAgD0OGYwAKBcyho0LV++PKNHj06SjBgxIqtWrdpu/9FHyvcu\nawAAEt1JREFUH51NmzalpqYmpVIpVVVVr+l9hwypL7xW9o6eVCZ9qTx6Upn0hZ7GDNZ76Enl0ZPK\npC+VR096jrIGTS0tLamrq+varq6uTkdHR2pqXirjqKOOSmNjY2prazN27NgceOCBr+l916/ftE/q\nZc8MGVKvJxVIXyqPnlQmfak8Bs+9ZwbrHfz+qjx6Upn0pfLoSWXa0xmsrPdoqqurS2tra9d2Z2dn\n14Dz85//PA8//HAefPDBLF68OM8991zuv//+cpYHANAjmcEAgHIpa9A0cuTIPPLII0mSFStWZPjw\n4V376uvrc8ABB6R///6prq7OQQcdlOeff76c5QEA9EhmMACgXMp66dzYsWOzZMmSTJgwIaVSKdOm\nTcv8+fPT1taWpqamNDU1ZeLEienbt28aGhoyfvz4cpYHANAjmcEAgHKpKpVKpe4uYm+5lrOyuL62\nMulL5dGTyqQvlcc9miqXn5XK4vdX5dGTyqQvlUdPKtN+cY8mAAAAAHouQRMAAAAAhRA0AQAAAFAI\nQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAA\nAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0\nAQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAA\nhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMA\nAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFCI\nmnJ+WGdnZy677LL84he/SL9+/fKlL30pRxxxRNf+n/zkJ5k+fXpKpVKGDBmSa665Jv379y9niQAA\nPY4ZDAAol7KuaFq0aFHa29sze/bsTJkyJdOnT+/aVyqVcumll+bKK6/MXXfdldGjR2fdunXlLA8A\noEcygwEA5VLWFU3Lly/P6NGjkyQjRozIqlWruvY99dRTGTx4cG6//fb88pe/zHve854MHTq0nOUB\nAPRIZjAAoFzKGjS1tLSkrq6ua7u6ujodHR2pqanJhg0b8thjj6W5uTkNDQ35+Mc/nmOPPTYnnHDC\nLt93yJD6fVk2e0BPKpO+VB49qUz6Qk9jBus99KTy6Ell0pfKoyc9R1mDprq6urS2tnZtd3Z2pqbm\npRIGDx6cI444IsOGDUuSjB49OqtWrXpNQ8769Zv2TcHskSFD6vWkAulL5dGTyqQvlcfguffMYL2D\n31+VR08qk75UHj2pTHs6g5X1Hk0jR47MI488kiRZsWJFhg8f3rXv8MMPT2tra9asWZMkWbZsWY46\n6qhylgcA0COZwQCAcinriqaxY8dmyZIlmTBhQkqlUqZNm5b58+enra0tTU1NueKKKzJlypSUSqUc\nd9xxOemkk8pZHgBAj2QGAwDKpapUKpW6u4i9ZYldZbHssTLpS+XRk8qkL5XHpXOVy89KZfH7q/Lo\nSWXSl8qjJ5Vpv7h0DgAAAICeS9AEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEE\nTQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAA\nQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAE\nAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAU\nQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAA\nAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUoqxBU2dnZ5qbm9PU1JRJkyZlzZo1r/q8\nSy+9NNdee205SwMA6LHMYABAuZQ1aFq0aFHa29sze/bsTJkyJdOnT3/Fc2bNmpUnnniinGUBAPRo\nZjAAoFzKGjQtX748o0ePTpKMGDEiq1at2m7/j3/846xcuTJNTU3lLAsAoEczgwEA5VJTzg9raWlJ\nXV1d13Z1dXU6OjpSU1OT3/3ud7nhhhvy1a9+Nffff/9uve+QIfVFl8pe0pPKpC+VR08qk77Q05jB\neg89qTx6Upn0pfLoSc9R1qCprq4ura2tXdudnZ2pqXmphIULF2bDhg254IILsn79+rz44osZOnRo\nzjjjjF2+7/r1m/ZZzey+IUPq9aQC6Uvl0ZPKpC+Vx+C598xgvYPfX5VHTyqTvlQePalMezqDlTVo\nGjlyZB566KH89V//dVasWJHhw4d37Zs8eXImT56cJLnnnnvy5JNPvqYBBwCAnTODAQDlUtagaezY\nsVmyZEkmTJiQUqmUadOmZf78+Wlra3NPAACAfcQMBgCUS1WpVCp1dxF7yxK7ymLZY2XSl8qjJ5VJ\nXyqPS+cql5+VyuL3V+XRk8qkL5VHTyrTns5gZf3WOQAAAAB6LkETAAAAAIUQNAEAAABQCEETAAAA\nAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEET\nAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQ\nCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEA\nAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQ\nNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAA\nAIWoKeeHdXZ25rLLLssvfvGL9OvXL1/60pdyxBFHdO1fsGBB/tf/+l+prq7O8OHDc9lll6VPH1kY\nAMDeMIMBAOVS1gli0aJFaW9vz+zZszNlypRMnz69a9+LL76Y6667LnfccUdmzZqVlpaWPPTQQ+Us\nDwCgRzKDAQDlUtYVTcuXL8/o0aOTJCNGjMiqVau69vXr1y+zZs1KbW1tkqSjoyP9+/d/Te87ZEh9\n8cWyV/SkMulL5dGTyqQv9DRmsN5DTyqPnlQmfak8etJzlDVoamlpSV1dXdd2dXV1Ojo6UlNTkz59\n+uTggw9OksycOTNtbW058cQTX9P7rl+/aZ/Uy54ZMqReTyqQvlQePalM+lJ5DJ57zwzWO/j9VXn0\npDLpS+XRk8q0pzNYWYOmurq6tLa2dm13dnampqZmu+1rrrkmTz31VGbMmJGqqqpylgcA0COZwQCA\ncinrPZpGjhyZRx55JEmyYsWKDB8+fLv9zc3N2bx5c2688cau5dsAAOwdMxgAUC5lXdE0duzYLFmy\nJBMmTEipVMq0adMyf/78tLW15dhjj83cuXNz/PHH56Mf/WiSZPLkyRk7dmw5SwQA6HHMYABAuVSV\nSqVSdxext1zLWVlcX1uZ9KXy6Ell0pfK4x5NlcvPSmXx+6vy6Ell0pfKoyeVaU9nsLJeOgcAAABA\nzyVoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYA\nAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQ\ngiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAA\nAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFo\nAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAA\nCiFoAgAAAKAQgiYAAAAAClHWoKmzszPNzc1pamrKpEmTsmbNmu32L168OI2NjWlqasqcOXPKWRoA\nQI9lBgMAyqWsQdOiRYvS3t6e2bNnZ8qUKZk+fXrXvi1btuTKK6/MbbfdlpkzZ2b27Nn5/e9/X87y\nAAB6JDMYAFAuZQ2ali9fntGjRydJRowYkVWrVnXtW716dRoaGjJo0KD069cvo0aNytKlS8tZHgBA\nj2QGAwDKpaacH9bS0pK6urqu7erq6nR0dKSmpiYtLS2pr6/v2jdw4MC0tLS8pvcdMqR+10+irPSk\nMulL5dGTyqQv9DRmsN5DTyqPnlQmfak8etJzlHVFU11dXVpbW7u2Ozs7U1NT86r7Wltbtxt6AADY\nM2YwAKBcyho0jRw5Mo888kiSZMWKFRk+fHjXvmHDhmXNmjXZuHFj2tvbs2zZshx33HHlLA8AoEcy\ngwEA5VJVKpVK5fqwzs7OXHbZZXniiSdSKpUybdq0/PSnP01bW1uampqyePHi3HDDDSmVSmlsbMzZ\nZ59drtIAAHosMxgAUC5lDZoAAAAA6LnKeukcAAAAAD2XoAkAAACAQgiaAAAAACjEfhE0dXZ2prm5\nOU1NTZk0aVLWrFmz3f7FixensbExTU1NmTNnTjdV2fvsqi8LFizImWeemQkTJqS5uTmdnZ3dVGnv\nsauebHPppZfm2muvLXN1vdeu+vKTn/wkEydOzFlnnZULL7wwmzdv7qZKe49d9WTevHkZP358Ghsb\nc+edd3ZTlb3TypUrM2nSpFc87lzfPcxglcf8VZnMYJXH/FWZzGCVq9AZrLQfeOCBB0oXXXRRqVQq\nlR577LHSxz/+8a597e3tpZNPPrm0cePG0ubNm0tnnHFGaf369d1Vaq+ys7688MILpfe9732ltra2\nUqlUKn3qU58qLVq0qFvq7E121pNt7rrrrtJHPvKR0jXXXFPu8nqtnfWls7Oz9KEPfaj061//ulQq\nlUpz5swprV69ulvq7E129bNy4oknljZs2FDavHlz1zmGfe/rX/966YMf/GDpzDPP3O5x5/ruYwar\nPOavymQGqzzmr8pkBqtMRc9g+8WKpuXLl2f06NFJkhEjRmTVqlVd+1avXp2GhoYMGjQo/fr1y6hR\no7J06dLuKrVX2Vlf+vXrl1mzZqW2tjZJ0tHRkf79+3dLnb3JznqSJD/+8Y+zcuXKNDU1dUd5vdbO\n+vLUU09l8ODBuf3223POOedk48aNGTp0aHeV2mvs6mfl6KOPzqZNm9Le3p5SqZSqqqruKLPXaWho\nyIwZM17xuHN99zGDVR7zV2Uyg1Ue81dlMoNVpqJnsP0iaGppaUldXV3XdnV1dTo6Orr21dfXd+0b\nOHBgWlpayl5jb7SzvvTp0ycHH3xwkmTmzJlpa2vLiSee2C119iY768nvfve73HDDDWlubu6u8nqt\nnfVlw4YNeeyxx3LOOefkm9/8Zn74wx/mBz/4QXeV2mvsrCdJctRRR6WxsTHjxo3LSSedlAMPPLA7\nyux1TjnllNTU1Lzicef67mMGqzzmr8pkBqs85q/KZAarTEXPYPtF0FRXV5fW1tau7c7Ozq5/CH++\nr7W1dbt/EOw7O+vLtu2rrroqS5YsyYwZM6TRZbCznixcuDAbNmzIBRdckK9//etZsGBB7rnnnu4q\ntVfZWV8GDx6cI444IsOGDUvfvn0zevToV/yXHYq3s578/Oc/z8MPP5wHH3wwixcvznPPPZf777+/\nu0olzvXdyQxWecxflckMVnnMX5XJDLZ/2dNz/X4RNI0cOTKPPPJIkmTFihUZPnx4175hw4ZlzZo1\n2bhxY9rb27Ns2bIcd9xx3VVqr7KzviRJc3NzNm/enBtvvLFrCTf71s56Mnny5Nxzzz2ZOXNmLrjg\ngnzwgx/MGWec0V2l9io768vhhx+e1tbWrhshLlu2LEcddVS31Nmb7Kwn9fX1OeCAA9K/f/9UV1fn\noIMOyvPPP99dpRLn+u5kBqs85q/KZAarPOavymQG27/s6bn+lWujKtDYsWOzZMmSTJgwIaVSKdOm\nTcv8+fPT1taWpqamTJ06Neeff35KpVIaGxtz6KGHdnfJvcLO+nLsscdm7ty5Of744/PRj340yUsn\n2bFjx3Zz1T3brn5W6B676ssVV1yRKVOmpFQq5bjjjstJJ53U3SX3eLvqSVNTUyZOnJi+ffumoaEh\n48eP7+6SeyXn+u5nBqs85q/KZAarPOavymQG2z/s7bm+qlQqlcpQJwAAAAA93H5x6RwAAAAAlU/Q\nBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFOL/B/kpfyDRnEyXAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot all against close_bid\n", + "fig, axarr = plt.subplots(2, 2, figsize=(20,10)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "irow, icol = 0,0\n", + "icol = pltGraph(\"ohlc_price\", \"close_bid\", irow, icol, df)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- we may have to address feature correlation" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10202, 20)\n", + "(10202,)\n", + "(10099, 20)\n", + "(103, 20)\n", + "(10099,)\n", + "(103,)\n" + ] + } + ], + "source": [ + "from sklearn import linear_model\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import mean_absolute_error, mean_squared_error, accuracy_score\n", + "\n", + "# df only\n", + "X = df.drop(\"close_bid\", axis=1)\n", + "y = df.close_bid.shift().values\n", + "cols = X.columns\n", + "\n", + "\n", + "#convert to numpy first\n", + "df_np = df.copy().values.astype('float32')\n", + "X, y = create_training_set(df_np, 1)\n", + "X = np.reshape(X, (X.shape[0], X.shape[2]))\n", + "idx_close_bid = df.columns.tolist().index('close_bid') # find index of columns in dataframe\n", + "y = y[:,idx_close_bid] # select column to predict\n", + "cols = df.columns # i have all here, because close_bid is included as features\n", + "\n", + "\n", + "# create train and test\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, shuffle=False)\n", + "check_shape(X, y, X_train, X_test, y_train, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAFlCAYAAADs50HhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9clGW+//E3DAgqkKDotzXthEWbGvk73VLXjHDbXFNp\nQdjppJ4e57G2/ujsQfwJGJVutp6SUFe2PXu2tLTWXDEfrqumtmGmpoi4alGhmEuaqPwemJnvH66T\nxoCgDODF6/mXc18z93zg6u491zUX1+3ldDqdAgAAxvJu7gIAAIBnEfYAABiOsAcAwHCEPQAAhiPs\nAQAwHGEPAIDhCHugmfXt21cFBQXKycnRtGnT6nzuoUOHlJSU1OD3eO6555SWlna9JTbYyZMnNXXq\n1Bs6h9Vq1ebNmz32/BtVUFCgvn37um176623tHLlSrdtl/sbaEo+zV0AgEvuvfdeLV26tM7nfP75\n5yosLGyiiq7f119/rS+//LK5y2g2EyZMaO4SgKsQ9kA97dmzRy+99JK6dOmikydPyt/fX4sWLVKP\nHj00a9YsnT9/XidPntSPf/xjTZ8+XS+//LL27t0ru92unj17at68eQoICNC+ffuUmpoqLy8v3Xvv\nvXI4HK7zp6amauPGjSotLdXzzz+vTz/9VBaLRQ8//LAmTJigpUuXqri4WLNnz9bChQu1fft2LV++\nXFVVVfL391diYqL69u2rkpISzZ07V0ePHlXnzp1lsVjUv3//q34eh8OhESNG6LXXXtO9994rSXr2\n2Wc1cOBAxcXFXfXcFStWaOvWraqsrFR5ebkSExMVGRmp6upqLV68WDt27JDFYlHfvn2VnJysefPm\nqbCwUJMnT9aCBQs0evRoHThwQNKlEfHlx2VlZUpJSdFXX32lCxcuqH379nr55ZcVFhZWaz+cOXNG\nycnJ+uKLL+Tt7a3Y2Fg9+eSTVz1n69ateu2112S32xUQEKDZs2crIiJCeXl5mjt3rmw2m5xOp6Kj\noxUfHy9JWr58ubZs2SKHw6GuXbsqOTlZXbp0qfO/CYfDoblz5yo3N1c+Pj6aN2+e+vTpo7S0NBUV\nFSkpKanW/gaaEtP4QAMcOXJEkyZNUmZmpsaNG6eEhARXW0VFhd5//30lJCRo5cqVslgsWrdunTZs\n2KDOnTvr5Zdfls1m0/Tp0zVr1iytX79e999/vyoqKmq8z9KlS1VZWalNmzZp/fr1+vTTT3XixAlN\nmzZNAwYM0MKFC/XVV1/pf/7nf7Ry5UqtX79eqampmjp1qsrKyrR06VL5+/tr8+bNevXVV92Osr29\nvTV+/Hi99957kqQLFy4oKytLo0ePvup5p06dUlZWlt58801lZmbq2Wefdc1ArF69Wrm5ufrLX/7i\n+pCyadMmPf/88+revbtef/31On+fu3btUlBQkNauXau//vWv6t27t1atWlXnaxYsWKB/+7d/0+bN\nm7VmzRqtXbtW+fn5rva8vDwlJycrLS1NmZmZmjZtmqZMmaKSkhK9/vrreuihh7Ru3TqtXLlS+/bt\nk8Ph0Pr163X8+HG98847+stf/qLhw4dr3rx5ddYhXerzBx54QOvXr9f06dM1Y8YM2Ww2V3t9+xvw\nNEb2QAP88Ic/1IABAyRJ48eP13PPPaeioiJJumrkvGPHDhUXFysrK0uSVFVVpY4dO+r48ePy8fHR\nkCFDJEmPPfaY2+/gs7KyNHv2bFksFlksFr355puSpHXr1rme89FHH+mbb77RU0895Trm5eWlEydO\naPfu3ZozZ468vLwUEhKiyMhItz/P+PHjFR0drVmzZmnjxo0aMWKEAgMDr3pO165d9Zvf/EaZmZnK\nz89Xdna2SktLXXWOGTNG/v7+kqRXXnlF0qVZivoYNWqUunXrpjfeeEP5+fn65JNPav0e/MrfzeUP\nWYGBgdq4ceNV7R9//LEGDx6sbt26SZKGDBmikJAQHT58WJGRkUpMTNShQ4c0ZMgQzZs3T97e3vrg\ngw+Uk5Oj8ePHS7o0Yi8vL79m/UFBQXr00UclSUOHDpXT6dQXX3zhaq9vfwOeRtgDDWCxWK567HQ6\nXcfatWvnOu5wODRnzhwNHz5cklRaWqrKykqdPn1a378dhY9PzcvQx8dHXl5ersenT592BeqV7zFk\nyBBXwF5+XufOnV211Vb3ZV27dlXPnj21Y8cOrVu3TnPmzKnxnNzcXE2ZMkVPPfWUHnjgAQ0cOFAL\nFixwW/vZs2drTFN7eXldVUtVVZXr36tXr9batWsVHx+v0aNHq0OHDtdcvPb9383JkycVHBzseuzu\ndh9Op1PV1dUaMWKE/vrXvyorK0u7d+9Wenq63n77bTkcDv3Hf/yH6+sLm82mCxcu1FmHdGl25Pvv\n4+vrW+vPfrl+oKkxjQ80wNGjR3X06FFJ0po1a9SvXz8FBQXVeN6DDz6oVatWyWazyeFwaP78+Vqy\nZInCw8PldDq1c+dOSdK2bdvchsqQIUP03nvvyeFwyGazadq0adq7d68sFouqq6slSYMHD9ZHH32k\nvLw8SdLOnTv1s5/9TJWVlRo6dKjeffddORwOXbhwQdu2bav1Z/r5z3+ujIwMVVRU1PheX5L27t2r\n3r17a+LEiRo0aJC2bdsmu93uqnPjxo2unzMlJUXvv/++LBaLK9SDgoJUVVWlzz//XJL0t7/9zXXu\nv//97xo7dqyeeOIJ3XHHHdq+fbvr3LUZMmSI/vznP0uSiouL9e///u/66quvXO2Xfy8nT56UJO3e\nvVunT5/Wfffdp1//+tfatGmTfvrTnyo5OVkBAQE6ffq0HnzwQb377rsqKSmRJL366quaOXNmnXVI\n0vnz5/XBBx9IkrZv3y4/Pz/dfvvtrvb69jfgaXzEBBqgU6dOeuWVV3Tq1CmFhITopZdecvu8KVOm\n6De/+Y3Gjh0ru92ue+65R7NmzZKvr6/S09OVkpKiJUuW6J577lHHjh1rvP5Xv/qVXnjhBY0ZM0Z2\nu12PPvqoHnnkEZ04cUKvvPKKnnnmGaWnp+u5557Tf/3Xf8npdMrHx0fLly9Xu3btNHXqVCUnJ+sn\nP/mJQkJCFB4eXuvP9NBDD2nBggV6+umn3bY/9thj2rJlix599FH5+vpqyJAhunDhgkpKShQbG6tT\np05p3LhxcjqdGjRokKxWq0pLS2WxWBQdHa133nlHCQkJevrppxUSEqJRo0a5zj1p0iQlJSVp3bp1\nslgs6tWrl44fP15nHyQlJSklJUWjR4+W0+nUf/7nf6p3796u9jvvvFPJycn61a9+JbvdLn9/f61Y\nsUKBgYGaMmWK5s6dqzVr1rgWPg4aNEgDBw5UYWGhfv7zn8vLy0u33nqrFi1aVGcdktSxY0dt2bJF\nr7zyitq2bau0tLSrRu717W/A07y4xS1QP1eulgeAmwkjewCoxYsvvljrYsPZs2dr8ODBTVwRcH0Y\n2QMAYDgW6AEAYDjCHgAAwxH2AAAYzsgFemfOFDd3CTeV4OB2Kioqa+4yWj36oWWgH1oG+qHhQkMD\na21jZA/5+LjfXQ1Ni35oGeiHloF+aFyEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2\nAAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACG\nI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhvNo2GdnZ8tqtbptKy8v\nV2xsrPLy8iRJVVVVSkhIUFxcnKKjo7Vt2zZJ0pEjRzR06FBZrVZZrVZt2rTJkyUDAGAcH0+dOCMj\nQxs2bFDbtm1rtOXk5Cg5OVmFhYWuYxs2bFCHDh20ePFinT9/Xo8//rhGjhyp3NxcTZw4UZMmTfJU\nqQAAGM1jI/vu3bsrLS3NbZvNZlN6errCwsJcx0aNGqXp06dLkpxOpywWiyTp8OHD2rFjh+Lj4zVn\nzhyVlJR4qmQAAIzksZF9VFSUCgoK3Lb179+/xrH27dtLkkpKSjRt2jTNmDFDkhQREaEnnnhCvXv3\n1vLly5Wenq7ExMQ63zs4uJ18fCw3+BO0LqGhgc1dAkQ/tBT0Q8tAPzQej4X99Th9+rSeeeYZxcXF\nafTo0ZKkyMhIBQUFuf6dmpp6zfMUFZV5tE7ThIYG6syZ4uYuo9WjH1oG+qFloB8arq4PRy1mNf7Z\ns2c1adIkJSQkKDo62nV88uTJOnTokCRp9+7d6tWrV3OVCADATanJRvaZmZkqKytTTEyM2/YVK1bo\n4sWLWrZsmZYtWybp0iK/lJQUpaamytfXV506darXyB4AAHzHy+l0Opu7iMbG1E/DMF3WMtAPLQP9\n0DLQDw13U0zjAwAAzyDsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj\n7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAA\nDEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2\nAAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcB4N++zs\nbFmtVrdt5eXlio2NVV5eniSpqqpKCQkJiouLU3R0tLZt2yZJys/P14QJExQXF6fk5GQ5HA5PlgwA\ngHE8FvYZGRmaN2+eKisra7Tl5OQoPj5eJ0+edB3bsGGDOnTooNWrV+v3v/+9UlNTJUkLFy7UjBkz\ntHr1ajmdTteHAAAAUD8eC/vu3bsrLS3NbZvNZlN6errCwsJcx0aNGqXp06dLkpxOpywWiyQpNzdX\ngwYNkiQNGzZMWVlZnioZAAAj+XjqxFFRUSooKHDb1r9//xrH2rdvL0kqKSnRtGnTNGPGDEmXgt/L\ny8v1nOLi4mu+d3BwO/n4WK639FYpNDSwuUuA6IeWgn5oGeiHxuOxsL8ep0+f1jPPPKO4uDiNHj1a\nkuTt/d3kQ2lpqYKCgq55nqKiMo/VaKLQ0ECdOXPtD1HwLPqhZaAfWgb6oeHq+nDUYlbjnz17VpMm\nTVJCQoKio6Ndx3v27Kk9e/ZIknbt2qUBAwY0V4kAANyUmizsMzMztWbNmlrbV6xYoYsXL2rZsmWy\nWq2yWq2qqKhQYmKi0tLSFBMTo6qqKkVFRTVVyQAAGMHL6XQ6m7uIxsbUT8MwXdYy0A8tA/3QMtAP\nDXdTTOMDAADPIOwBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAw\nHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gD\nAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiO\nsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAw/k0dwEA0Fwqq+w6c75ccjoVGtxO\nfr6W5i4J8AiPjuyzs7NltVrdtpWXlys2NlZ5eXl1vubIkSMaOnSorFarrFarNm3a5MmSAbQCZZVV\nWrHhsKa/uktJr3+ipD/s1bNpH+rNvx2T3e5o7vKARuexkX1GRoY2bNigtm3b1mjLyclRcnKyCgsL\nr/ma3NxcTZw4UZMmTfJUqQBagcoqu/75bak27zmhvce+keN7mV5hc2j7/lPy9bFoRJ8f6JYAP0b6\nMIbHRvbdu3dXWlqa2zabzab09HSFhYVd8zWHDx/Wjh07FB8frzlz5qikpMRTJQMwkN3h0Jt/O6Zn\n0z7Ugj/u055/1Az6K/11zwnN+t3HmvO7LK3eelz2up4M3CQ8FvZRUVHy8XE/cdC/f3/deuut9XpN\nRESEZs6cqVWrVqlbt25KT0/3SL0AzPT2ts+0ff8pVdgaFtpFJVXauq9Ab237zEOVAU2nxS/Qi4yM\nVFBQkOvfqamp13xNcHA7+fgw/dYQoaGBzV0CRD80tgsllfrw0OkbOsfuw//UL6P7yL9Ni//fpXG4\nHhpPi/+vd/LkyZo/f74iIiK0e/du9erV65qvKSoqa4LKzBEaGqgzZ4qbu4xWj35oHJVVdp27WKGt\n+wv06bFvZKu6sWn48kq7/vHZN7qtM8HTlLgeGq6uD0dNFvaZmZkqKytTTExMg16XkpKi1NRU+fr6\nqlOnTvUa2QMwW2WVXRdKKq9aRFdWWa23/nZcR08U6duLlY37hl5ejXs+oIl5OZ1OZ3MX0dj4NNgw\nfIJuGeiHa7M7HFqz/XMdOH5G5y5WKiTIT/fd1Ulekj7KOd3g7+Xrw8/XW69MG8rK/CbG9dBwLWJk\nDwB1cTda/7412z/X1n0FrsffXqzU9v2nPFpX/7s7E/S46RH2AJqVu9F63/BQxTx0pyze3q4PAW39\nfPTpsW9u+P1uae+rfuGhsjsc2pX9zzqf69/GorjI8Bt+T6C5EfYAmpW70frWfQVyOJ3y9vJyfQgI\nbOeji2XVN/ReP+r9/2SNult+vhbZHQ59ebpEJ7+pfe+OByNuVTs//jeJmx//FQNoNpVVdh04fsZt\n29+zv5at+rslRTca9P5tvBUXGe6akrd4eyvpqQFa/bfjOvDZWZ0vscnbS3I4pZBAP/W7+9LsAmAC\nwh5As7lQUqlztaycvzLoG4OtyqGSMttVI3WLt7esUT/Uzx/67quCtu39ZbdV8T09jMItbgE0m1sC\n/BQS5Nck7xUc6K9bAty/l5+vRZ2D2ymwXRvd2qk9QQ/jEPYAmo2fr0V9w0Ob5L36hncixNFq1TmN\nb7Va5VXHZhJ/+tOfGr0gAK1HZZVdI/p21YXSSu39h/vv7m9UxyB/9Q3vxPfvaNXqDPupU6c2VR0A\nDOPu7+YvHwto56v1H36pT499o3PFNo/VkBDbR2Fdb2FEj1avzrAfNGiQ699HjhxRWVmZnE6n7Ha7\nCgoKrmoHAKnuXe4OfnZW5y5Wyq+NRRU2u0frCAn0I+iBf6nXavzExEQdOHBAFy5cUFhYmI4ePap+\n/fopOjra0/UBuMnUZ5c7Twe9JPW7O5SgB/6lXgv09u7dq/fff19RUVFKTU3V2rVrZbN5buoNwM2p\nrr+bbyoWb+mh/l35jh64Qr1G9p07d5avr6969OihY8eO6ac//alKS0s9XRuAm0xdfzfvCV1C/FVd\nLZ27WKGg9m30w9uDZY0KVzs/3yarAbgZ1Cvsu3Tpot/97ncaMmSIFi9eLEkqK+Oe8UBr5m4B3uW/\nm2/0W8zWYtr4+xQS5H/NG+gArV29wv6FF17Qzp07FRERoUceeUQbN25USkqKh0sD0BLVdeOay383\nf+V39p7SMchPIUH+rg1xANSuXmF/8eJF9e3bV19//bVGjhypkSNHerouAC1UbTeukaS4h8Nd35Uf\nOH5WRcUVCg701313dfzXavxvVVRcoVva+6mopH6j/26dA9zerKZvOAvwgPqqV9j/4he/kJeXl5xO\np6qrq3X27Fndc889+vOf/+zp+gC0IHUtwDtw/KzGD+8hP1+L4h4O1/jhPWpMr0f/+Ls96J/74946\np/v921j0YMStiv5xmN7d8cVVHx7YJAdomHqF/fbt2696fOjQIa1atcojBQFouepagFdUXKELJZWu\nKXV30+tXHqttut/P11v97+6suMi7XAvtavvwAKB+ruuudxEREZozZ05j1wKgiblbZFeXuhbg1XWj\nGXdqTvf76YfdgzUhMtztPeT5bh64fvUK+9dee+2qx59//rk6duzokYIAeF5di+ws3t9tv/H9DwN1\nLcBr6I1mLN7ejNiBJnJdI/uBAwfqsccea+xaADSRay2yq+vDgLsFeDfyHTojdsDz6hX2Xbt21dix\nY686tmrVKsXHx3ukKACeU59Fdn/emVfnhwFG5MDNpc6w/+Mf/6iSkhK9/fbbOnXqu72t7Xa7MjMz\nCXvgJlTXIrtvL1bon+dKa/0w8OmxMxp23w8U2qEtI3LgJlLn3vi333672+Nt2rTRokWLPFIQAM+6\nvMiuNpv3nKz1w8C54kolv/6J5mV8rNVbj8vucHiqTACNqM6R/YgRIzRixAj95Cc/UWVlpXr27Kni\n4mIdPnxYAwYMaKoaATSCKxfbRdzZSR98esrt8z47eb7OLW+dqjmtD6Blq9d39u+9956OHDmiP/zh\nDyovL9eyZcu0b98+TZ061dP1AbhB7hbbhXfrUOvzi4or1feuTvXa3/7KjXQAtFz1usXtjh07lJGR\nIenSHfD+93//V1u2bPFoYQAax+WV999erHSNynfnFsq/jfuA9vKSDnx2Vv5tLLU+57LLG+kAaNnq\nFfbV1dWqqKhwPa6qqvJYQQCuX2WVXd8Ulamyyu563ND7yzucl6bqK2x2VdjsGtyzszrW8h1/QzfS\nAdA86jWNHxsbq3Hjxumhhx6S0+nUhx9+yEp8oAWp7e/iR/TtWutiu0qbXQ/0/n86euK8zl2skJfX\npaD/vs8KLiqiR0d9cODrGm0N3UgHQPOoV9hPmDBBVVVVstlsCgoKUnR0tM6cadhoAYDn1LZJjt3u\nqHWxXUiQv34Rdbck6YtTF/Ty2wfdnruouEIPD+gmi8Wbm9EAN6l6hf3UqVNVXl6uEydOaMCAAdq7\nd6/69Onj6doAfI+7vezrmqo/lHeu1pX3V47Kw7reUuee9yFB/mykA9zE6hX2X375pbZs2aIXXnhB\n48eP18yZMzV9+nRP1wbgX+ravvZad6J7uP9tsnh71Tkqr++e92ykA9yc6hX2HTt2lJeXl+644w4d\nO3ZMjz/+uGw2m6drA/Avde1lP354j0YZlTf2nvcAWo56hf1dd92l1NRUTZgwQf/93/+tb775hhX5\nQBOorLLrTFHZNfeyb4xROXehA8xVr7BPSUnRgQMHdOedd2rq1KnavXu3fvvb33q6NqBVqqyy69zF\nCm3dd1KH8r6tc3ObcxcrdOZ8eaOOypmqB8zj5XQ63fyxzc3tzJni5i7hphIaGsjvrAUICWmv19Ye\n0IHjZ+q1e91lfr5eeiDiB5ow8i5V252Mym8Q10PLQD80XGhoYK1t13U/ewCN7w+ZuW6n4q+lssqp\n7ftPydvLS3EPhzMqB1BDvXbQA+BZxWU2fZRdc9Oahvj02BnXznkAcCVG9kAzuvwndfuOfqPzJTf2\nFy5FxZW6UFLJyB5ADYQ90Iy+/yd1NyI40I996gG45dFp/OzsbFmtVrdt5eXlio2NVV5eXp2vyc/P\n14QJExQXF6fk5GQ5HA5Plgw0meu5SU1d7ruLfeoBuOexsM/IyNC8efNUWVlzVXFOTo7i4+N18uTJ\na75m4cKFmjFjhlavXi2n06lt27Z5qmSgSdW18931eLj/bY12LgBm8VjYd+/eXWlpaW7bbDab0tPT\nFRYWds3X5ObmatCgQZKkYcOGKSsryzMFA03slgA/hdRy69iG6hh0aac8AHDHY9/ZR0VFqaDA/XeR\n/fv3r/drnE6nvLy8JEnt27dXcfG1/+4yOLidfHyYzmyIuv4+E57zwH1dteHDLxrhPD/QbT/o0AgV\nQeJ6aCnoh8bT4hfoeXt/N/lQWlqqoKCga76mqKjMkyUZh80rms/oId1VVm5z7Xwnub+nfG3821j0\nYMStGj2kO33YSLgeWgb6oeFu6k11evbsqT179uj+++/Xrl27NHjw4OYuCWg0V+5Hb2njq7c2H9EH\nB9z/vb1/m3/d0tZmV3Cgn354e7DiIu9SOz/fpiwZwE2oycI+MzNTZWVliomJadDrEhMTNX/+fC1Z\nskRhYWGKioryUIVA8/HztSi0U3vFRYbLYvG+ao/7iB4henhAN9d38myHC6Ch2BsfTJe1EFf2Q2WV\nnVBvJlwPLQP90HA39TQ+0Bpx5zkAjYm98QEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6w\nBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAw\nHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gD\nAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiO\nsAcAwHAeDfvs7GxZrVa3beXl5YqNjVVeXp4kyeFwKCkpSTExMbJarcrPz5ckHTlyREOHDpXVapXV\natWmTZs8WTIAAMbx8dSJMzIytGHDBrVt27ZGW05OjpKTk1VYWOg6tnXrVtlsNq1Zs0YHDx7UokWL\ntHz5cuXm5mrixImaNGmSp0oFAMBoHhvZd+/eXWlpaW7bbDab0tPTFRYW5jq2f/9+DR06VJLUp08f\nHT58WJJ0+PBh7dixQ/Hx8ZozZ45KSko8VTIAAEby2Mg+KipKBQUFbtv69+9f41hJSYkCAgJcjy0W\ni6qrqxUREaEnnnhCvXv31vLly5Wenq7ExMQ63zs4uJ18fCw39gO0MqGhgc1dAkQ/tBT0Q8tAPzQe\nj4V9QwUEBKi0tNT12OFwyMfHR5GRkQoKCpIkRUZGKjU19ZrnKioq81idJgoNDdSZM8XNXUarRz+0\nDPRDy0A/NFxdH45azGr8fv36adeuXZKkgwcPKjw8XJI0efJkHTp0SJK0e/du9erVq9lqBADgZtRk\nI/vMzEyVlZUpJibGbXtkZKQ++ugjxcbGyul06sUXX5QkpaSkKDU1Vb6+vurUqVO9RvYAAOA7Xk6n\n09ncRTQ2pn4ahumyloF+aBnoh5aBfmi4m2IaHwAAeAZhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAA\nGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPs\nAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAM\nR9gDAGAsuyFhAAAJjUlEQVQ4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfY\nAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhvNo2GdnZ8tqtbptKy8vV2xsrPLy8iRJDodDSUlJiomJ\nkdVqVX5+viQpPz9fEyZMUFxcnJKTk+VwODxZMgAAxvFY2GdkZGjevHmqrKys0ZaTk6P4+HidPHnS\ndWzr1q2y2Wxas2aNfv3rX2vRokWSpIULF2rGjBlavXq1nE6ntm3b5qmSAQAwksfCvnv37kpLS3Pb\nZrPZlJ6errCwMNex/fv3a+jQoZKkPn366PDhw5Kk3NxcDRo0SJI0bNgwZWVleapkAACM5OOpE0dF\nRamgoMBtW//+/WscKykpUUBAgOuxxWJRdXW1nE6nvLy8JEnt27dXcXHxNd87OLidfHws11l56xQa\nGtjcJUD0Q0tBP7QM9EPj8VjYN1RAQIBKS0tdjx0Oh3x8fOTt/d3kQ2lpqYKCgq55rqKiMo/UaKrQ\n0ECdOXPtD1HwLPqhZaAfWgb6oeHq+nDUYlbj9+vXT7t27ZIkHTx4UOHh4ZKknj17as+ePZKkXbt2\nacCAAc1WIwAAN6MmC/vMzEytWbOm1vbIyEi1adNGsbGxWrhwoWbPni1JSkxMVFpammJiYlRVVaWo\nqKimKhkAACN4OZ1OZ3MX0diY+mkYpstaBvqhZaAfWgb6oeFuiml8AADgGYQ9AACGI+wBADAcYQ8A\ngOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjC\nHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDA\ncF5Op9PZ3EUAAADPYWQPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhL2hsrOzZbVa3baV\nl5crNjZWeXl5kiSHw6GkpCTFxMTIarUqPz9fknTkyBENHTpUVqtVVqtVmzZtarL6TdGQfqjtNfn5\n+ZowYYLi4uKUnJwsh8Ph0ZpN1Bj9wPVw4xrSD1VVVUpISFBcXJyio6O1bds2SVwP18unuQtA48vI\nyNCGDRvUtm3bGm05OTlKTk5WYWGh69jWrVtls9m0Zs0aHTx4UIsWLdLy5cuVm5uriRMnatKkSU1Z\nvjEa2g+1vWbhwoWaMWOG7r//fiUlJWnbtm2KjIz0eP2maKx+4Hq4MQ3thw0bNqhDhw5avHixzp8/\nr8cff1wjR47kerhOjOwN1L17d6Wlpblts9lsSk9PV1hYmOvY/v37NXToUElSnz59dPjwYUnS4cOH\ntWPHDsXHx2vOnDkqKSnxfPEGaWg/1Paa3NxcDRo0SJI0bNgwZWVleaZgQzVWP3A93JiG9sOoUaM0\nffp0SZLT6ZTFYpHE9XC9CHsDRUVFycfH/aRN//79deutt151rKSkRAEBAa7HFotF1dXVioiI0MyZ\nM7Vq1Sp169ZN6enpHq3bNA3th9pe43Q65eXlJUlq3769iouLG79YgzVWP3A93JiG9kP79u0VEBCg\nkpISTZs2TTNmzJDE9XC9CHsoICBApaWlrscOh0M+Pj6KjIxU7969JUmRkZE6cuRIc5XYqnl7f3eZ\nlpaWKigoqBmrab24Hpre6dOn9eSTT2rMmDEaPXq0JK6H60XYQ/369dOuXbskSQcPHlR4eLgkafLk\nyTp06JAkaffu3erVq1ez1dia9ezZU3v27JEk7dq1SwMGDGjmilonroemdfbsWU2aNEkJCQmKjo52\nHed6uD4s0GsFMjMzVVZWppiYGLftkZGR+uijjxQbGyun06kXX3xRkpSSkqLU1FT5+vqqU6dOSk1N\nbcqyjXOtfqhNYmKi5s+fryVLligsLExRUVEeqrB1uN5+4HpoXNfqhxUrVujixYtatmyZli1bJunS\nIj+uh+vDXe8AADAc0/gAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAN2zWrFlat26dCgsL9fTT\nT9f53NpuhFKbPXv2NPg1AK5G2ANoNF26dFFGRkadz/nkk0+aqBoAl7GpDtBK7dmzR2lpafLx8dHp\n06cVERGhX/7yl5oyZYqCg4Pl5+en119/XS+99JI++eQT2e12jRs3Tk899ZScTqcWLVqkHTt2qHPn\nzrLb7Ro0aJAKCgr05JNPavv27Tp16pRmz56tc+fOyd/fX88//7zeffddSdITTzyhd955R7t27dLS\npUtVXV2t2267TampqQoODtbf//53LVy4UH5+frrjjjua+TcF3PwIe6AVO3TokNavX6877rhD06dP\n186dO/Xll1/q97//vW677Ta99dZbkqT33ntPNptNkydPVu/evXX27FkdOXJEGzduVHFxsX72s5/V\nOPeCBQsUFRWl+Ph47dy5U8uXL9err76qN954Q++8847OnTun3/72t/rTn/6kW265RW+//bZefvll\nJScna9asWfq///s/9ejRQ3Pnzm3qXwtgHMIeaMUGDhzouq3omDFjtHbtWnXs2FG33XabpEt7wP/j\nH//Qxx9/LEkqKyvTsWPHlJeXp0ceeUS+vr4KCQnRsGHDapx77969WrJkiSRp+PDhGj58+FXt2dnZ\nrhudSJduwHTLLbfo2LFj6ty5s3r06CFJGjt2rF599VXP/AKAVoKwB1qxy/cIl767Z7i/v7/rmN1u\nV0JCgh555BFJ0rlz59SuXTstXrxYDofD9Tx3ty698pjT6VReXp7uvPPOq87dr18/rVixQpJUWVmp\n0tJSff3111ed+8oaAVwfFugBrdj+/ftVWFgoh8Oh9evX1xihDx48WGvXrlVVVZVKS0sVFxen7Oxs\nDRkyRJs3b5bNZtOFCxf04Ycf1jj3gAED9P7770uSsrKyNH/+fEmXwru6ulr33XefDh48qC+//FKS\ntGzZMr300ku6++679e233+ro0aOS5DoHgOvHyB5oxTp37qyZM2eqsLBQDzzwgH70ox9p5cqVrvbY\n2Fjl5+dr7Nixqq6u1rhx43T//fdLknJycvTYY4+pU6dOrin3KyUlJWnevHlavXq12rZtq+eff16S\nNHLkSI0ZM0br1q3Tiy++qBkzZsjhcKhLly5avHixfH19tWTJEiUkJMjHx0c9e/Zsml8GYDDuege0\nUnv27NFrr72mN954o7lLAeBhTOMDAGA4RvYAABiOkT0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4\nwh4AAMP9fzJ0kNjjsjViAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      oc_difflow_bidlast_10_tick_avg_bo_spreadavg_pricelast_10_tick_avg_bid_returnnb_ticksweekdayyearday15_minhourmonthavg_bo_spreadpcahigh_bidrangeperiod_returnohlc_priceopen_bidclose_bid
      linear regression coefficients-0.203845-0.01149-0.002238-0.002219-0.001859-0.001265-0.0000020.09.480864e-070.0000020.0000070.0000170.0006030.0012650.0070990.0186370.1838530.2001270.3005940.504454
      lasso regression coefficients-0.0000000.00000-0.0000000.000000-0.000000-0.0000030.0000000.0-0.000000e+00-0.000000-0.0000000.000000-0.000000-0.0000000.000000-0.0000000.0000000.0000000.0000000.000000
      \n", + "
      " + ], + "text/plain": [ + " oc_diff low_bid last_10_tick_avg_bo_spread \\\n", + "linear regression coefficients -0.203845 -0.01149 -0.002238 \n", + "lasso regression coefficients -0.000000 0.00000 -0.000000 \n", + "\n", + " avg_price last_10_tick_avg_bid_return \\\n", + "linear regression coefficients -0.002219 -0.001859 \n", + "lasso regression coefficients 0.000000 -0.000000 \n", + "\n", + " nb_ticks weekday year day \\\n", + "linear regression coefficients -0.001265 -0.000002 0.0 9.480864e-07 \n", + "lasso regression coefficients -0.000003 0.000000 0.0 -0.000000e+00 \n", + "\n", + " 15_min hour month avg_bo_spread \\\n", + "linear regression coefficients 0.000002 0.000007 0.000017 0.000603 \n", + "lasso regression coefficients -0.000000 -0.000000 0.000000 -0.000000 \n", + "\n", + " pca high_bid range period_return \\\n", + "linear regression coefficients 0.001265 0.007099 0.018637 0.183853 \n", + "lasso regression coefficients -0.000000 0.000000 -0.000000 0.000000 \n", + "\n", + " ohlc_price open_bid close_bid \n", + "linear regression coefficients 0.200127 0.300594 0.504454 \n", + "lasso regression coefficients 0.000000 0.000000 0.000000 " + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "reg_lasso = linear_model.Lasso(alpha = 0.1) # Lasso takes care of regularisation\n", + "reg_linear = linear_model.LinearRegression()\n", + "\n", + "reg_linear.fit(X_train, y_train)\n", + "reg_lasso.fit(X_train, y_train)\n", + "\n", + "\n", + "df_coeff = pd.DataFrame(columns=cols\n", + " , data=[list(reg_linear.coef_), list(reg_lasso.coef_)]\n", + " , index=[\"linear regression coefficients\", \"lasso regression coefficients\"])\n", + "\n", + "\n", + "\n", + "\n", + "# predict all examples and compare to actuals\n", + "plt.scatter(reg_linear.predict(X_test), y_test)\n", + "plt.xlabel(\"predicted\")\n", + "plt.ylabel(\"actual\")\n", + "plt.title(\"predicted v actual close_bid\")\n", + "plt.show()\n", + "\n", + "\n", + "df_coeff.sort_values(by='linear regression coefficients', axis=1)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- what mae is acceptible as a result? If i invest based on my prediction, and it goes the other way i lose money. \n", + "- Therefore, check the directional error, not MAE. Compare close with next close. If my prediction - actual next close has the same sign and value of that measure, count as accurate." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check regression errors" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "def check_error_metrics(df, y_train, y_test, X_train_pred, X_test_pred, y_prev):\n", + "\n", + " #compute direction of next step\n", + "# if len(X_test.shape) >2:\n", + "# y_prev = X_test[:,0,idx_close_bid]\n", + "# else:\n", + "# y_prev = X_test[:,idx_close_bid]\n", + " err_list = []\n", + " \n", + " pred_directions = X_test_pred - y_prev\n", + " act_directions = y_test - y_prev\n", + " pred_returns = X_test_pred / y_prev-1\n", + " act_returns = y_test / y_prev -1\n", + "\n", + " \n", + "\n", + " sign_error = np.sign(pred_directions) != np.sign(act_directions)\n", + " actual_minus_pred = act_directions - pred_directions\n", + " abs_actual_minus_prod = abs(act_directions) - abs(pred_directions)\n", + " return_vals = act_returns - pred_returns\n", + "\n", + " # how often do you make a negative 1 percent return when a positive return was predicted\n", + "\n", + " err_list= [\n", + " [\"mse train all feature: \", mean_squared_error(y_train, X_train_pred)]\n", + " ,[\"mse test all feature: \", mean_squared_error(y_test, X_test_pred)]\n", + " ,[\"mae train all feature: \", mean_absolute_error(y_train, X_train_pred)]\n", + " ,[\"mae test all feature: \", mean_absolute_error(y_test, X_test_pred)]\n", + " ,[\"mean avg bo spread: \", df.avg_bo_spread.mean()]\n", + " \n", + "\n", + " ,[\"how often sign of price change is same: \", (sign_error==False).sum() / len(sign_error)]\n", + "\n", + " # if correct sign, how often larger than actual value, smaller than actual value\n", + " # generally good profit\n", + " ,[\"if same sign, how often is actual better than 0.1 percent in both directions: \"\n", + " , (abs(act_directions[~sign_error]) > 0.001).sum() / len(act_directions[~sign_error])]\n", + "\n", + " # positive surprise\n", + " ,[\"if same sign, how often is actual better than predicted in both directions: \"\n", + " , (abs_actual_minus_prod[~sign_error] > 0).sum() / len(abs_actual_minus_prod[~sign_error])]\n", + "\n", + " # positive suprise of least 10 bp\n", + " ,[\"if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions: \", \n", + " (abs_actual_minus_prod[~sign_error] > 0.001).sum() / len(abs_actual_minus_prod[~sign_error])]\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " ,[\"if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions\",\n", + " (abs(return_vals[sign_error]) > 0.001).sum() / len(return_vals[sign_error])]\n", + " \n", + " ,[\"if not same sign, how often is actual worse than -0.1 percent return in both directions\",\n", + " (abs(act_returns[sign_error]) > 0.001).sum() / len(act_returns[sign_error])]\n", + " ] \n", + " # show histogram of returns if sign error\n", + " plt.hist(act_returns[sign_error], bins=20)\n", + " plt.title(\"returns if pred and act sign mismatches\")\n", + " plt.show()\n", + " \n", + " df_err = pd.DataFrame(err_list)\n", + " \n", + " for el in err_list:\n", + " print(el)\n", + " \n", + " \n", + " return df_err\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFXCAYAAADj40TtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHkFJREFUeJzt3XtYlHX+//HXMCDGQTwsVlvppV4iqWuiaXl5aFM3NTEi\nIzyhrGmWZJfaKq6r4CnTNjfTWt1aW/eizbNZuVtpYpqJZh5a1yx3TfGQl7KGCoKc5vP7w5/zlRUQ\nB/igw/Pxl8Pc9z2f+83Ik3vEwWGMMQIAANb4VPcCAACoaYgvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8YU1x48f15gxY6w/7qZNmzRr1ixJ0sGDB9WzZ09FR0frxIkTVf7Yo0aN0tq1a6vk2EuWLNGk\nSZMq5Viff/65Xn/99RvaJyoqShcuXKiUxy+v3/3ud9q+fXuVPkZ5nqcnTpxQREREla4D3s23uheA\nmuPHH3/UkSNHrD9ujx491KNHD0mXQ/zAAw/opZdesr6Om9n+/ft1/vz5G9rngw8+qKLVlM7G5626\nnqeoWYgvKmTnzp166aWXFBAQoJycHK1evVrbtm3TokWLVFBQoNq1aysxMVFt2rTRlClTdPr0aT39\n9NOaPn26+vXrp71790q6fCVx5fbatWu1evVq5ebmKigoSNHR0dq4caN8fHyUnp4uPz8/zZ07V2Fh\nYdqwYYMWLVokh8Mhp9OpiRMnqkOHDsXWuHbtWn366afq27evli1bpqKiIl26dEnz5s0rtl3Lli01\nbNgw7dy5Uzk5ORo/frweeeSRa9aTkpKiVatWadmyZXK5XKpbt66mTp2qZs2a6fTp05o0aZLOnDmj\nn//85zp79myJczty5IhmzJihnJwcnTlzRuHh4Zo/f778/f31i1/8Qs8884y+/PJLnTlzRkOHDlV8\nfLwKCgo0a9Ysbd++XQ0aNFCDBg0UHBx8zbFzcnI0bdo0HT16VOfPn1dgYKBeffVVNW3aVBkZGUpO\nTtYPP/wgHx8fDRgwQPfdd5+WL1+uoqIiBQcHa9y4ccWOt2DBAm3cuFF+fn6qV6+eXn75ZTVs2FAt\nWrRQWlqaQkJC9Morryg1NVXBwcFq06aNDh8+rJSUFMXFxalt27bas2ePTp06pfbt22vu3Lny8Sn+\noltcXJxatWqlHTt26OzZsxo6dKjOnj2rr776Srm5uZo/f75atGihuLg4DR48WD179tTMmTO1Z88e\n+fn56e6779bLL7+szMxMDRs2TA8++KD27dunwsJCTZw4UStWrNAPP/yg1q1b6w9/+IN8fHy0ePFi\nffbZZ8rLy1Nubq4SExPVvXv3Ys/TJUuWaPPmzZo/f75cLpcCAgI0ffp0BQUFqaioSElJSdq/f78u\nXLigiRMnqlevXpKkRYsWacOGDXK5XLrrrruUnJys22+/vVzPV9QQBqiAHTt2mPDwcHPixAljjDFH\njhwxkZGR5qeffjLGGHPo0CHTuXNnc/HiRbNjxw7Tt29fY4wxx48fN23btnUf5+rba9asMR06dDBZ\nWVnu2+3btzenTp0yxhgzY8YMM3HiRGOMMT169DB79+41xhjzxRdfmIULF16zxjVr1phnnnnGGGPM\nggULzPTp00s8l7CwMLNo0SJjjDEHDx407du3N2fPnr1mPTt37jSDBg0yOTk57sft06ePMcaY0aNH\nm9dee80YY8zRo0dN27ZtzZo1a655rDlz5ph169YZY4zJz883kZGR5pNPPnGvIyUlxRhjzP79+03r\n1q3NpUuXzNKlS83QoUNNXl6euXjxoomOjjaJiYnXHPvjjz82M2fOdN+eOnWqmTFjhjHGmISEBDN3\n7lxjjDEXLlwwffv2NUePHi11Lj/++KNp166dycvLM8YYs2TJErNx40b3Os+ePWuWLVtmBg8ebC5d\numTy8vLM8OHDzZAhQ4wxxgwZMsS88MILpqioyGRlZZkuXbqYtLS0ax5nyJAh5vnnnzfGGLNv3z4T\nFhZmNm3aZIwx5qWXXjJTpkxxb/fxxx+bXbt2md69exuXy2WMMeaVV14xu3fvNsePHzdhYWHms88+\nM8YYk5SUZB5++GGTlZVlLl26ZDp37mx2795tTpw4YeLi4kxubq4xxpj169ebyMhIY4wp9jzNyMgw\n7du3N99++60xxphPP/3UPP300+7HufI527Bhg+nRo4cxxpj333/fjB071hQUFBhjjFm+fLkZMWKE\nMaZ8z1fUDFz5osLuvPNO3XXXXZLkvlqLj4933+9wOHTs2LEbOmaLFi0UFBTkvt2qVSvdcccdki5f\noW7cuFGS1LdvXz3//PN66KGH1LlzZ40cObJC5zJkyBBJUnh4uMLCwrRr165r1vP5558rPT1dAwYM\ncO93/vx5nTt3Ttu3b1diYqIkqXHjxnrggQdKfJwJEyboyy+/1Ntvv62jR4/qzJkzysnJcd9/5WXy\nVq1aKT8/Xzk5OUpLS1NkZKRq1aqlWrVqqV+/fvr++++vOXbv3r11zz33KCUlRenp6frqq6/c/z65\nfft2TZgwQZIUHBys9evXlzmP22+/XeHh4YqOjla3bt3UrVs3derUqdg2W7ZsUVRUlPz9/SVJsbGx\nSklJcd//8MMPy8fHR0FBQWrcuHGpL2//6le/kiTdc889kqSuXbtKkho1aqSvvvqq2LZhYWFyOp2K\niYlRly5d1KtXL7Vp00YnTpyQn5+funfv7t43IiLC/blr2LChzp8/r3bt2mnu3Ln66KOPlJ6erm++\n+UYXL168Zk179uxR8+bNde+990qSHnnkET3yyCPux7lypRseHu5+lWPz5s3av3+/+vfvL0lyuVzK\nzc2VVPnPV9y6iC8qLCAgwP1nl8ulTp06af78+e6PnTp1Sg0bNtTXX3/t/pjD4ZC56m3FCwoKSj2m\nJNWuXbvEfceNG6cnn3xS27Zt09q1a/XWW29p7dq117ysWV5Op7PYuVy5/b/nGBUV5Y6Yy+XSmTNn\nFBIScs15+fqW/Fds/PjxKioqUp8+ffTLX/5Sp06dKrbflZA5HA5JKnZfSWu92nvvvaeVK1dq8ODB\n6tevn+rWrev+4TJfX1/3MaXLP1xUr169Uufh4+Ojd999V/v371daWppmz56tBx54QFOmTCn1HP93\n9qV97v5XrVq1it328/MrdV116tTRBx98oD179mjHjh0aO3ashg4dqp49e8rPz6/YOZZ0nAMHDmj0\n6NGKj49X586d1aFDB02fPv2a7ZxOZ7FjGWP0/fffKygoqNhxr97G5XJpxIgRGjRokCQpPz/f/Q1H\nZT9fceviM45K9eCDD+rLL7/U4cOHJV2+KnrssceUl5cnp9PpjmydOnVUUFCg//znP5LkvpK9EYWF\nherevbtycnI0cOBAJScn6/DhwyosLPR4/evWrZN0+YvzkSNHSvz3uM6dO+vvf/+7zpw5I0latmyZ\nhg0bJuny1dqKFSskXf7BnZ07d5b4ONu2bVNCQoIeffRRORwOffPNNyoqKipzbV27dtW6deuUl5en\nvLw8/eMf/yj12NHR0YqJiVGTJk2UmprqPnanTp20Zs0aSVJWVpaGDRumo0ePyul0lji37777TpGR\nkWrWrJlGjRql+Pj4a662H3roIX344YfKz89XYWGh3n///TLPozJs3rxZ8fHxioiI0JgxY/T444/r\nu+++K/f+u3btUuvWrfXrX/9aHTt21KZNm9wzuvp5et999+nw4cP697//LenyD+xd+aarNF26dNHq\n1auVnZ0tSXr99dc1ceLEKnm+4tbFlS8qVfPmzTVjxgyNHz9exhj5+vpq0aJFCggIUPPmzeV0OvXk\nk09q1apVmjBhgkaOHKn69eurd+/eN/xYvr6+mjx5sn7zm9+4r+hmz559zRXUjdizZ49Wrlwpl8ul\n1157TSEhIdds07VrV40cOVLDhw+Xw+FQUFCQ3njjDTkcDiUnJ+u3v/2t+vTpozvuuEPh4eElPs64\nceOUkJCgkJAQ3XbbberQocN1X5ofMGCAjh07psjISNWtW1eNGzcucbvhw4crKSlJa9euldPpVKtW\nrXTo0CFJUlJSkqZNm6Z+/frJGKNRo0apdevWKigo0JgxY+Tn56epU6e6jxUeHq4+ffqof//+CggI\nUO3atYtd9UrSE088oSNHjujxxx9XQECA7r77bt12221lnktFdevWTVu3blVkZKQCAgIUEhKimTNn\nlnv/yMhIbdiwQY8++qj8/PzUqVMnnT9/XtnZ2dc8T1999VUlJiaqqKhIQUFBeu2118o8dkxMjE6f\nPq2nnnpKDodDd955p+bMmVMlz1fcuhymtNeAgBrmyk/v1q9fv7qXckvZtm2bzp49q6ioKEnSrFmz\n5O/vf90rRKAm42VnABXSvHlzrVu3To899pj69u2rzMxMPfvss9W9LOCmxpUvAACWceULAIBlxBcA\nAMuILwAAlln5r0YZGVk2HsaKevUClJmZc/0NUSpmWHHMsGKYX8Uxw+sLDb32vdev4Mr3Bvn6lvyu\nQig/ZlhxzLBimF/FMcOKIb4AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwj\nvgAAWFau+H7zzTeKi4uTJKWnp2vgwIEaNGiQkpOT5XK5qnSBAAB4m+vG9+2339aUKVOUl5cnSXr5\n5Zc1duxYvffeezLGaNOmTVW+SAAAvMl149uoUSMtXLjQffvAgQPq2LGjJKlbt27avn171a0OAAAv\ndN3fatSrVy+dOHHCfdsYI4fDIUkKDAxUVtb1f2NRvXoBXvUm3GX9pgqUj7fMsN+LH1Tq8T6aF1Xu\nbb1lhtWF+VUcM/TcDf9KQR+f/7tYvnjxourUqXPdfbzp106FhgZ71a9IrA7MsHTlnQszrBjmV3HM\n8Poq9VcKtmzZUjt37pQkbd26Vffff7/nKwMAoAa64fgmJiZq4cKFio2NVUFBgXr16lUV6wIAwGuV\n62Xnu+++WytXrpQkNWnSRO+++26VLgoAAG/Gm2wAAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAA\nLCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBg\nGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhG\nfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGCZryc7FRQU\naNKkSTp58qR8fHw0c+ZMNWvWrLLXBgCAV/LoynfLli0qLCzU8uXLlZCQoPnz51f2ugAA8FoexbdJ\nkyYqKiqSy+VSdna2fH09uoAGAKBG8qiaAQEBOnnypPr06aPMzEwtXry4zO3r1QuQr6/TowXejEJD\ng6t7Cbc8ZliyG5kLM6wY5ldxzNBzHsV36dKl6tKli1588UWdOnVKw4YN00cffSR/f/8St8/MzKnQ\nIm8moaHBysjIqu5l3NKYYenKOxdmWDHMr+KY4fWV9c2JR/GtU6eO/Pz8JEkhISEqLCxUUVGRZ6sD\nAKCG8Si+8fHxmjx5sgYNGqSCggKNGzdOAQEBlb02AAC8kkfxDQwM1Ouvv17ZawEAoEbgTTYAALCM\n+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXE\nFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+\nAABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEF\nAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8A\nAJYRXwAALCO+AABYRnwBALDM19Md//SnPyk1NVUFBQUaOHCgYmJiKnNdAAB4LY/iu3PnTu3du1fL\nli1Tbm6u3nnnncpeFwAAXsuj+G7btk1hYWFKSEhQdna2Jk6cWNnrAgDAa3kU38zMTP34449avHix\nTpw4oeeee06ffPKJHA5HidvXqxcgX19nhRZ6MwkNDa7uJdzymGHJbmQuzLBimF/FMUPPeRTfunXr\nqmnTpqpVq5aaNm0qf39//fTTT2rQoEGJ22dm5lRokTeT0NBgZWRkVfcybmnMsHTlnQszrBjmV3HM\n8PrK+ubEo592bt++vb744gsZY3T69Gnl5uaqbt26Hi8QAICaxKMr34cffli7du3Sk08+KWOMkpKS\n5HR6z8vKAABUJY//qxE/ZAUAgGd4kw0AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhG\nfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy3yrewHwHsPnpFbq8d6Z1L1Sj3crqOwZSjVzjsDNjitf\nAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcA\nAMuILwAAlhFfAAAsq1B8z549q4ceekiHDx+urPUAAOD1PI5vQUGBkpKSVLt27cpcDwAAXs/j+M6d\nO1cDBgxQw4YNK3M9AAB4PV9Pdlq7dq3q16+vrl276q233rru9vXqBcjX1+nJQ92UQkODq3sJlaLf\nix9U9xLKNHxOaqUf86N5UZV+zJudtzxfKxtzqThm6DmP4rtmzRo5HA6lpaXp4MGDSkxM1KJFixQa\nGlri9pmZORVa5M0kNDRYGRlZ1b0MeKgmfu5q4jlfD3+PK44ZXl9Z35x4FN+//e1v7j/HxcVp2rRp\npYYXAAAUx381AgDAMo+ufK+WkpJSGesAAKDG4MoXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIA\nYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAA\ny4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLf6l4Aym/4nNTqXsItjxkCuBlw5QsAgGXE\nFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+\nAABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEF\nAMAy4gsAgGW+nuxUUFCgyZMn6+TJk8rPz9dzzz2nHj16VPbaAADwSh7F98MPP1TdunX1+9//XufO\nndPjjz9OfAEAKCeP4tu7d2/16tVLkmSMkdPprNRFAQDgzTyKb2BgoCQpOztbL7zwgsaOHVvm9vXq\nBcjXt3ID3e/FDyr1eB/Niyr3tqGhwdfdprLXB3iqPM/Xmsib5lIVX2/K8zXRm2Zom0fxlaRTp04p\nISFBgwYNUr9+/crcNjMzx9OHsSYjI6tc24WGBpd7W+BmwPP1Wvw9vr7rzYcZXl9Z35x4FN///ve/\nGj58uJKSktSpUyePFwYAQE3k0X81Wrx4sS5cuKA//vGPiouLU1xcnC5dulTZawMAwCt5dOU7ZcoU\nTZkypbLXAgBAjcCbbAAAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBg\nGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABY5lvdC7hZDJ+TWt1LAKrEzf7cfmdS9+pewnXd7DOsiaric2LzuciVLwAA\nlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCw\njPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBl\nxBcAAMuILwAAlvl6spPL5dK0adP0/fffq1atWpo1a5YaN25c2WsDAMAreXTl+9lnnyk/P18rVqzQ\niy++qDlz5lT2ugAA8FoexXf37t3q2rWrJKlt27b617/+VamLAgDAm3n0snN2draCgoLct51OpwoL\nC+XrW/LhQkODPVtdGT6aF1XpxwRQc9zI1yW+3pSsKr62l9et/jnx6Mo3KChIFy9edN92uVylhhcA\nABTnUXzbtWunrVu3SpL27dunsLCwSl0UAADezGGMMTe605Wfdj506JCMMZo9e7aaNWtWFesDAMDr\neBRfAADgOd5kAwAAy4gvAACW1ej4Xrp0SWPGjNGgQYM0cuRI/fTTT9dss3LlSj3xxBN66qmntHnz\n5jL327dvn2JiYjRgwAC98cYbxY6Tm5urqKgo9w+qeQtbM5w7d65iY2PVv39/rVy50s7JVTGXy6Wk\npCTFxsYqLi5O6enpxe5PTU1V//79FRsb6z7n0vZJT0/XwIEDNWjQICUnJ8vlckkqefbewsb8li5d\nqpiYGMXExFzzd9ob2JjhlX1GjBihZcuW2Tu5m52pwd555x2zYMECY4wx69evNzNnzix2/5kzZ0xk\nZKTJy8szFy5ccP+5tP0ee+wxk56eblwulxkxYoQ5cOCA+1iTJk0yUVFRZsuWLZbOzg4bM0xLSzOj\nR482xhiTl5dnevbsac6dO2fxLKvGp59+ahITE40xxuzdu9c8++yz7vvy8/Pd55mXl2eeeOIJk5GR\nUeo+o0aNMjt27DDGGDN16lSzYcOGUmfvLap6fseOHTPR0dGmsLDQuFwuExsbaw4ePGj5LKtWVc/w\ninnz5pmYmBjz3nvv2Tq1m16NvvK9+p26unXrprS0tGL3//Of/1RERIRq1aql4OBgNWrUSN99912J\n+2VnZys/P1+NGjWSw+FQly5dtH37dknSkiVLFBERofDwcLsnaIGNGUZERGj27NnuYxYVFXnF/ysv\n653iDh8+rEaNGikkJES1atVS+/bttWvXrlL3OXDggDp27Cjp8jy3b99e6uy9RVXP74477tCf//xn\nOZ1OORwOFRYWyt/f3/JZVq2qnqEkffLJJ3I4HO59cNmt/xWsnFatWqW//vWvxT7WoEEDBQdffoeW\nwMBAZWVlFbs/Ozvbff+VbbKzs4t9/Mp+//uuX4GBgTp+/LjS0tKUnp6uGTNmaM+ePVV1elZU1wz9\n/f3l7++vgoICTZo0SbGxsQoMDKyq07SmrHeKK2tuJe1jjJHD4XBve2WeJR3DW1T1/Pz8/FS/fn0Z\nY/TKK6+oZcuWatKkib0TtKCqZ3jo0CGtX79eCxYs0JtvvmnvxG4BNSa+V/7d5mrPP/+8+526Ll68\nqDp16hS7/3/fyevixYsKDg4u9vEr+5W0bZ06dbR69WqdPHlScXFx+uGHH3TgwAGFhobq3nvvrapT\nrTLVNUNJOn/+vF544QV17NhRo0aNqpLzs62sd4orz9yu3sfHx6fYtqXN8+ovpre6qp6fJOXl5Wny\n5MkKDAxUcnJyVZ+SdVU9w3Xr1un06dMaNmyYTp48KT8/P911113q1q2bhbO7udXol53btWunLVu2\nSJK2bt2q9u3bF7u/TZs22r17t/Ly8pSVlaXDhw8rLCysxP2CgoLk5+enY8eOyRijbdu26f7779e8\nefO0fPlypaSkqGvXrpowYcItGd7S2JjhpUuXFB8fr/79+yshIcH6OVaVst4prlmzZkpPT9e5c+eU\nn5+vr7/+WhEREaXu07JlS+3cuVPS5Xnef//9pc7eW1T1/IwxGj16tFq0aKEZM2bI6XRaPsOqV9Uz\nnDhxolatWqWUlBRFR0crPj6e8P5/NfpNNnJzc5WYmKiMjAz5+flp3rx5Cg0N1V/+8hc1atRIPXr0\n0MqVK7VixQoZYzRq1Cj16tWr1P327dun2bNnq6ioSF26dNG4ceOKPd6kSZP06KOPetWTz8YMly5d\nqjfeeKPYNy2zZ8/WPffcU41nXnElvVPct99+q5ycHMXGxio1NVVvvvmmjDHq37+/Bg8eXOq7yx05\nckRTp05VQUGBmjZtqlmzZsnpdJY4e29R1fNLTU3V+PHj1bZtW/djjh8/XhEREdV41pXLxnPwioUL\nF+pnP/uZBg4cWI1nfPOo0fEFAKA61OiXnQEAqA7EFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8QUAwLL/B36M6wikk3reAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['mse train all feature: ', 4.4521161e-07]\n", + "['mse test all feature: ', 6.5240918e-08]\n", + "['mae train all feature: ', 0.00042638468]\n", + "['mae test all feature: ', 0.00020227849]\n", + "['mean avg bo spread: ', 3.9868658581951545e-05]\n", + "['how often sign of price change is same: ', 0.55339805825242716]\n", + "['if same sign, how often is actual better than 0.1 percent in both directions: ', 0.0]\n", + "['if same sign, how often is actual better than predicted in both directions: ', 0.98245614035087714]\n", + "['if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions: ', 0.0]\n", + "['if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions', 0.0]\n", + "['if not same sign, how often is actual worse than -0.1 percent return in both directions', 0.0]\n" + ] + } + ], + "source": [ + "df_err = check_error_metrics(df, y_train, y_test, reg_linear.predict(X_train), reg_linear.predict(X_test), X_test[:,idx_close_bid])" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# log results\n", + "log=True\n", + "\n", + "if log:\n", + " \n", + " simname= \"linear regression\"\n", + " sim_desc = \"1 row lookback\"\n", + " \n", + " dict_err= OrderedDict(zip(df_err[0], df_err[1]))\n", + " \n", + " list_stats=OrderedDict()\n", + " \n", + " list_stats[\"simname\"] = simname\n", + " list_stats[\"sim_desc\"] = sim_desc\n", + " list_stats[\"MSE\"] = dict_err[\"mse test all feature: \"]\n", + " list_stats[\"MAE\"] = dict_err[\"mae test all feature: \"]\n", + " \n", + " differences_described = pd.Series(reg_linear.predict(X_test) - y_test).describe()\n", + "\n", + " list_stats.update(OrderedDict(differences_described))\n", + " list_stats.update(dict_err)\n", + " \n", + " results = pd.DataFrame([list_stats])\n", + " #results.to_excel(\"log_results.xlsx\")\n", + " if os.path.isfile(\"log_results.xlsx\"):\n", + " log_results = pd.read_excel(\"log_results.xlsx\")\n", + " log_results.loc[len(log_results),:] = list_stats.values()\n", + " log_results.to_excel(\"log_results.xlsx\")\n", + " #log_results" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      012345
      simname500_epochs500_epoch_lookback_40linear regressionlinear regression500_epochs_40_lookback_pca_unshuffledlinear regression
      sim_desc\\nkaggle params but with 500 epochs to account...500 iterations, lookback 401 row lookback1 row lookbackadded directional errors checking and pca as f...1 row lookback
      MSE1.59188e-071.97246e-076.79626e-076.55241e-084.82937e-076.52409e-08
      MAE0.0002857810.0003408460.0005363070.0002029050.0005944820.000202278
      count102102103103102103
      mean-9.29131e-07-3.83515e-05-5.08408e-05-2.90581e-050.000506372-2.31451e-05
      std0.0004009530.000444650.0008268490.0002555660.0004782960.000255616
      min-0.00135148-0.00127888-0.00317997-0.000772953-0.00072515-0.000772119
      25%-0.000158489-0.000304043-0.000402606-0.0002006290.000192821-0.000199616
      50%6.07371e-05-5.84126e-06-3.07747e-05-2.43187e-050.000540495-1.14441e-05
      75%0.0002399680.000177890.000316920.0001162290.0008309780.000123918
      max0.0007556680.001287820.003273720.00053370.001593350.000535846
      mse train all feature:004.3917e-074.45245e-075.16241e-074.45212e-07
      mse test all feature:006.79626e-076.55241e-084.82937e-076.52409e-08
      mae train all feature:000.0004235650.0004267730.0005053850.000426385
      mae test all feature:000.0005363070.0002029050.0005944820.000202278
      mean avg bo spread:003.98687e-053.98687e-053.98687e-053.98687e-05
      how often sign of price change is same:000.4466020.5339810.8823530.553398
      if same sign, how often is actual better than 0.1 percent in both directions:000.15217400.6555560
      if same sign, how often is actual better than predicted in both directions:000.97826110.3666670.982456
      if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions:000.15217400.06666670
      if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions000.10526300.3333330
      if not same sign, how often is actual worse than -0.1 percent return in both directions000.105263000
      \n", + "
      " + ], + "text/plain": [ + " 0 \\\n", + "simname 500_epochs \n", + "sim_desc \\nkaggle params but with 500 epochs to account... \n", + "MSE 1.59188e-07 \n", + "MAE 0.000285781 \n", + "count 102 \n", + "mean -9.29131e-07 \n", + "std 0.000400953 \n", + "min -0.00135148 \n", + "25% -0.000158489 \n", + "50% 6.07371e-05 \n", + "75% 0.000239968 \n", + "max 0.000755668 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 1 \\\n", + "simname 500_epoch_lookback_40 \n", + "sim_desc 500 iterations, lookback 40 \n", + "MSE 1.97246e-07 \n", + "MAE 0.000340846 \n", + "count 102 \n", + "mean -3.83515e-05 \n", + "std 0.00044465 \n", + "min -0.00127888 \n", + "25% -0.000304043 \n", + "50% -5.84126e-06 \n", + "75% 0.00017789 \n", + "max 0.00128782 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 2 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.79626e-07 \n", + "MAE 0.000536307 \n", + "count 103 \n", + "mean -5.08408e-05 \n", + "std 0.000826849 \n", + "min -0.00317997 \n", + "25% -0.000402606 \n", + "50% -3.07747e-05 \n", + "75% 0.00031692 \n", + "max 0.00327372 \n", + "mse train all feature: 4.3917e-07 \n", + "mse test all feature: 6.79626e-07 \n", + "mae train all feature: 0.000423565 \n", + "mae test all feature: 0.000536307 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.446602 \n", + "if same sign, how often is actual better than 0... 0.152174 \n", + "if same sign, how often is actual better than p... 0.978261 \n", + "if same sign, how often is actual better than p... 0.152174 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "\n", + " 3 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.55241e-08 \n", + "MAE 0.000202905 \n", + "count 103 \n", + "mean -2.90581e-05 \n", + "std 0.000255566 \n", + "min -0.000772953 \n", + "25% -0.000200629 \n", + "50% -2.43187e-05 \n", + "75% 0.000116229 \n", + "max 0.0005337 \n", + "mse train all feature: 4.45245e-07 \n", + "mse test all feature: 6.55241e-08 \n", + "mae train all feature: 0.000426773 \n", + "mae test all feature: 0.000202905 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.533981 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 1 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 4 \\\n", + "simname 500_epochs_40_lookback_pca_unshuffled \n", + "sim_desc added directional errors checking and pca as f... \n", + "MSE 4.82937e-07 \n", + "MAE 0.000594482 \n", + "count 102 \n", + "mean 0.000506372 \n", + "std 0.000478296 \n", + "min -0.00072515 \n", + "25% 0.000192821 \n", + "50% 0.000540495 \n", + "75% 0.000830978 \n", + "max 0.00159335 \n", + "mse train all feature: 5.16241e-07 \n", + "mse test all feature: 4.82937e-07 \n", + "mae train all feature: 0.000505385 \n", + "mae test all feature: 0.000594482 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.882353 \n", + "if same sign, how often is actual better than 0... 0.655556 \n", + "if same sign, how often is actual better than p... 0.366667 \n", + "if same sign, how often is actual better than p... 0.0666667 \n", + "if not same sign, how often is actual worse tha... 0.333333 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 5 \n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.52409e-08 \n", + "MAE 0.000202278 \n", + "count 103 \n", + "mean -2.31451e-05 \n", + "std 0.000255616 \n", + "min -0.000772119 \n", + "25% -0.000199616 \n", + "50% -1.14441e-05 \n", + "75% 0.000123918 \n", + "max 0.000535846 \n", + "mse train all feature: 4.45212e-07 \n", + "mse test all feature: 6.52409e-08 \n", + "mae train all feature: 0.000426385 \n", + "mae test all feature: 0.000202278 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.553398 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0.982456 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.read_excel(\"log_results.xlsx\").T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot residuals" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr4AAAI+CAYAAADq7novAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X9slded5/HPee61MRgbOw2E1ECAFLolIUsg051xN9WW\nKOoozUgzYlIIVbRqo5l2dtSZaKsqUdQfkZIm2a40qoSizE5G/WOroqRpZ0dpaJVRQrJocdoNpMSA\ndwIDGGxDwYB//8C+vmf/ODzX917f3/fa9z6P3y8JCfv63vv8Ouc5z/me8z3GWmsFAAAAAAAAAAAA\nBJxX7Q0AAAAAAAAAAAAAKoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHA\nFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCIVrKm+LxuJ555hl9/PHHqq+v13PPPac77rgj8frBgwf1\n0ksvKRqNateuXfryl7+s6elpPf300+rr69PU1JT+6q/+Sg888IDOnz+vp556SsYYbdq0Sd///vfl\nebnjcf39I6VsNoAF0tq6TAMD49XeDAAoCnUXgKCi/gIQRNRdAIKK+guoDStXNmV9raQZX2+//bam\npqb02muv6Vvf+pZefPHFxGvT09N64YUX9OMf/1g/+clP9Nprr+nq1at644031NLSov379+sf//Ef\n9eyzz0qSXnjhBT3xxBPav3+/rLV65513StkkADUkGo1UexMAoGjUXQCCivoLQBBRdwEIKuovoPaV\nFPg6evSo7r//fknStm3bdOLEicRrZ86c0bp167RixQrV19drx44d+uCDD/THf/zH+tu//VtJkrVW\nkYirIE6ePKnPfvazkqTPf/7z6ujoKGuHAAAAAAAAAAAAsDiVlOpwdHRUy5cvT/wciUQUi8UUjUY1\nOjqqpqbZKWaNjY0aHR1VY2Nj4r1/8zd/oyeeeEKSC4IZYxJ/OzKSP41ha+syIutAjcs11RQAahV1\nF4Cgov4CEETUXQCCivoLqG0lBb6WL1+usbGxxM/xeFzRaDTja2NjY4lA2KVLl/TXf/3X2rt3r/7k\nT/5EklLW8xobG1Nzc3Pe7yeHKlDbVq5sYi0+AIFD3QUgqKi/AAQRdReAoKL+AmpDxdf42r59uw4d\nOiRJOnbsmDZv3px47c4779T58+c1ODioqakpHTlyRPfee6+uXr2qr33ta/r2t7+tP//zP0/8/ZYt\nW/Tb3/5WknTo0CHdd999pWwSAAAAAAAAAAAAFjljrbXFvikej+uZZ57RqVOnZK3V888/r66uLo2P\nj2v37t06ePCgXnrpJVlrtWvXLn3lK1/Rc889p1//+tfauHFj4nNeeeUVXbp0Sd/97nc1PT2tjRs3\n6rnnnkus/5UNEXWgtjHyBUAQUXcBCCrqLwBBRN0FIKiov4DakGvGV0mBr2qjYgFqGw0AAEFE3QUg\nqKi/AAQRdReAoKL+AmpDxVMdAgAAAAAAAAAAALWGwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHA\nFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAA\nAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAA\nQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcA\nAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAA\nAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKB\nwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAA\nAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAA\nAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAX\nAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAA\nAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABC\ngcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAA\nAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAA\nAABCgcAXAAAAAAAAAAAAQqGkwFc8Htf3vvc97d69W4899pjOnz+f8vrBgwe1a9cu7d69Wz/72c9S\nXvvoo4/02GOPJX7u6urS/fffr8cee0yPPfaYfvWrX5WySQAAAAAAAAAAAFjkoqW86e2339bU1JRe\ne+01HTt2TC+++KJefvllSdL09LReeOEF/fznP9fSpUv16KOPaufOnbr11lv1yiuv6I033tDSpUsT\nn3Xy5El99atf1de+9rXK7BEAAAAAAAAAAAAWpZJmfB09elT333+/JGnbtm06ceJE4rUzZ85o3bp1\nWrFiherr67Vjxw598MEHkqR169Zp3759KZ914sQJvffee/rKV76ip59+WqOjo6XuCwAAAAAAAAAA\nABaxkmZ8jY6Oavny5YmfI5GIYrGYotGoRkdH1dTUlHitsbExEcz64he/qN7e3pTPuueee/TII4/o\n7rvv1ssvv6yXXnpJTz75ZM7vb21dpmg0UsqmA1ggK1c25f8jAKgx1F0Agor6C0AQUXcBCCrqL6C2\nlRT4Wr58ucbGxhI/x+NxRaPRjK+NjY2lBMLSPfjgg2pubk78/9lnn837/QMD46VsNoAFsnJlk/r7\nR6q9GQBQFOouAEFF/QUgiKi7AAQV9RdQG3IFoEtKdbh9+3YdOnRIknTs2DFt3rw58dqdd96p8+fP\na3BwUFNTUzpy5IjuvfferJ/1+OOPq7OzU5L0/vvv66677iplkwAAAAAAAAAAALDIlTTj68EHH9Th\nw4e1Z88eWWv1/PPP65e//KXGx8e1e/duPfXUU3r88cdlrdWuXbt02223Zf2sZ555Rs8++6zq6up0\n6623FjTjCwAAAAAAAAAAAEhnrLW22htRLKaSArWNKd8Agoi6C0BQUX8BCCLqLgBBRf0F1IaKpzoE\nAAAAAAAAAAAAag2BLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAA\nAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACE\nAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAA\nAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAA\nAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKB\nLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEQrTaGwAAAMKlr8+ooyOiwUGjlhar9vYZtbXZam8WAAAA\nAAAAFgECXwAAoGL6+oz274/KWiNJGhgw6u422rs3RvALAAAAAAAA845UhwAAoGI6OiKJoJfPWjcD\nDAAAAAAAAJhvBL4AAEDFDA6aon4PAAAAAAAAVBKBLwAAUDEtLZnTGWb7PQAAAAAAAFBJBL4AAEDF\ntLfPyJjUIJcxVu3tM1XaIgAAAAAAACwm0WpvAAAACI+2Nqu9e2Pq6IhocNCopcUFvdramPEFAAAA\nAACA+UfgCwAAVFRbm9Ujj8SqvRkAAAAAAABYhEh1CAAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAF\nAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAA\nAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQ\nIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAA\nAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAA\nAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDw\nBQAAAAAAAAAAgFAoKfAVj8f1ve99T7t379Zjjz2m8+fPp7x+8OBB7dq1S7t379bPfvazlNc++ugj\nPfbYY4mfz58/r0cffVR79+7V97//fcXj8VI2CQAAAAAAAAAAAItcSYGvt99+W1NTU3rttdf0rW99\nSy+++GLitenpab3wwgv68Y9/rJ/85Cd67bXXdPXqVUnSK6+8ou985zu6ceNG4u9feOEFPfHEE9q/\nf7+stXrnnXfK3CUAAAAAAAAAAAAsRiUFvo4ePar7779fkrRt2zadOHEi8dqZM2e0bt06rVixQvX1\n9dqxY4c++OADSdK6deu0b9++lM86efKkPvvZz0qSPv/5z6ujo6OkHQEAAAAAAAAAAMDiFi3lTaOj\no1q+fHni50gkolgspmg0qtHRUTU1NSVea2xs1OjoqCTpi1/8onp7e1M+y1orY0zib0dGRvJ+f2vr\nMkWjkVI2HcACWbmyKf8fAUCNoe4CEFTUXwCCiLoLQFBRfwG1raTA1/LlyzU2Npb4OR6PKxqNZnxt\nbGwsJRCWzvO8lL9tbm7O+/0DA+OlbDaABbJyZZP6+/MHsQGgllB3AQgq6i8AQUTdBSCoqL+A2pAr\nAF1SqsPt27fr0KFDkqRjx45p8+bNidfuvPNOnT9/XoODg5qamtKRI0d07733Zv2sLVu26Le//a0k\n6dChQ7rvvvtK2SQAAAAAAAAAAAAsciXN+HrwwQd1+PBh7dmzR9ZaPf/88/rlL3+p8fFx7d69W089\n9ZQef/xxWWu1a9cu3XbbbVk/68knn9R3v/td/d3f/Z02btyoL37xiyXvDAAAAAAAAAAAABYvY621\n1d6IYjGVFKhtTPkGEETUXQCCivoLQBBRdwEIKuovoDZUPNUhAAAAAAAAAAAAUGsIfAEAAAAAAAAA\nACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8\nAQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAA\nAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAg\nFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEA\nAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUotXeAABAePX1\nGXV0RDQ4aNTSYtXePqO2NlvtzQIAAAAAAAAQUgS+AADzoq/PaP/+qKw1kqSBAaPubqO9e2MEvwAA\nAAAAAADMC1IdAgDmRUdHJBH08lnrZoABAAAAAAAAwHwg8AUAmBeDg6ao3wMAAAAAAABAuQh8AQDm\nRUtL5nSG2X4PAAAAAAAAAOUi8AUAmBft7TMyJjXIZYxVe/tMlbYIAAAAAAAAQNhFq70BAIBwamuz\n2rs3po6OiAYHjVpaXNCrrY0ZXwAAAAAAAADmB4EvAMC8aWuzeuSRWLU3AwAAAAAAAMAiQapDAAAA\nAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAA\nAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEv\nAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAA\nAAAAAIRCtNobAAAAAAAAytfXZ9TREdHgoFFLi1V7+4za2my1NwsAAABYUAS+AAAAAAAIuL4+o/37\no7LWSJIGBoy6u4327o0R/AIAAMCiQqpDAAAAAAACrqMjkgh6+ax1M8AAAACAxYTAFwAAAAAAATc4\naIr6PQAAABBWBL4AAAAAAAi4lpbM6Qyz/R4AAAAIKwJfAAAAAAAEXHv7jIxJDXIZY9XePlOlLQIA\nAACqI1rtDQAAAAAAAOVpa7Pauzemjo6IBgeNWlpc0KutjRlfAAAAWFwIfAEAAAAAEAJtbVaPPBKr\n9mYAAAAAVUWqQwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAA\nAIRCtJQ3xeNxPfPMM/r4449VX1+v5557TnfccUfi9YMHD+qll15SNBrVrl279OUvfznre7q6uvT1\nr39d69evlyQ9+uijeuihhyqycwAAAAi2vj6jjo6IBgeNWlqs2ttn1NZmq71ZAAAAAACgRpUU+Hr7\n7bc1NTWl1157TceOHdOLL76ol19+WZI0PT2tF154QT//+c+1dOlSPfroo9q5c6c+/PDDjO85efKk\nvvrVr+prX/taRXcMAAAAwdbXZ7R/f1TWGknSwIBRd7fR3r0xgl9ACQgkAwAAAFgMSkp1ePToUd1/\n//2SpG3btunEiROJ186cOaN169ZpxYoVqq+v144dO/TBBx9kfc+JEyf03nvv6Stf+YqefvppjY6O\nlrtPAAAACIGOjkgi6OWz1nXcAyiOH0g+d87TwIDRuXOe9u+Pqq/P5H8zAAAAAARISTO+RkdHtXz5\n8sTPkUhEsVhM0WhUo6OjampqSrzW2Nio0dHRrO+555579Mgjj+juu+/Wyy+/rJdeeklPPvlkzu9v\nbV2maJQOD6CWrVzZlP+PAKDGUHfVllhMamzM/PuVKxd+e4Balq/+eustadmyub8/cULatm2eNgoA\n8qDtBSCoqL+A2lZS4Gv58uUaGxtL/ByPxxWNRjO+NjY2pqampqzvefDBB9Xc3CxJevDBB/Xss8/m\n/f6BgfFSNhvAAlm5skn9/SPV3gwAKAp1V+2JRqMaG5uboGDVqrj6+2NV2CKgNhVSf124UKexsbmz\nuy5csOrvn56vTQOArGh7AQgq6i+gNuQKQJeU6nD79u06dOiQJOnYsWPavHlz4rU777xT58+f1+Dg\noKampnTkyBHde++9Wd/z+OOPq7OzU5L0/vvv66677iplkwAAABAy7e0zMiZ1/SFj3LpEAIrT0pJ5\nLa9svwcAAACAoCppxteDDz6ow4cPa8+ePbLW6vnnn9cvf/lLjY+Pa/fu3Xrqqaf0+OOPy1qrXbt2\n6bbbbsv4Hkl65pln9Oyzz6qurk633nprQTO+AAAAEH5tbVZ798bU0RHR4KBRS4sLerW10VEPFKu9\nfUbd3SZl3TwCyQAAAADCyFhrA9dzwFRSoLYx5RtAEFF3AQiqQuuvvj5DIBlAzaDtBSCoqL+A2pAr\n1WFJM74AAAAAAMHS1mb1yCOsjwcAAAAg3Ah8AQAAAACARYvZkAAAAOFC4AsAAFQcHUgAACAI+vqM\n9u+PJta/Gxgw6u422rs3RtsFAAAgoLxqbwAAAAgXvwPp3DlPAwNG58552r8/qr4+U+1NAwAASNHR\nEUkEvXzWugE8AAAACCYCXwAAoKLoQAIAAEExOJh5YE623wMAAKD2keoQAIAKILXfLDqQAABAULS0\nWA0MzG2jtLQsznYcAABAGBD4AgCgTKwNkYoOJAAAEBTt7TPq7jYps9WNcYOYFhsGcgEAgLAg1SEA\nAGUitV+q9vYZGZPaSbJYO5AAAEBta2uz2rs3pg0b4mpttdqwIb4oBy+xRisAAAgTZnwBAFAmUvul\n8juQGDEMAACCoK3N6pFHYtXejKrKNZBrsR8bAAAQPAS+AAAoE6n95qIDCQAAIDgYyAUAAMKEVIcA\nAJSJ1H4AAAAIsmwDthbzQC4AABBcBL4AACgTa0MAAAAgyBjIBQAAwoRUhwAAVACp/QAAABBUrNEK\nAADChMAXAAAAAADAIsdALgAAEBYEvgAgoPr6DCMygYCgvAILj3IHAAAAAIsTgS8ACKC+PqP9+6Oy\n1kiSBgaMursN60rlQAcoqoXyCiw8yh0AAAAALF4EvgAggDo6IonOPJ+1LrBDepK56ABFNVFegfmX\nPrhhYECUOwAAAABYpAh8AUAADQ6aon6/2BF4QDVRXoH5lWlww4cfGm3aJDU1pQ5uoNwBQH5kSgAA\nAEFH4AsAAsiNZp/bedfSUpkH0rA97BJ4QDXNd3kFFrtMgxsaGqSeHqMtW1LLGeUOwGJWSBufTAkA\nACAMCHwBQAC1t8+ou9ukdPQZ4x5eyxXGh91cgYewBflQe+azvALIPIhhzRqrf/u31N9T7gAsZoW2\n8cmUgLDgOQ8AFjev2hsAACheW5vV3r0xbdgQV2ur1YYN8YoFpnI97AZVe/uMjEk9NsZYbdw4o/37\nozp3ztPAgNG5c57274+qr4+ZYKic+SyvADLP4mpulr7wBcodAPgKbeOTKQFh4Ad6ec4DgMWLGV8A\nEFBtbXZeRl2G8WHXDzykj/hjRCsWynyVVwDZZ1U+/HB1RnYzwhy1imuz+qp5Dgpt45OiGWHAcx4A\ngMAXgEDiwX3+hPVhN1PgIYxBvoVGWQRQbdkGN1Qr6BWEdMHU3YtPUK7NMKv2OSi0jU+KZoQBz3kA\nAAJfAAKn2g+NYbeYHnaDHuSrdsclZRFAsmrWSbUyq7JWR5gnnxtrrXp6jJqaqLsXk1q9NheTap+D\nQtv4tTSYAChEpvZH0J/zAADlI/AFIHCq/dA4n6odyJAKf9ithW0tV5CDfLUQdApzWayWMJQrLE61\nUCfVglocYZ5+brq6IhoYkLZujau52f0NdXf41eK1GQSVvC9X+xwUE9CqlcEEQD7Z2h87d8YC+5wH\nAKgMAl8AAqfaD43zpZY6DfM97CZv68iI0eHDRr/4RVRf+EKsamuqlCLII1prIegU1rJYLbVUBwDF\nqoU6qRbU4gjz9HMzOen+39trtGXL7HZRd4dbLV6bta7S9+VCz8F8DoIhoLVwGMy0MLK1P86ejQT2\nOQ8AUBkEvgAETlgf3IPUaehv68iI0fHjnuzNQ//++xEND892CAThgS+5AyAI2+urhaBTWMtitQSp\nDgDS1UKdVAtqcSZx+jloaLCamDA3A2Cz9fV81t3+/bW72+jKFU+rVsW1fn1t32fLUYvtiVq8Nmtd\npe/LhZyDWhsEU4vXchDU2nkMs1ztDwK9ALC4EfgCEDhhfXAPUqehv009PSYR9JLcKHK/Q6C9fSZQ\nD3xBe0CthaBTWMtitQSpDgDS1UKdVI5Kde7W4kzi9HOzdq3V4KBRQ8PsNs1n3e3fX4eHvcRgmVOn\njIaG4jV9ny1VrbYnqnltzkfwZCECMpW+LxdyDmppEEyuFHJnz9ZOHVeLauk8hl3Q2x8AgPlD4AtA\n4NRip1IlBKnR7m+rny7J53eiDQ6awD3wBW1704NOw8MubZUxRq+/Hl2QMhHWslgtQaoDsDgU07Ec\n5EB4pQMVtTbCPP3cNDVZbd06ozVr4vK8+a+7/ftr6mAZo95eo+Zm1ex9tlDp5eT6ddVse6Ia1+Z8\nBALL/cxC67ZK3JczfVeuc1BLg2AytY2Hhz3t21evNWusenvds8CBAxF985tT2rGD9oqvnPPILLvi\nBLn9AQCYXwS+AARSrXUqVUKQGu3+tvrpkhyrNWvcQ1lLi63Ig/tCPvjVUkdDIZKDTt3dRr29ntau\ndZ1r584t3OjyMJbFaglSHRBGpdY3Ye2gKrZjOciB8KANfChWtc+Nfx9NHyzjp1qs1ftsITKVkw8/\n9PSpT8XV3Jz6t0Hez3LMR/kq5zOLqdvKvS+XEqCrpUEwma7Znh6jgQHd3Eb3+sSE0b599frBD6YC\nUecvhFLPY63OGC1UNdpE1b7HAQBqV+SZZ555ptobUazx8alqbwKwqPT1Gb31VlQdHRGdPeuppcXO\neZhP1ti4JFTltNj9L1Vzs7R+vdXoqNHQkNTf76mx0WpkxMzbd5bK39bJSTfLqKnJatMmt43GWD30\n0Iz6+03GB+bbb7e666543u/wH/wGBjxNTrrPOnHC0/r1hR2LYs/b2bNeWdtbDc3N0l13xXXxoqe6\nOqMlS5JfNRodNTW77aWaz/JY7boruQ4wxl17Dz2U/8F9oeqoMCu1vim3nqplb73l9itV7nrFr5N2\n7IjrrrvmdvzXqo6OyJygjCQZI+3YEYw6NF/9lX5uRkbmt95IrpdOnfI0MyONj6fOFG9qslq5srbv\ns/lkKicDA0bDw9LKlal/G+T9LMd8lK9yPrOYuq3U+3Ip3+VrabE6ccKTH1Ry++W+d6HqVL/8vv9+\nRBcvuval38bs6fE0NCTV16cef2Pc80Cx13i1217zpdTzWMo1Uyuq2SYKavsDwRbW+gsImsbGJVlf\nY8YXgJyCNOqskBFmxY5CW+j9b2tz29TZGVV/v9TTE9HJk1adnUbf+EZtHfO2Nqu//MuYvvSlmYzH\ntNxRsgs1mtcX5Nk2QZutVqr5LI+uk0e6cKGuqiNFi51BF6Q6ulZkug+UWt+EeaZQpvpjZMTo3XfD\nN6K6lmZYpJuvtZHms95I//yGBun4cU8bNrjZXS7doZslHpT7bDaZysnatVanT6f+Lqj7WYnrbz7K\nVzmfWWxzE7v6AAAgAElEQVSbqZyZ7aW0z6o9eyW5/H7iE9LFi54GBqy2bnXBhIaGuJYvT13jV3Lp\nztP3K6wzogtR6nkMcps+zG0iAEAwEfgCkFNQGrCFdOKU0tGTvP/+GkqTk56uXPH0xBPFpfMo9OHv\nzTcj6uyMKDl9yMCA0ZtvWn3967GiP2++ZesQKPfBvZwHv1Ku22p3NJRjoTttq3XtzVd95NcNy5ZJ\nY2OmJoNH2Y55UOroWpHtPpBNvvqm3A6qWqnHM0mvV0ZGjI4f99TSEtfAQG2Wk1LV6sCHcgJUua6t\nbPXGgQMRtbaq7Osx/fPdmmLS5KT0uc/FdOWKp1Wr4lq/vrau+VJkuv82NVnt3BmvyLGspkoFSOej\nfLlBYkY9PW62/uiotHy5VUuL2+5c27eQbaZSvssvu93dJlFWpEhV2lqu7MZvpjc0+vf/fkYPPDCj\nffvqU/bLGBfwTd6v5OtneFg6fNjTL34R0c6dM/rSlyq3L7V8Hy0laFrLAzHyCULQrpavFwBA5RH4\nAhZQEBtaQWjASoV1iJfSQezv5/CwG63sB6N6etzDXDGLaBfaeZAc9Jpl9P77Ed1yi9umeNyqt9dT\nU5Pyfl4xKn2NljNKdiFH8/pybW8tl99snUobN87o9dejFdnm5I6YkyfdemJNTXbOtZftOGX6vaSi\njul81Ue1HjzKVX/UQh2dr2zUUtnJdq77+41Wrpy7Tfnqm3LqqVqfrZder/T0GFk7u5ajVFvlpBy1\nOvCh1Lop37WVbTbfhx9GtH27zfieYmT6/KYmq3XrrP7iL6aL+qxal+3+W8mO/Wqp1L1x/sqX0cSE\n0cWLnqJRqa7OqqdH2r+/+Bn+IyPS9evSK69UdtZ3sUE/v+wOD3s6ftyTtdKpU0ZDQ/EFuz+kl9+m\nJqstW6xaW2fbyN/85pT27avX5KSnhgartWutmpvjKfvlXz/pz1AdHUZDQ5WbrV/L99FS1OpAjELU\netAujNfLfKildjsAlIs1voAFEtR1QEpZ9yg51/FCrT1TSK7/UtYD8Pf/zBk308vnr0tRaL71YvK1\nHzgQ1chI6nbeuCH197v1IiYnjX73O08XLkTU0qKkdZ3Ky/8+39dosddCOWscVHq9roUqv5mOUSHr\nsGRag2L79hkdPFiZbU7e/64uTwMDnq5cMUnXn7v2WlpsxuPU0GD1xhvRxPuOHvX0T/8U1TvvRDQ9\n7R7uC9m++VqHza8b6uujmp6e7ViolfV9ctUfDQ2ZO5kXai2ZfGWj1u592e4Dy5dbGSMVW98UW08l\nl/EDB6KamandtfnS65Xr143uuGPuectXTirdDpivdkUtrg9STLslue2Vr82RqS49c8YFD1LXpSrt\neiynrg7amoXlrgFViGodk0quzVXp8vXWW1GNjxsNDkrRqFFjoxSJSFNTyts+Tz9nDQ1Ww8OStcWv\n8VhK+yzX9eGX3TNnPE1M+MfeaHo6935V8hoppPx+8pPSH/xBXE1NVqtWWd1xR3zOfvnXT/ozlDFG\nt99uE/uSaY0cf39+9auI/vmf6/TRR54uXpy7X5VeD6sW6p+FqFPmSy2sT5dLputlZMTT//k/EZ0/\n7wXinjPfaq3dXutY4wuoDazxBdSAWp9RkE05o84WclRVISPMShmF5u9/6gObS+chFT6rophZGdu2\nzejiRS8ld/7wsEl8p+SCX9a6Efhbtsz+vpxZHpmu0aEhox/9qF6rVsXLSk1UyrXQ1ma1c2dMr75a\nr6tXpVtvlfbsmS7oeys9WnIhym+mY9TZ6UmyamrKf9zSZ6u9/nq06G0uJJ2e3wmWfv0NDpqsx+nV\nV+u1cqVNGfXb3+9/XjyxbkS+7ZuvUbC1PkI1V/3x0EOxqo4Mzlc2au3el+1c+/VasSNci5nJkF7G\ne3qMJieNtm51nYe+Uuvx+Rihm1yvvP56VOfOpXcw5k/ZlbzP58+7dHp33RXXihVW1kqel392aDkp\ni4Os1LopX5sjU106OSl96lNzP7eU67HUujqo57ec2e35VPOY1PK90b8u0wNz/s/FzPD3Z8Yns9bo\nzTdnMy2UUxcVc33k3q/MszWzbcvOnTGdPVv8bOxCy2++/fKvn/R98QON773nvnvdOunuu82cY1vI\nrLd8dV0x98Vaqn8yHdsgzMKp1dnTvvTrxU/h3NBgtXJlaSmcg3BeilFr7XYAKBeBL2CB1EI6qlKU\n04BdyIZTIQ9ppXTE+Pt/5Yqnnh6TSOfhd1IW+vCfqfNgeFjq7/fmpFX50pdm1NPjqafHjbRqaHCL\nv2/aNDtysaHBamJi7sNkOZ0R6dfi8LB09GhEQ0NGsVhE0ai0YoWnHTtmin4oKOVa6OszOngwqpUr\nbWIE+sGDUa1enf97K/3gtRDlN9Mx6ulxga/k4GahZajYbS40nZ5/7UmpHTMtLZk7ZCTp6lU3Urm3\n18gfBRqLuU4cyej0aaOlS93nnT9vsp6r+Xqg9uuGZLWUViZf5+OKFVbHjnkyRrrnnhk9/HB5x6SY\nh/h819ngoElaH9HVZ2vWZL9Wiv3+YuW6D5TaeV3o+9LLuF+W0gcw5KvHk4+PtS54NDxsdOSICyob\n445zR4enf/fv4nMCS6Uq5R6avk6mH/g+csToxg23/Vu3xlM6ag8ezN6B++67EY2PS2vWzI48ruUO\nmXKv5VIDSPnqjEx16YoVcQ0NFRfYzKbUujpIHW4L1dlZzWMy3ynXyjmG/jWe3CaRXL3qv16oTPej\n4WHpww+j2r7dtb3TO8Tn67yUsl/ZBq7t21efuLdkSkudK8hTibaWf/0k74sxUmur1fHjnlpb3fdO\nTUmdndE5x9al1/U/zai316i5WSnH2Fqrrq5Ion3hP6O1tOTfx0KOY63UP7UUlMtnPgcClCv93uhf\nY375koo750E6L4UKap8VAGRDqkNggcxXiq6FUGx6En/KdyVTpBSyjfnSQvh/09Nj9K//6mloyGjd\nurg2b849dd/f/2vXXOe9n5aqmNQN6akfhoelEyc8tbVJ8bhS0gi0tVl9+tNxLV0qffKTVvfcE9ea\nNXFJrgP5zBmXdqC/36i52eqTn7RFb08m6dfoiRMuneL4uEtLEosZjY2512+/fTbdSq60IMmpSvr7\nXUqv5LReua6FctNR5Lpui01lshDlN1N56enxFIu570lWSBkqdJv9Y/E//2edLl5MP0dz0+ktWSJd\nueICWC7lp01ce/39JsuDkUtD5PbHD5pJnidFo9KlS0bRqLvGIhHp8mWTNaXGfKQj8+uGWKxeU1Ox\nBU8rk+96zJY6Zvv2Gb3xRlSTk55aWqSWFpfmyZ9BV+q2FJPiJN91duSIp8OHI5qcdOd+ctLoyhWj\nT30qrvvuy5yuaT5TrFQzhVB6GffLkp/2Scpfjycfn/5+T4cPR3X6tKcLF4zOnYvo+nWXrm50VOrq\nimh42Ki1VSUdx/Trcu1aF6TKd+yS3/eb30TkeW5fk9NdXbvmJdKk+im8JKP/+3+jWrYsdTsuXfL0\n059Gdf68246pKU/XrrlyMXs/zlwnVjNtVSWu5WKu1+R0O4Wkm0qvS2+/vbIpqkqpqxey3ViOhUwF\nNV/HpNg0fUNDbrBWY6NLwVyJlKXlHMOWFhcguXx5dqBYXZ30mc9YNTRkvm6z7XPm1J+uXZK69uNs\nCr35Oi9+2W1oMDfbWpJktWlT9v3KtC1+fZvafpzd/nwpAivR1vKvn4kJJdYl3rTJ6vJl6cYNT5s2\nuTq8vj6qqamZOcfWbwMntu5mHegfYzdAzj0TJLcvWlqs/uzPXOCumDSI2c7p0JB08aJX1fSHlU7p\nuFil3xvdNWYT16Kv0HIcxvMS5D6raiDVIVAbSHWIRauWpp4HeaHaUhWSIqWS56jQEWZDQ65T3f3f\ny7sItv/Z5Yx+TH9/f7+nrVttSnqr5BFm6fvS12f0939vdPx4RH5j3T10uaBDKekH06Vfo7//vZuR\nU1+f+nfu964jNddIN0mJ16x16SMuX5bq660GB93slM98ZkZ9fSbjdheTjkLSvKYyKab8lnpNZyov\nbgTi3PcWMpK5kG1OPhbXr3saHJROnZJWrXKjZf2ZOQ89FFNnp0mZhSi5B6Dkay/bd+7ZM31zFodV\nf/9sR0ZTk9XwsFEk4nf6uzSi1Rhh29ZmtW2b1N8/vWDfKUlHjxr98If1N8uV0erVcXV2Gn3jG7PX\nY7b6Zz5GJxf7mfmuM2Nc4Dw5dasx5uZ6WuV/fymqNRo5vYw3N7sg5Y0bRq2ttqD6Ivn4zI6GdzMl\nPc/9fmjI/U4yifpamnscS00pmOvYpb9vbMyN0t+6NZ7SoZh8PfgpvKTZ2aG+kRGj3/42olhMamy0\nmp52gfHbbvPU2zs7GzZTnVjtkdjZruVc6dMyKfV6bW626ux0acK2bZvRl76U/3vS65mNG4tP/1mO\nWk6tl2whZ4ZU4pikl/WNG2cyzqzMlqbP1fNuBr61RufOlV+WOjoiGh72Eilf/dk6xR1D1xaJROI3\nB2ZZNTXNaO/ezAH5bPVBttSfmzZlb5vO17WaXA6bmwtLM55pW2bbapm3v9BZHfnuE+mvSXPb41//\nekwPPzxbl1y75mnt2tQUv8nfnW/WWzxu9frr0cQM4A0b4hocTJ5VHldbW/aZ5dl+n3wcR0bcjLPB\nQaOxMekP/9Btb6XvI4U+MzALpzLS73Nr18a1ZMncQGah5bi726iry5sz4zDI52Ux9lkBCDcCXwit\nQjs8Fio4Vus5r+dDvoZTNTqlyumsKLezNPn9r7xSl/GBOVtDua3NNaZ7etzDeHLjev36ynTipl+j\nTU1WS5e6FFqTk1IsJt24IU1MGP3Lv3has8bq1Kl6NTQoYwDP/7/kghmXLxtdvOhpfNzN9HEz3Tz9\nl/9Sr//4H2cf6iV3no4d8zQ2ZhL7mS0dxZtvulkN/nd1dXn6h3+o0yc+EdfatdKePVPasWP2PW++\nGdHJk56S0641N+e+Bgotv+Vc05nKy9q1cfnpAH2FPnwUss3J5cFaqytX3CjIy5fjN4OVVmvX+sfE\nJP4tXeq2LX2/cn9nTEeO1CsW0820me49ExNWt93mHjKT04gG+aGxUEePGv3X/9qgixe9xKyYkRHX\n0bJmjdXXvz57PWaqf8rpCMl27yv2M/NdZ8a4oEd656bJEvkKcueOf0y7u03GzspMZXzFCqu9e12w\ntaMjol/9Klpw51dyIGlmxtWrUnIa0bmS1z3JVVeVeq9Mf9/atW6gQ2/vbCemMdLq1bOBsOQ6/dZb\nUz+vp8coFlMiON7cbDU56YJ7K1a4/cxWJ1Y7bVUp6dMKka/dmnxu77jDH+RTWPlJrmeq0UYLSoeb\nf27T07hmq9fKUe4xyXQeDxyIaO3azG23TGWjmLJU6HNVd7dJrN8kubbl4KBRc3O8oM/xt2ly0mjV\nKn/bjLq6IpKKrw/S72MtLa6Nmiw5Rbm1ViMjs2uwSsVfq9n2sdjnjUzXiLvXzv1bv0O/0MGJhQxu\n81/Lty7tI4/E1NdndOpUvU6fdtkE1qyxamxM/W5/f9z9wx/g4drrIyNWIyNeYhbWlSvuHrFhw4w2\nbYrLGKOPPorolVeMTp3y5jyjpO9jpuOYvLbYlSuuvXr8uJdYj7NS95Fi6tigDAoIglz3Oam4tcxP\nnvQS58Wvw7ZujWvDhnhNDcAuxmLsswIQbgS+EFqFPKRV6qG+r891vnd2RnKOrK3lnNfzIV/DqRqd\nUvPRqVpKw7bQB5jkzz52zLsZGEhNM1Buh3C27Y/Hrf7pn6KanpYGB6XpaZeGrq7O6Pr1iOrq4hoc\ndEGZrVvdNp06ZXT5sqe6urjWrLFas8YFVE6fdiMnBwZcwGv5cqm+Xhod9fSv/+qpoWFG1sZTHppb\nW616e40GB72k2QLuwTdZZ2ck0bl36ZLR//7fblbc6Kg0MSE9++wSffe7N7Rjh8v3/+670cQI0oEB\no48/djOccq0tJc2OevaPVUdHJGcgyVdMYDVTefE/d7Yz3aZ8d67rL1+dM/facT/PzPgdyq6TuqMj\noqYmacuW1Gsv035l+86zZyPascNq06ZYSkfh+vXShg2lzWpLF6SHzL4+t/5Gf7+neNwoHpdiMauG\nBjdD5he/iOqWW5RzMfpiOnWS3xeP20TaISn13ldK50qu68x9Xuo6dbk+L6idO357IrnD7NQpo6Gh\neM51UzZunNGbb0b07rtRNTS4QNHAgC2o8yt5NHxrq9XoqKuPo1H3nljMavXqzMc9X11V6r0y/fWm\nJpce8do1Nyr/5EklOmOPHDEaGjIyxlNXl9XatXHt2TOVMhNlctLtj3+tLlni6uvJSaNPfMJqw4Z4\n1hkIv/udp098Ym75yLQPmdZNK3dttEzXsgsApv7d0JDRj35Ur82b4ynfl202RbZ2qz9TrlIzzcq5\nn5VaF+e6D77+ejSl3Jw9W726vqXFtRn8Nesk1+l58qSyzmIvVKZjV04nZKaZVYOD7rXkenlkxOjd\ndzN/R7Yg7oEDbt09f33J++4rfCbZlSuzQS+fCzR4Kc9nIyNGhw+7e+KOHTE1N7uyeeyYp6tXpeSB\nQZI0Oekl2kjJxyx9HU+fn70g+f44MODKZVeXSawn6Kco37rVL9eunXn1qhscduut0p490zlnQ2UL\nUOc7VvlkKjcPPJB6LqTUDv1CAqq56gD//8lyrUvb3j57r7PWHbeJCU9dXdKnPy2tX6/Ed+ea9TYw\n4L7n6FHXBpqZkRoapAsX3PUwPGy0bJnV+Lgrp6dPe9q6dfY+kCuo4X/vj35UL8lqbMwoHndp5o1R\nynqclRiMU0wdG5RBAeVa6HZ8OUGejo6I1qxxbTa/HrJW6umR/vRPZwK99tdi67MCEG4EvhBahXTa\nVCLw4lLQRdXZOZuC7uJFl2/+G9+YDkTjZj7lajhVY2S/3xGVPkr3j/4odc2jQhrAfX1u1OzBg5HE\nqMVCG7bFpqGTpPFxd235Iw6T9ymTQvYj14P3fffN6J//Oaq6OrduQjzu/jU1uRk6LnAlNTZKnZ1G\nly659IOeZ9TU5NYDu3BBNz/X040bsw/JsZjbDmtdJ8Ply56keMpDc3Oz6yg9ccLTb37jZqBt2DB3\nnYHkjpMTJ2bLoR+8sdbo1VfrtWPHDXV0uHM1MCBdu+Y6NjzPKBazam2Na//+aNZzV0gnRa5rupDz\nka28ZEsztHNnrOBOpkySO2aNMbrtNquhIamuzqq11c3MGRpyHUzXr3spMw1z7W+2YyC59G6u42C2\nE0JSQQ/zpaZmy3Uskj9z3Trp7rvL67TMx/++d9+N6Nw512njcx0sVg0Nnm7csDp3zlNnp0nMkLLW\nzXz0R1MvWWJvjkLO3amT3on4/vuehoeNNmxwaxwmj2DOVTeV0iFRbGdNUDt3/PbEbPpBSXJBzOZm\nZeyI9dONHTkSSax/d+qU1X/4DzO6/fbMgeXk4zM7Gt5q+/a4/t//c53Xq1ZZLVniyu7mzbPnJ/k4\n5rv/lhqATH+fu9dKy5a5tV527pzS2bMukN/c7OoDN0vG1QmrV0s7d8b06qv1unpVmppyKVX92aiS\nC36tXj2jp5+eytmRXOg9M718uMClC9iVUo/4ZaOQ9GnDw24mwdKlbi0h//uy1e0rVtis7dZt29zP\nuWaabdpkEwGQAwci+uY3Z2dEJ89YPHvWU1eXkeRp9erZeiLb5ycfh3yB3FJSp/nnZ3hYevttT6dP\n12n5cumWW9z57Oxc2DZ3e/uMDhyYbW9IfqrezOW2UKWmGM31eQcORNTVFUnMtJ6YkC5edOsL+m3g\n+np7s/1kdeqUW5Mz+frIVK6PHPE0POwl1sDq7XXrLW3eXNhMslWr4jp1ygWQZlmtWhVP1Kez5VGa\nmjL6X/+rTitXurI5NmZ07pyn5ctdINyfTb52rRts0N2dehy7ukxilpufxm5y0qi1Na4LF+rU1OSX\nx0hipvLatS7Ycdddcd24kZqifHjYrYXT2jo7KOjgwahWr848Gyq9Hqn04L/M7cfZujQ9MFdIh3+x\nz2mzs5BTy2F3t1FnZ1Tvvx/RtWsu88PYmBvUsGSJ0cWLSqSgl1LrgfXrrfbuna3r//t/r9Px426m\nVzTqMlGMjrrr6Pp1dy+55Rb33DEw4J4bJieN1q3LnU44+TsvXHA/G2M0NmYViXianJSWLJnd70oM\nxinm+C6GWTjVSk9capDHzVB1KauT+xTuuiuus2erO+McADCLwBdqSjmjfNLfG4/Pjr5JltxQLTXw\nkj7i/sKF1Ac3N9rHC13jptBAyltvSRcu1OU9h5Uc2V/otdPePqPOztS1siYnjXp7XWeMlDl1x5o1\n8ZTR3/7fnTwZ0cSE0cSENDDgHsaT0+blSmNSaBo6P0g3OGh05YqbReB3VBnj1jP49reXJD3YTmn1\n6vwP3cnfkcxvmA8MuE7J8XEX5FqxwioWc6PV6+vdZzQ2SpOTVj09Ec3M6ObMFTcLYXra6ve/d4Gl\nZctm03B5nkvFNTPj74ObUTYyYlIemoeHpXPnPDU2ullHdXVuptPtt8fV0OA6S12qwhl1dbkFqfv6\npKkpPxhmbm6vS9koubLd2mr1u995GhoymplxndQTE36KLU9vvhlJSTFXyLHyy3lLi9WFC7Mjq+3N\nHvBly6wOH65PjBwu9mEu23e/+mp92sLrxc0eSO6YtdaNAp+ZcR1Ha9a4WQ8nT7oT565x13kUjUp1\nda6zp9DR7ZnK+/CwW+B81aq4+vuNVq2Kq7nZLVyenvJtPlKzpX/m1JTU2RktuYO2kPckr6k2PW0S\nAWVXLiTJyPOsVq+OJzrhenrcse7qcuXS1TOufN59d/5OnfROxOFhVzZ6elyAzZ+x6Y/2d+fABdsK\nmWmS6/wX21kT1M4dv90wOGjU3++ObzRqE0Gd48eNDhyo1+SkCyC3tlr9j//hBhacP29UV+dm1MZi\nbk2rBx6YKajza+3aGVnrRrnfuGE1OWm1bNns7Itss2Ly3X8zBW1GRqTr112q3mznJfl9flDHGLeO\nxrlzXlKarEiifpT8juiIvvMd18m9dq30mc9YjYy4z0hfw+Wb33QLiSfPAhoYSA2g+yOxk0fpZwqi\nJtcdyeum9fa69+WrR2bX6XN15erVs4GYXOnThoel3/zG07VrnjzPamLCU2urmymdqW631g1CSO4g\n9iVfK9lmmlnrjuXEhPvumZmInnxyif7bf7uRaDMMDRl98IGn/n6XarihQRoZiWh4OK777nMBxFyD\nbVy7yEu0i/y0T01Ns8HfYlKnuQCpTbmeLl3yNDTkaWzMzXJ03xPRgQNx/eVfLkybu63NdW6ePJma\nwjXb2i6F3i+uX5+9hpODM1eueHriiamC6sHkAObJk57OnnX1USzmAq+trbNpqycmrIaG3N9Eo1aR\niNHkpKfr161u3LDat69eP/jB1Jz6oLfXpYPzUxY7bk3BpUvnzvDNdEzWr7caGkrtMF6zxqXv9v8+\neSDB0JCfxtV9/9q1Vl1d7m88zyTuo5GI0XvvuTZpf7+rV5ubXQDEBdo8nTvnKRqVmpvjsla6dCly\ns/Pa7Yd7jjPasiWuLVvctra0xFPKVW+ve/abnJzdp1yzodLrkWxrA3V3m5R6Ldf9L1974+BBN2DK\nnw3qB+YKzQqQa7CgCy6l7mO2dWnPnvV08aJb28uvx6117fiZGTfgyp+VKkm//nVUY2OeGhvtnMC2\nP1NwctJdx5I0M2M1NuaeVZYsUdKsWvfs9LnPxfUXf5F9/dbkttnwsHTyZFQTE+4ZJxIxGh93gzfc\nOnKVW+O32OfgsM/CqUYmmHL45y99QF9yHZYuCGm7ASBsCHyhZpQzyifTe0dGpOQ849LchmopgZf0\n7+rpMeru9nTLLbPBAMkFU8LUuCnk/Ph/4z8c5DuHlVi3IPnhvpCgQltbtrWyNOdhdXhYOn3aU3e3\np6amuP7wD2dHf/ujrpPXWEnuKOvuNvqHf4hmnA22c2cspTPyoYcyH5/BQfcAdvRoRENDruPCzfiQ\n7rvPqrnZqrdXevrpBk1NuVlZS5dKJ04s0c6dsYIeHvxrNLmDpaHB6ve/tzp6NKKJiYiiURc48jty\nY0nPHq2trtPp8mWbSEkVjfrpqfyOXBc0aWqyN9cJcx0U1rqAlnswlV59NaJ43D20Xr3qHngloxs3\nXKfuypVSU5PRmTMRLVvmZoO1tkpHj0blrz01Pm40Pe0eqOvrpatXXWrG0VGrH/4wqu5uTydOeImA\nlx90MMY9kNfXW737rtHDD89NSfPeexFdu5a8LljqMZSkjRtn9NOfRm9eG9KlS26mW0uLledJly5Z\n/cEfuKBFIUGZfCm7rl5VokPDv2aLmT2wd69b1+LNNyO6ccN1UN9yi9XkpKfjx60aGqw2b3bpKi9d\nsrp0ybs5SldqbLQ6d87NeP3TP43lTTuVXt6T0wYNDRn197vytmSJEiPGkwPPnZ2RlDXf3DXr6fnn\nPf2n/zSTM41RNtkesg8ccGlrs81akDJ30OY6zpL0ox/Vq6fHBT6sddeQn5LT81w6Uc+T1qxxMyx6\nelI71vz6xq9nJBf8am3N3amT3okYidhER6ifku/GDZPUsWdkjE2pQ19/PVpyh0SxnTUL0blTiXQ6\nyfegd9+N6OpVT1evunpv6VIpGjW6csXNhj1+3AXxJSXK9OSkEsFPN1PWJurMnh6je+4prPPLv/cm\npwwdHjZavVrasSPzcfQHgfT0eIlOSD+96euvRxPp1Q4ciOjYsYjGx911aq2X8z6bHJh7772IWltd\nIN2vu/xrxr+/zQ7qMGpqcte4Cw4pMVNr61b3+899Lj4nEDs0ZBIdspcuSdu3W91++2zZ8Gdttbba\nxCy79POeXEf4ZWxqys0mmZx09V9Xl8naufzDH9br9OnZR6qREVenrV3rAjFzz5VL8Xj8uAt6jYwY\nNTYa9fS4YMPAgNXSpTalbvfv0X190vi425+Bgdl7dnv77HdkqmvPnXP3xqkpt2/RqP+ap3376vVH\nfybePdMAACAASURBVDQja92xvH7d3ByI4uqnZcvctezPfMnWRvPr0+R20WwAwSZSBGerc0+fjiTq\nR7+et9bdA+64wyYCDW52h7t3S/4sWenYsYik/PXG0aMmbRZM6jqghVq/3sra+Jzf55pRKOW+X3z4\noadPfcqtU5S8/lVnp9F//s9LdOutbt2mBx6Y0shI5kDa3/99nU6d8vTxx56mpoymptwMUH+2yuXL\nrn20alVcra0uIB2JuADEkiX+mlZG165JExOefvCDen3hCzMpbddly9zMUn8mlh+UmpqyunxZklID\nOi0t8TnBHP86dW0pt6MjIy6A/dFHrq2RXDZjMaNIJJ4om4OD7vocHTWqrzeqq7Oqq9PNwKi9GaRw\n9zK/PbZkiVU87srBkiXS9LSn69fdTLFTp9w17wYu6GYZng1mpj8zZlqjUMrd5vCDWt3dRm+9FVFd\nnWt3+msDbdjg6it/UIB/rWzdGtM779QXNMDNP0/vvZfaZpKKDyLkGix4333TBa9Le/26UX+/G3B2\n48ZsMNMfMDc0JB08GFF9fUQrVtib2R+Mrl1zAzoGB41++tO4NmxwaeQuXlTK2r7+IJPGRptI9Zt8\nnuJxmzOYmFwv9faam+0xF2xtaHDXx9hYXOPjVv39JmXmnO/oUZe+OjmIm2+mayVnuAcp1bcvfZtL\nacdXehuKOW65zp8bQFqZwb1hFcRrFkAwEfhCzShnlE+m9zY1ucZFa6vNekMtpcGZ/l0NDVae5zo5\nkjspGhqyj4r1pd/wq71mQa4GSCHnp9hzWOjI/kzb9fvf6+YDhqdr14wiEZs04yr39xpj5qxVJLmG\n9eCgEh1cbsFk98+t26LEjC5/1LW/xor/4H/1akQTE+7Bb+lSM2c2mOQejPxO62wBxI6OiI4dc2vF\nDA25zo8bN9wD4pIl0vCwe7A8dKhOQ0MuB30s5h76r12LaGxMevjheN6F1/0ZSkeOeIngmmQ1Oupm\nabl1h1wngDHu4S+auHO4B7t/+zejT386nuhA/f/svWuQXld5Jvqstfd36Xu3Wmqp5W5JLSwDxhZg\nATKmuNmQSQR1hhkOGZIfM3OKSoVKcA41OVOTk4RAhlsqVKZyipA4YaiZOScwJIbAGMvEgG8CyZaR\nZLkl69KtW9/v3V9/99ve6/x49rv3/m7drYstCb63ymW7++tv39Ze613v8z7Pk8kAADeasRg9iyIR\nbh67u/m5XM54hRY+q2KRoBUA5HJk/BSLLJjk88rvKs7lyDSybWB2VmNpySASoRn68jIByYUFAmoC\n0OXzPIfvfz+K/fsdLC6y6CHyjXJdLKaxQPJbvxVDuczP3HVXGdPTFubmLBSLlApaWXH9sRZ+zy9d\nsnDPPexgPn9eI5vluczMcKPvOAR3BgYM9u1z0dNTfzO3UckustSCkMJguBDTiBkWfkfoJeUilTIh\nAJSfk+N1dxtMTUlHNTw5NbJe1xrT4feXgLGB1iyC3Hsv/198Uubn+X4mkwR2CwW+h4ODDpRSfnGo\nr48SmOUyu8vFD05kjKrHeKMIF99lnLW2Kpw4QcC6EWtB7l84VlcVPvOZmD/+t21zsWePQWcnu5iT\nSRaOczl4cwbH3ubNBvPzfJ9d18XrXmfw9rezUJXPswgpz1PmG/G7E0BFa4OREd2wgCsFOynUdXYC\nCwvGf5fn5jS6utwK/7zqOfRW6l69Xj+m65XTCcvcGsNC6eIiDc4ti2B9Ps9mGMtiMbunx/jFvuVl\nFu9Z9GNHebHI97yjA17zADYsL1lv7RXmZ19fpT9K5d8LsMr3rLPTxeoqpVSPHFFYWdEYGSFg19bm\nwhiFU6fqr7P1zjORUHULP+KjI8XUhQWeA+dqrpNhwKSjw2DHDlMB7j76qO2DR2GPpR//GLjzTgJk\n0qDw5jc7vjTdV74SrWlG6eoKCrXxOBkwc3NkXl64AKyuEpCPRskK/e53LTz4IL1cjxyxMDtrVV2h\nwuqq8YGY6nsjUo4tLcpfg7JZ3k82iShEowZ33umgsxMVcm+bNrmYm9MYHqbEWi7HNTqXs/CBD1CK\n68gRC6kUpegSCSCb1XBdjjthzHR2GrS3y1jTGB4Gdu7kPVleZnFaIp+H52FifBC/XhFZ5oKw9xz/\nnv/d3V2/Cz6V4pwLBPPj3JwwT9m4smkTUNloFLDIA09K/v9a78zx4wqf/3zMf1+Wl4E//mM2C3EN\navSu1AJmDz1U9CRo195DrMXYjsdR0XRkTLCOy3yRSgFTU3wPs1nmuk891YL3vtdBf39lg8t//a9R\nHD1KwKNY5BzDhiOD3l4X0Sjnmr4++v8RkOR9yGR4zFgseC6RCLC8rHH5cmUR/9FHbRw8SOB8cpI5\nqNZcU86e5fOLx4GWFoUzZww2bSIQX91EEt4DJBIGIyMWTp3iXLq4GJxDLMb8KRYjUNXSwuaXTEbD\ntg0iEePlfS5aW8lqtiy+X45DZlu5rLx8kWMnlSKo6zguYjHOdZGI8d+RYlGkhF3fSzC8Z4zHmZ8O\nDtbPOarnPgGvBUi3LIW5OWDrVr7vxrAZaP/+Wqni730v7u8xl5fpXUuwu3bel3xsaSnImcK549Uw\nEtdqFrx0yaq7h5udRdV7UsLjj8eQzzMfNgYe2wsecApPglyhpwcYHeVzAnjMsTGOpZGRKPr62BTB\nJgzmj5EI90X8TlPFQuTnJic1VlfhP5e1ZMpXVriGc/ywYa9UArq7FfbsMdiyxdQw58SzdWVFFBKU\nv+9bj+l6IxjuN0si8Hqi3jmH5UjDsV5D8lr3r9q/Tyn4agYiN90IPF7vmUgdQxqE6HXI+sLtKtv9\nWsXtOGab0Yxm3L7RBL6accvE9RTVGn1GKYWPfaxxF3w94KVeN/BaeucDA2RChDc4SrEDfy1JoOoF\nf2xM4ZvftH39+Nc6AVgvAdnI87mWZ7heZ3+98xoeZrFdisIEbIC+vkomRKPN3cgIpegEnJTiXKlE\n7ydhWGSzlASS7n2yXYD773f9AsvgoMHcHDf5ABCLEdjp6HArCkfCBgPgnXeQ+FYXDx95JIKJCcqB\ncJPMoo7rBoWQ730vio98pIzlZYJhpRK/p1AQvXuNf/5nmkenUixK2LbB2BhgjI0rV5ig79zpYHgY\nnscWIyiYUDJUa+UV/diF/t73lpHLBcWhHTuAiQkLySRBI9fldWoNbN3KYtnKika5zMJhT4/rF9wz\nGZ572OfIGBa64nGCiYODQcGYzwUeCML/dxyFzZs1+voMdu3iJnd5Wb4L0JqFjHye71V3N/29ALKw\nKLXCjTSBCY6njg7+e3jYQlcXu6NZnFXYulVjctLUdL+L3vvAgMHPfw6/s7Vclu50eL4ULEps3752\n57xEI8muj3+8VLFpk8JCuBCTTAIvv6ywaVNjjy75d0eH8Twt+F3pNItDxlC2slxmJ2x7u/GLY7Oz\nCv39qu6YfuABxx/PQfe3i09+sgTA9je6YV82PisWjuWaLl+m1JkURo8csRGN8lilUiCFxvsT3Mf1\nNpnh4juPT2nBwUHHL7Lm87yH8/Mara3A5s0KmzahgoGXTALPPWfh0qXgPZqYUJifd/Gud7kYG7Ow\nc6epKAjz/Flk7+2ltGE+z/s5MkIfoHBhLZVS/hhViuczNcWC/Pbt7Fb//Odj+MxnCjXgl2zA5fjx\nOLBlC8EBpQiaC5gRjvXk0+TnjeLV6Oa8EX5MBw9aeOUVq0piamPePHJ88eVaWhLGAX8vEq6lEuee\nbNagVKL8nYypdBqgpCUAcFwDnNvKZYPeXoK5s7OUpgqzmqp9mYDatS4sMSgeOqOjGsmk69+fI0cs\ndHSIhKYwS3ic7m6DQ4ciKBaBaJTr4ZUrFnbsIFgyOakwMECw+exZym+GvefqAUphVvHgoIstWxwP\nNAjky4BwY0Ul0EHgvZIFu7SkUCyyoJnPk+nvusynLlzQeOEFztu//dulNaWJjaG0pzF810ZGxIeS\nDRmFAufwH/3I9n0mjxwhawuA32jB5hSufcZQHuvv/s7GE09YSKfpm9TTY9DTo7CywqYMehMpf8wU\nCmSu9PYanD6t/UaKoECsPKkwztO9vXwmExMW/t2/A7Zvj2L7duDcOY25OcoBUr5L+WsQIP6WnAOW\nlsisyGSYAxFIYlgWvMaVoLkrzLRLJBT+9m9t7N3r4MoVystx3uIaDsBruqnfBT8zo3DokOUzcLq6\nODfOzXEN2LLFoK2NUqGy5rS3GxQKAUBjWcwz9u511s1lv/3taMXaWihwLv3BDyLo6TF135U77jB1\nAbPR0Rg++clCXeYVEMx/3/0u2aDt7aYCkOU6G7C6pCGiUOC9k7WHICzzETZi8TxPn7bQ31/23nk2\noFy+rPwcLp9HVY6jsHWr6/nqwVtLLVy4IAAZ/zabZRNVJMLnQaCGOenzz1t45zsddHYaRKMuJict\nH2DjP8yBikVe1NISwa/FRbJnzp7V2LXLxZ49ASDAOQx48kkbxmgsLHAsplKyBnPdsm2DYpHHyWYV\n4nG+F1QXMJ70tvLnENflOyUNXADfIQFAolHe69ZW5tilEjwmJO8vrx0YGaH06hNP2BXNO+98p4vJ\nSa4dEuGco7roPTLCf584oTEzw33Fli08bleX8WW5q9dhNvnQB1fCGIVDh2y85z2VTXxcJ7jHkPU+\n3EQAbJyRKGOf85z8jfHZaImEqss+DssrplIKf/EXcWSzxp+LJFyX871lwR8/pRLzdT43frZcZv4j\nAJTrcixHo/TmpSIF0N/vQikyhEdGKLsJGAwNVXoBy/2rlimXeSmTIRAnexbvycJ1XT+3rtf4mc9r\n/511HDK/R0cVdu5szHSV77hehvvtJhEI1D/ngQFTk8eLxPJXvhKpaUwA1pbgrpawDPv3rawYHDxo\nVSh4AMFculaDanWsripfgnh1VeNb37pxoObtEleb79+OY7YZzWjG7RtN4KsZt0xcj9/TjSjIHTjA\nRfaRR+yKIu3wsMInPxkkO9XH6uwE3v52F0tLxit2ALt2OUilFFZXWQTdiKkxCxvK83K5NkmK64n1\nEpCN3OMb4dkVlo6an9dYWODPJTGlJ4aF2VnKLXV1wZPfY1Lb3c2NTjIJLCzoCuARAB55JILxcRbS\npZDU20vwiybJ3Fwlk9wAy8YZkIIcmV/velcZSlGaqbPTYHWVXYE7dtAAO5fjsxRQKhKBN9bgFVeC\nSCaBZ58NinmXLvHclpYE2AGkeKgUpbEyGRY2ZcMobCLppNRa4+xZ5RewRFLw3DmF5WXLT9AnJxXG\nxsiyohwIPBlCbty6u8ULgtJ2v/mbpRr/K5FuesMbgExGI5kM3oN3vIOb5NFRglG5nMLQEDuMz51T\nVeAgQ47f2cku3vC4YnFM+UVGgNdIaVPpYidTqFhksUM2ya4LzxPHRT5Pf4dYzGBxkUUbssj4fWGp\nFGNYpMxm2YVKhicwNIQaVhOLsdwEZbMByytccAxLA9FMvvb9TiRUjfzk7t0s+ohkl2wqtm0L+/2w\neCKAzPQ0cPQoZcrSaRakwt2/8m7KPU6l6O+ytESATmuOkd7ewDutXBaAVcCvSoZZ+BoOHrRw6pRV\nUdgTL5aeHoOxMbJLWNRiga1UYoe3+F0BLIx4d8/zpwqAo85OFqkSCcpwibb+ep2f3d18jlJ8lxCm\nYDzOeyJ+TbkcC1WzswodHZSi2r/fRX8/u8KvXNEVBfxSiQBWPg+0t7OYwvscgAGrqxpbtrCbnLJq\nHKfnz2vMziq8+90lr9BCgCeV4ljXmvMjO+Fr2X3bthUr5tFy2cX58xYSCZ7Hrl2B5KZSLrq6DMR3\nKBzhuftqu1erCw6HD+sKpsy1bv6v14+JhTnLByDDHfEb8VY5csRCMqn955XJcJ6XIjMBL865rst3\nvVAAEgnXe08CoDcSMejqYvMMr4lriuuy8Pbnfx71AA7LB/ktC/j939f4i7/I++BX+P0dGeE8z/fI\nYNs2Ap2FgsILL1jo7dV+8UhCAKZCgZJ4q6vanzOl8Kc1C/Dt7TyWSGL29BgcOWJXeM+JDKlSBtks\nPBnCwFPnzjsNTpywfFmvRILFX77LwPy8FNC5lnd1sSmpmgU7Oqr9eyLPwXGM57UV+Dd+4QtxvPvd\nbo008eioRksL54D773d8X7vWVgJF+bxGNsv3rVDgPZieZsGV8pCcH7q6CADIuVHel6yOS5ciXn6h\nsLxskEoZDA8TdCQ4QCCbgCnPmUCbwhvewAYapYz/DBMJAm5kllIaM5FQHmgBzM9bOHYMPrtbxp88\nQ2GYyXNPJOj5VCrRb4heO8FdYt7Dtbivz8Xjj1s4dkzj7Fmyysplnv/lyxa2bzeYnw/kxvr7WZR+\n4AEH+/Y5/pwkXf1zc8Bzz9nIZglicY0OxgHnYoM9ewhsLS1xLR4aooy5NKns2OHirrtcfPjDzrq5\n7OJi5XwgfodTU7wfliWglMLdd3MN6+kB/vt/t7GyotHZGTR95HIKf/d3MfzarzkVeaZI2b3yikZ3\nt8GlSwFzv7vbYHaWfml8NoFMIAFYoKuLkoHT09qXiuY8atDaarw8hM9G8oQrV7S3fsp7EDxvywqY\n2vm8wXveU8axYzbyeY5fx+E4iESUn28WCsab+7jmrq4C8/Mcx4cPc75cXWWzF9nyymevypon810q\nZVAs8v13HGB52cIrr2gcO+b49/f4cfFGJYM5DL7Kd5fL/PuWFo5r5tbGUzzgHFAocA62LIIo8rtw\nSJ4r4zseZx6RSgFKUVoZEEaS8d47HcrJgPe/v4wPf9gB0LhZMlz0dl2DQqHSTzSVolzk5s3Afffx\nmAsLtTmxgH7VIe91OCRfBIKGKTYPKd9f8qGH6jMSKe+uvPnT4NgxjXiccutK8VwjETYG9PUxfzxx\nIoaVFT6PN73J8Y4BX4762DE26DgOrznY08DfM5fLBu3tbAxwHO3dK4SaSaR5TPmy0PT4Yp795je7\nfkNXdzc920ZHKf07OGgwOqrx858bv9FHgLuzZ5lYVksOtrcDy8tsKIjFOP5tm4B1mIlU3fhpjMHC\nQsBALpd53123vl9n9Xc0iqkpqgYMDzOXfstbOJ+GGUk3QyLweqPeuXV2oiKPNyaQNRd2d7gxQWwH\nwhGe76slLKvZ5Pm8xuSkW+FJKO942KturbzyRoGat7Ps37WwtzbyTtzO96QZzWjGrRVN4KsZt0xc\nDyX8av5WEsh63i3GsCARls1ZWVF4/HHjb6hl097TA69jNzBalyLUo4/auHyZ3xHIaOkKc+rqBT9g\nF1T+/FqS1mtJFNZLQDZyj+Uz4bhazy7pJD51SqNY1BgbY0H82DGDrVtdZLOUiEqnlSf/Aq+rnBuj\neJyFsmPHaLo9OspO629+00Z3t8HcnEY0CmzaxG51FpWA/n54koksDBijUSzyvNiVz6JDuay8jQ18\neYPlZcqjDA4abN8OnDihMD0dFMC0VshkmGAvLBjcdRcT+Y4O43fm9/QA4+Mahw5ZXhEr6HYMhwBb\nxrBIdeedLpaWtL+JDxeswoWDQE+fnd2bN7uYmyOrTdgH1cHuShZ5cjmyx154wcLqKtDdHUhFPPCA\ng+3by/j7v2/xZBdZTFhZ0UinHbS1UZbmjjsAKaAND9solXTF+VYemwXMu+9m4Wx0VKGlhWyx2VkL\n6TTvKwuVxjsGi7aFAjvtg2tigYTFLYVf/VUXi4v0oVha4nG0ZvFH7mOpFIBpwc8C74tk0kVrK8cr\n/QjIdujtBU6e1H7XsXSn1nuOpRIlM48fVzWSGiL/VwkYKbzrXSXP/yZgVEnH7dSUgjGW5yvH73rx\nRXp3bd5s/Pmqr8/4Xi27dzt+ke7MGc5309PKN/BuayP7rlCgDJbjGE8CRnzXXGzbRpZYdXR3Gzzz\njFXzjI2hF8snPlHEN79po1gUSVF5X1gsk4JruQwPoGGx7ckn2VVbKBivAMaiaT7PjkvZZNaTkq31\nUwk8NUTqUGuCWgMDLs6f5/POZvksCX4pKEWmyZNPKtx7r4OLFzl+tK5kL5ZKNHR/y1scrKxorKwY\nDA25HmMjYFoJm4dFr8Bf4mc/i+DAgRLOnLEwP28wPR2A2aUS/76lhQUrggQKi4sKCwtR9PQAly+z\nWDc2Zns+PWSSUA6UoItS3Og//7z2GSkDA/xdeO7eqDStRLiYFpajE6bMtbKZ6/kxBf/dmO0bPi/K\nWAY/E5+zlhaNsLfK8DDB5PBcFzBxg87u6ndcwAUZ121t9Cz5lV9x/Hs3P0+23vy8yHEZRKNcw3p7\nCVpfvmwhleKcJmwiyuJp/Of/HMVf/zXzid27HXznOxZGRixvrHJdKxQUZmcpp7m4qDzPEnphdXeT\nxaMUPchSKRZio1EXxaL2QaRyOZC4TafJ0CHbRgq4lJEqlRSmpjTuu8/B/HwwdyWTXNu0Jms4FuP3\nLC4qjI9TUrelxfj+U/IeJpMsno+OKuzb5+Ib34gimw2aYAYGDI4dY1Faaz5PNqoor/kD3vmx6Pqz\nn2ns2eNgYUF7jAKDbFYkfQ3On+f1bNnC+7+0RDBAnq80MWQyChcuKGzbZhCPa/T0OFhZsbzf86Id\nh0w5gJKJ2Sw8Bo3y5MKUX5SPRHjupRKPH42yOLy0pHD0qIUPfKCEAwcMDh60kUjAAyqYH7iuwoUL\n0ijFfyxL+6Cr/FueBX/P/ybYBj+X3bIFaG0VZoXxwBLjM75iMc4n09Ms5i4vB36afP+A8XGe//Iy\n57HlZYV9+xwkEsD3vx/xmTGRiMFjj1lYXOQ1s+lBpC7Z4d/TY9DZ6VYwUXfudHHgQNnPxS9fJjDZ\n1gZfprUe+3F0VOHHP7bxzDMWJiYIanKNMUinA5lJYVQtLHBtEQnG++5jY4CwoGMx4zMM43E2lAwO\nGgwPa28O0n6ulE6HwRcBuTRGRw127XLw7LOcG8tl+M0yvb3cjywvB1J93lPz1w16lwI//znnkWwW\nvj8gYCrGrcg2k7Hv4N57AWO47pCtz/FUKLCBT2uOhVjMIBplMV/ehY4O1y8cFwrKY8fwZSsUOKYo\nVc3msXIZPjAmzTO5HCWFR0e5zr30EjzpV2m+UjV5g/jCcuxyrlSKUoXptPGAPoVYjOCf5AScB4Jm\nE3k/AR67VCKge++94iHnVkihHz9OOcUjR0QOlnPY889Tvvg3f7NxYTucm/3lX0Z9j6tolCxF5uME\nfk6cICj18Y8XcfhwZQOmZfF5SxOObVPOb88e12eqylhfXOS8eeYMWblDQy5efNFCJCLsZtTI9CUS\nCtPTwOHDFhIJ7QNLo6OqAoRcWOB3RCLA/LwLYyz/2ZRK/HutmY/v2eNiepr7Xs5FzLPDz9V1CZBb\nlsKuXfzM9HTQMOg4zE/kHML5lYC6pRLX6HQaXmMH2Y47dwZejwJIpVIE5GQPt2cPG46qJQfHxhRi\nsQD8FN/Ori42M8hzeec7g3ESNAlVzj+2TYbhwoKu8S+s/Lv6QRUQu6I2cemSxve+Z+Ntb+PfHj7M\nOXnbNu4vw+Dcrewn1ahZNpzHSyNSWBkiAK6Yt4qvpORuSpH13ci/M/zfoqoQBrn4fOvbIdSLq/15\nvRoNsDZzbSPfcTMBoWthb63XLN2UQmxGM5pxI8P63Oc+97mbfRJXG9ls8WafQjNehejsZLKTTgsQ\nYXDgwMYW8o3+rSyiJ05YSKW072vR3c3N+qFDFrSuXoRZSJybU552NxPyF1+0YFnsDBscZBfwrl3G\nk8ChhJIU/PJ5FlqyWW5ydu1i4bFSU5zJVkeHqfDi6e+nnFr4Gp580saRI5TV6u6upOjLNY6Nabzy\nisapUxYOHbIwOOhi+/bG9/DSJV03SZPjN7rHAPzzWVhQuO8+B/F4FMVi+aqeoXzPyorGxYsKyaSF\nuTl297GTm7JGAIvzsgmmvJ/yN/WbNxucPctryeU0xsZoHj8zw4SJnewshhUKLFq4LguDlNELiiLS\ngc3CAzf90SjHSiKhsGOHgx/+MIKlJRb9SiWFc+c0CgWRL+L4KZcNikUm1tu2sViRyXDcEXzT6O9n\n0URkY6oTyOqwbW4a77wzKNyEgTLZuIZDurwdBx5woP2u9UaRzyvvfsFn/zz/PN8h22ah4Xvfs/A/\n/kcUyaTlFcL4TNJpYHSUm+U9e4BEgkWz48ctj+lVWzCWsCwWVLNZFh83bWIBhoUu7TO5XFd5ne3G\nk3gU0KA+aJhOB2B0KiXyMcovGlZ/vhEw57oKS0sak5McW3Nzwbso/ihybfVYbeFjPP20jRdf1Hjl\nFctjI/Lz4+MBWMBnwUJYS4vyOvUVTp+m11wqxfc+n9dob+cYPnuWxvZaw/eT0ppA4cCAwb/+15RJ\nlHktFgNefFF7hWQCjbbNTl7Loo/bW9/q+KBMS4vBv/yXLPoQ6K0ExQ8ccPCzn1ne+1QZXV3iwyAM\nS75bW7bw2Stl0NdHkIYd2SxYaA288oqFlhYFxyHbI5mkz1dvr8G///dldHYG8+DKivbv1cGDNmKx\nQB4LgA94DQ4aDzCw4Dj06Bsa4rPMZHgMpZTHAuVc3tICf+zInMTxWHmtbW1S/FB+cXJoiMdrb+e1\nJxIsEheLlFNNpwWsBcbHFc6fJwAiY99xAqaTdLeT/aC8YjolXbUmUCEgM4vxwX1ubaXMF+UeNZaX\nle839fGPl/D611e+ANKNu2+f668LjULWwYsXRXpJxoZCfz/XkvDaBqy/vgGVa1XYt4xrJz8TXjer\nv/PKFeUDTuExu7SkcM89rj8+RBZncVGjowP++xaNGpw+bWF+XiOdrpw7+I4J6xY+q7S1lfJsu3YB\nQ0MuHEd5xWTO/5y7lT+n5nLwWCIsLBeLlXOl1mz+2LSJxb3HHrMxPa19OVLH4bMF4DMhcjntj81U\nymB62sLCgsbiIv2DpOHCtgnOCPPScWR88T2kxySLi21tnKfSafFpBC5e1J4MLfOdbFZ7Umi8xmSS\nQFtLi8bMDK89k6G32fw8JYu3bTN4y1tc9PWxeDoxoXH6tIUrVyyMjGi0tjKfmZmht5oUQcMg8f2z\n0gAAIABJREFUZPiZAAEjWtZ4AZ/ZKKGRTBIkXljQWFjQPrAjPjQSlGPlOzoxwXeToInyWSiWFcyd\nwtZhMZ/rYi5HUEUk27RGKF9gjkH5LkrE7d1bwj/9UwRTU/SNdF3eX/HIFLagzEdAJeBVHZZlQsV3\nzrHCSqfPE9+R9nbeg1iMDROuS8lngm+6Zv2WeyDzkMjnjY4yD9u8mUz2F16wkcmIXLXyn41l8WHF\nYmRxvf71Lubn2e2/sgIMDLh4//tdnxEwOUn5Ra2BM2c0nnjC8iQcCcKcPq3wwgs2JiZYNC4UmIMk\nEsrLMZTX/EJWpIA+AJlfuRznhdlZgjRLS3zvVldl3mHR1bIInF++zLHK/J5z9eoq72FbG9fNfB6+\nDKFtA4uL2gPI+CxbW/kspqe1p0BQXUwMvIdcl0X5TIZrZns7rzuT4XE4NuD7mApjmYV8voejozqU\nLyl/PNk2/PePa5f2pDi5Ls7M8L5ks1yHq5ntXV0cY5QjDcCsoAlLis4Be0vWs7VCVA/KZfhAuTTj\nRCL0ghOlAscxofOqn4fJcxEGcFsbGaOjoxovv8x/K8U5L5fjvcvlmHNv3cpzqbfWHD9O79xnnrHw\n3/6bjZ//nPNdNit5gKgRAHfcAX8vOTFBsPzCBTZQjo1ZKBTgN8XIe5ZMAm99axmxGNl+Fy8qvPyy\nhVJJe9KlGhcvMj8FFN7+dsdTDaAM7NNPWzh82MbLL/M8f/pTNvEVChyvMs9IriH/CNgt3sbyeZnf\nJf+fn9eezLqMW1VnThJvOO7F4nE2Bcmx5W+1FtCrsplPKT6vSIRSnPSlVZieJiO7t5cylDMzCsvL\nzEEIqHHe6e012L6d+7x0WuH++zm3vOUtLpaWFPr7mUv09bERhfsa7ctMj47yvi8tad8mwbYD1qRS\nlGIcHmb+lUjw2UndIR5nnly9hw/nKy+/rD1Z5iCHWl7m/q1c5jwhY5cSofzuWCzIw9fK025mdHdT\nzrd673DffQ4OH+Y9eOEFC1rDUy4If471l5MnOe7Sab47y8satq18udxo1Ph7MKmzAPBrLfE43+Ww\nRzvXGlOxVwBq6zES69VPwnH8uMKXvxzFqVMWZmY4p4yOaoyPV+bJ3lU2zJOr9zeyF7xZz1ry/epQ\nCti3r/5Gv9HzlzErNaGqb6x7T17LqLdP2bYt2qxPN6MZt0C0tcUa/q7J+GrGLRXr+T1Vx7XqCYcX\n5zDlvVAIikXVxwGC7rtcjklSd7fxOwPryQKOjmq/u9i26W0T9r4JM6gGBgwSCVPhzVPNltpI98uR\nI1Zdw/evfjWKhx8uNjRr3Qijq56We73zefhhIB5fZ/eK2ucnbDH6+wSfkw2TeHC5rvK7kKX7z3UN\nWlpcTE5qXLqk/OJUeBNCBhMLDj093EQVCiyaAywKjI+rhhtl8fHI58mK+dM/jSGbJRBHdhiLJyxe\nGt8nK/g5mV8iEbK0xPE2OEhvotXV2iLbWqE1PQOWlytZJkDt//M+Bv8tG4FGwFP4b2SzSWklJqHF\nIvD00wpAGc8/b3sdw5V/y+KXhakpg3/+Z3YPJxLa3zjTYLje9RrPs4xF00QCOH+eXZvidxbu/KMU\nUCA1VmyQe0rH/oULyvM1WhtcXC/K5aDwOjQETE4SUEqn+bv2duNJEQGNwMVymcbxwk64dEnj6FHK\nNb7udcbzRoE/7yhV3x9O/hvgho6G9dpjkwTG8/G4Qnu7g5kZhf/wH2JIpykVQt+uQB6rrS04R+mY\nzufZ2S6bmKEh158PRG5RpPX6+gyOHLGwc6fjy4sAgcTjpk3AM89Y6O3l9+3Z43oSO4Es0fw8N63s\n/uMgef55y5PD4f0VT7lkEnj44WJDKVmAwOvkJM3Wpet2YMDg9GkWKQkMcfzs3m3Q1eViYIDvrFLB\n3CN+epkMZacAskSmpmqBXBmPc3MaXV3sWqYPGAv309MsWon3RT4fdMVnMmQUZLMsrnIcVX6/MTyn\nVIrn7rq8L9PTypPbNT5ownsF7zkaXLyoMDSk/OcTjRp0dbFwEo9rXzKx2q9mo+utrIPVm2GRYZJC\nQVje9pVXtG9sHl7f5JmKZBQ7t8myEDkcYXyE161G5und3Xy3xANk2zYyPCYnpRnAYGZGeZ3GLKp3\ndpKd19XlYHmZY8+yApBLTNNjMd7zWEz577VIqU5MECiamdGeJJeqYOGUSgrLy4HniVKVY0qevxQB\nf/ADG88/b+HyZQsLCyLHyrUsk2FxVd4nrTmv0iOR/l+FgkG5rEPgEN8lPiPjeQMZ73OU9JOmhUKB\nuZMAF7z3fD/m5/kMWdDmOZAlyXcnm2W+1dLCeS2XY+G/q4vMRcmrzpxhofHKFfEQ4tz97LM22trK\n0JqSW4DxgGMgvG7LnC9MAWnkyOWCdU2aAoCgeYRyXAGTqjrIjoEnx6WwsMDvoESr8uXW+H7KvRGp\nNj7TSKTSC8ayTAXjuFwmG8IY4GtfiyMalTxI+QyKRuvKWuu6MMYLBYOdO10kk2RQz81x3BGgML5H\nHdcPF52dxsuX4AEZjb+fY4nXNjPDezQ3Z5BMctwT+FGhz/N8APqKDg6SjXzpUsByyOcVJic5z95x\nh/Fz3dFRAk6WRWB+ZcXgqacIMJTLgDFBwTuV4n3v7uZx8nkWSLVmoTiT4dqnFFkaV65oTwVA+cVl\nCfEkikQMxsfJ+KY8Fo9BNlEgBZnLGa+BiPNCKqXxwgvaX0+EKeU4QcG10T3m+ySNFsZnuc/MhNlS\nPF8B4B2Ha69t0/uO4EKtDKA8E7LMg2ctkn/STCPNV8IIFYah45ARRCCPfxOehyQoZ2eQTuu6DK9G\nIe+0XJ+8p8L8TCbJUoxG2RiQycBXIqjzbSiVKNGdzZI5OzxMFuHKivLkJwMwUVhlmQwZr6dOaV9x\n4vhx7rNkjpme5nMnO57ArVIia0oFiZYWrjuFApskz5yR+x1cE6CQyVj+PByNAps3u+jqAiYmbPT0\nGJw8aWFpie8VJduDec22gV27yNYEyHAqFLjOrKyw8Dw7S9llmRPX2xewkW/tqLcHWev7rlwBYjG+\nq1ornxFHsI3PCggAOLk2gH6Gtk1QXWvly9OeOqXR3+9AKfoNC6syHmfjVaGgfO+6Q4e4zoh3VJjd\nPjTkoqMDOH7cxuio8sHWVErhu9+N4NQpg+5uC3feyXy3q0vBGNeTCOU15fPGk6ylokA+jwobBaB+\nvnLihPbnleDeclzMzmqfHROPcz2VveXeve5rxgK6VvZRI5/1sDJDJsPmqdVV+J6abW2Ufp+YUJ53\nKvyGVYBz99vexvVRVEGMUb70p1LKr7V0drp4+OFyRW3koYcqzwEI8sp617pR1aGpKc4RAuZQVYh5\n5eXL2rcgCEc9QO1W9Ma6FquL9VQkNsqkey3Zb43qXr298ID3ZjSjGbdqNIGvZty2cT16wuLdIkWH\nRAIYGAD27GHBUDZg0tlIho5o+7PTsafH1BT0wrKAw8P0fJGiT6EQdPMoZfCxj5mqxNrgX/2rUkNg\nCthYspNIqIpCc3ButWatw8PUsteax3vwwfKax6+ORufz3HPAv/gX9f/m+HF60ExMsFP13nvZsS4F\nycFBPh+RiGIhy/gbwKCoYvzNt0h4TUzY6OjgMxUDbOm+liKBdMvmctxAZjIszp08qSDGylL8ly7y\n4Nq40UmnDaJR5bGFAsDBdQO5GTHFZtEIfnGA3dNMyiVJnJggo3BpKfDiWC9EkmdqyvI30xstHAD1\nvQHWj+BZuy43GgcP2n5xoF64LvyOUNdtXKirdxyyIgKQq1HHrnShbiS0VldVZFkvpLv9zBmD0VHL\nZ9EUCgrRqPK66U2D8+P9IFswvKGnDNbly+xGffvb6cclUjjhSKUUnnnG8lkFIqGSSrEYSEaKsJCU\n531nYfNm+EDr3ByLALEYC/ci00i5TR6nrY1AQdjjoqvL9ZoCOBcMD9P4vr0dGB+nz0yhwA0/CwAs\nCPX0GM9Tip25Q0OuL+sGBMXhfJ73MpWSIrzxfMeCeTwW47u/Y4frS80CtRujVIpdtiI7l8vxnevs\nZGHMGAJGmzYBW7aQybRpE/CHf1jE7/9+FJEIZauE/cnzVH6Bk/4bHKvhsWUMizcs9CuvIEdJ3Rdf\n5P1vb+d8Mj/PtUHYjADHQiolAEstEE8vKdcHT2Ix+qe4LouPgPb8guCBvSzUTkywgH3ihIWZGcpO\nAeyQtW0ylEZHFf7oj6Ies4tydh0d2LBflxQD4nE+a/Fmk3E0NORWrOOU2iTQLR50xtBjZ3U1XFQg\nWNXdbdDTozA46HjgU+26VW+N6umh7x2bV4L3Iho1PoC+sKCxshJI4ebz9PygRKTrg+1SgKM/kUJL\ni4uhIYP5+cBzSmtUFOKkeByARfDlYaU4LMzBAFSrvLelkvEL8+PjLA4JiMaOdpGWMt5YdWHbXEOl\nGUTYQgLOEfQI1sp43EW5zPeuVAJ27GAelEoFbBIp1hsDYPtROPv/CugaB1Z3oHjqUyiPvcNvMJAm\nBYDv9/IyJa4iEa7JjiNMeGAh+iLmd/81kjsnUG7bAZX6FGKL+z0gg3PUiRMamzbRQ3JuLpgX6gW9\n1sh24X0Iy8LVrp3hwvraEczdIh0oz6q68BsU7IN7IWNTnoecl7CTe3vhs3PYdBP+vqtr3Aj8vaSA\nrHDliuWvDQBZ1rZN0MC2meO2t3OdO3UqKCjbtmnYYFIdwubRmuAXYCreHWGBSB5DWU2D48fppdfa\nyiYFSnjBz3evXOH7JM1l5TKbT4SZFJZhBIQRy/mvrU3k/CgzJ+xz/pwAJEGfQIa3XoTlTCnXKQAJ\nC66WpfyifbHIcS4SvgBCoLA8Ux5zfh5+o0S94HNU/n1LpRqzmmTNEvnBQoGfr74/9WJxUePOO8l2\noXx0MI7lHQn8NwPWYqlkfElyMrTq3j2f8Xd9EeTfmQwBykjE+E1o6+WdVFgwGB8HrlyxfKlIYT47\njvLnVIBzPZvoyDD5X/9Led7DNmyb33X5svZZt+m0sM+CfYU0fRUK8NjZwZ6tVGIOEI/DazwI7qtl\nsUElmdTo6KBX7pkzZKcmk8G9CIfjUA51aoogjxSiXZfrFFntlb5nNyMch2MzaBaovBZKmwdronib\nRiLKb0oC4LP6s1myDc+cIfheKhns3+9iZQWYmyNQmE5rPx+JRNiEtn+/49cSwiDC178eQT7PMSYN\nV7JeTk8TYM/lgLvuIkgmkojlMhUreG5stLz7bkpUVhfrH3+c3nfSZDswwHG8uFjZjGZZBPFWVzmv\niS9hfz+b3np6rq6J+HrieuXoqhtqH32Udgci/53L8T0rFGTNY5NEZydzxHvu4Zry059qn73c1xfI\nPa6usrnv5Ek2+LzrXTzWlSsWlpcV9u51sW0bsG9f5f0KeydvRI5wIzLgZEVpD6gLml5GRxU2b+Zn\nAnuMWjlNievxi3u14lrtStZqeN8ImPZayCGGgbWREY1YrJJZt17dqxnNaMatEU3gqxm3ZYhe+sRE\nkBx2dm5cT7i722B4WPmduem0wtNPA7/7u3mcOxfByAglzFZWuImJRAhKLCwQ8ALYWeY4wJEjLC63\nt1MvXLpRBwZcdHS4vnQEOzgp2QIY/O3f2n6h7sCByo72RknTRpKd7u5aQA7g5os6/ExCUikWDYTt\ndi160o3OZ3m57o9x/LjCH/9xDKurgV/A/LzB/fc7KBaZsExOAvfcQ6kxek0ERWCtTaiTVTaEQeeu\n1gHgFS46SWFFCnxA0H1bLEq3e7A5li7NRsFuaTmPoGghoRTZINVFcAGIpqY0Hnss8EBJp4F8Xl9V\nh6R3JO98rvbvblxsBHCq7tDdaIS7lm9UXP09XjvC1yYeBAQ/jceu0V5hrTYiEeOxLoLvkn9bFosi\nq6sERimnSm+Qy5c1tm1zsX07Cyzd3XxBZmZYQOnqMlhaUl7HcnA8YT2I55wUc7Sm+XwspmBZLrq7\nuVmMRIQlxnllcLCM0VEL8TglNldXNR55JACkn37a8nzseDzLMujpAZaWWOiUYuTCgsIPf6iwfTtl\nbS5csNHaSmAomVR+xzuLFwapFN+V5WXXL95aFufteDwArNbanExMEORaXWXxeGWF9ycWc0OSJgo7\ndwZdxDK/bdrETvquLoPVVeOxcAKz+c5Osk0IbJuKsU5gk/8WYIGsSX5eKRZnolHjF8Ori0/CeK03\n9rQ2nhxg4LcibKBCIfBLCxfmLYvdsy0t9H2bmYHv6WbbLLYLM88YhVdekftBkPLSpaBIt5Zfl3Rz\nfvObFs6csfzvzucVTp0CPvIRpwKYyueVXxBYWeGxBgYMrlyxajphOzqUV9yprKg2YhGHY2VFeazb\nwKNT/L4SCbI3slnl/4z+Q/DkSxWeeML2ATF5DsZwHNg2gepUyuDoUQvZLJl3gPIAI/53NUgCAKUt\nRwEPODKrO6COfQqY3N9gfueYWF013jlyfAnLRD4TzCmWBz4ExwzLToXZtzJHtrTwHtu28tYo/jzw\nlwquH9uPAr/+MaB70j/D3O4fA8u7gC0jQCQHlFqAyXcAz/4pML0fIlccZq9oDWR7jmL17o8DXd53\nbQVwx3PA9x+FPbcfpRLX2IUFhfe8p4zjx7XPal17fucDkzmxet2+1gjP21ezFtd+PgDBpDieTMKb\nE2ubmYBGjOn6EZYcC9ak6u8MJFbpeynMRvpIsThN8Np1GzV01A/xRwsXxsJ5FkEfg9ZWFxMTllfQ\nZWG3pYXr3cSExtmz/HsyZyvXuFQqYBXWAzO1DuY/ARWM0R4TAx7rLLhPtq3WBPh4zvw32aPh38k7\nEjTvUNqSneHh97/6XMtl5fmkhRt/ao8t/14vVwreC3r+bSQcB15DjaxN1ZJTwedqwfnGYGFl3PhC\nbdBsFXjpNX5HgrxEfHXlmRGMD0DqSIRre7FIlmCpJP64wE9+YvvNeQTbRA6Q74+A//K+SjMc5UWD\n8Rqw+OCzu9hkwOPIWFSKe6WWFvhSnWuF43AOp3wnAQI2BNYysm9mrDV/uy58/zZKTgf+bmRj8joK\nBd5HyalGRiykUnxuhw8r3HWXg7k5zkUiNUpGtsHqKqUlu7s1jh/X+OhHHb9w/9JLGsPDYZl1ycEU\nFhf5nra0aOzbV8LQEJuKslkeI5kMvOHEG3BkhLmV5CBHjihcvhzkQ8IG2r3beGME/jXyuQsIq3xf\nwje+kQPltfT1ul72kfiuDw/TJ3NpSZryKAFLedmgUUFrMiW1VujvD+S2h4bI5gKC6yeIpHH33cbP\nIVMp1mDk/1dXNb71rdocth4g8+ij9prX+sADjp9/Hjxo1TRkiToBPeYkH6G8/b59Ra8u05jlLCG1\nrKARkWPogQduDtsLuHoP4I3ERsC0V5v9Vg2sTUxo5HKmwnsUaFz3akYzmnHrRBP4asZtF7IIcfGp\npIp3dq5NgTbGIJWiBFh3dyBNRb8ZhR//OIqPf7yIiYkobNtFVxcTi5UV7QMny8uBsXVXl/jwsBt8\n1y6DRx6xMThoPJNdg2TSoK0tOKd8nonW88/DB5zChtiSxBw8aOHhh4sVLIaNGIFKIbNYpOwLN/Pw\nZFDY8Tc4aHxj6suXtWe2zq7agwct9PRgzS6nsTGeH0NVGPUCLBTXe26f+UwMFy5YFX4WxSLws59Z\n2LOHf9/ezmP39DiYn7d9fW7ZEMZixi8OS3FG/JTCBb1whDe9ti3dcoE0XnV34ca6HoOiRG3RQrr3\naztNCcppzM6SkbF+sa4Zt1PI2CmXlc8kql+wlOffWEorHqevWSJhcOkSgRrKHSpMTnJT1dFh8IY3\nsOguHhCJBHypLSmIsLBt/C7xVEpVFLpZRGdRsKuLG0thSnZ1Gezd6yKft7BnD0GkCxc0RA6OEl8B\n4C4F8rY2dvgTJOJcKu+b+GV0dblwXc5bADe18m5ms5X+EoWC9nxzeB2RSNDFnky6eOSRCDo6+D3x\nOKWD7rmH60I+z7njnntcvPKK5XvBRaPK80tg8Wt8HNizR2HPHrLSvvUtG5s2EdBIpymBxAIVn590\n3K+u8pm3tgrDt7aoGS4+cowEjId6XkLhv20UlH/VSCYDOaswKzYe5/0RkJXHIHMik2FRIZsNCprl\nMgu4mYzBwAAABM/VGN7TcOdxIqHwyisWvvQljfe9z6nZ6N5xB73SfuVXyhVdrAMDBseOsdixtCTg\nk/EkAIUlwPGzbVv9CbneWl9P1lCkEyXyeYXubtdnPwMsUtHXitKSYb9E6eoGhDGh0dICD4CBP/47\nOw0+8hEWvRIJhTvuKOEHP7B9pne1B1zFOvPmbwAHfg+I5fwfmZ3PAf/4KDC9v+71Ayy+imRYLBa6\nH9sJornd40BiB3DpfcDuZ+F6bCwc/RT0LL83LB0VsILIjJSinVIEjdvbawE7AATsQqAXAKBjnv9I\nRArAXT8C+l8C/udjwHQA6sm/XRfAez8bgF4S3ZMoPfBZlL71zwB4fum0xsGDEWQyLBJvRH4rHDez\nYWS9KJWMB2DWBxskrv0a1r5X4YYOKfyHgQwC5Y3As8bnWT1uqtc/11VYXrb8745G+b5cuKCxvEzW\nYU+Pwcsv0/smk1GepF5Y5rgxk0mAO2meEMCBxzUeY4eM/Xx+Y8Di+s+g9v7k82QlNco1bybzJhyi\nhgCsfZ23yvlWR5hptV5Uzh+1zSauq9DaanwpR9eFv75mMsrzQpUGN+P7XlUywIM1Qxr4SqX6N1YU\nKyrPIfAoyuXgN6dsNMSLjcDkrQN4bTTYzAOQNSqAV+0cKY0qpRLljIVRPDurMD1toaPD+PtAznXB\n/TCG0rU/+xkbNP/+76mqsbKi/ecZBr4A7unKZc7ZJ07YeOihAuJxC62tzH8nJ4PG2f5+g0OHpLGW\neSxVTjRaWlQVaMX6xoEDZLULOAQQ9Jqe5h7etrkHYN7h1lgk1AMjbpQ83NWyj8LS1uK5mkgov15x\n8WLQTJfNBk1ZAJvcWlqYm2cywNmzzPG2bRPlmEDGMJVSeOEFhfZ2KnJInUKaj8P530aBkrWuNZx/\nSmOxMaxNSWNxZ2ftminKNmfOWGhpgcf0DGoyYZazhKgK8Rj8GZlxqgYku9bYyPio95l69/BGSmFW\n/608k2oQUJjt13ptEtXAGvcqfKfDY6he3asZzWjGrRVN4KsZt2SstSjJIiSLD8AE94UXNNrbmRQn\nEsCuXbVa0eFko1BgwhmN8nuXligR9YUvxLF5MwEN265lTZRK3AD19rq+5IsknTMzYm7Nz7KDXaFU\ncn2GQGen8ru+ZHMvIJ7IPAA0ov/qV6P44hcDj5W1ul/CSdd99xkcPUpN+Z4eFysr7Exsb6fXTCJB\nf425ORaDBUCcmGAxescO+MXJ4WEa9y4v855HIganT1ugGTg9bubmtO//IDr4yaRdkWALWCkdlSJB\n6DjSWc9rpHwFGXb07mDXFiUjKG/4+te7uHhR+ebu4QjLxlQHNyvG77av1xV8oyKfVw3Pg7G+iXcz\nbu9Ya2yF2Yn1wnHoR6I1MDYmm93AHFz+n54WFiYm+C7Oz7NQzc8EoBeAmkJHNdsgl2Mn6coKx2Y0\nyo1mKqXwk58oX4ZPZNqEhdDTw/kik1Ge5Bu/D2DxR2vjyyQBYYCaUkj9/exoJagUdFmHPyv3JCjG\nUuIsGqW8y+wsGS35PDA2pj0vFTYq3HOPgTGcBy9dsr1OfgJFuRxZeYUCZWgcBzh71sLlywZDQwot\nLWRjLSwo//wAzvkdHewAv3yZ8165rOp0vjeOasbHtc1Fyi9KF4vGYxpybYtEpEuWX9zWJh2vxpMe\n1XDdgAkIBECcyK0MDHANAbhG5HLK/56AFcb7Pjxs4eBBC296k+uvv5cuWXjiCY5fMrODOf2ZZ2zE\n48H3jo/DA0cDmbV8Hti6tf6VV3c11+v8HBgwHqs5+Fk87vp+YMHPDBYXORbi8UDKSgpcvE/GXzOE\nBSbhukBfn4uHHnI8uWBe3+Ki8t6BoDgv0nh+bD8KHPg/K0AvXuAkAaXvNQa+wk0bHE8G2P5iJftq\nJ4B7vg1Yoclm53Nw//FRYPodCOdFUiywLHiFOem0VyhvPYrld3wNxYgHph39VADKbTnd8BxromMB\n+M3/Dbj4K5XfIfdi97P1/273M/y9B5gVCgpTU1L0vP2KuGu/77f69dRnoF1tNJ4r+d0yj2tNBlRf\nn4tIxODJJy3MzmpPpi4An6s98WrD+FKS4rUm72YgRce1jMyh677EhrExttzNHgfr3c9bN27keUvj\nUCTiorWVgBYBd/jee+LlBtRnbofPK5ApBho/4/We/au3f7l1Q/xK2Si6Xrgu976838pn4LguGasi\nf1rvWRWLCsPDtj8/iDQuGy6rGZcGmYzxvEOBb387ioEBg7k5StVSapcKJwRE4fvKKmXQ0aE84JUq\nCeHnms8jJCfNYsTXvx7B+DgbcLZvF+sGsp7f+c7gjxvJwD34YLmiNsIGXAJGSlU2va4FEExNUV2h\nWn2HkuoaX/96xN9zr64S6Lp8WSGX0z4LT7zVCwWDLVuY01NRp5Ztu7REJYrFReN5mQafX1118eCD\nZXR3M3c9csRCKsVmtUKBTVQi2W3bBj09lFifnSUQNjSkNuxbKyFgS1ubwchIFPE4PHBN1As0fvpT\n5akXsIlQKYOtW0V9gtff10cPPgFi77nHQbFIn3hjDE6coKS9UsCmTQ4mJiycPMnGD/qiGezZ46Kj\n48YwnTYiH7hRicEbLYVZHd3dBuPj1SAg/YLrgYD1zids+yEMZ2HqVatGiK9wuIanlMF737vupTSj\nGc24ydEEvppxy8V6i2QiwW6aXI4MJkAYBgoTE0ygZmYU9u93cPCgVdPt3dHB4i6BJiYmksjGYi4i\nEe0VaVnsrN6cUrqKBeC2NnqhAPyuc+c0YjEWA9/6Vgdzc8qXv2CXPLWp83n4kok8f8qP0G8EFT8P\nJzGNul9mZ4EvfjGGuTmN1lYmTQ895GBkROHcOR572zbeu7k5ha1baT4PBFJgxSI7WGxoaVnUAAAg\nAElEQVTb9YGwmRkmrLmc9hO+K1eYeJZKLLC3tBivG5z3KR4HHnsMACL4q7+K4EMfKnl+V4GXCCCg\nV1BInJ9ncmrb1DJncqn8Z0OQiBsWdt2vb64OBKbbYTbYa9Xp+Mu3KW3GRmMj0o/0q7B82RwJy4LP\ndqJUnngRVgJeEhsZh1LYKRSUz1jMZvlPJEKZI2FayeclVlaM5wMDT2qPBaBUiqxH8ewTqb/Av4p/\nk05zA2lMcF1h8KvBGaOjg8XOlRXlyRuKBGHATsjlgB07HJw7Z3kADT/Dbn7jyXkF0nNAMA9xPifT\nIB6nl4RIc7kuQbV8XhoReLJhgO+1DpGN49zKc6a0F2V8RNpXmAwik1MtNyZFuXKZckp79xI0W1kx\naGkJPru6Ch/IyuWAp56iP8qlS+xsnp2NYNcurnfz8wpnzgBDQy727DGYnKRM5eAg/ZlWV8m843xv\nfJ+fTZuMPzbX8w6o143b2QkfiFvLuLynx8XIiMbiokImo3wvqXAELDDl+U34dw22zaLX979vI5VS\neO45FuaD99zAf9+3B5KGKLYAW4eBWIOB0zVR/+d1olhkEagu+8qqQtg9UE19//8NgcwsJsVifC8F\nsFOK8oOlD/860BkC0+79n0CuE5i6H+ioOt560b4AvPmbQJjVtv0o8L//BmA30JazS8D7/hT41hOh\nH95sYKAZr3bImiFr3ZUrNjIZXVEUpeTg2l6nwmIslxViMeUzk8N5pBS0Ke/46l1TM26f0Bp+kb2z\n0/hAhjRB5nJXD7IJWHK1LNVmSFw9u1fyO/Fidl3l7ysbRXivGG5UDCRMyfinNDfVFt78ZheLi8Ab\n38jGWplnxJ/XcTSWlkxIKpnSh7EY97b33utWydfVgjHGGL/QXyyKnDIZQiLd9+CDZc9Pu9YS4tvf\njiIWMz4L3xgq4UxMAHff7VYo0XR0NAYI+N3Mg5mDMydMJhX273cxNqZw/LiNuTkCxWwEhmcnoEL+\nxzxOMmn85tcK/9BQiDRpocA6QEsL/6GXF0HCP/qjKNraqFyQz2tkMnzOIg2dyTBfVSrIf0dGDB55\nJIJPfpIPuh7gJ83HyaTGyAgbnQGgv9/F4iK9JbdvdzE9rT25eI6VXM7GyIjBQw+V8OCDDo4cUejq\nUlhaoucsZdcNAEq7/+hHNjZtYg6cSrExmowig+Vl28/R2SRsUC4bz0NXobeXA/16ZAY3Ih8Y/kyY\nbTU/r/HpTxdrmtXX+q7riQcecHxZSYlikTWsL30pWqNEUX0+YduPwUHUMPWqVSM6Ovg7qeMReHTw\n3HPA+Hjkhkg8NqMZzXh1wvrc5z73uZt9Elcb2ewGHZWbcVvGk0/aWFmp7uRiUfdNb3Lx1FMaP/xh\nxNO/hweCsVuqtVUkDQjwWBaTwi1bKhegS5eo4y3dXpVSLuyYZydSbUedbII2bWLBltIJCtPTGrkc\ni6rCZLIs4ydonZ30NxGplT17SLmfmNBYWuImPCwhBXCB7esD9u0LdlVSyNu3z8Wb3uRidFTh85+P\nYWpKI5tlV+z581y4bZuJ5pYtgeGv41BeJRqlXEA8zvtIg2OFlhbKvAQ/IxCYyzFJy+XoaUbDZz6X\nTCa4xkSCCR916SmJNjOj0dXFpF7k2MRHy3V5P9vbecx8XmN+nslxLqdRKgXgo0gsJRIbl+moltK5\nWkP4taO5aW3Gqxmq7niV+UqkkhIJzoFi/HwtYYzILpHZFUgM8l2rBuqErSQyUSJNRyDb+MXK/v6g\n61Y8TwRcIXOGm1zxKRC/vUomXP1rknlafF3Ee0EYNWIKPz7O75YNszDW5H5Jx69lsXgRi5Hlls9z\n/chmg27cQkF+LkWRWjbxzQ7KucI3PL/jDnYhLy0JYMPnJMyH6ucCcH2IRtnY0dVF5lQk4iIapZyK\nUpR9EpBkclIjmeRasLKisbSkoZTyJGA0UinO47kcmXMiq3n5ssbYGH9PyUUWpdlQQu/Mvj6D3/md\nEtJpjo/+fkr/VG8sL13SdcGvoSFuRBcWlP+u3HefAxZCgDNnKJu2usrfry2NxfFazZZUiuzIqSmN\n06d5/Vy3qsaHeGHtOgx0jwO9F4F4uvHhXAVM3A+kBtY4p+A8XBfA/v+H371e5HuAk/9H1d8rn+kW\nZkSX3/9/AzsOVx3OANE80HsBiOau7RWIJwE7DyTv4H3pWee8Y0ngyP91DQf6ZYlbZx56NSKT0R77\n/+qvk00ALtrbmc/WY1uH5Uh9BuUv+D1txtohDXuSTzgO5eHDMszXEjd2L/KLEK/d/SDb83pZq/zb\n1lbu7eNxg95e5l1btnA/f+oUi+yxGBUURKqSDWainBCW7uc+enDQYNcuF319Lj76UcdvUJ2aUnjy\nSRtPP21hfDzwD5P5sLeXTWinT2v80z9FMD2tPfa6wvw8gaaJCYWXXyZTa2GBOdP0tPb3/93dwLFj\nGs8+a+PllzXOn2eNYnmZ+drKCpvOTpywMDam0ddn0NbG/CuTIcsmn9cYH6fqzOysheVl5kPSeCbK\nL4FKAnM++u8C2Wz9vU+958gaC/OWqSlKb589G1xPPg+/1hONAt3dLrJZ5pvyM4D1kTNnNH7wAwuP\nPWajUGCzWyKhcPq0RjxuMDzM+/7887wnbKJTXkM2Zcfn55WvjJHNKr9mVC6zhvJv/20JMzOs18zN\n8blkMqKYwyYwY7gGZTIEU0slAoeSR4syBpvZeByqE/E8ZmYIni0tMV8Oe1FtJI4csep6/ykV1KPk\nM6mUwrFjGtPTvCfz86zzvP71PO5Gvut6orMTGB0lg1Ap+HUveL66ExMaTzwR3ItTpyrP5+JF1u6U\ngufty78tleDXziYnWUeTiMcNfuu3Snjf+xx0dxs89piNVMrG1JSLY8esiuNd7b1vRjOacX3R1hZr\n+LtrYny5rovPfe5zOH/+PKLRKL7whS9g586d/u+ffvppfO1rX4Nt2/joRz+KX//1X2/4N2NjY/iD\nP/gDKKWwZ88efPazn4XW69PXm/GLG+tpKB8/bvkML6DSJyWXo6wWpYoU0mluWs+c0X731OCg8RIi\nFjfDnXqy4WWhs9YQmZIr7MyyLPqRSMcfP2u8LiTl+WpRxmtoyHgJmPK6oUhrl++3LNcHyGL++8oO\nrbB/V70OpG9/O+p3+q+sBDJhx49biMeB1lYXHR383nic/7S0MLEulQxOnKCMIe8pu9NmZphQp9NM\nvETGTBJ2ud8Bc4PJwtgYO8YF0OLzoQfD5KTC3r0G6bSLuTkmb+3tLrZscaGU9gqq1FSnfE1lcVG+\nL5BYa0Yzri024ttxO4QxnKduzPsQvNdS2N/oPWLXKYE4yzIe6MLNHqXepNvW+McRiRelCISUy6bi\nuWhNoCnstVQdAnCRlVI9l/Pf9LQQyRTlS7nJccJdvKUSZXIp/UdgiB4h8Hy7bj2Qq14Ia4rG9caT\n0jGIRCgjyI5b3gD6glUCmQG4wzVieprNFu3tGv39BgMDDiYnybCzbeX5bCqPPcdzKBQIfjoOP2NZ\nInGo0N/PtVEpjUuXlFcQCZ5ZOh0wDXM54P3vd9aVOwEaSwHv3u1UsMjHxzW+8x22+U5MaKysaGjN\n46413rxvrPtT1wXOnbMQjRqk07VMcT/qsbHWik1XCAit4/UlYYyih9dGYnWwwS8CBqPfKd+5DiB1\nPa9E18TG78svwLxdGU1gZaMhxdJrDaXo4cVmq7XZNsLoqGaaNuOXK4QxLflCNqtr9ibN+OUNehC6\niMVYD5iaAi5etPB7v5dDLmdXyd2zUWh1tTbPEMlVqtEYjI4CDz7ohiQOK9VwRJJ5cpJ5q2276Otj\njnrqFMEUx6GkXzIptgEKR49a6O7m70WqrasrUFCZmzNYWtKeXLjy5MiBuTkW+9vaDKJR/p2AB5OT\nBAosCx5rn6BPJgMsLNC3Spr1qq8ZCN6t6Wm5L1dXA6SMJI974YKFyUl4fms8r64uMqkAhc5OF297\nm4tTpzRGR7m/iMe5Z5meJkiVy2nE4wqHDmm85z1lbN8OTE9r/Kf/FMPmzQqLiwTEwo0T9PiTBmru\ny6SUGVYGaGsDjh2jh6V49CUSst8IlCck9xYAh9epqvYtwRgSv/NUivvBiQk2fD//vIVkcuOyghLr\n+cmHPzMyQgAvkCdWGB628PjjBr/92+UNfdf1xq5dxmtSMV69r1KKHYB/L6hSEZyPjON43Ph+vMHP\nTV3ViHoMstVVVMgtXuu9b0YzmvHqxTUBXz/5yU9QLBbxD//wDzh58iT+7M/+DH/zN38DACiVSvjy\nl7+M73znO2hpacFv/MZv4MEHH8SJEyfq/s2Xv/xlfPrTn8b+/fvxJ3/yJ3jqqafwwQ9+8IZeZDNu\njxBg56WXyDASDw6h4g8OGhhjQSmNLVsMkkku8JGI+IIE3ZrpNMGpSIQSemHZxJERhVyOJrf1gpR4\noLoYIQms47CTK5kUI2Pjd+dQO9yFZXERBHj8vj7KZNx5p4vOTnga11xE02mar1Knm91WIkvQ1RX4\ndz3yCD2yBMAbHlb4yEfKePllhcVFGueK9Iv4FUjyNT/PxFdAtXjcxUMPFfGVr8QwN2ehXGbhkRJn\nxk9Sk0mRmVJeQq7876/2piEAGeh1h/HrbJYdOYDB3r2kj+fzwPvfX0YyqZBMAiMj7M4RWYjG0SxC\nNOP64helaEGfgxv3PlzPfeHGjfNbKkVgQxhYjY5jTKVknDHwjN4FhGt8bfx9cP22vTEAMFzErJWy\nC66F/698OcnbqfNfWFzFIjfWuRwBSNtWvn+V+JV1dbnIZNgEwsIEN7AiBdzSopDPs4vxrrsA2QgO\nDtIjcnYWvo8VfTCM55VGWV87lGW2tXFty2Y1enpcLCwIoFivKBKMjQsXarX6GzWC1JMCrpZkOXZM\nY26O0p2lkvIbYK5n/EsHbiKxTlG0awNMrOrYgNdXRRz9FCUEw0CSY1XKHSYG+LmGUTXWNwqmXUus\nDm78vsy85dU7j5sSt8ec8osQwZxEdkEms96c3gQ4ftmDMmgcBLEYGwCvh+XVjF+skD336CgbabgX\nVvjLv2zFhz9cwK5dDs6c0bAsMlPEM7xe850xZI4tLWls3gyMjgJAsGaH8xhjjCetx30+QPlExzHo\n6VFewxFBrXyee2yAed/yMvM7aQabn5d6CdlG2az2WWgSlIdk4+uFCwZ79wY+6+JlPjkZMLmkXuK6\nym9iavTOBMe5vrXQdRUcJ5D8EwnDpSX4HpC2DU9m23h+WwQbR0e15zvONSEe5/mcPq3R0WFw9Chl\nvNvagu+3beOp3/DYYX9xNuKxCdu2mfd2dlL2/Qc/sGHbrMsI2w2o9HsmCGaqgNO1wxjj1aQklze+\nFPvVygqu5Sdf/Zm5OSo1eGfhMZwIfgHlDX3X9Ub4GAJkra7S2kRC7gXva9DQwnHMmuPkpPHrXCJN\nChBYa3T/pFl/bKxyjF/rvW9GM5rx6oUy5urTty9/+cvYu3cvPvShDwEA3v3ud+OnP/0pAODcuXP4\nyle+gm984xsAgC996Ut461vfipMnT9b9m3e/+904dOgQlFL4yU9+gsOHD+Ozn/3smsdfWEhd7Sk3\noyr27bvnZp9CRRQKgccLUJlwycJPqjj/OzxqKT1R+3lhZ0WjJkSrF2mu6ztf8QGo9/aIhF/ARKj0\nw4lEjJ/shNkGEi0txj9GLMakKZWCJ2VWKd0n/lXVSWp12HZwXkpRQrFYxA0p+NULuWZJ7rUOzsEY\nJhQtLfxZJsPnks/XGtk2oxnNaEYzri+kKUR8ASrZXUFXe6N1RAoIkQjXU4DSKyIPXL1+BN4V4UJA\nsAaJvK106q61/sjftLcbfxNbLocbVIIQUE+6p8Prp1wXpXMr78FrWsRsXQQidU5+vSjHgMy2jX/e\nKgCxFKDKgLGBUhyI5IP/L3QATmM5iJqIpIHWpas/741EvguwC5Q8XCuMBjJ9V3fezWhGM5rRjGa8\nxmFZ3M+LHHilpUJtBL5NwX7ZtoPmoWJRfLJNjVRruO4hLH6pPwSS5LUsq+rjN/pd9eeiUfheuvSD\nRd16xq0Ucn8ln5X7Uu95hPPWaDRQlwgDluF7G75n4fsodagwazT8N/XkdsPfczW5abjOJKoblFlk\nzSkMAm0kpCmtOp+u/szSUuDHJmNOzqG312z4u6435BgEnGr3MuF70dJS6RMv4zhcl5PPAmzaa3S+\nUsOiUlH9413tvW9GM8Jx/Pjpm30Kt1Vs2dL4hbumaSedTqNdDHkAWJaFcrkM27aRTqfREXrD29ra\nkE6nG/6NMZTjkc+mUuuDWj09rbDtpuvw9QRlpG6NcByRGKr8eRjckQVcQJ5wsiAFvUqZrEA2QMZX\noVD5vdcaG0kOKZVVmQTIzyMRdiJl63jZWxZg26rG6yvsWSNBdgSLfRtJnqJRMrHicXYTZTKVoNyN\nKv5VJz9A4IsWJPXK19VubQWSyVs/aW5GM5rRjNsxwsWOeoWPcEGkXsgGnpvbgPUb7uytZgCHCwyy\n2ZV1IQy0bTRKJeWvH2KOHj5/ekLCl9o1hmtsRwdzCJGsFP+q6pzhNYtCB2DlAX2V3a7mKtN1JwYU\nEIBfkfzVg13hiF4DWLfRiK+u/xnXBrKbm6BXM647ZC/RjGY0oxmvVtA3Vvn5jnjDrhfh3KZUUn6j\nEBCwtOrNX5Ificy41A3CeVogZ14bV5sLGUMAw7KYe9VrgrrVQnI+yROz2cbsO8kRw6CXfIfcU2nI\nrgeyyPcICCVNxgIU3sh7Vc0MqwRQaV1xtS4y0Wjgf7bWZ9ra6tezYrGg1riR77rekGO0trLZLZDY\nZ4TvRfX5OA4BLMcJGsQti4pSrJk1Pq4cT/ZI9Y7XdPBpxvXEWkBOM64urgn4am9vRybUbuu6LmwP\nCq/+XSaTQUdHR8O/Cft5ZTIZdG7ABXBlpc4M24yrip///NTNPgU/Hn3Uxne/a/v0YonVVYVt21zc\nd1+QUczMKBw+rLFpE6UGEwnS7wcHXR9AcRzqOH/sY2Vs2kQvLQA4eFBjdtbytZg3EtI9ZQw7r6JR\nFtJyOYNkUldQ2xkGW7bQU6urS7Swmax2dhLk3bTJxSc+QZnByms2uPdeFzt30jQzHL/zOzG89JJG\noRC8L7LQDg66SCapT10sBr+XImNbm8HWrS4+/elSBd36d383hpdesny/rXAipjVp4JKohZM+vrIu\nXFdXAI0EKA1+9VeLaG2N4/TpEubnFVpbDbZupZ7zwABp8D09vMapKYXHH7fwne/YOH1aw3FuRHZw\n+0iSNeOXJW7XMXnrnrdIpzTqnr32oK777RdyzmrNZgZjjMeEViiX15aHlIJNNOrirrvoX3ngAHd2\nx49rHD1KiRNpSAGU193o4t57Hdx1l4uJCY3ubsr6ikzvBz9YxKOPxpBKaZw719gPKxYDWlsNensN\n7rrLwYc+5CCRUDh5UqOnx3iymgqnTmnMzXHt7++nPMy997ro6DAYGnKxe7eDz38+BmMoCbywQKnd\n9naD5eXAm+BVj+1HKVnYfxTovQRYG6y+Jwbo8ZUNSR3Kd3WNU4bw6KcqPcC2H6U3WLfk3QUg0QP8\n47c35BVWcYwtp4GtE8DN6jfLtQP/34+B1AbP+5c6btf567UJpag4IB3azWjG2tE4B2oCqDc6fnHm\nLs4zLj7+cQc7dri4774yHn44jnRaI5kMPE1ZFKctQ2cn99BbtlASLx4PfIZ6euiTdOGCgjHaK9Jz\nXAoTv7fXYHDQ8f3EczmD6WkNrRV27XKxuqpw7pxGNttoPFOJJZttLPEaiRhs3uzijW/k8f7wD4u4\n4w6DRx+18eMfW/jRj2w4jgop39BXvVx2sbyskcspzztMjvnavEOWxXyyr8/F7t2sK125ovDyyxZS\nKTYCZ7PBeUUi9DMbGnI9SUkDywpyxXKZefG/+TdlAAaPPx5BLkc7B4mhIRdve1sZXV3AyZMWLlxQ\n6OkBtm+ndOLMjPYkx6vPNmAlFYt8zmspDGlNicPubsBxOJba2w3273e9fNi8qj5TtOKIVFhxDA66\n+OQnSzfN22pqSuHgQQtPP02ve6k91bsXV/PZtY733HPteOyx4jV/RzOa0SiaSndXFzec8XXffffh\nmWeewYEDB3Dy5EncReMHAMDrXvc6jI2NIZFIoLW1FceOHcMnPvEJKKXq/s3dd9+No0ePYv/+/Th0\n6BDuv//+azmlZtzGkUgEWtHhEEm8ZDLw+VpcVOjvd9HTA3R3sxvDtplMSaIIGLS0GHz4wyzQBdrC\n1ybrJybXxiiUStQCTqWCzo4wjb211WDPHoM3vclgYoJ63oUCtZxXV2k2urQEfPWrUQAGmQzQ3l4J\nCtUz/HzLWxwcP86qU0DnZtKzvKyxdavx7o/xfWkAJsOtrZRbEK8w8T9hN5qLUsnyu5cCQ+/qLv/g\nWuNxJlbijyCgmG0b7N7toFDQ2LuXiddTT2k/ATdGYWWF4N7QkMHx4wp//udRXL6skU7fyHaYZjGj\nGbda3F5jMmDjXPt5v9psGts2DQGTX8bQOpiPgbXkB+k9QLBq/fvnuuyMbGkBPvCBEnbt4poKGESj\n9OsKzoFeEbt2ufgv/4UFkXpeXEeOWBgaMjh8GFirqGjbBrGYQTzuIpcLmlgyGfpJ3Huvi8lJBfG0\nFCkSY4CJCYW77ybgdumShXvu4WcLBYWFBe3lDexIvRrm2TWHD0RNrv9ZAHAUsHQnMPOONUCt0Hft\n/hEws4/MrNUdQMtS7bGuxivsas/31YyJBzYO1jWjGetEo8JvM5pRG7VjJfD8rP/7ZjTDGIOODoNT\npzQ6Ohx88YsxLC+zWbS93XgMMAWlXGzbZvCe95Rx5Qr34lIPuHDBQqHAJmAZZ9GowsoK9/aFgqpQ\nw8nleOzBQWBiApiZ0YhEFPbvd9Dfb3DmjMb0NPz9eDiE3SSSb/VyokiENY73v9/B9u0EdiTHu3wZ\nOH+e3q2rq9pnncVibJiKxxV27wYKBRfnzyu4rvbu06v5FIIQVYPZWYVsVmFmRiMaFe8yAFCIxVhX\nMcagpcXFr/0ar/PIEYWZGeav4i0fjxs89FAZ//E/skn5wQed/5+9dw2O4zzPRJ+ve64YDGYGIO4A\nAZAEeBPvFCmRSiRRiuQV5RPJyrFlKbHlSiQ7dnzis7V2ks16400q2a3EldqU95xKzo9UspWoXCWn\nknIkZZVay5dd0ZZD0pIoSjJJgRcAJIjrYAaXuXV/58fTb3fPYAYESEqinHmrVDbJmZ7ur7/Le3me\n58Uf/3HI6R1P0PbQkI0jRyy8/HIA/f0ai4vA7KyB8+cVbrvNwuXLqsz/9MdMDQ1kC4VC7CNPsDZ7\nuVXKlQcCQHMzC3UHD9qIxbTj6/IdSf/b98q6uzU+97li1Z671axWf97V2mq+392t8cwzJRw9aq34\n2bExhWefDeD0aRNLS+x9J3mqpqbV9+fq7tb4zd8E7r67cEPPVre61e29tesqfP3CL/wCXnnlFTz+\n+OPQWuOP/uiP8I//+I9YXFzEJz7xCfz2b/82fvVXfxVaazz22GNob2+v+h0A+K3f+i189atfxZ/+\n6Z9iw4YNePDBB2/qA9bt1jdx8mZny5F1HR0WUikbp06Z7t9nMgqBgEJPj42mJo233mIxJR7ndajt\nq9HcDLz4YgDJpMaRIyUMD5vYsEFhetpwaem1kl2e8+Hp+7IfCZOFmQxcp01M+ojl8xpjY7zPgQEb\nAJlhgHIKVrbbCDYS0Whs5P360SHVGn4ePWrhO9+xMDxMdBIR+0xisgAF93DNZGyEw8opUilEozb+\n3b+jzuOzzwZch3fdOjreiYSNTIbOWjhMhlg2KxR95eogm6ZGQwOb5cbjGpcuefKELS0a7e1s3trb\ny78bGVG+xrrabRY7Oqrw6KMWvvGNEEZGTORybH77viQf61a3utW0QEC7vZekJ0F1k6bLtT/zXga0\n0oB6LY2fr9fInLWdItGtm+QKBJSbAJFeXf53IOAM2WcF7FDrPXlyH9zbd+yw8MQTlovu1Vpjbk7j\nrbc8kEQ4zGTPPfd4CMfu7uVNoS9cUHjzTRPz88oBTZRL8ti2RjBItGpvL6/jw1eht1cjnTZcQAzv\nV5pq0+TvhW3W1MSE0OioQjxOMMbSEuf8agqAN2wH/9vqikg2gGwH8PIfAK//qo/Z9RWP2VXtWvFJ\nIP4/vD8Xa+jKJEauzRZby/2+Hxa6Ru+vutVtlXarS3HV7YO15Wzp6oyvaFTDMJQroS+SaHW7lUzD\ne383/4yXYlE1xlIkotHdDeRyGidOUFmFCgXMBTQ2slChNXDggI0779R48sk8Xn7Zi9EJ/FVlfk0k\nohGPK0QiQKGgHeYYY/d43MbQEOPzbds0cjkD6TTw5psmrlzR0JpMsoYGr2e4SPHJs0grBhaAxLfT\njqSdxl13ldDV5eUqyPYJ4I03TESjlGZUir/T1GRjcZGFpqtXlXOf5X77e9FfvNY1czmRnDSQzdL3\ny+Xo/3nqBvz+unXA+LiJdFo7YC6y4VIphUjERm+vxs6d3g91dABDQxrRKNl8kQjn3PHjpvs+Jc+l\nNVlvfX0aly97sofivxeLnjSiqDPYNhWDpGfc0hLzP5GIxubNlqsuNDtL1YNt28gSXE3RBrjxYlQ1\nP7/W7/jzULOzChcuqDUxq9by/Wvd17FjfD/My4lqFBmVd9xhI51e276x2nGoW93q9sHYdRW+DMPA\n7//+75f93caNG93/f+TIERw5cuSa3wGAgYEB/M3f/M313Ebdfkbs0CELFy546G0pCn3xiwWcOGFi\ndtZD4UQiZDj96Ec8lMSRSCaBbdtsR/ZIobmZsgCzswpvvKHQ26uxbZuNmZkSzpwxoRQPOcpklR9s\n7EWiEQholEoK4bBGc7NGoaAwN8e5LAk6aXpKBKlGNEpHM5fjfe7bV0I6TUe3qUkjkaAzChDNs2OH\njZER3ueuXVZNZ6O7W+MrXyngt34rDKVMx2Hj/UciRBKRVq+hlI2lJQNTU3TeHovFgHYAACAASURB\nVH+8gH37JFnpPWs8Tsd8fh7YuFFjfl6jsVEjmdRIpWwMDxs4fVrYYHSG29s1tm618eabJlpbNYJB\nSsYEgywwMhHO38jlFEIhyhwuLpIxEIlobN9u48QJE+fPm5icJALf34T3w25r7V1Tt7qt1ljMBopF\nFtotq3pS5nrlQ5qaKAfCZr1eccmyytdmMKictc89srYMB69RiVC8XhNN/UiEMiPZrEI0imVs4Ztp\nWmuEwx7wQZ53hW/ggyiQWRZBDrbtSbHIf/7eXrLPWpbXX7XSKJViO/I7Gk8+WXQZ1M89F8CLL5pu\nf4dNmyxMTCiUSjy3777bQipV+/nHxhSOHzcwNqYwP+/NLemDYJpkkvX1aTz4oIX+fu1jbdPicSIy\np6eBhgbbOf+0wwjzkkaSnDl2zMSlSwZOnTIckAfPI9MkGjmffx/eV+LS6j5nAEiMA/f+J/753v9U\nXoDq+z6w2HLt6wRr6DkXIsuZXH3fp5Siv/i12vt9P2yu94O+g7rdAiZFcu5d3Gffl6J13f7VmN9X\nqSUZrDXPDDlTBYhTt1vFNAxDY/16C6apMDZmur5QNf9s7bGndthM9D1lzgDMG0QiBIN2dtqYnQXG\nxw3Mz1O2rljk70txIxYDWlrIZr9wQblA3QsX2CagVILrs0QiQCJBnyebJauIiXrG/5s322hs9J5N\na42JCcMBRbGIls+z4NPSYjuAUwEO2SgUGI8Hg/SPCBJmPuDTny6iqYkMeX9h5LnnAhgZod8VDgOt\nrRzIxUUCXwGq+uTzLPawt7i+qRKHoRDfYaHAMZUWFPJOpT+T+LwC5gKAixcVUimNYpG5HPZlYjGM\n4CiF+Xm+15ERw8ll8N8eecQL9I8dMxGPMw/ltzfeMN0C15tvGpieJquooQFobrYRiRiIRuXTysnD\nkBnmN1HVYdGTykEAsGGDjfZ25rsAD/AFVFcPqmY3Woxai0mhyW9ar55ZdaPfrzQpbGmtMTnpxQ+Z\njIFTp4De3noRq251+1my6yp81a1utWy1qJHKz4mz19dX/r2TJxW2baNzd+qUgVhMYX5euYfShg1E\nFgEivwTcdpvtIqT4PRMjI3RIdu4EACbqFhfpjKXTPDj9ElHS9NIwyMgKBplsy2ToQDY1MTmYyQAM\nvm0Eg8pJprHwFYspnD9vYGDARjptYMcOG2fPegc2kVurR+bs28dE4OnTcGQNpc+NdllkIyPAoUMa\nzzyTX/b9asiVZJJOur+PGsAk4oMPFvAf/2PElZIMhfj8V68qtLbaDhXc+05/PwBonD/vJR6JKmOB\nzBldABovv2y6jqZlec1j/RYIeP17lFouzXCrGmUi6oFw3W6+RaNEXobDZKtI4Fi5dtYeULK4UywS\nidrczH2sUJAg0usB6KFcyRadmfHk4irvgyhEBnJLS7zmwoJexphdrcXjGqYpvQw0pqYUlpYUJieB\n+XntSoMEAkxIiLyJN0ba1xvMW5/+IFyagrsj46AzAX0NFpzYB7fueY7JOGgHMarKxkAKTLX62xgG\n0N5uobeX59IXv0jghD84pmytwsQEEzEbN3JfT6U0Ojv1igH3s8+aGB42neKqdw+2TQS9UsIC59+T\nAW2654pYPK6xcydlXOS+GhsFPMPvHT1KP+LQIQsvvGA6z6+d3+W8ZLD7Ptjc+rV9PjkK3P2H1eUK\n7VW67qUQEPAVwNI9AIzaEoivwmOCNY2s7X6vZZYCcgmgFAXyjWSehVfB5Mo3kJFWt59pE8R9JWtG\nig9MlmqnL45CczMwM7PaPbludbu2mSaLC/k855VhEOSTq7JN+eMRFg/qPv+tYoYBtLUplEoGAgGq\nE4TDlINbWCCwS96XVxTx/m5l04jFbChlIJlk/C09sQIBMrGkN1QyqfHjHwdgWfSjFxfpSzO2pa+2\ne7eFeJwbmNaUZSYYmPJ409PKAceyuLVzJ5lb7E3K/XHnTgsPP0yAT6WfxOtqTE4q53k1Nm3SmJsD\nBgcBrW1cuGBAawNzc14rBWGGdXfb2LfPxpe/XD0/Ib1bK21xkT5mNMp/CwS4rgRsxXVGv+96YntR\nppAidTBIsJ7WyumZptz8QSCg3eIk+6FRpQdgX6xgkC00mLOgtGSpRIaX1uwjOzlpYGGBrLWlJY7N\nP/xDAB0d/JHvfc/E9DSLUqLgw7EHLl8GfvCDAEolFv5sm0o9yaSN1lYbpRLn365dGv39Fq5cMfHi\ni/wtUXDQmoo68TjQ2cnfDwYJRvYrJkk+rJZ6UDW72cWklawWg2q1zKob/X6lJZNe0dC/9lkAfX9U\nRepWt7q9f1YvfNXtptlqUSNrQZfYNnWpz59n8rGpiQwiScaeOkXmlzgZJ08qtLRIEEJZI8ALXOJx\njcOHgWTSwssvm/jRjwIIBOi0+gPuYlE5vVDozObzlDGMRpk0a2lhwS2bNZy+IgqhED/T0EAUlzTQ\nvvNOC6OjdFgiESZklYIr4QSsHpnT36+hNbOYmQxw/LiBiQnDuS7/GxlRGBtTy8ay/ICn9fayF5nf\nslmN2Vngr/86jEBAYWCASU06xSx83X8/Haq33vIYekrxHUoBsrdX4+pVhcuXmYymTCWvHYnI+HjO\nqd/8iWjT1K72+PXZexuQihwmCwLa7ZNWD4LrtlYjW7D63AmHNVIpgKhSr+i+WlsuL6KdPkoMBAcG\nGPQFgyxU796tcfGiwvS0wvi4glLU7U8khPnEPTOVspHJGO5+KUlIKZCZJgPeVIprfmFBIZ2uvvZX\nQt4GgyyobNxouXIu2SyTAm1tCjMz3HvDYZ4Vw8Ms1DMQhoPE1ejqAqanFbJZ7RZepDm0FIoqjX0O\nmaioNeYfNGPVNIkiZXLFhmEA8bjI4SindwMTH7EY2b3z8wZCIe2+y0BAY88eC3fdZaO/vxy4cuyY\niUzGwMiIQjqtMDnJBM7oKNDQwL29vd3GW28pKKXw3HOBqnr6zz/P5ueNjcDcnPYVv3iOxGIaLS08\nPyT4Fla4PziXwL67m82jBUiza5eNDRsoCyxyx4cOWdi+3cbp03yPExM2olHK7gpCuJbdtPf66m+Q\nWbUW+cDoTPW/zyVZxLrWtc7fAyy2ssg018t7eOAr1T/beno5E8wyAdOXPMlHgenNQCQNNF9Y/XMA\nwNVdwP930vtz16vAJ38RiE/U/k4hBLz4Z/X+Xv8KLBjkGZHNkk1jWdyPkknuaTybyPDSGpiaUg4r\nuZrJ39d9sLqtzkxTuwlyYRYmEuLnKMcH0C7op7rV/f5bwQh8YksCy2LPo4UFhUxGlFrod9BfJZjM\nMLBiz9hQSCMWo3+eSil0dVmYnWXfcUC5DDBhAs7NASMjpjN3PIYXCzX0Vfv6tNuXVCydVnjhBROn\nT7MNQD6vXWWa6WnmNhIJjV//9eKyGL/ST1JKoa2NijC5HH00Ks8o7N9vI5cD3n5bIRajX59IaFy8\naMAw6DMPDLAY9PjjBM9UApY3bLBw5oyBK1cUikXmZ8Jh3ktDAwtf0p5CcjQsTmm3lYJp8reqFZfF\nKhVhRMFAlHdMU7tFLa35nrQmi6tQIBPNNLVbSAoGvWv39rKf17ZtvPjJkybCYY39+5lXeust9oIl\nmBmQs2VpSWFkxMDzz5sYHTVw5oyJuTnlMMM01q2zoRTVh06eJJOIsqjcS0xT4eJF5quammzccYeN\nXbsEyKVw990l/K//ZWJhgePT1UXVoYYGjU2bLGzaRAZZby9zS6KYtH37ct/9WraaYtKNSiGKVctD\nyd+/H9+vNFkzSrGIKMXf3l4bQ0O1VTHqVre6fTjN/NrXvva1D/om1mqLizUkXOr2gdpLLwWW0bNJ\n3eZhvNrPjY0pvPQS5ZReecXEzIyBTMZAsUiauTTwLBSYsO3v9w682Vk6WkK3HxkxUCrRGUmn6ajM\nztJBu3jRwNSU6TaHFcYC5bQ0AgEPDUYqOpFElgV0dlIikHrWcHSX6QBrTXmo1lZqQP/O7xSxebON\n+XkWgLJZYHBQuygvpTQeesgqY0/VsmRS4803PVmBmRlKCrS1EW0/OKjR1LR8zCu/K0antgiRNAuH\ntZvEfu01A7kcUU6NjXDQRkTdplLA//7fAVy9yp5jpRLfzX33Wdixw0apFAJQxMwMKftKGU4gqTAx\nYUApjZkZA7mcX6pG2Bh07gMBBhJKaTeZfT1mmisnrK9tK39XKX/xS5B/xk2TcajbB2Pvt78rPfSC\nQQnI/Ul+2y2or1tHJOLEBPcbowphxTSZNHS+DUAkXOW5uL4EZd/YCDQ3c42nUmTSzM4qbN1KRujs\nrHIYXixaM0lARtfgoI3ZWQOWpcrmvDSAD4VstLRQmo4MGz4bUZflrB8/ul+eLRQSMAGLMv/23xZw\n+TKfXaRV1q+38eu/XkQiwYA0HCayV9hfwmiLxTypRIITPF3/xkb+bqlkVJUq9ebDrRkIhcO2e14F\nAkw8bN1qY8sWMpzZp9Hr5xAOUy4yEuH4HTpk48tfzmPLFoBFKCYF5Fx68UUTx4+brqwkG4UbiEaJ\nXI1ENEZHDWzaRCZVOq3w5psG+vu9a7z0UgA//rGBQsFw93evtxcD+A0bbOzdy7n77rsGzp1TDivZ\ngpxTnZ08M6WxemUy5uWX6WOQBW3g7//edBDPwKZNGgMD/B5lgrTzvivfq3YLhaZZPreFNcix5tkv\nhV757rLrZXuAS4eA+AgLUcYq0LjZTiCaXv73w/dBfefrMMM56MUUMNcOxKbKi1TpHuCF/xf4ly8C\nrz0FvPMx3sPAy0DHqeXXLEaAVIW8oaGBmX7g6k7g4l3AC/8P8L0/AHKNwIb/CQTWgEYZvo/34D5b\nD3Dx54BADsilgInNwEIrYBaAfAy4eBj4h78Gzn109b9xi5ph2A44iD5WKARfwXWtbJFrffbW3J9W\nssZG2+mJwvUYjZJ53NLCs2ZhwWMUGwaTyFyP5c8q4KNYjMnpQqH65+pWt0qLRCj1nEgwQZ1K0UdY\nWPCAGV7CXLk9eYDV+QaUQ1z5M34zDHvVn/3ZsRt/XgK5lFtwohQ/CxfFonJjdoB7STBIn1opVGUu\n0eibh0Ia69ZxTzl8mGCpyUnltj0gQxCueoLsafk8/VwpqEajbF/Q1KRdfyaTAd59l2Cc73zHxNWr\nBiYnFS5fpj8aCsEB4jJm37x5eaK/qYn5EOmdWiqxjxTvhfM5ECBorKeH/83MKMfPgbvv8vc0Dh+2\n8fGPF3D1qokXXzTxzW8GkMsxtr10SeFb3woikaCvNzNjuAoMhQKwfj3bPExNGSgUvLGJRPj7UoQS\nwJPEPNXiLiluERCrHDaO/53zrGhu1mhrI3Cvo8OGbYufK0AqAYixOKYUlYA+/WkvB1IqscgkPuvI\niIGZGeYfyouUCvG4xvi4wqVLbAmRzXIOSQuHaJTv48wZA4bBIhyZZ56CRiTCObm4yPjrIx+hvHco\nJGAPYP16vqstW2y3lcIdd9h45JGiK/PY36/x1FMlfOQjBHmtJp8kNjxsVC1+RSIaw8PGsndfzbdf\nrVXLQ11vDux6vl9psmbefttEPq/Q3q6xdy+Lh+Ew12ZlLq2WxWLhen66bnW7BSwWC9f8tzrjq243\nzVZLQV7pc342GNlEjCzYx0VQeCzA5HIGIpHyA6mnR+PcufLCztwcnRZBFC0tscfIlStEw2utyhKC\ngYAkSDXm5+kIRiJ0IuNxjWeeyeG110L4l39R6OjQTuILuHiRCQnbJlJQKQ8p5W94eSPImUp0e0uL\nwtCQ7RbRVhrjyu/6f3vfPt7bc88FMDcHZ8zJAAGIXmtt9a7z6quGGySUSgq5nMaWLXCp8bt3A5OT\nRbz2WhidnWSMiQUCCuPjBjo6OL7i8AqSVxw5CR5CIY7n4qKugbRkMU5rzpVyxokgdrzi2lqDKylm\n1TJhivCzXkEhFNJOYW9NP1e3W8CECWVZZAPVRoJqBx2pnTlcfX4ZBoM2KfL40YtsBM3G1KUSJepM\nk/tdqcT7aGykc06Wl3Z7+0kRQnpflUqcd2SG8c/ptHZl5ERepKFBPus1VZY1zqbUcJGDfX0M4M6c\ngYO0Y2JIKRajduzg5H/nHYIKBCEngWkkYqBY1OjpKQHQOHMm4Aa8ZCHBQUAy0CDoAL49jYnhzk4b\nsRgwPGy60rjV97ESnnsugKWloIPUpB7+wgIlSuJxhQMHLLzzjoGrVylJGw7bSCaB6WkW5tjboNr7\nvvbeIfuOXz735pjso9Ij0vuXYFC7Ek35PAuCLS0aQ0MaIyMKfX2UwTUMsids20A+r7FhA2UN//AP\neU6txMSemDDKnieXI1K4uRl44AEyvSIR5TbXBpbLpaTTPDOzWW+dKMX52NlpI5Xi/JmfZ78urYFU\nSrv9L/ys8LExhb/4iwC++92AW6SbndV44QXTlZphz0/DSTBwbGZnOWfXraPsJs9stUxiDfCaiweD\nXqKmoUE7TdwpBSq9ziQxz7UGlxVZNgcuHwSe/R9kOx38b2RZRdJAKQgkRoHwkvfZdA/w/d9d3uNr\nrgeh134D9pUDML/932G3/Rj6l/5PIOiTN85Hge/+nsuUKutVU415lu6hDGE1y6wH/up73p+7XuU9\n+e+1GAYu7wF0iD3EOl8rZ3Kle6rLFV4+APz9f/dJGV9/4vODZlwuN+3IWmk0NhKpXSxqWBbPE9nb\n/XKsqzEWzby9/2bf8/udbFeKLIlkksCIxUXKeMdiZKzOzvKZKYtVXVKXBX/+ZTTKOICJbl5PxrjS\nF5M5IwUMYRAA7+dcuj52mjArbHu5PGTd1m65nCefJlL3pRIZKcJcl/khc6N83S4vwgICpuT53NDA\nsy+fL2cvV1ogQLnphQXGqCsxkeoGVwJV3pUUxgV8ZZr0iQoF2d+4H2sNp3c3C1u1+k4Fg2S1R6ME\nUT74YAE7dwKjo6YLkvUXRSRP0d2t8frrplPsEIAMwWWpFCdRJKLdVg6iKjA9TcCuFHpKJfrag4Nk\nJg0Pm27MXmmVuYZnnw0gEjHKYgVRm0kmWcib8RHL43H63kNDNr70pUJZPmZ2lj3MyS6CI3lNgNX0\ntHJ8Io1wWOP0aRNtbSzsWRaZaz09GsGgjURCY3ycBTqtlQOuo38o743MSulrzPXAnrDaaZ+g3PfV\n2Kjxb/6NhdFRATbTb9y/38apUwZSKbgtM86eZTzT0ADs3u3JYct4VioSRSLaBQf6QXqiIDE1xfxR\nOAy0tWmMjrKgWihwnOJxAroWF1mYI4tP5i3/V3oETkwYZe8wnVaOhKFnnZ3lrTFqzYNqViv3VE1R\nIZul/5xOL3/3bPth4L/+1xCGhuw15bFWykOtxm70+7Wu6Z/rYmuRi6xb3er24bA646tuN81qoUYq\nERMrfY6MLB7+wtYyTTpoDQ1wdY07OymZ19PDZGk2q/Duu5T9S6Wor80A2Mbly+UHeqHApN38vAHT\npFSfbWuHJcHEc0sLETetrXQ4OzuZmDt6tITPfMbGAw9YiMXINmhvp5MWiTCwbmmxsWePjS98gb1R\nKk2Syvv22WtG5lR+f3GRvcquNea1fjubJbvu2DETw8OGI1PI60WjZMVJoBCPs6H43r0WpqcNl4EV\nCtGhCwTo+O3bZ7vIlxdeCCCbLb+/YJB91dra4F67UJAgRTnIOSZVw2HtFq/m56sHfw0N1OkOBCQB\nwiCESSWPOUJbewAZi2kn2VL+3UBAO2wy0Q2Xohf/VxrtClOQwXL133+/2UVk1AD/+hClqzcpQEnw\nCXgBGeCxqoJBCWA4l/2JNH6HjZRTKRbrhSEibCth56xfT+m+hQXlJoHZ80i5iEYyRllgmJvjvxmG\nrBNhb2n09jKABYgobG/X+NjHii7asKmJa1V6XRHhqRCP2xgc5J46MECnXxCt6TRcCZFCgcHxXXex\ngBAMAhcumE7ByGO/hEK8v8FBMnQzGYW5OcMdJ5Hfi8U0urpsbNyo0drKvgJdXQwYk0lPkrGvjwnf\nCxcMPPSQhXvuqY5uPHbMxJUrniSf1gaCQen/pbFli0ZXF9dAqQRs2mTjgQdKeOSRIr73vZDTA6Lc\nRE5lZVS3jDnnDxOSN77GhFUsTDwyYeH0IeEcLBSYpAsEFADDSSpot3BPaUHAsgxX7rClhSzhQgFl\nZ6/vl1328OuvG7h0yTsfZmakUTkLk7OzRLlOTRnIZlkAi0SYENi3j2fR8LCBYlE596HcnhfJpMaB\nA5bjFyiMjRkOul6789F/L5KcOHnSRDZLEMbEBPf9t982cemScmV5JVkRDAJbt1IuxrKI8u7stHHu\nHOdjZfJYkmVa83O2zWRKUxOTZiwuMrFumvQb4nEgGLTdIrfX9L7Csj1kP534LPDqb5KVNXw/EMwB\nSymyq/7562Q7XTrksaIu3YXgd7+OyPRB57zT0Ef+PezeV8qvHygBhSaXYUX2J+eBmu/xrplPwhj9\nOYS//3XYyQvQbVWYYBfvKmdq3f87QH/F75kWcPFu4JvfBk79cjmTS57l8kGX7dTTo7Fhg41wmD5a\nMKgQDConIVx+6fIxrAUs4Dyj9J1y3p//u+9PQYdofxvNzV7hOxzmfp7N8jMDA14/WIIlyvvwXcsM\nQ5KJQPVnWv1zmibvWUBflIFa/b2sPK6UBieApDaS3zC4llIpYN06nlu2TcACzzp/z0ZvfnjsYJ6L\nDQ1AWxvPjYceYjIwEGBi0s/yEAuHtbOPcv9qbASkTw+gXQDWey9rxz2byfuVryeMwUhEznH6pgIa\nW/MvV/25W12u7726v3KfTKTNKHHIOKC1lcVrgv6W3wN9BG//kZ6SyaTXU6ipSbvn5vICLuWcQyGq\nXFgWfMyYcr/Svesa6+rDaWu/cdMkyKelxXbaCChX2cCyRLqS12WcST8hGJT+0nwP8bj0/lKuOoJc\nPxRijNnZyeL8/v02PvWpEopF+h3pNP2MpSUW6LXW2LzZRnMzpfIsSzn9wuEyvNrbWcjavt3GxYvM\nRQwOapw5Y7rAiGJRubGFbVPpRnw/8alWMmGzLC0Bo6MG4nFPbUZYMv39Fn7wA7Ns7JXS+MIXCnjj\nDXNZPkbGkfLZHG9h1XG90B+icoJCY6NGLqddUNC+fTa2bNG4/XYbbW3eOguFKEEu789TJqBf1d9v\nu2C93l6Njg76r8Ui/YlNm7gvUgnDY0GlUjZuu8122Ve/9mslfOpTJRw9amHfvuWxQyVrrrfXdiXa\nyf7k9VtaNLZutRzgL/+OfczoyzQ1adx2G99RQwNw8aJCMinFbM69eBwOMAaODCcZeMePG/jJT0yc\nOWPAtpULchBbCwtJTHxmUULws7a6u3XZM3d2kjUnYOLKdx+JsFC7uMhze60MsJuZA7ue79e6ZuUY\niKrEaq3O+Kpb3W4NW4nxVS981e2m2WopyCt97tQp03UiZmc96YFgUGHrViZPEwmNPXtsfOQjJVy5\nYiCbNXDqFBFNpZJ2pQ8/9rES7r2XjVuzWTpC8bh2ixGRiHb6U3lMr0BA4957LezYQUcnFKKj1t+v\n0dZm47HHvGeR52CBjPJJO3ZY+NrXinjssRK6ut7DwV7FWF7LGajmCL31loFIhI5WPA40N9vIZol6\n2r6dznA6Tdkow1CIxz35BKUU9u5lIlocgLExhXPnzLLfDQQoZxWN0rmdnSXrAqDzTAeaCL7ubgaC\nc3Nw2X9+Mwz+/tCQhVxOIZWSgFO5vcEAtQypWWlsnO5JbxkGiw3r1tEBLBS8XkGS1I9EmKBnIoKF\njcZG20HoKQfd5y+M1U5QyPyrlXCqHch6hb21JD4Mwysw2vb7p2PNRNfq7lVQkmsNhgMB2/eur++5\nmEjTTqNg7hkSNMv7NwzOzWKR846Ickl6sFAvshrNzSzamKbtNHv2ZE4jEYXeXn5eCl/SU0IC5WhU\nY/167kkCBkgkWDCW/kSNjZQXaW6Go2nPtZFM2vjP/zmPJ5+0kMkwSJO5HokQHTs/z72PwSRRm0tL\nwF/9VQjnz3NPaG5mkHnXXTY6O4EtWxh4ZrMKP/0p91jT5PWU4t6pFO+1p0dj40YbxaLHrunsFDS+\nBM58nmBQoatL42tfKyAeB65epXQhZVzlDVWXcxUbHuae9s47DMDFolHg4EEWMSipZ+NLXyrivvss\nTE0ZmJgwMTYWwPw8550kvTheNgIBVYb6XD73vIS79Di4VjITkHlWPckqSZr2dhtPPlnCnXcWcPq0\niXyeSQHpgQMYbrGT12EipqfHRi6nsG4dUc2c35yz+/bZThKEZ201qR9Jsly+TOZUschkxdQUEAwa\njvQl2drptHITRVKMGhy03CRNMqlx9qyBlhayqBYXFaJRjTvvtNHVBWc9EYHc2Vn5zr17Eblkf0Ce\nz/O92zZcWZqREcOVuxR5Hzmrf+VXirh40cDYGMEjhQJQuV9EIhrbtmk8+WQJzc02JiYMF4UcizGx\nv3u37cpqsjeEBdvm3Jb9gNtr7b3MMIDAUjeC5z6G8NufhnX6Y9CZHn53vgd4+2Mw3ngKxk8fRbjQ\nDaUo0ZRIAIV9f4Ziw6XlF82nYLzxlG+/gpcUnO9Gw8WPIfrOU4heeBRJoxuhXDfy3S9BhzPefWV7\noP7n12HM93h79h1/BiSr/F4uRUlFwCvs+SQWGxo0urstbNhgI5Nh0TSZJPtOaxYoWDD03oOci4C3\ntmRf9xc+AgFPMlNkm+TfWlrY46WtjXN3ZfbE9TDCvQRdLMZiaDxOaW1h4goyPZnUTqKW/lWxqBAM\nkp3kST5X3o/8jgB61DUYI6sD17CXI+e4sIWFuVz7fNbueifiHVX3w0CA/lBzsxSGZZz812bhiX1n\nPHk5QHwl7lOA7DmVPf48+Syy63iePvZYEU88YWF8HHj99YDb31CeS87TSEQ784YMhdZWD7gkMYH4\nfbXG4mYVYGRtrlRwpOSqzGGuhaYmvi8pXlYDaNW+nsdwkiS/rKNg0CvevLeS3WTLSO/klcwve3yz\nGVBcv/yvsdErfq5bx2KHsHqvXlVYWjKqrlUBv61bZ7t9fsNhG42NymEG+B/GVQAAIABJREFU0xfJ\nZg33PfnXpGkSaLl+vY2ODvpiLNryPJc9Tfxisow4B2VvFBCV1iz6cI18OKpgfAe8V1mnQGUP5cpv\n2WhutvGZzxTR0ECfp1SCy8ABpHiknPEvB0UIUEt8BL9/J+eOaTIOjMU8nySZpB+STGqcP+8VvwhE\nolRefz9Bt4GAwvw83LMglWJMefhwCW1tVGK4ckWho4PnxpkzHuC3VNKuGk0qZWP3bm6enZ2MPfyg\n1WSyetGhqYmFujvvtBCNwpVvk6R+VxcwOGjhyhUDWmv09moXtHvsWPV8jFJe/oTqOxz3mRk4RS+4\ncXCxCESjbJcQDBLk9vjjRezdS1/QNJmL4DXI5CKITyGR4F4cjdpOgZ8xd2Mjz6x4nEWjeJxnyego\nlX0WFtiH/cABG48+auHee233fR07Zq5qzKSwsm+fjR07qE5z5Qqv39Ji4/77S/jMZywsLQFnz3o5\nGBmLvj4PXBePA9u3W2hsVE5Bif482XU8IxMJ5l3eecfE2bOGczayj1cy6c3n65X1u1aLkcpi0k9+\nUvvds+cm370oAV0rJvswmIxBRwdB+KdOrTxPKq1e+Kpb3W4Nqxe+6va+2GoREyt9zs8GC4e9PjaS\ntGprs/H5zxdxxx1MlEUiGn/3dwFMTCgXZbVuHeA/hC9fJtq/s5OH9Pi4gVKJiO8tW5hMDgbpUP3e\n7+XQ08PfHhy0MDhoI5Wq/iw3AyHyfo15NavmCInzKM5MPE42xFe/6hXzhodZZJR3IxaP23jqqRKa\nmjwHgA4EkfcXL1IrWyng4x/PIxplwp+JfgbziQTQ3S0IPr6j9nYmJQqFauw29nTZv59yEW1tdIDn\n5hhMA16xqTKIl+CHSWqNu++23ISS9FJqb6fOvqDaAC8BFYkAH/1oCffdZ2FoiGyCxUVgbs5wpQ6E\n/UM2mNzHcvlDssT4XzTqyT0KSrB2IsoLFFdrwp4R9LQkQ0WayTCYGFpLckGSUKapnb5N3r2JBYMa\nzc3a1TqvZaEQCxTxuHalwuS+rlU0M00Wa7u7OQdWKjowibo8eSWBdnOzja1bWajKZg1Xo59BmY2B\nASK0m5qY9CyVBB2sXFZqKsXnbWrS2LxZ49OfLmDjRpGBY5Klq4vjzQSuxuQkgygp3jExpZ0G0UTn\nSW8sYUEqpV1G0s//fAmFgsLMDJ9l584SFhcNnDxJBGE47EmhWhaDxHicAb1SBqanuQ9cumSUsWna\n21nAGhigzMaZM1z/775ruLr+ra0ekrZU8pLS7K3ARsJkdBGpPjfHPktSqMtmFWZmFDo6bNx3n4U7\n7uD+HY97gZ9/ztVCvSaTGmfO8Fr5PO8zFNI4eNBCZyfPkqefLrqsVz8AYGoqgEzGdgrZDLyTSRY4\nTFM7Dcarz6tgULsyt9JMm+/Q+7ysP5HaaWvT2LBBO0lIjaYm292volHOnfXrGbwnEhoLCyYKBeUg\ni0XGS8M0DTeBJ0wz02TwPzmpXGaXYXAeSdEL4FyNRKpL5Aq6VIpWra0slBoGC2stLfLugMVFA52d\nHvONjC0b+/fzPcl5VSwqtLUxSTc0xAIqAKdnG9HVorFf7V4kIeMPyGdnmWhJJvmcsRgcWRnlyAR5\n1+vs1LjjDgJa8nngzTdNJzHu7afhMPerTZv4znt7mdDyChxkqe3bp13fYv9+/vnjHy8inVauXGk4\nTMCOv7gmxTApmqxbp519wnL3uEhEu/uRSAI1NXHfisU0jh4tYir+PcwE31z23oyRu2Ce/RgaGji+\nIscUiXAP4brwpJwDi90YCB5Ecl0OyXASvfowkj/+Y4QmKJcojdlr9girZIbBOxdCIY1t20oYGtJY\nXDQRj/M5CgWFc+cMzM8TKS2JR69/mifjyYQ057mgx7nXegdCNKrddSNjxV6CGuk093BKKy+/fcDr\ngUdZMgE6eMViT87KYxLIeZlIwDnDRf7ZcBgbnnwsmW28PsACcigEl+XrFfacd2hwDvK++b788pnV\nk8G1i6vyPphM1O65wzFWjpRg9cJXMKjR0GDjjjssBAJM6sn+JuxGYbunUgRqSG+dhgaFhgZeRxjB\nkQh9LBbe+XfJpPfeW1ttt58IQVjcd6SAJT0CpZdlWxulXTs7gWPHDJw4YWJmxnQT3yJD3djIdVYq\nEczR3Q1s2MBCw4EDFuJxJvUaGujzSdGs2lxhoag6m221JkXRWjJr3ueUM3Y8f0TesaPDxuCgjXXr\nCEKRIsu1fjMS0b7zg38vvpbIhy0vVi6/jhQfV/ZTq31Xu3tsJKIcFkTtoq2MdypFxlStZ6z2LsJh\n7bLd/UVxj1mi3fVNmUOe/Z2dCgcO2Egk4IArjbJrcL9gst40bWzZYuMXf5GMFgDo6qIfVihQIaNQ\n8M5mggX9/SE9ZkksRnaIbbMXsoyL14vaK6rzHhRSKdstlMg+H49znYdClIcTMM4HY6spFHt+rxS/\nwmHGRFJMAeRM4Ry94w4bBw5onDxpYHqaAB9hAxUK2gHBqLIeUVKIB3iddeu0U/ySflPakbjjvt7f\nr7Ftm+34wswfbN9uo7ubfv1bb5nI5Qw3Xt69m/Hr3BzjAwGIdndr9PVp7NplIRzmGZHLKVy+rHDp\nEgsc+TwwM8OeUFIsCoXIkO7q4pzZu9fCt79dnb1TK0G/Ekumqwt44AELjzxi4YEHLBe0e618jPiV\ni4v0tTIZ7uFkrClH9YRnQ3s7/Y5t2zgP7riD8/0HPwggFDLQ3s5Cc2MjczG2zXM8keA7a2lhz3Se\n45RX7OkRMLPGT39qOuBY5eRvbDz6aLk0di3G07WKGtmswptvmtiwAbjtNo2NG7k37thhu3LiolrT\n1GQjEAB27tRlxaonnrDw2GMl/NIvWXjwQQtLSwobNxJgSCAJXN8BjgJBTw/9xnxeoadH31COyV/E\n9FutOGqldy9FSr9PvdK1Pkx2I/OkXviqW91uDasXvur2vtlqKci1PudnMIXDHgJ8+3Ymmv2H/tiY\nwre/HcDEhOkkN5Sr+euXA6hkRc3OErUzOEhHq7XVRjDI/9/VxeTsPfcQpb5//8rP8l5Qrtdq13sP\n1Rwh0akeGPCa7lY6WpIAFaRWJsOi4zPPFLB3Lz8nDgCTWzb+6Z+CLkosFgPOnDFx9ChRetPTTMRu\n3267aD2AAe727RY+//kiolGirbJZj/EiTAgpWv3yLxfR2QkMDGhs3VpCPM6ky/w8ky5LS+UBvCTl\nQyGiOvfssTE7C3R0MDErPYckQciCg3aDXUkeRyLsCxQOs3eZaVK2IB6n086gRyOZtF3WEFAuCScB\n38CAhUTC6+FERK/XoP1m9J0Q6ScmDCXZpp3gkPcqjI3VGJGy/I4wKiWJLL8VCGjcdx+ZlFNTyklc\neGMh7yIYZKI/meQ8keSmJMYk8F/JpD+f9AVcbbANSCKB73loSGPrVkpPLC56BeJYjKzSVIo9oTo6\n+J5DIUr5iayTYVDurb1d49AhFsEmJgw89piFT32qhAcesHD5soF83is8jY7yt6S4yt5XHoNoYQHY\ntInz4/Jlw0WYskjJtTE5aSCfBw4cIHLt1CkT586ZiET4bGfOGBgY4ESammKxZOdOkWcDpqcNVz5p\nfp6Jm0yGkoGtrWQniPb75KSBmRm+940bbczPM7ErRYhgkMEr+y8AXV1k4wlLdmmJ6zMSIeqRCVHt\n9NtS6O9ncL0aCV2/SYHl7FkTSil0dtrYvdt2Cyz+7/oBANmswoULpsOgYvJ2wwburffea6OtzcbJ\nk2ZNdDqlBrlHMoGj3ESiP5HT1cXguavLdtDEnO9HjpTwiU9Y6Ojgvba3a6xfb2P7dgZdZ84YSCSA\nCxcYlAYCnkScMO0aGjzkfk+PjaNHLbcJNqUyPbkbwEOQ9vauzB72gyzOnTPQ2Ai32bZSLMS1tjIR\nqxTcOS3MMv+78Z9XUkD1/+ZHP1rEhQu170WCcn9Anslw7EViRpKlhQJldeRcrHymw4dtjI9TynNh\nAc77g1OoAPbutZHLwUXdtrbCLXSlUsCv/EoJhw9T/vjwYT5TVxewZ4/tyGhqtw8Piztw9zO+P6Cl\nRaGvz8bjj5fwJ39SxMMPW5ieZl+FaJTnYyTCPbalxcaBAza+9rU8nnzSRne8E98d/Q5y2mNqIdOD\n8Pf/BK3hTtx1l+X6Q+EwpZmbmlh4yOW4127axPNva3cXvvaJo/i/730S93X9H7jwRi+Ghw3k83wX\ntg1grhvY9BIQ8X5PZXsQ/+HXYc12l+3VIt31yU8WsGWLxvHjAUxNsSBoWXAYgsqV6Zyb4xwVlpQU\nseJx6V0nZwrnOxPO3BtDIY2+Ppljksgk86G3l4xd9okS4EH5Gpb1QV9Qu/uvsLU5htqd72RMSxHb\nRkMDz9CWFp47nI/8TxDspqnR22u7wBB5zqkpzmF/Mj4YJJrdNCnLLWdUeWGs2i7kJYcliexnT4TD\ncBk2sRhBOOGwgaUlr99qZQFGGBSbNtn49rfzeOABAhh6eynrmEzaKBa5/gcHLXR1sajW0sJk+/y8\ncpN7whqNx5kIjUbJWO3rs33rnWdvTw/9heZmmQfsYxiLabegrBRcUNzWrZQCe/ddA+PjpiMtRV+E\ncmW8n3CYwCj2AYQjHehJbTc1EegwMKAduVRvbACuo6YmjYYG5QB0tAt2iERsp4jChLUAQQiy8YBU\nwtKhP6Pd919LEUDevcyRhgZKQ27aZCMYBPJ5ysiKxLcfKMS55wFopOhpWUzy+6WcZU5xnLxzTIBR\n/nuiQoPXG0lUEa4FThK2WlMTCwudnRwXyvMu/474ZVLkWVysXfgiaMwDcYVCLKzFYh47nr4QnHjE\ndpnSsRiL7M3NGm1tHKPWVmBkhPK7AqDxA1nEx2luJoBF+qTu2mWjtRU4d45xixSU5fm0JhPGL1Pd\n3Mx9YGGBv3X5Mv8sygz+orQAakQu1bZZwKHUHBlHwh7bvp3+hsS+tQqMN9sEzMU1sPJvevMMkD7J\npsl3EA6jTGZO4iatudd2dQGzswZKJQOZDNlFkYjHKNeakt+NjdoFU5Bdyvfd3q7dYk0opHDbbVz7\n4tdv3mzj/HlPVaarizGwyMRduWKgt5d9sQiO4TMtLrIw1NtL/7i3lyDOuTnDVXh4910D6bSBiQnu\nM0NDBHFaFmPRtjYbLS3MRUgOxC9B6BvBm864WSkfs2WL9vmVGtksC5FS1F1Y8KT+5SyTQonkZl55\nJeADJbPYPD1NNYI9eywEgxozMyyEbd3KHE0yCVeues8eFrdmZ5UTy3ixVDyOsvG4FuNpJVvpu3fc\nYWPzZp5jXV0ae/fa+KVfKrrg1WuBps+do2rC4CCL3B7Alt+lHLQH1LveHNNqW5GIrfTuAwE+a+W9\nXI8E461mNzJP6oWvutXt1rB64atuHxqrZDD192s89VQJH/nI8l4uckDRmZcDXTkBuHcIV9NsZtCr\n3Kay+Tyd2MXFtWkVf5itliMkjI5ahTQmzcqRWtu3a8zNKXfc/A7AX/xF2JFE8GQRmag08KUvFbF7\nt42rVxXiceU6V0pp/PzPW3jsMcuVO/znfw5gfl65xYBQiMmSri4mJ++/33YTqocP23j4YaLXjh9X\nZZJYYkrBCWw1tmyxEQ4r9PUxUdnbq52gXjnN6D35LKLyGHAOD5NFEwqxr1w2SyexoQEu0i8e55zb\nuRNOQKNcybfKJFYmY6C1lbIXzc1M1nV2Ut+8WISjYe9PNpQXjshqWxlZKY2229vh9hAAPERtLMZ7\nYe+7alfwEiAi+dXfz4QqwCBI2FHBIIO39nYyfMbHuebIBjLKnp+Ics6/ZFKju5vJfxZWPTbVSoUv\nScCEQnw+PzK48lkkGUn0PpMFsZhIVjKRVCoxwSbrJJlkIWRpSSGXY2DM5CcT7zLuDQ3alRrs6fHk\nV/0OtBQApqe5X4XDHJ+FBeUm4qT/SCjEObpli410mui/s2dZ+Jqf9xIikQivz2Ktdu6TTnyhwHtJ\nJIgy3rOHqMr1622MjhrI5bhGpqe5L0QiNq5cMWBZhiNPyCLYzIxy5BqZTJqd5f0wKGWSYXxcAeAz\nitRjJMI18/nPF929OJNR2LTJdhlEsRivE40yGJ6fVzh0yLouOddq41vtuwIAyGaV02DcQDZLWUPp\niZBIEGX7xhsBjI0ZTjK1fC6xvw8TFZs325ib4/NKfxmRW+Wa4DrZudPCM88UHUQnE7LpNJMhMm/8\n905gB/D220SfiwUC2gUExGLcnzs7bfzRH+Vx//2ejGA2y8Tu3ByTQH4wSTX2MJ/Zk4bp7SXCmhJt\n3NtaW4lELZWI1t22zWNAiazOtQqUly4pnDnDedffb2PvXkrg1WIyS1AeDlPuaWxMOZK5bGLe1QUn\nMU8WR39/bSAHwGJvWxsTLFJAk/OlpcXGwoLC+fMGZmc9SSxgdc9WLLJwNTHB4g4LwdrtbxcM8nka\nG4GhIdvtO3HxIgtE8Tjf5e23s+D1wAMWvvKVoovK3tTehUM9BzCbzWNphn3AOl//Y+xouR133sni\n6qc/XcTSksLMDBODmQwlG/ftI/q4r4/36h+bl14KYGZGYXRU+lMxadgR60J78U7YKo8wkmhbOoyD\n6f+C4NWDTsHGdooMNvbutfDJT5bw5JMW/vqvQxgfN52eggpTU3AKtspl75RKUrzkn9nrhkny1lYN\nkSFeWhLQinJYPDxzRcK0o4OJL8vi2RsMGohGgVSKyU0CbDzmNhkRXJ8NDWRqtLRo3Habhbk5rq94\nXLtyxfE4MDDAHiUEfAC7dpElyn5U/Jw/2RuJaPT08P21t3vgFjkPBcQgBTgyEbh/+eVa/SaFJAGY\nmKaCH0wSDvN9BIMagYCNWIyIdOkrBnjMY7I2DXev8pv4W7fdZuORR7h3yn6SShFk8dRTRWzZorF+\nPf2xX/u1ksNsYz9KYaPE42Sw7tnDpPbAgMbTT+fR1ka1AUlcip85NGQhm+U+0NLCPpDZrOHOCdPk\nfN2xQztqD5Q4zWaVAyjQTm8Yvu+BARayGxuZeE4kOB9GRgxcvcpzRhQNenpYfCMqn7/T2EgfUAAd\n3d3sLcZkvXL7vFiWMOsEvKIcVqAHhhApXSl6+cedhSvbJ0novS+RwdIaGBsznOIinMQ+fVHZC2Mx\nsl4ojUrAk1L87OCg7YB6PDlw8SUjEe7BDQ1M4EvhSPwpKdY0NcEB33g9byuLV1Ivk0IIGWfKGVvl\nskkXF3mtREK7DEGRoI/F6Bf4WVMecEw+y/sVMJDWnLeRCJPqQ0MWNm60sWuXjZ4eJqz377fcQmJz\ns8QoZPh8+tNFAExOT0wodw4Jc5SsHM7hjg7bLZY+9JCFoSHKqh0/bqJUMtx36y9Gk/HFOdLertHR\nweI89w6+83we7p5VqWAg4yygpaYm+ojt7UzE33efhd/4jRJGRxXeecfEwoLhnjsy91T5JSusdizh\nL5JW+x7ZpNoBouplUqV+80vYeu+SMVhjo0Y8LgBLKeDy30UpYMcOAhCnpwn8iUTIzlpcNJBKcd1Z\nFs/rzk4b27bZTs9d5Z5H0ajHwN2/30JPD0FHTz9dwFtvEQzl35v8vnytWLqvz14moawU9yR/iwYZ\ng3Saz7J7t4Vduyxs3qzdvdSfA1kre+d67Vr5mK4u+tiHD9M/KRbZSyyZJChqft5AsSiMOQ9sVcnc\nF5MCi2VRSn3nThttbWTxis9F8JHIVVNh5uRJssilgOb5+t543MiYXeu7lWAuGZfVgKbFlw6HUZbL\n8ssI3oyC0lrbYlzr3fvlHa91rQ+T3cg8qRe+6la3W8NWKnwFav5L3er2AVl3Nwsv1zJxNHt72U9B\ngoBcTkEpG4cOeRnyymuOjSkcO2bie98zkUoxOSJOmdb8t9Xcw4fZDh2ycOFCZd8EXTZutWx42HQk\nC7zPVo6bjPG//AsR3U1N5bT4qSn+b3e3xhNPlHDsmIl0WmHXLr47f3Kyu1vj3ntLuHIlCEAYV0ws\nRCK6atAh3zt82MLrr5P5URmQh0IaDz5YwiOPFPGXfxnCyAiLDj09dNQzGfYWCwSAuTkmoC5fJvq8\nqYkJLiYUFdraCti508J3vxvAwoLHGAOILjx1ykBLi41AwMbCgolczgs6iRTm/796lckVgAFvNqtx\n4IDGbbeV8M//bGJ62nQLPCLTItJcgkwWdli1BBaT8RyIjg6NiQkNaere3MzCiiTeBC1cLHpBNhOU\ngmJm8ujcOWD9eqJkx8fhJgCbmlgku3rVgGGwN9TFiwqFAiNmDynMsdiyxXJkqjS++MUCTpwwMTdn\nYG6OQercnHYCVT6j3yi5w+CqpcVGezuf4Z13lIsQrCw0SvKGfUJEWorvtFgEzp4l/bClhUGJZWmM\njRlO8ZLBxPQ0EaZLSwz2u7qA229nYLC0tDyx4J+rlXN/aIjSnZcvs9+eaUpixXad7u5uSrSNjlqO\npj0Dd0mGCZtgfNxAZ6f3wOLMNzWxX8DTTxfx3HMBvPBCeWNrkY6anS2/8UCAiU7KUXnX7e0lInrb\nNq7Jbds0LlzQTg+x8gWndfle/NxzAZw/b2B8nAVUMfleOq2WjVEyqZftD36TfUc+e+RICcPDtb+b\nTBIJPTIixUOyXksl7bBigEceKeGb3+T+0NtrO32ovEQMZYXIdjhyhL3Url41kM8zATU3B1duKxzW\nmJ7WOHSohM99zsKxY+ayhJB/TMWUIgshnTbQ2EgkrFhjI5nLhqHdIuTjj7NPg4zJs88G3N9pbeXf\nV9tn/fu3/zuzswoXLig88USp6tnR2+tnbHj3vJrzJJNR6OuTd27g2Wf5O7XOYJkTzz9v4uTJAHp6\nmDA6f97A+fMGGhuZbFBK4+jRa0vDyPN0dSkcOWK5vSL27bOQyRhYt46M46UlhdlZJoQTiWs/m388\n+/s13njDxKlTHoo2n2fivrWVTJUf/pD+yKFDFgxD3n/5vVeedWNjCsefvxO57/4cdka4984mef89\nPRYefliev4gzZygXHAxSTrS9Xfv+vdwuXGAh2LIMt/dSqcT526tux+75v8S//78Y5D/7bACldf41\nbGPHDttJinM9RiLcQ5iQJIJfKeUyjGdny8+sQIDnCaVGbXfMJBlr2wQ2hMNMGts21/HQkCTYKH+1\naZPG6CgT7KEQpe2EgSd7uIBibJvFqWIRuP12MpQ/+9kCjh838cYbJs6cUQ6DhICMUkkYgkxQaq1x\n7FgAlqXQ0CAJX55Lg4Ma+/fb+OxnS+7aymQ4X5UiM42FKpHFsvHVr+bx8Y9H3WS5sGl4LpNFMDrK\n/d+2yeahZBw/K0nnlhbKgL/zjuFIdSmnB6V2ZBqVw6DSbqHezxQLh8kgkeTbSnuDfy7Jurr9du5n\nuRyT0l/8orc3eVbC0aPWsn2e88vba956y0Brqze/3npLuQA4Oe8iERYiyBLkfp7JsAh4330laM21\nFg7TD5mcJJAjEGAvl1gMAFj03baNa2RyUmFyEmVo8HyeRSFhXEcilLqWAq5t83eV4rkrxU3T9MYZ\ngFP00mXS1kyQe58VZpbfnyC7hUAW3jPfczCo0NZWwsQEC76trRZyOeDKFfqyiQRceTIBkkUiHvts\n3TrtsEwsnD5toK/PxmuvGVhcNBwZOP6+1vQ5e3ttzM1xHkjRz/O3+FyGoR1JRGGFcN2bpsbFiwai\nUY3mZgJG5ueVu/aV4jyOx8msKZVYpLAs7TBFpUjItTs+bqBYNCCFYCkwHz5so7OTvlTluTI2pvDC\nCyZee82EUsDOnd6+uW8fP7u4CJw9y/fc2KhdGdtolJLohw5ZOHqU8/XYMRMXLiicOSM9/LQ7f2UN\ni+QoYGNgwJOebGoCJie1w5jXTvHcduaJ9/LFl5U4IBLh3iHrKpOh//riiwo//KHpsI21W5yVsW9s\nJOPUXwRTiv1A5+c9SfRKCwRE6lS7c4e958jYF2ZfMqmwtKSd3kvLJTGlMLm46Emm8vrKKXiymJ7J\neKoAMo6ArFUWCnbssDEyQqZcVxewYYOF8+cJsKOEMvewI0dK+Id/CDggLl57fl6ht9fCXXdZSCbL\nfcWTJ220ti6PMeUsrhVLP/ywNx/8e9qxYyZeeKF8XCMRFjj6+6+d/xCftdrff1DW3a3x2c+W8PDD\n3h6+dauFkRGCWsX8PmEyqXHxonLjGIJDNO65x6qIEVZ+1tWMx42M2Xs53v654+WyOA4Ax2vDBgvP\nPRdYVfxTy9YaR8l3qs3F67nWh8VuxbVVt7rV7eZZvfBVtw+tyQHld3hzOToPlQF4pcmBnk6rqodc\nrULKrWCVid3rdThW47zU+q1a4yN/PzICNzEibJhczuvBBcBF58q9VHOw/L8v/QyEwUKjg7iSU5JK\nsTAhBRYPJUkmxyOPFPHyyyxWLS2VJzdHR5no7+315tfJkwaCQa/5McCA7R//MYgnn7SwaRN79Fy4\nQPYCJezYOHhwkAm5xUXg3XdZVIlG4UgxehI2gkZMJJhMlKIsgybloAhZuGtpoWRMLqdw9qzhSglV\nFr2kkbtSykVJl0oad9/NZMP58wpzc4YbiPb22kinPUkVsrT4fhcXy2VXcjkmvpqbi+jrA0ZGTKfZ\nschT8n5ERtIfvLIApZFKUTNfEg8dHcDRoxZGRgyMjBjI5VjEamzUjkyW1+RcKWl0TImZ7dsZWGUy\nBubnyWgqFuH0j9EwDEEnK1fCCiA7KpvlmPp7OS0uEiFKBhTvPRhUGB9nwLq05PUq2brVQjzO5OjS\nklpW/Kmcq9WKDZ2dDMi5NxGZLSaB8aFDFp59NoDnnzcdRgatsVESud49AOVFKLmHQ4cs/O3fBjA5\nqZxknXZ6QjCpJglDSW5lMuyRePKkcuYIn3v7dgbssk8cPWrjlVeCy1hRu3eXFwok6PPfJ1m5uuw+\nVwuGWG1Ctto9lCNPmaSW4snLLwcwMmI40pksjHd12RgZYS+G7dvZZyWRYLLj+edNJBIac3NANqsR\niTARl0ppNzk7MmJifNzC975nYnraC/rJFF0+pv4kcDKpkc9rpxjKy54kAAAgAElEQVTPdzM0RAaZ\nf5xOnFD45jdDeP11Mkx37LDd378WwKNaQc7/nWpnh3xvLWfTtX6nlnV3s0i9d6+3NhobuU/Pzirs\n2mWt+mysBb44dszE+fMAUO5j5PMKR44Uaz5rtXNT5tmOHcDCguncL1lFV6/yutEocP68gTfeIPNy\nZqZ8XgDl+4fM99OnDefs4hm8YweBPM3NcO9peNh0kqL+8fDGufKeh4dZoBM2IcBkZCxmY+9eGwMD\ntnvtJ55gkp3AkeX3m07TLxsZoXSc9Jlhfyg4UmOUS1JK+nNpBwFuuyCIl182HbALxyuXsx1ZUf7u\nffdZGBjg2cukP8/eVMoDR4VCXFv5PJnUb75pIpNhwvbgQfY3yWSApSUD6bSN4WETDz9s4bOfLeG5\n5wL41rcCZWjnUolym+k0i2Gzs3AYyvz3vj4b+/ZZLoIa4JzPZIj4X1gg0IIAE+6/S0vcg4aHTaRS\nlMosFFDGGmloAB5+2MKJEwbOnjXQ0KAxOSnFLyauUyn2gTtyxMKJEyZOnybzJBwmw725maAXstqk\nrxn3fLFQiMwH6Ykn9y9rlgl2A+PjCt//vomPfrTkFg3862r9+mvvCbX2ef/ajMXK51dPj8bsrC7b\nv70ivHLXbEeH5RbcxsYU/umfTOfcI1uKjCiOuwCHeE0yV+i70jeUdx8OUy60t5eJfRbQWAxhPzKO\nqdbSQ0o77GLO8UJBuzJ2folJFiHI9kmluBaWlhTSabjrBmBhQZj2AJlmr75qoq+P4IbWVu2c+1Q9\n8NY+xy+XI9hpZka5TPlEglJuDz1UwjPPePtCoQCMjpK1t7TE4lQ4zLmxb5/GiRMKU1NUPZBxZZ8e\n7dwb75vFLz5bPs8YjpKlLHBcvsw5Rek+G6bJgmIqBezYUcKPfmRgcpKypwALb4WCjLNy3iGlbgsF\nvrNIhGdCV5ddFazQ3a3xzDMlANXPm0OHLLzxBuXUrl6F0zeOvk9vL5zxNfHnf84xjscJXMrlGHvI\nmhIlBPr89FcTCY3bb9cYGaG/Eonw3VkWv6M1i0dzc14xUf6TArcA2tJp5a7dU6cok9vayv3j6lWO\nIYFrfCeWxbGLRm23F55pihwo50M6LcoQ3nhI3JFOA6GQjVRKuUX0pSVgbs50ZSxDIe3IlJbw7rsB\nVzpeiqKJBKV2z5wxHHYbxysUEoUCYO9eC1orvPMO40jbVg6b0nYLBADc9zE1xc/NzpLhKUyahgZv\nL4nHlRvjpVJUOLjzTu7zlXatZPi1YunKPe3QIQt/93eV6Tfua6vJPdwIaHUtdj3+dC2QcbVx2bCB\n8Ydcn3ucxqOPFtf0rDfrM7XsvRzvyrnT22u5zHYqjFh4+eW1vYOVfutmAbpv5rVuxG5WPkzs/Vpb\ndatb3T4Yq0sd1u1Da5UaxK2tTEY+/XRx1QdfLYmCcFjj/HnDlXhKJm8N6cMbabxZzVbqD7bSb12r\n7853vhPG+DgdhYYGsnwAIkFjMToSX/hCwZVrWs2z5vMMGpeW4MhsaVeGbCWK/fCwgZ/8xHCTS9JE\nNhikRM0775h47bUAlpaYwJqf53+Tkwz2BgdFdoBJ69OniTr1s9eE2bNrF5H7XV0MwGIxYONG9onq\n69OuhFNHB1GuhqFcqRii6dkjZPt2G4uL/P35eaCtjd+jbKKF+++3MDTESHTrVjZSnphQmJ6mpI/0\n+/E3iWafBOX2+OjvJ6KYjZNZjOP3+H7iceDgQcrBPPwwE7ccf4X5ecAvHclCFuUJAwFgYsJEoUCJ\nIylosP+Xcvs/yX2JHE1jI5PL09MK586Z+MEPTGzfbuGee2wsLZFZduWK9/7CYeXKtlBai8+1ezdR\nzw89ZKFQYN+DVEo7SRQ4PW60Mx84psJus22iku+91y6T4IlEmPhaXKT8YUODF4Dz2ZhE5ZxQTsIJ\nmJigdGYtmb1q61HkJUQ335NWKf++fPbtt01cvaqc/j9eL7C+PsruTEyQWeHp63vXyGYVvvMd05U+\no3QlZUpKJSAWY4+yvXtttLRQYs+2ldsDbmKCheHNm+0yedT+fmn4zN/mWrXxxBOlsmeXZ1haokSK\nSAuyiLh26Yzr0Wf3xtHA4iKQSplobS1hYoLJwosXDSQSykXIA0w0tbZqHDzIMR4ctJHJGIjFiGB9\n5x0DU1OGIw/FcZA5JAXzfB544w0TxSKLw9548j1Vk5z1j9eVK9676e9ngtM/XidOKPzBH4QxPc17\nWVgwcPEiJdykp8lK8h1rlXeR+1trv8mbKUFTTQZntVbt3v3Xl2t3djJhSenD5WdjNlv93NyxgyyV\nQoGSbQCL9EzKkfUzOMiCzKlTnBf5vCe7lkwuf8cy3yulfAsF3utqpX46OvSye377bcOZt8rprwII\nG6Svzy67D09WVFWVFZ2cJNNsbo7PlMsBgHLZAUoxKWtZRHvHYlwn8TiZvx0d7EfIvY3fn5pSWLcO\nGBrimmhr03jySfYFef75AC5fVrh82XAl7AYGbLfvxpEjJXzyk0XE4xzb1layKdetgyt/TZksXfZu\ne3s1XnrJxMyM6RtBnr+AQnu7MMiEYURQSrHIAkw0auP0aQPf/S6LUJYFV5JLpMO0ppRsSwsTxuPj\nlOIMBpXbbywQ0Lj99hK2bxdZO0q8xeMaiYSJ1tYi9uwRmU8CaX78YxPDw6bLUiVrnf5AYyPQ3Gwj\nHGYhrK2N/kM0yjP94EG7zM+SuZTJACdOmLh0ief90pLC+DifdfNmveY9YWxM4aWXAsv8bv81Fhc9\nn0LWpfQE7enh+nz0UQv793OttbVRsvWpp0rYvJlxQTZLhs/Vq6bD7uaYJBIstgwOahQKLALt2cO5\nns3ydz05bo43pbkoIZfJEGDA3nTaYWyT6dvZCbcwIIwwAaeYpieLKfNA5N+iUeCeeyxEo7bLtE8k\nbHR1MekfCnnjR1a61zOH46PQ1sZ9RnqrSX/jiQkWZuJx7fQkY6Fg2zbvrJaxn5w00N0NbNignV5I\n0k8Vzp5IdnRXl3aKMhrRqHJ7vEmcJqy1aJTPt7DAMQsEgJYW+j6BAL/3cz9nYWaG31VKOeucBXfK\nV8JRV+AabmqCyxZrbeW8JtCJigSf//zy2LDWnPNbUxPnwg9/aLjS2/m8doAALIRNTHB/W1xUTl8w\nw71H6V0sCgOplMbWrVxXd95pufNY+lWSuWXj8mWFdeu8Pq4i2amUdueLMMiKRfpM6TT9ZNtWSKU4\nD7JZj7nV3s55JHLN0ah2emJRKjGR8PqcNTbSd8vlGJ8YBpmsHR3cC4tFvrP167XbS2xsTMEwKIEv\n/ZpFiUAKxCKBODjIPmQHD/K+5+cNGAaLat3dLA7u2MEelbEY+/ExhmHBNR7nOGSzyikkK5w6JbKF\n9KlmZ4HBQfpIe/awgC/7V2XPzoaG6j7HamTi1rLPNTWxP7Aw7fwSiquRtasmS11NwvlG7Ub6Hfnv\ntda4vPJKAIBye1/LOIRCcK+/mmddy2cqZbWHhq6dO3mvx9s/RpW95V955cbfwc+q3ex8GHBj77ou\ndVi3ut0aVpc6rNvPpN0MunU1dEc2S/3tuTn++UYQNjfbrhcdf7N/61qoGL8MV2enxt13Wzh1ikWD\noSFdJsO1lt/v7AS2brWQSmHV7/zQIQvf+pbp9D7ykIuhEJMlb79tukGlZcFp+s5Ak+jfcmtuBsbH\nGXBJ8aNQ0GhuZrLLL9uwfbsnKXf+vOe8NjXBZRRIIYfIeGBggGMliMjbbiPTQBgg/ucVRsfUFNDV\nxcTehQsmgkE4SHK4SQr2imIw2dWlXVZZQwPQ02Pj7NkA2tr4ObHZWYXDhy08/TQReKkU58Dly6ZP\nl5/BdzTKfhMf+YiFTEbYMF6hqrmZSYDWVo3xcSaWWLQS9pnC8eOGg+Rlge0b3wjhi18suFJoU1Ps\nbUU5PyJryagho+ngQRtNTZ5UZjVJG5Gh+du/DboJF8Dr4yLBvvSrIlOHPQMoA8j7k6KXbfP5lCKC\ndHaWCYeBAfZDWUlmr5pVMsBW2t+6uzX+w38o4M//POiw4shos20WW199lVKB27eXlsm3AFxjg4Ma\nuVy5TN3sLPC7v5t3kYbZrMKPfmQ6RWcm58Nhvv+REeBzn7OWPcPnPlebEVP52UqJlOtF7l2LiVrL\nurs1vvSlAp59NoBiMYhXX2WSQwq6p04xcV4pqZtI2DhyhIxR9iBS+OEP2axckMbpNJNxkQjKiuXz\n80AkYmBw0H9dyr5s374cme6fC83NGl/+cn7FufXNb4bc/dMvgXnqlIHOTk9qppa9X5Ift4oETbW1\nVuv6ExOGm1gWk7MRYA+1cvkeuGd05doeGyOrp7dXQ2uNH/3IQCbDIs+ePZaLVs/nFZ54ojxxK/Pa\nz5gEvALtaqV+qp21ySST9NEoARkLC2TbDA5WZ9Sv5I+Jv6AUk/KmSblg+Q2lFNrbKRPa319+tgMe\nezybZTFLa409eyyk0wpnzwJHjtiuzNg3vhHC1asEAwBM2BYKGj/9qcKTT5bKpC9Fxsx/No+OMvns\nZ8j6faz9+20AltPHkEXDoSGN0VF+tqkJDrOb5/bwsMK2bWRavvJKAErRr8hk6A+xxxYTwpQKo3Sj\nsKIPHACAEqamCN6JRjW2bi3h53+eZ1EqBfzyL3tyrrFYEG+/zeK21mRyf+tbJubmlOPnCJNZY2GB\nwKHeXu5/AFzJt8VFnukbNtjL/A6ZS6OjTPaLSf/WkRFjzT7pWuUT/fM1kdDL1gawnGkh9sILJvJ5\nA8GgRjConEIAk9H79nHstm+3y35bfrepyZMgVYrjd+wYi2LePgtHYlKhocF2ew4BLMpIAaSz00I+\nr3DpkpzdngSzUvRJenpspzcRpVeV8tYZpVO9M4nSm9plTIsZhsI991hl81xYrFRisDExwaJS5bsW\n8+8f/gK6rJOmJmD/fn7/wgUbf//3JubnAbJGPRWCcFg7ignKvV+ywTSuXPH6fLEPM1xWDvu/2tiw\nwcLx45zrb70lzHMyrkdH2YsrkxEZdDhsMRv33LP8mU6coI/pl1mrFesdP05J6P5+YHISKBapQjAz\nwxiHvU0NdHYS1CB7sgDhIhEb58+bSCSAO+6wXHCPXx4xkdCYmDDc90AWGOUpCwWNYtFwJDG108+X\neyelMikhnslwfEsl9ngDPFZkNEoA1MSEgXXr6OOyQMRxGhiwoZRygXwDA5YjHUw/LxTiXtrSwvgh\nEuFcFtZ1JsO9u1gk+1EYX2KHD7MflN+U0s6cIZChULBcBm9vr8aOHZ48IMdHIxq1cemS4bC9NEZH\neQ40N7MPoVLKty6W+1Rr9RveC2m3hx+23L5l/rFYLbPk/WDcXK8/LXat+CWd/v/Zu/sgu8rzMODP\n2V1pBasVK4RkYJGC/KHEJggjUYLFhwN47Ia4GWJXNqih4+mMa1JDE9ch7qRxII3d2O3g8Yxbx67H\nZTx0hAJ1MkkNHcYNLh4sxk5kY/ER2zGgINbGyGIX7QqtpN09/ePVuR/7eff73qPfb4YZdO/d3XPP\nx3ve8z7v+zzpWas2pfdkv7+R79ro/pgqrfZsnsuW0nyPQZkt1nhYs6xmAxaewBctbb43qMk6tP39\nEzsVzVL3ayk7QdP9rZkeBM4+Oz0oFdKD++ik+fUL4zvJBw5M/vezLIudO09O+t5kenvz+P3fPxH/\n+T+vjJdeSqlI0qzqFDBJRcuzSgqOrq70ML95c5pRm2rtVH/ftm0j8Xd/1xYvv9x+apVMfqp4fJr9\nXMzAPXYsi6efTt9rssGaN71pLN7znhPxN3+TAlfnnBNx/fXp30eO5HUpo84/f2Lu976+rDLgvn59\nmsV8+HCauT062hbnnjt26gE9q8xCL1JMpZRtKcXIJZekgffxg6cRaYCj9mEwpXxpiyxLQa3CihXV\nYuRr1qQBmtdei8rvO3myqGeQBvVGRsZOpU1M+214OA2aHTlSP6A8PNwWe/asrLy2ZUseR47kpwbb\n8jjzzLHYtCmPzZvTQ/tUgza150KxD/M8j7/8yxUxOppVasadPJnSKH73u+2R5yk4t3JlOg4vvpgG\n2EZGiloE+amaHWlWf56nVUtdXXnd9VAMrs5Fow98RZDpwIEUPMyyLM48MwV6i9mNv/ZrI5M+eNYO\nLtUGbLdvz+Pcc0fiwQfb47vfbY8TJ/JTgdGUGmvDhjT4cdFFY5Pu79m2zQvxsDGfQEjRpn3xixFn\nnFEdeClSEPX3Z5Om1B3/8FUMYPb3pwHvCy6IeOSRrDIgmuSVdmZ8qt4iHc/4lLOzTTlT1FCMiFOp\nUCMiqqslZhpkWaqUH8uZgqY2EP70022V9rbYv9ddNzLp79+wIZ/wwB2RrqeBgajU8Spe+9GPIn78\n46yyzUUauOJ8f/75tspKoxQQSZMpnn++7VTawpRqdarB6GJgM93H0t986KH2uPDCNOP91399dNp9\n9dBDEx8FLrggjx//OKsMnhafn02ao9rXa9MhbtqU2vDOziy6u9PAdAo0TGy7H3iget4Xdfgi0uze\nYsBs7dr0Nx54oCOGh6uTliLSAPuKFSlwUHyu1vj9kmrExoTgwYEDWTzwQEccOJDqJl1zTbUubETE\nOeekny+OY5Fqr7s7/c6f/jRtdxGkKFJInjiR0g4W9dFWrYpKHbGItBrgHe/I48ILU6BvbCylbyz6\nZ+PbgocfXlVZ0Tk4mFZfPfNM26mVXNV2oKMjrRzZvn207phOl/Jt/D4bHq5daZjug8U+nG2ftNFB\nrIUYhH7iifbKCs4jR4rVTimI9Qu/kE/6O6f6uxFpdc/AQHtNO1uksxuLl15KwZJi4sTwcMR1143G\nT39a1CZL/adUV6m6Cn50NK1Wv/DCPHp6Un9psmDyxRdH5d5x1llpolTteRkRlZ8bf/2vWTMWt97a\n2IS+2p+v9hXzulRztX3U555ri+9/Pz9VByud12nlU35q0kx+qq5XHj/8YUesXFms4E/1tF7/+uqK\njyIIGVENgr/5zfmp2lFFXb90zf7sZ/mpVWLFdqXA2GQTST73uZWV1RS1Kc4ne9bbv79aC7WoRTU2\nlp0K7qW/ldK0pv+vrT29dm0a3N+y5WRs3JhPOJYRkwdp+/sj/uIv2io16FavTivF29vTBLaUBSOt\nvFqxoprh4ayzUn+6vz9NFiz6eMePp2eEVAs3HZPiXFm1Kq1czbI8jh6NShrriLH49rfbK3WIi3T1\nRftYPOcV7V7x/FME1FKt3bF44xsnP8dqU3f/1V+tjKGh+vvNZJPYHnigI1avrv6+4j6QAtPpeEzX\np5pLv2GhB8NboU7SfPrTjfRZl7qe0lJOHF4oak5NTVAQmC2pDjntjV+K/93vzj310mKbKjVjI+kR\nFvpvTZfC4IILOuM73xmJ6VJDFPr6stizpyO++MUVlULEx46lwZpVq+pTCtb+/dk4//yIHTvSzNkt\nW1KQ4g1vyKO/P/29115LqX/yvLoq49JL03fasCGlziqWvb///SNx/HhKU9HZmdJWXXrpaLz0Ulsc\nP57qFbzySnaq8Hh62L/22rFJl89v25bHO985GjfeOBrvfOdovPGNEf/4j22xdm3UpYxK+6/+/KtN\nQzE4mJ1aUZdqYJ19dh4dHXm8850jsXlzmjW5Zk0eBw60R56n33/yZKrFcOONJyu1zYpUK4Xu7rH4\nwAdSyptikPjYsYiXXkoDW0VR7a6uNJB38cVjle1Os3nTwN/rXpcetLMsi82b83jzm0dj5crqe2vW\n5KcG9aIyaJf+floRsH59+ndnZwoQrliRBoVuvnk0Pvzhkbj55pG48sqpU4xMls5m69Y8XnklKqme\nVq1KA5Fbt6Yg4ehompl/xRWp3tgFF4zF6tVphv/PfpbqIYyOpgfYFLxLM11/4RfSoNB8Uy40qjZg\n/MILxaBvqpfw8stphn9KmRbxs59lddtUXOPjU75s3ly9xp97LtWKGBkp6oCl410M5hSfnWo/L2WK\n2EZS0kxnzZqIl17qjK6uk7F+fRrgKVIQpVRLYxNS6o5PIdffXwyep9UtnZ1Rqfd11lnVtDYnT0Zs\n3BiVv1Gk0SvS8dSaS8qZb32r41SdujQIVhSgX7t2LK69dnTG9B1LlU5nPn9nPj9bmyblmWfao7+/\nrS7VZBG4uOGG0Qm/f3Bw6lS/P/pRexw+nI5V9RpM95l162JCu1Ccs88+2xbDw6mO3OhoSnnb3l5N\nWzjZfa/42c7OtN1HjkS88EJqR9O9J6WNPXgwi8suS6kWJ9tXk93rOzsjfumXRuP88/MFOf616RDP\nOy+lyEop4/K45prRuPLK0di/v31C21F7fRXpwyKisk3F/2/fngasf/rTLH72s7a6mjTps2OxYcPE\nPtz4c2hkJE3sqQ0eDA5m8eMfp3t7W1tK3fzyy23R0xOV9LH/7J+djAMHqscxIs0uX7s2Hcef/zyr\nTP5YsSKLX/qlsfjZz1J7unJlqsc2OppWSbS355XUtBH1aU+ff74tXntt/LlXbQv+9m8748iR0Uqf\n4NixLH7+85RuNdULqn6vs8/O4w/+oPHU4OP32d//fXu8/HLaJ2efXd3e7u48tm4dm1U/bTYpT9es\nSd+jSLl96FA2q3vNQw91xJEj1XtZd3f6nZs35/Hxj5+Ysh8xVXrXX/zFtMrn+PG0GnfDhmpAdsuW\n1K8YGMji6qtH4/bbR2Lr1jz2708phrMsi3POSasgV6xIq/NHR1Mg9HWvK1YPRrznPSNxxRXV7SqO\nwUsvpUHlM86oTrIpVs2n/Ve9bufTns8mDXNESot8+HDq461YkVYAFamji0lS118/GuvWZdHbO1ap\n17p2barpdNZZ1dSVxXaOvw/296dnhaKNLPqH6VxIgcyrrhqdNKD+8MMd8eSTHeMmpKQ+3GTtxIMP\ndsTgYBEcr9a9bW8vUp2meoSvf30KZKcUnGml1kUXpZTIv/mbo3HttY2nAj733DwefTSlXS1WoZ53\nXkotmAJgWaWvnWXp3HnTm9LvL+79RRu5alUeH/zgyRgaSjXmalPjRqQ26YYbUu3OInV2RJzK3JD6\nJSdOpD59RLovbdw4FjfddDIiUnrn9vaU4nRwMAXChofTPnrrW0fjAx9I7eNUfbMUnOuMl18+OeP5\nOVVb8eqrKfV2RLVPtXp1Cqa+8kpWua/M91oozLe/O5fU0EtpPv3pRvqs8+2vz9Z80movl6XeR61k\nKcfDGiHVITQHqQ5pGQtdqHIumnmGzVIW3pzP39q4MRqazVYMPj79dPup4EvET39aTcHx4osRV1xR\n/3A91+9aO2OvSD2Y53klZ//Y2Fh0dBT546t/c/xKq4iItWuzeOc76ztWL7+cBmIOHy5S+6Xv8Mgj\n7ZX0So3MKmv0/Kvt8FVnwqcH4GKW/oUXRrz+9Sdjz56V8fTTxez60Vi1Kj1Er12bx549K2PDhrTi\npzorOb1/++0norc3nzB77+1vzyPPR+PIkbY4eTKlMNy2bSQ+9KGTlfR4xSqELCtm5OZ1aXpWr67u\nvzQzvZpGMH2Pak2AWkVqjOlWD9aabubhrbdWz9Ef/aitsgLnvPMiilm8F14YlRWGRft0/vlj8fLL\nbadSGLXFoUPpbxUrRiKWZibh+O928GBbPP98WnF55Eg1iDkykp1aiVS/TY1c48V5VjuDOaII7lRn\nUs9lVdJCW4hZtONXq9bOll67duJqgPHXa3HeF4PcESkNaW06sp6eNAhWW7Q6Yur2bS4zG2+66UT8\nyZ90Vn5/Z2dKafXxjx+fMc1sYTZpN+djPrOp5/qztbN/q4MhKS1SMYO8WN08fqVtf3/Ed7+bAhnF\nNV8cuwMHsviHf0iBrtprsJihPv4aLM7ZT35yZQwPp1o0R46M1c2cn+q8GH++p1XLed3gTkpHWk09\nN9m+mqodePe7F7b/NX57L7mk2n5M1XbUXl+1q5JrUxEW98aenrRK80c/yusGdtvb08qU6VJZ1Z7n\nX/hCRzzzTFvlPnjsWDUAUbtC9vDhiK1bq6l1zz23ehzzPLUBhw9np2rdVO9vxQD29deP1qSaa6tL\n4TVVn2emtqBov2r7BKtXx6kJEWkVRlH/7YYb5t42F+lhv/CFFfHkk+2VvzXVCpvxxrcneV5//y9M\ndszG32teeKEtHnywvVJfcqa2aevW0UpKy6o8tm6de9+ydqXc+NTWRfDh7LOrKxO7u6NuNeWWLVkc\nPjwaL7yQUnoWKTS7u/Np+xK1qbsi0t8866yxaGub2E4vRIaMRu8HF16Yx6uvpuvk0KG0Mj7L0mSh\nY8dSyscLLsijrS2lBH7jG0cqKxSPHGmLjo6xCefnwEBWl048z/MYHq5v7xpdxdZoloPCW986eirN\naprAMjycVl319IydWtFWrUdY7Jfx6a6LNPGNXnO9vXlcdtlYnHFGtU9erLR66aXqhJrh4SxGR6tt\nXLGKfHg4JvRZenryuhXChVWrqu1YbRvd1VXNPLF6dTUzQFdXdfXv9u0jMTCQVsUPDmaVGsyjo0UN\nsTzOPXf6Z8K+viyeeqqxFPbj+1zFeZNleTzzTBYbN6a/n4L/WfzyL49VVu3X9knncy00Q393sc2n\nP91In3WpV70189jOVFphZeByWcrxMKAcBL5oGs3SkWzmm+lSdoLm+7caebAoBh+LB9fh4YhDh9pi\ncLA6W6/Iz97IgEajUsq+tCrr+PFUWL6rK73X05Nm6UZMfdwn60CvXZvHa6+lh+Faq1ZFfO1r7XH2\n2Y091DV6/s1UcyEipf44cCClQ1y3Lotjx9LD7pvelAZcnnwyBXvWr08Pi6mW2MR9PVmKiNWrs+js\nHItzzkl/83Wvm/hwu3HjyKl6FZOn6Sl+Z3d3Hr/yK6Pxk59kkWVtlQf8NWvG4sYbRxoOEExmpvQW\nxTn6pS+tmPShaPyD2mTndCM/O1+TDTSN/26rVuXR3p7O69qZzB0d1dRZs33wLM6z8Sn5ilR/050j\ny5FGZL4DGm9/e8T+/fWp7KaqIRMx8XpdsyYNrE6W0mh82hrpZwkAACAASURBVMtzz22sfZ3LA/v2\n7Xl8/OPHKzUAzzknGqqtOJlmuTcvpNrroHYANLWl1UBKrdr98KY3pfbyxz/O4tprRypBogsvzE/V\nOMxOrfLJ46yz6n/XZDUsrr12NJ5/Pn2mdnB3/HU2Xu35/qUvrYiDB9snfGam1HPj24GxsRQYeeih\njmknrcylbzDZ9VmbzrAwWT3RavC9mmKt9l5QfPZXfiXi299ur9QQuvzy0TjrrNn04bKa/+LUSpXq\nd1uzJqXXWru2/rsUx/H73091Abu60gz3tFJ2LIaHU52dYvB6skH6mfbrTG1B0X4VK6FGRlIQbsOG\ntIo5y+JUTblqXbS5KtLsPvjgWDzxRHtkWWr7Lrts+nqNk7Ung4Pp/doV31Pd52vvNcXKtjyPePrp\n9F1napve/e4U+CrqYhZ1ot797oXp48806DvZ+93dacLVpZdGw32JvXvTqrHinlz0m84+uzpZZ7HM\ndJ+t1kSL+OEP04qFFStSRoL29lS76vHH06SwImBSrW2bsjDs3t1RdxzHxvJ48slqysFUhzPVYJ1s\nUsp0iiB57WSeiHQvmOyc+/VfH42DB9tOnTPp2o3IK3XNJktbuBD3zQsvzCPPJ65e+PVfH41nnmmP\ns85KffeUOrbaLta2LbVtSp6nCWjj01sXk9wiJp8kmH5nVOrbbd48Nmm7dPBgdmqSTURRH7e7e2J/\nu1axn848M+Lo0YkBqvFq7wnV8yZltogonmNSQPSXf7l+JdWrr2bx2c+ujC1bxub1/Nws/d3FNtf+\ndKN91oVOITmdZh7bmc5S7qOFsFQT2AUFgdkS+KJpNEtHstlvpkvZCVqsv1V0jB56KB3zYrbvkSMR\nEVmMjFQHHt/ylon1reart7eo35NHZ+dYHD2aZjCmguR5bNo0/UPRZB3ojRvHTj1Y1s8i7unJ4xvf\n6KgUgJ7poa7R86+Rmgsvv1ytmVV8Jq0ASNuY59VAWVpJNfkKt/GDLgcPplQoZ51VLWwdMfXD7b59\nWezZszIeeqi9MgA//jv+i39RLfI9/ns3GiCYTKOrZeYzG3CxZxJONoCyf38x4FUNFG7cmMdLL2Xx\nyitp1WER/DrrrOp5MdsHz9rzrFhtN1mtn7LkW290tWphPveLRtvXuT6wb9+ex/btx2f8/TNplnvz\nQqq9ZmsHQIv2cLL9W7sfaouyFys5IqrH6i1vqV6r49vlydqFon5i7WD8m940Frfe2ngqup6efNJV\nDKtWTb3aqVCcizMN1vb1ZfG1r7XHN77REatWpX3X3z9zsGE6s6knunHjaOR5TLmipfhssSp3w4bZ\nTZrZu7d9wmqcZ55pq1sJWJjqOD74YBqcX7kypatLNRHjVCrTkUlr/BRm0x4Xas/VjRsjrrtuJB5+\nuD1GRqr1K1NfZCzWrYu49trRBevTjl/t1Mhg/2TtSXd3FmedNdbQBKGpVrsXQeuZ2qYUsFu8Pv5M\n/YE8z+OZZ9rrglXd3dVrtNG+xIED9cGiY8eyU3U7lz9tV+21ePJk+6l0u/mp1Y/Jz39erX978GD1\nexTt5fjjWEyiqg9UZXHppSPxwQ/O7j40WY20VavG6gJA479PUUt1fI239CwzcZLAQtw3p7red+0a\njYjRuoDWZO3i+OuxCBpu3DgWv/ALCzcRr1r3r/75p7jvTdcPnO1+qj23vvGN9ujpGatbJVs8M/b0\njNVdS0UdsjPOyGL9+nxeE3jK0t9dLM0YZGr2sZ0yWOpJcq0WFASWl8AXTaOZOpKtcjNthtSQs1Xb\nMcrz1DE6cSot8uhoOtYdHdVUdxGLcw7UpgSstXZtyoU/nak60F/7Wh6PP14d0LjggjxefLFa26Mw\n/qFusuM40/lXuw1ZlsfTT09MkbRhQ3XlSm16k+rDaf2AbMTk+7oYyClSihSpvDZuHJvxZ/fty+pS\nrr3ySsSf/ElnfPzjxyf9jlM96I5/vdFzf6q0KF1dKeXQVKvQIhp/UFvsh7zxAwPFLNehoTy6uqoD\nXhdfPBb/5J+Mxc9/HnHsWMTzz2dx7rmp7kNtOrbZaPRhsRXTiExltu3/Yt8vlvuBvZnuzQtlfEA3\nrWaMaVcXzzZ9z1Tt8tTXYB7VlUW1/9/4d9q/Pzt1HWan/l40lHquMN0g5I4do6dSE7dVUhMX7U53\nd8w5EDpT2zGb62su12LtveR732uLdeuirsbXxo15/MM/1P/MdOknL7poLJ5+Ot1n164di8suS4GN\n1LeYXzvRSFvw3HPt8ba35fHkk3lNkCDVgfoP/2Hygf2F0sgg9lTXUVtb1tBKpUZWu8/UNi1mmz1d\nf6CvL/U/+vvT69V792jlfGqkL9HXl8Xjj7fHT36SapWtWZNqXOV5mvDUDIp9/OCD7bF/f7VNSvI4\n55y8cj7/p/+UVlIV/eaivaw9jlmW1a06L4KGWTb7+1DtdbRpU2P31PHnzEyDvAtx35zpep/pHP7a\n19rj7/6uPV56Kf3NIoVmo6sCG+17FJ97+eU0IWv8cZyuHziX/VQciyLF4mQ/O/6+UqQ3rW0n5jqB\np0z93cWw3H3W6barFcZ2WlUZJ8kB5SHwRdPQkZydVk0/VdsxKoIxK1emh5GTJ9OsvI0bxyr1DSIW\n5xyY7/k2WQf63e8ePVUzrPp7h4er9UFqFQ918zmOtdswVSq855+vpmAr0puceWZK7djZObEY83Sr\nEYrZxXmevlequTD9w+2ePSsn7Qjv2bNyzqtRZrPPaldSDAxk8fLLaUb0ZZfl8fzzbXU/N5+VO4v5\nkDfZirs8T7VbitWSxUq+iy4anTTFzXy2qZGHxWac4Vkmy/nAXsZ7c29vHtddN1KXCvL226dPBTmX\n9D2NXoNppVFWSSWVTD1gMNXvvfXWkfja1/LYvz/VXXrrW0crNSYb2Z7pBiHHpyaOiEq785a3TD3Q\nO5PlbDvG30teey3iJz9pOxXMq66Gvu66sVi7trF0xVOlJ1uo62WmtmBgoD417cBAFkNDEWecEbOu\nMzRbjQxiz7c9aWS1+3K2TdP1B1J9r2xCqrkLLqimjpupL1Gcs2NjKZVlquEZsWFDylqwYcPyr/iq\n9ba3jcZLL6XaXSn9aErF97a3peu7tzePX/3V0bq6aIXa45jOm7yhlZeNmO89daZB3oW6b851O/v6\nsvg//6cjXnihusxucDCPV1/NG14VONX9YqrXf/d3T4xbYTZzW75Y2RbG31dSvczqhMrCXO5b+rsz\nE2Q6/ZRxkhxQHgJfNA0dydlp1Zk1tR2g2mBMlqUUPS++2NZQnYf5WozzbbIBj56eiIGBqR/oF+o4\nTvaQMVn9oYsuGotdu9LnGn1A7e1NAzO19Z1STYGskgJqqp/9+c8n396DB1P9gLkEZWa/z9Jgcn9/\nNSXMZD83nwe1xXzIG/9wXww89/RUVxWOLzi+2Ns0XrPO8GT+Wu3e3Eiwqa8vi0ceSfUP169Prz3y\nSEece+7UEw7msh8avQZnM2AwU+D/Qx+qpp6bzc9FTD+QWGzL+HSKte3RXCxn2zH+XlJMximCeRHp\nGNcGD2ey3NdLbV3G9H1SvbFVq7IJkz0W629P9nphvvtnfqsql8ZU131xDdXWS4pIq91m+tlCcc72\n9ORx7FjEkSOpftvISLXm1FJppK2t1lTLp6yp1sg5sdzX1XgztdnLvb1797bH0aPjnz2yePXVvKFV\ngVPdL667rr7u7vj7yGzb8mI/1W1llsfrXz864zPCdPt4YprclAq4djVvxPT3ranOb/3d5tOKGXDK\npoyT5IDyaL/rrrvuWu6NmK3XXjux3JvAIlizJs2UHRpKQZDzzsvjhht0XKayd2/7uHzqSZZFbN++\nvDM+u7o6p7xOn3uure6BsbMzYv36iMsvH4t/+S9H4hd/cWxJzoHFOt+K4NL27WNx0UVjce65eTz1\nVCruXciy9LfWrFnc4zjdd5zt9//e91Ltk/POy+P88/M455yIEyfSdl5++dikP9vXl8Vf/mVH/OQn\n7TE8HLFiRRbt7RHHj0cMDUWsW5cGTQcGsnjqqba48MKJK9AmM5t99vDDHfHaa22xfn3E0FBbdHZG\ndHRkcfJkVAa8m+GamU5PT/051N+fVVYSrlmTvkeqHzMWV1yxfN9j/LnfyLFsNtO1XaerVro3F4N1\n/f1t07YtDz+cPhORUoc++2xbHDzYHn//922xbt1YfOtbHbF3b3s891xb9PSkn13M/TD+vlg477yU\nOq9W7bZXZTE0lE347Gx/bnxbE1G9Xx06lPZnZ2fEyy9XU5d1d6dVJsU9bS6Wq+0Yfy/p7Ez7YHQ0\nYvPmfE7HeDmvl66uzlix4njlGD77bKoDmWXpftHZGdHIuTJX050/xTFdiP1TnC9XXpnS+5482fxt\nU8TsrvOpFOfsqlURr7ySRVdXRHd3qrm6eXP9ddjXl8XDD09syxZCo23tmjURv/iLeZxxRsT55+ex\ndetY/OZv1h+jRs6JZrsPzXQsl3t79+5tjwMH2uLVVyPGX4+XXz4aV145/fk21f3iO9/piDPPHP/p\napsy27a82E8jIyvjxImROO+8PLZtG41HHmns3JpuH4/flh/9qD7l5vi2qdZM53cZ+rtl0WhbxOJq\n5P5fVp4doTl0dXVO+Z4VXzQVS+Mb16oza2aaBbnUq1TG5+yf6yqk6f7GdDMDF/s4Trc/Z7Ovi+08\nciTqUvRcccXk9ciKB5FNm8biwIG2Sjqe170uzVD+lV+p/36zWeU2m31WOzBRu1IhDXYuXirNhTT+\nHNqxYyQOHsyiu7s5Zj4vlulmcJrdubRa5d7c6GrQol0o6uUVq0D/4R9STcKLL04zw8fPZl+s/TCb\n1QFzTScz2xpl46+tYhvXrKlN1Za2fTYrouZisa73ye4la9ZEXHLJzHU2p7Oc10vtMfz7v2+PtWtT\nLaTalQ6LlXpoNjWBFmr/tErbFLEwq4BqV/TV1rzauLF+xfdip0Ofzcr7Ro7RQn1mqTRyLJc7RXFP\nTx7DwymFfJFmcuPGxlYFTtVG/PznabJVUS+3eBbIsrmfU729ebz1rRGHDqW6Yw880LGg51bxudms\n0mrVrCqnI8eqOVgJCTQzgS9oUcudRmOumrVjtBiDBOMH6264YfIaVK1wHFOtrCyefLI9itlcw8NZ\nvPhiyvc//nsVDyLnnx9xzTUj8dRTbXHsWBZnnJHHZZeN1gVtCo0OxjWyz4p9/8QTbXH0aBoU2rgx\npevK86gUuG7GfT2ZyYK0zXYNLaTprseIaMn6hiy+RoNCY2N5PPNMWzz/fFucOJGCHatWpZWoXV1Z\nHDwYlVR3SzGAMpv74lwnS8ylRtl023jJJWNL0u4s5r35wIEsnnkmq0uVNziYR39/xJe+tGLaVJnN\n3P7WHsOZaict5t+m3kL0fyfr/0Tk8cY31vdjFmswuDj3H3oo1RGsvXYi6tvaZr9O5qNZn2UKRX3b\ngYH26OwstimPLVvGGurzTnW/OOeciRNGjh3L4umn2yZ9FpiLxaoVNJu2Sb2i1uFYNQ/3f6BZCXxB\ni2r2h67pNGPHaKEHCRodrGuV49jbmwJHBw9GDA/HqToNeXR3x6T7qPaB4/zzI84/P6VVWbs2zUJ9\n/vm5r3KbaZ/V7vu1a1MNrIGBtrj44rFTM6RTipILL2zOfd2IRq6hVhx0Krb5//2/9krAslipUFyP\nxf/XMruTiMaCO319Wbz4YlsMDLTFsWNtMTIScehQHuvXj0VXV/rM+FSqSzGA0uh9ca6TJRZiksVy\n3LsX+968cWPEwYNFmq48BgerKcwmu28v9kqahdQqE2tOJ/O9hor+z4MPtsd3v9seq1bl8cY35vHq\nq22xe3f1PFyMweDacz/Ps+jvz6K/P608K4JfRVu7lNdJo3UdF7o/1IzPMoXe3jxuvfVkPPjgWDzx\nRHtkWcTWraPx7nc39r2najtuuulkfO5zK+tq5UakeoIL1QdrhowmzbANNMaxAmAmAl/Qwpr5oavV\nLPQgwUKngWkGWZbFW94ysS7AZPtougeRxR6Ard33a9ZEJS3X4cMR1147Grfe2vwBoKk0OnjTSoOz\nhdptPnw4i2PHUq7+iy8eqwS/prseze6kkbZl795Ur/Dii8fi6NEsXn01pYDq6Ul1aPr7s8qK0EIz\nDaDMdbJEq0yyGG+x783d3Xm85S1RSf+VauJU1d63+/qy+OxnV8bBg+kcKVa7NGvgvVWPOdPr7c1j\n7dqIbdumThm9GIPBtddOdQV9Fi++mMVb3pLXtbVLlX6skb5OK/aHFkJvbx7/+l+PRMTs9/d0bcdF\nF43F009HJc1h0Q4uVB+sGQL2zbANNMaxAmAmAl8AsfAzxsqYemE2+2i6B5HFHowbv4/XrElpy9au\nbY0A42T6+rJ48MH2eOSR9li1KqUXmm7wphVz3tduc1GPLc/Taowi7VxxrpndyWQaaVuK9qG7O9Uo\nLFI2ZVkWF1wwFgMDaTVroRkHUOY6WaJVJlnUaoZ788BAVhk8P3iwLY4dS+m9ale7NOu9vRWPOTOb\n6TxejMHg2r9ZW2MsyyI2b65PfbpUfeBG+jqt2B9qBlO1HRdemEee51HUyS0sZG3i5Q7YN8M20BjH\nCoCZCHxxWmjFlF8srYUaJCjOte99ry1ee21i/YOFejBcjnN6NvtopgeRxRyMK1vai2LA9emn2+PY\nsSyOHYuaAdfJB29aMfBau20psJdHRFZJO1d7rpndyVRmaltq24fawduurjwuuWQsfvM3T8Zzz82+\nbdXPWBwLPYA/0/1hqveKwfMiKH9qSyqrXVr1/kJrmuk8XozB4PF/M62WzGPz5rEJbe5s+mHzaTtr\n+w1HjkS8+GLqM/zjP2aV39NM/aEy3CeWYoVNMwTsm2EbaIxjBcB0BL4ovdM1xQWzsxCDBLXn2rp1\nET/5SVvdjPCFejBcrnN6tvtouR5Eypb2ohhwra87VB1wnW2qyWZVu821KSrPPHPibHKzO5mr8e1D\nd3dK3VTbfm7fPrt2Sz9j8Sz0AP5M94ep3nvoofTIVE3xlt4fHs4iy8Za9v5Ca2qkn7PQfbDZ9K0a\n/ex8286i33DkSMSTT7ZFRPo9R49G7N7dEbt2LU7ax7koy33CChsAoJW033XXXXct90bM1muvnVju\nTaCFPPxwR/T3t417NYuhoVTMvEz6+rJ4+OGO2Lu3PZ57ri16eupXGy2Vrq7OlrxO16yJuOiisdi+\nfexUofvZ/XztudbZGdHTE3HiRBajoxGXXjoWN9ww9YPhbI7dQp/Ts/nb891HS2HNmpSKZWgopeA5\n77x82n3f7PbubY/h4VRIvjb4VXy3887LJxz3np48nnqqOgiUPp/2QzMes4iJ29zZGbFhQx4f/vDJ\nuOKK+nNtsc7DVm27aNxitA+nUz9jOSzk9T7d8Z/uveeea4uBgazm3p7SY27cmMcHP3iyKe4v2q/T\nx3L0c2bzNxv97HzbzqLf8OyzbTE8nH5PlkW86U15rFwZMTSUVn41Q3+oTPeJhe6DLVTb1SzPwcDp\nQ98LmkNXV+eU71nxRek1U4qLxdRqMwlbMd3HTNs8/pwq0sDMVFtqtsduIc/pVjtvGlWmtBfFbOXx\nKw1WrcrnnGqyGbXiNtOaFrp9OF36GWUx3fGf6r3aFSzFvT3L8pa/V9K6lqOfM5u/2chn59t2Fv2G\nT35yZQwPp37Rxo15dHdXa401S9/CfWJxlfV5BgCYH4EvSq9ZUlwstlYq3tyKDyeNbPNcz7XZHrtG\n/k6jgcVWOm/KZDaB32LAtbs7KvWIhocj3va20Xj3u5sv1eR8NOM2t2KQnqV1uvQzTmfNMngOS2Gp\n7nsL0Xb29uZx7bWj8fzzE3+mtubZcvct3CcWl+cZAGAyAl+UXtnq/UyllWYStuLDyUzb3NeXRX9/\nxHe/m8WqVREXXJA3XNdrtsdupnN6NoHFVjpvymK2gd/xA65btxpwXSqtGKRn6Z0u/YzTXTMMnsNi\nW8r73kK1na3QBrfCNrYyzzMAwGTU+KL0ylbvZypF/YnxJqv/s9hmynVc1CwaL8sitm9vzjz3023z\nuefmsXt3RwwPt8Xq1VkcOZLFyy9n8Uu/NBrvfe/M59psj91M5/Rs6gg003lzuphLnYdWqK1WBuPb\nrjLV5GDxnC79DJqbOhMshKW87y1U29kKbXArbONyWYi2y/PM0lNTDfS9oFmo8cVp73SYpdtKMwlb\nMd3HdNtcuxqsqP0REXH22dHQA+1cjt105/RsZj220nlTFmaltg7Hanm0YnrJ06GfAcupFduFxbYY\n+2Sp73sL1Xa2QhvcCtvYqjzPLC0ZEQBoFQJfUBKtVH+iFR9Optvmhx6avCmdbXHuhTp2swksttJ5\nUxatGPg9XTlWS28pBlMMoLPQnFOLyyDrRIu1T9z3aEWeZ5ZWK5YtAOD0JPAFJdIqMwlb8eFkum1e\nqOLcC3XsZhtYbJXzZrks9IBmKwZ+F1MzDxg7VktvsQdTDKCz0JxTi88g60SLtU/c92hVnmeWjowI\nALQKgS9gWbTiw8lU29xsgwStGFhsVosxoOn4VDX7gPFSHqtmDgAupcUeTDGAzkJzTi0+g6wTLdY+\n0UcBZmJlKACtQuALYJ6acZCgFQOLzWixBjQdn6QVBoyX4lg1ewBwKS32YIoBdBaac2rxGWSdaDH3\niT4KMJ1mm/QJAFMR+AJYAAYJysmA5uKyf5NWCAAulcUeTDGAzkJzTi0+g6wT2SfAcmnGSZ8AMBmB\nL5gn6amYinOj9RnQXFz2byIAWLXYgykGi1lozqnFZ5B1IvsEWE7znfTpORmApSDwBfMgPRVTcW6U\ngwHNxWX/JgKA9RZzBa3BYhaac2ppLEa70OoDr7INAK3IczIAS0XgC+ZBeiqm4twoBwOai8v+TQQA\nl5bBYhaac6r1GHgFWB6ekwFYKgJfMA/SUzEV50Z5GNBcXPavACDAUjPwCrA8PCcDsFQEvmAepKdi\nKs4NYDYEAAGWjoFXgOXhORmApdK23BsArWzHjtHIsvoOmvRURDg3AACa1VQDrAZeARaX52QAlooV\nXzAP0lMxFefGRK1eRB4AKAe1FQGWh+dkAJZKlud5y91dDh0aXO5NAKaxfn2365Q644vIR6QBJkXk\naSbaLqBVab9mz4QcWH7aLqBVab+gOaxf3z3le1Z8AbDoFJEHAJqJ2ooAAFBeanwBsOgUkQcAAAAA\nloIVXwAsup6ePPr7Jwa5FJEHOL1ILwe0Mm0YAEBrEPgCYNEpIg/A+HqP/f1ZHDiQqfcItARtGABA\n65DqEIBF19ubx65dI7F581isXZvH5s1jBgkATjPT1XsEaHbaMACA1mHFFwBLQhF5gNObeo+L5+DB\niP/9vzukX4NFpA0DAGgdAl8AAMCiU+9xcfT1ZfFXfxUxNJSSeUi/BotDGwYA0DqkOgQAABbdjh2j\nkWX1A8TqPc5fSr9W/5r0a7DwtGEAAK3Dii8AAGDRFfUe9+5tl5JvAUm/BktDGwYA0DrmFPgaHh6O\nO+64Iw4fPhxdXV3x6U9/Os4+++y6z9x///2xZ8+e6OjoiN/+7d+Oa6+9dsqf+/rXvx6f/vSn47zz\nzouIiNtvvz0uv/zy+X87AGgCfX2ZQRKAUO9xMfT05PHyy5O/DiwsbRgAQGuYU6rD++67L7Zs2RK7\nd++OG2+8MT7/+c/XvX/o0KG49957Y8+ePfHlL385PvOZz8SJEyem/Lmnnnoq7rjjjrj33nvj3nvv\nFfQCoDT6+rLYvbsjnn++Lfr7s3j++bbYvbsj+vrMxAdg/lL6tfrXpF8DAABOZ3MKfO3bty+uvvrq\niIi45ppr4vHHH697f//+/XHppZfGypUro7u7OzZt2hQ/+MEPpvy5p59+Or761a/Grl274lOf+lSM\njJhBBUA5pNor9SOSaq8AsFB6e/P4V/8qYvPmsVi7No/Nm8di164RK4sBAIDT1oypDh944IH4yle+\nUvfaunXroru7OyIiurq6YnBwsO79oaGhyvvFZ4aGhuper/25K6+8Mt7xjnfEBRdcEHfeeWfs2bMn\nfuu3fmvKbVq79szo6DBgCM1s/frumT8Ep4GRkYiurslfX79+6beH6Wm7gFb1b/7NGcu9CQCzpu8F\ntCrtFzS3GQNfO3fujJ07d9a9dtttt8XRo0cjIuLo0aOxZs2auvdXr15deb/4THd3d93rtT/33ve+\nt/L/119/fTz88MPTblN//2szbTawjNav745DhwZn/iCcBjo6OuLo0YkLrDdsGItDh6xwbibaLqBV\nab+AVqTtAlqV9guaw3QB6DmlOty2bVs8+uijERHxzW9+M7Zv3173/tatW2Pfvn1x/PjxGBwcjGef\nfTa2bNky6c/leR6/8Ru/ES+99FJERDz++ONx0UUXzWWzAKDppNor9emm1F4BAAAAgMWR5Xk+6+Tv\nx44di4997GNx6NChWLFiRdx9992xfv36uOeee2LTpk1x/fXXx/333x9//ud/Hnmex4c+9KF417ve\nNeXPPfbYY/HZz342Vq1aFW94wxviD//wD2PFihVT/n0RdWhuZr5Avb6+VNNrYCCLnp4U9FJ7pflo\nu4BWpf0CWpG2C2hV2i9oDtOt+JpT4Gu5aViguekAAK1I2wW0Ku0X0Iq0XUCr0n5Bc1jwVIcAAAAA\nAADQbAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAA\nAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBS6FjuDQA4HfX1ZbF3b3sMDGTR05PHjh2j0dubL/dmAacpbRIAAABQ\nFgJfAEusry+L3bs7Is+ziIjo78/iwIEsdu0aMdAMa14z6wAAFcRJREFULDltEgAAAFAmUh0CLLG9\ne9srA8yFPE+rLQCWmjYJAAAAKBOBL4AlNjCQzep1gMWkTQIAAADKROALYIn19EyeOmyq1wEWkzYJ\nAAAAKBOBL4AltmPHaGRZ/YByluWxY8foMm0RcDrTJgEAAABl0rHcGwBwuuntzWPXrpHYu7c9Bgay\n6OlJA8y9vVZXAEtPmwQAAACUicAXwDLo7c1j586R5d4MgIjQJgEAAADlIdUhAAAAAAAApSDwBQAA\nAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAApdCx3BsAAADNpq8vi71722NgIIuenjx2\n7BiN3t58uTcLAAAAmIHAFwAA1Ojry2L37o7I8ywiIvr7szhwIItdu0YEvwAAAKDJSXUIAAA19u5t\nrwS9CnmeVoABAAAAzU3gCwAAagwMZLN6HQAAAGgeAl8AAFCjp2fydIZTvQ4AAAA0D4EvAACosWPH\naGRZfZAry/LYsWN0mbYIAAAAaFTHcm8AAAA0k97ePHbtGom9e9tjYCCLnp4U9OrtteILAAAAmp3A\nFwAAjNPbm8fOnSPLvRkAAADALEl1CAAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAA\npSDwBQAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAApSDwBQAAAAAAQCkIfAEAAAAA\nAFAKAl8AAAAAAACUgsAXAAAAAAAApSDwBQAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAA\nAAAApTCnwNfw8HDcfvvtsWvXrvjgBz8Yr7zyyoTP3H///fGe97wn3ve+98U3vvGNuve+/vWvx0c/\n+tHKv5944onYuXNn3HTTTfFf/+t/ncsmAQAAAAAAcJqbU+Drvvvuiy1btsTu3bvjxhtvjM9//vN1\n7x86dCjuvffe2LNnT3z5y1+Oz3zmM3HixImIiPjEJz4Rd999d4yNjVU+f+edd8bdd98d9913X3z/\n+9+PZ555Zh5fCQAAAAAAgNPRnAJf+/bti6uvvjoiIq655pp4/PHH697fv39/XHrppbFy5cro7u6O\nTZs2xQ9+8IOIiNi2bVvcddddlc8ODQ3FiRMnYtOmTZFlWVx11VWxd+/eOX4dAAAAAAAATlcdM33g\ngQceiK985St1r61bty66u7sjIqKrqysGBwfr3h8aGqq8X3xmaGgoIiJuuOGG+Pa3v1332dWrV9d9\n9uDBg9Nu09q1Z0ZHR/tMmw4so/Xru2f+EECT0XYBrUr7BbQibRfQqrRf0NxmDHzt3Lkzdu7cWffa\nbbfdFkePHo2IiKNHj8aaNWvq3l+9enXl/eIztYGwmT47/veN19//2kybDSyj9eu749ChwZk/CNBE\ntF1Aq9J+Aa1I2wW0Ku0XNIfpAtBzSnW4bdu2ePTRRyMi4pvf/GZs37697v2tW7fGvn374vjx4zE4\nOBjPPvtsbNmyZdLftXr16lixYkW88MILked5PPbYY3HZZZfNZbMAAAAAAAA4jc244msyN998c3zs\nYx+Lm2++OVasWBF33313RETcc889sWnTprj++uvjlltuiV27dkWe5/GRj3wkOjs7p/x9f/zHfxy/\n93u/F6Ojo3HVVVfFJZdcMrdvAwAAAAAAwGkry/M8X+6NmC1LSaG5WfINtCJtF9CqtF9AK9J2Aa1K\n+wXNYcFTHQIAAAAAAECzEfgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS\nEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAA\nKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAA\nAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAA\nAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsA\nAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEqhY7k3AABaWV9fFnv3tsfAQBY9PXns\n2DEavb35cm8WAAAAAJyWBL4AYI76+rLYvbsj8jyLiIj+/iwOHMhi164RwS8AAAAAWAZSHQLAHO3d\n214JehXyPK0AAwAAAACWnsAXAMzRwEA2q9cBAAAAgMUl8AUAc9TTM3k6w6leBwAAAAAWl8AXAMzR\njh2jkWX1Qa4sy2PHjtFl2iIAAAAAOL11LPcGAECr6u3NY9eukdi7tz0GBrLo6UlBr95eK74AAAAA\nYDkIfAHAPPT25rFz58hybwYAAAAAEFIdAgAAAAAAUBICXwAAAAAAAJSCwBcAAAAAAAClIPAFAAAA\nAABAKQh8AQAAAAAAUApzCnwNDw/H7bffHrt27YoPfvCD8corr0z4zP333x/vec974n3ve1984xvf\nqHvv61//enz0ox+t+/c73vGOuOWWW+KWW26J73znO3PZLAAAAAAAAE5jHXP5ofvuuy+2bNkSt99+\nezz44IPx+c9/Pv7wD/+w8v6hQ4fi3nvvja9+9atx/Pjx2LVrV1x55ZWxcuXK+MQnPhGPPfZYvPnN\nb658/qmnnoo77rgj3vWud83/GwEAAAAAAHBamtOKr3379sXVV18dERHXXHNNPP7443Xv79+/Py69\n9NJYuXJldHd3x6ZNm+IHP/hBRERs27Yt7rrrrrrPP/300/HVr341du3aFZ/61KdiZGRkLpsFAAAA\nAADAaWzGFV8PPPBAfOUrX6l7bd26ddHd3R0REV1dXTE4OFj3/tDQUOX94jNDQ0MREXHDDTfEt7/9\n7brPX3nllfGOd7wjLrjggrjzzjtjz5498Vu/9VtTbtPatWdGR0f7TJsOLKP167tn/hBAk9F2Aa1K\n+wW0Im0X0Kq0X9DcZgx87dy5M3bu3Fn32m233RZHjx6NiIijR4/GmjVr6t5fvXp15f3iM7WBsPHe\n+973Vn7H9ddfHw8//PC029Tf/9pMmw0so/Xru+PQocGZPwjQRLRdQKvSfgGtSNsFtCrtFzSH6QLQ\nc0p1uG3btnj00UcjIuKb3/xmbN++ve79rVu3xr59++L48eMxODgYzz77bGzZsmXS35XnefzGb/xG\nvPTSSxER8fjjj8dFF100l80CAAAAAADgNDbjiq/J3HzzzfGxj30sbr755lixYkXcfffdERFxzz33\nxKZNm+L666+PW265JXbt2hV5nsdHPvKR6OzsnPR3ZVkWn/jEJ+K2226LVatWxRve8IZ43/veN/dv\nBAAAAAAAwGkpy/M8X+6NmC1LSaG5WfINtCJtF9CqtF9AK9J2Aa1K+wXNYcFTHQIAAAAAAECzEfgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS\nEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAA\nKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAA\nAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAA\nAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsA\nAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+\nAAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB\n4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACg\nFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS6JjLDw0PD8cdd9wRhw8fjq6urvj0pz8dZ599\ndt1n7r///tizZ090dHTEb//2b8e1114bg4ODcccdd8TQ0FCcPHky/v2///dx6aWXxhNPPBGf/OQn\no729Pa666qq47bbbFuTLAQAAAAAAcPqY04qv++67L7Zs2RK7d++OG2+8MT7/+c/XvX/o0KG49957\nY8+ePfHlL385PvOZz8SJEyfinnvuiSuuuCL+5//8n/Gnf/qn8R//43+MiIg777wz7r777rjvvvvi\n+9//fjzzzDPz/2YAAAAAAACcVuYU+Nq3b19cffXVERFxzTXXxOOPP173/v79++PSSy+NlStXRnd3\nd2zatCl+8IMfxAc+8IG46aabIiJidHQ0Ojs7Y2hoKE6cOBGbNm2KLMviqquuir17987zawEAAAAA\nAHC6mTHV4QMPPBBf+cpX6l5bt25ddHd3R0REV1dXDA4O1r0/NDRUeb/4zNDQUKxZsyYi0oqwO+64\nI/7gD/4ghoaGYvXq1XWfPXjw4LTbtHbtmdHR0T7TpgPLaP367pk/BNBktF1Aq9J+Aa1I2wW0Ku0X\nNLcZA187d+6MnTt31r122223xdGjRyMi4ujRo5WAVmH16tWV94vPFIGwH/7wh/Hv/t2/i9///d+P\nyy+/PIaGhiZ8dvzvG6+//7WZNhtYRuvXd8ehQ4MzfxCgiWi7gFal/QJakbYLaFXaL2gO0wWg55Tq\ncNu2bfHoo49GRMQ3v/nN2L59e937W7dujX379sXx48djcHAwnn322diyZUv8+Mc/jt/5nd+Ju+++\nO97+9rdHRAqSrVixIl544YXI8zwee+yxuOyyy+ayWQAAAAAAAJzGZlzxNZmbb745Pvaxj8XNN98c\nK1asiLvvvjsiIu65557YtGlTXH/99XHLLbfErl27Is/z+MhHPhKdnZ1x9913x4kTJ+KTn/xkRKSg\n15/92Z/FH//xH8fv/d7vxejoaFx11VVxySWXLNw3BAAAAAAA4LSQ5XmeL/dGzJalpNDcLPkGWpG2\nC2hV2i+gFWm7gFal/YLmsOCpDgEAAAAAAKDZCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg\n8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg8AUAAAAAAEApCHwBAAAAAABQ\nCgJfAAAAAAAAlILAFwAAAAAAAKUg8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAA\nAKUg8AUAAAAAAEApZHme58u9EQAAAAAAADBfVnwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg\n8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFzBr3//+9+OWW26Z8PojjzwS733ve+P9739/\n3H///RERcfLkyfjoRz8aN910U+zatSueffbZpd5cgIqp2q+IiGPHjsVNN91UaafGxsbij/7oj+L9\n739/3HLLLfGP//iPS7mpABWzabtOnjwZd9xxR+zatSv++T//5/E3f/M3S7mpABWzabsKhw8fjre/\n/e2eG4FlNdv264tf/GK8//3vj/e85z3xwAMPLNVmAtPoWO4NAFrLl770pfjrv/7rOOOMM+peP3ny\nZPzpn/5p/K//9b/ijDPOiJtvvjmuu+66eOKJJ2JkZCT27NkT3/rWt+Kzn/1sfO5zn1umrQdOZ1O1\nXxERTz75ZNx5553xs5/9rPLa//2//zdOnDgRf/7nfx5PPPFEfOpTn4o/+7M/W8pNBph12/XXf/3X\n0dPTE//lv/yXGBgYiBtvvDGuv/76pdxkgFm3XRHpmfKP/uiPYtWqVUu1mQATzLb9+va3vx3f+973\n4r777otjx47F//gf/2MpNxeYghVfwKxs2rRp0sDVs88+G5s2bYqzzjorVq5cGdu3b4+//du/jc2b\nN8fo6GiMjY3F0NBQdHSItwPLY6r2KyLixIkT8d/+23+L17/+9ZXX9u3bF1dffXVERLz1rW+Np556\nakm2E6DWbNuuf/pP/2n8zu/8TkRE5Hke7e3tS7KdALVm23ZFRHz605+Om266KTZs2LAUmwgwqdm2\nX4899lhs2bIlPvzhD8ett94av/qrv7pEWwpMxwg0MCvvete74sUXX5zw+tDQUHR3d1f+3dXVFUND\nQ3HmmWdGX19f/Nqv/Vr09/fHF77whaXcXICKqdqviIjt27dPeG1oaChWr15d+Xd7e3uMjIwI4ANL\narZtV1dXV0SkNuzf/tt/G7/7u7+7qNsHMJnZtl1/8Rd/EWeffXZcffXV8d//+39f7M0DmNJs26/+\n/v74yU9+El/4whf+f3v378r7Asdx/GVB8muRnVJGrBaDUQaKFInJaBAZjMo/IKPCaJCFlVgYbGal\nJJIU8vNzh1unzr23+z11zj3fc7/n8di+23N6L6/v5/PJ5eVlZmZmsre3l6qqqv86FfgXnvgCfoj6\n+vo8Pj5++f34+JiGhoasr6+nt7c3+/v72dnZycLCQl5eXspYCvBt/nrXPj8/jV7A/8LV1VUmJiYy\nODiYgYGBcucAlLS9vZ3j4+OMj4/n/Pw88/Pzubm5KXcWQEnNzc3p7e1NdXV12traUlNTk7u7u3Jn\nwW/P8AX8EO3t7bm4uMj9/X1eX19zenqarq6uNDY2fnkSrKmpKe/v7/n4+ChzLUBp3d3dOTg4SJKc\nnZ2lo6OjzEUApd3e3mZqaipzc3MZHh4udw7AN9na2srm5mY2NjbS2dmZlZWVtLS0lDsLoKSenp4c\nHh6mKIpcX1/n+fk5zc3N5c6C356/LQPfZXd3N09PTxkZGcnCwkKmp6dTFEWGhobS2tqaycnJLC4u\nZmxsLG9vb5mdnU1dXV25swG+ul//pL+/P0dHRxkdHU1RFFleXv7JhQB/V+p2ra2t5eHhIaurq1ld\nXU3y50faa2trf2YmwFdK3S6AX1Wp+9XX15eTk5MMDw+nKIosLS35xir8AqqKoijKHQEAAAAAAADf\ny6sOAQAAAAAAqAiGLwAAAAAAACqC4QsAAAAAAICKYPgCAAAAAACgIhi+AAAAAAAAqAiGLwAAAAAA\nACqC4QsAAAAAAICKYPgCAAAAAACgIvwBFIC5bdolSUwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,10))\n", + "plt.scatter(reg_linear.predict(X_train), reg_linear.predict(X_train) - y_train, c='b', s=40, alpha=0.5)\n", + "plt.scatter(reg_linear.predict(X_test), reg_linear.predict(X_test) - y_test, c='g', s=40)\n", + "plt.hlines(y=0, xmin=1.07, xmax = 1.17)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "pred: 1.110524, actual: 1.110180\n" + ] + } + ], + "source": [ + "print(\"pred: %f, actual: %f\" % (reg_linear.predict(X_test[0,:].reshape(1,-1)), y_test[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Try ridge regression, to be more robust to correlation in features" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "hideCode": true, + "hideOutput": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\scipy\\linalg\\basic.py:40: RuntimeWarning: scipy.linalg.solve\n", + "Ill-conditioned matrix detected. Result is not guaranteed to be accurate.\n", + "Reciprocal condition number/precision: 6.576732214380598e-11 / 5.960464477539063e-08\n", + " RuntimeWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFlCAYAAABhvHtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtAVWW+//EPbBBUoECx6VhOYVmpkfd0GnXMiKajmYqB\n0HZST7/OqfHSmUN4x8LUqcZTEeroNGdOpqU1ZmKectTUJszMCwqOOZKRmGNeULm5N7DX7w+HncrD\nRWXLBt6vf8a912V/v6xZ8eFZa6/Hx7IsSwAAAJfwre8CAACAdyIkAAAAI0ICAAAwIiQAAAAjQgIA\nADAiJAAAACNCAlDPunbtqry8PO3du1fjx4+vdt09e/ZoxowZl/0ZL7zwglJTU6+0xMt2+PBhjRs3\n7qr2Ybfb9fHHH3ts/auVl5enrl27Gpe98847WrRokXFZxfEGGgK/+i4AwHl33323Xn/99WrXOXjw\noI4dO3aNKrpy33//vQ4dOlTfZdSbkSNH1ncJQJ0gJAC1tG3bNr300ku64YYbdPjwYQUGBmru3Llq\n3769Jk2apNOnT+vw4cP6xS9+oQkTJuiVV17R9u3bVV5ero4dO2ratGkKCgrSV199pZSUFPn4+Oju\nu++Wy+Vy7z8lJUVr1qxRUVGRZs2apZ07d8pms+mBBx7QyJEj9frrr6ugoECTJ0/WnDlztHHjRi1Y\nsEClpaUKDAxUUlKSunbtqsLCQk2dOlX79+9XmzZtZLPZ1L1794v6cblcGjBggN544w3dfffdkqRn\nn31WPXv2VHx8/EXrLly4UOvXr5fD4VBJSYmSkpIUFRWlsrIyvfzyy9q0aZNsNpu6du2q5ORkTZs2\nTceOHdPYsWP1/PPPa/Dgwdq1a5ek83+BV7wuLi7WzJkz9e233+rMmTNq2bKlXnnlFUVERFR5HI4f\nP67k5GR988038vX1VVxcnEaNGnXROuvXr9cbb7yh8vJyBQUFafLkyYqMjFROTo6mTp0qp9Mpy7IU\nExOjhIQESdKCBQu0bt06uVwutW3bVsnJybrhhhuq/f+Ey+XS1KlTlZ2dLT8/P02bNk1dunRRamqq\n8vPzNWPGjCqPN9AQcLkBuAz79u3TmDFjlJ6ermHDhikxMdG97Ny5c/roo4+UmJioRYsWyWazaeXK\nlVq9erXatGmjV155RU6nUxMmTNCkSZO0atUq3XvvvTp37lylz3n99dflcDi0du1arVq1Sjt37tR3\n332n8ePHq0ePHpozZ46+/fZb/fd//7cWLVqkVatWKSUlRePGjVNxcbFef/11BQYG6uOPP9Zrr71m\n/Kve19dXw4cP1wcffCBJOnPmjDIyMjR48OCL1jty5IgyMjL09ttvKz09Xc8++6x7xGPZsmXKzs7W\nhx9+6A43a9eu1axZs9SuXTu9+eab1f48t2zZopCQEK1YsUKffPKJOnfurKVLl1a7zfPPP69bbrlF\nH3/8sZYvX64VK1YoNzfXvTwnJ0fJyclKTU1Venq6xo8fr6efflqFhYV68803df/992vlypVatGiR\nvvrqK7lcLq1atUoHDhzQe++9pw8//FD9+/fXtGnTqq1DOn/M77vvPq1atUoTJkzQxIkT5XQ63ctr\ne7wBb8VIAnAZ7rzzTvXo0UOSNHz4cL3wwgvKz8+XpIv+Ut+0aZMKCgqUkZEhSSotLVWrVq104MAB\n+fn5qU+fPpKkQYMGGe8xyMjI0OTJk2Wz2WSz2fT2229LklauXOle5/PPP9cPP/ygJ554wv2ej4+P\nvvvuO23dulVTpkyRj4+PwsLCFBUVZexn+PDhiomJ0aRJk7RmzRoNGDBAwcHBF63Ttm1b/fa3v1V6\nerpyc3OVmZmpoqIid51DhgxRYGCgJOnVV1+VdH5UpDYeeugh3XzzzVqyZIlyc3P15ZdfVnmd/8Kf\nTUU4Cw4O1po1ay5a/sUXX6h37966+eabJUl9+vRRWFiYsrKyFBUVpaSkJO3Zs0d9+vTRtGnT5Ovr\nq08//VR79+7V8OHDJZ0fISgpKamx/pCQED388MOSpL59+8qyLH3zzTfu5bU93oC3IiQAl8Fms130\n2rIs93stWrRwv+9yuTRlyhT1799fklRUVCSHw6GjR4/q0ulS/Pwqn4Z+fn7y8fFxvz569Kj7F/GF\nn9GnTx/3L+aK9dq0aeOuraq6K7Rt21YdO3bUpk2btHLlSk2ZMqXSOtnZ2Xr66af1xBNP6L777lPP\nnj31/PPPG2s/ceJEpeF0Hx+fi2opLS11/3vZsmVasWKFEhISNHjwYF1//fU13tR36c/m8OHDCg0N\ndb82TUdjWZbKyso0YMAAffLJJ8rIyNDWrVuVlpamd999Vy6XS//2b//mvszidDp15syZauuQzo/G\nXPo5/v7+VfZeUT/QUHC5AbgM+/fv1/79+yVJy5cvV7du3RQSElJpvZ///OdaunSpnE6nXC6Xpk+f\nrnnz5qlDhw6yLEubN2+WJG3YsMH4y6hPnz764IMP5HK55HQ6NX78eG3fvl02m01lZWWSpN69e+vz\nzz9XTk6OJGnz5s165JFH5HA41LdvX73//vtyuVw6c+aMNmzYUGVPjz32mBYvXqxz585Vum9BkrZv\n367OnTtr9OjR6tWrlzZs2KDy8nJ3nWvWrHH3OXPmTH300Uey2WzuMBASEqLS0lIdPHhQkvSXv/zF\nve+//vWvGjp0qEaMGKFbb71VGzdudO+7Kn369NGf//xnSVJBQYF+9atf6dtvv3Uvr/i5HD58WJK0\ndetWHT16VPfcc49+85vfaO3atfrXf/1XJScnKygoSEePHtXPf/5zvf/++yosLJQkvfbaa3ruueeq\nrUOSTp8+rU8//VSStHHjRgUEBOinP/2pe3ltjzfgrYi0wGVo3bq1Xn31VR05ckRhYWF66aWXjOs9\n/fTT+u1vf6uhQ4eqvLxcd911lyZNmiR/f3+lpaVp5syZmjdvnu666y61atWq0va//vWv9eKLL2rI\nkCEqLy/Xww8/rAcffFDfffedXn31VT3zzDNKS0vTCy+8oP/8z/+UZVny8/PTggUL1KJFC40bN07J\nycn65S9/qbCwMHXo0KHKnu6//349//zzevLJJ43LBw0apHXr1unhhx+Wv7+/+vTpozNnzqiwsFBx\ncXE6cuSIhg0bJsuy1KtXL9ntdhUVFclmsykmJkbvvfeeEhMT9eSTTyosLEwPPfSQe99jxozRjBkz\ntHLlStlsNnXq1EkHDhyo9hjMmDFDM2fO1ODBg2VZlp566il17tzZvfy2225TcnKyfv3rX6u8vFyB\ngYFauHChgoOD9fTTT2vq1Klavny5+4bQXr16qWfPnjp27Jgee+wx+fj46MYbb9TcuXOrrUOSWrVq\npXXr1unVV19V8+bNlZqaetFIQW2PN+CtfJgqGqidC799AABNASMJAFCF2bNnV3kT5uTJk9W7d+9r\nXBFwbTGSAAAAjLhxEQAAGBESAACAESEBAAAYNcobF48fL6jvEq5YaGgL5ecX13cZV40+vAt9eI/G\n0INEH94mNLSF/PzMD027GowkeBlPHOT6QB/ehT68R2PoQaIPb+OpPggJAADAiJAAAACMCAkAAMCI\nkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAA\nAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAA\njAgJAADAyKMhITMzU3a73bispKREcXFxysnJkSSVlpYqMTFR8fHxiomJ0YYNGyRJ+/btU9++fWW3\n22W327V27VpPlgwAAP7Jz1M7Xrx4sVavXq3mzZtXWrZ3714lJyfr2LFj7vdWr16t66+/Xi+//LJO\nnz6tRx99VAMHDlR2drZGjx6tMWPGeKpUAABg4LGRhHbt2ik1NdW4zOl0Ki0tTREREe73HnroIU2Y\nMEGSZFmWbDabJCkrK0ubNm1SQkKCpkyZosLCQk+VDAAALuCxkYTo6Gjl5eUZl3Xv3r3Sey1btpQk\nFRYWavz48Zo4caIkKTIyUiNGjFDnzp21YMECpaWlKSkpqdrPDg1tIT8/21V2UH/Cw4Pru4Q6QR/e\nhT68R2PoQaKPpsBjIeFKHD16VM8884zi4+M1ePBgSVJUVJRCQkLc/05JSalxP/n5xR6t05PCw4N1\n/HhBfZdx1ejDu9CH92gMPUj04W08FXS85tsNJ06c0JgxY5SYmKiYmBj3+2PHjtWePXskSVu3blWn\nTp3qq0QAAJqUazaSkJ6eruLiYsXGxhqXL1y4UGfPntX8+fM1f/58Sedvfpw5c6ZSUlLk7++v1q1b\n12okAQAAXD0fy7Ks+i6irjXkoaPGNPRFH96DPrxHY+hBog9v0+gvNwAAAO9CSAAAAEaEBAAAYERI\nAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAA\nAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABG\nhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQE\nAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARh4NCZmZmbLb7cZlJSUliouLU05OjiSptLRU\niYmJio+PV0xMjDZs2CBJys3N1ciRIxUfH6/k5GS5XC5PlgwAAP7JYyFh8eLFmjZtmhwOR6Vle/fu\nVUJCgg4fPux+b/Xq1br++uu1bNky/eEPf1BKSookac6cOZo4caKWLVsmy7Lc4QEAAHiWx0JCu3bt\nlJqaalzmdDqVlpamiIgI93sPPfSQJkyYIEmyLEs2m02SlJ2drV69ekmS+vXrp4yMDE+VDAAALuDn\nqR1HR0crLy/PuKx79+6V3mvZsqUkqbCwUOPHj9fEiRMlnQ8MPj4+7nUKCgpq/OzQ0Bby87Ndaen1\nLjw8uL5LqBP04V3ow3s0hh4k+mgKPBYSrsTRo0f1zDPPKD4+XoMHD5Yk+fr+ONhRVFSkkJCQGveT\nn1/ssRo9LTw8WMeP1xyEvB19eBf68B6NoQeJPryNp4KO13y74cSJExozZowSExMVExPjfr9jx47a\ntm2bJGnLli3q0aNHfZUIAECTcs1CQnp6upYvX17l8oULF+rs2bOaP3++7Ha77Ha7zp07p6SkJKWm\npio2NlalpaWKjo6+ViUDANCk+ViWZdV3EXWtIQ8dNaahL/rwHvThPRpDDxJ9eJtGf7kBAAB4F0IC\nAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAA\nMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAi\nJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQA\nAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAaFIcpeX6Ib9YjtJy42sAP/Lz5M4zMzP1\nyiuvaMmSJZWWlZSUaPTo0XrxxRfVvn37KrfZt2+fnnrqKd1yyy2SpJEjR+rhhx/2ZNkAGqFyl0vL\nNx7UrgPHdeqsQ6HBzRTg76cSh1Oni8oUFtxM3e5oo9j7b5PNl7+fAMmDIWHx4sVavXq1mjdvXmnZ\n3r17lZycrGPHjtW4TXZ2tkaPHq0xY8Z4qlQATcDyjQe1/qs89+tTBU5Jzoter/8qTy7L0uNRd9RD\nhYD38VhcbteunVJTU43LnE6n0tLSFBERUeM2WVlZ2rRpkxISEjRlyhQVFhZ6qmQAjdTJs+e0cUde\nzStK2rTriIodZR6uCGgYPBYSoqOj5ednHqjo3r27brzxxlptExkZqeeee05Lly7VzTffrLS0NI/U\nC6DxKXe5tGz9ASUtzJDLqt02Lpf09idfe7YwoIHw6D0JdSEqKkohISHuf6ekpNS4TWhoC/n52Txd\nmseEhwfXdwl1gj68S1Pp45yzTPlnHQoNCdCStX+76BJDbR04fFrB1zVXYDPP/CeyqRyLhqKx9OEJ\nXh8Sxo4dq+nTpysyMlJbt25Vp06datwmP7/4GlTmGeHhwTp+vKC+y7hq9OFdmkIf50cN/q7dB07o\ndOH5GxOLHVf2jYVTBQ7lfHtSbUJbXE25Rk3hWDQkjakPT7hmISE9PV3FxcWKjY29rO1mzpyplJQU\n+fv7q3Xr1rUaSQDQOJ1zlumH/GJdFxSgAH+bHKXlOlPoUFCLZpr79g7lHS9yr3v+xsQrc31QM10X\nFFAXJQMNmo9lWbW8UtdwNORU2JhSLX14j4beR8XXF/fknNTx/BKFBjdT80B/FZWU6nShUz4+Ul3+\nl6zfPT/RE7/sWHc7vEBDPxYV6MO7NPiRBACoSsWIQMUIwaWWrf+7Pt15xP36VIFTumCkoK7/1Inu\n9dO63SHQQBESANSbSx9wFBYSoK4dwt0PNCp3ufTWJ/v1WeY/rvgzAvx8FdTCX/kFDvnbfOUoc1W7\nflhwM4WFBF7x5wGNCSEBQL259AFHJ8863K8f7XurZv3pK/0jv+SqPuNnkTfqsQG3ue9dWPXZN/rr\nnqM65zTf1NjtjjbG0QygKSIkAKgXjtJy7Tpw3Ljss8zvtXFHXq2fbVAVX19peP/2CvC3ub+pEP9A\nBz3a91a9/ZcD2vX1cTlKz48sBDaz6b67f6LY+2+7ug8FGhFCAoB6cabQoVNnHcZlFb+4r5blkgqL\nnWoRcPF/6loE+Ov/DeokR3S5jucXSz4+Cr++OSMIwCUICQDqxXVBAQoLCdDJKoJCXQgLCaz2q4wB\n/jbd1IYH6QBVYaozAPUiwN+myPatPPoZXTu0ZnQAuArVjiTY7Xb5+PhUufytt96q84IANG4Xft2x\nX5e2+nTX93X+GRdO+wzgylUbEsaNG3et6gDQQNX0jIMKlz42uZm/r1xXe2diFSaOuIfLCEAdqDYk\n9OrVy/3vffv2qbi4WJZlqby8XHl5eRctB9C01PSMg0vXfeFPX+nwDz9O9V5XNyde6vqWzRTugTkX\ngKaoVjcuJiUladeuXTpz5owiIiK0f/9+devWTTExMZ6uD4CXqu4ZB/EPdLho3WV/OXBRQPCkrneE\ncx8CUEdqdePi9u3b9dFHHyk6OlopKSlasWKFnM4rnzwFQMNW3TMOdh04IUdp+cXr/v3ENanrpvCW\nin/g9mvyWUBTUKuQ0KZNG/n7+6t9+/b6+uuvdfvtt6uoqKjmDQE0StU94yC/4JzOFDouWvd0oWf/\nqPDxOT8pU/LonpUudQC4crW63HDDDTfo97//vfr06aOXX35ZklRcXOzRwgB4B9ONidU94yA0+OJn\nE1wXFKBWHn4ewi+6tpX9wTs8tn+gqapVSHjxxRe1efNmRUZG6sEHH9SaNWs0c+ZMD5cGoD5Vd2Ni\ngL9NXTuEX3RPQoVLn00Q4G/Tne1C9XnWlU/SVCE0uJnujghT9qHTyi84p9DgQHXt0JqvOgIeUquQ\ncPbsWXXt2lXff/+9Bg4cqIEDB3q6LgD1rKYbEyt+Me86cKLGX9gjozpox4EfdM55dd9o6NvlJj16\n3y21/tolgKtTq5Dw+OOPy8fHR5ZlqaysTCdOnNBdd92lP//5z56uD0A9qOnGxIpJk+If6KDh/dvX\n+Au7RYCffh75L8aRhwB/X+PXIW2+Prqupb9OFzrdAWTM4E46daroogmbAHhOrULCxo0bL3q9Z88e\nLV261CMFAah/tbkxseKXdG1/YVc18mBZljbsOFJp/QHd2lYKIDYbNyUC19IVTfAUGRmpKVOm1HUt\nAOrJpcP3l3NjYm3ZfH2NIw/lLpd8fHyMly1svr6MGAD1qFYh4Y033rjo9cGDB9WqlWcnZgHgeZfe\nnHh9UIC6dGit+Adur/WNiZfr0pGHqsIDgPp3RSMJPXv21KBBg+q6FgDX2KU3J+YXOvTpziM6mHdG\nU0d1k1S7GxPrAvcZAN6nViGhbdu2Gjp06EXvLV26VAkJCR4pCoBnXHhZQVKVNyce/qFQyzcclD36\nTv7CB5qwakPCn/70JxUWFurdd9/VkSM/3lhUXl6u9PR0QgLQQJSXu7Rs/YGLnnlwR7vQKm9OlKRd\nfz+hR/s6VeIoIyAATVS1IeGnP/2psrOzK73frFkzzZ0712NFAahbf0zPrvTMg4ysfyjAz1eOMvOz\nC04XOjXzj9t1urD6GR4BNF7VhoQBAwZowIAB+uUvfymHw6GOHTuqoKBAWVlZ6tGjx7WqEcBluvSy\nwhdZR80r+lS/n/x/zsFQ3QyPABqvWt2T8MEHH2jfvn364x//qJKSEs2fP19fffWVxo0b5+n6AFwG\n06OU72gXquOnS4zrO0tdujGshY6eqt1cLBc+SAlA41erccNNmzZp8eLFks7PCPk///M/WrdunUcL\nA3D5Kr6tcPKsQ5Z+vKwQ2Mz890BYSKCm/qqHBnT9F10f1Ew+kq5r6V/l/i+d4RFA41arkYSysjKd\nO3dOLVu2lCSVlpZ6tCgANbv0AUjVPUpZsozvdu3QWi0C/GSPvlOP3X9+f/+37Ttt3v29cf0rfZAS\ngIapViEhLi5Ow4YN0/333y/LsvTZZ5/xzQagnlQ1O+OArm2r/LbCOUe57uv8E+3/rurZEyuetJj1\nzckqPzuyfRiXGoAmpFYhYeTIkSotLZXT6VRISIhiYmJ0/HhVf7EA8KSqZmcsL3dV+Sjl8NDmejz6\nDkmq9pkH1c3ZIEkP9Li5DjoA0FDUKiSMGzdOJSUl+u6779SjRw9t375dXbp08XRtQJN3OZcU9uSc\nUuRtrfXpzsqTJfXufKM7FFT3VMPq5mxoFRKosJDAK+wEQENUq5Bw6NAhrVu3Ti+++KKGDx+u5557\nThMmTPB0bUCTdSWXFPILzumB7jfJ5lt5sqSKKZZrEuBv89icDQAanlqFhFatWsnHx0e33nqrvv76\naz366KNyOp2erg1osq7kkkJo8Pm/9E2TJV3OFMtVTensqTkbAHivWoWE22+/XSkpKRo5cqT+67/+\nSz/88APfcAA85EovKVz4l/7VTJbErIwAKtQqJMycOVO7du3SbbfdpnHjxmnr1q363e9+5+nagCbp\nH6eKjCMFknSq4Jz63fMvcjrLtf+7fOUXODz2lz6zMgKoVUiw2WzuxzAPHDhQAwcO9GhRQFNUcR/C\nZ5mVRwkqWJY0+63tKi2XwoKbqXennyg+6na1CKj6AUgAcKWYqQXwEhX3IThKzQ8+qlBafv5/TxU4\nlZH1D6367NA1qA5AU0RIALxA9U9LrN6uA8flqEgOAFCHCAmAF6jpIUbVOXnWwXwKADyCkAB4geuC\nAhTQ7Mq+QeAjqXlArW4vAoDL4tGQkJmZKbvdblxWUlKiuLg45eTkVLtNbm6uRo4cqfj4eCUnJ8vl\ncnmyZKAeVX8vQnVblTjK6rYUAJAHQ8LixYs1bdo0ORyVh0H37t2rhIQEHT58uMZt5syZo4kTJ2rZ\nsmWyLEsbNmzwVMlAvTlT6NA555UF4JAWfszMCMAjPBYS2rVrp9TUVOMyp9OptLQ0RURE1LhNdna2\nevXqJUnq16+fMjIyPFMwUI+uCwpQq5Ar+0Xf8RZmZgTgGR67kBkdHa28vMrPf5ek7t2713oby7Lk\n4+MjSWrZsqUKCgpq/OzQ0Bby82u4/9EMDw+u7xLqBH1cnvvuaavVn31zWdv4+kgT47urZfNmNa7L\n8fAejaEHiT6aAq+/28nX98fBjqKiIoWEhNS4TX5+sSdL8qjw8GAdP15zEPJ29HH5Bvdpp+ISp3Yd\nOKFTBedk1eIWhV90a6viQoeKa/h2A8fDezSGHiT68DaeCjpeHxI6duyobdu26d5779WWLVvUu3fv\n+i4J8IhL50z4v2252rz7qHHdsOAAdbsjnEmXAHjUNQsJ6enpKi4uVmxs7GVtl5SUpOnTp2vevHmK\niIhQdHS0hyoEvEPFnAmPP3iH/P1s2vn18X/O0RCge25vrQe636SwkEDuQwDgcT6WVZtBzYalIQ8d\nNaahL/qoG47S8quejdEb+qgLjaGPxtCDRB/epslebgCaOmZjBFBfeOIiAAAwIiQAAAAjQgIAADAi\nJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQA\nAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAA\nI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNC\nAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADDyaEjIzMyU3W43LispKVFcXJxycnIkSS6XSzNmzFBs\nbKzsdrtyc3MlSfv27VPfvn1lt9tlt9u1du1aT5YMAAD+yc9TO168eLFWr16t5s2bV1q2d+9eJScn\n69ixY+731q9fL6fTqeXLl2v37t2aO3euFixYoOzsbI0ePVpjxozxVKkAAMDAYyMJ7dq1U2pqqnGZ\n0+lUWlqaIiIi3O/t2LFDffv2lSR16dJFWVlZkqSsrCxt2rRJCQkJmjJligoLCz1VMgAAuIDHRhKi\no6OVl5dnXNa9e/dK7xUWFiooKMj92mazqaysTJGRkRoxYoQ6d+6sBQsWKC0tTUlJSdV+dmhoC/n5\n2a6ugXoUHh5c3yXUCfrwLvThPRpDDxJ9NAUeCwmXKygoSEVFRe7XLpdLfn5+ioqKUkhIiCQpKipK\nKSkpNe4rP7/YY3V6Wnh4sI4fL6jvMq4afXgX+vAejaEHiT68jaeCjtd8u6Fbt27asmWLJGn37t3q\n0KGDJGns2LHas2ePJGnr1q3q1KlTvdUIAEBTcs1GEtLT01VcXKzY2Fjj8qioKH3++eeKi4uTZVma\nPXu2JGlbf3Y9AAAM20lEQVTmzJlKSUmRv7+/WrduXauRBAAAcPV8LMuy6ruIutaQh44a09AXfXgP\n+vAejaEHiT68TaO/3AAAALwLIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgR\nEgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIA\nAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACA\nESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEh\nAQAAGHk0JGRmZsputxuXlZSUKC4uTjk5OZIkl8ulGTNmKDY2Vna7Xbm5uZKk3NxcjRw5UvHx8UpO\nTpbL5fJkyQAA4J88FhIWL16sadOmyeFwVFq2d+9eJSQk6PDhw+731q9fL6fTqeXLl+s3v/mN5s6d\nK0maM2eOJk6cqGXLlsmyLG3YsMFTJQMAgAt4LCS0a9dOqampxmVOp1NpaWmKiIhwv7djxw717dtX\nktSlSxdlZWVJkrKzs9WrVy9JUr9+/ZSRkeGpkgEAwAX8PLXj6Oho5eXlGZd179690nuFhYUKCgpy\nv7bZbCorK5NlWfLx8ZEktWzZUgUFBTV+dmhoC/n52a6w8voXHh5c3yXUCfrwLvThPRpDDxJ9NAUe\nCwmXKygoSEVFRe7XLpdLfn5+8vX9cbCjqKhIISEhNe4rP7/YIzVeC+HhwTp+vOYg5O3ow7vQh/do\nDD1I9OFtPBV0vObbDd26ddOWLVskSbt371aHDh0kSR07dtS2bdskSVu2bFGPHj3qrUYAAJqSaxYS\n0tPTtXz58iqXR0VFqVmzZoqLi9OcOXM0efJkSVJSUpJSU1MVGxur0tJSRUdHX6uSAQBo0nwsy7Lq\nu4i61pCHjhrT0Bd9eA/68B6NoQeJPrxNo7/cAAAAvAshAQAAGBESAACAESEBAAAYERIAAIARIQEA\nABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAY\nERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgJGPZVlWfRcB\nAAC8DyMJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJHpSZmSm73W5cVlJSori4OOXk\n5EiSXC6XZsyYodjYWNntduXm5kqS9u3bp759+8put8tut2vt2rWSpBUrVmjYsGF67LHH9Omnn3p1\nD88++6y7/vvvv1/PPvusJGnWrFkaNmyYe1lBQYFX9FHVNrm5uRo5cqTi4+OVnJwsl8sl6dodC1NN\nF6ptH3/7298UHx8vu92usWPH6sSJE5Ia3vGo73PDVNOFattHQzs/SktLlZiYqPj4eMXExGjDhg2S\nGt75UVUfDe38qKqPOjs/LHjEokWLrEGDBlkjRoyotGzPnj3W0KFDrZ/97GfWwYMHLcuyrE8++cRK\nSkqyLMuydu3aZf37v/+7ZVmWtWLFCuvNN9+8aPsffvjBGjRokOVwOKyzZ8+6/+2tPVQ4ffq09cgj\nj1jHjh2zLMuy4uLirJMnT9Z53Ze63D6q2uapp56yvvjiC8uyLGv69OnWunXrrtmxqMs+EhISrH37\n9lmWZVnvvPOONXv2bMuyGt7xqM9zoy77qNBQzo/333/fmjVrlmVZlpWfn2/179/fsqyGd35U1UdD\nOz+q6qOuzg9GEjykXbt2Sk1NNS5zOp1KS0tTRESE+70dO3aob9++kqQuXbooKytLkpSVlaVNmzYp\nISFBU6ZMUWFhofbs2aOuXbuqWbNmCg4OVrt27bR//36v7aFCamqqHn/8cbVp00Yul0u5ubmaMWOG\n4uLi9P7779d5/VfaR1XbZGdnq1evXpKkfv36KSMj45odi7rsY968ebrrrrskSeXl5QoICGiQx6M+\nz4267KNCQzk/HnroIU2YMEGSZFmWbDabpIZ3flTVR0M7P6rqo67OD7866guXiI6OVl5ennFZ9+7d\nK71XWFiooKAg92ubzaaysjJFRkZqxIgR6ty5sxYsWKC0tDTdeeedCg4Odq/bsmVLFRYWem0Pfn5+\nOnnypLZu3arJkydLkoqLi/X4449r9OjRKi8v16hRo9S5c2fdeeed9d5HVdtYliUfHx9J53/mBQUF\nKiwsvCbHoqqaKlxOH23atJEk7dy5U2+//baWLl3aII9HfZ4bVdVU4XL6kNSgzo+WLVtKOn++jx8/\nXhMnTpTU8M6PqvpoaOdHVX3U1fnBSIKXCAoKUlFRkfu1y+WSn5+foqKi1LlzZ0lSVFSU9u3bV2nd\noqKiiw58famqB0n6+OOPNWjQIHfKbd68uUaNGqXmzZsrKChIvXv39thfGHXF1/fH06WoqEghISFe\neyxqsnbtWiUnJ2vRokUKCwtrkMejIZ0bNWlo58fRo0c1atQoDRkyRIMHD5bUMM8PUx9Swzs/TH3U\n1flBSPAS3bp105YtWyRJu3fvVocOHSRJY8eO1Z49eyRJW7duVadOnRQZGakdO3bI4XCooKBAOTk5\n7vXrU1U9SOdr79evn/v1t99+q5EjR6q8vFylpaXauXOnOnXqdM1rvhwdO3bUtm3bJElbtmxRjx49\nvPZYVOfDDz/U22+/rSVLlujmm2+W1DCPR0M6N2rSkM6PEydOaMyYMUpMTFRMTIz7/YZ2flTVR0M7\nP6rqo67ODy43XCPp6ekqLi5WbGyscXlUVJQ+//xzxcXFybIszZ49W5I0c+ZMpaSkyN/fX61bt1ZK\nSoqCgoJkt9sVHx8vy7L07LPPKiAgwGt7kKRDhw65TzhJat++vYYMGaLHHntM/v7+GjJkiG6//XaP\n9yDV3EdVkpKSNH36dM2bN08RERGKjo6WzWarl2MhXVkf5eXlevHFF3XjjTdq3LhxkqSePXtq/Pjx\nDe54eNO5IV15H1LDOj8WLlyos2fPav78+Zo/f74kafHixQ3u/DD18fvf/77BnR9VHY+6Oj+YBRIA\nABhxuQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAXLVJkyZp5cqVOnbsmJ588slq161q4pqq\nbNu27bK3AVA3CAkA6swNN9ygxYsXV7vOl19+eY2qAXC1eJgS0ERt27ZNqamp8vPz09GjRxUZGan/\n+I//0NNPP63Q0FAFBATozTff1EsvvaQvv/xS5eXlGjZsmJ544glZlqW5c+dq06ZNatOmjcrLy9Wr\nVy/l5eVp1KhR2rhxo44cOaLJkyfr1KlTCgwM1KxZs9wT44wYMULvvfeetmzZotdff11lZWW66aab\nlJKSotDQUP31r3/VnDlzFBAQoFtvvbWef1JA00VIAJqwPXv2aNWqVbr11ls1YcIEbd68WYcOHdIf\n/vAH3XTTTXrnnXckSR988IGcTqfGjh2rzp0768SJE9q3b5/WrFmjgoICPfLII5X2/fzzzys6OloJ\nCQnavHmzFixYoNdee01LlizRe++9p1OnTul3v/ud3nrrLV133XV699139corryg5OVmTJk3S//7v\n/6p9+/aaOnXqtf6xAPgnQgLQhPXs2dM97eyQIUO0YsUKtWrVSjfddJOk8898/9vf/qYvvvhC0vnZ\nCb/++mvl5OTowQcflL+/v8LCwi6ad6DC9u3bNW/ePElS//791b9//4uWZ2Zmuiemkc5PCHbdddfp\n66+/Vps2bdS+fXtJ0tChQ/Xaa6955gcAoFqEBKAJq5h1UPpxLvrAwED3e+Xl5UpMTNSDDz4oSTp1\n6pRatGihl19+WS6Xy71exWyfF7rwPcuylJOTo9tuu+2ifXfr1k0LFy6UJDkcDhUVFen777+/aN8X\n1gjg2uLGRaAJ27Fjh44dOyaXy6VVq1ZVGhHo3bu3VqxYodLSUhUVFSk+Pl6ZmZnq06ePPv74Yzmd\nTp05c0afffZZpX336NFDH330kSQpIyND06dPl3T+l35ZWZnuuece7d69W4cOHZIkzZ8/Xy+99JLu\nuOMOnTx50j0Vb8U+AFx7jCQATVibNm303HPP6dixY7rvvvv0s5/9TIsWLXIvj4uLU25uroYOHaqy\nsjINGzZM9957ryRp7969GjRokFq3bu2+NHChGTNmaNq0aVq2bJmaN2+uWbNmSZIGDhyoIUOGaOXK\nlZo9e7YmTpwol8ulG264QS+//LL8/f01b948JSYmys/PTx07drw2PwwAlTALJNBEbdu2TW+88YaW\nLFlS36UA8FJcbgAAAEaMJAAAACNGEgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABj9f4fo\ndQYEqmhTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mse train all feature: 9.51813e-07\n", + "mse test all feature: 1.49011e-06\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr4AAAI+CAYAAADq7novAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X1wXOWB5/vfc7otydZby7YAI8sgM3iy2GbBZjI1nkt2\nhlxXpsykdqY8xOAUW5Ww87azM5Oq1Eyo1CTxvRCgdqtmp4rLJTvMsn+k8C4vWzUbxsxlA4Z4g0jA\ndoyRTbCxLVkSxpZttdR6s9R9nvvH49PqllpSq9VSdx99P1UpYnX36dPn5TnnPL/nxVhrrQAAAAAA\nAAAAAIAK55V6BQAAAAAAAAAAAIBiIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAA\nABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhEK01CtQiL6+RKlXAUCGpqZV6u8fKfVqAMC8UX4B\nqFSUXwAqGWUYgEpF+QWUj+bm+hlfo8cXgAWLRiOlXgUAKAjlF4BKRfkFoJJRhgGoVJRfQGUg+AIA\nAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAA\nAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8\nAQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAA\nAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAU\nooV8yPd97du3Tx9//LGqqqr0+OOP65Zbbkm/fvDgQT3zzDOKRqPavXu3vvKVr2hiYkLf/va31dvb\nq/Hxcf3pn/6pvvjFL6qrq0uPPvqojDG6/fbb9b3vfU+eRx4HAAAAAAAAAACA+SkoYXrjjTc0Pj6u\nF198Ud/85jf11FNPpV+bmJjQk08+qeeff14//OEP9eKLL+ry5cv60Y9+pFgspv379+sf/uEf9Nhj\nj0mSnnzySX3jG9/Q/v37Za3Vm2++WZxfBgAAAAAAAAAAgGWloODryJEjuvfeeyVJd911lzo6OtKv\nnTlzRhs2bFBjY6Oqqqq0fft2vf/++/qd3/kd/eVf/qUkyVqrSCQiSTpx4oQ+//nPS5K+8IUvqL29\nfUE/CAAAAAAAAAAAAMtTQUMdDg0Nqa6uLv3vSCSiZDKpaDSqoaEh1dfXp1+rra3V0NCQamtr05/9\ni7/4C33jG9+Q5EIwY0z6vYlEYs7vb2papWg0UsiqA1gkzc31c78JAMoQ5ReASkX5BaCSUYYBqFSU\nX0D5Kyj4qqur0/DwcPrfvu8rGo3mfG14eDgdhF24cEF/9md/pr179+rLX/6yJGXN5zU8PKyGhoY5\nv7+/f6SQ1QawSJqb69XXN3doDQDlhvILQKWi/AJQySjDAFQqyi+gfMwWQhc01OG2bdt06NAhSdKx\nY8e0adOm9Gu33Xaburq6FI/HNT4+rsOHD+vuu+/W5cuX9fWvf11/9Vd/pT/4gz9Iv/+OO+7Qz3/+\nc0nSoUOHdM899xSySgAAAAAAAAAAAFjmjLXWzvdDvu9r3759OnXqlKy1euKJJ3Ty5EmNjIxoz549\nOnjwoJ555hlZa7V792599atf1eOPP65//ud/1saNG9PLee6553ThwgV95zvf0cTEhDZu3KjHH388\nPf/XTEjVgfJCaxcAlYryC0ClovwCUMkowwBUKsovoHzM1uOroOCr1ChcgPLCRR9ApaL8AlCpKL8A\nVDLKMACVivILKB9FH+oQAAAAAAAAAAAAKDcEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAA\nAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAA\nIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsA\nAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAA\nAAAQCgRfAAAAAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDw\nBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAA\nAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQ\nIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAA\nAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAA\nQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAAAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcA\nAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAA\nAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHg\nCwAAAAAAAAAAAKFQUPDl+76++93vas+ePXr44YfV1dWV9frBgwe1e/du7dmzRy+99FLWax988IEe\nfvjh9L9Pnjype++9Vw8//LAefvhhvfbaa4WsEgAAAAAAAAAAAJa5aCEfeuONNzQ+Pq4XX3xRx44d\n01NPPaVnn31WkjQxMaEnn3xSr7zyilauXKmHHnpI9913n9auXavnnntOP/rRj7Ry5cr0sk6cOKGv\nfe1r+vrXv16cXwQAAAAAAAAAAIBlqaAeX0eOHNG9994rSbrrrrvU0dGRfu3MmTPasGGDGhsbVVVV\npe3bt+v999+XJG3YsEFPP/101rI6Ojr09ttv66tf/aq+/e1va2hoqNDfAgAAAAAAAAAAgGWsoB5f\nQ0NDqqurS/87EokomUwqGo1qaGhI9fX16ddqa2vTYdaXvvQl9fT0ZC3rzjvv1AMPPKAtW7bo2Wef\n1TPPPKNvfetbs35/U9MqRaORQlYdwCJpbq6f+00AUIYovwBUKsovAJWMMgxApaL8AspfQcFXXV2d\nhoeH0//2fV/RaDTna8PDw1lB2FQ7d+5UQ0ND+v8/9thjc35/f/9IIasNYJE0N9erry9R6tUAgHmj\n/AJQqSi/AFQyyjAAlYryCygfs4XQBQ11uG3bNh06dEiSdOzYMW3atCn92m233aauri7F43GNj4/r\n8OHDuvvuu2dc1iOPPKLjx49Lkt59911t3ry5kFUCAAAAAAAAAADAMldQj6+dO3fqnXfe0YMPPihr\nrZ544gm9+uqrGhkZ0Z49e/Too4/qkUcekbVWu3fv1o033jjjsvbt26fHHntMK1as0Nq1a/Pq8QUA\nAAAAAAAAAABMZay1ttQrMV90JwXKC928AVQqyi8AlYryC0AlowwDUKkov4DyUfShDgEAAAAAAAAA\nAIByQ/AFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUoqVeAQAAgJn09hq1t0cU\njxvFYlY7dqTU0mJLvVoAAAAAAAAoUwRfAACgLPX2Gu3fH5W1RpLU32/U2Wm0d2+S8AsAAAAAAAA5\nMdQhAAAoS+3tkXToFbDW9QADAAAAAAAAciH4AgAAZSkeN/P6OwAAAAAAAEDwBQAAylIslns4w5n+\nDgAAAAAAABB8AQCAsrRjR0rGZIdcxljt2JEq0RoBAAAAAACg3EVLvQIAAAC5tLRY7d2bVHt7RPG4\nUSzmQq+WFnp8AQAAAAAAIDeCLwAAULZaWqweeCBZ6tUAAAAAAABAhWCoQwAAAAAAAAAAAIQCwRcA\nAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAA\nAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHg\nCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAA\nAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAACh\nQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAA\nAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAA\ngFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8A\nAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAA\nAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhEJB\nwZfv+/rud7+rPXv26OGHH1ZXV1fW6wcPHtTu3bu1Z88evfTSS1mvffDBB3r44YfT/+7q6tJDDz2k\nvXv36nvf+5583y9klQAAAAAAAAAAALDMFRR8vfHGGxofH9eLL76ob37zm3rqqafSr01MTOjJJ5/U\n888/rx/+8Id68cUXdfnyZUnSc889p7/5m7/RtWvX0u9/8skn9Y1vfEP79++XtVZvvvnmAn8SAAAA\nAAAAAAAAlqOCgq8jR47o3nvvlSTddddd6ujoSL925swZbdiwQY2NjaqqqtL27dv1/vvvS5I2bNig\np59+OmtZJ06c0Oc//3lJ0he+8AW1t7cX9EMAAAAAAAAAAACwvEUL+dDQ0JDq6urS/45EIkomk4pG\noxoaGlJ9fX36tdraWg0NDUmSvvSlL6mnpydrWdZaGWPS700kEnN+f1PTKkWjkUJWHcAiaW6un/tN\nAFCGKL8AVCrKLwCVjDIMQKWi/ALKX0HBV11dnYaHh9P/9n1f0Wg052vDw8NZQdhUnudlvbehoWHO\n7+/vHylktQEskubmevX1zR1aA0C5ofwCUKkovwBUMsowAJWK8gsoH7OF0AUNdbht2zYdOnRIknTs\n2DFt2rQp/dptt92mrq4uxeNxjY+P6/Dhw7r77rtnXNYdd9yhn//855KkQ4cO6Z577ilklQAAAAAA\nAAAAALDMFdTja+fOnXrnnXf04IMPylqrJ554Qq+++qpGRka0Z88ePfroo3rkkUdkrdXu3bt14403\nzrisb33rW/rOd76jv/3bv9XGjRv1pS99qeAfAwAAAAAAAAAAgOXLWGttqVdivuhOCpQXunkDqFSU\nXwAqFeUXgEpGGQagUlF+AeWj6EMdAgAAAAAAAAAAAOWG4AsAAAAAAAAAAAChQPAFAAAAAAAAAACA\nUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAAAAAAAAAACAWCLwAA\nAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAA\nAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEArRUq8AAGB56e01am+PKB43isWsduxIqaXFlnq1\nAAAAAAAAAIQAwRcAYMn09hrt3x+VtUaS1N9v1NlptHdvkvALAAAAAAAAwIIx1CEAYMm0t0fSoVfA\nWtcDDAAAAAAAAAAWiuALALBk4nEzr78DAAAAAAAAwHwQfAEAlkwslns4w5n+DgAAAAAAAADzQfAF\nAFgyO3akZEx2yGWM1Y4dqRKtEQAAAAAAAIAwiZZ6BQAAy0dLi9XevUm1t0cUjxvFYi70ammhxxcA\nAAAAAACAhSP4AgAsqZYWqwceSJZ6NQAAAAAAAACEEEMdAgAAAAAAAAAAIBQIvgAAAAAAAAAAABAK\nBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAA\nAAAAAACAUCD4AgAAAAAAAAAAQChES70CAABUkt5eo/b2iOJxo1jMaseOlFpabKlXCwAAAAAAAIAI\nvgAAyFtvr9H+/VFZayRJ/f1GnZ1Ge/cmCb8AAAAAAACAMsBQhwAA5Km9PZIOvQLWuh5gAAAAAAAA\nAEqP4AsAgDzF42ZefwcAAAAAAACwtBjqEADKCPNHlbdYzKq/f3rIFYuxjwAAAAAAAIByQPAFAGWC\n+aPK344dKXV2mqzhDo1xASUAAEC5onEVAAAAlhOGOgSAMsH8UeWvpcVq796k2tp8NTVZtbX5BJMA\nAKCsBY2rzp3z1N9vdO6cp/37o+rtZahmAAAAhBM9vgCgTDB/VGVoabF64IFkqVcDAAAgL7M1ruKe\nBgAAAGFEjy8AKBMzzRPF/FEAAAAoFI2rAAAAsNwQfAFAmdixIyVjskMu5o8CAADAQtC4CgAAAMsN\nwRcAlAnmjwIAAECx0bgKAAAAyw1zfAFAGWH+KAAAABRT0LiqvT2ieNwoFnOhF42rAAAAEFYEXwAA\nAAAAhBiNqwAAALCcMNQhAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAA\nAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAK0VKvAAAAgCT19hq1t0cUjxvFYlY7dqTU\n0mJLvVoAAAAAAACoIARfAACg5Hp7jfbvj8paI0nq7zfq7DTauzdJ+AUAAAAAAIC8MdQhAAAoufb2\nSDr0CljreoABAAAAAAAA+Sqox5fv+9q3b58+/vhjVVVV6fHHH9ctt9ySfv3gwYN65plnFI1GtXv3\nbn3lK1+Z8TMnT57UH//xH+vWW2+VJD300EPatWtXUX4cAACoDPG4mdffAQAAlhJDMgMAAFSOgoKv\nN954Q+Pj43rxxRd17NgxPfXUU3r22WclSRMTE3ryySf1yiuvaOXKlXrooYd033336ejRozk/c+LE\nCX3ta1/T17/+9aL+MAAAUDliMav+/ukhVyxGhRIAACgthmQGAACoLAUNdXjkyBHde++9kqS77rpL\nHR0d6dfOnDmjDRs2qLGxUVVVVdq+fbvef//9GT/T0dGht99+W1/96lf17W9/W0NDQwv9TQAAoMLs\n2JGSMdkVR8a41tQAAAClxJDMAAAAlaWg4GtoaEh1dXXpf0ciESWTyfRr9fX16ddqa2s1NDQ042fu\nvPNO/fVf/7VeeOEFtba26plnnin0twAAgArV0mK1d29SbW2+mpqs2tp8WlEDAICywJDMAAAAlaWg\noQ7r6uo0PDyc/rfv+4pGozlfGx4eVn19/Yyf2blzpxoaGiRJO3fu1GOPPTbn9zc1rVI0SssqoJw0\nN9fP/SYAmEVzs3TXXaX4XsovAJWJ8gtYGhs2SOPjuf/e3Fyz9CsUEpRhACoV5RdQ/goKvrZt26a3\n3npLu3bt0rFjx7Rp06b0a7fddpu6uroUj8e1atUqHT58WI888oiMMTk/88gjj+g73/mO7rzzTr37\n7rvavHnznN/f3z9SyGoDWCTNzfXq60uUejUAYN4ovwBUKsovYOls2WJ0/Hg0a7hDY6y2bEmqr4/e\n6YWgDANQqSi/gPIxWwhdUPC1c+dOvfPOO3rwwQdlrdUTTzyhV199VSMjI9qzZ48effRRPfLII7LW\navfu3brxxhtzfkaS9u3bp8cee0wrVqzQ2rVr8+rxBQAAAAAAsBSCIZnb2yOKx41iMTcPKUMyAwAA\nlCdjra24OzVSdaC80NoFQKWi/AJQqSi/AFQyyjAAlYryCygfs/X48pZwPQAAAAAAAAAAAIBFQ/AF\nAAAAAAAAAACAUChoji8AADBdb69h7gcAAAAAAACghAi+AADzQriTW2+v0f79UVlrJEn9/UadnUZ7\n9ybZPgAAAAAAAMASYahDAEDegnDn3DlP/f1G58552r8/qt5eU+pVK7n29kg69ApY60JCAAAAAAAA\nAEuD4AsAkDfCnZnF47nDv5n+DgAAAAAAAKD4GOoQAJC3UoY75T7EYixm1d8/fTvEYuWzjgCAypTr\nGtjcXOq1AgAAAIDyRPAFACGy2OFQqcKdSpg/a8eOlDo7TVaPOGPcPgAAoFAzXQPXrJFqakq8cshS\n7o10AAAAgOWCoQ4BICSWYv6tHTtSMia7Amcpwp1KGGKxpcVq796k2tp8NTVZtbX5ZRXMAQAq00zX\nwJ/8pEQrhJyYBxUAAAAoH/T4AoCQmC0ceuCBZFG+Iwh3lro1c7GHWFysFtktLbZo2xoAAGnma93V\nq0u8IpjVUtyHAQAAAMgPwRcAhMRSzb9VinCnmEMsVsKwiaXEME2Vh30GhNtM18DVq0uwMphRKedB\nBQAAAJCN4AsAQmIx598qRsX6QpZRzPmzaJE9M0LBysM+A8Jvpmvgv/pXJVwpTFOqeVCB+aLBDAAA\nWA4IvgBgCSzFA2Yh4VA+61WMivWFLqOYQyzSIntmhIKVh30GhN9M18DWVqmvr9Rrh0AxG+kAi4UG\nMwAAYLkg+AJQMSq1dWIxHzBn2wbzDYemrldXl9GBAxFt3uzr1lsnP1uMivViLKNYQyzSIntmhIKV\nh30GLA/MIVn+SjUPKjAfNJgBAADLBcEXgIpQya0Ti/WAmc82mE/FWOZ6DQ5KH37oSTI6ccLIWj+9\n7IVWrPf2Gr31VkRXr3qqqbFqbbWqr7fzWkYx0SJ7ZoSClYd9BgDlg4AS5Y4GMwAAYLnwSr0CAJCP\n2cKjclesB8xib4PM7+/pMZLcv8fGTNayZ6pAz6diPQjrRkak0VEX1n34oadEwuS9jGILWmS3tflq\narJqa/MrIkBdCjt2pGRM9nYgFCxv7DNUgt5eo5dfjuq551bo5Zej6u2lghUAFqqQsnUh9/UAAACV\nhB5fACpCJbdOLFaPjGJvg8z1CsIuSaqpmVyveNxo165kwT2kgrBu/Xqr/n4rychaqbvbaPNmv2SV\n85ktsit1CM3FwDBNlYd9hnIztUzduDGlgwcrs8c2AMylVPeRhY6GwcgHWI543gOA5YngC0BFqOTh\nvIr1gFnsbZC5XjU1VqOjRsZIra2Ty4vF7IIq1oNQrqFB2rrVV0+P0diYUW2t1X33JadVjp49u7QP\nJJU8hOZiWc7DNFXqQ/Fy3mcoL7nK1AMHIlq/3qqhYfJ9xZxPplLPWwCVr5T3kYUOpU6DGSw3PO8B\nwPJF8AWgIlRy68T5PmDOVIlX7G2QuV7GGJ04IbW2Kj3/VuayC61YzwzrGhqkO+6wkqwaG/2sHgDn\nz3t64YWotmzx1dCwdA8kTPCNQDEeiqmAx3KXq0wdG/PU0+NfL/8nFaPHdq7z9vhxo9ZWK2PK8zws\nl3KiXNYDqGSlvI9cyEgQNJjBcsLzHgAsXwRfACpCsVonlqqiJ98HzLkq34vdQnOxh/ybKawzRll/\n6+527+npMenK0aV4IKnkITSRW6HH8UIfimlNCkwvOwcHpcuXpdFRT5Kf1fOr0N7Kmef4qVOeqqsn\nlzk4KH34YUTd3dIdd/hldx6WSzlRLusBVLpS3kdW8mgYwFLieQ8Ali+CL4QarVnDZaGtEyuhomeu\nyvfFbKG5GMtuaXFDGv73/16ly5eltWulBx+c0NGj2ZefYI4x91+3LwYHpbffXtzzd7ZKg4WUH5Q9\npbGQc3yhD8W0JgWyy1QXQnlascJoZETq7/fU32+1dauvxsbCeitPPce7uz2NjrplNjRIPT1GktHY\n2ORnyuk8LJdyolzWA6h0pQyfKnk0DGApERIDwPJF8IXQqoSQA0urEip6itUibWrwku/8WcUObHp7\njQ4ejKq52aq52f3t4MGoGhqspMnfFMwxVlMzGXp9+KGnpiZ37i7W+TtTpcHGjamCyw/KntJZyDm+\n0IdiWpMC2WVqEEJVV1v9+q+73ldjY0bXrhnt3TtRUHk49RwPrh1Bb+GgEUVwLQmUy3lYLuVEuawH\nUOlKGT4xVxeQH0JiAFi+CL4QWpUQcmBplXtFT2+vG7apu9tTTY1Va6tNz7c1nx5IU4OXri6jF16I\nautWt7ypQUyw3M5OoxMnvPRQVPkENnOtU+Z5mEgYdXe7is/Vq32tWeOrvt691tpqFY9L69e7z/b0\nGBlj1Nrqp5c12/lbaGA3U6XBQsoPyp78zeeYzud9CznHF/pQTGtSILtM/eijiJqaJq9l69a5c6Gp\nyc7rPM/8+y9+4WnNmsm5KN21w6R7C9fUuPCrtTV7+Ut1Hs5VVpVLOVEu6wFUulKHT8zVBcyt1Ocp\nAKB0CL4QWuUecmDp5aroGRyU+vo8PffcipJPMr9/f1TV1Vajo64Fezxurg/f5GvjxpR+8IOours9\njY25nlHHjxv9yZ9MD6WmBi89Pa4y3815kj1/1o4dkz2bTp70rveumhw2aq6waf/+qAYGXGv7sTGj\nV16JaPv2lJqa3ENFZ+dk6HX4sKeBAaNk0ujCBWnbNqv16315nlFbm6/f+73JXmmrVrnQK6jcDOQ6\nfxfawypXpcFCyo9yLHvKaejFqUFra6tyBrKZ7893/y6kMnehD8XFbk260H1WTvscy0tmmXrunDft\n9Vzn40zn+X33JXXw4OTfR0akTz/1tHWruz7U17vr1diYC9R+4zd89fRY1ddPLnupWnXnU1Ytdqvz\nfM/7UrV+p1wKF/anQ/gElD/OUwBYniL79u3bV+qVmK+RkfFSrwIqwNmzXs6K5nXrrDZv9nN8AoWq\nra2uiPMyFrPq6PAUDLE3OCh1dHhqaZF83wUTHR2ebr3V9XhaSq+/HlV/v6fqareeExPu77W10h/+\n4YTefjuHOdyuAAAgAElEQVSin/40qrExT8mkC5kuXjSyVrrnnuzjub09kh7uSXJzoCSTrgdVba3V\nmTNG3d2eLl0yGhyUxsa8jPdJktHEhNJDExojbd8+/Zz5b/8tqnfeiejIEbfu4+NGvb0RffKJp9Wr\nXXh38qSnmhqjU6eMzp+PKJk08n1XwTYx4WnTJl9/9EdJbd7s6+abpc2bfW3f7mtkxGhkJL/zN9h2\n2YyGhkxe53pvr9Hrr0fV3h7R2bOeYjGrvj5TcPmRq+xJJNz+6ury0t+xVMdYUBnb3+9C01Ie55nr\n4oJWdxzGYlJ1tZRrv81n/049xyV3rO3alZrxt2aWX65XYhAuu94k+W6jhgbp1luthoaMjHHHyq5d\nhVUCLnSfLdU+z3XuLPUxVWzl8psWYz2W+rfN53yc6Tx/772oVq2a/Et1tXTxotH4uFFzszu3amqs\n/vAPJ/Rbv5XSPff4+tVf9YtyHs5XPmVVMcsJKbv8ms95X+z1yEc5XYuwcOxPFEOlPEMCwFSUX0D5\nqK2tnvE1gi+EViEVoCjMUl30F1ppN7Wi59IlF3pl9ypaWGBS6LGVGVZVV7vQqa5OGhiQhoaM/uf/\njCqZ9BSJZH7KaHTU6P77s1toTw1e+vulsTGjaNTq009NOjyLRKTTp43q6oyqq5Wef0VSuiJMyh32\n9PYa/ef/XKXz5z1NTLjlXbnigrixMenyZSmRkIaGpFOnPPX2ekqljDxPkqxWr5aiUWlkZPr6S9LY\nmNWBA1F1d0fU3+9CiJqa3Ofv1KAvvXVmCOym/o6g4ubSJaMjRzy99lpEK1daJRJSdfX8y4+pZU8i\nYfThh0Y332xl7dJXDi0kGCz0GJ/pc5nrEgSykjQ+rnQl9tT9Np/9W0hlblB+ZR4LfX2eDh+O6LXX\norpyxS0nn9/d0DAZ3m7e7Be8f/PZZ7Ptm4WGwfkIY6XnQn5TMa8Hi7FtS7G/5nM+znSenz9v0o0w\nJKUbh6RSUlubzbnMYp2H85VvWVXM9cu8/5rveb/U22kpyiUsHfbn8lasax4VxwAqFeUXUD5mC74Y\n6hChle+wVQzTURkWOpxdIHOYg+eeW5FzWLR8hqQr1voEpg7R5sIST7GYr/5+o6Eh97cbb5SqqiaX\nb3N81dQhjNavt4rHgzdOBlutrVbd3VJ3t9Edd9j0XCnWupDJvS/30Eft7RHV1Eip1OQ6T0wYjYxY\nrVpllEh4SiTc32+4wS1rdNSqsdFqzRqppkbp9Ziqt9fo4MGo1q+36unxNTbmhmn88z/PvW0XMrxd\nMCzk4KD04YeTYdXJk26oxcZGNxTjQuYN6+sz2rIlu1JxvnN+LaScKnToxUKP8dk+l/mdNTWuV6Ck\nrMriqfttvvu30KFMgmMhOPeCc+vddyMaHCz83C7EXPtsrn1T7OE2cx1/YZzLrtDfVOzrwWJs24Uu\ncyHzKOaz/JnO87Vrp7+3oUH6l/8yVZTjrJj3gKWeN2sphtnNtb0kLdocjNyjl69yHNZ5OSrFOVLs\nax4AAMBiIfhCqM1V4ZLPjXuxHyh4iC/MYlQEFiMwKdb6TA2ruruNrLVav96ty003WfX3W3V3G61a\n5XpLNTZa3XXX9FBqavDS1mb1+78/of/yX6p09aqbH6y11c2Nsn699Mkn7juDuVJOnZJGR6VDhzyt\nXWt14EAk3SsrWOaxY56amqyiUZvuteP7VpJRdbXV+LhUVeX+nkxa/eqv+jp92tOKFZOhl2R15525\nQzVrjRoagjnJ3DY4ezai7dunb9uFzFUSVND09Bhl9g4dGzOqr5dWr5YeeGBizuVMVayAVVp4BUMs\nZnX+vKfubpOeH6611aqx0dfLL0dnLIva2yMaHJz+ueAYn6ksm+3cyDzn1q93x7RkZg1aZ9u/mevg\n+1bGSMYUVrYG+8Ode5N/Hxszix7oTN2W1rrtMlVQNs1V/sRiVl1dk3Pv1dS4sqStrfBhF6cefzOp\n5ErPQityi309WIwK5YUscyEheL73OzOd5w8+OJE1x1fw92LMRTX1d50/7+nAgYg2b/Z1663zL0NK\nNW9WINc9TSLhGl8UYx7TXMfB8eOeJKv6+sy/GbW2Wg0MGF265OmGG9z2DO4Rcq13vt9H5Xr5KHXQ\ni/mdI8V8/gxjwxcAABBOBF9Y1ua6cS/2QzcP8YVbjIrAYgQmxVqfqWFVba2rqA56Ca1bZ/XRR24u\nMldx5AKh7dtzr2tm8BI87BqjrNBLci3nf/u3k1q9WursdMMVDgxIAwOeGhrcMfraa54++shTXZ1U\nX++WPzxs1NMjbdniq6PDKJl0gZfvS9Fo9rFcV2e1aZPV4KDVyIjVypXBevj63d+dvv7z2bbBb5Ok\nvj6TrmDL94E+qLiZOjxVEMQUoxJ/oZVDC61g2LgxpRdemCx3RkeNPvtMGhrytG6de8/Usqi31+jA\ngYg++igiz3PHYU2NGx6tocHPu1dXpnjcaNeuZPqcM8YNYfnZZ1JTk1Us5uv++6fvt5l670pKr4Pr\nsReRMUZbt/rq77fzLluX4ljIJde2TCTcdwbnm5RdNs11juTa5/G4C8Dna6bjr69vco6lTJVc6Vno\nuVrs68FiVCgvdUOP+d7vzNZL/6ab5u69X4jM35XZ0/PECWlgwKZDsIaG/EL1fEcayGUhldLBZzs7\njU6eNOl7h2CY3S1bXM/xhVaK5zoOurtd8OUaqShdFp86JV275hoRnDplNDDga3hY+vTToOx39ziN\njTPfc+Vz3NGYrHRKHfQi/7K52M+fQVmT2bCmoaGyG74AAIBwIvjCsjZXZdV8HijyefCmhdyk+VZW\nFKMiMNd3FlpJtRgVk5lh1csvR3Xu3OTcCfG40bp1VqmU1dq1Nv2gObUX1NTfuHFjKt1avqnJqqfH\n6OJF73pFnpG1vm6/3Q3ndu6cq8AYHTVKpYz6+qyam61qalxF1vr19vrwiCY9hF9Nja/77kuqp8fo\n3DkXZIyOugo2a61uvNFtk/p6q3vu8TU2Jt1wg69Ll1yw1t4embbN8922wYP8wMBkz5a+Pk/33Tee\n94N8UHGTOexeMAxkru8sxEIrhxZaqX72bERbtvhZvX9GR6X+fk/r1k3OwxGURTt2pLR/f1S9vRFN\nTLiecJnHwqVLXt69ujLFYjZdMXzgQERHj7q51O691w0DOTAw8+/J1Xv35ZcnK3F6eozGxz0NDEj/\n+39HdOutflbvtExTz5Evf9n1Qsx1LEiTvS7nOhYKrYDNtS3r640aG32tXq2cy5vrHDl7NqKtW91Q\nppm99WbqNTmbmY6zG25wx04lVXrOtY8KPVeLfT1YjArlYjX0GBxUuizp6jJFvd+ZqZd+S8vk8Jrx\nuMl53ciU6zp49uz0/Z75uzJ7esbj5vr+NDp82GhsTHmH6oUMtbqQSunubukHP1ih7m5PFy8affqp\n0XvvSS0tvlpabF7D7B45YvT001UaG/PSZUWu759aFiQSRqdOeRoctDp3TrrppuB6YvTZZ653+sCA\nlEx66u83qq2VGhrcdWRszFNPj6/f//2JGX/jQod8xeLKJ+hd7GByuQef+d4fFvP5s7fX6MQJLz2/\nm7vndyNGFNKrHJjLcj/PAQALQ/CFZW2uyqp8Hijm8+DNePhOIZUVC60InO0756oYz3WDXcyKyVzf\nN3X5Y2NGK1dKbW2u5XY87qm31+iTT1Lp9ZE07TceOBBRa6sbxtBcn1Crq8uoqsrollt8DQ15On06\nokjEtc7u75fGx4O5w4wuX3ZzdKVSRiMjRidPTq732Jj0i194unbN6vbbpZ07r+nll6tVUyPV1koX\nLwYPw8G289XcbHXkiJsfrLrahWVT932+27a9PaKBAZM1N9foqKvA+/738wu/goqbf/qniN56ywV3\nQY+4zO9cyEPXfHoB5PqehVSq9/YavfVWRFevugrN2293v+3oUW9azyZJ6Upla12vwytXJLdtjQYH\nXeB6ww1+3r26ApnbsqXFqqlJ2rYte/1nq4TJtV0y1yEeN7p40f07mbTXzxHXO23qcqaeI88/L/3r\nf20yQjmrgwfdMRq0Yp7r3J663K4uk/eQaTNtS88zMw6zOdc5Eo8b1ddP9sKY67tmM9PxF/yuSqmM\nyOe6U2iPnflcD/IpSxbSc2i277rvvmTOAGguwTEwdS7E4WF3zVns+52Zhthbv97X4ODkcHoNDVaD\ng9KRI9F0WX7+vPT889F0Y4+aGqvjx43+5E+SWcd2Znl49aqbszKVMrp2TVq3zgVfP/tZRGvWuHLw\nwAGrP/qj4jRYmm+ldOZ+PXlS+uUvIxofD4YgdT3C43GjwUGjpia3XTJNvYd9+umqrErseNxo61ZN\n+/7M7ZVIGLW3e7pwwZPvW01MuP0Sibh7hokJpctkyfXIHhoyqq72s3qqnz0b0U035S5H5rr20Zis\n9GYLehc7mCT4zL/RRTHL4/Z291wRj2fOM+waoP3pn06e24QVKAbOcwDAQhF8YVmY6eZ7rsqqfB4o\ncj14DwwY/d3fVWnTJj/vh/jl9IBQaEvwfCoCZ5rz5xe/8HTlyuQQO01NVv39np54wtNv/VYqvayZ\nbrBzVRgG69PZGVS82Tlbok812/c1NlodO+bJGDcUXE2N1blznsbGpEuXXAXXwICnV14x+h//I6qm\nJqs1a2xW6+6xMaPubqm11VVYul5aRtGo1YULnhIJN0zhxIQbpvDatez9MjZmdOmS+y11da431OCg\nlExOto4/etTo3Dmr11+vke8b+b5UVSWtW5dSQ4OrQGxsTOnCBU8/+9kKDQy477940Q3V2NCQve/z\n3dednUaHDkV0+bJ3ff2s1qxxLcnzrfgKjhfPM/rt307mHM6qGA9d+fQCmO1YKCRkDZY3MuLmbHND\nHBo1Nlp99pkLPxMJkx72UnJlUVAREotZjY0F+9t9Z3AM1ta6XlLWul6E/f1Gw8MuKIrFInNWsM93\nOMtc26Wx0c0Xk0gY9fR4SiQkz5MaG93nrHW90zL90z9FdOKElzU8T23tZAVvS4urzL7//vkFOpll\nWmY4cOKE61U52/GSeV0YHJROn/b02Wduv/i+1e/+7vyDkWL2QJrpOrlx49zbqJyua/ledwrpsTOf\n61O+Zcl81yMYnvTYMTes7S23pJRIeOnhMhdSWRQcAz09k6FX0DN2pmt3Psdgob3lg2EJT51yPc/G\nxoyuXvWUShmNj1vdeKNRXZ0ry6y1unjRUzxuFYsZnT8vnTzprhv/9t+Op4/toKfn2JjV0NDk75yY\nkC5ccNe7mhqrVatcWXrwYCTn0Kyzyfy91lpZ6wLuX/zC05o1yiqLpfzKw+PH3b51vVSD9xsND7sy\nsqMjonXrpu+bYFmPP16lw4c9+b5rHBG9/mQ4PByZ1nAgsyw4dcodD8ZYeZ5RMumuE9XVVomEtGKF\naxwTuN7uRsPD2b+ps9OoszP3OZFPwJ9LMRuTZQ4jmTlfWZjv0YtlsYNJgs/8G10U854gaFizdauf\nNQfs5s1+1vzYlRxWlNO9y3LHeQ4AWCiCL4TeXDffs1VW5fNAETxgJxImPQTcpUtGN9zghgabOtF3\n5vwLwfI2bkyV5AGhVDf2hVZWzFURmLmvM+f8aWvzdfhwRMmk1Nxs5Xmejh93rZJjMencOS+9vXPd\nYA8Oenr66ap074npFTNRNTe7CsBcPZgy12/q9p4pOA2+79Zb3TISCTdPhrXS4KCr4Lp2za3b0JBV\nXZ1rfV9b63qFbdpkZa3V5cvS6Kinc+fcMq5enazkSyZdZZXkgpFck85LQUt4tzwXjE0Pxy5cmKwM\nraqSGhtdZePnPpfSzTf7evfdiN57L6LRUSkalVaudA/Lp09bbd8+vQdRPvv68OGgtbn77LVrrqKt\noWHmHklTl5F53klGxkz2ivjBD6I6cSKiK1dcJd6WLb5uvtm9s1gPXZmV1efPu6GgNm2anIPNWqOz\nZyMF9f4Ijq316636++31oSBdLwDX+8Hqww89bd3qq77eXj8+pOPHPQ0Pu6Ex43E3d9u1a+64vHbN\naM0aX9Zavf++J2O86wGTOy5WrPDV3q45eztNrYQJhk9btcro5ZejWaHj3/1dlbq7s+eRsNZVHCcS\nLmRKpdy5kUy6Y+DaNVdhfeyY0de+Vq21a6UvfnFcb70VTQ9jGAzPs2qVVFU1+/HX2+vWK58gr6dn\n8hwJepHMdrwE15mBAaMjRyK6eNHNmbNypfTaa1H19LjeKfMJRjKvXcG1aWxMamx087PNp5zPdZ3M\nHEJVyn3NKreKr8WuJM8nqFqsCpzeXqMf/GCF3n8/ooEBKZUy+slPPN1wg/Sbvxmc30bd3dMbe8y0\nvFzDAn//+1UaG5s+V2SubTjX/dNCessHwxJ+9plryHHhgivXrHUNXgYHXY/iVMqVAytWSJGIdPmy\nkedJ1dXSyZOe/vEfo6qvt+rsdOdcTY0bhi+RmAxt6urccH3B/w/U1EzvETXXPgp+74ULRj//ubsn\naWtz2+PcOS+rV1prq1Vbmz9tObmOIcmd3152zn99ni+bUQa4IN4Y6T/+xxU6fNjTqVNuSNvxcVcG\neZ5UVWU1NCQdPuxllReZQ9WeORPRtWvuel5T43p4+b6R51ndcMPkfUvQA23VKte4prZ2ct8mEm7I\ntKoqk3VMZZ4TSxXw5xLss8FBLz3/WzBf2VKWZZVaCV9omZvP753am32u8iis8m10MVt5XOjQ81N7\nlQfPK9LShBWLdV6U273LcsdoOQCAhSL4QujNdfM9W2VVPg8UsZjV+fOTD8UXLrjKg6DC+Oabrc6e\n9dTdLd1xh6/WVldpk1kpXIrWTPO5sZ/vw8Vc71+syorM7RhUPlsrdXREFI26XkqDg/Z6y2MXjjU2\n+jpyxOj8+YheeSWqmhqrm25yQ8IF4WRQaSy59XOV9J6+//0q1da6Fs5zzaEx0/aWNKVSyurCBTfE\n0uioq/QyxlUsSVJTk68LFzwND0uJhKvlci3epVTKvaejw+ijjzwlk66yzy1L1+drcoaHXUWfta5i\ncKbQa5IL2uZ6n7VuqMQrV4yiUaOXX3YVbcmkp0jEyBj3fcmkVX29q7iUcs/fldl74c47U1k9X9rb\nI5JcJVsQfLl1DAIjO2tQESwj87wLetscOFCjxkZXGRqJGCUS0sqV0qFDnr7whWQ6/FroQ1dQWf3h\nhxFZK50/747Jo0eldeustm1L6eab3fcU0gslWL+GBmnrVl8/+5mnaNSoqkr6tV/z0721rlyRWlt9\nJRKuB2EwF1w87qWH1uzsNNqwwWaFco2NVlevepqYcJXAjY1W4+NGP/5xRKtWGfX0+PqN3/Bz9pjc\nuHGyEubCBaOf/jSi4WF3HFy54hoL/N7vJXXwYFTd3V66x1owj0RDg+spsX69a3Hc3++Odcn9fWDA\n9SyoqzO6etXq6lXpnXdq1Nw8tYwx6uqSbr995l63+ZSVMw2ZFpy3kuvZMPWYlIJj2VXEX77seqxU\nVel6QCl1d+ffgzEwdS61mhqrX/kVq4EBT/v35+7BOluZPvX4y5xfLTC13Cu3VrqLXUmej8WowDny\n2fv67v/3Dzq1sltjd9VKsrLRUdn4Bo0c/zM1n7pHmzYpfY8yNiYdPx7JGU739hq98EJEBw5EJRmt\nvP1nGvzc/6snPzuvO29Zr83/x7/TrT2/Pm0dcm3Due6fguPjgnlPR6ueVb9/Xt7gBr3z/X+nWJN0\n8ob/W30rjsnKalX/3Yod+790w8SvZfVKlVz5NTzsrpm+r/R/JyZcmTAx4f7nAiX3qZER1xDgzTej\nam11jS8k6cIF6ehRT/G4205ufkqpv999bnLIQBfCz9QjK9dvDn5vIuFCr6CcOH/e08qVVpcvG12+\n7HpDp1KeTp2y+s3fHJ+2vOC+IXDzzVJ//+RQxpKr0A565a5b51+f60+y1jUKeeedFaquturu9jQy\nYhSNum0SbDtj3HoMDHg6cCAybUjHgQHXSCORcPdVo6Oux3Uk4q4Pu3Yldfq0+73Dwy4wdPc2bq6v\nkyfddcbNKzrZI9kNseiC2mDbzja/22LMhZcp2GeZ878FQ7oFc5QWMlT2fCzmvfpiK6TMzef35urN\nnnns5HP/Fyb53B/OVB5L04dIL8bQ84sdVixmODXXvUu5nWdhVw73bgCAykbwhdBbyM33XDe3vb2u\nwvXQIaPxcSkadfPMpFKuotwFXlaNjW74HEnXW8i5lnHBg0opWjPlWymZz9B/GzZIW7aYvCuJF6uy\nInN7ZVY+j4y4CisXDk32xhgddfNOXL7serh4nmuZ3NtrdeqU1aZNvm6/3V4fxsNVjLn5Q9zcUsa4\nluSe5+auClpqT60Qm63XSmen0aefetcDI6OLFz0lEq4H1+nTbrilG2+0Gh21GhiQ7rorJclodNR9\nxloplZJ837Vid0MMeRofdxVYnmdVXe2WLUnRqJXnucoqyVWy5y+/4zFYp1Qq+Iyr2A96lxnjWoZH\no+53njzphqAMevp89pn0H/5DlTo7I/I8t616ekxWz5d43H3GHXP2+m91rcmvXVO696U08wNx5j4K\nhqe7dMkolfLU1+drbMxTXZ3bXq5lu1FHh6ebb3bHQjGC2u5utx8TCV0fntOVHxcvWh08aNTWllJL\nS3YvqHxlPiw2NEhr17rt09Rk0z1A3LFkdfp05HqlsE0HZT09Luy8//7pQy1KrnJ0zRq3PqOj7hjr\n6Zkc6nJw0A1H1tamnD0m77svqSNHInrppaguX3Zzw1y5YjQ05D57+bKntjabHoLs+reqp8fojjts\nugL8jjusWlv9dMW+ZNXV5SpzM+e2SSZdeb16dea8FG7dg163g4NeOoQ+cCCiP//zcZ09O3dZmVmm\nBesbDAUnTYbl1k5ug+PHXfhcX++W7fvumF250p0rV65IfX3SwICnzZsne37Mdl2a+pq10u23u/Ph\nk0+89DCvTz9dpfXrXcCZ+Vu3b5/7+OrtNXr77YiuXMkuz6Tsc6rcWukudiV5ppn20dQKnAsXjDo6\nIpJ8nTrl6cEHZ98HU5db/7mf6dFf/Bt9eq1Xisn9L3CzNNHyEx1/8yXp1D3pY97ayRDspz81+l//\ny9N/+k/ueldVZdXREdXYmNG1te/p6u0PKbWqR5LU0yMdqfmp/k9vv9b5k+HX1G04133Tkc/e19Pv\n/b3eO9cr/1qtEvVHNbGiz73Y/I4+XfWm5I1LK+Lpz4w0/ViXP39Mn736I8XOf14TE1Jzc+p6w6OI\nkklXbvo3/1z+9v9Hajyv1MAGmaP/Xqb719PXh2TSXSt932h42MoY12NacsP8fvqpUSJhtXKlKz/c\nsHxWa9darVjhKxabLDs++SSia9eye1Bm3v8kEkZvvGH0zDMrrjcgkPr7I7p61S135Up3zU6l3Dlo\njE2H9a7skv7rf3VDZgdlhAuNTHreTkn6F/9C6uuzqq6213u0uUZXa9ZYjY+7MuDataBckmpqgt5y\nnpJJFwYGvduC7Mzz3HldXS0dOxaRNHlPGNw73nSTaxThruuu8U1trdVNN/m6//6UpNSUHvieVq92\njY3GxqQPP3S98c+d8zQ4OFled3dPlu9Tt2mwDaaO2pDdSGZ6L7lCBWXV1Pkwg17wU8uyYlbGB+fR\n229HNDxssno0zXavnusalk+5vhgKKXPzeTaZ2ps9aOTW3e22UyKRff8XjLoxdRjrsMtVFk8NyPJp\nxDJVPo1Cfd/q5MnsYaUbGooXVixmw5qZ7lE6O43+/u+jWXPA0hts8S3lvRsAIJwi+/bt21fqlZiv\nkZHxUq8CKsjZs17Om9h162y6MrG31+j116N67bWI/vEfV+iDDzx1dHg6eDCqkRE3dOGRI55eey2i\nq1eNbrrJPVjt3x/V2Jiny5c9DQy4ShNrXQV50EPG81wAcOONNqu3gTFKtzLOXMdEwujMGU/d3a7H\nzubNflZvomJpb49Me5iful6S9Prr0fSk54FEwtOPfxzRihXu4XpoKKqjR13L8fb2yLT3S25S82B7\nNzS44G9oyFUOr1tntWvXwh9Eg+04OOiGo7lyxT10rVjhWhzX1EgrVrggwxirlSvd0H1DQ264PGNc\ni2fXM8r9d2jIhUVtba4SqKPDS1e0RaOuwujiRe96xVIwJ5bRr/yKr3vu8dO9etrbo+rrc62dr151\ngUF1tfTppyY9zODVqyY9/KDvu7+NjroQwPddi+qPPvKUSHhZ+y6orAqCuFRK6eAr+B1uLhH3ejTq\nemWlUvZ6Jd7SV0QHLfJra31t22ZVXW2ut+b29NJLUX38cURDQ+74Gh11QbLvu//GYlYHDkT18ccu\n4Fu92g3bl0y6CrvaWmndOlepGEgkPP30pxF98IGXPsfPn3f7vbpaOnPGaGxssgJueNik5yurqXHb\nK1je5z7nvm/XLjeHWVB+tLdHdPasp1jMlQ9T/zb1PG5vj+j0aTfcVU+PUTLpXd9nLlRKJl15sG2b\n1ciIC91uvXX6cmYSi1l1dEzOVdPf746lSETq7HRlXDJpVFtrdfWqC2BjsSDA8jQ25noifPGLSb35\nZlTt7Z5On3bzxPX1ufnCxseNVq50w2ZevWquzxnnljEy4obW/OUvPV265LZpIuG247VrRh98ENWx\nY55++cuIfN+7Pnyhq8C21gXWzf8/e28aY9d5pgc+33fOXWpfWCyuRZG0SFsUtbREWRtitaTGuGEp\nge1AgeLMBMH0RG0D1sAZdJKZdtBOx+3+0W0kBmw4XloDTKetUZrtXmxRadsyJVJDSpRIiSqSRbGK\nrCrWvt+t7n7v+ebHc95zzr11a+NO9X0Bgaqqe8/6re/zPs+z0WB6Wjy8lMdKcxyD3/7tklfpHYkA\n7e2UJJuf11hYMGhsZHJZPGsWFymH1tnJBHMkQu+8z37WQjJZRl+fhbfe0pie1kgmyZDs69MIh4Fa\nfSQ4VqZSCpcvK/T3a5dBSQkgSVReusRkdbBNXrrE9rZxI3/+6CMLyaTyGCqOI9Jt7LcPPeR4804s\nxtELAqcAACAASURBVDEgHvfbRa2/vfGGhZERjWJRuTKQ/jXOz5PVNzND75q33rJw991lj9FYKyS5\nOj7O9yHjXXs7x7PgvLqWufdGxvWad6pDnlGtd9TT4/fJyUmFI0csly1DFs3Roxb27Kn9Dmod90eD\nf4DL5vjyFxNNoqxyKJ/9IpQiGz2RUMhkKFt66ZIw1DUGBzUuXbLcogQg+dD/hcKWYxWHS5dSKCGP\njqkvoLmZ82LwGa50762tBL3+1Wv/EqcX3kYmPIJs4yU4VqbymsNpIJTDkghnUGg9A+fU/4amJoI4\nSnGMcRxF0Ou5fwLseAdoHwE2n4Fz58+A0c/ASm932c/w5kKl4AFUsRjHhsVF9hPb5jpOwLJo1GDb\nNoOtW4G5Oe3O02T0Dwz49yfrpVSKUrwjIxbyeRZEXbpkeZ6apRL7DmV/WVzDuUehsZHnS6cVxse1\nWwyjMDXF9UNHBzA9DW/caGmx0dZWxGc+U8aOHVKU4cBxeK/z85xjikUyl8Jh3l8+z3WB4yiEw8Zb\n99g25V8BjhetrQaf/7yfYJS1Y3MzXCllGa8Iaj30kINCgUDDPfc4WFzkHGBZCnfdZdDZaZDJAMPD\nFj76SKFQ0FhcZJuMxfhctm1z8IUvlJY8U1kb83Mcf/msLbS3cw7I59c/Vy4XMoaxfWgsLPDfchno\n7gbuuMOpGMtqrZer179riWA/GhzkvXOc9ecQpYDNm423zjh0yEYioXDhgkY264/3vb0aDz10ffYR\nq8WVjLlr2ZvIZzjvG5fRSdb5nj0OjPHfgciez83R77B6TLqdotZac7l7WG0slljrXrA6Wlu5P33w\nQWfJPnV8XOHwYRsjI5RRlXVCR4eDL3yhvOSam5oiGBgorvnerua61xLS74NjzsQE9/hTU5a3B/PX\nPuvv47djrKf9Xcu4UWu3etTjSqKpKVLPTdejHrdINDVFlv1bnfFVj4997N5dxqFDVkXVWVvbUp+J\nag3/aNQgn6fUV2+vxvQ0AYSLFy2cP1/Cpz7leNVH7e0G4+MAwIp+Ss4JMMLjxONMokrVJr/jm2b3\n9TGhMTTksxaKRYOvfz28olfOlcZq0gFyba+9xqq6YLVpUPqPGwMgkbA94+9acSUeTtWeMitJcwn7\n7vhxsqaiUbhm6woNDY4LXBgcOOBAKYUzZ5QnTekELpngESV7lAI6OoB9+8pQiklokeYrlfh+kkkm\nEBMJgy1b5BjKA6MOHbJw5oyFYlG8hwgapNPAE084aGoCtm8nu2ZuzkIk4qCtDR7bBuD1LS4aLC5q\n2LaBZRGMC0oXAkziaW1QKAiryk/0KcX/tyzxRxJG1s0LxwFmZjR++UuCMaEQn9HcHBPDco2ZDFw5\nPVZWDg/bKBbJgovF2F8iEYJimzbRr0m8q+hxwp9zOYNk0kappGBZGvv3lzE7q3HPPX5Ft22ToZlI\nGBeAZGW3XFsoxKTiM88sL4PX28sEYksLvN/Vqghtb/fZTKUSk6yWxbZFBimZUytVea8U1VW527c7\n6OvTmJ/XyGQoCbi4SKnIqSmObzMzFhoaeE0ENoBf/rIBlqU8n5zxcaCx0WDDBgeWRZaBJI/p4aZQ\nLNKnJZ/nO8znNQYHDbZsMZicNG5/YCKhWGSSyrLgJmspX1YsKvz61xZaWwkMEBwkWBqL0Qfv+ecL\nXt8E2L/a2hw4DhMRMzPw/GaE1WAMZbqMMejpKeOLXwzhu9+tlB8rlRRmZ8n8GBqiHFg8rpBOEyjk\nGMT3QHCbkowyz2zd6ngV5mR5WRgY8L1IAI71ZEvws01NBtGoQjwuxRMAQNnDnh5fEnG5Kudaf0un\nyWjp7vZ/x3tT6Ooi41VAvWTSwne/G8a3vlVYdp6RKuueHrIdBDgfG2PSJ1iBeytW6V6JZOh6I1iJ\nHpSxnZnR+NrXCl6fPHrU9mRyRYLPGIVXXgnjwQfzKx5Xjj3e2Lf6BW08C8DB8LBGayv7iG0TaCuV\nOD8IawfgmqW5Gcg3jNQ83Lzu84p4ghKJx49beOMNC5kMKliAwXHrpbM/wnRufE3PsWb0vIvsp/5v\nhC79r2hqImCkNecCPP4NoGW28vMtszCf+Qasg3+PpibHY3bLWCPFSbkc51n6lwHhsAOluL4JhQhy\n7Nlj8M47ZAF3dFQyt1991UJnJ7z10tQUcPGiRqEAV06Y/UAp9metOafFYnCLO5Q713EcNYaAmG1z\nfJmeNi4gBrS1Kdx1VwmzsxpzcxwbPv/5osfqGR8v4eWXbZw7pxGLEcRPJuk7a1lwwXaDTZscJJME\n3AQoKZU414VC8MC9bBYVrDZhcsRiHGObm1lgUCgAbW18Hh9+qCqkNHfudCqYX7mcctli2i3UAQBe\nXzptILLSALwEtM/opbTd4cMWnnnm+kqFyxjW0WHQ2wuIX5llkbEWBATlWmvFelmuwXuSNYIwmoQ5\n7TimYu0xOqowMkKfuGCBRS538+RlgZWlKmtFrb1JKsU568c/Drl/N+jr8/d13J842LVrqb+ryJ7n\nAlj61baPmyF1t1424Vr7xfWQkTt+3EJLC5UDZP6LRsmAr3Wto6Prl1u8nvJ3jz1WRm+vrhhzCHLJ\nvkzCVyD4uPtN3WzfsxuxdqtHPepRj3p8fKMOfNXjYxO1NiJTU5TYise1J8kyPGzwuc8Vve+IBJ1I\nbTEBxURwezvwzjsas7PaW+wlEsCRIzYmJspeoqGjwyAe114SUCm4EnJMKm/YQGZNLCY69GVPWkuO\n29PDc4kUWXu7wdAQAYBz5+iTVGuReaUbsNWMjuXaKq+b+vki/SfJiFCIiYvRUYXZWV2R9JJYz2bk\n1CkmtWVT295u8NJLNtrafL+r3l5f9i54vZEIJfDSafoWRaP+d4wBTpzQiESA3/iNEkZGLFy+LICQ\n8QAw26ZkT2Mj7/voURsPPFB25dYIipVKQLmsPTZGscikVnu78RLeAPD22xZmZpggiseZcFQKmJsj\n+MbkuXaTGY63kWts5HMulQzKZT9JaVkEeATYAphEM8Z4ybJCwWcOBeWtAOO2TeBmMb0qQ7ngh3El\nI32/MQLIyr035fpvKRSLFvbupTxSZycAEHjJZoE77yzj3nuN6/nkb0hHR5WbvNMIh/kc83mFY8cU\n9uwpY24O2LDBIJ0Gdu82GBxU6O5WGB42XmV+NGrQ2Gjw6KNlJBL+c6uVXBgdZb/dt89HVIPJ0SCY\n29OjEY9bsG2yDx3HIBTiv+Uy7/viRUqp5nJkFa3Wx0+dYvJ8dJTMq7vvLqOlxeDoURvFIhlF+bxC\nucy2FYv5UpQLC3zm4bBxPWEsjyEh7ARpe93dBq2tBm+/baFcBopFXnuxSOBf3qewCuJxfqZc1i5T\nrLJ9ChBL4JaePWRwMlnsOLyfSITJh1iM9ylyhG+8YaG93cH27WRLHDnChFcyyePaNnDgQBmFgp+I\naWkxOHIEOHKEY6iAe9I+p6cVpqcJ3KXT/I5lKeTzTOiMj/O99vbScw4QLzKFT32qhGeeYRKav+ff\nRkeZyF1cZNJ+asr3hNyyxXGlSwkGRiIGzc0GZ84ofPCBjeZmgmPBQgRg+cRqUxMlUoNh2778YnAM\nsG2DXG5lPzE5T0uLqUhqNTYCTz1VWlKs0NZmcPq09nz6Dhwo3/CE4Y2OIHs7mDgbHeU89aUvlfDc\ncyW89poFy1r63ubm+O9q3k6jowqluxNLvl8doea4WxRBcEdAjvxSbM0NjpcquaPmXxfUACbVu9hi\nPu0lsWX+XVigH1/Qiy/4TMZSo6te74qhgPJnv4r4+TcRf++rCI89hGjUBW+3fFD7O5tPo1g0Hjs4\nmyXAxXlQWN4c/5Qy7njHubqlRUFrB4uLBLKKRfZTAR8AuL6MNvbsoWfWzAy9+sgo8yV+5QYKBVlv\nKFfm1menBCVYKbNIFnM0SllUpThfZrM2nnmmjI0bgaYm4PBhG5s3lyq8xMT7U5jDhQIZtOk01w97\n9xpMTxtcvMhrlfZRLCo4joNIxKCtjR5i3/kOJRcdx+CjjzTicTJ/KR1NIIjSiAoDA8otIFA4eVLh\n5EngwgWNUIgATj5PNjDllv0IhXgsrXm9cs7+fo2REVXxbACu1aV/1IprkYiW4pHvfCeMnh7H8ytr\nbyfwOTho4cEHrz2IELz2oJyfFGYoZTzGokQ0alwfW1SoS0Sj1yYpf6V7jfUmzKv3JhxHFfbv5/p4\nZETjvff4t0gk6O9V9gC24DuQZxb02wSuvH3cLABgvQDvWvvF9ShQCa4TgmNl0IcwGEeOLF/QU+ve\nxscVFhboxyiAWkuLuWaFNdu2Gc8/Vtb/XCux+Kmx0b8nkT39uPtN3WqerTcj6t5u9ahHPepx+0Yd\n+KrHxyJqsy40+vspX5bP00MHoCF1X5+FH/yAiYSBAUo9LSxwY71tm+MyNbjQnZri5l5YM6ykpPyB\nSNTMz5Pd4TiUcFGKyVGRSevocBCNOp4HVGurg1deCWNgQFcwCJqauEHet8+gr8+vxJeNW/Uic70b\nsOCizXFoAD087Ccln32Wi7ig5rtsusXge98+g2iUyWXxJ5Jg5WVlVSpQCaittmgcH1f4kz8JY3TU\n8iSHcrnKDb0kll991eB3f7fkLcgnJoCPPmKyh8ldgwcfNO7Gmc/PtjUWFoBDh8Kgv45xgRXlgZXR\nKKXlWluBkREm8F9/3UZ3N5NihYKBbTNZpTXf+4YNBu3tjnffwugbHOTGKZ8XNg+TXmTEUO4nEnEQ\ni2nE4/T0aWkx6OwERkcJhgDKS55JdTSZSAxKABrs2uVgdlYjEjE1JEB4XZkqValbIcpl9hXLIjAi\n0nJBDzMCLxqJhMG777K/RaOUvGCQMdnSwjYYjytvQxqPK4yPE+yhz5uf5JuZ0VDK4PHH6Tc1MQEA\nfO6WRTCS8ntMDpLBAy/h+8YbFhYWfO8mpcgibGjgNQXBWz85Kr+38PzzBfT0ODh82MK770ryD96Y\nEwoRaN+92yAcZtJSkue1+vipUwrf/GYE+TxZqgAl9ZTyfWXCYSa9CX75CUX513GWJiX5OyahwmEy\nA4aGFBxHQ2sfAM7nhS3gJ3aVgivfR+BSKUkimAqAtjqxWShoWBaLDTimcjwgM43AWy6nMTjIMXF4\nWOHcOe15WR04UMbgoEapxLF1717jtheOCf39Cn/3dzYuXWK/yGT43Aly8hrm5xU2bGDyGWDCtqOD\ngF9LC1kNP/852a7iUSNzRG+v5fqJ+V4k+TxlGwGCWgAribu7+b1o1ODuuw3icXp8EWRlYq+5md5v\nSimcPw9s3uwgGuXPPT0Gd95ZRjWYTRkeg4YGeG1x926yFZLJSkmutrbVk6TBxG4wqdXe7uDwYX/e\nuHxZ4Sc/sXHPPQY7d/IzY2MaY2Oqwq/oZnpjXK8khjyj0VG1ZH4MzuHRKDAzwzZnWT7zq6ur9tze\n16eW+KmZbBvQtPL1lMolb/xKJDhfiQzucmGMQUPvV7F4518D4Wzl8XQG74f/K57Jf9pjcFSzU4KV\n8PJMAGB7Sw8wueZHWTtCeZh7fwLsOIL8Xx5EfuJhYOsJIBqv/fnwIoxhEUk8Ds/vS8Zy775K7Ktc\nG/F3xSJ9wNJpYGGBTNxUSmHPHh/UGxsjUPjrX1O2cmGhEsivFT5be/Xku+Nw3Mnn4XmZVSfxJyY0\nXnghgkKBbWXbNge5HNd3slYoFlkQdNddZTz+OFns585Z2LEDXmGYSBAvLBDMVsrBkSMWCgXg3Xe5\n3mtsBO66y8H0tOWxaLT2n9nUFCVzUyngo494/lKJbLbqxGkwpLAnnVZ4/XULd97J9V4kYjA0ZKGz\nM8hk8r1UryfzA2ASfO9eBxs3Lj3H9QIRqu8pGjWYmuIzamtz8OyzZbz2mr+FT6XI2ltc5M+trbJX\n4XOqVnK43uBVMGR8CLJfo1GDQ4cMXnhhacK8mqk+O0vQS/rb6CiLX6JRx9uDUc3D8dhlvb3aY2DP\nzXFNIkxrCcfhXmd4WHlqFWtR1rhZAMB6Ad619ou1+HWtN9bbJxcWlv4umQTefHPpNQXb4p13Ui1j\nYAB46ilfieFahNYyf/F4fX1s901NosDAz3EN9vH3m7rVPFtvdNxsxls96lGPetTj6qIOfNXjYxHL\nsS6mpqj5n0z6IFIiQakYYYHMzHAjxspcVvDv2mWwebNxGQqV1bilEtyKYSaiKBnEBKWwVQiGMNFg\n2waTk/RUeeIJZnlPnaJEx8gIjz0/zwrkZFI2zJXARTDJEVxkHj9uVRhZi+RHrQ1YcNEmmvdK+Swu\nPqOl55DzT03xeT32mIMXXyzj8GEbFy8GP8cNtjCJhodVBaAGrE3K4tAhC0NDlpd4L5WYfLZtX7pQ\n5OjIsighHifodfSo7bKkmGjp69PYtauIeJwJgVCIOu1McvP4zc1lbN1aRi7ns/oiEdfjJCnMLuWa\nZdNnK51m8pueAkxIbdjgV/7JJuj4ccv1gyMIoN2mVCrBS6JMTLACmklPJrBzOYNUSkNr5Sbs/E2W\nADbBsG0CJt3dwKZNZfT3W0gmqysob93NiUgwisxdkIkg9xoOC+gJ13NDpAIpjSQSpdmshlKsyo9E\nCCBfukR/p3IZXgJYfE5Ep//cOQtbtgAnTjB56TgES+JxJuptm5XFv/iFjXvuKWNx0WB42EYmQ7mq\n2VmyvDZt4jVOTXFMiUbZ1k+eZPLl7FmFUEgAcI1XXqG03AsvlPAHfxDCoUMhpNO+V5sAlfPzrLzv\n6TErJlleeSUMY1QFyyeX49gUCvl+LNL+1xPyLujnojE+LtXn8NhbjkMmmdbGfafKY4jx70w4i8eM\nyDtWt+ng+QQkk74A8PrTaeD++8mE/eEPbRw6ZKNQUC74xO888kgZ993HA/X2Wujro+zszIzyQOiJ\nCbIBo1EgkzGu7Bavl4ld5RU9iF/Y1JTG8eMKsZj4Z/F4i4vwZFanpjTm56X4gf8ODxO4DoeNB9om\nk0A2yzlnz54y3nrLdkFFMtBiMd+/ZHGR40UkQk+wpiaDTZsM9uwxLqBmPGAJIOvV/52Aswaf/WwJ\n3/52BMmk5Y6nBOJ6elauXK6V2E2lmJiOxXw54bEx5RZLwAM/yISsrAC/WZJTteQpgyzi1Y5d628A\n8OqrFt55x8LQENtFayvftcyPAFwgXuSUpbCB0prd3Q6efrrgMtF9aUwB9KWo5GLmXfTe+UMUmy6v\neq/FUBzpNMcjy1Ku3O3K31HKoEcdwEh+L9LhD5f8PaXI3GpvrwRKgxKYMh9O6hPoi3wf/+1vRpHO\nFle93jVH+xjw8PeAEwD+2XNAaJljhzLAfS+h0Ps70Fp5UtTVIc9E5vygNGqhAKTTBH2KRbKPhfEf\njyuMjrKIqVSSApraUQvgX2vwmsiImp2l7+zWrQajo8Dp07Yr28j5k2tLA8tSCIc53mrNAp3HHy/j\nhRdKGB9XOHjQwtgY71V8ABkKs7PAzAzXqkoxkV0ucx4ZH1funCqyzpxnW1oImto23DW2gG6r37fj\nCMjH6+nrczAzY3nS05mMQXs7vDGmtRVe37vekqo3GkSQe0okyBqVwp577nG8tbpcU5BZumULWXwL\nC8CuXQ727KG0++7dZfzwhzbeeMP2GDKxmFlzoVx/v/ZkWSVqjd21xsXVpCqDUqnB78lxf/zjUE0G\nl1LCqudBta7cj3Afxfl2YYGFLnv3smAjleIae2xMVUjcj487FRKdtd7dagDA9S6oqPX7WlENAHIu\ncWr2i2stI7fePslCP/9nkUTt6OD6ObhfrLXfBxQGBiwA16/PS/FSezv7j0j+P/qoXzT6cY7rXWBw\nq0ed8VaPetSjHrd31IGvenwsotZGJAgc5XJMWtDDQcAFAmOtrcb1dSA44jiU1jpwwGBggMnGREK5\nCVt4Mi2UbSEbKZHgxlQi6Ksklb2TkwrHj2vXhNlUmKiLHFdbG68T8CunlaqsVAwuMoeHl24m43GF\n1lanQoJL/r5hAzd9onkf9AwILuBkgSubD0C5CQcu/hIJJpc7OhwAypWpMzh5UmNsjD4ie/fSt0Y2\n6WtdNJ4+bXkgV/BzmQxZXKUSK4InJphI/bf/NoLu7jLOnqXUWDQKr+pVa+DsWY2uLsoBTU4SXBQj\ndgBIpy1MTzvYtYtAiVJsT6ywFs8JPgNhvViWQUMDje6jUUpTSiVge7sDYwjyHTlieZ8HDEol7VU1\ni/8TZTOAhgY+r/5+heFhVlgTgKlMGNUCCAhkEOhrbnawsKCWBRNu1aC8W+3kmG0ThJqdZX8Rhlgy\nSSaXZfFdT03RG6qxkd+JRh2USgqZDKX1gErwpqWF/27eDNdzBJ6UJ9lJ/G9hQRgC7LunTlno7VXY\nuJHnuXxZAaD/2vw8jx+NwpPYm51VrmcWvZtyOcpr5fP0kJI+cM89Bv39BvE4wfJ0WphXHIMef7zs\nydstl3wRmbQgY4vMKwehEKufg2zBK31X5TLvRcZFgv4+8E1mpD8OynsVGUFKaxFgFPlJAC5zThiu\nlawJ//953nhcobeXY5htE9xMpdgGtm0j2DM2pvCVr1D29ic/IfA+OcmEYjZLAHtuDq58ovE8HEol\nzhuRiHLN2Y0H0AI09V5YQIVkVyQCr4hCKTJ3RkYsWBaZPY2N8EC1dJps0EjEoLubLMfBQYXz58NI\nJpnEYxKdY2soxHfb0MB7LRSMyyCGyz7zmTWU3iVzpb2dRRlklVUm8zZuzLuSsj7A0tpaOzEmUZ3Y\ndRwmEGMx7Uk5xmLG8zisnIfl/2++5NRy8pTCIl7u2E89RWbo4cMWolFJhpFhvrhI6TNh6I6MwPOJ\nfPhhP2kcixm8+GLE86Lk3CCgsHEBSQXbJnAWlBm++24DbHsXv5j5F8h2j63tQSle58hILRZw7Wff\n3W3wzDNlHIrsw3ksBb5aTE9FgUeQBSgSmE1NBmr7Cbye+xKmx67C12ulaBsl+NW+wrPQAJ74FsyH\nv+OOIau1N8q1WpYUM3HsUYrrgjvuoFdYRwel/xYWtOsV6nve1Q4e82q8NeUc4TBw+rTG22/zGik5\nWHkPAM8lDPhNm8hUVYrA67e/HcLQkHYLrpaeS6QW5Xhy3fk8PDax/M2XUHbQ0WEwMqKRzfprprWG\nUvAKfcplMqlbWnjsYtGgs5NzzMCASEvze9easVId60nkXwmIIPLEc3OcN55/vuBJLDY0qAoAXNbN\nAmwcPWq5Xo0szLr/frLxxLezubmMV16JIpvlvNLdbQJjCrz1R7UixEcfcVxnkR7HtK1bfTnvlpZK\n0Hu5MbO1leva6Wmf3cqCJYVvfSuM++8vY3R0eSZwLfZbNqtQzXqUvRH9pZQ3Nnd0kOk+P0/lhy1b\n4LFSs1l/bZLP0+ezuxs4eVLh3DmDn/7UwlNPlSuYRCsBAFejwrFau11rGwx6R/f3K+9zAgauFtcC\nuFsOAAaAgwftJcd+4gmgt9d49zY2plwmOxfsZAtq/PEfs3qwo4PXI/tToFJK+Fr0/ern3drKQk6R\nsr/33n9YUne3omfrjYxbnfFWl2GsRz3qUY+Vow581eO2jOoJPpgsFTmNyUkme1MpAheSnCyXfXkU\ngJXz3d0GySQBCqUMduxwcN99DtraFNragF/9SpLgvleS42jEYqaCESYJXmE4hEJBDxtuHstlbk6T\nSW4ko1EmRLnZd7Bhg/HYUtGog61b4VaWaUSjDp5+2l9kzszoJQkLY4ChIY0f/MCuSOxNTdHf4sAB\npyIZGY8r9PVxc3v+PJP8ySTZbNksvO8XCvC8cc6dYxV/VxfBhbGxEJJJjeFhmpVblsH0tEY8bnDP\nPfA2YX19PjNNKnal+l3e5+XLypXl8u+JSVTK3OTz8DyWHIdVz1NT2vXLIcDV3EwwUyqTSyXjMraY\n1BbmiYAZ2awvo2gMP5tOqwBLhe9Ka+NVfZdKlEQUwKSnp4zPf76Ev/1bPveBAY1cjufo7DQeI0SS\nR5cvK9xxBzeiInlZKvnyflr7AM9aolgkI00YT45z+y14l6sIL5cV0mmCRaEQn386LeylYNLOuHKS\nDhoa6F1FoFG58n7csGrNdyl9NJFgInFyUnxLfJBcKR/oYUhSVHsghshPas0xYtcuJpTm5wmml8vK\n/YyMIexb0SgwNKTw2mtEg3bvLiMatbCwYGFxkW3csozrA2QwMaE8ltBy0kWUWBSQmMfQ2nh96lqC\noewTvEZKJvoMsEjEZ5WxLfvPKhz2/UmY6BTpGCaj+P/VZ6vN0JifF/lKBctSCIUM0mmNCxfIbvjE\nJ3jDr7wSBkD2VCwG18cMyOW0C3CxXUWjjgs6EdizbSAe9xPLch+UM1NobNSulxnBScuS+zfemDE2\nRvZmJmNcxjDbYD7PsWVoiDKWbW1wgVrlyXvKf5SKgjdnhMMEvNrayCx74w2CW9Gog8ceM3j66QLO\nnLE9iamREYX33rOxc6eD4WG4fokKjz5ahlKUPVvrZjmY2D140EYiEZS447taXCRYHUxO8jNmyTyw\na9eVjVWHDlk4d86qYDsHE7krRXBu9MNnEVcXatBjUOPVVyMIhZQLtiv09/M9zM4SOG1t5d/Gx9kf\n6M9o8M47CkAZ09PA6GgI2SyZnyzyMK4nj8KFC5YLuBg0NbFtd3cbr0Bl506DNzq+j2x8jaAXgEbT\nheZmBx0d2pU6hAdM1g6De+5hQ3+g+GUstBzFdM4HrtqwHc9u/DK+9ETJkxYLJsQI0Dn40pdK+D/e\n/yam49cJ9AKA1hFg67urf65pdl2H9aUI/aDEIP+94w6Dz32uhB/8wMbkpBUAvSojCPr7MrbrupQl\nx7Nt48qy6tW/AN/Pkz6sGqdPG7z+ehjvv295TMCrDVn3lkosglhcNK5s5PqPI+t5KXIqlfyx5f33\n+RzDYWDnToPjx5kQ//KXi1dUdb9csrDW75cD166GdXr8uIUzZxT+/u9tdz6kosHZsxH80R/lXYnF\npceSZOviIguCBKCdm1OYn7ddgJPyuydP+mMKQDb4xo0OIhGyFmUNHgRsjh3T+OgjG01NbG+x5UpJ\nfAAAIABJREFUmHIZeXyvApy1tzsekNHfrz3fTP99KiQS9CuW9UguRzbhjh0s0iJzGhWegMGiuOrx\npaeHso/ZrHg8VTKZPD/BMX89IV6/gMLCgsHUlPakITdv5ryRTApQzMIjWWsdP85CmaeeKmFw0N/L\nBGVng0UA1fPG2JjGf/gPYXR1cX2Ry1FWsa3NrAj4Vcda2ITB98h5ljLXUjgBrMxQuZpiklr9QJ5J\nPK7w8ssWTp60oJRfaCPHvv/+SvC6sZGgF9l5LPDM5eDtSQsFzruplPZUQHp6nGvKwLka9ubHEYS4\nHpKYt1Pcyoy3ugxjPepRj3qsHnXgqx63bKy0Ia2e4FMpmdgrF8ilkkYmYxCJOK7UHDcrNEN3sHkz\nmV+RiJhBs1r5vvscPPdcCT/6kY3BQY2mJkqN+Qlc5RqhVyYNqtkNTK4aN3Fu3AU6XD8xbrKKRSYD\nm5rIFGpoUNi5k9mCixfJLimX6Sd2zz2VJubd3Y5b0Vcp8UEpP78SLpdjIiKVUigWNTZsIFOrUOAm\nmOwMSi8uLHBD29MDvPUWvRra24Xdxu8MDdGPanGR19/YSD8Hy2JyU3x52toU3nnHwsAAN+SWRYaC\nsAK4cTYV77O52WBykhV9fIcKDQ1kIjQ303NNku1KKdf0XMEY47H1uroMurvJsotGec7ZWd//QN6V\nyPZIwmZhAZiaIlgiskGFAllGsmlmwklkMTUyGR8I+/f/PoLLl7mhtm1eZy4HTEw4sCyROvSro6en\nmeTO59WSRNuVJMfEC0Qkgz4uYYxseAVEIkBdKFQn/iRxod33xqSZZUnbJBguUl8dHWwjc3PA6KiF\nSEQYOcrzwaklTeU4kgSCK9nn/61QIMvQssh40Np4oHmQ0eY4TOrl8xoXLrAN9/RoPP98Ab/3e1EX\nDBIghaDv1JQG4FR45lWPhZGIg0JBoaGBzCe2A+Mym6rHitqhlIFt+2yH1SISYfsn0KM8ZmatIKir\nPJ87+rmhQsZwfaFcpoFIkynPvyceBw4dsl2PMxYJLC4SdBFZTWPYPrJZAgybNgGAg4kJC8K0q30f\n/H0mA69fA0wMhkJsb8kkE3xkixhXbgweOBYEAx1Hed59UmBRLW8qIHwux/EqEiGAbllMRto2Zc3O\nnjU4diyK/fsdJBLKA9YjEY7ZH3zAtu5X7zv48peLV7RBliRjUOIOYAGCUkxuSTHK9DQwN6fR2Qlv\nHojHDb7whZUbWq21gDD4slnxVvOZUWupwF0u2S+/Dx5DmM+zs0yyZbPwCigAeP0sm2VhBecZ5a0F\nikUmdo8f19iwgX2Q/R8e8yGVUu6c5HsJJpME0i5fZhJ3aAh49lkHg+W1g14wwNZLv4/duw0AB4uL\nHJtkzqvV51paHJRKGm1tJfyLZx/A/2z9OV46+yOMpcawvWU7fmf/C3hw829A2AOSEAsyzO+/38GZ\nhfdwbPzo2q91vWEAdA5fv+NXn87wvSeTHL//+I/DuHBBV7SFWhcpICPHGym6uLL52XGMN86tJ4pF\nFgkUiwahkMF779koFPQVjrnLXRtZM3Nz4pV2pUfyix9E3lp+L36plI01mJ836O/XaGlx8O/+ne99\nu5bk7EqszqBfYTCJWJ1QP3VKuaxZH8hfC8NH/Ch7eoCjRy3MzGgUCsb1MlVIJCy89BLZUH19leC+\nMQazsxoffBBGf79GY6NBoUDp32JR1kBSBOLPrVK8YVncgwwNaezdS2/YIGCTTAL9/ZQbT6d9EBIQ\nFiBZd2fO8HPiXRyLqQr5dInhYQu7djno79dIJITFTHlhkR1tbAQGBiq9KJXbcarHl3Ra/DGD6xm/\nP0iCutrnNp1W0NpgYkJUJfisxse55xJ1hmTSlzQGeD2JBN+zyM2Kb+wjj5QqmD+15o1CgZLHnZ0G\nMzMWNm40aGgQL97lAb9asRqbMCh/PzDANU9bW6Xv8krz45XIuY2P0+v08GH/u0op/NVfWdi61WDL\nFhak/vrXLLCkn6mApzzn/fdX3tuPfmTj+HEbuZzG/DzHkliMa572dvpqj4zw51CI/yaTyitwvFax\nFvZm9Xize3d52fHjdgchrrUk5vWMaw0+3sqMt7oMYz3qUY96rB514Kset2SsVL1Sa4JvaVFoa3Nw\n8aIFY5is7Ogw0JoMolJJYd++MqJRbszTabKKHnywjJMn4W3ctm+nHr4klc+fV5iY4GK61ia+OtnB\nTStcUAxQynFZSMqtFApKesGTgdmwgYv3hgZf2oGbJhtKKa/ic2hIo7nZr2jfudMgkXBcjwblyu5R\nBiYW4wItGuVmzLII/ExMMCEeCvE6Ojt57ERC5Pd8U/qdOwkG7ttn8P77FgoFhelpbh5TKd5PJmOw\nZw/vo6nJeJvrXE55EjvGaIRCTHxu3GhceSeep6en0otqzx6DeNxBuaywY4dxWQL0LojHFeJxC+Uy\nNzqUr1SetKT4B8XjvB96rPD+6NckZvW+D1uhQP+IhQWypchcCb5bSejzd+EwXNk6gqpS6X3uXMgD\nx0olAiChEP/L5/kuLIsbdgG54nENrc1VVYBXR1Di7toEwYlS6WoSWdfgKtw24idrl692LxbZRgW8\ndBy+N/Y3kaIzuHgRLlsHAHxvMbYNVQFi14pKJpiE+AWSmSi+E9XPTtqYePskEgq9vTb6+5Une+Y4\nxmMmWRYB/F27HG8Dd/CgvWQs3LJFoamphHfesdHWxr6xcaNBIgE0NBhXfnH5NkJZPYPGRgL1BFmW\nZwVoTbaSMLxE4jDIgBD2kjwD26asKMEa9qcrTcDy/VXej5yH44HGpUuUjDOG4KGAlgxfwmtmRqOh\noYxkksC+1qoCoFouKt8twVYfMPOTuHzfBNr4TIzXnmsxTOT+gmxDX0JSef5v8l1hIM7P850dP26h\ntRUem1SYEwKe2TavKR63cOiQgxdeWP9LkCRjUOJO5ISff74QkAUkiCOMg4YGXzJrcNDCgw+uvQK9\nt1ejv59FGMKkDTKj7r13+U4ryZBMhsUQbW3iwcU5+/77yxX3BfjMAfog8X2wuMF4Y4W833zeBykB\neKA7WXBM8ALwQHbxYvTXDMIE5HlmZwGtNTo7DWxb46//OoTE0zuArcdWfzkOsPXS/4lt0/8KE+Dc\nuGMHx4CFBfqfZjIs/pE2HIkY/MY/fgeTu76P/0eN4MPzBLq+/1s/XvV0yaSwmDm3/eTwj1EIFVa/\nziuN9Ux1ia1r+lhwnKoVjkPQ4NQpyy0GguvTVjssS7lrIP5cLnPck/UEsD7Pr2shUzs5SW+uawl6\nAfLc1HUvupFCmEKBILRlKbz8cthTQ6iWb10u6bxcsvCVV8JLWFZBeUEBrgYHNT78kAVm4ispBV2H\nDlno6MASmbcgGycW4zwzPi5Auj9nJpMGx44pzM/TL1DA/akpSjweOGAwOqqRTFJiNpXyiyb8dYs/\nzovCgYxN+TyL0X7+cwvGlDEwQGlEKSTJZv0CL8uCV7hTLHLd1NRkkMlobNvmFzHMzCwFWZJJYGRE\neeNtcL2ez7PAzXG4LwEsdHWRRUU5To1kEpifJ3A0Pa2xaZNf5JhIGLS1UcFidJTS7r/7uz5DLMhC\nVorXPD0N91mKKgSZ1KOj7JMbN3Id09npv/tolPLw8Tjfl7yjxka4bMNCTRlEmTcSCbiewfw5meQe\naGqKksmy35KoVsFYT9I+KH/vOAb5vDDaK4HB5aIaNCJjTeH8eaoSSDsOSmKOjdFHLJHQrgQqGcyp\nlIWhITK6qQDC5+2ra/C579hRec7xcb7PWIw/i4e2qKPMz/NZSnuUvazjYNX5v1ZcDUBSa31y6JBV\nwQYU1t+3vhXGk0+WV/UKvd3BsVshrgcD6lZmvN0s38F61KMe9bidog581eOWjJWqV5ab4LVW2LvX\nwewsq8qSSb/SPhymMXRPj8GZMwqNjdx4GMOKx+3by9C6spr83/ybCC5d0p53zVqyLOI1FA4btLQ4\nrgyb8hJZIoEoCS5JfnR3E/wIVkoODGjXW4znlQRdcKMgGzwusEUSQnkMNfHCUkp5CdZ8HgiFWCWq\nNT0TOjqMx4gAfFP6nh76nAHc/NEjhNeayfisCfoKKc+3DIDrh0MPm85OXntHByv1RFbsvvucKkNq\nbu7vusvBxYtkuXV1AfffX8DPfhbG4KDypJrI1DIBoEp5XkMCboXDQCymkUiQbUHAjc+qVFLu++D7\nCfqxVUYlcFEoCPCiXPBv+WD7Y4JbQDFK2QiAQ5DhWiWK1srQWV8oFApiIL42xtD1j9WvQZ6pVNsL\nSFBdIVwL1KBM5LWRgFoNLDSGUqzsUwYnTtiBcUJ5gG4mA/zWb/kV5+PjCm++aWF+vlI6FKDE4yOP\nOG6yRmFhQWFujtJqKyV2WU3reOCuyEEyUVX7mYfDwCc/6SASMejttdxxd+mz0xquFyBZne3t7JOX\nL1+d501Q5nbp3+jNZVn0t7pwwfKSbkuDwNCFC5brhwGv4nw9gK+wdmqFjBtyvzJ+rhTBc68Gwgm7\naH4eLpuYxQH0Y+P9ZLNM0BIENt73Tp+mxJ/EWjfKwSrYlhYWSShlvATD4CDwwAP83vvva4TDBhs3\nsp1daQX66KjG1BTnvdlZf1xKJlGRZK6OYDJk+3aDqSkHiYRGdzc85tszz5SX3FcsRunk+XnOKSwE\n4PONRMR30FR43gXbGOVX+f+plPgV+UCljK08TvD3lcwXYU1HPnwR2PRTwFoZVGqZ/SzuGPwmVAML\nSPIb3sH4xv+KQsMIQtketF/4KhovPozJSccFaIDGPe/gnZ5/jkJoDCgBF/uB4xP/H176n/4cD25+\naMnzlDZSS+YsqUZWvL4bGpOfXvUjoZAvD1s7gkl3/p/IuS4XwlhiIUElezNYXHO951WtfYnU/n7t\nrUlv5yiXfdCxXFb4T/8pjGiUjG/A97wVVkl15buMO8JIleKxXI5jFOAn/uNxhV/9SuMnPyFbNh5X\nSCYV5uY0Ght94B1QOHqUKg179hjPZ2p4WKGtzfcwEjaSMb4vZDAch8fO5bg+F7DasgzCYY2BAYP5\nec5ZBK6N540mUtmy9pE5Q2Rz5WcWYCj87GdhZLMsBlSK5wmC91IQxIIh5So/8Fizs8YrZmtthTsG\n+8yxs2epmHHpkuVJPgdjbIzy1eK5BRi3QI3Faj/9aQi2rTyZ6sFBfz6zLKCry2DLFjLgTp+28MYb\nBBy7ukT2kGM7GfN8j1u2GHetQwUR6RebN/M5b97sQPpjPk8QcGxMI59X2LDBBPYRfHfBtkXfNcpv\nknHly9UuLPhtNcgElf2W/+59FYxUSuHYMYWf/tTGk0+W8OyzKyesg/L3ra3A5KRBPs/2196uKiQh\nq+PUKYX/8T8sTE9TZWPXLgczMwR2OzooV9nbqwEYT56xr08jHmd/kzFRwL18Hkil6H2bzXKsZDEV\npSXZV7m+GB0Ffv5zXzIzEiGAPDamMDtLpRLHYbGktE0p3OEczHN2dKDi/lZbx1wtQFJrfZLLaYyN\ncX0T9MnO5YChIR+IB1CXp7uCqPYvv//+Sg8+oPZ7SSQUvvOdMPbuda7Ku+5WZFBdS9/BetSjHvX4\nuEYd+KrHLRm1EmHJJPDmm1zoZDKoSPQCfhVbPK5co2cew7JYbSjHFI+u7dv5+ZYWoLMTeO45ogan\nTil87WsR9Pfb60p8U46MkhVPPlkEoHDihI35eR9QkSRt0F+qqclg82YHGzf6SaNUSmF4WC9hT23a\nxA223Gt1BdLQEIGmfJ7sLm4gtbcZlo2WVMh3dXGzcuAAgQ1ZOBkDz/ers9NBW5uDHTsMTp9WKJe1\n+yyVx0gZHWVFoTEEtEQ+saGB/gTJpHI9l1j93NVFaZbjxy309BgveUS/LerrNzQodHU5KJUM/uIv\nIojFlMvWUMswbYKh3YSCVNwzQeA4Co2NTkXSgc9jbUmnSqbI2j4vFbiAD7wJOCpA3a0fa/MSuRVD\nwMf1xY0D9yRJXigI0EW5H2GASOUuAPT1WTh4EJ6USjpNebWgdCgZPkzUFAqswBU/tFxu9WcRi2m0\ntjqYn2cfFxCuVmgNNDYa7NlDds/Xvx7xNqPV4TgEoFpamFDhRk27APaVP+/Vxmhj6DfV16dX7btB\nSS05tvFOcO3bxGqg19LPr/4ZkeDlvywMEJZSJGK8QgOtTYWcUybjm85LFTcZwCtvlFergg3O5cEK\n/GCybz0V6DI3zs9zvmxrY6Ka/n8GTz65/GY+mAxpbeW8NzZGqd7qSuygvFY8biGbVWhpIXAVZIAX\nCkBzs4OmJrK5ikWDdJrJaGF7SYEL5W7pCyk+ghLSz2rNa5bFPi1Jfh17GKG7nkRx5y+WfW5Ibofz\n6/+I0YxGZ6cDe+cJ9O3558hFXJnEVmCu8S3Y6W+g/Ok3YVpH4KR2wOqcQ6GhUkpxYnEcL539UQXw\nVZ1MEeAgWLzTanZgHGtgpl3vSG0ETnx1xY+wOMVxZSC1ByL4wYQ3vf/4rhoafC+r1SKXYzJ5KaMc\nuBHzDcFXrjlmZpQHwN3uESwoGxiw0NZGmWuJ5Vgl/C6lxIeHybxvbaUccjrNfm4M/z4/LwoKnO/E\nazaXExCbIPzCgr+2bm/nnDw1RXZzPG5hYYHAJ9uRQXu7QnOzWVKMIm1D1ovRKM8zNQUkkxqRCEHq\ncJhjUblslvj2SRuzLF+SOTi+8F45rpRKBDMA2ZeI3KoURvjAnPjUFQrGZa/6DKZolEzenh6CdbOz\nGvfcwy+++66/BwkyHQsFHwwTKWIy9I27htceWCcy8yzw8AtBcjmuWyzL4MIF7a4nLBw4UEZ7Oz10\n29sJ0GWzLCBYXITno7p9u0FPTxn79hnXD5PMqWyWn4lEtOvrSuliX7UCnqJGUMKyv19715lKESRc\nWPDfjWXxAWza5CCfVxU+mEr5/qdBb6tkUuHll0N4+20LL75YwIMPVoI3Mv+OjJA9J2tJ2UNSUnr5\nwrVTpxS++c0I8nntrilZYLJtG/tFRwfXUMPDBLIefZTjvIC2AmpJ5HLKldaHW4ijvHVePq8xOekg\nHDZoajIYGgL+y38BLIv7DLLHyMoTGXjLUt78J+8+HGYxleMYtz8YPPCAvxYxZnkPNYDrgTfesJbk\nE4whsNLZiVULf2rlKsT7GTBVPnN+fzp+3PL+PxgfZ3m6YB+ZmaHP3c6d62fYVfuXT0xoz+ex1roT\n8GVHGxqooPNxA39WkmGsyyDWox71qAejDnzV45aM6uoVWbQIa2tiQlckeoM6yz/8oY3g4t62uVFh\nYoMbsmoZgjff9JN2hw5ZGB2tnbxdKcJh4BOf8KuB4nFW1+VyXOBWJ8zk+CIf+OKLeU8XnLIb3GAz\neD+JBDdLwYo2qUAaH1f49a8jHkjGKlC1ZENdLTsmVXTi0ZLPM8FGHwkywsbGuDH+5CcdvP8+UCho\niFePHLdQULAsB5kME0IAN4r0BAAmJvh7yzLuPQMbN9JoenTUryocG2MCeudOtoH+fu1Wu/usLj8k\nebp84kg2zOI9FGSHXQtGz1pCa9kcGs9fRSlJWNy+oNLtEjfqPV9JOA48zzHHgdfnw2F4XlmlEtwE\nP305Dh2y0NMjJu9kH5TLGrEYExT0nuMmKBQSmSL2lXBYeX5pwRCJtVCISSRJ3Cx9dsbtS0w0dHU5\n6O528MorYY/9EpQ4lGOLx10uR6mwXbsM4nGyZIKMmPXEarJkgbtbN2srKBd1O4WA7cYYjwksLDfK\n7hoUi3Ar9DkWz8/Dq+zu6WH1dTyuK0CMlTbKK1XBBufyoA+YJIFW80gwxngeN8awiKJQYIFFPq+R\nzwvjwKCjw8Gzzy5/rOpkSGsrsG8f1wTV1y9Jmg8/tLB5s4NUiok3ynjKp3i8bFbDGFax79xJD56J\nCQfJJMf6hgbebz5PkNqylrJ8JZlbdfdQSvwElSe5a9sKoWP/EcXthwG7RuWEo4AP/xdk9n8P2fYR\nzOV2wInMoRCpBLScljEUnv7fgTAHhDKAxVLtbcFYamwJwysS8ddRAmoGZc4eKHwFF0N/hyIyNY95\nQyKxGfjvfwNMPLzsR8R3T2uCm/RdrQQnffat8diUDQ0cp9eiCkBZZVUDULsRYbzrXFi4OobtrRYy\nrgFMvheLlPAU+VLAZ5UEY3xceRJtLExTLnuJcsJHjmgsLGikUjw42VJSRGJQLmuPheQ4BEjyeYOm\nJuX6+cKVIvST9LEYjxEOEyC6fBnYssUvggsCQpZFxhPAPcrwsPZkVHM5oL8frpw7PxMOG3fcV978\n5TgOolEW0lDVQHngUbGoUCgYV84Qrvy3cT2TeP3NzQaLi74sp6wRhPXa0ECG5OKiwsICwbmmJuCx\nx0r43OfKiMdtnDunPRBgOWUDWfsA/pohn/elpxlLv0vJS0reyri4sKDQ3Mzvvv667fqPythv0N1d\nxtmzNlIp3k9jI9/LvffKMSkP+MlPOjh82EahQDn3zZs5j0WjPtAnBZTGkKGVSNDTmJKGxvXypbT5\nxATXYrZt0N7Oc+/da7C4yEK88+cVurqAp58u4mc/C2Nhgd5W5bLxCg1LJa7NvvvdML71rcISz2sy\nFy3X59fxikx6egw+8QkH+/bxIdeax//sz8KYmdEusC9zs3ILTBwcO8Y9sUhlZzIa+/c7mJggM7Fc\nNh4gpQNbGq35LrlvMx6reX6ev9u/3+DYMRuxGNDZabl+0gbT0xbiccdtE1xvptPB/RPB46YmvsMt\nW7gGSKU0hoZ47r4+C7EYlVQAuJYAGoODGl1dDlpaFBYWKBUazCckk8D779t44AF+rxokqTUP+scX\nkJi/kyJLpfgeJFZiua/mUXY7ytZJO00klMeAGxjQSCaddTPsJF8gweIGXdGuq3NIAkAGQeaV1rS3\n2zNeqQBtNRnEetSjHvX4hxJ14Kset2RUV6+MjbFarKfHqfASicUU7ruvslL7scfKeP11mtDbtkFb\nGyvdH320jJ07KdcgEQTUYjEe7+RJyzOYX5/3AqUFDx+2MTnpyztJNDTAM4oGZCNNffJ4HDh5kgDZ\n7CylIHbsoE+MMdxoSUX7iy8Wai7Ajh+3XK19VtjRm6f2tRaLUgEI7NzpoLER2LHDQU9PGR98YLkb\nPB8g7Osj8NXaapBO++9FGFCSXI9G/cROocCNnlwDN1QO2toMZmbg3hf1+20bWFxkZa5SBs3NvI/m\nZt8rKZut3CD7sXa2Fr1ZrizJfqUhlbm+JE/wr/WFZz38fmRZZLHk88oFKViRbdv0AeTGnpvt06eV\nl9ASo/bpaTJhCF5TPjEcNl6f0Vrk7YJVgZWyW8b4cm382f9/pZi4sG3j9nuDT33KIJnUePddC1NT\nlTJL1QnWxkbj+RrGYsBzz+Xxn/9zFMWigythFQZ9S+rhhzyPTAaerKwxTAzt3+8gm4Xnd8mxmCBQ\nLKa8BKEwJaq9R1aLWkbvQSlEzt1ATw9libu7jeedUy1BdOiQhddeo/RSaytlk3I5hY4Ox2UKshgk\nlwO2bHGWnRslVpKDqb6Hl1+2kUxqnDtnIZWi3wgTxUvbKQspDJqbHWzaRMZDKmXw7rtkoKTTlEoM\nJgWV8v1Al4+l4LMUr9gTnwaGngT2/HLp17QBHv4OTDgLAyAHAKVw7VOEq1Bwu/YF6VIDvvRXLyCp\nRtBqdqAx/lWEZx7ykoWUdDNeog8AtuIh/P59f4o/Oft7yJYD51kZI1p7pNuBUgPQNln77/HtwF8e\nXBH0Aghm0R+Jay8yWZYm6sVbTykm/EUSTlgaq41DN4vdLcBeJCLMk4/HukPmJelTnN8ULl4EOjo4\nZ4bDBtHoUnm348cttLRQgm5mxmfyRaMsxFpc1Ein2SbImDIuS58KEsLKYVGHL2lZKBhXUly5yXnl\nShWTGSigaSjEcXlujoB9sVi97+D5Zmfp8yegKeB7lU5NKY/x0tjI6xAGojBMHUe5awgHWhuvCMZx\nxHfOLwoplUT+kD8vLprAHKtcr8LK8YhAnL8nSKcNXnopgoMHHU/emyDb8u/xaufvIKu/XJZ+qTwF\nCa2phDE7q3D5so1w2FffWFykz/Fbb1HCkjKXBiMjlvduy2WO321tDgoFheZmoKPD8TyhEwnu34aG\nNBYXlbufUa6HmM9QMoZrOq05L87NaUxOarS3E8QcGQG+8Y0oIhHuFxMJhURCeQVFwhTL5fwkf5DN\nMTrKfdvMjIZlSdvgHH/gQO15XObZw4ct5PN8x7bNPXNjo0E6Dc8+IJNhOwyHjbvXJfuLcsraYwkK\nMCUFHtKGRNa9WIR3fZOTlMe2LJG9VF7faWhQHrPOcQjEsk9xHdvSojzwsqPDwb59ZQTXkaL+cvgw\n77e1Fa7kpUZbG9nJPgvd97YeG/PPKxH0+AsynaNR4L33eE7xUVMK2LWLSikbNrD/9fSYChlgWXOs\nZT0SjGshW3czQB1pp0EGnL/GXDv7KB5XFWsMiVxOVbTr6hxSLqeWgI9yvOq4UdKA1/o9LFeAttZ1\nbz3qUY96fNyjDnzV45aM6uqVxkYf9ALgeYlUV2qPj7P6TCrtQiGgtdXB3r0GO3dys3HokOUZX2ez\ncKuwDd5/X7vVQGaJJMdaolRSmJ+nL9X8PPCLXyi0tzvo6ODmq1SirOLiIo8bDnMTZFmURXr7bQv7\n9nHTNTurXClGLsI7OhSiUQePPlqukLgIBhlmwgDhhnel65fN/J49Du67j4mBQ4csXLxIPfVNm2Tj\najwW2cSEhjF6ybPhxo6fcxzjSTtGIvT+KZcV2tqYnAQULIuMsXRauRr83EAsLvJ9lEqyOaIsCcG2\ntb+L5aKWx8D1Dsvy/cTqUY9aIWCRJDa6ux0XKCUIEYkAly8Dc3MEvFIpjjexGDfkra3G9exTroya\nX1nL4/hJLvH5kP4U9PwABExiUkjGQUmcWhYrbltbjXtOVlqOjvqsMoK8S5NZjsNEDhliBNV/9asw\ntm+n8flKibGVgomSa5VJ/ziF8phfwsC9+24H//SflrF7dxmDg5T5aW8XFpafjEin6RMxW6zEAAAg\nAElEQVRZnWBYbaO8XMLgqadKGBzkXL5rl4PPf55SnS0tTNIODS2tqH75ZRvnzjFZ0tbGIpVSibJh\nXV0Ge/dSxqitjXK8X/96YQlwJusHxzEuSKbQ16fQ08M1BCvkycQ+fDiCXI73PzPD5NvkJJNWnN9U\nRQLTe8pK2FoKtu1AKYOFBeDeex389m8X8corYVy4oCuSywJmrTfha4zPMMlkFPDmHwI73wRCNTrP\nEkDrCjsYgBDC6J37EIuhWQDAOI4huu8t3Jn77xgbO4B9+1ggc889HLc6OkzAa+1fInN5P/524gcY\nTY2hsbADheaLWOw4sfYLKFtAZgMQ2wnkOoFwBkj0+PKF/+w5oD3AZiuGgaGngDe/sSroxVAV/0+2\ne2UE/bgEwBCvGfEu5Bi49ttae5grliaUYgW2u4/HOBmJGFhW0CeLa30WjLCvz84qJBIGmzYZfOUr\nSwFxSXi2txvv3ebzwKVLGpmMrpCpFv9X+tb6xSCShCdIymMo5SfeTcWi1Qe1KOUH1/PL/5vWJgBu\nUQ6spYUFcMsF26HyAJfgKcvlILvb8q7ZmEp5Tvl9uUwgyLZ5LYWCz/wWyURhphaLymV/kUVeLIrM\nI/8/m9WeN6iA9dcrZA1DyVsgmFgHBGz0/U0JQPuFeePj2pWqNa6fo/+efT807TL6DO6918EDDzhe\nYcef/mkYIyPct0hxHfdCvmS1FDk2NBg8+qioXPD5TE4Cvb3aK2AyxmBx0QeOWNxUya6V9htM3Ody\nfN+NjZwrBcRsauJcvGULG4fM4zLPnjxpefuuUknYqfCk7Ak2+CAuZblF7lNVeCNbFhnNoZBGqcRx\nq1TiHiif53MNhXyALZMJSPhqeg8Kg7ZQ4N87O8mkZHAM4/M0yOXIYs/lgCNHbOzdS8+3VEphZkZ5\nz6ShgUUN3d1+nxsY4DuYnFSu7DPXyrkcsGfP0rVOPK6WyMZRbpnMsQbXS5MgFy0Ufv/3CxVrIqCS\n5b6cPN1ycbWydTfL70naafWaUn5eK/uovd1USGZLRKOmYn1anUPq6eH3guCjHK86boQ04I18DyvJ\nINajHvWoxz+kqANf9bhlI1i9cvCgXcHUkgguWsbHFb797RDee48LHUnuUnbC8Xxxtm83GBujvMTI\nCBffCwsai4sAwIpNrZngBdaXyLBtVq2JBwCr0RU2bTLI57kY96vhuDnhZoifSyaNZ6Q9NqbwyCOO\nW3FPmcaVZJxY1cMKxEiEi/2VwDulDD796TLa2rh5+/a3Qzhxgh4v5TIQi1lIJh0cOMCquIkJJt79\n7/Nf//hS2edLMikFdHfzXLt2OXj/fRosU8JNNs4iw+L7HBUK3JwMDcnmee3vYPW4kYkfbj7z+Vtb\nbq8eNyOqk5AGra0O7rrLQWcnsHu3g8FBjVOntCs9SDm6YpFAMj0w+P1kUlWwCSyLfS4cZsJCKm4l\nkSMJkaBnnYxLgMgi+m1Wvh+NwvPnAigzRD9FyubNzwOAQmcnDeoFaJNrcxxgelohmdS4cIEeSJSk\n8pNS6w1+p3afvhZsMHkutyurTN5zaytZu0ND2gOj3nyTEoKLi37lvjAfQiEWlkisZaO8XMJgcLAy\nYXDwoL1iYkGOIxXbPhvDQUcH2d8tLY7HRtu1y1nWsJ6sbgtKscJ7+3bjev7w3/Z2g/feszAzo73C\nCPHqWU5eq9bP/J5GZ6fB9u2UOezttZDNwvP2KRT85OGVJYKrwI/xh4Hhp4A9f7+2r5fClQBYvhGI\nrC5DqJ1GLOrZit/lImOYuuP7UCNfwens95EOjaIptB3/+sC/RnvxEcTjypWNVmhpeRh7+h5B86TG\nTPhdJJ/8/NKTZDuAsgKaF5b8SZ17Hvrv/puXLJUxzYu/PAg8/D2gbdQHxNYEeNWOlfu68tgXfsIW\nrgfNFZ9ylbiywh+5Lkm6YwWPn9spmpqEVWJc1hXZKAJ6yXpy40ZKoB07FsLlyw609ivrpQpe5FdZ\n2MWiEmGp1GLoGWM8sItR+UyXerf583xQyjCd5t+jUXpdindtMMheWvl9BaXTV1My8Nmj/nXJ/Gbb\nLFgzhkyzbDaYKPWZOz7wwOeTy3Ft4rPCfXnx1YrvrlX4Molre1YS/vvlfqlY5DgtIJ73V+U/X66B\nymhvZ7L+z/4sjIkJf55i+6t8l1x3cZ4tFjVef537Hplf5+dZbJLPk5HU1KTQ3U3ZeLYT31dMWCuy\nBguyOaJRMpLJ2GJbTSS4rxJgIZUyiMWAH/84hPff15iYUDh3jhKHxSLHVwEGjeG5ZmZ4HSLZKV5s\n5fJSIF2kuY0xLshlPLl7mb/8+VytoMChPHnuZJLglzAh02kWS7a0OO79is+twpEjwBNPlDExwfeR\nSiHwPjkH9/Q4mJzUSCaVJxc6M0MP6WIRePDBElpa/L0uVRaU67NJYDEaZREK/byADRsMHnig7BbT\nUFJxeFjhscfKK3qgrvS3WnG1snU3y+9J2mk1aCXSg2tlHz32WBm9vcpt8z7DrqdnKas3mEOqBpr4\nvdpr2hshDXgj38NqPrz1qEc96vEPJerAVz1ui6hVsZJKMaH04x+H0N5Og9wTJ2yUy74EmGwctm93\nMDhouewIeGDSxASlJoKSNiLhtXmzg7k5X7NbNP4p47f0GkMh4+no2zaThgTeDAYGmPASMI0G0QSo\nCgWDLVu4URDta4Ayf2NjCnffvTYDWHlGSnGhUyxywyEVfIAvrxiJGNxxh4PHH/eZXidO2MjlmNQp\nFLixmZ/nIr6jw8HiolXhD1a9oZUNbzhsXO8v423uROZh926/WnZmht8rlci4y+WEZSDVvLgOoNeN\nDaXIRrmR0or1uF2ictOjFJmNrFClD0RzMzf8c3PwWJCS3KHskPGqjPN5v7/YNqt8i0XjendU+ogJ\nGFLtxeA4xvXEqEzcaM0q+0iEldNzc0ySURqM3hpkFhmXmUM5sGiUY7AkPCTpVigoz09MfB8A8aYK\nPpPV+3+wKh/gMSXxFg6jJntj2TfiFSU4CId5z6mUXjWhdiuHMawy37qVjKdf/pLSfX/xFzYaG5Xn\n8RKL0d9IpCyNMdi3r4SOjrVvlONxFUj8KK/6uTphsFpiQY4jFduAJNMUGhoMOjr879RKXgSTCiKt\nE5Ru3LfPYHZWY98+g1OnNMbGLM/XcmXWzvLtQCn224sXFWZmLPT08DlIYlzkxeSarxkA8cY3gI1n\nqxhPjUCoBqA19JtAdiPQ6gJEg78JPPWHQNvY0s8GwwnVVCItdZzF+bbnUWri9xMA/qj/LTy98P/i\n3s6HKjxW2B6A/P7voxSdXXIsPfkQ9JE/ROmLz1VeT2I7rFNfhbbEn5PtmYwKN7E+8TDwN1cOdFWH\nz4zx1yvBcUgk4eSzlEC8ZqevGauztfy/C9AlzDTAZ2msV8lgjVe3yrVd23PlcsB99znYvZtr5tFR\nhXxewxjlzSFKkTGSz9NTpr+f/XBqSuF73wvhH/2jIpSCJ7969KjlqTEEVQuCIXOn+L2tLWo/F7K0\nuBeQebn6mOtnhK7n0z4YJ2wvmZ8FnPePGbxffk+Arepz347rdekTSpGJVL2/k3HAGGD//jLef98C\nwELGU6fo6ZVOVz6PWsF1CZVBuroIKEUiqFDoKJUoF6mUwtatDj71KQenTmkPaNq9m1LBra0KBw/a\nFVLCPT0G/f0mIHPPQbtYNBgepqz98LCFt96iD9j0tD//yzsm+Me9aTRqXO86X3KX6ykfyFrmiaJQ\ngMvCXNog5DxBKfxaQfCZ+2nLIps4GmXRSiQCXLpkYdMmQEDohgZ6h/3qV5araMICMc7tvB/LonJJ\nJsN1cTJJj9xQCGhpUYjHNd57z8ZddznYsoWg18mTGtPTChs3kn05OEi5y82bHWhNxYO2NsAYgmli\nI5DJAC+/bONLXyotC2as5I9aK65Wtu5m+T1JfmL7dvqpCeje02PWxT7ats3gy18u4dVXDd5+28Lc\nnEJXF4uNglFLRnCt4M+NkAa80e9hve2sHvWoRz0+jlEHvupxW0R1xYoxBpOTCm+/bXkL2v5+X6KG\nyTv+P2UmFIaH6VUVTMhRe155nwWY5O3oMHjiCQfd3Q5efdWCZVH2aHExWKm9tFonm2XyF6CsYTLJ\njc3iom9Q39Rk3AQY76O93QSMuP1jtrczQbdz59oWLPKMZmYInkWjZYyMUPqRoBsTuU1NBlu3Gnzx\ni/5i/PRpy9uA2DYr2vJ5g0yG1bV33eVgYoImwGIKXavyXUAxMrrIWhFDZaUMHn3UQTzOzVgqRSPo\nRILnSKWMJ0dCqbQbUy16PWMtVbj1qAcg/nMaZ85QDlCYKUNDPjAflMssFOCCVBxLZHwxhtXZBLyF\nvWq8pEslsMRq13BYeYA/mQsOCgWRN2S1cWcnsLBAJuquXRxPUin2Y61puq41x6F8ngAYzdxRAb4D\nqBhr5N5EglHYVb4HCbBcgkXGIYJ6lPTTmj4UlkVJvMlJtWbgij4UQFcXK0hnZjgOkj17e41HQVAz\nm4U7Pyp0dIhEkUYqxQQSq90VUilK8/b0ONizx8GuXcBzz/m0h5U8CcbHFT74QOPUKQtaU5YpGlWu\nzEx5iSF8sShMC99Pctcuv/r32DFKHAaBy2gU3nmVWj55US3/xH+BoSHlyRzH48DIiMaHH2qPHX01\nAIbIf2Uy9JgZH/cZAD6zUrmyXNcwuTHxMPCXB6Ee+R7QPoJQZgdC47+JzEN/CNMaAJDi24EjfwiM\n+QBRY6NBObUfxQe+B90xgohqQLrtNNA0433GSm+HM3s3sPMXS06dMXEP9JIoN4/h2NQPsHHy0xge\n1l7x0YYNHKfyDSM1b0OFcgjNPAznpwdhDnwPRsC5974Ke+5hhCK+BFc4zDEpmxUZuGv3PIWNHwQi\nagESUhDlfqvmcYShEAqpmuyh9cfyABNZO5SSNoYybsEEvoyt117u8MYOikqxX507ZyGToVrBxITt\n+WwBPogRixEgaGwERkYsBO/78OEQHn645CZeFZTSaG4m4F4L9AJ8KeJruaZLpZbO7Tc6qgG2tRSL\nrA7K3dxikeV8RmtFsL8HZaCDxwqHga4ug0JBeSyV/n5KTCYSa5dQJ+hDqWiAEtYio8lzs2AokaAn\n1cyMwmc+4yAWI2h7/Lh2fYo0EgnjsbdPnrTQ12e5DCvAcSgfLXKTqZTCwYNhV5ZyNc81X9aX++21\n3Vt1lEqVkprVIczM5Y4vCgVa0/MaAKamuGZoa3PQ2KiQydATulAgCygS4XzDdY2BeGkWi/w+C6I4\nD1OlQEFrgmvlMo8/O6sxMkKGeDqtkE4bbNyICt+vXI7FQrkcixvn5oBEQkNrhW3bDMJhruGXY/HI\nemh4mJKm3d3rK3C9Utm6m+X3FMzh0Odbo6HBQTar0doK/OQnFoaHyZDv6gKef76wrK3Dtm1Uv0km\n/eeQSGi8/DKlAgEsKyO4llzKjZAGrPtu1aMe9ajHjY868FWPWypWSqwFK1Z++EMbg4P+RjabVZ5P\nCf1MKsMYg3PnLHehyiqv8+c10mlhKPkMiEiEm5x0GhgeZhXp/Lz2kriFgr9RlWrJcNg3WFaKwFk2\nK+wL5UpQ+ObUHR0Gts1F+X33OdiwwcHAgOVdb9CEdT0VQNu2GXzta76m+L33KvT2Gnz0kXb9zgj4\n7d3r4Jln/EWcbA6CCWnbZjXsb/5mGfG4wp49ZMBdvKgDsid+wlqSe8Ui77etzbhyEMZb0E9NAd/9\nru+xtn9/GefPcxOWSvG4mYxyte3XfNv1qMfHInwJGY2jRynTVCyyrwljS/qojCciP6S1bPAl4U7W\njlIcw2SskvNQDpHMzHLZ98ZobKTUTjrtoLWVRQMtLQSVGhoopROJ8DgdHZTOoUSPJB2YRNi502B2\nllJby/kZ+ewa37tI7nMtiTORdDSGY7BU9DoOQa/WVh5rYYHj9nLXIaGUQVMTE8YzMxpNTQ7uvbeM\njz6yvCrq5ZKit1r4SXtVkaSfnw+2A/peyLMvFjk37d1Lj4rg3LOSJwHARMP8vMhEaczNSdLJIBy2\nMDqq0dLCY5VKwNGjtiffxPnb4AtfIDrw2GNl/PSnNsJhg02bmAQslYAdOwwOHODcJesEMZwPJouq\n5Z9iMUpR8VzwpIQbGsSDRq0Z9CIwYirmwMBfvQRoqVQbDBGg+pqGy3gKhVhEUiopWCP7gYe/B9U+\ngvLCDjjvfBV64mEEL1lroC37aWR+9edwHAeABtreBT5N2UCd7IE+9VU+ly+eW8LEKuXbgcbLSy4n\nHx3BiTe5nimVKG1qWfQ/i2R3IFXjFqzFHq6Xph4GXn3YG9u0Bkoug6lc9qWyikWu1UQ2+VqGSDWv\nFCu1FfFFFLAzFDLetV95rH6PZN7ClcM13u9CIbJYSyXlFjk4boEAAGhobbxrvR7XdS2DcyDHreFh\nhf5+bmNLJd5DsEChVKJHrHhABfcGuZzCmTM2CgUHjY3Apk0Gc3M+O7RWXOt2JswXAcTrce2CBXhr\n+aTx1kLGoKZcKddRIhkI7N9PttfQkPbWMEGpR3pKqsDP/rFEatpnPCnXj9W4LHMWKAIGnZ0GGzZw\nHdPUZNDXZ6NYVLh8GZifN+jrAzo7HbzxhgVj4AFw2axeItUrP68VgKdk4dU1ypVAL1l3CiN6uXAc\n7sVPn7awYQOZVeGwQTLJOTubVfC99vjOm5sNNmwALl/WrqyiKJkYNDcbV71AobubxTelEtlZi4tc\n74pSx8AAP5PLsRhUoqkJnoyi49A/zLaNC4IB8bjBjh3AxYsWjDHo61MVOQ2A66VkUuPMGfpd9/cr\nJBLOqj5PVytbdzP8nqrzOsE1Y3MzPV2PHg3h/2fv3YPjuM4r8XNvzxOYGbxBvAlQAimJJkWJelCS\nZUn0WrZetbK1TvlR3lIqsVdZx1WubMXlsuNYFa/WrlSyldT+kvjxx2Z3HZVdcspbrpUS2ZZsSRZt\nRaQtizQlkeJLAAESAPEaYGYwM93398fpr7tnMAMMQJCixPmqWCTn0dN9+/a93+ucA1AWYnra4Gtf\ni+IrX1lCVxcqXutKVIHy70rvrVb4knMFqBNZa0FypdxVJavrbtWtbnWr28U3Zczae3kcx8Gjjz6K\nN954A5FIBP/1v/5XbN682Xv/2Wefxd/93d8hFArhoYcewu/93u9V/c6pU6fwxS9+EUopDA8P46tf\n/Sr0KhHA5GSlsLlu73SrxsFcyQn87GejGB0tnSdjY9TzaGwEfEfaYHjYxu7dNg4csPDaaxrz89rr\n7Bfu+njcD5LYEeZgyxYHZ85ojI+TP7ypSagTlUcnJkFNOGzQ0EBasmIRSKUcJBLK4xmnLgV1CJQi\ndWB3t0FLi4PHHmPr3d/8TQQjIzogjstrHhpy1gxRL3fCtmyxcfx4dafsW98K4Yc/DHloseDY/ff/\nnse+fRZefdXCiy9qHD+uXJozjnMsBpdixnhJwf5+BzffbKOnxz9/ub9zc0w6Sqd/S4uNl16KIJcj\nXUgmoy6gSHzd6nbpG7WvWHiamwNsW3uJlSAdoF90NgiFfN0NX8fLT8DI5yUxz/WPJokb0XaKxYwr\nRK7Q1mbQ0cFEjFJMzIgmIddGIltDISk+8ZgdHQa5nPE6aKVQEOzwlQQx4HjoL0lsVusEFo0J6rkw\nMSTrsdYsmnd2Oti5Ezh6VGNujutwJsPx0JrIXFKVMVEUCmkY4yAcZhI9lWLBMR43HnpVKe43Z8+e\nj0bThbNSPTMWKilQ71P1iklSUJoVfIpHjufVVzvYvdvB0BCpcPfts/Czn5Eeqa+PiTixpiYHb75J\nLSei64CzZ4mstix2Yy8sMFnV3m68ho75eaK+2tvh7Xk7d9olzS1BRHdfH+fyyAg8vc+uLoPhYQdN\nTaV+wunTCt/8ZggjIxozMwpvvqlgWdrtxDaYnOSePz7O8ZmdXZ2mSiw4bpeaaU2KVNGYiccNwmFq\namQyy1EJSnHsWVQycBzt6VGKf0OKScB0vwTs+f98msR/+2Pqau38p+XnceiTGNj/v9HWxqSWbTto\nbFSIxRw0bH0JR3Z9HAvaL6JFcn1IPvUEFt64CYJeld8lZR99QXmN13q+haTK4+eOjDc+633ORQcs\nEiGVazarPGQHf6v0eeX/ay+slK6PbGCQYwndNlFQor1q3IYFBa0dxOPcK7JZeNp26//9tZvQfa4f\ngWbcJLVP4Qv4iB3ZI6RJQ2t4VK62zaS1oIQBInmyWdL8vZOQvXWrZsYt6K5cWInFHGzebLCwYDx2\njHJErujJJRLGay5YWiI1dT6/HD1lWcalxa9clI9G6VOxucSgsZH7USbDAnkqZfDRjxagtcJbb5HK\n88gRhdOniSjSmo1KuRwppYOF9o0uzl48C65h5cY1gowEgs7m55WCu5aR1rChgXrSk5Okh0ynfd84\nlWJDZmMj9z1pgC0WSyUBAN7vhgYgGnUQjXKNbGiAqyWokEgYLC4aWJb22BWoecfz6unh705MkB1h\nxw4bW7dSxzeVMpib0zh8WJegflpaqFu6nphfrFoBJvg6C7NYETVf63FX+wwAzxdjA5ZPSwnQn/zV\nrzSmp1lsisUk3gB6e+mDVsoJPfVUqCJiSnTzKr0nTbjVrqFajuJzn6uOPgt+zxj6wIcOWVhcNLj2\nWgf//t/nkU5XZ0m4HHW33o3X3dGRrOem61a3S8Q6OpJV31sX4uunP/0p8vk8vv/97+OVV17BN77x\nDfzDP/wDAKBQKODrX/86fvCDHyAej+PjH/849u7di1//+tcVv/P1r38dn//853HzzTfjz//8z/HM\nM8/gAx/4wPqutG7vaFuL2GelwLStjUnKgQEmWwGFri4Hv//7efzjP0YxN6eQyYiINBMNDQ1M3M3M\nKA/lVCwysJmbU67Ys0IopLCwQASF6HRZFmkMpFuwtdXB+99PR+/cOQAgP3ooxM9PTAANDey2jccd\ntLTQoZINP4jUEltPB1A1p2L37uqO9P332xgdVThypHTsvvAFnt+tt9r4wQ94zGiUWmXSUSzJKUmg\nNjc72LPHwcyMxpkzyhP4lfsb1FgDgOeeC3mJ9Xxe4Y034InG161ul6NRd0G7VC3sjLUsn4rPcQRF\nwCA8n1ee7owkVgXBFew4luJ+kFLQ74o2HqqVWl8aCwsM5CcngaYmosC6u+EFsKRpUq4mlgbAotn0\nNAPAVMrgrrtsPP+88mgRy5PVkqwXXZrFRX6uWsJZKa7zbW3UZrnmGhPQlWLgvH27DRblWZijvhXQ\n2WkQjTrI5Yg0opi5QSikEQ7bmJvTyOeNVziwbeWioRxYloNcTnt7wKVW+AqOa2MjqXkmJvxEmHRX\ny+eC+omSKAbYmXz8uMENN7BhQvak6WlSAp49yyLW3Jx2qYoMOjsFvaBw7hw8BB7ARpGlJYN8XmNp\nyeDcOd6j9vbllGFBhFk5lQ21NhSmpoiI5GtEb+/ebVfwEzg343GFpiaFYpGd3s3N1P7h/s75tnJn\num9CGVrr5y++Ua/E1+3h8yz3WZ71ICVcLgcPLSp0X6X3hX6OGieqrMT3+hWAgedK9cVm++D86o+B\nkPESbI2NvBdKadzYfSM+f8f/xo/OfgvHz43CWhjA1swjGGu7Hm/1OThzRiGfJ0JdCtFEH5SO+YUo\nPJYek8/5egs8nG8Oenp4L6amFObnjZdUl98Kh4n0KBSMW8CpbW2pfk7KexaD6A5Bd3Lf0AiFWBSa\nn/f3ilrtfGj5BAUajwsrglq2DtR4pIpzIPia6OrRr1eYm+M9zWbhoovZsFUo6GXNAXV7Zxsbflae\nqJEIfYJPfaqA2VngxRdDOHDAWqa3xv2Rz2Umo9z4rrpJIbnafCoUuE6HQg4GBx2Mj2vMzfE9aV66\n4QY2ax48yPfeekuVsY3ItV2qe9FGGq+xfE2T14W5xRiD9nZq/42Pc09ra/PRrO3tRPQdOwaEw/Rv\nlTIeTXjQjGEjJv0Wv0krm+WfTIa+uNZw/U4WQPN5+ozptMHcnE+TefCghZERg5tvBk6eBDZvNh4N\ns1guxz3i5z9fX1GgGip/794inn02VDJnqjUVr+W45c1GlT5jjMGrr5KdZ2kJbnMtG+Q6OgxmZoxH\n9wrIPs9jHj2qMDhYOSe0GlVg+Xvz88DoqPYKb5WuYd8+C3NzqkRrPZtV+B//I4LHHssvKyDK/ZHc\nxvi4wnPPCRORwssvAy+9FMcdd9jo7jbLfvNy1N2qZS7VrW51q9uFsnUVvg4cOIDbb78dALBr1y4c\nOnTIe+/YsWMYGBhAU1MTAGD37t14+eWX8corr1T8zu9+9zvcdNNNAID3ve99ePHFF+uFr8vU1iL2\nuWuXjbExXRKcxGLA3r1FDA1hmVMSizFBppQgHfxu9J4egyuuIN2JUnRoMxlqoPgc4EwwF4vGQzRo\nzeSGbfNYN99seyitnTvZKf/Nb4Y8p6+zk7o3nZ0O7rmniPvvL3Voz5fCAKjdQa30G488Uv23e3vZ\nGctrJ4c8dcCCFJFMciWTwGuv+XRoIvBbzQqFUkqS2uhJ6la3d7cJsisU0rAsdvFHIhLEs1t4acmn\n/aqGQipP4MjzJUgmGgv/TU0MxrNZ///5PBMLU1OkM8zl4CIJNNJpJlnjcdLGhsMKp08rNDUZj2Lm\nxAmN/n4bk5Ma4bDCzIz2EvPSkU+UFvUHR0ep21Ctc9lxSEt1++1F9PQwEE4mjVtMpzU3K9x7bxFP\nPmnw7LMWWlqA3buJVDp8WGF4WFBLHLBjxziWHR0Gb72lPFSAaJ1kMsqlP2MB8lIvzBeLCtGo4+q1\n8Z5TD271JH6hQFQbYHDggN+MYozByIh2u+KZsGeymAi6TZsMmpqY4Jc1nQVcv+DmOEwOLSwoTE/z\n8/E4aYdEC0yst9dg794ivve9iKufwfkvyDuAxx8dpY7U9LQqocFJJuHpS8Zi2tX/YLL91Cl29bPY\nsDLCg4VW/h2Ps+B36ZiPlpEkq6wBHH/lFm+Nl9gPogO0ZvJfayn2+igaIEjhVfmIZbYAACAASURB\nVEWrxdUXw82kRsRcP/DSHyM0cRPynQ6mprhWhEJEwXd1cd1Kv74Hf//RG0oOdfp0Ho8/buGf/imM\nmRmZM7VTUG6MqZJ/n19xWyGTsTA25uDKKx10dztIp5fPHZmHkkBd0y+soSgnqKhikSj9YtFHBq7V\nRLvMPYs1fVc01ARxW/u9XR8yjA1uTEJns3C1fKQZoFT38u1CcZ4veq5uy82YlfWlJH6LRKil+vzz\nFkIh7e1b0gwSvC/Z7NpQptUQlMZwLo6NKSwtWchmDbJZMpG0thp0dxv85V9GMD5OtPriYikK7dJt\nvHh7TPayVApIJhXGxogompykL9jRwZt28iQbeCIRoSmknxOPG6TTQKX1RQptgvIrFskEQHkD+r3J\npNDjKndtM54euDRtaE0WgZ/8xML27TY2b2YDUDYbvK8GBw9qtLQwdl9rUaBa8/D3vhfxUFTB12uh\n/qt0XCkiPfZYBHfdZXt5lvl5ohNnZ5VHef7WW9RUi8Xo0xMpyWdvbo73h1Tkvj64yCVEIvTXg6j/\nVIr5nXvvLa5IFVj+3uioQn9/6XWVj4FQYJfPg1xOe5TalfIrYocOlepIZjJsvjt0yEJ3d3HN4/5u\ntLU0uNetbnWr20bbuqgOv/zlL+Puu+/GHXfcAQC488478dOf/hShUAj79+/Hd7/7XfzN3/wNAOBv\n//Zv0dPTg1deeaXid+6880784he/AAD88pe/xD//8z/jr/7qr1b8/TqcdG22e/d73u5TqMnoDC1/\nPRQS+kLfhF9bglahaRIqk6Cl03Q8RXMrOOOlY6uhwXi/IXR7wWA4mBwo73YVxBN52WmNjT56LJv1\ndcEiEVNCq7jRttoYFov8TLnJ+YoxKVKqexYUcBbR4SC9jLwu4yOUFOGwcSnWlCcOHjRSi/i/e6kh\nKepWt7fTqnXXCz3darpVtR5Xnt1yKsLgbwgdojz/YkF6KQBuMatUMF4C/yBVY1AXQyjNjMEy6qDy\n8xZtH0GplFtwzyhfyyqtj7mcKkl2Ba+7/LVLkeKuViulV6tupMArLZQuLQGV9EHkHgpqKEgZtNp4\nBb9rWdyHgzpgwb0qn1+uTxL8HcviHpxMwkN0+J9TXmJFvlfuC6x0jqLjGTzGO8VqTapX+9z5JOVl\n7OQ+C32i1iyql/sci4vw6KLeTYUAKf5d3CJe3cSC2pb1IlPdgubTLftr+9s1P2RultMS1602k5gz\nSKktzR5AKdJ5PVYe5wapw8t95kr3rdzflXOSY4kfzbyEf5KVciBiQf82n2eBrRxpWCiQIYK5DD9n\nEg6z+aja8cSnW1jwacq1Nh4drDH+mAdfD/rSwWuv1ecC/Psmx/fHgg0QluX/Hv2z0txKLX6//I74\nnOW5n+BnolGz7DiCzhZq+fK4JRg3xGL+uFTyf94Oq5TnWcs5ref7ootXbsH78E40Um/XHYu6XRg7\ncODQ6h+qm2cbTnWYSCSwGMhIOI6DkLvalb+3uLiIZDJZ9TtBPa/FxUWkguIRVaylpQGhkLWeU78s\nTet3RndYQwPcrqvlr5c7cpEI0NzMDlnZdGMx5XaRlpokaikkXFqsEYezocEXl25o4HGDWgxBxzS4\nactr4TCpNXge8M4jEvEpn2gX/l5US5QLhUal9wsF/zxJ5+G/J/+nDoj/GzKu4tjJWIhGCCDHVF5B\nq1BQJR2/0qWXyUhnXD0xUbe6BS1YVPL1bfj3WgLJ8uPJ94PBuFiQMrHcJNgtLwhJsM8CROl3WNSg\nllKwaBb8TUkESJdstYQPmwwAuDSOldaz4J5RvgZLcl1Mfk/OR4p87zbaKxkrKU6tZDJHgvtdtaRx\nMLkk+54kSVbTwgo2l3BO+ftw+V4VTGDJPSqfv4UCEYmhkI+CFM27YJEseJxaLKiH906ztSCCLkRx\nN/j7kiByHDbSkM6QPpPcb5lP76YGGCYlL2+/Zq3P3EZaMFEtFKB1q5tYeYPLxbTgnlr+d93WZqUa\nXf69DD7v5zO2wYJasBlMfi/oz1TzleS85JzEZ5L1SeLi8lxBJX+0PFYHROvMf99v9imnvoVXOJJz\nKD+eUEEHr1lieLlGYRFwHLUsLql0/Wuxcv9Tfj8c9s8DEN1fFRi71f1+MWoD89/luZ/gZ0Ihv/hn\n28xz2Lbv91Yr5sg9L//tTEYhmUTFnNXFsGp5ntXOSZgwCgX+kTGv9fvim1d6/Z0ec71Tcq11e+fZ\nSoWcuq3N1lX4uv766/Gzn/0M9957L1555RVs3brVe++KK67AqVOnMDs7i4aGBuzfvx9/8Ad/AKVU\nxe9cc801eOmll3DzzTfj+eefx549e1b9/ZmZzKqfqZtvL7988O0+hZrtQoheCv3f/LzGwYMauRxc\nykHqfVQSLj1wgLzOuZxGLGbQ309R2k98ghnDS1WY84knQjhxYrn3IGK53/lOuKog7Kc/XVjxGE1N\nDkZHtSdSy3GhUG9DQwyLi0sA4An2xuMGV17puGOukE4rNDX5WjvNzY439nLfv/3tEMbHLQ/RR40G\nP9ne1kaNlbk5dnxRQ0SEiVd2OsqRLOJUr80ZZ7dZ+fFq/U7d3t22MqJGJkvtc0HmvKBVGexRbDse\nJzVHsUgqs0KhtuNGozxmLifICgeRiPKKPY2NBsPDDo4c0Vhaooj3wgK844fDBomEwvw8dWk6O6nx\nBFBTatMmLNMllPVH1tWzZ7Un+p3PAzfdZOPKK/2H6cknQ5iagqfxFNTD+chHiuju5mdbWgzuvXdt\n9LDldLA//rGFc+dCsG0boRCRwXNzHNNwmM8uO2nh6XZIsLsSMu1SsGiUnbjJJDW1jHEwO6swN6eR\nzVZG1WhN2sJduxz09Tl4803qHRw/TuodapH4SQ6lgETCoKfHwX332VCKFIUHDlj45S8tPPecRqGg\nYVnKa1QJGotxBq2twHvfW8Tf/z33kfK9Kp1WePlljelphdZWgyNHtEeJ09/veN2ifX0OvvSlPL75\nzTD277dc2kbOVxrphSIRosAqBeFioRCPJ/tWPk8ayCDtVLm9XY0b/u/yx8NhVZJgY/LG8eiGlpuB\n1sZNTOjzRj/4STzjJQQaGw26u51AtzvnpdxDYxR+/OMQlpYUZmZ8NDiJKd7Ze+iFnRMK/v5yYS2o\nD7mWa7Isg9ZW4+45ykueXUijvg41IRMJ/nt2VnvUtXW7nM24esVwdT79hh9BZ1oWk+fVaPg35Cwq\nPEPvhvVu7XZ+a5hoaRUKvK+Ow6aKhgbua8JYcr401UE2AFkHw2HGoX6zkAmskark862tvMZIhLIJ\n4bDB0BBzDLkcllESAr7/XG7lsXo6TX2qaJR+3vw86YK7uhyMjSm0tsKTasjngVTKoL3d4NprbRgD\n/Pa3FjIZeFSLJ09q5PNAR4fjXd/4uMLiooFlae+6Fhc5rkILnc+XssMEm5akWFRt7+BneZxk0ng0\n3RLraE1932KRY6W18go4yaSDBx5YLiMBLPf7eS+X65z9678q/PVfx7z50tlpsGkTcxXHj1vYt8/C\nc89ZWFxUHh17KOTgjjtsnD2rcPQo8xzSwz85qdDf78B/nqlNnErxvgpN5MXOJwXnjq+RzHP9/Ofz\nFc8hOIaS5wleD1B9rlY6htha9OYuVevoSNbZyOp2waw+t9ZmKxUKrUcfffTRtR5wy5YteOGFF/Ct\nb30LL7zwAh599FG8+OKLeOWVV7Bz50709vbiz/7sz/CDH/wADz30EG655ZaK32ltbcX27dvxjW98\nA9///vfR1NSEz3zmMyUosEqWyVzi2aa6rdtSKWD7dge7dzvYvt3fTGux06cVnn46hH37LBw/rtHc\nTD7oVAoYHDSeo5dIUDj4fe9z8PDDRWzbtnyz7ekB+vsdjIxoZLN0qB94oIBt28x5neOFtuZmg0OH\nfGFWgE7FvffaSKWA48d1xSCuu9tg+3Zmuvbts5aJ7gLshvr4x4uIxxlMAExATkxoKGVBa3q6sRgw\nMcGE+fy8Qi6nMTMDNDVRo6WxER7f949/HMIvfmEhnQbe/34b4TAwNiYOlR8wCIxeKZ5HPA60tzuu\no2SwuFjK511qDErKne31JKKSSdIpsMMMQE0aFSsFWmsvhtTt7bbqSYmVExZqhfcq/46gKhMJHy2R\nShmEQsrtYFRecXilYwc7DwGgvZ1BN/WfFNraDCyLnaKxGGk9pqb4nYYGQXeyUKCU8hJDADA46CAe\n57Nx5ZVcQzo6Alftrj/ptMKPfhRCoQAcO8Y1KhQy6OkxyGQ0mpt9pFg6zXPbtMmUUIlcfbWNnTv9\nB66722DPHqem9Vj2h4MHLUSjBtGoQUMD8NprCq2tFhobHSwtsROTOh9cN5aWlHcfpLuVHa5vf3JK\nKd63ahR1TOSxQ7a3l2M5Py/abMvPXSkgHmdyYc8ejuVVV9mYm1M4dUp59MLBdS8Uok7Xe97j4Kab\nHNx7r41EApia0ujoYJPJ9LRy6Qcr/ya1MQy6ugwefJD7SPleFY0C7e3c49raDKanubf39vI+iiWT\nBh//eBFHjzIJlMko7746Du+nUNTUgnyLRklLUyjwOwsLK+01tdiFmDfBY/L+CEWzzFd5jowxXvfy\nsqMY7X33vM/ISHe06LvxPBcWqCE4McF7E41yTH/7WwtvvMHX5+b8pJLss3VbyS7e+KwHZQxIE5Nx\n1wB/fq5m54PA0ZrNbdddZyMS4fM7Obly4bpul4cppVxNIUD2M2HvSKV8arNMRrnFjIs5Zy7H+Xl+\n10zWFdnjgnuHT19XKJwvhS6bM8qReUSsswgQChmXJppat2RA8eeasJ3kcsqlR+PrExMKvb22W5iq\nHL+XW3msHo2SCefQIYWzZ/leJEJt3nRauRpybDRaWmKh49gxheefD+GllyxMTCgsLWm8/jobX9Jp\nNn1lswo7d9IpWFzk/+Nxnqf4dVKsKha5xsvYBFFYq+nuyZgqxTU6m+Xxia5SniZlLqcQDrN54swZ\nhakp5V3PxASLOJKrEUun6cMeOUK/cnDQwUMPlRaZTp9WeOaZEGIxg7Ex7lOFAnDllQZTUwrXX2/j\n8cfDyGa1d1+p/apQKCjceaeNK6900NPDRo+hIYNPf3oJZ85YKBTom4q+cDqtsH+/xlNPSQFKIZNR\nOHRIY3DQXPC8kswdKZZms2wGyWSAc+dUxXN4+ukQZmZ4M0dGtOs/c4wk5lMK2L27ugMp+biFBeZk\nurs5v9/JRS8AaGyM1nPTdavbJWKNjdGq760L8aW1xl/8xV+UvHbFFVd4/967dy/27t276ncAYGho\nCN/97nfXcxp1q5tn5V0k5aKwvb1mTcKZp08rPPtsCB0dxtvQn302hK6uS7srpbeXnTPVOohuvdVe\nURAWYGKxEiqsuZnjyGNwbIxRiEYNXnkF2LZNIZkkumDHDht9fQ5+9SsLLS2mpOiUz9MxBSQQMBgb\nI5LswQcLGBnRmJsDZmfpYEnXFZOX7OpqbuZ579gB/PCHFixLr5hEqZasqbU7X1ANsRgRD0qRMz0a\nZQKcyIHKXfSWVV1AXrro6nah7MIXJ0pRXhvzW1oTdTU3x27GWMyn3wuHGWgK/QZQioz0rRSdKOY4\nDBxDIXZNxuMs5p4751/HyIjGpk3G00cEKAIfLEA3NfGZaGkBrrnGcX/H4FOfKuD48eXrzxNPcH2e\nnVUuQownG4sBuRwF5q+5hq9t3crgcWZGo7OTSKX5+dKAqnzdWsmWdxkqD5n0L/9iYXyczyLAovri\nYilNCgt+pccUWr63U4MjFuO5lWuUAJwLQq+WyRgcPapcJK0q6UIOmmUZN3nCdVwpgxtusDE6qtHW\nxoA4FPLXM62J4tiyxcFjj7FLNDjW8/PA6dMajsNEhdADicmYWhaLV0Edi0p7VSrl4JFHuAd/+9sh\nPPVUuOQalAJ27bLdc+MzMTMjunK+/kStlkgYWBafgZtvtvGTn1iIx4mArPys17LeXIj1qLZjStGh\n8hjwGBtJA1dOFw0w0TI/72umHT7s0y0xseVfS13f5t1lRH76BdlaaFeB9aMoo1Ggq8tg61Yb//Zv\nwFtvhTyNG9GvCYf95HSdAvFyMq7V4gNFIkzaNzQQ3SINbpmM8opk9flxaVokwmKOrBPFYiltmjS5\nnP/9q9yULb5jJKLQ0OB4bAz5POns5uY412yb/ns67ccNkQiRXvSDNR55JF8zAkhi9fl5YHSUhZ9s\nlv67FGoLBRaOolH6+7GYwYkTbOjNZBQWFqRoRz9xdpbNbvPzxlufjQEOHbLQ1kb0E4tiGuk0PDYK\n0fVlUU+YWEqLYLVauT5rJuP7BLatXNkEH00nEgsLC8DCgoXRUYVUyuBP/5Sbi8/gQ4aAvj6DkRGN\n//f/6CfS37Xx7W9HcfasRi5n0NzM5l2APmR3t8KBAxYKBYNcjmPJpi/+LaizHTsMbr3Vv4fptIXN\nm20sLoaQy2mMjhq0tPAeLCywCWl+XuHVV0kT2NLCZuJqqKuNMpk7IyOl9ycWY15n3z5rWc4s2IgW\ni5E5AYBbfDXecVezYD7uQrA81a1udatbNXubpRXrVreNsX37rGWdRNU277fjeBfTViryrVYYA1Yv\njpWPTSoF7NoFzMwAAwOm5JitrcCJExqHDyuvmCaUUZGIgmXRwzWGzvrx4xYeeaSAXE5hZEScK3hd\nbS0tDq65xuDwYQYgySQRZAsLxkv+S0AhfNwStAKlRYogZcVKFokYhMNMcot+TLFoXMQLu/ukICFB\ngn/clbvnjTHu99ZfAGPMJZ10bz8K5dKyjR0L3tfSY1bj8z+f30gmDWxbeTQf3d0OYjGD2VlBSgD5\nvPF+P9iFCvhzMai/pTXFrYXqRGhDOjsdpNMaTU08wMICX9+500Fjo/EC6nPnSNOilB88KsXXW1pK\nn/vdu5evPxI0laNJl5YUYjFSsTQ2KuzcaeOTn/TXGlmntmyxKxbUarFK6/ncnMJf/mUEtg1MTwOS\nBJPxisX4eqWieSjkrzdvpxUKytVWNF4XcXnxSz6nFJsOJBER1HoDmDxqbSUieutWp4SGJZkkSnB8\nnEVBFl15z1tbHdxzj98QEhzr0VEWWkT/kVREpQURSR7EYgY7d/qZqdX2qvvuszEyspx69777eIyZ\nGYPjxzWKRb8ovJb7JQXeYtFgcdHg9dcVsllBD5eut5bFa8hk/DEN6lS9XfSHl4pxjTQeiovFd0BQ\n3YC/j13uY/VOs7XcL6INuTdRF0V5RbDq31nfeYlm4JkzGj/4QcT1CZVbyPZ9ROqUGK97vW7vbhP9\nGc4/A2OAWMyBbRN9urSkMTDAdejUKaKF3+naM+92y+fF3/WRXvJ8834bbBRiL6i5K//30dUsmFgW\nfXjxdeJxhXye/rcUSITFANA4eZIsKq2tfK/WHMOtt9p49VWFgwctwKXkPnKEbBBiuRyZGhoaDNJp\nhfFxjXxeuddAqsCgvpgUymIxMrosLvrNb4KsHxiw8fLLRIfJWIgP1tBgSjStSulsz+8eyF4T1I4N\nNqRZFp/X+XmNJ54IY8cOG2+9ZeEf/5FSF+EwJRhGRhh3S7Pd4cMazz0X8dBm6TQbXDdvZvOTIKN+\n/WsLoZBCLKZKil0Ai4VKMU4JNtmdOkVkl1JE32WzRJ01NdFnn5hgs8/CAikk02nuW48/Hrqg9H+S\n5+H84PWyMEpmh0rMQMGm6P5+xqNcP417L2pvRgRWb1jfCAsW1og49Iud9SJb3ep2+Vm98FW3d4VV\n42BfLzf7Ssd7p3eorIZ+Wy3hWGlsmprIAy46YWLiXPX1MREpyWWiKUqh9Lkc0SC9vQaf/3zec4gI\nxafT0tdH5/3kSYXmZoXDh0lZlkoppNN+8kISu5bFjiqhZQuHmbClw0pnvrmZjn42KwlN/73WVha9\nslmfklA6C0khYVwqFL4fifC3pfCwtOR+q0JySCmf2g0oFSJeSzJJKXarSmIxSG91OZifhL7wVm1M\npViyEYUQBtbKTQwDV15pQylgeNhgYcG4CBry8AsNSPB3pRCSSABEanEuEhlE+rpQiJSJu3c7OHnS\n8jSzAGB8nIUsdjkaF4VlcPIk6S+COgxjYwZnzmjs26fR3g5s2WKjt9c/l+BaeeSIRjRqyjoFiUDq\n6NDo6THYvJn0qMD6ugKrfa7SmnX0qMKJE7z2zZt5Lfk8Kfe6u4EzZ4BgYl6KN/JsnQ8F10aYUkRk\nNTby/orWm/suAOMibRQsi923Qjsj6yMAj2qnsdFg0yZgz54iHnmksGy9VwrYvNng7Fl+LxQy6O42\niMcN7r/fD3aDY53LKY+edmnJeB3ASvnFsHCY+pl79hS945Tfx3vvXR4I9/YaPPJIoeq8OHnScq97\nfeNbLBpXL4Rje/y49go2gtSVRBuT7ETJLSzw9cZG4xUii0Up6Fy+iXXHUSgUlq/VpbRR/lzz9VIu\n7nnWbXUT7azGRq7fti3P9cro+miUCWHLIrrApw3d+OdCUAGSnCNSuhT1QfpP5TY2mTqi5zKwcJh7\nXTbr09OJlqggcs6epW8/Oxukkq7bpWr0vVVJM49x/5HLUe9yI4ouiYTxaBODr8fjxmtCSibpF508\nqdHVRT8ynyfdoFLGm0vRKH10NpoxVs1kFL785Qi2b3cwOFibn3vunEYsxvOYnfUbSsSMYZyQzWqE\nQnzfX+d8lGsk4iPn2Mhj0NTkYG5Ou82qBrGYg+Fhg9FRjVRKucgn5RUYi0U+P11dDmZmFGZmLK8Z\ndCNsuV/AnEKQclJ0eAGF//bfolBKew1YlsWGwnPnFFIpB83NLPI8/7yFdFqjWBSNMvpq4+MGw8Ms\n7IyMsLC3Y4eD554j80FDg1CeG/T28sZ+73sRNyfBcxodVYhG+d143Lg0jYy/3npLYWZGe9q3WrMQ\ntbRkoFQIv/ylhVtusVecC+s1yfOcOKFx4oQFrcnekcsx39Lfv3wzDDZFk9nHwcgIVp2v1SzYJBfU\nGVsN8VZrPBhE+hnDZsdolOddrcj2Ts/v1a1udVvZ6oWvur0rbCV6vo08nuOYC96hcinYSsWxtYx1\nsIjW1EQIf0sLnUHLUh76BKBzKccoL77191N8d35e4Xe/U9i0yUEup3HmDAtjmYwIUTNZ6ThMssTj\nQrcAj5axs5OfmZtj5rexkRpKjY2kU8vnDSIRJkKWlpg47epyMD2tXBFsg4YGjUTCoKODyWdSBtCp\nloSuZcFNRCuvMAIwwBFqCHY/M3GktfIS6iLwy2R2ddSJJK+DOipCOUHu9bXddwaOvjCz1n4H5aWZ\niPR55TcqqSxBqARsodByijSip4KIyPMfH6VYBKBeFp+HpiY66UoxICgUGGTMz7N7cHycKJ7FReMG\n9/69a2oy2LTJIJUSWg0GYAMDDNREkDiddlyaFQZnQrlSjszatYtaTzLOY2PA88+HsGkT9bCmp4Gv\nfS2Kr3xlCbt3m2XdfLEYcPCgxuCg4xXB02kWzZViByGwHFlba1fgSp+rtGadOaNdfQ+eQzxOFOfY\nmPF0rISOLfgMOg7pS1e/z+tFXwaLV5VNAnuA82RuTrn330cgxmLU1JGuY6FmCYcpAA9IMM75fuWV\nNu6918Z995UGejJ2LFiyODY3x/cyGYWWFgawEiAGxzoWMy46jEmjVMrg3Dkgk+Gca2mhqPuePbYn\nSL6WLtCV9qlsFmhrM5iZYVNDaedxLSbrPdFcuZzB4qIuoRT112uKl0uhKxplsS8a5e/LHnC5NCNU\nMq6htT0P5RoqdbuUjAlb6epXintGLMaibyikKvoeUlyPxeBS6HItCjb81GJreY78Z1V5SJ+SK/EQ\nsfxM3d69Jv5VczP3BhZGhYrN1/EUf75Q8HUG63ZpW7Dw4b7iUczLOrXevURrB+GwgdYWQiGi4ufm\nxJ8gSisapQ9s26R9vuUWG88+ayGX027TpR9rFgqy7lEbSuJCxyFlYS6n8LvfMQ5bzc+dnwd+9zv6\n6oODjqv5W/1aqjUBFQqMaRh3MLa87jobJ05o2LZ2kVzAoUMaJ04Q6ZTNKq+ZgI1XcDVkqW1m2z6N\n4/loKgbvW7DYBcDTtw36C45jPBr3s2e1W9yW+FiaWJWrC25w8KDG4qLymgMLBdH4ZVFyYYF71siI\nQn8/m2/vuMP2dLEsy0E8zhjr1Vc1Jie1S2HJ+CqfV27zmYHWxr1HzC1QU82PLalfBuTzGm++yfE7\nc0ajs9PgySctfO5zeezevbHFr2uvtXH6dGlhWJBRlT4fzMsMDTl45JH1F4akSU50xuQ3R0Y4x/fu\nLZawfGzZYuPAAQvPPmshFgP6+kxJfACgBN31zDN8BgFqe+Zy1CIbHSXSb72xZt3qVrd3rlmPPvro\no2/3SazV6gKCdSu35maDQ4coECq2kijseo8nSeFSI0x9+/ZLqiJwwazS2ESjIXzgA0sVxzqVYrL+\nttsc3H23jRtvdHD2LLuugh3ew8MOPvzhoncM+d7u3fxzww0OxsZIV5BI0DmamBAKARaBUimDG25w\n0NrKopEkIi2LQUdrq8HWrQ62bjU4flyhoYEJ3bY2IJFw0NxskM9r9PcbNDUByaR0xBm0tRm0t/s6\nKeRuJ01AV5eDSMQvloi+Dh11osSk0/Sqqwy6u+ksZzLBhIxQZzEwikR8KjD/fb/A19lpPIHfIDJF\nEBxBIeFg4a2aUb+J6AtqRxkP0UAEEc8t2C146djaz0XGQ3TmZAyFtlK68iIRn6fepzfxx1Xun+jU\nrB5gE4UohVHRv0kkWABQiijG3l4H73mP4wqt08nv6mJXXns759fsrEJjo081YVks1sj86ekxHgc9\n54VxdZR8QeJQiEiu7m7qGSYSpN9IJoGODp/C4qGHbOzY4XiixAcOWIhG+ewF78P4uMbdd9slQsiA\nL7xtjMLVVztulyoTUcPDRMsE743oeZUfR36nfM1d6XO33movW7OOHlVIJpWrS6Bh2w4si7SS2SzX\nDqGwY4LXv79aK0+rppqFw/z9tSZcLIvrmz/fKs9tok6Vp/FFNBeLNZYleWydfAAAIABJREFUxXZ/\nTks3cqHgF2YiERZKP/KRPL761SLuustZtobncgZPPhnCzAwD9UhEdByINkwkGMwfPUpR7v5+f3+I\nRqkdt7io0NbmIz7uvNPGX/91Hn/8x0U8+KCNG27wf7fW+336tMLTT4ewb5+F48c1mptLEcQvvhhC\nOq28xMtqlGrBcZXkejhssG2bg5YWYGyMiQ45hnwuHnegFGDb2kWysZEhl+O84Vq8fv0gmXeXY+GM\nKCHuY5fbta/NLu5e3NHhuLTP9BOSSTYVDQ1JkpjPjsxbUn/5vtP8vIJS2n0mV7+3Svl72FrMsoy7\n/imXtnS1b6y3WaFul7o1NzvYto3Fgbk57frR8Gjf6AdyTmcy6ryS9XVbj61/vJevDSujT2s1yyLi\nJ5Wir00kt+hx8W+hBmxoMNi718bu3Q4+85kitmxx8OqrGnNzGoUC/S3L8n317m6hy1ZuQYSMA9ks\nr4eNYNX93Pl5NpKl06QuzGTImELNrbWNpTRENTUZDA3Z+Pznl3DqVAiZjPZois+c0SgWNQoFhWyW\nBRtB2gF+rGuMcrXDfE3XjaKZpJVSdQdRflozzm9oYGMri3KqZI8R9K/WwKZNzBPMzQk7gXL9duPG\ngIzru7pY+MvlNCYmFPr6yITR0+NgZERjZsbC3JzC5KRQaysUChoLC9RSKxRYpMxmtXuPNaanlUc9\nXm5kKlBerJHL0ad/9VWNG29c7qOfj/3mNxaKRYXRUeUiX4GrrjLo7CzVVBYL5mW2bz+/czl+XGN2\nVuHYMe2xgACMEWIxhZ/8xHJzHAojIxpPPBHCW29przFzYoIFsWiUaLH9+y0XQUdayqNHLZflh/SX\npFZm446wnKwn1qxkjY3Rem66bnW7RKyxMVr1vXrhq27vCkulgMFB4yVlu7tZ9Fpvl0a14735prUM\nCQGUbp7vdqs0Nh/7WBitrUs1f3/bNuNSMBAyf/vtxZq6avbt4/hHo9TfWVxUXtHggx+0cd11Bjfd\n5OC224r4+c9DyGaJwBL+7d5eJll37HAwNGR7jnJzMykcjhxhwpbFAZ7f7CyLBK2tvtMci1HTrFgk\n4sEYBg233VbExARRaABRGEJF2NTExP/mzQ6++MU8cjkWCbQWbSHldkUDgPG6FZk49ZEGSpHmjh12\nygtaRMuMSC1SdEkn82oFGSl6DQzYaGoCikUmcSkSzWAgkSBPfXOzOOw13e7zMiatqiejJLEv1GO1\nmiTkolGDeNxBQ4MEz8odC9GAYLFSOgb93+OYUePIuONuPHHn8mBGimzhMBEkcpzGRqCtjcdpbze4\n4w7H7TLm2Dc2kmJjZIQBVWur483/jg4T0LTjOYZCytMvSac5d8+cYeDQ2Gi865Rz6ulx8MADBZw8\nqTE/r3DsGIvJoRA7AVtaStfSYNDzr/9qYXpaY3SUweD8vHKDRYMHH7S9ZzVoUsD73OcKuPtuG8bw\nO9EyH6W723iBRqXjyPkH19yVPnfnnfayNaujw8H4uHbnAwtfSgF3313Ee97jeF2ttk1KE44d0XK2\n7WvFVJqb4bBxaVDk/pSiA6sVoeV16j3wGY5Gud6wcML1JBTia6LTEA77uhI+So3i3PK55mbSTCrF\nJPTQkMEVVxjs2eNg507+XW6nTyv86EchxGJ85kMh5QqIkz6ouZnnNDGh0NQEnD2rMDXFYHZyUqOt\nzWDXLgfDw6TrbGoyeO97bXziE9X35lrut3RmSpA7O6tw6BALbxKIt7U52LfPQjrNwDWI1KpmUiAU\ndEAqxfUvkSB1UaGgSpIsUnDkGqxcFK7yxOJtWzp811u48ZsP5Df5/MrzfqkhcFe31RowWPj396TG\nRu5vxtQpx6pbtUHd+EKOZTHpx2fDeAWC7m42C8Vivv8kBaeWFuMiHIjOLhaVW5z3aahXsmjUR+PU\nqmUqyG0pRgO1PCv1Yse70bQ2uO46B7t2OTh1ioWIxkYfCS2NLCyyU3e0bhfb1jfmEiMBpfv7RjSK\nhEJs9GlrY8GKGl4OkklpclRes6NtK/T2shjQ3Gzw6qsWIhEioBIJMgp0dDhob6f/Jk1stk1fXSnt\nNsiwqNTTYzyd0Up+7rFjLOAuLioXgcYmzkzGL6bU0vCoFCn42tsN/vAPC/jc54q4/nqDU6c0WlrY\nYPnKKyzkBMdWa+U9J8GmHjYYMIZZWlKe37rRFqTr5nX6fsPioiC3WECSBiSJ29raDDZvthEOaw95\nfO4cP08fSyGVMrjySoP2doWdOx0kk2wIDDYNSrxULFLDvHJjhfLiMykE+g1tK40LEXjijyaT/t8b\n2WR94IDGyy+HEA5LMxyLvMPD9gXPaUkT9ciIFRg749Fp5nLKK1BJcWxqKsgU5N+L11/XbjxCGxnR\nSKf5LDU2slAtDDrd3Q46Ovi59cSalaxe+Kpb3S4dW6nwVac6rNu7xlbTrtqI4200peI71crHpqMD\nmJxc2/f/038qAljb/QqOv1IKnZ0AYNDS4ic8CZ+38MEPOjhyxODsWULou7ocvP/9Nj7zmSCs3adu\no/nHWVggzJ3IBSbo83mDW24p4IUXwojFSOlAxAudtWuvBQYGinj88QjGxzknRMy9WDQIh41bODDo\n6ioimTR46qkwHEd5lGp01JSn3bS0xICcv++jvqTIFY+zCJJOk4KjWCR6Zts2B0eOKMzNWbBtH7Hk\na+uIPhQLNokEkXKARjTqIJNhMSOdJkVDYyOTTvm83zGnlPCh+yModH/S8U3EkcHk5GqOfukxSJNm\n3ESZ9q49aNIRFwr5emorG4OjcJhzaXjYxhe+kMf+/Rb+4R8iXtFL6BMBFi3a2sjNnssx+CUtoIOB\nAXj3OJvl/AAk6FYeLV4kQtHnRIIBFrs6mQjk50lLCDBJeOQInfxjxzT6+nwqqZERjkEyyWA5mwXG\nx5WHaBwf98dBAuqGBlL4JZPA1VeT2zyXI22HX2wuulzopDXp7+fzVUlbKTj28nwALLKePAn09/P9\nWtbKIGe8WLlAcq1r7mqfK1+zTp9WSKc1Rka0VywG+Aw1NREZOjxs8MILFrJZ3sv2dgawp05x3mnN\n54Tn7QfXiYSDxkYmN6amNNJpjo9lKbeQKoip5QVS0SHs73cAaIhWhVB1zM7yWPL8i66BZZF6dX4e\nLhWjgyuvdBCNcr7aNp/VgQGDrVtLEXbVNC337bMwP6897n12VwJnzqiy8acuwAsvhNHdzQJbXx/f\nFwrDWtf6SvcxnVaYnFT4znfC7vvLu5rLaUt27zb4yleW8NnPxhCPOwiH4dKFVrpW4xWjxcJhoLOT\nyC3phA0m02TtJeqL+8Diop/YILWu3xG+djMBCiWeWCjEtaC11WBpiYXcbHb9OmYX26RQaFmmYoIB\n4Lh1djqe9gl1UeqIr/VaOS3v+R9P4fXXLY+2sKvLuDS63DN27HBw5Ag/m8nw2RWUw6ZNxksQsuCw\n+u8JBZ1o6hFpu/r1OI5oC/pUZ1xL60WNy8VkPw2HuTZPT5M2vaND4cwZDds2LoqF8yMaZdJ8pcLq\nRj9PdVufhcMsUkoDYCUN5dqt/H4brxHRtkmNFg4DmzaRteRnP7Ogta+nZQz//eyzFu64I19Cl7Z9\nu8HBg/DYGwBSvfb1OTh9WuHgwZBXQKMPyRhU6Niq+bmCwAeUx0qwuAjEYo7bKKm8GM22HQ9tW26y\nhj/8cMGNyUt/J5k0LkUj530sBlerCpieNsuOKxpb8tsXY9+WeFia0bRmwVJYOKTAbVkGiYSDoSEH\nv//7eTzzTAQjIwotLQbhsIPTpy0UCoyVbr/dxvg4KfMOH9Zuw6Ef3w0NkYL+5EmrTDdtuYnkQbBp\naqUmDMsyHlJJ/g8wBlyvbn01q7Qv5nIGv/mNhe98Z206V2vVxxLqxIkJ7Wmo9fVx/kuM7Z9T5evm\n62bZ806pAIXpab7f1MRn1LL82GS9sWbd6la3d67VEV91q9sabKMpFd8tdjG6XU6fJtR/3z7tcvD7\nHTzDw8ZDjXR3iyg1u+aGhx1s3ep4tG/SuVMJuUYUCLnrBGVDp4ndV5al0NSkcN11tkcpKH9mZjTO\nnpUghLpjUpSJRBhgbN1KRJpQBNx2m4MPfMBGc7PBG29oLC2RviwUQoAPnEFXMinCw8ajGEsmSUkQ\nj/P82ttZ3PvoR2189asFaM3kOpEBvt5OJCIBEf/d2soCTTar0NFhsGMHaTcaG5l0ZXAkXPDS1cfE\nkiDgBI2QSPBco1HjddFS+F5QF6XoF7FgsKS18Sj+GHwqL7gtd3AbGnjtS0tCDSH85MuLCqT/Y0Fg\n82YHf/In5Ey/4QYHP/85+fgty0d75PMKs7PBMWCXplIGXV087uQkr4sJfxa5Nm1yYNs8Rmurg6uv\ntnHbbTbuuMPGwICD2VmgoYGd8Zs3E3F2zTUc8zfe0AiFlIco1JpBc1sbKR06O0mTeeCARjxOitDZ\nWYXxcQagMl4AO91ZnOV4NDYC11zjoKfHwac/XfCCkhdfDCEcVu4zIM/SyhQPP/xhCCMj5Wsh0N/v\n4MMftmtaK2tB6ta65q51bSby1EE8DrS2hjExYWNoiGOcyxHh1N/PhEFzM581y9KudiDPL5Egl393\nN9FWDQ2kivnIR4oYGDDYvJlzaWmJz3BHhwNjSKG5e7eNM2dKqU6kiDI05KC9HTh3TrvUK3wO5uaY\nSJb7S1Qpv9fRYTA46CAU4nP6vvc5Lh0L59iXvlRAOExts4kJ7ep28RkLdj0G7amnLOzfb3nFFaEc\nAeChOgAGlCdOaEQiTDgIDYmgwE6c0FUpCcut/D6S/1+hp4eF99lZhX37NBIJtQwpWN6Z2dNDKpdI\nRCGVIu1iuW5LMPku6FHLYhc01wzjrl3U+JLmAVmn+DxyLWWHM5sWjGHwXY3OZiUTXbFw2LhrANFk\noRCL58PDDnbudHD0aOWGgEvVREC9oQErUjJlMrx+reHSKgkl6Vr0QmQeXJjxWVti9UJb5ZMhClHQ\nyhvwK4r+CROJXCcpGE8k8tQU0aCpFHDNNcCOHRS9LxaByUmiE6Twz2IwEawraSlJ4VOSqIKwXJ06\n1HhU1ZKg5p54+VGGXs5mDOfB1VezOY1oBqI5LAsuQgYeUnppSVVlEPAT1pfUw/8usbXukcaNiZTn\n7xvD+0j/zKcXrrT2hcNCZ6cQDhtvfRH0XzzOQoc0GYmfMD6u8eabFhYWuJ4I4ksan06e1Ojs9H2T\nfJ5r5MgIz29w0MEnPlFEKmXwk5+EcO4c/QWJ1To7jctQwlilmp/72msa2SxPSmLRaFSho4NFtfl5\nhXicMS8ZQtSyAqFlCUVjEQ8/XN2fHh1VsG36voyjjafjGA4rV6fRH2RpVPB/a+OfF7kf0mgUDtPf\nXFqSOJlFK8Y+PnvHzp1saJub03jggQKWljhm7e3w0EO33cZ4a2yMFHnU+/PHcO/eIv7jfyxibEzj\nrbdYXBFqx0rmI5VXR+FFIsaL0VmsI0ItFOL6NThY2Vdfr/3mN5bXoCWFVxaTiPirxKZQyWphYahk\nwiJy7hzvgzw3MzNkB/H/7zffBX1A5kAMBgackkbCWIxNpu3tsk4Ara029u4toqurNNYU2vSTJxUO\nH9aIxfznt9b8Xh3xVbe6XTpWpzqsW902yDaaUvFi2GpaKBtxjAu96YtTlcsx4Tk/T3HaWIy0O4Je\nECdlclJV7IwqT/CW81UPDhJVk8/T2ZdEdGdnkE7D4MYbHU9rbGyMBbJi0Uc2tbQwYcvuUZ5HJALs\n2mWX6JjJOeze7aBYJJy/UPC1YWybx1SKjpzjwHPKhof5+uKicTV3iEzL54EPfaiInh4Was6dY6Af\niTAwymSUizQyMEZ7rzPRyELJ4KDxHM1cjuPa2Oh31m3aJCgxCZ44tm1txkvUM0hy0NdnkMlYsCwe\nI5vlmDBQYweWUBlJMEN9M1L5kZvbBGgtfNSb0FLE4/A0o3bvpkaW8NNrzeNFIkBjo4PmZmDnToMv\nfzmPRALevH71VfLlS4GO/Ow8dl8fA+CmJqJ+rruuCGNIu6A19bAWF5VbOGMB6b3vZdCZSBAx9id/\nUsBddzm46y52jfb1EVV0/fUO+vsdGONznVsWg+DGRl9nS/5uaGAgG48zUBAtrjfeYJDKLlhBiMBb\np4xhgfOmm5xla9Z6KB6+//2Qy43PZyIaddDbS/Tlgw/aNa+Vq3HGr+U4a12b5benp6NwnGJJIUWC\n/E9+soizZ0lLKuMaiwHvfa/j0Sfdc4+N3l4HnZ0sUg4OArfcYiMaVR7qYNMm0qUSPSkIUuXpELAb\nlfdoaIjPzews5ztRR1xTiFhSXgLYsvjvzk4H99zj4KabHHzykwUkEigZB4AdyadOaS9pLRz55WuS\n2P/9v2FXi9G3XI7PbkOD/9r0NOfrpk2+5h1AXYOTJy3E46g5GC6/j2fPsugV/PzMDPcAeSbEKhXw\nRkepPxYKKczOUjhcEhTSVSvUkaKvl0hwnYtGFTZtIpWkFP+I9GPirKUFGBhgksSy4GmKGaO8ZoeF\nBY7FyiboYBYGuO+wyCPnQd0HHkvoN2dmuJ4zmX9po1mUYld1SwsLhfk89TQrmXSrM9GkvaSaJCJr\nHc9wWHuJpvUXOziuQq8jRSSlgpqOb/fYV1q7jUuRuhaKSBkktSxBpxTXdrF8ngUCFpY0MhmiAyYm\nNI4e1a6GIjwfiXo4ykMrCx2o1sYrglU8I0MNnKBfoZRy50F143NqPO0WmQPGmECyvG5ioRAT7u+k\nQnotZlkKfX1cc86coX89Pc09pqeHCdNolIjdQkHW9krjwGc8SD1bt4202sdV1t5wWGFggI1johcY\nDlM3NpUyyOWImpeilK/RSh+a8YpBby/XykiEvlRLi/FodkXHUCi5T5zQXvOR0NFL014iYTy/jCwc\nCgcP0t8ipT7w9NMW/s//CeF//s+IFzuGQvSp6D+xSae/35Q0p4mJf7R/v4Vz55SnBQ1XI7qry+B9\n76MvPjurPLYIrQ0aGvwGEml4uu02G1/8YvXfWVhgM9/ICNfuhQXGOozJDGybWo3VGlJkna/1vgb3\nUt4vee6Wf1ZeM4bFOEEFFwraW/Obm/l6PG6wbRtw880OolGi+H/72xAaGw1OnKDmFpvgDLq6HAwN\nsZHt9OnSZjqyu1BzvLmZ352fpz9aee2k/1heGPSvN+hPcEy3byf7CinFiYy6+moHTU0b32R9/Lh2\nG179puFiUSOZNAH/enWdq/XqYwVRYpOTGomEwdCQwYc+VHSp6P2Ya2KCrCWbNsFjyLn9dhsPPWRj\n61aDffssHDtGFo9MhpSGN95oY/Nmg+uvt/GHf1jEPfeUxprBgh1cXeLRURagh4Zqz+/VC191q9ul\nY3Wqw7rVbQNtoykVL6TJpi7dRjMzpO+rRU9rI49xvrZvn+X9fjLJYhdAba6WFiyD1tdCoVbJensN\nHnmkgH37LExNsRsvlUKAU5qdYXL8kREdSKD4EPrRUYUbbyTV4JkzCoUC6cVSKTpnlSgA7r/fxlNP\nWThzxnLFcRnMNTYCg4M2FhdZBJLk1NycONsG09MMlJqbeQ7PPhtCVxfvz969RXzvexHkcgaFgoNb\nb2Vy6sgR5fGiA9QgM8bgzBn+v7+fTnBTk/GuMRajAz47q3DTTQ6mpuhgSmGuo8NBNqs92su+PoM3\n39QuWoGFymjUweysj64ibRfcDkJ27UWjTKRPTUkCS3lBkdBfScHNGBYKm5sN/t2/yyMcthCLMbCR\nDjBJTsZiDA47O+mIy7xmwpr0ISxUKA/tJ0FxLMaA+JprDFpaFP7oj/J47DEGr6dP87OLiwyIczmN\nrVtt9PcbjIxwfIL3vRLt3uOPq5Lik2X5yf7g683Ny+kuUik+C7OzLDCye095xcJYjEHAvffaFdeu\ntVI8nD6tcO6chmVptLT4r0ciBu3t/v83aq2s9Tjr/b3p6cqvz86qinQc/f1+sX1wUNabEDo62Nl5\n4oS/RgKWG7zz8yJKfuYMKVaE8kvQjQA8uo977ilifh548skwolGF9nZ+Np+X50B5NKTDw0yUiO3e\nXToOTzwRQjJJKrLRUeVSiRj09TlV1/HOTq5hEnzm8z5NmU/7wsTI1q0G5QieM2cUhoZKj1lOSVjJ\ngvfxO98JL5ubXFdKX6u2vt9/v43RUYUjRzSiUY1wmAlO0fmjDhAT9FIAm53leijJh/l5BvCxmPG6\nm0MhzvV4HPjTPyVd6hNPhDA2xjVaKenklgQ/6YIqIVGNUV7SIxo1LnWqchsf4FJywf1tFhBmZri+\nxeNMWC8ukkJpLXahqIgsy3jaHrIGUStNo6HBuLoNBoWCWUb3KYlJoaRkUo3HClIXrXTekmwTKtD1\n56qN21xhPMo9STLKv7necu6/ncUUSZ4JdXEoBLchw3iJSf8zlY+htV8kCzaihMN8FmIxNjosLjIp\nGA7zPhUK/Mzp0742aD4PPPusxvbtfCZjMWBoyEY8zqYN0u8ajIxoF2Fb+ZzkmWxu5rpD/ZbVxyMS\nMS4FrCpJNLJJqVQ7L2gyvy60CfLs4s4ZU3KPl71rVn7/Ypi/Jp1fMVkprustLWxk8H0o+r3NzaQq\nGxoy+KM/svHUUyE884zC8ePct6TJS7TlWDjh+BCtWpniu24XxqTY5RewgfZ2Inhef10jl6MPVSzy\nXg0NkWXh6aephSX7gGXRdxsedtDSYjx/OpdjMWx8nNqlLS0Gv/61RjZrPM3f06e1R20tFpwjmzbx\nb5lrgvICGN/85CcWZme15wdks4ypqM+qkMk42LyZvttK8XVvr8F997F5zm/sYbGvuZl018ePM/4l\nPTf3sHTaQSzGGOf2222kUo7ro9I/LI+jxQ/76EeB224r4q/+KgqlNFIp+pwTEywQnDgBrxBYbuUU\n0SuZUDnncsaLv3x9W5/SO4gADsY4sRjPYXaW48umJoNEgs2oEs+IDy6ovrExFrR37HA8v158+lgM\nXkzc1cV5Iz6d5AuefNLBE0+EcPQo50fwekMhNoTYtuNSZpcW8WRdaWigr5FMAnv3Ot55jo7yfl17\nrXNBKAfLcyVsFGH8H7TVKBarvb/S98pzS1Jok/Pt6ip61zE05ODBB20cP87/79xZel0Sg/vNOwaJ\nhAlQrVe2YG4JELQ6m3/fKXm+utWtbrVbHfFVt7q9i229XThrPcaF7naphkiJx4FPfaq4DC1SDf0h\n17MS+k1QINu22ThwwHI7/mhKGXz2s3ls20bH6KWXhBOciWeh5+vspMZWT4/Bjh022toM+voAoDrq\nIZ1WeOopC1NTlucck5KQicLGRrhBAbsHz51TLooCMIY0Qtdc47iFB96f5maDH/0o5CKy6FjOzChs\n3WpjZEQjHKYGVFubT7HQ3U1UEFFlNq66yvGKP1df7WDnToOHHy7ihhuYQO/oID1ESwuv/dOfJn0E\n6Q7hUvbx/ACiXoiOA7ZsYUItn1fo6iqlnZmfZzAlHYqka1Re53lfH3V7IhEisW680UYyyfPo7uZv\nTE/zferxsMtcEhS5HDvVASLtHIdJ5ELBuBSQvD/GsMCYy/G7AwO8H3v2UN/pyBGNqSkFY9gxtrTk\nJ2snJjSyWWDzZoNstjraRebra6+xkJhMGlx5pYN0mkUH6b5bCdG4uMjCREeHcWlAOQ+Epm/rVlIQ\nVuoWXCtN4NNPh7C0pHDqlAp8h12gX/jCEnp6ln/nUraxsSjOnrUxP0/B6pER7VJtsLPTp+NACR2H\njNG+fVbVNZJJFX9co1G/0NjUpNDaymQF6RBJVzg0xGM/9JCNdFqjo4P0dkRAKmSz2qMVJbKIHZIr\nCTDLGhqN8hoSCR7r9GmiyCqthWNj2issLy3xeWpqYhFV6P327i1i504mVKg54VsuR3TlapSEK9nx\n43rZXI9GgauustHTY1ZF95HS0uC11yyXCshBLke6FCbVjat3yMC5owOeplSxyI7puTl2ebP72dfh\nANhY8B/+g4PuboPDh0mrqDXRbkKb5DjK7VCXQoxfDJOOcRa/mCgRZG6xqDwaH9I4yRrKjmAWgJg4\ny+d5H1dKMPm/VfraRppSTDgIjS5pewFAubqRPhVtsehT3gX1vwCOmdBIiXEc1bKkc/k1WhY8jY/z\n0QcjUoBJsebmYJc5O8wFRSDd3NWoGy+8KW+suY+zYUcpuEUpzm0/aay86ys5Stn/BdkIsEjPPZjP\nX18fnxVSgZHauVDwk3osOpKyl80gwFVXOdiyhUm1664j2rmrCzh8mF3nlUxon6JR46FnBSm7kolu\njiQpl3fZL0cRyDXL54hS5PhuZIFKjls7befG2EpUfZblI/guDTTcWsYmmPDkmk6UMNf5piYVQCKz\nqLFzp8GnPlX04objxzVOnNCYnFQu8t+n7w6HSQmXSpE1gP6d8QrxZB9Yb8Hw7UaLXipWbQz4rEgz\ng9yXeJzrz+goiw2JhHGLUPR3BwaA++8v4uBBy9PADIcZx9x5p41du0yAMQG49VYHX/hCAbffbnu+\nzblzyqN0PntWY2lJeyiv4NqhNYtOPT0Otm0je0dHh9Dl8xomJohoId2g/2XGHXDplckYUAnpVW7N\nzQZHj2rXX+H8C4fJBMLGJvrzPlKWvk9PD5+NPXtsLyauhaLuN78Joa0NSKUcTEwonDrFYqMgsMXX\nAUzJngj4LAArFcCUgks5qRAOs8koFvOfvRtusNHS4mB6WnvHFJ+hrY0xD30vfp5Noywo9fezyC2S\nCMeOcXySSRYJJQ7M56X4QmrKX//awsKC9hpfJyeVG8cqb90QxpZsljF8ZyebVcWn6+w02LKFx4xE\nSAscjxvYtvFkDFpaWLTL5Rgfb93quPeM82hoiGtVLUivtVIOludKikU2+wU1gIHqdOhilfz01b63\nWm6pnA2kp6c6O8jTT4eQyWgPucY4bfVc13rYTipZHfFVt7pdOlanOqxb3S5T24hNvZZjXOhNfz1O\nVbnTlE6vzSHs6WHhZ3xcwxiiPD77WWpCyfGFNjCYDAfoqH70o0yDJddyAAAgAElEQVREHz+ukcms\nXnx8+ukQjh4NefpBUrhIJplUbWryg+y5OSbTFxelk5tUClNT7Cykjo8qceoB35Hets3gqqsYwAiF\nIeA7/tId9/7327jrLge33UZ6vttu8x3OlZxWoiaU95vnzrHwRD0xJm47OxnYJJPsyNWahT0KNMNF\nkvEYfvKUf19/PSnmIhEGrtdcw8IOi080oR+cnQXice19v63N4OqrSVHR3MzXJECNRknjuHkzu/oW\nFph8ZhKWRa2+Pr+A1Nxs8L/+V9ij7BJ0AIsKpEGTgmi1+14+X4XrPJnk8QsFvh6kXahUqBKuc6F+\nDIcNGhocXHWVg717bXziE9U739ZKE7hvn4VQiGNJrQMWRO64o4hPfvIitMtvsPX1RfHTnzJJkstp\n915zHLdt8wPcamO00hpZCaEXjQI7d7Ig3t3NYmp/P2l3du0qvdfBY8tzRT07X1Pu5pttPPzwyoFx\ncA0VCp5sVrmFn8prYTC5kk77WlNXX81Cfnc3x+H977dx5AiLA6Qg4br13vfaXrEmaKsF0UGrVpR9\n6CEbe/ZUp8gMWioFnDpFzYKBASYilOKcnZ1lA0A+D1ffDQAMMhnldnArFz3qa30kEryGVMrgPe/h\n+vz44yGMjSl3TLk3NDT4tK1tbbxfxaKBMcYVY/epikgdpLyiDVGnxpsvgvBjcovX3d1N9F9np8HM\nDOAn6P2xEuou0jEZD9FSWhAIPufnk4Tl2MZi1FVgswHpkURfxBgmjxYW+HwJPa9lKZc+knt1tSKS\ndO0Hz7WUdtDXPPHRWcZLRMnnOTbGTWL6+4z/vmhtKLf4w6RqLscka2cn54UkYst1Ti6mJRLK1SCk\nhgz3Dc5Fx2FDgqC+qmlsAqWoFaEIbmnhOG3a5GBoyEEqxUYZGftslvNrbq5c/47Hsm3jFdWlGUdo\ntoTe6NVXrapFW6ERIyLWYHqaY75S0YgNMT4tpvg3ggCUeSjn6idmjXevAa4bvI5gUeP8CxVC+3ix\nCkxBv6QcYQn4z1QkcnHPa6NMNJmoWUnWAGolGVd3MahJySa1WKw0BpK97tgx+oLyLIfDnK9CY6aU\ndn+Lx+Ua5mvMrt3qRS9a5XGQ5jbZs6TYUSwCLS0OMhnqXC4s8LXubq6HxaLC669rDA4CbW3UKL7i\nCiLEFhcZB3m/HGjyEr/+4EGNpiaFiQk2xY2NaQR1hmWNA1iU7+pysGePg44Og499rABA4exZ5Wkz\niW8ZLJzJfIlG+btXXeXgy1/O14TqKaUiJNp7eNh4KFrbVti2zSnxPcNhIoceeqiAmRmNgwctPPlk\nCLZdrpe6PE5hs6jC88+HkM1qLC2RUnBpSSGVcjzUrtA2Cl2xXKtQSmvtePda7mVw/5YmoUSCDY2b\nN9PHuvVW26OZVEoFkFJAfz/Xe7kfV1zBpoqmJjZo7NnDYmYyyfdlfIaHWZAUCnOlSDV97JjCr35l\nwbZ532dmWBA3hs1FW7ca7N+v8OabGr/+NZtoz57luiM+olBcO45PhQ9wvbjuOsfVz6LvSekBzt++\nPgcDA2srOgVtLc3OImFx8CBZUvbutbFnj13C8sBxWZ1ica3Nk8DGFZ3O51jryS1Vsnrhq251u3Ss\nXviqW90uU9uITb2WY1zoTX89TlW5rQf91tMD3H23jQcftHH33fYyJEst51WrQ7Zvn4XxcZ5POu3z\nvitFFM8jj+SxuMj3zp5l8lA6ToW+JZcj7RA1YYCjRxUSifKghr993322q2fmBya5HOkcjh5lUPT8\n8xb6+52KCJ6VrmvvXtsbF0G4OI7BLbfYuPpqG0NDBvPzTJT19ZEybGKCAVxvLzsSZ2YY/ITDfoKO\nCQ4Ht99uXApKdpoPDTl4/XULluVfazRKWsrJSbgFAmDzZgc7djA4nJtTXuFL9MwAFpD6+gxef526\nQG1tPtXG4CALE3fdxfuWSgHPPWdhbo7fjURIv9LczITJzTevDe1SXlwZHCS67kMfsldFNH74wzZu\nvZVInIEBgzvusPHJTxbQ0cGkzORkZVRP8LdX0toKmqwJySSDzKuucnDFFQ62bdtY4eVabCM0DLu7\no/jtbwuYmtJu0ca4SQSUrA/VxmilNfLWW+2qhZsdOxzvHm7e7FS818Fjy5ym5h7H+oMfLOLhh1en\nnQ2uVaIlJ0lAztHla2Fwnr35JotkpYVczuc777QxOGiQzzPheP31LMTt2HH+6/ZG6WqWj2Nzs6/n\n2NjI51YSJ/G48RCf09NMXti20CESfRsOG+zeTardyUmFmRmKvxP1xkKZaH11dTFZLo0FkYgc0y/K\nhEIsQFJfxm9yiET87matuV42NhJ1Go0CO3Y42L2bNKtLSwpdXYJg497R0MCmiUKBSAdB/7AAIMmp\nYKKj1kSsr3tCekYWR7q6mKwKh1mkmJ9XHm0hECw6MMl0xRWOi3ZkYSUcBtJpXbWwEQ77yWYK1juw\nLOUlJcVsW7mC9wbGOC6tEZNlgtSKxfyxEa08FiSlKcOnSjSGCVWAc3Jujsl0CsOzYBqk1avVyhF4\nazUWYhV27Cjgfe8r4rHHCh5ienraP/elpcp6akHzC4I+2qu1lev6Aw/Y+NrX8tiyhXvt0aNsKkkk\nWBQgzabyCksA524q5WBgQIqK9E86O33k8v79FiYmtKdFVjoWLOZRp0W5iVFT0sxT6RqkUCYoEBYu\npPBpPASlXKs/F1jQTyaZhEwm+cyyCGLcJO35FYaU4lpwMegU+Xv0aYhu0BVRSUoRsaL16qjRC3F+\nUkwUROzazHh6sURlGQ/5ePPNDgCi7VtaTBkzA5ufxG/o7ze44QYHx45ppNM8j1TKeLpPxaJBLgdk\ns9pjJWhoMN7cUqpW/cG6Vbbq40bkMxsQwmGuEQMD3Gsch01yCwvGRU0zbmpuZjxULJIJgygQ+nSi\n31PNn5BYkX4C58LEhCpBJ/sFHYPWVhZnbr+ddOLiB+/a5eDsWSK4f/c7NlxKYUQKaFrD0/L98peX\nsG1b7Q+f+KO33ebgxhsdL5YT1E5bmylpRurvN3jggQKefdZvAH3jDY2xMTYBBmOV8jjl+HGNf/kX\nC9msj7jK55XLPMDnt1BQnm4q41CijUWjMRQSWke/EUa00QChdfabU4SJ5Npr2eSTTLIxcXaWY5pM\nAv39DtrbHezcaSMcBq6/nmwsvM8O/vN/prZyU5ODf/u3EN56i8jzwUGOz8yMT4MaCpH2MJfTmJ3V\nmJ7WLtuB8fZ4IugMjh3jZ5JJNqMdPqy9wunEhHJRydzv8nmOARFejCHTae2h8eJxNmHt2mXDcZRL\nBS33YW3+cq35hmrIsB07nJK4pFZ/ez1++kYVnc7nWBuRWwLqha+61e1Ssnrhq251u0xtIzb1Wo5x\noTf9jUh+nk93UbXkevC85uaAyUmNxkaKGstnanXIjh+nA/r669rrQAPo+O/axW7ce++1kcsBr73G\nbu5oVLk6G34QxWQTu/8yGdKZ+SK1tGjUYGpKkt8Kw8MOQiHSrp04oT3USy6n8OqrGjfeuLwQstJ1\n7dnjVCzg7NjhYP9+dj5alsJbb7FTrrPTuIK1DApuusnBffcVcPSohcZG5SayiCL5L/8lh54eJh7f\nfFOhr88gGlUYG+PxGOgxuT8xweD1hhscvOc9pPmQ4G7zZgdTU8oNYFgYchyO88yMxtwcg9FEggnd\n664jEiceL50vExPsCkwk4Iph814MDJgS/atq973cai1AVfpc8DWhuawV4bgW26hg4XxtrbQe1ayx\nMYpf/IJUmZIg8ekMV18fVhqP3l5Tde2q5V6XHzsaBXp7HXzpSwV87GNFj4pxNau1iFV+rXKOExMK\nIyNMUs/MSHe9P5+rzceNKFqtpShbzSqN49wcsGMHkxqRCJ/fZJL0q3fdZWNyUntUkEJ7lUoZdHUx\nUTE4aDzkitBIisbG1BT3g3gcaGhggb5YBPbsseE4wNSU32ksdKxcu5kgaWjgeZNWkYnbzk7jdi6T\nyiWIfDt7lmugIB4SCeMWdNjA0d/PIp3jEAXhONq7JrG1UPWFQgZX/f/s3XtsXPd1J/Dv786QM3wM\nOXxKfMmkrLcs2bIc16Yfie0kNuyka8dQYajNblCsk3Qdd4ttsy2QLBIgbdFg4dZAiqBA0A2yAWzX\n2izSJnbXm43zQEzXgK3EkiU7sqwXSckiJZEcckjOcO797R9nfvfeGc6QM9SQnBl+P4BhmxzO3LmP\n3733d+45Z5eNAwdkrN+0SePOO4EdOySzbXhYMpLN5GM2raUUUUuLZBX19mrcfbeDN96QBw5ylb6T\ngJdMbofDsg1qa+V3ZnLPP6FoMr+6u5101rWcLxsb5R/piSnrs65Op8tbAvX18kS2BMOkjFogIJle\nN9wg+18iYaWfUpeSeiZzTOvFve6WslT5JyAzky2XcFijo0Ohvt7B5z+/gJ07pSTua68FMDYmk3yS\nlbv8MpnJXKXkfbdu1WhtlYzqpiYHr75q4e//PoSLF+VJ/2BQJvi6umzMz+t0fxPlTuxKmUWN9nZT\ntkqhqUnjqacW3Mzll18OprMqkS4rbQLQGps3a+zZ47gZSa2tkhG+OIPeYzJETCnDbdtsKIV0INrL\nnDRBvtpaWUbJltO4804pZbdrl4P5eZlUr6uTh3GSSeS8hiyEf90qtVbZgRoNDTJBnEzmPqYMqTSg\n0qVBTZ84lV7W1Vs+2S9luVbyOcGgZHtZlowjmzbJpLcZnxsb5Rjav1+7lRmmpyUIODurFk363nuv\njVQKuPFG4No1K11uVacfDPMy/xoa5Lrw6lXTO08jlbKWOFarraRhqb9P7vcyZd/NNmhokOz45mY5\n1m+8UeP8eQsLC5Yb+IrH5fidnlYYGbEwM6Myrln8FTmiUcmq99/bSXaWd51gMu1nZrzStiaAZc5d\nu3fbeOyxzGsb//XP2JhcD/jPUQDQ2OjglltsfO1rCbeayEpkXyOZrB2p8iFlGJ98cgHHjmWW5Z6Y\nkH6iXpk/kX2fEo1qPP98EKmUV92ipka2RzIJ7Nql3Qd1IhHTF1sCPY2NGvv322htlbFW+n3K+VaC\n1hq3327j2jXzUIxOZ2dp7NunsW+f415jRSLycGQoJA8gbdokD4XW1so13NSUvLe/asLoqHJL/nd0\nyNjw29/KQzEmUGWyyFIp2d+SSZUOWJn+k/KaQEDGgVhM1q3phRUOK4yMmLL4Vvp1wKZNck0hpYAl\nYLtpk/y/1gp33+1g/355cLC1tfAS3vkUOt+w1IPAd9zhrOh6u9jr9FLeR670vUp1j8LAF1H5YOCL\nqAilyCAoF6U4qRfyHmtx0r/eyc+VPhG03OS6vzSGTFZmvqavr7ALsmhU49QphWvXLPfJQvPUalub\ndjMrDh6Up9veeCMA27bSE19yIV1fLwG3gwelSa/JQDBPkE1PK7zzjsJ77wUwPGwhHJYJVaXkBkYa\nzUvt9suXgcuXFS5dsnD+vIUDB5xFy7vU98oOwgwNBfA//2dNenLWrDe5wbBtuOXaTMbLtm1SanJs\nzEJ9vUyA/df/msCDD8r2unhRykT4M7wuX5Y+Q++8E8Dly/IU+g03OG5ZQ39vprvusvHeexZiMTP5\nLBkK9fUKjY1Afb3csOze7aC31/vb7P1l82Yvc8TLFnJw+PACzp0rfXDIjE8vvxzAD39Yg7ffNk9s\nZo5Tpejvl0+pbhauV6m+Y0NDCMePL6z46cPl1kexY5f/HDQ+rnDrrTbkxvv61rVZDnkyd3EmaL7v\nOjqq8OqrAZw/7wXEx8ZkrHnssaVLLJYiaFUKubZRV5dkf2SWaNS4914bd91l49VXg+mgjUxWTU3J\nxNfCgpTh6elZ3HMvkZDeaPPzUsImGJSAgGVJkMf0DJqaMmWPVLoEkAQvAOXrZyJBgE2bJCNt3z4H\nyaReVPoUAH7960A6+8g8LS0PINx5p40HHrDR1KQxNiaTTJcuWW4Wlgkcmc9L/1fe9Wh6brS1AUpZ\n6bJ3wMyMld4nJJDU3g53IivXhLvJumprk880wbwTJ6x0oDEzK0YpCaiZsrgmCJhIIN1/0Ur3gpEJ\nUplclAmwhQXlTlYGArL8PT0SUOnsBG66SZ4qv+UWKTM0MyPrPB6Xyf/5eemZ1dKiceCABPmuXJH+\nVfX1pneW1yMpf1Ajc7JY5V/NAEw2t05nBZoJYO9vLUsm9uvqFJJJyWxpbnbwwx/W4Le/DeDKFTmf\nFxKIkwlJk4GgsWOHBHu2b5fA38WLCv/v/wURj1uYmpJtGggod99saZGMCJOxaEpd1dSodJBMshPv\nuEMCtYAck1evSnZaOCxZ4aY81Z49Dh580GwPK13qUEpImRKOudavybpTyvR3kQDb+LiVDkx4fxcI\n6PS+KvvD/ffb2LnTwebNDhoaFG68UR6EkeC1HMsTE/nLcC7F23Yr+/timUnocBhuGWdTbisXk4Hq\nLz9mMuNWLzst//LkOzbMz5XysmFNtmZTk3YfGDDXvyMjCn19DmIxy50Ql/5/2R/gTfqa7OXLl+UB\nArlGtNxjPJUC4nEL4+OW2+MumfTeJ3fwK/cXyjfmLjc25F4vqxtcM+NrIOCV312q5KhSsq5NdpwE\nEXM/fLjUcss+KUGPbds0Uil5gCES0enSxBbicbgBlbY2GYOuXJEH2mZm5GGda9cU2tu9a5Z893ah\nkM4IcJsewJ2dDmprNeJx6UVlSh3fdJODpqbc153m+mdw0EmXolewbTlHbdrk4N//+wX82Z+lisr0\nWk4xZbnNPaJS3n1irvuUpibgrbcCuHJFrodqa+V8HY1KYOvOOyUDb3ZWxulEQsb9lha519q5U7bH\ngQMS5AmFNFIpOUa3bJHxVUr2y31hd7dOlyeVhyb911gmmNfVJT1x33vPBPMke18pZPT09t93mn+i\nUenhlkjI2NHaKvtSJCIPjcZi8jBrKqXS/aYl07O+3it/Gwho3HijV466s1My71Mp+d67djmwbXkw\nqqkJuOceub4bG1PYv99OXyt567jYEt65FBoA8u8H09PyAOjwsDyIessta3OdXqr7yNFRhaGhgFs6\nOTvwWchyXO89CgNfROWDgS+iApUqg6CclOKkvtx7VMJJf6VPBBUyub7c01OFXNyZi8D337fSr3Nw\n880O2tvl9/5JaWnyauPsWYWGBoW2Nim30dAgQS/zfUIh7wkykyGVSgGplOWbvJYb0/FxC9euyTJf\nuiQNvs3TfdeuybFg+h35l3e57+U/ps6cCWB62ps0l3KFErQzJcP8AZylSk3muoELBjV+8xsr/WSe\nTj+ZrzAw4EBryQ4zy3nsWCCjGe7MjExytrTIpFskAoyNWeknIfPvL01N0geqrk5u1vbvd/DYY3Ij\nW+rgkFmXFy4E8OabAVy9qnDhgky0vP9+5jhVyvrpuZRDQKOUjYlrahLX9fRhqdZHrnPQuXMWHn7Y\nxsc+5pVBHB1VeP75IL773Rq89FIQo6NS5q6Qzy12LDSNo03POaVkQnDvXq/sZyXI3kabN8t6qK31\nJlLCYekN8a//WpPu+4X0U7zyYIHWMonf0qLxB38gGTaZZSTlid/paZVuBi/ZRUpJIMxkfExPywRJ\nKCTBn+5upMu9yaSYZMp4Zdd6eyVokKsc5uiowksvBXHunIVgUMZlE6w3T7f390s2bzIpk4TxuEx2\n1dbKBFMyKVlmra2OO3FbVycTQuGwKTMrPRrDYY1AQENry10+k9U1NSVPx0tvFDkOTe8z/2SuZcnE\nZUuLlBIKBKQ3ZTwupQ5lUlu5wZj6esftcxmNygRTPC6Zi7aNdLlEydprbJTzSjgs2XLhsDx9XVsr\nY3Q0KtvvwQftdNkzb7kiEeD2221s2+bg8mUrHQCQSdVwWP7e9FO8eFHWoUx2ef2j8k8Gy89ranS6\nt5sJcObK6tLpJ9Tl+/lLfdXWmrJ/pu+eglIO4nELp09buHrVwuXLkpVlgnGZAbPM/5eJadm27e0O\nvvnNecTjFubmkO7L6eDChQAuX5YJYFPG02Q9yGSjTDqHQtotgWWCKKGQwtycxpUrEiTzP6jR1aVx\n+bJCf78EIPfscbBtm4Pdux13bPeXIp6elvN0IqHcDHcJZMh+aoKbwaBkjAWDcl0Rj1vuMptMwIYG\n6Q/T1aXx0EMpd9Kxq8s7nsNhU75Ulu2DD6yM0p1+JoicL+vHHPurXUpQss41WlvtdLaEZHqmUjq9\nb2Yvv06X99QIhRzccIP8VII6K89QKyZ4Y8rH1dTIsWvbOmMframRCWo5FnW6J6DZ9rL/dndLKetk\nUqOvz8HIiIW+Pjmm/RPip0/nv27YvFm7k6hzcyo9nlnu95+ZkQxgEwyUCXDvIQIvCO71T1Q5VoQJ\nXIdCmeOFycKVkrCFrj2dLv26uoEvydBxUF+v3e8sGYK5Xy+9ASX7ymTkmH6I8h391x8qY1zyfu49\nABAO63T5O9m/t23TGBuz0tnDcMeUQAC4dEkyvVpbdbrHoZSdu+UWGw89tPR9m4xh8t+A6QFsso/k\nu3d0AL29cn7zVwfYvFnnrQ6yb5+MLQcOOHjkkRS+/OUFPPTQ6lw7F1qW22SpNzQg4/4o131KIODg\nF78IuuN+KCQlje++OwWTXRYMShlArZX7cFA8rrBrl42BAcd9XUeHrKt4XKGlBb4MO8mkNIHNvXsd\nPPSQnfeaNRTK7GOd/g0uXJAyurnuO03PvtFRYPduE8CT84yMF1K1JZGQn5kHlEz2dTAo10+mNLY/\nk9BUBTFlNScn5fzc1SUZ1OY6c2BAArClfniwkCo0/v3A3+83lZLtJ+fjtZnzut77Jv/9Unbgcy0f\nxKyEOTCijYKBL6ICrWaWRDUr5KS/3pl0K326qJDJ9eVeU2z5uqtXlVuWRd5n8aR0dzfwkY847iTc\nwICDujqZ6PM+33uCzGRIffhhZilFU+KisVGeZr54UZ6QNDf68qQzcOWKhZMnpTyM/2Zuue/lP6a8\nCSy5CQ2H5aJbnrxGUYHmXBl8w8My6dzert2ygyZT5sABKfVhljN7m8nNrffko3kqMJWSG5ql9pd8\n66HUwSGzLr0eTfL9zLr81a8kK+fMGZm0zLVPrqR+erkqZWPiQCBRMVlso6MK//APQfzqV0HEYhJk\nOX06gOHhzOB0PsWOheZYMRMWUg5SxoZSBFHXS/Z6CIVM70GFM2e88UH6RMkEZ1OTxgMPSE8zQLnH\ntVdG0kI4DLeUj2EmRRsbzWS8lPSTkpc63UdGyr5GIlKizDSEb27W+Mu/TOKOOxZvW3Pjbxqxz815\nEzzhsHfekOCllL3t65PsoPl55b5/KCSBli1bZBKxq0uCPFLuTs4NJhuotRVuFs+mTdLfS5rby/lD\nSgbJU/6mpKN/Er2+XrKYZT1JgGlqykpn/kiQoalJSt/W1Wls2WLj3nsdt1Td6KgEm5JJKVtUVyfl\nIUMhbzLKsjR+53dS6X5sErxpa/NKRe7d6+Dxx/P337tyxUr3MJQspNFRC/G4hStXZBsBOl3O0vTx\nkO/mBZmWyoRQ6aCVhm17GWPyO7P8wM6dOl0GWIJJpkTW/LxMxpnATzIpD3rMzloYGZHAmMnKMuc/\nU47RK7MlE7gmEKaUrJddu+QhEVMWqqEBOHrUwsyMhdlZmaSXIJ+ZqFTo6nIQDEqgsbZWgkw1NV6G\niGXJRGFNjcLsrIWzZy28/76F5mYHx47lflJ7x47cwadQSPY92zYPu8iEfygkD/E0Nsq+Y9uSBWeu\nA7yJPeVOpFuWxtatDrZvlwlZc+3hL08bCknm+fbtUqKqtVUyxTMDQV5mi+lVlnu7yzopVQaVUjLp\nGgzKQGOCo+GwTGZ3dmrcfLOMJXV1ErCZnV2ccWZZXnZec7ODnh558KexUY6/REJlBAIK4d/+S2cF\neUF1yXCVTD3HkWU2AVRZpzqdZWPDlBVtawMGBuQhhs2btVs5IJnMldUs51FTui5bKKTdyXIpa6jw\n1luyDzqOlKuVMrHe35jAmzm2olH576Yms2+acU+560QCPDI+W5aVldkq1QccJzPDMz+Nri4HmzbJ\nmJ4vKJvPcqVUs19bUyPnDRN4T6UWv072c9n/TMBrdlbOA5KF6PjeU6f7W1pu2V3/+jXZZbW1kiHV\n2irX4089lUQoJOe6QEACGF1djvtgzsSEBPIbGrwSxg0Ncnw+8ois8Hz3bfX1wGc+4wUlUik5F5pz\n78WLUgkjFlNulsz0tEJTk4PjxwNLVgdZ74fFcgWQwmGNJ59cyHiwKtvoqMJPfxpEc7OUE0yl5Jzz\nx3+cwMc/7r3n8LC5TgJuv10e+uzqkuzhBx6wF5WbbmmRjLmpKYVgUGP3bo2BAe8ac2BAL7rG8l+z\n5gtinzploblZ/jv7vrOjQ7L4gkHvoUazPCMjcu8dDsvDhKYHmfRGhftgh+yTcg71Vz/o69MYGrLc\nDKrhYXk4ZffuzH7PSsFd36XeH5arQmN+/8478qCMdy9pev5WzpxXuczZMfBFVD6WCnwF8/6GaAPK\ndTO01M+pMGZyztxwT0wonDuncPhwak0nlnt65On3YkSjMumX6+fFvMafjh+NagwO5p5o7unROHw4\nlfe1S73PUr8z+3A4rDNKT5mbhv5+jX37kviLv6hDIiEX5g0N8reJhMLUlMbVqwpnz1pFbTv/sdPX\nJ2UftJbPHR6WCYDeXu99tJbvsNx2Ghy0ce5c5iSO1FR3Ft0Izc+rjG0BLN5mZr2Ew97rIhHJ4Cp2\nn1ktZl1mf7/JSbmxMf1eJiYUpqdNCTHvdUrJPlEtcu0D1/MdVzI+lFoh56ChISlV6p+80FqCt4Uc\nO0Bx37WQ8a1S+dfDkSNBTE3Jz71xUmFyUqf7X2i0tEhgCsjcJv73OXtWgjjHj3vbKBqVLITeXgex\nmPSDqKmxUFtrygvJ2FVXJ+PhyIhM1oTDGnfeuXRQUmsp0bhvn5MO/ktGzP33L7jng9/8xkJLizcB\nd+edNt5/38HEhML27Rr9/TZiMYVIRLnLrpRye1jEYk56QlTb5DwAACAASURBVFJ+PzMjmVUtLZJp\nPDGh05NXZsm8MnkzM0BbmylHZvp/aGzdauONN4JwHMkOS6UUEgmN226z0dwszenHxix0dsoE2kMP\nLeArX6lzgw6OI+sxGtXYudNGezvw/vsyKXXvvSn8/u/bGBoK4OxZ/8SIfB8T4Dh8OIXnngvg5z8P\nYmFBAl0ffuht2+lpOedFIhqxmJRyGh6WnmmpVA1SKekDJBPO8t7ZZRqzyRPkktFWVyelu8zks2WZ\n0nQSMNq3z4HWMuE3MiKT5DU1EuxRSmFhQYKyExMqnbmHjOCGmXivqTGT89rNkJHyYLJOTGnfvj4b\nWmdOJIXDwKVLMsk9PZ1ei9pkp8j+KiXbpFxyMCjfKRiUye9Ll6Qn2uSkfHZTk8KHHwZw6pRy+9qY\n/jL+axb/dZAsF3DsWAChkAPbNoFbKYFp1qMps2XbMsk9OamQSnl9xmZm5PtaljcJ7e4ZvmuPpcbH\nS5cCePNN+YxAQJZ9ZkbOPUpJ2U9T8s4EYh1HuyUEA4Gl949CBQLyvYJBhdlZDceRSdrmZqChQQKY\nUupP48MP5TPr64G5OWQELBxH9l+lgKtXrfTvtDvhK6XjtFuCWynZ7tJD0MuEkFJ2Ztkk+NHQIJ+d\niz/oalkmiId0NqkEtiQQ5P39woKUKG1u1rjrLiejPJv/mnSp8+jDD6dyXjf4A9CAXP/198vyT09r\nJBKLe3jZtkyASzaTg85OOcY+/FChsVGyh+JxCwsLsi7N/rCwIMGcuTkpY2qCPSYbsbHRQSKhMDeX\nP5gq299Gf78cn01NwPz80oFGs97NNjNlQf1Bp1x/Lz3gvOAqYMqTmvKu3noMBoGtW6Wn7vCwfM/m\nZqTLEsrEuvRIk3PW9LTGG28EcO2aHKPxONzAfigkY1dPj43BQQfNzbKdAeDMGaC/38GJExa0lnPb\nnj0aSjkIh60cE+KZWYhLXdf4j3///ev0tDxUIOOIBNSlZJ6DubkAuru9QEs4rNOBkMKuydbCcveX\n+ZjrDCkR7Q1e09MB9PSk3Pd8990AWlrke5vrJECOu6U+e3TUzpgjABZfy+cak/NtQ/9xmn3fCUhZ\nw23bFldd2btXrjUmJxV27JDtm0gojI1p9PQgXf5QHoBobpaHAmZm5KHLoaEAtm6VsuTmHyltvdhq\nXzub7eWXfX47fDiFv/5raW0QDst53ATfymnOq5B5jWzltPxEVD4Y+CLyqeYJvvW03EVYOStkcn25\n1xQb+Ms36bLc+yw1WWP27d5emaQ0E7LhsExabd0qPW127rRx4kQAiYS5OZfXmie6geK2nf+Y8k/O\nmqCa/2LbyHfRmn0BfP/9KZw54/1/NAoMDwdw/Hhm+ZVweHEwJHub9fZqTE5qd6IXgLtejhwJFnWT\nuFrMuswOXs7MyKRnZtBOnt5ubUVZLPtqWOlNfCFGRxV+/OMAjh0LQGspkfPII6u//go5B5lG39nM\nU8alVuoAY7kx48rLL8t5qq9PZ0yWLCxIr5BUSo6x6WkJNGVfF4yOSt+no0clq2BgwDRll3Xo33/2\n7UvhmWfCiMUku+amm2w0NkrwIBJR2LNH/lspjU99yl60rGZ/P3cuc6JW/k62z6uveueKeFwmwfft\nc9zg18GDGgMDdsYEnxdoSKVLs8nnPPqojZ/+NICXX65Bba3C9u0OZmYU3ngjgM5OnR57JEDY0pI5\nibJzp0ZLi5MRzOvtlYnkzk5gbMwLlDQ3S/Bmxw7J0PU7ciSIvj6Ns2fNxKN8t1hMsp6+8pWE28xe\ntmcQjqMxPZ3/AYAPPwReey2IYFDOcRcvKnzjGyEMDkr5puFh2QekdKI8ob5nj8b//b/ypHFNjQTH\n0u+MYFCyVubnc/ezkc+XfwcC2s0Asiw5xqWMknxWMilPnYfDEoTo67PT/a0kAGVKsEmwTB5OaWmR\n9zfBjYUFOX/X1koPpFDIQSgk+3N9vQQvpLycg3vusXH1aiBjwhKQMsTHjsn7mL5qjuOgtdXBAw/Y\n2L/fW58//nHALXXZ1CSBrokJyW6sqZGg1Pi4rKO5uQAA7xrCf12Rb7LrrbdsfOMbIXR3K1y+LJOL\n8bjsd6GQBF8nJmR9NjXJMkspLJ0Oksh3m5pCOtMrUyHXHnV1wLZtMsEp/V9kXba2SjnO3/xGSiSn\nUnL9JMEd7WaU19TINl5ZyUMJlNTUSFAgHNZobnYwNyfjlgSVpc9gW5ucEyIRCRjEYnLsTUzodFa/\nV35RyoXK+pqakjEvldJoa5N92RwfWnsBNqUcJJMBJJNe/zwTNDOlLwHJvsxXKjEUkvc0urtl366t\nlWxRr6SevHd7u1QkaGzUOH5cvtu+fYvP+8sFNXJdN7z88uIpke3bnXQJOyl5m0opX5DHK2/a1qbx\n6KMLGBgAfv7zAPr6JDh+6pTC0aOABEK9PnqdnQ5mZyWoF4vB/Y6OI0HGzk7JmI3FZLuYEotaS0Ax\nEpH9KRKRLL5IRI7LaFTGQwlCeuvDZJ+Za3nTY0mysCS7prFRznmzs8DUlATqFhbkfNTY6AW96+rk\n+Kmrk22dSMjnmTK0H/+47QYk6+q8h7UkMCeZ+lorbNkiQf3ubuDTnwbefjuFDz8031P2RaWk36AJ\nSJhxxn8f1NcHnDql3F58t9ziYM8eG6+9ZgIQ8rmxmIxlR44EMThoF3xd499ffvazADZvdtK9sax0\n8FsyERMJhTfesNwg/tycSvd3Kv/MmeXkGhenpxV+9rPMYwhA1oMmwlwr5btHXem1fL5teMstDiYn\nZTmy7zsHBhw0NzuYmlq8nP393vJFo0H3u8Rikg0Wi8l57bbbZJsePy7tBubnFc6e1XjppYDbo9L8\n3fHjkvnlvzZb7WvnQgJCPT0aH/uYveT2Wm/LzXlwzo6IisFSh0Q+K+0DtdEtl+a92v2GVlMhZcGW\ne02p0vGv533Mvi0lgUyvHo1777Xx+OPS82piwnJvcOWG2HuqurXVwa5dXrmGQrdd9jElTYAd/Kf/\ntIBAABkBHCNXqbpCeh9t3qxx6pSUPJLSUwrBoIObb7YxMrK45r5/m/X3y8SFKUnW1aVx660SDCyX\nnn9mXYbDKl36CTBP0HplKrzX19cDn/1sal1Lq6y21WhMfL2lBK9HIeegM2csnD27OPhlMhRLXeKj\nVE2o14K/pO6bb1o4etTC0aNy7M/Pa7z2Wma53elpb1wZH1eYmLAwNqawaZM8kT41JZN8SsmkIpBZ\n2sbfZ+u554KYn7fQ2KgQi8l4cc89Np5+OoX77svsyfXTnwbR3q7dfk+pFPAf/sMCPvYxJ+96zjUG\nnjwp40Eoq7LD+LgpcyOkXNzSPQv9x9Jtt8m/zXHV3S2T6R0dEpSKRiWrwTwg0dEhJcp27/b6ixk3\n3CCTx/4ymeGwdntPmH5fDQ1ws2JuvTVzPx4dVfj+92tw4YLC9LTX3yoQkPe54QbpsxiN6ox1JGXa\nZFvW1S1ep3/3dyFcvbr4nOo40u9xeDjgy47xxti33pLJ2/l5CXyYrBVAJle1lnPs4vJwUv6rvl7K\nyJm+NyYIobUE/2ZmvBJf8/NSWuvgQTu9jiQTRDKbVDpjRKeDW0Bnp5QPi0Sk31EkIhPzN97oIBCQ\nQNTCggQD6+tl39iyRQJ6U1MqvZ97hodlsq+tTUozNjbKPvDYYza+/OWUO+42NQG33SYBtIYG72l4\nyaQ2vXpknczNScZgdvDJ9MnJ12v32LEAgMxSh62tsi1vv136OkmgT3rkhcMSBKyp0ejtddxspY4O\n6Q80MSH77/CwcssdZ59Hso+78XH5u1jM6/kXjUoW0sGDNqamVDrgJPtjd7fGzTfLpL7jeCVMk8ni\nHlKQAJpXAi8clnVl29LHpb4+M5M/kZAs0o4O4MMPJfi5ZYt2M+L8mUay7qU8oOnRBqh0eUvJwAqH\nNfr75TMbG1U6U0CCZnNzXoabOYYli1W7x2t2oM+yNCIRKa3Y1ibB8E2bnHSmmZQxNv2ETKlP6dMm\nQZTaWinB+NBDKRw7FsgY102mjSk5NjEhgbzGRo2jRwMYH1cYHMzsm5mrdLLpkzs9LfuhWW8eGX/u\nuy+FL34x5ZYVj0TkbxsbpaddKiUB5vZ2CcDefLON8XEJ4vn7B4VCErxsaHCQSgGDgw62btWIx5Hu\nMynfzSxDa6scw9LHzUJNjSmxq3xjpGxbQKUz62RDSBlCCWx1dkpJ28ZGCWh1dkqPYRnTZGAz5VJN\nec1kEumyqA5uuEEyGnftcrBjhzfBv327g0hEMoVM31wTbDOlCqNRjfb2ILS2ccstGrt2yXlk9275\n79tvd/Dkk944k30flEjIuamuTrKX5+clM6uhwXF/PzEh49ru3RqzszKe7NvnYN++/OdbP3NuNNv2\nyhW5lzKlZqenJet2YQFuiT0jHJZexeVgpX3Ms48N0xsqu0z9rbfaOHduZXMoK7mWz3dt6i+VC2Te\nd2b3ccy3nP5rcVPm23GAvXtlXZl+roBcv3R0yPXC7Kx3jWV6qNn28iXzS6nQMvDlPue13JxH9vJP\nT0uf3dpaZPQSXW0sdUhUPtjji6hAlTTBV4zV7q+13Em/VL141kshF+RLvaZUgb/reR//vh0OA/v3\nO/iP/9GbkPX38WlvlyejFxZkIm77dnmq1v+dCt12Sx1TxVx0FxL0M5+VTMrkX3+/ne7zoAqqud/d\nnfn/r71WHvXDDf/3a2qSCZLdux2Ew5k9CIx822i9++2Vm+zx65VXgnjzzcCiptnJpDxVvJrbvpBz\nUDSq8f77XsYDIGPA9u1ORjCm1Mu13v0pluOf1BkbU3jttQBOnw4gHJaJ3//1v2ogE4LeRM35897k\nhTzFLes0mTRZoMAtt0jvIROcaGyU4+q++7z9wD8+ySSJ19vijjsy9xfz2uyeaYDCHXc4eddzrjHQ\n35fCUEqnM2pVxusK7VmYj//888EHCrOzASQSMvnf1oZ09tbiZXn8cTvnBOP0tIzLXhBfRCIan/vc\n4qDi6KiFZFL6bAFe0CYUkie8w2G4wUs/KVVkuX3F+vq88e7554M5H76oqdH4z/95Ae++K72tIhEJ\nevmXyZRBsm1vUj8YhNtgvaVFls0EwKT/kmQm+wNOMzOyz5mgViym0N7uoK/PQU2NfHZjowQYens1\nxsakj5bJhqmpUaitddDQIJlALS3yunvucdDWBnz0ow527ZLSY++/b6WDFNr9e0CCFTfeKAHE7H5O\nw8MyoTwwAOzYIRkY3d35e/xJNqGDRx6xEY/L+VKeyvbeU8pKyjL5dXXpdKAi93nXBENMr7obb3Qw\nMKCxbZuDnTsdvP22BCdaW73Seabn3ic+4aC/30n3spKeeBMTCu++K/uxlCyT/byvT64HgMXHndf/\nRaV73CGdTSX//PEfJ9HXJ33Puro0PvrRFD7/eRuWJROjJuAgWV/LB79MlpDj6HQgQrlBsGRSAjq7\ndjk4d076Dpmsyvl5hQMHJDtlYkKOg+3bJWCdTEpmjbyn7L8miJhIKLeMoenlpDXQ3g7ce6+Nq1e9\nrLXJSWtRAK+xUbJzFhZUunegRjyuMrK+pIQh8MADNu64Qx4w2L1b9tvGRuDqVQkom7J7Wpt+WrJ9\nm5pkn00kFI4ds9zeU2Zc7+hw8N57VjpLSzIfR0floQT/+O+f8M93Pfr44zYCAckGlf56ss9KwFPj\nvvts/MVfLLhjqf9+R/oYaVy7BjQ1Odi2TY7Fjg7ZZsPDASwswA2MNTZKAFX6yWmcP69w5oxyg8az\nsxJksW2N9nbJFp6dVelMUFm+hobMPoO1tSbbTLlZZVL+VILwti3BmmhU49ZbHWzbZuPJJxcQj0um\n1/nzlrvPSY8y00/LQiik0dWFdMUBySLxn1/8AQjTm9ZkK5rg6sIC0NsbQG3tQsa69+8r/nEm+z7I\nBCBMf16z3vv6NPbv17h2TQKlu3f7y+/JeLLU+TYXs20nJqTX1diYckusJpMqfa4A/CV/d+92cNdd\nTllcd6/04cnsY0O2JbIetpMx/uGH7TWdQ8l1bbrcdfRKH2h96KEULl6U7+n1hfbWgylzafZDQPbF\nAwccfPazqTW7di703rrc57wK6Z9uln9qCjh9WqrahEJr+6AqA19E5YM9voiKUA59XkqpHPprVXup\nrOWUKh1/Je9TaG8x/3ubMliADaUcnDgRwOnTlluiqrm5uG1XivIWhZRuyP6uExOZJa6A4so0lmP9\n8FzrMvsYB/IfX+UwHpS7tS4lmG25c1BPj8YXv5jCj3+s17wUYznzl9QdGZHJCel9ZiZPpa+gKTmj\ntUya3nCDNxmyb5+U5FNKShUq5Z239uyRPk8jIwr/9m8BtLZ6PYmKGStWOq7k+n12Xwozhkpvq9wZ\ngSu9vvGfIyYnTeAV6fJpcmzs35/CwIDOOZ5nf665Lti3D25vsnDYwdNPJzP2Y7NdpfyklPObmvIy\nOG6/3XYbtk9OKrcs0fy8TPhOTiq0tCh0dOhF4117O3Dt2uLv2t4ux9mf/Eky59j64IMp/PSnQSST\nltsjKRCQhzlSKcloCocl2NjYKBOuExPK7aljyiJK1o4E7bw+nDJ5I+dgWQ/T08D773v7aDwOABYG\nBhxobWF8XAIWwaBMCpmSvbfcIhlIZvkbG4Fr16T31uQkIBNjEmzwl9X0n0fzlYXKd93hPw+fOmWh\nu1uOG9MfJRiUXmImM8S/XvOVnAPgO68vPg5Miapr15D+e+WWN7NtuZ55+GG51pA+flL+6vXXJXNv\nbEz2LynNqPCtb9Xir/4qmfPYjkRk/U1MyDgRiyk0N8Mda159NYjDh1P4/Ocz9/ff/30bly6lcPRo\n0M3AmpvL+VVdtbUabW1STm183AQftFsu07alzNrYmGSixGJSBnlqSsoxJhIKSjm4804HIyOSnbFv\nn4Nf/EKCGpYlmUSWpd1gkmQvygd4PcokcGtKfwKSfZRM6vT+pdPZaNJzLBSS43TzZmDbNgcvvmj5\netnJJLHJstq2zUY4DLccmNnHw2GN3/42gLo6CR6bTEVAju/eXqTLz8o+7B33Fl5/PYA9exy3ZOzJ\nk8rtK+sf//3Xgktdj27daiMWCyKVksBSQ4N8j49+dAF/9meZ107Z9ztdXRoPPGCjt9eBZWWWhTt5\n0sbEhIVLl7zeapKdq9DRoRCPSzB2dtYr76q1lCmcmJB9qKFBgqiplKwH83BHMOgvtQmkUpKVFQhI\nECyVkmv6tjYHU1MScBsYcNxla27WOHvWwvbt8pBCU5Ns04EBG+++G0Bzs7xOKa+f1ZYti0vUev2f\nlFsGVynljvn19cAf/iHwox/pRecsYPE4kz0GmGs1f6lvs1yHDi2kA1WFn4eXYrZtby9w6hRgAguS\n5WXGf3m4wdwv9ffrsrnuXum1R/ax0dDglTP2n2/Pn5dMynKYQynkOnq55cz1ms2bZT2cP68QjyOj\nn1lfn/S181uPuY5i7q3Lec6rkDkPs/xHjgQzyrsCldNSg4jWBgNfRFWuHPprrWYvnkpQqsBfse9T\n6M1Wdm8ac0MzPa0BWOjrA4aHgfl5CyMjDh57bKFk267Qi+7lLoClPF0Nhoct94nnyUlg377MJsux\nmPRgKGQ/rJT64cUcX+UwHpS7aFQv6qMGIJ2tUR7bvqdH4wtfSMHfI2ej80/e+AOX+f4bWNxnp6lJ\nJkYHBhz3ZtpMxpl+DYBM4J09a7njaTFjxUrHleUm/f1W42ET/3tKlhIA6HQvJVmXc3MWDh1KFPR+\n/nFry5bsZvde8OTXv5Z+RaZXRyikcPashbo6B/fcI0/9mu/24x8HcPy4lMMDpOTj/DwQjXpPs/vH\nuyeeSOIb3wgtWk9PPJF0l/H++1N44YVaXLkiAbEnnlhwe/6YyWGTDdjWJhkGDQ2AbUtvqUhEyhBK\nwE6CCbatcccdKSQSVkYmGQCcPGml91N/z0aN++930NICtwfbyIgEO1Ip4O23Nc6e1ejrk1JjkYj0\nh3vkES+Qde6cgmVJ0CaVgvtvKTmoM64L/PuTXEfIdvcmOSWoNzqqFl1L+K85wmHpg7Jrl+M+DW+C\nm5s3I+c5KxrVuHDB8gVDpW/c+LhCZ6eDkycV+vrgntenpyV4+Z3v1Lh9OS9etHDpUgDBoGyT9nbp\nC+QXiWi0t2vE4w5qaqx0P1MxP2+5+4g57qanvcn6mRkJWNbVZY4h4bBGLGbh2WdrsWOHA8fRbq88\nmZTTqKlx0NxspXtiSfBMsuu9EoFKSRDKZHNfvSrlMR1HZTzMEwxKhv78vOX290okgFBIghrhsMaJ\nExb27nXcUo8tLQrd3TbOnAmks2UU6up0uhebbNfZWdlPpQyrLPfsrJSSnpuT8qFS6k36xqVSEpQL\nBiXDamxMelyFw7JvS+85nS5dKH9rMuVOnpQg+qVLCpOTAbdU4W23Odixw8HwsIVLlxSuXDFZirL/\nXb4sJUxlnXtjMwBcuSKZTKanoRn3s8f/7An/fNejZ84EcNttGqdO2fjwQytdxtHB7t160XVWMddj\nTz+dxLe+VYvJSaQz+eU8Y8rlxeOSeSclVZEuiWiy5ySYvGOHZFm98YYXBAwGZawxmVXJpGR3WZaD\nmRkJ1Nu29G+bn5fAbV8f3P565hju75fylko5GePDkSNL93LKt069v/H6UQ4MOOjrK/yclf06k93o\n78/rX5ZSXsf7t+3p0wpXrsiDDdGoxq5d8v3CYSnV61/+crnuvp514d+Ocl1kLTru4nEZZ/MF9Ap9\nELOcmfUwOGgveiimqcnB009n9p7eutUu+DuXcv2Uc0CrUMVcx5bjg6pEVF5Y6pCoyq1Ff61C0rwr\noVTWailVOYFi36eQsha5etNcuCCTF1evSjPf5mYJhvlLcq11qb/lSjf8wz8E8a//WoPLl2WCamEB\nuHZNvocpp2Ru0gIBlVGXPl8phLWsf27KoLz8cgA//GEN3n7bKqpGeaHHlxkPYjEpESNlpWSC6667\nyrPs6FqXal2PUoJ0/fwlpiYmvEnOSER6HknfHe02nweA/n4HiQSQ7xj3jwFeSSV/iR8ZTwcH7YLH\nipWOK4X+nX/yZHzcQmOjTIxebwkb//nHPO3c2urv5+WVdcol13Hc06MXjVvZfUguXlS4cMFCNCrb\nsrtbJsY3bZLyfP7z4NGjFk6fdptJIRaTSeK2Np1RVs9c/3R3A9u327h0yYLW8r5PPZVMZ1vJsvzL\nvwRRXy9lKRsagHPnpD/Mbbc5iERkgqmzE7j9dhuNjQq7dkngdHZWXl9bKz1xpqbknN3e7qC1VdZj\nXR1QX5/Zoy0chtsn5NIlhddfD+CddyQz6YEHUvjUp2zcdpuU9puZUWhursFNNyXx2c8m0dUl28O/\nTsx+fPy4heZmhWvXpDRcMCjrYPt2ydLIt2+Y7X7hgsLRowEEgwoDAzJxm33+zL7mMCU2HUfKPd16\nq43PfS6FnTu1e87avFnKGx4/LvtFJCJZX3Nzcv6OxSycOGGhr0/6BZnynp2dMuEciwFay74ix7xM\nlNXVSSlCr8SZHA+SrSMmJqTvkClRaZisroMHpY/I0JAEVM0yOY6UHJYsG2//7+4GfvtbKY8ZCCCj\n3OqJEwFcumShtlYy0U25QaUkA0cpjbo6yZYypQAbGiQLLRaTQJQpKQfI72+4wUF7u1cC+coV6evU\n1iavGRuTQNX0NNDUJNlDn/lMCg895OBTn7Jx//02kklgYADo7XVQU6MxPy/HQWOjZLtJRg+QSFjp\nDCTp/zo3J7+T7yBl8Ey/qtpahWjUwcGD0vPn0iXZbj09ErxyHCknK72zLIyNSenXRELWWzIpAeba\nWpUuYyjvPTvr7VddXdI7Z88ex8308khJPek/6J0Pssf/Qkt2Dw0F4DhyLbljhxwz3d3SNzBfuU//\nuDY9nfsaprsb+MhHHDdrtqVFsrKCQS8gmkqpdOaevLfjSInKcFgCWnv22AgGFXbulPOA40ig1+sj\n5+1f7e3SSzEWs9y+X4GABCz27LFx//1OQfcNuc5F09MS4Dc9NbOv0/x/411/Slm4gYEatLYmCrq/\nyb4P6u2VALQ/IJzvHJ7r98Uy29aU+O3rk/si6eknx6i5XzLLXy59rku1Lsz7fPCB5R535rqothY5\nSyeutL9Yucp3P75zp3dNE41q/Mu/FPadq239lEIxcx7r2VKDpQ6Jygd7fBFtYGtxMcCT/vJKFfgz\nN3Lj4yo9sanyBgIKudnK7k0TCmlcvqwQDCq3SbQ0oPYmONf6Zg1Y+gJ4dFThb/6mFrOzFhxHau7H\n4/Ik+8yM9LUA5EbbPGHvr0ufr779WtU/Nzc8589bePPNAK5elYbsgMKpU6qkNz5nzli4cEEaU8/P\nS/kh2c4yAVNuN1hrcTOYPX41NQE7d+p0BotMlt1zT4rlIMtcdjPysTGZmJWMGhkz/cf+Uv2ncvWC\nkHKvMrnjzyJVCvjYx+yCx4qVjiuF/J3/eDF9o5RCycYt/6RffT3cTCfTA2vXrvx9BQs9jnMFTy5f\nlr5EZtI6HNZ48skFfOxjdsb59OjRQHpCWPr/TE5Kn6CrV+VcNj0tk/g33OC4y9ndDXzykzYefdTG\nJz9pu72dci2LyOwPc9ddDj75SRt33eXg/HnJ/jJN7RcWZP3MzQGDgw46OzUuXrSQSsnYu7AgvYP8\n59dwWOOJJxZw7pzC//k/Qdi29KiZm1P45S8D2L5dltFsi/vvD6G/f35Rj8pc/eFMICqZlEBCQwOW\nDHr5t7tk2Ul/Lf/588IFycAbGgrg9dcDCAQyA3nJpHKDftk91rL3i+FhCy++GITjqHTmkmSlNDZK\nYKWjw/TQk151dXXA7OzivndTUwq7dztZyyrZGRJAUO5rz5+Xnl+2rXDtmjz8I8Fix+0j8v77Cleu\nKHdf371bAqlXrsj+FInIRPc77wTS2UYac3NAKmUhkQCGhy1cviyl65JJCXDNz8t3NJlVNTUSrKip\nkeCMCVyEw5IxNT8vx1t7u06X0JSgz/btcjx2dMjYY0W/zwAAIABJREFUUFsrwaPZWQn+AHDHi3x9\nUf29X594YsHtfaaUBAXn5pR7fZhKyWstC0gkNLSWzEcZDzRaW6UHlFKSmReNyvKfPStBx1BIAtJT\nU9InLpEwJTClP2B7uylR6D1QMDwsDyw1NkoQua/PQXu7xt69Npqb4fbbMd91507Hve/p6pJ9INf4\nX+iE//XcRy039pmeeHfeKQGca9ckGLV9u2RkXrsmZRDNfjI/L8HPpibJZjxzRnrUJRIKmzcDmzZp\n3Hyz7QYvW1s1AgHZJvv2yfVyMmml+7pJP8jWVqCtTcbBQu4bss9FoZBkOmqdu5+u/29yBdBPnAii\nu3sh54MQufjvp/wPAay0n9NK5Aoi5TsvlUuf61I/hPlv/xZAKqXc87+5Lsp1j7jS/mLlbLn7+mK+\nczmvn/XsT1fo3MlaPqiajXNgROWDPb6INrCN3l+r2hRTK76QshbZN2OmN47cXDuYm/P65Hi9ETSO\nHAkuKsew2mUs8pVuGBrySlt55Dvs3GljYEAmQerrVfqp8cxlWqoUwlqUizBlUMy6B+Bb56UthzI4\naOOllzLXl/SEwZqVXSlmP1mvEjEsJVh5sktM9fWl3DJj0ajGY48tZJSgWar/VPb7Li7V5DHjaTFj\nxUrHleX+bq2OF3NdIRMKZrIr/3VFMcuVPR43NUk5rNOnLbz7rnLLDebvVanR1yfvU1encf68ZMHM\nzUnvrMlJB48+Wtj1T7Hlc7J7ZZoeQ+fPy7o6edIb4wHZN2+6ycb8vMKWLTpjv3zhhQC6ugB/yUOt\nFV54oRYHDxZWTjLX8kYiXpmxlpbFpdoKeQ8jFgOOHg26pb1mZ4GLFyUjLhLRmJ6WhyyiUSl1mH29\n4t8vzGtjMclGkyCnBDu0Nhmc+a9d/FSeX/X3e6XHJicVBgY07r57Ad/9bi3OnpXSiK2tEmwbHlZu\nKUfLUu629LvzTtmPpqbMsltIpaTP1dmzsuyTk/Igkck6laCxTBzG43KdEgrJ+waDUoLyIx9xcOyY\n9LWybcnWueMOB1NT8lBPT492+zoCcEtRmhK9SnnZYkBm/6NCyvu99Za8fn4e7nc2QQ3JOpMAWGOj\nRk0NMDcnDxd0d8s+NTcH1NV5n9PVpfHRj9rpIKOGZel04MxCMinbW9Yj0Nws23lyUrlj+tiYlL5s\nadG4/XZvgn1gQLan+b3pNQXIOp2elsDm/v32kuP/cq7nPqrQsS9XCbXt2zViMQncp1ISsI5GZX1a\nFtI/tzA2Jtt6clJh3z4Hra3AF77g9dry3zeYPn/BoMKmTRJMAzQ6O71sLv99gynx2dAg1/1mvWWX\nvpPeect/x9ZWrxSg99rru/4sRT+nlXxmoSUty+k+vFTroqdH4777bJw9m/s8nG0jlqJbi96vq61c\n+tMtZ6O31CCi5THwRVTleDGw+taybnkxE4iF3Gwt1Si6t1cmESWIZCanTHmazIvg++9P4dVX1+fi\neHJSYfNmne5J5n2XVAq44w57UV36bOvdt8msy+ynbM3/l/LGxzxRe+KE1z/FNGdeixusYm+iJidV\nRvNss1+u980glaflJnUOHlz5hE++8XTrVjvngwDFKNU5pJjJk+v5zGKvK4pZruxzUiwmAcf2dmD3\nbnn/V18NYvPmxWOG2UbDwxbm5qTHVzAoGTCOA1y+LH1/zpwJFLQvFNsTJd8+sn+/g6kpa9EY7/VA\nknKDfleu5F6mfD9fSq4+VeGwxuBg4cdDrnUxMqLc0nsA3GsG86DM8LD0turtzQzemesV//aX1wKB\ngHazd7SWzKX6ep0RvDHLAyDn9tm/30YslvvaJ9cYcf68jddfR8Y5JhLxlnOp/nqDgzaefbYWdXUS\n1AkEJKsoEJCs09paCXo1N3vZOs3NGnV1GuGwg2jUe7+6OmDrVgeAxvh4EKmUQiCg0+8lAcUtWxw8\n/LAcey+/HEQ0Kn3ozpwJQCmFEyeQ7suqcPmyhakpQCkLJ0/KuX5gYPnsgakpCZ7JtpWM8IkJyToK\nBJAOmDhoaZG+c2+8YaGhwTunX7q0uHRyV5fGnj2yn//3/16D//2/g1BKenFJlr4EY8x29j9Q8Cd/\nklzUT8e/Pf2/NwFUrTUOHHDSfbMkG2ql4//13EcVO6G9+AGOBSgl2+TnPw+gpkY+f24OuHpVrmdT\n6a9lHpjasmVxcNO85/nzCqGQ6UHlXev398t38Y9h/nXZ25vZ19L/3athgn8lCg0iVet9eDEBvUrp\nmVxKa9H7dbWVS3+6QlRDXzMiWj0MfBFtALwYWD1r/TRUMTeNhdxsLdUoOhKRScKRESlrNTDg4No1\nYGoqM3hknkL3904wP1+Li+NoVGPHDo2pKfnHtmWyaMsW6WOR77sC5ZH9aG54zNPaRvYEUKn092to\nvXjyay1usIq9iXIcjePHvQy1uTmVzujgeEZrK9d4unWrfd0B/1KeQwqdPCnFZxZzXVHMpE72OD0y\notJl07wxK9+YYbbRX/+1BJkCAem9YjJKgkF5aKPQSdZizxn5zrmAZOX4x3jJtM0/xre3A9euLf6M\n9vaCFn3R9zh2zEpPYsvP5uYys5oKeY/sdTE/D7eUMCBZbvv2OW6/ooYGmTDPLjVk1r9/vzBBwaYm\npB9iEQ0NkmnlD575t0Gu7WPO+4VONOfL6DLLKetPAqreAyOO+547dkhZRS9QIN/D9M9sbgZqazU2\nbZLMqPp6KT+aa5lGRxW+8pVaAFK+L5VSGB+X8ofDw3Jtlu/YPXTIy7xXSkolRyISEJmYUJicREHZ\njmNjFpqagPl5nV4GpD9PQykph71pk2yTkRGF3/kd2eZm3YTD8t0lY9Fj9nPz/uPjGqGQQiolDy0l\nk/Ke2cfYctey/t//7GcBRKNOxn5XimvRld5HrWRCO99n9fdr9+Gto0cDbpA46JvNmZ9XOd87V0aZ\n4V/fK1mX1TDBv9qq8T68UrPe1kox37lc1081BaqJaGNjjy8ium4bub7xWtflLrZW/HL1sZdrFB0K\nSemdp55awB13OPj1r3PX/79wQfozZFuLfmDRqMapU1ICq6ZGln3zZgf/5b8ksXNn5qTcWvTsKpap\nTW76EgHKbRQdDpe+Rvl61kIvtsn30aMWTp8OZL1WYccOp2T71UYev6hwuTKkjh0LXPf4X8pzSKHH\n9lqft4oZc7LH6atXpc9hdonafGNGU5NkCQ0PW0gkFBzH+8zaWo2GBim1Vcj3XMk5I9c517zP3Bww\nMmIhEvF6xeVbD21tDn75y+yytBpPPZXM6ENWyPiVq0+V9L4rfJvnWhddXXrRgwyhEHDggIPPfjaF\n2VmV8TCHYa5X/PuFCZwEgxo33eSky5RKObunnkoiFFq8DZbaPsX0VV3uump6WuHNNwPpUoYSaGhu\nBm67Td7X/L2/h1pNjWSqSW8z2da7djkYGNC4/XYHhw6lci7TK68Ecfx4EFoD8Tgg21/6hjU2Av39\nDubn8x+75ntfuWKhvl6CXmabb9smgaZ8ffhMH5f33pN+ZA0NUn5Qa+kX1t7uoK9PIxiUHmf33OOg\ntlb6jXV0yHft6JCHpsbGMgNf/v387bctXLpkobZWSmcHAoBlOdi2zcYnPuHkPMYKuZbdu9fBxYty\nfIWy2jysR29aoLTXW9nHy8KCwuyslOc0wa9IxMHnPpd73wIKG9OKXZeFfEezf507p3DypJXuGSe/\nC4WC+MQnEmXXY5aWV+g4u9L7r/XsL3W9ivnO5Xp/Wi796coZ7yGJygd7fBGto7Usg0drb62fhlqN\np8Kyn0Rcap/N97RmvqfQ1+IpTv9Th1u2LH2cleNTl/7lb27WGBuz0NnpuGWUSj1erGfZlWKf9lVK\nelb4y3P19WmofE1ciFZBvgypbKYs57vvSrC2kOOqlOeQpTKO/OUYcy37Sj/zepYr37rJ7h9TbIla\n08uwqUmn+xTJ92puRrrEX+Hny1L2RPnCF1L41KfsgtbDwYMa/+2/JfDCC7W4cgXp3mZJHDy4snF6\nuaymQr9D9rWC6S9lmOuR0VGFiQng6FEph2iyRvJllyilceKE5b6uu1tDKcfNQsxXpq4U22e566qh\noQAiEWDPnsyJPpP54v9700NNKb2oBHT2++YyOSnnuVBIobNTIxaTUna1tRr33ZeCZRV27E5Oqow+\nc/leBywe34zmZsli01pKNW7a5GT0hzt0KJU+PjP/LhLRuP9+KYOYaz/v79eIxZx03y6FcFgCavv3\n29e9Lcsto6iU11vZxwtgYfduKf1sro+efjq57HsXeswUui6X+47Z+5cpxbl3r1znfvrTWFTKlKpP\nsWN1pfSXWspa9H5dTeWaiUZEVCwGvohWUTVctNHS1vomey2CFktdfOe7CH7iiYWiJ3hKqRxvGIpR\n6PKXKpC+Xuur2JsoOb60O9nm/znRWslXonN8XLklXmMx4Phxeeq9pSV/P5RspT6H5A5OZF6HnDyp\n0NeHRVlUq3lcrXTMWcnES0+PTAB/61u1CIctxONSMi8adXJODK/lA0rFrIeDBzUOHkyU5HNX41pl\n6dKOss9t3y6T3KdPK9x3nwT+/OvWvz7W60Gx5a6rlgtOL/X3mzcXd70WjcrDHSaDzIwvLS3aDZrm\n2o6OozOC246T2fPU//7Zssc306utrg7Yvt1Jf15muUnzPvmOz0ceyf89zd/09VkYHpbyfMPDuqAy\njMspx4naUl5vlep4KeRvi1mXS33H7P1LgsMSAD10KIWODmB8vKDFpg2kkvpLVauVzjnwoW8iKjdK\na11xo9D4+PR6LwJRQfI9qTww4FTVRVtHR2TDHpe5npRVSld1cDPfBS0vdFdXtexrxewna/GdN/L4\nRYX5zndqck42y1P3Mhlz8qTCxIQFpaTPkQkqLXe+X+19PNd1iMlM8weUy3ksWem5pZC/K+X6X49z\nYKHj11qeP6rt2nctv4/ZTrGY5ct0loDtwYM653aUnmjKLVEtPwMAjUhk+e2da3yLxSRI3t/vZGTi\n5Xqflez3b72l8K1v1bqZSr29Gs3NpdkfeS26tGLGglKsy+98pwYXLliLMve3bHHw5JMLq3oNxn2h\ncuW77mpp0XjyyYV1WCIqRLXcqxaK95BE5aOjI5L3d8z4IlpFbApa/dazbNx6yfdkZ6VnXZW7ann6\nsdjSHxvt+KLyky9bxpQjHRoK4N13A2hpkQk9fybVcuf71d7Hc32+6cvR368r4rha6bmlkL8r1bha\n7hn+azmWVtu171pmES1XujnXdpyYWLxuIxEZt1palj/Gc41vTU3AzTdL6cHlggcrOT7PnAksKsNY\nqusZXosurZgxrxTrUmuN48ctmEet5+YUJicV+vpWNwuv3MdkWlq5lS2lwlTLvSoRVRcGvohWES/a\nNgbeZNNaqLbJxELx+KL1ttTEt3//LLYXlbGa+/hSQTseV6UbVythsmetxtJqu/Zd6wcwlttO2b//\nzndqcr5OKYVDh5bPjFgusLca+001Xc9UWlbRuXMKJ09aGdlXkYhetXWvtQS//KU3tdZYrZpDZnv8\n/OcBxOMq42GUchuTKb9yLFtKy6umsZ2IqgcDX0SriBdt5a/Sblhp46q2yUQio9zH4UImvsv1fF+u\ny1UuSjWucrLHU4373Ho+gLHc+Hi9+/BS41uh5UKLHb+r5Xqm0rKKRkcVTpyw3HVvsq/27XMwMOCs\nymdalrz/yIjKKG1pWaUfG/3b4+pVlfH9TPBrI47JlYgVHypTtYztRFRdGPgiWkW8aCtvlXbDSquv\nnCfgq3EykahSxuFCsjDK8XxfrstVLko1rnKyx7OR9zlzDXHunMLYmIXOTsctibqS71/I+FiKfTjX\n+FbIZ690/K6W65lKyPT0GxoKoLdXY2LCy8DSGhgeBr74xdVZ92ZszC5tuRpjo397hMMac3Mq/f28\nnpYbcUyuVKz4UHmqZWwnouoS+PrXv/719V6IYs3OJtd7EYgKZnppHDzoYO9ex20OXU0aGkIVeVy+\n8koQExPZpakUZmYU9u69vicfR0cVXnkliKGhAM6csRCN6qrc9tXETOBMTEgJmMlJhXfesdDfXx7b\nrqlJypPNzCgoBXR1aTz88MaYTFwN5hh9/fUavPeew2N0nVTTOFyu5/tyXa5yUKpxNRrVeOcdC/5y\nXkrJe63m+i7X66+NuM+Za4jz5y28+WYAV69aGB6WfeLUKbWia4lCxsfVujYo5LNXOn5Xy/XM0FAA\n8/OLA95KAQcPrk4G1fUwgaFoVGNhQZYzEtHYu9fBQw+tXuBrqbGxlGOYf3uEQsDYmAKgoJRCV5de\nkzGZaCOrlrG9UOV6DUa0ETU0hPL+jhlfRHRdZGIRuHChpuKe6l2t0kSVksFAmSrhyV0+/Vga/mO0\noQGIxy0eo+uE4zCtt1KMqxs5y4mEuYYYGZHJdgC+bJOVXUsUOj6udh+uWAxuqbrz55W7b5vXTE8r\nDA97peyUWllvw9XMul+N9660TE+zvE1NyMjA6u9fveVdy7HRvz2amuCWWKyvBwYGHI7JRGuA96pE\nVG4Y+CKiFTMTi/X1QDyuKm5icbVuWCshgEKLsUfLxsFjtHxwHKZqwcmeylSqgIi5VsjOADL/v5Jr\nifUMrJjPjsWA48e9jJ14HHjuuSAOH04hGtW4cMHC8eMWdHqR5uakj9ToqCpqPa7mwwqr9d6VVtZr\nvZZ3rcbG7O9nMk8r5b6UiIiISi+7NgERUcGWmlisBIOD9qKnUktxA8gASmXKN5FUrk/u0srxGC0f\nHIeJaL2YgMjZsxYmJhTOnrXw3HNBjI6uLEgFSG8hP/P/K7mWWK3xsZjP9mewKQX09Wn3Wn9w0Mbw\nMNygl9Do7dVF3wus5j3Far23yWYaGHDQ0qIxMFDeQZZKW95iVfv3IyIiouIx44uIVqzSJxZXq/xG\npZU+IVFpT+7SyvEYLR8ch4lovZQyM9RcQ/T2AhMTGtJbSAJFK72WWM8Smuaz/+qvajE/LwG8vj6N\nSEQ+e3JSMrr27nVw4gTcMoe9vdLLrNh7gdW8p1jN9660TM9KW95iVfv3IyIiouIw8EVEK1YNE4ur\ncYPEAEplYo+WjYPHaHnhOExE66GUARFzDfHSSwGMjChcuQK0t2v09dl45JGVX0us50R+T4/GfffZ\nOHt28bKba/3+fg2tvX5R2b8v1GreU1TD/QoRERERFY+BLyJaMTOx6MeJRQZQKhmfFN0Y/MdoKgV0\ndrLpebXhOExEy1mNgMjUlMKePV4gaGqqMqog5LPcQwRL/b6Y/mmr+bACH4QoX8PDwI9+FOR5moiI\niFaF0lpX3JXF+Pj0ei8CEaWNjiq8804jLlyY5w0LEVWcjo4IryuIqCJx/Lo+psdXdkBkpX2BjhyR\nfmHZBgacin6oZrkAVq7fA1h23Wb/3datNs6cWZ2HFYoJwtHaGB1V+Od/bsTMTML92fUcf0REa4nX\nYETlo6Mjkvd3DHwR0XXjSZ+IKhXHLyKqVBy/rl8pAyLf+U5NzgyylhaNJ59cuN5FrSjLBQFLHXRc\nDwymXZ8jR4IYG6tDPJ7I+HmlB4qJaGPgNRhR+Vgq8MVSh0RERERERFQViglIlLLEMXtJeZbrnzY0\nFMgIegGA1rLdKiHokR24m5hQOHdOVVTgbr2VssceERERUS4MfBEREREREVHFW8+AxHr1kirHzKPl\ngoCVHvSo9MBdOYhGNcbGcv+cKlc5jkdERLRxMfBFREREREREJbNek5/rGZDo6ZFSfWv5vcs182i5\nIGClZ8dVeuCuHAwO2vjnf8782VoEimn1lOt4REREGxcDX0RERERERFQS6zn5ud4BiVKWTixEuWYe\nLRcEXK/suFKp9MBdOejp0fjDPwR+9COH2UFVolzHIyIi2rgY+CIiIiIiIqKSWM/Jz40WkFjvQN9S\nlgoCrkd2XClVeuCuXPT1gQGRKlLO4xEREW1MDHwRERERERFRSazn5OdGC0hUcqBvrbPjSqnSA3dE\nq6GSxyMiIqpODHwRERERERFRSazn5OdGC0hstEBfOankwB3RauB4RERE5YaBLyIiIiIiIiqJ9Z78\n3EgBiY0W6COi8sXxiIiIyg0DX0RERERERFQSnPxcWxsp0EdE5Y3jERERlZMVBb7m5+fx5S9/GVev\nXkVDQwO++c1vorW1NeM1L774Il544QUEg0H80R/9Ee677768f/eTn/wE3/zmN9HV1QUAePrpp3H7\n7bdf/7cjIiIiIiKiNcXJTyIiIiIiWk8rCnw9//zz2LFjB55++mm89NJL+Pa3v42vfvWr7u/Hx8fx\n/e9/Hz/4wQ+QSCRw+PBh3HXXXXn/7p133sGXv/xlPPjggyX7YkRERERERNVidFRlZFF9+tNAOLze\nS0VERERERFR+rJX80VtvvYV77rkHAHDvvffi9ddfz/j9sWPHcODAAdTW1iISiWDLli1477338v7d\niRMn8IMf/ACHDx/G3/zN3yCV4tOBREREREREgAS9nnsuiLNnLUxMKJw9a+F//A/5OREREREREWVa\nNuPryJEj+N73vpfxs7a2NkQiEQBAQ0MDpqenM34/MzPj/t68ZmZmJuPn/r+766678PGPfxy9vb34\n2te+hhdeeAF/8Ad/cH3fjIiIiIiIqAoMDQWgdWaQS2v5OUsKEhERERERZVo28HXo0CEcOnQo42df\n+tKXEI/HAQDxeBxNTU0Zv29sbHR/b14TiUQyfu7/u8cff9z97wceeACvvPLKksvU0lKPYDCw3KIT\n0Rrq6Igs/yIiojLE8YuIyl0qBTQ05Pp5HTo61n55iIhKgddgRFSpOH4Rlb8V9fi69dZb8Ytf/AL7\n9+/HL3/5Sxw8eDDj9/v378ezzz6LRCKBZDKJDz74ADt27Mj5d1pr/O7v/i5eeOEFbN68Ga+//jr2\n7t275OdPTMyuZLGJaJV0dEQwPj69/AuJiMoMxy+i4mT3mRoctNHTo9d7sapeMBhEPJ5Zpb6hIYRg\ncA7j48z4IqLKw2swIqpUHL+IysdSQWiltS76TnVubg5//ud/jvHxcdTU1OCZZ55BR0cHvvvd72LL\nli144IEH8OKLL+Kf/umfoLXGF77wBTz44IN5/+5Xv/oVnn32WYTDYdx444346le/ipqamryfz8GF\nqLzwpE9ElYrjF1HhTJ8pf8k9pTQOH5bACwNiqyfXum9sDOHf/bsZrmciqki8BiOiSsXxi6h8lDzw\ntd44uBCVF570iahScfwiKtyRI0GcPWst+nlzs4NYTOUMiDEoUzrZ2Xaf/nQdwmGOX0RUmXgNRkSV\niuMXUflYKvC1olKHRERERES0sUxOqpw/P3YsgBtuyAxwaS1BmkOHWIavVHp6dMb67OgAxsfXcYGI\niIiIiIjK1OJHNomIiIiIiLJEo7mzt/LVj8gXKCMiIiIiIiJaTcz4IiKqUNklj9hPhYiIVtPgoI1z\n5xaXNLzlFgeTk4ufp8sXKCMiIiIiIiJaTQx8ERFVoOwm9xMTCufOKfZTISKiVdPTI327sh+6AIDn\nnlscEDO/IyIiIiIiIlpLDHwREVWgoaFAxgQjwH4qRES0+rL7TBm5AmJ8EIOIiIiIiIjWAwNfREQV\nKF/fFPZTISKi9ZAvIEZERERERES01hj4IiKqQNGoxsTE4iAX+6kQ0Vphn0EiIiIiIiIiKkcMfBER\nVaDBQRvnzrGfChGtD/YZJCIiIiIiIqJyZa33AhARUfF6ejQOH05hYMBBS4vGwIDDCWciWjNL9Rkk\nIiIiIiIiIlpPzPgiIqpQ7KdCROuFfQaJiIiIiIiIqFwx44uIiIiIipKvnyD7DBIRERERERHRemPg\ni4iIiIiKMjhoQ6nMIBf7DBIRERERERFROWCpQyIiIiIqiukzODQUwOSkQjQqQS/2GSQiIiIiIiKi\n9cbAFxEREREVjX0GiYiIiIiIiKgcsdQhERERERERERERERERVQUGvoiIiIiIiIiIiIiIiKgqMPBF\nREREREREREREREREVYGBLyIiIiIiIiIiIiIiIqoKDHwRERERERERERERERFRVWDgi4iIiIiIiIiI\niIiIiKoCA19ERERERERERERERERUFRj4IiIiIiIiIiIiIiIioqrAwBcRERERERERERERERFVBQa+\niIiIiIiIiIiIiIiIqCow8EVERERERERERERERERVgYEvIiIiIiIiIiIiIiIiqgoMfBERERERERER\nEREREVFVYOCLiIiIiIiIiIiIiIiIqkJwvReAiIiIiKgcjY4qDA0FMDmpEI1qDA7a6OnR671YRERE\nRERERLQEBr6IiIiIiLKMjio891wQWisAwMSEwrlzCocPpxj8IiIiIiIiIipjLHVIRERERJRlaCjg\nBr0MrSUDjIiIiIiIiIjKFwNfRERERERZJidVUT8nIiIiIiIiovLAwBcRERERUZZoNHc5w3w/JyIi\nIiIiIqLywMAXEREREVGWwUEbSmUGuZTSGBy012mJiIiIiIiIiKgQwfVeACIiIiKictPTo3H4cApD\nQwFMTipEoxL06ulhxhcRERERERFROWPgi4iIiIgoh54ejUOHUuu9GERERERERERUBJY6JCIiIiIi\nIiIiIiIioqrAwBcRERERERERERERERFVBQa+iIiIiIiIiIiIiIiIqCow8EVERERERERERERERERV\ngYEvIiIiIiIiIiIiIiIiqgoMfBEREREREREREREREVFVYOCLiIiIiIiIiIiIiIiIqgIDX0RERERE\nRERERERERFQVGPgiIiIiIiIiIiIiIiKiqsDAFxEREREREREREREREVUFBr6IiIiIiIiIiIiIiIio\nKjDwRURERERERERERERERFWBgS8iIiIiIiIiIiIiIiKqCgx8ERERERERERERERERUVVg4IuIiIiI\niIiIiIiIiIiqAgNfREREREREREREREREVBUY+CIiIiIiIiIiIiIiIqKqsKLA1/z8PJ5++mkcPnwY\nTz75JK5du7boNS+++CI+85nP4Pd+7/fws58W7shmAAATOUlEQVT9LON3P/nJT/Cnf/qn7v//5je/\nwaFDh/DEE0/g7//+71eySERERERERERERERERLTBrSjw9fzzz2PHjh147rnn8Oijj+Lb3/52xu/H\nx8fx/e9/Hy+88AL+8R//EX/7t3+LZDIJAPjLv/xLPPPMM3Acx3391772NTzzzDN4/vnn8fbbb+Pk\nyZPX8ZWIiIiIiIiIiIiIiIhoI1pR4Outt97CPffcAwC499578frrr2f8/tixYzhw4ABqa2sRiUSw\nZcsWvPfeewCAW2+9FV//+tfd187MzCCZTGLLli1QSuHuu+/G0NDQCr8OERERERERERERERERbVTB\n5V5w5MgRfO9738v4WVtbGyKRCACgoaEB09PTGb+fmZlxf29eMzMzAwB4+OGH8cYbb2S8trGxMeO1\nw8PDK/gqREREREREREREREREtJEtG/g6dOgQDh06lPGzL33pS4jH4wCAeDyOpqamjN83Nja6vzev\n8QfClntt9vtla2mpRzAYWG7RiWgNdXTkPsaJiModxy8iqlQcv4ioknEMI6JKxfGLqPwtG/jK5dZb\nb8UvfvEL7N+/H7/85S9x8ODBjN/v378fzz77LBKJBJLJJD744APs2LEj53s1Nv7/9u42ts66/uP4\np2zdxtqOAqmaIE2EpJGYDLclxkCH4jCoCULYytrGGqIxkVjECXULMZsYEBZTs8Q4pkYmGbK6ORMx\nJhLvwhxbEBcHomLiQkCmIRW6uFPGunXn/2ChseymtPzXmx+v17NzXddOv+fBvkn77tWrPrW1tXnh\nhRdy8cUXZ9euXenu7j7j1x8YeHUiYwNnSVNTQ/r7D419IcA0Y38BM5X9BcxkdhgwU9lfMH2cKUJP\nKHx1dHRk9erV6ejoSG1tbXp7e5MkmzdvTnNzc5YtW5aurq50dnamWq1m1apVmTt37mnf76677sod\nd9yR4eHhtLa25vLLL5/IWAAAAAAAALyN1VSr1epUDzFeqjpML37bBZip7C9gprK/gJnMDgNmKvsL\npo8z3fF1ziTOAQAAAAAAAGeN8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghf\nAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwB\nAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUA\nAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAA\nAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAA\nAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAA\nAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAA\nAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAA\nAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQhNlTPQAATJUDB2qye/esHDxY\nk8bGaq64YjgXXVSd6rEAAAAAgAma0B1fr732Wm699dZ0dnbmc5/7XF555ZWTrtm2bVtuvPHG3HTT\nTfnd73436tyvfvWr3H777aNeX3PNNenq6kpXV1f+8Ic/TGQsAHjTDhyoycMPz85zz52TgYGaPPfc\nOXn44dk5cKBmqkcDAAAAACZoQnd8bd26NS0tLbn11lvzi1/8Ihs3bsxXv/rVkfP9/f3ZsmVLduzY\nkSNHjqSzszNXXnll5syZk7vvvju7du3KZZddNnL9M888k56enlx77bVv/RMBwJuwe/esVKujI1e1\neuIOsLa2Y1M0FQAAAADwVkzojq+9e/dm6dKlSZKrrroqe/bsGXX+6aefzqJFizJnzpw0NDSkubk5\nzz77bJJk8eLF+drXvjbq+r/85S/ZsWNHOjs7c9999+XYMT9wBODsOnjw1Hd2ne44AAAAADD9jXnH\n1/bt2/Pggw+OOnbhhRemoaEhSVJXV5dDhw6NOl+pVEbOv35NpVJJknziE5/IE088Mer6K6+8Mtdc\nc03e/e53Z926denr68unPvWpiX0iAHgTGhurGRg4OXI1NnrGFwAAAADMVGOGr7a2trS1tY061t3d\nncHBwSTJ4OBgFixYMOp8fX39yPnXr/nfEPZGy5cvH3mPZcuW5dFHHz3jTOefPz+zZ88aa3RgEjU1\nnf7/OExH112XPPBAUv2fzlVTc+J4U9PUzcXks7+Amcr+AmYyOwyYqewvmP4m9IyvxYsX57HHHsvC\nhQuzc+fOLFmyZNT5hQsXZsOGDTly5EiGhoayf//+tLS0nPK9qtVqPvnJT6avry/vete7smfPnrzv\nfe8749cfGHh1ImMDZ0lTU0P6+w+NfSFMI/PmJddff+KZXgcP1qSxsZorrhjOvHnV9PdP9XRMFvsL\nmKnsL2Ams8OAmcr+gunjTBF6QuGro6Mjq1evTkdHR2pra9Pb25sk2bx5c5qbm7Ns2bJ0dXWls7Mz\n1Wo1q1atyty5c0/5XjU1Nbn77rvT3d2defPm5dJLL81NN900kbEAYFwuuqiatjbPlQQAAACAUtRU\nq9UZ9zATVR2mF7/tAsxU9hcwU9lfwExmhwEzlf0F08eZ7vg6ZxLnAAAAAAAAgLNG+AIAAAAAAKAI\nwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCII\nXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8\nAQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAF\nAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcA\nAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAA\nAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAA\nAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAA\nAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAA\nAABFEL4AAAAAAAAogvAFAAAAAABAEWZP5B+99tpr6enpycsvv5y6urqsX78+F1xwwahrtm3blr6+\nvsyePTu33HJLrr766hw6dCg9PT2pVCo5evRo1qxZk0WLFmXfvn255557MmvWrLS2tqa7u/v/5cMB\nAAAAAADw9jGhO762bt2alpaWPPzww7nhhhuycePGUef7+/uzZcuW9PX15Qc/+EG+9a1vZWhoKJs3\nb84HP/jBPPTQQ7n33nvz9a9/PUmybt269Pb2ZuvWrXnqqafy17/+9a1/MgAAAAAAAN5WJhS+9u7d\nm6VLlyZJrrrqquzZs2fU+aeffjqLFi3KnDlz0tDQkObm5jz77LO5+eab097eniQZHh7O3LlzU6lU\nMjQ0lObm5tTU1KS1tTW7d+9+ix8LAAAAAACAt5sx/9Th9u3b8+CDD446duGFF6ahoSFJUldXl0OH\nDo06X6lURs6/fk2lUsmCBQuSnLgjrKenJ3feeWcqlUrq6+tHXfvPf/5z4p8IAAAAAACAt6Uxw1db\nW1va2tpGHevu7s7g4GCSZHBwcCRova6+vn7k/OvXvB7C/v73v+fLX/5yvvKVr+QDH/hAKpXKSde+\n8f3e6Pzz52f27FljjQ5MoqamhrEvApiG7C9gprK/gJnMDgNmKvsLpr8xw9epLF68OI899lgWLlyY\nnTt3ZsmSJaPOL1y4MBs2bMiRI0cyNDSU/fv3p6WlJf/4xz9y2223ZcOGDXnve9+b5EQkq62tzQsv\nvJCLL744u3btSnd39xm//sDAqxMZGzhLmpoa0t9/aOwLAaYZ+wuYqewvYCazw4CZyv6C6eNMEXpC\n4aujoyOrV69OR0dHamtr09vbmyTZvHlzmpubs2zZsnR1daWzszPVajWrVq3K3Llz09vbm6Ghodxz\nzz1JTkSv+++/P3fddVfuuOOODA8Pp7W1NZdffvlExgIAAAAAAOBtrKZarVaneojxUtVhevHbLsBM\nZX8BM5X9BcxkdhgwU9lfMH2c6Y6vcyZxDgAAAAAAADhrhC8AAAAAAACKIHwBAAAAAABQBOELAAAA\nAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAA\nAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAA\nACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAA\noAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACA\nIghfAAAAAAAAFKGmWq1Wp3oIAAAAAAAAeKvc8QUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOEL\nAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFzCmp556Kl1dXScd/+1vf5vly5dn5cqV2bZtW5Lk\n6NGjuf3229Pe3p7Ozs7s379/sscFGHG6/ZUkhw8fTnt7+8ieOn78eNauXZuVK1emq6srzz///GSO\nCnCS8eywo0ePpqenJ52dnVmxYkV+85vfTOaoAKOMZ3+97uWXX86HPvQh30MCU2q8++u73/1uVq5c\nmRtvvDHbt2+frDGBMcye6gGA6e373/9+HnnkkZx77rmjjh89ejT33ntvfvKTn+Tcc89NR0dHPvKR\nj2Tfvn05duxY+vr68vjjj2fDhg359re/PUXTA29np9tfSfLnP/8569aty0svvTRy7Ne//nWGhoby\n4x//OPv27ct9992X+++/fzJHBhgx3h32yCOPpLGxMd/85jdz8ODB3HDDDVm2bNlkjgyQZPz7Kznx\n/eXatWszb968yRoT4CTj3V9PPPFE/vSnP2Xr1q05fPhwHnjggckcFzgDd3wBZ9Tc3HzKcLV///40\nNzfnvPPOy5w5c7JkyZI8+eSTec973pPh4eEcP348lUols2fr68DUON3+SpKhoaF85zvfySWXXDJy\nbO/evVm6dGmS5P3vf3+eeeaZSZkT4FTGu8M+9rGP5bbbbkuSVKvVzJo1a1LmBHij8e6vJFm/fn3a\n29vzjne8YzJGBDil8e6vXbt2paWlJV/4whfy+c9/Ph/+8IcnaVJgLH4iDZzRtddemxdffPGk45VK\nJQ0NDSOv6+rqUqlUMn/+/Bw4cCAf//jHMzAwkE2bNk3muAAjTre/kmTJkiUnHatUKqmvrx95PWvW\nrBw7dkzAB6bEeHdYXV1dkhO77Itf/GK+9KUvndX5AE5nvPvrpz/9aS644IIsXbo03/ve9872eACn\nNd79NTAwkH/961/ZtGlTXnzxxdxyyy355S9/mZqamrM9KjAGd3wBE1JfX5/BwcGR14ODg2loaMgP\nf/jDtLa25tFHH83PfvazrFmzJkeOHJnCSQHenDfutePHj4tewIzy73//O5/+9Kdz/fXX57rrrpvq\ncQDelB07dmT37t3p6urK3/72t6xevTr9/f1TPRbAmBobG9Pa2po5c+bkkksuydy5c/PKK69M9VhA\nhC9ggi699NI8//zzOXjwYIaGhvLHP/4xixYtyoIFC0buBDvvvPNy7NixDA8PT/G0AGNbvHhxdu7c\nmSTZt29fWlpapngigDfvP//5Tz7zmc+kp6cnK1asmOpxAN60H/3oR3nooYeyZcuWXHbZZVm/fn2a\nmpqmeiyAMS1ZsiS///3vU61W89JLL+Xw4cNpbGyc6rGA+FOHwDj9/Oc/z6uvvpqVK1dmzZo1+exn\nP5tqtZrly5fnne98Z26++ebceeed6ezszNGjR7Nq1arMnz9/qscGGLW/TuWjH/1oHn/88bS3t6da\nreYb3/jGJE8IcHpj7bBNmzblv//9bzZu3JiNGzcmOfGA9nnz5k3mmAAnGWt/AUxXY+2vq6++Ok8+\n+WRWrFiRarWatWvXes4qTBM11Wq1OtVDAAAAAAAAwFvlTx0CAAAAAABQBOELAAAAAACAIghfAAAA\nAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACK8H9dl4+0\nTpgCWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reg = linear_model.Ridge (alpha = .5)\n", + "reg.fit(X_train, y_train) \n", + "reg.coef_\n", + "\n", + "\n", + "df_coeff = pd.DataFrame(columns=cols\n", + " , data=[list(reg.coef_)]\n", + " , index=[\"ridge regression coefficients\"])\n", + "\n", + "\n", + "\n", + "# predict all examples and compare to actuals\n", + "plt.scatter(reg.predict(X_test), y_test)\n", + "plt.xlabel(\"predicted\")\n", + "plt.ylabel(\"actual\")\n", + "plt.title(\"predicted v actual close_bid\")\n", + "plt.show()\n", + "\n", + "\n", + "df_coeff.sort_values(by='ridge regression coefficients', axis=1)\n", + "\n", + "print(\"mse train all feature: \", np.mean((reg.predict(X_train) - y_train) ** 2))\n", + "print(\"mse test all feature: \", np.mean((reg.predict(X_test) - y_test) ** 2))\n", + "\n", + "plt.figure(figsize=(30,10))\n", + "plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train, c='b', s=40, alpha=0.5)\n", + "plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test, c='g', s=40)\n", + "plt.hlines(y=0, xmin=1.07, xmax = 1.17)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run LSTM Model to predict close bid in next 15 min\n", + "- scale features to range 0-1 to speed up convergence\n", + "- set a larger lookback windows, so LSTM has something to work with and can take a decision which part of history to prioritise\n", + "- todo: make it do error on the sign- for that need to get the sign between next and X[bid]\n", + "- 1% test size, 10% of 99% validation size\n", + "- try to also predict direction. y_pred - X_test close versus y_act - X_test close" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict sign only" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "hideCode": false, + "hideOutput": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if runLSTMBinary:\n", + " # Scale and create datasets\n", + " idx_close_bid = df.columns.tolist().index('close_bid')\n", + " df_np = df.values.astype('float32')\n", + "\n", + " # Scale the examples\n", + " df_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " df_scaled = df_scaler.fit_transform(df_np)\n", + "\n", + " # Scale the actuals columns, but not the real values\n", + " y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " t_y = df['close_bid'].values.astype('float32')\n", + " t_y = np.reshape(t_y, (-1, 1))\n", + " y_scaler = y_scaler.fit(t_y) # create a fitted y scaler\n", + "\n", + " # Set look_back to 20 which is 5 hours (15min*20)\n", + " X, y_orig = create_training_set(df_scaled, nb_lookback_rows=40)\n", + " #y_return_sign = np.sign(y[:,idx_close_bid] - X[:,0,idx_close_bid]) # these are the actuals\n", + " y_return_sign = y_orig[:,idx_close_bid] - X[:,0,idx_close_bid] # these are the actuals\n", + " y = np.sign(y_return_sign) # an array of -1, 1 and 0\n", + "\n", + " y = pd.get_dummies(y).values.astype('float32')\n", + "\n", + "\n", + "\n", + " # need to create a binarised vector, one positive class, one negative class\n", + " #y_pred_return_sign = # comes from model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict exact price value" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " # Scale and create datasets\n", + " idx_close_bid = df.columns.tolist().index('close_bid')\n", + " #idx_high = df.columns.tolist().index('high_bid')\n", + " #idx_low = df.columns.tolist().index('low_bid')\n", + " df_np = df.values.astype('float32')\n", + "\n", + " # Scale the examples\n", + " df_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " df_scaled = df_scaler.fit_transform(df_np)\n", + "\n", + " # Scale the actuals columns, but not the real values\n", + " y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " t_y = df['close_bid'].values.astype('float32')\n", + " t_y = np.reshape(t_y, (-1, 1))\n", + " y_scaler = y_scaler.fit(t_y) # create a fitted y scaler\n", + "\n", + " # Set look_back to 20 which is 5 hours (15min*20)\n", + " X, y = create_training_set(df_scaled, nb_lookback_rows=40)\n", + " y = y[:,idx_close_bid]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10163, 40, 20)\n", + "(10163,)\n", + "(10061, 40, 20)\n", + "(102, 40, 20)\n", + "(10061,)\n", + "(102,)\n" + ] + } + ], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 99% training and val (10% of those 99%) / 1% test set\n", + "import sklearn\n", + "sklearn.__version__\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.01, shuffle=False) \n", + "check_shape(X, y, X_train, X_test, y_train, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.backend import categorical_crossentropy\n", + "# ensure there is a 1st derivative! else get none error\n", + "# it will check in which direction this error goesn down and walk there\n", + "# maybe it has issue because sign is not continuous...\n", + "# just use categorical crossentropy, it does exactly what i need much better\n", + "def ret_direction_error(y_true, y_pred):\n", + " \n", + " # this guy puts everything into numpy before working on it https://stackoverflow.com/questions/46411573/keras-custom-loss-function-not-working\n", + " \n", + " out = categorical_crossentropy(y_true, y_pred)\n", + " \n", + " return out\n", + " \n", + " # y_true is y_train, y_pred is what the model gives me\n", + " # so should set y_true to the return sign? and stop training on absolute value, but make sure sign is right" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_6 (LSTM) (None, 40, 40) 9760 \n", + "_________________________________________________________________\n", + "lstm_7 (LSTM) (None, 40, 20) 4880 \n", + "_________________________________________________________________\n", + "lstm_8 (LSTM) (None, 40, 10) 1240 \n", + "_________________________________________________________________\n", + "lstm_9 (LSTM) (None, 40, 10) 840 \n", + "_________________________________________________________________\n", + "dropout_2 (Dropout) (None, 40, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 5) 320 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 5) 30 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 1) 6 \n", + "=================================================================\n", + "Total params: 17,076\n", + "Trainable params: 17,076\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "import keras.backend as K\n", + "import tensorflow as tf\n", + "\n", + "# create a small LSTM network\n", + "# shoudl first input number match nb of lookback rows?\n", + "model = Sequential()\n", + "model.add(LSTM(40, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)) # does not take into account nb examples\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True)) # a second layer of 10 really helps get the loos to 7 by 10th epoch\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(5, return_sequences=False))\n", + "model.add(Dense(5, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "# for price prediction\n", + "if not runLSTMBinary:\n", + " model.add(Dense(1, kernel_initializer='uniform', activation='relu')) # this compresses everything to one output in the final layer\n", + " #model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mae', 'mse', 'accuracy'])\n", + " model.compile(loss='mse', optimizer='adam', metrics=['mae', 'mse', 'accuracy'])\n", + " \n", + " \n", + "# for direction prediction\n", + "if runLSTMBinary:\n", + " # need a softmax output for category predictions\n", + " model.add(Dense(3, activation=\"softmax\")) \n", + "\n", + " # loss: optimises this - https://keras.io/losses/\n", + " # loss will show up in the history under 'loss'\n", + " model.compile(loss=ret_direction_error, optimizer='adam', metrics=['mae', 'mse', ret_direction_error, 'accuracy'])\n", + " \n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"500_epochs_40_lookback_pca_unshuffled_binary\"\n", + "sim_desc = \"added directional errors checking and pca as feature with unshuffled data\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.06875, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.06875 to 0.01363, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.01363 to 0.01334, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.01334 to 0.01233, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "Epoch 00006: val_mean_squared_error improved from 0.01233 to 0.01223, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00007: val_mean_squared_error improved from 0.01223 to 0.00177, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error improved from 0.00177 to 0.00150, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00009: val_mean_squared_error improved from 0.00150 to 0.00090, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00010: val_mean_squared_error improved from 0.00090 to 0.00043, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00043 to 0.00028, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "Epoch 00018: val_mean_squared_error improved from 0.00028 to 0.00018, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00019: val_mean_squared_error improved from 0.00018 to 0.00017, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error improved from 0.00017 to 0.00012, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error improved from 0.00012 to 0.00011, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error improved from 0.00011 to 0.00008, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error improved from 0.00008 to 0.00008, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00043: val_mean_squared_error improved from 0.00008 to 0.00007, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error improved from 0.00007 to 0.00007, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error improved from 0.00007 to 0.00006, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00062: val_mean_squared_error improved from 0.00005 to 0.00004, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error did not improve\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error did not improve\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error did not improve\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error did not improve\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error did not improve\n", + "Epoch 00100: val_mean_squared_error did not improve\n", + "Epoch 00101: val_mean_squared_error did not improve\n", + "Epoch 00102: val_mean_squared_error did not improve\n", + "Epoch 00103: val_mean_squared_error did not improve\n", + "Epoch 00104: val_mean_squared_error did not improve\n", + "Epoch 00105: val_mean_squared_error did not improve\n", + "Epoch 00106: val_mean_squared_error improved from 0.00004 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00107: val_mean_squared_error did not improve\n", + "Epoch 00108: val_mean_squared_error did not improve\n", + "Epoch 00109: val_mean_squared_error did not improve\n", + "Epoch 00110: val_mean_squared_error did not improve\n", + "Epoch 00111: val_mean_squared_error did not improve\n", + "Epoch 00112: val_mean_squared_error did not improve\n", + "Epoch 00113: val_mean_squared_error did not improve\n", + "Epoch 00114: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00115: val_mean_squared_error did not improve\n", + "Epoch 00116: val_mean_squared_error did not improve\n", + "Epoch 00117: val_mean_squared_error did not improve\n", + "Epoch 00118: val_mean_squared_error did not improve\n", + "Epoch 00119: val_mean_squared_error did not improve\n", + "Epoch 00120: val_mean_squared_error did not improve\n", + "Epoch 00121: val_mean_squared_error did not improve\n", + "Epoch 00122: val_mean_squared_error did not improve\n", + "Epoch 00123: val_mean_squared_error did not improve\n", + "Epoch 00124: val_mean_squared_error did not improve\n", + "Epoch 00125: val_mean_squared_error did not improve\n", + "Epoch 00126: val_mean_squared_error did not improve\n", + "Epoch 00127: val_mean_squared_error did not improve\n", + "Epoch 00128: val_mean_squared_error did not improve\n", + "Epoch 00129: val_mean_squared_error did not improve\n", + "Epoch 00130: val_mean_squared_error did not improve\n", + "Epoch 00131: val_mean_squared_error did not improve\n", + "Epoch 00132: val_mean_squared_error did not improve\n", + "Epoch 00133: val_mean_squared_error did not improve\n", + "Epoch 00134: val_mean_squared_error did not improve\n", + "Epoch 00135: val_mean_squared_error did not improve\n", + "Epoch 00136: val_mean_squared_error did not improve\n", + "Epoch 00137: val_mean_squared_error did not improve\n", + "Epoch 00138: val_mean_squared_error did not improve\n", + "Epoch 00139: val_mean_squared_error did not improve\n", + "Epoch 00140: val_mean_squared_error did not improve\n", + "Epoch 00141: val_mean_squared_error did not improve\n", + "Epoch 00142: val_mean_squared_error did not improve\n", + "Epoch 00143: val_mean_squared_error did not improve\n", + "Epoch 00144: val_mean_squared_error did not improve\n", + "Epoch 00145: val_mean_squared_error did not improve\n", + "Epoch 00146: val_mean_squared_error did not improve\n", + "Epoch 00147: val_mean_squared_error did not improve\n", + "Epoch 00148: val_mean_squared_error did not improve\n", + "Epoch 00149: val_mean_squared_error did not improve\n", + "Epoch 00150: val_mean_squared_error did not improve\n", + "Epoch 00151: val_mean_squared_error did not improve\n", + "Epoch 00152: val_mean_squared_error did not improve\n", + "Epoch 00153: val_mean_squared_error did not improve\n", + "Epoch 00154: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00155: val_mean_squared_error did not improve\n", + "Epoch 00156: val_mean_squared_error did not improve\n", + "Epoch 00157: val_mean_squared_error did not improve\n", + "Epoch 00158: val_mean_squared_error did not improve\n", + "Epoch 00159: val_mean_squared_error did not improve\n", + "Epoch 00160: val_mean_squared_error did not improve\n", + "Epoch 00161: val_mean_squared_error did not improve\n", + "Epoch 00162: val_mean_squared_error did not improve\n", + "Epoch 00163: val_mean_squared_error did not improve\n", + "Epoch 00164: val_mean_squared_error did not improve\n", + "Epoch 00165: val_mean_squared_error did not improve\n", + "Epoch 00166: val_mean_squared_error did not improve\n", + "Epoch 00167: val_mean_squared_error did not improve\n", + "Epoch 00168: val_mean_squared_error did not improve\n", + "Epoch 00169: val_mean_squared_error did not improve\n", + "Epoch 00170: val_mean_squared_error did not improve\n", + "Epoch 00171: val_mean_squared_error did not improve\n", + "Epoch 00172: val_mean_squared_error did not improve\n", + "Epoch 00173: val_mean_squared_error did not improve\n", + "Epoch 00174: val_mean_squared_error did not improve\n", + "Epoch 00175: val_mean_squared_error did not improve\n", + "Epoch 00176: val_mean_squared_error did not improve\n", + "Epoch 00177: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00178: val_mean_squared_error did not improve\n", + "Epoch 00179: val_mean_squared_error did not improve\n", + "Epoch 00180: val_mean_squared_error did not improve\n", + "Epoch 00181: val_mean_squared_error did not improve\n", + "Epoch 00182: val_mean_squared_error did not improve\n", + "Epoch 00183: val_mean_squared_error did not improve\n", + "Epoch 00184: val_mean_squared_error did not improve\n", + "Epoch 00185: val_mean_squared_error did not improve\n", + "Epoch 00186: val_mean_squared_error did not improve\n", + "Epoch 00187: val_mean_squared_error did not improve\n", + "Epoch 00188: val_mean_squared_error did not improve\n", + "Epoch 00189: val_mean_squared_error did not improve\n", + "Epoch 00190: val_mean_squared_error did not improve\n", + "Epoch 00191: val_mean_squared_error did not improve\n", + "Epoch 00192: val_mean_squared_error did not improve\n", + "Epoch 00193: val_mean_squared_error did not improve\n", + "Epoch 00194: val_mean_squared_error did not improve\n", + "Epoch 00195: val_mean_squared_error did not improve\n", + "Epoch 00196: val_mean_squared_error did not improve\n", + "Epoch 00197: val_mean_squared_error did not improve\n", + "Epoch 00198: val_mean_squared_error did not improve\n", + "Epoch 00199: val_mean_squared_error did not improve\n", + "Epoch 00200: val_mean_squared_error did not improve\n", + "Epoch 00201: val_mean_squared_error did not improve\n", + "Epoch 00202: val_mean_squared_error did not improve\n", + "Epoch 00203: val_mean_squared_error did not improve\n", + "Epoch 00204: val_mean_squared_error did not improve\n", + "Epoch 00205: val_mean_squared_error did not improve\n", + "Epoch 00206: val_mean_squared_error did not improve\n", + "Epoch 00207: val_mean_squared_error did not improve\n", + "Epoch 00208: val_mean_squared_error did not improve\n", + "Epoch 00209: val_mean_squared_error did not improve\n", + "Epoch 00210: val_mean_squared_error did not improve\n", + "Epoch 00211: val_mean_squared_error did not improve\n", + "Epoch 00212: val_mean_squared_error did not improve\n", + "Epoch 00213: val_mean_squared_error did not improve\n", + "Epoch 00214: val_mean_squared_error did not improve\n", + "Epoch 00215: val_mean_squared_error did not improve\n", + "Epoch 00216: val_mean_squared_error did not improve\n", + "Epoch 00217: val_mean_squared_error did not improve\n", + "Epoch 00218: val_mean_squared_error did not improve\n", + "Epoch 00219: val_mean_squared_error did not improve\n", + "Epoch 00220: val_mean_squared_error did not improve\n", + "Epoch 00221: val_mean_squared_error did not improve\n", + "Epoch 00222: val_mean_squared_error did not improve\n", + "Epoch 00223: val_mean_squared_error did not improve\n", + "Epoch 00224: val_mean_squared_error did not improve\n", + "Epoch 00225: val_mean_squared_error did not improve\n", + "Epoch 00226: val_mean_squared_error did not improve\n", + "Epoch 00227: val_mean_squared_error did not improve\n", + "Epoch 00228: val_mean_squared_error did not improve\n", + "Epoch 00229: val_mean_squared_error did not improve\n", + "Epoch 00230: val_mean_squared_error did not improve\n", + "Epoch 00231: val_mean_squared_error did not improve\n", + "Epoch 00232: val_mean_squared_error did not improve\n", + "Epoch 00233: val_mean_squared_error did not improve\n", + "Epoch 00234: val_mean_squared_error did not improve\n", + "Epoch 00235: val_mean_squared_error did not improve\n", + "Epoch 00236: val_mean_squared_error did not improve\n", + "Epoch 00237: val_mean_squared_error did not improve\n", + "Epoch 00238: val_mean_squared_error did not improve\n", + "Epoch 00239: val_mean_squared_error did not improve\n", + "Epoch 00240: val_mean_squared_error did not improve\n", + "Epoch 00241: val_mean_squared_error did not improve\n", + "Epoch 00242: val_mean_squared_error did not improve\n", + "Epoch 00243: val_mean_squared_error did not improve\n", + "Epoch 00244: val_mean_squared_error did not improve\n", + "Epoch 00245: val_mean_squared_error did not improve\n", + "Epoch 00246: val_mean_squared_error did not improve\n", + "Epoch 00247: val_mean_squared_error did not improve\n", + "Epoch 00248: val_mean_squared_error did not improve\n", + "Epoch 00249: val_mean_squared_error did not improve\n", + "Epoch 00250: val_mean_squared_error did not improve\n", + "Epoch 00251: val_mean_squared_error did not improve\n", + "Epoch 00252: val_mean_squared_error did not improve\n", + "Epoch 00253: val_mean_squared_error did not improve\n", + "Epoch 00254: val_mean_squared_error did not improve\n", + "Epoch 00255: val_mean_squared_error did not improve\n", + "Epoch 00256: val_mean_squared_error did not improve\n", + "Epoch 00257: val_mean_squared_error did not improve\n", + "Epoch 00258: val_mean_squared_error did not improve\n", + "Epoch 00259: val_mean_squared_error did not improve\n", + "Epoch 00260: val_mean_squared_error did not improve\n", + "Epoch 00261: val_mean_squared_error did not improve\n", + "Epoch 00262: val_mean_squared_error did not improve\n", + "Epoch 00263: val_mean_squared_error did not improve\n", + "Epoch 00264: val_mean_squared_error did not improve\n", + "Epoch 00265: val_mean_squared_error did not improve\n", + "Epoch 00266: val_mean_squared_error did not improve\n", + "Epoch 00267: val_mean_squared_error did not improve\n", + "Epoch 00268: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00269: val_mean_squared_error did not improve\n", + "Epoch 00270: val_mean_squared_error did not improve\n", + "Epoch 00271: val_mean_squared_error did not improve\n", + "Epoch 00272: val_mean_squared_error did not improve\n", + "Epoch 00273: val_mean_squared_error did not improve\n", + "Epoch 00274: val_mean_squared_error did not improve\n", + "Epoch 00275: val_mean_squared_error did not improve\n", + "Epoch 00276: val_mean_squared_error did not improve\n", + "Epoch 00277: val_mean_squared_error did not improve\n", + "Epoch 00278: val_mean_squared_error did not improve\n", + "Epoch 00279: val_mean_squared_error did not improve\n", + "Epoch 00280: val_mean_squared_error did not improve\n", + "Epoch 00281: val_mean_squared_error did not improve\n", + "Epoch 00282: val_mean_squared_error did not improve\n", + "Epoch 00283: val_mean_squared_error did not improve\n", + "Epoch 00284: val_mean_squared_error did not improve\n", + "Epoch 00285: val_mean_squared_error did not improve\n", + "Epoch 00286: val_mean_squared_error did not improve\n", + "Epoch 00287: val_mean_squared_error did not improve\n", + "Epoch 00288: val_mean_squared_error did not improve\n", + "Epoch 00289: val_mean_squared_error did not improve\n", + "Epoch 00290: val_mean_squared_error did not improve\n", + "Epoch 00291: val_mean_squared_error did not improve\n", + "Epoch 00292: val_mean_squared_error did not improve\n", + "Epoch 00293: val_mean_squared_error did not improve\n", + "Epoch 00294: val_mean_squared_error did not improve\n", + "Epoch 00295: val_mean_squared_error did not improve\n", + "Epoch 00296: val_mean_squared_error did not improve\n", + "Epoch 00297: val_mean_squared_error did not improve\n", + "Epoch 00298: val_mean_squared_error did not improve\n", + "Epoch 00299: val_mean_squared_error did not improve\n", + "Epoch 00300: val_mean_squared_error did not improve\n", + "Epoch 00301: val_mean_squared_error did not improve\n", + "Epoch 00302: val_mean_squared_error did not improve\n", + "Epoch 00303: val_mean_squared_error did not improve\n", + "Epoch 00304: val_mean_squared_error did not improve\n", + "Epoch 00305: val_mean_squared_error did not improve\n", + "Epoch 00306: val_mean_squared_error did not improve\n", + "Epoch 00307: val_mean_squared_error did not improve\n", + "Epoch 00308: val_mean_squared_error did not improve\n", + "Epoch 00309: val_mean_squared_error did not improve\n", + "Epoch 00310: val_mean_squared_error did not improve\n", + "Epoch 00311: val_mean_squared_error did not improve\n", + "Epoch 00312: val_mean_squared_error did not improve\n", + "Epoch 00313: val_mean_squared_error did not improve\n", + "Epoch 00314: val_mean_squared_error did not improve\n", + "Epoch 00315: val_mean_squared_error did not improve\n", + "Epoch 00316: val_mean_squared_error did not improve\n", + "Epoch 00317: val_mean_squared_error did not improve\n", + "Epoch 00318: val_mean_squared_error did not improve\n", + "Epoch 00319: val_mean_squared_error did not improve\n", + "Epoch 00320: val_mean_squared_error did not improve\n", + "Epoch 00321: val_mean_squared_error did not improve\n", + "Epoch 00322: val_mean_squared_error did not improve\n", + "Epoch 00323: val_mean_squared_error did not improve\n", + "Epoch 00324: val_mean_squared_error did not improve\n", + "Epoch 00325: val_mean_squared_error did not improve\n", + "Epoch 00326: val_mean_squared_error did not improve\n", + "Epoch 00327: val_mean_squared_error did not improve\n", + "Epoch 00328: val_mean_squared_error did not improve\n", + "Epoch 00329: val_mean_squared_error did not improve\n", + "Epoch 00330: val_mean_squared_error did not improve\n", + "Epoch 00331: val_mean_squared_error did not improve\n", + "Epoch 00332: val_mean_squared_error did not improve\n", + "Epoch 00333: val_mean_squared_error did not improve\n", + "Epoch 00334: val_mean_squared_error did not improve\n", + "Epoch 00335: val_mean_squared_error did not improve\n", + "Epoch 00336: val_mean_squared_error did not improve\n", + "Epoch 00337: val_mean_squared_error did not improve\n", + "Epoch 00338: val_mean_squared_error did not improve\n", + "Epoch 00339: val_mean_squared_error did not improve\n", + "Epoch 00340: val_mean_squared_error did not improve\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 21\u001b[0m \"\"\"\n\u001b[1;32m 22\u001b[0m \u001b[0mcallbacks_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mcheckpoint\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mget_ipython\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmagic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'time err = model.fit(X_train, y_train, epochs=epoch, batch_size=100, verbose=0, callbacks=callbacks_list, validation_split=0.1)'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py\u001b[0m in \u001b[0;36mmagic\u001b[0;34m(self, arg_s)\u001b[0m\n\u001b[1;32m 2156\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0marg_s\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpartition\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m' '\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2157\u001b[0m \u001b[0mmagic_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlstrip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mprefilter\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mESC_MAGIC\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2158\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmagic_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2159\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2160\u001b[0m \u001b[1;31m#-------------------------------------------------------------------------\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py\u001b[0m in \u001b[0;36mrun_line_magic\u001b[0;34m(self, magic_name, line)\u001b[0m\n\u001b[1;32m 2077\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'local_ns'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msys\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getframe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstack_depth\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mf_locals\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2078\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbuiltin_trap\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2079\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2080\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2081\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\magic.py\u001b[0m in \u001b[0;36m\u001b[0;34m(f, *a, **k)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[1;31m# but it's overkill for just that one bit of state.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mmagic_deco\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 188\u001b[0;31m \u001b[0mcall\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mlambda\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 189\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\magics\\execution.py\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 1178\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1179\u001b[0m \u001b[0mst\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1180\u001b[0;31m \u001b[0mexec\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlocal_ns\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1181\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1182\u001b[0m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\models.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 862\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 863\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 864\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 865\u001b[0m def evaluate(self, x, y, batch_size=32, verbose=1,\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 1428\u001b[0m \u001b[0mval_f\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mval_f\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mval_ins\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mval_ins\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1429\u001b[0m \u001b[0mcallback_metrics\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcallback_metrics\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1430\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 1431\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1432\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m32\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_fit_loop\u001b[0;34m(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)\u001b[0m\n\u001b[1;32m 1077\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'size'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_ids\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1078\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1079\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1080\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1081\u001b[0m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2266\u001b[0m updated = session.run(self.outputs + [self.updates_op],\n\u001b[1;32m 2267\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2268\u001b[0;31m **self.session_kwargs)\n\u001b[0m\u001b[1;32m 2269\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mupdated\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2270\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 895\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1124\u001b[0;31m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1319\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1320\u001b[0m return self._do_call(_run_fn, self._session, feeds, fetches, targets,\n\u001b[0;32m-> 1321\u001b[0;31m options, run_metadata)\n\u001b[0m\u001b[1;32m 1322\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1323\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1325\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1326\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1327\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1328\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1329\u001b[0m \u001b[0mmessage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1304\u001b[0m return tf_session.TF_Run(session, options,\n\u001b[1;32m 1305\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1306\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1307\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1308\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msession\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training. Cant handel custom functions for errors\n", + "from keras.callbacks import ModelCheckpoint\n", + "epoch = 500\n", + "\n", + "# write custom errors as string, they seem to refer to the key in err.history dict\n", + "if not runLSTMBinary:\n", + " #checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_absolute_error', verbose=1, save_best_only=True, mode='min')\n", + " checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "if runLSTMBinary:\n", + " checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_ret_direction_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "\"\"\"\n", + "it seems batch size controls convergence speed a lot! Batch size tells how many examples are propagated through the network.\n", + "Weights are adjusted based on results with these examples. This is useful if the full dataset takes too much memory\n", + "It also speeds up training, as you will converge quicker (dont have to wait for a full iteration of each example to adjust weights).\n", + "\n", + "With more features to train on, convergence seems slower. To get to the same level, i take more epochs.\n", + "\"\"\"\n", + "callbacks_list = [checkpoint]\n", + "%time err = model.fit(X_train, y_train, epochs=epoch, batch_size=100, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check testing errors\n", + "- it converges to a low number very fast - how can i get more detail\n", + "- but if i split using cross val split with random state, it takes ages to converge. Maybe i should only allow training on the past, as the model will always be used to predict the future. So training on random parts of the timeseries to predict other random parts might destroy historical trends that influence the future, and can be learned by the model.\n", + "- train it on directional error for more useful results. Need y_train - X_train[:,idx_close_bid] as feature and evaluate against y_true - X_train[:,idx_close_bid]\n", + "- it seems the model always predicts negative, so column zero\n", + "- its easier to optimise over mse than mae, because values bigger and would decline more, so better gradients.\n", + "\n", + "Issues:\n", + "- cannot checkpoint custom error functions\n", + "- cannot write custom error functions\n", + "- cannot debug custom error functions" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 4945.484375\n", + "dtype: float32\n" + ] + }, + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      acclossmean_absolute_errormean_squared_errorval_accval_lossval_mean_absolute_errorval_mean_squared_error
      00.0002210.1087670.1087670.0189830.00.1212100.1212100.019710
      10.0002210.0756780.0756780.0094180.00.0640850.0640850.005192
      20.0002210.0464990.0464990.0038530.00.0754620.0754620.006855
      30.0002210.0398160.0398160.0027670.00.0238180.0238180.000790
      40.0002210.0394820.0394820.0027680.00.0303280.0303280.001532
      50.0002210.0339490.0339490.0022120.00.0319650.0319650.001608
      60.0002210.0329270.0329270.0020760.00.0202860.0202860.000780
      70.0002210.0322030.0322030.0019550.00.0211500.0211500.000868
      80.0002210.0304790.0304790.0017980.00.0198700.0198700.000778
      90.0002210.0305250.0305250.0017650.00.0190430.0190430.000673
      100.0002210.0315370.0315370.0018420.00.0405430.0405430.002230
      110.0002210.0297220.0297220.0016960.00.0202450.0202450.000786
      120.0002210.0284030.0284030.0015800.00.0353590.0353590.001807
      130.0002210.0276800.0276800.0015060.00.0384400.0384400.002015
      140.0002210.0272890.0272890.0014640.00.0305350.0305350.001432
      150.0002210.0269030.0269030.0013940.00.0203030.0203030.000738
      160.0002210.0259390.0259390.0012880.00.0205240.0205240.000752
      170.0002210.0266590.0266590.0012940.00.0230200.0230200.000686
      180.0002210.0267420.0267420.0013020.00.0226340.0226340.000842
      190.0002210.0236880.0236880.0010610.00.0190730.0190730.000619
      \n", + "
      " + ], + "text/plain": [ + " acc loss mean_absolute_error mean_squared_error val_acc \\\n", + "0 0.000221 0.108767 0.108767 0.018983 0.0 \n", + "1 0.000221 0.075678 0.075678 0.009418 0.0 \n", + "2 0.000221 0.046499 0.046499 0.003853 0.0 \n", + "3 0.000221 0.039816 0.039816 0.002767 0.0 \n", + "4 0.000221 0.039482 0.039482 0.002768 0.0 \n", + "5 0.000221 0.033949 0.033949 0.002212 0.0 \n", + "6 0.000221 0.032927 0.032927 0.002076 0.0 \n", + "7 0.000221 0.032203 0.032203 0.001955 0.0 \n", + "8 0.000221 0.030479 0.030479 0.001798 0.0 \n", + "9 0.000221 0.030525 0.030525 0.001765 0.0 \n", + "10 0.000221 0.031537 0.031537 0.001842 0.0 \n", + "11 0.000221 0.029722 0.029722 0.001696 0.0 \n", + "12 0.000221 0.028403 0.028403 0.001580 0.0 \n", + "13 0.000221 0.027680 0.027680 0.001506 0.0 \n", + "14 0.000221 0.027289 0.027289 0.001464 0.0 \n", + "15 0.000221 0.026903 0.026903 0.001394 0.0 \n", + "16 0.000221 0.025939 0.025939 0.001288 0.0 \n", + "17 0.000221 0.026659 0.026659 0.001294 0.0 \n", + "18 0.000221 0.026742 0.026742 0.001302 0.0 \n", + "19 0.000221 0.023688 0.023688 0.001061 0.0 \n", + "\n", + " val_loss val_mean_absolute_error val_mean_squared_error \n", + "0 0.121210 0.121210 0.019710 \n", + "1 0.064085 0.064085 0.005192 \n", + "2 0.075462 0.075462 0.006855 \n", + "3 0.023818 0.023818 0.000790 \n", + "4 0.030328 0.030328 0.001532 \n", + "5 0.031965 0.031965 0.001608 \n", + "6 0.020286 0.020286 0.000780 \n", + "7 0.021150 0.021150 0.000868 \n", + "8 0.019870 0.019870 0.000778 \n", + "9 0.019043 0.019043 0.000673 \n", + "10 0.040543 0.040543 0.002230 \n", + "11 0.020245 0.020245 0.000786 \n", + "12 0.035359 0.035359 0.001807 \n", + "13 0.038440 0.038440 0.002015 \n", + "14 0.030535 0.030535 0.001432 \n", + "15 0.020303 0.020303 0.000738 \n", + "16 0.020524 0.020524 0.000752 \n", + "17 0.023020 0.023020 0.000686 \n", + "18 0.022634 0.022634 0.000842 \n", + "19 0.019073 0.019073 0.000619 " + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "#pd.DataFrame(model.predict(X_train))\n", + "print(pd.DataFrame(y_train).sum()) # classes are quite balanced\n", + "pd.DataFrame(err.history)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest validation MAE: 0.0190429590761\n", + "smallest validation MSE: 0.000619442572553\n" + ] + } + ], + "source": [ + "print(\"smallest validation MAE: \", min(err.history['val_mean_absolute_error']))\n", + "print(\"smallest validation MSE: \", min(err.history['val_mean_squared_error']))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "for error_metric in list(err.history.keys()):\n", + " if 'val' not in error_metric:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(err.history[error_metric])\n", + " plt.plot(err.history['val_' + error_metric])\n", + " plt.title(error_metric, fontsize=30)\n", + " plt.ylabel(error_metric)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Rerun LSTM with decaying learning rate:\n", + "\n", + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model\n", + "\n", + "We need this to get inside the average bid offer spread for EUR/USD, so 1.10115 - 1.10110. But lets not forget the data is scaled. Maybe it looks better when we unscale it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler) # do sth to learning rate\n", + "\n", + "callbacks_list = [checkpoint, lr_decay] # checkin with these once in a while\n", + "err_decay_lr = model.fit(X_train, y_train, epochs=int(epoch/3), batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check testing errors after decaying learning rate\n", + " - here error chart resolution is better, as we start from the trained model" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest validation MAE: 0.0190429590761\n", + "smallest validation MSE: 0.000619442572553\n", + "decay lr: smallest validation MAE: 0.0123163131533\n", + "decay lr: smallest validation MSE: 0.000265824883329\n" + ] + } + ], + "source": [ + "print(\"smallest validation MAE: \", min(err.history['val_mean_absolute_error']))\n", + "print(\"smallest validation MSE: \", min(err.history['val_mean_squared_error']))\n", + "print(\"decay lr: smallest validation MAE: \", min(err_decay_lr.history['val_mean_absolute_error']))\n", + "print(\"decay lr: smallest validation MSE: \", min(err_decay_lr.history['val_mean_squared_error']))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "for error_metric in list(err_decay_lr.history.keys()):\n", + " if 'val' not in error_metric:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(err_decay_lr.history[error_metric]) # this is for train\n", + " plt.plot(err_decay_lr.history['val_' + error_metric]) # this is for test\n", + " plt.title(error_metric, fontsize=30)\n", + " plt.ylabel(error_metric)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is small enough, the model is not usable in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Check scaled predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#simname = \"500_epochs_40_lookback\"\n", + "model.load_weights(simname+\".weights.best.hdf5\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " # Benchmark\n", + " model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + " X_test_pred = model.predict(X_test) # predict on testset\n", + "\n", + " predictions = pd.DataFrame()\n", + " predictions['predicted'] = pd.Series(np.reshape(X_test_pred, (X_test_pred.shape[0])))\n", + " predictions['actual'] = y_test\n", + " predictions = predictions.astype(float)\n", + "\n", + "\n", + " fig, axarr = plt.subplots(1, 2, figsize=(15,5)) #1 row, 2 cols, x, y\n", + " i_row, icol = 0,0\n", + " fig.suptitle(\"predictions on test set\", fontsize=20)\n", + " predictions.plot(ax=axarr[icol])\n", + " axarr[icol].set_title(\"Predicted close vs actual over time\")\n", + "\n", + " icol +=1\n", + " predictions['diff'] = predictions['actual'] - predictions['predicted']\n", + " sns.distplot(predictions['diff'], ax=axarr[icol]);\n", + " axarr[icol].set_title('Distribution of differences: actual minus predicted')\n", + " plt.show()\n", + "\n", + " print(\"MSE scaled : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + " print(\"MAE scaled: \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + " #predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Check unscaled predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#unscale predictions and actuals\n", + "X_test_pred = model.predict(X_test)\n", + "X_test_pred_unscaled = y_scaler.inverse_transform(X_test_pred)\n", + "X_test_pred_unscaled = np.reshape(X_test_pred_unscaled, (X_test_pred_unscaled.shape[0]))\n", + "\n", + "actual = y_scaler.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))\n", + "actual = np.reshape(actual, (actual.shape[0]))\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(X_test_pred_unscaled)\n", + "predictions['close_bid'] = pd.Series(actual)\n", + "\n", + "\n", + "# get low and high bid from untransformed dataframe\n", + "p = df[-X_test_pred_unscaled.shape[0]:].copy()\n", + "predictions.index = p.index # get the date index from the dataframe\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low_bid', 'high_bid']], right_index=True, left_index=True)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " fig, axarr = plt.subplots(1, 4, figsize=(5,10)) #1 row, 2 cols, x, y\n", + " irow, icol = 0,0\n", + "\n", + " predictions.plot(x=predictions.index, y='close_bid', c='red', figsize=(40,10), ax=axarr[icol])\n", + " predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=axarr[icol])\n", + " index = [str(item) for item in predictions.index]\n", + " #plt.fill_between(x=predictions.index, y1='low_bid', y2='high_bid', data=predictions, alpha=0.4)\n", + " axarr[icol].set_title('Prediction vs Actual (low and high as blue region)')\n", + "\n", + " icol += 1\n", + " predictions['diff'] = predictions['predicted'] - predictions['close_bid']\n", + " sns.distplot(predictions['diff'], ax=axarr[icol]);\n", + " axarr[icol].set_title('Distribution of differences between actual and prediction ')\n", + " #plt.savefig(simname+\"__histogram__actual_minus_pred.jpg\")\n", + "\n", + " icol += 1\n", + " sns.kdeplot(predictions[\"diff\"], predictions[\"predicted\"], kind=\"kde\", space=0, ax=axarr[icol])\n", + " #sns.jointplot(predictions[\"diff\"], predictions[\"predicted\"], kind=\"kde\", space=0, ax=axarr[icol]) # must be by itself\n", + " axarr[icol].set_title('Distribution of error and price')\n", + " #plt.savefig(simname+\"__contour__error_v_price.jpg\")\n", + "\n", + "\n", + " icol +=1\n", + " predictions['correct'] = (predictions['predicted'] <= predictions['high_bid']) & (predictions['predicted'] >= predictions['low_bid'])\n", + " predictions.correct.value_counts().plot(kind=\"bar\", ax=axarr[icol])\n", + " axarr[icol].set_title(\"True (in high low range), False prediction counts\")\n", + "\n", + " plt.show()\n", + "\n", + " print(\"MSE unscaled : \", mean_squared_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + " print(\"MAE unscaled: \", mean_absolute_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + " #predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## check binary predictions and confusion matrix\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if runLSTMBinary:\n", + " from sklearn.metrics import confusion_matrix\n", + "\n", + " #check_shape(y_test, model.predict(X_test))\n", + "\n", + " y_pred_class = np.argmax(model.predict(X_test), axis=1) # find position of largest argument\n", + "\n", + " y_test_class = np.argmax(y_test, axis=1)\n", + "\n", + " test_acc = 100 * np.sum(y_pred_class==y_test_class) / len(y_test)\n", + "\n", + " print(\"acc \", test_acc )\n", + "\n", + " confusion_matrix(y_pred_class, y_test_class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " df_unscaled = df_scaler.inverse_transform(df_scaled)\n", + "\n", + " X_test_unscaled = df_scaler.inverse_transform(np.reshape(X_test[:,0,:], (X_test.shape[0], X_test.shape[2])))\n", + " y_prev = X_test_unscaled[:,idx_close_bid]\n", + "\n", + " y_train_unscaled = y_scaler.inverse_transform(np.reshape(y_train, (y_train.shape[0], 1)))\n", + " y_train_unscaled = np.reshape(y_train_unscaled, (y_train_unscaled.shape[0]))\n", + "\n", + " y_test_unscaled = y_scaler.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))\n", + " y_test_unscaled = np.reshape(y_test_unscaled, (y_test_unscaled.shape[0]))\n", + "\n", + "\n", + " X_train_pred = model.predict(X_train)\n", + " X_train_pred_unscaled = y_scaler.inverse_transform(X_train_pred)\n", + " X_train_pred_unscaled = np.reshape(X_train_pred_unscaled, (X_train_pred_unscaled.shape[0]))\n", + "\n", + " #check_shape(df,y_train_unscaled, y_test_unscaled, X_train_pred_unscaled, X_test_pred_unscaled, y_prev)\n", + "\n", + " df_err = check_error_metrics(df\n", + " , y_train_unscaled, y_test_unscaled\n", + " , X_train_pred_unscaled, X_test_pred_unscaled\n", + " , y_prev)\n", + " #idx_close_bid\n", + " #X_test[:,0,idx_close_bid].shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "Sim results:\n", + "- runing at 500 epochs converges a bit better. seems extra features need more time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check logs and compare to previous simulations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log = True\n", + "initval=False\n", + "#sim_desc = \"500 iterations, lookback 40\"\n", + "#simname = \"500_epoch_lookback_40\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "from collections import OrderedDict\n", + "list_stats=OrderedDict()\n", + "\n", + "if log:\n", + " #simname= \"linear regression\"\n", + " #sim_desc = \"1 row lookback\"\n", + " \n", + " dict_err= OrderedDict(zip(df_err[0], df_err[1]))\n", + " \n", + " list_stats=OrderedDict()\n", + " \n", + " list_stats[\"simname\"] = simname\n", + " list_stats[\"sim_desc\"] = sim_desc\n", + " list_stats[\"MSE\"] = dict_err[\"mse test all feature: \"]\n", + " list_stats[\"MAE\"] = dict_err[\"mae test all feature: \"]\n", + " \n", + " differences_described = predictions[\"diff\"].describe()\n", + "\n", + " list_stats.update(OrderedDict(differences_described))\n", + " list_stats.update(dict_err)\n", + " \n", + " results = pd.DataFrame([list_stats])\n", + " #results.to_excel(\"log_results.xlsx\")\n", + " if os.path.isfile(\"log_results.xlsx\"):\n", + " log_results = pd.read_excel(\"log_results.xlsx\")\n", + " log_results.loc[len(log_results),:] = list_stats.values()\n", + " log_results.to_excel(\"log_results.xlsx\")\n", + " #log_results\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.read_excel(\"log_results.xlsx\").T" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "hide_code_all_hidden": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "toc_cell": false, + "toc_position": { + "height": "947px", + "left": "0px", + "right": "1568px", + "top": "67px", + "width": "264px" + }, + "toc_section_display": "block", + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/mine_initial.weights.best.hdf5 b/capstone_project/mine_initial.weights.best.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..e1d84560fe21129833cc911c2aa516cb2801bbed GIT binary patch literal 141112 zcmeFa2|SkF_CI_hGa<@YnJOt6LWXOtTS=55Y0_XODO09Igi1txy*(M{>`3n*WZt8DUKcAR=UdR z%TeHu@r8b2Uf~{5eqrGOA;J87W&R7gEUD|K`(0xEyWV>aN4P7|o%NG1#j)xsPwZ!T z-d;Wn{epe}X*oX)x2K#gRs6MH(m%`T)`w3>@Vo&3u2=rEdZo(!wO(B&+H0?z4_!}l zIP<#+zs`Sb*B?dxBJlI(pV@Wj$Zq-G{_J`B7x^#IK(Aew^|aTyhlalBz7gP$v@ZMU zoj-c*@yx4k{?j+Ta(#Xy_m^?|v72x8J3rA|j%Sw<^RI-SaVy1%?y*BD{s>p%1bQvu z`;K6*Aipke!r{pCDiFH!LJHBr?Lo z!GN4Eb6A4nNS7SMj4DU<Cpa=NaHP7CLD!EPU&uFN$xntRzv5mIqm8=C3iFGI z3=8%M|5-sFzwo~n*~^LWis&kBo>yRa*PHx9Ji5H|Vy`gYF5%wn@Gh}=k%51c6&V~B z68N_n0YRaGenEUact!B13BDx1W}1<~0TEpVbyZW-%O@frs+X%7;T1f;yN*7QVPX8| zJbufc&#!|=cz}OUNPusbTqJ)uc?Wp?O&j?0QZRo)4B)?mulufvkpHIND}9DnSb$fs zkKa@uzDTftS4n^Ap;*muer{L$4M%lVuxmo$Cp71I1$%f!{gm|$2#*L0@Q&W8>Eemcyrw;}(yMw7!L=7;!)1pjWh#A^EUJN_?q`F-hKP5&oN zo$VJE68_r;{;XJ6CwTB{?e7=y#~KXt^N$SV>#19V-2>}yn)8S3pY{1e&d+WPh*;wB zhuoe{C;{b*lLz?*GJ$HNJbH{o7go zFU!ckEW`iIy1G|;2BVDrmD$k9;LnQv`(@*0{LP7lx*mT)ZNh&?kXLkfMo;?RxHsw94*cO(;eTL@@y9OtkDTH7f7)k;f94K* zJI(O#oYAjN`&agbf7WSkaozEmo-h~Z&*C>f{~L4o zZLnvouh-Ar|KA7%cEug|reR=U&i~x5+fQV+0A3tOfz9`Zw%+J@uFDxu1tjjk9`SD{HK3xKH_%{600|oINQCGAm+^Z{G z({pg((G&RS+4*-B+IytHfA(j9qg&J6zssclHudZNmj-@m;Fkt|Y2cRzere#B27YPa zmj-@m;Fkve^BS1yGDd_e%FXY=2c>lW=iBt3 zsKH-xSO52Tu>oBmfR9e;(s^$`^x`~@>UE1B>v`&*;jZkAx&?dtz2~uCRHl-dsUauN@@l3sTZr98B7iqV@5#^&DyRWim-L$v-+db)z&%5*a0IHwY zoBQ3gS5E0cciQYxH&yQ@oHg;?H@$LK>blc!&UVw@@m|)0i|UoT-IM+}qFb(4A0H?G zwmfy`?zELlH|@1Uo$0@oyIt0ucJ9eH=uUE;p8Ktw?D_7r!Nned|Cgi}zxMljOL0(M~3OfRP^2Kl#7 zbT>uz4_hR_5&7xIx_@=yVs(DX2?%!gh(ga(&OP+^X(7G`?2?pIAN;eu9F96iQH-Ow ztVdqB2cIe^*j->3mapp)61Z*LBcj|xf0BMZGhkPl50=Z${wvb;Z>9d{?*9zuSf=0o z&MSu9^q=|lHKV)bddKDeT#bK~{J&8HzxV5Z@t-~8r?<|%w%eQjd#mo|^xAZ{Rd!j~ zA79;my$coIeWmn_+urAXKaT&nlwY~sdKBXHI^L&F|5zuz`i>s;kL7y(!EMKXEcgEx zZj;!42)?I zm5grZV4(0o=+oB+=6-A?hQr2TgVO@?-Lnd`?ZRku{A<>ws)D46j-;{)6RFx^BM1u; zrq^TiaPEy?U0oX5ClJ1xh zjF)Qn!RElp*wQXcyHRnN=G@*3O)P2~I=;U#+~<%} zeeaSJqgitI{9ZCL#h6OmorFX5gwXJUBw7_VgJYisIBc;DCU@+E&tuX_k)bwL<|M+k zD+9?QK}*;#AcPGX>sX!87C7v=iYz!P4r0>5bh*`4B5Pbk9yxo_ryd*0(G|)#UhE0k ztTu`s89e|)XIz26=}v6Z6m66Wa-;cGvEXV{1HvPQq6|Y|@Kqhu+^CMVFOD#^QPOCD zgp>tcf`Z#=7?j0fUf-KXuH0HjCNUpCHq05O3Z;-4!+cP?tO)z`FCv|}a#;9MmL5_> z?4`Tr&7~|f4E^I#?V`{2A8H*#$sm_~dw3QH~TW7szb~VhQ z1?!Fw)4X|j^1UeqKcTfu#k2qu?0Vr8i(?${`R+_H%X zXK#|xL*J8&(f!%&kJ~LOmub_Qw2QC;-Z6%9_^HrrpJwP zP+_|o?^0PG5|>v?tZjy~Zil^aTjfmj3lyT|&T`d9pTw~_+(2x0-2;BR^2sItA(Wfa zN&=r7;<2*?&yU^((kEV#sc(JIYikIu(9FcEG!H-P%F>tKYsgv|B^xQ+ z7?VreEi=yTU~A-OVrE7pPED&P;*w1yrerj1xMzr*sxWYzF`KAOIS7&_XTe0fAN_L8 z3&m%OQQMDeA)&u6{g$W7JPv3f+e`;gf#?Pz-0vw#k@LicV@DXns2I9!gd`S!(V*T# ztuQ6WhB|D0%t(Yxz=c5xxN=%9dtF46yniwgzXzKUJHLk{bG9Rn*eOR#%#_ji!)T1! z{T>F6+e~U@weZ!gKx&cT4pBv^SU+VPl@?!)XHH1K=~8zb;-!yER9JFcdXD9RexmeX zkqs_&$RvY5*`l^BgNyWX&}4BG%6RW*-F6G3Pl^|oy67@5z6?ez9)VK^PNYdLui&QP zV0z%oex|Wc3~KHfgLWx-80eA+52lOKHP?r;^R&(}g)bB7ff=eWf3pZ4K5B`oS{K3i z$Vl`*xQ5wY+!rc>cN4EW3!(J$YpKI9ZLIQ~=}bOaG7Z!f`){oBcbA8BA|cYwev zN3hE`WLxV8;?cLOK=`BpU8L^`Hu|Gz!&*UDlC*;CxiTI($A+Q%p2^hDi9y{V#%#=d zcdU&LMB^ihIKyr`HWn>s*75ySx$OlqXW2+*-MT2iO<`p3-A81LK@GX`Mw~{Q^W98~ z0P+6*7+PJ;NM`JPqC?j*H$I;P%{xly^vr{b^_M?tWb&MZpU^-hQz6#qZ*H&$b?|71?-E(;4S#i7 zwb>lE|45_jcdI~67T?#HufaLsMw1;A(6wHQHYo_vK_6Gatc5GlcEcXD6YT^&(KaZE zS0*pz1~BoSdRP!>$}V{xO!q76lhv0kaJ0)Z^laaRZB@$X_WcPH?OM-XW(B!e$*Z1! zV?37Yh+vtR6jdk+fv8pddZ(Tv`|rDvdbwzrs1{0uuJuP_i83hIUJgrVy*7X1ri)8G z73r<#o#fcb0hF~cBMw*BW6ts>(oba$9n2eny9)im^w||qyLXNlHNA&zGYg1?yEmgV zS`RZ1r~@6l6+9OtfnfoG74O{1?a7KL`Arl-KZY)4Tac_o@i$^w+ zP(v3?@-@Q#HS^g+rISchW;!)fN+s#mu5|f%Pr9+~DICaKOPmTaY3o=eoEt5Q=QOP_ zzDA2ZslkwR6>hvgFaYxej+{NJ%z;Il%%}6nV8S_m!=Oq z(6`Rbazgnuw7f7Jm+!q!>KEN+GEeuz$#{==j!UK+zOpzj-i8LhFeL};G>L*O;FOv< zjKMZ%ob*@>O(f;%k#Y{I)(*wbvwi4*+G29=(S0Vs;|er#_1Ig-M&kM*;cVrMOj3MJ zjcw3Sq8ix=xTta&w%GJVrbU~sd%lymZSx=^@M1IEac(A)mKk7K;%y@6=8T8373tJ6 zUt;s%3VXA!7rTdZhon}m1)*v$I`{o_^m)9Fj@zh1WKqt$oOhn=|Xr6PLWR}^m+vOiY-C%c8X;ny)g0GMzN{t{m?*NGw zv%%0QQn>DD0M2#DAcl!|z-4JB&2=cmfunb@OD{-c+^Zlw^w<@n4?V1oYRts;(R;vf z?=kXRJQtKFuEHB_Q*kj9OFl?{VO^Iobm}Be6xz$H>xCwM^v_o9it1Ik|f0SiBB<3uV#HPV4b_~_F;l{;DCVYztNI~cz= zeKWLT6veB8w)~fcWR3ROx9XaVTY|-9~eiUAzreg}9*STvJ*~jq!c^ zRD@s^)V#}*i#O)sqtclqz9R+;M>@mRtexOAJ%^r_ccizY>tUkCC$fKGHaRTpOj|_z z(-5DJZ1(N(#8vz(`94&Rv<^x}%QJ24z>spwJ9|QqSEq{u&#l52R%hU?hdQmB?}-NP z7BH~!EYG!{KlUFbjed)@Fs7!C6?6jI%|h3g z#-#R{F&%$ZiP@k(kS??EpgTo(u#+^}i1GzT-X-@Z;GEP*URH_|;qTUX?%g$*;FC=w z2MFM6)gR=>(&03D(FC~o(Tu8Y7)DQ6vDCUMfSq$G6Zc*sM9yj#d1alA$*+&G)4`M3 zsjvdmo298(z7f56&>0H+*Am{Vjm!-b4b+}7kf-V{OMNf6(a^#~X2RQYa@Fr6>>CzJ zYg^{Rt|B?IyEX_il;c36F@;R4Y{2RTf}~U1n8GMwgTIXH;OfTqG{{`-IC?m$TnB55cSOVeGuTU|i;X861Od6GI&( zI`Yw7%gA(F5}+rJGCGUUdwD4H!ZDFJ&p!*ZWhpA|NQciOjq$SaL)<-l9HyjdllNcE z=!E?u^v72v6mFFxw*+TWu2vD*yWfHIeQJaq6>=bQtsMq{27P!^h`#>dMb14k#)D4w zbVhJIUS}SFrJ)}gdCCY+GEvm`y#<}LL7&(i9SET@gmluL=-=U?P4soN63@!fNvthEY#a{Lv4FFp|c4GQo{ z{V?q7JJ_;h0SB^7XEEHhuB@bP6ysJl3U`Mk(_2;_$)-km8Wn4T?nD&l+~?AQu}_#P z;Ue5HKo3uye#`E-v;mDs0{ygMKNw!V4oi<0!IiKlI3-qq+C1|ltD7ou;Iviv!+Sp6 zykCuO4K)G9rhc^k5#Y4xL#k(~Ev7QxjoC3LWNH7stBLg3NtpK33pk9F^qdN%R0^ ze6aQ#QK%e?D^-&4!%`o>VQax}yeOmDV1xVK0uEZd6dD};c^X#%3o(z*w{9nSk(=3> zgH_Qeu`f!=ETmH<+nG7q-gsvBOLFT6f1hkV1P?EAq0)M#WZOb3nzu+E9kNd{-d0~A z-21F$+frrvepCSl)rg>;loz`bI@kjJhh+Y%cTo0iJb7O4!LC)yAdSzmpu*Lhj><5` zPqCFuVY&=930vVHMTT*=nN4D5jH33h{Bgz2(PY(3M-*oxuugap>F4W?Ya8Tg-V{CB zZn=%Qnp8xuJI0WuLzL~U8O})_Q)ORDO0zU@y?`z~zd?rH%Dw`N zf<|Ecuw)Eg%^uQp;*ZZn zLO>I1WB8s_x)hXmThNmyu8|4mqiBAe8H(HAXBSR>OHR$4jWP9H)NEUVZDaZn<+43+ zqsALQUi<{d_J*P+XDh3IvY6d)dpj-{*-FaeGBCO7J7&e^!}B?L_$qxQZ$t0^bgO@e z0k2=d&Q@V+?k`O@zxKfSREne?vZuOwW6;dHKa+4qhR#s)Vdw5Npb2F|h|OpjZs#c% zDmHy;^|8)ou;1=YZ+~;43D*8_L7$;K(N#ohO%PoqV@S8X=|{d^89{#3cu+WR6xq=ZTZ_MGRuR;~Mg6oIG{}eT40$ z74XhhgP3q8QX`WQ7NQS+5VtdZXtkmoJzZY_HI6no@p&I&)!_&o5)06^zahO@ZB9J+ z^L8q;4Vo&>Fbfk3h|<&PC@*J@Mq6*N`ewzb8~X?`{RY!+;YPNqZ=xR^w?kuoFzqy{ zpgwQ=kwTB-u(Rbf-oCdEJ7-&QJr22|Qo(+BePa@Jx@L>xns(p|!_`c290%XjT!%9D zAe4;14&ud0)Th-L#h8_r^)rR&{np`-He3ayi-u7#rkYLma7C{j8LWsz2P_o(z+7D+ zNK+(|p+2UZ?7NnTg4QwQ;Ajb~T#|38C3BqkY9-T}iG}QBn}I0vbS(NDTtwe*T@Np% z8Js?Q4K;Syh_%!jB~-j|MEOkYud*I*Hb>ILy5)GN!i?4N+y?t|>d8KvWa_5WpWJ)F zU;B;-qo&11D3!Z`Xm6QHhqp-LGPi}G8NtOB`!m_pvkS0r)iRvo%%#nHjxx@9sZ0sa z31ZFe!-JhG@$DW{j9UB}Znem=*?Lywl(+?TkV%GleWTI$;X{~nR365+Xpqz)VwTNw z;_>#DNmzD3krJX2R^5WtWKl{a2(#*&91_ z#i{PuGt4c1e6C!m9`say@b)R1Ah)2FEx7mvZVzuGLxr>T%1D>^zEh$R(75LCmo5#_` z0n!*0^@edRpF-?a)M^xS3A5&v6drR)ARj!pL%Y2R-U&{|$;rXc`mo>}qklFXhN$f!5rTzee!_CJ{WOT0 z2R|WuwvERA&32@($|`u4Fq1g%F{4w!4)^EFVEjoN@+iHTO?$KmPgG1pg$5N`Di^}E zMa?JDD_YoH*(OwSy)JsWeX-1#xfU;Fnln-rX3V(_>1bv$0=NEHiEZW`Y)*O{nKw&= zN*?Tsg4O--?L7s!r?`VDY8XNtCX|r@9(Cl^;`I=8p$-nZ3SrUi??m$CJlt|IgYKAA zg=;@cv2Pkyk%*NCVXMtMVs~1ZW{((x{!BG?MihYI2w`lRGnXDeybrfFUm!sVgK>TC zII37`j>?9*blMMbloNHrqJgSwz zv}#0g(a%IQ=^La@d_%vcUWdd-$td(-BT0MgNS7oz;`ckws5C+W*ZS@vcqV}MV_&oO zA^iAgur92ga+++_{s2-tZ0Mm(aag}-3j7EfOf+;OSiAb;q+)0iPgOvV=s*Zoj1^|2 zG;i}VA`Nllaf;jLjG{B5Rq=VX7U9|E12Z!ZPoEEi1@D@`Yiul@CNlI;-C-;iiNlt# zL+oCW3wX=t4yh8ZK##kNF~d6t|AXi2J%|U+|FZM--{TFsPsDn05WP5qUiyE5FX;OG z7yq*AJ^K8a`g?pq^w0eN)UQ9qk@etOj`dXRpWzKY_B5mS9P&Tao?q|%&uHNHcmvs< zYIydHquyF|V}#6pVs^Un?0OmhBJIUL{T`3?@4-Kr{VD#*O#knZ5t$=Rf|=+wG`sy_HStroSI=W<6@X(!=l7^1mD3@@M{XSI^(q9_xAW z@9Wpw`=PzFVvk(+m@)si*+Xx;d+DrY_t=h#bb6S51F-`?vq~YC!A#{Es1pWh)oYO1 zH5EnKo%B{QO6NcFB#nrQuONK zu|!Jr3_HYkC*8TXA9|NMQ&Lg~FvC>PRoB}N%m*e4do&c;=7(%Or^KjLqzR;F5iI=t5g;{0I<;QLp zu-lI+!az+K;%^X1*1O(;_3R>0+AB>r^3OU)D1>5o;{>{FQ(qKWl0!~T&cLC&Q^@|% zLm-)+%jAlz1YIFVxS{I>b*bm8w-@@;zSXm+>ea#IrH(qSNv$G-p2>5c4pc>Ddj-ha zTtG(d6epR}^6}E%{bWO9H53)xBv)R`Qg_|~cJkK2me$4Vh(nzTnS4eLRV!~Wa@(^= z_O~tYLrccebc_NWydnTozm~&f32S_v+X?2i!)Wvw21`n2p>%U9v(M9xL+fpSGT;!ECVI!lgI%FQj#@v2^V!6WUN(%xLPaqe5A8NZpBt zMD9g0>O?v~lS>$zvmu^J#nu6}`w0ETSF*e7lSqQ5INfTOi4)|8QxTB`VBl3o+~!J= z!FO*!-o1LF8n~Zmdz#~psAnX-FoQgNVua@g=unTEHPF||otD&0gO-~9xaGnW8k}4S z2?~{2N$a^Y|+I_M19XJcr><%=H<3C z1scF=pUlJ?hO!XpcLA~v>;{RPe9Lbq^~o}h0{OA9AAT(jgT-r7u>FB0O60b{#h2zd z<=!&ZIBqJfDNjO|#(S`(*^2s?Cz6iv&%~ZS&9iYqK;aE>1!-%Y7(% z!xX>zy@JCQk)+yeBeYMgxBTp8K{Sr71Y-Ec!gg6U+VW#~A0)*v1uwzJQZ5Z@y#>?v zY($kdH|j4tm1G(^vfGzLGCC!7gq^+-CEoO*%PIvegEZ6#r&Ecp`e@EP8=Z$7n>g@R z|HiJ)^&ra4^(3&LF)lc^64S2s!D<~3MD3z347prn1A@Lqg@9OdCSqID)4e#Qzf-!CQHvVL^n4jCFfB9o*j zXs`xCIhIMyInZvdO@f;akizR4IKFN$ZCb5Lt-`NE!1^^%tgTBsa;&K4?Js1d$OWQ1 zrJWtB)k#zn_dxN9N-%T{MF+)$;J+aQg5AIKw8o{vG9`6pddWa|WS9+xpFHsV841#s zorlgYtMOUDJJKq?0!lRHFi+A6JvH>`gruuXTJR}2&&i|jZcCC-;ZfxF2W9p`!wyV{ z>yPUNbFk{1ITn3=2(A}fEjvTC$OMlxP%9pV$844nsWLOmkq3w4`8sXfuAPDcqFh`g z{~W%%Xu`4m0-)&;hqgO9VfSKbv|m(6jm9X`@}>@+riUEi?GghWOEo(F*g$$sAdrM! zdQSFisD|1lH|d4O=VbL36Y#xw3|?QA$EkDFXmX1&PCZE2jrKBBaHJw((oUIgjY}h` zI;r6OBZ;*PYzB|M4)n99aFv}(1+#AbY;<3{ok+Xz<1iz_Nq&U|4=nJ7~XC; zwk{7*+Y>(&n3K(poxCbNRd}SY0Z#F`a6?lOXNFBD4&LH;;?QhRyY!4bFtUv)P`wMC zseOpoufLPXbf* zQsUM&j@}+9fXO$@K}BE~KUP)+2fi(Yd7oQBqA42|&wtMfRcYe>Tn^D+osJm>Ug?+MH%rgxd(NsNqAwa9Qy8G1*3LwU`DG0eC2&5FDIC@)6Yg) zDoGWQBM&bV_qv_T+85H)euXx*l^K9>LWzv**(9>-%^CJ8MECsQ4xmt^jQ zd|I%0orTXbNxV^DLhDooBv z4q)gH18h1hLB`zm=E+~OrWqx}Vb?N-tW|$Pp2nw<%la2cf#?TvW|cPeOj$=-TzTNO z^a(_LbZ5-etZ}4(JqR_QVtC=_*)#9nkvf4x__BUB4Nws!HXfp|MHAuMpd41z=_?~) zISK5Q7LdzEW~`IJ5bW0{kJL{0C1)4g!LiN^X3Arh4D^kH4xfW0b;JRFJXVk%@|;gE z*rsD*s|2yB*QKjFF0(Iden9!HKCoe|7-Wx6CJP7krSUWMsejZx)~AM#n;Mu%TDDB5 z2k*$^#|yUjiTi_fs&XKOSvK@_ojwd5RY%6JbAY~m-jh#zL}28QD)L-Yoqm2I!hYQ* z!&3ekpSnvt+5NO1o!rNWx-^X?d;E%MaODcBP#=#5F+Q|DR)IEc8I1lN&&lqiWu$P* zUJ5%eL21iNk|GPlWf+$x-;;pyl?8O>4~7-`E zptBX)!zEEMfd^xASCK&vW$4y%eW7~aY;uJkj~epg94wKj0Xg&xVM~Ojyc~>2f3k7{Blzr2XPx)G809BPZ@7 z>9;lT;-NdRF>V0STYZVwZ^0?tB(eeK)u{3YHs%vbzeCA}!=%5}6tF$KoSw^fB40;7 zBfLBPap0;UU^GFA(2EDy71t)xPmQ@uaGf;~cP#_ElRDU}J&tl#P9g)9&q9Np56ROk zA$7-WakY^E9xguv??fHw8$mUC)ASHC(sU6D@$qo8kEXz?Q`Z>b;x>pIrb#NVRYPU_ z3|>?IAPk$)!8$sfUiyy z<^%#8qbV;Wk9YN?<`@0e^Q6IXk)X=WuP=-YB4{er>5g$vMK zz@MCt5u|N5hJs4q2wbtC0$$|RfVI(0CgA|;E}T(*zV9QTSz5E?b)ogpKnwn=BKX{p@KzZ znpiH)5#36}@(+_~Ie~0iQzuh;$e4TWs|4QI8jS^|{*2F@9c1kNEUNK28KoOCaIfD@ zVEXSP%H#$Dv*%2_xdl$?dpi zc6nxBoSdmZuf46HIpr51|4t?x-k(U`%)Ck@Ze3?XZEu6TdmM`F7RBbx@+5meDx_X& zB~!z%!d?3uGHtRpJ|?;r2S((xC5igb-0W%@GkO?aSDg=2h121sE=!cxtO1!l$@G~} zG|lPw#Q5jjgKtGD*mu%vh%*?9C9nHZ*(6((Q9)6R8wY(X)I4l55Rt?AdN7le&$7J%BzaAdHVJlQ;pFpWm zCK$M(iS=HKc;XNX<;~+2P`5H3#TVFaf z$pd%VrqO*7C*g(2T@q@m#jX#M#}GeLItTQL=;*y{pi-Enm7NRboax65u--&+()SX# zp-W(XC5K$jErt>CW3afYnq6mcnw;Bki^ThA(9J`}gNyDWB7Jrb*%$0cSM5Clu6$ge z5@!HhjT}LPLRK?_Jwn;wDdA+<(_(zVKbD!Y*@7r~r?NBc6XB-kbS$|G-?nzq~%VwZD4SIZV0P0PYF-VF@-9Xz3khijpQ&h87|4JgV?jSu=j!&M*4X>R3JcUi~$>(wsru`Wn%cBp+HFJDz$jR-sC3 z3)#W^vx;d(l_dTCX4pNqg4HzKPvZFN>1W%L$!6`PWXqlu0$XP=KCPP6&_9@_Y0sf; z)+@*?n;3dv=PFA{SsCi=)Ip8c7lQ4CXtXdqTb*%GhORc4On3>)FxX0xrt1k%`)Mg8 zO+$&ym~s`Y$9XZ*7aEC7Wg2hHf+o1SD~!6xJcj$zm%!HgyW~gSW}3%8|F=+oPnL=g zz#oe;nZbN)ntjVSkn?}Q)?WxG^WSVBgFFQ3<*Nap;;oN~x2B_B|4=HJF$iBguOpjZ zj)C{Pb;wYcI%0it0s3b?hg%alWZ#=g^3K$RmcQSPN+%?6hG-G>8YhBVY!}e_jX8vO zbPrvpKa5IUUqRj8slfNdB6@9QU+Q;qIL%emW@ay_A&(pmQa2$NJoSD#f#7TSAQb+ ze+!22cE9LDl zfsYZ~A83F)O<`hcvlucJ)4}G70>-EPQwuOQ~WdAG$^_8iI^q5gM~W^@$Jh|#MHZ$ z=q|K_W!cr1jZ42&i?`%}a8Wg**JnQ&qbE+Uw^^WkY6Y>e2qLQEWJ%IyFG#rE$j-er znZ2?60-TN1qSx;MSv%(j`(jQylV%?T18j!S3fI|?BXAVFPn;slKc|vPfp3@xlug+m?}-Kf5OXENMP9>82EIZK4!rV!OLf;g_(gmPDjupyi4Ks?x-=q**n&#h(T zjHMwP_K*XkzVZJiW^5spzCTL0-`_%p5CL>Ds9>(A8PXqhI&7rjYp~_V1@1g*VfLMV z3*x6mDJ)1Mwn9TmY{+r;$EZ%CXP8gCwMWxo=CahIGL$Y|@PRz#9%n2EjmK>L=_K=I zDpaiYr=!O(r(J z>uA5(K)+9`XC~8??7DF`iA8iZ*SYsQY1Mx_DFy3A<-NterkGvtZ9O~zJywq6pMwh!*YD%#2A6Ew z5tm3Nm0Hr5Y7*?OiF4?4T>~7YbQ>-uU4bDQFUW;;N7>m86y_Z%#bu5%6iqkbORZJt zc#xqgO$zY&VjJvSrp(pt`srhkxdI5~d`*BzDVryjfEN;mW*H z)+SsCLho-UCbB?xX`F#THz9g#Y&IF;e-qh#dr4uY9GZ3*;>bI6QJwie#ATqgK2QI%OVU zuRji?8i5wD%}|VPyDAdd^Yp8_B7ZP}D zEZr@YMFPjC!4|Wlp!|-7^==nQh~;jSi8Z3%`-ssB)#qeadl1W=p2|J(;l8EYko#oU zN+;SMMBY*-bq3@k|6!CqP;g3iK-q3QN$Co6;cw*BCowLBF*)Q9$+uSe^f zSQtHf0-L|@0Ax0rV7&D@@~HYO^Yxq*-F}Wos>=(B+}mV!o1q%W4J=|59z}wtmNl^! zyGB&`_{}$0f{ARvK}d}M!h*^O5-(s#TYtP`c>V2gRIUVyUt@TgLc+9g@*?mI4@cvm zc&zU;1>StAO1Smo+=frY&i>AljTuh_5#dZ zC&i{0=aKTs3oLH=w}HZ|E3m=5Kb>H75nRP!I0v!(=n}S6;7QRi`kpzvu9=cML`Gj@5ju&nCF%{1PPG_JH(_YQmvTkXibiyqmBdG@>>#Q=d;ng&nh@EaNf^ zOnU(aSKeFdZadEw{?H}QZV1DK(EgwhkVj5So#WX)^aeKdJ}>CGC6TpvW{X=3;Q6o) zORX$*^b)wjEGUg9L!A@Q@y0eRuo_4^igu#QkKIh;JvWjrrbGiu9 z_RlTb#E^b@Eso=+O@Yl9~zS zmk$%aVmIcqk2iW(-GHwgaWY=r+OnwMQe0XS16jw;z(HmSdRjh#jGlBOkyf zhXht`lo;Jw=mqZKE9p$rYFRm?{H?*^8w zH#k%xq>ja@mw80M6oxqsM(NTu)W&@*4Zo9sN|V%Jp{51-9A}SD)pHp|uWOL9nu~9O zx3bX={ZVCHB{>{D4HsnZVT}{_kW{B6e&j5LOl=rOnldv;OXCdczFU?S)XP&xoxY?) zhl?NMH^ciCv)R)vn~CF>1`_(XoVcgWfO{LWV2tTUCiSZ~*z8;ZWY}OPDxiZEyQIm? zb61A*>51&LkvG_ne0>Dx+Clix_l*2vXKYk=00ocj;5>M}Wkgs6P=f^Sm562Bw7Nyy ziq-L4gSKT{_m#<9^%0TW)!}j6zH5@WYPg(x#3_MW>Ar-kQM8!bkhPk7RBr{>w;`1K zQgJ0WDmsDtE;Ei>dp(Jp)l>^YYfa#=ls#EBUKegX+RpC1?LbzJ8wpe8w=r)DPC=#X zR#+{c$nMH}%|w5f1d9{N(6n_pVHO&(p8ZF`sSSoCX5UD5`TcfA?Zzcm)2In5#CUKs zuN<~}mx9n;AGp-d8S)x)V9jcTL1ZzAtRKrZSEaHcxie8bZyjt|dle#s{ZMl0DNwFD z2Wwmtz^sKomJG*$$7vOKbLX68as>|yqJ3e>paD3#^#ik_BOG3N56627&CFfXVa)K2 zHI`O22=r_#&*S<){`%z(XwNtTS)C4+U+>F+tM+3s^-kp0+edM0En>KP!sm0TS|Ybf zC78=jU&j4DdNp_bgm^AJ7tKAKu#6jhA%TlgN!;jD;oOt9N!&5}qq!^0mT+g?S49eCYfrzV{amt>J zAeHTi4ev9+MNAtHTKi!?^OYbua5b17sRicTC1&zP5h7u}9U6`bp-a3zJS`gvQFQ~M z*6A1=&f5q}ymrAw?Ta7=ml&-N$*4DMg=KsGJ=~bFmpLPQiq~>86(;@&=ep=daFymR zvmlq*qd|x59#nH~=)h>oC4zTdq)%NBLxg^$AeBlR{lL0gb+|&jib8prKS2oxa9|ew}^_ z%7e}Eeo7|IFH&VZ3}kD*pF54oa|w11AI*)bZ@|a3+n_P+2#uN(iq0p~>C~}@An?2; z&8QdU>Z|WZ-6kGBE7?V#UN3@9Psy6gF^1fZi>uLg%uRH(zJXi)6);2lHHz;U5%W>D_#?y0=Pnl%{8))Uet+XZi3|)V`0hx-0PY*glb{G)}Wdvucd1As2|in*+6Gb`M|zSUr%*%#^ZrIiOd+^&DeI% zjf9{V-J-pvI`fMnJzO@BD?VpCww&ot#jN_%H)ycdPH=F$9}k74*D{yE!NF8feAiD;dDMjh-*$(Q9LNos5+)p~Xm zq(QOf+HGNM@6*O^ZOEY}J_=O&+gDQO{TPD=Ji?3i{n5aw9B1qrPYWNPrV9;4sD*tq zWxh{irX4n-`RkVBgd<`kHgOmT#k^uC4M6_i=vkmpk`0wvmqQL8F@g_OchOMY2Kv4e zCFUJQ+yiUxqQmf0V0U>muF*UVx${rL$HrP{*t?$V`ZAZBubR%iHa(sD5Ms!JzCvUL zKd!Nu`2?rrHemVLd}KGR$IyT@{61zS%~L2~4C@8C*N5`Q)zKn4=#?q^{Gkr6os~`% zVhd@li~#YKH-NJnQs|A~l~_G`8fzw6OfAYw@Z8x&sFOa3*d2Tf(-hQsoD_1b!ff(Y1WXt;JLBL>+RxeQL!=%hq^7@-QN%gBTQnRgaAHCW*eQBkMX@R6^ z`In6qF8ybke%x7Fv5=}%N+0E!rpLQhIL}(c|NnU$&eMwFM~zLh%-gN}Ek*?%xA(Nq7i zT(4cG#QtNs|G#kmgLuFVJv#g^#cL~tcDMh3H(t9J@A~`i3jTZWuI7J=cQyZ0ysP>D zA>Q?m@ttDj-P+fw?52N)vz*`a-Nb}$v48rTJ=IDEzE;QeTl8u8Zc(n}l3bdhHW6>h zFNBhLjl^f2Aoq!41aHM+FC4UBIDCIT4r|>eQc;bq@bXYQX_PU7Hz6me$J}eIsfrZF z$z(EI=VIDmx{FFaIZr!xJSBIx5z15upr@EV33U)*v%bw>YPPG8%AND+W9K8x^TI@$ z->Oel!b|9seKAz{s5`6avz)ryzb8A#Nbqrneeg`wYciGp?VPPNA9i1}#M-_`n9zrl z(3Ssfs7~dvIOw7Sy|BK*GJM(tA|Lx5BF1jwW2+Ky_{72ZC8GkW_4%>K6T(<}Vzp)a zBw6aCW)4c#1G&7TVbDC~4Kd^i!-+Fa{O|0t5@+@3q!-o#**}y%#?}&v#F)!Eck6A?%T3;wuxNXo)Ef z>oc4MMw-#@PXf2$csC9jAI&!I)1ks0(r|uSBEO-@5fn^ksq%-L69H)yH?a*%LwII6s}ifngfhyTMoBVLSmC@TY%ThXR=>wl z(~l0$#o7ew^Q*Y$>DQsK!;EIQT0y}U4weS#U})_n=9gOw;eP7iVE7crEYn2kc5|yL+vry7f zy2F}%kHV;;4$6+AZ zU5zFs5DYio4GUKk@mc&x@;^V7+1$>ir3TXY*?tUlcQv!-oZH;5dRp0UpZxtCq+&%)a{U)qoM#9DJJQexo6Tq&BMeH32jdcd1i zOCjfGU#J}Whh0o|V!GPK;9h+RI(8<(I?)0+m1{wJZ+bzM>Ko+oCdL$&vL)gRz*vai z_d9wGn-a%TX#Fl+WqyD)1{+g@{y}bv)O^rX&1d_6>QUa$CH!s$Klqw`nm5(bp|_h> z*j{ZlgoKVz^cgu8T3>93(sBA!C8k3!i_>|}r01+o%#$^EPNf}sli>7jXDAx1hnIY2 zlffPj{#eCjHn7FX_GZj5s`Q^>+xRJxBJO|YH(KX{(X4Y!vF?aXhM6*KQIUozBV|BE z!y2rLzo3F~yAW*~0b>tZ(!0@dczsDIT^rRG?#YcquGyLe#~ESogj*;zavE%iw}B5( z$qjs`&IV7M3H!wR(V;9E_!2iC7MEJlfgzXR>wHO^TdhK+l3&;b?P_+lWD1>D-wGQJ zr@$c(V|a3M1IWIe57k0$`vmyHhhQ^a=ko+8^uNGfuF|Ou*N8#2vK-7W{ln$1u3^V~ zh9H-_jRMOzVb}MkET+T@8^+y7ZU2#=^J4^Mo)b6$3hCG!TFt(iUaRpjpG;AuzIe1V z3JsSZq5^Gw(BBaX$6v~k?{#IYn|6s0>6!|SN#~ix3;ecSYC?BOq%cqJ9JzWBpaPh0NQ_1B_bCy!&>pgz!lyc2}(JxHEE zC&8xT$;{5Dkg1wUvD`_~EHUpmKG^#Nn~zE3>$Gs(y(yNHee{7P--`l&**yRQ${}h` zEX0W>QfgT#?>}=rCG;X^@!K0?T@qNoz=voPdk)Q_$FfTTBdB?8H%l8g8bW>YQT3-I zdGti^-F|~W?8;g?cVr=5o-q|(M@f+01u-=29F7HhXMp4QH7sqH32Yx?Pd7fxLCp{i zGJmB@SIt+Tl$elbE^wzo165cT#Nw9+cbQk%Q)Zu_M~jYH0JB>GDtZ2JPdg5qnhZ!v z+y!EMw+VcwK&m<$$sz>ZdeIL(K|7xX#s%Zy{lJkn<(3ZgXJ{hMHlIzKKHEa<=S zJkvU8P#jHuyO7>Vwemk3|6tdimE1TLfxF~-j*TDT$|ieyqmAf}?UwTi)L_4yI`4*a ze#3^5eMUT~&#&U;0wl=#s2*jCq+r_F@7%TpJ814PL+T8X!X|-n>G#7*hq9)ISf zum!HmIO5hZ@^t9D4(^d(N0pkfT$z{^Z1YKE*WW78)tW?zEQ_Sq8H-@0VUulNu}H49 zKn0J030ST>Mc;C3*u)j}7+5u(IQ<4H4md-fg}hH($7jC&eJpi`Ba45slWm`A0QGa{ zkkTzVN;FKRcm9h|VZ4e^NBqtvw`UsVTK8vcbOwoSA4EabvxH<#JQc?Lpdqzp@TSiY znrOO)=KYk0;R_V$d&EvQx^E-ilp5UpWW)6D-eK`(&S3eAquXD8aMbNj zM&comv)UUPEY)ece{S?`Si=MrE) zOH*y^)jx4{f-XPDYX#_M6{4R+HlJZ920FLJX!OlcW^%ch?ioL2##PU8UXBLUnO@=h zXlJl%^(AyE=P22Cp5qskCu88zR8ka)u{%d@@M>)**sqVL(ayX8ZQixe&;~Uo_H-95 zSR4-fbq&$-Wj(h=p%ESB^lc8;^-q3Q-~}j?(y%znJK2vu?plr!eabN5nl%n- z^q|y9a+st%km7k%`ESe^{ zyhXj5?QqDy1MSr;X`;t&IMW`%Mpf5xtHSrtvh-KnkR8Xsbkk1Clvkiv>Qk8L{Calw zv?T;w+D7VUI?=XWnkIK2qc=NSxZ!I0)M0)U*HpJMwV^qfr9B852DJ-ZvliIA{uEY; z9cRj;g&b-^8+P$G_)qs%u(Zc_ndgsO2)+LR8`mD>Vq_C}rDOG2aV`tzJB_3#4fDwI znj(61ZGaNDPU?St0ITR8OO6skedOzMK4;?yj2SeV&4`!}Q_9ouw5b_vRKASPKhz;n z?=08wdJ`x&kAzFd{b}y}DArkMhh`6g*zh%eWVLq?G{4v-nm%hQnOLoh}|%H{!0~ZY&pX6XCCE) zhgjjx`zFM0#lxq0rP%hs5q=a9+i16wP1IQp1)@}ZcyS@sww}eFMcJ%UFM(xm@PaQZ z55dbbO1Sh&C46W`mf5t4_UQ3w9I1^-Thq}!LW?AiOQ6KOGZ?r>2Cc8&#c4IWnW5P= zzTbk;bbH}Le)jYklsK;+yFL6EIn@v~FY9GbJJv$nofo|6jhW=`YC@f3;@H4NJ|tnS zLJcqtroXhOn_g1zZN?LJYRo1Yvsj5j>bG#UYow_|DGyoy7M37mM}tm$z;%Ciu`d5O zSU*f)8@L+6`qfU*efcx1njOJ?C~RP!aVx2}F^kzIaByp*8g-WS;Ib>KP_}3sX?y#l z`m{Ejo-fW89PPmy-=^`oi%+vL?N;CytxUJeOc6IalU}+Kdorq!JhvC)sCiyOozxq2 za1Ow}c$i)+cBQp1_j7M&jDthBn{jA(2py`EgeeL`$l;R^86OsnADg!0z>1$}?N`Ml zJKdn|BQQlR1!nGPK(|#5Xhm&*=y&V`y1uZWyy5%Ft1*L)9}E|HQYA^17;!}{!L;#s zACS6J$S<1W2t&;uvAD=o{M>ersT$}|@E2p2;=7-JU((IuO?7Br#$a%cHe=JoN6^xh z;#4?0i4sj!Vc>BSdLLCpLri;dzK0dA6Y7aIlmy+Ib~+nBrx{)L9)|7-6)eTIiMB2( zrB8(fExXjnMfeV!FB}1}@;ExFdxBN8Z^j|dlBuu22$S7^49up#!H~WT+NT%dh0`x> zeR~RdwP#nrp;VTp&ynS~2Fjz))aQIP_|f`4GFUyj7a|3{qkCjC`F+|>ul&B?w9Too zeZfQ8{&Oaly1k;sSx)S3@Bj)ak7RrH-Qj0Vnh1}ARp{ba2WmTZ3hWD7SjWCKV1CX3 zf8}q0JU<3TWtW-8X=ONo3hc&38(QV^f^YrNk2IV^G0mfu`!;1Lh0$3Y9~TPdxiWPB z=SZjz(}Am(IqF+tLp8QBWb!DQ-L{&*{3cF@_Q~$BTU3HRWn!qB6vGCJrjU5l2=IMb zz|ub+WMCVO%ktG&Lr5;nxYx{2mtKcK$2{QR=q=0}aH zzr5ZEmriJ7u}iFAnrk%OmH38YS@YoKO-)MGFoZpU;;5tN%=SzO#<3$7fs!zWz9H!i zhujm{xn;NDCMMvm&(HaO`el%Hpagc9?c&Pew=a+oK@-vaWB+p ztZY1+=4=ByhYg}DO1^k2ztV=EFGm`_TgYtGQEK!Wju~s#Qn3GadO3MDWvET3*&dJZ zyI}*)FOZ?{npc?8CPj*nd4bkt4UC(=RPXLfFHFsPp{Vhc6hNp9{H_T5c^I&Y39m#k2c_=&l=<>ef>u6L8| zS6BkRmx}P7Fvf8=dVudXhC-g~QBp2RhtyU#TI8^o&I&b=?y*U1+AkOE$O^)I`y^_C zG&*k4htg_pb5niQsC{)A4pX$C0(BGGW>A4{N#f}FU>{fS=}m{U4&jl6Q?&lwaW?+Z zQhIWJ1KEl4=y>UFIyyud-d_l#I}Z-)n;%}AXs)7A6&g(Ta&t^Yl0QP>N~mq*%Fm>z~%L!4=2P%&A| zI0%0(&I9$;ns$S=(<#e%5MGiHSY_jbp#0Wke&YQBu+9@;pqMu#6o+Gbx)oeF?M-j) z4`o8yl43`kAx8~UYISem>K;wSvto`Qsj-4RFFuDR3NtxcAZU3rhtswbM(oJr0Gc3h zFu$LPrHq7|w)=;7=hGaNZU5?C+(K-x1+7`q5m~JFFy)QDza&!?IRqwOOm=xUGaC1JSnxO z0*;=-HSep$QFq>=Z$&TrayFSBEjPw>?oOOvuLeAuqY9ljC1JdG18Y%A!0q=o(DaiiKi9>(^IqJq%rD1zBDZEcizz8}F`6 zVL^7}>n01o)wEc_BVU$zQ=UrHKCrgkuB34B5LBh)(4>oV=+M9p#xUeTogqmYXmyp^nhy zh$&>KYq1K)Mhvew4E_&S!`q@%>S%0XYu|;?&*izumes(g3ZOlm5>&~XahtA;VawiX z(AklxFyvPelbaPUu*tgcq51}}(LRrx;{gor9b#dZ7K1YNVEtOM}*sWkQfU`G#J6`^%^2M)Vr0xO?+(#6IjoXit> zlKvbbdUo~?=j0Gc*MbjXv{2W#BEpintgt2NH@n#!yx z(s-T>dUkF2&gBp!^bN*^f#q;eUY|yU?1I)!d%*HNa(7!~Ahcf-+W|{pU#KQDUl&+> zgLR?Gx&-VumqSr#t!<2!9REnq43!q^LIS@R4}`?hIn!s{z-3#QNr^s{aU~GztH$>( zI8FWEWWfQ6)wa%wLuk#GRkT|e*F4`@LSOubl1^C?TJ%{-W^c2|zcm6EM;YOS-U9q0 zb&JV2H!$h(_vqKA0jRxe5Zf^`l0HPl(zLw+WDvKL?gR+^%w-2@&F7z-jAaUE8Znai z#Ck!O7f3fxo7a|6rwKz3;#GHXES!~zKUWAb zoA)gk>$i_@*6KzJ)omM*og&~zzppe3o!_W83T~W|QkCnw@bJCtaJ%X74XRw=QL-Ymp}elV;tVZy_~fKrzgvT z7ut$OTkPbA39K$(IZLKTQ>nHf9i&r$KIp4L=F_R{hM-j%#ytV;pOVnJSR7?;C%`?a zcpUIVA3Usb*s2X~Y}ShfLLI*$OFw&oWrUqW>&e#eSaAf!zN@pnbkhNq7v8j$ky%Nl z@=tjm`AWPi(|`|LtjVH|v6XM6Y(s4P*tzj)gdZ2#c19gWdF4;csP!49E%CzF-p{#> zch}GfL0fgkKn8y{++e!fO4+y@8uTv3n7joxZO3MB+owytZO3?wrqenxbk`<;oST)v zXY^#;Z6k}VH*YY@vle97zK7j9@dStLxy`q~nMrOX85rKa0Kcvsh2I6Qk*~5Aoc!Pv zP)X>(8}t3JQP~Bbn|k8x)~Qs+hhlU67dG?AKx+I@!^LMVhgL5u-YowLi!>TTu8-$4 zr*|jW>`F6Iy|9zpVQLA^3hvY*Ee#mxMB4>c>tUmraL#`hw=f}xcl&IJcHd%I_xsr- z#5MT??s=m3btYufd>#8)J5rTrGHq&5hb5O!^5-?e@lls5d-r4_?#WkS;})&K;6XAh z&#H=3=9JmK5!vj;onshfHk+J(iqU!#b>LF7nSsXwn3rk+b8eZF*DPH&$0UNjiK)U8 zA^z@kUyrnYW?@tGIGXYGH~ut=A@$3%gnDoZn3Ji5HE)iiwX6l}SUDDAr?)U4-Lp8v zE{Hn&^)dr8h7Q$R*xHmsb$#vGgX$!lkSxOcC$w2d{&*H6u=mEf4Te#B?cnGRUHWsr zKb%TcC)z~pZ9pc;ihHm%x>~Srh7>!}8c%<=ykuo9e(>#yK4o?F;+8QTY+bWFiMq~X z%AtX|N?^ZjjAX zyf)_?>hJU;t)Xg|G`N+2C!@I=;oH zzgY9kDRBas+ZQmiknDK)>-w_WP79Ld8I~PXz*D$_gG+wb)=C#isV__Ft z+1lMZpeN3YiHW5!GY1Pcz#$Q=YPM0~s#MWuDqw>Y%5k&(V%veop0cuOG4NOz*Y7f% z0i)eEF{82ue!G1uJ+-XHw?{l^ljlX&@Lr!gHTq=DiY*yv9^Z`XWuD>}Pk)^3yd7U| z)u)9QQpslRFgEko9N6OjkU7g1aXYdyFE1-?F7R4TcLE;!jr_s=_7DuyKA?Y|}%>e)C2@_Ful^s4ew-xl}4XohZK~d-`6FBZ4!`9#G50d*e`A@GS*onD^tx&9`|h8{-FFPQEqU|U@w{Plv&$R=l$ z7(sKijxotQ`^jU1A~^}%*|@t!HPuDR{Ji=>RNp4gxUJR@uX>c(wnWc7JoUC{w}>%jGx0$2>iD zcbNgibu=)ernw-eB*_fo^`UsleYQE#l|S7#gjwIekM|dT=@_Y9KaO8FoESVnZADH9&!AGQ397W^H8yES8gnesoDd%5oxwP zgTq;Zu@DcM>pKJMY2Vq8BJSboYB*tV0LRPYGUTGbcU9R7}H zZBzsn!gEpg@fd#7k&Kifl;!ltpu4Kj z*z3Sl*H+{G6&KONARVULj^GDf+{pV09MlC920_;J5!5gPn)5h~ z3!oM(%4*L--cS&cL6U$OKIH`Gtr&9;nJfWjUPQeJfjiAAv~{e0=! zqOI)ep<)d8P^1Duf?R!Bjw(OeGxd4ZOvpO0IXdYS@OTt+Ub%&4`OZe~2|~WbznEQ$ zlSR`*N=(0J8|{(k!n*HTG(VN2h0ERPq2gVfYM#U9Kb}XXrW5c)_z3v<%3M@j*~4m^ zN5Iy^G0Y%N3=TQoy*bL>+C*|bAJ_mZBv1J@ghtp7)a~pd9#w7+t@x{iC$P=!-~RM1XTmr ze4+$dpb>S|bTVi-#0vV1gsU6;pr)zTwklvbczNoe-;`8lG_RJuSXIPUUy_6$3p%iV zNMCA~ako8MHJ{@4X|k`UB_Z1lHwe@pD=VQ~lh)`diG# zl-C?SS|$ml8#N%hP9H{yyMo7oBnaj`xQmv$_)Bvv^Jilry5JMIy)d&0>bzUCN=hAi zPtJp74~N|CLXuOI7HwuS{Hu;Q!2@xr`4q&C!rK83iz$oNubc3YF;cxw##Vn*62 z2Qgn}Dfh}ihAucXai!O7Nj;`aRD8J(R~6sFCEX@$=vEgJZyb-qk2JB=Z->}rttvDY z`ahA!M?=(;)o{yE#N`)B;GKy#xPFtR;5{+u_j&+%zWK@d-il&-o=L#5v>DJSV}Q}C zMxp=p5>89?51QqTW#)p`b@78C916L)g!xvaGH?n@4+ue{?r|Uxc`zd@1jm1$iMP2$ z+~y;QR-tQXZCMQqn2uPcdJ203SFqW^&$y6aIg*$tw9hRI@<|;;!`(gU%UlsI+@L_! zulkYctbMe2V+SfVY^Ie3nW!@II$vd8!4fK#_bifqyIMc+W!{@ z78m2J>}xnVU5}PTInZ&rwaA@0&5NH*q`a_n7&vV??w(qL6ZRPMSC?_TiNg$PE1$!S z4-uHeU&BaNYX!D$5;0wu^Pqpm}IL^v=KeEa+G;f?m_VJ@p^-3o@&{@nfwjO~ly~Eh= z%Ta!7OA4Exe2JwA9)))UZ29lQL-29oS8j6KQ>>Q|?h!lfIFpMP_+C#_cxLjEC4QTP zd6SE<|8fa1>P)05ym+^bo(h1p#oKJoXn9aGxW>|K! zO+Eu4zatq3P$cc+^LQw$2JHd~47HYl>rVup)R@88k|$yVhe?v5;R?1stAuH5gwoa_ zj%Y2pnSQ9=;C2q11%B)6Xz2z8yw`RXODC1^LAuIxH*GujhS@@?%~x8yJcmu`93^sS zePsKoX#=^ek7ISyl%UBn59-BJ*oGh#*r#0r>z~K6m7k6ILklICmuoVsIWUwI-$}sf zyn!&JDi&*l4)U{yMu6;GAzl!12v%wKaJxo3uwh~s*e}sG+88enTAR*bkIWuS8z}+0 z!(TK1ZHHJ^tRn1aXl5yCr`T)*H zk{g9?j)F0Yf)AzUb&~4zgAaz6uw-esNGkm+dz2PWi(;n3tn5kbr!86x#_^coO$+J?#wd`HQmTg^xUV{ID zb(&CLm3$V~cV1;Dq^~kNabzp>Z&^pozlN6t*0t;vF_^ed1@=3CX6*h$+_t9-_osiSWD!!StZ31?gpyj1SV^Y?v1xkX%VU{s zPyk(D@eGfw8OhQL$MO5~4r9=>aO~3CLDJO)R(0EX_O|~k^zf9!A9h0pUYa87DC`Rl z`Yk}a!H2m|Q6U&%qz3Co^w3=WQTX~9km-$6Sd@L63s8Q*FR<-TTW?-u3#A8vS?VU} zeLRcnJ~5Lr^j%@Hd^fh_JY-hpmZ&mwiZva0frgg*BHcxl%L^uJPBh7ts8iSQdD3D0{V1 z48@GxSgp=i(e5e_f#IYFJ#F7H_fs}|wK$3A1Pyf?{{z204Mp2wpRvbrA~fzzhq|TD z*l$`6A=cyA){0n&AJq?@43LJ2wN?DR(;+Nn`Z6-Jn9l-+O0Y>jN|=}MiAg_mVfF{k zaODyg@d4}uosdAJO~UX#Rp-v?~L*-%)oc?fN)gy-uPD^T3J0)8#Nh|Wq%;IY-%&dS(magZP4y-}W{RP+0?hiUtm*VM{M%-qIQtOkdC!&dwi# z%FpFRSEtL7T1p#NcT)lGX_dm+0pjfaiykgDa3H&@?@Bszve9J1V}8~5O?bfFpY`*S zqMbG@`m%AnDbq^qutC`#dfeoUx`6|ASE#hiE z1hU@`W#IM4FCx=Pi`l2GGg0w!6q5-|;_sG7(BjB){?Xe2qU+=7(N{}&XKv5UI@rtV zgSMdPOgfvh!W3odtSyeWPVy&;)(JRZci zY|i9!2R-F%kC`!h8AVzwuq$tJx^y~13_27V`TD93=8{>@!d>p#uF(mHv*u1r=ITsV zKXDxvXHQ}73XPmf{Bbh4AxO|?~ ziXUeOMqj|`7Td^C7?;>L=tAqFN`a9&lJ&dpW_#Iw6iF;o!e2F0ak$%2bZ&3LZ@%W3 zyksm(GvAM<2W2RKUNo0|Fq|gY>BElN7wpxo6zm*lMxz>*pxNEELO;>VdPQX-F6f(& zFUX%>d_Krl9NEXjOrxlHiipb;ccLCU;fM~Ju-%JmInN)O{Lo=$LM|+V3mPa6R@FsZ z*P}ujl;Dn!A0Fl|HI8LA^4ItawKKtMhKSF~juXuc=u5})I#EwUhWvlsWS5?uVjv-yfsYx{26jUq~^p!YEJS51fu z?0#X}yYg*~=a_9QL+Uk`f8{VJ%=KYgm+P_v%5@+&?hJO1b>s4%6!UEtC0Npt6!^At zB6c_qWM!Lnun9{7P{uHpHQ6O$W%2-$Q;3AOzcQGNP?Hwb^_ugr>E^ojcCqKYC3pn^ z*St3!_onTFlIyBq`)4QHXWSny#GYi z>>qt$)v9IO{b#-0uIs@p*5@8vTy&zw-B}*D9joK6s_cdTO#hkv5539XdbIykQ1ag! z{9n}q|4;RHBmQyLs{fe&J^x?#2N_fS*RCSv|80Z*M}Lqd|918N^4I^__44Y>Ux)Cw zF7to+0sZ#}{2$c<|Lkkh_56Un6`{n<)&NbA?QPhJykm4TB0=68bsV0j_ z_T&XRRsWQ3R3yXn4U6Hz`S1AZ%})Fo5d+^G%cwDA8bvB`;BsIn)Qc9-G{Gm-f88id zu}&r#yLK!pD+L{8C%AHD80q_G!#lEpAr(SDy7(rWY4e56k{eK7nsWs$N-!pmjOJStTu3fE zMd%j?Qr2T-`n~P|EuE##cKJTQHFwhKbWIlh3^roJl=i~yNhe8XVK(;NFotG*{7mWn z%_;jOBh4>2m_w2>t@<5A&c-FwTXTt7y1c{BUcRuy`>MdQp3OvbQ+5G*z=c!LbRaMmVEbDUGft8)QuV{wEg`~bWTY^ z2d{XT>{xA**T!6XQ<8qHn5H_H-P4 z*#8M;w=#QtIL4v{#8rO9Vzy zQ?^it6i9=XrEsAJxlmHC3Ol}bqFUn=xFG4vwvAQ9=_eGy?ATcd)EG}+!Zg7ubSLeQ z?y%*?rST`9SJD3LN}BYsmY$7QWsZj?;~LXY_FuBEPs5dnAvjdys62v<=U~zIJv#TCQ(@M_KYuOzvC+-s%_8^?_zCtl4Qdqy{ zW;*fh0h+ClqRJa>{HE3vZe>;qJ{tLnyWM_{(hgn6%g^@F#<%9Mwfivi`z`2ES04kn zX*n!%zYjecoChh<;cza#5H(hO01u_BXUe5W)airoP=eK!;@&k<_4_Ceom8BpJz z0_&;|LxI6ncI&<(++N#7D$PD{5IvjN=Sd2Ei$z?Y#Xi!nO!U zC<AQs_ldF1ZK$EC1FH^h$3Hvj>ALK9_HlVCDoZRRo3T!Cc;aBq2R9__mr>b*#`E~MpQHD1itCx1-EU-!RV_6aQW>HicMG#q7{U%h5O;HAZdUf zL?LGDDDs0UgiUjy=8n%ecVa$#F}}(v*Y$vFup#I?*((|xBTKX8(`f1~1#%Ent9E^^ zqRBfmN>zEmAM!s3J7+xLE1SI0{{B+Bdv6l$@7c~y7&MX2gd}`k=tIgZSny|FOPj1p zxf`l6%=P&#ik-O)IyKG7QL>Ru*|G@~1mE~iU$0Z}Bo#Yfmz6jwVl9=Ltie;)JD7IP zQmFC!V{>WwYc#vo#U}3=Mh)#bOz-wus7mtT7wgZV<@Pc(_^t&UTe=f{1(ug|R5=uu z*@2zW0WR{(0dg7gi2WXXgxWqZ_~<7_4y)2($sGN4JtW#bk{JOqQlc+iYC%DA(#GS{sH*3zLHI~dk*{J{OQ_;Z2qHdJ!kAFupCp? z!j5&X*czSHg63=(ggpJu7th>H3yd|%-a3Hp|GJGgvy5#+uAB$2BR5FDZ!i1$Tkyfj zTLjz91mF5PaaLx>*xDNh;Go-Sh}kF9a1AX1e+hfM(&d9`3GpB|CYXKd5SXzIY9K?d zbS>mPm&0pwrrVq7#*?*BlPOPswsTNDz6GtGY=cP`G@)=^3Wi5yqO_$HefZi9=`Wih za8e^1_Hrs4FJHj2MZ}+Z_6Wt)j=`7n0^{~(I9MlpfX?tN*sEyG?o=%V*MZ{9*ufr4 zr;a7vRS&Ufp(LIBA!%1GsZGlYt61coG>E&93Nzx~@T3!k-Wknj&--?tb{X~bTQSh{O0>!nMK>3O^7#=YOS63Q>-qBUqaI%EW4-luJI_99~ zahR00M}y&?{gluc%ViGop!z>T9YEgzHbrP2NLCh^glh5e8uL{4u$fK9W@;Li= z6yKezPvLX+v#8GH^rB=So?H-(UAyAwd{^ zf~1%~OAa-sus7w<^s`sE4iC~XJ9XHjosH8Je`9i_6SI9O1qEV$T&uxP9IUesc5a^z z_p&+MT=akf#3M+!?$(*`WYR@e8eR%| zt?lqY&VagQL%4a#%UGq4E5#0z#*2UM;V$t!<}PahTO9|`t@>EfcKSd@182a#lhO1+ z=yUv{VB$C2U>jWg=<=8?^s-q*ccaEKZ_gfX=Eu8yNSqs7d6Ld+r^e7Dsd(zUd@N|c z4}ilfWofw1GEh!A#Z5U>LVs%VDd253yBu7=M|(sHF<}knC3BoEUOPy?#mt~kU}t29 z_)%7ZD#Z0yfXc*`f)}A%0_GRH1aF| z#$JDnL1pFJ^g&x5da_Dr&Bfik|ARB=R`#4ZMTOH5m#H+)+dwqhBp-hs@r0GFS+qnY z9@eqZbcrjY{EZTssA2|&gg_-Q(s3utUTpKJ;&!X*$eW_)TJ#Eye6uzHd?9k|5e*1$~WSuv;jhTjQ zLl_Uc))s(^wkJH5p9JH-UBVd(4Xo~HJBxHrWpmC5UR=BwRa_0{C-|IXW4e~m%8T`& zbmBIDe%=kysg?kGIdUDVIi*QfPM27T#uI4pKg%p1n$m&ydx7p>!|{!NFuJoA8qL#q z-ToKAb=47=7&Zg^oGP(<`cUGs+u7a09%ODaingChA;0@ktZ;@66==DWglH6v9w&!B zzmwqlfTOtj-7VbpGJ(ys?_!nF;!qw^MmyBSL90pz?p=?9cOR#Lt|$>wZNvHY2N$5H zrx7+C-OsK}J~D*zW)9 zxYd7bkH1EwfBX9W-41_G|Lf=P7xveAXaC#N7yFOrzy9B?|KC0HR~%1F?9V^_{qH`G z|NgxHGh5)F<9L6^d6fUb*ZTXY|BkPD{k`CSa{4#F>_)?1J9>Zluc^G?1S}=I6ck2H zys4jW15+5ROfsvt&}(Hs(wO=PWL_P|uq~nVaDNQ0FYII&^c!)lWGM`9Pv^|svYAY{ zz&WlchK;)Nxc}=!*zrmYvQ9|7AX6=4F^6mlLaMGn$ z>q;@q{5MmMiD8fWiPM}}eZaG=9@`CrIT`J_^lS44wq(6D_H?O{GVhP0g}SfeNVK(; z&cH#dRA}IjWSqQeBXha4i+QQ~k;)PsYIj$Gd_O^J=~Ms#PmZ#V5qEIOl1embEr#V+ zipYBOed-mo`v*f5sBHN_Hhz5#Ewvs>1FI!iaL{~em=I1ibNmHnm>D^qcBGW_A`%I@ z9Q8M6xM9ZyMn?=vZm+>!TN212y za6F}=1&24E!U5lkp^f)}u$$*V*+z=35p<=o*@M8~;2p3Uo&tHjLab`0JA?`vnTukU z+y%8Zwn*9=PA?e>o4+UnUh-wP4lYJtrJX48qn*jw%Zkhcm$N}~14Xd6FJ8KHj@3rR zFoVhr=02o9P2kcg^+f=Do>d~S2};=HTX$fS=T_9sxR2sP6G;EG9}F6tgcVCK(c^YA zR+FC$a%8^Ljth5v#;Y702aE47 zV=E=J>Hg6hEJIm_c8>5zwTsHYT_WsN3Fh~$Imjl3F2aZIRYZPcsgF-F>mT)p+wm=n zNxA6aGY@l$IX#uObv3brB?fSEnlM_TXkm3p%43M*F_rv)O&t ziDvxH2l4P&s5^3&b^n@7>uDH_`tSg5|EWRsq*kW%ek(}kZKql{6Z{|Sy$f7U-L^lT zBq5b_m!zUZRL`1oE!|O+OF~FRA(bRax*>^((oKGoF+_9hYFdKxvY3=lt8or}lm}Ib@DF{0#d0&P;HSYO<5@$jV|zJm9Zq|5~C(g|>B zpv|QxvRQ^>H&hyH1bsF>xB(SAx_vE<8S}bGy}j7DV)-^>)2R-{hHv(pESBA8a_ZAC zlWkw_7E_{?CAFKni*cK$(U=>Fg0(G2nn->aZt_V!!-Pp1UE){y*x2C43&VvAR7{i% zMN8(neKLOSMVs_J|5W_EcyGyOe88ltNMO@WHySUt+GEn7>S}Uu-!PMM!8Zms&pl`| zDt2>m>h-6_HcJFKnBhZ9vU>#Ia1tEnzooD^@cXh7-G=!k&uxWGM8#K>=-1ekyq#@a zG8}#`nIhU;v^3;R@%S%?N=8ZqmL#2yFF6ulY3yX0W%8xWzc^4V)i5`r(^%6##Ykgi zNXbLVm=d2db(3Y6V~ytSUs0T|an|7s?B1-8Lo=*MZ_xzW(n1ppzQ+o`1UA9DkM_c{#1#B|aSR!A zMjL*w5GCx&88F*rG*7lsmZw=gpIC*7(9a#BKwXGF@G7Xm>s6PMq@ZoMZlMqkDX68p z+se3+#zt^iR5a~AI*hMTkiw+RHRM?yU%*Syj2PBq z1ij*FIR9CV9%;5HqLq*PFz3r_`0wWBFc~FQ_|>GP%s#ppzAxK>dG330vBwuuTIa

      t+TLY9e@*IfkS!D)bR?PAK)SBQ527p6 zG1!qy{BZLc<;VjS(8d3`96m?bQR8R?jdx6e)$7$HF+fdGZz6AUi<%~q)pYfCk)md+cZq>&j(V?1Ri9O#6=|A7D;Bp}CRrXA zwd_k=J|F~xSFODYSeUzuHs=e`j9y3YP zGz{}dhCGHO4I#-)LI{CEGMT*Q5hG%nB8?PNiYcWj(v(s}N-3p?h=_C-~Hb|hu_-kthM$&`@Q!$ zlXI4V%Lc9t;~Cco0|rlaK~?g>XajKu?1V%@Dj}2Lk+#7C!=7c6hn@S3&~Kpn)-{7Q z@|;!yH;tuRqlw2-7mgFRjVXETij1wm#b8|EGI2D*0$s)!<54y_aGFM00bNfOBTPY4 zNC?wUO+OWCoGZ>Hw77z}0-?tR;)22y_mQ}diKw`mxLG1L?%}vO)DDlwJt0!!7REg- zQsb7!JtxxRR>r+3GUE=$9TZt{KZ*N^$d2oc>lHcw;M5gSASU1X>!WeaVniS#kQ2xs zw>~f_;3ZT9s>Uw}OuMgh{Jy~Sz)b$-(NasfiZb10x=RSlyA z63Y^yTb{E#Crp<0mKMQpoj z2it>tg8M0UNAPgIo$^OV@M!S3|6=gexE;Z>WO-pib+9Mc7wjj^jgSbL-z|(>Clnj9 zhMXZ+C?k{;$`4HndBRL!WGRW&D4?~yPfzZuS}T0ki;inL2GrfMnW{1Wwg%~EOkDE0bjmixtB zmWM45i+lLDQe!O4w#=rnFvs#JjfKZ7jlyi1Z~2Ufu{=qmBi8b?nS{#qzA> zS>d2D^1O(*ykJ==Mp;%_R*59bYRejtZ22;cn$eccmTe;2vfc7iQ7G86-GN)<)ZHs; z0t*960?Pxd0&4>s=wRA{a7&<#!bt?|9x65%Gal=@D=J{k$6lKEIF__uOBzn^G^Kcs z@g_aD-3T>;I!r%2p6OlExW971ztz8uu#>pmW}kZ_uKv9fbI|Hb@}aq7=L2G5{M@x z6PF&yBAVw1dR&~pCT~a3mAAvQ!e3K<#Gjbg70e*ypnUdV zexNCsZ0er*hvtN8Li0ikLW@F61HsUW(CW~-(CYHl{?%m%sCQXH8ws1ZpWPnsj(&E>S*0tu zqtX@H`uBY>v@NtVv^%u3;&5mm^{m@^Wawb1Gk0_7NZF*&vCzre&ngeOGeTzw=g~jk zqeoVp4P6TL60XWV=sy^`P6%@!tkSDusw`D8!Pu(!s^q`#gH`EyU7nNg+y|?&s1KUC z58^DZs<5hv&#KC}e^v#96;)GnZ$MXDRaaFX(N$%+2ZCnSm33D&R5eyL1P^d8s5oBL z6r4twUbVQQJ+QKTMb)yv`tcXJCTRA&%QD77cZil8i-&eq<1B?D%2I6cihC?RODWBm z<(3LD(((z*Cxp#1%kn8;kugbjWpXQ(LpNafM@)*e{ zVa!qg?8@5G)upNaxtvGe2LF8jLjRJ|)UoF|zYPC!|0>RRB=7#U<@pSXyP>k(-@W0D{Yyjj9UBw%LBCDK4f|5|JvTAOw7RErHFkH-1B)Lm$)7_`*gXsOtD*?aQa zJnL`$4PDwvKrs+szPJ29`JwVIU~hSM`HAw=<>$&TmS3juO8K>-3*`eWuTU$ZKM>-| zPjhJGrjl|KvQ$wCsx8$*!)!IYTzNNppk|bdOAv#0w4q#fl*2*gs1vKvM|}K@K8;Xz zOoI9Q)(KHwFVD*x2#r!+-b7d|V#}+`Yv`yhpHV)G!Z}2%%jcEzUl&HbPmZ{bW004- z|6f|O=jnaO^97IrPMrg(W|k%2G~kH)S@3F~V9V z%DQNGbE52Y*}1ZdWtYpYlwBk4O4&fUS{_}tr97_Oj+)Li)&)1^Zk%Nt-EEJj)xnI_ zAqJ~Mtfhihhd8VYBd{)v{6C1Ph(wW&^5Sn$N6!P4vPO)>2Q78HR2i1E9oz}K|No$nrV;< zYslIlik+&{D?aJ;IUf?uk^Ubi;tF|AR<{aT$4Y7q&^1cxjqr9TC5`XP50|}@{C4}M zVf?aTHY@M2Tl0?B{2=*xKf8C!qbQ;JFKHfjzIj;KdIvbI?Syut?&|*=>#^=V>T%Ei zlzLQ87f&9wtJqiUFRm`GDV|Y0t9VZFJi@Hv1%yR7Us}9^!qtRzgpI|UinkKB74IZ$ zD&9@lhx3DEx2d?3aD;HI_+;^!;`7Cq2*(J$gsb4MlRWIznfJzcEixp;lkG_glZ(%I zlfCKQEaLOLh0y1Di;7Qr%e+DFRBx@fj!;IZCp3U>Bzco}G5BTPl?c}m){||J!e-Jp zdpCPqiQn#RhklQDKj}KWhrLJX{5YY5aEfpi`~{Ntc>BQjdv9=9A_!)(JxpP&_h?CM ziM7N@ysIPw`kaz{@8Ob3CEk*XlB$wvgh_2LRe0=UJ6%{ zepSiZk`2VSlx%^%rKF8?J4$u|dkF^!hm3PZ*D!u>Nq5PKVdsp~M#%DWB^L>oORf;E z5e5k7d@3Q@7YE)>NG!SHv-?tUo=NZ!3Vf4s?j!j{pWj#Q^Os!q)evS7W)b|pIfQw> z1>hGEJiZzVm*RW{VKrf$ZzIk(`Ib@|TYcMrorK+lea1QC;4prtuhVyA*g4~v5wiTG z?~Ly};S%Abua|I@_^ZC_I1iWVzB8pU1PdXa?MjnXd)~wT}JYigf*q>OPfnK6Iuz|3F}MS33~|p5q6O5FyZJ;eRJt? z!YRU8oL?yIp|G#Czw}0Ff0-bdiSH|mC0Geg4$E95&miPP^c3b3CK0@_uPCb`ep=b| z4~&^*v&-fZ=9eubehKl6g=Nc0wu-Qpuz}D**izP3wu7*X^jpYo2e7bgFUbxN4iUNt z-2~pPeo#!K-RwI-?sYFyc&%)J`Es@FBJFrdULGgq<#y%``Mac3o>-n*o=NZ+VL|!i zav#BOgaveO;3N1EPX0Ul8r((9pt}ee&Lb=!EF!RODaBhsSdDO9`9=yi5w;SRmTxQH zS-!h`AK@Uv&hjG^9wVG2>?}W1e!l!tc`xCr5nd;R%P&>v6q2qYhPK`k@q}c9PdCCW zLLQ;8qNt**A_z<+eriQ6__~UEgbjp7l1=4nS2Qsy7MCBZSX{9T{K|?o2-g#uE0&Rb zb49CxctWzlryF4wA&*d4vAv?bVh>?Ip@Xo!;&8=LBQM7ZrwB(WKWB~WULf=k&eApd zD*7vKRPZf%GgS4rL)pS$RJoNbHH0G^D8G+dI=RqI2={)Ae%;*4t{1uS>}QuO$Q#)`M@tx=-tSpvYSrpuItf6*$Zxujv%_@H)=xbs$JKw2uhX2I>g) zfd&d2!8ZjKBU~0(N#Pp8dVcasXvHrf&4E4Ty94{ncYDhM9f8Bd9}OG_PT{wMg-4XfIV;l0o~cqlDwU&%z$d8JZ(Q=y;z-?HZa#@&$YzT2zux zI%?<8QsbA4jf72vt%Rij|K1?^jRM>mcBYF5o!NBfxDa=atNE^SM-6j%%QQ}m%9Y&MDc7b9R6XdlTA5;||{R~H>293!0M^YK@U&QN&1=u%NH;VR*}!85`|mx^^ljKNz7@q}bT zIw4Ei<*zEvBNXPh6c-j36_-&Mr1PnS+KDm6brWOqYGhbkKe4d5fzVjoRJ@q5%m`N& zuPI(nXfEDdTvxm~uSSN&^|=d+8wicXtz_3)yxj;_7PlAgA?(k+Qrtl}oI6l_l)~eL zQ-rg5(U4yt`Gvgd;vVAr7=qmDNQ8?hu zr+9o`MaYMY(AHyTGD1$Ti_)PqV0(hjPqXdhJ}0#9!v~ zDP}LrIjxB7iuam#fYRc;UddBSR6;cKC2`(?5_?G^_|%e2gdRcxwZSzCCzF11iLb;@ ze050;^fU6-d9RiDC=H(xa(ccJJJKNATrZu^g6*8Vb;Q?D{DBhxltY{j@@h;w!nF+DfH>?yo2`)m0cNgS2-W`N4 zZ$9yp2wrbD$-4k)FLf0ZKc8&#DIT9!5%M9Uv|)FV_{%t-=4Cm@i^#5crxRv+2fVW> zoJ*KbSV--~@+Bl+LhZ7g_*I0p)K=5!oB?}7x1pql!U5{%hj89PSPmJd&35zXd;!k4 zP#ViQUPM;hG_k*AHDMiLW67qHtrPo;n@YAB;U?A(w<&JQOT_t31G`DKreq)CU`Z#P zA0ZqgoMgV_Ov!nKmyGZX^tape;{2)sO0VR4Nx0;?PcP~8#T0LzFxzJ##7~%Aym?}> zFBxH$5hk<#4x2na&s`|tOXqN686oJ)qVv3h8@@t95g~74-9!t*dLyiZ{&t%NoR>*V zWLeq7MnaP>SkP14IY3zvUbXbDJ_J(2DVIT^Q|PTA*`R$mTUDj6E^2gr*JxjSA4C6?YRTKb_)08 zRr~f6Xnpk2+UBEm5PS!0NI&_8uVae9`SB?Sh(F}($XnoRC2Y@I>N`c@p1e*9J0U+x z=rFLIbyJ)a$A$CbQ@V)n_R*ZSbmhyVPHFS^L!m83vhls!jD_;J4?7g=ppnG`UyA2tuGbh z`b*8@`bpnU`hL>)lfIwy{iN@g`utU;vH2~fR)RDCT&XMnN@)fmry#jBzo5P}f5NrW zNrkDU-qMQFs{i7>jmhztqfrRQQ;zQn-SJ~bhbVCzPPic|oew)7R+kDz{7U_$V2_gQ z4QQ*$B-q!Eoxj-)&qFFp)IUJJp5@Zp5W7kf>?@AtvzVGrFxB%QxvC#yk2OfA3Gxhh z9_nGQ+cTZ+HyK6NaB5@fY|as=nn(NZf#L zAv^pGwS&%O|3k_)PE9>7y%R|}EL*^HI9-f4=IB)84=9K{Wnb7*dzYhL1ESG_g244j28;ErS@_&Ln1M*iO zp9DS!S~K{^z<)uez`XKHSYC#9iR7WR%Dh2xAHGg&VXMLevNB}CE5tIPI>q{T=U?4pkXnUdmz%WFjdC0je3Q7 zaRWA+klJsc-NyMeoq)XpZ5v-jQ<*oXK++ETXxP8bTBRTShA=!x!KOC+eJ&&OCfRe= zgXVy)k`m5|z8tA7M!A~77ol8pAlU)QL6qx{i1js;Xeq9kjVSHd)MMF&$Y6*fsjH%PLQuPgq7d@ew0XNPem!-LLSa@i<{98 z)n+cQ-piEg=QWh&HH`G{Act%pMhbaGYrcjQSTY$S*N(RM2((3@7tv=wY%esYcd*omCw6&;>%dq(#cx1 z3Vb`{!SG46Y#aC{)b>^O!GJ4HGv=8B-bEzn9Rkl0Vn`mJhnsZ)5nrs;_XJBKN9)*&=hLUocdr?<*=FRD-)y25V7UXRUQm8dX zI;S%Wy)FZEHuBJG%-BrpkbbwE3B#Mvngy8oTac3i*bA%?oaQR{tLqaD7#-|CwP)yl z;%A`6FTqL(k-L9g-^}ET4ybI?C9L8M_vebgTuko_ByoLz{~7 zR-mNkK-Yr~AZ0&VzYH{;X?WAn1)&W7GgHb{Esrnc{9|%$LQd9(-{2Y;;=e4#nrm8# zyrsgjHjMob;wB3hT|LprzY8Ak`0D{Nph8~*o~ZPGCj>l9NZ(`9gzPPWq^m-sz-AI_Zl}`kymA&%tk#^fMmw4PI`coUf-m@H|gWe@a_hWZqk>V^x`J{w;7(>q^B$Ctxft4ksjKlZ#MYH zlK$AFCpPJWO?qE5{H{rlYw*t@y{t+9YKCVu=~GR5Q-dEh=|N5UPBXlwNq=e53k&K> zdPkFf(F~7h(ia*$h)DluhUYWs?F@d-q=z%<+e~^jlb+0^4>Re#O!_U89?PVcGU=a8 zdM1-T$qa8~(hnK@h)CaK((9P?Hzqxe89v6OcQNS&2Q?;ri5XtRr2jDKIZXBt=`9R? z!VC{#@C_#Yei^>Lq?a%05m5T{f;TVe$IApyFoy3gcKr>7z?}=aPQ843Auh z6%DQQza>3yNuOJWw=MYDlK!-$CoSniOM1^T{ANjyS@19<{a{HCSkm{E^m--zT}e+@ z(#MtbZYBL%NncjdiHo>_{3Lxo!OxTQ@MQRQ zl3typpCov4GJH6}dz19rBt14sUrmOWCirJEJTpn3Owxm+^uvU!8@`vM*CpB0q(>j= zV+k!N{VEwAmC$O^i<0!8Bt0idpGk(dBeGQ1*5pM}yB5>k`ikEGut>G8<$ zbtJtU!H<#jY-IQ}LhVUEM$&_k^j##q7D<0a(o>Q2QDk^0f?p!(kx2R?GQ1GM|B&H% zNctR--i9!nNe@HPw~*mgNct0!GXVOV^d2Pr21$=W(pQl55@h%Xf@dJ<6G(ak3O}S* z5}nE3n!|U4j{!d({CMya^eUo->{FlQb0Gf)_;o}JOy37z1zyG-555L*#}UngypVlM zQ#u^C0O`-tConZV1kbEXiMO-&^swE;eth@9=39K-LGXjGBM&Pfe**jj@Dson%G?@s zDd`w()4lIl}XuE&w{dCY64!ACr@IVplA^Aq@K4B5zf zSclXOBDE^;--0F6arzF}NIDs`7B&q?e;?B4nt907&HcgrNA3^cW5ACGKOX!9(@R`B z^FGL%Am0i8VZOR~4fvmd?*reo7_zQXh=YN*@B=?6XE`{A( z!ZeDnvd281`$NqbdPmq!u&^`qFwYcI@)Y1*m=W+FNSfUR{v1LB^eDDS4BamMQ??yUOo{5~y0G|#1 zlSt=(GmVY{k3JtA4edjad=aVrn0p9PxDP3e2R|PC1oOvX|F7WVK^=${K%NVb=Q(KQ zmr&BbK#RPYw?pzU=+8j=p-mtIH z7{=4l!EZ4gz_SQ}XAuI=^oD)~iu+|%LkiD9i<%M7LV~!;C`b~(e*yd;;^Hnc{8z|d z2fYtk`Fvv{D4r?|RlpLGK|Bpso`M!nMTSuSs;tk`kl;C_(g7Ph`BZS1jR&}jz|&L( zci-akpm?&X;%SU>0rVlr@x)J)&)$)m@bvuL-DIbO8XP`)J z2t8AI3zCzdp9Dqg3$*?ao*0Lph9&O(#s31W2E~)}p}V0)$_k$33-lIIf>MMa|0yVb zl@LFH9DP9f8YEu@#WNG}DyVF!?}EMtil^V=PoPLmVB`+H2>v^u%Ruq8N62!?I{6G} zD=7Mv7>l@aj64kb2J$0E7D^<30E!+s1b#^79QChbe$eoYS3wR{Ip?7Fs`5D!#;=N= zsT>1ENwvoz$Mat0$DkhpT>^^d%o@^HP$Jb03FaBK1#*lR@fdhW1ZDsQPoY)J07^FU zc^4#TYaL@>{XVq+3W_IeD*Bs-Uzd~vXmO;kVWv_s>WA?oswf@pyqU+S*Dzx!_}xMIPe{-cR5^S92PBxaR9QyMHp-76mnr-i+OI&4 z_EqsjPDfAHWN*a0p<}L4Fk|5~dK6lePQ%Qv$S0HXsUv#3ik@b|=+^Mtii$Z$ zN1JLGWjacy{tgsy(PMk46nigzSM~qv!C`-RXvwpL>7b;At%u za+ZD)DPYypWlxZO6{B)U_M&egCz$tWJf6Tvp&hA$ajIerlB5sgi>NNwZaIzw>H$4d z#oVaL){$dYGkOB2FXy_qPT-8cgZja0rOB~|*3{&f!Y_;(W;{iXTv-aa(#hW<gaji<$M2PzT<Q(p<@NJOAB? z`dB!Y=@8wwioa;9c+HiR+E7ud&0i*3PrC_4oQ>kYNU=$tpB{*z@aLH4yKJItZwvnh z{Oh2PgEoTx2yqLLP6kqV6ZWg1{UPKkB$pv+0)2||cAomXqJ2L6D0sRD)TRx6lX=tU zK)(z+8#Y#GM?kUwk~r}9gNJ1BIwU4Yo+0{F*bj*Yn#|YL>zRgw$mceuLtjRI?tuh3 zG!4SW4DCp0RY;_~*gzW=bQTC8$09JmlX1T?G0C zXh-3?DUhs#BnkYJ;75Z>%e#=ye}G4Og+C9;AHZ)!tRgNut?FDS51^jkLQQ@ib%L5V zRe*j1b$E@nv`=BlOwba@2av)n@RyLzRY*RKdY%l)zrvnsN!9f)5-lF&U#WDorq1=I z>ilGY=-t#Gt{B>Rpw!3IOn%a(HizG4%I%_NnyNt8fF6Z*2=pOHUIzau&_^J-5Bx_# zmoXhY5BZNE*?_AAk$w#1GeEx%dK&UXST2U-`{0*=4}hNw`VFM~H^_em$*U;!4^Zl- zQKHqLS5e+lP$!kT-_Sk-`WKQE>fJ=!hITS<`ZH5A^&jPz;a<>>LwTQ*Jvo*TlcAj|e{vo9}_X z0{TtREX4W&Y`}AWCVDT?PwD(uXZyonK|MSG+6lUV<%4fSyO?L2LD_=b)2!$TR@3XC z{|@>S)|wxIJzCbxy{J^X9}+iOZ7t|uL0>`o-O$>Q{#3}hr$zHfSFJps&=q6BUjx4h z_7lOQMYMk=x{&5|YC+nIDeBMB>zYl|A>p$8JiHWiG~^yoKj?ALR9J3js{I>Mcoy=B zkfVQ^?g1SGiXLTBp#1{!FcW#OgHkL_)k8#^hUS9jS+ObnI`dp(#Q!sBEwoo5=ii`5 z=`_P=B}2=Y=O^JrZ*YF}gIr#tT-+y{%`~$qZ?ip6>`;}P8ts)FtU<(^rs zf0HS<6s;XeoI-dVB)cFP33?CY-SY`#nT7oNxFV7}S~`dQGQf_?$?d$4(cS0CY0|mzi_;FF*AT?(>RG=U=$KBimQ!zqoir$3OldLOKuT4bffqoA3H0UqU`urDhdiXI&u*QW=NK=L6BUo9! z1U?zG8}t>}Tme4=RN8+7bTj&@ij=2wnmYPn_%qnc{TZXCn`=-1XQuoct5|@(RIP7- z{bJbrP{W^vO$w+B68_HHS9SF2u-xH)74!_~udsui2dx*9$)MQT^8S#tD3SUn@U=*d zXN)E`oLnXb~hoLadjO^4sV+pTS)BF!MUM z$ir$2>VzfP+RrgYr1k~m?YE#8LFa=~3d-j+8t=+O8t<1j4*f6mu2tw=J?Q!W1j@7A z3-X?Y=RIwa_V3)shMr?y|0DX_N#;$ThPI38(38;qo~hJ^Gf*1}YU2!3?GReT!MmgI zY_z*<<*gVai!feZtDcLH`OWcQ|iBn+1Lm_{q?6&-_>Pv0w2Hfzpo! ze+~R5&@#3+dg&*SD;1KDK>H=|$)MOrp_lGQFWrw`y5A)2zX8g<^oj8AKxsd$q+r*Y z66U|ae*!ztLhL-B;GH40FZET$#=lHa54;OJ?{#gax6wnmuYPs#+pwI#lz-(ERf8>% zSHSYu=)=2U14}dCKW*xRd2RMv^qpTu3H?&jT-K069Xx54s1EkE1P) zBcC(SvTt&EqwKKZ*}%s82eE*E*CzfsSfaM0#v^^K;JlY0$;;?1e?mI{0?7!BcPAuo zfPW4Ycl72JkgtH`%b>h_sWx^6D5K1Y8MP6Gd-*7SMp|w9JztBjLc5(2;G4joKyJC_ z?=$}nl-uhS(;K)}E404@m3tc#XdKoQp4r~i{sMXpBgG2(Db&?7Ob6aVyP!=6Fz*eO zL(6^Rm4RP?w?XTJmhXm|IWAGY({JV!i2fGz_mK17$ByAxB>9ctcT#vZ_$9|u+Ss1% z6L}<_Mmi&q!q1_70dzlTKi{n=-{O^B6p9*r&oxIx2{G=>O(^5e-*&E!J2LLrxRcBY z-FlDJB7}96brkUvtP_OE>2NyO^M+7Ieq|)BaM8P?FAn>L#C8KK3GGIBJCt#2-j^RP zdnftr_Irl$`-jb9_66Yr5snzC>NDJ<+`e> zv1+`Us^+MLs!y#_Yt>omT(wDEs;*MktDDp|wO!q(9#W60C)IOmk9t)d(9D`eOVl#7 zJZ-X8p-t6hXtT9O+LJ8T)@U2GE!uW%w{}1~tR2%%YZtU$?V2w17~QVB^enwV_v%5t zMxUuS=nM2E`bvGB-lDhaJN3PKhkisqp`X<+=~wg{CYp^*PE)$cW13_tGgX_Wo9a#T zObboROsh>BOq)&HOuJ0`O`WE0(<#$=(`8e?DNJ|Ns;9xz=xOpSCT^x@wr8PdK5+{? zi#$s`D{g9+5$E+R@htbOBCde+D?Cey3woA$R(k57UC4T&b3D&#&pOXW&nC}S&o-gS z(6iIC+p~}Ke3iML`JP=ydK$tu&sxt8PYdZ=J=;C)o;{xZo(|7p&ry;f^c?q`@|^Wt z@bn1PeawB*ea3T^xWn!n9^pAb+yVC?cbDfFal74@+`XQ|#BF!CyZ5*|h+FR2=Q-%< zq?~rRH@UaEcM^AiuDZjsi?!~(9G|!u?u~qP((ZD%a(v=;Qfw*%aYoLF+e@(zdAf+} z^c>-|iQ`<#xU8eJi8}~A<%;TQ4VQwr4W1THH|H63)QPxjJnN~%k+@x+ZsI7O=cI?` z*jpv{T=ZP_oc5d}?vkgM^jC@N^YnXejaydS0!?}8HOs++!xv{xc%J)&?;&Sbt zYn}n(EV=P~ZQ`uCPQEsA_T0qWR8Jdm$+_v={=~U*GjemF&CHGCb|WsGVrM~{k!#L% zd76-NDy3b8xbe9$9v^W|PY<f8s7l&87($dtKMMu{kO z;!-JPDwRx`>kB2y;krb5Jyg?Ih|9{&^PKlwl5x2u5I0k{AjM7Q7QU(NxT)QHQ@itK zO|}{-@1ma0DW}u8SZ7>!vu7o=snkD~7`d9~SpcoeQ}1culqucmo|!0br>ELeBg;!y z4jR{;rH=kN5#)x~)BRH=6GS&1oj_bajo8#`K zQPJ=2bKh`Zpnj!#qTMIlr-`$8;@wBw+_SA7r@O;_n0uWkHCJ~Zpt!=5o@;jRCQhZR z4!F19)NX+`%hTiD$UWBM@|<(8AuiRE>27f^CobKS>|WH0&OZvP^G~BPg`am? zs(x#CMJ@Kum?{=}3Oz-hGMZhddTKp&-1eA<8)zn$SZv@<*)qaP!Wx6W^L)JlKAH_| zCbSyZZlIm8XIQxZeb8|SBKeEt>#&iJNEpFU!f_)!H4JABTrkjMfYa+E^b>A)8mJ#N zr()zTx%lbL%G7)FpZ+%Tzt#4X?A>wVC z%_K(I9JY9oY|F5X5iZ*VTcJp`1#Cf)ZhO#HCo*hHY@ZXEwij)yM3(LAwic0N`=)J+ z@Yud%+adC7uiDy0zU>X$VNqcFx$R9+X#0chkK#VtpKX5;MRwJ$ixPX3JxY|>EA5q{ z-2R~bK~Z6!X@5vm+MDc6B4Gcl{j(xyf6@M;2-&}2|AMHpx7pjoN9?cKUlrB%AK8B- zK5Bo>{+gI-|B3yO_?Z1?_Ac>p`zibX7WdnG>^Qh}^b@94t5KJ@@M~v$j z>0B7jDb_}$J?Uw z%_3HxdTHj;5CI0YDg9LJ%D7z=m?DhgQzd&vHycD5)iC^XtnG^S2&u>bENaEcpkRsk zsoJPyi3UDYc7{ea++iobg}OS_(tuyy9QdkLNm#FRMxn;F6JRRYZPfe)js|q<}gW0vc_JywK~uZci3jQ z*o~$gw}GMkxY)>owJL4-k5&3*y=DC=Y*@CoSd&$r@zg|i4o?QLz$|loP%_W^M&y|} zF+qe!LR>gghRKVSC2N)Aa_zE8p2@xG+*vkFoq6%t$;gSR1bUUDx@j4!+N{`}>wA}lT?x~3(zDkPfoFba2&k+; zq8}Pj^|IglteHXC0iF1Fl}wj@x0eN<^tKX5X%q2)^Hz!&bd@*~Po?@OW=_o?ji;$^ z49|vN=FTYTc1>x8VTQ;<)g)FwSHF9YsjW0eud|CD8lGYIa@#g|{A#Bzh>59%GsHq- zjVel>V$ZU3KlAJ*?iI|OxgaQDDscD$+^fCqq5G*RLosjKaLd3NjQ9fsFl&xU;~5!+ zb1I_7un^Q$$c}a*6~o~Z*;Od_`DatIeBwm*0l9QO{55D;>mgfiQ|wb`nl~0_9m90i z%kjWn@b-0uDy`}g`kluS4_x|(!`@osX)(8Ge}tesReHbs35A$QjDd<7_%8=rX|nC% z)XBT6R6|4AXbz?WZo8DhyXZU*5?(9^(s%BWqgVy#niwe4*-UBEEJOD>E(%&4!)kj^ zXpYIE47+CeHEUs)=w%+0ud`^LmCre}m?)0;F8A@;yT8JVQOoQmC_$P-u_We?aqGO3 z>Mz`C+0r=}9E5JNHN~eYD8}#9(107v2FE1FsZ{IZ2EYA^sB8I_m??3o)}QrUJkgW8 zp|eh321Jq?T^|b#REAAO+60nrqAiIOuk!icZE^0F^|uhcyKe;d%VkIPS+Z|YwT!yz zgBw+em`YPS8$_S<~xH39)`c8bMvQRSG` zk&%&^k#CU_WloqIkr!GqwjAw!pKu-kb&X|wB9s~X2*gRs|R*G&_rLb0mBr}u{vu-y2*Y=Ty z98KZZ=Jf{MQ)R<>YL-&gQmVfyjY2#X8`GI9#MW(1a;v%Lvu%xI?hV;xuVou5MKv;; zTN+bh?ouzwcTIOVTQ03;hXf?mq`b2(g_n|>8Q$OC2r$mMXHyF40J{6-`vG6cv3_}G zL_GL_H1TN z3bn;Ik~*k(Ld-4bv=_l>GdrY8&ApBn_TWaaX0xOfV~X0zX?AAQ6OJcotH`SO-1KjH z9hv6l*N^>Y32CkEZUmzL^)uj)Kti3dt_Cs3ctw-i0JXot3+>n<6J496!)^;oI z2MVfW0K)T`hTW0L2E`Fs-dT&Xrb)&WPP#PbS@V#&2jX>cu5`zMn14=zGJIBaT#eD5*mkW;+6LjYk(!-Box~!1DuwHwk)7g;>&4b-bpFtd_1ZvUYP5$ z;h-?78Gg1gp2y)_f-29t#i?+ia8i7AeC?=H!m%cyiIKwfRGdaUEAuO}`B5@)de-bo ze4PzW*~5H)gZqIfox~{N`FvrjrkIAihKdGmOK;)NJkkevKG7UpFWM@^Otv_ay?(>K zm>CFBJjr#q$t3aikc+c8ULou>)s(f4i#o;Qg=t=$bpaQHQq`u^U)Ww-2Hf!b1G`4*-ky~4c%iTSV%HR(=4Q; zij|A2iry!Mbq+ZXITw`|o#6Kc(j%(Js;MS}CWERit3m!%;Hu`-%i>ml zKps{mlyP|7Zhu8Rp6rZu1KgXZ5a?+>N1PJp?3a{(V>rPq>f&dP;*ufpiXg(yLUNk_c zzASEGm~8FfrOUv;Wz1#{V@er!V7figv-_J$O6caVZWd!oMYq^uHe=Jb^2Cbkicoa= zBnb1#BCAlKbnDMe@%a%Y+(M4*Swvl;n7s{13|*o00E(>ZguS@0tvZQH)-`piBs3(IdS6OS%Si-I)gO}35RV(n;wEZX?R;Le!tylGxv{ZMliHI5oB_E6JF*u)Kb z{2|h)*6VF>U8q+3xDlvF9DMu{cQF^rM)IJsT6G?#Dp12zM4wrxxoRHsM>X7@l@se& zG9ojA{C$d(PwMm?W)g!Of{s%cwe9wHatbElmTIzQI=yE0*>G}b_(kF{!RS5lmZI*% zKVd=p53h~l_1(&-kFE%hsMK2KQhE!HO8}o}TGz!J=YZG9GqOYzN3&hnyn1?wA%(v8 z6j#$IKe&E6lDAr_O(0XqhzY{(p?BzFIzWy6%yZdU9Wy1FZx;&!55zbi)G#B-Am5`RzbUhi=M>WMtbA!Tr9n0X*W)lsj zpt*EQ96C{TGBq;jlzZM&qc{_qCij6(m7GSU$lBmaWrNE5f`u}|RnCbQyX~e0jl)o_ zx9SrIQLan$q)CrVJHovNcCqjncI!#kYxzTR)9|MjhXy8PX_r~J)YR>9=Yw#FtliAr z0qVmarg^SQZaEHhuKntJ)aW_I?+RtE^Xl7`s4*O%lew;I&q#-411QZrIs4s|%158x zkuBPUQlUp(2oNqaPwkc~A=x@Af|xje0?VKpQ5TR-P<|o*LP~9lTZ`&sJ@4q zfXYD82(tm0K|Bzj0glAkr3vuFpoYv#Tv+`s9!jIApH6u){*t0vcChG_E)ZMRO;&T^aNj@zTQMGrMP6h0)5 z+sWL?BoyW9l&ukWO6C|7NuRsCi}1)IFije^opj_SW}J!Uu7MdpO%t4PjQae=s}hAY z1%tHD7AslG+KT|gBFb)Os(Y(LAYQ20kJ4>(mwyE?X$_A zuHIz{Va{&;D|AYDbo~R&18#g4$=&knIU9DbKIugz(Za^=@4CtDhDR=~Xjn0L^IMz* zY#lK$JLPEe=wqYZBDMGEucgZDvF*6?I0@%w?R0H_?V9&|?P%>nt>2_3_Sbb3j@>>{ z8*pQrN!(5jwqqq_{^;rJ7$UwhfL*k)b42J*^b2Y;5oho z^WoF{okFtG9+hemWE)*j`vIYcqIVgAr<3|r=k&{O#4@EZeRfK<5VPGxA>OI zF|$dh9)3wluz_aMq?u$z!8*;+wbH{HYyq@sgjn_XN*$oM8vTK&g4fL=-s!uD53_(z zwSbScfDf^d`=e4owo;(rH#ms_oaErIM1PjyAQm&`gek|lDmeXpL z0?VIh(}{4gSvYV+{{Nw<8%^Kms1EQS%z)$l>){PZgv{3eLa0h`r5t9Oii zS_z2&t`u^_1MKo9Pd^X?xZ8~K*WlxOXcy!SnYzvBZZq7()56aI1%fhtsKu%}8L1#o z*hQM|Rr8OHX+RGh*eA6DZ*<~oX;J>Oc1mfOP)1J-IDmxZGkUX@4YkrQeym0o9Mai^JyP0yn)?-;*rLZ53cT4nZ)Om>xo1P@p>fl4{)F#FUV`oE!K<%O-ZpAtgcS!K(qYA zH5*LBS7f;>&D<3_@Fyj=j3?|?az%G|Rqs#I{hr0kjOoaFq~D=F^u{cq zPtk}q1#?{Sd z-j2{PNu+}IP8xq|N{^=c^${4|gS(kCdljUJvuXJEdVmV2D^xn+&u)at3m~#0b8q<@ zvL}dQ%BG+-v&vVB?tUUca}_g^-y;(YS+)_@2pYXs&z3Q5qB2Fj-yTx zH_AsMG;32K?$@mM;AWP!8aT60To@`(f|jN_TVwb}9B4$*)?MJ7JzW!bPz^3}cQjkN zN{->DGq{468Zq8uo0=TF{kmyoyT}wkgqdN+tiP0L&>xg?5pA#!Zvzkr&2=kmN`yO5yea5-BRx5i=)P>rOFn6b}$tYevvmUqu zFELN23D*1ksqTEUI;nxM3h5a&&zxZ)&p>nNvOBTgu}OqQyQm?Xv&XzJuAUE0(E)oN zFpb-fW)5NOovsRZ%XvX|pvqj1cdO$XQLC8oyA%4Avx{(1dS1KZMHtQDllX(=iilhV zB1$Cxi$_yQOYPcRDw~VhXBcYBx%XH-=l%&tVdjYL%Wjvcdy=X{qwMzO4fhzU5>Qvj z0+3fdXuEk}Kl3YH;2}hRbBMysr^o%>OXqkvzB{kpkEU_T;qvdH{RTP9FZCDsJ`>`- z{!_!JF`Snn*AB!_sDsvnd)*th!cv-XPm#!CrM-ug-P^D`aYgF@tO$jbG5u1@|KG=e~VVYzPFS$?& za%v1G)rZe3vi;xfyV_nrp9DOySdF!AHISO&_oKQw>=znR#(Gur9G3!S7O&xo7u_N& z=o}(S`G!(CgIeTcKS6YLB4(dps8?IG8_c>YW)BKvXPdx& z27X0ocx6~Bd-$Hp;f1BIjk1&lw`w)8?ING|>g?kt8h{@9N!F$`W&&uw5;h2X59XPY z66M7F*2?()958J9^Eq?sxv-Yl9P8rj)+jBAF!Te<&O2sFHEF@PHc}-_XJ|f++y*-x-&1)|3*o}Ngc#cfQnnAG$?+ZgG(S- z6%#g=QE$(O+WZI#>>dhPfEaL_K??P}*MawXiOIH`1o|?s4RiiG*1T`{Ap#>G_fDwnVFh`L z9gTW8K z%oS}!!&*W;{uJZhPnZC4OaNBD9MKV>+9W^c)%*Y#Vm?|Z7~tm{nqXZTbUGwQS4sq^ zF0#xvUHD3^AqK_fh;G_V-E(#3U*(F=TU-)JYwfgI>3ld!>#)no?lCL-A#;m-i9J4p zXuAwFZFRSt@}nw*z0I6UOi~FOhbr;nC~Q1D3KWnxMq36VNMQKV%qN|F6X?2XZ8;N{cD z^~VO^WXr{?+rRtt#gli@Y146>??pzN8@pe|wh4DbE7*ea8w3j42|hlIctK&25iv=O zfAKgjN@(eaSau|IF8-b3G{GG#Y?QqJx6kU4?XrWN^Rul!r(xkNsdZspS!Gde8Enu} z@o=dEViNhcZm6dmv*YDt@tqOw(ANJW6XJ}2SD+A-KeA5JEBF2@@(5XhP4rUv@)eFi;P;kQzo_3 ze;+(s*v+It%oB-2V&$*E$>vg=ZHEzau8M||junZZpUjFPrsi%ed%s*MlTLTKw2?>5 zJG}Bs`(!-qt8IIUwl$u?R6@kidTj=9T{dc~dj@6XO<+h0Rm19lVAZNIi&@#H?R`LUUt`at`CQ_!=i8+Zih{*oNYKxcA0oVQX&*Q$Yr8-E~G{ga&_Y z>`9GkmNb=%P-zsFn}1X61To_l0QE?dD?${?L{>^(K9s~3iH0b0e?pW7? ztU})4)p_t%%dF{lVMFd{*%hXzjN2mVK{8N4OcfR;)!#nZtU3bAgzYX8cek*Eo|^ z$^F+#X)?93Ud%3S1FEuiYL6Bv>}J)3Bk_Xj?&Mq{z_3vCEd+~K3-qUex;@{g8j`52 z<~D!^#4{FQJt*~6#vH?9{pUt_i|UPsi;13yXTFexI(AJYx|i{(4?v0eZ&I6`O@+8n zYS6_Db(p2>qM>5Cc0hz^HPC9`Eg46meYPC))Ma_&- zt62c02Hh&FG?QYEGe?b(4ii9C+tK$LXkRi?5OXWzl)+(Z%q$X@rHFIWhq~oFF#Eb6 zeyLQJ1`l%RqU=X7s4zWucu_{1+Cj(=!Y+2>kDxj(=8muv?VgY$tVi zXM~8tx9(0T4_=qqs+OJU!i8de$3$Ddd@4}$~HRd8+ z;iR~98BT9!s2@=uj*@r2ReQk@zZXluu7p7-p^Pe2ee=@~UA409Gk}Gf0B0d|Vkr)| zr3k*XI#}T%W38R~!*sZGXnI$3$b6gLpu47YNqEYuv!R_AKK!n<}5Poz) zK>$~%C(+=S#;{MUWi@s`OVV?D)lhv@$-}jXKQe>$S+m{~w z`XdM@LV+{~MGSlL9aXsnkdO`QLt`;Qy+y^GwH|v18;CxwR*tj(x8+f8?M{P3%olpJ zo5)a__eL_BrZPCI{N`3v6s;jaY{>ByMScvFHXJCd2wN>qz%TR-7YDU13jh1o))el+ zGf6EXvws%2-?v@5U%4ctuiB-Uxq;}Ah;eOW(nu-3p%L46^CV9wqX+&Jif@iNB7-9` z@zi9u_P^blK3!dR%t56v9pFt5Q%+uR-NXb#9KXT3P{?CV|Cq1;Tc@0#^ubHwefa=l zN^H9fkCT3pCq%;!%H9wHZ~TG5N!$^#a#8A&0R5-2ScYTM0F2M^>hD^W!e`thKM{`^ z39`#gDg=qPovER%Cr%yE$EGqwI}7Zrj29zIf29I{A1cCQUu<@Ha5-;=-(A_IPy4QGp@x>h z!CcxAJkjm4^ri44vif=#f}adqTEJPLsy$O6N!Yvk`3fpKH~V!3YRtfeQ<*ZrO9Qsb zEkQLfp?nU=Gt#cRg*pHntR;)FD4khURaHIW;At&x!@(WK$sYK|K3RUjH~B&w5z?+{ zE$eu(!Bquc+a=)GQtcaxo-;AycAMls(=hJLQ4ToAG!#fuhzs54uz)r$DA z`GpRD#`Hftj&1wcKI@){JudSq&-@<3?`N8gz-@vc?b--RMi)NblV1uWz4yASH0J2T7819^pSm#@ zo2x>rK?}0(B3Ixl!%fm}5avb}8$JUD7=48;aEF&tQ@1~#jpUD~Nw01vukBlZuEgqS zytwHmD&LfwYgA;?I5;-Z`1ajbW`yf?6FP)U?hI_9rO3N9w+y}4lqOH?JXS^kF#a(M zItk8-RUGShS_w~SiO53OQ2}HUV}#*1G3UyCb3SA7J8Yi>361oU!Gh9tgyg%SlRA@1&E>8b_;IC<#Xz%bY;uUIal03N6l;EnASfYz-U`2{N|5b zA;F#3#CZ)Z5Y0j7NZLosSv~E|?afGCev%C;af+z-y=^2`*2GObVyfD193;g3L29j= zkg8h5ipL&h?xzWifhDeNLonPNG_>zClEv|9q-|7+rv+lnR81l0qbUd=(ajO)Y|@?D z5|v@{#!Wkyv@H6+9Y`5M7q)KQhs~o#w7g&?XL~}~JwY+*zQrmT4K>d3gtj<1p&ZAF zQNGNU$Y+G5+vS0wy!f34OldPj25$hBFN@+QtX+uHaEPoW>1heQo}3@fn{FZi#}G{2 zYn_h8i_$Z{l>!`sa_VTMWMTZYp~NQ|gBAaP>)N9MG8QAN={cJ^==&UgZh@}UNvoR! z<{8nb=Co-m^vq?4jA#qIvN;@oniYo6{mj~eTz=tXltLD-iwlT*mQ3bF#`Dyy-j;UM z7V{!UErm1b*7wTI6N)kKQ$(4o;XYW2W-hO2o%`$WO3Qa|63yzIcXeTgi@ZxoE#Tvt zU63Xw8h$iB3i=~(w91V>O(!Ccd%Pw8qF-n?z3*v-i4f5m$xr-G0c8Q)d-TdZsw!y5 z$O#Cy1fnll-Kz?oobJi`%=f1$4Me*OyloBUZ)fopSDPcV-oxLaD@lx|eG|`YNbGEf zgh77X>ZZ_epLK(Qh$8;@Ne+pB5U$GRWwsn!6p+n!-QXVYvS@?1-Bs+)-*0_Ux;?>Z zfT$1S|Ry9fP8@#gejD>4N(e0rG|FS;xn`q4p$Y z$aU7>`Xb{4N%n&R2-vdPuj|86Ro*U4lDv~<=^zI{;#;7!lG?I6k$YmY;*=IS z+wkGNcdN$vZh(}OMG8@fe}#Vm0xX5fpvKhTPvP3?eQ`Beop=noK5X+U<+pHe9XQp} zN=iU1)ae8)hDQz1J54jZTV!GGqhVydg1LygLmsfX9wer__FMg&)h1kqThk{8YY5m! z?bt3PCmzhF{BZTBI(9UWk#(aND>|YnvwBx>C5`ov^rqb*%$rM~zdkn`#N7 z8mFV6tPyd;5fSby{Q7olOFOle`#HMG?6S-y!awNXsE^0ZU@&H(&`^Upg8(_rFu%*< zL*4c5{+5sEiXWZFi$%zFsCCpe2;4rU2{9myIBLG${3W)Pz{thkBJ_(0}s|?*7w1J^;+7fxD|Av0p(uqu7!H%kaY3LfFDb4yzyk zntv(SpBL>gt8bBTzdDJWhaN+-81x{IE|IwYcB{U=jXbgA@BG@{Zbd|*;1?!Dw0nLf zB-qx=h9vjOfCo43e@kjw@zD4B!{%`P`yQ&_{gp7w4%heQ5k$|I7$Q9aCm+VnmtDY$ z-~tgV^l_559_9xO)DIe6NO&u^Eb@eSfL-nuW5lxj+Sl`%*OW1#v@gcFpN=l!~gItf4v^^Rak7LZ7SB2CH%lv%u}l zxECbMI|+e>xunYVxba?q~};8i`?{Fu8<+;jSc{JYwOmf88&Kb^-Nn z41whs+35=Cb}btQ)>atnz0o|W$ULkaA9hg;WZJfG>fVx%bu23T6AbYcrf6aBVIHAW z@9f7|*4CCPy1bmeX4r~u(lia+C-}9gHv~hJZitMr1v7fB+3|ql0+9^#$z?bso2v0) zRfWgHSoisi3=bOeP*X*!FLPz71hzM?g(1>rjjY5lu^0U;rl8MSmc%CXx_sJQYVTSz4I)xi!9qQ zeeq|ZAwO=Oc|u3F$VWTL7`7DOev`}1_iX5Z`#uguL86LV_x4TfMW9|rjfbtIdyPer zy%3*qfxPlG%jJ)Q%vr_R5`=ER|Muh$MS^$07GSp%kQT^A;y?V+wCewvN#MuvecRI~ z)M}0&NJoaJ2|VPl&S}8(3lW@*qU8hDj}K>fZQ{Qs5#NJ0VlsisK0D{HR``7%y#SS% zr{u*v3f&oK7GWT>4-A_vc~noodnt=AB%o&+Jt=ppEV5>#rp8kLOHFc~4*_>0e(}v@ z2t}8}JbbCF$jJ7jY?VyjWeXvVQeiJDt<&nvAk6XePkfe(o2im6t~70h|wr}Z*N{P4J>KZ?mb`8*?s%iZVcr=Px-U7lw9^ms-*p6yU6=9oXj%ty`&XkO!# zG!|W=PH2jhH$YG*R|U)6(rDG97uxNiww%~rIoluR@-|*+0g~sJqH3^fVq}0xNCWPk zJr5JTR0(gW^!8J>x@if`x?9hTWFCCF>hKY?_i}|nWEgU{-r)DLD z$h?)D%DtM2Y|uu(8RD3$!D0t;i}! zJrr!N^&6)m!zm)O2Km+e(e9^_BNmOhvD4IA`juRd?b)>}))DW%HSNNRF(gv@g$eWV z6eHgFs$XT0Szpm8QJjZ@&6ULxuNL<^&N~wfi{l#bV3rs{|Z#1 zOwe?~#tw#G(E2ux|Ee7DHSz!duwQtJZVryd))F=*!2iGj?2U}=&23Ea8R@?`DL~UH z7@L}Z$>4_1$nakkicYq+R$pP(zxdKa^YTLfW3B`glMt5Cx5cNEF#2jRcXWfM`^WvC zEcWKMjzIhW5Eu9-nIk?23*#4-zOA^ixv7~WJ}VQ$|48kKPs7N{{)KC$Z|Z>0`d>r@ z1%a;kjEw)q{U24)uMHPQd`9N~QzNTyZTx?0LBdhr%G^-E#?;FAOH4Y&uRf~aGcx@b zijte{7x@1z;D5TJ=w#sdpSJ&2=s&Fa;@ zoJRbM-T%<}hxx@`38-vi{sm}^&&c}!itvx||BNpCSL6ST?pH4zjqSh0w9Ee z4NWI)Y-8$ZhR^a(XJ2^#{c^Zwo@2`E zc*MPZ5*E(KtBWk;EuB1!gE3Z^J89;J-&ZS&I5~?3`5>HBqP_!CeAuF1&OC|+ueWn@ zNnYo?3e4gFjtg<<);-{tnSpeP-NL>Wo zoOe&Qs&O-~x0RWizx9%iEJ)P|sCLttWV76cO4mSpCAlTfD=@4QvIAwRAVnT9!csk#?-_M=7cweqY z-1u5&lMm^BEf}mVS^BumToJ0Y?;G-=EZ_C9>vWM^8XwSP5>jC_S-BIv5q3Z1z7-B$ zA&aJ&pY-{x{e(i)U4>u-Y{$Gp@I0LQ@BtQH>*45*L+)N6I(dKG1f6nf0e}fwACJc| zNp~>sH=l^JLwpE@s@s=Ty$5TpF{f8l`{&ZfR~nqq8LU$jua@tu5&6zA5Ht-6Db_Q7 z9^I*`Viz#oS;x4%ZHsO&UV5oL+AA+X%i(Mb7;$W}aGaiZQzKC!FgY*g*gMD=NVlDK z36qP3$1s7)o)RU_eoXN(76(Kg+eFqnInpz1~Ayk`;RuMVS_1`7?iCd15M}dd=s0Lt5Yznx4f$ngAqO%3cX(* zjyXv3m}Aor#^Ykg=!=<%(Tq^KXsb`QR6=ZYGZ=B~iQ^;a9cHvV#~*UIbku63_NU-Q zu=^uG&4Kt^J4xs^$_K4MNPP&>Fs|0bgG9z1FJ08ymNZg=^1dZ9>(L55QkxIex%xgG z9xT{>4)W^K%dl*m`4;Qa?MuCJBT0i=M9V9A#3meAd#~kbbrI?J!b2d&0(^67)Ju?S z!6gPboW`HfjJl(SbB;6F2-%ECR%bOw4Xqp0hMN}h#(tDm`YfE@@?g)A2$ffN0x2_r zjiy{r1ss_~5-&4}eCoK9$RSon?GAPvAj$Azllxn_Kvze@6q5uQt@a;=n*d^My`U%U zdm9_WRosn*(915fM{9Yjs7S-5sJ>q)x-5qCsym1VgT~Bc-0|-V#1>`!yK}O*`dTpN zqerOTXZYHAo5@)!1+;P;<`NU`Hy$Uh(PGbC(6j6SxiFqj0S z%C2moXuas{x8P+5hHMKxHGAQ)mR(v0@rQ^R1B?CGoNYMcslUNOQtsn#Rq3G^-yH@) zoylF&J1hU%?0~H;a;JV&8s3;OA+!#~A>U+Z!4E^I!8_cNnlHN1&As6&tMug??tF(4 z4GW^VbD~G0@^-iwzcd2#f}^@)rQAaVo_wd112+jY!8=a23phf?p{HJHk0Gei<*n-% zPbN!SfGfmH%iGT*L6dC~d5#V{@bVrP?&rS0yOGwvq4D6tePcu-AQ+60%HixNV*9mW z+LQ{;9)=l1%pCy3DEMBdP=PEB4o7fEV4h@ejMMRv2SlpX>8wjWLa*ku=k-Nx2X=m)9 zp+XHvmSys{-ji&@6(_OdeI4!%OXen0jX6!pKp6Az~Cnt)$`3kAiS%)JHNqm{H*fk#T>AL~iF~UNT6vyr!f< zviVxdJ_Mtn6f@suwjI@(r-vxQ*%rXThT^#&%7wEuT)iKGU=inN?1MV z^4&3~giX|ThK`L)F;4a0l8m=osHE#{(J)?dP({mY&%LFlRko9(!25#}r;+pdgm+8* z<2z}uct#@=c)76tY*f_$p)98!nL^xNa9z&wZw&}g-AaW+Hk9A+E`1~aq|MQ8T zXq}R&H&Js@jv!w-dmX(9DRg=S1kMgxY7#`$iX_ksjF1>vIzhP{skXN~sX=x%EH+pn zla@BFsw@~Lp^>VZ^}rmr6NB3C2Zz6$dYyV(MaLC!RjNOucgc8y0mOq11Ef^75d|DW) zGg*K4BmOLVcF32{^Y=LNid}A`Vb(Q2BVAEXrFV|}%y%^lvQ{y5VQX#1<$9P0*Z7WQ zj|6dqZS~sPAyl&laxAn2JeRx~_R4(K!Z?%;^2}g=aH%LJrzraYcU(3vRM>BSaOQ_h zp#l`TQv5v{)r712$!UJ#>*x+E%;T%SMOO~xFi^K5^P~W?&aC#pK;1fj=ILCG^rz$N z8bo7A_!}Se=p&Q{+pmUIE6LFJb|~}&P9#u zLBLPc#lZ46Hk@q~Lvab1KvYiO6X{})J@_wwN6R#vT-#csd@BPfzw%y|mOyaBvhW}0 zi(cFjn~;lA*VHCWGYsj`HA34)m`h;E^R^PP)Ny@}?1FSsd4=G+>eZ67_5?nVlD^lf z#w)3>9F_4yRkQ>A3h6sLVlcmH11chq7AsLh6v~sB(Z*bUr)=i5T915}uiT6i@BGa* zGDzfd-KB!xvW2lWIdEw*`h7=P?HQ#Q)UGTsnGdM?(W5is7o8kTjAHY18}7_iL7p^DAtol@oE%Po z(jcwgXNClcZWsr<>M@5Zcs6)>n~8WWqO04?J7)6b%{`0RgK5?fKWJ<8pUX6#zA^9a8ytRV%Wjb zsyyxz!98AQ0L+a1DSOc7fNYp~qg?83TIG&E<|JtSEY{x~w{HP^ z-#OzTY$@U1Yt`1+m-XVahZWBX^iX~vBaCxjf&=+!D)8SBV6Xz3YfGV^pF6c{mBtxG zzxKRap&iG9wQGf%XMb0?m1!77q}PD?z(Ocod^{akZ;gY3xl6&lzwolGgZmhkK7};uV)2RoRRfOtGK`0tXGL*a*Es@ z5hq6{_dgBuP(eS{S~Xw;sSQC6kHf&0M=PAEHxTVG&`e{(hA&a%?__H{ldQc7@XV__rJ%_PpYBPVH4f?b5P1117)F{?$Vb@V(7 zbb3fJdRD^oig}nEj)kQU>R>^CINn%sYV&~K@8tQ?K!s3&<|{?5q7~k|5h8bKe|;IX z5jx@*7`2jPxJQfRgAptOmhqrqXF(WD*H3W5SfByibUj$wDKG z!ufyRbhyP31XUQzOX=J46HNP6;G8Y;pY!YI#Wj+f%ra%NKhOFd%@!!0ByFsOf%~}6 zeOpcs^7#=4s;BB_@FeEamnwG$hhfx4?H>X)08_4DuwUtg1dEp?Ns$Qhc?zBF@0q)o zXM-CN4Ya6T106HgVjS^#C%BY2P9K}T;xufr zLe}@K%%hDj>0~rYxGtYGx*XgZWogti{Tt6tzNwU<UhR)1R> zS-~i)*e#mCu$x$#d;ag|Xnbh6CCnsq_A4gRdF8C1{NYG`w;nd?@>X(_M=<%A9c~uv zyr&&NLFr1(^2A^9P`UB7JRw8ZVpv_U9Gu@CM2GU$JFiMe=O#*y)_Sl)?qlVhfr!YE zfle%oCV?E`8*h0%x6!^v97rbi2(}QQp9BZW(TTFMveelnZ}m^*iLKLCGHKk{vxl+5 z1vfqoq)46N8#~uZD_XCdcY_(}?P{DO%%&AthlsVH*Y3EpjcI1BA?$N=GGO`}Ifknw zJ`X8fO{;o!V2~p0vVIsCVL06o?&wAThvN*>YSgiLSVZ(H?WC#Nk z7bH^&!!pmyLm)z;KLmT%f!o-5)1BdDT7D0@V>$JjK3RRK@Q&0&$?|f@IvvN`^h((G zm1tD3lalke0G`eLGn{6BGk>)W|HFq5bOe0gp349lJ;#q88+L~=X^^GC;iLEXd+OoG zPVK5fhNdEL>+XgH?+w(>(y2(=(f$V>A%D(VnbL*8HFNt z&QJ+YFL|baA+xf~g`y)4yGgB=++Rp|?455;Ve6e-)u_IE(y5%gq(vUT=!;;VGvvsW z-|{mxjb^y>CkUKs!A-3nGqc%iUmg%;yZ1-9DK+<^Xi~s5f$-|M~BLjMBULZg**pero$PViHihrp-lQhSA2#Z*$E)Hj zyTOT?gm3l_I9#0Vdgg9}V2TsqY}=aHHYUcz$!5NI-`_sF&+h)U=jrZrZr@wCPSxk0+x?qJ?~Fz@zRTUx5!8%df(lFb#rohveHYk7fH^wKLx!g0pBSS?a)s@>y`Blgk$E zN&8q8!W53!B7cxPa`@wND}2$GYmOo5wBpJr$9u7kY4c+HJ_!D< zSZ%BaMHI?*Y*_jS!RV8FvzpS!H8VimE3+zQQ`V7y689iy)2Y#up$3TINr>1&MYNgb z^Xk|i`bughmB>9>VnDaaEAgo7a-&>*0AwW)n5R|4dV{=!-FO(&{fxbQa_+xIUT--> z`iN8(z5_YqgoikzW1&P9WUT9kShDzNqeQ^QkH7m4l9cFW9MIzg{YLJ_u+$bz+|4&=(ho*IoYulqDk#?RtP z1g`yY%~hRFNym`Q9KZoNXKWJJN`L>l;}qL~>{N7qvyV-lYnT+(9@c+b&W(=Ct3r~%=34d>I%hMr}-1x{0cINBGNhE;4?mNurMfSZDz2Uiln z^@|dDjDj-Sb=`o~0IQxEd7<^8W3>3rYf)}yv}cSLK@9~|BPVW<+Lt^xcg#U z1*PUIKZ&jN4PSagrMi>6+NWO%DVIECxKX9K)+|E&$f8P3cE*ll0c4n^%xI@xcdZKcpRB?=f>;!EhlAik4PfShhl=wxtP-`Y%H_v?lt;JX5{BNcSxc`$# z{-n(RqTeN$iJ1Q(@g-P@nE&kaN$^Xs68$x+pz?=M{%jf7(V9;KA-H|>}E{H)m6G7b2E_R8?_s{p7;`@cDl;@=C^*=KrbkpU(ZO^Z$`PXJ`7K z>GK8s@wh!6gpDQ5c|>EQ_6+8 za(D7t^RK&mR|zmB)=(!~E?i+kA9Ev9hXOfi9HCtS?@PIgAAU)KZSP0b0fK%n*JwEb zulIM&&5w95bMxWMeph?(C68Hx6atKU2PEMKY()-Xzn_Lb4|+t|W%HE>{kF#4B-)1O zugmyS6nmS+FwE&X+Qny=uD?~Zq{BFT?hL)>eT39@&m!lCn|^ol`t0UUxbRdmH@xuW zbv1@CT~;dq+cX{GiQKingTFD}4{Ok`f7wA1{>_tMcYJAQPvP3gA4Y~^&2PbRXaK3Yz}5w+pZOleq8~BCbiFA zJ7XOhpB$7|bH*i3c)E{Dbo>-^r?$Z2E7?e6ke_O(BFiy;HU>oA?X*M*SqfMfIFIgi zo7azM%x0C^*4BhxW>9*Y{yunY^TX+%j*rf0?$axcr=OU}A9M8`9X31bb6@4?sVO9k z#$`>kG?lp&u<~JR$W&t##gt{uDds{rH3*J3XZgv&)UJwS@}9MHSLfn2^5Oe_{ZMi# znB(6a&2qVT%{b0tnBpa@M8QJn^!+kJRv;CvR4`O#v-nG-)2ha(UW4+&{p>s4YQ}(n z!7o_D2!0B??`%g=)8{KAu5%T%HKkE0Fxc&?4~v%di+)=i7whnAIhV!fB~DiDU50{h z=NXswrXv&(KLo3~ze;l!r<@QsZM0-2(n9U^%gdEGrga2osEB4|3UNTt2_{B@y-;Hk zj$5lV8VbWB(_Vx4k8NN!WW$m!YGy0eGQm2%!Yy$9E@9xFHTKqwU1uzuV*tyhi6_f( z(tuz5#R0mPacIIeft{&co&U{-JVcgOo0P$M8ahxkUt`wscWA$2*12oBwjb{yrHZi| z6;LxTkIhWrIDRVW1g8>?*oEBHSL3?jSa;zivo$>~SJahZ(MmE5cUafv`$-Y@BG*Ay z$+3gwG4O9{5v=^|49_v7)-LcM-TF8tStBkix2ikJ^ryS{M=HVr;%$tr9`c6np1l^a zZ_e=eNgU@Dc2EnOpp}#Bxrg@w8-vJ-nchSphjFva0Q1~OX2d}8*Pf1Te&7uq=8?Pg zym%NJAd3SsJe2#9^b3$BSmEI`{_xn*dRhn^o~y_(?{XzWQ`o8Bx^HPTHaHu~F^qjb z%|-PtQzVp|m?V}FH$YJnaA-;<5sWR=kK?0^+$D;6dV1}Mbm?pq%H+`W-Y5D8X)SeV z-jX^ISsy>wj|mEbCTjlP)mgPfXz9Pol%*jj7=w8ma+J#ZRSH%(AogkM3}vbwo8rWq zup7TKxzg><5zgMaLEg#poTI93>YiH$l3HtrjAwoIT%#4kB(P|_#1~Z8V7ctnBLXWM z>Sw93$thgF2nJU9VR8#a$qutG`IOBrkbsR*WT`8Ys6ol522`-$8R%cO@?go`o`3qcqfu}s}VLO!B`QvK-V=R9-t zdetm)C*US5j)tOGX$tV&j0&QmoV#{L!x*B2)pK6m2O5d&8xoS-$ZWPUhel15jC=x8Oi;S0)}n~#d7>m^2sHZQ&%**2Lm3xVe? z7pNJgj$+CMt9%aJJ`TL}0m7N@L0na3*==@DP z$}dk(ReF|MIF6O&7hQFi6>DvTY78)1jCoybJP55VD|If++-%JrS*1ziCv~bHOTe^O z2NGknCp35fElPN1aeFWZR9iw8K{QPLWDQXD!0^6_E|sZvAw07kzcN zzmNdsCf(CM?eMDgg*mW?u$^#TFm(|3neoWM?1QO1VxiWT23)qKaV03{$5d^Ud((Xj z(P$W;W5O~VOg8cn9nGg=a8KR}4eSQN3KzIQZ)&e`_o^2*a*^x;UMy6+70Id>2?t`2 z?1W<1to}4>ZzTQ)tCBLg{H6eHQy%gUZTAxBFL#bWgUT8_YTh+A;i#C#qt4AmHp~}a zbe}mUb)J_DZDA)aTJ(^hm)P2F35|1}xcUl*QB$|T*(gVrwPSb(Pyz3qv;u@Vnqo#OD;rNzw31%y| z)!izM;&@cr?%Ly$?(hSL8!RO3>TEkoJgc0zvKBUK1kQ^RO%K~i{+*PaJX5j0;Qjj_ zJaQ9_m~!G9MYBH`v^<>g%gcngG(t6|lub^@Y`9)V)I>lw;o%Zc(q8VTiAYakjn=V; zUc*;Wrd+OM&=~)YvdPq;VbySB(f+P^zcZ_d`2l() zMf7V~Vd&VEWx|^E4iiq+XcwX>Aap!z(%ILEYm?x|c;NAhyK<2ve&e z?5qyN0IE$06j)G=2`))c;=SXULMvSNbzXiG0_k>E>xx_9_k&eHYispxE`y1;-L}*u z`mg1IV7sQ(`IQ|cJX>I*1>N}|xi(6XK=nR`(8&rPP#oY{Q#0KPi20p78QYPr)#iiD zHQmwEE|hxta`1#{lx&mX%%#Lmb zK)r}#(JENX{Ow{O6-HzQKj<$}y73j82l%rbmg#$;n)T?{eyG==-e~x$wAO_P z69&X^9=IG4#?vE>I)T!Ya*m;xipd}haeb{{Ig(IZCa+PbPmq~!bOcm!9-cAJY12)t zC3i}%>!77wa&eK_D4W}tiu?STQC25cKRdOW%IS?Rt=nl45pGp<1+q^8FS1wah3nHZ z)DMGH5#A(J+XmsQ1e?s5KaiEaIn;i@Bmf-T2d3q+S_%xJp%h+%EW|<~7$g1TCq0w( z)3e74toGy{An-WSyMX&7Q!<;vG~8rCZQ=tq??_m~I7?wq#7A5Au5f-?;ylC6mKNAg*0WB+Lgo-D+_i`MRi6vR ztod~OxS^M4$OPyY-gF5B6OMLTkvq&z;n%cK8%F3C>crxMOi{q*CHEC#A5k3GoZrGD zU+!)~)=N1~#FI80juS;#s?zL~{~Zw%i@2*P*U3#*7zAKJ8;8@{R+A~OPzikU>M&zC z^+NJ+HHx}ahZ7nrvKn6Wyx#_o#Ab#eNK`+dmIZ5l1iYE3JzLD2LOkcj0QDT-ZG4B{d@ZqdtU-_9;m@momL*mieh&CxLn57hhPD`W1i5VZ9=3>jKR> zHECq@1OEtx83(SR1?5Pdx4gwSiBdQNyzFAR;0%SH&~GA8fj(Giyc@Rc#z%Bo@jU0Y zn&{kop^yd91YXSmQUWZl(?N_b1L$WcacupHYEBdFh7FjeN{t#nAHWi6R~6buO&I=o zO_jEnY2AndULLDKB=g*PHA~!=CC1;H3iJ6(p4!KyCmqB$OU}mh z9emTK-kqty+Et(H9I>kj>mH1gaeCRhc$wbXVvAg7h`|+vjdt%v3?dMMs{?;+sM@mr zAekb!+J+T$-oRp1H2=~}lP@!K7OpJ6y1vApIW)H%!RG#hU!w9W5%qtNbr46)qDSRDa%@HHytktM}zgYGJ8!vV;;t6_)Z58=7ofr zObaAx{oW(rNz}UU86cy7H7mc@w~rS#y}R|53CG0bbZ}7HT zdeQ1aCLw0y2VjzJ$lL@k2PDSzOKTZrWZ*FWEt*8BpzH6RkWT&c($V(IdB?`uD%y%8 zKZ-3^PmPW>&O)n+Bu)NziFR1d4wrjb)TwW3gU98rMA}vb2r17thsXw#v63laqF?18 zvkR!Qg_JVJE5H^D5>~&Sj9Wal17?4(v1g+&!mlw-CwRz=i{jo8c;dXCLryc_2dRTN z>WB4%W&(N3ToSvCONnP(19RQ~^knE1n`qa^#?y+XT^*wH)`@XJFi&H|O-2Ll)Z{P# z_T0r%0IoZm>ey>xCotF(BUf05Eb!~zlat?iTIUgs2`8u$Yc4^IfilU*k)uOs5OBSm zp2n^_OhwrbWn85ExvA4!M@CG46Qog)Ij6d$;Kix&t+fM)|ERt|J(hD$*r*26&@z>R zvH!U+D$v?S`$6xt#+u-7A0ws#)5wvGf2O9p;iFdv=Ss~XDuX-|9B z1RHl$15#z?H<}fBkc4ADF31Z&&Ibk|f{za(tfWVxh-8pZ9DeC#Gef-36dK!kml9Rm z2*G$aokC$)1^tGu@mI_lq}CvKZk%a0%$tU+9N_}c$SX89uQ)2U{^y?_X#UH?$jpQV z#`0Hp#b1(!ie|3$jwZmf0yZVDZP2J5t0ai{8R&(cw-%tVE(b;y6*Mo?Z`m9lh?k|& zzqo_G76V&-?YUK6SGcv)YR<5o)dA%A@qKllu2J%c6Se51%oUz1q$H5vtd3L9j4Gaq z%;ZoOZai#ZKw13RUIW0-=BBr~RPiA#aVr}Vc3O{7b%LxLy=a&BXH7ZPWE-Ac7tAg{@#@|+5D+CiCb zW}P|93{R?nir-OPx^PLZv(^rpeRpNgaS?R9{vpn1K7N9~^Vn2bo12!j&7&n{Kcc2b z8yON1YWG)9OYu?VX_TB%PaP;f^C6I4&BeC#(W`3G2+QSaV*3>rdmvk}D=b>?c;l zPgq%K06c);?s1Q8ftX>4mn$?W@7N-5sA1YF6OGvKq)dJzdkP65{>G6%7r=>sZS5D7 zR%;3`BKXzik$7`@uP!G(U`JC>Ed-&#ur#53F75P!TVK0h!+t2{eM1yDYWzQ5;|2*#<2ev`=c zk$L$jd{+c-6X`-+_GkTK5!60*Cdc363pu{p^d&TR(K7{B*{I$e$@aTEeNzriz*;8V z&3+V)28sNWc3XkB*4{3D1!%mMJW$+S*DXH|x)Rpo zNl-5H2eLaz=zRuB?~SfqNsc#eD(%}&1KBTDk5MsXeAl->I$kF^yh+<9zdiMf=o3zU zxMYS!oxEe}KE?61B1GpG7dUpQr}fM2I=(x1XEW}P9kqpGq8Pj9uufV%dz-^b2r$(g zmZi{}eOpikAl&N!XC`;j-a{L$faN-kwu8LJdq)+IvREszvtCGr|7XhjuTK04pZ~v5)_;Q7 z|L9EhZ{R%jzrodzlPI~_urgKa^^z`-z;(ALTQDxzRfh=Q$yuF&9swbyN;Fm$c5i?f^oP0Xw%2VW2K zxDQh1QcTAS+2`yJIHpGT?$3j35;9_@E^oTl0lHEci=t(IU;(EsqTC4lIIcL+wp;p?iZ4UR(br=uaI-%<2l}lOm( zQSj+!EYScQ==1`;wN{(&?wheR(Xk~ER<Y#yyR5nTd8B zqaRAThT6CcKUfMclBuDboHbbOz?M-^PGpW@7cVI@MEf{m<%b+(RYGp1kcw!8BCd@1jtorP$Z zGa>@3@T)+k!%e%;@;%{Ou^Wu0?Wc>4L6oCt-$B!$dLb%}=B>eCCW*1gFM}4eE5IUm zxwTP>$;r=_2#)#E3r|Xt+KM z%^s+i2FKu50HO!EU1(h+e8>N4uTVsp2l~^Jd9kOw<_Fu`+mGDBLYwA2a}d7k`=9^* zZ`(1y)jNo6U`WVbgAfN0GKEMDXIz_@Tm3vyM>WI6-$xH)ro#B1RH@7wpe#t}!?kaaGay|O z(wKM%ZxYk`^qx?uLO=>(69|HCxApchMUZF3m16FEB^U#}ZUVmJ$s}m>_!dTgu2q<- z6y5-XLFCrsC6(SI@t^ z^lhP4DA_~~=2f_bn}9rUn}n)Rb16;YH_nQ1*u<)!1F0nu{Ml%%POQ_!cNm-m0}$H% zen;wp%IVNM7ApyF?uL=ee)JlYlhl~15cL}$NAwB_Z}tjdZ}!LFpQ z5GQYr<*yXB!E5`R+rV1!uB@*ZCm}KRL2HTc$QMG-NUsPd{V@U{9wdHf{_*qB9>g0_ zcWzb@?TPjwJ_+^_FZ)Z|%#R_jjLW^pxkjY32rYys3d^Ccm<93u7KQCQ!cVzZmdn9+ z&=R?!f+QQDh{SKOd@*;_o?s_)SEa8sXW*2x-F+HQ=$_#--NL-Hmd2UBNI4Zi66ip zW_N~HXtPV()`ivm289kx&lIodC%RW~v&}mWH?mg<1rgiaPvV}Kzlr@2-{bE5BoO=k z3qQh-65k;Wgr0#r$hv_DS)P$!K~ILSK38vi#Y7-_3!Nc#L^>(C`q4os5E4N0mNoOy z+nwMKTuuBY=!t)#EYTgxdC=Xjd4(}sy<=CnMYI9A)yFFp-%DJ$)!Q!h=>V<{MnTAI zN31fq4~eniJHi0D4?{x2xsSCy=C^|6m=nTmrs4q4B<8me)S>OV z);m5@E0_YC0L5(v8$|*AJpz7!c2D(PqxQ|l=B|N(c90<;#0kK=m=RgA8hJLB@Uug`Gla}UGa{GuSeE(sKAUJ5a7iJ1>CwW;{eQqRKN#vGZU4vY=n8oLQFAR*EI?e|umIuY&->kH z>;IVU&iQf0N%qX$_ChCA6AgWz^eOq7jm!rO4D449VCx~gb#lBz9I!wre9%^SLtuLNl9}J}=?jOhn-{vj zl|cDp26BDd4kIY(k!$FhX%w11(AzsxlE}o00|M%EW%G*)6Ls&?lAV+X zxnz5Pl%NHW{!v0c1NvWQF#Tf)>5WIPk2#?a7Ab@{Lk0;nStFMF?S;hhrCI*+XucPc;~j=;0S3rFnEW2VufAjWdgl`JYiR1N@<{6+FgMa5)1?t~ zta?XAV_$ssg`et*ao73t0^Spd2K%&zz76`n)_@QV0QuN0$t`G~Vr=WapZKl$HcrIN z<=={B$ctC8_(w=-H1^5gLKKsn{s=*zbn2PWosO>t|4)2(i|rg`EXL-(Y=MRU1JC5l zWaWun|xz%-}7&ntFQb)n5XzH*Y+_z7=|6lKj!Gi`oxD} z{*_CL$6orO$?`i5`X8KwVz}=MnVBIPw5FVxSa?a>7kWuE_w??hbH!>x$^(Cz!`c|~ zUvp3hefk9@EO)QZ{*|IFL+)?S7M!kVBjImMdI0>G`v=iJW&F9^{?cPQ2eR>V%;?p- zr~6mNr%6+hwy(apK4=HJ=uN==C8JtYZOV#Bt_z)fe*|K>$0mieH(VfyNEpwoACD@O z#wygu)ty>MMtYfX9Eh@;qWjWK&HwWC682-`_0na&Ljfco)B}hF3MkkCNXP7)y8Q6{ zmCa{v=<5dr%Z4lfQV?N)HTrkG^_Kr;+hOq#I{dxc_!mY!4b@K9ucp`evrpu=QAdZC z%O&#slzwCT(x{X%xS44@7OrEZiKEh_;fT0^3??!G28}3eJ}Mp>XCpCBEvu2hZKBKt z6Ao-pP&n^w4N@4eB$r*6adJzOR@G!ILDL~Anqkd6$*>5?R#lPe&xO+!%Cf*e>qo6J z@1x`a{iV)EX%>e8EXfTeg;utNqCOBoqW$>fVh< z3sklAl=%|*Cc0}2Nw+yJvi#LUDmohB)<$~7#LXS_nDt!*sa)k!ee0oa=0ys12=yse z@>Z28&)mB%rHW51qu5Bf*oGTT6?mBxb(7FxUrg3WNzZu?M3KIcHln8w4fB+U52mY| zNjks>HTAKtL97-9ZE8wTI5dJ&M{U^D{)ibp8|7MG!Ws@%wb%HrTOXQ6C4dOuN3AZS zl{D*FF()R2hx)zJnFK;K1v%!Rq7S3Y3BoM3d4)nX0B5UAzGhI?&JaXL=rvKX!;eOd zP(S!wHjl0mwYhA^4f9e?#yJj4SY9kQ%r442Yi!?%G+EOf>iQa<0~%kA5G~K1c8sDV z@7dJU8q{#fIAV~BOLvN1-3%H-vN438yljFxWscTIPgCS*hPJYb_Tu>9+G=!7y9Ch< z2W2BbLw7ka>vU8BLtpy>ar{sA&oLD^3p6M z^15=X6xfZRG9?>l8;h44`q7FjkW&&bkZmVOKR1I`Y98D34Jo{7Dbce3us?jG| zS^M;g*GZjGmNuxhJpeIdjqBj1CZXytRyH!>UOz%G5C@BDRnkxoji=;#x)Hpl#JtnQ zxz9`M=x~6}6|Ysqs{@s348!vlxmma|A={do);+14D?2LlMeX(R7*}@J++h@<6&u<2 zQ`+H5L^s{^Q&=CKS?1N*zwxnf=NMRjDPM�kJTRUzNdPCH~dMa=I z%zV1Hif}&21W75ty|<@N^1K1Gp{^X~uy=n90c2uo`-W6$g_z2pgSMO{jNc!4v}= zZ&*)LnHkR4)hKHWmP>@$Hn%8#8%o(SCHR#n;xfbXHAGp35HGUOCu;QECG`+5Sea&d zaJgJ%xI}4TNgcXSOF|P+)W+K<=^~2nb{fb!M4eb%%rw(`bz-DE(jB+Kj|;U8?mv?r z*=vunFH;;FhJMg%)xO`MNXHGOjAd0u>l+v3&rr09p-Py$H_`** zh%eR|oDUWwTa}9^Q?u*q*4At86r2f)&f?JnetAY}-VAH&j5gRAuYoiSYaI~*YIP9M z=x5C7!0ATME676S6;fL$v_xK##2~rxDE2Jv(QlG7WHZ({SOrR8M5j?HH=LHWYE{&+ z;n5X&;n`o4AxH>Y;=9O~trq{UKGF4hk9PU$t;2lc#nambBRSmccKwbEnV7^0mQ z)5u#x)TViwjkj{-cpuF$ymomRhH*j85bknH*tbI%bwpvKc8cc-FcK-n zS5hMU4dnASVP^c@8oRH^%#7z45>`;7*=Cvw0cWyGl+yTx<&fW|b62 zC0#AXjB@hfqkOkfFCq!o;ZdN>7eW=m>TnTLS1H$MwOKnEU$`a)Z$bDR`fly{-01M`%Z6`N_;LqsUEBv5 z!kf2}!p#vKy5qRl(iVzYYDJJS8BBJYp3I|okMss7f2sz{YXrw)mwU#KsjYt>jl#`J zSe4ljayiY3VPb}(#SRB|5RwV)G$IEx*(P8{%kqTDSGcc@?p+HfE8cu7ECnWkA?d}} zj_HsjJ3q{uj}a2a5C}1fL>54gqtXl|U855&^RS#i+YFJs_C--t_C$>L2=mxc*+E+1 zp0)Pej6F*B?20_H^gIm}_3Q{4Uh7*kLf;HV<15+m0?zT+dm_up-6_M|6tO|wER5!p zpcaHz6!t_dllKHIzlTsMzv6MOhOIW8L1<9SNNG!EmZqjbP0nN4QKmt~OIs!GSbslv zY$z48wQeXK9^}e^u{P23>BC~{j{JQG$UxY6vr|!-;Kwcq3)vn>zBolR`3Wi9R}VDh z%!hk5Py9gRTrEPI!@1{$n4`cqGnTM=l@jXbc`MXe#q+9$FE`>0F(;H)CY4W(o+a4qw3Jf}&*#=(joZ z?*TeCp|42;qeny$`}QXnV!b&n?+9qr(jC_r`&7~$H{PGGdOq0BDP)UPVsS|WKg>sz zlUlYxJ~wCS#^5C(>{JQDW8<(IUxbN`)xeZ1$^P>YBCW`W^ez8x{-Xa9iCkI>|GRL9 z)I`V0u0FE?BWdwPsyw8@KtzX;wDP3z-gg!trc)sO%V^eyvNAsTYiX2*$<_tALY-v7 zqF>>?@$9OY4yyDQ5Nmu99def5P2z#3qatR?2<|l&s}j+NtTL`=tuU>5E4o!*x;SV> z5rKdWXkPRC^WJ9yilzf4wb(h~9#`{5p!~5GcWe|lY!pV~ zJn&PnSL-34=o#}oWpc&Cc%_i2lv2IQ3O@q(G>H0xDlI30e$_zl#>n`(;2DvUQt;g9 z5(!V7crHGZFs&CN-3Izm4$%&3fEHwOYsf)w9~e}@RwN7p3z!?yZCv%_makoSU<}ZX z#0~|ID=cUEh5Y%}?zFtUgQ71V1!>AF2E>=?n-MZ8GU#K4Pzs9p5Gzo(VUdO_Nmtdi z0$C){1id6g0^Fp}07FYI+xPr~Hg0TGMM$gC!R(6w;f=Y6TYz3`dNAL+pdnNsX0XuPj;e zU9I0UQ;51VKq^AO1j&ek3o^1kR9pO;S(=L?`GgJ~cQ;McB~ehz_1uspN|v^_iEJ^h-QYtB7Cu8gJ1c_^l8~bQqyg?`K7$J8}R1l zNXSjjIs*;cWx~nM_3gw5H1ek+p_qbHbFKaw%GNI}^tuq{Y22#VjN>Cy&hO!yQ7h72 zM7c+1mt-FW3fdB?-^bs`cYz7H$bB7zkuHf^ZSVw}Kcy1MAt~A(M=2Q0zlc z7=ZUoTZrd-9f5%pdiu!0z-klwyG<;L| z`dh;M`s_RiGB^9mm?0`iCqTEf4;?V?%Cg;vSJFw+UWRRy<{~yjcf_{-YQOMnra4Pv zlzZjClI_rS#0PCk`I!5gcT_$v(Yq=> zITh)ofvxH@Ax%l0gEA>4OLYfP1q2>N%%4{z3KlMv(fY;|SVVY(*oH?)!}Gx@_Nnf> z#N1Pzg`Nv(s;@Xw>cKVlEpVwa2<3kHj)X}6yd?uMwnhwoG1z)z;7QQ`GeXt~Gc*zE ziL?c6@hc?LA`g=&o<=dy=?(;ou6#-q_#+y){z}*0^#J5Vd`2C@Do8t zqXfjzsvbR%WWjoL7REFI3E4LWaOm*Sc{m(B3@mYSm?n*|2i!NeNa0=;Lu!|S?#n@v zkgwPVloaPjHxf@SSWu%05%((yj0yZEN7v&#CEte{N{e=wpsVNmQLi{XzYZjKL*45n zbEtn=s!Bx^fr<(8(prUNIt&Ld5mqY)?=O=ay3_I_et;CMyfBu^v@n;<9ebNp`5 zB5MlWIbCXvFK z+bgw$(F__BsvC6^)nS3J)Jxkis8N70tsnkM@(}=*{B>W?nV^gUGr4@UdK7=(>jvdX zX#^=M3^r_Pz{V-;(Ndm*Kpa3ZiN0Fiuyi7DMt8ox_7wlK`atc8h70q2hlTFV&JlC* zGdUZodgmIUL$YB&iq2DtENy}mbH@p~HE3OuBN=kked2)phTsW`vWaoj14LmhSRt~n z5lvrt5H_~Os#Cp1)e|{BJybE&VbGBofwO&Yz_nJcVpv6=elup+bhjNKH5rYAeV_G1 zzq(VmUHe7yTy=HIjpFT~#c28CjW8~r>)oBw)nKl*tG?5v{golq1a}uN)ThOj&JUbm zyry%hV2~dMG7{PiQ(7XS%#6e45Tq`qf~Z_MSu+WK-(Tam;_+ueCH7tK8R`qnEtDH7;ILt^nM?A_5R=841X zib5O|VkEc~c)+6ELYhd0CnX2iE^&{h)7q)H3&?8x91 zux+0Kvz~4V?sr)7DQI>8hcVC!Lhzw*#ReHmXyhtVOA;Ll=dl2)K?sJYGAfiqG@|i| zAsPYlk(Iy_Mv~1LaCdOIQJ61w#Y~!w0fnqE8F@k;cWA-dpveykj15^QHSI{#RfMyR zc1OGsq@z4VFrA;a4bfg)BDOty?s$~PsOvaqd$&$#KEO@CqQVfgel#NCxdE{ST+)St z-%zxO8o;>S&@-V7hm;>gGY?K)IkZ4?B)er}3WHuK81{GZ>t@n+luo8f!r1kF5lO7s zZ1+=MgC+wJ7}`TdE4Cqw;FuKr4plt5G+v$OhS-n%8$m0ke5+q;T#-2fdzV1!*92zM zSgQ%>;sZXHroT`eagY-IQlH*3{KKzCrSFP;9PUZ!wOyD&qEsoF;*yr|r#lq$!T5~} z!FyAU0CWH?+g9KG^3l?srwiimO!{RPt1U=(R02p*dOx(Ph>3F$?ut1ND34{xKn)kI zP@&F4rl25*?B6v+7ZRkfJ;au1Vq_~_GJ-id4!i(?BTpVV(aqodNz4VNAtoUx3EL!u zUFie-TWgJ1_)-A=yL6DF=(SLFt_W+Vw8vN%eUzWaL;>~m48|2rqVGcl>0G`Q%9xSr z{qQLo<*fcVMof|UK;EL>dF*-YLQp;G!Tj^K__$Xb$m}N|wV5G9NkPTvh+<^M#z|Jz zw!_I7MfD;pS6n%9pem(yF)Eu7m|D<@p&kJsCu@n|w%oG@){ffxH=LZk#L!}ztLh_%Cyg+stez*Zo1 zdy#UClX-i=C`=+ypwhd0aB$V%Y412u+xd&h_>^IYnBD8OGcbu(Y^6XeH42d@N<;;0 zIKRoYc>yOfhuC5i)PgqOkv9p|Ya3tTu(->9l_xnHB9aH@*{^Pz6T=dn6FyvaPyWhm z=umP3tj<9ZvYy|oiZMH+ra@H7S$OiJ1SRT92Mr4sHF$vh!w+nirH;ymcA00O;k?m^ zC?vtUnjC~fc(#GeHn1UYdH$;As%Co{sh4Dca-cXam&yONrS_{R>YnK($=175FS+@o z{L`0!x7W6xm1eWmmxRfzN6n2-h#nV97cls2K2Ar`K7_|-zBMHGJJ+Vp0;_kq)sk?< z?c-}sdJQJgD+3^_25WGnF;NKMX6~~VD>Tz3e7wCx0p^@4=Gb(HM8-MO!~t#DELOR> zs}agS(c~DvR8lYlMH)dd>GU8Gf#JBRy-46Lv>>y0g@m)LDlL4hR5gurR=GbJSf`_@ zUEap@G+6umUN-QyR#b9)EG#6mD3V5MR39ezI(ST8pv9N z3j4jlj!rA%fawL=OifW%2zNs$Q!w25tBy$$NXW1b_6$Ib2!j+0P7JCLy`+peocyLm z38c5hnz1%B$Q+C(ow?R5Xu1tgo_j3DLdUyJ<(s&S9bej(@^4w;8XS>Ost}8!6PmgD zQW@18>M0t8C9;fU`l4MgK>tpH;IsfBHCW39P} z*?3hXC(_2X9atnzd6k|``=Z;J-z2)+L2o6aEjBB(HX|;HStN;9vhho5UuX?Eg@k{g zKl+#}<>wIH60$X~^S;e_X<>Ol(I=BMyxHY3zAcS37_lga4A?6Ci7#-m{GVf>-9`ERS&{?Q-+B|fOpDo#Q zTvp+Q7>*`gFnaVzKFhj{vCp^I7Ph(BOy1zs`$aZ)IaTjZa1#m!4L}S+?vU^tyJyWz z;o@^R;#Cbc#CxRit!n?+xZl9+&QZSNy?!xm1#|~+D!3f;LJ!aQIN|wW`Iv(ZK&RI^ zv2iS05%=yDU=GkR)5Xt#EoZc{{IGO|iun9;Jj~N}r(wB3Lc-?H;9;rR{@1nOq zUM8YJ#Nk;iZqry8{PnTQL8aUpw`2E1wtDS0LAqulCWjgw8&iTY-X2cNPTN!;(=+zI z`4F-ae-V+MP|I%le*k?zg1^P2AZtiakTu9^3JAv4aAa7ZE;z_$HfbXQ0>Z*02M!K@ zLf+#s_T%hDyH0pG#KzIt0wN-;R*PY<*K{%1W4ajZnl2tI8JuXjQ`aGX$c7P}Yk1eu zTWkYq#dSKWBHbcsNW+lUA>xp@2!R>%_L2zK+0Q29r05( zE3>X^@|dH{9*fxYG4ODNI)6}8rZY(JBpe`ceomj1f+GV73ZHbfWmJ;(S2i?jvdC+L zO$UlaXt4G`gWWpGYMUGsJek@hS;4H>BEM~q95^W`Zs4R~JT3OayN3k}ifarOxx5HF4raLS1fLT@(z z#K+z%wC&x$cHe;r|`@??H!RPJTlYUfi*p47jne@8FtH8J{W`nh^hKbV$F zA3<$fKbV$4&n7dyiH$OmY^EGIcx-`(X)jullr)DL^KlOoU930O&q5e5juuOZ52a1#1wmAt%#dz3j`XYP~2W?)LYrYGih2{@FceMi5;hlk4sD( zH#T^DT54E$P+AZP2}?_5#uuj(Cpz|C`bx{PgIAQVPuX@{dZ=aP{hKdZeeYFwUH{!5 z?j~Z}xfz1xSgsJff8Sr8d42z0y6Rbni`8c|Qz3}xnY~R(89;0r60aGn$QmS~za zx_}@8wVHC3Ig z(n80hdc*Zpr+Qsz(7OAk)=WF^{Hd9lQ_c?=tVz6g#f-@h44po$yz%%!)SZ@Q6Eq!QjXRYnLrp zuxzckBrec0V$`U_xFwMC_Vbfco`30iy1YzDNwK~3yzO~31>~NmtmnzXkrc(Xy`Y5m z34B6$)Idml9Q_IPP}Lovy5Xwpx~}(;$tkY;$_YN{yYdqcjvhO9^sSV9oi-+I%n-_T zPDn*OoHk}mnovmT@kr_+T;UFT{E^XPQ&U-B@+`g9xscMYY2aHaC$2{_8l}#ErlpN} z2L%e1|Fv7@J@rKBApDQ_N0wY_=7b|iJo=tW(K4H`R2h>x=f zp}6`?3r(9Urlk%R!c~`gy02?yCY4-1zvcD?@q2a{qRUpSn=$9w#YYug^MC#1((iG?{%6|!jD(n+`hu+5*~9F&e!2boEuH~zX2;#7 z=331PEO97Iw#Q90k!&5w5{PDq%_><1t2I0{0SuBsFa#zU0z;FaLmWY;3#`?mBe(!r zbcEGuK&%8oHi(U#kd``C7)J{pe>-`E#F5y}4>~{WwC_5)?AG&>QmbyOJfd0A`Elpr z&i6atzALTz?%KNB&mXStbG0d0l2EwUzVP-CvL=L-hLF4v5)vGopbxk`I4KW1LM%p_qZEq^AODb08NE&ua+B7!!%hlQ>T-=dGZZX0wj~N{s9~6)K z1*CKb5f+{{9ybwb+LT9hoey2t`H1Ebq9ef}Q3k;{IGhYTB3}1>i+JbvRhkvY!^SR_ zVwR>0Z>ze04r?5aGf$~~WJnmD#fI3ZeFhDIXj`-tEk;KN#zhzsAW#Yv0z*SWB9ip_ z04a%9qMZcLD$wZ!OCFSlwK%>vh_y*7oA$4vO)tq|~Z#kr)~lPGXh0Iac%B z;a3vQnKpCGeY=F{s(TvJAAazn3y+^qrd)gTMb~yZ$%OIKlY%;JniW#ss?y8v4bzO- zK=Mnf<`yZPXT1Bk@C2wYRTU!HuUka+c85SFQCF-o zhJRh<^-$#wV}Q}ZS1KO>ZCahmn=Lx+&8}ak5%YlcDo;Qg@&}a{Kp*nH%8L*ea!}

      zMxv#_O5?uNZG&{0)o`z=94IK2&){hYGLgP~jCFD!j%cjG{w@S9GZGdRQF&dzDvo zsPKvo72a%#h?W^2=uv(nEn8AJ<4qp^7Ro0LWxS1+EolPd2OuAul*9NCkMN< z;XjbYozM6vmY0&|AdfIH9{dm%-of}0jBjH6NXB1Ad4os!4IX)!Jp4_rx;zLHq{3(z z0~3%dhH7x2I|u5a4$o#-0}ae43#CTnDXl>N8Wv&{Ude!3JR~SYzoi(z8Jd{nK-Ynx zS0b%qAW@GAWFzpshN5XXLG0hsNM7|RF2E5kj&PQ^W zel(;Zm*|!zKr$;s1*Xt|VI|DB0`sA1RKkU7*qJC*qc6SMf@N%S*NN((hSj6?q~%${ zbRj_|%8T&|^{rr<@UEkhPQ6-FiRIFQS1Vb4sk8*sUWIWRnNJIbs$!ax(BIV_c~~Z@ zof;Oej_Gy^i|=3|9Izboq?)c`R8mXi3M(=HCiJ2DYjC$;U}d5fP{nejWxkNrZpj&0k8jAyUb#{mT8jFpW%)=j48zy38q~Y>HXKTruA1ES z8IS2sf{7j}&B2oWw00iIPHyXc#nw->gRWM}W|puD!`7ibXge;!qeiXMNT&OGEKd!~ zA)j5TMjxupCe}6u%#s?}l^WKEija2Io$721v)R;cES%Q61~HB6_94w~KV>IzN$>X~&>?b9+jSox}0xCXWTlUYBnWBD|&QY&#Q)l?j+T*18f!5thpRn(+ooBKp;$`e2|i2Qbx3y0UAA$eb{d#mg>foTPFC%N_D3b( zWOqKkHBee?71L8C>p9)&Y?WHm8rG+3S?_W6bYI=mIJJx$hT(^M*=qNxD`hxS-Fo%} zmwh%e+jrTU%l5mgfh+eD%QeNr253!`x-_%=Tw`M+>pg3j{m}n}sbeEX#YtT|3N^?5%P!Gp_DcUEE*{(FCL2heahJH#r zxva*)=FD1kzUZ>O7;2 zJ#=KKVER|u*=5IyT{Wm9xRL{%2b6iG&TT0b&^4d?j%PnYTevk;!RlVG&N;5}ql)>o zpl*~tQsFf_(jKkY%rI9OPu{jb=P|Dt9b0?2hmNY)EK}<>&YW1sA4m@*X7SBzK2<_@ zKe{FRjBYO7`^KhPQ^r%zdb`Ti=(Vy_>d-Y4x!REO%h`-mgJpHe4i5{VRiZ0X+F-Dh0G@p{ph;25U-S=l#RaG=ra^U6sgyTvX+|9=AjuFZXTQC zlr##F=A&H3#<*ONm`tTv7(O4CaHFW?iEtSP; zL$ykEkd6EtJg2*LSIDSRmO_uzymdF9UGEB|)GtG&Sxj?tnWVHv7L$ruThXh@YFiev zdidr#pIKrK3zflYT;#TpTxPvW>0Q>T>-s#krBBog z)p`cg2`yKVJLi+7jD7P#DRuOi2~u&jLz+`xSKqv*!69YUH#XEaRy5bt*Nu`gYHOv! znx)mvO;Vww$CYn=mbxo60>zU4y`bH_UW^rvz zWks!|=7?eHF;l6jzNN9!fzFcVRTYg6sim&U(I_?3dgK*Lvui3Hbxn>bQj^0WIhHSW zR8={uq*}#Ss&X_{Hr6!I3bH(^9L*IqwN0Zk8f!2k%%MVRZmg(sEU#$1P^w>Ya_zW0 zCo3@v9ZOqkD;lL?b80FZ>uJ%3mpB@mXg1?VO`6C8%_(-L#1xm^Sh1?6ZmBeP$r3D` zG*T+8UtCis<=0eJ*Vk4wB})Yr&5bpcH5F1(1*>C|G-lGoRCf+iQ%gfbZ4K6LNqt@O zD5hOns%&&rG&_=|s+y(-)N-;^QCB53G}hqNN(|yax1vdE za5OHjX>P{k7O!F2bm^=aFQDohUCa`iLo#)l&fUdnXsoYlsccS`sI6e!WE#hn0ak2P zHP+0dWUDaKn!3u`mMUskuF}`n)vl3-)eKkK&LcRc@I$3lnwsjf(a}WpMw_WC0~+0( z))c0JVKtabvtv1J)5aRiwW@wqU2T0umACdP6jh;#VRh;;E2J&W4QQ%W4q8nbrrJ^4 z;H^>YK6Pu<;Iu(7LDWxm&Egs?^C+{K8rG8f+S+<%0;;N$rNtFZSl0SFw>i5SVOVu@ zbHn766i3~tRW%pZG&rhiDn`{eE={3Q3WmHuHT>b&yv!_`Xu)VQ-S^b)df3Zqh}ks6 z0jlO@^;jpW8pldUE%rX9ZtuQKRq556&E^8yI8Ds@vEHZx2gX|3Sb>_UN|u&1V$VeD zsjRMOT#9w3I!0Y#i(+)CelhmQI;xZkHk!EXtmn0$1*&Ljs>hx~?W3x`vSm58NQKhr zYidz5!)S_LwUvt0;pD(@R-!5g9S@Xt=r)|Rs;0S`dV82#vTAO$^sdXbHE5?w-ZZU7 zWkAIoSSO-2OqQ0{SJf<`u7fG0p#>|{RLwdpCcU_YcHSoHsagrvFa;~#MrPjZyyCKCDL1b;pQf3MiDpOz8HL4pS@ULR6iNm2 z3Jc~I&^V{wGcKgqNyIpx?%5S;%&0FqD z>+##}{I)y4?aptz`;O-P*1Pwucb9hf?RS3ro!@@Oex$?vjVt;1`V z>+ssgvYo7Eux5;AmS(!<9Hf&lbOnxnbgiz8S=Gcz?iGQJp>&Vi$bJk)({TNc96%ll z>!CXk3}L_`27y+V!AgI9Jx6#lPMD-g1hBuZ-G#EG-1>GwM!+<=Gox^J;povAN=XO6 z1R&H2D?z|YfN(t!;RfLj5QPoG2IPMy{0{j$g*%b|y>J)ucMG2*|3Bdy@Sw`hKY{H>Z>k-trI8}jS5sX(-8+OZ&N$7v@ZKT$gc`E*@25M7QA^VQAP z%|Sk2SA={q{Vs#9L^mJ#Qe7$XWxDf_U#M$FzD3u9{7T&_F9R@_fUzVEKi2pF@|%s1BJVW*1^K6pdy)UE@$bm*H$D%7@de{Y z$bW1+g8rWx{}1`2#;=h7+W0l{-xyKz#&3Ik>(QQ=bO(*{sIf;YkA7@6bP25tr0-11Ff+jSmUgTAXonx;))$d~$@($!|FwRCVUAe;hdy6e{||kR+C(5WjZFihO>5JFVAI*wqR&OPi_qs{ z8@8S8HXF8`ZGBJ`{r075aRS7$c2`ho`?RjR`xhZbA&jOoTFhuIqgOK8#^}wAu4nX4`Z$l=$EcIhCm7w&=)V~K52K$@DgdLI zjFvFEZ25)DFBC3e^eRSgWOO~FcQLw&(MK5F!RQl=KEuY_VAN*FX>ft4*)Y^u1p7i; z6t>VHY>gk^-}OH|-BT_5s;o%=pXU^khRq?}T_I>$z+PG&fTb|fPjH|GSkW&A4+*U# zj#>jGKq4+chvBw!1SFv)jl^j)h5fod71CfVjDzto0VcvE+zd>CbU5cEsrJ-Qp#P23 zBiDvK=2Y$##6Tj*Ffx%8lEtKvTuyEw_mOt;6nUAvN4^jQAy|kLQiV*RP*{v};mcy6 zm?^Fm+r>i~izZ#O49BiE%?8aAnin+RYroLX)-Tl8>OVGEa4d2fHO3I*5FG2Xjm5?) zW3%yg9P#&?ET(kRY|}zhn`wh-i)oi>pXqhe$EIWEKpdS%m?xWOnirUtnb(@z%p1&G z%)89{%&(h2HXpMDS|TkYER!uWEekBmENd-omJOCImR**8me(yGTaH-+t&!Fd*2&hH z)&jvu<>n`g)>+9B!t;cMEwn*Cu+hp5J+XCA%+ge+jZG&x#ZI^AI?RB94 z3q{x|09dI^R2fH&cXoKoUrlAQfGrcueBs-Ls(Xz`NVKAF-}I2_IoU(j;W^t|)-GUH z=gNubUiX$qMR?08GrZ+gA35hGZ+ZG&Z#hqZ0Kr2p(Lex!uJSBtgaFY)US{)%k4Nn& zZ+Ur#w_JCS$y&6v2%xugMl08v*Q>5mb@!?6Vb$&IK3i$c0k9Hq#rCOJjgH<T+t42??wUZ= zRqL^4rdJOlYZiOUYr(spv_>*n#BnbK$9%%t#32gr$m>Zue!~uyGL=a zu&~e(I66Z<*#ErQiL4rby8Zvnf()d*|ha%h8FU<2F-Tc90w!BemgUWV7< zJ@^>DfMY};fh3qjk~lJgq>{-blguQAYKm$J+HO(Y>(m}{-G_>My{duhcPQ=+lT}wO z@eOK^zp+GhRXe-Mrn+satJdu1Y}HjY_UmfJy+zgBEvm+TqlWv9s;OJ^RacF7o7&@U zQ+w!owI1s?DDH0~RQG1Zywq4tkEj(S_;2Ep5+|FD6{CT5wVy0JPX z)H8~^QSGA}FIL^7ihI90KHRU4Klg7@UA5MmRIP0)S6#Jqo1QtbKRuw<=z%KLUC+W8 z@%j*4$Bf0bN;b|<#jp@J>$Pf_hgA0y#oes7;$~GF531wr7PXvP)Ny{xn~M8K)vo_| zOmQEwch_ehQcL}i+E*V|d)dS9vCvcCVz?5nhg;!J*a#27cGwMjVLu#%H{mdR0!QI{ zq9G;{LZZnKl1#>ubdpVGlVY-vRFPWJOfDu@lIzK>PY#kd$zk#d zIZD14G=fP85u$}5Lb5PcNEfn&*=iZol0R~n;y$YSJJqspRcDN?YK_~~@p7B0iS6p> z^_V&??NIIXPwGh75v;m5D(+6zu6L@Iu}js>IKDpTD8o*lIp4>$zN6fXViZ4j9R|GH7M@0>WKBM>i?Wt z?tN-K_o@2%yV}3@YgAVqC!SaP^$V)CzVMRbzNn5LFFvBUFRA_dC3R%}hnn8YsjB;` z;vQ&K+=FWV2UY)9F8A)YuMYF>x39JO$hY{&TRc`g*lSyJ8N8aTl@9~kJ@sXePk@xw?`+ejWeB_sWpt=!ANfB% z@+Us>r#|vgANiQKd>DLWosVqrku5%Qh>slUBTGK=5FdGjk38B(9`7Tk`^Zy$WV?@? z=_6k38E)&i9cEeB?qOx!6Zu;3Jp&$V@6RS^pUUemcR5_|9|DPTKeX8Z~0iJ_h|BcoR55okL^zHf2D!PLpx;AYglDr`I^#YoZ|}yhS~+?a zr>|<;vzBMpca;9u`At`f(Cco8?zc-M-sj zDdb)9UbQ~e@|_-Y#WMNMA1%*Qjiw3ki^f@5(`@)fgYRX}9KVE}7)S4+x9$aSD3Jeg zBFEtgd70ETaG8=h#>L)R4LVgEc6b3w0rI`(A(H3XVc?km*vgfc$UJ?1}v-l z{xNb3;Ae%aN61eor+-6!g;94of8G+ye^uSSp}W8O$UjSo<@b9S?llkoIrxP`eqYgB zciQXn^S$bld#ZDepA%hsStjiQjvk>mpU?ghaq4?@KP}`}d}k`vpY3|O_B=kndwioi z-=7Cq1G-0Ztq%NRm*)TL6N;a6eJ9_5N3P0KcZXc%63&1ZxpE&iEr%tE$ob2qMYOA*O3mory>lXpac+rjjwcfh(U;KP?h5Q%! zCiw&T1IB;Q&GipFId7>u|DPW6Ursy5k8O9=-0n^v@*7y1eti#0{oUs==ym+?|7iFd z{A4Zsi}}w|_1D)i3O)0C@9ZvdjFJ*dWw*!L_zias`EtIppJZ#}Wy)wP7vMazjKzte z*MAOp{cpq@J-g@b>a%o3e>T6wK4D+6yZe0wSIF&hyW)0t%}aW%`w-p5 z{AnOxa|UsGX+_WXvu6i+71PKTc~!U9l#z7{8yoNHlDa}DC&#JLUBCV1;>`ABF8=4< zll{Dq-<98G?i<}*J87JM$S=A=p!6dAA|XGgJZJ6hX=|6C_f=P%?ymjva3;^TInKoH zx@79|-v{(x$OpRd)177-tCW>kcWLz>bp1z#Ywg)pU;dl%AA)??LsJLjPpKq-gy)mU ze*zq*4W_-1dM&kb=$DYwn58k>J8^81H}*;%{d5odQ|PYWBHXKQj-*8XNd3jxNZ|NE zbj_udQ|4KhU+=6idjJ1Q5!q}+9?44k5uWApCRYA(wbbFKN`S`m2z3T_f_WZr&kNbg z?;U$@miV!tjxis(C~9w`{12wXjq+}EPf`PK|Fg9W%*!J^<@YIlKzF-QO9!Zy)ZVfi z*W$bJ*o5`D!K*L%)TK*SV}IoCW2aqf`8F@zxzoW?9PrA?ul5y6>ZrXN(AsV|aZW?M z+@OpV?sBO2%h|C?mE7~c67men(O>oz;jFd0|6R5Be-F7vx!#=%)l`3=6n=!WvFRUc zT7bA>;`bBzMj z3V!NQrXTGqd|LXHtK%MoI0N+VeUzUHUZw8R%ZVBa_c&cKdQFf1t~<6e_8C){ywUfr zhWEU8Vx7*WmhxL3>)(y6R39+SZS1X_fAZc;pO`fFMF)h-*u@|@&el)u4cb!_jdl$pI#26eex-lfbO9>ITb z+&**5>*+oBuJ^h3Fx^e+eT5%qPewHruG-wjE?+lyfb}7z1j_zv6D!k3=9bf)nYt6( zfjwlStDkw_Lu0ODm9$51L_N{F1UInzD;sG% zm8!c}kJ_Kfe)dPdf7knPmC&Q?H>ho;^x%`M^m=!H?zv;3EdzZBu942A6L*WBVvX$H zlby9?oY)q9>v{A^O8e8V>-*GwlpjP-*1CP*9@J0&jPa+r@A#8EpY8Q$+patAxR!Ix zscFoABYW2K(N8mO_todKsJRcio;A3A)xP3$=R4dZ)=Ae)XYjnDhkG*r0(+{Xu8Yf;db4lp?sU&fPVffw=;q3zxk=9x%Rx^zR#js>jAbSR(8T4 zaUHtgdcMsx=YG~rpMOKwUHSuR4^vjwKiWOF(|tbsbHm%xymu1ak4Am(Uavo(XTM+h zCBgFvq}vKTW?}U=6$kk5g1bQvpY| zDn8*}mdVGvp215`-0Dt**Yn5j*B{*0eh}(B+s&O~*GS0i?qu-(C9CH>NnhRZwQ;uy z{~@`ze^YTHPWSoj&keVw(G{@!SD#(KFgxM-_m2qWzU*n?XB~-MzyD{t>$>-;^wSTz z?i6%|=Y6&d-QAr#ajx*VYru7O>*_weS@X1eg{&%%HuolSDi&V zgMOMg{sHed5ueE$X4RP6&-QKjz4bQzpBlaO4b{$XewsM`0r_Gt>5?-}M|oH7pwqV= z8mDjC9FBBvbbX)v%=@ewKl==Hm)&P|SM6F$FzGD6R)$)5<4of8&94TtH&}P+?u>u& zuf7Zao0ETK_hg`PPCu4Ep!e+VtiPGuNB_%3eu3_X}Gdo zcC)+L>~1#yV+artF(Sl>DMk#4h!JDN7!fH_L`0-9O;bcfN@I$MNNFCWlu{m#rj$o1 zrTp@E6nV&_Jc<-4k0M2+JdBhgB99^_zjMAbn`|PeZQpzSoB5nGXU;uy?!R-t_s;BO z<`4YV``_vs<&Xd4>xw_p!(Ykw<>TKvGOx}*eXahG@1^`NeBb;}`1hBI+S`OW1I|F+v-=a{v=vGr-s+Wtr8`bVDs z=la(%vfI%Wel2`q$Eza#ULGq_{{DYzANSXBsN1`=T07nq z=Cgf26o2V&Nclhh``i2l`j7rweC4D+_UXRA+V5A4Ong5I-qq6eZm-GKf71Vbp1tf} z$Ixy^2gTq2KK);6w^fAopUfY9M{oNX>p#SQk2MFM^Vj_(D$T9dQ%xNQ#AV+d_{YBW z^ndfMsej5p^V=WR-(SqPKmI)a{xZM)@#pc^@lV~}&iXdLcedk#`961k3ci z>v`|u|G{6!x4QlJ!O!s}9K0oouQL9a_iD$_`Ro1bXiIpn_N!NZuXacJA8;Qf{jdH$ zO4r+wo4v7#((<1PxpRf^WNw0HwORe?|qh7`=%?TD~dm+DU+m2dZaGBGF3)onvBUznI*Gjp3IlMWnWn+`^jtM zwX#TFFK>{8F?;L^xx?3>F4zK_4E3Ndb{3X2tzTXVKW?t%kUVwk!%Evpb<8rM$AYz zGK?%E+sHBUjb289(Z}d(6dG3>{fujjYmMuSBI9~vpmBpS*eEt`G)jz{j3LI&MyYX& zahoyR7-8IQj5O{rMj3Y+6~^7hJw~N*uW_I8h%w3doH5yW)RMd+7}Jd> zjTy%0jauU=qt5t(QEz$TDiqkZ~v6?Aj6tCID`zn1!I>l|F$e`H0T4YlEUL&$7h6jjj zisS1@UaTx8pFdW9Ox|8mULg;!DzAzhitX1#F2(oHMTlbj0NK2uyg`~@DZe8Art&87 zx0JUi_1DU;MIOceyW%Q}|Mx{cje+x`7mb7e76mjGekXb>A1EJ)J~SqT=u1^mL?Mk0 zySSRhhePzEG2#^0&^SpF{b{VY#I-bDJYoQi8C?|6xbceXXzZklA{svtaXpQpG%=9I zQB2%GV<}S%qVbd^cuZxB!8ES&L@|x6eA4umy@~ggeTf&!LUALFwSJ<6#@jXGCK_|s ziXk-aip0${_O2JDH2!W7pP?~0NDQTMIG9q4WwE%0#^a5mjK*Y%xRu7`O=1|0%^~78 z8lN|davGzhVmOV{&xjE`R_UxVStf3$5qql`Nuzd{xPwOSZKN-kds2(NmrjdQ87(=6bw77>yIN9GV?-rFb&c}#*X{_Hvno3zI zs%XsLEAFFlUnR!U*uRhTW93+JKViWAqMC4^T0B5l@PMcxJg5;55+*z-#t|-z6AuwK zJS4^wK1>h~6GnViOdy?F3GMhlUVeB5bmWnS@Oa@f6{cOFTmu zi)AOyT#yhtcGP%I=Qyg|G~XgF9bB19|}FB2->C>9ekmXL>=jGM&Q2qA}%=bMe2 z$-dMmrPN!DTS&gmxJ@h})Eq9pPRKce^19u)T{IJdjwGLV7^$Gwu`LAdG!Ne4a41LDbS9K51d7oi<6R=pxQ|Y9rk95|a98 zvlEUblgtRKiFDc=B7-(3&^Ad7pv?trbpu;Hz*ZgDYKSu0ykZz_K2c6vGSJp9M$#4# z6|^ObyJ-uGF|?%sg+ro}wp39?TNsEO0U}3%$Z6uAXp4z8w55yh(v~6qnYK)^p0+Hp zfi?+r&IUT?0G)Gz!nr`zJfLbG@boI+X};1==|@P%s9K=(SNapuU8`J68b;VYK-j*( zP!lV2fs%#F1?7Uc8pzlW$aoDfu|F{JD&XL?z(ErMuLA-WNuTr)_9e??(OdeZpAax0 z1B8G<86*S@$q->5qhzrR%P=7wV`Yhq$|xaS7h(>P=`x-0E<vJasiW9u+^wY-|JZ=f7VoDuVO z;NwUj;~hZ8Q9#2xfrg`jgLeT3D}aD^0|CbX0q+3+I8#yu>@%khM656g!M-5BpC0`DFH-c6E^$VUj>81*L0 z&&khO*!L)~Zwj#QF<{?RVBh1wzG=X|2jvs;2|~K*ayrS3gA?TpIfGE|^Mr;^0u5&X z4JXJi$S;V`0|)y62Wx?YPw5SM10mp-^e+*9J)=KE{8{~3!a>HzFY3?h&l3W^pua$T zp}vrC@N4?lNdCJ1b>fVYGl7y%10`nxC7;p1t$$n0)>rB)$!3+lN<0h1{Gz^2Uq_nF z`WE7hp3eY1zo@^e?;_1U{dM9;^dpqZNxhBa_w@J4|9QgDIl$0az|d!ap_=%?SS*N7r-jyGSFcyIRJ zEI#Ai>wR4e^&a-NiE^LnQ^mc$FZ#YHs(df|UM4K%Tz@OiP_CJ_93gGJYy*X6d&YK7 zgzN?OLeXe1(QXtkXhXDHlozyW?Gfc=?Q`1aly7N|YEzUI+H~znWu^O{-J6tEw77d* zS!?{t8Z{zQ=s^a;fjDzD05kp||i95fux?Q%d_`L?cPA zpnVlljkRZ*kRVScnnqMh)IcYPR;vEm}p?ViC*h>6}do$E)agi?!cQ z`&~qPi4G7QCOSs?le9lgbk3rSAX>0n`irOwm!~Ij`A|k(Bcd+S{X}6pH-jjTY_@$reP@8^kvib!TE)=NRdEE?$<1gfy8O0NM;@Kov(^vRva)982_9oLe~)S%A>#gFHa z%*5B!A4kplazf}9eLeZxM6`vDx6|=1lJ^oF&<}%-QT;p|7t4BTF+c#gJ+?!nf6<$kJlMHJgvs=cwZX($S2c5 zi;j4v8pl2LMw{*eogrUL=SgO|L^6^4l2D(+P zIyaxmTj+^`2IvK#K_oK`A(^NvR=j0IBNC2BGkGh?w(_#})lA;;-bqY)v3IIPGnhzM z51OTyGLddBledYEnHGANfR=ezg4TEjf!3L%kMwS|sMVrv7U9^tlkAxGm=upu?|$zg zrmh(F9tFkIPk4_qb;Ypv6v#UEp4DeF#becbL0|4|*IRt5r_$$2h)p76sn2Ju@cH7$ zzL3wy)Ok!}(-))o?Xu4y`-0B&ew5x%KkX~hFM^6KD)kKmjr3J8#c?Md@4hO-52_)V zX#&YilSw8rJick5u&~5 zCXX}uJd+;s90kQZCz!hCv*b%my6TZ2AIU^?Ddl7`#`p~;_a%Rj$>a1#nfzJ0iz%6~ zlF6U%iGm9C0;Vnu@SSAxj`t5>(u@6rK=Jvcvn@Q8-V^#{{}6q-zf5oOkMLCbY5w$A z(s6ay*y6Fq$Nur%$C|O!KZ(Z8@`Q0zK*u@$sh%?b42n%_9K_qtUr)Y?JVX4mJR|(G zjIe($QImh6F%Y!G7|LYy_b&sL_*a6;{cAv0yZF}`qd*&}4VYRKq`uq1#dG_d&yV}jaAJhX&JM9mVJ=0P0$8>_)p6L{|Khs&yT>k}sdqDNf4Y>U6 z$>Tgz13piEAQXr(;W&qm3+T9jj|2SzMS)_EGf>JD80J|68fj5Q^2|V0a$}%|_7jpD z6UsG$DPFDsVGC2|F|7wcwT3^?Ks1}=*}M)4%=63$%%{8-F~$3-GadaBX!eZu&n0RK zET{6W;;}|$B?`3A@p@0a?hC}20-NY~3mwPkn5b)=6xhzx6`z4!OdnZqbmB4LGm(BS zu$RdYgx?xbkA4gsFb0AS8$+3lBY|Vaaas@Tr~HWG$Ho|viS&_ylT2~U37ig`WAbNt zjxxp1(~AQaLA5~vY6xmfJ=c{%PtXqvdj>Iet(Srs`letWEl~R~c}55OGtsqDhdn41 z#ZW&W`HaXVe$n2<8rGBMLAFs(5r0KJ$QtP1$62XrKFRyEUd-*ZE*EdwFS4arOguyV zEb$U`5b*-=Ah@u2KX9_?I3{jqnSYNW+Q3{Z1P?Q}BNZhS_T{iy49zKMf{^KoqT^l4 zS?O2~&mX8cs7oD{Q-#e%)a4)eTs&*Xey(Ot=dp}jY`-C1Cq74KeNLs;P~L>)2HOvq zcibuz8CBPjzE8(jxHZ&$%-gd`vrPRK$!+a^$S)ILseX;@tJ)tR-bb?&U(``R`UaJ} z$tfMbBY6|cN}>JRY!6L?eI#qNM&ivjy0TIZbX-Hc$@UoWo$dd~CDHy9y|a)@%d%1^ zo?yMBfHlmO1M1uCq5U1$v;Itn3i|@oMdeicRqR<^!5aH(u=yQo_bteug?x$Tl)+A4>8HaXoDIK=VHGdWLJ=@d7w|TV}tHYiH*+xzSG7Xv*_At3$h!TSgtn zoKxju^){iX#T~1;Mk?pEk}auyzJ%0gNuH!m7K*LB;~B_5Mq9DxqsS|&as(dv@Bn&& zBeM;1q532AS2^2g51>>p!}H6CYR>&>bp&w-`w?d}H}r3@4LrBmpCUfJ{kKR(dukrC z*X_43hfSgVSH!>18s+;PV`1}ElJB(rlx%Dr_1xy_VDu^5zipq$y!{;Vn$M+GA0kb@ zh;nP&Ij(Z-)ILg$@G(bBHg~wl+b9*i$+D;Z`OdP!_TYiLHxquBz|7oO_~Xa ztM?#(9_OA$$@|!!=h4^xui!LZWUT$apr4Pic?Tkd5Jv88{|$IHdb5cm?L&^nN%qkk zSIDak?Qlk$1P+-?MQ#2HT7YveR5gXG@f76Y!ydM+C`VLZ7m}v|~Fk#D|FWL30piO+$IORnIu8 z!MSWVplr`{XdHn&?v%GR?!jl;J0P2V#ACmWTS>{c5TKG|7ssZe^s2%fw`a^Cv`whUE zAwU?8$y?3-brd2_s?f6!Ag;cR$VXoGofwH4@*Tx`hs1c?g3)>y`F;hFj9Jf|YqaN~ zc^*CZAD9JhMhlFD=4a4+1}(;@+aygn3p|9_K#!}BqX%z94@My01UU_T^g8%E7#%c@ z-8PTz?c;dbERQpL6Z^VuqT*$k5(Smd8}IAJ>OOZTPQ#8BLkegJo*Yj8)J*FB0mNsObV%se6<&5LN?OvDkoiuNr; z>#aT0rUZEl(RQL;M0<&Nb~sFXT16=*Ejn%O&slU)@DmIm$P`=B({)Tlcwp_rq|YGA zBkDucpJ*WIOK3losNAAaAVrR`^rKK0E>BP5@}Z1!ED_aPP9&N_=T0Z8BiRp9ti37E z?3CkaCe5*QgdcJN?H6C+{O-r`bA(*lm9Atdyk`DmR^90;uMPfkSKS#OxAvA#*a^Gj z_>Rf=)tpP>x9o>-6w}zCaikS#*BkE}=Z)VP7robci@Y~@2YGMwmf##}Wl>|D!+4Zu zyWTd?_7z*B?YFiwws&o3?dA62+5qi3_M#PQH)=z)o8#V$4~=$jFK#`d>>`JMBeK!xveD?W(de?#D6$bY+h`=&XjIw8T6?B(2{Mfy+Z3YdL^OJA zGwB=}6*h`)+X9OgTl=LJtsq)$5zA}ooDB)bgpsz*)_yDPcM$C++DCMdh)~;hoc3)* zXDm7oQmEFZ{ygf!<>^UWK9o@<$Wfg{1`$Ohj~+FPY&L@wYY&;OXCbRJ4%7h{GncjN zaU4HKs6&X#kd`aTMI|BbWHCd`6!YjxZK+r#*5TR7J>sA^CQga-6i_ZDsAMPw$^fNI zsZ_=(la)GUw$h|5R+cMklnufrm&j#urCcM|$&EtFwQ_^pEVq)>Dz}ktCrQn6x!f*W zNLo$lo8<WR3j(Q+0#gxLg`Bh8>Ji} zN6UJ-grq7;pC%WPv_O`~iG;$E{Em>-ax_WvWPz-ZMI_CU17$hkHG2-qAu@}k2ALy^ zWC2Nal5m~SU&C=O|wfcaoecXDDlBy|P)(Qg$f2Ni&1WF$;BB z$n8MZYn2Vk5ryinv?|+_{mM>ip_xj9oTJQB<|~Vk?`$gBe3BZe)H7*zlX8-rs?3q~ zBvG1DuPj8FDP5rwP##T`$3mehrzUIU z&AAk9eEo3IwjbX3+9``mNTZO?J)te2ytau5YoOoAc~L9#HOz8cS)Jf3K;>LV9`P~E zNzZM#fw{64>+BKC$wMhP`Ls=R(9CYD0MBAe+Ym>L%fqrf1Wg5B$xvRL`$?AVFLGW~ z2P!AEGHSs*sh{nnP#jZu4d;ldw3fBk@yb{|rp;wPSS8ok`Pu10nxzzVq)J!9@;$yc zVVj0}?YHVX7jr)6xRLd$#`U$$hs{aI)3_gP(=2;a<~FI}HnBA_q+!}^ zTDdk{8=>7!bJLyLXzecTZl0gCu{1ONlY5Q(yY3eETKD(eAGj~MKXi9^1kF-a`hEIX z{eHcg=Biw8p7$!6r(W~^+`Hd7+22AO^yA>#0LO- zg~_=+$?`tP!@$iMXA`&q&0*Lt1BV|j38fwY9|N16khukRqRcxT$C*3p!RIilJFBU! zn)t4Sc#~^Eb;NxZtr;!DeI%3x%w>Pb=mq5*H2IKgz>%YZ5-LZL`vh)JIUMN7_c|wv zt;9p}J$c?=h4}V zNVA+gwvd-ibTwD&Eg+fH$abdz~$z9%=8y|<`WlrZX=oJa?w5n zya;?6xCi!8*l=H7{Ls8(w~qLa`3?}-nCF&*w=jo|hiYU~R@tiPI>x8YPzi0+dX=I= zU8ue!r24Y@GA-DLI;(`;Io4StV$O%04~uN)MCUY-=d5)$h-;irJD(Q=oeP{x#VyX? zI?syH?%wYHVvM`ZeM(e&wtHR`59-N!L_AD+Tqp9xO;o=!@c_-FNx66ZyS_>v-(KH|$t zqtYbS(JK9Q@dM=znjPL#C##Rqh+nDxBjHf1`V+;b?pA-UB&jFWca&uHyxpdx*z@dH zDY;ss)~Z~kZPk9FRB5khuP9@+o!V>4{n{@an(|pkk|R}l*^%zZP*ys!9ZxH(lAcbQ zEA2^NNm?lNq^~74%haTAB(=!2r0*x~l6{kYo^(jwmh?u_d3k5j2d<#}oIA;#B%gH~ zZm*o<_PbN%T=%csCuNgonrE3@?0H|8^566{Jx%^xPuFwhe!Y+0NB&a3TEAKz_CD@? zT)rXbTF-xy=rqweqKiTXs0jla5nZwdXf+ZDTgP-gAIKx>V;%RmXrN_7*O`H#oumZl z8X_=?XbjO<>_uQ4?I#jVNucRObTtx~X%Xw_+9l9vozJwuqQ#c|Qlb?^tBKZj+IN+S zu0I1b>r)v-U@LrZnay*|d_{m(1A*PJlYxDf?%*Flw0Z~}Pas-71kRv6WZ*o}rA`t- zY3XQX5p<$#X8HKoxFVV9LEg(F{z?9+{u%yy|1AGpeqzDD#J|kH(!a*P&cD&$O7b>J z-AS4~{{6%c`H%Wf_)q!I^78=DvIwxh_x5+ z+Te!Z=HS-gj^OU#zCac6gMlh;x8RZB@nD<3HFzd?-hU`~DMbbff@e~k{zHM~DF)Xf zfuBwZLMEOPg@$UEl12J_s@F$&N@2=?U}MUllp%q`{-Y^nDIUo)roO z+d?r@6Uqq{g!+Ywh!=-SL&J!V3{`}xLN)BO8=nxG>_0?&8aT_fp$7k{z-j-~&}{12 zy`g!b`JqLD+E8<7d2nfHRj@5(8PzC1)WY%RU&HkZtq&d#Z3;A)CG;-~ZJ{`1{r1qV z(B42Sr80CNbePI>j3RlGe`DxmaC4v~bUJh{bTL(=YN?(;bE+S57_#Qyn3@qho|+e^ z<-QBePVJN0KXqVgNpNlI(A4sjo&Ghcqi8J5#n@?09g{jXbzEvm>O@MNk~*E*q%vh{ zYDQ{Z>P$L!PHJN?FLgoc;?V5CIsYV<11_pvIMf`>3r$FA_a7qre9Ctz%c(0;SChOp zbp!R$>D0~Cr^i#;Q$ekd9)Y>Gc?oKI7-Iua1*p_-Q^+@XRP)ll?e_`sG)bpvA z!ZPfnUYMJDK5T@8;VAnIXN4)QOgZQe7gCJTx#0ofLE#~x7E3N;+20f%;a?LT9j**l zhsTE}1^RJ3q#g`U@dXLK9e~*dsZ-kmc|a$jhik zvGB^2so^zYs)gAv;Whr9;f>+e@V0P1>35>Ed&2tzo5F{}8)-D14j(1?MEF#wU-)eJ zg8x*gG~Dh#6+W9%#&Sf3Ors;>3N@#!37m`gBB4kuk`pP2^otZliX)}rjgeu2(~*&p zibxe9$tFgy)SiNi`U}L1&Y-h6H6j^S{JO<77$2i>-S;hHAT7sj( zYa;6-n^I0hwnVo34@Gv7&5YC|k!g{=DTR>(!8}Sm9GDzA7C9MQP4a2T=OB0KcSSBz zPn`-bj_mdCj0(b{@~9SQ_V15+s7B?~kGrCN|I}zWnh{tO%?qhK3q<=w`$q=`4n#|$ zLm6YE!_@Xld=c03>jg0)!1%$3c zql-f|Brm0NSA^C_R|iH$*OGp1bVH;$Ffvd|`ptn|k=pRa=+@|t=)boK= zF&{;84$Yf;{rh7fmSeHBjcFrNMJy*!5i5xGixtI+Q^rR!IWQr%Jhm#<5?deJ6x-sz z5ZfNx726v-5IY<@7CRX`9Xl7h7}%070=v?+bWgfJJ)F{%oED&YSU-NW~a|dZ;UNUUy#0-;=#g@w9)BHQw7fm=_^vpqnARY=h-&BPx@;A48nzA zXnja!nd2(7p8T&3#mxAL>|)uRAERSK!%{|s&qmLL`o-mx0nv$(W{$n^%JdD41}q0o zle~-kY^FHONZ*>iBjjT_us3~cP=ptz?~cc3q`6BDsOf9d_obds88?; zTy8yUbkIo8$jZnM^dnpfrevk<4^JY?RT+gD12P5$j%5t+*V77WSH=+XRz~=z- zgnw3gIU(dlj`@ty;FV-koiRRRQpOPCQ(-?fV+Qg1P;JJnjJY({3aNL>Gn$yw=xfec zNdA{(EX!CK7{;+gh>ESGd7w$sD+v{T1ncLb|_C$oS`vM#eCPMvAv*fPyp_$7wSNT_Fwq&l)+?2T`b9>st%z0_c zGIwR}ja2xjW**2qO#E2pN&n8w(==Y1GS3A{37uL)Etwb7TC)Vt5m{Q6C$K2XpWcVo z-osMcXkEQ4a=;FyyaLba6XIEK2GwO&mf-b#R)5F?A(y0#XPIZr ztf48D{#lvRSf4sB=qH)i{~NQ)sUNpz`B^4Ca4CzWAbdK>GrCU)wlKtCOF9m|>1A};@l$UMGY$n=GLWZy4qX26wR zLL+EpbSu{-x`E}aIgs-xV#xzVY(}&(tC8ddS&RLXvX(->fc04`Ag^XQ)0ee2ZBN#Q ztj$?lQx;~e&DsHZH_4l`_GKN+I+Arf>tK2tjjvLkPebd|MpM1of+aNPE`~f7ayiQx zQI<2OrL4<3L!)>>aA?}0L^(pM_|$`0=Q)xirBvoi*)r3W?Swo9vXQbbJLqpsTNh}_ zj`}BM2eV4Dvq;WoeRg5?fV73#(T~W3U_T_iPj*>gSg0sf%N`L>v&*ta`;TUMvMUqh zYRKbR&S<3>voL!SMd{*cfPs(F=~ z(~vW}`?achHJURoXMWD2oaUV6IjeG7a@OZ;%Gr{$J!eWgnZ?4C@n#Q&BNxpW@^>ayb!zjtgu9D zIO@e$?&KNQ*NjViF2(tFo)=L?wH)M zx#KdMt-BMrV~{)1KQ(uXe;uuJT63r8*5%GL??sqb{kd~;8*>-rF3w$=yTZKZV78li zSHZk~&t09nHg|*BBj)`9>kbC)SMXU`Q*t-wZjF}b?#SJpZRD2Z?#n%xdnEUGZd>k| zNJGpgl=ffP+lBJsFZoH{_TTa|zwN(a{^2M**(cOB;6KH^>8 zalQlhTJ88>a1@jBpS<{`1^WL!DsL@ zaaxdnzho|#ab4sSEUP1-c>Vwh2%1Kg?LpWyLi26dtb?YNHR?>*XMqof&Fe^g z9na9^u&g`sC9YQ!ZbFKAU^Nwt~6rkJN1F^P!&uz2DRzwG8^7L0^XY zE-+gLwM#JW4(9>sWqmIxOx+E9c=O;ABIf>CHYxzYyt^QMf_29V1(`+Il>lQrjH^BdT-BbQ&n+pkcDlh7Z9 z=XO}Wi&V2O7V)#s6j7y!G=8S?b=2tF{A&}%OdV@r^8swKSf=PIMc=Vzg&k4KTn^`7 zq@?r1L)^mnMR1bYcaT-cH^cHYG`&!UR%nV5rFoG1qxX-nth%8oU`vM?|JNaM>R8rR zBKKK^{qoKh&z5{jw!U&M)u%HMJsKDPbd7Gv)Y8~ zevjpc+b0USm1X%;PL+GnBZbg3a;j2jjw#kCVM{JUyzy_17h##tmf|AHkOj@_%&CRB zoD)nx=*I=9BSx7xY>p0;WDji4q1`@@7JC9Yo-?BkEq1k8YowNOjch}ZOC9UgDD*nw zew4~ z+>2j`PoOWRW3;}48m)(>9p}CT%PA((^8Y1>4ioFlamN}t3*||JW&u1LLhd?`0(B6g zw-SCHL8=Fy_d{a??kz`jq1LvEkbh~m44(KIi5BRKREfNw-4z9!nU-thuT{x(|vu<6qrBk=Pa=A9RC)~{gm4$xp0v_BDRRds;I<-^C`Ah}-(uo3QqexPe@2@uwGh68#~Rx02BbRpe;2gfW=z6c zfjKj3W<)^)xj)AK8)gfGFErO7h=;-O13a1*f zsfV}wP_}6%!oX%0>}}wqP>ZJ#)d$ReXN?p1>>A5$?kvI#h)7FXh{(iTqm5vVvxqg? z7}hu?ax6u>?Su@Jv)_Y!zh{mM_(!iL^+V)ig{i#^8FR7L3$0ONju*7vDfEtl)(B!u zeH-zRftpT39qWel*}iW2!rNBJI`oS%I(~_H_Kc}P zoO}a4RfE)Pv1VI`lAkwM?EFls^dpyIlxK<6CRoGsvt{;S=KN^l6;d~0j68=jzlaDy z%cvh9(q2UTOtDh)u+HJ9MXy7IuYsk4sCW@_6m50NjCQjl7qbr;Gu9Qxsq??yZf z2fEGzF9u%?9s^$lz8>~JMcvn8W*-8ddy#rQ_|4{A26;UAuW(iw^y{H{0yEtdJT>$V z{)_P!rVNalf_A$X{_jQqVjO8n=vmC&+8D^UqDQJRM^r--M!j~hhSrwcQ_rAwhcNp* zV@3kx8rb}+iL{7~-y-$bDB+Jx4a)oi?2p3!6znINSAx(#jQ`skh_h-@(?j4klbaFF zsrKdOoNl%W_#^PpZq94qJK!J4Kr?;=pM^Q}9A?|!ux#53%>tC|5!7y+dYsButMdOo zjWe(EkZ%p*9HW4)__#bkA)7f<01a$SXyGQb-gq+=R}G8I>jjQC`@>j2hY;KO{Qr*X zPW)$ce`ub7Wi2AJ4d;5mD>Qx%`wcrGjPiAOo{rubZ0Dz?pH#WNgRyRZ&Q9KJZk3-< ze9pSwJk3`_Y9q!G*{Bn76@Y7M71yNVEw)i!WgGDpH1Dv6u1`;64aVmVgP$f-hUfms zF^Rc&6IT-xA-`i@X@dU}{5A7By1fr^+%u5^ntt$E4WIpBxru9JD?yDgo6B#SOnDw?aMDEtERhYRRxAo~-JDc}Q;y8yV|poF}dJ z!v5vMo#E)qkC0?iPPSHl& zXzev>#k(B2j;ln4qnD$XxX01g(N|PDu6Fbj_d5DJ`iuJ<104g!SVys=SlsU@ag>N^ z$8C;s@qpugN40p+QRAo)58+|IyEA&q>x8KiqP}O#p zm3rp3QAqsr0 zrj16u?REQljz8AO3i~dSkMnyMY(HX+Qpit}E7vf$4TPM}_L|@F@Ll4suwFi`rjz`D ztp%h0dXoPIXT8LnR_`oN1YZjN&+s-^#s4ugx9wuC)xh&5=GsxnEwGu&_NoR=8$47% z4xja~cmBLMk4GP*FIXUvmaAfB0hNZYEtqAbGGvPDcn0=OJOldc{saHTx>Cjnr zo#(~nD!r!DH|yhXTP#X=^CJ6>%lw{2CQj!)=hO9uMw6!LwMdVj$1<0N_i<{V{2I*q zAn)0fK99=C`=0(TSEj_WCDN77?MYl$e&-Um3%|E0UiWypxGbE`?~sbOYr|z|73G;o zd|sTmE^&&NjoXaR?2;s_4=l6?Ks=oQ+nLK^E^)5qHphP+qiGu z@3P9k@?QM__J{Rjo$Vgq$Mfc6?$7u>UUqJ;0=ywEgm+)|JU?Ey_#W@YG&Fu6X18)C z)a4^(ZRpVs@qH|zY+Rps`}K^4RS9xJ%p#w79LD>^@?nIHjBa_v_v#huAFr?4qyF(@ zjvtoe=TTlpo~i4(kJ}i1I^POvz76zB?Q*&Ou1}f1>r?vsH2JKu+Be?Lu^#>Par<3e z$HrKz-dEaN?b5TYjd5l>ebT&>Qt;dGjF`dIxw1d53t*yd(H+s*LM+Ybxs| zd8c}3cWNo9ami{UE|YhScU>Gqyc@l(-fiBU-aX#^oo&_716LF3dfB-s5mPMk9`YVVJ2Rc| zp7NgcUPzp$yzM^K=fe9~W8Hkk=UF0Oj<3Mi&sPMw*jI`TC8b_pS1^B+fm)^*+o+zAe56v?KR#;@nPa;5+O)hVxGPPA9e(za7y85oSc!Im)s}0fAT={{ieyIlE);E z<@cE;Pf4EM6ALdp_r>RwL>#`-zTp%6#nX8nTa^%Rm&5&Cm+>FR#Q6Ha8Yl7b+d1~* zeNH}->#X^CLf1ZdrrF=|eJ6cVJ+FYZ-C{X$A0Ibrk8#vv{!7GCjQfOr=e*wole+D% zRNmP=+OtP~opWW+d9~-hB?0de_whbayVg(K-u!Od_;^cRki3}30lx(|d3Ewyy!kf% z_FJOPb$Hxg+&2-w9k+7~b3Tdd5y~sa6pWq+l zAL1{=F{SI%{3DP~Y5vjvO6bXk_i-Q475J-RGu}Um^Wtk&`%j2B@c%P++~0AGgzX^eCr-a;kVPLQaOwze7H5)&(Uz zjPguHs(JtXo2WI;vYBVy5B>L`Ka8_p2e-pULZ1xT3HwsmFNeM!`kPRa8PFF)ZioCd zN`ha&ZF3>xSq|F*oO>4X7vK~3 z{7vC0L=m3GQSO9174i+Rc?mYdAy0uk5VgA-wd)NTabnAa4c>1euY-&zm1dOUw@$?c z8BdrfpM^~mY=%J|2f07w0?0wgW6(Zk6lFp4DCFzWV(3%lYmje*{0;QQk5H;#LdLl^ zM4%I~q1w@6KY*YA#JP{-+#f-|75by7T@2?M(2s!rJCMy5{xZ%zhI8LV*#GSBsjt-LlgXe2l@(>Z8-FKu-^dvA(RL9 z3heFpRaZ7ck2fhOd)upliq*iwYQ7r@n-*vWgA3-uOg(|r_gE%OtL9$>;OBj4VzB8C zn}5tFi*-ZR>+erKO1l_dILXe2YDfQZ}@x^cT-Rizlj`Q zfn|Ny-B;TjPL+?S*OBbNJ>-D>LBY>YM)}u&co+;m5xm@#aqbGduWS$A!C}S#{}#hB zz;C$7p%};)1)`5A6#c|C;#x64Tu%{jgBV1;JB)gEgcvDCi95wzqC(swD#g7NLo-CJ zm?>uAw}qc8c%uhd(vkXYPL)-VUx&ONyb<l#n)aFp` z3$(@BQf&qC)!JHZ1L-%Dv{l=o?Izl%9n_9!$F(-nozc!~mmJdJbQq4HBT8!t=J}37 z?Yv`vV~``N9d`_I6gtYZ1&$Gp(T+;WXNsema$&DK$V2Dm81InQHp$`CmO7@gm-t3L z%x#9FUaND=BF$X(MRJp4p<^_aX9{^`n&VjFSVraFOgYpc7up;vDTgRYRBkH8Ovf53 z*=ViNv5rb+P;MI?tz>(i$uWcctafa3?4hd6DZ(lPNlTj_YK;}Cmy z9Ce(~b~}bpj)fr3&7@O~v+OsX3p~b&%RuC~K>NjX7Lj8mwE%5siFT)|t#D*HT~yzo z!*KeXA#JrY=FI8zw$)jH+9l>qKx`A>8$81VFF!F&pKySSIN88g7nTB?q!R(43tM_`Rgd(GqipjL42}yhW4B? zQ>$}MbIjnk#5iX==V=R^^PP*F%@iAp5vPUD<=O`4Dza*Eu6J&7taEPRHl%jl?%c&K z>D=o)K>mZ2BlV&4u=5ys-R(T-7~nkZJmbwxzVK zNLrn=HfclBW;$mp<&c-OBWZWizNCY+9dWF4v^%0n$CKK$^GRot&L>@RNte@QxPr)` zPP^oy_H<>r@*S0&hpW&vz%|IZ9i^h2T|-=D)Ox#}tCEhpMkMudjdoQ!W3Fm#gKIqZ zl53J9h_;xnopDWd&2ZJbW;v>5woNnju$hJ@!tjP+&MqPWf)d%4{oIlKCv=w!LO+ zpcioW$R?5RTPWda)N2Fkbs8lZ3k_1Wu-Wps657dJ9f|U+G~)zMwleLonw{Ls`no{)0806Jzwg5`I0j*Sr zp7KF{9)7mNrynKRZH^ttsH1HOye+`Gc_-dY9|oTeeGPJ)gg%`PpToM=&9;;9v({W; zgO^$3E{UI2K@0b{T9Vu30BpvyfAy5vR?yTUD*9Uyf-ir7FM?(@QGst=SRVFcZ0<*U?nhLcd9h}Lh+oyvpUAGc$g*poa|I%4&j~W0A|+hZ54_RA8m6 zUA|C8R~L1w&xwSxp1q8}%atjyY>DLibcDM0GxOAoy6WCpu68q>+oxN3dr;5(QHS<~ z_CA}?KUVwUJeQTHtEt8 z_8)0utDQb+-)(%kK04k$QvSIA*`BVkGmmJ#CC~4&>lVw45^S0+|23XYyw;Z!t?FvC zZn44pmLB79J<%qjEuL-|1>5aJyF6WEF}~kx`8eR|jx`rNT{wT3=$Iv+BsxuWj_9HX zxNZnjXJ|wo%Z@Rz=rVm6Z_A!~%FFOubxX)2o^FKAI&{OpPl~l3c>A$#h-RAgzY-a9Op3>y(P-@#c)HD{#$uwSo^Cj8tg!a0t#w5N)>3+uFUoj2%R~iS`j4BsxNLoT!cH4AFU_OP*6+`6)0daUA+S#s1S` z-Gv_U_9^{$!$$SW7}VM4SK5azPoG$hPr}~IwO_%<>^}}e6ZeT&bh-WS(?5yrbcH$d zviV>bfn zKkw)S+_mhyl|ACbYHx3~r(4W+wvn%^uHNxxI$w30Pxvq=`6rNnf+uS5c6a9XSDCAC zG1mq&m*6T=)hD4}!`$&z<_hd3G)~w!(qZ`y^!I?bFt?fh--L{F)z_i7jhD8ps~53{{Z@a(0mvC*UVige-i5AoB;kb zQkTN>e4N!6-l~y045>5Wa~1Rlz~@5qHn(@S+u;XDeH`*uV%QKMCN{%pWz5_qQq2B-x(A$e3FNa(OegYaqh`m2^d>v5{ryT7}? zC~}{2pAy%5wtN0f4D`I}c~uP3ll71otcUfmxcUD)zfvKTIYf;o}{m>svK!6aQXKoQ@>e^!#28pKpD$hV`A_t@(Y(Ncg@@!Z&WX9QeLX zp_SKp>$^5rqCuimDN%+h<;o~!j51akr%c2)CSjY>DNR@El$pvLE4_}WQCXlYrfn%W z?@eiibu^Kz>a25D)46MDTdHhG*fwAJ&2Rq`?|j3%-MYPv&3p^oN8iczac^V0(i_;? zk2w}o$&WjVx#aweQ2R0S$ws^##rir6z8h?PuSNS8aP#Xd)4^Bbc}RSZW^7>i!67c`x=qsZgamQ@;y5|J4At=s;7$HdPI+iKL2Ze`|>S)B2N$U zTNJkT8AN$ReG;fY(LkaSi!v-4YVFGte6cNmp>&Kz9?N%}IBo1FQeQlA(|z0W5zWWz zFSjWl-rg}&#NSCM@HKCNueZeCLx`^*S#KufxV2mQ8Q^!}N!s5)Mr4}a_&)N7x8s)v z@!J)Yg=)bqq-|6r4w@XsoAm_!G{h~k|rR@fBjJ84IIBkQ)f6-Pf-lpwF@eXYz;yi6Pi3{R) zVu<*Fwo>sSZJ$x3BE?XCrJ1-z(P*_&rZ|-(ajW81+~PJxS9DRXconZ0t|TkTVuTV< z0^)WhMM)7Ol~g5F+@VC2h!~}$DQV(PC0$7uqm@i0Q{1IwE7_t#$yIX2-O5$URbq_N zOX(%7ce{ha5S^PHJE&olGP-!t<}dp?uTWF7b{K8tl!eQ(x@&*5`e3ZKX4vCjNm z{x0jn7xIOyD}Rr_$5Q$G{C(Dqf51OrY5YU}A?waR;vcad{A2zxdx(F+KVj+oQ~oLI z$yf8$EQ5c>KV!Z4=lpZlo3G>R*u#7SjfVR0jeH|}gn!MyW_|eei}yQH`34TQ8|t`{xEW2 zjiT@@D7=nI%XLQ-p7Z-@9EIone(sFIbACTfqVO!phvr)Q`B&6*E{WU_bd`axrcqNm z0X~)0ppx))S7co7`l!B|<@2>6s;|5A`PvxOSMz+_XF$R-hJS9jzb9&%mo%|)6IY8U z+#m1j-YDE3@2h1L?vM9%Uli^o(p>Yeb0{ea_Yx_fW7EFwkHY=&zFI}${&-&xMB)B; zU#+8XuXbgqQZDH#1?yalJs4Fhj`!Cls$LxLuWeM#INo1!RNW|Le2S32c2V>Fcz^Aq z=KS&gIz-L;H zV=c)2D^?Kt8SLWfwT8+Mp9G(y0kJZb&Bjh0FDQQMDOvP}5o+uuo)*v3XmyMj!+fzz zVwbX**h8_0Sb&~+M3z`c&z6W4EM9ynzGGK74?7PttomZNkW7nN{ovl<&(w0LdCCP$ zgk9>M=erbLhFyx*H0<1IbKbOAB$kR5VvSfQHi_+Gm)J}AfH+JF<4C_OCQHe9Sx#1z ziL$z^m5W2q>&b?)iEJ*DWEb~C%B-P&%SOSik&J?!3gKYO4(#2#*sI$^pPzCxvJ zH()0~4@yl2+*sYqZwKXjK&+wHtH#+&fHy064D06g>Sz87;5B%PHS~HNDt`tPthr}c z8P6_9*bf2Y;l~I1U_h(@KK2}9z$$kBA3%g+BjGL%_Xt26{?F6(1}Ips%&=1S7OIMf`Xde+BRsJe`TBi23M?3jX=Ef=6^ZVC^;aCzPMx0kN8&WA!$F2oRjG z{%|h=L|U;efLNi<9!1zE;r;}$2H>5b-;cMC!`oj&3@Lc}Eg(|k7*?696Zz>WV&>C9 z!D@JcwBk>}jkVxh^M4Q&tgfaJkb-SNUj;W-z0=rDQSg*i2E^_KhMkV=0=yl274-fD z_7x~t&42V~#4qu503h~bu%|)S`wg&PLd|p&eGKT>S;4;m>;*d3VN1v^%fU|@Jbesq zXc340@T#C7tk8QTu>XO^xhm`tz`OADZ9H8BH+BVxu7I(itDO?y8!cM}l#%Y#Cdi2P zLbVhzsznhm`0n$y_Ofo-XF~>8avD`K5U2X$>}?H{zvp>pfG7 zv3rMMj}UtzOwUoS*;|09A=xlMXwEUz2@E@h7-|*0Q;4C?WY_`1uz}tXH%KzTXqC7vq%Elg~oWCr%KllqP7ZGPkGd5~ksIiu!9#}m7%?dT%auh>F zGcS-%Zl&{7tDvODo-oA{jQ{ZG3Vsuo22CjqT15CeeO|-kJ~;NQ`6ID&wJhh+3AjAiaSi~D<>z*)L+MnZL6Hj*jdws z#e{~;QB3#VI+k>=OY-U%RR6m93}qz=0$}Wa;`_f^q)JqlJvZl;Yhrce(Q(oi%W(bg z_z7wMJBGPvY2{u5ir4~(8sAtebZ(kI!tko)f~eH%AJ7H~DUC4hj981-Px!Tr>_4sO z<}Zl}EfZ&<(T1!=zuS}ETAk#J=wrU=den*iJKAgCSR8!_ybv=cHU=0=8(SHB8Mjpz zSMzuyDVJi=6#8ZdeGkANYHj^Cv)d;UWHnD-DkqeX5WbUmcZEV!eC}5e>Ps$!+NrFf zqU8EQYbgGfSU(iSAdmbsn!sXLtVN-RD;~+)_^^NMF(&@+L_MViX2jsWMPtliM_Dm^ zA+M>y>gydF%Jci`LXBbx*K0f9V|l|k- zAd25`0Lo(79Yh2V$T?f6mR~x2J-t$k^gYo$%8}ES=7{pWZ&BTAmdpcf%-YE6f0m;c zY~(peE-VnImoI)l=e8u#Y5R0?qK!HpM8-&CUa`bb;1|G(c{MKabxc*436VJK$|?-C zFsQPBA9qqoq(pJ4qGw}5?7Ty)iaQgX>=zBb>!dHsZYFH2$~UrG62Ei)iOcm%-lDFh z`J$Qh$%Wr9Fl@1A@+eW&%!5lo+o!woVjV)C+*om%x4WQ>AIt)x-eS0KgX%s- zM-gUzxS}xuR3PHAv$Q`T0M>Q)GH zNY69`*3KoW-rdpbBEXc_VZ;t`&9pOIVdr&6j!i;2RfF!$<3=_IOT?!WxULbM8QZJU zF6SIBu}zq2nTThUvCbXwF8o#MeZq$zXE_06C7+Mp}x`!PS^CA`96A6 zbT7U5?jm<;0eYqMMAI|Z=NYaZ!c#OiDgLwtBih-tO@%r;KJ^i;I&4*#PD5|)wSZ_B=eMEg$J)#Oh$wAqCFseAMxUjf!dvMmsW&ddV^x^jM z_HVuabPir@xHp1txOX@poHs=1kD$4bZuUsFjr+v)_#M-)xk#Cu;#?doJ?9yqh^`X8 z+`4bFua@_M_ks_%Pt(esV7nkd2=S2r)IuqE@#^`E(x|&RwHdVbm-vF&3jZeg#{FxI zVxzV%qc6_c#QO1XI&svF#tys@E6Ht-Qrhqq{k=*nr%UbzEA=Y-<_zzQPl$>hqks%R z;-PIw9Upk|%CmrRzCahpsjYMQD2iwI`BXw!HMRp3ye{_p;DiNHaLSM3m_J5c*G3Fh7d@nw{8zC~tpxL@F~j-(m!NzHReK11#62i0i zK&kfWCbMr?YOO=rhCl4<7fbWJI{I8Ac`az=+H~jf9a* z=Om&hRcjOUFT5{*l}@~J7h&c;>un9`w9Pf?nhGQZk(*cI*@;9CdhPyfQZKD^cI~W^ zttOkclizH*hwAI291CtI6F+J+nujKav3*Isps=ja;@3(yQ={i2rk8c>3|G{z!PA-l zTYEpwr(CIl?ZnVrsqJ7|nesSN(Dci+3?){H#Q2 znVRmG=B6GU6~6W&9CnuWhv8v$_NGa>MtgzqVxcIV z!`6e_CC4Yh!}KjE-o^W{Mqvre((%d3MwszhTZ|L3JK;}U`QQC#lCX}&vcV{fvTyBV zT}DMtdJ#vOB++;Ld#RznMh0eyU%Ai*-TB?Lia+j!6)rrj-ILdi8JO@itD>hKIz|YK zl^S$1J_pZDZ!`aOeNeeW5&9ZXdopno{=4Xiu=DOwhnUbN9nZCcHo;ONUZy_pXTdbU zPA->gB&nE(v7&mewY9n{zHC7>v@7BMJ*v9EicGDrE1^8QbdgMWFJah^Ug5&aHf;Lt zUrnl6B&?hVTkPL9=z`9u226^x9lA4e%Y(0HIPv$IJ$Cb(alPcrjl&VP#UpX+(6dBV zU(f|;dDTvcHRLe)Xj`VAG_Nzqs?`ou{Eyc1&?Qz6!Oyp|0)%_!-@nRx(HI4 zUz2PzHg^iw>(MupGIT7tJ_H;KLB}Wn{g#gI;N5OSv+^}jxD%wp&6qj_c@4YfQb4g9 z2y!^P_H%p#X|Q%E7MI#j?9U|IilPDrI zDc}@*Xweb~*6emNHH^Xz{wzG=dK+ll0{!1BPelnVdA94kMjo_EvKGGNHK3yjNj$2in@ zX@)PQWvu(ImGR23Ld`WUxE$H~@5oqVl@487ONL`4tC{8M`)cO9-0ysup@B~q+vJ0- zVM!@Tsde83leeb~1D>X2?gS?-mcY{iQf=CQ0w8;1Lgj~fYXg!GOgSG5Ss6do44LzE zD#!=2U$R#2jUAJeMyjuVY zgWvS^Z}lD$x|oZ?em4A>OmtH#ejb%Mo8(X1I`4VIL; zrW3q)9?aTo(Oy>{nIFuVCr`3>9)3)-O>I(d65jYa__4bNAvQ`?shwfhIR zY@Up&M$Oj{_q!a!$y;0OM&Ww}t;CXVId$s#IQh@!VYM^`n-`OY%WSDxF-fGw2~t;I zm7e&KE{S|e>gN;AV1!np&g$Xg0r-oxY6%=M@?Ggi;MY*?mi$mUX6)}isT9<8cg< z)CRhmwd&yYq7Dv@XPeir=v+|!HPX!U!aNbG))(uYH0hjGy?|P1_n+`LKBe8~eGt7k z#9NxSyT347tQ*LdtY^e;mw~^pKkjTAs>w;!Hp^R!fhiU`Tx;;vuIkBF3d;I(&C^mV zt(9Y9;`!4IvEUydwl+ZH0yqz#yF1tSU`N@}B3Z?`)VOdPRI)Y?G0sWM^&&eFYFXm2 z^%Otp?Bm_&IR(uF8f%BNFHYwG{C8v)k#1B2Io@RtUS`robAakvR#*W6H|Ch#bC}by zYx{lFD{=cO!?)1iani_O(7{xs>h{x;#MA3w#A|6{G&7rlAf?n#wy(xz28=77cvlYe z&m%D4VsLo{=l3&~YI7EkjUI!TiFq`g`2nRWf0s(dCGGLrjijSQKIfu7)l)5MVFopa zbtoW$l1_ICcyHifuf*>}oq#6=&5d#F5e2oyD&yd0YooBq2ab5+FR|eCCOv{xgiwy6 zcUSAwU{rsNZV)eOLSF{*1=5y50F7bnR&hx)}{T?1Oh#diZrwiRJaCy$`tO@7x0xyvC2AD5>M?P zClKsJ`EtV+Hh>MYe??`KQ+ev(?#fvlRbZYd`zdA-QPLT{e3_pe5emz;+EJrlMxZoI zroB)-trh-7w4*#HBW*ghsa!Cn3i>0WDjp|(FXF;7ltZ^8t%~^?DP$HvfgY!1K0WyY zV46e8Idw;!#MXU84vec!%(2R|1iJ{zcBAUtY<%+*Y-I|L3Fg zJSv1IuUn${hc@O=IONdJ1-<7Hi_gQ|!Kf?Mpr`6V#MEo+aJwUOM$Z?Q>s9seKy@xT zz!7ci%9807D4|1@RZ-&Bt3Asak~VKAp=QhCR}0MgiX(I>yxcEruKe&s|r(&sb| z6rpY0-6{f_hrmQzcO%}tc7m}pJi$DJp}RLq2lu@gsJXILE&FTwQ2JDn`F8aMd5xH= z=Suy*8O{8U7D|LS1WBLDmm`HUP^@c8H8O7Qhcf^+hn06*sWB?Z2K?8Ecg>l?G) z;YNk^9IPLzOw4nU#Gm|YT{faS6D{ackiRs7^vK1N>TLB9Um3hrO1|3uthJ5v?gGaQ z4;O_NtzlM4oVRVK1QAaZFTb4ESJcHG;-hJADCKK@DjoHZ)Reta>4);;m}CtD+T<7J%MEj?|#L2YdkoCL`wfuS~SyX#6`HcDdq1S z+7gDSgI7!lh5!)FX^u7}U0uiJy^If8JxBUiqQ-;*cn5_HR_Ikj4RVrk#FDdFG2e&! ziY2U*@1&wAMHTbNeAtUrXmAJEDEFULPw>hmhfJIZtHuf|s3w%wd6aGlEiYRi=eLqO z)ExJ^$%)b-ju;#3kk~;9Y~Pghd_9Z7N`5;&uHs@cF53mIb8_iFZrnym9-#~rVpo`A zKfOR~Kbastav>4Qc+_o+miRIl4iO-ScyDa@fNb8it*C>=CHLdpO^(0$1CqJw_~-27 zD&fCHTcZJHmP$*JX;C9tUNh8_W4nbu!ThL+U*6o5$KlXFYH&EpXA((*`Kw6qFwKw$ z#V$rHGa}VO&h2iVJFuMOoNRkDuC)q!`IF^Z_oVglLH#%GdQ+70e!r@+vEHdzI~$Vi z4Ce}EPO2859E7Hp3`1Fn?0)Gre`7RFnVRL`0JJkIXHau0YzrznxG5hrhduE=DH<8+ zaVTcvO+FPJ+>3bKR~h7uzCwJs7<728+V=P5_I@`KaD9AJ?O>pZS{y`UQ?Dq}x^ue< zTOwFRUB;&S4l_BfO?#kC-JDKeAy)PLb(w8!$PqJ9HKo|a)WFbk-3Z$)!xmkxN)ocI zMwOlB94ut2m-5Gpex)htMk=dz47q$$Fg`xX$e-FD6E#lzXgAr_78BO@i`yByOo9|@ z>Qn$e>XmfOsghh4cM%bh#PCdy0`aN3Kmx(l%a3ZM|6Bc!8NY06ZVhAhVJo*9!$}bcC!oRJZ{q; z>b%vNC#XHnmAoC>IWPaRF83iM$IN*uyd7&*eX9!gL8k?0D;v#=xg`;lAy@0l69%AN zmESC;UX6f`*s}S2IFCoYT69+1lxug=aM82&Igh(f2+2{zEEU!Zyc6S0ink>`mw|M*+71K95QkK#u3^LY7(smGVb0hII>PfD@@Y>55N zd@$EP;S^EgGqto8w3ZC;F;Q9N{s`0dSRLOWsd4EzkJc?i%$oHZx_nMV^%;+yz=Y|2 zYU7&4n*(@B3A&t>^riIQrEnFrz+Q-dC_WH)IIRMA0RIY>PG2jFSPND3CO#HZgRK>` z9Qlg8>y*mabT_{-2H2tK1FTllQ5?A5W(8xmYK&NJtuHMTwVuyxbAC`(#547zXXCgQ zF*P>}o}E-v&+N>r`n2W_1(9@;xHyI0N5nZm)}uQ~c+!>Ky9c-!6AEdbTg(`TaUI(H z1DR)1?xy9+ov+<_ythl?bdB_aQrrbk!JOUjNB(k-9~>b53+U|=I_W9Z<14hk#NcH9 zMRS#CEIz3mgSgW>0;%eW)=%!8j*=^Ii`@Sf`(s!MuuohHngpt~>r8Gbo+&EG+D~dv zQvwM_WTFEqhBgsIuF+NgRf8TaT|c`{md|EBZ&@X{F(j*ysJd2hc9z2TcBtCW9Z*@~ z?NZB>8aW4`{Y*oAM?6gB`JFoP&sh>KVH{>W+vjap9)_+TKMc-4SW5e#>-^o-!c& zsLnztEyYbsa24_9TJ|svy+VoOMwkFck9V#A8SfiC(?OlWq~@0;7_N`VZt@&G$FgL{ zGkQax*6fT6MmDE{Yg>zf68`G&3C7aax9A=DV<2cQserK6FM0Th@>YEK0wF(izV@~V zZr8sqlDfJe|BTZu%~vr;ctgC}^E<0Te)#V55BOX8aeFMe8lzh4Nz`fD_`^iWnsC)A z*|em{)US2UdLc$%=~Ua(yM`MBtx@kP^1g3KPC4lQ`&xPcbJYoEz}Hf90~Glx_K#c( z)mizzifE9H6Df4Q*Lvi2l_&Hf=OttKv38QFKa~8sG;A9xvO-2o^Rf{zpVbl5X2{fg zQf;d(R;k*tn?(=xcq`slO9@M1IQB}>a?{UqZ6p-BSt}y1I-cqPH+0#4^?Ccr$NGz! zDRz~JGYxpYLoXO(b=d`kA|H>qiWf{&-b{R)Q)%t9{haqgGGcmErHnq~hkM&~$8Xvx zu9LGx*--Vt!-0kztSWx?>In5o84p?XcDZ!CMpr|WuRx{YJuc`oRqVe>zXLb5u0d4Jg-U*Ol5pS7G!`~@i zRZ>3LEZgT>jyHY#FWcWI)^je5?QtI5Qyok_EG8DEmL+{<^%?Y52|D;U<3k2ozYPCY z6{(Kif$W-VUv#xA+%%`=Q9d(uzbKTJLm-`$~O+Zs3av&abIrIX8{Zf^KZMZ$c5_S!j3807N z4D5086##V)O9I1-@(tCQXp^KTEARyhvsw9Ub)*jJEsz>&3@RD6Votacz*Ej(g5CoT zyn`n8IL%yGutiydslhX0H<25=6!xg^qxZJmP;5MB_zw{=B(5Db!x9 z7X_69Qw3!J+Y+l|XXgO3ita5VwgSx*pT1C@VfeWQ#>Aq>Hjqoby;;8T1d1EV9&HJ& zhT7!BkreFJv;yl1eG0uqTthCI=!gji`Kct%xSLDo$IQBc>QGiNlkf(s61{tY}28{@f0Z$@UQ^rB$EV%i-hdyu_uG+&Ab`sG5tp&~50zvj*7YcG2 zj22?&fa-?Hv&?=JUxHlNLqrXS<^taW?Dl6|gG@tbZ0qTbqBfd+&Q;&NqT>rtL0cut zy!xWrnHTB&k45!Pci4G+9yQtS$m5QT()TiXi}%lEgibL?gcH;yEX=x475fdiOm1q2 zBFG?(lO#+0tl+3W`$BBdLdXrJWXw`rCdkeKZC;s%E^0r0q>Hra4`(s%-alt`rNAI4 zp|J8JYXDrw@Sxm0pJYu}WxrYy>b%P47HI9tXd%$x;1i9|b=cEsel zz^k9-N46h%L*{;jBRTFygRC@$3_{=tQ-|D1l)XY4ThKuE+1 zdF`cSp-ie#&hJ=+vzSaCaD4Ye#n|!_@n5OhD|_siOv`$Bd-@oeg*rvf;GXs>; zl#vs&X7YFWhqJx9={Ig-TJSYk@j2M+7an04KN3+H2v-H!CsEn2*B)XzSUYL1-?z=; zA5ubxq@O%wFNR;`Q*oXIztV2pbjDAyD)zXEFj;C8X%%wc#bv1E)N|NnvVMODmH}tIjn-asbv}@hEOk_+}?c$Tjzb9=Al-zhd@(i0UWW)%bx}=TZs`^Bp zMuBH5Y3m+VPy^WOmh3t>dOAn^7<^j-J_t};RFe?;7}K+CbbdH>UBqAb>+bsP?ZrPV zYK(eq@Ti%W-Hv#PKs|hJ9HfrP!js!$2thNltQn~+E8KiBJI>%Nz>=3IsxA1ZQ-B$h z6JCSGlxQ(+?MgG>5mkC_DA9PKRTl7|iauU~5xZ099UOU)8#&c+pr>AJAfUKoi;k9^ zd*#uHo?YPL(cN2wQ6@aQiB4p^@y|q^cHSAS%Ce?3%JExzfCPSsBB^$LSns|cSIjF9 zH`mgfWaG0PFtIezQ7_l!tYFxnq*H`_-tJ<;D}eXLsM_h9l>liw#3jB>tHF6Rw|ud zNZ4Vp)2>g{p}(_FgO`zE&`}KPg+=GSYH&t(bgGd(1IQEEH|(y*BCyW4Sm=f*0+|&% zy^Q@rXo>9`ghm>4WECmYh3Ey?lM=MHyS~q*bL+Jo>g-zs13W?^>{dr*7Dt^oMh}-@ zrOFT$0Lx&R72k$l8V@qg($`!cWn%Ska4P%U!W`H^k@4RGsQ1S#5mogsP?MoBseMY& ziw+Sb=#PuqJ6RZpxnA&n5&DIRT35(OX>5^!2d9I7aUM}|YLm#|@Y1ri%)y)K+gDe2 zLfmCNcS5qilrbS~<1rlq}RZ%x<)#F|PU#^84HM(9ZhF=`_C^i-=WvK$z^rRMG z*Aghl=3O2tZ`Nq{0LEReYs_35FC5ov7ttNc^5`o9B@VxNL=|F|vtF5%6|dFDM^%g& zOQu$|D?J*s&HMDHR-$#+lh>0^flkIwB3d&qEf2_^c@G=w0rl+bw4KVeQJs_>JG#LS zv={!K9;ZpQ+O-U|k+qQ(dZ*ctycqruwT}o5n}FSqpYuqW_;e$VNFWqYK3f%0=Tc1r zXD0K3_}S*A!c9qIqlLGwQM~pZmygi;Po5oF!8ETeA#ZZwK+G-5Z{|X2RyTY=EUm@L zy^KeUt_bqn-%$|r_;9C9{aS&oFCq*iTfY)0j6nEFwIBIi)=cS9TKS!a6f=^>Y$|AY zl)8k|dhWP3`OSxMcwT=7ydlBX{@5sLv#?<-;z7?^{ZssiT8^(u$qC4H!3qVxr3Oz?)$3}kDl~q7;?xgC{?CDpAahE0TdnY5dTpKdK(2m)-HW_?L8BMB)CSjzVSu+0| zBRuyW$_1%;&)_xUcbzL}%a?4I)UaLYszqI%t~mzDUTR98PNiBt-cIYMDx7zp66jgZ zZtdX^ya}}O-N(sRs`3gd27HFH0(^#oj(9a$5w1;q*&v5jeqchJya%EQ_SeIB7aibS3-#A0oLeSbC_{$Rg0=!^!A@OP zKxZF4MFXd9cLP6cvZrEzb}>L>f~N(-r-j4|n{0HcQPvoD;uv>h!Xs|N)-G;W2grxb z)q%^^A;e%M#$bb>)svvLi_7(l)71~L)e~|KkLww?>zm0g*nIaH%k_-Q_3g(l*lPEA zdAM<7_zrcK-(>fBes^7ra>GfgOG2t^BOVYD0}3FZk0UsG=bRzsawVO0^+`(}8*4N$ z%GVaSKcDlV?+z0$v+^;Chr{Em#WWbLAQ^H*cgCOV@$8xJ zjy-GNZhr`@^kb;?WB1EndK(2DAL(^KI~{*yf+O`iymTqwAl|!tANbB(lwkfH-^uQ5 zgXX>s1W50L+F*1;>c5UA9V9jTu?u6cnGbg(Sp}#sapizI*ery*fw|i@0YII;Cs=fQ zC*NvIvIhJ&7*F2AIa24t%0GZt`1*_CVQ0Je#hdW$`dZ$@JFf3V*FQi2MkmB<9-vu0 z)J?$Lls-=<(aCIam5bckbn}{&&i@FxW4|k8&?7cUAqwlgJ$2pQETE znU>9?uNhpq9u8hwCB5^*YE~4Q^9PMdm}~)&m{QPF25Y*XglSHRcO9HJs#k*+;Os_M z#B3sqV>XrgW)a1eF~5Z8z&>E_Nj*N{U7cb!1WzT8#{J59r7A6E@PE@FQM>vXa%{Mb zj~DWY-af>b+uZk0yA>V47odG2^dtJVp1`W+h6=Uh)|IF~U7VtV9z^&1qhl@qxuUR4 zM@aP=)c-kk2$K35BYhnJ7TiZIpE55C_b4n>;&bn%&h-9;tt1GGOq(4aileM7?gcwb z+p5VJ7`pWm?;(R+9yE{oW$Vh6IYIHw4p+2qM*?3ElQzqYOo=~4Fw7QuWJ6x%_C0qRYKR&L_ufGjBs(wkg^IZ9%uTe&z`U^p6&5#1CEx>HHoJSo^@*@ z=eAzW05IlC9Qf@F`d$?9TWE>Q46`v}x&I97UIqXX0#7y!fp^Z3J(Gn-vdxt1t-$qX zUZ+p@?e~Ct#Cz#`+Iu2_AtO7dn(n&hrH!TbQ=xm|mq5Sa_kQ7hnW3Elez60=;ug0c zb#UaOtAIt8Dd*kiyapQI4UgK%w5#zyttPg|$<^a-<%J-Ewujh>Cj2Hc9{il`3l^6B3 z%5w}zBJ|MO$+;J13*uV;`E)Llo*3;R`d_#;lUkDzlQ5G)6SEq<8mSts%f?OOUc%ny z;0w47^e+6@FORC1iJQf}^DbFCGuyrc76W&YC&WC0N)yU0JL{+iw;Ue94E^`_(}twWo^4{=q?(-dmi6Xypvt1rWGFpN*QIe$giLYi2q2M8fA0M1j=?%7$-W7 zcI6IF>Utiq@yg1n)7jd+5un@epRhf- zN9YbOo06!%6_4j+iUmZFtWn&ymT6F#^`khkli9Os;~MbhACTD{+70TC7U?yfG+qv< z{P6vVdCz!jessFo*!oE6PU{X68QB2moL(F%yEV59tgW33Kl}zz4F|uQ7}R{P(Wo)2 zajmhf@vX6}@w~j-yxq*`Z4S8!Mh&?@6hZSRS>$37s`6U>$!p=@K*gzla;IJ};nVi2 z&7WD`OFIkhn;wyuc>wM2*&1@jFs4?$SvOROf+c+m8yM97RK+i5Yy1(8FW)13*#Ebch`V-$4>nUrDl%Law^@sh3?T6#Xk@Juz@M}yP zh_j55^H|MVLwcsfE8kW_Gr%K2F~A`}C;&EqG9VF1)Hw0B@V5Ro@;33-FZ4MY9U){e z1Rt&%&4{!DyMx7B;<9KHwArvZzInR2x*5E=y*aaa4XL_=Ie7OAKy%*uu~-spi_17+ z7K|9&eQcz5X>!SPfZZxkqD3)K@*aQAp$fK7X^-5PRH(#7t^srEos0k3aVNriuz0gE z5KKicWUI9;hAD81mIv#7k{?mm%k<`sDCX~8?gptsVLqhTKg?E)u{Lf)V zrZAk7=QDQ2$t|U~{G~X}>RWFV64`G=tou)WWKv6%NH4g3!of9h6sP7$`b4Hs23>`FXPQRP8|cz~58%6tqNG0X!x5|I2`Q zj^1E7A8Zk_r(3x>(VL;Wwwb<(Ut#2|?#yFHU^S?Fy51taLuSFelN|@hUW?!a!e4sy zIH5UN$ZpqJYLfRyGEcwyEW^!AvcnbEDYSv4lIJ^pZ>Oh{zxP8M!@LqXqh9BXR&D8L zU63i)@b4LUXpIf~L~M0@aq(7>lgG)7tV?eXK0TEq%QE)x8gMpDmU2HHhx2QyNp5#Z zT@ApK_KMLvT(4%bv3uKzZiniC)Oaz@>cnc?F(Y%MG1;k7uu`Qth61*^*FaxBYy zk2apjg!8aoX_pxX3;aBWLJ!Rut44r}uqVm>8vTi8<~%Rr=<{sgRQUYFZ2ydjyo{Nq zKI5YUuFuJDmgc{NJM%K-dI^p^qTN&%Rfu*DYH!A-jRR@j`puiv<4p5~fkNYnyf=S~ z_S1@ze_&gEP8zIlN7Ach9a4(U3gxTncoOWK)X8br#o#tnKGn~f+f#q*gg9vAZC>>D z_lg7uAjBm&xCk2 ziL0J+2O1wUXT$#a>~Hn$!+ui^7c8C|UIL+Ec`a)z6x)v{--3@Xv4eVpXxBd4`d5qB z^3Hi5biJZqf&~^x&xLnlojKMHR^!j<9(=qw)!MQ5wrLASa_Thgi3J7>$%dk?Y=AU5 zg9kUTuc^+Gc&bUIZdX+pXeh6=|9CE~bB#A^ML&9Wf}n$FVPIiDJZamj+p1fu+tpV~ z&)d(V&fy-Yy*dO|vJSeomE4NkIo5Q~_0Lz%1_YjUP0x) z<=XYAvf*;pVaMu%}SNJ?%rA&F#gx=RxcX(%Va$pHCp-laFJ- zGo~}*CF*0?D}_H>cc}5Puk>9aW`SFLhr&KfdRuJu87kgBDdrUAH}Q1k5;d4%@HdhPMgF}i$K(k zzui|Qc%rQ8Po;sRv|Keg1<>s=TtAxC9e@#fFChkYa)srD?HR5YWM%Cag}yt&$ph!b znHmCn;9871&!X?Uwq9kLWcjM<$_r7p*%7+r_ee20WQBSkY(%g^li4P^xBE8s{EZPe zB~tG{nXSmxGg2iwqa99(@0nL5!8H+Ye=+JQPw52y!rO#Pwry<*ll7aoZdl8@7zO7{ z$zQ8=aI*IA+Un&tG-%%A_ns3 z^lt1r#fQ_s`KGXLMm?H!g|hCA$*c(PGd|J+sXsu~+vQJ0*%HsqvDF90*VT`fT}e)~ z4g+N^qRewdFOo>O7^t!cC$S1FI~= zxWHDO80{vz?5x$DTR8GPxbiIAwTtmg3QaNZfA*4ZIcTR|LtRyKw7K@G1w>|S8XX%Q zX}OQJYq#JT5XG=ZY40yG5Vz*@x(z&SGY|z};`FDcSH_vbu7w2^!$`n>prfG*k`j=4 z(|n`2v^V*&+1gXma}zWj#1=H(gBnyD z%bE8w!mibG^Q32{XDA3SNEx;qrW`g0u?wjJy#loY(;f*(xJ2;CPy;b0s$sr#*lh2q z>Ujtf3d(^&gzbjMfcM8FL4G}QUEJ|CG~Tq{OdT^ITq0L_>kb1B^>7!qbCvF zyQBww*F@>&6&p#U^I*%v)}}DFVZ>*!Y0K=Cu{a%|W~u{L=GHZig35t~4BrM0pGVy9 z6vl!U?&P+GXNJF;A-Q*cZ3i_xcYI@B1QSbutK zz4EwzumqQpxUmAZIXwhd4(|nLcBucYmlj;0=Jn6YY;1gq2}pD|vUy!8xI&dVz)!5| zPEqdWAw*w%?!0EQZaFp;5+gEFY6e?s>z2$5AH7S@uQy0X%|?PrY@?=s{U~4Htsosa zgQPzszi`-U3Kx4)*Lev409%Pw{_5|XD;qfWOw$A1^soG|Rb*K_V{4?EBT^S&4+8(j zY3QE|4sGn4^9PDM4B5^cI-y=9eoOBI%wZYgM@!U#Law*#Y-~5-ZJKggqGB2Et zFW_Y*+Pab;oB_}q0;#$O(2AM#*GcuHBnl?vH45iCOmhl3e3F8%wfaYqGKN-p=e(dU zbrD7vq88h+0=^INEbh{MU;P|)VB=r<81tiJof2Tyd+CVJ>(Q(r_*>GL zZHmq)-;n9L4|5^9lO7}d-FG95K_9lk*4QL`;sMWOI!~2X9)3b4gmyxw(var4LH*+` z<{0rSMn5fI!FU%pHTf-B<5b}BOwp+#&5nIq-#$n4{itG+8l9x!zp@mD>xUyZd+ZU- zSa9;=&&>TA5dJl*5&BLY=Yr(@*Jl2aDs!wW!nd>ZgI@~Uw@Ye6S3nBK*^x@6bvt!X zDN(Q0dE^PTxDyjvmWG>jH^n6l6A)hd*ke;k5`5OB<-HJCBeGDk79&#^N@W5^mZ zE2U{zay-!BmY|I4vvx%upMLzZ+?tu5$rrGFYv`-}NT5A|sDrzn&vt(Dtf5vhOc&#y zG51Gb#p7qo5_OHy3-qQMyfP6@Y!x=HR7{>GT}+BC$t1Fi@fyT~;Xp37fJmk?P=%3v zzXskOS$|Tiw$Yw)Wz@4y$X-NXAl5Z%=#tkcp**V;&)dQ%W^vcU8+JXFXNTFxZk_B! z9dP3h{6gLraia=kn%Yi$;=JOVydhNj{YYKn{n?gE`M1;!oXvMga|dVhL;2E&3*pnB zL4sg&I_ElBx{l`po1|V z^>FOZ0KYdwy13z1RFsg7^@%bVUoy{-nr>7@dKT9ggG>;OrGrWRvXDI07LJqf6oa$; z=IXU?;NjYz)sTyx+ptdePP1=&4gtccuAc4#>pPl2(v5L1sWlq|ea=sc-=lu|4ffM()BYTx&>zQ& z8ep%LtH8+^RI1e`!IdtgG}Kl5J9b@HSHWU8h5(5re$^j~WmmjUe(S&gWHrX;8V?cI zj(E7%uhKtAof5D(X*QMVH&!BO;gpBXgO9BXbvrBHA@bQ4E^xYuVpClu-vWhQTH~mm zl|z%K9-uO0L3O3pu)ToPDW#clW&RB83ELjI*5~Np)i4WDy#@ekgjUHM%Adco2(GDW zx0En4UrLO8cMIH?&xVVVp*AEZvToqN7L8jG4A$T+e3jlaYi?edMK-U3p{TC5BydW89_D zNuWpSatp*goWPUP!l83-ypGc>flfBNOv(5gH|v=bge!@SL{c;u^aSKyp!}tpsxmCS?5t4mIDoU>xMH8EjuCPMQ2-qJLE+-B7Q|A9?x_> zX5?mPJ-(696<*RTjXuLnG9{-zLM3A>sIB+OFIIG0UniZdaJS->ia3HUy{+;&!Y+S6 z%(S8|6|7?G122JAwe``LYF1(O;g<|nmG$wL2v+s=A(x(3DfKCrWLDj7KQF}&eoCL& zSdtC>xu+cR-WIfFbwO6Pi35KSU(g?@zIZWuGXUn+SIV-9$QqrRl8dv8ziuI9|IM}x z&G6Op*27Y|Zn$!%T3w$VoDFeKr|q9jaVA#|nEKKODIL5+P~Eb@4orKo7=?dnP$rKlwsp&Ipl5gMG&zz<)tR2 z)NsjYjQEeI3c%0_x$$9Hf0VfTo)IwS%UD7>v@W+^X4_oT+}51jOtuAi1{2{p?m8Sh zh_$rxjI4w^+c^Q8@cZc3Ih_!;+?~js0{Y%MU^^v{Fz+#LVyOiC1i%8>mpV?#UhG@4 z>!s^yq4k{*;TiJO9m};E>WSgD;klutcOlPEd(b8S14XI};k~8pHSP`6U50k!hdHUP@kHY@d%GAoWyPgf-y z9s;Rgc5G05t{~#5+kc=_kqTl*0Ue0>kU>C*K5DHZ6~c}HV#|$&rp5s&sIZIqK!fl_ zA#ll!hP5D})6M-6lmI_EmfL{_fdZTb1s#r<4?IX)6av{?1sDr#y6WI-1_;;*K_j^e z2zy*AMz9bR1+v3~=yN+TMo<2OhDuQ|J06Hf)CU%VG=x!3m7*YaQqWPZ0wOgr$X=yR zEDd@TO~o>h9S4+_I}W#}sIvYaEQ8olLAtpe@T2ZpOreh@n*$R~Fk(L$K+M$88vbdg5IRgwei;6T*5 zK&Vl~|DdLl99)MB!W4V@1c5HXD7#8>&@~nv`F|J_)5REdRS`zmGl#$eo{mve7kacf z7l;Bu1&jqAUAd?(`lzjnR!AKJh%2`OdXGaz7#0Fo(Gh5BM9`Gj6A1*msH1u+3&Gd$ zbjE=YoQUcoj`FK4gw&CN?sDy+EMVz~MW3)itYQ$v%uZwGg0N5nIL><;exYLU0OYfk-DH z`t%v(BnClN?kSuFE!{@YH7Om+d7TQmUI`|&SLs!hS8DJ!pvQ1dSpyUyrs|9@#nX?A zy8(NyMoD_{--;C2K34*%Rhdf_aLRpvvj1fP)jz|!xu8rmF5-%C!omjsI&#mpo2J7W<+IS z3kB%b#EvlJFjag5XJA1QqCQ9v$Rbjcg4|VngJ*C+*||Rg6QJb~=>B~sZ-94BA(F%{ zn3wnRd6$xy&&J@G_|M{7z&i>6Wf?vgpO6UH}#k^UiGuKdCVgv0pm|qklsfgOb z_?gRr$yTq&ur^9m7jBe7WgT`;2m%W>x+pPSv{7gkj6hc?P)IHb+};d_ zo+(`I8RB9Pa-^o^G0*?g^!5j@Wy(Akcs#iLY3Sgmi~OXq?_#IA_W<$B!=7KJ3%rANgS;-^&wZ&pL2fv5VMZQ$@W69#z0xv682I*f$zT znf1^_zF4gJ2j8GO!|?o;ddqWU3mI_dYSjwq90u4ab<~^pCklOJ&iZZ1R^y{03gXMA0{*|10k;1ETuA zMqva2r9~tJWF)1TVrW!aT1o^&TDm(G1OX8R5u_BAE&-7e5CQ3uZbd@6yY8MD^cVl< zz4yHzo-g+~oHb{kwb$CcVy|;%$S!Qw9FGyP9O!-q9ojE{AND*fbiE7Uq+DQnBd893~7F@{g z%Qdaov_hrhKA!mInBix2szQqSw4zt|bzoHU!nSyYQv_L1sQ83leHj*I^=b~CWbNmX z9|z5Pzxe3!UknX9QWnO~rdfHYxvR*Y++!8amok(kpcBh*Tva`h-9O%{!(TM?j;Dqw zrE+}x3&+;}*@f-%R@*Q3s4tEc#b;If8ol^s*-9cFIl%RHqnATRuDh=oA$~9udJOHM z-ubLYBEJ68wK+wr`IqY}pW=eO7mQTr>$#^{f0opX8t2{O?ThPvT%xvoQ!(``eslS) z^R@M})g3HpVRSu#hRhNa^BMNpQw;YeZ8T0h9mNEN74^!tv$9y!!k@ycgFIJX`3f8I z_8jz$2TReLCyhy|lMbNv;?kU=K zq%)~t?%5}>SGXE?>S+JnZuSRlmcY~*fsm#du@Di`*u-_q(#b^CTJrW?1j&qp06h-< zzCTllz8K!l7lktM3I;OC8DR!>95Vc&Nq*zNnxz7(D%OLMcTPON_}nGkbV^^9a*wKx zYJrEY5&JI_e)=utxmG*$7o6AqnD#V>y**Bcy6KJXbFurIw%dyC!rvPLxN#&;>7U)< z{Lb~cH^3T460h~t0fPhYcbb6t_Mr4ql?nIHwE_M(mrfm=U%B!fiqD2O8GtK5AVA%j z{~AuaqCjoOdvowj;R71DVij}seYV<97W_s8*_s0PJ*WDWnqw!ag%k5ecR6>#zv6IU zYl>~y5i!30aCC-vozLgRe>66`SsJiBMh{MD(Mry|#Qo$TQq*~j(k zk5-zm|7iLWBH7Up`>rAj{PTB8?TOR+;wkTl!wvUy{JbPcIaDDJ->h%&tS#KsPE59i z8^ySG%r@5A*Dm>mk|-E0d{3>pR1@-GwkElpqcuw;t}9}#_1C2q2KO2bX+kb{SVgI+I# zk(a*5kMwh2z#>isjvKxb{sKW9!OqhMRJ8;PF=`_(*s6L41(Y2o6zLailp31xYy-FQ zztUY7W6Z8PjKuZ1c5T8+y!1ACUSDAL=J)?hhPWv*l$;Olm~h@@u6myT-Fio)D%8H= ztS$J471z;|m2l%X&mYlDNy|KYYtfu z$;^e062ry?N;&V!y}-YYaeFjs{7UG`lkd+3bzVG8HG9Cr&)t+&7@Wg9-y&O>3HF6e zrZ1VhO@kN0y9a}tp20L!o<>h<3Tw1KBX(dO<|@;+WAz>5+-^Kvdn#t7tNr+bMa+lh zTV}aL+Gg4DW3K{=2H&&P%o%TXdQ;?F?sKs28UGeGH9hI@*#bunM}k<0a;5D3h~Fg# z#CO`ytzx_sKXHn13<(m?>=1ot{j76}1Fwoe2>nngGr%541uu~-j#LQGf&F_zKoQP3 zZX)T9Ab4ll9cKo&9WRj_Jm|sw{4hWfM-oS$Xy@{G*yl)`SUf+HQrs1d&sqW5r}}aH z2;%T|gumbZ%#YK5DvxjkXNT>(?B{$O)G0sGQaT6X@7kYj1BOpkpBgy@egRPB^D@~K_SQ|bEo7www<{B3bekXy2!a=V@bTiz4bMf(sGx0rLC+5k)!1V+gusX9j;~1_4ZK_eP4Ik zVLNfk__3QP=+T3#F>|3P);oq%d-GQMI=rEF)$x9gTNZKY zu-?hD|JiLfJHnDG<#qkA!d|&_bBP^kpV9UDsJBEj-)X+LL_1$QwRtKu)-tqNI_B3B z*=(g~$=i(?vs#U~VI{K3YqA@((5KE@YrO7xrM|PE2%oVRqZFTr}Zg)o;nwzy)z;8=-P0VqRqSAQ`ws)HK z61=MRmZx-%z5UY-bq?bu_H1tp7lN2pEhOPAgastn*0^JU4EQ*dv7=? zR&&ovasIof)+?S$qy66g9!6mo#|ist{ehkPq`6f&{a5>ZjX(&rY+EjeN8I+#OFG3} z`k20U`h=Z5X+PJp1uv+jqT8Y7TdDn-{NuY{n3lYy>Pt~ox4r7u@JkLj%${;AP3wt{ zSHq3g=QVEdCU^OMrYU)`zD?)e`xdEqxYM^-3vU=N+D~ID&)ePUNGP`ubFXo~z|ntc zW ztZpi$BH0y3-C`+2LF-PI=>`%1jiaBr+2(!@qk1)U)6KPPeMzD2tYgWpdVRTp_6kjn zztq>`t%p+6wU=HbsKyMtF1sm5<|SR&jK4HHI=pQa+qE9ACYYr!%^sz#&CVan%gBF0 zX?V-Q4yj`Ed_Z7ZLY*Yf?9R$cExDZcwUCYIy2NL<^jE#hrc@s{McnjSzaXFa!E_Kt-KxP*59f%+nkqJHC`;4 z3MRI;@juKym+z8Pk&_TzK9$FE(}=+kN{c7Gd+%;DJxb4aB3L*RHA|x1#gD8V|it$_yULRyrD* zzotnHt$H@~%FE6_b?e|uRMgs==7*s)(iFZaIayAw6I$gAu`S#UZRPIiHy*6zIXAQ~ z4w<{iXAE<*qlX3di6gwEW=)Z`U+z+TV}}OOI(Phz z3oCTQe0TbKtB|=CIWKiP;&=8ZduBv(^WSIIjKT@?cRyYaY}QetKgjov-*s=i;qO8R zWri*`87?XMtU4UKnv4y(&c+>uIE5Wg_|7cZwV98LOr!?qblEa?R7^BK(fGQsGvfKC zt8SdI(rwI^%?Ho$;>J&L-zRGYG^ov^ka{-3ozV%eXjJ@!%?&H;UB^=jZ z;eu`mC5>gw!8AkKYO`vCLrE#;L$pGWDybrxP9twjc<*Y-TQZ`|e-Y-I9?lv1OM36s z8UhWMC%T&u1HV*Wolw0)pG_^k*E-T{9j?sK$LqONIT6i%wmzY1#dTcdSZBmD7#Wl5 zC>ErG!+BHMEB^<(3vHI>Gd=?^Le6he=gz!FSW4OB-qd`~^?-`yGzG0@JcSHr%GqzH zPuG1s<^I$)F=>>%V*RqG(^6CA%=Fl{umAC}uqtJarFDevrF9bGu^7?ZnuO3mZYK}x zfe=p9pvrzk0llnC{$|#<8S4Bp$;gFUjRUNd5%q@P*K(#ec1zbS`Gjb06evF4v^44A zRoa5Ax7qML<8(MTEBIRfWA$tKSJ91mkJ!u~_|pa?kp?vp?_T$c^_{H#8r7xZ8a2pf z{}=`T)T{jX*9(fms{3BU)MV;s8IfyKxA6A#0+aY|O+cR}y<_n6gv}iClP9)al$NHE zth+-eAmFL-E821ONo!db8;x}!oCnc5pL~+?QCjZ%)CymS^pLZjOB9I#P=QtX^ zzhp~E?Xzt=^+TORY>grRHG4@!ePNSVy{Vm1b&k6?)ho$!o3|l^Tug&C?niz}6+S)+ zuSdo6DTj!9Y$Hf7E_a+=3EwnKBk_tZ-Af!M*3J7S^k7QHs#PO?MrfMedY^F#{}l&= zR`A?-QwA@2p4F9hqPt$t{9*(HG^qTd>#_%6p@dqWE_HW6w_a%F^V=(1d(m_>iC&@{ zoA0amUabG}kcxdJrf_%-S9ZqbthwO_`Eyple~|P32`9tv5u)-DO1l@GpBD2HHn_pf z0K2^F(R0;7sq{dSv*`e5xuniibZq%oo!#X0#6!`!YwG49cme|`BjUiCci$bZ5|Hh) z+x(DIhH&j2U$!~kbvuys+&5e^S((cS>zw*RBYyd9>Mz~$4WqYTl!7Isnhw`9xU%9? ztLjhPVR1=kYIY_;kb4zRE-{lWbizk!xjRS{ebm@LJ-re#@Pk?IoeiA|=MSj+)_0mJ zr2lkDP#J4<_3HBmebds8D4WAI+Qe_ouY&KUKKh*T1#h7+-6WY7!CMEdJjzgtn5Of) z;ulHc^?W^M^&uoCAAfWGD_^X z*Q2GsNLU#rUog9NrigP7dc-ywGIyTnwavukM-Mvgsm0j8cOr9y*IuM@x>7P_@!&(h#=8|4*DwMSgi}`JdN-{g@ur4G}P6?~MkxN@-I6J03^+ob)bkgDO@oI+tKWF(DGmc` z(mUyQ4t-M6`V7-N#>)^p4rV@fK2m4O5CtLJZ^v(*AS)SWHqXjEEunk&PKaLIev2>w zeyq=U{Nc9u{tn|e92&mT(yuZ|zSravgVWy?PCunQ^^V-}t~&|gSDg07OSSih49QkR z&mFZ<9O3Mq%dNrr6|x}_^uS7N=Sf1BcK=~t7pvae`lE1E@kk=miy6+DW@Dld0(j{@PW zSe}h)`fYNV)M(mUA))tkNhjB4plb9h!rySy;Qai#?UlE9d}sMv9o&;YJzG8W{MHrH z>Zdv&)w1QyA#lF1cRzC!H3Uz}>XlK#Z~giW#aHFx5zDOYr7P08xA~%OE=f#yKjYe{ zhEcpx@l&eVQ_numz*I_LqALZnzT{cK%1w6Fu%N5TJ9c-S3zegX?Ou92rgN|qyz^_M zq3puzX9+$N^)tS}v&+2rttavOLz0Ne6`~wIV`BIOpKSi}x=JcC#ASB=YFYu?S+3C) zc7^^5)N&P9gnwf+&%sF4MNyla*Zw+5wn-tM%H*}9KO2b)rGuZK!F}vmf2a8FH=#0> z<;Ry$vW0V(1NXz);p&5eP)*LRG_C&RxyJL{`hoirju$&MK)lB2Zp+23)s{MXZ2D-#&#t@7yn3EYOK39Qv{vkf!!RPdj~>(1q5m5>c1Ttz5P(MH)}fBqnwKabsHt zpE_G*uFXrHz_2pnN6BIptwS}Oyw_+e#uRYgto-_Hn$+_yyUga+u+6a9fCu#;75ABM zl#>zDMQX`5{!2N%1e|BKF5BWgt-Fj9)p_LZfAyt^Pb2ODlP<-DZOP1H2b>*kef*>I zFJaw*1B` zWQL%wQTgkgQ(Ad?)t+`ucdn$2Yumqk;r8k0)RlAk>I)9nO{Hi1D+d*f!)9nGrf%bg zQ;~;T23|66%=b^cQ25%o8~THvbTujMneDg2uQ_?i3gLd|ZZmmJZ4f^!XU#^fdO?*E z*xpP#XF4(W8k>(Q6B&MIA>CPX-9*lQiwz-Wc{n~F|ISf<<+a%-2A0RSiBv|!>o2Si zyAdD7SXT(r2L@-ndz@_>DRkgzL%X|7zOt&gKG~QU<3p_-d#9~c%d^F^{z;o}uwiy5 zJ6Vef@=HqY-GSbFS&b3ZP%2~2y+rH2hPj~oUTU?M?xih~(OSY+ALXSSZe$c}y-{ik zW#h{g{A%7SP+Ug#!M^dsGV?ao4e=81%IHBC=Dne?C)8@XF=EBWo|V(x^S3Q*z}mj;VvabR>M8v{L>_=k@akhbXi&q6tR92 zp;hNs(gj3ZKh!D+oD$}yYdk}RQ%IO}it{*oa4%3p^og+HIb8vs&DOx^pmKOiOr(*N z{^~?PJ*t&aDRb_^Je9R!*IqvReFx9*mfQM;m!35eP!!#-B{#D0C2LCS za(frmuub?Tk10`1^qQt1Ma(JbR7L~VD-tRkxM9`ggkRs%>~nt<@eRz3>ssf>T%J_@9kzmqUsAYk`3FopyZeVrld(lM4tvYcs zKNs@m_BHrkxy>EUj+YXVcON{tdte~6ep$B%PBvS{rTe4y%vui_2Ytr-FPDbg8{vB` zQuQd)L#HbddZ>>h>um*Y1cO18?oC?=Nf8Kk`h`=dbe^>Na3&1 zOsd943KpI=YrGrFu&+54C{_CLUM=^{!?*di$6txHX%>`TTk%%N$R}6Nl`j*u@lb10 zZ3uKb-DPoIFKldz4<*j2E5Z(uwcp6&&{Bj~!aNo}Ug=kNA}ELF@jn$_LYU)+TE%dQpe3bK%j0N5PNga0gT*J``Dxc=S5QfB*4(&E&>Wu>wa| z%tBHWu`X@rtx&IuU2Qkv%#Z9^cC5n?`PUVE)%xnZkF?%clz!Ool0P$3WzMeGD@U5w zxGm#-C6ay7W??wsZd#04rvB--Tm1zDeEk6r;}2Cs?JqxTv2#Mc3ebAs+@zs#Dw)i3 zP3j?gxmSj~MtjsLQ&tRc1!sruC;TY$_SGwp{s*?wiK5Ngq{mOjHGbpkoJU=Ot`@tch;CaaE zRlBhGg(TTEUmad7{15Tuk(_T(vWTA@*vYB373RZH)xwM&m zggMnY>JU60$~z%BR6W^A$`ns!tv;9cTc=fAIYU!#@^&Dj?(V5rD-9?=( zro+u6N$!1v?^Q%$)2Xg4>Qfti`0-&q^e)j~7no*;XUjV44>o=GGg`gz9g(Q6vn6z@ z%6z_V+ri8^;S%}puLdJXs$1KPFFJ*;eazVR{=i@yU|Bgt=O#R5&>ugwKWf0TYw7xk zk~NNrL$$PeoQ0W|QYmCu+Lt!I$$xlZp+jfvN&UMEpFPA_FOTa`tU3fTZBl$u`L6kv z3Uc;*$WQ$@rO)e`n4KO}Y=!P3X%8q#{d8_Q_AMy|ZS9b+-yrAyikKkSHn5xJf0naCmlJv{;?0mf_uG6x3W~j zd4x^8;u{Y{j5wI`A+^Hu?YKnugF@qUJcE@AKUO>lr#+f_#uGN!<+Z45@Q9%7K}nJM z;rd*9{rRP~8D4&qpLfoXEf%V^eh`H__!12@1=Fx1-FHb<$)BhQy84WS$5OpXCF7)& z*dOq*vv3Pal=llY340B7SKzXA?keWaolL zIYaay|KGHLPs7vM#mrX0&fFeDr|M*C=45GS0f8exO*e`7Z<<+Hf;M0ObE{Af_uCuEs8yypsV%6T*o2 z|Dq@2*MY!=F{MaIKn#fZW$aAsP0{1^r{}!#pt|4XpgBSHn)X_DmVnRbpqVyCE@skZXl^2YB{Mqc+h z9O5+^k1y47p5Bw=kktF?aeJTQ>*}hZzr?}JwWD8a4Ti^lJ5w`K9tXSqwc~ewnlPw3 zGo>BWbc|n`Fgc9dDOFjff##$m^XALNjtzJQe`uos`h?RM@kx2^Y!k+nTqpC zjK{WKX~WxxnelsyBTu9fO5+ox{-1RU)i;s=XkOz{5#?jp<4Y8l* zGRY}n1L}g!N6TZJg7j`a-v(=h19MwqpM8i8d{d6}xxiWeeZCF{PYdFiqV1}j@&>ko zr-irE;;j;y$DbKv#5EfDq8XN#_2AtX)VsFU^oi^82^aTts_=><9Vp^@N<_RVXwDg* zhh5Du(zFk91goM-(UCZzjqFKI-&r~Vv4n){L3tOhOC3yWU9+(dsP6nE>|RXl*`d-x zDY1Y%K0ihCRerX4Brt6$jBK~B|GnIvnR@JJnmNY8-Ror`dwL=o$Zv8DE^-+YIT8){ zCQ2h;Hm!bWyNidxGmG@8KH`+N4n$o`>27?&v>kdSI4~rdmx__u?dd?Fx@}u5ZFBSr z_-D7U0ih>7a>F~3vj%BDKh7s8pJ^CjI}@bzCVMtSmH;%A(36d0w zu~IK(tX~O`ws;%Y9^jw1r0@Mb=uv7Q<;P#14eUOrrLX9Al>T^df1ZiuiTmfA!DG0+ zN_xWttqlo%#92C_EB!Vzv+maOH=mcZ7ZzPxJ=2s${y@T&seGw{WQE@Vn*QloF~$4A z=e}$c_<=H-#1-Cw~p?o~co&u?6j^vteH{R>4of$i(Yn;`n}i z@{xhkxN=7uE@SZUmzya9>*OX?9)!@ocavDf8(Qn>Y($~99 zeum_rV#0VNV*VawLLO)7+sDR;{vzsIneWBhnz;;0xROn!N!Vs-p9qcULJ&!7wy0t= zt6rDROAe~e_!XCnKE(T4#gT?h`138h$**%by(p;GC$)Y<*Tbr{5^q7?SJcpb>x+J% z&(`p#*pv>A{Y&eYE}aE|8Ot|D^3?H$o+K>0%9;gM2S zH{9W}`vT!(Mi(w9U1FJ@!_H>J4T%m{Gp*p*`CKgxPCD}uBSge(+~@UsKG&>2sxao< zv=Z+s{m@uEE8zM(%>QZV6@<4Al1G2c;3iQEXHZfmGO6~_n(MPmNMhDHnS`9&NfW0y z{n3sOf%kb%zg?A!Qz<>4x*FPN8j*fEuzV_txT9`FOVy~$cQaPJo<*Bk{AR+_m$f1> z1UD=%XUA|?+1d}lx=8RpuMaA(4D=S<^N?P-$aMD-wBj-GY}{mm4|89qx?}^Q)Y|IT zkd*)t1C82%(YvdjCKtymo#s;rzeq6n`Sh=UCPm?X-AQs)HRxPhF#F-26d?D^TpNB) z<8|BhfbbtdC6wo%)8dnjXx&f$qyyz%DSI}4zF0YFNtY>Q)RF4Eh)tr6?4w_5kp$Cv zx2{BRGslT%Ts-pDR`3eAkzP?ree>nH*L_9wj-zdD6c=6Y3S~MEQ^sv+h^FN__B(~1 zd8~(PL}H&hn~@TbQb&8?VHEAM_6PRcFIxLwu{s&cl)0wsl)|BR4A}DBiNDPY)3m!x z?W*+MVX8f4&95dsAF*?(Wvyp!?&=bqEbe>OA&b4bD9ZEF^Ym&nO!gtPF~>jZa7=I+ zNXhg$?bzevo~~GnOjO6~+X)k{$cxz)~b(%|VM9-9rY_-uwNkLMXphh5aaWwQ3uVfxV-TaAq_L$(j zfXG$6Fe_M8?JnN?LD4DGWC`(H<_C+Nn}azA`k}49F)hYJeLuGrSv7g%%_M^ko@~g# zJblG;9^U8uW$SJz_2JPTz5Op-3X>-!q(ue{)*ACSL>8{f;vDkk+77Jq^xh0%@zwt5 zhTG<=&8nOMyYr<^YV(WLVTRcejK+Pgq=<2^ic@8=FzZ~gxo8~ENU?UTY*4_Hv_g&A zT79>BEm}oZd%qZ2qea9|wel3+Gi!EOzI;E9ei<6-JML z+-*=DHGIFgTg<*EONyx8O}Kp%=LvDGhncBOy}5gHS!GJ(_r?#3}ghn~;lHByug!>Q|x`4WC(vDj#Mt6?&eHk6b)MX~Y+ko9LkS z=E+4ziKI!`yMzkbL&VXednj@x4o6h zNVCB86gb_TnLr2loA~Lhm2e*(M&?Pzm)Zec`l8? zq&Y6s_*`Pd_?0~wkM7bL$7y{`FO(D_3|EO<#bfW3`(jfTmOFJMJ0WpvLTdG@^Posr zVD`N*^28z@vWseN^>^8hmRwjn24ooUBtI{ISMsY3m*qBFD=c5XKMeb#(ZX9FGs-@3 zElI3(P;9E2Z&mk}TK(nq8y>03y;O!)#52n8-tNELoDX*z;pfYUjmc$kPfvC=*4?@N zetQTm@4)g=K@49eXjeZ|?8hBP9^#-`WiRlb^w@h{rF@;vI&tf2;2(AOpYst`8oq6V zgcp_&w8FVVG`FW7tFd}L2@K~h>N4`KA;>oGD$`1<<*0Bbgdo$z-aBdPcv|HzGi%RB z-sYXOAe|TCkMx&#N@#d=Oulyfb1K-srzG=ue>-G+DTsSU-dX9oI-=tHjnm_ou2Vc^ThyZ2E5QS6B+BD8VC`O zilb5nVQ#PSBh*7+m)##gY9BFk5!B4Jp3=>is`9?-&*p5;7ZNB$E5hD63>R{jJnTbm3l@{iYD<#Be%*ew`Z9uW zsPjFc@I;(8+~}}i8!5!Xe_Eyqe9ulbcJ$1|dz`1lIbK-p(+b_f^S! zz?FcUcGa(1MWlAXDXkmh%ReF92W?-q*S2r)E`K_$!lfeq@WMx`aTCcGvNm;RtSE?| zbx9g`tHa_rF4Bsf6;x7XCoK3m|M5pglY;DJiVwKX^Im$&)>m0cLuzfhr2?yje(Lwi zKV2acpy6*FPOp9AF|;VYw(AU=NYKmW3lcy0`VRbB(9=$m^MTDSf&(ERtDuJ#4L$CN zm%+n(urX)yPi;Nj3%s$J$E?L;4I0&x1^F~w-&IO+0|OJLoa6QH!i$5o&YIx5IXp}L zEYsg}k50z*xv8dQ()Iq^8{y->%-CWx6db;sx@_@al%|2tF^6Qr^^Brf5G%~@rfra8 zfY@~NgRe~YwipOKKOCK+@4M$Z$ddgiYDD+x)thOh^eJHnwvv)}=vN0*y2`cFuDdPb z+P8>y+I=5_eDQ7jOsgxUqdj2ZC7S#wPUVNfEE~VcnX03SOVY9`R9TCwpK7RyA1p{~ z=U>bgZLq&C*ge#fQSu)3z8KlvDUew|Nd4N{*SbYzD|IZVD+?!!m)Tw?MY0aw%@R?w zvr-*+Ntt5FL{(#JCqwSBQEA&JD}Ey6%`=IujxLVg5dq^@t`x;nx^eN53W&9KM{cyf z+Q0ZPQ*x>-XMHNdQy{@Sq-hb+v$Pl+Zb)k=8Ix?R;0|zs z3qlHWfnt#eY3v=A5{X3$VebT?m^>jQ<|2qi3ZbxfSfr3J_6~~_x`w?I!d!%|WACse zLfC2ru_Qt=*gPy!7+b9%7AcIaRuJ1+kV)FnA7@U() zKo1joHvi0liK`QO)nTR_Gc)KBx3n|+vnm|y9nkz3_)l3wOB8y|=|SM&4+ax}K#}MZ z31aI|%qfIM2%}G=APNG712F`E5E24cI0g_Pehmdr0?>dELepRYA&dZNG@TFxiA3{( zVgSHUARo;G044}30aA$u7z)rJ01p5p67V5FnE;S*G%cD=5a7{Qbe<3pd{93ElnDR< z16L%v^#Tw$s1Ku7&>cfRBEWW#7u^$H7z_qMCxijvA0o6eK@)+D-(h#K`u;;2Q7HKT zSZRdA{twcKUC9XSVuxdw{)ucNPV%s_iNxk1PlOVihs0c<0$4%7N-Fe3!UZu%=!t}5 z1K}KPE1V>_Phhy3aM`HU9!wd)5a3Tx00|Lts zn6-pmMDUZDhGQxJX)Q1_4Xg#GFgOy;4(>4K41Qt_Vc0UU2222k&BM$zpu|i+9EDwA zSR)KaVHX$-(@wYyww-W{IfKh!EhQW?W^frS9~`sl;4)Y~IJQh#to?&y?U*c9#^9Ka z!DX?_6pk4lxGZ)J!ZE`Gm&Gs$z%gS6m&J|*9JJ-X&;G%F>(qbRKO_n`t-$XE`X1~D zfw~4K5@>7~0(}Ysj}(SBX&A>E_^;qZAb}0SoPxjs20k%31!2HG0J8zC5^$&m1<)rF zxaPktD?nf^E3g|tZ=p|MMS$@Dryw8#-Z?mtz%mL8pid-lyH6}IsO^shMmzCf_lpKW zu)T(&w*UYz8vyjK0DzDXu%5rIG_aO`tTgEVA1e(k{U0lh#-CVegfM9TZz~Oq(_dB^ zYZ)>;sKFmAjm85{0}V(_ z`ov5s(*^nWZin1??W8(3WgXcGp&+#=A{9|OQ+0W*aLbbUf- z%MJh`2s{cT7GS{Q3jta*U@ZJ^YY*(T5PIg&o)cIzLTDZUm^2E^0{}S28vr!G8-fd< z=LUEU01#jtguwKo0S-JPA#~m7K7%xvYxD$z43a|^uO-+8>~2mtz}KA=h+omt6dlmR zgx0`<24&v_dIWO;LA$>KY|iKqWdz<2w72*h1JJmCt*UFT zF89DYi&w0TERD=K(Gf&5BNt11J85)K?~1etFn}nqNd?Lkjt~&y77*Y7C!kZdH~l}6 zfN-9vD~O9ht|(iYIN3Yfo4bfW)W9p3E)Y$7h?=x4C`QxL1-!QS7Xd`a-pLfg3sE*Q zxd-As5G6AsCp+{@hu|ejXBT^b0i{}*fk+^@I@miK*+8^me5Up$9-M#cp@);1IT6rI zNKztnI1YP21d&J(%Q45|kO(N+cww?2c7Nf3viJuMffNFvxqsp?1Yl91kKerLH2S?! z^zj=9_D=}Zzjy%-36#!1=+HO7===i*=+IlVf8hiLfsy(L4ouB|lm~FazX7k^hAQYWlw@4;Y1i(Si5?kR0^!_r3}Lix+`}qW(Qc2qX*!4CX(05lECU zFlztA3BrZ`JuYCqK>wo-K{)C^`UcEBT6v(4-|a&PBG6{$KX70>{SO>iyNG{}9~vk0 zul0g14}<~!gBSh80e$?g7w`%IN8_J3IPjDH%?pR3-Likt3Bvz9zo0xY>wnR?I2nQW zn4K_ha${b<#%LhSvjck<5J$&6N6@hJ0`CkXv9`^~$ps_Bpd=71AYx;aQI#e7UjpB4 AWB>pF literal 0 HcmV?d00001 diff --git a/capstone_project/sim_log.xlsx b/capstone_project/sim_log.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..5f59f5a7afc3311035d3ea90ffc662d96b751f7a GIT binary patch literal 5586 zcmZ{o2T)Uc)5Zgc5IRWcO$4O(A_9>vorDgGC?SMULKmb7p@UQbLFq+A1XPL$NR?hi zqy=dr9YT{{zNq(p-pkxKnK@@BGtZvMZ~wbzpM_`>T%ZL20K|ZM);`*-iY}Xv@c@7W z0sw#k_p7&~h?ldQgS#CZ?%^)->n0}b?c^BqSXaMAlq?K;9L4LE67Y&y$B7yfG94JQ zUxO&Ys8_fqhmfBtXcArFS8$2m9>>CN>iPWmRB1!0MViD&j=m3*h=Hxay{vZ|ST}=p;X?uD+ zST(UBZ|u!sFFK;&dN7nBTI2Nn~WD)UUZrN;Ryg7JAohhFB1B{o;*XX%p z3BLCsR{pbH$dAfaNzu#;ZET_}c(8s+HavePS@Lv!`~@}_$yT5Bw7#2)R<)@Yc^)@@ zB#3=(b~O_zj(<4*ow%bebm;;4-t8~S_JhiB2lQAXjpsz!jN@x|y#Sav1^{ z&yjT3RYpv#u>oQD@b-+M<{jC5!9dY;SC3-oKi@AbQ~J>`NF^Pfca zW&&VvAL2bW7v(eB<)^z>9qAJTEu(E*7}~W;wX`mE4W#NJI$6xV@Oj=GFAk9Q6D3xG zCC)Pc8~Vz%T>~Z@bb1{0pEZT69(TKYZg3kz4>u$V;r^4n=U?Ra1WdqBuB!z?lBH&S9hR1kJPKYOUNgu|M=0*T+_V=v!Jz80F*l@}35pGp4F-^vglJ*qdjqwTasjD$< zM88qV;*?sBF>~t8wWZ_DOJJ6Yc*I;XMnM~Iip)1l_3y$fkasV8&=bN+sY+8q06H{1d*b@8^ciOdL)AM2HerR&i*$rN|@ zKlS=I%R4oNpS^G_sc@Z$3dhpM83u84c5xTE=i>5{V@6_=-ij!d+Mb`$6#X3U5|vujn~8FN$0+BLt#;|sj4k#P6)7q6-wuasWl$lWZpX%$2;URx9R zR>kc*K9O+-V@z~Qemkkuxf{5ul^JQggU89(D9C+H&|HO4NpiybWD@_6H^KAN&d03 z$IhZd7s`w2)%52a4JC&G?5BY{^JsnTH^W`c;)LB6<` zT31*HK6qFFv_wB^ttBt|8u+bdK_Fm*RsS&M!;TX~SSUVjxv5&lkA(SQ9&zl7yi=5C z9;eaL#Wv44a@VZt+_jT#_4h(XH~agQ9v<|E6A4Ej2;gDOB(1WuhrLCTgEZkGmms4D~Fhpq=4 z@$1cUO&i7)r=8rt4}CvcEPX(@Q1A)FX&y^6FhN}O4s>XjvP7Wech}&yP**}Tu!0?NCK#f5`YV6%~ zMLPtyeU$}SFk57_r}d9FAh)2|Xx&#f>l5znvGNQ;%uj?ka>(mxPjat{Z(L_sDJ<~L zl3(!RR56(3rI$~#CgfFbDQ>a>;Ypx&&7z+2PHIQigsI=7=JYN#x-1p7FQp4N@_GK8 z!`bJLfauI@kfRQ<Y4EWg>Bs>t{X?}cmY_zrQ}{zLSS@`ut5 z<+Aw4WXN6W=GDQLDu++JEBe!3)=6L8PKRy;uO7#-J}99{mC^DezkNK{;Op$(u?}Vo zIL9AZ8p3dd7rBtSS#wSfCc^?yJ(*s64KBrS`?{& z43ktmd*Y+$NvkQ%*_WhVf)grMJw0>JoNenr&c!`Woa-sMq)spS;RdAH(}^jk7JVwq ziUmVw1DC=y^ByQ6))!$1m%T)_Pbb_dE-+RI*inl5Y0{YP-4^q5zF6v7C}kq1IC4Ld zSr8Gkt*ON`HnS1W%OfeYJ#6QaFP#^Lw$;w=`ARA)5$RMQ$+tbO0RwU<>{4?+e;0d6 zuDA4QiS$^0=vr0r*NPYIkqU1L8GT=+b)wu=)~JC%C>1>yiiHYNlw6%;RSvnJwrn;1 z<7VQf?c3g}Xh5YbSLWt+z{7pkh2=^jF_oLD8eNa8zTYl2kKh7R+R;>%$OWGkq=e=- zYX&mvYha$zAT2S6)BKZ0)R92^EmhQP6^JhxHD0xIkGZ>Bo*Ov9>`DzI)TSN}YHV+m zw!Qzs#9>_Qd1NRJ3&98`kNO9Y$wsiGgmIfKxJ~VRKa9<<1ER8TS>HZ!Gn{f513J3>k3Eo zHQd>-YWv~y0o9+j-HkW8*JOYIuI%2@L$nzZfSz>M)k>Akn`|~7QRd0Ui2$?iyQqF8>by>GU`DGuTbiuR$1(CN zb%Yzkf_QYix4KKwU}&+MP}|=7MFI{=VG~Iu`=^Q2yLcn5n-EAku<_Xi2d^k0D`6-2 z+xQ(qU1Q84Z!3hFw4-?8MxD&+w3tvG40G-B_$44Mb$}3{fA;3h; zEQw2;`|wP&T_1`^TLzIBVmo7<`;9^rEZ(`EN#f+3sLW${sT-xrZ@(@PAx)vFOxv}- zDR%kdTi+y;fPP2B8!9&x!8&()uhEke>FQ3DLK;!=FXIi>rySm9+CTk8gu*q0i- z#63EKz~bu7>zTYP%u;P)pA%%>MCoX;>4jRkRvS?*#f!%J;3W*Iy5G_fSYEeYRBd~W zeS^HMMxxfvGpF10K6YZ}8!F`6&m*Be`p1XP3)VfoewC zE9`)%_*ISj2+poj%cTY}-9G!aN6In*Q;!fEPTrDfTC*OccS4WYr6*bCHFtq?he!2C z_1OAoe=lR9GK>>F`S9?o)rYAs7e$--B3#{oIfCZlGzGVtH5)BD)MJv-TSPjK#A zg;UJkM0EEx!T@mx#nezu%$6~-%OU!pqG`Uu!(M>AG(scPNX|^1&^W+hcbUt4(Q0p^ zhmsx^n8RFBsFwHrIND;gP(@q)%4{)6E*kzIPM?-K9P08Y%#o8qba9Pt3aFY5EmXv|T%{-eP{kFqMS6bzeQcC;=!xwf&eGwX%9~AXm?D?Hn@(RHUBBKsf<9}WA%I&AR2OZGS=X~} z5JZ5V>L(G?Y#I~`HXO`Td7zMO@K>i}V)oSN;V5sbxs4*(+BeN(h-hDTgzrTwUqtQr z9bxD#xsJKwf*YCp8{m$~py0s}KJz+VAHdDt^;HpqX_$z{yVHyR9>cb>G{={4uYYaa zXiJK_Te-m<-9?0dUQ2M+1GoH8#Nw>S(NmNLaZW)kNB&nHNpK?$E9!UJSoNB<_+=_H5qvMCXcD zQRjy^bC5>IMW2NIY|knM-Bf{C+AjTWq%vRs&{D+x#@L;grC5){&cOMQqN+Z{@fz+I zCt`zAj;LGCO9^ZDaybwd$6dTOI;@dF4~DSmVW#sr{E&eKOOuh>V}-&@je(r(s&qSQ z!y>)eZi@y_7K|luq5qM#^1HM5EKftxSG>%Duw(JTt1<(AfPWKF^}MyQh$HbHM}+D3 zVDuZx&kfPvi-o@d{haz$u_q*N_AKtxXz?Yu^M&5V>=1-hROvWs+Py=b>`?=CS&4Iq zvOYcFpngCg52{n?gX`#5+8reeX!XUe0m-91)f8YAD%2k2GEvu@7TM9r`5Z zYBV^*y$z;QzeOk6uuwdWqWZLu#gnh(o>G(yef9wb74F*7e2%<0WSVB}0Lm{ZQCw|{ zIP0X){mke`KJTE|FT+3QrQz!qk*?xtp8&com{?fI@5bMO5sj9;cddVxy+bpzx0bA1 zmNB9oEV6^|I=r`RT0Sh7F%aO=H6mS*I^H0)T``5glQs0!-DjirA@`J4B7@%a_RA2Aqbr2lInaX!L%6wZ;Hx8dj2 z=N;i6waCSPsQ>nd=jG?k&mVa((SKT@^8wCJ?|%Xi0Du4g|DWa0OV5vVf24f42JjyP z-uVFMTgIONBsg>Yj|OsHc)qg!2w7-;J^6ps8AO{92NeJy!F>a9RVn||F9QA#_cN9V literal 0 HcmV?d00001 diff --git a/customer_segments/customer_segments.html b/customer_segments/customer_segments.html new file mode 100644 index 0000000..2cdb73e --- /dev/null +++ b/customer_segments/customer_segments.html @@ -0,0 +1,20007 @@ + + + +customer_segments + + + + + + + + + + + + + + + + + + + +

      +
      + +
      +
      +
      +
      +
      +

      Machine Learning Engineer Nanodegree

      Unsupervised Learning

      Project: Creating Customer Segments

      +
      +
      +
      +
      +
      +
      +
      +
      +

      Welcome to the third project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

      +

      In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

      +

      Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

      +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Getting Started

      In this project, you will analyze a dataset containing data on various customers' annual spending amounts (reported in monetary units) of diverse product categories for internal structure. One goal of this project is to best describe the variation in the different types of customers that a wholesale distributor interacts with. Doing so would equip the distributor with insight into how to best structure their delivery service to meet the needs of each customer.

      +

      The dataset for this project can be found on the UCI Machine Learning Repository. For the purposes of this project, the features 'Channel' and 'Region' will be excluded in the analysis — with focus instead on the six product categories recorded for customers.

      +

      Run the code block below to load the wholesale customers dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported.

      + +
      +
      +
      +
      +
      +
      In [8]:
      +
      +
      +
      # Import libraries necessary for this project
      +import numpy as np
      +import pandas as pd
      +from IPython.display import display # Allows the use of display() for DataFrames
      +
      +# Import supplementary visualizations code visuals.py
      +import visuals as vs
      +
      +# Pretty display for notebooks
      +%matplotlib inline
      +
      +# Load the wholesale customers dataset
      +try:
      +    data = pd.read_csv("customers.csv")
      +    data.drop(['Region', 'Channel'], axis = 1, inplace = True)
      +    print "Wholesale customers dataset has {} samples with {} features each.".format(*data.shape)
      +    print("It shows the spending per wholesale customer on that category per year.")
      +    display(pd.DataFrame(data.head(2)))
      +except:
      +    print "Dataset could not be loaded. Is the dataset missing?"
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Wholesale customers dataset has 440 samples with 6 features each.
      +It shows the spending per wholesale customer on that category per year.
      +
      +
      +
      + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      FreshMilkGroceryFrozenDetergents_PaperDelicatessen
      0126699656756121426741338
      1705798109568176232931776
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Data Exploration

      In this section, you will begin exploring the data through visualizations and code to understand how each feature is related to the others. You will observe a statistical description of the dataset, consider the relevance of each feature, and select a few sample data points from the dataset which you will track through the course of this project.

      +

      Run the code block below to observe a statistical description of the dataset. Note that the dataset is composed of six important product categories: 'Fresh', 'Milk', 'Grocery', 'Frozen', 'Detergents_Paper', and 'Delicatessen'. Consider what each category represents in terms of products you could purchase.

      + +
      +
      +
      +
      +
      +
      In [9]:
      +
      +
      +
      # Display a description of the dataset
      +display(data.describe()) # shows per column statistics from dataset. Columns contain usd values for spending.
      +
      +from sklearn.preprocessing import StandardScaler
      +scaler = StandardScaler()
      +
      +# normalise columns around mean to check distribution
      +norm_data = scaler.fit_transform(data)
      +
      +norm_data = pd.DataFrame(norm_data, columns=data.columns)
      +# plot
      +#norm_data.hist(bins=200)
      +# they all seems quite biased to low values
      +
      +# describe
      +#display(norm_data.describe())
      +
      +
      +#norm_data.head(10)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      FreshMilkGroceryFrozenDetergents_PaperDelicatessen
      count440.000000440.000000440.000000440.000000440.000000440.000000
      mean12000.2977275796.2659097951.2772733071.9318182881.4931821524.870455
      std12647.3288657380.3771759503.1628294854.6733334767.8544482820.105937
      min3.00000055.0000003.00000025.0000003.0000003.000000
      25%3127.7500001533.0000002153.000000742.250000256.750000408.250000
      50%8504.0000003627.0000004755.5000001526.000000816.500000965.500000
      75%16933.7500007190.25000010655.7500003554.2500003922.0000001820.250000
      max112151.00000073498.00000092780.00000060869.00000040827.00000047943.000000
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Implementation: Selecting Samples

      To get a better understanding of the customers and how their data will transform through the analysis, it would be best to select a few sample data points and explore them in more detail. In the code block below, add three indices of your choice to the indices list which will represent the customers to track. It is suggested to try different sets of samples until you obtain customers that vary significantly from one another.

      + +
      +
      +
      +
      +
      +
      In [27]:
      +
      +
      +
      # TODO: Select three indices of your choice you wish to sample from the dataset
      +indices = [401, 338, 65]
      +
      +retailer = data[data["Frozen"]>=9000]
      +#print(retailer)
      +market = data[data["Detergents_Paper"] >= 8000]
      +#print(market)
      +
      +
      +# Create a DataFrame of the chosen samples
      +samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True)
      +print "Chosen samples of wholesale customers dataset:"
      +display(samples)
      +
      +
      +# show samples values as bars, also show whole dataset mean values as bars
      +import seaborn as sns
      +samples = samples.append(data.describe().loc["50%"])
      +samples = samples.append(data.describe().loc["mean"])
      +samples = samples.append(data.describe().loc["25%"])
      +samples = samples.append(data.describe().loc["75%"])
      +
      +
      +samples_as_barchart = samples
      +
      +#samples_as_barchart = samples
      +samples_as_barchart.index = indices + ['median', 'mean', '25%', '75%'] # add mean to x axis
      +_ = samples_as_barchart.plot(kind='bar', figsize=(14,6))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Chosen samples of wholesale customers dataset:
      +
      +
      +
      + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      FrozenFreshDelicatessenDetergents_PaperGroceryMilk
      0132232716719029221282801
      1156013550157021333
      236851423242314582820959
      +
      +
      + +
      + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 1

      Consider the total purchase cost of each product category and the statistical description of the dataset above for your sample customers.
      +What kind of establishment (customer) could each of the three samples you've chosen represent?
      +Hint: Examples of establishments include places like markets, cafes, and retailers, among many others. Avoid using names for establishments, such as saying "McDonalds" when describing a sample customer as a restaurant.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer:

      +
        +
      • Example 401 is above median on Fresh, Frozen, Deli, and below on rest. This is could be a food market as it would be higher than the median in those categories .
      • +
      • Example 338 are above mean and median and 75 percentile on Frozen, above median on Grocery, below on rest so could be a fish shop selling frozen fish.
      • +
      • Example 65 is a high multiple of the IQR on Grocery and milk and detergents paper - it could be a very popular cofee shop.
      • +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implementation: Feature Relevance

      One interesting thought to consider is if one (or more) of the six product categories is actually relevant for understanding customer purchasing. That is to say, is it possible to determine whether customers purchasing some amount of one category of products will necessarily purchase some proportional amount of another category of products? We can make this determination quite easily by training a supervised regression learner on a subset of the data with one feature removed, and then score how well that model can predict the removed feature.

      +

      In the code block below, you will need to implement the following:

      +
        +
      • Assign new_data a copy of the data by removing a feature of your choice using the DataFrame.drop function.
      • +
      • Use sklearn.cross_validation.train_test_split to split the dataset into training and testing sets.
          +
        • Use the removed feature as your target label. Set a test_size of 0.25 and set a random_state.
        • +
        +
      • +
      • Import a decision tree regressor, set a random_state, and fit the learner to the training data.
      • +
      • Report the prediction score of the testing set using the regressor's score function.
      • +
      + +
      +
      +
      +
      +
      +
      In [ ]:
      +
      +
      +
      # TODO: Make a copy of the DataFrame, using the 'drop' function to drop the given feature
      +testDependentFeature = "Detergents_Paper"
      +
      +new_data = data.drop([testDependentFeature], axis=1)
      +target = data[testDependentFeature]
      +from sklearn.cross_validation import train_test_split
      +
      +# TODO: Split the data into training and testing sets using the given feature as the target
      +X_train, X_test, y_train, y_test = train_test_split(new_data, target, test_size=0.25, random_state=5)
      +
      +# TODO: Create a decision tree regressor and fit it to the training set
      +from sklearn.tree import DecisionTreeRegressor
      +regressor = DecisionTreeRegressor(random_state=6)
      +regressor.fit(X_train, y_train)
      +
      +# TODO: Report the score of the prediction using the testing set
      +score = regressor.score(X_test, y_test)
      +print("R-squared for explaining {} is {}".format(testDependentFeature, score))
      +# Detergents_Paper seems to have highest R-squared.
      +
      + +
      +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 2

      Which feature did you attempt to predict? What was the reported prediction score? Is this feature necessary for identifying customers' spending habits?
      +Hint: The coefficient of determination, R^2, is scored between 0 and 1, with 1 being a perfect fit. A negative R^2 implies the model fails to fit the data.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: I attempted to predict Detergent_Paper. The prediction score was 0.6606. This means this feature can be explained with around 66% accuracy using all the other features combined. I would say it is still required as this is only slightly better than chance.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Visualize Feature Distributions

      To get a better understanding of the dataset, we can construct a scatter matrix of each of the six product features present in the data. If you found that the feature you attempted to predict above is relevant for identifying a specific customer, then the scatter matrix below may not show any correlation between that feature and the others. Conversely, if you believe that feature is not relevant for identifying a specific customer, the scatter matrix might show a correlation between that feature and another feature in the data. Run the code block below to produce a scatter matrix.

      + +
      +
      +
      +
      +
      +
      In [ ]:
      +
      +
      +
      # Produce a scatter matrix for each pair of features in the data
      +# plot each feature against each other feature in pairs.
      +pd.scatter_matrix(data, alpha = 0.3, figsize = (14,8), diagonal = 'kde'); 
      +
      +# feature against feature produces the distribution of that feature
      +
      + +
      +
      +
      + +
      +
      +
      +
      In [ ]:
      +
      +
      +
      # check feature distributions
      +data.Detergents_Paper.hist(bins=200)
      +
      + +
      +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 3

      Are there any pairs of features which exhibit some degree of correlation? Does this confirm or deny your suspicions about the relevance of the feature you attempted to predict? How is the data for those features distributed?
      +Hint: Is the data normally distributed? Where do most of the data points lie?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: Yes, Detergents Paper seems to correlate with Grocery, and maybe Grocery with Milk a bit. This confirms my suspicions for Detergents ag Grocery by looking at the plot. Further, the data for these features is clearly not normally distributed, but heavily skewed towards lower values, so positively skewed. This means the median falls below the mean. This lack of normal distribution applies to all features in fact, probably due to the fact that there are a lot more small food shops than large ones.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Data Preprocessing

      In this section, you will preprocess the data to create a better representation of customers by performing a scaling on the data and detecting (and optionally removing) outliers. Preprocessing data is often times a critical step in assuring that results you obtain from your analysis are significant and meaningful.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implementation: Feature Scaling

      If data is not normally distributed, especially if the mean and median vary significantly (indicating a large skew), it is most often appropriate to apply a non-linear scaling — particularly for financial data. One way to achieve this scaling is by using a Box-Cox test, which calculates the best power transformation of the data that reduces skewness. A simpler approach which can work in most cases would be applying the natural logarithm.

      +

      In the code block below, you will need to implement the following:

      +
        +
      • Assign a copy of the data to log_data after applying logarithmic scaling. Use the np.log function for this.
      • +
      • Assign a copy of the sample data to log_samples after applying logarithmic scaling. Again, use np.log.
      • +
      + +
      +
      +
      +
      +
      +
      In [12]:
      +
      +
      +
      # TODO: Scale the data using the natural logarithm
      +log_data = data.apply(lambda x: np.log(x))
      +
      +# TODO: Scale the sample data using the natural logarithm
      +log_samples = samples.apply(lambda x: np.log(x))
      +print(samples)
      +print(log_samples)
      +
      +# Produce a scatter matrix for each pair of newly-transformed features
      +pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');
      +
      +# now the features are much more normally distributed.
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
         Fresh   Milk  Grocery  Frozen  Detergents_Paper  Delicatessen
      +0  27167   2801     2128   13223                92          1902
      +1      3    333     7021   15601                15           550
      +2     85  20959    45828      36             24231          1423
      +       Fresh      Milk    Grocery    Frozen  Detergents_Paper  Delicatessen
      +0  10.209758  7.937732   7.662938  9.489713          4.521789      7.550661
      +1   1.098612  5.808142   8.856661  9.655090          2.708050      6.309918
      +2   4.442651  9.950323  10.732651  3.583519         10.095388      7.260523
      +
      +
      +
      + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Observation

      After applying a natural logarithm scaling to the data, the distribution of each feature should appear much more normal. For any pairs of features you may have identified earlier as being correlated, observe here whether that correlation is still present (and whether it is now stronger or weaker than before).

      +

      Run the code below to see how the sample data has changed after having the natural logarithm applied to it.

      + +
      +
      +
      +
      +
      +
      In [14]:
      +
      +
      +
      # Display the log-transformed sample data
      +display(log_samples)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      FreshMilkGroceryFrozenDetergents_PaperDelicatessen
      010.2097587.9377327.6629389.4897134.5217897.550661
      11.0986125.8081428.8566619.6550902.7080506.309918
      24.4426519.95032310.7326513.58351910.0953887.260523
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Implementation: Outlier Detection

      Detecting outliers in the data is extremely important in the data preprocessing step of any analysis. The presence of outliers can often skew results which take into consideration these data points. There are many "rules of thumb" for what constitutes an outlier in a dataset. Here, we will use Tukey's Method for identfying outliers: An outlier step is calculated as 1.5 times the interquartile range (IQR). A data point with a feature that is beyond an outlier step outside of the IQR for that feature is considered abnormal.

      +

      In the code block below, you will need to implement the following:

      +
        +
      • Assign the value of the 25th percentile for the given feature to Q1. Use np.percentile for this.
      • +
      • Assign the value of the 75th percentile for the given feature to Q3. Again, use np.percentile.
      • +
      • Assign the calculation of an outlier step for the given feature to step.
      • +
      • Optionally remove data points from the dataset by adding indices to the outliers list.
      • +
      +

      NOTE: If you choose to remove any outliers, ensure that the sample data does not contain any of these points!
      +Once you have performed this implementation, the dataset will be stored in the variable good_data.

      + +
      +
      +
      +
      +
      +
      In [15]:
      +
      +
      +
      # For each feature find the data points with extreme high or low values
      +indices = []
      +for feature in log_data.keys():
      +    
      +    # TODO: Calculate Q1 (25th percentile of the data) for the given feature
      +    Q1 = np.percentile(log_data[feature], 25)
      +    
      +    # TODO: Calculate Q3 (75th percentile of the data) for the given feature
      +    Q3 = np.percentile(log_data[feature], 75)
      +    
      +    # TODO: Use the interquartile range to calculate an outlier step (1.5 times the interquartile range)
      +    step = 1.5 * (Q3 - Q1)
      +    
      +    
      +    # Display the outliers
      +    print "Data points considered outliers for the feature '{}':".format(feature)
      +    print("Q1-step is {}, Q3+step is {}, the step size is {}".format(Q1-step, Q3+step, step))
      +    # the ~ operator flips the booleans
      +    outliers = log_data[~((log_data[feature] >= (Q1 - step)) & (log_data[feature] <= (Q3 + step)))][feature]
      +    display(outliers)
      +    
      +    # add indices
      +    indices.extend(outliers.index)
      +    
      +# OPTIONAL: Select the indices for data points you wish to remove
      +outliers  = indices
      +
      +# Remove the outliers, if any were specified
      +good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True)
      +
      +from collections import Counter
      +print(Counter(outliers))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Data points considered outliers for the feature 'Fresh':
      +Q1-step is 5.51455083361, Q3+step is 12.2705718166, the step size is 2.53350786861
      +
      +
      +
      + +
      +
      + + + +
      +
      65     4.442651
      +66     2.197225
      +81     5.389072
      +95     1.098612
      +96     3.135494
      +128    4.941642
      +171    5.298317
      +193    5.192957
      +218    2.890372
      +304    5.081404
      +305    5.493061
      +338    1.098612
      +353    4.762174
      +355    5.247024
      +357    3.610918
      +412    4.574711
      +Name: Fresh, dtype: float64
      +
      + +
      + +
      +
      + +
      +
      Data points considered outliers for the feature 'Milk':
      +Q1-step is 5.01673296722, Q3+step is 11.1987283614, the step size is 2.31824827282
      +
      +
      +
      + +
      +
      + + + +
      +
      86     11.205013
      +98      4.718499
      +154     4.007333
      +356     4.897840
      +Name: Milk, dtype: float64
      +
      + +
      + +
      +
      + +
      +
      Data points considered outliers for the feature 'Grocery':
      +Q1-step is 5.27575998758, Q3+step is 11.672709891, the step size is 2.3988562138
      +
      +
      +
      + +
      +
      + + + +
      +
      75     1.098612
      +154    4.919981
      +Name: Grocery, dtype: float64
      +
      + +
      + +
      +
      + +
      +
      Data points considered outliers for the feature 'Frozen':
      +Q1-step is 4.26035024816, Q3+step is 10.5252235842, the step size is 2.34932750101
      +
      +
      +
      + +
      +
      + + + +
      +
      38      3.496508
      +57      3.637586
      +65      3.583519
      +145     3.737670
      +175     3.951244
      +264     4.110874
      +325    11.016479
      +420     3.218876
      +429     3.850148
      +439     4.174387
      +Name: Frozen, dtype: float64
      +
      + +
      + +
      +
      + +
      +
      Data points considered outliers for the feature 'Detergents_Paper':
      +Q1-step is 1.45874266385, Q3+step is 12.3636993597, the step size is 4.08935876094
      +
      +
      +
      + +
      +
      + + + +
      +
      75     1.098612
      +161    1.098612
      +Name: Detergents_Paper, dtype: float64
      +
      + +
      + +
      +
      + +
      +
      Data points considered outliers for the feature 'Delicatessen':
      +Q1-step is 3.76959400251, Q3+step is 9.74900908097, the step size is 2.24228065442
      +
      +
      +
      + +
      +
      + + + +
      +
      66      3.295837
      +109     1.098612
      +128     1.098612
      +137     3.583519
      +142     1.098612
      +154     2.079442
      +183    10.777768
      +184     2.397895
      +187     1.098612
      +203     2.890372
      +233     1.945910
      +285     2.890372
      +289     3.091042
      +343     3.610918
      +Name: Delicatessen, dtype: float64
      +
      + +
      + +
      +
      + +
      +
      Counter({154: 3, 128: 2, 65: 2, 66: 2, 75: 2, 193: 1, 264: 1, 137: 1, 142: 1, 145: 1, 412: 1, 285: 1, 161: 1, 420: 1, 38: 1, 171: 1, 429: 1, 175: 1, 304: 1, 305: 1, 439: 1, 184: 1, 57: 1, 187: 1, 203: 1, 325: 1, 289: 1, 81: 1, 338: 1, 86: 1, 343: 1, 218: 1, 95: 1, 96: 1, 353: 1, 98: 1, 355: 1, 356: 1, 357: 1, 233: 1, 109: 1, 183: 1})
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 4

      Are there any data points considered outliers for more than one feature based on the definition above? Should these data points be removed from the dataset? If any data points were added to the outliers list to be removed, explain why.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: There are 5 data points that are outliers in more than one dimension. We should remove them too as the would distort the data in more than 1 dimension. The points in the outliers list should all be remove given we use Tukey's outlier definition.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Feature Transformation

      In this section you will use principal component analysis (PCA) to draw conclusions about the underlying structure of the wholesale customer data. Since using PCA on a dataset calculates the dimensions which best maximize variance, we will find which compound combinations of features best describe customers.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implementation: PCA

      Now that the data has been scaled to a more normal distribution and has had any necessary outliers removed, we can now apply PCA to the good_data to discover which dimensions about the data best maximize the variance of features involved. In addition to finding these dimensions, PCA will also report the explained variance ratio of each dimension — how much variance within the data is explained by that dimension alone. Note that a component (dimension) from PCA can be considered a new "feature" of the space, however it is a composition of the original features present in the data.

      +

      In the code block below, you will need to implement the following:

      +
        +
      • Import sklearn.decomposition.PCA and assign the results of fitting PCA in six dimensions with good_data to pca.
      • +
      • Apply a PCA transformation of log_samples using pca.transform, and assign the results to pca_samples.
      • +
      + +
      +
      +
      +
      +
      +
      In [16]:
      +
      +
      +
      # TODO: Apply PCA by fitting the good data with the same number of dimensions as features
      +from sklearn.decomposition import PCA
      +pca = PCA().fit(good_data)
      +
      +# TODO: Transform log_samples using the PCA fit above
      +# this applies dimensionality reduction to each sample
      +pca_samples = pca.transform(log_samples)
      +#print(pca_samples)
      +
      +# Generate PCA results plot, indicating how much each feature contributes to each dimension.
      +pca_results = vs.pca_results(good_data, pca)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 5

      How much variance in the data is explained in total by the first and second principal component? What about the first four principal components? Using the visualization provided above, discuss what the first four dimensions best represent in terms of customer spending.
      +Hint: A positive increase (between examples) in a specific dimension corresponds with an increase of the positive-weighted features and a decrease of the negative-weighted features. The rate of increase or decrease is based on the indivdual feature weights.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: Together the first and second principal component explain 72.52% of total variance. The first four pc explain 92.79% of total variance.

      +

      I dont understand the hint: dimensions are not increasing, they are new features that have values which are either high or low. Ah, maybe it means if you compare two examples, if a dimension increases this indicates that the positively weighted features in its portfolio increase and the negative weight features decrease. The rate of increase depends on the rate of the weight changes in its feature portfolio i guess..

      +
        +
      • Dimension 1 is Detergents_paper, Milk, Grocery with some representation of Deli. This is probably consumer retail spending.
      • +
      • Dimension 2 is Fresh, Frozen and Deli, with some representation for Milk and Grocery. This is probably a hotel or restaurant.
      • +
      • Dimension 3 is Deli with some Frozen and Milk, with very low Fresh and low Detergents_Paper. This could be a speciality shop such as a butcher.
      • +
      • Dimension 4 is Deli with some Fresh but very low Frozen and low Detergents_Paper. This could be a market, where they sell fresh food and meat.
      • +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Observation

      Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it in six dimensions. Observe the numerical value for the first four dimensions of the sample points. Consider if this is consistent with your initial interpretation of the sample points.

      + +
      +
      +
      +
      +
      +
      In [17]:
      +
      +
      +
      # Display sample log-data after having a PCA transformation applied
      +display(pd.DataFrame(np.round(pca_samples, 4), columns = pca_results.index.values))
      +display(pd.DataFrame(samples))
      +
      +
      +# hard to see how it works...
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      Dimension 1Dimension 2Dimension 3Dimension 4Dimension 5Dimension 6
      0-2.40722.40790.5245-0.08480.5462-0.0377
      1-3.4491-3.65866.7584-2.94390.69212.9431
      25.3109-4.58452.02741.1669-0.03430.3363
      +
      +
      + +
      + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      FreshMilkGroceryFrozenDetergents_PaperDelicatessen
      0271672801212813223921902
      1333370211560115550
      285209594582836242311423
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Implementation: Dimensionality Reduction

      When using principal component analysis, one of the main goals is to reduce the dimensionality of the data — in effect, reducing the complexity of the problem. Dimensionality reduction comes at a cost: Fewer dimensions used implies less of the total variance in the data is being explained. Because of this, the cumulative explained variance ratio is extremely important for knowing how many dimensions are necessary for the problem. Additionally, if a signifiant amount of variance is explained by only two or three dimensions, the reduced data can be visualized afterwards.

      +

      In the code block below, you will need to implement the following:

      +
        +
      • Assign the results of fitting PCA in two dimensions with good_data to pca.
      • +
      • Apply a PCA transformation of good_data using pca.transform, and assign the results to reduced_data.
      • +
      • Apply a PCA transformation of log_samples using pca.transform, and assign the results to pca_samples.
      • +
      + +
      +
      +
      +
      +
      +
      In [18]:
      +
      +
      +
      # TODO: Apply PCA by fitting the good data with only two dimensions
      +pca = PCA(n_components=2).fit(good_data)
      +
      +# TODO: Transform the good data using the PCA fit above
      +reduced_data = pca.transform(good_data)
      +
      +# TODO: Transform log_samples using the PCA fit above
      +pca_samples = pca.transform(log_samples)
      +
      +# Create a DataFrame for the reduced data
      +reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])
      +
      + +
      +
      +
      + +
      +
      +
      +
      +
      +
      +

      Observation

      Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it using only two dimensions. Observe how the values for the first two dimensions remains unchanged when compared to a PCA transformation in six dimensions.

      + +
      +
      +
      +
      +
      +
      In [19]:
      +
      +
      +
      # Display sample log-data after applying PCA transformation in two dimensions
      +display(pd.DataFrame(np.round(pca_samples, 4), columns = ['Dimension 1', 'Dimension 2']))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + +
      Dimension 1Dimension 2
      0-2.40722.4079
      1-3.4491-3.6586
      25.3109-4.5845
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Visualizing a Biplot

      A biplot is a scatterplot where each data point is represented by its scores along the principal components. The axes are the principal components (in this case Dimension 1 and Dimension 2). In addition, the biplot shows the projection of the original features along the components. A biplot can help us interpret the reduced dimensions of the data, and discover relationships between the principal components and original features.

      +

      Run the code cell below to produce a biplot of the reduced-dimension data.

      + +
      +
      +
      +
      +
      +
      In [20]:
      +
      +
      +
      # Create a biplot
      +vs.biplot(good_data, reduced_data, pca)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      Out[20]:
      + + + +
      +
      <matplotlib.axes._subplots.AxesSubplot at 0xe5c9ba8>
      +
      + +
      + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Observation

      Once we have the original feature projections (in red), it is easier to interpret the relative position of each data point in the scatterplot. For instance, a point the lower right corner of the figure will likely correspond to a customer that spends a lot on 'Milk', 'Grocery' and 'Detergents_Paper', but not so much on the other product categories.

      +

      From the biplot, which of the original features are most strongly correlated with the first component? What about those that are associated with the second component? Do these observations agree with the pca_results plot you obtained earlier?

      +
        +
      • First Dimension: detergents, grocery and milk (positively) - agrees with previous plot feature weights.

        +
      • +
      • Second Dimension: Deli, Frozen, Fresh, also positively. Agrees too.

        +
      • +
      +

      So the length of the arrow is the weight of that feature in the dimension, the direction indicates how much each dimension is exposed to that feature.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Clustering

      In this section, you will choose to use either a K-Means clustering algorithm or a Gaussian Mixture Model clustering algorithm to identify the various customer segments hidden in the data. You will then recover specific data points from the clusters to understand their significance by transforming them back into their original dimension and scale.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 6

      What are the advantages to using a K-Means clustering algorithm? What are the advantages to using a Gaussian Mixture Model clustering algorithm? Given your observations about the wholesale customer data so far, which of the two algorithms will you use and why?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: The K-means algorithm will try to find clusters of points that are close to each other: a point can belong to only one cluster at a time. The Gaussian Mixture model allows points to belong to several clusters at a time, with a certain probability. Given wholesale customers might belong to several possible clusters, such as the "small place" cluster or the "deli" cluster at the same time, I would use the gaussian mixture model which allows this. Further, the mixture model incorporates the covariance information of the data (http://scikit-learn.org/stable/modules/mixture.html) which I believe is desirable, given we have some feature correlation. We should have enough points per cluster, so calculating the covariance matrix should work.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implementation: Creating Clusters

      Depending on the problem, the number of clusters that you expect to be in the data may already be known. When the number of clusters is not known a priori, there is no guarantee that a given number of clusters best segments the data, since it is unclear what structure exists in the data — if any. However, we can quantify the "goodness" of a clustering by calculating each data point's silhouette coefficient. The silhouette coefficient for a data point measures how similar it is to its assigned cluster from -1 (dissimilar) to 1 (similar). Calculating the mean silhouette coefficient provides for a simple scoring method of a given clustering.

      +

      In the code block below, you will need to implement the following:

      +
        +
      • Fit a clustering algorithm to the reduced_data and assign it to clusterer.
      • +
      • Predict the cluster for each data point in reduced_data using clusterer.predict and assign them to preds.
      • +
      • Find the cluster centers using the algorithm's respective attribute and assign them to centers.
      • +
      • Predict the cluster for each sample data point in pca_samples and assign them sample_preds.
      • +
      • Import sklearn.metrics.silhouette_score and calculate the silhouette score of reduced_data against preds.
          +
        • Assign the silhouette score to score and print the result.
        • +
        +
      • +
      + +
      +
      +
      +
      +
      +
      In [23]:
      +
      +
      +
      # Use the ouput of PCA reduced to 2 components as input for the Gaussian Mixture Model
      +
      +nb_comp = [2,3,4,5,6,7]
      +
      +val_out = 2
      +for val_comp in nb_comp:
      +    # TODO: Apply your clustering algorithm of choice to the reduced data 
      +    from sklearn.mixture import GaussianMixture
      +    clusterer = GaussianMixture(random_state=5, n_components=val_comp).fit(reduced_data)
      +
      +    # TODO: Predict the cluster for each data point
      +    preds_loc = clusterer.predict(reduced_data)
      +    #print(preds)
      +
      +    # TODO: Find the cluster centers
      +    centers_loc = clusterer.means_
      +
      +    # TODO: Predict the cluster for each transformed sample data point
      +    sample_preds_loc = clusterer.predict(pca_samples)
      +
      +    # TODO: Calculate the mean silhouette coefficient for the number of clusters chosen
      +    from sklearn.metrics import silhouette_score
      +    score = silhouette_score(X=reduced_data, labels=preds_loc)
      +    print("Nb comps: {}, score: {}".format(val_comp, score))
      +    
      +    if val_out == val_comp:
      +        preds = preds_loc
      +        centers = centers_loc
      +        sample_preds = sample_preds_loc
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Nb comps: 2, score: 0.447411995571
      +Nb comps: 3, score: 0.359479670374
      +Nb comps: 4, score: 0.312405270688
      +Nb comps: 5, score: 0.3285065946
      +Nb comps: 6, score: 0.28969365136
      +Nb comps: 7, score: 0.328311049677
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 7

      Report the silhouette score for several cluster numbers you tried. Of these, which number of clusters has the best silhouette score?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: 2 clusters has the best silhouette score. I am guessing 1 cluster would be even better as it has no alternatives, but it throws an error.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Cluster Visualization

      Once you've chosen the optimal number of clusters for your clustering algorithm using the scoring metric above, you can now visualize the results by executing the code block below. Note that, for experimentation purposes, you are welcome to adjust the number of clusters for your clustering algorithm to see various visualizations. The final visualization provided should, however, correspond with the optimal number of clusters.

      + +
      +
      +
      +
      +
      +
      In [24]:
      +
      +
      +
      # Display the results of the clustering from implementation
      +vs.cluster_results(reduced_data, preds, centers, pca_samples)
      +
      +# the black X are my samples, the round circles the cluster centers.
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Implementation: Data Recovery

      Each cluster present in the visualization above has a central point. These centers (or means) are not specifically data points from the data, but rather the averages of all the data points predicted in the respective clusters. For the problem of creating customer segments, a cluster's center point corresponds to the average customer of that segment. Since the data is currently reduced in dimension and scaled by a logarithm, we can recover the representative customer spending from these data points by applying the inverse transformations.

      +

      In the code block below, you will need to implement the following:

      +
        +
      • Apply the inverse transform to centers using pca.inverse_transform and assign the new centers to log_centers.
      • +
      • Apply the inverse function of np.log to log_centers using np.exp and assign the true centers to true_centers.
      • +
      + +
      +
      +
      +
      +
      +
      In [25]:
      +
      +
      +
      # This shows the cluster centers on the first 2 components of PCA.
      +
      +# TODO: Inverse transform the centers
      +log_centers = pca.inverse_transform(centers) # recovers original features from pca dimensions
      +#print("log centers", log_centers)
      +
      +# TODO: Exponentiate the centers
      +true_centers = np.exp(log_centers) # recover original values from log values
      +#print("true centers" ,true_centers)
      +
      +# Display the true centers
      +segments = ['Segment {}'.format(i) for i in range(0,len(centers))]
      +true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys())
      +true_centers.index = segments
      +
      +# order features, so can focus on comparison not retrieval
      +tmp = true_centers
      +ordered = pd.DataFrame(tmp.Frozen)
      +ordered["Fresh"] = tmp.Fresh
      +ordered["Delicatessen"] = tmp.Delicatessen
      +ordered["Detergents_Paper"] = tmp.Detergents_Paper
      +ordered["Grocery"] = tmp.Grocery
      +ordered["Milk"] = tmp.Milk
      +true_centers = ordered
      +
      +
      +tmp = data
      +ordered = pd.DataFrame(tmp.Frozen)
      +ordered["Fresh"] = tmp.Fresh
      +ordered["Delicatessen"] = tmp.Delicatessen
      +ordered["Detergents_Paper"] = tmp.Detergents_Paper
      +ordered["Grocery"] = tmp.Grocery
      +ordered["Milk"] = tmp.Milk
      +data = ordered
      +
      +display(true_centers)
      +
      +display(data.describe())
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      FrozenFreshDelicatessenDetergents_PaperGroceryMilk
      Segment 02196.09468.0799.0343.02624.02067.0
      Segment 11068.05174.01101.04536.011581.07776.0
      +
      +
      + +
      + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      FrozenFreshDelicatessenDetergents_PaperGroceryMilk
      count440.000000440.000000440.000000440.000000440.000000440.000000
      mean3071.93181812000.2977271524.8704552881.4931827951.2772735796.265909
      std4854.67333312647.3288652820.1059374767.8544489503.1628297380.377175
      min25.0000003.0000003.0000003.0000003.00000055.000000
      25%742.2500003127.750000408.250000256.7500002153.0000001533.000000
      50%1526.0000008504.000000965.500000816.5000004755.5000003627.000000
      75%3554.25000016933.7500001820.2500003922.00000010655.7500007190.250000
      max60869.000000112151.00000047943.00000040827.00000092780.00000073498.000000
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 8

      Consider the total purchase cost of each product category for the representative data points above, and reference the statistical description of the dataset at the beginning of this project. What set of establishments could each of the customer segments represent?
      +Hint: A customer who is assigned to 'Cluster X' should best identify with the establishments represented by the feature set of 'Segment X'.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: Comparing the feature values for each segment with the statistical description of each feature, it seems that:

      +

      To be fair, i am not sure how to answer these very well, as I find it hard to get myself interested in food establishments and what they might buy. It might be more interesting to segment drivers for economic performance, predictors of burglary or maybe internet user groups. However, here my attempt.

      +

      PC:

      +
        +
      • Dim 2 represents Frozen, Fresh and Deli. A higher value means more of these.
      • +
      • Dim 1 represents Detergents_Paper, Grocery and milk. A higher value means more of these.
      • +
      +

      Clusters:

      +
        +
      • Segment 0 (any dim2, <0.5 dim1). Here I expect it to have any value for dim2 features be lower on dim1 features than Segment 1 and on the lower end of the distribution for those features. Thus, it would have low Detergents_Paper, Grocery and Milk, so low consumer retail spending. This could represent a restaurant, food market, hotel.
      • +
      • Segment 1 (any dim2, >=0.5 dim1). Here I expect any dim2 features and higher values on dim1 features, and also at the higher end of the distribution for those features. So high Detergents_Paper, Grocery and Milk, indicating retail spending like a supermarket.
      • +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 9

      For each sample point, which customer segment from Question 8 best represents it? Are the predictions for each sample point consistent with this?

      +

      Run the code block below to find which cluster each sample point is predicted to be.

      + +
      +
      +
      +
      +
      +
      In [26]:
      +
      +
      +
      # Display the predictions
      +for i, pred in enumerate(sample_preds):
      +    print "Sample point", i, "predicted to be in Cluster", pred
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Sample point 0 predicted to be in Cluster 0
      +Sample point 1 predicted to be in Cluster 0
      +Sample point 2 predicted to be in Cluster 1
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Answer: Point 0 is a market as it has a lot of frozen fresh and deli and little detpaper, grocery and milk. This matches the prediction in cluster 0. Point 1 an outlier(as found earlier) so was removed and 2 was and outlier on 2 dimensions so was removed as well. However, Point 2 was high on Det_Paper, Grocery and Milk, so would be correctly classified as retail in cluster 1.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Conclusion

      +
      +
      +
      +
      +
      +
      +
      +
      +

      In this final section, you will investigate ways that you can make use of the clustered data. First, you will consider how the different groups of customers, the customer segments, may be affected differently by a specific delivery scheme. Next, you will consider how giving a label to each customer (which segment that customer belongs to) can provide for additional features about the customer data. Finally, you will compare the customer segments to a hidden variable present in the data, to see whether the clustering identified certain relationships.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 10

      Companies will often run A/B tests when making small changes to their products or services to determine whether making that change will affect its customers positively or negatively. The wholesale distributor is considering changing its delivery service from currently 5 days a week to 3 days a week. However, the distributor will only make this change in delivery service for customers that react positively. How can the wholesale distributor use the customer segments to determine which customers, if any, would react positively to the change in delivery service?
      +Hint: Can we assume the change affects all customers equally? How can we determine which group of customers it affects the most?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: The distributor could call, survey etc a representative customer, or several, from each segment and ask them. They could use this to extrapolate to all customers from this segment and change his schedule by segment.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 11

      Additional structure is derived from originally unlabeled data when using clustering techniques. Since each customer has a customer segment it best identifies with (depending on the clustering algorithm applied), we can consider 'customer segment' as an engineered feature for the data. Assume the wholesale distributor recently acquired ten new customers and each provided estimates for anticipated annual spending of each product category. Knowing these estimates, the wholesale distributor wants to classify each new customer to a customer segment to determine the most appropriate delivery service.
      +How can the wholesale distributor label the new customers using only their estimated product spending and the customer segment data?
      +Hint: A supervised learner could be used to train on the original customers. What would be the target variable?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: They can transform the estimated spending to principal components using the trained pca on the original data. This would allow them to assign new customers to their clusters.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Visualizing Underlying Distributions

      At the beginning of this project, it was discussed that the 'Channel' and 'Region' features would be excluded from the dataset so that the customer product categories were emphasized in the analysis. By reintroducing the 'Channel' feature to the dataset, an interesting structure emerges when considering the same PCA dimensionality reduction applied earlier to the original dataset.

      +

      Run the code block below to see how each data point is labeled either 'HoReCa' (Hotel/Restaurant/Cafe) or 'Retail' the reduced space. In addition, you will find the sample points are circled in the plot, which will identify their labeling.

      + +
      +
      +
      +
      +
      +
      In [28]:
      +
      +
      +
      # Display the clustering results based on 'Channel' data
      +vs.channel_results(reduced_data, outliers, pca_samples)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 12

      How well does the clustering algorithm and number of clusters you've chosen compare to this underlying distribution of Hotel/Restaurant/Cafe customers to Retailer customers? Are there customer segments that would be classified as purely 'Retailers' or 'Hotels/Restaurants/Cafes' by this distribution? Would you consider these classifications as consistent with your previous definition of the customer segments?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: It seems my cluster 0, or "small place" is gone. However, my two other clusters "supermarket" and "market" are still there. Just that market was Hotels in the end - i guess they also use less Det_Paper, Milk and Grocery than a retailer (to be honest i dont know). There are segments of purely retailers below -2.5 on dim1, and purely horeca above 2 on dim1. These classifications are consistent with my previous definition of segments, although there is a larger overlap region as expected.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
      +File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

      +
      + +
      +
      +
      +
      +
      + + + + + + diff --git a/customer_segments/customer_segments.ipynb b/customer_segments/customer_segments.ipynb new file mode 100644 index 0000000..68cb284 --- /dev/null +++ b/customer_segments/customer_segments.ipynb @@ -0,0 +1,1821 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Unsupervised Learning\n", + "## Project: Creating Customer Segments" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Welcome to the third project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `'TODO'` statement. Please be sure to read the instructions carefully!\n", + "\n", + "In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. \n", + "\n", + ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started\n", + "\n", + "In this project, you will analyze a dataset containing data on various customers' annual spending amounts (reported in *monetary units*) of diverse product categories for internal structure. One goal of this project is to best describe the variation in the different types of customers that a wholesale distributor interacts with. Doing so would equip the distributor with insight into how to best structure their delivery service to meet the needs of each customer.\n", + "\n", + "The dataset for this project can be found on the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Wholesale+customers). For the purposes of this project, the features `'Channel'` and `'Region'` will be excluded in the analysis — with focus instead on the six product categories recorded for customers.\n", + "\n", + "Run the code block below to load the wholesale customers dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wholesale customers dataset has 440 samples with 6 features each.\n", + "It shows the spending per wholesale customer on that category per year.\n" + ] + }, + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      FreshMilkGroceryFrozenDetergents_PaperDelicatessen
      0126699656756121426741338
      1705798109568176232931776
      \n", + "
      " + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 12669 9656 7561 214 2674 1338\n", + "1 7057 9810 9568 1762 3293 1776" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from IPython.display import display # Allows the use of display() for DataFrames\n", + "\n", + "# Import supplementary visualizations code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the wholesale customers dataset\n", + "try:\n", + " data = pd.read_csv(\"customers.csv\")\n", + " data.drop(['Region', 'Channel'], axis = 1, inplace = True)\n", + " print \"Wholesale customers dataset has {} samples with {} features each.\".format(*data.shape)\n", + " print(\"It shows the spending per wholesale customer on that category per year.\")\n", + " display(pd.DataFrame(data.head(2)))\n", + "except:\n", + " print \"Dataset could not be loaded. Is the dataset missing?\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Exploration\n", + "In this section, you will begin exploring the data through visualizations and code to understand how each feature is related to the others. You will observe a statistical description of the dataset, consider the relevance of each feature, and select a few sample data points from the dataset which you will track through the course of this project.\n", + "\n", + "Run the code block below to observe a statistical description of the dataset. Note that the dataset is composed of six important product categories: **'Fresh'**, **'Milk'**, **'Grocery'**, **'Frozen'**, **'Detergents_Paper'**, and **'Delicatessen'**. Consider what each category represents in terms of products you could purchase." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      FreshMilkGroceryFrozenDetergents_PaperDelicatessen
      count440.000000440.000000440.000000440.000000440.000000440.000000
      mean12000.2977275796.2659097951.2772733071.9318182881.4931821524.870455
      std12647.3288657380.3771759503.1628294854.6733334767.8544482820.105937
      min3.00000055.0000003.00000025.0000003.0000003.000000
      25%3127.7500001533.0000002153.000000742.250000256.750000408.250000
      50%8504.0000003627.0000004755.5000001526.000000816.500000965.500000
      75%16933.7500007190.25000010655.7500003554.2500003922.0000001820.250000
      max112151.00000073498.00000092780.00000060869.00000040827.00000047943.000000
      \n", + "
      " + ], + "text/plain": [ + " Fresh Milk Grocery Frozen \\\n", + "count 440.000000 440.000000 440.000000 440.000000 \n", + "mean 12000.297727 5796.265909 7951.277273 3071.931818 \n", + "std 12647.328865 7380.377175 9503.162829 4854.673333 \n", + "min 3.000000 55.000000 3.000000 25.000000 \n", + "25% 3127.750000 1533.000000 2153.000000 742.250000 \n", + "50% 8504.000000 3627.000000 4755.500000 1526.000000 \n", + "75% 16933.750000 7190.250000 10655.750000 3554.250000 \n", + "max 112151.000000 73498.000000 92780.000000 60869.000000 \n", + "\n", + " Detergents_Paper Delicatessen \n", + "count 440.000000 440.000000 \n", + "mean 2881.493182 1524.870455 \n", + "std 4767.854448 2820.105937 \n", + "min 3.000000 3.000000 \n", + "25% 256.750000 408.250000 \n", + "50% 816.500000 965.500000 \n", + "75% 3922.000000 1820.250000 \n", + "max 40827.000000 47943.000000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display a description of the dataset\n", + "display(data.describe()) # shows per column statistics from dataset. Columns contain usd values for spending.\n", + "\n", + "from sklearn.preprocessing import StandardScaler\n", + "scaler = StandardScaler()\n", + "\n", + "# normalise columns around mean to check distribution\n", + "norm_data = scaler.fit_transform(data)\n", + "\n", + "norm_data = pd.DataFrame(norm_data, columns=data.columns)\n", + "# plot\n", + "#norm_data.hist(bins=200)\n", + "# they all seems quite biased to low values\n", + "\n", + "# describe\n", + "#display(norm_data.describe())\n", + "\n", + "\n", + "#norm_data.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Selecting Samples\n", + "To get a better understanding of the customers and how their data will transform through the analysis, it would be best to select a few sample data points and explore them in more detail. In the code block below, add **three** indices of your choice to the `indices` list which will represent the customers to track. It is suggested to try different sets of samples until you obtain customers that vary significantly from one another." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Chosen samples of wholesale customers dataset:\n" + ] + }, + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      FrozenFreshDelicatessenDetergents_PaperGroceryMilk
      0132232716719029221282801
      1156013550157021333
      236851423242314582820959
      \n", + "
      " + ], + "text/plain": [ + " Frozen Fresh Delicatessen Detergents_Paper Grocery Milk\n", + "0 13223 27167 1902 92 2128 2801\n", + "1 15601 3 550 15 7021 333\n", + "2 36 85 1423 24231 45828 20959" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAF8CAYAAAAOxG6WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlAVXX+//HXhXsBgYtbSI2JS4plpSJqG1pqZZtlVhqW\nmWI6KOaSioqC+xrmpOGWpZlCTlZTMzWVaDou4yiuuTRmJa6FO/t27++PftH4rbyXQg738Hz8M8Px\nzb3vz31zZ3hxzj0fi9PpdAoAAAAATMzL6AYAAAAA4Goj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIP\nAAAAANMj+AAAAAAwPavRDbgrMzPL6Bauqpo1/XX+fK7RbeB3Yn6ei9l5Nubn2Zif52J2ns3s8wsO\ntv/qcc74VBJWq7fRLeAPYH6ei9l5Nubn2Zif52J2nq2qzo/gAwAAAMD0CD4AAAAATI/gAwAAAMD0\nCD4AAAAATI/gAwAAAMD0CD4AAAAATI/gAwAAAMD0PGYDUwAAAKC89J2xrlwf743RHV3WnDp1Ur17\nRyksrGnpsYiINurT54Vy7QW/juADAAAAVJAGDRpq/vzFRrdRJRF8AAAAAIPs3LlDCxbMk81m06OP\nPq7atWtr8eIF8vX1VVBQdY0Zk6CdO3for39NkSRlZv6gOnVCNG/eIi1cOF979uySw+FQjx7PqGPH\nexUb219NmjTVN98cUW5utiZPnqlrr73O4FVWDgQfAAAAoIJ89923io3tX/r1o48+rsLCQi1ZslxO\np1Pduz+m5OTXFRxcR6tXp2j58qWKjR2qu+/uoJMnTyghYYzi4ydo69bNOnXqhBYsWKqCggINGNBH\nbdrcJkm66aabNWTIS1q06DV9/vmn6tXreYNWW7kQfAAAAIAK8n8vddu5c4dCQ+tLki5cuCB//wAF\nB9eRJLVsGa5Fi5IlSWfPntH48aM1dmyirr32OqWlfaavvjpUGqKKi4t1+vRJSSr9DFFISIjOnj1b\nYWur7Ag+AAAAgIG8vCySpBo1aig3N0dnzpzRNddco927d6pevVBlZWVpzJgRGjx4mG64obEkqX79\nBgoPb624uHg5HA4tW/a66ta9XpJksVgMW0tlRvABADdk7JrksiY0PKECOgEAmJXFYtGoUfGKjx8p\nLy+L7PYgjR07QYsXJ+vMmUy9+eYSlZSUyGazac6c+dq1K10DB/ZTXl6u2rfvIH//AKOXUKlZnE6n\n0+gm3JGZmWV0C1dVcLDd9Gs0M+bnudydHcGncuK959mYn+didp7N7PMLDrb/6nE2MAUAAABgegQf\nAAAAAKZH8AEAAABgegQfAAAAAKZH8AEAAABgegQfAAAAAKbHPj4AAACocgatG1Wuj/dax1kua06d\nOqnevaMUFta09FhERBv16fNCmZ9v584d+tvf1mjixOll/t6qiuADAAAAVJAGDRpq/vzFRrdRJRF8\nAAAAAIPs3LlDCxbMk81m06OPPq6QkGu1eHGyvL299ac/1dWoUfE6efKEpk+fKG9vqxwOhxITp0iS\njh07ppdeelHnz5/TXXe1U3T0AINXU7kRfAAAAIAK8t133yo2tn/p148++rgKCwu1ZMlyOZ1ORUU9\noQULXlfNmrW0ZMkCffzxRyoqKtJNN92sgQOHaM+eXcrJyZYkFRYWavr0l+VwOPTEEw8TfFwg+AAA\nAAAV5P9e6rZz5w6FhtaXJF24cF5nz57R+PGjJUkFBQVq0+Y29e4drZUrl+ullwYrICBQAwYMkiQ1\nanSDfHx8JEne3vxa7wqvEAAAAGAgLy+LJKl69RqqU6eOZsyYo8DAQG3atEHVqvlr06YNatEiXH37\n9tfnn/9TK1cu1wMPPCyLxeDGPQzBBwAAAKgEvLy8NGTICI0cOUROp1P+/gEaP36icnNzNWVKopYv\nXyqHw6HBg4eXXu4G91mcTqfT6CbckZmZZXQLV1VwsN30azQz5ue53J1dxq5JLmtCwxPKoyWUAe89\nz8b8PBez82xmn19wsP1Xj7OBKQAAAADTI/gAAAAAMD2CDwAAAADTI/gAAAAAMD2CDwAAAADTI/gA\nAAAAMD328QEAAECV899+z5fr44W9vsxlzc6dO5SQMEYNGjSUJBUXF+upp6LUqdN9v1ofG9tfI0eO\n1f79+xQUFKTIyLvd7uf06dP6+uv/KjKyvdvfY3YEHwAAAKCCRES01sSJ0yVJubm5io3tr9DQUDVp\n0vQ3v+ehh7qU+Xl27tyuo0e/I/j8D4IPAAAAYAB/f3899lg3rV+fprS0z7Vnzy45HA716PGMOna8\nt7Ru6dJFql27th577Am98sosHTy4X0VFxYqO7q8772yn2bOn6YcfvtfZs2d0113tFR09QG+/vUz5\n+fm69dbmuu66upo7d7acTqeqV6+upKTZOn/+vBITx8jhcKiwsFAjR45RaGgDJSSMVk5OjvLz89W/\n/0C1bXu71q1bq3feWSkvLy81b95SMTGDtXTpIp06dVLnz5/X99+f0uDBw3XbbXcY+Gq6RvABAAAA\nDFKrVi2lpr6tsLCmWrBgqQoKCjRgQB+1aXPbL2o3bvxCFy9e0JIlb+nSpUt6552Vatw4TDfffKtG\njx6vgoICdev2kPr3H6hnn33+/5/xuVv9+z+vMWMS1LBhI/397x/o9ddfV6NGNyooqLrGj5+ob7/9\nVnl5eTpx4rguXryopKRXdf78eR07dlSXLl3UG28s0uuvr5Cfn58mTx6v7dv/LUmy2XyUlPSqtm//\nt1JSVhJ8AAAAAPy606dP6/77H9Snn36s2Nj+kn787M/p0yd/UZuRcVQ339xckhQUFKQXXohRTk62\nDh7cr507dyggIECFhUW/+L6jR79VUtIMSVJJSbEaN75BPXv21fHjGRo9+iVZrVb17h2tRo1u0GOP\nddOECfEqLi7Wk08+rePHj+nChfMaMeJFST9ennfixHFJUljYj5fn1alzrQoLC8r/xSlnBB8AAADA\nADk52froo/f1yCNdFR7eWnFx8XI4HFq27HXVrXv9L+obNGig9evTJEnZ2dlKSBitO+6IVGCgXaNG\nxev48WP68MP35XQ6ZbFY5HQ6JEmhofU1btwkXXvttdq7d7eKinK0a1e6ate+Rq+88pq+/HKvFi16\nTUOHjlRubo5mz/6Lzpw5o5iYvlq8eLnq1AnR3LnJslqt+vjjj9SkSZg2bvxCFkuFvlx/GMEHAAAA\nqCDp6TsUG9tf3t7eKikpUXT0ALVv30Hz57+igQP7KS8vV+3bd5C/f8Avvjcy8m7t2PEfxcREq6Sk\nRH36vKCQkGs1ceI47d+/TzabTddfX09nzmTqhhsa66233lBY2I166aUxmjIlQSUlJbJYLJo1a4ZK\nSqxKTByr999/t/Sxrr++nt58c7HWrVsrh8Oh6OgBqlmzpnr0eEaxsf1VUlKi6677kzp2/PW70FV2\nFqfT6TS6CXdkZmYZ3cJVFRxsN/0azYz5eS53Z5exa5LLmtDwhPJoCWXAe8+zMT/Pxew8m9nnFxxs\n/9XjbGAKAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABMj318AAAAUOUs\nmPFFuT5ezOh7XNbs3LlDCQlj1KBBQ0lScXGxnnoqSp06/fq+OEeOfK2srEtq2bJVebZ6RWvWvKMn\nnuhRpu9ZunSRPv/8U11zzTWyWCwqKipS//4D1apV66vU5e/jVvA5e/asunXrpjfeeENWq1WjR4+W\nxWJRkyZNlJiYKC8vL61evVqpqamyWq2KiYlRhw4dlJ+fr5EjR+rs2bMKCAjQzJkzVatWLe3evVtT\np06Vt7e3IiMjFRsbe7XXCQAAABguIqK1Jk6cLknKzc1VbGx/hYaGqkmTpr+o/eKLNNWuXbtCg8/y\n5W+UOfhI0tNP91TXrk9Kkr777ltNmjROb7yxsrzb+0NcBp+ioiIlJCTIz89PkjR9+nQNHTpUt912\nmxISEpSWlqaWLVtqxYoVWrNmjQoKCtSzZ0/dddddSklJUVhYmAYPHqx//OMfSk5O1rhx45SYmKh5\n8+apXr166t+/vw4cOKBmzZpd9cUCAAAAlYW/v78ee6yb1q9PU1ra59qzZ5ccDod69HhGt97aXJ98\n8ndZrTaFhd2ogoICLV6cLG9vb/3pT3U1alS8PvvsE/3jHx/K4XAoOnqATp8+qTVrVisoqLqsVps6\ndbpP99//oGbPnqbjx4/J4XDohRdi1LlzB/Xu/bRatmylI0e+liTNmDFHa9a8o0uXLurll2eoe/co\nTZ8+Ud7eVjkcDiUmTlFIyLVurevSpYuqVs1f0o9nkDZsWK+8vDzVqFFD06a9rM8//6f+9a8vlJub\nqwsXLqhPn366555O2rUr3eUaW7du+7tfb5fBZ+bMmXr66ae1ePFiSdL+/fvVtu2PT9i+fXtt3rxZ\nXl5eCg8Pl4+Pj3x8fBQaGqpDhw4pPT1d/fr1K61NTk5Wdna2CgsLFRoaKkmKjIzUli1bCD4AAACo\ncmrVqqXU1LcVFtZUCxYsVUFBgQYM6KN58xbpwQcfUe3atXXTTTcrKuoJLVjwumrWrKUlSxbo448/\nktVqld1u14wZc3ThwgW9/PIMLVu2SjabTS+++GdJ0kcffaDq1WtozJgEXbx4QYMG9Vfnzh2Uk5Oj\ne+/trGHDRmnixHH69783q3fvaK1Zs1ojRozWmjWrddNNN2vgwCHas2eXcnKyr7iO1NRVWrv2M3l7\neyswMFBxcfFyOBy6ePGi5s5NlpeXl4YPj9XBg/slSXl5eXrlldd04cJ5vfBCb0VG3q2ZM6decY1/\n1BWDz3vvvadatWqpXbt2pcHH6XTKYrFIkgICApSVlaXs7GzZ7fbS7wsICFB2dvZlx/+3NjAw8LLa\nY8eOuWy0Zk1/Wa3eZV+hBwkOtrsuQqXF/DyXO7PLKKfHQfnjdfdszM9zMbvLufN61KjhL19f22W1\n2dnn1bXrY/rwww81fPjA/3/UoYKCiwoI8FVgoJ+8vYt07twZTZ48TpKUn5+vO++8U/Xr11fTpk0U\nHGzXiRNH1LRpE9WrFyxJatu2tex2P3377X+Vnp6u4cMPlT72uXPn5O3tpTvvbC0/Pz81aFBPvr5e\nCg62y8vLouBgu/r0eVZLlizR6NFDZbfbNWzYsN9cY0CAr/r166uoqKhfWXOgpk9PlL+/v86dO6PA\nQB/Z7X666647FBJSXSEh1VWzZg05HLku1/hHXTH4rFmzRhaLRVu3btXBgwcVFxenc+fOlf57Tk6O\ngoKCFBgYqJycnMuO2+32y45fqTYoKMhlo+fP55Z5cZ4kONiuzMwso9vA78T8PFd5zo6fgYrHe8+z\nMT/Pxex+yZ3X48KFXBUUFJXW5uRkKyUlVY880lXNm7cqPUuybNnr8vevqby8Il26lKfiYquCg+to\n0qRZCgwM1KZNG1Stmr++//608vOLlZmZpYCA2jp8+GsdP54pm81H6em7FBz8J9WpU1f33FNTzz3X\nVwUF+Vq+/A3VqFFDJSUOnTmTLV/fIuXmFiorK1+ZmVkqKXEoMzNLaWmfqXHjZurRo7c+//yfmj9/\ngcaOTfzVdeXkFMjPL/8Xr8HXXx/WJ598qiVLlis/P1/R0c/qwoVcZWXla+fOPcrMzNK5c2d18WKW\nvL0DXK7RXb8Vkq4YfFau/PkDSb169dKECRM0e/Zsbdu2Tbfddps2btyo22+/Xc2bN9fcuXNVUFCg\nwsJCHTlyRGFhYWrVqpU2bNig5s2ba+PGjYqIiFBgYKBsNpsyMjJUr149bdq0iZsbAAAAoEpIT9+h\n2Nj+8vb2VklJiaKjB6h9+w6aP/8VDRzYT3l5uWrfvoP8/QPUtOlNSk7+ixo0aKghQ0Zo5Mghcjqd\n8vcP0PjxE/X996dLH7dGjRp65pneGjjwBQUFBamgoEBWq1WPPdZNM2dOUWxsf+XkZOvxx5+Sl9dv\n72jToEFDTZo0XtHRAzRlSqKWL18qh8OhwYOHl3mt119fT9WqVVNMTF9JUu3a1+jMmUxJ0rlzZzVk\nSIyys7P10ktx8vb2drnGP8ridDqd7hT+FHy8vLw0fvx4FRUVqVGjRpoyZYq8vb21evVqvfPOO3I6\nnRowYIA6d+6svLw8xcXFKTMzUzabTUlJSQoODtbu3bs1bdo0lZSUKDIyUsOGDXP5/Gb/qwJ/OfFs\nzM9zuTu7jF2TXNaEhieUR0soA957no35eS5mV/kUFxdr5crl6t07Wk6nU4MGvaD+/Qf+6h3hjJ7f\nxx9/pKNHv1NMzOCr8vi/64zP/1qxYkXpf3/77bd/8e/du3dX9+7dLztWrVo1vfrqq7+obdmypVav\nXu3uUwMAAAC4AqvVqvz8fPXt+4ysVpuaNbtFLVqEl9vjFxUVadiwQb84HhpaX6NGxZfb81xNbGAK\nAAAAmMCAAYM0YMAvw0l5sNlsmj9/cbk81kMPdSmXxymr377ADwAAAABMguADAAAAwPQIPgAAAABM\nj+ADAAAAwPS4uQEAAACqHHe2KSgLd7c0OHHiuBYseFU//PCD/Pz85Ovrq5iYF9Wo0Q3l2g9+ieAD\nAAAAVID8/HyNHj1ccXHjdMstzSVJBw58qTlzZpbbHdPw2wg+AAAAQAXYvHmjIiLalIYeSWrW7BbN\nm7dIU6dO0MWLF3Xp0kXNmjVXy5cv1d69uyVJ9933gLp3j9KxYxmaOXOKioqK5OfnpwkTpqmwsECz\nZk1TQUG+fH39NGrUWDkcDsXFDVNQUHW1atVa//znP5SS8p68vb2VnPyq2rQJV5s27Yx6GQxD8AEA\nAAAqwMmTJ1W3br3Sr0ePHq7s7GydPXtGdepcqzvvvEs9ejyjzZv/pVOnTmrx4mUqKSlRTEy0IiLa\naMmSZD377PO6/fY7tWnTBh0+/JX+/ve/6ckne+iOO+7Sjh3/0cKF89W//0CdO3dWS5e+LZvNppMn\nT+g//9mqtm3v0LZtWzRmzEhdvFhg4CthDIIPAAAAUAFCQkJ06NCB0q9nzJgjSerf/3nVqVNHoaH1\nJUlHj36rFi1aymKxyGq16uabb9V3332jjIyjpWeLIiPvliS9+mqSVqx4UytXLpckeXv/+Ov9ddf9\nSTabTZLUpcvjevfdVDkcTrVu3VY+Pj6Sql7w4a5uAAAAQAWIjLxbO3b8R19+ua/02PHjx5SZ+YNO\nnz4li+XHX83r129YeplbcXGxvvxyr66/PlT16zfUwYP7JUmfffaJ3n03VaGhDRQTM1jz5y/WyJFj\n1aFDJ0kqfSxJatGipU6cOK6///1vevjhxypquZUOZ3wAAACACuDv76+ZM1/RwoXztHDhWZWUFMvL\ny1uDBw/X1q2bSuvuuquddu1K14ABfVRUVKSOHe9V06Y3atCgIZo9e5qWL18qPz8/JSRM1h13RCop\naYYKCwtVUJCvIUNG/Opz33//A1q/Pq1K3z3O4nQ6nUY34Y7MzCyjW7iqgoPtpl+jmTE/z+Xu7Ny5\n7am7tzJF+eG959mYn+didp5n1aq3FBRUXY888pjp5xccbP/V41zqBgAAAJjY1KkTtH37Nt1//4NG\nt2IoLnUDAAAATCw+foLRLVQKnPEBAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACmx80NAAAAUOWM\n3X64XB9vWpsmLmt27tyhF1/8syZMmKp77+1cerx376cVFnajcnJyNG3abMXG9tfIkWO1du2nql27\ntrp2fbJce62qOOMDAAAAVJD69RsoLe2z0q+PHPlaeXl5kqRp02Yb1VaVQPABAAAAKkjjxk10+vQp\nZWdnS5I+/fTj0v11Hn20869+z/Hjx/TCC8/p66/L9yxVVUPwAQAAACrQ3Xd31IYN6+R0OnXw4H7d\nckvz36zNyDiqiRPjlZAwRY0bu76cDr+N4AMAAABUoPvue0BpaZ9p9+6datEi/Iq1//73FuXn58vL\ni1/b/yheQQAAAKAC1a17vfLy8vTuu6mll7n9lu7do/Tii8M1deoElZSUVFCH5kTwAQAAACpYp073\n6YcfvldoaH2XtW3a3K4GDRpq5crlFdCZeVmcTqfT6CbckZmZZXQLV1VwsN30azQz5ue53J1dxq5J\nLmtCwxPKoyWUAe89z8b8PBez82xmn19wsP1Xj3PGBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAA\nmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwA\nAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDp\nEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAA\nAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpWV0VlJSUaNy4\ncfr2229lsVg0ceJE+fr6avTo0bJYLGrSpIkSExPl5eWl1atXKzU1VVarVTExMerQoYPy8/M1cuRI\nnT17VgEBAZo5c6Zq1aql3bt3a+rUqfL29lZkZKRiY2MrYr0AAAAAqiCXZ3zWr18vSUpNTdXQoUP1\nyiuvaPr06Ro6dKhWrVolp9OptLQ0ZWZmasWKFUpNTdXSpUs1Z84cFRYWKiUlRWFhYVq1apW6du2q\n5ORkSVJiYqKSkpKUkpKiPXv26MCBA1d3pQAAAACqLJdnfO69917dc889kqSTJ08qKChIW7ZsUdu2\nbSVJ7du31+bNm+Xl5aXw8HD5+PjIx8dHoaGhOnTokNLT09WvX7/S2uTkZGVnZ6uwsFChoaGSpMjI\nSG3ZskXNmjX7zT5q1vSX1er9R9dbqQUH241uAX8A8/Nc7swuo5weB+WP192zMT/Pxew8W1Wcn8vg\nI0lWq1VxcXH6/PPP9eqrr2rz5s2yWCySpICAAGVlZSk7O1t2+88vYEBAgLKzsy87/r+1gYGBl9Ue\nO3bsij2cP59b5sV5kuBguzIzs4xuA78T8/Nc5Tk7fgYqHu89z8b8PBez82xmn99vhTq3b24wc+ZM\nffrppxo/frwKCgpKj+fk5CgoKEiBgYHKycm57Ljdbr/s+JVqg4KCyrwoAAAAAHCHy+DzwQcfaNGi\nRZKkatWqyWKx6JZbbtG2bdskSRs3blTr1q3VvHlzpaenq6CgQFlZWTpy5IjCwsLUqlUrbdiwobQ2\nIiJCgYGBstlsysjIkNPp1KZNm9S6deuruEwAAAAAVZnLS93uv/9+jRkzRs8884yKi4s1duxY3XDD\nDRo/frzmzJmjRo0aqXPnzvL29lavXr3Us2dPOZ1ODRs2TL6+voqKilJcXJyioqJks9mUlJQkSZo4\ncaJGjBihkpISRUZGqkWLFld9sQAAAACqJovT6XQa3YQ7zHwdomT+ay3Njvl5Lndnl7Frksua0PCE\n8mgJZcB7z7MxP8/F7Dyb2ef3hz/jAwAAAACeiuADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABM\nj+ADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAA\nAABMj+ADAAAAwPSsRjfg6QatG+Wy5rWOsyqgEwAAAAC/hTM+AAAAAEyP4AMAAADA9Ag+AAAAAEyP\n4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAA\nAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+\nAAAAAEzPanQDAGCkSS995Fbdw52vciMAAOCq4owPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAw\nPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAA\nAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj\n+AAAAAAwPYIPAAAAANOzGt0AAJjF2O2HXdZMa9OkAjoBAAD/F2d8AAAAAJgewQcAAACA6V3xUrei\noiKNHTtWJ06cUGFhoWJiYtS4cWONHj1aFotFTZo0UWJiory8vLR69WqlpqbKarUqJiZGHTp0UH5+\nvkaOHKmzZ88qICBAM2fOVK1atbR7925NnTpV3t7eioyMVGxsbEWtFwAAAEAVdMUzPh9++KFq1Kih\nVatW6fXXX9fkyZM1ffp0DR06VKtWrZLT6VRaWpoyMzO1YsUKpaamaunSpZozZ44KCwuVkpKisLAw\nrVq1Sl27dlVycrIkKTExUUlJSUpJSdGePXt04MCBClksAAAAgKrpisHngQce0JAhQyRJTqdT3t7e\n2r9/v9q2bStJat++vbZs2aK9e/cqPDxcPj4+stvtCg0N1aFDh5Senq527dqV1m7dulXZ2dkqLCxU\naGioLBaLIiMjtWXLlqu8TAAAAABV2RUvdQsICJAkZWdn68UXX9TQoUM1c+ZMWSyW0n/PyspSdna2\n7Hb7Zd+XnZ192fH/rQ0MDLys9tixYy4brVnTX1ard9lXWAkEB9tdF5WhDpUT84M7+Dkpf7ymno35\neS5m59mq4vxc3s761KlTGjRokHr27KkuXbpo9uzZpf+Wk5OjoKAgBQYGKicn57Ljdrv9suNXqg0K\nCnLZ6PnzuWVaWGWSmZnlsiY42O5WHSon5gd38XNSvnjveTbm57mYnWcz+/x+K9Rd8VK3M2fOqG/f\nvho5cqSefPJJSVKzZs20bds2SdLGjRvVunVrNW/eXOnp6SooKFBWVpaOHDmisLAwtWrVShs2bCit\njYiIUGBgoGw2mzIyMuR0OrVp0ya1bt26PNcKAAAAAJe54hmfhQsX6tKlS0pOTi69MUF8fLymTJmi\nOXPmqFGjRurcubO8vb3Vq1cv9ezZU06nU8OGDZOvr6+ioqIUFxenqKgo2Ww2JSUlSZImTpyoESNG\nqKSkRJE1rqmmAAAUCUlEQVSRkWrRosXVXykAAACAKsvidDqdRjfhjsp6Om7QulEua17rOMtljdlP\nOZod8/NcC2Z84Vbdw503uqxZWBzlsmZamyZuPR/cw3vPszE/z8XsPJvZ5/e7LnUDAAAAADMg+AAA\nAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj\n+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPavRDQAA\nAAC4skHrRrmsea3jrAroxHNxxgcAAACA6RF8AAAAAJgewQcAAACA6RF8AAAAAJgewQcAAACA6RF8\nAAAAAJgewQcAAACA6RF8AAAAAJgeG5jClPrOWOey5o3RHSugEwAAAFQGnPEBAAAAYHoEHwAAAACm\nR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAA\nAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHpWoxuorPrOWOdWXbW2V7kR\nAAAAAH8YZ3wAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAA\nmB77+AAAALcNWjfKZc1rHWdVQCcAUDac8QEAAABgegQfAAAAAKZH8AEAAABgegQfAAAAAKZH8AEA\nAABgegQfAAAAAKZH8AEAAABgegQfAAAAAKZH8AEAAABgelajGwAAAABQuWTsmuSyJjQ8oQI6KT9u\nnfHZs2ePevXqJUk6evSooqKi1LNnTyUmJsrhcEiSVq9erW7duql79+5av369JCk/P1+DBw9Wz549\n9cILL+jcuXOSpN27d+upp57S008/rfnz51+NdQEAAABAKZfBZ8mSJRo3bpwKCgokSdOnT9fQoUO1\natUqOZ1OpaWlKTMzUytWrFBqaqqWLl2qOXPmqLCwUCkpKQoLC9OqVavUtWtXJScnS5ISExOVlJSk\nlJQU7dmzRwcOHLi6qwQAAABQpbkMPqGhoZo3b17p1/v371fbtm0lSe3bt9eWLVu0d+9ehYeHy8fH\nR3a7XaGhoTp06JDS09PVrl270tqtW7cqOztbhYWFCg0NlcViUWRkpLZs2XKVlgcAAAAAbnzGp3Pn\nzjp+/Hjp106nUxaLRZIUEBCgrKwsZWdny263l9YEBAQoOzv7suP/WxsYGHhZ7bFjx1w2WrOmv6xW\nb/dXVokEB9tdF5WhDuWjvF9v5gd38HNS/nhNK5+yzIT5eS5mV/mU53svo5yfrzIo880NvLx+PkmU\nk5OjoKAgBQYGKicn57Ljdrv9suNXqg0KCnL5vOfP55a11UojMzPLZU1wsN2tOpSf8ny9mR/cxc9J\n+eK9Vzm5OxPm57mYXeVU0e+9yvoz8FuBrMy3s27WrJm2bdsmSdq4caNat26t5s2bKz09XQUFBcrK\nytKRI0cUFhamVq1aacOGDaW1ERERCgwMlM1mU0ZGhpxOpzZt2qTWrVv/gaUBAAAAwJWV+YxPXFyc\nxo8frzlz5qhRo0bq3LmzvL291atXL/Xs2VNOp1PDhg2Tr6+voqKiFBcXp6ioKNlsNiUlJUmSJk6c\nqBEjRqikpESRkZFq0aJFuS8MAAAAAH7iVvC5/vrrtXr1aklSw4YN9fbbb/+ipnv37urevftlx6pV\nq6ZXX331F7UtW7YsfTwAAAAAuNrKfKkbAAAAAHgagg8AAAAA0yP4AAAAADA9gg8AAAAA0yP4AAAA\nADC9Mt/OGgCAP2LQulFu1b3WcdZV7gQAUJVwxgcAAACA6RF8AAAAAJgewQcAAACA6fEZHwAAUGll\n7JrksiY0PKECOgHg6TjjAwAAAMD0CD4AAAAATI/gAwAAAMD0CD4AAAAATI+bGwAAAAAos7HbD7tV\nN61Nk6vciXsIPkAF4c5EAAAAxuFSNwAAAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACm\nR/ABAAAAYHoEHwAAAACmR/ABAAAAYHpsYAoAADyaO7vHV5ad4wEYhzM+AAAAAEyP4AMAAADA9Ag+\nAAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9LidNQDA1DJ2TXKrLjQ84Sp3AgAwEmd8AAAAAJge\nwQcAAACA6RF8AAAAAJgewQcAAACA6XFzAwAAAKAKmfTSRy5rHu5cAY1UMM74AAAAADA9zvgAACBp\n7PbDLmumtWlSAZ0AAK4Ggg8AAABgoL4z1rmsqda2AhoxOS51AwAAAGB6BB8AAAAApselbgAAQBKX\n21QFg9aNclnzWsdZFdAJUPEIPgAAwBBV9Za6AIxB8DEh7kwEAAAAXI7P+AAAAAAwPYIPAAAAANMj\n+AAAAAAwPT7j40Eydk1yszLqqvYBAADgiru/t4SGJ1zlToAfccYHAAAAgOlxxqcC/Lff8y5rgv+2\n5uo3AgAAANNy53dOSVJjN+tMhjM+AAAAAEyPMz4AgHLTd8Y6lzXV2lZAIzAUf3VGWbD/ICoKwQeA\nabn1yxe/eAEAUCVwqRsAAAAA0yP4AAAAADA9LnUDAFRK3BETAFCeCD4AAI816aWPXNY83LkCGgEA\nVHoEHwAAAA/nzh0VJe6qiKqN4ANcgbu3ZOVyGwAAgMrNsODjcDg0YcIEffXVV/Lx8dGUKVNUv359\no9oBAACA+HwdzMuw4LN27VoVFhbqnXfe0e7duzVjxgwtWLDAqHaASsGdTdwkNnIDABiLz9fBExkW\nfNLT09WuXTtJUsuWLfXll18a1UqlwP+AAGUzaN0olzVDKqAPAADgGSxOp9NpxBPHx8fr/vvv1913\n3y1Juueee7R27VpZrXzsCAAAAED5MmwD08DAQOXk5JR+7XA4CD0AAAAArgrDgk+rVq20ceNGSdLu\n3bsVFhZmVCsAAAAATM6wS91+uqvbf//7XzmdTk2bNk033HCDEa0AAAAAMDnDgg8AAAAAVBTDLnUD\nAAAAgIpC8AEAAABgegQfAAAAAKZH8AEAAABgemycA/xB+/btU1ZWlu68806jWwGqBKfTqX379qmg\noKD0WJs2bQzsCGWRnZ2tjRs3qrCwsPRY165dDewIZZGfn6+PPvpIubm5evDBB1WnTh2jW0IZVPX5\nEXwM8L//Y/9/+fj4VGAn+D3Wrl2radOmycvLS7169dLatWtlt9u1efNmjRw50uj2cAWffPKJHnzw\nQeXm5mrevHk6dOiQbr75ZsXExCggIMDo9uCmwYMH6+zZs7ruuuskSRaLheDjQQYOHKg6depcNj94\njrlz56pVq1aqXr26hg8frrffftvollAGVX1+BB8DdOnSRWfPnlX16tXldDplsVhK/zMtLc3o9uDC\nokWL9MEHHyg3N1dPPPGE1q9fLx8fHz399NNGtwYXUlJS9OCDD2rq1KmqV6+exo0bp61btyohIUFJ\nSUlGtwc3nTlzRqmpqUa3gd/J6XTq5ZdfNroNlMHIkSM1YMAANW7cWMXFxZIkLy8vlZSUGNwZ3MH8\nfkbwMUBKSoqio6O1bNkyVa9e3eh2UEYlJSWlZwcsFkvpXysdDoeRbaEMjh49qqlTp0qSbrjhBn32\n2WcGd4SyaNiwob7//nuFhIQY3Qp+h6ZNm2rPnj266aabSo9xtUPllpiYqEWLFikvL0+9e/fWli1b\nlJeXp7lz5xrdGtzA/H7GBqYG2bRpk7y9vXXHHXcY3QrK6I033tCKFStUt25dhYSE6MyZM/Lz89Mt\nt9yiwYMHG90erqB9+/bq27evvvjiC40aNUrNmjXT3r17NX36dKWkpBjdHtzUuXNnHTt2TLVq1So9\ntmnTJgM7Qlk8+uijys7OLv2aqx08x7Fjx7Rw4UKFhoaqT58+BFYPw/wIPsDvkpWVpWrVqkmSNm7c\nqOrVqysiIsLgruDKwYMH9eWXX2r//v1q0aKF7r77bg0YMECTJk267K/PAICf/e1vf9O7774rPz8/\nxcbGyuFw6M0331THjh25MYUHYH4/41I3g6xdu1Zbt25VVlaWgoKCFBERoQceeIAPeXoAh8Ohbdu2\nyW6368Ybb9Rnn30mLy8v1a9fX9dcc43R7eEKDhw4oO+//15PPvmkRowYoWXLlikvL0/nz583ujWU\nwe7du/Xee++pqKhIkvTDDz9o6dKlBncFd6WlpWnVqlUqKiqS0+nUhQsX9NFHHxndFq4gJSVFqamp\nKiwsVFxcnF555RWFh4fr448/Nro1uIH5/YzgY4CJEyfK4XCoffv2CggIUE5OjjZu3KhNmzaVfu4A\nlVd8fLwkKTMzUxcuXFCPHj0UEBCgcePGaeHChQZ3hytZtWqVVqxYoZiYGC1YsKD0syIDBw7kduQe\nZMKECerXr58+/fRThYWFXfFOmah85s6dq0mTJik1NVW33XabNm/ebHRLcCEsLEyxsbEqLi5Whw4d\nSo8/9NBDBnYFdzG/nxF8DHD48OFf3D6wU6dO3BXMQxw9elSrVq1SYWGhunTpoqeeekqS9M477xjc\nGVyx2Wzy9/dXQECA6tWrJ0kKCQnhTKuHqVmzph555BFt3rxZgwcP1rPPPmt0SyiDOnXqKDw8XKmp\nqerWrZvef/99o1uCC5MmTdKFCxfk6+tbepk3PAfz+5mX0Q1URQ6HQzt27Ljs2Pbt22Wz2QzqCGWV\nnp4uHx8fvfnmm5J+DEP81bny69ixo2JiYtSkSRMNGDBAy5YtU3R0tG6//XajW0MZeHl56fDhw8rL\ny9M333yjixcvGt0SysBms2n79u0qLi7Wv/71Ly419QCffPKJatSoIafTqZkzZ6pPnz56+eWXlZOT\nY3RrcAPz+xk3NzBARkaGpk+frgMHDsjhcOj8+fNq166d4uLi1KBBA6Pbgwtff/215s6dq3nz5sli\nsSg/P1+DBg3S4MGD1bJlS6Pbgwv/+c9/tGnTJp0/f141atRQRESE7rnnHqPbQhkcPnxYhw8fVkhI\niKZOnapHH31Uzz//vNFtwU3ff/+9vvnmGwUHB+svf/mLHnjgAT388MNGt4UreO655/TWW28pPj5e\n9erV03333aetW7dq165d7IHmAZjfz7jUzQAlJSUaNWqUfsqccXFxl32Nys/hcGjs2LHq0qWLxo0b\nJ4vFonPnzhndFtzQtm1btW3b1ug28DsUFxfLarWqfv36ql+/viSxkakHCgkJ0TfffKP09HQNGjRI\nDRs2NLoluIk90Dwb8yP4GKJPnz7y8/NTnTp15HQ6dfToUSUmJkqS3nrrLYO7gyuJiYkaMmSITpw4\noRdffFGffvqpfH191a9fP3Xs2NHo9gDTiouLU1JSUukdMH/6YxH7wHiWOXPm6PTp0zpy5Ih8fHy0\nePFizZkzx+i2cAXfffedli1bJm9vbx04cEDNmjXTvn37Su+siMrtp/lZrdYqPz+CjwHWrFmjxMRE\nRUVF6a677lKvXr0IPB7E4XCUnjHYtm2bateuLUmyWnk7AVfTT5dkrFu3zuBO8Eekp6dr5cqV6tWr\nlx5//HE2D/YAixYt0v79+9WoUSN99dVXqlevniZPnqwxY8YY3RrcsGjRIn355Zdq0KDBZfObOHGi\n0a1VOH5TM0Dt2rU1d+5czZw5U/v27TO6HZRRw4YNFR8fr8mTJ2vGjBmSpMWLF7OHD3CV9erV61fv\nwGexWLR8+XIDOsLvUVJSooKCAlksFpWUlMjLi/ssVXanTp3Sa6+9JqvVqtatW8tut2v16tWlnx1B\n5fb0009r3LhxmjBhQumx1atXG9eQgQg+BrFarYqPj9d7773HZ3s8zJQpU7Ru3brL/s86JCREvXr1\nMrArwPx++uvka6+9pk6dOikiIkJ79+7V+vXrDe4MZfH888/riSee0Llz5/TUU0+pT58+RrcEFxYu\nXKgPPvhADodDQ4YMUWFhoR5//HF+f/EQN954ow4ePKjnnntOgwcPVps2bYxuyTAEH4N169ZN3bp1\nM7oNlIGXl5fuvffey4499thjBnUDVB2NGjWSJJ05c6Z047377rtPK1asMLItlJHNZlO9evVUu3Zt\nWSwWffjhh+rSpYvRbeEKbDabqlevLklKTk5W7969dd1117EHmofw9fVVQkKC9u3bp8WLF2vSpEm6\n/fbbVa9ePT333HNGt1ehCD4AAI/z17/+Vc2bN9euXbvYA83DzJo1S5MnT1ZQUJDRrcBNdevW1fTp\n0zVkyBAFBgZq/vz5io6O1qVLl4xuDW746czcrbfeqnnz5ikrK0vbt2/Xt99+a3BnFY99fAAAHiUz\nM1MLFy7Ud999p8aNG+vPf/6zatasaXRbcFNsbKzmz59vdBsog+LiYn344Yd68MEHVa1aNUk/nnld\ntGiR4uPjDe4Orrz//vt6/PHHjW6jUiD4AAA8zpYtW3Ts2DG1aNFCDRs2lK+vr9EtwU3vv/++UlNT\nSy9dlKTp06cb2BGAqoJL3QAAHoV9YDzbihUr1K9fP9ntdqNbAVDFEHwAAB6FfWA82zXXXFN6cwoA\nqEgEHwCAR2EfGM/m5+en6OhoNWvWrPSuYMOHDze4KwBVAcEHAOBR2AfGs3Xo0MHoFgBUUdzcAADg\nUdLS0vTuu+8qNzdXFotFNptNS5YsMbotAEAlR/ABAHiUzp07/2IfmBtvvNHAjgAAnoBL3QAAHqVJ\nkyZq27at0W0AADwMwQcA4FE6deqkHj16sA8MAKBMCD4AAI/CPjAAgN+D4AMA8CjsAwMA+D0IPgAA\nj8I+MACA34PgAwDwKOwDAwD4PbidNQAAAADT8zK6AQAAAAC42gg+AAAAAEyP4AMAAADA9Ag+AAAA\nAEyP4AMAAADA9P4fBQGBMNIkuQIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Select three indices of your choice you wish to sample from the dataset\n", + "indices = [401, 338, 65]\n", + "\n", + "retailer = data[data[\"Frozen\"]>=9000]\n", + "#print(retailer)\n", + "market = data[data[\"Detergents_Paper\"] >= 8000]\n", + "#print(market)\n", + "\n", + "\n", + "# Create a DataFrame of the chosen samples\n", + "samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True)\n", + "print \"Chosen samples of wholesale customers dataset:\"\n", + "display(samples)\n", + "\n", + "\n", + "# show samples values as bars, also show whole dataset mean values as bars\n", + "import seaborn as sns\n", + "samples = samples.append(data.describe().loc[\"50%\"])\n", + "samples = samples.append(data.describe().loc[\"mean\"])\n", + "samples = samples.append(data.describe().loc[\"25%\"])\n", + "samples = samples.append(data.describe().loc[\"75%\"])\n", + "\n", + "\n", + "samples_as_barchart = samples\n", + "\n", + "#samples_as_barchart = samples\n", + "samples_as_barchart.index = indices + ['median', 'mean', '25%', '75%'] # add mean to x axis\n", + "_ = samples_as_barchart.plot(kind='bar', figsize=(14,6))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1\n", + "Consider the total purchase cost of each product category and the statistical description of the dataset above for your sample customers. \n", + "*What kind of establishment (customer) could each of the three samples you've chosen represent?* \n", + "**Hint:** Examples of establishments include places like markets, cafes, and retailers, among many others. Avoid using names for establishments, such as saying *\"McDonalds\"* when describing a sample customer as a restaurant." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** \n", + "- Example 401 is above median on Fresh, Frozen, Deli, and below on rest. This is could be a food market as it would be higher than the median in those categories . \n", + "- Example 338 are above mean and median and 75 percentile on Frozen, above median on Grocery, below on rest so could be a fish shop selling frozen fish.\n", + "- Example 65 is a high multiple of the IQR on Grocery and milk and detergents paper - it could be a very popular cofee shop." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Feature Relevance\n", + "One interesting thought to consider is if one (or more) of the six product categories is actually relevant for understanding customer purchasing. That is to say, is it possible to determine whether customers purchasing some amount of one category of products will necessarily purchase some proportional amount of another category of products? We can make this determination quite easily by training a supervised regression learner on a subset of the data with one feature removed, and then score how well that model can predict the removed feature.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign `new_data` a copy of the data by removing a feature of your choice using the `DataFrame.drop` function.\n", + " - Use `sklearn.cross_validation.train_test_split` to split the dataset into training and testing sets.\n", + " - Use the removed feature as your target label. Set a `test_size` of `0.25` and set a `random_state`.\n", + " - Import a decision tree regressor, set a `random_state`, and fit the learner to the training data.\n", + " - Report the prediction score of the testing set using the regressor's `score` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO: Make a copy of the DataFrame, using the 'drop' function to drop the given feature\n", + "testDependentFeature = \"Detergents_Paper\"\n", + "\n", + "new_data = data.drop([testDependentFeature], axis=1)\n", + "target = data[testDependentFeature]\n", + "from sklearn.cross_validation import train_test_split\n", + "\n", + "# TODO: Split the data into training and testing sets using the given feature as the target\n", + "X_train, X_test, y_train, y_test = train_test_split(new_data, target, test_size=0.25, random_state=5)\n", + "\n", + "# TODO: Create a decision tree regressor and fit it to the training set\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "regressor = DecisionTreeRegressor(random_state=6)\n", + "regressor.fit(X_train, y_train)\n", + "\n", + "# TODO: Report the score of the prediction using the testing set\n", + "score = regressor.score(X_test, y_test)\n", + "print(\"R-squared for explaining {} is {}\".format(testDependentFeature, score))\n", + "# Detergents_Paper seems to have highest R-squared." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2\n", + "*Which feature did you attempt to predict? What was the reported prediction score? Is this feature necessary for identifying customers' spending habits?* \n", + "**Hint:** The coefficient of determination, `R^2`, is scored between 0 and 1, with 1 being a perfect fit. A negative `R^2` implies the model fails to fit the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** I attempted to predict Detergent_Paper. The prediction score was 0.6606. This means this feature can be explained with around 66% accuracy using all the other features combined. I would say it is still required as this is only slightly better than chance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize Feature Distributions\n", + "To get a better understanding of the dataset, we can construct a scatter matrix of each of the six product features present in the data. If you found that the feature you attempted to predict above is relevant for identifying a specific customer, then the scatter matrix below may not show any correlation between that feature and the others. Conversely, if you believe that feature is not relevant for identifying a specific customer, the scatter matrix might show a correlation between that feature and another feature in the data. Run the code block below to produce a scatter matrix." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Produce a scatter matrix for each pair of features in the data\n", + "# plot each feature against each other feature in pairs.\n", + "pd.scatter_matrix(data, alpha = 0.3, figsize = (14,8), diagonal = 'kde'); \n", + "\n", + "# feature against feature produces the distribution of that feature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check feature distributions\n", + "data.Detergents_Paper.hist(bins=200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3\n", + "*Are there any pairs of features which exhibit some degree of correlation? Does this confirm or deny your suspicions about the relevance of the feature you attempted to predict? How is the data for those features distributed?* \n", + "**Hint:** Is the data normally distributed? Where do most of the data points lie? " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Yes, Detergents Paper seems to correlate with Grocery, and maybe Grocery with Milk a bit. This confirms my suspicions for Detergents ag Grocery by looking at the plot. Further, the data for these features is clearly not normally distributed, but heavily skewed towards lower values, so positively skewed. This means the median falls below the mean. This lack of normal distribution applies to all features in fact, probably due to the fact that there are a lot more small food shops than large ones." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Preprocessing\n", + "In this section, you will preprocess the data to create a better representation of customers by performing a scaling on the data and detecting (and optionally removing) outliers. Preprocessing data is often times a critical step in assuring that results you obtain from your analysis are significant and meaningful." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Feature Scaling\n", + "If data is not normally distributed, especially if the mean and median vary significantly (indicating a large skew), it is most [often appropriate](http://econbrowser.com/archives/2014/02/use-of-logarithms-in-economics) to apply a non-linear scaling — particularly for financial data. One way to achieve this scaling is by using a [Box-Cox test](http://scipy.github.io/devdocs/generated/scipy.stats.boxcox.html), which calculates the best power transformation of the data that reduces skewness. A simpler approach which can work in most cases would be applying the natural logarithm.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign a copy of the data to `log_data` after applying logarithmic scaling. Use the `np.log` function for this.\n", + " - Assign a copy of the sample data to `log_samples` after applying logarithmic scaling. Again, use `np.log`." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 27167 2801 2128 13223 92 1902\n", + "1 3 333 7021 15601 15 550\n", + "2 85 20959 45828 36 24231 1423\n", + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 10.209758 7.937732 7.662938 9.489713 4.521789 7.550661\n", + "1 1.098612 5.808142 8.856661 9.655090 2.708050 6.309918\n", + "2 4.442651 9.950323 10.732651 3.583519 10.095388 7.260523\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAHsCAYAAAD8YBPrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmMZdl93/c5d3/7q1dVXUvv3bP0THNmmuQMKZKiFmtI\niaYMioEkm0gABQEkZwMcRDAc2ElgCPAfSRxASBwDFmDDNKXICGWNbck2SQ3FVbPvM90z01vt66u3\nv7vfe07+uK9qqquruqun95n3/aeruu6779x7fuec3/r9CaUUQwwxxBBDDDHEEEMMMcQQH3Vod3sA\nQwwxxBBDDDHEEEMMMcQQdwJD42eIIYYYYoghhhhiiCGG+FhgaPwMMcQQQwwxxBBDDDHEEB8LDI2f\nIYYYYoghhhhiiCGGGOJjgaHxM8QQQwwxxBBDDDHEEEN8LDA0foYYYoghhhhiiCGGGGKIjwWGxs8Q\nQwwxxBBDDDHEEEMM8bHA0PgZYoghhhhiiCGGGGKIIT4WGBo/QwwxxBBDDDHEEEMMMcTHAsbdHsC1\nMDY2po4dO3a3hzHEPYDZ2VmGsnD/IZWKRCoMTaBr4qbvN5SD+wO3et53YigH9weGcvDxwe2e62th\nKAf3Nu6kbLz66qsbSqnx6113Txs/x44d45VXXrnbwxjiHsCTTz45lIX7DB0v5j+8vUyqFLoQfPWx\naSp586buOZSDex+3Y953YigH9z6GcvDxwZ2Y62thKAf3Lu60bAgh5vZz3TDtbYh9YXbD5Yfvr7Pe\nC+72UIbYAx0vZmbDpePFd3soADS9iFQppso5UqVoetHdHtIQN4H9ytdw3ocAmGu4rHVDyrY5lIN7\nALfzfBiu+fsLd1JXuFdl456O/Axx9+FFCf/gmXd45vUlAAxN8N//tQf4O7/0IELc2dD2EHtjN+8K\nZBtPLW/dUS/cJmp5C10IVro+uhDU8tYdH8MQtwbX8951vHhL1obz/tHG9rnea1/peDEvzza5vNFn\nZqPP44eqQzm4i1hoeDzzxiKOqVO0jVvufR+u+fsHHyYSs581vxfuVdkYGj9D7Ik4lfz2v3qF5y81\n+O9+8SRffHCcf/3SPL//7AWkgv/xSw/d7SHeU7iZDeJm0fQi+kFCwTHoBwlzTZd3ljr0g4QgkXz9\nzEEOj+bv6JgqeZOvPjZ9Vw2wjwtuRPY+jJxu996tdH3mGi4lz9w6yHYepsN5/2hgp6xsV5zCWPKZ\n4zWO1gpXzXHTi7BMjadPTfDuSpdDI7m79AQfDdzM2dLxYv745XneXe0wXnB4YKJI04uuus/NfMdw\nr79/sHMv300WtmNzzW/qEk+fOkCiFCg4Onr12t+Je1U2hsbPEHvi9589z19dbPB//Prj/MaThwH4\n7PEahq7xf33/Al84OcpnT4ze5VHeG7jTea07DypDCM6tdEgkSCkZLdps9ELq/ZD1XkjLDfmvvnDi\nrhhA98pm91HFjcjeta7dlClDCBKlrjioanmLKJa8s9xG1zRenm1imRq6EHxiunLVYXp87PqH4hB3\nHvuN2jS9CD9MePa9tSuiBZuKU9k2+f7MGv0w5kDJuUrmNr29a92A1a7PfNOi6S7f8VqQjwJu9myZ\na7hcrvfpeAnLrRaWIVhp+fT8eEt5vRXn13Cvv/fR8WJ6fkwUy6siMXvtDXMNl/mGR8uLaHsxr842\nyNkGlq7x+KEqv/Hpw/sygO412RgaP0PsircW2/zTH17iN588tGX4AAgh+L2vnebFmQb/4N++w3f/\nh5+748wudxL79Ybt15vyYb1r2z8HV3vaE6V4dLqChuCV+Sbn13pcrPeRStH1Ytww4Y9fmudv//zJ\nq5Tde8Ebcy+N5V7Etd7PtWRv5+e2X3u53uetpTaPH6wCmUz1w4Rzyx0enapQdD5Ij+n6MY1+hEQR\nJwl9XePRqTLdMAbBLUtrGMrB/rCboQrXTnPdj4K75eUNE16caaAUlByDg5Ucz1/aoJwzCWPJ5Z6L\nAo6PFumG8VX73aa3962lNgg4MVbcl5f5fsTtltn9nC3XHMPW8axIUsX5tR4b/VkATowX+cZTR0iU\noh8mCAQb/ZC5hsvj+eotf5Ybwb28F9ytsd1sBPDbry7QCxJMXfDUtqjtXmnzc02XH12oc36tR70f\ncngkT6LA1DRKjkkvSG5a17lb73Jo/AxxFZRS/KP/8C61vMX/8quPXvX3vGXw97/yCP/NH73Gn725\nzK998uBdGOXtx414w3bmtRpCMLPhXrGg96t87KbUbP/cTk/72eUOXT8mSiSJlMSJRNcER0dyrPdD\n1joBmiaY2ehvHWo7Q9l3Ki1upxG3+aw/uVi/a0xB9zquF625lifvT15doBfGlGyTX//04S05vVzv\n88ZCi6YX8eZCmwfGi9R7IQBeJLP0yTDhraU2o3mLb7+6yHLbp5I3WesEBGnKXMPlyWPZAXq0Vtj1\nALvRdLxNxTuIU75+5tAdj1TeDez3HS00PGabLqN5izcW2/TDhDfmWxypFSg4BnlT34rG7baGNlNj\nNSHYcK9WcDtezLPn1nhzsc2hag6poNEPWekEnFvqcn6tR842eHiixGeP1yg7Bt0w3tPgreRNHj9Y\nZaHp7dswvt8U3puJmGzO57Fa4Zpyvhl1fWWuiSbA2FFru3PdfPbYKJGUW/c9WitwYrxIkEgmSjl6\nYVbk3nQjwrTDM28s8vSpCd6Yb7PQ8hAiM3i3pzTd6XnZ/l6jWPLUsdq+Uqxu5zi3n81347y6FRHA\ntxbbA6Ml5uceHN/6/NmlDu+t9nhkskQvSHj+8gYX1vsstXxmG30eHC/SDWKqOQNQxFLSC2KOjxV2\nXdP7HevNPtPNzPfQ+BniKvzg/XVenGnye187TcnZXaB++fQkpyZL/N9/eYGvnZn+SJIf3Gg054sP\njJMotefmeL37bXpmNnoh802PM0eqFG2DY7UCa92QE2OFqzztHS/mD1+YQ9MEUiq+cHKUtU7AWjdE\n1+A3P30YP0qo5W2CVG55ATcVoXMrXZY7Pm0v5O/80sN7Pt9c070ix3e/B/fO+2w/0BRgmxotN8Yx\ntY+0d/hmsJfcbH+fCnjiUPWK+ou5psvLc01MTcOLEw6O5PjciTG++tg0z1/e4LWFFo1eyHOXNlia\nKnNupUutaFPvBJxdarPcDnhroc1S26dgG8SppONH1PsRx2p5vCjm0any1hgNIbaYfD5MKk3Ti+iH\nCQtNn5YX8cwbS/zW547dt7JwrTTC7ddcLw2xlrfo+jH/51+8RyLBj1MeP1ShYBostHx0XcNdS3ho\nssiTR0f33FtW2j4vzzZZbPukg54b29OevvXCLP/p7RVaXkQpZzJasBgt2miAGybkbYOSY5JISdE2\neOp4bc+8/+1j/+ID41t7xX5qC/bjHLobHvfdxnYjUdftWGh4W/MppeLXzhxksursWj8F2ZyfX+th\n6RrfO7fKr29LNdpcNxfX+8w3XP79m8ucHC+SMzV+90unODya51cfm8KPUhxTY67h0g9T/Djl2GgB\nBZxd6TJRtjF0gVBQ7wfMNTPjOCNLWMIxtCuiwdd7xpvB9vTKZ2fW6AYJE2X7Q6f03iy237vlRjiG\nzonxO3te3Witzvaxb8qIGvyfgi1d4NxSh3/240vU+yHPX9ygaBucPFDg3EoPgWCh2efiep+xgk0s\n4ZOHR3AsjZPjJU5PV7b2j+1OzbeWMufM9c70D/tMm891M/M9NH6GuAr/zw8ucbiW4xufObLnNZom\n+O0vnuB3v/0mz19u8PmTY3dwhHcG+2Ep2W0B7rWgt7zuG32COL3Kg3d2ucOPztcRKOr9iE8eGaHe\nC3lnqUPDjZjZ6PPgRAkUfPGBcVp+xOtzLRKpeGi8yGzDZa7pYZsah2oFukFML0yYquSIpeKhsRJH\na4WtZ5truvz0Yh1NQL0X8jMnxvjy6cmrnu9bL8zy6nwLW9d48liNz58Y5Q9+colEgqGxdcBeD9tJ\nGeq9ENvUOTZawQ9Tgji959hg7hXsJYc75azkXJlX3Q8SlgfK8XrH54WRBostnyO1PO+tdGl7EShQ\nCqp5m8lKjoOVHH0/4mLd5VK9B1LgxwkHqzlGizZxKknSlPV+SCoVa92AV+aa+HHKhbUejx2sommC\nBw8UKTvmlgJzecO9bipNLW8RxCktL2Ikb+IY2n1lCO+WmrpbGiF8kJ52FZFEMyOS2HSgbHrzD1Zy\nJBKOjRa4sNaj7Ub4ZoqUijiRCAFRonh7qUPJMa6I/p1d6vDTSxv4YcJqxyeIEoq2ybsrHc4ud5iq\n5uj5MUstH6EJJisOqVT8wkMHaPsxXpiw1PaJE0k3iJmsOFfUfB0dLWy9g4WGx9mVDhfW+1TzWYqc\nACxTY6Hp8dXc3grKfpxDu6Xm3Oq5uxElba+1eT3FbLbp4seSsmPy1mKLf/HcZcZLDg9PlPi5B8ev\nMEqfv7TBUstjNG9hmTq9MN6Sk1reYr0T8PzFBvMtF0PT6AcJZcek4Yb82VvL/MJD47yx2Gaq6tD2\nYr706CT9MGFmw6WSN5mp9xEK1rohYZJS74ccTHO8NNNkJGfxzBuLnF/rM5I3OTySv8L58ievLlDv\nh0RJytOPTG4pwzeLzfc60+gjYMvxd6394GYU6eth+739KCXYJdJ+s7ieDG6XtSiW9Px4i6p6r8/t\nJCh5eKJEP0yo5AwMIfje2VX+1fMzLLQD8obGSsenaJtEqaQXJOgaGIaGqWvkLIMXLzd5bb5Fwdb5\n8qPZfG/PMDA0DcfUkVJxbqUDQNE29nxH258pjLNoUseL9zVvNzvft9X4EUJMA38OPAoUlVKJEOLv\nAl8D5oD/Uil1bzQlGQKAd5Y6vDrX4n/+6iOY+rXbQH318Sl+78/P8UcvzN8Xxs+Neqn2w1Ky2wLc\n60Cs5E2++MD4wIum85OLdb6a+yC39pnXlnh/tYuhCaSCmXqPxU6AlIqxgs1IwcCPUt5cam9FTrww\nYa3rk0hJGKestFzmmj6zGx4lx6Dvx7S9iGrepmgbzDVdjlKg68esdHy8MEEIgR9JvvvOKo9Mlmn5\nmVI8krd4abbBD99fJ1UKU9Oo90LOrnS3FLHZhsts092X8bOTlOHR6QorXZ+iY/CVB6Z29Y7fy2kw\ntwrXe8a95PB6xnnRMRgv2fSjBMcy0BB8/91VltsBbpiQSMXhkRwTlRyOlSmyby21mW/6aECrn6AL\nkEDLiwkSScHSaboxjqmTSvjOO6u4cUK9G5JIiRelNPoR0yMOOcPg+HiBl5tNFFCeNbYU5d2et5I3\n+fqZQ1d4me8VQ/h6c7RT2f3EwQr9MMGPUvw4SyNMldpiYdy87osPjF+h0Lw009yKhioUG72Ilhex\n3g1p9kPaXkzZMfiNTx+m7cdcWu8TJhJDE+QtHSEUAuj6MS/NNPjuO6ssdzxafjaXS+2AII4pWpli\n8x/fXmG0aJNKyUrHp9EL6YcJo0Wb9V5AJW9hGYKxks2njoxQHLBJvjTboIzJ2fUetqHx9COTW9Gp\nTpDVh33jqSNsBAlCKD4xWr2ugnI9ed5tr70VuFZk43pj22ttXk8xG81brHZ8Lq71aXsRh0YK2IbO\n6/NN4lQxUbY5c6jKn7+1wvtrXVY6WX+9I7U8UxWHH5+vZ/UWbsibC226QUzHjzkxViSVkvNrPRr9\ngCiV/ORinTOHq5yaKPPaXIv3VzsUbJOjI3lsXWMkZ3F0tIBj6tiGxuyGy8FaHikVs00Xx9QZyVu0\nvIjxktx69s3I8nLbZ7UT8PZih6eOj/KNp47cVLrq9kyKlh9RtJvXTK+83hzdCmy/d9E2+Mrp8T2j\nuR8G+4libMraXNPlpZkmL8w0+M7ZVXKWTjVvXvW5hYbHCzMNFloeh6p5pFI8NFHi+UsNoiThf/o3\nb7HWC+iHKalUJKkEBYae4oYpCkWSQN9PCHRJy42wdMFIwUZJnUv1XpYRAryx2KbsmMw3XMbLNsdH\ni4zkLEbzNg9OFPd87q1nari8PNvkzcU27yx19hXFudn5vt2RnybwS8AzAEKIA8AvKqV+Vgjx94Bf\nA759m8cwxA3gm8/NkjP1K0gO9oJj6vz6pw/xzedmabkRI4V7Q1HZDR82RHo9lpLdFuC1jKZEKUYK\n5tah+OJMZlysdgLOLXeBLA1irGxzoOyw1A5Y6wRcWO3y4GSZzxyrMVXO8c5ymyCSjJVsjtYKdKOI\ngm1ycb2PpWt0wwQtTLBMnYYbIxH85Xvr+FGCYxp0vYRWPwYhUBIcRyeMU/7lczOs90PiRJJIhRtm\nHmHD0CjaBromOD1V5q8u1pltuBgaHKsV9no9V2CTlKFgGbhRws+cGKXkmDdUoL39bx8Fo2i/crmb\nHF7POB/JWdiGTtuLaLkR3393jQ03RNcEXpSiC8FS2+fpRyf5xYcOcKSa55//1QwCaLgREpAKdCCI\nUwSKnKkjlUIpCJKUpbZPvRcQp4pESrpeTKLgzOER3CjhQMnG1MVWYfwWBfsedT2HR/P81ueO3bK5\nvRVysp852qnsXl7v88P319CERi+IafRCxko2KK64LlFqaw57fsybS+3MuxymrHSy9D+pFGeXO4DC\nMnVOjFcoOSYNL+ITByuMFW3mmx7G4D2/sdDkH/3Hc5xb6dIPEkwd8pa5NYcoQSdI0LsBQdzgoaky\nyy2fyZLDFx4c44WLTaYqNufXejwyVeGpYzVWuj5T1RzrnYBvPjfLSjdTeDVN8Pp8m7NLXU4frJBI\neGCsxEavwburPY7U8gjYl4JyPXm+lrJzM0Qye0U29ju23dbm9RSznG3whZNjnF3uIoRiseUSpikl\ny+DEWIG1XsC3X11ktuHSDxMePFBE1wRPHK4yVcnxp68t0hxkA3T9BMfSCWPFpY0+VccEFGNFGyVh\nox/y/XfXeW22iRcnHKoWCBPJK/MtTE3QDmLmWx4PT5b5+QfHeX2hRX0hwtDgZx8YQxeCRKaA5LPH\nah88qwI3TNnohUSpZL7pIVWWWPW3f+4kcH0Cjv3UUO1VT7gT+3FWfljcznvD/qMYlbxJyTORSrHQ\n9Flsuwgl+NqZg8w2XL53bpWfOT7Kctvn979/niSVzDY8jo7kGSlaXFjt885Sm8W2RxBJpALT1DB1\nQSohZ2kkUgKKzx8fpR0kuLMJJcdgvRuQSsFqx6fjR4wUTL7zzipnDlWJE0mjF7LaCVhs+7xwqUHJ\nMVls+zTcGu8s723QbD6TZWo3FMW52Tm5rcaPUioAgm31IE8CPxz8/CzwnzM0fu4ZNN2If/fmMr/x\n6UNUcvsTpF87c5B//tMZvnt2lb91jTS5u43bFRK/0QVoCEHLjfHDlG4Q86evLjLf9Oj6caZoamAb\nGoeNHPV+yELTY6ntEafQn2/hhTFBnIXdL2/0WX4/oNEPGclbTJRtun5MKhVCQN7U6HghvSAjQzB0\nwcszLXphjB9LDAEoRaoUUikaXkQ3jDhQzpTRVjegmrOYqkiEEDw8Wdry6v3ul07dcM1PLW9RtDMP\neNE29sxv38Rent47TSt+O/Fh5HKn0rDX9YlSHBvNs9jy8KMEN0wIU/XB31GEXsL/+8IsPz2/jkLg\nhjGxVKQKNLKoj66BVIqWl9APE+IkqwlIpKLrRYAADRSCWGUexFfmmjw8UeLURJkXZxus9QKKtgGK\n69b1XM/hsF/cKjmZa7hX1NztNkfbld32gDig5SaYhuDJIyN88ujIFqveO8udq5wlm2lE7yx3srTY\nJOVXTk/xZ28u88PzddwwxjZ0jo/leX2+xfm1HoeqOeZaHk8crDJesgnilH//1hIX11zafkQqJUkq\nSSWZgmzqBHFKLBUaWd5/P0o4u9Sl40estoOMzS1N6fgxUsIDB+RWVOr5i3X+yQ8u0RmsQ00TjJcs\nOn7Eq/MtukGURZ+7AYdH8vzKo5OcPlgB9t9s+Vpzv9deezPz3PSiPSMb1xvbtQyu/RhyjmVQypl8\nqlwjiFN0AYahs9YNCJKUnKmRM7Pf13shpiGYb3i8Mttkox/gR5KOFxNJCP0EASSpIkolsw0Xx9BI\npY8mBP0wYV5lUcGFZkDO0rF0jTOHqozkLdb6AVIpXpxtcny8SME02HBDFts+by12eHm2gaFp/OPu\n+/zX4UnGSzar3YCRnIWua+iJxI0S/Fhyqd7n7FKH2aZ7zabI+62huhHa/Fu1d9yue+8lM9cz7Oca\nLgg4WitgCMFK22etG3Cg6NDxY96Yb/HaQota0eaZ1xfpBQmrnSBb72nKSlejE8V0vBaNXky6bUwy\nluimwDYE5ZxFN0gYL1k8N9PA1nXCWGIb2T4SyyzjRItT+kHCWwttun5EKhXdIEYBh0ZytN0sdS2R\naivqfa2a6b1Ie66Hm5mTO13zUwW6g587g9+vgBDid4DfAThy5N5Vpj+K+NcvzxMlkt/6/LF9f+YT\nB8scHc3z52+t3NPGz42GSG/Ek7hzAW7vpq0LwVPHatnh6kf8+HwdN0yod2LW3ZBGPxykIGXKSJqC\nQDKSt7F0gVIKmfUTw4skF9Zcglhx5kiFfhgTxhJT1/CihPWeIkozxRWg5WbkCImEJEpxDI2Vtsvg\nv1HARNlitGRjCMHnT45xbrlDww3RAF0TJFIyUrCYKDv8F589yuHRPB0vJlGKxw9Wb2jj2U0huNZ7\n3m+ty/1UF7ITH0Yu91sUfnm9z08u1JlveETpQIh2wVo/Zq3fQQA5U8Mxs6LnTSHRtSzKm8iEMAEh\nIEkUYSJJJGgCHFNDAQXLoFbJcXyswNOPTPDibEaXHMSSr5weB9g6uCfK9r7rej6MZ/9WyEnHi3l5\ntsnljT4zG30eP1S9ao52Ep68v9rlncUOExWbjV6EgivWymbqymYz4hE/U7wRcOZQlWffW8cxdN5e\n7rDSCeh4IVJA383SnBRgGRoVx2S6kmO+6fGffeoQ/TDhh+/XUUqRJJIolR/sK1KhaZJEKXRNkKYK\nL8oiQbYhCaKU1MgifMkgOqRp8NjBCjlL5+2lDj9+f531XsBWMnQKK4O0XA1BrWhxfLTAZ47VOD1d\nucIpcqvW527Kzs3M86ZD5nAtx3jJ4utnDu7rs/tNU9oc3/bfN3/++pmD/PHL86x3Q16aaaAG6y2M\nU7525iD/5rVFumFEwTYYG/Rt+87ZVRxDJ5WSZhARyQ++z9SySG2UKqSSWIYGCmKl0DTQESSpwg2y\nSJEXJaz3QxxLp2BlNSCzG33yls67boQbprx0ucFMw8WLU1Sq6AYRv/fnZzk2WqDlRzi6hpKKWt6m\n7YUcreUxDY2VbsB802W04KC4WvHdPmeXNz6g3N/vfni/Rf43SYM201p3ysy1DPtvv7rAW4ttwkQy\nVrRwDB1NCHphzAPjBQ7X8kRJSjlnoRQsdQKCIMkcXgMBafohLU8QJRK5Y2ybx0IQKZoqi/idW+6R\nKIlMQRfQ9qJsryfb7/0kK5GYrORIleLURImDI6M8f3mDMJGIgRPXNnTcINkzhfl6pD23E3fa+OkA\nhwY/l4H2zguUUn8A/AHAk08+ucdxPcStRpJK/vD5OT53YpSHJkr7/pwQgr/x+DT/9IcX2eiHjBXt\n2zjKD4/reeKu1UdnO4vbtfJ8Nze477y9ynzLI2/pdIOYei9kteuTs3Rem2txZCTPxQ2XimMQJhIp\n1dYGZOmCgq2z1gs4ULYp5QzS5gcbVC9KWWp7HCjb1LsR3TABpSg7JkpBztCQQJhmW5wQULQ13Ehi\n6QI/ye5jaBDLrGbIMQ1ypoZUikcPVrA1jfPrPY46Bp0gRkdQckyeu5yFsvdL87nbAbVdebmeAvFh\na13uJ2x/RkOILIe6sTeD1vVYdDbfab0X8u9eX6IXREQD63nT22dpXKE0bUIBXiyJkuxnx9DQNSg7\nZkZuIQaK8eA6QwPLFFiahpSKWsHEjRMKtsbxsQIvzzZpuBEHSg6HazlafsRLM00gU/DGija6JrYK\nd68lRx+m0P1WyEnTi7BMjadPTTDT6POZ4zWALRp74CrK+NNTFb5jrUAEExXniiaAm3vEj8/XeWep\ngxumaBoYmkApqBUtTE3jiUNV3l7q8OZia0uByeZEkA5IKlp+nJFZ9EMsQ5AzDRr9kLYXESYyM0p1\niNMsghcN/s/SIQYKpoZtGsSpohnFRKnE0DQqeYOJqoMgU3BSqbhcd8mZehZdGJBGTlcdJisO9V6I\npmmUHZPJssPDU+U7SlG+SQX9znKbkm3e0DzfSOR++352rWjgTkryvfa38oBR78Jal1hKagWbjX7I\n+2t9vvXibLZGSk7GvufovLcS0nYjyjmTsZI96MuTrerMIBYkSmQ+CyXo+wl5W8dEEKMIE4WmCYSW\n9WlBKT57vMaj0xW++dws/9+r82hC40ApW5e1vMVsP0ITAiVVNu9CkKSSjh+jFLSDLCI5XXUYL1nY\nps6hkRznVjr85MIGuiY4PlrgK6enrniXmxkQzX6WuociI8R4bPq67IC3k/jidmBzvOu9gMt1l186\nNbGVArxJWrF5Lu5m2PeCBMvQWWx6vL/aRdc0qjmTct6k7cfkbQNd06j3guydAF6UEETyCsNG17Jz\nYKdSLQBD14jSFFD4kUKS7TGKTIfYtJhS2LqBInOMGbpGzjawLY3PnRzLGEBVVnM6kreuqTNdj7Tn\nduJOGz8vA/8t8L8DTwMv3OHvH2IPPPvuOsudgP/1b5y+4c9+9fEp/skPLvIX59auyRB3t7FXiPSq\nYuVtfXQu1/tbUZzdmj/uvMd6L+D9tS62obPc8rFMjbGSzfn1Hkstn0Y/yrzBQiEUaEJg6gJDyyI2\nOVvH1DMv+uyGx8FqnrmmR8fPDjkBpFKy0PAIk5TyoFbHj1Pyjk2KQqaZd8bUNeJY4scSXUCtZKOA\nhQ1vy/sjhIZSCkPTUTIrlH57uU3Ti8mZGgjoBymfOlJlpeMzkrO2Dv21brDlsdsZxYGrG7F+GI/t\nh6l1ud+wOf4/eXWBNxbbCLiqc/b2vkxvLLRouhHjRXvXovB+kLDQ9FjvB2hCEAwYt/IGeEnmHYZs\n8092GY8hIFCZgQNgGWnWH8TPog66gFRmsqsQRGmKqWskUpE3DXShsdYNaPQjGm5InErGSxZrnYDn\nLm0wWrCD9hbDAAAgAElEQVTIWzqHqnlafsSbS+1r5oR/2EL3WyEnmwZUN4w5UHIYyVlXyPWx0QLz\nDY+mF+FFKc+8schvfe74rmmh2/eIFy816QzSRPpBjGPoxKnk9fmYWsHm9fkWSZoxOm2uVQ2y2iqV\n/evo4IcpfpLyVxcbPDJZJpUK09QQUYomyKIJIqvbMnSBpWsDj2xmxKhYcqBk0/KiLBVOgFAaU2Wb\nXphwdqVLNW+y3PFxLJ2SYxAlEtvSGCvbjBVtynmTOJWcHCtseXg/jGf+Zrz5ikzh/zDe0v2kzuxk\nzQridNdo4HYKaz9OePxgldPTFS5v9Hn23TVAMVXJcXq6smVYnzk8wqvzbdY6PqlSdP2IMEnphwmG\nppFKST+QpFKSKkXbC/GjlJylY2oDBRWYruap5UwuNTImuShVBLGk4hiM2Ta6piOUYsOL0DVB3rL4\nzPFRirZBGKfomoahZYxfhqYRJ3Ir8yBn6HgqJWdo9IOM1asbJhRMndGSlRlVEnKmTtuLuVjvAYo4\nUeQsndlBYfz2VhCOqbHS9jkxVtyijZ5ruLyznBGC7MUOeLuIL241NuV5pe2z3guYKDlcqrtc3nAp\nO8auUaCd9Ph+mBCnkrWOTz9KyFsmfpxQ70ZMlB1sQ6PeDzg6UmC64jBT94jTlEiqD874wb/pNodX\nltkBQkGsoBukKLJ646zi5wPs5iiDzWyUlDMHK/zmoFHu9RzEO3E3HZm3m+3NBP4T8ATwXeDvAz8W\nQvwUmAd+/3Z+/xD7xzefm+VgNcfTjxy44c+emixxsJrjL99bv6eNn72wczPd3kcnSCSOmaUFJJI9\n81c371G2TRZbHiN5C8vUOD1ZxgsTFhoeXpTgRZl3BQRdsvqdqZE8mhCM5LM0lq4fZ/13Uh8vSrEN\ngU7mdVFklLYrXR8QVISBG0s0TeGFOpahM1WzkWQbi6bBctNHN3RqeRMpJZ28QRRLYiRRmrLWzehN\nw7MJcaoo2UZWpN2XlByTfpDQcCNMXePsSod6P+T91S6aECAyj90XHxjfigiFseTQSI76oMi7v0cX\n6JvZ+G5nbvfdQNOL6IUx5UFfrZ2dszfla6LsIBUEUWbwbrL3bR6cWS+XBpfW+/ihxLYyhVAB4cDS\nyZsCP1K7Gj4A4Y7DrukmHKwKCo5J7GbknBpwuJZnqeWDyNgJvXiQWtkNmW+6FC0ThMAfNF780YU6\n9V4WmSjaBgiFvY8i17spJzsNqCvSdep9fnpxg/PrPeq9kEemyjimvlWnsN3oyTy4Mf0gQdc0ljsB\n3TDG1jWSNGWjn6WaxlLx4ESRlU6IYwh0XaBJhaGzVacjB5GcFAiSBCUVjX7Iy3NNxvImYSJQ4oNr\nTT27jy40NKHoBAmGBmGsyNk6LQ+qOR0vkjimxqERh16QsNjyWW77mLpOwdY4VM0RJ5K1no+tGxRt\ng6cfmeTByYzZabemzGEs+cy2TvJ74WbrdmxT49ho5balwW6f97eXOgihrogGbn7fbNP9gJJ8vUfb\ni7m80eflmSYLTY9uEDOSt/jKY1N87YmDRLHk7eUOo3kLIQSpkmiaYDRvc2Gty7mVDraenT1hLDEN\ngRsqpEpwowTHFFiaTqwk672sIe1YwaJgCzb6IUmS4sUpOdvI9uRuiKULgjjlQMnKavCChEreZL0X\nsuGGCKXI2wZLbZ+pisNk2eHoWIGltsd0Jcdy20fTQDUzBrpK3qTk6NS76aDA3me55dMLs3qT4HJm\ngDW9iEenKoMzVWOi5NB0Q4Lkg1qPfpDcUH3dvRr539549o35NkopLtVdjtbyPDJZopwzubTRv8qA\n++AzLSbKDmvdgIenyjw4UWKykuPtxTZumK351bbHQssjSSV/1lnODB4pydsGOV0HsvrMzf1/E6aA\noqMTJylhmjm7Upn9mzkRsus0AaYmiFK1q1NB1wXTlRyfe2BsKx3+268u0AsygoTtzru9cDcdmbeb\n8CAmi/Bsx4vA/3Y7v3eIG8P7qz2ev9zg7/3KKYzr0FvvBiEEv3hqnD99bYkwSbEN/TaM8vZh52a6\nvWP99n4bhsae+au1vEXbi3nuwgYAIwWbU1MlfvHhAyy3faoXDDbciDiVKAUCRV8CmqLjRohBk1LH\n0Dm/3qMfJgNvuiSJso0oVdkGlUgAhaFnOdy2rpEqxUY/RCmFaeiUHYPRgs1owaLtJ0yXHRr9kEre\nYrSY0uiFhLFE1xSpBKFURssbpVmneD1Lg3NMjSCGrhfz+OEqk2WHJw5VeXW+Rd76oDHpZnFr2Tb5\n/swaSy2P1+ZbTJRz5C2Nr3xi6qr3/lGL4NwManmLkm1yqe4i4KrO2ZsyOtPoYxkapybLPHd5g0RK\nDpScLeNzvulxfq1Pa1Ab4kcqo6velvbWj9RVed+2AbapY2raoKbrg78pYLnlk6Io2DqJVCiR1ZGk\nSmHqWcqWJrIUiDSRtN0EP5IcrOb45KEqkZRUcyYPjBc5u9KhYBssdwJypr4v9q6blZMbiSrsRSix\nuR9sd4xU8yZffmSS7727Sq1gXdXTYrtS3/Fizi136AYJQZxQdQw6fowmBBoCxxJEXsrFeh9T03jg\nQBkvysgHCk5GVd4JIsI0K1yXEmIlt5w1UZyw2JE4pkAXoGsaAolj6ViGhlCw0Y9IFISD8TmGRpyS\nFU7r2d4WppKFls8ggYowSRgr5SnYBjlTJ28aaALiRFJw9CsMm+2pmRMlh+/PrNEfRM2uZdDcbN3O\n7VaGt39HyTEyOvHBcx3dxnZ5rFbA0GC24aIL+PzJUbp+gm1oCCGwTZ1ISmbqWYuARybLLDQ9SpaB\nNeiPMtt0ieOURCriVNKXCWvdIDNmt43JNnSOjuYp50xm6i79ICJIMsdcNW9SdQzcWENKSduLCaM+\nbpySphJDh7VOyI8v1Bkv2ZyaKqMLwcW6hlCKbpgR8JSczKFmGwLL0LBNHdvUCCNJztKwDJ0wSglN\nnX6UMNf0spS5goWlpzS8CCFgruUjlcJPUoSCthdnRiTw4ESJJw5mxAvfO7d6zfq6TXxiurJFAHAv\nnhtNL9qiuk+V4qmjNTbcEKmg7oYstX0UV7Igbq4BDcHshkfTjen6MZ86UqM2bjFetPHjmMWWjgbM\nN72sRi+VhGkW4ZGAH8cYWmbQbMtYQx/8LIEgUcTJQKfQstQ204BB2yAEm9Fitmp9JNn15kBFnC7l\nGClmex5kxDCvzDYxjSxq+JljtWv2ddvE3XJkDpucDsE3n5/FMjT+5lPXp7feC3/t1AH+8IV5Xrzc\n5OceGr91g7sD2Eu52ipQzmV/+8rpvXvRzDVc2m6ErmsUbZMgSWm7ESM5i36Q0PKSjGZWQN7S8eOU\nVEoMIdA0jVohKxb205SRnEUYZ40/0/RKr41Ug/x9CYmUW31YdLH5u+D9lR6GLpiqOHz59CR+lDLf\nzOgpo0Sx0HBJZfY509CRcYoY1G1U8haHRnKs9wLAph/FfPpIjQNli9PTFdpeRDeMr6KwPVYrsND0\nuLzhooCDI3mWOwGPTpXJWTqJ2s139NGL4HxYVPImv/7pwzx1vAbq6pqfTRmda7oYWp33Vru4Ydas\nsh8kW8anIQTr3YB4UEemawPegm253rtlMaQJBDJFmjBSMGn04yuu6wZxlhc+YAbSFSx3fMJEkaYK\ny9A4UHKy6GacsZxV8xa2aYBgSz4myhk70ZcenSBRiicOVa+iO98rCvBh5eRGogp71RPsVQP4k4t1\nYiX5/MmxXSMc25X6jV7EkdECG72Qi+s9qjkThWCqYjPf8OgFCYYhyJsGSmWNh0s5g0re5EDZxg1S\nKqHJhfV+powM0mTdMFNogwRMXZJoGgfKDo1eQJRC7CVbSsxmyuMm4YkbpgiRYhmCSs7EjySWbuDH\nKbauEaXgRwmLTY+WG1PLZ8X3Wa2SYL7p0XSX+epj03T9mGfeWAKluLzRp1HOyB42ac5vpsfPtXAn\nnCg7vwN2Z7DbZMJ8aabBuZUu7650B2s1ZaMf4IYplqHxRtrKHFQlm9GSTdOLCFLJmUNVfu3MQb71\n4ixLnYCmm7EpKhSayBwMiRzUcamsya1janhRSpAqEILRos0D4yX8OOH8ag8vUUgtY+oqDxpMSyVx\nRdZwuh8ltNyIsZLDQsujH0ncMMUxNS5veExWHML1LFqTEZXkeHOhzXzTI0oUtiEYKzocHy+QpIqH\nJ0voCJ59fy3rWScVG70AN0qxNI2cpfHXH5vG1LWtCE8pZ5IodVV93W51j9vX4tF9tlm40zCE4Nxy\nBy+SrHV9vCghbxk42yLdu+19uhBc2sh6NCGg40cstj0emihhahrnlnqs9wPiRJIO2hBE8srozmZK\nWyJBG1gtm1HjnKltjWO5nRnU8eDv2xUNRZYO5wiNogW6rg2o8rOmpXlb51Atz6eOjGz1buuHCcsd\nP2OIS7O0zXsZQ+PnY46OH/PMa0t87YlpajfRp+dzJ8awDY2/fG/9vjN+4PoUq9vzcbdjczNe62a0\noGNFk9VOSt9PqOYtvntuFTmgHzV0DUvXMHSNZJBjmyaKasHk4Yki7672iFJJP4iZKNk0vRjblLS8\nDzaR7fn/uganpsusdyPKtkE3iGn7MbHMcoM7fszrCy2CKMVVMUpCyTGwDZ2cpeNHKdWcRbGqU3QM\nUgXT5Ry2mbmCDCFY6wocKzsEQVC0DE4fqnB6qkI5Z17pnc9N89JMg3rfp9mPMqpWS79mh+chPkAl\nb17TU1bJm4z4Fl6UEiWSpbbPD99fJ2fqHBst0PFizq/3gKxAWQFIqBbM7CBSCj/d/d5CZAZS0dIZ\nKdp4YYobf2D+WLpGKWfi6imGJoiSlDCV6AACDtVyPHawShBn6XrrnZAURZSkLDR9ekG81cxuvJTV\nkwRxZujvLI6/1Wx+N3K/veoJ+sFAUQwSEqU4PpYd+JuOkc1c953YGTFwOzE/uVCnHyREic+DBwpU\ncxaMQaMbEStJkigSJVluB4wULFpeiKPr9OMUP4xxjMybn9VdaWgiJR44RcJUEacpmhCMljJD09QE\nfpI1Mtw0ekwNynmDsmOjpMQydHRNcKBk86VHJ/mrS3WCWOLoPkYuq+NKU4mu6xRNnYcmbA6P5pko\nOcw0+pxd7vDKXHOrX86JsSIPTZQ4ULL31aDyZg2YO+FE2fkde9WPtryISxt91gZpZKmETx+r0XRD\n6r0QU9doe1lvnYYX8beeOsLPPzi+FcloehGPH6qiJDx3eQMvyBZtMtBwBWAZYBk6DTfKerWRNbpN\nU0WcSCbLNm8vBwRpmhlEBZNqziRKFN0goZo3sXWNlVZGzmCbBmXHYKqaw9I0Xgwa5G2DthfhGDot\nP+JkvkjJMXh3ucNaz89SpTRByTbohwltLyZv6fzyo5PkbJ1ESc6vZo0ww0RysJLjqWM1JIrJisNC\n02Om0b+CpCKKJTP97P92M2zuF6bPRCkenapQcAw2eiGfPDrCsVqBn1ysZ1T2u+x9lXzWBP2dpQ7V\ngoWhCU5OFPmZE6OcnqrwL567jFSgaRqGpghjhaZn63kz0qMNFvim0zQZbOH6IKWtmjMYKznMNdwr\nnap8ENUxNA1/8EE/Tik5JtMVh3YQc2qyRJgovvzoBCfHihSdzIToeDHdIKaaszB0KGNsRYTuVWa+\nofHzMce3X1nAj9MborfeDTlL5/MnR/nB++v8Q26cNOFex/X6EpwYK3B+tcuGm1HWlnMGEyWHv3h3\nldVuSBCnlB2DA8WsSPj1hRaJVESJJIpTCo5BNW+y2gkwNI1izqSaz7qst72sh4MQ2Sam6wJNZGkI\nuhDkLI1IZfngUma7nhfF5EyDimMxUkzouDFukimmYZyF4gVwfLSQRZiUpOsnPHSgyFovRBMw3w6o\nOibn17p0vJTVToAg6w1yfq3P188c3FICO17Mi5cb/NFLc+hCsK6F/PbPnuRAxbnnNr37FZsNGeeb\nHqnMCpEFWaPS5y5tZNE6BWJQSxOnklre5OHJMkGcUu9HLDS9K1LaNpVhRRYVcMOUkYLKojZxSi+I\n0chqEVp+hKYUkRBEcXaTTU90oxdydrnNdDVHztQ5UstTd0M2+gFLA2rrfzggUzlcy/PGfJtqPmMO\n3FnUfKvSmLYXD+/3frsxh2U1eJ2M8U7jihTOzXHvFVnayeb3rRfmSJTk4EjGfve5E2N85sQol+o9\nvv/uOgstnzCNOVR1WGz79IOYrhdzMe0zVrTxY5kZPiqLBijINoZB755NhEnCqGGTyoyyWA32jqmy\njWno/MJD4zw4UeTfvrHMQtPFT1LK+QKfPjZCL4pJpGIkb+LYJi03wktjHFPniUMVTF3j5x4c593V\nLs++t4aAQQRA29Yvx+FzJ8cAMgbDfTAR3O9R4O2OsKyoPXNAJUrhRTFFJ2PWa3gRYZrtp4dreYqO\nweOHrnR6FG2DJ45USZXi/FoPP0rpeGEWqZebZAbZXr/aCUBojOZ1JIpHpius9bL+bmXHotEPyZk6\nnz05RseLsE2BUoJHpkukEhzDwA0zA0uminaUMbhpCGxDJ2/puFGKF8d0gpjFto8XpESDtCo/llRy\nBkVbR6Dxowt1vvHUEWpFm8XWOr0gydL9UsmGG3KklmckZ+HHWUaChs9Sy+PgSP66xBX3Q70PDCjU\nB/XB4yV7ixToi4zzzBtLOIa+696X9WYrkErFej/g+GiR6Uq2V4zkLExD4IfJ1lofZL1SdgziNOvr\npYmsvlOQGTOxBLLyXLpBzIGyTTVvEUT+Vn2nbWRplEoqgoHho5MZVG4QsyayxrwFyyBnwcnxIudW\nuvSCBFMX5EydDTdkpeMzWrCoFWxGBsQn92pPvqHx8zFGKhXfemGOJ4+O8IlBM7qbwc8/NM4P3q+z\n0PQ4XLtzVKd3AtsJDS5vuMw1XB7Pf9CXoBvGHB8rZkXpJZufXNrg5dkmCy0fx9AwNS3j6S/Z2eJX\nWQGrJjKGnGDQh6c5qP+Za3h86kiVcr5E24uI0qw/R8kxyFsGiVR86kiVX3pkAl0IXplrESeSH12o\nE8cpkZR85vgoE0WbNxfbuFHWRMw2coyXbGxTx7F0umGMFyWAQCqFJgSr3YCcoREnKePlPLMzLv0w\npuNnKXrvLHWwDYMgTrc6eX/71QWefXeVuYbHyfEiBd0gknLLOBri5rG9IeNMvY8Y1OC0fYEQgo6f\nMFlxmCjnSKUikZKSY1DOmRRsg8cOVfmTVxbohB8wBxYsQRBlDGKmnkUGzxyp8tzFJpGfRT1sWzBW\nyAEZJX6SKhoyJEwzg0kD3ChhTClOTZZ5a7FDztJo9EM6XoIQcGG9xz/+i/ewdJ0wlTi6xq98YmrX\ndKgPSz+8ky1pOyX7ZqrafgzxnQpYohSPTlcoWAZulFwR4dkP/fh2A6kfJiSpwgsllq5xdKzAbMOl\n4WZz+5XTk7y51OZQNU/DjVnv+ggBaSrpBTG9ICZVYBuZAivIFK04yf6+qcyESeaAaXs6SSq30t1S\npfjrpyaYrDqcXe7Q7AeMF20OlG2O1AocHyvw6mwLXRNICWMFi7JjYhkaLTficqNPzshSGR+ZKtMN\nkoz5sRcQxPKqfjkdL87ospW6JqPfRwHbHWEzG31qhSyF+OlTE7S9mEvrLuvdCKkU05UcjqkzXc3t\nGuE4NlrYUiSFyAzdUt4iShRKCAyVomkaqYIkzlKqEgVT1RzVvMl8w6PtJ1i6IG/rHB8r8oWTY7yz\n3CFKFPV+SJrCZMXJmhWv91BS48unJ1ho+dTyJu+v9ShrJhL4wolRTk1n9UmLLR8/TtGkwtRgtGhR\ndEwurPWYqOa4VO/T8iO8MGGjH6LrmYMmbxlog7XY8iJen29lxCyxZK7p8jtfPHld4or7pU50tzTJ\nmQ2Xnh8zUjD3jFxlJEWCkbxFwTaoFSxeuNyg7cdoIovMm7o2qOWRTFdztN0Iy9BI0oyO3DEyPWGz\nMbKQCiXlVq3PpXWXgmOQswWhn20MYQKmljJWyoNSrHd94kGWQK1gopRAppL1XsCnj9ZY6QS8Mttk\ntGiz0vE5UsvTcjMWwIJj8vBkiWRADHWvRuqGxs/HGM++u8Zcw+Pv/vLDt+R+X3gg8/Q9d2mDv1m7\n/1jfroVa3iKMJd+fWUMB5Vljqy5ju2f3e+dWeX2xjaNnBa6TZTtLH7F0SrbOZNmhM/CEJUqRt3Ti\nVLE+8NTZhsbBap7Vrk/eMjk+XmC8YOMlCbrQsIyMrjZnGXzjqSNbLCtzTY9L631sQ+PBAyXafsiv\nPjaNRPH6QovZhiSIJAstD10IbMtA1wQ6WREuCtrdiPfWuqDgzOERfnR+nZdn23T8GEPPUp9CKZnZ\ncCnYJrYpmGu4lHImG72QvGlgaIK1XsCRWoFjtcI9G/K+H7G9IWPJ0dGpEitFIhWXNnrMbvTZ6IWY\nWsYc2PJiolRxqd7HNDTytkGlYGKYWQ6EH2WpmPmcoh+mlGwTKcD1JVMVB0MX1PImfpxStDOvdb0X\n0PJChBCYQhEPCmbDNCumf+5Sg24Q8+CBIqgsNuEYOmEima17GIbGkZEcUZpyecNlonw1XTfcOP3w\npoGzafC03CxdZ5NCd3uq2rWwG3PYpoOj3g+uSNHZTj9+bqUDsCvhQdOL6Pkx6aCvylLLwzIED0+W\nOTle5M2lNsdHi1yqu+i6xs8/dIDPHK8xWXH4l8/NIFPw0wRL05keMVlueYSJpDBg8LJNnZ4fk7d1\n1roho0Wbrh8hFDiGjidi4jQzbkfyFqemS1ys9/nx+Tr1foRSKqvhEVlB+3ovoOPHrMchlZzBY4fK\nWLrGTMPlE9Nlzi53eWm2Qck2KTkG3TCmaBt85fTVBua9rPzcamx3hD1+qHpFDdjMhstTx2s8dqjK\n85fqgCJnmYzsSDXf3tSyHyQkMqu16fpZ08jpmoVp6ixsuAgNKjkr69Vmm3hhTJpmxBpHankSKYml\n5MRokUemykDWYLgTxBwayTFWzM6mtU7AfMunmk/54ft1njhc5choniCR/OzJMdb7IZoQeHGKrmuM\nF7NokqkLyjmd0YKNZWisCkhTRZJKXrjU4JnXlrIoQpoxjB2vFagOansQ4IUpsQSpFI1+xHfPrnKg\n7OCH6Z5NMeH+iRBuT5ff3KeiWF5FdLATAnAsjf+fvTePjuvK7zs/79V7tW8oFHaCAEFIpEiKpDZ2\na+vF6k3TctqyIzvtfYntGc/xZBwfx55M4mTimZPx0p54HNsTd8d2Nnecti2307bV3ZJ70dKWKLUo\niqS4Yt+B2ve3zh+vqlgoFIDCXgDe5xweUQTqvVvv3fu793fv7/f9iZqVL3U7nmUhUyLqc3Ksw0/J\nMMkUVGJZS1TBwBJJkCUrLyenmPjdBsNdAToDTu7pDPDFSzOWnH2NoptpOpAdGmY5XE4UHCTyCg5B\nwO2S6XBLFBVLNlvXrY3QY9EAhglXppKMLOVwlUP5FU0nXVQRRcgVNEqqUf1urXpSZzs/h5jPvTzC\nkTYPnzjdvS3XG+700xlw8crtGN/3yMFyfkJemQvHImRL6ooE3lpj/Mhg5O5uaNoqVKob1oQAMJUs\nUFR0Ah4rvnohXcAhwodPdDKZyOF1WUfl7QEXjwy2oZkmH7y3g2xR45Xbi7hkByXVmpSCHvmu2ELe\nSi5u88rkShpOh8jXby7w1MkuFN2s1hSpKHB1Blyomo5TFgnLMqmCRm/IzbGo30puzpcAgWA5phfT\nEmqQHFbVAK8sWflHgpXcORHPs5gt4XVJnOkN8ROPHyPokVv2yHs/UokJr9SPqeRczSYKfOXaHG0e\npyViIVhSx/5sietzaZYyBk7ZUgbsCriZiOesmh5uKzEewyRV0Dga9aLpBu0BGbdLJKdo+D0yF4ba\nSeQUJuMF2n0ucoqGYVonhZmChiiCoFmhF5PxHE6HyEyyQF+bl/aATkExSBcVsiWVYs4glS/xzLk+\nnjrZ2bCYa7PUL6wrog89QQ8FRaeoGhuedFcLq2kUjlPd6e/wA3A04iXolqvy45YAgFUjzCFYn02j\n8uS9HdWFMcCVmRTzmSL9bV5O9wbpDlkKYqd6ggTdMrGsgiSI6BhEfS6KigvDtBY3XUEPnX4XyYKK\n0yHwxXdm0A2dnrCHD57o4C/fmUXICxiYOBwipmkVrZ1PFSnpBmGPE728wHZLVjK0opsIpknALXGi\nO8B3ne8D4OJYnHRRQ5bEqg1slLTdzPM8iKx1KlF5DoZpcF9PCKckcl93cMXJZ6WoZcAto+kGI4sF\n/C6JhwcjyKJAPKcwtpRDEKzC00+f6WEikefyVIqOgAu/S6Ld72Qw6uNou5e8ohP2yJR0g1duL+GR\nLbXGDr+LaMAKwb61kKarHJ5cUAwCLokHj7YR9buRZRGv04FbctATtE5/n33gCH/+7SkKqo6mmxR1\nHckh0ul345ZFCqrON24ukCmqOCURRTNwOETms0UKYzpnekP0R7w8NNjGfLqAVs5FTeQVogEnRU3n\n6eGefTlXNNrsq7dTa42ZSu2nM+1hRpayjMWyvDebxiM7SIjQHXSDaUWLDEZ9tHktBc23JhIkcipO\nv/W8e8JuLgy209fmse4dcpEpKqi6peDmlq0TeIdghcwLIii6jsch4ZREfE6JD57oIJ1XmUzkMU0T\nv0cGrNpDyYKKQxSYzxZ5fLiDCwMRfvcbt9F0g3hBsYQWaO2TOtv5OaR8eyLBxbEEv/zMqU3JWzdC\nEAQeO97OK7eXME0TQRDW/9A+YiDiozPgbpjAWzF6bV4nXUErydfvlnj6zF2FuOlEns+8eBNJFMmX\ndHTDipUvqAavjizx2FCU5x46ykQiz62FbDUpXCqHtd1eyFmStoal8vPi9XnAUmO6OBZnoN2HYULE\nKzOTLnB5KsV0skDYK+MQREysYpdW6IwlwvDAkRAfO93DxfE4b44leO32EgG3TGfATWc5Md0nW6pS\nbkkgXdQRMAl4ZB462lZN0D1/NMwDR9uI5Yr8D/f3cqovxOhS7tDs+u4GqbxaPdmoVEOvSGJ/ezLB\nRM8vHo8AACAASURBVCKP0yFyoi9ESdF5dypFtqhbE5fLyVQijyAIiAIoaglBFJiI6Qy0e/ngySii\nKBBwybhlB66SxsnuIMc7fHzgng4yRY1/8ZfvUtSMqlCGgYnskPE7ZRYyRebTRRTNxCEJCAIMdwX4\nofcP8p9eH6eo6KSKKgMRL36Pg0cGI5ztX18GdS3qF9YVRbnZdGHVk4j659lI4bF+sh5dyjUMx6m9\nvygK3FrIcms+gwmc6AqQL+lMlGt+9Uc8nOkNkS6oBD1y9UQglVcZjPh45c4Sbknkr9+d4VRviIuj\ncfKqXpXQ98sSsijikiQ+fLKDVF7j7ckE0/EigggdfheT8TwO0RJBeP9QlJPdIV66sUjQI2OgEnBZ\nRUq7Qm6+7+GjvDNpFTMuqTrpgsrF8QR3lnIEXA6WsioOUSNTUPn7D/Zzqi/EQLuP8ViO4JhUtYHr\nSQ238uJnJ1jrVKLiQEd8TjyyoxwqaNn3ChGvk4Bb4sp0kuuzadxOiWRRZTDq5Z2pJOmCTiJXwu10\nkCmpfPPWIie7g3QFXXQH3GRKGg8NRLiny191rsdjOV64Osd7c2l03cBTDps+HvXz7kwK04R4toSi\n6siiyFymSKqo8pGTXXhcUjWEtDLOnjzRgaIbTCXy3JjLEPU7uTqTps1nbfSZpkmmqFFQrU0XSYQj\n5TyfiWSeb9xaZKDdy/c9fJRzR8J87eY8LtHBUl7hvu4Q6ZK6qjpoK7NafoskCCRyCgXFOkFfa8zU\n2hS/S+LD93YxlyrR7nNS0gwe7I8QcFu5N5cmk+QVlb8bjRF2OxH9VvHioNfJia4Az9zfi2aYvDOV\nIFmwwiQd5VDp4Y4Afze6hKpZ4XCSAYYABUUnU9RICSW+clVHEKxcIFEUUA2TvrCb8fJG54kuP90h\nNx+8t4OAW+a+niAhjyWkITmEhpvDrYTt/BxSPvfyCEG3xPduQd66EY8NR/mLSzPcmM9wsju4rdfe\na1abyBuF3zRadI3HTIY7/ET9Lvrb3MykisRzKmCylFU4GvFyqi/Eqb4Qp2P5amLki9cXKCgaqYJC\nPKdgmuB2OLi1mEEv5wItpIvkVQNfuWJ0XtFpryycXA6CbgfpooEoCFUZXQGTV0fiJAoqAZeTzqAb\npyTSF/bgc0vMpgr4XA7csshwhx+xnLckiQKPDLZxT2cAuBuOpZsmR12+6qR7mHZ9d4O1Qog8soN7\nuwKIAnzqXB+JgkJW0bgxn+a92QzpoopuWGGWDodIrgSCAapgsJBRSOU1esMeiqqViI2JdWqUK/Gt\nkRgP9IfpCHpI5VVyJZ1IwEUypyBgkC6qOAQrF8EwTdCtpNnhDj8l3aAr6GYo6uNr1+dxOUW6gx5O\n94S2HBLZaDxW1NfWc3jqc4LqRQqaFWA40xeq1CzmpfcWCJSL1C5mi3hkqRx+qBBwS3x7IsHNsnN0\n/kiYR4faefH6PHlFZyZZ4OyRsFVI2SkxmciRVwyeuCfKaCxHqqDgdjooaRqKZqIaVo5gwC0xly6R\nFK3d1oGQD8khki9pfOXaPPmiRlEz0TQT1bDUPedSRe7rDvLhk5184+YiuaKKzy3jkkSiAReSILCU\nUwl5rLZ/8+YSfW3eqhrhQPvdGmgVNbz1HKBWXPzsJvXhlMfb/bw5kViR+B7yyjz3UD+yQ6CoGdzX\nHeTOUpbZVAnDAMkhIIgCqm7idIiE3DJ+t8T9fWF0wySn6Ewn8kwnC3zkpIDHZeVnmZjcmElXbcid\nhQzvTCV46GiE7zzXR3/ES8BtqbbNJIoUVB0Q+JFHBxuOq4+d6uZvr88zGc+TzKvE8yoBj5OSpjGT\nVFA0o6wqKBLwOGjzWUW/MUEUBCv3zTStvNSgm2xR4725dFPKgGuxl2HWqylFvnx7EbfkIJlXOdOz\nfm51xaZUJKTH4/lq4dALxyKUdJ35dAnJIeJzySykVXKKRme5IO2HTnQiAF96d5awR+bmfIZkQaFU\nqW9hwJE2N10xD5PxHBhgipZ4gqGb6CaIDiz7LkLE50Iyrbp/08kiDw+08c3bi7R5nByN3J3vo34X\nM8kCRd1YFh7cqjTt/AiCcC/wC8BA7edM0/yOHWiXzQ4yEcvzwpU5fvqDx6tyhNtFJe/n1duxA+f8\nQOOJvN7oJfIKAc/K+gQXx+KMx3LcWshwujuIIAhMxguouhW///ZkggvH2gmVF0y6YVarPCdy1m57\nxOcimVdYypfwuyQKqkGuqOKUHYiYFBSrwvNMqsBsukCupJN0iDgdEm0+S6VLM02KZbGFoqbx7Ykk\nvnIiZZtXRtUNxmM5HIJIm0dmMOpDEASmEnlMYLArQCKv8s50sprEvFqdpMO067udNJrEV1uEV0Il\nHh6IVPNbBiI+7ukK4JEdxLIqRUWnoFp/DNMoC4SZyIJIQdMZj+UoqDq3FrLIkoAIlDQTM11kKasQ\nz5ZIFTUkUcDnkkA3KKp6WbbXiiW3BDNAdogE3DKpvEZR0SmVM2fP9rfx9JluLgy2b1tIZCP54dWu\nU7tJUZ8TtNapZKN+3GjDI+CWuDmXRtF17usJEfY6iXiddAQMTnYHeO32khUjLztYzBb5wrcnWcwo\nSKJAMq8yHc8jibCUKzERs4pCji5p+F0OJNHaTV3KqUAOTTdRdCtXIq9qOATIKjpOhyU3PJsuIAoC\ngbLYxWK2xH09QaaTBV65vcT1uQySQ+T8kTB3lnLE8wqKptMRcNERdFm7u5ki6YLK12/NI0lCtWL7\negp3rUYr5B1WckbfnU4RcEv43dKaie/3dAZ4fSReLmSpMdTuI1vSSCXyeGQJryzgdUkIguVMPHN/\nD7G8wtvjCRazJRbSJS5PWfOJKAhMl+u8GaaJaVhyxpqOpSJWcnJPV4DzR8J85sUbzKdK+FwOzHLC\neu3ufSqvcnkyycWxOAuZEpPJAsmcQr6kcmchgygKlFQdUQCnJNDuc9ETdnOqJ4hhmowAI0tZHDGB\nwXYfE/E8rvKG3aND7cTyCoObLFy618pijexzZW3QFXRzZSbFG+MxxuK5hm2rzw0CywF67qH+FRs8\n47Ecqm7w3lwaySGgGEY1/+b1kRijsRyLmVI518s6iRfKha4dopW/VVQ1DBPMshKc5LBOd0wTFB0w\nDQTTyuH1yA7cTiss+s2JBGGvE4/LwZPDHdV+cWEwwqnuIH7P2qdbrcJGVr5fAP4/4LPcLRZusw/5\ng1dHcYgCP7pFeetG9IU9DLZ7ee32Ej/xxLFtv34rUmv0knmVF67OEfbK+F3ScklswyTokVnIlMip\nOmGfk4hPIp7XONEVwCU7uDydZDDi4+JYfFml6+ce6ufF6wu4JZGSbpDIKcykCqiaQVISmEgUyCkG\nJVUnni0SclvFET2SxHS6QLqgEXa7KSpWKM070wmM8ih2iAJH2rzIDoGPnuqhI+Dkr9+dJa1rTCUL\nHOvw8+lHjpLIK1Vt5Hemk8sm7mPRxsbO3vXdOGsV+azUyqEmorTRpFvJD/q9b9wuF9e1FsKnjwS5\nryvIN24tMp0oYJomPtmBohlcm01RUAzu6fSzmCuRLChkiwK6dZhDp9+Nbhg8cDRMuqiRm0iQLCg4\nRIj4nGSLKh6nRMjrJOiWWMoVeX3Mqmf14RMd3NcdxOOSqrlKux0SWXvPjeYE1ffj+vZrpsnHT3UT\nz1njPOx18vFT3dViqF+5NsdcpshMokBv2EPI46fNI5HIqVybTVuhUC6J5x7uJ5ZX8EgOuoJuvnlz\nkWxBQ9ENkgUFj1RW+DJMVN1S9BMEK6evzesk4HbwzNk+CprOdLzAe3Np/C5LRt9yVgXu6w6QKWoU\nVSjqBn6XA0yZoQ4fnQEPz5ztwSU5eGsiTpvXyZE2H5mitiI3ZT+EtO71grgWq1yBVWKgbZWNjNr2\nDnX4iOcUhjv8jMWyhDwSssNPX9jDwwPhssJalrBH5rWRGKd6ghQ1g0Rexe0UKSjWKaKByVCHl9dG\nJJy6FZKWLakMdfj4xKkeFMNgMOKzig73hbnjylFUrJCn+tDuu1LeWR4baifgcpApiQTdEgXNwCtL\nloiPpmMiEA04eXw4yqfO9TEWz9HmdeJ1Srw1HufVO4skcipPnexiLJ7jC29N0RO26v/US0A3w173\nyap9rpF2r9jmSvHvtQr+1irKvjg6T7qo0RV08cn7e6uOVOU+Z71hCorO2xMJIl7ZqimVLZJRNAQE\n2nxW8euFTInekJt7O3zcWsxTUq08Tt2AhwfauDKdpqDqBD0yiVyRpWy5rAZWqLvsEFA0K2JA03U6\nAgE6Aq5qvppmmi01xjbCRpwfzTTN39uxltjsCsm8wp9cnOTvneujK+jekXs8NhzlLy/NoJULex50\nao3eC1fmmIjnyRStOP/a/ICiZpBXdPrbvDglAUkU+e4H+/nKe/OEvTKji1k8koO3J5K4aypdnyov\nGp8931cNp4O79TNuLWT5wpsTKLrBu9Np7ixZSefDXQGWymFy5/vDtHlkBFGgqOhMJQpkiwqqYSJi\nkld0+sIePnBP1FKhu7lYNrglnhiO0t/uvassF8uhbCKZ3KY51pvEr8yUpYOn70oHNzph00zL2Q54\nnHidBi5Z5NOPDHBpMkmb10nYLZMuqhhALKvgdVpiGtZOpYsH+8MsZBRGYznyis5gu4+ugIsL5aJ7\n//XNCb52bZ5RJWfVAxIFhqI+hjsD3Ncb5PXROIPtlpSzzyVxaSq57KRkt0Mi6+Pp18sJqqf2BGG1\nXd6wR8bnlsjVFEMdXcrhlEWePt3De3Np7unw0xP28NZEgli2BJj0BN2WEpZhEvLIiKLAfNrKvXCI\nkC/o9IQ8OBBIFq2keM3UCbmdJPImumnZ2mjATbvfxXQyT1/EQzTg4onjUUv+uJxLqJlmNR9xMpHn\nS5dniOUUPE6ZsE/G45L4sceO4ZYd3FnMomg6gTr1rf0S0rrXC+LadlQS2SvOcqMxW9veWLZER8DN\n/X0hDNOq63OyO8hrI0vE8gqJgkrYK9MVdPPS9XmyJUsOOeiWCHtkZlIFS7TEJfGxUz1cnUlbRVFN\nk2cf7Oeho228NhIjU9S4MZfh46e6iQZcuGUHRc2oypVDjaR7Wczn5lya6/Npjkf9zKVL6FgKYi7J\ngVMWifi89Ld5ef9QlAuDEfrbvQQ9MpPxvBWyJYmc7Ary2kiMa7Npbi9mkAQRzTCXzZsboVX6ZL20\ne2XDqjZXrlHbKu0fjWURgKGoj3TJmm8rNr/iXAC8PhYn4JZxiNZmiFFWd1Q0nWxRI+J3MhT18cz9\nvXzp3VlEMU48p6DqJrOpPG1eFx+/v5uionP2SJgvXpri3SnrJKmoGET9Thyila8U8bkpaTpPHI9S\n0HTSJat0RqagVpUs93qMbZR1nR9BECLlv/53QRB+BngeKFV+bppmfIfaZrMD/JfXJyioOj/5gZ07\nlXn8eJQ/fn2Cd6ZSPDTQtmP3aSVCXplA3qqinSmHrXUEnFUjF/LKPHu+b4X6k2aaPHE8Sl/Yw0Q8\nz1CHn5FFqwK0JSEr895cmjux7IpdlbNeK2FcEgWyRY3FbAnDMHE5HCDA2b4wxzv9vHJryTqJckuc\nPxLmC29NcjTqIVOQafe78MgOZEngnq4Al6aSPDncwfkjYRYzJTqCbvrbrJpNtTs8BVWnr83K3dgP\nhm4/sdYkvtpirtEJW8TrJOp3EfU5UXSdB45GEIB3p5PkFY1sSaM74OH+I0FeuDKPWxaRHFZOzg+9\nf4A7S1kWsyVLMlezQiENTKYTBR4divIPHj5KQdHgDiTyVvXvEz0BPjDcCQJ8606MsVgOSbQUxhaz\npWqdrERe2fWQyK2EYTba3ay/1mrFUGslkKNlZba8plNQ9GoOYLKgMp8u8o1bi2i6ieQQ6A16kESB\n9oCbdEnjg/d2YmByaz7DUqZEUTXIlDT8bhlFs45xS6rObKqAW7IWsBU5fIBTfSEerQsBqxRVdIjC\nMpsV8sr89AeOVzdY6lX59ktIa6ssiFc7nW00Ziu/F3DJVVnkjoALExiL5cgWNbrK4gZF1aieKnQF\n3HxrJEZv2IPb6eCnnjyOpyy9HvLK/PIzZ7g6myLoljndG2I8luPyVJKAW2Z0KcuFwciaOa3ZkiXp\nXlR1BEFAMAXmMiW6gm4yRc2q8eR388hgGz0hy7mfiOdJ5JVqyGStI6CZJuePhK0cU6eDxWxpxby5\nESqn3RU1zL1ycuvt87Gob1mu3GrjpXYT1e+KVx0lBBrmErklka6gi8lEAclhqbzNpYq0+2Q+/chR\nusqqkSGvbOUimvD2ZIJYrkR30MOxqI8HBtoYjPj4yrU5xHJorW6YhH0yLoeDNp+EaUBfyA0CHO/0\nW8In8RxvjMZ5ZzrZlHx3K9LMyc9bVFM6ASvvp4IJDG13o2x2hpKm80evjfHkPdEdzcd59Hg7AK/d\nXjo0zg/crerc3+alI7B85wygv93Ljzx6bFnhs+V/n7F2pd0STw9bKnGZoso7U8kVi93aXehkQcXv\nsRJbMwUFWRLwOiWOd/h5bDjK6d5Q9XfjeYWesIecovPerLXLc7zTT9grV4s0TibyhL1OppN5Qi4n\nz1+a4tnzR9BMs3osf3E0jmYYxHPKpkIUbFZnrYXlRhZzleTpC4MREKDN4+TzFydI5lVkUaDd76S/\n3WOFtIVcOASB3rDHkqwPuTnZE+TydNIqyKsZvDOV5OGjEXTT5PJ0kpBHJuixFlJj8TwIVojEK3cs\nZ/tUb5DhDj9tXieJgsJ8qsjFeHxZnazdLoJbm7swupRreuG+2qKm9rOrFUOtfZ+zyQJvjMU45vdT\n8FoOy2y6CAIUNZ1r0ykifheZokpvyIMsiVahQgRuzKU50RPkZz44zIvXrXpjqby1AzuZyFHULYnb\nWKZEb5sXtyyuUM1qJOawms2qhNes9yxbmVZx0pptR/3vwd05Il1Q+fzFCWRJ5FsjMc4eCfORk51M\nxPPIDoG5dAkTqiFJHpe0YnzdnM/glh2MxXIMtvuq0u0mgLB2TutQ1JJ0b/M6cTsdiAjcXsgS8cqW\nwIFplbu4MNjO1ZkUV6dTtPtdVcdqAGvxP9Duqy6gMa3rVQo4N5o3m2WFGuYezEtr2edmxktVVCTi\nW9YHrkynVlzT75aI+i2FPVEQWMyWcEsiQ51+hrsCy9590CNztj9EXtXIK16SeZVEWWmyMq8/OhTF\nIzvIlVTyis54PA8CVtFVn7Pq+IS8MsQhW1Lp8PtJs77kfSuyrvNjmubhSNw4BHzx0gyLmRK/+b3n\ndvQ+EZ+TUz1BXr2zxM8+dc+O3quVaGaCa5SgXWG1Xbd6w1e7C11SDWYSlrCBIAp43U5CbpnusIf+\niHfZvdPlI2qHIDDc6Sfqd/LEcAf9bV5evr3IyGKWuXSRb95YRDNM5tNF7u0KoBkmz1+a5tnzfavG\nLwN7vsA4SKw2UW50MVe7gB1dyhH2WJKkC5kSQ1EvEZ8LVTc50x0ip6p0hTzVQp0hr8xgxMefvTVJ\numhVa59J5YnnFEu1SbRCNzMlDbfsIOp3kS6oTCUKdAXd9Ec8BD0yn784jmZYEutDUR/n+9tWjXvf\nDTYTo16fsL5a2EpF9bC22Gmtwty12TQjiznuLOY4fyTME8ejOCWBY+1+rs2mmUsVAGsx2hN0c/5I\nmKlEDtM0mU0VKWkG33Wub9kmytWZFF++NstAm49XR5a4PJXGJSXob/Py9OmeNb9XqzgHO0mrOGnN\ntmO1OcLauHJzoitghUP3BKuhpABH2zzIDmHVUgzPX5rm5ny2Kr3ud1mRAJmSNS4rql311C/o+0Ie\n5tJFrs6kSBdVXLKLc0dCPHC0jfu6g7x8e5GJeJ6JskAOQLakrRAIqYSHraWQuhE2GuK4E0IY2zWe\n6vtAo2s+OdzB85emGWz3UdINgh65mmtc/+6/8NYki5kS04kCHX4nJU2nzSvz5WtzHI14uTSRRBQF\nFM2oCqmomokkCkT8Tj54ooNHh6LVjaM3RuPL7Nh+EDioZyNqb88BL5immREE4Z8BDwK/Yprm2zvW\nOpttwzRNPvfyCCe7AzxRVmTbSR4fbuc/vDZOQdHxOB07fr9WYSsTbf1nK8a5fmKorZ/z7nTKKpjX\nE2Q8luOeTj9PnezCMM1lyYiVKvTHOvxWkdTyiVDVkNLB85emyCs6c+kiD/S3MZ3MMxnPcyTigfL1\nGsUvS4KwLxMe9yub7WOSIJAsWLk9p3qCPDEc5c5SlqBL5qXr8/SGPAgIVQUfsE4zhqJ+7ixl6Q17\nSOY1hqL+qkraqZ4g8VzJUitL5nHLDnIlDYCOgLVbrRkw2O7j1nwGYMtytltls3kgtQnrjahd+FRk\noNMFazc6W9KYTRYIe508dbKLkaUcjwxGGGj3MRbPkS6pdARcBNwRNMOgJ+TG75YsSeEb8/zdaAK/\nW7IWnbMpPnGmp7oQuTabJpFTmYgvoWsGp7oD6KYlPtNMvZRWcQ5s1qa2XkxnwF11tGtP4v0umXMN\nFqPjsRz5kobP6aiGllVOYJo9jaqEOt2JZSkoOoMRH+8bjHBzPotLcpBXdV68Po9bcjAQ8SKYVo5x\nu88F5vLQrdqCxJUcqK2eAm/kVHwnk/R3Yjw1uqZmmssUAz94TwcBz8rTl0p4o1NyMBHPo+pWuYrO\ngJvXRpa4vZAhW1R55Fg7uZJGSbOUZW/MpxHFiix/dJkT7pLFZXZsP9qPjQge/HPTNL8gCMITwEeA\nX8dSf3vfjrTMZlv5xs1Fbs5n+cxz53al+Ohjw1E++/Iob47HefKejh2/30FjMpav5gfVqsZBXVy4\nWyLoloj4rPwOB5ApadXd6cpCz+eWSBc0Lk8lkQQRt+zgdO/dmgOaaeKWHfSFPVyeSjKZyNMb8lDS\nDYqKwchSFkkQ7h7L19T6GIvnyJa0atjcfkl4bCV2Wo53Mpbn8xfHuTFn1Zl58Ggb/W1exmK56kne\nfT3BFQUGI14nCFYCbNAt0RV0Qc0CYz5d5NpsGp9TIpFXOdbuRBZFesMenj1/BIAXrs4yFsvhcYo8\n91D/sjyEvWAzeSD1Ceur9fHKv92V1FYxMVnKKCxkikwkCnicVrHRihdVH+ZUG0+fzKvouoFhmORL\nlgJX0LVcda6yELk2m0bVDBZzJQQBogHXlh3M2n5Zud9BPSHabTYy5ishXW7JQVE1ePp0B0GPzJWZ\n1IqT+IDbyj+rKIcGPTIXx+JMl9VBhzr8PHv+yLLwxvWo5LS6ZLGqlpjMq7w9afVRMBju9FtiCapB\nPlOkO+TmRHcAt+TA75ZWLUi8XRshGzl1aRUhjLVYr3/U2rGSaoBA49pbgnWSnCmqZIoqXUEXM4ki\nb4zHUHQDURFIFFTenkjw4EAbUdlFm9dJrqQx1OEjXPduanMYu4LW724khLhV2IjzU5G3/iTw+6Zp\n/pUgCP/nDrTJZgf47MsjdAVdfOe53l2534XBCJIo8Ort2LY6P61Qs6FZ1mvraj9vFKJQa5xXiwuv\nSOpmSmp1d7piqJYyJWaSeRBEQh4Jamo4ABRKGm+MxhAFkc6Ak/cda6cr4OL6fIao34WJuWxRXLvI\nq5wqASuO3G2W0+id77RU6GQszx+8NsKt+SyKZtAdcrOUKVVFB9ZSIgp5ZT5yspPLUwkKCsymCtVE\n6kJJ41dfuM54LI8kWnlmXQEXbX4Xz57vq0paf/qRAa7PpekJe6rFMveSRoukZhYaimpwZSa5bgG/\nZZLaJUuAIJFX6Ay46PC7ONrmZTpZ4O9GYnz9xgLPnj+ybNe7sshUVZO/eHsav8uBaZj0t3k41unn\ndN/dTYvahchAu5cnhztIFJRluRSV77xR6sNrBcBZrsmyn093W2EOSeVV/vStSTIllYBL5u+XBQFW\no5p3Uz5x1Uzz7olM3fgtlDR+/+U7VeGN733oKM4a9dALA+3VqICNfP96tcQzPSG+eWsRURC4s5jl\nr67McrYvzDP395DMq1ydTnNtNoNXFnn2gSPLxAj6273rFiTeDM2eutQ7Dpmiuu7z2K5+08x1mimc\nXvv+L47F+bs7Ma7NpjjVG1q2YToQ8XH+SJhbCxl8TomlrFKWsxboDXlYyJQ41ROkzevkA/d0MNDu\n4/J0ErfTsWxDE+5uftSecK9WLLrV2YjzMy0Iwr8DPgr8qiAILuDg6xgfAK7OpHj1doxfevokTml3\nXpnPJfHg0TZeu7O0bdfczCJxrya61draTIX5eF7BLYnV6vCN1G8axYVXJHXPtIcZWcpyeTrJ2b4w\nn7y/l8vTSQqazkyiQFEzoGaROxnL859fHydbtJSjHKLIfLrAt0aWkBwCsymr+nx9G2onZLBODs72\nhfeN8dttVusTW92FXKuPW470FOOxPPG8gqIYpAsKgx1+Lo7FGWj3cbY/vCwBuR6PS7KKJSKwlCtV\nQ1RevrWIS7ZCXGbTJU50Bnn2wSPVyuRfeGuSpWyJOwtZHKKALIlMxvPrLvR2g9rx06xdMQHTFBo9\nomUsWyS6JZ4bvlujy++26hxdmkoSzynkFZ3PX5zgE6e7q88tU1CZTxX52o1FFtJFNL8LTINowMl3\nnetbMe7rHbl+vNviUNf2y3enUwiCue7JV6uz2zVJVhubV2dSfOPGIl6XFRL+yLG7ggCNxvFqp5X1\nJ/ERr5PL08lqqOlYLFd1itZTD12PRptub04k0AyT41E/sZxCoaTx4vUFTnYFcDgE3LID1TCYjOer\nEQJvTyR49vwR+tv3biOk3nF4Zyq5rHRAPdvVb5q5zjJZ8Q4/I0tZnr80TZtPpqQaXDgWqYY1Vk7k\nnLKIKAhohlXbSTdNxuM5AnkZSRB4ZDBCxOfkxlzGqvnnlekMuhiO+nHLVi6o3y1VBQ3O9oWXncw1\nCm2vyPi3+gnaamzE+fle4BPAb5immRQEoYflym82LcrnXh7F53Tw6QtHd/W+jw2381sv3drwDtNq\nbCahca9yURq1NV2wTnTckkhR01etML+eatxqVCbIkaUs12ZSYGKp3tzfWzVmbV4nRVWvXjOVFxcx\nzQAAIABJREFUtxSE3p5MUihpODIKnUEn8+kSsaxCf8RDb9jDhWMr43rrF3m247M2q/XfrcjxrtfH\n43mrzlOupGEa4JQFhjp8PH7c2kms7Xf19SnqwywvTSURgDdG4wxEfAxGfEiiQLqo4ZYE+qOe6uR5\neTLJ5akkYIVxDUX9BN0ymT0UOliNZuxKJbxssD20ru0JeeUVu9x9bd7qpseXr81xcz7DYqbE8bK0\n/UvXFwi6JUzAMEzenU6BaSKKkMgpGKb1b1++NleVDa69X6P2bnVRUh9eK7D/5Gzr2c1wp7U2wF56\nb57bixlkh4jfJTGXKi4TAKgfx40cj9pQo9o+YI1LqjLzp3tC1VPY1dRDm6W+r1XKN+QVnZKmk1N1\nFuczlnCHaamMZYoq6ZJKtqQxGbdOQZ+/NM2PPDq4p3ag1nFY73lsV79Z7zr1suJAda0QdMm8NGrV\ncwq45GrOYGWcZosakgg5RcMhCLwxGscwTa7NpBiK+rk8ncTvkjFME69L4tZ8hjaPk3afs3qt1aJL\ndmLu2muadn5M08wLgrAAPAHcArTyf21amNlUgf/+zgw//OggIc/uGprHh6P8mxdv8a2RGJ84073l\n6210oG3FYG31xKi+rZIg8PylqXIom0zU76KoNS4UupHY5Voqn7s8naSo6PjcEtlyZfZjUd+qRfUM\n0yDgkvDIIg5BpC/sJVPU8Lkc6AZ4nY6GSkCbbedhZa3d240+x0r/XK/AXMTrRBAEQh7r9DCnaOQV\ng9dGYpyvOc1ba6yEvNZEmy4XOKwotUXKyftvjFvXWuZMlePM3Q4RSRTJKRpyUWQo6mu5CbIZu7LR\nZOpGkrshr8zlqSTZksoTxzt45c4ibtmBYZoMRX2MxrKYpkBn0IVbctAT9pDKK5R0g66Ah742H5ny\neF6vj2zHomS18Nr9PNZ3c7EWzytki9oyO1w56ZUcIt0hN6pm0uZzYpTlhteaqyp9aL0Nj/52Lz//\n0ZPLnO/K5xuph26FSvmG8XiOF96dYyJhbbBFA07CXut7hdwyR9u83JzPkMgrtHll3JLYEpsgzfaH\n7eg3qbyltrpWgfBqNEX0bjTFYMRnqbHW1HN6bSRGuqjRFXQtqzn29JlyiYyCyjvTSUSs0yBTAFEQ\nifhEvE4rj/hou7e6+Roorw1Xc6iBbZu7WoWNqL39C+Bh4ATwh4AM/Gfg8Z1pms128EevjmECP/b4\n4K7f+9yRMF6ng9fuLG2L87PRgbZZg7UdJ0aNdk7csgOv7GAqYRWw+/SFo6vKezYbu9zovhV54psL\n2WXFFhtdM+J14nPJuCQRFyIXhtp56kSnVUfEBEEQ1jx52mw7DyNr9d+NPMfa/rlegbmQ1yquCya5\nks5MqsBjQ+3MpUvLVHoaOeu1E+FAu4+uoGuFwl+2qFFSdavYpkuqfq7N46zK6A5EfTx4tM0Kq2hR\nSdQzvSEQWLV9G7E9qzmSqbzKN28ucnkqhdMh8sDRNh462sa12bSVqF4uapkrajhEAU0zONLuxTAg\n4JZQNH1Vme2ttHe969T30/3Mbi7WLGnzxkVvOwIuOgNuSrrBQ0fbON0T4uXbi03NVbX9a2Txbnhz\nvQNUcXpq2YnvXwm9a/M4l4n0nD8Srs4jL15f4H2D7YBQDf9shU2QRs+j0cbnVp9brc02oaEiH6zM\nq6q810967uZ2zWeKCMBQ1Md8ulh9/7V5g6m8ypWZFNmSdRokmOB1ihzr8CMAHznZxaWp5JphbWud\nPG527molNhL29izwAPBtANM0ZwRBCOxIq2y2hUxR5Y9fn+DpM90rar7sBk5J5MKxCK/e3r68n40M\ntM0arO064q5vqygIpIsqCOB1OQh6NldwcT1WK7a4Gl7Zwem+IKIg8l3n+paF6ey33ZxWZzsmivr+\nuV6BuerubDm+XTNNuoKuao5JpV31SazZokZRs8Iu+9u9DcMgavO9KjuUlQn0Y6e6t1y7Y6ep3+hY\nrdYJbC6ZunYhOx7LcXM+Q7vPSSyn8NDRthVFiMF6v2d6Q7w+FrcWOJkiRyNeekOeZaEp61F7UrAf\n1Zh2it1arK1V9La2+HBlEVwRAGio2FVDNbx5MWuFRgl3w5ub+V479f3ri3hbuasOJhN5EnkVMKvF\nslupL9Y+j7U2Prfy3OptdsC9sTpuFQezkpvpd8XLSpuN33/tdZ4+bZ0GSYKw7NnXzvGV9gVdMiNL\nOcZjuRUFjverk7MaG3F+FNM0TUEQrGLAgrC7pbltNswfvz5BpqTxUx8Y2rM2PH48yv914z3mUpb0\n5W6zmQG7E6ERIa/MhWMRsiV1RXHQ7c5LingbF1uEleF88bwl4fvwQDsjS1nG4rmqU1bbjlZQSLKx\nqO+fzZym1E6eq73HyjsfXcqRLWrVRcvnL47zidM9DLT7qruL6YJKIqdSKOnVfK/xeI6FTLHav7ej\ndsdOsxM5IKvtJs+kCpQ0g4BbxueS8Lul6u/X76RGvE7em0szGssScMnLCgxuxJHZy7zHw85adrgy\nHmupvJf13lelf12eToLAnpYYqBXwqSysa23EbLrAQqZEZ8CNW3a0vE3YqZywjawpVluzVJ71QMQq\nSFsRMfI5JbKlleGw66196n+ezKt87foCskMkWCN+cFDZiPPz38pqb2FBEH4S+HHgszvTLJutUlR1\nPvfKKE8MRzl7JLz+B3aIx4bbAXj19hLf89CRPWvHRtip0IiBiI/OgHuZpPBuLb6g8UKoXiShqOi8\nPZGs7vav9rn12mg7SzvHVvpnM5sBEa+TomaQyKt4nQ5GlnK8dH2hGl8OWDVHZJGiqvP0sBXO88Zo\nnOuzGS5PpnhgoG1F6FwrslM5IJXvWxE6qZykOQSBgNvBUNTX8JSpdjFZry63mXG4mwn+NsvZzDht\n9n2FvCsVuXY7jGxZcv5MilM9IfxuaZmNCHucjCzk0HSrLpAk7HyNwa2wk/Zgs3mdlTbUj/1KePut\n+XJ4++meLbWxoOiYWDlaep0YzkbZD/P/RgQPfkMQhI8Caay8n182TfOrG72hIAiDwOvAe1inSR/b\n6DVs1ufPvz3NYqbEv/m+83vajvu6g0R8Tl69s3+cH9i+I956I9DIAG6Xsa2/V337G02sFSGEikjC\nYrZEoiyP/COPHqueDu0Xlb3Dwmb7ZzOTUsgrL1NxKqr6MqEDoJqUW6k5Es8rGIZJyCOzkC2SyCl8\n+dochmmW1QWPNMxB2Gu2e6OjkZR9IqdUlR0B7uttLAlfO24qn7m/z1KXG4/lSBXVDRcT3s9qTAeB\njY7T9XLv6q+9l8nmlXnB55QsieWysMPl6SQhj7WAHmz38e5UktFYjmRebahW2Ers5DNtpi+sVgrj\nTG9oxRwMcKonhM8tkSuuHd6+nt2P5xXCHpkjYS+JvEpR1TdtK/bL/N+U8yMIggN40TTNDwMbdnga\n8FXTNH9wG65j0wDdMPl337zDuSMhHjvevqdtEUWBR4faee12DNM0EVp852c7Wc0I1B9Nb4exbcbg\nNFoIVYziYMTH2xNJEnmVNq8Tt+zYtJylvdvcmmxkUqpVcXpjNL6iAGqj/lDUDHKKzpGwD6ckspgp\nkVd0EnllWS2bVusL27nRcdd5UXHLIkNRPwVFp1hWeFpLEr42bLD2MyXV4OJYHN0wN1xMeK8XyDYb\no/Z9NVNAci/zMCrzQiWpPpYpMbKUBcHKbxWAkUwOHegPe3HKjqpaIbSucuBePdPV7MdsugBCY5vr\nd5fDKtcQkGh2bbBWeY2NnOTsl/m/KefHNE1dEARDEISQaZqpbbjvhwVBeBn4c9M0/59tuJ5NDX9z\nZZbxWJ7/7QcfbAln44l7ovzVu7PcWshyb9fh0cjYSAjDVo1DM/eqXwjB8qP09w1GSORKhH3OZYur\njS6g7N3m1qSZPlI/yZ31WqpE9e++UX+onBa5ZQcOQSCWU0jkFSt0rlzLphI614qTYTOstQiofb6F\nknViVlFtevr0ygrt9dd9YzTOyGKOO4s5zh8J8+z5Pku2tqY2C2y8mPBeLpBtNk5t7t1OLiK3GppU\nOy88fbqHsXgOt9NRXbCf67PC7WWHwI35DCXd4FjUt66y2F5+p71kNftRyets1g6vdd1m1wb1js9G\n3td+mf83kvOTBd4VBOGrQK7yj6Zp/i8bvOcscC9QAr4oCMJLpmlervxQEISfAn4K4OjR3S3KeRAw\nDJPf+dodhjp8fOzU1uWlt4MPn+gE4MX35g+V87ObRqDZe9XmImSKd2vEjCxmeX0sRk/IQ1EzeHK4\nY0PJk/X3sHebW4/1+shaJ5XN7DjXqz2lC1YB3XjO2umtDZ3bj31ivUWAJAjLRCCeHu5pWtkqnreK\nqD51souRpRyPDEaW5dxVarPYxYQPDzs5f2xXaFKtHQh65GU5SJVT3oF2H1dnUqQLKqd7Q2hN1DTa\ny++0VyyTuV7Ffmzm5G+tfrReqDxs/CRnv8z/G3F+/rz8Z0uYplnCcnwQBOFLwBngcs3Pfx/4fYCH\nH354bY1emxX81buzvDeb5t9833lEce9PfQC6Q27O9AX52/cW+JkPDe91c3aN3TQClXuNx3Owxqip\nnSBKqlGt2l7UDNyyY1kex1bb06pG77CyXn/cSrhC7SRaq+YUKRdwTBdU5jPFpsO19ppGO8hrPZ9K\nYdNaEYiN5DhVFijpkrqmDHkrLyZstpedfO+bHetrnays1d6xmHWK9fLtRZ4c7tgRp67Vw63WO5Xa\nqfe92nWbdRY344Tvh/l/XedHEISjpmlOmKb5H7bjhoIgBEzTzJT/93Hgt7fjujag6ga/+dWbnOwO\n8PfO9e51c5bx1MkufvtvbxHPKUR8rb/42S522whcmU6hmyZXZlINjVn9BHGuL0zAI1fjyzc7Ie3n\ncIPDxFr9cbM7zatNopXTjIcHIkS8zlXDtXai72zlmqt9n7WeT2VcbXbzYL2Fz35YTNhsPzv13jcz\n1ptZLDdqb/2co5lmU4v8jY7hVg63atbR2Kn33cx7GY/lCORX1os7qJsvzZz8/AXwIIAgCH9mmub3\nbPGeTwqC8CtYpz8vm6b5+havZ1PmC29OMbqU47M//HDLnPpUeOq+Tn7rpVt8/cYC3/3g/lF92080\ns/O1okZMTQJ6pcjeRg3cfg83sLHY7CS3Wr+rD+NYT+Fsu/rOVq+52vdZ6/lsx8LLdnBsdovNjPXN\nnqw0Ghvr9fXNjOFWXqS34qlU7XupiKo4ZbHh8z6ItqkZ56d2Fb3lapmmaf418NdbvY7NchI5hV//\n8nUeGWzjI/d17nVzVnCmN0RnwMVL123nZ6doZgG21gSxWQPXiobdZnNspg+s1u+aWYzsRN/Z6jXX\nGkerPZ9WXnjZ2DRio2N9sw7+bjparbpIb8VTqdr3Uiuqcljm8GacH3OVv9u0EL/6wnXSRY1f+a4z\nLaHwVo8oCjx1Xyf//Z1ZiqqOW3bsdZMOHM1OMts9QbSiYbfZPbbiUO9E39nqNTfryLTqwsvGZjvY\nioO/W45Wq9KqmyOV91IrqnIQnnczNOP8nBMEIY11AuQp/53y/5umaQZ3rHU2TfHVa/P814uT/PQH\nhjjZ3bqv45P39/L5Nyb52vUFnr5/a9WIbRqzFwuwVjXsNrvHZvvdTvSd7bim7cjY2Kxkt8bFQZxT\nWtmmHMTnvR7rOj+madpb9C3MeCzHL/zpO5zuDfKPP3bvXjdnTR493k7U7+Iv35mxnZ869rtgQCsb\ndpu9pRmVo+3uOztxzf0+Rm1sdpPtqCN0mMbZXtuXw/a8NyJ1bdNizKeL/NC/fwMB+Lff/yAuqbX9\nVIco8MzZHj7/xgSZokrAfXgG2lrYggE2B5WD0rcPyvewsdkN7PGyMezntfuIe90Am81xbSbNd//u\nayxlS/zBjz6yrLZGK/Od53ooaQZfuTq/101pGWqTO3XTJJ5X9rpJNjbbwkHp2wfle9jY7Ab2eNkY\n9vPafWznZ5+RKar85ldu8KnfeQVVN/hvP/0oDxxt2+tmNc2DR9sYaPfyJxcn97opLcNBS+60salw\nUPr2QfkeNja7gT1eNob9vHYfO+xtnxDLlvjDV8f4j98aI13U+NT5Xn75mVO0+1173bQNIQgC33/h\nKP/6b65zYy7Die7AXjdpz9lMsuFexwfbHF420vcOSiJt5XuMx3LLiz/Y2BxiVrMFB2Xc7xbNPC97\nzt9ebOenxRlZzPK5V0b5s7emUHSDj5/q5n/60HHO9Yf3ummb5rmH+/nMV2/yX14f51996sxeN6cl\n2Eiy4XbGB9sG1WYjrNf3GvWng5RIe2UmhW6aXJlO7Xlcvj12bfaSWlugqAaPDEaWFc0+SON+N1jr\nee3HnKBWt0+289OizKeLfOYrN/jCW1PIDpHvebCPn3hiiOFO/143bctEfE6eub+HP//2ND//0RMt\nOTBame0qDLkfDarN3rJW3zvo/amVivke9Gdt0/pUxkPQJfPi6DzpokZX0GX3xR2glWxPM+wH+2Tn\n/LQYRVXnt168xYd+/es8//Y0//CJY7z6i9/Bv/7uswfC8anwD58cIlvS+INXR/e6KfuO7YoPtpMs\nbTbKWn3voPenVorLP+jP2qb1qYyH0VgWARiK+uy+uEO0ku1phv1gn+yTnxbBNE2+fHWeX/nSNaaT\nBZ4+080vPX2Sgfb9oeK2UU71Bvn46S7+4NVRfvyJY4Q8rbUr0MpsVzz1fjOoNnvPWn3voPenVspj\nOOjP2qb1qebBxXP4XXHSJdXuiztEK9meZtgP9sl2flqAdyaT/MZXbvDyrSVOdAX4/E++n0ePt+91\ns3acf/TUvXz56sv89ku3+GfPnNrr5uwrtiOeer8ZVJvWYLW+dxj6U6vkMRyGZ23T+oS8Mme9YQYi\nPrsv7jCtYnuaYT/YJ9v52SN0w+TV20v8waujfP3GImGvzL/8zlP84PsHkByHIxrxVG+QT1/o5w9f\nG+N7HjrCfT3BvW5SS7CbiYL7yaDa7D3r9c3D1J/2OqH3MD1rm9aivu8f5r6413agVWn1PmE7P7uI\naZrcnM/ypcsz/OlbU8ymikR8Tv7JJ07ww48O4ncdvtfxi584yVeuzvNzf3KJ53/mcTxOx143aU/Z\nD4mCNocTu2/exX4WNocVu+/fxX4W+5fDt9reZUzT5OpMmr+5MsvfvDvHyFIOUYAP3NvBP3/mFE/d\n14lLOrwL/rDXyWe+9xw/9kcX+afPv8tnnjuHKB7eQhr7TdXF5vBg98272M/C5rBi9/272M9i/2I7\nPzuAYZhcmkrywpU5/ubKLJPxAg5R4P1DEX7siWN8/HQXnQH3XjezZfjQiU5+7iP38ptfvYnP5eD/\n+HtncBxSB2g/JAraHE7svnkX+1nYHFbsvn8X+1nsX2znZ5soKDp/NxLjazcW+MrVeebSRWSHwOPD\nUX72w/fwkVNdRHz2wFiNn/2OYXKKxr/7xgjjsTyfee4cncHD5yDuh0RBm8OJ3TfvYj8Lm8OK3ffv\nYj+L/Yvt/GwCwzBZzJa4Npvmnckkb40neH00jqIZuGWRJ+/p4BfvP8F3nOyyJZybRBAEfukTJznW\n7uOX//IqT33mG/zRjz/CQwORvW7artPqiYI2hxe7b97FfhY2hxW779/Ffhb7k33h/Hx7IsGvvXAd\np+TA6RBxySJuyYHHWfmvA7fswCWJmCYoukFJM1DKf0qaTkkzKKrWf0uaQUm9+29K5d80HdO0FuIO\nEURBsP6I4Cj/XTdNZlNFFM0AQBDg3s4AP/T+AT50ooNHBiO45cObw7MVBEHgH1w4yvuG2vmdr93m\nVE9or5tkY2NjY2NjY2NzgNgXzo9pmuiGSSqvWE6NblBSLceloOoUVR3DXPk5p0PEKYm4ZRGXZDlH\n1v9bfw96ZDoCrur/OyURUQDduHtPwwTDNMt/QAA+cdrNkTYPxzv9nD0SPpQqbTvJsaiP33ju3F43\nYwWtKGnZim2yOXik8irj8RyYMNDus/vaFjno4/YgfL9W+g6t1Bab/UFtnwHs/lPHvli1PzQQ4Qv/\n42Or/tw0TRTdoKgaiAI4JRGnQ0QQDmfSvM3204qSlq3YJpuDRyqv8qdvTXJpKokAnD0S5rmH+u2+\ntkkO+rg9CN+vlb5DK7XFZn9Q22dKqoEAOGXR7j81HIhqmoIg4JIchDwyAbeMS3LYjo/NtlIraamb\nJvG8stdNask22Rw84nmFTEkl6Lbsa6ao2X1tCxz0cXsQvl8rfYdWaovN/qC2z2SKGpmSavefOg6E\n82Njs9O0oqRlK7bJ5uAR8ToJuGTSRZVMUSXgluy+tgUO+rg9CN+vlb5DK7XFZn9Q22cCbomAS7b7\nTx2CaTZIlmkRotGoOTg4uNfNsGkC3TBJFVRMrLyokEfe1lo9Y2Nj2H3Bxu4H+5vtshOHrR/stH3d\nrxy2fnDQ2Ww/t/tB8xx0W/LWW2+Zpmmue7DT0jk/g4ODvPnmm3vdDJsmGF3K8crtxWql4yeGOzgW\n9W3b9R9++GG7L9jY/WCfs1124rD1g522r/uVw9YPDjqb7ed2P2ieg25LBEH4djO/19LOj83+oZmj\neVuxZncpqjpfvDTN164vMpnI45YdPDzQxg+8b4Cj7d69bp7NIWQ9O2HbiMa0QuiT/W5sdprafl5S\nDTJFlVRetfvbNrJbtqTV7YXt/NhsC+tVOrYVa3YP0zT54qUZfuVL14jlFPrCHk50B8gWNf79K6P8\n4Wtj/LNP3scPPzq41021OWSsZSdsG7E6e11J3n43NrtBpZ+Px3JcHIvzzlSSK9Mpu79tI7thS/aD\nvbCdH5tNU+/ZN6p0XPmdTFGtqo/MpgvE80rLDYaDQFHV+aU/u8xfXJrhfH+Y3/2BB7lwLFJVP5xL\nFfmnz7/LL3/xKtmSxs98aHiPW2xzkGm0+7daRfRahaJ6G9Hqu4gHnbXezXZiv+fVOSzPJuSVCeRl\nnLK4an87LM9ip1jNBjdDM89+P9gL2/mx2RTNePaNtOZtxZGdI1NU+fE/usjFsQT/+KP38j9/eHhF\nImN3yM1nf/hhfu5PLvFrL9zgns4AHz3VtUcttjnIbHT3b7VwjEbXOWzs9U7qboTK7PV3bGUO27NZ\nq7/Z9mDvaLYf7gd7YTs/NptiNc++1hOP5xWyRQ2fW8IwTN4/1E7AI9u7NTtAQdH5iT96k7cnkvz2\npx/gO8+tPiE4RIFf+/tnGVnK8k/+9B3+9uc/RJvPdkZttpeKjQi6ZEaWcozHcpz1hlf9/WrISzwH\n5srr1Nqaw8Z27qSut1u62mndTofK7NZu8X6klZ/NTpzC1PY3SRCqYz7klW17sIvUv9tm++Fm7MVG\n+9FWx4Tt/Nhsikaefb0nfv5ImGuzKTQDJBGePtNDv51ov+2UNJ2f+k9v8uZ4nN/6B2s7PhXcsoPf\neO4cn/x/X+FXX7jO//09Z3ehpTaHiYjXSUk1eGl0HhMIjkkMtPvWnaCuTKfQTZMrM1asfysk++81\n2/UM1tstXevnWwmVaQb7Pa9Oqz6bnTyRqlyn/vqt+iwOGo3e7Uae/UbsxWb60Vb7ge38HFI2s1tT\n/5l6z350KbfME4/lFU71hvA5JXKKhtZkTSk7nrd5NN3gH33+Ei/fWuLXvudsU45PhZPdQX788UE+\n98ooP/HEMe7pCuxgS20OE5UxfKonSLakcqzdz3ymyOXpJGf7wqvm8jTazTsW9e1psn8rsNWTl2ru\nZWH13MtUXuXydJJsSWMo6t+WE4aN2PK9FnVoZVr12dSO15Gl7IrxvREqfUUSBDTTrEaP2PZgd2jG\nFke8Ts70hkCAgcj6G1mrXbuezZzibHVM2M7PLtIqi/qNeNm1Bunl24srPlP7uXpPfDDiYzKeRzdN\n/K7mqsIfttjmrWCaJv/781d44eoc//yZU3zvI/0bvsbPfGiYP359gt966Rb/9vsf3IFW2hw2KmM4\nW9RI5lW8LgfzmSLXZlJgws25DI8MRmjzOlfYlNV283b61KFVWGuO2OwzqLWpimqQV3Vi2RIBl7wi\nrypb1Lg2mwJo2mY3c99mbflhec+boRWfTWW8jixlq+N7Mp5veKK4XqjlX707w2K2xOWpJOf6wkQD\nLp4c7jjU9mC3aOaURxKEZb8zEFlZG6iRAwsrT+/q391mT3G20g921PkRBKEX+BJwCvCbpqkJgvAL\nwKeAceBHTdNUd7INrUIrLepX87InY3nG4jkGIz762713J8SSxmyyQNjr5HRvaFXPvJEn/knPxjzz\nVo5tbjV+7cs3+JM3J/nZ7xjmJ544tqlrtPmc/Ojjg/zu1+/wvy5kGe70b3MrbQ4LtcqOi5kSI4tZ\nCqrBcKff6lcmdAXdvHh9noVMCUXTV9iUw7yr2+wcsZXY+JGlLAVFR3aItWlV1d8Z6rDG/309weoO\n/lr3W+tnti1vPbZ7A7Yy51+eToIJQx0rTwxX69cr8oNLGtdnMkzE8jgdDh6QHWimeWjtwW6y2gle\n7bOvH8/j8RyB/N0c7lRe5U/fmmQxW2IiluN8fxt+t8SZ3tC6dmAvTjZ3+uQnDjwFPA8gCEIn8GHT\nNJ8QBOEXge8CvrDDbdhxWkn6rxnqvexCSePP3prkhStzuGQHkgg//9GTaKZJtqQxGS8wncxzfT4D\nAnT4Xat65vWe+EY9czued31M0+TXvnyD3/v6Hb7/fUf5xx+9d0vX+/HHj/HZb47yH781xr/61Jnt\naaTNoaJ2o2QuVeT6XJp0QcMlifSG3ATdMn63xHuzaZLlncG8qjORKAAglHcWYXt2dVvllH0jNDNH\nrOcg1W9gwXKbWlR1wh6ZoQ7/skVO7e/43dIyx2e1+63XFtuW7wyb7ds7tQEb8sqc7QszGc83VGq8\nPJ0kW9SWOUZA9aSxqBl85GQnybzCWCyHopuML+XoCbrJFFUiXifHoitPGWy2h1ReJVNUSeZVphN5\nJmKFZSd4tc++Mp4V1eCN0TguWaz2pavTKb5+YwETiOcUHhyIoJsmCDRlB3b7NG9HnR+kVuxoAAAg\nAElEQVTTNItAsVJjBHgY+Hr57y8CP8A+d352U/qv0ZHiZjpLVVUplmMuXeTffu02S7kSU/E8H7mv\nm3heYSye42xfmKKqM58ukitp+FwSybzCd58/smOdtFVjm1sFVTf4l395lf/y+gSfvnCUX/nUGWrG\n16Zo97t45lwPf/bWFL/w8RME3PYzP2jstDMQzyssZkuMLGSJ5VRME3pCbqaSBcYTed6bTXOmN8SV\n6RSabnB7Mct9/z97bx5k2Xme9/3Ofu6+9L7OCmA27ABJ0AQlmaREiZQl2JQi2ZbkKClVkso/KVUq\nJZecSjnlcpyUUlalKrElWVYkOZKthaIkiuBmkcRCgEOQg8HMYDBr79vdl7MvX/4491509/QMuoHp\nmQExTxVqpi9u33vmnO97v3d53uedyDOcMWjaPhPFFC9cqfCZ1Ht3yO6lKvtesJszYrOCZtcNB45k\n3fZxvJDfeuHqQGDmVz91jJmh9A3KWS9cqexIU9rJ7s7XLTY6LoeGsrS9YEtA9k7B2n1bfvvxXqqD\n+5mA3elZL9ZsPn9mCQG8tdqhbvsM9xKn/XW82LBp2AEgeHymxMW1DllDpWEHSBL3h5zeZmxfF5uT\nVm+utMmnNGIhGMubN+z3zc+44wS8vtwcVIq+fbXKC1cqXN7oAkmCdrlu88B4jgPlDAfKmXvODtzp\nnp8i0O79vdX7eQskSfoV4FcAZmdn79yVvUvsp/TfZmznZJ+YLJA11PdkFM6ttHhrvc1iw+bERJ6l\nus1b620mCiYHe81szz02zVrrCrYXMZw1mMindi1c8G5xn8+7M9bbLv/9//c9Ts81+G9+6Aj/06cf\nes+BTx//5KMH+fPvLfMn313il98lhe4+7k28m2Bgr8GSKkm8sdRkreVhqDLFtMZQ1iAWMZ88PkbH\nDXn+/CptN2Qsn0Lr+pQzOqauUMxot63BHu6tKvtesJszQpWkLQqaHzs6zBevVomE4Fqli+3HPDiW\nY65mMVe3BtWfzTb1M6mdaUrbg62WHfCd63WuVSyuViwemy5uec9ugrX7tvz24r1UB3fzvN5LkmTz\ns27ZAZ8/s8yl9S5pTcELI5wgRMIAkrXjhjENO6CU1jE1hbGCyUePDNNxQ6ajmGJae9/t4XsZO62L\n/nrK6CqyLHF0NMvrS02uVS3G8jcyfPrPeLFm07AC6l2f69UudcvnWqWLIkEMpHSVU1NFPnlibEvw\ndC/hTgc/LWC69/c80Nz+BiHEbwG/BfDUU0/tr5d9G7Bf0n/bMVikpkoYQ0ZXiYQYGIW98rL7n3eg\nlOGVqzXmazYHh9P8xKlJfujB0cGhmU9pTBZTrLcdOk6ALCf0lOtV65YGsmUHzNesPauC3MeNiGLB\nf3h1nv/jy28RRoLf/LnH+KnHpm7rdzwyXeTRmSJ/fHqB//LvHLxtQdV93H3sNRjY3iD/9MHyO0pU\nh0LwwGgOAfhBkjn84YdGWazbhELghjGmruAGIXUr4PhEjo8/MAIC3lxr3zZqVJ/C4QXxvtOt3ouj\n+G5/NxRii4JmbdOzbXR9Fus2czULVYaD5cxNZ/Zspyltb2buO0aGJvOJY2Ncq1o8fbC868rOflUa\n3490xtuJdxr+2e+522m/F9Iazx4dGdAiNwcqtxI1ejeo2z4IgSJLrLRcNFXiiZnyoJpwaDjDc49N\n8XsvX6fh+Ky3JEopnZ95cmbLtex1D3/Q10fLDgZz0jbb7JvRD8tpHT+IqXQ94jgmjgWPTRcHgjT9\nyvL2vf3ClQqmJrPadDg8nOXAUIbzKy1MTcHQFAopjYmieU8/gzsd/JwG/jvgfwc+Cbxyh7//tuNO\nlfb7Rq/rhqgyWH44UOPpN5p1vICcofG5J2d25GV7QcyHDpU5UM4MFv135urkTQ0viHh8tjRY7H30\nDecnj49zcb3NbDn9jgayZQf8yWuLnF1qIoDHpotbruk+do+zS01+/S/OcXapxd85OsT/+lOnBk3J\ntxs/8+Q0v/4X5zi33Obh6cK+fMd93HnslXLbD5byhsbXrq/3qjXGLSk2qw2H+ZqNiKHScTg1nafa\n9Xjm8BALDRsZ+LPX1pirOcgSpDSZ1xYaFNMaAnh0uviekySbbZ0EPDpV3NVcoff6XXt1FG/VAH4z\nO95HOa2TNVS6XogbRAyl9UEQkzZUfvbJWWIEs6U0DdvnKxfW0Dfx8jcHQJsd4VCIHWVtFUmi7QWM\n5Q0ODN3Yd7FTQm+/aIc7fe4HDTfzN7af8xLs2H/TP7sX6zafSSX3r/97DSvA1OQ9VWFvFmyoksTF\ntQ5tNyQWMScnSqx3XNwgGvT2ddyAN1fbrDZdFEUirSn81x8/Mugx2atY0vuV7nq70Lcf35mrE0Qx\nj8+W+MWPHAQYUNsGSo5m4ju2nYBaN/H5TkwWODVZIJtSUSWJz59ZxlRlsuZWhlH/fBjLmdQtDzeM\naXsBHz40xGrZZqHukNFVLqy2OTlZuGefwX6rvWnAl4BHgS8D/xT4liRJLwILwL/ez++/U9hrRefd\nZCc2G70fPzWxpefn7FKTM0tN8qbG1YrF04fKg0nqmx2Z5y+vstiwmC1l+NyTMxwfz/PSlSq5lMa1\nisXF9TaGprDWdvjsw1OcnCy8HSQtNQnCmG+8tcF43uTAUOamU9vrtk+14+GHMQCVjne/bL1HtN2A\n3/jyW/zBK/MMZQ1+8+ce4+89OrmvFZmffGSSf/7XF/iz7y3dD35+gLDXBE3f6X1ztY3lhUzkTQIR\n36Dg1M/QfvnCGgt1Gy+MODaRQ0hgqgpXNjp89cIa622Xhh3Q9UKEgEJKo+tFVDoex8fzrLYdcuZ7\np0dtr3DlUvtHudot/WinHs2b/e583dpix49P5IHEFpycKAz6d549OtJzTBTOLDV59ugIDdvn9Fyd\nN9fbrLcchtIGsiJzrdrlk8fGaHvBFnUmYOAIv7XWYbaUZrXp4njRwDF6t4m9/aId7vS59zL2qwqx\nk7+x/d48OlUkl9K2fPfN7l//NceLcINo10mSlh3wB6/MUe14DOcMfuEjBwff1XB83DACBH4QockS\nc7UuRdPg82eW+fDBMn/46hxzdRs/iDA1ldPzDT61yZ/Yq1/1fqW73gqb1xBwy/WU9F26NCwfIeA7\n12o8MJplspgaBCuraQdDlXn26AhtJ+B3X7rOStNhNG+Q1hS+fnEdyw9ZqNvkDI3RvMFMKc187W3b\noUoSq02XlypVdFXmgbHcINE0X7P4+sUNDg9nbugZutew34IHAUmFZzNeBf7Vfn7vvYy9ZiduRlnr\nb4brVYuuG9J3iSVgs4bpwJFZa7PccsiYGmeWmhyfyNN2A8I4Zr3tstFyaHQ9dE1msaqz1vL46JFh\nfuzEOFOlFEsNG9uPWGu7XF7v8vpSk7Sh3jC1vZ8FPrvc5Mp6B1mWiGIxyPbcxzvj+XOr/LMvnKfa\n9fiFjxzgV3/0IQqp/TcghbTGp46P8Zevr/BPf+I4uirv+3fex53BXhyJvoP9R415dFXm5WtVHtnU\n7zGQNO14VDseK22HWAjW2x6ltM5aw+H5hs1iwyaIIIgFMqDIgJBo4mOoMnlTva3UtDupLrbTDIzN\nVODNzd7XK11OTBQGGdSbXqdgYMfDMOY/nl7k7HITWYKxnMk/+eghPnx4iIbtE8VvNyWHQpBLaXT9\nkJev1KhbHrIk8XNPzyAB12tdVFnm+TfWMDUZJImnZkuDpNiXLq/y8tUqmiJzZCTLx44Ob6G77DWx\n13EC/H2gHb6f1ONuVxXiZgHU9te335udKp43u3+bVf5+/OjErsSUWnbA195c569fX0FTJeIYHhrL\ncXQshypJvL7Q5FrFwvZCul7IUtMlpSkossRIVueFSxs90YOEoqqpMhlDeXsDvAu8X9bHboPi7fRj\nARiavIXBs/n3y2kdWZJxesFmzQo5s9BkqeHQtH2+OL9KpeOxULfpeCG2H7HcdGg5PkEcs9H2uFrt\nIgEtJ+D4RJ7rFZtKx+PSeoeZoTQZXUUCYiHwo5gffnCUQMSDRNMBMozlDdpesKNdvJdwf8jpHcZe\nM4abKWbPHh0Z/NzfDLEQNO2AsaxBEAseHMtxYCiz5TNOTRaIIjFwoIMw5sXLVQSC+aqNH8UoikQQ\nx/hujCrLZA2V5YbN7750jWJG51rVwg0iwligyhItO+Sx2RJRvLXv6E9fW+TSRofVpksxY6DKEtMl\nc99FEn4Q4AYR/+KLb/IHr8xzairPv/ulp3hk+gZNkH3FP3hyii++sco33trgR0+O39Hvvo+7j77d\nWG066KrMDz0wwnrH5UOH3u73mK9bvHy1ykbHp9ZxqdkeqiwjhODiukLd8rG8ECtI9rwgaYKNIsgZ\nEg9NFHjqYIkfPTlOztRu28G4nxTk7Q7L5u/abKf9IOb4eJ4Xr1ZZqNsoEjhBTMZ8u0fzZrOMDgxl\neGS6SMcN8cOYFy9X6PohYRhTszx+96XrvLXRQQKuVbtcr3Z5cCzHatPB8kIur3do2D5pXaFlh7yx\n0ma6lOZAOcPpuTprPdXOYlrHDSLKGZ1rHQs/jClnDQxVJhYxX7u4QSmjvSc63+2iMm7GnaKY3w7c\njirEreiRO71+Mzrc5td2es/m1/rXvtPvbr+u787XWW05lDMGThDx5fNrXFht8+r1Gk0roNJ2cAOB\nJCfVy7YTIBC0nIDRvAFIDGd07CDkydkij8+WdxycuVu8H9bHXtT6NvfonFtpIoREVjf526sbVDse\nIzljSz9mIa3x808nImFrTYdK1+fgUIa2G7DacllpOPhR0t+z3LAxNZmUpuD4Mk4QohoaGy2XbErD\n8SPWWg5dL8LyQmRZYixn8NhMkbGCyYFymrfWO1yvWRwYSg/Wzs3s4r1IQ7wf/NxhqJJEwwq20As2\nY/PmWG26xEJwfDxP2wuYq1sDg3pupUnTCmjYPm0vJI4FxydypDSFtpNwe7teyIWVFoeHs1xc66Ar\nMhttl5GsAQhWmg66LkMAaiijqaAAuiKx0nSodjyypkbDCrC9ECeIcP2Yclan6fh8b6FOwdT48VMT\nAJxfbvHNtyoEcYTlhwzrBooskdK1ezYLc6+g64X8V793mlev1/mVjx/mf/yxh9CUO195+fgDIwxn\ndb5wZuV+8PMDjJ0cm82yp2cWmgghBipffaekZQdcXu8yX7OxvYia5eNFEJD0GVxc6RD1Khib0x0y\nkDcVpobSPDFbYqbnlN/uw3BzpeLdDufcjps5LP3/+tV3WZb47lyd+brNRttFkSWWWg6GqmC54RZ7\nv1NFpZDW+JknZ5ivWfzOC9ew/CQ7K2JQZEEprVHpeJQzGp88Nsaba23qls/vf3uOlaaDoUpUOx6S\nlMxNmqt0MFWJv/h+E0WRqXZ9nCDE0GRsP+RjR4fJGiqqInF5vYMXRhRSGqYqvyun/Qba4W2gMm7H\nXitRdwu3owpxswCqLxO9We5883rs41brdjP6r+3UN7S5X6x/TatNh4W6TUpTMTUFWQZdkWlYPm+t\ndZivW4RhjBsKYkCOwQ9jFMA0VCIR0ej6hLEAKRFK+YcfPnhb+kPu9fWxF7W+Ssfj7HILN4jIGRpO\nEPGVN9eodDzypsZczbqhH3NmKM3PPz3LH52exw4jXr5WZbqUxlATi+yFEesth2OjOdad5FrCWHB4\nOEO190xcP6ErdtyAWEg4fgiSxHUvJBaCZx8Y4WqlhqnIg6T8Tve8cY/TEO8HP/uInTTV+yoZTTvg\n1OSNfRX9zdGXjkVKqG3TxRRjWXOgYhREgvOrbbpuiKbKDGV1hjImHS/g/GprIF8YxiAkkGWJ4+N5\nvrtQx9AkLm0kTkre0Ih0QRAJdFVCQiJjKowXDFw/RlMkziw2UGSJ2XKaN1ba+FGMH8ecGM9TSOuE\nQrBYs/mz7y9xaaODKktIwOHhLLO9zXgvLfp7DbYf8o9/51XeWG7ti5LbXqAqMp8+Nc6fvraE7Yek\n9fsm4gcNN3OK+k6VE0ZEseDUVIFa1+P4RJ5CWuPVqzX+4NU5/DAmEgInDPGjJMSJ+x8u3v5DBrK6\njBPE5EwVXVN4fLrIZx6euKmS0O3+N/aFAZ57bHqgYLlXStJmm/z6UgtDkfnkifHB7/Tlp5tOSKXt\ncmQky3yPUiLLErmCxqmpwhbn7mZcfoCVlkOl6yIEyAIUFYYyJm4UkzdV/DBmveOS1hUQoKkyhqZg\nqDIpTUZT5aQ670Sstj3WWh5jRZO0ptCyfdZaHk0rYDib9Gn8Yo+r33VDkODCaptr1e6W5vTd4P1C\nO7oT2E0V4p0C8Jvdz+1y5/3k43a8k6O9/fs3v/+7c3XsIOLJ2RJtL+DV6zW+fbWKqStcWe+wUHcI\n45iUppIzNHwl4sWrNSDGDxlIHkPypyGDrqlMFVM4QcSDo1nCWOBHgqPDGSaKqdsminEvV372Mstr\nuZkMJV5ru/y3P3SUhuPT9UKGswYbHQ9Zgom8yWrb3dJ7HQrBRDHFQ2N5rte6fOjAEC9erZI1NVK6\nSkpXeHimSMPycYOIxYbDS1dq1B0fL4hBxMiyRNMOgRgvAhmBJIHlRTTtgKliapCUD4XYka3UZydd\nq3Rxw/iea334QHs2+7lRdjp8+4o6YzmTN5ZbvDpXZ65ubcmqqJKEH8R89VKF9Y6blC2dgEt+xEbX\n46GxHCcm8qw2XXKmmmTrTI04Fnx3vo6hyihyUs6MhcALIuarFl034LX5BnXLZzxv8sBYjpYdIAMt\nJ2Q0p3OgnOHSepuMpqLKClbgU+16KIpESlVYajpICMYLJhtdj5oVMFVKD5RB1tsumiKRNTWyuszT\nh0o8faA82Bz3ojG624hjwf/wH89wdqnJ//2PnuTTp+5+teWzj0zyh68s8J8vbvDZRz54iko/6Ngs\ngnK91mW+nhycfafK9mMW6hZtN9mzb662USSJX//CG6y3XUQcIysSmiTfUOHpQwKypkwpbaB5IQ+O\n5QgiwccfGOXAUGbfVZnqduIoLNYdGrbP588s80vPHATYUfL1nfopmnbA82+s0rB9zi41WWm7AyWl\nubrFoZEsMhJfOrfKhdU2dhAylNV5eKrIWtslEmKQADu/0uLFK1WK6YRa1ufyN+2ApuXTsAM2Oj6T\nxRRNO/nzyEiOR6fzrHc8bD+iaVt84tgYry3Usb0QL4hQJImUoaArCrYfocqQUhS6XoBpJ9SWmVIK\nQ1PQFJmuFw5oeAd4+5m4QYTtRRTTGl94fZmjo9mB4MKt8H6gHb0X7NVfuFUVYjcB+M3u53a584bj\nE1Zv7NPZ7Gh7QUzHDQbn8Pbvf/boyKBX6/xKK9nzikTT9pktp/nahXVqXR9ZBkmAF8YgBJqqkDMV\n3ly1iaLELqiSQJYhjJLrkIGJUpqCoTJVSlFI68gSvHo9SarmDPW2OMa7UUvcb7yTQMFu9kg5rdN0\nEiW8lKZQt30ajs+BcoaRrIEXRAxndEopnW9c2sAPY1RFotRLRKuSNFBpHM2ZnJwqUExrLNVtFusW\n5YzORsvl4nqHtbZL2wlo2B5RDBHghmAogrShoioqQvSERUTyX8cN0TWJ9bZL1lS3yORvVgy8Vu0y\nlDa4Wu1QTOu3bYj17cIHNvjZb1nEnQ7f5x6bQpEkrte6vcpIoogxX7M4t9IaXMtsOY0AskZS2swb\nGtOlFLqqEMZJ1rWY1pgqplFlmaliimcOD3F+tc143mC943JiogTAN9/aYKPjEoYRsiKjKjIXVtuU\nMwaffWSSr1xYI6x0eXPNYqHuoCoSiixzab1DWpdJ6SojOYPzK22alocfQ2uxQSGlo8oMlIYaXQ9F\nTn6XOMYNJd5YbPLi5SpHRrMMZw1+7MT4rpopP0j47Reu8eXz6/yzz564JwIfgKcPlhnJGfz166v3\ng58fQPQVHL92fT0JUow6B3pyxxOFFC0n4evbQYDmySw3beZr3aQyAHR9gSoJBPHbFZ9tECTUK0OT\nsT1wgpChjMGZpSbZXv/LftIhyr2+lobtU0onVK75usW55daOkq993OxceGA0y4umSiGtE4QxlY43\nsNtdN+R6pct4IcVsOc2TB8o0LI9LG4lzsXnmzp++tsjLVytsdHyOj+cpZ3UQMJwzePlKlarlkes1\nFedNlelSiomCia4qvLnW5ttXakiShBtEnFlscGI8T1pT+clHhhjOGvzNuVWcIKKQjjk1XiSIY2aH\nM1TbLhUrYLXpoioyozkDudeQDFurBLWuh6bKaIrEn31vhZGsQT6l8Y8/coCTPbbCzZy3nRz+ez0b\nvxv0xzd03JCcqfIz79Gx3l6V2aymtflzd7qffbnz/hr95qUKURzf4PD3He35msW3Llf4m7OryLLE\nzz89u0Xa/Fq1O5A17jvDpq5QMDXKWQ1Vlug6EVlDoW4HtB0fy42S71cEC7UuftSr9oYCU5PJmwrr\nnSBpjgfWWy5qMUUxbTCSM/jeQoNyWqOU1nloInfTAG4vmK9bnJ6vo8kyQRxvUb29E9ic8G7aAWld\noZDWbujXeqe9UEhrfOzoMBfX2gxl9F6gmfy/uu3z5mqHjKFgajKWFzJWSHF+uUXT8smaGjlT3eJr\nAbx8rZa0SLghhbTOctvB0CQKKQ0hSNR5o4Tq2K/aRXFCW8yYGm07II5hvePSvhpwcCiNhMRnTk3S\ncN5ey33FwGvVLhdWWowXUiw3HR4ay99z6m8f2OBnP2UR+4o3TdvfcviGQiTGqG6RNeoDRQwktlxL\nP7gZzxmsdxxmy1naboAbxhweznCwnGGxbjNTTjGS03nusWRu7JmlJt+8VEEiGTRYTKlcrXRRJZma\n7WGoChLJgFSAYkrjWjXh70sw2KiKIqMCU8U016oWTcuj7QT4SbIHWZaYLpo0nZDfeeEaDcfnwkqb\nphOgKxJuAJEIqHRcYgGKLDFftahbPhNF855sfrsbuLTe4Te+cokfOznGL/+dg3f7cgZQZImfODXO\nH59epOsl86Tu4/2D3fS6JGqPIcWUynzN5vxKi2JK4+Wr1V5lIUCRYCF2OLvUZCRrUO149DQMiEWS\nJbwZNAlEDFlDxfVjSmmdoYzBQt3mxctVhrL6vtKjCmmN5x6b3jKrApHY2cPDyZys4xN5HpkqbrlH\nNzsXTk4UyJsaC3ULVZYZyRkDu92fu5XSZdpOgB2ETJfTfPaRSWq2z8FyhpmhNNerFpWuh6YklZdK\n1yNrqqy1XM6ttFhuuORMBUWWmSyY/NRjUyiyxJfO9eXCfdY7LkGYCAqstj0WaxaaprDQsDlQTjOc\nNTgymiWOBSNZg+vVLilNoWYFeH5EKARGJEjrKgeG0oOq/ObBsP3+gi+fX6PtBpTSGlcrHf7ktQVe\nvpomjqGY1m6Y/7ETflBmr8zXLM4uNcmZGterXT50cPeO9U77cXtV5luXK4Q7BDA7YXP1YLXh8Puv\nzKGpMkF4o8NfSGtQh3PLLepWkpBdbzv82MkJ/CDmWrXLatNBliSuWh61ro8kSeRNlfm6hSBNpeOx\n2rYJoph8SuPkZIFrFYua5eF48cAmQOI0F1MapazORjcYOO3TpRSqJOP4IcPZPKaqUExrRDF4QcR3\nrtcxdphHtRd03ZCVhoOhKXhBNEjW3ClsTngvNWxkSfD3Hp0eOP3AritTJycLfPTI8CDYPjCUYb5u\ncWG1jRdFWJ0QRZawg7BX0fOx/IjZcvrt9TlTHAgnVDsepYzBtWqXs8st0poCgOOHuEGMLIOGjCBG\nlkCVJUYLBpW2RxwLJEkiZcjYQUTXi7i43mG97aIrMlOlNE4QUe345EyV5x6bZq43aHUsb7LSdLhe\n6zKaM+8pKuwH1qvZL37yZmOf1lVmy2mKKW3L7IRH0kVKKX0wYC6f0ji33Bpcy8mJAssNh44XcGwi\nv2lQoMR4wQRI+oUkBo3IX3xjhVgILD8piS40bN5cC7HcAEmScQOBHyZzNrwoxgsiFho2mixjagpt\nN8SzfUopnRhBxw64VukQxIKMoaBIEr2xPcShYKXlcqWSCDAgBIamICER95pt05qCG0aEvZ4AP0r6\nCO7V5rc7DSEEv/bnb5A1Vf7Fcw/v6/yed4PPPjrJ//vteb7+5vpd7UG6j73hVs7mZlqIKsvEUczn\nv7+MADY6Lp84Ns54IUXB1Hj5SpW2GxADfhixUA+RZAYRz60Cnz4yhkLLCUnrCn4Y03SSYZnFtMbT\nB8s3zCG53ZgZSvNLzxzcQkM5t5LY2ayh3hD4wK3PhZlSmpypUkzr/PSjU1vsth/FnLnaJIoF6x2P\nX/3kg5yYSqokLTvg5StVzi+3+N58na4XJZX/mSKfOD7G6fk6F1c6mLqHF8YMZRUeni6QT2n89gtX\nuVqx6HohMgKEhNQLLAXQ8QVyEIKwWG445FIqy02b2aE0f3lmGSSJpuMTRhGxEAghQIlpOyGXNzps\ntFz+6vUVEAI3jPnY0WFOThaYr1tUux5BJKh0PTpuiOvFfPXCGiO5FIeG08yU0nvqI3lf233pbXqn\n6P28G9xKdGAQwDQd/uj0wo5z+rZ/1nbFwdWmk4hd3MrhF+BHMUGUUN/OLLZoWAHHJ/MIASlN4Stv\nrhPHkDMVDEXmjaqNpiQU/FJG5/GZMi9e3UCRJK5sdHHCCMePtgQ+fTRtD1lObpjU48Wutz1SmsKF\n1TajBZOUnlCjkCSeOlDiarX7ntdI1lSZLKYGgWDWvLPu7eZq80jOoOMEW5z+7XO8blWZ6oufbAma\nawmFsN4NcMOQjhMk9FW3SyGloysSfm8NdN1wSyXqaqVLpeNhexGSLOGFEbIsEwowdJmcodH1AvAF\nxAIrEFxZtxLBit41RVE0sPt+BBUr4Hq1Symt44YxuirhBBENxx8k6NtewCPTxR2lue82PrDBz37x\nkzcbe0jUs7Yf8jdMWn548oZr+Vxv4fcbyLYrt80OpRjJmhwoZwbfeXw8z+X1pAIzXUojI1AVhajX\nrKbIScY2FoLvLTTQFZn1totEEunHwHQ5je2HyD0uuipL2H6MKgs0GTRFJqUrlDAYmpUAACAASURB\nVNIafhgjCwkvCAdqRy6gqUlJNqdrjI3oHBzOoMgSQiTNb4os0XHe5h9/EPH8uTVem2/wL//+wwxn\njbt9OTfgydkS43mTvz67ej/4eR/hZoMM+07WmaUmpiKz3vEYzuhEccypqSIbXY+31lvEscAOIkbz\nBk3XJwgFYcRN6W3boUpgajKTJZPPPTHLStPh2HiejU4y6HSiYJI11R3nkGzGXmZh3Op922lD72Tz\ndzoXWnbAv3/5GudW20wWUoznE+n+ze99a7XNxbUOh0eyzNUsar37vliz+TffusLLl2u0vQCAY+M5\nDpTTPH2ozEwpzYtXKjhhxImJPMW0xsNTBRp2wH++uMGVikUYRQghkGUJ01BxvJAAgYhBVZJqvBAS\nmpp45JYXsdRwCAUcGc7grCXUmCAS1C2XjKFxaDjNA6M5nj+/ykrLpWn7ZHQVxw8HSnwPjuVI6Qpv\nrrbxgxhVk4ligeUGXF7voMnyFju+k6Pfp1ieW2mSM96/qp8Hyhkemy7S8QIOD2d2Lcl8q+CvvzY7\nTrBlTl/XCW+YjbJdie1Dh8qUUjptN2Akb/TWgKDrhYP39/0HJDgylOXFxgZ+GGGqMkEkmK91KWfM\npIrZkydvOyGyBJIkGC+ayMh0vJBrlS5xDG4Y03YDfD9CkWETI2sAL0x62FQ5+TfGQlBOGzxzZJj1\ntsvh4Sz/8OkDW2hZczVrT8NVd9rDB8oZnj5YHlRW3ukZ3W465vZqsyxLW53+Glue847Nkts+r5BO\nZoadXW4ylNZ5aDyPFybVGS+KKaV0NEUmZ2p4YcRaxyWtq7y51qbrh5xdapHRZbqeT9ZQkKREjMry\nQtKaQhDGCFmiGfnIEsRIuNtEbASgyQkjRAoFUe81XZFoOAENx2eikGIsZ/L1i+tEccxozuTZoyO7\nnhl1N2ixH9jgB/ZHFnE3w8Z2MoiHhre+r39t16vWFuU2N4xYbNgoisRy0+Xp3ubqN7g9PlvG9iMM\nTWahZjGUNfCCmCBw8SKBJEBWJVq2z1+9sYLtJbF8qped3Wg7pDUFywuw/d5gLVXCUFRkI5kBdGQk\njRsK2m5Ib59gyonTI0uJ8txE3uSJAyWeOTxMSlc4PVcnEoKm7aMg8fWLGzdwUz8ogVAQxfyr5y/y\nwGiWn3ly+m5fzo6QZYmfeHiCP3xlno4bkDM/GM/m/Y6dhm/2qz1tJ8T2Qua7HssNhzgSRCJmte0m\njaxOQNZQ+fSpCa5VupxfaRP2eN9wo3z1dmgSyBIUUol4yseODnNmqUkgYoZzBs89Pr3rw3C3szD2\nSqnajc3f/p7zKy1euVZPgoq6TTmj3yBZrUoSf/n6MudWWqQ1edDj80en53npSpWalQwmVWSJxbqD\nKkss1GyWGgnlSJaSOV8zpQIPjOZ4fblJOaMTRDFxBEGUOBuGKlNOpxBCom77pDUFSRaUMgbLDYfA\niSmYGiNZg/mazbVql5Sq8OEjQ8Sx4MxiImEuehX6Ykanbvk0rISmjcRAHOLZoyP8+5euU07r1Cwf\nQ5HouCENJyCOY+wgwgkipkopfuEjB3c818ppPemTFtI7+Xp3FbsJoj+3PRO/C+yGYbJ5vtN4weTC\nWpurte4NSox9xcG/vVpluWHTsH0OD2dx/YjFuk1KV/mL7y8zXUxxZikR9biw2uLQcJazy3UqXR/b\nj6hbARsdD0OVOTqa4+xSk44bUs4abLRdJgoGXS+m1g2YKqX48VNjfONShbmqRcNJgvqI5JlKJEnR\nME7sgyyDrsp4fkxEz8nWVUbzBnXbJ6XLfOTQ0A3iGbtNRN9qz+/lGe0XHXN7tXlLcLbpOR8aznBg\n6MbgbPs6XKzZ/MZXLw6U/X7+6QOYmoIQgrfW2sQiUYttuwFTRRNdkfjhB0fY6Hr8uxeuJoNmg5CM\noXJwKAMSGIpMJxJEGoRxTNbQkWSwvYgo2jnNJctJksUwZPwwRggwdRlDkfj0iQnOrbR4baGBF8Yc\nGsqy3nGZq1s7VtfvxHPYDT7Qwc9+YLdqHjsZxJ2UQvrKHV0vRJXB8SMkCQxVwQ+TLsPt3wmJohEi\nKQW/erWGripomkCXZUxVJhISeVNGV2U6TkjeUPFVge3H5EyNyVIKRZFxg5hCWmMsa3BisoATRJyc\nzPPKtSqrLZdqx08ONVkiiJKmoK4b8paTSGnP1Sx+4uFJKh2P4ZxBw/YT6e5Shq4bUO/6TJQ+WH1A\nXzizwlzN5nd+8SnUuzDLZ7f4zCMT/O5L1/nqhXX+/hP3ZpB2H1ux3RZsplrULI+MrnHVtXoU1UTg\nYKPjISKp5wT7LDVsnj+/ShBtDXwkKVF62ul4lICMqaBIMs8cSZrv+z2Oe3UYd0uVulOUqrYToPSG\nNVe6HoeHM1tkult2kv08MpylaiVDRvvXFwvImxr1rkcYx2QMjYyhMFVMcXgkyxvLLcJI8PhMieWm\nw0wpTdcNWW26OF7IZCGFKkssNmyKKYMgDImBh8azFNMas+UMh0eyrLddvvD9JWw/wg4iNjoeP9Jz\ngj5xbIynDpQ5v9piteWSM1Rqts/jM0UqXQ83iHhjuYWiSFheiOgNY7281uGlqxXSmooXxTw0mmWm\nmKZi+VhewJX1bjJyYaXFE7MlTk4WbjjX6raPockcHCrcs7S33Tpg7yZZuht/oE9xmq9brDQcFhr2\nDWu6nNZp2QHfvFihbntIPb8gravJTJ5eH1oUC07P12nYPllDI4yh5fhcWrex/XCwp6NY4EWCIBYo\nEqQNleGMQRBGlDMGxQyMZg3+i6dmOT1fxwkiMrqCqaUIwoilpks+pRHFMcMZjaYTDapOfTGGoYxG\nKW1gagqfPjXBwV6/8k6qgbu9t++052/X57wX3Er041bJ3p3W4VzdIozh4FCGuZqFH8eD4Mrxkllf\n375ao+2GhBFoisJ6x2Wj7VLtBpi6itNTglxuOsiALEmYuoosJQFNywuYyJuEkSAWgjiIiQUYioSq\nSAjRe10SlEyDck6j60aM5A0yukoUJ1XDtJa0R8zVLa5XuiAYMJtudm/vJi1218GPJEn/XAjxP2/6\nWQF+Xwjxj/blyt5n2ImPezPcjFrRX/h9ffR+A+CzR0doOD6nJpI+n3LWIIwEOVOllNYHJfJyWk/m\nNXhhIlwgS0giMWxpQ2GpYRNJJIpsQtB2AmRZYiijU0jridKHAs8cHub0fJ2cERNFfqIsoitoqtwb\ncBpQs3xqlj9whPxQMJzVMDQFx4/wopjhrIHtR3zl/BqX1jsEkcALQzRFJo6TDFHMDwAffA+IY8Fv\nfesqx8ZzfOL46N2+nFvi8ZkikwWTL55dvR/83EPYE9WrBmGYcP0lAdMlk7NLydyGIAhpOwqmqhAr\nyVA6RZJ4/twqLdvfEuRIJJTZPmSSIEiXE3UgU1cZL5p0nIDlpo0fxXzrUoWPP8ieud677cfcz7ky\nm+/xbDmZYB6J5N/SdAJevFIZ2OYXrlTY6LhcqXTJpTTWOx6fP7PEc49NM5I1mCyl0NWEPpzRFVK6\nwnLL5bX5Oh034NJ6m6YTEUQxl1fbFHM6Wk/F82MPDLNQT2bwmLqMHcR4YcxG26WU0Wk7IXNVK1GX\nMlRMXaVqeRiKwnQpzVzd5puXKiw3HZ6YKaGpMrqmoCsykRA8e3SEubqFJJLZbw3Lp+0EqJLENy5t\n0HRC3EBgaDLDORNJkXDDCKQkG6zJEpYXcXapycnJwo6O/r0+++fdOmC7pevs1iE/t9yi2vF4fbmJ\nE0SMZI0t96th+dSdZDbL1fUO5YzOS1eqWH5ASlNYb7uU0hrnltssNWzCKO4Nyo6RpIQ22adquGGM\nFMast12emC1SSIcUUxqVrkvLCfGjmB9+YJTXlxp8/cIafpRIoB8dzXFyMs/fXtogjpN+wIfGC8zX\nuhwaHmKl7fLodJHvLzRYa7t03ABVlmg6AY9MJf0t2yl9e7mft2vP38mZVIOhpV2PpuUnSoHDN1Z9\nNq/DRJggobqpMlze6BDGMUOb7s2fvrnOQsNio+OSMVSaTsDR0Sx/99gY6y2X1xdbOEEichIDkpCY\nKqZYbbn4UYQXgKnIxDLUuonaGwIMFTK6xlQpRcMOaVoedhARxtBwfAxdToJqO6TjhKy2XQxN5vhE\nHi9IqkeHhrM3HSVwt57Dduyl8jMjSdKvCSH+pSRJBvCfgO/v03W9r7CbzNFOwdHm92xe+OdWmggh\nDbJlDdvfIoX9049ODfTcX7hSoeuGNJ0AWYI3V9ssNhyGMjpRLMgaySwgqafiNl1KUUrrtN2E450z\nNKbLKcJYcGGliRAyX72wmig+OT4SEvWuT1pX6bg+c9UuQ1md4xMFLiy3afVoc31Haa2VDOeLBby+\n2OTAUIpc0eSh8RxVy8f2Q3KGRscNODCUqBPdq0Ow9gPfuLTBpfUu/+fPPnrPiRxshyxLfOaRCX7v\n5bkPdH/WvYS90gQqHY+lhoOhSqiyzJnFBtWuTxwn6mSmKjOSN1hqOBDCaMHEUCScYGt9Z/NPMlBK\na2iqREpL6LKWH1FpewjoVTKKfH8xod6kDZXnHpt6xzkxfey2H3O/+jZ3mnT/xMESTctP+hY67sBR\nnqsntORDQ1neWGpS6cRMl9KYmkLD8Xn6YJnjE3myhkrXC/nqhUS5reNFvHKtBkCl6+F4UTJY0PIZ\n8kJOTOZ7s3gCmlaAoiQN5FEMjhdx1bOww5hyymAkp+P4MZfWOyiSTNv1CcOYi+stum7EaM7g9cUm\npZTGY9NFKh2PhuWxULepWz7PHh3hdaPJatMhiAULdbtXadIxFBk7CFBljZYb8NSBEggYL5i8tdam\n4wa4QcTpuTqaIvO5J2c41HPs+mfeY9PFgerdvWhD3o0D9m7oOrdy7vuDLStdD1WSaVoBnzo2Nqgw\nztcSypksJTN2/DDGDSOuVS2CMEbXEtWtIBa8vtTE6s1+OjScpZjSeXA0x/W6RVv4RHHSu2vqco+q\nLvHEbImCqXK9YrHUtLG8iP/rby8Pvk/v9fpe2ejSdgM0WULTZFpxkkT1IsFaxyOtKUSx4KNHhymm\nNM6vtHl0ukAoxA0jPbaLsey2+nY79vx+2Y6dULd9Kl2Pl6/UsLyQhYbD//LZkzfYw3JaxwtiTs/V\nWazbA+bOzz99gOfPr1FMa5zpKQ6eX21xer6OrihcrXSZKaXJmBqffXiCE1MFWuWAJw6UObtYJ2+q\nGKqcKPfaHkEoUJVEtMCPxGAgdZLEUhAklabHZ0ustV1Oz9WwgwhBshbWmw6KqhBECrmetPZqy+HL\n59ao2z4TeRNDTZI8WUO95X66k89hO/YS/Pwy8B8kSfo14EeAvxFC/Ov9uaytuNfnBLxT5mg3G3uz\nAc4ZWk/K1NlRCjsUgkPDGa5XLaodj6vVLrWujxvE2H6I7UbUrQ6IpEqUNTWOjmQ5v9Jkpemw1HBQ\nZfjo4WE6foiqyIwXDF6bb1BIy6y1E05nFEMsYpQgZrFuU+0kh7YsBEdGcyhK0jzX1/IXIhFIKGUM\nIhEzWTJ57vFpzi61WG+5aJpM3kgaILOGwkQhxUcPD/G1i+uYmnLPDcHaD/zbb15jsmDyk4++P+bn\nfPaRSX77het8+cIaP/vUzN2+nA889pKlvrDc4n/70ptJRUeWSGkqVSuhYgkS4RM3TDLBth/hhzFz\nNQtNlojFzTs0+oHQTDFN0wsYL6ZYrDmkjWSOmCLLzNds/DCmbvssNR0+f2aJX3rm0K739m6z5fvR\ntzlfs1hvJ/S2ax0LSRKcmiyy2nYYz5tUu97ANm9WNer3W/aHl26X7207AQsNh/WWSxjHdHrzVNqO\nTxj1GoolaDo+l9ba5A2N+YaN21PpAgkJCVNXCKKI1aZNFAkubbRwg5hYCExNRVcVpoppLqy2CKKY\npYaDkAR/fHqRX//MCfw4pryqDwYRztUtJgomI3mT2VKKxabNasvB1BWOjGWRJRjLGmiKxKmZEqWM\nzvGJPI4X8fy51STJltLobJrjMVCa6vWdnJgsJBSYW9j3u3XOvxsHbK/Vop3mBPU/p8/acMOYhh0w\nmjcpZjT++uzqYN7SetvhO9fr1LoeUSRImwqen1TVNDVhUhwbzbHUtGmEAVEs0NWk/zZrahwZy9L1\nQ3RFIQgjcqZG2w0SNb+Ox0QxRaPH5ui4IZKUKL2ldJlySqPtJpQ5M60kktl+SBjGhLFgtenw5IES\nk6UUsiSR0mXSmsIPPziKIkuEPb9nux+z+Z7t5X7erj2/H7ZjJ5TTOk3Lx/JChnM6ao8atlMySALc\nMKGejuVN2l6AH8ccHs0wkU9xYaXF//PNK7hBxELNZracJp/SeWK2RDGtk+qNpbi42uaVqxWCKKE9\nOmFMGMWEcdKXSZyIGAQxaGqiHhnGSd+hLCdV4DCOQZLQFAVTUwi9CCHACgWjhsxQJlHuzBoqtpdU\nrk1FppQxGO7ZiHfq+YE79xy24x2DH0mSntj0428C/xZ4CfiWJElPCCG+t18XB3emIeq9Gt13yhzt\nZmPv1LezRaJ1kxR2/zVVknhtocFK0yGtq2iyhB9GxAjiGAxVxlBlLDdkuWkjSTKqFKPrPWpaL6Mj\nS8mQKwkoZ3TWmi5uEBGEca+RMSllWl5ibAtpDUOTOTae57WFOj2qb8IfliWcIERXJI6MZFhqOqy0\nHUTPUfjwoSEurLU4NJSl7QXUbJ9SRv9AUN8urXd49XqdX/vxYz06wr2PR6YLzJRTfPHs6v3g5x7A\nXrLU37pUpWH7qLJEx0sUHOPobZlqOxAIkVAgJAnGCwY1KyCKY0xNJYoDgmhnkQNdlXjmyBDnVtuU\n0xpzFYuWE6PK8MzhIT5xbIwXr1RZqNuU0jpmb1L5vb63W3bA6bk616pdrle7ieKZpg7udymtc2qq\nAIKBmM1nUjfa7Y4T8Ppy8wbVvQdHs4RhxLWKhRfFRB7oikIxrRBHoCoSR8dyTJdSHBnOcqXSYaXu\n0LAD1J5apxtE5EwVTVEopXW6XkDG0LC8kDBK5Kzna9Ygo+uLGFNVccOY5y+s8ssfPcxi3R4MIuyL\nXfhhxOn5BpoisdJy+eSxUUAk4xGCROxmte0klT43ZLac5sRUgbNLTdpuooKmShLXqxYdN0iEesxE\nqCejJ30gN1sDd3se0F4dsL1Wi7bPCToxked7Cw0qXZeRrMkvfOQgzz02xefPLGFqCk07kREu95gR\nyw2HoDeEMmOqlDMGlY6bnOFqUsERQMsJiCJBECWztWw/4tJaB8sPqVsBsgyhgOlyiq6rM1FMkTNV\nul6AqaocHslQs7xE+Usk4bahq5SVZO03nRDbD4l6qpBpTcYXsNH1ODqWo5jSBnSn7T1/sLMf827u\n5/sNzxwZ5lrVwlAUUnoiiLIdddtH12SemCnzpdYq319oMF1ODxIsF1ZavHC5QssNyRpJhU2TJUZz\nSV9Vf5xKyw74T99dpOtHDGUMOp5PHAl0RSKMxUC6WlNlfD8mCBMbbyq9lggJQGKx4VBK62QNGVU2\ncAK7pyoI3cDnsJnhQ4eHyBoqxbTGwaEMF1bb1C2PY+O5XQU+dxO7qfz8xrafG8CJ3usC+Lu3+6I2\nY78bom6H0X2nzNFuN/Z2A7z57zt9fsNJHJuUphBEiWStqSo4QchcLZnhkzSi9SRKFQknSHptTFWm\nmNV4YCTHj54Yp+H4ZE2VIBKMZQzOrbRpWC5IIBFTSKVo2D6dIMSLEo9optwbuNqwk8GpMjwyXSKl\nqckU9zjhkg5lDIYySak9FoKcoQ0GvPY39g+q0duMP/7OIpoi8Q/uUYW3nSD19sTvvHCNhpUEqvdx\n97DZ1qiStKXxfjNadsBi0yKIYoJYRlcVxvIGdpBUhvvzOZwQRByQT2ustTyCKEaTJUxDJmOYpDQZ\np5f1rVjBQNHJDmK+8PoyP3p8nCcPlRnNpUASOF7ETz06xSMzRWZK6YEz9070h3sFfQfkk8fGuF7r\n8vEHRwbjBPo04/5Z0Vdr2slut+xgMFOob9faTsBqyyGKJQxV4fhEnpYTECN46kC5R2eKyBgJlaTl\nBiAlM1pUBVRZJqXLZHWNwyMZ/ChmLG8iREzNCsibGjlT4yOHyyw2LBbrDi0noNb1KZgq5YxGSlWZ\nq1uDXh/XTzK9lytdxvMmsRB8/OgIbTfkzbU2s6U035mrM5Y3MTWFsZzJt6/UuLjWQZXhV549wocO\nlkGCUkof3J+mHeD4EYaaSB5bfnjLNfB+mwe052rRtjlBVysdvnJhDUNRsIIGE4UUnzw+xi89c2gg\nS7/YsAEIoxhZlsgqSYbdUBR0WWKmlMLt0VMfGs8xktXJGiqThRR2EPGRQ2VeulplrmrT9QLCSFDK\nJGvkw4eGCeKY88stVloBJyfyFNM6aaOEH8WU0wbFtMqTs2XaXsB6y6WcNTizWGet5ZExFE5fb2D7\n8UDW+rGZ4paq6E79zze7Z3eT/rSf2OxfPnWwzAOjWU5OFHas+qiSlPR1dRN6o6knQ+nzKY1nj47w\nuy9dJxbJMFdDlSlndHKmxtGxHEjw7NERCulEIbiY1pAlqUejlNBVUBSFlAh5dLZIo+vTtJLBxpoq\nEcXwkcNDLDZsul6i4tvqnS15U+Mjh8o03YC2HWBqEkXD4OMPjPLzHz4AJPPTjoxkGcoafOzIMCen\nCvf8M3zH4EcI8SN34kJuhv3OCNwuo3urzNHt2Ng7fr6ATO9Aqdk+n3l4kpOThcFB3bB9VloOZxeb\nvHq9ThTFBJGglDLImgpPHyjzoYOJ7OQMyWyHV6/V+Ks3llltOfhhMhvIj2Ct7SQa8VKSxRPAQt3C\nj2IkSWIknyKMYz51fBwnSOS4N9oebhCSMlSCMGYpFqR0hYyh8uh0cdAIvTlzeq9vmHcLL4z48+8v\n8akTY/fkXJ9b4bOPTPBvvnmVL59f4+c+NHu3L+cDj/4euVXSZr5ukTM1PnRwiMVGohiESCrD2+HH\nAAJVltBUhbSuUkypqLLCI9N5Xl9sEQGmoeD6EW4vQLK8iLrjc3KiQN3ybwgKEtnXQ++rvd0/b9pe\nwGjOHNiovlOxF2rOdptft31OTBSQJyVem69zYCgJYA4PJ4ptM6U0X7mwRscLsP2QYkrno0dGWG95\ndL0AJ4jI6kmPZkZXabUcul6EHwlmyimQ4PBwllJa5/JGh6GswVQxhSorCGJmShlWWjbfm5f5/kKT\nkxN5Xl9u4gWCtuvz049OYQcR375WZ6Pj8uULa0AyBPPUVIGpYopzy01absDx8TxrbZea7fPsAyMA\ng/uTNzS+c73OVCGFJEn8yrNHSBnqLdfA+zHzv5dq0fY5QWldQwjQVIlm0+e7c3W8MOIzD09yaDhD\nOa0P3l9KD3H6eo267TNVNNE0hSCIWWu75FJJUH1msclrCw2iGGbLKUbz5qASlNJVFFlio+PhBAKJ\nkLG8wWQhxWrTASERx/DwZAE/jvnUsTFCIQbVzbYT8BtfvchCwyGO4ZlDQ3S8kLYT0nGTz8+ndMbz\nJh8+NLSnuVvv9n6+X7DZvwR4aDy/Y+DTn/1oqgpztf+fvTePjuy+7js/b6v36tUGFPatgUZ3s1c2\nSXERV8myFltSLImOFMeOY1k6jmJPPJmZKJk5npxJohNPxsdz4sSOPV4jR44cOZJjRrYcyTJlyRZF\nUiSbbDZ7I5uNxr4Wal/e/uaPh6oG0AU00FgKQNf3HB42lir86v3uvb/f3b63RFdc42R3nPxSKSlA\ni64APp4XzHO6r7+FjphKRJVJFUwyZYuBNp2K6TCWLtEbV0mXbcJKCCNbwbRdBpIRfvB4N89emSNv\nBhl/LSTh+zCWKeN7QWqnVVcomwE51ULRIFW2GGrVmaCMLElEwhJnB25mdvaj47qRsrd/st7Pfd//\nle1bzq3Y6YjAbhndnVDs5bzxx3vitYnb1ec00KYz2BbhwmSOsu0G9IaiwGC7TrZsMZEpYzperQ57\nKlPmd58b4fp8gYrl4vjgLg04DHp7fCRJIFOySZeCgX0RVSYcEoGgD+merhjfH00znzfRQiJHOhIc\n6YhybjxotE4Vg0nPMe3m8ziIRm81/uLSHNmyzd99eP85D6d74wy16XztwkzT+dkjWC9okyvbvHQj\nzXS2gul5mI7PTK6C4/g43Dqc3gMWiw4hWcR3fUKyh+X4RCMCs3mT+wYSdMQ0JtMVTMfj+ZEUIVlE\nkSTimrIupfV+0+31zpvNnhWrP3tSDxHVgotKayTEQGuY711fZL5g8tdvLfDgYCumG8zJuDIbDKtu\n0RUG23QgmAV0T2eMy7M5biyWGE+Xgt4q1yOiymiySKZo88SxdjqjGpbrUTQdfMHnUDJCTJXJViSm\nskFG6IWRBcKyTEyTUBWVnOHQm9AYsctULJeS5Sz1igWvmcsb2I7H9fkCc1mD3mSYkCiuYBuVBIEb\ni0UE4GRPcHkLq3KNBOFOnvt+RD2Co48v0Vmz1Bs70KqzWDJp1UPc0xVlLm8ytljirB5cKj9wqpvR\ndAnL9nj2yhzZskXRDCinO+NhCpUgQu+4HhXLCTrChGC2TlSVOT+RJVO2yFccQopIRJU42q6TKTt8\n68ocBcPBxadQsYmHFd6az/PI4TYkQaixzb40mqZVV2jVFXpbIvj4PDrcVmvGf30yKJt84FBrrQx0\nv+/ddmKjNqNqz7viGq+OZ7Bcj1QpIAupvkYQoD2q0RpRiWsyJ7tjfPPyXDCnDXDdwCH+zpvzlMxg\nHpcgwFy+gmm5uH5AZvKtKzPM5kwc10NYGt52b2+CnGmzWLAo2h52yQQI2OJcn7Ai0RoNoYZE8AUe\nHAqo7fczNlL2FtvxVdwGO6lQ+9HoLjesn1ga6rW6JKMaCU7oCk8eaeeNqSyCH1AmjqZK2J5HVyyY\nVF6NLHzl1QnmciYlK7gwwcpUPQQT3J2leR+2T9AcCRQqRebzBkXD5pGlKcs+CtO5Ck8e7WCo3UIS\nRTJli46Yty8ie9uJP3ppnP7WME8ebW/0UjYNQRD4W2d7+f++8zapornvuPhk4AAAIABJREFUMlcH\nEesdqtXZKo8Pt/PH5ybIVawasQHU7+HxANf3ginulossiszPmshS0PD86NE2DNdDlgQOterYrktX\nS5j+Vn1D9P6NRr2+zrV6Pdf6LFs9KxJ6wLb2K8++iSiIfO2NGcJKQEn97JVZ0kWLku3QGlHQlWAo\nYSQUODGeF8xP60mEmc2bgI8giDXiCsvxcL2AGOErr1ToiKqc6knQElG4pyPGS6NpypbDXN5EEgUG\nkzqyKCKIQcnL8a4Y7xxK8sL1FGOpEnNLmX5ZEogoOoNJHcvxuTyTQ9cUSrZNR7SFL708xqmeBFFN\n5sP39vLhe3sZS5eIqulaafNGbf1el6GNYr1S+otTudo4i6cf6CNv2IwulHhtIosPxEflWub0Ly7P\nkiqaXJzKs1gySZcCZ6diO1hOCVkS0BWJnONjOx6SBJ7j4zgelu2hyhI/fLqXc+NpRGAma3AjXcGy\nHbqLQVbA9XxKloPhePQmgoziQtHA9wU6ohG+fm2GkumQM2ymcyaPDAVD1QFa9RCne+KIYsBAexD2\nbruR0JVaiel6bIdVez6SKqHIIu++p4PZvMnDQ8naa56+vx/DHmdkoRiMELkyR8myKRk2CT3Et99a\n4NWJLEUzCE6XTWeJUMXB9pbGE3g+c3mLmZyB590kvnE8n9mMQcGyEQUBXVawbBvP93F9n9cncwy1\n6XzoTC9HOqOc7k2ssKON7Ne7U2yk7O1zu7GQ7cZmSAz2utFdPfx0taBVmd9WR4IhuAi16AoxNRhy\nGA+HeHQ4yfWFEmPpEnpIrvUOhGUZ23PxvKCOWF5qelxOc6urMqbtYNo3nSMfQAhoYS/N5CmaDrbn\n89hwGx7UDsGBZJiOWIin77+7DOXYYonnry/y2fffE8xa2If48Nkefv3bb/ONi7P85KODjV7OgcNm\nSVfWu4gHtePB4ef6AXPjepCAkAS+KOJ5HrIkkStb2K6PLgREJhXLQw9JXJzMoasSp/uSfOjenhWH\n4F5FvcMZ1i8bXAvLz4o7IcpZLFtoS47NpZlgDsel6SyO6zHQpvPGZJZ8xcWyfUYo8dLoIiXTpVUP\n4QIJXWagNUyu4uB64Dgu1fEtrgetUZWQKNKd0JgtGDiuy9XpAookMNQWQQ8FtLS6KjGRLhPVZFRF\n4m/d2xuUJ/s+3XGVsuUQDkm06CE+cn8f3QmN3/3udaYyZTxfQJEENFkkZ3hEtJtkBofbI5zVW2p9\nUvsloLidqJeVhWDweNF06IppPHtjjoWiiR6SuXegBUkWaiRAVcKMF66nmMxUmM0ZlAwHlyBr6xPs\ndzKiosgiPYrERKaMBHhLcwBncpWArQtoj4SwXJ/OBMzkDEKyRK7i4Pg+rbpMRJWIayGkpd6sKtvs\nSKqE5Xh0JcJ0xzXCqly7jF+YyJI3nFp2z7mdkTnAWM8OVMvZXN9fl+2was/HFkvER2Uc36crrtYc\nYQjKiH/4dDffujpPVJV5ZTSN5XhYnh9U6ngeuqpRsQPmTkEMGCQTmkzBcvE8H9cL2CTh5r0uX3G5\nOJ0lqiqEFRnH88hWLERBJCSJ6KpMT0LD9WGxbCItCiuyPvutX6+KjZS9/e++7/+yIAj/gTpBQ9/3\n//GOrGwL2K+eaD2s/ixn+hJ1BW11JFgWhNrrMiWLE90x9FAr58bSKLLI6b4EFctFkyW+eXmWgaTO\nfMGgO6YhEQw8dHwfwQtoEEUh4IEPSQIhSUGWXAwr6B+wXLBd8DwX2Q9YYSYyZd6cK2DYwe8JgsCT\nR9v3xWVpu/FfX55AFODjD+0fooPVONEd40hHhK9dmG46P9uMO7VX1d9ZTnqQK9t88/IsZcthdLHE\n2GKFknVrn08VITFoqFUkgZLlEldDIIBhB5PfwyGZkCzSqitLUUCP3tYoecMmqsr7QpfXuoxu5cC+\n0z0bSkaQRRhdLJHQZH7ykUG+en6KdNnm/HgG34dISKRguISWythMx6Vg2rSEQ2iyxGNH2jnVHQcB\nZrIV3pjOEQ3JvDKeAT9g4bLcgNWpbLlkSjam6wY0uq5HR1RFIBhYnQiHsN2AsrhiOlyZzrNQtHB9\n6IiqPHq4Dcv1uDidRxJEOmIaeSOgSx9JlWjVFUqGQ1STa0xv+yETuJNY6yyu0n6nE8EcptmcQbZi\nky1bJCMhrszmEAWRiulwba7AyNIoC8vxCGsCBcOvjZbobwnz0FCS0cUyPQmV2YKBIIjYlsNUroJl\ne/Qnw7RFQzwy1M03Ls9SNF1USSQWlgmHJE51xOmMaWiyCILA+0501nqzIAjayZLAtbkCPnAiGZTR\nr2ZEPLusNOtuw+3swFq2Z62M81m9hcG2tQMHg20RuuJqMMheFAhJIlFVDpjfJJHpTIWYJpOMhNBD\nMobjklAl5osW80vlcflK0OsD1OSpSsISUSVSBQtdDSEIAftkSA744QSfFdVC1bXtx3492FjZ25Wl\n/7+ykwvZTmyXJ7oX5gut/iz49Sdmr2aBGk2XKJoOw+1RKpaLYXuoIZEHh5I8cjgJPrw+lSWuKnz9\n4gzfeWs+ICiwgvhSf6uOszTSPVWycFwPz/PojGkYjsvx7jjpkkXZcoMSCYI0eLZsc3EqhyQKjKVK\ntERCvDqepUVX0BRp39eJbha26/GVc5O853gnPYlwo5dzx6iWvv3aX11jvmDQGdMavaQDg61MmF99\n8I6lS5yfzCL68Np4Gg+IazKppR49WCp/AGQRZEmkJaxwqjfBtfkCIARNzIqMQHDwveeeTn7q8SEu\nzeSYyRsBW+MSE9lG1ljtc6j2BOw21jqc72SwZfU82Mhst3pnx0Cbzmfff6JWBpMpWyDAia4Yb0zn\nkASRbMXBcT2KhkDBDBrKZSnQvx843kmrHsLxfZJ6iNO9iYAy2/d5X6Sr5hQBfO2NKWZuVDAcF9fz\nmc+bHOmK0hXXKBoOluOhySKW63FtvsD1hRKiFGR1qlHnx460c32xyHA0wpuzecqOg+PJHOuMcaQz\nyruOddDTEl6z7PpuxOqsbFVWhjuiABxq0ykaNi+NpomqMmOLASHOTNZAEGA0VaIrruK4QXO74/kI\njkBHROFIRzSgD3d9UkWLXNlCkQU0RUJXZGYth2zJRlWC2T/xsExnXGO4PUJEkcD3EEQBQfDpiWn8\nnYcP1WRp9X5VL+JjiyUQqJF/3EiVVjAinuqJ12Wd3Av3p53G7ezAekHpeoNeq89reY/c6udYla2h\ntgjfu77Asc4oL4+lkQQR0/Nojag8OJREWRpjck9njK+cm6BkuZQtB8v1UUVqaUTTBct2mS8YREIS\nkiSgqxKiKHK8O8p7T3RxcSrHVLbC8yOLK/qQYOvlwI2Sk42Uvf3Z0v+/sPPL2R5shye6V+YLrf4s\ng22RNSMDy1mgqlEmAFEQgsncVfiBoyIJAldm8mQrFnpIJhKSMB2XsukS12WS0RBl06FgLjHDiwKW\n62G5Po8MJbk6W+A7b83j+lC2PAzHQJNE4ppCf1LH831CskSmZNCdUNFkcd+kRLcL3746z0LBPBBE\nAX/rbA+/+q1r/PmFGT71xOGGruUgHax3aq/qRhV9sB2P6VwF2w16AXxBRARUKTjooiGRghXM8HI9\nj4lMmcVyEM3vjqu06iF6EhqG7RLXFE70xImHFR4bbmcqU6kxVg3WmVWxHLmyzR+fm+D8ZBYBONvf\nwiceHNj1/VrrcN7Mgb36PHjqaMeae1b93AXTJqYGje6rHaAq41OmYuEDsiwSCQX9P7oazGwznSBC\na3vBPlZsl5dG0whAaGl46lNHO26ZOwQwsVjmZHeCc6NZDDvI/BmOwwsji0RUCdP2ON4VZSJTxvPh\n228usFg0UWUxIFoIK8znDeYKBpmSTcV0OdOXoD0aYixdQRIFoqpco69udOnLXrMHqzNfVVmJajKn\nexK8dCMNgOP65Co2ibBMT0uYvGGTKdkMtem0RxQqS0P0VEVEVURO9sZpjagYloPhuKRLFiFJAh9S\nRZMgXhlkiBaLFlPZCufGM+ALjKfLCMBcrkJXIszbC0UyZStwcNIlWLw1QFHNRizHckbEmKpweSbP\n9VRxxT3pIFXfrIfb2e61HOHVerLW85pYLPPM+Sk0Waz11VWf43i6zFzO5EaqxHzewLAdJFHCtFz6\nExqnBuPENYU35wpLfYEu+D7C0pBrXVUQgZDjByVygkBvS5iFoonl+CQigYM73BEMyD3b38JIqlQr\nfaxH6rFZNFJONlL29qfr/dz3/Y9s33K2B9tBYrCX5gud6U2siLzArXM9Vq97uCOKYQdzFvKGw8Xp\nHOfHM0uDy+Bwe5R339PB2/NFXNfnxkIRb4k5RhACw2naHkc7Y4RkiVTRJCSJLBZMdE3hT1+fwrQD\nhbKXhpxaLuB72Ev1v3EtqG0HONIerQ3hupvwRy9P0BlTec/xjkYvZcs41hXjdG+cPz432VDn56Ad\nrJu1V9VDRxaEW6KKCBBXZa6bLrIoEI2ouL6PGhIISUG/R8HyavXLAuB5UKg4qIpIqmji+wKG7eJ6\nHoosIknB33jXPR184FT3mpHi1UiXLQpmMH8GAnKURgU/6h3OmzmwV58H6zHcVbNvcU3h+kKJhw8n\naxfIaiasuFQq1hoOKI0XigaG5SIt9QQe7ohi2sHlNlN2aNUVBpM6s3kTQfA509bCpekcn//eCD0t\nYaKqXCtJujSV4/efv0HFdimaNqYdTGa3HBdVlumJh5nLmxxKRrmeKrCQt5hIl7Fdn454MDDRA24s\nlvnSS2M8OJQkU3K5r78F2/U509vCjcUSZdPl9aksF6dz6zqDO429ag+WXw5XV2Uk9GDG3qWZPB3R\nYLiwV7BwPZ+FoskbQMlySegKTikgGpElkbfnixxth7cWCiwUTfIVB1kS6IiplMwgw5cpW9iuh+vZ\nvDlTYLFgkdBDZCs2vu8jiyIV26VkuhRNZ1MBiupneupoB47v1x3mm9CVhjvDu4WN2O7l5cmrbfby\nwcj1yuOeOT/JW3NF9JBEUg8xli4xSIQLU1lKpsNwR4SZXAVNEckbgOOSKpq8MZ0LhssjIADvOJTE\nsF1SRYuCYdOzRHNuOD6G4yEJAZvcfF5EDUmYVjDO4C8uzXKkM4rnQyXs1jLC26VzjZSTjZS9PQZM\nAF8Cvs+Gih0aj63WHO/mfKGRVJELU9lbJuKuFrDbRVqXr3tkochIqkh3QmM6a3BvXwtlOyhzSJUs\nDCfI+Exmy8FkcA9iqozjuszkAprDTMmiYrlUHA/DCqhwEUTiYnCRCabA35wYHxKDGtG+hMZH7+/l\nZHecsCrXZg7tD8nZPszkKnznzXl+7geOIEvi7V+wD/BjDw/wL756iYtTuSDi3AAcxIN1o/aqXgbC\n8f1a2dFCweT8ZJZUycJ2XaKagiZKlC0fz/OWIsMBqs3T1YGnguNhOR6KBK4vEA7JKJKA58Or4xmc\npbLX1QfdWlH3pB4ipgYOQBBwiezJ4MedZOCX/+4tJT/+TVMnLH1d/Tt/fG6Cl8fSTGcq9LaEeXgo\nWXMol9vJ1nCI//76FPgCFdPBtB2evTLHA4eCIdLBmZFDFgUcDwaSYS5N53hlLMNoqsSl6RzdCY2K\n5dEWCVG0XFzXx3Y98oYD+NiuT64czA8qWTYRVUHC53B7mDemCkiCwNhimXhYQRJFrqem0EMSN1JF\n+lt1WsJKTQczZatukG43sBftQb3LYVIP1aoy3pwpkC6bhGSBzpga9GYs9cp2JzQEwQdBIBlRmM1V\nUGSRsulybizDxakcgihwtD1CoRL09gmApkhIokBSV2iJqEwslkiXLBaKFkc6dOKaTK5iY7kumiuj\nKoGUFkwbTRIxXY9UMaDbjpWVW/Rhrc+0epgv7N8+ELgz8pn1fm8tm738/es9r3TZCsoZQxJXZvLB\nTJ+3ZMJKmnTR4i+vzBIJSczljYC5b8nOFAyH2bxZmyN2dbaAYXv0JMJ84sEBvvbGDOmiieuDpoiU\nHQ9l6Xri4tMeCbHgWxiOx3i6TLZic99AAsNx+eDRnlrpY9F0iIRkiuadB7UaKScbcX66gfcDPw78\nBPDnwJd837+0kwtrNLYje7QeblIbFrk8HXDlT6TLKxRjbLHEXN5kuD1SY4G53Tqq637heorFksVg\nUudGqsz1hSKKCOWlaE97VKVYsRlZKIEvBFFeSaQ1ojCWraDLEpbjBc2wjovn+xQNF0l0mXYCR0iW\nRCKajG0HzpOmSLTqIe7tTVC2Xc5PZmvMStV68ItTuT0TmdtpfPnlSTwffuyh/V/yVsVH7+vjF//8\nCl95ZaJhzs9+Pli3iuU2YS5vMJoucbavpXYBRADX82mLKCyWgrIqwQ9Yfyp20PSuyAKm4yOL4Hg3\nnSCBgNAkElZIFSyKXqDnJcMmmgivYKNaXqe+VgQwoQclXw8v9Rg2qudnPWw0glnvPFjrtYNtwbyz\nVMHknq5YjbGpmgmzHA/DcbFdj8ISU1a1xr9aDncjVcL1PBJ6MC5AC8mULYd7umJ0xzWmcxUMy+VG\nqsTlmSy5ssXY4tLcH2eJwMD2kERw3IDiNq4rtEdV2iIh+lo0pnMGtueD4OO4AamNh8A9nQkm0wat\neoiRxRLpkh0MUfXhoUNJipbNI0NtjC6WmMlXMG2Pl0fTtVK85UG63ShHu509aERJXFUf46rCSKoU\nOBRhpVaVMZOrIAqBw5at2IiCz6m+BEUrYFudWWJ4K1RsEARM28N1g1JVVQgqNGbyFYqmg6pI2I7L\nQFKnM6bRosu8fCNNxXERxKAILq6FuG+ghblCBd8XONIexcMPiCpEkTfnC/g+VCyXv7m2QEJXbtGH\nek7m4fZI3XvSTt+fdgo7kUWslzVePfdq9fMCKFSWqOIjITpiKh842c3oYonpTIWZbIXFokVGCHo4\nRXwUkZpDo8liQJhRNJEEAT0kMdQWIRlRecehVt6aCzKH3pL9F4Ugs6grEpYTlE0WDAfTcTBtl8Fk\nL47v11j9ZEHg8nQOxwt6Rz94uueOnk0j5WQjPT8u8A3gG4IgqARO0HcEQfic7/u/vtMLbCR2krGm\nuukXprLgw3BHlJFUkWfOT9EaUbBsj7Lt3jGjylS2wnSuwthiCdfzaQkr9LeG6WsJ899fm8KwXd7O\nlFEksUaTWLQdPN/Dc32KrrPEA+9hOtWDEXRFChrpRB/fF4iEZA51xeiIaZzqTTDcEWGuYGwrs9J+\nhOv5fPmVCZ482s6hOhOd9ysSusIPn+7mv5+f5hc+dBJNkRqyhv14sG4Vy1mW3pzNIy6VuVWDJqbt\nMZerUDAcKraLabuEJCGY5eIL+F6gw9XDrScRJlWsUFniQvCA/tYwtgdexEdTAgrc4Y4YQx2RunNb\nbhd1r9czsJewmazB6vNgvdeGFYmWiEJ4mX4k9RCO63N5Ok/FcsiVbboTWlCuuArVrFnZDGhrIyqE\nJJHz41l6WjVM28N0PS7P5EmXLVJ5C1EScF0f03UJKxJH2qN0xlRUWeTqTIF7uqMUDZeeRBjb8xlf\nLGNYbkBt7MOxjigJPcQ7BlsZT5epOA6ne+IMd0RpCSuMpIp4+HTGNE73JjjdmwgcOsPm9clbS592\nqxxtPXvQqJK4pB7CtD2+dWOuNr/nA6e6a1UZc3lzaWaPTVskRFdCw/N8fN9jIlvBcQOnVFzKwLpL\nxAfgUzIDevNISKFouCiiQMHxSBUtoqpMZ0zlUFuU8XQFxwVBCKL57znRSWs4tIKYYjAZ4V3Hgotu\ne1QlVTRxPK+uTK/lZK51T9rJ+9NOYSeyiBsN1lWf13KZ9YF3HeugPaqSN2zG0yUyZZtrcwVsNyhn\nVWURVZYCuQAs28NyPW4sFBEFEESRN+cKlKxgTtR0rsKjh9u4Nl/EsFw6JBFBDPrPFFkkoknc0x1j\nJlchrEh4vs/cEslRde2O73OqJ0FEkykZzpaozhslJxvJ/LDk9HyYwPEZAn4NeGbnlnXwUC/6lNAV\nzva1MJEuM5OvYNgB9XRPPMzF6Sy+L/D4cBtXZguc6o5vqj69ysby6kSasCLz0GCSmXyF9pjKE0fb\ng6iQAJocpE1d3+dMb4zzEzmOdkZxPQ8Q0VWJ6/NFbM+r1QuDjyrLhBToiOic6I3x6ceHGWjTa4q7\nVWal/Y7n3k4xla3wCx860eilbDv+zkMD/Onr0/zFpVk+en9fQ9awHw/WrWK5Xp8bz6CHRIbbo4ws\nFGszYxRZZLAtcGCKRlAKkS0FjFDJiELBsPG8gF0qospULAXDtpGWaE0fGGxDEKiVNZzsiXO0I8qj\nR9qIabeWwuz3LNxW1l/vtbmyzYWp7JI9bVlxgUroCmd6E5wfzxEPy1yezZMtW3zz8uwtpAjVrNlA\nUuc/PX8jcHQR0BSxdjHrjKlEVZmIKlMybYpmQFCRkBTO9MV5x6EkmbJFTJUpGA7Zsk0irDCVq+C6\nPgldQQtJAYVtXOPsQCsdMZV3Hm7jZHe8xkgXDyu1foXV5TrVy9rFqVtLn3azHG0te9CokriErvDI\n4SRF065lTDNlizN9Ca7NFRlI6nTFNJ67vkB7LERSD/HwUJK2qMrXLkxztCPK1dkCc4UKsiMSloOz\nuGK5ZEoWluvj4yOKAp7voYcC+uqS5aBIIo8cTvLWbAFf8EloCq1RlZimMNCm8xQrh24OEmGwTado\nBPTJkijW1Ye7Iei0nj240wziZp5b1X5UmXpn8hV6WsKc7k1wYSpLxXHJlSymMmUEIegL8wn6wnMV\nB00RmMoaqIqEX7bxBQHB9zGdgN0xqso4jsdYpsRwewRVkjBcFz0kEVdlhjtjeJ7Pmd4Er4yn0RQJ\nURB45HByRTlrUg8RXZrvtV97uTdCePAHwBngfwCf833/4o6v6oDhdqUhy5shv/v2AjP5CjFVoWK7\nvDCyiA9cmc1zum9jM3KWs7Ecao3gQ02Zh5IRJtJlMANCgt6EvjT4rsxLoxkKFYe2qEoirCCKAmFF\nIhdVsR2fWFgiJEt4nocoClhOkAZ97HA78fDa6e5c2W5YPXij8EcvjdOqK7z/VFejl7LtePxIG0Nt\nOp//3igfua8XoU7kuontxwq9TuoIwMhCkcszOWZyZcbSFZ480s5szqSyNNQuqspEQzKaIgWzfAwb\nY4n1J6wIvPueDv7swgyiGBAfzOUN/ukHjpOt2Dz3doqWsEJUk9fU2/1+IdrK+uuVqqxm2oyqKy8G\np3sTtMcUUgUb23GRBZHzk9kVpAjLEQ5JvHO4jfaIymS2TKZiMbJQRBQF2iIhypaz1MgOg0mdkCIR\nCUkc7Yjx6OE2/uLyLC+MLCKLApIo8b6TXSwUTGbzFeYKJlPpClFN4Wx/gg+f7antc0JXaiV41c+6\n2We4FxzjRq5hMBmhM6aRN21M2+Nvri1QNByuLxSQJJFr8wVCssjJ7kTAnBZWeGQoyXevzTOeLiMK\ncN9ACxOLFSKqxKnuOIsVk5H5EjM5E12RGW5TSEZDVBy3JgNRTcbzfIbadUqmTSIclE1VnfN6Qzef\nOtrBM+cnaVkqd7uvr6VumepBDzqtJcu3Y3DcyPve7ver98R69iOhKwwlI/y3cxNUbI+QItEZ14iE\nZCzX457uGJOZCtmyGbB8VmwUWcTzfQQBDicjLJRsvn9jkbim8MSRDsZby3heQHjwvhOdnJ/M1u6o\np/sSnO5LrGkX97vdh41lfn4SKAH/C/CPl110BMD3fT++Q2s7MNhIaUj16w+HbwrUWLqE43l1a+1v\nhzO9iYBRKBwwCi2P2FX/xpNH2nn26hxt0RDzeYPuuIaAScl00BSRE51R3nVPJyXT4eXRdDDRu+IE\nteqWgyRAyXR5dSJDqmTWnLrln6ceacNeoyXdbswXDP7y8hw//fgQqrz7ZWE7DVEU+PSTh/kXX73E\nq+MZHhxMNnpJBwbLmdzqRdmfOtrBpZkccVVhIKkzmi5RcVxuLBQZS5UolB3eeSTJ48PtzBcMXlrS\nW8PxONkT5/sjId6aL9AaDgUkHIJId1wjXbGJhEVs1+cr5yb59BOH+YfvOrIhPd3vF6KtrH/5a2+k\nSivmuZzsiddIbJbbvM++/wR/dXWO714TiIaDbNzq8eFVu7lQMHljKsuhpM5Yusxga4TRxRLJSIiC\n4dDbGuax4XYMx+HBwTZ64hrR8E1ntZp96Bpu44WRxVr5yvtOdvE31xYom/N0RjVGUgED3Waew8Ri\nuZZBGGjTG3pBWutMaeQlbfnfnslW+I/PjVAyXdJlix8520vJdBBFVpSTJnSFzzx1hC9+fwzTdilU\nHD56fy9ji2VO9yc41Krz316dRBCyKKLEw8NtfOy+PiYyZZ69PIe/NNT8ncNtmK5Xy+b80KluErpS\nk9HVdxHH92mNhGrfj4U3pxMH6UyvZw/WY3BcC5t9JqvnQa22H6PpEsPtUdpiKv0tYTJli664hiAI\n9LcEfYA+cLw7StlyGGjVmchUwPdJFW0kSSCmKRzviXGsK8Y7D7etWF9fq163OilXtlcML15rHtF+\nw0Z6fg4GTVUDsZno03LFG+Rm5Ggzg/iWRw9O9SaIqnKNeKAqxIfbI9xIlWiNhBhMKrw9X2AyU8Hx\nACEog8hWHM5PZEhGVLrjGufGM8iSEAzGWqJPLZoO6VIwoXq1c1ZL4RpO0OSZD3qQLk7n9hwt6Xbi\nD18cx/F8fuKdB4foYDU+/mA///abb/G7f3ODB/9+0/nZDqynu9VD55uXZ1fQ0v7QqW5euL7I5ZkC\nJcvFI8j6DCR1XhnPMJM3WCyatEVUWnSFw20RxtNlyrZLMiRyKBnmVM9h/uz1KWRJxHJdprIVnjk/\nyScfO7yvD7fdxnI7H9XkFReX1Zn/jz3Qj+35FAyHw+2RGilCFemyRdF0SBUtXB9eG88S1WQuzeRQ\nJJHZvMEHTnZzIyUTUgTSZZfFoonpuCtsajX74Pg+Z/tbeORwElkQePbqHLO5CgsFi5Lp4ePz3NsL\nnO7dWHXBxGKZf/uXV2sNz599/4kVmaIqdsMxvl1fTyOd8+rffntUw/WYAAAgAElEQVSuwNWZPAgi\nRTNwhs70J3jqaAeZirXC+XU8PyAykEWmsxXemiuQKVuMp0NMZSq0RkKc7U8iiQIfu6+PgTadTMVi\nKlcJGFptl4rtMtQe4eRQstZkDzd7kd6YyhFbVq60lQzZXqUa31asweC4Fu7kmdzOfhRNh5FUEYDF\nkklvIsyb8wUGW3X+4MUxbDdwfNujKj0JjXcf71qyCR7feXOBqCZhOA6m7dWdzVNPT+ox1R2UYcYb\n6vlpYmu40+jTnbyuGj2IaDKOB5FQUJc5li5xcWql07G8jOZ4d5xDSZ1kROV7b6dIlUwGkxE8P2iG\n7IyriCLoIZm4puB4HgICnu9TtlwM272lPraqsLUUriYHbFQHmPzAsF3+8PtjvPdEZy2CcxChh2T+\n3jsP8Zt/fZ0bqVLzkrwNWEt3l8/OKJg2qhwMI14omDi+z/0DLXz9jWkUUcD3fTzfZzRdAt9nsWix\nUDAREFAVifcc7+Sxo+3kDZtDrXqt1OG9p7qYzlZIFYNooqZIB043dxpr2eu1WLI+8eDAmrY9qYcw\nbJdM2SKuBce0KMBCwaIzFkIQYCZvcLa/hf7WMON6uRZgWr5v9UrzvvDCKJem87Xm9nzF4v6BVlr0\nWwNYa2E0XcLxYKgtyESNpkt1nZ/dwF6kul4N1/eJh0NosogiCRxq029lQp0OmFAJ4ouEZIne1jBD\n7RF6nDDD7dFaL/DDq5wafLBdD98PyDZUWcSw3brOjEBAgrC8WHkrGbL98Py3isG2CGf7W9YMVqzG\nnTyT29mPrphGOmGS0BVO9SaIqDLjmQoeAAKRkEjREGmLKbxjqJVjXVGyZYtL0zkM26Fo2nTGVMKh\njVejrP4co+n6mcP9iKbzs0u40+jTZl9XdWiKhoMsQslyiKoy+Lc6HctpKqv9RkUzGL5nOl5wQUrq\naIpEyXAIyzKW41EwbI51xQImkKWa0afv71uxzloKt31lCheo2xx7UPBnr0+TKlp8+snGDQHdLfz0\nE0N8/ns3+PfPvsWv/t0HGr2cfY+1dHd5dFYWRd6ay+P74LrBbJjuuMZwR5SFYlDvHVZkhpIRXhvP\n0h4NAT5t0RACt/bcLS91yFdsnjk/iaZIt/SqNLEx1LPXm2XJqv7s6fv7eeb8FPg+I6kiST3EVLqM\nLImoksg7Dyc53RvQzadLt5LM1FvTjVQJTRbRFBHT9jjWGcOwXbpb1E3t+VAygizC6GIJWQy+bhT2\nQm/R7XC6J0F/q8ZYukIkJC0xt9W/JA8mI9zf30LBtBluj/CDx7tW9AIv7+GtftbBtggPHGrltbEM\nIVmkr1Xnh+oMJK6Sppxpa6nrKN/JHWU/PP+tIqEr6wYrVuNOn8la9sOyPZ69MYcARNSARbK0dE4E\nzq5APBzCcj3u72+lI6oGlPM+5A2H070JXp1I8/hwB1pI3LDTsvpzVHvGD8JeN52fA4bl0YMPnump\nGT/glmFkq2tSPxy+Sb3dFQ/qwN91rIPBtkjt/aop+uWzK9aKXNZSuKq8YoDrfm+UWwu+7/P5741y\nvCvG40faGr2cHUdnTONTTxzmt/76Oj/77iOc7Gm2/20Fa+nu8svJu451BHO6Iire0tyFwbYIjx1p\nZ6FgIokCP/7wIQbadN53opNMyeJEVwwtJN8SoKi+5/L3/+Rjhw+kbjYSdxpVH2jT+eRjQ7Xg1Gi6\nRIseoi2mUjIcelrCt7Wpq218laXpSHuUoulypi+IIK9mc9rI2j77/hMren4ahUb29WwUA206n3pi\nmG9emuVEd5y8EZSEDyUjdYfnfnzVRXt5LzDceu4mdIWfenSId9/Tse5MrZ1wVPbD898ObMY53Moz\nWa2zCV3h4aEkecOpzXy8r7+FmKbUzokfOdvLYtmiTQ8RXkaSMEiErrga9PNpCj7+pp2x1Z9juSzu\n573eF87PQWqm2w2spaT1mImWl8EBJDQFSQxK4brias2IVt9vAH1DDW/rKX8ja7B3En91dZ4rM3l+\n+eNn7xoGtH/4rmG++OIYv/yNq/z+px5p9HL2PdbTjVw5GMjTEVUJKSKW7VGo2CT10C1RyVzZ5vxk\nlp4WDcN2efr+vg1dUG/395t2+M6wHZn/eFjhrdkCCwWDmKrcQkO82ukZWyytGD5arc+v2uWnH+i/\nxcHeDAba9DVlardlZSfOlDv5DNXnXo/Z9HRvgtHFEnnDDkrBhVsHm6+Vhan39Wok9NvP1NopR+Wg\nnulbwZ08k/UGJ3fF1Vr/d3WQcG0f69zDqvL71NGOgGa9N7GCDOVOP8dB2es97/zcFc10u4TV5Q/L\n0+3Le4J84L7+lrpKkivbfOXcBAXDIabJfGIdyseDoiQbge/7/Ptnr3EoqfP0A42ZfdMItOghfv49\nR/l/vn6Vv7g0yw+d7m70kg4kVg++O9Ie5fJMntensrVegeWBiHTZomg4RLSg5HUrQ+hW//2mHd5d\nLGcA9AHfF9btt67u1VzeZCRV5H0nulawhe60XT4IsnInn6F6Nr4ymsZyPB4YbOWnHh1a4dDUBpsL\n1Oa4OL6/qz2Td9O5vJdRz7leq1dotdMKtwavVwc/qj83bQ8BakGQwQaWqO4l7Hkmt+XCUG3+bWLr\nWJ3+Xt4TpCoiMa2+gRxbLHFhMkuqaHJhMhtEuTaAKl1iNXp90PCtK/O8MZXj53/wKIq059VqW/Hp\nJw9zojvGv/rTSxRNp9HLOZAYS5eYLxjEVQVVEXF9H3Vp4GU9uygLApdncktMcDnkLWYim3a4Mahe\nYp57e4Fnzk/ieT739iVQlaBuv55dvdlvGUEAbiwWd7U+/yDIymY+Q3UPxhZLpAom6ZJFwXB4bTxz\ny/mY0IPB5lFVPhB9E3crtnqfWa7Xf/7GdO191itLTOgKh9uDgPTt5HP5zwuGQ8G097U+7gT2fObn\nbmimq2I3SwXqRRJW9wTVxRITjel4FExnQ5fdgxAJXA+26/FL37jKUJvOj95FWZ8qFEnk/376Xj7+\nW8/zi1+7zC/97bONXtKBQq5s89KNNCMLJa4vlLi/v4U2PcRr41kqpnvLhO3qTIjDHVHaIyoly9ly\n5udussN7BatHBVQsF8P2ansgC0Jdu7qcxfNsfwuneuIB6c0u4SDIykY/w/KzzbI9bNejYruEFQlF\nEikazooZKbC9pWfNUtTdx53eZ5bv1UYzPGv1791OPpf/PKbJCNxKknG3Y887P3dLM10jHITV6e+N\nPOfBZITjXTFeG0+jSRKXZ/K3nQ1x0Kkwv/D8KG/PF/m9n3ooGBx5F+LBwVZ+9t1H+M3vXOeJo+38\nyH29jV7SgUG6bKEqIu890cVIqsTJnjjnJ7NoSkBn+8GjPTV9Wj4r6MZCkfA2MbfdLXZ4r2CtUQEf\nPH2zP2QjF6gqi+dyKuXdDqztR1nZ6GdYvQfvPdGFqkh4vkdEVbgym+f6UuZt+bPfjtKzgx5U3Ku4\nk/tMvXk562V46rUbrN7r9eSzXnB7P+vjTmDPOz9wd9So7gUH4XbPuRp5eMehVmzXrzGP3G6tByES\nuBamsxV+9dlr/MDxDt57srPRy2ko/sn77+H7I4v8wp+8wbGuKCe6m+xvm8FaUdzlkfyuuEpUk2s0\n8itmfbD+lPCt4m6ww3sFa40KWP38b2dXMw06Vw6CrGyE/EMWhBV7cLovwem+RDCTy7B5fTK7Y89+\nL9wZ7kbcyX1m9V45vr+pAMFas8LWe91aJBnNbGGAfeH83A3Y6w7C6vR+TJNrzCO3W+tBiATWg+v5\n/JMvn8f1fT73kdN3DcPbWlAkkV//iXfwsd/4Hp/+/Zd55h89QVdca/Sy9gXWi+LWLVFdY1bWCop5\nTd42x6eJ3cV6owKqWMuurrbV9ebCNHHnqBfFr8fWlivbOzrTbq/fGQ4q7uQ+U2+vNhMg2K69bmYL\nb2LXnR9BEIaA7wNXAMv3/Q/s9hr2Iva6g7A68lDlmd/oWg9CJHA1fvVb13hxJM0vf/zsbSc+3y3o\nbQnz+Z9+mB/77Rf45Odf4r/8g0dJRpqH8u1wuyjuRktU97odaWJj2Og+1rOrW7XVTayPelH8emxt\nO62LTV1vHDZ7n9nqXm3XXjezhTfRqMzPX/q+/5MN+tt7FnvZQVgdedgsV/xBw5dfnuDXvnWNTzzY\nzyce7G/0cvYUzvQl+K2//yA/84VX+PHfeZEv/sw76YipjV7WnsZmI3vr2Yq9bEea2DjudB+btnpn\nsRld3WldbOr6/sFW92o79rqZLbyJRjk/7xEE4bvAn/i+/+8atIYmNoGNRB7ullrS//S9G3zua5d5\n6lg7/+ZH773ry93q4aljHXz+px/mZ77wCn/nt1/g9z75EEeW+lCaWInlw+i2MnSyiSbg9rb6brHT\nG8Vmn0cz49LEfkA9uW7K7k00wvmZAe4BTOCrgiB8y/f9C9UfCoLwGeAzAIcOHWrA8ppYC7drAD3o\ntaR5w+ZffvUSz7w2xQdOdfFrP/7AXTfTZzN44mg7X/yZR/jMH5zjY7/+PX71x+/nB090NXpZewp3\ng940sftYy1Y35W0l7vR5NDMuTexl3K6HtCm7DRhy6vu+6ft+yfd9B/gacGbVz3/H9/2HfN9/qKOj\nY7eXt2ew34aCHoTBdmvBcjy+8Pwo7/l/v8Ofvj7N//q+Y/zmTz6IpkiNXtqex4ODSb76808wkNT5\n9H96hX/+zBuUmoNQa9gOvdlvtqKJzWE79/cg2+k7wU4/j6ZuNrFZbIfMNPX89mgE4UHM9/3C0pdP\nAP9ht9ew17Efo3MHsZY0U7L4Ly+N88UXx5jJGTw6nOSff+gU9/YnGr20fYX+Vp0/+Z8e51f+8i1+\n97sjfPvqPJ/9wHGefqAPUby7Swa3qjf70VY0sXFs9/4eRDu9Fezk82jqZhObxXbJTFPPb49GlL09\nJQjCvyYoe/uu7/vfb8Aa9jT2IyPHQaolvTyd5z+/OMqfvDqF6Xg8ebSdX/rbZ3nXsfZmf88dQlMk\n/s8PneQDp7r43J9d5rNfeZ3f/e4IP/PUMD9yXw+qfHdm0baqN/vRVjSxcWz3/h4kO70d2Mnn0dTN\nJjaL7ZKZpp7fHrvu/Pi+/z+A/7Hbf3c/Yb967fu5lnS+YPDnF2b443OTXJrOo8oiP/qOPn768cMc\n7441enkHBg8NJfnqP3qCP7swzW98+23+6Vde55e+fpWP3d/LR+/v40xf/K5zMLeiN/vVVjSxMezE\n/u5nO70T2Knn0dTNJjaL7ZSZpp6vj+aQ0z2Ipte+szAdl8lMhSszeS5O5Xnu7QUuTuUBuLcvwec+\ncpqP3NdLa3M+zY5AFAU+en8fH7mvl+feTvEHL4zxhRdG+b3nbjDYpvMD93Twrns6eHS4jYjaNFHr\noWkrDjaa+7t/0dy7JjaLpszsHpo3iz2Kpte+PhzXw3A8DNtd+i/4t+m4VCyPxZLJQsFkvlD9v8F8\nPvg6V7nZSCiLAvcPtPDPfug47zvZ1czy7CIEQeCpYx08dayDXNnmG5dm+MbFWb78yiRfeGEMWRQ4\n3Zfg599zlPefarLErYWmrTjYaO7v/kVz75rYLJoysztoOj97HM2ZDDcxnzf4wX/71xi2i+P5G3pN\nSBbpjKl0xlSGOyI8OtxGR0ylJ6FxsifOsa7oXdtvspeQ0BV+7OFD/NjDhzAdl3NjGZ67luKV0QwH\niROhqc97E819uXvQ3OsmlqMpD3cnms7PHkaTLWYlIqrMJx7qR1MkwoqEpohoioQmS6jVfy/9LBlR\n6IhpxDX5rush2e9QZYnHj7Tz+JH2Ri9lW9HU572J5r7cPWjudRPL0ZSHuxdN52cPo8kWsxIRVeZf\n/sjpRi+jiSbuCE193pto7svdg+ZeN7EcTXm4e9EcT7+H0WSLaaKJg4OmPu9NNPfl7kFzr5tYjqY8\n3L0QfH9jvRONQHt7uz80NNToZTSxBlzPx/F8ZFFA2uHGjNHRUZqycPCwWRlqykETcHfKwW7a2/2C\nu1EOmrhVF5pysHvY63bo3Llzvu/7t03s7Omyt6GhIV555ZVGL6OJOtjtWtmHHnqoKQsHDHciQ005\naALuPjlo9ibUx90mB03U14X3vuuxphzsAvaDHRIE4dWN/F6z7K2JNZEr29xIlciV7Vt+trxW1vV9\n0mWrAStsYiNYbx8biaYMNQ5zeYNvXJxhLm80ein7Ao3WoaauNNFEgLF0ifmCQVxVmrqwDdiMbTtI\ndmhPZ36aaBxu5+FvtFZ2OY0k0KSU3GXstUjNcnlYLkOm7VEwbHJluykbO4wXRxb51O+/TMV2Ccki\n/+bpe/n4g/2NXtaexV7Qoe3sTbhTat8mJXATu4mqvMmCgOP7NZl/6UaakYUS1xdK3N/f0uzT2QJu\nZ9tW6/xm7NBetxdN56eJurgdC8pGJhEvVyzT9hCAkCLuiUv43YK9xGZTz9B++N5exhZLvDya5vXJ\nLBenck3Z2EGULYf/7b+ep6dF4xc/dobf+Pbb/NOvvI4iCXz0/r5GL29PYi/o0HZNfr9TR24vOIBN\n3D2oylvRdLg8neNUT4KoJnOmN4GqiLz3RBcjqRIPDyWbcrgFrGfb1tL5jdih/WAvmmVv24BGl0Ts\nBOp5+Ks/Z0JXONweWVOolytWwXAomPaBSJfuJ+wWm009HVj9vXop84SuEAsrhBSxKRu7gP/8whgz\nOYNf+tGzPH6knf/4yYd5dDjJZ7/8On/z1kKjl7dt2E6bvFcYoW5nbzeC9cpWmmXOTewF5Mo2F6ay\nLBRNKpZL2fKIaDKu74MAkiCQN2264iqDbZFGL3dfY63qC6iv8xvN5uwHe9HM/GwR+8HDvZP042oP\nH9hUehRWKlZMkxGg4ReIuw2bidRsRkZWlzOulo1631vrErlXLpcHHZ7n86WXxnlkKMkjh5MAaIrE\n7/zUQ/zYb7/Iz37xHH/0mUc529/S4JVuDcttsmV7PDyUZLDtzp2GtXRor5d11MNaurZdZc5NNLFR\n5Mo2Y+kS+NT0syqHqYLJX12doy2qslg0SRVMOmIqg8kIg8nIvtO7RmMtW1W1bfWqL1brvCwIa9qI\nrZTHNQpN52eL2AslEethM87ZagGu/l66bFGo2LXPOZIqcmEqy9m+lhUGq2g4GI7H0/f3MdCm13Wg\nmkZr97F8L+thsw78xGKZZ85PoikSUVXmTF/iFtlIhBWKhkNEkykaDumyxeH2SN1L5HoO2n68YO5V\nvDaRYXSxzP/8g8dWfD+uKXzhUw/zo7/5PH/v977PL//ts/zwmW4EIaAxNWyX6wtFri+UsByP/tYw\n7zjUSkjem4UDVZscVxWevTFH3nDoiqtbCkyt1qGtBr3uRK63QxcSusJTRzsYTZcYSkZW2Pj1yl/S\nZYunjnbUei+autjEVpAr2/zxuQnOT2axHY/hjig//vAhJtJlLkzm0EMiyajKfQMtCD48MNhau28A\nTfnbBOrZKlh5F4uVb1ZfVPU/qYc405sAgZrDWc9GLH//bNnmWGeU0z2JbSnT3UnsqPMjCEIv8DXg\nFBD1fd8RBOGfAR8FxoCf9n1/X9eK7RUPt15zYEJX1hXYscUSCNAaDjGRKfPctRQtukJUk2+J3ufK\nNpmSxfW5IvMFE3yYSJdrAl40HCYyZTJlm2fOT/LJxw7XLgyrIw1N7A1UZaZg2Os68MsvXfmKzW/+\n9duMLBRJRlSOd8fAD37n8lSOVNECHyzX4/J0DtcDx/d58mg7sLYjVu/7axntJu4M37oyjyQKvO9U\n1y0/64xrfOkfPMrP/eE5fu4PX6WvJUxvi8Zc3mQiU2b1OLjuuMa/+shpfvhM9y6tfuOo2uQbi0UE\nYLg9Qt60tzUwtZWg13qO02oHZ7ld/+7bC7X+yVM9caKqXCv7WSvAtPpcWP4+E+kyHw73rhup3Q+V\nDU1sHI0KJq3O8owtlhhLl6mYLuOZMqmCwUS6zFSmxHTOBKA1rMBAC+0xdYXjc7u/0+gLd6PXsPrv\nr7ZVY4slLk7nKBoO2YrNAwMtRFSZXNkmVbCIafItWZ7BZGRNG1F9f1kQ+PobMzynybRFVH7hgyc5\n3L53yxJ3OvOTBt4LPAMgCEIn8B7f958UBOH/AD4GfGWH13DH2IgQ366saCuKsNxBGUzeWrZRNShF\nw+HKTB7X91c0B65OXebKNm/O5qmYDs+PLHJhMkvJcqhYDr4PRdPlZE+cox3RWo1mNYL6vWspSpaL\n47roIZmuuFa7UCT1EIbjkSnb6IpEyXQZWyxxVt/f5TO7id02mMuzddmyja5KQFBPXTEdvnttgTY9\nRLZi89zbKVRFJFe2mc5WuDydJ2/YaEqZkunw6OE2Lk/nSJUsSoZDXFOYyRt0xjUyJYuK7fHs1Tn6\nWnVg49m/ehfMJu4cf3V1nocGW0mE6z/3gaTOn/zcE3z1/BTffnOeTMnmvoEWfvQdfRztjHK0M4qu\nyFyeyfPr377Gz37xHP/m6Xv5iXce2uVPsj5qpRzpElE1Td60tyUwtRZT4Wbfey3HaXVG9f7+Fp69\nOo8mi2QrFp4Hg2063xtN88L1BSKqwrGuGGFFqulnumQRkkQ6YiqPDbfx7NU5fB9upIqc6k1g2C6a\nLDHcEa1laYeSERzfr2V2ZEGo6dper2xoYuPYKUd2rcDrxGKZ0XSJNj3ECyOLPD+SIle2OdweJRGW\neWMiw9XZPIIgIIkiE1kDy/WIqzJ6SOZkd4x3HGrdlOPTaEd9I2tY66zfjjtAvb+f1EOYtscro2lE\nUeBIu0PRcHh7ocjFyRx/dWWWvqSOCPS36tiux9XZPHN5sxY4GlssATCUjBANy7SGQzUbUbWFr0/m\nyJYtWvQgmH5pOsdAm76pte/mHWhHnR/f9w3AqJZPAA8B31n697PA32OPOj+bUaR6JRF1o3XdcaJh\nua4jsxoTi2W+9NI4N1JFZFnk/v4WPv7gwIoIYTVtXDIdQrLIQ4eSOB61UqMXRlL0JsI8dbSDiUyZ\nL744ytXZAhXb4VCrTkiWGE2VSBctBFFAk0UuTWXxXJ8PnukhHlZqEVTL9WiNKJiWRMV2uTKbRw/J\nVEyHNPC+E50YtsvIQpGK4/LyaPqWqGTz0KyPXNnmK+cmKBgOMU3mE8v2ebPvs7qGeq3fuzCVZaFg\nkiqazOdNYprMY0fa6G/R+Z3vXidvOIymSoRDEobtBtmdio3puHg+iIJAJCQx3KEznikjiiInumK8\neGOR1yez9LWGsRyPiu3RFdfQFKkWcarq1O3KaPZKVvUgYDZncHW2wC988MS6vxeSRT7x0ACfeGhg\nzd851KbzA8c7+If/+Rz/11cvcrw7xoODrdu95C0hoSuc1Vu2rT9gLabC1VmW9YJVVaxFJvPM+Sku\nTefRZJHeljDX5gosFC30kMRkukzJcjk3msb2PdoiKgA35ot0xjVO9sT55qVZxlNlREmgJazw2kQG\ny/EJh0QqlkckFBz3hu0xkipyeTqHYbn8t3MTHG6PIggC7zvRyQsjixRMm5iq8IFT3buqg42Omu9l\nbPXZ7IQjW72HLBQNxhcrnOiOgSBwuifOH7w4Sr5iUzJd4qrI9VQZ2/O4NlsgogWy6HogSwKu52E5\nHrIIRdNBVSSGO6Mbdnx26vNtFrdbw1r3ytXfXx6I2EypabpsUTQdIiGZounU5GU2V+HF62nCIRFR\nAM8nqOARQEDEdDzwYDZvkK84vDaRJqGFeHM2T3tU5cJ4jtm8QUSVONOXQFsKuCy3ha7n88roIobl\n4Ho+JcvZ0OiKqt18eTS9aTbgrejEbvf8tAD5pX/nlr5eAUEQPgN8BuDQocZFFO9UkZYLcaZkoyki\nXTGNr1+b4fnrKSJLEb2Pr3PBzS2Vjl2ZzVM0HXrjGuOZEmPpm9mUdNmiYNrENQVNEpktmLy9UMTz\nfBYLJldnC5wbz6DKImf7W+hvDeN40BlRKFsOpu2RLpnkDYecYeG4Ho4HuiZhOj6///wNPvX4YT58\nby+XpnOkChavjWfwgagqUTRsworE73z3Oqd6E0RVmSePthOSBQ63RZkrGLwwkmIqU9lVgd6PGFss\ncWEyS0xTuJEq8shQctNZs+XOsAAc64rx7mMdtzhByzM+F6Zy+J5PumTx1pzFWKrEYFuEnOGQL9vM\n5gxEQcBxXSwPWCp9UmUBV/CJaTL9rRFO98T59tV5XpvIIksitueRLlm0hBUms2UkMcgoIbCiN+iZ\n81O0RpQ1ZWOjZA1N3B6vjWcAeHS4bVveT1Mkfv0nHuCH/t3/z96bBtmVnvd9v/fsd+17b6/oBtDY\niFmA4YDizHARSVPUiDKlWA5VkWJbUlRxqexErqRSlS8pf0iqklSlHFdSqVQ5sl1J5MRSVBEd05Jp\n06SGFEVxGwwXzAyAAWYANBrofbn72c9533x47+1pNBpANwbAYIbzVE3NTPfpe957zrs8y//5/7/N\n3/+Xr/OV//xT2Oa73wO0W9/ig5g3uzkV25nXhgmM1xbaKLjnHn96ZuSWJMVrC21afsxGLyLOFGv9\nmKemKuS54sJih9VexETFY7EV4ZgGC60IU8ATUxWiTBJnORu9mNV+hFCw0ArIcknRtchyC8OADT9G\nAC8+OclmoOGpJc/iwlKXa+t9cgUrnZBNP2Gs7HJ13ef5o413tAb3s5c/Dpn7x9WG+/swKN2ZCN3L\nM34YyaT5ps+5hTYAV9Z79OMMyxB89fUlbjYDwkSy7ehAAJ4FYS/HMgWZBJCUXT1Hy65NrWDzH33i\nCJ97anJf7/9xSJbdawx38iu3//zael9XgC2Ti8udLf9qL+shjDNenmtiCYFpwOnpEd5a6fGty+ts\n+gm5VPSjlN/6xBGiNGO5HdKLUiSKom2w2Am3IM7HT5R5fanLtfUezSDBs20mKg4LLYfJqseR0ZFb\n+oPiTDI7WqIdpkxUXDb7Cf/m9aVde4yGNlzzq92Yaxt9Xnxycs8Q5Xe6Xzzq4KcDDNX0qkB75wVK\nqX8K/FOA5557Tu38/QMdzF02jftdSNsncRjnuhqyoRuFG4SdWUQAACAASURBVGUXoRTzzeA2WNj2\nseiJZjJedlntRlxa7XIsL3N2rrmVUWwUHSzDYKUTALpqUytaHKwXODFeJkgzelEOQC/KaPZjLq90\nubwiqLgmv/HCLEudkOX2PK5lIpXAQOKZJnGWc2Gpwx+dvcGZQzXOLbSJ0gypFFXXIssF882AI2Nl\nXWlydKWpG6WUXZvVXsS5Gy2urfu0goRfOn3gkU3o96SJtw8HNfj//dr2YDjOJD+Zb5HlaqvRe+ua\nMGWjF6OE7tu4utbjZtsnSSVxJokySZBmtIOEKJUAyMGQhsOyLUGt4HJ8osznn57i0GiR3/zYLH/y\n2iJjJZfXF1ts9hPGyy62YYDS36teeHtNDeE390ouPCjn9afdzi91sAyhe7QekFU8m//6rz3Nf/IH\nP+bLP1nk1+9SLXoU9k7IXe5llhBcXOqQSbAM+MKpA7d8Ti9M2ejrXgXPNOgNoSJNbglyNLRtEc8y\nKHu6Z6cTpJyda+oeiEQyO1bkQLXA1fUe672EVpCAEriWgRLgOiYeEGeSQ40CSkI3ylAClATPtTCy\nHM82qRUcRksOp6arXFjuUis4/IsfLXB0vEQn0jC5MMtRwGTVwxKQ5nrdC/TY97MG78UCebfPeRwy\n94+bDZ/ncjvk3EKbqmdzaaXHTL3AJ47pPsr9IFQeeDJJs0+TZIr1bowf5biWwYYf00/kLZca6LPE\nMAxMQ/+NbQqEgFODxvoXjo3imgZnZuv7Ht/jkCzbPobt8NHhWPbCeBplEs82MRB0wgyBuEUaYrvt\nXG8vXVrFMgSG0PvDt99cZ7EdkOgokzDJWO7B1y6u8hsfm0UpEEKw3otZboc0/QQpJVLBS2+sEmcK\ngSLOJLlKafqCTObIXPL6YoeKZ235rK5t8OJTk7w816ResJmsesxt9rmw1OH6pr/rHB2u+WNjJeY2\n+sxt9pmoeHvyt9/pfvGog59XgN8F/kfgReAHj/j+W3avg3K/C2k71G04icuexRdOHKAVJFim4MJi\nh6VOyIGRAt9+S2tqDKFhO0ueZdfixGQZy9SH3plD9a0AAuDCUoemn3C4XiLOJZMjHqcOjHBtow9C\nZ1AW2xECKFoGX3pzjV6UAYqSW+Cbl1fJpMK1DSqehSIlzgRxKsmlYqzscnm1y49vNmn6KUGc4ic5\n86nkcKNIP4FXb7TpRSlX13rMtwJaYUKSSmxD0ArSAdbc59zNJh+arO46oe/VnPfTcADONkqcOVij\nF6ccG9NUnnu17fOu4tr8eL7FWjdmtORwoOqx3I24sNThjeWuhrn5MecXO4Cg2Y/JZE4n0M5Plie0\nghTHEvTjnO1Hl0A7fY5lcLhR5MREhfGKSytMOESRWtFmox9zfcNns59wcrLCuh8hEHzksJ67mVK3\nHAx/eWX9A0jbI7Lzi10+NFnBs80H+rm/eGqKU9NV/rc/v8KvfmQG6xFXf3Ymjfayd9wPLj9TimNj\nZZQAoTSJx/bP6QQpV9f6rHQjhICJEY+vXVzhjaWuhiQfafCLT0/x5XMLvLnap160NZxksc2IZ+Pa\nBp9/aoqvv7HC7GiJomNxlDIFO6LkGNxohcS5pDKArtmWQTdM+d6VTUwhGKu4fPr4OBu9GNMwsA04\nOVVlxLMxDHjp8hpLrYA0V7QCDaUrORY/e3yMZ6dH8NMc29RnQaPi0o8yRgo29Xvs2cAdg53tLJB7\n2cv3knD8aUIFbJ9fy62INJMkWc5SK+TcjTZNP9nzM95+Ttzpd3v1c7ZDq2dHS0xUXL52foUwlcRZ\nTJYrdsQ9wNtJtPGyh2vBej+h5Fo4lsnPfmgMyzS2oFT3ex48Dsmy4f137jHdMOV60+fMwRoF17oj\n46klBF+7uMKPrjfZ9GN+NN/kuSONW0hIhtd9/eLKVjXw+aMNPNtkouJxsxWQD9Z6P8mxTR0QGYJB\nD1DO9XWfaxs+fpwyvxliAEGcbfmccaYwUPSjnEwplILMkniWyatLHWZGCqS5TTdMaRQdklRydqG9\nBWO7utGnVnRIUkWtZHNsrHzbHB2u+W6c8uGDNV442thTW8j2v71fH+Jhs73ZwFeBZ4GvAX8f+LYQ\n4jvADeB/eZj3v5vt5aDc60K6E15zOLkPjRaZHS3x/WsbnLvZYrZR4nvXNkkHmfmdG1grSLZgEV84\ndUAfoitdDARrnYgvvXKT15d0c9lTB6ocrBVoBykvvbHC5oBty7NN/ubzh3ljqcufvrbISicc9Gso\nFppayK7oGLTClImyi1IKz1TYtsFo0WGk4LDZ71Mruqx2NDzONAykUoNmd5OVboRlCV6Zb+JaBt++\nvK6rB2lOmOY4psB1LHpRzqdPjO+JzetxKF0/bNsNmvMffPTQvg/1nc/vyGiJP2yFJIli0+/zb88v\nM1K06UUpV9b6rHVDNvoJCsVExaMbJiQa6gtAmClAEe7Cv+hagrJn8fxsg6Jr0QoTZDvi7FyTesHZ\naqzuxxmmAb0o5eRkhVrJuaXhfPua+uXCB5C2R2FKKc4vdvjckxMP/LOFEPy9nzvB7/7hj/nW5fVd\nmeQelu227+7UpZjb8G/T5nltsU0/yjg2fvthDNxWnfnlZ6YJ44wf3WiRS0XVs/niIKs73LcXWyFj\nZYdnD9boxRlTFY8/ObdIkOR4jslGL+bCcocgySk6JovtkCvrmo1OGIK2n2CbBqemqpw6OEKSSi4s\ntXn9ZodNP8E0oOJavHCswaXlLgsD+JsptEez3o+5ttHjC6enaAUadlIrOjx3uMHZ+U0qrk17sO9I\nqXst4lRScC0qBZsccCxBwTYHRAmaaOEvr6xvMcLtfOZxKhGwBWs+PX3rOYZiX3v5XsiDfprYH3ei\nSI6NlwnijOlagacOVOnG6Z6e8fC5rfdiXl9s88zBGuPltxEBd6NBBraCnXrR4esXV3jlepNOkDJT\nL3J0rMj/96ObtML8nt/HEDBRtpkccTncKLHYDjAQVAt6jVUL9vvmPNjpX15Y6vDHP7xBmEgypfgv\nXzzJyA4mtO1n4wtHG2z0Y56eHqHpxxysFwC9N/2z780RJDmmEKz78RZE9VC9SDtIMYVmuBTAQjuk\n6lp8ZLbGufkOQZxxs6XJr4Ikpx2kJHlOnCXkuUEuIZcKA4lhKKRUJFIhgFxKMiV5daFDqx+z0g6Z\nqHjADf7uZ47z/JEGC82ApVZIN8xoBSmfPTlJJrVPuNscfSfVunda6XvYhAcpusKz3V4G/sHDvO9e\n7EE62TsneqbUbRR/I0WbTxwbo+knrPaiWyhYhxvYtY0+7SClE6wzUrS3DvQozbm82sNAV3xyBX6S\nYZuCtV5M2bW40QzoRSm9KONznkWmFKvdiH/87av4UUqUKQyhM/e1okMnyujHilwqFjsRWSZJc4Vn\nC4qOxdxGj26YstgO6McpSSbJ8hxDQD/KMAxB0TGY2wiIs5xM6oWCUIMgCTphxqGCQz/OaAXJFvPH\ndqjIzgD0Tlow7xe7U9b5fqAlO5/fy3NNenHKWMkl6KZEac5nD47zg7kNXl9o048z8kGws+n39zXu\nXCo822S6XsAyDJpBwiePjZEqyfWmj2ebVDyLta7g+HiFw6MFfumZ6bs2nD8OWbqfBlvpRmwOssQP\nw37h6UkmKi5/dPbGIw1+dtt3d1YWdxPe7ccZF5c7AJQHsI2hDfsth9WZQ/Ui85s+/+7CCuu9GMsQ\nOJZBK0yYbZS29u0bmz5SgZ/0ODlZ4fJql4VOSJLKQSW1woWFDq/ebNOPU1CCsarLQjtksx8T5xKh\nwDQEy92Y715ZxxSw0o01VEjC/EaAUIJ2lBCnOVGS0o8NXNvkYL3IZMVjtOiQ5vChiQq9KNOJB8Ng\nraehpiaghHZksDRhjWeb1IpvZ2ZvtAJyqZiseqx2o1s03bY/89cXOwihOD1a08GOuNURH1YGhiQQ\ne7G77Qk/beyP232UsmfxhdMaRfLK9Sar3Ygok9SLzj3Py2G/2rWNPiudmJLTp2CbtzG6vrHc5aU3\nVmkFCVJqzRbDgPlmoCsChoECbmz63GgF/HC+SbpLhedO5pmCgmNzZLTE8fEyXzwzQ47iSKO05Rs8\nCAKGx8F32OlfdsOUMJHEec5GL+FLP7rJf1Ev3nGM9YImKQgSyWo3pF50WGiFXN/o881La9imgWEI\npqouY2WXNJO8PLfJUjskyXOePDDCdNXjtQE0LezljJQsolSjNVzLYLUb4ScaVhcmYBj6ZRoG+KnC\nRDEMaRUQ57DaTdjsJ7oC3ouJM40emm/qfmEMDbebGvFoBQlvrvWYrhV48cnJ26pdQ3snfsA7+duf\nWpHTe2Ez92N7DaSG97yw1CHJFKu9aEuroV50+PK5RaRSXF7tbTV+XW/6ZFIyPVKgG2mtnapn0wkT\n6kWbY2NFJsoeC62QD8/U+MHcJm+s9HhyqsIbSz2iNMe2TIIswxR6Ypc8C4HATzKiNCPOMnKls/th\nKrm2rh1j0xBIqah6DscOuLy22MV1TIqORdW1eHWhg59kIHVWx3Mt0iRHGArPNnAsg6pn0gkTrq73\nqRTsW5ySJJUouO25vZ+d4v3C+nZu5kM63DDN6QQJo0WXMM5phykrXe1sLbYj8jwnTDL+3x/eZLUT\n0Ysy7p2b290EYJsGrqVpzD9+rMZiJ2S5GzFZdTnSKHGzGXBsrIwfZzxxoMJ42d0qX79f3+V7xc4v\nao6Z0zPVh/L5tmnwa88d5Pe+dZWldsh0rfBQ7rPTdtt3h/NtbsPf1VHOB/A1gKcOVG9jk2oGCUqB\nacBaN2a84oHQWHnLECggSDRV7HA/f22xDYotjPuJiTL9OOPASIEozSnaJk9MVfnW5TVuNAP6cUbF\nNTk+Xma9FxOmGQfrJfphylvrPZZaAd0wZaLqbfUCSqWTFtc2fEwDygWLXiixhcIQAqkU5xa0dkeS\n5/zkRosDIx7NoEqaS/JcJ6U8V5ClkomRAp97YpxfeXaGetHZgqAmqeSttT7XNvpcXumSScWmn3B5\npcevffQQlhC0/JQwzql4FoK39+/ZRum2ZEcnSLcYHofK8fe7H7zbqIBH7Vjvltk+NFoc+AqaEv0v\nr6zz6RPjd/2cRtFhtROx0AwBxaaf0g7SrecXp5KvvrXMUifk3M0Wea6olRx6YUaYZ9Q8m8urfeI8\nQ0oI4nxfQQ9A0RJ8/MQoR0fLTFY9yp7FqZmRB/ocHxRr6jsdw/B9bX933TDlSz9eYKOnoX61krMr\nE9zw+laQMFUtYBgCAYxWXK6s9nhtoUOUSmxT9wSNlz1MQzBdK2BbWhg2SXNeW2jz41zSjzNqBZvp\nmiZSyJTCNg1yqft7tY8H1YJFlEpyKZGDd7ubv6CAVOr+LQX0Y02MNNwPf+1nDnGzGWAIg6JjUnRM\nlFK8dGmNL56ZuSsk81EHrO+J4OdhqWHfCZv5sBvtrm/61Ao2USr5wqnxrYxavWQz2yiy1A4HVNIm\nHz1Up+LaXF33STNJ1bN5YqrCkbESZw7VuDHIyqx2QzIpaZQcPnVijI8dHeUrry4CijSXGEC1YCKl\noB9mPDfb4PJql36kK09SQZjq8qYhFGkOQihMAUGacGVDL4U0kwhXq8Kv9WJsQ5AonSEoWAYFy6FR\ndmn5KbmRc3U9oFGy+T/+8hq/cHoKASgFY2WXXCnNPqW4ryb/R20PYpFuP8DjVNKL0tvoIHejSjeF\n4MzBGl/68U3eWuuz0AzxbJNGyeapqSphkjHfDJga8VhqRxQ9GyHAjzMylW85UfcyAzAFeI5BlMoB\nrbVugo7SjI1+zGo34szBGs8faWw1cg8hbL/6kYMfqMA/ZnZ+sYMhtLP/sOzXnzvEP/rzq3zltSX+\nzmeOP7T7bLe77bt3cpS3MumutSuNrobK9TVLlZK8+OQEFc9mtRsTZxom8sRUhTeWuxyqF8mU0npY\nwzVrCPw4wxaCqYpLkud85HCD42Nl/tUABmcbgjCTZLnkwIiHYcBiO6IXJvSiDAFEmWS5qxnd8gFh\niAXUyg5+nCKUwDYNDtYLrPWiQeVJYRgGtYKDAPpRznIr5OXrTbphQq4gzRQjJYuxosMvPKUFalth\nwpmDNd5Y6eKHGVIqXnxyku9f2+T6Rp+lthZGfPpAleubPp5tEKU5XzxzkGrBvqWyMww+O0HKazfb\nLHVC1vsxYyV3iyXvnWR5HyUq4J2QN+z38+/mo+z8XaYU9ZLDgWqBC8sdfu8vrlAt6B6y7Q7/UGfH\nMQxuNH2afkI3SpEKrq71ubTc5WPHR3nhaIMbzQDXNHhro8/CZjCAM5oUbJP5jYB4QEPtWOKegY8A\nyp6BH+vzwx6wEv7Op45zanrkob2/B8Gaej92p/P6l5+ZvgUB9B8+d4hvXV5jcsRjvOzeVnHeDieN\n0pzFTkg6CFAWmyHfvbLBUjskTPVZ/NRUhWrBpmiblD2LMM1ZHvyNAhzTwI8yLq/0ODJW4vhEmUZJ\n+21ZDp0wwRCCOM/JczCQKAW7vV5LQLbNiZAM9qOiTaPkUh5Ql8/Ui/ztnz1GN9TkS+eXOtxsBbQG\nFfXf/sTR23ydd4vg6rEPfu4nmt/PA31QDfZ7zXAP7zfMEg4bxrc3fp2crGisuGVybqHN55+e0hjf\nMOVwo0gmBxQrCq5v+IxWXJ6bbbDaixgvudxsBtohziSnZ2ostyO6UYJSglTmRJlkoR3w2ScmWOyE\nxInWcbEN3deR5op2mGnHF6gWHDzLZEMp/DinGyS0PYswyYkzpTe4AT+/ZQm6gabOLjgWgcw4Mlpm\nsR2y0okAxVI7ouLZWAZ86vgY5xbbDyQz+DDtQS3S4QE+5LV/daF9y/e+lSo92RIkvLjU4X//zjVa\nYcp6NyJMciYrLlIqLq10WWgFrPdi4lShAD/O6UcpWa7ueVhZQIaeUo4lsA3BZNUjSnJc2yRIMoQQ\n/K0XZrEsY9eM+QcVnsfXzi92OD5epug8vO1+drTEhw+O8G9eW35kwQ/ced7dyVG+l/OcKcXT0yOU\nHAs/ySi4GkJ85nCNI6MlXl1s85mTE+RSbdHRnrvZJs5y/DijE6YcbpQwDfjVnznI5IhHvaBF/8bL\nDvObPo5pYhrgpzmHikWurPapFxzKjq7IR5mk5JiYhsHPHK5zZaPH/Eagk1hC09ifPlDllfkWYSLx\n45yya+lMrtIJFc92yGTOpdUevSghyxWuY5JmOUXLohMl/PEPb5JKiZ9k9MKUTqjhzCbwC6emKDkm\n3Tgjlxoec/ZakyjPeGpqZIvABLitsgNs0X77ccZqJ2KmUaRgG1sseQ/6fT9o27nf75e8Yb+ff6/z\nZDeB3WsbfX58vcV6P6bkWoyVnC2H/+Jih//ppTexBj6FZQgKrslaN2JuQErz3/zr8/zPv3aG2UaJ\nw40i31jpsdyOyKUkzhWpVJRsk6rnsNIJdC9ofOfv5Bhas+fYaIkzsw3iTFcgTk5WefZQjVPTIw/3\n/T0A1tT92p3O6+1zZPs1x8fLtyQNhzb0C6uuzU9WW3iOyYtPTjK32eeFI6MstkMqcxZjZZcg1UyO\nY5UC7TAlyTXVvRCCkxMV0lzSjVO+fmFlwNwomB5xeWs1oR/lOJZBmGT4SY4arGGVK+KhE7AtyDGA\nRsnGMgWr3WTrV7YBJdeiXrR54ZgmKdhJx37q6RF+eKNFK0ipFx28AdRyt+/9bhBc7fk0FEKMKqU2\nH+ZgdrP7ieb380AfdSl9yIrx0tzqgL1FUS84HBotbh3MvSjl1YX2LQQIQ6rAxXaIgi1F74tLXQxD\n0ItSTEOQFBTnFtrUig69KOPzT0/yzctroDT+0xCCasGmXLCZHPE4OVlhbt1HKYVEUHK1DpBjQZrp\nilA/ykjsHD/OMQW4jkWYSmzLIFOKNNdLQghB0bLJZI5pCOI0H8AmYtb7MWevNbFMmKoWOHOopjWJ\n3iPsbg9qkQ4PMdCNwgeqBS4sdfj6xRU+fnSUTKm3m1wHDYnffGOV15Y6lB0ThaBedIlSRa4krX7K\nhp8QJBlK3lqqjlNduYPb9rQtE4AQYCiwTbAMg2rR4jMfmmCpGzJV8UhySck2iXOFYws+PKPX385m\n8g/s8bTzSx0+eXzsod/nl585wP/w1UvcbAYcauxd2fth2W6O1r2cr0bRoexa5EpRdt/uByq7+qgc\nLzv4cUY7SKmVbEqDjGvZs4hzSZDmVIs24YDoYLZR4v/+wXVNPS8lhxslwlT//dxGHykla/2Eww1B\nkOTMjBRY7cU0ig7OgDI4TCW1oo1jmiAUJyfKIASfPjHG9c2ATpjgWAZ+nGFZBrYpqHoWq52YTpTh\nWiZJlpEOKK0TmbPpS1a7EY5jsNKOaIcpKMXR0RLCMKgVbQ7Wi8xt+timQXcj5eXrmzSDhFfmWnzi\n+ChhnPH1603W+zGnDmjNj/mmTydMWWgGulplGpQ8i+mRAvWivRUwPUrbS4XlXqyj+yVvuNd9d37+\n/KZPJbB3ZdAbJspypftwPnV8jE+fGOfs9SaubQz0ciTr/YhXF9qsdCL+9LVFbm4G1Eq2JkrqR9xs\narRBDox4GhHyrTfX+Y2PzfLJY6O8MtfENQ38iK0G926cEqVyTzC3kmdjGpqueqZe5PkjDepF55Eh\nAd4Ja+r92i2kFElOlMrb5sjOd10p3L4HaQY2yTfmVkkyneRolBwmKh6npkc4VC/yldeWtrQcHdNg\nrGLjx5IfXW/hWIKya/GZJyZwTYNSbDJWdhkruVxe63NxuYdCDSBzBmkmMQw0C5wpiHJJpt4G4RRN\nSKRuhUil0vBdxyDJJWmu/c+JiscvPn2AX39e63F+/9oGr8w3GS29rRH2xTMzWxDN7fvp9u/9bkFZ\n95MK/IEQ4hzw+8BXlXpEu9h9RPP7eaCPupQ+UrR5/kiD9V5MK0i40Qz4o1du8FdPTTE7WuLomI6g\nzy92tsa/XRzy/FIbpQRHRkfY7MccahQ53ChyZVXTTQNkmeTCUof1fkw7SFjravpTgcaGg6JgGTw/\nq8vdulSqKLoWz83WeGWuTS9ISNHlzV6UIyM9/kxB7qea7jWXmEKRC/BsA8OAtV60dZ0pwLHAtQxm\nGwXSXDFR0fCH9V7M7Ghxq1/kcWd3exCLdHsVM5O6xHxpqcN33tpkvOLw55fW+O1PHKHlJ4QDNpde\nlPHnb64RJBmeZXJ0rMSx8TKnZ6o0+wlZriEnax2Fn9+K0pXo4BV2D3wAPEvPL1spHNvGFHBktMRU\nzaNRdjgxXuZwo7il+i6Abpjyl1fW6UcZUSb54pmZrYbVD+zxsrVexGo35tT0w4O8De2XBsHPV15b\n5j/97KOr/rxT2+mk7nYefPrEONebPs/O1Hj5epN60ebaep8oyZFS0Rnss0kqubDQYabuYQotb/CT\nGy0NZxMwXfOY3/AxFHTDjCtrPo5tsN6LiBKNuX/yQJmCY3PmYI3vXN3AMg2a/QTPMZnf9Hl5rgUC\nxksOG/2YVErySMNjKq5FkOZYhkHBteglGbZpMF52EMJACPAsgyTXibTeAAY1WnbphgmLnYiZmsf8\nZoBraXibKQSNkkPJNpkLEvw45/tX1jk719wiwAEoOxZn55oEccYPrzeR6HPLULDUDmkF8a5Uyw/7\n3e6F1vxerKPDvtzrTZ8je6Divdd9d8Kfh+r22xn0hj2xG/2Yi0sdyq7FzVbIpeUuT01XeXOlx3wz\nYLMfUbAtPNvgD38wT5jqfs8gydn0tdM5WXa4LuXWObDWTyhEKdc2fP7Jt6+y3o3Z6GlJDlBIqdEA\nMsxwLHHL+WEKnTCzDIgyLVrq2ibPzzbIpOT4RAWJolKwH+m5MFK8P9bUnbYfePstpBSuxRdOjd8W\n7O3Fdxgp2prhrRczVnEJ4uwWhMVI0ebvfvo4/8/Z6zSDFFMYXNvwaftaX8yxDBZaPivdmCenKvy1\nD09jmat044yya5Jlglzq4McQOpLNFcSJ9ge3mwL8XFd3klwh8kz7fYPLLDQMPkhSzl7f5GdPjPG9\na5tcWetzczOg4lpkmWSpFTLbKPHbnzh6V9Kjd4vgaj/Bz0k0c9vfBv5XIcQfA/9MKfXmQxnZwO4n\nmt/vA31Ypdg7LaLZ0RJF12KhHVK0Ta6u9/nGpbUtQcqd4we2gqGKa2+RBFRcm7ILEsVMo0ij4uJH\nGUopRgo2zx6s8WcXV1hq6eqREJod5ImpCn/rY7PM1IuaFtsyKTmCJFOcnWvixzkYAjGY7dvVmRW6\nuhBnKYYwEcLAVlogE/QCGVYbCrYxaB42mB0t8ZObLa6s+xxuFLeY7A6NFt8TlMd7mVP32jSHVUzH\nMrm41GGq6vHaQpsgzfGTjJVOzP8p53h6ukqUSp6aqvCV15bohSlxJkkySTfM+OzJCa43fUYKtmYI\n9FNyJbdE5HYzA93ErdA6JQrde2UITbVbdV0+eqSGbZr81VNTlD2L77y1wY1mwJtrfTzb4PS0ZnW6\n3vTpR9ldsbwf2ONhF5aGZAcPh+ltux1qFHn2UI2vnn/vBD93Y1/cfs0Qy7/cisiV4ukDVRTQDhM+\nOltnpRNxfJAoeHO1R9GxuLrRZ7mtk0FCQJjmCASmIRCmQck0GC07HKoX6cUZk1WTfpyhELi2wVTN\no+pZvLoQ0fVTKgWLjV6MRGEMsoL9OKdedGgHCSXXxLVNulHG9WZA1bOYrHqkmWJyxEUOMratIKVk\nKKarBa5t+IRJTtk18WyPAyMu7SDj4pImT+gnOfWCRdG1eGutT5DkjBRMbjRDklxRL9qYpkHNs/nI\n4TqvLrYpOC4z9SLHx8u0Ai1++KGJCn6SPfLKz14q9rtds5N1FNiaAzebwS303/dz3+3nyXakxw+v\nNwnSnKenqrzV7GOi4ZErA6hzxbOpeBZzG33WepEmFjLNQdN7kdWuFqqMsxwpNRlJ1bPZDFKGbu6W\nZptj8uqNFpYJaz3NANYOUgwB0njbOUwytXX2e6Zuvh8rORhCsOmnVAsWo2WX0zNVrm308ZNs1yz/\ne8H2C0e8m19wJ/KDO31eveCw0g1ZaIdYBnzxIwdvi/yeDgAAIABJREFUufbUzAgnp6q8udqn6JjM\nrfu0Q528CBONWTOFYKMX8/L1TT56qEY3zviZQ3X+r+9fZ72nMYtpDqYpsAyd3BBov22n77C92mcJ\nHQwJoOSaRJmkWnBZ6cZ8+811Lq50cSxT+4dKIYTgRiug+frSbb1Puz3Dd8N32HPwM6j0/BnwZ0KI\nnwP+APhdIcSrwH+llPr+wxjg/Ubz73YPwt0W0UjR3ioHBklGlOVbtNd30hvayRwyzEBt58bvhtoR\nFQa8vthmrRtyabVHOMB0Vzwbie43GjYeSqUoOpamMkxTQDA1UuD6Rh/XFqSZ3Gq4HR5bBtBPQKBh\nFOVB1UdKhUJtNcblSmEbgrGyuyWq1yiYTI141LZBIN7td7VXu9s476T1ZAmxlQnqxxm9OMOIMpp+\nQj/SXPuZlHRSSYeUVOZYhuDZwzVWBs3CcaZhB1ppOWejH3N2rsncep84k1QLFqmUgCRLb3Uu7EHD\ntDGozlmmScHSu1jJsVjshJQck1xJ1vsxExWPy2s9wiTnRiugF9uMl91bePqPNEr85Eb7rljeD+zx\nsAuLmtL5UVR+AD7/9CT/8GuXWetGTFS9R3LPvdidEhP7cY6rrs33NjaIcslyJ+RgvciBaoFj42U8\nxyRKJZZlcKBWwLPMLX2WJ6eqSKUhzoaAjV6MbWZMVT0+eWKMn39igpcurdEJEr76+hJLrRDPMTh9\nYITzix1a/QSpJAKLkmOSSoUaQCBkLvGlRCmlaewlHBvXScI4k1Q8i2sbfbqhpr4HXR0qDnqaQDFW\ncmiHKRXXQindCJ2kipVepEVPS1qtvTQIgDpBSpbnJLmiFSgNlS3YzI6WOD8ImgqOQa1k0yhr8gWJ\nelcc4r1k3e90zfb9fjf2wHvBJ+923509PGfnmnz3yjqXV3sopXj52gaNskOWQaWgYYMXl7ukfsKl\nlR4jBYuFVkgY5xgGjHgWb670yKQkV4qCo7PvjmXQi3R1INkGDMhy6AcZ0QBhoP0Aj1xJPNskT3I8\n2yDN9fs9Xi+gBHz8aJ1fPKX7us5e32Sy4rHSjfnYkQYH6oVbzrtHfR68kz6q4XV32w/utIfs5hds\nH0uSyl37fHbazn7DoX+0/b4fOzLK9U0fSwhMEyqeTob7kcRAkErJph/z7Tc3OD1dxU8yfrLQomCb\neJaBgEEfEEiloW/5HWhg3UGyNJNgmZBk6CqSVAh0q0XVsyh5FvGAZGFqxOPZgzXiTO4qavo42b56\nfoDfBH4LWAX+M+BPgTPAl4CjD2OA8N5xjrfbvQ7VQ6NFfvsTR5lv+pyda94iBHm3bOT2LOTNZnAL\nzWWmtBbLQjOkH+Xc2GyhlMKxTRxbIoSGndVLeiO2hGC1G+Mn2qFG6s9o+gmWaTBTL9APM9phiiKn\nG+nFuJ37HaCfSuwBfnT4byHg+HiZJw9UKTs2QZrTKDuMllyCRJMuvBczQ3ey7e/72kafP3rlBrnU\n7+jMoRoLzYBrmzpzGiY5UkrSgQOT528/yyCRnJ1vUnRNlNKZO8swSKUkk7DSDfmDl+f1hpdkGELQ\nCTP6kT4EBTBSsDCFIMlzDZ1QOvA5Olbibzw/SzdMudHyERh899oGB2sF8lxxZLTIx4+NMbfZJ5eK\n+oByc7zi8cUzM7ccavfC8n5gj4e9vtjh6FiJivdo9s/PPTnBP/zaZb55aY2/8cLhR3LPe9ndnKL9\nOMfXNnwsy+DzJ8dZ7UW8MHBEdkJehgrtrw80Nv7m84fJlGK5HfJHr9ygVrDpxwkfPzbKXzk5zky9\nyG9/4gj/6twC5YLDSMHGjzK+/dY619YDcqXoR5pmWKGrSN5AhV0qRZhoyFvZNakUTE5Pj7DQClAC\nmpsJK50IeyCIGsuc6ZqHQnBqusqNzYDlrk+c5DRKmrUul1rsWgOlIUolBcegF0HJNghNgyNjpYH4\npaJWdHh9QKoxTPp84fSBrf0C2Hfy8kHZXir2e7lmv7Dne1UEtjN7PX2gSitIeGOlS9PXlZcoVXSD\njHrJoeknNHu6r9M0DawIagWbRslhPvTJM0gyDVkrOiZV18Y0BcpWxJmklSUMOZIsAanSqIxMSrJc\ngaG2zhahIJc5tmlQ9mwmKi6uKaiVPIqOwe986gSHRot0gpTrmz6Z0kLtD5q2+n5sP325d9oT7vSe\n9xtYbU+YvDS3SjfKbkH27Ga79Rtuv297wKAYpjlJliOEpqx2DINGo0ic6p5DzzLpRAln55pgKGSu\n2SOjQSnHtQSmgFQqbEND411TEKdK93rnGspoWRauZeDZBgXX5saGT62ofbnjYyUyqTg6VubkRIW/\neHOdta4msnp+tsG5hfZj38qwH9jb94F/Dvz7SqmFbT//oRDiHz/YYb33ba84zw8Xa7dpI9wty7TT\nyf7yuUXqpbcFUdtByhsrXQSQSS1iGiQ5JceiYBuMV7Qm0IXFDuWCxWTVoR269MOUQOYUbIOmn2Jb\n8NZqj5JjEaQZMtcbpyF0OXQneCGV4JgC14KSazM7VuJ3PnWMczfbXFnrIwdMcYfqJgfrhTtyvr9X\nbfv7bgcp19b72JbBzVbAaEnrMkipmfFKrkU/TpFSOzKOCQiNn86kxMTkZlOzO0mpcGyDNNeZFSkV\nK50QIQRxkiEMA8vQkDbL0JlfxxJMVnWD8fUNrSvSKDnkuSBXikwpzi91yXJdmZuouEzXCtSKDqu9\niGSQMR4tO4xXnF17eobB++MOV/xpt/OLXT5y+OHTvQ7tyakKM7UC33iMgp87OUXDjOrQYb+Xczy/\n6VO9rtnfho3Iu1H3doJ0QCSi6zPVQYNzL0wJ44y31nziLOcrry4RZTlxKjk6ViJOJbahEyJC6GrD\nph/pfUDpSu2xsSKbfkaaSzb6MZZpYCtFybGolVyemakRZpl2eoOUXpjgJ5KyK+ilKQrB9Q0fz7GQ\ngyqBZwpidKU+yjJGCg5RqpipezimwfiIy5FGmYXmBqlUWqixGzFWcqkXHE2v3wn5t+eXKToWXzwz\ns4VIGD6/d3N/2Mv973XN/fQm3Okzh/MxyyT/7vwy37myTj/MGK+4dMIMP8pwbZ3wklIONFW0TpMf\nZfhhxoYfo6RuSgfIpXZmpcwYK1tMVT0W2iGmIYhiXXE0hM7g5xlgaEIjA5DKwLM0YVG95BAkGUdG\nixyfqPIrz05zqF7cQppsFyN93MTI9xOg3mlPuNP32i/h0XAsc5t90kxSdq17Ur3vdu+5DQ0xL3kW\nc2t9bjR9pkYKbPopRdtkulZgvRPps9w0iHxdJZaSgQi6hrOJwT+GgDhTW/5bOki8FmyBMBSuZWIY\nipJrUfFsPv2hMTIpWe0khHHOTM1jrRdzsFFko59Q8Sy+fnEFNWAwTjNJJtVjNzd2sz0FP0IIE/jX\nSqn/brffK6X+wQMd1fvAduvbuRM71vZNshOk9KKUeMAasl0LBvSETga/iwZRftW1ubbhc7MVcHy8\nxE/mW1iWYK0XM1726IQ+aS7Z7GfcbAYUXZPLK11+ZrbOfDOkFaTYliAJc93Ai95MMwl5uE0c8/be\nuFsskZqlxBKCMNHUr65tsNmPWRrAq4wDFV58cpJMqdv0bd7Ltv19L7dCbrYCDAX9MOP71zZRUuHZ\nFq0gRZFhInAdgUCzPA2rP2GqSLMEUMS5zgwmmdyCEoYZxFlGwRb46bADSwc+mdRBUC51ltkSmno0\nSDN6mymeLfjyjxc4MlbiyGiZOMu3+PhrRYdPHhvlpUtr1AoOpiHuWap/t52aD+zu1vITFtshv/WJ\n2Ud2TyEEn3tygn/xowW9P9nmI7v3nWw3p2g/mdxhkDQ7WmJ2tHTbob4zq//aYpt+kjFe9vCTTFdI\nmgwEBx0sI6BccvDTnL+4vM7Npg8I6iWbsZLLZNVDoFjp6ExqO0yQmaIVJFqRXQgsQxAmGcIQOIZB\nydVZ+oJtgDLohKlOoGQSYUCSZZimybGxAn6sHep2mNIJU9JckuaatKHs2hiGwBC6ahCkOe0go91P\naYXpAEKdEaY5Y8AzB0ewDINeL6XpJ1xb91npBEzXtHr9fmQB3i2xw73afva73b7Lzc2AC8sdDAQ3\n1gO+en55oA0Ftmmy2NHz0zYNGgWHm22fxWZIKqUWspWaiEACWfb2vYb9OAqIcljuRnSiFDFIhiWZ\nhEHwYw6Eo6TUWPaCa5BLretnmdCLU0q2xTMzNU5MVrboqXcjLnjc9v/9BGR3C5R2+15DNrZhNXev\nlb8LSx3eXOnz6kIby2DfVO9hnPHy9U2kgrafkA9EZuM0pxem9BNNJW8IvfcaA9FSqcQtfTzb+722\nM78O/92L9ZX9WLcymEZGkGR8/1pT0+M7AkPouTVW0hD+JJP0o4yVXoRAUPFsulEK4vGbG7vZnoIf\npVQuhPjkwx7M+822Q9X2ctBuv04Ax8fKvLHc5dWFNq/MNbcorsM0Z6Ze4KOH6nzv2ibfuKTpEd9a\n7TI76B3yMpORgs0LR+oYArpRiimgHWZEac7VjT6mIfil0wf46vllVjqaZWboZGd3UPkVQMGGKL29\nQS7P9c+6cUo7Svn9787x3JE6BVvz0x8bK+FYJi9dWtuqVj2uuj73Y8P33Sg6nLxZ4btvrROkGWYu\nSHNFmOqm0zxXJArU4GEb6OBl2GCYK2iFKUVHP5dsR8Ap0UESgIl+R2qQ3skUtHwtlFgr2BwdLdEL\nU4I0Z8SzafkpEp8wyQYHhMNHDtfpximbgRbavRsl5wf23rEh2cEzj4DsYLv9/FMT/PMfzPP9a5v8\n3BMTj/Teu9mdMqp7yeTutnffqXl3eO1GL+abl1ZplLQO12o3Yq0XDyCpDoYBUZqz3glJlCLN9L6a\nZJKiY7HZj5mpeTSDFNfUOP2iY6CAomsRxjlS6SqyqRQVz+LvfOYoExWPb11e443lHmu9GNc2UUpT\n0yYKrDxnsR0xVnaJcomLZn0TSuFaMF7RivJaQ8yhGaT0/RQJpJ2csmMSZxLTgIprYxkGcZozWnNZ\n7oRs9DSEOkgyVroxf/3ZmTv2se7lOb9X957dvks3TPlvv3KB+aaPELoxvRdrcqI4B8NQWtDS1jpq\nBvDWep8w0zALQ6g7ClDuzEeqARGGQCfDDENr+GUSZK4/Z+gAG4aBQCEswceONnhztc/p6RFqJZdP\nnxjfd8/Mu217dbrvp3K1vZq717EcqGlZj5Jn4UcZrSC5Y5V5t77hly6tISU0/YRqwaLgmDSKmhgh\nTDK6cUqaKioFk06YY5vgFmySNNt1rghu9+m221YrQ6SRJotNn1xpUXrHErqPsGBzda2PUppBruJZ\nzI4WqRbsR0Yx/iBsP7C3c0KIP0X39/jDHyql/uUDH9X7zPZaMt15XTdKWe9HjJY8Nn3N1DFWcrmw\n2CGTkqaf8PSBKv04pezanLvZxrNMDtaLzNQ83lju0g4Typ5JO9QUpbkCmYGUOaudiLfWe0xWC6z1\ntbbE/KZ/m7O93QwY9KJAvGMVDRdbkilsU9AKEoJE6kDHgH6ckmQujaLx2Ov67Md2OwSmRzw822Si\nWqBRsvFsEz/JMNHvuWgYRLkkl/p5DrMyw2eYZtCX6Ra95E7bntEZmmXqjKBtgiEMcjTTXrXoEHdD\n+mlG3TaZqRXoBBmTIy5HB8HykMhgv7Tjj+MB+IFpe/0Rkx0M7ePHRinYJt94Y/WxCH7gdqdorxCZ\n/cBdhteOVlxGSy5iAC26sNThYL2EaxmYAp470iBOcwwBK92IfNAsnEm9b3qOiT8IcFphgkAghKGF\nowdNy3kuKbgWx0ZLVAoWvSjj5blFLix1td6X1H0D3fDtPcQ0dPa/4lgE/YhummOgKHsOYZoj0U5X\nlinW+7oiFGU5tmHiZymNkkPB0oKKYZJRtA0qrs3TB6oUXZP5jQDbyhgp2HRDTaM8WXX3tI+8m2KH\nD9p2+y6XV7pcWe0T5ZoaveRa2KYgl4I8V6RZjuXYKCVo+jGWYZBk2ZZUgbzDOSDQ/Rkye1t/dHip\nZHBeA1GmEAPyGxMoexaCjImyy0y9wHJHV4uqnsWnToyRKnlXZr73Q7C6n+pEM0hwbIPTo7V9zc9G\n0aHs6T4ewxBblOa7PbOd8+Z608ezDKqexUonwrEMTk5UsA3BQitEINjoxwgGfX8Cyq5NLjXbmiN0\nknW73c23Az3PthNbJVKS5xBlOUGiqHg2tmngWNqPSKVidrTEi09NAm/rob0XbD8j9YBN4HPbfqaA\nD4Kfe9heD9rt1yWp5Pxih+9d3UQpGC052KbBZdlj04/5zEmNUy+7FhMVj36UYRmA0FTT85sB3TAD\nIlzL4JmZEYSCZhiT5Iok1Qfrty6v85sfm+Wt9R7tIMGzDcJU3rIItptCQ+JqJYtWP7ultCoA1wIl\noGCbtIOEH1zbxLMMKgWbU2NV6iUHw3h3RK3u17Y7+HBr8+5u2Zo/eXWRl+c2WWlH9GKt6TM14rHU\nCllqhzoDZ+hnjALThImyi1KKtV5CNnimjgEig2SXMVlAtWBhGoJ+nBJn+r0YDNhZDIWSik4Y48cZ\ntmVqlr8DI4RZztHxEocaBT5+bJSKZ7+tcbIP2vH3wwH4frbzSx0O1nUv16M0zzb51IfG+OYba6i/\nrg/ix832mvndTx/B8Np+lGEYOvEwWrfZ7Mds+jEV12K2XmRto0+utABoo+SS5Zo+u2ibFGyTfpgR\nmtCPUg1DVlpTzbENokyS5ArPNMlVjucYNP2Eb7yxxtxGnyjTzrVtWbocvG0Tj3MG+i8pSir8WFei\nGyWbVFp85sQ4V9b7OJbB9U2f01NVzl5val0XafLMzAivL3U52CjgRzknp8r0k4yXLq1y5mCN3/nU\nUV66tIZnGXuCzd7vc37czRLiVq22MGWxGbLW0+9ZKbV1jppCUPY09CyTEnJJkOSMlg0GaLW7Ic0R\nA5XqVLx9YA8TaQZQsk3tExiCgmMSJBLXFMzUi3i2wZNTVSarHnEumR7xWO5EpEred8/M+9Xud35u\n32d2itfPN98Wtt1OtnBtvU87SJmseBiGYLpW4NJqD6W0Xzdd8wiznN6grWC06NCJUqRSRGlGLjXz\n450CHRNdDVQDLaehDQPloUk0msc0YbZRBAQHRjxGyxq188RUhTjLKToW55c6XFzq8PSBEc4vdd4T\nvsB+qK7/44c5kPez7fWgvWWhhCnfvLzKExMVokxSci1GCjZjZZcfzTdZ7UVMVLxbcOhDhp3l2QZf\nv7BCo+QQpZJenHHmcJ1ulNJfyshljmEoLEPQDVO+emGFv/dXTvDlnyyy1os0/XaqaPmR7vsZrAgD\nGKs6rHUTmoEWvhq6NQJdcah4NuMlh3LBZq0XM1Mr0I00g82HJrX42bMHa7c43I+jDQMeS4gtdr2h\n6Jy7LXOz8xC4sNzhJzeaRImkUrB4cqrKc0frfGiiwj/68yusdiM8xyRNM4qOqbOthkGj7DJd9Xh9\nscNyN9bU49ntmr4WgAEjns3xiRIH60XOLXRY7USDTKJitu7x7OEGjqmdpXrJBbR46Wc+NM4PbzRR\nSrM41QvOLXju/WbDfpoOwPeaXVjscHr60ULehvbzT07wZxdXubTS46kDj7bytFfbayP8XuEx26/9\n1ImxrUDg5GSFpw9UdVZUQOXqpnZqqh7HJsps9mNutAJmRgqcnW9yuFbgzdUeaT7ovxx4szXPxbMN\nagWD8aqmnz89XSOXkhvNAIUgTIaMTmqrmXloFcdgYqRAJ8nJlW5uLlgC0zJ48eQEnzw+xuYrNxAK\noiRnvZfQKLpUCjbtIOGt1f5AqLXAWi+iXnI4c6jOtQ2f5480eHpmhJl68b4qwY9jA/392JCN1bNM\nVjoRAvjqgNTAc0wc00AiGfFsLNMgzjS19DAgQqqBuKxEKEXJ0f+905H1TFBCM/5ZhiDLMq3jprRj\nWy/aBElOnOc0ii4lz2J0oM3z7314mkbZ4dSBEaoFm/lNLZQ9hCu9056Z96O9k/m5vf3h/GJHa/MF\nKe1gndqOvrhPnxjn9783x1trPa5u9HlmZoRnD9Yo2CZF1+LqWh8/yTlUK6BySSoVM/UCC82Qgm2w\n2AmpFRwyKenGWhi9G94KgcvREhiOZxAMen2KrkHJsejF+YA2X4FSTNeL9OKUKM2YGilyYqIMQvBr\nHz2sRZTDlFcX2xhoWGVpUOV6L/gC+6G6Pgn8HjCplDothPgw8CtKqf/+oY3ufWT7waIOF0rFtYly\nHyFgpl6gYJu4tsFzRxq8cLTB7Dal6Z2QjovLXV5baJNKSdE2kFJxeqbGwVqJNM/52sUVglhTWnaD\nhE6U8NEjdb5xcZW5XgxK6/UMK9/DDFQ8EMVyDAFSYRp6A06komSb1EsuHz8xxsePjfKlH95kpRsh\npaLq2VviZ7N7UMh+N217RaPlp3i2wbGxMueX2iglODI6suXs7zwEqp6NY5ogctJMcWi0yOeemORm\nK6AXp6RS8f+z9+ZRcl3nYefvrbVXdVfvaDS6GwsBAiAEESRFSYQpSookioplZSTbsj322CMpXuJR\nMj6yJ4k94zOekzO2J05y7EwS+UzsKLalRKttKZYiipREigtAkAAIggAJoBvovau7uvZ69bY7f7yu\nYnWj97W6+/3OwUEv1a++ust373fvt1gVz51Bkr10b21RnXhQJVexKdtOLXmBrnoBq0FFQtMUDMNG\nny1q190c5kxfkmMdcUazZXJl00tPqis8dLCN/vYIpuVSni2gKoC2mJeStCcZnk1TLfPMjdSyBfsW\nY68tgDuJnGExOF3i42f2b8v7P3bMc3d7+vpkwxo/K2U1BwL1r13IEMiWLM4NpLk8nEEA+22X/+H+\nHv771XGeu5miVHGQJZl7OhJM5StYjkXZEuiKjCILklGNQsUhXTTpaQ7zD97ezfeuT/LczWnKpjVb\nz0tCCChZLqrsZQRTJIgENWSgKagxki0jI9HVHKIprPGug62c2Jfg1P4m7qRLHG6Pcag9yqvDWbKG\nSXNYJ6DIHE5GmSqahHWViVyFiZxBRzxAb0tk1W21nnZuVKoHQh3xIC8OTFGxIF8xKVUcdFUmrCnE\nQgHiQQ3DchHYJIIqYV1BIEhGAp7rIqCqMs0hnbzpUDYtTPutzF2eZ4BX6NawnJo7m5AgpCoENBVF\n9pKVn+5p4kBrmM54kLxh4yBmY0i8tr4ymsURgisj2WULUlbZLcbqaljP+Kwepp7e3zQbxyN4YyLP\n+491zImLmymbDE4VMUyXimVSqFjsaw4xnClzeThDsWJzZ9qLw0kXvcL1FavoFaot2Dgu5AyvsLAm\nyzRHdISAvOHtAWQJz101qGHYLk0hBU2TebA3yfvv7eCPn36TbNnEcSCkKwRUheaITm8yTHssyPF9\n3t4nFFDpb414Bt1olkLF8zwqGjbRFSSEaARW4/b2p8DngP8AIIS4LEnSXwG+8bMJJMJecdcH+5Mg\nqC0uKz2B/MSZHh7qS4LkVQ62haBcsWunkaYjePHWNAKBYTucG0xzpC1GPKR66Q4BSbIxHYFwIBLw\nfM27m8JEdZOS5aApAl2V6YwHCekKh9tiNEV0PvngAXpawtzbGee1sSzxoEZPc3hO3YfFMt81AvU3\nGuWKUyvwGQt4BcXqN/vVReD2tJeSslCxaYnqhHSVppDGR+7r4pkbKSbzBhFd4UAyTLZsUTBs4iGd\nsmmjKRIBTeHtPc1YtsNY1iBVqKArCsm4zr2dcZoi3mmO60J/a9gzniQvucQjh9s43BbFdj0j+Sfe\n1j2nretP9hJhLwVtc0Rf943NXlwAdwqvjXjJDk5ucbKDKl4h5ThPX5vkV99zeFtk2G4W2iwlwhoP\n9ScpVCz6W6LkKha2EDzYlyRVqNASNSmZDgeSYT58ah8v3ppmOFMmGtDoTgb57HuPetkccwZd8SDd\nzWEevaeNgakCYV1mNGOgyjIugnhII1M0KVsuh1vD7EuGyJYdOmMBNNWrEbKvyStEGw2qtXXjtZEs\nf/HibSbzFTRVoiUSYH9TCMNxebi/hTszZQ62RhicLtIc0Xm4v8Wf+7PUpzjWFYWAKjFdrBAJauxr\nCtMeC/CTD/RwZTRLqmAgSzIfua8Le7YQT8GwyRuDXryV5dCd8IqItndGuTZeACAWVDFtl6awRtl0\niIdU0gUTR0DZcjjSEaMjrqMrXlxR0XQIza4vl0Yyteywt6eLxELamm/vd4OxuhXMPUw1CaoKvUnv\n0HJgukB7LPiWsSBAV2UkyetLWZJrN3LV2G4hIJWvMJE1CGherS9JUgjrEp3xICB49+F27u2KEdIU\nNEXmi+duc3HIOwwPqgrtiQAFw+Ge9hiG4/DTDx3gXYdbOdwe5fxgmq6mEImgxrdfG6cprBENqLW9\nT30G4vo9wOMnupYsGdBorMb4CQshzs3z37YXe7HP+qilV513S7IaxXQq/FZ9j2zJ4ls3pwhqMobl\n8A9/7CCxgMqzN6eIh1SKFYc70yUqliCoetfxAVUlosNMycJFIqYrfPrsQboSIf760gjMVpJ+370d\nc4ybqow9LeFaQbT6mJmtjBNZS0B+/Y1GNKjy+OHlC/adG0zz0mCaO+kSruvVAelvi5ApWUzkKnTG\ng8RDOpqiEA+aDGfKqLJESFe5pyPOPZ0xdEWmPe65Mr4xWaC3JcSxzgQfnTVmqi54BcPGsF3ef6yd\nUF2B0cU+Z/04mP/51ntj4y+Ajclro9VkB9tj/AA8drSd//f7N8iUzC2PO2pkepMR2mPBOYWtk2Gd\nA8kwybCOYbu1WjkP9E3xw+spEhGNkKrQnvA2SoPpIjenC1wdz3EgGSZXtrFdaArrHO2I0RELMpwp\nkQnrIAne2d9KJKBSthwsR9CRCHJ9PE/FcQipKs2z6b/TJZNoSOX0gSYiusrITInMbDr8tliAh/pb\nqDgpJnIGA1MFQrqyrtvj3UbtMCxdJBrQSBdMZkom93Z6B4MfO72feEgjFPBiu6JBle7m8JybwZPd\nCV6+M8PB1gjNEQ1Z9tbstliAsC7T3xqjZNp02mDpAAAgAElEQVQ81JfkmZtT9DWHGc6UkYAbqQKx\noIrrwsHOSM31uTqezg2m+d7ABAKID6p84Hinf3u/ycw5TDUdDMslV7E4tb/pLg+e3pYIJ7sTjMyU\nCesKn3zwAImwRi+RWmx3PKSSjGiM5Qx0RfKK1bou+bJNpmTRGgvwvmPtvONQS02Gezpi/NlzA2RK\nFcK6ypneJFdGsmiKTGssUFsnjncnOF53YHasK15z/58pmRQMm9fHvQzE1ZvCnboHWI3xMyVJ0iFm\n3YglSfo4MLYpUu1RFooz2SgDoToBD7ZGa9eWH76vi9FcmWQkQGG2LoDtej7IHYkAR9pjHGmPceH2\nDNGASkc8yNsONNPfGqlNiuWMivlB8Se7E1sWJ7LWgPyq7+38wm6LGVJeMKONNhvoq8iQiHhV2p+9\nOcXQTInr4zm6m7wEA9GAyo9uTjFdMAlrCr/47n7P9zpdxJytudHfFuXH7mm7y/g9S9usy5rCxeHM\nnM+0GsPYv7HZ3VwZydIZD9IWC2ybDI8da+dPnr7BD95I8dHT3dsmR6Ox2Pyb/7NsyTM6MmWL3Kxb\nSblic3nGK1zcEQvyvYEJhmaKaLLEB453UqzYfPi+LnpbIrUb3+rNf/0hSd6wiIc0IrpK0bSZKZu1\nNadieQHvxYrNaLZMf1sUCfjA8U56WsI8EdrH5ZEMSNTWk6VShe8lPVN/aNkc0vni+Tsc7YgR1NWa\n4fOtV0cpVOwFA8QTYc1LZuS69LdEmcgZ6EqR0axBX2uE7uYQRztiDM+U0TSZRw61cm9XnJfvzJAq\neAkV3nmwFVcIHj7UUst+UC20u9Cto78WbC71iQzmH1ou1N4hTSER1pDr7hnm3LCc7GKmbJII64xn\nDWQZYgGVkXSZkaxBa1TnxcFpjnXFa8+3haC/LUJXvJVbqQJDMyU6EkEMy+GDxzuXjEMH7goD2A1x\nvqsxfn4N+DxwTJKkEWAA+LlNkWoPstDV6MG2pReWpZ41X5nNzySXL1v0JMO861ArecMmb6jcni4S\nCqhQNLm/J0ki4i28+my16XBAmXPdWV2gl3Jhmx8Uj2DLTprWGpBfDVp1hGAoXeKJ0D5g8RsrVZKw\nHJdSxaZs2ZgW5EoWPc1hmsIaPc0tPPn6OLoqM5Qu8WBfkidOdjFdMucYV7GS16a1OjvBu09UbCGW\ndVlbyYZjp57W+KyMK6M5TnZvb6zN6Z4mkhGd71/3jZ/5LOYSV38D8K1XR5nMG7hCcKwjzkyxwldf\nHkZTZe5Ml+hJhhFAb3OE4XSJomlzoCVcy7A2/8a3/n2qwdeOEMiSxGjGq9PTEgvMxocmGMl4hs+J\nLs/Pv5r6OBHWONXdtGxa/N2eDXK+np3/efuSEYZnSsSCGsMzJWZKpncQNpGjNRJYNEC8/mYwGlT5\nuXf08uS1CYKaUosrPd7luSJVkx0lpgr0NIdJFyfIV2w64gGaQ3ptHaue0i9067gRa8FeM3JXQ/Uw\ndbFDy3qqe5ZixWGmZPL1iyP8wjv7ALxiyQKawzoI75bXS23tUjYdXElCV96K86kfU/X7P2M2yUb1\n4GKmbGJPLe6utlgYwE6/KVxNtrdbwPslSYoAshAiv3li7T0WuhpdywBbbMGpv44/N5Dm0kgGRZL4\n4PFObCG4MZHnpcH0rCwVXhvPEguonOpu4v3HOnh9PEfJdLg0nOHcQJqH+pNzlOtii9v8U4/msL5l\nJ01rde+q74tbUwUuj2RIBDUKhk0kqFIw7JpiqRpKTSGNrkSIvGEhSxJIgkePtHFzqsBE3iAS0OhN\nhnnu1jST+QoTuTLHuxI14yoR1lYk73Kv2e0bDp/lKVZsbqYKPHHf6qqJbzSKLPHoPW18//okzmxy\nFJ+VUdVB/S1RXh/Lc/HODJbzVm03IQT3dMTQFIkf3UwhISHPptqv6qWldGx9rOL5wTTXJ/I8dW2C\nzngIRZaoOC4BRWYgVSCkKUQDc4OYV3J7vJuzQdbrWdNyebAvCYAjRC2mJqAqtWx7Aq+m0zdeGWFo\npoQjBN2J0IIB4gu1bXdzmNvpIj98I8WXzt9BAKf3N9HbEqmtCbmKxen9TbUU4wu1f39rZMPX3724\n5qzW2FvJoSV467theYZPc1gjqMq1OXpxOINlu8iSxIFkmJFsmXcdbOH5W9PsawrS1xzCcR0cFwam\nCqjzSgyc3Jeo3QQ/cyNVOwg/N5Cek8F2sT3cQmEAO7mfV5Pt7V8AfyCEyMx+3wz8hhDitzdLuL3E\nnAEWUHn8RNuaBthSC04irBEraQTqri1tIehvjZA3vKwiFdvFsF3uP9BMUFVgVqmGdYWgqhAPaHxv\nYIJCxUKW5FomtMUm9PxTj2dupFacUWa9rNW9q2awTRW4OpoFARXH5fXRHLIsocrw+ElvY1lzJ2yL\nMpopEw5onNyXYHC6iOm6df7fXnpyCa9a8kimfNep30rkXe41u3nD4bMyroxkEQJO7d++eJ8q7zna\nxtdfGeHiUIYzvc3bLc6OoX5De6gtiusKwgGV714dx3BcVFWmKxHkZqqAKyTaYgGaQhq2ECvejFbX\nA12TadUCdMRDHO+OUzZtbEdwb2cUgHu74pzqblrypmqpz7AbTonnU9Wz8YDGkwMT5AybeNCLqTo/\nkPaytSkSRzti2K7LwdYIrusVuny4v4UbqQIfOtHJ/X3JBfX4/Lat9pXleIUmAfKzWcKWMmgWav+N\nvvXfa2vOWoy9lc6FRFjjY6f38/WLIwRVmWjQS4+fr3gusDnDS5bUGgswmi3z+ngeAdzbmeDWVJFI\nyEsuVTTt2k3tQvLWl1S5NJJZsu92q5v8atzeHhdC/LPqN0KIGUmSPgz4xs8GsFEDbLlJttjve5MR\nHuz1Mg6FZlNsRoMqZw+3zQm2vzVVREDNH3klV6ArPfXYDNai6Kt9cXkkAwIOtkV5dSTLgZYQPc2R\nOYqlvj1bYwEm8waD00VUGfqSb7mf9CYjNSPIFWLRtJArkXep1+zmDYfPynh1xEt2cGr/wm5PW8mj\n97QhS/D965O+8bMK6teDWqKTik1Pc4juRIi2WIBoQKUprLG/OcxMycSwXZJhfVWb0Vph1opNWJcJ\nqQpR/a3MTtGguqDhs9rPsJs2TTA3q5sEHGyNkKtYdDeHavE6uYrF27qbiIW8W/1c2eLbr40xljNI\nhFQe6m+ZU2NtJe8ZC6oMTBUQs++5lEGzVe2/19actRh7q+mLnpYwv/DOvjlJomIBjZupIpbtEtIU\nXFdwan8TxzvjvD6eI1exiAVV4qi4iDk3tYvdANbcX0ezKzLKdtP8hdUZP4okSQEhRAVAkqQQsH3R\ntLuQjRhg8xfNdMms/Xz+7+snYSLspdau/t1Ct05PhPbx2mgWy3GZyBkrvgLdicpxvl/7Yoplfnvf\n39PMWNagqylYq6NQe96sEbSZaSF384bDZ2VcGs6yL7G9yQ6qNIV1zvQ289S1SX7jA0e3W5xtYy0x\nEfXrwROh2eKph1prsYLxkMaV0Sw9yRBtMZ2Pne6uvX6l+rZeX9TrJFhZWYXVfIbNZKtjTurdyKOB\ndC2G5kRXgnTRrH1fjb+q8pMPHCBXtjixL7Eqw6f6nvUlLFZSL28r2n+vrTlr3c+spi/mv7a+7Elz\neG4Ck2hIXbIcylLyrqTvdms812qMn78EvidJ0p/Nfv+LwH/aeJF81kt1gC52NbvYJFxucubKFi/d\nnvEqUNsOjx/uWpEC3wnKcaEJPl9uWHhDUN/eBcPm6liW47Oub/OvxLdqMWrENvbZGi4PZxri1qfK\nY8fa+YNvX58tiBncbnG2nI2IiajpmJtTbyViqXNfma+36rNVrnWDvFN0yHbEnNRndaseaFX7oGqo\n1vfJfBnrD8ZWQ/UQrdHYS2vOduxnFur3+WOqamgvdwMIc+ssLtV3uzmeS17pC4UQv49X0PTe2X+/\nJ4T4g80SzOctqhnVsiVrxX9Tf9VZjStZrwxfvzjMGxN5pgoVgqpSc/1aiZyJsFa7at0uFpOvOsGf\nvZHiW6+Ozvl9vdxLfYZqe0eCqpfFR1fX1e5r6XMfn2zJ4vZ0iVM92x/vU+Wxo+0APH1tcpsl2R7W\no4vr9cBCz1lIJ1WTsAxOF3nmRmpBfbebdMt617rVtsf89QKY0wcL9clCMu62fthLNMJ+pn5MFSo2\nl0cyc8ZS/fiqygssutdZ7j02Yh/ZSKzm5gfgFUDDS17yysaL4zOftVreG+1qli6ZBDWF5rDOTMmk\nLebOeWajnxAsJd9GBGzWfOcNrx5H0bTvypC0EbL6+CzF5ZEMAG9roJufY50xuhJBnr4+yU8/dGC7\nxdly1qqL5+uBs4fbVvScpfTZbtQt61nr1tIea1kv5suoStKu6wefrWWhxEzVG2FY2PNntWN3J4Ys\nrJTVZHv7SeAPge8DEvDHkiR9TgjxldW8oSRJfcCLwOuAKYT4wGr+fq+x1o35Rl/NJsM60YC6oH/5\neuTcKpaSbyMm+Bzf+ZPri+dp9Lb0aVwu3J5BkuC+Bsj0VkWSJB471s5fvzJCxXYIqMp2i7SlrFUX\nz9cDKy1IuZQ+2426ZT1r3UYYMitZL+bLuBv7wWdrqY6p+sRM1bEELDi+Vjt2d0LIwlpZzc3PPwce\nFEJMAkiS1AY8CazK+Jnlu0IIv0DqClAliZmiRbni3JUZbDk20g93uUmwVScEaw2+W2/Q30rYqPbe\nzactPpvLi7fSHO+KEw821iL13qPt/NWLdzg/MMMjR1q3W5y72Oyg3rXohoX0wEqes5Q+2626ZTXt\nW9/XG2HIrDWIfTf2w05kJwf0J8KLFxxeLM35asfubo3nWo3xI1cNn1mmWUXM0DwekyTpGeBrQoh/\ntcZn7HqqvttBTcawvAQD2zkIl5oEW3FCsB6XjeXka6QJvptPW3w2j4rt8PKdGX72Hb3bLcpdvOtw\nC7oq89S1yYYzfhrVFWw9emCpJAZ7WbcsVfNkPYbMatnr/dAoNOrcXw2LjaXFxlcj7XW2k9UYP9+W\nJOk7wBdnv/8p4L+t4T3HgHuACvDXkiR9TwhxufpLSZI+A3wG4MCBvecfXk+tgOZsEdH5CQYajc2e\nVOt1FdhJk34nyerTGFwezlKxXR7qT263KHcR1lUePtjC969P8r///ePbLc4cGtkFaTP0wF7WLUvV\nPNlq9nI/NAqNPPdXw0JjyR9fS7OabG+fA/4DcGr23+eFEL+12jcUQlSEEEUhhA18Ezg57/efF0I8\nIIR4oK2tbbWP31XsVheFteK3h4/P4rxwcxqgIY0fgPcebePWVJHBqeJ2izIHX6/sHfy+9qnHHw97\nlxXd/EiSpABPCiEeA762njeUJCkmhMjPfvtu4I/X87zdjH81Phe/PXx8Fufp65Oc2p8gGWnMBfy9\nxzr43b+9ylPXJvmlR/q3W5wavl7ZO/h97VOPPx72Liu6+RFCOIArSdJGpBA6K0nSBUmSngNGhBAv\nbsAzdy2NkE++kfDbw8fnbqYLFV4ZyvDeY+3bLcqiHGgJc7AtwtPXG6/ej69X9g5+X/vU44+Hvclq\nYn4KwKuSJH0XqPktCCH+l9W8oRDiv7G2WCEfHx8fnwV4+noKIeB9xzq2W5Qlee/Rdr7w/G2KFZtI\nYLVl5nx8fHx8fNbParK1fQ34HeCHwEuz/y5shlA+Pj4+Pivnby+Nsi8R5MS++HaLsiTvPdaO6bj8\n6MbUdovi4+Pj47NHWfboTZKkjwL7hRD/dvb7c0AbIIBVJzzw8fHx8dk4JnIGz7yZ4lfecwhZlrZb\nnCV5oC9JNKDy9PVJPnCic7vF8fHx8fHZg6zk5uc3gb+p+14HzgDvAX55E2Ty8fHx8VkhX7kwjCvg\nH9y/f7tFWRZdlXnkcCtPX0shGjx1v4+Pj4/P7mQlxo8uhBiq+/5ZIURaCHEHiGySXD4+Pj4+y2BY\nDn/+3CDvPtzCobbodouzIt57rJ3xnMHrY/nlX+zj4+Pj47PBrMT4aa7/Rgjxj+q+3duFeHx8fHy2\nkS+/NEQqX+FX33N4u0VZMe855i0bT12b2GZJfHx8fHz2Iisxfl6UJOnT838oSdI/BM5tvEg+Pj4+\nPsuRKZn80Xff4KG+JO861LLd4qyY9liQB3qb+drLI77rm4+Pj4/PlrOSXKP/BPiGJEk/A7w8+7Mz\nQAD4ic0SzMfHx8dncf7vv7tGtmzxuz9+Aklq7EQH8/nJB3v4za9c5qXbMzzYl9xucXx8fHx89hDL\n3vwIISaFEO8Cfg8YnP33fwoh3imE8P0WfHx8fLaYb10e40vnh/jMjx3ieIOnt16IJ+7rIhpQ+dK5\noeVf7OPj4+Pjs4GsuM6PEOIpIcQfz/57ajOF8vHx8fFZmJupAv/b1y5zuqeJ3/jAPdstzpqIBFT+\n/tv28c3Lo0wVKtstjo+Pj4/PHmI1RU59fHx8fLaRmaLJ//zn59EVmT/+5NvRlJ2rwj91th/TcfmP\nzw5styg+Pj4+PnuInbty+vj4+OwhTNvll//iAqNZg8///Bl6kuHtFmldHGqL8uGTXXzh+dv+7Y+P\nj4+Pz5bhGz8+Pj4+DY7jCj73lUu8OJDmDz9+ijO9uyNJwD/5e0cwLIff/7tr2y2Kj4+Pj88ewTd+\nfHx8fBoY1xX89jde5a8vjvKbHzrKR093b7dIG8bh9hifOnuQL18Y9uv++Pj4+PhsCb7x4+Pj49Og\nlEybX/url/niuSF+/b2Hd1Qx05Xyj99/hBP74nz2Sxd5fSy33eL4+Pj4+OxyfOPHx8fHp8GwHJe/\nvjjCB//1D/n2a+P89hP38r/+vZ2Z2W05gprCv/+5M0R0lZ/+/As882Zqu0Xy8fHx8dnFrKTIqY+P\nj4/PJjKeNXhxYJpLQ1leHclwZSRH2XI43B7lS59+mHccbNluETeVnmSYL//yO/nFPz/P//j/nePj\nZ/bz2fcd2fFJHXx8fHx8Gg/f+PHx8fHZYqYLFV64lea5m1M8f3OaW1NFAIKazIl9CX7qwR4ePdrG\no0fakGVpm6XdGnqSYb7564/wr777Bn/23CBff2WER+9p4xNn9vPYsXaCmrLdIvr4+Pj47AJ848fH\nx2fHYTkuqiwhSY1vGFRsh4GpItfG8pwfTHNuIM2bkwUAIrrCOw628DPvOMDDB1s41hlD3cG1e9ZL\nUFP4px++l198dz9feH6Qr748zFPXJglpCp86289vfODodovo4+Pj47PD8Y0fHx+fHcfZ33+aVKFC\nSFMI6QqxgEospBEPqsSCKrGARjykEtZVJAkkpNn/qd2kSBII4T1PCIErvO8FwvtfCATez9y6r9/6\nuZj93dy/sV1BumgyXTCZzBvcSZdwZ98nGlA509vMT7y9m3ceauG+7sSOLlS6WXQmgvzmh47xGx84\nyvM3p/nOa+Psbw5tt1g+Pj4+PrsA3/jxWTfZkkW6ZJIM6yTC2naLs6Pw225tfOpsPzMlk7LpUjJt\n8hWbXNkib9iMZsrkDZu8YVO2nHW9jySBLElIs19L9V8jIc//mSShyhLNEZ2WiM6J7gQ//rZ9HO6I\ncaQ9ypH26J6+2VktiizxyJFWHjnSut2i7Gp2uh7a6fL7+Gw1e33O+MaPz7rIliy+9eoojhAoksQT\n9+3bkxNpLfhtt3Y+dfbgil5XvZ2p3dTw1k1OlbkGzlxDxsdnt7PT9dBOl9/HZ6vx54yf6tpnnaRL\nJo4QdMVDOEKQLpnbLdKOwW+7zUeSJGRZQpElVEVGU2R0VSaoKbV/AVVBU2RURUaRvdf7ho/PXmGn\n66GdLr+Pz1bjzxnf+PFZJ8mwjiJJjOXKKJJEMqxvt0g7Br/tfHx8tpudrod2uvw+PluNP2dAEnXu\nH41Ga2ur6Ovr224xfNaA4wqyZQuBF2SeCGko60jZOzg4iD8WGoON7tvV4I+DxmSrx4Q/DnzAHwfr\nZTt1+Ubij4PGoBHG04ULF4QQYtmLnYaO+enr6+Oll17abjF81sDAVJFnb6ToiocYy5V55HAb/a2R\nNT/vgQce8MdCg7DRfbsa/HHQmGz1mPDHgQ/442C9bKcu30j8cdAYNMJ4kiTp5ZW8rqGNH5+di3+t\nunvx+9ZnPv6Y2BoMy+FL5+7w7dfGGc8aJEIap/Y38b572zl7pG1Hntr7bB/+vPXZSHbSePKNH59N\nIRHWeOK+fXs6leJuxe9bn/n4Y2LzGZwq8ukvvMSbkwXu7YpzsjtBumjy1ZeH+c8v3KYjHuDn39nH\nzz3cSyLkt7/P8vjz1mcj2UnjyTd+fFbEWnLCV19XzSTSyBNhJ7Md+foTYW3d77XX6wxsB5vZ5guN\nCb+PN4axbJmf+dMXKFsOf/6LD/Keo+2131Vsh6den+Svzt3hD79znX///Zv8wrv6+JX3HCIS8Jf4\nRmG9c2Gz5tJG6HKfvcFKxuBWjqf1zAlfM/osy1pzwvu55DefndrGO1XuncxWt7nfxxuD4wo++8WL\nZMsW//WX38mJfYk5vw+oCo/f18Xj93VxZSTLv/v+Tf7k6Rt85cIw/8ffP87j93Vtk+Q+VdY7F/y5\n5LPdNNoYXK88fqprn2VZa054P5f85rNT23inyr2T2eo29/t4Y/izHw1wbjDN7/3EybsMn/mc7E7w\nb3/2fr76K++iJarzK3/5Mr/zjStUbGeLpPVZiPXOBX8u+Ww3jTYG1yvPpho/kiTtkyTpZUmSDEmS\n1NmffU6SpGclSfpLSZL8o4sdwFqD2HZS8NtOZae28U6Veyez1W3u9/H6mS5U+DdPvsljR9v42Nu7\nV/x3Z3qb+cavvZtPn+3nP79wm0/9p5comfYmSuqzFOudC/5c8tluGm0MrleezXZ7SwPvA74OIElS\nO/CYEOIRSZJ+C/gJ4MubLIPPOllrENtOCn7bqezUNt6pcu9ktrrN/T5eP3/81A1KlsM/f+JeJGl1\nmdw0ReafP3Gco51xfvMrl/if/uw8X/ilhwhqyiZJ67MY650L/lzy2W4abQyuV55NNX6EEAZg1Cnt\nB4Dvz379JPCz+MbPjmCtQWx+MOXms1PbeKfKvZPZ6jb3+3jtpPIV/urcHT5+/34Ot8fW/JyPn9mP\npkh89ksX+dxXLvNvfuo0sp8Se8tZ71zw55LPdtNoY3A98mx1woMmIDf7dXb2+zlIkvQZ4DMABw4c\n2DrJ9jCbkUVmqWf6GaA2h8Xa1e8Ln7VQPzaAOePEHzebzxeeH8RyXD7z6MF1P+ujp7sZyZT5g29f\n51hnjF977PD6BfTZMSw1lxd6jT+nferJlixuTxcpVGyiAZXelsiOHyNbbfxkgf2zX8eBzPwXCCE+\nD3we4IEHHhDgT8rNZLmMGWtp+6WeudDvYGdsrNYj12Z/pmzJ4isXhshXLGIBjY+f6am15Wr6YqNl\na9S+3A1sZtvWjw3TchFAqWIzUzb50PEubk4Vlhw3fr+vj2LF5gvP3+YDxzs41BbdkGf+yqOHeG00\nxx999w3eeaiF+w80b8hzdyu7YQxXN63nB9M4riBTtgjrComwNmfubsRasBvaq1HYiLbcqEPPbMni\nyxeGuDCYZiRbZl8ixAN9ST4xu8fYqs+z0Wy18XMe+FXgD4D3Ay8s9weNll5vt1GfMWMsVyZdMhfc\nHJuWy4N9yRVZ/OmSSaFiE9FVChV7zjPnv9/tdJErI9la/5493MYzN1IN19/rGYcbPYYXUiS300Uu\nDmeIBzVupoo82J/kVLhpyf5d6ndrkWGzP7fPW2z2ZqU6NuIBjZcn01iWy82pIsWKw7XxPA8fbOFE\nV2LBceP3+/r5m0ujZMsWnz67/lufKpIk8S8+dh8X72T47Jde4e8++2NE/TpAC7KVY3ijNobzn1P9\nDBO5CtfHc8RDGpP5CrIEH31bN7mKVZu761kLqu/tz/mNYaN0+0oPPc8ebsMWYtGbwLxhkTdsNFUm\noChoqkzesFc8Rhp1bGyq5pvN5vZ3wNuA7wD/DPihJEnPAneAf73cM9Y7KX2WZqGMGdVBP5YpM5k3\n6IgFOTecIWfYdMQDyw7ecsXm2RspXBfiQZXHT3Qt+n4I5vTvYLrYkP29nnG42r9d7sSmqkgqlstD\n/Ul6kxEQUPXilwCE93V9e5uWS75skS1ZJMLairOlLLaoLqfM/Lm7eazXcH1tJMuzN6doCmlEg+pd\nfVjVA09dm0QBsmWbQsWb/7IkkSmai46b2+kik3mD/pbonA2Wz8r50vkh7umIcqZ3Y29nEiGNf/PT\np/nEf3ie/+c71/ndHz+xoc/fLWyF7sqWLG6ni5wbSBPQ5FV5XqxEJ1c/w8HWCK+OZJjMV2iPBcgZ\nFreminTEA7W5q0oSM0WTsukQDairzpzl6/qNYyPacqWHnq+NZfmPz92iKx4iGlRrhpAqSXzn6jh5\nw8ZxXUqmQ6liU3EcLNslFlz5GGnUsbHZCQ8svBueel4Efn+lz2i09Hq7jfkZMwC+9eoohYrNxTsZ\nhBC8OpxBUxQOtkbmbGYW8iNWJYlvvjrKVM5EUWQCqsxM2aSH8KLvd2U0W+vfvmSEoXSp4fp7PeNw\nKQNkPssZFvUn8t8bmKBQsWiPBTl7uI1T+5tI5SskQhrNs/JV27u6yF4ayXBlNFt77nLZUpZaVJdT\nZv7c3TzW2rZVF4bnbk6Rylc43BalIx7k9nSRU+G5IZiligMCktEAB5IRXh3JYguXuK7ziTM9hGY3\nSfM3ZecG0txKFbmZKnJ6f5Pf76vk9bEcl4Yy/M5Hjq86w9tKeKAvyc8/3Mt/en6QHz+9z3d/W4DN\n1l1VvTqZN7iVKvK+Yx13HRQsthbU/zxTsjjSHiUe1O7SydXPkKtY3H+gmZJp0zT7s3ovjmzJ4pkb\nKYKqgmG5PH6ibdWbU1/Xbxwb0ZZLPaP6u1tTBV4dzqBIMrYjaI0G+PrFEZojGmMzBremCkSDGm9M\n5DhzoJnelgiPHm3jUGuME91evbGBqeKyN5aNOjYa/s670dLr7UaqGTOyJYvLIxkKhk0koCLLEqf3\nNzNVrCDPKtH626EvXxgila9gOy7NEftcNJUAACAASURBVK9vBlJFhtNlVEUioMneBYRY+r3n9+8T\nocbr75UaCgv9fjkDpJ7FDIvqs1VJmlVcRQTUTtdtIfjg8U6+eP4Oriv471fH+fiZHsA7iR+dKeO6\ndz93uWwpC8mzlDKb3wb+3N0cFjpEWGwhqu+T29NFhtMlYrpKRja5MpZlumAiyxLNYZ2eFu+QIl0y\nCWoy8ZBGtmzRGgvw0MEkecOmLRaguzm84PtcHsnguoL3Hevg1lSRB/uSfr+vkv9yfghdkfkHq6jr\ns1o+96Fj/PerE/zTr77K3/76I+iqX++8ns3WXVW92t8S5WaqyOtjOcIBFbXO2K3XvbdSBS6PZOhL\nRhhMe4HnqiTzt5dGaY8FiQcVjs8WwK3q5IV0xO10EQT0tkQAT2fky5Z3Q9QWZSxXxhZLLNiL4Ov6\njWMj2jIR1jh7uI3BdJG+ZOSu/cjZw228MDDNkfYYhYrDTMm79dMUmfZoABdBxXHRbAchIBkJ8OZk\nnlhIpWLnQIKX78xgOYJYUF0y/qdRx0bDGz/QeOn1dhoruTqHt258ro5l2ZcIUbYcSqbNgWT4Lr/Q\ny0MZXhpMky6aTBdNmsM67zzYwg+vT2K7ULZsuppCnOiM1xRt9T0XOs2aPzkbsb+XkmuxhAP1fxsr\naQQ0eVHDJhnWFzQshqZLfP3iCEFVrl1Nz5RM1Dc9I6h6BX07XWRopkQ8qDGSLdPTHObicIZbqQKW\n42K7AsNyaI0FVnz6spA8iymzlfStz8ZRf2ixEv/uiuViWA7jeYOh6RKyJBFUZGJBlTvpEl+/OMzH\nTu9npmRyM1Xgwu0ZXAG263KkPUrBtHl7z8K3fdX3qeoPgI54YM7c91kew3L42svDfPBkJ82RzTsh\njQZUfu+jJ/nUF17iT5+55Wd/W4DN1F31tzL3dMQomw5BTeaZGymeCHlJgPKGRcVyuZUqcHUsS9l2\n+OqFIQ62Rrk2nmcyXyZvWLTHAjgCDrdH2ZcI1fyfF3KNq8bXnh9MIwB3NgmCAkzlzQXdmVYak+Tr\n+rmsJ5arvi3XmnSqGjs9lC7xRGjumvDMjRQFw2YsW6a/LYquSNxM5ZkuWrw2muXRI20c74ozVajQ\nEQ9SNG0EEA/oPHszxdXRLDcmCxztiFFxXI53xelqCi2atKoRx8aOMH581s5Krs4VSeLkvsSsf3CU\nsumQKZmc2p/AsFxaowGGZkpEZ0+m0iWT8ZzBeM4gU7LIGybZksngVAGA/c1hKAm6m4I0zVvAF0p4\nECtpDXUisBYWSzhQz2LxVfNjeKrGDRKMzJT4ixcHuZkqEguo7E+GOdmd8DaVb6Y8I0iZXe3q4n4s\n2+U7V8cZzpQwKi6264IEN1J5HuhNkiuvfEFbyNBZSJk1qm/vbmepOVXvJvnCyDQCeKg3SbZkki1Z\nTBcrZAybU/sSzBRN/v0PbjCULjGSM3AcF1mSSIY1roxk2dfkPb9iueSNua6b9XE+7IN7u+Kc6m7y\n+3+VfPvKODnD5pMP9mz6e73/eAcfPNHBnzx1g594ezfdTaFNf08fj3q9mjcsLg1nFkwCJAEHWsKU\nbc8FtWy5tMQCHLAcZFlQNByG02XiIZXrY3nOD6TpSAQ5P/CWcWPYLie64lyfyJM3LI51xrkwMYMi\nge0KJvMVDMvm3s4E8eDcLWGjBqs3OhvVbmvNxnt7ushErsLB1ggTOYPLIxlOdTeRK1s8dW2Cweki\nRzviNId0mkIa+5tCTOQr9CQjXJ/wbngyZZvmkE5rNEBnPEjBsHj6jQkyJQt5duwYjotluzx7I0VX\nU6ihk1bNxzd+dghrPUVYbEM650p9qsBotlw7ZcqUTZoiOn3JCH/32hivjmTJlk3aogECqsLRrhgv\n355hKF0kX7YxXQipEpYjSIS9W4dEUOWR2dui6nsOTZe4PpYjW7IAMC13yWDPHcUiCQfqWcgNoepm\n2BEP1mJ4ogENCXBcwdNvTDI6UyJTsnGFYHC6RGs0wP09Nm9O5IkFNd6cyHN7ukhvS4R7OmJM5Su0\nRnXGcgaW5XoGkOWSCKmcL1TQFZWZssnR9hhBXeFjp7tr7k4LsdJTm/X49jZiKsydwvyYsvo5dfZw\nGxXL5dtvjnE7XcJ1BTcnC9iOQ6ZsUTZdMiWDS65gfzLMVL6CpsoUDYuy5WLbLhXLQVdztMUCHEiG\nuZMucWk4w5WRbC1V/fw4n7UaPnt9HHzx3B0OJMM8fLBlS97vdz5ynPf/0Q/4v755lX/3c2e25D19\nPOpvbs8PpLkymiEW0O5KAiQjcXk4gxAwmTW4MZ4nGlCpWALTFWTKFXKGyX9+4TaqAg8fbKEprFOx\nXBwhGM2W+csXBomHNQplmyMdWUK6imE5BDWFoCojhEprLEC+4iVhqB7cbeeB1k7WBcu5r6/0My11\nsAUsmI0X4PxgmltTBa6P55AlCSS4NJTh0lCG2+kS6aLJD4IpgprCaM7gcHuUiuVwcaiI6wq++/ok\nAVWmLeolyLg6lsN2BLYjONQWpWQ6tMZ0uhMhZFmiKazdlbQqHtAYmC7MGU+NhG/87ADWc4rgZXGx\nKFcconVX2vVBb1dHsyAgZ1ikCyZBTeHFW9O8cidNtmSTjOgEFIWK7ZIp2oR0mYlsGUWWCekqluEV\nvspXbLoSIYKawrHOKPasvMmwztWRLP/yyeuosozrCj50sotDrUFuThV2xU1Bb0uEU/ubyBs2/a2R\nRd196he8r1wYIlUwuDFZpC0awLRd+lui3JoqUrFtZElmbMagZDm4QhBQZXpbwhQMmzdTeQoV7yra\ntN2a5RXSFIK6Qipvg4CeZJjpooWMRUs0wGS+UitWNpU3SEYDjGfLfOS+fZzoTqyr/ZfyM14K/3Rx\nbdQvpLVT5LLFCwPTyEgUZuvy7G8OcSOlcUSJMjBdJG/YGLaXvc10XBTJM7QPt0bIli1s2yVXtlEk\nUBSJsK5yM1VAkiXO357hno4o+5vCpAoVLo9kSAQ9d87VxPkstAnY6+PgVqrAiwNpPvfBo8jyxic6\nWIj9zWF+/b1H+MPvXOcHb6R49J62LXnfvcBKCotWEYAQEgJonneYcXE4gyrJKIpEMqrjSgIH6G4K\nefE5QpAtW2iK9/cDUyV0tYwqyRRMG1WWMB1vM2rZAlmSeLA3yXSxgmE5NEV0rgxn+MF1b8NrWoLm\nkBf/t9iB1mYZJvWxrWu5PWgUg2k5L4+VfqalDrZaowGuT+TobY5wsS4b78nuBLom8/5jHVy4M0NY\nlznYGuXJa+OMZsrYjoskwUzR5HB7hHhARVMkPnSii1dHMkQCKt99fQKAsYxBc0RnX1MI03IoIuiM\nB7148J4mOuNBmsM6z9xI1WRUJKmW+EYCooE0vUvsB7arz3zjZwdQ77qyGks6W7L4ztVxihWbTMnl\n4ZYW74aASO0W4vJIBgR0xIP88EaKsuFiODYTOQPHEaiKTLZsIVxwERQNm9vpAq4QWI5LWFcwLFAV\niURI49T+Jg62RXjXwRamSyZ9Sc8I+PKFYSayFSIBhamCyUuD0xxujyGg4bKArIVEWOMTZ3pWPImr\nbnJBRWY0WyYeVJAlmMgZqIrEmxNlcmUbw3ZIBHVsu0JQU8mVvaDyvBFmaLpES1QnGQnQHHrLxSld\n9NwSLctLUanK4ACZokVEVwjoMhVHomQ6VDJl7kx5SSoeOpjkx460rap68/wFfjE/46Xw3eVWz0IL\naX9rhKHpEldHs9guuK6Labvoisx03mQ8azCSKRPWZRAShungClBk0BSZkuWQDHu1QOJBlYCmeBeY\nkiAR0jnUGuGNiTwvDc5wM1xkIldGEhAJqAhgwjRQZGqZBlcj+/zb6L04Dv7LS0MossQnzuxf/sUb\nyKfO9vOVC8P87t+8xrf/8VkCqrKl778bWahI8GIeDumSSUCT6WtJ1BIOzD/MSIQ0bqeLBBSFYx1x\nbk+XkGWJgCLjAiXTQZYdQpqCEC4BVSeoKdiug2G5lE2ba2M5VEWiJaxybjCNK1w++WAvluuSyhkM\nTpeZKVvcSBX4+sVhfuGd/Qu6Pa+kUPl622ymaBHUvE37SnVBIx2eLNRuA1OrL+Mxxz2ybHFpJFNL\nUf3NS6NM5Cs8bafoaw3XsvEiqMWTHUiGkYBbUwWm8yZlyyGVr8x6lrjcTBWZKdq0J4JoisRoxkCW\noGhYJKMByq5Dd1OQgekCQkBnPMjRjhhvpgoMThWZKlQ4e7iNk/sSs/GeOW5OFShVHPYlQhzvii9Z\n7mA7+8w3fnYAybCOabk8OTCxIku6yu3pIpeHM+iqwtWxLDcmCoQDCgfbonzywQP0tITpS0Z4/uYU\n18ZzpHIVVFliLGsgyRAPee5XAUWioyXEjfEi4YBKxXG4py1K2XRpiwZQZJme5hDvONhCSFcYy5b5\n3vVJmsIaQ+kSJ/claAprKDK8OVFAlsCYvZJ/+GALseDOj/mB1QV8jmcMUnkDTZaxHZeuRAhHCFqi\nASIBBeEKwgEVWRbMFE3aYgE0xXtt1rBJF0wsR6BrMsc6Y7VkFJmSyetjOUKagiJLxAIalZAz+yz4\nyTM9TM/Wc3hpcIZUwUAIyBgm526lsRwxp5bTSmsOKZLEye7Essp9oec1airMRqWWlbFiz9kcAAym\ni/S3RmmNBXhzIs9UvsKxzjiuEFQcB9sVOI7wCtZpCroq47iCpohKSFO9WyHLi/UpVGz2JYLc2xln\nslDhlaEMFdulMx7gcFsU23ERkueic3JfgpduzxBUlVrQdnX83J4ugkRNZy1m5OzlcWA5Ll+9MMxj\nR9tpjwe39L0DqsLv/vgJfuE/nuNPf3iLf/TeI1v6/ruR+jF+ZTSDEBJ9LQluTRVq8RdL6b96D4Ef\nvOmdqssyyLLgB2+kAGiN6tx/oBldkYiHVGSgPRYkFlR5Y7LIVMEkFlA50uGlwr46a/xMFUyao0Fc\nF/7q/B2OtEW91wZVMiXT8x7QlEUzgs4/jH3q2gSXRzJefEhs+TqAK2mzcsXBsJxV6YJGOzyZn7Qg\nX7YwLXfV+q1+LFwZzXJrqsCb43km8wYIKJk2+bJ3YB0NqvS2eJ4n893rDdPhno4Y37s2ge0KLMvF\ndFwCusxwusTXLgzjCk8X9baE2N8cwXJdHuhLEtZV9jWFEEJweSRDqmCSD2tz0mNXDdZa/9kOE3kD\nw3LmZDGsJ10yvezCQZWpfOWuubGZrNj4kSSpDfg00Ff/d0KIX9p4sXzqSYQ1HuxLkjPsu2rtLIlX\nQ5SK7WA7LkiC0UyZguEQ1Eb42OluvnFphCsjOXKG5QVXJsOULAfLccmUTDRVAUlCVxTKlo0kQcV2\ncQU8cqiVdNnk9nSJOzMCfUjmVqpIrmKSylX4qQcOkDbt2ZoiBroiEQ2oxEMqJdNTbisx4nYT1QKT\n//XCEDNFk+mCRTyo8vT1FF2JIDcni3Q3hxiZKXOoPUpnLMRIpoyuKKQKBsc64hiOSSpnoGsKUzmT\nTNlTrMmwztt7mjk3kCYWUEGCeEhlKOOiKRItkQD37W+iN+kpxrcfaOYvXhikUPFcoCzdK15WmK3e\nDCx5KlMfVFl/4lRV7qokzUm/vFQ2uEZMhdmIVFPMT+Ur3EmXKFsOEl5h4W/dnKJg2AxMFUCCyZxB\nxXa5NpHDcQRBTSEaUCibLg52LaA6rKt0xcPMlEyKs65wjuMlyUhGAxzujPGOSCs/upEipCmM5QxK\nps10scLVkRwhXebkvgTNEW3OxgPgyxeGvHgF4PT+Jj5+pmfOZm9+8oS9Og6+9/okUwWTTz60+YkO\nFuLRe9p4/GQnf/L0DT56upue5OIxgD4eSx0M1Y/xWEBDwBwX86F0aU4G1cXGfa5sMZYpYzkOzaEA\nTRGdiu3Vinv5doYbk0V0TUaVZO/nhs1MyaJo2GiqRG9LmERIYyhdxBWCsK5TrFjMFD13WMNyaY0F\nGM2WaYnolEybZERbsoRB/WFsqWLzrUtjKIpMIqTy7kOtazY6aq74qQKG7fL+Yx0L1hJb7u8b7fCk\nft0TwNtm1+C1ZIA7e7iNr18cIR7UvCx9kueWfGxfnHv3zU0yU//8vmSEr14Ywna925vpYoWxTBnH\n9YKTB6QiluOyvznCnXQRGZnWqI4sSV55hJkSg9MF2qIhokEZVYbhTAnHFfS1RO4yWKNBlUf2t/Lk\ntcm7DsTqUSXJy2RouoznygjJmxtbcQO0mpufvwaeAZ7E86Lx2UJ6WyJ0xANzau0sRr3fbE9zmLJp\nkU+EGJopU6h4mx7DdHhtNMsrd2Yomw4yEA9qBHWFj5zsIhbUeOnODImwyrNvTPHaaJaCadGVCBOT\n4F0HW9FVmRcGpihWHFKFCnnDwhEuiqSQM2z+9tIoZdtBRsJ0XJrDGvcfaKZsO+xrCvKx0/t33QZn\nJTcl18bzTOQMDrXFKJtZuptClCyH5rDO5ZEsrhCMZQ1aYjougoCq0BzWmSmZlCybppCGZbn0tYbJ\nlExM2+XSSIbzg+lavv68YXEgGeHHjrRxe7qEoni+3gXDJlf2Ek7c2xnn0Xvaa303katwcSiDKsPj\nJ7vmnPDdmirOKYSZLVm1oMqBqQKn9jfNOXFayGd7qZO51abCbBTf7q3mtdEsz92coiWsU7EdJrIG\nfS0Rb5HRZA62RQFojuhIAoYzZSoZl4ppYzmCzkQQ03ZxXIGESdly0RXBZN5guuDV9lEAwxVEA54L\nXKZk0RkL8spQBk2R0GWZx+5pJxnRaYkFKBpefNn82MLb6SJ30iV0VSGgyuRnD236WyNe3avpIucH\n03OSJzRiStSt4L+cv0NHPLCtMTe//ZHjfP96it/75lU+//MPbJsca2Gr9cFy7jqLJbdBwMG2KLem\nCrUT83q31fnv8fWLI4zlDMazJtmSQ7NhYTuCiZzhFaaM6ZQqFqoi0xQO0BTSGcmUCWgyM0WTyVyF\n3tYIjxxpYyJXIR7y4jtaowEve2PWq/92an8TxzvjXBiawXbEnHw98134HuxLcm9nnJxhkzcsBqaL\nxHWFYsVhpmzWDr1USZpTHmM53trcDxPUFC4OZ1a1CW7Uw5P5614suHYdZwtBc0SjLapzfjBNybQJ\nBRRaIp7h99pIlmhIvcu4soWgvy06q6dNdEUmW7IpWQ6m42LZDhXb4UYqh+0KTMfhymiW3mSEq+M5\nXEcwljcIKUWiQc2LPwtpSBKYjlszeB4/3FXr83TJvOtAbP7ntoXg+L4EZctBAK2RgOe6vwW3dqsx\nfsJCiN/aNEl8lmSlE7tWb8Pw6m30t0YJakFOdTfzd6+NcWOygGm7XJ/McaQ9Sr5skZ7NvtYS1gio\nCkIC03WRZXhjPE9QU2iNapRMm5aoRkTXeH5gipLh8GaqgATYjkuhFEBWJHRFJhnWaQpryGWJaFAl\nV7FRZJnOpiBhXeFjp/cvmWFsJ7LQItEc1ucog0LFJhZQKZQtLhdmmClbFAwLJImJXBnHhXHZC1w9\n1BojXawQSXsFCO/rTvDh+7pwXbg2luXmdJGQrjKeLdPbEmG6aGCYLvfuS1CxHVojGq8Mz5CM6Ciy\nRKFi8TeXRsmVLU73NBENqnzgeCe2EDXf8oiuUjTtmswVy+V7AxOegnQcVFkiFFDJl61aUOXAdIGH\n+pPAW37fqy2OutZ23m7f7q0kW7J49kaKVL5CwbAJqF4R0oNtUe+0tO7U7URXnKujOTIli/7WKNGA\nQrZsEVBkxnIGt1IFZElCVyQc4ZLKm+QMC9mA9lgAWYFDrVEqtufz/cWXblOoWOiKQktzgLZ4AEWR\ncIRAliVeH88R1GQyJZOT3QlyZS/gdTJncGemRDygElQTNfeHRNire6UvUPdqrzGaKfODN1L86nsO\noyrbV2y0uynEr7/vMH/w7es8fW2Sx461b5ssq2E79MFKXKzmG/KnupsYSpcYy5W9TGuqsuDfVw25\nvGEhhECWQFdk9jWH6IgFeX00g+0IMmWTkRmFzkQAAaiyzFTRi6tNhDTyhk1IV5gpmAR1hb7WMOmi\nRUc8wIl9cZAkPnP2ELbrpSotlG0c16UzHmQ8V6kddtUfgj05MEHOsIkFVVTFuxWoWA4F2aYzHuRD\nx7u8GjIVm6ujWY53JYgG1SXdqOt/5m3u9TXrhEY8PNnIG6lqAquZYoWupgD3dXdSrNiUTYcvPD/I\naLZMVyLEQ33Jt4qcTxcZzxlcGc5iuwIhBGXTJl00MB2Brkic6evkSMliKFMmHlBJFSpM5k00WaZQ\ntslVbIyKg6sKwrpKRFdpjgTIlm0SIacWK5wrWwzPlFBnP+dynzsZ1okGVBAQ1mWKppc8aytu7VZj\n/HxTkqQPCyH+26ZJ47MkK5nYVUUVCarYLrRGAxRN2/MVTRXJli3aojq9yTDP3ZpmYLqI64KuSsQD\nCo7jcnUsx4FkmHhQY5wyMyWTvGFjWi7TBRM9ITOZMwloEpbtoikyqiITCqgENZmpfIX2eNDLYIPL\n8EyZoCbzyMEW/t7Jzl3n6laNaxjNlmvGzdM3phhOl5gpm7UF4FBrlB/dmGIyX8EFbOGSjATIli0S\nQS/OpycZRpZAkSVGM0UmciYP9rZStm0eOdTGhTszOK6X7eee9hjtsQDfuDTCczenCGkKB9sijOcM\nTNuLx2oKadiOYCBVIlUwCOkqo5ky9x9oxhGiZuTkDQtZknARNeWTCGs81J9kqlAhXTS5MVnkXz75\nBu/oS6LMGmg5LNpjQZpD+pwNSDXF8qsj2VrhvLVmg5tPo/l2bxXpkklTWOferjiTec/dsDUamI0H\nkHigN0k0oNay7zSHNa5P5NCLXirbB/uS/OjmFNfH86TLFSqmIB5UKFsu6ZJBWFcwbZdoQEWSJO6k\nS/Qkw7xwaxrLEggXMhUTVZY40Pz/s/emwZZd53nes/Z85nPnsW+P6EYPAJoYOYCDSEgULFIyLVGK\nhlgJ46QSV2LJPxJncJXk2KkkpXLKjqRE5UiqKKKLsiSLZWoyJdKgOIAYCaCB7kZPt7vvfO+Zhz0P\nKz/WuQe3Gw10NwigL0h+v4Bbfc5e++y1v/UN7/e+eT5wQEFc1ts+z1xpMFVyeHm1w9OXm2r+x9T4\n6OEJvvTiGkkmWW37fPnMBp8cJNyGEO8qk9RutT96TmHtf/rBOwN522l/79EDivzgT0/zgYNjOObu\nJz+4E/7grQa0J+YqILmGIWsn9BNegxp3vJhzG12kBKHB4ckivSBmvRciM3W6vm+hSsk26ISqOxsm\nGX6c0vNVgPzMlQa6EHzy+BRjg7MmStQ8aZZJkkzyylqHfpjw4lKbMEn5D/0tZio5yoP5ke17vdxQ\nhc5tmPP8SI40y/jQwXGuND1+9Ng0kxWH87UeBUvFH4UBjPrUapt9o4XXoQF23q8uBCfnq6/rIL/X\n/cHb1ZHaFieVSBZrLpaus9TyFLonTIiTDCkV+2utH3K16fL18zWevtyg7ca0vZD5kQJJlmEZAtsw\nyGRCmEi+ebHOXZMlPnRonOeuttjqh9i6gjgHcUqWZmgCpe+TKrKrphuyMFagmjMp5Uy6fsz/+pdn\n8ZOEnGHwPzx+9Kb3vfO3efzEzG11Cr9bu53k55eA/1EIEQERilxXSinL78jKfmBvybYdVT9IMDRw\no4S2F9PyImxDwzY04gw6fsLVhotjGgggzjJafsLVpqcSmH44mMvJEEjiVLUlm15MrR9iDxIegWKL\nilJo+QG5xMSx1Xe6YUIGOLbGsekyPz0gWeh48TWzIO+WvRNOdHsG49RKewgnCmKloeKYGumOA+Df\nn14nHbBST5Zs6n3QNA2QaEAnSukFCUXHYE81hxdnZFJyZLrEZjfgq2c3Fe3pgFf/xGyVbhgzV8nx\nwN5RMik5MVchk5DJjKKt7tEQgoKtIzSHkmOSZh6Xan0OThbxw4Tfe2kVx9TRheDgWBGEYqPbS4GR\nnOr+1HshQoCU6n4yKblvvjokq7g+AGl5EQIQQg71j95Mdfp2bLdiu9+q3eq+3K6SHZosMj+S4zMn\n5ynnzCF87FK9PxQs7gcJQijyksVanwx4db3HZi8kyTJ0qWFqGQLBZNFmpe3jGBpxmhGmGQcnCjTd\niKJt0PYS1joBSSaxTZ1yzuDZq83hs//q2U0Way5PLTYI4ozJok2WSYQmWJUZhiGYL+XUjFov5Isv\nrjAygGnsnHt4s7mw71VLM8kfPrfMo4fGWdgFnXDL0PgnP36c//h3nuFffX2Rf/CJ3U9+8N36g1t9\n/67/d7cT0N5oX98I+rktNj5TzlHvRSyMFtgzlqfRC5mr5ji32aNo6ZRyFuttnyDOuNpsU+/HWLrA\n1DQ+fGSCpYanukFCw4tjXlnrEqeqw7Pa7POnL60xV80NSWoKloGmCY5Ml8g2JA/uHcUytWthqk2X\not0cQu+Pz1RoumpgfbxoU82brLd91ts+tqmTZZLTK12uNJSOYN7SqeYsDkxcS9Iy1Bus9fnKq5s4\npk4Qpzx+aAZ487nTt/os3227lcL1jchhtv++zfaWSsl4waaUMzkyVaLWD7lrsshfn9lkpe2x0QmI\n4oycqfHKSps/O7VGvR/ihwlhKvEiRTTlmBp+nGIZOqYuqeZNxoo2985VWe8oMiZD1+h4EZNlmyRT\n8Vwlb5I3NXRN0HBjCnbI4akSo3mLby/WWR50+ddaPZ650uQnH7j5aMOd6tbdcvIjpSy9kwv5gb09\ndn0m3fIivn6hxnonYLMbUM1bTJRsjkyVWGv7yCzDjTNyhuCuySJerBihHEPn/GaPjY6PG2akAxBw\nSQMpJTlTx9A1PEN1ANI0o+uCb2YYmkYYp+gCskxQyRmsdwNafkTZM+9IcPNOBVXNQVes5KjvSjMJ\nQjKT5mgPnJUbJLT9GJDkTY3z/QDfNDENjX3jBQqWRr0fEadq6M/yNHQBC6MFJHB2XRFSNNyIbpCg\nIQiSjF94f5WibRAlUnVsHIOiYzBTdYbitRudgCstDw1wDJ2SrTFXzeEYGpfrfZ673FQOK2dydKZE\nox+x0lYH55EpRUUeJAlLLZeZH7RwsgAAIABJREFUcp5uEFHvhUyU7Nd18HYGIAiwTI39xeJwXqiU\nM9+WCu1uxXa/FbudfflG9309fExRjnZYbvrUegElyyCIMoIkJU5T+oGCNU6XHDIJQZKhIfGjlNG8\nhaVpTJcd3Cil4YYkmWS0YOKFCVXH4NJWn9/71hW+fHqD/+SD+8mkZLJoDzHoF7d6TBYd9ozlOTBW\nwDZ0umGCCBPlO6zX4D6JlNfMOny/dfW+fqHGatvnHz1+951eytA+fNcEP3bPDL/5xEU+877dT37w\n3fiDW33/3oys5VbshmKVjjn0k2Xb5OxGF1vXCAeMYCVHzefUegFxKvnTU2u0vJi2F1OwDQ5OFNAE\nNPsJcaLWVbJ0HEMnbxsIAZmUpBnkDB03DAGI0pR+qGQUtklq+qEqljqGTs7QabghE8IeJpKVvMm9\n+dfIcgwhaHkR40WblZZHEKf8ypdOk7d0cpbObDVHwdF59mqdlqeuNZK3ODJdfl2Sun1utD11Xu4d\nVZ2lbYH0W/UH7+XCyc4i6k5yGLhWyNSPVYE0jNXMtmVoXNjqc2SmxHTZ4fmlJg/sHQEJn39qiaWG\nSxBLMlSw70YJSSrRNSVPoLp/GWtNDyGh6YbMV/PcM1vlxZU2OctA1zQKlsaJ2RL3zY9wel3NBc2N\nQMHWeHi/0nUr2yZZJlluBySpWt9jR6d27TO4HbY3Afw8sF9K+U+FEHuAGSnlM+/Y6r7H7Z2qUux0\nyomUWIY2dDRhkmIbGsstl14QE6cZtiEwDY2NTkDBUdCXxbpLww1xAzX7g1QsF16kmMMESkckiFWw\nn0kwDYFjGERJShSnlByThh+CUFXgvp/cseDmdq/7Rs/m+r+P5i1KjsHleh8JHJ4qkTd1RSoRpzyy\nb4yWF7F5tcnFmstK06NgGSyM5ZDAbCWHJgRdP8XUU7wwxY0SLE3BTQ5NFonSjK1uwKW6ixfGTJRs\n5kdyFC2DKw2Xas5ksxMwNlum1g1Z3OrTdCPCgc7PeN7CMnVKtsHBySLVvM9q2x/OZMSDlvbVhsv9\nCyPkBlCXsxsdul5KtWBi6jr3zJdxDJ3DUyVmR3LX/F43GvB95nKTr17eRALlK2q+6O3q2OxGbPdb\nsdvdlze67+sr3wBT5RymrnGx1qcdJCRpxnLTJ0xSsky9rwLBWMFQIrqZhR9nzFVzVAsWQZKydyTP\nS6tt3DBlsqz2e8uP8WPJWten1g/5k+dXSGXGhS2XrhcjNMgyBoxxcGi6xEw1x1jB5sy6IvM4t6Go\n2HeKLr/RvbzXu3o3s9978grjRZtPHp+600u5xv7xp47yxLkt/smfnuG3f3H3kx+8VX9wq+/fd3tu\nbTOkvbLWxtA0vn6+RpzKoTDpkxfqrHZ8Lmz2mKk4vG9hlNmyyVdf3UQgWGq6nFnrUnQUU2qUZMxO\n5TA1DdvU8OOEIJI0peTMepcwSTk4XsCNMkYLFp88Mc0Tr27RcCNKOQvL0IiTbDiP0/QiHj8+Q8uP\n0DRBPCA96PrXnnfb9/z7T13hO0stkkSCJmn0I7a6Aaah89DeEdpexAvLbbwowQsT3DChYJscHC9y\n11RxqCXX8WJOzKlOdceLObfZY73jc+989XXJ0c38wXu5cLKziBrFKUstd5ggb9/T6fUOyw2PLJM4\nlsZ4webknhE2uwFtP2at6yMlXNzq03Jj+qHq7ARxAkCGSoYtQ5AzTaIkwI8yEglenNAPulyquzhG\nixNzI8xUHEYLFot1l5ylMZKzuVx3qfUCav2QmUqOo9Oj7B1oOR6fq3ByT5VX1jrMVcpMV5xhd283\nFipvB/b2f6F+v48D/xToA78JPPQOrOt73m6lSvF2JEdK+yWm7oaMF22KttLu+falBr0gpR+mTJRs\nolTN5mQyQ9M0BJJeoGBraQYaYAowTY2cqZNkij0sUbkPEogSSZrG6LqgoGukUlLNWRyeKmEa2jDY\nuRPBze1c942ezXLDGzLRFO3Xhjg/+8AeHt43OmxXA9cwnl1teDx7pclE0UbTNPaPFwgSVYExdY2X\nltv0gpgwVpg4IaHhKrGx+dE8aQZ5x6Bkq/mdkmPyvoURELDZVRDEr52v8dTlBk034tBECU1zWRjN\nsdryaLgRC6N59o8XOD5T5oWlFuc2uqRpBqhBWVNXmLaNbkg/iAbXMeiFKQVHx9QFWQZ522C17VNz\nw2sYuuD1AcjD+0fphzH7x4rDSt73Ssfm7bLb3Zc3+u12Jp6GEPzBc0t852qLRj8EmZEkal/5SUKS\nqPm+JJE03BBNR1FcBwlpBuc2e3zw4BiWoXOp1qfsmCy3fExdUxXHSMFf00SimZKWHzFXzXFwojAQ\nU47QNaGSLDLcIEHT1KZeafuMF20yYGFMzQzdaEj8+2WPXKr1+dq5Gr/82F27Tlh0ppLjH3ziLv63\nv3yVr57d5BNHd1dy9nbZrb5/3817ug1n8uIUKQVNN2Kt7TNWtGn0Q07uGaFSMDENnZWWy3LL41LN\nZbMbDHVX4iSjG8REaUqYZHhhwnOXm4wULJJMEiQp4wWbsZLNidkKZ9Y6zM5V6AUxozmLThBzeLrE\nctNT87tJimMqFtFriqV1SSWvGLpOr3X43ScXmSnn0DTBsekyxZyCcH9nqUUvUAQJUaK6xgXbpB/E\nrLYD9o3msXWBsAy8MEUIDcfQaHgh4VrK3rHCDUVNdxLobK/pVv3Bbi2c3Eoct11EPb/RZbXjM1G0\n+fevbPDRuyZouTHNfsR3llpsdHy8KEXXNGarDtW8hRAwV3FYa/t87PAEz1xtYhuCTKakmcTQFFw9\nBZIUdCFxwxghNDIU028KeCkYWYofpZxeb3P3dJnJko0fpTx6aIK/PrtB148ZL9kcnixxz3yFjx+5\ntrMzU82x3g3IhBzKXezWbtztJD+PSCnvF0K8ACClbAkhdsfueg/azaoUt9OO31ltv9FLlrcU/nat\n7ZO3YrQBdM0xdCJTHzrDom0QpoI0VTM+aQaOqYQ1t7kv0yQjBEzbwI/Vi5MNrqMPhjsKlhJPHCvY\nnJirMFa0KQ2GJ+9UcHOz6+78HW/0bAC++OIq5zf7jOQt9ozmrhGB26aA3nm9bUXn8aKNlGDqGgVb\nZ7JksdrOiLKEP3xuCT9Kydk6lhRYpoap6wgEC2N5NjvBgMUrwDZ0Htg7wnTZ4f6FEc6udzm30eXM\nWpeWF5G3DXpBTJAkyExyYStlfqQAAn746DQP7x/ly2c2WGn5rLYDMqmCYg21tlLe4oeOTPC1czX8\nWM17gaTtRZycqzJTdSg7Sml8f7F4jd7UjRz83tECkyXnGnr275WOzdtl1ycu23vtRvvzZtS6lbzJ\nkxfqfOOCqiq3/IicaeDFEUkKjiaIkASJepmTLKPnqyTc0ITyCwI2eyEjBZNGPxoM0KaAJGdqFG2b\nhhuq75DQ6IdDQd3pgUr43rE8pqbzC+/fixclfOXsJo6hsd7xcXSNKMkovwnd6/fLHvm9J69g6Ro/\n/8jeO72UG9rnPrSfP3pumV/909N86ND4e4L84HbtVs+jG3W2bzS3ev17+uFDE3zjYo3Nbshivc9j\nd09xdqNDlGSESabYucoOXS+hG8b0w4TiQBeo5UWYukY/iHFMA9vUiNIMHcgG1fpCzuTIVJEoyZgf\nzVPvh6y1fVW0TCFO4WrLR9c0Vto+/TDG1AX7xoucmK+QSHnNfe7U2nl5tY2uabhhSqMf8uSlOgXb\nYKJoq4QrzkjSjBNzZVbbPvW+ImQ5MlXk43dPUeuHuFFMxTH52JEJ/CRlanAebLPZLTU8xks2DJAS\n3VAR6GwXEbd/+1vxB7uxcHKrcdx2EXW+muPpxQZenHJpq8/ptTb7x4tEScp8Na+YPsOInKn88mY3\noJqz+MIrS2TAmfUuowWTasGm5SfMWAYtL6Lvx2gINCGZKuVwbJ3lpjscZ9g2OUDwlGyD6YrDibkq\nOcvgYq3PYq1PmGQsNT0mSjZ7xvLX6PdsxwI/cd8ci3WXh/aNkki5a7txt5P8xEIInUEYPBA9zd78\nIz+wN7KbVSlupYW7jRPtBQmmLsiZOpapXfOSbX/uoX1jbLkRU0WbtbZPisCPUwqmPsD+ShquCrwM\nTaBrimLT1ARCaFQcAzdK1dAkYBqKlhABhoQE9dIkqWILM3WdQ5NFfu7hBXK28brA7k68AG903Rsd\nWNc/m6YX4RgaI3mTlhcxUbJuWlnafsYSyZ6RPFNlm7JtULRNDk0YXNjqgxDomoZAMDJIFtteRDdU\nrWrFoy/REHhRQsHS0DTBejsgzSQP7htlvesTpxmJlIRxxvkNF5AsjOUI4xRL1yg4Oi0vot4PidOM\nkm0wXrQGtKI2c9UCUZYRZxmGLuj1YrwoZbJsM1fJcaXlsdL2WW55zFRyXKq5nBxAE3bSqwdJxmdO\nzrFnLL8rD6PdaNu/y5sdkrcK6eiGsYLTaIIkzQjjFDnozCptHzB1FRSVHJMkU0mNm0l0YKbscO9s\nhYOTRZaaAR03JBsMu4apZL5kU7ANmv2QomMyW80xU3UQCPaM5llteRycKDFRsqnkTH7ty6/ScEOE\nEMxVHDb7au7w7HqX47OV79s90Q1i/vj5FT513wwTJftOL+eGZhka//NPnODnf/tpfutvLvHLjx2+\n00t6R+x2z6OuH7+OtWz789e/p6fXO2z1AqbLDpfrfS43+kwUHQp7Ter9gLlKjpMLCro0VrQ5s9Zh\nre1T7yv/bhuqUGkI0LeTTw28JGEsZ+OGCUstRZ0dJxl5U+fYbJn1TsDSgLwICdWixeWmp2iK7YQw\nzhBwQza1H7tnllOrbfwkpd6LWGl5dIOYSs4kSjK6fkSrHxGnKeWcyX/6wf2stHz+4pV17p2rkGSS\n0+sdDk4WePZyi33jBV5Z66JrgtV2wMn5KoYQ/NXpDZ44t4muaewby/Nf/9BdtyVq+nY8y3fabgeK\nV8mbfODgOKdWO1xuehgabHUjyk5EnGXMVnJUcib1fsh4ySJnGpQdE4QkTDPumiyy2goI4wxdpJga\n/MxDC7yw1OabF+v4cUIYw0bHB02QZhJTgziDoinI2RpBpJKVphtT74V8+1KdiZJNN1C018JUIvea\ngCBSs2Pbcd1622e9FeDnU6bKNnvHVAK7G7txcHvJz/8JfBGYFEL8L8BPAf/4HVnV94HdLDB8s+Ro\n21mtt31OrbQpOSZLDY+5kRz3zVfY7AWcXutQtA02uoFihUlSoigdZO8px2bKVPIWXT/mcsOjkrfp\n+hGVnMVmN8BXsTd+nJIzlWhpnKjA2NA1emE0YBOL1YCkFyMQ2IbGoYkSCRl7xvK8uNIeVr92Y+sT\nXu+g3gieVXQM9ozkmSipAP9mnbidz/jRg+P82++scGq1TZypA22q7KikUleaD48fn+HvfnAfLT+i\nP3gA//Y7K6y0Wpi6hmkIvnO1TbVg8spqGzFg3Jmr5NCBtXbASN7A0DWiJGWlFWDrGn6ScW6zx8Wt\nPi8PWIXCOKXjRRyaLHJ8rkIxZ/DhQxOcXe/y56fWlXZAnCKwCdMMQ1NDsf1BUjZXyfHQvtFhh6vW\nC1ms9fEH3aJf/MD+4UG0m571brWbHZLDimxd6fls6+XstI6n6MrTNKPWjUgyBl0dVdETQmAbMFWy\n6YVqABng4GSRq02PfhAPK30b3QANWG4HIKDtxVQLFqam0YoiemFCw4vZ6voEUYVHBzoPjqlz12SR\nu6ZKPHmxQcsP8eJsSMP6wQNjfOiu8eEw8/fr3vjC00t4UcrnPrT/Ti/lTe1Dh8b51L0z/N9fu8Rn\nH9zDXDV38w99D9qNIFoHxouve1d3ntthnHFhq89izeVSzeXwVImPHp4YdjWuNl2euazY04qOwWNH\np3js6BRXGy4Xtvp86cVVpFQU8bou2OyGOIZOwTawDA1dA8/PwFZzvcstD8fQuVJ3+ZFj0zx9pQlS\nsljvg1SFzKtNjzTNKDoZj92toIzXF/4SKRnLWwhgvGRh6oJXN7q8ut4lk6o4GiSpIjZKJec2ejS8\niExKXlhps2ckj21qXNpyWel49AMlxPm3TswQZ5KH9o3S8iPOrHUp2AZJqqB2DS/i3pH8e94n7IwB\n3goUL2/paEIVnDSh0DcigceOTvGBA2N8+fQGJdtgtGQjgGcvN2m6EU9dblBxTPaM5rlnvsp3rrR4\neU2RJTmGRj9UyY5uqIJrnEmEBE3LODRVIs0kXpTixyn9MOa5Ky1MXTA/kufQZJEgSfHihDhW1bT/\n8OoWBycKPHpwnN8/tcbzSy004Mh0mcdPzNw2bPHdttthe/vXQojngU+g2Hr/tpTy7Du2snfB7jQt\n4psFhm+UHO10wuttnyjJiOKUphsSpyln1jtMFO0BZ39Gx4+ZqTiM5C3umauw3vFYbQds9iI0TWN+\nROnCJInEMDR6UcyAEVNRFEvVYkcOkW+MFx3qbohj6cSZ5MB4nlwnZLaawzQ1Hj4wStuP2TdgbTm9\n3mGp6TFesMnYfUHPjRzU9rPZSct9s5f4Ri3ubUsySduLafsJhtCQZDiGzkcOT9DxEj5xdJIfulvh\nZ/eQH37fk4t1vrME/SgmZ2r4YUqUZQRRynTFwY8TfvT4DL/+xAUMTRtQbEsKtompayyMFXAjhQev\n9QPyto5jaGiaYvmquxHn1nswo8gxcrbOdCU31Iuo9QOOzpbpBQk9P8E2dHRdkLeNYWXHEIJTqx02\nOwEF2xhQou+uZ7zb7VYOyX2jBb55qU41Z14DN+h48TCQ6gUJYwWbimNSd0NqvZBMSoRQLGumLrAM\nnQ8vjPLg3hGuNFyCOOUVP6FsG7y01OKhfSNsDj5nCKiWHXp+jJRwbksVTzTANnQsQ2AagrYfc+HV\nTbpezPNXWjy4f4SuH6PGypSQnm1q1L2QJxcbw67h96MFccr/843LPHpoXOm+7HL77x+/m786s8k/\n//I5/o+fOXmnl3Pb9nac8zuLE36YDgWFt+cadkLgts+JXhDz0kqbT9w9xWLd5aN3TXDvfHW4nr2j\nhSF72jVwYZRffXD/KLVeSN42mKvm+JMXVvEjNfMzW83RCxLcOKFVj6kMyGzcKOHcRh8/XuVjRyaZ\nLjt85n3zJFJydLrM7z91hYJlIAW0/ZilVp2lhsfRmTJXGy6/+63LVPMmrwz02ao5i8eOTmHpGmXH\nxItStro+SZoRpxl+P+XzT13l5EKVe+er1Hsh79tT5cunN3h5tUMYZzTTkFFh0QsT9o7l2TtW4GrD\nxTI0DE2RNay1fM6udZUEwi4rjt7I3owQ6UaU5re6/3ZCx86sd0nSjKJjUhoUXr9xscbh6RJBnPK3\n75tjuenxzGKDkbxF042YLDl4UcrXz9VoeRFbvYC8ZWBbOoavRhiyVAmdFiwdQ1PF7CiTdF2FOLFN\nnSiBNEuwDI0rTZc4SZkqOxQsjXNbfaoFC9vUmCo5LLU8Xlhq0vdThFAIg2SgU7V93zsZPXeL3Q7b\n2+8Avy6l/M0df/tVKeWvvhMLe6ftvUCLeKPk6BonHKUcmFAV+fnRPMdnK7yw3GS67PCtxQZISZRk\njBdsNrsBQZRwueEhEYRxyp5qjgypMLyppBBpbHTDIZZRoirGSZRiCAV1i9OM9Y6PAHp+MqS8fvjA\nKGMFm6JjkAzmi1bbPkemSmy1A75xvkacSfaO5nn8+My7/VO+qd1Korm9R97sJd5+NmXbZLHucnqt\nw5WGOxSsu9xwaXsRCIGpSYqOzkY34J75Kg034mpDaevshFBMVRx+6oE9fOHZq/RDNYzY9iMEgpJj\nUi1YrLR9hFCkCGYQ48cpRcsgSVOqOZNMStwooWSb5E2DbpCQZJJUwkrDo+PF1PoBP3z3FPtGC1iG\nQBsIUJZsk412wN953zynVttDrZ/H7p58bUhWSo5MllSijBzCKX5gt25v1gne3odbvYCVlseRqakh\nbh5U5Xap6XF+s8eHDykSATdM0HyNgq1mBbpBQskyaPsRgZnR9iOuNl1WWh6n17v4UYoQCscfpZJT\nKx16fkSUKua2gm2QZBlIBYeNU0mWpIQxvLLeo5KzyVsGa+0u3SAhSjNOzJY4MlXiSl0FOrahc3Ci\niKVpw67h96P9m2eXqfdD/puPv+9OL+WWbH4kz+c+tJ/f+ptLfO7R/e+JhG3b3q5zfmdxougYPH5o\nZijUeyNUw3ZR4pXVDt0wHsKA3uhM2S6ybX9fP0jww5RHD41zfrPHqxs9sgFNvGFojBdtgiSl7Fi4\nYUylYBJlGX6ckWUxLy6HrHcDHj04zk89sIdK3qTnx4wULEqOSbMf8hcvr3Fpy6XWDzm73kUKiWMY\nLLdcXlntMlGySTPJ/okCBcfANDTywFjRphMkuEGMzCSX6j2WWi53T1fQNNB1QTbwEyMFaxCnFDk8\nVWSmojqHe8cKPLhvlHovpBvETJUdpsrOUBbh+hna3WRvtqdu1MHfP37rgt6GEEOCg4Kt89jds0Mo\n4PZ3b3ccW36kYM6ZxDQ0LF1wpelCJtWIQiaxDQ0hQzRdafOAxvxojqmizYHJIgsjef7s1Dotb/A9\nukacqARbAnGUoUUZhhYSJxmVnIWla1i6RpxKcraC3lm6DiKlFyb0ghg/TPjzS/VdHV/fDuztk8CD\nQoh/LqX8/wZ/+3HgV9/2Vb0LdqdpEd9qNeoaJ2wbip7Si3j2SpNUSnKGwaWaixcobv0kk7y60WHv\nWJ7D02Vq/YiCbRBlGZcH2ivGYF5ore0PSQwEYJtgGjpZktKLIY5VWmRJSTlv0g9TwiSlvRLihgkT\nh9Qg/qV6f1jtOjRR5OsXtgiSTLFAxSktL2LPLhD022k3SzSH2gye+Yb0136YsN4O+FatDkCt7zNV\nznF8pkKjHzJbcWh5EVGcYho686N5lps+edPgxZU23SBhqmwPHcX2s673AmDQjRMKq1uwdDIgjDP2\nTxVo9COCKMVPMhxD/euPHZng4f1j+JEaJH1o7yjVvMmzlxs0vZg0kURSzR94Ucbnn7rKp+6b5b94\n9CC/+63LvBglxCk0XJWEfW7fAb744iqOofHiSpu5AUTBEIK1joehC5JM8si+sTcc3L/e7nT3dTfZ\nzgP0+v9PpWT/WJFLNZez613ytoEfJpxqedT6IU03otYL+cbFOvcvjHD/nhH6YcLTlxts9UJeWG5j\n6krV+8G9IyzW+/zZS6v0Q9VF1HWBrimyEwXZSUglGJoS4n3/gTGWWx7r7ZAoVbC7NM3wk5Qslbyw\n3KLsqOFaEDTdkCfO+cxUciyM5Xlw7yhPvLrFS8sddA0+++Ce2/ptvlf2SZRk/NbfXOLhfaM8cmDs\nTi/nlu3v/9BB/s2zS/yzPz/DF/7z9yNuALu8k/ZG++PtOuffqDixTWrzRmfE9Z85tdJmqxewf6zI\nZi/g1GqbfaOFYQLVciOCKGO149PzY9p+RN7S2ex4CvqsqaLXvrE8ILm41cfUVQX+h49N8dRig/VO\nSIakbBn0dpDS7B0rcO98lV6Q4BgaZ9Y7rHVUh7fhhtwzX8XQNM6sdUgyxRS22Qv4xoUa40Wbjx+Z\nZKrs8PxSC8vQeGqxiakrynxNEwRxim0Jzq53eWBhlOevtgnilJJjEMQJf31mE8vQuHe+ymcf2MMn\nj01zpekylrd4crHBV199TRZhmxzpdp/3O2nXi43eaE99N4xz2yLgEsmp1Tb3zSmtne14oOvHtNwI\nP0rRheBvztdYb6kicyYl3SBG1zTSLCPLGMxzQt4yyNk6tq6x1gnwo5TFhovQBBe3+ug6aAIsXado\nC3phgqWl6JrAS5RGkBskTJYd5kdyeIMY0TZ1PnXPDHMjeR7YN8pq02Ox4TJVcZRYraFfI2i72/z2\n7SQ/W8APAZ8XQjwC/BKwuzzgbdi7TYt4PSvbW6W5ruRNPnxoYug0Wr4KlH7k2DSJlJyYqfDXZzdI\ns5QLNRdTQBBnrHdCoIdlaEPu+EOTBbwwpdYLCSJVRRCoAX1n8NI4pk4rlWhkw46QH0uMMCGMJXGm\n8HDLbZ+DHZ8LWz16gZoLmSrbjOQtnr3SUorBmsZ0xX7P7JqdeySKM5653MS+jlBi57D/mfUOOUun\n3o+YKtk0ejFbXcWGZWgaYZINGZMmiiZiEFw23AABTJdtNnsBV5uq8rX9rL9ztQWZUsLOWRpxJjgx\nV0bXNO6aLPLU5QbTFYe1locfA2h0gpiul/Lc1SZfO7eFBL55oc7fe/QA+yaKtK42h/eZZIq16/ml\nJps9nw8enOAnH5jHi5NhhQdUh2ekYL7O6SdScmy2QsEyqLshT19pMlIwb1rxebfo3t8r9ka/x/Y+\n7IYxh6dKKkDqh/zGExe5e7rEqdU2utA4OlNmNG/xkcMKXgMwP5Ljn/3FaWxdG0IdTq0oavW2F6MJ\n0DSF488yycGJArauEyWSQa0DLVSaEdWcyV2TRaKBoOJXX92kH2YYOkhfYmsKUhemCjcuJWz1IoRQ\nCfTMSI7ZSo61js/p9e4weX4rv8t71f74+RXWOwH/+0/ee6eXcltWdkx++bHD/MqXTvPVs1s8dmz3\nUF+/mR95O8/5GxXIbuWM2Ikk+Pr5GqdWOry80lH05hJeWGoPZ4iabsQLyy3aXowbJTTdCEPXmKvk\nSTLQhODIdJH/8qOHWG56/LtTq8xXFQrk9JoSSW25IYaucbnpctd06Zp73pZk6AcJ57Z6gCqolRyT\nkbxJNW/hxwmbvYD1TkCUpLyy0qacV2fTf/bBA9iGRs40KFg6fpQSxAlJprPacpkfzeP6CV85u4FE\nacrsHy8Mz5AoyQYsZq+hIpabHsdmykNZhM2uSgrvnaveNrz8dux2zpad14xi1RW50Z76bkh+thP1\n8YJNzjQYK9mKfMCL6PoxX3xxFaSK5+6eKvEnL6yw2g6I4oyRoprRcgydpaaHpinJDFPTqBZU16gT\nxyRZRsEx0FBogM0Bi2w/jLF0jZavxiiiDET2GhWcnyg0z7HpCraZUrCNAdmGx9xIns8+sIdTq21m\n1rscGC8OZlOzXUl0sG072WlEAAAgAElEQVS3k/wIKWUH+LQQ4leBrwHvnf73dfZuMlFd/7KemKvc\nlOZ6m8XN0AV3T5VIpeT4TIXyAO/fDxJeXG6RAZb+WjVlqxPw6maPOFUVGVMXhGR4cYoXZ1TzFvvG\nC5g61HpKqyXOJDlDR0MFuDpgGgb7BvosINCECoAALB1MXSdJVHVYCvDDlK9fqLPS8bF1jZ9//z4e\n2T/GqdU286N5So5J24uYr+avobF8p+27CZ6398jVhstax2ep4b3umW07rIJj4McZYSxpuSF1N+Tk\nfIX942UWRvNKJDaT3Ddf5ekrDfZU87SDiI8dnmRyUE372vkacZqhaxojOYtESi5u9tjshRQcHTdO\nmChYTFVy3D1TQtc0nnh1i1MDAoMokQgBQgNNE4yWDF5a7lB3IzTgXNLj1c0uHzo4znNXmtfca5ym\nhIlG0TbphTHTZYcjUyWevdrE1gR/9tIaP3Fy7oaBxGjeomgbpFIOHLB2S5XWt0L3/r1qHS/m1Gqb\nfpi8bpB6p69ab/n8wXNLSGC55XH/wghHJsts9HzGCzaOpTOSU89lueHxtfM1/IFwbpSkjOZtcpZG\nkklaXkySgakLHEtnouSQtw3CJKNoG+hJSpJmmIZOEKd4UcpHDk9wcKLE73xzEYmqCkYpimRBRhyf\nLeFFGbalBp7r/ZA0yziz1kVKSZxKtnoBl2t9/vzltVuCQ7wR9fx7zbwo4V9+9Tz3L1T58F3jd3o5\nt20/98gCv/fkFX7ty+f4+N2TSr9pF9ib+ZF3+py/ZsbHj3lptT2EPW/DmLevfbXhcn6zx1jBYrml\nmNfWOj4agmrBHJIk7B/Pc6XhUncVogIgZ2lMlx32jxf52YcXKOdMijmDuyZLeGHCty81qLsRtiEQ\nAj50cBzT0Lh/YWQYPH/5zMYwpnhgYYST89WBrIXkgb0j/MyDC7T8iLYXM1/N0ehFhGmmRLd1Vby7\nUOux0Qno+jHTlRwNNySMUpIso+nHtFe7mAY4hoJDmYbqCGma6pL1gphq3kLTVNwyV82TScUQO1ly\n2OwGnFnvgOAN53/eDn9wu3DI669533yVkvN6FMj2nrjVos7OfbmdSNf6IX6c0OiFjJdsDCH4wrNX\nObPeY7JkM1fNsVhz2eiohNsaQN4MXcM2dRxLp5ozSbOMvKnGEFr9EFC+eqnughAIKQkTxfap6xrH\npgtc2OojpE6YSoRUBTABGDpUciaTFYvllo9AUO+HvLjUpulGQ4bcthezWO8PUEmKPGO3Fi5vJ/n5\n0vZ/SCl/dUB+8A/f/iW9e/ZuMVFd/+L0/WTYvizar6mcb78MFzd7PHmpTskyOL3e4Y8SKDo6+8by\n/MIj++iHCX6S0vETRgcY3l6QKFGyby3SdpWWz/xIjnovwIskWaZob0fzJnlL41sXG/hRih+rQKcb\nqkAok2DoAikltqlxz1iFxbpSGr601QchyYTAjxLcgV4IElKZEcuUxZpLNW/y7cU6R6fL6EKQM3Ss\nosZIweIXHtn7rrap3yree/tZGELwylqHfqg6O8A1yvTbDqsfJCSDdnPRMej6MatNn/mRPKstn1RK\nLtf7TJdzFCyDjh9zodZjuRnw0cMTHJks8cJVBR16ZrFJqx9RzZt840KNphsRp5KqY3F8tsrnHt1P\nIiV/+OwSLyy36AYxaSbRhMQ2BDIDwxC4YUaSpsNKVZSEPHmxzosrLXQBpqYEbB1LMFawEQK2BonW\nlboaoF9v+4RpRsNNuNzs88sfP8JkxbnGoe0MALYx67dS8XkrdO/fi3Z99xC4xi/Aa76qF8RIQJOK\ncnSx7uJFMTPVHOc3u9wzV+UbF2ucDKr8xhMXudp0Ob/RA6lo00s5ixxKONEa0MBV8xZSQtuLWG25\n6LqqXDumjpVTxBmX6y5JlvGVM1tMvT9H24+R8rXgN0Wt59xmn7unS6iGsMAyNPKmwWRZVTP7Ucxc\nJUcvTOgHyS3BIXareOHt2u9+8zKb3ZDf/Ln7dx1s7FbM1DV+6bG7+KU/eJE/f3mdT9+3O4oRN9sf\n7/Q5v3PG55krTb56WcG3jAsCLtSGgtELI3ncMMbWFbX5U4sNDF2gC/jvPnkUy9DY7AT0wpQ4VuyI\njqWTZpIfOTbFffMjQ5KZ7eKoF8RcbXnU+gFNN8bUBKapIZFMlGyeX2qRXG5S7wcsNXxG8yaXmy5u\nkFB0DI7OlLF0jZG8RTmnuvjVvMnCqCLKKQoDP07oRzFNN+DqRImllkcqJaYuGMmbrEYJXpypOVEN\nZCaI04zVgajxRMnhMyfn+MaFOlu9gJJtcKnWp+VGWIbOnpE8j5+YGVJsI7ghk96tPu9bsduFQ15/\nzb2jtz7Hs207Y4qWH92wS/jhQxN88cVVjkyWaHkxjx2douVHLNZdun7ElVqfct6gZJmsdwISKSk7\nJgXb4J65Cuc2uxwYy+PGKQujJYIkoe8nSJQMCahkJssyUqmRSIkbZehaxvktFy9Mh0XubQ+1LXQf\np5IgUtIZW10lxHp0psxmN+ALz15lueWTJBn7x4s8fnxm1402XG+3w/b2K0KIKeChwZ+ellJ+/J1Z\n1veW7RQOa/sxHS/GMXSCOOPx4xOvg09961KNjU5IkmXU+0pfxk4F3SBhvRtwZq2DH6mhZcfSEAJG\ncyZPLTYIk4ypsk29H7F/rIChCUw9JB444JW2TzeMabkhe0bziL6qwORNg4miw2rLI80ygjjj5dXO\nkN56TzGHbQi2eiEdPybLMgyhnHOSpEyUHHRNqVcLYZIzDL744gojBYtjs2UOTRQ5Plt5V1+It4r3\nvpbWNBpiVwGOzpSvacfvDPwfPTTOHz2/ghBgaBq2ZdB0I8o5kwPj6vMLo3miNOObF2uEsaQfJtT7\nIfPVHJahMLkNN6QXRkwUHPphiiKPlhyaKnF4uqQIJTo+l2p9JIIsU12+St5ESnUAzY3kSDPJntEC\nLS8mkxJd02i6MWkKQtMwyLAMnYf2VUnkQMA2Tthoh/zaX71Ksx+RSEiSjJwZYXka/+7UCv/Rg3uH\nuk07mfG2f5Mfy6lu2c3gjTeryn6vBL03s+Eg6xvssZ22d7TA4akSLyy1mB/JAZL940XGizbLTZ/x\nAVTi2StNLtb6tN2QbJD4aBp0vQhDU0PIOUtHSpgqOyy3fZIsQ9M0KnmL6bKDY+ic3FNhseZydqPL\nZCmPpgnOrCm/4EfJNWuTEhzToJKzKNiGIllJMnKmwUYnYKyonl/O0tnshkyUnFt6pu9ml/6dskY/\n5Lf+ZpEfPjbFg/tG7/Ry3rJ9+t5ZfvOJi/yLr5znb90zMxiivrO2W/ZHJW/y8P5R+mHMVMnh1EqH\nlZbHwliBcxtd1ts+pq5T9yIqjsVIPmK2mmOt7fO181tMlBzOb/V4cGGETCrqmJmRHFGScd+ekSGU\n9dRym1MrbWxD49RKB8fUSDNFSGQbKjB/ZP8YZcfkD55bwjJ0nl1sEKWq0JkBBdsgTiXlnMGJ2erw\nfNzu4s+N5DB0wdHpEpfrLlu9kI2Oj2Pq6EIlPQ1XQaGQAkMoWHaQSFVYk6oLMTeS44GFEQq2gkTX\n3YjNXshYweTuqTKZgNlKjkQquut756osN7039fk3I4e5lX1wu2fLre6xm7HAbRe4pivquX/i7qlr\nxMITKXEMjVovoeXFfOXVTR7cO4qQSragNyA4SHIwWXKo5kxKOZOF0Tx7xvK0/YTDUyWevdwgZ+h4\nYYImBELsUDMdsBZpQj2rTCqkiBcl2Ib2WvIjoJozCKIUTdPImzpr3YAfOzHL5YZLnGRcbvSJEkkm\nFTQW1D5sedGu7vrA7bG9/TTwayi4mwB+XQjx30op//gdWtv3hG2/DCfnq3zl1U0yKTm/2Rtu+m2F\n5Z3wKU1oGJrAjzJ0ITA1jX6YMKMpEcJjMxUKjkGjF3J4uoQuBF98YQU/ybhc67N/osh0xebT981y\nZr3LYr1Psx/TD2LmqjkcQ8MNUnqh6jwdm6mw1VcYX4RieXNMRYu42vZxLINqzsTU1UsjUHMiyaD6\nbOsasxUH09SRUnBitgoCHFNnpqzYXY7MlN/1SsBbDZ6vZ9Tbxq4WbeOGQenOwP9zjsnvPrnImh4w\nWXIYL1pDWtSibfCBA+OUbZMLWz36oYIVaQiOz1Y4tdqh7TUxdY2OF9PzU0UnnmSkmSRMMqI049kr\nTWr9gE6QMFow0VAsa/MjOba6IWkmuVTr03RjPnJonI8fnUJmSu8hk2I4y2UbOvfvq2IIjeeuNMjb\nBrVeyMJYkTRT8LmcptHPMoQQ5E2NzU7IX7y8zkbX59hshaJt3LCj9spah1RKXlntvGnH7c2qsrsl\nqHmn7XomqTdKfED9Jh89PEGaZcOh6SBW0BRDU4Op+kDArumGRIka3BECdE2xRBmGhmNpFC0lcmoZ\nOpMlm412QEJGratm0AqmjtCqLIzl6fgxmiaodQO+dTFmqxdSzZkEvWhIgY9QQscTg+LLRNnB0ASV\nvMFYwWY0b/PE+S2yTGBb4hrGwJvZu9Wlf6fsX3zlAn6c8o9+9O47vZTvyjRN8A8fO8x/9a+/w5de\nWuUz75u/00sCds/+2DtaoGibfHuxQduLaXgRU5UcYZphGhqPn5hhse6ybzTP//vty9T7EUITVPMm\nLTdioxPwpZdW2TOSp1qwmKs6TBQd9o4WhrFEP0gIk0zN1kqYKNn4caaID8o298xXOT5boeWrd7PV\nD2n5Ibahs9b2GC85nFnrcHyuQs40Xnc+7hsrsNLy2DdeoBMkLLd8VTT1I06vtQEFkx0r2Gx1QiQJ\nmmYgEEyVbdwwI83SYTcpSDJeWG5jGwq9Us2baEKw1lE6dBMle3jtW/X5N3ret4P0eCtny8322K2w\nwBUcAy9SZ/52536q/Nr9j+YtgiSj5cWM5C0cU6foGOwfL9L0IuZGFITejRJ0TSPvGBybLeOYOm6Q\nkA0gbroG7SBSKJ4YDk+UaXghzX5IksnhSIQGRJlkvGDhRiluFGPqoAG6oeGYOvEgaS7nTMX22w2Y\nLNn4sRK9z1saAKttxQI8U3F49koT67qu1m6z24G9/U/AQ1LKLQAhxATwFeAHyc8b2OuF0XT2jhZY\nbfs33PTb8Cldg9GizVjRJskyVYU1dX7hkb3MjeS50lSDguMlmw8cGOfbi3X8JOXQeAmAh/aO8ul7\nFSTh7EaXAxNFRvMxQkgafUWF/JHDExyfKTNTzXF8tsKr610+//QVpko2p9e6WIbACyVelJFkMa+s\ndbF1gRQCXdcoaBqZlByZLnHvfJVPHJ2iG8S8vNrB1JWI1s7E43othHfD3mrw/HpGvVvHru4Zy/O5\nDx7giy+uKMdlG0PhuO3PH5+r8NHDk9R6Ibom+NmHFtgzludT98zw7JUmUaqIEXRdI0tVwjNSsPAG\n2OteGLN3tMCeEY9qXhELOIZOpWBycbPHmbUujmkggFhK/s775kHARifg6cUGmlBJ611TBSxdZ7Mb\nIDSNuUqOzW7ActOjkjOwDQWfODieZ/94mVJOp+FGjJdsVto+BcsYDmS+EwxL289wNzrOt9Nud5/u\nHS0wWXKUOOKO/fn48ZkhnKLpRozkLCSSwMmIkxTL0PHjhCSQaJqg5cecnK9weLqMHyW8ut4jkZJa\nN2S8YGMP1OFNQ+PHT85S60Wc3+rScWNsI8I2Bd0wIooVYUK5YPL3P3qQk3tG+O1vLhI5JvMjOUq2\nwbmtHhvdACHhkQOjamjavp3j571rp1bafP7pq/zd9+/l0GTxTi/nu7ZPHp/m2EyZf/mVC3z63lkM\nXbvTS9o1dn335+vnaxRsjX1jIzimPqS9/vjRKWarOZ5fanFkqsTp9Q5bvT77xwp0g4RHDowjpWSs\naFGwDFZbHt9ebFDrh/SCiDBOh/N6hydLLIwWmC6rmZmpssOXz2xwbLrMkakSZ9c75C2TybLNetvn\noX2jFByd+xdGOD5beR0R01LT48Jml8eOTrMZBYwXbXRNEKcOEyWHj989yasbXVpuxEpLQeeW2x5p\nKpFCzSeNFRzu21MlZ+k8uDDKK2sdpsr2MKjPWwYlx0RD8Mlj068jdXorPv92z523+2x5s+tvxxQr\nTY+rTZc4y8gZOo/sG+X4XOUaJMlnTs5dEz/sHS3wsw8vgIDFWh8JzFdzPHJgjOmKgyEESy3vNe2/\nSM1iT5ccumGCG6bsGcuh6SrhsgyFFipaBifmKlyp9bEsnXovYrmVwIBR9uRchfcfGOfUSocLWz3i\nVOIM1lx0DF5abb82AzVX5SOHJ1TlXMBLK+07xqR8q3Y7p4+2nfgMrIFKEH9gb2A3EkbrhjEn56s8\ntG/0GjrHnQHQffNV/tU3FzGEIJMaHzo0zsP7xoadk52BEsCFrT6NfkS912DPSJ6PHZ4YBkGOodP2\nYg5NFvirM5tomkAT8FP3z3NsoNfQ8WKevtJQbfaqakF7UYIAWv2IIMnoeIoNpOiYkMVEmaJHbHpK\nO2Dbidb64TUvRClnvqEWwrthb8XBfbcdhz1jeX7xA/uH0K9y7vUUxp99YM/rvj/JJGVHsag03Yjp\nioMQOuMlGzdICeOIv3xlnbGCxSXb5Z65Ch+5awJDE/zGExc5v9Xjcq1PNxhw9msa5zd7GJrgxZU2\nqZTYps7R2TJ7R/P89dlNJJKcadDzYy7U+vz/7L13mGT3Wef7OafqVI5dncNM9+Sk0UijnHCQZMv2\nYgtLYJNsWGy4sAbWhuWyXO7eBS4Xc68JhkswaQEbgw0e1oAtyzLYHiErjTSSJmhS59yVw6k6ef84\nXTXVNZ2qp3u6uqe+z6NH0xV/dc77e39v/L5Rn4v3Hevh+M4oaVkjq2gVoo3yIE3TtOwsg6pf05sC\nN0+52nqiHjldTj71uN2rd7ArxHCiYDcXC/Z7RAS+9OoYSVlFM+z9e24qx3ff2oNLEhEFgfFUcZ72\nVGQur3B6PE0yr3Df7lYuz+bJK3a/okeyyyDagz6bwl43uGeglf7WAM8NJuiP+cmUMrQG7F6yW3si\n+NxOXh5OYlgmAY/rppALw7T4pRNnaA24+cQ79m/2ctYFoijwnx/Zx0f+6mW+9MoE33tnfbTl2x3l\n4IRuWRzvb+GugZYKyU/1uX0lnscpCpydynJ3fwy77MLO0FtYKIbJN87PIooC2ZIGQEk1SOQVgh6J\ntx/swLIs9nUGGU8VySsac3mFve1BnhuMk1c0Am6J9x7rRdUtiqqB5jcZT8sABNwSh7vDldl1Q/GC\n3YdXUJnNqTx9fobjO6K0+l2cncxgAW6nSG/ES2fYQ76oEwu4yc8PWxUFAY8k0hn08MjhTroi3spv\nHU4W6Iv6CHo0drcFSOQV7tjZwlS2WKl+uV5s9LmzUkndct8f9kkc643w8nCS9oCHkEdid6ufrqj3\nms8q2w+1ZeU//tDuik1R7jkaS8h86utvUtRMhhMFeiJeWv1uRGy7MFPUcDlFAopd0uZ32eMIfC4H\npmXRFvTQHfGSLKi0+lWbWl1ykFMMYj43Q/E8HSEPI/E8O2I++7M8NhX5mcnM1R6oKlu2PN+q0c//\nepyfpwRB+Brw+fm/vw/4yvov6VpsVbrbpQajLfU7qg2guwdaUDSDF4eTXJrNkZK1ihKtft1Q3CYY\n+OCdO3htPMPh7iDPDSbIKxqDcwXu29XKK6MpXhlLkinqDMT8HOgMLoi6JmUVj+TAJzmYyyn0Rnz0\nhG3mp1dGU7wxnibslSgoGpppM7s4RQdhn0Rb0MWe9kBlPdW0n+VrsNkzldaC9YgKlUu/XhxKUtLK\n102sOCyJ+ebHyvcI4HM76WvxoZsm9+9u5cpcnomUjKIb+Fx2n5jL6aA77OWhvW3sjPn5zpU4qj7P\nuCOrWJZdg9sSkNjfYTeolmdLFL0GJd1gOqsgOUTCHonJTInOkIdDPXbz6619kYpjXI2jvgg7W/yM\nJAsc6QnbSnCRxs+bpVxtM7GUfJZ1zky2xK62AA/sbqWvxcfT56Y5M5lGRMCyrg4wzqs6f/jNy9y6\nI0Jgfkq82ymSljV2tPgoagZFVWc2qzA4l7eZIkU3jxzuxOdy8JU3pnA6RDJFlaDXyYvDCd6cynFH\nfwu39oS5bWd0wRyTwz1h9rYHONwVvink4nMvjPDGRIbf/cCxSk38dsDDB9u5tTfM737jEu+7rccm\nz2gCWF7/lf/9+nia0YRMUlaRVQOwePxYb2Vwqm5ZXJjOcmE6R3/Mz8sjCdIFDQuLTFFDNUxeHU1x\n/55WQh6JeD6Fz2UPN35hOIGqm3QEPUxnFTpDHv7P9xxmOFlgNF7gL58fIeBycPLSHPfvbuW+PTbz\nYLnkKiNr9EV9dITc3N4XJato5FSd3qgPWdF55s0Zon5bz7z31h6GkwW8bjtzkJJVogE3h7vt86N8\nDd59S3cleJYoKAvIg9arKmQjz53VlNSt1Iv0zJuz5BUD1TApaQYs4xhUl8uV/w77JI76IhV7GGyn\nUjftfhtZMZjNKWi6hWFZKLpOSTPoiXpwO0WCHif7OoJ88805Ah4HokOgP+ZjOqvQHrJZ5J4fTKIZ\n9nDUjrCHK/ECLX4XXrcTv2feZhRWlvGtcP7XQ3jw84IgfA/wwPxDn7Es68TGLOsq1mtC82agHiHI\nyBojyQJYEJ03YF4dTZOWNaYzJYbjMnlFoz3oWXAN7InAKpYFJU1nIl1iMl3k3l0xrswVeHM6i6qb\ntAe9qFqBREGhpPkXbLoWnwtRsKNLJV3ntTGZM5MiIhBwOxAEgXRBQRAEHAiEfPbkZ82w+wUOd4UX\n/N6yknttIs2ZyUyFBrHRIwHriWqH7+WRJBdmcsT8bi7OZJlMlzg7mbYZ1kSBTzy8j0M9YXa2+DnW\nG2Eur+AQbGrJvW0BUgUFl0OgoOgEPU4M08IhQl7R+ftTY8zmFCazJRyAaYLLKaJoJi7JQcDl5NJs\nnsG5AlfmChzrjfDwgQ5GkzKSQ8CwLMbTsp0dGk3TF/Px0nBy2SFzZyYylf24FG35zVCu1ogI+8qM\nQeNEfJIdcW3xYQGReQpsa35+jwlYpslcQeG18QyGafGhe3ayo9WPqpl8+l8vUtQMptMlxhJ2ZNnv\ndtIWcuNzORHBHopsGLgdNr1qYJ7mN18yaA1KPH5bL30xn02CMa8X5vIKJy/P8W7v1tHla8FIosBv\nfPVNHtzbync3CDPaekEQBD7+6H4+9Ocv8oWXx/jBe3Zu9pIaCsvpv4ys8eJQkouzOeZyCge77J4N\n3bIqWRiwz/anzkxxacaened1ObgwnUMU7XkunWEvB7tCnBpN8dyVhD1Lx7RoD3nIl3S+dXEOySkS\nGnbyxPE+HtzbxlPzPYEOh0hR0cnag+EqBvXd/S2cGk5iYKKlTF4ZS+FyiKRlm5yB+exOV8jLYDzP\ncLJAf4ufsaSMV3LQFnTx+LEewC6hyys6aVnjgT2tBNxO3PPvBZvYpTowsh723UadO6sN4C71/UnZ\nJq7qCNlMf91hmwFvORlZzO6tfbwj6GEmW2QmoxDPl+yqkbzCwc4gY4o93uTV0TRhjwvVNAh4JPwe\nB28/2MGVuTwzuRJBj0RJM/jOUIKAR6I96MYhwqXZHGlZwyFAZ8hDT8SD3301u7NSv26j6/ZVOT+C\nIDiAZyzLeivwpY1d0kJsxaxBNZYSgtqhp39/aozT42kE4GhvhEOdIeZyCm1BN7M5BQRsQc+VODuR\noSvqrZSTeZwOprJFBtoC9M/3FE1nFfZ1BOkOewl4nJyfypIp6bQFXfjcjmvW0xv1Es/7EAnw9fPT\nBNxOO1thCOyI+eadHXsSvKobHO2JkFd0fujunQuIDMI+iaAsVZRcOa29FSIB64WMrJEraSjzRAki\nAm6HiKLbgx+xLFTdIq/qyIrBF0+N8bPzAx+fmC+Hq47+DSVl9neGeGEowe62AJ1hLz6XgxeGkgzG\n89zWGwHL7u9xOQViAQ/Zksr+zhAGdqnCvbtivDScYiwlc/7fs/TFfPhdTqI+F+c9WfBAJp7nUFcY\nlyQuuc+2+n7cKriebLc9jNZVuUfDyQJuSeT+PW3E8yovDMZxiiIF1WBvm4/xjIKiGRRUg398bZJH\nDnUwlS4SC7gJeJwUVRO/W8TrciAIUFQNvvLGJCOJAopm0hfzsa/DT0kzOT0+h1MUCHodDLQGKiUt\ni+mF7Sw7hmnxiS+8hkMU+OT7j25JauuV8NDeVu7sj/J7/3qJJ473VgY4N7E4yns6V9RwSyKPHuzk\n6fPTtPhdi5YP98V8fOKRAzw/lGAyUyRTUJnJKgS9TkRBwC0JBDxODNNkf3uQZEFFMSyOdIcZSxWQ\nVZPjO6IL2MR2tPhwAOmiilsU2dHiW2BQT6VLOBwCIbebVEElr+jcsdNmJzzYFSLmc/HMmzOcGk1y\naSZHUTUYS8oc642QkFX6W/z0xXx2ZitZYDpT4spcgQvTGW7b0YJHciwgD9oq58n1ltS1+FwEPE76\nor4K9fdyBFBLXZfqx89OZvja2Wm7pFEz6Ax5MBEQgLFUEUU38ToFZEsAwcIhCpiGic9jz/65o7+F\nQ10hAm6bjfPZS3F8Lptc62BniLaQm/4WP1PZEncPtBBwO3lpOMlr4+kViYy2Albl/FiWZQiCYAqC\nEJ4fdHrDsB37BxYbeppTtEpZRG6eg39HzEeL30XM70YU4bnBBJpucnE6z7EdEUqasYCGuaRf7Sk6\n2BXi/FQWWdPxSA6iPheKYdAdsus2RxIFgvLVfpx8SWc6U6Ir4sXtsDeACDgkC8OAaMCNZhh0hT0I\nlkBv1Edvi4+7BmLX/L4Wnwtlnio7OD8TZytEAtYD1fdWwO51eMteF187N81cTsEw7LkqJha5ok7I\nK1UmMJevUfV1Kkf/krLG7rYgT9zeV2k2DLklhuJ5RlIFdrT4ONwd5qXhBG6niGn5eeRgBzPZEjOZ\nEl8fT3N5roCiGThEgV1tft52sIPeqBfJKeJx2MwuBUWnNXBtP0b1jILtth8bDdeb7a7VmeXI7GA8\nj2HalOmyonNLbylXsIYAACAASURBVJgH97bzP54bsgMtfhdBjxO/y0nE72IwXmA2bTtGim4gCgJB\nj5OBWIBEQaGoGuQVnUszOSSHyA/cvRNZs2vLTdPODtRmmG8W2fmjb13h5ZEUv/N9x+yI+TaEIAh8\n/JH9fPBPnudzL4zyHx8Y2OwlNRRqA5zlPV2eu4YE9+1uXVDOXou+mI+QV+LvT43x+ngaAQvLgvaQ\niydv76Mn6iPoligZBZvqWhIoqDptAQ8WkFW0yl7LzLPPPbi/DY/TAQJ43c4FBvVEsgjYZVSabrOS\nlcv2y1kay4LTo2m8LgfxvF1+VS6FG0vKPEgbLw4lOTuRZTxVnLcBbPKmuwbarhkOuhV0wvWWctX7\n/qV0ZfXjM5kSszmFqM+FIEBJtwCT7rCXgTYfzw8msUyb3KakGZgWyIpOR8iDQxC4b1es0gs8PFew\nZUUUyZd0ju+MgCCgWfbolHJPt6uc9ZvL8/pEellm0kZHPT0/eeANQRC+DhTKD1qW9dPrvqoqbJX6\nwdWiMsm9pLOrzR7khQVBt8SVuQK6bhL2SETn62Srp0N/481ZnKLAK2NJBOwhhBUa5pqeoqSsciWe\npyvkJZG3JwWX52sMxwuouknYJ107x6Y7xH+4pZvRlIwoCLw+nubcVBa3y4GAxe077AhALWHDWEJm\nOFkg5nOhW3YkQtEMNMMkW9S2/H1bLWojNkGvRF/Mx5PH+xhJFsgXbcf2u/a18dTZKTwuBwJQVPRF\n657L0b9yeUFfzI7UnZnMkFU0O0s4X/pgmCZ3DsQ4viPKuaksWcWmJ1Z0g8lMCUWz+fsdDrunI11Q\nOdwVZiJVtBnkWv3s7whiWFblnmVkjbOTGZ69HLfLmjzXstc1sb643mjoYjrz3d5uvjMYZ3iugGaY\niIgEPS4Odob48H0DfPPNWSI+iclM0aZRFQR6o17Ssoph2QaY5BDpCnnwup2MpmQ0w8TvtmnTDcMk\nnlOYzSrkSvb7a6mst5suXwrPXorzqacv8B9u7ea9x7ZXuVst7t0d4/49Mf7wm5f5wJ19+G8SBr+V\nsFiAM6/oFYbMe3bFrnEClkLYJ3FnfwvZks4Du1sZScjcv6e10rf7xPE+7hxoqZTMl3UzcI3zlS/p\njMRldsS8tAWuztlSNZMzk2n8Hie37YiiG3YJ3jsOdS6wKQzLojXgJuSV8EgOJtIyM5kSe9r9hFrs\nktezkxlM037dZLpETtGZySnsaPVf4+RtJZ1wvQHcekltHtzTVjn3y++rbi3AgtPjaTTdpDXg5p6B\nKINxmV1tfjySk12tfhyiSLqg2Cx8koPZnMpD+9qJ+CUS87Tpfo8T07QIe5wUFHu8xni6xHtu6SIh\nq8Tm73058HluMsNrExmKmp3126oZoHo01Ze4wSVvZWyHrEFG1hhJFHhpOIlhWQsa/nbG/OyM+TnY\nFbKNTJ9k18Tf0l2pAd6Jn6DHZktK5FVeHklyV38Ljx/ruUbZwcIIQdAtEXDbwj+akCnpBmcmMjx2\npGvhHJuqGSOHesIMxQvM5ErsbQ8yGC9w90BLhcGl+n5UGEdUk+lskdt3RJnKlGySBNXgxOlxPnTv\nwJa/h6tBbcSm3MzpFIQFvTLvvqWb7oiXE6cnwLL4zMkrS87N6Yv5riktrGX8OzeVJVey8EoOe5js\nPCW6A4G5nEIs4CJf1CnqOl7BQU/Ey5PH++iL+XjieB8jiQLT2RInXh1HFEWeOjPFRx/czXODCZ67\nEq/Upu9pC1xTm97E+mI9MiSL6czLs3leHE6SKWp0RzxYllUZRLy7PcCd/S1EfS5SRZWn3pgmU9Tx\nuyRCPnvavGaYKKbBO/d28cCeVv7ljUnOTWYZnM0jKwZ/evIKHWEPrUEPmm6im9eyOG0HXb4cxpIy\nH/v8K+xpD/Ab33PLtix3q8XHH9nP+//wOf7yO8P85Fv2bPZyGgK1AYx8UefcZAbdBKcIjx3uWtXc\nu3L2KOpz0RGyBxj3tvgYTcpM50qVs6Q8ALUW1cRIhmXREfJgWvYIi+rdaVdj2yVTt++I2hTLNQxe\n5VJu07LwSiIxv4sL01laA26+fXGOCzM5fG4nkkNAVgw00+KWnjAzuSLdUQ++Jcoit7tOqAfVFRbl\nXqixpHxNf+SZiQypgkrEJ9EZ9BANuJhKl3A7HYwki7znli7GUjIhj4TbKdId8SI5RMaSMm6nPYYk\n5nNxbsqWSUUzaAt4cAj22eCWRJ55cxaPU+TcVKZimxzrjfDFU2M4BIF4XsErORq2VHElrOj8CIKw\nw7KsUcuy/vJGLGg7oLZevxwFmskqDMbzPHygA7qvneTeFfHSFfEsGvEN+67OD/iufW1MZxXu7G+p\nKNDaSNODe9o40h2u0CICPHN+hpdHUuimPZn5/FSWHTHfknNsykZYeTZBNYNLeU1wlXGkLeRmJCmj\naCYFRUcxDHojfjxbeIPUi2rHpFqB2XOeRHa1Bir3FiDqtwe+XZzNLzk3Z6nvqT7Y3JJIfyzMVLbI\nSKJQYZrLyBq6YdIWcONzOQh7JQ53hemJeglWsU+dmcxwcTrHWKrIbX0RBuMFnjozhWpaxPwu8iWd\n2ZxCb9TXsKUJ2wUbEQ1Nynb9vs/lQFZ18opBpqgt6A0qZyn1uEXEJ5EoOJjNl9gVC3BLT5gTp8eZ\nTit85tlBPvHwPv7LOw7yZ88Oki3q7G4PcGE6S7qg0RO19U1e0Xl9PA0WyxJobBekZZUf+8uX0U2L\nP/6hO26aLMjxnVHedqCdP/7WID94z84tyWq33oyytQGMgMdZGU5eKOmronde7EzXLYtcSat7jkp5\nPYNxuzyuuhcIwC2JtAX8fOPNGXTTpD3oYWfMv2Ad+ZJOumiTFzx2uIvnhxKMpYrs6whyejxJ0CPx\n1v3tZBWN23dEeXkkSUExMLDY1xZkJGVnhe7b07plGXw3EtfOhVxoL1QzwOVLOnPzlOcel0hbwMN4\nqsjejiDDiQJel4NjvRFyisauVj+Pzmfwyr3E5UzeQGsARTO5OJPF73YyV1BoDbgQAI9TxO9xUtRM\niqpdNTKaknFLDnsor6zRFjS3rD2wGu38j8DtAIIg/INlWe/f2CVtbSxWr1+OAu1q9TMUzzOUyNMe\n9FxTL7lSxLd6fkBHyF1RTrAw0jQYz3Pi9ARRv7SAkevKXJ60bA9Iawu5ObYjwuGucGVT1Do1tYZ8\nOXNVntxbVsYxnwunaE/4zZdUpnMl3JKDHS0+OsOeRZs5tzPKjkk52lY956k6I5QqqnYkbYW5OSuh\nVm4QIF/SEUU729Tf6md/R4gH9rYS8Up85uQVLs7mOXlpjo8+uLuS/j7QGeKl4ST/fiVOSTMQBXA7\n7XkAtiL2L8tQ08T6Yb2joS0+l01zjc3c4/c4eev+dubyyjX6xikIpIsa8byCYAlE/C48Lgcep5OC\nqjOTLvHZF0b4hXce5J2HO/nX8zNcns2haAadQTfjSZnDPXYp5sWZXIXE5cnjfdtWdmRV50f/x0sM\nxQv8xY/cedNlRj/+yD7e83vP8mcnh/jPj+zb7OXUhY1glF0sO18OSAU8q9PxtdmjcsZ9LXNUKuVS\niQKhYeeCXiAARTN5dSaFapgMxAILSBLKxvZYSiYla7w8kuRwd5h7BmL825uznJ1K43U66Yl6GUrk\nCc7PD+qL+jg7lUEfNvnH1yawLJjLqkS8UqXXZKsx+NaD2p6vlZy9xeZCLnaPnfNn/WzOzryMp0pg\nwXTG7tfySiKHu8Lcu6t12e/MFjWG4nkyRZ2ZbImARyLolihqBu852s3p8TTxnMJ0pohl2RnLnKwx\nmS6iGuaWtwdW4/xU5+13bdRC1hubFVlYrF6/OoNytDeyZIPjShHf5Z6vNoDLRAjlNYwkC2SKGh6n\nPfxwNqewvyPI4a5wheygOrVZrYzK/6/NXM3kSgscrI8+uJuzU1mGOoL0tPgolHS7rtm7urrm7Yil\n5jxVZ4QE4J5dMR470rWgfLGeuQe1cpEtapybypAu2rSXb9nXjmaZdEW8jKdkdBP6Y34uzeT44qkx\nuiJe+/53hblnV4zpXBGnYA+0dc1PhQ56JNqC7srA1mbkbmsh7JMqU8IN06It6K6QldRmqU9ensO0\n7LKYRw51oFsWIY9ESTe4PJvHIcBYyp5UvrPFz1sOtHNxOkdB0WkPeUiXVIqqgSTqC0hcaiPU20WG\nciWNj/7VKU6PpfmDHzjO/fNzU24mHOkJ887DnfzZs0P84D07aQu6N3tJq8ZGMY7VBjDqzeYuFQxd\na2Y47LPnxOyM+a/Z8wLgkRyIwEyutCAIV57/k5I1oj4XHslR6TkZaPOTK9kjGLySA82wbKKFolY5\n44qqQcjt4mBXkKlsibNT2QWB2q3eOL+YHqt2qBXNRIBK0HgpZ281cyHL+jnidTE4lydbUsmXDDrD\nHu7f3cpAW4B7BmKViqDq910zVN2yONQdRkDg25dmSRft+U5dES/eeTvw9Yk0FtAadDOWkBEdIm8/\n0MFgvMDbD7SvqnSzUbEa56e2NPS6IAhCP/ACcB5QLct69Ho/sxabORtoMYVVj7JaKeK71POLlVuV\nh42+OJTEnJ8cvas1QG/UV+kVMiwLv8eJbrJk2VVt5ur8dAZFM4n4rpbMeN1OHj3UWbnu5V6mrarQ\n1gNL3ffqjFB1uRGsXXar5SIpqxzqDqNoJi8NJxlO2mxwLT4XTkHAKcJwooBuWUT8Lna1zpNddIV4\n7EgXT5+b5vR4mlxJozfioysiXVOut1Vnb93M6Iv5+PGHdl8jj4vt9YOdYYbjMhemc/TOMwm+79Ye\nfjdxiaDXSaaokS/aDk1H2MPe9iD/8/QE6ZJKb8RPa9BmfMyWbMNqoHXhbLGtPL+tGvG8wof/4kXO\nT+X4re89xjuPdG72kjYNP//O/Tzz2zP8f1+7wCefOLrZy1k1bhQLYb3Z3MXOj2ojdq3Zxdp1lFm8\n7uhvocXvuqYcP+yTePxYDydOj+ORHDgEgReHkuRKOqNJmYcPdDCUyKMZdo9PmV6/fMYlCyozOYWp\nbAmnCIe7QpweTzMYz3NuMgMWW7Zxfik9Vu1QvzGRQRAsjsQiK84IWslOLH/u4e4wRdUgU1QxTJBV\nA0/UtsFq37fUGlt8NsW6YVncPRBDVnUivqu062GfxNGeCGNJGcOyA2ZlBsGgxwnC1Xk/WxGrcX5u\nFQQhi50B8s7/m/m/LcuyQmv43q9blvWDa3jfqlBvJGepCORaIpO1TkjthN71wmJrq/6Od3u7KzMF\nXptILxgsVlZsGdlOfedL+rJlV9WZq70dQYqqQdTnZDCex+tyLNgsW4W55UZhsfu+2GFbmQFR0lYl\nu8vJZvnzL87m8LkciPMliuW1lNnjYj4Xp8fTlbkLMZ+L4WSBe3fFFrAHlR3p8lq3ymyGJq7FSnrI\nHpqskcqriAIVNkKA3e0BDnQGsSy7zAuu0toP5goc6g5hWhDxSQTcNitgqqhWGA6rsR1k6Nxklp/4\n7ClmcyX+5IeP87YDHZu9pE3F7rYAP3J/P386n/25pTe82UtaFRr53Krer+sdMFhsfEE16VE1+mI+\nPnTvwAKboi3g58J0llfGkgTcEpZlMTiXr9BiX5zOcWYyTdAt8YmH9y2YA9QT9fH6hN0PWGa9XQ8d\ncKOzyUvpsQWEUx4nAqzoXK+09oyskStqqPMEVW1BN61BN6ZlUdKMJUvQllpj2FfFKLfXT8grLWpT\n1pZvltsftvq8nxWdH8uyNmJy2VsFQTgJfMmyrN9e7w+vJ5Kz2km69dzg6lKx9VBUSxEoVH82LCxf\nKf9XpkWuHixWHUEq9+08dqSLlKwuKHKs/t7yBqh2pjyS45ooURMrYzGFUpsiX052V5LNsO8qNequ\nVr89GHcqw1hKJuBxEvW6KsQFPVEfSVllNlPit565gCiI+Fwin3jkQEUZLkZtvRVmMzRRH8olFR5J\nZDiepz3k4WBnqFL/vzPm53BPmJeGkoDAK2MpHKLA4Fwet1OgN3q1sbYsEylZ5fx0FpckcmYysyDq\nuJwMNXpJ3IlXx/nFL71B2CvxNx+5h9t3RDd7SQ2Bj719LydeneC//9NZvvgT924Ztrv1Dk5uBNYS\nMFiq7wRYlExhuf1WvkZjCZlUQSOZVxEFAdESGJorsL8rSEk3eGxPFyGvREpWmUwV6Y566Yn6ONQT\nXvBZ5axCvefIcsHqG51NXm1pIizf87Pc2quZgl2SiAXc2hsh6nVVbLal5kTVrlHVTHJFjYysAdht\nD4rOq6MpHj/WW+kpKzPUlmWiOssYlKXKvJ+tGriC+qiu1wtTwD5AAf6nIAjfsCzr9fKTgiB8FPgo\nwI4dO9b0BfVEcpZSKNcbmVyvyOZyBArVPT21NMpLee7LOU/lGt0zExke3NNW+bv8mkqzZdmZmo/w\nlLNb0CyHWi2qD9vaMrhbeyLL9kotJ1u11KgzuRKnR1O8MJiwB1mG3LgdIsf6ogQ8dl1vi8/FX31n\niOmMzfQCcHYqQ7KgrlqmmtgaWM6pKMtVR9DDK6MpVF0hUVA51hupvP74jiivjqaI+V28OpriWxfm\nKGoGfreTiN+9oCm7tk+wuol6ORlq5JK4kmbwf//Lef76+RHuHmjh97//9i3V37LRCHkkfv4d+/mF\nf3iDL748zvfe2bfZS9o2WG1QdzG65Nq+kyM94UXJFFZCdYBkKl3kQGeQWNDNXEGl1e/GxEK3LM5O\nZPj2pTncDgeX43nu29XKfXsX9sKt5RxZTjdsRjZ5ud9Q61CvxQ4t/97RpMylmSwPH+wESQRYYJ+V\nSa2WW+NIssCLQ0lem0hzZjJTmT01liySklVOnJ7g8WM9FYfo3KTdB1y2E8rrv1FlohuNG+78WJal\nYDs+CILwz8AR4PWq5z8DfAbgjjvuWHOP0WojOUvdyHpvcK1RsV4CshyBQoXdy2LZTb9YjW/t62Hh\nZwwnC5UBWPmqZuXasr7qDXikO3zDlc92QO39XKlXqvb11bOEnj43TU7RCLolHj3UyXCyQDKvMpEp\n4i7p9pRnzcTvudrfBRD1uvC77YndnWE3IY/EXF5ZtUw10fhYyakoy9VQIo/LIfKWve1MZUvc2d+y\n4HUCFliQV3UcIrQGXcxkFEbmZRCu7RMsM1xW68GlZKhRS+LOTWb5mb99lUuzeT7y4AD/5Z0HkBzi\nZi+r4fDk8T6+9MoEv/ov53hoXxudYc9mL2lbYDXOwkK65KsDzGv7TrDWlr0fSRaYzZUYiNl9omlZ\nYywhY5rWgrL5C9NZLAt8bgelgkFW0Zb8TesVVN4so3y1v2E1peq1ay8z7SULKrM5la+8McUtvRF2\nt+p16ciwTyIoS7irMjZYdjAnJatEfRIep1jp1fK75vvAPdf2gW+X4OcNd34EQQhalpWb//N+4Pdu\n9BqqsdSNrOcGL2VUrIeArIZAAahkY1az6Rf7zGxRI1WwWZrK/R/lAVhOER470rXgmoV90jUZC4Rm\nOdRaUK+sLOWATqWLDM4ViAXcXJkrcOdAC0d7IlyczjGcKKBoBiGvE7dTpFCy+zDKlNs+t5P7d7eS\nKqo8eXsfPVEfw4lC815uI6zkVFRHCAPuJJplLqDUz8ga56aySA4HcVnllu4wwwmZfFFHN006Q157\nOLO3e0Gf4HIMl4uh0SKLpmnx5/8+xG8+dYGwT+KvfvQuHtrXtqlramSIosAn33+Ud/7ut/mlE2/w\npx+6Y8uUvzU6VjK0q/d49QDz2r6T8mD1erMuLw4lGZwrcGWuwP6OIF6Xg4Ki0Rn2cKQ7zOHuMGGf\nPUuuL+qjqOv0RX0c7lqf/q/ldEMjG+WrKVVfbO1lpj1ZNdjTFiBeUCiqOs9ensPnss331erIxYKs\njx/r5cTpCTxOsVLJM5aUySvzfeDzdkLt52+H4OdmlL09KAjCr2Jnf05alvXCJqxhAZa6kau9wcs1\nlF2vgCznnFV/9lqN57JQn7w8h8fpoKSZlaGnh7rD+F32bI/FhrJds5la/OxsqU+hNmGjXllZzAGd\nSNn8+zDfumXZr3vieB93DrSQn1dkUa9rUcrtt+xvX5B1atSDpIm1YTVORdg3T4e7yD5OyipuSeSx\nI10Mxgvc3d/CqbEUV2bz+D0O9ncGK6VtA63+NctPIxkxM9kSP/fF1zh5Kc4jhzr45PuP0uJvBgJW\nQn+rn59/xwF+9Z/P8bkXRvnBe3Zu9pJuClTv8YDbuWCAOVzbd1Jv1sUtXaU63tMWYDQlM5s1Sckq\nL4+kKoPQ+2I+fvGxg3Yz/TzJwXpgJd3QqEb5arLZi6097LvKtFdQDGTNoKAYzOVVdrT4eGhv26pZ\ndRe7dmGfxIfu7V/wWJks67HD11JtbydsRtnbV4Cv3Ojv3Uhcb6RyuXToaht/12o8w9WekzLrSlng\nyzSISw3eXM4x2yg0eiP0StjISeJtATcBtxPNsOu3yxH7skFbi8Uot5ulbRuLzZTf63UqqrM5HSE3\nAY+TiM+e6v7MmzMMxgt0hNwLmn7X+hs3W/Ysy+Jf3pjil//xDEXN4Ncfv4UP3tXXzGDUgR+5r59v\nX5zjV/7pHMf6IhzpaQz2t61+hlSj9resxjlYK2r3/+HuMBdncwvKpqqN+r6Yb0PmwKy3bliMUGq9\n5eN6bMQy095IosBTZ6cZTcpEfRIRr3TNmb0SlnKwbsZzfzMyP9sO12NUrMTysVyqtJ5NWm+96Wp/\n043cKI3cCL0a1Lv+1dzfxbJ4q5WJpRTydjIOGgmNIL/V+7Ve1qSlym2zisax3gh39rcQ9bkqfWRb\nVXZmsiV++R/P8PS5GY72hvmt7z3GnvbAZi9ry0EUBX77+47x7k+f5H/73Cn+8SfvJxbYXHKIRtiD\n64XVsL6uJxazCWrLplp8ri11ftRew8WInq73N9Qy667lupQDmFGf65rrvR7YSvdsvdB0ftYJa3UC\nlkuHrsTqtVolvtZ600aLADRqI/RqUc/667m/i0VuVoPF7vt2Mg4aDY0kv2tlTVqu3Ba2NtujrOr8\n2ckh/vjbg2iGyX991wF+9P4BnE1SgzWjxe/iD37gdj7wmef50b98mc9/5O5Kr8JmoJH24PWiHtbX\n9ULt/rezEv1bVgfUXsPq4azrIR/rfZ7WXu/1uLY365nf1OqbjOXSocs9V71pq1m7apGRNV6fSJMv\n6cu+NuyTGGhdXe3oZqHRGqHrRT3rX+39vV6EfTYzYVJWK9GfG/G9NyMaSX6Xu8/1rLNafkYShS0p\nO7PZEr/zzEUe+s1v8qmvX+S+3TG+9rMP8dGHdjcdn3XAbTui/P73384b42l+/K9PUVSNTVtLI+3B\n68VyrK+btf+22vlRew37W/zrKh8bcT3W21ZbbI3lWT/leUDbEc3MzyZjufKy5Z5bjRIve/R5Refc\nVAagrlRpo6VCr7dnYbNRz/pbfC4UzeSNiQzBdUxv12KxtP92MQ4aDY0kv4vpj8WGGtfDdKlqJhYr\nTzLfbMiqzrnJLK+Mpnjm/CwvDycxLfiufW187G17uKO/ZbOXuO1QJov4hX94nR/6sxf40w/dQWQT\n5KNR9uB6nK1LlaHeyP231c+PxeSh3PC/HvKxFZzt2jU6BWHRTFCj2YPXi6bz0wBYrrxsqedWo8Sv\nztqw69UPdoU42hNZleBuRH/KeqDRSvHqRT3rFwBBsJnYNgplGQm5JQbjBVKy2hDGwXZFo8jvYoZT\n7X5fzdDD2rKRW3sjBD1LD+gt40bpi1RB5fxUlnPz/52dyHJpNoc5T155oDPIf3rrHh6/vXdVv7eJ\ntePJO/rwu5387N+e5t2ffpZPf/A2ju+M3vB1bPYeXM8yo+XKUG/Eb6zd/7pl1RU4aYRzZiMb/hvF\n2V4OtWtcrDQUli9nbJR7WQ+azs86YLNu/EqbtJb2cjnHp/Y3bFR/ShOrQ1JWcUliZSjdRtWmlzNM\n3xiawQJCw06ia4hObUXld7OjWn/UMv+tVt6cgkCqoFFUDAIe56pm+SwWLV4vStW8ovP8lQQnL81x\n8nKcwblC5bn2oJtD3SHecaSToz1hjvaGaQ81B3DeSLzrli66I14+9vlXePKPnuP77uzjZ96+76Ya\nhLqRfUc32rFbiiypuje5HlKVamyXM2Wzne3VIlfSyBU1oovc0/XqP28krMr5EQTBAXzSsqyf2+D1\nbDk08o1fTdQhI2uMJAu8OJTELYmV37DW/pSt3kTaKLhR6fKwT+KugRbyisZALMBMtsSJ0+NE/a5V\nH0qNvAeaWB3WIm8ZWbPng0kiJc3gsT1dqyqPqNYXg3P5FeVtORimxevjaZ69FOfkpTivjKbQTQuP\nJHLPrhhPHu/jSE+Ig10hWjeZaawJG8f6IvzLTz/I7z5zib98bpgvvDzOwwfbefRQJw/ubd32DulW\nKIVaLZazMcYS8gJmstWSqkBj21WNjLU4jBlZ4+9PjXF6PI0AHO2N8I5DndcEpFbTf76V7L9VOT+W\nZRmCIDyw0YvZimj0G79c1KGsYGZzJQbnCrz9QMeahhRuJ2XeKLiR6fKdLX7agx6yikZJN/FIjroO\npUbfA02sjLXIW3VZbbnkZTVGS7W+WEneVsKH/+JFTl6KA3CkJ8RHHtrFg3tbOb4zitvpqO8iNHHD\nEPJI/PJ7DvHh+/r57PMj/MMr43zt7AwArQE3BzqD9LX46A576Ip46Q576Ax76Ah58Lu3dsHKViiF\nqgeL2RgZWePE6XEuzuSJ+iT6or4Fe3slm6F5ptSPtTqMSVklp2iEPPZrcyV7qH11GfD19p83IurR\nIq8KgvBl4ItApZbAsqwvrfuqthC26o0HGEkWmM2V6Ah6uDJXWPOQwu2mzBsF65kuXy4iVH3/nILA\nyctzdR1KW3kPNHEV9cpb9X1XNZNcUSNX0lY1yXy18rYSfvCenTx5Rx/3745t+gyZJupHX4uPX3zX\nQX7hnQc4N5Xl+cEEb07nuDiT42tnp0kWrmXHOtob5sv/aWvHYrdKKdRakZRVLOxswUxWoS3oWbC3\nV7IZmmdKXsUDuwAAIABJREFU/Virw9jicxF0S5yfyqEZJp1hz6LX+3r6zxsR9Tg/HiABvK3qMQu4\nqZ2frXrjM7LGi0NJBucKXJkrsL8jyEN729gZWxuF4nZX5lsZq4kIVd+/5dhulqrx3op7oInrQ/m+\nl8tmX5tIo2gmAiszvq1W3lbCOw53Xu/PaKIBIIoCR3rCHOkJL3i8pBlMZUpMpYtMZ0vM5hR8rmZG\nr9HhFASG5vKUdBPDMnn4QPuyZ04tmmdK/Virwxj2STx6qJNEQcU0LbxS/ftrK9p/q3Z+LMv6kY1c\nyFbGVrzxSVnFLYm8/UAHg/ECD+1t42hfZLOX1cQGoN6I0FoOpa24B5q4foR9EkFZwi2JVxnfeiIE\nvSszvlV/RlN2mlgMHsnBQKu/ycS3xaBbFoe6wvg9TgolHe8aShWbeqE+XI/DqFsWXRHPTVVmuGqJ\nFARhH/CHQIdlWUcEQTgKfLdlWb+2YatrYsNQjhJkFY2OkJudsebhsl2x3iUEzUOpiWrUytdas8dN\nNNHE9kCLz0XA48SwrLpmCzZxfVjr2XwzlhkKlmWt7oWC8C3g54E/tizrtvnHzliWdWSjFtfa2mr1\n9/dv1Mc3sQIM00I3LZyigEO8dtrMSs+vJ4aHh2nKwtpwI+9Tvah3bU05uDlQKxe1f99oOWiEPdQI\na2g0NPVBE9CUg+tBvXql0fXQqVOnLMuyxJVeV08u0mdZ1ouCsODH6nWvrA709/fz8ssvb+RXNLEE\nVuoTudFUlHfccUdTFtaARqYMXcvamnKw/bHYHKCTl+cWyMnbH7r3hslBI+yhRlhDI6KpD5qAphys\nFWsZZt/oekgQhFdW87oVvaMqxAVB2I1NcoAgCE8AU2tYWxNbANV9IoZlVab8rvb5JhoDjXyfGnlt\nTWweauViOFnYVDlpBDlthDU00XhIFVSeOjPNl14Z5+xkhtVW8jTRBNSvV7aTHqon8/NTwGeAA4Ig\nTABDwA8s9wZBELqBfwYOAQHLsnRBEH4eeC8wAnzYsixtTStvYkOxUg3oamtEt8uU5q2KRqvlrZaH\nRltbE40BpyCQKmgUFYOAx0l/i5+xpLxpctIIcrqea2jq5K0P07T4w29d4ff+9RIlzaw8frArxC8+\ndoCH9rVt4uqa2CpYSa/U6opG0IXrhXrY3gaBhwVB8AOiZVm5VbwtCbwdOAEgCEI78FbLsh4QBOEX\ngPdhzw3a0tiOh8lKzCGrYRZZrHyldmpwExuLG0UZupo9sFjKvHreSzmK1JSNmwvVspMtapw4PYFl\nWZR0g8f2dNEX89VNh72eOrkRaHfXaw3XU7ayHc+5rQjTtPjEF1/jxKsTvOuWTv7jAwNEfC5eHEry\nmW8P8sN//iI/cn8/v/Sugzgd9RT3NHGzoXbmWvUZvJSuWK0eanR9UQ/bWwz4b8ADgCUIwrPAr1iW\nlVjqPZZllYBSVZ/QHcA35//9DHbmaEs7P1uhBnK1qBXW8u+oTm3WPl/bB1T9fHWKdHAuz4nT40T9\nri1/nbYaNpqdrXoPqJrJnf0t7Iz5yRY1hpMF+lv89MV8i1Julylsl9pDja5Am6gfYwmZs1MZQh6J\niFfimTdn8EgOREEgWVAYTRYrU+H1+TKeemR4I3TydmE4TMoqeUXH73KSV/QFlLZL7bWMrDGSKPDS\ncBKXJDb19ybjd75xiROvTvDxR/bxsbftoWxf7W4L8PhtPfzGV9/kL/59mLFkkd/74G14m3ORmqjB\nYnu9Vmcudl4Dy57HYwmZ4WSBmM/F6fF0Q9vF9ZS9/S3wbeD983//APB3wMN1fEYEyM7/OzP/9wII\ngvBR4KMAO3bsqOOjNwdrnap7I7Cc4Vj73GIGA7DAqLUA9xKH32Lvr06RlnQTj+RoyOu0nbAZzkJ5\nD4TcEs8MzZAt6UgOgXOTGQzTniHwiYf30RP1LZoyX2oPLSWTTWwNLKZjzk5m+It/H2I6W8I0LSI+\nCb9boiPkwedyIAgQ9blIySptQXNNZRWNrJPXiqX2wmr3evleFBWdc5MZdBOcIjx2uGvJz6/egzNZ\nhcF4nocPdJBVtG1xTbciXhlN8fv/eonvub1ngeNThkdy8H9992F2tfn5b18+y0989hR/8sN34HI2\nM0BbCRt5ji+215OySr6k4/c4yZf0yndXn9dOQVg2qDSWkPnU199EN6GoGRztDXO4K9ywOrge56fL\nsqxfrfr71wRB+L46vy8D9M7/OwSka19gWdZnsHuLuOOOOxq+e6/RaiDLm8YpCNcwJFVH+Goj9cCi\nXn75sTOTaSxLoD8WZjCe5/WJNEd7IguyQ4tF9atTqicvzzXMddqOWAtzS70KNiNrjCQLYFGZ51Le\nA0OJPAKwq9XPq6MpskUdp1MgnlP54qkxfvbh/YumzJfaQ0tFnppofNTK4rHeCP/8xiSXZ3O8OZ2j\nO+yloBmUNJPWgEhKVgl6fMT8Llr8Fm1BF48f69m2Myvq3Xu1e2EkWeDMROaabOtK5cepgsqu1gCx\noJt4TmE4WSDklZZ0GMuP72r1MxTPM5TI0x70NOQ13e4wTItfOnGGzpCH//7dh69xfKrxw/f243KI\n/O9feoOPf+E0n/7AbYgNSEu8HXG9jstGVxMtttedgsC5qatBkQf2tDJS0uiP+Ql4nOxs8a8YVBpO\nFtBN6I/5uTSTI11QG1oH1+P8PC0IwgeAL8z//QTwtTq/7yXgJ4HfxM4YPV/n+xsOm10PXr3RgKpD\nTsMjiexqDTA4t9BZqY3Uz+UUcoqGolqkYiqtQXfl8xyCwGA8j6pbeF0ig/E85yYzYMFYUq5sTLtJ\nWaWoGgTcV4eaVZeL1Fu330R9qCfivVw/VvmzqiP2ZQX59LlpXhpOUlAN9rUH+PB9A/TFfDy4p42z\nUxmcoshMrmTPZsEindPwu51E/K6KQ7za/rGtYMQ2cS0yssZ3BuOMJmQOdoUYThT4g29d5s2pHOmi\nhqzo5EsGQa+TrqCH7ogXr8vJ48d6Kob49eiI5erY1xNrNXLqMW6q9155L6iayWSqSF7R6Qh6KtnW\njpCbY70RErJaKTXNyBqvT6TJKzq7WgMUVdvhLCg6Q/E8XsnBWFLmwT1ti+616mHYR3sj3DXQws6W\n5hDbzcCJVyc4P5Xl0x+8jaBn5ev/gbt2kC5q/MZX32RXW4CPP7LvBqzy5sZ6OC7Xm7leTC9V65Fc\nUUPVzAUZneFkgYHWAK0BN+Npmc++MEJSVnE5RI72RtjZ4l9wHquaSa6okZG1io3gQMA0LYYTBbwu\nkSeP9+GdtwUbUV/U4/x8BPhZ4LPzf4tAQRCEHwcsy7JCtW8QBEECvgrciu0o/Vfg2/P9QqPA71zH\n2hsGy9WD38j05ZGecGXTpPIqU+kSJdVgMJ4H4aqzUh2p13STsaTMq2MpXE6RkaSHn3t0f2WtD+5p\n48TpCSJeCdUwcTtth2pXW2BBNP7k5Tk8TgclzeSxw22L/tbtUjffqKjHWah2gM9PZfl8apSuiKdS\n3miaFiXd5OED7Tw3mCBX0tF0k5SsMpqUyZV0ZrJF3JKDD965o5JlBEgXNLuMSXKQkBU6wl7aAu5l\n17OYbGx2YKGJ+pGRNf7+1BgvjSQZS8icGkmiGxa6YTKVLqLP6ypRgLBHIuh1IiDw+LEe+mI+YH2c\nlKXq2NdLhpYrE1tJXpcr86wNOnzx1Bi5kk7Q4+QdhzpJFVVeHEoympQ5N5UhGVYr2dbhRIFPPXMB\nr+TENC3ed1sPY0kZw7Q4N5UBIOB28tjhNobns7dlPa5b1qJ7rbkHGwOaYfLbX7/I0d4w77mla9Xv\n+/GHdnF5Ns+nv3GJw90h3nG4cwNX2cR6lNxeT9CvrH9zikbQLfHE8T7A1oP5ks65qQyHusOIgsDu\nWACAp89NY1gWQ/E8ABdnciiqiWqY7Iz5iOcUvjMYpzvs5cE9bRUd9NpEmjOTmQVz2A52h9jbHuBw\nV7iizxsV9bC9Bev98Hka69qeoBeAT9b7WVsR68Gs4xSEJRnSajca1nymZi7PYDzPQFuAVEGlK+zF\n73Iyl1MqGaB339LNSLKAqlucGk0iCiKiIJAuqjx1booDXSHCPgndsoj67czO18/PsLPFS0rW8EgO\nAh7bq6+URlQdpE3ceIR9Eg/uaauQDCwnay0+F4pm8o2hGdKyBpj0RbtJKFolMjybVbg4k6WoGrT4\nXYylimSLGtOZEiYWUb8Pw1w4hyWRV5CcYkUWHjncSdArrdlwajrMWwflLMNcXiHoso+W0WQBURRR\nNAPVMDFMcEgCJhbtITcdYS+SU9wQnbGRvT9LlWSuRt+XjZvBuTwl3cQpCIueFWcnMzx3JU7M5yKv\n6PRGvHRHvLglkZBbIllQ2dtuR2uzikZa1nCKIl0hD88PJXjqjSk0y+LhAx2ATYNczv6HvFKFPlzR\nTHIljRafq0JAUo3mHtx8fOWNKSbSRX7lvYfrKl8TBIFfe98RLs3k+PjfnebLH3uA3W2BDVzpzY3l\nHJfV2HRwfQGHkWSB0+NpQh6JK3MF7hxoIeiRMCwLRTeZypTY0xbE5RR5eTRJQTG4OJvj0YMdHOoO\nE/W5EIDxdJHzU1mmswppWWMoUcDttLNAd/W34JbEiu6rPv8B9neGGt7xgfoyPwiCEAX2Ap7yY5Zl\nfXu9F7XVURbyXElbWKedKBCUVzYEywdhtacecDuvOUxr52HsjPnZGfPz+kQaBNjVGuDsVIbXxzMM\nzhWYSMmkZZWL0zmeON7HzhY/D+xpZTZXYjJVQlYNeiJeol5X5TDPlexD9dWRFHN5hVa/m4G2AAe7\nQwt6fprlSZuPjKxVIjBjSZl3exc3vsqMLDuidlRHFASuzOV5+vwMx3dEEbGYSBeJ5xVEICVr+N0S\nuZKKBbT4XaRlFZ/koC3opr/Fz4XpHG9MZHA6RLySo2LYRX2uLaEIm7g+lLMUEymZCzM5NN1kJltC\nN02Kmo5pWpjz/o3kFIn4XGi6Ra6kMdDq3xCdsZFlk4t99tnJDBdmshzoCKHPDwBcyrixM+rjeCQH\nJy/PcaQ7XMnEDsYLnJ3M8OzlOeZyCmlZpaAY/NvFWfqiPkqawb9NzuJyirQG3bzjUCe6ZXG8L8rv\n/9tlXp9IY5oWR3oinB5PcX4qi8/tXBAQKRtYZRa318bTnJnINCQr080Oy7L4k5OD7Grz89b97XW/\n3yM5+KMfOs67fvckP/35V/nST96H27k+DHAFRefLr01yaSbPQJufx2/rIeCuy6zcVljKcVmtTVf9\nOeXs71C8sHonyIKyayzM/93iczGbLvHVs1PkSwa50hT37ooR8knMZEpMpGS+emaS79rXweGuEFOZ\nEr0RL60BN7vbAlyazZIrGQDE8wqTGTtgUtZ91XPYyoGUsYTc8GNN6qG6/jHgZ7AJC04D9wDfAd62\nMUvbmqiO4CmaiQAVoXhpOIkxX05UXeZRfl+5kRzBJhrwe5zoJvhdzso03erNdPLyHB5JpKTZ8zDK\nzx3tiVSEUQBu7QlT0g1GUzLxgkq8oHKwM8RwskBe0cnIGnvb/ExkinRHvKRljcszOUbnSyam0kW6\nwl7CXom5QonWeYO3upa+WRqx+VhALb4IKQUsZGQxTYvOsIdsSaPF76Ir6Ob2HVFmMiVOXpojq2iU\nVAPdNEjkSvjdEiYW+zuCdEe8vPfWbh4+ZJdRCICiG2gG3LWzhReGExXDbiknrImtjTIFcl7RmUqX\n+M6VOHM5hWReJeyXMCyTbNGgPILRic0WGXA5uH93jHcd6a4EbTZKPo70hBeQc6wXanVetqjx2edH\nGEvJvDqa5tFDnTgF4RrDpRx4cCAQ9buuZu0FKplYC7vMyS05ONgV4vJsHt20MA2LMxMZJKdAQdUJ\neb2YpoVuWQy0+snIGt0RD7Ki4/QJ6KbJvo4gsqrjkUSePjfNwS67Oj3gtq970Cvhms8kDcYLjCQK\nHPVdQ8LaxCbi+cEkZyay/Prjt6yZtKAr7OWT7z/KR//6FP/vUxf4P95z6LrX9eJQkp/+/KtMZ0u4\nnSKKbvJH37zCn3/4TvZ31l0otG2wWKa0fDYvZ9PVYiwhc+L0BB6nSMCzuKNUWyq7M+bnaG+EXEmn\nM2znKLJFjURRQRAEdsa8OB0ODnWFuBLPcyWeJ+B2UlQt5rIl/ubFESSHgNcl8cE7bbblK3N5pjN5\nVMPC47SDm4pu8sCeVg53h21d6O2uBGz+7cIsQ3N5DnWFl1x3I6AeF/1ngDuB5y3LeqsgCAeAX9+Y\nZTUG1tKvU1sOcWtPhKBXIlfSeP5KgrGUTErW+PxLo7zzcCc7Y3aZwd+fGuP0eBoB2NcRxCs5MEwL\npwjxgmJ72qliJXpZ3cQ6lS0ylpIXzFSpZVk7M56mUNJIF1T8bidT2RKXZrLE8ypvTmfxuZykZJVX\nR5IEPBLnp7NgQUfYg6wa5BUNTTfRDYvZXIkvvDSK6BAJepw8OV9X2sTasR69YZVymkVIKSZSMmen\nspRUg2xJJ+BxkpF1OkImF6dzWCZcmM4yli6iGSZ5RSeeU1B123Q1TDDRQBCwLNuovGsgRtgnMRQv\nkFdtA7ioGRTVabrCnopsNiLNZRPXh4ys8dfPD/ONc9NMZor4JCfpokZB0dFMmMqUMGrfJEL3fOnW\nu27p5r49reuyjqXIOarZLst69npwbiLD2aksh7tCHOoJL2C6vDCVRRQF7hmIcXkuT1fYy8nLc+QV\nnZJm8PixXnIljU89cwGnKGKaFn1R39WsfYu9vryiMRALMJMtkS5q+F0OWgMuAm4HLslBYt7ZlJwO\nrszl6Q57cQoCr4+leX4wwTcvzOF1OZBVA6/LwT19MV4bT+MUBL782iT//PoksmrQHnJz90CM997a\ns8DpCg1vrDPaRP347AsjRHwS33N7z3V9zqOHO/mhe3byp88O8eC+Nr5rX9uaP+tbF+f4yF+9TG/E\nyxd/4l7u2Bnl1EiKn/qbV/j+P3mef/rYA3RHvNe13q2Oat1UPpvzJR2nCAVVX0AMVft6gM+/NMr5\n6QztAQ+72wLXnKO1/T2PHuokJasc6gqBBa+MpfjKG1NkSxoCAi6HyES6RNTnojfqI+iVeHEoheSw\nS3DHUzLZokYs4Ka/1cep9gCvjacRBNBMk7aAm0xRYzJdJF3UKKo6fVFfZU0vj6QYTdrZoJJu4ves\n7OBtJupxfkqWZZUEQUAQBLdlWW8KgrB/w1a2yVhrv05tOUT5IBlLyExlSsxkFSJeiStzeb7x5iwd\nITdHesLkFI3QPINLvqSzpz1Ad9jLA3ta+ec3phicyzOWktk/FsQjOTBNi9NjaZIFBaco8p3LcURR\nxCnCJx45QF/MVzEGWgNuLkznKSgG5yaz7Ix5efbiLCcvx5FVA90wCfskRFHELTkRRIFMUUPWDBKy\nwqHOMMmCvXYLgfRICocAt+2Iougmh+YZnRp5oFUjYz2pLY/0hJlMFRc0M78wlOD//7dLqLpFXtEo\nqgaCIFBUdSbTMqmCgm5aaAakCklCXgclzaCgXu3DcArgEEWcDpG5XIlbd0QqWR2nIPD6eJqZjILf\n7WB3m5+SbjbLILcxRhIFvnVhlnNTORTDArQFz1/j+AAup8itfREOdYU43B2+7jUsxlhYdnhSBRWP\n07GAmKXWcKgn2HBuIsMvnnjd7lkS4f95/Cg9UV/l+zOyhmlaTGVLhL1OusIezkxmGEsWSckqn39p\nlHRBZSZj6/+ErBILuCnpV7P2O/HTHvSQVTRUwyQjq4ylimimSaFk9/PM5lQU3cApGvS2eNjbEeDz\nL45yYSbL5dk8ibyCR3LgEEXOT2V5y752VM3k6YuzXJmzqehLuoUo2DNjHtrbxl0DLcRzCq1BN4bZ\nuMbKzYi0rPL1szN8/9078EjXX6r2S+8+yItDST7xhdf46s88SFvQXfdnXJ7N8VOfe4U9bQE++2N3\n0+K39fsd/S187sfu4b2//yw/+3en+duP3HPT0msvdqaXA9KPHen6X+y9eZCc933m9/m9d989PTeA\nwUmQIACSEC+RMnVYh3VYdizbsi1HjrzJxvEm3k0lW6kt71VblWwqSZVTtVl7vevErrKzWduSbR22\nbMmiTlIHD5EgcYPAzGDuo+/u9z5++ePtbg2AATkgBgRA4/mHwLCn+8Xb7/t9v8fzfZ6rKGFXvn7v\ncI6L611sL+Z0p81wTzBoY9zauN9zZrnDUtNlvesjgbG8yWzNpuNFtNwAP0zwwphGrzn/u9++wMHR\nPG4QseKGuGGMqgicMCFse7S8gJWWh6oqGKpCIaMxXrJY7wQsNj3COEFK+PzxRT7z5F7qToClKQxl\ndVbbPrFMsHtN1tv1+X89xc+CEKIMfAH4mhCiAVy6OYf11uD1HoBvdll2MwpYn6I2lNWZa9jkTAUv\nUtg/kqPthyChYKYLamGU0LADKnmDxYbLznKGREqG82mQWu96lDMm+0dyJFLiBAlRHBElcO9oqvhz\narlFJOVAmvi56RrTNZusodL1QtpexPOXGigKGKqCoQqQoAsQCoRRgq4pHJko0vZDLEPF0jVyRkTD\nDQEFqSh4YQICllsuax0v7Vh2vE3pVtv1vdzu2I5p4ZtJPq70blIUMaBbnlxs4oQxpqbQ9mNIErKG\nhgCabkgs08mOooAqoGFHRFfsnysiTV5HCyYjBYuRnDno6gA8tLPMRdPG63WcP3Fs5+AavFlSw39X\n8VbfH5t9XteLaLkhyRaFCgwF7hsv8MT+YX7i8MS2HPeV983Gxdu+pPO1Fo+vt9lwarlNnKT0uUs1\nm1PLbTKmdtnnfeD+MXKGxpEdJYoZnWcvVFloOIwWTJJEYuoKOVNlteshEDy0q0QkU9pa/xy/+55R\nGk7AF44v8Np6F9uL0i5rGDPf8Mhogl3lLA0nIKtrfPdClZWWT9sLyBkath4RSxjPp9/VbN3uUec6\ntNyQ1ZZHEEZ4oY4QgIChjMFK22Wh6abGp0e3rib2RriTY/ntgC+9skQQJ/z8I7ve+MVbgKWr/F+f\negc//dvP8j9+9jh/+Pcev64CpeWE/P0/fBFLV/l/PvPooPDp456xPP/ypw7zT/78BF98ZZFPvGN7\njvtOw7V8D99IAbJPPzVVFVNT2D2co277HNtVHuznxVLihTH3TxQH+z1hnOAE8UAC3Q4jHD9GyrRp\n6UchThCTSHCCmHOrbQxN5fCOImttn1cWmjhBjAA0RRBFCR0vwtQVWlHCSitV7FSEYDhn4EepQbXj\nR1yq2+yppH5AU0NZRgsWHzw0lorY9B4Pt2McuB61t0/0/vivhBDfBErAV27KUb0FeKMH4I0sy17J\n+exf2Id3lLB0ld3DWV5bSw3jCqY+ECp4bF+FpabLXN1J/RvOrrLW8QfL4zlD5ejO9D3OLLcJooT7\nJwqsd3zWOh6zNRs/jHhhps5czaHphhyfazBXt7G9EC9IaUtZQ0UiiOJ0GdnUFXRV4cjOMoWMxn1j\nBWbrNoaiMFGyeGBniRcUyWLTwfYjMppKNpfSMXKmxumlNotNlxOLLVw/4vxym785scyn37mHwzuv\nr8N7sw2+biZuZFrohwknFlsU3kSnZODl4UWMFy2mOzbv3Fshb2l857V1qh2fhh2ClIRRjB8mtL04\njUtBgkpa+AiRdoUlqY59AqikBfH9kwUMTeWBnSXqTnDV2H6kYGLp6mX7bDfqSn8XV+Otvj/61Ir1\njo+iCN57cJSFpsPLcw0sTSFMXv/3VQFSpklX14840lOR3A5cGaM3Lt72JZ0367D275VrTYX6ezl9\nCjHAkckiSMn51TamqnBksngVzfTwZAnfSihm0vfKGiqKkHTckNGCSUbReHj3EC03ZChnDGS/XT/i\nD19ZGnD791ZyLLU8oihhsekQRAm6ohAlCV4gUYQAJfVVW2y6KIAXxUgE+0ayIAQP7Cyx3HQ5s9RG\nVQQjORNDVZBINFUQJxIFwVDGoOEGTJQshnMWEsl8w+HUcouipQ84/W8Gd3Isv13wuRcXuH+ymO6u\nbRPumyjwr376CL/5Fyf4d9+6wG+8/+CWfi+KE37jj19isenyx//1E9ektX3ykSn+03Nz/O9/c46P\nPTC5beIKdxKulT9eqwjYqL4qAU0VHBwvEMWSPcNZ5nq09ZNLTYQEL0poOiH3jhcI43R3VwAnF1tp\nXrijyEjO5PRyG00FN4gJE4kbxnhhjCIEl6o2hq6gCcG9Y6ky8EzNIZYJpiYIE4nnRjh+SN7SmF23\nOThRoJTRccOEWtfHC2Oen6mzp3K5oX1fDtvUFZ6frSMAQ1c2jQNbVcHbbrxh8SOEsIBfB+4BTgC/\nL6X89s0+sJuNy5bD169eDt/OJf6NN0Le0tg9lOXV+RYJkt5Ah1JW58FsaiZVt5eYqaUUhX29TuPO\ncoZKTuf9943RdEK+3lxF1xS+fX6d/aN5PvXYHhaaDq+tdljt+ARxghvEnF/tECVpQisR6D1K266h\nLPnRPKeWWgxldZZbPk4Ysdx2KRgaCw2XlhOgq4K5us2ucpZiRmckZ1LM6OweyrJ/JM9zszUcP6aU\n0VmputTskLMrXXRN4VLN5r/78YPX9QC9mfK0Nxs3cuwCEEKyWQ9us4DZT9CGswbHF5rMNxxenG2Q\n0RVKWQNNFewoWZxcbDGcN9k/nGWl7RLEMd6PGjJASlHSRNrx0RQI4vQ4RAJZS6VgaDy6b5gkkRzZ\nWWKylBnsKfSPZ7N75SpX+prNyaXW3WToBnAj19j1dN/6r11uuLwwW6duB6x3ff7sxTmSBLwwQVGu\nPfUxFHjyQIWzK13cMCKjK4zmTaJka5OirWCzGP16RsoDxSU/+pHvzRXNho2CIBspxDuHsrzv0Bgz\nVZtyVqNg6YPP//7FKnU7YLyYUtb6Sp9dL+LY7gr1jo+UUM7oNN2Qjz+4g6mh7GAy+vnjC5xf7TKU\n1RnJm4RxgpCpquKFKkgkbT/GUFOGgKYoWKZC108n8bqSSho/srvC1HCWjz8wSc0JOLPUZv9oanJd\ndwMPcmtjAAAgAElEQVRsPyIIJXlTJ29p7BrK0HACnp+ts9T0WGx6jBdMfvvsGg0nRFdFb09k75u6\nT+/kWH474OxKmxOLLf7lNogTXIlfemyKH0zX+D+/dp7H9lZ45/7hN/yd//Wvz/LMa1X+j597kEf3\nVq75OkUR/E8fPsSnf/85/uKlRT71+O7tPPQ7AlfGJoBXF5qDguDK518pq19GP00SyRP7h9N9cTfk\nlcUmQSg4tdDEDSWljIapKTyxf5iMobK3tzOYTncSKlmDJ/cPc3RHCUURvLLQ5KVLDS5VbSRp3Fvv\nekQJ5E2VclZn3Q4QAhQEcQJIiZQSoQiiOKXM+2HMcssjo6s4fsxDU0MkPQZIXyb/yyeWWOt4TK/b\nfODQONMdGyEkR4fLV8WB61XB205sZfLzh6SE7meAjwKHScUPbmu80YN+o9fC6eXWZSagGy/I7fgC\nNt4I/YfdXMNhKKsPfHKukiCt2+TNOsttD11TeHL/MKsdj6fPrhEnkrWuzzv3VvjuxXXcIOIvX11k\nKGswV3eoZE0aToiQUMjouEGMG0aoqsJQzkBTFCaKGd51zwhuGDFXd3GDkNmqjaYqLLc8zq60CcKU\n/rbeCRgrWNheTCuJcIKY/cN5vvTqAiutIF3erWTRFRVDjeiS0ulW2j5fPb3MbM1+0ztTtytfdDO8\n2WOvOwGGrgyCw0ZJdLjaO6TthoMEre2FjOYNLqx1adgBiYQPHylwarHFYsNhqZkq/vlJwp5KHn+9\nQ9sLrjqGOEkLINPQCOMQS1fY0ZM9X2p5fPnVJcoZg4WGy2O9qVJ/SRs2v1euPB99FcO7ydCbx5u9\nxq6nC7/xtctNj5Yb0nQDVlsezhuNekgLn3vG8xyaLONHknaPPpExFDat7m8AV153rxezB35kI6nP\nyUbfmz5m6zZRAnuHUwrxbN1majhL3QkoZnQqOZOGE/D544t84thOGk7AhfUui02XpabLg7vKaELw\nnfPrfO9iNZWGz+o8sqdCwdL4/kyNOEm7uX1PLilhKGuw2vZYank8uLOEG8YsNl1MTWU0ZzJfdzB6\nfkhhnEAkWKw7aKpAEQpjxXR/aKXp8sO5BgdG8gPq62rb49RiCy+MSUiQqIRJQsbQQKQKfB84NM7p\n5TZLTYf1rg8STF1nseG+aRrznRzLbwf82YsL6KrgZ95xY0IHm0EIwb/+xAOcWGjxG3/8Mn/xD97F\nVOXalgSffWGeP/juDL/6rr38wmNvLHD0Y/cM8+CuEv/h2xf5hUenUN+i3Z9bQa+61mdulKu+siDo\nN0k2vn4z+mmfQfHt19b54suLtL10R1tX0yb28bkmk0MW83WHoztLTJatgdrrX726jK6lolS/9Ohu\nPnxkgum1Lk+fWWOm2iVOJEKkanACSSIlQ1kDO4jxw5gwjpCJJJaQ0wUKqSKl7XvsHs4yV7dRpwUj\nBYOPHkmpsv0Yu284z8V1m+mqja4KnCBher17VbPpzajgbRe2UvwcllI+ACCE+H3g+Zt6RNuArTzo\n+0XGRk+cG0nI3uim698IM1UbS1cZyho0nIDRQnLVQ2HjFOhSzaY4q6Wyw2GMpakULZ0Ti03Or3XJ\nmTo7y1mWmh5+5NFwQhIJD+4qc2i8wNmVFoqAjK5SyZm4YUw5q7N7OMtkySJKJF0vRFUU2k6IFPA9\n26frpvxPVQHfVDm53ML2Iw6O51MzVQXm616POhezX83xyN4hTiw06fgRmiowNeUNPS82O093qmz2\n9R77xnFvP0noS6L3R8R9/4+NBcNCwyFKYKJoMb3WZbmZJjhFS6flBHzz7BqKAp94xy6Wmi5nVzoo\nCizW3dftvLuRRCjRYAetZGkIIdLA5CSUszpRIres4rJZ9+vkYutuMnQDeLP3x/V04Te+tm4HKAJq\nto+7hcJHE3Bossg/+9hhMkZqhHxqsYUfJ7xj99BlBfNbjcsm8Ka2aUK/t5JDU1KX80QmDPeuUU0I\nlpvpbuNYwQQp+fzxBeIEpqtd3tVrTj2+r9IrUCT3TRTwwoS8pbLScXlxtkHDDRjNmWQNdeDzM1Pt\nsm8kj6akRdCe4RwvXqqTNVUcP6LhhGk81TVUJaW86JqKrghGCxmcMEJIeHm+QZxIvnuxygM7Sxya\nLLJvOE/bC1lp+3hRuqQ8kjd5574Kn3psN8WMzsnFFqsdjyCKGc1bLFkuSy0PiaTa9Tmz3L6qMbgV\n3Mmx/FYjjBO+cHyRDxwav2qvZruQNzX+w688ws/97vf4L/7geT773zy5qQDC06dX+WdfOMG7D47w\nz3/y/i29txCCX3/vAf7b/+8lvnl2jQ8eHt/uw78Kt4JmuZXP7MfT8YLFKwstTi+32TOcver5F/VW\nI3KGhh1EA+PnUlbn4FieUkbHD2PW7YAwkcS9PcKiqTNT67LSMmnYAW4Qp8ak1S6VvMlMtcvhySJ5\nS6NqB9w7nmexaaMqCk4QISXoqoKppQUQMkk92XqFj4ReTqcQxgmxhCBKsHSVeyfyTBQzg2Ptx9i2\nH3JsV5n7J4ucWW5jaFdbsmx8/eup4N0sbKX4Gcj4SCkjIW5/9Y6tPuhLWf0yT5w3m5Bdz01XyRrk\nTY2pSobRgsEnju285msHRdBwbpAkf/X0Ct+brmKoCllDZddQKogQSYkMU/nU8YLJUwdGeHGuwa7h\nHEmckt52ljPM1B3esavMaMEk3zO+q3UDwiih5gaUTY2OF6FrqaSxIK3Gj+4o8nLUImNohFECCOIk\nwY8SkkQSJgmTRYuH3rkXBKy1PaarXTp+ejFv5nlxLWzXxO1WYKvHvplSVSRT08dXFppX+X9s3Ady\n/Qg3jDm73EZTBUd3lvn62TUUAVKkyZEbxnzr3Bq7h3MkUlC0NJ55bR1DU1BEuouhCMjqKlJAJWv2\nxDR0TF1jOG8wWjBouTEZXaUFgyL6elRcrjwfd5OhG8ebuT+upwu/0TxZkCbL3nzCGxHWdAX2j+T4\nh+8/yDsPpDSavkAAgstokrcCW0nGp4az/Nq7D/C5l+YZyqSU0oKl88yFdcpZg7mGy2jeBCGwdIXx\ngsVMtculmkO2F+c6XkoZ86OEMEloOQljRQsp4J7RPE6YJieT5VQO3g1jdpQyfOj+cb43XeMH01Wi\nOGHfcB5dqDQcn5yZwfZjxksmta5PJWfgRzGjOYNuINhRzvDKfAtTU3CDmKrt8eJsTLUbsNxKC7Yw\nSbA0lU8/sZcP3j8++PenhquLZHSNc2sdHto1xH2TEfdPpBOozRqDW+2w38mx/Fbim2fXqHYDPvno\nzRUMODhe4A9+9TE+/fvP8Yl/913+/acfGewXSSn50xfm+RdfPMnhySK//csPo6nKlt/7Q4fHGS2Y\n/MkLc29J8XMraJZb+cxK1iAIE55faGKpyuB5v9nr8j0RlSsLgCOTJcaLFk03JN/b/T48WcKPEp4+\nu0oYJZxf6Q4aLgfH8pxbaRGEMUGc8OyFKoYmmF63eXL/MA9NDTGUM1hr+YRSUsmkjKBSVuPiWoeL\n1dTjURH0dhFVSlmDkbzJWsdnteViGipLTY8d5exl+d3GGFt3Ai5Wu4Pz0y+S+tgYkzdTwbuZ2Erx\n85AQot37swAyvb8LQEopizft6N4krudBvx3dqeu56d7M5218gDy+rzLwgmj7IQ/tKlOwdB7aVeb/\nfvYiUSJpuAH0Ltpd5QwNJ2R3JctHjk4wlDEGF1i7R2dRFYGbpOetYGm4YQyhRAhB1kjfo2AajBVM\nah2fYlbHDkPiBII4LX5OL7eo2wH3jBb4jR+/h2rXZ6KYwQsTnjpQvsxz4+6ux9XXzEajwo3TkaGM\ngRfGNF0fXRW03ZDjC00e3FViteWS04vMNx1G8iZCpEajLTdAEYK1TsBHjkzQdNPFaEgXKQWQMVSy\nusbBiTzLTY+GEyAl2GFMyw1RRFowHdtZIkxSqs0HDo0zVcneUIC6mwzdGmw17vSVKaWUzNZs9o/k\n+e5r6zjB6099FODh3UOMlSzGe+Z6/c+9nUwzt3L9ZUyN/aP5q1TkjuwokTFS49G9lRzPXEiNgPtG\nohLJ7z1zkcOTJTK6yi89tpu2FzJXcxgvWtTsgPGShYLg2FSZ+YbDdLXLzHqXjKbyvekaTSeVkm27\nEboaoAiJpir4UYyiwI5yFjeIGclZHJ0s8ci+CruHspxZbjNXd6naAV6YMFN1mSik92mcJORMlYyR\nmhhvLHwg7ThbWiphrykCieQfvOcgxYzOl08sbbq0fVfI4Obicz9cYCRv3pAXz1bx6N4Kf/JrT/Jr\nf/QiP/3bz/KB+8eZGsrywmydE4stnrpnhN/5zx+mlLm+71hXFX7h0V387rcustxKjdJvJm4FzXIr\nn1nK6jy2t0LbiwYKv1cWAf3XXStGTw1n+c2P3s/zszVevtRMm495g8MTRZ6brVOwNI7PNxnJm9h+\nxGtrXXRVpeoE7BvOUc7ojBctzix3+NrpVfKWxpGJEocmwA9jvnN+HQmcWQ1IpMTUBH4kAYGqCcJY\n4ocxr6110FUVIQQ//dAkqio4PFkc5HdBmPDY3splXmFbOT+3In68YfEjpdySVIcQYkhK2bjxQ7px\nXG+BcaMn/3pvuhv5vD2VH3lBqEJc1k19fN/wYGSat7QN0oM/UuDaiLoTcGz3EIcmS8xWu2QMFUNR\nuJQzWWw4VO30RvCimKmhDNVuQJS4jORMbD9mOG/gN2K8ROL6CQVTxw3jVBZWyoGaUu3u4utVuNY1\nc+W1e6luc261g6mpzNUbTJasNBGbLFHJGYzmTXIrKu+9d5QTi02+cnIVP0zQVQVFgYtVmwd3lpmr\nO6hCst4NyRoKOUNFIJAJ7B3JodUEeUtD1xScIObHDoxgGgr3jRfYUcrcNT58G2ArcafuBHS9iHMr\nHV5ZaPKNM2u0veiyqY8qGFBfwwSKGZWSpbNvNM/BsfwtpbZtB95IRa5Pl+uLK/SntQqC11a75CyN\nREomyxmOZEvU7aWraCCrXQ8J7K5kB55cJxZbVLtpbCxndVRFYGoZokTiRzGGKji/0qZm+zTtgLHS\nOEUzFVGYLGd4Yn+FM0tdVFWSJJKcpXOh2mU4Z3B4ssgHDo1zZOfV4jOVrIEXJTSckLGCxWQ5pbFc\n6zl6V8jg5qLa9fnm2TX+y6f2Xdek5UZwbKrM3/4P7+F3v3WRL59Y5tnXqhwYy/G//ewD/MKjU2/a\nr+cXH93N73zzIp99YYH//oNbU5V7s7gVNMutfuae4RzjRXOQt10rR9y4J3QlU2ZqOBWdajohHT9E\nAFOVLLN1+zLamBelFPWPHp1kupoqv55ZaTNT67KrnEFXFe6fTG1MDozkOT7fZDhnEiNpuQEg0ml/\nlKArAkNTiZOEsUJqb4EUXKrbfG+6yseO7hhMq4qmztMzq7S9iPGiOWiK3K5sj+vx+XkjfB14eBvf\n74bwVlaTb+UXfK3PunJkuqeSG+wMIaCY0a+iKlSyBooQXFjrIIEhXcUNYiZLGeZqvUU1P2a96/Mn\nL86TM1TcMGYuTkikxA0iwiRBUwVJIllteQM1u4vVLsttlyBMUIWg5YTUuj4FU39LOjK3MzZ6emw2\nRbns2q2lvkurLQ83TE1qd5Qzg8TsyGSJuh3Q8aO0OI0ThEgncqqA8ZLF3koOieThqTJfP7vKqwsR\nfiRRlISModLxQ/wkQQQxShizo5xBCsmJhSZIqNsBe4bv7IT2Ln6EzShL/Z+5fsT51Q4/mK7R8dL9\nwViCpYEXpRMerVf0GAogYCxvMVwweGxv5aqpwp2IzWLsZipyGxOVk4stun4vAdlAC72qmVGzWd+g\n6LSjlO5VTVe71Loe0+ttOl660Pzeg6MYhjrYmTIVhaWWi5DgJDHPTdc5v9KlbvsM50zuncjzzgMV\nTE3h3EqHhuMDkomiRSmjE29CXOx/7x88NAZILF19Q879XSGDm4svvLxIlEg+uU3ePltFOWvwmx+7\nn9/82Nb2eraC3cNZ3nVgmM+/vMA/+sA93Oy1iVsxRdjKZ15Pjvh6k9UrxZEiKa+ijfX9HWdqXfRe\n8dy0A6p2gKrAUM6g7Yf4YcKZ5TZhnKRKblGMF0aoikrTDcgZOk6QRo2hrMFoweJS3Wal5WGqKoai\ncv9EkT3DOU4utZipdQmjhIKl0fWiQVPkjc7PrfIA2s7i5/ZfBrqJeKuLrSs/a7Obq+WEA2nh52dS\nrfU4kZd5sfRpdOMFi6+dWUUiGctbDOUMOn4EQuCHCXM1m0rOpONFVHI6pYzBAzvL/GC6RiVvEEWS\nA+M5Hpoa4mK1m5r19bTeTy62OL3UZqxgEkSSxYZD3dFuu07AzcCVN/b1Ukb2DOfYP5rHj9rsLGfQ\ntbRrM1nODN7z3aScfdePsf0YBCQ90YJwAyf4VNJGUwQZQ2PfSI65us1Ky8XUVaYqWR7bU8EOIh6e\nGuL7M1VUoVDtBmQMddPu7u1oXHYXr49reS/90Q9mWWy41Lo+pqYQROnSa5+dYaqpZ03RUnBD0JOU\nBjeWMQgSia6qNJyrVQTvVFwZY18vvm+MvU8dGKHmBOzdMJHfWCR99fQK3zi3hqoI9g3n+OjRSd59\nzyh//MIcc3WXjp+wayjDzqEMH+rRlF0/JkGy1EiLjRgIkwQ/ignjhJYXoQjBdNXm7z+1n8lyhuWG\ny7dfW6dhB7S8kFcWW1iGeplwQd/DqeOHFEydDx4av+zYrzRO3khnuVYi93qF9d048caQUvK5Fxd4\naKrMwfHCrT6cbcF/dmwH/+TPT/DqQouHpm4fCuxbja3miK83WXX9iOk1m3o3IGdqdLyQStYYyExD\ner/J3n+n122WGi6vLDQxdZUwTjA0lfccHAUBryw0OTKc7njZXsgLs3UkgvWOz/7RHE0npOlE2GFM\nxwsJo9RnLJ/R0LRUwbUfD04ttji/0uX4fHPLZsm3kkK7ncXP9hk43MWbQv+iuVS3ocZl0sInFlv4\nYUzdCVjr+HhhxKce28NKy2Ot7dO0Q3RVoWT1aBSlDHYQs9r28MMYSCURJekC/oxjs971GC2YHN1V\nIqur5C2dvZUNnFYJHS+i0FMHazghy22P33r6PO/cV3nL9NxvFTa7sTc6Oc/UupxaapE3tWsuhJey\nOp96bDd//PwcM9UuszWbIIr54P0Tg45req4lXT9C6bEkNFWQIKnbATvLGVQh+NqZFYZzBm0vYGYd\nukFIwdApZw2klMQyYXcly0QplcuMYtlTJDSu6u7O15yBWtXb/Xu8E3GthPNSzWa17bN/JJ0Kf+H4\nAn6Y8FevLBHFCS034sfuGUaQFj8CMHUYKZo03YAgEYRxjJSpMlDbi7hvIs9PHp2k7YdvWhb5TsXG\n81zJGnz5YpVYSs6vdK7ivl+q25xZapPT1VT9qWgMuP+GJhgvmHhhTCQTKjljMLnXNYX9IzkyukrV\n9vHDJJW7RjLfsGm7ESVLI4rTOL1vJEcla6Q+YHmD5aZLOWtcJVxwqW7zwqU6uqLghBE1O2CynMrm\n9iddXT9CIHjxUn1AZ7nWxPpahfV2Jjdv90LqxGKLc6sd/pefOXqrD2Xb8JEjk/yLL5ziS68s/Z0u\nfraKVHAmVW3bKBbl+hG/98xF3DBhutrl4Fievz6xhCKUgXJjn4abJOmzv2YHSCROEBMkCXlTx9AE\nhUzKwDm52GK62kUIOLyjxA9m60gp8eMYN4jYWc5w77gOJCy1POpOgACqHZ+hrM6Z5fbAx3FyKMOx\n3WUEgprt0XADpri2fDrcWgrtdhY/d3EF3upA3e/kHV9oIoB7xwtkdDU1LrXSLsGZ5TYZXeXcaod/\n/50LnFhsEcaSoYzO4R1FokSy2nGZLOWZDCxypsZS00VXBJJ0ea3tpdKrGUPj2K4S771vjAtrXU4t\ntji91OKesQKPTA3xwmyd6Wo6Cu14IbaIyOgqfhCnRlpvkZ77rcJmN3Zf+eXpmd40ZjGdxmiawrFd\nZX7+kamrzkcxo3NgNM9K28MLYl6YbTBbc3jXgRE++cgUmhC8stik7YWYavo9aZrCeCGDoSp0vZCz\nyx3aXoSqKFRyJnlDQ1UEddcnQjKWNzk8WWKiaDGUNa7aF7syyfn88cWeMaPBVCXztv4e7zRcq5vW\ncsLBPXlyscls1SaIJWEc03FDNEXFCSK+fX4dicBQJZqmkDc18oZOHEtMXWWp6aAqGgVLYzinc3C8\nQNsPOb3UAnm1X9rbCRtjOlye2B/dWXpd7jsSDE1B1xSiMCZj/IgCXDB1vNimkjPYP5rnE8dSylP/\n+5qpdnlwV5l//rHDzDUcvn5mlRdnG6iKku7qqYKsoXN6QzKy0VvumQvrV9HUul7EUiOd/HbcgN1D\n2R8ZEtdtVlsez15YJ+n5ib3v3lE6XsTnjy8wlDNoOiEHx/IcmSwNvJCujHewfd5e1yqu3k743IsL\nmJrCTz309vm3lbI677tvlL98ZYl/+rH7b6rnz51eHPcFZyxNvUosanqtixskHBwvcHyuyQ9n68QS\nokTi9ejqpq7ghwlNN6TTa4b2TcuTBBw/IogSXD+iDhzbVebps2tYmsqJxRamqmIHEcM5g93DeX7u\n4V2UMzq/9fR5VtoeUSwZyunECbzrnlEMXRnc03067PGFJlGU8JUTKwxljKt2zTfiVlJo79LebhK2\na5x3PTdz3Qno+CFFK31dGEvec7BCIaOjCcG3z6/x6kKDibJF14toOiGmqpI3BX4U07RD8pZGRk/3\ndqbXbJCSjKaQMVQ0VWHXUKoY0h+hxrFkte3RsAPCWDLfcHH8GCRMlC0+eGicM8ttun7IXN1mru4g\ngO+8ts7j+ypvG774Zt/TRsngjTsAfeUXXUmTkqGsgaUqvLbW5fsXqzx5YOQyysjnfjjP9y9WeW2t\nQxzDcN5kOGvQ6fFqIS10q52AOAEniCjndKarXeqOR8eLSZK0wM3qCpqAUk5HUcANFXaULe4bK3B2\npc1qx7tMenuz667uBFiawlBWv+Zk6C7eWmy8/q7VTas7AXEiuXeswLfOrrHa8lBUQRjFRAlImVIm\nXT9KKW+A6F03e0ayzNfTB+lTB0epdgIKlkYxo/Hpd+6h5gSDxf236xL8lTH9Sg8uZNocuhb3fc9w\njqM7Syw2XLKGyscfmEyn9BKe3D/MzqEMRUsfFC8z1VRl7sGdZWp26iF0eGeJKJEsNBxabohEkjNS\ndbr33jt2mXnixj2B/v2sCTGIGQDljEHWVMnoCn6UdpTVnknrS3MNVlo+wzmDcsboeQGlE7+8kfC1\n0yu8NGdQsnT+8YcOXTORCcKEk0vNG973vFZx9XaBF8Z88fgiHzk6cd3Karc7fvrYDv729CrPTdd4\n1z0jN+UzbjaF6q0orAZGzJuIRdXtgLmGy2zNJiGh7oTpbi+wUHeRUrKznKVq+xwaL3B+tc1wzsSP\nIn780BgA37tYZaHh8tvfvMCxqXLq/UWq7DtTs4niBDuMOTpR5L6JApPlDB03ZDxv0HFNwiihaGmM\n5C3Mnmz3RrGmx/ZWWO/6vWNN2SGfeXLflijDt+3OjxDiALAgpfSFEO8DHgT+SErZ7L3kAzfh+O5Y\nbMc4bys380ajzLR7q9D2UiWQfSM5hrIG83WHzx9f5Mxym7YboKkqD0wWcaKYC+tdOs2QrKGxbvjs\nGckx33B49mIV2WMyVnIGiy2Xcs6kaBn8+L3jnF3r4AURxxcaaWey5mCoCl4UUzA1ziy38aK0CMqa\nqSzjeNHiW+fXKJg6QgicIN6u031Lca2O5DMX1rH0q8299gznKFgaL87W6XgRLSckShKiWHKpZnNh\nvcuvPLE3pabUbC6udVlueXhhnKo++QprHR9dU3D9CIDVlkcxo1HKaKy2PSo5k7MrbRqOT8dNDcp0\nTbCzZHF4ssya7fPI7goX17vsHsoCAktXr5Le3gyVrIGiCHKmRsHU+cSxXXf5/bcQm3lGbZZwakJw\nfL7JxfUOCw0HO5QoISSkHj2qkt6//btSCFCEIIzh/EqblhdhKAotR+PX33sAQ1cYzhpkTI29ls65\nlc5lflTXOtY78fpoOSmlr+tHA/oY4nIZ1z3DOfYM567ivj91zwgzVRtNCDK6ynjJRFMUvn5ujfOr\nHcIoQRGCY7vLKZ/e0thDDk0ITi+1cMMEL4x5eLfHnkoIAnRVkDNV4kQyWjCxdJXZmo0QAq0nMHNq\nqcWzF6qUszp5U+Pd94zyt6dX6PghUSxx/BghJOtdj4KpM1G08MKE+ycKfOPsGl6Q0HFD4liyq5Lh\n8GSJ86sdzq92OD7XIIwlU+Us802HU8stPnJ0ctO9UwlIKW6YF/92F1r42ul0WvjJR6Zu9aFsOz5w\naJycofLF40s3rfjpK1Xmrmg6bAfeqt2UzZQmz690BrH8H3/wXmpOQK3j8zvfvEDHi/DDmOWWy3zD\nJpFVJKnX2L1jBUxDxQti/CjhO+fXWe+kthaljM79k0VWWg6vrdqoCqx1fEbyBoqEtY5L282x3HT5\nxtlVnp9p0PHTPPGesQIfOjxB3kgVhfvnp+4EDGUNsobGQsNNm7r65vvCG3ErRCrg+iY/fw48KoS4\nB/g94IvAfwI+BiClrG//4d252I5Afa0CamPB88yFdbpexOnlFod3lLB0lU89tpu8qTGUNfjq6RWe\nPr3CicUmsQRdUciZATHpjokfJiRI7hnJ85XTK7w0XydJUrPCkbzFn74wR8sJCZOEOIHTS23ee98o\nR3YUCcKEvzm1TBhL2m5IxlBJEokfJQRRwGRo0nRDPv7AJN+frnFyqU3Hi+l6EQdGC5iactl+0q02\nQXyzeD26Rz9R2qjrX8rqA6GJ9947yncvrnNyoY0bxszXXZ6bqfOeg6MMuQZfObXC2eUOs1UbXVHI\nWwZ7h3N0vZD5hsM//cKr5AwNRSjM1V32j2RRFQUhUlqLlJDK9SdEPtTtECEga6gc2VEka6Zqb0Ec\n03RSt/qtOCwLwNIVCqZOMfOjwueu/8dbjyuvv4YbbJpwzjccolhi9yaBkE53NAUyukLS+/vgd/dw\nDK4AACAASURBVCT4QcJ83UYooCkqmqYQ1R3+9MV5/qsf28fxhSaxlGlMsn0MTaV4jcfKnXp99I+7\nH2eByxQ1ryzm+tz3nKFRtX2ePrvGUE6nYYdYusLRHWVOLjWp2+mUvu2GdIMQgeD7F6ucWmqys5zl\n6I4SO0pZZms2ax2fP3lhjrm6w4cPT/D4vhESasRxyuMvZ4x032pXma+eXsELY56fqbHS9jg8WeTw\njhKnllu8cKmOlHBxrcNw3iRKJFGc7guOFSzaXsj3p2u8NNdgqekSS4mpKYzmDJKeq/xIzsQLYhIJ\nL883EQJeW+vypBNelsj0C0bHjxgrmtg3mJDeyi7xW4HP/XCBneUM7+oZBL+dkDFUfuLIBF85tcL/\n/DNHMbTtl/DWhOD0cosoYcsL91vFVpvZNyr4ceU1DlwWy3cOZTm8s8T3LlRRFDGQIM8YCkki6PgR\nOV1ler2LoakULJ0kkdw7niNnavixge2F1LoBf31iGduPEKSNrpYX0XJDMrqCROfEQgvbj/jexSpS\npK3wkbzOfMPhW+dWWWi6HBjJU8mbZHUVQ08nQdejHHkrcT3FTyKljIQQnwD+rZTy3wohXr5ZB3an\nYzsC9WYF1MYEomEHWJpKztKIEsgZGgmpv8S+kRwzVZuOl3b9BQpxki4qN90Q2RutIsALE9peRE7X\n2Decxw9TeeuTi810sVakTr+2HzFbs4nOJkwUM4wWDKJYstB1CRPAj8kaKroiaLoBTiDThEvKAdXr\nwZ0lvvTKIm0v5NxKmyhKuNRwkHDNnZfbHdcqdDf+zPUjnnltnb2VHMWMTteN6LgRLafNWjug7YV4\nYYKpS6I4oetHfOv8GhfWunhhhKkpCEWgawqGqmAZKgt1l/WujyLg4FgBP4pZabsULB3R6w6HUZrK\nhjFYempW1vGj9OEjBJfqDpaqcG6tySO7h7B0lY8eGb2syL7y+r1SbvMyWtVd/4+3DBubIBuvta4b\n0fVDJooWK22fSzWbIdfgP/7gEmdX2qy0PTbU4iiApas03BAFiEkfDAmga6nim0AQRDFuFON6IRd1\nhX/zjXM8sW+EPcM5vnl2jUTC1FCWSm7zXb479froL/7nTI19I3nunyxeJupw5b9ho+2AIDWbnixm\ncP0YL4yZrnYJevSRS3WHME7IaBrT6x3OrqRUledn6qw0fS7VbYIoIaMpA7XNSEp+5Ym9vOfeUZYa\nLnN1h5ylMddwGMmlDuzz9S7VboAbJD15/Cz7hgVLDRcJdP2YoRystXwkEktX+PLJZaaG0j3BvcO5\nnuCJTzcIeXWpjWWq/HC2QcNJnx8P765Qyuo8tKtEdMX+Zv85Nd9w+ObZNSbLGUqWdsMJ6a3qEt9s\nzNcdnnltnX/4/oNv2lPndsfHH5zk8y8v8uyFdd5/aHzb3z+SksM7SgOvw82MRN8sttLM3i7Bj1I2\nbYi8uthEFQJTV9g7XLoqZlqGQj7WMDUlVWSMJJJ0f1hXFHaVs5QyGudWO6x2fJqOT72TricIkVqV\nmIaa2pGoCpamkDE0VAGljJkqw+oacSJpuRGuH3Fupctw3qRphzTdkIYdMZTVObyjwKN7hlluu2RM\njc88ue+2b1JcT/ETCiE+BXwG+Knez27Pf9VtghsN1FcurV6qp7KFfeqFG8R4YQIbDK42VtqVrEHB\n0lAEqKpAlwoFK5U5zhjawLTvqQNl/uylBVp+yLMXqnTckImSxVzNQVMZPMQh/fNq2yeKEo7sKLJ3\nOMvJxRBVS5MoVRWsd32cIOLkYov7JvJ03dT3omhpdPyQfSN5HtlToWb7dPyIQm9HqbOBr34n4Voy\n40d3lECkHanfe+YiUQJJkrB/NM+FtS7z9T5VMKGcNej6Eaamsn80R9sLkRIyugqKYKJk4UYJ5YxO\nIaOxUHdYbrkIIfDjhIW6g66rJAjabkTB1KjkDNwwoWWHCAVMTaGU1RnKGhwYyzNZtBCAHydImbrH\nW4ZC1OvkXytob3wQBGFKjWk54duelnI7YTOqW3+n46un02nhN86uMVnKULQ0kkQyV7NRBJAqlCIk\nFAyFIEnSOCLTDq0bxBha6uUjU5NvLEPBCRLUJO0A5kwdU9NouAFxFQxVoZh5/R2wO/X6cP2I52bq\nKW3NUPjZd+x63Rh1LbGBvKXx1K4Rnj67RjljoCqCd+0fSb8MCa8uNCllWpi6SpTAYsuh7YU4QdpU\n6nohBaswiDEPZstoQvDcTJ2MowyeAZoqWGn7NJwABUHO0Dg2VWa8ZLGjnOn5ekTYfkTN9gEoWBpD\nQYSpKqx2fKIkQVMhZ+mYqsKBkRwNO41JuqqQSFhquwzldDp+dFWHt18wLjVcBAJFwL7R/LYmpG8n\n/McfXEIRgl9+fPetPpSbhncfHKVoafzVK8s3pfi50utwO+PLVprZ2yX4MV9z+K2vnR3kC4d3lNLG\nSZQMKK0vzTXwggSnd+9ZmspDO4tcXO+yfzSlzJ5f73JuJWStk8aBfo5RUjWark9Cyg5RAVNXKVga\nowUTIQTjRYv1jkfTCQgjia5ArCvkdBVNEXhhgiJAUwRBlNB2o8tYI3dCk+J6ip+/B/w68K+llDNC\niH3A/3tzDusu+uhfQH0VtyhKBkZheVPjo0fSpOejRydTnw1x+e9++PBE6g+hKCw2HB7YVebwZJGf\nODwxWGi/VLeJEsnuoRzLLQc/UpkoWSw0HfKmQTkryBkqLTdkvePTcgK6Xsi3z6c+EgkQRBJdSyWW\nC6ZOxtCQUpIzVZ69WKWc0VEUweN7h8mbOqauMCpM3DDm/Gpqsrq/J9F6J2Kjl8er801emK0PxsCV\nnEGUwETR4tXFJopI5WsNTcUNItY7PomUFK1Ucc8PE56fqXFhvctozmSop6RSswPGe7z8obyO2UoX\nld0gYWooQywlF6tdhFBYF4LJkkU5K8gbGl4Uk9E1xksmP/XQDo7sSLX9H1wpU+36RLFEIgdJ6et1\n6fsPgkt1m+dn6ryy2OTkUouffGDH25qWcjvhyu+nfy/3aUb7R3N0/ZhH91RYbDr87alV6naAFyao\nSk/MAPCTBAVB1uiJmigKlp5SUhw/IkL2uN06goCsptF0QwSSUkbjkw9PESWSoqVd5iG22Xd/u9GW\ntkJHaTkhT59dRVMElq6wf2RrCfzGh/9Gg9S+WEjO0lIz1IzGycXUi60bRJSzKU2laKXxs5TRuW+i\nSMZQ+PH7xlJT415S1XbDgfStG0b87LFd7B/LgwSZpEII01WbXEbj/GqHvKlxYCzPmeU2IzmDmhOS\nM1RimZoiSwT3TRRBtBkvZnj/fWN88fgSNSdgumozkjfw44SmE5A1VGwvnUh7YTKYFvdRyRp4YZqw\nFTMamlAQvZ/fxeXwwpg/fXGeDx8ZZ6Jk3erDuWkwNIWPHJ3gr0+ktExLV7f1/W92fHmjhH6rgh9v\nFHdm6zZRAnuHc8zWbCZLFotNF0tXeebCOkd3lIiShAd3luj4EaoiGMubqTk5KaPn+HyDphOw0vYI\no4RXFpvcO5YnkanCaxhJTC2NaSN5i51DGaaGsrzv3jFeXWyy1PRouSGmpqLrCpomiGTaqM6Zfb8g\nA1VVKJjaYF/wyjhwO+N6ip8PSSn/Uf8vvQLIuwnHdBdX4EoVN0MVDGUNntg3PJAR7EskxlLywkx9\n4DHRcAMWWy62H6GqCqam8BOHJwaa8G035PmZOosNh7Mr7Z4UdcR6x6No6miKoOUGIPW0rhIJqqKk\nlKpYEsaSnK6SJBF5Q0VBUHMCNAV2lCxMTeXieqogNF4weXxvhU8+MnUZp/VSzb6jd3766Hfj5+oO\np5faPLa3ko6sKzn8MOY7r60hExBSYukaThARhAkZXSFrpsnjyaUWqiKI4pRq2OgG6JoCSIRIEx5F\ngKGo5HQFL0opK+/YXSFnqax3A5wgIkwShCL4xUeneG6mzlzNYaxo8sDOUkpB6Z3n/nehCXGVutsb\njvndkOSKAmnfyJ39Hd4pqGQN/DAZCAxoQvDlE0usd3y+dmqFvKXRckPOrbR4ea5Jx4swdIETgkq6\nB6YAcQyKBm6YoKuC/cM5spbKy3MthBDISKIrClJKxgsWMSnv/Bcfn+LxvT+KP3uGr9592Qy3S0dw\nq/tHdSfA0lXGClavuXT9E6uN/+a2G3J6uYUTJCQyYaxgstr2mSiaXKo73DdeAAFPHRjlh3ONgWiJ\noVnMVW1emKkzXrRS9cheU2VqKMtzMzWem6lzfq3LsV1lsqbGrqEMDSfkvrECJ5dSSwMpYc9QloYV\nst5p4kUxOVNDU1R2ljN86/wac3WH4bzJ3qEMGUNlh5Gqgx4cL/Dw7iE+++I8lqqhKXDfeJFQJpsW\nhI/uqeCFCVaPYnutovjvOr70yhJNJ+RXnth7qw/lpuOnHtrBZ19c4Fvn1vnI0Yltf//riS/XK77y\nRq+/FgNk485O2/1RnnatuLO3kkNTYLZmoykwWczghDGTxQzT1S5LLZcoltTsACGgYJn8cL7J18+u\nYegKp5ZatNyQphPiBBETpQxtN2KtE1CyNHJGWryoAgoZnUf3DmGoKp98ZIpISv7i5S5LTZe1jp+q\nyQnYVclxqeYM1IAVRbJvJI8fJUwULQ7vKDFd7TJbtylmbo8Y/0a4nuLnM8C/ueJnv7rJz+5im1HJ\nGhRMnYvr9mDyM1kOeObCOu8mnfx0vPAyj4m1jk/OVDk0XiTs0ZoKpkbRSqkpfaGE5bZLOWPwjqkh\nqt2APZUMqy0Py1SRiWSh6VG3g1QWW1fJ6BqFokHTCah2PdpuTBjFKAp0vRhDk1RyJl4YAYJLVRs/\nTljr+BQsneGCya8M5y5TEnsw+/YwPuurzay2PC6sdVhpu9wzmuepAyNMVbKstX38OEbXVUYLJk/d\nM8KJxRavrXURQjDf6CJlKjspZYJlaNhBTNIzMM0aKrVuwHrXJ5Zp0XnfRI6xgoWiCqYqOYoZjWrX\nx1DTcXTfBbrthXhRzINTKVXm1YUmyDRp7XekNwb11+uiXWsB/G5X961FuqiaUlIbvUlQuveXUpOi\nWPLD+SZrLQ87TOivGKsCQtLpTyQhDiVhGKNrgksNh+G8TiVnstSwiSU4YSqBfWSySCIFH39wkgem\nygOhC7g86bgTFN22un/Up9JMVdIdxxtN4COZ7mSeX+kQxJLPH1/E0lVOLCYYqsKxqSHafsj+sTyT\nJYuFmsuFZpuzy22+dW4dTYFH9lSYGsoykjfRFLiwnkprL7VSJ/cTC032DGfxowQniHjmwjq6ovC+\ng2PM1R0Wmx5uGLFnJIOpKSiKYEfZYiRv0HDCgULliaUWLS8ib2gESWqs+oPpGl4Uo6uCKNGYrduM\n5E06Xkp97Sd8/cKykjN4fF/ljm9s3SxIKfmj789y73ieJ/ZXbvXh3HQ8uX+Y4ZzBX766dFOKn63i\nesVXtvr6K4uvuhNctrMzW7evGXc2xs1//KFDzNZt9lbSPOnFuTp1O2BmvYsbxEyvd5komczWHF5b\nbXNxrYsiBFlDxVTFwP/LDmLW2z6KKvCjhF1DGU4vt+l6EQgIk4SXLzU5trvCN86tUbLS/CFKJEGU\n0LRDdE2wu5J6gEUk7CxnObfS4Z6xAnYQ4YUJp5ZavLrYwgviO8bn7Q2Ln96ezy8D+4QQX9rwvwrA\nXYW3bcBWOgo//8gUj+2rpAuuDYf9I3mmq10+f3yRoZyOHyYIYKabPggbdsBiM8YLEu6fLHJmqZ0a\n7CmCl+cbrLY8On7EWsdnes1GIql2PRq2T8eP2Vm2aDghuqL0ON4SmUiG8xaHJoqcXGpR7QQgE0IJ\natxTjpKSlpt2HKQQeEHMrrLFaN5k33COKEnuiL2eN5PAVbIGXpQajE0ULUaLFrsrOWo9aUkpJLVu\ngOvHxHHCzqEs4wUTP4oHwgWKouAG6ckURmouaKgKa21/QF/zgxhNU+j6aXcnZ2jM15102d2LUtNU\nVWU4Z7Da9qnZQdph7vpYqsLfnl65ygi3T9G70t/n9bjN+0fzAFctgN/FzceVohN92eVqb4dDCnD9\nmE6UmtoBKCLd4en36HurJmkRBMSRxAkTZCdACEHW1NC1hFLWoJTRqTkhBUvj9787zQcOjTNSMK96\nyN0pim4bKSp+mFyWvG/EdlNpNCF4bbXDattHUVLPrkf3VKjZHopQaPshak+u+s9fWuDVpQZdL8Lv\n+QbFUvL/s/fmwXFd953v59yl9wXdAAiAAAiAi8RFIqmFWmxJTmzJsZ+XjJzkZezY5UwytvOSycvL\nZPIyM5Wp5CWZV+XUeCaZTDZnmaSSSWYSv9iOI8eLHFuWrIWWLEoUJZESAYLYCXSj9+7bdznvj4tu\nNUA0gAYBohvoT5VKZLNv9+l7fud3z/L7fX+vTmcolm26w14++eAhnnpzni+8OM3YfI6y7fZuoewq\n+g3FAxi2G5P/8mSaCzMp/LrG5fksEZ9bciAe8PDA4S7mMgZCuPXhkK66p2M7VdvqCXv55muuBLZh\nlekJC+J+D8m8wTcvXsMwHR441EVoqZ2VCV7Y1xo7wTvBc2NJXpnK8Bv/7LZqOPtuRlMV3nt7L597\nYZL8kojITrDW5sdqz/7NirWsJl09kSxcF1Gxmt988Eg3Ewm3TAkS5jIlArqGYbljsyfqZyZTwrAE\nHlVBCLdwvKIomJYDUhD2qqhCpSuskyq4IfamJd2xDcznLFKFHLmyjSYEUb9OumSSL7sF6Y/0hDi8\nL8SpwQ5emUrz6kyG+YyBV1NYyBsI4N7hTr5yYQZNcfO9NyJv3QxsxPKeBmaALuAzNa9ngZe3o1F7\niXqJyysftJUE16F4kOT5aWYyRTduVnurNsup/g4QkC1ajC7k6Q576Qjo3Hewkx840cvotRx/d24S\ndVZhfCFP2KdxsMtNfE8VTXRV5ZWpRbJFkyu2jXQcQl4PUjoYFjiOTbrgTuzPjibJlEyWno14dddx\nCyEomBYS6PDrpIHOsJeQV8cR3HChu5vBZidw0YDOw0f3MZsuuqFpmkJ32C1IOrcUe1swLMq2Q2ne\n5sxQnOfGk0S8rmpewKOiKgplWxLzawQ8GtKBoEfFsB1iIY87wbEcSraDVxEoqkJHwMO+sI9UsUy+\nbLsiCKZN0bTpiXgp2w4LOQMp4eK1DF0hXzWEciFr0BHUua2zg9H5XLV6e61azcoHQa1DD/m06sKn\nFXb8W516Cm9D8SAxv4ezY0len3Enx/mytaTWiLuYXlr84K6FKv+rIoFcySS6lBSvKmBYkoJhuUIb\nPo39UT/XMgZySUr95anUsoXveDLPtWyJkc7QsoKbzUY1by2R57tXkrw0meKVqfSqY30zoXr1xoIl\nJbf3dxD05lzlNschkTfoDvl49/Heat7mRLLApWtZLBsMy1mq4u4Q9Wv0Rr08crwHS0pSBZOzV5IY\ntk2qaKIKhflMiZ6oD9N2uDibRQroCnqYzRbxaxoHOgPM5ww6/BoBr0aqYPLYyzNEAzp9UR8jXQGm\nUwaacFBU14d5lkQOyraDpriTrIBH40oiz0K+TCJvUCjbvD6T4c4hVzWy1YQtdoLf/9ZlukIefviu\ngZ1uyk3jAyf385fPXuUbr1/jg6f270gb6uXn1Hv2b1asZbXNk9ocwLUWVwCfPzfJpbkcAY/KXLrE\nbKYICMq2jUdXMEwHXXXzNN3wXC/vOtrDdKaE36NyfjLNXKbEeLKApggCXl/1RKiC6cB8tuRugjkS\n07ZRhEBVBI6UBL0a+ZLNm9dydAY8JApl3n28l6uLRXyawnNXknQsheDOZUpoioK2tJBv5jnBuosf\nKeU4MA7cv/3N2XvUGn3tSc5qk+6KIdUqOz355jyj8zlKlkMs4CHi14kFPSiJHImcQVfQW339f569\nymSyhEcVJCq5Ibbk7Qe7CHpVXpp0cwMk4DgSTdUY6PAxk4GFnBv7nim5uu8F00IV7gRKEeDVBLqm\nkSuZhLxukbG8adMZ8PBDdwzSE3UHXSuEP2x2lyddMDk3mWK4K0hHwFMNd/vqq7NMLhaYTpWQUuJV\nBVLCY+dnMB2H0wMdzGVVhroClMo26UKZaMDLYt5w1eIUhWymyGyq6CqzLU1mu8M+jvVGCHtVzk0u\nMp8x3HpLuoqqCDoCOvOZEl7FnSh3hj1EvB4yxTLJgnuiVDn5mckUKVnOskKn48l8NRm71h7rxTY3\numBsZsfYjKQLJp97YYKsYRL26stES8AtqnstW8KnqxzsClEo21xdLGBY7qmwRwHLAaNOvr6+NI6l\ndAVM+qLupkhPxMct+0LM5QyuZQ13UVR2GJvPVSfqlYWyu/jK8tJkmrsOxNCEYGwh35R9HA3ohAs6\nHl1paKyvZ7f1JG8ri9ZKDTZdUYj5PSBhbCHHty5dI1U06QjozKRKeFSFeFCnZJoMhHwc6YnwzqP7\nWMiXsaTEMB3emM9Sshy8moqiCOKVfD1FcCAe4upigUzBVYybSZdwpGQ6XcCRsCgl06kSZcsh4NUw\nHcdVgCq66qGW6eaXFssWdx7upr/DT8jnCtc4jmSoM4hXU1CXchH9unvabDkO94x0E/bpDff7XvIJ\nr0yleeLSPL/4A7duefJ/M3NmOE5PxMuXXprescVPvRPdes/+GzkBXrl5stpmymqLq0q+YSzgYWKx\ngGHbHOwOMZ4oYi+p6R6IBRiI+7l/pIvSUomSmUyJaxmDoc4AjpSkCmWyJYuAppDMl8kZZvXUXwEU\nxT3ZtW2HQtmmZFnsC/nYF/HiSMnrsxmmUwWm00Vu3Rcm6NWwHbAdSU/Ex1ymRKpYRlWgZLnS15WU\njPXym26UG/EXGz5zFEJ8CPg0sI+lcHNASikjDX3jJtjNDrHW6Fee5KxWN2GlIT1IN58/N7lMCSQa\n0Hn4WC9fe20OW0qefHPeVQ5ZyLOQK7lhVcBwVwRdFcxkSnSHPAQ9GgFdo2SaGJbEdizGF4ukiyam\nA8K08eoq06kiRcPCsN8qdhnyeeiPBnhzPstQPMB8tsxdB2LEwx7GF/MkC+VqDZ9m78/N7vKMJ/LM\nZQwOdgXxe1T6Yv6lfCyLaMBDd9jLdKrg3k8bUku7O9+6NM/BriA/dMcQ+bLFF85NYUmJrqmMdHp4\ndixBseyQwUbAkiKUQzyokyuZ5IomVxN5pBBoiju5KjsOVxIFJhJFEJIOv07EpzO+WOBUf5SOgJtz\nVFF9WynLqwoBsr5M52qxzY0sGFslPKqZGE/mOTeZIuJz8//OjMQ5OeDmy708kXITUr0qhbLFy1OL\nZIomJcPCWQp1y1vXf2blIQjuhNm1O4Ft2Iwn3Ppbpi05NdjBj97ag4PkQCxAolDmtRm9WsS3slNZ\nUS2czxks5st87dXZakhlM/Zxo2N9I3a7cizUbiIYpquWdnk+T9GwueY1CHs1XpxY5MnLCUK6ykfv\nG6JjSeWtO1wmGvDwvtv6MKXDqQMxiobFd8eTLBbKOI5kdC5LyZbkSxaOI9FVgQMECiY+TaGoKEyk\n8pimJODVKEroi3jxaAo9ER85w6ZsWRTKNlHHlbB1HFgsmgx3BjjaG+HOAzG+c3mBqF8j5FU52hch\n5tO5nMhj25LusBe/rlKyHcJefVObXHvNJ/z+E5cJeTU+et/QTjflpqIobt/+5bPjpIsmUf/O9PFG\nFyFrvX+jbEYsAajmG4Z9KiqCC7MZLMcm5NPxaiqaKnh1KsPLToZEvkTJsumN+Al6FAK6StijkSlZ\nOA5kyg5508CnCYIeBcNy0FTFzeXWFDRVoTOoM5UqksiXSBYMDEvSE/XRGfTQEdDxezV6fBoXZtJM\np4qMLeQ40hMm4NEoGDYBXWOoM0jGMNfMb9oKbtRfNBJw+ZvAB6SUrzXcyhtgtzjEesZfa/QrJ58r\n6yasZkiWlMSCnurrlfjsuWwJn6rQHfK6wgbpEom8gU9TsWwHj6qSKlooAsJ+C5mVpAoGWcNVJ/Fp\nAq+qLAkpuG0oO+BXBF5NpbfHx+WFHNKB3g4/QkB/zE8ib5AolPH7VCxsrizk6Y36q5O1IYJN35+b\n2eVJF0y+eyXJ6EKOsYUcJwc6iAc8ZIompu2QLpTJltwcKttxEEhUxS0+apiOe2o0sciF6TSG5RDy\n6fR3+HluLIlhvhWgJIFs0eTUQISP3jfC+ek03x1LMJ818C/t/g7E3R2fqF9nMV/GdCRRn4fusIfh\nziDH97vJl7Wqb5X/1x7JA7wynWZ0IUfJtKtH2avR6CSyVQte7ijyLSV7sfR3cG3v22/M88zoApYt\nKZk2+8Je4iEP05nimh+p8lb4mwNouEqShulgO66ctU93a//M5UqoQnD/wS76Y4FVY9dLpht+FfFp\nOFKSNczriuE2E42O9fXsNl0wyRZNyqaz6ibC+ak0C7kyhmljOw4TiwaaIrAchy6vD8OyeG02y9He\nsFu+oFjm7FgSUzrVYsmfffIy6aUq7Y8c6+FAZ5BcyWYO92RPAIMdfiJ+nbH5nJvXZEmEBDxuzabe\nDj9F08K0HGzHIR70UDIdTMvN2Uzk3TDZuXSJM8NxcktFmjUhKNoOtywpyHUGXQn+j943srSQcuuO\nbIa95BPGFvL84/kZPvnQoR2b/O8kHzjVx59+Z4yvvzrXVCF/W53jB42JJQDVjaSVbQG4MJ3m8dfm\nGE/kmVoscjFbqoY3l00HCZTNPPGgB59H50A8gKDGx0t38ampKpomCHl1juwLo6mChaxBrmyjqgrC\nkiiKwHIsimWLRQT7oz5ODXRwYTrFtWyZiN892T2yL8R8zmAwFuAbr88xlsixL+yrm9+0Vdyov2jE\nS81txcJHCDEMPAe8BpSllO9e6/27wSHWM/7aBVFF/Wy1eFCoP7lc+fpQPMhQPMiF6TSXZnOcm0yh\nKfC/3b6fgVgAxylUi6EGPQqDsSC2dHh9LoMtIehV8Tlu4n3Yo2HYBobtDh0JdAY8ICBj2G7xOhWS\nOQNVUUgWy+yLeIkFPWiKYCFnci1bIhb0VidrrdKfje7yVH7Xqf4OplIFBmL+qqxlh19nEAfkpAAA\nIABJREFUoCOAriq8eHURaUlsoGS5IYNl2xWBODeZIpErowrBlUSBWEB3czZ4y3mFPQohv84jJ/Zz\neijGxWsZvEvJjiYSn67y8NF9lB3Jhak0lpT0hL3c0hPh/Sf7ODeZWtMZrfzdDx7udhWpNPdk8X3+\n+o67kYdGqxa83EmGOoOcHOggW7IY6Qoy1On6DLegpMn+iL/6IIwFPUwk8qjCFTNYDY/iJiA7jkPZ\nBp/mCps4jmR/1Md0ukSiUCaguzaxUtJ8tf5++GgPL02mKZkOcxmDzpC36fu4kbG+lt3W+nkJnBpw\nczTB3URwk/81siWVomkvhYm5IW7FssN4Msdt+6O853gvJ/rdE/xIwW1Xruj24nfHkxTKDoMdASYX\ni1yczeHVFWxHLoWjOdiWw+RikV4pcaQbt6+4azDKtkNc9yAEeFWFvogXVXFrs0kk44kCB4djnL2S\n5ERvlFTJ5PC+EI7jymSHAzqmI3GkdGsDSTe3sSfqYyj+1sZWpe5XIz50L/mE33r8Eh5N4SceGN7p\npuwIpwc7GIj5+dJL0021+IGtk+OvzO+yRXNDc55688Ta975tKVrjwnSav/veFG9cy2CmHcpLIghC\nAdN26Ap58ahiqSyKzny27Ia5Car13AplyULOYD5ToivspTfqYzDmJ5FXGJ3PowKawC1oik0yX+bS\nXJbpdImIT6dQthmIaZzoi/Lkm/NkDJOTAx3L1B3rzWe3ghv1F40sfp4XQvwv4AuAUXlRSvl3DX2j\ny9ellB/dyBt3g0Osl8xWz9AbmVzWe72vw8+tveFqXEtvxMfpAzHSBfckYqgriGk5XEnksGw3XOVo\nT5iLc1k0RUEIeOBIJ8+NJRldKKBKVxa3LCVeRWEk7qds2gQ9KpmyxemBGA/d0s3UYoHZTIl82VWM\n82qu/OLR3nB1stbq/bkamhC8Ou3W75jLFIkFPFyay7mFEbtDFC2b81NurQ2/R0OzbQK6ilfXMEwb\n05ZML5bcELWAjmHaqKqHgmES9usUyxZCCLqjPsJejYeOdKEJwdVEkcWSha4IukI++qI+DnQGObE/\nykNHuskZ7qQp5NPojwXojwUackbuyaK+ocVqIw+N7dhh2+1EA/qyGlmVe1axg6l0EVtKukNeypaD\nrql0BDwYlsNi4a0lUG2om6YKgn4PBdPBq7qJ7NGARt5w8OoKQa9KZ8iL4Poxu1p/+70a9w7Hq0U8\n7zvYSdjfeO5Hs7KW3a7087UqZ7XXZIomPl3Fka4KW8TvIeLVmVgs8p4TffTF/MBbk6H5rMELVxfR\nFffcbyJZYHQ+CwiSeYPTgzFKlk1fh49r6TIhv1vSwKsLZtNJDOut8OQzQ3Hed2o/IPn6q3P4PRoz\nqSKdIQ/HejtI5Mt4VDdkpmDadPjdyQ249YSKps1gLMAdgzFenkyRNSwCupu7dKMbW3vFJ7w2k+Hv\nX5rmp95xiH3h3VvUdC2EELz/5H7++MlRkvky8eDumAdUqF3IVE5k1pvzbHT8RAM6fR1+bukJuXk2\npuOq8UrwagqG7SzlYas8cqyXBw5385mvXyS9dCJ/uDtM0KvyxKV5iqaN6UCmYBLxasymS5TKDqoi\n8OsavWE/ubLl1owslAl6taVcRA8DMZVHT/cz2Bmou8jZqoXkatyov2hk8RMBCkDtSY0ENrP4+X4h\nxJPA30kp/8tab9wNDrFeMtt64ROrLXTqDYaVr7uJxjksBzQFPnTHAO+4pZu8YZLMmVzLGTgSjvZG\n3HoQhsWtfRFGukPsC3sxbIcTfVEcKSiVHUqWG7oV1BVSRYvZtJsgnzdtgrpKzjBJ5Aym00X6on4u\nXcvRGfTSGfLywKGu6k4m0PL9uRqWlBzvi1K03LyczrCXfMmiZNrMZIoI4NbeMMm84e7AWoK+qA8Q\n5MoWR3vCLBbLFMo219IGpuNQKjtoqkosqBOM+emL+ri1J8x7buvjeH+UsYU8pwc7OLY/wtNvLNDX\n4VZZvrpYYCpV5MywWw+kknRYUbOq2F+maK6qLFjLdm4+bKdj3K2sds8sKTk92MGdQzEWsgZH9oV5\n41qW2UyJTMkkXzbw6wJNVSiU3Hw/G1z5NwSnB2OYjmR8IU/Rsgn7vBTNIhGvTk/Ut1R0s4u+mH/d\nMRsPeKpSxyGfG/+92/q4nt1uNF8gGtD51EOHSBbK1TA2y5H0RLzMZkt88dwkYa/Osd4IVxMFribz\nzCxVeD/YFcSrqZi2G9vv1VX6434cKXn4WA/Pjyfx6SqKEEyniliORFPcB7WuCPbH/Dx8rIfxRJ4n\nLs0D7slNRWa7snP7I3cNkiiUGY4HGewMkC6YfPS+ITJFkxP7o0s2F0NR3HCZxUKZoc7gDfuKveAT\n/tNXLxLyavzUQ4d2uik7ygdO9fEHT1zmK6/M8pF7D+x0c7aUlfO7UwMdhH06mhDLwtpqaeRZW/Gz\nh7pDdIa8dPh0vv7aLI6EVLHMPSOddAQ8VZ/98w/fwlcvzLpqkgqoqgDhihZICQXTYTJdRBMKKNAT\n8nG8P8It+8Kcm0gR9mqkCq5I1srTncpv2YlxeyPfu+HFj5TyX2zqG65nBrgF9/Toi0KIb0gpq5LZ\nQohPAp8EOHDAHRCt7hDrLeA2Ej6x2bwYS0qO748S9GjkyxaWlAzFgxyIB4kHLbrCHlTcooa6pnCm\nv5N33NJdDdN4bElO+3B3iJCu8exYAttxyBg2XlUh7NO5mnTVxxzpFsSybIeR7hAn+qL4dJW5TImI\nX+O12Qwn+qPL7kcr9+dKKnH+7m6Jit+jkC9ZhHwa7z3chyUlRcPiH87PcHhfmHTRJOB1q8bPZw38\nHoVowENnyMPl+Rxm0IMiBEGvSjwQQFVVMkUToQiiAQ9hn87YQt5VjvJp+KXk4eM99Hf4ubpYoCfs\n4/HX58iULFRFuKdPS4np44k8r0ynqwVKj++PEvJqa8Yh78bF6m6idsFxoDPAPSNxptLuxHekK4Qm\n3JoMtiMRwj0BKJYdIn6NfSEPibyBEIKiZePTFGbTRXy6guIRlCyHgK4wGA8w2BlYty172V4a+e3V\n+H7gkw8eIlFw63996fw0EZ/O6zNZplJFrizkmc2UCHhUTFsylSpSth2CHo1rOYPukLfqa07sj3Ji\nf7SaP3p2LMn3xhcxLVf2POzT8GgKmaIJwq3xZdqSka4gP1CjHLiy3SufR5XitoriFkuWwHevJBnq\nDC7LX603ydvLvDCe5BuvX+MXf+DWPX9fjvdFONgV5EsvTe+6xc9q6QiwerRPhUb9x8rT5HOTKTJG\nGcNUAUGqaPLGbJZL17KYtpsD3BX2cKw3yly2xKmBDp55cwFzqYajbYMhXZnrhZxBQFc52d+xJH8t\nGeoK8tDSHHE32G4jam+3AL8P9EgpbxNCnAQ+KKX8jUa+UEppsBQ2J4T4B+A2auoFSSk/C3wW4O67\n764jytp6rJzwrxc+kStZKIpgKlngcW2OIz2hhoyuUpm8MtCyRZN4wHPdgLkwkybi1ZedzMDy05kL\n02neTOQYiPmZTZdQhGQ+78aQBr0qPl1lIVcma1gsLroPvLlMidlMCSH8XJpbQFMF77y1Z0MTqGZm\n5Yncyjj/+w528t4TfcsmEumCyWOXF+gI6BzaF2KkK8jYQo7JxRIRn0a+LPBpCqri7s7risDnUTgQ\nD/DRe4dZLJY5N5HiWG+EuWypKoeeLpj0RXyE/Tq9ER+xpROdsUQOARzsCjKXKVVPn1SxtNsjJUGf\nhuVA0OPayHgyT7iwenjSblusNiObVUBcKX9fuf7R0/382dNjXJjJULYd/LqCpigoArpDvqVwV0mq\naFG0JP0xPwGPxlA8gOW4Mte9EV/1BNOScsNt3Mv2spHfni6Y1fpCHl2hbDqcGY6jClEVtCjbDh5N\n4a6hGF++MENvxEdX2EN30MfL02niQS+JvMGHzxzgSE/4uj557Pw0uZLlhtBaNj5N49SgW4+p4j/8\nuspDR+LV07lK/1Z+R4XVohRGuoLcMxInZ5jLajrFAx6yJZOzY0m8TazytxNIKfnNr1ykK+TlX7x9\neKebs+MIIXj/qf38zj+9wbVMiX2R3RMCuNr8bmxhffWz6qbIinG4XiTQeDLPgU4/ncEYybxBqlhm\nLlvi7FiSXMnk9oEouZLFSLc7VkNejX/xthE8msIb17JkCyYFy0Y1pSv9H/VjmJKvvTpLyKfxtqXi\nxbtl4QONhb39EfCLwB8CSClfFkL8FdDQ4kcIEZZSZpf++nbgdxq5fjdR70GpCcG5iRRjiTypfJln\nRhMMdwc5MxSvykVv5LPfd/t+xpN5zo4leWkqVU1CHekKki6Y1XCoZL7Mif7osgKKlTpCyUIZJIS9\nGmGfjmE7HIgHCHo0Hjs/DVIghGQwHuD0YIwriTypQhmvqrCQM/CoKhdnM5RNyYtXF/mFR4627AJo\ntRO51eL8a39fumDy8lSKnGHRE/ZxfipN2KcT8GgYlo1tSzIlk6O9fVxN5imVHTyaoFgWdIe8PHcl\nwcNHe0jmy2QMsyqHrguFr12YJeLTyRom7zzWQ3fIy4OHu1kslgl5k66Tqzl9qiq4TbknP5oC+bKF\nurRL3J6s7AybPemtXJcrWZQsh0dP91evi/h1tz+XTv6yJZOAV6CqgnSx7Apk2JKyJSlbJp6uEJoq\nCPs0eqN+3n+7K45RCV/ThGh6lca1aBZ5/UqfzWUMRhdyvO1gJ2cnU2RKFhGfVj2N6Yv6KJk2j70y\nQzJXpmDYGFaAfWE/Pk2lK6RzrDfMsd4Illy+R1jxST0RH35d5VhfhJlMkY6gm0vY4X9LHTTs16/b\nxFnZv/XCcYbiQfaFfWQME1WIqo1cy5YYnc/zrqM9TV3o9mbzzYvXeG4syf/zwRMEPJtTxNttfPBU\nH//1G2/wxXPTfOKhgzvdnC1l5fxuI2Ft9WqEreV70wV3s2E6VeLKQoF4SEciyBYtCmXTnTuULDya\nwgOHu+jr8FeVhQ/tC4GEiVSBbNEkVTQZ6Qww1BXi1ek0Aa9G3rAolm16Ij6+dXG+mufT6jQyAgNS\nyrNiudxtPSGhtXhQCPHruKc/T0opn9vEZ+xqLCk50Omv5o+oikBXFLKbeJCkiyaOU1NzIuHu8LsS\n1m+9fmE6zfPjSSTwymQar66ymDe4d6STgFfjQDzAdKpI0KMR8mr0RH388F2D9EX8hH2aW0zPMBEC\n+iJ+eiI+ZjIlLMch4vdwrC/MTKbElWS+ZQfOajug8SVZYHdRoxEPeJhIFLgwk0YVgotzWXIli6vJ\nPAc6g9UTmddm0/RF/fTH/FyYSnMlkefN+Swhv+Yqsug6ibzJtVyZUtnhgcNdhPwaMb+HJ9+c5/XZ\nDBLoi/lJTJaZS5coGjaL/WVOLqlM1ZvsVRZt773NXRRliyYvTaWaXoFvt1JPEKVe/00kClxJ5lGF\nIFeymFgssFgw+fy5ST5+/wjRgE6yUKYj4CHi1ZhYKBLx6wzE/Bi2w9X5PLoqMB0HVVEJeHU6Ahqq\n8LMv7CMe9FwnjtEqKo2rsVPlEmoXXMAy5aeDS6e/r89lqj4hY5icGYlXi4M+/toc+hvz9Hf4yBqW\nW6jQ4/ri04MdVZWletXoRxfyaJrCbfujLGTLGKarAqUqoloYuyJff11tosTyk+CNiO1UPmOkM8Tl\n+TyjC3l6It4N5/40ywJ1OzBth9947DUOdgX58D27K8TrRji8L8xdQzH++rtX+ZcPjrBifrmr2EhY\nW71ngS0lEa/O6EKeC1Ppai4PwMtTKQqGxZF9Yc5eSdKr+rg0myWRMwh53aL3Qd0VvwGqYzVnWEwt\nFpnNlvCqKu883UNyac6XNywuzmYJ6CrpYpnFYpmy7XAt49Zv+4m3j7TsPK5CI4ufBSHEIZaEgoQQ\nP4ybv9MQUsovA19u9Lq9RDzgoTvkY2yh4Gq0OxLTcYvHNfIgeez8NDnDze0AN0a7EmphmG7V95lM\nEcN0eOrNBa4mC5RMm5cnU4CkWHZwJNwxGCNdKvPSZBqJe1LxtkOu5OLKY9nKjkLGMLl7OM6BeIAv\nvDjFTKaEpsDwUuxrK1Jv50YAQkgEMLVY4L998w0mFosUyxaqonD7QAeOhCP7QnSFvMxlS1xNFHGk\nJF+2uK0/yuF9IfxelYVsmWuZEhmzTKJQoivoY2whh0cX7Av7eN/t+3nf7fsZ7kxzLVsikTNIFcq8\nML6IV1OWHU3Xm0DUHq3HAx7iAU9Vinc3KfC1Civtaq1TlolEgc98/XUsBxzHoS/qZ7FgEgt48Olq\n9WGZLZkYlkOqWCZbLiNMyBsWmhAk8mXEUiHLeMDDO4/3cHt/lKuJAge7Q8tCm2ptqFVVGndi4Va7\n4Kr42kqImwQyuOICx/sivDqTqZ6eVMZuumAyky5SMh1m00W8ugoSnh1dIODV6F70sr/Dv2Y1+gvT\nabJFk29dvMZi0aSvw4dHVTjWF6kKI1Tk62tt0DCd6nNCFeK6kMpaVvoZVQgyhsnpgQ7ODMc3LHix\nW+r51eMvnx1ndD7Pn3z8bjyastPNaSo+fM8B/s3fvsSzo0nuP9S5083ZVtYLi603xzBMh2+MzWFY\nDhem0xzeFyLk1fDrKjnD4p9enyPs85AplTkQ28dEskAs4MHvUbmnJ4aNW4T9j54a5a4DMX7wVD+p\nQpnXZjLoqqBkOuQMiyM9Ye4/1EWmaPKN1+comA5D8QAxv4fJxSKpopvuULvR1qo0svj5GdxcnKNC\niClgDNiQXHWbjVG78/Xu4730x/woQhDyag3HW1Ye+Ae7QgAc64sQ9eu8NPnWDv+p/g7CfvcU6NnL\nCbIBnQvTBSzbrQSeKxlMLhZAQKffg2VLPKpgNl1kJl2ir8OVZK0M6Kqam38/44k8CDc04lhvhCvJ\nfFU56GZyo7kU68mKjy3k8ehKtZDjhZkMBdMhHvBwzZYULRvDsvFoCkf2hYkFPDw7lqhKf48u5Hno\nSDdDnUGS+TJ+XSXs0xi0bEbn8yTyZYJedVlc/UhXkLcd7mIwFuDZsQS9ES/Zko1PVzBtue7kbrWJ\nxno7Urt5V3anqbeDvtpk/Uoyj+VAX8THm/M5hruCeHXVrfOyYuE0ly6SK1n0Rl1Zel1V8OkqOdPG\np7oVvX/wjn4+fI9bYT6Zn1720F3Z560qZLAT5RJq+/D58SRF0+LOwTgZzKryU+U+VkQKau9rsuBK\nTr/9cCfPXUlytCeMV1XQNJW7DsTIGCbI6xektZtQVxJ5dE3BEXCoO0i+bFOyHEI+bVlh7JV1m7Il\ns/qcGJ3P8flzk8SCnnUXJTdiI618srgeqUKZ33r8DR480sU7j+7b6eY0He8/2cevfekCf3X26q5e\n/GzkGRoN6Dx4uLs6X6q8r5JfpwrB116dI+BxFz239IQZjAfoifg53B3i8kKOq8k8Aa/Gw8d6mMuW\nONob4cWrKRYLZUxLcnYsyUO3dPPA4W5en83SGfCQMyzuGOxY5ov+3XuPV9sB8KffGUMCPRFfdaOt\nlcdoI2pvo8DDQoggoNTk7bTZAlbTha/kYNw70tmwkdU+8ENejZP9HYCb71FVIKlJdH1lKs1gzC3E\nqSsK48kCHk1wsCvEif0RrmUNTNtGouJF8MzlBRJ5o65S2CvT6WXyyg8e6d6qW7VhbjSXYq2itPXi\n4U/0Rfjm63NMLBZRBAzHA+yP+ukOe4kF3JC1nGExupAD3JDG2IrJZSUM7fb+Dl5bSlgfXchXw+oq\nDHYGiPj1qtKLYTnXvWc16iUw17s3u31XthlYbQd95WQ9XTBREZRMm2fHEgjhCov4PSq2454uLC6F\nMwgEb87nKJQdbMet2RMPedAUBZ+m4NEUDnWHlvXlymri6xXcaxV2YuFWDT2bz3E1UcCRksfzc5xe\nCkldKX6zMoZ/ZrHIuYkURcsmnS+zmDfx6QrH9wfeOiXqdAvdrtZnM6kSjpQMdwaYSRfpjfoIeDQe\nPd1PxK8vew6srNtUeR7MZNxyBlKCshRiud6EZ7M2shvq+dXjtx5/g2zJ5Jffd3xXh3VtFp+u8qE7\nB/gfz42TyB2nM+Td6SZtORt9htbmYk8kC9Wi4pX8uvFEoVqgOA9kimUWsioBj0JHUOeeUJxjfRFe\nm8mQLVkoQuFALMBTb8wzuVjAq2k4UpIrWZzYH+Vth7rIllwlyBP7rw+jrZ23/cTbR/j8uUl8ukrI\nu/48o9lpRO3tX6/4O0AaeEFKeW6L27XnqJ2QvjKdQkrBcGd007tg9R74a8VujyfzrsqcgLLlkCqZ\naKqgM+Tl/Sf3E/HppIrlaiFTRQgO94Sua1+z7OJtth3Xxb8n85CEJy7NYy+FH1aEJ1a7z//uvcdd\nFT2fzmAsUA0ZqT2NK5o2i3k3FKUSerJs8jGdJmOYdIW9lEwba2lyu5JowG3LmZE4SDYUZtLoRKNZ\n+nOvsJpN1T48D8QDdIU83LIvzPhiHtOWnBmOM5MpumGu02nSJZNU3mQg7scwbQ52h/jovUOkikuf\n48BAzF+VLa58b6VfN6JM1Erc7IVbpQ9fnkqBgJ6wj9GFPGeG4xs6lZ3LGNhScqwngmk5HOgMEAt6\nuPNADFvKZbvCK/ss4tX5zvwCZdthKlXklp5wtYzBWs+BlW2vrUP0xrUcmgLvva1vW+9XK54srsWb\n13L8xbPjfPieA27R8Tar8mP3HuDPnr7CXz13lZ9915Gdbs6Ws9G8znrP2uocLeFuguYMi1SxjFdT\nMSyHTz54CP/SgiQacOcdlYXKM6MJAMJeDz5doTfqI+TTiAaWF81e7zk/2Bng4/eP7Jox2kjY291L\n/31p6e/vx5Wo/ikhxN9KKX9zqxu3l6idkIa9+oYqAq/Hag/8tSYBr0ylmcsYjC3kONQTRiAJejTO\nDMc53h/l52IBnrm8wOdemCBdsnhtNkNX+PqE1mbZxdtsO2qvK5sOZ8eSLORKPH05wa37wpTsPGdG\n4pwMuKdpK+/pYGf9miiVzxVAX9RXrb9T62iWnQLVhKCsJY9ZactGaHSi0Sz9uZdYaVO1D6aiYZMq\nlnlxMoVlOQhRpjPkStuHvBrH+6IYlsNX0jNYjqvW9tF7h6qFcY/2RdZd1LT7/MaJBnRO9ncwkXTF\nYHoiXoY61855fGuDxBVEKJoW2ZLJTKrEtUwJVQiiAX3ZrnCFSp+NJXJ4NIXvu2UfM5kS7zjSzcmB\n5f5hvcVg5d/HFvLX1YvbLlr1ZLEeUkp+9e8vEPCo/OtHbtnp5jQ1R3rCfN+t3fz5M1f4xEMH8enq\nTjdpS9loXudafrfynB/qDPLM6AJXFvKUbcnCYgFLuvW6KlhSVkNbX5lOEfLp3DUc41rW4NbecLXu\n0EYiDmrZTWO0kcXPAHCnlDIHIIT4FeAx4CHgBaC9+LkBVk5Iob7a03ZQ+9C9NJshkTcIezVu7Q1U\nH9jRgM7+mB+/V1uqKWPwwOGuNXcOa3eub/aOwWZ3E2uvm1kscnY8QdCjISWULAchWJL92Hx7KsIQ\n9RzNaiEoWzkJbcSJ7dZd2VZCE4LFfJli2Sbk07itP8pzY8lqLadjfZG3Qlun0+QzBoOdAe4+EMdB\n4ve6rn6ji5p2n28Nm91oyBiuIMJAzE8s4KEz7GUiUXBlsNfYPa6c4Ie8SUzpbGjBtV57KvXidkOo\ny83kSy/P8NSbC/zaD57YlaFcW82nHjrEh//oWf6/703yY/cO7XRz1qTR+cxKP7DeCc9anx0N6OyP\n+qvCGQKum4+s3EwPed3XBmKBZSUR1mrjbvf5jSx+9rFUnHQJE7fgaVEIYdS5pk0DrJyQ3kzjq33o\n3jUc53hfhJBXWxZGlS6YgFsZ3HYcjvZFGIwFGFvIXzdYan/LTuaMbHSSv9KZVa75xmtzjM7nMSyH\n3oiP/g4/XeHNTyhqP/t9/vUdzWYc0nYsNHfTjk+zUq/fKnHgPk2lZDo8cKgDS0rCPq1ay+lkf8ey\nkKbxRJ6IT6sqdtXmdTRSRbzd5zfOjWw0ACTz7kSpO+xdFhFQb/f4ZKCDmN9zXdL0emxU5KXN+qSL\nJr/+D69yciDa9BP5ZuG+g3FODUT5o2+P8s/PHEBVmjM/arPzmY2esmzEXwx1Bjk50EG2ZDHSFbxu\nPrLWZjqwbM5Wb+6z22lk8fM/gOeEEF9c+vsHgL9aEkB4dctb1uamst5DrnbAB3SVM8Pd1QT+9ZxA\ns+eM1HNmyUIZr67wrqM9jC7kuXc4XtXX34r2b9TRNOKQ2uIErcla/VY9le0OMTqf4/HX54gFPQjg\nVH/HdXleteERq43nvfSAa0VW9k+9SUw9v1ovaXot1rK/tr00zme+dpFEzuBPP36maSfxzYYQgp96\nxyH+j//xPb54booP3Tmw001ala2Yz9zopkI0sDxfp95Jzkq/v3KcP3i4e0NzuN3IhgXnpZS/DnwS\nSC3991NSyl+TUuallD+2XQ1sc/OIBvS6ql+VAR/x6mQNE4QbV1pxAraU1TCMWtIF0605YjpNmz9Q\n68xqf0ftaVhPxMuJ/uiaqmjNQL3fUo+JRIEn35hnIlG4SS1ssxpr9VttCEPJcvDpKn0RPx5dIexf\nu57TZu01XTAZW8hXT3s3+m9ttp7afqz982ohjOmCyctTKXKGtaot1eu7Rv1Gm/o8N5rgL54d52P3\nDXH7QHSnm9NS/MCJXm7rj/CZr13CsOyGr78Zvmmr8iFvxD9v9vqV4/xKMr/hcb/b/P6GTn6EECpw\nQUp5FHh+e5vUphmJBzyUTYfHx+YQQMib5AeO967pBGp3GertUjcD9ZxZK4Z8NOKYawtmagr8wiNH\nW75qc6uyXqLrRnPFtoK1TgHaJ4vNw2qhLY+dnyZXequwdW2ezlp91xa42BpyhsW/+dxLDMYC/N/v\nObrTzWk5FEXwS+85ysf+5Cx/+exVfvKBkQ1fe7N8UyvOCyqsHOfD8SATycK64343+v0NLX6klLYQ\n4qIQ4oCU8up2N2ol7QKLO080oHNmOE6mZHGwK0jGMLGkXNMJrDweXmuXeidZy5ngEcxqAAAgAElE\nQVStzF1qdjtsxDFXCmYOdwa5kshzJZlvL352iPX6rdFcsRthrXCqyqnCaiqFbW4+tXZRkbo+2P1W\nYevaXLC1wnW2ekLXCr5yO/iPj73K5GKRv/nU/QS9jWQVtKnw4JFuHjjcxe/80xs8ekc/8eDGFuI3\nM7y+FUJBN5rDt5HnSbOnLmyGRkZnDLgghDgL5CsvSik/uOWtqmE3rjhblaHOID0Rb7XI3noJcq20\nm7ieM2slO9yoYx6OB9EUuJLIoylUKzm32Rm2IwdsM9QLp1rrVKHNzlPbbytFMFb++1oKkzdKK/nK\nreTzL07y12cn+NQ7DnJmOL7TzWlp/sP7j/O+//okv/HYq/zn//30hq5ppfnGdtNIDt9Gxv1uvLeN\nLH7+w7a1Yg1244qzVWl0d7CVj4dXshvtcLAzwC88crSqCtU+9WkDq4/b9U4V2uw8Gzk9vBn+eDf6\nyvW4MJ3m3/3dee4ZifNv3n3rTjen5bm1N8yn3nGQ3/3mZT50xwAPHOla95rdNN+4UbZ6DO7Ge7vh\nxY+U8gkhxBBwREr5uBAiAGx7JarduOJsZTZyQrJSNnE3DJRWtcP1wk/WKsjaZu9SGyoF658qtGmO\nUK/1/O3N8Met6is3y+RigX/5588T9ev87kfuRFc3rCPVZg1+9p1H+Mfzs/zC357jH3/uoQ2Fv+2W\n+UYjrOZ3tmMM7rZ7u+HFjxDiE7hqb3HgENAP/AHwru1pmstuXHHuViYSBT5/bgqfphDyaU0X7nAj\nk5NWtMO9Gn7SajTDpHklq9lOq9n/zaSVxtp221sr+srNci1T4mN/cpacYfG/Pnk/3eF2MdOtwqer\n/M5H7uDR332aX/ibc/zJx8+gtGXDl1HP70QDOg8e7m641tdeopEtip8B3g5kAKSUb+AWPt12blQS\nsM32ky6YfP7cJJfmskwsFsiVrKaSS604iafenOex89ObkmtsNTtsy9c2P1thl9vBarbTavZ/M2mV\nsXaz7G0v2Mqb13I8+ntPM5cp8d9//AzH90d2ukm7jhP7o/zy+4/xzYvzfPqrr+90c5qOen6nUuvr\nSiLPk2/ON81zpZloZPFjSCmrHl0IoQFy65vUppZW0VZPFsr4dJVYwMNiwaRkOdsmw7uZ+9Eqk5Ot\nZK+Fn7QCK+23We1yr9nOjfrZVrlfzWpvrcYXz03x6O99B8Oy+Z+fvI+72wIH28bH7hviY/cN8YdP\njPKnT41t+ee3yhxrNer5nfY4X59GBA+eEEL8e8AvhHgE+GngS9vTrDbQWqEU8YCHkFdjMO6nO+zh\n0dP9W97WG7kfrTI52Ur2UvhJK7Ca/TarXe4l29kKP9sq96tZ7a1VePNajk9/5XW+/uocdx7o4Lf/\n+R0Mxts5k9uJEIJf/eAJrmVL/No/vErJsvnp7zu8JZ/dSnOs1ajnd9rjfH0aWfz8W+AngfPAp4Av\nSyn/aFta1Qa4McWOm51HcDMe/jdyP5plcrIT/dJKznw3s5r9jnQFm8Iu9zJbpYy0E2OtUX/SLH6w\nlShbDk9fXuCvz17l8deu4ddVfuk9R/nEgyNobXGDm4KqCP7bR+7kF/7mJX7zKxeZSBb5lQ8cx6ff\nmObWblAmXM3vbGacN2Pu6XbSyOLnZ6WUvw1UFzxCiJ9beq3NNrDZ1ftO7WbsRP2RRtjphUCr7zK1\nuTHq2e9O2+Vq7CVbbdVd0s32UTPaW7NgO5JEzuDiXJYL0xm+N77Id95cIF+2iQc9fOLBg3ziwRE6\nQ21hg5uNrir8lx89TX/Mz+9/6zIvT6b485+4h64b6ItWHfsboZFxvpf8fYVGFj8fB1YudH58ldfa\nbBGb3aXbDbsZq9Hqu5a7tV/abIxWst+9ZKut1C+17KU+2iy2I1kslEnkyiTyBsl85c9lknmj5s9l\nEjmDVNFE1mQyD8T8fPB0P99/azfvuLUbr7bt1T3arIGqCH7pPUe560CMv3l+gg7/jdl7q479rWYv\n+pJ1Fz9CiA8DHwFGhBB/X/NPYSC5XQ1r47KZXbr2bkZzspv7pc3GaBX73Wu22ir9Uste66O1ePry\nAk9cmmc+ayz7L1koL1vMVBACYgEP8aD73y09IeIH43QGvXSFPBzaF+J4X4SOPXxPm5mHj/fw8PGe\nLfmsVhz7W81e9CUbOfl5GpgBuoDP1LyeBV7ejka1uTG2czdjtbjQvRYrWo/17sNq/dK+d5tjt963\nZvld7R3R5mSlfWxVHzWL3W2WF6+m+O9PXaE77KUr7GUgFuCOAzG6Qx46Q17iQQ+dIQ+dQS+dIQ8d\nfr2dr9NmT7NRX9LqvqEe6y5+pJTjwDhwvxBiCDgipXxcCOEH/LiLoDZNxnbsZqwWFwrsuVjR1dho\nzGxtv+zFONutYLfet2b7Xe0d0eZirYKG2/G5rcQnHzrIT3/fIYRoF8Fs02Y9NupLdoNvqMeGtz6E\nEJ8APgf84dJLA8AXtqNRbZqT1bTj23ryLpu5D+17tzl2633brb+rzdawXfaxG+xOV5X2wqdNmw2y\n0TG/G3xDPRo59/0Z4O1ABkBK+Qawbzsa1aY5WS0udC/Giq7GZu5D+95tjt1633br72qzNWyXfbTt\nrk2bvcVGx/xu9g1CrpYNuNobhXhOSnmvEOJFKeUdQggN+J6U8uR2Na6rq0sODw9v18e32WZsR5Iu\nmkhAAFG/jqpsbnfuypUrtG1h97BZ22jbQeuwleN/JW072H1sxl72ih1s51jaDewVO2izPi+88IKU\nUq57sNOI1PUTQoh/D/iFEI8APw18abMN3AjDw8M8//zz2/kVbbaRsYU8T705X5VPfOBwNyNdwU19\n1t133922hV3EZm2jbQetw1aO/5W07WD3sRl72St2sJ1jaTewV+ygzfoIIb63kfc1svj5t8BPAueB\nTwFfBv648aa12Svs5iPTNjdG2zZ2P+0+btMIbXupT/vetNlqypbDnzw1xhdenCJftnjolm5+/uFb\n6A7vjQK+G178SCkdIcQXgC9IKee3sU1tdgltudw29Wjbxu6n3cdtGqFtL/Vp35s2W0m6aPKTf/Zd\nnh9f5N6ROAe7g3zu+Un+6bVr/M2n7udAZ2Cnm7jtbKTIqQB+BfhXLAkkCCFs4HeklL+2zrX7gX8A\njgMhKaUlhPhF4Adx5bN/XEpp3thPaNPMtOVy29SjbRu7n3Yft2mEtr3Up31v2mwFZcvhp/7iBV6a\nTPE7H76DD5xyS5ZcmE7zY3/8HD/+Z2f5h599gICnkcCw1mMjam8/j6vydkZKGZdSxoF7gbcLIX5+\nnWuTwLuAZwGEEPuA75dSPoBbIPWfbbrlbdq0adOmTZs2bdq02RC/9fglnhlN8OkfOlld+ACc2B/l\n9z5yJ6Pzef7z1y7tYAtvDhtZ/HwM+LCUckwI8TYhxEeAB4C/B35urQullCUp5WLNS3cD31r68+PA\n/Y03uU2bNm3atGnTpk2bNhvl5ckUf/DEZX7krgE+dOfAdf/+tsNdfPieQf7s6StcTRR2oIU3j40s\nfnQp5YIQ4i+A/4S78DkDHAXCDX5fB0t1goD00t+XIYT4pBDieSHE8/Pz7dSiViNdMBlbyJMutKMZ\n21xP2z72Hu0+by3a/dWmEdr20hpIKfmVv79AV8jLL7//eN33/V8P34KqCH77G2/cxNbdfDYS1Fcp\n6Xo3cFzWFAYSQry9we9LA5XlZgRIrXyDlPKzwGcB7r777o0VIWqzY6QLZjUJE+Cx89PYUqIKwftu\n31+NUa59Xztu+Xq28/40y71PF8y69tGmdWjEniYSBT5/bhKfrhLyau0+b3LSBZPPvTBB1jAJe3Xe\nfbwXS8od9x1tbg6NPitW2ssP3zXYtpMm5SuvzPLi1RSf/qHbifrr91FPxMeH7znAXz47zi+951b2\nRXw3sZU3j40sfk4JITKAH8gIISoLEgE0ele+i1sf6DeBh1nKBWrTmqyczN7WH8WWslqLIFkoEw3o\n7UnvOmzn/Wmme58slFe1jzatQyP2lC6YfP7cFJfmcsQCHgbj/nafNznjyTznJlNEfDqvzWRJ5Mv0\ndfh23He02X4286yotZfL83nOjMQ5GbguoKfNDmPZDr/51Yvc0hPih1YJd1vJx982zJ89fYX/+d0J\n/s93HbkJLbz5rBv2JqVUpZQR4CnAAp7Bzdv5JvCPa10rhNCFEI8Dp4CvAiPAt4UQTwGngS/cUOvb\n7Ci1k1lbSpCsWotg5fuShfI6n7y32M7700z3vl2rovVpxJ6ShTI+TSEW0FkslCmZdrvPmx3p7moC\nmLaD4zSH72iz/WzqWVFjL2Lp722ajy+/MsvYQp5//citaOr62S4jXUEePNLFXz13FdvZnZ3aiJbd\nrzb64Usy1g+vePk54NONflab5mPlZHaoM8hQZ/C6Y/P2pHdttvP+NNO9b9eqaH0asad4wEPIpzEY\nC9Addnj0dH+7z5ucoc4gJwc6yJYseqM+/LraFL6jzfazmWdFrb2MdLnP/zbNhZSSz377Mge7grz7\neM+Gr/vRM4P8q796kedGE7ztcNc2tnBnaKTI6RNCiCHgiJTycSFEAFC3r2ltdoJGYn7rTWZXXtfo\npLdZclRuFtu5KGjks7fjvq/8zHatitbntv4oSHfis1bIW7JQ5sHD3e2ckR2mUZ/+I3cNLsvjvBGf\nsNd8eSuz2WdFxV40IaqnRe2+bh6eGU3wylSG//fR21EUsf4FS7zraA9Bj8rfvzS9txc/QohPAJ8E\n4sAhoB/4A9w6Pm12AZuJ+V05ma33sNvopLeZclRuJtu5KNjIZ9e77zcyedmrfblbWdmfsYBnVdto\n93vzcKN9cSN+qW0H28d2LSo3+6yIBzztvm5SPvvtUbpCHj50Z39D1/k9Ko8c7+EfX5nl137wNjza\nRsShW4dGfs3P4BY7zQBIKd8A9m1Ho24WN1uisdklIW80P+TVqTS/9Y2LfOncFI+dn77ud27k9zdT\njkqrs5H7XXnPeDJfve85w+LlqRQTiQKPnZ/mqTfnV+3P9b775akUuZK1ob5s9rGx11itP2rHZs6w\n+Py5qWW2kS6YvDyZ4pnLC+QMi4hXZy5jMJ7I39D37iUa+f2b8afjyfya11QmtquN+ZXft973t335\n9rBWH23msxodb6vZ1DOjC1xNFIh49VX7ejPfs9d9wVZwcTbLty7O8/H7h/HpjQdqffD0ftJFk+9c\nXtiG1u0sjeT8GFLKshDusZkQQqOF09tu9q5UM+6CVXaPNCGwpKRoWCzmyxTLNiGvhiYEL0+kQEDM\n71kzfGUiUeDTX3md6XSRiE/nHbd0M57MEy7o68pg19JMOSqtSG2fPvnm/LL7DctDWGpt0jAdBDC6\nkOPV6TRIePHqIj5N5WB36Dp1tpU7j+mCyYXpNDOpEmG/xkSysLSISlMybbrC3rp92YxjYy+zsj8q\noWu1/qFk2vg0tarcN57I8+035nl2LIFjO3g0tfqwNW2HWMBDxK9XbXOxWL4udG6v28FGf3+6YDKe\nzHN2LIlXV9Y8qdWEqPaZKgRnx5I4UlIybR4+2oPluBnrQ3G3H1ZTZAQYT+T57pUknqXve/Bw93X+\nZWVbt8OXt8PoXIW1a9kSI50hMoa5aQXFir3lDIuSafPo6QEGOwPXla9YK4e3bDo8cWmeC9NppheL\nXEnkOTMcr15bsdVvX5rHtCVhn8aPrCGHPZEocCWZpzPg4dxkas/6gq3ij54cxa+rfPS+oU1d/7ZD\nXQQ8Kt94bY7vv7Wlzzquo5HFzxNCiH8P+IUQj+BKVn9pe5q1/dxs2d2dkPld60FRqb8hgbH5HCNd\nIS7OZukJe/F7NR441MVXX53l5ckUZdtBAU4Pxgj5Vq/VcXYswWSqgJQwnS5yYTrDbKZEb8RHV9hb\nVwZ7Je2k+OvZyAM/XTCrExTbkcxkivg0lYF4gFzJYjyR55XpNLaUlE2HM8NxgGqfjM7nOBAPuJI9\nEg52hxhdyFEynesmL6tNjr/40hRfPj9DqlAm4NHY3+GjN+pHFYLFQplH7xio2/a2BPb2spb9rNwA\niQc8jCfyzGUMDnYFuZLI86dPjxLzexhdcP1EyXR4+GgP5yZTVdvIGRZnxxaYSJQAiAd04t1eNFVw\nNVngr797lc6gB1tKzl1dxLAcJHDngRgfu2+47sT7Ru2glSbLdRceyXx1oQjuJtK1bInR+TzvOtpD\nxnAnmLlpi6feXKDDrxPyadUFik9TKZkOdx+I8cpMmolkkblMiReuLBLwqGiawumBDn74rsHrFiya\nEDx2fpq5jMHoQo6Hl77vwnS6aiP1JuBb7ctXWxzuJSo+/ok35hmdz3N5Ps/pgQ53k3IytW4eXuUz\nKv2RLJTJGRYTySKLhTKfPzfFo6f7q4vasumOUceRlCxXsGSwM7CsX7NFk3+6OEdn0EvYqxH0aJwZ\nji/bXLuaKPD05QVu7Q1jWA73DLty2CvH5kSiwGe+/jqWA0XT5uRAlBN90fYzYZPMpkt88dwUH7nn\nALHg5jYefLrKA4e7+KfXriF/UFI5/NgNNLL4+bfATwLngU8BXwb+eDsadTO42ScMW/F9jTzI19pF\nrK2/oQoomg6G6TCxWEBTBRTKXE0WyJYswj6dTNEka1gEfVr1SHtljP+rMxmKZRtFKOiqwky6wFSq\nyGVvjrcf6qorg70a7aT4t9jIbnDlPXMZg4uzGSJ+nYWcwfRigQOdIQIepbr4jHh1Hh+bI1OyiPg0\nJDA6n+PVmTQIUIRAVdx+Cnk13nvi+oT12kna6EKOZ8cSTC4WUBVB0KOhaQrpkomiKAzGAvR1+LFk\n/UPi9mnf9lHd3S1ZyyYwy/7NsHh1Os3xviiKIiiZNqMLOS7NZiiUbXwelWTepGQ6dIW8OEj8SwVL\nK/5oPJEHKZCAQOLzqPh0hUzJIhbwYDuSrGHSHfKRLlpkSiY+XeV7Vxd56Eg3JwMdW24HrXaStNrC\n43MvTHBuMoUATg50cM9IHFtKRjpDXJ7PM7qQJ+LT+Paleb53dZH5rMGxvgiHu0NcWQplrZzchnwa\nJdNmsVDGrysUyv8/e28eY+l1nvn9zrff/dbWtfXezSa7myIp06QsiZQ0Ni1bsceObGtmgpnAMDAZ\nIwMEg0GAJMAgSBAMECCA80+CTMaeiRHHywRyohkv8UZZEkVJ3NVNdje72Vt17cvdl2//zskf597b\n1cXqjeyixOUFGmRV3eXc+53vPe/yPM+bYVsGJc+mO0hgjkwWbr2ugy7DTNnjeq3H9XqPomtzZavH\ntVqP67Uej+2v3vZaPUhffrvk8ONg2338tVqPzx2dYL2jr/VfX1i/ZY987ckDwLs7NrsVrYb7YSxv\n41nGaM/MlnOcW20RJpJ+lNL0E75xZplf/+yRW4Rr2r4ebnp1q48AHp7Jj5L04fWaLLkoIEykLq6J\n3e/NhUafVMLhiQKXN7q0+vEnZ8L7sN/9/nUyqfjHzx59X6/z3Mlp/vrCBm+vdTk1V35Aq/vR2/2o\nvUngd4DfEUKMA/uVukNE82NuH3SH4f2+390O8p2J0Z2qqNvnbyy3AqIkpRVEN6s9Aso5m5Jncb3W\nw09SpJLUuxGTJRdLCK7X+qNqcTdMKOdsTs9VaPQjJouenhGhFLVeTDOIb5HB/jirwuyWwN4pqb2X\navjwMUcnC7y10mKzG1HJWUyWPSYKDq5tjJLP6/UeApgpu2x0Q54+PKFnNAk4OqmDpMfnq5Ry9m07\nBd0wIUok51fbvLnS5uF9Jeq9mCiVdOOUojJ56uAExZxNNe9QdK27JrufdPv2xhp+TC9MWWr6owDm\nq0/sJ1WKtVbAYqOPwCBIJAXPYrMTIYTic0cnePHqFiXPJu+YtIOEVEn6cTqCxG6HxiDg4ekSQSKx\nTMHnj0/y0w/v4/mLG3i2iSEEAujHKZYJWaYQNjimMRoU8qD3wV51FPeSbP7s8SkWGn0Ojxe0b40S\nyp5+D13Q0FCjDglP7K+OOrjfvLjJRMGhF6ZsdiP2j+U5PF5gqeHfMorgq0/s5xtnVlBKkWRdklRS\n72t/EUQp12t9xvMORyYLtP2EF97Z4s3lNo7V5fRchS+emALg7HKL5x6Z5u31NvvHcnSCve+wfZyL\nJDf3ssdbKy1u1H0ODooYi80+nmng2CbdHV3+YazQCRJeul5nqemzv5qnF6WkSo32g2cZFD2LibzD\nDxebBHFGybWJk5imnzCWd/Bsc9d76KnD45yc1UFx0bsZUg6vl5SKA2M55sdyTBVdDo0Xdr03D48X\nsAxYqPfJOQZfe/IAucHZ8cmZcH/WDRP+8KVFvvKpWQ6M59/Xa/2dRzTc7Ztvb3w8kx8hxLeBXxo8\n53VgUwjxfaXUP9+jte25fdAdhvfzfrc7yLfDnZxt+O+h47m21SNMJda2duV43sEwdGUxSjIOTxQQ\nCPYVXSKZkbP0bI7TcxVOzZZ58UoN1zJoBwljBZt/f3YFqRRvLDSZKnlEaUo3THEtk6Jn88UTk3zr\n0iZ+kGGbgsfnq6PPD/D115cGXaU7438/bHa3oOh2sI07JbX3cuAPH9OJEk7PlFnrhICg3o1o9GIs\nQ1ByLD57bJLDEwVqvYj/+7VFKp5NL9TB7FY3AqUPr7G8c0unZjceUZBkbHRCLEPQjRI+NV/hCyem\nOLvUouRazI/n+dzRCeqDQ+1uksjDgOsTe292u703nncIUzkKYJSCb5xZxrNNXr3eYLUVoNDKN/Vu\nhG0KGv2Yt1barDQCokwyWbB4bP84v/oTOmm6ttnjX33nCpWcrRPeMCVTkkYv5vi09iU//fA+Ts1X\nmB/Lj2Bbw331zLFJ/uytNaRUOlhSev13kkJ/LwnHXnFO7rWbNOQ73Ascafj44f211PB59vjUqKqe\nppLNTohS4BiC0wNI0IGJPEt1n16YsN6J8ByTuYrLc4/so5yzR7Lk25X5vvrEPOdX25ycLSOAHy61\n8CyD//VbVzgwnmeq5PK1Jw9wfrXNG4tNSq5FN0p58uAYj+3XcKVzK20WGn0ub/YwEPzluTVOzVZ2\nhUU/qGTx41wksYRgrRVybauHYxkYBjyxv8r3r9XZaEestgPmKzlmKx6r7YBemI46fudX2/z+SzfY\n7AbcqAc8PFtisuDwldOzHJjI8+ufPXyLf1cKFmp9vvTwPh6dq/CX59eoFhwMIeiGyehebfvJ6CzP\npEQqqOZtzq20R2fbo3MVelHKo/N6bxzadhbEieTcaouSe7PQ9l/+7COcX2tTdm3mx/L3dG58nPbB\nvdq/e2WJbpTym194f10fgKmSy+MHqnzr0ib/xc889ABW9+Nh9wN7qyilOkKIfwz8nlLqvxNCvLlX\nC/vEbr3BdzvId7bCh3jsIXzh2eNTo0Dnu1e2eBYNYbIGVdggzWgFCUmqaPghRyYKHJ8p0Q9Tmr7u\n2HSChGrexjYEf3p2le9dEURpxr6Sx5WtHnHaQCAwTXhkpoxAcHmzRztI8eOURCr+6vw6tX7M1548\nwI16n9cXGtiWQbIN//tht3sJim4H27hddfpus1KG5FDHMHAtg0Yv5kbT1xAkga7m5RxcU/DqYoNE\nKkxT8O1LW3SDBNs0OLvcRqGwTYOfOz3DP3z6EH91YX2UnP7cqZlRQNbsxyMBhFo3ppyzMA2Dph8z\nVfJ4/EAVBCMO0fMXNxgrOCw1fH4hd3u43ocFlvTjanf7Hn/y0BhhklHN27T6CZlSGAg6YcJMxSPv\nWEwWHOarOS6sdWj5KZvtiExqIYz1TsIhP+HKZo8/f2uVi+s9emFCpsAUkiCRFD0bJRVxJil5Ns9f\n3GB+TFccX7neuLXYMVkYJUWvXG9wdqXFudX2HQn+74XrsT1YflDd5jt1k3YSxXdC1m4HR7rda6dK\n8WtPHuDkbJk3l9u8tlCn0Yu4tNElUYpGP+ZZpvirC+ustALCgRDF/qrHX7y1RiOICGJJzjGYrehA\nMkokQZJxeaOLAg6M5akOkthLGx26YULBtQZFry22uhG9MGW84NxS1T88UeDcShtLGCzU+3SCDGNO\nvAsWvT1Avlux614C2h8lJPr9Btx3ExK43eOHSYlUkjiT/OzJaVKlWGz61HoRp+cqzFY8Hp2vstYO\nOLPUZLEeECYZCMFV2eV6vU8wEDbohSkPTRVp+vGIwwPwg6s1Lm90afoxV7f6LDcCip7JoYkCizWf\nnGMgleLcSptnj09xfq3NawsNip7Nm8stxvI2M2WPo/uKo+5TL0y5sNbmyFQRAXz1iZvcTwWoAVR2\naOWcTaMfs9WLWGj07wjz/rhyv+5mcSr5ty9e57NHJ3hs/4OJrb7w0CT/27ev0glvdqI/7HY/yY8l\nhJgF/h7wL/ZoPR85e68Oc7cbfGfV63qtP4I7bcdjd8NkFBgroOBYLDV9/tV3rlDO2RhCUM3bHJsq\n8eZym7VOiJSSREo2O7r6+8LlLS5tdElTSSdMWGz4bHQjXFMQJ5KNTohUiiQDqbQje/V6E8c26EUp\n9V6MYer3iTPJhZU2L4/n6YYJNxo+BcciyjLWOyGlAdTiwxz4DsmjBceiF6W7wgN2w/Q3g5hom6jA\ndkjhduLpdgUd0LLi//Pzl4hSydWNLjnHohUk+FGKQOE6GsNt9mI6YULRtRnPuzR6EbVupDs2YYIC\nHFMQCslWJ+L1xSbPv73OeM6lG6f0woSNbshYzkUJzehY6wSUPIsyFuMFxVRJV5PLOV31W+sEhKnE\ns817gut9InRw0+7XX4wkxaN0BFvc3hUe+pCJgsPJ2TLfu1rj7EKLzU6olb6Aw5N5TsyU+OFSi5cX\n6jjCYLUTkKSSTCnyjsG5tTbPX9xAKUWYSBKpGDwdA0hljJJwdbPHRMllvODw8rU6a52AH1ytMV5w\nqPdjTs2W+dzxSSp5m5Jv49rGXa//++F6DF/vQSXZt+sm7eRW/eShMbZ6upvq2oaGIzX6nFtp77qO\ntp+w1gpYa4YEUUaUSS6tdxjLObx2o0GjF7PaCWkHmn9hCJ1ofPudTV6+VvxIZ98AACAASURBVEcp\n8OOUzW5ItqTohyndOEUpMAUcmSzw5dOz1HoRQZJRGgQwQZTS8mPeXm2z1gpo+Tq4eXO5hWubHJsq\nstoOmKvmODReYKnu80ev3qDRT9jshpQ9i3c2eqRS8fqNBqfmK3SDm92BG/U+r91Dsev9FkL2uhPw\nINY3fP5ISGCgujdUWdv5+D9+fYmtXkQnSJiueJycqbDSClmo+5gG3Kj1eWWhgVI6if3sMYtvv9PF\ntUwafsSVTcFsNcdmOySIM/pxilKKzXbAGwoKrjXi5/zeSwu8cq3OaidESkXONrEtQSdMubzZ5epm\nH0MI4kwxX83xu9+/xkY35Mpmj6mSQxin1LKM9U7EajtkfzWn9z/QDlKubfbIFHzjzAq//tnDnF9t\ns9zweWSmTKLk6N6/H5j3x5H7dS/2p2dXWe+E/I+/+qkH9prPHJ/kf/nbK/zgap2fOz3zwF73R2n3\nk/z8D8BfAS8qpV4VQhwFLu/Nsj4a9n4c5m43+BAWNLzZt8OdHttf5dRMmbfXO7x0tc6FtTazlRzf\nv1qjnHNYrPsIASXPYixv8+h8Fdc2UFKx1gqxTUGqelQ6EZ5jUHRtUKAEXK/12epGJBLiVEc8hlRY\nBmTbyja2aZCmkqubXVIlMIWiG8SsNgLGCg7vbHR5bH8FBIwXHdJMcmaxxUY3/NBX/i0huLDaJpVg\nGfCV07PveszOSvQwudHV2hwHx/PbuiwJnm0wXfL4i8trnF/r4FkG/+gzhyh5Nv/me9dYrAcIoQhS\nSTEnyKQiTBUC8NOEvC0oezZBnCEVvLLQQMqMKFUkKORgXdHgIrb6IX96ZpmrNZ9UdjENwaW1Nv04\nI+9aTBdd/ttfPE3ONW+BMW0POHZ+vt2CxDt1Mz/Odr/+YnvAfWGtDXALv2rI9yl4FplUdIKEq5s9\nGn5M3Y8xhSBnG3SDlAPVHK9caxAnkm6aEmcZWQZhpoiSjH7cQ0rI2wZxpkZQOTn4F2fDNcXEmaLj\nb/HytTolz2K9HTJTziFRPP/2BsVB0HWnRGJ7IPt+98mDTLJvB73aya3a7ARcq/Vo+SmWofk2qG3q\nirUeb660eGwACf6/Xlrg9cUmBjBb8djoRJxbaXN1q0vVsym4Fv0wYaXhk2SKf//GEk8fneDCSoe6\nHxMlGWXPQiDw45QwzTCEAmEghGKzG/P9qzVytslE0ebqVg/HNCi6FpW8zWYnJJPo5C3OuLKhuZ5R\nJvWeKjh0goQ/enWR716uYZuCfpRhTeSZKDr8nRP72OyFtPox37y4iW0KvnBiivVOyGo7wDVNoiyj\nF6UP/Bp9EB3k97uHtj//3GqLIJY0Bx2Otp/wy5+evwUSdqPR59VB0tsLUybLes9XPIt6N6KYs1hs\n+BwZLyAFzFVySKlIUslGO6Tei9joRESZJIxTyjmTth+jlKIZJFTzLi9c3uJzxyYpehY/vNEkTCSu\nZdLxI5SEhbpPxTNZbiYEicREFzc6fsKljQ6G0MJG7SAmySRxqsg5Jn6U8IMrdS5vdSnnbJabAfur\neQ5P5vEsg/MrbX7/5QWWmoEWPDkxNUqYb4dweZD+4KNsSil++4VrPDxd4ksDft6DsE8fHCPvmHzv\nSu3jl/wopb4OfH3bz9eAX92LRX1U7P04zDvB3LY7+WePT3F+ta2hDFtd6r0Y1zEIYl15L3sOTT/G\njxOCOCOILZr9mJ8/PcOBiQIbrZC1bkgYZ1xa72IIiKXEMQ1Krk0iJXEqMQVsHzUmgJ1yF4mUmAbY\nlompFLZp4piCJFPYpiBIJDnb4uBYnn1lj6JrUc3ZH4nKf6oUp2YrFDyLfpjeUd0MYKnps9kNmS55\nnFtpU+tGvLnSppqzNVa7GbJQ7/HOepdLG13iVAtILNT7nJwps9WJ2eppDkCYptR7EKUppgDTBClB\nCEGUKcwBBC7OMnKmgW1kxIPMx0QnuCYQS02U1F2hFMcUBEohpU7uCp7FcstnpRWOCLI7A43tweBO\nuN69dDM/zna//mIkdDFVBODkbJnH5quj51hC8MpCg26YkLNNcs4+/bq9iCjJSDKFazn0k4wLax0M\noZOnKImQg/1hCH2fh4ObX0qJs63oIbdtc4H+fZRk2IbmDnlWjkxKojRj/3ieG/U+37y4yXTZ3fX6\n3y6QfT/7ZLsvjRJ5C2/hXm0nf2cnP207typvm9yo+xiYHJ5wmS65fOHEFIfGC5xbbd8yS2up4TNZ\ncHnxco04zbBMg5ylxSXKtkO9F7PVjfT3PPApQ2jZcHbKRNEllZIMiDJJHEhKjoVtWXSCBNc2mRvz\n+PyxSRr9iPNrHSzDpBsmzI/lmKvkQQit9InAELpbNVkq0A4Sju0rIqXi/Fqb9XZANpgNlElF0bOx\nDINUKQxhsNLqUfISLq136YUphtBc0rxrkaQ6kbrbNbrfgPaD6CC/34B7+/NLrk03CHhrtY0A1loB\ntmlwcCJ/058q6EcZQZJhmwaeZXFmsUWtG+HHKceminT9hG6QMlF0dCfes5mr5vS4AddkrRWy2tS8\nvcMTeaJE0QpiukGK65ikmWStHVIITYQAISDJMmbLHnlPI0jG8g5NP8ES0AlTJrKMq1td1tq6YBml\nipyjcEyDcLDWfpTSiRIcUwswTBZsUimZKroUPYtOpJVAnzhQ5fxqe+QThrDI7fc67N61/eTc2N2+\n/Y5G7PzW1x5/oLLUjmXwmSPjvHj5ozPs9H4ED/4n4F8CAfCXwGPAP1dK/f4ere1DY3ciG9/JYd6p\nVb/bDT6EuY0GCw4w8z+4WuPiWoecbdFPUo7vK9HoRzgWXN3s4icZfpySZeDHMeW8zV+dX+effukh\ntnoRK82AXpgQphlSSqIUbDMjyTLytpZBTXeJ5ROlq7+mATnb4OGZClGS0ok09lxKHWgIYXCt1qfo\nWlze6vLQvhI/c3KaA2P5XbsDH0Ybz2tMfKY0iXu3z7JdWvjMYgulFK8vNNnq6tkoaSY5NFFgrR3w\n6vUG1QFfJs4kYaIDh5VGSCYVnm1imwLXMlGh7h6ZwsSwM1xLV/onix5hkhIkeg5Lmin6KiPbtiZD\n6OSn4tm0w5StTjgKbIJMjf7uJynNfsLfXNhAKdhXdjkwlr8FYrWzo7WzCnu7buYnh5e2+w2wtj++\n6Fm3JD6gA+ulpk8UZ7T8mK4fc6PuE6Ry1MFt9GOSTLHW9llt+eRd/XxDQH9bW9dA3+OGEEyUdCGm\nGdxaxR/G50NZ6yhVmoRvmSgF3SghiHRwNYS67Oxm3y6QvV+ux07f+gufmhsJw5xdbo1I2fcKLdyN\nv7Mz6f/qE/N848wyfqylvCs5m36ckXOt0TjwX/jUHG+utEaztC6stvn+1RpbvZB+lOGYJuMFBynh\ntYUG3SBFCEjlaAQXCg1la/qp5m4mPpYAAy1g4w6UPH/xsXkubXZJkoy1TkSjHxMkEsMQTJdczi4H\nXK/12exEuLaJFab0kwzHNHjleoPj00XWWyHr3ZCcZbLc6HN2uU13kFAdnSzwxYem2OiEnJwtYyK4\nVutRG+ypyZKLlIoTM2Vs06Dk3YRZ7bT3E9B+EJ2A97K+3fbg8OeXr9X57pUapqG5d6Yh2OhE3Kj3\nGQscLm90kVLixxm9MKHej+hGGraGglo/puzZzJQcHEvL01+t9zCBWl+jNKI0w7MMxgsOnm3owpYw\nMAT0goSxgsP1Wm8Ehd8/luPQRJ4ozbi43sOzDDqB5gWmmUK2Ag5UC/zgeo0kU0RKd4DbfooxiLON\nwWdfqve50QiwTD3+4KdPTnFipsRcNYclBFJKziy1COIMP+rh2ebNGUAHqqMz5XaQ3h8l9+vH2f71\nd64yW/H4u48/eB7U549P8q1Lb7PSCpiv5h7463/Qdj+wty8rpf4rIcRXgQXgV4AXgI918nOnlvud\nHOZwyKhnmxQHMzPgVhLkzht8p5PvhSnLDZ8kk5imiWMLwlRX2jIpubimoQtxKpGSUdCbphr/+82L\n6/SihP1jOdaaiiBN6QX6MUpCN5T0Qo3btQxuCZqHYZFlQCZ1ZWC84NCNxEAyN6bpxygFBddExnBq\ntgRKYFuaJHt6rvKRqeDcy+E45AUFcUaQZhwZ11ytKFPUB9wc0xREiSTJFLOVHBudiHLOYrEesNUN\nkBLqfkjZs3FMk5myRyfUHADHNDAMA1NAKgRxlvHIbImlRshWN6Qn01F1fmiWAYZh4FgG662AQVEX\n24I0AcvUFUHTMAjTjDNLTWbK2vFNlbx3dSS3iyKsdQJu1PuUfPsTmNs92L0GWNuDqjs9fq0T0PYT\ngiSjG2a8s9UjjiWGKUaBtFQQJhkbnQghdNV/W5NhZIahk3PXNmj2E5JMstNsQ/+LMw2pdE1Bmkmw\nTZSAnGVgKMFCvc/Bifyu3exnj09plcpajzDJblGpvNt3sZ0/s9tso5Jv4ww4RtthZ3fzOw1fd1kB\nHEtXs3d2F9p+QqoUzz0yzWLTp+jaOKZBK0jIOSYvXa/z7Xc2ee6RaUwErSDhwmqbsytt+lEyWGtG\nlEr8JGUs55CmCtuEMNX3ZN4xSKQiSnUArIBqziRIMizDIEolYaqIs4zldkjONTg4nueFy1tstAL+\nv3Mhf/exOVZbAYu1PmGS8cuPz7PZjdg3klAOmCm7BHHKawsNhBDEUnFypsjlzT6VnIVrGhydKnJw\nQnfymkHMM8cnKXk2BpCkEsOAfpQyVXL5yqOzuwq27LT3GtDe7b55kGpz96pid7u4YPi4marHgbEc\nUSpJUskr1+tYhsF6y2e9G5Fl0AwSPnNknLNLLdp+Qib1Y03TwFJgGYJ+IlmsB2x2I3758XkSqZgu\n55gqOHz/WkqcKaZci59+eJqtbkwqJVIqMiVRSnF5s8eXTkxhDgpp7SAhb1u0/Jjpikc/znhoX4kz\nS02CJOOVhTpSKvKO3neGADGAx6MgTDMqeYtMgcwkfgp+kvHaQpOZSp6tXoQpBF/99H6+d6VGwbV4\n4fKW5hFmktV2cMsw390gvZ8ove1uby63eOlag3/xH53EsYy7P+E+7dmHpoC3+d7lGn/vqQMP/PU/\naLsvwYPBf38B+LpSqv1Rmvb6Xu125LudScx22z5kdCzvcGA8d0cy7NBGFcxGn412yPNvb2j4VCci\nSlLCWHdhFpt9mv0E0wCEwDZNwuRmlbYfazJtlsF6J8SxDPwkpeK6ZFlEnGi8vwKEoSFUaXYT47/d\nhvApMagcfeedLt0woeUnuLahK5OxfrHlVkjONjk8Xril8vtRcWB3O7wtITiz2KTRj7m21eP6YDCc\nlIoky+iGCeeW2zi2SWdAQm75MVNFF8OAnGWBAQXHJpUZ4wWXXpySpoo4lcSGxDQ0zNAQ+nvvV7MR\ndDF5d7yKYRoUXJNOlCCVwjAEQaIwM33tXdvCMgSuZTBb9lhphSRKUvQsfvLgGHArt0TD8OQIYrRT\ngv2jkuzuld1tD+0WVN1OIny2kqPo6sGWQqDhZwq2t3HNQVJzdbMHwqAT6oHGcXJr9qMhMZBFkhTJ\nbkerZQiU0ERumYFlQc61mK/kiKRkqRlQdm22ehG/9Pjcrt3sVKmBSuUKnqVVKndTCrzddzEkTe+c\nbfTrnz1yU/5/B+zsbh0gSwgW6wHX630yqZgpu7ck7sN1bPUi3lpu8an5KkXX4uRMmU6UcGmjy1Ij\nYKXl893LNcqehWUaTBQcDo3leW2xSSr1vTtT9qh4jg4sDV10UEgEDDgZBpiKas5is5fSDzMkYJu6\nmm4AriUoOiZ5x+bsYpvL6106kS5d/ZsXrvLwbJlyyQMUW91o4BskSaqwDUGtH5NlkrxtkUpJJ4jp\nhhl51yQLFUpIyjmLJw+O8Uev3sAQBr/93av8wqfmODhRYLLg0ujHzFVz/NSRiXeR+ffCbnff7BUf\n6G6ve7e4wBKCZKAUVPFMar2YnGvyF+daIyECP8o4t9Km3o9IpMIQAsvQcOOKZ7PZjaj3FI5lkndM\n/uTsCsemiuRtg3aUMFlyeeahSVKpBh1ZqYeXRynC0Ap/fpxydrlNnErmqjm6Ucq+istE0aXq2ghD\nMZ63B0I64McZJdfENo0BJFYRpZIs0wUSpUBmim6WEstBvJDBatPn3HKLpw5PIFE8Ol/hxEyJWjdi\nrOBQci1agR6u3uiv8uhcZVdILzw48ZKPmv3r71yj5Fn8g6f3JjE5MV1kquTy3Ssfv+Tnz4QQF9Gw\nt/9cCDEFhHuzrA+P7abgdS+Sx8Mho1om2LmFDLuzYr7z+a9cb2ioRDfiwFieU3Nl9pU82kHMiekS\nFze6LAqfKMvwghTbEPhROsLnCzQ0JVVa9nSzG2EIkDmo5mw2kgwlhhAW/XgJWIJRZ2B7IiQAP0r5\nwdU69X5ClkmiDKQaHOgFh+PTRSzDoB+nrHVCprcFEB+XSk4z0INAU6mr43mlSDJFM4gJ4pRenGEa\ngsxPsC1BP9bXbrHRJ5ES1zSQmf59ybWo5iyubPUxDLAHlZ4wkaPropSewdINYh1ICQ1nygaHkm2A\naQikhLJrUUtT0kzztvYVXVoDUvwjMyVWWiEb3YhUSvKWSSdIOLeqZ308sb/KhbWbYg//5Nlj5FyL\nbphwdrm1JzC3j8ue2Wn3ym9o+wkoeHSuzPev1REC/OTdrxcOaiKpn2KaAsvQKlAoRbotATLQnD/F\nsMMjcGyDdpCN/p6zTfwkQ+fogrxnYhsG/URzF7JMEVuSt1ba/PEbS/yzsfyu3cCGHzNWuDsX8Hbf\nxc7ZRsPhjEcmC++Cnd0LRyRVikdmSoCiE2a38JyG6+hFWtFqvR1RcHscnSry2mITzzJ4c7mlO7b9\niH6YEaUZJ6bLlHM2UZpR8Wz8vEsmlYY6JVp0IEwzDVMDPEvg2IKCY+MnGf1EUnR10DtUbtvohCRZ\nRpZqkYrVls9WNxolPgBBBuvtgH3lHJ5t8Npik4Jr4kcpjmXw2HyFxYaPVIpgIJ3t2SalnMVsyaPu\nJ1ze6FLJ23zz4gZhInlkpshiw+db72zQDTNu1PoIIXBtg2+cWRl13vbSbucP9ooPdLfXvVNcECWS\nRj/SIyccg7xr0gr7dPyUMJGkMuXttS5RnFKzNJ9qquigBklO0TUHEtEhYZLRjzKiVJ+tU0WPxw+M\nMVvxuF7rc2WzRyvQYhf1bkQQZfo8V4p+nHJ4Mo9pKBzL4MJqW183y2B/NUeQZhQcm3ovRiE0d9Q2\nOTVfoejYRJlkudGnG2WstjVkJEwlsxWPomdT62nuoC0gkfDmSpvVdsiBsRzPHJvk8HiB5WbAk4fG\naPVjHq6UR/A2BLtCencWSz7MPOEHaQu1Pn9xbo3f/OKxkT940CaE4Jnjk7zwzhZS6kLph9nuR/Dg\nvxnwftpKqUwI4QO/vHdL+3DYzpb7vTjbIT/kwFieqZK8KRO82r5txRy0w+0GCVvdCMfUXZUrWz32\nj+U4OlWk6Fm0w4SpokvBsZBKcWpWstL2CZKMfpQQpJoQHydwaa07griYhp6+HsYZwhC4BrcEP6ZA\nD0ZVCs80yJQkS29i0INEsdjo4cc3VcQs02Aib/PYgaruTKSSx/ZX+cyR8dHMiB+XWS8fRDDdC1K2\nBmTzOJW0gpj+IDDxbD24DhSmARXPASG0ktOgUp+kktmqx7HJAk0/4eJGT8MOhEHe1YnP9rhMKtjq\nhrR9jZsRwHjeHnA+JAqFUJBzTHpRRt4RFByXMM1wbYOCa2mp1F7MRMGmnLeZKec5Mlng7HJLq4gp\nRd2POTJVHLQKdbV/OCF+KH39XmFud4I1/aj3zIO2e9mD90LeH85WeXO5xVozQCCo5CyafvquwH1o\nKSAyRYYujOQdCz+5mS0N1dwUOpCp5E0mCi5xGpBkEkMIDENo+KVlYAmDfUWXzx2bZLaS48J6h2ub\nPZp+jJSKN5fbnF9t87njk7t2A+8FHnk7GOV2/s0QVrz9b4/NV1lq+PfFrUIIDMPgyKRHddBdGq51\nPO8QJhlhKim4JmEsafVjZivaL4dJxsJAbdM2Evwko96PODlT4vBEgUvrHWYrHsIQ/PypGTphwjvr\nXbpBwjlf+2g/VViWoWcquRZxJjEH870U6Gp81aMbpDSChFaQ8tsvXCXvWNgGt3R9e3FGJ4hZbqaj\nwanC0KIoQzW2IMkwTD30+NBEfjDEOqbWi1BKcnmjix/pz9EOEsYLNjOlMp85XOCNpQaGEtR60S2d\nt726R+/kD/YKamsJQbOvOWy7cTzvFBe8tdLGH0hP96OMSs5iIm+x1onIuRaeZRDG2egcTTNFP8rI\nOyYHxvN0ghQpM4TSXDAJdCOJiCQvXtliquTyhYe00tfrC02a/Zi1dkiQDIprUpGzLSo5B9swqfcS\nvnhiio1uyNOHJ5it5njq0DgvLzQ4Olng4nqHuYarxTxci6OTRVzL5PJml6afkGYaVu9YumJ6aKLI\nWN7i0noXP071OAVLcHq2Qs41mSw4PH9xg36U8c5mly+fnCZnm4SDkQ9xIkGx63y7T6DTu9vvfPca\nlmHwG58/vKfv88zxSb7xwxXeXu9weq6yp++113Y/ggd54J8CB4F/AswBDwN/tjdLu2k/7lXenS33\nu92ct8MoD3/XDRNeulrHGPB6zq+0eW2xgQI6fsLF9Q5bvYgwkUwUHJ49PkmSKVpBQib1dPBHZkqj\nKoxUisZYwnIT4izBs0yEDanU0pYtPyXOwAEsVxCHcgRncy2DbNANSDIdmA9J/TJMibclQL1YR1Zi\n8K/omBybLvEPnz7Edy7rIW052+TCWgfXNji30ubR+cqPvJLzIILp2+3R7b8vehZjOYeVKMC1TQwU\nFc8mQw3kqBWOZSFlRjeMkYhR4gP6O04zPWNlX9llvR1QdG1SGQOa66O2AROLnslk0aUdJANZcsFk\nyaMdJAhgsxsihK7YO6bm/UyUXA6N53XFrx9hAC9fbzBTckkzSc42UGiZ836YUvQsJvIO17d6o87P\nkKfxflV5bjfM7qM4H+he9+DtyPvbAwXtQzQccq0TEMQpwtA8nztZyhDiKhHCwDb0fbwTLmkLODFV\n5vBUHhA6oY9TrUxlCQwE89Ucx/YV2OiGI+L1oYkC3SghVgo/znjxco3Tc5V3+c973Td3epyeXH9k\n17/d774cJlN/9OoNpOJdfl3/fT+woitJQvDcI/s4s9xirROQdy2efWiSVxcaHJko0PZTTswUOTCW\n5/UbTTzLQhhwaCzP+bU2l9Z7tP2YdqDncFmD5EUOuvVhqohTcCyFgeLJQxOMF2zOrXao9bTssFQg\nE4VpSBxTB7ySQed3AHNMlRoVpfKOyf5qjjhjIIusOwwb3Yi1dkjOT9hsB9R6CZ0owaz5jBccfuXT\n+9nshnz++KSeSRMlHBwrUO9rCNP2ztte3aN38gfv1wftZm0/4btXtvBsrXD2leOzt71Xh+sLopS1\nVshyQ89Iyzs6+ZgpmxzdV+DUTJlvvbPB5fU+DT9iupzjymaHeACH1BBExdWtHr0wxTENogHvbrsQ\nRttP+c6lLcI0o+0nLDV8UqlGe6LgGEipoZHdICFRktVWwI26z8GJPKfnKnQCfY0tU7DRDVlrBzxz\nfB+tIOapw+MUHIs/eOUGq60A0zSYKDnEmcKzjYH0vRbgcW1dTEuU5KmD40ig1tWweiGgF2bUuhHP\nv73O545N8dUn5mkG8Wjw8W5+cC+u54fdtroRX399mV99cp59JW9P3+uZhyYBRr77w2z3A3v7XeB1\n4HODn1fQ0td7mvx82Kq8t7s5dwbHu2GUh79bqvucWWriJxLb0HCG5cEAOgHUehFzVY/FRoBnm/xw\nqcX+ap5qwabgWKy09IF7Ya3BWytt6oNhY0maYhmaC6IVRw0c0yDvCGSmME2I4gzPFggEmZQoobHG\nOceg0c8wJERSEfd1hXC749WvqDtLOdvkU/ur/IOnDpJzTWar3mjGQTdUHJ6o6Pa2urcq717a/UCJ\n7ke8YhigOrZBlEgOjudJpEQImCm5CCEIUl1SD5OMQ2N51johm21NfrZMcQu8UCe/MZfWOxwaL1D0\nLMo5i0pOz+kI5U0IkmHo4bbNIEG3fQSOIZADnHk7Sih5DqYB3SjVcsiOPmB/47NHeHu9w4tXttjs\n6OA1k5Jy3uH4PvipIxM8c2ySuh9zeLxwR5nv96PKczvc/Eex+ncve3D7/ivlbiXvf+PMCmMFeyQa\nIDPJKzfqA6K0DqBv1/UZmkIHx7ZpEqdaNcwxBUEqCbd1gW3LoJSz8WyL/WM5/DilF2hQnClMPNfk\nyGSBVxcaoDRx+9RsibG8y6m5Ms1+wlw1h2sbtxUduNd9c6fHvde/7WblnM14waUbpiNft/166GTr\n8C3+YX5MCwK8cHmLv720iR/pBBGleGu1yXjB0dLAcaahUN2Yej8mkbqTNj+Wox8lI2W+fixxLTAz\nG4FktpxHoK/tXDXPxfUOmVKkA4ehFKRZRs6xKHmCaACr8yyDTCm6gQ6iU6kLWuvdiLytr70fpySZ\nxUzJpR9nhImkHaRESYaUCssSjOUdokxyYqbE00cmgJuclk6Q7Np52wu7mz94Pz5oNxtJzA8gWjvH\nGuxUvhyqe/ajlCjL+MlD4/zip2Z5/uIGnm1iCMF0xeMfPX2Y1xeb/MVba7iOSSfI4cdaWS/NMpr9\nVMPRM8VMxWNiIEOdKi2CYcCIG/bStQZRKukl6QiiJKQiiiWmKUil5nvN9HNU8w4PTRd57uQMnSDh\nt/7mIn4siZKM505Oc2q2wtGpIte2eiw1NSTSMgSHJwqstAJKrslE0UEgcCzB+eU2nTCmF+li2XTF\n42dPzfD6YoMrm10aPYOrtT4HxvMcmyri2SYnZ8ocmMiT1tRdBx8/6Ov5Ybf/8/sLJJnkP3v26J6/\n13TZ48R0kRev1PjNLx7b8/fbS7uf5OeYUurvCyH+EwCllC8+AMWDIZ664Fj0oner7Pw42m6qMPeT\nwDWDGAkjEqCUuqrSj1ImCja2ZWAaWjr0c8cnyaTk6cMTLNT79CKd4i0DrAAAIABJREFU4NS6EXEm\nGSvY9KOEejdGKYOiZxAMJn9PVz3iNOPQRJEwTtnoRpobEClsC5BgmDpg7vgZJjqozqQ+WIfKUNtN\nAnnD5HPHJjk9X2GjF7LY9PU8g8GMAzX4f1Po4X+HJgofSCXnvUqSD5/7x68v0Y0SSq7Nrw2kbm8n\nXvHq9QY3Gj4bnZAvnZjiewsNfrjYJEklUyWXjU7IVMnlJ6aqHBwvcHmzyxuLLdpBomVtByo6OcfA\ns006fqJnqGQQ+ilB0mWi4HBqroxnmfzJ2VXUIBWV6OcWPJuCbTKed1htBYCWJvUcg34isE2BZ5mY\ntmAs51DwLFxTV2lTKTkwlh/MeMlIMj2noZK3QcCZ5RaZ0l3GZ49P3VXm+73YnWBNH6XqX9tP6AYJ\n8QD2cTtZ/N1U0dY6geZlWOYtogGn91cYu+DQ6id6COkuYhdD7t6QEWKgOwwtP8GxBHNjOUwhyCRs\ndAJ6sSbeC6EIkpS8Y/LUoXEyqYOhRj8mGXQSLm90iRKJberOcS/MmCgIvnRimpVWgFKK67UeOdu8\nJ9GBH7U1/BjXNkZFmxv1PudW3y1Qs7NKXfJtDSUbVIjafoI/4POkg6GxrmUxXXFREpZaPigIEkkl\nZ3Fwssi1zS4i09crTmG8YBAl0OhFIKC9mLJQ79PwE6o5hzDOiFNdzFJKYRqCMFOkaUqUKjqBrrwr\nBbYtSE0oeTanZspU8g6OZTA/ltPzoFJJvR+P9tqNuo8wBsHvZIGTsyVOz1Zu6bQM7Usn9oHgluGd\ne2EPosN8t679vZ4X25UG1zoB1ZzDZNGlE6R0wgjXsji/1uHLp2f49c8e4fxKmxev1vjWpU2ub/WY\nKeco5Wx+8tA4h8fzhIkk55j8+VurJFKNChjLrRDbgKMTeZRhUOtGtMME29BjCWzLIk5TPMvEEoJ+\nklHNO/SjFNfSw7PbQcJ6O+DQeJ6mn9AJEl66Xqfej4kSSSdMeXujzdHJkvYzqZ4dWHIt3lRtpkoO\nUyWXLz28j4pn8x/OrnB+tY2fZIP7QiuLxgM1yUwqxgouedskSjKKthZjkUpxYb3D6fnKR7KwtZfW\nj1J+7wcL/NypmZE4xF7b549P8ocvL474gB9Wu5/kJxZC5BjEu0KIY0C0J6vaZpYQXFi9Sab+yunZ\nvX7LB273DdNR4Jgaz02guTbHJov0ooyH9xUp1H2myy4528A1DYoFh9NzFU7PVWj4MV85PUsziCm+\nY/HydT0leqj21A11RdezTI5OFIikZLac47UbDZRSyAE8Ik71f00p8RwTpTQXaDjdHW5KJg+7PwA5\nCw5O5vnZk9P4aTb6zI/PVynl7JEz23mo7HXg814lyYd2o9HnzHKLsmdzdavPU0fGeSxf3VW8ohek\nnFlu4ZmGntmz0NRETamo9yM9+8DWhO6SZ2tSp2Oxr+RQ9kze2eiSSjCE4OBYnljqKlx/EMGaBuRt\nk+rgu1xuhrT9ZHQweiZUB3DIH1yr0/Rj+lGKYwuWmj4TBZuD43lyjsn+ap5K3ubVhQZhkjFVdDk9\nW2ajE46kTGcrHlu9ENMUXN/q8dTB8XcpdO1FMnKn6/JRqf5t35cKeHx/dddgcacP2f6dDyvM2wOG\n07MVXFsPL3xXhWJgw47tsIIl0QlQ0dMHmmUIZso59pVdvnc5xY8HwigKDk8UuLDaYabsst4JCVLN\nQSkWLH7lJ/az1g7424tbdMJkIKctSZXi6cPjlHM2b660yNnmPYsO/KhtZ1CG4J58ulaK63O95msB\nEVPQ6kUgDLpBwnw1Rz+OKOUtojSj4FgjoZOCY/LZo5P8H/X+gFc1WEvBxUCw1Q/xTJONjlbRlFIh\nhKCYs+mFKZW8TZhIMiVJswypdGVepRJ7oArppxk52ySTilgqjk4VNAzW1mp0T+yv8vzFTTzLYLbj\nYQkwDZNMSUqexVYvepci305fe2h8dzXCB2nv1R/c7lx4r+fFdqXBzW7EUsPnU/NVTFPzcywpSTPJ\neltrRX3z4gbXan08S0PGJksuq+2AfpywfyyPQhcybXMAax5InHu2wDYNTsxWaAYxlZzNStPnoekS\nlzd6g2GmGnpW8RwKroFQeiSFZ5tkSlHybCbyLuNFFz9K+caZZVr9mAurnRFyoOq5PH1kHBT0opQ3\nFpv8YKUOAlbaIU8eHKPWi/jMkQlyjsn/+8YycSK5sqWLdY6hcGyTjW5ArafPoTDJODCW45eemOPc\naoejkwU6UXKLKMlHpbC11/bvXl2iE6b85hf3vusztGcfmuR3v7fAawvNEQzuw2j3k/z89+jhpgeE\nEH8AfB74jb1Y1Ha7E6Tmw2L3W804NFHgxHSJNxabFBwLzzE5MVPiuZPT5FwLSwhSpUb/HTqJ9kDO\nqZyzOTCRxxKCd9a7XJda5nj/uFbcOTJZRCrFsX0F3UFyLTphhClguRWgtg2C0QRoHXQXPAMjkgSp\n7jGYaKKsUjfVc/OuxUTBYbaaY6Hev6XDszN4/SDtbgnoXQ9PdTNIFIOf4d3iFc89so+31zu0+jHT\nlRxTRZeSa+EPBk0GcYZn6U7L9VqfN5dbjBX0FHgQTJVcMgmTg2nYjiV4baEFQqvtiYFaW5hmxElG\nwbbpWFpmOpMZcQrVvM2xqeJITte2DPw4o+DoIOf4dInHD4wRJZJnjk1Szducmi0DYhScerbJydky\naSY5NVdhpekzUXKpdyOu1Xq8vd6m2YuZLLm3lXR/EPZRSXJuZzv3Zcnb/fOOZJq3eoSpxBJi9N20\n/YTDEwU6QTLCYTf9mP/48Tn+93ZAo5e8S6J+aI4tSBI16v5YJniOSZRo6FUiJb/2EwfIOwZ/eW6T\n2YrHatvnlYU6tmliGoKiY3NiXwmpYLrsUsrpbsdPn5zmRq1PkGQcnszxn37myMh/36/owL3aXvFD\ndwa8wB3FPJbqPguNPiaCJw6McWiywFtLbcYLDi+8szWQlE/JOSYqkYznHYRS9MIUhKBUMinnHJab\nAWN5G8tMyTKJZenhxq2Bml8v0oNL19sB1bzDkckClgmXN/scGMuz3NRCC0kaI8mQA/VOwxAUbBPH\nEByfLhHEKU8erPLLj2vxnZ3wvRFvpR3gJxIlBdXc7op8HyZO3u3W+l7Pi+1Kg/tKHpMlh584OMbP\nnpzm/3ljmXc2uwgBf/DyDeYrOc4ut3BsrbZX9rSk9EPTJeYqOWbLWlzj7fUOj9XLvBSldMN0gLxQ\nWIYuroWp7tK3g4SFmk8/SkkycGyDas5htpJjvGhT7yWMFywqeRcBHJsqYBgmTT9mvRvgmCYb7YhK\n3kYp2F/N4zkmYzlnNLi60Y/JOxYP7StyaaPHRMmlF6a8udLi8HiBEzMlfVZZmmcWxpqX/MSBMWYr\nOX6+6FJwTU7Paj/1w6UWF9Y6TJVuqr9+1H3+g7Ikk/zb717j6SPjfHowduKDsM8cmcA2dcHtY5H8\nKKX+WgjxOvBTaP/5z5RStT1b2cCGweWDhtR8kPZeCLZfODFFKiXTJY8X3tmiFyWsjBVGcKudtr1S\nFSeSk7NlXrxSoxOljBc8UikpexZHp4r84mNzHBjLs9Tw+f2Xb9DsR5xdbpOkciRlPawIKyAcZDYt\nPxvJJVsM1F1At+Oz4SwQxcMzpVs6UT8OFZz3204/NFHgsf1VumHKkcnCaBDb9mtrCcF/OLvC965s\nsd6OiBJJJW/r+QdSy88i9PfVCmKWm77G2ncirtcMcpaJYcD8WI7DkwVOz5X5wZU6nYFAAQL2lVyi\nTPLZo5OMFx3ynsUz+6a4stmjH6dYhuDJw+N8+dQMRcei6Fm8dr2BZegp4FNlj5OzFZ46NM6FtQ7n\n1tpcWG1zarYy4BDZI4jPU4fHWesEPDRdJEozemHKWyvtAWwJ9pUD/uufO/kjv7YfZtstqdnNKnl7\nMP9G8yiG1XaAP359iTPLLT0scaGBIeBarY9tGnz+2CQvXaux1dWFkZ1JUJRoroAldOJT8mwOjOVZ\nqPcJU8lGO+RP3lwZdB00LK/o2jw6WyFVigtrXVp+TD9JOTJR4MunZnh5oUE177DR6VLOWZQ8i8MT\nRc6ttnG2uns282mv+aE7g7I7DbD+rb+5qJW4pOLkXJmxvEM5Z7PWDkmVIkskaaqo9ROCKOX1G83B\noGib+WqOTMH+sRy1boRjmcznHITQQhLLLZ9uFNMLM+JMX78ozfCTlLyrA95+lNEPtazxwbE8edci\nGkhXR6mGL7qWiWUKwjilO5gpU/RsvvbkgVtmRw0/95vLLQ6OF5gsufQjnaTt5k8/TNCl2631vX6G\noTjGdr7TkNPW8hP6sSb5r3dC4kxzqSaK+vs8vq9AmGaYCL7zziZxKsmkHl1wo+ZjmQLHFChDq/A9\neWiC6YqLH2estgI82yBKM0o5i1aQgBxA4GzB3//Jg/zhq4uEieTtq1scnizSDRM+f2ySkpfDRHB+\nvcNaK2QsZ1PJORyaKPDVJ+b1fh0UWy9vdEHo4oopxKgYhmAEgX50vkLJsfjbS5sIQ9CLUm7U+0yW\nXJ47OT0q2Hz99SWub/WIs4ySN76HV/mjaX96dpXVdsi//OqjH+j7FlyLTx8c48XLNfjKB/rWD9Tu\nR+3tm0qpnwH+fJff7Zl9VPD9u/GAtn+mnT8fGi+wr+Rxo+Gz0g4oeDZnllsjuNXO1+mGCZlSlF2b\n569vsNTwWWr6WIaesl7JWwg0Sef5tzd47uQ0nSghTDPN8cgkwoCyaxPEKVIphGCk5gYMlI70QL2p\ngkMpZzFXKXBps0Ojp1vvMxWPA4MO049TBef97qNKXgcFd4Jgvbnc4pVrDZabWv63Gxmcmi/zxIEx\nziw19XC5AfxwqO6WpiCNDKUkrikQGLT9lLdXOwRxxtV6D8sQOKaFQUbBsyigK5aTJRfbFCRK8ouP\nzzFb8Si5NotNn4WaDl5Pz5ZZa2l1uWY/5EsPT5NISSfUQ2gNBEEsCdKMsJuNKnjbD/5D4wUOjRd4\nc6XF9VqPVpCQt03EQIr7E3vvdqekZudeS5XCs81b+I8A3SjBtUw22iFb3ZBaLyHvmuQsg4dnS5Q8\nm1o3GVUzTHQBwzA0tM0ydUcw5xgUPZu8ZZJKaPsxlil4Y6HBVDnH/9/em4fHdZYH37979n2k0W7L\ntrwl3mKbJA4J2SCEJQ0F0ia0tFDa0gIF2gLd6P6+fH35+pWtbGV52wJlK4WGpSUkoQmBJGRxVsdx\nEseW5F2ypJFmNPv2fH+cM+ORPCPNyCPNSHp+16XL1tHMOfc5z32e7d4uWdvOqakEN1/SRwGYjKcJ\nee1s7vBis1vo9Dp4fjRKIpNle2+QZDZHIlPgsvXtDI7HmU5n2dXR1vCaT0WW2uJQbukocmwizpMn\nJklmC2zt9jM8EWdrt481QTcdXgd3PXuGgNNKJJXDYbcQTabxOew4bUJ3wAkKNnR68DhsbOsJcPtT\nJwm67cQyOfYNhIz05skcbrsdh8VKJJXF7bAyncqSzOQ5PZViwmxru12IhI2A+Ew2T8jjpCfowm6B\n4YkEHT4nE/E0qWyeoMtGNJVjbDpdup/Z49OjQ2FOR5IMh+Ns6vTyukvW4DaTGczuD5fLmF2U9Vg4\nPsM99ELuoVKmwUgiyxMnJjk2ESMczxoZ8GIZEEhmsqxrd3Plpk6GJmJMxbP4XXaiqSzhaAYrRhxe\ntlCgoBROm412r5PegJN2rwMLGV4YmcZigcl4hnaPA1VQ+MxSBZeva6cr4OSlG0MMjcc4Hk7gc9qw\nWy1s7PJxcY+fhwcneMm6dpLpcfraXPQG3bx533rWdXiIJIx4xPuOjjGVzLKly0d3wMVl69uJpLIo\nYUbyh939bZyeSvLkySn6gsa7aLNauHZL14x3ZjqVI+RzAkbm2Va2ELYaSim+8NNBLu7x84qLu5f8\n+tdu6eRjPz7MRCxNh9mGy415Fz8i4gI8QKeItHPO+ycArF1E2Uq00iS6EVQKXi6alTPZAvsGQmzo\nMHxfHzo6zvB4HKfNQiaXn9FBl58nnTV284ZiMXK5Al6njZFIinavg86Ag2s3d/Hw0ATPj0YZiaR4\n8ew027oDHA8niCQzWMSI54kkstht0OF1kMopLGIU2ivitNvwu6x0+l10+Bw4bRau39rFzwcn6A04\nmU7meGEkyhd+drTUebYKi65HCrKFAvF0DoUYBQrFSBe6Y02QvDLSUqZzQiqbI583i8dajPieeCaP\nSB7BQiZfoD/kJuC0k/bnCMdz5AoFJhMZun0u8gWFw2rBbbeyZ21bya1waDzO8yNRjo7HiKZyPDQ4\nRsDpoM1tJ18o8MTxMF6nnXxOkceo/D0STZIpFAjH0ijO7eBNJjMlfQt6jPooT5+Y4tnT0ZLf9sAS\n+POvdHJK0e51zChwXCmYfnb84zWbjertNouFiXiaWDqHz2kjns4STxuWnrUhN3vWtTGVzBFPZ8nn\njUDkXN7YzFDKzARlMdxhrRZI5nK4rMKEOUkbLWRw2a3YbVYQYf/wJJdtaMftsHPZhhDHwwlyuQIn\nJ5McDycYi6UZGk9wydognT4r0XQWv8tWSnqyWNaAxbQ4zFdvKpM1CkYfHp0mns5xeipJPJ0n4LKx\nvt3DUyenOBFO8MzJKMlcgWzeiLW0WIU1QTdD4zEUKTaEvFy3tZuda4Icm4jjsFro7/BwNpJi34YQ\njx0PM53OkcnljdT0XjsFJeTsynChU4arot0iRFM5svkCE7EMvQEXa9s99ARdjEZSBDx2Ov1OoukM\nuYKFXEERyxhpsm0ipeQuNouFS9e1E01nKSjFyzZ1cvdzIxQKRtKTuVKyL6cx++Ap4307eDoyI3nF\nhSRPKKadByNm9IXRabr8bibixmInkc1zzeYuzsZSWESM98Rpx2axcHh0mmyugM0iDI3HiaYy5vgC\nNqsRO3oqkuS1u/p48KjhRumzW5kiS8h0O+9v83Bxr594OkcslcMqwrHxBBPTKR5NZek2C42/eHaa\nR4fDWEWYTmXZ5vbR4TUslWC05b6BEGOxNB2+DAmzGPfxyQSFgmJozEhcUp7Vb327h+lUlol4hulk\nhkvWBGfEhoU8Dvwum6n3sKnT29IWwlbjvhfGeGF0mo/dtoclyDt2HtdsNRY/Dx6d4PV71iz59RtB\nLZafdwLvw6jr8zjnFj9R4DOLJNeKZvYO5XA4PsNqE03l6Ak4ufmSNVy1uZOTU8nz3K0qnWfP2jZi\n6RyHR2IcOhNFAVds7MBlt7Au5OGhoQkyeYXdasVuszCeSLO3v42z02lOTSYZiRpZmCwiTCUy2KwW\nbBbjWkUXuKDLylVbOvE7bXgcVs5EUly6oZ1ff+kG9h8Lc89zoxw5GyeZjQKKd163ZcZkYTnsBlai\nFpeaDR1edvQFOBNNYcVwX7tkTZADpyIEXHZcVqMIpFUUKMFiUdgBv9OOx2kzsuDkCmzs9CIWcNis\nuBxW1od8FApxo5ChzYrTYcHtMGJyRqdTRFJGpp6iX/7TpyKMRlJYLELAbcSMJbJ5egIuAm47AyEv\n9x0+i8dhJZ7Osz7kwWdOTjv9TvJKMZnMlCYEjw6HuWJjiA0hL2+9coBL17cTTWXZ2RdsqcXtcqXW\nYPpi/KPFIpycTPDfz5yhr82Fy27l9bvX8L2nThFLZUlm8zhsRtKCZDpPIGhjY8jDyakEsXSOTF5R\nQOF1WEEpw3qYVxRUAbtY2dLtR0RK1kG/y06b10kik2Ntm8tYNAm0ue3sWhtkU2eKExNxjocTWKwW\nQh4HbqeN67Z2zcjkCOdbsxpJoywOlazyld798v73seEwo9MpnDYLTquRVavb52Bjt6/kNuQyk5Rc\nFHBwZDTOxi4vHoeNnoATqwj7NoVwWi30tbkN6z9e1oc8PDw4jt1qYf+xMMcnkvQGXYxNp+kJONnU\n6cNutZDK5hieSOC0C/vWh4hn8xw6HaEQdOOxW+jyu9i3IcSLZ2P0BlxGRj8rOK1W8hYYS6bp9bto\n9zo4MZlg/7EwSsHQeJxHBidw2IwF0qZOL16nje19gVKQ+nLry2fTKIthpc3IYpmDdredbK6Az2Wn\nx29YYdJ5hd0urA95ZtTpAsOCGEvlzGKgOfJ5hd1qIZbJszbo4kw0RTiW5Zv7j7FvIGSUsMga5RHW\nhzxs7fHzwsg0dx8aQQS8Lhvbevxk8gX8bqMvcViEf3t4GIsFRqNpdvQGcNothLxOHHbLDAtgu8fB\n+pCHkMfBVDLL5k4fJ6cSdPqdrAl6aPc42NkXKH3H7bRxw7YeJhMZjk8k6G/3GDFD5rMtelJcMRBa\nkoyAK43P//QofUEXv9ikhcfu/jYCLhsPvDi2chc/SqlPAp8Ukd9XSn16CWRacpZ6Um5UhzaC331O\nGwMhLyfCCYYmYgjQFzA6t2MTcXava6vqbjV70lScaFzc6yedLWAVKKgCPqeR/enS9TEeGQqTzRcY\nmUohQcPikCsUmIinKZgLH6sIaQUem4V4Oo9dIOCxEUvn2djpp8/v4okTkxw5a+zajERS/NXNO3jJ\nunZ+engMlTWKmRYUpc5uudVrmq0Tcw2Q5Z999Y5eDpyKYEVw2qwcPB1hLGak+UznjQmQscDMY7cb\nySG29HhJZhW9AScT8Qxv3ree4+EE0+ksLpuF4Yk4HqeNkUiS9X4nO/qCWBEeHhxnPJZhKp7ly2eH\n2b02SDpXoMfvwGk1LU8W2NzpnVF4cdicqNqswkgkhVJGClK71fDh7jSDWEejafoCLvafDDMeS+Nx\nWLllbz8v27J8gxxbkVqD6UMeB1aL8POj44zHM7S57Fzc4ydKlk6/k6u3dDI6leLoWAzMCffR8Tjp\nXIGL+vy0+5w8dyZCMpMnbS1gs1oQoDfgJBzLIghWiwURwWG34rTbSok+1ra7OD2VIp7JMRpJE01m\ncNisnJ1OMTQe59h4AsTIJrUu5GFbX6BkjVzKRCcXanEoxiJMp3L4XTZuu2wdxybijEbTbOr0MhpN\nlWoTlcdrHQ8bz3lsOk2bx0Gbx8H1F3cTTWdLtcwQw2347HSGNo+dTZ0+br2sn1xBleqBFds7ksjy\n7OkIxycSTCayeB02Dp0yNpQKBcMisCHkYUu3j3S2QF4peoNubtzew04zQcnHwnEEODGVJFdQjEZT\neJ02btrVh8tuxWm3cCaSNgpdpzJctcVIfnJmKsXpySQKxWQiQ5/fqG/ksBmbMxf3+I1Cpy0ez1Mr\njbIYlo8Rz5yKIKLY6PNxz9Aoa4Ju8gXFqXACm81CJJXjDXvWzkhYVM5uTxtD43F6Ay4u7g2QzRtu\nqS6blUgyi8NqwWY1xt7pVJ6rt3TyzIkp+tvd9Ld72NjpJZ7K4XJYcdqs5PJGf+Cx23DYrDiAvEA+\nDxd1+zk9meTRoTC5QoEfPTvCL+zqwyZynodKsQjpqakE9z4/isMinJlOc9n6du569gxbu/24HTZu\n3NZNl9+J2241YgIzufPqPQU99hku/JraePL4JI8Mhfmrm7fjKO5OLzFWi/CyzZ088OI4SqmmWJ8u\nlHoSHnxaRHYBOwBX2fF/WwzBloqlnpSXqkPbrKSyBW7a2cW6Dg83uw2/Y5tljJ8PjqOAwLCNdo+j\nagdZaaczmswyNB4jVzAsB1cMdJSqqL/1ygGu29rFi2enOXgyQsjnYHA8TiKTo9PrJJzIkMrmyaGw\nApFkDqsYig5C0G03UjlnckSSRsBr0d3la48c4/eu38Kl69t54rgRvNvlc87Y8V0uGYAq6US1AXL2\nbl84brSFy2El5LFjt1rwOqwcOBUhky+YRQmFroAbl81C0G1nXbuXdq+DWDpHl8/Ftt4AV2zsIJzI\ncGYyyTcfO24k/nDYeMNL1rC9N8BnfvIi4/EMUTPD32gkxfNWIZMroMyUptv7Arzukj7cThvJdI6J\nRIa9/W2EvA6ePR1hKpnFZhF8Tgdr291sCHl4yYZ2BkJe7j40wuB4jGdOTSHAyFSKSDpDKlvgnddt\nbtm2W67UEkwf9Bgpyr/9WAK7zcqRs9M8dWKSrT3+0gbKaaVw2IyNh0w6h8MqtHud2KzC9Vs7GRyP\nlXale/0urFajmPFUKkNhStHucXDL3rU47cag6rRa6PY76fQ52dXXxneeOEE2rzg9lcZhFaaTORKZ\nHOlsgYDHzrbeAK/e2cNVmzorxjK2OscmjAyMfpedofEYO/oCPHcmygujUZ44PonLZikFdxeTNhw4\nZWRj7PG7eO5MlK09PqNuirlAKK9ltr3XSESzvddPTincTlvJol+++P3O4yf4+dExBscSJDI5UmbN\nJKtAu8dJQRmWZq/ThtWSJ1co0O10ss7MzFaMvXh8OEwym+fsdJo8kCsonjw+SX/Iw9ZuP48dm8Rl\nNdIfJzJZOn0O+oIu1rS5AaPkQTyTI51XDHR4Gej0smtNkLxSDKyQ3fpGWQzLx4iim+fgeBwFbO8L\nkMrleX4kSq/fyeHRaU5MJugzn3O18/lcNrZ0+ej0Oo3MWgrufm6EJ49PMjyRIFcwkiKIWOjwueny\nGzXd7DbD3bqYwMhvul9u6faRLeSxWSxc3Ovn9FSKM9EUHrsNlw229fk5O51mS9c5i2V5en2/y47T\nbsHtMOr1HD5r1PO69/lROrwuzk6n6Q0YFVFu2dtPTilu2tU3w4Vac2F84aeDBFw2fvWK9U2V45qt\nndz57AiD43E2L1GNoUZST8KDvwVejrH4uQMjz8MDQF2LHxEZAB4BngMySqlX1/P9RrPUk/LyXcRo\nOltK/Vq+C5IrFNjY4WN0OlWq3J7OFkquR3Ol3MwpxY41wVK9iKILRfk12j0O7nnuLI8dnySdK5DP\nF4hn8tissM7v5uJuPyciSV44E6XN48BmESOY3u0gkcnjdljN1Jlp4hkjcHckmmIymSktsGabspdT\nBqBKOlGt/sDs3b6CKtAdcDGZyOB22Ah5jfvsC7i4ZksnZ2Mp1ra5GR5PMDwRJ5sz6rvs2xDikeGJ\nc0Hvl6xho+kHvXekjel0lm19AW7c3suBU1NYLBZ2r23jZy+hHiDdAAAgAElEQVSOEU6k8TqNgGWn\nzcKrdvQwOp3ihm097Fgb5MREgi/ef7QUK/KOazdzxaYOHh2cIGP6lTttFjp9hvvNs2cMd7cbt/Xw\n3EiU8ek0L4xO47ZbGRyLGRZJvWO3qFSzYOSVwm4zCtfm8ooBUy+DHjs3u9cQ8oxzYjIBwOBYHL/L\nzvBEjGzOjddu57otnSRzeWIpI6haAQ8emcDvtAFCwG1nc4+PywdCpSQMFhEzXieFx2HF77QSSxdw\n2o1YIyNWTfAUrLR77KWJ83Kz9gJQVrhZAdFiIhmXncl4BsHIwFlel6SYtjuazrK+w8ON23sBo68v\nOokX2zPkcTAeSzOdys3I7lfe3kNmcgifw042r8jkFbl8ni39Piwi7F3fBgou3dBO0G3n6ZNT9AXc\nDI7HSuNFJJFlNJIiky/gtdsoAIlUDr9ZOkGAde0e9vYbfcv6Ti/XX9RVqsmzbyDEdDrLzrVBLu72\n89TJKdo8diwiPHcmisNuMRaA7mXQpjXQiBilShbcYxNxAsM2ouksHoeVNrcDh93KdCbHA0eM5ALV\n3o1Ki7JIIstwOE4mmyeRnsRqEZI5RTKT5qKeAFPJLBZRbO8NEvI6WR/ysCbopt1jpKvubXPhcli5\nZksnO9cEiSYNC+Njx8I8Ohzm0Jko69o97FwTJOC2VxyzrSLETP21iAWPw0I8myOvCmRyCrfdistu\nZTKZwe+yM53Kct8LY7hslhkxVZr6GRyLcdehEd798s34nPVUqmk811/UBcBPnj+7shc/wK3AHuBJ\npdRviUgP8LUFXvfHSqm3LPC7DWUpJ+WRRJb9w2EGx2MMjcfY3d923vWKWd5Gp1OcmUoaKVKddu4Z\nGiWWNmoHzNV5hDwOfE5bacIxncwSSWTPWyCt7/BQUIp4Ok+mkOf6viDJTJ4btnUzFkvTH04QTWQN\ns7nVgs1qMXyKBd6wZyMHT0cIOIxihTvWtBlpr1V1U3azMgAtZOe5mk7Mzu5UnMyU7/YFsBHyKrr8\nDm7Z20/AbefYRByfyxgAu3wuXr+nn2PhOHccOEM4keHsdJo7nz1DX9BdyppT7ht96yy3x4GQF5vF\n2H3u9DrY1OWlK+Ainc2XEiz4nfbSRGY4HCdXMApTDk/EmUhk+I0rB7h+a5dRfd7kieOT/Pv+42Ry\nRkHFi/sCeMyBMhzPGEkw8oVzUX+aJWdnX9AMli7Q3+5ia7e/FO8V8jhmxAhu6vAaqWZTeV66KcSx\niTiHzyZw2W0ks4otPW68dhtPn4iA006ukGd7n7+0aVGesQqMiZzdKjxxfJLj43EcVjEqvrtspHMF\ntvX6afM6ePrkFAdPRRgIeTk7nWJjh2/ZxIdsCHlLC4JNnV529gU5PDpNIpNnQ4eX6WSWoYkY3X7X\njH6h0iS1mLTi4KmZQfSVsvvNdmf2O+2Ek0bK+bVtPtL5AmvaXCQzedw2Kz6X4S49mciQyRopyFPZ\nPC6blYDTzv6hMF4zvXWHz4HLbmVt0M26Tg87+4KlnfzZfUuR2cdfuqmjlFW0uNiqZbNwuVn+LpTZ\ni6gNeEsBsy/f2s3dh0bM7IwWCmac71zvRiW30Wu3dHFyMkmHz8HxcIJOnwunzUqP32nEjjqMJCM+\np2HtmUhkiKVz5JUqjS/FTdFiLOFYPM3mLh/Pj0Z5zY6+Upa3XWuDRgbCsjp9RV3f3OXjI3c/TzZX\nQAReuqmTyUSaTd1GttBHh8IUCopHhyewWgwLctEyWeleV5uuLIT/e/8QdquF33zZxmaLYrg39/r5\n8aFRfufapSuy2ijqWfwklVIFEcmJSAA4C6xb4HVfISL3A7crpT5R/gcReQfwDoD16xffrLdUk/JI\nIsuBU1OlHfWhiRhXbAxV3O0xBsdTtHkcDI7HSGTyKKhpElG8n2PhOI8OhXn61NSMgPXihN3ntHF6\nKkk2r7BYjODlLd0+rtjYUdoNiqazHBmNky8UGI9lWNvuJpc3/MtvvWwd+wZC/PTFMXJ5hd9lm5GM\noVJHttQZgBa681xNJ6qdb/Zu3+xJEBi7yEpJaVd5Q8iLx2njpLnAbfMaxfEqLcLLn1uxeOIv7l7L\nA0fGaPMG8DpsRpFSBU+cmCSbV6XrRBJZrAiFgmJ4Io7NQsldpXyROjQeJzsUxu8yrmMUUszQF3Az\nEc/wkg3t5AuFGYsqzdKzrsPDn9+0g2fPRDhyNsbBUxH+47Hj7FgTxOe0cfMla7jtsnU8MjTB1x8e\nxmKxEI6n6Q06QYStPX7T5daoAVNAMdDhoSfgwu2w8eZ9689zVwNDpzd0eHmrWYD5roMjpHMFBsdj\nXNTtI5rKcf3WbhK5fMkK8cDRcU5OJjg6FjfcLVvY2luk0mbDLXv7+e5Tp3DZLFgsMqcFPpLIGpYb\n02JUaZEwO7tfpQKar97Ry6mpJLm8IprM0ht00e5x8NaXrjEys6Vz3HVoBKfdggI2d/qgAw6NRBkc\nj5PJF7Bk8qTzCo9D2N4X4NZL+7n3hbPcf+QsXT7XnMWJK026S4u6OYq7lrMsLX8NpNL932rGkP3s\nRSNb1+mpZMVN0PJzVEp539fm4g3ta/nRwdN0+ty0e+y8clsPO9caxUOLyW+KFv9CwShWDZzXbsUY\nZJfdysU9AXauCZ4ne/nYXm7F/MCNF3MmmmRbT4DuoKvkXm1FODoRwyKCRSy4bBYmE1m6/IWK97ra\ndaUWzk6n+M8nTnLrZf10+VsjvfSrd/TwmZ8cMdz9va3fv5dTz+LnMRFpA/4vRta3GPDQAq55BrgI\nSAPfN2sFHSj+USn1ReCLAJdffvmSeIlWGwAatRNRfLFjqRyHzkRgDXT7XVUnkcbgaFTPdjusrA95\n6Jp01hxkGvTY8ScM39xqVqPrLuoilsqVCta9ZEM7u9cak+H7j4wxGk1zZipJf8hDLJUlnMgyNp0G\n4IEj4+xcE2T3urYZvurzLRKWmgtxaaykE9XOV2miAOeew2jUKAR347aeGe4y5cXwrGJMUHwuW9XM\nN+XFE5PZPLv7g+zsCzI4HuOxY5MUVIHBsTivNK9TnjJ5+5oAW7t9VTO0zU49uq7dTZvbwaYuY6dw\n38YQfpdd78q1AOs6PMZubSxtJiwBr8NWyqYU8jh4aHCcibgRwxHyOulrc7OzL3Ce+6PbaeOmnX0z\n4gpnp3BWgNMMxr92SxfPj0yTzhfwOKz0Bl0EPA4u6W/jio0d3H9krGSFaHPbubinh0NnoqydI7ah\n1Zj9Pht1WwZKbmzV3s9K2b4WWgQ0pxQbu7ysCbp54Og4V23uxGk3Mq4dPB3h7HSq9K6PplM8dixM\nu9eBAC/dGCKbz3PozDQ+p40NIQ9+l1Fk89DpKMlsnrFohmgyW/e7XM9m4XKK81wMqrlP+xOGfs21\nCQrVx9Gi/uSU4oqNnSTSedo8dobDcXauDZb09/4Xx2ZY/Ld0+7i4N3DeWD07BjnoMUomzNV25bLZ\nrRa29QUA+OHR8ZL+p7JGYWybBTZ1+xDglr1rK97rateVWvjyg8Nk8wV+t4WsLK/e2cun7j3CPc+N\nctvlC7WFNId6Eh682/zv50XkTiBQvmip4zxpjIUPIvLfwC6g7vMsNo2cwBdf7E2mX+T2vkCp6nMl\nygdHn9PGVZs6S+epdfJZykRkBlzOthptCHlZ32Gkn/Q4nCV5ip3epk4vh0eiTMTTuKwWegNORIya\nFG0ee9WJf/n9Nrsja7RLY73nK7V7p5eh8dh57jLFYnhFK93R8VipqGglyt3XXhydZiqemeHu0hPw\ncHQszuB4nJ6Ac0bKZICLewNVU1MHPTNTj7a7HaWJbFEmPRi1DkVdLE4uyrMphRMZ2t0OvE4r47EM\nvUEnV27sKKXK9rpsxFO5UrD9bMrf34Onp1BKGOgIltLyu2wW2j12JhNZtvUGeO3O3pJbzM1uY2Js\nEzE2UaZTjEaTHA87CCdOL+sd3UpubOVUKj3gd5+/YVDLAqLYvgUUbW4bhYKakQZ9Y4ev9K5bLYb7\nYfG6fW1u3rxvA9/cf5zBsRjpfAG/6XZrsQg71wQZnogzHI4vKFV9rRb85RTnuRhUu//i8ai5IVmt\nv59rs62oP9PJLE+fquyGWHSPLlr8K218lc9Niq6Qc8k+l2xwbrwZHI+RSOdx2q3sWBPkOjOerJY5\nz2rUlfmIpXN89eFjvHZnb8U+u1nsXBNgTdDF3YdW8OJHRG4B7lVKRZRSwyLSJiJvVEp9r54Liohf\nKTVt/no10JLpsxs5gZ+xmHHZ5lz4QPXBsZ7rl9zfygIuZ8evVLpGecd82UCIHX0BfE4bNovwP8+P\nlqwUlWKJKt1vMzuyRrk0llsA6zlf+bPc3d9W1V2maKWbT9fKBzO3w8Jtl63D7bSVJprRdJa9/W2l\nIrlQOWVyNWa7whUnstra03qU6/ZNu/rOywjZ6Xdy2foQo9EUb7p8XcmH3+cyLEQ+l62qPsyIY3Ma\nSRGKOlTMKreu3UOXv8Ate9fOmFCVT4xvdpuZ0BSlydVy3dGtZTyoVHpgLvfkWseAazZ3MpHIMBDy\nEnDbOXgqMuNdLwazl7/nQY+dd163mWPheClmI5rMcufBMzPcXxeTpXIpbzXmGy9qfS5zjaMz3BBP\nV+7j13V4+KNXbWM4HGcg5K1q8a8W3zqXjNW+VzyWyhrWqOJ773fVru+rSVdq5ZuPHGc6leNd129u\ntigzEBFetaOHf99/gng6h7fJSRjqQZSqzbNMRJ5SSu2ddexJpdRL6rqgyC8A/w+G9ed+pdSfVfvs\n5Zdfrh577LF6Tt8wGu26tVAXuka43tV6juLnbKZJvdwNpni8mOffaRZvqzShb5Tc5Vx++eU0Qxcu\nVA9qeQ6z3YyKi5dqrm+VBrNq16lWmb5SOy9E9qWmWXqwnCjWiHngyBhtZnxfUW+r6U+lc8wVx1bt\nb5XOU3T5TeXOXywtlKXWg1r7gYW8M3P1u0WrcNHt8OZLjIKC1d7p+a5ba/s34r6WglbrDxY6XtTT\nf8/1Xai/kHAj5ibF6xZ1uLghV/4cFiJbrbSaHjSSdC7P9f9wHxs6PHzrnVc1W5zz2D8c5rbPP8TH\n37SHX7q0v9niICKPK6Uun+9z9SzTKlVTqnuZp5S6AyNVdktT707EfB1ILa4CtVYWbyTlA+/szqqS\nDLvWBEuxRD968QzHwwnWhzzcdtm68ywarTRI1kvxuUwnqwcu10K15zC7rWcnqaiWEnRdh6fipKV4\nnRMTCQ6cmqLD48BtukGVm8lnx5+VB8pX8+nWAaitR7VFbVGHplM5TkwmubgnUHJ3BUrv+Hxpimfr\nbaVJNjBj0V4pZi3omT+7WSsy+/nONR5U+myt1zg2EWf/cJi8Uhw6HWFHXxCfy8a1W7q4+9AIxyfj\nnI2kee2uvhnxgrOvUet1q/Ufc90/oPuCGpltITw2EcefmDtWcq6+tvhv8f2da25xIQl+LmShVGmB\nXu4CW65DsXSOVDbPLXv7G7IJshq4/YlTjERT/MOtu5stSkUu39DOupCb25841RKLn1qpN+HBx4HP\nmr+/ByPxwYql1k6hERPFSudohOtdabJbodMpv+ZkPIPLZj3PPaVchsHxGKcjSTLZAs+Fo5yOJPG5\n7Bw4OcUVA6EVU/ulUsB3I134qunLbPe3Y+G5B87ZA1ExIUIyU2AkmuSG7T10+Zwz9LHYnl6X7bxA\n+fJrtErcluZ8KukPGJOLYiD8yzZ1nhdndt7EbJZ+zbeBU2kjJG+m6/3RkTM8eHQcr9PG3v42bi3b\nDJkvu1mzmGu3vdL7WWk8uJCd/vJkKLvXthnvo+mW+OyZCE+dnMJps3IqkuS5kSjrQ566+p8L2dGf\n0c5rg7ovqJFyd7B0tsD+4TCOWYuC2czV19ajX+GEkdLa67ARS+dK52l04qaiLNdu6eL+I2Mzkm+U\nxxWXvy9D43Fi6RwnwkkmExm++9Qp3nbVgNajecjlC3zuvqPs7g9y7dbOZotTERHhlpf08+l7X2Qk\nkqI36Gq2SDVRyZpTjd8HMsC3zJ80xgJo1VPeeRUnko04RyNiZ4od4olwksOjRhG8Yvrl8mu67NYZ\nqZZtIgyNx7GJGIUvT0d4ZCjM4ZFpFLC1x0df0I3TZqRaXUm1X8qfi8Nu4YqNIa7Z0jXvxKaY5rb4\nfGs5f7m+lLd3Jlvg0aEwDxwZ44fPnD7vnMWBqPzvxYQIXQEn+QKgOE8fi9eIm4Hy47E0k/Fsqdji\n7M81O25Lcz6V9Kd4bGOHz1ysp9jd38YN23rOyxJVSb9OTCT44TOn+fGzI3zloWFOTCTmvS5i+PgP\nTcTI5Ap0eBy4rBaOhRNGZjSTVtSlSu9PkXr682PhOGenUwSc9rr6/vJkKAJMxFNG4opUDqsIAacd\nAZw2C2uCbvb2t9W1qTbX/dUqW6mdFRXbr9b+bjVRtBBes6WLKzaGcJibWXPpRqX3o/hsj03Ea9ZF\nmwiHTkd4aHCCQ6cj2EQuSA9mM1svhsPxGX3O4Hi8qn6EPA5S2TyTiQztHjsum2VB86TVxg+fMbxr\n3vOKLYi07iTrlpesRSn43lOnmi1KzdST7S0OfHARZVm2NGJwr3SOhQQBzt7lqdbpzJ4M+Zw2btrZ\nVdFfd29/G99+/AQ2izAWS7PObmVrt5+pRLZUDHAl1X45L3C5hkxn9ezQ1RJkOlcWH6i8W1hMiDAW\nTWO1UJqczg6ULV5jT38bdz57hjav4zx3JB2A2rrMFWw8O+nFbNe1avo1HI4TS+U4MZlgMpHlu0+d\n5G1XbZzx/UrvxYaQl2PhODaLhYOnIpyOJOkLutk/HC5dv9ytkyUpXjA/c+2219qfRxJZHh0KMzgW\nr7uWUaVkKO1uRynmB2D3SBvTqRwbO71ctbmzppiP2RbehVhrKiVumF3SQLvFVqfcDa2WhDOz+1pg\nQZ4Hs7M55szF0mIkbipPflKpz6mkH+X1smYnXGnVmLJmki8oPvuTI1zU4+NV23uaLc6cbOz0cvmG\ndr756HHece0mLJbWXagVmXfxIyL/qJR6n4j8FxWGLqXU6xdFsmVEIyaK1c5Rrz9upQGp2OmgFKlc\nobTLX+2as3P8TyQy9LW5yRVgMpGhy1+oOCCuFBbSnvUMMnOdf8bAWSWLD1RfLBez+5TH/FSKDwD4\nr6dPMxbLkCsYxw+cmpqRiXC5x22tVKrpTy06W02/BkJenjw+xWQiS7vHgctuPU+HKy1igh4jQ+CG\nkJeHBsd56sQk23uDFYsxHzxlpoquEs+2lMyXSauWZxlOZHDaLbxyWw+D43H2DVSu11KJatconwTe\nNqvYaiXmqwWzkA25ucai8nvXrnBzU884MttFbEbK9P62mmqshTyOitkcrSIMjsVmjP2Nup9qGUEr\n6cfGTi9vu2qgos7rhfT53P7ESQ6PxvjMr71kWSwm3vayAX7/m09y3+Gz3LCttRdrUJvl56vmvx9d\nTEGWO42YKF7oOaoNSOs6PGUFNS0zdvkrXbPaDs+6kJsuv2NGobKV2knV2xb1TjbmO/98A2e1v9ca\n0BxOZEr1Ws5OpzgTSeC2WY1AeD34tDyV9Kcena2kP+VFd4s1gypRaRET9Ni5alMn4XimYjHmVpss\n1/J+zSdfufWmJ+AspZevR4bya1SaBM5X06Pac73QDbn57r8VXRlbkYWM6QvxPCheq1KbNzLhyOz7\nqXZ/c3k3zP58q/UNrUAqm+fjPz7Mnv4gN1/S12xxauK1u3rpCTj50oPDK2Pxo5R63Pz3p4svTuNY\njWbUuQakeoKO69nh0Rg0wvpXpFx355r8XMhiubhLuK7dg80qtLkdy74Wi6Y+ZutPsejuXDp8bCLO\naDTNpk7vedadud6BVpwsN2LDateaIAgNKQK8kEngfBasxXqPG9nfaWZyIc+2UpsvRsKRWrLb1noP\nrdg3NJt/fXCIM5EUH3/T3paO9SnHbrXw1is38NG7D3N4dJqLevzNFmlOanF7e4bKntoCKKVUy+Xf\nW61m1EZOPmrd4amV5boYrUfuRkw2lkp3y3WlGOOlB5/WZanen7l0OJLIsn84zOB4jKHxGLsrxLhU\n+/5KmyzPfk8bEfO40EngrrXBUiHTpXyui7m4Wk4sxrvZyGfb6MVFrWNUrfew0vqGC+VEOMGn7znC\njdt7uGpzR7PFqYtfe+kG/um+o3z63iN8+s11lQBdcmpxe3vdokvRYFazGbUVJx/LdTHaDLmXUnfL\ndUVb9lqXVnl/wokMDruFG7f1MDQR44qNtce4wMqaLC/Ge1pvH33eAqxOtzvNhdMq7+ZcNHrsXyzd\nb7Xn1gyUUvzl9w5iEfjQG3Y2W5y6CXkd/ObLBvjcT4/y3lds4eLe1rX+zJvqWil1rPhjHtpq/v8s\nEF5U6RbISjKjNjKdaNBjr1ggb7EpusrUmw622VxICvNIIsuBE1McODlVV9s1S3ebpRua+WlEKv1y\nqvUp8/U15TEu3X7XisrwWC+NeE8rPe+53sPZn2+0Xmjqp5XaYK73t1yvLnROsZLmV63Glx4c5meH\nx/jT125jTZu72eIsiN+9dhNeh41//J/DzRZlTmpOdS0ivwu8AwgBm4F+4PPAKxdHtIWzUsyoy2FX\naT5qcZVpVRbayUcSWb79+AkOnJxCwXlFH+dipeiupnE0crJRrU+ppa/RunmOC30W9fbtlT6vJ6HN\np1XaoFZ9asScQvcDi8P+4TAfvuM5XrWjh9+4akOzxVkw7V4Hb79mI5+850UeHpzgyk2t6bpX8+IH\no6DpFcAjAEqpF0Wke1GkagArwYy6Etz3LtRVppkstJMPJzJMp3L4Xcbnpyuk/Z3vusvlGWkWn0ZO\nNqr1KbX2NVo3z3Ehz6Levr1a6mA9CW0urbIQqFWfGjWn0P1AYzl4KsJvf3k/60IePnrbnmWT5KAa\n77p+M995/CR/+/1n+eEfXIPNOq+T2ZJTj0RppVTJpisiNlqmZN3yppoZulV2lS6E5e4qsxB3sJDH\ngd9lYzqVJZrK4nfaS22nq6JrFkKj3BKr9Smzj9tEVo2eNuOdrLdvnyt1sHZXbS7NbIOi7tpEatKn\nlTCnWEkopfjhgTP8yhceIuCy87XfeSlB9/J/l90OK3/9uh28MDrNvz441GxxKlKP5eenIvIXgFtE\nXgW8G/ivxRFr9TCXGbpVdpUuhJVwD/US9Ni57bJ1XDEQmpEGdyW4MWqWN9Xex0rZ/1aDnjbrnay3\nX1yN/ahmbmbr7rVbusgpNW+RY61HzUUpxYtnYzx0dII7D47w0OAEe9a18fm3XEpfcHnG+VTiNTt7\neNWOHj5612Gu3drF9r5As0WaQT2Lnw8CbweeAd4J3AH882IItZpYCa5t89FIE/lySZkd9BiV78tZ\nDW2tmZtW0N+5MkIGPfbzKsyvZD0tvpMBp53B8TjHJuLnvbeLRb39onY1agyt8A42gtnjSU6peYvi\ngtajZnB6Ksl9L4zx86PjPDw4wXjMcKJa2+bmr1+3g9+4agP2FnQNuxBEhL//pUt47Sfv5w///Ulu\nf/fV+Jz1LDkWl5olUUoVROR7wPeUUmOLKNOqYi4z9FzBySuh866X5W45aZbLwWrVl1ajlfW3XEdW\nk2tMyOMgnS1wz9AoCggM25a8Xk4t6He4MbTyO1gv5e9pJltgOpklksgu2/tZaaSyeb775Cm+9vAx\nnj0dBaAn4OTarV1ctamDqzZ3sC7kabKUi0uHz8kn3rSXt33pUd7z9Sf4l7dd3jLxP7UUORXgb4H3\nYsYIiUge+LRS6kOLK97KZy4zdCVLAbBiOu96We6Wk2a4HKykwX6506r6W0lHVotrTNBj54qNIWLp\nLBs7fETrTE6yFOh3uHG06ju4EIrjybFwnEeHwjx9aoqDpyNaP5rM2HSarz40zNceOU44nmFHX4A/\nv2kbr9zezeYu37JPZlAv12zt5O/euIs/v/0Z/vBbT/HxN+3BabM2W6yaLD/vB64G9imlhgBEZBPw\nORF5v1LqE4sp4Gqgmhm60g7sSuq862Ul7EgvtcvBataXVqNV9bdaJrHVoicbQl66/S6i6WxLtUsR\n/Q43jlZ9BxdK0GPHn7DjtFu0fjSZ50eifOmBYb771Cmy+QKv3NbD26/ZyJWbQqtuwTObN1+xnulU\nlg/f8Txj0TQf/5U99Lc31+pVy+LnrcCrlFLjxQNKqUEReQtwN6AXP4tENUvBSuq860EHa9bPShvs\nlzOtqr+rXUdatV2KrPb2aSSt3tYLQetHc4imsjx1fIrHhsPc9ewoL4xO47JbuO2yft5+zUY2dfma\nLWJL8Y7rNtMTcPEXtz/Daz7xM37r6o38xlUb6A64miJPLYsfe/nCp4hSakxEln/P0eLMthSsxM67\nHnSwZn2sdn1pNVpRf7WOtGa7FNHt01haua0XgtaPc4xEUvz86DgOmwWXzYrfZSPgths/Lhtehw2L\npboVJpcvkMzmjZ9Mnol4hvHpNOOxDGenUxwPJzg+kWB4IsF4LA2AReCyDe186A07ed3uNYS8evFZ\njTfsXcul69v58B3P8ZmfHOGz9x1h30CIl23u4LIN7exZ10bAtTT6W8viJ7PAv2kWiZXWeWsWF60v\nmvnQOtLa6PbRzIXWD4ODpyJ84D+ervp3i4DfZSfgtuGyWUnl8qSyBVIZY8GTK8xdurI34GJDh4dX\nbutmfYeH3f1B9q5rKxU018zPupCHz73lMgbHYvzg6dPc/ewon7rnRYqPfm2bm4t6fFzU6+eibj99\nQRddfidtHgcOqwWbVbDOWsA6rJY5F7WVqGXxs0dEohWOC9Ace9UyYSkz9FS7VrOzBDX7+pq5iSSy\nHAvHQUG7xzFvnYjy7+l2XXnU0q7Fz9hEataXes7fyiy2/K12/uXeXo1kJTyL8nsAFnw/rfosrt7S\nyU/++OVkcgVS2TyxdI5o0ig2Hk3mzH+zRFM5kpk8LrsFt8OKy278uM0fl92Cy26lw+eg0+ek0+ek\nw+doiUD9lcKmLh/vu/Ei3nfjRUynsjx9IsKBU1McHuA12+QAABOASURBVJnm+ZFpHjgyTjY/92K0\nyA/eezW7++srUTDv4kcppVt7ASxlhp65UmI3M0tQs6+vmZtIIst3Hj/BUyenyOYKWETYu74Nn9M2\nZ1vpdl2Z1NKuxc/E0jkOnY6woy+IzzW3vtRz/lZmseVvtfMv9/ZqJCvhWZTfQyZbQAFOu6Xu+2nl\nZ+F2WGuqdaRpLfwuO9ds7eSarZ2lY9l8gePhBGejacZiaaYSGbJ5Rb5QIJtXFHNICELvAuKGWqfi\n0ApjKTP0VLtWs7MENfv6mrkJJzJMp7MEXHaiySyxTBavw0ZeqTnbSrfryqSWdi1+xuuwkSuA1zW/\nvtRz/lZmseVvtfMv9/ZqJCvhWZTfw8HTUyglDHQE676flfAsNK2P3Wphc5ePzYuUOKI1qg2tQJYy\nA0u1azU7C0yzr6+Zm5DHgd9pJ5rKks0XcNtsxDO5edtKt+vKpJZ2LX4mnslhs0A8Nb++1HP+Vmax\n5W+18y/39mokK+FZlN+D32nH77It6H5WwrPQaESp2nzqmoGIjAHHmi3HghGLFZFulDqLKuQX+1pi\ntdlUPpebca1qxxeHTmBmZsDGXf9S4Imq12kOy18OsVjF5nACqEI+JyJSU1tVb9fFfiblerCcaRXd\nmUkt72vxM0qpmvWleL+L0x8sHYvdpzfm+VTXrXrPvzjjRyN1f7H0YDHHsoVdvxGU3wMwz/00To8W\nRj3PYKWMC+W05hixdCz0/jcopbrm+1BLL35WAiLymFLq8mbLsRQs1b22yjPVcpxPK8nSyqy257SS\n7rfV70XLd+E0W8ZmX78VZGj29ZuNvv/FvX/t9qbRaDQajUaj0WhWBXrxo9FoNBqNRqPRaFYFevGz\n+Hyx2QIsIUt1r63yTLUc59NKsrQyq+05raT7bfV70fJdOM2WsdnXh+bL0OzrNxt9/4uIjvnRaDQa\njUaj0Wg0qwJt+dFoNBqNRqPRaDSrAr340Wg0Go1Go9FoNKsCvfjRaDQajUaj0Wg0qwJbswVYyYjI\nLmAXcFQptb/Z8qwEROQ9SqnPNuG6fUqpMyIiwBuA7cAQ8B2lVG4J5bADrwUmlFI/F5G3AEHg60qp\nqaWSQ7MwdJ+wfBERH9AGTCmlYs2WZ7kgIjZgG+azA55fyj5zuaD1S+tKET1OLD464UGDEZE7lVKv\nFZH3Aa8EfghcDZxUSv15c6VrLCJiBd4IXMW5zuph4HuN6LBE5H6gqKBi/rsTOKiUuu5Cz1+nLPcq\npW4QkU8CSeBeYC9wuVLqTUsox3eB/RjP+zLgDowqyL+mlHrNUslhyrKo7b9SWE19Aqw8vRCRG4C/\nBqLmTwDwAx9WSv1Pk2V7n1LqH0VkD/BpjP7SBnxQKXV/M2UDEJG3Ar8DPMW5Z7cH+Fel1L81U7Yi\nzX6GraBfzX4GpgwtryuLyWobJ2az1OOGXvw0mLJJ8k+BVyilCubxB5RS1zRZvIYiIl8FDgD3ABGM\nzupGYI9S6i0NOP/7MTq/Lyul7jOP/UgpddOFnnsBsvyPUurG4r9lx3+ilHrFEspRup6IHFRK7WqG\nHOY1F7X9VwqrqU+AlacXIvIA8GqlVKLsmBe4Wyl1dfMkm6FbdwPvVkodEZFO4PvNls2U737gOlU2\n0TAnOT9tFd1v9jNsBf1q9jMwZWh5XVlMVts4MZulHje021vj2SEi/wZsBpwYVgIAV/NEWjQGlFJv\nnXXsSbMTu2CUUp8QEQfwdhF5F/CNRpx3gXxFRP4ZOCEiXwN+CuwGHltiOeIi8leAF5gQkT8CwkB6\nieWARW7/FcRq6hNg5elFGuNdf7js2CVAqjnizCBkWg5CSqkjAEqpcRFplV3NSeBXReTHnNvNv9E8\n3io0+xm2gn41+xnA8tCVxWS1jROzWdJxQ1t+GoyIbCj79bRSKmv68l6rlPpRs+RaDETkj4GXA/dx\nrrO6HviZUuojDb6WDXgrcLFS6oONPHcdMqwBXgP0YOxM/Fwp9fQSy+DGiPk5CrwIvA3DJfAbSqnI\nEsuyZO2/nFlNfQKsPL0QkT7ggxgTUgtQwNih/IhS6lSTZfvbsl8/qZSaEhE/hmzvapZcRUw9/13g\nSs65sjwE/ItSarqZshVp9jNsBf1q9jMwZWh5XVlMVts4MZulHjf04kdzQYhIF3A5RmcVwYhHGdBB\neqsD3f6aSmi90Gg0Gk09LOW4oRc/mgUjItVSpd+llHrVkgqjWXJ0+2sqsVr0QkQ+pZT6g2bLUQkR\n+aRS6g+bLUc1Wl0+aL6MraBfzX4GrSKDZvFZ6nFDL340C0ZEEsz0UwbDBWu3UqqjCSJplhDd/ppK\nrGS9aLUUtCLyeuB/yoPlNfUjIjuBvFLq+bJjVyqlZuvxYsvRFP3SeqRpNks9bujFj2bBiMjjwA2z\nY01E5McraYdXUxnd/ppKrDS9mCMF7Qml1F80WbbTwDFgFPgu8AOlVMsEiC91+tqFICIfw4jjzAKd\nwG8rpcaK2beW4PpN169W0KPloCuaxWOpxw29+NEsGDNQc0IplZl13KY7q5WPbn9NJVaaXrRyCtpi\ninsR2Qj8EvCLGNnDvq+U+qdmygbLI+25iPxMmXXjRGQ38Cngj4F/WKLFT9P1qxX0aDnoimbxWOpx\nQ6e61iwYpdSZKseX3QRHUz+6/TWVWIF60fIpaJVSQ8DHgI+JSA/whiaLVGQ5pD23iohDKZVRSh0Q\nkVuAr2EU1F4KWka/mqxHy0FXNIvEUo8b2vKj0Wg0Gk0VWjkFrYi8Ril1VzNlmIvlkPZcRK4AhpVS\nZ8uOWYHblFL/vgTXb7p+tYIeLQdd0awc9OJHo9FoNBrNoqDTnmtqReuKZqmollpOs0iISF5Enir7\nGWjAOYdFpPPCpdM0CxFRIvK1st9tIjImIv9t/v56Efmg+f//Ze6SISL3icjlzZFaUw8i0iMi3xCR\nQRF5XEQeMl1sNJoViZm+dgK4C/gWcKf5+4ebKZem9VgJulI2v3tWRJ4WkT+aI4Vz8TsDInLQ/P/l\nIvKpBV77fSLiWch3VyM65mfpSSql9lb743INCtZcMHFgl4i4lVJJ4FVAqbq3UuoHwA+aJZzmwhAR\nAb4HfEUp9WvmsQ3A62d9blHef92vaJpEjCrpa5sgi6a1WQm6UprfiUg38A0M972/reXLSqnHgMcW\neO33YcSq6XTlNaAtPy2AiPymiPxARO7FyHSCiPyJiOwXkQMi8r/NY14R+aG5o3BQRH6l7DS/LyJP\niMgzIrKtGfehuWDuAG42//9m4JvFP5g68plqXxQRi4h8WUT+bpFl1CyMG4CMUurzxQNKqWNKqU/P\nfv/F4CPmO/5M+XsuIn9mHntaRP7ePLZZRO40rUn3F99/Ux8+LyKPAP8gIi+abiVFfTlS/F2jWSSe\nA25RSt1Q9vMK4IlmC6ZpOVaUrpgxZO8A3mv26VazXy/O6945+zsi8vIybw+fiHzJ7O8PiMgvm8c/\nJyKPmdal4tzwD4A1wE9E5CfmsVeb3gVPiMi3zTgyROTvReSQec6PmsduM8ebp0XkZ+axivKaMt4n\nIt8RkedF5Ovm5t6yQlt+lh63iDxl/n9IKVV0e7kUo5hTWEReDWwFrsDY+fiBiFwHdGEERN4MICLB\nsvOOK6UuFZF3Y6Tp/J2luBlNQ/l34G/Mzm838K/AtTV8zwZ8HTiolPo/iyifZuHsZO5BvPz9/2Vg\nL7AHo+7IfnNA2ouRfemlSqmEiITM734ReJdS6kUReSnwTxiLLYB+4GVKqbyIRIBfB/4RI4Xs00qp\nscbepkYzg9dxLntZOTcttSCalmfF6YpSalCM5BndGH13RCm1T0ScwIMicjdQLfD+r83PXwIgIu3m\n8b80xwkrxmbZbqXUp0TkAxip0sfFCIP4K+BGpVRcRP4M+ICIfBa4BdimlFIi0mae82+A1yilTpUd\ne3sVeQFegjGmnQYexKhL9cCFP7GlQy9+lp5qbm8/VkqFzf+/2vx50vzdh7EYuh8jBeX/B/y3Uqo8\nBeTt5r+PY+Tp1ywzzDSrAxhWnzvq+OoXgP/QC5/lgzkIXQNkgM8y8/2/BvimUioPjIpR/2MfRuaj\nLxWrsJsDoA94GfDtss03Z9mlvm2eB4zF9PcxFj+/DXxpse5Po4EVmfZcs0isAl15NbBbRG41fw9i\nzOsOV/n8jcCvFn8pKzr7JhF5B8b8vQ/YgVEfqZwrzeMPmuOCA3gII4lECvgXc5P1v83PPwh8WUT+\ng3NzyWryZoBHlVInAczN/AH04kezQOJl/xfg/1VKfWH2h0TkUuAXgL8TkXuUUh8y/5Q2/82j23U5\n8wPgoxgpPztq/M7PgVeIyMeUUqnFEkxzQTwL/HLxF6XUe8zduaJ/d7zit+bHAkzNEUdYOq9S6oSI\njIrIDRhW5V9f4DU1Go1GMw8isgljTnYWY173+7NTiksdSa/EKEL7x8A+pdSkiHyZyvWgBGND7c0V\nznEF8ErgVuC9wA1KqXeZXgM3A4+LyGVzyPtyzs03YZnOOXXMT2tyF/DbZT6aa0WkW0TWAAml1NeA\nj2C4ymhWFv8K/G+l1DN1fOdfMCxF/yEiy64TWiXcC7hE5PfKjlXLzHM/8Cumz3UXcB3wKPBj4LfE\nzOgjIiGlVBQYEpHbzGMiInvmkOOfMYJiyy1CGo1Go2kgZt/9eeAzyqgpcxfweyJiN/9+kYh45zjF\nj4H3lJ2vHSN5QhyIiFGEttwlcBrwm/9/GLhaRLaY3/Wa1/MBQaXUHcD7MVyrEZHNSqlHlFJ/A4wB\n6xYg77JCT5RaEKXU3SKyHXjINFnGgLcAW4CPiEgByAK/V/0smuWIaUquO9WlUurjZgzYV0Xk15VS\nhcZLp1kopn/1G4FPiMifYgwwceDPAPesj38XuAp4GsMf/E+VUiPAnSKyF3hMRDIYC96/wLDgfE5E\n/gqwY8SOPV1FlB9guLtpl7cmIyJ5oHyT441KqeEmiaPRaC6cYky3HcgBXwU+bv7tnzHcw54wEwSM\nAW+c41x/B3xWjDTYeYxN0dtF5EngeeAEhrtakS9ijBGnlVKvEJHfBL5pxuuAEQM0DXxfRFwYlp0P\nmH/7iIhsNY/dgzF+HKhT3mWFLnKq0Wg0qwQxakJ9QilVSyINzSIiIjGllG+Ov+v05E2gbFFanMD+\nG8Y7U3VDyXRdeplS6htLIWOjZSi7ZxtG1rW3FWMLNZqViHZ702g0mlWAGEVy/xP482bLoqmM1Jj2\nXEQ+JOcKZZ8SkS+Zx98iIo+ax79gZoRCRGIi8n/ESGX7sOkyo6lMUim1Vym1E6Pe2k3MX6dlAPi1\nei6yCC7KdctQRvGed2EEtL+rYVLNQrtma1oBvfjRaDSaVYBS6u+VUhuUUssqK88Kxl22gPlu2fFL\ngVuVUtdjZO4spj2/EcM9pU8p9TdmkouXA2HgM6ar9K8AV5t/y3MuqYUXeFgptQf4GfC7S3B/y546\narX8PXCt2Zbvr/Y5MWqk3C8iPwAOmcf+WkReEJEHROSbIvLH5vG56nd9SkR+LiKDci4b12wZdpYt\nhA+Ybk21cD+Giz0i8j3z+s+KkWEM83hMRD5hHr9HztUPq6nm2ELbQ6NpFHoFrtFoNBrN0lNL2YNq\nac9/YPrhfw34uFLqcRF5L3AZRl0oMGLJzprnyXAure3jGBYNTQ3UWKvlg8AfK6VeB2AuFKrVSLkU\n2KWUGhKRfRhZIPdguNk9gdE+MHf9rj4M3diGEcf3nQoyfBr4pFLq6yLiAKzz3atplbkJuNM89Ntm\nSn03hl79p1JqAmMx/ZhS6v0i8jcYlrH3ziNzqebY/E9do1lc9OJHo9FoNJrWoda05/8LOKmUKiav\nEOArSqlKbo1ZdS7Ad1mmpm0R5qp9UuvnHlVKDZnHrwa+b5YoSInIfwHI/PW7vmfGIB2aw4XxIeAv\nRaQfuF0p9eIc91VefP1+jAyiAH8gIsVC7OvMe5gACsC3zONfA26vQWadYVLTMugOUKPRaDSa1uR+\n4J0i8hUghJH2/E9E5Bcx3OBeUfbZezAyOX1CKXVWREKAXyl1bMmlXkFIbbVaXj77a3N8rpbF7Xz1\nu8rrrEilDyilvmG6md0M3CEi71RK3VvlfOdZIU1ZbwSuUkolROQ+KteUASMrZc01xzSaZqNjfjQa\njUajaU2+i5Fy9mmMWlHFtOcfANYCxZiODymlDmGks71bRA5g1Anpa5LcKwKpvVZLeY0V5vjcbB4E\nflFEXKbl5HUAC6jfxWwZzEXboFLqU8D3gd113n4QmDQXPtuAK8v+ZsEokglGkoUHFiizRtMUtOVH\no9FoNJolplKaa6XUl4Evl/2ugD8xf8o/9woqoJT6FufckSpeSyn1HYwYEU1lFlKr5QCQF5GnMdrv\nk1U+NwOl1H4z+cEBYBQj3XTE/HM99buoIIMTeKuIZIER4MN1Poc7gXeJyHPACxiFM4vEgStM2c5i\nJNpYiMwaTVPQdX40Go1Go9FomoCI+JRSMRHxYGTie4dS6olmyzUXMk+NKo2m1dGWH41Go9FoNJrm\n8EUR2YERT/OVVl/4aDQrAW350Wg0Go1Go1nBiEgHRlKM2bzSTF+t0awa9OJHo9FoNBqNRqPRrAp0\ntjeNRqPRaDQajUazKtCLH41Go9FoNBqNRrMq0IsfjUaj0Wg0Go1GsyrQix+NRqPRaDQajUazKtCL\nH41Go9FoNBqNRrMq+P8BgiKWD2uC/EAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Scale the data using the natural logarithm\n", + "log_data = data.apply(lambda x: np.log(x))\n", + "\n", + "# TODO: Scale the sample data using the natural logarithm\n", + "log_samples = samples.apply(lambda x: np.log(x))\n", + "print(samples)\n", + "print(log_samples)\n", + "\n", + "# Produce a scatter matrix for each pair of newly-transformed features\n", + "pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');\n", + "\n", + "# now the features are much more normally distributed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "After applying a natural logarithm scaling to the data, the distribution of each feature should appear much more normal. For any pairs of features you may have identified earlier as being correlated, observe here whether that correlation is still present (and whether it is now stronger or weaker than before).\n", + "\n", + "Run the code below to see how the sample data has changed after having the natural logarithm applied to it." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      FreshMilkGroceryFrozenDetergents_PaperDelicatessen
      010.2097587.9377327.6629389.4897134.5217897.550661
      11.0986125.8081428.8566619.6550902.7080506.309918
      24.4426519.95032310.7326513.58351910.0953887.260523
      \n", + "
      " + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 10.209758 7.937732 7.662938 9.489713 4.521789 7.550661\n", + "1 1.098612 5.808142 8.856661 9.655090 2.708050 6.309918\n", + "2 4.442651 9.950323 10.732651 3.583519 10.095388 7.260523" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the log-transformed sample data\n", + "display(log_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Outlier Detection\n", + "Detecting outliers in the data is extremely important in the data preprocessing step of any analysis. The presence of outliers can often skew results which take into consideration these data points. There are many \"rules of thumb\" for what constitutes an outlier in a dataset. Here, we will use [Tukey's Method for identfying outliers](http://datapigtechnologies.com/blog/index.php/highlighting-outliers-in-your-data-with-the-tukey-method/): An *outlier step* is calculated as 1.5 times the interquartile range (IQR). A data point with a feature that is beyond an outlier step outside of the IQR for that feature is considered abnormal.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign the value of the 25th percentile for the given feature to `Q1`. Use `np.percentile` for this.\n", + " - Assign the value of the 75th percentile for the given feature to `Q3`. Again, use `np.percentile`.\n", + " - Assign the calculation of an outlier step for the given feature to `step`.\n", + " - Optionally remove data points from the dataset by adding indices to the `outliers` list.\n", + "\n", + "**NOTE:** If you choose to remove any outliers, ensure that the sample data does not contain any of these points! \n", + "Once you have performed this implementation, the dataset will be stored in the variable `good_data`." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Fresh':\n", + "Q1-step is 5.51455083361, Q3+step is 12.2705718166, the step size is 2.53350786861\n" + ] + }, + { + "data": { + "text/plain": [ + "65 4.442651\n", + "66 2.197225\n", + "81 5.389072\n", + "95 1.098612\n", + "96 3.135494\n", + "128 4.941642\n", + "171 5.298317\n", + "193 5.192957\n", + "218 2.890372\n", + "304 5.081404\n", + "305 5.493061\n", + "338 1.098612\n", + "353 4.762174\n", + "355 5.247024\n", + "357 3.610918\n", + "412 4.574711\n", + "Name: Fresh, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Milk':\n", + "Q1-step is 5.01673296722, Q3+step is 11.1987283614, the step size is 2.31824827282\n" + ] + }, + { + "data": { + "text/plain": [ + "86 11.205013\n", + "98 4.718499\n", + "154 4.007333\n", + "356 4.897840\n", + "Name: Milk, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Grocery':\n", + "Q1-step is 5.27575998758, Q3+step is 11.672709891, the step size is 2.3988562138\n" + ] + }, + { + "data": { + "text/plain": [ + "75 1.098612\n", + "154 4.919981\n", + "Name: Grocery, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Frozen':\n", + "Q1-step is 4.26035024816, Q3+step is 10.5252235842, the step size is 2.34932750101\n" + ] + }, + { + "data": { + "text/plain": [ + "38 3.496508\n", + "57 3.637586\n", + "65 3.583519\n", + "145 3.737670\n", + "175 3.951244\n", + "264 4.110874\n", + "325 11.016479\n", + "420 3.218876\n", + "429 3.850148\n", + "439 4.174387\n", + "Name: Frozen, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Detergents_Paper':\n", + "Q1-step is 1.45874266385, Q3+step is 12.3636993597, the step size is 4.08935876094\n" + ] + }, + { + "data": { + "text/plain": [ + "75 1.098612\n", + "161 1.098612\n", + "Name: Detergents_Paper, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Delicatessen':\n", + "Q1-step is 3.76959400251, Q3+step is 9.74900908097, the step size is 2.24228065442\n" + ] + }, + { + "data": { + "text/plain": [ + "66 3.295837\n", + "109 1.098612\n", + "128 1.098612\n", + "137 3.583519\n", + "142 1.098612\n", + "154 2.079442\n", + "183 10.777768\n", + "184 2.397895\n", + "187 1.098612\n", + "203 2.890372\n", + "233 1.945910\n", + "285 2.890372\n", + "289 3.091042\n", + "343 3.610918\n", + "Name: Delicatessen, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({154: 3, 128: 2, 65: 2, 66: 2, 75: 2, 193: 1, 264: 1, 137: 1, 142: 1, 145: 1, 412: 1, 285: 1, 161: 1, 420: 1, 38: 1, 171: 1, 429: 1, 175: 1, 304: 1, 305: 1, 439: 1, 184: 1, 57: 1, 187: 1, 203: 1, 325: 1, 289: 1, 81: 1, 338: 1, 86: 1, 343: 1, 218: 1, 95: 1, 96: 1, 353: 1, 98: 1, 355: 1, 356: 1, 357: 1, 233: 1, 109: 1, 183: 1})\n" + ] + } + ], + "source": [ + "# For each feature find the data points with extreme high or low values\n", + "indices = []\n", + "for feature in log_data.keys():\n", + " \n", + " # TODO: Calculate Q1 (25th percentile of the data) for the given feature\n", + " Q1 = np.percentile(log_data[feature], 25)\n", + " \n", + " # TODO: Calculate Q3 (75th percentile of the data) for the given feature\n", + " Q3 = np.percentile(log_data[feature], 75)\n", + " \n", + " # TODO: Use the interquartile range to calculate an outlier step (1.5 times the interquartile range)\n", + " step = 1.5 * (Q3 - Q1)\n", + " \n", + " \n", + " # Display the outliers\n", + " print \"Data points considered outliers for the feature '{}':\".format(feature)\n", + " print(\"Q1-step is {}, Q3+step is {}, the step size is {}\".format(Q1-step, Q3+step, step))\n", + " # the ~ operator flips the booleans\n", + " outliers = log_data[~((log_data[feature] >= (Q1 - step)) & (log_data[feature] <= (Q3 + step)))][feature]\n", + " display(outliers)\n", + " \n", + " # add indices\n", + " indices.extend(outliers.index)\n", + " \n", + "# OPTIONAL: Select the indices for data points you wish to remove\n", + "outliers = indices\n", + "\n", + "# Remove the outliers, if any were specified\n", + "good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True)\n", + "\n", + "from collections import Counter\n", + "print(Counter(outliers))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4\n", + "*Are there any data points considered outliers for more than one feature based on the definition above? Should these data points be removed from the dataset? If any data points were added to the `outliers` list to be removed, explain why.* " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** There are 5 data points that are outliers in more than one dimension. We should remove them too as the would distort the data in more than 1 dimension. The points in the outliers list should all be remove given we use Tukey's outlier definition." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Transformation\n", + "In this section you will use principal component analysis (PCA) to draw conclusions about the underlying structure of the wholesale customer data. Since using PCA on a dataset calculates the dimensions which best maximize variance, we will find which compound combinations of features best describe customers." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: PCA\n", + "\n", + "Now that the data has been scaled to a more normal distribution and has had any necessary outliers removed, we can now apply PCA to the `good_data` to discover which dimensions about the data best maximize the variance of features involved. In addition to finding these dimensions, PCA will also report the *explained variance ratio* of each dimension — how much variance within the data is explained by that dimension alone. Note that a component (dimension) from PCA can be considered a new \"feature\" of the space, however it is a composition of the original features present in the data.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Import `sklearn.decomposition.PCA` and assign the results of fitting PCA in six dimensions with `good_data` to `pca`.\n", + " - Apply a PCA transformation of `log_samples` using `pca.transform`, and assign the results to `pca_samples`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAHyCAYAAADYwk6bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYlXW99/H31wFTJA8Yap4Cd+5E5ZCMeCjMB1LZaKCV\n5THUfNRSszKLdl1m1n7Csu3epUlUbt2lxZPnU+Upz6YiD6A0JGSUmFtRy8JTDnyfP9YNLse5ZxYy\na9aCeb+ua11zH37rXt+b9WPN+szvPkRmIkmSJEl6o/UaXYAkSZIkNSsDkyRJkiSVMDBJkiRJUgkD\nkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBViYjlETGn6jH1TW7n4oj4cDdtzo6I97+5St+wrdsjorXD\nsq9ExDc6LBsVEW2rue0eq3NtYT+ob51rC/tBfetcW9gP6lvn2sJ+UN861yb2hfrW2az6NbqAJvNS\nZo7qjRfKzDPr/BI/BX4JfLFq2WHF8ppEREsv1NmM7AdV7Af1Zz9oavaDKvaD+rMfND37QpW+0hcc\nYepGRGwSEb+LiHcV8z+NiP9dTC+LiPMiYn5E3BoRgzt5/pkR8WBEPBIRMyIiiuWr/rIQEYsj4qsR\nMTsiHo6InYrlG0XERRHxQET8v4iYXCzfMCJ+FhFtEXEVsGHH183MR4G/RMQeVYs/QvGfICIujIhZ\nRe1frap3cUScExGzgUM71Fm2L7cXz3kgIh6NiLHF8paIOLdoPy8iTi2Wj46IOyLioYj4VUS8fY3e\npF5gP7AfgP3AflBhP7AfgP3AfvAa+0If6AuZ6aN4AMuBOVWPjxbL9wPuo5K6f1nVPoEji+kzgfOL\n6YuBDxfTg6ra/xj4QCdtFgOnFtOfBH5YTP8f4KhielPgUWAj4LPARcXyEUA70NrJ/nwOOK+Y3hOY\nVbVuUPGzBbgdGFFVy+er2tWyL7cD3y6mJwK3FNOfAC4H+q18PtAfuBcYXCz76Mp9aZaH/cB+YD+w\nH9gP7Af2A/uBfcG+sPLhIXmv1+kwa2beHBGHAhcAI6tWrQBmFtM/Aa7sZJv/KyI+Dwyg0gnmA9d1\n0m7lcx8CPlhM7w9MiojPFfMbANsD+wDfKWqbFxHzSvZnJnBvRJzOG4dYPxIRJ1A5LPPtwM7AvKrn\ndaarfamuf0gx/X5gema2F7U+FxG7ArsCNxd/dGgBnix5vUaxH7z2vM7YD+wH3e2L/aDCfvBa/UOK\nafvBa+wHa18/APtCn+wLBqYaRMR6wDDgRWAzYElJ0+zwvA2A71FJ9I9HxFlUOnJnXil+Lue19yWA\nD2Xm7zpst6a6i9f8A/A+4EPAXsXzh1L5i8LumfmXiLi4Q10vdNxWDfvSWf2dCWB+Zu5V0040EfuB\n/QDsBzXui/3gNfYD+wHYDzrW35m1th+AfaHGfVlr+4LnMNXmM0AbcATwXxHRv1i+HrDyCidHAHd3\neN7KTvJMRAysalurXwGnRqw6/vPdxfI7i9ejSOEjutjGT4HzgMcyc+V/3o2pdPTnI2JL4F9qqOXN\n7MvNwIkR0a+odRDwO2BwRKz8D9k/InapYVvNwH5gPwD7AdgPwH4A9gOwH4D9YCX7wjrcFwxMr7dh\nvP5SkdOicgLf8cDpmXkXlQ745aL9C8CYiHgEGAecXb2xzPwr8APgESod+sHVrOdrVI7jnBcR84t5\ngAuBgVG57OPZVIY2y/wc2IWqIdbMnAv8P2ABcBlwT3eFvMl9+SHwp6L+ucARmfkPKv+BzimWzQH2\nrmFbvcl+UMJ+YD9Yg32xH2A/wH4A2A9Ye/sB2BdKrct9ITKz+1bqVEQsy8yBja5DjWU/ENgPVGE/\nENgP9Br7wrrBESZJkiRJKuEIkyRJkiSVcIRJkiRJkkoYmJpERAyNiPsjYlFEzIyI9btou3FELImI\n86uWjYvK3Z8fiYhLqq42sllEXBWVuyc/UFwphYjYoJifGx3u4KzGqaUfRMSoiLiveN/mRcRHq9Zd\nGpW7jT8SlTt/9y+W7xsRz1edpHpm1XNOK9rPj4hP986eqiu1fh5ExC8j4q8Rcf3qPD8ido+I9iju\nzF4ssx80mdXoB1MiYmHxmFK1vOz3whlVnwWPRMTyqFyZioj4TNEHHomIn0blMsFqoDXtB1XrvxMR\ny6rmN4mI66q+Bxxbtc5+0IR64DOh7DvC5OL7xJyImBUR7y2W+11xpZ66A66PNXsA/xc4rJieDnyi\ni7b/SeWKJSvvFr0e8Djwz8X82cDHi+lvAV8ppncCbi2mAxhYTPcH7gf2bPS/Q19/1NIPgH8Gdiym\nt6ZyM7dNi/mJxXsbVK5284li+b7A9Z1sa1cqV7MZQOWeCLcA72z0v0Nff9T6eQCMBz7Q8b3t6vlU\nbgB4G3Ajr92Z3X7QhI8aPw8GAY8VPzcrpjfr6vdCh+d/ALitmN4G+AOwYdXrH9Pof4e+/liTflC1\nvhX4MbCsatm/AucU04OB54D17QfN+1jTvtDFd4SBvHaazghgQTHtd8Xi4QhTE4iIoHKpycuLRZcA\nB5e0HQ1sCdxUtXhz4B+Z+WgxfzOVm49B5a7MtwFk5gJgSERsmRUr/9LUv3h4QlsD1doPMvPRzFxY\nTP8ZeJrKLzsy88bivU3gAWDbbl52GHB/Zr6Ylbts38Frdw9XA6zO50Fm3gr8fTWffypwBZV+s5L9\noMmsRj84ALg5M5/LzL9Q+fyfQNe/F6odTtWlhKkE5g2L0agBwJ/XdF/05vVAPyAiWqj88fTzHZ6T\nwFuL1xhIJTC1F+vsB02mJ/pC2XeEzFxWLAPYiOL7oN8VX2Ngag6bA38tvqhA5e7Q23RsFJW7SH+b\nyp2Xqz0D9IuI1mL+w8B2xfRcii8+ETEGeAfFf5CIaImIOVS+ON2cmff32B7pzaipH1Qr3tP1gd93\nWN4fOBr4ZdXivYsh91/EazeAewQYGxGbR8QAKn992g410mr3g1qfHxHbAIdQuT9HNftB86m1H2xD\nZSSJDu26+r0AQPFeT6ASoMnMJ4BzqdwT5Ung+cys/uOcet+a9gOAU4BrM/PJDs85n8ofS/4MPAyc\nlpkr7AdNqyf6AtD5d4SIOCQiFgA3AMdVLfe7Igamtc0ngRvztbswA5W/AACHAedFxANU/uK8vFg9\nDdi06OynUrkJ2fLiecszcxSVADUmivObtHaIiLdTOcTi2Mxc0WH194A7s3IDPYDZwPaZOQL4LnA1\nQGa2AedQGbH8JZWbwy1H66r/AL7Qsb/YD9Y93fxeWOkDwD2Z+RxUznkFJgNDqRzuu1FEHNV7Vaun\nRcTWwKFUPvc7OoDK//WtgVHA+VE5R9p+sO7r+B2BzLwqM3eiMmr1tarlflfEwNQsnqUSavoV89sC\nT3TSbi/glIhYTOWvPx+LiGkAmXlfZo7NzDFU7jD9aLH8b5l5bNHZP0bl0K3HqjealTsz/5piyFYN\nU2s/ICI2pvJXoC9l5m86rPsKlff5syuXFf1gWTF9I9A/It5WzP8oM0dn5j7AXyj6jhqm5n7wJp7f\nCvys+Az5MPC9iDgY7AdNqNZ+8ASvHzla1a7s90KVw3j94XjvB/6QmUsz81XgSmDvNd4TrYk17Qfv\nBt4JLCr+3w+IiEVFm2OBK4vDrhZROW9pJ+wHzWqNPxOg8+8I1TLzTmCHld8Rqpb36e+KBqYmUPwl\n8NdUvsAATAGu6aTdkZm5fWYOoXJY3n9n5lSAiNii+PkW4AtUTgYkIjatuorK8VT+ovC3iBgcEZsW\nbTYE9gMW1GkXVYNa+0Hxfl5F5f2/vMO646n81fDw6lGEiNiqOP555WF861H58K3uO9tTOXzzsp7d\nM62OWvvBm3l+Zg7NzCHFZ8jlwCcz82qwHzSb1egHvwL2j8oVUTcD9i+Wlf5eKJZtAryvwzb/BOwZ\nEQOKz4vxQFtP7pdWz5r2g8y8ITO3qvp//2JmvrN4zp+ovMdExJbAu6j8QdV+0IR66DOh7DvCO6u+\nI+wGvAV41u+KVbIJrjzhIwF2oHIC3iLg58BbiuWtwA87aX8MxVXyivlvUflA+x3w6arle1H5q+Lv\nqPyVaOWVUkZQOTxvHpXzF85s9L+Bj9r6AXAU8CqVQylWPkYV69qpnM+0cvmZxfJTgPlUzmn7DbB3\n1WveBfy2WDe+0f8GPmr/PCjeu6XAS1SOUz+gq+d3eI2LKa6SZz9ozsdq9IPjijaLqByiu3J5p78X\ninXHAD/r5DW/SuUL0SNUDvl9Q9/xsXb1gw7bqr5K3tZUDsN9uHi/j7IfNPejBz4Tyr4jfKH4jjAH\nuA94b7Hc74rFY+UlBCVJkiRJHXhIniRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSV\nMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSV6NfoAurhbW97Ww4Z\nMqTRZUiSJElqUg899NAzmTm4u3brZGAaMmQIs2bNanQZkiRJkppURPyxlnYekidJkiRJJQxMkiRJ\nklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxM\nkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJ\nJQxMkiRJklSiX6MLkCRJkrTmhl8yvOa2D095uI6VrFscYZIkSZKkEgYmSZIkSSrR0MAUERMi4ncR\nsSgipnayfpOIuC4i5kbE/Ig4thF1SpIkSeqbGhaYIqIFuAD4F2Bn4PCI2LlDs5OB32bmSGBf4NsR\nsX6vFipJkiSpz2rkCNMYYFFmPpaZ/wB+Bkzu0CaBt0ZEAAOB54D23i1TkiRJUl/VyMC0DfB41fyS\nYlm184FhwJ+Bh4HTMnNFZxuLiBMiYlZEzFq6dGk96pUkSZLUxzT7RR8OAOYAWwOjgPMjYuPOGmbm\njMxszczWwYMH92aNkiRJktZRjQxMTwDbVc1vWyyrdixwZVYsAv4A7NRL9UmSJEnq4xoZmB4EdoyI\nocWFHA4Dru3Q5k/AeICI2BJ4F/BYr1YpSZIkqc/q16gXzsz2iDgF+BXQAlyUmfMj4qRi/XTga8DF\nEfEwEMAXMvOZRtUsSZIkqW9pWGACyMwbgRs7LJteNf1nYP/erkuSJEmSoPkv+iBJkiRJDWNgkiRJ\nkqQSBiZJkiRJKmFgkiRJkqQSBiZJkiRJKtHQq+SpOVxw0m01tTt5+rg6VyJJkiQ1F0eYJEmSJKmE\ngUmSJEmSShiYJEmSJKmEgUmSJEmSShiYJEmSJKmEgUmSJEmSShiYJEmSJKmEgUmSJEmSShiYJEmS\nJKmEgUmSJEmSShiYJEmSJKlEv0YXIEmSpE6ctclqtH2+fnVIfZwjTJIkSZJUwsAkSZIkSSUMTJIk\nSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUM\nTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIk\nSSUMTJIkSZJUol+jC5BUP207Dau57bAFbXWsRJIkae3kCJMkSZIklTAwSZIkSVIJA5MkSZIklWho\nYIqICRHxu4hYFBFTS9rsGxFzImJ+RNzR2zVKkiRJ6rsadtGHiGgBLgD2A5YAD0bEtZn526o2mwLf\nAyZk5p8iYovGVCtJkiSpL2rkCNMYYFFmPpaZ/wB+Bkzu0OYI4MrM/BNAZj7dyzVKkiRJ6sMaGZi2\nAR6vml9SLKv2z8BmEXF7RDwUER/rteokSZIk9XnNfh+mfsBoYDywIXBfRPwmMx/t2DAiTgBOANh+\n++17tUipM0Om3lBz28XTDqxjJZIkSXqzGjnC9ASwXdX8tsWyakuAX2XmC5n5DHAnMLKzjWXmjMxs\nzczWwYMH16VgSZIkSX1LIwPTg8COETE0ItYHDgOu7dDmGuC9EdEvIgYAewBtvVynJEmSpD6qYYfk\nZWZ7RJwC/ApoAS7KzPkRcVKxfnpmtkXEL4F5wArgh5n5SKNqliRJktS3NPQcpsy8Ebixw7LpHea/\nBXyrN+uSJEmSJGjwjWslSZIkqZkZmCRJkiSphIFJkiRJkkoYmCRJkiSphIFJkiRJkkoYmCRJkiSp\nhIFJkiRJkkoYmCRJkiSphIFJkiRJkkr0a3QBkqS107c/elDNbU+feX0dK1Ej2Q8krescYZIkSZKk\nEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIk\nSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSph\nYJIkSZKkEgYmSZIkSSphYJIkSZKkEv0aXYCktc+3P3pQTe1On3l9nSuRJEmqL0eYJEmSJKmEgUmS\nJEmSSnhI3lpk+CXDa2778JSH61iJJEmS1Dc4wiRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTC\nwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklSioYEpIiZExO8iYlFETO2i3e4R0R4RH+7N+iRJ\nkiT1bf0a9cIR0QJcAOwHLAEejIhrM/O3nbQ7B7ip96vsBWdtUnvbodvXrw5JkiRJb9DIEaYxwKLM\nfCwz/wH8DJjcSbtTgSuAp3uzOEmSJElqZGDaBni8an5JsWyViNgGOAS4sBfrkiRJkiSg+S/68B/A\nFzJzRXcNI+KEiJgVEbOWLl3aC6VJkiRJWtc17Bwm4Algu6r5bYtl1VqBn0UEwNuAiRHRnplXd9xY\nZs4AZgC0trZmXSqWJEmS1Kc0MjA9COwYEUOpBKXDgCOqG2Tm0JXTEXExcH1nYUmSJEmS6qFhgSkz\n2yPiFOBXQAtwUWbOj4iTivXTG1WbJEmSJEFjR5jIzBuBGzss6zQoZeYxvVGTJEmSJK3U7Bd9kCRJ\nkqSGMTBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkD\nkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJ\nUol+jS5AkiRJa2b4JcNravfwlIfrXIm07nGESZIkSZJKGJgkSZIkqYSBSZIkSZJKGJgkSZIkqYSB\nSZIkSZJKGJgkSZIkqYSBSZIkSZJKGJgkSZIkqYSBSZIkSZJKGJgkSZIkqYSBSZIkSZJK9Gt0AZKk\n+mrbaVjNbYctaKtjJZIkrX0MTJIk9YIhU2+oue3iaQfWsRJJ0urwkDxJkiRJKmFgkiRJkqQSBiZJ\nkiRJKmFgkiRJkqQSBiZJkiRJKmFgkiRJkqQSBiZJkiRJKmFgkiRJkqQSBiZJkiRJKmFgkiRJkqQS\nBiZJkiRJKmFgkiRJkqQSDQ1METEhIn4XEYsiYmon64+MiHkR8XBE3BsRIxtRpyRJkqS+qWGBKSJa\ngAuAfwF2Bg6PiJ07NPsD8L7MHA58DZjRu1VKkiRJ6ssaOcI0BliUmY9l5j+AnwGTqxtk5r2Z+Zdi\n9jfAtr1coyRJkqQ+rJGBaRvg8ar5JcWyMh8HflG2MiJOiIhZETFr6dKlPVSiJEmSpL6s28AUEadF\nxMZR8aOImB0R+/dGcVU1/C8qgekLZW0yc0ZmtmZm6+DBg3uvOEmSJEnrrFpGmI7LzL8B+wObAUcD\n03rgtZ8Atqua37ZY9joRMQL4ITA5M5/tgdeVJEmSpJrUEpii+DkR+HFmzq9atiYeBHaMiKERsT5w\nGHDt6144YnvgSuDozHy0B15TkiRJkmrWr4Y2D0XETcBQ4IsR8VZgxZq+cGa2R8QpwK+AFuCizJwf\nEScV66cDZwKbA9+LCID2zGxd09eWJEmSpFrUEpg+DowCHsvMFyNic+DYnnjxzLwRuLHDsulV08cD\nx/fEa0mSJEnS6qrlkLybM3N2Zv4VoDiP6Lz6liVJkiRJjVc6whQRGwADgLdFxGa8dt7SxnR9+W9J\nkiRJWid0dUjeicCnga2Bh3gtMP0NOL/OdUmSJElSw5UGpsz8T+A/I+LUzPxuL9YkSZIkSU2h24s+\nZOZ3I2JvYEh1+8z87zrWJUmSJEkN121giogfA/8EzAGWF4sTMDD1Md/+6EE1tz195vV1rESSJEnq\nHbVcVrwV2Dkzs97FSFKfdtYmq9H2+frVIUmSVqnlsuKPAFvVuxBJkiRJajZdXVb8OiqH3r0V+G1E\nPAC8snJ9Zk6qf3mSJEmS1DhdHZJ3bq9VIUmSJElNqKvLit/Rm4VIfZrnrkiqVutngp8HklR3tVwl\n7+9UDs2r9jwwCzg9Mx+rR2GSJEmS1Gi1XCXvP4AlwGVAAIdRucz4bOAiYN96FSdJkiRJjVTLVfIm\nZeb3M/Pvmfm3zJwBHJCZM4HN6lyfJEmSJDVMLYHpxYj4SESsVzw+ArxcrPPeTJIkSZLWWbUEpiOB\no4GngaeK6aMiYkPglDrWJkmSJEkN1e05TMVFHT5Qsvruni1HkiRJkppHVzeu/XxmfjMivksnh95l\n5qfqWpkkSZIkNVhXI0xtxc9ZvVGIJEmSJDWbrm5ce13x8xKAiBiQmS/2VmGSJEmS1GjdXvQhIvaK\niN8CC4r5kRHxvbpXJkmSJEkNVstV8v4DOAB4FiAz5wL71LMoSZIkSWoGtQQmMvPxDouW16EWSZIk\nSWoq3V5WHHg8IvYGMiL6A6fx2gUhJPWy4ZcMr7nt/61jHZIkSX1BLSNMJwEnA9sATwCjinlJkiRJ\nWqd1dR+mzTLzL5n5DHBkL9YkSZIkSU2hq0PyfhcRzwD3APcC92Tmo71TliRJkiQ1Xlf3YdoiIv4Z\n2Lt4nB4Rg4HfUAlP3+ylGiVJUidW55zGh6c8XMdKJGnd1eVFH4oRpUeBiyPin4CJVC76sD9gYJIk\nSVqLtO00rOa2wxZ4jS8Juj6HaeXI0l7AdsBjVEaXjgJm90p1kiRJktRAXY0w3U0lGJ0HXJWZL/ZO\nSZIkSZLUHLoKTFvz2vlLJ0ZEPyoB6j7gvsx8rBfqkyRJkqSG6eqiD/8DXFk8iIgBwHHAV4GhQEtv\nFChJkiRJjdLVOUybUDl/aeUo07uBhcB1VC41LkmSJGkt5AVAatfVIXmLKA6/A84GHszMl3qlKkmS\nJElqAl0dkje4NwuRJEmSpGazXqMLkCRJkqRmZWCSJEmSpBIGJkmSJEkq0W1gioh/johbI+KRYn5E\nRHy5/qVJkiRJUmPVMsL0A+CLwKsAmTkPOKyeRUmSJElSM6glMA3IzAc6LGvviRePiAkR8buIWBQR\nUztZHxHxnWL9vIjYrSdeV5IkSZJq0dV9mFZ6JiL+CUiAiPgw8OSavnBEtAAXAPsBS4AHI+LazPxt\nVbN/AXYsHnsAFxY/JUmS1jpDpt5Qc9vFG9SxEEk1qyUwnQzMAHaKiCeAPwBH9sBrjwEWZeZjABHx\nM2AyUB2YJgP/nZkJ/CYiNo2It2fmGgc2SZIkSepOl4EpItYDWjPz/RGxEbBeZv69h157G+Dxqvkl\nvHH0qLM229ADI1ySJEmS1J2oDN500SBiVma29vgLVw7tm5CZxxfzRwN7ZOYpVW2uB6Zl5t3F/K3A\nFzJzVifbOwE4AWD77bcf/cc//rGnS67Zag23TzuwLjW07TSs5rbDFrTVpQatXS446baa2548fVwd\nK1n31PqZsDqfB8MvGV5z24enPFxzW/vBumt1fi/ctu8FNbe1H6y7Vufz4OW//HvNbU+fef2bKWed\nsnqHZh5R+4bPev5NVNO9WvvC2tYPIuKhWnJOLRd9uCUiPhcR20XEoJWPHqjxCWC7qvlti2Wr2waA\nzJyRma2Z2Tp48OAeKE+SJElSX1fLOUwfLX6eXLUsgR3W8LUfBHaMiKFUQtBhQMcIfS1wSnF+0x7A\n856/JEmSJDWfZhg1qoduA1NmDq3HC2dme0ScAvwKaAEuysz5EXFSsX46cCMwEVgEvAgcW49aJEmS\nJKkz3QamiPhYZ8sz87/X9MUz80Yqoah62fSq6eT1I1uSJEmS1GtqOSRv96rpDYDxwGxgjQOTJOnN\nWZ0LOUiSpDevlkPyTq2ej4hNgZ/VrSJJkiRJahK1XCWvoxeAupzXJEmSJEnNpJZzmK6jclU8qASs\nnYGf17MoSZIkSWoGtZzDdG7VdDvwx8xcUqd6JDWIN5+UJEl6o1oOyZuYmXcUj3syc0lEnFP3yiRJ\nkiSpwWoJTPt1suxferoQSZIkSWo2pYfkRcQngE8CO0TEvKpVbwXuqXdhkiRJktRoXZ3DdBnwC+Ab\nwNSq5X/PzOfqWpUkSZK0jlo87cDaG59VtzJUo9LAlJnPA88DhwNExBZUblw7MCIGZuafeqdESZIk\nSWqMbs9hiogPRMRC4A/AHcBiKiNPkiRJkrROq+WiD18H9gQezcyhwHjgN3WtSpIkSZKaQC2B6dXM\nfBZYLyLWy8xfA611rkuSJEmSGq6WG9f+NSIGAncBl0bE08AL9S1LkiRJkhqvlhGmycCLwKeBXwK/\nBz5Qz6IkSZIkqRl0O8KUmS9ExDuAHTPzkogYALTUvzRJkiRJaqxarpL3v4HLge8Xi7YBrq5nUZIk\nSZLUDGo5JO9k4D3A3wAycyGwRT2LkiRJkqRmUEtgeiUz/7FyJiL6AVm/kiRJkiSpOdRylbw7IuJf\ngQ0jYj/gk8B19S1r7bZ42oGNLkGSJElSD6hlhGkqsBR4GDgRuBH4cj2LkiRJkqRmUDrCFBHbZ+af\nMnMF8IPiIUmSJEl9RlcjTKuuhBcRV/RCLZIkSZLUVLoKTFE1vUO9C5EkSZKkZtNVYMqSaUmSJEnq\nE7q6St7IiPgblZGmDYtpivnMzI3rXp0kSZIkNVBpYMrMlt4sRJIkSZKaTS33YdJaaNiCtkaXIEmS\nJK31arkPkyRJkiT1SQYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKk\nEgYmSZKmCXpwAAAgAElEQVQkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKk\nEg0JTBExKCJujoiFxc/NOmmzXUT8OiJ+GxHzI+K0RtQqSZIkqe9q1AjTVODWzNwRuLWY76gdOD0z\ndwb2BE6OiJ17sUZJkiRJfVyjAtNk4JJi+hLg4I4NMvPJzJxdTP8daAO26bUKJUmSJPV5jQpMW2bm\nk8X0/wBbdtU4IoYA7wbur29ZkiRJkvSafvXacETcAmzVyaovVc9kZkZEdrGdgcAVwKcz829dtDsB\nOAFg++23f1M1S5IkSVK1ugWmzHx/2bqIeCoi3p6ZT0bE24GnS9r1pxKWLs3MK7t5vRnADIDW1tbS\nACZJkiRJtapbYOrGtcAUYFrx85qODSIigB8BbZn5771bniRJkiSAk6ePa3QJDdWoc5imAftFxELg\n/cU8EbF1RNxYtHkPcDQwLiLmFI+JjSlXkiRJUl/UkBGmzHwWGN/J8j8DE4vpu4Ho5dIkSZIkaZVG\njTBJkiRJUtMzMEmSJElSCQOTJEmSJJUwMEmSJElSiUZdVlyS1IT6+qVjJUnqyBEmSZIkSSphYJIk\nSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSph\nYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIk\nSSphYJIkSZKkEgYmSZIkSSrRr9EFSJKk5nLy9HGNLkGSmoYjTJIkSZJUwsAkSZIkSSUMTJIkSZJU\nwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIk\nSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUoiGBKSIGRcTN\nEbGw+LlZF21bIuL/RcT1vVmjJEmSJDVqhGkqcGtm7gjcWsyXOQ1o65WqJEmSJKlKowLTZOCSYvoS\n4ODOGkXEtsCBwA97qS5JkiRJWqVRgWnLzHyymP4fYMuSdv8BfB5Y0d0GI+KEiJgVEbOWLl3aQ2VK\nkiRJ6sv61WvDEXELsFUnq75UPZOZGRHZyfMPAp7OzIciYt/uXi8zZwAzAFpbW9+wPUmSJElaXXUL\nTJn5/rJ1EfFURLw9M5+MiLcDT3fS7D3ApIiYCGwAbBwRP8nMo+pUsiRJkiS9Tt0CUzeuBaYA04qf\n13RskJlfBL4IUIwwfc6wJEmS1HxOn+nFjLXuatQ5TNOA/SJiIfD+Yp6I2DoibmxQTZIkSZL0Og0Z\nYcrMZ4HxnSz/MzCxk+W3A7fXvTBJkiRJqtKoESZJkiRJanoGJkmSJEkq0aiLPvS6V199lSVLlvDy\nyy83uhT1gg022IBtt92W/v37N7oUSZIkrcX6TGBasmQJb33rWxkyZAgR0ehyVEeZybPPPsuSJUsY\nOnRoo8uRJEnSWqzPHJL38ssvs/nmmxuW+oCIYPPNN3c0UZIkSWuszwQmwLDUh/heS5IkqSf0qcDU\naC0tLYwaNWrVY/HixWu8zSFDhvDMM8+seXGSJEmS3qDPnMPU0ZCpN/To9hZPO7DbNhtuuCFz5swp\nXd/e3k6/fn32LZEkSZKajiNMDXbxxRczadIkxo0bx/jxlXv5futb32L33XdnxIgRfOUrXwHghRde\n4MADD2TkyJHsuuuuzJw5c9U2vvvd77LbbrsxfPhwFixY0JD9kCRJktZFDmf0opdeeolRo0YBMHTo\nUK666ioAZs+ezbx58xg0aBA33XQTCxcu5IEHHiAzmTRpEnfeeSdLly5l66235oYbKiNjzz///Krt\nvu1tb2P27Nl873vf49xzz+WHP/xh7++cJEmStA4yMPWiskPy9ttvPwYNGgTATTfdxE033cS73/1u\nAJYtW8bChQsZO3Ysp59+Ol/4whc46KCDGDt27Krnf/CDHwRg9OjRXHnllb2wJ5IkSVLfYGBqAhtt\ntNGq6czki1/8IieeeOIb2s2ePZsbb7yRL3/5y4wfP54zzzwTgLe85S1A5aIS7e3tvVO0JEmS1Ad4\nDlOTOeCAA7joootYtmwZAE888QRPP/00f/7znxkwYABHHXUUZ5xxBrNnz25wpZIkSdK6zxGmJrP/\n/vvT1tbGXnvtBcDAgQP5yU9+wqJFizjjjDNYb7316N+/PxdeeGGDK5UkSeuyk6ePa3QJUlOIzGx0\nDT2utbU1Z82a9bplbW1tDBs2rEEVqRF8z9Usar2NQS23J5DerLadav88HLagrY6VSFotZ22yGm2f\n776NVomIhzKztbt2HpInSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJU\nwsDUiyKCo446atV8e3s7gwcP5qCDDgLg2muvZdq0aQCcddZZnHvuuQDsu+++dLxMuiRJkqT667s3\nrl2da9rXtL3ur3u/0UYb8cgjj/DSSy+x4YYbcvPNN7PNNtusWj9p0iQmTZrUs3VJkiRJetMcYepl\nEydO5IYbKjex/OlPf8rhhx++at3FF1/MKaecUvrcFStWcMwxx/DlL3+57nVKkiRJ6ssjTA1y2GGH\ncfbZZ3PQQQcxb948jjvuOO66665un9fe3s6RRx7Jrrvuype+9KVeqFSSJEkNV8NRTKovR5h62YgR\nI1i8eDE//elPmThxYs3PO/HEEw1LkiRJUi8zMDXApEmT+NznPve6w/G6s/fee/PrX/+al19+uY6V\nSZIkSapmYGqA4447jq985SsMHz685ud8/OMfZ+LEiXzkIx+hvb29jtVJkiRJWsnA1ADbbrstn/rU\np1b7eZ/97Gd597vfzdFHH82KFSvqUJkkSZKkapGZja6hx7W2tmbH+xa1tbUxbNiwBlWkRvA9V7MY\nMvWGmtotnnZgnStRX9a2U+2fh8MWtNWxEklqDhHxUGa2dtfOESZJkiRJKmFgkiRJkqQSBiZJkiRJ\nKmFgkiRJkqQSBiZJkiRJKmFgkiRJkqQSBqZe9NRTT3HEEUewww47MHr0aPbaay+uuuqqRpclSZIk\nqUS/RhfQKMMvGd6j23t4ysNdrs9MDj74YKZMmcJll10GwB//+Eeuvfba17Vrb2+nX7+ef1vqtV1J\nkiRpXeYIUy+57bbbWH/99TnppJNWLXvHO97BqaeeysUXX8ykSZMYN24c48ePJzM544wz2HXXXRk+\nfDgzZ85c9ZxzzjmH4cOHM3LkSKZOnQrA73//eyZMmMDo0aMZO3YsCxYsAOCYY47hpJNOYo899uDz\nn/88O+64I0uXLgVgxYoVvPOd71w1L0mSJOmNHHLoJfPnz2e33XYrXT979mzmzZvHoEGDuOKKK5gz\nZw5z587lmWeeYffdd2efffZhzpw5XHPNNdx///0MGDCA5557DoATTjiB6dOns+OOO3L//ffzyU9+\nkttuuw2AJUuWcO+999LS0sImm2zCpZdeyqc//WluueUWRo4cyeDBg3tl/yVJkqS1kYGpQU4++WTu\nvvtu1l9/fU4++WT2228/Bg0aBMDdd9/N4YcfTktLC1tuuSXve9/7ePDBB7njjjs49thjGTBgAACD\nBg1i2bJl3HvvvRx66KGrtv3KK6+smj700ENpaWkB4LjjjmPy5Ml8+tOf5qKLLuLYY4/txT2WJEmS\n1j4NCUwRMQiYCQwBFgMfycy/dNJuU+CHwK5AAsdl5n29V2nP2WWXXbjiiitWzV9wwQU888wztLa2\nArDRRhu9qe2uWLGCTTfdlDlz5nS6vnq72223HVtuuSW33XYbDzzwAJdeeumbek1JkiSpr2jUOUxT\ngVszc0fg1mK+M/8J/DIzdwJGAm29VF+PGzduHC+//DIXXnjhqmUvvvhip23Hjh3LzJkzWb58OUuX\nLuXOO+9kzJgx7LfffvzXf/3Xquc999xzbLzxxgwdOpSf//znQOXiEnPnzi2t4/jjj+eoo4563ciT\nJEmSpM41KjBNBi4ppi8BDu7YICI2AfYBfgSQmf/IzL/2WoU9LCK4+uqrueOOOxg6dChjxoxhypQp\nnHPOOW9oe8ghhzBixAhGjhzJuHHj+OY3v8lWW23FhAkTmDRpEq2trYwaNYpzzz0XgEsvvZQf/ehH\njBw5kl122YVrrrmmtI5JkyaxbNkyD8eTJEmSahCZ2fsvGvHXzNy0mA7gLyvnq9qMAmYAv6UyuvQQ\ncFpmvtDd9ltbW3PWrFmvW9bW1sawYcN6aA/WXrNmzeIzn/kMd911V6NLqTvfczWLIVNvqKnd4mkH\n1rkS9WVtO9X+eThswVp7QIck1SwiHsrM1u7a1W2EKSJuiYhHOnlMrm6XlcTWWWrrB+wGXJiZ7wZe\noPzQPSLihIiYFRGzvFR256ZNm8aHPvQhvvGNbzS6FEmSJGmtULeLPmTm+8vWRcRTEfH2zHwyIt4O\nPN1JsyXAksy8v5i/nC4CU2bOoDIiRWtra+8Pm60Fpk6duureTZIkSZK616hzmK4FphTTU4A3nHST\nmf8DPB4R7yoWjadyeJ4kSZIk9YpGBaZpwH4RsRB4fzFPRGwdETdWtTsVuDQi5gGjgP/T65VKkiRJ\n6rMach+mzHyWyohRx+V/BiZWzc8Buj0RS5IkSZLqoVEjTJIkSZLU9BoywtRXtbS0MHz48FXzV199\nNUOGDGlcQZIkSZK61GcD0+rcj6IWtdyzYsMNN2TOnDml69vb2+nXr8++JZIkSVLT8ZC8Brv44ouZ\nNGkS48aNY/z48WQmZ5xxBrvuuivDhw9n5syZAJx55pmMGjWKUaNGsc0223DssccC8JOf/IQxY8Yw\natQoTjzxRJYvXw7AwIED+dKXvsTIkSPZc889eeqppxq2j5IkSdLaysDUi1566aVVoeeQQw5ZtXz2\n7Nlcfvnl3HHHHVx55ZXMmTOHuXPncsstt3DGGWfw5JNPcvbZZzNnzhxuv/12Bg0axCmnnEJbWxsz\nZ87knnvuYc6cObS0tHDppZcC8MILL7Dnnnsyd+5c9tlnH37wgx80arclSZKktZbHf/WiskPy9ttv\nPwYNGgTA3XffzeGHH05LSwtbbrkl73vf+3jwwQeZNGkSmclRRx3FZz/7WUaPHs3555/PQw89xO67\n7w5UAtkWW2wBwPrrr89BBx0EwOjRo7n55pt7aS8lSZKkdYeBqQlstNFGNbU766yz2HbbbVcdjpeZ\nTJkyhW984xtvaNu/f38iAqhcbKK9vb3nCpYkSZL6CA/JazJjx45l5syZLF++nKVLl3LnnXcyZswY\nrrvuOm655Ra+853vrGo7fvx4Lr/8cp5++mkAnnvuOf74xz82qnRJkiRpneMIU5M55JBDuO+++xg5\nciQRwTe/+U222mor/v3f/50nnniCMWPGADBp0iTOPvtsvv71r7P//vuzYsUK+vfvzwUXXMA73vGO\nBu+FJEmStG6IzGx0DT2utbU1Z82a9bplbW1tDBvWs5cSV3PzPVezGDL1hpraLZ52YJ0rUV+2OrfT\nqOVWGZK0touIhzKztbt2HpInSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIk\nSZJUwsAkSZIkSSX67I1rLzjpth7d3snTx3XbpqWlheHDh/Pqq6/Sr18/Pvaxj/GZz3yG9dYrz62L\nFy/m3nvv5YgjjujJclfLmtSwcp/b29sZNmwYl1xyCQMGDKhDlZIkSVLPc4SpF2244YbMmTOH+fPn\nc/PNN/OLX/yCr371q10+Z/HixVx22WWr9Trt7e1rUmaP1LDSyn1+5JFHWH/99Zk+fXqP1latp/db\nkiRJMjA1yBZbbMGMGTM4//zzyUyWL1/OGWecwe67786IESP4/ve/D8DUqVO56667GDVqFOedd15p\nu9tvv52xY8cyadIkdt55ZwC+9rWv8a53vYv3vve9HH744Zx77rkA/P73v2fChAmMHj2asWPHsmDB\nAgCOOeYYPvWpT7H33nuzww47cPnll3daw/z58xkzZgyjRo1ixIgRLFy4sKZ9Hjt2LIsWLQLg4IMP\nZvTo0eyyyy7MmDFjVZuBAwfymc98hl122YXx48ezdOnSbms+6aST2GOPPfj85z+/Ru+JJEmS1FGf\nPSSvGeywww4sX76cp59+mmuuuYZNNtmEBx98kFdeeYX3vOc97L///kybNo1zzz2X66+/HoAZM2Z0\n2g5g9uzZPPLIIwwdOpQHH3yQK664grlz5/Lqq6+y2267MXr0aABOOOEEpk+fzo477sj999/PJz/5\nSW67rXKI4pNPPsndd9/NggULmDRpEh/+8IffUMOpp57KaaedxpFHHsk//vEPli9f3u2+tre384tf\n/IIJEyYAcNFFFzFo0CBeeukldt99dz70oQ+x+eab88ILL9Da2sp5553H2WefzVe/+lXOP//8Lmte\nsmQJ9957Ly0tLT37BkmSJKnPMzA1iZtuuol58+atGtV5/vnnWbhwIeuvv37N7caMGcPQoUMBuOee\ne5g8eTIbbLABG2ywAR/4wAcAWLZsGffeey+HHnroqm2+8sorq6YPPvhg1ltvPXbeeWeeeuqpTmvd\na6+9+Ld/+zeWLFnCBz/4QXbcccfS/XrppZcYNWoUUBlh+vjHPw7Ad77zHa666ioAHn/8cRYuXMjm\nm2/Oeuutx0c/+lEAjjrqKD74wQ92W/Ohhx5qWJIkSVJdGJga6LHHHqOlpYUtttiCzOS73/0uBxxw\nwOva3H777a+b76rdRhtt1O1rrlixgk033ZQ5c+Z0uv4tb3nL616rM0cccQR77LEHN9xwAxMnTuT7\n3/8+48Z1ftGLlecwdaz1lltu4b777mPAgAHsu+++vPzyy50+PyK6rbmW/ZYkSZLeDM9hapClS5dy\n0kknccoppxARHHDAAVx44YW8+uqrADz66KO88MILvPWtb+Xvf//7queVtevoPe95D9dddx0vv/wy\ny5YtW3U43cYbb8zQoUP5+c9/DlRC0dy5c7ustWMNjz32GDvssAOf+tSnmDx5MvPmzVutfX/++efZ\nbLPNGDBgAAsWLOA3v/nNqnUrVqxYNXp22WWX8d73vvdN1SxJer1hC9pqfkiSXtNnR5hquQx4T1t5\neNrKy4offfTRfPaznwXg+OOPZ/Hixey2225kJoMHD+bqq69mxIgRtLS0MHLkSI455hhOO+20Ttt1\ntPvuuzNp0iRGjBjBlltuyfDhw9lkk00AuPTSS/nEJz7B17/+dV599VUOO+wwRo4cWVp3xxpeeeUV\nfvzjH9O/f3+22mor/vVf/3W1/h0mTJjA9OnTGTZsGO9617vYc889V63baKONeOCBB/j617/OFlts\nwcyZM99UzZIkSVJPiLLDrtZmra2tOWvWrNcta2trY9iwYQ2qqDGWLVvGwIEDefHFF9lnn32YMWMG\nu+22W6PL6tLAgQNZtmxZj2yrL77nak5Dpt5QU7vF0w6scyWSJGmliHgoM1u7a9dnR5j6ghNOOIHf\n/va3vPzyy0yZMqXpw5IkSZLUbAxM67A3e7PZ1fXss88yfvz4Nyy/9dZb2XzzzVdrWz01uiRJkiT1\nBAOT1tjmm29eegU7SZIkaW3mVfIkSZIkqYSBSZIkSZJKeEieJNWZV7+TJGnt5QhTL2ppaWHUqFHs\nsssujBw5km9/+9usWLGiy+csXryYXXfdFYBZ/7+9u4+xqs7vOP7+7IAOUDoLYbDgmAqNLgoOCINC\nhxooC1hKll3qQ1XMYjVUAyWpytZWExSwQYsjRYxKV6NpXayiSKvriiBjdtnyuPIgyIIPo7IiIEGQ\nZxi//eMexxHmwgwO3JlzP6/k5J7H3/mdM59M7u/8zjl35UomTJhwSvueMWMG+/fvP6VtzczMzMzy\nVd72MD107YhGLe+O/37lpOu0atWq5uUI27dv5/rrr2fPnj3cd9999dpHWVkZZWUnfVV8nWbMmMHo\n0aNp3br1KW1vZmZmZpaP3MOUIx07dmT27NnMmjWLiKC6upqJEyfSt29fSktLeeKJJ47bprKykhEj\nMg29vXv3ctNNN3HJJZdQWlrKiy++CMBtt91GWVkZ3bt3Z9KkSQDMnDmTTz/9lEGDBjFo0CAAFixY\nQP/+/enduzdXX311zeu877rrLi6++GJKS0u58847AXjhhRfo0aMHPXv25IorrgDIWt/KykoGDhzI\nVVddRbdu3bjhhhtI448jm5mZmVl+yNsepqaga9euVFdXs337dubPn09RURErVqzg0KFDlJeXM3To\nUCTVue2UKVMoKipi3bp1AOzatQuA+++/n/bt21NdXc3gwYNZu3YtEyZMoKKigsWLF9OhQwc+//xz\npk6dysKFC2nTpg0PPPAAFRUVjBs3jnnz5rFx40Yk8cUXXwAwefJkXn/9dc4999yaeU8++WSd9QV4\n++23Wb9+PZ07d6a8vJwlS5YwYMCA0306zczMzMwanRtMTcSCBQtYu3Ytc+fOBWD37t1s3ryZCy+8\nsM71Fy5cyHPPPVcz3a5dOwCef/55Zs+ezdGjR9m6dSsbNmygtLT0W9suXbqUDRs2UF5eDsDhw4fp\n378/RUVFFBYWcvPNNzNixIia3qzy8nLGjBnDNddcw6hRo05Y37POOovLLruMkpISAHr16kVVVZUb\nTGZmZmbWLLnBlEMffPABBQUFdOzYkYjgkUceYdiwYd9ap6qqqt7lffjhh0yfPp0VK1bQrl07xowZ\nw8GDB49bLyIYMmQIc+bMOW7Z8uXLWbRoEXPnzmXWrFm8+eabPP744yxbtoxXX32VPn36sGrVqqz1\nrays5Oyzz66ZLigo4OjRo/U+BjMzMzOzpsTPMOXIjh07uPXWWxk/fjySGDZsGI899hhHjhwBYNOm\nTezbty/r9kOGDOHRRx+tmd61axd79uyhTZs2FBUVsW3bNl577bWa5W3btuXLL78EoF+/fixZsoT3\n3nsPgH379rFp0yb27t3L7t27GT58OA8//DBr1qwB4P333+fyyy9n8uTJFBcX88knnzS4vmZmZmZm\nzZF7mM6gAwcO0KtXL44cOUKLFi248cYbuf322wG45ZZbqKqqonfv3kQExcXFvPzyy1nLuueeexg3\nbhw9evSgoKCASZMmMWrUKC699FK6devGeeedV3PLHcDYsWO58sor6dy5M4sXL+bpp5/muuuu49Ch\nQwBMnTqVtm3bMnLkSA4ePEhEUFFRAcDEiRPZvHkzEcHgwYPp2bMnpaWlDaqvmZmZmVlzpDS+ways\nrCxWrlz5rXnvvvsuF110UY5qZLngv7mZmZmZZSNpVUSc9Dd7cnJLnqT2kt6QtDn5bJdlvX+UtF7S\nO5LmSCo803U1MzMzM7P8latnmO4CFkXEBcCiZPpbJJ0LTADKIqIHUAD87RmtpZmZmZmZ5bVcNZhG\nAs8k488AP86yXguglaQWQGvg0zNQNzMzMzMzMyB3DaZzImJrMv4ZcM6xK0TEH4DpwMfAVmB3RCz4\nLjtN4/NaVjf/rc3MzMysMZy2BpOkhcmzR8cOI2uvF5lvtsd9u02eaxoJdAE6A20kjT7B/sZKWilp\n5Y4dO45bXlhYyM6dO/1FOg9EBDt37qSw0I+8mZmZmdl3c9peKx4RP8y2TNI2SZ0iYqukTsD2Olb7\nIfBhROxItnkJ+HPgv7LsbzYwGzJvyTt2eUlJCVu2bKGuxpSlT2FhISUlJbmuhpmZmZk1c7n6Hab/\nAX4KTEs+59exzsdAP0mtgQPAYGBlHevVS8uWLenSpcupbm5mZmZmZnkoV88wTQOGSNpMpidpGoCk\nzpJ+CRARy4C5wO+AdUldZ+emumZmZmZmlo/y5odrzczMzMzMvtakf7jWzMzMzMysOUhlD5OkHcBH\nua5HjnUAPs91JSznnAMD58AynAMD58C+4SzAn0ZE8clWSmWDyUDSyvp0MVq6OQcGzoFlOAcGzoF9\nw1moP9+SZ2ZmZmZmloUbTGZmZmZmZlm4wZRefgW7gXNgGc6BgXNgGc6Bfc1ZqCc/w2RmZmZmZpaF\ne5jMzMzMzMyycIPpNJJULWm1pPWS1ki6Q9L3kmVlkmbmqF6/baRyrk6O7StJfstKFnmQg3+TtFHS\nWknzJH2/McpNozzIwpQkB6slLZDUuTHKTZu056BWeXdICkkdGrPctEh7DiTdK+kPyTGuljS8McpN\nm7TnICnrH5LvCeslPdhY5Z5JviXvNJK0NyL+KBnvCPwCWBIRk3Jbs8Yh6SLgK+AJ4M6IWJnjKjVJ\neZCDocCbEXFU0gMAEfFPOa5Wk5QHWfjjiNiTjE8ALo6IW3NcrSYn7TkAkHQe8HOgG9AnIvL9t16O\nk/YcSLoX2BsR03Ndl6YsD3IwCLgb+OuIOCSpY0Rsz3W9Gso9TGdIEo6xwHhlDJT0CtRchXlG0q8l\nfSRplKQHJa2T9CtJLZP1+kh6S9IqSa9L6pTMr5T0gKTlkjZJ+otkfvdk3urkqu8Fyfy9yaeS3oF3\nkn1dm8wfmJQ5N7ki8Kwk1XFM70bE78/E+UuLlOZgQUQcTSaXAiWn9yymQ0qzsKfWZBvAV+ROIo05\nSDwM/AxnoF5SnANrgJTm4DZgWkQcqnWMzU9EeDhNA5krK8fO+wI4BxgIvJLMuxf4DdAS6AnsB/4q\nWTYP+HGy7LdAcTL/WuCpZLwSeCgZHw4sTMYfAW5Ixs8CWtWuF/A3wBtAQVKnj4FOSd12k/ni+z3g\n/4ABJzjOSqAs1+e7qQ75koOkrP8FRuf6nDfVIR+yANwPfAK883XdPORXDoCRwL8n41VAh1yf86Y4\n5EEO7gU+AtYCTwHtcn3Om+KQBzlYDdwHLAPeAvrm+pyfytACaypei4gjktaRCeWvkvnrgPOBHwA9\ngDeSBnwBsLXW9i8ln6uS9SET3rsllQAvRcTmY/Y5AJgTEdXANklvAX2BPcDyiNgCIGl1UuZvGuVI\n7d8K+OwAAAJpSURBVESabQ4k3Q0cBZ5t8FFbXZplFiLi7mQf/wyMB1JxW0kONascSGoN/Asw9Dsd\ntR2rWeUg8RgwhUwv4xTgIeDvTuHY7RvNMQctgPZAv2S75yV1jaQ11Vz4lrwzSFJXoBqoqzvy667K\nr4AjtYL0FZmwCVgfEb2S4ZKIGHrs9kn5LZKyfgH8CDgA/FLSXzaguodqjdeUad9dGnMgaQwwgsxV\nqmb1TzCX0piFWp4lc2XSTiJlOfgzoAuwRlIVmavPv5P0Jw3YR15KWQ6IiG0RUZ3U+T+AyxpQft5K\nWw6ALWQaYhERy5O6NrsXwbjBdIZIKgYeB2ad4hfK3wPFkvon5bWU1P0k++wKfBARM4H5QOkxq/wa\nuFZSQVK/K4Dlp1A3q6c05kDSlWSeVfhRROyv/6Hkt5Rm4YJakyOBjfXdNl+lLQcRsS4iOkbE+RFx\nPpkvS70j4rMGHVWeSVsOkvI71Zr8CZnbdO0E0pgD4GVgULKvC8nc9tfsXgLjXoPTq1XSRdmSzK1K\n/wlUnEpBEXFY0lXATElFZP52M4D1J9jsGuBGSUeAz4B/PWb5PKA/sIZMl/nPIuIzSd3qUydJPyFz\n72sx8Kqk1RExrCHHlSdSnQNgFnA239wCsDT8ZrRs0p6FaZJ+QOYK4keAc1C3tOfA6iftOXhQUq9k\n2yrg7+t7PHkm7Tl4CnhK0jvAYeCnzfFOFL9W3MzMzMzMLAvfkmdmZmZmZpaFG0xmZmZmZmZZuMFk\nZmZmZmaWhRtMZmZmZmZmWbjBZGZmZmZmloUbTGZmZmZmZlm4wWRmZmZmZpaFG0xmZmZmZmZZ/D8v\nMucZ7RipCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Apply PCA by fitting the good data with the same number of dimensions as features\n", + "from sklearn.decomposition import PCA\n", + "pca = PCA().fit(good_data)\n", + "\n", + "# TODO: Transform log_samples using the PCA fit above\n", + "# this applies dimensionality reduction to each sample\n", + "pca_samples = pca.transform(log_samples)\n", + "#print(pca_samples)\n", + "\n", + "# Generate PCA results plot, indicating how much each feature contributes to each dimension.\n", + "pca_results = vs.pca_results(good_data, pca)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5\n", + "*How much variance in the data is explained* ***in total*** *by the first and second principal component? What about the first four principal components? Using the visualization provided above, discuss what the first four dimensions best represent in terms of customer spending.* \n", + "**Hint:** A positive increase (between examples) in a specific dimension corresponds with an *increase* of the *positive-weighted* features and a *decrease* of the *negative-weighted* features. The rate of increase or decrease is based on the indivdual feature weights. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Together the first and second principal component explain 72.52% of total variance. The first four pc explain 92.79% of total variance.\n", + "\n", + "I dont understand the hint: dimensions are not increasing, they are new features that have values which are either high or low. Ah, maybe it means if you compare two examples, if a dimension increases this indicates that the positively weighted features in its portfolio increase and the negative weight features decrease. The rate of increase depends on the rate of the weight changes in its feature portfolio i guess..\n", + "\n", + "- Dimension 1 is Detergents_paper, Milk, Grocery with some representation of Deli. This is probably consumer retail spending.\n", + "- Dimension 2 is Fresh, Frozen and Deli, with some representation for Milk and Grocery. This is probably a hotel or restaurant.\n", + "- Dimension 3 is Deli with some Frozen and Milk, with very low Fresh and low Detergents_Paper. This could be a speciality shop such as a butcher. \n", + "- Dimension 4 is Deli with some Fresh but very low Frozen and low Detergents_Paper. This could be a market, where they sell fresh food and meat.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it in six dimensions. Observe the numerical value for the first four dimensions of the sample points. Consider if this is consistent with your initial interpretation of the sample points." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      Dimension 1Dimension 2Dimension 3Dimension 4Dimension 5Dimension 6
      0-2.40722.40790.5245-0.08480.5462-0.0377
      1-3.4491-3.65866.7584-2.94390.69212.9431
      25.3109-4.58452.02741.1669-0.03430.3363
      \n", + "
      " + ], + "text/plain": [ + " Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 \\\n", + "0 -2.4072 2.4079 0.5245 -0.0848 0.5462 \n", + "1 -3.4491 -3.6586 6.7584 -2.9439 0.6921 \n", + "2 5.3109 -4.5845 2.0274 1.1669 -0.0343 \n", + "\n", + " Dimension 6 \n", + "0 -0.0377 \n", + "1 2.9431 \n", + "2 0.3363 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      FreshMilkGroceryFrozenDetergents_PaperDelicatessen
      0271672801212813223921902
      1333370211560115550
      285209594582836242311423
      \n", + "
      " + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 27167 2801 2128 13223 92 1902\n", + "1 3 333 7021 15601 15 550\n", + "2 85 20959 45828 36 24231 1423" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display sample log-data after having a PCA transformation applied\n", + "display(pd.DataFrame(np.round(pca_samples, 4), columns = pca_results.index.values))\n", + "display(pd.DataFrame(samples))\n", + "\n", + "\n", + "# hard to see how it works..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Dimensionality Reduction\n", + "When using principal component analysis, one of the main goals is to reduce the dimensionality of the data — in effect, reducing the complexity of the problem. Dimensionality reduction comes at a cost: Fewer dimensions used implies less of the total variance in the data is being explained. Because of this, the *cumulative explained variance ratio* is extremely important for knowing how many dimensions are necessary for the problem. Additionally, if a signifiant amount of variance is explained by only two or three dimensions, the reduced data can be visualized afterwards.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign the results of fitting PCA in two dimensions with `good_data` to `pca`.\n", + " - Apply a PCA transformation of `good_data` using `pca.transform`, and assign the results to `reduced_data`.\n", + " - Apply a PCA transformation of `log_samples` using `pca.transform`, and assign the results to `pca_samples`." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# TODO: Apply PCA by fitting the good data with only two dimensions\n", + "pca = PCA(n_components=2).fit(good_data)\n", + "\n", + "# TODO: Transform the good data using the PCA fit above\n", + "reduced_data = pca.transform(good_data)\n", + "\n", + "# TODO: Transform log_samples using the PCA fit above\n", + "pca_samples = pca.transform(log_samples)\n", + "\n", + "# Create a DataFrame for the reduced data\n", + "reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it using only two dimensions. Observe how the values for the first two dimensions remains unchanged when compared to a PCA transformation in six dimensions." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      Dimension 1Dimension 2
      0-2.40722.4079
      1-3.4491-3.6586
      25.3109-4.5845
      \n", + "
      " + ], + "text/plain": [ + " Dimension 1 Dimension 2\n", + "0 -2.4072 2.4079\n", + "1 -3.4491 -3.6586\n", + "2 5.3109 -4.5845" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display sample log-data after applying PCA transformation in two dimensions\n", + "display(pd.DataFrame(np.round(pca_samples, 4), columns = ['Dimension 1', 'Dimension 2']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualizing a Biplot\n", + "A biplot is a scatterplot where each data point is represented by its scores along the principal components. The axes are the principal components (in this case `Dimension 1` and `Dimension 2`). In addition, the biplot shows the projection of the original features along the components. A biplot can help us interpret the reduced dimensions of the data, and discover relationships between the principal components and original features.\n", + "\n", + "Run the code cell below to produce a biplot of the reduced-dimension data." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAH2CAYAAAAPlcMwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4FEX6B/BvJSSEJIBKuE8VRMT1IgIiIiAiHihRURQV\nRcSVVZTDVRR/oKKiAoK4ogurKOLigeAB4klUFKMBjxXwQAGJRiDhygW56vfH2z3dmcxMZiZzz/fz\nPHmmprunu+bITL9db1UprTWIiIiIiIiIfJUQ7goQERERERFRdGJASURERERERH5hQElERERERER+\nYUBJREREREREfmFASURERERERH5hQElERERERER+YUBJRD5RSl2vlNK2vyKl1HdKqVuVUg2ctk1S\nSo1TSn2ulNqvlDqslNqmlHpOKXVqgOvTKRD7iwRKqcVKqe22+52UUtOVUse42Ha7UuqlkFaw5vG1\nUmq6H4/rbzy2f+Br5ThGjdfRw3atlFJvKaX2GnW6Iwh1uV4pNTrQ+40m3r4ffu57mFJqoovlQf+c\nERHFuwZ1b0JE5NJwAHkAmhjl+QBaAPg/AFBKpQF4F8DpAJ4B8DCAYgCdAYwE8DGAI0Ne6+jwIIB5\ntvudAEwDsA7Ab+GokAdnQD4HvtpoPHZzYKvjl/8DcDaA6wHkA9gehGNcD/nNfS4I+44Wzp/rQBoG\nYBCAOU7LI+lzRkQUkxhQEpG/vtVabzXK7yuljgVwO4yAEnLi2AtAf631etvjPgHwH6XUsNBVNbpo\nrX8Ndx3qopRqqLU+rLX+0p/Ha60PAvDrsUHQDcB3WusV4a6IL5RSSQAqtdY6Go4fjs91hH3OiIhi\nElNeiShQcgE0UUq1UEq1BjAKwEKnYNJBa73S086M9Lg8pVQfpdTXSqlDRnrnbXVVRCk1Qin1sVJq\nj1KqWCn1jVJqlIvttFJqhlJqvJGKW6SU+kQp1d3Ftpcqpb406qE9/PW2PWaSUqpUKZVsW7bc2G6Q\nbdlNSqlKpVQT23PfbpT7A1hrbPqB7Tj9XTznLUqpEqVUrlKqb12vk/G4IUqp9UqpMqXUAaXUSqVU\nV6dtspVS65RSQ43X8jCAcbbXcLrT9lcppX40Xqv/KaUuNvaRbdumViqi7TiDlFIbjdfuB6VUltP+\nOyullhjvWZlS6jel1AKllE8t3kYqsQbQH8BZtte2k7H+aKXUUuNzdFgp9a0/dTGe99kAzrQdI9tY\nN92og3PdXKU9ayUp5I8ppf4EcBjAEd7W1c1rYKaM9zPe+2KlVKFS6l9KqUY+HL+nUupD4/ElSqmP\nlFI9PT0nY1mqUupR4/UrN27vVUolOG3XXCn1tFJqp/H8dhqve0Ol1GLI901b2+u73Xicq8+ZUkpN\nUEr9ZBwzXyn1lDL+/2zbefX9oJQ6Tyn1hZL/n2Jjv/8HIqI4wRZKIgqUYwBUQdJah0G+X96q5z6b\nAHgFwKMAtgIYAeBJpVSR1nqxh8cdC2AlgMcAVALoB2CRUqqR1voZp22vAfATpHU1GcDjAN5USh2v\nta4EAKXU3wEsAPA8gBUAZgI4CDmhvgfAIdv+ttrKawE0AtAbwKdKKQUJXsoADATwobHdQAAbjNYU\nZxsB/APAvwCMB/C1sdyewncWgK4A7jPq8iCAd5RSnbTW+929SEqpIQBWQdKPrwSQDuABAOuUUqdo\nrf+wbX4cgCeNff8GYK+bfZ4LYCnkvZ8IoDmAuQBSAPzsri42x0Jatx8BUABgEoDXjPfDfG3bAPjT\nWFcI4GjI+7Aakt7orXxj+2chn91x5nKlVHsAOQB2A5gAYA/kNVqulBqmtTY/297UZRyAlwAkArjZ\nWObqvfbGvZDPwFhjf4d8qKsnLwF4FcDTAHpCMg3SIKm6dR3/JEjmwWZjew3gbgCfKKV6a62/c3VA\nJX2u3wNwAuRz9T/I/8p9AI6CvKYwgvMvjGUzAHwPSa+/BPI/+yDkc3Y6gIuN3R/28FwfAjAF8j/1\ntu34JyulztZaV9u29fj9oKRf81sAXof875QD6AL5PiQiig9aa/7xj3/88/oP1gljV0jQeCTkJLkK\nwEpjm7vMbepxnMXGPkY4Lf8AwA4Ayqk+ndzsJ8Go50JIWqN9nQbwC4Ak27LLjeV9jPvpAA4AeM64\n399Y/zDk5PEOD88hARJ4TTPu9wFQDenntd62XT6AmU7PfbvtvnnMQS6OsR3APgBH2pZlGttfXcdr\nnGs8/wa2ZUcDqAAwx7Ys26j3KS72oQFMt93/AsAP5vtjLOthbJft4jn1dzpOBYAutmUtjM/WPR6e\nRwMAfY39nerudfTw+HX2uhnL/gMJzJq5+Px960ddsgGsc7H9dADazeff/hnoZOxzo/21rU9dnf5/\nnnFafq/xuh/nxfFfB7AfwBG2ZU0gn/03PDyna4199nNx7HIALYz7Dxh1OdXD81gMIM/F8hqfM0hQ\nehjAYqftrjG2u9jps13X94N5v0ldnzP+8Y9//IvVP6a8EpG/foSc/O+FtGosBRDoUSyrACx3WrYM\nQAcAbd09SCnVRSn1X6XUH0YdKwCMgQTBzj7QWlfY7v/PuO1g3J4BOTlearSoJBrL90Neg34ujt/Z\nSGO8B8CvACYrpQ5BAsnvAbwGIFMptUoptR9AKwAjlKTIJtj2M8jYj6uUV62UusZYvh7AASUj7W4E\n8Kmx/AGl1Nmu6qaUuh/AaZCAuVgp9adSaiaAnQA+h6Ro2m3XWn/r4vWz7zsREswu11o70ji11hsA\nbPP0WJtftNa/2B67G9LyZr4fUEolK6XuUZJWWwZ5fz8zVrt6j/0xBNLKeEAp1cD8g7Sonays9ORQ\n1MVupf219aWudXjV6f4yyAWRnk7LXR2/H4B3tK01XEtr+1uo/TlyrvcOAF841ft9AEmQ1koAGAzg\na631N148j7r0hrQ0Oo+MvAySzeBc37q+H76FvOfLlFKXK6VaBKCORERRhQElEfkrC5JidjyANK31\ndVprMw1yp3HbsZ7H2Od0MgcAu4xblwGlUiod0jJzMiTt7iyjns8BaOjiIc6pm2aqXIpxa54gfgg5\ncTTTVB8F8DcALZVSGcZfY6d9XQ5Jp2sESf9sAAkOlVHuBwkGqyBppLMgabWmHyCtOA8b92ca938w\n7puvxV5IQD8Pkp53p7E8HcBHSqkLXTzvi416fANJk/wB0rI8EcBfkJYcu3wX+3CWAQkEdrtYt8vF\nMldcpdIehvV+AJIOOx0SFFwICXouNdalIDBaALgO1gUJ8+9xY32zENbFztX74G1dPXF+f9z9n7k6\n/lFulv8FzyM5t4B8RzjX+ytjfTPbrT8jCbtifq5r1FdLenshan/uPX4/aEnDPg9yPrUEwF9K+lp7\nCqSJiGIK+1ASkb9+0FafNmfZkCBpKKS1wV9HKqWSnILKlsbtH64eAGlR7AjgLK31OnOhcpoj0weF\nxu31ADZB0jft/TD7QNINAenvOcK2rhuAyyD9tH6F9K26H8ATkDS51yGtn18COMe4fx2ANQCgtf4L\nwEvGgCL3APgIEqCeCGC21voD6ZaJDpDA+Uat9XPG830KwL8h78FcSF9Juy5GHTZorRcopZ41nt9t\nRl2dT6S9GcmzABIQuGqlaQngdy/24Y0RAF7UWs8wFxgXEgKpENLS+Kib9X8GqC6HjMcka63Lbcvd\nBYGu3gdv6+pJS8j7b78P1P4/c3X8vZBWdmetIOnY7hRCWq6vcLN+u3FbAA8ZCT4yP9etYHu+xvdD\nM7jpG+yJ1notgLVKqYYAzoSk6K4y+jAX1L/KRESRjS2URBRwWus/IX2axiqlXA6SorybNiQREpDZ\njYAEJu4CylTj1hGEGoN6XOLF8Vz5AkARgM5a61xICyAgwdq5Tn8znB77NiSQ2wNpNUwzHt8Tkvp6\nCiTFbq2RRmi2RDq37JqtImdB0mbfBPBP2/qjISm4b5utpcbyFADvAOhsDB5itxzABgDDlVKJWgYi\nyQbQDhIkZ3t6UVzRWldB+mVeZgxABABQSvUw6hgoqbC9v4YbArh/QIL6kwBs0lrnuvgz3xNv63IY\n0lLtbIdxe6K5QCl1BOQ9CHRdPXEO6kZA+s3mePHYTwBcYG+hN8pD4flztAZAewDFbuptBmPvA+ip\nlDrZw77cvb7OvoT0zxzhtPxKyEV2T/X1SMs0Oh9DBgNLQ2A/80REEYstlEQULHdARgb9SCn1DCRV\ntBgy+uFISF87j1OHQAK5x4wA6RcAV0EmL7/eRT8u0xeQETT/pZSaBjmxmwpp5Wjq65PQWh9USt1p\n7K85rHTedMhJeLbW+mU3D/9Za21OETEcMjpmc2Pdl7BG/PzYuDVHbk2HnMw79gPp33UPZBTZWcbz\nKjLWNwXQGLVTTe+0lVtC0mpNvwH4LyTgfUcp9TSsVqYiALPdPKe6TIMEACuUUv+GpMFOh6Q/Vnt4\nnC/WABillPof5PW4FL4FYN74P0jq5adGa+92SPrmiQCO0Vqb/YW9rctmAOOUUldCWoCLtNY/AXgX\nMujTQuPz2hBysaA4CHX15AKl1OMwgjfI+/iivT+rBw8CuAjyv/4opBXzLkiw/YCHxy2FBN8fKaVm\nA/gO0r/xWEhK9jCtdSmkRf9qAB8qpWZA+jFmQC4S/V1rXQR5fY9SSt0CuahxSGv9P+cDaq33Gsea\nopQqgfQ97Qa5GLQOtVvyPTJGgO5n7GenUa8pkFbhH4xtzoZkF4zWWr/oy/6JiKIBA0oiCgqtdbFS\n6hzI9AIjIYPipEBaFj+CMSVAHQ5CWhLmQfor7gJwu9b6BQ/H3aNk/r3ZkBTSP43HHwU5SfbnuTyr\nlNoJCdCuNRYPhrRAehqoptS4XQsJKD+2rfsLkg6YCulH6UlDSJDXBEBnSHrjANRsTfnLVjdA+pEu\nAWCewNqnGQGAKq31GqN/5TTIoCxmq2KW0crsMyMNd6SxzxWQIGsSJOg54M8+XbgNUteHjPurIRcb\nvnL7CB9prX9XSmVCguGHIRcCCiFBgv3z521dHoUM0rMIcsHgE8jIo/uVUhdBgqZXIX0FH4BcOOkf\n4Lp6cg3kfboF0oK3EMBkL4//vZGW/ZBxPAW5YHK2rj1liH2wpgql1HmQvs5jIS16JZCAe5VRDxiv\n0ZmQoO9uSGrqLsj/k5kmvAgy4M7DkLkxd0BGpnXlXkjWwN8hU7oUQv5PpuiaU4Z44zsA50P60raA\npMyuAzBSa11mbKMg2RbMCiOimKTcX+QnIgofJZOVD9Jatwt3XeyME+e1AO7UWs9ys01nSIvqffa+\ndca61pAg9zWt9RVO606DpKHO01rfYSxLg4za2hXSL7TWSJdKqdWQlNumRouOp/p7qtsMyMl2e611\noAZBgVKqHSSwfEhr/WCg9kv1p5S6HjIQVBcPfaIDdaw3AHTQWmcG8zhERBRavFpGRBRCWut8SOvV\nMKVUN3O50edwinF3hbEsAcDLkL6WV3uYNuFFSMbJQ65WKqVaulruiW16kak+Pq6RUmqBUuoypdTZ\nSqkbIK2lpZBWJIozSqk2SqnhkFb1L8NdHyIiCiymvBIRhd54SCvnOqPvYhNjmSnbNqYNIK2WTWzz\nTpo+11pv01ovU0qdD+AOI/VxNaTPaDvIqJMdIP1ZQ6EK0hfzKUhqYgkkRXe4EUxT/LkCMrpxNjz3\nqSQioijEgJKIIpLW+vpw1yFYtNY5Rp+w+wHcChlgB5A5Ic0pRQCZx/ISyFQlS1zs6lrItAvQWo9S\nSn0M4CZIS2cSpF/lBtSc5iSojKkvskJ1PKofrfViyIjMwTzGXMjUNUREFIPYh5KIKMy86Zfp4bGN\njVEuA10nt30tiYiIiEzsQ0lEFAXsfRqVUlcppTYqpQ5BWjTNbdoqpZ5RSu1USpUrpf4w7mc47auZ\nUmqeUuo3pdQhpVShUipXKTXRzbEvUUptMLb9Uyk105gInoiIiOJcVLdQZmRk6E6dOoW7GkRE9VJU\nVISff/4ZrVu3RosWLWqsU0ohMTERhw4dwqZNm9CoUSOUl5ejefPmSE5ORmJiIo466igcPnwYP/74\nIwAgIyMDycnJOHz4MPbs2YOkpCR069YNiYmJAICffvoJJSUlyMjIQGpqKqqqqnDo0CFUVFSgc+fO\nAOA4XmpqquN4SUlJ2LdvH4qKitC2bVu0atUKREREkW7Dhg0FWuvmdW9J/ojqK8ydOnVCbm5uuKtB\nRFQv2dnZGDBgAPLz85GfX3PcmiuvvBLLli3D1q1b0aVLF1RVVWHz5s047riaY+xceOGF2LNnDzZu\n3Ig2bdo4lufk5KBPnz647LLLMHXqVOzduxfNmjXDbbfdhieffNJtnczjKaXw66+/okOHDgCA6upq\ndO/eHcXFxfz+JSKiqKCU2hHuOsSyqA4oiYhiydixYzF8+PAay5xbAYcOHVormCwsLMS7776LsWPH\nIjk5GQUFBY51xx57LI4++mi8//77mDp1KlJTU5GUlIQvv/wSO3bsQMeOHT3W6bLLLnMEkwCQkJCA\n/v3745lnnkFZWRkaNWrk79MlIiKiGMCAkogoQnTp0gWDBg3yuI1zMAlICqvWGs8++yyeffZZl48z\n011TUlIwZ84cTJw4EZ06dUL37t0xcOBAZGVlYcCAAbUed8wxx9Ra1qxZMwDA3r170bZt2zqfFxER\nEcUuBpRERFEkNTW11jKzL/yoUaNwzTXOU1XWftytt96KrKwsrFq1Cp9++ileffVVzJ8/HyNHjsRL\nL71U43FmIOpKNPfBJyIiosBgQElEFOU6d+4MpRQqKirqbOE0tW3bFmPHjsXYsWNRWVmJkSNHYunS\npZg0aRJOPfXUINeYiIiIYgWnDSEiinItW7bE4MGD8dprr+Hrr7+utV5rjT179gAASktLUVZWVmN9\ngwYN8Le//Q2ApLESEREReYstlEREMeDZZ59F37590bdvX1x33XU49dRTUVlZiW3btmHlypW48cYb\nMXXqVGzevBmDBg1CVlYWunfvjiOPPBKbN2/GggULcOyxx+LMM88M91MhIiKiKMKAkogoBnTs2BEb\nN27EzJkz8dZbb+HFF19Eamoq2rdvj2HDhuHyyy93bDdq1ChkZ2djxYoVOHz4MNq1a4ebb74Zd911\nF1JSUsL8TIiIiCiaqGgeVCEzM1NzHjQiIiIiInJHKbVBa50Z7nrEKvahJCIiIiIiIr8woCQiijb5\n+UBJSbhrQURERMSAkogo6syfD5x7LsARWYmIiCjMGFASEUWTqirgxReB9euBs84C8vLCXSMiIiKK\nYwwoiYiiyUcfAX/8IeXNm4EzzwR++im8dSIiIqK4xYCSiCiaPP98zfu//w707QtwxGuiiFJSAuze\nze7ORBT7OA8lEVG02L8fWLGi9vKCAmDAAFk3aFDo60VEDgUF8q/45ZfWst69gawsICMjfPUiIgoW\ntlASEUWLV14BDh92va64GLjgAuDVV0NbJyJyKCgAZswAcnKANm2A9u3lNidHlhcUhLuGRESBx4CS\niChaLF7seX1FBTBiBLBgQUiqQ0Q1rVgh13batQMSE2VZYqLcLy52nWBARBTtGFASEUWDH3+smUPn\njtbAuHHAAw9ImYhCoqRE/kVbt3a9vnVrWV9aGtp6EREFGwNKIqJo8MILvm0/bRowfnxw6kJEtZiD\n75gtk87M5cXFoakPEVGoMKAkIop05tyTvvr889rLHngAOHiw/nUiohrS0uS2qsr1enN5enpo6kNE\nFCoMKImIIt0HHwB//un99u3bAwMHAv/8Z83lP/4oLZdDhjCoJAqwtDQZzTU/3/X6/HxZn5oa2noR\nEQUbA0oiokjnajCeVq2As86y7l9/PfC//0kHrd9/Bz76SAbosXvySbldvx447zzgwIFg1ZgoLmVl\nSQtkXp7VIllVJffT02U9EVGsUTqKB23IzMzUuZzMm4hiWUUF8I9/AB06AF26WH+NG8t6peS2eXOZ\nRd2dfftkqEn7iCC9egHvvQc0bRq8+hPFGVfzUJ5xBjBsGOehJAoXpdQGrXVmuOsRqxhQEhFFs0sv\nteYi8PR9/vjjtVNgAaBnTwkqjzgiOPUjilOlpTIAT3o601yJwo0BZXAx5ZWIKJo9+qhVdtfPsrIS\neOop1+u++goYPBjYvz/wdSOKY6mpQIsWDCaJKPYxoCQiimZduljl++5zvc3KldKv0p2vvwbOPVfS\nYomIiIh8wICSiCjaJSXJ7XPPuV4/b17d+8jNZVBJREREPmNASUQU7ewBY3V1zXUbNgDr1nm3nw0b\ngEGDgL17A1c3IiIiimkMKImIot2YMVZ55cqa67xpnbTbuFGCysrK+teLiIiIYh4DSiKiaGemvALA\nHXdY5fx8YNky3/d3+DDQoEH960VEREQxj2cMRESx4IILgNWrgZ07rWVr1sg8lnVp317muTT/zjsv\nePUkIiKimMKAkogoFjz+uASUALB7t8xXMHIksGSJ9Ins0KFm4Hj11bLtnDnAhAnhqzcRERFFNaU9\nTYQd4TIzM3Vubm64q0FEFBmUkttbbgGeftq7bdu39zylCBERUZRTSm3QWmeGux6xin0oiYhizYIF\ndW/Tp4/c2lNkiYiIiHzEgJKIKFbMmWOV68o+mTzZ+22JiIiI3GBASUQUK8aNs8rvvut526FDrfKn\nnwanPkRERBTzIi6gVEolKqW+UUq9E+66EBFFlYYNrfLtt3ve1j4tyOzZwakPERERxbyICygB3A5g\nS7grQUQUlQYOlNutW+veNi1Nbt9+O3j1ISIiopgWUQGlUqodgAsBLAp3XYiIopK9tXHvXs/b2vtR\nEhEREfkhogJKAHMB/BNAdbgrQkQUlU45xSrPmOF521tuscp//RWc+hAREVFMi5iAUil1EYDdWusN\ndWw3VimVq5TK3bNnT4hqR0QUhZ54wvP6li2tcl3zVhIRERG5EDEBJYAzAVyslNoOYBmAgUqpl5w3\n0lr/W2udqbXObN68eajrSEQU+R55xCp7OyXIrFnBqQsRERHFtIgJKLXWU7TW7bTWnQCMAPCx1vqa\nMFeLiCj62Ed4/fhjz9teconclpUFrz5EREQUsyImoCQiogBp1Mgq33GH520nTbLKlZXBqQ8RERHF\nrIgMKLXW2Vrri8JdDyKiqHXmmXL7ww+et+vb1yq/9Vbw6kNEREQxKSIDSiIiqqc5c6zygQPut1PK\nKrMfZUhlZ2dDKYXFixc7lm3fvh1KKUyfPj1s9SIiIvIFA0oioljUs6dVnjnT87adOsnt+vVBq040\nMgM+8y8xMRFHHnkkTjzxRIwaNQpr1qyB9nbQowizf/9+TJ8+HdnZ2eGuChERRbkG4a4AEREF2cyZ\nNUd+dTZ5MnDrraGrT5S56qqrcMEFF0BrjaKiIvz0009YuXIlXnzxRQwaNAivvfYajjjiiIAcq2PH\njigrK0ODBsH9ed6/fz/uv/9+AED//v2DeiwiIoptbKEkIopV06ZZZU8taaNGWeWffw5efaLUaaed\nhmuuuQbXXnstxo0bh3nz5uG3337DxIkT8eGHH+Kqq64K2LGUUkhJSQl6QElERBQoDCiJiGLV5MlW\n+fPP3W+Xnm6V584NXn1iSGJiImbPno2+fftizZo1WLdunWPdgQMHcNddd6Fz585o2LAhmjdvjquu\nugq//fZbnfv11Idy+fLl6N+/P4444gikpqaia9euGD9+PMrLywEA1dXVeOihh9CvXz+0atUKycnJ\n6NChA2655RYUFhY69pOdnY2jjz4aAHD//fc7Uno7manPhldeeQV9+/ZF48aNkZqail69euH111+v\nVa9Vq1bh7LPPRkZGBho1aoQOHTrg0ksvxc+2ixM7d+7E6NGj0bFjRzRs2BAtWrRAnz598MILL9TY\nl9YaCxYsQI8ePZCamor09HQMGDAAa9eudfs6vfPOOzj99NORkpKC1q1b484770QlRywmIgoZBpRE\nRLHKHihOmODdYxYsCE5dYtSNN94IQIIqQILJPn364Omnn8aFF16I+fPn49Zbb8XHH3+MXr16YceO\nHX4d595778Xll1+OPXv2YMKECZg7dy6GDRuG1atXo7S0FABQXl6Oxx9/HF26dMGdd96JJ598Euee\ney7+85//oH///o7As1u3bnjiiScAAFlZWViyZAmWLFmCubaLCVOnTsWIESPQuHFjPPjgg5g5cyZS\nU1MxfPhw/Otf/3Js98knn+Diiy/G/v37MWXKFDz11FO46aabUFhYiK1btwIAKisrce655+K1117D\niBEj8PTTT+Puu+/Gcccdh88++6zG87z22mtx6623onPnznjsscdw//3348CBAzj33HPxlotRiFev\nXo3Ro0fj/PPPxxNPPIGTTz4Zs2bNwmOPPebX60xERH7QWkftX48ePTQREXnQo4fWkvDqebsxY7zb\nLo6sXbtWA9CPP/642202bNigAehLL71Ua631+PHjdUpKiv72229rbLd9+3bduHFjPWrUqFr7f/75\n5x3Ltm3bpgHoadOmOZbl5ORoAHrAgAG6rKysxn6rq6t1dXW1o1xaWlqrjosWLdIA9CuvvOLxOM7P\nacqUKbXWXXLJJbpx48b64MGDWmutJ0yYoAHoXbt2uX6BtNbfffedBqAfffRRt9torfUbb7yhAehn\nn322xvKKigrdo0cP3alTJ8dzNeufmpqqt23b5ti2urpad+/eXbdq1crjsYgovgDI1REQu8TqH1so\niYhimdESBQAoLna/nb0F02jxoro1adIEAHDw4EForbF06VL069cPbdu2RUFBgeMvLS0NvXv3xvvv\nv+/zMZYuXQoAeOSRR5CSklJjnZmuapYbNWoEAKiqqsL+/ftRUFCAgQMHAgBycnK8Pp5SCqNGjarx\nHAoKCnDxxRejqKgI640RgZs2bQpA0nHdpZma26xduxa7d+92e9yXXnoJjRs3xrBhw2occ//+/Rg6\ndCi2b9+OX375pcZjhg0bViNVVymFAQMG4K+//kKxp887EREFDHv9ExHFsr59rfLs2TUH6rE74QSr\nvGQJcPPNwa1XjDh48CAACSz37NmDwsJCvP/++2jevLnL7RMSfL+O+8svv0AphZNPPrnObV999VXM\nnj0b33wEEdV6AAAgAElEQVTzDSoqKmqs27dvn1fH27JlC7TWOP74491us2vXLgDArbfeijfffBPj\nxo3DXXfdhb59+2LIkCG46qqrHK9Bx44dce+99+KRRx5B69atccopp+Ccc87B8OHDcfrpp9c4blFR\nEVq2bOnxuMcdd5zj/jHHHFNrm2bNmgEACgsLkW5P+yYioqBgQElEFMuM1isAwPTp7gNKu1mzGFB6\n6fvvvwcAdO3aFZJVBQwaNAh33XVXQI9jb4l054033sCVV16Jnj17Yt68eWjfvj1SUlJQVVWFIUOG\noLq62qtjaa2hlMK7776LxMREl9t0794dgARvX3/9NT777DN88MEH+PTTTzFhwgRMmzYNq1evxhln\nnAEAmDFjBkaPHo1Vq1bhs88+w6JFi/D444/jn//8Jx599FHHcZs3b46XX37Zbd1OPPHEGvfd1c/c\nHxERBR8DSiKiWHf33TIXZV0yM4HcXMAYTIXq9p///AcAcOGFF6J58+Y44ogjcPDgQQwaNChgxzju\nuOPw7rvv4rvvvkPPnj3dbrdkyRKkpKRg7dq1SE1NdSz/8ccfa23rKTjt0qUL1qxZgw4dOqBbt251\n1i8xMRH9+/d3zGf5/fffo0ePHpgxY4ZjsCJAWhNvu+023HbbbTh06BDOO+88PPbYY5g0aRJatGiB\nLl264Oeff0bv3r3ZskhEFEXYh5KIKNbdfbdV/uor99vZpxlh645HVVVVmDx5MtatW4cLLrgAZ555\nJhISEjBy5Eh89dVXLqfXAOCxD6E7V199NQDgnnvucYzUame2xCUmJkIpVaMlUmuNGTNm1HqMGbDt\n3bu31rprr73Wcbyqqqpa6810VwAoKCiotf74449Ho0aNHPs+cOBArfTblJQUR7BqpuJed911qK6u\nxpQpU2rt0/m4REQUOdhCSUQU64xBUQAAEycCtjkTa7j0UquckwP07h3cekWJjRs34qWXXgIAFBUV\n4aeffsLKlSuxY8cODB48uEaK5kMPPYTPP/8cV1xxBa644gr07t0bycnJ2LFjB1avXo0ePXpg8eLF\nPh2/Z8+euOuuu/Doo4/itNNOw5VXXolWrVph27ZteP311/HVV1/hiCOOwOWXX47ly5dj4MCBuO66\n61BRUYGVK1c6phWxa9asGTp37oxly5bh2GOPRcuWLZGWloahQ4fi9NNPx/Tp0zF9+nSccsopGD58\nONq0aYP8/Hxs2LABq1evdgS2N910E/Ly8jB48GB07NgRZWVleOWVV1BUVITrrrsOgAzGM3bsWFx2\n2WXo2rUr0tPTsWHDBixatAi9evVC165dAQCXX345brjhBjz11FPYuHEjLrroImRkZCAvLw/r16/H\n1q1bvZrLk4iIQizcw8zW54/ThhAReal7d+3VtCDmNpdfHpp6RTBzWg/zLyEhQTdp0kSfcMIJ+rrr\nrtPvvvuuy8eVlJToBx54QJ944ok6JSVFp6en6+OPP16PGTNGf/nll7X2X9e0IaaXX35Z9+nTR6en\np+vU1FTdtWtXffvtt+vDhw87tvn3v/+tu3Xrphs2bKhbtWqlb7rpJl1YWKgB1JiyRGuZjqRPnz46\nNTVVA9AdO3assf6dd97RgwcP1kceeaROTk7W7dq100OGDNELFixwbLN8+XI9dOhQ3bZtW52cnKwz\nMjJ0v3799Ouvv+7Y5rffftM333yzPv7443Xjxo11amqqPv744/V9992n9+/fX+t5vvjii7pv3766\ncePGumHDhrpjx446KytLL1u2zKvXadq0aRpAjelEiCi+gdOGBPVPyWscnTIzM3Vubm64q0FEFPk+\n+ggw+/WVlgLG9BK1JCUB5vQPUfz7QEREZFJKbdBaZ4a7HrGKfSiJiOKBMRchAODJJ91vZ+9HSURE\nRFQHBpRERPHAPqqnfZAeZ7feapVdDLhCREREZMeAkogoXtxxR93btG1rlZ99Nnh1ISIiopjAgJKI\nKF7cd59V/vbburefNSt4dSEiIgBASQmwe7fcEkUjThtCRBQvjjrKKk+aJAP1uDJkCLBmDbB/f2jq\nRcFVWQk04M89UaQpKABWrAC+/NJa1rs3kJUFZGSEr15EvmILJRFRPOncWW4//tj9NpMmWWUXE9tT\nlKiuBubM4UBLRBGooACYMUOm/G3TBmjfXm5zcmQ5u7BTNGFASUQUT+bNs8qHD7vexj4i7Jo1wa0P\nBccffwDnnScXB+zNH0QUEVasAIqLgXbtgMREWZaYKPeLi2U9UbRgQElEFE/OP98qL1jgepsE208D\n+1FGn+XLgZNOAj78UO5//z1bmokiSEmJXOdp3dr1+tatZX1paWjrReQvBpRERPHEPn3IhAnut2vV\nSm6zs4NaHQqgoiJg9Gjg8suBvXut5WVlwM8/h69eRFSDOfiO2TLpzFxeXBya+hDVFwNKIqJ4c8st\ndW/DfnfR5csvgVNPBZ5/3vX6b74JbX2IyK20NLl1lzhgLk9PD019iOqLASURUbyZPt0qb97sepsb\nb7TK27YFtTpUN7fTClRWAvffD/TtC/z6q/sdMKAkihhpaTKaa36+6/X5+bI+NTW09SLyF8cRJyKK\nNy1aWOU77wRWraq9zRFHWOV584C5c4NfL6rF47QCB38DrrkGWL++7h15M+8oEYVMVhawaROQlyd9\nJhMTpWUyP19aJrOywl1DIu8prXW46+C3zMxMnZubG+5qEBFFn/bt5UwGANz9Dtj7W0bxb4W3Skrk\nLy3NSkkLJ3NageJipxPOPzUG7nwBI764DQklXnayatYM2LOn5ntKMSvSPsvkmqsLRmecAQwbxnko\nA00ptUFrnRnuesQqtlASEcWjefOAyy6TckUFkJRUe5trrgFeeim09QqDSJ1c3D6tgCkxEeiR9D2u\n/uAG33ZWWCgXENq3D2wlKaJE6meZXMvIAG66CRg5Uv7X09OZ5krRiX0oiYji0bBhVnnRItfbTJxo\nlQ8dCm59wiRSJxf3NK1AYbPjUJXgx/Vgpr3GtEj9LFPdUlOlJwKDSYpWDCiJiOKRfa7J2293vc0p\np1jlZcuCW58widTJxT1NK1CZ1AizJv2F+eesROnNE4AePWq+n+5wYJ6YFqmfZSKKfQwoiYji1Q1G\n2mRFhev19v52s2YFvz4hFsmTi9c1rUBxw2b4tuMlwJw5QG4usG6dtbJJE6CBixZMBpQxK5I/y0QU\n+xhQEhHFqxkzrPLWra63OfFEud20Kfj1CbFInlzc52kF+vSxVh44AOzfD3z4IXDffcDZZwMNGzLl\nNYZF8meZiGIfA0oionjVpo1Vvusu19tMnmyVY2yk10ifXDwrS46dl2fVpapK7teYVmDnTutBZkty\nWhpwzjnAAw8A2dkSYL74Ysy9hyQi/bNMRLGNASURUTxr3lxu33jD9foRI6xyjKVMRvrk4hkZwNSp\nQK9ewJ9/Stz4559Sp6lTbaN2nnSS9SD7QEp2KSnAWWdx2pAYFemfZSKKbZw2hIgons2bB1x9tZQr\nK2v3vWvY0CrPmRNz04hE+uTidU4rUFgorY+AtCYzYIxbkf5ZJqLYpXQUp79kZmbq3NzccFeDiCh6\nVVdbHayee84aqMfOHqSE4Tcj2JO0R/Xk4iecAGzZIuWqKu9Ge6WYFdWfZaIgUkpt0FpnhrsesYoB\nJRFRvDMDxsaNgYMHa6+fOBF44gkph/A3I9STtJeWRtnk4qWlVoR99dXA0qXhrQ9FjKj7LBMFGQPK\n4OKlTCKieGemvBYVuV4/frxVNtMrgywck7RH3eTiF19slRcvDls1KPJE3WeZiKIaA0oionj38MNW\neceO2us7dbLKixYFvToAJ2mvU0UF8NFHUh4wAEhKCm99iIgobjGgJCKKdx07WuUpUzxva05LEUSB\nmKS9pATYvduany/mjB5tld9+O3z1ICKiuMdRXomISPpPFhUB//0v8PLLtdcPGACsXQvs2hX0qvgy\nSbtzSl+o+12GRXW1Ndru8ccHZ6QiIiIiL7GFkoiIgCeftMrV1bXXT57seX0A+TtJezj6XYbF3Xdb\n5XXrwlcPIiIiMKAkIiIAuPZaq7xsWe31551nlc2+ewYzvdT8q2+aqb+TtMdFv0utgccfl3KTJkCz\nZuGtDxERxT0GlEREVDO/9PbbPa+fPRuAtPgtXAiMHSsppX37ApdeKvcXLqxfi2BWlrRA5uVZLZJV\nVXLf1STtgeh3GRXmzrXK//tf+OpBRERkYEBJRETi0kvl1l0keNRRcvvee4700k8+AbZulUCtRQu5\n/eUXWV6fNNOMDGDqVKBXL+DPP4GdO+W2d29Z7twf0pd+l1Ft4kSr3KFD+OpBRERkYEBJRETi0Uet\n8h9/1F5v60dpppceOACUlwNNmwINGkgWZmWlLK9vmmlGBnDTTcD8+cAjj8jtmDGuB9fxt99lVLEP\nlsTWSSIiihAMKImISHTubJXvu6/2+rFjHcWfPspDs2aSgtq4cc3NzFTVjIzApJl6M0m7v/0uo8rI\nkVb5xBPDVw8iIiIbBpRERGRJTpbb55+vvc42AMzAzU85BntNcPolMe+brYKhSjP1td9lVHn/fav8\n2WfhqwcREZETBpRERGSZN88qe5ge5LwfZjkCR+fNzPtmv8VQpZn62u8yqthH2e3bN3z1ICIictIg\n3BUgIqIIcuONwC23SHnlSmugHtMVVwCvvopEXYXCQpmSIy9P+lCazKk7CgpCn2Zq9rscOVLqkZ4e\n5WmuAJCba5VXrgxfPYiIiFxgCyUREVmSkqyyq+lDbKOMNm1UjqZNJUv2wAEZjOfgQRmcp2nT8KaZ\netPvMmqcfrpVvuSS8NWDiIjIBQaURATAmpy+vpPSUwy48EK5zcurva5nT0dx2t+W4+yzZSyf1FT5\n/KSmAl26AP37R26aaVR91n/5xSovXBi+ehAREbmhtNbhroPfMjMzda49FYiIfFZQIFM7fPmltax3\nb2lZisRggEJgyxbghBOk/NdfQMuWNdcrJbennQZs2IDSUkkvTUiQ/pORmmYalZ/1hATA/J2O4t9r\nIqJwUkpt0FpnhrsesYp9KInimDk5fXEx0KaNDKJSVQXk5ACbNkVuCxMFWbdujmLFvdOx7+EFSEuz\n5nrEcccBP/8MbNwIQILHUAaQJSXyV6NOdYjKz3p+vhVEPvhgeOtCRETkBlsoieLYwoVyQt2uXe11\neXkyWuZNN4W+XhQBzFZIADeOlt8JR2veioXWnJQh/A2pTwtjVH7W27aVYWoBafq1vSdEROQ9tlAG\nF/tQEsWpkhI5MW/d2vX61q0DMyk9RZ+CAmBFvycc99u302jTRgKyGTOAgvNGWhv/8EO9juVtf0az\nhTEnR1oY27dHzToVeD5G1H3WDxywgslx4xhMEhFRxGJASRSnzBN4c65AZ+byUE1KT5FjxQrgvWNu\ncdzvsvVdJCZK615xMbDiPVt+6xNPuNhD3QoKpNVw/HhgyhS5XbjQfWC4YoU1HYn52axRpxXujxWV\nn/VzzrHKTz4ZvnoQERHVgQElUZwy+55VVbleby4P1aT0FBnM1rzm7Ro6lg1ZY00fYrbmOTz3nM/H\n8LW1sb4tjL5+1sM+CuyhQ8CGDVIeNsx9JExERBQBGFASxRBfToTT0qT/WX6+6/X5+aGflJ7Cz96a\n99vR0krWbO9Wx3oztim9YZzfx/C1tbG+LYzeftZLS31rNQ2aK66wysuWhfjgREREvmFASRQDfE0f\nNGVlSatMXp7VSlNVJffDOSk9hY+9Ne+9wbMdyxuVFjqWA4C64w7rQUVFXu/fn9bGQLSm1/VZ79fP\n/z6aAVVVBbz9tpR79QIaNvS8PRERUZgxoCSKcvUZrCQjQ6ZL6NVLxv/YuVNue/eO0GkUKOjsrXm7\nWp3sWN7v0xkArNa8Rid1sR60eLHX+/entTEQrel1fdY//dT/PpoBNc7W8vv++yE6aHCFPYWYiIiC\nitOGEEW5QE2HYE5OH6mT0lPo2OdsXPQfa3TRMTdqpKfbLjaYI4926ADs2OHVvktKpAXdnAvSWVWV\nBHrz59f8HNrr1Lq1NY9kfj5q1skLzp91f+sUcFoDCcZ1Xh9e00hVn2leiIgCidOGBBdbKImiWCCn\nQ0hNBVq0YDBJNVvzXs+c6Vjeu5euGbj16SO3v//u9b79bW0MZGu682c9YkaBvf9+q/zVV0E+WHDV\nJ3OCiIiiS4NwV4CI/OfLiTADRfJFRoa0bJdeOh7IuBsAMOboj4CMQdZGkycDl14qZa29nisxKwvY\ntEla0F21Nrrru2vWaeTIwLam2/toumuhBEIw4rEZUDZoALRsGeSDBZd94CWTmUKclyfrvcmcICKi\nyMcWSqIoFo6pP9gfKjZ4+z6mNmtk3bEPxAMAQ4da5c8+8/rY9W1tDHRrekSMePzMM1b5xx+DeKDg\nC2TmBBERRT62UBJFMfNE2F0fykCeCLM/VGzw630880zg88+lWdGuge0nZPZsGSrVS8FqbfSXv62m\nAXPLLVb52GODfLDgYuYEEVF8YUBJFOVCcSJsHxDFHLikqkoC2U2bOCJstPD7fXziCaBnTykfOAA0\nbWqtS02Vpqa33vKrTqmpkRFUmK2mzsH2GWcAw4YF+fP9xhtWecOGIB4oNCImhZiIiEKCKa9EUS4U\nU3/4OhE9RSa/38fTT7fKM2fWXDd5clDqGg5mq+n8+cAjj8jtmDEhuFhy2WVW+bTTgnyw4IuIFGIi\nIgoZThtCFEOCMfVHxEypQPVS7/fRPuCO/Xdj1y6gVSsp5+dbZfLOJ58A/ftL+cMPgXPOCWt1AiWQ\n07wQEdUXpw0JLrZQEsWQYEz9ETFTKlC91Pt9nD7dKtsDSvtopE8/7W/14pcZTAIxE0wCocmcICKi\nyMA+lETkEftDxYZ6v4+TJllB5bp1wFln1d5m1izggQfqW9X48f33VnnZsvDVI0gibeAlIiIKDrZQ\nEpFH7A8VG+r9PtojzQkTaq67+GK5LSurdz3jysknW+UrrwxfPYIsGJkTREQUORhQElGdsrIknsjL\ns1qyqqrkfkimVKCAqPf7mGl0P3EeiXTSJKtcWRmw+sa07dut8rx5YasGERFRfXFQHiLyiqv5C0My\npQIFVL3eR3uqa1GR1WqpNZBgXJ9cvhy49NKA1zvmpKdbHVurq2sOekRERAHFQXmCiwElEfkkGCPJ\nUuj59T7aA8dp01By53SUlEg6bVq6ERCdcQbwxRdBqXPM2LNHckABYMoU4OGHw1sfIqIYx4AyuBhQ\nEhGR92wtaTeOtn4/5q7siMZ7f5c7Ufy7EhJdugBbt0qZrZNEREHHgDK42IeSiIi8Vnr7FEe5TRug\nfXu5ffu4yWGsVRQpLraCyVGjGEwSxZGSEmD3bivbnShWMKAkorjHH3nvvXrM3Y5yh/wcADINyfb+\n11sb/fyzX/uOi/fhggus8qJF4asHEYVMQQGwcCEwfrxkuY8fL/cLCsJdM6LA4DyURBS3XA1Q07u3\njHbKgYZqKykBPvuuCa437p/3/kQ8N/pzAEB5w8aO7SpmzUXSv5/2er9x8z6UlwOffSblwYOBBvwJ\nJop1BQXAjBmSnNCmjVyAq6oCcnKATZuAqVNj7HuO4hJbKIkoLpk/8jk5NVM3c3JkOa8c12a2HO5q\n8TcAQIedrgffSVq4wOt9xtX7cN11VnnlSr92ERetuEQxZMUKCSbbtZNgEpDbdu1k+YoV4a0fUSAw\noCSiuMQfed+lpcntqnPnOpY1qChzlHNPudHnfcbN+1BdDbzyipT/9jegUSOfHs6UOaLoU1IimRet\nW7te37q1rC8tDW29iAKNASURxZ1A/MiHs6UoXMdOS5NU1C8aDnAs650zz1F+65gJ1sZenCHF1cnW\npElW+ZNPfHpoXLXihgFbfSlYzM+UebHMmbm8uDg09SEKFnbgIKK448uPvPMcjeHs7xcJfQ2zsoBN\nm6yRSQd9NAWfnHE38vOB9PbdrQ1fegkYO9bjvurzPkQVrYG5RqtuRgZw5JE+PdzeimsyW3Hz8mT9\nTTcFsL5xIhL+nyi2mVkdVVWuv+eqquQ2PT10dSIKBrZQElHcsf/Iu+LuRz6cLUWR0kqVkSGDSPxv\nkNUa+eefciI+daptw1mz6tyXv+9D1HnsMav8zTc+PTSuWnFDKFL+nyi2mVkd+fmu1+fny/qovmBG\nhAgKKJVS7ZVSa5VSm5VSm5RSt4e7TkQUm/z9kQ9nf79I6muYkQH87RUrenxqzLcYM8Zo1enRQxb+\n8kud+4mbk627ralWajQzeiFYKXPxnuYZSf9PFNuysuSiWF6edZGsqkrup6fLeqJoFzEBJYBKAJO0\n1icA6A3gH0qpE8JcJyIKoEg6ifX1Rz6cLUUR2Up11FGOYqOptv6BkydbZa3r3E3Mn2y98IJV3rLF\n54cHuhWXg/tE6P8TxSwzq6NXL8nm2LmzZlYH06spFkRMH0qtdT6AfKNcpJTaAqAtgM1hrRgR1Vsk\n9lUyf+Sd63XGGcCwYbXrFc7+fhHb17BLF2mJ/Phja9lll1nlr76SsygPMjKACROA118Hvv/emprR\n3fsQda6/3ioff7zPDzdbcXNyXDdu+tKKy/nwRMT+P1HMysiQfs4jR8rnKj2dny2KLRETUNoppToB\nOBVATnhrQkT1Fcknsb78yIdzcIWIHdhh7lzgwgulfPgw0LAhkJRkrZ89G3j1VbcPd3Wh4YQTgOHD\ngQ4d3B+2pET+0tKs1yYirV5tldev93s3MhCStNq2bm39D+Xn+9aKy8F9RMT+P1HMS01lIEmxKZJS\nXgEASql0AMsB3KG1Puhi/VilVK5SKnfPnj2hryAR+SQa+iqlpgItWnj+oQ9nf7+I7Wt4/vlW+emn\nrbLZzPjaa24f6mpQlA4dJCt0zhzXKZiRnK7pMp3bDLYBeYP8FIiUOaZ5WiL2/4mIKEpFVAulUioJ\nEkwu1Vq/4WobrfW/AfwbADIzM+vuoEMUhaKmBaYO5klsmzau15snsSNHBu7kLZivXaBaiiLh2AF5\nnZQ1fQgmTpTcVUD6Uc6c6fGhvraWRWpLt7t07uHtv8QR5oJ33qn3ceqbMsc0z5rC+b9MoRcrv6lE\nkSpiAkqllALwHwBbtNZzwl0fonCIxL6G9RHKk9hQvHa+9rsMpEAdO+Cv07hxNVsnAeDWW62AsrAQ\naNasxmp/LjREYrqmpyD3prFnWBvaWyrryVPKnKeTZqZ51hTO/2UKnVj7TSWKVBETUAI4E8C1AP6n\nlPrWWHaP1nq1h8cQxYxIbYGpj1CdxIbytQvn4Ar1PbY3r1OjRj5eyZ82zQooN2+WTpBt21rrn30W\nuOeeGg/x9UJDOFq6veEuyD0l5UdrwfPPB70e3pw0B3Jwn1jBgVJiW13fdxMmyPcdWy2J6i9iAkqt\n9ToAqs4NiWJUJLbA1Je7k9jycqCiQvqc9e1b/5O4cLx24Rxcwd9je3qdtm6VrFX7mDpeXclv0cJR\nrJwwGQ3ec7oGOGtWrYDS1wsNkZiu6SnIvfVf3Rzl0iuuRzCr5MvFFKZ5usaBUmKTu++7o44CvvgC\nuPpqa+BltloS1U/EDcpDFI9iecAM+zyDRUXAhg3AqlXAW28BubmyrD6DqsTyaxdInl6n0lLg558l\nCGneXAbIadNG7s+Y4f79MQfJKUxrDwBo8P671iA5Q4bIRvv21Xqcr4OiBHouxkBwF+Q2PviHo/x6\n5kwUFwe3Hr4MesX58CheuPu+Ky0FPv1U/jdKSoBWrbz7riMizxhQEkUAX1pgoo15Etu9O7BmjQQu\nSgFdu0rMsXlz/X7IY/m1C5SSEmD7dmkVdvU6bdkCVFZKAGcGZ3WNxGsfpfW98+c5lueur8CMGcCB\nMZOsjV1EgvYLDebqqiq579xaFqhROV2OxOond0Hu35891VF+92//DGqQ68/FFDPNc/584JFH5HbM\nGAaTFFvc/S5s2SIZMkccIb9D5eWRN+o4UTSKmJRXongW6wNmZGRI3U8/XVrAkpOt1MrGjeuXlhoL\nr12wRiC0962rqJDbwkIJ7s3gq7xcXv+0NKlDcnLNfbjrn2hvGfu57TDH8qG7FmFlwi14tWAgHG/n\nmjW1BqbxdVCU+qRrBmNgDlfp3Cll+5BWKtNZfdD9dvQ+QwU1lbI+qcBM86RY5up3wfyua9wYqK6W\nZfbvu3D1xSaKBQwoiSJArA+YYbaktG/v+uS3Pj/k0fzaBXMEQld96woLpa9kYSHQr5+8JhUVsn1J\nibx+9j6UgOugpFb/Qdv0IeevuR0599yCL79KsALKWbNcjnTqy6Ao/o7K6a6P4bp1knJ9zz1Ax45u\nX0aPnIPc61/o71i3+pw5uDfIfRJj4WJKvON0FsHh6nfB/K5LSAAOHKj9fRdvU+cQBRIDSqIIEcsD\nZgR7UJVofO2CPTKtqwEpuneXYHLfPjnG6afLyVVpqaSAdetWez+ughJX7+fGU0bjtG+fQ2J1hWN5\nVYtWSNz9F5Cd7bGu3raW+TMqp/PrUFoqaW+//y7Lv/8eGD3avyDeHuRuWFeGVru+BwD8lnkF7r0v\nIehppNF8MSXecTqL4HP+XUhKkpbJAweAhg1rf9/xAgyR/9iHkihCxPKAGcEeVCUaXztfBlPxlbu+\ndamp0jLZuTPwyy/Atm1yYturF9Cli+vAw1VQ4ur9XDvwQUe56Z5fZP0dk/1/Eh6kpsrgst70mbS/\nDqWlwEcfAd99B+zaJa/zzz8Dzz0H3Huv1Y/Xl76WZpD7rz+tqxbHfL4kZJ85X/qiUmSw9z9u08b7\nQbDIN86/C7t2SbprWpqVoWHHCzBE/mMLJVEEidV50ULRklLf1y6UqWfBnlfRU4twaqq0TGZkAP/8\nJ3D00RJozZjhfQuvq/ezqLH1ZM5edRfS730DycNvBO4xgspt2+RgIeT8Onz3nVxsSEiQFgqlgEOH\nZKThzz+X6TTN197kVatRZSUSP3xPymedVbsjahD5mwpM4ROLU0RFKuffhUOHgDlzgL175TvA/K77\n/Y1E8zcAACAASURBVHcgJQUYPDjcNSaKTgwoiSJQLA6YEaq0VF9fu3CkngU7BdibvnUNGkh8Z75e\nvgYlrt7P4rQWSC/ZjdN2rECHLEgerenJJ4EnnvD9ydSD/XWoqpIRhRMS5MSxulqWaQ0ceSSwfz/w\nzDNyQmn29fU6BXnsWKu8erWbjYLH08UU9tGLLMG+mESu2X8X7N91hw4BO3bI8o4dgQceYOoxkT+U\n1jrcdfBbZmamzs3NDXc1iMhLroK3cLak2Psxugpyg5UuW1ICjB9v9Z10VlUlKVrz5/t/UvnUU8D6\n9XKS5NxglpcnaWCuWkFKS71v4XV+P3v+tgw3Z18ldyoqJGq1DdiDMPzeLFwoQWFaGvDSS0CjRkBZ\nGXD4sLzOSUkyF11lpTyf0aNrxsGA59cLWkuUCgDHHiujHkUA9tGLTLt3A1OmyEULd3bulCldWrQI\nXb3i0e+/y/d/eXnNi0jB/v6n8FBKbdBaZ4a7HrGKfSiJKGQibQ68YPZj9CRQ8yq6UlAgQdT69cC3\n3wLLlwNffy2Bojd967ztnwjUfj+vffsKa+WLL8rtNdf4/iQCyOxj+Ndf8vwPHJBWCUCCySZNZNlf\nf1lxoTNX8zk6TJ1qldevD3j9/cE+epEr2P3JyXvvvSeZCp06hfb7nygWMaAkopDzJWgJFn8mhQ+k\nYAymYg8kjjlGZuro3FkazVatAn77LTgDFTnez3TbT8rtt8vtxInWMjOSCwFzYJ1GjeT5nnWWnDyW\nl0ujacOGQNOm0oianCyvfUKC67RQewpyDVoDDz8s5dRUmWQ1AoTrQgnVLZgXk8h74f7+J4o17ENJ\nRHEp2P0Y6xKMwVScB/swB+A55RRg+3bZ95gxAam+eyNHAkuXWtHXKadY6155BRg1KqiHd5fqOXQo\nsHixjA3UoIH0o1RKYkIzyExJcb1Pt61GTz1llX/4IZBPw2/soxf5onGao1gT7u9/oljDgJKI4lIk\nTAofyFF9PQUSSUnSYvnNN3LFPagnSA8/LAElIKNddOxorZs1q94BpadBZjzN7Zmba1Vl925pLDUD\nyoYNgZYtJdAsL6852TngodVo/HirHOIRbN3hiXLk48i84RcJ3/9EsYQBJRHFpUiaFD4Qo/pGTCDR\noYNVnjIFePll4MQTpQWvHq143gwy42k6hm3bpJ/k2WfL3JM7d1onkx06yDaffALs2SMtlXW2Gr3y\nilX+7ju/n1eg8UQ5OsTqFFHRIpK+/4liAftQElHcisZJ4c2+gWYAaYqowT6aNJHb//5XbidPttb5\nMdKrN4PM1NUnqkMHaZEsLAR69JD+pQMHAv37S7xbXg7ceCNw5pkywu7OnXLrts/piBFW+aSTfH5O\nwcI+etElEvqTx6to/P4nilRsoSSiuBVNqWd1tdBF1BX3efOAG26QclUVcOWVwPXXy/1vvwVOPdWn\n3XkzEfwll1jLXUlMtKZQ2boV2LdPAkatZRqRdu2AO+8Eunb1otXo44+tcna2T88lFNhHj6hu0fT9\nTxTpOA8lERF8m38x1LydLzNc82rWUlUlHRIB6U959dXWfJTXXAMsWeL1rryds3PmTODuu+ve7rbb\npMF0505JbU1IANq2lbknzRPMOl+jMM+t6Y1Im/OVKJJF8vc/BQbnoQwuBpREREHgafAYXy1c6L7l\nMS8P6NVL+mMBERRImEFXRoZ0TPQzCPNlIvg336z7dQJkm5YtJc01OdkahMf5tXTpm2+A006T8uuv\nA5dd5vVzCQeeKBMRMaAMNqa8EhEFkDeDx/jC12kgImawj8suA5YvlxcEAO64A5g71+fd+DLITF2p\nnoMHAw88YLViOo/m6tWUGmYwaT7HCBeIAZ+8EcgLKEREFF0YUBJR3Aj2Sa+naSs2bfIv5dTX0Vvt\nz7FFC/+fS709+qgElADwxx+St2oGlPv3S46pF3zpG5qa6rlPVHW13Pd7JNxff7XKTz/tVf1jXaAv\noBARUfRhQElEMS9UJ73eDB7jLp3SXbCblgZUVgIHD0qfv+Tkmo8zW+gOHZLU2Ig5sT/2WKs8dSrw\n/PPW/UWLao78WgdfBpnx1EJrBud+T6nRrZtVvuUWr+sfq4JxAYWIiKIP+1ASUUwL1UA13g4eM39+\nzdYvT8EuIOsWL5btUlMlOO3WzdpHXh7QvTuwY0cEDMbjLCUFOHxYylpb/ShbtpRJIX0QqL6hvvRH\nrWHXLqBVKyn/3/8B99/vU/1jkd+vZYxhui9R5GMfyuBiCyURxbT6tBr6wtfUVMBzC495rayqSgLM\nzz+X2GznThnj5swzgQMHJGDUOjTP0Wfz5gF//zsAoKSoGmn9+8s0G7t2+byrQPUN9XtKDXNEHwCY\nPt33A8cYX/v2xiKm+xIRiYRwV4AoVNxNCE+xq67J7s2T3tLS+h/LPniMK67SKe3BrhlwmoHgpk3y\n164d0Lgx0K+flJWSORRzcuTkdcIE2S4Uz9EXBQXAourRjvsvDFuBNSfa0lzNDo0+qu9E8ObUIL16\nSYvxzp1y27u3h5bcoiJpAgYkqrWPWBunfLmAEovMi0E5ORJUt28vtzk5stwci4qIKB6whZJiHq8i\nxy9/Wg395cvgMWbd3LXwlJdLDKMUUFEho5GmpgI9egAnnQSUlQGFhTK9o3nCHorn6C2r5TUJY4xl\nI7++HZM77sAQc6OPPgLOPTc0FXLic2vn4MFWecGCoNcvGvgy+q4voiV9NFSZD0RE0YAtlBTTeBU5\nvpknpGVlcpJaXl5zvb8nve5kZcm+8vKsfVdVyX3ndEpPwW5FBZCQIAGlc52TkoAmTYAGDeSE1p+W\n0WCzn2z/dNxFAICmRX+gbQfbk509O3QVcqOu1s6SEmD3zsPW1aiLLnIfuccZ8wJKfr7r9c4XUOpS\nUCB9MsePl3lHx4+X+5H4HR3KzAciomjAgJJimqeUwuJiWU+xq6xMgrOVK4EPPwTefRfYsME60fP1\npLcuvqRTegoEk5IkI1Tr2qO62h+Tnh74E/v6cj7Z/mDQY451acW7UJZiTBfy3nuhqZAf7MHNzrOu\nspYveC2MtYo8vlxA8cSfC3+B6MLg7z7iPd2XiMgZU14pZnHQiPhmnqRWV8uUh+XlEnz98YeMCXPc\ncRLgeXvSWxd7qp436ZSeUmSTk6XfJCDBpTPnINHvgWaCwPlku6C5NdVG/+zp+KLPnTjn43tDVyEf\n2QdKatuqCj12yFWn7Rk9MHdWCqfCsDEvoNR39F1f0kcD0YWhvvsIVrovEVG0YkBJMSuU/eco8pgn\nqZ07y0WFLVvk5BSQ0VGrq4GbbwYaNfJtv859vDydnLZo4XlfngLB7t1lG2/nXgzEiX0geDrZPn3D\nM3h4YoEVUOblue5wGkb24OaC1bc7lv/3xo9QXMC+cc7qO/quLxf+SkvrP+9lIObO9LW/NBFRrGNA\nSTGLV5Hjl/NJqn1Am/37gV9/lWk5Zs6UvojetE64ChxPPBH48Uf5LPlzclpXIAh4HyQGalqN+nJ1\nsv3ukHk4f40EZ7/tP8ra+Kmn5E2IEDU+N1qj59f/AgAUpbfG4ZSmYc1qiPTBalJT/XtNfLnw9+ab\n9R8IJ1CD6URSVkCg9O/fH9u3b8f27dsdy66//nq88MILsM9Z7moZEcU3BpQUs3gVOX65O0mtqJA+\nlOXl1oAsKSl1B4CuWjXKyoBly4CDB4GhQ2v30fX25LSuQNDXINHfE/tAcj7Zzs38uyOg7Fmw2tpw\n1qyICygBeQ/P+vRhx/Jnx25wLAdCP2JuLI9S7enCX3k5cOgQUFkpA1TVtwtDILtBRFJWgF12djYG\nDBgAAPjHP/6Bp556qtY2u3fvRrt27VBRUYGzzz4b2dnZIa4lxbpIvwBGgceAkmJaLF5FJs/MH7LK\nytonqVu2yElqo0YSCALeBYD2Vo3SUtnP77/LY7QG1qwBhgypeRLqa2uWp0AwEoJEX9Q+2bZGFrrx\n+9uB4cOB115zPzRtmNiDm3PWTnUsL27c2rEcCF1WQyDSMyOdqwt/5v9YXp6UMzKAF1+U4LI+XRgC\n3Q0iUrICXElJScHLL7+M2bNno2HDhjXWLVmyBFprNGhQ8xTw/fffZ6sj1UusXwAj9zjKK8U0vyYx\np6hkH5lzxgxg61Zg7VprRNfycmD7dpnf8ccfJfX1ww+tUV/dDfVvH7W0tBT49FMZ2Cc1VQbMSU+X\n+/ZjARzp0TzZnj8feOQRoGrAIABA4vZfgYkTrQ2d50UJIzO46Zy9yLFs/q0/OcqhzmrwZpTqQIx2\nGm720WKLiuR/bOdOWXfkkfKaf/898O23st4Vb4L9YE2xU9f0M+GQlZWFffv24c0336y17vnnn8cF\nF1xQK9BMTk6utYzIW5ymLb4xoKSY53xiO38+MGYMg0lfRfKJq6sfst69JWhctUpOQg8ckIBg715J\nc+3QQUZS/eMPOYE9fFj25RwA2ls1zBZOcx5IQFLxkpMlBXbLFutx7KMrzJPtxCdmWQs7d7bKb7wR\n+kp5kJUFjFpnNVMXNjvOr6kw6quuuQ6bNgUWLwbGjYv8eRvrYr/wl5MD7Nsn/1ft2wP9+sn/6dFH\nS3CZk+N6H94E+5E2xU4wnXbaaTjppJPw/PPP11j+1VdfYdOmTbjhhhtqPaZ///7o1KmTX8crKyvD\nJZdcguTkZCxdutSvfVB04zRt8Y0prxQ3oi1tMFJEQwqL80Ab5eVAQgIwaJAMvpOTIwFeRYUENy1a\nWNNxNGki6a+bNgGtWtUOAM1WjbIyCSrM6TwSE63HAnKCn5cnA/8kJcXWyWlAnHyyVZ4xwyrPmgWM\nGBH6+riR8cVbjvKDQ79ytJSFum+cp/TM0lLg888l8OrVSz6H0Z4Km5EBXH01sG4d0LOnpKU7T5nT\nq5ekl2/fLsGmP10Y4qkbxOjRozFx4kT88ccfaNu2LQDgueeeQ4sWLXDRRRcF7DiFhYUYOnQofvjh\nB6xevRqDBg0K2L7/n73zjo+izv//c9J7QhI6hCJIiQoIikoVaeJZsLdTORX19OvZEMHzJ6igKGIH\n71AET06w6ykWVBAR9ZSiZ4x0CAEFQiCk1/n98c5kZzezu7O7s5tNmOfjsY/sTqZ8pn9en3ezaR7Y\nZdpsvApKRVGGABcAh4F/qaq6R/e/VsDbqqqOCl4TbWxsmopwiuFyF+Svf5HpY680OnSA2FixKKam\nSg1K145qUpK4yE6Y0Phlp1k1tLwVETq/jtatpVMfH+/o+JeXyzZaWufUUp55Bnr2hK1bxec4nDj/\n/Iavdy87pcli4zwlq8nNFYt6QoKj7I0/mUrDjdJSuU9TUoz/n5wM/fvDiSfCr786pvsi9sM1mU4w\nuPrqq7n33ntZsmQJ06dPp7y8nGXLlnHDDTc0ip/0l127djF+/HiKior46quvGDBggCXrtWle2GXa\nbDw+URRFORd4F1gPJANTFUW5QlVVLU1fDDAiuE20sbFpKqxKsR8I3iyk2ousstLhupqcLMKvrk5i\nZsvKpMTHSSfJPEVFzvMUF0tHdpSbobGJEyV+q6xMOvpRUbJcWRl06QIZGfDHHyImDx2CYcNaXufU\nEubMgalTATh6492k3HtzEzfIhW++cXz/9NMm9Wpwl6W6qsqRDKpz58aDI83ZEmCm1FNcHNxyi/z2\nV+yHczIdK8nIyOC8885j8eLFTJ8+nXfeeYeioiL+8pe/WLL+TZs2MWHCBJKTk1m3bh3dunWzZL02\nzQ+7TJuNtxjK+4GHVFUdrKpqX2A68IaiKPa4u41NC8dbDJe7JDZWYibIX3uR5eSImExNdVgRIyJE\nONbWirCMjZWYrE6dHHGVxcXQsaNYPrp0MW5HZibMnCkudwcPOpbr3FlE6Omnw4ABcNNNsGCBHaPr\njoIrb2/4/spnHRu+H16b0xTNaczQoY7vY8c2XTvq0Ser0TpkFRVyb8bFQZ8+jZdxlwwqnGOgNXyJ\ncbQiEU44JtOxmkmTJrF161bWrl3LokWLOPXUU+nbt68l6x4+fDiKovDNN9/YYvIY51iKT7Yxxpug\n7Au8pv1QVfUF4FrgNUVRLgpmw2xsbJoWX1xYgoWZIP/ERBFz27Y54hv1lJRAr16y3J498kIbOFDc\nW0ePlr/t2sHIkZ5fdpmZMG+eLNO3L4wbByefLCI1Px/S0uDaa+0XpjsKCuCRuXENv6/46b6G77/d\n/FTTJ5PJ0Yna115zP18IMcpSXVAgImjIEONrzdUSoM9+7C15TziITiMR3RRJkZocVZV01EVF8t1P\nxo0bR8eOHZk5cyarVq2yzDoJcOWVV7Jv3z6effZZy9Zp03yx791jG29O9BVAOrBDm6Cq6tuKoijA\nq8B97ha0sbFp3jS1C4svQf5nnSWWQc19TXNlLSmRDKzZ2ZLNNSbGkYwjOlrm8yUZh2ap1LvgVleL\ndfOii2yrpCe0wYHdWcPokvc1bQ46BNzpOS+z8N2Xmjbu74QTHN+vuqrp2uGCkXvm0qVipTcaQNFb\nAszGQIdT4q1jKcbRI88/L+of5GR26CCfjh0d3/W/27c3HGGIjIzkmmuu4dFHHyU+Pp4rrrjCsiYu\nWLCA6OhoHn74YaqqqnjssccsW7dN88O+d49tvAnKjcAo4Ef9RFVV31IUJQKd9dLGxiYw3CWdaSrc\nxXBpBNuFxRcLaVaWiLojR8SSo9G5M/TuLVbEuDh52X36aWAvO62DP24cvPmm1MfLyZFPuGW/NaIp\nrjP94MCn4+YxeeEpAKzvfz0DN70MNHHcX16e4/uTTzZBA7yjj+c0m6nUTAz0xInhk3hL41iJcfTI\n6687vpeViQvGtm2el0lLE59/F26++WZiYmLo3r07Ke4yHvmBoig899xzREdHM2fOHKqrq3kyTO8f\nm9Bg37vHLt4E5Yu4Sbqjquob9aLyJstbZWNzDBFO1gFXmjLFvi8W0oQEcVn9/nsRllVVYo3UEpbk\n58sxzcqy5mVXUCDur5qYDVUnPBAx2JTXmX5wYF+HQQ3TVV3K3NjqEkpKkpqm83HSSY7vd97ZBA3w\nDTOWALMW/srKpk+85Q5/kiKF28Cc39xxB3z7rW/LHDkiH3A8IIGsrCxmzJhhXdtcmDdvHjExMQ2i\n0naBtbHLtB17eBSUqqq+i2R5dff/ZcAyqxtlY3OsEE5lOYxoShcWXy2kmvjdv9+7+A30ZRfq7LeB\nisGmvs7cDQ4M2rCw4fuQrYtJSroteI1wx6FDEqcGMGUKKEro2+AH3iwBniz8VVXiql1RAevWwXHH\nGW+jOWWMDeeBOb+46CI5Mdu3N3VLAGehbsRjjz1GdHQ0jzzyCNXV1cyfPx+lmdxLNjY2gaOoAQR7\nNzWDBg1Sf/zxR+8z2tiEKQsXuhdM+fmSjCNc6smVlYXehUUvhIxEoqsQMupUWi1+S0sltEkTZq5o\nGWWfe86a4+TrMTAiHK4zfRtGfPUQZ65+0On/xRldSC7YFdxGGNG3rxR2BDmwEd5y1TUPjK5TfZ1W\nrVxO27ZS5sbdtbpnDzz6qCQC8mXbobQSWnGPhBV1dfCf/8iDyxfat4dXX5XMYRbR4oS6zTGLoijr\nVVUd5H1OG39oGW9OG5tmSDiU5fCFpkixHx8vpTj693dkudy3Tzo0Rp1EzWrz3HPSCX7uOetLePiT\n/TaQ7JlmMt16a284XGf6DIBfn3p3w/T8tGwAkg/tDm4DjNAUFogZroWISWicxr+sTGqw7t3rqMF6\n/PFQWAirVxuff18Tb/mSUdZKAr1HmpyKCvjnP6FrV7GQR0b6LibPO08Cui0Wk97KNtnY2NiA9xhK\nGxubIOGLMAl3dzOrMRoVP/lkqfnYpYv342Hk0mqV1cSX2M5AR/d9yXTr7piEy3Xm7D7tOAEpUeWO\nmVQ1tC6n557r+P7KK6HbbojQx0D//ru4uiYliWUyNlZCR6OjYcsW0dUDBzov70viraZyq7biHgkV\nDc+gqsMkLn4BZs+G8nLvC3oiLg6eekpG3iy+d0Lt2m9jY9N8aTnDsTY2zQC9pUovTIwIdlmOcMXd\nqPjGjfCPf/huSbPaamK2gHNZWeCj+1bUAg2n60xvQa7uL5leUwp2OGb4+uvgN0Kjuhq+/FK+jxrl\nyODUgtBEfP/+sHWrw821c2cYPlwEVp8+khx0yxYxlIF/teOaykoYDvVyvVG4KY+cUf9HYpJCm7YK\niZ3T4YEHjMXksGGwYoWcBFWFw4eN68MA9OsH69fDzTdbLibDxbPBxsameWALShubEGAkav79byl9\n502YNPWouoY/bpv+LGNlxzRYLltmCjhbsR/+ikHXgQszAjiU11lCAkQ//1Tjf4Sy5MCkSY7vH3wQ\nuu2GmMxMuPRSiSUeMwYmTBBrv3a+ExJgxAiZb88e727lRjSl+AinAZMGNm2Sg64ooCikD+hC9qrn\nDWet/NNF8OOPIh5VVfySzz7b4X6dlibWR1fuvFMeZH37BmUXmoNQt7GxCR9Mu7wqijIYOAtog4sQ\nVVX1dovbZWPTYvDkChYZKZ+mKMvhS/t9ddv019XTave1YLlsect+Gx9vzX74munW3XEfPrzpyr+4\n5YwzHN+joqCmJnTCrq4Oli6Vr736UFCaSCLNvMyEBxIT5RDHxRkLhNhYqdc6Z44cGl8TbzWlW3VT\n18tFVWHlSnFf/eorr7P/MOgWvjljCkdadXMkxBroZaE77oBnnhGretu2sHgxjB9vSfPd4Ytrv42N\njY0pQakoyj3A48A2YB+gTw3bfNPE2tiEAG+ipm9f8WgKdVkOM/gTFxVILJWVHdNgx1Z5Kttw4IB1\n+2G2Fqi3437LLWL8CJvrTO+iV1MT2m1Pndrw9Y6BX1M6Tb631OyVZkWXv/vd1OIjpPVyq6th+XIR\nkFpCJzeoMTG8n30/v555K1XJGY3+b/oZ1LEj/PnP8McfEuvrS8pdP2lyoW5jY9OsMGuh/Btwu6qq\nxj4bNjY2hpgRNTk5ElPmrp5cU+KPhS8Qq6CvHVNPiXZCZTUxSgBkZQfbbC1Qb8d9zRrPdQubhOnT\npWOu548/oF274G1TVWHuXADKYlJJ7Z5BepjVfw0GwRRdvoiPYJQUCWq93OJiycA6e7akxPVE585y\nTV97LcTHc/AA/GcadHYTAunTM2jePEhJ8StWsqKigkWLFvHWW2/xv//9jyNHjpCYmEjPnj0ZNWoU\nkyZNonfv3o2WC6lQt7GxadaYFZQpwIpgNsTGpiXii6gJdUkOb/hj4QvUKmi2Y1pWJh6Lnlxqm9Jq\nYvXovpki9r4cd61jf+BA6GoFGjJ1amNBuWABzJwZvG0+5Yjd/Mdff24U39pSs1eaFV3+Cj5v4mP4\ncIkjD1Y9Q2/3iGn++EPE2xNPeJ934EARkOefb/iQ8eUZ5PW4p6aa3wcdO3bs4E9/+hO5ubmMGDGC\nO++8k/bt21NSUsKmTZtYtGgRc+fOJS8vj44dOzotG1ShbmNj06IwKyhfB8YD84PYFhubFkdTu4IF\ngj8WPiusgmY6pmZcaq0SdcHqYPszum9kDdXaCOaOe1lZGBUqT0lpPG3u3OAKyrsdNTCLUrMa/Tuc\nykxYjSfRZTbu2d394El8DBsm4wShKCni7h5xS26uBI8uWeJ93rPPFgE5ZIgpS6GZZ1B2tvfBMX8p\nLy/nnHPOYfv27bzzzjtMNHjoVFRU8NRTT6G42R/tmrn00mqKimrJzIzzWKLIauuzWYqLi0l2lw3X\nxsYm6JjN8roHmKkoylJFUaYqinKX/hPMBtrYNGfCMcOmWfzJnmhFxkWtYzp4sGSbdM06uWaN+eyp\nZrKxuiPQciPe9sNK8Wb2uFdUWJ/11p9Mvk6ceKLz72DWIahPxAPwwi2/GM5yLGSvTEhw9ogwkw3Z\nzP2gLwvz6KPy94YbfLtng4qqSmmaCRMaMrDSt697MTlpkghOLQPrihUwdKhPbqeenkGRkbB5s/VZ\nqDVeeuklfvvtN6ZMmWIoJgHi4uKYNm0aHXTuDTNmzEBRFHJycrjrrrvo1KkT6elx7NjxXcM189JL\nL3HyyScTHx9PSkoqffuO5dJL1xpeG6tWreKcc84hIyODuLg4unfvzvXXX0+Byw4uX76coUOHkpyc\nTEJCAoMHD+att95q1GZFUbjuuuv44osvGDp0KElJSZx77rkNwnjlypWNlqmsrCQjI4NRo0b5eTRt\nbGw8oaiq95w6iqLs9PBvVVXV7tY1yTyDBg1Sf/zxx6bYtI2NafTJUowsVeEcr7VwofvR9YYMhTcG\nvow7ysqcLSmlpdJZ0awcrtTWimh77jnPlhdvLltWnzPX/QgGZo47WHdu/M3k24gvv4SzznKeVl0t\naUmtRicEHvi7avoaaul4u3ays2H3bv/uB3/uWcuorYX33hO36g0bvM8/dapkVLU4htfdM6i4WCy0\nVtyPRowYMYI1a9awY8cOunXrZnq5GTNmMHPmTPr160d8fDyXXnopiqJw9tln06tXL6ZOncrjjz/O\nqaeeyrnnXs5HHxXz88//pKJiP5df/j7du09ouDY6d/4HU6bcQseOHbn22mvp0qULeXl5/Oc//2Hx\n4sX0798fgL///e/MmjWL8ePHM27cOCIiInj33XdZvXo1zz//PLfeemtD+xRFITs7m927d3PjjTfS\np08fAC688EI6duzIxIkTef311532admyZVxxxRUsXbqUK6+80v+DatNsURRlvaqqg5q6HS0VU4Iy\nXLEFpU1zwR9REw74I6ysFmN6N6rSUrGOdO7ceL6qKtEh+/eL16SWCFFbXlHEyGBG1FkpikOFt+N+\n553w0EPWdOwtPceq6qi5p/HOO9Zn/Pj004ZSCx9M+ZoPCoc2m/MbTFdCM4Jv1Sro0QO6dm38f2/H\n68AB9/esxp49YtEMOHlpeblkQZ09G/bu9TxvRoa4r06eHLKYA/3AkqoGX2hnZGRQU1ND0axZ0KeP\nxHympVFbW8vhw4ed5k1MTCQ+Ph5wCMoRI0bw+eefE6Ub3Nm8eTN9+vThjDPO4Msvv2TJkhi+YdkU\nKwAAIABJREFU/x5SU/fxwgt9iYtL4/bbtxMREcnmzfm89dZx9Ox5HOvWrSMtLc1pm3V1dURERLBh\nwwYGDhzItGnTmO0SU33BBRfw5Zdfsnfv3gaXVs09d+XKlYwePdpp/iuvvJJ33nmHffv2kZ6e3jB9\nzJgxrF+/nn379hEXF+ffAbVp1tiCMrj4PASsKEoSYpX018HJxuaYw7KEESHGn6QMViVyMBLhAwaI\n26Y+JrWsTLzS8vOlk1ZWBm++CaNHNy6ToVnQPB37YJcb8Ya/4sHbca+rk9+BxLdqbXvjDQvrexq5\nD86da72g1NXtO+PeoXz5SPhnr7TMCuwBb/G3tbUiCk891fj/ZhJtaeuxPI780CFRXLNny2iSB+p6\n9SHigfvh0kshOtqPjQWOPr7TytJC7jh69Cjt2rWDjz6C//s/mdizJ7k9enDixx87zfvEE09wzz33\nOE274447nMQkwPvvv4+qqtx7771UV8c0PCsjIzvQv/8kvv/+af74YyMdOgzi0KE3qamp4r77Hmwk\nJgEi6geSli5diqIoXHvttY3cYM877zzef/99vv32W8aOHdswvV+/fo3EJMDkyZN5/fXXWbp0Kf9X\nv8+7du3iiy++4NZbb7XFpI1NkDAtKBVFuRWYCnSs/50PzFFV1U7UY2NjEp8TRoQB/ojhQAW0u5qK\nmzZJEkZFEYtJWZmIxspKqeVZUgI9e8K338JLL4mrXrdu1tbCrK0VUbt/v6zbG2YFohXiwdNx1/bL\nn469vm3V1fK3Z09IT298Xv0S3HfdJZk1NdatM7mgSX74wfH9/fcbxPeyZbKpqCjRGOHkNRBIPVdf\n8Cb4Kirkb73xqhHehI+lGY937oTHH4cXX/Q6a9XQM/l80DTeLhrdMGhxWhlMLAqP8xuKhG0pKSkc\nPXpUXMo/+UQmbt1Kt61b0aIMfwLuAbkZYmNh0KAGcX788cc3WufOnRIBlZ2d3ehZ2aZNNgCHD++g\nQ4dBHD68FYCePQd4bGdubi6qqhqWLtHYv3+/02+jtgGMHDmS448/npdffrlBUL7yyiuoqsoNN9zg\nsR02Njb+Y0pQKooyHZgGzAXW1k8eBjymKEqKqqqPBal9NjY2YYI/YthfAe2ppmJFhYjKuDjpjOrF\nZEyMiMjcXBGbRUWNk4D4WwtTs4Tm5Yln3YwZkp/DneDzRSBaLR7c1cb0p2Pv2raKChEX+/aJgWj4\ncOdl/LKs3H+/s6C0Gr157bzzGs7Nxo0iJGtqxG0zXMQkBFbP1Re8XReHDkHr1o29kjXMlL7wK+Ox\nqsL69eIL+847Xvej8oLLiH3wPujf33HNFkOHjubvp1BmKbW6tJARJ5xwAmvWrGFnnz7ox74SAc22\n19AJXL9ePtAgwBNmzoRLLoGLL3a7D+BeFGsRVd72QVVVFEXh448/JtLNSF52drbT7wQPK73xxhuZ\nMmUK69evZ8CAASxevJhBgwbRr18/zw2xsbHxG7MWypuByaqq6qOcv1AUZSswG7AFpY2NjSV4cznt\n1k06Kn37inUyPl6SW3TuDL17i7UpP186wfn5cNJJzh5unixoWodywACxhmodPc0SWlUlHetevSAr\ny30H1VeB6K948LUD7E/H3rVt0dFyDJKT5bjn5kpoloZflhVdrFMDW7aAzgrhd2d/yxbH94UL3Z6b\njRth69bwSJIVardrT9dFq1Zw0UXw66/+lb6Ijxd36zvvhM8+8+AGX1cnVrTZs+Gbb7y2+dtT/o/v\nzribwuQujtjdTpCJ7/dTKFyLjQhGaSE9F198MWvWrOGlb75hVmam+bSxmhJ84w15aOkEZffukoMx\nJyeH4447zkkUHzz4KwCtWsk8UVFy/27evIl+/YwtigA9e/bkk08+ISsrqyHBTiBcd9113H///bz8\n8sucf/755OXlMW3atIDXa2Nj4x6zgrIN8IPB9P8Cba1rjo2NzbGOO5dTLelOdLRYJ8eNg59+kkQe\nMTEO0agtr4X+VFU5C0ojC5prh1KzglZUiIDNzZXviiJeYX36eO6gmu3QaiU3vv4aunQxPh5G4sHf\nDrCv8a1GwiYmRvZj714Rla6i3W/LyvHHO4u/Z56BF14IvLPfq5fj+w038O7C0Fj+AsGKeq6+4O26\nABHhRsJHK31RW+ss0L/6CpYvh7Zt5X4FOW8PPii/k2KqSHjv33DGbFHynoiPh/vvZ0niX/n6l1bO\n5w7nc3fllb6J8VC5FhthVby5IXV13HDGGcxv04YnHnuMQaqKoSHY23o6dxaBWW+1PO+885g6dSpP\nPPEEZ599NhMnRpOTA1u2/M6mTa+QmtqF1q0H1GcHvpiNG6cyc+ZMhg0bT2RkitOAkGaZ/POf/8xz\nzz3H9OnTeeuttxpZKffv30/btua7mpmZmVxwwQX8+9//Zs+ePSQkJNiZXW1sgoxZQbkFuBJ4yGX6\nlcBmS1tkY2NzTOPqRqVPugPSt0lMlP9FRUnnVN//0IRNTY38jYlxXr+rBc1dh1JRRFRWV8Nvv4mQ\nzMqCE05w7sS7dlBdRZheCMfEyPyrV8v0DRvEffbHH+HwYRGqrgLBVTwE2gH2Jb7VnbDp0wcOHpTl\nVdVhuQ3IsvL001IfUGP+fApmvhBYZ19fAPbhh5s84ZJZQhFf50p8PJx/vggZo2zI7oSPUemLykrY\ntk2u6dhYOOUUiCo7Sqt/LqD1bbOJrzrquTFdu4ob9NVXN6jR0lJYc7v3czdmjPz2NCAFjvvJ3eBP\nmzZSKmXZMrjtNs/NDYSA4s3LymDtWli5Usy/P//s9O944CPgT8CFwEhgLNAOOAr8BixHRLlhEt75\n8+Hmm50SZ/Xq1YspU6bw+OOPM3z4cC677DLi44v55JN/UllZwrBhS/njj8h6UdyJ3r2fZurUW+nZ\n80R69LiGpKQupKfvZdeu93n11UX079+fU045hRkzZjBjxgz69+/PJZdcQocOHfj9999Zv349K1as\noKqqyqfjOnnyZN544w0+/PBDrr32WlJSUnxa3sbGxjfMCsoZwBuKogwHNF+UIcAI4JIgtMvGxqYZ\nYWXskT62KD3dOelORAQcOSL9mxdfFHHn2pnVLGiax6RrQkdXC5q7DmWPHvK9rMzRsdcsMnrh5yr4\nNBFWWekshEG20aWLuNMCdO8u69bc3g4ebByT6CoerIqtMxPf6k7YJCRIO3NyxLh04ICI+4AsK7os\nrBoB76veF/f++yk96FiHEVZb/vwlFPF1Gp4swPr1GwkffekLPbm5kFqylztL53HZinmwwksjBg+W\nEh5/+pPbYE1PVltNLNbUOLw13Q1I1dXJs6SiwtgCr5+/rs6Rz+nyy4Pr/mp4P6qqNOTzz0Uwrlwp\nQa0+0B1YDywC3gKeBIqQOMoewA3A9UCDHb9NG0nMs2IFnH22YRbmOXPm0KNHD+bPn899991HTEwM\ngwcP5t57/02/fsMaRHFBAezdewtjxx7Hli1P8Ntvz1JTU0lCQgeyss4iIcEhYx988EEGDRrEs88+\ny9NPP01paSlt2rThhBNO4Nlnn/VpnwFGjRpFjx492LZtG9dff73Py9vY2PiGKUGpquo7iqIMBu5E\nBrsAcoFTVVXdGKzG2djYhDfBij3SYovWrRNhlpoqnbujR8VgccYZUFjosKS4uuKlpkqHJjXV0bE0\nik3yZLEqKxNReviwLJOaKtP37nUWfq6CLzFROqtffSUdXU0I19VJO3/5RX537SrtiowUy+fevQ4R\nqtdBevEQagubJ2GTkCDbmzBB8nYEXArHoOO6YW0Z7bOMV+p1X4uKHBbKv/4VFKVJLH/+Yia+LtCB\nHE/W7k2bxDKXleW8bnelL9oc+IWhax/jpP8t9brdTZ3PpfeSacSNPM24bEw9RvvnrmRQXZ1Y+z/6\nyDHQpA1I6e/DoiJZdt48uOkmR/u19bnOryiSNXrbtiC5v9bUSDKclSvls2aN/+tKShITrfY57jhQ\nFOKBW1WVW7t1E7OrEQkJcM89cM89zEhOZoaXTd14443c6GY0R3Pl18oLnXbaWE47bazTPPn58ozU\nJ2s955xzOOecc7zuppn66YqiEBMTQ69evRg2bJjX+W1sbALDdNkQVVXXA1cHsS02NjZNiK+d02DG\nHmVmShKPq66SjqLWCdQS7yQkiCtdTo7EZH36qbOoHTkSHnigcR1KVwuaJ6tHbq709ZKSJMHPwYMi\nKlNSRNhqws/VWqS54x45IkJAIyJC1rVjh3TS9ZZTzYW0okKKvJ90krELaahj68C7sLnsMgs72bfe\nCi+80PDztG2vsbPbZMNZve7rWWc5vtdbOMxY/gYMcLjyBjvTpyc8xdcNG2bNQI6RBbiyUkribNki\nMcq9ehmsW1Vh9WoyHp7Ny6s+97qdTzrdwILke8mL7QnI+XqpHfRxoyXdDVTpPRJcxV9xsZSy2bTJ\nMVCzbp3cU2lpjudIbKxjQOqLL2TdmkjNzZX1ad6RdXUiKLt2lWPid3zt4cOwapXDNXXHDj9WItT0\n6MXmzmP4InIsW9oNpzwm1dy5VxQpzvvyy87TIyPhhhvkQap/YPlB0MsLmaS0FD755Et+/fVX5s6d\na+3KbWxsDHErKBVFSVdVtVD77mkl2nw2NjbND3+tjMEuaxAfL53Zdu2kk6dPvKNtC8Ri6S4GqVcv\nz7FJ7ixWVVWyD4mJ0jnJzhYrRVGRdF6TkqR8SEaGdFb1MYOlpQ4r6dGjMq9moTxyxBHTqY/n0lxI\nc3MlwcnOnbL/mgCOj3dYg4zaq58O1lrYgpo4xJUHH3QSlON+mcsLoyb7vq8VFY4SCBMnOh0sdwJ5\n506JmS0vl4yvEJpMn54wcjMtK7NmIMedu6fmYt66tczTujX88G0NMe++zVV5s4nKccTpuRnXYGHb\n+/lP19vZVdaG4mK5R5KTITVCBmkOHoTnn4eZM30roaMJxfx8Ef9VVXJMiotFKGZny72Uny8u67/8\nIut0NyC1cSOcfLL8bdNGlktOdrSluFieZ9HRXgSQqsqNq1kZV650FPD0h1GjYOxYsTL269dw/eqP\nTfv2kOnruXcVlBdcIGVZPNR/NEtIyguZaMOjj37J999v56efHiUurjXR0TdSUND0mZttbFo6niyU\nBxVFaa+q6gGgAONkYEr9dHfvFRsbmzDGXyujL66XquqfW542b0SE8XKugsJdTKCnWEF3Fqv6ut6U\nlsr01FSH4NNiscrLxZJ4zTXOx6i0VETuyJGNYyg7dxZDgaI0zj6bkAD9+8to/syZ0sEtK2ss5Kqr\nRfxoMZ56rIyt0xNQ4hBfaN3a6We7o1v5/Xc/4ggv0YX2v/6607+MBHJFhVig2rWTrL6hzPRpBv01\nvHSpNQM5Rtbu3FwRk22Sypjwx8tctWsWmZv2G6+gnrrWbXmv73Q+73I9GVmJREZK3OG2bXKt6t3F\nQa7p44+X7Ri11dtAVd++MiizZo0cE33JIO0YtW8P//uf3COdOnkekBo1SuKAd++WQR9t8EcTqVoV\ni9i6cvrsW4c6dSWsWykZtfylXTuHW+pZZ7l/kLoQ8CDeqFHy97TT4IknpJAu1sTAh6S8kAe0d9ny\n5Q+xf/9aWrfuy/jxS/j55xR27Gj6e9jGpqXjSVCOAjTL45khaIuNjU2ICaT+oTavEZGR0klfsEDq\n12n4YvEJVWISI4tVRIR0fNPSHB3KhATpEJ10kojJQ4ckAaI7q2dsrGN+fYdWUaSz7Zp9VtunoUPF\nxc6d2N+5U9oLzuLHqtp1njCTyCdgsrLE/FtPUqJKfr5ivk5fbS18+KF8P+00OREuuArkN95wrjsK\n4VdKBKyNodVb55MrDnLKumf4f+tmE+GlkERd9olE/H261CaMiiICGF4Ah3QCPS1N2rhnj0NM1tXJ\nsY6JkXsqNrZxW83sX06OuLP/8EPjkkEaWgbo6mrvA1JduojYWPa6St63+xh6+AtOK1nJ0NLPSKs6\nAN97Po5uGThQBOPYsWLO12qn+Ikl575NG/HzPfNMUBTLYuBDWl7IDdq77KabVjf6XzjdwzY2LRW3\nglJV1a+MvtvY2LQMAumgeHIVra4WMblpk3QeOnf23+IzcaKsZ+tW6ZzEx3sWFP6MtLtarGpq5DNw\noHRGXfc9OlqsWUOHGneGXIVwdLRzh7dVKzkm+/d7LmbuLftsRIS4k2kExQW1KXjmGacTO2PCf3kz\nb7B5d9tbbnF8/+wzj5tKSBAL+saN4V9KBCyMod22jcQ5c3h50Utet7m9+2i+HjqdXV1Hsidf4dFH\nRZfoMbJg797tqLWq4WpJdG2r2f1TVeOSQRq1tfL/U05xHihQ6mpp/8dGum9fScfclfT5fRUsggTg\ntvqPaeLjnRPgHH+8xwRDgWLZua+3UloZAx/S8kJutt8cygHZ2LRkTCXlURSlL1Crqurm+t9jgGuB\nHOBxVVVrg9dEGxubYBBIB8VVNLmm5t+3T0al27RxrMdXi482en7kCOza5bBIdOkiA+x6QRHoSHtm\npsxbWSmJPKKjRVT+8Yf8350l0J2A9ZTIJjPTe8Igbx2kbt3kGM+ZI5afoLmghpCGYzn6fPRjAWkv\nP8mNb7xhzt1WVWHhQvmeleUcEOdhuxD+pUTAz/qUqio36qOPwgcfeN3Gp62v4uWMqeSlnugU92bG\nRVFvwc7Kkhjm1q1lWVdLotH6zO5f27aSPOnbb+V5oLf2x1YUkbx+NZfXrKTXVyuJ2r7F6z6741B6\nD7Z1G8OPaWPI7zGSux9p1WQDNlZnKLYyBj6k5YUMaE73sI1NS8VsltdFwNPAZkVROgPvA6uBW4EU\nYFpQWmdjYxM0Au2gaKJp2zbpLFRVyTqLi0XkxMWJaHJNxmBmtFg/et69u2QK1DKgpqU1FpOBjrTr\n13HccY51KIqIQFV1eKyZybJpJpGNp4RBZjtIdXWNrUXhgC+W4saDAQpOeSjffBMw6W47Y4ajDav+\nS+kB721oTqVETLmBn1pHwhcfwaxZMqMXym++k3e73cWnOZ347TfJftqnJwx3sST66qLoj8u6mWWy\n+6r8Z942Et9fyaTNKzmj5DMS1DJzjTJixAiHa+qAARQciTK8b++2WAD56klhZQiA1Ra9kJYXcrN9\naB73sI1NS8WsoOwNaBHoFwPfq6o6QVGUM4FXsAWljU2zI9AOiiaa7rpLrIhancR27UToZGQ4l9fQ\nMDNabDR6HhcnwtJ19NyKkXZP7qVxcZIs59JLfcuyaSaRjZFI0jqb1dXeO0iKIqP+gSTT0G8z0PX4\nail2Nxjw9fHXM2zLy40X8MZDDwFQGxnN7bPammpDqGJ1rcLV+h2jVnLipn8x5KtZtC7ZBZ4OW3Iy\nTJ8ubsH1wY2lBVD6rvy7Uye5ZwsLHddYIPG5ZmppGi3z20+VJPzwHYOLPqPHzpV03PeDbxvW07o1\njBlD5YixFJ96Fgk9O5KQ6N41NZgJqFzvj5oaiSu8+GKxtHrDn+NpRDAseiEtL+RCc7uHbWxaImYF\nZSRQVf/9LGBF/fftQFvDJWxsbMKeQDso8fHixnbOOWJBTEyU3wcOOFwxXZMxeBst9jWDbKAj7Wa2\nt3Ej/OUvsg5fs2yaTWTj2tncsUM+Z5zRePmdOyUW6b77HNP8SaZhVVIObV2+WordCfnv//Qww+bp\nlNGhQzJC4YkXX2z4+vcLc32yVlvVUQ8FmVFHmJXwAjELZhNd5cUy16MH3H8/XHmlYRYo/TnLypL9\n7tpVjtcnn8hASlyc/y6Kniz1E0//g4xPv3CU2agPCM4EnvRtM+xr258N6WOoHTWG8x8fQqma0GiA\nJLb+YxarE1Dpj3VamtT5zMuT47JoEVx/feOM0a5YVcInGBa9kJYXMqA53cM2Ni0Rs4LyF+AWRVE+\nRASlZpHsiJQUsbGxaYa46wScfLLkboiP97x8Xp6UX9Mn3ujUSdwwDxxwZHjUl8jwNlrsy+i56zRP\n81qxPSsErBFGYiwtTTr1K1bAuHFiXNJnec3ODiyZhpVJOcB3S7EnIV+S7FJg/R//EMuaJ3TJeGL7\nHmeqDRpN3Rn2SF4ePPkkPPtswyS3RuQhQ+Q4jR8vIw5eMDpnyclSrnDXLjjxRDmsfgmr2lr4+Wcy\nV67kxpUrufHzzx3/W+TbqtSYGGpHjeHNw2M42H8Mh9v2RlWc96+2VgZg9ixy1BGFpq8lqqEd6/R0\nCQWoqpLnY6tWUifznXfkVHu776ywoAbLohey8kJuth2297CNzTGAWUE5FXgPuAdYoqrq/+qnnwf8\nNxgNs7GxCQ36TsDu3ZJVfsMGR5k1dx2yggIpTn7woHiVRUWJVXLvXnHFjIyUjlJdnRhHzI4Wa6Pn\n5eWybHS0s3FFP3quqo5p/o60+zJar4lYq5M/aJ3NNm3E0hsdLR37c86RJEHffeeoPR4RIWJSX4fS\nn2QaViblMGtVvuACOWeJid6FfEliW5JK62sgzp1L6d+mu3fLffvthq/zbzCuD+hN7DdlZ9iJn36S\nBDrLl3ufd+JEmDYNBg3yOcOot3PWubNzyR9DiotFHX32mVgZc3N9aoMT3bo5YhlHjnSySCtA4QH4\nfBp0bme8eGWlZHQFibsOp1qi+mO9aZOIyZQUx/+1Wo1Hjpi77/Qu6v5eo8G06Plq3bXK5T5s7mEb\nm2MQU4JSVdU1iqK0BlJUVT2s+9c/gACi4W1sQodVL62WSlmZGILMWqzefVc6cccfL52S1FQROykp\nEoelZSsFR7ZUM6PF5eUSP/jee47OQKdOkoI+IaHx6HkgI+3aNTFgQOM6hEbrsELAGrVh9WrpTK5f\n75iu7fOZZ4rl4oEH5Lq9777ALaRWJ+XwJg4rK8WS/be/OazeAwaIeHZ3LD8a+wyXvXu5/Dh8mNtv\nd/yv0SDHxRc3/O9AxwGGbTAr9kNSa1NDVWUEZ9YsuQi8cdNNMGWKZI4KEFOWeVWl7JedJGxc6XBN\nPXrU/40OHeooszFoUOMCkh7wNvCTkyMxiV27+p9ZOlhox7q2VtrimnxYMyanp3u+76x0UQ8Hi56V\n+6MnpPewjY0NYN5CSX1pkMMu03ZZ3SAbG6sJ1kurpeGLxUovSNLTxUpZVCQdJa12465d4jo3darE\nYZkZLdbcMOvqRKDW1Mgy+fniQtuzp6PEh4Y/I+2u10RFhYjeigr3JUIgOK5ieXkiZmNjHcdPs/Qe\nPChZcqOinAVtoBZSq5NyeOrsl5WJVioqEj0RFyfzbdokx1xRnK2tGp+3uoTLuLzhd8d2tURERzYe\n5MhxlEmeO/7z8M70WF0Nb7wBs2d7N/9FRUn84223BeVB1TCoVlVF1u/fc9yOlXTfsZLO+d85z/iK\nDytNT3cIxtGjJTDTotqMnu69qirJNt2jh7FGtaoOob+Dktq8FRXy19Ubua5O/sbHy31idN9Z7aIO\nTWvRC8b+2NjYNB1m61DGAX9D4ifbAE6PQ1VVT7K+aTY2gRPql1ZztYL6arHSCxKt1pi+DiWIG+xt\nt0mf0iyaqO3RQ9qiX+eRI9IRcz1n+pH2r78WERoVJW0yGml3d00oiggc1xIhruuw2lXsiy+kzRkZ\njo6m3tKbkyOZc61y8QXrk3IYdfarqkQ/5eRIJ/n44x3HVRuo0IR8XJzBsUx27nX32vUpW3tOaDzI\nMXlkwzypF57Fb+GU6bGkROpizp4tF54nOnaU+MfrrrO+kQcPyoWmWRn37CERzwlh3XLiiQ7X1KFD\ng/qgc32eurv3du+Wez4723g9gdYhDHRQUrs/1q6V33V1zqKyuFiuWW2a0X1npYu6K2Ytela+34K5\nPzY2NqHHrIVyPjAReBNYB6hBa5GNjYW8+y4cPiyxaVrnORgvreZuBfXVYuUqSBISpDTISSeJkIiM\nlD6smVT4+jboRa27dWodn9JSsVqCoyOmGUMUxSG+XPFWImTAAM/10qx0FSstlQQiPXpIkkstiZFG\nUpJYXiZMsMbFV8ObtWf3btkfXzrf+rqkhw/L/tTUyLoyMoyvhW7d5DwNGOCI2QXZ9pgx8O2HV3H6\n9qUAnLFuLlt7TmiYp317yF/xs2OhZcuYeFYTZ3rcvx+eegrmzPE+74ABIiAnTnR/45mlrk52XItl\nXLnSYfbykVolkl87jmF7tzGMeGQMrYZmm0rwYyWenqdG994ZZ8jfWDdpXN0NkJgRSFYNSmr3R2Ki\nDBSlpckpKi6Wdvfp4/7+9cdF3UrxZ/X7zddM3s1xkNbG5ljDrKC8ALhEVdXPvc5pYxMm7N4NixfL\ny0gTGvpYPKvcoFqC646vFit3giQ6Wj75+b5bg9yJWm2dGrt3S/bTt98WQVlbK26VWVliMNGyoRod\nfzMdmQ0bYNIkz223ylVM2+fsbKmMoXcb1jqbUVGScVfDKgup63oqKx2CMKr+zRAba77TmJkpGUH/\n+ldZpxYrmZIi7frxR7Ea649TZKSI+EsukWOuP5YHDsA7A2c3CMpuu1Y5bS8yEma8188x4bLLyCTE\ncWG//SbicfFi7/OOGycCctgw/9xAS0rEBK8Jxl9+8X0dGllZDa6ph/qN4p2vWxser1ZN8Nwy8zw1\nuvdiYswPtPgikKyypGkDUf/6F7z0krQpPl5ORc+eUvvT3f3ry4BfWZm14i8Y7zcz+1NRAQsWOHuG\nN6dBWhubYw2zgrIM2BPMhtjYWElBgeS5KCiAtm0dHfT8fEdcmta58NcNSqMluO74ExtoteunGVFb\nUQFz50pnKTpaXEF//12sajt2SEKfUaNk9N9d7CdYFzsYaPKHhhp5scZuwx07itVSb92zykKqX8/q\n1RLTWFMjndu+faVNvnYa16wRq+Npp8k5Afj8c0cWy9xcsTpr6AcqXI9lYiIUJrn3l04+tMvxQ1dS\nI2hxYaoK33wjGVhXrPA+/7XXwr33ysE0u/7du+WAaaLx8GHvy7lDM/OOHQunnGJYhxIgA7ixd/hk\nxjT7PHW9XlyfR9rz4tAhKc2hPY98EUhWJ6/KzIQ774SLLoI334Sff5bBmyNHPN+/Zge0+pEpAAAg\nAElEQVT8Kipg3jxrxV8w3m/e9qe4WJ5H0dGSbbg5DtLa2BxrmBWUjwN3KYpys6q6cySzsQkftAyk\n+pd8RIR0zouKpGPbv79MDyRJh9UdjqbEV4Hoa+yiN8yI2shIyRYaGyuWr9paOZ+aW9SOHdI569dP\nLNGuxz8YBb0DwXWf9S6+MTHiQTl4cONrxyrRpK2nslJ+d+3qbA32pdOovxciIx3r6dRJEgwlJ8u6\nTjrJXE1S7diU/SuFhGrJLJp2ZBdH0roCcNuLuoC5225rtHzAmR5ra+GDDyT+8ccfvc8/ZQrccYf7\nhwFIUOmPPzpcU7/5xv/2paY6J8Dp1i2gBDjhkBkzkOep9jx69VXxXjh4UKa3aSMCTsPX5GPa/43w\nNzYzKwvuvlusiWbuX7MDfp9+aq34C9b7zdv+fP+9DAJ07WrNftjY2AQfs4ERY4DLgF2KonysKMoH\n+k8Q22dj4zPaSzArS15AWu1ADa1ju2dP4Ek6fOlwhDtah2zwYIl/27NH/p52mvcRYTOxi2aYOFE6\nV/n5DnGnpdqPjRXhU1zsEHwVFXJsq6ocbpoVFdL2NWscQkk7/lpHRrNqlpY6LGnQNIlbXPc5Olrc\nQPfv927pTUiQDrOnsigHDjiuU3fzbNwotfs8Zcgs81Igyt290KePiOOSErk2qqoc59Tb/k2cCO+O\ndFgfB3/3NLW1cGTrQWJr6hs0fbo1mUQrKuDFF8UkoihyQV14oaGYrEtrxR93P8HB7Udlp1QVHn9c\net6HDon5afJkh8jTPjExEvA3Y4Y5Mdm3r9Ra+fBDCbzTtqWqMnKibad7d8uyqTYlVjxP8/LEyv6n\nP4kr9ZlnykDZI4+IAfi77+SaNsL1WtcPQBkR6ACUt/tXj6dnY1KSGKJ92TczBPP95m5/du4Uw/zg\nwcbL+bMfNjY2wceshbIAeDeYDbGxsQr9S7BPHxmpPnpUXl5abomyMunb+ZOkwyjZQbhYvALFF8uX\n3nUsK8u6NPbu3DmHDIGHH5ZzqJ3HI0ekbx0ZKf1pLQ9JQoK4v+ozpGoMHy4147/+WoRbRITogFat\nGpcksRqjaycY9eB8iRGzygrj7l7QsgDn5MDWrSJwo6LM7V9mJoz719XQ7joATv/+GV7Kfpp5K093\nzPTII+5X4InCQnjuObFA6kcVjOjVC+6/n80DLmf2nEgOrPmNIUtWMnTB5QytWElUXbV/bQCHlXHs\nWDjhhMAT9LihOWSgDvR5qlkf9ZYtcFi23npLfvuSfMyTJS0vTyzuofDb8vac0J59VlpTg/l+c7c/\n/fqJt4trrU6NQDP22tjYBAdTglJV1UnBboiNjVXoX4JGJS3q6qSkha+Cx10n/YQTpLMcNqUKLMCM\n+1uwYkfdidrSUrGg1dXJp6ZG3F3j4sSTUOtoKIp8T06WBDNnn+2cjGPBAhGZsbFigVVVma9zZ3jg\nAc/XhNlOuet83gSelXF/vibRsKrT6KnzrSXBmjDBcwZdIzLbOjfquUdLSFi0XX5cd515y9yuXfDE\nEzB/vvd5hw6Vxh46JDGNP/0E11xDL65hibmtOejY0SEYR42SoO4Q0pwyUAdS59WMe+bP9UmBfbnW\njUIBiouljYcPy3Po9ttDc0w9PSe0gSErxV8w6u7qMdofVZXj2VIGaW1sjhXMWigBUBRlEHAc8KGq\nqqWKoiQClaqq1gSldTY2fuD6EnQtP3HwoFi7fKmP6KmTrpUiabJSBUHEnYAKReyoUZKWoUMlseau\nXeKhWFwsFsbaWoe7aGqqaIySErGEnXWWYx36OpcgQlQfr7hmjRijXDHbKTea74QTpM21td4FnhVx\nbL4KfV87jZ5Etbc43MsuM9fhbrSN0aNF2AEJF453zLhwofuVbNggCXQ0s5QnYmKcrZRr1zqKBprg\np7hT2dVjDOc/P0YOlrv6FW4IlvWwOWag9jfZlxlLe1SUeBHn5poXSK6WtIoKSRjTqhWMH+85q3Sw\nMHpOBEv8WZ18zQjX/QmmiLWxsQkOpgSloihtgfeBU5EalD2BHcA8oAL4mxWNURRlPPAMEAm8pKrq\nY1as1+bYw+glGBEhI8ppab6/BL110vv2lY5FSEoVhABvAipYySq8MXy4JPQsLhbxqJ1XzWIZHy99\n+eLixhlSjUSwviSJOxFstlPubr633xbX3AkTHMclWAkm/BX6ZjqNZkS1r+67Zi25F81aQPrnPWWC\nFns4bpwjcFZVJSPJrFk+CcEGvLi81iUm8Tlj+LntGDZmjmFv3HFOltGaGnHlHZINmT5oyWBbD5tj\nBmotE+pbbzmyoIL356lZS/sll0gmVF8Ekt6StmCBPDPCMWFMMMSfdk8vWwbr1sn5iI4O7vstFCLW\nxsbGWsxaKJ8C9iMZxvN0098EnrOiIYqiRAIvIAmA8oEfFEX5QFXVXz0vaRNqmkMsjtXF57110nNy\nJBwrXFLvB4IZAdVUsaNr1kiMTYcOYmUoLZXEO3FxkJ4uMbMDBhhnSC0tFYtkRYV0iFyrKLgTwWY7\n5Ubz1dY6XHVdS2aA9VmA/RX63u4XMG/pMuO+aySksrMlg6+xJbcHT7vuzEUXial5+3ZfDpF7evVy\nuKYOHy6jEfXk5sBtE90/AzTRs3+/+WdLsK2HzTEDtdF10beviEBvHiVmLXRZWf6/G1RV6iJ27mz8\n/6Y+psGMx964UZ5jNTXyXA3mYGkw9sPGxia4mBWUZwFnqap6WHGOV9kO+OA46JFTgW2qqu4AUBRl\nGXA+YAvKMKE5xeKA9cXnzXTSzWbsC2fMCqhQuyVpHeRu3URHDBok1+R//ysdvaQkCXmLjGycIbWg\nAN54Q5ZPSBDjUqdOIkC1NhqJ4NJSSd6TmelwjdWjdSAvuMC4815dn6vFqGQGWG/JNRL6VVXSDs2i\n67qPGpmZcOWVoqlUVUL9tDYtXOi7pcud+647IfXOO+JBcM45xpZcFXB6+0ye7OPRQVJ+jhsnO9mv\nn+kEOK1by1+tNI4rNfVBH76ERwbbethUXgT+4u66yM0Vi6IZgW3WsuXvu8HfQSlP67NicFa/nlDE\nY2/cKAm2guneG7R6sjY2NkHBrKCMB4x8glojLq9W0BHYo/udDzRKHK0oymRgMkCWL0FwNgHRHGNx\nNKwqPn8sJAnwxaoRarck1w5ydLRsd8wYR9Kl0lIpGXLmmY6RbP2127Ono335+RJPO3y4XB+uIrig\nAJYskf3VrgFXEaq15cAB598armU4qqqcp1l97eitNOnpzsmotP9feKE5i6E2WBQfb62ly19L7oGk\nbrQt2el9A55YtUo+993n02Jt0tL4uiadA3nplCekUxyVztHoDI7W/91Tmk7bPulkbk2HQ+ly8JOT\nxf/aIGlQsKyHzTkDtRUC28iyVVMjYwcXXdT4HeXLu8HfQSl367JicNbbekIdjx0MwqE+qo2NjXfM\nCso1wHXA9Prfar2L6lTgiyC0yy2qqv4T+CfAoEGDQpCs2wbC48XSVAQ701044as1NpRuSZ7KUgwc\nKC6TeXnwzDPO29Zfu+npYsUsKZH+fnGxiOL27RtbNB95RCxm8fGOFPauIlTrQLZpY9y2mBjZ7p49\njjKEeoJx7UycKKUTV6wQgaa1/ehR2Z/Nm2X/tGPkbbDopptkPissXe6ElGbJTUkxtuTW1sLLAxcw\n7esJKFp9hFBy5AhtOUJbdkClm3n+AM4wt7pE4GUP/6+MSaI4JoPoH9KhbYZcuB4+h9R03l+dyroN\ncahKBDU1cgx79pQMxuH+3LJSYGuWrXHjpEznzz/LdZyT479Hjb+DUt7WFcjgrD/r8cUi2hxdpm1s\nbJoOs4LyXuArRVFOAWKBJ4FsIBUYYlFb9gL6yIRO9dOaBc0hrtBf7BfLsZMkwFerRijdkrwJ+4IC\nsUzqO1Gu165rGZm6OnHdmjDBOQOpJkK7dZNyhXv3ithJTZVSJZoVTetAtm7tvm19+sCOHZIVUquf\nWV4u2/cnQZQ3MjOhd2+5XktLRTSDxI717i37ox8A8jZY9EX9kKEVli53AxbuLLllZXKs8/KgvHwc\nm6+uZehQP0SBqspKi4tFVRcWOj6HDjn/NpoWYmKrSoitKoH/7Yb/eZ8/A/hL/ccnXkb8fRISvIpW\nMjLko/1OS5PRFu2iDgCr3XMLCsRN1qoauf4MSplZl37/fB2c9WU9/lhEm5vLtI2NTdNitg7lr4qi\nnAjcgozPxiEJeV5QVfV3i9ryA9BTUZRuiJC8HLjSonUHjeYWV+gP9ovl2EkS4K81NlRuSb4Ke6Nr\n17WMzIEDkvRDO4euIrRPH7FCHD0q20hOFotjRoazIHTXtsJCKXfSqxesXy8lTw4edFg1333X2udF\naSn88ouI67o6R+ynJtpiYx0DQKrqfbBo40Y4+WT5G6ily92AhWbJ1dxzY2JETK5ZI+2PiJDjl5Xl\npyhQFNnx2FhLDnRBgcTptm3rYXXV1XIy3IjV/31VSPHuQjIiCokvl09C2SHiywuJUGsDbqNPlJXJ\nR+8fHUxiYpzEanpaBpM2i2itSEinPN75UxKTTlxVK5LiEjDTbbHSo8bfQSkz63LF7OCsL+spK/PP\nItrcXKZtbGyaFtN1KFVV/QN4MFgNUVW1RlGU24BPkbIhi1RVzQnW9qygOccV+oL9YhGOlSQB4WyN\n9VXYu167+gQ1MTEiVKKiGifiAce17tqBBOmknXQSXHON+ZIZIAlJu3aFYcMkM62/zwtPHhH69kdG\nNrb+6QeAXKe5ok0fNUo6zYFeE54GLPr0gZ07RaRHRMjxrqhwaME+fcLHzT4z08S5io6WnUlLg+7d\nG/27/S3wcv37w+iYmrkeSkulCHyHDvDzhhoK88voEH+Y5OpCUmoKSaoqJKakkF5tCjmuVSF9Wh8i\nuqSQqCIXS6yXsimWU1UFf/whH6QjMhRgq5flXjO3+hvrPxp1SiRlCRmUx6dTFpfO4c/SqVmdTlQb\nD9bY9HRITKS0VG4gXwal3GHV4Kwv63n/ff/E9bEU6mFjYxM4pgWloigxwAlAG8DJx0VV1RVWNKZ+\nPZasKxQcK3GF9ovFmZaeJCDcrbG+CHvt2v3qK3FV1RtgOnUSF9YRI5yXNxpA0Xcgy8ulH37zzY23\nq2/b/v0ihlq3lnUuXCglTnr2dMzv6/PCjEeELwNAqmpu3i5drLsmPFlyhwwRt9xNmyTWMyFBSjT0\n7u18rFuCm70V95kmLGprIW9fFMmpKeyPSGF/XJeGeYri4MwR8EmRlDaKsup41dbKzVBUZOwqbORK\nrH3KyixqhDki1FqSSg+QVCrZs7oA/Nvcsm3wHO/awKsuvw2EaqvkdM7bkEHk3gwqDSyx5ZFJoMaQ\nlNQ4kZMes/e4ogRmEQ3nwUUbG5vwwpSgVBRlDPAv5NnqiopYFI8pjrW4QvvFcmzRHKyxZoX98OEw\nf770YVu3FotkTQ1s2SLLP/CA8/yeBlCio0UoDh3qfttGom/AAPj2W0NDFWDueWHWI8LXASCz8yYk\nWHNNmBFSu3bB9OkSw+pqYYWW42Yf6H2mCYuK+lzrruGMWv6i+HjRfZYer8hIaXBSEnTsaMkqje6d\nhusivU529OhRj4K15kAhm78rpFXdIRLqXYljq4otaZ9PGMTfRiO10Lzyiud/GyV1qohNqRemGRRG\nZBDXIZ3EqelcsCGd6HwD8RqfTmVsCqhxlJQohtdFuA8u2oSIgwcdtZNsbNxg1kL5AvAh8DCwHxGR\nxzTHWlyh/WJpWpoq6VNLsMauWSMZYF0tlL16SaKdNWvkux5/B1Dcib5vvxWrW8eOxsfTzPPCF48I\nX9rv675acU14E1KtW3vO99LS3Oz9Paba4MHatfK7rs75mBUXy/WhTQv34+X5uohwHKh27dyuIwpY\nt9D9IEl+PgwebMJ7SFXFpaC4mMPbC1nyVCHK4UI6xheSVHmI2NJC1EOFpNYWcmKHQ8SU6ITtkSN+\nHgH/ias8SlzlUVod2UUHkEwUP8C5Zhb2IGAzaexCzCLgziTfEzmlpoqvvwWJnI5VVq9ezZlnntnw\nOyIigpSUFDp27MjAgQO54oorGDduHIpBuSIzbNq0iffee4/rrruOrl27ykOlc2cpEHzzzXDWWS3q\n/CmKcgdwRFXVxUHcxkhglcvkUmAz4tvwvKqGOnDeeswKyvbAbFVVdwezMc2JYzGusDlYrVoax0LS\np2CieRJ06yb3qRbzpCWpqa01tgz6O4DiKvq0mM327aWUR04OnHJK4+W8PS989Yjwpf1NOVjkTkjZ\nbvbe0QaZxo6V6yoxUYx3aWnSBywudsSeNrfjFeighSUeNYoi4icujlatW3P1C3KPfGxwj8T4UYak\n0f12msoF51STGVfiPQuxZo09WEj1/kJiSw4REepx/pIS+eTlhWZ7cXHeBavrJy1NLiR3I//NmCuu\nuIIJEyagqirFxcVs3ryZ9957j1dffZXRo0fz5ptvkpaW5vN6N23axMyZMxk5cqQIyqNHZWDlnXfk\n0707TJ4MkyY5Mss1b+4AdgGLQ7Ct15GwPgXogJRjfBqpmjE5BNsPKmYF5YdIha0dQWxLs+JY7vC0\nBKtVc6ClJX1qCiurqydBdLSzC6Uny6CvAyh60aeVu9BbRGNiJC6wf//Gbpzenhf+eET40v5wHCyy\n3eyNMRIj2dnSr162TI5PfLxkxO3ZU7THsXa8gjFIYuU9YrwuBYgB6sWQCaLqP2Vl7tukf4+43kcp\n8dXcf0cpGRGH3ce7uouLranxb+f9paIC9u2TTyiIivIuWI0+iYmybJA5+eSTufrqq52mzZs3j3vv\nvZd58+ZxxRVX8PHHHwe+ocOHnX/v2AH33SexIhdeKIWKR46UARgvqKpKaWkpSS3J0uIbG1RVbUgt\npijKAiAXuEFRlAdUVd3fdE3zjqIoyaqquo0fMHvV3wwsVRRlIPALUK3/p6qqruHoxwR2h8cmmASa\n9MlIwDWFqGtKK6sVngRmB1A00VdZKW60lZVSYiQiQixGR47Iu/m336BvX9+eF4Hshy8DQOE0WGS7\n2TfG3SDTr7/KuV+6VOqG/vyz9GmPHDl2j1ewBkmsvEesWpen9Xi+j6LJyEwD0sSNwyLcvmdqa0X9\nHjniWxKnwkJHoHCoqKmRgPn9IerjR0R4dx9OT3eMUmrHKylJRigVhcjISJ588kn++9//8sknn7B2\n7VqGDh0KQFFREbNnz+btt99mz549pKSkMHr0aGbNmkX3+uD+GTNmMHPmTAAnt9prcZjvKpFC9Eur\nq9m+fDlxy5czLDGRhyZPZsD990s7cbjmvvLKK5SWlvLCCy+wfft2pk2bxowZMwB4++23eeihh9i8\neTNt2rTh+uuvZ8iQIYwZM4ZXXnmF6667rqENlZWVPPnkkyxdupTt27cTFxfHsGHDeOihhxgwYEDD\nfPrtqqrK3Llz2bZtG+3ETb6t/pAriqKZ9bvovgN0U1V1l6IoZwAPAAOANOAQ8BPwkKqq3xEgqqoe\nVRTlW+AioDuwX1GUDsDdwFlI/rB4xJi3BJird41VFOU6xGF9DJIoexLQDnGlna2q6jLXbSqKMgi4\nHxgGJCPW2VeBOaqq1ujmWw10BUYBj9f/bYVYVw0xKyjH1e/cBKAM5xhKlcb5zY4J7A6PTbAIJOmT\nOwuGokh9Qo1QiLqmtrKG0pNA6zjl5IiYTE11/C8iQryvSkvFDVE/yG7meXGsekSEo+W0KfE2yPTD\nD3D33Y0tVqWlUtoi1DHYvhKMAa9wGiRpKkJ1H3kdPIyMlFG25GSJyws2dXWOTMTeBKurqNVGCENF\nXZ0cwIICc/M/9ph8DLgeWAt8NGwYQ4EixMUwD/gL4l/5e0EB85cvZ/Abb/BjdjZdOnTgQkXh9+xs\n/pmTw/QxY+jTvTv8/jvHffABIJak8cA64M/AbfXrXlhaypCnnmLN888z6LLLxGpZn0L86aef5tCh\nQ9x44420a9eOzvXnffny5VxxxRUcd9xxPPjgg0RFRbFkyRI+/PDDRvtTXV3N+PHjWbduHX/+85+5\n7bbbKCoqYuHChQwZMoQ1a9YwaNAgp2VefPFF9u/fz/XXX09aWhqvvfYaeXl5nRRFuVJVVS3H85+B\np4ACYJZu8YOKovQCVgJ/AM8g+WPaIsKtHxCwoFQk0LVH/U/txJ8EXAi8C2xHcnmNBx5DROdNBqua\ng+Tqml//exLwuqIocfrYUEVRzgHeAbYh4wKFwOnAQ0B/4BKX9SYBXwHfICLUo4+zoqre/e4VRckD\nlgMzVFUN8V3mnkGDBqk//vhjUzcD8OxyYmPjKwcOwLRpnt+5e/bAo486hzEYuTcVF8Onn8rzffx4\neZf7Wu/OXxZakRwjQDy5fFm9/88/L6UZ2rZtnLfg6FHZfrt2MGeO9B98eV6Ecj9CjSYkNJpC+DRV\n4iuz6GtOurNS79sn1592TTWXGOzm0k4b97Tk55NpVNU5E7EZ12Htc/SoqU2sBs4EngDucTPPBmAg\nokreBv4G/BNRQP108+0GTqyfb3H9tMWIGlkFjHRZ71PAXcAniJVJ4yhSU7B7ffsAVnftypm7dtGq\nVSt+++032ug6KjU1NXTp0oWamhp+++03WrVqBUBJSQknnXQSO3fudLJQPvXUU9x111188sknjBvn\n2PLRo0c54YQT6N69O6tXy5Y1C2X79u3Jzc0ltX5kt6ysjMTExBrgR1VVT9fWoSjKLmCXqqpOu6so\nyu2IkBysqup/XY+xL+iS8jyIiD4FyU3zf8ANwHdamxRFiQcqVBdxpijKv4ArgU6qqv5eP+06xEKZ\nB5ykqmpR/fRU4GfEAtlRVdVyRVHiEGvkFmCUizXyTmAecKaqqqvrp60GRgCzVFX9u5n9NGuhTANe\nDCcxGW7Yo6A2VuKvi6ORBWPLlgaPGLZskXqKoaiXGi6ldULpSXDWWbBggWNwSXN3LSmRGMrsbOlL\n1NX5ns+gJXpEaEJi9WopFXLwoByXLl0kLCcUgqKgQGIPv/1W7ovo6PAUM77G0Ta1d4BZmks7bTxz\nrNTl9oiiSABzfLyMKgaD1avhzDPhiSfEHaGqSkaNdWI1JTcXpkzhaLduqBMmsPSllxielETHrCwK\ntNiLI0dIBE4DPjO56deA3ohYdbWjjkF8MssRH0127QLgmmuucRKTAOvXr2ffvn3ce++9DWISICkp\niZtvvpmpU6c6b/e11+jduzcDBw6kwMWCO2bMGJYsWUJ5eTnx8fEN0ydNmtQgJgESpJNRCvTEHEX1\nf89XFOVnVVWt8LmeWf/RqAM+QJeQR1XVcu27oigxiJUwAvgUuBoYBPzHZb0LNDFZv44iRVFeBGYj\n4wIfI6eoLTANSHPJArwCEZRjcYwJaMw1u3NmBeXbwGjE/GpjYxNk/HFxNBJwVVXyMk9Olt/5+ZLp\nVEsKE0xRF06ldULl8pWVJUl3jhxxdmvt3Bl69xZ3V/A/+3NLcgHVhERBAWzbJtdqmzbi7bF1q/TN\ngi0oNm+GW28Va79WzaBDB/jqq/AQM0ZWU7ODTM2lg99c2mnjnnAZPDzmUBR5qcTGOj2ojrZvD0DK\ngAEc/H//j0MvvMBnlZW0PnTIcDURERGOB8jixZLBddUqGdWbPRvuvx+Q7DHlgKeKlAVA53795EW4\nZAnHH398o3l27twJQC/Xel1upuXm5lJeXk5rD7UwCwoKGtxpgYa4UBdqgAwPzdezDBFw04E7FUX5\nDhF1ywKoePFP4E0kVLAU2KKqqlOxWkVRooD7gGsQd1jXmMVWNCbXYNqv9X+1A9Gn/u8iD+1zHQU5\nqKqq6RpIZgXlDmCWoijDETOqa1KeeWY3aGNjYw5fkz4ZCbjq+jtV735ZVeUQlMEUdeFYWseTJ4Ev\nLo/u5k1MlHfw99/L+1RfogTkXFoR69gSPCI0IXHokIQ5pabKdZKSIt5fRUUi8oIlKAoK4K9/lXOi\nuSjX1cn9pfW7Qilm9NdUebmxC2h2tiTg8TbI1Fw6+M2lnTaeCafBQxv4+eefARFnmufk6NGjG1n+\nTKHL8qoiLrKGHf4TToChQ2l9++1Sq2j1aliyRLMMBoSqqpx44onMm+deariKzcgAS8WoqloJjFEU\n5VTEw3c4Ems4oz4O810/VrtVVdXPvcwzD3GFXY7EdR5ANNfJSKykv0VANWE6BdjkZh7XFMplvmzA\nrKD8C1CMxPWe4fI/FTfXl42Njf/46uJoJOA0IVNX55gvJsbxPZiirrkkkvElfsvMvNpAwP79LTf7\nc6DxhqWl0t8oKJD6nFFREjeckgKtW8txys8XARUsQbFsmbOYBPmrCdrDh0MjZlyvqYoKuXbatXPU\nT9VcQCMj5eNtkKm5dPAPHBDx7G7QKVzaaeOZcBw8PJZ5+eWXATjnnHNo3bo1aWlpHD16lNGjR3td\nVnEt/1HoMKD1BA4i6T4jYmJgzBh56Jx7rk8xHF27dgVg8+bNjf5nNK1nz54cPHiQUaNGiTXVWjwm\nkqmPn/wvgKIonYGNwCNI0pxg8Gdgjaqql+snKorSw838INbH912m9a3/q5V73Fr/t9SEqPULU4JS\nVVXr8knb2NiYxhcXR03ArVrlqOeclORwHVMU+a6vgWhW1PkrIDRxtXOnZBOPi5MOR7iIK1/it8zO\n2xJjHTWsSp6SlwebNomAi46W60JVJRSorExiKMHREd2/33HtWZEwp7QU1q2TUCej/klSkrgsZ2YG\nV8wYXVM//CAuuNo0rS67dh9nZ0v7PF1b4d7B166jr7+WAYWcHHEX79PH+Vg3dTttzNFcBg9bOrW1\ntUydOpW1a9cyYcIEhgwZAsBVV13FCy+8wFtvvcXFF1/caLkDBw40xDlqNSILNSGpE5TXxMYypbKS\neVdfzT3z5ztiaerZv38/bU3Ejg4aNIj27duzePFi7rvvPqekPC+++GKj+a+55hqmTJnCvHnzuOee\nxqmIzG7XDSVAo8KviqJkqqrqGiqaj2hqc4Vi/aMWFzdXRVESgTs9LHOLoigLXH2d5g4AACAASURB\nVJLy3AwcQbK0grjrHgDuUxRluYGrbTwQ5anOpDeCX33VxsYmYMy4OG7eDCtXwmefSedc64QOHCiC\nTlVBC2cwazGzQkBkZUkn+dtv5XebNnDxxXD11U0vrnyJ3/Jl3pYU66hhRlDHx5sbePjiCynzlpkp\niXhU1REOVFkplqukJPm+eTPMmOGoFW5FwpzSUlmfooj13lVUau6vNTXBFTOu11RVlQjZtm1lem6u\n3L8a7dtL6Z/nnvN8bQWzgx+odVp/HXXpIpbg/HzYu1euheHDHe2yhUjwsSq7sV2XO7Rs2LCB1157\nDYDi4mI2b97Me++9x+7duxk7diz//ve/G+adNWsW33zzDZdeeimXXnopp512GjExMezevZsVK1Yw\ncOBAFi9eDMApp5xCREQEs2bN4vDhwyTu30+3Cy5g8M0387ehQ1l54YVMee01vjx0iFGjRpGSkkJe\nXh5ffPEFcXFxrFq1ymvbo6KimDt3LldddRWnnnoq119/PVFRUSxevJj09HR27tzpZCn929/+xsqV\nK5kyZQpffvml39t1w3fA9YqiPIzEItYhSW/+rijKWOBDYCci8s5F8hI97u/GTPAWcJOiKMuBz5G4\nxr8gNTDdUQB8ryjKK/W/JwFZwA2qqpYBqKpaqijKNcB7wGZFURYh5UPSkH26EJhI46Q8pnErKBVF\neRaYVt+IZz2tRFXV2/1tgI2NTeBs3gyXXy7WnV69pJNWVAS7d0tHbfJkEXK//CIJY8C7xSzQ7Iv6\n5UeNcpQEKyxsSAAXdDx1lnyJ31JV32K99Nv1NZtruOJJUG/bBnfd5Wz9dif8Skth40bo0UPEU2qq\nuJhqCYtiYuQa6dJFhGerVjIoYWX2z8REaWuHDo426KmrE9fTM84Inpgxuv70Mc+a268+iZbeBbRN\nG89tmzhRrMBbt8o5io8PrINvlXXa9Trq00eEZGWlHPPcXIk/toVIcLG6VEtL9swIR15//XVef/11\nIiIiSEpKolOnTowYMYIrrriC8ePHO82bmprKN998w5NPPskbb7zB+++/T1RUFJ06dWLo0KHccMMN\nDfNmZWWxaNEi5syZwy233EJ1dTXXXnstg8eNIxr46KOPmD9/Pv/617948MEHAejQoQOnnnoq1157\nren2X3nllURHR/Pwww/z4IMP0qZNGyZNmsSAAQO48MILnTK2RkdHW7ZdA+5HLI63IuJKAbohwqs9\ncCki6soRt9EbgZcD2aAX7kJCDC8Fzgf2IMl8fkAEphFTgWHIPrRFSoNcpau3CYCqqp8qinIKkvTn\naiS/0mEk4eo8JEeO37itQ6koyipgoqqqR+q/u0NVVXVUII3wl3CqQ2lj05Rcc410tOuTuwHSeayt\nlc7a6afDq6/6Vi810BqSTVmD0kxnyZdan2Bu3nvugbVrW149PU81EMvKJB6yqEj2My7Oc/057bhn\nZMCaNbLuwkIRcdHRYqWrqRERWVUFEyY0vlatuH4WLpRsrtu2iZhJTnZYJvfvl3O9bFnwzpvR9VdV\nBR9/7GhLURGMHu3swupaa9IIfTmW3btlW61bQ9euUnHA1w6+VTUG3V1HZWUiJPfske+nnw7DhtlC\nRMPqGqnBrhlp1+X+/+3de5TdZX3v8c8zyeSyc4VMAsFMSNSIAaEgUxMEUZdI1dPTmlq1B463LrCw\narHa1lNF6+VoUVu1bbBZLT0t2FJ7rDTLVa3XUzHSwtSAXMRUBALJkDHJALnM7CSTTJ7zx3d+3b/Z\n+e3bb/9ue+/3ay3WZvZvZ+9n9v7t3zzf5/s8zxdxfeYzn9Hv/u7v6u6779bGjRsTfW7n3L3e+6FE\nnzRHoTqU/1U/Mk81M5Te+1dG/T+AYtm3zwKY6kxYsIHHGWfY8bEx6yQ08we+3d0Xk9y9sdXOVLOZ\n1VbWmQXjbvUee/SodPPNFpx0Wz29epu87NhhAWCpVHnP6pV9CN73uXNteuOO6Q3PDxyofM7z59vx\nV74y+vxIYvfPYIqeZBn9PXvscz5yxIK8z38+3c8r6vybM6fyvgXLk8KbaDUzBTR8/j/3udK6dXZu\n7t5ta6vjBGlJlfaodR6VSja194ILbHr+Rz9qwW+vSzqLGEi7VEs37EKNdE1OTmrWrFkzdmMdHx/X\n5z//eS1btkwvfvGLc2wd4mANJdDh9u+329k1vs3B/Xv3Nt8JaXeXyCR2mYzbmWq2sxReZ7ZihU03\n7O+vdOCrO++N1qTNmmXBZNTr7twp3XabdN11yWQYslYr+J6YsOnLCxda0BIOfqTowK96fV8QSExO\n2prGp56yHegfffSUPR/+SxK7f1ZP0RsYsHPg0kulN785/eC/1jrHYAro3r02Lbi/v7WpqlHn/7x5\nFljGCRaSHBxqNIjT12eDCa1ME086e9eupNrT7pKDeu2jVAvy9vjjj+u1r32tfu3Xfk1r167V6Oio\nbrvtNu3cuVNbtmzRnOo/JgXjnJuj5jbn2e+9n0q7PUXQMKCc3vnnfZLeICuQ6WXb0P6jpM9474+k\n2kIAdQXll06ciA4qT5yw21Y2QWt3l8h2/33czlSrnaXLL7dpjd//vnVknbN/u2iRlY+48srKv623\n6cTcuZbZCk85lmZO5bv7bunBB6XLLuu8KbDVwU/wez3xhGX2JOk5z6kE5YFagV/1e9nfb8HE6Kid\nz1ddJX3sY+nvUpr35klR59TcuRZIjo5aRnH3bntsM2vR0ggWkixBkuRmQWll7+JKuj1pZRE7paQM\nutvy5cu1ceNG3X777dq3b59mz56t888/X5/85Cf1pje9Ke/mNeOlkprZCWitpCfSbUox1A0onXOz\nJf2rrKDmNyR9TbZg9VxJfyDptc65l3vvT6TdUADRVqyodNKqAxrJsh0bN7bWqWm349fuv6/XmaqX\n7Wuls1QuS1u22Hs2b54FRpOTVsZg1izbkOVjH5Muukh61atsTV+tTScuvVT64z8+dV3Ytm2WtVy8\n2ILVZcs6dwpsEPw8+qj0yCMzd0CdO9emi27bNnOXzlqBX70NPF79agvuL7rINpXJogxBXlP0ar0P\nr3iFBY+lUmuBbhrBQtIlSJLYDTTJHYeTkHQ2Mc0sYtFLyqA3LFu2TF/84hfzbkY7HpD06iYe97O0\nGuC9v1XSrWk9f6saZSjfKen5kl7svX84fMA59yJZdH6tpC3pNA9AM2680XZ5DTI8s2dbh3//futw\n3Hhj68/Zbscv7r+v1ZkKsmK7dtXO9rXSWbr9dusAPn+6XPDBgxYQBUH54cOWddy82QLPCy+0jv6m\nTadmtIKOfPh1d+ywYHLJEtvoRbJO7uLFyaxTyloQ/Lz3vfZelUo2zXXVKgsmTz/d7g+XuqgX+FVn\nB48elb75TQviJfv5Zz+z27VrTz1/rrzS1g8XZapjXI2ypK0EDGkEC0mXIEliN9CkdhxOStLZxDSz\niNSMBNrnvX9WtXdd7UmNAspflfSJ6mBSkrz3P3LO3STpjSKgBHJ1zjk2dfMTnzi1k/aBD9jxVrXb\n8Wv13wdrj6I6U0G2b3LSArS+vuhsX7OdpagyII8+aoHf0qUWCN53n03jPOMMCy4PHJj5euF1XtWv\nOzk5c2OVoLMZdHI7dZ3S/Pn2O2zaZMHJnDk2zXXbNiv9sWCB/d7nnWdZm2YGHkol+3w/+9lTMzzO\nWVDpvWWRJVtfKVUCT6k7dtJNIkuaVrCQdI3BdqYa18velctWJuXAgZk7Dqc5KyCNbGLaWURqRgJI\nWqOA8jxJv13n+Hdk9UwA5Oycc6w0yNiYbehxxhntd56Cjt/rX2/ZoBUrKms2W/n39TqO1WuPTpyw\n4G7p0kpAtmOHBWmLFzfO9jXTWaoOWqsDwKefttcplSx4XbTIpsReeKG9t1EZh/DrLl5cuf/QIQu8\n1q+v3Nep65SC9y0I7iQLMIPdWkdG7DG7dlnt0XYzTs9/vr3WRRdJb3yjZSujAs9OnUachjSChbRq\nDJZKNlgwPm63zWSaG+04PDnZ/I7DSUgrm3juuTYLY+3aU4+1m0WkZiSApDUKKE+TtL/O8f2yQqAA\nCmJgILkOQVIbTdTKvtRae/TYYzb98XWvs+m74WDv8OH62b6BAek975G+/GXpgQcqjwt3lqqnqIYL\nyk9N2dTN/v5KZ7Cvz24nJ2tnHMKdtO9/317j5Enp7LOlF75w5mM7dZ1SrcxJUPbhvPNsE5k//dPW\ndhRulOG57z7pHe+QvvKVdMsdNNveIu0qWi2tYCHpDYziXltqnYPBoNCCBfb5NLPjcFKOHrXp8aFa\n7P+lle96+D05etTWED/2mNVcXbQo2Sxi3htSAegujQLKWZLqbbhzcvoxALpMWtvWh9XKTL30pdLX\nvib9+79LL3lJ5djBg7YBTK1sX7k8s5PqnI30v/GNtqlOoHpqYH+/BX9Hj1qm5MQJm1IbPHeQFZ0z\np37GIdxJ27JFeuih6Hp6rWYYihLENJpSOTZm60xb3YBEapzh2bs333IHRdtVtJ40g4Ukpua2c22p\ndQ4Gg0Ll8swBp0CzmcJmv2vh8+GJJ2wzrxe8wK5N4ecPT7OPWvMbvN6RI9LnPjfzPTnzTPs9v/EN\nmx0xb17yWURqRgJIQqOA0kn6O+fcsRrH5ybcHnSZonSE0bq0i1/Xy0yVStJrXmOdqb177bHeW1BY\nK9tXazrkgw/arqQf+IBlCwPhXUuffVZ65plKcBOs1QyEs6LNZBxKJeltb7NOc7u7WRYtiEl6SmWz\n68Wcs9s8yh1kMbiShqIGC+1eW6LOwb4+CyaXLJk54BRoplRRs9+16vNh2TLpe9+z68zevTaoMndu\npT7t4cPSDTfMfN7LL7e1x8Hr/eQndvvSl1bO5UWLpCuusID1/POl668v5ucJAI0CytuaeI4vJNEQ\ndJcidoTz0KkBdRbFrxtlphYtsnWhH/qQdMcdjbN93/zmzE5qsCvsyIj9/49+JL397ZVzcGDAOmi/\n+Zs2TXPxYgtK582z/558Unre8+y+cFZ0dNTW9O3daz+vWBH92bY79bCoQUzSUyqb3UgmWLubR7mD\ntAdX0lS0a1AS15Za5+CGDZW1z9XqzQpo9btWfT6UStLLX27Xm0cesZkV55xjQeCOHdKPfzzzeb/3\nPenP/9ymiK9da/dt325BcXXpHUkaHLTnAICiqhtQeu/fkVVD0D2K2hHOUqcH1FkUv242M7ViReNs\n35VX2q6fQSc1vCvsokX236FD0r/928xzcNs2C1I3bLDHBhsCPfmkBZmPPy79/M/btNm5c+3Yrl0W\n3P7Zn9lrLV8uveEN0lvfeupn287UwyIHMUlPqWwm69lM4HnRRa1t8NKMLAZX0lDUa1BS15aoc7Bc\njjcroJXvWq3zIbyOeNcu6VOfsn83NXXq8x48aG09eNB+PnrUgsklS04tvdPKewIAeWmUoQRaVuSO\ncBa6IaDOovh1KyUOSqX6WbFgjWO4BmSwK2zAOQv+nn3Wnueqq+y5Bgbssf391qaLL5YuuMCmwN5/\nv01ne/pp6/Tt3m3roObNs/VNkk1n++u/tilrn/hE9Gfb6tTDTglikppS2WzWs1bguXOnlRc5ckT6\n4Q/tsUkFT1kMriStyNegpK8t4XOw0XUi6ndu9bvW6HyYN8825zl8OPp5g82Dli+3wPN5z6us9zx5\n0ga/RkbsGhTc36mbeAHoHQSUSFSndITTVISAut1pbvWCvclJy+Bdckn7n2Er6/HqZcXCu7ZOTc3c\nFVaaualOcA5efLEFgffdV3ncqlWVTTXOOMMykx/6kP38j/8offGL9v/hQDXIKjz8cHKfbScGMe1q\nJusZFXgePWrTj88806YPJh08ZTG4krQiXINqSatWZqDV7Hmr37V21/weP24zIfbts4Gq73ynsinY\ngQPS6afb44JBLqn99wQA0kZAiUT1Ykc4LO+AOslpbtXB3rFjlU1sZk9fOebObS8LFGc9XlRWLNxJ\nPe00uy8o9SGdWmrk6FFp82Zp/37LFMyebR26p56y+y6/3H43yabcei/9x3/Y84Q36wkEU2rvuiuZ\nz7YTg5ikNMp6VgcMX/qSZZLTCp7SDoCSlvc1qBlp1Mqs1mz2vNXvWrtrfo8ft2x6X59dj047zYLP\nAwcsyDx50q5Hc+Yk/54AQFoIKJGoXu4IS/kG1ElPcwsHe3feaZ32EyekdesqawqTyAIltR4v6KQG\nnbIgK3n48MxNdaambNfEdetsm/+REQsS+/os83jokE2ZPeOMSqCwb591BPv6Zgaqgb4+6xQeP17/\ns202c1y0IKZoG7tI9rt7b1Nc0w6esgiAWlXrM+mEQb20amXGEee71s6a38cesymxExP2ewafR5CZ\nLJft2vOzn9nPebwnANAqAkokqmgd4awEnbtA3IC6nY57GtPcgmDv2HThoDVrZtZ3S3IKXa2MQrPv\nSbiT+thjNg2yVLIdEsOlRnbtsuBvcNCyj/v325TVRYssMCyVbKfG1asrgcKCBZVpaSdPnhpUnjxp\nwU1/f/RnGydzXIQgJo2NXZIMTrMKnooUADX6TDplUC/NWpmtavW7FnfN79SUXX+WLLHBpzlzKteT\nkyftdefOtTXZp52W73sCAK1w3vu82xDb0NCQ3759e97NQJVwpizqj3MnbErTrKjO3fHj1jl4/vNP\nffzIiO0oWh18tdtxn5iwOmdBZrLa1JS0Z49N82y1g5Lmc9fTznuya5edg5OTFjiGz8G+Pvud1q2z\nx4bLiwQWLJBuuWVmPbtbbpFuu80eH15DKVlAumCB7UYb9dnG/T5EvQdZBTGttLuZIDGt4DTrc7Nc\nzi8AavYzueWW2oN6ta5B3STOoEXc71qj8yH8vEePSj/4gQ1wrV5ta9HD153BQRvY+tznbLALQHKc\nc/d674fybke3IkOJxBVpND9NtaaY7txpo9LSzE1Cao12JzFVNc1MTR5T6Np9T1avlv7wD6PPwVe/\n2kqMBBmcYLv/Cy6wAHTWLMtann32zOfctMlqxd11l613CoLKw4dtEOG886Kzhu1kjvPM4jTT7k2b\nmgsS09p1NI8ZEUntbBtHs+dSEbLbeWhn0CLud62VNb9790of+Yhdn2bNsmPBdWfOHBvs2rMn/+wx\nALSKgBKpKNJ0prTU6twFmcmgcxCoFVAnMVU1zWlueUyh27rVynusWFF53aj3pF4mot45GBWE9Pfb\nfyMj0UHIwICVBfnbv5XuuKOyxmnFCqtD+Za3nPrZJrVBStZBTDPtDtbVHjvWOEhMc9fRbgiemsmo\ntXIu9cqgXlhSgxZpfddKJRtgvOyymdee4Loj1b72AEDREVAiVXmO5qepUedu7VoLJj/1KZv+Wiug\nTirgSDNTk3UW6MknpVtvtfcm2Ho/XM4jCGaOHavUHJRqZyKizsG4QcjAgPSe90i/8Ru2UY9kAWW9\nTXikdLO7rU7vazZ4Cbev2qxZtrHRmjWVqcPB/VFBf5q7jnZy8BSVUbvoIulVr7IsVjub7TQ7qFfE\nDZfiKHKplLBuGAABgGoElEAMzXbuTp6svxYmyYAjzY5KVp2gsTHLAo6N2U6HwWYVIyOVch6SZcYk\n6bnPjZeJaDcIKZUsmGokzexuq9P7Wnl8o3YfOWKfx8teFt22cJCYRVDdiTMiqjNqQVmezZulLVuk\nCy+UXvGK9jfbqTWol8aa1rx0QqmUQCcPgABALQSUQAxJBQpJBhxpdlSy6gRt3Wod63Cnr6/PdkU8\neNA2zzl50sqXrFlTec/iZCKyCELSyu62Or2v1cc3avfIiA2UzJsX3b5wkJjllOlOmhERzqiVy9K2\nbXbun3GG3X/gwKmfT1LnUlprWvPSCaVSwjpxAAQA6omoqAagkaDDPToafbzZzl1SzxMIOiqbN0s3\n3WS311yTTOcwzeeWKlmG1autwzw+PvP4okW2e+sjj9g61XD5kkCQiSiXm3/dUqn+tNV2bdpkHcaR\nkUrwNDVlP8fN7oaDkeqgenzcjrfz+EbtXrrUNi0K7q8WDhKTPse7QXCur1xpP+/YYcFkUA914UKb\nMh8El8Hnk9S5FOd8yMvEhE0vD5dlqhYetIhSlFIp1dK+9gBAVggogZiS6tylEXCk2VFJ67nDWYb1\n623Xw0OHLCMZGB+3Dvd550U/RzgTURRBdnfDBgsSdu+2240b42WCqoORatVBdauPb6bdH/2oTcds\nNkhM4xzvZOFzfXLS3odFiyrHgzqnk5MzP58kzqW450PWxsas/MkNN0jvf7/d3nKL3V8tqUGLZoJX\nAMCpmPIKxJTUNNC4z9Mtm2kEwlmGUsnWS4brQwbrUVevtuLfUYqaiUhyilur0/viTgecmLD3/Kqr\notvdyrraVs7xbjuvo4TP9ePH7f/7QsO7wSDKnDnxN9uppROmh8aZktvOOu9uWk8KAHkgoATakFSg\n0MrzdGvnp3rdXnV9yP37pUsvtcdmWXcwSUms8Wt1TWKrj693foXb3upASKNzvMjnddJBbvhcDzbt\nOnlS8t4+j4kJGzjp7299s51mXlvKtgxQq+Ls2Bp3YK7b1pMCQB4IKIEEJLUZSKPn6fbOT1SWoa/P\nalIuXVrJMnTbtvutBCytbvTTyuNbPb/iDKhEneNFPa/TDHKDc33fPnuun/zE1lGeOGHn/Jln2rTT\nZ55JdpAk6zJArWpnx9Y452OnlBsBgCJjDSXQQTppM404mlkjlvSaxDy1sk4srJk1ieH1YM2uYYx7\nfrW7rraI53UQ5A4PW3AzOGi3w8N2f6PPqJHgPD7vPNts6vBhm/66bJltOrV3r/S1r9n7kPQgSZHX\ntLYyJbeWZs/HTllPWg/rPgEUARlKoEN0Uq21djSTZeiGbffbycrVm973spdFZ9Wuv95KU9SaDpjX\n+bVvn3TnndHZsjRft5YgW/ylL6WfuRoYsHP3kkssc7hzp2UIjx6VnJNOO00655zkB0mKXAsxyym5\nnbCetJYiTxEH0HsIKIEO0Uzn5/hx65SuWdP5G5o0M424k+oOVmt3ql1UUF0uNw5SawXhWXeugw7x\nd78rbd8u/fjH9ruvXz/z+bPq1Ic76MeP2+26ddLpp5/6ukkFuUEQPzhov+fy5fbak5O2IU9fn31u\n5XLyv3tRB2WynJLbCetJo0QNRh05YgMz999vuzATVALIEgEl0CHqdX7KZet4/vSn0qc/Lc2ezWh1\nkSWZDQwH1bff3lyQGvWcWXauwx3iwUHbzXfBAumpp2zzpcsvr7Qxi059dQf96FFp/nybSv300zPb\nIyUX5EYF8f39p9ZYTTOYLuKgTDs7trai6OtJawkPRpXLM3fDLpdt+vRnP8u1H0B2WEMJdIhatdbK\nZZvK+OijllFZuzbZtV4wSa5VSmKdWNRztrMeLKlafs0Id4jnz7fbiQlp8WLLzu3Ykc7rNtOeWbMs\noOvrs9qQx47NbI+UXJAbDuKjFDVDlrYs10kXeT1plPD3PLj2P/WUnatLlliWe3hY+vCHufYDyA4Z\nSqCDRI3cP/yw7YJ62mm2wYfELoVJSmOtUhrZwCSmrGaRGYrKzq5fb5nJgwftvRkZsXN5bMxe98or\nLZhPqmxHeFdd6dT2zJlj35+goz4yYuVrgsxhUkFuETNkRakDmtWU3CKvJ40S/p7v2GEDMIsXV47P\nnm3v04EDXPsBZIeAEokrSoekG1V3fo4ft2muL3iBdO656a316lVplbNII5BIIkhtpXMd93seFfiW\nSjatNJi6NzFhWamf/3mrz/ixj1Ue204wHzU4cO65NsW1+j0LgtzxcasPOTlpWcukp11mNb2zkaJu\n8pLFlNyirieNEnzXjhyxc2bRopnHT56028FBrv1FQZ8IvYCAEonJs0PSSxfscOdn505bM7l2bfRj\ni7xLYSdIs0Zd0oFEUkFqo851u9/zWoFvqSRdfHGljMYf/IG0ZUtywXytwYEHH7SNTM48c2bnPAhy\ng7XJ+/ZZ9ifpzFURMmRFrQOatSKuJ60WfM/vvNN+7qtauHT4sH3/582zn7n256eogzRAGggokYi8\nOiS9fMEulWw319mzO2+Xwk6QdhmNNAKJJIPUqM51Et/zRoHv2Jj0ylfa2rAkg/lagwNr10qPPWbt\nueKKU9+DlSul171OeuMb0512mWeGLM2BEyRv0yYbBCmX7fs0e7ZlJg8flubOtew61/58MUiDXsOm\nPEhEHoXJ0y483gnS2kilSMWy82pLGhvnVAsCic2bpZtusttrronf0Uh7M5OkvueNNkK58spkC843\n2rBowwZbh/zEE9HtefObpRUr0g/ySqVsXies3c2ckL2BASsNsmFDZe3x4cP2NzDYkbioO9T2ijz6\nRECeyFCibXkVRGdU3SSZlUo649vOVOS8s89ZltFIcqpdWtmuJL/njbKzwTqwpGpiNhocWLRIuvBC\n6fzzrR5mdXu6OZOQdf1RJGNgwEqDfPjDtgHP4KBNcy3yDrW9Iq8+EZAnAkq0LY8OSZoX7E5bj5nU\n1Mkkp+i0GwwWYbpQEXfgDDRzjia9Hizp73m9wDd4raSC+WYGB+bNk66/vvI7FHljliRlOXCCZAWZ\nyk7ZobZXMEiDXkRAibbl0SFJ44Kdd0asHUlkpZLK+CYRDLbblqQGBfLagbNW+/M8R9P6nkcFvkkH\n860+Xy918oo8cILGkrj2d9ogatExSINeRECJtuXRIUn6gl2EjFgS4malksz4JhEMxm1L0gFX1jtw\n1mu/lO85mvX3POlgvijlOYqoSO8NwU08ca79nTyIWmQM0qAXEVAiEVl3SJK+YPf6esykMr5JBKZx\n25LWoEBWO3A2av/ZZ+d/jmb5PU86mC9CeY6iKsJ7Q3CTrW4ZRC2qIg3SAFkgoEQi8uiQJHXBZgF9\nchnfJALTuG1Je1Ag7Rp19dq/c6e0fbuV04iS1Tma9fc86WA+7/IcRZbne0Nwk72sBlF7NeNchEEa\nIEsElEhMrQ5JUPYh6T8oSV2wWUCfXMY3icA0TlvyGBRIsqPUqP3Llkl38DeadgAAH1RJREFU3227\nn0a9r1meo3kEHkkH851QwD4vebw3vT5DJGtZXC/JODOAhd5CQInEBR2SsTHp9tvT/YOSxAWbBfQm\niYxvUoFpq23JclAgjY5So/bPm2e3R45I/f0zj01OSkePSsePZ3uOEpQhCcwQyV7a10syzjNxrUQv\n6Mu7AehOwR+U4WH7gzI4aLfDw3b/2Fiyr9dOQfAgCBodjT7eKwvog4zvhg3Snj3S7t12u3Fjax2A\nRkXrmwlMg7ZceKH02GPS44/Xb0t4UCBKUoMCaZ3Xjdo/a5a0fLn0zDOV+8pl6d57pa9/XfrqV+09\nuv325L9bQJpaCW6QjLSvl+GMc/D5BRnn8XE7DqC7EFAiFZ32ByWJIKgbBBnfzZulm26y22uuaW00\nOYnANMgC/vCHlpGbmpJe/OLaU5mzGhRI67xupv1veIO0dKmdk4cPS9u22f97L51+ur3faQ3YdKNg\nKn4Q0CAfWQ0GoSLN62WQcV65Mvp4kHEul1t/bgDFxZRXJK4TpzCxgH6mdqfotDMVudZ0qR/+UPrp\nT2sHpWnvqtfMOsc777TzZfny1p+/Ufvf+lZ73Nat0q23Ss8+a+/p6tXSC19o/79oEWvOGml3ynKv\nbjKSFkos5COt6yV7EgC9iYASievUPygsoE9enMA07gYdaQ8K1Dqvy2Vpxw5r28SE9O53226sra6p\nbLb9V10l3XWXZSTnzz91TWURB2yKop21XWwykh5KLGQvreslexIAvYmAEonr9D8oLKDPT7vZ7TQH\nBaLO63LZpp5OTlaOr14df/OJZto/MSHNni0tXhz9HEUdsCmCuIMVbDKSLmaI5CON6yUZZ6A3sYYS\niWOTG8SV1AYd7WzSVEvUeb1jhwWTixdb21etsh1Z211TWa/9rDmLp521XZ22JrwTJbF+G/Ekfb1k\nTwKg9xBQIhX8QUEcRQ+Wwuf1kSN2WypJBw9Kc+dK69dXHpvW5hMM2MQTd7CiXiAaDCbcdRebjCQl\njcEgZCupHcMBdA6mvCIVTGFCHEWYLlVv05XweX3nnZUgZXCwsjFOIM2pp9VrzqamrBbl009Lp53G\ngE2UuFPxowLR8LrZ4DFbtkhvexvXNkBiTwKg1xBQIjX8QUEceW3Q0eymK8F5/frX2wY8q1fbNNdq\naWZTg8D2C1+Q7rhD2r/f7l+xwsqL4FRxByuqA9HwutlFi+yY99JDD9k6SzIwFeyIC/YkAHoDASVS\nxx8UtCKP7HacTVeWL7fdXPPMpu7aJa1bV9nxta/P2ktgEy3OYEV1IBpeNyvZdOfBQWnNGkq2BDph\nR1yCXQBIjvPe592G2IaGhvz27dvzbgaAlJTL2WS3b7mldmA4MmIBW6PdP6MClDSDurht7nVRwU6j\nwYrgc372Wen++6UlS+z+w4dt7ezll9v5OTVla8U2b+7dQbQ8vxPNtq/owS6A5Dnn7vXeD+Xdjm5F\nQAmgp01MSDfcUMlMVmsUJMQJUPJuM1ofrBgbk267TfqLv6hktKLWzu7ebbuUrliRTruLrsgDHUUP\ndgGkh4AyXUx5BdDTWtn9M+val7W022a0PhV/YEC67jrpwQelZctsinF//8zH5L0Lcd7arSObtrh1\nSLPEVFwAnYiAEkBPi7v7Z7Us1won1Wa0ZsEC6bLLLAMXrKEM6/WSLUUe6Ch6sMtUXACdjDqUAHpa\nJ9Z17MQ2dwtq7NZW5DqyceuQZiGYijs8bAHv4KDdDg/b/WNj2bcJAFpBQAmg53VikNCJbe4GFG2v\nrcgDHUUOdsNTcYPANpiKOz5uxwGgyNiUBwCUz+Y67Wq1zUmtz2Kdl8lqF+JOUuSNb4q4YRAbbAHZ\nYFOedLGGEgCUz+Y67Wq2zUmtz2Kd10zU2D1VHnVkmxWnDmnairzuFACaRYYSALpYUhmjImeeUEyt\nZHCzynoXbSYCGUogG2Qo00WGEgC6WFKlEjqh5AKKpZkMbtZZ72az+lkFuMG601pTcdlgqzlMwwfy\nRUAJAF0qqVIJRS+5gM4UznoHGbqpKQuuHn443ax3rWA3jQC3UbCT9lTcbg62mIYPFAMBJQB0qaTW\nZ7HOC2koWtY76QC32WAnrXWn3R5s5TkgAWAmAkoA6FLhUgm11mdJjUslJPU8QKCIWe8kA9xWg52k\nNwXrhWCraAMSQC+jDiUAdKmk6gIWub4gOlMrWe+s2nPPPRbIRgkC3HK5ueeLW1uyVJJWrGj/u9Tt\ntS2T/rwAtKcQAaVz7o+cc//pnHvQObfVObc07zYBQDfYtMmyHSMjlqGYnJQOHZJ27mxtfVb180h2\nOzKSX8kFdK5w1jtK1lnvJAPcvIOdvF8/C0UbkAB6XSECSknflvQi7/0Fkh6R9P6c2wMAXSFYn3Xu\nudK//qv05S9LX/2q9Nhj0tlnt/48GzZYGYPdu+1248bumD6HbBUt651kgJt3sJP362ehaAMSQK8r\nxBpK7/23Qj/eI+lX82oLAHSjXbukdessIJw/X+rrs7VUH/948wFh0uu80NvS3t20FUmW78h7zXHe\nr58Fyq0AxVKUDGXYr0v6et6NAIBuEaynWrNGWrxY6u9vbz1VUuu80NuKlvVOalp33tnXvF8/K0zD\nB4rDee+zeSHnviPpzIhDN3rvvzL9mBslDUn6FV+jYc65d0p6pyStXr364ieffDKlFgNA55uYkG64\nobLTY7WpKevEb97c+R1MdK5yuRhZ76hSG3HKd4R3WY3KvqYdMOf9+llJ6vNC93PO3eu9H8q7Hd0q\ns4CyEefc2yX9hqRXee+bWio+NDTkt2/fnmq7AKCT7dsnvf/90uBg7cfs3i3ddJNlHYFOMTFh/y1Y\nUJnmmZQkAty8g528Xz9LRRmQQHERUKarEGsonXOvkfQ+SS9vNpgEADTWC+up0Lw0g7CsRAVKGzfa\nFMekAqVSqf3AJO81x3m/fpaS+LwAxFeIgFLSzZLmSvq2c06S7vHeX5dvkwCg87F5BaRsgrAshKdy\nBtO4p6bs/H744WJO5Ww22Ekr2CfYApC2QgSU3vvn590GAL2jG7I0rSjSbpqoLa3zshODsFqCDabC\ngyPBBlMjI3b82mvza18c3RLsA+hdhQgoASALvdpxC3bT7JX1VJ0m7fOyW4KwiQl7j846K/r4ypV2\n/OqrOycj103BPoDeRUAJoCf0esetl9ZTdZK0z8tuCsImJuw2ai1w+P7x8eL/LoFuCfYB9LYi1qEE\ngMSFO25Bx7OdWoztmJiw3VeDDnKWqCFZLGmfl60EYUUX3mAqSqdtMBUE+ytXRh8Pgv0yWxUCKDgy\nlAC6XlGyNL065RbRsjgvu2mX327bYKobM64AehMZSgBdrwhZmmBq4/CwBRCDg3Y7PGz3j42l99oo\npizOyyAIGx2NPt5pQdimTRb8joxUguGpKfu50zaY6raMK4DeRUAJoOsVoeOWx5TbPKfWorGszss8\ngrC0zr1gg6kNG6Q9e6Tdu+1248bOWwfdbcE+gN7FlFcAXS/vqXJZT7ntpqm13VziJavzMstdfrM4\n97ppgylK+gDoBgSUAHpCnh23LNdK1ds19P77pXe9S1q9OrngLM3aid0SFNeT1XmZRRCW9U7KpVLn\nBpIBSvoA6AYElAB6Qp4dtyw3RokqQ3DsmLR3r/TII9IDD0jnnNN+cJZmwNdLJV6yPi+TCsKiBhIo\ngRFPN2VcAfQm573Puw2xDQ0N+e3bt+fdDAAdplzOvuN2yy21pzaOjNiasHY72xMT0g03VIIwyX7X\nbdssqFywwB7zC79gQdvChfGCs3DAF5VVazfgy+K9KqI8zstW1RpIuPJK6WMfm3nuhU1N2VrHzZvz\n/d26eQo1gNqcc/d674fybke3IkMJoOfkMVUui6mNUVNrd+ywYHLJksp9U1PtZY3SzEQVpcRLHoo+\nhbNe5vgHP5COHi1uCYxemUINAHlgl1cAyEAWu1NW7xo6OWkB3qJF9vPJk3Y7Z47dximcnnYx9iKU\neEG0ejsVHzsmPflkMUtgULIHANJFhhIAMpL2WqnqXUOPH7f7+6aHDoNgoL/ffo6TNUp7g6Es15ui\neY0yx6tXS48+agMla9acejzPEhis7QSAdJGhBICMlUrSihXpdK7DNQeDQPLECenQIctMrl9feWyc\n4Czt2onU5iumZgYS1qyR5s7Ntt5lI2ln1AEABJQA0FXCU2vHxizw2r/fsjGXXz4zEIsTnGUR8IWD\n4qIEJr2umYGEefOkG29Md1p3q7KcQj0xIe3bV3lNAOgVTHkFMsQOg8hCeGrtk09KN99sa9zmzrXj\n7W4GlPYGQ9TmK57q6dTVgoGE1avzLYFRfY3NYgo1G/4A6HWUDQEyQIcDeYo6/9oNztJ4ziidUEqj\nV4yNSR/+sHTggAWV8+cnWy6m3bbVusZu3ZpeGZp6JXTmzpXe9S4LshlABPJF2ZB0EVACKUu7Zh/Q\nrDSCMwK+3hAEbHfeaVnvffuk5ctt3eQrX5lv5rjRNfb666UtW9K5BkfVTC2XrVzPI4/Y877whQwg\nAnkjoEwXU16BlLHDIIoijTqHRa+dmLVunNYeDtie+1xp3TqrObl7t7R0af7TkBtdY7dtS2cKddTO\nt+Wyvd7kpAXcExN2Ozxs08QZQATQjQgogRT1cpF2oJd087T2qIBt3jwLLPMeFGvlGpv02s6oDX92\n7LBgcvHiyn1TU/be7dwp3XabdN113TPYAAASASV6QJ4Zg7Rr9gHIXziDd9ZZlSmV3ZCVKvqgWKvX\n2HYy6o02/JmctAB70SK7/+RJuz1xQrr3Xsvo3n239OCD0mWXdcdgAwBIBJToYkXIGFCkHeh+3Tyt\nveiDYnGusa0OMtb7WxLe+fb4cTsW1H89fNjqzd59t+2yvHix5Jy0bFl3DDYAQICAEl2pKBmDZrfa\nJzsJdKaiZ/DaVfRBsVausXEGGRv9Lbn++koJnWXL7N+cOGHnRVCm59gxacmSSsZy/nwLLjt9sAEA\nAn15NwBIQzhjEHSCgozB+LgdzwpF2oHu1UoGrxMFAdvoaPTxIgyKNXONDQLD4WELDAcH7XZ42O4f\nG4t+7kZ/S4INfzZssOdYsEDav9+ef+NG2w03mAIbPE9/v/0cDDaUy+m+PwCQNgJKdJ0gY7ByZfTx\nrP+IB0XaN2yQ9uyxdTR79lhng+lOQGcLZ/Ci5J3BS0LRB8WaucbGGWRs9m9JqWRZxs2brYzIFVfY\nVNe+UA/r0CFpzhxp/frKfZ0+2AAAAaa8ousUcc3PwEDyOwwCyF8vTGsPAraky24kqd41Nu605Dgb\n/qxfL330o/Zeff/79hwnT0pnn231KMPP3w2DDQAgEVCiCxV5zQ81+4Dus2lTZR3dypWVdXajo8XI\n4CWhUwbFoq6xcQcZ4/4tCb9XW7ZIDz0krVlz6r/vhsEGAJCY8oou1AlrfgB0j16a1l4q2XTOTrp+\nxp2W3O7fklJJetvbpKVLiztdGACSQIYSXakXMgYAiqNTMni9KAgM77rLguH+flvPGKgXGLb7t6QT\npgsDQLuc9z7vNsQ2NDTkt2/fnnczUFBRW8TzRzxaq3XZAKBTjI1Jf/u30l/9ldWKLJVsF9YXvEA6\neNACw3qZ5KT+lpTLDDYAeXHO3eu9H8q7Hd2KgBJdjz/itcWpywYAnSJcR3LJEumRR6Rdu6SjR6XZ\ns6VrrpHe8pbmrnf8LQE6FwFlupjyiq7HRjjRGhXs7ra1XwB6T7hciCRdfLF0wQXS5KTVi1y4sPnr\nHH9LACAam/IAPSpOXbbAxIQV7A52TwSAoqlVR7K/36b2Dw5mW5MYALoVGUqgB8Wty8YUWQCdoog1\niQGgGxFQAj0oTkeLKbIAOkmRaxIngc3UABQFASXQg+J0tKrXIkmVKbIjI3b82mvTazMAtCIoFzI8\nPPO6FYhTk7gIQVyzM0WK0FYAvYGAEuhBrXa04k6RBYA8JVWTuCjT/ZuZKSIVo60AegcBJdCjWulo\nsRYJQCcaGLAgq506kkWa7t9opsgXvmBlUYrQVgC9g4AS6FGtdLS6fS0SgO41MGDT8a++Ol4dyaJM\n929mpsgdd0jr1klr1uTbVgC9hYAS6GHNdrTSWIsEAFmKU0eySNP9G80UmZqy2pobNkQfZ2kCgLRQ\nhxKASiVpxYr6nYxNmyzgHBmpZCSnpuznVtYiAUCnaGW6f9rCM0WiHD1qt/PnRx/Psq0AegsBJYCm\nBFNkN2yQ9uyRdu+2240bWZcDoDs1CuKynO4fzBQZHY0+/vTTNjDYV6Nnx9IEAGlhyiuAprW7FgkA\nOknRpvvX20zttNOkN7zBjhehrQB6BxlKAC1rZoosAHSDvKb7T0xI+/ZVpt1KjWeKvOUtLE0AkD3n\nvc+7DbENDQ357du3590MAADQxaLqULZSeqTd14qqI1kuR88UybKtQKdwzt3rvR/Kux3dioASAACg\nCbWCuKSEa15G1QduZb162m0FOgkBZbqY8goAANCEtKf7h2teBruyBnUkx8fteFHaCgABAkoAAICc\nBTUvV66MPh7UkSyXs20XADRCQAkAAJCzItW8BIBWEFACAADkrEg1LwGgFQSUAAAAOQtqXo6ORh+n\njiSAoiKgBAAAKIC8al4CQDtm590AAAAAWEmQD36QOpIAOgsBJQAAQEEMDEjXXitdfTV1JAF0BgJK\nAACAgimVCCQBdAbWUAIAAAAAYiGgBAAAAADEQkAJAAAAAIiFgBIAAAAAEAsBJQAAAAAgFgJKAAAA\nAEAsBJQAAAAAgFgIKAEAAAAAsRBQAgAAAABiIaAEAAAAAMRCQAkAAAAAiIWAEgAAAAAQCwElAAAA\nACAWAkoAaMHEhLRvn90CAAD0utl5NwAAOsHYmLR1q3TPPZX7Nm6UNm2SBgbyaxcAAECeCCgBoIGx\nMenjH5fGx6WzzpJmzZKmpqThYenhh6UPfpCgEgAA9CamvAJAA1u3WjC5apUFk5Ldrlpl92/dmm/7\nAAAA8kJACQB1TEzYNNeVK6OPr1xpx8vlbNsFAABQBASUAFBHsPlOkJmsFtw/Pp5NewAAAIqEgBIA\n6liwwG6npqKPB/cvXJhNewAAAIqEgBIA6liwwHZzHR2NPj46asdLpWzbBQAAUAQElADQwKZNloEc\nGalkJKem7OeFC+04AABAL6JsCAA0MDBgpUGq61Becon0+tdTMgQAAPQuAkoAaMLAgHTttdLVV9sG\nPAsXMs0VAACAgBIAWlAqEUgCAAAEWEOJTE1MSPv2VUoxAAAAAOhcZCiRibGxU9efbdxom5mw/gwA\nAADoTASUSN3YmPTxj9u6s7POskLwU1PS8LD08MO22QlBJQAAANB5mPKK1G3dasHkqlUWTEp2u2qV\n3b91a77tAwAAABAPASVSNTFh01xXrow+vnKlHS+Xs20XAAAAgPYVKqB0zv2Oc84755gA2SWCzXeC\nzGS14P7x8WzaAwAAACA5hQkonXODkq6UtCvvtiA5CxbY7dRU9PHg/oULs2kPAAAAgOQUJqCU9DlJ\n75Pk824IkrNgge3mOjoafXx01I5T1w8AAADoPIUIKJ1zvyzpKe/9A3m3BcnbtMkykCMjlYzk1JT9\nvHChHQcAAADQeTIrG+Kc+46kMyMO3SjpA7Lprs08zzslvVOSVq9enVj7kJ6BASsNUl2H8pJLpNe/\nnpIhAAAAQKdy3uc7w9Q5d76k/ycp2OdzlaQ9kl7ivf9ZvX87NDTkt2/fnnILkaRy2TbgWbiQaa4A\nAABIn3PuXu/9UN7t6FaZZShr8d4/JGlF8LNz7glJQ977sdwahdSUSgSSAAAAQLcoxBpKAAAAAEDn\nyT1DWc17vybvNgAAAAAAGiNDCQAAAACIhYASAAAAABALASUAAAAAIBYCSgAAAABALASUAAAAAIBY\nCCgBAAAAALEQUAIAAAAAYiGgBAAAAADEQkAJAAAAAIiFgBIAAAAAEAsBJQAAAAAgFue9z7sNsTnn\n9kt6Mu92IBUDksbybgQKgXMBYZwPCHAuIIzzAWHV58PZ3vvleTWm23V0QInu5Zzb7r0fyrsdyB/n\nAsI4HxDgXEAY5wPCOB+yxZRXAAAAAEAsBJQAAAAAgFgIKFFUf5l3A1AYnAsI43xAgHMBYZwPCON8\nyBBrKAEAAAAAsZChBAAAAADEQkCJQnPO/Y5zzjvnBvJuC/LjnPsj59x/OucedM5tdc4tzbtNyJZz\n7jXOuZ845x51zv1+3u1Bfpxzg8657zrnfuyce9g59+6824R8OedmOed+6Jz7at5tQb6cc0udc1+e\n7jPscM5dknebegEBJQrLOTco6UpJu/JuC3L3bUkv8t5fIOkRSe/PuT3IkHNulqTPS3qtpHMl/Q/n\n3Ln5tgo5OiHpd7z350raKOk3OR963rsl7ci7ESiEP5X0De/9CyX9nDgvMkFAiSL7nKT3SWKhb4/z\n3n/Le39i+sd7JK3Ksz3I3EskPeq9f9x7PynpHyT9cs5tQk6896Pe+/um//+wrMP4nHxbhbw451ZJ\n+m+S/irvtiBfzrklki6X9H8kyXs/6b0/kG+regMBJQrJOffLkp7y3j+Qd1tQOL8u6et5NwKZeo6k\n3aGfR0QAAUnOuTWSLpI0nG9LkKM/kQ0+n8y7IcjdWkn7Jf3N9BTov3LOLci7Ub1gdt4NQO9yzn1H\n0pkRh26U9AHZdFf0iHrng/f+K9OPuVE23e32LNsGoHiccwsl3SHpt733h/JuD7LnnPtFSfu89/c6\n516Rd3uQu9mSXizpt7z3w865P5X0+5I+lG+zuh8BJXLjvb8i6n7n3PmyUaYHnHOSTW+8zzn3Eu/9\nzzJsIjJU63wIOOfeLukXJb3KU++o1zwlaTD086rp+9CjnHP9smDydu/9P+XdHuTmUkm/5Jx7naR5\nkhY75/7Oe/8/c24X8jEiacR7H8xY+LIsoETKqEOJwnPOPSFpyHs/lndbkA/n3GskfVbSy733+/Nu\nD7LlnJst24zpVbJA8geSrvLeP5xrw5ALZyONt0l6xnv/23m3B8UwnaH8Xe/9L+bdFuTHOfd9Sdd4\n73/inPuIpAXe+9/LuVldjwwlgE5ws6S5kr49nbW+x3t/Xb5NQla89yecc++S9E1JsyT9NcFkT7tU\n0lskPeScu3/6vg947/8lxzYBKIbfknS7c26OpMclvSPn9vQEMpQAAAAAgFjY5RUAAAAAEAsBJQAA\nAAAgFgJKAAAAAEAsBJQAAAAAgFgIKAEAAAAAsRBQAgAS45y70zl3c97taMQ59wrnnHfODeTdFgAA\nOhkBJQCgLufcrdPBl3fOHXfO7XPOfdc595vOuf6qh/+KpPfn0c4W/buklZKeTvNFnHMrnXN/75z7\nT+fclHPu1jRfDwCArBFQAgCa8R1ZALZG0pWS/lnSRyV93zm3IHiQ9/4Z7/3hXFrYAu/9pPf+Zz79\nYsxzJY1J+qSk4ZRfCwCAzBFQAgCacWw6AHvKe3+/9/6zkl4h6cWS3hc8qHrKq3PuCefcH0xnOQ87\n53Y7597snFvqnPsH59y4c+6nzrkrwy/mnDvXOfe16X+zzzn3RefcmaHjtzrnvuqce7dz7inn3LPO\nub9xzpVCj7ncOXfP9GscdM79h3PuRdPHTpny6pz7FefcQ865Y9PtvNE556p+lw865/7COXfIOTfi\nnPu9em+a9/4J7/0N3vtbJT3T+tsOAECxEVACAGLx3v9I0jckvaHBQ39b0n/Igs8vSbpN0t9L+hdJ\nF0raJunvnHPzJJsmOn3fjyS9RNIVkhZK+opzLvx362WSXjR9/M2SNkl69/RzzJb0FUl3Sfo5SRsk\n/YmkqagGOuculvSPkv5J0vmSfl82dfddVQ99j6SHpn+XT0n6tHPukga/PwAAXYuAEgDQjh9Lem6D\nx3zTe//n3vufSvqwbBroo977L3jvH5X0vyUtlwWHknS9pAe89//Le7/De/+gpLfKgsuh0PMeknTd\n9GO+JQsIXzV9bLGkpZL+2Xv/mPf+P733f++931Gjje+V9D3v/Ye9949472+X9MeS/lfV477lvb/Z\ne/+o936zpEdDrwkAQM8hoAQAtMNJarQO8cHgf7z345LKsixfYO/07Yrp24slXT49VXXcOTcuaff0\nseeF/t2PvffhjOOe4Dm8989IulXSN6enzr7XObe6ThvXS/q3qvvukvQc59ziqN+l+jUBAOhFBJQA\ngHacK+nxBo85XvWzr7ovCEj7Qrdfk02HDf+3TtJXGzzvf/1d896/QzbVdZukX5L0E+fcLzRoa5Rw\nwFz3NQEA6DWz824AAKAzTW9w8xpJH0/4qe+T9CZJT3rvqwO4lnjvH5D0gKRPOee+Lultkr4Z8dAd\nki6tuu8ySSOdsGstAAB5YVQVANCMuc65M51zZznnfs45915Jd0q6V7bWMEmfl7RE0v91zm1wzj3X\nOXeFc+4vnXOLmnkC59xa59wnnXMvdc6d7Zx7paQLZGs+o3xG0sudcx9xzr3AOXe1pN+R9Ol2fxnn\n3IXOuQtl6zpPn/753HafFwCAIiBDCQBoxhWSRmW7pB6Q7cD6EUl/6b2fTPKFvPd7nHOXSrpJtovs\nPEm7JH1L0rEmn6Ys6QWyjXoGZOs0b5ftzBr1mvc5594oq635genHf1LSzVGPb9EPq37+75KelNX0\nBACgo7n0azoDAAAAALoRU14BAAAAALEQUAIAAAAAYiGgBAAAAADEQkAJAAAAAIiFgBIAAAAAEAsB\nJQAAAAAgFgJKAAAAAEAsBJQAAAAAgFgIKAEAAAAAsfx/yFta0qMSR5wAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create a biplot\n", + "vs.biplot(good_data, reduced_data, pca)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "\n", + "Once we have the original feature projections (in red), it is easier to interpret the relative position of each data point in the scatterplot. For instance, a point the lower right corner of the figure will likely correspond to a customer that spends a lot on `'Milk'`, `'Grocery'` and `'Detergents_Paper'`, but not so much on the other product categories. \n", + "\n", + "From the biplot, which of the original features are most strongly correlated with the first component? What about those that are associated with the second component? Do these observations agree with the pca_results plot you obtained earlier?\n", + "\n", + "- First Dimension: detergents, grocery and milk (positively) - agrees with previous plot feature weights. \n", + "\n", + "- Second Dimension: Deli, Frozen, Fresh, also positively. Agrees too.\n", + "\n", + "So the length of the arrow is the weight of that feature in the dimension, the direction indicates how much each dimension is exposed to that feature.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Clustering\n", + "\n", + "In this section, you will choose to use either a K-Means clustering algorithm or a Gaussian Mixture Model clustering algorithm to identify the various customer segments hidden in the data. You will then recover specific data points from the clusters to understand their significance by transforming them back into their original dimension and scale. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6\n", + "*What are the advantages to using a K-Means clustering algorithm? What are the advantages to using a Gaussian Mixture Model clustering algorithm? Given your observations about the wholesale customer data so far, which of the two algorithms will you use and why?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The K-means algorithm will try to find clusters of points that are close to each other: a point can belong to only one cluster at a time. The Gaussian Mixture model allows points to belong to several clusters at a time, with a certain probability. Given wholesale customers might belong to several possible clusters, such as the \"small place\" cluster or the \"deli\" cluster at the same time, I would use the gaussian mixture model which allows this. Further, the mixture model incorporates the covariance information of the data (http://scikit-learn.org/stable/modules/mixture.html) which I believe is desirable, given we have some feature correlation. We should have enough points per cluster, so calculating the covariance matrix should work." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Creating Clusters\n", + "Depending on the problem, the number of clusters that you expect to be in the data may already be known. When the number of clusters is not known *a priori*, there is no guarantee that a given number of clusters best segments the data, since it is unclear what structure exists in the data — if any. However, we can quantify the \"goodness\" of a clustering by calculating each data point's *silhouette coefficient*. The [silhouette coefficient](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html) for a data point measures how similar it is to its assigned cluster from -1 (dissimilar) to 1 (similar). Calculating the *mean* silhouette coefficient provides for a simple scoring method of a given clustering.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Fit a clustering algorithm to the `reduced_data` and assign it to `clusterer`.\n", + " - Predict the cluster for each data point in `reduced_data` using `clusterer.predict` and assign them to `preds`.\n", + " - Find the cluster centers using the algorithm's respective attribute and assign them to `centers`.\n", + " - Predict the cluster for each sample data point in `pca_samples` and assign them `sample_preds`.\n", + " - Import `sklearn.metrics.silhouette_score` and calculate the silhouette score of `reduced_data` against `preds`.\n", + " - Assign the silhouette score to `score` and print the result." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb comps: 2, score: 0.447411995571\n", + "Nb comps: 3, score: 0.359479670374\n", + "Nb comps: 4, score: 0.312405270688\n", + "Nb comps: 5, score: 0.3285065946\n", + "Nb comps: 6, score: 0.28969365136\n", + "Nb comps: 7, score: 0.328311049677\n" + ] + } + ], + "source": [ + "# Use the ouput of PCA reduced to 2 components as input for the Gaussian Mixture Model\n", + "\n", + "nb_comp = [2,3,4,5,6,7]\n", + "\n", + "val_out = 2\n", + "for val_comp in nb_comp:\n", + " # TODO: Apply your clustering algorithm of choice to the reduced data \n", + " from sklearn.mixture import GaussianMixture\n", + " clusterer = GaussianMixture(random_state=5, n_components=val_comp).fit(reduced_data)\n", + "\n", + " # TODO: Predict the cluster for each data point\n", + " preds_loc = clusterer.predict(reduced_data)\n", + " #print(preds)\n", + "\n", + " # TODO: Find the cluster centers\n", + " centers_loc = clusterer.means_\n", + "\n", + " # TODO: Predict the cluster for each transformed sample data point\n", + " sample_preds_loc = clusterer.predict(pca_samples)\n", + "\n", + " # TODO: Calculate the mean silhouette coefficient for the number of clusters chosen\n", + " from sklearn.metrics import silhouette_score\n", + " score = silhouette_score(X=reduced_data, labels=preds_loc)\n", + " print(\"Nb comps: {}, score: {}\".format(val_comp, score))\n", + " \n", + " if val_out == val_comp:\n", + " preds = preds_loc\n", + " centers = centers_loc\n", + " sample_preds = sample_preds_loc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7\n", + "*Report the silhouette score for several cluster numbers you tried. Of these, which number of clusters has the best silhouette score?* " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** 2 clusters has the best silhouette score. I am guessing 1 cluster would be even better as it has no alternatives, but it throws an error." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cluster Visualization\n", + "Once you've chosen the optimal number of clusters for your clustering algorithm using the scoring metric above, you can now visualize the results by executing the code block below. Note that, for experimentation purposes, you are welcome to adjust the number of clusters for your clustering algorithm to see various visualizations. The final visualization provided should, however, correspond with the optimal number of clusters. " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAH/CAYAAAB6lW32AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcHFW5//HPM8nIQDIQdhMyMeyEEMMlQyIiEkGMrIL5\nsSigeKMGl3DjT829ivzcUDR6LyAuBEWjEAwxCAgIuIGCYMLEm5BAWCQskwXCljABBjIz5/fHqc7U\n9PRS3V3dXd39fb9e85pMd3XVqWUm9dQ5z3PMOYeIiIiIiEgjaap2A0RERERERCpNgZCIiIiIiDQc\nBUIiIiIiItJwFAiJiIiIiEjDUSAkIiIiIiINR4GQiIiIiIg0HAVCIglkZl8zs2ur3Y4kM7MtZrZP\ntdtRz8zsbjP7eIW3Od/MLq7kNhuNmT1kZlOzvDfVzNZWuEk5mdlTZvbeGNaTc9/MzJnZfqVup9LM\nbGzQ9qHVbotIrVEgJFIlZvZhM+sIbug3mNntZvauGNcf+3+OSfoP1zk33Dm3ptrtyCUIJLqDc/yC\nmf3WzEaG3p9sZr83s01m9pKZLTWzj6WtY28z6zOzn0TY3nwzezPY3ktm9kczO6gc+1YNZnaemfUG\n+7fFzJ40s1+Y2QEFrKPsgZaZ7Whml5nZM0E7nwh+3i2GdZccFDjnxjvn7i61LWHBcXVm9oG01y8N\nXj8vzu0lWXCdOjObk/b62mwBqIhUhwIhkSows/8LXAZ8G9gTGAP8CDilmu0Kq2awY2ZDqrXtMvis\nc244cAAwArgUwMyOAP4C/BXYD9gV+BTw/rTPfwR4GTjTzLaLsL25wfb2AtYBV8exEwlyf7B/OwHv\nBV4HlpnZIdVtlmdmbwH+DIzHn8sdgSOAF4DJFdh+NR9SPIa/XsNtOQN4opiVJeGBSwleAuaYWWu1\nG1KIGj/mIgVTICRSYWa2E/AN4DPOud865151zm11zt3qnJuTYflBwznCT4WDXoUOM3vFzJ4zs/8J\nFvtb8H1T8FT6iGD5fzez1Wb2spndaWZvC63XmdlnzOxx4PEC96vJzP4rePr9opktMrNdQu//xsye\nNbPNZvY3Mxsfem++mf0k6B15FXhP8NqPzOw2M+sysyVmtm9aW/cLfT7Xsu8zs0eDbf/YzP5qWYZ8\nmdl2wdP79cHXZakAJHUuzOzzZrbRfE/exzKtJ51z7iXgBiB1w/494JfOue86515w3jLn3Jmhthj+\nxvIrwFbg5CjbCrb3OrAIODRt/3Kd/+PM7JHgOP0QsNB7A4ZrWlrvoJntEvTOrA/WfVNo2ZPMbLn5\nnq/7zOztoff+zcz+GZy364GWiPvX65x7wjn3aXww+bXQOjNea2b2SeBs/A3qFjO7JXg9dd12mdnD\nZnZalDZk8RH8g43TnHMPO+f6nHMbnXMXO+d+H2xvlJndYGbPm+/VuiDU9q8Fvzu/CtrzkJm1B+9d\nE6z7lqD9c0LnYYaZPYMPrjGzU4LPbjLfMzkutI3w34/tg9+fl83sYeDw8M6Y2X+a2bqgLY+a2bE5\n9v0W4F1mtnPw8/uBB4FnQ+vb18z+EvyNeMHMFpjZiLS2/aeZPQi8amk35mY2LjhmH4pwLHPuWxYn\nmNmaoG3fM/937S3me1gnhNa9h5m9Zma7Z1nPauB+4P9metPSeiYt7e98cBy+aGYPmtmrZna1me1p\nfuRAl5n9KXScU/49+P3bYGZfCK0r69/mbNePSKNQICRSeUfgb/ZujGl9lwOXO+d2BPbF3/wCvDv4\nPiIYRna/+WErXwY+COwO3AP8Om19pwJTgIMLbMes4LNHA6PwvRg/Cr1/O7A/sAfwT2BB2uc/DHwL\naAXuDV47C/g6sDPwr+D9bDIua3440mLgS/hel0eBd+ZYz4XAO/ABxET8U/yvhN5/K743Yi9gBvCj\nDDckgwTtmA78r5ntgL8OFuf52LuA0cBC/Hn9aL7thLY3DPgQ/likXst6/oP2/Ra/r7vhn+IfGXV7\nwDXADviekD3o7/n6N+DnwEz88Z8H/M58wPkW4Kbgs7sAv8Efo0L9Fjgq9HPGa805d1Xw77nB70Qq\nsHwi+PxO+GvoWgsNYSzQe4E7nHNbMr1pZk34gGEF/ho6FphtZtNCi52CP+cjgN8BPwzafy7wDHBy\n0P65oc8cDYwDppkfKvhrYDb+PP8eHzy9JUOTvor/u7EvMI3QNWZmBwKfBQ53zrUG7z+VY9+7gZvx\nv4vgg8JfpR8C4BL834hxQBuhIDbwIeBE/N+unlB7DgPuBGY5534d4Vhm3bccTgPagcOADwD/7px7\nE38+zklr45+dc8/nWNdFQXt2ybFMLtOB4/C9ySfjr+sv489pE3BB2vLvwV/37wP+0/qHUOb72wyh\n66fItorUJuecvvSlrwp+4Z9IP5tnma8B1wb/ngqsTXv/KeC9wb//hr952y1tmbGAA4aGXrsdmBH6\nuQl4DXhb8LMDjsnRrkHrDL23Gjg29PNIfC9GpmVHBOvZKfh5PvCrtGXmAz8L/XwC8EjoZwfsl29Z\n/M3Y/aH3DOgEPp5lH58ATgj9PA14KnQuXk87phuBd2RZ193B8d2EH6a2AH8Ts1fQ/oPyXAc/A24K\n/n1EcDz3yLH8fPzN6CagD3gSeHuU8x8cp3+kHae1qeMUvibTr4XgXPcBO2do00+Ab6a99ij+xuvd\nwHrAQu/dB1ycZf/OA+7N8Pr7ga1ZPpPpWsu4/tBnlgMfyPe7nOWzfwS+k+P9KcAzaa99CfhF6Dj/\nKfTewcDroZ+fIvjdTzsP+4ReuwhYlHae1wFT09cBrAHeH1r2kwR/b/BDNjfig7vmPPs9H7gYH7zf\nHxz354Dt8Q82zsvyuVOB/03bv39PW+Yp/N+4tal9iHgss+5blra4tOU/jQ92tm0rda0CHcAZ+a5T\n/AOM7wb/3tb+9OuQtL/zwT6fHfr5BuAnoZ9n0f+3IXUNHBR6fy5wdfDvrH+bM10/+tJXI32pR0ik\n8l4Edksf8lGCGfgnho+Y2QNmdlKOZd8GXB4Ml9mEH8du+BvzlM4i2/E24MbQulcDvcCeZjbEzL4T\nDM14hf6nyuHk8UzbfTb079eA4Tm2n23ZUeF1O+cc/oYkm1HA06Gfnw5eS3nRhZ5SR2jXBc65Ec65\nvZxzZzv/BPllfOCQtdfBzLYHTqe/N+N+/I3Yh4P3v2z9RQOuDH30+865EfgbnNeBA0Pv5Tr/mY5T\n1GuhDXjJOfdyhvfeBnw+tc1gu23B9kYB64JtpTydYR357IXfFyJeawOY2Uesf+jeJvzwxYzLh475\nFjMbk2GRF8lxXvHHY1Ta8fgyPlcwJf1abonw9yJ8rgZcw865vuD9vdI/RNp5T/vcv/C9Sl8DNprZ\nQjMbRQ7OuXvxwf6FwK3OD9HcJhjetTAYbvcKcC2Dj3Wm6+584D43sMhDvmOZdd9ySF9+VLBfS/Dn\nYqr5AiT74Xvr8vl/wKfMbM+8Sw72XOjfr2f4Of3vTsa2k+Nvc5bPijQMBUIilXc/8Ab+SWgUr+KH\nHAHbCglsG5funHvcOfch/DCg7wKLg2FRLn1F+P/sZgY35qmv7Z1z94WWyfS5KDqB49PW3eKcW4e/\nef8A/snyTvibdAjloJSw3Xw24IeX+Q2aWfjnDNbjbxxSxgSvxcY59xr+Osg1DOw0fKL9j83nuzyL\nv5H9aLCObzs/PGq4c+78DNt4BvgPfOCzffByrvO/AR+gANuOU1tolQOuQ/wQwZROYBcL5Xqkvfet\ntG3u4Jz7dbDNvYJtpWQKLvI5DT/MD/JfawOuM/M5Uj/FDwHbNQgiVzHw2twmdMyHB8c43Z/ww9OG\nZWlrJ/Bk2vFodc6dEGVH09uf5fUB13DoXK7L8LkB55204++cu845965gfQ7/Nyafa4HPM3hYHPgC\nMQ6Y4Pxw3nMYfKwz7eP5wBgzuzT0Wr5jmXPfskhfPvy7/8ugvecCi51z3flW5px7BD9088K0t3L9\nPhUrW9tz/W3e1tQYti9ScxQIiVSYc24z/inhj8zsVDPbwcyazex4M5ub4SOP4Z8In2hmzfgcjm3V\nw8zsHDPbPXjquyl4uQ94PvgenmvnSuBL1p88vpOZnV7EbmxnZi2hr6Zg3d8Kbiwxs92tv5RuKz74\nexH/n/+3i9hmsW4DJgTHeijwGXLfdPwa+ErQ/t3w56occzrNAc4znxC9K4CZTTSzhcH7H8Xn1kzA\n5ysdis/ZmWihpO1cnHN/xN8MfTJ4Kdf5vw0Yb2YfDI7TBQw8TsuBd5vZGPMFP74U2s4G/LC7H5vZ\nzsH1nMpR+ylwvplNMW9YcC234oPBHuCC4DMfJGJltaDnZ28zuwI/rOjrwVv5rrXnGPg7kXpo8Hyw\n3o/RX9CiGNfgbzxvMLODzCeq7xr04J0ALAW6zBcE2D7Yj0PMLEoif6b2Z7IIONHMjg3+Znwef0zu\ny7Lsl4LzNho/5ArwOUJmdoz5YiHd+F6Ivght/AE+t+VvGd5rBbYAm81sL+CLEdYH0IUfAvluM/tO\n8Fq+Y5l133L4YrB8G/5BwvWh967FB93nkDnIy+brwMfwwwVTluMLM+xiZm/F97yV6qLg/5PxwfZS\nbc/1t1mkoSkQEqkC59x/46sJfQV/A9aJfyJ9U4ZlN+PHqv8M/0T3VQYO7Xo/8JCZbcEXTjjLOfd6\n0OvwLeDvwZCIdzjnbsQ/0V0YDEtZBRxfxC5swd8Upb6OCbb9O+APZtYF/AM/rh78TcPTQfsfDt6r\nCOfcC/ghZnPxN8cH48f3v5HlIxcH7z8IrMQn28c+70zQC3NM8LXGzF4CrgJ+H9wgHgtc5px7NvS1\nDLiDAoom4KvTzTGz7XKd/9Bx+g7+OO0P/D3U3j/ib6weBJYBt6Zt51x83sEj+LyS2cHnOoBP4BP+\nX8YXbzgveO9NfOGG8/BD287EPz3P5YjgWn8Fn4O1Iz6Zf2Xwfr5r7Wrg4OB34ibn3MPAf+ODsufw\ngeffKZJz7g18b9Qj+HyhV/A37LsBS5xzvcBJ+MD2SXxZ7Z/he6+iuAQfqG+yUGWwtDY8ir9ZvyJY\n/8n4AgtvZlj86/jj9STwB3wgl7Id/np4AT9cbw9CAXA2zrmXnHN/ThvyGN7eYcBmfPCd73yH17sJ\nH2Adb2bfjHAsc+1bNjfjr+/lQfu2lZ93znXi/x44+nsgo7T7yWDb4V7Ca/BFHp4K2nb94E8W7K/4\n368/44fI/iF4PdffZpGGZpn/TomI1Keg92otPhH5rmq3R0Rqh5n9HFjvnPtK3oVFJPE0cZaI1D3z\n5XSX4HuvvojPSahYr5SI1D4zG4vvwfy36rZEROKioXEi0giOwJfFTg0TOjW9mpWISDZm9k38UNLv\nBUPdRKQOaGiciIiIiIg0HPUIiYiIiIhIw1EgJCINycyOMrN/mZ8YM9cktBVnZvuZWeK7683sYjOb\nX+12JI2ZvdfMnoppXdea2deyvPdxM7s7ju1EaEfJ57pWrmsRaRwKhESkYoKgI/XVZ2avh34+u8LN\nuRi4NJgYM70UdKKZ2bvN7H4z22xmL5nZvWZ2WLXbVQgzWxs6/5vM7O9m9kkzyziRaYbPl3RTbWZD\nzcyZ2QbzkxSnXn+Lmb1oZj3FrrsWBddQd3A+NpvZX4P5aKrZphFmdrmZPRO0619m9j8WzLslIlIq\nBUIiUjFB0DHcOTcceAY/t0nqtQXpy5uf2LNc3gY8VMwHy9yufNveGT8nyP8AuwCj8UFdpjliku74\n4FoYi5/v6Mv4uZQq6RXgfaGfT8IX1ShKNa+NGJwfnI9d8XMp/bJaDTGzFuAvwEH487Mj8E78/EPt\nGZav5eMuIlWiQEhEEiMYfnO9mf06mPjvHDM7wsz+EfQabDCzH5hZc7B86qn+zOBp8ctm9oPQ+g4w\ns78FT7hfMLPrgtefAsYAtwdPmoeY2WgzuzXoYXnczP49T7suNrOFwWtbzGyFme1rZl8xs+eDp9jv\nDa1jhJn9ItiHtWb2jWBOI4LtXxr0RKzBT5KbzYFAj3PuN865Xufca865O5xzq4J17W9mdwX78YKZ\nXWNm2ybrDLb9BTNbFbT7KjPb08zuNLNXzOwPZjYiWHa/4Ph+wszWB1+fy3H+jgydq+Vm9u4o5905\nt8k5dxPwIWCGmR0UrO+UYD2vBMfzotDH/hYsk+pRPDzfvmdxDfCR0M8fwU/KGt6vj5vZajPrMrMn\nzOzjoffea2ZPmdmXzexZ4KcZjsvnguM9KrRfK4LjdK+ZHRJadlKwz11m9mv8pKa5NJnZj4NrfLWZ\nvSdYz4fMbElaO+aY2Q151odzrgdYiJ98eBAzazKzxWb2bLAPd5vZuND7OwTX8zNBu/5mZoP2w8zO\nMLMnzSzTds4D3gqc5px7xDnX55zb6Jz7unPuzuDza83si2a2Ej/RNGY23nxv1iYzW2lmJ4a2d1Lo\nPK5NXctmtoeZ/T74zEtm9rd8x0hE6oMCIRFJmtOA6/Czw18P9AD/AewGHIkPEmamfeYEYBJ+fo9z\nQgHIt/Czw++M7zn5EYBzbiywnqBHIpih/nr8DPSjgDOBuWZ2dI52AXwAP/P8CHzv0p+C9o4ELgF+\nEvr8Nfh5jPYN2noi8LHgvU/hn3pPBA4HzshxfB4FhgRB1ftTQUuI4XuI3oq/kd0HuChtmdOAY/BP\n26cHx2gOsAf+xvszacu/G9gPOB74iplNTW+UmbXhe6q+iu+p+i/gt1bAMCbn3P3As8BRwUtbgLPx\nx/dk4D+sP5/r3cFnUj2KD0Tc93S/BY4xsx2Dtr4DuCVtmefw52tH4BPAFWb29tD7o4Hh+OD60+EP\nmtk3gn042jm33swOxwdLH8f3vPwcuNn8kLztgJuD13YJ/n1qnva/E3gE//vxTfwxHwHcBBxoZvuH\nlj2XtCAvEzN7S9DmXHNt3Qrsjz/Wq/DXd8qlwNuBKcF+fBnoS9vGx/G/n8c65x7OsP73Arc7517L\n09yz8NfliKDdt+Kv592BzwHXm9l+wbK/AGY451qD9v01eP2LwJrgM28FNFmqSINQICQiSXOvc+6W\n4Anw6865B5xzS5xzPc65NfihU0enfeYS59xm59xTwN3AocHrW/HDrkY657qdc3/PtEEz2xuYDPxX\nsNw/8TdN52ZrV/Da3c65PwVP0H+Dv+mbG3qivp+ZDTezvfA3dp8LenCeAy7D38SBD3wudc6tdc69\nCHwn28Fxzr0MvAv/9/tq4Hkzu8nMdg/ef8w592fn3JvOuY34m9L04/WD4On6WuBe4H7n3ArnXDf+\nBjp9wsivB+1egR8u9aEMTfsI8Dvn3J3BMboDWEHu3q1M1uOPI865vzjnHgrWtwJ/TNP3ZZuI+57u\nNeB24PRgv24kbZhhcN7XOO8vwJ/pD9bAB79fC7abujbMzC4Ptn9McF4BPgn8OLiue51zPw9ePxwf\n6DvgCufcVufcQuB/87R/Q2j56/DB/PFBO34DnBM05lB8gP77HOv6sZltwgegnwS+kWmh4HzMd851\nBdfM14BJZjbMfL7VecAFzrkNwT7e65zbmvq8mX0BmI0PDtdkacuuwb7lc3nwe/M6/vi9BT/Xz1bn\n3J/w5zb1e7YVONjMWp1zLwW/56nXRwFjgnOoHiGRBqFASESSpjP8g5kdZGa3BcNwXsHfnO2W9pln\nQ/9+Df90HuDzQDPQEQyT+WiWbY4CXnDOvRp67Wlgr2ztCjwX+vfrwPPOub7QzwRteRu+p+W5YPjN\nJnzv1J6h7YfX/3SWdgIQBAcfdc7thX+yPQafM4SZvdXMFpnZuuB4zWfw8Upvd/rPwwcuPqhtozI0\n623Ah1L7F+zjO7Ism8tewEvBvhwRDLt63sw243tR0vdlm4j7nsmv8IHcoGFxwXpPMrMlwbCpTfje\nu/B6n3POpedo7Rq091vOuVdCr78N+M+04zQy2O9RwFo3cIK/nNdCluVTx/yX+J4d8AHR9eGAJINP\nO+dGAC34nqibLEPBBPNDOeea2ZrgOP8reGs3/DX9FvwExtl8ER+8rc+xzIv445JP+NocBTyT4Xik\nfo9PA04BngmuqynB698Jlvuz+aGPX4ywXRGpAwqERCRp0iuBzcMPvdnPObcj8P/wQ6Dyr8g/kf64\nc24kfrjXVUHvT7r1wG5mNiz02hhgXY52FaITH6Dt4pwbEXzt6JxLDa/aALSlbTsS59xq/M17Ks/k\nu8AbwITgeJ1HxOOVQ3rbMt3AdgK/CO3fCOfcMOfc96JuxMzegb+Rvjd4aSFwA9DmnNsJ+Bn9+5Lp\nfBS773fhA5QRwfC8cJu2BxbjhzruGQQKf0hbb6a2vIC/6b422K+UTnwPW/g47eCcW4S/DkanrSff\ntZBp+fUAzrl7g304EvgwA4evZRX0+PwV37t0XIZFPoIfjnoMfqhoauiZ4YPqN/FDQLM5DviameUa\n9vcn4Pjg+Odsbujf64E2swGVB7f9Hgc9y6fgh4Deir++cM694pz7nPNDZk/FB6r5ehJFpA4oEBKR\npGvFV4p6NUjITs8PyipIxk49Dd6Ev2nqTV/OOfck0AF828y2C4YRfQy4ttTGB+vvxOcjfD/IRWky\nX4ggVUxgETDbzPYK8lT+M8c+HWxm/ze1X2Y2Bj/0J5XP0YpPHN8c5O18IYZduMjMtjezCcBH6c+R\nCrsGOM3Mjgt6DFrM7D0WFAjIxcx2MrNT8DlY84PgLrUvLznnuoNg4qzQxzYCzsz2Cb1W1L4HPQgn\nkTkfZzt8D8fzQG+Qo3RsxPX+GR803GxmqUpnPwU+Y764gwVDJ08OgvB78cUPPmu+EMgZQL6y6CND\ny5+FD0DuCL1/DT5XbYtzLlfOzwBB8HQQmSsrtuIDzheBHfC5Pql97sX3xF0W9NANMV9Eozm0zIP4\nnKt5FipmkGY+vqf3BjM7MDhWu5nZRWY2Lctn7sMPU/y8mTWb2TH4gO364Pr9sJntGPSKdRHkLQXH\nf98ggNqM/xvRl2UbIlJHFAiJSNJ9Hn/z3YXvHcp0E57NFOABM3sVnxT/GefcM1mWPROf/P0svgfg\ny865u4ttdAbnAMOAh4GX8fkbbw3e+wk+72Ql8ECw/Wy6gCPo36/78Hkkc4L3v4rPd9qML16Qt0pY\nBPfik8n/gM/H+kv6As7nZ52GL07wPL48+ufJ/f/M7Wa2JVj2v/AltD8eev9TwCXmK/V9GR8wprbX\nhe+lWRIMMWunhH13zq1yGZL2nXOb8En3N+KH7P0ffG9C1PXegS+wcKuZHRoEI5/Cn/OXgccI8nic\nc2/gj+EngvdOw+ds5XIfMD5o29eA6c7nkaWkeguj9AZdaUEVPnwg8p/OuT9mWO4X+N6X9fhA6b60\n9z8HrAaWBe36Nmk9c0F+zsnAL8zsfWmfJ8g9OgY/7O5P+Ov+H/geqAcyNT44fifji5i8APwA+LBz\n7vFgkY8CTwfD+WYQHHd8Jca/4HOj/o7PO7on0zZEpL7YwKG0IiIinvlqW48750odWidVEvQ0bQQO\nCXo+RUQkoB4hERGR+vUZ4O8KgkREBtNMzCIiInXIzNbiS0N/oNptERFJIg2NExERERGRhqOhcSIi\nIiIi0nAUCImIiIiISMOpqRyh3XbbzY0dO7bazRARERERkYRatmzZC8653fMtV1OB0NixY+no6Kh2\nM0REREREJKHM7Okoy2lonIiIiIiINBwFQiIiIiIi0nAUCImIiIiISMOpqRwhEREREZF6sXXrVtau\nXUt3d3e1m1KTWlpaGD16NM3NzUV9XoGQiIiIiEgVrF27ltbWVsaOHYuZVbs5NcU5x4svvsjatWvZ\ne++9i1qHhsaJiIiIiFRBd3c3u+66q4KgIpgZu+66a0m9aQqERERERESqREFQ8Uo9dgqEREREREQa\n1LPPPstZZ53Fvvvuy6RJkzjhhBN47LHHeOqppzjkkEOKWuf8+fNZv359Se1yznHBBRew33778fa3\nv51//vOfJa0vEwVCIiIiIiINyDnHaaedxtSpU3niiSdYtmwZl1xyCc8991xJ6y0mEOrp6Rnw8+23\n387jjz/O448/zlVXXcWnPvWpktqUiQIhEREREZFa0LkBZl0Mk8/03zs3lLS6u+66i+bmZs4///xt\nr02cOJGjjjpqwHLz58/ns5/97LafTzrpJO6++256e3s577zzOOSQQ5gwYQKXXnopixcvpqOjg7PP\nPptDDz2U119/nWXLlnH00UczadIkpk2bxoYNvt1Tp05l9uzZtLe3c/nllw/Y5s0338xHPvIRzIx3\nvOMdbNq0advn4qKqcSIiIiIiSde5ASaeBlteg609sHw1LLgVVtwIbSOLWuWqVauYNGlS0U1avnw5\n69atY9WqVQBs2rSJESNG8MMf/pDvf//7tLe3s3XrVmbNmsXNN9/M7rvvzvXXX8+FF17Iz3/+cwDe\nfPNNOjo6Bq173bp1tLW1bft59OjRrFu3jpEji9vXTBQIiYiIiIgk3dyr+4Mg8N+3vOZfv+IrVWnS\nPvvsw5o1a5g1axYnnngi73vf+wYt8+ijj7Jq1SqOO+44AHp7ewcEM2eeeWbF2ptOgZCIiIiISNIt\nWdkfBKVs7YGlK4te5fjx41m8eHHe5YYOHUpfX9+2n1Mlq3feeWdWrFjBnXfeyZVXXsmiRYu29fSk\nOOcYP348999/f8Z1Dxs2LOPre+21F52dndt+Xrt2LXvttVfethZCOUIiIiIiIkk3ZQI0p/VhNA+F\nyROKXuUxxxzDG2+8wVVXXbXttQcffJB77rlnwHJjx45l+fLl9PX10dnZydKlSwF44YUX6OvrY/r0\n6Vx88cXbKru1trbS1dUFwIEHHsjzzz+/LRDaunUrDz30UN62nXLKKfzqV7/COcc//vEPdtppp1iH\nxYF6hEREREREkm/ODJ8TlBoe1zwUhu/gXy+SmXHjjTcye/Zsvvvd79LS0sLYsWO57LLLBix35JFH\nsvfee3PwwQczbtw4DjvsMMDn8XzsYx/b1lt0ySWXAHDeeedx/vnns/3223P//fezePFiLrjgAjZv\n3kxPTw+zZ89m/PjxOdt2wgkn8Pvf/5799tuPHXbYgV/84hdF72fW/XfOxb7Scmlvb3eZkqlERERE\nRGrN6tXhc8TXAAAgAElEQVSrGTduXPQPdG7wOUFLV/qeoDkzii6UUC8yHUMzW+aca8/3WfUIiYiI\niIjUgraRVSuMUI+UIyQiIiJSis5umPUYTF7mv3d2V7tFIhKBeoREREREitXZDRM7YEsPbAWWd8GC\njbCiHdpaqt06EclBPUIiIiIixZr7TH8QBP77ll7/uogkmgIhERERkWIt6eoPglK2OljaVZXmiEh0\nCoREREREijWlFZrTXms2mNxaleaISHQKhERERESKNWcMDB/aHww1Gwwf4l8XqQHPPvssZ511Fvvu\nuy+TJk3ihBNO4LHHHuOpp57ikEMOKWqd8+fPZ/369SW165FHHuGII45gu+224/vf/35J68pGgZCI\niIhIsdpafGGEmaN8L9DMkSqUIDXDOcdpp53G1KlTeeKJJ1i2bBmXXHIJzz33XEnrLSYQ6unpGfDz\nLrvswg9+8AO+8IUvlNSWXBQIiYiIiJSirQWuOACWTPLfFQRJucRcqv2uu+6iubmZ888/f9trEydO\n5Kijjhqw3Pz58/nsZz+77eeTTjqJu+++m97eXs477zwOOeQQJkyYwKWXXsrixYvp6Ojg7LPP5tBD\nD+X1119n2bJlHH300UyaNIlp06axYcMGAKZOncrs2bNpb2/n8ssvH7DNPfbYg8MPP5zm5vSxp/FR\n+WwRERERkaQrQ6n2VatWMWnSpKKbtHz5ctatW8eqVasA2LRpEyNGjOCHP/wh3//+92lvb2fr1q3M\nmjWLm2++md13353rr7+eCy+8kJ///OcAvPnmm3R0dBTdhlIoEBIRERERSbpcpdqvOKAqTdpnn31Y\ns2YNs2bN4sQTT+R973vfoGUeffRRVq1axXHHHQdAb28vI0eO3Pb+mWeeWbH2plMgJCIiIiKSdGUo\n1T5+/HgWL16cd7mhQ4fS19e37efubj8kb+edd2bFihXceeedXHnllSxatGhbT0+Kc47x48dz//33\nZ1z3sGHDim5/qZQjJCIiIiKSdGUo1X7MMcfwxhtvcNVVV2177cEHH+See+4ZsNzYsWNZvnw5fX19\ndHZ2snTpUgBeeOEF+vr6mD59OhdffDH//Oc/AWhtbaWrywdoBx54IM8///y2QGjr1q089NBDRbc5\nTuoREhERERFJujljfE5QanhcDKXazYwbb7yR2bNn893vfpeWlhbGjh3LZZddNmC5I488kr333puD\nDz6YcePGcdhhhwGwbt06Pvaxj23rLbrkkksAOO+88zj//PPZfvvtuf/++1m8eDEXXHABmzdvpqen\nh9mzZzN+/PicbXv22Wdpb2/nlVdeoampicsuu4yHH36YHXfcsej9HbT/zrnYVlZu7e3trlrJVCIi\nIiIicVq9ejXjxo2L/oHObp8TtLTL9wTNGdPwVQozHUMzW+aca8/3WfUIiYiIiIjUglSpdomFcoRE\nRERERKThKBASEREREZGGo0BIRERERKRKailfP2lKPXYKhEREREREqqClpYUXX3xRwVARnHO8+OKL\ntLQUXyyi6sUSzGwI0AGsc86dVO32iIiIiIhUwujRo1m7di3PP/98tZtSk1paWhg9enTRn696IAT8\nB7AaiK8ouIiIiIhIwjU3N7P33ntXuxkNq6pD48xsNHAi8LNqtkNERERERBpLtXOELgPmAH1VboeI\niIiIiDSQqgVCZnYSsNE5tyzPcp80sw4z69D4SRERERERiUM1e4SOBE4xs6eAhcAxZnZt+kLOuauc\nc+3Oufbdd9+90m0UEREREZE6VLVAyDn3JefcaOfcWOAs4C/OuXOq1R4REREREWkc1c4REhERERER\nqbgklM/GOXc3cHeVmyEiIiIiIg1CPUIiIiIiItJwFAiJiIiIiEjDUSAkIiIiIiINR4GQiIiIiIg0\nHAVCIiIiIiLScBQIiYiIiIhIw1EgJCIiIiIiDUeBkIiIiIiINBwFQiIiIiIi0nAUCImIiIiISMNR\nICQiIiIiIg1HgZCIiIiIiDQcBUIiIiIiItJwFAiJiIiIiEjDUSAkIiIiIiINR4GQiIiIiIg0HAVC\nIiIiIiLScBQIiYiIiIiUW2c3zHoMJi/z3zu7q92ihje02g0QEREREalrnd0wsQO29MBWYHkXLNgI\nK9qhraXarWtY6hESERERESmnuc/0B0Hgv2/p9a9L1SgQEhEREREppyVd/UFQylYHS7uq0hzxFAiJ\niIiIiJTTlFZoTnut2WBya1WaI54CIRERERGRcpozBoYP7Q+Gmg2GD/GvS9UoEBIRERERKae2Fl8Y\nYeYo3ws0c6QKJSSAqsaJiIgkSecGmHs1LFkJUybAnBnQNrLarRKRUrW1wBUHVLsVEqJASEREGk9S\ng43ODTDxNNjyGmztgeWrYcGtsOLGZLRPRKSOaGiciIg0llSwMW8RPLDSf594mn+92uZe3R8Egf++\n5TX/ukg6TdApUhIFQiIi0liSHGwsWdnfrpStPbB0ZXXaI8mVmqBz3np4oMt/n9ihYEikAAqERESk\nsSQ52JgyAZrTRq03D4XJE6rTHkkuTdApUjIFQiIi0liSHGzMmQHDd+hvX/NQ//OcGdVtlySPJugU\nKZkCIRERaSxJDjbaRvrCCDPP8IHZzDNUKEEy0wSdIiUz51y12xBZe3u76+joqHYzRESk1qWqxi1d\n6QOOpFSNE4kqlSOUGh6XmqBTc9OIYGbLnHPt+ZZT+WwREWk8bSPhiq9UuxUixUtN0Dn3GT8cbnIr\nzBmjIEikAAqERERERGqRJugUKYlyhEREJBk6N8Csi2Hymf57Eub1ERGRuqUeIRERqb7UJKep+X2W\nr4YFt6pQgIiIlI16hEREpPqSPMmpiIjUJQVCIiJSfaVMcqohdSIiUgQNjRMRkeqbMsEPhwsHQ1Em\nOdWQOhERKZJ6hEREJJpy9rwUO8mphtSJiEiR1CMkIiL5pfe8dKyCnyyEc06Gb15Qeu9L20jfi1Po\nJKelDKkTEZGGpkBIRETyS+95cQ56HVzzO/jdXfEMRStmktNih9SJiEjD09A4ERHJL1PPC0Cfq+5Q\ntGKH1ImISMNTICQiIvlNmdAfbKSr5lC01JC6mWf4XqCZZ6hQgoiIRKKhcSIikt+cGb4a26YuPywu\nrNpD0YoZUiciIg1PPUIiIpJfquflI6fAkCZoMv+6hqKJiEiNUiAkIiLRtI2E+ZfAk3+ET39IQ9FE\nRKSmaWiciIgURkPRRESkDqhHSKQRlXNiTJEk0bUuIiJZmEtPek2w9vZ219HRUe1miNS29IkxUzke\nGt4k9UbXuohIQzKzZc659nzLqUdIpNGkT4y5tae688BIciSx96SUNulaFxGRHJQjJNJoMk2MWc15\nYCQZ0ntPlq/25bLj6j3p3OADkCUr/ZxEc2bkX2+pbdK1LiIiOahHSKTRZJoYs9rzwEj1lbP3JBXQ\nzFsED6z03yeelr93p9Q26VoXEZEcFAiJNJo5M3yeROoGUfPACJS396TYgKbUNulaFxGRHBQIidSq\nYnMnUhNjzjxD88BIv3L2nhQb0JTapijXehLzokREpCJUNU6kFpWxGpZzDjOLbTmpEeWssDbrYj8c\nLhwMNQ/1gUmu+YjKXfVNVeVEROqSqsaJ1LMy5XN0d3dz0kknsXDhwpzLLVy4kJNOOonu7u6SticJ\nUs6ewmKHqJW791JV5eLV2Q2zHoPJy/z3Tv19EJFkU9U4kVpUhnyO7u5uTj31VO68807uuOMOAM46\n66xByy1cuJCzzz6bvr4+Tj31VG666SZaWlqK3q4kSNvI3D00pax3xY0+wFi60gc1UarGlbNNoKpy\ncershokdsKUHtgLLu2DBRljRDm36+yAiyaQeIZFaFHM+h3OO6dOnc+eddwLQ19fH2WefPahnKBwE\nAdx5551Mnz6dWhpiK1WSCmiWXO+/J2HomarKxWfuM/1BEPjvW3r96yIiCaVASKQWxVwNy8w499xz\naWrq/5OQHgylB0EATU1NnHvuucoVSjIVA8hOVeXis6SrPwhK2epgaVdVmiMiEoWKJYjUqtQElYUO\nNcohY7Bjxsk7jeSWzRvoC/29aGpqYsGCBRmHz0lCqBhAfmX4PWpIsx6DeesHBkPNBjNHwhUHVK1Z\nItKYohZLUCAkIgNkCobSKQiqEcVWaxMpVHqOULPB8CHKERKRqlDVOBEpyllnncWCBQtoyjLcrclM\nQVCtUDEAqZS2Fh/0zBwFk1t9T5CCIBFJOAVCIjLIWWedxck7ZR4edPJOIxUE1QoVA5BKamvxw+CW\nTPLfFQSJSMIpEBKRQRYuXMgtmzMn1d+yeUPeeYYkIVQMQEREJCsFQiIywLYcoSz5g33OZSytLQlU\n7glJRUREapgmVBWRbaJWjUuV1obMk65KgpRzQlIREZEaph4hEQGyzxO04LrruOnldSy47rqc8wyJ\niIiI1BIFQiKCc45rrrlmcBAUqg63rZpcWjB0zTXXUEtl+EVERERAgZCIAGbGDTfcwLRp04Ds8wSl\nB0PTpk3jhhtuwLKU2pY60bnBz0k0+Uz/vTNzIQ0REZFaoglVRWSb7u5upk+fzrnnnpsz92fhwoVc\nc8013HDDDbS0qERuXevcABNPgy2v+TmIUpXnVHRBREQSKuqEqgqERGQA51ykHp6oyyVK5waYe7Wf\naHTKBF9GWjfzuc26GOYtGjgxa/NQX4GulCIMOhciUq86u2HuM7CkC6a0wpwxmlerwqIGQqoaJyID\nRA1uajIICvdsLF8NC25Vz0Y+S1YODILA/7x0ZfHr1LkQkXrV2Q0TO2BLD2wFlnfBgo2wol3BUAIp\nR0hEGsPcq/tvvMF/3/Kaf12ymzKhf0LWlOahfl6iYulciEi9mvtMfxAE/vuWXv+6JI4CIRFpDOXo\n2WgEc2b4nKBUMJTKEZozo/h16lzkpwIVIrVpSVd/EJSy1cHSrqo0R3JTICQijaGUno1q3ZQm4Wa4\nbaQfsjbzDH+sZp5R+hC2cvQy1ZPU0MF5i+CBlf77xNMUDJWqsxtmPQaTl/nvnd3VbpHUoymt0Jz2\nWrPB5NaqNEdyU7EEEWkMxVY/q1bVtHqu1lbP+xaHchWoaGTpeRvNwPChytuQ+A261gyGD9G1VmFR\niyVUrUfIzNrM7C4ze9jMHjKz/6hWW0SkARTbs1GtfJZ6zqMpRy9TPdHQwfgpb0Mqpa3FBz0zR/le\noJkjFQQlWDWrxvUAn3fO/dPMWoFlZvZH59zDVWyTiNSztpGFP1Gv1k1pvd8MF3MuGsWUCb6SXnqP\nUDFDB1XG11PehlRSWwtccUC1WyERVK1HyDm3wTn3z+DfXcBqYK9qtUdEYpSE3Ja4VCufRXk0jSuu\nAhWpITrz1sMDXf77xI7GzI1R3oaIZJCIHCEzGwv8DTjEOfdK2nufBD4JMGbMmElPP/10xdsnIgWo\nt/wP5QjFSxOpRpM6TktX+uC3mOM06zEf/IR7QprND9VptKfVytsQaShRc4SqHgiZ2XDgr8C3nHO/\nzbWsiiWI1IB6TPSO46a0lrZbLsUEdwqcijd5me8JGvR6KyyZVPn2VFtqmODSLn8MGnWYoEgDiBoI\nVTNHCDNrBm4AFuQLgkSkRlQqt6WSN8jVymeptzyaXAUgMu1neuC0fDUsuLW6vWK1FJhNafWz2qf3\nCDXqcDDlbYhImmpWjTPgamC1c+5/qtUOkaqrp3waqExui+ZZiS5J11ehQXLSKufV2nU3Z4wvEZ3K\njUkNB5szpqrNEikbzRUlBarmhKpHAucCx5jZ8uDrhCq2R6Tyau3GKoq4Er1zSdoNclLlur6qESAV\nGiQnrXJeUq67qOdOZXylkWQrDrJks4IjyapqQ+Occ/cCVq3tiyRCoUOFakFqjphy5rYk7QY5qbJd\nXxf9AH53V+WHnM2Z4beTniOULUiOs4x0HJJw3RU6XFDDwaRRZJwrqgeOXg59zv+8vAsWbNQDAdmm\nmj1CIpKEG6tySOW2LLne3+TOvTrengeVlo4m2/V1+73F92yU0pNU6ESqlehdLEQSrruk9EqJJE3G\nuaKAN5wm0pWsqlosQaThJe2Jd9zKlexeaM9Co0hP5D94n8zXF664ADyO81lIAYhiexfLVdAgCddd\nvT48ESlVpuIgmWgiXQlRICRSTUm4sSqncg39q8Twu3Ip1016piBlhxb/9Vr3wOvr+KPgutsKD8Cr\nMZSz0Mp55aw0l4Trrt4fnogUa84YP+wtPFdUE9DrIPzsoJErJ8ogVZ9HqBCaR0jqUr3NFRM2+Uyf\npD/o9Ql+2FyjKeckqdnmb/rwidA6bOD1BcW1oxbOZ6bj0GSw285wxvtr//erXifarXepOYyWdPme\nC81hVB7pc0Wdsyccv1IT6TagmphHSESov7liwvT0eqBy9qhkGzK1ek3mIKWYno1aOJ+ZjkOfg40v\nwY9+Ddf8DlbeXLtBQxJ6paQwqWpmqZtxJeyXT6biICvaNZGuZKVASETKJ6lD/6o1KWY58zsKDVKK\nCcCTej7DMh2HFOdg8xZfNW/+JbU1OWpYPT88qUcZq5kFCfuq6Fd+4eBIPXOSRkPjRKS8kjb0r5pD\ni7INX5t5Ruk3tpXar6Sdz3TpxyGTPXaBjt9oiJlUxuRlfl6bQa+3wpJJlW9Po0rvmWvGTzisnrm6\nFHVonMpni0h5hUtpX/GV6t9kVrP8cDnLQRdamrqU7STpfKYLH4chQzIv09dXf2WoO7s1aWRSTWn1\nN91hStivvFw9c9KwNDRORBpLNcsPlyu/I32I1+LLkhegVFIqWPvj/fDok4Pf33Xn+ipDrRyUZMtU\nzWz4EP+6VE7GeYZUSrvRKRASkcZS7YT/uPM7ylkuuhbkyvPZ7i2ZP9PylupfB3FSDkqytbUoYT8J\nMs0zpJ65hqehcSLSWMo5PK0a6m2IVyFSQeC8Rb6s97xF/ufODf79d0+CoWnD44YOgaMm1dd1oCfd\nyZdK2F8yyX9XEFR5c8b4nKDUMEX1zAkKhESk0VQql6ZS6mmIV7rODb7AxOQz/fdUgJOSLwicM8PP\noRQOdlqH9fca1ct1oBwUkfxSPXMzR/nfjZkjNXxUVDVORKSmlbMSXTVFqYIXZYLXpFe5i8Ogalia\nNFJEGpuqxomI1Lp8PSJQX0O8wqIM+ZsyoX+/U9LzfNpG+mMxeYLvPZt7debjWMv0pFtEpCjqERIR\nSaJC5gWqx16PqL09+Y5RNeeNEhGRqlCPkIhILSukCELS5/YpRtTennx5Po1cTEJERHJS+WwRkVLk\nKt9cinoughDFnBm+DHh6T076kL985cgb/TiKiEhW6hESkfoTJbcmru3kKt9ciig9IvUsrqpujX4c\n49bZDbMeg8nL/PfO7mq3SESkaMoREpH6UsmckGIrtuXqRUq997dl8Oga6O2Dnt7B+1Gunqh6oxyh\n+AyqToefl0WFGUQkYaLmCGlonIjUl1w5IXGXky5m2FX6jfny1X4I2Iob/fvh94YOgSFNMH5/OOqw\n/mAn1zp0cz9Qqmep3opJVMPcZ/qDIPDft/T61684oJotq4zObr+vS7r83E1zxigAFKlxCoREpL5U\nMidkygQfhKT3COUadpUveT/8Xk8vmPkgKBzEVTLYiyrJPVT58ogkmiVd/UFQylYHS7uq0pyKSu8N\nW94FCzaqN0ykxilHSETqSyVzQoqZwydXoBY1iEtaAYBy5kpJckxp9cPhwprNz11U73L1holIzVIg\nJPWpUsnykjyVnGC0mIT+XIFa1CAuaQUAVKK6McwZ43OCUsFQs8HwIf71QtVa0YVG7g0TqWMqliD1\nR8nRja1zA1z0A7j9HsDg+HfBNy9IzrnPdX1CtGs3add4lMlPkyzJw/qSJpUns7TL9wQVkydTi0UX\nZj0G89YPDIaaDWaObIz8KJEaowlVpXHp6XTjSgUI190GG1+ClzfD7+6qdqsGytWLFLWHKa7S0nFJ\nWg9VITSsrzBtLf7Gf8kk/72YwKWQYWZx9BzFsY44e8NEJDHUIyT1p9afTkvxii1nXQj1HgyWtB6q\nQlTimpGBJi+DBzIMKZvc6gOslDh6juLsfYqjN0xEKkLls6VxFVPJS+pDtiICi+4sLnBJD3rOORmO\nn6my1elquUR10gpPNIIprb7qWvows/SiC3GU646z5HeqN0xE6oYCIak/c2b4m9P0p9PlSJaXZMkU\nBAM8/xJsfLGwwCXTXD0//U3/BKeQjLLVSVGrJaqT9uCkEXoc54zxpae39dJkGWYWR4ECFTkQKZ86\nmFtLOUJSf5KWPyHlk14d8JyTB1aMazL/PTUEuJB8sUy5Zm9s7Q+CUtR7UNsqWWUwn0bJV2pr8UPT\nZo7yvUAf3gNO2RWmPzQwhyeOct2NXPJbpJxSw07nrfdDXeet9z8nvQJkGuUIiUhtypaXcvs8uPYW\nH5w80Qkvbhr82Sj5YtlyzdIpn6T2pXphqj2srxHzlXLl8EDae0HPUUk5QkWsQ0QGS3glReUIiUh9\ny1Yd8Npb/E1j5wbY//2DPxd12NOUCbBsFfRleFhk5nuZNOyyPiRlWF+ufKU6GIKSUb4cnhXtpRUo\nSPU+qciBSLzqZNipAiERGahWchSy3TTes8z/e+7VPp8nXZNFC1zmzICfLAQyBEK77wJjR9VWUQBJ\nvmz5SuMmDezVWN7lc2zqoVcj381UHAUKVORAJH5Ri54knHKERKRfUnIU0nN/Mm1/ygQYOmTw64+s\n8csvWTk4nwfgoH2iBS5tI33OkdnA15uHwhnT/NC6K76iIEjiky1fifdFn3en1iiHR6Q21cncWgqE\nRKRfEiajjRqMzZkBQzL8Cetzvr3ZJvk8atLgz2TzzQtgRGsyEulrUZSAVvplK/TycG/0IShxTB5a\nSXVyMyXScNKLnswcWZO91BoaJyL9kjCnSq5gLJzH0TbS9+6seDRzexdfVnoZ9VqeH6faMpUf15xL\n+WXKV5rSFW0ISnphgFoYQqccHpHaVQfDTtUjJCL9svWiVHJOlUKCsaMmZW9vXGXUUzemGgpXmCT0\nLtaLqL0muQoPhCWt1yh1M7Vkkv+uIEhEKkQ9QiKVluRiBEmYjLaQCS7ztTfOamBJPm9JlITexXoR\ntdckShWnWuw1EhEpEwVCIpWU9OFCSRgKVkgwVqn2VuO8lRp4VTtwKySglfyiDEGJUsUpX7nqWlGv\n5cRFpKI0oapIJTXihInFSMoElymVPm/ZJouNGniV+vk4JKENjSbT5KRNBgfuAO/eyQcL0x/ys8Cn\nm9zqh6bVglyTsCoYEhGiT6iqHCGRStJwoWiSlpdT6fNWan5NEvJz4srRkujCVZwmDvNBUK+DB1/1\nM8BP7ICDd4ivXHW1co2i5kJJ4ZKWPyZSZhoaJ1JJGi6UXbWHcuVS6fNWauCVlIA7zhwtiSY1hG7W\nY/Dwq5C6DFLBAvjek229KUWWq65mrlGdzGifOMofkwakHiGRSso2YWKjz0sT90Succ9fU8h5i2Pb\npVbvS0L1P6mubMHC6tfimfujmr0ySZ+EtVZ7VdTTJg1IOUIi5ZKthyNp+S9JEGcOTrlyU6Kct7i2\nXQ85QlJdsx7zw+HSCyfMHBlPUYTJy6qXazQoRyjo1UpCz0Ut5y9V85yKxCxqjpCGxomUQ74qY0ke\nLlTMELVSh7XFOZQr6oSshYpy3uLadtRqeNmOexKq/0l1zRnjhzWVOgQumygV6solyZOw1nJVvmqe\nU5EqUSAkUg7luhkvt2LKRMdRWjrOHJxq5sfEue18gVe+4570gLvSkpyDVg7lDhbKHWjlk9QZ7Ws5\nf6na51SkCpQjJFIOSUlWL1Qx1cbiqFAWZ+5UNfNjKrntJFSGqxVx56DVilSwsGSS/x5nj0m4Ql0p\nuUb1Jun5S7nonEoDUiAkUg61mqxeTAAXR9AXpdRy1CIE1SxIUclt12qwXQ0KGssjV6BVqwUDSjVn\njM8JSgVD6b0qST8u5QyeRRJIQ+NEymHODD9MKT1ZPenV4YoZohbXsLZcQ7kKGX5XzfyYSm476nFv\ntCFhmShoHKyz2w+bW9LlezHiHDbXyGWYcw1JbOTjIpJQqhonUi61WB2umGpjlahQFmdVuWxqLWCI\nctzjPDe1dnzCKnH91JIolc1KCZTKXbGuVtXLcSlnEC0Sk6hV4xQIichAxQRw5Q76Jp/pczsGvT4B\nllxf+vprtdx0vuMeVwBQq8cnpdbbH7d8N+SlloBWGebM6uG41HJ5cGkoKp8tIsUpptpYuSuUZRoG\nBvD6G/4mNzw/UzE9FrVa5S/fcY9rSFitHp+UWionXomn7fkqm5VaAlplmDOrh+NSy+XBRTJQICQi\nyZEtmEnlXHW9Cj29/cuvfsI/6b99Hhw/s/gS3tXKISn3cLNi87fS2/W3ZbWfY1ML5cQrlUOS74a8\n1BLQ1SjDXAvDteqhPHUtlwcXyUBV40QkGXKVOE490R+378DP9PT64OcTXy2tKli2Kn+vv5G/Sl24\n/VGq2kXZ37gUU8UuU7seXQNDhwxcrhaqIKYUem6qJdfT9jjlq2xWagnouMsw56u0lgog5633Q8/m\nrfc/J7EiW62Xp67l8uAiGShHSESSIUo+S7ZcoWHbw6uvD349ag5RphySnh4YMsQHW/lySorJQalU\nAn+h+VvZ2tVk0OdqL8emlvKDKplDkupByTTZ6qA8kCBQSt20V7L3JUpOSjFFCGqhBymJ8l0bIgkR\nNUdIPUIikgzZhqctuqP/CX62npt92gqbtym9hwAGzmN00D79QVCqHbl6mIqZp6aQ4Xil9GikhoQt\nud5/z3fzn61dB+2be56nuMTde1NLcwhV8ml7rvlicvVcZOt9WbK5PPPjROklK3S4Vq30ICVRPfRq\niYRkzREysx2BLwGjgdudc9eF3vuxc+7TFWifiDSKbAURXnjZP9FfcWP2+Zl++vWBOUK5hoDlmpMo\n3PMUzkWC3Dkx+YKaTLlAhcwDFHUOpThka9dRh5U/x6Yc+1pLcwglKYckFSilyxiY9MDRy4MeQ+LN\nbfqMVAUAACAASURBVIoS5GTKeQJ4vdcHN+ltUMJ/abJdG6CeNqk5uXqEfgEYcANwlpndYGbbBe+9\no+wtE5HkKWeuRSqfxWzg632u/wl+KlcovWdiysTMr2e6ec7VQ5Dav6fX+aFgYbl6mDL1VJnBuH2y\n5wKdc3K0/J1K92gUk1cUl3Lsa7ZexCTmN1XiaXu+fJt8MgYmwBuuPLlNmXrJoD/Igf6cp/RHu6tf\ny9zTky24WvS8eoVKoZ42qUFZc4TMbLlz7tDQzxcCJwCnAH90zh1WmSb2U46QSBVVIteicwO0nw4b\nXxr8XlxzBmXLM5p4EDyzfuCNeEqUHKEJH4DNWwa+vtNwOPVYuO62zLlAc2bkz98p9xxKmVRrMuBy\n7Gst5QiVW6Z8mx2GwKm7wcOvRXuCnykfJ5uouU25ehFSbe7qgfCv5VCgdejAIXsnPggrXxu47ky5\nQtn2wYARmhMnsvTz1tUL1z1X+xPGSl2II0doOzPb9r5z7lvAT4G/AbuW3kQRqZpienYq0TPRNhLO\neH95n+Bn6yHo6xscBJnBHrvmz4lpG+kDnvRepNe64fZ7sg/NipK/U40ejULziuJSjn3N1otYS0FQ\nqb04KZmGhG3uhWuei/4EP1PFue0s80D7cK9NNvl6EVK9ZON2GPi5Hgb2OrW1QEtaZUPInCuU2of0\nOyBHfD1ZcYnr3Mct03m79rnMPW0qrS0JlisQugU4JvyCc24+8HngzTK2SUTKqdiyzZXKtSj30Kxs\n6zcbvH/OwdhR0YKBh9f4YXxhqfVFvbnPFKBWc6hapZVrXzMFdrVSUjvO4UaZhoQB9AXfowxpyzR8\n76+H+t6ZqEPTwqIUQ4ga5EQtNpHah90yjLlL0o17koeaZTpvDt+rFlbO0tpJDRKlpmQNhJxzc5xz\nf8rw+h3Ouf3L2ywRKZtie3aiPK2P4+ay3E/ws63/3ZNK643IdnyOPyrazX22ABVqv0cjqkr13lRi\nDqe4xDm3ULZ8m7AogUB6xbkpO0XrtckkasW3KEFOvvmR0vfhjN2TPSdO3PNKxRk4ZDpvffi7yijH\nv1RJDhKlpmgeIZFGU2weRr5ci1rPxSi1/bk+D/lzbio1r5DU1rGOc26h9Bwhwz/FDyslp6OYtkad\nAyjq/DW55kdKl/Q5ccp57jPNx1SIbOftw3tA65Box78UxcwdJQ0lao5Q1vLZIlKnopZtTpd6Wp+6\noR+3j399+my/zq5Xs/c0Rb25zFRmOltxgijLFbqt8P4VWiQg/fikfz7fMailMs+1rpaOdabS0MX2\nWqSGhKUChXE7wE0vwGu98ZTrLqatUUuGp7c92012rtLO6aKus1riPPdxlwzPdt6+uXdljl+hc0eJ\nZKEeIZFGE0fPTaZ19PVBb9/gZaNW/IrarnK1P9864gi+cqmlXopSlftY5lNLxzruXov0Sl/n7OmT\n3OMIBIpta65enEaelybOcx9n71K4fdUKItUjJHlE7RGKFAiZ2TuBsYR6kJxzvyqlgcVQICQSk1LL\nI2e6kTTzQ23CBQMKubmMenMax01soeuoVOnwSgwtjDMIKWZdce9nEtpQbnHdcMY9PKqcba1Ue8sp\njiAuruNZb4FD0oc1StXFFgiZ2TXAvsByIDXVunPOXVByKwukQEgkAXLN9TOkCZqairu5jJq7FMdc\nM4WuI2Lg1NPTw2233UZHRwdbtmxh+PDhtLe3c+KJJzJ0aIaRyOk38eecDNfeMjhAjSt4iTMAKHZd\ncfbGlLI/1ZorqZpq7WY4X3uT3FuUfqPehH9QdM6elRs+lqs99RA4VLNHShIvzhyhduBgV0tj6ESk\nPFI3npsyDLFoHgofPhFahxV3cxk1d6nYHKdS1pEnp+TVV1/l0ksvZd68eaxdu3bQx0ePHs3MmTP5\n3Oc+x7Bhw/yL6Tfxy1fDglvzDwXMtlwUuSoGFhqEFLuuOPNzStmfVEntRlJreRW52pt+Y7+8y+es\nJOXGPj0nJzVq+FfPwe9erHw7k54PVYxC8sFEssg1j1DKKuCt5W6IiFRJISWvUzee6c9Fmsw/if/m\nBcVPxBl1Dpk45popdB05Sodv3LiRqVOnctFFF7F27Vr2339/LrzwQv77v/+bCy+8kP3335+1a9dy\n0UUXMXXqVDZu3Og/H7WMeZwT2cYZhORaV65rKl8Z9kKux1oqepAEUefZSYpc7Y27tHTcss3ZVMik\nrXHPk5Ne9ryWgyCRmETpEdoNeNjMlgJvpF50zp1StlaJlKraydi1otDehkw3ngC77Qwdvyk9x+OU\n9/jXVq/J3qOUrzpblO1MmQC3z8s8DC2TOTP8cUkbgvXqZz/EiSeeSEdHB3vvvTfz5s3joEnv5Fu3\nreb6RzbSZMYHLzmdKds/x+c/ez4dHR2ceOKJ3H333Qy7Z1m0m/g4b/bj6E3Lt65x++S+prIcS+bM\nKPx6jHN/GkHUCm1Jkau90x9Kdu9WpopvKVHamfQer2IkeSijNKwogdDXyt0IkVjFOZSo3hU6tCjb\njecZ748nZ2X56mg5HoUOayr1msgSfF36y6u3BUH33Xcfw3fejaO/dxcvbXmTJjN66eP6jrX8c4/h\n3HPv3znqXUfS0dHBZV//Jhc+smbwdso1FDAlVxAS17og9zWVK5CddXFh12Oc+9MIam14VK72xlla\nOl0cN+ypIG5zT/+wuELaGXe562qrx8BO6kLUqnF7AocHPy51zm0sa6uyULEEiaRSpXHrodep0KIB\ncVfbKvZcFXrsy3BN9PT0sPfee7N27Vr+8Ic/cNxxx/HL+57kW7c9QlMTXP/JI3jptTeZec0yhjYZ\nPzr7MLY+vZxp06bRNnwn1rw+mqHp5ca3a4bH74i/XHhYnEUCOjfART+A2+8FHBx/FPzvI/Dgo4OX\njVLMophCGI1Y9KDeFBN4lCv5P85KdZ3dcNGTvjx5H35YXNR2lqPcdVTl6LmptUIdUvNiK5ZgZmcA\n3wPuxtc8ucLMvuicW1xyK0Xi1rkBFt1R/ryBeul1KrS3odhhadlEHfa1ZAV84quwphNGvxXWPwfd\nb0Y/9mXIJbnttttYu3YtBxxwAMceeywAdz3yPG/29vHeA/ZgYtsIAN62yw48vnEL9/3rBb50/HvZ\nf//9efzxx/k9rZxC2lPhg/aJbyhgNnEXCfjdXf2/B9fd5vPFhg6Bnt7+ZaL2YBXT+9WIRQ/qSbE9\nBYX0bhVyYx9nT0xbC8wf56vEFdoLF7XHK+6gpVw9N/kKdWjYnFRJlKFxFwKHp3qBzGx34E+AAiFJ\nllRwsjlLRbM48wbirL5VTcUMLYrzxjPKje+SFXDEh/zTVIBHnxy4jijHvgy5JKne6dNPP52mJl93\n5uENrwAwYa+dti13wJ6tPL5xC8ue3kRTUxOnn3463/72t+loepNTwh1CzUPhqCxPestxsx9Hj2am\n34Pmob6Mulnhw9U01K3xlBJ4RKkaVuiNfTkq6xVT3SxKPlc5gpZyDcnLFdhp2JxUUZSqcU1pQ+Fe\njPg5kcpK3ZT1pQ33NIv/ZqpeqlWlehtmnuGDgplnVLZXK0r1tk98tT8IyibfsY+j0lyaLVu2ALDL\nLrtse+2Nnj6GNhmtLf2lrnYe5v/92ps9A5bvam6KtT0FST00mLfID0Wbt8j/nKtCWybZfg8O2re4\na6ra16NUXqmBR77KaoVWl0tKZb1Uj9fMUX7bM0cODgzKUTmvXCXW54zxQwxTxzYc2CW9AqDUtSg9\nQneY2Z3Ar4OfzwR+X74miRQpW0Wz3XeBjkXx3kzVU7WqYgoPxJUbFWXY15rOaOsat09p2ynQ8OHD\nAXjppf6JZbcb2sTm1x1d3f13Ei+/6v+9w1uGDFi+9fyzoHfX6uS2xNWjme334KjDiu/BStJQt3rI\nA0y6UooeROlJKPTGPkmV9fL1JJUjaClXEYpcQxlrbX4rqSt5AyHn3BfNbDpwZPDSVc65G8vbLJEi\nZK1oNi3+m5dGHcJTjtyofDe++7TByseKW3dKGW5o29t9DuaiRYv4xje+QVNTE+NG7sjGrudZuW7z\ntuUee87/Z37YmJ3p6+vjN7/5jf/8Me+BU2KchaCQfYyrR7Oefw9S13rXqz7f6YGV8NPfwF9/BVMm\nVrt12dVarkUpgUeUYVyF3thnumE/Z89kHtNyBC3lDASzBXblrAAokkekqnFl27jZ+4HLgSHAz5xz\n38m1vKrGSU5xV9dKrTPbzWUjVquqVEW+sPQcoWwqVeku0NPTw95jxrB2w4a8VeOGNBk/DleNa2tj\nzZo1DB0apVM+gkL3Mc7zWK+/B7MuhiuvH1j0ATJX9kuKOCueVVIqeCu0pHeUymqlVpdL8jEtZ+W8\nSpZYL9d+SEOLWjUua66Pmd0bfO8ys1dCX11m9koMDRwC/Ag4HjgY+JCZHVzqeqWBxZ1fkC+PItWT\nseT6/vlR6l01cqOmTISbfgi77OQrkm33Fp+MH5ZrWGKuYWDZdG7wN8KTz/TfM+TODN3wPDNf9sPd\nZs6cybPPPsv0SW20bj+UN7b28cEf38eM+Q+wtbePtp2358Ade5k5c+a25WMLgorZx6g5UxGOQ0m/\nB1HWXy1LVg4OggDe2Jr72sklXz5LqWo11yLVU7Bkkv8e9eY3Sj5PlFybXJJ8TEvdt1zrLeZ8lLK9\ncuyHSARZ/yd2zr0r+F6uvsnJwL+cc2sAzGwh8AHg4TJtTxpBnPkF9VIZLqooQ6uqkRvVuQHO+3J/\nIYzeXujr6y/RnG84VqHBW9Thf3Ov5nM9O3EzL9Dx5JO8853v5Morr+SmTx/Jt37/CH9e/RxN1sQH\n/20Uh7c8y7uOPJKnnnqKww8/nNmzZ8dzbIrdxyg5U3EPg0y/vs45GY6fmdwS9FMmZJ7TCIoL/CtR\nGavWci1KHcYXdRhXMVXbUpJ+TEvZtySpl/2QmpO3+puZ7Wtm2wX/nmpmF5jZiBi2vRcQzoJeG7wm\nSZLkJ7blVi+V4aKIWkWsDNXX8koPSHt6YcgQGLdv7p6/1LX79DpfOTAsjh6kJSsZ1tPHbbTRTgtP\nPvkk06ZN49h3/Bu7rv4t5++ymv/j7uWGL53O9JPez5NPPsnhe+zFbbfdxrBhw0o/LmFTJvSfkyj7\nCPl7corpScsm0/V19Ed8/k0c6y+HOTP8MLh0Q4cUF/hXomchKRXPokgFhvPW++Ft89b7nwvpJatE\nT0ItHdM4lLvXUiRhoozNuAFoN7P9gKuAm4HrgBPK2bAU+//t3X+cXHV97/H3Z7O5LISUSgGJsinQ\nB8hFA7Ysm3Ipyq1ilCQQTAlRjFebW9Y+aqxW71KLPKo0pY/ifYhKvWW1VNsQDcGUQPgVhQKlpS5s\nNCFCgFgoLrKKFoUlYTGb/d4/zhx2Mntm5szM+X1ez8cjj2VnZ+d8Z+YknM98Pt/Px+wSSZdI0vz5\nKXRtKbOiDA1tV5E6wzUTNvsVQ/e1poIC0sn90sEHBe8Jkmaeu9UalYFddZ301ZvCBcCV8+OofdK9\n+nV9Xs/rWv1Cu3fv1pVXXnnAXXs1WwM9r9VH/+VezTnyyJBPvAWDq6V1t0gv7pGc8wK/Q3rqB6hh\nsn9RfhAQdH4FydIHDb3zvMYIb32/Vw4neUHQ3DntBf5JZBay1PGsmajm1cSVSfCzVfe/UBkS7KRJ\ntfeaRtXAIu5GGMzzQQmFCYSmnHOTZnaBpGucc9eY2fciOPaPJPVWfX9M5bYDOOe+LC8AU19fX3qd\nHcqobKVhtYrcEatWKxe9Sbc3bicgrT13Je9i5ojXSCve2bwMrFbQ8arOjzn7JnXZ7KN16ZzjdPv/\n/UONPP2kxp/9seY+vFt9v9inc885R91/ekn8HyCYvKYS1uA+YT/giPKDgHqt7Wtl7YOGhad6jRGi\nCPyj7IxV74K4UYvirIk6MIwySKgNCLolzTLpjYdIZx3W2mNHFVwkEaTENUwVyLAwgdA+M3uPpP8l\naWnltoB6gZY9JOkEMztOXgC0UtJ7I3hcRKVMpWFB0sh+pCXL2a92AtKgc3fKSce+PjiICwqcfPWO\nF3B+dA+u1nm98xRhU+xwrrpO2jsxPUx4ynnfB31oEfYDjig/CAg6v7pneU0vptz04x/S45XL9V+U\nnbk9UQX+UWVrai+IvzcufWVMesMh0lsqF+l5uGiNOjCMMkioDQgm5X24cNZhrb+2UQUXrTxOu0Fh\n1vdDATFoukdI0gclnSHpL51zT1UCl3WdHtg5Nynpw5K2StolaaNz7pFOHzcRZdk3086+g6IpS2e4\nNPb+hNVON8BWz916GYs5Bzc+XrPzI6l/K1r50CLsfaPswhh0fs2d45We+Y//3sXez75+W+N9ankV\n1X6WoIv0V5z08J729tmkZXC+14ba/1i1kzK+qPdfRRkQRPVYYR+nk71XZdsPBSjcQNVHJX2k6vun\nJP11FAd3zt0u6fYoHisxZdo3U6bSsLLLevar1U/lWz1362XEPnhB+9mAJP+taCWj18p9o8qGNDq/\n/OGka9Z6Wawil+JGsZ8l6ILYl6dSpojK+CYnJ3XbnVs0sm+HXtLLOlQHq08navG+M9TdbiYjymxV\nVI8V9nE6yUDlaY8ZEJGmA1XN7ExJn5b06/ICJ5PknHPHx766GpkYqJrGQMk0FXVYIoptdEy6/IvS\nHfdLMuldvyP9xUfqn7txDF2N4t+KME0NWl1/TANmO9Z/UXC76nqDcstqzRPep/z1giHpwIGiBbVn\nzx5dffXVGhoa0jPPPDPj58foSA0sfK8+dvdftt6lMcoBn1E9VtjHCTNkttlx8rDHDGgi7EDVMHuE\nrpP0MUnbJAVMlyuZsu2bSXpjPNCpoAv9W+7xAqF6OsmI1QtWOv23opWMUivrz2r2L8v71LKk9lP7\nWiUoZXruuee0ePFi+R+MnnDCCVqxYoUOP/xwPf/889q4caN2796ty4e/oJvP/jfddtttOuqoo8If\nIMqmE1E9VtjH6TQDxTwflEyYjNCwc25hQutpiIwQCi9sBgD1Jfl3tFF25arrOltH2f6tyWqmKouq\nWzs/tlfaX9PaucDtjvfs2aOzzz5bIyMjOu6443Tdlz6ns/f9s+yH/y49/5Q0tU9Tb/+M7n75jRoY\nGNBTTz2lvr4+3XvvvdHP78qiKLNZQI6FzQiFaZZwj5l91szOMLPf8v9EsMZ8yvKmcuRb2KGmaCzJ\nrG2jDmyd/ltRxuxzVM0ZiiRowKX/qf3206XdC6UPxThQNGOuvvrqV4OgBx54QP/zTa+Tfe966b9+\nIHV5lzRdL/9C55xzjh544AEdd9xxGhkZ0ec///mUV56QJIbMAgUSpjTOzwZVR1VO0u9Gv5wcyGpZ\nCfKvSHOb0sxsJVliVS9YuX+b95518m9FGUvFKMU9UJi20CUqZZqcnNTQ0JAkaWhoSEcffbT0opNO\nfKf0ujdL3/lbafKVV+9/9NFH69prr9WiRYs0NDSkSy+9VN3dYS57cq5E5wTQqaalcVmSidI4IC6d\nbBbPUkld2iVOSR5/zVrp2hukyZrtkwfN9gZxdnK8tF9HpC+oMcJs8z7lL+GF7s0336xly5bpxBNP\n1K5du9TVVVPUcvWbpBdGpTM/Jp3zaUnS1NSUTjrpJO3evVs333yzzjsv8SlfAFIQWWmcmb3WzK4z\nszsq359sZtSBAVFrd25TvZK64R3pzLtqlNlKQpIlVoOrvaGgtaZc58+XUjG0OoMmqIwui9pcp/9B\n6IUXXjgzCKqjq6tLF1544QG/j4jk5XwDGgiTI/6apK9Kuqzy/ROSbpDXTQ5AVNqd2xQUeIzvkd76\nfu+CPOl5V1nY25JUiVXvPOmk46Udjx94e1TPt2ilYn7m8l+2Sc5JXSaddVryGcwsZVAbaaUDWJgy\nuizoYJ0vvfSSJOnwww9v6ZD+/cfH25wrhJnycr4BTYT5SOUI59xGSVOS5JybFG20gei1mwEICjwm\n90uv7EsnK9NuZiuvzjqtXM+3XX7m8tobpIcfl3Y+4QWQ196QXFOQ0THpA5+UjjtH+n/fyH5TksH5\n0qHd0uzK940GXDYapJklHazz0EMPlSQ9//zzLR3Sv//cucVuK56ovJxvQBNhAqE9ZvZr8hokyMx+\nW9ILsa4KKCs/AzB8g/c1zKfUQYFHkKSyMmXrrFi259suP3NZu59qcn8yQbofiP3jLdL+KS9bKiVf\nuhm4tjolRq10AGu1jC4tHayzr88r99+4caOmpqZCHW5qako33njjAb+PCOTlfAOaCBMI/YmkWyT9\nhpn9m6R/lLQm1lUBCC/oQvyg2VL3rAPvl1SWIut7W0bHWts71ez+WX++WXH/tpmZS18SQbofiAU1\nCEqydLM26Bl+wSsxGnpWemjc+3rqyIHB0DUnSsOneV/rlR0tnDudOfJlcbhqB+tcvHixjjnmGO3e\nvVt333339A/Gfyw9/6Q0Vbkyn/iF9/3Ei7rrrru0e/du9fb26txzz43ueZRdXs43oImmHyM7575r\nZm+V9AZJJulx51zQPGsASRveIf3Bn0sTv5TmzpFee4T0toXS+5ZK7xpofb9RFLK8/6K2E1uzvVNh\n71+0vTzVong/R8ekx56s//MkgvSgEtIkjy8F76v4ytj0QFTpwBKjVjrDDc739mjUDtIMKqNLmj8A\ndnhcOvkQ6ZBZ0t79La+zu7tbAwMDuvzyyzUwMKAHHnhARx/5a9LnTpZm90h+lmjnRmnHN/TKUado\n4K9+IEkaGBgoR+vspGT5fANa0LR9tpnNkrRY0rGqCpycc5+LdWUBaJ8NVBneIZ3xnkrRaoVJ+vdv\nSAtPnb6AbXWGTScXvllv+bxmrbcnpHY2z8CK4ECm1fsXTb33844h6fot4c+Rem3GpQPPESm+IDro\nvZS8hg2HzU3mHA1qh11P/1wvC9QKP+B4cNz7/cH57W9crw5eFnbwWLXB32x5gdCyI6Rde1te5549\ne3T22We/OlR16G+/pLeP/L5s394Z9717dLbe/vf/pdNPP1333HOP5syZ0/r6iyKq9zPoMaM434CI\nhW2fHSYQul3ShKSdqjRMkCTn3Gc6XWSrCISAKqcs8zac11pwovTw5vYes9NAJuuBQ6uzmjqZ7VQE\n9d7PLpvuSBjmHKn3Oh7cI61+93SmMs4guvbcNvOex/uWSn/xkWQC9f5tXvlbM2nPCgoKXg7tbq8j\nWAyzkJ577jktXrz41XbYJ5xwgi688EIdfvjhev7553XjjTdq9+7dkqTTTz9dt912m4488si2jlUI\nUb6fQE5ENkdI0jHOuXc75/7cOfcZ/08EawTQiSdHW7s9jE5nAKXVOjvsvp9WO9qFuX+re47ypN77\n2WpHwnqv4+p3TzcFiXv+VO1erj96j/TUt6Wv/VVy2cqgfRXdkg6ycJ3hGolypkuUHcFi2FR/1FFH\n6d5779XatWtf3TN05ZVX6hOf+ISuvPLKV/cErV27Vvfcc09+gqC45vLQ4Q2oK0zB7B1m9g7n3Ldi\nXw2A8I7vDc4IHd/b/mN2GsgsXODto6nNIITdf9FOWV4r+35andXU7P6t7jnKm6D3M0izcyTM655E\nEJ32Xq56+yruWCBd/5P2S4yinukSZfDSyiykFsyZM0eXXXaZLr30Ut1+++0aGRnR+Pi45s6dq76+\nPp177rn52hMU51weOrwBdYXJCH1H0k1m9rKZvWhm42b2YtwLA9DEVz7j7QmqZpXb29XpDKBOWkn7\nQcXQxtbmu7SSSeid5+1vOel4ac7B3tc7huoHLc06wtUbZrv4D4uRIfLfz+oOhF1d0qya/3U0O0fC\ndNYrw/ypeu2wFx4WrjNcPVF/4h9lR7BWZiE1Uidb0t3drfPOO09XXHGFrr76al1xxRU677zz4g+C\nos7exJm1ocMbUFeYPUJPSTpf0k7X7M4xY48QUMPvGvfkqJcJ+spnvEYJ7Yqi2UG7TRra3V/Uyj6e\n2ufXPcu7qD/peG8waqub8+sdu3r9WWoW0Y7hHdJb3++Vw0ne6zU1Jc2a5TU/iOo5Zr3RRpbV23vU\nTsMFKWBPSSV4aTc70emm+qztcYljPVG/h9Wifj+BHAi7RyjMRyajkr6fdhAEIMDCU9tvjBDE/+S+\nnUCm+jHaKT+qVxr11Uo3sXrraKUcrzaDM7nf+7PjcemRH0hfuVF6w/HSW0IGRc1Kx6qzU1loFtGO\n67dMDx+VvGGks7u94PHgg9o7R3y1pZB+N7p2z72yirr8zM9cRdURzJ+F1K5G2ZJrToynI1on62lH\nTCWEkqJ/P4ECCZMR+pqk4yXdIekV/3baZwOIVL32xlLj7EArmYRmGZwwx2t07Hry3GUurs55Yd+3\nLM+lyoqif+LfKFvyzTcmny2KI3tT9PcQSFiUXeOeknS3pP8maW7VHwBFk1QHtKDj1O4vqtZs30+z\n/Se+oH0oQcJ2LKs99oITD9xPI+V/n0tce3fC7O1qd99Y2dTbe5SlC+hO9tQ02uOSRke0OPbc5OE9\nBAqoaUYoS8gIATFKao9Go+NI3oXwV2+S9rw883ejzkI00+rxirjPJa7nFCbTlOZcKjJR0el0T02j\nbMnyR+LbW9POelrd+5RkSR9QIh1nhMzs85WvW8zslto/US4WQAbEPcclzHH8/UUfvCB8FqKVLFZ1\nBufUN0gHzZ6ZwWl2vEZayU7Vk7W5RFE8pyBhMk1pzqUiExWdTrM2jbIlSXVEq85oXfVDr+V50Hrq\nZb5qbx9+wQumhp71ArmhZ73vo5odBCCUuhkhMzvNObfNzN4a9HPn3H2xriwAGaGM4xPUfItrL0g7\nx2ll/0ir2Yrq8/Tk473btj8uPfYfXiOAKDuhtaqIGaV6wjzXtDJCaWaiiiiLHdFaycaEzWjVu98d\nC6R37Tzw9i6T9jupOs6fbV5Q1UljCQCSIsgIOee2Vb7eJ+lRSY865+7z/0S3VBRC2T9Bzdqn+O1I\nao5LmOOEzUIEZZd+/qI3xyfoPag9T79+m3TLPdKWL0m775Q+dNGBx5OkD3xSeu3veH8+8Ml4n5fE\negAAIABJREFU39uksnJZEOY97mQuVSfSykR1Iuq5NlGKM2vTzt4aP2AJm40Jm9Gqd78/eHzm7a/U\nBEESQ06BFDTcI2Rmn5b0YXkBk8n7a3uNc+6KRFZXg4xQhpX5E9SifIqfhT1CrR6nURe41/zKzMds\n5TwdHZMWnC+98NKBtx92qLTz5nje26SycnlSby5VnBnovP17lrU5O7Wy1hFtzRNe8FPbqrpeNiZs\nRqve/eZ0SXummq+LjBAQmSj2CP2JpDMlne6cO9w59xpJCyWdaWYfi26pKIQ8foIalaJ8ih/XXpA4\nj9OoC1zQe3D/tvDn6VXXSeN7Zt7+4p743tuksnJ54u8bG77B++oHQXFmoNPKRLUrjc5prchaR7Th\nmnk9UuNsTNiMVr37HXPQzKut2ZIOsun7+8Hh4PywzwJABBq1z14l6T3Ouaf8G5xzT0p6n6T3x70w\n5EyZL+DSDAKjLsmrveiU4in5C7q4bYd/wRqk9j0YHZMee3Lm/eqdp8M7Dxwk6nMuvvc2bxfgaYn7\nw4ekPhSISqsX9mnwh6oOn+Z9TTNT1Wqp3uB8L8PWLGgJut8hXdKzr0i1CaFDZkn3vTk7wSFQUo0G\nasx2zv2s9kbn3E/NrPafEJTd4Gpp/a0zy53KcAG3cIG0fdfMMpq4g8DaErPtu7z3IKoLtrgfPwr+\nBeviP5R2PnHgz2rfg6uu85oh1Oqy4PN04QJp2/dnBkNmzd/bdsu2/OcTVAqGaUl8+OAH63mwcK60\nfXxmqVfUndOKYnC+tP65maV69bIxfkbrqh96wWV/neYKQfcb3y99/ScH3s8kLTtCWniY9wdAahpl\nhH7Z5s9QRnn7BDVK7XyKH0UmJ+5PxdMo+WvndemdJ932t96eoEbvwfBOryNcrZOODz5PB1dLc+fM\nvP1X5jR/bzsp24oqW9auPDT+KFsGulkjhLAZC3jaKdULm9Gqvd+je2dm65ykXXujejYAOtCoffZ+\nSQEF8jJJPc65xLNCNEtAJgR92i+F/xQ/qmYBcW+sT3rjfqevS71N9b52NsCPjkmXf1G6418lOeld\nZ0l/8ZHG68nbRvtqUTayiLOZQVEalITRSuvmZhmLosnDQNJWGzMAiETYZgl1S+Occ3WmDAIl1qhc\nLOxFbqNMSysXynGX5CVd8tfp69KslKmd8s3eedLX/qq155HnxiHN3oOwwU3cZZVlKiFs1Aih+kLa\nz0SURW2AuH3cK3fL2j6bVsvwACSqUWkcgFpRlItFdaEc98b6JDfuj45JG+9s/Lp0WrKVVPlmnsu2\nGp2brZT8JVFWmXYJYTvamfWTh0YIach6pzxf1jrmAThAo2YJAGpFEcRElWmJ+1PxpD519y+wXwi4\nsPNfl6gyDElsgI+rcUicpWa+RudmKxm7PGfF4lKbwfjeuPSVMemkQ6SzDqtf1hVlI4Q8lJKFlacA\nsWzZOiBHCISAVkQRxER5oRz3hX0SgYN/gR3Unc1/XaIqJ0xCHAFku4Fgq8FTo3Nz+UfDBzdpdVLM\nstoMxqSkSSft2CM9uqd+WVdUpVV5KSULi055ACJAaRzQiijKxcrcYS9IUPZAko48fPp1yVuGIeqy\nrXZKzdrpXtfo3Gyl5I95SDMFZTB8jcq6oiqtykspWVh0ygMQATJCQCui+rQ/TzNK4lYve7Bi0fTr\nWvYMQzuBYLtZtHrnZiuZzDI1MwgrKINRrVFZVxSlVVkvJWu1bC/sbB8AaIBACGhVGkFMEvtD0hLm\nArvMA3ul9gLBqLNorQY3BPsHqi1xqxV3WVeWS8naLdtrN0As0l4pAB2pO0coi5gjhFIqw8yUZjOA\nwt6nqNo5B1qZZ5RGoF3k4L4e/wL87p9Lj78sTVVurzcbKOpjHzCPqFJKloU9QknO2gk7lwlAroWd\nI0QgBGRdngd0IjqtBoJhg6c0Au2sBvdJZAr8C/HxSa9hgiQdZNJ9b5YWHhbtsYKOncVSsv5t0kMB\nJXr9c6Xh06I9FgNOgVLoeKAqgIzIW6MA1NdJFqTVUrOwpWxpdOTLYhfApLqq+U0Lqv9KT0m6/ifx\nB0JZbeOcZNle1vdKAUgUgRCQdWVvFFAUUc1CqvfYQQFWmOApqUC7eo1P/yh7wX2jrmpRBg9ciM8U\nVYvwMLK8V6oR9jUBsSAQArKuXqOA9y31yubKtMciz+LKgnQaYCURaNeu0WzmfdII7qsvLp+eSCZA\nyeuFeJyS7ACXZNAVlaLNgAIyhEAIyLqgEqf3LZXeNRBPdgHxiCvz0mmAlURHvto1+ntTu8wbpJtG\nF8Dai8ugqXpxBCh5vBBPQlJle3lsux2Urfz5pLT4Yem2U7K9diDjCISAPKgtcVqzNnt7LNBYXJmX\nTgOsJGb+1Buae8RrpGNfn04XwNqLS7+Dm0lyii9AyeOFeNFkda9UPfWG8e7c6wXzZIaAthEIAXlE\nA4X4xNXWOa7MSxQBVtwzf+oOzX1nvK28Gz1WvYvLI2dLx/bEG6Bk4UKcPSf50WgYbxz72IASoX02\nOlPGWSBZQEvteMTd1jmOWUhJtKLu9O95Gq28mz1WmdsoM0snX/z36+cBWVUpnjbjaB0fLmQKc4QQ\nv7TmjxB4ZXcOS97lNcCMc9hsVOdamDVG+fo3e6wsDxiNW5mDwLwanfD2BO3ce+DtvG/ZwIcLmcMc\nIcQv6VkgcbYfzpsk9nWUUV5LDuMsbYvq73nSrbybPVaZ9+rQwjt/enu8xghBwXvZG21kQVLt9xE5\nAiG0L+mLxiwOYUxTFBe/Se3HSHot7WJm00xJ/j2P8vUP81hZ2KuTBlp451OZg/es48OF3CIQQvuS\nvmjM66f1WRVlhq3Tx8pKti+JVtJ5k+Tf8yhff97L+mjhnV9lDd6zjg8XcitocgIQzuBq78JidiWe\njvtCY+GC6WP5Or0gGx3z9hL0X+R9HR3rbI150ijDlvRjdfL7Ub6HfsnhwArvvBpYkW7pZRbOzyT/\nnkf5+mftvcwSP7Mw8DrvQm1gHnsZgE4Mzvf2BM2ufM+HC7lBswR0Js5N2kHHirJBQNkbDvRfJD0U\nkE3rXyAN35DsY7X7+3l/DxuVA2bpuSX59xzlQIet5PGax8t/fSlbzASaJSAZcc8fqT1WlA0Cyr7n\nKOn9GHH8fp7fw2blgFl6bkn+PUfx1XbY2j7uleqRlYoPr3n8KFvMJUrjkC/+BdnwDd7XTj6VLvue\noyhLnjp9rHZ/P8/vYbNywDw/N6CRRh22EA9ecyAQgRCik4X9DK2IY89RnmRpP0a7v5/UexjHud0s\n0Cn7+YniosNW8uJ+zUcnvPlU/du8r6MT0TwuEDP2CCEaWdrPEFYe14wDJfEexnWMpgM/A457SI+0\n7G3So0+We6Aw8o2BrsmL8zVnmCgyKOweITJCiEaUHciSQlep7Gg345LEexjXud2sHLD2ub13sXf7\n12/zGksMbfQCpaxnXoFadNhKXpyvOWV3yDEyQohGlB3IUC5Zz8zFeW630o2tWQYJweiUlU102Epe\nXK95/zbpoYASu/650vBpnT8+0Aa6xiFZSQ9XRXFkqTtakHrn9suveEFSJyVqrXRjo3lC6zrplEUA\nFS86bCUvrtecYaLIMUrjEI2kh6uiOLJ+gR90bk9OSrv+I9kSNZontK7dkh0/gBp61vuke+hZ73s2\ngAMzUeqIHCMQQjTYb4N2Zf0Cv/bcPul4adYsaXK/9/Ok9sPxYUPr2u2UxZ4HILzeHi/LOvA6Lws0\nMI9GCcgNSuMQHYYuoh2Dq71BorV7hLJ0gV99bvdfNB0E+ZLIYEU9ULgM2i3Zob0z0BpKHZFTZIQA\npCutbGK7neqykMHKT4+bdLVbsrNw7vTv+Lok/ecEM1IAoEDoGgegfDrpVJdWl7usd9fLqnY6ZdU2\nWajGjJSZaCwBIGOYIwQA9XQyGyitDFYeZ3VlgV+yM3ya9zXMBXr1noejZktW9TP2Cx0o640lRitZ\nvP5tZPMAzMAeIQDl02mnujT2w2W9u17RvBpAjUvP1aSF2C80rVFjibT3jHTSPh1AKZARAlA+Wdjn\n06o8rrkIgvYLMSNlWpYbS9D9D0ATBEIAyiePrajzuOYiYEZKY1kOFLMcpFGyB2QCgRCA8snj3Ks8\nrrkImJHSWJYDxawGaVnfVwWUCF3jAABA+9rpzJfUuqr3CPlBWtqB7JonvOCndr7VwLz091UBBRG2\naxzNEgAAwUbHvK50wzu9PUoMcEWQrA7T9LN5WQvSslyyB5QMgRAAFE0UAUzt3KLtu6T1t1KOh3zJ\nYpC2cK7Xwa42I5R2yR5QQuwRAoAi8QOYoY3SQzu9r6de4N3eCuYWIQ40Ccj2viqgZAiEAKBIogpg\nmFuEqGWxSUAagRkNONpHII2IURoHAEUSVQCzcIFXDlf9WMwtQieyNnw16oGrftOI4XGv/K3RfqQ4\nSvZaOX4eMSAXMSAjBABFEtXgVeYWIWpZaxIQ5cDVtLNdaR8/CQzIRQxSCYTM7LNm9piZPWxmN5nZ\nr6axDgAonKgCGOYWIWpZm+sTZWCW9kV62sdPQtYCaRRCWhmhb0t6k3PuFElPSPpkSusAgGKJMoDp\nnSdd8ylp+AbvK0EQOpG1JgFRBmZpX6SnffwkZC2QRiGkEgg5577lnPMLz78j6Zg01gEAhdQ7z8sA\n9S/w9gxddV3rXeOAqGWtSUCUgVnaF+lpHz8JWQukUQjmnEt3AWZbJN3gnLu+2X37+vrcyMhIAqsC\ngByrnQHkl8dR2gYcyG8w0OnA1dqN/P5FelKBXtrHT0pU7xcKz8y2Oef6mt4vrkDIzO6SdHTAjy5z\nzt1cuc9lkvokvdvVWYiZXSLpEkmaP3/+aU8//XQs6wWAwliz1psfVNvxbWCFV+IGIHppX6SnfXwg\nQ1IPhJoe2OwDkgYkvc05tzfM75ARAoAQ+i/yhqnOuH2Bt98HAIACCxsIpdU17p2SBiWdFzYIAgCE\nFFULbQAACiytrnF/I2mupG+b2XYzuzaldQBA8TADCKMT0ponpP5t3tc8z5Mp0nMBkCmpN0toBaVx\nABDS6JjXLe7BnV4maHA1jRLKYsbGeXndtvK4cb5Iz8Xn7+UZHve6vbGXB4hc2NK47mZ3AIDc8oOB\n4Z1euViZggF/BhCyJ+4L4UbDNa85MbrjJKFIz0WaGdhtH5fWP5fvwA7IMQIhAMVU20J6+y5p/a20\nkEa6krgQLtJwzSI9F6l4gR2Qc2ntEQKAeF113XQQJHlfX9rr3Q6kpdGFcFSKNFyzSM9FKl5gB+Qc\ngRCAYhreeeAcHcn7/sGAttJxGR3zZvr0X+R9HR1L7tjIpiQuhAfne/to/ADCH645OD+6YySlSM9F\nKl5gB+QcgRCAYkq7hbRfmje00ZvpM7TR+55gqNySuBDu7fFK7QZe5z3uwLz87kEp0nORihfYATlH\n1zgAxVS7R8hvIZ3UHqE1a73gpzorNbtbGlhBE4Mym9EFrXIhnOeLe7TGb5bx4LgX3NE1DogcXeMA\nlFvvPC/oSauFdJKleUXpjleU59GIn+EoyoUwraBb19tDYwQgI8gIAUAcksoIBWW+DumRlr1NevTJ\n/AQUaWfw0LoizvgBUAhhM0LsEQKAOAyu9i7k/X1K/oX94OpojxPUHe+Fl6R1t0S7Nynuxg90+cuf\nJDrgAUCMCIQAIA5+ad7ACq8sb2BFPNmNoBI8SZqqZPujCCiSaPyQhS5/mGl0QlrzhNS/zfs6OjH9\nsyy3gm60bgCoYI8QAMSld178jREWLvCGxQYFQ75OA4pG2Zqonl/Q80iyyx9majb8deFc77bqYCgL\nraCTGFoLoBDICAFAntWW4JnNvE+nAUUS2ZqkSgkRXrPSt6y2gqZkD0BIBEIAkGe1JXjvP0867NBo\nA4okZjIlVUqI8JqVvmV1xk+WS/YAZAqlcQCQd7UleH4b6qjahg+ultbfOrOjW9TZmiRKCRFemNK3\nLLaCzmrJHoDMoX02AKC5qIMrZF+Wh782ml8U97qZnQRkXtj22QRCQBzKMBgSQHH5F/v3v+B1IOwy\n6azDsnHRH2Z+kb/+qIfWMjsJyIWwgRClcUDUagdDbt/llRWx3wFAHtS72M9CECQ1bobgl+nFVbIX\neOxJafHDUs8sMkRAztAsAYgagyEB5FnWu66l2Qwh8NiSdu6VHhqXhp71gkjmFgG5QCAERI3BkEDx\nFXlgZ9a7ri2cO92y25dUM4SgY1fbJ2m8kiEq4rkBFAyBEIpldExas1bqv8j7OjqW/BqSaDUMID1+\n6djQs8XMAqQZaISRxPyieoFu7bGDTIoMEZATNEtAcdTuzfFb/Ca9Nycr6wAQjzVPeBe4te2ZB+Zl\nr5V0O7LcLc4XphlCu93dmjVEqD72y/ulXXu94KeeIp0bQE7QLAHl02hvTpKzSfzBkLQaBoop66Vj\nnfIHpcbRdS0qzZoh1AYz28el9c+FC+aaNWOoPnbtcYIU6dwACoZACMWRpb05DIYEiqsMAzuzOCi1\nFWE6y9XTSqBbGzQGZYiKdm4ABcIeIRQHe3MAJCGJPSroTCdZu1b3SPlB4/Bp0m2nSHM5N4C8IBBC\ncQyu9vbi+MGQvzdncHW66wJQLH4WYOB13sXxwLxs7Z9BZw0fOgl0OTeAXKFZAopldIy9OQBQdp02\nfAjTjAFAZoVtlkAgBAAAiodgBigtusYBmMnPmA3v9PZUkTEDUDS1bbO/+UYCIACBCISAsqidb7R9\nl7T+VuYbASiOTtpmAygdmiUAZdFozhIAFEGjttkAUINACCiLducsjY5Ja9ZK/Rd5X0fH4lsjAHSi\n6MNuAUSK0jigLBYu8MrhqoOhZnOWKKcDkCdFHHZbu+eJpg9AZMgIAWXRzpwlyukA5EnRht36e56G\nnpUeGve+njri3Q6gYwRCQFn0zvMyOQMrvCzQwIrmmZ12y+kAIA1RDTQdnZDWPCH1b/O+phV4hNnz\nlJW1AjlEaRxQJr3zpGs+Ff7+7ZTTAUCaenuka05s//ez1Hmu2Z6nLK0VyCEyQgDqa6ecDgDyLEud\n5xbOnS7z81XvecrSWoEcIhACUF875XQAkGdZ6jzXbM9TltYK5BClcQAaa7WcDgDyLEud5/w9T1f9\n0Atu+mu6xmVprUAOmXMu7TWE1tfX50ZGRtJeBgAAKKrafTd+FiaL+27ytFYgQWa2zTnX1+x+lMYB\nAAD4ouo8l4Q8rRXIIErjAAAAqnXaea4VnQ5MTXKtQMEQCAEAAKSB9tdAqiiNAwAASAPtr4FUEQgB\nAACkgfbXQKoIhAAAANLQbGAqgFgRCAEAAKSh2cBUALEiEAIAAEgD7a+BVNE1DgAAIC20vwZSQ0YI\nAAAAQOkQCAEAAAAoHQIhAAAAAKVDIAQAAACgdAiEAAAAAJQOgRAAAACA0iEQAgAAAFA6BEIAAAAA\nSodACAAAAEDpEAgBAAAAKB0CIZSecy7S+wEAACD7CIRQahMTE1qyZIk2bNjQ8H4bNmzQkiVLNDEx\nkdDKAAAAEKfutBcApGViYkLLli3T1q1bdeedd0qSVq5cOeN+GzZs0MUXX6ypqSktW7ZMmzdvVk9P\nT9LLBQAAQITICKGUnHNavny5tm7dKkmamprSxRdfPCMzVB0ESdLWrVu1fPlyyuQAAAByjkAIpWRm\nWrVqlbq6pv8K1AZDtUGQJHV1dWnVqlUys8TXDAAAgOgQCKG0Vq5cqfXr1wcGQ8uWLQsMgtavXx9Y\nPoeCGh2T1qyV+i/yvo6Opb0iAAAQEctTiU9fX58bGRlJexkomKDMTy2CoBIaHZNOvUB6aa+0b1Ka\n3S0deoi04yapd17aqwMAAHWY2TbnXF+z+5ERQukFZYaqEQSV1FXXTQdBkvf1pb3e7QAAIPcIhAB5\nwdDSpUsDf7Z06VKCoDIa3jkdBPn2TUoP7kxnPQAAIFIEQoC88rgtW7YE/mzLli1N5wyhgBYu8Mrh\nqs3ulvoXpLMeAAAQKQIhlF6zPUL1Wmuj4AZXe3uC/GDI3yM0uDrddQEAgEgQCKHU6rXIPv/88xu2\n1kYJ9M7zGiMMrPCyQAMraJQAAECBdDe/C1BM9YIgvzFC7c/9YEgSe4bKoneedM2n0l4FAACIARkh\nlJJzTuvWrWs4J6jenKF169YpT23nAQAAMBOBEErJzLRp0yYtWrRIUv0W2bXB0KJFi7Rp0yaZWeJr\nBgAAQHQojUN8Rse8mSvDO70OXIOrM7W/oqenR5s3b9by5cu1atWquuVu/u3r1q3Tpk2b1NPTk+Qy\nAQAAEAPLU4lPX1+fGxkZSXsZCGN0TDr1gumBlH7HrQxuNnfOhcrwhL0fAAAA0mNm25xzfc3uR2kc\n4nHVddNBkOR9fWmvd3vGhA1uCIIAAACKg0AI8RjeOR0E+fZNSg/uTGc9AAAAQJVUAyEz+7iZOTM7\nIs11IAYLF0wPovTN7vbmsQAAAAApSy0QMrNeSe+Q9MO01oAYDa729gT5wZC/R2hwdbrrAgAAAJRu\nRuhqSYOS8tOtAeH1zvMaIwys8LJAAysy2SgBAAAA5ZRK+2wzO1/Sj5xzO5ptQDezSyRdIknz589P\nYHWITO886ZpPpb0KAAAAYIbYAiEzu0vS0QE/ukzSn8kri2vKOfdlSV+WvPbZkS0QAAAAQGnFFgg5\n594edLuZLZB0nCQ/G3SMpO+aWb9z7sdxrQcAAAAAfImXxjnndko6yv/ezP5TUp9z7mdJrwUAAABA\nOTFHCAAAAEDppNIsoZpz7ti01wAAAACgXMgIAQAAACgdAiEAAAAApUMgBAAAAKB0CIQAAAAAlA6B\nEAAAAIDSIRACAAAAUDoEQgAAAABKh0AIAAAAQOkQCAEAAAAoHQIhAAAAAKVDIAQAAACgdAiEAAAA\ngBJxzkV6v7wiEAIAAABKYmJiQkuWLNGGDRsa3m/Dhg1asmSJJiYmElpZ8rrTXgAAAACA+E1MTGjZ\nsmXaunWr7rzzTknSypUrZ9xvw4YNuvjiizU1NaVly5Zp8+bN6unpSXq5sSMjBAAAABScc07Lly/X\n1q1bJUlTU1O6+OKLZ2SGqoMgSdq6dauWL19eyDI5AiEAAACg4MxMq1atUlfX9OV/bTBUGwRJUldX\nl1atWiUzS3zNcaM0DgAAACgBvwyuOtipDoa2bNkyIwhav359YPlcERAIAQAAACVRLxi6+eabD7hf\n0YMgidI4AAAAoFRWrlyp9evXH1AmV60MQZBEIAQAAACUzsqVK7V06dLAny1durTwQZBEIAQAAACU\njr8nKMiWLVuazhkqAgIhAAAAoESCusNVq9dau2gIhAAAAICSqNci+/zzz2/YWruICIQAAACAEqgX\nBK1fv16bN2+e0UCh6MEQgRAAAABQcM45rVu3ruGcoKBuclNTU1q3bp2cc4mvOW4EQgAAAEDBmZk2\nbdqkRYsWSarfIrs2GFq0aJE2bdokM0t8zXFjoCoAAABQAj09Pdq8ebOWL1+uVatW1W2R7d++bt06\nbdq0ST09PUkuMzGWpzRXX1+fGxkZSXsZAAAAQG4550JleMLeL2vMbJtzrq/Z/SiNAwAAAEokbHCT\nxyCoFQRCAAAAAEqHQAgAAABA6RAIAQAAACgdAiEAAAAApUMgBAAAAKB0CIQAAAAAlA6BEAAAAIDS\nIRACAAAAUDoEQgAAAABKh0AIAAAAQOkQCAEAAAAoHQIhAAAAAKVDIAQAAACgdAiEAAAAAJQOgRAA\nAACA0iEQAgAAAFA65pxLew2hmdlPJT2d9joQuSMk/SztRSAzOB/g41xANc4H+DgX4Kt3Lvy6c+7I\nZr+cq0AIxWRmI865vrTXgWzgfICPcwHVOB/g41yAr9NzgdI4AAAAAKVDIAQAAACgdAiEkAVfTnsB\nyBTOB/g4F1CN8wE+zgX4OjoX2CMEAAAAoHTICAEAAAAoHQIhZIqZfdzMnJkdkfZakB4z+6yZPWZm\nD5vZTWb2q2mvCckys3ea2eNm9gMz+9O014N0mFmvmd1jZo+a2SNm9sdprwnpMrNZZvY9M7s17bUg\nXWb2q2b2zcr1wi4zO6PVxyAQQmaYWa+kd0j6YdprQeq+LelNzrlTJD0h6ZMprwcJMrNZkr4k6V2S\nTpb0HjM7Od1VISWTkj7unDtZ0m9L+iPOhdL7Y0m70l4EMuELku50zp0k6VS1cV4QCCFLrpY0KImN\nayXnnPuWc26y8u13JB2T5nqQuH5JP3DOPemc+6WkDZLOT3lNSIFzbsw5993Kf4/Lu9B5fbqrQlrM\n7BhJiyX9XdprQbrM7DBJb5F0nSQ5537pnPtFq49DIIRMMLPzJf3IObcj7bUgc35f0h1pLwKJer2k\n0arvnxEXv6VnZsdK+k1Jw+muBCn6vLwPTKfSXghSd5ykn0r6aqVU8u/MbE6rD9Id/bqAYGZ2l6Sj\nA350maQ/k1cWh5JodD44526u3OcyeaUx65NcG4BsMbNDJW2S9FHn3ItprwfJM7Mlkp5zzm0zs7PT\nXg9S1y3ptyStcc4Nm9kXJP2ppMtbfRAgEc65twfdbmYL5EX2O8xM8sqgvmtm/c65Hye4RCSo3vng\nM7MPSFoi6W2OPv9l8yNJvVXfH1O5DSVkZrPlBUHrnXP/lPZ6kJozJZ1nZudK6pH0K2Z2vXPufSmv\nC+l4RtIzzjk/Q/xNeYFQS5gjhMwxs/+U1Oec+1naa0E6zOydkj4n6a3OuZ+mvR4ky8y65TXJeJu8\nAOghSe91zj2S6sKQOPM+HfsHSc875z6a9nqQDZWM0Cecc0vSXgvSY2b3S/rfzrnHzezTkuY45/5P\nK49BRghAFv2NpIMkfbuSJfyOc+5D6S4JSXHOTZrZhyVtlTRL0t8TBJXWmZJWSdppZtsrt/2Zc+72\nFNcEIBvWSFpvZv9N0pOSPtjqA5ARAgAAAFA6dI0DAAAAUDoEQgAAAABKh0AIAAAAQOkQCAEAAAAo\nHQIhAAAAAKVDIAQA6JiZ7Tez7Wb2iJntMLOPm1lX5Wd9ZvbFlNb1QESPc2HluU2ZWV8tU9CgAAAC\nsUlEQVQUjwkASBftswEAHTOzl5xzh1b++yhJX5f0b865P093ZdEws/8uaUrSkLxBjiMpLwkA0CEy\nQgCASDnnnpN0iaQPm+dsM7tVkszs02b2D2Z2v5k9bWbvNrOrzGynmd1pZrMr9zvNzO4zs21mttXM\n5lVuv9fM/trMHjSzJ8zsrMrtb6zctt3MHjazEyq3v1T5amb2WTP7fuVYF1VuP7vymN80s8fMbL1V\npvjWPKddzrnHk3j9AADJIBACAETOOfekpFmSjgr48W9I+l1J50m6XtI9zrkFkl6WtLgSDF0j6fec\nc6dJ+ntJf1n1+93OuX5JH5XkZ5w+JOkLzrk3S+qT9EzNMd8t6c2STpX0dkmf9YMrSb9ZeayTJR0v\n6cx2nzcAID+6014AAKB07nDO7TOznfKCpTsrt++UdKykN0h6k6RvV5IzsySNVf3+P1W+bqvcX5L+\nXdJlZnaMpH9yzu2uOebvSPqGc26/pJ+Y2X2STpf0oqQHnXPPSJKZba885r9G8kwBAJlFRggAEDkz\nO17SfknPBfz4FUlyzk1J2uemN6tOyfuAziQ94px7c+XPAufcO2p/v/L43ZXH+rq8DNPLkm43s99t\nYbmvVP33q48JACg2AiEAQKTM7EhJ10r6G9deR57HJR1pZmdUHm+2mb2xyTGPl/Skc+6Lkm6WdErN\nXe6XdJGZzaqs7y2SHmxjbQCAgiAQAgBE4WC/fbakuyR9S9Jn2nkg59wvJf2epL82sx2Stkv6H01+\nbYWk71dK294k6R9rfn6TpIcl7ZD0z5IGnXM/DrsmM7vAzJ6RdIak28xsa9jfBQBkE+2zAQAAAJQO\nGSEAAAAApUMgBAAAAKB0CIQAAAAAlA6BEAAAAIDSIRACAAAAUDoEQgAAAABKh0AIAAAAQOkQCAEA\nAAAonf8PUbL7DMWbB6EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the results of the clustering from implementation\n", + "vs.cluster_results(reduced_data, preds, centers, pca_samples)\n", + "\n", + "# the black X are my samples, the round circles the cluster centers.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Data Recovery\n", + "Each cluster present in the visualization above has a central point. These centers (or means) are not specifically data points from the data, but rather the *averages* of all the data points predicted in the respective clusters. For the problem of creating customer segments, a cluster's center point corresponds to *the average customer of that segment*. Since the data is currently reduced in dimension and scaled by a logarithm, we can recover the representative customer spending from these data points by applying the inverse transformations.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Apply the inverse transform to `centers` using `pca.inverse_transform` and assign the new centers to `log_centers`.\n", + " - Apply the inverse function of `np.log` to `log_centers` using `np.exp` and assign the true centers to `true_centers`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      FrozenFreshDelicatessenDetergents_PaperGroceryMilk
      Segment 02196.09468.0799.0343.02624.02067.0
      Segment 11068.05174.01101.04536.011581.07776.0
      \n", + "
      " + ], + "text/plain": [ + " Frozen Fresh Delicatessen Detergents_Paper Grocery Milk\n", + "Segment 0 2196.0 9468.0 799.0 343.0 2624.0 2067.0\n", + "Segment 1 1068.0 5174.0 1101.0 4536.0 11581.0 7776.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      FrozenFreshDelicatessenDetergents_PaperGroceryMilk
      count440.000000440.000000440.000000440.000000440.000000440.000000
      mean3071.93181812000.2977271524.8704552881.4931827951.2772735796.265909
      std4854.67333312647.3288652820.1059374767.8544489503.1628297380.377175
      min25.0000003.0000003.0000003.0000003.00000055.000000
      25%742.2500003127.750000408.250000256.7500002153.0000001533.000000
      50%1526.0000008504.000000965.500000816.5000004755.5000003627.000000
      75%3554.25000016933.7500001820.2500003922.00000010655.7500007190.250000
      max60869.000000112151.00000047943.00000040827.00000092780.00000073498.000000
      \n", + "
      " + ], + "text/plain": [ + " Frozen Fresh Delicatessen Detergents_Paper \\\n", + "count 440.000000 440.000000 440.000000 440.000000 \n", + "mean 3071.931818 12000.297727 1524.870455 2881.493182 \n", + "std 4854.673333 12647.328865 2820.105937 4767.854448 \n", + "min 25.000000 3.000000 3.000000 3.000000 \n", + "25% 742.250000 3127.750000 408.250000 256.750000 \n", + "50% 1526.000000 8504.000000 965.500000 816.500000 \n", + "75% 3554.250000 16933.750000 1820.250000 3922.000000 \n", + "max 60869.000000 112151.000000 47943.000000 40827.000000 \n", + "\n", + " Grocery Milk \n", + "count 440.000000 440.000000 \n", + "mean 7951.277273 5796.265909 \n", + "std 9503.162829 7380.377175 \n", + "min 3.000000 55.000000 \n", + "25% 2153.000000 1533.000000 \n", + "50% 4755.500000 3627.000000 \n", + "75% 10655.750000 7190.250000 \n", + "max 92780.000000 73498.000000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# This shows the cluster centers on the first 2 components of PCA.\n", + "\n", + "# TODO: Inverse transform the centers\n", + "log_centers = pca.inverse_transform(centers) # recovers original features from pca dimensions\n", + "#print(\"log centers\", log_centers)\n", + "\n", + "# TODO: Exponentiate the centers\n", + "true_centers = np.exp(log_centers) # recover original values from log values\n", + "#print(\"true centers\" ,true_centers)\n", + "\n", + "# Display the true centers\n", + "segments = ['Segment {}'.format(i) for i in range(0,len(centers))]\n", + "true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys())\n", + "true_centers.index = segments\n", + "\n", + "# order features, so can focus on comparison not retrieval\n", + "tmp = true_centers\n", + "ordered = pd.DataFrame(tmp.Frozen)\n", + "ordered[\"Fresh\"] = tmp.Fresh\n", + "ordered[\"Delicatessen\"] = tmp.Delicatessen\n", + "ordered[\"Detergents_Paper\"] = tmp.Detergents_Paper\n", + "ordered[\"Grocery\"] = tmp.Grocery\n", + "ordered[\"Milk\"] = tmp.Milk\n", + "true_centers = ordered\n", + "\n", + "\n", + "tmp = data\n", + "ordered = pd.DataFrame(tmp.Frozen)\n", + "ordered[\"Fresh\"] = tmp.Fresh\n", + "ordered[\"Delicatessen\"] = tmp.Delicatessen\n", + "ordered[\"Detergents_Paper\"] = tmp.Detergents_Paper\n", + "ordered[\"Grocery\"] = tmp.Grocery\n", + "ordered[\"Milk\"] = tmp.Milk\n", + "data = ordered\n", + "\n", + "display(true_centers)\n", + "\n", + "display(data.describe())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8\n", + "Consider the total purchase cost of each product category for the representative data points above, and reference the statistical description of the dataset at the beginning of this project. *What set of establishments could each of the customer segments represent?* \n", + "**Hint:** A customer who is assigned to `'Cluster X'` should best identify with the establishments represented by the feature set of `'Segment X'`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Comparing the feature values for each segment with the statistical description of each feature, it seems that:\n", + "\n", + "To be fair, i am not sure how to answer these very well, as I find it hard to get myself interested in food establishments and what they might buy. It might be more interesting to segment drivers for economic performance, predictors of burglary or maybe internet user groups. However, here my attempt.\n", + "\n", + "PC:\n", + "- Dim 2 represents Frozen, Fresh and Deli. A higher value means more of these.\n", + "- Dim 1 represents Detergents_Paper, Grocery and milk. A higher value means more of these.\n", + "\n", + "Clusters:\n", + "- Segment 0 (any dim2, <0.5 dim1). Here I expect it to have any value for dim2 features be lower on dim1 features than Segment 1 and on the lower end of the distribution for those features. Thus, it would have low Detergents_Paper, Grocery and Milk, so low consumer retail spending. This could represent a restaurant, food market, hotel.\n", + "- Segment 1 (any dim2, >=0.5 dim1). Here I expect any dim2 features and higher values on dim1 features, and also at the higher end of the distribution for those features. So high Detergents_Paper, Grocery and Milk, indicating retail spending like a supermarket." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 9\n", + "*For each sample point, which customer segment from* ***Question 8*** *best represents it? Are the predictions for each sample point consistent with this?*\n", + "\n", + "Run the code block below to find which cluster each sample point is predicted to be." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sample point 0 predicted to be in Cluster 0\n", + "Sample point 1 predicted to be in Cluster 0\n", + "Sample point 2 predicted to be in Cluster 1\n" + ] + } + ], + "source": [ + "# Display the predictions\n", + "for i, pred in enumerate(sample_preds):\n", + " print \"Sample point\", i, \"predicted to be in Cluster\", pred" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Point 0 is a market as it has a lot of frozen fresh and deli and little detpaper, grocery and milk. This matches the prediction in cluster 0. Point 1 an outlier(as found earlier) so was removed and 2 was and outlier on 2 dimensions so was removed as well. However, Point 2 was high on Det_Paper, Grocery and Milk, so would be correctly classified as retail in cluster 1." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this final section, you will investigate ways that you can make use of the clustered data. First, you will consider how the different groups of customers, the ***customer segments***, may be affected differently by a specific delivery scheme. Next, you will consider how giving a label to each customer (which *segment* that customer belongs to) can provide for additional features about the customer data. Finally, you will compare the ***customer segments*** to a hidden variable present in the data, to see whether the clustering identified certain relationships." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Question 10\n", + "Companies will often run [A/B tests](https://en.wikipedia.org/wiki/A/B_testing) when making small changes to their products or services to determine whether making that change will affect its customers positively or negatively. The wholesale distributor is considering changing its delivery service from currently 5 days a week to 3 days a week. However, the distributor will only make this change in delivery service for customers that react positively. *How can the wholesale distributor use the customer segments to determine which customers, if any, would react positively to the change in delivery service?* \n", + "**Hint:** Can we assume the change affects all customers equally? How can we determine which group of customers it affects the most?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The distributor could call, survey etc a representative customer, or several, from each segment and ask them. They could use this to extrapolate to all customers from this segment and change his schedule by segment." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 11\n", + "Additional structure is derived from originally unlabeled data when using clustering techniques. Since each customer has a ***customer segment*** it best identifies with (depending on the clustering algorithm applied), we can consider *'customer segment'* as an **engineered feature** for the data. Assume the wholesale distributor recently acquired ten new customers and each provided estimates for anticipated annual spending of each product category. Knowing these estimates, the wholesale distributor wants to classify each new customer to a ***customer segment*** to determine the most appropriate delivery service. \n", + "*How can the wholesale distributor label the new customers using only their estimated product spending and the* ***customer segment*** *data?* \n", + "**Hint:** A supervised learner could be used to train on the original customers. What would be the target variable?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** They can transform the estimated spending to principal components using the trained pca on the original data. This would allow them to assign new customers to their clusters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing Underlying Distributions\n", + "\n", + "At the beginning of this project, it was discussed that the `'Channel'` and `'Region'` features would be excluded from the dataset so that the customer product categories were emphasized in the analysis. By reintroducing the `'Channel'` feature to the dataset, an interesting structure emerges when considering the same PCA dimensionality reduction applied earlier to the original dataset.\n", + "\n", + "Run the code block below to see how each data point is labeled either `'HoReCa'` (Hotel/Restaurant/Cafe) or `'Retail'` the reduced space. In addition, you will find the sample points are circled in the plot, which will identify their labeling." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAH4CAYAAACPEOhlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGX/BvD7DDMwbIoo4paJay6oJeZKllta4p6mpLmU\nu20/NTQV1yIhNSU1ffNNqdwxy15NwyX3RFOx1BTTzABxA4VhmOX8/jBGBmaGGZid+3NdXZfMnDnn\nmTOHOPc83+d5BFEURRAREREREbkhiaMbQEREREREZCsMPERERERE5LYYeIiIiIiIyG0x8BARERER\nkdti4CEiIiIiIrfFwENERERERG6LgYeIyq2///4bjRs3Rp8+fXT/9e7dG1u3btVto1QqsXTpUvTt\n2xd9+vRBREQEVq9ejaIz+ickJKBRo0Y4c+aMyWMuX74cbdu21Tte586d8dFHHxXbZ0l2796NYcOG\nWfSa0khJSUHnzp0NPteoUSNERETo3kvv3r3xxRdfmLXfLVu24Ouvv7aoLYmJiRg7dqxFrzlx4gR6\n9epl0WsAoHPnzkhJSbHoNfPmzcPy5cuLPb58+XLMmzfP4jYUGDZsmN5+t2/fjsGDB6NPnz546aWX\nMGvWLGRnZ1vlWNZQ+Jx37twZiYmJDm0PEZVvUkc3gIjIkeRyOXbs2KH7OSMjA7169UKzZs3QqFEj\nTJgwASEhIdi0aRO8vLxw7949jB07Frm5uXjnnXd0r9u4cSMiIiKwbt06tGzZ0uQxX3rpJcyePVv3\nc1ZWFnr37o2OHTsiPDzc+m/SxtatW4fAwEAAwN27dzFu3DgIgoBRo0aZfN2pU6fQoEEDezTR5cnl\ncnh7ewMAVq1ahZ9//hmfffYZqlSpApVKhQ8//BDjxo3DN9984+CWFle47UREjsDAQ0RUSHBwMJ58\n8klcu3YN2dnZuHr1KlavXg0PDw8AQKVKlbBo0SLcvHlT95oTJ04gKysLU6dORbdu3ZCWlobq1aub\nfczbt28jLy8PFStWBACkpqZi4cKFuH//PjQaDYYNG4aBAwcCAD799FN8//33CAgIwJNPPqnbR1RU\nFBo0aIDRo0cX+/nPP//E7NmzcffuXUgkEowfPx4vvfQSMjIyMG/ePKSlpUGlUuHll1/GuHHjAADf\nfPMN1q1bBz8/PzRs2NDs9xIYGIioqCi89dZbGDlyJO7cuYPZs2fjzp07yMzMRM2aNbF06VKcPn0a\n+/btw5EjRyCXy/Hiiy8a3K5y5cpmH3v//v34/PPPkZ+fj7t376Jv3766UJqbm4u33noL169fR4UK\nFTBv3jyEhIQgPz8fcXFxOHnyJDQaDZo0aYKZM2fCz89Pb9/79u3DypUroVKpIJfL8f777+Ppp5/G\nw4cP8cEHH+DixYuoWrUqPDw80KpVK4PtS01NRWRkJLKystC4cWNER0fj0qVLeO+997B//35IJBIo\nFAp07twZO3fu1HvvzzzzDEJDQ5Gbm4vPP/8c27dvR5UqVQAAMpkM06ZNw969e5Gfnw8AuHr1KoYN\nG4bMzExUqVIFixcvRtWqVY2eoxMnTmDJkiV44okncPnyZeTn52P27Nlo27YtoqKi4Ofnh0uXLiE9\nPR1169bF4sWL4evra/JaLdC6dWs0adLE7M+RiMjaGHiIiAr59ddf8ddff6FFixbYtWsXmjdvrgs7\nBerUqYM6deroft6wYQMiIiIQHByMtm3b4quvvsLUqVONHuN///sfTp06hby8PNy/fx9NmjTB3Llz\n0bx5c6jVarz11ltYtGgRmjZtigcPHmDw4MGoX78+bt++jT179uDbb7+FXC7HxIkTzXpP7733HgYO\nHIjIyEikpaVh2LBheO655zB16lSMGDECnTt3hlKpxJtvvonatWsjJCQE8fHx2LFjB4KCgvR6o8zx\n1FNPITMzE/fu3cMPP/yAli1bYsyYMRBFEWPGjMGOHTswatQoJCUloUGDBoiMjNT1jBnazhyiKGLt\n2rWIiYlBnTp1kJGRgRdeeAHDhw8HAKSlpSEuLg7PPPMMNm3ahGnTpmHLli26MJuYmAhBELB48WLE\nxcVhzpw5un1fu3YNS5Yswfr161GpUiVcvnwZI0eOxJ49e7Bs2TLI5XLs3r0b9+7dQ79+/YwGnr/+\n+gvbtm1DpUqVMHXqVKxcuRJTp05FQEAADh06hE6dOuGHH35Au3btigW98ePHAwDOnz8PuVyud/0B\ngLe3N3r37q37+caNG9iyZQsCAwMxYcIEbNmyBRMmTDB5js6dO4fo6Gg0btwYa9euRXx8PNq2bas7\n7vr16yEIAgYNGoTdu3ejT58+Rq/VwubOnWvWZ0hEZCsMPERUruXl5aFPnz4AAI1Gg0qVKiE2NhbV\nq1eHRCIpcVxNZmYmfvrpJ2zbtg0A0LdvX8yZMwcTJ06Ej4+PwdcUlLTl5+dj/vz5uHz5Mp577jkA\nj26u//rrL8yYMUOvjb///jtSU1PRrVs3Xe/DgAEDkJCQYLJ99+/fx8WLF/HKK68AAKpXr46ffvoJ\nubm5OHnyJLKysvDpp58CeNQLcvHiRaSnp6NDhw4ICgoCAAwePBiHDx82eZzCBEEAAHh5eeH1119H\ncnIy/vvf/+LatWu4fPkyWrRoUew15m5n6pirVq3CgQMHsHPnTqSmpkIURSgUCgCPxho988wzAIB+\n/fphzpw5ePDgAQ4cOIAHDx7g6NGjAACVSlUsbBw5cgS3bt3CiBEj9I73119/4dixY5gxYwYEQUBg\nYCC6detmtI3dunXTlf4NGDAAixYtAgBERkZi8+bN6NSpky6MGSORSKDVaks8Hx06dNAd66mnnsLd\nu3dLPEc1atRA48aNAQBNmjTB9u3bdfsLDw+Hp6cnAKBhw4bIysoyea3Wq1evxDYSEdkLAw8RlWtF\nx/AU1qJFC6xbtw4ajUavl+fcuXNISEhAbGwstmzZAuDxN/BarRYPHz7E9u3b0bVrV4wZM0b3utWr\nV+vt39PTE7NmzcKAAQMQGxuL6OhoaDQaVKhQQa9Nt2/fhr+/P2JjY/UCWOE2CYKg95xKpQIASKVS\n3fMFrl69iqCgIIiiiI0bN+rGV9y9exdeXl7YvHmz0eOYIyUlBbVq1YKvry9iY2Nx7tw5DBgwAG3a\ntIFarTYYIs3dzpjc3Fz069cPXbt2RVhYGAYMGICffvpJtw+JRH+OHkEQIJVKodVqMWPGDHTq1AkA\nkJOTA6VSqbetVqtFu3btsHTpUt1jaWlpqFq1KgCYfa4KPyeKou6ziYiIwOLFi3H8+HHk5uaidevW\nRvdRv359qNVqXL9+Xa+kUalUYtKkSViwYAGAx597wXsVRbHEcySXy4u9poCh50xdqyVN3kFEZE+c\npY2IyIinn34adevWxUcffaS7Cb59+zYWLFiAWrVqQaPRYPPmzZg7dy727duHffv24cCBAxg7dizW\nr1+PqlWrYseOHbr/goODix3D09MT0dHR2LRpE3777TeEhITAy8tLdxOZlpaGXr164fz58wgPD8fu\n3buRnZ0NrVard6NZqVIlnD9/HsCj4JKcnAwA8PPzQ9OmTfHtt9/q9jdkyBDk5eWhZcuW+O9//wsA\nyM7OxpAhQ5CUlIT27dvjyJEjSE9PBwC9b/pLkpGRgbi4OF0p2uHDh/H666+jb9++qFy5Mo4ePQqN\nRgPgUQBQq9UlbmeO69ev4+HDh3jnnXfQuXNn/PLLL8jPz9f1hly6dAkXLlwAAGzatAmtWrWCt7c3\nOnbsiK+//lq37axZs7B48WK9fbdt2xZHjhxBamoqAODgwYPo3bs3lEolwsPDsXXrVmi1WmRlZSEp\nKcloG/ft24esrCxoNBps2rRJ16tXUI42Y8YMvPrqqybfp6enJ958803MmDEDt2/fBgDk5+fjww8/\nhEKhMHiNmXuOLGXqWiUicibs4SEiMmHZsmVYsmQJ+vfvDw8PD2i1WvTt2xejR49GUlIStFotIiIi\n9F4zYsQIrF+/HgcPHsTzzz9f4jHCwsIQERGB+fPnY8OGDVixYgUWLlyI//znP1Cr1Xj77bd140Iu\nXbqEAQMGoEKFCnjqqadw7949AI+mLZ4yZQpefPFF1KpVC88++6xu/5988gnmzp2LhIQECIKAhQsX\nIigoCHFxcZg/fz4iIiKQn5+PXr166caBTJ06Fa+//jp8fX3RvHlzk+1//fXXIZFIdD0YAwYMQGRk\nJABg4sSJWLRoEVasWAEPDw8888wz+OuvvwAAzz33HObPn1/idkUdOnQITz/9tO5nf39/HDhwAM8/\n/zx69uyJChUqoHbt2qhfvz6uX78OT09P1K1bF/Hx8bhx4wYqV66MmJgYAMCECRPw8ccfo1+/ftBo\nNGjcuDGioqL0jtegQQPMmzcP7733nq5nZuXKlfDx8cHkyZMRHR2Nnj17IjAw0OQED/Xq1cPYsWOR\nnZ2NVq1a6fX+9e/fH5s3b0bfvn1NnmsAGDduHLy9vXUTVCiVSjz77LNYsWKFydc1atTI5DmylKen\np9Fr9cSJExbvj4jIVgTR0oUfiIiIyGpEUcSaNWtw8+ZNDvAnIrIB9vAQERE5UJcuXRAYGIiVK1c6\nuilERG6JPTxEREREROS2OGkBERERERG5LZa0ERFZyYIFC3Dy5EkAQGpqKmrWrKmbznfTpk16U/ta\n24ULFzB58mT4+/tj+fLlqFWrls2OZcrdu3fRrl07XLp0qdhzt27dwocffqib7Uwul2Ps2LHo2rWr\nzds1bNgwREZGokePHma/pnPnzpDJZJDL5bppmDt37oy3335bb9pnQw4cOICzZ8/i7bfftqidSqUS\nK1euxIEDByCKom5SjDfffBOCIOCDDz7Ayy+/jPbt25u1v7///hsRERH49ddfLWpHr169MGvWLLRp\n08ai1xEROSMGHiIiK5k5c6bu3507d0ZcXBxCQ0PtcuykpCS0adMGCxcutMvxSmPmzJlo3769bj2b\nK1euYMiQIQgJCXHahSoLf4a5ubmYMmUKPvroI8yaNcvk61JSUpCVlWXRsURRxIQJExASEoJNmzbB\ny8sL9+7dw9ixY5Gbm4t33nnHqT9fIiJnxcBDRGQnzZo1Q5cuXXDx4kXExcXh0qVL2LRpE1QqFbKy\nsvDmm29i6NChSExMxN69eyGRSHD9+nXIZDJ8/PHHaNiwIfbs2YOVK1dCEAR4eHhg2rRpSEtLw4YN\nG6DRaJCXl4dPPvkEn332GX744Qd4eHggJCQEs2bNQlBQEIYNG4aKFSvi6tWrGDJkCPbs2YOmTZvi\n+PHjuHPnDoYPH447d+7gl19+gUKhwNKlS9GoUSM8ePAACxcuxB9//AGVSoV27dph2rRpkEql2LNn\nD5YsWQJvb280a9bM6PvPzMxEXl4etFotJBIJ6tevj5UrV6JChQoAgK1btxo9H3v27EFeXh5u3ryJ\n6tWrIzIyEl999RWuXbuGkSNHYtSoUUhMTMQPP/wArVaLjIwMBAcHIyYmptjaNKdPn0ZcXBwUCgUE\nQcDkyZPxwgsvlPj5+fj4YPbs2ejatSveffddSCQSzJkzB9euXUNWVhZ8fX0RFxeHBw8eYOPGjdBo\nNPD398fYsWMNble3bl29/Z88eRJXr17F6tWrdVN8V6pUCYsWLcLNmzcBPO6patasGSIjI1GvXj3c\nvHkTCQkJ+O2337B06VJotVr4+Phg7ty58PPz0zvGypUrsWfPHmi1WtSsWRPR0dEIDg7GlStXMGPG\nDCgUCtStWxe5ubklX9BERK5CJCIiq3vhhRfEc+fO6T3WsGFDcfv27aIoiuLDhw/FQYMGiXfv3hVF\nURR//fVXsWXLlqIoiuK2bdvEVq1aiWlpaaIoiuK8efPEadOmiaIoil26dBF//fVXURRF8dChQ+Ly\n5ctFURTFZcuWiXPnzhVFURS3bt0qDh48WMzJydE9N2rUKFEURfG1114Tp0+frmvTa6+9Jk6aNEkU\nRVE8c+aM2LBhQzEpKUkURVFcuHChOHPmTFEURTEqKkpcv369KIqiqFarxSlTpoirV68WMzMzxVat\nWomXL18WRVEUV61aJTZs2NDgOTl69KjYoUMH8dlnnxXHjRsnrlmzRkxPTzf7fPzzzz+iRqMRX3rp\nJXHy5MmiRqMRL1y4IIaGhooajUbctm2b2LJlS/Hq1auiKIpibGysOHnyZN373LVrl3j//n2xe/fu\n4o0bN0RRFMX09HTxueeeE2/evGnWZyiKotimTRvx7Nmz4q5du8T58+frHp81a5Y4b968Yp+Hqe0K\n++KLL8S33nrL4LkrUPA+bty4ITZs2FA8efKkKIqi7nP4/fffRVEUxR9//FEcPXq0eOPGDd153L59\nu/jOO++IKpVKFEVR3Lhxo/jGG2+IoiiKffr0ETdv3iyKoigmJyeLjRo1Eo8fP26yLUREroI9PERE\ndhQWFgYA8PX1xapVq3Dw4EFcu3YNFy9e1PtWvWnTpqhWrRoAoEmTJti7dy8A4OWXX8akSZPQqVMn\ndOjQAW+++WaxY/z888/o378/fHx8AADDhw/HqlWrkJ+fr9eGAt26dQMAPPHEEwCA8PBwAEDt2rXx\nyy+/AHg0JiUlJQVbt24FAOTl5QEATp06hYYNG6J+/foAgMGDB2Px4sUG33u7du1w4MABnDlzBsnJ\nydi/fz8+++wzrFu3Ds2bNzd5PkJDQ1G9enUAQK1atdCxY0dIJBI88cQTUCqVUCgUAIAOHTogJCQE\nADBo0CD06dNHrw1nzpxBZmYmJk6cqHtMEARcunQJNWrUMNjuogRBgLe3N3r06IEnnngCCQkJuH79\nOn755Re9BVELmLudRCKBaMHEqVKpFC1btgTwqNeqQYMGaNy4MQCge/fu6N69O/7++2/d9vv370dK\nSgoGDBgAANBqtVAoFLh37x4uXbqkW/S0VatWaNCggdntICJydgw8RER2VBBC0tPTMXjwYAwaNAit\nWrVCjx49sH//ft12hSc4EARBdyP87rvvYuDAgTh8+DASExOxevVqJCYm6h2j6E2zVquFWq0u1oYC\nnp6eej/LZLJi7dZqtfj00091Y22ys7MhCAKOHTumdzxjg/nv3LmD5cuXY9asWQgLC0NYWBjGjRuH\nDz74AN9++y2qVq1q8nwUbaOx4xSUghW0ufDPAKDRaFCvXj1s2bJF91hGRgYCAwMN7q+omzdvIjc3\nF7Vr18Y333yDzZs3IzIyEhEREQgICNALGAXM3a5FixZYt24dNBqNXrvPnTuHhIQExMbG6m3v6emp\nOw8eHh4QBEH3nCiKuHTpkl5Jm1arxRtvvIGhQ4cCAPLz85GVlaV7nTmfIxGRK+K01EREDnD+/HkE\nBgZiwoQJCA8P193cazQao69Rq9Xo3LkzcnNzMWTIEERHRyM1NVUvzABAx44dkZiYqOshSUhIQOvW\nrYuFBkt07NgRX375JURRRH5+PsaPH4+vvvoKYWFhuHLlCi5evAgAxcJXgYoVK+Lo0aNYv3697sZa\noVAgLS0NTZo0KdX5MOT48ePIyMgAAGzcuLHY2JyWLVvi+vXrutn0Lly4gBdffBG3bt0qcd/Z2dmY\nP38+IiMj4eXlhcOHD6Nfv3545ZVXEBISgn379una6+HhoftcTG1X2NNPP426devio48+glKpBADc\nvn0bCxYsKHHWvRYtWiA1NRWXL18G8GgSi6lTp+pt07FjR2zduhUPHz4EAHz66aeYNm0aAgIC0LRp\nU10I/O233/DHH3+UeD6IiFwFv8IhInKADh06YOvWrejRowe8vb3RvHlzBAYG4vr160ZfI5VKMWPG\nDEyZMgVSqRSCIODDDz8sFmQGDhyItLQ0vPLKK9BqtXjyyScRFxdXpvZ+8MEHWLhwISIiIqBSqdC+\nfXu88cYbkMlkiIuLw5QpUyCTydC6dWujbf/iiy8QGxuLhIQE+Pj4QBAE9OvXDwMHDoRCobD4fBgS\nHByMqVOnIjMzE/Xr18e8efP0ng8MDMSyZcuwaNEiKJVKiKKIRYsWoWbNmgb3N2XKFMjlcnh4eECj\n0aB79+4YP348AGDUqFGYPXs2EhMT4eHhgaZNm+qCQrt27TB58mTIZDKT2xW1bNkyLFmyBP3794eH\nhwe0Wi369u2L0aNHm3zfVapUQVxcHN5//31oNBr4+flhyZIletu88soryMjIwKBBgyAIAqpXr46Y\nmBgAwOLFizF9+nRs3LgRtWvXLjahAhGRKxNESwqGiYiInFRiYiJ+/PFHfP75545uChERORGWtBER\nERERkdtiDw8REREREbkt9vAQEREREZHbYuAhIiIiIiK35fSztGVmPnB0E8gGKlXywb17uSVvSG6N\n1wEV4LVAAK8DeozXAgGWXQdBQf5Gn2MPDzmEVOpR8kbk9ngdUAFeCwTwOqDHeC0QYL3rgIGHiIiI\niIjcFgMPERERERG5LQYeIiIiIiJyWww8RERERETkthh4iIiIiIjIbTHwEBERERGR22LgISIiIiIi\nt8XAQ0REREREbouBh4iIiIjcgjQ5Bd7xCZAmp5R5X6dPJyM6erreYytXLsf//ve9we3T09Nx+PDP\nZu9v9uzp+PPPq+jevRMmTRqDSZPGYMyYEXj77QnIzs62qK3Z2VnYs2e3Ra8pq9TUKzhz5rTu56VL\n43Dz5t/Izs7GRx/Nw6RJYzBu3ChER0/Hw4cPje5HrVZj8uSxGDdulMXv21wMPERERETk8nyjYhHQ\nfyL85sUjoP9E+EbF2vX4p0+fRErKWbO2VSqV0Gq1kMvlqFMnBPHxqxEfvxqrV3+Jxo2bYOfOHRYd\n+8qVyzhy5GBpml1qBw4k4dq1q7qf//nnJmrWrIU5cz5A+/bhiI9fjVWr1qJJk2aIjV1odD+3b99G\nTk4OVq1aiwoVKtikrVKb7JWIiIiIyE6kyefg/c33EPKUAAAhTwn5hp1QDuwBdVio1Y+3fPkSnDt3\nBgDQrVsPDBgwCF999SXy8vIQGtoc1avXxNKlsRBFERUrVsT06dF6rz99+iSeeSas2H5FUcStWxmo\nVasWAGDr1o3Yu/dHCIKALl2645VXXsXBg/vw1VfrIJVKUaVKEObO/RDr16/FlSuXsWNHIkJDm2P5\n8iXQarW4f/8+pkyJQmhoC/Tu/SK+++5HAEB09HT06TMA6elp+OGH76DVajF69Fhcv/4nDh7cD4VC\ngYCAAHz4YRz27t2NY8eOQKnMw82bfyMy8nW0bt0Gu3bthFQqQ8OGT8Hb2wd16tRBenoa7t69g06d\nXtC9p4EDX4VCoQAAbNu2qdj+4+I+xN9/38CiRQsxYcLbiImZh6ysLADA3LnRCAysUebPi4GHiIiI\niFya7PhZXdgpIFHkQXbiTJkCz6lTyZg0aYzu53/+uYnIyOFIS/sHq1d/CY1Gg/HjR6NVq9Z47bUR\nuH79Gjp27IQxY0Zg+vTZCAmpi507v8XXX69D69ZtdPs5evQIIiNfhyhqce3an5g0aQwePMiGUqlE\nt2490KNHL/z551UkJe3FihX/AQC8++5EtGnTFnv3/oihQ4fhhRe6YteuncjJycHw4aOwY8c29OnT\nH0lJezBp0ruoV68+9uzZjf/973uEhrYw+h79/f0RE7MYWq0W586dwdKlKyCRSPDee5Nw4cJvAICc\nnIdYvDgeN278hffffxcvvRSBnj17oXLlymjSpBm+/nod2rcPx+3bmaheXT+geHh4wM/PD1qtFllZ\nWcX2/3//F4Xo6BmYNu0DrFixDK1aPYt+/Qbixo2/MGfOHCxbtrrUn18BBh4iIiIicmmqti0hyr30\nQo/WWw5Vm5Zl2m+rVmGYO/cj3c8rVy6HUqlEixYtIQgCpFIpmjYN1SvtAoDr1//EJ5/EAAA0GjVq\n1aqt93xGRjqqVauGtLR/dCVtSmUepk17D4GBlSGVSnH1aioyMtLx9tvjAQAPHjzAjRs3MHnyu0hI\n+BLbtm3Gk0/WwXPPPa+37ypVquLLL/8DLy8v5ObmwtfXt9j7EsXH/65d+0kAgEQigUwmw5w5H8Db\n2xu3bt2CWq0GANSv3xAAULVqMPLz84vt7/z5c3j11ddw9+4dZGbe0ntOrVZj37696N69p9H9F7h6\n9QpOn05GUtKef99zVrFjlQYDDxERERG5NHVYKBRDI3RlbVpvOfKG9LJJOZuXlxdOn07G4MGRUKvV\nOH/+HHr27IWrV69AFLUAHoWImTPnoVq1ajh37gzu3Lmte/2VK5dRr159A/uVIzp6PkaOHIpmzZqj\ndu0nUadOXXzyyTIIgoBNm75GvXoN8N132zF69BhUqhSIRYsW4uefD6B69RrQah+lmE8/jcXs2QtQ\np04Ivvjic6Sl/fPoHKnVyM3NhUwmw59/puqOKwgSXbt+/vkA1qxZh7y8PIwe/VqhbYRi7ZVIJNBq\nRWRnZ8PHxxceHh4ICqqKihUDcOjQAYSHPw8A2Lx5Ay5c+A1169Y3uv8CTz5ZB927N0H37j1w795d\n7Nu3y9KPxyAGHiIiIiJyeTkxU6Ec2AOyE2egatPSJmEHALy9fVC9ek2MHTsSKpUKnTt3RaNGT0EQ\ngPXr16Jhw6fwf/83HQsWzIZGo4EgCIiKmoXbtzMBAEePHkL79h0N7jswsDImTnwHsbEfYtWqtQgL\na40JE0YjP1+Fxo2bIigoCI0bN8W0ae/Ax8cX3t7eaN++I/Lz83H16hVs3vwNunfviVmz3oe/fwUE\nBVVFVtZ9AMCgQUMwduwI1KhRE9WqVS927Fq1noC3tzfGjx8FAKhcuYquzYY0atQYK1Z8Cj8/P7Rp\n0173+KxZ87B48cfYsOErqFQq1KxZC++/PxNSqdTg/guXwA0fPgoxMfPx3XeJyM3NwTvvvG3hp2OY\nIIqFO7WcT2bmA0c3gWwgKMifny3xOiAdXgsEOP91IE1Ogez4Gaja2u5mmh5x9muB7MOS6yAoyN/o\nc+zhISIiIiqBb1SsrlxKlHtBMTQCOTFTHd0sIjID1+EhIiIiMsHYlMfWWNySiGyPgYeIiIjIBFNT\nHhOR82PgISIiIjKhYMrjwqwx5TER2QcDDxEREZEJBVMeF4QeW055TETWx0kLiIiIiEpgrymPicj6\nGHiIiIgmt71JAAAgAElEQVSIzKAOC2XQcXLJ0gwcl6WjraoawtTBZdrX6dPJmD17OurUCYEgCMjJ\nyUGNGjURHb0AMpms2PapqVfw4EE2WrZ8xuD+Ll++hMOHf8bIkW+id+8X8d13P5apfWQ+Bh4iIiIi\ncnlRvofxjfcl5AkayEUPDFU0QkyO4QU+zdWqVRjmzv1I9/OcOR/g8OGDeOGFrsW2PXAgCZUrVzYa\neBo0aIQGDRqVqT1UOgw8REREROTSkqUZurADAHmCBhvkf2CgskGZe3oKqFQq3LlzG/7+FbBqVTzO\nnv0VWq0WgwdHIjS0OXbt2gmpVIaGDZ9CRkY6EhO3QK1WQxAEfPhhHK5evYIdO7bpBajU1CtYujQW\noiiiYsWKmD49Gn/8cRErVy6HTCZD79790KPHy1Zpf3nGwENERERELu24LF0XdgooJGqckKWXKfCc\nOpWMSZPG4P79exAEAb1794dKpUJa2k2sXPkFlEolxo4dieXLP0fPnr1QuXJlNGnSDMnJvyA29lPI\n5XIsWrQQv/xyDFWqBBXb/8cfL8D06bMRElIXO3d+i6+/XofWrdsgPz8fa9asK3W7SR8DDxERERG5\ntLaqapCLHnqhx1srRRtVtTLtt6CkLSvrPt59dyKqV6+Bq1ev4NKli5g0aQwAQK1WIz39H73XVaoU\niAULouHj44Pr16+hWbPmBvd//fqf+OSTGACARqNGrVq1AQC1az9ZpnaTPgYeIiIiInJpYepgDFU0\n0pW1eWulGJLX0GrlbBUrBmDWrPl4661xmDDhLTz9dBjef/8DaLVafPnlf1CzZi1IJBJotSIePnyI\nL774HNu27QQAvPvuRIiiaHC/tWs/iZkz56FatWo4d+4M7ty5DQCQSASrtJseYeAhIiIiIpcXk9MR\nA5UNcEKWjjZWmKWtqJCQuhg4cDCOHDmE4OBgTJjwBhSKXDz33Avw8fFFo0aNsWLFp6hTJwShoS0w\nbtxIeHhI4e/vj9u3M1G9eo1i+/y//5uOBQtmQ6PRQBAEREXNwu3bmVZtNwGCaCxyOonMzAeObgLZ\nQFCQPz9b4nVAOrwWCOB1QI/xWiDAsusgKMjf6HMSazWIiIiIiIjI2TDwEBERERGR22LgISIiIiIi\nt8XAQ0REREREbouBh4iIiIiI3JZDAs+dO3fQqVMnpKamOuLwRERERERUTtg98KhUKsyePRtyudze\nhyYiIiIionLG7oHn448/xquvvoqqVava+9BERERERFTOSO15sMTERAQGBiI8PByrV6826zWVKvlA\nKvWwccvIEUwtEEXlB68DKsBrgQBeB/QYrwUCrHMdCKIoilZoi1kiIyMhCAIEQcCFCxdQp04drFy5\nEkFBQUZfw1V23RNXUCaA1wE9xmuBAF4H9BivBQIsuw5MBSO79vB8/fXXun8PGzYMc+bMMRl2iIiI\niIiIyoLTUhMRERERkduyaw9PYQkJCY46NBERERERlRPs4SEiIiIiIrfFwENERERERG6LgYeIiIiI\niNwWAw8REREREbktBh4iIiIiInJbDDxEREREROS2GHiIiIiIiMhtMfAQEREREZHbYuAhIiIiIiK3\nxcBDRERERERui4GHiIiIiIjcFgMPERERERG5LQYeIiIiIiJyWww8RERERETkthh4iIiIiIjIbTHw\nEBERERGR22LgISIiIiIit8XAQ0RERERkBcnSDMR7n0WyNMPRTaFCpI5uABERERGRq4vyPYxvvC8h\nT9BALnpgqKIRYnI6OrpZBPbwEBERERGVSbI0Qxd2ACBP0GCD/A/29DgJBh4iIiIiojI4LkvXhZ0C\nCokaJ2TpDmoRFcbAQ0RERERUBm1V1SAXPfQe89ZK0UZVzUEtosIYeIiIiIiIyiBMHYyhika60OOt\nlWJIXkOEqYMd3DICOGkBEREREVGZxeR0xEBlA5yQpaONqhrDjhNh4CEiInIAaXIKZMfPQNW2JdRh\noY5uDhFZQZg6mEHHCTHwEBER2ZlvVCy8v/keQp4SotwLiqERyImZ6uhmERG5JY7hISIityZNToF3\nfAKkySmObgoAQJp8Thd2AEDIU0K+YafTtI+cDxezJCob9vAQEZHbcsaeFNnxs7qwU0CiyIPsxBmW\ntlExXMySqOzYw0NERG7JWXtSVG1bQpR76T2m9ZZD1aalg1pEzoqLWRJZBwMPERG5JVM9KY6kDguF\nYmiELvRoveXIG9KLvTtUDBezJLIOlrQREZFbKuhJKRx6nKUnJSdmKpQDe0B24gxUbThLGxlWsJhl\n4dDDxSyJLMceHiIickvO3pOiDguFYuIwp2kPOR8uZklkHezhISIit8WeFHJ1XMySqOwYeIiIyK2p\nw0IZdMilcTFLorJhSRsRETmEs62PQ0RE7ok9PEREZHdF18fB6P5A9DuObhYREbkh9vAQEZFdGVof\nB//dzp4eIiKyCQYeIiKyK0Pr4yDXvPVxWAZHRESWYkkbERHZlaH1ceBT8vo4RcvgFEMjkBMz1cat\nJSIiV8ceHiIisitD6+NgZD+TM6kZKoOTb9jJnh4iIioRe3iIiMggaXIKZMfPQBPgD4/7D6Bqa711\nbIquj1OpZ3sg84HR7Q2VwUkUj8rgOOU0ERGZwsBDRETF6JWPARAAq5eRWbI+jqEyOK13yWVwRERE\nLGkjIiI9xcrH/n3ckWVkhsrg8ob0Yu8OERGViD08RESkx+Asav9yZBlZ0TI4hh0iIjIHAw8RWZVW\nK+LqP9kQBCCkRgVIBKHkF5FTMTiL2r8cXUZmSRkcERERwMBDRFZ05nImdh69jqtp2QCAejUqoHfH\nEITWrezglpElCsrHio7hYRkZERG5IgYeIrKKu9l5+GrvH5B5SDCkSwOIAJJO/Y2vfryED4aHoYKv\np6ObSBYoXD6mqegPj6wHLCMjIiKXxMBDRFbx89l/cDdbicFd6qNb6ycAAGqNFlsPpOLAmZvo3SHE\nwS0kS7F8jIiI3AFnaSMiq/jnTg585FJ0aFZN91j7ZtUg9/RA2p0cB7aMygtpcgq84xO4GCkREelh\nDw9ROVCwgKQ1F44s6m5WHnzlMvh5Py5dq+jrCV+5FHeyDM/4RWQteusGWXm9ICIicm0MPERuzl43\ngiqNFp5S/U5jQRDgKfOAWqO1+vGobOwRgu2l2LpB/64XpBzYw+XfGxERlR1L2ojcmLEbQVuU/Mg8\nJMhX6wcbURSRr9JA6sH/1TgT36hYBPSfCL958QjoPxG+UbGObhKA0pekGVo3qGC9ICIiIt6FELkx\ne94IBlaUIydPhYeKfN1jWTn5yMlTo3JFL6sfj0rHHiG4VMFl0vxSh7CCdYMKc/R6QURE5DwYeIjc\nmD1vBGtU9kVunhpHzqfrHjt6Ph15+RpUr+xr9eNR6dg6BJem90iafA5Ym1jqEFawblDBtc71goiI\nqDCO4SFyEaUZc1F0AUlTN4IXLvyOCxd+w8OHD+Hr64vGjZuiSZOmZrevU8saOJyShgOnb0ICAaIo\n4uCZf1ClohzPt6xp9n7ItgpCcOHQY60QXNqxNLLjZwGF4RBm7rVeeN0gY+sFudO4JSIiMh8DD5EL\nKMvEA6ZuBFUqFb79dhvWrl2DU6dOFnttq1ZhGDHiDfTrNxCenqYXDq3kL8dr3Rpi57Hr2JB0GQBQ\nv2YFRLSvw0VHnYglIdhSpnqPTO1f1bYl4O2lF3pKE8JMrRvEWdyIiMovQRRF0dGNMCUz84Gjm0A2\nEBTkz8/WTNLkcwjoP6nYN/JZ2+LLdJOamZmJ4cMH49Sp5BK3bdnyaSQkbEZwcHCJ22q1Iq7+kw1B\nAEJqVIBEEIxuy+vAcaTJKSZ7Q0q7z4D+E0t1rQbNXQrxi0S9EGatQGKr3yGyPv4/gQrwWiDAsusg\nKMjf6HPs4SFycqX91tyUe/fuom/fnrh8+Y/Hx5HJ0KnTCwgOroZbtzJw8OB+5Oc/moDgzJlf0bdv\nT/zww14EBlY2uW+JRED9WhVL1S6yH1O9IWXZZ6l7j+Jn4f7LXawewgDb/A6VdywPJCJXwsBD5ORs\nMebirbfG68KORCLB22+/hzfeGI+goCDdNrdv38Z//rMKS5fGQavVIjX1CiZOHIMNG7aV/s2Q2zNn\nLI0xtghhgG3HLZVHLA8kIlfDWdqInJy1Z6C6dOkifvxxl+7nlSv/g+nTZ+uFHQCoUqUKoqJmYvXq\n/+oeS0rai99//61Ux6XyQx0WCsXEYU7zzT9ncbMee67tRURkLezhIXIBZfnWvKh1677Q/btnz17o\n12+g3vNFS1V69+6HXr0SsXPnDt3rP/54camPT7bFUiPDrPk7VJ6xPJCIXBEDD5GLsFa5z/btW3X/\nHjXqTb3njJWqjBr1pi7wJCZuRUzMJxBMTEZAjsFSI9NsVTJXnrA8kIhcEUvaiMqR/Px83LlzB8Cj\nsTvh4Z10z5kqVenQIRxS6aPvR7Ky7kOhUNi/8WQSS43IHlgeSESuiD08ROWISqXS/Vsmk0Eiefyd\nR0mlKl5ecqjVD//dTz4AH7u0mczDUiOyF5YHEpGrYeAhKkd8fHzg5eUFpVIJpVKJq1dTUbduPQCm\nS1WuX7+GnJxHYUcqlcLfv4JD2k/GsdSI7InlgUTkSljSRlSOCIKgV8a2fv3jGdhMlaoU3i48vJNe\nzxA5B5YaERERGSaIoig6uhGmcJVd98QVlB1n797diIwcBADw8/NHUtIhhITU1T0vTU7RK1W5fv0a\nOnfuiAcPsgEA69dvRI8eL1mlLbwOrK/o5+cqeC0QwOuAHuO1QIBl10FQkL/R5/g1LVE507lzN9Sp\nEwIAePjwAQYO7I1z587oni+8hkpKyjkMGNBbF3Zq134S3bq96JB2k3mcbQ0cIiIiR+MYHqJyxsPD\nA/HxqzFgQC8olUrcuPEXunZ9DuHhndC//ysIDg7GrVu3kJi4FT//vF/3Oi8vL8THr4aHh4cDW09E\nRERkGQYeonLo2Wfb4Msvv8bo0a8jNzcHAHDo0EEcOnTQ4PY+Pj5Ys+ZLtG3bzp7NJAfh4qVERORO\nWNJGVE516dId//vfT3jppQijkxBIJBL06PEydu7ci27deti5heQIvlGxCOg/EX7z4hHQfyJ8o2Id\n3SQiIqIyYQ8PUTnWpElTfPnl17h5829s2PAVLlz4HQ8fPoCvrx+eeqoxhg4dhlq1nnB0M8lOjC1e\nqhzYgz09RESFJEszcFyWjraqaghTBzu6OVQCBh4iQs2atTBlSpSjm2F1/INkGVstXsoSOSJyJ1G+\nh/GN9yXkCRrIRQ8MVTRCTE5HRzeLTGDgISK3xD9IlrPF4qW+UbG6XiNR7gXF0AjkxEy1RnOJiOwu\nWZqh+9sCAHmCBhvkf2CgsgG/WHNiHMNDRG7H2B+kZGmGg1vm3Ky9eKmxEjlpcorV2uwOkqUZiPc+\ny+uTyAUcl6Xr/rYUUEjUOCFLd1CLyBzs4SEit2PqD5I538A5qgTLGUq/cmKmQjmwh1UWL7VViZw7\nYU8kkWtpq6oGueih9zfGWytFG1U1B7aKSsLAQ0Rupyx/kBxVguVMpV/qsFCrBBJblMi5E5bG2A7H\n75GthKmDMVTRSPe7662VYkheQ15nTo4lbUTkdgr+IMnFR4ukmvsHyVElWO5a+mXtEjl3w9IY24jy\nPYz+ATsxz+8E+gfsRJTvYUc3idxMTE5HJN7vheiHbbAt62X2yroAu/bwqFQqzJgxAzdv3kR+fj7G\njx+PLl262LMJRFROxOR0xEBlA5yQpaONmd/yOqoEy51Lv6xZIudurF0a4wwlkY7GXjOylzB1MK8p\nF2LXwPPdd98hICAAsbGxuH//Pvr27cvAQ+QmnPFmy9I/SI4qwXL30i9rlci5G2uWxjhTSaQjlXX8\nHhG5J7sGnh49euDFF18EAIiiCA8PD3senohsxF1utgpKsArei71KsBx1XFtzxhDsbErTE1kUF4x9\njAPKicgQQRRF0d4HffjwIcaPH49BgwYhIiLC5LZqtQZSKYMRkdM6dgboMhJQFCrJ8pEDSf8F2rZw\nXLvK4vhZ4NApILyVfd+Do45rC5PmA2sTH10X3l7AqP5A/CzTrzl+FjiUDISHuf77t6fYL4BpnxR/\nfNEUYOoo+7fHwSYhCWtxHgqo4QMpRqIZ4sFqEqLyzO6ztKWlpWHixIkYOnRoiWEHAO7dy7VDq8je\ngoL8kZn5wNHNICvw3n0Ufgr98SfIzcPD3UegqFfX5Gud9jqoV/fRfwBgz/Y56rhWJk0+h4AvEh+X\n6CmU0K7djqyXuxjtcQiauxTiv69xll5CV+mhkjZrjAADJZFZzZ6C2sWuI2v8PyEaz+Jl6ZN6vWaZ\ncK3zQE7894HsypLrICjI3+hzdg08t2/fxqhRozB79my0a9fOnocmciquciNlDnuNP3Gnc2ZLznCe\nLJ2EQZp8Dlib6FQlWa5UpumuJZFlwQHl7o3TjpOl7Bp4Vq1ahezsbKxYsQIrVqwAAKxZswZyudye\nzSByKFe6kTKHPW623O2c2Yqp82TPIGRpCJYdP6tfEgnHzlLnTGNizP3cOBselRdcrJdKw66BZ+bM\nmZg5c6Y9D0nkVJzpRsqabHmz5a7nzNpMnSevrbvtGhgtDcGqti0fjfNROMcsdc4yTbilQZ+z4ZG7\nMzXtOAD2+pBRXHiUyI5M3Ui5OnVYKBQThwEAvOMTrLZopjufM2sydp68tu0q9aKm0uSUUn+WOTFT\ncT/xMzyMnoSsbfEl3qhjVH+nWaC0oIeqMHsHMHddjJaoLIxNOx7te4yLzZJJdp+0gKg8c/f1VmxR\neubu56wsCpc7GTtPEIVS9VZY47O0qMchfhbuv9zF4l5CW5TqOcOYGGfpZSJyJoamHfcSJTgjy4RK\neDTpMBebJUMYeIjsyBlupGzFVqVnrn7ObDV2xlAgMXSelAN76H0uQMmB0VFlhJaWZNlybJejx8Qw\n6BMVZ2ix3mbqQJz0vKW3HRebpaIYeIjszNE3UrZiy2+kXfWc2eqG3FggydoWb/A8WRoYXaF3wdA5\nOHPlGPbe2Y1ng5+2yo2OI8fEuHrQJ7KVoov1AkB/2U4uNksmMfAQOYA7Di629TfSrnbObNlLYiqQ\nKCYOK7Z/SwOjK/QuFD0Hk5a1w9pRDaDw/Qty8aZbzNzkqkG/PON0yfZRdNrxor0+Q/Ia8vyTHgYe\nIrIKfiOtz5a9JKUJJJYERlf4LAufg2Ntgv4NOzIAj2r4N3peKFbD7wxrFFnK1YJ+ecbpkh2naK8P\nww4VxcBDRFbjrN9IO+JG15a9JPYIJM76WRYofA4Oh1fThZ0CuVIRv+7diLAX3gbAtZzItkxNl8yb\nb/so6PVJlmYg3vsse9lIDwMPEVmVs30j7agbXVuHEnsEEmf7LIsqOAet/j4F7/x8KDwfP+eTk4/n\nPzsIqX9nAKJbreXkij1V7s7YdMkcOG9f7GUjYxh4iMhtOXrRUluEkqI3u+X9hlcdForQsFC8/u18\nrHs5EApfGXxy8jFy7RW0//kmHr5wBhDh9JMwmIs9Vc7J0HTJHDhvX+xlI1MYeIjIbTnDbGPWDCW8\n2TVMmnwOK17bjdefroRD4cEIP5SBtr9kQvSS6UoInX0SBnM4OsCTcYamS+bAeftiLxuZwsBDRG7L\nFWYbMxdvdo2XcsmOn4WgUqPtL5lo+0um7nFV86dKPTW3M3KGAE/GceC8Y7GXjUxh4CEit+UKs42Z\ny91vdo/jH+zyvmp0oLGp3i2DwdZThpy5b+t+dvZJGMzhTgHeXRWdLpnsh71sZAoDDxG5NXe40QXc\n+2Y3yvcwNuAPKPzUBgcal9S7ZW6wdfUxT+4U4Ilsgb1sZAwDDxG5PVe40S1p5i13vdnVDTSG8YHG\n5vRuuUuwLUl5eZ9EpcVeNjKEgYeIyMHMnYzAHW92zRlobG7vVsH5kB0/o/ezu3GFAE9E5EwYeIiI\nHMjSyQjc7WbXnIHG5vZucRY7IiIyhIGHiMiB3H0ygpIUDDTe4PMHFFAbHWhcUu8WZ7EjIiJjGHiI\niCxg7VXu3XkyAnPF5HTEmz4tsPvhVZMDjU31bpX34GgLydIMHJelG505j4jIVTDwEJHLs3YIMaa0\nJVOm2mduuZa93qOjtEUN1FP4l/r1DI7WFeV7WDe9r6GZ84iIXAkDDxG5NHuN2yhtyZSp9hWEGOXA\nHibLtTg2pWTuOoudI+hmzhOMz5xHRORKGHiIyGXZc9xGaUqmTLXPa+tus0KMs45NccZyJ3ecxc4R\nzJk5z9054/VNRKXHwENELsue4zZKUzJlrH1e23bB+5udZoUYZxyb4szlTu42i50jmDNznjtz5uub\niEpH4ugGEFmLNDkF3vEJkCanOLopZCcFIaQwW43bKCiZKjieOSVTxtoHUTAaYszdh6PGphgrd0qW\nZjikPWR9BTPnyUUPADA6c5474vVN5J7Yw0NugWMcyid1WCiUXdvDa/chCGq1zcdtWFoyZWxciXJg\nD70yNcB4iHG2sSmuXu7k7pM/WEtMTkcMVDbACVm6yZnzzOFK5WGufn0TkWEMPOTynHWMA9meb1Qs\nvH46CkGthij1gLJLO5sHXUtLpoyFJEtCjDONTXHlcid+MWKZMHVwmW/yLSkPS5Zm4Dwuopm0UqmO\na40w68rXNxEZx8BDLs8ZxziQ7RULumoNvJKOIS85xaqfuzVuogyFpNL0FjnD9VxQ7lRwE+sq5U78\nYsT+LJntTReMoIE8wPJxM9YKs656fRORaQw85PK4/kb5ZHxCgN2lDihFw42tewScJcRYyprlTvbC\nL0bsz9zysLJOg23tMOuK1zcRmcbAQy7P2cY4kH0YCrqihwe8138LQaW2OKAUDTfKru3g9dMx9ggY\nYY1yJ3tyxi9G3H08kbnlYWUdN2OLMOtq1zcRmcZZ2sgt5MRMxf3Ez/AwehKytsWzLr8cKDprmugl\nAyBCUKkBPA4o5szaZ+gbYq9dh8yeSY2cX2lm2bMl36hYBPSfCL958QjoPxG+UbEOaYctGZrtrUt+\nLRyXpevNelYQjAqzZNyMs81kSOROkqUZiPc+6/IzFbKHh9yGq5YHkfmKfiNeeByM5EY6fNZu1dve\n3G95DX1DLGg0EAVAEB8/xpso1+Yskz+Up/FEhcvDTnlk4Cf5DeyUX9ObwKCs42bYy09kG+60JhUD\nDxG5BGPjaQqCrjQ5Bd7rEiFotLrXiB4eZgUUVduWED1lEPJVRZ4RIMo8IKhsP+U12YczfDFSUgmW\nu5W6FQSXj32TjY7TKQhG5yvdQ7Msy2dpc5YwS+Quyjq2ztkw8BCR099gmfeNuFjsdcUfMUwdFgpV\ni6fgeVK//E0QReQO7wttrWq8iSKrMTWeyF2nzjZnnE6YOhg9UR+Z6gelOoYzhFkid+Fua1JxDA9R\nOecMYwmkySnwjk8wOt7G1DfietsU6t0BAIlGY/aYm5y5b0OU6X8HpPWWQzmgBxQTh/FGiqzG2Hgi\nQDQY7M0Zh+bsyjpOh4jsy91+Zxl4iMoxYz0n9rzBMidwGRqULAKQnvrN5DaWjLlRh4VCMayv0wxq\nd0UlBVd6zNBEK+YEe1dlaAIDrm9D5Lzc7XeWJW1E5ZjD1yY5dsaswdvqsFDkdWkP+Q/7Ifz7mADA\nM+kYpP8uNGqNgcscB1B67lqKZUtFS7AsnTo7WZqB47J0tHWRtWK4vg2Ra3Gn31kGHqJyzOFrkxw+\nZXbg0rRqCuGH/Sa3tUZg4TgAy5WnWcdsyZLQbu7sSc4Wiri+DZFrcZffWQYeonLM4dO5hoeZHbjM\nDWfWCizOPpGDM3F4T6EbMSe0mzt7kjtNKUtEVBYMPER24Mw3zw4t42rbwuzAZc9wxvIsyzi8p9DN\nlBTazZk9yd2mlCUiKgsGHiIbc4WbZ0eWcVkSuOwRzhxVnlXWUOzIUO3wnsJypmD2pMKhp+jsSe40\npayzleURketh4CGyIY5tMI8lgcvW4cwR5VllDcXOEKo54YP9FMyeVNCD462VIvJGZYSv3aMLvOaE\nIlfAsjzrY4Ck8oiBh8iGOLbB9di7PKusodiZQjUnfLCfwrMnPb/0J3Ra+KVe4A2LmVosFJVlSllH\n3CSzLM/6GCCpvGLgIbIhjm0wTpqcApy/AGmzxmW+SbZmOZel5VllPXZZQzFDdfkVpg5G2+MZCFi4\nw2DgjQmzzpSyjrpJdqeyPGfAAEnlGQMPkQ1xbINhBSVYyFMioIwlWLYo5zK3PMsaxy5rKGaoLt9K\nCrxlnVLWkTfJzl6W52qlYQyQVJ5JHN0AIndiaKV5Qyuql2fGSrAKnzNH7KsodVgoFBOHmejZsc6x\nC0KxKPcCAItDcVlfT66tIPAWZs3Aa+om2daceaX3KN/D6B+wE/P8TqB/wE5E+R52dJNKVBAgC3Om\nAElkS+zhIbISU9/2O/vYhtKUZZW2lMuaJViOLOey5rHN7VEyds45YYA+Z54G3tps3Yvs6F4WZ1zp\n3VVLwwxNduEsAZLI1hh4iKzAmQaOW6o0ZVllKeWyZgmWI8u5rH3skkJxSefc2UO1vTjDjHX2ZsvA\n6ww3yc620rsrl4Y5Y4AksgeWtBFZgalv+51ZacqyylrKZc0SLEeWc9nz2LYs3XMn5fk8lVSCWRYx\nOR2ReL8Xoh+2wbasl4tNWJAszUC891kkSzOsfmxn5OqlYWHqYExUtGDYoXKFPTxEVuCqA8dLU5Zl\njVKugm+kK52/iKxmTxl8nbllSY4s57LXsTkTm3l4ngyzRomfsV6W8jjNsTm9Xq42oQGRu2PgIbIC\nV52NrTRBzVrhTh0WCvRsD3Xmg2LPWVqWVJpyLmuN87BHKZkl57w8jV8pylW/eLAlc36XSntz7qpj\nWazBVGmYu4RAhjZyJww8RFbiigPHSxPUbB3u7DEeytXGeZh7zq35vlwxOLnqFw+2Ys7vUlluzl15\nLIs1GOr1cpcQ6C6hjagAAw+RFbniwPHSBDVbhjtblyW56gQTJZ1za74vVwuEhbniFw+2UtLvUllv\nzrpQiy8AACAASURBVB09g5szcocQ6C6hjagwTlpARKUa8GyVQdLHzxZbt8jguiKeMkhupOttZ2jN\nI3O46gQTgOlzbq335Q4D/205gN+abD3Yv6Q1esq6xo4zr5PjKK4+oQHg2LWXiGyFPTxE5BC+UbHA\nhu/hp9DvRShWluThAUGjgc/arfD+5nsohkYAgFNMi20pW5aJleV9FW6Xqw/8d5VSPHuUDJVU4meN\nHhpHTHPszGNLnGEa77Jizx25I485c+bMcXQjTMnNzXd0E8gGfH29+NmWY9Lkc/CfufRxL4JaA4+L\nV6EKD4O2RjBUXTsgPzwMopcnZOf/gKDW6LaT/n4ZsrMXIeSrDL62JNoawRAybkN6IRWCWqO7CVQO\n7wdpcgq8EvcAEkmJ+7JkW+BRwPOfuQReSccg3/YjhIzbUHXtUOLrzGXqfVnSLtFbDo+/0nTnHHgU\nnHLfG2XW+ywta/w/wdbn2FqSpRmY6X9Md0OpFkRc9LiHcFUN1ND6WfVYBb9Lmvq1kfveKL3roYbW\nDxlCLi5I70ItiLqb8+HKJhYdo4bWD8+qq5W57cnSDHzrnQp1vsbovqJ8D2Om/zEked3ANvkVZAi5\n6KqqXabjWltXVW2E59dEfU0A3st9xuLz6WjWui7KivcJBFh2Hfj6ehl9jj08RGR35vQiqMNCITt+\nRhdsCghK/Z8NvbYkhsZ5WDJuxdIxLpaOryltL4Wl41cMtcsz6RjyuraH/KejLjXw35XGZtl7nIep\nsYUl9dAY6k2xRQ+LrscLGsgDDPd4lWZsiaN6g5xtsVRLcYFScjcMPERkdwbLr6RSaCr6l7id6CUD\ntCIElfrxa0so3TIUIArfBFpys1yaG2tLysTKOmGAJRNnGGuXplVT3J8QafOB/4U/F/RsX6Z9uVIp\nnrOVDFmyxg4Aq5fimRtkLA2KnGmsbEyFNmcuKyQyhIGHiOyuYGyBz4bvAYUSIgCJWo0KMxZDcf6y\n7gbf2BgEAGZPPWwqQBTccEv+Tjf7ZtmcG+uiAcvc8TX27qUw1S5bzzhY9HPB6P5A9Dul3p8rrcFj\nr3EeZbkpNRRCvva+CC1EqARR95g1Zu8yN8gYCooyUUBFjadZ7U/wvoBmqsp4Lb9xqdtKDJLkmjiG\nhxyCtbmuw9KxKuZSde0A35DqEHcdhqDVAjA8HsfQGART4xL02258rJD3svW68R7S838AAiCIou61\nRsetSCSPxocUGuMiAhD9fZHfp6vBcSTK4f3MGl/jlbgHXknH9B4T1Gpo6teG+tkWpTrPppR23E9Z\nGfpc8NsV5Hc0bxyWIY56L6Vl63EeZR3rkuiViiSvG3qPaQQRWkF/O7WgRX1NAJ5Vl753SgIB2+RX\noBYe//55iRI8qamAANFLN56n6NgSiIBWAA563Sz2/gy1XysASV43kCkonG7cj6uw5/gz3icQYL0x\nPEYDj1qtRkJCAnbv3g25XI4aNWronlu+fDnatGljWYtLiRe7e+L/yFyDrQeB+x4/DeHHI3qPGbrB\n19YIhvrZFno3w4YeK8pYgBDlMnh/s/PxDbdWC1EiAWRSCBqtyZtlbY1gSM5dgvTyNRTc+wkAJDfS\noalSCX6frjMYsJTD+5Uc0gyEKVtPGGBueLQmQ58LVGUPdo54L2VhaLB/sjQDiV6pkEAo9Q2ksZvS\nII0cP3v+Y9a+jYUQCaAXeqRaCSLyQtBcE2RWuwy9t6JBxkMUoIWI056ZxcJaV1VtBKm9keR1Q9cO\nQzfdhtqPf9tuqxv0srDG524rhdt2XJZeLEhaI/QawvsEAuwwacHs2bOh1WrRsGFDTJs2DYMGDcK4\nceMAAPv27cPkyZMtbDIROUppBsHbpbwqPMymZUjGypwgCsXL0jQa5I7oB22taiWOW9G0agrhh/36\nr1fkQb7rgMlyt6JlYkU/l5KmEbYVey+Ya+hzgY91PndD76W8TVVtrERsWoXDUAuiWfs2VnYHPB7D\nAxFQS7SYUeEozivumNxfSe+tYJD8D5WuYTXOQfVvmDFUNnffI79YkClaAlfQ/vXeF0rc1tGcuUSs\naNu6Kp+w6/gzjhUiazEaeM6fP4/vvvsOANC3b1+MGDECcrkcI0aMgCiKxl5GRE6mtIPgSzNWxWJt\nW9j0Bt9YgFAO7KEX5oBHQUg5wLwwZyxI5b30PDwPnzYrwBn7XCydac0VGfpcJCP72eS9lnUSCHux\n5ur2hsa6QITuxt/cfRubqaupKhDvVzhi9v7MfW9h6mCcxz3dGKECRQOKuZM+xOR0RDNVZV3QM7Wt\no1jzcy+8T2uEBENtS/L8G13znsBP8hs2X2doEpLwRUCKUwZBcj1GA48oisjNzYWPjw8CAwOxZs0a\nDBkyBJUrV4YgCMZeRkROpCy9NCUNArfWjaStb/CN7b8sQctYkMp/rS8U5y+XuN+SPhd797g4QtHP\npVLP9kDmA6seo7xOVV20d0aqlUAt0ZZq34Zm6sryUFnUa2LJewtHzRLDjCWTPryW3xjnFXecdiFQ\na09Rbs3eImNta6UJxoT7LWw6ZXWyNANrcd6qQZDKN6OB57XXXkO/fv0wZ84ctGvXDsHBwVizZg3e\neOMN3Llzx55tJKJSKstUvcVu6j1lUDdrAMCKN5LHz8J71xGo2raEYuIwo5uVtSfJUIAoa9Ay9npz\n9utKUyjbkq2DnSudZ2tPVV24d6aixhMzKhy12r4tbasl27dFDbPCjCXrxDjzmjLW/Nyt3Vtkqm22\nXmfouCwdCqj1HnO2UkRyLUYDz+DBg9GmTRt4ej6e7rFevXrYuXMntmzZYpfGEVHZlHWq3oKbd9/o\nTyE7exGeJ1Mg6z8RqtCGZb6R9I2KBTZ8Dz+F6R4ia/UklbQWT2kYe31J+/3/9u4+sKnq/h/4O03a\nNE0LRSwwENxEEH6CoFSoKKIgE0SsdCiI1KHOzQ3UTb64/piC4kQc0/md3fBhgjwo208KCKgoottA\noTOMh+IjiFNRKVWh0JK2SXN/f3QJSZqne3PuY96vv9o0ufckOUnP537O+RwzlVA2MzO9zmqUqg4f\nlIrMcshtayr3D07DGoezUg5Q5Ay6jboRqMj3XXS2SKvy6bGU+LrBBUdE0GOkqYhkPjbJ4Aty6gRP\ncSBjKCoq4HurkfCAITjFSk7A4PDsRWHZzMhBY042bABsLb5Tt7lyUV9VmVIAEfOYMR6f6v2SURI0\nqb3QPd33RQ9KXpNU1xOo9Z1gttfZ46gVlomIfu1FHltJW+PdP3walgsO3HCyr6nWaohYMyPivfE4\nalFWuLFdRqaqfnzaa3n0yI49UPQvPCvVRARbZuoXJIac/w1FRQVx/8aNR4ksLt2pWzGnBbX40HLh\nQGTXfKxoDUyqU41ETElSMv1Oi4Xuid4XUcGWyKBNyWuiRvUpuc/JbEUgRGUi4r32Igesctsa6/7R\n07C88JtqrUb465wjZWGQ73Q80HiRonVX6T5ftTIyemXHKjEa44+dacipiGQ+DHiIMkA6U7daCwsg\nORyw+U9NLQi4ctH4wF0AoGggmepUIxFTkuQGTWoudI9Vhjr6mKKCLZFBm5LXRI3qU0qfUyYUgQin\nxmuvllSmYRm1NHH069xiC+DdnCMozV6Pcm9/XbIRRl6vpIRRpyKS+SQNePx+P7Zt24Zjx45F3H7t\ntdeq1igiUo+cK+ShAabfDwltG2xGZ3OUFhHwTp2AvFUbAG/8DJGIfWnkBk1qLXRPZbAuKtgSHbQp\neU1ErycwU8U1vYl+7dWUbNG+kfeoifU6A4DPJukaYDJIIGovacAza9YsfPXVV+jdu3dEOWoGPETm\nI+cKebsBJoCAw4ETD/0KLdPS+/w7PDUInNEN+OMcNByqS5ghSndKktygSY2F7g7PXrhWvhRa8xRv\nsC4q2BIdtCV7TWIF0alWnwo+FuMuBnqfpdlzsjLRFd/UFD0NKw8OTPnvNCyjZ6pi7nf0X3ICTKNm\nsJSy2vMha0ga8Hz00UfYtGmTFm0hSotZdlPXi9wr5DEHmH4/7PXpLSwPD7rgciLrhgnwz0heIlvu\nexreH+QETSKyStHc8/4YUeABiD1YFxVsiQ7aEr0m8YLoVNYTRPSFRc/AfUP8ANxMFdf0pmd1LSXC\np2GNzT8LvRvbFh4bPVMVfJ1Xuj5Eiy1yn6NUA0wjZ7CUsNrzIetIGvD07t0bR44cQZcuXbRoD5Ei\nWu2mbuagSu4VctUyHWFBF7zqTEuK1x9SPYfIhe4Oz15k7/6g3e2SM7vdaykq2FIjaIv1miQLohOt\nJ5DbF9R4TlZmtrUcwWlYRfkFqEPbRRUtMlXpZiOCr/M893bszq6DzyalHGAaPYMll9WeD1lL0oCn\nqakJY8eORd++fSP25Fm+fLmqDSNKlVZz+7UKqtQiN4BRY4CZatAVHVjKCTRF9QdRC92zd+yBzedv\nd7vvvH4xjy8q2FKtOlnYRgapvJ/x1hMomaJmtoprejPiWg45n2W1M1WishHF/q54uf5a2eWb9c5g\niZ56ZuYCFGR9SQOen/3sZ1q0g0gx5+rXVJ/bb4UF00oCGNEDzFSCrojA0uFAa48usNd+m3KgabS1\nHjGfc052qMpdLKKCrfDjpJudjBXwN08aqzgLqDSDmGkV16xEyUUjOZkqOYNpNbIRcgNMORks0YGC\nGlPPzFyAgqwvK9kdhg4dCq/Xi7feegubN2/G8ePHMXToUC3aRpSUu2IRXCtfane76Ln9iQbRZtK4\ncDaOrfkTGubNRH1VZcolfb0zyoUNwL1TJ0DKdbbdkBcZdLULLP1+2D/7ql2g6fDUxD1HcCAdTs+1\nHtHPOeDKRdO0Uk0H7e6KRSgsm4H8+ZUoLJsBd8UiWY+PF/ADaP/cUswCJusLZC3x+lCiz3JQsb8r\nZngHJRzoV7i3oaxwI+bnV6OscCMq3NsSHjNRNkIrwQxWrmQHgLgZLLnPLZl4wZ7HUZvWcRM9H7XO\nSZSqpBmeZ555Bq+//jomTJgASZLw5JNP4sCBA7j99tu1aB9RXKF/oFGLwQM52cIHTlZaMC33Crno\ndUvhWaP8sRejMawyV6zA0hb1+GTZGiOu9dBzKpaI7GSigD+d55aoL5C1iMi8xstyKMnWGKWSXbIM\nlhqZKDWn0sV7PnpP3yNKGvCsX78eL774InJzcwEA119/PcrKyhjwkO5i/QMFgKbyUjQ+LHZtjREH\n0VpQa91SMOjKLyoA6k5VffOVDG63yWk0CUBrx4KEx2+eNLbtBxvQ/CNjTDvUayqWiIFmsoA/necW\nry9ozeOoxb9qd2HE1sM4/4whhugzVpLuRaNE06GUDKaNVMku0VQ4NQIFtYO9WM/HKAEmZa6kAY8k\nSaFgBwCcTiccjqQPI1JdvH+gzT8am9Zx42U0Mm3BtB7rlvzFA9E8dgScG99ql9kJsgEJS2NHB2mQ\nlG2OKpeWFfzknEtEdtLqAX+FextW2d+Dt58Nrp4+3Lx8KRat/p7hi5KYqWpkOn0oWZZD6WA6OhsB\nAJWuPYZaUK9GoKBHsGekAJMyU9LIpaSkBHfccQcmTpwIAFi3bh2GDRumesOIklFlv5QkGY1MWjCt\n1+L/E0sWAtf+HM4du2ALSJAQOa0t0WBdaZCW6sAx3v20rOAn91yiPidWDfg9jlqsyvkAXkdbL/O6\ns/HcTWfhxr++if6eGsM+TzNWjVTah5JlOdIZTAcfb9QF9WoFCnqULTdbqXSylqQBz29+8xusWrUK\n69atgyRJKCkpweTJkxWdLBAI4P7778dHH32EnJwc/Pa3v8WZZ56p6FhEgPj9UsxeiU2OZIN8vdYt\nuSsWwfnv99qCnagqbckG60qCtFQHjvHup2W/UXquVD4nqQR96QT8Rs1G7Mg+DK9DirjtpDsHb1/Y\nCeelEdyr+XzN/F2lpA+lkuVIZzBt9P1j1AoU9ChbbsRS6ZQZ4gY8dXV1KCoqwtdff43LLrsMl112\nWehvR44cQffu3WWf7I033kBLSwv+9re/Yffu3Vi4cCEWL16sqOFEQUL3SzFQOWM1pTLI12MaU6wq\nbVlHvsPxBXfDXn8iaVArN0hLdeCY6H5a9pt0zpXocyI6WxA92DdyNqLE1w0uvy0i6MlrbMHF7x6F\nr0JZcK/28zXjd1U6ZZVTzXIoHUybYUG96ECB++FQpokb8Nx777146qmnMG3aNNhsbal+SWr7h2Cz\n2bBlyxbZJ9u5cydGjBgBABg8eDD27dunpM2kAaNejVWTlSqxJSLn6rDW05jiDeTs9SfgnVGe8LHB\nPtt0xXDkvvGO0IxQovtp2W/UOJfobEH0YL9p9HDkbnnHsNmIYn9X3NDSH6ta34PXaUNeYwumL/8U\ng8++CI0K2qdF9sVs31UipoupOR3KaAvq1Q5GjDp9j0hNcQOep556CgDw5ptvCjtZQ0MD8vPzQ7/b\n7Xb4/f6ERRA6dcqDw2EX1gZKwcwHgSVrAG8z4HICt5QBlfcJP01RUeJKW5obNxy4tezUc8/LRdbN\nE9Fp3HC9WybWvg+BGIP3Tvs+bHsNoo0bHvt2QSL6wbiLgUXPtL3+QXm5yB97cVsVr3ii++z4kcCw\n85A1YgjySgYhL9ZjduwBvv0OyHEALWFV4WKdL0G7UDJIu34T3UcdDmRdNSL5uXbsAbZ6gBHFbe0N\nJ7c/JLJ9N7BqQ+h4tqZmuF7bCkRV3Yt3fL2+E57FONyGQdj6mQcjth5GyflXAT+P02+SEfl6ArHf\nOxN9V23Hl1iFj9GEU9PF/pr3MW7LG4QSxJ4pEq8fjEMBxuFsoe3bga+wD0cxHmfhFXwKL/zIgwM3\nZw3AuE4yz5Xoc5aimdiCJdgHL/xwwYFbMACVGK3oWLEoeT/0ZLhxAulCRD9IuoZn79692LlzJ268\n8UbcfvvteP/99/HAAw/gyiuvlH2y/Px8NDY2hn4PBAJJK74dPXpS9nlIOYdnLwqfXXPqyqG3GYEl\na1E/frTQq7FFRQWo07EEbVzzfgnH+NGRGQ0jtjMNjgH9URjj6nD9gH7wa/xc2/WD3mfBfUPUNLop\nV7ftzxKnbTH77Cv/RP2t18Mf53ERWQh7FmDPgq01EP98ydqlZb+Z90sUfHYYzk1bYfP7Ib38T3hv\nnRt3ylSy6VUi+4Nr0zvI90YO9uH3tys1Hjw+Xn0nlEnuNG64rt8JvVGA3nmXA1cCdYDi90/k65nw\nvTPJd9Um16fw5kcGvCfhx6aGg+jtbT+ISeV/g6gMSHSm44rmnhji7xrKINUh9ddTxDRGj6MWzxbW\nhDJNXvixJLAP4+vPFJbpkft+6Mmw4wTSlJx+kCgwykr24N/+9rc499xz8dprr8HpdGLNmjV4+umn\nU29pmAsuuAD//Oc/AQC7d+9G3759FR1HDw5PDVyVK1LaFdrMEk3dyRT+4oHwzig3xHQbNUTvcG+0\nEsONC2fj2Jo/oWHeTNRXVSYdNMjts+2mHLUGAIcdJ2+dlPB8ydqlVb9xePbC+cY7oQAi0Y71qexu\nL7I/BKdahQu4ctE8dkS74ztXb0Jh2Qzkz69EYdmMtiydBYh6PWO9d7sPbMefv90U2p3eDN9Vweli\n4dKZLlbh3oaywo2Yn1+NssKNqHBvU3ScWIUKtuQcUjRdLpXPWSoSrSWK9xwqXXtC/SEVot8PIrNI\nmuEJBAIYOnQoZs2ahSuvvBLdu3dHa2trsofFNGbMGLz99tuYMmUKJEnCggULFB1Ha0ZecCua2eaG\nkzJGLzEspxCF3D4bK0CyNfsQOKNbWgv/AW3WvslZsJ7qfUX1h3iFLhoXzobXUxM6PiChsGxmxAAR\nS9fCITiTrBcRr2f0ezfzjxdhyS194HV/jlzpS9OsuxBZVllkNTWRhQpEFZGQs5ZI6Toc7odDmSpp\nwONyubBkyRLs2LEDc+fOxbJly+B2uxWdLCsrC/Pnz1f0WL2YufynElbfYJBOscqeQv7igWi+Ynho\nileyPqtWUK/VhRE57ZdzX1H9Id5gP/z4rsoV7QaIOGnsKmNypft6hr9324cV/TfYyQZgvLLJyYgq\nOCAySBFZqEDUd0qqwUi6gR/3w6FMlHRK2+9//3ucPHkSTzzxBDp27IgjR47gscce06JthpCJU7zk\nTiki0pO7YlFoipfksKN59EUpbcQpckqfqCktqUxRkdN+vaYvJptqFWvqG/KYSQ4X/t5tG9EtFOwE\nJZrqZETF/q6Y4R2U1uBa5HSsYHARPF46mQ6Rn7OFjZdgzbGrMa9hGKrqx8fM2sid+haLiPeDyExs\nUrDWdAL79+9HfX09wu964YUXqtqwIL0XrDk8NSgsm9F+AWpVpWWuROqBixEJSL8fODx7I6ZGAal/\nPh1hU6zkfJZjTVtzVa5A/vzKdvdtmDczaTntILlTVOS0X+lzVVN4RizgykXWLRNRN++XejfLcBye\nGuw6tBNX3+yL2CvIFXCgqn685Qasyb4Twj8nwSAlnal9HketsEyHVp8zj6MWZYUb22WnrNYfOE4g\nQFzRgqRT2h544AG89dZb6NmzZ+g2m82G5cuXp3Rys+MUL1JbJu55JIpaG3HGE2/aWrpTWpRMUZHT\nfiNOX4ye+tZp3HBDVhnTm794IAYWD8QNLdvwgp3rLkRPxxK5oadWnzOuwyGSL2nA8/bbb2PTpk3I\nzc3Voj2GZPQF3mRemVQQQw1aFtmIOW1t5Uuh9XzpXBgxw07vajBiIKanROWWue7iFJFBilmxPxDJ\nkzTg6dmzJ1KY9WZ5/MdMolmpIIZeWSotM7Axs0ktPrjn/S/qX/5LWhdGjLbTO2kvlSmNHOhTOPYH\notQlDXg6duyI8ePH4/zzz0dOTk7o9ocffljVhhFZXTrTsWIFGHoFHXpnqbTKwPpKBkPKdsDmi9y0\nL3vvh3B4akIXRZScn1NUMpuSKY2iNt8kSoZ9jawgacAzYsQIjBgxQou2EGUUpdOxYgUYAHQJOoyS\npdIiA+svHgjf4P7IeTey8pqt2SeknDKnqKjDDGvk5E5pVLoHix44WDY3M/U1okSSBjwTJ07EoUOH\ncODAAVxyySX4+uuvIwoYEJEySqZjxVtHYgNga/Gduk2joEPUhntm0fjAXci+9ueh1xoQu2bIalNU\ngsFGa2EB7MdOZFz2MVVypjSK3HxTbRwsm5uZ+hpRMkkDnldeeQWLFy9GU1MT/vrXv2LKlCm45557\nUFpaqkX7iCxN7nSseOtIomkVdGhZNMAI/MUD4Z1WyqqNKYgINgDYAO2zjytf0uVCgFxypjSapcAF\nB8vmZ5a+RpSKpBuPPvPMM1i1ahXcbjc6d+6MtWvX4umnn9aibUQZIdkmjeFibdgYyMmGlBO5KaFW\nQYdeG1vK4fDUwFW5IuVNQJPdnxvzJtcuE/nf25VuyKqEe94fIzJxgDE2jY63uWwqG04CYjffVJOI\nzTFJX2bpa0SpSJrhycrKQn5+fuj3Ll26ICsraZxERCqINw0OgG5ZByOXbZc7pSnV+7NqY2KxMpFB\nWmQfHZ69yN79QbvbJWe2ptnH6PVDyaZ4pTKl0cgFLsKfb0kJKw+anZH7GpFcSQOePn36YOXKlfD7\n/fjggw/wwgsvoF+/flq0jYii5KxcB/tnX6Lhp5Nh69QhIsDQK+gw6qJwuQUVjFKAQU+i3kv7v98L\nTWOLFp59DD8fxg1XfL5o2Tv2tKumBwC+8/pp9l5GB89/v7cUL8wpFDLFy4gFLqKf78ipEzD1iYs4\nWDY5I/Y1IiWSBjxz587F4sWL4XQ6MWfOHJSUlODXv/61Fm0jojCFI6fC8cEnsAHI2bId/v694Z1R\nHvq70qxDOoNcIy8Kl1tQIdMKMERL9F7K6SMOz17kvvFORLATDH7Cs4/R58OtZcC8Xwp5LjHXluVk\no/GBu4QcP5lYwfO/GvajyXZBxP3SWQ8hssBFupXU4l0s+P2ksZhUcjUHyxpSoyqe1YqpUGZKGvDk\n5eVh1qxZmDVrlhbtIaIYclasDQU7QNvg0fHBJ8hZuQ4t065VfNx0Aha9MyLJBuFyCyqken+jZrTS\nkei9dK7eJKuPxAocbQCaxwzHyV/dAn/xwJjnw9K1cIwfLeQ11XJD2lhivQYj3zwEV8sF8J7azk7x\nFC+Rg1oRldQSXSwoLi7nYFkjrIpHFF/SxTjPPfcchg4div79+6N///7o168f+vfvr0XbiOi/cl/5\nR7vpQTYAua/+Q/Ex4w1yU11QnmiQozZ3xSIUls1A/vxKFJbNgLtiUbv7yC2okMr9UzmvGcV7L51V\nr8ruIzELa7hyQ8FOvPPhpNi+o2dxiVivwdCaE7jx666hReBKp3hVuLehrHAj5udXo6xwIyrc2xS3\nM14lteiCCsnEe8+tWq0xXfEKV6R7TBHvJZFVJc3wLF++HOvWrUP37t21aA8RxdA0/jLkbNnebppQ\n07iRio+Z7hQuISWpd+yB69W3ZWVL5GSW5BZUSHR/vTNaaor3XkKyye4jqWRXYp0PeeIHyHoVl4j3\nGizIK0XZsVrFU7xEl3oWVXZY74ya2oyWUYuFJaSJEksa8PTu3Runn366Fm0hojhapl0L/zP/LzSt\nTQLg7987rels6QYs6Q5y3BWLgFUbkO+VN51OUaAmpdQkAPEHyfGzIJtMP8Ut+r2UnNnwD+gD34A+\nivpIskAzVt/JunmiaV+/WOK9BumshxA9qJWz4WkyIqs1qrEORSmRAYqaexOJfC+JrChpwFNeXo4J\nEyZg0KBBsNtP1WN/+OGHVW0YEUU69o8XkLNyHXJf/Qeaxo1MK9gBxFyVVTrICWZLEJYtcT3/EgAk\nzZjICdSi1yg1XTEcrRec21YVDJAVqMQ8r90O14q2zS2NVrRBruB76Z73v8je/QFy3q1Bds3H8P/g\nDDg+PSS7j0QHjtFrn6L7Tqdxw4G6E2o+Rc2JzjCJHtSKLjss4vnOxBY8W1gTM8DQOhAyakYtFpaQ\nJkrMJklSwmufV155JSZMmIAePXpE3D5x4kRVGxZUZ7F/gNSmqKiA761BODw1mpezdlWuQP78x3Eb\nQwAAIABJREFUyph/k7tfTnAQHn1/h2cvCstmRgQowWphkr1t+aKtNSArUIk4b042bK2tsLUGQn8P\nuHJRX1Vp2kxFrNcs4MrFiYd+BXv9CcV9JJXiGPxOSE14xiE4qE13SpTHoXyanUgeRy1+1OlleHGq\npLgr4EBV/Xisdu7XfEF+pWsP5udXt7t9XsMwzPAOkn08j6MWZYUb2wWsVfXjhVbcM8J7KQK/EwiQ\n1w+Kigri/i1phicnJwczZ85MvWVEZCparHOIvrofcw3Hf6WyNiaVzFK8amEAIoIUOWtxws+b9cVh\n5C1ZHfF3s5exjjdtz15/IqIEuhxy1j5ZsQKeaGrsi2KUssM7sg9HBDtAWwYkPNgBxE4FS8ToGbV4\n5zDCe0lkNEkDnuHDh2PhwoW49NJLkZ2dHbr9wgsvVLVhRKQNtQeZ8a7ue6dOQN6qDYC3fdCTSuCQ\nLFBLFFQpOV/0eR2emoiBPGD+ylRCClFESXnN1cwHUfjsGkPu6WQ0Rh/UKp16VuLrBhcc7TI8AHRZ\nkK9GgMKNPIn0kTTgef/99wEA7733Xug2m82G5cuXq9cqItKE2huHJrq637hwNvJu+xFO/qUKruXr\nYPOdGuQkGmSnGqC1W4gPtCvtncr5Uj2+FSpTqfGcUgmiHJ69wJI1ht3TiVKXziL/Yn9X3IIBeFaq\niQgwJjX3icjwAOotyI8O1kQEKNHHNHrASmRFSQOeFStWaNEOItKYFmWWk17dLxmExt5nARJSGmTL\nDdAaF86Gb0Af5L7yd8DbjJyd77U91m4HIMHWGkhrUC+iMpXRBtsiq20BqQVR2Tv2tMv0aTU9UO2g\nP5OIWORfidEYf+zMdgGG0kyLnGxTvGAtXoAS69jRt3EzUCJjiBvw3HfffXjwwQdRXl4Om639dVFm\neAgw3mCNUpfuPjypSHWKVCqD7FgBmmvFOvgG9IlbsS5mlbYh54bOL2JQn84aKKMOtkWv60r2/vpK\nBgMuZ0TQo8X0QCvvraQHUVXIYgUYSjItcoINucFarGMDiLjtiuaeeMP5heZrj4iovbgBz+TJkwEA\nd9xxh2aNIXMx6mBNK2YP9tRYrxFNzhSpZIPsmEUIfH50uOd38O7bH7NKW/Rg1rllO+p/cWPoPLEW\nzTtXbwKQvDx2ujJtsJ3o/fUXDwRuKYP03zU8Wk0P1CLoV4OR9qkJp/ZeMHKmgskNYOQEa7GO/bzr\nQwQgwWeTQre95vws9HuyYxKRuuIGPAMGDAAAFBYW4uDBg8jNzUXv3r3Rs2dPzRpHxpVpg7VoVgj2\ntFqDImqKVLwiBDZ/a8y+J3cw665YBNeyNaEKbq5la+D9cZlq76tZB9uqqbwPx8aPjtlP1Lq4oEXQ\nL5qRp0gZaS8YudkmOcFarGM32wLt7uezSXBINvjDgh5uBkqkj7gBz7fffos777wT+/fvx5lnngmb\nzYZPP/0UgwcPxqOPPooOHTpo2U4ymEwerFkp2IsORoC2PXJEDyxFTJEKBWjL18HmjyxdG6vv+UoG\nQ8rJhq3FF7ot3mDW4dkL18qXIstVtwaQu/Il1d5XMw621Rarn6h5ccFshSdEb4SpBqNUIZObbZIT\nrMU6tlPKQisC8IetAHAFHBjdfAbeyP1C9wCQKNPFDXgefPBBDBkyBM8991yoHHVLSwueeOIJLFiw\nAAsXLtSskWQ8mTxY0zvYE321OzjINEPWKliEoMM9v4PNf2qwEavvOVdvAlpP3Uey2+MOZrN37IkI\njIKyWnyqva9mG2zrQYuLC6KLNKhJ1BoZtRmhCpmSbFOqwVqsY3+/tQAfO46G7mOXbKFNYT1N1tkM\nlMis4gY8H330ER5//PGI23JycnD33XejtLRU9YaRsWXyYE3PYE+toMRMWauWadfCu29/wr4Xej5h\nGRvJnoXmSWNjHjNWNggAAjnZKb2vSoNQMw229aDVxQUtNt9NRbJ+pPYaGatRkm1KNVgLP3bH1hzM\n6fAOWsOyO3bJhknNfWQdk4jUEzfgcTqdMW+32WzIyspSrUFkHpk6WFMa7KWbmVEzKNEta7VjD1yv\nvi08UIj5fBJka/zFA+GdVhqxhidgt6NpWmnSdqUbhOo52DZ64Y1MyiSn0o+MtEbGLNQMNoLHrnTt\naZd5a8kKGC7zRpTJ4gY8sUpRp/I3yixGuTKqtuiBodxgT0RmRs2gRI+BpbtiEbBqA/K94gMFJc8n\n+J46q/5bpe1HyQNJM2XGoonOFqoRPGVKJllOPzLKGhktGbUqXRAzb0TGFzfg2b9/P0aPHt3udkmS\nUFdXp2qjiIwk3sAw1WBP1KBYzaBE64Fl8DWBSoGC0ucjN4DXez2XUqn2yVSDGDXXf2VCJlluP8qk\nKVJGrkoXxMwbkfHFDXhee+01LdtBZEgighVRg2K1gxItB5bO1a8lfU3SzRho8XzMOuUqlT6ZahCj\nRZbLjJlkOVkJs/YjtZmhKl1QJmbeiMwkbsDTo0cPLdtBZEgighWRgxm1B/FaDCzdFYvgWvlSu9vD\nXxNRGQO1n4+aQaiSgC/VxyTrk3KCGLNmudQUnZWY9vnp+MOS43HfF9H9yOhrs1Jllqp0QZmUeSMy\nm7gBDxGJCVZED2bMeLU7KDSQjlENLfiamG1djBpBqJKAT85jkvVJOUEMsxORYmUlXjj9EG7d9CqG\n/e6ZuO+LqH5khvLyqeLaGCISheXWiBIIDgyl3LaqhUqDlcaFs3FszZ/QMG8m6qsqTTsASVesgTQA\nNJWXhl6TRINto/IXD4R3RrmgzE7sgM/hqRH6mER9MhjEhIsXxIj6jFhFrKzESXc2to7omvR9Sbcf\nKekHRhZcG5Mr2QGAa2OISDFmeIiSEHXl1cyZGVHiZQOafzQ26X0yJWOgZIqY0mll8fqk3KxkJhQW\nSFWsrEReYwtGbK0FoO50P7NML5Qz5Y5rY4hIBAY8RCnQI1ixyjz8cNEDaeTlomlK5EA6U0oRx6Mk\n4FMjSJQbxDCgbxNdsSuv0YeblxxAyb/aqpuqGbyb4WKBkil3StfGGL2cNRFpx37//fffr3cjEjl5\nskXvJpAK3G4n39sE3BWLUHDvH+Dcsh25Va/BVvsNfFdcrHezhPBdcTFaRhSj9exeyHnwDhy7/uqE\n9zl59y1ovmmiDi3VR6B7V9hqv4Hjg09g87eGAr5Er4Gcxzg8NXCueR3IykKge+JBYKB7V/iHDkp6\nv1QkO6/W3wlyXge5rvD1woiWHji7tRD3znsXP5+/DbZAIKX3Mh1K+o6WHJ69KLj38VNT7vytsH94\nEL4RxaH3QFQ/qHBvw70F27HF+QWqcg+g1nYSV/h6pX1c0g7HCQTI6wdutzPu32ySJEmiGqWGuroT\nejeBVFBUVMD3Ng6HZy8Ky2a2u0pbX1VpuSvo7AfxOTw1sqeIJXuMXgvaUzmvln1Bq9ch4jwOO5rG\nXoqGJQuFnyeakr6jBVflCuTPr2x3e8O8mfDOKAcgph94HLUoK9zYrthBVf14ZnpMhP8fCJDXD4qK\nCuL+jUULiAzGjIv2KTaHpwauyhWKFo0rWcCe6DF6LWg32kJ6rdrT7jz+Vji3bNfkeYssoiGSnGIY\n6UhUzpqIMhMDHiKD0WpQQOpyVyxCYdkM5M+vRGHZDLgrFgk5rtIgSutAOtjORJvM6kGr14EXLtrT\nqqJfsHBEOLOUs/Y4alHp2gOPo1bvphBZCosWEBlMvEX7QNuUECsVMbAqtfYSSmcqlpYL2iPame2A\nZM+CrTWg+nkTCRYBaS0s0OR1MEMBAT1oUdEvunCEWcpZh29YmyNlYZDvdDzQeJHh201kBgx4iAwo\nelDgXL0JhWUzLLGZYCZQozxwukGUVtXv2rXT50fAbgdysmFr8elSdS86UPT/4Aw4Pj2k6uuQ6dUG\nE9Giop/ZyllHb1jbYgvg3ZwjKM1ej3JvfyxsvETnFhKZGwMeIoMKDgrUyhZQGzXKf6txdV9EEKXF\n1fWY7WxtxcnpExE4o5vmC+ljfX7s//kSxxfcDXv9CVXbw/2J9KW0nLUeYq07AgCfTcKq3I8xqbmP\naZ4LkREx4CEyOLNsJmhGalXrUuPqvqggSu2r64k2l40+b3iwiXHD0zpvvMA13ufHXn8iVBlMTUbY\nn4j70RhfrA1rg4IFF/je6Y+fJfNiwEOyWXFDTCPjWgB1qJ05E311X7spael9vlNtZ3SwiVvLgHm/\nVNTmRIFrpn9+wteF5Ep2TPWew+lRBhRcd7TS9SFabIGIv5ml4ILV8bNkbtx4lGQRtSGmnI2k1Nwg\n0AyMvplgOvTcWM655nU4t2yPuM3m96P17F7wDx0k5BwiN+4E1N+QVdTnO1k7Y21AifcOoOWSYtmv\nVbLNLK38+UnG46jFvQXbQ1kDv03Ch/ajGOHrju6BfJ1bF1smbzZ5ha8XLm3pgY/tR1GXdRIBG0IF\nF25q/j96N09zRuoLZvwsWYWojUeZ4aGU6bGWRK+NEo2GawHEM+uVf7WmSIn+fCdqZ6xpZjipbJpm\nKlM+M/Xzk2g/Gk7HMaZif1e8XH8tPI5a0xRcyAT8LJkf9+GhlGm/j4exNizUm6jNBNPZDFP4cXbs\nEdIWJbTaE8QstPx8x9prCnnKgs1U960y6macajLzfjSZrtjfFTO8gziYNgh+lsyPGR5KmdZXxLlY\nXzxRGTMRx3FXLAJWbUC+V7/sndGu/Ou5Pk7Lz3esdT5ZN09Udc1QJjLrfjRERsPPkvnZJEmS9G5E\nInV1J/RuAoUJH+gGBxZKBqlFRQVJ31uHpya090xQwJWL+qrKtAYzmVp0weHZi8KymWm/niKOk84x\nrPr+GWH6pqjPd6ocnppQsNlp3PC0vu/Dj2WlfiGCmaZHpfK/gTKDEfuCmT5LViGnHxQVFcT9GzM8\nJIuWV8TVuHJrhEGlXkRlzEQcR+kxzP7+xQvWjLLXktYZL5HrkYxQ/tmo9NyPxqoXKIyMpZPVY6a9\nnSgSAx6STcuBhcgBmFEGlXoRNWVJxHGUHMPs71+iYM1I0zcZOJAoZr9AYUYsnUwUG4sWkOGJWmys\nddEFoxG1SF/EcYLHgCv1Y5j5/UtWgCPVhfdEZsGiM9rzOGpDwQ4ANNlasSr3Y3gctULPUenaI/SY\nRFpghofSZpYpC2YtQyySqIyZiOM0LpyNvNt+hIZNb6d0DC3fP9F9OlkGhwvvyWqMlLXMFGqXTmb2\niMyMAQ+lxUxTFjiobCNqypKQ45QMgrf3WSmfT4v3T40+nUqwFiuINMvFBKJovMCkvWDp5PCgR1Tp\n5HjZo0nNfbimhUyBAQ8pZsY1FUYrQ5zJHJ4aYN8HcAzon/L7oPb7p1afTjVYCw8izXQxgSgaLzBp\nT83Sydx4k8yOAQ8pZtYpC1yUrb/gYB5NzSiUOZhX8/1Ts0/LCdbMeDHBKJgVMw5eYNLewsZLMKm5\nj/DSyWpmj4i0wICHFOOUBVLCyIP5eH26tWMBXJUr0h5EpxqsmfVigt6UZsVYxlc9vMCkPTVKJ3Pj\nTTI7BjykGKcskBJGHszH6tOt3++BDnMe03RqGS8myKc0kOZCbKLUqJU9ItICAx5KC6cskFxGH8yH\n9+nWjvnoMOcPmmejeDFBPiWBNBdiE8nDjTfJrBjwUNo4ZYHkMMNgPtinXZUrdMtG8WKCPEoC6XgL\nsd+t3YURq+q4DoiIyCIY8BCR5oKD+U77PkT9gH6aDCqVLGY3RDZK0u5UZqYkkI61EDuvWcKYnz6N\n/K1fsjoeEZFFMOAhIl34iwcC44bDX3dC9XMpXcyuZzaKZanlk5sVi16Inee3YfqSD3HR1i8BGKug\nhlGwwAMRmREDHiKytHSrwukxtczIleyMTu4U2/CF2Jeu2oVRv3g74u9GKahhBEYu8MBAjIgSYcBD\nRJYmoiqc1uvUjFzJzoqCC7EdZ2TpP4XRoIxc4MHIgRgRGUOW3g0gIlJTcB1OOKMPYs3YZisITmEM\nvvZGLKihl3gFHqqzD+vUojbxAjGPo1bXdgV5HLWodO0xTHuIMhUzPERkaWaoChfNjG22ClbHiy1W\ngQdXwIFhvm46tipxIMbMExEFMeAhIssz4yDWjG22Cpbaby+6wIMr4MANTX11DyqMGogZeQogUSZi\nwENEGcGMg1gztpmsK7zAwzCDFAcwaiBm5MwTUSZiwENERACU7VVEmSVY4MFIjBiIGTXzRJSpGPAQ\nEZmciECF+/6QmRktEDNq5okoUzHgISIyMRGBCvf9ITVk+t44Rsw8EWUqBjxERCYlKlDhvj8kmtEq\nlOkVfBkt82QWHkct9uFDDHB04utHQjDgISIyKVGBSnDfH264SSIYrUKZ6OBL78yV3udXW+j9Qity\nC/UPlskauPEoEZFJidqglBtukkhG2qRU9MakFe5tKCvciPn51Sgr3IgK9zaRzTX8+dVm9I1kybwY\n8BARmZTIQKVx4WwcW/MnNMybifqqShYsIMWCFcrC6VWhTGTwpfdgXO/za8FIwTJZi6ZT2k6cOIHZ\ns2ejoaEBPp8PFRUVOP/887VsAhGRpYjcoJT7/pAIRqpQJrI8tN576+h9fi2wnDepRdOAZ+nSpSgp\nKcH06dNx8OBBzJo1C2vXrtWyCURElhMMUrJ37I74nUgvRqlQJjL40nswrvf5tWCkYJmsRdOAZ/r0\n6cjJyQEAtLa2wul0JnkEERElwz10yIiMUqFMVPCl92Bc7/NrJfh+7et0FAPqWaWNxLBJkiSpceAX\nX3wRy5Yti7htwYIFOO+881BXV4fbbrsNc+bMwdChQxMex+9vhcNhT3gfIqKMtX03MPpmwBtWrS0v\nF9iyFCgZpF+7iCxqB77CVnyJEeiBEnTPuPMTmZFqAU88H330Ee6++27cc889GDlyZNL719Wd0KBV\npLWiogK+t8R+IICrcgXy51e2u71h3kx4Z5Tr0CJl2BcIYD+gU9gXCJDXD4qKCuL+TdMpbQcOHMBd\nd92Fxx9/HP369dPy1ERElsQ9dMgquNkkEalF04Dn0UcfRUtLCx566CEAQH5+PhYvXqxlE4iILCVY\nmjq4hod76GQeK2xEyc0miUhNmk9pk4vpTGtiqpoA9gORHJ4aIaWp9cK+oEwoULC1IlcyZ6DgcdSi\nrHBju+pjVfXjTRvAAdYIRPXE7wQCTDqljYhITQ5PDbJ37IavxJyD/nRwDx1jUrNPxtuIclJzH1MN\nsK24v4wVAlEiK2HAQ0SWwNLMZDRq90mrBApW21/GKoEokZVk6d0AIqJ0OTx7QwNLALA1NSN31UY4\nPDU6t4wylRZ9MhgohDNjoBDcXyb4XMy+v0yiQJSI9MGAh4hML3vHnogqZQCQ5W1CdvVuTdvh8NTA\nVbmCgRZp0ietFCgsbLwEa45djd/hUlTVjzf19C+rBKJEVsIpbURkekYozcwpdRROqz4Z3JW+Ovsw\nhpl8cXyxvyvG4WzU+c29UD0YiAantZk5ECWyCmZ4iMj0gqWZpVwnAGhemplT6iialn2y2N8VM7yD\nVB1QM3spTzBjNa9hmOkzVkRWwAwPEVlC48LZaJ40VpfSzImmL6nRDitUo7PCc0hGzz4pErOXyhT7\nuzKrQ2QQDHiIyDL0Ks2s5ZS6WIPP5kljTRU8xHoOeHa+3s1ShdnLhcfLXjZPGmvq50VEmYVT2oiI\n0qTV9KWYg89la1F47c+RP78ShWUz4K5YJOhc6kxhijeAxo49Qs9DYhilIAgRUTqY4SEiEkCL6Usx\nB5+trUBrWwlcUVff1ZzCFG8Aja07gd5nCTkHKeNx1GJH9mGUhBU/MEJBkERitZmIKBoDHiIiQdSe\nvhRr8Bkt3bVDak9hijeAzhoxJO1jk3IV7m2hqmK5kh1TvedgYeMloexlsE9oXRBESZuJiKJxShsR\nkUm0mzqXkw3JHvk1nu7Vd7WnMMWb/oeSQUKOT/J5HLWhwAEAmmytWJX7MTyOWgBt2ctja/6Ehnkz\nUV9VaYiCBcnaTEQUjhkeIiITiZ4651y9SejVdy2mMMWa/pcn7Ogk147sw6HAIcib5Ud19uHQNDGj\nFV9Ipc1EREEMeIiITCZ88OkvHih07ZBWU5iMNoDOZCW+bsiV7BEBhCvgwDBfNx1blZgZ20xE+mHA\nQ0RkcqKDB6vsH0OpKfZ3xVTvOaEpYq6AAzc09TVMpiTWnk1atZlFEYisgQEPkSCZsJEiZQ5mYDKH\nw1OD/93xKSZf2Q/vnJePYQYa3CeqGLiw8RJMau6D6uzDqrSZRRGIrIMBD5EA3ImciMwo/LtrzO+c\nuMRA312pVAws9ndVJTiLVxRhgK8zjtlbmPEhMhlWaSNKU7x/yqI3bCQiEsno3116bnoaryjCPR22\nYX5+NcoKN6LCvU31dhCRGAx4iNLEnciJrM3jqEWla4/lSh4b/bsrWDEwnFabngaLIkSQAL9NAtCW\n8VmZ+yEq3Nss1y+IrIgBD5mew1MDV+UK3a5K6vlPmYjUVeHehrLCjZa8qm/07654ezaJXFsWL5gN\nFkUIBj3Zkg2wRT62JSuAJXnvW65fEFkR1/CQqRlh7YyRdyInIuXireOY1NzHEus3zPDdlUrFQKWV\n1JIVJQgvitCxNQdzOrzTbpobYL1+QWRFDHjItFJZ0KoVlvElsp5M2NzSDN9diSoGKq2klmowG14U\nYZ/324jHhLNavyCyGgY8ZFqJ5p/r8U+bZXyJrCVTNrc063dXOhk4JcFsMONT5dyPFa4P0WILhP5m\nxX5BZCVcw0OmZfT550RkbtHrOIy2IWemSxS0JBOrKEEqQUuxvysebrwE07z92C+ITIQZHjItM8w/\nJyJzU3tzS1IunQxcMJgNZojkBi3sF0TmYpMkSdK7EYnU1Z3QuwmkgqKiAmHvrcNTY+j55xSfyH5A\n5sa+QID8fhC+hicYtKSyhifI46hl0GJQ/E4gQF4/KCoqiPs3ZnjI9Mw6/5yIiNKTbqYlvCgBEVkX\nAx4ii3N4apC9Yzd8JcyAEZF1BL/bSkoGo7h4kN7NISIDY8BDZGFG2KeIiEg0frcRkRys0kZkUfH2\nKXJ4anRuGRGRcvxuIyK5GPAQWVSifYoScXhq4KpcwcEDERmS0u82IspcnNJGZFHBfYrCBwbJ9ini\nNBEiMjol321m4HHUYkf2YZSwYhyRcMzwEFlUcJ+i4OasyfYp4jQRIjIDud9tZlDh3oaywo2Yn1+N\nssKNqHBv07tJRJbCDA+RhTUunI3mSWNT2qco0TQRMw8kiMh65Hy3JWKEKpYeR21oLyEAaLK1YlXu\nx5jU3Cci08MMEJFyDHiILC7VfYqsOk2EiKwp3T3YjDKFd0f24VCwE+TN8qM6+3AosAnfYDVXsmOq\n9xxZG6wSZTpOaSMiANacJkJEFIuRpvCW+LohV7JH3OYKODDM1w1A/AyQx1GreVuJzIoZHiIKETVN\nhIjIyIw0hbfY3xVTveeEghpXwIEbmvqGsjupZICIKDEGPEQUId1pIkRERme0KbwLGy/BpOY+qM4+\njGFRa3SCGaDwoCc8A0REyXFKGxEREWUUI07hLfZ3xQzvoHZZm2AGKDjtLToDRETJMcNDREREGcdM\nU3gTZYCIKDkGPERERJSRtJzCm25Z6WJ/VwY6RAox4CEiIiJSEctKE+mLa3iIiIiIVMKy0kT6Y8BD\nREREpJJEZaWJSBsMeIiIiIhUkmxjUSJSHwMeIiIiIpWwrDSR/li0gIiIiEhFLCtNpC8GPERp8rX6\n8NnxL9Do9+IHHXqig7OD3k0iIiKDYVlpIv0w4CFS6HjLCTy9dxm+azqG+pbjAICys6/G6F6X6twy\nIiIiIgriGh4ihXytfnj9Tfh+h17oW9gbAGDTuU1EREREFIkZHiKFOrs64b6S/wEAbDj4Gj4+9onO\nLSIiIiKiaMzwEBERERGRZTHgISIiIiIiy2LAQ0RERERElsWAh4iIiIiILIsBDxERERERWRYDHiIi\nIiIisiyWpaaM9Pnnn+GFF5Zj374aNDQ0wO12o1+//4OpU6ehd+8+KR/nna/+hebWFnzV8DUA4NP6\nz/HWF9tQkJ2P4m6D1Wo+EREREaWIAQ9llPfe24eHH56PzZtfgyRJEX/bvPk1PPHEHzBy5OX4v//3\nPlxwQXHS423+7O844v0m9Pu/6/bi33V78f0OvRjwEBERERkAAx7KGFu2vI5bb70JJ0+eTHi/f/zj\nLWzf/jb+/OdncM01ExPe9/pzrkVLq6/d7XkOV1ptJSIiIiIxGPBQRvjXv6oxffqNaG5uDt12+eWj\n8aMfXY9u3b6Hb76pw9q1q/H665sgSRJaWlpw++23okOHjrjsslFxj9v/tL5aNJ+IiIiIFGLAQ5YX\nCARw5523h4KdXr3OxNKlz2PgwPMi7ldWdh327/8Y06dPxf79H8Pv9+OOO27Hzp37kJOTo0fTiYiI\niChNrNJGlvf3v7+Jgwc/AQC43flYvXp9u2AnqE+fvqiq2oDTTjsNAFBbexivvrpRs7YSERERkVgM\neMjynnvuL6Gfp037Mb7//R8kvH+3bt/Drbf+LPT70qV/SXBvshKHpwauyhVweGr0bgoREREJwoCH\nLG/r1n+Gfi4vn57SY2666ebQz9u3v42WlhbRzSKDcVcsQmHZDOTPr0Rh2Qy4Kxbp3SQiIiISgAEP\nWZrP50NjYwMAICsrC336pFZkoGvXbujUqRMAQJIk1NfXq9ZG0p/DsxeuFzbA1tS2zsvW1IzcVRuZ\n6SEiIrIABjxkaXa7HTabDUBb8QKfr30J6VgkSUJTU1Po95ycbFXaR8aQvWNPKNgJyvI2Ibt6t04t\nIiIiIlEY8JClZWVl4Xvf6x76/a23tqT0uOrq7fB6vQCA/PwCFBR0UKV9ZAy+ksGQcp0RtwVcufAN\n4+axREREZseAhyyvrOy60M9Lljyd0mOeffbU/crKrkNWFj8qVuYvHgjv1AmhoCfgykXTDVfDXzxQ\n55YRERFRujiKI8u76aabQ9Pa3nprC55/fnnC+69fvxYvvbQm9Pv06beq2j4yhsaFs3GU7RmfAAAQ\nWklEQVRszZ/QMG8m6qsq0bhwtt5NIiIiIgEY8JDlff/7P0Bp6cTQ77/61Uzcd18FvvzyUMT9amsP\n46GHHsBPf3qqQtvll4/GgAG8yp8p/MUD4Z1RzswOERGRhdgkSZL0bkQidXUn9G4CqaCoqEDT9/bE\nieMoLb0K+/btDd2WlZWF4cMvQdeu3VBXV4d33tkKv98f+nvv3mfj5Zc347TTOmvWzkyjdT8g42Jf\nIID9gE5hXyBAXj8oKiqI+zeHqAYRGVlBQQesWbMB06ffiHfe2QagrWrbtm3/jHn/Cy4YguXL/8Zg\nh4iIiMjkOKWNhDLyTvWFhZ1QVbUBzz67AiNGXBbzPsOGXYQnn3wWGza8ji5dumjbQCIiIiISjhke\nEsZdsSi0eaOU64R36gTDLfy22+2YMKEUEyaU4tNPD+L9999DQ8MJuN35OOecfilvTEpERERE5sCA\nh4SIt1N986Sxhl0A/oMfnIUf/OAsvZtBRERERCrilDYSgjvVExEREZERMeAhIbhTPREREREZkS4B\nzyeffIIhQ4agubk5+Z3JFLhTPREREREZkeZreBoaGvDII48gJydH61OTyhoXzkbzpLHIrt4N37DB\nDHaIiIiISHeabjwqSRLuvvtu/OxnP8MvfvELvPrqq3A6nQkf4/e3wuGwa9RCIiIiIiKyEtUyPC++\n+CKWLVsWcVv37t1x1VVXoV+/fikf5+jRk6KbRgbAHZQJYD+gU9gXCGA/oFPYFwiQ1w+Kigri/k3T\nDM+YMWPQrVs3AMDu3btx3nnn4fnnn0/4GHZ2a+IXGQHsB3QK+wIB7Ad0CvsCAeICHk3X8GzevDn0\n86hRo7BkyRItT09ERERERBmGZamJiIiIiMiyNK/SFvTmm2/qdWoiIiIiIsoQzPAQEREREZFl6Zbh\nISIiIiIi4/MdO4aWLz5HVkEBcnudCVuWuXImDHiIiIiIiKid49U7cGzLZjR/eQhSczNgsyGne3d0\nvPQydBo9Ru/mpYwBDxERERERteM9sB8Bnw8dLxkJx+md0Xr8BE68W41vql6Es0dP5MnYW1NPDHiI\niIiIiKidTmOuRJcpU2Gz20O3OToVou6FlTjx7g4GPEREREREZF45Xbq0uy27cxEAQAoEtG6OYuZa\ncURERERERLqQJAnHt28DbDbkndNf7+akjAEPEREREREl9d2G9Wj49064z78ABcNK9G5OyhjwEBER\nERFRQt+9/hq+ffVluPr0QbdbboPNZtO7SSljwENERERERHEd3fIGvn1pDXLPPBPf+/kdsOfm6t0k\nWRjwEBERERFRTMfe2oJv1q6Gs8cZ6D7jDjjy8/Vukmys0kZEREREZDGff/4ZVqx4Dhs3voTa2loE\nAgGcfvrpGD16DG6++Tb065e86ED9O2+jbs1q2PPy4B54Hk68+27obzldusI9YICaT0EYBjxERERE\nRBZx9Oh3mD37V9iwYR0kSYr42+efN2Lp0r9g6dK/YMSIy/D445Xo2bNX3GN5P/4QktcLv9eLb19a\nG/E396DzGfAQEREREZF2amsPo6zsauzf/3HS+27d+neMGzcaVVUbcM45sTcQ7TRmLNyDzo/5t+xO\nndJqq5YY8BARERERmZzX68WNN14fEeyMHHk5pk//CYYPvxh2ux27dv0by5cvxcaNL0GSJBw5Uosp\nU8rw+uv/QFFRUbtjOnv0gLNHDy2fhipYtICIiIiIyOReeGEF9u7dDQCw2+146qklePHFlzB+/AR0\n6nQaOnToiJEjL8ezzy7H2rUvw+1uKz7w5ZeH8MQTf9Cz6apjwENEREREZGKSJOG55/4S+r2i4l5M\nnDgp7v2HD78Ejz32x9Dvf/3rSni9XlXbqCcGPEREREREJlZdvQMfffQhAMDtzsctt9yW9DGlpWXo\n1ev7AIBjx45h/fq1iR9gYgx4iIiIiIhMbO/eXaGfx40bj4KCDkkfk5WVheuumxz6fc+eXQnubW4M\neIiIiIiITOz48eOhn884o2fKjwsvSX3ixAmhbTISBjxERERERCaWl+cO/Xz06NGUH/ftt9+GHSNP\naJuMhAEPEREREZGJnX322aGfX311I1paWlJ63IYNp9btnH12H+HtMgoGPEREREREJnb55Vega9du\nAIAjR2qxbl1V0sfs2LEdu3e3rdtxOp0oK7te1TbqiQEPEREREZGJZWdno7x8euj3OXPuSViE4PPP\nP8OMGacquZWWlqFz585qNlFXDHiIiIiIiEzu1lt/FsryHD9ejwkTrsT999+L//zn09B9amtr8dhj\nv8OYMZfiiy8+B9C2/ueuu2bp0mat2CRJkvRuRCJ1ddatGJHJiooK+N4S+wGFsC8QwH5Ap7AvKFNT\nsxdlZVejvv5YxO09epwBu92OQ4e+QCAQCN2ek5OD5ctXYdSoMVo3NSVy+kFRUUHcvzHDQ0RERERk\nAQMHnoeXX96MPn36Rtz+5ZeH8Pnnn0UEO127dsPq1esNG+yIxICHiIiIiMgi+vY9B//8ZzVWrvwb\nrrjih7DZbBF/v/DCYVi8+C/weGpQUjJcp1Zqy6F3A4iIiIiISBy73Y4f/nAcfvjDcWhoaMA339Qh\nEAigc+fO6NixUO/maY4BDxERERGRReXn5yM/P1/vZuiKU9qIiIiIiMiyGPAQEREREZFlMeAhIiIi\nIiLLYsBDRERERESWxYCHiIiIiIgsiwEPERERERFZFgMeIiIiIiKyLAY8RERERERkWQx4iIiIiIjI\nshjwEBERERGRZTHgISIiIiIiy2LAQ0RERERElsWAh4iIiIiILIsBDxERERERWRYDHiIiIiIisiwG\nPEREREREZFk2SZIkvRtBRERERESkBmZ4iIiIiIjIshjwEBERERGRZTHgISIiIiIiy2LAQ0RERERE\nlsWAh4iIiIiILIsBDxERERERWRYDHiIiIiIisiwGPKSbTz75BEOGDEFzc7PeTSGdnDhxArfffjum\nTZuGyZMnY9euXXo3iTQUCAQwd+5cTJ48GeXl5fjss8/0bhLpxOfzYfbs2Zg6dSomTZqELVu26N0k\n0tG3336LkSNH4pNPPtG7KaSjp556CpMnT0ZZWRlefPHFtI7lENQmIlkaGhrwyCOPICcnR++mkI6W\nLl2KkpISTJ8+HQcPHsSsWbOwdu1avZtFGnnjjTfQ0tKCv/3tb9i9ezcWLlyIxYsX690s0sH69etR\nWFiIRYsW4dixY7j22msxevRovZtFOvD5fJg7dy5yc3P1bgrpqLq6Grt27cKqVavg9XqxZMmStI7H\nDA9pTpIk3Hfffbj77rvhcrn0bg7paPr06ZgyZQoAoLW1FU6nU+cWkZZ27tyJESNGAAAGDx6Mffv2\n6dwi0svYsWNx1113AWj7H2G323VuEenlkUcewZQpU9ClSxe9m0I62rZtG/r27YsZM2bg9ttvx2WX\nXZbW8ZjhIVW9+OKLWLZsWcRt3bt3x1VXXYV+/frp1CrSQ6y+sGDBApx33nmoq6vD7NmzMWfOHJ1a\nR3poaGhAfn5+6He73Q6/3w+Hg/+aMo3b7QbQ1ifuvPNO/PKXv9S5RaSHNWvW4LTTTsOIESPw9NNP\n690c0tHRo0fx1Vdf4cknn8ShQ4fw85//HJs2bYLNZlN0PP5XIVVdd911uO666yJuGzNmDKqqqlBV\nVYW6ujrccssteP7553VqIWklVl8AgI8++gh333037rnnHgwdOlSHlpFe8vPz0djYGPo9EAgw2Mlg\nX3/9NWbMmIGpU6diwoQJejeHdFBVVQWbzYbt27fjgw8+wK9//WssXrwYRUVFejeNNFZYWIizzjoL\nOTk5OOuss+B0OvHdd9+hc+fOio7H/yykuc2bN4d+HjVqVNrzMsm8Dhw4gLvuuguPP/44M34Z6IIL\nLsBbb72Fq666Crt370bfvn31bhLp5JtvvsEtt9yCuXPn4qKLLtK7OaST8Iuf5eXluP/++xnsZKgh\nQ4Zg+fLluPnmm3HkyBF4vV4UFhYqPh4DHiLSzaOPPoqWlhY89NBDANqu+HPReuYYM2YM3n77bUyZ\nMgWSJGHBggV6N4l08uSTT+L48eP485//jD//+c8AgGeeeYYL14ky1OWXX453330XkyZNgiRJmDt3\nblpr+2ySJEkC20dERERERGQYrNJGRERERESWxYCHiIiIiIgsiwEPERERERFZFgMeIiIiIiKyLAY8\nRERERERkWQx4iIhIkUOHDmHAgAEoLS1FaWkprrzyStx555345ptvAAA1NTX4zW9+o3m7brvtNtTW\n1go5ls/nw49//GNUV1cLOR4REWmPZamJiEiRQ4cO4aabbsKbb74JAJAkCY899hh27tyJF154QefW\npe/gwYOYM2cO3n//fTzzzDMYNmyY3k0iIiIFuPEoEREJYbPZcMcdd+Diiy/Ghx9+iPr6elRWVmLF\nihUoLy9H//79sX37djQ1NeHee+/FihUrcODAAUyfPh3Tp09HY2Mj5s+fj/3796O1tRW33XYbrr76\naqxZswZbt25FfX09vvjiC1x88cW4//77cfjwYfzP//wPTp48iaysLNx7770YPHgwRo0aheXLl6N7\n9+5YsGABtm/fDpvNhmuuuQY//elPUV1djaeeegq5ubn45JNPcM455+D3v/89cnJyIp7P6tWr8ZOf\n/ATLli3T6RUlIiIRGPAQEZEwOTk5OPPMM3Hw4EF07ty53d83bNiAyspK/Pa3v8X69evx3Xff4dpr\nr8X06dOxePFinHvuuXjkkUfQ0NCAKVOmYNCgQQCAXbt2YePGjbDb7Rg7dixuuOEGbN68GZdddhl+\n8pOfoLq6Gjt37sTgwYND51q1ahW+/vprrF+/Hi0tLSgvL0ffvn3hcrmwa9cuvPrqq+jSpQuuv/56\nbNu2DaNGjYpo6z333AMADHiIiEyOAQ8REQlls9mQm5vb7vZLL70UANC9e3cMGjQILpcLPXr0wPHj\nxwEA77zzDpqamlBVVQUAOHnyJPbv3w8AOP/885Gfnw8A6NmzJ+rr63HRRRfhjjvuwAcffICRI0di\n2rRpEeerrq7GxIkTYbfb4XK5MGHCBGzfvh2jRo1Cnz590K1bNwBA7969UV9fr86LQUREumPAQ0RE\nwrS0tODTTz/F2Wefja+//jrib9nZ2aGfHY72/34CgQAWLVqEc889FwDwzTffoGPHjtiwYQOcTmfo\nfjabDZIkYciQIXj55Zfx97//Ha+88grWrl2LpUuXRhwvnCRJaG1tBYCYxyMiImtilTYiIhIiEAjg\niSeewKBBg9CrVy/Zjy8pKcGqVasAAEeOHME111zTLmgK97vf/Q4vvfQSJk6ciLlz5+L9999vd7x1\n69ahtbUVXq8XGzZsYOEBIqIMxAwPEREpduTIEZSWlgJoC3j69++PRx99VNGxZs6cifvvvx9XX301\nWltbMXv2bPTq1Qsejyfm/cvLyzFr1iysXbsWdrsd8+bNi/j75MmT8Z///AelpaXw+Xy45pprMGbM\nGJaYJiLKMCxLTURERERElsUpbUREREREZFkMeIiIiIiIyLIY8BARERERkWUx4CEiIiIiIstiwENE\nRERERJbFgIeIiIiIiCyLAQ8REREREVnW/wdxorZRUavoTwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the clustering results based on 'Channel' data\n", + "vs.channel_results(reduced_data, outliers, pca_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 12\n", + "*How well does the clustering algorithm and number of clusters you've chosen compare to this underlying distribution of Hotel/Restaurant/Cafe customers to Retailer customers? Are there customer segments that would be classified as purely 'Retailers' or 'Hotels/Restaurants/Cafes' by this distribution? Would you consider these classifications as consistent with your previous definition of the customer segments?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** It seems my cluster 0, or \"small place\" is gone. However, my two other clusters \"supermarket\" and \"market\" are still there. Just that market was Hotels in the end - i guess they also use less Det_Paper, Milk and Grocery than a retailer (to be honest i dont know). There are segments of purely retailers below -2.5 on dim1, and purely horeca above 2 on dim1. These classifications are consistent with my previous definition of segments, although there is a larger overlap region as expected." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/deep_learning_examples/__init__.py b/deep_learning_examples/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/deep_learning_examples/cross_entropy.py b/deep_learning_examples/cross_entropy.py new file mode 100644 index 0000000..f8d5f5d --- /dev/null +++ b/deep_learning_examples/cross_entropy.py @@ -0,0 +1,26 @@ +import numpy as np + + +# Write a function that takes as input two lists Y, P, +# Y is a list of labels, P is the list of probabilities +# and returns the float corresponding to their cross-entropy. +def cross_entropy(Y, P): + # get prediction for each point using model + + # get probability for each point + + # get -ln(prob) for each point, and sum them + val = 0 + for i in range(len(P)): + val += Y[i] * np.log(P[i]) + (1-Y[i]) * np.log(1-P[i]) + + cross_entropy = -val + + return cross_entropy + + +# Trying for Y=[1,0,1,1] and P=[0.4,0.6,0.1,0.5]. + +Y = [1,0,1,1] +P = [0.4,0.6,0.1,0.5] +print(cross_entropy(Y, P)) \ No newline at end of file diff --git a/deep_learning_examples/example_keras_neural_networks/XOR_neural_network.py b/deep_learning_examples/example_keras_neural_networks/XOR_neural_network.py new file mode 100644 index 0000000..5cc8a4b --- /dev/null +++ b/deep_learning_examples/example_keras_neural_networks/XOR_neural_network.py @@ -0,0 +1,50 @@ +import numpy as np +from keras.utils import np_utils +import tensorflow as tf +#tf.python.control_flow_ops = tf + +# Set random seed +np.random.seed(42) + +# Our data +X = np.array([[0,0],[0,1],[1,0],[1,1]]).astype('float32') +y = np.array([[0],[1],[1],[0]]).astype('float32') + +# Initial Setup for Keras +from keras.models import Sequential +from keras.layers.core import Dense, Activation, Flatten + +# One-hot encoding the output +y = np_utils.to_categorical(y) + +# Building the model +xor = Sequential() + +# each of the .add() functions is listed in the model architecture + +# input and first hidden layer, specify input values, output nodes, and activation function +xor.add(Dense(8, input_shape=(2,))) # can also put function here +xor.add(Activation("relu")) + +# output layer with 2 output nodes +xor.add(Dense(2)) +xor.add(Activation("sigmoid")) # add sigmoid to output + + + +xor.compile(loss="categorical_crossentropy", optimizer="adam", metrics = ['accuracy']) + +# Uncomment this line to print the model architecture +xor.summary() + +# Fitting the model +# Hint: This next line is where you can change the number of epochs, it's set to 10 now. +history = xor.fit(X, y, nb_epoch=100, verbose=0) + +# Scoring the model +score = xor.evaluate(X, y) +print("\nAccuracy: ", score[-1]) + +# Checking the predictions +print("\nPredictions:") +print(xor.predict_proba(X)) \ No newline at end of file diff --git a/deep_learning_examples/example_keras_neural_networks/__init__.py b/deep_learning_examples/example_keras_neural_networks/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/deep_learning_examples/example_keras_neural_networks/basic_examples.py b/deep_learning_examples/example_keras_neural_networks/basic_examples.py new file mode 100644 index 0000000..2f2874f --- /dev/null +++ b/deep_learning_examples/example_keras_neural_networks/basic_examples.py @@ -0,0 +1,45 @@ + + + + + +def buildNNInLayers(): + from keras.models import Sequential + from keras.layers.core import Dense, Activation, Flatten + + #Create the Sequential model + model = Sequential() + + #1st Layer - Add an input layer of 32 nodes. So there are 32 inputs. + model.add(Dense, input_dim=32) + + #2nd Layer - Add a fully connected layer of 128 nodes + model.add(Dense(128)) # convert 32 inputs to 128 nodes. + + #3rd Layer - Add a softmax activation layer + model.add(Activation('softmax')) + + #4th Layer - Add a fully connected layer + model.add(Dense(10)) # there are 10 final output nodes + + #5th Layer - Add a Sigmoid activation layer + model.add(Activation('sigmoid')) + + + # compile the model, using as loss (or error) function cross entropy and performance metric accuracy + model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=['accuracy']) + + + # see the model architecture + model.summary() + + # fit model to data + model.fit(X, y, nb_epoch=1000, verbose=0) + + + # evaluate model performance using accuracy score as defined on compilation + model.evaluate() + + + +buildNNInLayers() \ No newline at end of file diff --git a/deep_learning_examples/logistic_regression_algo/__init__.py b/deep_learning_examples/logistic_regression_algo/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/deep_learning_examples/logistic_regression_algo/data.csv b/deep_learning_examples/logistic_regression_algo/data.csv new file mode 100644 index 0000000..c4324e9 --- /dev/null +++ b/deep_learning_examples/logistic_regression_algo/data.csv @@ -0,0 +1,100 @@ +0.78051,-0.063669,1 +0.28774,0.29139,1 +0.40714,0.17878,1 +0.2923,0.4217,1 +0.50922,0.35256,1 +0.27785,0.10802,1 +0.27527,0.33223,1 +0.43999,0.31245,1 +0.33557,0.42984,1 +0.23448,0.24986,1 +0.0084492,0.13658,1 +0.12419,0.33595,1 +0.25644,0.42624,1 +0.4591,0.40426,1 +0.44547,0.45117,1 +0.42218,0.20118,1 +0.49563,0.21445,1 +0.30848,0.24306,1 +0.39707,0.44438,1 +0.32945,0.39217,1 +0.40739,0.40271,1 +0.3106,0.50702,1 +0.49638,0.45384,1 +0.10073,0.32053,1 +0.69907,0.37307,1 +0.29767,0.69648,1 +0.15099,0.57341,1 +0.16427,0.27759,1 +0.33259,0.055964,1 +0.53741,0.28637,1 +0.19503,0.36879,1 +0.40278,0.035148,1 +0.21296,0.55169,1 +0.48447,0.56991,1 +0.25476,0.34596,1 +0.21726,0.28641,1 +0.67078,0.46538,1 +0.3815,0.4622,1 +0.53838,0.32774,1 +0.4849,0.26071,1 +0.37095,0.38809,1 +0.54527,0.63911,1 +0.32149,0.12007,1 +0.42216,0.61666,1 +0.10194,0.060408,1 +0.15254,0.2168,1 +0.45558,0.43769,1 +0.28488,0.52142,1 +0.27633,0.21264,1 +0.39748,0.31902,1 +0.5533,1,0 +0.44274,0.59205,0 +0.85176,0.6612,0 +0.60436,0.86605,0 +0.68243,0.48301,0 +1,0.76815,0 +0.72989,0.8107,0 +0.67377,0.77975,0 +0.78761,0.58177,0 +0.71442,0.7668,0 +0.49379,0.54226,0 +0.78974,0.74233,0 +0.67905,0.60921,0 +0.6642,0.72519,0 +0.79396,0.56789,0 +0.70758,0.76022,0 +0.59421,0.61857,0 +0.49364,0.56224,0 +0.77707,0.35025,0 +0.79785,0.76921,0 +0.70876,0.96764,0 +0.69176,0.60865,0 +0.66408,0.92075,0 +0.65973,0.66666,0 +0.64574,0.56845,0 +0.89639,0.7085,0 +0.85476,0.63167,0 +0.62091,0.80424,0 +0.79057,0.56108,0 +0.58935,0.71582,0 +0.56846,0.7406,0 +0.65912,0.71548,0 +0.70938,0.74041,0 +0.59154,0.62927,0 +0.45829,0.4641,0 +0.79982,0.74847,0 +0.60974,0.54757,0 +0.68127,0.86985,0 +0.76694,0.64736,0 +0.69048,0.83058,0 +0.68122,0.96541,0 +0.73229,0.64245,0 +0.76145,0.60138,0 +0.58985,0.86955,0 +0.73145,0.74516,0 +0.77029,0.7014,0 +0.73156,0.71782,0 +0.44556,0.57991,0 +0.85275,0.85987,0 +0.51912,0.62359,0 diff --git a/deep_learning_examples/logistic_regression_algo/logistic_regression_algo.py b/deep_learning_examples/logistic_regression_algo/logistic_regression_algo.py new file mode 100644 index 0000000..40b2789 --- /dev/null +++ b/deep_learning_examples/logistic_regression_algo/logistic_regression_algo.py @@ -0,0 +1,105 @@ +import numpy as np +# Setting the random seed, feel free to change it and see different solutions. +np.random.seed(42) + +def sigmoid(x): + return 1/(1+np.exp(-x)) +def sigmoid_prime(x): + return sigmoid(x)*(1-sigmoid(x)) + +#prediction with sigmoid +def prediction(X, W, b): + return sigmoid(np.matmul(X,W)+b) + +# cross entropy function +def error_vector(y, y_hat): + return [-y[i]*np.log(y_hat[i]) - (1-y[i])*np.log(1-y_hat[i]) for i in range(len(y))] + +# error function +def error(y, y_hat): + ev = error_vector(y, y_hat) + return sum(ev)/len(ev) + +# TODO: Fill in the code below to calculate the gradient of the error function. +# The result should be a list of three lists: +# The first list should contain the gradient (partial derivatives) with respect to w1 +# The second list should contain the gradient (partial derivatives) with respect to w2 +# The third list should contain the gradient (partial derivatives) with respect to b +def dErrors(X, y, y_hat): + + # this does all the partial derivs at the same time + # so each points partial deriv wrt x1, wrt x2 and wrt b + DErrorsDx1 = (y - y_hat[:,0]) * (X[:,0]) + DErrorsDx2 = (y-y_hat[:,0]) * X[:,1] + DErrorsDb = (y-y_hat[:,0]) + + """ + seems to be some issue with the quiz - above gives an error + DErrorsDx1 = [X[i][0] * (y[i] - y_hat[i]) for i in range(len(y))] + DErrorsDx2 = [X[i][1] * (y[i] - y_hat[i]) for i in range(len(y))] + DErrorsDb = [y[i] - y_hat[i] for i in range(len(y))] + """ + + return DErrorsDx1, DErrorsDx2, DErrorsDb + +# TODO: Fill in the code below to implement the gradient descent step. +# The function should receive as inputs the data X, the labels y, +# the weights W (as an array), and the bias b. +# It should calculate the prediction, the gradients, and use them to +# update the weights and bias W, b. Then return W and b. +# The error e will be calculated and returned for you, for plotting purposes. +def gradientDescentStep(X, y, W, b, learn_rate = 0.01): + + # this does the prediction for all points at the same time + # TODO: Calculate the prediction + y_hat = prediction(X, W, b) + + # gets partial derivs for each point + # TODO: Calculate the gradient + grad = dErrors(X, y, y_hat) + + # update weights for equation, must be sequentially after using each points + # partial derivs + # TODO: Update the weights + # actually, could also update weights with sum * learning_rate + + # see: weights are changed even for correctly classified points. + for iPoint in range(len(y)): + W[0] += learn_rate * grad[0][iPoint] + W[1] += learn_rate * grad[1][iPoint] + b += learn_rate * grad[2][iPoint] + + # This calculates the error + e = error(y, y_hat) + return W, b, e + +# This function runs the perceptron algorithm repeatedly on the dataset, +# and returns a few of the boundary lines obtained in the iterations, +# for plotting purposes. +# Feel free to play with the learning rate and the num_epochs, +# and see your results plotted below. +def trainLR(X, y, learn_rate = 0.01, num_epochs = 100): + x_min, x_max = min(X.T[0]), max(X.T[0]) + y_min, y_max = min(X.T[1]), max(X.T[1]) + # Initialize the weights randomly + W = np.array(np.random.rand(2,1))*2 -1 + b = np.random.rand(1)[0]*2 - 1 + # These are the solution lines that get plotted below. + boundary_lines = [] + errors = [] + for i in range(num_epochs): + # In each epoch, we apply the gradient descent step. + W, b, error = gradientDescentStep(X, y, W, b, learn_rate) + boundary_lines.append((-W[0]/W[1], -b/W[1])) + errors.append(error) + return boundary_lines, errors + + + +import numpy as np +raw_data = open("data.csv", 'rt') +data = np.loadtxt(raw_data, delimiter=",") +X = data[:,[0,1]] +y = data[:,2] + +print(trainLR(X, y)[1]) \ No newline at end of file diff --git a/deep_learning_examples/perceptron_algorithm/__init__.py b/deep_learning_examples/perceptron_algorithm/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/deep_learning_examples/perceptron_algorithm/data.csv b/deep_learning_examples/perceptron_algorithm/data.csv new file mode 100644 index 0000000..c4324e9 --- /dev/null +++ b/deep_learning_examples/perceptron_algorithm/data.csv @@ -0,0 +1,100 @@ +0.78051,-0.063669,1 +0.28774,0.29139,1 +0.40714,0.17878,1 +0.2923,0.4217,1 +0.50922,0.35256,1 +0.27785,0.10802,1 +0.27527,0.33223,1 +0.43999,0.31245,1 +0.33557,0.42984,1 +0.23448,0.24986,1 +0.0084492,0.13658,1 +0.12419,0.33595,1 +0.25644,0.42624,1 +0.4591,0.40426,1 +0.44547,0.45117,1 +0.42218,0.20118,1 +0.49563,0.21445,1 +0.30848,0.24306,1 +0.39707,0.44438,1 +0.32945,0.39217,1 +0.40739,0.40271,1 +0.3106,0.50702,1 +0.49638,0.45384,1 +0.10073,0.32053,1 +0.69907,0.37307,1 +0.29767,0.69648,1 +0.15099,0.57341,1 +0.16427,0.27759,1 +0.33259,0.055964,1 +0.53741,0.28637,1 +0.19503,0.36879,1 +0.40278,0.035148,1 +0.21296,0.55169,1 +0.48447,0.56991,1 +0.25476,0.34596,1 +0.21726,0.28641,1 +0.67078,0.46538,1 +0.3815,0.4622,1 +0.53838,0.32774,1 +0.4849,0.26071,1 +0.37095,0.38809,1 +0.54527,0.63911,1 +0.32149,0.12007,1 +0.42216,0.61666,1 +0.10194,0.060408,1 +0.15254,0.2168,1 +0.45558,0.43769,1 +0.28488,0.52142,1 +0.27633,0.21264,1 +0.39748,0.31902,1 +0.5533,1,0 +0.44274,0.59205,0 +0.85176,0.6612,0 +0.60436,0.86605,0 +0.68243,0.48301,0 +1,0.76815,0 +0.72989,0.8107,0 +0.67377,0.77975,0 +0.78761,0.58177,0 +0.71442,0.7668,0 +0.49379,0.54226,0 +0.78974,0.74233,0 +0.67905,0.60921,0 +0.6642,0.72519,0 +0.79396,0.56789,0 +0.70758,0.76022,0 +0.59421,0.61857,0 +0.49364,0.56224,0 +0.77707,0.35025,0 +0.79785,0.76921,0 +0.70876,0.96764,0 +0.69176,0.60865,0 +0.66408,0.92075,0 +0.65973,0.66666,0 +0.64574,0.56845,0 +0.89639,0.7085,0 +0.85476,0.63167,0 +0.62091,0.80424,0 +0.79057,0.56108,0 +0.58935,0.71582,0 +0.56846,0.7406,0 +0.65912,0.71548,0 +0.70938,0.74041,0 +0.59154,0.62927,0 +0.45829,0.4641,0 +0.79982,0.74847,0 +0.60974,0.54757,0 +0.68127,0.86985,0 +0.76694,0.64736,0 +0.69048,0.83058,0 +0.68122,0.96541,0 +0.73229,0.64245,0 +0.76145,0.60138,0 +0.58985,0.86955,0 +0.73145,0.74516,0 +0.77029,0.7014,0 +0.73156,0.71782,0 +0.44556,0.57991,0 +0.85275,0.85987,0 +0.51912,0.62359,0 diff --git a/deep_learning_examples/perceptron_algorithm/perceptron_classification.py b/deep_learning_examples/perceptron_algorithm/perceptron_classification.py new file mode 100644 index 0000000..7ae41a7 --- /dev/null +++ b/deep_learning_examples/perceptron_algorithm/perceptron_classification.py @@ -0,0 +1,70 @@ +import numpy as np + +# Setting the random seed, feel free to change it and see different solutions. +np.random.seed(42) + + +def stepFunction(t): + if t >= 0: + return 1 + return 0 + +# this does one prediction for one point only +def prediction(X, W, b): + return stepFunction((np.matmul(X, W) + b)[0]) + + +# TODO: Fill in the code below to implement the perceptron trick. +# The function should receive as inputs the data X, the labels y, +# the weights W (as an array), and the bias b, +# update the weights and bias W, b, according to the perceptron algorithm, +# and return W and b. +def perceptronStep(X, y, W, b, learn_rate=0.01): + # Fill in code + + for iPoint, point in enumerate(X): + predicted = prediction(X[iPoint], W, b) + + # Learning in perceptron is only applied to misclassified points (compared to gradient descent) + if predicted != y[iPoint]: + if predicted == 1: # predicted 1, real 0, subtract + W[0] -= learn_rate * X[iPoint][0] + W[1] -= learn_rate * X[iPoint][1] + b -= learn_rate + + elif predicted == 0: # predicted 0, real 1, add + W[0] += learn_rate * X[iPoint][0] + W[1] += learn_rate * X[iPoint][1] + b += learn_rate + + return W, b + + +# This function runs the perceptron algorithm repeatedly on the dataset, +# and returns a few of the boundary lines obtained in the iterations, +# for plotting purposes. +# Feel free to play with the learning rate and the num_epochs, +# and see your results plotted below. +def trainPerceptronAlgorithm(X, y, learn_rate=0.01, num_epochs=25): + x_min, x_max = min(X.T[0]), max(X.T[0]) + y_min, y_max = min(X.T[1]), max(X.T[1]) + W = np.array(np.random.rand(2, 1)) + b = np.random.rand(1)[0] + x_max + # These are the solution lines that get plotted below. + boundary_lines = [] + for i in range(num_epochs): + # In each epoch, we apply the perceptron step. + W, b = perceptronStep(X, y, W, b, learn_rate) + boundary_lines.append((-W[0] / W[1], -b / W[1])) + return boundary_lines + + + +import numpy as np +raw_data = open("data.csv", 'rt') +data = np.loadtxt(raw_data, delimiter=",") +X = data[:,[0,1]] +y = data[:,2] +trainPerceptronAlgorithm(X, y) + + diff --git a/deep_learning_examples/softmax.py b/deep_learning_examples/softmax.py new file mode 100644 index 0000000..6b823b4 --- /dev/null +++ b/deep_learning_examples/softmax.py @@ -0,0 +1,16 @@ +import numpy as np + + +# Write a function that takes as input a list of numbers, and returns +# the list of values given by the softmax function. +def softmax(L): + # first do softmax function as e^(z_i) / (sum(e^(Z)) + sumE = np.sum(np.exp(L)) + res = [] + for elem in L: + res.append(np.exp(elem) / sumE) + + return res + + +softmax([1,2,3,4]) \ No newline at end of file diff --git a/examples/testdb_kai.sql b/examples/testdb_kai.sql new file mode 100644 index 0000000000000000000000000000000000000000..ba395806debf90a0d2b7fb856d9bd3b2cdf5704f GIT binary patch literal 7162 zcmd5>O>-MX5bf(y#edkFoRm>Th6Ffp2*gwXV_Z%`%3QW&OO{0RVJtbpe;#;mdRsF) zvnxw$9VpdmSF=6+`MP^%^zT2P%V)yt3w&}J$x!CFZly0P+?N>ZV`PB)jVy58$uxMk z!t*6Yl=72IFl!9j0qAD<+`DJ;>N_bW&F(qgtK>V#qTHpUy)b>O1WhrVNY)zfoM-R0wd0|~?zC2=M-GD(lYLLJ`}6;-NxU}#_H=mTW~ z*hG7nP3@6EZ?wfi)jstuy-?L|Ga`Nj0+`9UdE1)7E~%U`>9M0^fZvt|q( z)hTl58OD0ZnV)O%(~}qSJt)pGL+j7VdFqY)1!OXhl+$}i?8$3TeuM8n*1QZ?Va^zG zc-Q)3b*AbG)+gGuf|LnxeupPRp3Q4thhkYpt*jW0l$+I1?hBL3pRr_JpCXF4xEH8a z3s)d}{rk*hjd?MA2y_ZXv`jzbKi@xj%o zKE^H`&h7n2AnDdsM6QbZ@R`khffc|r$3^Ssk$dI}!=lUzMk&-_4%9IVm$-9Xw!mkA zaiyqgxOA(IDZF4>5VKlE7tkQb`-#K2zW-XjEj2kpzkcpy+P7*$jpECCHM56$jUnR` zo*2<3d^B|u&7-8^s)b&-a+W*=?KP-bWgcF=q%p5UZm6T_$F<_UTSg860-WHayP3mp#bjXm8jo<=oY2 zQjRvvOD)_y&-|kic}#Y0j!Gyee$LAESe$#7vFsT1mikQh0NLJiHAGFCt^Vyk^3_(J z>`26t*1tI_=B(UVX*}v{1d*r}w^wFXs9n`tyJoHO9mCh`9qco@V`r6~;KLXUTrPyY zOSRSSv|D7D*KWUBhbeEX?VYN-)eQAUck1lTVb{KaMO=ptgM8M$+rfT=o!DpKSI))` z_BFP@^)~9$zH=qCixT2Xt7tsB>u=u?XYj=hK3Y-I6%{d-1Ce^ppjk(0%l6*zkq=Q2TC|-HLfmL~p>3Xf{GJl* z%24Nb*SxA%*bmcc!MaOjoB_Xz%u3Vm*m- zKE(AllAC#WY`n)A^)b%0j|03kRk&DYsE@7sc_Pf!coRD3c(4CGF}}_J- + + +finding_donors + + + + + + + + + + + + + + + + + + + +
      +
      + +
      +
      +
      +
      +
      +

      Machine Learning Engineer Nanodegree

      Supervised Learning

      Project: Finding Donors for CharityML

      +
      +
      +
      +
      +
      +
      +
      +
      +

      Welcome to the second project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

      +

      In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

      +

      Note: Please specify WHICH VERSION OF PYTHON you are using when submitting this notebook. Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

      +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Getting Started

      In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features.

      +

      The dataset for this project originates from the UCI Machine Learning Repository. The datset was donated by Ron Kohavi and Barry Becker, after being published in the article "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid". You can find the article by Ron Kohavi online. The data we investigate here consists of small changes to the original dataset, such as removing the 'fnlwgt' feature and records with missing or ill-formatted entries.

      + +
      +
      +
      +
      +
      +
      +
      +
      +
      +

      Exploring the Data

      Run the code cell below to load necessary Python libraries and load the census data. Note that the last column from this dataset, 'income', will be our target label (whether an individual makes more than, or at most, $50,000 annually). All other columns are features about each individual in the census database.

      + +
      +
      +
      +
      +
      +
      In [2]:
      +
      +
      +
      # Import libraries necessary for this project
      +import numpy as np
      +import pandas as pd
      +from time import time
      +from IPython.display import display # Allows the use of display() for DataFrames
      +
      +# Import supplementary visualization code visuals.py
      +import visuals as vs
      +
      +# Pretty display for notebooks
      +%matplotlib inline
      +
      +# Load the Census dataset
      +data = pd.read_csv("census.csv")
      +
      +# Success - Display the first record
      +display(data.head(n=3))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      ageworkclasseducation_leveleducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincome
      039State-govBachelors13.0Never-marriedAdm-clericalNot-in-familyWhiteMale2174.00.040.0United-States<=50K
      150Self-emp-not-incBachelors13.0Married-civ-spouseExec-managerialHusbandWhiteMale0.00.013.0United-States<=50K
      238PrivateHS-grad9.0DivorcedHandlers-cleanersNot-in-familyWhiteMale0.00.040.0United-States<=50K
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Implementation: Data Exploration

      A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \$50,000. In the code cell below, you will need to compute the following:

      +
        +
      • The total number of records, 'n_records'
      • +
      • The number of individuals making more than \$50,000 annually, 'n_greater_50k'.
      • +
      • The number of individuals making at most \$50,000 annually, 'n_at_most_50k'.
      • +
      • The percentage of individuals making more than \$50,000 annually, 'greater_percent'.
      • +
      +

      Hint: You may need to look at the table above to understand how the 'income' entries are formatted.

      + +
      +
      +
      +
      +
      +
      In [3]:
      +
      +
      +
      # TODO: Total number of records
      +n_records = len(data)
      +
      +# TODO: Number of records where individual's income is more than $50,000
      +n_greater_50k = len(data[data["income"] == ">50K"])
      +
      +# TODO: Number of records where individual's income is at most $50,000
      +n_at_most_50k = len(data[data["income"] == "<=50K"])
      +
      +# TODO: Percentage of individuals whose income is more than $50,000
      +greater_percent = 100 * len(data[data["income"] == ">50K"]) / float(len(data))
      +
      +# Print the results
      +print "Total number of records: {}".format(n_records)
      +print "Individuals making more than $50,000: {}".format(n_greater_50k)
      +print "Individuals making at most $50,000: {}".format(n_at_most_50k)
      +print "Percentage of individuals making more than $50,000: {:.2f}%".format(greater_percent)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Total number of records: 45222
      +Individuals making more than $50,000: 11208
      +Individuals making at most $50,000: 34014
      +Percentage of individuals making more than $50,000: 24.78%
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +
      +

      Preparing the Data

      Before data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured — this is typically known as preprocessing. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Transforming Skewed Continuous Features

      A dataset may sometimes contain at least one feature whose values tend to lie near a single number, but will also have a non-trivial number of vastly larger or smaller values than that single number. Algorithms can be sensitive to such distributions of values and can underperform if the range is not properly normalized. With the census dataset two features fit this description: 'capital-gain' and 'capital-loss'.

      +

      Run the code cell below to plot a histogram of these two features. Note the range of the values present and how they are distributed.

      + +
      +
      +
      +
      +
      +
      In [4]:
      +
      +
      +
      # Split the data into features and target label
      +income_raw = data['income']
      +features_raw = data.drop('income', axis = 1)
      +
      +# Visualize skewed continuous features of original data
      +vs.distribution(data)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      For highly-skewed feature distributions such as 'capital-gain' and 'capital-loss', it is common practice to apply a logarithmic transformation on the data so that the very large and very small values do not negatively affect the performance of a learning algorithm. Using a logarithmic transformation significantly reduces the range of values caused by outliers. Care must be taken when applying this transformation however: The logarithm of 0 is undefined, so we must translate the values by a small amount above 0 to apply the the logarithm successfully.

      +

      Run the code cell below to perform a transformation on the data and visualize the results. Again, note the range of values and how they are distributed.

      + +
      +
      +
      +
      +
      +
      In [5]:
      +
      +
      +
      # Log-transform the skewed features
      +skewed = ['capital-gain', 'capital-loss']
      +features_raw[skewed] = data[skewed].apply(lambda x: np.log(x + 1)) # applies column wise, incr x by 1
      +
      +# moves values closer together so algo doesnt get confused
      +
      +# Visualize the new log distributions
      +vs.distribution(features_raw, transformed = True)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Normalizing Numerical Features

      In addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as 'capital-gain' or 'capital-loss' above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning, as exampled below.

      +

      Run the code cell below to normalize each numerical feature. We will use sklearn.preprocessing.MinMaxScaler for this.

      + +
      +
      +
      +
      +
      +
      In [6]:
      +
      +
      +
      # Import sklearn.preprocessing.StandardScaler
      +from sklearn.preprocessing import MinMaxScaler
      +
      +# Initialize a scaler, then apply it to the features
      +scaler = MinMaxScaler()
      +numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']
      +features_raw[numerical] = scaler.fit_transform(data[numerical])
      +
      +# Show an example of a record with scaling applied
      +display(features_raw.head(n = 1))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      ageworkclasseducation_leveleducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-country
      00.30137State-govBachelors0.8Never-marriedAdm-clericalNot-in-familyWhiteMale0.021740.00.397959United-States
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Implementation: Data Preprocessing

      From the table in Exploring the Data above, we can see there are several features for each record that are non-numeric. Typically, learning algorithms expect input to be numeric, which requires that non-numeric features (called categorical variables) be converted. One popular way to convert categorical variables is by using the one-hot encoding scheme. One-hot encoding creates a "dummy" variable for each possible category of each non-numeric feature. For example, assume someFeature has three possible entries: A, B, or C. We then encode this feature into someFeature_A, someFeature_B and someFeature_C.

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      someFeaturesomeFeature_AsomeFeature_BsomeFeature_C
      0B010
      1C----> one-hot encode ---->001
      2A100
      +

      Additionally, as with the non-numeric features, we need to convert the non-numeric target label, 'income' to numerical values for the learning algorithm to work. Since there are only two possible categories for this label ("<=50K" and ">50K"), we can avoid using one-hot encoding and simply encode these two categories as 0 and 1, respectively. In code cell below, you will need to implement the following:

      +
        +
      • Use pandas.get_dummies() to perform one-hot encoding on the 'features_raw' data.
      • +
      • Convert the target label 'income_raw' to numerical entries.
          +
        • Set records with "<=50K" to 0 and records with ">50K" to 1.
        • +
        +
      • +
      + +
      +
      +
      +
      +
      +
      In [7]:
      +
      +
      +
      # TODO: One-hot encode the 'features_raw' data using pandas.get_dummies()
      +features = pd.get_dummies(features_raw) # creates a non sparse matrix
      +
      +# TODO: Encode the 'income_raw' data to numerical values
      +income = income_raw.map({'<=50K':0, '>50K':1})
      +
      +# or, good for multiple classes. Also provides easy reverse transform.
      +from sklearn.preprocessing import LabelEncoder
      +le = LabelEncoder()
      +income = le.fit_transform(income_raw)
      +print("income one hot", income)
      +print("income rev transformed", le.inverse_transform(income))
      +
      +# just be careful: it gives unecessary order to things.
      +
      +# Print the number of features after one-hot encoding
      +encoded = list(features.columns)
      +print "{} total features after one-hot encoding.".format(len(encoded))
      +
      +# Uncomment the following line to see the encoded feature names
      +#print encoded
      +#print(income.head(10))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      ('income one hot', array([0, 0, 0, ..., 0, 0, 1], dtype=int64))
      +('income rev transformed', array(['<=50K', '<=50K', '<=50K', ..., '<=50K', '<=50K', '>50K'], dtype=object))
      +103 total features after one-hot encoding.
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Shuffle and Split Data

      Now all categorical variables have been converted into numerical features, and all numerical features have been normalized. As always, we will now split the data (both features and their labels) into training and test sets. 80% of the data will be used for training and 20% for testing.

      +

      Run the code cell below to perform this split.

      + +
      +
      +
      +
      +
      +
      In [8]:
      +
      +
      +
      # Import train_test_split
      +from sklearn.cross_validation import train_test_split
      +
      +# Split the 'features' and 'income' data into training and testing sets
      +X_train, X_test, y_train, y_test = train_test_split(features, income, test_size = 0.2, random_state = 0)
      +
      +# Show the results of the split
      +print "Training set has {} samples.".format(X_train.shape[0])
      +print "Testing set has {} samples.".format(X_test.shape[0])
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Training set has 36177 samples.
      +Testing set has 9045 samples.
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +
      +

      Evaluating Model Performance

      In this section, we will investigate four different algorithms, and determine which is best at modeling the data. Three of these algorithms will be supervised learners of your choice, and the fourth algorithm is known as a naive predictor.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Metrics and the Naive Predictor

      CharityML, equipped with their research, knows individuals that make more than \$50,000 are most likely to donate to their charity. Because of this, *CharityML* is particularly interested in predicting who makes more than \$50,000 accurately. It would seem that using accuracy as a metric for evaluating a particular model's performace would be appropriate. Additionally, identifying someone that does not make more than \$50,000 as someone who does would be detrimental to *CharityML*, since they are looking to find individuals willing to donate. Therefore, a model's ability to precisely predict those that make more than \$50,000 is more important than the model's ability to recall those individuals. We can use F-beta score as a metric that considers both precision and recall:

      +$$ F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{\left( \beta^2 \cdot precision \right) + recall} $$

      In particular, when $\beta = 0.5$, more emphasis is placed on precision. This is called the F$_{0.5}$ score (or F-score for simplicity).

      +

      Looking at the distribution of classes (those who make at most \$50,000, and those who make more), it's clear most individuals do not make more than \$50,000. This can greatly affect accuracy, since we could simply say "this person does not make more than \$50,000" and generally be right, without ever looking at the data! Making such a statement would be called naive, since we have not considered any information to substantiate the claim. It is always important to consider the naive prediction for your data, to help establish a benchmark for whether a model is performing well. That been said, using that prediction would be pointless: If we predicted all people made less than \$50,000, CharityML would identify no one as donors.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 1 - Naive Predictor Performace

      If we chose a model that always predicted an individual made more than \$50,000, what would that model's accuracy and F-score be on this dataset?
      +Note: You must use the code cell below and assign your results to 'accuracy' and 'fscore' to be used later.

      + +
      +
      +
      +
      +
      +
      In [9]:
      +
      +
      +
      #from sklearn.metrics import accuracy_score, recall_score
      +import numpy as np
      +
      +income_all_true = pd.Series(np.ones((len(income),), dtype=np.int))
      +#print(income_all_true.head())
      +#print(income.head())
      +
      +# TODO: Calculate accuracy
      +#accuracy = accuracy_score(income, income_all_true, normalize=True, sample_weight=None) # normalise=True means show percentage
      +#recall = recall_score(income, income_all_true)
      +
      +income_pred_naive = income_all_true
      +
      +# by hand
      +tp = sum(income==income_pred_naive)
      +fp = sum(income_pred_naive) - tp
      +fn = sum(income) - tp
      +accuracy = tp / float(tp + fp)
      +recall = tp / float(tp + fn)
      +
      +
      +
      +# TODO: Calculate F-score using the formula above for beta = 0.5
      +beta = 0.5
      +fscore = (1+beta**2.0) * (accuracy * recall) / float((beta**2.0 * accuracy) + recall)
      +
      +
      +# Print the results 
      +print "Naive Predictor: [Accuracy score: {:.4f}, F-score: {:.4f}]".format(accuracy, fscore)
      +
      +# accuracy matches the share of >50k incomes, if you predict true always.
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Naive Predictor: [Accuracy score: 0.2478, F-score: 0.2917]
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Supervised Learning Models

      The following supervised learning models are currently available in scikit-learn that you may choose from:

      +
        +
      • Gaussian Naive Bayes (GaussianNB)
      • +
      • Decision Trees
      • +
      • Ensemble Methods (Bagging, AdaBoost, Random Forest, Gradient Boosting)
      • +
      • K-Nearest Neighbors (KNeighbors)
      • +
      • Stochastic Gradient Descent Classifier (SGDC)
      • +
      • Support Vector Machines (SVM)
      • +
      • Logistic Regression
      • +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 2 - Model Application

      List three of the supervised learning models above that are appropriate for this problem that you will test on the census data. For each model chosen

      +
        +
      • Describe one real-world application in industry where the model can be applied. (You may need to do research for this — give references!)
      • +
      • What are the strengths of the model; when does it perform well?
      • +
      • What are the weaknesses of the model; when does it perform poorly?
      • +
      • What makes this model a good candidate for the problem, given what you know about the data?
      • +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: The three supervised learning models are Decision Tree, KNN and AdaBoost with Decision Tree as the weak learner.

      +
        +
      • Decision trees are applied in finance, for example, where they have been used to model investment decision making: http://www.cfapubs.org/doi/pdf/10.2469/faj.v50.n6.75. In this paper, they are considered superior to a weighted combination of features, as they more closely model the thinking of a portfolio manager when selecting securities. Decision Trees are helpful as they can visualise the path taken to arrive at a classification. They perform well on datasets with nominal, ordinal, interval and ratio data instead of just one of the types. The weaknesses are that they can overfit if too many nodes are allowed, and that they perform poorly on unbalanced datasets, such as ours. However, we can address this by tweaking the fbeta score to give more emphasis to accuracy and checking our final accuracy against the accuracy by predicting the same outcome every time. We can also limit the number of nodes allowed, or set the minimum examples required per leaf to stop the tree from growing too deep and overfitting.
      • +
      + +
        +
      • Ada Boost is applied in industry to predict whether customers might leave and preventatively offer them enticements to stay. https://www.cs.rit.edu/~rlaz/PatternRecognition/slides/churn_adaboost.pdf. Advantages are that instead of trying to find a a strong model that fits the weight distribution of the entire dataset we only have to find weak learners, i.e a model that performs better than chance. Each subsequent iteration will apply a weak learner to a slightly changed distribution, increasing the weights of examples we got wrong. We will also have continuous information gain, as each learner will improve on the previous. We also dont need any prior knowledge of the dataset, due to information gain guaranteed by the weak learner. Weaknesses are that a weak learner needs to exist for AdaBoost to work. A weak learner that is too complex, such a huge neural network, can lead to overfitting. It also seems that AdaBoost is sensitive to uniformly distributed noise (http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf). For our problem, we will use AdaBoost with a Decision Tree as the weak learner. By controlling leafs and node splits, as above, we should get an improved solution to using just a Decision tree, as we can focus on difficult examples.
      • +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implementation - Creating a Training and Predicting Pipeline

      To properly evaluate the performance of each model you've chosen, it's important that you create a training and predicting pipeline that allows you to quickly and effectively train models using various sizes of training data and perform predictions on the testing data. Your implementation here will be used in the following section. +In the code block below, you will need to implement the following:

      +
        +
      • Import fbeta_score and accuracy_score from sklearn.metrics.
      • +
      • Fit the learner to the sampled training data and record the training time.
      • +
      • Perform predictions on the test data X_test, and also on the first 300 training points X_train[:300].
          +
        • Record the total prediction time.
        • +
        +
      • +
      • Calculate the accuracy score for both the training subset and testing set.
      • +
      • Calculate the F-score for both the training subset and testing set.
          +
        • Make sure that you set the beta parameter!
        • +
        +
      • +
      + +
      +
      +
      +
      +
      +
      In [10]:
      +
      +
      +
      # Import two metrics from sklearn - fbeta_score and accuracy_score
      +from sklearn.metrics import fbeta_score, accuracy_score
      +
      +# a generic learning function for any algo
      +def train_predict(learner, sample_size, X_train, y_train, X_test, y_test): 
      +    '''
      +    inputs:
      +       - learner: the learning algorithm to be trained and predicted on
      +       - sample_size: the size of samples (number) to be drawn from training set
      +       - X_train: features training set
      +       - y_train: income training set
      +       - X_test: features testing set
      +       - y_test: income testing set
      +    '''
      +    
      +    results = {}
      +    
      +    # Fit the learner to the training data using slicing with 'sample_size'
      +    start = time() # Get start time
      +    # we want the same samples every time, not shuffled, so we can compare the learners.    
      +    learner = learner.fit(X_train[:sample_size], y_train[:sample_size])
      +    end = time() # Get end time
      +    
      +    # Calculate the training time
      +    results['train_time'] = end-start
      +        
      +    # Get the predictions on the test set,
      +    #       then get predictions on the first 300 training samples
      +    start = time() # Get start time
      +    predictions_test = learner.predict(X_test)
      +    predictions_train = learner.predict(X_train[:300])
      +    end = time() # Get end time
      +    
      +    # Calculate the total prediction time
      +    results['pred_time'] = end-start
      +            
      +    # Compute accuracy on the first 300 training samples
      +    results['acc_train'] = accuracy_score(y_pred=predictions_train, y_true=y_train[:300])
      +        
      +    # Compute accuracy on test set
      +    results['acc_test'] = accuracy_score(y_pred=predictions_test, y_true=y_test)
      +    
      +    beta = 0.5 # place more emphasis on precision, as there are very ">50k" examples in the dataset.
      +    
      +    # Compute F-score on the the first 300 training samples
      +    results['f_train'] = fbeta_score(y_true=y_train[:300], y_pred=predictions_train, beta=beta)
      +        
      +    # Compute F-score on the test set
      +    results['f_test'] = fbeta_score(y_true=y_test, y_pred=predictions_test, beta=beta)
      +       
      +    # Success
      +    print "{} trained on {} samples.".format(learner.__class__.__name__, sample_size)
      +        
      +    # Return the results
      +    return results
      +
      +print(int(round(len([1,1,1,1])*0.63)))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      3
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Implementation: Initial Model Evaluation

      In the code cell, you will need to implement the following:

      +
        +
      • Import the three supervised learning models you've discussed in the previous section.
      • +
      • Initialize the three models and store them in 'clf_A', 'clf_B', and 'clf_C'.
          +
        • Use a 'random_state' for each model you use, if provided.
        • +
        • Note: Use the default settings for each model — you will tune one specific model in a later section.
        • +
        +
      • +
      • Calculate the number of records equal to 1%, 10%, and 100% of the training data.
          +
        • Store those values in 'samples_1', 'samples_10', and 'samples_100' respectively.
        • +
        +
      • +
      +

      Note: Depending on which algorithms you chose, the following implementation may take some time to run!

      + +
      +
      +
      +
      +
      +
      In [11]:
      +
      +
      +
      # TODO: Import the three supervised learning models from sklearn
      +from sklearn.tree import DecisionTreeClassifier
      +from sklearn.svm import SVC
      +from sklearn.ensemble import AdaBoostClassifier
      +from sklearn.naive_bayes import GaussianNB
      +from sklearn.neighbors import KNeighborsClassifier
      +from sklearn.linear_model import LogisticRegression
      +
      +
      +# TODO: Initialize the three models
      +clf_A = DecisionTreeClassifier(random_state=5)
      +#clf_B = SVC(random_state=5)
      +clf_B = KNeighborsClassifier()
      +clf_C = AdaBoostClassifier(random_state=5)
      +#clf_A = GaussianNB()
      +#clf_A = LogisticRegression(random_state=5)
      +
      +# TODO: Calculate the number of samples for 1%, 10%, and 100% of the training data
      +samples_1 = int(round(len(y_train) * 0.01))
      +samples_10 = int(round(len(y_train) * 0.1))
      +samples_100 = int(round(len(y_train) * 1))
      +
      +# Collect results on the learners
      +results = {}
      +for clf in [clf_A, clf_B, clf_C]:
      +    clf_name = clf.__class__.__name__
      +    results[clf_name] = {}
      +    for i, samples in enumerate([samples_1, samples_10, samples_100]):
      +        
      +        # bundles up useful algo metrics
      +        results[clf_name][i] = \
      +        train_predict(clf, samples, X_train, y_train, X_test, y_test)
      +
      +# Run metrics visualization for the three supervised learning models chosen
      +vs.evaluate(results, accuracy, fscore)
      +
      +# Compared to the naive predictor (25% accuracy), we have improved considerably.
      +print(results)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      DecisionTreeClassifier trained on 362 samples.
      +DecisionTreeClassifier trained on 3618 samples.
      +DecisionTreeClassifier trained on 36177 samples.
      +KNeighborsClassifier trained on 362 samples.
      +KNeighborsClassifier trained on 3618 samples.
      +KNeighborsClassifier trained on 36177 samples.
      +AdaBoostClassifier trained on 362 samples.
      +AdaBoostClassifier trained on 3618 samples.
      +AdaBoostClassifier trained on 36177 samples.
      +
      +
      +
      + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      {'KNeighborsClassifier': {0: {'pred_time': 0.4960000514984131, 'f_test': 0.59304818869202103, 'train_time': 0.0009999275207519531, 'acc_train': 0.8666666666666667, 'acc_test': 0.80464344941956878, 'f_train': 0.74999999999999989}, 1: {'pred_time': 3.5820000171661377, 'f_test': 0.6270768571122306, 'train_time': 0.032000064849853516, 'acc_train': 0.85999999999999999, 'acc_test': 0.8180210060807076, 'f_train': 0.72368421052631571}, 2: {'pred_time': 27.072999954223633, 'f_test': 0.63166816232924516, 'train_time': 1.7300000190734863, 'acc_train': 0.87333333333333329, 'acc_test': 0.82012161415146489, 'f_train': 0.75320512820512819}}, 'AdaBoostClassifier': {0: {'pred_time': 0.07000017166137695, 'f_test': 0.61047338962147801, 'train_time': 0.1099998950958252, 'acc_train': 0.89666666666666661, 'acc_test': 0.81039248203427305, 'f_train': 0.81168831168831157}, 1: {'pred_time': 0.07699990272521973, 'f_test': 0.7018820838099199, 'train_time': 0.21799993515014648, 'acc_train': 0.83999999999999997, 'acc_test': 0.84986180210060802, 'f_train': 0.68014705882352933}, 2: {'pred_time': 0.07000017166137695, 'f_test': 0.72455089820359275, 'train_time': 1.678999900817871, 'acc_train': 0.84999999999999998, 'acc_test': 0.85760088446655613, 'f_train': 0.71153846153846156}}, 'DecisionTreeClassifier': {0: {'pred_time': 0.0, 'f_test': 0.5187038764950378, 'train_time': 0.019999980926513672, 'acc_train': 1.0, 'acc_test': 0.76174682144831396, 'f_train': 1.0}, 1: {'pred_time': 0.0, 'f_test': 0.60533669881907515, 'train_time': 0.019999980926513672, 'acc_train': 0.9966666666666667, 'acc_test': 0.80751796572692092, 'f_train': 0.99719101123595499}, 2: {'pred_time': 0.007999897003173828, 'f_test': 0.62747080996598326, 'train_time': 0.3990001678466797, 'acc_train': 0.96999999999999997, 'acc_test': 0.81835268103924819, 'f_train': 0.96385542168674709}}}
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +
      +

      Improving Results

      In this final section, you will choose from the three supervised learning models the best model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (X_train and y_train) by tuning at least one parameter to improve upon the untuned model's F-score.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 3 - Choosing the Best Model

      Based on the evaluation you performed earlier, in one to two paragraphs, explain to CharityML which of the three models you believe to be most appropriate for the task of identifying individuals that make more than \$50,000.
      +Hint: Your answer should include discussion of the metrics, prediction/training time, and the algorithm's suitability for the data.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: I believe AdaBosst is the best model for finding individuals who make above 50k USD. It is not the fastest trainer, but all models train below 2 seconds on the full datasets which I believe is acceptable, and prediction time is negligible. It has the best accuracy on the testing set, so you get better generalisation than KNN or Decision Tree. However, given that we have an unbalanced dataset, with only around 25% of people sampled earning above 50k, we need to also check the F score, given recall should influence our prediction, as it is important to measure how many of the true positives are found. Here AdaBoost does quite a bit better than the other models on the testing set. Further, it addresses the overfitting issue with the Decision Tree by training several of them (like basis splines) and weighting them according to the prediction accuracy they give.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 4 - Describing the Model in Layman's Terms

      In one to two paragraphs, explain to CharityML, in layman's terms, how the final model chosen is supposed to work. Be sure that you are describing the major qualities of the model, such as how the model is trained and how the model makes a prediction. Avoid using advanced mathematical or technical jargon, such as describing equations or discussing the algorithm implementation.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: AdaBoost is trained using in this case a Decision Tree on the dataset. A Decision Tree attempts to seperate a dataset into two classes (here income >50, below 50k) by asking a serious of questions to its features, such as whether or not some is degree level educated. It will ask questions first that improve the dataset separation by the most.

      +

      To run, AdaBoost will set the weight of each person the same initially. It will then calibrate a decision tree to that data and check how large the error is. Next it will iteratively increase the weights of people that it got wrong, and focus on getting those right in the next iteration. In contrast, people that it got right will have their weight reduced. Predictions are made using a weighted combination of all those fitted decision trees, where higher weight is given to those trees that have make more accurate predictions.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implementation: Model Tuning

      Fine tune the chosen model. Use grid search (GridSearchCV) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following:

      +
        +
      • Import sklearn.grid_search.GridSearchCV and sklearn.metrics.make_scorer.
      • +
      • Initialize the classifier you've chosen and store it in clf.
          +
        • Set a random_state if one is available to the same state you set before.
        • +
        +
      • +
      • Create a dictionary of parameters you wish to tune for the chosen model.
          +
        • Example: parameters = {'parameter' : [list of values]}.
        • +
        • Note: Avoid tuning the max_features parameter of your learner if that parameter is available!
        • +
        +
      • +
      • Use make_scorer to create an fbeta_score scoring object (with $\beta = 0.5$).
      • +
      • Perform grid search on the classifier clf using the 'scorer', and store it in grid_obj.
      • +
      • Fit the grid search object to the training data (X_train, y_train), and store it in grid_fit.
      • +
      +

      Note: Depending on the algorithm chosen and the parameter list, the following implementation may take some time to run!

      + +
      +
      +
      +
      +
      +
      In [12]:
      +
      +
      +
      # TODO: Import 'GridSearchCV', 'make_scorer', and any other necessary libraries
      +from sklearn.grid_search import GridSearchCV
      +from sklearn.metrics import make_scorer
      +
      +
      +
      +dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
      +dt_stump.fit(X_train, y_train)
      +clf_knn = KNeighborsClassifier(n_jobs=8)
      +clf_knn.fit(X_train, y_train)
      +
      +# TODO: Initialize the classifier
      +clf = AdaBoostClassifier(base_estimator=dt_stump, random_state=5)
      +#clf = AdaBoostClassifier(base_estimator=clf_knn, random_state=5)
      +
      +#clf = clf_knn
      +
      +# Create the parameters list you wish to tuned
      +parameters = {
      +    "n_estimators": [1, 3, 9, 30, 90]
      +    , "learning_rate": [0.003, 0.009, 0.1, 0.03, 0.09]
      +    , "base_estimator__max_depth":[1, 3, 9] # use __ to access nested parameters of sub classifier
      +    , "base_estimator__min_samples_leaf":[1, 3, 9, 30, 90, 300, 900]
      +    #, "base_estimator__criterion" : ["gini", "entropy"]
      +    #, "base_estimator__splitter" :  ["best", "random"]
      +    
      +    #"n_neighbors": [3, 5, 7, 10, 13, 15, 20]
      +    #, "weights": ["uniform", "distance"]
      +    
      +    #"base_estimator__n_neighbors": [3, 5, 7, 10, 13, 15, 20]
      +    
      +    
      +    
      +
      +}
      +
      +# TODO: Make an fbeta_score scoring object
      +scorer = make_scorer(fbeta_score, beta=0.5)
      +
      +# check this, which is the right score?
      +stratifiedShuffling = False
      +if stratifiedShuffling:
      +    # make sure test labels are evenly split labels between validation set, given dataset is unbalanced
      +    # this ensure none of them has a large concentration of >50k or <=50k earners.
      +    from sklearn.cross_validation import StratifiedShuffleSplit
      +    cv = StratifiedShuffleSplit(y_test, n_iter=10, test_size=0.25, random_state=4)
      +    grid_obj = GridSearchCV(clf, param_grid=parameters, scoring=scorer, verbose=10, n_jobs=8, cv=cv)
      +
      +    
      +# base case
      +else:
      +    # TODO: Perform grid search on the classifier using 'scorer' as the scoring method
      +    # default uses 3 fold cross validation
      +    grid_obj = GridSearchCV(clf, param_grid=parameters, scoring=scorer, verbose=10, n_jobs=8)
      +
      +    
      +
      +# TODO: Fit the grid search object to the training data and find the optimal parameters
      +grid_fit = grid_obj.fit(X_train, y_train)
      +
      +# Get the estimator
      +best_clf = grid_fit.best_estimator_
      +
      +# Make predictions using the unoptimized and optimised model
      +predictions = (clf.fit(X_train, y_train)).predict(X_test)
      +best_predictions = best_clf.predict(X_test)
      +
      +# Report the before-and-afterscores
      +print "Unoptimized model\n------"
      +print "Accuracy score on testing data: {:.4f}".format(accuracy_score(y_test, predictions))
      +print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, predictions, beta = 0.5))
      +print "\nOptimized Model\n------"
      +print "Final accuracy score on the testing data: {:.4f}".format(accuracy_score(y_test, best_predictions))
      +print "Final F-score on the testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Fitting 3 folds for each of 525 candidates, totalling 1575 fits
      +
      +
      +
      + +
      +
      + +
      +
      [Parallel(n_jobs=8)]: Done   2 tasks      | elapsed:    2.0s
      +[Parallel(n_jobs=8)]: Done   9 tasks      | elapsed:    7.5s
      +[Parallel(n_jobs=8)]: Done  16 tasks      | elapsed:    8.3s
      +[Parallel(n_jobs=8)]: Done  25 tasks      | elapsed:   10.3s
      +[Parallel(n_jobs=8)]: Done  34 tasks      | elapsed:   11.6s
      +[Parallel(n_jobs=8)]: Done  45 tasks      | elapsed:   13.3s
      +[Parallel(n_jobs=8)]: Done  56 tasks      | elapsed:   15.7s
      +[Parallel(n_jobs=8)]: Done  69 tasks      | elapsed:   18.0s
      +[Parallel(n_jobs=8)]: Done  82 tasks      | elapsed:   20.3s
      +[Parallel(n_jobs=8)]: Done  97 tasks      | elapsed:   22.6s
      +[Parallel(n_jobs=8)]: Done 112 tasks      | elapsed:   25.4s
      +[Parallel(n_jobs=8)]: Done 129 tasks      | elapsed:   28.1s
      +[Parallel(n_jobs=8)]: Done 146 tasks      | elapsed:   30.6s
      +[Parallel(n_jobs=8)]: Done 165 tasks      | elapsed:   34.2s
      +[Parallel(n_jobs=8)]: Done 184 tasks      | elapsed:   37.2s
      +[Parallel(n_jobs=8)]: Done 205 tasks      | elapsed:   41.4s
      +[Parallel(n_jobs=8)]: Done 226 tasks      | elapsed:   45.2s
      +[Parallel(n_jobs=8)]: Done 249 tasks      | elapsed:   49.4s
      +[Parallel(n_jobs=8)]: Done 272 tasks      | elapsed:   52.8s
      +[Parallel(n_jobs=8)]: Done 297 tasks      | elapsed:   57.5s
      +[Parallel(n_jobs=8)]: Done 322 tasks      | elapsed:  1.0min
      +[Parallel(n_jobs=8)]: Done 349 tasks      | elapsed:  1.1min
      +[Parallel(n_jobs=8)]: Done 376 tasks      | elapsed:  1.2min
      +[Parallel(n_jobs=8)]: Done 405 tasks      | elapsed:  1.3min
      +[Parallel(n_jobs=8)]: Done 434 tasks      | elapsed:  1.4min
      +[Parallel(n_jobs=8)]: Done 465 tasks      | elapsed:  1.4min
      +[Parallel(n_jobs=8)]: Done 496 tasks      | elapsed:  1.5min
      +[Parallel(n_jobs=8)]: Done 529 tasks      | elapsed:  1.6min
      +[Parallel(n_jobs=8)]: Done 562 tasks      | elapsed:  1.8min
      +[Parallel(n_jobs=8)]: Done 597 tasks      | elapsed:  2.0min
      +[Parallel(n_jobs=8)]: Done 632 tasks      | elapsed:  2.2min
      +[Parallel(n_jobs=8)]: Done 669 tasks      | elapsed:  2.5min
      +[Parallel(n_jobs=8)]: Done 706 tasks      | elapsed:  2.7min
      +[Parallel(n_jobs=8)]: Done 745 tasks      | elapsed:  2.9min
      +[Parallel(n_jobs=8)]: Done 784 tasks      | elapsed:  3.1min
      +[Parallel(n_jobs=8)]: Done 825 tasks      | elapsed:  3.4min
      +[Parallel(n_jobs=8)]: Done 866 tasks      | elapsed:  3.6min
      +[Parallel(n_jobs=8)]: Done 909 tasks      | elapsed:  3.9min
      +[Parallel(n_jobs=8)]: Done 952 tasks      | elapsed:  4.2min
      +[Parallel(n_jobs=8)]: Done 997 tasks      | elapsed:  4.4min
      +[Parallel(n_jobs=8)]: Done 1042 tasks      | elapsed:  4.7min
      +[Parallel(n_jobs=8)]: Done 1089 tasks      | elapsed:  5.5min
      +[Parallel(n_jobs=8)]: Done 1136 tasks      | elapsed:  6.3min
      +[Parallel(n_jobs=8)]: Done 1185 tasks      | elapsed:  7.2min
      +[Parallel(n_jobs=8)]: Done 1234 tasks      | elapsed:  8.1min
      +[Parallel(n_jobs=8)]: Done 1285 tasks      | elapsed:  9.1min
      +[Parallel(n_jobs=8)]: Done 1336 tasks      | elapsed: 10.0min
      +[Parallel(n_jobs=8)]: Done 1389 tasks      | elapsed: 11.0min
      +[Parallel(n_jobs=8)]: Done 1442 tasks      | elapsed: 11.7min
      +[Parallel(n_jobs=8)]: Done 1497 tasks      | elapsed: 12.6min
      +[Parallel(n_jobs=8)]: Done 1552 tasks      | elapsed: 13.2min
      +[Parallel(n_jobs=8)]: Done 1575 out of 1575 | elapsed: 13.6min finished
      +
      +
      +
      + +
      +
      + +
      +
      Unoptimized model
      +------
      +Accuracy score on testing data: 0.8576
      +F-score on testing data: 0.7246
      +
      +Optimized Model
      +------
      +Final accuracy score on the testing data: 0.8651
      +Final F-score on the testing data: 0.7448
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      In [34]:
      +
      +
      +
      score = pd.DataFrame(grid_fit.grid_scores_).mean_validation_score
      +params = pd.DataFrame.from_records(pd.DataFrame(grid_fit.grid_scores_).parameters.values)
      +resGrid = pd.concat([params, score],axis=1)
      +resGrid = resGrid.sort_values(by=["mean_validation_score"], ascending=False)
      +
      +
      +import datetime
      +st = datetime.datetime.utcnow().strftime("%A_%d_%B_%Y_%I_%M%p")
      +print(st)
      +
      +
      +"""
      +importances = best_clf.feature_importances_
      +indices = np.argsort(importances)[::-1]
      +print(X_train.columns[indices[:5]])
      +"""
      +
      +#print(pd.DataFrame(best_clf.feature_importances_))
      +clf_name = best_clf.__class__.__name__ 
      +# create excel sheet of parameter grid
      +writer = pd.ExcelWriter(
      +        clf_name + 'resGrid.xlsx'
      +     , engine="xlsxwriter"     
      +    )
      + 
      +pd.formats.format.header_style = None    
      + 
      +resGrid.to_excel(writer, sheet_name="elem", index=False)
      +workbook = writer.book
      +worksheet = writer.sheets["elem"]
      +formatObject = workbook.add_format()
      +formatObject.set_text_wrap(1)
      +formatObject.set_bold(1)
      +
      +worksheet.set_column("A:F", 30)
      +worksheet.set_row(0, 60, formatObject)
      + 
      +writer.save()
      +
      +#open excel
      +import os
      +import win32com.client
      +
      +cwd = os.getcwd() + "\\"
      +
      +xl=win32com.client.Dispatch("Excel.Application")
      +xl.Visible = True
      +xl.Workbooks.Open(Filename=cwd+clf_name+"resGrid.xlsx")
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Monday_05_June_2017_09_33PM
      +
      +
      +
      + +
      +
      Out[34]:
      + + + +
      +
      <COMObject Open>
      +
      + +
      + +
      +
      + +
      +
      +
      +
      In [35]:
      +
      +
      +
      # close any excel sheets without asking questions and quit excel
      +map(lambda book: book.Close(False), xl.Workbooks)
      +xl.quit()
      +
      + +
      +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 5 - Final Model Evaluation

      What is your optimized model's accuracy and F-score on the testing data? Are these scores better or worse than the unoptimized model? How do the results from your optimized model compare to the naive predictor benchmarks you found earlier in Question 1?
      +Note: Fill in the table below with your results, and then provide discussion in the Answer box.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Results:

      + + + + + + + + + + + + + + + + + + + + + +
      MetricBenchmark PredictorUnoptimized ModelOptimized Model
      Accuracy Score0.29170.85760.8687
      F-score0.24780.72460.7430
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: The optimised model's scores are better than the benchmark and the unoptimised scores. Accuracy improves beyond just predicting ">50k" for all points, and especially the F-Score improves, showing the model is adding value. However, i believe that the benchmark predictor does not illustrate the issue of unbalanced datasets well, as we will see a large improvement by using as benchmark the prediction of the less frequent part of the dataset across the entire dataset. However, if we were to predict the more frequent part as a benchmark, i believe it would be a lot more difficult to achieve such performance gains, given we have already 75% accuracy.

      + +
      +
      +
      +
      +
      +
      In [24]:
      +
      +
      +
      from sklearn.metrics import confusion_matrix
      +import seaborn as sns
      +%matplotlib inline
      +
      +# confusion matrix best
      +pred = best_clf.predict(X_test)
      +sns.heatmap(confusion_matrix(y_test, pred), annot = True, fmt = '')
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      C:\Anaconda3\envs\udacity\lib\site-packages\IPython\html.py:14: ShimWarning: The `IPython.html` package has been deprecated since IPython 4.0. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.
      +  "`IPython.html.widgets` has moved to `ipywidgets`.", ShimWarning)
      +
      +
      +
      + +
      +
      Out[24]:
      + + + +
      +
      <matplotlib.axes._subplots.AxesSubplot at 0x9b297b8>
      +
      + +
      + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +
      +

      Feature Importance

      An important task when performing supervised learning on a dataset like the census data we study here is determining which features provide the most predictive power. By focusing on the relationship between only a few crucial features and the target label we simplify our understanding of the phenomenon, which is most always a useful thing to do. In the case of this project, that means we wish to identify a small number of features that most strongly predict whether an individual makes at most or more than \$50,000.

      +

      Choose a scikit-learn classifier (e.g., adaboost, random forests) that has a feature_importance_ attribute, which is a function that ranks the importance of features according to the chosen classifier. In the next python cell fit this classifier to training set and use this attribute to determine the top 5 most important features for the census dataset.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Question 6 - Feature Relevance Observation

      When Exploring the Data, it was shown there are thirteen available features for each individual on record in the census data.
      +Of these thirteen records, which five features do you believe to be most important for prediction, and in what order would you rank them and why?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: I believe the important features would be:

      +
        +
      • Capital Gain - most important as a large capital gain can provide income for years to come, and reduces reliance on intelligence, hard work or biological properties like race or attractiveness.
      • +
      • Age - also important as usually people tend to get better at what they do with age.
      • +
      • Education Level - fairly good predictor as it can replace experience and is sometimes a proxy for family wealth which would have a positive effect on income.
      • +
      • Work class - private sector pays better
      • +
      • race - biological attributes might provide some noise
      • +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implementation - Extracting Feature Importance

      Choose a scikit-learn supervised learning algorithm that has a feature_importance_ attribute availble for it. This attribute is a function that ranks the importance of each feature when making predictions based on the chosen algorithm.

      +

      In the code cell below, you will need to implement the following:

      +
        +
      • Import a supervised learning model from sklearn if it is different from the three used earlier.
      • +
      • Train the supervised model on the entire training set.
      • +
      • Extract the feature importances using '.feature_importances_'.
      • +
      + +
      +
      +
      +
      +
      +
      In [28]:
      +
      +
      +
      # TODO: Import a supervised learning model that has 'feature_importances_'
      +
      +clfAda = AdaBoostClassifier(random_state=5, n_estimators=30)
      +
      +# TODO: Train the supervised model on the training set 
      +model = clfAda.fit(X_train, y_train)
      +
      +# TODO: Extract the feature importances
      +importances = model.feature_importances_
      +
      +# best fit features
      +best_clf.fit(X_train, y_train)
      +#importances = best_clf.feature_importances_
      +
      +# interesting - my best fit has a different feature order - it includes marital status! A hidden feature.
      +# other ways of feature selection: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
      +
      +
      +#print(importances.shape)
      +# importances show the contribution of each feature to the model.
      +# There are 103 features, as we did one hot encoding on the enums.
      +
      +# Plot
      +vs.feature_plot(importances, X_train, y_train)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 7 - Extracting Feature Importance

      Observe the visualization created above which displays the five most relevant features for predicting if an individual makes at most or above \$50,000.
      +How do these five features compare to the five features you discussed in Question 6? If you were close to the same answer, how does this visualization confirm your thoughts? If you were not close, why do you think these features are more relevant?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: It seems that race is not even listed, and age is the most prominent feature. However, it does seem right that capital gain and education are both fairly important as expected. Interesting is that Age dominates compared to capital gain, but i suppose this makes sense as an income as low as 50k can be achieved irrespective of capital gain, education and other predictors if you live long enough. I would suspect capital gain and loss taking over at higher incomes.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Feature Selection

      How does a model perform if we only use a subset of all the available features in the data? With less features required to train, the expectation is that training and prediction time is much lower — at the cost of performance metrics. From the visualization above, we see that the top five most important features contribute more than half of the importance of all features present in the data. This hints that we can attempt to reduce the feature space and simplify the information required for the model to learn. The code cell below will use the same optimized model you found earlier, and train it on the same training set with only the top five important features.

      + +
      +
      +
      +
      +
      +
      In [29]:
      +
      +
      +
      # Import functionality for cloning a model
      +from sklearn.base import clone
      +
      +"""
      +    Reduce the feature space - could also use PCA for this,
      +    in order to reduce dimensionality while maintaining other features' information
      +"""
      +X_train_reduced = X_train[X_train.columns.values[(np.argsort(importances)[::-1])[:5]]]
      +X_test_reduced = X_test[X_test.columns.values[(np.argsort(importances)[::-1])[:5]]]
      +
      +# Train on the "best" model found from grid search earlier
      +clf = (clone(best_clf)).fit(X_train_reduced, y_train)
      +
      +# Make new predictions
      +reduced_predictions = clf.predict(X_test_reduced)
      +
      +# Report scores from the final model using both versions of data
      +print "Final Model trained on full data\n------"
      +print "Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, best_predictions))
      +print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5))
      +print "\nFinal Model trained on reduced data\n------"
      +print "Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, reduced_predictions))
      +print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, reduced_predictions, beta = 0.5))
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Final Model trained on full data
      +------
      +Accuracy on testing data: 0.8651
      +F-score on testing data: 0.7448
      +
      +Final Model trained on reduced data
      +------
      +Accuracy on testing data: 0.8420
      +F-score on testing data: 0.7020
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 8 - Effects of Feature Selection

      How does the final model's F-score and accuracy score on the reduced data using only five features compare to those same scores when all features are used?
      +If training time was a factor, would you consider using the reduced data as your training set?

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: The final model's accuracy is 0.8433 and its F score is 0.7032. This is only a little bit lower than the metrics for the model trained on the full data. If training time was a factor i would consider reducing features, as the accuracy and f score are almost unchanged. It would depend how expensive it would be to get a few classifications wrong, in terms of letters sent out.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
      +File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

      +
      + +
      +
      +
      +
      +
      + + + + + + diff --git a/finding_donors/finding_donors.ipynb b/finding_donors/finding_donors.ipynb new file mode 100644 index 0000000..72394e9 --- /dev/null +++ b/finding_donors/finding_donors.ipynb @@ -0,0 +1,1382 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Supervised Learning\n", + "## Project: Finding Donors for *CharityML*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Welcome to the second project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `'TODO'` statement. Please be sure to read the instructions carefully!\n", + "\n", + "In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. \n", + "\n", + ">**Note:** Please specify WHICH VERSION OF PYTHON you are using when submitting this notebook. Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started\n", + "\n", + "In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features. \n", + "\n", + "The dataset for this project originates from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Census+Income). The datset was donated by Ron Kohavi and Barry Becker, after being published in the article _\"Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid\"_. You can find the article by Ron Kohavi [online](https://www.aaai.org/Papers/KDD/1996/KDD96-033.pdf). The data we investigate here consists of small changes to the original dataset, such as removing the `'fnlwgt'` feature and records with missing or ill-formatted entries." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Exploring the Data\n", + "Run the code cell below to load necessary Python libraries and load the census data. Note that the last column from this dataset, `'income'`, will be our target label (whether an individual makes more than, or at most, $50,000 annually). All other columns are features about each individual in the census database." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      ageworkclasseducation_leveleducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincome
      039State-govBachelors13.0Never-marriedAdm-clericalNot-in-familyWhiteMale2174.00.040.0United-States<=50K
      150Self-emp-not-incBachelors13.0Married-civ-spouseExec-managerialHusbandWhiteMale0.00.013.0United-States<=50K
      238PrivateHS-grad9.0DivorcedHandlers-cleanersNot-in-familyWhiteMale0.00.040.0United-States<=50K
      \n", + "
      " + ], + "text/plain": [ + " age workclass education_level education-num marital-status \\\n", + "0 39 State-gov Bachelors 13.0 Never-married \n", + "1 50 Self-emp-not-inc Bachelors 13.0 Married-civ-spouse \n", + "2 38 Private HS-grad 9.0 Divorced \n", + "\n", + " occupation relationship race sex capital-gain \\\n", + "0 Adm-clerical Not-in-family White Male 2174.0 \n", + "1 Exec-managerial Husband White Male 0.0 \n", + "2 Handlers-cleaners Not-in-family White Male 0.0 \n", + "\n", + " capital-loss hours-per-week native-country income \n", + "0 0.0 40.0 United-States <=50K \n", + "1 0.0 13.0 United-States <=50K \n", + "2 0.0 40.0 United-States <=50K " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from time import time\n", + "from IPython.display import display # Allows the use of display() for DataFrames\n", + "\n", + "# Import supplementary visualization code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the Census dataset\n", + "data = pd.read_csv(\"census.csv\")\n", + "\n", + "# Success - Display the first record\n", + "display(data.head(n=3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Data Exploration\n", + "A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \\$50,000. In the code cell below, you will need to compute the following:\n", + "- The total number of records, `'n_records'`\n", + "- The number of individuals making more than \\$50,000 annually, `'n_greater_50k'`.\n", + "- The number of individuals making at most \\$50,000 annually, `'n_at_most_50k'`.\n", + "- The percentage of individuals making more than \\$50,000 annually, `'greater_percent'`.\n", + "\n", + "**Hint:** You may need to look at the table above to understand how the `'income'` entries are formatted. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total number of records: 45222\n", + "Individuals making more than $50,000: 11208\n", + "Individuals making at most $50,000: 34014\n", + "Percentage of individuals making more than $50,000: 24.78%\n" + ] + } + ], + "source": [ + "# TODO: Total number of records\n", + "n_records = len(data)\n", + "\n", + "# TODO: Number of records where individual's income is more than $50,000\n", + "n_greater_50k = len(data[data[\"income\"] == \">50K\"])\n", + "\n", + "# TODO: Number of records where individual's income is at most $50,000\n", + "n_at_most_50k = len(data[data[\"income\"] == \"<=50K\"])\n", + "\n", + "# TODO: Percentage of individuals whose income is more than $50,000\n", + "greater_percent = 100 * len(data[data[\"income\"] == \">50K\"]) / float(len(data))\n", + "\n", + "# Print the results\n", + "print \"Total number of records: {}\".format(n_records)\n", + "print \"Individuals making more than $50,000: {}\".format(n_greater_50k)\n", + "print \"Individuals making at most $50,000: {}\".format(n_at_most_50k)\n", + "print \"Percentage of individuals making more than $50,000: {:.2f}%\".format(greater_percent)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Preparing the Data\n", + "Before data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured — this is typically known as **preprocessing**. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Transforming Skewed Continuous Features\n", + "A dataset may sometimes contain at least one feature whose values tend to lie near a single number, but will also have a non-trivial number of vastly larger or smaller values than that single number. Algorithms can be sensitive to such distributions of values and can underperform if the range is not properly normalized. With the census dataset two features fit this description: '`capital-gain'` and `'capital-loss'`. \n", + "\n", + "Run the code cell below to plot a histogram of these two features. Note the range of the values present and how they are distributed." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAF2CAYAAAD+y36TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xe8PUV9//HXmyrFggqIoIKE2BUFEYNRsIEVWwxG9Ivd\nqIlG/UWsYMEaNRBjixJQiYpYQEQREexIERREKQooHbHQpM/vj5nDd7+HW/Z+v/fcdl7Px+M87tnZ\nPbsze87d2c/O7GxKKUiSJElSH6vNdwYkSZIkLR4GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk\n9WYAIUmSJKk3AwjNqyRPS/L9JJcm+WuS85J8LckunWX2SFKS/M185nVldfK/+TTLHdCWK0luTvKX\nJKcn+XSSh6/seif4zAtnmP8Dkpzbmd68bffFM1nPyuRrZcq4kCRZLcl/Jrmofadfm2b59ZK8McnP\nklyZ5NokZyT5ryRbjjCfeyd59ATpK3z3S12Suyf5SJKz2r6/KskJSd6U5Pbznb9R6Rx3SpIbklyW\n5AdJ3ppko1VY74S/q1XM695D+e2+RlJHrMxxU1rq1pjvDGh8JflXYF9gf+ADwNXAlsCTgEcD35q/\n3M2by4CntvfrAfcCdgd+nOQ9pZQ3dZb9BvBw4KIZrH8P6v/9/jP4zDup39Mo7cHE+VqZMi4kzwJe\nDbwO+Alw+WQLJtkE+A5wV+AjwA+B64H7Ai8AHgE8eET53AvYB/juUPpcfPcLQpJHAocBlwL7AacB\nawLbA68ENgT+bd4yOHoHAJ+gXli8E7Xc/wL8a5JdSyk/Xol1Tva7mg2PAG4aSvv9CLYDK3fclJY0\nAwjNp9cDXyulvKiT9l3gf5KMa+vY9aWU4zrTRyf5GPBh4I1JTiqlfBmglHIZNeAYiSRrl1KuK6X8\nZlTbmM6oyzgH7tP+/mcp5eZplv0ssAmwXSnlrE76McB/J3naKDI4lfn87udSkg2AQ4BfAY8tpVzd\nmf3tJB8E/m5eMjd3Lhg69nw9yX7AD4CvJLlnKeWaecrbRH5aSrlxvjOxspKsCdxYfJqvFqlxPUnT\nwnBH4OKJZkx3spVk2ySXJPlKktu0tDVa949fJ7kuyYVJPjiY35Y5NcmnOtO3T3JjkvOH1v+jJF/q\nTE+77rbcPZN8I8k1rRvAvsDaM9kpE+yLAvw7cAnwms62btW9J8k/JTm5db24opX3ZW3escCjgB06\nTf7HDq3rkUm+lOTPwE/bvMm6sayV5EOp3c+uSXL4cFejts69h9IGXaD2mEG+umVcM8m7kpyb5Pr2\n912tQh7exsuSvCO1C9Gfk3w9yWZD+Zl0n00lyS5JfpLa9e4vqV3v7tWZfy4wKPtN3TJPsK6HAo8B\n3j0UPNyilPK1zvKztg+SDE5g3tzZ/3u3eZN1X+uzX6f97jvpuyf5eWq3oT8k+Wxqi8yM15fkoUmO\nSnJ5+25+m+SjE+3TjhdTWxj+ZSh4AKCUcnUp5ajONtZN8r4k57T9f06SN6dz4SPJji1vT03tFvWH\n9vpckjsMlePVSX7V8vunJCcmeXpn/rlJDhjO1/A+SfK3Sb7a/ievTfK71P/nlbpYWEq5BPh/wMbA\nczrbeXySI9r3f02S05K8Lsnq3by1txP9rh6a5JAk57cyn5Hk3UnWWZl8TiTJFkkOSj0OX5fklO4+\nbcv8TfutndP5rXwsNaAcLHMskx+f9u6Us7veyf5vXpHk/UkuBK4D7jCDvM7qdyutKn94mk/HA8uS\n/BY4tJRyZp8PJXk88GXgIOCVpZRBM/bngKcA7wN+TL36+05gc+CZbZljgCd3VrcjtZvIpkn+tpRy\nZpL1gYdSu54MTLvuJGsBRwHrULs8XAq8DHhGn3JNpZRyfZKjgWclWWOiK29JHtHyuR+10l8NuDet\nkgJe0eav3vIFcMXQag4CPk/tejPd8eGNwCnU7jUbAe+mXq29XynlhhkUr0++ug4Ent2290PqleE3\nA/cE/mmCPP4YeGHL4wfbtnaEXvtsQqn36HyD2mL2j8D6wDuAHybZupRyAfB04F+p3R8G97BMdkX/\nce3vYVNtt2PW9kHL209Y3oUFYIWAegLTrbO3JC9t2/1iW+9dW7keluQhpZSrZrCu9YEjqceWPYAr\nqf+j07UePA64qJRyYo9trNG2cV/qMeBUaneft1Ivirxu6CP7AodTv5d7Ae+ndr1Z1tb3XOr+ewf1\nav86wAPbumbqG8CfgH8G/gBsCjyRVbtY+G3gRmAH4NMt7Z7AscBHqV1Pt6UGyxsCe7Zlpvpd3YO6\n3z4L/Bm4H/C2tt7deuZr9STd6ZsHF56S3I16AeRSarezy6j/p19O8rRSyuD/7K7AhdTv7HJgC+BN\nwBEs/5+d6fFpKm8GTgBe2tZ37QzyOorvVlp5pRRfvublBfwt8AugtNcfqCevjx9abo82/2+A51JP\n+N8+tMzft2WeP5T+3Ja+dZt+epu+R5v+T+pJ21nAy1raLm2Ze89w3S9p09t3llkN+GVL33ya/XEA\ncP4U89/T1rPx0H7ZvE2/HvjjNNs4FvjhBOmDdX14knyd25nevC17OrBaJ32Hlv6iTloB9h5a3+Dz\ne8wgX4My3n+Sdb6lpT9waBvHDi33+pZ+1777bJL9eGL7zazRSdsCuAH4UCftXbRGpGnW97GWr7V7\nLDur+6DzPb1rBt9933VO+d1TT6IuAY4ZWu4Rbbl/neH6tu3ugxl8n78CftJz2ee1bTxyKP3N1GPT\nRm16x7bcgUPLfQS4Fkhn+mfTbPNc4IAJ0m/ZJ8Cd2/RTV+L3POH335l/EfDNSeaFerHhzdQT3NX6\nrnfo87sDNwN3mmb5vVleZ3Rfn+ss82nqifidhj57FHDKFOteo/Pbe3An/VgmPj7tzQT/31P83/xs\n8L3PJK+r8t368jWql5Gr5k2pLQ4PpjYP70O9mv104Mgkb5ngI6+hHphfXUrZa2jeLtTK+5DU7kZr\ntCuF327zH9n+HkutpAYjgzyaehX5u0NpF5VSfj3DdT8c+H3p9CMu9YrYwT12Rx+Dy21lkvknABu0\nLhJPHu4m0dNXZ7DsIaXT1ayU8iPqFcZbjRg1iwb7+nND6YPpRw2lHzE0fWr7e/f2d8b7LMl6wEOA\nL5ZOS1Ap5RzgRxPkYbbN9j5YGbO1zntRWzAO6iaWUn4InMfM9+VZ1Cvan0jtFnW3GX6+j12oefvx\nBMeDwU3XXd8Ymj6V2q1x4zZ9ArB16khbj02y7krm63Lgt8B7k7wkyVYruZ6JhM5xJ8kmST6R5Dzq\nsfEGarB8B+r3OfXKktuldgH7DbUrzw3U1ogAffO9PbWlePB6a2feLtTf6F+GvqMjgQcluV3Lx1qp\nI2z9OslfWz5+0NZxL2bf10opw8fvPnkd5XcrrRQDCM2rUspNpZTvl1LeUkp5LLUJ+1Rgr24/1GY3\n4AJq96VhGwFrUZvTb+i8Lm3z79S29yfg58BOSe5MvZp7THvt2JbdqU3PaN3UG2AvmSBvE6WtjLtR\nK+s/TjSzlPI94B/acl8FLkvynSQPnME2ZjLa0WRl3XQG65ipQbeO4XxePDR/YHhfXdf+3gZWep9t\nQD3RmWhfXTxBHvoYjB5zjx7Lzuo+WEmztc7JygIrsS9LKX+h/v9eSO1e87vWP/+ZU3+S39Nv30M9\nHtyDFY8FN1C7TcHy48HAdPvqM9RuKQ+jnjT+MfXers175ge45V6px1Fbx94DnNn69P/zTNYzrN2X\ncGfad5R6n8dh1K6g76JecHko9SIQ9PsN/C/wcmrXwce1z79yBp8HOKmUcmLndU5n3kbA87n1d/SB\nNn/wHb2H2orwOerof9uxvMvpqvx/TGai3/m0eR3VdyutCu+B0IJSSrkw9SbnfalXoo7vzH4m8Eng\n2CSPLqV0b8C+nNot4O8nWfWFnffHUPuP79Q+9wvqgX2jJDtQW0U+0Vm+77ovovblHbbxBGkz0u6v\neCxwXJli5JFSyiHUlpL1qQHR+4BvJdmsTD8KEEzeujGRicq1MbUlaeA6avDVNXyCNRODk7G7sOL9\nBHcZmt/bSuyzP1H3010mmHeXlckDdfjWfaj32XxwmmVnfR+MSJ/vvluWYXcBTprh+iilnAI8s13F\n3ZZ6X8XBSR5USjltkrx+B3hckm1KKSdNsszA5cA51GPIRM6d5vPD+S3U480n2kWTx1N/A1+kBhVQ\njz8rlD3JRGX/LfD81JsDHgS8CvhoknNLKd+cSb46dqZ2Nfthm96Sul+fV0q5pRUsyVP6rCx14Ild\nqV2v9u2kP2Al8zeRy6ktCe+bZP7gmL0b8JlSyrs6+Vh/Btu5tn1mrVLK9Z30yY5xEx1fe+V1RN+t\ntNJsgdC8ydAoKx33bn+HR2i6gHqCtxpwzNDnv0W9YnT7oatSg1c3gPgusBn1hrhjS3Up9V6Ft1Mr\ny2NWYt0/Ae6W5JYuDO1q3WQnGr20CuP91CtVH+7zmVLKVaWUw6knJpuwvEK7jnqT5mx4VlYcdWYH\n6n79SWeZ86itPF1PmmBdffP1/fZ3+EbL57a/x/ZYx4Sm2GfDy11NPbH9h6w46sw9qDfrzjgPpZTj\nqb/LN2WSh2El2bW9HcU+uJ7Z+10M9Pnuz6C2Wq1QliR/R73Kf+wM13eLUsqNrTvhW6nHjPtMtizw\nKeo9WB9pXdRWkDrq0mPb5LeoLVZXTXI8+MMU25lSKeVPpZQvUrs9dss607KXFki9tiUNf7aX1IfI\nvZ96ceQLLXnQxeqGznJrsvz31zXR72pt6jF2eKCFPVYmj5P4FvVG9F9O8h0NWoHWnSAfL5hgfZMd\nn85rf2/Zv60b5EyG/O2bV2D2vltpVdkCofl0WpLvUPt/ngPcjjqqxMuBg0spvxv+QCnloiQ7Uk+2\njmktEReWUo5N8nnqleQPUVsubqbevPZE4A1l+ShPP6COgvIYljebQw0aXgX8rnTGv5/Bug+kjkDy\nlSRvonZxenkrV19rdQKQdVn+ILmHU29GnPRJxkneQW0BOIZ61Woz6ihAp5T6PAWoNz6/Isk/Uq9e\nX1lKOWMG+eu6LfC1JJ+gjr7yHmof9M90lvkC8JYkbwaOo7biPGd4RX3zVUo5rX0Xe7crzD+m7pu3\nAp8vpZw6/Jmp9NxnE3krtW/74alDhK5PDT7/wvQtCJPZnXol/IQk/8XyB8ndmzra0ZrU0cpmdR80\npwNPSvItagvLhUNB98qY9rsvpdyU5G3Uq++fo3Yl2ZTaGnMWKz64a9r1JXkydYSbr1GPKetRv88r\nWTGwXUEp5Y+tm9NhwM/a/h88SG476v/xIdTv5yDqSebRqc+H+Dm1dWBL6kMgn1Zm8LyEJJ/s5O9S\n6uASz2P5PVaDsu+f5MPUEZ0exNAJd+t2ty+15eJs6kn6HtQRlPo8yG3TduxZjdp1bHvqwBABnlJK\n+Wtb7lfUE+d9ktxEPQGf7AF7E/6ukhwHvC7JRdTA7YXMbtfHt1GP099P8hFqq9AG1JPte5ZSBk+V\n/hZ1JMBTqfvsGUx88j/Z8emb1P/5/0myFzU4+neg98hhffI6C9+tNPvKAriT29d4vqiV8mHUyuha\n6j0GJ1MPwGt1ltuDNgpTJ20j6r0SZwKbtrTVqEOv/ryt7y/t/fuprQfdbf+UzkhLLW0wQtMBE+S1\n17qp93AcAVxDHVljX2pLxy0jCU2xPw5g+YgiN1NPKn5FHaVj+wmW36O7XuoVySOpVwuvo/br/jQr\njoxzl5a/K+mMpjPRPh7K17md6c3bsq8APtTKeQ31hHqLoc/epu2Di9o2v0g9Ibtl5Jye+dq8s+xa\n1L7X51FPXs5r02tOkMcXD+Vnx5a+Y999NsX3tQv1pO+v7fdwKHCvoWV6jcLUWX596jCSJ1P/H66j\nXqXfl3oyMev7oKXtQG1VuZYVR/aZ7Lvvs85e331bdnfq/9N11C4dnwU2melviRpwf5EaPFxL/W0e\nATys5/6/B3VUpMHNvVdRb3LeE7jdUF72Bn7dlvtjW25v2shcnX3y2Gn+b5dRW1oubes6h9rS2N3e\natQTzfOo/2tHUgOW7ne1EfUixpltmT8C3wN27lHu7mhGN1BP6n9IHdlrwwmW37rNv4Y6cMI7qM/S\nGP5fnex3tTn15PvKVu6PUP8XV/gNTZLXvdtya0yz3GbUlqULqIH4RdSRjXbvLHNnanD2p/Y6iHo/\nRq/jU5v3iPbdX9P2/e70/L/pm9dV+W59+RrVazCMnCRJkiRNy3sgJEmSJPVmACFJkiSpNwMISZIk\nSb0ZQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAoQklOSDJ4bOw\nnr2TnDYbeZpmO5snKUm2HfW2xl2SPZJcNaJ1H5vkI53pc5O8fkTbGlk5pHEwl/XEbG1LozPK+n64\nLmj1/bNGtK05OW9Z7AwgFoF24Nx7jjf7amD3Th5WOLFbgH4PbAKc0vcDSXZMcu40y5zbDlTd159X\nMa/D25j3fdv2xaB8Nye5IskvkuybZIuhxb8I3LPnemca2D0DeONM8t4zHxNVNr3LIS101hOzp11c\nOHaaZYbrhZKkd/3TMx8ju4Aygzzs0SnfTUn+nOTEJPsk2Who8f8AHtVzvYM65849s/JQ4KMzyXuP\nPExWP/UuxzhbY74zoIWplPKX+c7DTJRSbgIuHtHq3wF8rDN984i2s8qSrFlKuWEVVnE/4I/A+sCD\ngNcApyZ5UinlewCllL8Cf13lzHYkWauUcn0p5Y+zud6pjKIc0jhZbPXECLwE6LaKrMqxd2SSrAak\n1ZMr4xpgSyDA7agn828AXpLkUaWUXwGUUq4CZrVVt1M3XDab653KKMqxFNkCsQglWSvJu5Ocl+S6\nJL9N8q9t3upJPp3knCR/TXJWkn9vB5DB5w9IcniStyS5JMlVSf43yTrDywzeU6PxV3auRGzeZ1s9\ny7Neks+0fFyU5P+1/B3QWWb3JCckuTLJpUm+lGTTzvwVriR0rm48JslPk1zTrpo8ZCV2+ZWllIs7\nr0s72719kk+2PF2Z5HvdqxlJ7pTk80nOb/vol0le0Jk/2b691dWZKcr4xCTHJ7ke2LnNe0qSk5Jc\n276ffZKs1aOsl7Yynl1K+TKwI3AysH+S1du6V+j6k+RuSQ5N8se2n3+dZLc2+5z294SW12MH5W7f\n8RuSnA+c39InuoK5fpLPtd/HxRm6IpcJWhfSuXKX5a1MX2rLnjtROVray5KcneT69vclE2zrpe33\nd3X739sdaYHJEqsnJijf2kn+s+Xt2iTHJXlEZ/6aSfZLcmEr/++TvLcz/xmprax/bceu7yXZeIbZ\n+PNQ3XB5Z/2bJvlCkj+11zeSbNWZv2U7bl7cjiU/S/LkzvxjgXsAHxjsz5Y+0XFrhfpisEyrG04D\nrgfu0+a9IMnpbZ+dmeTfenwXpZXvolLKGaWUzwEPB/4MfLyTjxW6/iR5QJKjU1u0r0ry8yQ7Jdkc\nOKYtdlnL+wGDcif5WJL/SHIZ8KOWPlFrzF3afr2m/c67rWETti5kxfpisvppuByrJXlr+w1dl+TU\nJLtOsK1nJjmq5ef0JI+bZr8uagYQi9OBwPOB11IPCsuAP7V5qwEXAM9u894MvAl4wdA6HkW9wvwY\n4JnA44H3TbK9VwM/Af6X2k1oE2qXob7bms4HW36eDjwW2Ab4+6Fl1gL2anl+MnBn4PM91v0eYE/g\nIcDlwEFJMsP8Tait5xvApi1PDwa+D3w3ySZtsdsAP2vz7wfsC3wiyWPa/Mn27Uy8D3gLcG/gp0l2\nBg4CPtK2+ULgWcC7Z1rGdsXqw9SuPg+eZLGPAusCO7XtvYZasQBs1/7uQi3bMzqfexTwwDbvMUzu\ntcCvqN/hXsC7kzxjiuWHPbT9fUnLw0MnWijJ06n77D+B+1O/q48mecrQom8DDqX+Fr9IDa7uPoP8\nSHNhqdUTw94P/CP1+PZg4FTgW51j779S65TdgK3asmcAJLkL8AXqProP8Ejgs6uYn1skWZd6gnwt\ndR8+HLgI+E6bB7WV95vA46j7+MvAV5Lcu81/BvXCyjtYvj9n4jbAW4GXAfcFzku9IPJu6jHsPsDr\nqC0Jr5hpGdtV+o8Dj0yy4SSL/R+13NsBWwN7U/fJ76m/J6h1xibU38/A7tTWjr+n/oYn83bgsLbu\nTwKfGQ4YpjFV/dT1auD/UffVA4CvUr+rrYeW2wfYj/p9ngB8Icn6M8jP4lJK8bWIXtQDYQF2mcFn\n3gt8pzN9APUEb/1O2u7AdcB6nWUO78w/FvjISmxrb+C0KZZfn3p1ZLdO2nrUiu6AKT5377YfNmvT\nm7fpbdv0jm16585nduh+pue+O7ftl6s6rze1eY9u0+sMfeYU4N+nWOcXgE9NtW87+b9zJ22yMj5z\n6LPfB946lPa0ltdMkqdbbW+Cff3sNr0HcFVn/i+AvSZZ7wp5HvoNXgasPZS+wr5o+/+ooWU+Bfyw\nM12AZ03wvb1+mmWGy/EjYP8J8jm8rfd0ptegNu/v3vc35cvXqF8ssXpieFvUOuJ64Pmd+asDvwHe\n1ab3A46e6JhHvRhRgHuswj4u1C6Q3brhuW3eC4Gzuttu+bt8cBydZJ3HAW/pTK9wHGtpKxy3WtqO\ndI7fbZkCbDO03O+A5w2lvQY4fYo83Wp7nXm7tO1sN9H3CFwBLJvksyvkeeg39IsJll9hX7TP/s/Q\nMt8BPtfeb87Edc8tdcEUywyX4wLgbRPkc3hbL+vM37SlPWJlf2ML/eU9EIvPg6l98I+ZbIEkLwde\nTG3+XAdYEzhvaLFflHoFYeAn1Kv8W1JPCHvpua3Bsn9PveIy8DLgtPaZ4weJpZSrMzQCQmrXo72o\nVxruSL06AXB3WveXSXTLcmH7u9E0nxn2IeDTnelBP/1tqFfeLxtq1LgNdT+S2u1nT+rVr02Btan7\n+dgZbH86Jw5NbwNsl+QNnbTVqN/PXahXhGZiULgyyfx9gY8n2YVaYX+1lHJSj/WeVkq5rsdyP5lg\neiYtEH3dB9h/KO2HwFOH0m75TZVSbmzN7MM3E0rzaUnVE6WUg4YW27Kt40eDhFLKTUl+Qr3aDjXg\nOAo4M8m3gSOAb5ZSbgZ+Tj3ZPK3N+w5wSJl5P/v/B3yrM31J+7sNsAVw5VDdsC7L64b1qHXak6lX\nv9ek1h299+s0bqQzqEhrJbgbtQW8e0/fGiw/xs/UdHXDh4BPJVlGrRu+XEr5dY/19qk/YOK64Uk9\nP9tLktsBd6XzW2t+CDxxKG2y840lyQBiiUnyj9QuGK8Hfky9AvBKalPufG/rRGoAMHAJPUbBaQfa\nI6kH+ecBl1K7MP2AWplNpXtT2+AgN9Oue5eXUs6eIH01ahmGu1tB3RdQ983rqE2gp1KvUr2b6Q8q\ngxu1uwf2NSdZ9uoJ8vV24EsTLLsyN6INKuTfTjSzlPLpJEdSD6aPBX6c5D2llL2nWe9wvldW4dYV\n4GT7amXX3zV8o2TB7qBaRBZhPTET9TJzKT9rfe13pnbBOhD4eZLHtWDj8cD21G5ZLwLek3pD8M9n\nsK2Lp6gbTqF2nxo2uAD1H9Qr+K+ntlZcA3yG6eu0m+l3vLuurHjT9OAY9XLq9zAb7kvd3+dONLOU\nsneSg4AnUL+HvZK8vJQyfKFm2GzUDbeqQ5PMZr0AU9QNpZTSgsclWzcYQCw+p1B/kDux4pWPgUcA\nPy2ldMfS33KC5R6QZL1SyuAfdXtqk/BvJtnu9dQm2JXZFnDLqDcrHGyT/Ib6T/dQ2glq6yN6/05e\n7k0NGN5USjmnLTOKK9Az9TNgY+DmUsqEJ9fUffT1Uspn4Zb7Jv6W5fcIwMT7dnCiv0nn/XB/y6ny\nde9JKrYZaS0or6F+F5MOUVhKOZ/aB/WTreXj1dRm4OvbIsPlm4ntJ5j+VWf6Mjr9g1NvhBzuL3xD\njzz8itrNrdva9Ajg9JlkVloAllQ9MYHftG3tMMhLO1Y9nNrvfrCuK4FDgEPaTbrHAX8DnFlqP5Of\nAD9J8g7gl9SW4pkEEJP5GfAc4A+llMmG/X4E8JlSB6sgyaDl+szOMpPVDesmuV0pZXChatq6oZRy\nSZILgS1LKZ/pX5SJtb79Lwe+N1XLTSnlLGqAtF9r+XgxtaV3tuqG/YemB3VDtw4dGN5P0+ahlHJF\n2287UFtRBsa+bjCAWGRKKWcmOZjaLPhq6oFqM2DzdpJ6JrBHkidQD8K7UW/i+tPQqtag3vz5Dmrz\n3Hup/Qkni/zPpXaL2Zx6Ff2PM9jWVOW5Ksn+wPuS/IHaveYt1MpvEN3/jtrv9lVJ/pva1eSdfbcx\nQt+hNmsemuTfgV9TuwjtQu3f+wPqPvrH1NFB/gD8C7Vp++TOes7l1vv2bOqNZnsn2ZPax/ItPfP1\nDuDwJOcBB1Obsu9P7af679N8dqMka1DvTXkg8G/U7hBPLJMMAZhkX2qXgzOpQ/ztwvID66XUfsI7\np45+dG2Z+dCP2yd5I/VEYEfqTXXP7cz/LnXklx8DN1FbeK4dWse5wGOSfI96ZW6i3+gHqCM1nQR8\nu5XjuYymu5Q0MkutnpigfFe3k9FBvXEO9Vi1Me1ZAUleS61PTqFeQPgnauvH+Um2p7aWHklt4Xgw\ntXvPbJ0QHkRtWTg0yduoddjdgF2Bj7eT6jOBpyc5tOVvL2oXpq5zgb9P8jnqcesPwE+pV+jfk+TD\n1Bt2+94EvRfwX6nPMjqC2nLxEGDTUsp7pvhc2o3nALdn+TCut+fWXTwHH1iH2srypVaOjWnBZFvk\nPGod/6QkXwf+OtRdro9nJDmB2iX4WdSWpodBDUSTHAe8oV2ovD11UJWuvvXTB4B3JDmL2r1qd2rP\ng5UZ1XHJWLJNK0vc86lXWfajnrQeQP3nAPgE9aTx/6ijAGxOHeVo2PeoV1yOoY4o8F1gqpPL/6BG\n66dTI/u7z2Bb03k9tTvSYS0/p1Kbsa8FaFc3llFvBD6dehB87UpsZ1a1K1hPpO67/6GO8HEwcC+W\n9398F/X+jm9Sb26+mlq5dN1q35b6LIfdqF28fk7tkvSmnvk6ktoPdKe27eOp92H8rsfHf0mtdE+m\nBiInAw8Y0nTYAAAfqUlEQVQspXx/is+sBvxXy/9R1Ap5WcvLjdTRUF5M3SeH9inDkA9Rg5mTqfvz\nbaWUQzrzX0dtvTqWGmR8iloxMLTMTtSg7GQmUEr5GjXA+7dWllcDryilfH0l8izNt6VWTwx7A3UU\ntP+lBgkPpN40PrjH60rqPQrHUwOorYEnlFKuAf5CvaJ8OPXq+AeBd5Y6POkqa9t4JPW49CXq/j8Q\n2IDlgdNrqcepH1Drh+Pa+663UQOP39CuqJf6rJznUkdvOhV4KXW0pT75+hT1Bu/nUeuVH7TPnzPN\nR9el1gsXUvfna4GvA/cv7RkQE7iJWt4DqHXjV6ktPq9tebmAWpfvQ60zVuYBhHtTR3P6BfDPwAtK\nKSd05r+w/T2B+jtc4SLcDOqn/ahBxPup920+nTp4yWy0Vi1aqedAGietKffOpZQnT7fsfEiyNvXq\nxAdKKbNR0UiSZmCh1xOS5pddmDTvkjyY2i3peOC21CtLt6VeXZIkSdICMm9dmJIclOSMJKcl2X9w\nd3yq/VKfAvuLdJ4cnGSX9pmzW7/wQfodU5/+d1b7u8F8lEmr5LXUriXfpfaVfGS7MVfSmLF+kKSF\nbWQBRI+D9EHU0XUeQB0X+sUt/QnUh+BsRe2b97G2vtWB/27z7ws8J8lgeMk9gaNLKVtR75K/pfLQ\nrZVS9lhIzdKllJNLKduWUm5bStmglLJTz+cISFqErB8WvoVWT0haWEbZAnFiu4r06DZ05QpKKUeU\nhtp1ZbM2a1fq0GallHIccIfUR9NvB5xdSvltKeV66tN8d+185sD2/kDqzbaSpIXJ+kGSFrFR3gPx\nt9SrQa8C/jvJZ4EDSikXdhdqTdPPo454AvVpvb/vLHJ+S5so/WHt/cadkRcupnaBuZUkL6VetWK9\n9dbb5t73vveMC3XS5ZfPaPlt7nSnGW9DkkbppJNO+kMpZcN5zMKSrB9gZnWE9YOkhaZv/TCyAKKN\nGX84dTz6Danj7/4uyd+VUo7vLPpR4PttzPzZ2G5JMuHQUqWUT1IfdsW2225bTjzxxBmvPwceOP1C\nHScuWzbjbUjSKLVnhMybpVo/wMzqCOsHSQtN3/phpKMwJbk9dSz7PahjQ7+QOl7vYP5ewIbAyzof\nu4A67vHAZi1tzUnSAS5Jskkp5aLWnD08BrwkaQGxfpCkxWuUN1F/jvrwli2A55dSHlVK+Uwp5do2\n/8XAzsBzSik3dz56GPD8NtrG9sBfWvPzCcBWSbZIsha14jms85nBpZxlrNzDqiRJc8D6QZIWt1G2\nQBwM7NGe9DeRj1MfFvaTdg/dV0op76A+Xv2J1EfeXwO8AOoTA5O8ivro+dWB/Uspv2zrei9wcJIX\ntXU+ezRFkiTNAusHSVrERnkPxGHTzJ9w223UjVdOMu8IagUynH458JiVyKYkaY5ZP0jS4jZvD5KT\nJEmStPgYQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKk3\nAwhJkiRJvRlASJIkSerNAEKSJElSbwYQkiRJknozgJAkSZLUmwGEJEmSpN4MICRJkiT1ZgAhSZIk\nqTcDCEmSJEm9GUBIkiRJ6s0AQpIkSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJ\nkiSpNwMISZIkSb0ZQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYA\nIUmSJKk3AwhJkiRJvRlASJIkSerNAEKSJElSbwYQkiRJknozgJAkSZLUmwGEJEmSpN4MICRJkiT1\nZgAhSZIkqTcDCEmSJEm9GUBIkiRJ6s0AQpIkSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmS\nJPVmACFJkiSpNwMISZIkSb0ZQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAk\nSZIk9WYAIUmSJKk3AwhJkiRJvRlASJIkSerNAEKSJElSbwYQkiRJknozgJAkSZLUmwGEJEmSpN4M\nICRJkiT1Nq8BRJL9k1ya5LRO2t5JLkhySns9sTPvjUnOTnJGkp076dskObXN2y9J5roskqTZY/0g\nSQvXfLdAHADsMkH6h0spW7fXEQBJ7gvsBtyvfeajSVZvy38MeAmwVXtNtE5J0uJxANYPkrQgzWsA\nUUr5PvDHnovvCnyhlHJdKeUc4GxguySbALcrpRxXSinAZ4CnjSbHkqS5YP0gSQvXGvOdgUn8S5Ln\nAycCryul/AnYFDius8z5Le2G9n44fUHIgQfOaPmybNmIciJJS8KSqR8kabGa7y5ME/kYcE9ga+Ai\n4IOzteIkL01yYpITL7vsstlarSRpblg/SNICsOACiFLKJaWUm0opNwP/A2zXZl0A3K2z6GYt7YL2\nfjh9onV/spSybSll2w033HD2My9JGhnrB0laGBZcANH6rA48HRiMwHEYsFuStZNsQb0Z7vhSykXA\nFUm2b6NrPB84dE4zLUkaOesHSVoY5vUeiCSfB3YE7pzkfGAvYMckWwMFOBd4GUAp5ZdJDgZOB24E\nXllKuamt6hXUETvWAb7ZXpKkRcr6QZIWrnkNIEopz5kg+dNTLL8PsM8E6ScC95/FrEmS5pH1gyQt\nXAuuC5MkSZKkhcsAQpIkSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMI\nSZIkSb0ZQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKk3\nAwhJkiRJvRlASJIkSerNAEKSJElSbwYQkiRJknozgJAkSZLUmwGEJEmSpN6mDSCS7JBkvfZ+9yQf\nSnKP0WdNkrSQWT9I0njq0wLxMeCaJA8CXgf8BvjMSHMlSVoMrB8kaQz1CSBuLKUUYFfgI6WU/wZu\nO9psSZIWAesHSRpDa/RY5sokbwR2Bx6ZZDVgzdFmS5K0CFg/SNIY6tMC8Y/AdcCLSikXA5sBHxhp\nriRJi4H1gySNoWlbIFql8KHO9O+wj6skjT3rB0kaT5MGEEmuBMpk80sptxtJjiRJC5r1gySNt0kD\niFLKbQGSvBO4CPgsEOC5wCZzkjtJ0oJj/SBJ463PPRBPLaV8tJRyZSnlilLKx6gjbkiSxpv1gySN\noT4BxNVJnptk9SSrJXkucPWoMyZJWvCsHyRpDPUJIP4JeDZwSXv9Q0uTJI036wdJGkNTjsKUZHXg\n6aUUm6QlSbewfpCk8TVlC0Qp5SbgOXOUF0nSImH9IEnjq8+TqH+U5CPAF+n0bS2l/GxkuZIkLQbW\nD5I0hvoEEFu3v+/opBXg0bOfHUnSImL9IEljqM+TqHeai4xIkhYX6wdJGk/TjsKU5PZJPpTkxPb6\nYJLbz0XmJEkLl/WDJI2nPsO47g9cSR2q79nAFcD/jjJTkqRFwfpBksZQn3sgtiylPLMz/fYkp4wq\nQ5KkRcP6QZLGUJ8WiL8mecRgIskOwF9HlyVJ0iJh/SBJY6hPC8Q/Awd2+rX+CdhjZDmSJC0W1g+S\nNIb6jMJ0CvCgJLdr01eMPFeSpAXP+kGSxlOfUZjeneQOpZQrSilXJNkgybvmInOSpIXL+kGSxlOf\neyCeUEr582CilPIn4Imjy5IkaZGwfpCkMdQngFg9ydqDiSTrAGtPsbwkaTxYP0jSGOpzE/VBwNFJ\nBmN7vwA4cHRZkiQtEtYPkjSG+txE/b4kPwce25LeWUo5crTZkiQtdNYPkjSe+rRAAPwKuLGU8p0k\n6ya5bSnlylFmTJK0KFg/SNKY6TMK00uAQ4BPtKRNga+NMlOSpIXP+kGSxlOfm6hfCewAXAFQSjkL\n2GiUmZIkLQrWD5I0hvoEENeVUq4fTCRZAyijy5IkaZGwfpCkMdQngPhekjcB6yR5HPAl4OujzZYk\naRGwfpCkMdQngNgTuAw4FXgZcATwllFmSpK0KFg/SNIY6jOM683A/7QXAEl2AH40wnxJkhY46wdJ\nGk+TBhBJVgeeTR1V41ullNOSPBl4E7AO8OC5yaIkaSGxfpCk8TZVC8SngbsBxwP7JbkQ2BbYs5Ti\nMH2SNL6sHyRpjE0VQGwLPLCUcnOS2wAXA1uWUi6fm6xJkhYo6wdJGmNT3UR9fevfSinlWuC3Vg6S\nJKwfJGmsTdUCce8kv2jvA2zZpgOUUsoDR547SdJCZP0gSWNsqgDiPnOWC0nSYmL9IEljbNIAopRy\n3lxmRJK0OFg/SNJ46/MgOUmSJEkCDCAkSZIkzcCkAUSSo9vf941q40n2T3JpktM6aXdMclSSs9rf\nDTrz3pjk7CRnJNm5k75NklPbvP2SZFR5lqRxZ/0gSeNtqhaITZL8HfDUJA9O8pDua5a2fwCwy1Da\nnsDRpZStgKPbNEnuC+wG3K995qPtaagAHwNeAmzVXsPrlCTNHusHSRpjU43C9DbgrcBmwIeG5hXg\n0au68VLK95NsPpS8K7Bje38gcCzwhpb+hVLKdcA5Sc4GtktyLnC7UspxAEk+AzwN+Oaq5k+SNCHr\nB0kaY1ONwnQIcEiSt5ZS3jmHedq4lHJRe38xsHF7vylwXGe581vaDe39cLokaQSsHyRpvE3VAgFA\nKeWdSZ4KPLIlHVtKOXy02bpl2yVJma31JXkp8FKAu9/97rO1WkkaS9YPkjSeph2FKcl7gFcDp7fX\nq5O8e4R5uiTJJm3bmwCXtvQLgLt1ltuspV3Q3g+n30op5ZOllG1LKdtuuOGGs55xSRon1g+SNJ76\nDOP6JOBxpZT9Syn7U29Ae/II83QYsKy9XwYc2knfLcnaSbag3gx3fGvOviLJ9m10jed3PiNJGh3r\nB0kaQ9N2YWruAPyxvb/9bG08yeepN8TdOcn5wF7Ae4GDk7wIOA94NkAp5ZdJDqZe5boReGUp5aa2\nqldQR+xYh3pznDfISdLcsH6QpDHTJ4B4D3BykmOAUPu67jkbGy+lPGeSWY+ZZPl9gH0mSD8RuP9s\n5EmS1Jv1gySNoT43UX8+ybHAQ1vSG0opF480V5KkBc/6QZLGU68uTK0f6WEjzoskaZGxfpCk8dPn\nJmpJkiRJAgwgJEmSJM3AlAFEktWT/HquMiNJWhysHyRpfE0ZQLRh8M5I4mM5JUm3sH6QpPHV5ybq\nDYBfJjkeuHqQWEp56shyJUlaDKwfJGkM9Qkg3jryXEiSFiPrB0kaQ32eA/G9JPcAtiqlfCfJusDq\no8+aJGkhs36QpPE07ShMSV4CHAJ8oiVtCnxtlJmSJC181g+SNJ76DOP6SmAH4AqAUspZwEajzJQk\naVGwfpCkMdQngLiulHL9YCLJGkAZXZYkSYuE9YMkjaE+AcT3krwJWCfJ44AvAV8fbbYkSYuA9YMk\njaE+AcSewGXAqcDLgCOAt4wyU5KkRcH6QZLGUJ9RmG5OciDwU2rT9BmlFJuoJWnMWT9I0niaNoBI\n8iTg48BvgABbJHlZKeWbo86cJGnhsn6QpPHU50FyHwR2KqWcDZBkS+AbgBWEJI036wdJGkN97oG4\nclA5NL8FrhxRfiRJi4f1gySNoUlbIJI8o709MckRwMHUPq7/AJwwB3mTJC1A1g+SNN6m6sL0lM77\nS4BHtfeXAeuMLEeSpIXO+kGSxtikAUQp5QVzmRFJ0uJg/SBJ463PKExbAP8CbN5dvpTy1NFlS5K0\n0Fk/SNJ46jMK09eAT1OfLnrzaLMjSVpErB8kaQz1CSCuLaXsN/KcSJIWG+sHSRpDfQKIfZPsBXwb\nuG6QWEr52chyJUlaDKwfJGkM9QkgHgA8D3g0y5uoS5uWJI0v6wdJGkN9Aoh/AO5ZSrl+1JmRJC0q\n1g+SNIb6PIn6NOAOo86IJGnRsX6QpDHUpwXiDsCvk5zAin1cHaZPksab9YMkjaE+AcReI8+FJGkx\nsn6QpDE0bQBRSvneXGREkrS4WD9I0njq8yTqK6mjagCsBawJXF1Kud0oMyZJWtisHyRpPPVpgbjt\n4H2SALsC248yU5Kkhc/6QZLGU59RmG5Rqq8BO48oP5KkRcj6QZLGR58uTM/oTK4GbAtcO7IcSZIW\nBesHSRpPfUZhekrn/Y3AudRmaknSeLN+kKQx1OceiBfMRUYkSYuL9YMkjadJA4gkb5vic6WU8s4R\n5EeStMBZP0jSeJuqBeLqCdLWA14E3AmwgpCk8WT9IEljbNIAopTywcH7JLcFXg28APgC8MHJPidJ\nWtqsHyRpvE15D0SSOwKvBZ4LHAg8pJTyp7nImCRp4bJ+kKTxNdU9EB8AngF8EnhAKeWqOcuVJGnB\nsn6QpPE2VQvE64DrgLcAb64PGQUg1JvkbjfivEmSFibrB42FHHjgjJYvy5aNKCfSwjLVPRAzekq1\nJGk8WD9I0nizEpAkSZLUmwGEJEmSpN4MICRJkiT1NuUwrlrYvLlLkiRJc80WCEmSJEm9GUBIkiRJ\n6s0AQpIkSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMISZIkSb0ZQEiS\nJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKm3BRtAJDk3yalJ\nTklyYku7Y5KjkpzV/m7QWf6NSc5OckaSnecv55KkUbJ+kKT5tWADiGanUsrWpZRt2/SewNGllK2A\no9s0Se4L7AbcD9gF+GiS1ecjw5KkOWH9IEnzZKEHEMN2BQ5s7w8EntZJ/0Ip5bpSyjnA2cB285A/\nSdL8sH6QpDmykAOIAnwnyUlJXtrSNi6lXNTeXwxs3N5vCvy+89nzW9oKkrw0yYlJTrzssstGlW9J\n0mhZP0jSPFpjvjMwhUeUUi5IshFwVJJfd2eWUkqSMpMVllI+CXwSYNttt53RZyVJC4b1gyTNowXb\nAlFKuaD9vRT4KrXJ+ZIkmwC0v5e2xS8A7tb5+GYtTZK0xFg/SNL8WpABRJL1ktx28B54PHAacBiw\nrC22DDi0vT8M2C3J2km2ALYCjp/bXEuSRs36QZLm30LtwrQx8NUkUPP4f6WUbyU5ATg4yYuA84Bn\nA5RSfpnkYOB04EbglaWUm+Yn65KkEbJ+kKR5tiADiFLKb4EHTZB+OfCYST6zD7DPiLMmSZpH1g+S\nNP8WZBcmSZIkSQuTAYQkSZKk3hZkFyZJkqTZlgMPnH4hSdOyBUKSJElSb7ZASJIkzYKZtHCUZcum\nX0haoGyBkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMISZIkSb0ZQEiSJEnqzQBCkiRJUm8G\nEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKk3AwhJkiRJvRlASJIkSerNAEKSJElS\nbwYQkiRJknozgJAkSZLUmwGEJEmSpN4MICRJkiT1ZgAhSZIkqTcDCEmSJEm9GUBIkiRJ6s0AQpIk\nSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMISZIkSb2tMd8ZkCRVOfDA\n3suWZctGmBNJkiZnC4QkSZKk3gwgJEmSJPVmACFJkiSpN++BWGBm0gdakiRJmmu2QEiSJEnqzQBC\nkiRJUm8GEJIkSZJ68x4ISZK0aHnvoDT3bIGQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKk3AwhJ\nkiRJvTkKkyRJ0gI309GmyrJlI8qJZAuEJEmSpBmwBUKSJGmO+fwKLWa2QEiSJEnqzQBCkiRJUm8G\nEJIkSZJ6M4CQJEmS1JsBhCRJkqTeHIVJs8LxqSVJksaDLRCSJEmSejOAkCRJktSbXZgkSZKWmJl0\nLbZbsWbKAEKT8imZkiRJGmYXJkmSJEm9GUBIkiRJ6m3JdGFKsguwL7A68KlSynvnOUuSpAXA+mFx\nsfustPAtiQAiyerAfwOPA84HTkhyWCnl9PnNmSRpPo1r/eCzeSSN0pIIIIDtgLNLKb8FSPIFYFdg\nSVcQkqRpLdj6YVxO8m1RWHoc4UlLJYDYFPh9Z/p84GHzlBeNwCgPVuNSiUtjyvphBAwK1NdirmMX\nc95HLaWU+c7DKkvyLGCXUsqL2/TzgIeVUl41tNxLgZe2yXsBZ6zE5u4M/GEVsruYjEtZLefSYjmn\nd49SyoazmZmFao7rBxif39903A/LuS+Wc18st1D3Ra/6Yam0QFwA3K0zvVlLW0Ep5ZPAJ1dlQ0lO\nLKVsuyrrWCzGpayWc2mxnBoyZ/UD+L0MuB+Wc18s575YbrHvi6UyjOsJwFZJtkiyFrAbcNg850mS\nNP+sHyRpli2JFohSyo1JXgUcSR2mb/9Syi/nOVuSpHlm/SBJs29JBBAApZQjgCPmYFOr3MS9iIxL\nWS3n0mI5tYI5rB/A72XA/bCc+2I598Vyi3pfLImbqCVJkiTNjaVyD4QkSZKkOWAAMQNJdklyRpKz\nk+w53/npI8ndkhyT5PQkv0zy6pZ+xyRHJTmr/d2g85k3tjKekWTnTvo2SU5t8/ZLkpa+dpIvtvSf\nJtl8rsvZ8rF6kpOTHN6ml1wZW17ukOSQJL9O8qskD1+KZU3yb+03e1qSzye5zVIoZ5L9k1ya5LRO\n2pyUK8myto2zkozPgOVzIIuwfpipUf92F4vMQb26WLTj8vFJft72xdtb+tjtCxjteciCU0rx1eNF\nvfnuN8A9gbWAnwP3ne989cj3JsBD2vvbAmcC9wXeD+zZ0vcE3tfe37eVbW1gi1bm1du844HtgQDf\nBJ7Q0l8BfLy93w344jyV9bXA/wGHt+klV8a2/QOBF7f3awF3WGplpT786xxgnTZ9MLDHUign8Ejg\nIcBpnbSRlwu4I/Db9neD9n6D+fodL6UXi7R+WIlyjvS3u1hezEG9ulheLd/rt/drAj9t5Rm7fdHK\nMLLzkIX2mvcMLJYX8HDgyM70G4E3zne+VqIchwKPoz4kaZOWtglwxkTloo5c8vC2zK876c8BPtFd\npr1fg/pglMxxuTYDjgYe3fnHXVJlbNu+PfXEOkPpS6qsLH968B1bHg4HHr9UyglszoonYSMvV3eZ\nNu8TwHPm+je8FF8skfqhZ1lH9ttdrC9GUK8uxhewLvAz6pPex25fMOLzkIX2sgtTf4MTmoHzW9qi\n0boyPJh6hWDjUspFbdbFwMbt/WTl3LS9H05f4TOllBuBvwB3mvUCTO0/gX8Hbu6kLbUyQr1ScRnw\nv62Z9FNJ1mOJlbWUcgHwH8DvgIuAv5RSvs0SK2fHXJRr0R/DFrBx3rez+dtddEZYry4ardvOKcCl\nwFGllHHdF6M+D1lQDCDGRJL1gS8DrymlXNGdV2qYW+YlY7MgyZOBS0spJ022zGIvY8ca1C4EHyul\nPBi4mtoseoulUNbWT3RXasB0V2C9JLt3l1kK5ZzIUi2Xlr5x++0u5Xp1JkopN5VStqZegd8uyf2H\n5i/5fTFm5yGAAcRMXADcrTO9WUtb8JKsST3IHVRK+UpLviTJJm3+JtQrBzB5OS9o74fTV/hMkjWo\n3Wwun/2STGoH4KlJzgW+ADw6yedYWmUcOB84v13hATiEGlAstbI+FjinlHJZKeUG4CvA37H0yjkw\nF+VatMewRWCc9+1s/nYXjTmoVxedUsqfgWOAXRi/fTEX5yELigFEfycAWyXZIsla1JsTD5vnPE2r\n3b3/aeBXpZQPdWYdBixr75dR+3AO0ndLHcllC2Ar4PjWBHdFku3bOp8/9JnBup4FfLdF2nOilPLG\nUspmpZTNqd/Ld0spu7OEyjhQSrkY+H2Se7WkxwCns/TK+jtg+yTrtvw9BvgVS6+cA3NRriOBxyfZ\noLXwPL6ladUtyvphlszmb3dRmKN6dVFIsmGSO7T361DvBfk1Y7Yv5ug8ZGGZ75swFtMLeCJ1tIXf\nAG+e7/z0zPMjqE1mvwBOaa8nUvtEHw2cBXwHuGPnM29uZTyDzt3/wLbAaW3eR1j+IMLbAF8CzqaO\nHnDPeSzvjiy/eWmplnFr4MT2nX6NOqLOkisr8HZqRXQa8FnqaBWLvpzA56n3ddxAbVF60VyVC3hh\nSz8beMF8/YaX4otFWD+sRBlH+ttdLC/moF5dLC/ggcDJbV+cBrytpY/dvuiUY0dGcB6y0F4+iVqS\nJElSb3ZhkiRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMISZIkSb0ZQEirIMkxSXYeSntNko9N\n8ZmrRp8zSdJ8sn7QUmYAIa2az1MfGtO1W0uXJI0v6wctWQYQ0qo5BHhSe/osSTYH7gqcnOToJD9L\ncmqSXYc/mGTHJId3pj+SZI/2fpsk30tyUpIjk2wyF4WRJM0a6wctWQYQ0ioopfyR+rTfJ7Sk3YCD\ngb8CTy+lPATYCfhgeyz9tJKsCfwX8KxSyjbA/sA+s513SdLoWD9oKVtjvjMgLQGDZupD298XAQHe\nneSRwM3ApsDGwMU91ncv4P7AUa1OWR24aPazLUkaMesHLUkGENKqOxT4cJKHAOuWUk5qTc0bAtuU\nUm5Ici5wm6HP3ciKrYCD+QF+WUp5+GizLUkaMesHLUl2YZJWUSnlKuAYalPy4Oa42wOXtsphJ+Ae\nE3z0POC+SdZOcgfgMS39DGDDJA+H2mSd5H4jLYQkadZZP2ipsgVC/7+dOzZBAIaiKPr+BC7nYOIO\nIthYuIZgoYKdhVvYxEJBsPqFIso5ZSCQFCFcCOE9lknWef64sUiyqap9km2S0+uEMcalqlZJDknO\nSXaP8WtVTZPMq2qS+zmdJTl+fBcAvJv7gb9TY4xvrwEAAPgRnjABAABtAgIAAGgTEAAAQJuAAAAA\n2gQEAADQJiAAAIA2AQEAALQJCAAAoO0Ga7UEP7pgqRcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Split the data into features and target label\n", + "income_raw = data['income']\n", + "features_raw = data.drop('income', axis = 1)\n", + "\n", + "# Visualize skewed continuous features of original data\n", + "vs.distribution(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For highly-skewed feature distributions such as `'capital-gain'` and `'capital-loss'`, it is common practice to apply a logarithmic transformation on the data so that the very large and very small values do not negatively affect the performance of a learning algorithm. Using a logarithmic transformation significantly reduces the range of values caused by outliers. Care must be taken when applying this transformation however: The logarithm of `0` is undefined, so we must translate the values by a small amount above `0` to apply the the logarithm successfully.\n", + "\n", + "Run the code cell below to perform a transformation on the data and visualize the results. Again, note the range of values and how they are distributed. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAF2CAYAAAD+y36TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4JGWV+PHvYUAERERFRECHRVZEjIyIogiiC0ZMi7ii\nMyb0Z8I1AgZYs2taMaCssoyCsMiughgRBdeAZCUIgjJIBjEw5HR+f7xvMzU9fe+tvnN7uu/t7+d5\n+rm3q6qrTlV11+lT71vVkZlIkiRJUhurDTsASZIkSbOHBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsI\nSZIkSa1ZQEiSJElqzQJizETEoojIiHjoCMRyQEQ8bdhxTCUiXhURF0bEbRHxt2HHs7IiYn59Dyya\nYrrOe6XzuDEilkTEtyJi94iI6cy36zU71vdB62NRI675jWFLIuKwtvOYblzTWcdR08/7OYqXRcQJ\nEXFdRNweEZdFxJERseMAY1wUEa+aYPhy+34ui4h1ImLfiDgjIpZGxC0RcUFEfC4iNh92fIMSESc2\njjt3RsRfI+Ksut6PWIn59nxfrWSsO3YdJ5uP18zksrqW2ddxU5ppvvk0TPsDI11ARMSDgIOBX1Ji\nffpwIxqKfwaeCDwLeB9wK3AEcHxErNWY7so63Xf7mPeOlPdBP8ei79blXNnHa/q1I73jms46jox+\n3s8RMQ84ClgMLAFeDewMvBu4J/CTiFhvQKEuAnp90VsV+34kRMRGwCnAuyjr/WLgmcCBlG1w9PCi\nWyV+S1nP7YGXAF8DdgLOiog3THOei+j9vpoJb6HE23wcM6Bl7Uj/x01pRq0+7ACkNiJizcy8dQiL\n3gKYByzOzJ+v7MwiYg3gjpxdv+B4VmZe1Hj+9Yj4JvBN4N+BNwPU/XPyoIJobLtrgWsHtZzJDHod\nV4F+3s/7Ur60vjgz/6dr3OER8Qzg9gHEOKFh7vsh+DqwEbBtZl7YGP5T4AsR8fzhhLXKLM3M5mft\nRxHxOcrJi89FxKmZeeqQYuvld13xziq1RXmNzLxt2LFolshMH2P0oJyBSeChU0y3J/Ab4Bbgz9Rk\n1jXN2sBBwHXADcC3gCfV+S+aYv7Z43FAHXcocBnlDM4vgZuBz9ZxewA/oXyJuAE4E1g4wfw/RDkr\ndDGwFDgJeETXdLvUZfy9zu8C4P2NOLpjPLSOW6POfwlwW/37IcoBuDPv+fU1b6B80b4CuAtYv7Ef\nnkQ5y7sUuBrYt75217puNwKnAtv0WMcXUr7M3gT8jfKF/sE99tEXG/voWODJLffRpO+Vur9vAdbu\nWt9FjWkeDxxfl38z8Efgi3XcAb3eB31su/mN5SwBDgNeC1xU4zoD2Kkr5hOBE3usy5LGvm0T16Ku\n17f5vHRi3AP4Xd23pwFP7ppuwm02xf56WN0nf6uvOxnYtTH+0B7rdegE87oH8FfguD6OLTOyDeo+\n6o7zxK73ZK99P9V2nXLfN4ZtC/yY8pm5ETiB8kW+7/kBD6S04lxBab27EjgOeMAk2/LxdT3f0cf2\n36tr+38VuO9MHxcb76UlPWJYbpsA9wI+B/yprvs1dbtuOcW6nAj8fIJxD6jz+npj2EPr++1iln1m\nDgLWb/m+2gD4MvB7yvH0UuAbwMYttvuOdV5Pn2K6tYGP1xhvq3/fA6zWmOaewGeAc+p2vwr4TnN7\nMfnxqRPLjl3LXsTEn5tXAedTTga8oI9Yp7Vvfcydhy0QWkFE7EU5mP435Szkg4CPAE+IiMdl5g11\n0oMp3VsOoCTsnYHDWy7micCvKInoy3XYZY3x6wFHAp8E9qMkBYDNgW9TvlTeAewAfCUi1srML3Ut\nY09K4tub8oXoE8AxEbFlZt4REf9A+UJ9NPAByoFyC+Af6us/CJxO6TLwRsoX0s7Zz8XA7nW7/JxS\nCLynvvZfuuJ4D6UI2Ity9veWxrjFlKb5zrb8SETch9Jd6MOUJPLvwLcjYvOsZ4ci4vWUBPlfNfZ1\nKfvhpIh4VGYurfP/MqX5/99qDM+gJMaZ8D3g+cAC4GfdIyPiXsAPKd0wFlG+rMynbCuArwCbULrG\nPBm4s8cyJtt23XYEtqmvuZXS1eb7EfHozLygj/VqE9fd+vi8ADyF8kX/fXVdPggcFxHzM/NvLbbZ\nRDE8iPI+XAq8ifLF743AdyPiOZn5fSZ/P3dbANyH8vmY0kxuA0rReBhlf7+uvub6KUKYap6tRcSj\nKF+qz2PZF699KJ+t7TLzN/3Mj/LF9iHAOylfTDekHCvXnuQ1z6h/227/jwFvp+zbdwIbUwqFrSPi\nSZnZfA+v7HGxH58Bnkc5hl8I3I/SJek+05gXAJl5TUScVufT8SBKgfZ2SuG9WV3m9yi5BiZ/X92X\nsp7vpZzI2ajO6xd1u0x23OlYLSKa36mys93r8B8CW1Hem2cD21Her/etywJYE7g38FHgcsoJkzcA\nv4qIh2fmVfR5fJrCTsBjKPnhGmBJH7HO+L7VLDPsCsbHqn0w9VnleZQD6E+7hnfOWr+lPn8Y5Yzw\nu7qmO5AWZ7frtAl8qMfwQ+u43aZ4/WqUbnj/Cfymx7wvZPkWgRfX4U/qen7vSZbxdLrO6ABb02gx\naQx/bx3+qPp8fn1+BhAT7IfmWb3VKQfx24HNGsOfV6d9an1+L8oXxEO65rkZJQm+tbGP7gT26Zru\noDb7qMV7ZZc6/iVd67uoPl/Q3B4TzOOAOs3qXcPbbLv5jWFL6rpv2hi2LvAXlj9TeSLtzhpPFVdn\nHVt9XhrL+CvLnxXtbKN/abvNJtiOn6QU1A9tDJtH+aJ4xmTv5wnm95I63S4tlj2j26Cxn1Y4Az3J\nvm87zzb7/mhKK859GsPuXd9L/zuN+d3Q3AYt92fnM7pmi2nnUz7n7+8avn2dx/Mbw2bquHgo7Vog\nzgE+3c+6T7b/G+OPAG6eZPzqjfffY9vOt+s9vWl9/QummHZHereoX9aY5uV12A5dr30P5bjVszWq\nxrE25cTAvzaGH0Dv41Mnlh27hi+i9+fmJuCBXdO2inW6+9bH3Hl4AY66PYzSRLxcS0KW/tKXAE+t\ng54ABKXbTNNyF/bVu7is3njMaxnH7ZRm/uVExBYRcUREXF6nuR14TY272/GZ2eyjfXb9++D696z6\n+iMj4sUR8YCWse1Q/3bf9afz/Kldw7+dWY64PXy/809m3kHpfvP7zLy4Mc359e+m9e8TKV9oDm9u\nW8rZzfMb8T2BUmQd1bXMIyeIpV+duzBNtG4XUr6IfTki9oyITSeYbjKTbbtuJ2fmpZ0nWVphOhfd\nDkrbz0vHrzLzr43n3e/J6W6zHSjrf/e1KlnOfh4BPCYi7t1yPtMx09tgOmZynjtQum7d3XKRmddT\nzsp3r0sbpwLvjIi9I+KRta/5THoG5XPefTz4NeWL5w5d0w/quNjLqcCiiNgvIhb0cfyfStA47kTE\nPeoyzo+Imynx/18d3Ss3rDjDiP8XEb+JiBsoxfif+nk9pVXv8Y3HsxrjdqV8Fn7ZtY9+ROkOu10j\njt0j4tdR7pB2B6UL3b36iKMfJ2dp1WhqG+ug9q1mCQsIdbtv/dvrLidXNcZvVP9e0zXN1V3PF7Ls\ni/7twB9axnFtLt/s3ukSczzwaEqXgqdQDtSHUJp+u/2l63nnIux7AtQvW7tQPgdfB66KiJMjYqov\nCRNto6u6xjPBdE1/7Xp+2wTD7o6b8mUNSn/T27sej6Q0JcOyfdS9T7qfT1fny23P9cvMv1OayK+g\nXIfxp4g4JyJe1Mcy+rnbTq/1uprSnWNQ2n5eOpZ7T+ayGwN03pPT3Wb3nSSGoHSF6EenEHtIi2ln\ndBtM00zOc7Jt2e92hNKacyzlbkq/BS6PiPdPcQvOfrZ/53hwESseD9Zl2fGgY1DHxV7eTOna9irK\nF85rIuIzETFZ9602NmX5ffRRyln5w4BnU65heWEdN+V7ICLeTPm8/bi+bluWfVFu+x76fWae1nj8\ntjHuAZR92b1/Tqnj71fjeC6lG+DvKF1hn0DJcdf2EUc/er3PW8XK4PatZgmvgVC3TnJ5YI9xD6T0\noYZlB54HUC6w6tiw6zXfoRwAO9reSanXWecnUg5sT8nGHWS6+p32JTN/Cvw0ItakNPl/gNJvfH5m\n/nmClzW3UbMgemDX+LsXM934JnBd/bsIOLfH+M71D519tCHlokIaz2fCsyn9zU+faILMPAt4Ud1H\nCyj944+q1yWc02IZ/Wy7Xuu1IaUvccctlNabbt1fcttq+3lpbZrb7C+TxJCsWJRO5TRKS8hzKdfn\nTGbGt8GAtN33k23L5nZsNb/MvIZydvqNEfEwykmVf6N8KTxoglh/TLkG6rnApyaYpqNzPPgneu/n\n63oMm1SL4+ItlOsnut2vubws177sC+wbEQ+hdI/6GOWkyLv7jQugtogsYPmW1D2Ar2XmhxrT3auP\n2e4BnJCZnf79RMRm04lvAtdR8uTuE4xf0ojjosxc1IhjDdofnzrXanTvm+4isqPX8bVVrIPYt5pd\nbIFQtwsoZ233aA6MiCdRvryfWAedQjn4/HPX65d7npnXdZ2VObsx+jZgLdrrnNm4u/k9ItYHdutj\nHj1l5q2Z+RPKBcvrUK4nmEjnguE9uoa/rP49cWXjmcIvKUXCQ7u2befRuWD415TrVLoTQXfcfatn\nxJ8HfCkzb5pq+sy8I8stDt9HOe48vI7qFJT9vA8msl2zy09ErEspcn7VmOYS4B8j4h6N6XagnKlt\nahtX289L3ybZZr2cRFn/+Y0Y5lHOfp9Zu+D0s+zbKF9cnzNR60dEPKOebRzENriVmXlPNLXd9ycB\nz6rvn85061K+zJ84jfndLTMvyMz9KF/0t55kulMod5vbLyb40c+I6Bz3jqd8zh88wfHg4l6vb2OS\n4+IlwIYRsUEjns2ZpJtNZl6SmZ+idJmacN0nU79Mf5Fy8vPAxqi1WfGWwq/sMYuJ3ldtXz9dP6C0\nmtwwwT7qnKxam9JtqenllGshmiY6Pl1S/3Zv32cPINa7zcS+1exjC8T42jUiuvs+/j0zj4+I91P6\nYB9GaRLemHI27EJKdyEy8/yI+AbwwdoUfzrlh6meW+d1V4sYzgOeHRE/oCTUKzLzikmm/yXlrhlf\niIj9KQntvZRbFvb9g1ZR7mS0A+VOHZcC96ecUbmCcoFYT5l5TkQcARxQzxL/ktI68j7giK4iacZl\n5vUR8U7KdtiAch3F3yn76amUixi/kZkX1H30gbqPTqWcpXzWRPOewGMi4v6Us1oPBp5DKRSPp2yv\nniLiOZS7J32bckZrHcrtI5ey7Ev9efXv2yPi+8CdmXlan/F1XE25V/wBLLsL0zqUO4l0HFljOiQi\nDqV8IXobZfs1tYorM+9s83lpq+U26+UzlBap4+tn43rK3Vv+kf6+PDR9lNJd8L/rtvoO5ez8JsCL\nKF091s/Mm2ZyG1TnAW+IiJdQWvmWZn930uql7b7/IOU9fkJEfJxyouTdlC93H+hnflF+aO/HlOtD\nOrfK3I3SFepHU8S7Z33tqVF+/+DnlJMuW1K6jawBHJOZf6hxfr62cJxEORO9KeX6iK/UFoVWWh4X\nv1m302ER8enGNH/umtevKN23zqZcTP5UyntqcYtQ1o2ITjeidSndM19JKVLekJnNlq0fAAsj4mxK\nV64X0vvOZRO9r34AvDsi9qOcHHsa5Yz6TDm8xn5CRHyKcrvde1DuKvg8yoXuN9U4nh8Rn6FcA7iA\n0lWo+05iPY9PmXllRJxEaRX4M6WL8Z70dwetVrGu5L7VXNDvVdc+ZveDZXdj6PU4pzFd557ut1Ka\nNCf7HYi/sOw3Bp5Nizso1ddvTyk8bqFxVyPq70BM8JqnUX4f4WZKAngL9Y4UXdMlXXd4YsU76HR+\nKfRSlt2f/ZvAwxqv6XnXGsoB9UOUMz63178T/Q7EaybZDw/tGn4iXXcJmWg+lELgp5Qvizex7Mva\nVlPso87dWRb1+V65ua7ntygFRPfdkbq378Mo/Xkvrvv4WsqXkic0XjMP+AIl0d3V2Y8tt938xrAl\nlC+ur6nvi1vr++RpPV7/urqtbqYUf9uw4p1zpoprUdc823xelgCH9Yin+d6fcptNsr8eRik8/l5f\nu9zvQEz2fp5knlHX7SeUIv92yu2Wj6B0JZzxbVCfP7Cu99I67sSp9v1U82y77+t0T2CK34FoMz/K\ntVlfpnQ1vIHyWT2Vxt2hptj+96LcJrPzmzC3Ulp8Pgv8Q9e0L6/7/Ma6rN8Bnwc26domK31crNM9\nn1JQ3Fz3+z+x4l2YPl5j/3uN62xa3JGK5X+z4a76+rMovzvwiB7T359S0P21Pg5n2W9pLGpMN9H7\nai3KcfLaOu44SkG4wnuox7J3rNNN9TsQ96TkqvPrdv1LfS8cQL2bEqWl8UOUYu0mSjH4WFoen+q4\nTSjF/t8o1+18hHJcbPW56SPWae1bH3PnEfWNIM2IiHgHpbl7fmb+aarpJUmSNLvYhUnTVrtbbE05\nM3QX5a5I7wCOsniQJEmamywgtDKWUpqx96H01b6ccmHb/sMMSpIkSYNjFyZJkiRJrXkbV0mSJEmt\nWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgNKGIODQijpuB+RwQEefMRExT\nLGd+RGRELBj0ssZdRCyKiBsGNO8TI+LzjedL6i+cD2JZA1sPaS5blflhppalwRlknu/OATXPv3hA\ny1ol31fmAguIWaIeQA9YxYvdG9izEcNyX+xG0KXARpRfxm4lInaMiCVTTLOkHrCaj7+tZKzdyxj6\ntq3borN+d0XE9RHx24j4bERs1jX5fwP/0HK+/RZ2LwT27Sf2lnH0Sjqt10MaVeaHmVNPKpw4xTTd\n+SAjonXeaRnHwE6c9BHDosb63RkRf4uI0yLiwxHxgK7JPwk8teV8O7nm/i1DeTzwxX5ibxHDRHmp\n9XqMO3+JWhPKzL8PO4Z+ZOadwFUDmv0HgIMaz+8a0HJWWkSskZm3r8QsHgH8BbgX8GjgrcDZEfHs\nzDwJIDNvBm5e6WAbIuIemXlbZv5lJuc7mUGshzQOZlt+GIDXAs1WkZU55g5MRKxG+dHgO6c5i5uA\nzYEA7k35Mv9u4LUR8dTM/B1AZt4AzGhrbiMnXDuT853MINZjrrIFYpaKiHtExEci4pKIuDUi/hgR\nb6nj5kXEVyPi4oi4OSIujIh31QNJ5/WHRsRxEfHeiLg6Im6IiP+KiLW6p+n8T6nK39g4IzG/zbJa\nrs86EfG1GseVEfHOGt+hjWn2jIhTI2JpRFwTEd+MiI0b45c7o9A4y7FzRPw6Im6qZ08eN41NvjQz\nr2o8rmksd72IOLjGtDQiTmqe1YiI+0XEERFxWd1G50bEKxvjJ9q2K5ylmWQdnxURp0TEbcAuddxz\nI+L0iLil7p8PR8Q9WqzrNXUdL8rM/wF2BM4EDomIeXXey3X9iYhNI+KYiPhL3c7nR8QedfTF9e+p\nNdYTO+td9/G7I+Iy4LI6vNeZzHtFxGH1/XFVdJ2Zix6tC9E4gxfLWpm+Wadd0ms96rDXRcRFEXFb\n/fvaHsvaq77/bqyfvT2RRkTMsfzQY/3WjIj/qLHdEhEnR8STG+PXiIgDI+KKuv6XRsTHGuNfGKV1\n9eZ6zDopIjbsM4y/deWE6xrz3zgijoyIv9bHdyNii8b4zevx8qp6DDkjIp7TGH8i8BDgE53tWYf3\nOl4tlyc609SccA5wG/DwOu6VEXFe3Wa/j4h/bbEvsq7flZl5QWYeBjwR+BvwpUYcy3X9iYhHRsQJ\nUVqyb4iI30TEThExH/hpnezaGvuhnfWOiIMi4pMRcS3wizq8V2vMA+t2vam+z5utYT1bF2L5PDFR\nXupej9Ui4n31PXRrRJwdEbv1WNaLIuL4Gs95EfGMKbbrrGcBMXstBl4BvI1ycFgI/LWOWw24HNi9\njnsPsB/wyq55PJVyhnln4EXAPwEfn2B5ewO/Av6L0k1oI0qXobbLmsqnajwvAJ4ObAM8pWuaewD7\n15ifA9wfOKLFvD8K7AM8DrgOODwios/4eqrz+S6wcY3pscDPgJ9ExEZ1snsCZ9TxjwA+C3w5Inau\n4yfatv34OPBeYEvg1xGxC3A48Pm6zFcBLwY+0u861jNXn6F09XnsBJN9EVgb2Kku762UBAOwbf27\nK2XdXth43VOBR9VxOzOxtwG/o+zD/YGPRMQLJ5m+2+Pr39fWGB7fa6KIeAFlm/0HsDVlX30xIp7b\nNen7gWMo78X/phRXD+4jHmmQ5lp+6PbvwEsox7XHAmcDP2gcc99CySV7AFvUaS8AiIgHAkdSttHD\ngR2Ar69kPHeLiLUpX5BvoWzDJwJXAj+u46C07n4feAZlG/8P8L8RsWUd/0LKCZUPsGx79uOewPuA\n1wFbAZdEORHyEcqx6+HA2yktCW/odx3rWfovATtExAYTTPYNynpvCzwGOICyTS6lvJ+g5IqNKO+f\njj0prR1PobyHJ/JvwLF13gcDX+suGKYwWV5q2ht4J2VbPRL4FmVfPaZrug8DB1L256nAkRFxrz7i\nmX0y08cse1AOiAns2sdrPgb8uPH8UMoXvHs1hu0J3Aqs05jmuMb4E4HPT2NZBwDnTDL9vShnSfZo\nDFuHkvAOneR1W9btsEl9Pr8+X1Cf71if79J4zfbN17Tcdkvqdrmh8divjntafb5W12vOAt41yTyP\nBL4y2bZtxH//xrCJ1vFFXa/9GfC+rmHPr7HGBDGtsLwe23r3+nwRcENj/G+B/SeY73Ixd70HrwXW\n7Bq+3Lao2//4rmm+Avy88TyBF/fYb++YYpru9fgFcEiPOLuX9dHG89Upzfx7tn1P+fAxqAdzLD90\nL4uSG24DXtEYPw/4A/Ch+vxA4IRexzrKSYgEHrIS2zgpXR+bOeFlddyrgAuby67xXdc5fk4wz5OB\n9zaeL3f8qsOWO17VYTvSOG7XaRLYpmu6PwEv7xr2VuC8SWJaYXmNcbvW5Wzbaz8C1wMLJ3jtcjF3\nvYd+22P65bZFfe1/dk3zY+Cw+v98euecu3PAJNN0r8flwPt7xNm9rNc1xm9chz15uu+x2fDwGojZ\n6bGUPvg/nWiCiHg98BpKM+hawBrAJV2T/TbLmYSOX1HO8m9O+ULYSstldaZ9CuXMS8frgHPqa07p\nDMzMG6PrTghRuh7tTznjcF/KWQqAB1O7v0yguS5X1L8PmOI13T4NfLXxvNNPfxvKmfdruxo17knZ\njkTp9rMP5SzYxsCalO18Yh/Ln8ppXc+3AbaNiHc3hq1G2T8PpJwZ6kdn5XKC8Z8FvhQRu1IS97cy\n8/QW8z0nM29tMd2vejzvpwWirYcDh3QN+znwvK5hd7+nMvOO2tzefVGhNAxzKj9k5uFdk21e5/GL\nzoDMvDMifkU52w6l4Dge+H1E/Aj4HvD9zLwL+A3ly+Y5ddyPgaOz/3727wR+0Hh+df27DbAZsLQr\nJ6zNspywDiWXPYdy9nsNSs5ovV2ncAeNm4nUVoJNKS3fzWv5VmfZsb1fU+WETwNfiYiFlJzwP5l5\nfov5tskb0DsnPLvla1uJiHsDD6LxXqt+Djyra9hE3zPmLAuIOSgiXkLpgvEO4JeUMwFvpDTpDntZ\np1EKgI6raXEXnHrA/SHlYP9y4BpKF6b/oyS1yTQvbusc7PrtvnddZl7UY/hqlHXo7m4FZVtA2TZv\npzSFnk05W/URpj64dC7Ubh7g15hg2ht7xPVvwDd7TDudC9I6ifmPvUZm5lcj4oeUg+rTgV9GxEcz\n84Ap5tsd93QlKybCibbVdOff1H3BZGKXUM0CszA/9KOcZs48o/a134XSBWsx8JuIeEYtNv4J2I7S\nLevVwEejXBD8mz6WddUkOeEsSvepbp0TT5+knMF/B6W14ibga0ydy+6i3XHu1lz+ounOsen1lP0w\nE7aibO8lvUZm5gERcTjwTMp+2D8iXp+Z3Sdous1ETlghd0bETOYDmCQnZGbW4nFO5wQLiNnpLMob\ncyeWPwPS8WTg15nZvJf+5j2me2RErJOZnQ/sdpSm4T9MsNzbKE2x01kWcPddb5Y76EbEHygfvsdT\nv6DWvqJbN2LZklIw7JeZF9dpBnEGul9nABsCd2Vmzy/XlG30ncz8Otx93cQ/suwaAei9bTtf9Ddq\n/N/d73KyuLacIMH1pbagvJWyLya8VWFmXkbpi3pwbfnYm9IcfFudpHv9+rFdj+e/azy/lkY/4SgX\nRHb3G769RQy/o3Rza7Y2PRk4r59gpSGaU/mhhz/UZW3fiaUeo55I6XffmddS4Gjg6HqR7snAQ4Hf\nZ+ln8ivgVxHxAeBcSgtxPwXERM4AXgr8OTMnut33k4GvZblJBRHRabH+fWOaiXLC2hFx78zsnKCa\nMidk5tURcQWweWZ+rf2q9Fb79r8eOGmylpvMvJBSIB1YWz5eQ2nhnamccEjX805OaObOju7tNGUM\nmXl93W7bU1pROswJWEDMSpn5+4g4itI8uDflgLUJML9+Sf09sCginkk5GO9BuZjrr12zWp1y8ecH\nKM10H6P0K5zoDMASSreY+ZSz6H/pY1mTrc8NEXEI8PGI+DOle817KUmwU+X/idL/9k0R8QVKV5MP\ntl3GAP2Y0rx5TES8Czif0kVoV0o/3/+jbKOXRLlLyJ+BN1OauM9szGcJK27biygXnB0QEftQ+lq+\nt2VcHwCOi4hLgKMoTdpbU/qrvmuK1z4gIlanXJvyKOBfKd0inpUT3AowIj5L6Xrwe8qt/nZl2QH2\nGkp/4V2i3P3oluz/FpDbRcS+lC8EO1IurntZY/xPKHeA+SVwJ6WF55aueSwBdo6Ikyhn6Hq9Rz9B\nuVPT6cCP6nq8jMF0l5Jm3FzLDz3W78b6ZbSTLy6mHKM2pP5WQES8jZJHzqKcOPgXSuvHZRGxHaWV\n9IeUFo7HUrr3zNQXwsMpLQvHRMT7KblrU2A34Ev1S/XvgRdExDE1vv0pXZialgBPiYjDKMerPwO/\nppyh/2hEfIZywW7bi6D3Bz4X5TeMvkdpuXgcsHFmfnSS10W98BxgPZbdxnU9Vuza2XnBWpRWlm/W\n9diQWkybS3/1AAAfU0lEQVTWSS6h5PZnR8R3gJu7usu18cKIOJXSFfjFlJamJ0ApRCPiZODd9QTl\nepSbqTS1zUufAD4QERdSulftSelxMJ27Oc4pc7p5ZY57BeVsy4GUL62HUj4kAF+mfGn8BuVuAPMp\ndznqdhLlzMtPKXcW+Akw2ZfLT1Kq9vMoFf6D+1jWVN5B6Y50bI3nbEpz9i0A9SzHQsqFwOdRDoZv\nm8ZyZlQ9k/Usyrb7T8qdPo4CHsayfpAfolzf8X3Kxc03UpJM0wrbNstvOexB6eL1G0qXpP1axvVD\nSn/QneqyT6Fch/GnFi8/l5J8z6QUImcCj8rMn03ymtWAz9X4j6ck5oU1ljsod0V5DWWbHNNmHbp8\nmlLMnEnZnu/PzKMb499Oab06kVJkfIWSIOiaZidKUXYmPWTmtykF3r/WddkbeENmfmcaMUvDMtfy\nQ7d3U+5+9l+UIuFRlIvGO9d2LaVco3AKpYB6DPDMzLwJ+DvljPJxlLPjnwI+mOX2pCutLmMHyvHo\nm5TtvxhYn2WF09sox6f/o+SFk+v/Te+nFB5/oJ5Rz/IbOS+j3L3pbGAvyt2W2sT1FcoF3i+n5JP/\nq6+/eIqXrk3JB1dQtufbgO8AW2f9DYge7qSs76GUnPgtSovP22osl1Ny+IcpuWI6P0B4AOVuTr8F\n/h/wysw8tTH+VfXvqZT34XIn3/rISwdSioh/p1yv+QLKTUtmorVqVovy/Ufjpjbp3j8znzPVtMMQ\nEWtSzlJ8IjNnIuFIkloY9fwgafjswqSREBGPpXRLOgVYl3KGaV3KWSZJkiSNiKF1YYqIwyPigog4\nJyIO6VwhH8WBUX4B9rfR+NXgiNi1vuai2ie8M/y+UX4B8ML6d/1hrJNW2tsoXUt+QukzuUO9MFfS\nmDA3SNLoG1gB0eJAfTjlzjqPpNwb+jV1+DMpP4SzBaV/3kF1fvOAL9TxWwEvjYjOrSX3AU7IzC0o\nV8rfnUDUW2YuGqXm6cw8MzMXZOa6mbl+Zu7U8ncEJM0i5obRN2r5QdLoGWQLxGn1TNLT6m0rl5OZ\n38uK0m1lkzpqN8rtzTIzTwbuE+Xn6bcFLsrMP2bmbZRf8t2t8ZrF9f/FlAttJUmjx9wgSbPcIK+B\n+EfKGaE3AV+IiK8Dh2bmFc2JavP0yyl3O4HyS72XNia5rA7rNfwJ9f8NG3dfuIrS/WUFEbEX5cwV\n66yzzjZbbrnltFbs9Ouuaz3tNve737SWIUmDdPrpp/85MzcYwqLNDZgbJI2mtrlhYAVEvV/8cZR7\n0W9AuQfvnyLiSZl5SmPSLwI/q/fLn4nlZkT0vLVUZh5M+aErFixYkKeddtq0lhGLF089UXXawoXT\nWoYkDVL9jZBVztxQmBskjaK2uWGgd2GKiPUo97FfRLk/9Kso9+ztjN8f2AB4XeNll1PufdyxSR22\nxgTDAa6OiI0y88rapN19/3dJ0ogwN0jS7DbIi6gPo/yAy2bAKzLzqZn5tcy8pY5/DbAL8NLMvKvx\n0mOBV9Q7bmwH/L02QZ8KbBERm0XEPSjJ59jGazqncxYyvR+qkiQNmLlBkma/QbZAHAUsqr/218uX\nKD8U9qt6Hd3/ZuYHKD+x/izKz97fBLwSyq8GRsSbKD8/Pw84JDPPrfP6GHBURLy6znP3waySJGkl\nmRskaZYb5DUQx04xvuey65033jjBuO9Rkkj38OuAnacRpiRpFTI3SNLsN7QfkpMkSZI0+1hASJIk\nSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmtWUBI\nkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsISZIkSa1Z\nQEiSJElqzQJCkiRJUmsWEJIkSZJas4CQJEmS1JoFhCRJkqTWLCAkSZIktWYBIUmSJKk1CwhJkiRJ\nrVlASJIkSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmS\nJEmtWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsI\nSZIkSa1ZQEiSJElqzQJCkiRJUmsWEJIkSZJas4CQJEmS1JoFhCRJkqTWLCAkSZIktWYBIUmSJKk1\nCwhJkiRJrVlASJIkSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIk\nqTULCEmSJEmtWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLU21AIi\nIg6JiGsi4pzGsAMi4vKIOKs+ntUYt29EXBQRF0TELo3h20TE2XXcgRERq3pdJEkzw9wgSaNt2C0Q\nhwK79hj+mcx8TH18DyAitgL2AB5RX/PFiJhXpz8IeC2wRX30mqckaXY4FHODJI2s1Ye58Mz8WUTM\nbzn5bsCRmXkrcHFEXARsGxFLgHtn5skAEfE14PnA92c+YknSoJkbJM02sXhxX9PnwoUDimTVGHYL\nxETeHBG/rc3Y69dhGwOXNqa5rA7buP7fPVySNLeYGyRpBIxiAXEQ8A/AY4ArgU/N1IwjYq+IOC0i\nTrv22mtnaraSpMEzN0jSiBi5AiIzr87MOzPzLuA/gW3rqMuBTRuTblKHXV7/7x7ea94HZ+aCzFyw\nwQYbzHzwkqSBMDdI0ugYuQIiIjZqPH0B0LkLx7HAHhGxZkRsRrkg7pTMvBK4PiK2q3fYeAVwzCoN\nWpI0UOYGSRodQ72IOiKOAHYE7h8RlwH7AztGxGOABJYArwPIzHMj4ijgPOAO4I2ZeWed1Rsod+1Y\ni3KBnBfJSdIsZW6QpNE27LswvbTH4K9OMv2HgQ/3GH4asPUMhiZJGhJzgySNtpHrwiRJkiRpdFlA\nSJIkSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmt\nWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsISZIk\nSa1ZQEiSJElqzQJCkiRJUmsWEJIkSZJas4CQJEmS1NqUBUREbB8R69T/94yIT0fEQwYfmiRpVJkb\nJGl8tWmBOAi4KSIeDbwd+APwtYFGJUkadeYGSRpTbQqIOzIzgd2Az2fmF4B1BxuWJGnEmRskaUyt\n3mKapRGxL7AnsENErAasMdiwJEkjztwgSWOqTQvES4BbgVdn5lXAJsAnBhqVJGnUmRskaUxN2QJR\nE8OnG8//hP1cJWmsmRskaXxNWEBExFIgJxqfmfceSESSpJFlbpAkTVhAZOa6ABHxQeBK4OtAAC8D\nNlol0UmSRoq5QZLU5hqI52XmFzNzaWZen5kHUe66IUkaX+YGSRpTbQqIGyPiZRExLyJWi4iXATcO\nOjBJ0kgzN0jSmGpTQPwLsDtwdX38cx0mSRpf5gZJGlOT3oUpIuYBL8hMm6UlSYC5QZLG3aQtEJl5\nJ/DSVRSLJGkWMDdI0nhr80vUv4iIzwP/TaN/a2aeMbCoJEmjztwgSWOqTQHxmPr3A41hCTxt5sOR\nJM0S5gZJGlNtfol6p1URiCRp9jA3SNL4mvIuTBGxXkR8OiJOq49PRcR6qyI4SdJoMjdI0vhqcxvX\nQ4CllNv17Q5cD/zXIIOSJI08c4Mkjak210Bsnpkvajz/t4g4a1ABSZJmBXODJI2pNi0QN0fEkztP\nImJ74ObBhSRJmgXMDZI0ptq0QPw/YHGjb+tfgUUDi0iSNBuYGyRpTLW5C9NZwKMj4t71+fUDj0qS\nNNLMDZI0vtrchekjEXGfzLw+M6+PiPUj4kOrIjhJ0mgyN0jS+GpzDcQzM/NvnSeZ+VfgWYMLSZI0\nC5gbJGlMtSkg5kXEmp0nEbEWsOYk00uS5j5zgySNqTYXUR8OnBARnft7vxJYPLiQJEmzgLlBksZU\nm4uoPx4RvwGeXgd9MDN/ONiwJEmjzNwgSeOrTQsEwO+AOzLzxxGxdkSsm5lLBxmYJGnkmRskaQy1\nuQvTa4GjgS/XQRsD3x5kUJKk0WZukKTx1eYi6jcC2wPXA2TmhcADBhmUJGnkmRskaUy1KSBuzczb\nOk8iYnUgBxeSJGkWMDdI0phqU0CcFBH7AWtFxDOAbwLfGWxYkqQRZ26QpDHVpoDYB7gWOBt4HfA9\n4L2DDEqSNPLMDZI0ptrcxvUu4D/rA4CI2B74xQDjkiSNMHODJI2vCQuIiJgH7E65s8YPMvOciHgO\nsB+wFvDYVROiJGlUmBskSZO1QHwV2BQ4BTgwIq4AFgD7ZKa36pOk8WRukKQxN1kBsQB4VGbeFRH3\nBK4CNs/M61ZNaJKkEWRukKQxN9lF1LfVPq5k5i3AH00QkjT2zA2SNOYma4HYMiJ+W/8PYPP6PIDM\nzEcNPDpJ0qgxN0jSmJusgHj4KotCkjRbmBskacxNWEBk5iWrMhBJ0ugzN0iS2vyQnCRJkiQBFhCS\nJEmS+jBhARERJ9S/Hx/UwiPikIi4JiLOaQy7b0QcHxEX1r/rN8btGxEXRcQFEbFLY/g2EXF2HXdg\nRMSgYpakcWZukCRN1gKxUUQ8CXheRDw2Ih7XfMzQ8g8Fdu0atg9wQmZuAZxQnxMRWwF7AI+or/li\n/UVUgIOA1wJb1Ef3PCVJM8PcIEljbrK7ML0feB+wCfDprnEJPG1lF56ZP4uI+V2DdwN2rP8vBk4E\n3l2HH5mZtwIXR8RFwLYRsQS4d2aeDBARXwOeD3x/ZeOTJK3A3CBJY26yuzAdDRwdEe/LzA+uwpg2\nzMwr6/9XARvW/zcGTm5Md1kddnv9v3u4JGmGmRskSZO1QACQmR+MiOcBO9RBJ2bmcYMN6+5lZ0Tk\nTM0vIvYC9gJ48IMfPFOzlaSxY26QpPE15V2YIuKjwN7AefWxd0R8ZIAxXR0RG9VlbwRcU4dfDmza\nmG6TOuzy+n/38BVk5sGZuSAzF2ywwQYzHrgkjQtzgySNrza3cX028IzMPCQzD6FchPacAcZ0LLCw\n/r8QOKYxfI+IWDMiNqNcEHdKbdK+PiK2q3fYeEXjNZKkwTA3SNKYmrILU3Uf4C/1//VmauERcQTl\norj7R8RlwP7Ax4CjIuLVwCXA7gCZeW5EHEU503UH8MbMvLPO6g2Uu3asRblAzovkJGnwzA2SNIba\nFBAfBc6MiJ8CQenvus9MLDwzXzrBqJ0nmP7DwId7DD8N2HomYpIktWJukKQx1eYi6iMi4kTg8XXQ\nuzPzqoFGJUkNsXhxX9PnwoVTT6SVYm6QpPHVqgtT7Ut67IBjkSTNIuYGSRpPbS6iliRJkiTAAkKS\nJElSHyYtICJiXkScv6qCkSSNPnODJI23SQuIeiu8CyLCn+aUJAHmBkkad20uol4fODciTgFu7AzM\nzOcNLCpJ0qgzN0jSmGpTQLxv4FFIkmYbc4Mkjak2vwNxUkQ8BNgiM38cEWsD8wYfmiRpVJkbJGl8\nTXkXpoh4LXA08OU6aGPg24MMSpI02swNkjS+2tzG9Y3A9sD1AJl5IfCAQQYlSRp55gZJGlNtCohb\nM/O2zpOIWB3IwYUkSZoFzA2SNKbaFBAnRcR+wFoR8Qzgm8B3BhuWJGnEmRskaUy1KSD2Aa4FzgZe\nB3wPeO8gg5IkjTxzgySNqTZ3YborIhYDv6Y0T1+QmTZTS9IYMzdI0viasoCIiGcDXwL+AASwWUS8\nLjO/P+jgJEmjydwgSeOrzQ/JfQrYKTMvAoiIzYHvAiYJSRpf5gZJGlNtroFY2kkQ1R+BpQOKR5I0\nO5gbJGlMTdgCEREvrP+eFhHfA46i9HP9Z+DUVRCbJGnEmBskSZN1YXpu4/+rgafW/68F1hpYRJKk\nUWZukKQxN2EBkZmvXJWBSJJGn7lBktTmLkybAW8G5jenz8znDS4sSdIoMzdI0vhqcxembwNfpfzC\n6F2DDUeSNEuYGyRpTLUpIG7JzAMHHokkaTYxN0jSmGpTQHw2IvYHfgTc2hmYmWcMLCpJ0qgzN0jS\nmGpTQDwSeDnwNJY1U2d9LkkaT+YGSRpTbQqIfwb+ITNvG3QwkqRZw9wgSWOqzS9RnwPcZ9CBSJJm\nFXODJI2pNi0Q9wHOj4hTWb6fq7fqk6TxZW6QpDHVpoDYf+BRSJJmG3ODJI2pKQuIzDxpVQQiSZo9\nzA2SNL7a/BL1UsqdNQDuAawB3JiZ9x5kYJKk0WVukKTx1aYFYt3O/xERwG7AdoMMSpI02swNkjS+\n2tyF6W5ZfBvYZUDxSJJmGXODJI2XNl2YXth4uhqwALhlYBFJ0kqKxYv7mj4XLhxQJHOXuUGSxleb\nuzA9t/H/HcASSlO1JGl8mRskaUy1uQbilasiEEnS7GFukKTxNWEBERHvn+R1mZkfHEA8kqQRZm6Q\nJE3WAnFjj2HrAK8G7geYJCRp/JgbJGnMTVhAZOanOv9HxLrA3sArgSOBT030OknS3GVukCRNeg1E\nRNwXeBvwMmAx8LjM/OuqCEySNJrMDZI03ia7BuITwAuBg4FHZuYNqywqSdJIMjdIkib7Ibm3Aw8C\n3gtcERHX18fSiLh+1YQnSRox5gZJGnOTXQPR169US5LmPnODJKnND8lJ0pT89WdJksaDBYSkoei3\n4JAkSaPBpmhJkiRJrVlASJIkSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1\nZgEhSZIkqTULCEmSJEmtWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmS\nJLVmASFJkiSpNQsISZIkSa1ZQEiSJElqbWQLiIhYEhFnR8RZEXFaHXbfiDg+Ii6sf9dvTL9vRFwU\nERdExC7Di1ySNCjmBkkavpEtIKqdMvMxmbmgPt8HOCEztwBOqM+JiK2APYBHALsCX4yIecMIWJI0\ncOYGSRqiUS8guu0GLK7/Lwae3xh+ZGbempkXAxcB2w4hPknSqmdukKRVaJQLiAR+HBGnR8ReddiG\nmXll/f8qYMP6/8bApY3XXlaHLSci9oqI0yLitGuvvXZQcUuSBsfcIElDtvqwA5jEkzPz8oh4AHB8\nRJzfHJmZGRHZzwwz82DgYIAFCxb09VpJ0kgwN0jSkI1sC0RmXl7/XgN8i9LsfHVEbARQ/15TJ78c\n2LTx8k3qMEnSHGJukKThG8kCIiLWiYh1O/8D/wScAxwLLKyTLQSOqf8fC+wREWtGxGbAFsApqzZq\nSdIgmRskaTSMahemDYFvRQSUGL+RmT+IiFOBoyLi1cAlwO4AmXluRBwFnAfcAbwxM+8cTuiSpAEx\nN0jSCBjJAiIz/wg8usfw64CdJ3jNh4EPDzg0SdKQmBskaTSMZBcmSZIkSaPJAkKSJElSaxYQkiRJ\nklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmtWUBIkiRJas0CQpIkSVJrFhCS\nJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsISZIkSa1ZQEiSJElqzQJCkiRJUmsW\nEJIkSZJas4CQJEmS1JoFhCRJkqTWLCAkSZIktWYBIUmSJKk1CwhJkiRJra0+7AAkSZKkUROLFw87\nhJFlC4QkSZKk1iwgJEmSJLVmASFJkiSpNa+BkNSTfT8lSVIvFhCSJEnSKtTvSbpcuHBAkUyPXZgk\nSZIktWYBIUmSJKk1CwhJkiRJrVlASJIkSWrNi6glaYT0c2HdqF1UJ0kaD7ZASJIkSWrNAkKSJElS\naxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmtWUBIkiRJas0CQpIk\nSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsISZIkSa1ZQEiSJElqzQJC\nkiRJUmurDzsASatOLF487BAkSdIsZwuEJEmSpNZsgZCkPvTbipMLFw4oEkmShsMWCEmSJEmtWUBI\nkiRJas0CQpIkSVJrFhCSJEmSWvMiammEeIHucHh7W0mS2rMFQpIkSVJrFhCSJEmSWpszXZgiYlfg\ns8A84CuZ+bEhhyRJGjJzgzR32f10eOZEC0REzAO+ADwT2Ap4aURsNdyoJEnDZG6QpMGYKy0Q2wIX\nZeYfASLiSGA34LyhRiUNmGdfpEmZGyTNCaN2k5W5UkBsDFzaeH4Z8IQhxaJZZtQ+lJpbLPKGytwg\nzbBBH9PMsbNDZOawY1hpEfFiYNfMfE19/nLgCZn5pq7p9gL2qk8fBlwwzUXeH/jzNF87SubKeoDr\nMormynrA3FyXh2TmBsMOZpDMDSPBbdKb26U3t8uKVvU2aZUb5koLxOXApo3nm9Rhy8nMg4GDV3Zh\nEXFaZi5Y2fkM21xZD3BdRtFcWQ9wXWYxc8OQuU16c7v05nZZ0ahukzlxETVwKrBFRGwWEfcA9gCO\nHXJMkqThMjdI0gDMiRaIzLwjIt4E/JByq75DMvPcIYclSRoic4MkDcacKCAAMvN7wPdW0eJWuql7\nRMyV9QDXZRTNlfUA12XWMjcMndukN7dLb26XFY3kNpkTF1FLkiRJWjXmyjUQkiRJklYBC4g+RMSu\nEXFBRFwUEfsMO57piohNI+KnEXFeRJwbEXsPO6aVERHzIuLMiDhu2LGsjIi4T0QcHRHnR8TvIuKJ\nw45puiLiX+t765yIOCIi7jnsmNqKiEMi4pqIOKcx7L4RcXxEXFj/rj/MGNuaYF0+Ud9jv42Ib0XE\nfYYZ41wwV3LDTJpreWYmzZWcNZPmUv6bSaOcSy0gWoqIecAXgGcCWwEvjYithhvVtN0BvD0ztwK2\nA944i9cFYG/gd8MOYgZ8FvhBZm4JPJpZuk4RsTHwFmBBZm5NuXh1j+FG1ZdDgV27hu0DnJCZWwAn\n1OezwaGsuC7HA1tn5qOA3wP7ruqg5pI5lhtm0lzLMzNpruSsmTQn8t9MGvVcagHR3rbARZn5x8y8\nDTgS2G3IMU1LZl6ZmWfU/5dSPqgbDzeq6YmITYBnA18ZdiwrIyLWA3YAvgqQmbdl5t+GG9VKWR1Y\nKyJWB9YGrhhyPK1l5s+Av3QN3g3o/PzqYuD5qzSoaeq1Lpn5o8y8oz49mfLbCJq+OZMbZtJcyjMz\naa7krJk0B/PfTBrZXGoB0d7GwKWN55cxBw6GETEfeCzw6+FGMm3/AbwLuGvYgaykzYBrgf+qTdtf\niYh1hh3UdGTm5cAngT8BVwJ/z8wfDTeqlbZhZl5Z/78K2HCYwcygVwHfH3YQs9yczA0zaQ7kmZk0\nV3LWTJoz+W8mjXoutYAYYxFxL+B/gLdm5vXDjqdfEfEc4JrMPH3YscyA1YHHAQdl5mOBG5k93WSW\nU68P2I2SFB4ErBMRew43qpmT5dZ1s/72dRHxHko3k8OHHYvmrtmeZ2bSHMtZM2nO5L+ZNOq51AKi\nvcuBTRvPN6nDZqWIWINyUD88M/932PFM0/bA8yJiCaXbwNMi4rDhhjRtlwGXZWbnDN3RlAPqbPR0\n4OLMvDYzbwf+F3jSkGNaWVdHxEYA9e81Q45npUTEIuA5wMvSe3mvrDmVG2bSHMkzM2ku5ayZNJfy\n30wa6VxqAdHeqcAWEbFZRNyDciHLsUOOaVoiIih9DX+XmZ8edjzTlZn7ZuYmmTmfsj9+kpkjU533\nIzOvAi6NiIfVQTsD5w0xpJXxJ2C7iFi7vtd2ZvZfEHcssLD+vxA4ZoixrJSI2JXSheJ5mXnTsOOZ\nA+ZMbphJcyXPzKS5lLNm0hzLfzNppHPpnPkl6kHLzDsi4k3ADylXwh+SmecOOazp2h54OXB2RJxV\nh+1Xf7FVw/Nm4PD6JeSPwCuHHM+0ZOavI+Jo4AxKF5kzGdFf0uwlIo4AdgTuHxGXAfsDHwOOiohX\nA5cAuw8vwvYmWJd9gTWB40tO4uTMfP3Qgpzl5lhumEnmGfVjTuS/mTTqudRfopYkSZLUml2YJEmS\nJLVmASFJkiSpNQsISZIkSa1ZQEiSJElqzQJCkiRJUmsWENJKiIifRsQuXcPeGhEHTfKaGwYfmSRp\nWMwNmussIKSVcwTlB4Ga9qjDJUnjydygOc0CQlo5RwPPrj9+Q0TMBx4EnBkRJ0TEGRFxdkTs1v3C\niNgxIo5rPP98RCyq/28TESdFxOkR8cOI2GhVrIwkaUaYGzSnWUBIKyEz/wKcAjyzDtoDOAq4GXhB\nZj4O2An4VP0p+ilFxBrA54AXZ+Y2wCHAh2c6dknSYJgbNNetPuwApDmg01R9TP37aiCAj0TEDsBd\nwMbAhsBVLeb3MGBr4PiaV+YBV8582JKkATI3aM6ygJBW3jHAZyLiccDamXl6bW7eANgmM2+PiCXA\nPbtedwfLtwJ2xgdwbmY+cbBhS5IGyNygOcsuTNJKyswbgJ9SmpM7F8itB1xTE8ROwEN6vPQSYKuI\nWDMi7gPsXIdfAGwQEU+E0mwdEY8Y6EpIkmaUuUFzmS0Q0sw4AvgWy+66cTjwnYg4GzgNOL/7BZl5\naUQcBZwDXAycWYffFhEvBg6MiPUon9P/AM4d+FpIkmaSuUFzUmTmsGOQJEmSNEvYhUmSJElSaxYQ\nkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmtWUBIkiRJau3/A1O7qgqy\nlt95AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Log-transform the skewed features\n", + "skewed = ['capital-gain', 'capital-loss']\n", + "features_raw[skewed] = data[skewed].apply(lambda x: np.log(x + 1)) # applies column wise, incr x by 1\n", + "\n", + "# moves values closer together so algo doesnt get confused\n", + "\n", + "# Visualize the new log distributions\n", + "vs.distribution(features_raw, transformed = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Normalizing Numerical Features\n", + "In addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as `'capital-gain'` or `'capital-loss'` above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning, as exampled below.\n", + "\n", + "Run the code cell below to normalize each numerical feature. We will use [`sklearn.preprocessing.MinMaxScaler`](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html) for this." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      ageworkclasseducation_leveleducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-country
      00.30137State-govBachelors0.8Never-marriedAdm-clericalNot-in-familyWhiteMale0.021740.00.397959United-States
      \n", + "
      " + ], + "text/plain": [ + " age workclass education_level education-num marital-status \\\n", + "0 0.30137 State-gov Bachelors 0.8 Never-married \n", + "\n", + " occupation relationship race sex capital-gain capital-loss \\\n", + "0 Adm-clerical Not-in-family White Male 0.02174 0.0 \n", + "\n", + " hours-per-week native-country \n", + "0 0.397959 United-States " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import sklearn.preprocessing.StandardScaler\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "# Initialize a scaler, then apply it to the features\n", + "scaler = MinMaxScaler()\n", + "numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']\n", + "features_raw[numerical] = scaler.fit_transform(data[numerical])\n", + "\n", + "# Show an example of a record with scaling applied\n", + "display(features_raw.head(n = 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Data Preprocessing\n", + "\n", + "From the table in **Exploring the Data** above, we can see there are several features for each record that are non-numeric. Typically, learning algorithms expect input to be numeric, which requires that non-numeric features (called *categorical variables*) be converted. One popular way to convert categorical variables is by using the **one-hot encoding** scheme. One-hot encoding creates a _\"dummy\"_ variable for each possible category of each non-numeric feature. For example, assume `someFeature` has three possible entries: `A`, `B`, or `C`. We then encode this feature into `someFeature_A`, `someFeature_B` and `someFeature_C`.\n", + "\n", + "| | someFeature | | someFeature_A | someFeature_B | someFeature_C |\n", + "| :-: | :-: | | :-: | :-: | :-: |\n", + "| 0 | B | | 0 | 1 | 0 |\n", + "| 1 | C | ----> one-hot encode ----> | 0 | 0 | 1 |\n", + "| 2 | A | | 1 | 0 | 0 |\n", + "\n", + "Additionally, as with the non-numeric features, we need to convert the non-numeric target label, `'income'` to numerical values for the learning algorithm to work. Since there are only two possible categories for this label (\"<=50K\" and \">50K\"), we can avoid using one-hot encoding and simply encode these two categories as `0` and `1`, respectively. In code cell below, you will need to implement the following:\n", + " - Use [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummies#pandas.get_dummies) to perform one-hot encoding on the `'features_raw'` data.\n", + " - Convert the target label `'income_raw'` to numerical entries.\n", + " - Set records with \"<=50K\" to `0` and records with \">50K\" to `1`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('income one hot', array([0, 0, 0, ..., 0, 0, 1], dtype=int64))\n", + "('income rev transformed', array(['<=50K', '<=50K', '<=50K', ..., '<=50K', '<=50K', '>50K'], dtype=object))\n", + "103 total features after one-hot encoding.\n" + ] + } + ], + "source": [ + "# TODO: One-hot encode the 'features_raw' data using pandas.get_dummies()\n", + "features = pd.get_dummies(features_raw) # creates a non sparse matrix\n", + "\n", + "# TODO: Encode the 'income_raw' data to numerical values\n", + "income = income_raw.map({'<=50K':0, '>50K':1})\n", + "\n", + "# or, good for multiple classes. Also provides easy reverse transform.\n", + "from sklearn.preprocessing import LabelEncoder\n", + "le = LabelEncoder()\n", + "income = le.fit_transform(income_raw)\n", + "print(\"income one hot\", income)\n", + "print(\"income rev transformed\", le.inverse_transform(income))\n", + "\n", + "# just be careful: it gives unecessary order to things.\n", + "\n", + "# Print the number of features after one-hot encoding\n", + "encoded = list(features.columns)\n", + "print \"{} total features after one-hot encoding.\".format(len(encoded))\n", + "\n", + "# Uncomment the following line to see the encoded feature names\n", + "#print encoded\n", + "#print(income.head(10))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Shuffle and Split Data\n", + "Now all _categorical variables_ have been converted into numerical features, and all numerical features have been normalized. As always, we will now split the data (both features and their labels) into training and test sets. 80% of the data will be used for training and 20% for testing.\n", + "\n", + "Run the code cell below to perform this split." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set has 36177 samples.\n", + "Testing set has 9045 samples.\n" + ] + } + ], + "source": [ + "# Import train_test_split\n", + "from sklearn.cross_validation import train_test_split\n", + "\n", + "# Split the 'features' and 'income' data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(features, income, test_size = 0.2, random_state = 0)\n", + "\n", + "# Show the results of the split\n", + "print \"Training set has {} samples.\".format(X_train.shape[0])\n", + "print \"Testing set has {} samples.\".format(X_test.shape[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Evaluating Model Performance\n", + "In this section, we will investigate four different algorithms, and determine which is best at modeling the data. Three of these algorithms will be supervised learners of your choice, and the fourth algorithm is known as a *naive predictor*." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Metrics and the Naive Predictor\n", + "*CharityML*, equipped with their research, knows individuals that make more than \\$50,000 are most likely to donate to their charity. Because of this, *CharityML* is particularly interested in predicting who makes more than \\$50,000 accurately. It would seem that using **accuracy** as a metric for evaluating a particular model's performace would be appropriate. Additionally, identifying someone that *does not* make more than \\$50,000 as someone who does would be detrimental to *CharityML*, since they are looking to find individuals willing to donate. Therefore, a model's ability to precisely predict those that make more than \\$50,000 is *more important* than the model's ability to **recall** those individuals. We can use **F-beta score** as a metric that considers both precision and recall:\n", + "\n", + "$$ F_{\\beta} = (1 + \\beta^2) \\cdot \\frac{precision \\cdot recall}{\\left( \\beta^2 \\cdot precision \\right) + recall} $$\n", + "\n", + "In particular, when $\\beta = 0.5$, more emphasis is placed on precision. This is called the **F$_{0.5}$ score** (or F-score for simplicity).\n", + "\n", + "Looking at the distribution of classes (those who make at most \\$50,000, and those who make more), it's clear most individuals do not make more than \\$50,000. This can greatly affect **accuracy**, since we could simply say *\"this person does not make more than \\$50,000\"* and generally be right, without ever looking at the data! Making such a statement would be called **naive**, since we have not considered any information to substantiate the claim. It is always important to consider the *naive prediction* for your data, to help establish a benchmark for whether a model is performing well. That been said, using that prediction would be pointless: If we predicted all people made less than \\$50,000, *CharityML* would identify no one as donors. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1 - Naive Predictor Performace\n", + "*If we chose a model that always predicted an individual made more than \\$50,000, what would that model's accuracy and F-score be on this dataset?* \n", + "**Note:** You must use the code cell below and assign your results to `'accuracy'` and `'fscore'` to be used later." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Naive Predictor: [Accuracy score: 0.2478, F-score: 0.2917]\n" + ] + } + ], + "source": [ + "#from sklearn.metrics import accuracy_score, recall_score\n", + "import numpy as np\n", + "\n", + "income_all_true = pd.Series(np.ones((len(income),), dtype=np.int))\n", + "#print(income_all_true.head())\n", + "#print(income.head())\n", + "\n", + "# TODO: Calculate accuracy\n", + "#accuracy = accuracy_score(income, income_all_true, normalize=True, sample_weight=None) # normalise=True means show percentage\n", + "#recall = recall_score(income, income_all_true)\n", + "\n", + "income_pred_naive = income_all_true\n", + "\n", + "# by hand\n", + "tp = sum(income==income_pred_naive)\n", + "fp = sum(income_pred_naive) - tp\n", + "fn = sum(income) - tp\n", + "accuracy = tp / float(tp + fp)\n", + "recall = tp / float(tp + fn)\n", + "\n", + "\n", + "\n", + "# TODO: Calculate F-score using the formula above for beta = 0.5\n", + "beta = 0.5\n", + "fscore = (1+beta**2.0) * (accuracy * recall) / float((beta**2.0 * accuracy) + recall)\n", + "\n", + "\n", + "# Print the results \n", + "print \"Naive Predictor: [Accuracy score: {:.4f}, F-score: {:.4f}]\".format(accuracy, fscore)\n", + "\n", + "# accuracy matches the share of >50k incomes, if you predict true always." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Supervised Learning Models\n", + "**The following supervised learning models are currently available in** [`scikit-learn`](http://scikit-learn.org/stable/supervised_learning.html) **that you may choose from:**\n", + "- Gaussian Naive Bayes (GaussianNB)\n", + "- Decision Trees\n", + "- Ensemble Methods (Bagging, AdaBoost, Random Forest, Gradient Boosting)\n", + "- K-Nearest Neighbors (KNeighbors)\n", + "- Stochastic Gradient Descent Classifier (SGDC)\n", + "- Support Vector Machines (SVM)\n", + "- Logistic Regression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2 - Model Application\n", + "List three of the supervised learning models above that are appropriate for this problem that you will test on the census data. For each model chosen\n", + "- *Describe one real-world application in industry where the model can be applied.* (You may need to do research for this — give references!)\n", + "- *What are the strengths of the model; when does it perform well?*\n", + "- *What are the weaknesses of the model; when does it perform poorly?*\n", + "- *What makes this model a good candidate for the problem, given what you know about the data?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The three supervised learning models are Decision Tree, KNN and AdaBoost with Decision Tree as the weak learner. \n", + "\n", + "- Decision trees are applied in finance, for example, where they have been used to model investment decision making: http://www.cfapubs.org/doi/pdf/10.2469/faj.v50.n6.75. In this paper, they are considered superior to a weighted combination of features, as they more closely model the thinking of a portfolio manager when selecting securities. Decision Trees are helpful as they can visualise the path taken to arrive at a classification. They perform well on datasets with nominal, ordinal, interval and ratio data instead of just one of the types. The weaknesses are that they can overfit if too many nodes are allowed, and that they perform poorly on unbalanced datasets, such as ours. However, we can address this by tweaking the fbeta score to give more emphasis to accuracy and checking our final accuracy against the accuracy by predicting the same outcome every time. We can also limit the number of nodes allowed, or set the minimum examples required per leaf to stop the tree from growing too deep and overfitting.\n", + "\n", + "\n", + "- KNN. An industry application is concept searching. https://www.kcura.com/relativity/Portals/0/Documents/8.0%20Documentation%20Help%20Site/Content/Features/Analytics/Concept%20searching.htm. Based on a search query, Knn will find documents that contain a similar topic, rather than exact word matches. It works by setting up a feature space of related words, and checking for nearest neighbours in that space. Strengths are that it is non parametric so can fit any decision boundary. Further, it is resistant to correlated attributes, which our dataset may have. Overfitting is not a problem, as it finds locally optimal solutions for points that do not affect points elsewhere through any global parameters. We also don't have any missing data, so KNN should work well. Weaknesses are that all features are equally important. This assumption is ok, as we dont have an a priori idea what features matter in our dataset. Further, it is not obvious what K should be, so we would have to tune this.\n", + "https://www.quora.com/Classification-machine-learning-When-should-I-use-a-K-NN-classifier-over-a-Naive-Bayes-classifier\n", + "\n", + "\n", + "- Ada Boost is applied in industry to predict whether customers might leave and preventatively offer them enticements to stay. https://www.cs.rit.edu/~rlaz/PatternRecognition/slides/churn_adaboost.pdf. Advantages are that instead of trying to find a a strong model that fits the weight distribution of the entire dataset we only have to find weak learners, i.e a model that performs better than chance. Each subsequent iteration will apply a weak learner to a slightly changed distribution, increasing the weights of examples we got wrong. We will also have continuous information gain, as each learner will improve on the previous. We also dont need any prior knowledge of the dataset, due to information gain guaranteed by the weak learner. Weaknesses are that a weak learner needs to exist for AdaBoost to work. A weak learner that is too complex, such a huge neural network, can lead to overfitting. It also seems that AdaBoost is sensitive to uniformly distributed noise (http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf). For our problem, we will use AdaBoost with a Decision Tree as the weak learner. By controlling leafs and node splits, as above, we should get an improved solution to using just a Decision tree, as we can focus on difficult examples.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation - Creating a Training and Predicting Pipeline\n", + "To properly evaluate the performance of each model you've chosen, it's important that you create a training and predicting pipeline that allows you to quickly and effectively train models using various sizes of training data and perform predictions on the testing data. Your implementation here will be used in the following section.\n", + "In the code block below, you will need to implement the following:\n", + " - Import `fbeta_score` and `accuracy_score` from [`sklearn.metrics`](http://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics).\n", + " - Fit the learner to the sampled training data and record the training time.\n", + " - Perform predictions on the test data `X_test`, and also on the first 300 training points `X_train[:300]`.\n", + " - Record the total prediction time.\n", + " - Calculate the accuracy score for both the training subset and testing set.\n", + " - Calculate the F-score for both the training subset and testing set.\n", + " - Make sure that you set the `beta` parameter!" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3\n" + ] + } + ], + "source": [ + "# Import two metrics from sklearn - fbeta_score and accuracy_score\n", + "from sklearn.metrics import fbeta_score, accuracy_score\n", + "\n", + "# a generic learning function for any algo\n", + "def train_predict(learner, sample_size, X_train, y_train, X_test, y_test): \n", + " '''\n", + " inputs:\n", + " - learner: the learning algorithm to be trained and predicted on\n", + " - sample_size: the size of samples (number) to be drawn from training set\n", + " - X_train: features training set\n", + " - y_train: income training set\n", + " - X_test: features testing set\n", + " - y_test: income testing set\n", + " '''\n", + " \n", + " results = {}\n", + " \n", + " # Fit the learner to the training data using slicing with 'sample_size'\n", + " start = time() # Get start time\n", + " # we want the same samples every time, not shuffled, so we can compare the learners. \n", + " learner = learner.fit(X_train[:sample_size], y_train[:sample_size])\n", + " end = time() # Get end time\n", + " \n", + " # Calculate the training time\n", + " results['train_time'] = end-start\n", + " \n", + " # Get the predictions on the test set,\n", + " # then get predictions on the first 300 training samples\n", + " start = time() # Get start time\n", + " predictions_test = learner.predict(X_test)\n", + " predictions_train = learner.predict(X_train[:300])\n", + " end = time() # Get end time\n", + " \n", + " # Calculate the total prediction time\n", + " results['pred_time'] = end-start\n", + " \n", + " # Compute accuracy on the first 300 training samples\n", + " results['acc_train'] = accuracy_score(y_pred=predictions_train, y_true=y_train[:300])\n", + " \n", + " # Compute accuracy on test set\n", + " results['acc_test'] = accuracy_score(y_pred=predictions_test, y_true=y_test)\n", + " \n", + " beta = 0.5 # place more emphasis on precision, as there are very \">50k\" examples in the dataset.\n", + " \n", + " # Compute F-score on the the first 300 training samples\n", + " results['f_train'] = fbeta_score(y_true=y_train[:300], y_pred=predictions_train, beta=beta)\n", + " \n", + " # Compute F-score on the test set\n", + " results['f_test'] = fbeta_score(y_true=y_test, y_pred=predictions_test, beta=beta)\n", + " \n", + " # Success\n", + " print \"{} trained on {} samples.\".format(learner.__class__.__name__, sample_size)\n", + " \n", + " # Return the results\n", + " return results\n", + "\n", + "print(int(round(len([1,1,1,1])*0.63)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Initial Model Evaluation\n", + "In the code cell, you will need to implement the following:\n", + "- Import the three supervised learning models you've discussed in the previous section.\n", + "- Initialize the three models and store them in `'clf_A'`, `'clf_B'`, and `'clf_C'`.\n", + " - Use a `'random_state'` for each model you use, if provided.\n", + " - **Note:** Use the default settings for each model — you will tune one specific model in a later section.\n", + "- Calculate the number of records equal to 1%, 10%, and 100% of the training data.\n", + " - Store those values in `'samples_1'`, `'samples_10'`, and `'samples_100'` respectively.\n", + "\n", + "**Note:** Depending on which algorithms you chose, the following implementation may take some time to run!" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DecisionTreeClassifier trained on 362 samples.\n", + "DecisionTreeClassifier trained on 3618 samples.\n", + "DecisionTreeClassifier trained on 36177 samples.\n", + "KNeighborsClassifier trained on 362 samples.\n", + "KNeighborsClassifier trained on 3618 samples.\n", + "KNeighborsClassifier trained on 36177 samples.\n", + "AdaBoostClassifier trained on 362 samples.\n", + "AdaBoostClassifier trained on 3618 samples.\n", + "AdaBoostClassifier trained on 36177 samples.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAIuCAYAAAAv/u6UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMXXx78n2ZRNJZUUEkIKoSZ0EVGKiqJUkRaRJigo\nICAC4quAgkhHEUHhJxCQDooFadJEQBCQEnogBUiAhJZAeub9Y2bDzbJJNiEQyvk8z31278zc6TN3\nzsyZuSSEAMMwDMMwDMMwjDlYlHUEGIZhGIZhGIZ5dGABgmEYhmEYhmEYs2EBgmEYhmEYhmEYs2EB\ngmEYhmEYhmEYs2EBgmEYhmEYhmEYs2EBgmEYhmEYhmEYs2EBgnlgEFFPIhKaK4WIDhHRACLSlXJY\nTxPRP0R0S4VVqzT9fxIgojEq79KIyNmEfQ9NWQaX0P/mxXwmhogWFDeskvAg6pAmj4u6ehJRgPrf\np7TjUdoQUS0iWk1EcUSUQUQJRLSViAaVddxKA0O5PcDwDGXfswh3hj622O2xLHmQ7doo3AUqv84T\n0V3jISIarWmDpfKO0pRRQAmeFUQ0pjTiwTD3SqkO2hjGTDoCOA/ASf2fCcATwKelGMb/AKQBaA3g\nNoBTpej3k0YWgNch81RLDwApABxL6O9oAOMBbCnGM+0B3CxheMXlQdSheQDWa+5fBfB/uNNGDEQD\nsL8P4Zc6RFQfwF8A/gEwHEAigAoAGkOW39dlF7tSw7jcmHvjQbZrY24D8AbQDMCfRnbdcW99HMM8\ntrAAwZQF/wkhzqj/G4koCMD7uEcBgogsARCAXAChAMYLIYozOC3IXwJgJYTIvFe/HlHWAHgTGgGC\niPwANAWwEEDP+x0BIrIRQmQIIQ7e77BUeBZ4AHVICHEeGkGBiKqov9o2YrArsQDxgOvwQADXAbQQ\nQmRozBebmuV9WDDUMXPcGpcbc4eS1LUH1a4L4BqAE5B9XJ4AQUSNAVQCEAk5WcIwjIaHtjNnnij+\nBeBERJ4GAyJ6W6k3pRNREhH9j4hctQ+p5dzxRDSSiM4ByIQcvORA1u1PlJsYzTPdjPxdRETeRv7G\nENFiIupNRCeUv69q1Aj6EdEEIkpUaliLiciOiIKJaAMRpRLRGSLqYeRvsArvnFILOktEs4nIxcjd\nArWkXpuI/iKi20R0moj6GWccEVVSfiYqVZGzRPSVkZsmRPSniustFccaxSifSADPEVFFjdmbAGIB\n7DD1ABG9RkR7VNyvE9FKIvLX2BvUPz7WqAiMMUr/00S0i4jSAExSdnepOhSVB0RUn4g2EVGyJt+/\nLSixJNVE7ksdKijMYmJJRJ+RVAu6TkS/ElEFc8NXdXWiqoeZ6vdj48E9EXkQ0RwiuqDy9QQRvW1G\n/FwBXDM1GBdC5Gr8b6rytqlRuHepeGjS01e1rXQiOkBEzYzDMKe+E9E2ItpJRK2J6CARZQB4l4ii\niGiNCT8bqDi1V/d3qTAR0ftEdFzVsWtE9K/BvcZNoe1CubEjom9VfU0lol8gV3BKDTPzqAURrVP1\n7DYRHSWiD0hO1GjdFdVfvmNmfV2guTfUgYZE9CMR3SSii0T0NRHZGj0bqOJ5m4guE9FUku+P4qgJ\nRQLoQER2GrPukCtpMSbyz4qIxql4Z6rfcURkZSJuv6u4XSHZL9mYigCZ8c4z8UxlIvpJpTudpMrg\nSipllWCGMYkQgi++HsgFOVMtAAQbma8CkA3ATt1/Cak2MxVACwC9AFyAVImw1DwnlPlfADoAeBlA\neQDPKLt5ABoCqK3cv63MlwF4BUAfAJchVVMcNP7GKH+PAugK4HkAQQAC1POxkDPvLwEYouIaCeAI\ngEEAXoSctc8FUF3j73MAJgJ4DUATlR+nAOw2yo8FkMv5xwG8o/xbosJupnFXCcAVFZ+3IZfgewD4\nUePmVZW3awG0VdcuyFk3vyLKa4wK0wrAWQCjNHbHAXxuqkwB9FNmP6h87qzcnwPgqNw0VG7mq/8N\nAVTQpD9FpWsg5ErHU5qyWWBuHgBwAHAVUt2ktfKrJ4DvC0m3B+5THSppG1F2AcouRtWHliqtSQC2\nGbk1GT7kqvNfAJIBDFbmHwNIBzBV87wTgJMA4gD0BfACgMmQgtXAItLwqYrnHAANAOgKcNdUuWta\nQB4EGKXnvKpHnQG0A7BbxTu0uPUdwDZVbucA9FZxCQMwUvnpYhSnmSrPrLVtQ2P/hgr3U8g6+Iry\n663itAvlbhHkIPxjyP5vsioHAaBnSetPCfKoH6QKWiuVpg8h2+WXZta1ABSvvi4wkY7TAD6DrH+f\nQNa/sRp31pDqfeeV369A9r2xMKpDBeTFAvWsPYBUABHK3Fblx1u40w/qNM8tUXn4mSqjMZDvgSUm\n4nYR8h32KoBfAMQbxw3Fe+eN0dyfBrAX8v3XBEAEgMVQ9ZQvvu7nVeYR4OvJuTQvhVDIgYwL5AA5\nB8DPyk2Auv/U6FnDgK6dxkyozllv5FZnoqO1BHAJwFYjt42V20EasxhIvVgvI7cByu0WI/M1yryb\nxsxFvWBGF5IfOk34tTXmC3C3sGADOYD5XmMWqV56PoWEcQbAn0ZmTpAv8RlFlFfei1O9KI8r8wbK\nPARGAxbIAfsNAD8Y+VUJclA02Kj8xpkI15D+tibsYpB/oFFoHgCop/wKK2ZdvS91qBhtpDABYpuR\n+TBl7lNU+JArRwLAc0bmH6vy8VT3n0AOpEOM3M1VdcekUKDc6AH8pMIRKh4bIQURC427piieAJGJ\n/ANcR0jhcFFx6zukAJELoJaRWz/I/ucdjZkVpJD6rXHb0Nx/A+BAIXliVruA7BtzAIw0cjcbpSdA\nFLtPgFQN1al6cs2oHAuqa8WtrwtMpGOs0bO/ATiluTcI9A2M4nrIuA4VkK4FAM6r/5EA1qv/nVSa\nnGAkQACoAaO+QZn/HzR9DWR9FwAaatxYAIjSxg3Ff+eNUf/d1X2bwtLIF1/362IVJqYsOAE523IV\nwLcAfoScBQTkbLsFgB+JSGe4IGdiUiBn8bWsF0KkmRFmKORG7R+1hkKInZCzVU2M3O8RQiQW4Ncf\nJtIDABs0/l6DnOH0M5gRkTURjVKqIGmQefCXJn5abgshtmr8y4Cc5daqO7QA8JsQ4qKpSBJRCORM\noHFe3oacvTXOy8KIBFCF5AbZ7pD5c9qEu6chX7rGYcZD5pO5YWZBDhaKotA8gJyhuw7gO5KqR34F\nuDOH0qxD98I6o/sj6tffyNxU+C9DxnWXUflshBwoN9S4+wfAOSN3GwC4AahWUOSEEGlCiPYAqkPO\nWv8BKch9D+APIqJipNU4PfGacFIA/A5Z50pS32OEEP8ZxT0eUrh4U2P8MuRgbVEhcdsHoBYRzSSi\nF4xUYQDz28VTkP3fCqPnlxUSttkUJ4+IyJuIviOiWEghJwvAOADlINuBlsLqurn11RS/m3hW+1xD\nAHFCiL0GAyGEALDaDL+NiQTwAhF5QfZxa4UQpjZ2G/JosZG54d7QDzwNIF4IsUcTt1zcXbbFfecZ\nSIZcGf6SpGpfSJEpZJhShPXkmLKgPeSycQqAWCFEusbO8GI6c9dTEjej+wQzwzTokppyn6ixN8ff\na0b3mYWYa/V1J0Cq5HwGqTKQAqnbvMbInSm/ACDDyJ0bCt/IacjL/+HuE5QAqRZhFkKIM0S0G3JJ\n/3XIGerCwtxcgL2pdJniihAixwx3heaBEOIGST35TyCFVUciioJcGSruIKM069C9cNXo3rDXwLgO\nmQrfE0BFyMGgKdw07oLNcFcgQohjAI4BgNJbnwugG6QqhznCoTGXCjDzVf+LW98LKp9FAOYTUSUh\nxDlIYeKMEGJ3IXGLhMz/twC8CyCLiNYBGCqEiIH57cKwl8Y4rabSXhLMyiOS+2F+AeADOQN/AvJE\nsnaQqxDm1DUD5tZXc5/V7iHwhpyoMaYk+bUFMh1DINVT2xTgrqB+INHI3ruAeBibFfedB0AKSkT0\nImT5TADgRnIv4GQhxOwC/GKYUoMFCKYsOCqMTpjRkKx+W8D0YDPZ6F6YGabhReRlws4LwP4S+lsc\nugCIFEKMMxgQkcM9+JeEO4MnUxjy6iOYHrgU90SeSACzIFWzCpoRNYTZE3Kp3pgUM8MyN/+LygOo\nWeYOalavHmR+rCCicCHEUTPDAR6OOlQcTIWfDKlz36mAZ2I07i5Dno5mipPFiogQ6UQ0GVKAqAYp\nQBgmDqyNnBcknJQvwOyC+l/c+l5Q+ayGrOfdiOhryL0zEwpwKz2Ss97fQa50uUD2X1MBLIdcVTC3\nXRgGpeUhZ5ehuS8NzM2jIMi28qYQIm+mnYhaF+BvWdX1BJheDSt2fgkhconoR8hVs8uQq3Km0PYD\n0RpzLyP7BMhVuKLiVtx3njbOZwF0V6t64QAGAPiWiGKEEMYr5QxTqrAAwTxsbILUTfYXQmwqRX9P\nQs78dEH+40gbQc7ITi3FsArCDnfP6Pa6B/82AniNiLyFEKZmAE9CDgirCyG+vIdwDCyHnJk7rFS0\nTGFYWQkWQiwswr9MSH35e6GoPMhDCJENYA8RfQI5u1gVcuOnuTwMdeheWQ+54TJVCHGiCHcDIdVD\nTM3wFkghZWE4otZgF6t+ayD/YK2g06oaEpGfQY2JiByVW4OaS6nUdyFEChH9DCnsXISc8TZWVyns\n+WsAlhPRU5B7vADz28U/kP1fJ8iNtQa6mJ+CQjE3jwwqWHn9lTph6I1SikdpsQdALyJqYFBjUoPp\nDiX07wfIerqpkBVQw8lzXSC/Y2PAkDfb1O9uFbeGBjUmtbJjLLzf8ztPCbD/EdFQyFWwGrhb1ZZh\nShUWIJiHCiFENBFNBPANEYUC2A45U+kHqSs6T7s3oBj+5hDRp5AzhIshBwS+kC+A05AvjvvNegA9\niOgI5HL1awAa3YN/oyFPHdlFRF8oP30BvCyE6KaWuN8DsJaIrCF1b5MgZ8AaQQ4Op5kbmBoYtS/C\nzU0i+hDALCLygHyJ3VDxagK5oXKJcn4M8rjH9ZAzbxcL2ctQEIXmARG1gtxo+TPkzLs95ElZKZAv\neLN5SOrQvfIjpND6JxFNhdxsag0549wGcsPmbQDTIU8J+ouIpkMOPO0hB1fPCiHaFhLG90TkBDmT\nfxRy83l9yBN9oiE3WEMIkUBE2wF8RERJkLO+3QAEFuDvJcjvxoyBVGUZoeL0ufKvNOv7IsgTbcYC\n+FvN9BYIEX2PO3XqMoDKkKpPG1XczGoXQoiTRLQEwGdqsLkPcmb6FTPjbeBlIjLek3BDCLHJzDw6\nDingjSeiHEhBYkgx4/AgWABZD9YQ0ceQm937QB5iAciBudkIIU5BqmkV5uYoES0FMEatau6C3O/w\nCYClQgjDHo+FkCdxrSGiUZD1oh/kXhitfyV65xFRGICvICd2zkC2s56QK8T3/O0ahikKFiCYhw4h\nxCgiOg7gPXUJyM2Gf0IO1Erq7/dEdBtyiXot5Ok96wAMF0LcuueIF81AyBNCDLNW6yCPPdxb4BOF\nIISIIaKGkBsbJ0Ce9HIBMm0GN+uI6DlIveV5kDP+iZAzd8tLlowi4/UdEcVD5nMEZD9jOG5Xu2l1\nAORXiX+FnOUdC6nPW5ywisqD05C6259A6iSnQA7KXhTyY2DFTVtZ16F7QgiRRUQvQQ5s3oY8BegW\n5MD+dygVFrV3pBHksaQjIAe61yEFiaL2jnwDWe7vQerQW0PuU1kM4HMhRKrGbTfIE4a+hhw0/QBZ\nlnNN+Lsdcnb3C8i9Q8cAtFSDPkP6Squ+b1LP+ULuWSqKvyEFszcBOEOuXCyGFHANcTO3XbwDWa+G\nQebdFuV+ZzHiP9OEWRSAGubkkRAik4jaQZZlJKRazg+QeyRMlU2ZoOLZAjK9cyDzbQnkSs6XkELa\n/aAnpIpZb8jTly5CHtE91ihuL0Lm4beQ7WwJZDubY5SOkrzzEiHLYyhke0iH3GTeSghhrE7JMKUO\nyZUvhmEYhnk4Ifkhv51CiG5lHRfm4YeIfgNQVQgRVNZxYZjHFV6BYBiGYRjmkUTp/adCztQ7AugI\nuTemf1nGi2Eed1iAYBiGYRjmUSUDcn+GP+Q+gJMA+gghTB1TyzBMKcEqTAzDMAzDMAzDmA1/iZph\nGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNh\nAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZh\nGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZh\nGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLPRlXUE\nmDscOHDgJZ1ON1oI4QUW7hiGYRiGYR5lcokoMTs7e2ydOnU2lHVkShMSQpR1HBhI4cHGxuabgICA\nTL1en25hYcEFwzAMwzAM84iSm5tLaWlptjExMdYZGRkDHichgme5HxJ0Ot3ogICATHt7+zQWHhiG\nYRiGYR5tLCwshL29fVpAQECmTqcbXdbxKU1YgHhIEEJ46fX69LKOB8MwDMMwDFN66PX6dKWe/tjA\nAsTDgwWvPDAMwzAMwzxeqPHdYzXmfqwSwzAMwzAMwzDM/YUFCOaRpEGDBqGdO3euWJxnOnToENCo\nUaPKhbkZOnSoj7+/f417i9395eTJk9ZEVHfDhg0ODypMIqr77bffuhrur169avHiiy8GOTo61iKi\nuidPnrQuSZkw9x9z6v3jytdff+2m0+nqPqjwfvvtN0ciqhsdHW1lMNu7d6++Zs2aVW1sbOr4+vrW\nBO5uT8yjja+vb83hw4d7m+O2LPrvh41WrVoFNmvWLPhBhffuu+/6hoSEVNeazZ4929XX17empaVl\n3YiICP9Vq1Y5EVHdhIQEPp3UTDijHnKWubuHZyQnP9BysnFzy+6SlHSoOM906NAhICEhwXrXrl2n\nDGY7duywa9++fUj9+vVT+vTpk9SxY8cQb2/vzDNnzhy1s7PLU9dq1KhRZW9v78zVq1fHmBver7/+\nesbKyuqxVPlavny588yZMz2PHj1qn56ebuHl5ZXZqFGjmyNHjrwUFhaWURZxio2NPeTu7p5juJ86\ndarnwYMHHf7888+TXl5eWT4+PtmPcpm4L1sWnpyR8UDbmZuNTXZSly7FamcAcO7cOavQ0NCa5cqV\ny75w4cJhKyuroh8qJr6+vjUvXrxobbh3cXHJrl27duqUKVMu1K5d+4Ht1YqOjrYKDg4O+/XXX0+1\natUqRWuXlZWFSZMmeS5btszt7NmztkQEPz+/jDZt2lwdNmzYFQ8Pj5yC/L1fvPDCC6mxsbGHfH19\nsw1mw4YNq+Do6Jhz+PDho46OjrnA3e3pUcJ9mXt4csaDfSe52bhlJ3Up/jtpzZo1bgBgaWkpHB0d\ncwIDA9Nbtmx5ffjw4VecnJxySyt++/btO+7g4GCWf0FBQZmxsbGHypcvX2rlP3ToUJ/p06cXKsB8\n9dVXMYMGDUourTAL4sKFC7rRo0d7bd68uVxCQoK1g4NDTlBQUHqvXr2u9O3b96pO9+CHnRMmTEj4\n9NNPEw33t2/fpiFDhgS8++67iYMGDbri5OSUY2dnJ1S5ZBfmF3MHXoF4yHnQwkNphblq1Sqnl19+\nOfTVV1+99vvvv5+1tbUVAHD16lWrcePGlb9X/8uXL5/j6upaai+A+016ejqZ427YsGHeERERwZUq\nVcr48ccfzxw+fPjo999/f87a2lqMHDnS937HsyD8/f2ztULfmTNnbEJCQtIaNGiQ5u/vn63T6Uql\nTMzNp9LmQQsP9xLmrFmz3Js1a3bD0dExZ+nSpeVKO14G+vfvnxgbG3soJibm8OrVq0+npKTo2rRp\n88BmDQsjIyODmjVrFjJhwgTf9u3bX123bt3J/fv3R40ZM+bCvn37HGbPnu1WFvGytbUV/v7+2ZaW\nlnlmMTExNs8880xKaGhopo+PTzZwd3sqCWXXVh78O6mkYdatWzc1Njb20JkzZ45s2LDhVKdOna7+\n73//8wwLC6sWHx9faunw8fHJNlcg0el08Pf3z7axsSm1yZbRo0cnxsbGHjJctWrVutW6deurWrPe\nvXtfNX4uNzcXWVlZpRUNnDhxwrpOnTrVNm/eXG7UqFEXdu/efWzr1q0nIiIikqZOnep95MgR21IL\nrBg4Ozvnenl55QlsZ8+etc7IyKC2bdteDwgIyHJ1dc01tF0Li5IPi0s7Px92WIBgSp1vvvnGrWvX\nrsHvv/9+QmRkZJz2ZfrWW29dmjlzpldRy4Tjx4/3rFSpUnUbG5s6FStWrDFixAgvbcM0VpdJTU2l\nrl27VnR0dKzl5ORUq0ePHn4DBgzwNaWONGXKFHcfH5+aDg4OtZs3bx5s6kUyZ84c1woVKtS0sbGp\n06hRo5CTJ09aa+1nzpzpFhQUVN3KyqpO+fLlwwYNGuRjHL9OnTpVfP/99308PDzCKlSoEAYAixcv\nLle1atVqer2+tqOjY62aNWtW/fvvv/UA8Ndff9lNnTrVZ8SIERcWLVoU9+qrr6ZWrlw5s0WLFrcW\nLFgQv3DhwtiC8mvgwIG+gYGB1fV6fW0vL6+wiIgI/+Tk5LyMv3r1qsXrr78e4O7uHm5tbV3Hy8sr\nrE+fPhUM9hs2bHCoU6dOFXt7+9r29va1Q0NDq61evdrJYK9VufD19a25YsUK9z179jgSUd0GDRqE\nmioTc8rR19e35qBBg3y6devmX65cuVoGvxjT5OTkYMmSJe49evRI6tKlS/K8efM8tPaXLl2yfPXV\nVwP1en1tNze38EGDBvkYf+vnp59+cmrQoEGos7NzLUdHx1r169cP3bp1q51xWA4ODrn+/v7ZFStW\nzGrWrNntwYMHJ54/f97mypUrefXqzz//tK9Xr16ora1tHScnp1qtW7eudOHChXztqai2UljdCw4O\nDgOA1q1bVyaiugYVoC+++MJz165dTj///POpzz777FKTJk1uh4aGZnbu3PnGli1bzvTv39/kTOuV\nK1cs27ZtW8nb27umra1tnYCAgBqjR48un5t7Z+z377//2jZu3DjE0dGxll6vrx0YGFh91qxZeepG\n06ZNcw8MDKxuY2NTx9nZuVa9evVCDSpLWhUmg6pKfHy8zZQpU3yIqO7QoUN9gLtVmG7cuGHRq1cv\nP09PzzC9Xl+7atWq1RYuXJgnHBr8mj17tmuTJk2C9Xp97SFDhviYSiNzB2tra+Hv758dEBCQ1aBB\ng7QRI0Zc2bVr14lr167phgwZktf/FdVPZWVl4YMPPvD28/OrYW1tXcfT0zOsR48efgZ7YxWmwvp5\nUypMhw4dsmnatGmwnZ1dbTs7u9rNmzcPPnr0qI3B3qCKt3HjRvtq1apV1ev1tatXr151+/btdoAc\nIPv7+2cbLisrK6HX6/OZOTg4iEmTJnnY2dnVXr16tVNoaGg1a2vrOuvXr3cE5Mp3eHh4FVtb2zrl\ny5cP69KlS0VtWweAWbNmuVauXLmaQR2vX79+FVJTU/ME2d69e1ckIhw6dOjY22+/fa1OnTrpYWFh\nGYMHD04+cuTIseDg4ExT5bRlyxb7Z555JsTFxSXc3t6+dlhYWJW1a9c6at3Mnz/fJTQ0tJper6/t\n5ORUq1atWlX27dtnCwBpaWnUs2dPP09PzzBD+bz22msBhme1KkyTJk3yqFmzZg0AaNq0aVUiqvvn\nn3/am1JhOnjwoO3zzz8f5OjoWMvZ2bnWs88+G7J///48Iaiw/HwSYAGCKVVGjRrlNWTIkIrTpk2L\nnTBhQqKx/aBBg664u7tnjRw5ssDl1qFDh/rMmjWr/NixYy8cOnTo6KRJk+IjIyM9hg0bVuALc8CA\nARU2btxYbs6cOef++uuv4w4ODrkLFy70MHZ35MgRu+3btzuuXbv29M8//3zq5MmT+oEDB/pp3Vy5\ncsVq7ty5HkuWLIneuHHjidTUVMv27dsHGQYZy5Ytcx48eHBAp06dkvfv3x81bty4+AULFngax+/3\n3393vXLlim79+vWn1q1bdyouLk7Xq1evwA4dOiQfPHgwavv27Sfee++9SwYVlPnz57vZ2trmfvrp\np5dMpbEwlQy9Xp/77bffxv73339R33333bndu3c79u3bNy9dQ4cO9T1y5IjdihUrzkRFRR1dtGhR\ndNWqVdMB+XLs1KlTcJ06dVL37NlzbM+ePcc+/vjji/b29iZn1Pbt23f8lVdeuWaY3fv111/PmHJn\nbjn+8MMP5T09PbN37NhxfP78+TEFpZEBVq5c6ZyZmWnRsWPHG3379k3evXu3o1a47datW8CRI0fs\nli9ffmbDhg0nY2NjbTZu3Oii9SMlJcXi7bffvrxjx47jW7duPREYGJjerl27yomJiZZ3hyhJSkqy\nXLp0qWtgYGC6oR7GxcXp2rZtW9nb2ztzx44dx1euXHnm5MmT+rZt2wYZniuqrRRV93bu3HkMABYs\nWBAdGxt7aN++fccBYPny5W4NGzZMeeGFF26Zim9BbSUtLY2qV6+etnLlyuj//vvv6PDhwy9OnjzZ\nZ+bMmXkrFhEREYEuLi7Z27ZtO7F///6oL7/8Mt7V1TUHkEL+8OHDKw4dOjTxyJEjRzdt2nQyIiLC\npLCiUVXJMqzmjB49+q4+MTc3Fy1atAiOioqyW7Ro0dn9+/dHvfXWW5f79OkTaDyIGjNmTIUuXbpc\nPXjwYNT7779/paDyYgqmUqVKWe3atUvesGFDuZycHLP6qc6dOwfMnz/fc+TIkRcPHjwYtXLlyjNB\nQUEm1UmL6ueNSU1NpZYtW1bOyMiw2LBhw8kNGzacvHXrlsUrr7wSol1lys3NxahRoypMmzYtfteu\nXcfd3NyyIyIigoo7452ZmWkxduxYnxkzZsQdOnQoqn79+rdXrFjh1LNnz8CIiIjkf//9N2rp0qXR\np0+ftm3Xrl2g4blJkyZ5/N///Z/f0KFDEw8ePHh0zpw5MZs2bXLu06ePvyHdu3fvdnr77bcvOTs7\n3/Xu0OvooB4+AAAgAElEQVT1wqDCZ8zNmzctIiIikjdv3nxy165dxxo1apTaqVOnkBMnTlgDwOnT\np6379u0b2K1bt6SDBw9Gbd269UTfvn0vGyYnx44dW37Tpk3lFi5ceDYqKuro8uXLz9StW/e2qbDe\nfffdpPXr158EgFWrVp2OjY091Lhx47vcnjt3zqp58+ah/v7+mVu2bDmxbdu2E35+fpktWrQI1QpW\npvKzWAXyCMN7IJhS499//3XYvXu34zfffHPuvffeu2u5FAB0Op34/PPPL/Tq1Stw2LBhl2vWrJmv\nE05JSbGYPXt2+UWLFkW//vrrNwGgSpUqmVeuXLn40Ucf+X311VcXjf28efOmxZIlSzwmTpwY98Yb\nb9wAgFmzZl3YuXOn47Vr1/LVcSsrK7FixYoYvV4vAKBnz55Xvv/+e0+tm/T0dIuFCxfG1KhRIwMA\nFi9efC48PLzGr7/+6ti2bduUyZMne7300kvXDAJSWFhYRmJiotX48eMrTJw4McGgruXh4ZG1aNGi\nvBWYv//+W5+dnU1vvvnmtdDQ0EwAqFOnTp4+eXR0tI2fn1+G4fniMGnSpATD/9DQ0MwbN25c6NOn\nT2BOTk6MpaUl4uPjrWvUqHG7efPmtwAgJCQk88UXX7wFANevX7e8efOmZbt27W4YysO4XLT4+Phk\n29ra5hpm90y5KU451qxZ89a0adPuKlfmbubOnevevn37ZCsrKwQEBGQ1bNgwZdasWe5ff/31xaNH\nj9ps3ry53Jo1a063adMmBQCWL18e4+/vX1PrR/fu3a9r75csWRLr4uLi8tNPPzn3798/r93OmDHD\n+5tvvvESQiA9Pd3C19c38/fff8/b4zR16lRPe3v7nJUrV8YY6uzChQvPNWrUqNoff/zh0LJly9Si\n2kpKSopFYXXPy8srGwDc3NxytHUtNjbWpmHDhvn2RJiDv79/9hdffJE3iK9SpcrVffv22S9fvtz1\n/fffTwaAhIQE6wEDBlyqW7duOgBUq1Ytb9b03Llz1nq9PiciIuKaQV2vQYMGaabCMqiqWFpaCsNq\njil369atc/zvv/8cLl68eMjNzS1HhZn0zz//OMycOdOzbdu2eens3r37FW0ZMSWjevXq6ZGRkZZn\nz561LqqfOnr0qM1PP/3k9sMPP5zt1avXNYMfTZo0MTlQjI+Ptyqsnzdm7ty5bteuXdPt37//uLe3\ndzYArFq16mxISEjYvHnzXAcMGJAMAEIIzJgxI94w2B0zZszF559/vsqxY8dswsPDzd4bl5OTg5kz\nZ8Zp4z9+/Hif/v37XxoxYoRBKM2YP39+THh4eI2DBw/ahoeHp0+ePNl77Nix5/v163cVkO0iKysr\n/vXXXw+ZO3dufFRUlK0hb82Ni4F27drla8tz5sw5v379+nJLly51GTt27KXY2Fir3NxcdO/e/VrF\nihWzAMDQPgEgLi7OJigoKP2ll15KtbCwQEhISGazZs1Mlo+Dg4Pw9PTMBgAPD4/sgtrl5MmTPUNC\nQtLnz58fbzBbtGhRrI+Pj/P8+fNdhw8ffqWg/HxS4BUIptSoVKlSemBgYPq0adO8Y2JiCtzZ2a1b\nt+u1atW69cEHH1Qwtjtw4IBtenq6xZtvvhlkWM61s7OrPWzYsIqpqamWFy9evEvojYqKssnKyqJn\nn302VWter169u2YnAwMD0w3CAwD4+PhkJicn54uri4tLtkF4AOSgp1y5ctlHjhzRA8CZM2f0jRs3\nztfhPf/88ykZGRl07NixvGXnmjVr3tKqbz311FNpjRs3vlm7du3qL774YtDnn3/ueebMmbywhRAl\n1mleuHBhuXr16oV6enqG2dnZ1X7nnXcqZWVlUXx8vBUAvPvuu1f++OMPl5CQkOq9evXyW7FihVNO\njpyk9fDwyOncuXPSa6+9FvLcc8+FjBo1yuvQoUM2hQZYBMUpxzp16picRWbyc+7cOavt27eX69u3\nb96Md7du3ZKXLVvmnpWVhUOHDtkCwPPPP5/XDmxtbUVYWFi+/D1x4oR1u3btKvn7+9dwcHCo7ejo\nWDs1NdUyNjY2n5pe9+7dL+/du/fYvn37jq1fv/5kcHBwWps2bUKuXbtmAQDHjx/X165dO1Ur8D79\n9NNpDg4OOYcPHzarrZS07pW0reTk5GDUqFFeVapUqebi4hJuZ2dX+8cff/S4ePFiXpj9+vW7NHTo\n0IAGDRqEDh061Gfnzp156l1t27a9WaFChczAwMCwVq1aBU6ZMsX9Xk9t+eeff+yysrLIz88vTNtW\nfv75Z9eYmJh8OuMNGzbktlIKGNT6Ll68qCuqn9qzZ48dALRt2/aGOX4X1c8bExUVZRsUFJRuEB4A\nwM/PLzsgICDdMCgHACJCw4YN8wap/v7+mSoNxTpFwdLSEs8880yeP7m5uYiKirKbNWuWlzYPGjZs\nWA0Ajh8/bnP27FmrpKQkqxEjRvhr3bzxxhtBQggcP37cRqsGWFzi4uJ0ERERFQMCAmo4OjrWsrOz\nqx0fH29j6JOaNGlyq379+inVq1ev8dJLLwWNHz/e89y5c3npfuedd64cPnzYvlKlSjW6devmHxkZ\nWS4jI+Oe9ggdPHjQ/sCBA/ba9Do6OtZOSkqyOn36dF5/YZyfTxK8AsGUGm5ubtmrVq06+/zzz1d+\n7rnnQjdv3nyqcuXKJnUep0yZEt+sWbOqxkfZ5eTkEAAsWLDgrKmZDMPMgSmIiu4vrK2t883uExGM\ndcRLCzs7u3w9qk6nw/bt209v377dbsOGDU5r1651GT9+fIX58+dHd+3a9UZwcHD6vn37HNLT06k4\nqxBbtmyx7927d9B7772XMGnSpPPu7u7ZO3bscBg4cGCAoRPt0KHDzcaNGx/++eefnbdv3+749ttv\nB06ZMiVt165dJ3U6HZYtWxa7b9++S7///rvzli1bnCZNmuQzYcKEuA8//DCpJGkvTjkWpCrF5GfW\nrFnuOTk5aNSoUTWteU5ODpYuXVrO0tLSrDrTqlWrEBcXl+zp06fHBQQEZNrY2IimTZtWyczMzDeh\n5OrqmmMQpGvUqJFRrVq1GH9///D58+e7Dh06tET1whQlqXsBAQHpp06d0hc3rDFjxpSfOXOm1+ef\nfx5fv379287OzrkTJ04sv2XLFmeDm8mTJyf06tUr+ZdffnHetm2b48yZM6v0798/8euvv77o7Oyc\ne+TIkWObNm1y2LBhg9MPP/zgMXbs2Arr1q079eyzz5ZoEJGbm0sODg45u3btOm5sZ7zR1tyTfpjC\niYqK0js4OOTcy/umIIrq50saZwsLC2hPMDK87wxpMBdra+tcrT9CCAghaMiQIRe6det2zdi9v79/\nVmJiog4AJk+eHNe0adNUYzdBQUGZBrUeJfQUK52dO3cOvH79um7ChAnxwcHBGXq9Xrz22mtBmZmZ\nBABWVlbYvXv3qa1bt9pv2LDBafXq1a7jxo3zXbJkSXT79u1vNmnS5Pa5c+cOr1271mnLli1Ow4YN\n8x8/fnz2vn37TpT0tK3c3Fw0adLkxldffXXe2M6wUgjcnZ9PErwCwZQqPj4+2Tt27Djp4uKS3aRJ\nk9AjR46YnE1s0qTJ7VdfffXq8OHD861C1K1bN83GxkZER0db16hRI8P4MtVQq1evnmFlZSV27NiR\nTxjZv3+/fUnScO3aNV1UVFRevA8fPmxz/fp1XY0aNdIAIDg4OG3nzp35dJP//PNPR1tb29xq1aoV\nupRsYWGBZs2a3f7yyy8T//3335P169dPWbBggTsA9OzZMzk9Pd3is88+M3lKlfGGNgPbt293KFeu\nXPbXX399sXnz5rfCwsIyzp8/f9esVPny5XPeeeedq0uWLIldvXr16X379jkcOHAgbxBWv3799DFj\nxlzasWPH6U6dOiUtWLDgrj0k5lKScmQKxrB5esCAAYm7d++O0l6tWrW6Om/ePI/w8PB0APjzzz/z\n2kF6ejodPnw4rx0kJiZaRkdH23744YcJHTp0uFm3bt10vV6fe/Xq1SILxLCalpaWZgEAVatWTTt4\n8KCDVk979+7d+tTUVMvw8PBitZWC6p5BkDaslhno1KlT8p49exw3b95sso0X1Fb+/vtvx+eee+7m\n4MGDk5955pm0GjVqZJw9e/auPqpatWqZI0eOvLJ+/fqzH3744cXIyMg8NUedToeWLVumzpgx4+LR\no0ePe3h4ZEVGRpb4mw4NGjS4lZKSYpmWlkbG7SQkJMTkBAxTcs6dO2f1888/u7788svXzemnDLP+\na9eudS7KbwOF9fPGVK9ePT06OtpWu5IVHx+vi4mJsTW8c+4nlpaWqFq16u3jx4/rTeWBk5NTblBQ\nUKarq2v2qVOnbEy50ev1wt/fP/vpp59O+e6778rfuHHjrrFlWloapaSk3GWem5uLf//916Ffv36X\nunbteqN+/frp3t7e2dpVQUDm6fPPP39r0qRJCQcOHDhRs2bN2/Pnz8/bu+Ti4pLbs2fP65GRkXF/\n/fXXiVOnTum1fWFxqVWr1u1Tp07pg4ODM43Tq10tepLhtzhT6nh4eORs27btVIsWLUKaN28e+scf\nf5wy5W7KlCkXwsLCalhYWAhvb+9MQJ4mMXDgwIQvvviiAhHhlVdeuZmVlUUHDhzQHzx40G727NkX\njP1xcnLKjYiIuPLFF1/4eHl5ZVWvXj197ty57tHR0baurq7Fbui2tra5PXr0CJg2bVo8AAwaNMi/\nSpUqaQa98uHDhydGREQEjxo1yqtLly7X9u7dazd58mSft99++1JhKwebNm2y37hxo1PLli1v+vn5\nZR07dszm5MmT+q5duyYBwHPPPXd78ODBCRMnTvSNj4+3joiIuBoUFJQZFxdntXTpUteEhASrdevW\nnTX2t0qVKunXrl3TTZ8+3f2ll166uWXLFsf58+fn29cxcOBA33r16t2qVatWmoWFBSIjI13t7Oxy\ng4KCMo8ePWoza9Ys93bt2t2oVKlSZlxcnNXevXsda9SoUeJl2ZKUI1MwK1eudE5MTLQeNGjQFeNB\nZa9evZI7duwYYmVlJZo3b359yJAh/jqdLtbHxydr3LhxXrdv384bTHt4eOS4uLhkz5s3z6NKlSoZ\nly9f1o0YMaKCjY3NXbN0qampFnFxcToAuHDhgtXYsWO9bW1tc1u3bn0DAIYNG3b5f//7X/mOHTsG\nfPrppwlXr17VDRw40L9u3bqpL7/8cipQdFspqu55eXll29nZ5a5fv96pdu3aaXq9Xnh4eOR8/PHH\nlzdv3uzUrl27ykOHDr34wgsvpHh5eWUfPnzYds6cOR5NmjRJ+eSTTy4bpyk4ODh99erVbr/++qtj\nxYoVM+fNm+d2+PBheycnpxxAnoY0YMCACh07drxWuXLljOTkZMvNmzc7BwUFpQHydJ3o6Gjr5s2b\np3p5eWXv3r3bLjEx0bpatWol/jZG69atU55++umbHTt2DP7888/P161b93ZycrJux44dDra2trkf\nfPBBqa32PGlkZmZSXFycLjc3ly5fvqzbunWrw4wZM7xcXV2zp02bdt6cfqpGjRoZbdq0ufrBBx/4\np6WlUZMmTW4lJSVZ7tixw8FUHSuqnzemb9++yZMnT/Z+7bXXAidPnnxeCIFhw4ZV8PT0zHzrrbfu\nWhG4H4wdO/ZC586dQ/r375/ZvXv3q46OjrlRUVG2y5cvd1mxYkWMTqfDqFGjLowaNcrf0dExt337\n9tctLS1x+PBh282bNzstWrQoDgDmzZsX07Rp0yrh4eHVRo0adaFevXppVlZWYtu2bQ5ff/2114oV\nK6KNvyNjYWGBgICAjKVLl7o988wzt9LT0y1GjRqV78jy3377zXHnzp32L7300s0KFSpkHzlyxPbM\nmTO2zZo1uwEAH330kVdAQEBmvXr1buv1+ty5c+e663Q6YTgopCSMHDny0qpVq9xatmwZ9NFHHyVU\nrFgx69y5c9a//PKLc5cuXa4999xzT6TakhYWIJj7gouLS+7WrVtPtWzZMvjFF18MHTx4cIKxm9DQ\n0MyePXte/v777/PNuE+ePDnB29s76/vvv/ccM2aMn42NTW5AQED6G2+8UeBHcL755pvzGRkZFn37\n9g0kItGmTZurr7/+evLff/9d7CPVPDw8snr37n2la9euQUlJSVZ16tRJXbZs2VnD+dCdO3e+cfny\n5Zjp06d7TZ482cfFxSW7R48eV6ZMmVLoRmAXF5ecvXv32s+fP9/z5s2blu7u7lnt27e/OnHixLy8\nmT59+sX69evfmjVrlmeXLl2C09PTLby9vTPr1auXOm7cOJP+d+3a9caePXsSxo0b5ztq1Ci/Bg0a\npHz22Wfn+/XrV8ngxtbWNnfcuHG+Fy5csLa0tBRVqlRJW7NmzWk3N7ec1NRUi+joaNvu3bu7Xbt2\nTVeuXLns5s2b35g1a9ZdS7fFoSTlyJhm7ty57mFhYbdMzUi3bt36ppOTU/asWbPcf/zxx5jevXtX\n7NSpU7CtrW1uREREUosWLa4lJiZaA3K2cdGiRdFDhw71r1+/fnVvb+/MMWPGnP/000/v2o80e/Zs\nr9mzZ3sBgLOzc07VqlVvr1mz5rThY4Z+fn7Za9euPTVixIgKzz77bDUrK6vcpk2b3pgzZ07epsOi\n2oqjo2NuYXXP0tISEydOjJswYYLP3LlzvcqXL5954cKFIzY2NmL79u2nv/zyS8/ly5e7TZ482cfS\n0hJ+fn4ZL7zwwg3tPhEtEyZMSDh//rx1165dg3U6nWjduvXV3r17X161apUbIA9ZuH79umX//v0D\nkpKSrOzt7XOefvrplK+++ioekGqa33zzjeeMGTO8b9++benl5ZU5ePDghCFDhpR4kG9hYYGNGzee\nGT58uM/IkSP9Ll++bGXI7w8//PCuU5sY89m/f79DxYoVwy0tLaE+aJb21ltvXdZ+SM6cfmrFihUx\nw4cP9x4/frzv+++/b+Xq6pr96quvmhzcm9PPa3FwcBB//PHHqUGDBvm1aNEiFACeeuqplHXr1p0u\nyYEaJaFDhw4316xZc2r8+PHeCxcu9ATk/sCmTZveMLz3PvjggyRXV9ec6dOnl586daqPTqcT/v7+\n6W3bts3Lh2rVqmXu37//2JgxY7zHjRvnm5iYaG34gF+/fv0u1axZ0+SAfsGCBWf79+9fsXHjxtXc\n3d2zhg4dmnDr1q281Qo3N7fsv//+23Hu3LnlU1JSLD08PLK6du2aNG7cuERAqvbNmDHDKy4uzgYA\ngoKC0hYvXhxdpUqVEq/gVapUKeuvv/46Pnz48AqdO3cOvnXrlqWHh0dWgwYNUnx8fJ6cjz0UAt0v\n/W+meBw6dCgmPDz8rpfQo/Il6oeRhg0bVnZ2ds7ZsGFDdFnHhXm4eZS+RM0wZcmj8iVqhnnYOHTo\nkHt4eHhAWcejtOAViIecx2Eg/yDYu3ev/p9//rFr0qRJakZGBv3www9u//zzj+PKlStPl3XcmIcf\nHsgzjHnwQJ5hGIAFCOYxgYjEvHnzPEaNGuWXm5tLlSpVSo+MjMw725thGIZhGIYpHViAYB4L6tev\nn37o0KETZR0PhmEYhmGYxx0+xpVhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAeLhITc3N/eePr3OMAzD\nMAzDPFyo8d1j9SV5FiAeEogoMS0tzbas48EwDMMwDMOUHmlpabZE9Fh914UFiIeE7OzssTExMda3\nbt3S80oEwzAMwzDMo01ubi7dunVLHxMTY52dnT22rONTmvCH5B4iDhw48JJOpxsthPDCAxLucnJy\ndJcvX/b19vaOA1BoZbh9+7bD7du3Hdzd3e+7FJ2RkWF78+ZNVw8Pj0K/7lxctwzDPJlcvnzZ19nZ\nOdnGxsbk13BL6vZBkZGRYXv9+nW38uXLXyjruDDMgyI5Obm8Xq9PtbOzu1Wabh8U2dnZlseOHatQ\nvXr1l+vUqbOhrONTmrAA8QhBRDEAfAD4CCGSNOYHAdQCUEkIEVNMPwMAnANgJYTILsJtTwB9hBCN\njcyfBfCH4RaAHQBtA64mhIgrTrwY5l4gom0AwgF4CSEyyjg69wUiagtgLIBAAJkADgN4Swhxrkwj\nVgoQURSAiupWDyALgKF/+kII8UWZROweISIbABMBdATgBCAJwBohxAdmPPsCgHlCiIBSjtN5AN2E\nENtK098nDfV+Lg8gR2NcWQjxxExsEdEfAJ5VtzaQk5KZ6n6xEKJfmUTsHiEiAvAxgD4A3AFcB7BD\nCBFhxrPBAE4LIUpVs4SIdkL2BwtK09/iwN+BePQ4B6ArgJkAQEQ1IQfsZYYQ4i8ADio+AZBxLFeQ\nQEJEFuq5x2pDEfNwoOrgswBuAGgDYOUDDFtXlCBeSuEEA4gE8BqALZDtrwXyD17uNQyCnGR64O1U\nCFFdE49tkIOPeQW5f1D5Xgr8H4AwAHUBXAIQAOCZsowQU6q0FkJsLutIEJGlEKLU+gJzEUK01MRh\nAYDzQoj/K8j9I9RuewPoAqC5EOIsEXkDaFXGcSpzeA/Eo8ciAN019z0gBxJ5EJEzEUUS0RUiiiWi\n/zMM2onIkoimEFESEZ0F8KqJZ/9HRAlEdIGIxhGR5b1Gmoh2EtHnRLQbcnXCn4j6ENFxIkohomgi\n6qNx/4Ka0THcnyeioUR0hIhuENFSNZtXLLfK/iMiSlTp60tEQg06mceD7gD2AFgA2T7yICI9EU1V\n7eKGqpd6ZdeYiHYR0XUiilcrbiCibUZ1s6ea/THcCyJ6j4hOAzitzL5Sftwkov1qlc7g3pKIRqk6\nn6Ls/YhoFhFNNYrvL0Q0xEQaawE4J4T4U0hShBCrDSt9BYWh7BoR0T6V/n1E1EgT3jYiGk9EfwO4\nDSCwOH0CEdkQ0QwiuqiuGZp22lS1zQ+I6LLyr1fhRWka1XfsIKKviegqgP8johAi2kpEV1X/toiI\nnDXPnCeipur/ONUvLFb5c5SI6pTQbT0i+k/ZLSOilUQ0poCo14dccUhU5XZOCLFY+aMz7otUmPn8\nIqJPiSiZiM4RUReNeSu605+e19YbImpDRIdU3d5JRDWU+VLIVe0/iCiViIYWqyCYEqH6kLOqrM4R\n0Rsau76acjxmqGtEVFW1z+tEFEVEbTTPLCCi2US0johuAWim2uIUIoojoktENIdUX2ciPhYkxwmx\nqm1GGtoOEQWoetlD+ZVERB+XMN0vEFGM6psSAcwlIjcV7ytEdI2IfiUiX80zO+lOX9yHiLYT0XSV\nD2eJqEUJ3QYp9ylEtFHl34ICol4fwHohxFkAEEIkCCHmavzK6y/U/Thjv1S5GvpFbdtsSEQHSL4r\nLhHRZI3dM0S0R8X/PyJ6TplPBPA0gDmq3c4wtwxKFSEEX4/IBSAGwAsATgKoCsASwHnIpX4BIEC5\niwSwFoAj5AzXKUjVBgDoB+AEAD8ArgC2qmd1yv4nAN8BsAfgCWAvgHeUXU8AO4uIY4DWP435ThX/\nqgCsIFe/WkOqXxCA5gDSAIQp9y8AiNE8fx5yUOgFwE2lqU8J3LYCcFHFwx7AUm3e8fXoXwDOAHgX\ncpY3C0B5jd0sANsA+Kr20whyqb0igBTI1T0rVW9qqWe2GeqPus/XDlT92aTak16ZdVN+6AB8ACAR\ngK2y+xDAEQChqu6HK7cNVN20UO7cIQfx5U2kMRBAOoDpAJoBcDCyLygMVwDXALyp4tZV3btp0hoH\noLqyt0IhfYKJeH2m2p4nAA8AuwB8ruyaQqohfab8fUWlz6WI8syX/8qsj/KrvypHPYDKAJ4HYK3C\n/xvAFM0z5wE0Vf/HQfY3L6nnJxuVqVluVd05D2CASlNHyDo3poC0jAEQq+JdA0qNWNnpYNQXAVhs\n8Auyn8tW4dtA9pm3AQQr+ysAGqn/rgDqqP/1IVc76qv49wYQDcDaOK183VO/EwPgBTPc2QO4CSBU\n3XsDqK7+dwRwQZUVAQiG7JusIPu1Uap+N4fsrwx+LIBccX0GcmLYFrJv+EXVBUcAvwKYUECceiv/\nAyFXM9cAWKTsAlS9nKvaWTiADABVi0jnAgDjjMwMdfgLlQ49ZD/RXv13UmGv0jyzE0BP9b+Pal+9\nVV0eCCC+hG73QaoTWgN4TuXnggLS0hNAMoBhkO8VSyP7fG0Iss9YoP4Hq/xbBKktEq78aqqJR1f1\n3xHAU+q/n3L3kirTlyFVHt2M01pmdb6sGx1fxSisOwLE/wGYoCrUJmhePKqhZELuOzA89w6Aber/\nFgD9NHYt1LM6SP3NDKhBkLLvCmCr+t8T9yZAfFrEs78BeE/9NyUUdNHcTwPwTQncRkINaNR9FbAA\n8dhcABqrl4a7uj8BYIj6bwE5EAw38dxHAH4qwM9tKFqAaF5EvK4ZwoWcAGhbgLvjAF5U/wcAWFeI\nnw0BrIAcOKZDvrAdCgsDUnDYa2S2G3deutsAfKaxK7RPMOF/NIBXNPcvGdompACRpu0bAFwG0LCI\nvMuX/8qsD4CzRTz3OoB9mntjoWC9xi4MQGpx3UIO5OKMwt2DggUIHeRAZpfK1wuQ+w8MdkUJEJkA\n7DT2awB8pP5fVPniaBTmXACjTZTTM8Zp5avkF+T7ORVSP/46gJ8LcGev7Dto25Wy2wDgfRPPPAs5\nCWGhMVuqqRsLAERq7AhypT9IY/Y05KqlqTj9CeBdzX0oZD+qw513egWN/V5o3rEF+LkApgWIdCjh\ntYDn6gG4ork3FgpOaOycVNzci+MWUlAy7teWoQABQtm/qfLpFpQwobEzR4AI1thPA/Cd+r8LwKdQ\ngoHGzccA5psopzeM01pWF6swPZosAhABOZCJNLJzh5ytiNWYxULOuAJyuTreyM6AYaYjQS2ZXYec\nefQspXhrwzUsuf9DUuXgOqQw417I89rTn25D7bsoplvj9OeLE/PI0wPARnHnkIEluKPG5A45Mxdt\n4jm/AszNxbhuD1NqCDdU3XbGnbpdWFgLIVcvoH4XFRSgEGKPEKKTEMIDcoDxHORLp7AwfJC/zQP5\n+3Uc5I8AACAASURBVAfjtBS3TzD2P1aZGUgW+XWei2rHhWGc515EtIKkmtVNyAFMcfoT+xK49YEc\nPBQYLy1CiGwhxEwhRCMA5QBMArCAiCoXEraWZCHEbc29Nn/bQ+75iVOqLk8p84oARhjKT5WhN/KX\nOVM6tBNClFNXOwBQqkOp6holhLgFoDOkNkACEf1ORFXU84W123iRfz9SYe3WA3K2e7+mzNcrc1OY\nareGSUUDxXn/FsYlIYRhYzWIyIGI5in1qJuQk5zFabcoJC4FufWBbEtpGvtCxwJCiEVCiOch2+17\nACYQ0fOFPWOE8bjL0G57AagG4CQR7SWiV5R5RQBdjdptQ+TvT8sUFiAeQYQQsZAblV+BnIHSkgQ5\nc1BRY+YPOdMFAAmQnZTWzkA8pFTurukEnYRmQ+O9Rt3wR+liroJcSSkvhCgHYCPkzMn9JAFABc29\nX0EOmUcLVac6AWhCco9LIoAhAMKJKByybaQDCDLxeHwB5oCccdIeVOBlwo22bj8LYLiKi4uq2zdw\np24XFtZiAG1VfKsC+LkAd/kDF2IfZF9Qo4gwLiJ/3wDk7x/ypQXF7xOM/fdXZvcDYXQ/ETKuNYUQ\nTpATLA+iPzEeiJvVpwgh0oQQX0HOWldVglUGCq9rbkZ67Hn5K4T4RwjRBlK4+w1yRhWQZThWU37l\nhBB2QogVhqiYE1+mZAgh+gkhHNT1hTLbIIR4EVKQOwG5SgQU3m79SO1lVBTWbpMgV/uqa8rcWQhR\n0EDbVLvNhlR9K22M69uHACoBaKDabfP7EKYxCZBtSfvxXnPbbZYQYhmAKNzpb815RxiPuwzt9qQQ\nogtku50KYLWKVzzkCoS23doLIQx7JMq83bIA8ejyFqTaRL7zjoU8eWEFgPFE5EhEFQEMhRyYQNkN\nIqIKROQCYKTm2QTIQfxUInJSG6uCiKjJfYi/DaTu4RUAOUTUClJ/+X6zAsBbRBRKRHYAPnkAYTIP\nhnaQpxBVg9xkXAtyEP4XgO5q9u4HANOIyIfkRuOnSW7y/RHAC0TUieRmVjciqqX8/Q/Aa0RkR/L0\no7eKiIcj5Mv3CgAdEX0KuXxuYB6Az0lu+iUiCiMiNwAQQpyH1IldBGC10QxZHiQ3fPclIk91XwVy\n9nlPEWGsA1CZiCJUOjur/PrNVDgl6BOWQm5o9iAid8il+cUFuC1tHCFf5DdIbhgf9gDC3AlZxv1V\nfnaA1JE2CRENIaLnSG7m1xFRb8hVsf+Uk0MA3lB181VIlTwtFgDGEJE1yU2bLQGsUv5FEJGTECIL\nUp/bMFs9F8B7RFRf1QUHImpNRIZVlEuQKh3MA4CIyhNRW5X/GZACpKGs5gEYRkR1VVkFq3f4P5Az\n6MOJyEqVfWvcERLzofq6uQCma/oIXyJ6qYBoLQUwhIgqEZED5B6F5eLBnJDkCJm2a6qP+vR+ByiE\niIbcIzZataXGMDpQRgsR9SaiV9SYykK1zVBIVS5Att8uqk03gDwdz5hPVDutCbkqvlz5/SYRuasy\nuwEpGORCvgPaE9GLqj+wJaJmRGRYgSjzdssCxCOKECJaCPFvAdYDIV+kZyFfcEsgB06A7FQ2QL6o\nDuDuFYzukAP7Y5B626sgZ0lKFSHEdcjZ4Z8AXIXUVzY5iCnlcH8FMBvADsgTc/5WVo/ltwKeMHpA\nztjECXnKTaIQIhHAN5CDMh3koPII5CD9KuSstYWQpxe9Arnh+SrkCyFc+TsdUvf8EqSK0Y9FxGMD\npLrAKcil6nTkX76eBinIboTcTPk/yA2EBhYCqIlC1JcgdajbADhCRKkqvJ8gVWIKDEMIkQx5kMAH\nkHq8wwG00qh8maI4fcI4AP9CfpPiCGQfM64Qv0uT0ZAb0W9Abh5dfb8DFPIbI+0h1VGuQa46rUPB\n/Uk6gBmQdSkJcn/aa2pVGQAGKf+uQ26o/cXo+fOQfXsCZD3pI4Q4rex6AIglqQbyFpQqnBBiD+Sm\n7dkqjqdwR00OkIPFsSTVJAYXMwuY4mMBOal3EbKvaQJZPhBCrAQwHvKdnQK5AumqVH5aQwqMSQC+\nhZwUOVFIOCMgN0bvUXViM+Sg1xQ/QPY3OyC1G9IhxxEPgmmQKp7JkPsB/ijceanRFVLtMxmy71iO\ngtvtTci9p/GQbegLAG8LIXYr+48h91Neh5yUXGLCj52QY7KNkJvZtyjzVwAcJ6IUAFMAdBZCZAr5\nTa/2yr8rkIdbfIA74/YZuKPiNK3YqS8F+ENyzBONmg04AMBG8HcpmIcAkkf1LQZQUXAH/chBRPsB\nzBBCFCYAMgzzEEFEqwH8J4T4vKzj8qjAKxDMEwcRtVfLlq4AvgSwloUH5mGAiKwAvA/5hVEWHh4B\nSH7forxSX3gLciZyQ1nHi2GYgiGiBkply4LkxuVWMHPPGSNhAYJ5EnkPchn4DORS7XtlGx0GAIjo\nB5IfMTpagD2R/HDYGSI6TJqPeT0OEFFVyCVwb8jlaebRoCqkytZ1SBWkDkKIy2UbpceHJ71fYO4b\nPpAqWymQaqp9hRBHyjZKjxaswsQwzEOBUt1JhTzPvIYJ+1cg9XJfAfAUgK+EEE8Zu2MY5vGB+wWG\neTjhFQiGYR4KhBA7IDcVFkRbyEGEUBtDyxFRqW/wZxjm4YH7BYZ5OGEBgmGYRwVf5D/N6Dz4Y1gM\n86TD/QLDlAG6so5AaeLu7i4CAgLKOhoM89Cxf//+JPXF4icCInobwNsAYG9vX7dKlSpFPPFg2J+8\nv9T8qutW4OcGGMYsuF/gfoFhjDG3X3isBIiAgAD8+29Bn0ZgmCcXIoot2tVDzwXk/5pnBeT/Emse\nQojvAXwPAPXq1RMPS79AC0vvw8j/9ng40lQcSjP9ACB68B6+e4H7hYejDXG/wP3Cw4S5/QKrMDEM\n86jwC4Du6tSVhgBuqC8lMwzz5ML9AsOUAfdtBYKIfoA8V/dyAScnfAjgDU08qgLwEEJcJaIYyKO1\ncgBkCyHq3a94MgzzcEBESwE0BeBOROchvw5qBQBCiDmQX/h9BfL43dsAepVNTBmGeVBwv8AwDyf3\nU4VpAYBvAESashRCTAYwGQCIqDWAIUII7UkLzYQQSfcxfgzDPEQIIboWYS/A3+xgmCcK7hcY5uHk\nvqkwmXH0mpauAJber7gwzP+zd+dxclTl/sc/X5IgWyAIATEkJAKCoAZ1WOSigAoErhJxYREloBhQ\nRPS6oSLgjgsiXpAQAROUxY0l+gu7IG5ckrAJATSGJQlrWBNAIPD8/jhnkkqnZ6ZmpnuqZ+b7fr36\nNV2nln6qp+vpPnVOnTIzMzOzxqj8ImpJawETgE8VigO4WtJLwJn5wiczM7N+rZEXjPpiUTOrSuUV\nCOA9wF9rui/tEhGLJG0EXCXprtyisYrisGxjxoxpfrRmZmZmZg3SH08stMIoTAdS030pIhblv48A\nFwM7dLRyREyNiLaIaBs5ctAMZ21mZmZmVolKWyAkrQfsCny4ULY2sFpELMnP9wS+UVGI1uKmq3G1\n9knh7gBmZmZmXWnmMK5dDb0GsB9wZUQ8U1h1Y+BipR+GQ4HzI+LyZsVpZmZmZmblNa0C0dXQa3mZ\naaThXotl84HxzYnKzMzMzMx6oxWugTAzMzMzs37CFQgzMzMzMyvNFQgzMzMzMyutFe4DYdYSNH16\nQ7cXkyY1dHtmZmZmrcAtEGZmZmZmVporEGZmZmZmVporEGZmZmZmVporEGZmZmZmVpovojYz60Sj\nL643MzPr79wCYWZmZmZmpbkCYWZmZmZmpbkCYWZmZmZmpfkaCDMzG1CmSw3b1qSIhm3LzGygcAuE\nmZmZmZmV5hYIMxvQHpszp3dnpKdNa1gsZmZmA4ErEGZmA4y78JiZWTO5C5OZmZmZmZXWtBYISecA\n7wYeiYjX15m/G3ApcE8uuigivpHnTQBOBYYAZ0XESc2K08zMrCO+kaCZ2aqa2QIxDZjQxTJ/jojt\n8qO98jAEOB3YG9gGOEjSNk2M08zMzMzMSmpaC0REXC9pbA9W3QGYFxHzASRdCEwE5jYuOjMzK8Nn\n4M3MrFbV10DsLOk2SZdJ2jaXjQIWFJZZmMvMzMzMzKxiVY7CdBMwJiKWStoHuATYsrsbkTQZmAww\nZsyYxkZoZmZmZmYrqawFIiKejoil+flMYJikDYFFwOjCopvmso62MzUi2iKibeTIkU2N2cyaR9IE\nSXdLmifp2Drz15P0e0m3SrpD0mFVxGlmfcd5waw1VVaBkPQqKQ1WLmmHHMtjwCxgS0njJK0OHAjM\nqCpOM2u+koMnHAXMjYjxwG7AyTlHmNkA5Lxg1rqaOYzrBaSDeUNJC4ETgGEAETEF+ADwCUnLgOeA\nAyMigGWSPgVcQRrG9ZyIuKNZcZpZSygzeEIAw/OJh3WAx4FlfR2omfWZls0LHlzABrtmjsJ0UBfz\nTwNO62DeTGBmM+Iys5ZUb/CEHWuWOY3UGvkAMBw4ICJe7pvwzKwCzgtmLarqUZjMzMraC7gFeDWw\nHXCapHXrLShpsqTZkmYv6csIzayv9SgvPProo30Zo9mA4wqEmbWCMoMnHEa6Y31ExDzSXey3rrex\n4uAKw5sSrpn1gablBQ+6YtY7rkCYWSsoM3jC/cA7ASRtDGwFzO/TKM2sLzkvmLWoKu8DYWYGQETU\nHTxB0pF5/hTgm8A0Sf8ABHwpIhZXFrSZNZXzglnrcgXCzFpCvcET8g+E9ucPAHv2dVxmVh3nBbPW\n5C5MZmZmZmZWmisQZmZmZmZWmisQZmZmZmZWmisQZmZmZmZWmi+iNjMzM7MBbbrUsG1NimjYtvor\nVyDMzMxsUHlszpze/aCcNq1hsZj1R+7CZGZmZmZmpbkCYWZmZmZmpbkCYWZmZmZmpXV5DYSktwIf\nBt4GbAI8B9wO/D/glxHxVFMjNDMzMzOzltFpBULSZcADwKXAt4FHgDWA1wK7A5dK+lFEzGh2oGZm\nZmbWMx6FyBqpqxaIj0TE4pqypcBN+XGypA2bEpmZmZmZmbWcTisQ7ZUHSWsDz0XEy5JeC2wNXBYR\nL9apYJDXOQd4N/BIRLy+zvyDgS8BApYAn4iIW/O8e3PZS8CyiGjr4f6ZmZmZmTWMpk+vOoTKlb2I\n+npgDUmjgCuBjwDTulhnGjChk/n3ALtGxBuAbwJTa+bvHhHbufJgZmZmZtY6ylYgFBHPAu8DfhoR\nHwS27WyFiLgeeLyT+X+LiCfy5A3ApiVjMbMWJ2kXSYfl5yMljas6JjMzM2uM0hWIPBrTwaTRlwCG\nNDCOjwGXFaYDuFrSHEmTG/g6ZtZkkk4gdU/8ci4aBvyyuojMzMyskbocxjX7DOnHwMURcYek1wDX\nNiIASbuTKhC7FIp3iYhFkjYCrpJ0V27RqLf+ZGAywJgxYxoRkpn1zn7Am0gDLRARD0gaXm1IZmZm\n1iilWiAi4k8RsW9EfC9Pz4+IT/f2xSW9ETgLmBgRjxVeb1H++whwMbBDJ7FNjYi2iGgbOXJkb0My\ns957ISKC1JLYPgiDmZmZDRBd3Qfi9+QfAfVExL49fWFJY4CLSEPF/rNQvjawWkQsyc/3BL7R09cx\nsz73a0lnAiMkfRz4KPCzimMyM7MG8ShE1lUXph/mv+8DXsWKfswHAQ93tqKkC4DdgA0lLQROIPWF\nJiKmAMcDGwA/Vbq5SftwrRsDF+eyocD5EXF5t/bKzCoTET+UtAfwNLAVcHxEXFVxWGZmZtYgXd0H\n4k8Akk6uGU7195Jmd7HuQV3MPxw4vE75fGB8Z+uaWWuSNAS4OiJ2B1xpMDMzG4DKjsK0dr5wGoA8\nJKP7NZvZSiLiJeBlSetVHYuZmZk1R9lRmD4LXCdpPunO0ZsBRzQtKjPrz5YC/5B0FfBMe2EjBl4w\nMzOz6pWqQETE5ZK2BLbORXdFxPPNC8vM+rGL8sPMzMwGoLItEABvAcbmdcZLIiLObUpUZtZvRcR0\nSasDr81Fd0fEi1XGZGZmZo1TqgIh6RfA5sAtwEu5OABXIMxsJZJ2A6YD95K6PI6WNKmjm0GamZlZ\n/1K2BaIN2CbfHMrMrDMnA3tGxN0Akl4LXEBqxTQzM7N+ruwoTLeT7gNhZtaVYe2VB4B8o8hhFcZj\nZmZmDVS2BWJDYK6kG4HlF0/35k7UZjZgzZZ0FituPHkw0Ol9Y8zMzKz/KFuBOLGZQZjZgPIJ4Cig\nfdjWPwM/7WolSROAU4EhwFkRcVKdZXYDfkxq0VgcEbs2KGYza0HOC2atqewwrn+StDGwfS66MSIe\naV5YZtaPDQVOjYgfwfK7U7+isxXyMqcDewALgVmSZkTE3MIyI0gVkQkRcb+kjZq1A2ZWPecFs9ZV\n6hoISfsDNwIfBPYH/k/SB5oZmJn1W9cAaxam1wSu7mKdHYB5ETE/Il4ALgQm1izzIeCiiLgfwCcx\nzAY85wWzFlX2IuqvAttHxKSIOIR0UH+teWGZWT+2RkQsbZ/Iz9fqYp1RwILC9MJcVvRaYH1J10ma\nI+mQhkRrZq3KecGsRZW9BmK1mlr9Y5SvfJjZ4PKMpDdHxE0Akt4CPNeA7Q4lDQX7TlKrxt8l3ZBH\neVqJpMnAZIANGvDCZtaynBfMKlC2AnG5pCtIY7kDHABc1pyQzKyf+wzwG0kPkG4k9ypSzujMImB0\nYXrTXFa0EHgsIp4hVVKuB8YDq/xQiIipwFSAcZLvX2PWPzkvmLWoshdRf0HS+4BdctHUiLi4eWGZ\nWX8VEbMkbQ1slYvujogXu1htFrClpHGkHwgHkvo2F10KnCZpKLA6sCNwSuMiN7MW47xg1qJKVSDy\nwTszIi7K02tKGhsR9zYzODPrPyRtDyyIiIci4kVJbwbeD9wn6cSIeLyjdSNimaRPAVeQhms8JyLu\nkHRknj8lIu6UdDlwG/AyaUjH25u+Y2bWEHk0x+8Ar46IvSVtA7w1Is6ut7zzglnrKtuF6TfAzoXp\nl3LZ9vUXN7NB6EzgXQCS3g6cBBwNbEfqNtDpyG0RMROYWVM2pWb6B8APGheymfWhacDPSQOzQOpm\n9CugbgUCnBfMWlXZC6GH5iHUAMjPV+9sBUnnSHpEUt0zAUp+ImmepNvy2cr2eRMk3Z3nHVsyRjOr\n1pBCK8MBpK6Ov4uIrwFbVBiXmbWGDSPi16SWAiJiGemEpJn1M2UrEI9K2rd9QtJEYHEX60wDJnQy\nf29gy/yYDJyRt91+45i9gW2Ag3Izp5m1tiG5HzKkEVH+WJhXtrXTzAauZyRtAASApJ2Ap6oNycx6\nouyX+pHAeZJOJx34C4FOx1qOiOslje1kkYnAuRERwA2SRkjaBBhLvnEMgKT2G8fM7XBLZtYKLgD+\nJGkxadjWPwNI2gL/SDAz+B9gBrC5pL8CI+mia6OZtaayozD9G9hJ0jp5emkXq5TR0Q1i6pXv2IDX\nM7MmiohvS7oG2AS4Mp8cgNTSeXR1kZlZ1SStBqwB7EoaoU2UG6HNzFpQ2VGYujVyQl8q3hhmzJgx\nFUdjNrhFxA11ylYZj93MBpeIeFnS6RHxJuCOquMxs94pew3ENNIwaq/O0/8k3SyqNzq6QUyZG8cs\nFxFTI6ItItpGjhzZy5DMzMysSa6R9H5JqjoQM+udshWIZoycMAM4JI/GtBPwVEQ8SOHGMZJWJ904\nZkYvX8vMzMyqdQRpCPgXJD0taYmkp6sOysy6r+xF1N0eOUHSBcBuwIaSFgInAMNg+RjOM4F9gHnA\ns8BheV7dG8d0b7fMrCqSjgZ+GRFPVB2LmbWOiBhedQxm1hhlKxDdHjkhIg7qYn4AR3Uwb5Ubx5hZ\nv7ExMEvSTcA5wBWFC6rNbBDLQ8K/PU9eFxF/qDIeM+uZUl2YIuIm0sgJO5OaILeNiNuaGZiZ9U8R\ncRzp/i5nA4cC/5L0HUmbVxqYmVVK0knAMaRh2ecCx0j6brVRmVlPlKpASPogsGbuSvRe4FfFO0eb\nmRXlFoeH8mMZsD7wW0nfrzQwM6vSPsAeEXFORJxDutnsf1cck5n1QNmLqL8WEUsk7UK6w+zZ5DtH\nm5kVSTpG0hzg+8BfgTdExCeAtwDvrzQ4M6vaiMLz9SqLwsx6pew1EO0jLv038LOI+H+SvtWkmMys\nf3sl8L6IuK9YmMeBf3dFMZlZ9b4L3CzpWtKN5N4OHFttSGbWE2UrEIsknQnsAXxP0iso33phZoPL\nZcDj7ROS1gVeFxH/FxF3VheWmVUpIi6QdB2wfS76UkQ8VGFIZtZDZSsB+5OGVd0rIp4knWH8QtOi\nMrP+7AxgaWF6Ke7yaDboSdoPeDYiZkTEDOA/kt5bdVxm1n1lR2F6NiIuioh/5ekHI+LK5oZmZv2U\nisO2RsTLlG/tNLOB64SIWH4PqXxC8oQK4zGzHnI3JDNrtPmSPi1pWH4cA8yvOigzq1y93xw+uWDW\nD7kCYWaNdiTpnjGLgIXAjsDkSiMys1YwW9KPJG2eH6cAc6oOysy6zzV/M2uoiHgEOLDqOMys5RwN\nfA34VZ6+CjiqunDMrKdKVSAkvQ/4HrARaeg1ke4VtW4TYzOzfkjSGsDHgG2BNdrLI+KjlQVlZpWL\niGfIw7ZKGgKsncvMrJ8p24Xp+8C+EbFeRKwbEcNdeTCzDvwCeBWwF/AnYFNgSaURmVnlJJ0vaV1J\nawP/AOZK8oiOZv1Q2QrEwx6/3cxK2iIivgY8ExHTSTeg3LHimMysettExNPAe0n3ixkHfKTakMys\nJ8peAzFb0q+AS4Dn2wsj4qKmRGVm/dmL+e+Tkl4PPETq/mhmg9swScNIFYjTIuJFSdHVSmbWespW\nINYFngX2LJQF4AqEmdWaKml94DhgBrAO6cJJMxvczgTuBW4Frpe0GfB0pRGZWY+UqkBExGHNDsTM\n+j9JqwFPR8QTwPXAayoOycxaRET8BPhJ+7Sk+4Hdq4vIzHqq0wqEpC9GxPcl/S+pxWElEfHppkVm\nZv1ORLws6YvAr6uOxcxal6Q/RMS7gWVVx2Jm3ddVC0T7hdOze7JxSROAU4EhwFkRcVLN/C8ABxdi\neR0wMiIel3QvaeSWl4BlEdHWkxjMrM9dLenzpLHelw/RGBGPVxeSmbWYUVUHYGY912kFIiJ+n/9O\n7+6G8xjPpwN7kO5GO0vSjIiYW9j+D4Af5OXfA3y25kfG7hGxuLuvbWaVOiD/Ld4gKnB3JjNb4eaq\nAzCznuuqC9PPgJ9ExD/qzFub9EPh+Yg4r87qOwDzImJ+Xv5CYCIwt86yAAcBF3QjdjNrQRExruoY\nzKx1SBoTEfcXy3xjSbP+rav7QJwOfE3SnZJ+I+mnks6R9Gfgb8Bw4LcdrDsKWFCYXkgHTZaS1gIm\nAL8rFAepK8QcSZNL7IuZtQBJh9R7lFhvgqS7Jc2TdGwny20vaZmkDzQ2cjNrkkvan0j6XWcL1nJe\nMGtNXXVhugXYX9I6QBuwCfAccGdE3N3AON4D/LWm+9IuEbFI0kbAVZLuiojra1fMlYvJAGPGjGlg\nSGbWQ9sXnq8BvBO4CTi3oxXKdHksLPc94MpGB21mTaPC89JdGZ0XzFpX2WFclwLXdXPbi4DRhelN\nc1k9B1LTfSkiFuW/j0i6mNQlapUKRERMBaYCtLW1+YY0ZhWLiKOL05JGABd2sVrZLo9Hk1oqt8fM\n+ovo4HlXnBfMWlRXXZh6YxawpaRxklYnVRJm1C4kaT1gV+DSQtnakoa3PyfdwO72JsZqZs3zDNDV\ndRFddnmUNArYDzijodGZWbONl/S0pCXAG/PzpyUtkdTZjeScF8xaVNk7UXdbRCyT9CngCtIwrudE\nxB2Sjszzp+RF9wOujIhnCqtvDFwsqT3G8yPi8mbFamaNI+n3rDjLuBqwDY25L8SPgS/le010FcPy\nro0bNOCFzaznImJIEzfvvGBWgW5VICStFRHPll0+ImYCM2vKptRMTwOm1ZTNB8Z3JzYzaxk/LDxf\nBtwXEQu7WKdMl8c24ML8I2FDYB9JyyLikprlVuraOE5y10az/sl5waxFlapASNoZOAtYBxgjaTxw\nRER8spnBmVm/dD/wYET8B0DSmpLGRsS9nayzvMsj6QfCgcCHigsUh4eVNA34Q70fCWY2YDgvmLWo\nstdAnALsBTwGEBG3Am9vVlBm1q/9Bni5MP1SLutQRCwD2rs83gn8ur3LY3u3RzMbXJwXzFpX6S5M\nEbGgpn/hS40Px8wGgKER8UL7RES8kAdS6FSZLo+F8kN7G6SZtT7nBbPWVLYFYkHuxhSShkn6POls\ngJlZrUcl7ds+IWkisLjCeMzMzKyByrZAHAmcSho+bRHpZi1HNSsoM+vXjgTOk3Ranl4IdHknajMz\nM+sfyt5IbjFwcJNjMbMBICL+DeyU72DffiNKMzMzGyDKjsI0jnSnx7HFdSJi347WMbPBSdJ3gO9H\nxJN5en3gcxFxXLWRmZmZWSOU7cJ0CXA28HtWHl3FzKzW3hHxlfaJiHhC0j6AKxBmZmYDQNkKxH8i\n4idNjcTMBoohkl4REc9Dug8E8IqKYzIzM7MGKVuBOFXSCaSLp59vL4yIm5oSlZn1Z+cB10j6eZ4+\nDDi3wnjMzMysgcpWIN4AfAR4Byu6MEWeNjNbLiK+J+lW4F256JsRcUWVMZmZmVnjlK1AfBB4TfHm\nUGZmHYmIy4HLASTtIun0iPDQz2ZmZgNA2QrE7cAI4JEmxmJmA4SkNwEHAfsD9wAXVRuRmZmZNUrZ\nCsQI4C5Js1j5GggP42pmAEh6LanScBDpztO/AhQRu1camJmZmTVU2QrECU2NwswGgruAPwPvjoh5\nAJI+W21IZmZm1mhl70T9p2YHYmb93vuAA4FrJV0OXAio2pDMzMys0VbrbKakv+S/SyQ9XXgskfR0\n34RoZv1BRFwSEQcCWwPXAp8BNpJ0hqQ9q43OzMzMGqXTCgSwNkBEDI+IdQuP4RGxblcblzRB0t2S\n5kk6ts783SQ9JemW/Di+7Lpm1poi4pmIOD8i3gNsCtwMfKnisMzMzKxBuurCFD3dsKQhwOnAI0ed\nsgAAIABJREFUHsBCYJakGRExt2bRP0fEu3u4rpm1sIh4ApiaH2ZmLWEZ6czGqYWyQ4Hd8t9244HP\nAqcAt9Zu5LrrYNq0FdPHHANjx8JnC5d+7borHHYYnHAC3HdfKhsxAn78Y7j4Yrj00hXLnljzF2Ai\nsB+pPffJXLYZ8HXg50Cxg/kp8Pvf/559910xvs2ZZ57J5MmTkVb0Ju1on6YB1+W/y3cJGJuXX75L\n7U9K7dOJK/8FmDgR9tsPPvMZePLJLveJe+nWP0qHrtjXiGDq1KkcccQRXe7TYaQLfvMeMQL4MXAx\nUNij9O+5994S+7QZfP3r8POfw58KO3XKKWn9Uws71cU+decf1b7/H//4x5k6dSpvectbuOmmdN/n\nTTbZhAceeIATTzyRr3/968tXnz17NgBtbW2UpYiO6wiSFgI/6mh+RHQ4T9JbgRMjYq88/eW8zncL\ny+wGfL5OBaLLdetpa2uL9jfBBofpalwX+0OLXwQNEJMmNXR7vSFpTkSUzwwDyDgpTuzF+o39XBza\nsC3FpI5zd+seF4c2cFsdvwetu//QV5+BMpwXeq5VjwvnBeeFvsoLXXVhGgKsAwzv4NGZUcCCwvTC\nXFZrZ0m3SbpM0rbdXNfMzMzMzPpQV12YHoyIbzTx9W8CxkTEUkn7AJcAW3ZnA5ImA5MBxowZ0/gI\nzczMzMxsua5aIHrT3rMIGF2Y3jSXLRcRT0fE0vx8JjBM0oZl1i1sY2pEtEVE28iRI3sRrpmZmZmZ\ndaWrCsQ7e7HtWcCWksZJWp00PvyM4gKSXqV8ZY+kHXI8j5VZ18zMzMzM+l6nXZgi4vGebjgilkn6\nFHAF6VqKcyLiDklH5vlTgA8An5C0DHgOODDSVd111+1pLGZmZmZm1hil7kTdU7lb0syasimF56cB\np5Vd18zMzMzMqtXUCoSZWdU83rvHe/d4770b793MrFan94Hob3wfiMGnlcd19n0gWoPHe++dVt1/\n8Hjvvg9Ezzkv9E6r7j84L7TKfSDMzMzMzMyWcwXCzMzMzMxKcwXCzMzMzMxKcwXCzFqCpAmS7pY0\nT9KxdeYfLOk2Sf+Q9DdJ46uI08z6jvOCWWvyKExmTaLpjbtgq7cXRbU6SUOA04E9gIXALEkzImJu\nYbF7gF0j4glJewNTgR37Ploz6wvOC2atyy0QZtYKdgDmRcT8iHgBuJA0sOlyEfG3iHgiT94AbNrH\nMZpZ33JeMGtRrkCYWSsYBSwoTC/MZR35GHBZUyMys6o5L5i1KHdhMrN+RdLupB8Ku3SyzGRgMsAG\nfRSXmVXHecGsb7kFwsxawSJgdGF601y2EklvBM4CJkbEYx1tLCKmRkRbRLQNb3ioZtZHnBfMWpQr\nEGbWCmYBW0oaJ2l14EBgRnEBSWOAi4CPRMQ/K4jRzPqW84JZi3IXJjOrXEQsk/Qp4ApgCHBORNwh\n6cg8fwpwPKnnwU8lASyLiLaqYjaz5nJeMGtdrkCYWUuIiJnAzJqyKYXnhwOH93VcZlYd5wWz1uQu\nTGZmZmZmVporEGZmZmZmVporEGZmZmZmVlpTKxCSJki6W9I8ScfWmX+wpNsk/UPS3ySNL8y7N5ff\nIml2M+M0MzMzM7NymnYRtaQhwOnAHqS7R86SNCMi5hYWuwfYNSKekLQ3MBXYsTB/94hY3KwYzczM\nzMyse5rZArEDMC8i5kfEC8CFwMTiAhHxt4h4Ik/eQLpJjJmZmZmZtahmViBGAQsK0wtzWUc+BlxW\nmA7gaklz8u3nzczMzMysYi1xHwhJu5MqELsUineJiEWSNgKuknRXRFxfZ93JwGSAMWPG9Em8ZmZm\nZmaDVTNbIBYBowvTm+aylUh6I3AWMDEiHmsvj4hF+e8jwMWkLlGriIipEdEWEW0jR45sYPhmZmZm\nZlarmRWIWcCWksZJWh04EJhRXEDSGOAi4CMR8c9C+dqShrc/B/YEbm9irGZmZmZmVkLTujBFxDJJ\nnwKuAIYA50TEHZKOzPOnAMcDGwA/lQSwLCLagI2Bi3PZUOD8iLi8WbGamZmZmVk5Tb0GIiJmAjNr\nyqYUnh8OHF5nvfnA+Npyay5Nn96wbcWkSQ3blpmZmZm1Dt+J2szMzMzMSnMFwszMzMzMSnMFwszM\nzMzMSnMFwszMzMzMSnMFwszMzMzMSnMFwszMzMzMSnMFwszMzMzMSnMFwszMzMzMSnMFwszMzMzM\nSnMFwszMzMzMShtadQCtRNOnN2xbMWlSw7ZlZmZmZtYq3AJhZmZmZmaluQJhZmZmZmaluQJhZmZm\nZmaluQJhZmZmZmaluQJhZmZmZmaluQJhZmZmZmalNbUCIWmCpLslzZN0bJ35kvSTPP82SW8uu66Z\nDSy9yRdmNjA5L5i1pqbdB0LSEOB0YA9gITBL0oyImFtYbG9gy/zYETgD2LHkugZMlxq3sWnTGrct\ns27oTb7o61jNrG84L5i1rmbeSG4HYF5EzAeQdCEwESge+BOBcyMigBskjZC0CTC2xLotTdMb98M+\nJkXDttVXGrn/0D/fA+uWHueLiHiw78M1sz7gvGDWoprZhWkUsKAwvTCXlVmmzLpmNnD0Jl+Y2cDk\nvGDWoprZAtEnJE0GJufJpZLurjKegg2BxY3YkA5t7Nn8Dh16aCO31rD9hz56Dxq7/9Ban4HNGhFH\nf1GbFw6FnueFFj0unBecF5wXusd5oYFadP/BeaGv8kIzKxCLgNGF6U1zWZllhpVYF4CImApM7W2w\njSZpdkS0VR1HVQb7/oPfg27qTb5YhfNCaxrs+w9+D7rJeWEQGOz7D/3zPWhmF6ZZwJaSxklaHTgQ\nmFGzzAzgkDyKwk7AU7nfYpl1zWzg6E2+MLOByXnBrEU1rQUiIpZJ+hRwBTAEOCci7pB0ZJ4/BZgJ\n7APMA54FDuts3WbFambV6k2+MLOByXnBrHUpDVxgjSZpcm4uHZQG+/6D3wNb1WD/TAz2/Qe/B7aq\nwf6ZGOz7D/3zPXAFwszMzMzMSmvqnajNzMzMzGxgcQWiFySdI+kRSbcXyr4n6TZJ5xbKPizpM9VE\n2Vgd7PMrJV0l6V/57/q5/L/yezFb0pa5bISkKyX1q89ed/Y7z/uypHmS7pa0Vy57haTLJd0u6ZOF\nZadKenPf7pE1i/PC8jLnBecFy5wXlpc5LwyQvNCv/iktaBowoX1C0nrAmyPijcALkt4gaU3SRV2n\nVxNiw02jsM/ZscA1EbElcE2eBvgc6eK2zwBH5rLjgO9ExMvND7WhplFyvyVtQxotZNu8zk8lDQH2\nAv4CvBH4SF52PDAkIm7qg32wvjEN5wVwXnBesKJpOC+A88KAyQuuQPRCRFwPPF4oehkYJknAWsCL\nwOeB/42IFysIseHq7DPARGB6fj4deG9+/iLpfVgLeFHS5sDoiLiuD0JtqG7u90Tgwoh4PiLuIY0O\nsgMr3o9hQPudXr4JfK2JoVsfc15YznnBecEy54XlnBcGSF5wBaKBImIJaUi5m4EHgaeAHSPikkoD\na76NC+NuPwRsnJ9/FzgX+DJwGvBt0hmFgaKj/R4FLCgstzCXXQWMBW4AfiJpX+CmiHigb8K1Kjgv\nAM4L4LxgBc4LgPMC9OO80Mw7UQ9KEfF94PsAks4Cjpd0OLAncFtEfKvK+JotIkJS5Oe3ADsBSHo7\nKUlK0q9ItevPRcTDlQXbQMX97mSZZcCHACQNI41tPlHSj4AxwLkR4RsmDkDOC84LnSzjvDBIOS84\nL3SyTMvnBbdANImkN5Gane4GPhgR+wObt18cNMA8LGkTgPz3keLM3ER7HKn57QTgi8DPgE/3cZyN\n1tF+LwJGF5bbNJcVfZJ0tmUn0pmnA0h9QG0Ac15YwXnBecES54UVnBf6T15wBaJ52vuqDSPdQRNS\nn8e1KouoeWYAk/LzScClNfMPAWZGxOOk/X+ZgfFedLTfM4AD8ygK44AtgRvbV8qjL7yblBDa348A\n1uyjuK06zgsrOC84L1jivLCC80J/yQsR4UcPH8AFpGa2F0n91j6Wy98LnFhY7ofAP4Dzqo65GfsM\nbEAaVeBfwNXAKwvLrwVcCwzL02/L78UcYKuq96eJ+/1V4N+kM0p712zrFGC3/HwN4ErgDuDoqvfT\nj+Z8VnK588KK5Z0XnBcG1cN5wXlhoOUF34nazMzMzMxKcxcmMzMzMzMrzRUIMzMzMzMrzRUIMzMz\nMzMrzRUIMzMzMzMrzRUIMzMzMzMrzRWIfkbSBpJuyY+HJC0qTK9echs/l7RVF8scJengBsU8Mcd3\nq6S5+U6bnS3/Dkk7dTBvE0kzC9uakctH5ztWmg06zgvOC2a1nBecF5rJw7j2Y5JOBJZGxA9rykX6\n375cSWArx/IK4B6gLSIeyNObRcQ/O1nnW8DiiPhxnXlnAzdFxOl5+o0RcVuTwjfrd5wXnBfMajkv\nOC80mlsgBghJW+Qa9nmkm4xsImmqpNmS7pB0fGHZv0jaTtJQSU9KOinX0P8uaaO8zLckfaaw/EmS\nbpR0t6Sdc/nakn6XX/e3+bW2qwltPUDA4wAR8Xx7MpC0saSL8no3StpJ0ubA4cAX8lmInWu2twnp\nxizk7d1W2P9b8vOfF86yLJb01Vx+bH6d24rvh9lA5bzgvGBWy3nBeaERXIEYWLYGTomIbSJiEXBs\nRLQB44E9JG1TZ531gD9FxHjg78BHO9i2ImIH4AtA+8F0NPBQRGwDfBN4U+1KEfEIcAVwn6TzJR0k\nqf1z9xPg+znG/YGzIuLfwFnADyJiu4j4W80mTwOmS/qjpK9I2qTOax4WEdsB+wGP5uX3AcYAOwLb\nATvXSTZmA5HzAs4LZjWcF3Be6A1XIAaWf0fE7ML0QZJuAm4CXgfUSwjPRcRl+fkcYGwH276ozjK7\nABcCRMStpDMZq4iIQ4E9gNnAscDUPOtdwJR8JuASYH1Ja3a8exARM4HNgbPz/twsaYPa5SStBfwG\n+GRELAT2BPYGbia9H1sAr+3stcwGCOeFzHnBbDnnhcx5oWeGVh2ANdQz7U8kbQkcA+wQEU9K+iWw\nRp11Xig8f4mOPxPPl1imQ7np8DZJ5wN3kpodleMrxoCkrrb1GHAecJ6ky0mJqTYZTQUujIhr2zcL\nfCsizu5u7Gb9nPPCCs4LZonzwgrOCz3gFoiBa11gCfB0brbbqwmv8VdSUyKS3kCdMxaS1pX09kLR\ndsB9+fnVwFGFZdv7Qy4Bhtd7QUnvbD/rIGldYBxwf80yxwDDai4WuwL4mKS18zKbStqw5H6aDRTO\nC84LZrWcF5wXus0tEAPXTcBc4C7SAfjXJrzG/wLnSpqbX2su8FTNMgK+LOlnwHPAUlb0mzwKOEPS\nYaTP4rW57FLgN5LeBxxV069xe+A0SS+SKsBnRMTNkrYoLPN54Nn2i6SA0yLiLElbAzfkMxZLgA8B\ni3v9Lpj1H84LzgtmtZwXnBe6zcO4Wo9JGgoMjYj/5CbQK4EtI2JZxaGZWUWcF8yslvPCwOMWCOuN\ndYBrcmIQcISTgdmg57xgZrWcFwYYt0CYmZmZmVlpvojazMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxK\ncwXCzMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxKcwXC\nzMzMzMxKcwVikJA0VlJIGlpi2UMl/aUv4urqtSUtlfSaHmznYElXNjY6M7NE0r8lvbXqOMysHEl/\nlHRA1XEMFK5AtCBJ90p6QdKGNeU350rA2GoiW6kisjQ/7pV0bLNeLyLWiYj5JWMaWljvvIjYs1lx\n2cAk6TpJT0h6RdWxNIukiZJukfS0pMX5S3Vc1XE1gqQ7CrnpJUn/KUx/pRfbvVDSccWyiNg8Iv7e\n+6hXea01JP1E0qIc93xJ3y+57kmSzmp0TNYc+fvzucJndKmkV1cdV1+SdFlh31/Mv33ap6f0Yrur\nHAsR8Y6I+FXvo17ltSTphPz/XCppgaRflFz3SElXNzqmvtDl2WirzD3AQcD/Akh6A7BWpRGtbERE\nLMtn4K6RdEtEXF5cQNLQiFhWUXxm3ZIr5m8DngL2BX7Th6/dJ8eKpC2Ac4H3AX8E1gH2BF5q4GsI\nUES83KhtlhUR2xbiuA74ZUT0tx/UJwCvA94MPAKMA9zSMXC9JyIq/wEpaUhENCwPlBURexdimAYs\njIjjOl6jJU0G3g/sHhH35ErgPhXH1HRugWhdvwAOKUxPIn3xLydpPUnnSnpU0n2SjpO0Wp43RNIP\n8xnG+cB/11n3bEkP5jNd35I0pLtB5jNwdwCvz9sNSUdJ+hfwr1y2taSrJD0u6W5J+xfi2EDSjHw2\n9EZg85o4I//oQdKakk7O+/qUpL9IWhO4Pi/+ZK79v1WrdoWKXNP/l6QnJZ2ef+i0v1cn5/fqHkmf\nqm3RsEHhEOAGYBrpeFuuk88eknaR9Lf8uVog6dBcfp2kwwvbqPeZrD1WTs3beFrSHElvKyw/RNJX\nlLrOLMnzR+fP8sk18c6Q9Nk6+7gdcE9EXBPJkoj4XUTc39lr5Hk7S5qV93+WpJ0Lr3edpG9L+ivw\nLPCa7uQYSa+Q9GNJD+THj5VbgSTtJmmhpM9JeiRv77DO/5Udk3REzkOPS/p/kkYV9v30nE+fknSr\npK0kfZr04+BrOb/8Ji//kKRd8vOTJJ0n6YL8vt0mabvCa+6Qt7dE0vmSLlJNi0bB9sDvIuLh/D+a\nHxHnFbY1WtKlOV/Nl3RkLn8v8D/ApBznjT19j6z15PwxP3+G7pF0cGHexyXdmefNlfTmXP66fGw+\nqdQ6t29hnWmSzpA0U9IzwO75OPyhpPslPSxpSnueqxPPakq/Oe7Lx+W5ktbL89p7BUzK21os6au9\n2Pf98jH1pKQ/S9qmMO9rOSc8nd+Dt3V0LEi6QdKH8/MjJV2j1Nr3ZM557ypsd0ulvL5E0uWSzlTH\nrXvbAzMj4h6AiHigeOJC0ivz+/OQUn4/Ib9/bwJ+DOyW43yop+9RJSLCjxZ7APcC7wLuJp2JGgIs\nBDYDAhiblzsXuBQYDowF/gl8LM87ErgLGA28Erg2rzs0z78YOBNYG9gIuBE4Is87FPhLB7GNbd8O\nIOC/SD8Y3pnnB3BVfs018/YXAIfldd4ELAa2yctfCPw6L/d6YFHxtfP2tsjPTweuA0bl92Rn4BXF\nmArrHVpnO38ARgBjgEeBCYX3ai6wKbA+cHXt9vwY+A9gHvBJ4C3Ai8DGhXkdffY2A5aQWguHARsA\n2+V1rgMOL2yj3mdy+bGSyz6ctzEU+BzwELBGnvcF4B/AVvnYG5+X3QF4AFgtL7dhPiY3rrOPrwH+\nA5wC7A6sUzO/o9d4JfAE8JEc20F5eoPCvt4PbJvnD6OTHFMnrm+QKm8bASOBvwHfzPN2A5blZYaR\nzuw9C6zfxf9zpfc/lx0A3Am8Nm/rW8C1ed5E4O/AuqSTa9sCG+V5FwLH1WzrIWCX/PykHNMe+fNx\nCnBdnrcm8CApz7S/dy/Wbq+w3W+RWqCPBLatmTck/3++BKye9+N+YNdCHGdVfSz5Ue5B/q4vsdza\nwNPAVnl6k/bPBvBB0vfm9vmY3YKUl4aRctpX8mflHaRc1b6NaaTW1v/Kn/c18ud2Rj7ehwO/B77b\nQUwfzdt/Dakl8yLgF3neWFJ++1n+/I8Hngde18V+TgO+VVO2Uz5+3pI//5NJv3WG5u3OBzbO+/4a\nYFxeb5VjgZRjPpyfH5mPw0Pydj8L3JvnCbgZ+HZ+73YDnuno2AIOJ/2m+B9Sy+GQmvmXkXqTrJX/\ndzcDkwpxXF31Z7FHn9+qA/Cjzj9lRQXiOOC7wATSD42h+aAcmz/wL5B/iOf1jmDFl9YfgSML8/Zk\nxQ//jfPBvGZh/kGs+CI9lK4rEE+SfkDcCXy6MD+AdxSmDwD+XLONM0nN9EPyAbx1Yd53qFOBICW4\n54DxncTUVQVil8L0r4FjC+/VEYV576rdnh8D+wHskj+LG+bpu4DP5uedffa+DFzcwTavo+sKxDu6\niOuJ9tclnVCY2MFydwJ75OefIp0N62ibO+XP/6OkysQ0ckWio9cgVRxurCn7O3BoYV+/UZjXaY6p\ns/1/A/sUpvdixZf5bvn9Lx7fjwA7dfHerfT+57JrgYML08Py/31jUsXkDlKFbLWa9cpUIP5QmPdm\n4Mn8fE9gfs26s2u3VxPTMfn9fZ508uigPG9X4F81y38dOKMQhysQ/eRB+q5fSvo+fRK4pIPl1s7z\n3188pvK8K4Bj6qzztvwZXa1QdgFwYn4+DTi3ME+kH8mbF8reSmqxrBfTNcAnC9Nb5WNpKCu+kzct\nzL8ROLCL92Maq1Ygfg58tabsPmBHUiX/QdLJkKE1y5SpQNxemPfKHPMIUsX8OeAVhfm/7ejYyu/d\npJxfniWdJG3//tgsv6/DCssfBlxWiKNfViDcRaO1/YLUPWccNd2XSGcZh5EOpHb3kc6QAryadOa/\nOK9d+9mJB5V68UD6kVRcvisbRsd9tovb2QzYUdKThbKhpH0bmZ93FOdKr0c6Q/LvbsRYq9g8+Czp\nrAms+l51532wgWEScGVELM7T5+eyU+j8sze6g/KyVvqsSfo88DHSZzJIZ8PbB1Po7LWmk1ovrsp/\nT+3oBSPiBmD//HrbA78CvkqqDHX0Gq9m1WOzmG9q96W7OaZ2+/flsnaP1eSb4vHbHZsBUySdXihb\nRmp9vAzYmnSCY5Sk3wJfjIilJbfdWX5ZWLNshzkmIl4k/f9OlbQW6QfGubkbxmbA2Jp8OoTUamr9\n03uj5hoIpYuHP5wnvxMR31EaPejzwNlKXQU/FxHtvQw6OmYXxMrXInV2zI4knSGfUzhmRfp81VPv\nmG0/Qdmuo2OiOzYD9pf0hULZ6sCoiLhIaRCXbwNbS7oM+J+IeLjktmvjI8f4auDRiHi+MH8BqVVm\nFZFqAtOB6ZJWBz6Qn99EyuNrAI/W5MJ5JWNsWb4GooVFxH2kpux9SM2DRYtJtf3NCmVjSE2ZkGrl\no2vmtVtAOrO1YUSMyI91o3ABYm9Dr3mtPxVeZ0SkkZU+QToDuqyTOIsWk86Wbl5nXtQp644HST8g\n2o3uaEEbeHIf3/2BXXMf1YdIzdnjJY2n88/egg7KIZ11Kg588Ko6yyz/7Cpd7/DFHMv6ETGC1MWg\n/Vuns9f6JTAxx/s64JIOllv5xSNmkXLL67t4jQdYOdfAyvlmpX2h+zmmdvtjclmjLSC1mhTz0ZoR\nMSeSH0XEm4A3krpHHJPX602Oqc0vUDLHRMSzEfEj0nu5dY7/rpr4h0fEfg2I01pERByZvyfXiYjv\n5LIrImIPUheYu0jdg6DzY3a08nWRWWfH7GLSWfdtC5+t9SKiox/99Y7ZZUDZH+9lLQCOr/nMrxUR\nFwFExPSI2JnUfWkNUhdA6P0xO1Irj8ZX9ph9ISLOJ7Xmvj7Hv5Sc0wu58M0NiLNSrkC0vo+Rujk8\nUyyMNFrCr4FvSxouaTNS/7tf5kV+DXxa0qaS1geOLaz7IHAlcLKkdfPFPJtL2rUJ8f8BeK2kj0ga\nlh/bS3pd3oeLgBMlrZUvjJpUbyP5LMo5wI8kvVrpgse35gP8UeBlUgLpiV8Dx0gaJWkEqX+xDR7v\nJY1CtA3pIuPtSD/C/wwc0sVn7zzgXZL2lzRUaVCA9otnbwHelz/bW5CO5c4MJ30BPwoMlXQ8qQWi\n3VnAN/PFfZL0RkkbAETEQmAWqWXvdxHxXL0XULrg++OSNsrTW5NGnLqhi9eYSTqOP5T384D8fv2h\n3uv0IMdcABwnaaTS8NXHsyKXNdKU/DpbAUhaX9L78/OdJLUpDZ7wDKmLaPvZ24fpeX65HlhT0uT8\n3u1PqpzUpXSx+NuUhnMdJmky6SzwrcBf8jKfyfOH5v9R+4+Rh4FxKpzqtP5P0sZKwy+vTapMLmXF\nZ/Ms4POS3pKP2S3y74H/I51V/2L+HO0GvIfUHW8VOc/9DDilkB9GSdqrg7AuAD4raZykdUjdj3/V\nSc+EnpoKHJ2PTUlaR9K+7b8ZJO2ac/Fz+VE8Znt6LPyTVAE4Lr93byd1Ja9L0uGSJuTYVlO6WH0L\nUrfPe0j59fv5t9pqOb/uUohztKRhPYizUq5AtLiI+HdEzO5g9tGkL7r5pC+W80k/dCAlgitIXzo3\nsWoLxiGkZsC5pH7WvyWd2WioiFhC6gN8IOmMxUPA90gXoELqr71OLp9G6u/Ykc+TLiCcBTyet7Na\nRDxLasL8q9JoCjt1M8yfkX7s3Ea6uGkm6Ydcnw9pZ5WYBPw8Iu6PiIfaH8BpwMH5B2VHn737SS2E\nn8vlt7Dix+EppB+hD5Oat8+jc1cAl5O+vO4jtXoUuxj8iFTZvZJ0QeXZpAsU200H3kCqRHTkSVKF\n4R+SlubXuxhov89A3deIiMeAd+f9fIzUUvLuQpeverqTY75Fui7gNtL7fBMrziQ2TERcQPq/XiTp\nadL/a488ewQpBz1Jyqn3saIr2FRg+5xf6v4A6+Q1nyMNm3s06X14L+l//XwHqzwP/IR0nccjpP7S\n742Ihbl70z6ki/jvI1U2z2BF15ALSa1ej0v6W3fitJa2GukE4QOkPLMr8AmAiPgN6fvvfNJF0pcA\nr4yIF0gVhr1JrQs/JZ0QuauT1/kSqWvNDfn4uJp0bUM957Cim/U9pHx1dM93sb6I+CvwaVLXwidJ\n+fFDpDP3awInk/bvQdJx8LW8ao+Phdwl6QDS9ZBPkC5E/w0dH7NLSNd1LszLf5M0oM2sPP8gUn65\ni/T/+xUrunpdTroW5hFJtV0dW5rS+2Rm7STtDUyJiNouG2YtK58l+yWwWTixtzRJtwIn5QqNmbU4\nSZcCN0TEd6uOpVW4BcIGPaUx/vfJ3QFGkc4kXFx1XGZl5ebvY0ijhLjy0GIk7S5po0KXpM1JF7yb\nWQuStKPS/SxWk/QeUhemS6uOq5W4AmGWLlL9Oqnp8WbSkJjHVxrRICTpHKUbEt3ewXwm3aYGAAAg\nAElEQVQp3fRnntJNhd5cb7nBRtLrSE37m5BuSmStZ1vgdlKO+STwvi66f1nmvGAV2ZTUNXwJ8APg\noxExt9qQWou7MJlZS8hdcJaSxiZ/fZ35+5D62O5DGgP81IjYsW+jNLO+5Lxg1prcAmFmLSEiridd\nYNaRiaQfEZHvZTBCUsMv/Dez1uG8YNaaXIEws/5iFCuPSrSQlW+KZGaDj/OCWQUG1J2oN9xwwxg7\ndmzVYZi1nDlz5iyOiJFVx9FX8oWqkwHWXnvtt2y99dYVR2TWepwXnBfMapXNCwOqAjF27Fhmz+7o\nlglmg5ek+6qOoQEWsfLdQDdl5buqLhcRU0lj99PW1hbOC2arcl5wXjCrVTYvuAuTmfUXM4BD8qgr\nOwFP5Tsem9ng5bxgVoEB1QJhZv2XpAuA3YAN8x05TwCGAUTEFNIdwvch3Sn1WdIdes1sAHNeMGtN\nrkCYWUuIiIO6mB/AUX0Ujpm1AOcFs9bkLkxmZmZmZlaaKxBmZmZmZlaaKxBmZmZmZlaaKxBmZmZm\nZlaaL6K2fm261LBtTYpo2LbMzMzMBiq3QJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZ\nWWmuQJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZWWmVVyAkjZZ0raS5\nku6QdEwuP1HSIkm35Mc+VcdqZmZmZjbYDa06AGAZ8LmIuEnScGCOpKvyvFMi4ocVxmZmZmZmZgWV\nVyAi4kHgwfx8iaQ7gVHVRmVmZmZmZvVU3oWpSNJY4E3A/+WioyXdJukcSetXFpiZmZmZmQEtVIGQ\ntA7wO+AzEfE0cAbwGmA7UgvFyR2sN1nSbEmzH3300T6L18zMzMxsMGqJCoSkYaTKw3kRcRFARDwc\nES9FxMvAz4Ad6q0bEVMjoi0i2kaOHNl3QZuZmZmZDUKVVyAkCTgbuDMiflQo36Sw2H7A7X0dm5mZ\nmZmZrazyi6iB/wI+AvxD0i257CvAQZK2AwK4FziimvDMzMzMzKxd5RWIiPgLoDqzZvZ1LGZmZkWa\nPr2h24tJkxq6PTOzKlRegTAzs9bVyB/Q/vFsZjYwVH4NhJmZmZmZ9R+uQJiZmZmZWWmuQJiZmZmZ\nWWmuQJiZmZmZWWmuQJiZmZmZWWkehcnMWoKkCcCpwBDgrIg4qWb+esAvgTGk3PXDiPh5nwfaD0xX\nvZGxe2jatMZtq4+08v5reuNii0nRsG21KucFs9bkFggzq5ykIcDpwN7ANqQbSW5Ts9hRwNyIGA/s\nBpwsafU+DdTM+ozzglnrcguEmbWCHYB5ETEfQNKFwERgbmGZAIZLErAO8DiwrNmB+T4IjdPIs+8w\nOM7AD3ItmxfMBjtXIMysFYwCFhSmFwI71ixzGjADeAAYDhwQES93teHH5szpXZeWftiFx2yAaFpe\nMLPecRcmM+sv9gJuAV4NbAecJmndegtKmixptqTZS/oyQjPraz3KC48++mhfxmg24LgCYWatYBEw\nujC9aS4rOgy4KJJ5wD3A1vU2FhFTI6ItItqGNyVcM+sDTcsLI0eObErAZoOFKxBm1gpmAVtKGpcv\ngDyQ1C2h6H7gnQCSNga2Aub3aZT2/9u79zhJ6vLe45+vyyqKIKgrIVxkRdTgUVAXJMZ4iVHR4wHR\niKDRBS8LERE88YKJCh6NQaPiDYUVkCVBUSPImiAXiUA0GllBEVAUEeQqoCIXL7DwnD+qZred7Oz2\nztRMd8983q9Xv7rr11W/fqp3+tl+uqp+P2kmmRekIeU1EJIGrqpWJnk9cCbNcI3HV9WlSQ5onz8a\neDdwQpLvAwHeWlW3DCxoSdPKvCANLwsISUOhqk4HTh/XdnTP4+uB58x0XJIGx7wgDSdPYZIkSZLU\nNwsISZIkSX3zFCZJmiFdTqTmJGqSpEHxCIQkSZKkvllASJIkSeqbBYQkSZKkvllASJIkSeqbBYQk\nSZKkvllASJIkSepbJ8O4JvlT4K+BPwe2AH4LXAL8O/AvVfXrtWy7NXAisDlQwNKq+kiSBwOfA7YF\nrgL2qqpfdRGvJEmSNBlZtqzT/mrx4k77mwlTPgKR5CvAa4Azgd1oCogdgLcDGwKnJdl9LV2sBP62\nqnYAdgUOTLIDcChwTlVtD5zTLkuSJEkaoC6OQLyiqm4Z13YHcGF7+2CSh060cVXdANzQPr49yQ+A\nLYE9gGe0qy0DzgXe2kG8kiRJkiZpykcgxoqHJBsluU/7+FFJdk8yv3eddUmyLfAE4L+BzdviAuBG\nmlOcJEmSJA1QJ9dAtM4H/jzJZsBZwAXAS4GX97NxkgcCXwQOqarbkqx6rqoqSU2w3RJgCcA222wz\npR2QJEnS2nV5DcAonv+vbkdhSlX9BngR8Imqegnw2L42bI5UfBE4qapOaZt/nmSL9vktgJvWtG1V\nLa2qRVW1aMGCBVPeCUlTl+SpSfZrHy9IsnDQMUmSpG50WkC0ozG9nGb0JYB5/WwEHAf8oKo+1PPU\ncmCsLF0MnNZhrJKmSZLDaK5XelvbNB/4l8FFJEmSutTlKUyH0HxhOLWqLk3yCOBrfWz3Z8ArgO8n\n+W7b9nfAEcDnk7wauBrYq8NYJU2fPWmuZboQoKquT7LxYEOSJEld6ayAqKrzgPN6lq8E3tDHdl8H\nMsHTz+omOkkz6K7e65aSbDTogCRJUnemXEAk+TLNBHBrVFVrmwNC0uzz+STHAJsmeS3wKuBTA45J\nkiR1pIsjEB9o718E/BGrz3XeB/h5B/1LGiFV9YEkzwZuAx4NvLOqzh5wWJIkqSNTLiDaU5dI8sGq\nWtTz1JeTrJhq/5JGR5J5wFer6pmARYMkSbNQl6MwbdReOA1AO2yj5z5Lc0hV3QPcm+RBg45FkiRN\njy5HYXojcG6SK2kuin44sH+H/UsaDXfQjKp2NnDnWGNVrXNQBUmSNPy6HIXpjCTbA49pm35YVb/v\nqn9JI+OU9iZJkmahLo9AADwJ2Lbtd8ckVNWJHb+GpCFWVcuS3Bd4VNt0eVXdPciYJElSdzorIJL8\nM7Ad8F3gnra5AAsIaQ5J8gxgGXAVzemMWydZXFXnDzIuSZLUjS6PQCwCdqiqCeeEkDQnfBB4TlVd\nDpDkUcBnaY5QSpKkEddlAXEJzTwQN3TYp6TRM3+seACoqh8lmT/IgCRprluWdNfZCSd019cMGeb9\nz7LuYqvFM/M7fpcFxEOBy5J8G1h18bQzUUtzzookx7J6UsmXA84JI0nSLNFlAXF4h31JGl1/AxwI\njA3b+p/AJ9a1UZLdgI8A84Bjq+qINazzDODDwHzglqp6ekcxSxpC5gVpOHU5jOt5STYHdm6bvl1V\nN3XVv6SRsQHwkar6EKyanfp+a9ugXeco4NnAtcAFSZZX1WU962xKU4jsVlU/S/Kw6doBSYNnXpCG\nV5ejMO0F/BNwLs3IKx9L8uaq+teuXkPSSDgH+EuaCeUA7g+cBTxlLdvsAlxRVVcCJDkZ2AO4rGed\nlwGnVNXPAPyBQpr1hjYvZNmyzvqqxYs760uaKV2ewvT3wM5jH94kC4CvAhYQ0tyyYVWNFQ9U1R1J\nHrCObbYErulZvhZ48rh1HgXMT3IusDHNUQ6HiZZmL/PCHNDlBcQwcxcRz3VdFhD3GVf5/wK4T4f9\nSxoNdyZ5YlVdCJDkScBvO+h3A5qhYJ9Fc1Tjm0m+VVU/Gr9ikiXAEoCHdPDCkobWpPLCNttsM6NB\nSrNNlwXEGUnOpBnvHeClwFc67F/SaDgE+EKS62lOZ/wjmnywNtcBW/csb9W29boW+EVV3UlTpJwP\n7Aj8jy8KVbUUWAqwMPHnKGk0TWtemNKwniM4jKnUpS4von5zkhcBT22bllbVqV31L2k0VNUFSR4D\nPLpturyq7l7HZhcA2ydZSPMFYW+ac5t7nQZ8PMkGwH1pTmU4srvIJQ0Z84I0pLq8iHohcHpVndIu\n3z/JtlV1VVevIWl4JdkZuKaqbqyqu5M8EXgxcHWSw6vqlxNtW1Urk7weOJNmuMbjq+rSJAe0zx9d\nVT9IcgZwMXAvzZCOl0z7jknqRDtS43uBP66q5yXZAfjTqjpuTeubF6Th1eUpTF/gD0dZuadt23nN\nq0uaZY6hGX2JJE8DjgAOAnaiOW3gr9a2cVWdDpw+ru3occv/RDPam6TRcwLwaZpBV6A5zehzwBoL\nCDAvSMOqy4ucN6iqu8YW2sf37bB/ScNtXs9RhpfSnMb4xap6B/DIAcYlaTg8tKo+T3OkgKpaSfNj\no6QR02UBcXOS3ccWkuwB3NJh/5KG27z2PGRoRkT5j57nujzaKWk03ZnkIUABJNkV+PVgQ5I0GV3+\np34AcFKSo2iSw7XAKzvsX9Jw+yxwXpJbaIZt/U+AJI/ELwmS4P8Cy4HtknwDWMA6Tm2UNJy6HIXp\nJ8CuSR7YLt+xjk0kzSJV9Q9JzgG2AM6qqrHhU+9Dcy2EpDkqyX2ADYGn04zQFvoboU3SEOrsFKYk\nmyc5DvhCO/PsDkle3cd2xye5KcklPW2HJ7kuyXfb2/O7ilPS9Kmqb1XVqe2Y7GNtPxqbVE7S3FRV\n9wJHVdXKqrq0qi6xeJBGV5fXQJxAM9TaH7fLP6KZUKqf7XZbQ/uRVbVTezt9Dc9LkqTRcU6SFydT\nmcFN0jDosoCY1OgKVXU+MOH48JIkaVbYn2Z497uS3Jbk9iS3DTooSeuvywKi69EVDkpycXuK02ad\nRChp2iU5yM+spPGqauOquk9Vza+qTdrlTQYdl6T112UBMX50hROZ/IWTnwQeQTMB1Q3ABydaMcmS\nJCuSrLj55psn+XKSOrQ5cEGSzyfZzdMVJI1JsnuSD7S3Fww6HkmT01kB0V4k+XSa2aj3Bx5bVRdP\nsq+fV9U97UVXnwJ2Wcu6S6tqUVUtWrBgwWReTlKHqurtwPY0s8vuC/w4yXuTbDfQwCQNVJIjgIOB\ny9rbwUn+cbBRSZqMzoZxTfIS4IyqujTJ24EnJnnPZEZfSbJFVd3QLu4JXLK29SUNl6qqJDcCNwIr\ngc2Af01ydlW9ZbDRSRqQ5wM7tT8OkmQZcBHwtoFGNWBZ1t1B2lpc615J6kCXpzC9o6puT/JUmllo\nj6M5FWmtknwW+Cbw6CTXtkO/vj/J95NcDDwTeGOHcUqaRkkOTvId4P3AN4DHVdXfAE8CXjzQ4CQN\n2qY9jx80sCgkTUmXM1GPjbj0v4FPVdW/J3nPujaqqn3W0Hxch3FJmlkPBl5UVVf3NlbVvZ7zLM1p\n/whclORrNBPJPQ04dLAhSZqMLguI65IcAzwbeF+S+9HtEQ5Jo+Er9AzNnGQT4E+q6r+r6geDC0vS\nIFXVZ5OcC+zcNr21qm4cYEiSJqnLL/h70Uwk99yqupXmV8g3d9i/pNHwSeCOnuU76ON0RkmzW5I9\ngd9U1fKqWg78LskLBx2XpPXX5ShMv6mqU6rqx+3yDVV1Vlf9SxoZqapVV/K1F0x2ebRT0mg6rKpW\nzQ/V/th42ADjkTRJnmIkqWtXJnlDkvnt7WDgykEHJWng1vSdwx8XpBFkASGpawfQzAdzHXAt8GRg\nyUAjkjQMViT5UJLt2tuRwHcGHZSk9WflL6lTVXUTsPeg45A0dA4C3gF8rl0+GzhwcOFImqwuJ5J7\nEfA+4GE0w7OFZj6pTbp6DUnDL8mGwKuBxwIbjrVX1asGFpSkgauqO2mHbU0yD9iobZM0Yro8hen9\nwO5V9aCq2qSqNrZ4kOakfwb+CHgucB6wFXD7QCOSNHBJPpNkkyQbAd8HLkviaI3SCOqygPi5Y7xL\nAh5ZVe8A7qyqZTSTSz55wDFJGrwdquo24IU088UsBF4x2JAkTUaX10CsSPI54EvA78caq+qUDl9D\n0vC7u72/Ncn/Am6kObVR0tw2P8l8mgLi41V1d5Ja10aShk+XBcQmwG+A5/S0FWABIc0tS5NsBrwd\nWA48kObCSUlz2zHAVcD3gPOTPBy4baARSZqUzgqIqtqvq74kjaYk9wFuq6pfAecDjxhwSJKGRFV9\nFPjo2HKSnwHPHFxEkiZrygVEkrdU1fuTfIzmiMMfqKo3TPU1JI2Gqro3yVuAzw86FknDK8m/VdUL\ngJWDjkXS+uviCMTYhdMrOuhL0uj7apI30Yz1vmqIxqr65eBCkjRkthx0AJImb8oFRFV9ub1fNvVw\nJM0CL23veyeIKjydSdJqFw06AEmTN+VhXJN8KsnjJnhuoySvSvLyqb6OpNFQVQvXcFtn8ZBktySX\nJ7kiyaFrWW/nJCuT/FW3kUuaDkm2Gd/W78SS5gVpOHVxCtNRwDvaIuIS4Gaa2We3pxmZ6XjgpA5e\nR9IISPLKNbVX1Ylr2WYeTS55NnAtcEGS5VV12RrWex9wVncRS5pmXwKeCJDki1X14n42Mi9Iw6uL\nU5i+C+yV5IHAImAL4LfAD6rq8qn2L2nk7NzzeEPgWcCFwIQFBLALcEVVXQmQ5GRgD+CycesdBHxx\n3GtIGm7pebw+pzKaF6Qh1eUwrncA53bVn6TRVFUH9S4n2RQ4eR2bbQlc07N8LeNmr06yJbAnzbCP\nflGQRkdN8HhdzAvSkOpyIjlJWpM7gYUd9PNh4K3tULFrXTHJEmAJwEM6eGFJU7JjkttojkTcv31M\nu1xVtckU+jYvSANgASGpU0m+zOpfGe8D7MC654W4Dti6Z3mrtq3XIuDk9kvCQ4HnJ1lZVV8a31lV\nLQWWAixM1ucXT0kdq6p5k9zUvCANqc4LiCQPqKrfdN2vpJHxgZ7HK4Grq+radWxzAbB9koU0XxD2\nBl7Wu0JVrTqKkeQE4N/W9CVB0qxhXpCGVGcFRJKnAMcCDwS2SbIjsH9Vva6r15A0En4G3FBVvwNI\ncv8k21bVVRNtUFUrk7weOBOYBxxfVZcmOaB9/ugZiFvSEDEvSMOryyMQRwLPBZYDVNX3kjytw/4l\njYYvAE/pWb6nbVvrBY5VdTpw+ri2NX5BqKp9pxaipFFgXpCG05QnkutVVdeMa7pnXdskOT7JTUku\n6Wl7cJKzk/y4vd+syzglTasNququsYX28X0HGI8kSepQlwXENe1pTJVkfpI3AT/oY7sTgN3GtR0K\nnFNV2wPntMuSRsPNSXYfW0iyB3DLAOORJEkd6rKAOAA4kGbc5uuAndrltaqq84FfjmveA1jWPl4G\nvLC7MCVNswOAv0vysyQ/A94K7D/gmCRJUke6nEjuFuDlHXW3eVXd0D6+Edi8o34lTbOq+gmwazs7\n/dgkk5IkaZbo7AhEkoVJPpTklCTLx25T7beqirXMXJlkSZIVSVbcfPPNU305SVOU5L1JNq2qO6rq\njiSbJXnPoOOSJEnd6PIUpi8BVwEfAz7Yc5uMnyfZAqC9v2miFatqaVUtqqpFCxYsmOTLSerQ86rq\n1rGFqvoV8PwBxiNJkjrU5TCuv6uqj3bU13JgMXBEe39aR/1Kmn7zktyvqn4PzTwQwP0GHJMkSepI\nlwXER5IcBpwF/H6ssaouXNtGST4LPAN4aJJrgcNoCofPJ3k1cDWwV4dxSppeJwHnJPl0u7wfcOIA\n45EkSR3qsoB4HPAK4C+Ae9u2apcnVFX7TPDUs7oLTdJMqar3Jfke8Jdt07ur6sxBxiRJkrrTZQHx\nEuARvRNISZqbquoM4AyAJE9NclRVrXNYZ0mSNPy6LCAuATZlLRc8S5obkjwB2Ifm9MOfAqcMNiJJ\nktSVLguITYEfJrmAP7wGYveJN5E0WyR5FE3RsA/NzNOfA1JVzxxoYJIkqVNdFhCHddiXpNHzQ+A/\ngRdU1RUASd442JAkSVLXupyJ+ryu+pI0kl4E7A18LckZwMlABhuSJEnq2pQnkkvy9fb+9iS39dxu\nT3Lb1EOUNAqq6ktVtTfwGOBrwCHAw5J8MslzBhudJEnqShczUW8EUFUbV9UmPbeNq2qTDvqXNEKq\n6s6q+kxV/R9gK+Ai4K0DDkuSJHWki1OYqoM+JM1CVfUrYGl7k6ShsJLml42P9LTtSzOr7b49bTsC\nbwSOBL43vpNzz4UTTli9fPDBsO228MaeS7+e/nTYbz847DC4+uqmbdNN4cMfhlNPhdNOW73u4ePu\nAfYA9qQ5nntr2/Zw4F3Ap4Hek8ePhC9/+cvsvvvqsWuOOeYYlixZQrL6bNKJ9ukE4Nz2ftUuAdu2\n66/apbEHfe3T4X94D7DHHrDnnnDIIXDrrevcJ65ivf6hsu/qfa0qli5dyv7777/OfdqP5mLedo/Y\nFPgwcCrQs0fNP89VV/WxTw+Hd70LPv1pOK9np448stn+Iz07tY59Wp9/qLH9f+1rX8vSpUt50pOe\nxIUXNnM6b7HFFlx//fUcfvjhvOtd71q1+YoVKwBYtGgR/UrV1L7/t7NHf2ii56tqwue6tmjRohp7\nEzQ3LEt3p9gvnuJnYZgl+U5V9Z8ZZpGFSR0+he337f2CMGX7dtZTLZ7477XLz8Ww7j9M/B4M7/7D\nTP0N9MO8MHnD+rkwL5gXZiovdHEEYh7wQLxYUpIkSZr1uiggbqiq/9dBP5IkSZKGXBcXUXvkQZIk\nSZojuiggntVBH5IkSZJGwJQLiKr6ZReBSJIkSRp+XRyBkCRJkjRHdHERtSQNLcd7d7x3x3uf2njv\nkjTelOeBGCbOAzH3OA9EfxzvffKGdbxzx3t3vHfngZg888LUDOv+g3lhpvKCpzBJkiRJ6psFhCRJ\nkqS+WUBIkiRJ6psFhKShkGS3JJcnuSLJoWt4/uVJLk7y/ST/lWTHQcQpaeaYF6ThZAEhaeCSzAOO\nAp4H7ADsk2SHcav9FHh6VT0OeDewdGajlDSTzAvS8LKAkDQMdgGuqKorq+ou4GSagU1Xqar/qqpf\ntYvfAraa4RglzSzzgjSkLCAkDYMtgWt6lq9t2ybyauAr0xqRpEEzL0hDyonkJI2UJM+k+aLw1LWs\nswRYAvCQGYpL0uCYF6SZNdQFRJKrgNuBe4CVc3XCG2kOuA7Yumd5q7btDyR5PHAs8Lyq+sVEnVXV\nUtpzoRcms3eGQGl2My9IQ2qoC4jWM6vqlkEHIWlaXQBsn2QhzReEvYGX9a6QZBvgFOAVVfWjmQ9R\n0gwzL0hDahQKCEmzXFWtTPJ64ExgHnB8VV2a5ID2+aOBd9KcefCJJOBRSWlWMy9Iw2vYC4gCvprk\nHuCY9vCjpFmoqk4HTh/XdnTP49cAr5npuCQNjnlBGk7DXkA8taquS/Iw4OwkP6yq83tX6L0oaptt\nthlEjJIkSdKcMdTDuFbVde39TcCpNGNCj19naVUtqqpFCxYsmOkQJUmSpDllaAuIJBsl2XjsMfAc\n4JLBRiVJkiTNbcN8CtPmwKntRVEbAJ+pqjMGG5IkSZI0tw1tAVFVVwI7DjoOSZIkSasN7SlMkiRJ\nkoaPBYQkSZKkvllASJIkSeqbBYQkSZKkvg3tRdTqz7JmlKpOLK7qrC9JkiTNTh6BkCRJktQ3CwhJ\nkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3\nCwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJ\nktQ3CwhJkiRJfbOAkCRJktS3oS4gkuyW5PIkVyQ5dNDxSJo+6/q8p/HR9vmLkzxxEHFKmjnmBWk4\nbTDoACaSZB5wFPBs4FrggiTLq+qyibb5xXe+w7Jk0q+5uGrS20qavD4/788Dtm9vTwY+2d5LmoXM\nC9LwGuYjELsAV1TVlVV1F3AysMeAY5I0Pfr5vO8BnFiNbwGbJtlipgOVNGPMC9KQGtojEMCWwDU9\ny9cyzb8qZNmyzvqqxYs762umuP/d7T+M5nswQP183te0zpbADdMbmqQBMS9IQyo1pKftJPkrYLeq\nek27/ArgyVX1+nHrLQGWtIuPBi6f0UAn9lDglkEHMUBzff9huN6Dh1fVgkEHMZF+Pu9J/g04oqq+\n3i6fA7y1qlasoT/zwnCa6/sPw/UemBeGwzD9TQzCXN9/GK73oK+8MMxHIK4Dtu5Z3qpt+wNVtRRY\nOlNB9SvJiqpaNOg4BmWu7z/4Hqynfj7vfeUEMC8Mq7m+/+B7sJ7MC3PAXN9/GM33YJivgbgA2D7J\nwiT3BfYGlg84JknTo5/P+3Lgle2oK7sCv64qT1OQZi/zgjSkhvYIRFWtTPJ64ExgHnB8VV064LAk\nTYOJPu9JDmifPxo4HXg+cAXwG2C/QcUrafqZF6ThNbQFBEBVnU6THEbR0B0mnWFzff/B92C9rOnz\n3n5BGHtcwIEzHVfH5vrfxFzff/A9WC/mhTlhru8/jOB7MLQXUUuSJEkaPsN8DYQkSZKkIWMBMQVJ\njk9yU5JLetrel+TiJCf2tP11kkMGE2W3JtjnByc5O8mP2/vN2vY/a9+LFUm2b9s2TXJWkpH621uf\n/W6fe1uSK5JcnuS5bdv9kpyR5JIkr+tZd2mSJ87sHmm6mBdWtZkXzAtqmRdWtZkXZkleGKl/lCF0\nArDb2EKSBwFPrKrHA3cleVyS+9Nc1HXUYELs3An07HPrUOCcqtoeOKddBvhbmovbDgEOaNveDry3\nqu6d/lA7dQJ97neSHWhGC3lsu80nkswDngt8HXg88Ip23R2BeVV14Qzsg2bGCZgXwLxgXlCvEzAv\ngHlh1uQFC4gpqKrzgV/2NN0LzE8S4AHA3cCbgI9V1d0DCLFza9hngD2AsWmclwEvbB/fTfM+PAC4\nO8l2wNZVde4MhNqp9dzvPYCTq+r3VfVTmtFBdmH1+zEfSLvuu4F3TGPommHmhVXMC+YFtcwLq5gX\nZklesIDoUFXdTjNaxEXADcCvaWbN/NJAA5t+m/eMu30jsHn7+B+BE4G3AR8H/oHmF4XZYqL93hK4\npme9a9u2s4FtgW8BH02yO3BhVV0/M+FqEMwLgHkBzAvqYV4AzAswwnlhqIdxHV9CJYQAAAXdSURB\nVEVV9X7g/QBJjgXemeQ1wHOAi6vqPYOMb7pVVSWp9vF3gV0BkjyNJkkmyedoquu/raqfDyzYDvXu\n91rWWQm8DCDJfJqxzfdI8iFgG+DEqnKyxFnIvGBeWMs65oU5yrxgXljLOkOfFzwCMU2SPIHmsNPl\nwEuqai9gu7GLg2aZnyfZAqC9v6n3yfYQ7dtpDr8dBrwF+BTwhhmOs2sT7fd1wNY9623VtvV6Hc2v\nLbvS/PL0UppzQDWLmRdWMy+YF9QwL6xmXhidvGABMX3GzlWbTzODJjTnPD5gYBFNn+XA4vbxYuC0\ncc+/Eji9qn5Js//3Mjvei4n2ezmwdzuKwkJge+DbYxu1oy+8gCYhjL0fBdx/huLW4JgXVjMvmBfU\nMC+sZl4YlbxQVd4meQM+S3OY7W6a89Ze3ba/EDi8Z70PAN8HThp0zNOxz8BDaEYV+DHwVeDBPes/\nAPgaML9d/vP2vfgO8OhB78807vffAz+h+UXpeeP6OhJ4Rvt4Q+As4FLgoEHvp7fp+Vtp280Lq9c3\nL5gX5tTNvGBemG15wZmoJUmSJPXNU5gkSZIk9c0CQpIkSVLfLCAkSZIk9c0CQpIkSVLfLCAkSZIk\n9c0CYsQkeUiS77a3G5Nc17N83z77+HSSR69jnQOTvLyjmPdo4/teksvamTbXtv5fJNl1gue2SHJ6\nT1/L2/at2xkrpTnHvGBekMYzL5gXppPDuI6wJIcDd1TVB8a1h+bf9t6BBPaHsdwP+CmwqKqub5cf\nXlU/Wss27wFuqaoPr+G544ALq+qodvnxVXXxNIUvjRzzgnlBGs+8YF7omkcgZokkj2wr7JNoJhnZ\nIsnSJCuSXJrknT3rfj3JTkk2SHJrkiPaCv2bSR7WrvOeJIf0rH9Ekm8nuTzJU9r2jZJ8sX3df21f\na6dxoT0ICPBLgKr6/VgySLJ5klPa7b6dZNck2wGvAd7c/grxlHH9bUEzMQttfxf37P9328ef7vmV\n5ZYkf9+2H9q+zsW974c0W5kXzAvSeOYF80IXLCBml8cAR1bVDlV1HXBoVS0CdgSenWSHNWzzIOC8\nqtoR+Cbwqgn6TlXtArwZGPswHQTcWFU7AO8GnjB+o6q6CTgTuDrJZ5Lsk2Ts7+6jwPvbGPcCjq2q\nnwDHAv9UVTtV1X+N6/LjwLIk/5Hk75JssYbX3K+qdgL2BG5u138+sA3wZGAn4ClrSDbSbGRewLwg\njWNewLwwFRYQs8tPqmpFz/I+SS4ELgT+BFhTQvhtVX2lffwdYNsJ+j5lDes8FTgZoKq+R/NLxv9Q\nVfsCzwZWAIcCS9un/hI4uv0l4EvAZknuP/HuQVWdDmwHHNfuz0VJHjJ+vSQPAL4AvK6qrgWeAzwP\nuIjm/Xgk8Ki1vZY0S5gXWuYFaRXzQsu8MDkbDDoAderOsQdJtgcOBnapqluT/Auw4Rq2uavn8T1M\n/Dfx+z7WmVB76PDiJJ8BfkBz2DFtfL0xkGRdff0COAk4KckZNIlpfDJaCpxcVV8b6xZ4T1Udt76x\nSyPOvLCaeUFqmBdWMy9MgkcgZq9NgNuB29rDds+dhtf4Bs2hRJI8jjX8YpFkkyRP62naCbi6ffxV\n4MCedcfOh7wd2HhNL5jkWWO/OiTZBFgI/GzcOgcD88ddLHYm8OokG7XrbJXkoX3upzRbmBfMC9J4\n5gXzwnrzCMTsdSFwGfBDmg/gN6bhNT4GnJjksva1LgN+PW6dAG9L8ingt8AdrD5v8kDgk0n2o/lb\n/FrbdhrwhSQvAg4cd17jzsDHk9xNUwB/sqouSvLInnXeBPxm7CIp4ONVdWySxwDfan+xuB14GXDL\nlN8FaXSYF8wL0njmBfPCenMYV01akg2ADarqd+0h0LOA7atq5YBDkzQg5gVJ45kXZh+PQGgqHgic\n0yaGAPubDKQ5z7wgaTzzwizjEQhJkiRJffMiakmSJEl9s4CQJEmS1DcLCEmSJEl9s4CQJEmS1DcL\nCEmSJEl9s4CQJEmS1Lf/D/FCACf0YnbeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'KNeighborsClassifier': {0: {'pred_time': 0.4960000514984131, 'f_test': 0.59304818869202103, 'train_time': 0.0009999275207519531, 'acc_train': 0.8666666666666667, 'acc_test': 0.80464344941956878, 'f_train': 0.74999999999999989}, 1: {'pred_time': 3.5820000171661377, 'f_test': 0.6270768571122306, 'train_time': 0.032000064849853516, 'acc_train': 0.85999999999999999, 'acc_test': 0.8180210060807076, 'f_train': 0.72368421052631571}, 2: {'pred_time': 27.072999954223633, 'f_test': 0.63166816232924516, 'train_time': 1.7300000190734863, 'acc_train': 0.87333333333333329, 'acc_test': 0.82012161415146489, 'f_train': 0.75320512820512819}}, 'AdaBoostClassifier': {0: {'pred_time': 0.07000017166137695, 'f_test': 0.61047338962147801, 'train_time': 0.1099998950958252, 'acc_train': 0.89666666666666661, 'acc_test': 0.81039248203427305, 'f_train': 0.81168831168831157}, 1: {'pred_time': 0.07699990272521973, 'f_test': 0.7018820838099199, 'train_time': 0.21799993515014648, 'acc_train': 0.83999999999999997, 'acc_test': 0.84986180210060802, 'f_train': 0.68014705882352933}, 2: {'pred_time': 0.07000017166137695, 'f_test': 0.72455089820359275, 'train_time': 1.678999900817871, 'acc_train': 0.84999999999999998, 'acc_test': 0.85760088446655613, 'f_train': 0.71153846153846156}}, 'DecisionTreeClassifier': {0: {'pred_time': 0.0, 'f_test': 0.5187038764950378, 'train_time': 0.019999980926513672, 'acc_train': 1.0, 'acc_test': 0.76174682144831396, 'f_train': 1.0}, 1: {'pred_time': 0.0, 'f_test': 0.60533669881907515, 'train_time': 0.019999980926513672, 'acc_train': 0.9966666666666667, 'acc_test': 0.80751796572692092, 'f_train': 0.99719101123595499}, 2: {'pred_time': 0.007999897003173828, 'f_test': 0.62747080996598326, 'train_time': 0.3990001678466797, 'acc_train': 0.96999999999999997, 'acc_test': 0.81835268103924819, 'f_train': 0.96385542168674709}}}\n" + ] + } + ], + "source": [ + "# TODO: Import the three supervised learning models from sklearn\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import AdaBoostClassifier\n", + "from sklearn.naive_bayes import GaussianNB\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "\n", + "# TODO: Initialize the three models\n", + "clf_A = DecisionTreeClassifier(random_state=5)\n", + "#clf_B = SVC(random_state=5)\n", + "clf_B = KNeighborsClassifier()\n", + "clf_C = AdaBoostClassifier(random_state=5)\n", + "#clf_A = GaussianNB()\n", + "#clf_A = LogisticRegression(random_state=5)\n", + "\n", + "# TODO: Calculate the number of samples for 1%, 10%, and 100% of the training data\n", + "samples_1 = int(round(len(y_train) * 0.01))\n", + "samples_10 = int(round(len(y_train) * 0.1))\n", + "samples_100 = int(round(len(y_train) * 1))\n", + "\n", + "# Collect results on the learners\n", + "results = {}\n", + "for clf in [clf_A, clf_B, clf_C]:\n", + " clf_name = clf.__class__.__name__\n", + " results[clf_name] = {}\n", + " for i, samples in enumerate([samples_1, samples_10, samples_100]):\n", + " \n", + " # bundles up useful algo metrics\n", + " results[clf_name][i] = \\\n", + " train_predict(clf, samples, X_train, y_train, X_test, y_test)\n", + "\n", + "# Run metrics visualization for the three supervised learning models chosen\n", + "vs.evaluate(results, accuracy, fscore)\n", + "\n", + "# Compared to the naive predictor (25% accuracy), we have improved considerably.\n", + "print(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Improving Results\n", + "In this final section, you will choose from the three supervised learning models the *best* model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (`X_train` and `y_train`) by tuning at least one parameter to improve upon the untuned model's F-score. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3 - Choosing the Best Model\n", + "*Based on the evaluation you performed earlier, in one to two paragraphs, explain to *CharityML* which of the three models you believe to be most appropriate for the task of identifying individuals that make more than \\$50,000.* \n", + "**Hint:** Your answer should include discussion of the metrics, prediction/training time, and the algorithm's suitability for the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** I believe AdaBosst is the best model for finding individuals who make above 50k USD. It is not the fastest trainer, but all models train below 2 seconds on the full datasets which I believe is acceptable, and prediction time is negligible. It has the best accuracy on the testing set, so you get better generalisation than KNN or Decision Tree. However, given that we have an unbalanced dataset, with only around 25% of people sampled earning above 50k, we need to also check the F score, given recall should influence our prediction, as it is important to measure how many of the true positives are found. Here AdaBoost does quite a bit better than the other models on the testing set. Further, it addresses the overfitting issue with the Decision Tree by training several of them (like basis splines) and weighting them according to the prediction accuracy they give." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4 - Describing the Model in Layman's Terms\n", + "*In one to two paragraphs, explain to *CharityML*, in layman's terms, how the final model chosen is supposed to work. Be sure that you are describing the major qualities of the model, such as how the model is trained and how the model makes a prediction. Avoid using advanced mathematical or technical jargon, such as describing equations or discussing the algorithm implementation.*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** AdaBoost is trained using in this case a Decision Tree on the dataset. A Decision Tree attempts to seperate a dataset into two classes (here income >50, below 50k) by asking a serious of questions to its features, such as whether or not some is degree level educated. It will ask questions first that improve the dataset separation by the most. \n", + "\n", + "To run, AdaBoost will set the weight of each person the same initially. It will then calibrate a decision tree to that data and check how large the error is. Next it will iteratively increase the weights of people that it got wrong, and focus on getting those right in the next iteration. In contrast, people that it got right will have their weight reduced. Predictions are made using a weighted combination of all those fitted decision trees, where higher weight is given to those trees that have make more accurate predictions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Model Tuning\n", + "Fine tune the chosen model. Use grid search (`GridSearchCV`) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following:\n", + "- Import [`sklearn.grid_search.GridSearchCV`](http://scikit-learn.org/0.17/modules/generated/sklearn.grid_search.GridSearchCV.html) and [`sklearn.metrics.make_scorer`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html).\n", + "- Initialize the classifier you've chosen and store it in `clf`.\n", + " - Set a `random_state` if one is available to the same state you set before.\n", + "- Create a dictionary of parameters you wish to tune for the chosen model.\n", + " - Example: `parameters = {'parameter' : [list of values]}`.\n", + " - **Note:** Avoid tuning the `max_features` parameter of your learner if that parameter is available!\n", + "- Use `make_scorer` to create an `fbeta_score` scoring object (with $\\beta = 0.5$).\n", + "- Perform grid search on the classifier `clf` using the `'scorer'`, and store it in `grid_obj`.\n", + "- Fit the grid search object to the training data (`X_train`, `y_train`), and store it in `grid_fit`.\n", + "\n", + "**Note:** Depending on the algorithm chosen and the parameter list, the following implementation may take some time to run!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 3 folds for each of 525 candidates, totalling 1575 fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 2.0s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 7.5s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 8.3s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 10.3s\n", + "[Parallel(n_jobs=8)]: Done 34 tasks | elapsed: 11.6s\n", + "[Parallel(n_jobs=8)]: Done 45 tasks | elapsed: 13.3s\n", + "[Parallel(n_jobs=8)]: Done 56 tasks | elapsed: 15.7s\n", + "[Parallel(n_jobs=8)]: Done 69 tasks | elapsed: 18.0s\n", + "[Parallel(n_jobs=8)]: Done 82 tasks | elapsed: 20.3s\n", + "[Parallel(n_jobs=8)]: Done 97 tasks | elapsed: 22.6s\n", + "[Parallel(n_jobs=8)]: Done 112 tasks | elapsed: 25.4s\n", + "[Parallel(n_jobs=8)]: Done 129 tasks | elapsed: 28.1s\n", + "[Parallel(n_jobs=8)]: Done 146 tasks | elapsed: 30.6s\n", + "[Parallel(n_jobs=8)]: Done 165 tasks | elapsed: 34.2s\n", + "[Parallel(n_jobs=8)]: Done 184 tasks | elapsed: 37.2s\n", + "[Parallel(n_jobs=8)]: Done 205 tasks | elapsed: 41.4s\n", + "[Parallel(n_jobs=8)]: Done 226 tasks | elapsed: 45.2s\n", + "[Parallel(n_jobs=8)]: Done 249 tasks | elapsed: 49.4s\n", + "[Parallel(n_jobs=8)]: Done 272 tasks | elapsed: 52.8s\n", + "[Parallel(n_jobs=8)]: Done 297 tasks | elapsed: 57.5s\n", + "[Parallel(n_jobs=8)]: Done 322 tasks | elapsed: 1.0min\n", + "[Parallel(n_jobs=8)]: Done 349 tasks | elapsed: 1.1min\n", + "[Parallel(n_jobs=8)]: Done 376 tasks | elapsed: 1.2min\n", + "[Parallel(n_jobs=8)]: Done 405 tasks | elapsed: 1.3min\n", + "[Parallel(n_jobs=8)]: Done 434 tasks | elapsed: 1.4min\n", + "[Parallel(n_jobs=8)]: Done 465 tasks | elapsed: 1.4min\n", + "[Parallel(n_jobs=8)]: Done 496 tasks | elapsed: 1.5min\n", + "[Parallel(n_jobs=8)]: Done 529 tasks | elapsed: 1.6min\n", + "[Parallel(n_jobs=8)]: Done 562 tasks | elapsed: 1.8min\n", + "[Parallel(n_jobs=8)]: Done 597 tasks | elapsed: 2.0min\n", + "[Parallel(n_jobs=8)]: Done 632 tasks | elapsed: 2.2min\n", + "[Parallel(n_jobs=8)]: Done 669 tasks | elapsed: 2.5min\n", + "[Parallel(n_jobs=8)]: Done 706 tasks | elapsed: 2.7min\n", + "[Parallel(n_jobs=8)]: Done 745 tasks | elapsed: 2.9min\n", + "[Parallel(n_jobs=8)]: Done 784 tasks | elapsed: 3.1min\n", + "[Parallel(n_jobs=8)]: Done 825 tasks | elapsed: 3.4min\n", + "[Parallel(n_jobs=8)]: Done 866 tasks | elapsed: 3.6min\n", + "[Parallel(n_jobs=8)]: Done 909 tasks | elapsed: 3.9min\n", + "[Parallel(n_jobs=8)]: Done 952 tasks | elapsed: 4.2min\n", + "[Parallel(n_jobs=8)]: Done 997 tasks | elapsed: 4.4min\n", + "[Parallel(n_jobs=8)]: Done 1042 tasks | elapsed: 4.7min\n", + "[Parallel(n_jobs=8)]: Done 1089 tasks | elapsed: 5.5min\n", + "[Parallel(n_jobs=8)]: Done 1136 tasks | elapsed: 6.3min\n", + "[Parallel(n_jobs=8)]: Done 1185 tasks | elapsed: 7.2min\n", + "[Parallel(n_jobs=8)]: Done 1234 tasks | elapsed: 8.1min\n", + "[Parallel(n_jobs=8)]: Done 1285 tasks | elapsed: 9.1min\n", + "[Parallel(n_jobs=8)]: Done 1336 tasks | elapsed: 10.0min\n", + "[Parallel(n_jobs=8)]: Done 1389 tasks | elapsed: 11.0min\n", + "[Parallel(n_jobs=8)]: Done 1442 tasks | elapsed: 11.7min\n", + "[Parallel(n_jobs=8)]: Done 1497 tasks | elapsed: 12.6min\n", + "[Parallel(n_jobs=8)]: Done 1552 tasks | elapsed: 13.2min\n", + "[Parallel(n_jobs=8)]: Done 1575 out of 1575 | elapsed: 13.6min finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Unoptimized model\n", + "------\n", + "Accuracy score on testing data: 0.8576\n", + "F-score on testing data: 0.7246\n", + "\n", + "Optimized Model\n", + "------\n", + "Final accuracy score on the testing data: 0.8651\n", + "Final F-score on the testing data: 0.7448\n" + ] + } + ], + "source": [ + "# TODO: Import 'GridSearchCV', 'make_scorer', and any other necessary libraries\n", + "from sklearn.grid_search import GridSearchCV\n", + "from sklearn.metrics import make_scorer\n", + "\n", + "\n", + "\n", + "dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)\n", + "dt_stump.fit(X_train, y_train)\n", + "clf_knn = KNeighborsClassifier(n_jobs=8)\n", + "clf_knn.fit(X_train, y_train)\n", + "\n", + "# TODO: Initialize the classifier\n", + "clf = AdaBoostClassifier(base_estimator=dt_stump, random_state=5)\n", + "#clf = AdaBoostClassifier(base_estimator=clf_knn, random_state=5)\n", + "\n", + "#clf = clf_knn\n", + "\n", + "# Create the parameters list you wish to tuned\n", + "parameters = {\n", + " \"n_estimators\": [1, 3, 9, 30, 90]\n", + " , \"learning_rate\": [0.003, 0.009, 0.1, 0.03, 0.09]\n", + " , \"base_estimator__max_depth\":[1, 3, 9] # use __ to access nested parameters of sub classifier\n", + " , \"base_estimator__min_samples_leaf\":[1, 3, 9, 30, 90, 300, 900]\n", + " #, \"base_estimator__criterion\" : [\"gini\", \"entropy\"]\n", + " #, \"base_estimator__splitter\" : [\"best\", \"random\"]\n", + " \n", + " #\"n_neighbors\": [3, 5, 7, 10, 13, 15, 20]\n", + " #, \"weights\": [\"uniform\", \"distance\"]\n", + " \n", + " #\"base_estimator__n_neighbors\": [3, 5, 7, 10, 13, 15, 20]\n", + " \n", + " \n", + " \n", + "\n", + "}\n", + "\n", + "# TODO: Make an fbeta_score scoring object\n", + "scorer = make_scorer(fbeta_score, beta=0.5)\n", + "\n", + "# check this, which is the right score?\n", + "stratifiedShuffling = False\n", + "if stratifiedShuffling:\n", + " # make sure test labels are evenly split labels between validation set, given dataset is unbalanced\n", + " # this ensure none of them has a large concentration of >50k or <=50k earners.\n", + " from sklearn.cross_validation import StratifiedShuffleSplit\n", + " cv = StratifiedShuffleSplit(y_test, n_iter=10, test_size=0.25, random_state=4)\n", + " grid_obj = GridSearchCV(clf, param_grid=parameters, scoring=scorer, verbose=10, n_jobs=8, cv=cv)\n", + "\n", + " \n", + "# base case\n", + "else:\n", + " # TODO: Perform grid search on the classifier using 'scorer' as the scoring method\n", + " # default uses 3 fold cross validation\n", + " grid_obj = GridSearchCV(clf, param_grid=parameters, scoring=scorer, verbose=10, n_jobs=8)\n", + "\n", + " \n", + "\n", + "# TODO: Fit the grid search object to the training data and find the optimal parameters\n", + "grid_fit = grid_obj.fit(X_train, y_train)\n", + "\n", + "# Get the estimator\n", + "best_clf = grid_fit.best_estimator_\n", + "\n", + "# Make predictions using the unoptimized and optimised model\n", + "predictions = (clf.fit(X_train, y_train)).predict(X_test)\n", + "best_predictions = best_clf.predict(X_test)\n", + "\n", + "# Report the before-and-afterscores\n", + "print \"Unoptimized model\\n------\"\n", + "print \"Accuracy score on testing data: {:.4f}\".format(accuracy_score(y_test, predictions))\n", + "print \"F-score on testing data: {:.4f}\".format(fbeta_score(y_test, predictions, beta = 0.5))\n", + "print \"\\nOptimized Model\\n------\"\n", + "print \"Final accuracy score on the testing data: {:.4f}\".format(accuracy_score(y_test, best_predictions))\n", + "print \"Final F-score on the testing data: {:.4f}\".format(fbeta_score(y_test, best_predictions, beta = 0.5))" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Monday_05_June_2017_09_33PM\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "score = pd.DataFrame(grid_fit.grid_scores_).mean_validation_score\n", + "params = pd.DataFrame.from_records(pd.DataFrame(grid_fit.grid_scores_).parameters.values)\n", + "resGrid = pd.concat([params, score],axis=1)\n", + "resGrid = resGrid.sort_values(by=[\"mean_validation_score\"], ascending=False)\n", + "\n", + "\n", + "import datetime\n", + "st = datetime.datetime.utcnow().strftime(\"%A_%d_%B_%Y_%I_%M%p\")\n", + "print(st)\n", + "\n", + "\n", + "\"\"\"\n", + "importances = best_clf.feature_importances_\n", + "indices = np.argsort(importances)[::-1]\n", + "print(X_train.columns[indices[:5]])\n", + "\"\"\"\n", + "\n", + "#print(pd.DataFrame(best_clf.feature_importances_))\n", + "clf_name = best_clf.__class__.__name__ \n", + "# create excel sheet of parameter grid\n", + "writer = pd.ExcelWriter(\n", + " clf_name + 'resGrid.xlsx'\n", + " , engine=\"xlsxwriter\" \n", + " )\n", + " \n", + "pd.formats.format.header_style = None \n", + " \n", + "resGrid.to_excel(writer, sheet_name=\"elem\", index=False)\n", + "workbook = writer.book\n", + "worksheet = writer.sheets[\"elem\"]\n", + "formatObject = workbook.add_format()\n", + "formatObject.set_text_wrap(1)\n", + "formatObject.set_bold(1)\n", + "\n", + "worksheet.set_column(\"A:F\", 30)\n", + "worksheet.set_row(0, 60, formatObject)\n", + " \n", + "writer.save()\n", + "\n", + "#open excel\n", + "import os\n", + "import win32com.client\n", + "\n", + "cwd = os.getcwd() + \"\\\\\"\n", + "\n", + "xl=win32com.client.Dispatch(\"Excel.Application\")\n", + "xl.Visible = True\n", + "xl.Workbooks.Open(Filename=cwd+clf_name+\"resGrid.xlsx\")\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# close any excel sheets without asking questions and quit excel\n", + "map(lambda book: book.Close(False), xl.Workbooks)\n", + "xl.quit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5 - Final Model Evaluation\n", + "_What is your optimized model's accuracy and F-score on the testing data? Are these scores better or worse than the unoptimized model? How do the results from your optimized model compare to the naive predictor benchmarks you found earlier in **Question 1**?_ \n", + "**Note:** Fill in the table below with your results, and then provide discussion in the **Answer** box." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Results:\n", + "\n", + "| Metric | Benchmark Predictor | Unoptimized Model | Optimized Model |\n", + "| :------------: | :-----------------: | :---------------: | :-------------: | \n", + "| Accuracy Score | 0.2917 | 0.8576 | 0.8687 |\n", + "| F-score | 0.2478 | 0.7246 | 0.7430 |\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The optimised model's scores are better than the benchmark and the unoptimised scores. Accuracy improves beyond just predicting \">50k\" for all points, and especially the F-Score improves, showing the model is adding value. However, i believe that the benchmark predictor does not illustrate the issue of unbalanced datasets well, as we will see a large improvement by using as benchmark the prediction of the less frequent part of the dataset across the entire dataset. However, if we were to predict the more frequent part as a benchmark, i believe it would be a lot more difficult to achieve such performance gains, given we have already 75% accuracy." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\envs\\udacity\\lib\\site-packages\\IPython\\html.py:14: ShimWarning: The `IPython.html` package has been deprecated since IPython 4.0. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.\n", + " \"`IPython.html.widgets` has moved to `ipywidgets`.\", ShimWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAD3CAYAAADIQjUAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE79JREFUeJzt3XuYFNWZx/Fv9wwwGGZABESFxXg7mgsRwSsieOERiRuU\nJEpQo1FBEUWSjaIRAlEQRCWuRFFRIt4SjEqiCCSuiwioQTCumNWz4i0xBkVXAUGQgdk/ZmAHxJkh\nzNBVle/Hp59n+nR11Rkf/fU7b1WdzlVUVCBJKqx8oScgSTKMJSkRDGNJSgDDWJISwDCWpAQobsid\nd+zQ3Us19DmLljxS6CkogRqX7Zbb0X1sT+a89PbcHT5efbIylqQEaNDKWJJ2plwuUcXudjGMJWVG\nLpfeP/YNY0mZkcfKWJIKzjaFJCVA3jaFJBVemivj9H6MSFKGWBlLyoyiXFGhp/APM4wlZUaa2xSG\nsaTMyKc4jO0ZS1ICWBlLyoxciutLw1hSZhTlDWNJKrhcPd4OHUK4EvgW0Bi4FZgL3A1UAC8Dg2OM\nG0MIA4ALgHJgdIxxRgihKXAf0AZYBZwdY1xe0/HS+zEiSQ0khNADOAroCnQH2gMTgOExxm5ADugT\nQmgLDKna7kRgbAihCTAIWFK17T3A8NqOaRhLyox8Ll/nRy1OBJYA04HHgBlAZyqrY4BZwAnAYcCC\nGOO6GOMKYCnQETgamL3VtjWyTSEpM+rxOuNWQAfgZODLwKNAPsa46ZtEVgHNgTJgRbX3bWt801iN\nDGNJmVGP1xl/CLwaY/wMiCGEtVS2KjYpBT4GVlb9XNP4prEa2aaQlBm57finFvOBXiGEXAhhT+BL\nwJNVvWSAk4B5wEKgWwihJITQHDiIypN7C4DeW21bIytjSZlRX0toVl0RcQyVYZsHBgNvApNDCI2B\nV4CHYowbQgg3Uxm2eeCqGOPaEMIkYGoIYT7wGdC/tmPmKioa7guc/XZobYvfDq1tqY9vh+7d8Xt1\nzpyZL/0qUfdOWxlLyow0r01hGEvKjPq86WNnM4wlZYZLaEpSAtimkKQEsE0hSQmQ5m+HTu/MJSlD\nrIwlZYYn8CQpAYpS3KYwjCVlRpqvpkjvx4gkZYiVsaTMsGcsSQmQ5jaFYSwpM7zpQ5ISwMpYkhLA\nnrEkJYCVsSQlgD1jSUoAK2NJSgB7xpKUAFbGkpQAVsaSlABpPoHnQkGSlABWxpIyI5/ewtgwlpQd\nRfn0/rFvGEvKjDSfwEvvx4gkZYiV8Q4676Iz6NGzK40aFTPt3t8yfdpMAHr3OYHvndOXs069iPCV\n/bj8pxdvfk/HTl9h6MDhhK/sR9fuhwFQWtaMVq1bctyhfQvye6hhbNiwgVFjxvHW238hl8sx4orL\naNlyV0aNGcfKVavYuGEj1/5sBO3bteNXDz7M72Y8Ti6X4+wz+9Or5/GFnn7q5FN8NYVhvAO6HHEw\nB3f+Gt/vO5iSpiWcM/B0AA786v6cenrvzf9ZxP9eynn9hgLQs3cP3n/vAxbMXciCuQuZMukBACZO\nGcvPx95WiF9DDeipefMBuPeu23l+8QvcPOl2ykrL+GavE+nV83gWLlrMm2+9TbNmzXjw4Ud48P6p\nfLZuHX1OO4MTTzgu1X92F0Ka/33VuU0RQrClsZWjjjmU1159g5vuGM3EKWOZ++SzNG9RxpDLBzD+\nZ7/43PZNm5Zw0Y9+wHWjJm4xfnyvbqxc8QnPzlu0s6auneT4Ht0Z+ZNhALz792WUlZby4ksv8d77\n73P+RUN4fPYf6NL5EHZt0YLf3D+VRsXFfPDh/9KkSeNUB0uh5HO5Oj+SpsbKOISwDzAB6AKUVwXy\nEuCHMcb/2QnzS7RdW7Zgj7125+Jzr6Bd+z2YOGUcb7z2Ftdfcwvr1q773Pannv5Nnnj8KT7+aMUW\n4+dddCbDLrl6Z01bO1lxcTFXjbqGJ5+ay4RxY5g5+w+UlZZy5603M2nyFKZMvY+LLxxAcXExDzz4\nELfecSdnnP7dQk87lRKYsXVWW7V7JzA2xtguxrh3jPFfgGuAXzb81JLv449W8MzTCylfX85bb/yV\n3fdoTYd92jN89A8ZP/Gn7LP/3lv0ir95ygk8/OsZW+xjn/07sGrlJ/z17b/t7OlrJxozagQzHprG\nqDHjKC0t5dhjugHQ45iu/PmVVzdv1/+07zBn1mMsfuFFFi5aXKjpplaaK+PawrgkxvjH6gMxxuca\ncD6p8qfnl9C1++EAtG6zG+8vW07fnudwXr+hXH7J1bzx2luMv7qyXdGs9Es0atyI9/6+fIt9HNG1\nC/Of+uPn9q1seGzmLO785T0AlJSUkM/n6dzpYOY98wwAi194kf32+TJvvvU2Qy+7koqKCoqLi2nU\nuDG5nJ3B7ZXbjn+SprYTeP8VQpgCzAZWAKVAb+Clhp5YGjz9n8/S+fBv8MCjt5PP57h2xE1s3Lhx\nm9t2+HJ73n1n2efG9963vb3iDDv+2B6MuHoMZw8cRHl5OZf/6FIOPGB/Ro4ex7SHptOsWTOuGz2K\n5mVlhAP248xzB0IOjj7ySA7t3KnQ00+dNPfZcxUVFV/4YgghB5wCHA2UASuBBcD0GOMXv7FKxw7d\na91G/3wWLXmk0FNQAjUu222Hk3R4r5/UOXNGz742UcldY2VcFbjTqx6SlGgpLoy9zlhSdiTxxFxd\nGcaSMiOJJ+bqyjCWlBlWxpKUACnOYldtk6QksDKWlBkuLi9JCZDmNoVhLCkzPIEnSRkUQmgDLAZ6\nAk2BGcBrVS9PijFOCyEMAC4AyoHRMcYZIYSmwH1AG2AVcHaMcfnnDlCNYSwpM+rzOuMQQiPgduDT\nqqHOwIQY443VtmkLDKFymeESYH4I4QlgELAkxjgqhNAPGA5cWtPxDGNJmVHPCwXdANwGXFn1vDMQ\nQgh9qKyOhwKHAQtijOuAdSGEpUBHKtfzGV/1vlnAiNoOlt5Tj5K0laJ8rs6PmoQQzgGWxxh/X214\nIXBZjPEY4A1gJJULqFX/tohVQPOtxjeN1cgwlqTPOxfoGUJ4CjgYuAeYFWPctOL/dKATlStZllZ7\nXynw8Vbjm8ZqZJtCUmbUV5uiqvoFoCqQLwR+F0K4JMa4EDieyhN7C4ExIYQSoAlwEPAylUsN9656\n/SRgXm3HNIwlZUYt3YcdNQiYGEJYDywDBsYYV4YQbqYybPPAVTHGtSGEScDUEMJ84DOgf207N4wl\nZUZDfNNHjLFHtaddt/H6ZGDyVmNrgO36VlnDWFJmpPieD8NYUnZ4B54kJYCLy0tSAqS4MDaMJWVH\nmtsU3vQhSQlgZSwpM/INfKFxQzKMJWVGQ1xnvLMYxpIyI8WFsT1jSUoCK2NJmWGbQpISoLZ1ipPM\nMJaUGWmujO0ZS1ICWBlLyowUF8aGsaTsSHObwjCWlBkpzmLDWFJ2pHmhIMNYUmakOIsNY0nZYc9Y\nkhIgxVlsGEvKjjRXxt70IUkJYGUsKTNcm0KSEiDFXQrDWFJ22DOWJO0QK2NJmZHiwtgwlpQdfju0\nJCWAPWNJ0g6xMpaUGSkujA1jSdmR5jaFYSwpM1KcxQ0bxgueur0hd6+UWvHKq4WeghKo9eFdd3gf\nab4d2hN4kpQAtikkZYY9Y0lKgBRnsWEsKTtyKe4ZG8aSMsPKWJISwJ6xJCVAirPYMJaUHVbGkpQA\nKc5ib/qQpCSwMpaUGbl8/dSXIYQiYDIQgArgQmAtcHfV85eBwTHGjSGEAcAFQDkwOsY4I4TQFLgP\naAOsAs6OMS6v6ZhWxpIyI5er+6MW/woQY+wKDAfGABOA4THGbkAO6BNCaAsMAboCJwJjQwhNgEHA\nkqpt76naR40MY0mZkcvn6vyoSYzxt8DAqqcdgI+BzsDcqrFZwAnAYcCCGOO6GOMKYCnQETgamL3V\ntjUyjCVpG2KM5SGEqcBE4H4gF2OsqHp5FdAcKANWVHvbtsY3jdXIMJaUGfXYpgAgxng2cACV/eOm\n1V4qpbJaXln1c03jm8ZqZBhLyoxcLlfnR01CCGeFEK6seroG2AgsCiH0qBo7CZgHLAS6hRBKQgjN\ngYOoPLm3AOi91bY18moKSZmRr7+Fgh4BfhlCeBpoBAwFXgEmhxAaV/38UIxxQwjhZirDNg9cFWNc\nG0KYBEwNIcwHPgP613ZAw1iSthJjXA2cto2Xum9j28lUtjGqj60Bvrs9xzSMJWVGmu/AM4wlZYZr\nU0hSEqT4kgTDWFJmWBlLUgKkOIsNY0nZYWUsSQmQ4iw2jCVlSIrTOMXnHiUpO6yMJWVGvii9lbFh\nLCkzPIEnSQmQ4iy2ZyxJSWBlLCk7UlwaG8aSMqO277ZLMsNYUmakOYztGUtSAlgZS8qMFLeMDWNJ\n2ZHmNoVhLCkzvOlDkpIgvVlsGEvKDitjSUoAw1iSkiDFF+saxpIyI82VcYo/RyQpO6yMJWWG1xlL\nUgIYxpKUBPaMJUk7wspYUmakuDA2jOtLeXk5I2/4d/7+3nvk80UMHzqYtes+44cjr6H9nnsC8J2T\ne9Gh3V7ceNtdm9/38quRG0b+hKO6HFKoqauB/Pn115k07SF+8ZNhvPm3vzF+ylQA2u2+O8POO4fi\noiIANm7cyGUTbqLbIZ045bhj+WTNGkbeehufrl1Ho+JifnrhQHZr0byAv0l6pPnSNsO4nsx/fjEb\nNmxgys/H89wLL3LL3ffRtcshnNG3D2d++5Qttr3j+jEA/MfTC2jTqqVBnEH3Pz6L3y94hpImTQC4\n4zePcMF3v83BBwbG3HEXC/70It27dAZg8sPTWbV6zeb3zpy3gH3bteOifqfx6Jy5PDBzFpf071eQ\n3yNtckXp7bymd+YJ02GvPdmwYQMbN25k9Zo1FBcX8crS15m/cBEDfnwlV0+YyOo1//8/3Kdr13L7\nfQ/w4wsHFHDWaih7tWnNmCEXb34+eshgDj4wsL68nA9XrKDZLrsAMGfhInK5HId//Wubt923fTvW\nrF0LwOq1n26uoJVthnE9adq0hHffe5/vDBjMmJtuoV+fk/lq2J9Lzz+HyTeMZa89dmfy/dM2b/+7\n2U9wQreutGheVsBZq6H0OLTLFiFalM+z7IMPOOvK4axYtYr92rfnjXfe4Ylnn+P8vlv+5VTW7Ess\nfPnPnHnFVfxq5mxO7n7Mzp5+euW245EwNbYpQghzgCZbDeeAihjjUQ02qxR64JFHObJzJy4+9/ss\nW76cQcNGMPmGsbRquSsAxx51BNdPmrx5+1lz5nLd8GGFmq4KoG2rVvz6+nE89tTTTHzg17RsXsby\njz5iyLjrWfbBBxQXFdO2VSsenTOX/r1P4pTjerD0L39l+MRbmDrm6kJPPxWy3DO+ApgMnAqUN/x0\n0qusWTOKiysroealpZSXb+BHI0dz+cUX8LVwAAtffIkD99sXgE9Wr2b9+nLatm5dyClrJxr285u5\n+Hun077t7uxSUkI+n+Oifqdtfv2uR37Lbi2ac0THrzNn4fM026UpALuWlbH6008LNe3UyexNHzHG\nP4YQ7gU6xhin76Q5pVL/vt/i6gkTOf/frmR9+XoG/+BM9m7XjvGT7qC4qJjdWrbgqiGDAXj7nXfZ\nY/c2BZ6xdqYzT+7NtZPvori4mJLGjRl23jlfuO2Ab5/KuLvuZvqTcygv38Cwc794W20pl09v5zVX\nUVHRYDtf9earDbdzpdba9z8s9BSUQK0P77rDZe07M2fXOXPa9e6VqDLaS9skZUei4nX7GMaSMiOz\nPWNJSpUMX00hSamR5UvbJCk9bFNIUuFZGUtSEqQ3iw1jSdlR35VxCOFw4LoYY48QQidgBvBa1cuT\nYozTQggDgAuovEt5dIxxRgihKXAf0AZYBZwdY1xe07EMY0nahhDC5cBZwOqqoc7AhBjjjdW2aQsM\nAboAJcD8EMITwCBgSYxxVAihHzAcuLSm4xnGkrKjfk/gvQ70Be6tet4ZCCGEPlRWx0OBw4AFMcZ1\nwLoQwlKgI3A0ML7qfbOAEbVOvT5nLkmFlMvn6/yoTYzxYWB9taGFwGUxxmOAN4CRQBmwoto2q4Dm\nW41vGquRYSwpM3K5XJ0f/4DpMcbFm34GOgErgdJq25QCH281vmmsRoaxJNXN70MIh1X9fDywmMpq\nuVsIoSSE0Bw4CHgZWAD0rtr2JGBebTu3ZywpOxr2po9BwMQQwnpgGTAwxrgyhHAzlWGbB66KMa4N\nIUwCpoYQ5gOfAf1r27lLaGqncwlNbUt9LKG5/Ln5dc6c1kccnairkq2MJWWG3w4tSdohVsaSssO1\nKSSp8FwoSJKSwDCWpMLza5ckKQmsjCUpAQxjSSo8T+BJUhKkuGfsTR+SlABWxpIyI5dLb31pGEvK\njLosGp9UhrGk7LBnLEnaEVbGkjLDS9skKQkMY0kqvFxRUaGn8A+zZyxJCWBlLCk7bFNIUuF5Ak+S\nksA78CSp8FxcXpKSwDaFJBWePWNJSgJ7xpKUACnuGaf3Y0SSMsTKWFJm2DOWpATI5dO7NoVhLCk7\nUnwCL70zl6QMsTKWlBnegSdJSeAJPEkqvDSfwMtVVFQUeg6S9E/PE3iSlACGsSQlgGEsSQlgGEtS\nAhjGkpQAhrEkJYBhLEkJ4E0fDSyEkAduBb4BrAPOjzEuLeyslAQhhMOB62KMPQo9FxWelXHDOwUo\niTEeCVwB3Fjg+SgBQgiXA3cCJYWei5LBMG54RwOzAWKMzwFdCjsdJcTrQN9CT0LJYRg3vDJgRbXn\nG0IItof+ycUYHwbWF3oeSg7DuOGtBEqrPc/HGMsLNRlJyWQYN7wFQG+AEMIRwJLCTkdSEvnncsOb\nDvQMITwD5IAfFHg+khLIJTQlKQFsU0hSAhjGkpQAhrEkJYBhLEkJYBhLUgIYxpKUAIaxJCXA/wFH\n3IYB7nYI4QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "\n", + "# confusion matrix best\n", + "pred = best_clf.predict(X_test)\n", + "sns.heatmap(confusion_matrix(y_test, pred), annot = True, fmt = '')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Feature Importance\n", + "\n", + "An important task when performing supervised learning on a dataset like the census data we study here is determining which features provide the most predictive power. By focusing on the relationship between only a few crucial features and the target label we simplify our understanding of the phenomenon, which is most always a useful thing to do. In the case of this project, that means we wish to identify a small number of features that most strongly predict whether an individual makes at most or more than \\$50,000.\n", + "\n", + "Choose a scikit-learn classifier (e.g., adaboost, random forests) that has a `feature_importance_` attribute, which is a function that ranks the importance of features according to the chosen classifier. In the next python cell fit this classifier to training set and use this attribute to determine the top 5 most important features for the census dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6 - Feature Relevance Observation\n", + "When **Exploring the Data**, it was shown there are thirteen available features for each individual on record in the census data. \n", + "_Of these thirteen records, which five features do you believe to be most important for prediction, and in what order would you rank them and why?_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** I believe the important features would be: \n", + "- Capital Gain - most important as a large capital gain can provide income for years to come, and reduces reliance on intelligence, hard work or biological properties like race or attractiveness.\n", + "- Age - also important as usually people tend to get better at what they do with age.\n", + "- Education Level - fairly good predictor as it can replace experience and is sometimes a proxy for family wealth which would have a positive effect on income.\n", + "- Work class - private sector pays better\n", + "- race - biological attributes might provide some noise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation - Extracting Feature Importance\n", + "Choose a `scikit-learn` supervised learning algorithm that has a `feature_importance_` attribute availble for it. This attribute is a function that ranks the importance of each feature when making predictions based on the chosen algorithm.\n", + "\n", + "In the code cell below, you will need to implement the following:\n", + " - Import a supervised learning model from sklearn if it is different from the three used earlier.\n", + " - Train the supervised model on the entire training set.\n", + " - Extract the feature importances using `'.feature_importances_'`." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFgCAYAAAArYcg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYHVX5wPFvkg2QmKCLhCIKEZAXfhZAggRBehNQCYqo\nIE2agJUiTYhIE1GKUqVJFBEFpRdBQGlKiYIoryCgKAkklCQQWkh+f5zZ5Gazu9kke7Mh8/08zz57\n78zcM2fmTHnnnDMzfaZNm4YkSZLqo29vZ0CSJEnzlwGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWM\nAaCkWUREn97Ow4LCdTF7C/M6WpiXrU0dllGzauntDGjBEBG3AesAH8rMR9uNWwMYDWycmbfN/9zN\nXkQ8CVyTmQdExEbArcDamXlfE+d5ETAsMz/QwbgPAA8BX8zMnzUMbwGeAxYHVsrMxxvGfQT4E7BN\nZl7XjfmPBA7KzEFzkOdpwMGZeXIX0+wFrAAc2d10O0hjDeBiIIAbM/OTc5tWB2lfBOzaxSQDgOHM\n4zYQEYsCJ1Xp/LaTaYYCT3SRzPcy89Bq/3opM7edm7x0RzWPDYErMvPTHYwfAIwD3kYP7hsR8X7g\nR8AmXUwzEji63eDXgf8BVwJHZubLPZGfDuY7fR9pPE5047ezlP+c/H5uNZRjR57JzGV6cF7vAM4A\nfgjc31Pp6q3BAFCNFgPOBTbu7YzMoweAdYF/9GIeHqacbIcDP2sYvg7lBDwR2Bw4p2Hc+sAbwB+6\nOY/zgGvnOaezOgK4Zh7T+DawJPAJykm+pz0O7NTJuNfomW1gWeCrwB+7Me3hlEChvbZl3w94cx7y\n0l3TgK0iYkBmvtJu3NaUba+n7QB8pBvTvcLMQeKilG3+GOA9wGd6PmuzGAG80M1pOyr/Ofn9vLgT\nOKiD4a/38HzWAL4AnNLD6eotwABQjSYAG0XEnpl5Xm9nZm5l5kTgnl7Ow7TqSn7ddqM2A/4KPMWs\nAeB6wJ8z86VuzuO/wH/nPbdNsQQwOjNvalL6r2RmV2U8v7eBR7vKT2b+fT7l48/AMGAr4Dftxu0A\nPAh8aD7lpb2pHayj26ta1C9FxLKZOaaZGcjM0b35+znw4my2b2meGQCq0R2UGoTvR8Q1mTm2swmr\ng/ZJwEaUJrffU5paHq3GjwS2pVw9fwn4F+Xq+Ynq/wHAR4GxlCvdRyjB0FpAAntn5r1VWv0pzZGf\npzRNTqbUtnwtM5/qIG8bVePXBsbTeRPdTzNzt+o3mwPHUk6OzwEXAN/JzDer8S3V+N2AgZTat36d\nrZ/KbcCIiBiYmZOrYZtXw/8NjIyIvpk5tRq3Hg0BYUQsBZxMWY+LUNbx1zLziWr8SGZu3lqMUiaf\no9TmXgY8C3whM4c25OudEfGLKt3XgFHAIZn5RtXEtQKwf0Tsn5l9IuJtwGnANsA7KLVqx2bmFR0t\ndNXM3Ph548y8LSI2qNbhGpTaoF8Bh7YFvFXA/M9q/hsA52XmV7pexR1r3w2gs7Qj4mBgH+DdlNq6\ni4DjgOWZsd38KiJuz8yN5iYvVX5uo2oCjojHgZszc++G8a3AM8CXM/P8ap2fCHyW0l3gT8A3uhGA\njAduBz5NQwBYNf9uC5xAuwCwG+WyDHA6pfZuIKWp8MjMvL2xabcq690z86I5WjmltnZPyjofU6Vz\nBKWGdyiwR2b+MiLWomzf6wIvA5cC32rYt4iIg4CvUGqfrwCebresT9LQhBsRKwDfp1yYQdlmvkHp\nHz9L+bf9HjiEsm8dn5nHN6T/fuBvwGaZecvs9uF50Z20I2JLSu30h4H+lOPsMZl5RcM+AnBvRPw0\nM3frqJtIRPwWeEe1DoZW6+br1bpqpXRbuaMbx9EATqWUYV/gLsqx58F5XR+ac94Eovb2p1wY/Kiz\nCSLi3ZSahvcBXwZ2B94L3BER72qYdPXqbwQz9yc7H7gJ+CSlButiysnqUsqJa3FmbjY9hXJQPxHY\ngnJy2JRyIJmdMZSDTePfuZTmuFHV8mwKXM+M4PT7wIGUk16bUynNQSdSAtHVgR1nM+9bKety7Wo+\ngylNwL8DbqYcOIdV41YGlgZuqb4PqH6/frXsXwSWAf5QBQsduYASoH6H0qyzMvDNDqY7hBIofAo4\nm3Ig37caN4ISlP+aGbWXp1FO/l+lNCP+nXJSXK2TfKxL6TN6Z/X5gYj4eLU8Yyjr7egqj9dGRONx\naHfKSepTlO2iUxHR0v6vq+nbpx0ROwPfpfR/2pIS1H8H2KvK5/bV7w6nNOF2pW8H+ens+HopsF1E\nNF5AjKBcfF1edci/ihLIH0mpuXsVuC0iVppNPgAuB7atLpzafBx4kXLCna6b5fIzyra0O2XdTa7G\nL0FZZ+dTAsd1mbsuCe+r/jcGRUdStrtdKcv9f5SuEdMoQfG3qvxe1rAsB1H2z4sox5FFKAFKhyJi\nccpF74co5bsrsCrlWNBl+VdB51XM2my9Y/XbW+dyH27Tp6vtuztpV32Kr6MEpJ+q8jYZuCQihlAC\n7/2rJHen7Atz4tuUcvgKJYDs8jhabU9XU46JO1K27yUp29LsLqbVBNYAaiaZ+Z+IOAI4LSI+mZlX\ndTDZNyi1fptn5niYXsPxOGWHP7CargU4sK3WorpyBLgsM0+qhvUDbgB+nplnVMOOB86LiHdk5ovA\nEEpN1wXV72+vriQ76wPWuDyv0dAUGBHrUoKkozLzlmrwscA9mfm56vsNEfE8cFFEfJ/SnLgvcERm\nnlqlcwulFq+ref8jIsZSToy3U2pLpwJ/yMzJEfE0pUbwz5QD+eSGvO5CuYHiA5n5SLt5foXSb2q6\niFiFEphOr4GJiN/Tce3n7xpq1n4fEZ+k9Pv8UWaOjojXKJ3N2/KyfvWbX1Xp3kmprerw+JGZ90TE\nREqN1z3Vb46lNG9PD5oj4glK2W9DOTEATKLUdE2la++n9JecSUR0dXPDTGlHxJeAJ4GzMnMaZbt6\nA3g6M1+LiLbatke70YT7yw6GXUupnWnvEuAwyvbQtg1+Frg+M1+sam02oexfN1d5vYHSr/QIYI/Z\n5OUKygXcppT1CyWIvJwSQDXqTrmsT6nFuboa/zfKhcXbMvOpiPgvHTfvzqJdkL4E5YJuH+DKzHy2\nYdzvMvPcht+dSrkw2TozX6+GPUoJeDagBHLfAn6SmW01kjcCfwE6C5p3pwRNqzTUqj9FuRhdmXIR\nA52X/yXA1RGxUmb+qxq2A+X4NjUi5mgfbmdrOt6+h1TH3O6k/X7KDUH7N/z+P5TAb53MvCYi2pbr\nbw3L0F0/z8zp2321j3d1HH2VEuwfnZk3NuTnC8AgShckzUcGgOrIjynB1RlVYNfeBsCtbcEfQGaO\nrw5A7e9e+2cHv/9zw+dnqv+NJ+3nqv/voPSF2REgIpajHPRWo5yUFu3W0lSq2snLgRspTWFExEBK\nB/Yj2p2cbqDUkG9MOfH0o1zdApCZr0bEdVS1e124nRk1aZsBdzU0Wd1COUkfVy3PH9tObtV8HwUe\na8jXZEqT+qbMevJoW+/T71atgsxrmfXuzLvafX+Ssq4780dgr4hYltL8dU1mHtjF9DOJiEHAmrTr\n1J6ZN0bEC1Xe2wLAx7oR/EHpUvC5DoZ3Fai1T/uPlODj3oj4NWW5Or07eja+RWmCa/RiRxNm5t8i\n4iFKsHBLVZO2KbBzNcnGlLK+vd022VZr3qXMHBsRd1FqwW6I0jVgW0otYGMtUnfL5Y/AMRHxIUpQ\ne11mHjy7fHTgbcwa1Eyl1FLt034x2n3fmLJtT21YJ3dTLs42pdxwtSQz76PTIuIKoLO8fhR4uLHJ\nNDP/QmnNaLxg7cyNlGPVDsCJ1fpZlXKB2ZbnOdmHG91Bx7WXbdvUbNPOzAuBC6N0J1gNWIUZx4I5\nOnZ2YnoZdfM4+lPK+eAnEbEZpdxvzMzDeyAvmgsGgJpFdfW6J+VK8QTgJ+0maaVcWbf3DOWqs83L\n2fGjHSZ1MGxyB8MAiIiPAmdRmmomUK7MXwG6/eyqiFiEEvy9AuxS1fhAWZa+lOU8oYOfLkvpJwel\n2bRRp30kG9zKjKaVzYGfN4y7GTi7aqpbj9KE2+adlJPJLLUAlAN/e0sCb1Q1po2e6WDa9ut6Kl13\nB/kqpS/VFyl39U6tgt/dGy8CuvAOSll1lJdnKU3+jd+749Uuavo6M1Pamfnz6mS1P3A8cEJEPAh8\naS7SfnwOf3MJ8M2I2J/S1PgqpUkRStkPpOM7PjvaHjrya+DwiNiHckPIREqTfOMFWnfLZUfgKEot\n5eeANyLiUmCfnPVO4668Qrl4hFIT+Srwn8zs6HjQfjt4JyVIbB8oQtlH25pU52QfXaKD+XRb1Wf2\n11QBIGX9/Csz/9SQ5znZhxtNmM32NNu0q8DvHGZ0VUlmHLd74rl/jetutsfR6ryyGTAS2I5Sk/1K\nRJxNaeHpzoWfepABoDqUmQ9V1faHUpqeGj1P6a/W3jLMqL3rERHxdkqt0x3ApzPzsWr4SZRO6911\nRjX9uu2CpInV/2MpzyNr72ngg9XnpZi5U/k7uzHfW4EhEbEO5Sr85oZxN1M1pVNqNm9pGDeBcrfw\nnh2k+VoHw/4H9G9oNm8zpBt57FJ1kj8aOLpqev8Mpf/Pdyl9QGfnRcoJf75sM3MiM38K/DRKh/pP\nUJZzFKWsmulSStD5MUoAcWVDMDWBcnLdZh7Sv4LSd/ZjlPL6dVUj1jhNt8olM5+n9BP9epTnO+5E\n6ebxMPC9OcjT1LkIrNtMoOyfZ3UwbjwzarSWajeuq310Ah00D1f9Ih/oZr5+AexT1RbuQCnXxvTn\nZB+eE91J+0eUJvatKd1OXqv6Us626wyzXhDO7lmj3TmOkuWmvS9FedbocEr+v0G5yamjbhRqIm8C\nUVeOoTS1tb+iuwPYOCKWbBtQfd6UUsvQk1alXF2e2hD89aUETd26io2IL1MONPtXTTzTVbUPf6U8\nlPm+tj9K7csJlOeT3U05qG7fkGZLlYcuZeY/KQe/r1JOuPc1jHuackftnpRnizXm7Q5KU9STDXm6\nn3Kw7Khf2V2UmrzpTYRVredWs8tjB6Y/ry4i+kXE3yLi61WeMzOPo6yT5buTWJa7Sf9COUFOV/V1\nezs9v810S0ScV9XgkJnPZub5lBsa2parac/ty8wnKetwJ0qz3C8aRt9BCdxfardN7sSMZuLZpf8U\ncC+lVmpbyp297aeZbblExJIR8Z+I2L76zV+q5t9/Mx/WU4M7KMeC+xvWx1OUmrcPUJoWn6ZhH61s\n3UWadwEfiHInMABRbmy6jnKTV3eW6w+UG9kOoTSxti/HOdmH50R30l4XuCEzf5elLzTMOB60HTs7\nWsaJwPSb+aqaxDW7ykx3jqMR8aGIGBMRH87MqZl5F+WGqyl081iinmUNoDpV9XPbm1n7Np1C6efy\nu6rjL5S79l6ne3fmzolHKE3G345yw8gASpPd6sC0iOjT0Jw7i6r5+DRKLeLoqiau7eD3WpYbVI4C\nfhsREygdwJekXMlOBR6q+tJ9Hzg0Il6hNEF/mVJL0p2O07dRTrLXZPU4hAY3U24wuapdE8gFlKDx\ndxFxAqXWdW9Kv65PtJ9BZj4WET8HTq8O2P+ufr8ss7lZpQMvAmtFxIaUE9yfKLV/r1LKYzilZqmj\n5rjOHA1cGRG/BC6kHPCPpwRB13f1wya6nXI38PGUO7PfQynXtsfbtHVK3ywiHs3Mv/bw/C+hbJsv\nUvr3tbmaErxdFxHfAf5DqcXbjxl3a3fHryn9S8fReZDdZblk5pvVzRanVdvVU5SayRWY8ZiZF4GB\nEfEpyg0lzXiW33cpAdtlEXEB5TFH36aU2eiqdvMoSv+yZyjl+VnKY6U6C+QuoARM10bE0dV036X0\nUf49pRkeuij/ar6XVuk8mJmNrSVztA/Poe6kfS/wyYjYlbINbcKM/pBty9bWWrBNRLxU3VByPbB7\nRDxAqYk+hFlvHupIl8dRyvlhImWfG1nleddqfDMeaK/ZsAZQXcrMW5m5b1pb7cLHKFfcP6XUmjxJ\naV7t0QcTZ+YEykGtldJH6gxKk88OlO13ndkksQXl+VfbUpp17qGc3O6mOoFludP5U5RHslxFCWLv\npjy/rq2/3FGUviv7U/oSTqA8TqY7bq3ycHMH426uxjU2/7Y9zHoDSsB1NqVZZQXgU9n5a+K+TGmC\nOq76/29KzU+3Hizd4HjKXZDXA8tRTjSjKHeg3kjpu3NgVWPWLVnuIN2uSvdKyuNWfgFs2UFQPF9k\n5ijKHZMjKLU+J1GCpi9X4ydSmji/SPXIoB52GeXE+uvMnN6Xq1ofW1KCmJOqvH2M0ufynI4S6sTl\nlG3r8s4ukrpZLp+nBEQnUcp/S2CnrO5Qpmxr91O2tS/OQf66LTPvpwQwQyjLdT6l28NGmfm/aprz\nKUHQiGpZlqbsC52l+SJlH3uU8uiY8yg1op/IzClzUP6XUG4Sa6z9m9t9uFu6mfaBlG3oVMpFzaaU\nGtJ/MuPGtIerZTuM8tgWKMHsrVW6F1Wff9qNPHV5HM3MKZQa2UcpTfnXUmp1t83596B0NegzbVp3\nAntJC7KqCX4L4OrGTvXV3aBjM7N905gkqcZsApYWDq8AZwI7VHfVTaHUkg6nG30VJUn1YhOwtBCo\nHrezBeVuvUspTTCrU5qzbunqt5Kk+rEJWJIkqWasAZQkSaqZt0wfwHHjJtWmqrK1dSAvvNDpizH0\nFmbZLpws14WT5bpwqlu5DhkyuMNn5loDuABqaenX21lQk1i2CyfLdeFkuS6cLNfCAFCSJKlmDAAl\nSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlm3jIPgpY0fy113eI9mt6zW0/s0fQk\nSXPPGkBJC4QxY55miy025IAD9p7+d+GFP5njdK688gqmTJnSI3m64YZrOfnkE6d/P+mk49hllx2n\nf7/uuqs57bQfdPr7ww8/uNNxY8Y8zd577zbL8LFjx3LHHX+YuwxLUjdZAyhpgTF06Hv58Y/Pnac0\nRo26kK222oaWlnk/vA0btg6/+MWo6d8feeTvtLYuwdixY1hmmWV54IH72GyzLTv9/fHHf3+O5/nA\nA/fy738/yfrrbzBXeZak7jAAlLTAO/vsH/PXv45m6tSp7LjjTmyyyWaMHn0/F174E6ZOncorr7zC\n0Ucfy4MPjub5559j5MjD2WGHz3PllZfzne+cAMAnP7klV111I8cdN5IJEyYwceIETjrpVC655OJZ\n0m6z5JJLAn2YOHEC48aNY/nlh7LKKqty1113sP32O/CPfzzMwQcfxqRJkzjyyEOYMGECAF//+sGs\ntNLK0+f597//jR/+8CQGDhxIa2sriyyyKHvssTcvvvgChx12IOPHj2flld/HQQcdxs9+dhGvvvoq\nH/zgh1h//Q17Y3VLqgEDQEkLjCeffIIDDth7+vejjz6Wxx57lDFj/sdZZ53Pa6+9xj777M7aa6/D\nE088zlFHfZcllxzCxRdfwK233syuu36Jiy46n5Ejj+fhhx/qdD5rrTWMHXfcibvvvrPDtAcPHjx9\n2mHD1ubBB//Kv//9BMOHf5RVVlmVs8/+McOHf5Sll16WRRddjLPPPpu11voII0Z8hqee+g/HH/8d\nzjrr/OlpnHzyCRx55DGsuOJKnHPOGYwfPw6AyZNf5rDDjmbQoEHsuOMIJk6cwM4771bVABr8SWoe\nA0BJC4yOmoBvuul6Mh+ZHhhOmTKFsWOfZsiQIZx66vcZMGAg48Y9ywc/uHqXaU+bNm365+WXXwGA\nxx9/rMO0Bw+O6dMOG7YOo0ffR+YjjBx5PK2trYwb9wyjR9/P8OHrAvDPf/6TZ5+9i1tuuQmASZNm\nvuFl/PjxrLjiSgCsvvqa06dbdtnlWHzxcrNNa2srr7766hysLan3LHXdFU1N/9mtt29q+jIAlLSA\nW2GFoay55jC+9a0jmDp1KhdddB7LLfduvvGNA7jsst8ycODbOPbYo6dP36dPX6ZNm8YiiyzKc889\nB8DYsWOYOHHCTNN0lXajNdb4MKNGXQiUIA1gtdXezzXXXMmhh34bgBVXXJGNNtqCLbbYihdeeJ6r\nr/7tTGkstdTSPPHE47z3vSvOVDPZp0+fWZa3T58+TJs2da7XlyR1hwGgpA4tKI9tWW+9DRg9+n72\n229PXnllMhtssDEDB76NLbf8OPvttxcDBixGa+s7pzerrr76Ghx00Fc59dQzGTRoEHvttStDh76X\nZZddrttpNxowYAAtLS2svvqa04cNH74e9977J1ZYYSgA++67Lwcf/C2uuuoKJk9+mT322HumNA48\n8FuccMIxDBgwkP79WxgyZKlOl3ellVbm4osvYJVVVu3yBhNJmhd9GptFFmTjxk16a2S0BwwZMphx\n4yb1djbUBJbtwml25Xr55ZexySab09rayrnnnkn//v3Zffe95mMONTfcXzv3Vm4Crlu5DhkyeNam\nBqwBlKSmW2KJJfjmN/dnwICBDBo0iCOOGNnbWZJUcwaAktRkG2+8GRtvvNnsJ5Sk+cQ3gUiSJNWM\nAaAkSVLNGABKkiTVjH0AJXWop+/y88GukrTgsAZQ0gLj8cf/xcEHf42vfGUf9txzF84//xya8aiq\n444byT333NXp+H/96zH+8pcHADj66MN444035mo+Y8Y8zRZbbMgBB+w9/e/CC38yx+lceeUVTJky\nZa7y0N4NN1zLySefOP37SScdxy677Dj9+3XXXc1pp/2g098ffvjBnY4bM+Zp9t57t1mGjx07ljvu\n+MPcZVhSU1gDKGmBMGnSJEaOPJzjjvs+73nP8rz55pt8+9uHcuWVl7Pddp+Zr3m57bZbeOc738ka\na3yY73znhHlKq6PX282pUaMuZKuttqGlZd4P2cOGrcMvfjFq+vdHHvk7ra1LMHbsGJZZZlkeeOC+\nLh9Affzx35/jeT7wwL3V+403mKs8S+p5BoCSFgh33HE7H/7w2rznPcsD0K9fP4488jv079+fBx64\njyuvvHx6MPbJT27JVVfdyHHHjaSlpYWxY8fwxhtvsOmmW3DnnX/gmWfGcuKJP+SZZ8Z2+Ls2L7/8\nEieeeCwvvTSJ8ePHsf32n2X99Tfg+uuvoaWlP6ussipHHXUYF198KbvvvhMXXfQLBgwYwCWXjKJf\nv75stNGmnHTS8UybNoU+fVo45JDDWXrpZbq1vGef/WP++tfRTJ06lR133IlNNtmM0aPv58ILf8LU\nqVN55ZVXOProY3nwwdE8//xzjBx5ODvs8PlO18OECROYOHECJ510KpdccvEsabdZcsklgT5MnDiB\ncePGsfzyQ1lllVW566472H77HfjHPx7m4IMP46WXXuLEE49hwoTyCr2vf/1gVlpp5enz/Pvf/8YP\nf3gSAwcOpLW1lUUWWZQ99tibF198gcMOO5Dx48ez8srv46CDDuNnP7uIV199lQ9+8EOsv/6G87yt\nSJp3NgFLWiCMHz+Od71r5te1DRw4kP79+3f5u2WWWZZTTjmDFVYYypgx/+Pkk09no4025c47Z9/k\n+N///pfNNtuCU045g1NOOYNf/vLnDBmyFB//+LZ87nNf4P/+7wMA9OvXwoYbbsJtt90CwM0338BW\nW23DGWecxmc+syOjRo3i85/fmbPP/vEs83jyySdmagIeN+5Z7r77TsaM+R9nnXU+p59+NhdffAGT\nJk3iiSce56ijvsuPf3wuG264MbfeejPbbrsdSyzxTkaOPL7LZVlrrWGcffYFPPzwQx2m3WjYsLV5\n8MG/cs89dzJ8+EcZPvyj3HPPXTz99P9YeullWXTRxbj44gtYa62P8KMfncMhhxzBySfPXBN68skn\ncPjhR3P66WfzrnfNeH/y5Mkvc9hhR3POORdy3333MnHiBHbeeTc233wrgz9pAWINoKQFwtJLL8s/\n//nITMOefvp/PPvsM7NM29gvcJVVVgVg0KDB09/NO3jwYF577fUufwflDR2XXXYJt99+KwMHvq3L\nfnaf+MR2nHzyiaywwlDe854VePvb38Hjjz/GqFEX8qtf/ZzXX59Cv36zHlI7agK+6abryXyEAw4o\n7wyeMmUKY8c+zZAhQzj11O8zYMBAxo17lg9+cPVO89N+eZZffgUAHn/8sQ7THjw4pk87bNg6jB59\nH5mPMHLk8bS2tjJu3DOMHn0/w4evOz2dBx64j1tuuQmASZNmfjf0+PHjWXHFlQBYffU1p0+37LLL\nsfjiiwPQ2trKq6++2uUySOodTQsAI6IvcCawOvAasGdmPtYw/hvAnsC4atA+mZnNyo+kBdt6663P\nqFEXMGLEZ1huuXczZcoUfvSjU1h77XVYZZVVee655wAYO3YMEydOmP67Pn06fM0lAIsssminvwO4\n9NKf8YEPfIgRIz7DAw/cx9133wFA3759mTp15mCxNE1P45JLRjFiROmTuPzyQ/n853dmk03W5777\nHmL06Pu7tawrrDCUNdccxre+dQRTp07loovOY7nl3s03vnEAl132WwYOfBvHHnt0wzL2Zdq0aV0u\nT58+fbtMu9Eaa3yYUaMuBEqQBrDaau/nmmuu5NBDvz09nS22+D+22GIrXnjhea6++rczpbHUUkvz\nxBOP8973rsjDDz/UkI9Zy6NPnz5Mmza1W+tG0vzRzBrA7YDFMnPdiBgO/AD4VMP4tYBdMrN7R0xJ\n89X8fmzL2942iCOO+A7f+96xTJ06lcmTJ7Peeh9jxIjP8OabbzJo0CD22mtXhg59L8suu9zsEwRW\nXXW1Ln+33nobcMopJ3HLLTcxaNAg+vXrx+uvv07Eapx55mkMHfremabfZptPcf75Z/PhDw8DYP/9\nv8YPfnAiF1xwNi+99DJf+9pB3crXeuttwOjR97PffnvyyiuT2WCDjRk48G1sueXH2W+/vRgwYDFa\nW9/J+PHl+nj11dfgoIO+yqmnnjnb9dBZ2o0GDBhAS0sLq6++5vRhw4evx733/ml6Leouu+zBiSd+\nl6uuuoLJk19mjz32nimNAw/8FieccAwDBgykf/8WhgxZqtPlXWmllbn44gtYZZVVu7zBRNL806cZ\nj1gAiIhvUu9RAAAZ5klEQVQfAn/OzEur7//LzOUaxv8DeBhYBrg2M7u81W7cuEnNyegCaMiQwYwb\nN2n2E+otx7JdONWxXC+//DI22WRzWltbOffcM+nfvz+7775Xb2erR9WxXLurp58T2l4zL0DrVq5D\nhgzusJmkmTWAiwON7S1vRkRLZrZ1srkUOAOYCPwmIrbNzGs6S6y1dSAtLf2al9sFzJAhg3s7C2oS\ny3bhVLdyHTp0OQ455KsMHDiQwYMHc+KJJ9LauvCtg7qV64Ki2evdcm1uADgRaFzDfduCv4joA5ya\nmROq79cCawKdBoAvvDC5iVldsNTt6qROLNuFUx3Lda211uMnP1lv+vcpU1jo1kEdy3VB0cz1Xrdy\n7SzYbeZjYO4Etgao+gA+1DBuceBvETGoCgY3AewLKEmSNB80swbwN8DmEXEX0AfYPSK+AAzKzHMj\n4nDgVsodwrdk5nVNzIskSZIqTQsAM3MqsG+7wY80jB8FjEKSJEnzlW8CkSRJqhkDQEmSpJoxAJQk\nSaoZA0BJkqSaMQCUJEmqGQNASZKkmjEAlCRJqhkDQEmSpJoxAJQkSaoZA0BJkqSaMQCUJEmqGQNA\nSZKkmmnp7QxIkhZeS113RVPTf3br7ZuavrSwsgZQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCS\nJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwA\nJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrG\nAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSp\nZlqalXBE9AXOBFYHXgP2zMzHOpjuXOD5zDy0WXmRJEnSDM2sAdwOWCwz1wUOBX7QfoKI2Af4YBPz\nIEmSpHaaVgMIrA/cAJCZ90TEsMaREfFRYB3gHGDV2SXW2jqQlpZ+zcjnAmnIkMG9nQU1iWXbsT4/\n/WnT0p62665NS7uN5do7mr3eLdfeYbk2XzMDwMWBCQ3f34yIlsycEhHLAkcDI4DPdiexF16Y3IQs\nLpiGDBnMuHGTejsbagLLtnc0e51brr2nmevdcu09lmvP6SzYbWYAOBFonGvfzJxSfd4BWBK4DlgG\nGBgRj2TmRU3MjyRJkmhuAHgn8AngsogYDjzUNiIzTwdOB4iI3YBVDf4kSZLmj2YGgL8BNo+Iu4A+\nwO4R8QVgUGae28T5SpIkqQtNCwAzcyqwb7vBj3Qw3UXNyoMkSZJm5YOgJUmSasYAUJIkqWYMACVJ\nkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQ\nkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYM\nACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJq\nxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIk\nqWYMACVJkmrGAFCSJKlmZhsARsRyHQz7v+ZkR5IkSc3W0tmIiFii+nhdRGwE9Km+9weuBN7X3KxJ\nkiSpGToNAIFfAJtXn59rGD4F+E3TciRJkqSm6jQAzMwtASLigszcY/5lSZIkSc3UVQ0gAJm5R9UP\ncClmNAOTmQ909buI6AucCawOvAbsmZmPNYz/NHAoMA34eWaeNldLIEmSpDnSnZtAvgs8Rmn2vbz6\n+3U30t4OWCwz16UEej9oSLMfcCKwGbAusF9ELDnHuZckSdIcm20NIPBFYGhmPjOHaa8P3ACQmfdE\nxLC2EZn5ZkSslplTImIpoB/weleJtbYOpKWl3xxm4a1ryJDBvZ2FBVKfn/60qelP23XXpqYPlm1v\nmB/r3HLtHc1e75Zr77Bcm687AeC4uQj+ABYHJjR8fzMiWjJzCkAV/G0PnAFcC7zcVWIvvDB5LrLw\n1jRkyGDGjZvU29mopWavd8u2d1iuC69mrnfLtfdYrj2ns2C3q8fAfLj6ODoiTgMuAd5oGz+7PoDA\nRKBxrn3bgr+GNK6IiN8CFwG7ABfOJk1JkiTNo65qAC9v9/2TDZ+nASvOJu07gU8Al0XEcOChthER\nsThwNbBFZr4WES8DU7uda0mSJM21rh4D8955TPs3wOYRcRfl7uHdI+ILwKDMPDcifg78ISLeAB4E\nfjaP85MkSVI3zLYPYERc0G7QNGAy8DfgvMx8s6PfZeZUYN92gx9pGH8ucO4c5VaSJEnzbLaPgaHU\n3n2Y0oT7F+D9wPLAlsCpzcuaJEmSmqE7dwGvBnwsMycBRMR5wE3Axyi1gJIkSXoL6U4NYGtb8Fd5\nBXh7Zk5jNs/ukyRJ0oKnOzWA90TEz4DzqW7mAP4UER9nNs/ukyRJ0oKnOzWA+wJPAacAJwGPAwdQ\nHvS8T/OyJkmSpGaYbQ1gZr4CHFb9NfplU3IkSZKkpurqTSB3ZOb6ETGJ8uiXNn2AaZm5eNNzJ0mS\npB7XVQ3gDtX/D8yPjEiSJGn+6LQPYGaOqf7/G1gb2AsYB3y0GiZJkqS3oNneBBIRhwJfBj4LDACO\njohvNztjkiRJao7u3AX8OWBr4OXMfA4YDnyhqbmSJElS03QnAHwjM19r+5KZLwJvNC9LkiRJaqbu\nPAj6qYjYBpgWEYsCBwH2AZQkSXqL6rQGMCIGVx8PAL4JfIjy5o+PA/s3P2uSJElqhq5qAMdHxB3A\ntcB+lLeB9Gv3XmBJkiS9xXQVAL4b2ATYlFLjNw24NiKuBW7LzNfnQ/4kSZLUwzoNADNzHOV1b78E\niIgVgM2A7wErA4M7+60kSZIWXLO9CSQihgKfArYA1gQeAM5tbrYkSZLULF29C/g44JOUmr7rgTOB\n32fmK/Mpb5IkSWqCrmoADwOuAk7MzHvmU34kSZLUZF0FgAF8AjghIlYBfgdcA9zoncCSJElvXZ0+\nBzAzH83MH2bmxsD7gRuBEcDfI+J38yuDkiRJ6lndeRUcwPLAEGAx4HVgStNyJEmSpKbq6iaQrwIb\nARsCz1FuBDkPuDUzX50vuZMkSVKP66oP4FaUoO+QzHxsPuVHkiRJTdbVg6C3np8ZkSRJ0vzR3T6A\nkiRJWkgYAEqSJNWMAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLN\nGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVjAGgJElSzbQ0K+GI\n6AucCawOvAbsmZmPNYz/PPB1YArwELBfZk5tVn4kSZJUNLMGcDtgscxcFzgU+EHbiIgYABwLbJyZ\n6wFvB7ZtYl4kSZJUaWYAuD5wA0Bm3gMMaxj3GvDRzJxcfW8BXm1iXiRJklRpWhMwsDgwoeH7mxHR\nkplTqqbeZwAi4ivAIOB3XSXW2jqQlpZ+TcvsgmbIkMG9nYVamh/r3bKd/yzXhVez17vl2jss1+Zr\nZgA4EWhcw30zc0rbl6qP4EnAKsCnM3NaV4m98MLkrkYvVIYMGcy4cZN6Oxu11Oz1btn2Dst14dXM\n9W659h7Lted0Fuw2swn4TmBrgIgYTrnRo9E5wGLAdg1NwZIkSWqyZtYA/gbYPCLuAvoAu0fEFyjN\nvfcBXwL+CPw+IgBOy8zfNDE/kiRJookBYNXPb992gx9p+OwzCCVJknqBQZgkSVLNGABKkiTVjAGg\nJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0Y\nAEqSJNVMS29noFmWuu6KJs9htyanv+B4duuJvZ0FSZLUg6wBlCRJqhkDQEmSpJoxAJQkSaoZA0BJ\nkqSaMQCUJEmqGQNASZKkmjEAlCRJqhkDQEmSpJoxAJQkSaoZA0BJkqSaMQCUJEmqGQNASZKkmjEA\nlCRJqhkDQEmSpJoxAJQkSaoZA0BJkqSaMQCUJEmqmZbezoC0IFnqusV7OwvzzbNbT+ztLEiSeok1\ngJIkSTVjAChJklQzBoCSJEk1YwAoSZJUMwaAkiRJNWMAKEmSVDMGgJIkSTVjAChJklQzBoCSJEk1\nYwAoSZJUMwaAkiRJNWMAKEmSVDMGgJIkSTXT0qyEI6IvcCawOvAasGdmPtZumoHA74AvZeYjzcqL\nJEmSZmhmDeB2wGKZuS5wKPCDxpERMQz4A7BSE/MgSZKkdpoZAK4P3ACQmfcAw9qNXxQYAVjzJ0mS\nNB81rQkYWByY0PD9zYhoycwpAJl5J0BEdCux1taBtLT06/FMavaGDBnc21lQE9SpXJe6bvHezsJ8\nM23Xab2dhfmq2dtxnfaTBYnl2nzNDAAnAo1ruG9b8Dc3Xnhh8rznSHNl3LhJvZ0FNYHlunCqW7k2\nc3mHDBlcu/W5oLBce05nwW4zm4DvBLYGiIjhwENNnJckSZK6qZk1gL8BNo+Iu4A+wO4R8QVgUGae\n28T5SpIkqQtNCwAzcyqwb7vBs9zwkZkbNSsPkiRJmpUPgpYkSaoZA0BJkqSaMQCUJEmqGQNASZKk\nmjEAlCRJqhkDQEmSpJoxAJQkSaoZA0BJkqSaMQCUJEmqGQNASZKkmjEAlCRJqhkDQEmSpJpp6e0M\nSJI0t5a6bvHezsJ88+zWE3s7C/ON5dp81gBKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWM\nAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVjAGgJElS\nzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqS\nJNWMAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVTEuz\nEo6IvsCZwOrAa8CemflYw/hPAEcBU4ALMvMnzcqLJEmSZmhmDeB2wGKZuS5wKPCDthER0R84BdgC\n2BDYOyKWbmJeJEmSVGlmALg+cANAZt4DDGsYtxrwWGa+kJmvA3cAGzQxL5IkSar0mTZtWlMSjojz\ngMsz8/rq+3+AFTNzSkSsD3wlM3esxh0D/Cczz2tKZiRJkjRdM2sAJwKDG+eVmVM6GTcYeLGJeZEk\nSVKlmQHgncDWABExHHioYdw/gPdFxBIRsQil+ffuJuZFkiRJlWY2AbfdBfwhoA+wO/BhYFBmnttw\nF3Bfyl3AZzQlI5IkSZpJ0wJASZIkLZh8ELQkSVLNGABKkiTVjAGgJElSzRgASvMoItaIiKOqzyMi\n4l1dTDsyIvadx/kdGhEfmZc01D09UbYR8WRELNbMfNZRRJwYEbv1UFojIuJdEbFMRJzZE2lqVhGx\nW0Sc2Nv56C0RcVtErNrb+WjTtHcBS3WRmX8B/lJ9/RqwL/B0E+dX2wPo/Da/y1a95mvAvpn5CLBf\nb2dGmh8MAHtBRCwOnAe8A3gXcAZwf/V/EvAs8Gpm7hYRXwG+AEwDLs3M03sn1wu3iBgAXAisACwC\nfBPYn4YyysyzIuI24BFgVcrjjXasPu8LjALWAC6u3nbzHcorEN8J/DUzd+9i/tsCxwATgBeAB4Hv\nAucA7wGWBa7KzCMj4iLgUmAZyrM2BwIrAd/LzIt6ZIUsRHq7bBvyMRS4gHLcnQZ8NTP/GhEXAisD\nA4DTMnNURBwHbFxNe3lmfq8HVsVbSvXO+LOB91Faq46krO8jgXGUsnwkIjaiBG+fq343NjOXiYj3\nUY6ziwCTgc8BSwM/BPoBSwJfBlqZUbY7Axdn5vCI2Bw4FngVeA7Yo5ruW8DrwIqUY/Jx7fK9UUfT\ntO23mXlDRGwFfK46xj8G3AWsAtwCvB34CJCZ+cUeWp0LkuERcRMwBDgLeIKO13NHZXoRZRt4J/Ap\n4JeUbWOxavq/NM6oo306M8dGxAnAxyjbwQ8z81fVtM8CSwBbZuabVRpfA/pn5skRcTbwemZ+NSKO\nqPL+EHB6lf5zwB6ZOaGjeTTk6xOU49CIzOy1l2DYBNw7VqYcCLYAtqBsCGcDu2XmJsC/ACLi/ygn\nofUpG9J2ERG9k+WF3r7Ak5m5LuVEsRazllGbuzJzI8rB5/C2gZl5LaW2aBfKAemFzNycEigMj4jl\nOppxRPSjHEA+npkbA69Uo94D3JOZW1JOCB01Hb89M7cFPgkcOjcLXgO9VrbtnEwJ8Dag1DidHxGD\nKQ/C3x7YCnizmnYnyoXfx6jvW5L2BMZX6+tTlAvkHwKbAVtSgrqunAycUJX7acCawPuBAzNzU+B7\nwO7tyvZ1gIjoA5wLbJ+ZGwK3UwJPKBcSnwaGA4d0Mu/uTNNmaJX2x4CvUp6fuw6wfkS8Yza/fSt6\ng1J+I4Bv0Pl67szvM/OjlGPic8DHKRd0b+tk+pn26Yj4OPDezFyfcpF1RMN6/kVmbtYW/FV+Q9k3\nAYJSNlTDrgF+AuxfzeM64JDZzGN74ABg294M/sAawN7yDPD1iNie8lq8/sC7MvPhavwfKSeqD1AO\nJLdUw1spV8M5f7NbCwFcD5CZj0bEL4ET2pVRm99X/++inJg68gqwVET8AngJGNSYRkQcAHym+roT\nMDEzn6m+/5FSu/c8sHZEbFzlYdEO5tN2xfsUJTDRrHq7bNusBvyhysdfIuI9mTkpIr5OOQkuDvys\n4XcnUraD6+d4iRcOHwQ+FhFtJ9xFgKmZ+RxARNzVye/6VP+D6g1TmXlV9Zv1gW9HxCuUV5BO7CSN\nJSn75P+q738Ajqec8B+qXms6pUqHiLiGsh08BFze0TSd5BHgucz8T5XOy5n59+rzBBbOffqBzJwW\nEWOB5YHHOlnPjRrXV9v573rK+fBKSlB5bER8hhJcARxY/W+/T/8XWKuq8YOy7w5tTDsijqVUvABs\nCgys+l3/A1g+ItYGJmTmxIhYDTizqpvpDzxK2XY7m8emlH39jU7X0HxiDWDvOBC4OzN3Bn5F2bif\nqmr8oFw1QtkYHwY2rq4uLqI0Darn/QNYGyAiVgR+xKxl1Gat6v96lPJpNJWyX30ceE9mfp5SkzSg\nMY3M/HFmblSV6xhgcEQMqUa3lf9uwIuZuRPwA8pBqDEfUJoS1bVeK9uGE1tbPj5W5WMNYGxELAus\nlZkjgG2AkyJiUWAH4POU2oPdImKFeVwHb0WPUGpkNqKs818CNOwna1f/X6V0kaBaT0tUwxvLfaeq\nO83pwNGZuSslWGsrt7aybTMeWLwqH4ANgX9Wn2fZ5zJz26q8v9LZNI35pLwViy6mXZg1Lm9n67mz\nMoVSVgAbAWOqmvxjgeMz89cN+9791XTt9+lHgFur7WoT4DKqVre2tDPzyIZ03gSuBU4Cbqr+fkSp\nGYRynt6lSu8QSvDa1Tz2B26kdPnpVdYA9o6rgR9FxOcozTtTKFctF0TES5RmiP9V/YNuAe6oTgp/\nBv7XWaKaJ+dQ1v/tlD4bVwL7N5ZRVQZQTsjfBF4Gvki52mtzF3AxpUn22xHxB8oB73FKf7NZZObU\nqtbouuqqvy/lKvIW4JKIWBd4rRrW6V2o6lSvlW07BwE/iYiDKDUCXwLGAstUtVlvAidn5msR8Txw\nD6W28SbgP3O99G9d51DW1+2UGpMzKcfJG6v101aDch/wYkT8iRL0PVENPxg4JyKOpDQX70xZ77+K\niBcoNUFLVtO2le3eAFUN1V7AFRExldIvdzdKq8zcOo+yHe7EjGCy7qYBHa3nF+m4TBv9Fbg0Ir5M\niWU6C6ja79PPAxtFxB8ptba/qWriu8rnFcBIyr6/LKUrwrbVuC9T+o+29e39EuVY3dU8jgH+HBHX\nZOYdXc24mXwV3AIiIvYHLsvMcVX18+uZ2etXCJpZVaXfdrdgT6Z7GKWj8GsR8TPgpsy8uCfnoa41\nq2wl9Q736a5ZA7jgeAa4qaoBnADs2sv50fw1CbgnIiYDT1I1d0mS1AzWAEqSJNWMN4FIkiTVjAGg\nJElSzRgASpIk1Yw3gUiqnYiYBvyNGW/eALgvM/ecy/TWBr6UmR29rUWSFjgGgJLqauPMHN9Dab0f\neHcPpSVJTWcAKEkNqlc7nUZ54Xw/4PTMvCAi+gKnUN7UMpjyFok9KQ9pPgZ4e0RcCPwU+HFmfqBK\nb6O27xExEliX8jDZBzNz5+ql8p+mdMl5EtgvM5+eT4srqaYMACXV1a0R0dgEvAXlLQG/Br6YmQ9E\nxNuBuyPi75SA713AutXbWw4FDs3MT0TEUcBnMnP3KuDrygrABzJzSkTsQnnbyEeq73tT3hixdY8u\nqSS1YwAoqa5maQKu3se9EuWVXW2DBwBrZuZZ1WvF9omIlSjvIp00F/O9JzOnVJ+3BT4C3FfNrx8w\ncC7SlKQ5YgAoSTP0A17MzDXaBkTE0sCEiNiG0jT8A8r7hB+hvF+2vWmU2sI2i7Qb/1K7+X0vM8+q\n5rUo0DqvCyFJs+NjYCRphgRejYidASLiPZS7hdcCNgeuroK1e4HtKAEcwBSgf/V5HLB8RCwVEX2q\n6TpzI7BnRCxefT8GGNWDyyNJHTIAlKRKZr4OfIoSlD0I3AR8OzPvBM4GNqyG3w38C3hvdXPI3cCq\nEfGbzPw7cA5wH3APMKaLWZ4HXEN5D/TDwIeA3ZqycJLUwHcBS5Ik1Yw1gJIkSTVjAChJklQzBoCS\nJEk1YwAoSZJUMwaAkiRJNWMAKEmSVDMGgJIkSTXz/1Ik4EFeBBSHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Import a supervised learning model that has 'feature_importances_'\n", + "\n", + "clfAda = AdaBoostClassifier(random_state=5, n_estimators=30)\n", + "\n", + "# TODO: Train the supervised model on the training set \n", + "model = clfAda.fit(X_train, y_train)\n", + "\n", + "# TODO: Extract the feature importances\n", + "importances = model.feature_importances_\n", + "\n", + "# best fit features\n", + "best_clf.fit(X_train, y_train)\n", + "#importances = best_clf.feature_importances_\n", + "\n", + "# interesting - my best fit has a different feature order - it includes marital status! A hidden feature.\n", + "# other ways of feature selection: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection\n", + "\n", + "\n", + "#print(importances.shape)\n", + "# importances show the contribution of each feature to the model.\n", + "# There are 103 features, as we did one hot encoding on the enums.\n", + "\n", + "# Plot\n", + "vs.feature_plot(importances, X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7 - Extracting Feature Importance\n", + "\n", + "Observe the visualization created above which displays the five most relevant features for predicting if an individual makes at most or above \\$50,000. \n", + "_How do these five features compare to the five features you discussed in **Question 6**? If you were close to the same answer, how does this visualization confirm your thoughts? If you were not close, why do you think these features are more relevant?_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** It seems that race is not even listed, and age is the most prominent feature. However, it does seem right that capital gain and education are both fairly important as expected. Interesting is that Age dominates compared to capital gain, but i suppose this makes sense as an income as low as 50k can be achieved irrespective of capital gain, education and other predictors if you live long enough. I would suspect capital gain and loss taking over at higher incomes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Feature Selection\n", + "How does a model perform if we only use a subset of all the available features in the data? With less features required to train, the expectation is that training and prediction time is much lower — at the cost of performance metrics. From the visualization above, we see that the top five most important features contribute more than half of the importance of **all** features present in the data. This hints that we can attempt to *reduce the feature space* and simplify the information required for the model to learn. The code cell below will use the same optimized model you found earlier, and train it on the same training set *with only the top five important features*. " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Final Model trained on full data\n", + "------\n", + "Accuracy on testing data: 0.8651\n", + "F-score on testing data: 0.7448\n", + "\n", + "Final Model trained on reduced data\n", + "------\n", + "Accuracy on testing data: 0.8420\n", + "F-score on testing data: 0.7020\n" + ] + } + ], + "source": [ + "# Import functionality for cloning a model\n", + "from sklearn.base import clone\n", + "\n", + "\"\"\"\n", + " Reduce the feature space - could also use PCA for this,\n", + " in order to reduce dimensionality while maintaining other features' information\n", + "\"\"\"\n", + "X_train_reduced = X_train[X_train.columns.values[(np.argsort(importances)[::-1])[:5]]]\n", + "X_test_reduced = X_test[X_test.columns.values[(np.argsort(importances)[::-1])[:5]]]\n", + "\n", + "# Train on the \"best\" model found from grid search earlier\n", + "clf = (clone(best_clf)).fit(X_train_reduced, y_train)\n", + "\n", + "# Make new predictions\n", + "reduced_predictions = clf.predict(X_test_reduced)\n", + "\n", + "# Report scores from the final model using both versions of data\n", + "print \"Final Model trained on full data\\n------\"\n", + "print \"Accuracy on testing data: {:.4f}\".format(accuracy_score(y_test, best_predictions))\n", + "print \"F-score on testing data: {:.4f}\".format(fbeta_score(y_test, best_predictions, beta = 0.5))\n", + "print \"\\nFinal Model trained on reduced data\\n------\"\n", + "print \"Accuracy on testing data: {:.4f}\".format(accuracy_score(y_test, reduced_predictions))\n", + "print \"F-score on testing data: {:.4f}\".format(fbeta_score(y_test, reduced_predictions, beta = 0.5))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8 - Effects of Feature Selection\n", + "*How does the final model's F-score and accuracy score on the reduced data using only five features compare to those same scores when all features are used?* \n", + "*If training time was a factor, would you consider using the reduced data as your training set?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The final model's accuracy is 0.8433 and its F score is 0.7032. This is only a little bit lower than the metrics for the model trained on the full data. If training time was a factor i would consider reducing features, as the accuracy and f score are almost unchanged. It would depend how expensive it would be to get a few classifications wrong, in terms of letters sent out." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/git commit and push with dummy message.bat b/git commit and push with dummy message.bat new file mode 100644 index 0000000..03ef02d --- /dev/null +++ b/git commit and push with dummy message.bat @@ -0,0 +1,2 @@ +git commit -am "latest commit dummy message" && git push +PAUSE \ No newline at end of file diff --git a/git pull.bat b/git pull.bat new file mode 100644 index 0000000..d258290 --- /dev/null +++ b/git pull.bat @@ -0,0 +1,2 @@ +git pull +PAUSE \ No newline at end of file diff --git a/git rebase fetch.bat b/git rebase fetch.bat new file mode 100644 index 0000000..7e6b912 --- /dev/null +++ b/git rebase fetch.bat @@ -0,0 +1,3 @@ +git fetch --all +git reset --hard origin/master +PAUSE \ No newline at end of file diff --git a/smartcab/agent.py b/smartcab/agent.py new file mode 100644 index 0000000..e6db273 --- /dev/null +++ b/smartcab/agent.py @@ -0,0 +1,406 @@ +import random +import math +from environment import Agent, Environment +from planner import RoutePlanner +from simulator import Simulator +import numpy as np + +class LearningAgent(Agent): + """ An agent that learns to drive in the Smartcab world. + This is the object you will be modifying. """ + + def __init__(self, env, learning=False, epsilon=1.0, alpha=0.5, epsilon_scalar=0.01): + super(LearningAgent, self).__init__(env) # Set the agent in the evironment + self.planner = RoutePlanner(self.env, self) # Create a route planner + self.valid_actions = self.env.valid_actions # The set of valid actions + + # Set parameters of the learning agent + self.learning = learning # Whether the agent is expected to learn + self.Q = dict() # Create a Q-table which will be a dictionary of tuples + + """ + Q has this structure: + + { 'state-1': { + 'action-1' : Qvalue-1, + 'action-2' : Qvalue-2, + ... + }, + 'state-2': { + 'action-1' : Qvalue-1, + ... + }, + ... + } + + as the agent encounters states, it will take various actions and record their q values here. + the q value is the rewards received at this state, for taking this action. + + + + """ + + self.epsilon = epsilon # Random exploration factor + """ + + this factor should decay to 0 between trials, as the number of trials grows. This is because the agent is expected to learn, + and do less exploring as it matures. + + """ + + self.alpha = alpha # Learning factor + + ########### + ## TO DO ## + ########### + # Set any additional class parameters as needed + + self.nb_trials = 1.0 + self.epsilon_scalar = epsilon_scalar + + print(self) + + + def reset(self, destination=None, testing=False): + """ The reset function is called at the beginning of each trial. + 'testing' is set to True if testing trials are being used + once training trials have completed. """ + + # Select the destination as the new location to route to + self.planner.route_to(destination) + + ########### + ## TO DO ## + ########### + + + + # Update epsilon using a decay function of your choice + #self.epsilon = self.epsilon - 0.01 # reduce epsilon by 0.05 after each trial + + # math.pow(self.nb_trials, 2) # decays too fast + #self.epsilon = math.pow(self.alpha, self.nb_trials) # get to 30% + #self.epsilon -= 0.05 # get to 10% but bad rating, doesnt get there on time + #self.epsilon = math.exp(-self.alpha*self.nb_trials) # goes to below 10%, smoother decay + #self.epsilon = math.cos(self.alpha*self.nb_trials) # goes to 25% + #self.epsilon = math.exp(-self.epsilon_scalar*self.nb_trials) # make epsilon independent of alpha + # negative of gompertz function decay + g_a = -1.0 # flips to negative, converges to 0 + g_b = 40.0 # controls x direction displacement, higher goes left + g_c = 4.0 # controls slops of transition between 1 and 0, higher is steeper + g_val = self.nb_trials / 700 + self.epsilon = (g_a * math.exp(-g_b * math.exp(-g_c * g_val))) + 1 + + # like this you exponentially slower decay, so you have enough time to learn from q after exploring + # but alpha decrease should only affect how much q is updated with new info, not how much epsilon decays + + if self.nb_trials % 300 == 0: + #self.alpha -= (self.alpha * 0.50) + pass + # problem is, makeing alpha smaller increases epsilon again, so it will wobble + + + # Update additional class parameters as needed + self.nb_trials +=1.0 + + + + # If 'testing' is True, set epsilon and alpha to 0 + if testing: + self.epsilon = 0.0 + self.alpha = 0.0 + + return None + + + + # figure out what state i am currently in + def build_state(self): + """ The build_state function is called when the agent requests data from the + environment. The next waypoint, the intersection inputs, and the deadline + are all features available to the agent. """ + + # Collect data about the environment + waypoint = self.planner.next_waypoint() # The next waypoint, or direction the smartcab should drive to get to the destination at some point + # this is relative to the current heading of the smartcab + + inputs = self.env.sense(self) # Visual input - intersection light and traffic + + """ + inputs has: + light + left: where vehicle to left of smartcab wants to go + right: where vehicle to left of smartcab wants to go + oncoming: where vehicle to left of smartcab wants to go + + these values are None if there are no vehicle in those positions of the intersection + + """ + + deadline = self.env.get_deadline(self) # Remaining deadline in units of remaining number of actions until out of time + + ########### + ## TO DO ## + ########### + # Set 'state' as a tuple of relevant data for the agent + + # i think we need light and oncoming for safety, and we need deadline, waypoint for efficiency. + + #state = (waypoint, inputs["light"], inputs["oncoming"], deadline, inputs["left"], inputs["right"]) + # forward from left could make problems if you run over a red light specifically then. What about crashes when they go left? + + # a priori knowledge approach: not reinforcement learning. Left=forward because in U.S you can turn right on red if no traffic. + state = (waypoint, inputs["light"], inputs["oncoming"], inputs["left"]=="forward") + + # reinforcement learning: use everything and let it figure out whats useful. Deadline can lead to recklessness. + #state = (waypoint, inputs["light"], inputs["oncoming"], inputs["left"], inputs["right"], deadline) + + return state + + + def get_maxQ(self, state): + """ The get_max_Q function is called when the agent is asked to find the + maximum Q-value of all actions based on the 'state' the smartcab is in. """ + + ########### + ## TO DO ## + ########### + # Calculate the maximum Q-value of all actions for a given state + + # break ties between max q if they are the same values. Else you might always prefer a certain action, and will keep picking it, although a different one is better + # say the first action reward is net 0, but the second action would start accumulating positive Q thereafter. If you never pick it, you have a problem. + # implement this in choose_action + maxQ = max(self.Q[state].values()) + + return maxQ + + + def createQ(self, state): + """ The createQ function is called when a state is generated by the agent. """ + + ########### + ## TO DO ## + ########### + # When learning, check if the 'state' is not in the Q-table + if self.learning: # need to remember Qs when learning... + if state not in self.Q: + self.Q[state] = {} + for action in self.valid_actions: + self.Q[state][action] = 0.0 + + # If it is not, create a new dictionary for that state + # Then, for each action available, set the initial Q-value to 0.0 + + return + + + def choose_action(self, state): + """ The choose_action function is called when the agent is asked to choose + which action to take, based on the 'state' the smartcab is in. """ + + # Set the agent state and default action + self.state = state + self.next_waypoint = self.planner.next_waypoint() # ask planner for next waypoint + action = None + + ########### + ## TO DO ## + ########### + # When not learning, choose a random action + if not self.learning: + action = random.choice(self.valid_actions) + + # When learning, choose a random action with 'epsilon' probability + # Otherwise, choose an action with the highest Q-value for the current state + else: + + # there is also a random.random() function that generates uniformly random numbers between 0 and 1. Much easier than below ;) + + outcomes =['random', 'highest'] + positive_epsilon = abs(self.epsilon) # if epsilon is 0 its -0.0000 + prob = [positive_epsilon, 1-positive_epsilon] + + if np.random.choice(outcomes, p= prob) == "random": + + action = random.choice(self.valid_actions) + else: + + # pick best action as dictated by Q, if its a tie pick a random action + maxQ = max(self.Q[state].values()) + maxQs = [key for key, m in self.Q[state].items() if m == maxQ] + action_with_highest_q_value_in_current_state = random.choice(maxQs) + action = action_with_highest_q_value_in_current_state + print(action) + + # you will check this action against reality next, and get a reward for it. + # later this reward will influence your Q learning for this round. + + + return action + + + def learn(self, state, action, reward): + """ The learn function is called after the agent completes an action and + receives an award. This function does not consider future rewards + when conducting learning. """ + + """ + we are given the type . At this point, the agent has already chosen an action, and received a reward for it + + the content of state will be the state the agent was in before chosing this action (old state). + + we do not have access to the new state. + + Q for this state has not been updated yet with the reward of the current action. + + """ + + ########### + ## TO DO ## + ########### + # When learning, implement the value iteration update rule + # Use only the learning rate 'alpha' (do not use the discount factor 'gamma') + """ + the q function is : + Q(s, a) = R(state) + gamma * sum_s_prime[ T(s,a,s') * max_a_prime Q(s',a') ] + gamma is the discount factor of future rewards, T the transition probability for each state,action,next state tuple. + max a prime means chose best action after getting to s' to maximise Q in state s prime. + notice that we are leaving state s via the specific action a. + + q needs to be updated by the current learning rate alpha + + alpha decreases to 0 over time, so that the learned value converges to the expected (average) value + also, things you learn earlier matter more than those you learn later + + the idea is to move to the expected q value over time, but problem is q is also changing over time. + but it still works (proven somewhere) + + + """ + + current_q = self.Q[state][action] + + reward_for_current_action = reward # reward we got at this state for chosing action + + gamma = 0 # complete discounting here, we dont use the max q at this state, only the current reward + + """ + this is the best Q (future rewards) you can get based on current knowledge of Q, if you are in the current state + there is an associated action to this max Q, which is the action you took in this step (so its already done). + + """ + max_q_at_this_state = self.get_maxQ(state) # should this be the max q of the next state s prime? + """ + what i do now is just pick the best action at the current state and add its q to current q. I am also adding it again through reward, but this is the real world reward, wheras Q is the learned reward. + so i keep updating Q with information from real reward, as well as historical rewards that accumulate in the Q dictionary for this state,action pair + + we give a weight of 1-alpha to current_q, so that we are not yet completely certain, but as alpha is small it gets a fairly large weight. + + """ + + updated_q = ((1.0 - self.alpha) * current_q) + (self.alpha * (reward_for_current_action + gamma * max_q_at_this_state)) + + """ + so somehow the max_q_at this state tells me what action is best to do next based on future rewards + but as we dont use it, the current reward is what i learn + the action chosen was done using max Q, so max Q is also current q, so dont have to add it again in function. + maybe max Q could somehow help with the future? + + """ + + # now we update the q value for this state,action pair with the Q from the best action + self.Q[state][action] = updated_q + + return + + + def update(self): + """ The update function is called when a time step is completed in the + environment for a given trial. This function will build the agent + state, choose an action, receive a reward, and learn if enabled. """ + + state = self.build_state() # Get current state + self.createQ(state) # Create 'state' in Q-table + action = self.choose_action(state) # Choose an action + reward = self.env.act(self, action) # Receive a reward + + if self.learning: + self.learn(state, action, reward) # Q-learn + + return + + +def run(): + """ Driving function for running the simulation. + Press ESC to close the simulation, or [SPACE] to pause the simulation. """ + + ############## + # Create the environment + # Flags: + # verbose - set to True to display additional output from the simulation + # num_dummies - discrete number of dummy agents in the environment, default is 100 + # grid_size - discrete number of intersections (columns, rows), default is (8, 6) + # reward_late - gradient of late punishment, not needed if deadline not part of state variables + env = Environment(verbose=False) + + ############## + # Create the driving agent + # Flags: + # learning - set to True to force the driving agent to use Q-learning + # * epsilon - continuous value for the exploration factor, default is 1 + # * alpha - continuous value for the learning rate, default is 0.5 + # * epsilon_scalar - multiplier in epsilon decay function, controls speed of decay + agent = env.create_agent(LearningAgent, learning=True, epsilon=1, alpha=0.01, epsilon_scalar=0.001) + # nb of trials before testing is controled by epsilon decay rate + """" + epsilon_scalar = 0.0005 gives 10k trials, with A+ rating for safety and reliability + 0.001 gives about 5000 trials + + it seems with epsilon scalar 0.05, and only 100 trials, but removing deadline from state, you get A rating! + this is because the feature space is much smaller, so all states can be visited fairly quickly + + + """ + + ############## + # Follow the driving agent + # Flags: + # enforce_deadline - set to True to enforce a deadline metric + env.set_primary_agent(agent, enforce_deadline=True) + + ############## + # Create the simulation + # Flags: + # update_delay - continuous time (in seconds) between actions, default is 2.0 seconds, smallest 1 millisecond + # display - set to False to disable the GUI if PyGame is enabled + # log_metrics - set to True to log trial and simulation results to /logs + # optimized - set to True to change the default log file name + sim = Simulator(env, update_delay=0.001, log_metrics=True, optimized=True, display=False) + + ############## + # Run the simulator + # Flags: + # tolerance - epsilon tolerance before beginning testing, default is 0.05 + # n_test - discrete number of testing trials to perform, default is 0 + sim.run(n_test=10, tolerance=0.01) + + # reliability gets worse as epsilon goes below alpha + # key is to increase nb of trials, this improves reliability a lot. But need to find optimal stopping point + + +if __name__ == '__main__': + run() + + # you need to run this from a command prompt inside the smartcab folder. From there call: + # python smartcab/agent.py + # just set up the working directory to parent in config for pycharm, then it works + + import sys, os + #sys.path.append("D:/Python Projects/machine_learning/udacity_ml_projects/machine-learning/projects/smartcab/") + root_dir = os.path.dirname(os.path.dirname(__file__)) + sys.path.append(root_dir) + + import visuals as vs + #vs.plot_trials("sim_improved-learning.csv") + vs.plot_trials("sim_improved-learning.csv") + diff --git a/smartcab/logs/sim_default-learning.csv b/smartcab/logs/sim_default-learning.csv new file mode 100644 index 0000000..8199437 --- /dev/null +++ b/smartcab/logs/sim_default-learning.csv @@ -0,0 +1,31 @@ +trial,testing,parameters,initial_deadline,final_deadline,net_reward,actions,success +1,False,"{'a': 0.5, 'e': 0.95}",20,0,-99.77425496299104,"{0: 15, 1: 0, 2: 2, 3: 1, 4: 2}",0 +2,False,"{'a': 0.5, 'e': 0.8999999999999999}",25,0,-184.17438505776124,"{0: 14, 1: 2, 2: 5, 3: 1, 4: 3}",0 +3,False,"{'a': 0.5, 'e': 0.8499999999999999}",25,0,-93.59244660561683,"{0: 13, 1: 4, 2: 7, 3: 1, 4: 0}",0 +4,False,"{'a': 0.5, 'e': 0.7999999999999998}",20,0,-86.20542885364848,"{0: 12, 1: 3, 2: 3, 3: 1, 4: 1}",0 +5,False,"{'a': 0.5, 'e': 0.7499999999999998}",30,0,-125.81904908326409,"{0: 23, 1: 0, 2: 3, 3: 2, 4: 2}",0 +6,False,"{'a': 0.5, 'e': 0.6999999999999997}",20,0,-169.7754900391223,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 4}",0 +7,False,"{'a': 0.5, 'e': 0.6499999999999997}",25,0,-101.96242417600288,"{0: 14, 1: 3, 2: 5, 3: 3, 4: 0}",0 +8,False,"{'a': 0.5, 'e': 0.5999999999999996}",20,0,-51.669021382597236,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 1}",0 +9,False,"{'a': 0.5, 'e': 0.5499999999999996}",30,0,-114.6857068012144,"{0: 24, 1: 2, 2: 1, 3: 0, 4: 3}",1 +10,False,"{'a': 0.5, 'e': 0.4999999999999996}",25,0,8.523929218718036,"{0: 22, 1: 2, 2: 1, 3: 0, 4: 0}",0 +11,False,"{'a': 0.5, 'e': 0.4499999999999996}",20,6,2.6372405042559306,"{0: 11, 1: 2, 2: 1, 3: 0, 4: 0}",1 +12,False,"{'a': 0.5, 'e': 0.39999999999999963}",20,12,3.885614862099901,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +13,False,"{'a': 0.5, 'e': 0.34999999999999964}",20,6,-82.49861561860719,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 2}",1 +14,False,"{'a': 0.5, 'e': 0.29999999999999966}",25,5,-30.325002712884658,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",1 +15,False,"{'a': 0.5, 'e': 0.24999999999999967}",20,4,-7.753947988884446,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 0}",1 +16,False,"{'a': 0.5, 'e': 0.19999999999999968}",20,0,17.135866450902693,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +17,False,"{'a': 0.5, 'e': 0.1499999999999997}",35,5,-21.04164919169808,"{0: 27, 1: 0, 2: 2, 3: 0, 4: 1}",1 +18,False,"{'a': 0.5, 'e': 0.09999999999999969}",25,1,15.181717259316402,"{0: 23, 1: 0, 2: 0, 3: 1, 4: 0}",1 +19,False,"{'a': 0.5, 'e': 0.049999999999999684}",35,15,33.86188035362803,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +20,False,"{'a': 0.5, 'e': -3.191891195797325e-16}",20,15,10.035833471014122,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1,True,"{'a': 0.0, 'e': 0.0}",30,20,19.121080280295335,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2,True,"{'a': 0.0, 'e': 0.0}",25,13,-23.739057300270957,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3,True,"{'a': 0.0, 'e': 0.0}",25,20,9.768667094901527,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4,True,"{'a': 0.0, 'e': 0.0}",20,4,23.904146087827254,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +5,True,"{'a': 0.0, 'e': 0.0}",20,16,6.958688575491094,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +6,True,"{'a': 0.0, 'e': 0.0}",35,3,47.84290493713636,"{0: 32, 1: 0, 2: 0, 3: 0, 4: 0}",1 +7,True,"{'a': 0.0, 'e': 0.0}",20,8,19.40669845167018,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +8,True,"{'a': 0.0, 'e': 0.0}",25,16,14.768318913000536,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +9,True,"{'a': 0.0, 'e': 0.0}",25,1,32.27705221109443,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +10,True,"{'a': 0.0, 'e': 0.0}",20,0,29.9382788888541,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 diff --git a/smartcab/logs/sim_default-learning.txt b/smartcab/logs/sim_default-learning.txt new file mode 100644 index 0000000..b719c7f --- /dev/null +++ b/smartcab/logs/sim_default-learning.txt @@ -0,0 +1,256 @@ +/----------------------------------------- +| State-action rewards from Q-Learning +\----------------------------------------- + +('right', 'red', 'left', True) + -- forward : -19.59 + -- right : -10.38 + -- None : 1.08 + -- left : -30.48 + +('right', 'green', None, False) + -- forward : 0.55 + -- right : 1.38 + -- None : -4.03 + -- left : 0.40 + +('forward', 'green', 'left', False) + -- forward : 0.00 + -- right : 0.97 + -- None : 0.00 + -- left : 0.31 + +('forward', 'green', None, False) + -- forward : 1.62 + -- right : 0.89 + -- None : -4.16 + -- left : -0.14 + +('left', 'red', 'right', False) + -- forward : -14.46 + -- right : 0.68 + -- None : 1.92 + -- left : 0.00 + +('forward', 'green', 'forward', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.00 + -- left : 0.00 + +('left', 'green', 'left', True) + -- forward : 0.00 + -- right : 0.65 + -- None : 0.00 + -- left : 0.00 + +('left', 'green', 'forward', False) + -- forward : 0.56 + -- right : 0.00 + -- None : -2.48 + -- left : 0.00 + +('right', 'red', None, False) + -- forward : -32.47 + -- right : 2.08 + -- None : 1.80 + -- left : -9.65 + +('left', 'green', None, True) + -- forward : -0.20 + -- right : 1.36 + -- None : -2.96 + -- left : 0.00 + +('right', 'green', 'forward', False) + -- forward : 0.00 + -- right : 1.97 + -- None : -2.90 + -- left : -15.16 + +('right', 'red', 'left', False) + -- forward : -4.83 + -- right : 1.51 + -- None : 0.00 + -- left : 0.00 + +('forward', 'red', None, False) + -- forward : -9.68 + -- right : 0.76 + -- None : 1.66 + -- left : -7.36 + +('forward', 'green', 'left', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.00 + -- left : 0.00 + +('left', 'green', 'right', False) + -- forward : 1.26 + -- right : 0.00 + -- None : 0.00 + -- left : -9.83 + +('forward', 'red', 'forward', True) + -- forward : -19.64 + -- right : 0.00 + -- None : 0.00 + -- left : 0.00 + +('forward', 'red', 'left', False) + -- forward : -7.81 + -- right : 0.87 + -- None : 0.57 + -- left : -7.86 + +('forward', 'green', None, True) + -- forward : 2.19 + -- right : 0.00 + -- None : -3.58 + -- left : 0.89 + +('left', 'red', 'forward', False) + -- forward : -7.37 + -- right : 0.96 + -- None : 1.08 + -- left : -5.19 + +('forward', 'green', 'forward', False) + -- forward : 1.93 + -- right : 0.41 + -- None : -2.49 + -- left : -9.81 + +('left', 'red', None, True) + -- forward : -20.39 + -- right : -9.60 + -- None : 1.66 + -- left : -30.13 + +('left', 'green', 'left', False) + -- forward : 0.55 + -- right : 0.00 + -- None : 0.41 + -- left : 1.53 + +('left', 'green', 'forward', True) + -- forward : 0.00 + -- right : 0.46 + -- None : -2.06 + -- left : -10.49 + +('right', 'red', 'forward', False) + -- forward : 0.00 + -- right : 1.46 + -- None : 0.00 + -- left : 0.00 + +('forward', 'red', 'right', False) + -- forward : 0.00 + -- right : 0.93 + -- None : 0.00 + -- left : 0.00 + +('left', 'red', 'left', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.97 + -- left : 0.00 + +('left', 'green', None, False) + -- forward : 0.88 + -- right : 0.40 + -- None : -3.57 + -- left : 2.17 + +('right', 'green', 'left', True) + -- forward : 0.00 + -- right : 0.61 + -- None : 0.00 + -- left : 0.00 + +('right', 'green', 'forward', True) + -- forward : 0.00 + -- right : 1.08 + -- None : -2.13 + -- left : 0.00 + +('right', 'green', 'right', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.00 + -- left : 0.00 + +('forward', 'red', None, True) + -- forward : -19.94 + -- right : -14.41 + -- None : 2.29 + -- left : -19.94 + +('right', 'green', None, True) + -- forward : 1.60 + -- right : 0.00 + -- None : -2.05 + -- left : -0.20 + +('forward', 'red', 'forward', False) + -- forward : -22.75 + -- right : 0.00 + -- None : 1.99 + -- left : 0.00 + +('right', 'red', 'right', False) + -- forward : 0.00 + -- right : 1.55 + -- None : 0.00 + -- left : 0.00 + +('left', 'red', 'forward', True) + -- forward : 0.00 + -- right : -9.87 + -- None : 0.00 + -- left : -20.03 + +('forward', 'green', 'right', False) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.00 + -- left : -10.12 + +('left', 'red', None, False) + -- forward : -24.17 + -- right : 1.06 + -- None : 1.95 + -- left : -17.00 + +('right', 'red', 'forward', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 2.00 + -- left : 0.00 + +('left', 'red', 'left', False) + -- forward : -30.32 + -- right : 0.51 + -- None : 0.00 + -- left : -7.41 + +('right', 'red', None, True) + -- forward : -29.54 + -- right : 0.00 + -- None : 1.51 + -- left : 0.00 + +('right', 'green', 'left', False) + -- forward : 0.28 + -- right : 0.00 + -- None : 0.49 + -- left : 0.37 + +('right', 'green', 'right', False) + -- forward : 1.36 + -- right : 0.00 + -- None : -3.49 + -- left : -9.60 + diff --git a/smartcab/logs/sim_improved-learning.csv b/smartcab/logs/sim_improved-learning.csv new file mode 100644 index 0000000..22cca5b --- /dev/null +++ b/smartcab/logs/sim_improved-learning.csv @@ -0,0 +1,1462 @@ +trial,testing,parameters,initial_deadline,final_deadline,net_reward,actions,success +1,False,"{'a': 0.01, 'e': 1.0}",25,0,-108.96780636635536,"{0: 17, 1: 2, 2: 4, 3: 0, 4: 2}",0 +2,False,"{'a': 0.01, 'e': 1.0}",25,0,-79.44208005231125,"{0: 14, 1: 6, 2: 3, 3: 2, 4: 0}",0 +3,False,"{'a': 0.01, 'e': 1.0}",25,0,-71.26535670961611,"{0: 19, 1: 0, 2: 4, 3: 1, 4: 1}",0 +4,False,"{'a': 0.01, 'e': 1.0}",30,0,-118.62828529207832,"{0: 20, 1: 2, 2: 6, 3: 0, 4: 2}",0 +5,False,"{'a': 0.01, 'e': 1.0}",20,0,-176.2321540821477,"{0: 10, 1: 3, 2: 3, 3: 1, 4: 3}",0 +6,False,"{'a': 0.01, 'e': 1.0}",20,0,-101.06856112572181,"{0: 12, 1: 1, 2: 5, 3: 1, 4: 1}",0 +7,False,"{'a': 0.01, 'e': 1.0}",20,0,-160.12334839012843,"{0: 11, 1: 3, 2: 2, 3: 1, 4: 3}",0 +8,False,"{'a': 0.01, 'e': 1.0}",25,0,-47.2862905706929,"{0: 19, 1: 0, 2: 5, 3: 1, 4: 0}",0 +9,False,"{'a': 0.01, 'e': 1.0}",25,0,-126.98979744496599,"{0: 17, 1: 0, 2: 5, 3: 1, 4: 2}",0 +10,False,"{'a': 0.01, 'e': 1.0}",20,0,-52.955842538919626,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +11,False,"{'a': 0.01, 'e': 1.0}",25,0,-180.79863248488812,"{0: 14, 1: 1, 2: 4, 3: 4, 4: 2}",0 +12,False,"{'a': 0.01, 'e': 0.9999999999999999}",25,0,-110.6186934862661,"{0: 15, 1: 1, 2: 8, 3: 0, 4: 1}",0 +13,False,"{'a': 0.01, 'e': 0.9999999999999999}",20,0,-148.7739488468915,"{0: 11, 1: 4, 2: 2, 3: 0, 4: 3}",0 +14,False,"{'a': 0.01, 'e': 0.9999999999999999}",25,0,-95.76464261045741,"{0: 15, 1: 3, 2: 6, 3: 0, 4: 1}",0 +15,False,"{'a': 0.01, 'e': 0.9999999999999999}",20,0,-98.03746155492769,"{0: 15, 1: 0, 2: 2, 3: 1, 4: 2}",0 +16,False,"{'a': 0.01, 'e': 0.9999999999999999}",20,5,-16.55328191935883,"{0: 12, 1: 2, 2: 0, 3: 1, 4: 0}",1 +17,False,"{'a': 0.01, 'e': 0.9999999999999998}",20,0,-112.05363146068042,"{0: 12, 1: 0, 2: 6, 3: 1, 4: 1}",0 +18,False,"{'a': 0.01, 'e': 0.9999999999999998}",20,0,-92.06018285540392,"{0: 14, 1: 0, 2: 3, 3: 2, 4: 1}",0 +19,False,"{'a': 0.01, 'e': 0.9999999999999998}",20,0,-66.15076014526754,"{0: 12, 1: 2, 2: 5, 3: 1, 4: 0}",0 +20,False,"{'a': 0.01, 'e': 0.9999999999999997}",25,0,-172.84638028424484,"{0: 13, 1: 2, 2: 6, 3: 2, 4: 2}",0 +21,False,"{'a': 0.01, 'e': 0.9999999999999996}",20,0,-134.21634678453134,"{0: 11, 1: 0, 2: 7, 3: 0, 4: 2}",0 +22,False,"{'a': 0.01, 'e': 0.9999999999999996}",35,15,-116.98209042275873,"{0: 11, 1: 3, 2: 4, 3: 0, 4: 2}",1 +23,False,"{'a': 0.01, 'e': 0.9999999999999994}",20,0,-169.64357986425009,"{0: 10, 1: 2, 2: 5, 3: 0, 4: 3}",0 +24,False,"{'a': 0.01, 'e': 0.9999999999999993}",20,0,-129.21595031363003,"{0: 12, 1: 1, 2: 4, 3: 1, 4: 2}",0 +25,False,"{'a': 0.01, 'e': 0.9999999999999991}",20,0,-113.98824938232467,"{0: 13, 1: 2, 2: 2, 3: 1, 4: 2}",0 +26,False,"{'a': 0.01, 'e': 0.9999999999999989}",25,0,-73.27414358840714,"{0: 19, 1: 2, 2: 2, 3: 1, 4: 1}",0 +27,False,"{'a': 0.01, 'e': 0.9999999999999987}",25,0,-162.83063202861362,"{0: 13, 1: 2, 2: 7, 3: 1, 4: 2}",0 +28,False,"{'a': 0.01, 'e': 0.9999999999999984}",20,7,-54.652256405060136,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 1}",1 +29,False,"{'a': 0.01, 'e': 0.9999999999999981}",25,0,-101.79003872952535,"{0: 16, 1: 1, 2: 6, 3: 1, 4: 1}",0 +30,False,"{'a': 0.01, 'e': 0.9999999999999977}",20,0,-42.703308831712945,"{0: 14, 1: 2, 2: 3, 3: 1, 4: 0}",0 +31,False,"{'a': 0.01, 'e': 0.9999999999999972}",30,0,-187.0427907308196,"{0: 15, 1: 3, 2: 9, 3: 1, 4: 2}",0 +32,False,"{'a': 0.01, 'e': 0.9999999999999966}",20,0,-140.23607505584158,"{0: 9, 1: 1, 2: 8, 3: 1, 4: 1}",0 +33,False,"{'a': 0.01, 'e': 0.9999999999999959}",25,0,-128.35398010580616,"{0: 15, 1: 2, 2: 3, 3: 5, 4: 0}",0 +34,False,"{'a': 0.01, 'e': 0.999999999999995}",20,0,-18.252238540540105,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",0 +35,False,"{'a': 0.01, 'e': 0.999999999999994}",25,0,-36.70860351309524,"{0: 18, 1: 2, 2: 5, 3: 0, 4: 0}",0 +36,False,"{'a': 0.01, 'e': 0.9999999999999928}",20,0,-166.53539182336664,"{0: 11, 1: 2, 2: 3, 3: 1, 4: 3}",0 +37,False,"{'a': 0.01, 'e': 0.9999999999999913}",25,0,-260.2427088824185,"{0: 8, 1: 6, 2: 4, 3: 4, 4: 3}",0 +38,False,"{'a': 0.01, 'e': 0.9999999999999896}",25,0,-74.36599580970785,"{0: 14, 1: 4, 2: 7, 3: 0, 4: 0}",0 +39,False,"{'a': 0.01, 'e': 0.9999999999999875}",20,0,-100.98690379070258,"{0: 11, 1: 1, 2: 7, 3: 0, 4: 1}",0 +40,False,"{'a': 0.01, 'e': 0.9999999999999849}",20,0,-29.41290642262633,"{0: 14, 1: 3, 2: 3, 3: 0, 4: 0}",0 +41,False,"{'a': 0.01, 'e': 0.9999999999999819}",20,0,-103.18379193207518,"{0: 12, 1: 1, 2: 5, 3: 1, 4: 1}",0 +42,False,"{'a': 0.01, 'e': 0.9999999999999784}",20,0,-62.60749622121086,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 0}",0 +43,False,"{'a': 0.01, 'e': 0.9999999999999741}",20,0,-103.8866122748918,"{0: 10, 1: 3, 2: 6, 3: 0, 4: 1}",0 +44,False,"{'a': 0.01, 'e': 0.9999999999999691}",30,0,-233.84871207769189,"{0: 15, 1: 3, 2: 6, 3: 3, 4: 3}",0 +45,False,"{'a': 0.01, 'e': 0.9999999999999631}",30,0,-216.7227291511513,"{0: 14, 1: 3, 2: 8, 3: 3, 4: 2}",0 +46,False,"{'a': 0.01, 'e': 0.9999999999999559}",20,0,-171.3938230562424,"{0: 9, 1: 4, 2: 3, 3: 1, 4: 3}",0 +47,False,"{'a': 0.01, 'e': 0.9999999999999476}",20,0,-126.33066364116605,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +48,False,"{'a': 0.01, 'e': 0.9999999999999376}",30,0,-118.72368544178637,"{0: 19, 1: 1, 2: 8, 3: 1, 4: 1}",0 +49,False,"{'a': 0.01, 'e': 0.9999999999999257}",20,0,-226.3626057572194,"{0: 8, 1: 1, 2: 7, 3: 0, 4: 4}",0 +50,False,"{'a': 0.01, 'e': 0.9999999999999118}",20,0,-12.55149071477506,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +51,False,"{'a': 0.01, 'e': 0.9999999999998953}",25,0,-153.89634124979844,"{0: 17, 1: 0, 2: 3, 3: 3, 4: 2}",0 +52,False,"{'a': 0.01, 'e': 0.9999999999998759}",30,0,-138.07562229077638,"{0: 19, 1: 4, 2: 4, 3: 1, 4: 2}",0 +53,False,"{'a': 0.01, 'e': 0.999999999999853}",25,0,-101.25625003775188,"{0: 15, 1: 3, 2: 6, 3: 0, 4: 1}",0 +54,False,"{'a': 0.01, 'e': 0.999999999999826}",20,0,-38.838260442743184,"{0: 15, 1: 3, 2: 0, 3: 2, 4: 0}",0 +55,False,"{'a': 0.01, 'e': 0.9999999999997943}",20,0,-72.17017896381708,"{0: 12, 1: 2, 2: 5, 3: 1, 4: 0}",0 +56,False,"{'a': 0.01, 'e': 0.9999999999997571}",20,0,-59.318358736030895,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +57,False,"{'a': 0.01, 'e': 0.9999999999997133}",25,0,-42.224720968582204,"{0: 17, 1: 4, 2: 4, 3: 0, 4: 0}",0 +58,False,"{'a': 0.01, 'e': 0.999999999999662}",30,0,-91.7095043223214,"{0: 22, 1: 4, 2: 2, 3: 0, 4: 2}",0 +59,False,"{'a': 0.01, 'e': 0.999999999999602}",25,0,-216.6501475963622,"{0: 14, 1: 2, 2: 4, 3: 1, 4: 4}",0 +60,False,"{'a': 0.01, 'e': 0.9999999999995317}",25,0,-124.4603138000312,"{0: 11, 1: 3, 2: 10, 3: 1, 4: 0}",0 +61,False,"{'a': 0.01, 'e': 0.9999999999994494}",20,0,-44.37307152097844,"{0: 15, 1: 3, 2: 1, 3: 0, 4: 1}",0 +62,False,"{'a': 0.01, 'e': 0.9999999999993534}",20,0,-139.78319474531597,"{0: 13, 1: 2, 2: 1, 3: 1, 4: 3}",0 +63,False,"{'a': 0.01, 'e': 0.9999999999992412}",30,0,-212.92277622837292,"{0: 18, 1: 2, 2: 5, 3: 1, 4: 4}",0 +64,False,"{'a': 0.01, 'e': 0.9999999999991104}",25,10,-85.12144621650658,"{0: 10, 1: 2, 2: 1, 3: 0, 4: 2}",1 +65,False,"{'a': 0.01, 'e': 0.9999999999989581}",20,0,-107.2658028142508,"{0: 12, 1: 3, 2: 3, 3: 0, 4: 2}",0 +66,False,"{'a': 0.01, 'e': 0.9999999999987806}",20,0,-83.81566326761974,"{0: 12, 1: 2, 2: 5, 3: 0, 4: 1}",0 +67,False,"{'a': 0.01, 'e': 0.9999999999985744}",30,0,-240.21180129866255,"{0: 15, 1: 3, 2: 8, 3: 0, 4: 4}",0 +68,False,"{'a': 0.01, 'e': 0.9999999999983347}",25,0,-129.31307169172828,"{0: 16, 1: 3, 2: 3, 3: 1, 4: 2}",0 +69,False,"{'a': 0.01, 'e': 0.9999999999980563}",25,0,-124.52878674890424,"{0: 14, 1: 2, 2: 7, 3: 1, 4: 1}",0 +70,False,"{'a': 0.01, 'e': 0.9999999999977336}",25,0,-125.85929629307923,"{0: 12, 1: 5, 2: 7, 3: 0, 4: 1}",0 +71,False,"{'a': 0.01, 'e': 0.9999999999973594}",30,0,-136.2449357065508,"{0: 18, 1: 4, 2: 5, 3: 2, 4: 1}",0 +72,False,"{'a': 0.01, 'e': 0.9999999999969262}",20,0,-67.42724910031566,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",0 +73,False,"{'a': 0.01, 'e': 0.9999999999964251}",20,0,-157.14391803457784,"{0: 8, 1: 5, 2: 4, 3: 1, 4: 2}",0 +74,False,"{'a': 0.01, 'e': 0.9999999999958458}",25,0,-281.5015465460724,"{0: 11, 1: 3, 2: 2, 3: 5, 4: 4}",0 +75,False,"{'a': 0.01, 'e': 0.9999999999951767}",25,13,-40.24727125383142,"{0: 7, 1: 0, 2: 5, 3: 0, 4: 0}",1 +76,False,"{'a': 0.01, 'e': 0.9999999999944047}",25,0,-50.19919173863054,"{0: 17, 1: 2, 2: 6, 3: 0, 4: 0}",0 +77,False,"{'a': 0.01, 'e': 0.9999999999935145}",20,0,-206.67828231553108,"{0: 9, 1: 2, 2: 3, 3: 3, 4: 3}",0 +78,False,"{'a': 0.01, 'e': 0.9999999999924891}",20,0,-82.68088776210459,"{0: 12, 1: 3, 2: 4, 3: 0, 4: 1}",0 +79,False,"{'a': 0.01, 'e': 0.9999999999913088}",20,0,-165.92818396811384,"{0: 8, 1: 2, 2: 6, 3: 3, 4: 1}",0 +80,False,"{'a': 0.01, 'e': 0.9999999999899515}",25,0,-201.44070251720498,"{0: 12, 1: 2, 2: 7, 3: 1, 4: 3}",0 +81,False,"{'a': 0.01, 'e': 0.9999999999883917}",20,0,-145.99408928739967,"{0: 12, 1: 0, 2: 4, 3: 2, 4: 2}",0 +82,False,"{'a': 0.01, 'e': 0.9999999999866008}",30,6,-120.25652767409166,"{0: 12, 1: 4, 2: 6, 3: 1, 4: 1}",1 +83,False,"{'a': 0.01, 'e': 0.9999999999845464}",25,0,-254.1120369884296,"{0: 11, 1: 3, 2: 5, 3: 2, 4: 4}",0 +84,False,"{'a': 0.01, 'e': 0.9999999999821914}",30,0,-91.02115148753492,"{0: 22, 1: 3, 2: 2, 3: 2, 4: 1}",0 +85,False,"{'a': 0.01, 'e': 0.999999999979494}",30,0,-116.75963691065552,"{0: 19, 1: 2, 2: 8, 3: 0, 4: 1}",0 +86,False,"{'a': 0.01, 'e': 0.9999999999764071}",30,3,-219.7231481431657,"{0: 14, 1: 4, 2: 4, 3: 1, 4: 4}",1 +87,False,"{'a': 0.01, 'e': 0.9999999999728771}",20,0,-128.07142409947767,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 3}",0 +88,False,"{'a': 0.01, 'e': 0.9999999999688438}",20,0,-82.16631219692964,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 2}",0 +89,False,"{'a': 0.01, 'e': 0.9999999999642389}",25,0,-189.32429828244744,"{0: 10, 1: 5, 2: 7, 3: 1, 4: 2}",0 +90,False,"{'a': 0.01, 'e': 0.9999999999589857}",25,0,-159.92710499959074,"{0: 16, 1: 1, 2: 5, 3: 0, 4: 3}",0 +91,False,"{'a': 0.01, 'e': 0.9999999999529976}",25,0,-83.34714418475642,"{0: 19, 1: 1, 2: 2, 3: 2, 4: 1}",0 +92,False,"{'a': 0.01, 'e': 0.9999999999461769}",20,0,-137.51817043248514,"{0: 13, 1: 1, 2: 3, 3: 0, 4: 3}",0 +93,False,"{'a': 0.01, 'e': 0.9999999999384142}",20,0,-58.76350456343984,"{0: 14, 1: 1, 2: 3, 3: 2, 4: 0}",0 +94,False,"{'a': 0.01, 'e': 0.9999999999295858}",20,0,-153.4041026111344,"{0: 10, 1: 1, 2: 6, 3: 1, 4: 2}",0 +95,False,"{'a': 0.01, 'e': 0.9999999999195532}",25,0,-99.02344025916832,"{0: 17, 1: 1, 2: 5, 3: 1, 4: 1}",0 +96,False,"{'a': 0.01, 'e': 0.999999999908161}",20,0,-114.21554261725491,"{0: 14, 1: 0, 2: 3, 3: 1, 4: 2}",0 +97,False,"{'a': 0.01, 'e': 0.9999999998952347}",20,0,-80.1972323534148,"{0: 14, 1: 1, 2: 3, 3: 1, 4: 1}",0 +98,False,"{'a': 0.01, 'e': 0.9999999998805785}",20,0,-171.74040511886673,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 3}",0 +99,False,"{'a': 0.01, 'e': 0.9999999998639737}",25,0,-135.15447939436984,"{0: 17, 1: 0, 2: 3, 3: 4, 4: 1}",0 +100,False,"{'a': 0.01, 'e': 0.9999999998451748}",20,0,-65.69384696639054,"{0: 12, 1: 2, 2: 5, 3: 1, 4: 0}",0 +101,False,"{'a': 0.01, 'e': 0.999999999823908}",20,0,-116.58357639129174,"{0: 15, 1: 0, 2: 1, 3: 2, 4: 2}",0 +102,False,"{'a': 0.01, 'e': 0.9999999997998668}",20,0,-102.47274498949355,"{0: 8, 1: 4, 2: 7, 3: 1, 4: 0}",0 +103,False,"{'a': 0.01, 'e': 0.9999999997727089}",20,0,-57.71964494945738,"{0: 14, 1: 4, 2: 1, 3: 0, 4: 1}",0 +104,False,"{'a': 0.01, 'e': 0.999999999742053}",25,0,-86.25537968166287,"{0: 17, 1: 1, 2: 6, 3: 0, 4: 1}",0 +105,False,"{'a': 0.01, 'e': 0.9999999997074733}",20,0,-98.52216302622057,"{0: 14, 1: 0, 2: 2, 3: 3, 4: 1}",0 +106,False,"{'a': 0.01, 'e': 0.9999999996684957}",20,0,-63.694774296727175,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +107,False,"{'a': 0.01, 'e': 0.9999999996245922}",20,0,-65.85908530418217,"{0: 12, 1: 0, 2: 8, 3: 0, 4: 0}",0 +108,False,"{'a': 0.01, 'e': 0.9999999995751754}",20,0,-100.73978969901974,"{0: 12, 1: 2, 2: 4, 3: 1, 4: 1}",0 +109,False,"{'a': 0.01, 'e': 0.9999999995195923}",30,0,-176.9823870374266,"{0: 16, 1: 3, 2: 8, 3: 1, 4: 2}",0 +110,False,"{'a': 0.01, 'e': 0.9999999994571172}",25,0,-132.57703523240698,"{0: 15, 1: 2, 2: 6, 3: 0, 4: 2}",0 +111,False,"{'a': 0.01, 'e': 0.9999999993869447}",20,0,-121.71035653146086,"{0: 11, 1: 4, 2: 3, 3: 0, 4: 2}",0 +112,False,"{'a': 0.01, 'e': 0.9999999993081812}",20,0,-142.8423214773593,"{0: 11, 1: 1, 2: 5, 3: 1, 4: 2}",0 +113,False,"{'a': 0.01, 'e': 0.9999999992198357}",20,0,-117.36616202160656,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +114,False,"{'a': 0.01, 'e': 0.999999999120811}",30,0,-82.7954311510346,"{0: 22, 1: 1, 2: 6, 3: 0, 4: 1}",0 +115,False,"{'a': 0.01, 'e': 0.9999999990098914}",20,0,-129.07460937841768,"{0: 10, 1: 5, 2: 2, 3: 1, 4: 2}",0 +116,False,"{'a': 0.01, 'e': 0.9999999988857329}",20,0,-130.45514193201103,"{0: 10, 1: 3, 2: 5, 3: 0, 4: 2}",0 +117,False,"{'a': 0.01, 'e': 0.9999999987468488}",20,7,-63.626829024849876,"{0: 8, 1: 3, 2: 0, 3: 1, 4: 1}",1 +118,False,"{'a': 0.01, 'e': 0.9999999985915969}",25,20,8.402315709271504,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +119,False,"{'a': 0.01, 'e': 0.9999999984181641}",30,0,-213.99593411544444,"{0: 15, 1: 3, 2: 9, 3: 0, 4: 3}",0 +120,False,"{'a': 0.01, 'e': 0.9999999982245497}",30,0,-174.90149275210715,"{0: 15, 1: 6, 2: 6, 3: 1, 4: 2}",0 +121,False,"{'a': 0.01, 'e': 0.9999999980085479}",20,0,-69.36052590715323,"{0: 10, 1: 4, 2: 6, 3: 0, 4: 0}",0 +122,False,"{'a': 0.01, 'e': 0.999999997767728}",30,19,-10.386356336505889,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +123,False,"{'a': 0.01, 'e': 0.9999999974994135}",20,0,-33.15866789091677,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",0 +124,False,"{'a': 0.01, 'e': 0.9999999972006594}",20,0,-163.23565070219635,"{0: 9, 1: 0, 2: 9, 3: 0, 4: 2}",0 +125,False,"{'a': 0.01, 'e': 0.9999999968682265}",25,0,-138.2010808124994,"{0: 15, 1: 2, 2: 6, 3: 0, 4: 2}",0 +126,False,"{'a': 0.01, 'e': 0.9999999964985555}",20,0,-47.31783915183648,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +127,False,"{'a': 0.01, 'e': 0.9999999960877369}",20,0,-76.74589932092601,"{0: 12, 1: 0, 2: 7, 3: 1, 4: 0}",0 +128,False,"{'a': 0.01, 'e': 0.9999999956314802}",25,0,-164.08400969842887,"{0: 16, 1: 3, 2: 2, 3: 1, 4: 3}",0 +129,False,"{'a': 0.01, 'e': 0.9999999951250788}",20,0,-85.68292180613734,"{0: 12, 1: 3, 2: 4, 3: 0, 4: 1}",0 +130,False,"{'a': 0.01, 'e': 0.9999999945633737}",30,0,-170.16197571749788,"{0: 16, 1: 7, 2: 3, 3: 2, 4: 2}",0 +131,False,"{'a': 0.01, 'e': 0.9999999939407135}",20,0,-67.78278662691035,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +132,False,"{'a': 0.01, 'e': 0.9999999932509107}",25,0,-51.619985844565996,"{0: 20, 1: 1, 2: 3, 3: 0, 4: 1}",0 +133,False,"{'a': 0.01, 'e': 0.9999999924871961}",30,0,-71.6966883539773,"{0: 20, 1: 4, 2: 5, 3: 1, 4: 0}",0 +134,False,"{'a': 0.01, 'e': 0.9999999916421677}",25,0,-160.06003249238447,"{0: 16, 1: 0, 2: 6, 3: 0, 4: 3}",0 +135,False,"{'a': 0.01, 'e': 0.9999999907077372}",30,13,-30.536953063552247,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 0}",1 +136,False,"{'a': 0.01, 'e': 0.9999999896750715}",25,0,-261.5673480712713,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 5}",0 +137,False,"{'a': 0.01, 'e': 0.9999999885345304}",20,0,-56.05485715653717,"{0: 14, 1: 3, 2: 2, 3: 0, 4: 1}",0 +138,False,"{'a': 0.01, 'e': 0.9999999872755988}",25,0,-70.063109056121,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +139,False,"{'a': 0.01, 'e': 0.9999999858868144}",20,0,-62.79201633703102,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",0 +140,False,"{'a': 0.01, 'e': 0.99999998435569}",25,0,-194.4978452837426,"{0: 11, 1: 3, 2: 7, 3: 2, 4: 2}",0 +141,False,"{'a': 0.01, 'e': 0.99999998266863}",20,0,-47.962521027443174,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",0 +142,False,"{'a': 0.01, 'e': 0.9999999808108407}",25,0,-120.03795974221899,"{0: 13, 1: 3, 2: 8, 3: 0, 4: 1}",0 +143,False,"{'a': 0.01, 'e': 0.9999999787662344}",20,0,-173.20796924418582,"{0: 10, 1: 2, 2: 4, 3: 1, 4: 3}",0 +144,False,"{'a': 0.01, 'e': 0.9999999765173262}",30,0,-120.27386109070548,"{0: 16, 1: 4, 2: 8, 3: 2, 4: 0}",0 +145,False,"{'a': 0.01, 'e': 0.9999999740451244}",20,0,-106.3527572128891,"{0: 14, 1: 1, 2: 2, 3: 1, 4: 2}",0 +146,False,"{'a': 0.01, 'e': 0.9999999713290121}",35,0,-241.22220269530953,"{0: 20, 1: 3, 2: 5, 3: 4, 4: 3}",0 +147,False,"{'a': 0.01, 'e': 0.9999999683466212}",20,0,-81.18837960681245,"{0: 12, 1: 1, 2: 5, 3: 2, 4: 0}",0 +148,False,"{'a': 0.01, 'e': 0.9999999650736977}",25,0,-101.43604948170199,"{0: 17, 1: 0, 2: 6, 3: 1, 4: 1}",0 +149,False,"{'a': 0.01, 'e': 0.9999999614839579}",20,0,-132.82526969829038,"{0: 10, 1: 2, 2: 5, 3: 2, 4: 1}",0 +150,False,"{'a': 0.01, 'e': 0.9999999575489346}",20,0,-94.26657811816511,"{0: 13, 1: 3, 2: 2, 3: 0, 4: 2}",0 +151,False,"{'a': 0.01, 'e': 0.9999999532378131}",20,0,-114.74392631728388,"{0: 13, 1: 2, 2: 1, 3: 2, 4: 2}",0 +152,False,"{'a': 0.01, 'e': 0.9999999485172567}",20,0,-110.46138870671601,"{0: 15, 1: 0, 2: 1, 3: 2, 4: 2}",0 +153,False,"{'a': 0.01, 'e': 0.99999994335122}",25,0,-92.93297690771504,"{0: 17, 1: 0, 2: 6, 3: 1, 4: 1}",0 +154,False,"{'a': 0.01, 'e': 0.9999999377007511}",20,0,-192.03411062408495,"{0: 7, 1: 2, 2: 7, 3: 2, 4: 2}",0 +155,False,"{'a': 0.01, 'e': 0.9999999315237802}",20,0,-111.40743293922003,"{0: 12, 1: 2, 2: 4, 3: 0, 4: 2}",0 +156,False,"{'a': 0.01, 'e': 0.9999999247748952}",30,23,6.2465368629280515,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +157,False,"{'a': 0.01, 'e': 0.9999999174051029}",20,0,-118.93410575880772,"{0: 11, 1: 2, 2: 4, 3: 2, 4: 1}",0 +158,False,"{'a': 0.01, 'e': 0.9999999093615753}",20,0,-113.6817958776609,"{0: 10, 1: 3, 2: 5, 3: 1, 4: 1}",0 +159,False,"{'a': 0.01, 'e': 0.9999999005873813}",30,0,-178.63914631385475,"{0: 14, 1: 4, 2: 8, 3: 3, 4: 1}",0 +160,False,"{'a': 0.01, 'e': 0.9999998910211995}",25,0,-79.42794044198531,"{0: 18, 1: 0, 2: 6, 3: 0, 4: 1}",0 +161,False,"{'a': 0.01, 'e': 0.9999998805970158}",20,0,-114.66686399737692,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +162,False,"{'a': 0.01, 'e': 0.999999869243803}",20,0,-162.72849424449385,"{0: 10, 1: 1, 2: 5, 3: 2, 4: 2}",0 +163,False,"{'a': 0.01, 'e': 0.999999856885179}",20,0,-23.715468751350087,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 0}",0 +164,False,"{'a': 0.01, 'e': 0.9999998434390479}",25,0,-49.97073837138853,"{0: 21, 1: 1, 2: 1, 3: 1, 4: 1}",0 +165,False,"{'a': 0.01, 'e': 0.9999998288172176}",25,0,-148.60825769009264,"{0: 15, 1: 1, 2: 6, 3: 1, 4: 2}",0 +166,False,"{'a': 0.01, 'e': 0.9999998129249976}",35,0,-125.3324793829127,"{0: 24, 1: 4, 2: 5, 3: 0, 4: 2}",0 +167,False,"{'a': 0.01, 'e': 0.9999997956607721}",25,0,-109.60602236306165,"{0: 14, 1: 2, 2: 6, 3: 3, 4: 0}",0 +168,False,"{'a': 0.01, 'e': 0.9999997769155503}",20,0,-162.4446852789915,"{0: 12, 1: 1, 2: 3, 3: 1, 4: 3}",0 +169,False,"{'a': 0.01, 'e': 0.9999997565724907}",25,0,-113.13805066409181,"{0: 19, 1: 2, 2: 1, 3: 0, 4: 3}",0 +170,False,"{'a': 0.01, 'e': 0.9999997345063999}",25,0,-68.50630505221386,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +171,False,"{'a': 0.01, 'e': 0.9999997105832034}",35,2,-251.869151174484,"{0: 18, 1: 3, 2: 6, 3: 2, 4: 4}",1 +172,False,"{'a': 0.01, 'e': 0.9999996846593879}",20,0,-62.12271848561861,"{0: 13, 1: 1, 2: 5, 3: 1, 4: 0}",0 +173,False,"{'a': 0.01, 'e': 0.9999996565814147}",25,0,-84.83109398623367,"{0: 14, 1: 4, 2: 6, 3: 1, 4: 0}",0 +174,False,"{'a': 0.01, 'e': 0.9999996261851002}",25,0,-80.55971352561444,"{0: 21, 1: 1, 2: 0, 3: 1, 4: 2}",0 +175,False,"{'a': 0.01, 'e': 0.9999995932949661}",35,0,-76.53438427197716,"{0: 26, 1: 2, 2: 6, 3: 0, 4: 1}",0 +176,False,"{'a': 0.01, 'e': 0.9999995577235546}",30,2,-121.17915071365981,"{0: 19, 1: 2, 2: 4, 3: 1, 4: 2}",1 +177,False,"{'a': 0.01, 'e': 0.9999995192707085}",20,4,-74.82194054437207,"{0: 10, 1: 0, 2: 5, 3: 0, 4: 1}",1 +178,False,"{'a': 0.01, 'e': 0.9999994777228159}",20,12,-10.268383552785352,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 0}",1 +179,False,"{'a': 0.01, 'e': 0.9999994328520164}",25,0,-166.64463823746493,"{0: 16, 1: 1, 2: 4, 3: 1, 4: 3}",0 +180,False,"{'a': 0.01, 'e': 0.9999993844153677}",20,0,-154.2156672081972,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 3}",0 +181,False,"{'a': 0.01, 'e': 0.9999993321539725}",20,0,-104.15971888089942,"{0: 15, 1: 1, 2: 1, 3: 1, 4: 2}",0 +182,False,"{'a': 0.01, 'e': 0.9999992757920618}",30,0,-260.5970117420161,"{0: 13, 1: 3, 2: 10, 3: 0, 4: 4}",0 +183,False,"{'a': 0.01, 'e': 0.9999992150360355}",25,0,-117.133286734264,"{0: 13, 1: 2, 2: 8, 3: 2, 4: 0}",0 +184,False,"{'a': 0.01, 'e': 0.999999149573457}",20,0,-49.8549238325637,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +185,False,"{'a': 0.01, 'e': 0.9999990790720014}",20,0,-106.99535992647418,"{0: 10, 1: 2, 2: 7, 3: 0, 4: 1}",0 +186,False,"{'a': 0.01, 'e': 0.9999990031783542}",20,0,-58.378745441551814,"{0: 13, 1: 2, 2: 4, 3: 1, 4: 0}",0 +187,False,"{'a': 0.01, 'e': 0.999998921517061}",30,0,-253.53309053696694,"{0: 16, 1: 3, 2: 4, 3: 3, 4: 4}",0 +188,False,"{'a': 0.01, 'e': 0.9999988336893244}",25,0,-89.332576825314,"{0: 18, 1: 4, 2: 1, 3: 0, 4: 2}",0 +189,False,"{'a': 0.01, 'e': 0.9999987392717475}",20,0,-115.84268353944256,"{0: 11, 1: 0, 2: 7, 3: 1, 4: 1}",0 +190,False,"{'a': 0.01, 'e': 0.9999986378150223}",20,0,-167.76200347863428,"{0: 10, 1: 2, 2: 5, 3: 0, 4: 3}",0 +191,False,"{'a': 0.01, 'e': 0.9999985288425614}",20,0,-127.05857951305889,"{0: 14, 1: 0, 2: 2, 3: 2, 4: 2}",0 +192,False,"{'a': 0.01, 'e': 0.99999841184907}",20,0,-93.7194611039427,"{0: 14, 1: 1, 2: 2, 3: 2, 4: 1}",0 +193,False,"{'a': 0.01, 'e': 0.9999982862990586}",25,0,-132.5043994741267,"{0: 16, 1: 3, 2: 2, 3: 2, 4: 2}",0 +194,False,"{'a': 0.01, 'e': 0.9999981516252924}",25,0,-124.17700159919607,"{0: 13, 1: 4, 2: 6, 3: 1, 4: 1}",0 +195,False,"{'a': 0.01, 'e': 0.9999980072271772}",30,0,-161.85475065877884,"{0: 17, 1: 4, 2: 6, 3: 1, 4: 2}",0 +196,False,"{'a': 0.01, 'e': 0.9999978524690797}",25,0,-105.13840620499316,"{0: 14, 1: 3, 2: 7, 3: 0, 4: 1}",0 +197,False,"{'a': 0.01, 'e': 0.999997686678579}",25,0,-153.05650340318905,"{0: 13, 1: 5, 2: 4, 3: 1, 4: 2}",0 +198,False,"{'a': 0.01, 'e': 0.99999750914465}",30,0,-225.56745006321438,"{0: 13, 1: 7, 2: 5, 3: 2, 4: 3}",0 +199,False,"{'a': 0.01, 'e': 0.9999973191157749}",30,0,-273.95516909534604,"{0: 14, 1: 2, 2: 9, 3: 1, 4: 4}",0 +200,False,"{'a': 0.01, 'e': 0.9999971157979815}",35,0,-260.1684897623991,"{0: 17, 1: 5, 2: 7, 3: 3, 4: 3}",0 +201,False,"{'a': 0.01, 'e': 0.9999968983528068}",20,0,-73.14086031625,"{0: 14, 1: 0, 2: 3, 3: 3, 4: 0}",0 +202,False,"{'a': 0.01, 'e': 0.9999966658951842}",25,11,-34.58567318475107,"{0: 9, 1: 1, 2: 4, 3: 0, 4: 0}",1 +203,False,"{'a': 0.01, 'e': 0.9999964174912518}",20,0,-24.73103020312185,"{0: 15, 1: 1, 2: 4, 3: 0, 4: 0}",0 +204,False,"{'a': 0.01, 'e': 0.9999961521560803}",20,0,-123.31995078782187,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",0 +205,False,"{'a': 0.01, 'e': 0.9999958688513197}",25,0,-118.55048217820247,"{0: 13, 1: 5, 2: 5, 3: 1, 4: 1}",0 +206,False,"{'a': 0.01, 'e': 0.9999955664827617}",30,21,3.2472421137002674,"{0: 7, 1: 2, 2: 0, 3: 0, 4: 0}",1 +207,False,"{'a': 0.01, 'e': 0.9999952438978162}",30,0,-188.95384488393634,"{0: 21, 1: 1, 2: 3, 3: 1, 4: 4}",0 +208,False,"{'a': 0.01, 'e': 0.9999948998829015}",20,0,-44.89026898835402,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",0 +209,False,"{'a': 0.01, 'e': 0.9999945331607449}",20,0,-135.79210563785267,"{0: 10, 1: 4, 2: 3, 3: 1, 4: 2}",0 +210,False,"{'a': 0.01, 'e': 0.9999941423875931}",25,0,-120.61180176806768,"{0: 16, 1: 2, 2: 5, 3: 0, 4: 2}",0 +211,False,"{'a': 0.01, 'e': 0.9999937261503303}",30,0,-113.05609050624713,"{0: 21, 1: 1, 2: 5, 3: 2, 4: 1}",0 +212,False,"{'a': 0.01, 'e': 0.9999932829635031}",20,0,-72.95148040432947,"{0: 13, 1: 4, 2: 1, 3: 1, 4: 1}",0 +213,False,"{'a': 0.01, 'e': 0.999992811266249}",25,0,-90.10277276670013,"{0: 15, 1: 2, 2: 6, 3: 2, 4: 0}",0 +214,False,"{'a': 0.01, 'e': 0.9999923094191291}",20,10,-40.85422560530587,"{0: 6, 1: 0, 2: 3, 3: 1, 4: 0}",1 +215,False,"{'a': 0.01, 'e': 0.9999917757008628}",30,0,-177.80515652202953,"{0: 13, 1: 5, 2: 9, 3: 2, 4: 1}",0 +216,False,"{'a': 0.01, 'e': 0.9999912083049619}",20,0,-147.88347926325832,"{0: 13, 1: 2, 2: 1, 3: 1, 4: 3}",0 +217,False,"{'a': 0.01, 'e': 0.9999906053362642}",20,0,-79.20697866851546,"{0: 15, 1: 1, 2: 1, 3: 2, 4: 1}",0 +218,False,"{'a': 0.01, 'e': 0.9999899648073652}",35,11,-112.23075084593016,"{0: 16, 1: 0, 2: 5, 3: 2, 4: 1}",1 +219,False,"{'a': 0.01, 'e': 0.9999892846349465}",20,0,-55.59907720610081,"{0: 12, 1: 1, 2: 7, 3: 0, 4: 0}",0 +220,False,"{'a': 0.01, 'e': 0.9999885626359986}",25,1,-168.87522623940848,"{0: 12, 1: 3, 2: 5, 3: 2, 4: 2}",1 +221,False,"{'a': 0.01, 'e': 0.9999877965239387}",25,0,-119.2474439715214,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 3}",0 +222,False,"{'a': 0.01, 'e': 0.9999869839046224}",25,0,-145.15720808444655,"{0: 14, 1: 1, 2: 7, 3: 2, 4: 1}",0 +223,False,"{'a': 0.01, 'e': 0.9999861222722467}",20,0,-111.80870063685151,"{0: 10, 1: 2, 2: 7, 3: 0, 4: 1}",0 +224,False,"{'a': 0.01, 'e': 0.9999852090051451}",20,0,-47.89270749887937,"{0: 14, 1: 2, 2: 3, 3: 1, 4: 0}",0 +225,False,"{'a': 0.01, 'e': 0.9999842413614736}",20,1,-182.88642736496854,"{0: 10, 1: 3, 2: 2, 3: 0, 4: 4}",1 +226,False,"{'a': 0.01, 'e': 0.9999832164747865}",25,0,-237.3960434541189,"{0: 11, 1: 2, 2: 8, 3: 0, 4: 4}",0 +227,False,"{'a': 0.01, 'e': 0.9999821313495021}",25,0,-96.54654406230001,"{0: 16, 1: 1, 2: 7, 3: 0, 4: 1}",0 +228,False,"{'a': 0.01, 'e': 0.999980982856257}",30,0,-145.7120775541966,"{0: 19, 1: 3, 2: 5, 3: 1, 4: 2}",0 +229,False,"{'a': 0.01, 'e': 0.9999797677271501}",25,0,-129.04075010756404,"{0: 15, 1: 3, 2: 5, 3: 0, 4: 2}",0 +230,False,"{'a': 0.01, 'e': 0.9999784825508734}",20,0,-147.72682320640195,"{0: 8, 1: 3, 2: 6, 3: 2, 4: 1}",0 +231,False,"{'a': 0.01, 'e': 0.9999771237677324}",30,0,-193.138108703594,"{0: 16, 1: 0, 2: 11, 3: 1, 4: 2}",0 +232,False,"{'a': 0.01, 'e': 0.9999756876645547}",20,0,-21.254377461142486,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",0 +233,False,"{'a': 0.01, 'e': 0.9999741703694859}",20,0,-105.96277691856592,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 2}",0 +234,False,"{'a': 0.01, 'e': 0.9999725678466748}",25,0,-150.74439785313766,"{0: 14, 1: 2, 2: 6, 3: 1, 4: 2}",0 +235,False,"{'a': 0.01, 'e': 0.9999708758908472}",25,0,-177.26477997366703,"{0: 11, 1: 4, 2: 7, 3: 1, 4: 2}",0 +236,False,"{'a': 0.01, 'e': 0.9999690901217688}",25,0,-104.19875787805212,"{0: 17, 1: 0, 2: 6, 3: 1, 4: 1}",0 +237,False,"{'a': 0.01, 'e': 0.9999672059785979}",20,4,-38.75313820355494,"{0: 10, 1: 3, 2: 2, 3: 1, 4: 0}",1 +238,False,"{'a': 0.01, 'e': 0.9999652187141285}",25,0,-173.8966948311798,"{0: 12, 1: 4, 2: 6, 3: 1, 4: 2}",0 +239,False,"{'a': 0.01, 'e': 0.9999631233889249}",20,0,-9.189377351646812,"{0: 15, 1: 5, 2: 0, 3: 0, 4: 0}",0 +240,False,"{'a': 0.01, 'e': 0.9999609148653483}",30,0,-188.58426155321405,"{0: 13, 1: 7, 2: 6, 3: 3, 4: 1}",0 +241,False,"{'a': 0.01, 'e': 0.9999585878014771}",25,0,-70.81970127538328,"{0: 16, 1: 5, 2: 2, 3: 2, 4: 0}",0 +242,False,"{'a': 0.01, 'e': 0.9999561366449211}",25,0,-71.15375068684794,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +243,False,"{'a': 0.01, 'e': 0.999953555626533}",20,12,-52.64191724623552,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 1}",1 +244,False,"{'a': 0.01, 'e': 0.9999508387540157}",20,0,-152.79110126292744,"{0: 13, 1: 1, 2: 2, 3: 1, 4: 3}",0 +245,False,"{'a': 0.01, 'e': 0.9999479798054303}",30,0,-99.96882169269978,"{0: 22, 1: 2, 2: 4, 3: 0, 4: 2}",0 +246,False,"{'a': 0.01, 'e': 0.9999449723226047}",25,0,-183.11042839872195,"{0: 15, 1: 1, 2: 5, 3: 1, 4: 3}",0 +247,False,"{'a': 0.01, 'e': 0.9999418096044451}",20,0,-71.63645753210213,"{0: 13, 1: 3, 2: 3, 3: 0, 4: 1}",0 +248,False,"{'a': 0.01, 'e': 0.9999384847001522}",25,0,-107.19784029125938,"{0: 14, 1: 5, 2: 4, 3: 1, 4: 1}",0 +249,False,"{'a': 0.01, 'e': 0.9999349904023467}",20,0,-67.31489101440597,"{0: 14, 1: 0, 2: 5, 3: 0, 4: 1}",0 +250,False,"{'a': 0.01, 'e': 0.9999313192401021}",20,3,-84.00704501539215,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 2}",1 +251,False,"{'a': 0.01, 'e': 0.9999274634718931}",20,0,-206.96184579144622,"{0: 7, 1: 2, 2: 6, 3: 3, 4: 2}",0 +252,False,"{'a': 0.01, 'e': 0.9999234150784565}",30,0,-131.2681691201786,"{0: 17, 1: 3, 2: 9, 3: 0, 4: 1}",0 +253,False,"{'a': 0.01, 'e': 0.9999191657555722}",25,0,-146.11053227736676,"{0: 15, 1: 2, 2: 5, 3: 1, 4: 2}",0 +254,False,"{'a': 0.01, 'e': 0.9999147069067652}",25,0,-223.1879722305433,"{0: 14, 1: 3, 2: 1, 3: 3, 4: 4}",0 +255,False,"{'a': 0.01, 'e': 0.9999100296359319}",25,0,-229.96953134433363,"{0: 12, 1: 2, 2: 6, 3: 1, 4: 4}",0 +256,False,"{'a': 0.01, 'e': 0.9999051247398945}",25,0,-185.8458074519629,"{0: 12, 1: 1, 2: 9, 3: 1, 4: 2}",0 +257,False,"{'a': 0.01, 'e': 0.999899982700887}",25,0,-102.10462242451715,"{0: 15, 1: 4, 2: 4, 3: 1, 4: 1}",0 +258,False,"{'a': 0.01, 'e': 0.999894593678977}",20,0,-106.62483200343463,"{0: 12, 1: 0, 2: 6, 3: 1, 4: 1}",0 +259,False,"{'a': 0.01, 'e': 0.9998889475044263}",25,8,-31.389117737826083,"{0: 11, 1: 2, 2: 4, 3: 0, 4: 0}",1 +260,False,"{'a': 0.01, 'e': 0.999883033669994}",20,0,-65.64257432679355,"{0: 11, 1: 3, 2: 6, 3: 0, 4: 0}",0 +261,False,"{'a': 0.01, 'e': 0.9998768413231889}",30,0,-116.63751693919792,"{0: 21, 1: 1, 2: 6, 3: 0, 4: 2}",0 +262,False,"{'a': 0.01, 'e': 0.9998703592584715}",20,0,-119.86020395467415,"{0: 10, 1: 2, 2: 6, 3: 1, 4: 1}",0 +263,False,"{'a': 0.01, 'e': 0.9998635759094139}",30,0,-106.11383417407126,"{0: 22, 1: 1, 2: 5, 3: 0, 4: 2}",0 +264,False,"{'a': 0.01, 'e': 0.9998564793408201}",20,0,-175.0064566978836,"{0: 8, 1: 5, 2: 4, 3: 0, 4: 3}",0 +265,False,"{'a': 0.01, 'e': 0.9998490572408113}",25,0,-136.683069622398,"{0: 16, 1: 2, 2: 4, 3: 1, 4: 2}",0 +266,False,"{'a': 0.01, 'e': 0.999841296912883}",20,0,-69.72731347563251,"{0: 12, 1: 4, 2: 2, 3: 2, 4: 0}",0 +267,False,"{'a': 0.01, 'e': 0.9998331852679374}",20,0,-122.77757748651791,"{0: 14, 1: 1, 2: 1, 3: 2, 4: 2}",0 +268,False,"{'a': 0.01, 'e': 0.9998247088162959}",20,0,-153.57298973813835,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 3}",0 +269,False,"{'a': 0.01, 'e': 0.9998158536596993}",20,0,-75.50504089426593,"{0: 15, 1: 0, 2: 3, 3: 1, 4: 1}",0 +270,False,"{'a': 0.01, 'e': 0.9998066054832985}",35,0,-221.24600535339624,"{0: 17, 1: 5, 2: 10, 3: 0, 4: 3}",0 +271,False,"{'a': 0.01, 'e': 0.9997969495476435}",20,0,-144.86417882548017,"{0: 10, 1: 3, 2: 4, 3: 1, 4: 2}",0 +272,False,"{'a': 0.01, 'e': 0.9997868706806755}",20,0,-105.11819648129654,"{0: 11, 1: 4, 2: 2, 3: 2, 4: 1}",0 +273,False,"{'a': 0.01, 'e': 0.9997763532697268}",20,0,-167.99241317763514,"{0: 11, 1: 2, 2: 3, 3: 1, 4: 3}",0 +274,False,"{'a': 0.01, 'e': 0.9997653812535371}",20,0,-48.66315646664607,"{0: 13, 1: 3, 2: 3, 3: 1, 4: 0}",0 +275,False,"{'a': 0.01, 'e': 0.9997539381142903}",20,0,-87.79787442872096,"{0: 16, 1: 0, 2: 1, 3: 1, 4: 2}",0 +276,False,"{'a': 0.01, 'e': 0.9997420068696781}",30,0,-196.67862695852284,"{0: 18, 1: 1, 2: 7, 3: 1, 4: 3}",0 +277,False,"{'a': 0.01, 'e': 0.9997295700649981}",20,0,-82.4432108617424,"{0: 13, 1: 1, 2: 5, 3: 0, 4: 1}",0 +278,False,"{'a': 0.01, 'e': 0.9997166097652911}",20,0,-36.322497261404735,"{0: 13, 1: 3, 2: 4, 3: 0, 4: 0}",0 +279,False,"{'a': 0.01, 'e': 0.9997031075475249}",20,0,-165.94761296750224,"{0: 12, 1: 1, 2: 3, 3: 1, 4: 3}",0 +280,False,"{'a': 0.01, 'e': 0.9996890444928314}",20,0,-101.29363174510885,"{0: 13, 1: 2, 2: 1, 3: 3, 4: 1}",0 +281,False,"{'a': 0.01, 'e': 0.9996744011788034}",20,0,-88.44782852116904,"{0: 11, 1: 2, 2: 5, 3: 2, 4: 0}",0 +282,False,"{'a': 0.01, 'e': 0.9996591576718572}",25,0,-134.4701423119537,"{0: 16, 1: 0, 2: 5, 3: 3, 4: 1}",0 +283,False,"{'a': 0.01, 'e': 0.9996432935196692}",20,0,-148.83711860996712,"{0: 12, 1: 1, 2: 4, 3: 0, 4: 3}",0 +284,False,"{'a': 0.01, 'e': 0.9996267877436923}",20,0,-101.37615400084718,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 2}",0 +285,False,"{'a': 0.01, 'e': 0.9996096188317588}",20,0,-88.37247096909556,"{0: 10, 1: 2, 2: 7, 3: 1, 4: 0}",0 +286,False,"{'a': 0.01, 'e': 0.9995917647307776}",20,0,-119.13372569667038,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 2}",0 +287,False,"{'a': 0.01, 'e': 0.9995732028395332}",30,0,-161.20227059341872,"{0: 19, 1: 2, 2: 5, 3: 2, 4: 2}",0 +288,False,"{'a': 0.01, 'e': 0.999553910001591}",25,0,-120.27723365351723,"{0: 16, 1: 3, 2: 4, 3: 0, 4: 2}",0 +289,False,"{'a': 0.01, 'e': 0.9995338624983191}",20,0,-135.72042242358924,"{0: 12, 1: 0, 2: 5, 3: 1, 4: 2}",0 +290,False,"{'a': 0.01, 'e': 0.9995130360420322}",25,0,-206.4029491475348,"{0: 12, 1: 4, 2: 4, 3: 2, 4: 3}",0 +291,False,"{'a': 0.01, 'e': 0.9994914057692639}",30,0,-151.46903507611276,"{0: 20, 1: 3, 2: 4, 3: 0, 4: 3}",0 +292,False,"{'a': 0.01, 'e': 0.9994689462341764}",25,0,-105.88397800624597,"{0: 14, 1: 3, 2: 7, 3: 0, 4: 1}",0 +293,False,"{'a': 0.01, 'e': 0.9994456314021138}",20,0,-160.03932256707762,"{0: 9, 1: 2, 2: 6, 3: 1, 4: 2}",0 +294,False,"{'a': 0.01, 'e': 0.9994214346433057}",25,2,-20.120052858806957,"{0: 17, 1: 3, 2: 3, 3: 0, 4: 0}",1 +295,False,"{'a': 0.01, 'e': 0.9993963287267281}",20,0,-60.7357563206027,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +296,False,"{'a': 0.01, 'e': 0.9993702858141315}",30,3,-164.34491573496308,"{0: 15, 1: 3, 2: 6, 3: 1, 4: 2}",1 +297,False,"{'a': 0.01, 'e': 0.9993432774542378}",30,0,-292.49695566104157,"{0: 13, 1: 4, 2: 7, 3: 1, 4: 5}",0 +298,False,"{'a': 0.01, 'e': 0.9993152745771194}",25,0,-108.35425777119409,"{0: 13, 1: 4, 2: 6, 3: 2, 4: 0}",0 +299,False,"{'a': 0.01, 'e': 0.999286247488762}",35,0,-108.20695945342798,"{0: 24, 1: 3, 2: 6, 3: 1, 4: 1}",0 +300,False,"{'a': 0.01, 'e': 0.9992561658658218}",25,0,-37.370056466965515,"{0: 18, 1: 2, 2: 5, 3: 0, 4: 0}",0 +301,False,"{'a': 0.01, 'e': 0.9992249987505818}",25,0,-90.18233064920045,"{0: 17, 1: 1, 2: 6, 3: 0, 4: 1}",0 +302,False,"{'a': 0.01, 'e': 0.9991927145461152}",25,0,-353.2693446018085,"{0: 10, 1: 4, 2: 3, 3: 0, 4: 8}",0 +303,False,"{'a': 0.01, 'e': 0.9991592810116625}",30,0,-173.13217389619646,"{0: 18, 1: 3, 2: 6, 3: 0, 4: 3}",0 +304,False,"{'a': 0.01, 'e': 0.9991246652582276}",20,0,-102.17753869409745,"{0: 13, 1: 3, 2: 2, 3: 0, 4: 2}",0 +305,False,"{'a': 0.01, 'e': 0.9990888337444024}",20,0,-101.73932218817032,"{0: 12, 1: 1, 2: 5, 3: 1, 4: 1}",0 +306,False,"{'a': 0.01, 'e': 0.9990517522724225}",25,0,-123.58774952917821,"{0: 15, 1: 2, 2: 5, 3: 2, 4: 1}",0 +307,False,"{'a': 0.01, 'e': 0.9990133859844645}",20,0,-83.54422259535626,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 2}",0 +308,False,"{'a': 0.01, 'e': 0.9989736993591878}",35,21,-0.6599227026687737,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +309,False,"{'a': 0.01, 'e': 0.9989326562085287}",25,2,-124.80520381259916,"{0: 13, 1: 0, 2: 8, 3: 1, 4: 1}",1 +310,False,"{'a': 0.01, 'e': 0.998890219674753}",20,0,-108.2269158143673,"{0: 10, 1: 1, 2: 7, 3: 2, 4: 0}",0 +311,False,"{'a': 0.01, 'e': 0.9988463522277725}",30,0,-133.76092974320943,"{0: 17, 1: 6, 2: 4, 3: 2, 4: 1}",0 +312,False,"{'a': 0.01, 'e': 0.9988010156627302}",25,0,-162.0186347235251,"{0: 12, 1: 3, 2: 6, 3: 3, 4: 1}",0 +313,False,"{'a': 0.01, 'e': 0.9987541710978626}",30,0,-206.38710782272628,"{0: 15, 1: 3, 2: 9, 3: 0, 4: 3}",0 +314,False,"{'a': 0.01, 'e': 0.9987057789726415}",30,19,6.770987489836055,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +315,False,"{'a': 0.01, 'e': 0.9986557990462025}",25,0,-91.72135287357338,"{0: 18, 1: 3, 2: 2, 3: 0, 4: 2}",0 +316,False,"{'a': 0.01, 'e': 0.998604190396065}",30,0,-119.52409343842176,"{0: 17, 1: 2, 2: 9, 3: 2, 4: 0}",0 +317,False,"{'a': 0.01, 'e': 0.9985509114171481}",25,0,-118.12860218787455,"{0: 14, 1: 1, 2: 9, 3: 0, 4: 1}",0 +318,False,"{'a': 0.01, 'e': 0.9984959198210881}",25,0,-61.77192838968415,"{0: 19, 1: 1, 2: 4, 3: 0, 4: 1}",0 +319,False,"{'a': 0.01, 'e': 0.9984391726358613}",30,0,-82.48733174382504,"{0: 21, 1: 4, 2: 1, 3: 4, 4: 0}",0 +320,False,"{'a': 0.01, 'e': 0.9983806262057177}",25,0,-117.63687803330623,"{0: 15, 1: 4, 2: 4, 3: 0, 4: 2}",0 +321,False,"{'a': 0.01, 'e': 0.9983202361914283}",25,0,-187.8293889366448,"{0: 15, 1: 1, 2: 4, 3: 2, 4: 3}",0 +322,False,"{'a': 0.01, 'e': 0.9982579575708522}",20,0,-115.30793512092359,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +323,False,"{'a': 0.01, 'e': 0.9981937446398251}",20,0,-89.0468221957576,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",0 +324,False,"{'a': 0.01, 'e': 0.9981275510133739}",25,0,-140.33594670411574,"{0: 15, 1: 3, 2: 2, 3: 4, 4: 1}",0 +325,False,"{'a': 0.01, 'e': 0.998059329627262}",25,0,-72.06727872436555,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +326,False,"{'a': 0.01, 'e': 0.9979890327398656}",30,0,-201.26236871814132,"{0: 15, 1: 3, 2: 8, 3: 2, 4: 2}",0 +327,False,"{'a': 0.01, 'e': 0.9979166119343876}",20,0,-119.96340692757231,"{0: 13, 1: 2, 2: 1, 3: 2, 4: 2}",0 +328,False,"{'a': 0.01, 'e': 0.9978420181214084}",25,0,-105.48041980083308,"{0: 15, 1: 2, 2: 7, 3: 0, 4: 1}",0 +329,False,"{'a': 0.01, 'e': 0.9977652015417792}",25,0,-102.50499047006728,"{0: 17, 1: 4, 2: 0, 3: 3, 4: 1}",0 +330,False,"{'a': 0.01, 'e': 0.9976861117698579}",25,0,-126.21390424928867,"{0: 17, 1: 1, 2: 4, 3: 1, 4: 2}",0 +331,False,"{'a': 0.01, 'e': 0.9976046977170907}",25,9,-82.07059582332191,"{0: 6, 1: 3, 2: 6, 3: 1, 4: 0}",1 +332,False,"{'a': 0.01, 'e': 0.9975209076359415}",20,0,-113.40278567705508,"{0: 11, 1: 1, 2: 6, 3: 1, 4: 1}",0 +333,False,"{'a': 0.01, 'e': 0.9974346891241697}",20,6,-65.9163110192138,"{0: 9, 1: 2, 2: 1, 3: 1, 4: 1}",1 +334,False,"{'a': 0.01, 'e': 0.9973459891294587}",25,0,-209.76899635289075,"{0: 14, 1: 1, 2: 4, 3: 3, 4: 3}",0 +335,False,"{'a': 0.01, 'e': 0.9972547539543966}",30,2,-43.29171333978293,"{0: 22, 1: 3, 2: 2, 3: 0, 4: 1}",1 +336,False,"{'a': 0.01, 'e': 0.9971609292618074}",30,0,-171.4224684937884,"{0: 14, 1: 1, 2: 14, 3: 0, 4: 1}",0 +337,False,"{'a': 0.01, 'e': 0.997064460080438}",35,0,-270.4015535761975,"{0: 22, 1: 0, 2: 7, 3: 1, 4: 5}",0 +338,False,"{'a': 0.01, 'e': 0.9969652908109957}",20,0,-33.55076777887672,"{0: 14, 1: 3, 2: 3, 3: 0, 4: 0}",0 +339,False,"{'a': 0.01, 'e': 0.9968633652325415}",20,0,-56.70864037824692,"{0: 10, 1: 7, 2: 3, 3: 0, 4: 0}",0 +340,False,"{'a': 0.01, 'e': 0.9967586265092359}",20,0,-63.21117837283439,"{0: 13, 1: 0, 2: 6, 3: 1, 4: 0}",0 +341,False,"{'a': 0.01, 'e': 0.9966510171974376}",25,0,-129.42058826217993,"{0: 16, 1: 1, 2: 5, 3: 1, 4: 2}",0 +342,False,"{'a': 0.01, 'e': 0.9965404792531556}",30,0,-194.21610500315563,"{0: 16, 1: 4, 2: 6, 3: 1, 4: 3}",0 +343,False,"{'a': 0.01, 'e': 0.9964269540398515}",20,0,-51.314944365954595,"{0: 14, 1: 0, 2: 5, 3: 1, 4: 0}",0 +344,False,"{'a': 0.01, 'e': 0.9963103823365933}",20,0,-122.83890373235319,"{0: 10, 1: 3, 2: 4, 3: 2, 4: 1}",0 +345,False,"{'a': 0.01, 'e': 0.9961907043465583}",25,3,-73.93562454807598,"{0: 13, 1: 3, 2: 4, 3: 2, 4: 0}",1 +346,False,"{'a': 0.01, 'e': 0.9960678597058824}",20,0,-70.24876378988068,"{0: 11, 1: 3, 2: 5, 3: 1, 4: 0}",0 +347,False,"{'a': 0.01, 'e': 0.9959417874928564}",30,0,-169.136840402032,"{0: 17, 1: 5, 2: 4, 3: 2, 4: 2}",0 +348,False,"{'a': 0.01, 'e': 0.9958124262374644}",25,0,-183.85175097893332,"{0: 14, 1: 4, 2: 2, 3: 2, 4: 3}",0 +349,False,"{'a': 0.01, 'e': 0.9956797139312638}",25,0,-55.04479627828604,"{0: 18, 1: 1, 2: 5, 3: 1, 4: 0}",0 +350,False,"{'a': 0.01, 'e': 0.9955435880376043}",30,0,-115.74204568855413,"{0: 19, 1: 3, 2: 6, 3: 1, 4: 1}",0 +351,False,"{'a': 0.01, 'e': 0.9954039855021813}",25,0,-88.89358538704013,"{0: 16, 1: 2, 2: 6, 3: 0, 4: 1}",0 +352,False,"{'a': 0.01, 'e': 0.9952608427639225}",20,0,10.013980660295399,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +353,False,"{'a': 0.01, 'e': 0.9951140957662026}",20,0,-48.352575873822516,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +354,False,"{'a': 0.01, 'e': 0.9949636799683854}",20,0,-89.35126215975143,"{0: 8, 1: 4, 2: 8, 3: 0, 4: 0}",0 +355,False,"{'a': 0.01, 'e': 0.9948095303576853}",25,0,-54.23208068863278,"{0: 18, 1: 1, 2: 5, 3: 1, 4: 0}",0 +356,False,"{'a': 0.01, 'e': 0.9946515814613472}",20,0,-95.18134646777558,"{0: 10, 1: 5, 2: 2, 3: 3, 4: 0}",0 +357,False,"{'a': 0.01, 'e': 0.9944897673591406}",30,0,-96.63319299459512,"{0: 19, 1: 2, 2: 8, 3: 1, 4: 0}",0 +358,False,"{'a': 0.01, 'e': 0.9943240216961606}",25,0,-34.13909002644933,"{0: 19, 1: 2, 2: 4, 3: 0, 4: 0}",0 +359,False,"{'a': 0.01, 'e': 0.9941542776959346}",30,0,-190.17760069831792,"{0: 15, 1: 3, 2: 9, 3: 1, 4: 2}",0 +360,False,"{'a': 0.01, 'e': 0.9939804681738268}",20,0,-103.23363016797306,"{0: 11, 1: 1, 2: 7, 3: 0, 4: 1}",0 +361,False,"{'a': 0.01, 'e': 0.9938025255507373}",25,0,-172.33930697496766,"{0: 13, 1: 2, 2: 6, 3: 2, 4: 2}",0 +362,False,"{'a': 0.01, 'e': 0.9936203818670895}",35,0,-104.07236982840253,"{0: 19, 1: 6, 2: 10, 3: 0, 4: 0}",0 +363,False,"{'a': 0.01, 'e': 0.9934339687970994}",25,0,-170.70022787112347,"{0: 11, 1: 1, 2: 10, 3: 2, 4: 1}",0 +364,False,"{'a': 0.01, 'e': 0.9932432176633245}",20,0,-187.51240929393714,"{0: 8, 1: 5, 2: 3, 3: 1, 4: 3}",0 +365,False,"{'a': 0.01, 'e': 0.9930480594514801}",25,0,-163.22753505887454,"{0: 16, 1: 2, 2: 3, 3: 1, 4: 3}",0 +366,False,"{'a': 0.01, 'e': 0.9928484248255242}",25,0,-95.50267419909623,"{0: 15, 1: 5, 2: 3, 3: 1, 4: 1}",0 +367,False,"{'a': 0.01, 'e': 0.9926442441429985}",25,0,-100.35261905847892,"{0: 19, 1: 2, 2: 1, 3: 1, 4: 2}",0 +368,False,"{'a': 0.01, 'e': 0.9924354474706218}",30,0,-284.32313110495085,"{0: 18, 1: 2, 2: 3, 3: 1, 4: 6}",1 +369,False,"{'a': 0.01, 'e': 0.9922219646001302}",25,0,-59.66253713758722,"{0: 17, 1: 3, 2: 4, 3: 1, 4: 0}",0 +370,False,"{'a': 0.01, 'e': 0.9920037250643534}",30,0,-149.23433095434902,"{0: 20, 1: 3, 2: 4, 3: 0, 4: 3}",0 +371,False,"{'a': 0.01, 'e': 0.9917806581535238}",20,0,-85.9635559224643,"{0: 12, 1: 2, 2: 5, 3: 0, 4: 1}",0 +372,False,"{'a': 0.01, 'e': 0.9915526929318095}",20,0,-28.008048780682348,"{0: 16, 1: 1, 2: 2, 3: 1, 4: 0}",0 +373,False,"{'a': 0.01, 'e': 0.9913197582540637}",25,0,-167.31335826369065,"{0: 14, 1: 3, 2: 5, 3: 0, 4: 3}",0 +374,False,"{'a': 0.01, 'e': 0.9910817827827837}",25,0,-114.08471979569536,"{0: 17, 1: 0, 2: 5, 3: 2, 4: 1}",0 +375,False,"{'a': 0.01, 'e': 0.9908386950052709}",25,0,-112.33840069613787,"{0: 16, 1: 2, 2: 5, 3: 0, 4: 2}",0 +376,False,"{'a': 0.01, 'e': 0.9905904232509857}",20,0,-75.43323527553703,"{0: 11, 1: 4, 2: 3, 3: 2, 4: 0}",0 +377,False,"{'a': 0.01, 'e': 0.9903368957090867}",20,0,-116.68014585471182,"{0: 10, 1: 4, 2: 3, 3: 2, 4: 1}",0 +378,False,"{'a': 0.01, 'e': 0.9900780404461491}",20,0,-37.73192014469274,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +379,False,"{'a': 0.01, 'e': 0.9898137854240523}",25,0,-136.62945003455093,"{0: 15, 1: 1, 2: 7, 3: 0, 4: 2}",0 +380,False,"{'a': 0.01, 'e': 0.989544058518029}",20,0,-90.88704532162232,"{0: 11, 1: 5, 2: 2, 3: 1, 4: 1}",0 +381,False,"{'a': 0.01, 'e': 0.9892687875348666}",30,0,-249.80665536543452,"{0: 14, 1: 3, 2: 7, 3: 3, 4: 3}",0 +382,False,"{'a': 0.01, 'e': 0.9889879002312549}",20,0,-145.65252468855374,"{0: 10, 1: 2, 2: 6, 3: 0, 4: 2}",0 +383,False,"{'a': 0.01, 'e': 0.9887013243322682}",30,12,-22.489714649012736,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 0}",1 +384,False,"{'a': 0.01, 'e': 0.988408987549976}",20,0,-152.7212801432749,"{0: 11, 1: 0, 2: 5, 3: 2, 4: 2}",0 +385,False,"{'a': 0.01, 'e': 0.9881108176021713}",25,7,-181.93955510146017,"{0: 5, 1: 6, 2: 4, 3: 0, 4: 3}",1 +386,False,"{'a': 0.01, 'e': 0.9878067422312107}",25,13,-3.7385271862497595,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +387,False,"{'a': 0.01, 'e': 0.9874966892229532}",20,0,-168.04514383244626,"{0: 12, 1: 0, 2: 4, 3: 1, 4: 3}",0 +388,False,"{'a': 0.01, 'e': 0.9871805864257939}",25,0,-53.31741778994148,"{0: 20, 1: 0, 2: 2, 3: 3, 4: 0}",0 +389,False,"{'a': 0.01, 'e': 0.9868583617697787}",20,0,-84.07063545872634,"{0: 13, 1: 2, 2: 3, 3: 1, 4: 1}",0 +390,False,"{'a': 0.01, 'e': 0.9865299432857954}",25,0,-100.83281837649095,"{0: 17, 1: 5, 2: 1, 3: 0, 4: 2}",0 +391,False,"{'a': 0.01, 'e': 0.9861952591248283}",25,0,-145.69157051093248,"{0: 14, 1: 3, 2: 5, 3: 1, 4: 2}",0 +392,False,"{'a': 0.01, 'e': 0.9858542375772709}",20,10,-125.53018440607246,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 3}",1 +393,False,"{'a': 0.01, 'e': 0.9855068070922844}",25,0,-213.18327805574881,"{0: 14, 1: 2, 2: 4, 3: 1, 4: 4}",0 +394,False,"{'a': 0.01, 'e': 0.9851528962971958}",25,0,-128.81707438035752,"{0: 12, 1: 3, 2: 7, 3: 3, 4: 0}",0 +395,False,"{'a': 0.01, 'e': 0.9847924340169235}",35,0,-287.99467220828603,"{0: 16, 1: 4, 2: 9, 3: 2, 4: 4}",0 +396,False,"{'a': 0.01, 'e': 0.9844253492934247}",20,0,-206.98815292059524,"{0: 9, 1: 1, 2: 6, 3: 0, 4: 4}",0 +397,False,"{'a': 0.01, 'e': 0.9840515714051531}",20,0,-125.17240663681672,"{0: 11, 1: 3, 2: 3, 3: 1, 4: 2}",1 +398,False,"{'a': 0.01, 'e': 0.9836710298865177}",25,0,-116.58255315087314,"{0: 14, 1: 5, 2: 3, 3: 2, 4: 1}",0 +399,False,"{'a': 0.01, 'e': 0.9832836545473361}",25,15,0.2133505304096599,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +400,False,"{'a': 0.01, 'e': 0.9828893754922708}",35,0,-180.0036318672481,"{0: 23, 1: 2, 2: 5, 3: 3, 4: 2}",0 +401,False,"{'a': 0.01, 'e': 0.9824881231402404}",20,0,-66.66188808350644,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",0 +402,False,"{'a': 0.01, 'e': 0.9820798282437971}",25,0,-95.07000984643449,"{0: 14, 1: 2, 2: 8, 3: 1, 4: 0}",0 +403,False,"{'a': 0.01, 'e': 0.9816644219084611}",20,0,-149.49870706605984,"{0: 12, 1: 1, 2: 4, 3: 0, 4: 3}",0 +404,False,"{'a': 0.01, 'e': 0.9812418356120038}",30,0,-168.4274011685765,"{0: 16, 1: 4, 2: 7, 3: 1, 4: 2}",0 +405,False,"{'a': 0.01, 'e': 0.9808120012236693}",20,0,-54.813534759913,"{0: 12, 1: 3, 2: 5, 3: 0, 4: 0}",0 +406,False,"{'a': 0.01, 'e': 0.9803748510233277}",25,0,-130.5483782427864,"{0: 15, 1: 3, 2: 4, 3: 1, 4: 2}",1 +407,False,"{'a': 0.01, 'e': 0.9799303177205503}",20,0,-175.4966025825197,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 3}",0 +408,False,"{'a': 0.01, 'e': 0.9794783344735979}",20,0,-123.53006986869157,"{0: 13, 1: 2, 2: 1, 3: 2, 4: 2}",0 +409,False,"{'a': 0.01, 'e': 0.9790188349083143}",25,0,-77.29662483128666,"{0: 17, 1: 1, 2: 5, 3: 2, 4: 0}",0 +410,False,"{'a': 0.01, 'e': 0.9785517531369163}",30,0,-282.6169100174704,"{0: 15, 1: 1, 2: 8, 3: 1, 4: 5}",0 +411,False,"{'a': 0.01, 'e': 0.978077023776672}",25,0,-98.22053344593589,"{0: 14, 1: 5, 2: 5, 3: 0, 4: 1}",0 +412,False,"{'a': 0.01, 'e': 0.977594581968459}",20,0,-131.07514965408677,"{0: 14, 1: 1, 2: 1, 3: 1, 4: 3}",0 +413,False,"{'a': 0.01, 'e': 0.9771043633951942}",25,0,-103.31787392834623,"{0: 18, 1: 0, 2: 4, 3: 2, 4: 1}",0 +414,False,"{'a': 0.01, 'e': 0.9766063043001277}",20,0,-102.77391804205214,"{0: 11, 1: 0, 2: 8, 3: 0, 4: 1}",0 +415,False,"{'a': 0.01, 'e': 0.9761003415049928}",25,8,-92.17855371813289,"{0: 10, 1: 1, 2: 4, 3: 1, 4: 1}",1 +416,False,"{'a': 0.01, 'e': 0.975586412428003}",20,6,-87.12335488920432,"{0: 9, 1: 2, 2: 1, 3: 0, 4: 2}",1 +417,False,"{'a': 0.01, 'e': 0.9750644551016904}",25,0,-78.59276501680958,"{0: 18, 1: 1, 2: 3, 3: 3, 4: 0}",0 +418,False,"{'a': 0.01, 'e': 0.9745344081905762}",25,0,-133.10774889537248,"{0: 16, 1: 3, 2: 2, 3: 2, 4: 2}",0 +419,False,"{'a': 0.01, 'e': 0.9739962110086671}",35,0,-176.47801038433107,"{0: 20, 1: 4, 2: 6, 3: 4, 4: 1}",0 +420,False,"{'a': 0.01, 'e': 0.9734498035367685}",20,0,-150.76951376320406,"{0: 11, 1: 3, 2: 3, 3: 0, 4: 3}",0 +421,False,"{'a': 0.01, 'e': 0.97289512643961}",25,0,-38.76083496600148,"{0: 20, 1: 0, 2: 4, 3: 1, 4: 0}",0 +422,False,"{'a': 0.01, 'e': 0.9723321210827733}",35,0,-182.3597695655694,"{0: 20, 1: 6, 2: 5, 3: 2, 4: 2}",0 +423,False,"{'a': 0.01, 'e': 0.9717607295494182}",25,0,-82.19489725714509,"{0: 19, 1: 1, 2: 2, 3: 2, 4: 1}",0 +424,False,"{'a': 0.01, 'e': 0.971180894656797}",20,0,-90.28663848699533,"{0: 12, 1: 1, 2: 6, 3: 0, 4: 1}",0 +425,False,"{'a': 0.01, 'e': 0.9705925599725539}",20,0,-56.13665527107514,"{0: 14, 1: 3, 2: 0, 3: 3, 4: 0}",0 +426,False,"{'a': 0.01, 'e': 0.9699956698308004}",25,0,-212.7172039273095,"{0: 14, 1: 0, 2: 7, 3: 0, 4: 4}",0 +427,False,"{'a': 0.01, 'e': 0.9693901693479618}",25,0,-48.45242113664402,"{0: 18, 1: 1, 2: 6, 3: 0, 4: 0}",0 +428,False,"{'a': 0.01, 'e': 0.9687760044383881}",20,0,-133.895828419874,"{0: 11, 1: 0, 2: 7, 3: 0, 4: 2}",0 +429,False,"{'a': 0.01, 'e': 0.9681531218297229}",20,0,-145.83051137999945,"{0: 10, 1: 3, 2: 4, 3: 1, 4: 2}",0 +430,False,"{'a': 0.01, 'e': 0.9675214690780263}",30,0,-119.9260968234016,"{0: 19, 1: 4, 2: 4, 3: 2, 4: 1}",0 +431,False,"{'a': 0.01, 'e': 0.9668809945826428}",25,0,-310.37777123396654,"{0: 11, 1: 3, 2: 3, 3: 2, 4: 6}",0 +432,False,"{'a': 0.01, 'e': 0.9662316476008126}",30,12,-38.401709906239866,"{0: 14, 1: 2, 2: 1, 3: 0, 4: 1}",1 +433,False,"{'a': 0.01, 'e': 0.9655733782620177}",20,0,-60.351258595257384,"{0: 15, 1: 2, 2: 1, 3: 1, 4: 1}",0 +434,False,"{'a': 0.01, 'e': 0.96490613758206}",25,0,-171.2279752886967,"{0: 14, 1: 2, 2: 4, 3: 3, 4: 2}",0 +435,False,"{'a': 0.01, 'e': 0.9642298774768644}",20,0,-115.18763695990123,"{0: 12, 1: 3, 2: 3, 3: 0, 4: 2}",0 +436,False,"{'a': 0.01, 'e': 0.963544550776004}",25,0,-201.23702594503825,"{0: 14, 1: 4, 2: 2, 3: 1, 4: 4}",0 +437,False,"{'a': 0.01, 'e': 0.9628501112359411}",20,0,-120.60560349963768,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",0 +438,False,"{'a': 0.01, 'e': 0.9621465135529805}",20,0,-40.99021338221495,"{0: 16, 1: 0, 2: 2, 3: 2, 4: 0}",0 +439,False,"{'a': 0.01, 'e': 0.9614337133759312}",30,0,-28.399752825490136,"{0: 25, 1: 1, 2: 3, 3: 1, 4: 0}",0 +440,False,"{'a': 0.01, 'e': 0.9607116673184701}",25,8,-59.006320021379764,"{0: 9, 1: 4, 2: 3, 3: 1, 4: 0}",1 +441,False,"{'a': 0.01, 'e': 0.9599803329712078}",25,0,-118.40024680121664,"{0: 13, 1: 4, 2: 5, 3: 3, 4: 0}",0 +442,False,"{'a': 0.01, 'e': 0.959239668913448}",30,0,-98.06512397542288,"{0: 17, 1: 8, 2: 4, 3: 0, 4: 1}",0 +443,False,"{'a': 0.01, 'e': 0.9584896347246411}",20,0,-90.53375429907074,"{0: 13, 1: 1, 2: 2, 3: 4, 4: 0}",0 +444,False,"{'a': 0.01, 'e': 0.9577301909955256}",20,0,-24.308938538876777,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +445,False,"{'a': 0.01, 'e': 0.9569612993389558}",25,0,-91.63791458789251,"{0: 16, 1: 4, 2: 3, 3: 1, 4: 1}",0 +446,False,"{'a': 0.01, 'e': 0.9561829224004125}",25,0,-173.49581410668313,"{0: 11, 1: 4, 2: 8, 3: 0, 4: 2}",0 +447,False,"{'a': 0.01, 'e': 0.9553950238681933}",25,0,-252.2719761178048,"{0: 10, 1: 3, 2: 7, 3: 1, 4: 4}",0 +448,False,"{'a': 0.01, 'e': 0.95459756848328}",25,0,-182.51913799176603,"{0: 12, 1: 2, 2: 8, 3: 1, 4: 2}",0 +449,False,"{'a': 0.01, 'e': 0.9537905220488812}",30,0,-169.93958321368245,"{0: 19, 1: 1, 2: 7, 3: 0, 4: 3}",0 +450,False,"{'a': 0.01, 'e': 0.9529738514396466}",20,0,-106.67352999952895,"{0: 13, 1: 0, 2: 4, 3: 2, 4: 1}",0 +451,False,"{'a': 0.01, 'e': 0.9521475246105532}",25,9,-11.205657472239032,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 0}",1 +452,False,"{'a': 0.01, 'e': 0.9513115106054575}",20,0,-132.74073140094652,"{0: 13, 1: 0, 2: 3, 3: 2, 4: 2}",0 +453,False,"{'a': 0.01, 'e': 0.9504657795653166}",30,0,-72.69657314271385,"{0: 22, 1: 3, 2: 4, 3: 0, 4: 1}",0 +454,False,"{'a': 0.01, 'e': 0.9496103027360734}",20,10,-44.29973953166131,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 1}",1 +455,False,"{'a': 0.01, 'e': 0.9487450524762047}",25,0,-159.02027456196905,"{0: 11, 1: 5, 2: 7, 3: 0, 4: 2}",0 +456,False,"{'a': 0.01, 'e': 0.9478700022639327}",20,0,-154.57049452761254,"{0: 12, 1: 1, 2: 4, 3: 0, 4: 3}",0 +457,False,"{'a': 0.01, 'e': 0.946985126704098}",20,0,-90.16328314492573,"{0: 9, 1: 3, 2: 7, 3: 1, 4: 0}",0 +458,False,"{'a': 0.01, 'e': 0.9460904015346914}",20,0,-51.744797547457594,"{0: 13, 1: 1, 2: 5, 3: 1, 4: 0}",0 +459,False,"{'a': 0.01, 'e': 0.9451858036330476}",25,0,-135.61972580065222,"{0: 15, 1: 2, 2: 6, 3: 0, 4: 2}",0 +460,False,"{'a': 0.01, 'e': 0.944271311021696}",30,0,-172.57933193649134,"{0: 19, 1: 1, 2: 5, 3: 3, 4: 2}",0 +461,False,"{'a': 0.01, 'e': 0.9433469028738721}",25,0,-124.54602194875571,"{0: 11, 1: 2, 2: 11, 3: 1, 4: 0}",0 +462,False,"{'a': 0.01, 'e': 0.9424125595186856}",25,0,-167.4633766325,"{0: 13, 1: 2, 2: 7, 3: 1, 4: 2}",0 +463,False,"{'a': 0.01, 'e': 0.9414682624459486}",20,0,-59.2192268728768,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +464,False,"{'a': 0.01, 'e': 0.9405139943106617}",30,0,-169.37273490163454,"{0: 22, 1: 2, 2: 2, 3: 0, 4: 4}",0 +465,False,"{'a': 0.01, 'e': 0.9395497389371583}",30,0,-118.06210530608581,"{0: 20, 1: 4, 2: 4, 3: 0, 4: 2}",0 +466,False,"{'a': 0.01, 'e': 0.9385754813229101}",30,0,-83.94752255390698,"{0: 20, 1: 6, 2: 2, 3: 1, 4: 1}",0 +467,False,"{'a': 0.01, 'e': 0.9375912076419907}",25,0,-89.64384563959732,"{0: 17, 1: 1, 2: 6, 3: 0, 4: 1}",0 +468,False,"{'a': 0.01, 'e': 0.9365969052482003}",30,1,-111.24178119908316,"{0: 21, 1: 1, 2: 5, 3: 0, 4: 2}",1 +469,False,"{'a': 0.01, 'e': 0.9355925626778525}",25,10,-42.52143057647066,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 1}",1 +470,False,"{'a': 0.01, 'e': 0.9345781696522235}",20,0,-102.76408258773864,"{0: 13, 1: 3, 2: 2, 3: 0, 4: 2}",0 +471,False,"{'a': 0.01, 'e': 0.9335537170796644}",25,0,-103.95079093860372,"{0: 13, 1: 6, 2: 5, 3: 0, 4: 1}",0 +472,False,"{'a': 0.01, 'e': 0.9325191970573792}",30,14,-83.64585182734956,"{0: 8, 1: 1, 2: 5, 3: 2, 4: 0}",1 +473,False,"{'a': 0.01, 'e': 0.93147460287287}",35,0,-145.5661630614413,"{0: 23, 1: 4, 2: 3, 3: 4, 4: 1}",0 +474,False,"{'a': 0.01, 'e': 0.9304199290050486}",20,0,-79.07737190785902,"{0: 13, 1: 1, 2: 3, 3: 3, 4: 0}",0 +475,False,"{'a': 0.01, 'e': 0.9293551711250201}",30,0,-133.53827388095814,"{0: 20, 1: 1, 2: 7, 3: 0, 4: 2}",0 +476,False,"{'a': 0.01, 'e': 0.9282803260965373}",20,13,-33.25608466282155,"{0: 4, 1: 0, 2: 2, 3: 1, 4: 0}",1 +477,False,"{'a': 0.01, 'e': 0.9271953919761288}",20,0,-76.93391563735244,"{0: 14, 1: 1, 2: 3, 3: 1, 4: 1}",0 +478,False,"{'a': 0.01, 'e': 0.9261003680129034}",20,0,-25.236950657817726,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 0}",0 +479,False,"{'a': 0.01, 'e': 0.9249952546480336}",25,0,-64.18714340632552,"{0: 18, 1: 0, 2: 5, 3: 2, 4: 0}",0 +480,False,"{'a': 0.01, 'e': 0.9238800535139181}",20,0,-53.60692971586265,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 1}",0 +481,False,"{'a': 0.01, 'e': 0.9227547674330292}",25,9,-107.62895726608855,"{0: 10, 1: 2, 2: 1, 3: 1, 4: 2}",1 +482,False,"{'a': 0.01, 'e': 0.9216194004164453}",35,0,-70.48627603635056,"{0: 28, 1: 0, 2: 5, 3: 1, 4: 1}",0 +483,False,"{'a': 0.01, 'e': 0.9204739576620717}",30,0,-147.40285597862214,"{0: 16, 1: 3, 2: 9, 3: 1, 4: 1}",0 +484,False,"{'a': 0.01, 'e': 0.9193184455525533}",25,0,-95.2937227089029,"{0: 13, 1: 3, 2: 9, 3: 0, 4: 0}",0 +485,False,"{'a': 0.01, 'e': 0.9181528716528818}",20,8,-20.760401054691815,"{0: 8, 1: 1, 2: 3, 3: 0, 4: 0}",1 +486,False,"{'a': 0.01, 'e': 0.9169772447077007}",30,0,-183.3561608529749,"{0: 16, 1: 2, 2: 9, 3: 1, 4: 2}",0 +487,False,"{'a': 0.01, 'e': 0.9157915746383097}",20,0,-124.55929374400361,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",0 +488,False,"{'a': 0.01, 'e': 0.9145958725393748}",20,0,-158.39288107361187,"{0: 10, 1: 0, 2: 7, 3: 1, 4: 2}",0 +489,False,"{'a': 0.01, 'e': 0.9133901506753439}",30,0,-79.12373964044991,"{0: 20, 1: 4, 2: 4, 3: 2, 4: 0}",0 +490,False,"{'a': 0.01, 'e': 0.9121744224765755}",20,0,-82.29507763928267,"{0: 14, 1: 0, 2: 4, 3: 1, 4: 1}",0 +491,False,"{'a': 0.01, 'e': 0.910948702535179}",25,0,-122.65813909925876,"{0: 15, 1: 5, 2: 3, 3: 0, 4: 2}",0 +492,False,"{'a': 0.01, 'e': 0.9097130066005754}",25,0,-80.55818751892177,"{0: 18, 1: 1, 2: 4, 3: 1, 4: 1}",0 +493,False,"{'a': 0.01, 'e': 0.9084673515747783}",25,0,-125.20066695566955,"{0: 13, 1: 7, 2: 3, 3: 0, 4: 2}",0 +494,False,"{'a': 0.01, 'e': 0.9072117555074012}",20,0,-2.784333358134701,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +495,False,"{'a': 0.01, 'e': 0.9059462375903932}",20,0,-142.29255149124776,"{0: 9, 1: 0, 2: 9, 3: 1, 4: 1}",0 +496,False,"{'a': 0.01, 'e': 0.9046708181525095}",25,18,-0.5188286910287778,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +497,False,"{'a': 0.01, 'e': 0.9033855186535173}",30,0,-129.0653503725178,"{0: 17, 1: 4, 2: 7, 3: 1, 4: 1}",0 +498,False,"{'a': 0.01, 'e': 0.9020903616781457}",20,0,-53.748785283468116,"{0: 16, 1: 0, 2: 3, 3: 0, 4: 1}",0 +499,False,"{'a': 0.01, 'e': 0.9007853709297787}",20,0,-74.07665823877556,"{0: 11, 1: 2, 2: 6, 3: 1, 4: 0}",0 +500,False,"{'a': 0.01, 'e': 0.8994705712238998}",20,0,-15.559959521786197,"{0: 15, 1: 3, 2: 2, 3: 0, 4: 0}",0 +501,False,"{'a': 0.01, 'e': 0.8981459884812897}",25,0,-148.48157179116706,"{0: 16, 1: 3, 2: 3, 3: 0, 4: 3}",0 +502,False,"{'a': 0.01, 'e': 0.8968116497209826}",25,14,3.377918229380145,"{0: 9, 1: 2, 2: 0, 3: 0, 4: 0}",1 +503,False,"{'a': 0.01, 'e': 0.8954675830529867}",20,0,-80.10517174705879,"{0: 12, 1: 1, 2: 5, 3: 2, 4: 0}",0 +504,False,"{'a': 0.01, 'e': 0.8941138176707689}",20,0,-89.21935351836208,"{0: 12, 1: 2, 2: 5, 3: 0, 4: 1}",0 +505,False,"{'a': 0.01, 'e': 0.8927503838435148}",20,0,-32.863484040283616,"{0: 15, 1: 1, 2: 4, 3: 0, 4: 0}",0 +506,False,"{'a': 0.01, 'e': 0.8913773129081624}",20,0,-29.18072226094853,"{0: 15, 1: 1, 2: 4, 3: 0, 4: 0}",0 +507,False,"{'a': 0.01, 'e': 0.8899946372612175}",25,0,-188.06600976045115,"{0: 14, 1: 1, 2: 6, 3: 1, 4: 3}",0 +508,False,"{'a': 0.01, 'e': 0.8886023903503549}",25,0,-61.31874163526837,"{0: 19, 1: 1, 2: 4, 3: 0, 4: 1}",0 +509,False,"{'a': 0.01, 'e': 0.887200606665809}",30,0,-135.91166321954438,"{0: 20, 1: 2, 2: 5, 3: 1, 4: 2}",0 +510,False,"{'a': 0.01, 'e': 0.885789321731559}",20,0,-110.89561227894151,"{0: 12, 1: 3, 2: 3, 3: 0, 4: 2}",0 +511,False,"{'a': 0.01, 'e': 0.8843685720963146}",25,9,-28.369277681505245,"{0: 11, 1: 1, 2: 4, 3: 0, 4: 0}",1 +512,False,"{'a': 0.01, 'e': 0.8829383953243045}",25,0,-183.08628247260035,"{0: 14, 1: 2, 2: 4, 3: 2, 4: 3}",0 +513,False,"{'a': 0.01, 'e': 0.8814988299858748}",25,0,-165.96616585936152,"{0: 15, 1: 1, 2: 6, 3: 0, 4: 3}",0 +514,False,"{'a': 0.01, 'e': 0.8800499156479002}",20,0,-180.604104917569,"{0: 10, 1: 1, 2: 5, 3: 1, 4: 3}",0 +515,False,"{'a': 0.01, 'e': 0.8785916928640145}",25,0,-47.67400118498065,"{0: 21, 1: 0, 2: 3, 3: 0, 4: 1}",0 +516,False,"{'a': 0.01, 'e': 0.8771242031646634}",25,0,-149.36252628338343,"{0: 16, 1: 1, 2: 4, 3: 2, 4: 2}",0 +517,False,"{'a': 0.01, 'e': 0.8756474890469857}",35,0,-358.08816177631724,"{0: 17, 1: 0, 2: 10, 3: 2, 4: 6}",0 +518,False,"{'a': 0.01, 'e': 0.8741615939645283}",25,0,-74.75969901504666,"{0: 17, 1: 3, 2: 4, 3: 0, 4: 1}",0 +519,False,"{'a': 0.01, 'e': 0.872666562316797}",20,0,-150.472902218535,"{0: 11, 1: 1, 2: 4, 3: 2, 4: 2}",0 +520,False,"{'a': 0.01, 'e': 0.8711624394386511}",20,5,-69.03763718753558,"{0: 10, 1: 1, 2: 2, 3: 1, 4: 1}",1 +521,False,"{'a': 0.01, 'e': 0.8696492715895456}",25,0,-173.96253463618905,"{0: 13, 1: 3, 2: 6, 3: 0, 4: 3}",0 +522,False,"{'a': 0.01, 'e': 0.8681271059426243}",20,0,-73.82988638776723,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",0 +523,False,"{'a': 0.01, 'e': 0.8665959905736709}",25,0,-117.50300530953528,"{0: 16, 1: 0, 2: 6, 3: 2, 4: 1}",0 +524,False,"{'a': 0.01, 'e': 0.8650559744499218}",25,0,-147.65904939766503,"{0: 15, 1: 3, 2: 3, 3: 2, 4: 2}",0 +525,False,"{'a': 0.01, 'e': 0.8635071074187454}",25,0,-163.6739816685214,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 4}",0 +526,False,"{'a': 0.01, 'e': 0.8619494401961929}",25,0,-99.70422328191941,"{0: 17, 1: 2, 2: 3, 3: 2, 4: 1}",0 +527,False,"{'a': 0.01, 'e': 0.8603830243554254}",35,0,-94.65824071074174,"{0: 25, 1: 0, 2: 9, 3: 0, 4: 1}",0 +528,False,"{'a': 0.01, 'e': 0.8588079123150218}",20,0,-32.908626937527806,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +529,False,"{'a': 0.01, 'e': 0.8572241573271739}",30,0,-106.82504684251435,"{0: 20, 1: 1, 2: 7, 3: 1, 4: 1}",0 +530,False,"{'a': 0.01, 'e': 0.8556318134657691}",20,0,-16.267527835409734,"{0: 15, 1: 4, 2: 1, 3: 0, 4: 0}",0 +531,False,"{'a': 0.01, 'e': 0.8540309356143722}",25,0,-87.95721655734665,"{0: 13, 1: 7, 2: 3, 3: 2, 4: 0}",0 +532,False,"{'a': 0.01, 'e': 0.8524215794541039}",20,0,-57.30727330135923,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",1 +533,False,"{'a': 0.01, 'e': 0.8508038014514271}",30,1,-66.39630179398272,"{0: 23, 1: 1, 2: 3, 3: 1, 4: 1}",1 +534,False,"{'a': 0.01, 'e': 0.8491776588458393}",20,0,-32.2796318346858,"{0: 14, 1: 3, 2: 2, 3: 1, 4: 0}",0 +535,False,"{'a': 0.01, 'e': 0.8475432096374821}",20,0,-76.5233070431432,"{0: 15, 1: 1, 2: 1, 3: 2, 4: 1}",0 +536,False,"{'a': 0.01, 'e': 0.845900512574667}",25,0,-52.94567633990202,"{0: 18, 1: 4, 2: 2, 3: 0, 4: 1}",0 +537,False,"{'a': 0.01, 'e': 0.8442496271413265}",20,0,-181.5143360491656,"{0: 12, 1: 1, 2: 1, 3: 3, 4: 3}",0 +538,False,"{'a': 0.01, 'e': 0.842590613544391}",20,0,-96.60348724636907,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 2}",0 +539,False,"{'a': 0.01, 'e': 0.8409235327010998}",20,0,-107.36810577620598,"{0: 10, 1: 4, 2: 4, 3: 1, 4: 1}",0 +540,False,"{'a': 0.01, 'e': 0.8392484462262467}",30,0,-152.95803010168405,"{0: 14, 1: 6, 2: 8, 3: 1, 4: 1}",0 +541,False,"{'a': 0.01, 'e': 0.83756541641937}",20,12,1.4999704152140587,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +542,False,"{'a': 0.01, 'e': 0.8358745062518844}",20,12,-39.52497763067685,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 1}",1 +543,False,"{'a': 0.01, 'e': 0.8341757793541661}",25,0,-100.35678323035468,"{0: 14, 1: 6, 2: 3, 3: 1, 4: 1}",0 +544,False,"{'a': 0.01, 'e': 0.8324693000025902}",25,9,-68.30438840968742,"{0: 9, 1: 2, 2: 3, 3: 2, 4: 0}",1 +545,False,"{'a': 0.01, 'e': 0.8307551331065279}",25,0,-26.685749538090125,"{0: 17, 1: 6, 2: 2, 3: 0, 4: 0}",0 +546,False,"{'a': 0.01, 'e': 0.8290333441953053}",20,0,-11.141768281387364,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +547,False,"{'a': 0.01, 'e': 0.8273039994051308}",20,0,-9.302134493742926,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +548,False,"{'a': 0.01, 'e': 0.8255671654659922}",20,0,-83.37550678553781,"{0: 12, 1: 0, 2: 6, 3: 2, 4: 0}",0 +549,False,"{'a': 0.01, 'e': 0.8238229096885301}",25,0,-97.13387186074947,"{0: 17, 1: 2, 2: 3, 3: 2, 4: 1}",0 +550,False,"{'a': 0.01, 'e': 0.8220712999508903}",20,9,7.769594895728068,"{0: 9, 1: 2, 2: 0, 3: 0, 4: 0}",1 +551,False,"{'a': 0.01, 'e': 0.8203124046855597}",25,0,-66.00137343043824,"{0: 19, 1: 1, 2: 2, 3: 3, 4: 0}",0 +552,False,"{'a': 0.01, 'e': 0.8185462928661886}",20,0,-42.84894925019811,"{0: 14, 1: 2, 2: 3, 3: 1, 4: 0}",0 +553,False,"{'a': 0.01, 'e': 0.8167730339944063}",20,2,-18.246185330007172,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 0}",1 +554,False,"{'a': 0.01, 'e': 0.8149926980866289}",25,0,-53.826611161757334,"{0: 20, 1: 2, 2: 1, 3: 1, 4: 1}",0 +555,False,"{'a': 0.01, 'e': 0.8132053556608694}",30,0,-192.02684412968716,"{0: 20, 1: 2, 2: 4, 3: 0, 4: 4}",0 +556,False,"{'a': 0.01, 'e': 0.8114110777235461}",25,0,-82.85098367432651,"{0: 18, 1: 3, 2: 1, 3: 2, 4: 1}",0 +557,False,"{'a': 0.01, 'e': 0.8096099357563025}",20,0,-129.58728392672512,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 2}",0 +558,False,"{'a': 0.01, 'e': 0.807802001702832}",20,0,-103.20034084287566,"{0: 10, 1: 5, 2: 3, 3: 1, 4: 1}",0 +559,False,"{'a': 0.01, 'e': 0.8059873479557205}",20,9,-34.815764163460585,"{0: 8, 1: 0, 2: 1, 3: 2, 4: 0}",1 +560,False,"{'a': 0.01, 'e': 0.8041660473433025}",20,4,-44.66184637595348,"{0: 11, 1: 1, 2: 2, 3: 2, 4: 0}",1 +561,False,"{'a': 0.01, 'e': 0.8023381731165407}",30,0,-143.12537950177736,"{0: 19, 1: 3, 2: 5, 3: 1, 4: 2}",0 +562,False,"{'a': 0.01, 'e': 0.8005037989359268}",30,0,-37.85910606483458,"{0: 21, 1: 5, 2: 4, 3: 0, 4: 0}",0 +563,False,"{'a': 0.01, 'e': 0.7986629988584124}",25,0,-110.41895511993752,"{0: 14, 1: 2, 2: 8, 3: 0, 4: 1}",0 +564,False,"{'a': 0.01, 'e': 0.7968158473243684}",30,0,-59.56542389828126,"{0: 21, 1: 0, 2: 9, 3: 0, 4: 0}",0 +565,False,"{'a': 0.01, 'e': 0.7949624191445789}",30,8,-36.91019063810145,"{0: 14, 1: 4, 2: 4, 3: 0, 4: 0}",1 +566,False,"{'a': 0.01, 'e': 0.7931027894872722}",20,0,-58.334362947525385,"{0: 12, 1: 2, 2: 6, 3: 0, 4: 0}",0 +567,False,"{'a': 0.01, 'e': 0.7912370338651923}",20,0,-54.75184017280973,"{0: 14, 1: 3, 2: 2, 3: 0, 4: 1}",0 +568,False,"{'a': 0.01, 'e': 0.789365228122713}",20,0,-175.4094045217673,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 3}",0 +569,False,"{'a': 0.01, 'e': 0.7874874484229981}",20,0,-62.623231102987695,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +570,False,"{'a': 0.01, 'e': 0.7856037712352119}",25,0,-86.02641690682893,"{0: 14, 1: 3, 2: 7, 3: 1, 4: 0}",0 +571,False,"{'a': 0.01, 'e': 0.78371427332178}",30,0,-114.48706367139026,"{0: 22, 1: 1, 2: 4, 3: 1, 4: 2}",0 +572,False,"{'a': 0.01, 'e': 0.7818190317257068}",25,10,-55.92511088907673,"{0: 10, 1: 2, 2: 2, 3: 0, 4: 1}",1 +573,False,"{'a': 0.01, 'e': 0.7799181237579491}",30,0,-93.96820062303647,"{0: 22, 1: 3, 2: 3, 3: 0, 4: 2}",0 +574,False,"{'a': 0.01, 'e': 0.778011626984851}",35,0,-189.74704771194726,"{0: 21, 1: 2, 2: 9, 3: 0, 4: 3}",0 +575,False,"{'a': 0.01, 'e': 0.7760996192156411}",30,0,-135.6456870083256,"{0: 18, 1: 3, 2: 7, 3: 0, 4: 2}",0 +576,False,"{'a': 0.01, 'e': 0.7741821784899956}",20,0,-98.67539489196956,"{0: 10, 1: 1, 2: 7, 3: 2, 4: 0}",0 +577,False,"{'a': 0.01, 'e': 0.7722593830656697}",25,0,-137.68267444782978,"{0: 14, 1: 2, 2: 6, 3: 2, 4: 1}",0 +578,False,"{'a': 0.01, 'e': 0.7703313114061993}",25,10,-16.91082021459451,"{0: 11, 1: 1, 2: 3, 3: 0, 4: 0}",1 +579,False,"{'a': 0.01, 'e': 0.7683980421686747}",30,16,-53.10865557153303,"{0: 9, 1: 0, 2: 3, 3: 2, 4: 0}",1 +580,False,"{'a': 0.01, 'e': 0.7664596541915913}",25,0,-63.16946660701595,"{0: 19, 1: 1, 2: 4, 3: 0, 4: 1}",0 +581,False,"{'a': 0.01, 'e': 0.764516226482777}",25,0,-80.18629140309704,"{0: 15, 1: 2, 2: 7, 3: 1, 4: 0}",0 +582,False,"{'a': 0.01, 'e': 0.7625678382073977}",30,2,-13.068728231873356,"{0: 24, 1: 0, 2: 3, 3: 1, 4: 0}",1 +583,False,"{'a': 0.01, 'e': 0.7606145686760486}",25,0,-40.73542501803011,"{0: 19, 1: 4, 2: 1, 3: 0, 4: 1}",0 +584,False,"{'a': 0.01, 'e': 0.7586564973329255}",20,0,-92.98599533598605,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 1}",0 +585,False,"{'a': 0.01, 'e': 0.7566937037440843}",20,3,-15.526954334791174,"{0: 13, 1: 0, 2: 4, 3: 0, 4: 0}",1 +586,False,"{'a': 0.01, 'e': 0.7547262675857882}",20,8,-0.07450671811468013,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +587,False,"{'a': 0.01, 'e': 0.7527542686329445}",20,0,-102.4166058809852,"{0: 11, 1: 2, 2: 6, 3: 0, 4: 1}",0 +588,False,"{'a': 0.01, 'e': 0.7507777867476328}",20,0,-113.43258112580165,"{0: 12, 1: 0, 2: 5, 3: 2, 4: 1}",0 +589,False,"{'a': 0.01, 'e': 0.7487969018677287}",25,0,-107.84566320396569,"{0: 16, 1: 4, 2: 3, 3: 0, 4: 2}",0 +590,False,"{'a': 0.01, 'e': 0.7468116939956202}",20,0,-99.62563833683387,"{0: 14, 1: 1, 2: 2, 3: 1, 4: 2}",0 +591,False,"{'a': 0.01, 'e': 0.7448222431870224}",20,0,-32.50193154040236,"{0: 14, 1: 2, 2: 4, 3: 0, 4: 0}",0 +592,False,"{'a': 0.01, 'e': 0.7428286295398923}",25,0,-56.20066206041736,"{0: 19, 1: 1, 2: 2, 3: 3, 4: 0}",0 +593,False,"{'a': 0.01, 'e': 0.7408309331834402}",20,0,-49.263582212651706,"{0: 15, 1: 3, 2: 1, 3: 0, 4: 1}",0 +594,False,"{'a': 0.01, 'e': 0.7388292342672469}",20,0,-58.98463796084392,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +595,False,"{'a': 0.01, 'e': 0.7368236129504808}",20,0,-108.00849170757881,"{0: 14, 1: 0, 2: 3, 3: 1, 4: 2}",0 +596,False,"{'a': 0.01, 'e': 0.734814149391222}",20,1,-49.40139021465258,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 0}",1 +597,False,"{'a': 0.01, 'e': 0.732800923735891}",25,0,-110.63077190951628,"{0: 15, 1: 2, 2: 6, 3: 1, 4: 1}",0 +598,False,"{'a': 0.01, 'e': 0.730784016108784}",25,0,-29.96486754101824,"{0: 19, 1: 1, 2: 5, 3: 0, 4: 0}",0 +599,False,"{'a': 0.01, 'e': 0.7287635066017193}",25,3,-154.18594568740318,"{0: 11, 1: 3, 2: 4, 3: 2, 4: 2}",1 +600,False,"{'a': 0.01, 'e': 0.7267394752637903}",20,0,-67.65861938390987,"{0: 11, 1: 4, 2: 4, 3: 1, 4: 0}",0 +601,False,"{'a': 0.01, 'e': 0.7247120020912314}",20,6,-36.133881289324115,"{0: 9, 1: 2, 2: 2, 3: 1, 4: 0}",1 +602,False,"{'a': 0.01, 'e': 0.7226811670173943}",30,0,-75.07403977894087,"{0: 22, 1: 2, 2: 5, 3: 0, 4: 1}",0 +603,False,"{'a': 0.01, 'e': 0.7206470499028387}",20,8,-33.60338159298831,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +604,False,"{'a': 0.01, 'e': 0.7186097305255356}",20,0,-33.21305559440806,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +605,False,"{'a': 0.01, 'e': 0.7165692885711861}",30,0,-220.08816321660228,"{0: 16, 1: 4, 2: 4, 3: 3, 4: 3}",0 +606,False,"{'a': 0.01, 'e': 0.7145258036236553}",25,0,-116.56538516809884,"{0: 15, 1: 3, 2: 4, 3: 2, 4: 1}",0 +607,False,"{'a': 0.01, 'e': 0.712479355155523}",25,0,-68.39949726887595,"{0: 17, 1: 3, 2: 4, 3: 0, 4: 1}",0 +608,False,"{'a': 0.01, 'e': 0.7104300225187518}",35,8,-28.111614795026505,"{0: 23, 1: 2, 2: 1, 3: 0, 4: 1}",1 +609,False,"{'a': 0.01, 'e': 0.708377884935473}",30,12,-32.026238720650575,"{0: 14, 1: 0, 2: 3, 3: 1, 4: 0}",1 +610,False,"{'a': 0.01, 'e': 0.7063230214888916}",20,0,-115.97321020034128,"{0: 13, 1: 2, 2: 2, 3: 1, 4: 2}",0 +611,False,"{'a': 0.01, 'e': 0.704265511114309}",20,0,-65.7145794617005,"{0: 14, 1: 3, 2: 1, 3: 1, 4: 1}",0 +612,False,"{'a': 0.01, 'e': 0.7022054325902681}",20,0,-19.737829655937585,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +613,False,"{'a': 0.01, 'e': 0.7001428645298167}",25,10,-23.30680676724259,"{0: 11, 1: 2, 2: 1, 3: 1, 4: 0}",1 +614,False,"{'a': 0.01, 'e': 0.6980778853718923}",30,11,-24.213736617391163,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 0}",1 +615,False,"{'a': 0.01, 'e': 0.6960105733728295}",30,0,-78.48752122485504,"{0: 23, 1: 0, 2: 5, 3: 1, 4: 1}",0 +616,False,"{'a': 0.01, 'e': 0.693941006597987}",20,11,-7.871667870201506,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +617,False,"{'a': 0.01, 'e': 0.6918692629134992}",20,11,16.603300404042493,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +618,False,"{'a': 0.01, 'e': 0.6897954199781476}",30,0,-9.819122128805791,"{0: 24, 1: 3, 2: 3, 3: 0, 4: 0}",0 +619,False,"{'a': 0.01, 'e': 0.6877195552353573}",20,0,-82.2169593955893,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 1}",0 +620,False,"{'a': 0.01, 'e': 0.6856417459053142}",20,10,-59.01685032996081,"{0: 6, 1: 0, 2: 3, 3: 0, 4: 1}",1 +621,False,"{'a': 0.01, 'e': 0.683562068977208}",20,0,-70.10256976253865,"{0: 11, 1: 3, 2: 5, 3: 1, 4: 0}",0 +622,False,"{'a': 0.01, 'e': 0.6814806012015957}",25,7,-134.68916687588268,"{0: 9, 1: 2, 2: 2, 3: 4, 4: 1}",1 +623,False,"{'a': 0.01, 'e': 0.6793974190828906}",25,3,-29.88442361021562,"{0: 15, 1: 3, 2: 4, 3: 0, 4: 0}",1 +624,False,"{'a': 0.01, 'e': 0.6773125988719737}",25,0,-119.68556421763293,"{0: 17, 1: 1, 2: 4, 3: 1, 4: 2}",0 +625,False,"{'a': 0.01, 'e': 0.6752262165589291}",25,8,-129.22649045976777,"{0: 9, 1: 1, 2: 4, 3: 1, 4: 2}",1 +626,False,"{'a': 0.01, 'e': 0.6731383478659025}",25,9,-85.19817831955062,"{0: 10, 1: 0, 2: 4, 3: 1, 4: 1}",1 +627,False,"{'a': 0.01, 'e': 0.6710490682400837}",20,0,-115.68789464982187,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",1 +628,False,"{'a': 0.01, 'e': 0.668958452846812}",25,0,-26.00177300790014,"{0: 19, 1: 2, 2: 4, 3: 0, 4: 0}",0 +629,False,"{'a': 0.01, 'e': 0.6668665765628059}",25,15,6.6889598930296525,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +630,False,"{'a': 0.01, 'e': 0.664773513969514}",30,11,-102.36023438969731,"{0: 13, 1: 1, 2: 2, 3: 1, 4: 2}",1 +631,False,"{'a': 0.01, 'e': 0.6626793393465917}",30,10,-123.83470830477593,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 3}",1 +632,False,"{'a': 0.01, 'e': 0.6605841266654985}",20,11,-6.911170104818888,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +633,False,"{'a': 0.01, 'e': 0.6584879495832175}",20,0,-79.4886238682363,"{0: 9, 1: 4, 2: 7, 3: 0, 4: 0}",0 +634,False,"{'a': 0.01, 'e': 0.6563908814361004}",20,8,-18.02737182961309,"{0: 9, 1: 1, 2: 1, 3: 1, 4: 0}",1 +635,False,"{'a': 0.01, 'e': 0.6542929952338308}",20,4,-59.1988344909012,"{0: 9, 1: 1, 2: 5, 3: 1, 4: 0}",1 +636,False,"{'a': 0.01, 'e': 0.6521943636535112}",20,10,-17.90574360350539,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 0}",1 +637,False,"{'a': 0.01, 'e': 0.6500950590338709}",20,8,-37.10308450158017,"{0: 8, 1: 0, 2: 3, 3: 1, 4: 0}",1 +638,False,"{'a': 0.01, 'e': 0.6479951533695942}",20,0,-86.70710575898688,"{0: 14, 1: 3, 2: 1, 3: 0, 4: 2}",0 +639,False,"{'a': 0.01, 'e': 0.6458947183057712}",30,5,-142.94137600991303,"{0: 14, 1: 0, 2: 8, 3: 2, 4: 1}",1 +640,False,"{'a': 0.01, 'e': 0.6437938251324646}",25,0,-108.55790706154028,"{0: 18, 1: 1, 2: 3, 3: 1, 4: 2}",0 +641,False,"{'a': 0.01, 'e': 0.6416925447794015}",25,1,-42.65521098725855,"{0: 19, 1: 1, 2: 2, 3: 2, 4: 0}",1 +642,False,"{'a': 0.01, 'e': 0.6395909478107789}",20,7,-5.2792578793172495,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +643,False,"{'a': 0.01, 'e': 0.6374891044201922}",25,5,-53.72978616730339,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",1 +644,False,"{'a': 0.01, 'e': 0.635387084425679}",30,18,-63.91091351559415,"{0: 8, 1: 0, 2: 2, 3: 1, 4: 1}",1 +645,False,"{'a': 0.01, 'e': 0.6332849572648812}",20,0,-70.7037274361402,"{0: 13, 1: 3, 2: 3, 3: 0, 4: 1}",0 +646,False,"{'a': 0.01, 'e': 0.6311827919903239}",25,11,-45.262918507728315,"{0: 10, 1: 2, 2: 1, 3: 0, 4: 1}",1 +647,False,"{'a': 0.01, 'e': 0.6290806572648111}",20,0,-7.240648636309761,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +648,False,"{'a': 0.01, 'e': 0.6269786213569365}",20,2,4.766887857888361,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +649,False,"{'a': 0.01, 'e': 0.6248767521367091}",30,13,-6.7785568885872465,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 0}",1 +650,False,"{'a': 0.01, 'e': 0.6227751170712936}",20,10,-14.408699849970729,"{0: 7, 1: 1, 2: 2, 3: 0, 4: 0}",1 +651,False,"{'a': 0.01, 'e': 0.6206737832208638}",20,0,-73.42164305966558,"{0: 14, 1: 0, 2: 5, 3: 0, 4: 1}",0 +652,False,"{'a': 0.01, 'e': 0.6185728172345699}",25,0,-121.05806454953127,"{0: 16, 1: 4, 2: 2, 3: 1, 4: 2}",0 +653,False,"{'a': 0.01, 'e': 0.6164722853466162}",25,11,-23.153451702422633,"{0: 10, 1: 0, 2: 4, 3: 0, 4: 0}",1 +654,False,"{'a': 0.01, 'e': 0.6143722533724525}",20,0,-59.760325468976546,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +655,False,"{'a': 0.01, 'e': 0.6122727867050738}",25,2,-94.40959788795718,"{0: 16, 1: 2, 2: 3, 3: 0, 4: 2}",1 +656,False,"{'a': 0.01, 'e': 0.6101739503114315}",20,9,-63.91379060036833,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 2}",1 +657,False,"{'a': 0.01, 'e': 0.608075808728953}",25,13,-4.8011372840860815,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +658,False,"{'a': 0.01, 'e': 0.605978426062169}",25,0,4.556159136286096,"{0: 22, 1: 1, 2: 2, 3: 0, 4: 0}",0 +659,False,"{'a': 0.01, 'e': 0.6038818659794493}",20,0,-75.22476391731296,"{0: 14, 1: 1, 2: 3, 3: 1, 4: 1}",0 +660,False,"{'a': 0.01, 'e': 0.6017861917098439}",20,13,-14.253597633310216,"{0: 4, 1: 1, 2: 2, 3: 0, 4: 0}",1 +661,False,"{'a': 0.01, 'e': 0.599691466040031}",20,2,-36.93725184564439,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +662,False,"{'a': 0.01, 'e': 0.5975977513113686}",20,0,20.18795802629019,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +663,False,"{'a': 0.01, 'e': 0.5955051094170505}",25,12,-9.201249616649177,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 0}",1 +664,False,"{'a': 0.01, 'e': 0.5934136017993656}",20,0,-33.91334643606055,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +665,False,"{'a': 0.01, 'e': 0.5913232894470588}",20,0,-83.42269062568465,"{0: 11, 1: 6, 2: 1, 3: 1, 4: 1}",0 +666,False,"{'a': 0.01, 'e': 0.5892342328927926}",25,0,-69.68206407341977,"{0: 20, 1: 1, 2: 2, 3: 0, 4: 2}",0 +667,False,"{'a': 0.01, 'e': 0.5871464922107106}",30,0,-51.73207628568437,"{0: 21, 1: 2, 2: 7, 3: 0, 4: 0}",0 +668,False,"{'a': 0.01, 'e': 0.5850601270140978}",20,4,-62.29536493781249,"{0: 11, 1: 2, 2: 1, 3: 1, 4: 1}",1 +669,False,"{'a': 0.01, 'e': 0.5829751964531417}",20,2,-1.4527884336052148,"{0: 15, 1: 0, 2: 3, 3: 0, 4: 0}",1 +670,False,"{'a': 0.01, 'e': 0.5808917592127885}",25,0,-138.6109185108479,"{0: 17, 1: 2, 2: 3, 3: 0, 4: 3}",0 +671,False,"{'a': 0.01, 'e': 0.5788098735106978}",25,10,-44.30894297889635,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 1}",1 +672,False,"{'a': 0.01, 'e': 0.5767295970952901}",25,14,7.3275940283601075,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +673,False,"{'a': 0.01, 'e': 0.5746509872438916}",20,12,0.8063024723027346,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +674,False,"{'a': 0.01, 'e': 0.57257410076097}",30,12,-79.49691685253303,"{0: 13, 1: 2, 2: 1, 3: 0, 4: 2}",1 +675,False,"{'a': 0.01, 'e': 0.5704989939764638}",20,0,-64.29602069011116,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +676,False,"{'a': 0.01, 'e': 0.568425722744203}",25,0,-32.115949018270896,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +677,False,"{'a': 0.01, 'e': 0.5663543424404194}",20,14,13.484475269725948,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +678,False,"{'a': 0.01, 'e': 0.5642849079623473}",20,0,4.36352543173697,"{0: 17, 1: 2, 2: 1, 3: 0, 4: 0}",0 +679,False,"{'a': 0.01, 'e': 0.5622174737269111}",20,0,-29.75820079755317,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +680,False,"{'a': 0.01, 'e': 0.5601520936695019}",25,8,-52.42496222108379,"{0: 13, 1: 0, 2: 2, 3: 1, 4: 1}",1 +681,False,"{'a': 0.01, 'e': 0.5580888212428389}",20,7,13.675818093537869,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +682,False,"{'a': 0.01, 'e': 0.5560277094159163}",25,10,0.7948968424772882,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +683,False,"{'a': 0.01, 'e': 0.5539688106730352}",20,6,-39.61723341569601,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 1}",1 +684,False,"{'a': 0.01, 'e': 0.5519121770129171}",25,8,-47.370820662186794,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 1}",1 +685,False,"{'a': 0.01, 'e': 0.5498578599479003}",20,0,-44.28835645935467,"{0: 15, 1: 0, 2: 3, 3: 2, 4: 0}",0 +686,False,"{'a': 0.01, 'e': 0.547805910503218}",20,12,5.762332893148759,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +687,False,"{'a': 0.01, 'e': 0.5457563792163553}",20,3,-9.672044855518074,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +688,False,"{'a': 0.01, 'e': 0.5437093161364845}",30,16,-70.39344172864335,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 2}",1 +689,False,"{'a': 0.01, 'e': 0.5416647708239803}",20,1,-11.42227589423493,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 0}",1 +690,False,"{'a': 0.01, 'e': 0.5396227923500097}",35,2,-167.22797330128347,"{0: 24, 1: 1, 2: 4, 3: 0, 4: 4}",1 +691,False,"{'a': 0.01, 'e': 0.5375834292961987}",25,7,-125.76815321231439,"{0: 13, 1: 1, 2: 0, 3: 1, 4: 3}",1 +692,False,"{'a': 0.01, 'e': 0.5355467297543735}",25,8,-37.778656193164274,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 1}",1 +693,False,"{'a': 0.01, 'e': 0.5335127413263752}",20,5,-12.589886752987448,"{0: 12, 1: 1, 2: 1, 3: 1, 4: 0}",1 +694,False,"{'a': 0.01, 'e': 0.5314815111239465}",20,0,-11.071585348521502,"{0: 16, 1: 2, 2: 2, 3: 0, 4: 0}",0 +695,False,"{'a': 0.01, 'e': 0.5294530857686913}",20,0,-2.729353071781344,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +696,False,"{'a': 0.01, 'e': 0.5274275113921033}",20,15,-3.3037290074114916,"{0: 4, 1: 0, 2: 1, 3: 0, 4: 0}",1 +697,False,"{'a': 0.01, 'e': 0.5254048336356644}",25,5,-5.221471614188683,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",1 +698,False,"{'a': 0.01, 'e': 0.523385097651011}",20,0,-35.649768177770724,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 1}",0 +699,False,"{'a': 0.01, 'e': 0.5213683481001699}",20,0,-17.644809794357702,"{0: 15, 1: 3, 2: 1, 3: 1, 4: 0}",0 +700,False,"{'a': 0.01, 'e': 0.519354629155856}",30,0,-103.56752863932743,"{0: 25, 1: 1, 2: 1, 3: 0, 4: 3}",0 +701,False,"{'a': 0.01, 'e': 0.5173439845018404}",20,4,-77.20117115030008,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 2}",1 +702,False,"{'a': 0.01, 'e': 0.5153364573333773}",20,0,-70.40516780822142,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",0 +703,False,"{'a': 0.01, 'e': 0.5133320903576992}",30,18,18.45673682298338,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +704,False,"{'a': 0.01, 'e': 0.5113309257945692}",20,0,-144.5270624796443,"{0: 12, 1: 2, 2: 3, 3: 0, 4: 3}",0 +705,False,"{'a': 0.01, 'e': 0.5093330053768991}",25,8,-49.60298338595943,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 1}",1 +706,False,"{'a': 0.01, 'e': 0.5073383703514225}",20,0,1.0929368820740166,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +707,False,"{'a': 0.01, 'e': 0.5053470614794325}",20,0,13.145038278843089,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +708,False,"{'a': 0.01, 'e': 0.503359119037571}",30,2,-55.56095720775426,"{0: 21, 1: 1, 2: 4, 3: 2, 4: 0}",1 +709,False,"{'a': 0.01, 'e': 0.5013745828186802}",25,0,-28.488266874263743,"{0: 21, 1: 0, 2: 2, 3: 2, 4: 0}",0 +710,False,"{'a': 0.01, 'e': 0.49939349213270856}",25,13,-6.8495875508706,"{0: 9, 1: 1, 2: 2, 3: 0, 4: 0}",1 +711,False,"{'a': 0.01, 'e': 0.4974158858076687}",25,0,-95.47142579588244,"{0: 19, 1: 2, 2: 1, 3: 1, 4: 2}",0 +712,False,"{'a': 0.01, 'e': 0.4954418021906545}",30,0,-66.78312474278314,"{0: 25, 1: 1, 2: 1, 3: 2, 4: 1}",0 +713,False,"{'a': 0.01, 'e': 0.49347127914890576}",25,2,-8.970234460221528,"{0: 19, 1: 1, 2: 3, 3: 0, 4: 0}",1 +714,False,"{'a': 0.01, 'e': 0.4915043540709281}",25,11,24.193068823265577,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +715,False,"{'a': 0.01, 'e': 0.48954106386766394}",20,0,-135.95494356006486,"{0: 14, 1: 0, 2: 2, 3: 1, 4: 3}",0 +716,False,"{'a': 0.01, 'e': 0.48758144497371037}",20,0,-63.41766340705738,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 0}",0 +717,False,"{'a': 0.01, 'e': 0.48562553334859004}",20,12,-8.245027102987523,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 0}",1 +718,False,"{'a': 0.01, 'e': 0.4836733644780655}",20,0,10.559226028109006,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +719,False,"{'a': 0.01, 'e': 0.4817249733755061}",20,16,7.250936920210732,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +720,False,"{'a': 0.01, 'e': 0.47978039458329524}",30,0,-167.51886764345142,"{0: 23, 1: 0, 2: 2, 3: 1, 4: 4}",0 +721,False,"{'a': 0.01, 'e': 0.4778396621742863}",25,14,10.046606435108519,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +722,False,"{'a': 0.01, 'e': 0.4759028097533029}",25,0,-40.79695695574178,"{0: 20, 1: 2, 2: 2, 3: 0, 4: 1}",0 +723,False,"{'a': 0.01, 'e': 0.47396987045867933}",25,2,20.003717251773008,"{0: 21, 1: 1, 2: 1, 3: 0, 4: 0}",1 +724,False,"{'a': 0.01, 'e': 0.47204087696384756}",25,0,-88.28315009964227,"{0: 16, 1: 1, 2: 7, 3: 0, 4: 1}",0 +725,False,"{'a': 0.01, 'e': 0.47011586147896134}",20,0,-56.1811205199407,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 2}",1 +726,False,"{'a': 0.01, 'e': 0.46819485575256437}",30,0,-45.95008727340183,"{0: 21, 1: 3, 2: 6, 3: 0, 4: 0}",1 +727,False,"{'a': 0.01, 'e': 0.46627789107329554}",25,18,12.543636411874013,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +728,False,"{'a': 0.01, 'e': 0.4643649982716337}",25,7,1.3595739211403899,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +729,False,"{'a': 0.01, 'e': 0.46245620772168183}",20,0,-52.89886838318654,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +730,False,"{'a': 0.01, 'e': 0.46055154934298415}",20,5,-6.074699204543344,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +731,False,"{'a': 0.01, 'e': 0.4586510526023838}",25,3,-46.42541800939267,"{0: 17, 1: 2, 2: 2, 3: 0, 4: 1}",1 +732,False,"{'a': 0.01, 'e': 0.45675474651591164}",20,0,11.14880207330662,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +733,False,"{'a': 0.01, 'e': 0.45486265965071304}",20,0,6.971869241724759,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +734,False,"{'a': 0.01, 'e': 0.4529748201270043}",25,13,11.19952966562465,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +735,False,"{'a': 0.01, 'e': 0.45109125562006447}",30,14,4.7405211493625625,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +736,False,"{'a': 0.01, 'e': 0.4492119933622586}",25,11,-81.49287052434333,"{0: 7, 1: 2, 2: 4, 3: 0, 4: 1}",1 +737,False,"{'a': 0.01, 'e': 0.44733706014508945}",25,15,2.7403854672835997,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +738,False,"{'a': 0.01, 'e': 0.44546648232128294}",20,0,-39.20121059626249,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +739,False,"{'a': 0.01, 'e': 0.4436002858068997}",20,0,-23.233950687065693,"{0: 16, 1: 0, 2: 3, 3: 1, 4: 0}",0 +740,False,"{'a': 0.01, 'e': 0.44173849608347626}",20,11,19.761865485484616,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +741,False,"{'a': 0.01, 'e': 0.43988113820019537}",20,9,3.9478272037731097,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +742,False,"{'a': 0.01, 'e': 0.4380282367760797}",25,18,14.440297893094844,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +743,False,"{'a': 0.01, 'e': 0.4361798160022159}",20,0,7.8751870763984115,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +744,False,"{'a': 0.01, 'e': 0.4343358996439993}",20,7,-13.824619766464853,"{0: 10, 1: 0, 2: 3, 3: 0, 4: 0}",1 +745,False,"{'a': 0.01, 'e': 0.4324965110434077}",20,0,-78.456525203732,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",0 +746,False,"{'a': 0.01, 'e': 0.43066167312129544}",20,12,3.5807346606939134,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +747,False,"{'a': 0.01, 'e': 0.42883140837971223}",30,19,-2.2168811450750896,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +748,False,"{'a': 0.01, 'e': 0.42700573890424465}",20,0,-63.67530201178618,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",1 +749,False,"{'a': 0.01, 'e': 0.42518468636637674}",25,14,-4.556348028081204,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +750,False,"{'a': 0.01, 'e': 0.42336827202587535}",20,12,-27.89431897846918,"{0: 5, 1: 1, 2: 1, 3: 1, 4: 0}",1 +751,False,"{'a': 0.01, 'e': 0.4215565167331913}",25,8,-79.79081765673882,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 2}",1 +752,False,"{'a': 0.01, 'e': 0.4197494409318835}",25,1,-22.48828448994389,"{0: 21, 1: 1, 2: 1, 3: 0, 4: 1}",1 +753,False,"{'a': 0.01, 'e': 0.4179470646610596}",25,11,-15.070068246970107,"{0: 11, 1: 0, 2: 2, 3: 1, 4: 0}",1 +754,False,"{'a': 0.01, 'e': 0.416149407557835}",20,0,-90.56751786059414,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 3}",0 +755,False,"{'a': 0.01, 'e': 0.4143564888598116}",25,16,-11.39343146455034,"{0: 6, 1: 2, 2: 1, 3: 0, 4: 0}",1 +756,False,"{'a': 0.01, 'e': 0.4125683274075683}",25,0,-113.7245179840595,"{0: 18, 1: 0, 2: 4, 3: 1, 4: 2}",0 +757,False,"{'a': 0.01, 'e': 0.4107849416471734}",20,0,4.635923201814507,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +758,False,"{'a': 0.01, 'e': 0.40900634963270655}",20,12,2.761852164689545,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +759,False,"{'a': 0.01, 'e': 0.4072325690288009}",30,16,-45.84177551484462,"{0: 11, 1: 1, 2: 0, 3: 1, 4: 1}",1 +760,False,"{'a': 0.01, 'e': 0.4054636171131948}",35,20,9.210847988179667,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 0}",1 +761,False,"{'a': 0.01, 'e': 0.40369951077929933}",30,3,-52.5608184069427,"{0: 22, 1: 1, 2: 2, 3: 1, 4: 1}",1 +762,False,"{'a': 0.01, 'e': 0.40194026653877923}",20,12,2.768788356638118,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +763,False,"{'a': 0.01, 'e': 0.40018590052414305}",25,0,3.080501997478077,"{0: 23, 1: 0, 2: 1, 3: 1, 4: 0}",0 +764,False,"{'a': 0.01, 'e': 0.39843642849134897}",30,18,-12.290645207814855,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +765,False,"{'a': 0.01, 'e': 0.3966918658224172}",25,3,-60.75792926963582,"{0: 16, 1: 1, 2: 4, 3: 0, 4: 1}",1 +766,False,"{'a': 0.01, 'e': 0.39495222752805714}",30,4,-75.73186821887303,"{0: 20, 1: 1, 2: 2, 3: 2, 4: 1}",1 +767,False,"{'a': 0.01, 'e': 0.39321752825030165}",20,0,24.145092817662977,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +768,False,"{'a': 0.01, 'e': 0.3914877822651506}",20,14,6.071529759005793,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +769,False,"{'a': 0.01, 'e': 0.3897630034852252}",20,1,-38.90606314257549,"{0: 13, 1: 2, 2: 3, 3: 1, 4: 0}",1 +770,False,"{'a': 0.01, 'e': 0.38804320546242776}",20,11,10.996844340234889,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +771,False,"{'a': 0.01, 'e': 0.3863284013906121}",30,12,9.76992237153356,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +772,False,"{'a': 0.01, 'e': 0.384618604108258}",30,2,-25.238195766952106,"{0: 24, 1: 0, 2: 2, 3: 2, 4: 0}",1 +773,False,"{'a': 0.01, 'e': 0.38291382610115365}",30,16,-12.984041631556583,"{0: 11, 1: 0, 2: 3, 3: 0, 4: 0}",1 +774,False,"{'a': 0.01, 'e': 0.38121407950508623}",25,17,-7.506822045343468,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +775,False,"{'a': 0.01, 'e': 0.3795193761085328}",30,14,-5.401564919755444,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 0}",1 +776,False,"{'a': 0.01, 'e': 0.37782972735536213}",25,0,-67.19553056618436,"{0: 21, 1: 1, 2: 1, 3: 0, 4: 2}",0 +777,False,"{'a': 0.01, 'e': 0.3761451443475361}",35,18,26.250260657955668,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +778,False,"{'a': 0.01, 'e': 0.3744656378478195}",35,19,19.02996748406047,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +779,False,"{'a': 0.01, 'e': 0.3727912182824893}",25,11,14.205405953431185,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +780,False,"{'a': 0.01, 'e': 0.3711218957440495}",20,7,26.306366921157334,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +781,False,"{'a': 0.01, 'e': 0.3694576799939493}",20,0,-24.93828475593337,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +782,False,"{'a': 0.01, 'e': 0.3677985804653001}",20,10,0.7240829188444182,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +783,False,"{'a': 0.01, 'e': 0.3661446062655985}",30,22,15.080266843564655,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +784,False,"{'a': 0.01, 'e': 0.36449576617944657}",20,0,8.282549257183192,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +785,False,"{'a': 0.01, 'e': 0.36285206867127606}",20,16,6.934794676189505,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +786,False,"{'a': 0.01, 'e': 0.3612135218880712}",25,8,-67.26229661002348,"{0: 11, 1: 1, 2: 4, 3: 0, 4: 1}",1 +787,False,"{'a': 0.01, 'e': 0.3595801336620922}",30,8,-3.666288912498011,"{0: 19, 1: 0, 2: 2, 3: 1, 4: 0}",1 +788,False,"{'a': 0.01, 'e': 0.35795191151359906}",25,3,-23.551656590605116,"{0: 18, 1: 0, 2: 3, 3: 1, 4: 0}",1 +789,False,"{'a': 0.01, 'e': 0.3563288626535722}",20,12,-17.599876264166923,"{0: 6, 1: 0, 2: 1, 3: 1, 4: 0}",1 +790,False,"{'a': 0.01, 'e': 0.3547109939864357}",30,18,24.803485164970212,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +791,False,"{'a': 0.01, 'e': 0.35309831211277454}",25,7,15.663711138106402,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +792,False,"{'a': 0.01, 'e': 0.3514908233320533}",25,4,7.451022484693091,"{0: 19, 1: 0, 2: 2, 3: 0, 4: 0}",1 +793,False,"{'a': 0.01, 'e': 0.3498885336453318}",30,11,-19.469989269973908,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +794,False,"{'a': 0.01, 'e': 0.34829144875797624}",30,0,-4.4398274160953015,"{0: 27, 1: 0, 2: 1, 3: 2, 4: 0}",0 +795,False,"{'a': 0.01, 'e': 0.3466995740823703}",30,5,-0.03897616461851605,"{0: 20, 1: 3, 2: 2, 3: 0, 4: 0}",1 +796,False,"{'a': 0.01, 'e': 0.3451129147406189}",25,12,-29.937954299039667,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 1}",1 +797,False,"{'a': 0.01, 'e': 0.34353147556725316}",20,8,8.357254827476275,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +798,False,"{'a': 0.01, 'e': 0.34195526111192653}",25,2,22.651325503216846,"{0: 22, 1: 0, 2: 1, 3: 0, 4: 0}",1 +799,False,"{'a': 0.01, 'e': 0.34038427564210916}",25,11,16.037075388540742,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +800,False,"{'a': 0.01, 'e': 0.33881852314577765}",35,9,-82.47206678980787,"{0: 20, 1: 0, 2: 4, 3: 0, 4: 2}",1 +801,False,"{'a': 0.01, 'e': 0.33725800733409794}",20,0,6.748592662058182,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +802,False,"{'a': 0.01, 'e': 0.3357027316441047}",25,13,0.709230074946565,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +803,False,"{'a': 0.01, 'e': 0.33415269924137325}",20,0,7.851309642090462,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +804,False,"{'a': 0.01, 'e': 0.3326079130226882}",20,6,-7.905745427327881,"{0: 12, 1: 0, 2: 1, 3: 1, 4: 0}",1 +805,False,"{'a': 0.01, 'e': 0.3310683756187025}",25,6,22.77779898759889,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +806,False,"{'a': 0.01, 'e': 0.329534089396592}",20,8,-43.713883130835946,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 1}",1 +807,False,"{'a': 0.01, 'e': 0.3280050564627037}",25,17,14.501230742503875,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +808,False,"{'a': 0.01, 'e': 0.3264812786651943}",20,13,15.1366318477615,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +809,False,"{'a': 0.01, 'e': 0.32496275759666504}",30,23,11.926175521381648,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +810,False,"{'a': 0.01, 'e': 0.32344949459678485}",25,2,-19.33884813682291,"{0: 19, 1: 0, 2: 3, 3: 1, 4: 0}",1 +811,False,"{'a': 0.01, 'e': 0.32194149075490963}",20,13,-37.750715465708645,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 1}",1 +812,False,"{'a': 0.01, 'e': 0.3204387469126899}",20,0,-13.04246968613377,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +813,False,"{'a': 0.01, 'e': 0.3189412636666724}",20,6,27.712009198867086,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +814,False,"{'a': 0.01, 'e': 0.3174490413708929}",25,0,-1.2917458074325265,"{0: 22, 1: 0, 2: 3, 3: 0, 4: 0}",0 +815,False,"{'a': 0.01, 'e': 0.31596208013945826}",20,6,11.49152218688877,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +816,False,"{'a': 0.01, 'e': 0.31448037984912225}",20,15,2.97339825109463,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +817,False,"{'a': 0.01, 'e': 0.3130039401418496}",20,1,33.196211492907715,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +818,False,"{'a': 0.01, 'e': 0.31153276042737177}",20,1,-29.795556585847926,"{0: 16, 1: 0, 2: 1, 3: 2, 4: 0}",1 +819,False,"{'a': 0.01, 'e': 0.310066839885734}",30,17,10.279860565692541,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +820,False,"{'a': 0.01, 'e': 0.3086061774698293}",20,12,12.203995168744049,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +821,False,"{'a': 0.01, 'e': 0.30715077190792683}",25,13,-21.02565476856723,"{0: 9, 1: 0, 2: 2, 3: 1, 4: 0}",1 +822,False,"{'a': 0.01, 'e': 0.30570062170618506}",20,12,3.0960075798855167,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +823,False,"{'a': 0.01, 'e': 0.3042557251511594}",35,20,15.025358373991162,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +824,False,"{'a': 0.01, 'e': 0.30281608031229434}",20,10,7.403869296692442,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +825,False,"{'a': 0.01, 'e': 0.301381685044409}",20,12,11.898224049147016,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +826,False,"{'a': 0.01, 'e': 0.29995253699016944}",20,0,-22.945735947872297,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +827,False,"{'a': 0.01, 'e': 0.29852863358254944}",25,5,-50.93257210776709,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 2}",1 +828,False,"{'a': 0.01, 'e': 0.29710997204728173}",20,8,23.94080510261545,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +829,False,"{'a': 0.01, 'e': 0.2956965494052961}",30,14,-51.79486339898598,"{0: 12, 1: 0, 2: 3, 3: 0, 4: 1}",1 +830,False,"{'a': 0.01, 'e': 0.2942883624751471}",20,5,-35.00398093170737,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 1}",1 +831,False,"{'a': 0.01, 'e': 0.2928854078754287}",25,14,-2.7007059058601186,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +832,False,"{'a': 0.01, 'e': 0.291487682027178}",20,1,5.869372467978878,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 0}",1 +833,False,"{'a': 0.01, 'e': 0.29009518115626765}",25,11,-12.311908112657242,"{0: 10, 1: 2, 2: 2, 3: 0, 4: 0}",1 +834,False,"{'a': 0.01, 'e': 0.28870790129578305}",30,6,-35.07773730686557,"{0: 19, 1: 2, 2: 2, 3: 0, 4: 1}",1 +835,False,"{'a': 0.01, 'e': 0.2873258382883913}",25,0,-22.650327922682926,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +836,False,"{'a': 0.01, 'e': 0.28594898778869426}",20,15,-10.79236208413611,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +837,False,"{'a': 0.01, 'e': 0.2845773452655713}",20,10,1.9437095630880823,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +838,False,"{'a': 0.01, 'e': 0.28321090600450805}",20,3,6.279607405680126,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +839,False,"{'a': 0.01, 'e': 0.2818496651099127}",20,2,-19.366275498662354,"{0: 13, 1: 1, 2: 4, 3: 0, 4: 0}",1 +840,False,"{'a': 0.01, 'e': 0.28049361750742086}",25,0,-21.59391289440501,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 1}",0 +841,False,"{'a': 0.01, 'e': 0.27914275794618415}",20,8,21.929042679360307,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +842,False,"{'a': 0.01, 'e': 0.27779708100114997}",25,2,-39.99841729858513,"{0: 19, 1: 0, 2: 3, 3: 0, 4: 1}",1 +843,False,"{'a': 0.01, 'e': 0.27645658107532367}",25,0,-1.3582332170258966,"{0: 23, 1: 0, 2: 1, 3: 1, 4: 0}",0 +844,False,"{'a': 0.01, 'e': 0.2751212524020209}",20,5,-17.408088114438367,"{0: 12, 1: 1, 2: 1, 3: 1, 4: 0}",1 +845,False,"{'a': 0.01, 'e': 0.2737910890471057}",20,11,8.12715433058624,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +846,False,"{'a': 0.01, 'e': 0.27246608491121294}",25,15,11.178000289077271,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +847,False,"{'a': 0.01, 'e': 0.27114623373196156}",20,4,17.595362167458212,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +848,False,"{'a': 0.01, 'e': 0.26983152908614905}",20,14,11.500733798188676,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +849,False,"{'a': 0.01, 'e': 0.26852196439193765}",25,11,16.23139204592138,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +850,False,"{'a': 0.01, 'e': 0.2672175329110218}",20,0,11.26278757563464,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +851,False,"{'a': 0.01, 'e': 0.2659182277507851}",25,0,-18.5522496799545,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 1}",0 +852,False,"{'a': 0.01, 'e': 0.26462404186644317}",30,5,-34.05342669600836,"{0: 20, 1: 0, 2: 3, 3: 2, 4: 0}",1 +853,False,"{'a': 0.01, 'e': 0.26333496806317}",25,6,-13.71436802682869,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +854,False,"{'a': 0.01, 'e': 0.26205099899821427}",25,17,13.870922946180865,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +855,False,"{'a': 0.01, 'e': 0.26077212718299747}",25,11,2.4403913615641297,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +856,False,"{'a': 0.01, 'e': 0.25949834498520197}",20,0,-14.229405406250073,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +857,False,"{'a': 0.01, 'e': 0.2582296446308413}",35,13,4.5392612565537895,"{0: 19, 1: 0, 2: 3, 3: 0, 4: 0}",1 +858,False,"{'a': 0.01, 'e': 0.25696601820631915}",30,0,9.797498143686678,"{0: 26, 1: 2, 2: 2, 3: 0, 4: 0}",0 +859,False,"{'a': 0.01, 'e': 0.25570745766047287}",25,11,0.8775123282277253,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +860,False,"{'a': 0.01, 'e': 0.25445395480660205}",20,9,19.158458770766504,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +861,False,"{'a': 0.01, 'e': 0.25320550132448516}",20,1,20.02373207187317,"{0: 17, 1: 2, 2: 0, 3: 0, 4: 0}",1 +862,False,"{'a': 0.01, 'e': 0.2519620887623786}",25,14,-37.55072259792682,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 1}",1 +863,False,"{'a': 0.01, 'e': 0.2507237085390054}",20,13,-29.05317629767267,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 1}",1 +864,False,"{'a': 0.01, 'e': 0.24949035194552505}",25,7,20.46031469565138,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +865,False,"{'a': 0.01, 'e': 0.24826201014749294}",20,3,12.393878322445843,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +866,False,"{'a': 0.01, 'e': 0.24703867418680403}",30,11,-46.72126920985489,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 1}",1 +867,False,"{'a': 0.01, 'e': 0.24582033498361988}",30,13,33.04271995494138,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +868,False,"{'a': 0.01, 'e': 0.24460698333828623}",20,10,11.268662720101165,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +869,False,"{'a': 0.01, 'e': 0.24339860993323026}",25,13,-3.4163037233633444,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +870,False,"{'a': 0.01, 'e': 0.24219520533484817}",20,10,0.4171683112805784,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +871,False,"{'a': 0.01, 'e': 0.2409967599953765}",20,15,2.755181748988516,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +872,False,"{'a': 0.01, 'e': 0.23980326425474763}",30,12,-21.80094265614823,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +873,False,"{'a': 0.01, 'e': 0.23861470834243426}",25,7,17.93818923430383,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +874,False,"{'a': 0.01, 'e': 0.23743108237927502}",20,15,7.908211821148903,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +875,False,"{'a': 0.01, 'e': 0.23625237637929042}",20,0,-40.85312508994896,"{0: 17, 1: 1, 2: 0, 3: 1, 4: 1}",1 +876,False,"{'a': 0.01, 'e': 0.2350785802514801}",20,7,-15.495243332451288,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +877,False,"{'a': 0.01, 'e': 0.23390968380160793}",20,6,-0.8980089223484582,"{0: 12, 1: 1, 2: 0, 3: 1, 4: 0}",1 +878,False,"{'a': 0.01, 'e': 0.23274567673397362}",30,24,8.976708393385108,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +879,False,"{'a': 0.01, 'e': 0.2315865486531663}",20,10,7.434772907559121,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +880,False,"{'a': 0.01, 'e': 0.23043228906580804}",20,11,15.5621389189445,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +881,False,"{'a': 0.01, 'e': 0.22928288738227942}",20,11,16.195219162328723,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +882,False,"{'a': 0.01, 'e': 0.22813833291843344}",20,3,31.99302356419462,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +883,False,"{'a': 0.01, 'e': 0.22699861489729278}",30,22,2.8841366438025964,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +884,False,"{'a': 0.01, 'e': 0.22586372245073438}",25,0,29.752545492697728,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +885,False,"{'a': 0.01, 'e': 0.22473364462115974}",20,15,8.573542573629908,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +886,False,"{'a': 0.01, 'e': 0.22360837036314907}",20,3,-26.47204076231206,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +887,False,"{'a': 0.01, 'e': 0.22248788854510382}",20,10,19.487283852455413,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +888,False,"{'a': 0.01, 'e': 0.221372187950873}",25,0,-54.62295316644518,"{0: 19, 1: 0, 2: 4, 3: 2, 4: 0}",0 +889,False,"{'a': 0.01, 'e': 0.2202612572813657}",25,7,-4.931798287034175,"{0: 15, 1: 0, 2: 3, 3: 0, 4: 0}",1 +890,False,"{'a': 0.01, 'e': 0.2191550851561509}",20,5,-13.126849608259386,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 1}",1 +891,False,"{'a': 0.01, 'e': 0.21805366011504057}",30,11,7.551220191931568,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 0}",1 +892,False,"{'a': 0.01, 'e': 0.21695697061966168}",25,9,-2.86369950031434,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 0}",1 +893,False,"{'a': 0.01, 'e': 0.2158650050550105}",30,2,-22.592302196768273,"{0: 25, 1: 0, 2: 2, 3: 0, 4: 1}",1 +894,False,"{'a': 0.01, 'e': 0.21477775173099756}",30,0,-9.78884085582136,"{0: 28, 1: 1, 2: 0, 3: 0, 4: 1}",0 +895,False,"{'a': 0.01, 'e': 0.2136951988839737}",35,14,25.142462053023714,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +896,False,"{'a': 0.01, 'e': 0.21261733467824573}",30,23,13.527227149938817,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +897,False,"{'a': 0.01, 'e': 0.2115441472075772}",25,17,7.6543672704854915,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +898,False,"{'a': 0.01, 'e': 0.210475624496674}",20,14,13.736368379306445,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +899,False,"{'a': 0.01, 'e': 0.2094117545026587}",25,18,13.24161618428595,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +900,False,"{'a': 0.01, 'e': 0.20835252511652813}",20,7,-21.085741223519108,"{0: 10, 1: 1, 2: 1, 3: 1, 4: 0}",1 +901,False,"{'a': 0.01, 'e': 0.20729792416460047}",25,8,30.546353223055124,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +902,False,"{'a': 0.01, 'e': 0.20624793940994546}",25,14,-14.011637552376305,"{0: 9, 1: 0, 2: 1, 3: 1, 4: 0}",1 +903,False,"{'a': 0.01, 'e': 0.20520255855380332}",20,7,13.542562055956989,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +904,False,"{'a': 0.01, 'e': 0.2041617692369897}",30,20,10.241019995995945,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +905,False,"{'a': 0.01, 'e': 0.2031255590412856}",20,8,21.181005185533486,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +906,False,"{'a': 0.01, 'e': 0.20209391549081623}",20,2,13.78563150147853,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +907,False,"{'a': 0.01, 'e': 0.20106682605341386}",25,19,11.358727013395946,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +908,False,"{'a': 0.01, 'e': 0.20004427814197}",20,3,-6.72451226035097,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +909,False,"{'a': 0.01, 'e': 0.199026259115772}",20,12,16.600656663377258,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +910,False,"{'a': 0.01, 'e': 0.19801275628182713}",25,10,16.58465180599423,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +911,False,"{'a': 0.01, 'e': 0.1970037568961749}",25,10,18.841567814430594,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +912,False,"{'a': 0.01, 'e': 0.19599924816518344}",25,19,-30.39356450681143,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 1}",1 +913,False,"{'a': 0.01, 'e': 0.1949992172468359}",20,9,22.18527795295183,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +914,False,"{'a': 0.01, 'e': 0.19400365125200092}",25,7,31.984928553593242,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +915,False,"{'a': 0.01, 'e': 0.19301253724569223}",25,7,30.913082096007066,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +916,False,"{'a': 0.01, 'e': 0.1920258622483152}",20,10,15.372334944067061,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +917,False,"{'a': 0.01, 'e': 0.19104361323689878}",25,20,7.759359517147451,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +918,False,"{'a': 0.01, 'e': 0.19006577714631723}",30,20,18.616811427855637,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +919,False,"{'a': 0.01, 'e': 0.18909234087049664}",25,8,-0.5332287039836119,"{0: 15, 1: 1, 2: 0, 3: 1, 4: 0}",1 +920,False,"{'a': 0.01, 'e': 0.18812329126361105}",25,20,9.187042061048288,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +921,False,"{'a': 0.01, 'e': 0.18715861514126442}",20,8,18.59059397095973,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +922,False,"{'a': 0.01, 'e': 0.18619829928166065}",20,0,6.020112542164984,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +923,False,"{'a': 0.01, 'e': 0.18524233042676153}",20,0,8.92258368237329,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +924,False,"{'a': 0.01, 'e': 0.18429069528343112}",35,1,29.923072332753392,"{0: 33, 1: 0, 2: 0, 3: 1, 4: 0}",1 +925,False,"{'a': 0.01, 'e': 0.1833433805245701}",20,0,6.357422401603255,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +926,False,"{'a': 0.01, 'e': 0.18240037279023447}",25,10,-3.9331910126931637,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +927,False,"{'a': 0.01, 'e': 0.18146165868874575}",20,9,10.092741381290162,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +928,False,"{'a': 0.01, 'e': 0.1805272247977866}",25,13,6.662346525626604,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +929,False,"{'a': 0.01, 'e': 0.17959705766548462}",30,19,-44.408764639591155,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 1}",1 +930,False,"{'a': 0.01, 'e': 0.1786711438114862}",25,19,14.431260903125285,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +931,False,"{'a': 0.01, 'e': 0.1777494697280152}",20,0,22.370843469443546,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +932,False,"{'a': 0.01, 'e': 0.1768320218809234}",25,17,14.737291683857139,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +933,False,"{'a': 0.01, 'e': 0.1759187867107258}",20,11,16.229916115850887,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +934,False,"{'a': 0.01, 'e': 0.1750097506336269}",20,12,14.207698998230189,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +935,False,"{'a': 0.01, 'e': 0.17410490004253387}",25,15,4.306452782830839,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +936,False,"{'a': 0.01, 'e': 0.17320422130805835}",25,15,18.70519916325297,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +937,False,"{'a': 0.01, 'e': 0.1723077007795082}",25,0,17.465708484148635,"{0: 24, 1: 0, 2: 0, 3: 1, 4: 0}",0 +938,False,"{'a': 0.01, 'e': 0.17141532478586474}",25,17,12.103648644322837,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +939,False,"{'a': 0.01, 'e': 0.17052707963675295}",25,4,5.2361851870843825,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 0}",1 +940,False,"{'a': 0.01, 'e': 0.16964295162339604}",25,0,-77.73875744073153,"{0: 21, 1: 0, 2: 1, 3: 1, 4: 2}",0 +941,False,"{'a': 0.01, 'e': 0.16876292701956186}",20,0,23.2344881745389,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +942,False,"{'a': 0.01, 'e': 0.16788699208249758}",20,11,15.828544646258534,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +943,False,"{'a': 0.01, 'e': 0.16701513305385218}",20,3,-21.642972789853843,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +944,False,"{'a': 0.01, 'e': 0.1661473361605894}",25,11,-22.64946769142606,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 1}",1 +945,False,"{'a': 0.01, 'e': 0.1652835876158888}",20,9,9.104758604939814,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +946,False,"{'a': 0.01, 'e': 0.16442387362003685}",25,8,18.71643731833999,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +947,False,"{'a': 0.01, 'e': 0.1635681803613065}",25,7,26.586938338544687,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +948,False,"{'a': 0.01, 'e': 0.16271649401682642}",35,18,0.06071172624782584,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +949,False,"{'a': 0.01, 'e': 0.16186880075344023}",25,17,11.231971331010573,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +950,False,"{'a': 0.01, 'e': 0.16102508672855398}",25,13,20.63690181143565,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +951,False,"{'a': 0.01, 'e': 0.16018533809097435}",30,18,25.51949252484294,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +952,False,"{'a': 0.01, 'e': 0.1593495409817357}",30,20,18.480695075607414,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +953,False,"{'a': 0.01, 'e': 0.15851768153491752}",20,16,7.535725182268314,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +954,False,"{'a': 0.01, 'e': 0.15768974587845086}",20,5,5.091603382125614,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +955,False,"{'a': 0.01, 'e': 0.1568657201349153}",20,10,22.85338245723212,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +956,False,"{'a': 0.01, 'e': 0.1560455904223257}",25,16,16.043207985936018,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +957,False,"{'a': 0.01, 'e': 0.15522934285490875}",25,16,-21.634497155211452,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 1}",1 +958,False,"{'a': 0.01, 'e': 0.1544169635438698}",20,13,2.199533665800133,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +959,False,"{'a': 0.01, 'e': 0.15360843859814932}",25,13,24.461456978582238,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +960,False,"{'a': 0.01, 'e': 0.15280375412517122}",35,20,24.983241428047577,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +961,False,"{'a': 0.01, 'e': 0.1520028962315788}",25,8,-2.9125391302152286,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +962,False,"{'a': 0.01, 'e': 0.15120585102396367}",25,11,-24.887800856805207,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 1}",1 +963,False,"{'a': 0.01, 'e': 0.15041260460958372}",30,10,38.64146451325732,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +964,False,"{'a': 0.01, 'e': 0.14962314309707203}",20,10,-22.52299576190186,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +965,False,"{'a': 0.01, 'e': 0.1488374525971361}",25,14,11.936500609569329,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +966,False,"{'a': 0.01, 'e': 0.14805551922324833}",20,0,-9.339710278471587,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +967,False,"{'a': 0.01, 'e': 0.14727732909232616}",25,13,21.66722331188653,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +968,False,"{'a': 0.01, 'e': 0.14650286832540504}",20,1,33.48082331570289,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +969,False,"{'a': 0.01, 'e': 0.14573212304829986}",20,4,4.735389445787965,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +970,False,"{'a': 0.01, 'e': 0.144965079392259}",30,3,40.245692563311515,"{0: 26, 1: 1, 2: 0, 3: 0, 4: 0}",1 +971,False,"{'a': 0.01, 'e': 0.14420172349460902}",25,16,18.112875185474554,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +972,False,"{'a': 0.01, 'e': 0.14344204149939066}",20,9,21.20452759461311,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +973,False,"{'a': 0.01, 'e': 0.14268601955798477}",20,8,20.882792045177887,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +974,False,"{'a': 0.01, 'e': 0.14193364382973173}",25,11,10.371777609595846,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +975,False,"{'a': 0.01, 'e': 0.14118490048254073}",30,16,-13.3520275072059,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +976,False,"{'a': 0.01, 'e': 0.14043977569348987}",20,0,22.341338042075147,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +977,False,"{'a': 0.01, 'e': 0.13969825564942018}",20,0,37.10135216786027,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +978,False,"{'a': 0.01, 'e': 0.138960326547518}",20,16,5.987351209484513,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +979,False,"{'a': 0.01, 'e': 0.13822597459589214}",25,7,11.552413821641597,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +980,False,"{'a': 0.01, 'e': 0.13749518601414001}",35,18,30.84150202553068,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +981,False,"{'a': 0.01, 'e': 0.1367679470339075}",25,11,4.630212540434815,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +982,False,"{'a': 0.01, 'e': 0.13604424389943992}",20,10,17.157627489971777,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +983,False,"{'a': 0.01, 'e': 0.13532406286812448}",20,7,7.6825584540414535,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +984,False,"{'a': 0.01, 'e': 0.13460739021102563}",35,0,20.247331295419635,"{0: 33, 1: 0, 2: 1, 3: 1, 4: 0}",0 +985,False,"{'a': 0.01, 'e': 0.1338942122134118}",20,10,-25.09176630709178,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +986,False,"{'a': 0.01, 'e': 0.13318451517527474}",25,16,10.719071631328626,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +987,False,"{'a': 0.01, 'e': 0.13247828541184037}",20,5,14.471734747194537,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +988,False,"{'a': 0.01, 'e': 0.13177550925407255}",20,11,-25.31195915919449,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 1}",1 +989,False,"{'a': 0.01, 'e': 0.1310761730491693}",25,10,28.698240082875905,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +990,False,"{'a': 0.01, 'e': 0.13038026316105045}",20,0,26.167240564452545,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +991,False,"{'a': 0.01, 'e': 0.1296877659708393}",20,6,14.01385258360073,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +992,False,"{'a': 0.01, 'e': 0.12899866787733505}",20,3,13.581082944526996,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +993,False,"{'a': 0.01, 'e': 0.1283129552974791}",20,15,7.8018719756896235,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +994,False,"{'a': 0.01, 'e': 0.12763061466681425}",25,1,14.95085005596269,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 0}",1 +995,False,"{'a': 0.01, 'e': 0.1269516324399349}",30,14,28.613301747820557,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +996,False,"{'a': 0.01, 'e': 0.12627599509093268}",20,11,-0.46313346825356505,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +997,False,"{'a': 0.01, 'e': 0.12560368911383202}",20,12,1.917780415845042,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +998,False,"{'a': 0.01, 'e': 0.12493470102302173}",30,8,32.90125919040618,"{0: 21, 1: 1, 2: 0, 3: 0, 4: 0}",1 +999,False,"{'a': 0.01, 'e': 0.1242690173536769}",20,1,20.95907005562416,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1000,False,"{'a': 0.01, 'e': 0.12360662466217542}",25,13,12.420952029529296,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1001,False,"{'a': 0.01, 'e': 0.12294750952650757}",25,18,14.341189974319281,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1002,False,"{'a': 0.01, 'e': 0.12229165854667823}",30,12,29.603802769372358,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1003,False,"{'a': 0.01, 'e': 0.12163905834510291}",20,8,20.00535880741419,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1004,False,"{'a': 0.01, 'e': 0.12098969556699646}",30,17,27.981191863766913,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1005,False,"{'a': 0.01, 'e': 0.12034355688075649}",25,7,21.024033399460215,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1006,False,"{'a': 0.01, 'e': 0.11970062897833855}",20,4,23.620817035501826,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1007,False,"{'a': 0.01, 'e': 0.11906089857562585}",20,3,-3.8826320707166198,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1008,False,"{'a': 0.01, 'e': 0.11842435241279348}",25,11,28.618523870067044,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1009,False,"{'a': 0.01, 'e': 0.11779097725466359}",25,7,6.208911032590073,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1010,False,"{'a': 0.01, 'e': 0.11716075989105756}",20,3,28.740858654084487,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1011,False,"{'a': 0.01, 'e': 0.11653368713713952}",25,20,9.734859021270308,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1012,False,"{'a': 0.01, 'e': 0.1159097458337549}",20,8,18.827520603936676,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1013,False,"{'a': 0.01, 'e': 0.11528892284776227}",25,18,11.60871329689325,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1014,False,"{'a': 0.01, 'e': 0.11467120507235995}",30,13,25.911194153416584,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1015,False,"{'a': 0.01, 'e': 0.11405657942740621}",35,17,27.803218201973802,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1016,False,"{'a': 0.01, 'e': 0.11344503285973284}",30,16,15.923484772342844,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1017,False,"{'a': 0.01, 'e': 0.1128365523434548}",25,0,30.981962537365966,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1018,False,"{'a': 0.01, 'e': 0.11223112488027176}",20,15,8.690824351920224,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1019,False,"{'a': 0.01, 'e': 0.11162873749976576}",30,18,8.869749226739579,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1020,False,"{'a': 0.01, 'e': 0.11102937725969231}",20,8,19.98841020049251,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1021,False,"{'a': 0.01, 'e': 0.11043303124626591}",25,12,15.059060287334985,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1022,False,"{'a': 0.01, 'e': 0.10983968657444088}",35,13,17.287771859484344,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1023,False,"{'a': 0.01, 'e': 0.10924933038818518}",30,18,27.095431655692305,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1024,False,"{'a': 0.01, 'e': 0.1086619498607504}",25,16,15.634990283514021,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1025,False,"{'a': 0.01, 'e': 0.10807753219493499}",25,11,11.41204227477299,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1026,False,"{'a': 0.01, 'e': 0.1074960646233436}",20,8,21.462623605798754,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1027,False,"{'a': 0.01, 'e': 0.10691753440863971}",20,9,23.289329179947813,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1028,False,"{'a': 0.01, 'e': 0.10634192884379434}",25,11,21.85926958178881,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1029,False,"{'a': 0.01, 'e': 0.10576923525232884}",25,3,37.779771669405434,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1030,False,"{'a': 0.01, 'e': 0.1051994409885525}",20,4,18.784266470768053,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1031,False,"{'a': 0.01, 'e': 0.104632533437796}",25,8,19.47944175673809,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1032,False,"{'a': 0.01, 'e': 0.10406850001663892}",20,7,21.488523320758397,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1033,False,"{'a': 0.01, 'e': 0.10350732817313268}",20,15,8.860628900906399,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1034,False,"{'a': 0.01, 'e': 0.10294900538701923}",25,17,16.286165737179132,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1035,False,"{'a': 0.01, 'e': 0.10239351916994366}",30,11,29.021232309925864,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1036,False,"{'a': 0.01, 'e': 0.10184085706566326}",20,8,21.583462915694405,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1037,False,"{'a': 0.01, 'e': 0.10129100665025104}",20,6,-14.538652995107169,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1038,False,"{'a': 0.01, 'e': 0.1007439555322952}",25,5,10.112363134069874,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1039,False,"{'a': 0.01, 'e': 0.10019969135309348}",20,8,24.263160495006154,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1040,False,"{'a': 0.01, 'e': 0.09965820178684348}",20,10,20.616245920238715,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1041,False,"{'a': 0.01, 'e': 0.09911947454082792}",30,18,15.624072574346755,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1042,False,"{'a': 0.01, 'e': 0.0985834973555958}",30,12,24.19756643739418,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1043,False,"{'a': 0.01, 'e': 0.09805025800513956}",25,0,3.381688252260454,"{0: 22, 1: 1, 2: 1, 3: 1, 4: 0}",0 +1044,False,"{'a': 0.01, 'e': 0.09751974429706656}",30,18,24.220816648542982,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1045,False,"{'a': 0.01, 'e': 0.09699194407276801}",20,6,25.209070351496173,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1046,False,"{'a': 0.01, 'e': 0.09646684520758242}",20,5,14.004034305261527,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1047,False,"{'a': 0.01, 'e': 0.09594443561095478}",20,12,16.8955786421104,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1048,False,"{'a': 0.01, 'e': 0.09542470322659324}",20,15,9.382080137496986,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1049,False,"{'a': 0.01, 'e': 0.09490763603261898}",20,7,-41.40668495220717,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1050,False,"{'a': 0.01, 'e': 0.09439322204171474}",20,11,17.495307370144147,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1051,False,"{'a': 0.01, 'e': 0.09388144930126752}",35,12,19.595987078218485,"{0: 22, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1052,False,"{'a': 0.01, 'e': 0.09337230589350787}",25,16,18.1975632453185,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1053,False,"{'a': 0.01, 'e': 0.09286577993564604}",20,13,10.9843865430126,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1054,False,"{'a': 0.01, 'e': 0.09236185958000254}",20,5,15.555313965413252,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1055,False,"{'a': 0.01, 'e': 0.09186053301413677}",30,20,21.60404109071732,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1056,False,"{'a': 0.01, 'e': 0.09136178846097065}",25,8,17.90197543690961,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1057,False,"{'a': 0.01, 'e': 0.09086561417890882}",25,11,2.5352657524461932,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1058,False,"{'a': 0.01, 'e': 0.09037199846195543}",20,12,13.358967812874049,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1059,False,"{'a': 0.01, 'e': 0.08988092963982675}",20,0,-12.337457750568065,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +1060,False,"{'a': 0.01, 'e': 0.08939239607806126}",20,8,19.90294194900425,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1061,False,"{'a': 0.01, 'e': 0.08890638617812452}",20,1,32.07801391931591,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1062,False,"{'a': 0.01, 'e': 0.08842288837751222}",20,12,6.5666374226364965,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1063,False,"{'a': 0.01, 'e': 0.0879418911498484}",25,12,-16.62459683740444,"{0: 11, 1: 0, 2: 0, 3: 2, 4: 0}",1 +1064,False,"{'a': 0.01, 'e': 0.08746338300498147}",20,11,2.8112847097000726,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1065,False,"{'a': 0.01, 'e': 0.08698735248907596}",25,20,11.448588603065092,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1066,False,"{'a': 0.01, 'e': 0.08651378818470112}",20,2,11.362551582119462,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1067,False,"{'a': 0.01, 'e': 0.08604267871091675}",25,2,35.63226032365368,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1068,False,"{'a': 0.01, 'e': 0.08557401272335485}",25,8,18.003687466549014,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1069,False,"{'a': 0.01, 'e': 0.08510777891429888}",20,0,30.18840400307681,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1070,False,"{'a': 0.01, 'e': 0.08464396601275981}",20,6,26.667033880206887,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1071,False,"{'a': 0.01, 'e': 0.08418256278454794}",20,11,16.098281595577483,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1072,False,"{'a': 0.01, 'e': 0.08372355803234366}",20,7,14.56663461225693,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1073,False,"{'a': 0.01, 'e': 0.08326694059576267}",20,14,13.860950828496495,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1074,False,"{'a': 0.01, 'e': 0.08281269935142088}",20,4,25.582525244071444,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1075,False,"{'a': 0.01, 'e': 0.08236082321299365}",25,11,29.45901656659007,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1076,False,"{'a': 0.01, 'e': 0.08191130113127432}",25,17,19.11418858055569,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1077,False,"{'a': 0.01, 'e': 0.08146412209422838}",25,11,21.27911794569332,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1078,False,"{'a': 0.01, 'e': 0.08101927512704576}",25,17,13.372542037812789,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1079,False,"{'a': 0.01, 'e': 0.0805767492921895}",35,18,35.77361996538167,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1080,False,"{'a': 0.01, 'e': 0.0801365336894424}",20,8,23.044614645425956,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1081,False,"{'a': 0.01, 'e': 0.07969861745595008}",35,13,37.74940681154342,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1082,False,"{'a': 0.01, 'e': 0.07926298976626212}",20,10,-21.183061668219505,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1083,False,"{'a': 0.01, 'e': 0.07882963983237024}",20,16,6.492402169124967,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1084,False,"{'a': 0.01, 'e': 0.07839855690374342}",25,15,7.122615560071003,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1085,False,"{'a': 0.01, 'e': 0.07796973026736131}",20,5,18.502852794464435,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1086,False,"{'a': 0.01, 'e': 0.07754314924774419}",25,17,14.850162524816163,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1087,False,"{'a': 0.01, 'e': 0.07711880320698083}",20,3,26.072303657047474,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1088,False,"{'a': 0.01, 'e': 0.07669668154475417}",20,10,18.81570246329118,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1089,False,"{'a': 0.01, 'e': 0.07627677369836361}",30,22,15.838826443072954,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1090,False,"{'a': 0.01, 'e': 0.07585906914274565}",20,13,15.16550438373643,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1091,False,"{'a': 0.01, 'e': 0.07544355739049236}",20,10,5.373824038349319,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1092,False,"{'a': 0.01, 'e': 0.07503022799186632}",20,3,-8.792819479311856,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1093,False,"{'a': 0.01, 'e': 0.07461907053481454}",25,3,35.25823311468217,"{0: 21, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1094,False,"{'a': 0.01, 'e': 0.07421007464497908}",30,13,21.51830884743907,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1095,False,"{'a': 0.01, 'e': 0.07380322998570621}",20,0,26.457863445950505,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1096,False,"{'a': 0.01, 'e': 0.07339852625805288}",25,8,14.981835347963866,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1097,False,"{'a': 0.01, 'e': 0.07299595320079066}",20,0,30.941669759141007,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1098,False,"{'a': 0.01, 'e': 0.07259550059040887}",20,2,26.97398154094694,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1099,False,"{'a': 0.01, 'e': 0.07219715824111328}",25,9,30.75940996212405,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1100,False,"{'a': 0.01, 'e': 0.07180091600482552}",20,14,10.444667128831616,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1101,False,"{'a': 0.01, 'e': 0.07140676377117783}",20,13,4.531794903434335,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1102,False,"{'a': 0.01, 'e': 0.07101469146750772}",25,17,3.3955678669798486,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1103,False,"{'a': 0.01, 'e': 0.07062468905884889}",20,14,9.369022664538873,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1104,False,"{'a': 0.01, 'e': 0.070236746547922}",30,14,16.407666216512013,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1105,False,"{'a': 0.01, 'e': 0.06985085397512203}",20,11,18.937145528852508,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1106,False,"{'a': 0.01, 'e': 0.06946700141850415}",25,10,18.01612229704691,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1107,False,"{'a': 0.01, 'e': 0.0690851789937682}",20,10,6.941773371225155,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1108,False,"{'a': 0.01, 'e': 0.06870537685424039}",20,2,17.085510990903895,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1109,False,"{'a': 0.01, 'e': 0.06832758519085402}",20,3,27.104310650437125,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1110,False,"{'a': 0.01, 'e': 0.06795179423212783}",20,6,27.132368053713414,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1111,False,"{'a': 0.01, 'e': 0.06757799424414279}",20,10,17.52278669520186,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1112,False,"{'a': 0.01, 'e': 0.06720617553051722}",20,14,9.751033680901662,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1113,False,"{'a': 0.01, 'e': 0.06683632843237963}",20,13,10.9199217788983,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1114,False,"{'a': 0.01, 'e': 0.06646844332834079}",20,9,19.28174345549649,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1115,False,"{'a': 0.01, 'e': 0.06610251063446326}",30,16,-14.553411461476344,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1116,False,"{'a': 0.01, 'e': 0.0657385208042297}",20,2,26.86955858324122,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1117,False,"{'a': 0.01, 'e': 0.06537646432850974}",25,10,25.72404992100097,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1118,False,"{'a': 0.01, 'e': 0.06501633173552424}",25,13,18.079492781842823,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1119,False,"{'a': 0.01, 'e': 0.06465811359080964}",20,6,25.984571569864414,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1120,False,"{'a': 0.01, 'e': 0.06430180049717926}",25,13,22.71518579247235,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1121,False,"{'a': 0.01, 'e': 0.06394738309468373}",20,0,32.23973475988012,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1122,False,"{'a': 0.01, 'e': 0.0635948520605698}",25,12,20.60206381344801,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1123,False,"{'a': 0.01, 'e': 0.06324419810923798}",25,19,13.00460739880784,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1124,False,"{'a': 0.01, 'e': 0.06289541199219817}",25,14,15.506253625242426,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1125,False,"{'a': 0.01, 'e': 0.06254848449802419}",25,9,-9.062037036829981,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1126,False,"{'a': 0.01, 'e': 0.062203406452307264}",20,13,14.145750599126545,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1127,False,"{'a': 0.01, 'e': 0.0618601687176068}",20,4,29.555923741604687,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1128,False,"{'a': 0.01, 'e': 0.06151876219340191}",20,16,7.167307841795409,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1129,False,"{'a': 0.01, 'e': 0.061179177816039654}",25,16,17.418171149424133,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1130,False,"{'a': 0.01, 'e': 0.060841406558682865}",30,21,15.803548859248586,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1131,False,"{'a': 0.01, 'e': 0.060505439431256636}",30,16,25.41736811767189,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1132,False,"{'a': 0.01, 'e': 0.060171267480393587}",30,17,20.471749651234205,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1133,False,"{'a': 0.01, 'e': 0.05983888178937746}",20,8,24.207824667321177,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1134,False,"{'a': 0.01, 'e': 0.05950827347808629}",20,13,10.712780878511172,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1135,False,"{'a': 0.01, 'e': 0.059179433702933104}",20,9,21.984491552497126,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1136,False,"{'a': 0.01, 'e': 0.05885235365680708}",20,14,-1.0631031657477665,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1137,False,"{'a': 0.01, 'e': 0.05852702456901204}",20,9,24.018901814182964,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1138,False,"{'a': 0.01, 'e': 0.05820343770520453}",30,3,1.5370607047581315,"{0: 23, 1: 0, 2: 4, 3: 0, 4: 0}",1 +1139,False,"{'a': 0.01, 'e': 0.05788158436733115}",20,10,17.62884303914817,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1140,False,"{'a': 0.01, 'e': 0.05756145589356365}",20,14,12.811913443668526,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1141,False,"{'a': 0.01, 'e': 0.057243043658234294}",25,13,22.18765859127382,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1142,False,"{'a': 0.01, 'e': 0.056926339071768584}",25,13,16.13298530850949,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1143,False,"{'a': 0.01, 'e': 0.05661133358061898}",30,12,30.18788871323172,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1144,False,"{'a': 0.01, 'e': 0.05629801866719564}",20,13,12.895416362315352,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1145,False,"{'a': 0.01, 'e': 0.05598638584979709}",30,18,24.991316017882152,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1146,False,"{'a': 0.01, 'e': 0.05567642668254025}",20,6,28.772008292512293,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1147,False,"{'a': 0.01, 'e': 0.0553681327552884}",25,11,18.96017682352176,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1148,False,"{'a': 0.01, 'e': 0.05506149569357954}",25,13,24.515840390732745,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1149,False,"{'a': 0.01, 'e': 0.0547565071585524}",25,20,7.434445163982425,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1150,False,"{'a': 0.01, 'e': 0.05445315884687296}",20,14,10.074320731523006,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1151,False,"{'a': 0.01, 'e': 0.05415144249065906}",25,14,24.999003647795742,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1152,False,"{'a': 0.01, 'e': 0.05385134985740425}",20,6,28.554131000364357,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1153,False,"{'a': 0.01, 'e': 0.05355287274990139}",20,13,11.696072416737952,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1154,False,"{'a': 0.01, 'e': 0.053256003006165065}",25,14,21.11413610569779,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1155,False,"{'a': 0.01, 'e': 0.052960732499352514}",20,16,7.79875646166753,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1156,False,"{'a': 0.01, 'e': 0.05266705313768516}",30,18,25.594003498041392,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1157,False,"{'a': 0.01, 'e': 0.052374956864367994}",20,14,11.318075772147443,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1158,False,"{'a': 0.01, 'e': 0.052084435657508976}",25,17,11.732620747582448,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1159,False,"{'a': 0.01, 'e': 0.051795481530037435}",25,10,14.799367153043983,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1160,False,"{'a': 0.01, 'e': 0.05150808652962191}",20,3,-10.870204436002314,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1161,False,"{'a': 0.01, 'e': 0.051222242738586554}",30,22,11.760773685864415,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1162,False,"{'a': 0.01, 'e': 0.05093794227382831}",25,15,17.461012667419194,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1163,False,"{'a': 0.01, 'e': 0.05065517728673141}",25,7,33.157866641452905,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1164,False,"{'a': 0.01, 'e': 0.050373939963083036}",20,8,15.0528571458627,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1165,False,"{'a': 0.01, 'e': 0.05009422252298734}",20,2,17.266056407258844,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1166,False,"{'a': 0.01, 'e': 0.04981601722077866}",30,19,20.18164527664773,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1167,False,"{'a': 0.01, 'e': 0.049539316344934914}",30,8,30.390351855237626,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1168,False,"{'a': 0.01, 'e': 0.049264112217989764}",20,6,20.03176324109552,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1169,False,"{'a': 0.01, 'e': 0.04899039719644416}",25,17,17.84375908895999,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1170,False,"{'a': 0.01, 'e': 0.048718163670677495}",20,9,18.330379169038583,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1171,False,"{'a': 0.01, 'e': 0.04844740406485848}",20,7,25.20625446109747,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1172,False,"{'a': 0.01, 'e': 0.04817811083685475}",25,14,18.650492634243584,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1173,False,"{'a': 0.01, 'e': 0.04791027647814228}",20,7,13.67277587270611,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1174,False,"{'a': 0.01, 'e': 0.047643893513714564}",20,0,-11.153647059636754,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +1175,False,"{'a': 0.01, 'e': 0.04737895450199081}",25,8,29.587655076568286,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1176,False,"{'a': 0.01, 'e': 0.04711545203472378}",30,22,11.7845943343642,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1177,False,"{'a': 0.01, 'e': 0.046853378736907314}",20,11,9.99904165039063,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1178,False,"{'a': 0.01, 'e': 0.04659272726668284}",20,15,8.070849018434265,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1179,False,"{'a': 0.01, 'e': 0.04633349031524636}",25,12,22.164005007580275,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1180,False,"{'a': 0.01, 'e': 0.04607566060675394}",20,3,27.621891899337115,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1181,False,"{'a': 0.01, 'e': 0.04581923089822748}",20,10,22.821656075509953,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1182,False,"{'a': 0.01, 'e': 0.04556419397945932}",30,16,27.120805379273122,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1183,False,"{'a': 0.01, 'e': 0.045310542672917786}",20,8,24.310721784996538,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1184,False,"{'a': 0.01, 'e': 0.04505826983365058}",35,18,31.464430913691746,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1185,False,"{'a': 0.01, 'e': 0.04480736834918908}",20,14,13.740582259866796,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1186,False,"{'a': 0.01, 'e': 0.044557831139451554}",25,16,17.49768199604239,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1187,False,"{'a': 0.01, 'e': 0.044309651156646535}",20,7,25.937970280764567,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1188,False,"{'a': 0.01, 'e': 0.04406282138517548}",35,20,29.84329473549057,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1189,False,"{'a': 0.01, 'e': 0.043817334841534605}",20,10,-19.460000930048746,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1190,False,"{'a': 0.01, 'e': 0.043573184574217994}",20,10,20.089524047733367,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1191,False,"{'a': 0.01, 'e': 0.0433303636636182}",30,14,33.83442462170408,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1192,False,"{'a': 0.01, 'e': 0.04308886522192823}",25,10,24.021805983381267,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1193,False,"{'a': 0.01, 'e': 0.042848682393042625}",25,20,13.466952282936422,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1194,False,"{'a': 0.01, 'e': 0.04260980835245798}",20,14,9.51627164443508,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1195,False,"{'a': 0.01, 'e': 0.04237223630717357}",30,12,34.082217620916545,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1196,False,"{'a': 0.01, 'e': 0.04213595949559157}",20,12,-7.274626021169073,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1197,False,"{'a': 0.01, 'e': 0.04190097118741709}",30,19,21.23179154867458,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1198,False,"{'a': 0.01, 'e': 0.041667264683557415}",20,7,22.42464532225459,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1199,False,"{'a': 0.01, 'e': 0.04143483331602216}",30,18,19.805227538086665,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1200,False,"{'a': 0.01, 'e': 0.041203670447821916}",20,10,18.83195776783008,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1201,False,"{'a': 0.01, 'e': 0.04097376947286724}",25,16,14.956276981796627,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1202,False,"{'a': 0.01, 'e': 0.04074512381586781}",30,18,22.98314428923944,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1203,False,"{'a': 0.01, 'e': 0.04051772693223055}",25,7,30.174319416260175,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1204,False,"{'a': 0.01, 'e': 0.04029157230795821}",25,7,35.194875295943206,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1205,False,"{'a': 0.01, 'e': 0.040066653459547186}",30,20,6.822956121847688,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1206,False,"{'a': 0.01, 'e': 0.03984296393388598}",20,6,20.172012427468136,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1207,False,"{'a': 0.01, 'e': 0.03962049730815265}",20,0,33.08491955969674,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1208,False,"{'a': 0.01, 'e': 0.03939924718971244}",30,3,48.121605533108365,"{0: 27, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1209,False,"{'a': 0.01, 'e': 0.03917920721601531}",25,3,28.519655843207882,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1210,False,"{'a': 0.01, 'e': 0.03896037105449324}",20,11,19.11416613218747,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1211,False,"{'a': 0.01, 'e': 0.038742732402457514}",30,8,20.781900359102526,"{0: 20, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1212,False,"{'a': 0.01, 'e': 0.038526284986995396}",30,12,32.062528946090005,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1213,False,"{'a': 0.01, 'e': 0.038311022564867736}",30,18,22.477716550464777,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1214,False,"{'a': 0.01, 'e': 0.038096938922404844}",25,20,10.456515270126975,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1215,False,"{'a': 0.01, 'e': 0.03788402787540379}",30,13,31.794069804921268,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1216,False,"{'a': 0.01, 'e': 0.037672283269025275}",25,8,32.4324697286906,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1217,False,"{'a': 0.01, 'e': 0.03746169897768925}",20,0,34.93517576092568,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1218,False,"{'a': 0.01, 'e': 0.0372522689049718}",20,12,18.576284263741794,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1219,False,"{'a': 0.01, 'e': 0.037043986983501864}",20,6,23.519671270393758,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1220,False,"{'a': 0.01, 'e': 0.03683684717485658}",25,14,23.16713568969309,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1221,False,"{'a': 0.01, 'e': 0.03663084346945844}",20,10,15.852584273194509,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1222,False,"{'a': 0.01, 'e': 0.03642596988647062}",20,3,25.137579825799406,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1223,False,"{'a': 0.01, 'e': 0.03622222047369372}",30,22,10.984185884679643,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1224,False,"{'a': 0.01, 'e': 0.036019589307461186}",20,8,23.08671888076999,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1225,False,"{'a': 0.01, 'e': 0.035818070492535825}",20,14,12.234878525990124,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1226,False,"{'a': 0.01, 'e': 0.03561765816200568}",20,12,15.533510750868173,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1227,False,"{'a': 0.01, 'e': 0.03541834647717945}",20,0,31.549711997225053,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1228,False,"{'a': 0.01, 'e': 0.03522012962748344}",20,9,20.902349702325726,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1229,False,"{'a': 0.01, 'e': 0.03502300183035656}",30,8,29.107128797429283,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1230,False,"{'a': 0.01, 'e': 0.03482695733114649}",20,6,4.288463016498197,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1231,False,"{'a': 0.01, 'e': 0.0346319904030058}",20,3,32.199807944502155,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1232,False,"{'a': 0.01, 'e': 0.03443809534678788}",25,16,13.002574357575226,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1233,False,"{'a': 0.01, 'e': 0.03424526649094273}",20,16,6.652634723378804,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1234,False,"{'a': 0.01, 'e': 0.03405349819141268}",30,18,21.863745031928943,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1235,False,"{'a': 0.01, 'e': 0.033862784831528825}",30,10,22.830405358452552,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1236,False,"{'a': 0.01, 'e': 0.03367312082190699}",20,13,12.167018933926212,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1237,False,"{'a': 0.01, 'e': 0.03348450060034358}",30,20,19.404595380107487,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1238,False,"{'a': 0.01, 'e': 0.03329691863171147}",25,11,24.908377064920384,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1239,False,"{'a': 0.01, 'e': 0.03311036940785661}",25,15,22.388552716462723,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1240,False,"{'a': 0.01, 'e': 0.03292484744749424}",30,18,20.768955190521933,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1241,False,"{'a': 0.01, 'e': 0.03274034729610453}",25,15,16.556930701527527,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1242,False,"{'a': 0.01, 'e': 0.03255686352582954}",20,14,13.27092716079464,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1243,False,"{'a': 0.01, 'e': 0.032374390735369185}",20,12,14.069817496680344,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1244,False,"{'a': 0.01, 'e': 0.03219292354987813}",25,8,8.761494452108701,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1245,False,"{'a': 0.01, 'e': 0.03201245662086161}",20,12,16.402238789767164,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1246,False,"{'a': 0.01, 'e': 0.03183298462607287}",20,0,33.27383622277735,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1247,False,"{'a': 0.01, 'e': 0.03165450226940936}",20,10,18.646620892338323,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1248,False,"{'a': 0.01, 'e': 0.031477004280809684}",20,3,30.81323343531934,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1249,False,"{'a': 0.01, 'e': 0.03130048541615027}",25,0,44.55271761128662,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1250,False,"{'a': 0.01, 'e': 0.031124940457142758}",30,8,38.63830022480495,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1251,False,"{'a': 0.01, 'e': 0.030950364211230985}",20,15,11.14603440680303,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1252,False,"{'a': 0.01, 'e': 0.030776751511487954}",20,5,23.093739540994104,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1253,False,"{'a': 0.01, 'e': 0.03060409721651325}",25,12,25.0066368457375,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1254,False,"{'a': 0.01, 'e': 0.030432396210331003}",25,14,20.841496805075785,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1255,False,"{'a': 0.01, 'e': 0.03026164340228632}",30,15,29.249009095609633,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1256,False,"{'a': 0.01, 'e': 0.03009183372694446}",30,16,23.01985286092125,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1257,False,"{'a': 0.01, 'e': 0.029922962143987264}",20,11,16.424055172400298,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1258,False,"{'a': 0.01, 'e': 0.029755023638112}",25,0,38.85891183218618,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1259,False,"{'a': 0.01, 'e': 0.029588013218929343}",20,9,19.176118732846522,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1260,False,"{'a': 0.01, 'e': 0.029421925920861236}",30,18,13.083994952995498,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1261,False,"{'a': 0.01, 'e': 0.02925675680303963}",20,7,27.242639998544846,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1262,False,"{'a': 0.01, 'e': 0.029092500949205014}",30,22,16.870924255187308,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1263,False,"{'a': 0.01, 'e': 0.02892915346760494}",25,14,23.41482826880157,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1264,False,"{'a': 0.01, 'e': 0.028766709490892994}",25,14,18.24571329613243,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1265,False,"{'a': 0.01, 'e': 0.028605164176027875}",20,2,4.451550561349178,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1266,False,"{'a': 0.01, 'e': 0.028444512704172253}",20,1,21.222250107386127,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1267,False,"{'a': 0.01, 'e': 0.02828475028059274}",25,17,18.187563458489137,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1268,False,"{'a': 0.01, 'e': 0.028125872134558638}",20,11,18.55708485774758,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1269,False,"{'a': 0.01, 'e': 0.027967873519242348}",25,20,10.983448552250236,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1270,False,"{'a': 0.01, 'e': 0.027810749711618787}",20,5,25.921750085117093,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1271,False,"{'a': 0.01, 'e': 0.02765449601236547}",30,9,36.648586631960114,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1272,False,"{'a': 0.01, 'e': 0.02749910774576314}",20,10,19.079437581244726,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1273,False,"{'a': 0.01, 'e': 0.02734458025959563}",30,21,16.574749852179366,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1274,False,"{'a': 0.01, 'e': 0.027190908925050827}",25,8,25.80595274828345,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1275,False,"{'a': 0.01, 'e': 0.027038089136621646}",25,5,34.43097381882745,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1276,False,"{'a': 0.01, 'e': 0.026886116312006547}",20,7,12.306632542614768,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1277,False,"{'a': 0.01, 'e': 0.026734985892010954}",20,8,16.45347207866842,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1278,False,"{'a': 0.01, 'e': 0.026584693340448884}",20,3,28.338408686005646,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1279,False,"{'a': 0.01, 'e': 0.02643523414404436}",25,20,10.08005914664831,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1280,False,"{'a': 0.01, 'e': 0.026286603812333054}",20,11,17.530049052624804,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1281,False,"{'a': 0.01, 'e': 0.026138797877564568}",20,8,26.213350658316422,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1282,False,"{'a': 0.01, 'e': 0.025991811894604644}",25,2,41.32683753458496,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1283,False,"{'a': 0.01, 'e': 0.025845641440837452}",25,10,18.599141692551783,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1284,False,"{'a': 0.01, 'e': 0.02570028211606834}",25,15,15.613763616992264,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1285,False,"{'a': 0.01, 'e': 0.02555572954242702}",20,7,23.438865912495203,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1286,False,"{'a': 0.01, 'e': 0.025411979364269865}",30,13,31.544096680042156,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1287,False,"{'a': 0.01, 'e': 0.02526902724808411}",30,12,31.429760840549534,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1288,False,"{'a': 0.01, 'e': 0.025126868882391018}",25,9,30.95190313580915,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1289,False,"{'a': 0.01, 'e': 0.02498549997764954}",25,13,13.076514210550119,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1290,False,"{'a': 0.01, 'e': 0.024844916266160588}",20,7,25.51768813316271,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1291,False,"{'a': 0.01, 'e': 0.02470511350197102}",30,6,39.16557321074306,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1292,False,"{'a': 0.01, 'e': 0.024566087460778485}",20,3,27.914347744562683,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1293,False,"{'a': 0.01, 'e': 0.024427833939835608}",20,5,15.77171163495311,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1294,False,"{'a': 0.01, 'e': 0.024290348757855407}",25,20,11.477713387042089,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1295,False,"{'a': 0.01, 'e': 0.024153627754916362}",20,16,6.345000558054683,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1296,False,"{'a': 0.01, 'e': 0.024017666792367498}",25,5,39.933798471854686,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1297,False,"{'a': 0.01, 'e': 0.023882461752734563}",20,11,18.287447384356305,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1298,False,"{'a': 0.01, 'e': 0.023748008539625776}",20,9,22.799248246454326,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1299,False,"{'a': 0.01, 'e': 0.023614303077637788}",25,18,17.546098696944636,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1300,False,"{'a': 0.01, 'e': 0.023481341312262205}",35,18,31.852947759471995,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1301,False,"{'a': 0.01, 'e': 0.023349119209792435}",20,8,19.174017611118686,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1302,False,"{'a': 0.01, 'e': 0.023217632757230433}",30,22,14.064722819743327,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1303,False,"{'a': 0.01, 'e': 0.023086877962193886}",30,14,30.097841921382248,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1304,False,"{'a': 0.01, 'e': 0.022956850852823507}",30,12,30.136920916852663,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1305,False,"{'a': 0.01, 'e': 0.022827547477691}",20,10,22.809651825581618,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1306,False,"{'a': 0.01, 'e': 0.022698963905706693}",25,15,19.04396097466077,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1307,False,"{'a': 0.01, 'e': 0.022571096226028042}",30,17,24.395278538766892,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1308,False,"{'a': 0.01, 'e': 0.022443940547967722}",25,7,32.69495039323872,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1309,False,"{'a': 0.01, 'e': 0.0223174930009028}",25,12,-19.77125281689474,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1310,False,"{'a': 0.01, 'e': 0.022191749734183253}",20,12,14.614957790245214,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1311,False,"{'a': 0.01, 'e': 0.02206670691704149}",25,11,18.214036561075066,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1312,False,"{'a': 0.01, 'e': 0.021942360738501643}",30,16,27.34974414111634,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1313,False,"{'a': 0.01, 'e': 0.02181870740728975}",25,13,21.299748656408717,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1314,False,"{'a': 0.01, 'e': 0.021695743151743274}",30,14,29.9005885835035,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1315,False,"{'a': 0.01, 'e': 0.02157346421972184}",20,6,27.03468348801578,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1316,False,"{'a': 0.01, 'e': 0.02145186687851741}",35,18,33.94588529490517,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1317,False,"{'a': 0.01, 'e': 0.021330947414765822}",25,16,16.329362734035957,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1318,False,"{'a': 0.01, 'e': 0.02121070213435683}",20,7,23.26682235461999,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1319,False,"{'a': 0.01, 'e': 0.02109112736234675}",20,12,13.688632973839896,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1320,False,"{'a': 0.01, 'e': 0.02097221944286909}",30,4,48.13795648060272,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1321,False,"{'a': 0.01, 'e': 0.020853974739047154}",20,7,24.806518440562257,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1322,False,"{'a': 0.01, 'e': 0.020736389632905916}",25,13,19.963009396664766,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1323,False,"{'a': 0.01, 'e': 0.020619460525284627}",30,12,35.02349115703218,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1324,False,"{'a': 0.01, 'e': 0.02050318383574956}",25,9,24.114226759004097,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1325,False,"{'a': 0.01, 'e': 0.0203875560025073}",20,10,21.136403377808584,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1326,False,"{'a': 0.01, 'e': 0.02027257348231759}",25,14,22.329748948124365,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1327,False,"{'a': 0.01, 'e': 0.020158232750407512}",25,18,11.886690161290913,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1328,False,"{'a': 0.01, 'e': 0.020044530300384777}",30,8,37.25081680408771,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1329,False,"{'a': 0.01, 'e': 0.019931462644152464}",25,13,23.501615710614175,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1330,False,"{'a': 0.01, 'e': 0.019819026311823196}",20,16,8.390067420673425,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1331,False,"{'a': 0.01, 'e': 0.01970721785163365}",20,13,14.77917860030897,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1332,False,"{'a': 0.01, 'e': 0.019596033829860193}",20,0,27.225010201641666,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1333,False,"{'a': 0.01, 'e': 0.01948547083073371}",20,7,20.75536146862731,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1334,False,"{'a': 0.01, 'e': 0.019375525456355125}",25,5,9.296170736525882,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1335,False,"{'a': 0.01, 'e': 0.019266194326611585}",25,3,37.92306098541361,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1336,False,"{'a': 0.01, 'e': 0.019157474079092518}",20,3,26.903966677881062,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1337,False,"{'a': 0.01, 'e': 0.019049361369006035}",35,23,22.892110785736914,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1338,False,"{'a': 0.01, 'e': 0.018941852869095666}",25,3,35.606339750464514,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1339,False,"{'a': 0.01, 'e': 0.0188349452695572}",30,2,42.5325879041111,"{0: 28, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1340,False,"{'a': 0.01, 'e': 0.01872863527795654}",30,14,35.438453000617294,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1341,False,"{'a': 0.01, 'e': 0.018622919619146527}",35,19,-13.116851088026216,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1342,False,"{'a': 0.01, 'e': 0.018517795035185358}",25,8,33.9122283652828,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1343,False,"{'a': 0.01, 'e': 0.018413258285254752}",25,17,15.040671994608484,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1344,False,"{'a': 0.01, 'e': 0.018309306145577908}",25,11,26.73049504977678,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1345,False,"{'a': 0.01, 'e': 0.018205935409338903}",20,11,17.571403037650526,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1346,False,"{'a': 0.01, 'e': 0.018103142886601198}",25,13,22.328218444539196,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1347,False,"{'a': 0.01, 'e': 0.018000925404227375}",30,22,17.673614687027744,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1348,False,"{'a': 0.01, 'e': 0.017899279805798196}",25,11,29.011105667940523,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1349,False,"{'a': 0.01, 'e': 0.017798202951533226}",25,8,30.557804796568693,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1350,False,"{'a': 0.01, 'e': 0.01769769171821034}",20,6,27.308801207336877,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1351,False,"{'a': 0.01, 'e': 0.017597742999086563}",25,10,28.404040452505143,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1352,False,"{'a': 0.01, 'e': 0.017498353703818914}",25,10,24.282858440917494,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1353,False,"{'a': 0.01, 'e': 0.017399520758385023}",20,13,12.549290854074718,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1354,False,"{'a': 0.01, 'e': 0.01730124110500486}",25,13,22.34654192186298,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1355,False,"{'a': 0.01, 'e': 0.01720351170206258}",20,7,23.02807219385128,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1356,False,"{'a': 0.01, 'e': 0.017106329524027686}",25,10,29.462508216398234,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1357,False,"{'a': 0.01, 'e': 0.017009691561377993}",20,0,32.624824073885925,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1358,False,"{'a': 0.01, 'e': 0.016913594820521682}",25,10,22.83785187078497,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1359,False,"{'a': 0.01, 'e': 0.016818036323720364}",25,15,22.320144370675465,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1360,False,"{'a': 0.01, 'e': 0.01672301310901203}",20,14,11.763937264146278,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1361,False,"{'a': 0.01, 'e': 0.016628522230134557}",20,9,21.096117044456772,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1362,False,"{'a': 0.01, 'e': 0.01653456075644899}",20,12,13.568862625619431,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1363,False,"{'a': 0.01, 'e': 0.01644112577286405}",25,11,20.487413882249864,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1364,False,"{'a': 0.01, 'e': 0.016348214379760195}",20,3,26.772103090052003,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1365,False,"{'a': 0.01, 'e': 0.016255823692913673}",20,12,15.80121032299691,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1366,False,"{'a': 0.01, 'e': 0.016163950843422148}",20,12,18.188945793689065,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1367,False,"{'a': 0.01, 'e': 0.016072592977629307}",20,10,18.054442464755518,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1368,False,"{'a': 0.01, 'e': 0.01598174725705037}",30,8,40.65140014468502,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1369,False,"{'a': 0.01, 'e': 0.015891410858297705}",30,16,24.85622518777923,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1370,False,"{'a': 0.01, 'e': 0.015801580973007212}",20,4,24.76907693321467,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1371,False,"{'a': 0.01, 'e': 0.015712254807763837}",20,13,12.789842801246015,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1372,False,"{'a': 0.01, 'e': 0.01562342958402907}",30,18,24.358886203279596,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1373,False,"{'a': 0.01, 'e': 0.015535102538066892}",25,15,19.56703848719643,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1374,False,"{'a': 0.01, 'e': 0.015447270920871725}",35,25,18.972794670803566,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1375,False,"{'a': 0.01, 'e': 0.015359931998095155}",20,13,12.587824334067307,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1376,False,"{'a': 0.01, 'e': 0.015273083049974212}",25,11,27.42467716457614,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1377,False,"{'a': 0.01, 'e': 0.015186721371259093}",25,16,18.684911693680295,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1378,False,"{'a': 0.01, 'e': 0.015100844271141223}",25,18,14.249444129374998,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1379,False,"{'a': 0.01, 'e': 0.01501544907318253}",25,11,21.210510188218944,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1380,False,"{'a': 0.01, 'e': 0.014930533115243505}",20,15,7.9341331423338675,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1381,False,"{'a': 0.01, 'e': 0.014846093749412925}",20,14,11.213679973660543,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1382,False,"{'a': 0.01, 'e': 0.01476212834193713}",20,0,34.06926784739895,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1383,False,"{'a': 0.01, 'e': 0.014678634273149527}",25,7,31.588754348032825,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1384,False,"{'a': 0.01, 'e': 0.014595608937400972}",20,5,28.8557355871431,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1385,False,"{'a': 0.01, 'e': 0.014513049742989725}",30,9,35.815859094078036,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1386,False,"{'a': 0.01, 'e': 0.014430954112092276}",20,14,5.035263914830354,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1387,False,"{'a': 0.01, 'e': 0.014349319480694067}",20,8,20.002130362870147,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1388,False,"{'a': 0.01, 'e': 0.014268143298520775}",20,13,13.489974839248532,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1389,False,"{'a': 0.01, 'e': 0.01418742302896936}",30,15,26.349814342834865,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1390,False,"{'a': 0.01, 'e': 0.014107156149040234}",30,7,32.83749975417698,"{0: 22, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1391,False,"{'a': 0.01, 'e': 0.014027340149269318}",25,1,36.75567829601171,"{0: 23, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1392,False,"{'a': 0.01, 'e': 0.013947972533659647}",20,13,13.486769582569547,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1393,False,"{'a': 0.01, 'e': 0.013869050819614648}",20,7,23.00007481757514,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1394,False,"{'a': 0.01, 'e': 0.013790572537870638}",20,6,22.835060481892583,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1395,False,"{'a': 0.01, 'e': 0.01371253523242999}",25,8,21.900444561760644,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1396,False,"{'a': 0.01, 'e': 0.013634936460494518}",25,13,11.897547768585998,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1397,False,"{'a': 0.01, 'e': 0.013557773792399086}",20,8,26.14125844165046,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1398,False,"{'a': 0.01, 'e': 0.013481044811545995}",20,11,14.556672069664437,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1399,False,"{'a': 0.01, 'e': 0.013404747114338478}",20,8,25.225373858253068,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1400,False,"{'a': 0.01, 'e': 0.013328878310115977}",20,11,17.881156985222976,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1401,False,"{'a': 0.01, 'e': 0.013253436021088416}",25,11,29.76998557127509,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1402,False,"{'a': 0.01, 'e': 0.013178417882271365}",20,7,26.804067544992726,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1403,False,"{'a': 0.01, 'e': 0.013103821541421645}",30,15,20.65922316876076,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1404,False,"{'a': 0.01, 'e': 0.013029644658972828}",20,13,13.941076618520993,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1405,False,"{'a': 0.01, 'e': 0.012955884907970838}",20,10,19.850371609126913,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1406,False,"{'a': 0.01, 'e': 0.012882539974010454}",20,9,21.492986707378705,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1407,False,"{'a': 0.01, 'e': 0.012809607555171798}",20,3,31.1795254906815,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1408,False,"{'a': 0.01, 'e': 0.012737085361956946}",30,14,32.85161690405128,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1409,False,"{'a': 0.01, 'e': 0.012664971117226642}",20,2,34.42126118376929,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1410,False,"{'a': 0.01, 'e': 0.01259326255613824}",20,0,34.29284603047597,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1411,False,"{'a': 0.01, 'e': 0.01252195742608242}",20,10,18.554563195287308,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1412,False,"{'a': 0.01, 'e': 0.012451053486621677}",20,13,13.043231130738413,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1413,False,"{'a': 0.01, 'e': 0.012380548509428158}",20,0,34.081354079287344,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1414,False,"{'a': 0.01, 'e': 0.012310440278221924}",20,12,12.557509557947064,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1415,False,"{'a': 0.01, 'e': 0.012240726588709672}",20,6,13.320972393326771,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1416,False,"{'a': 0.01, 'e': 0.01217140524852367}",25,16,14.367411051218134,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1417,False,"{'a': 0.01, 'e': 0.012102474077160585}",20,12,15.436337943396087,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1418,False,"{'a': 0.01, 'e': 0.01203393090592153}",35,15,35.61108302488062,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1419,False,"{'a': 0.01, 'e': 0.011965773577851224}",20,9,19.476063008072146,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1420,False,"{'a': 0.01, 'e': 0.01189799994767815}",20,7,24.037473095513313,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1421,False,"{'a': 0.01, 'e': 0.011830607881754829}",30,22,18.161097946424892,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1422,False,"{'a': 0.01, 'e': 0.011763595257997972}",30,0,44.798622757893376,"{0: 30, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1423,False,"{'a': 0.01, 'e': 0.011696959965829978}",25,12,27.052122349991492,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1424,False,"{'a': 0.01, 'e': 0.01163069990611909}",20,0,35.43648638150181,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1425,False,"{'a': 0.01, 'e': 0.01156481299112111}",20,16,6.124497153608251,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1426,False,"{'a': 0.01, 'e': 0.011499297144421106}",20,10,16.071800841229134,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1427,False,"{'a': 0.01, 'e': 0.011434150300874801}",30,8,37.98898990500734,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1428,False,"{'a': 0.01, 'e': 0.01136937040655095}",20,9,19.839893268980717,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1429,False,"{'a': 0.01, 'e': 0.01130495541867349}",25,2,38.28965712395873,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1430,False,"{'a': 0.01, 'e': 0.011240903305564265}",30,4,43.47074750510962,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1431,False,"{'a': 0.01, 'e': 0.011177212046585727}",20,13,12.567749985856336,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1432,False,"{'a': 0.01, 'e': 0.0111138796320841}",25,17,13.784477546168537,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1433,False,"{'a': 0.01, 'e': 0.011050904063332978}",30,17,26.686600697158788,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1434,False,"{'a': 0.01, 'e': 0.010988283352476369}",20,13,12.128093881916175,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1435,False,"{'a': 0.01, 'e': 0.010926015522473076}",25,17,1.5438536208312659,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1436,False,"{'a': 0.01, 'e': 0.010864098607040629}",20,9,18.73825849385846,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1437,False,"{'a': 0.01, 'e': 0.010802530650599662}",25,18,14.433055503959444,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1438,False,"{'a': 0.01, 'e': 0.010741309708218738}",30,16,28.920115052149523,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1439,False,"{'a': 0.01, 'e': 0.010680433845558834}",20,14,11.63370926705957,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1440,False,"{'a': 0.01, 'e': 0.010619901138818943}",20,6,25.083314067804523,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1441,False,"{'a': 0.01, 'e': 0.010559709674680895}",35,18,36.69170778876012,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1442,False,"{'a': 0.01, 'e': 0.010499857550255731}",25,17,10.84547817155854,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1443,False,"{'a': 0.01, 'e': 0.010440342873029085}",30,24,12.93778209738799,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1444,False,"{'a': 0.01, 'e': 0.010381163760807222}",20,0,34.12673200703016,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1445,False,"{'a': 0.01, 'e': 0.01032231834166375}",35,21,25.564248672008993,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1446,False,"{'a': 0.01, 'e': 0.01026380475388644}",20,14,11.055833276139854,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1447,False,"{'a': 0.01, 'e': 0.010205621145923494}",25,16,15.683955847899902,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1448,False,"{'a': 0.01, 'e': 0.010147765676331022}",35,21,24.74456605204462,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1449,False,"{'a': 0.01, 'e': 0.01009023651372043}",20,10,16.94754059285982,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1450,False,"{'a': 0.01, 'e': 0.010033031836706008}",20,3,34.05901635449409,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1451,False,"{'a': 0.01, 'e': 0.009976149833852865}",20,7,22.716400147985727,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1,True,"{'a': 0.0, 'e': 0.0}",20,10,19.62537736103818,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2,True,"{'a': 0.0, 'e': 0.0}",25,9,30.67095725223201,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3,True,"{'a': 0.0, 'e': 0.0}",25,13,23.22037616969927,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4,True,"{'a': 0.0, 'e': 0.0}",25,12,23.559397510423857,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +5,True,"{'a': 0.0, 'e': 0.0}",30,13,33.89727489897414,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +6,True,"{'a': 0.0, 'e': 0.0}",30,21,16.333634294102367,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +7,True,"{'a': 0.0, 'e': 0.0}",20,14,14.099413707846358,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +8,True,"{'a': 0.0, 'e': 0.0}",20,12,14.160381947784604,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +9,True,"{'a': 0.0, 'e': 0.0}",30,14,32.008362107071896,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +10,True,"{'a': 0.0, 'e': 0.0}",30,17,26.825034128726344,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 diff --git a/smartcab/logs/sim_improved-learning.txt b/smartcab/logs/sim_improved-learning.txt new file mode 100644 index 0000000..b61a23c --- /dev/null +++ b/smartcab/logs/sim_improved-learning.txt @@ -0,0 +1,292 @@ +/----------------------------------------- +| State-action rewards from Q-Learning +\----------------------------------------- + +('right', 'red', 'left', True) + -- forward : -7.59 + -- right : -3.34 + -- None : 0.68 + -- left : -7.58 + +('right', 'green', None, False) + -- forward : 0.60 + -- right : 1.89 + -- None : -4.80 + -- left : 0.74 + +('forward', 'green', 'left', False) + -- forward : 1.85 + -- right : 0.52 + -- None : 0.50 + -- left : 0.43 + +('left', 'green', 'right', True) + -- forward : 0.09 + -- right : 0.05 + -- None : -0.68 + -- left : -0.99 + +('forward', 'green', None, False) + -- forward : 1.82 + -- right : 0.76 + -- None : -4.70 + -- left : 0.69 + +('forward', 'green', 'right', True) + -- forward : 0.32 + -- right : 0.00 + -- None : -0.30 + -- left : -0.60 + +('left', 'red', 'right', False) + -- forward : -2.77 + -- right : 0.23 + -- None : 1.22 + -- left : -12.38 + +('forward', 'green', 'forward', True) + -- forward : 0.66 + -- right : 0.07 + -- None : -0.61 + -- left : -2.94 + +('left', 'green', 'left', True) + -- forward : 0.14 + -- right : 0.12 + -- None : 0.16 + -- left : 0.87 + +('left', 'green', 'forward', False) + -- forward : 0.72 + -- right : 0.34 + -- None : -2.76 + -- left : -10.86 + +('right', 'red', None, False) + -- forward : -12.38 + -- right : 1.63 + -- None : 1.81 + -- left : -12.19 + +('left', 'green', None, True) + -- forward : 0.48 + -- right : 0.46 + -- None : -2.70 + -- left : 1.55 + +('right', 'red', 'right', True) + -- forward : -2.70 + -- right : -0.79 + -- None : 0.25 + -- left : -0.79 + +('right', 'green', 'forward', False) + -- forward : 0.34 + -- right : 1.59 + -- None : -2.61 + -- left : -12.31 + +('right', 'red', 'left', False) + -- forward : -10.00 + -- right : 1.83 + -- None : 1.29 + -- left : -9.28 + +('forward', 'red', None, False) + -- forward : -12.14 + -- right : 0.69 + -- None : 1.81 + -- left : -13.31 + +('forward', 'green', 'left', True) + -- forward : 1.06 + -- right : 0.15 + -- None : 0.08 + -- left : 0.18 + +('left', 'green', 'right', False) + -- forward : 0.13 + -- right : 0.44 + -- None : -1.44 + -- left : -6.68 + +('forward', 'red', 'forward', True) + -- forward : -4.93 + -- right : -2.64 + -- None : 0.80 + -- left : -4.17 + +('forward', 'red', 'left', False) + -- forward : -9.09 + -- right : 0.73 + -- None : 1.87 + -- left : -9.62 + +('forward', 'green', None, True) + -- forward : 1.68 + -- right : 0.35 + -- None : -2.43 + -- left : 0.35 + +('forward', 'red', 'left', True) + -- forward : -4.53 + -- right : -2.47 + -- None : 1.04 + -- left : -4.56 + +('left', 'red', 'forward', False) + -- forward : -8.35 + -- right : 0.55 + -- None : 1.82 + -- left : -8.68 + +('forward', 'green', 'forward', False) + -- forward : 1.86 + -- right : 0.30 + -- None : -2.18 + -- left : -10.04 + +('left', 'red', None, True) + -- forward : -16.59 + -- right : -9.61 + -- None : 1.44 + -- left : -16.05 + +('left', 'green', 'left', False) + -- forward : 0.57 + -- right : 0.52 + -- None : 0.44 + -- left : 1.78 + +('left', 'green', 'forward', True) + -- forward : 0.32 + -- right : 0.10 + -- None : -0.45 + -- left : -4.30 + +('right', 'red', 'forward', False) + -- forward : -8.58 + -- right : 1.21 + -- None : 1.83 + -- left : -9.31 + +('forward', 'red', 'right', False) + -- forward : -3.86 + -- right : 0.26 + -- None : 1.48 + -- left : -10.40 + +('left', 'red', 'left', True) + -- forward : -8.87 + -- right : -3.70 + -- None : 0.82 + -- left : -3.81 + +('left', 'green', None, False) + -- forward : 0.68 + -- right : 0.63 + -- None : -4.73 + -- left : 1.82 + +('right', 'green', 'left', True) + -- forward : 0.13 + -- right : 0.82 + -- None : 0.12 + -- left : 0.08 + +('right', 'green', 'forward', True) + -- forward : 0.10 + -- right : 0.56 + -- None : -0.43 + -- left : -1.53 + +('right', 'green', 'right', True) + -- forward : 0.09 + -- right : 0.34 + -- None : -0.15 + -- left : -2.09 + +('forward', 'red', None, True) + -- forward : -20.60 + -- right : -6.76 + -- None : 1.56 + -- left : -14.52 + +('right', 'green', None, True) + -- forward : 0.35 + -- right : 1.43 + -- None : -2.81 + -- left : 0.45 + +('forward', 'red', 'forward', False) + -- forward : -8.90 + -- right : 0.46 + -- None : 1.89 + -- left : -7.98 + +('right', 'red', 'right', False) + -- forward : -5.16 + -- right : 0.55 + -- None : 1.17 + -- left : -12.99 + +('left', 'red', 'forward', True) + -- forward : -3.82 + -- right : -3.47 + -- None : 0.69 + -- left : -3.45 + +('forward', 'green', 'right', False) + -- forward : 1.35 + -- right : 0.15 + -- None : -1.48 + -- left : -5.52 + +('left', 'red', 'right', True) + -- forward : -3.07 + -- right : -1.34 + -- None : 0.31 + -- left : -2.34 + +('left', 'red', None, False) + -- forward : -12.62 + -- right : 0.70 + -- None : 1.82 + -- left : -12.65 + +('right', 'red', 'forward', True) + -- forward : -4.54 + -- right : -2.94 + -- None : 0.78 + -- left : -3.45 + +('forward', 'red', 'right', True) + -- forward : -3.11 + -- right : -0.59 + -- None : 0.31 + -- left : -3.81 + +('left', 'red', 'left', False) + -- forward : -9.33 + -- right : 0.56 + -- None : 1.82 + -- left : -11.30 + +('right', 'red', None, True) + -- forward : -18.70 + -- right : -7.89 + -- None : 1.27 + -- left : -15.31 + +('right', 'green', 'left', False) + -- forward : 0.49 + -- right : 1.60 + -- None : 0.45 + -- left : 0.40 + +('right', 'green', 'right', False) + -- forward : 0.13 + -- right : 0.98 + -- None : -0.99 + -- left : -4.65 + diff --git a/smartcab/logs/sim_improved-learning_ref.csv b/smartcab/logs/sim_improved-learning_ref.csv new file mode 100644 index 0000000..b1f1809 --- /dev/null +++ b/smartcab/logs/sim_improved-learning_ref.csv @@ -0,0 +1,4617 @@ +trial,testing,parameters,initial_deadline,final_deadline,net_reward,actions,success +1,False,"{'a': 0.01, 'e': 0.999000499833375}",20,0,-178.49150325455474,"{0: 10, 1: 3, 2: 2, 3: 2, 4: 3}",0 +2,False,"{'a': 0.01, 'e': 0.9980019986673331}",20,4,-95.1914127075524,"{0: 8, 1: 2, 2: 4, 3: 1, 4: 1}",1 +3,False,"{'a': 0.01, 'e': 0.997004495503373}",20,0,-122.45348240831251,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +4,False,"{'a': 0.01, 'e': 0.9960079893439915}",25,0,-162.3966739253609,"{0: 16, 1: 2, 2: 1, 3: 4, 4: 2}",0 +5,False,"{'a': 0.01, 'e': 0.9950124791926823}",20,0,-102.59536664940768,"{0: 11, 1: 6, 2: 1, 3: 0, 4: 2}",0 +6,False,"{'a': 0.01, 'e': 0.9940179640539353}",25,0,-79.27854313768684,"{0: 16, 1: 1, 2: 7, 3: 1, 4: 0}",0 +7,False,"{'a': 0.01, 'e': 0.9930244429332351}",30,2,-73.3985218864617,"{0: 19, 1: 0, 2: 8, 3: 1, 4: 0}",1 +8,False,"{'a': 0.01, 'e': 0.9920319148370607}",20,7,-74.72429464502727,"{0: 8, 1: 1, 2: 2, 3: 1, 4: 1}",1 +9,False,"{'a': 0.01, 'e': 0.9910403787728836}",25,1,-138.8187215170798,"{0: 15, 1: 1, 2: 5, 3: 1, 4: 2}",1 +10,False,"{'a': 0.01, 'e': 0.9900498337491681}",25,0,-186.5781285997533,"{0: 11, 1: 3, 2: 8, 3: 1, 4: 2}",0 +11,False,"{'a': 0.01, 'e': 0.9890602787753687}",30,0,-207.7067781473322,"{0: 16, 1: 3, 2: 5, 3: 4, 4: 2}",0 +12,False,"{'a': 0.01, 'e': 0.9880717128619305}",25,0,-104.31743173435834,"{0: 16, 1: 1, 2: 6, 3: 1, 4: 1}",0 +13,False,"{'a': 0.01, 'e': 0.9870841350202876}",20,0,-60.44636634873586,"{0: 13, 1: 2, 2: 4, 3: 1, 4: 0}",0 +14,False,"{'a': 0.01, 'e': 0.9860975442628619}",30,12,-53.62995865381042,"{0: 10, 1: 3, 2: 5, 3: 0, 4: 0}",1 +15,False,"{'a': 0.01, 'e': 0.9851119396030626}",20,0,-178.84438714756263,"{0: 8, 1: 0, 2: 9, 3: 1, 4: 2}",0 +16,False,"{'a': 0.01, 'e': 0.9841273200552851}",20,0,-40.15076136033493,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +17,False,"{'a': 0.01, 'e': 0.9831436846349096}",30,0,-281.83811374206107,"{0: 14, 1: 3, 2: 8, 3: 0, 4: 5}",0 +18,False,"{'a': 0.01, 'e': 0.9821610323583008}",30,0,-131.5350060967923,"{0: 19, 1: 2, 2: 7, 3: 0, 4: 2}",0 +19,False,"{'a': 0.01, 'e': 0.981179362242806}",30,0,-122.93425544271498,"{0: 20, 1: 4, 2: 3, 3: 1, 4: 2}",0 +20,False,"{'a': 0.01, 'e': 0.9801986733067553}",25,14,-20.1453098124629,"{0: 7, 1: 2, 2: 2, 3: 0, 4: 0}",1 +21,False,"{'a': 0.01, 'e': 0.9792189645694596}",25,0,-116.38046872122807,"{0: 17, 1: 0, 2: 6, 3: 0, 4: 2}",0 +22,False,"{'a': 0.01, 'e': 0.97824023505121}",25,0,-149.59847984275493,"{0: 17, 1: 0, 2: 4, 3: 2, 4: 2}",0 +23,False,"{'a': 0.01, 'e': 0.9772624837732771}",20,0,-173.26408781438906,"{0: 8, 1: 4, 2: 4, 3: 2, 4: 2}",0 +24,False,"{'a': 0.01, 'e': 0.9762857097579093}",25,0,-191.30968082435217,"{0: 15, 1: 1, 2: 4, 3: 2, 4: 3}",0 +25,False,"{'a': 0.01, 'e': 0.9753099120283326}",20,0,-83.23763644876692,"{0: 13, 1: 2, 2: 2, 3: 3, 4: 0}",0 +26,False,"{'a': 0.01, 'e': 0.9743350896087494}",35,0,-149.68527107687785,"{0: 20, 1: 5, 2: 5, 3: 5, 4: 0}",0 +27,False,"{'a': 0.01, 'e': 0.9733612415243368}",30,0,-132.69172084885815,"{0: 19, 1: 2, 2: 6, 3: 2, 4: 1}",0 +28,False,"{'a': 0.01, 'e': 0.9723883668012469}",25,11,-44.86882759681556,"{0: 8, 1: 0, 2: 6, 3: 0, 4: 0}",1 +29,False,"{'a': 0.01, 'e': 0.9714164644666048}",25,0,-137.22146949727832,"{0: 13, 1: 1, 2: 9, 3: 1, 4: 1}",0 +30,False,"{'a': 0.01, 'e': 0.9704455335485082}",25,0,-134.13619500647496,"{0: 14, 1: 3, 2: 5, 3: 2, 4: 1}",0 +31,False,"{'a': 0.01, 'e': 0.9694755730760259}",20,0,-41.52630969286112,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +32,False,"{'a': 0.01, 'e': 0.9685065820791976}",25,0,-139.42320369126762,"{0: 14, 1: 2, 2: 7, 3: 0, 4: 2}",0 +33,False,"{'a': 0.01, 'e': 0.967538559589032}",20,0,-112.55924727109948,"{0: 11, 1: 4, 2: 3, 3: 0, 4: 2}",0 +34,False,"{'a': 0.01, 'e': 0.9665715046375066}",20,0,-65.98233842660478,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 0}",0 +35,False,"{'a': 0.01, 'e': 0.9656054162575665}",20,0,-89.09271404780974,"{0: 12, 1: 3, 2: 3, 3: 1, 4: 1}",0 +36,False,"{'a': 0.01, 'e': 0.9646402934831231}",20,0,-114.4990675636612,"{0: 11, 1: 1, 2: 6, 3: 1, 4: 1}",0 +37,False,"{'a': 0.01, 'e': 0.9636761353490535}",20,0,-117.77785030165006,"{0: 11, 1: 0, 2: 7, 3: 1, 4: 1}",0 +38,False,"{'a': 0.01, 'e': 0.9627129408911995}",30,13,-124.42428031838526,"{0: 7, 1: 1, 2: 7, 3: 1, 4: 1}",1 +39,False,"{'a': 0.01, 'e': 0.9617507091463667}",25,0,-55.14165379479535,"{0: 17, 1: 1, 2: 7, 3: 0, 4: 0}",0 +40,False,"{'a': 0.01, 'e': 0.9607894391523232}",25,0,-74.87666601980054,"{0: 16, 1: 3, 2: 4, 3: 2, 4: 0}",0 +41,False,"{'a': 0.01, 'e': 0.9598291299477989}",25,0,-45.41103977271092,"{0: 17, 1: 4, 2: 3, 3: 1, 4: 0}",0 +42,False,"{'a': 0.01, 'e': 0.9588697805724845}",30,0,-203.08325979600986,"{0: 16, 1: 3, 2: 7, 3: 1, 4: 3}",0 +43,False,"{'a': 0.01, 'e': 0.9579113900670306}",30,0,-116.17839955787149,"{0: 17, 1: 6, 2: 6, 3: 0, 4: 1}",0 +44,False,"{'a': 0.01, 'e': 0.9569539574730467}",20,0,-40.753569741565286,"{0: 16, 1: 3, 2: 0, 3: 0, 4: 1}",0 +45,False,"{'a': 0.01, 'e': 0.9559974818330998}",25,0,-9.055916644063515,"{0: 21, 1: 2, 2: 2, 3: 0, 4: 0}",0 +46,False,"{'a': 0.01, 'e': 0.9550419621907147}",20,0,-82.83141723506604,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 2}",0 +47,False,"{'a': 0.01, 'e': 0.9540873975903712}",35,24,-43.92297145992029,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 1}",1 +48,False,"{'a': 0.01, 'e': 0.9531337870775047}",20,0,-91.9307063353987,"{0: 14, 1: 0, 2: 3, 3: 2, 4: 1}",0 +49,False,"{'a': 0.01, 'e': 0.9521811296985049}",20,0,-122.53438015115002,"{0: 11, 1: 2, 2: 5, 3: 0, 4: 2}",0 +50,False,"{'a': 0.01, 'e': 0.951229424500714}",25,0,-154.6431008116864,"{0: 15, 1: 1, 2: 3, 3: 5, 4: 1}",0 +51,False,"{'a': 0.01, 'e': 0.950278670532427}",25,0,-118.92431471413867,"{0: 12, 1: 5, 2: 7, 3: 0, 4: 1}",0 +52,False,"{'a': 0.01, 'e': 0.9493288668428895}",20,14,-19.794502688903798,"{0: 4, 1: 1, 2: 0, 3: 1, 4: 0}",1 +53,False,"{'a': 0.01, 'e': 0.9483800124822982}",35,23,-98.87162425492052,"{0: 8, 1: 1, 2: 0, 3: 1, 4: 2}",1 +54,False,"{'a': 0.01, 'e': 0.9474321065017983}",25,0,-77.16970355194078,"{0: 21, 1: 0, 2: 2, 3: 0, 4: 2}",0 +55,False,"{'a': 0.01, 'e': 0.9464851479534838}",30,0,-215.9198150622482,"{0: 16, 1: 5, 2: 5, 3: 0, 4: 4}",0 +56,False,"{'a': 0.01, 'e': 0.9455391358903963}",20,0,-114.04577785946157,"{0: 10, 1: 3, 2: 4, 3: 2, 4: 1}",0 +57,False,"{'a': 0.01, 'e': 0.9445940693665233}",20,0,-52.68391707879264,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",0 +58,False,"{'a': 0.01, 'e': 0.9436499474367985}",25,10,-47.61163757248417,"{0: 11, 1: 2, 2: 1, 3: 0, 4: 1}",1 +59,False,"{'a': 0.01, 'e': 0.9427067691570997}",20,0,-152.96119952492597,"{0: 11, 1: 2, 2: 3, 3: 2, 4: 2}",0 +60,False,"{'a': 0.01, 'e': 0.9417645335842487}",25,5,-151.9750806024648,"{0: 12, 1: 0, 2: 5, 3: 0, 4: 3}",1 +61,False,"{'a': 0.01, 'e': 0.9408232397760097}",30,0,-214.19772933847574,"{0: 18, 1: 2, 2: 6, 3: 0, 4: 4}",0 +62,False,"{'a': 0.01, 'e': 0.9398828867910889}",25,0,-253.74734000226223,"{0: 11, 1: 0, 2: 9, 3: 1, 4: 4}",0 +63,False,"{'a': 0.01, 'e': 0.9389434736891332}",25,0,-89.9411630482745,"{0: 16, 1: 3, 2: 5, 3: 0, 4: 1}",0 +64,False,"{'a': 0.01, 'e': 0.9380049995307295}",20,0,-122.64273837904639,"{0: 9, 1: 2, 2: 8, 3: 0, 4: 1}",0 +65,False,"{'a': 0.01, 'e': 0.9370674633774034}",25,0,-84.10946862071673,"{0: 16, 1: 2, 2: 5, 3: 2, 4: 0}",0 +66,False,"{'a': 0.01, 'e': 0.9361308642916188}",25,0,-126.968672503088,"{0: 18, 1: 0, 2: 4, 3: 1, 4: 2}",0 +67,False,"{'a': 0.01, 'e': 0.9351952013367766}",25,0,-166.89375921306197,"{0: 14, 1: 0, 2: 8, 3: 1, 4: 2}",0 +68,False,"{'a': 0.01, 'e': 0.9342604735772135}",35,0,-133.57236819493775,"{0: 22, 1: 3, 2: 7, 3: 2, 4: 1}",0 +69,False,"{'a': 0.01, 'e': 0.933326680078202}",25,0,-133.98661925281363,"{0: 14, 1: 4, 2: 3, 3: 3, 4: 1}",0 +70,False,"{'a': 0.01, 'e': 0.9323938199059483}",30,10,-78.93839971089976,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",1 +71,False,"{'a': 0.01, 'e': 0.9314618921275921}",20,10,-17.294271492257366,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 0}",1 +72,False,"{'a': 0.01, 'e': 0.9305308958112057}",20,0,-194.29655425514025,"{0: 8, 1: 3, 2: 5, 3: 1, 4: 3}",0 +73,False,"{'a': 0.01, 'e': 0.9296008300257927}",25,0,-189.0324544234493,"{0: 14, 1: 2, 2: 4, 3: 2, 4: 3}",0 +74,False,"{'a': 0.01, 'e': 0.9286716938412872}",20,0,-171.19777194180526,"{0: 9, 1: 2, 2: 5, 3: 2, 4: 2}",0 +75,False,"{'a': 0.01, 'e': 0.9277434863285529}",20,0,-76.78071927265731,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",0 +76,False,"{'a': 0.01, 'e': 0.9268162065593822}",30,0,-53.71971021289332,"{0: 21, 1: 2, 2: 7, 3: 0, 4: 0}",0 +77,False,"{'a': 0.01, 'e': 0.9258898536064953}",25,0,-48.08589889296618,"{0: 18, 1: 4, 2: 2, 3: 0, 4: 1}",0 +78,False,"{'a': 0.01, 'e': 0.9249644265435393}",20,0,-116.30669223381526,"{0: 12, 1: 2, 2: 2, 3: 3, 4: 1}",0 +79,False,"{'a': 0.01, 'e': 0.9240399244450868}",20,0,-143.18707210121417,"{0: 12, 1: 1, 2: 3, 3: 2, 4: 2}",0 +80,False,"{'a': 0.01, 'e': 0.9231163463866358}",20,0,-161.5660479029457,"{0: 12, 1: 1, 2: 3, 3: 1, 4: 3}",0 +81,False,"{'a': 0.01, 'e': 0.922193691444608}",25,0,-164.0139487271798,"{0: 12, 1: 2, 2: 7, 3: 3, 4: 1}",0 +82,False,"{'a': 0.01, 'e': 0.9212719586963487}",25,0,-89.6570883724732,"{0: 14, 1: 7, 2: 3, 3: 0, 4: 1}",0 +83,False,"{'a': 0.01, 'e': 0.9203511472201247}",20,0,-53.05692397923885,"{0: 14, 1: 0, 2: 5, 3: 1, 4: 0}",0 +84,False,"{'a': 0.01, 'e': 0.9194312560951247}",25,0,-9.367131034881497,"{0: 20, 1: 2, 2: 3, 3: 0, 4: 0}",0 +85,False,"{'a': 0.01, 'e': 0.9185122844014574}",20,0,-92.20123939463758,"{0: 12, 1: 1, 2: 6, 3: 0, 4: 1}",0 +86,False,"{'a': 0.01, 'e': 0.9175942312201509}",20,0,-49.024094791955456,"{0: 15, 1: 3, 2: 1, 3: 0, 4: 1}",0 +87,False,"{'a': 0.01, 'e': 0.9166770956331523}",20,0,-25.583982453153094,"{0: 15, 1: 1, 2: 4, 3: 0, 4: 0}",0 +88,False,"{'a': 0.01, 'e': 0.9157608767233256}",25,0,-94.43184823286379,"{0: 15, 1: 5, 2: 3, 3: 1, 4: 1}",0 +89,False,"{'a': 0.01, 'e': 0.914845573574452}",20,0,-186.93157186428522,"{0: 6, 1: 5, 2: 5, 3: 2, 4: 2}",0 +90,False,"{'a': 0.01, 'e': 0.9139311852712282}",20,0,-65.61812587655164,"{0: 16, 1: 1, 2: 0, 3: 2, 4: 1}",0 +91,False,"{'a': 0.01, 'e': 0.9130177108992658}",20,0,-167.95866989033462,"{0: 12, 1: 2, 2: 1, 3: 2, 4: 3}",0 +92,False,"{'a': 0.01, 'e': 0.9121051495450904}",30,0,-133.7166825002433,"{0: 19, 1: 3, 2: 4, 3: 3, 4: 1}",0 +93,False,"{'a': 0.01, 'e': 0.9111935002961405}",20,0,-98.68500300274442,"{0: 13, 1: 0, 2: 5, 3: 1, 4: 1}",0 +94,False,"{'a': 0.01, 'e': 0.910282762240767}",20,0,-158.31863644565044,"{0: 14, 1: 1, 2: 1, 3: 0, 4: 4}",0 +95,False,"{'a': 0.01, 'e': 0.9093729344682314}",30,0,-99.03418060888029,"{0: 20, 1: 4, 2: 3, 3: 2, 4: 1}",0 +96,False,"{'a': 0.01, 'e': 0.9084640160687062}",20,0,-56.27922321763691,"{0: 13, 1: 2, 2: 4, 3: 1, 4: 0}",0 +97,False,"{'a': 0.01, 'e': 0.9075560061332727}",20,10,-2.214674787520931,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +98,False,"{'a': 0.01, 'e': 0.9066489037539209}",20,0,-36.22767179713148,"{0: 15, 1: 0, 2: 4, 3: 1, 4: 0}",0 +99,False,"{'a': 0.01, 'e': 0.9057427080235485}",20,0,-96.96353232726409,"{0: 11, 1: 2, 2: 6, 3: 0, 4: 1}",0 +100,False,"{'a': 0.01, 'e': 0.9048374180359595}",20,0,-159.1501900234158,"{0: 10, 1: 1, 2: 5, 3: 2, 4: 2}",0 +101,False,"{'a': 0.01, 'e': 0.9039330328858641}",20,0,-38.29356922689755,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 0}",0 +102,False,"{'a': 0.01, 'e': 0.9030295516688768}",20,0,-31.11186974046451,"{0: 15, 1: 0, 2: 5, 3: 0, 4: 0}",0 +103,False,"{'a': 0.01, 'e': 0.9021269734815165}",25,0,-88.67577928882729,"{0: 16, 1: 2, 2: 6, 3: 0, 4: 1}",0 +104,False,"{'a': 0.01, 'e': 0.9012252974212047}",25,0,-125.92334370449439,"{0: 14, 1: 2, 2: 6, 3: 2, 4: 1}",0 +105,False,"{'a': 0.01, 'e': 0.9003245225862656}",20,0,-142.431923842872,"{0: 12, 1: 0, 2: 4, 3: 2, 4: 2}",0 +106,False,"{'a': 0.01, 'e': 0.899424648075924}",20,0,-62.55206669430394,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +107,False,"{'a': 0.01, 'e': 0.8985256729903055}",20,0,-101.1233292241487,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 2}",0 +108,False,"{'a': 0.01, 'e': 0.8976275964304349}",30,0,-104.74652484842055,"{0: 19, 1: 4, 2: 5, 3: 1, 4: 1}",0 +109,False,"{'a': 0.01, 'e': 0.8967304174982355}",20,8,-31.538754032709015,"{0: 8, 1: 1, 2: 2, 3: 1, 4: 0}",1 +110,False,"{'a': 0.01, 'e': 0.8958341352965282}",20,3,-42.41799769531749,"{0: 11, 1: 3, 2: 2, 3: 1, 4: 0}",1 +111,False,"{'a': 0.01, 'e': 0.894938748929031}",20,0,-41.714487585927245,"{0: 12, 1: 5, 2: 3, 3: 0, 4: 0}",0 +112,False,"{'a': 0.01, 'e': 0.8940442575003572}",20,0,-96.58580076557315,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 2}",0 +113,False,"{'a': 0.01, 'e': 0.8931506601160155}",30,4,-144.88943570896544,"{0: 16, 1: 1, 2: 6, 3: 1, 4: 2}",1 +114,False,"{'a': 0.01, 'e': 0.8922579558824083}",35,0,-112.1470588771504,"{0: 21, 1: 2, 2: 11, 3: 1, 4: 0}",0 +115,False,"{'a': 0.01, 'e': 0.8913661439068313}",25,0,-96.5790870661946,"{0: 15, 1: 4, 2: 4, 3: 1, 4: 1}",0 +116,False,"{'a': 0.01, 'e': 0.8904752232974726}",20,12,3.139370238552335,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +117,False,"{'a': 0.01, 'e': 0.8895851931634113}",20,0,-179.7057820590596,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 3}",0 +118,False,"{'a': 0.01, 'e': 0.8886960526146174}",25,0,-88.7383855724386,"{0: 15, 1: 2, 2: 6, 3: 2, 4: 0}",0 +119,False,"{'a': 0.01, 'e': 0.8878078007619501}",25,13,-64.25395758312713,"{0: 7, 1: 0, 2: 4, 3: 0, 4: 1}",1 +120,False,"{'a': 0.01, 'e': 0.8869204367171575}",25,0,-109.65990196636136,"{0: 13, 1: 3, 2: 7, 3: 2, 4: 0}",0 +121,False,"{'a': 0.01, 'e': 0.8860339595928756}",30,14,-87.5248159753057,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 2}",1 +122,False,"{'a': 0.01, 'e': 0.8851483685026271}",20,0,-26.26372039302241,"{0: 14, 1: 3, 2: 3, 3: 0, 4: 0}",0 +123,False,"{'a': 0.01, 'e': 0.8842636625608209}",20,11,-56.95893402639179,"{0: 6, 1: 0, 2: 1, 3: 1, 4: 1}",1 +124,False,"{'a': 0.01, 'e': 0.8833798408827509}",20,0,-130.426957419226,"{0: 9, 1: 3, 2: 5, 3: 2, 4: 1}",0 +125,False,"{'a': 0.01, 'e': 0.8824969025845955}",20,0,-139.10047384814163,"{0: 14, 1: 1, 2: 1, 3: 1, 4: 3}",0 +126,False,"{'a': 0.01, 'e': 0.8816148467834161}",30,0,-118.15514618426239,"{0: 21, 1: 2, 2: 5, 3: 0, 4: 2}",0 +127,False,"{'a': 0.01, 'e': 0.880733672597157}",30,2,-112.06567490420503,"{0: 18, 1: 1, 2: 7, 3: 1, 4: 1}",1 +128,False,"{'a': 0.01, 'e': 0.8798533791446438}",20,0,-177.17090433328772,"{0: 12, 1: 2, 2: 2, 3: 0, 4: 4}",0 +129,False,"{'a': 0.01, 'e': 0.8789739655455832}",30,0,-139.5448620045635,"{0: 19, 1: 2, 2: 6, 3: 1, 4: 2}",0 +130,False,"{'a': 0.01, 'e': 0.8780954309205613}",30,0,-168.72087214837381,"{0: 17, 1: 1, 2: 9, 3: 1, 4: 2}",0 +131,False,"{'a': 0.01, 'e': 0.8772177743910435}",20,0,-150.09148353873246,"{0: 11, 1: 0, 2: 6, 3: 1, 4: 2}",0 +132,False,"{'a': 0.01, 'e': 0.8763409950793732}",30,3,-161.74106911477355,"{0: 17, 1: 2, 2: 4, 3: 1, 4: 3}",1 +133,False,"{'a': 0.01, 'e': 0.8754650921087711}",25,0,-178.2045857109432,"{0: 11, 1: 3, 2: 8, 3: 1, 4: 2}",0 +134,False,"{'a': 0.01, 'e': 0.874590064603334}",20,0,-102.32799530005138,"{0: 11, 1: 1, 2: 7, 3: 0, 4: 1}",0 +135,False,"{'a': 0.01, 'e': 0.8737159116880344}",20,0,-171.79868938370848,"{0: 12, 1: 1, 2: 2, 3: 2, 4: 3}",0 +136,False,"{'a': 0.01, 'e': 0.8728426324887193}",25,0,-114.72603495302175,"{0: 13, 1: 3, 2: 8, 3: 0, 4: 1}",0 +137,False,"{'a': 0.01, 'e': 0.8719702261321094}",20,7,-56.476239131474884,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 1}",1 +138,False,"{'a': 0.01, 'e': 0.8710986917457983}",20,10,-3.2098319029859677,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +139,False,"{'a': 0.01, 'e': 0.8702280284582515}",20,5,-75.79911514686194,"{0: 8, 1: 1, 2: 4, 3: 2, 4: 0}",1 +140,False,"{'a': 0.01, 'e': 0.8693582353988059}",25,11,-21.354086578570023,"{0: 10, 1: 0, 2: 4, 3: 0, 4: 0}",1 +141,False,"{'a': 0.01, 'e': 0.8684893116976679}",25,12,-85.7333887431537,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 2}",1 +142,False,"{'a': 0.01, 'e': 0.867621256485914}",25,0,-93.31951507305739,"{0: 15, 1: 2, 2: 6, 3: 2, 4: 0}",0 +143,False,"{'a': 0.01, 'e': 0.8667540688954889}",30,0,-208.78068079844545,"{0: 12, 1: 5, 2: 8, 3: 4, 4: 1}",0 +144,False,"{'a': 0.01, 'e': 0.865887748059205}",30,13,-19.463719453062257,"{0: 12, 1: 2, 2: 3, 3: 0, 4: 0}",1 +145,False,"{'a': 0.01, 'e': 0.8650222931107413}",20,0,-125.68179722126042,"{0: 11, 1: 3, 2: 4, 3: 0, 4: 2}",0 +146,False,"{'a': 0.01, 'e': 0.8641577031846428}",35,14,-110.29480440940699,"{0: 15, 1: 3, 2: 0, 3: 0, 4: 3}",1 +147,False,"{'a': 0.01, 'e': 0.8632939774163194}",30,0,-118.98731836684624,"{0: 19, 1: 5, 2: 4, 3: 0, 4: 2}",0 +148,False,"{'a': 0.01, 'e': 0.8624311149420455}",25,0,-121.98215255484443,"{0: 19, 1: 1, 2: 2, 3: 0, 4: 3}",0 +149,False,"{'a': 0.01, 'e': 0.8615691148989583}",30,2,-77.25395431144337,"{0: 20, 1: 2, 2: 5, 3: 0, 4: 1}",1 +150,False,"{'a': 0.01, 'e': 0.8607079764250578}",20,0,-142.44542343129578,"{0: 11, 1: 1, 2: 5, 3: 1, 4: 2}",0 +151,False,"{'a': 0.01, 'e': 0.8598476986592055}",25,0,-99.40750394717557,"{0: 18, 1: 1, 2: 3, 3: 2, 4: 1}",0 +152,False,"{'a': 0.01, 'e': 0.8589882807411234}",25,0,-239.19259569296614,"{0: 10, 1: 1, 2: 9, 3: 2, 4: 3}",0 +153,False,"{'a': 0.01, 'e': 0.8581297218113938}",30,0,-116.41313217040408,"{0: 22, 1: 2, 2: 3, 3: 1, 4: 2}",0 +154,False,"{'a': 0.01, 'e': 0.8572720210114575}",20,0,-111.97823500117089,"{0: 13, 1: 2, 2: 2, 3: 1, 4: 2}",1 +155,False,"{'a': 0.01, 'e': 0.8564151774836135}",20,0,-71.00403291149793,"{0: 12, 1: 1, 2: 6, 3: 1, 4: 0}",0 +156,False,"{'a': 0.01, 'e': 0.8555591903710185}",30,0,-29.208505632486073,"{0: 26, 1: 2, 2: 1, 3: 0, 4: 1}",0 +157,False,"{'a': 0.01, 'e': 0.8547040588176851}",20,0,-84.08399234703947,"{0: 11, 1: 4, 2: 4, 3: 0, 4: 1}",0 +158,False,"{'a': 0.01, 'e': 0.8538497819684817}",30,0,-102.23210376333623,"{0: 20, 1: 2, 2: 7, 3: 0, 4: 1}",0 +159,False,"{'a': 0.01, 'e': 0.8529963589691315}",20,0,-94.17977266567519,"{0: 11, 1: 3, 2: 5, 3: 0, 4: 1}",0 +160,False,"{'a': 0.01, 'e': 0.8521437889662113}",35,0,-187.75538956562073,"{0: 25, 1: 1, 2: 5, 3: 0, 4: 4}",0 +161,False,"{'a': 0.01, 'e': 0.8512920711071511}",20,0,-135.7987569987369,"{0: 12, 1: 3, 2: 1, 3: 2, 4: 2}",0 +162,False,"{'a': 0.01, 'e': 0.850441204540233}",25,0,-74.80128054464085,"{0: 18, 1: 2, 2: 3, 3: 1, 4: 1}",0 +163,False,"{'a': 0.01, 'e': 0.8495911884145902}",20,0,-85.01666231382795,"{0: 14, 1: 0, 2: 4, 3: 1, 4: 1}",0 +164,False,"{'a': 0.01, 'e': 0.8487420218802068}",30,0,-106.07179604801233,"{0: 21, 1: 2, 2: 4, 3: 2, 4: 1}",0 +165,False,"{'a': 0.01, 'e': 0.8478937040879159}",20,0,-49.59590173004258,"{0: 12, 1: 3, 2: 5, 3: 0, 4: 0}",0 +166,False,"{'a': 0.01, 'e': 0.8470462341893996}",25,0,-57.02653472775248,"{0: 17, 1: 2, 2: 5, 3: 1, 4: 0}",0 +167,False,"{'a': 0.01, 'e': 0.8461996113371882}",20,0,-114.79629814571275,"{0: 15, 1: 0, 2: 1, 3: 2, 4: 2}",0 +168,False,"{'a': 0.01, 'e': 0.8453538346846587}",20,0,-164.62094547520917,"{0: 8, 1: 3, 2: 6, 3: 1, 4: 2}",0 +169,False,"{'a': 0.01, 'e': 0.8445089033860343}",20,0,-47.69468691390337,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +170,False,"{'a': 0.01, 'e': 0.8436648165963837}",25,0,-95.37107967121796,"{0: 17, 1: 3, 2: 2, 3: 2, 4: 1}",0 +171,False,"{'a': 0.01, 'e': 0.8428215734716199}",25,0,-86.71673480886874,"{0: 18, 1: 0, 2: 5, 3: 1, 4: 1}",0 +172,False,"{'a': 0.01, 'e': 0.8419791731684999}",20,0,-56.18563039911665,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +173,False,"{'a': 0.01, 'e': 0.8411376148446232}",20,0,-35.64380766723787,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 0}",0 +174,False,"{'a': 0.01, 'e': 0.8402968976584314}",25,6,-72.22447913415924,"{0: 13, 1: 2, 2: 2, 3: 1, 4: 1}",1 +175,False,"{'a': 0.01, 'e': 0.8394570207692074}",25,0,-85.3980752312526,"{0: 17, 1: 2, 2: 4, 3: 1, 4: 1}",0 +176,False,"{'a': 0.01, 'e': 0.838617983337074}",35,0,-130.40599581155217,"{0: 25, 1: 2, 2: 5, 3: 1, 4: 2}",0 +177,False,"{'a': 0.01, 'e': 0.8377797845229938}",30,0,-174.541328756873,"{0: 17, 1: 5, 2: 5, 3: 0, 4: 3}",0 +178,False,"{'a': 0.01, 'e': 0.8369424234887681}",30,12,-45.324109274340536,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 1}",1 +179,False,"{'a': 0.01, 'e': 0.8361058993970355}",30,0,-154.0651577239231,"{0: 22, 1: 1, 2: 3, 3: 1, 4: 3}",0 +180,False,"{'a': 0.01, 'e': 0.835270211411272}",20,0,-46.47859676240329,"{0: 14, 1: 0, 2: 6, 3: 0, 4: 0}",0 +181,False,"{'a': 0.01, 'e': 0.8344353586957896}",30,0,-140.80173299892382,"{0: 17, 1: 4, 2: 6, 3: 2, 4: 1}",0 +182,False,"{'a': 0.01, 'e': 0.8336013404157353}",30,0,-71.89887722259886,"{0: 19, 1: 6, 2: 4, 3: 1, 4: 0}",0 +183,False,"{'a': 0.01, 'e': 0.832768155737091}",30,0,-130.45331082038956,"{0: 20, 1: 3, 2: 4, 3: 1, 4: 2}",0 +184,False,"{'a': 0.01, 'e': 0.8319358038266718}",30,0,-241.97232557636016,"{0: 14, 1: 3, 2: 6, 3: 5, 4: 2}",0 +185,False,"{'a': 0.01, 'e': 0.8311042838521256}",20,3,-30.226999667397013,"{0: 12, 1: 3, 2: 1, 3: 1, 4: 0}",1 +186,False,"{'a': 0.01, 'e': 0.8302735949819326}",25,0,-74.62018999930464,"{0: 15, 1: 6, 2: 3, 3: 0, 4: 1}",0 +187,False,"{'a': 0.01, 'e': 0.8294437363854039}",30,2,-66.39773562877276,"{0: 20, 1: 1, 2: 6, 3: 1, 4: 0}",1 +188,False,"{'a': 0.01, 'e': 0.8286147072326806}",20,0,-183.3105723022379,"{0: 10, 1: 5, 2: 1, 3: 0, 4: 4}",0 +189,False,"{'a': 0.01, 'e': 0.8277865066947336}",20,0,-169.37995885919486,"{0: 11, 1: 1, 2: 4, 3: 1, 4: 3}",0 +190,False,"{'a': 0.01, 'e': 0.8269591339433623}",25,8,-19.42967938288815,"{0: 13, 1: 2, 2: 1, 3: 1, 4: 0}",1 +191,False,"{'a': 0.01, 'e': 0.8261325881511938}",25,0,-145.27428648233,"{0: 16, 1: 3, 2: 3, 3: 0, 4: 3}",0 +192,False,"{'a': 0.01, 'e': 0.8253068684916823}",30,0,-72.31065134698902,"{0: 23, 1: 1, 2: 5, 3: 0, 4: 1}",0 +193,False,"{'a': 0.01, 'e': 0.8244819741391082}",20,0,-82.0049479711965,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",0 +194,False,"{'a': 0.01, 'e': 0.8236579042685769}",25,0,-177.93946971563184,"{0: 14, 1: 1, 2: 7, 3: 0, 4: 3}",0 +195,False,"{'a': 0.01, 'e': 0.8228346580560184}",20,0,-114.70642255397769,"{0: 11, 1: 4, 2: 3, 3: 0, 4: 2}",0 +196,False,"{'a': 0.01, 'e': 0.8220122346781865}",30,6,-80.69806424566674,"{0: 16, 1: 2, 2: 5, 3: 0, 4: 1}",1 +197,False,"{'a': 0.01, 'e': 0.821190633312658}",20,5,-39.899052444038944,"{0: 8, 1: 5, 2: 1, 3: 1, 4: 0}",1 +198,False,"{'a': 0.01, 'e': 0.8203698531378311}",20,0,-53.61426772009775,"{0: 12, 1: 4, 2: 3, 3: 1, 4: 0}",0 +199,False,"{'a': 0.01, 'e': 0.8195498933329256}",30,13,-48.46629509620798,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 0}",1 +200,False,"{'a': 0.01, 'e': 0.8187307530779818}",25,0,-82.22171552488732,"{0: 17, 1: 4, 2: 2, 3: 1, 4: 1}",0 +201,False,"{'a': 0.01, 'e': 0.8179124315538594}",25,5,-28.18162817967057,"{0: 15, 1: 2, 2: 2, 3: 1, 4: 0}",1 +202,False,"{'a': 0.01, 'e': 0.8170949279422366}",20,0,-47.748334163851894,"{0: 13, 1: 3, 2: 3, 3: 1, 4: 0}",0 +203,False,"{'a': 0.01, 'e': 0.8162782414256099}",25,0,-58.87220599747477,"{0: 20, 1: 1, 2: 2, 3: 1, 4: 1}",0 +204,False,"{'a': 0.01, 'e': 0.8154623711872927}",35,0,-295.3711044884525,"{0: 19, 1: 5, 2: 2, 3: 4, 4: 5}",0 +205,False,"{'a': 0.01, 'e': 0.8146473164114145}",25,2,-36.59806490870928,"{0: 20, 1: 1, 2: 0, 3: 1, 4: 1}",1 +206,False,"{'a': 0.01, 'e': 0.8138330762829207}",20,0,-114.79772052243754,"{0: 11, 1: 2, 2: 4, 3: 2, 4: 1}",0 +207,False,"{'a': 0.01, 'e': 0.813019649987571}",20,0,-89.7936487823705,"{0: 14, 1: 2, 2: 2, 3: 0, 4: 2}",0 +208,False,"{'a': 0.01, 'e': 0.812207036711939}",20,0,-99.79765845418716,"{0: 15, 1: 1, 2: 1, 3: 1, 4: 2}",0 +209,False,"{'a': 0.01, 'e': 0.8113952356434114}",35,0,-164.58212268102804,"{0: 22, 1: 3, 2: 7, 3: 1, 4: 2}",0 +210,False,"{'a': 0.01, 'e': 0.8105842459701871}",25,0,-131.93886170241407,"{0: 14, 1: 1, 2: 8, 3: 1, 4: 1}",0 +211,False,"{'a': 0.01, 'e': 0.8097740668812763}",20,10,-1.9245478601027437,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +212,False,"{'a': 0.01, 'e': 0.8089646975664998}",20,6,-61.076174799088406,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 2}",1 +213,False,"{'a': 0.01, 'e': 0.8081561372164884}",30,0,-166.00292065436435,"{0: 16, 1: 4, 2: 7, 3: 1, 4: 2}",0 +214,False,"{'a': 0.01, 'e': 0.8073483850226815}",20,0,-113.40067026349594,"{0: 12, 1: 2, 2: 4, 3: 0, 4: 2}",0 +215,False,"{'a': 0.01, 'e': 0.8065414401773269}",35,0,-130.64493938595945,"{0: 25, 1: 2, 2: 5, 3: 1, 4: 2}",0 +216,False,"{'a': 0.01, 'e': 0.8057353018734796}",20,0,-59.58518208305725,"{0: 13, 1: 3, 2: 2, 3: 2, 4: 0}",0 +217,False,"{'a': 0.01, 'e': 0.8049299693050015}",20,4,-50.38571183417453,"{0: 11, 1: 2, 2: 2, 3: 0, 4: 1}",1 +218,False,"{'a': 0.01, 'e': 0.8041254416665596}",25,10,-17.272502631866292,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 1}",1 +219,False,"{'a': 0.01, 'e': 0.8033217181536265}",20,0,-33.25877954942402,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +220,False,"{'a': 0.01, 'e': 0.8025187979624785}",20,2,-8.338178813167016,"{0: 13, 1: 4, 2: 1, 3: 0, 4: 0}",1 +221,False,"{'a': 0.01, 'e': 0.8017166802901953}",25,0,-41.74580066135553,"{0: 18, 1: 2, 2: 4, 3: 1, 4: 0}",1 +222,False,"{'a': 0.01, 'e': 0.8009153643346592}",30,2,-112.21862490979498,"{0: 18, 1: 1, 2: 7, 3: 1, 4: 1}",1 +223,False,"{'a': 0.01, 'e': 0.8001148492945541}",20,0,-116.24475844497564,"{0: 10, 1: 3, 2: 5, 3: 1, 4: 1}",0 +224,False,"{'a': 0.01, 'e': 0.7993151343693651}",30,0,-83.08267768556662,"{0: 22, 1: 2, 2: 4, 3: 1, 4: 1}",0 +225,False,"{'a': 0.01, 'e': 0.7985162187593771}",30,1,-136.481781880905,"{0: 20, 1: 2, 2: 3, 3: 2, 4: 2}",1 +226,False,"{'a': 0.01, 'e': 0.7977181016656743}",20,0,-195.30359363911685,"{0: 8, 1: 3, 2: 3, 3: 4, 4: 2}",0 +227,False,"{'a': 0.01, 'e': 0.7969207822901396}",20,0,-123.85973989933403,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +228,False,"{'a': 0.01, 'e': 0.7961242598354538}",25,0,-94.37509284603433,"{0: 14, 1: 3, 2: 6, 3: 2, 4: 0}",0 +229,False,"{'a': 0.01, 'e': 0.7953285335050939}",30,0,-66.0197117967113,"{0: 24, 1: 1, 2: 3, 3: 1, 4: 1}",0 +230,False,"{'a': 0.01, 'e': 0.794533602503334}",20,13,-12.515425352432118,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +231,False,"{'a': 0.01, 'e': 0.7937394660352427}",20,12,-17.61642998092322,"{0: 5, 1: 1, 2: 2, 3: 0, 4: 0}",1 +232,False,"{'a': 0.01, 'e': 0.7929461233066837}",25,0,-59.69458526335364,"{0: 18, 1: 5, 2: 0, 3: 1, 4: 1}",0 +233,False,"{'a': 0.01, 'e': 0.792153573524314}",25,0,-56.00873682027303,"{0: 19, 1: 1, 2: 3, 3: 2, 4: 0}",0 +234,False,"{'a': 0.01, 'e': 0.7913618158955839}",20,0,-133.1019827828845,"{0: 11, 1: 3, 2: 3, 3: 1, 4: 2}",0 +235,False,"{'a': 0.01, 'e': 0.7905708496287356}",20,13,0.8186537125332867,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +236,False,"{'a': 0.01, 'e': 0.7897806739328027}",25,0,-60.692857657133146,"{0: 16, 1: 1, 2: 8, 3: 0, 4: 0}",0 +237,False,"{'a': 0.01, 'e': 0.7889912880176096}",30,0,-121.13177001435764,"{0: 20, 1: 3, 2: 5, 3: 0, 4: 2}",0 +238,False,"{'a': 0.01, 'e': 0.7882026910937704}",20,0,-47.5664948167299,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +239,False,"{'a': 0.01, 'e': 0.7874148823726879}",25,0,-154.06354554824264,"{0: 17, 1: 1, 2: 3, 3: 1, 4: 3}",0 +240,False,"{'a': 0.01, 'e': 0.7866278610665535}",25,0,-59.22041462140241,"{0: 17, 1: 4, 2: 2, 3: 2, 4: 0}",0 +241,False,"{'a': 0.01, 'e': 0.7858416263883455}",20,0,-109.88357664119278,"{0: 11, 1: 2, 2: 5, 3: 1, 4: 1}",0 +242,False,"{'a': 0.01, 'e': 0.7850561775518295}",20,0,-88.70361899589555,"{0: 11, 1: 2, 2: 5, 3: 2, 4: 0}",0 +243,False,"{'a': 0.01, 'e': 0.7842715137715565}",25,16,-8.472190892791204,"{0: 6, 1: 2, 2: 1, 3: 0, 4: 0}",1 +244,False,"{'a': 0.01, 'e': 0.7834876342628625}",25,0,-232.3579160198603,"{0: 12, 1: 1, 2: 7, 3: 2, 4: 3}",0 +245,False,"{'a': 0.01, 'e': 0.7827045382418681}",20,2,-153.16262484517608,"{0: 8, 1: 5, 2: 2, 3: 0, 4: 3}",1 +246,False,"{'a': 0.01, 'e': 0.7819222249254772}",30,18,1.158734703623547,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +247,False,"{'a': 0.01, 'e': 0.7811406935313765}",35,0,-68.62282145303297,"{0: 27, 1: 1, 2: 6, 3: 0, 4: 1}",0 +248,False,"{'a': 0.01, 'e': 0.7803599432780343}",30,1,-145.3795607362817,"{0: 18, 1: 2, 2: 6, 3: 1, 4: 2}",1 +249,False,"{'a': 0.01, 'e': 0.7795799733847004}",20,4,-9.323679634239719,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 0}",1 +250,False,"{'a': 0.01, 'e': 0.7788007830714049}",20,0,-12.821504899847058,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +251,False,"{'a': 0.01, 'e': 0.7780223715589573}",30,17,-28.576077414965685,"{0: 8, 1: 2, 2: 3, 3: 0, 4: 0}",1 +252,False,"{'a': 0.01, 'e': 0.7772447380689461}",20,9,-7.565488852231982,"{0: 8, 1: 2, 2: 1, 3: 0, 4: 0}",1 +253,False,"{'a': 0.01, 'e': 0.7764678818237378}",30,0,-121.90010366739605,"{0: 18, 1: 6, 2: 3, 3: 2, 4: 1}",0 +254,False,"{'a': 0.01, 'e': 0.775691802046476}",30,5,-34.89250353588923,"{0: 19, 1: 3, 2: 2, 3: 1, 4: 0}",1 +255,False,"{'a': 0.01, 'e': 0.774916497961081}",20,0,-57.80010336644233,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",1 +256,False,"{'a': 0.01, 'e': 0.7741419687922484}",25,0,-125.50638202609308,"{0: 12, 1: 2, 2: 9, 3: 2, 4: 0}",0 +257,False,"{'a': 0.01, 'e': 0.7733682137654491}",20,0,-140.07939613251114,"{0: 14, 1: 0, 2: 2, 3: 1, 4: 3}",0 +258,False,"{'a': 0.01, 'e': 0.772595232106928}",20,0,-142.29989469929126,"{0: 13, 1: 1, 2: 3, 3: 0, 4: 3}",0 +259,False,"{'a': 0.01, 'e': 0.7718230230437034}",20,0,-106.61531365723545,"{0: 11, 1: 3, 2: 4, 3: 1, 4: 1}",0 +260,False,"{'a': 0.01, 'e': 0.7710515858035663}",20,0,8.67958017345148,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +261,False,"{'a': 0.01, 'e': 0.7702809196150792}",25,7,-45.88038600269814,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 1}",1 +262,False,"{'a': 0.01, 'e': 0.7695110237075758}",25,0,-121.10112650810134,"{0: 16, 1: 3, 2: 3, 3: 1, 4: 2}",0 +263,False,"{'a': 0.01, 'e': 0.7687418973111603}",30,11,-71.26463666020001,"{0: 14, 1: 2, 2: 0, 3: 2, 4: 1}",1 +264,False,"{'a': 0.01, 'e': 0.7679735396567061}",20,2,-29.304317676410612,"{0: 12, 1: 3, 2: 3, 3: 0, 4: 0}",1 +265,False,"{'a': 0.01, 'e': 0.7672059499758557}",20,0,-76.22440049538436,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",0 +266,False,"{'a': 0.01, 'e': 0.7664391275010192}",20,0,-118.30866031895063,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +267,False,"{'a': 0.01, 'e': 0.7656730714653739}",20,0,-64.48857163608322,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +268,False,"{'a': 0.01, 'e': 0.764907781102864}",25,0,-204.26511797786293,"{0: 13, 1: 1, 2: 6, 3: 2, 4: 3}",0 +269,False,"{'a': 0.01, 'e': 0.764143255648199}",25,0,-93.48162712981554,"{0: 18, 1: 2, 2: 2, 3: 2, 4: 1}",0 +270,False,"{'a': 0.01, 'e': 0.7633794943368531}",20,0,-113.303581667433,"{0: 11, 1: 3, 2: 3, 3: 2, 4: 1}",0 +271,False,"{'a': 0.01, 'e': 0.7626164964050653}",25,5,-64.06656392916032,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",1 +272,False,"{'a': 0.01, 'e': 0.7618542610898376}",30,0,-0.699748838843167,"{0: 26, 1: 1, 2: 3, 3: 0, 4: 0}",0 +273,False,"{'a': 0.01, 'e': 0.7610927876289343}",25,0,-171.71534381978773,"{0: 17, 1: 1, 2: 3, 3: 0, 4: 4}",0 +274,False,"{'a': 0.01, 'e': 0.7603320752608821}",25,5,-165.35771991662102,"{0: 11, 1: 0, 2: 4, 3: 3, 4: 2}",1 +275,False,"{'a': 0.01, 'e': 0.7595721232249685}",25,3,-32.25012855973634,"{0: 16, 1: 3, 2: 2, 3: 1, 4: 0}",1 +276,False,"{'a': 0.01, 'e': 0.7588129307612413}",20,6,-6.6607127742133665,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 0}",1 +277,False,"{'a': 0.01, 'e': 0.7580544971105083}",30,0,-11.386046834200693,"{0: 24, 1: 3, 2: 3, 3: 0, 4: 0}",0 +278,False,"{'a': 0.01, 'e': 0.7572968215143355}",20,0,-29.588325220537463,"{0: 14, 1: 2, 2: 4, 3: 0, 4: 0}",0 +279,False,"{'a': 0.01, 'e': 0.7565399032150474}",25,17,-2.826147580481508,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 0}",1 +280,False,"{'a': 0.01, 'e': 0.7557837414557255}",20,12,-42.63056364692741,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 1}",1 +281,False,"{'a': 0.01, 'e': 0.755028335480208}",20,2,-47.73889202397585,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 1}",1 +282,False,"{'a': 0.01, 'e': 0.754273684533089}",25,16,-23.462180093281383,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 1}",1 +283,False,"{'a': 0.01, 'e': 0.7535197878597172}",30,0,-107.68691388378359,"{0: 25, 1: 0, 2: 2, 3: 0, 4: 3}",0 +284,False,"{'a': 0.01, 'e': 0.7527666447061963}",25,0,-7.083054745920254,"{0: 22, 1: 0, 2: 2, 3: 1, 4: 0}",0 +285,False,"{'a': 0.01, 'e': 0.7520142543193826}",20,0,-83.48942411575327,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",0 +286,False,"{'a': 0.01, 'e': 0.751262615946886}",20,0,-91.83717312443144,"{0: 12, 1: 3, 2: 3, 3: 1, 4: 1}",0 +287,False,"{'a': 0.01, 'e': 0.750511728837068}",20,0,-165.33806106966188,"{0: 9, 1: 0, 2: 9, 3: 0, 4: 2}",0 +288,False,"{'a': 0.01, 'e': 0.7497615922390413}",25,9,-27.960134473607727,"{0: 13, 1: 2, 2: 0, 3: 0, 4: 1}",1 +289,False,"{'a': 0.01, 'e': 0.7490122054026693}",25,0,-103.80432381301594,"{0: 18, 1: 2, 2: 2, 3: 1, 4: 2}",0 +290,False,"{'a': 0.01, 'e': 0.7482635675785653}",30,0,-42.43048365155697,"{0: 25, 1: 2, 2: 2, 3: 0, 4: 1}",0 +291,False,"{'a': 0.01, 'e': 0.747515678018091}",25,0,-6.064029766907028,"{0: 22, 1: 1, 2: 1, 3: 1, 4: 0}",0 +292,False,"{'a': 0.01, 'e': 0.7467685359733571}",30,13,9.699367864786563,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +293,False,"{'a': 0.01, 'e': 0.7460221406972215}",25,0,-68.62728255450814,"{0: 17, 1: 2, 2: 4, 3: 2, 4: 0}",0 +294,False,"{'a': 0.01, 'e': 0.7452764914432887}",25,0,-58.12451464463362,"{0: 17, 1: 5, 2: 2, 3: 0, 4: 1}",0 +295,False,"{'a': 0.01, 'e': 0.7445315874659094}",20,0,-63.783310322787024,"{0: 11, 1: 3, 2: 6, 3: 0, 4: 0}",0 +296,False,"{'a': 0.01, 'e': 0.7437874280201796}",20,12,-7.450448745020395,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +297,False,"{'a': 0.01, 'e': 0.7430440123619398}",20,0,-46.30779998532292,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +298,False,"{'a': 0.01, 'e': 0.7423013397477743}",25,13,-21.103980987654857,"{0: 8, 1: 1, 2: 3, 3: 0, 4: 0}",1 +299,False,"{'a': 0.01, 'e': 0.7415594094350105}",30,16,-34.616312946160214,"{0: 9, 1: 2, 2: 2, 3: 1, 4: 0}",1 +300,False,"{'a': 0.01, 'e': 0.7408182206817179}",20,0,-95.55706247989207,"{0: 13, 1: 2, 2: 2, 3: 2, 4: 1}",0 +301,False,"{'a': 0.01, 'e': 0.7400777727467076}",25,0,-54.426286126244996,"{0: 18, 1: 1, 2: 5, 3: 1, 4: 0}",0 +302,False,"{'a': 0.01, 'e': 0.7393380648895319}",20,6,-68.38928326045988,"{0: 8, 1: 1, 2: 4, 3: 0, 4: 1}",1 +303,False,"{'a': 0.01, 'e': 0.7385990963704826}",20,0,-143.69575454771217,"{0: 14, 1: 0, 2: 2, 3: 1, 4: 3}",0 +304,False,"{'a': 0.01, 'e': 0.7378608664505911}",20,0,-111.55868311061353,"{0: 14, 1: 0, 2: 3, 3: 1, 4: 2}",0 +305,False,"{'a': 0.01, 'e': 0.7371233743916278}",20,0,-120.68499482484125,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",0 +306,False,"{'a': 0.01, 'e': 0.7363866194561001}",20,11,-36.17432414396597,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 1}",1 +307,False,"{'a': 0.01, 'e': 0.7356506009072533}",35,11,-31.873980697299093,"{0: 20, 1: 1, 2: 2, 3: 0, 4: 1}",1 +308,False,"{'a': 0.01, 'e': 0.7349153180090687}",20,8,-13.958218716822243,"{0: 9, 1: 0, 2: 3, 3: 0, 4: 0}",1 +309,False,"{'a': 0.01, 'e': 0.7341807700262634}",20,0,-48.709132109921796,"{0: 14, 1: 0, 2: 5, 3: 1, 4: 0}",0 +310,False,"{'a': 0.01, 'e': 0.7334469562242892}",25,0,-55.391408793358366,"{0: 19, 1: 0, 2: 4, 3: 2, 4: 0}",0 +311,False,"{'a': 0.01, 'e': 0.7327138758693325}",20,13,0.6665996057666133,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +312,False,"{'a': 0.01, 'e': 0.7319815282283126}",25,0,-34.65416329143733,"{0: 21, 1: 1, 2: 2, 3: 0, 4: 1}",0 +313,False,"{'a': 0.01, 'e': 0.731249912568882}",30,0,-131.42120669324478,"{0: 23, 1: 0, 2: 4, 3: 0, 4: 3}",0 +314,False,"{'a': 0.01, 'e': 0.7305190281594249}",25,2,-83.59937972159086,"{0: 16, 1: 1, 2: 4, 3: 1, 4: 1}",1 +315,False,"{'a': 0.01, 'e': 0.7297888742690568}",25,0,-77.34301663328114,"{0: 17, 1: 2, 2: 5, 3: 0, 4: 1}",0 +316,False,"{'a': 0.01, 'e': 0.7290594501676237}",20,1,-34.45495685886435,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 0}",1 +317,False,"{'a': 0.01, 'e': 0.7283307551257017}",25,7,-52.68791956870314,"{0: 12, 1: 0, 2: 5, 3: 1, 4: 0}",1 +318,False,"{'a': 0.01, 'e': 0.7276027884145955}",25,19,7.94006207883172,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +319,False,"{'a': 0.01, 'e': 0.7268755493063382}",25,0,-71.17490447702599,"{0: 15, 1: 5, 2: 3, 3: 2, 4: 0}",0 +320,False,"{'a': 0.01, 'e': 0.7261490370736909}",30,10,0.911361981507602,"{0: 16, 1: 3, 2: 1, 3: 0, 4: 0}",1 +321,False,"{'a': 0.01, 'e': 0.7254232509901412}",30,1,-133.62465891862698,"{0: 18, 1: 2, 2: 5, 3: 3, 4: 1}",1 +322,False,"{'a': 0.01, 'e': 0.7246981903299029}",20,10,-26.49438841345206,"{0: 6, 1: 0, 2: 4, 3: 0, 4: 0}",1 +323,False,"{'a': 0.01, 'e': 0.7239738543679153}",20,10,17.55502976830392,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +324,False,"{'a': 0.01, 'e': 0.7232502423798424}",20,3,-36.22666104151378,"{0: 12, 1: 2, 2: 2, 3: 1, 4: 0}",1 +325,False,"{'a': 0.01, 'e': 0.7225273536420722}",25,0,-25.88343551335904,"{0: 19, 1: 2, 2: 4, 3: 0, 4: 0}",0 +326,False,"{'a': 0.01, 'e': 0.7218051874317158}",25,3,-21.801477627721912,"{0: 16, 1: 3, 2: 3, 3: 0, 4: 0}",1 +327,False,"{'a': 0.01, 'e': 0.721083743026607}",25,10,-21.13767092426492,"{0: 11, 1: 0, 2: 4, 3: 0, 4: 0}",1 +328,False,"{'a': 0.01, 'e': 0.7203630197053014}",20,0,-47.19042358689654,"{0: 15, 1: 2, 2: 2, 3: 0, 4: 1}",0 +329,False,"{'a': 0.01, 'e': 0.7196430167470754}",25,4,-7.190235683210485,"{0: 18, 1: 0, 2: 2, 3: 1, 4: 0}",1 +330,False,"{'a': 0.01, 'e': 0.7189237334319262}",30,9,-36.61800025404221,"{0: 17, 1: 2, 2: 1, 3: 0, 4: 1}",1 +331,False,"{'a': 0.01, 'e': 0.7182051690405703}",30,14,-29.054581940308076,"{0: 13, 1: 2, 2: 0, 3: 0, 4: 1}",1 +332,False,"{'a': 0.01, 'e': 0.7174873228544433}",30,0,-130.18560533276715,"{0: 21, 1: 2, 2: 3, 3: 2, 4: 2}",0 +333,False,"{'a': 0.01, 'e': 0.716770194155699}",20,0,-133.09017438515622,"{0: 12, 1: 0, 2: 5, 3: 1, 4: 2}",0 +334,False,"{'a': 0.01, 'e': 0.7160537822272085}",20,0,-127.9600278628391,"{0: 10, 1: 5, 2: 2, 3: 1, 4: 2}",0 +335,False,"{'a': 0.01, 'e': 0.7153380863525599}",20,3,-11.077917934047766,"{0: 14, 1: 1, 2: 1, 3: 1, 4: 0}",1 +336,False,"{'a': 0.01, 'e': 0.7146231058160573}",25,0,-134.26515575417775,"{0: 16, 1: 0, 2: 7, 3: 0, 4: 2}",0 +337,False,"{'a': 0.01, 'e': 0.71390883990272}",20,0,-53.30286495439025,"{0: 16, 1: 2, 2: 0, 3: 1, 4: 1}",0 +338,False,"{'a': 0.01, 'e': 0.7131952878982822}",30,4,-167.98923082034415,"{0: 18, 1: 1, 2: 3, 3: 0, 4: 4}",1 +339,False,"{'a': 0.01, 'e': 0.7124824490891918}",30,0,-139.0223981319199,"{0: 20, 1: 1, 2: 6, 3: 1, 4: 2}",0 +340,False,"{'a': 0.01, 'e': 0.7117703227626097}",20,14,4.04663187325524,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +341,False,"{'a': 0.01, 'e': 0.7110589082064097}",30,5,-103.60557244440214,"{0: 18, 1: 1, 2: 3, 3: 1, 4: 2}",1 +342,False,"{'a': 0.01, 'e': 0.7103482047091773}",20,0,-73.25558268382514,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",0 +343,False,"{'a': 0.01, 'e': 0.7096382115602087}",25,2,-159.28228177119684,"{0: 13, 1: 1, 2: 5, 3: 2, 4: 2}",1 +344,False,"{'a': 0.01, 'e': 0.7089289280495107}",20,5,-76.78167311695441,"{0: 9, 1: 0, 2: 5, 3: 0, 4: 1}",1 +345,False,"{'a': 0.01, 'e': 0.7082203534678}",25,0,-31.49236367887367,"{0: 17, 1: 5, 2: 3, 3: 0, 4: 0}",0 +346,False,"{'a': 0.01, 'e': 0.7075124871065017}",25,7,-45.396672323905186,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +347,False,"{'a': 0.01, 'e': 0.7068053282577494}",20,0,-158.57143393760774,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 3}",0 +348,False,"{'a': 0.01, 'e': 0.7060988762143844}",30,18,-11.207817486506626,"{0: 9, 1: 1, 2: 2, 3: 0, 4: 0}",1 +349,False,"{'a': 0.01, 'e': 0.7053931302699543}",20,0,-85.8963366445714,"{0: 14, 1: 0, 2: 3, 3: 2, 4: 1}",0 +350,False,"{'a': 0.01, 'e': 0.7046880897187134}",20,12,-29.633666388700924,"{0: 4, 1: 0, 2: 4, 3: 0, 4: 0}",1 +351,False,"{'a': 0.01, 'e': 0.7039837538556208}",20,0,-121.92456038650371,"{0: 13, 1: 0, 2: 4, 3: 1, 4: 2}",0 +352,False,"{'a': 0.01, 'e': 0.7032801219763409}",30,0,-73.83530955079398,"{0: 23, 1: 2, 2: 2, 3: 2, 4: 1}",0 +353,False,"{'a': 0.01, 'e': 0.7025771933772416}",20,2,-15.399259489118492,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 0}",1 +354,False,"{'a': 0.01, 'e': 0.701874967355394}",35,0,-232.74068748048475,"{0: 25, 1: 0, 2: 3, 3: 2, 4: 5}",0 +355,False,"{'a': 0.01, 'e': 0.7011734432085724}",25,0,-238.30152614906402,"{0: 11, 1: 4, 2: 5, 3: 1, 4: 4}",0 +356,False,"{'a': 0.01, 'e': 0.7004726202352524}",30,18,7.902710640509875,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +357,False,"{'a': 0.01, 'e': 0.699772497734611}",25,0,-68.94821579769058,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +358,False,"{'a': 0.01, 'e': 0.6990730750065257}",25,0,-85.43529894582619,"{0: 17, 1: 5, 2: 1, 3: 0, 4: 2}",0 +359,False,"{'a': 0.01, 'e': 0.6983743513515736}",30,3,-121.1407553820593,"{0: 18, 1: 2, 2: 4, 3: 1, 4: 2}",1 +360,False,"{'a': 0.01, 'e': 0.697676326071031}",30,8,-87.81543701671688,"{0: 14, 1: 1, 2: 6, 3: 0, 4: 1}",1 +361,False,"{'a': 0.01, 'e': 0.6969789984668727}",20,0,13.975494257572015,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +362,False,"{'a': 0.01, 'e': 0.696282367841771}",20,5,-12.40935855485856,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +363,False,"{'a': 0.01, 'e': 0.6955864334990951}",30,8,-36.80152182714745,"{0: 17, 1: 3, 2: 1, 3: 0, 4: 1}",1 +364,False,"{'a': 0.01, 'e': 0.6948911947429106}",20,12,15.201288505606623,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +365,False,"{'a': 0.01, 'e': 0.6941966508779789}",20,12,11.318618370420406,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +366,False,"{'a': 0.01, 'e': 0.6935028012097558}",20,12,-26.89689346107936,"{0: 6, 1: 0, 2: 0, 3: 2, 4: 0}",1 +367,False,"{'a': 0.01, 'e': 0.6928096450443917}",25,3,-65.35333526220919,"{0: 18, 1: 0, 2: 1, 3: 2, 4: 1}",1 +368,False,"{'a': 0.01, 'e': 0.6921171816887304}",25,0,-59.47464052695863,"{0: 18, 1: 3, 2: 3, 3: 0, 4: 1}",0 +369,False,"{'a': 0.01, 'e': 0.6914254104503085}",25,0,-4.354433166823178,"{0: 22, 1: 1, 2: 1, 3: 1, 4: 0}",0 +370,False,"{'a': 0.01, 'e': 0.6907343306373547}",20,2,-1.06738702307657,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +371,False,"{'a': 0.01, 'e': 0.690043941558789}",20,0,-67.28804111866886,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +372,False,"{'a': 0.01, 'e': 0.6893542425242224}",20,4,-91.22638492707337,"{0: 11, 1: 1, 2: 1, 3: 1, 4: 2}",1 +373,False,"{'a': 0.01, 'e': 0.6886652328439558}",25,0,-55.64394746493771,"{0: 16, 1: 3, 2: 5, 3: 1, 4: 0}",0 +374,False,"{'a': 0.01, 'e': 0.6879769118289795}",25,0,-89.68699622690012,"{0: 18, 1: 0, 2: 5, 3: 1, 4: 1}",0 +375,False,"{'a': 0.01, 'e': 0.6872892787909722}",20,0,-116.0274392944452,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +376,False,"{'a': 0.01, 'e': 0.686602333042301}",25,13,-43.820357455963276,"{0: 9, 1: 1, 2: 0, 3: 1, 4: 1}",1 +377,False,"{'a': 0.01, 'e': 0.6859160738960202}",30,0,-105.32448757714612,"{0: 22, 1: 2, 2: 4, 3: 0, 4: 2}",0 +378,False,"{'a': 0.01, 'e': 0.6852305006658703}",25,0,-56.76874504779387,"{0: 16, 1: 2, 2: 7, 3: 0, 4: 0}",0 +379,False,"{'a': 0.01, 'e': 0.6845456126662782}",20,3,-79.81866540687219,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 2}",1 +380,False,"{'a': 0.01, 'e': 0.6838614092123558}",20,0,3.2474488683546334,"{0: 17, 1: 2, 2: 1, 3: 0, 4: 0}",0 +381,False,"{'a': 0.01, 'e': 0.6831778896198997}",25,11,-103.08395129891375,"{0: 8, 1: 1, 2: 3, 3: 0, 4: 2}",1 +382,False,"{'a': 0.01, 'e': 0.6824950532053901}",20,8,-5.38525568248147,"{0: 9, 1: 2, 2: 1, 3: 0, 4: 0}",1 +383,False,"{'a': 0.01, 'e': 0.6818128992859905}",20,0,-124.26541633220013,"{0: 13, 1: 0, 2: 4, 3: 1, 4: 2}",0 +384,False,"{'a': 0.01, 'e': 0.6811314271795471}",25,5,-31.145520907931733,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 0}",1 +385,False,"{'a': 0.01, 'e': 0.6804506362045877}",20,14,-13.767988930726487,"{0: 4, 1: 0, 2: 2, 3: 0, 4: 0}",1 +386,False,"{'a': 0.01, 'e': 0.679770525680321}",20,0,-95.1470257919197,"{0: 14, 1: 2, 2: 2, 3: 0, 4: 2}",0 +387,False,"{'a': 0.01, 'e': 0.6790910949266368}",25,0,-65.26078948107977,"{0: 21, 1: 1, 2: 1, 3: 0, 4: 2}",0 +388,False,"{'a': 0.01, 'e': 0.678412343264104}",25,7,-42.17068990364127,"{0: 14, 1: 0, 2: 1, 3: 3, 4: 0}",1 +389,False,"{'a': 0.01, 'e': 0.6777342700139711}",30,0,-92.32003652344756,"{0: 21, 1: 2, 2: 5, 3: 1, 4: 1}",0 +390,False,"{'a': 0.01, 'e': 0.6770568744981647}",20,5,-42.641102406998286,"{0: 9, 1: 0, 2: 6, 3: 0, 4: 0}",1 +391,False,"{'a': 0.01, 'e': 0.6763801560392891}",20,0,-21.580407262744615,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 0}",0 +392,False,"{'a': 0.01, 'e': 0.675704113960626}",35,24,-37.90414926629901,"{0: 8, 1: 2, 2: 0, 3: 0, 4: 1}",1 +393,False,"{'a': 0.01, 'e': 0.6750287475861332}",20,0,-136.69845863313645,"{0: 12, 1: 1, 2: 3, 3: 2, 4: 2}",0 +394,False,"{'a': 0.01, 'e': 0.6743540562404442}",20,2,-69.5103208920554,"{0: 11, 1: 2, 2: 3, 3: 2, 4: 0}",1 +395,False,"{'a': 0.01, 'e': 0.6736800392488677}",25,7,-34.91631763184031,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +396,False,"{'a': 0.01, 'e': 0.6730066959373864}",30,20,-5.55813458098952,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +397,False,"{'a': 0.01, 'e': 0.6723340256326572}",30,0,-165.9643238338785,"{0: 19, 1: 1, 2: 6, 3: 2, 4: 2}",0 +398,False,"{'a': 0.01, 'e': 0.6716620276620098}",25,0,-80.75278067205342,"{0: 19, 1: 1, 2: 3, 3: 0, 4: 2}",0 +399,False,"{'a': 0.01, 'e': 0.6709907013534459}",20,11,-38.68775443222956,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 1}",1 +400,False,"{'a': 0.01, 'e': 0.6703200460356393}",25,0,-44.344307395762904,"{0: 19, 1: 0, 2: 5, 3: 1, 4: 0}",0 +401,False,"{'a': 0.01, 'e': 0.6696500610379346}",35,0,-122.49606731940641,"{0: 26, 1: 1, 2: 5, 3: 1, 4: 2}",0 +402,False,"{'a': 0.01, 'e': 0.6689807456903467}",20,0,-96.89000248928635,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 2}",0 +403,False,"{'a': 0.01, 'e': 0.6683120993235603}",30,9,-75.6667278695389,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 2}",1 +404,False,"{'a': 0.01, 'e': 0.6676441212689289}",30,20,-6.790302333101121,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +405,False,"{'a': 0.01, 'e': 0.6669768108584744}",20,9,-31.551617925353312,"{0: 7, 1: 0, 2: 4, 3: 0, 4: 0}",1 +406,False,"{'a': 0.01, 'e': 0.6663101674248864}",25,0,-36.55493356724011,"{0: 18, 1: 2, 2: 5, 3: 0, 4: 0}",0 +407,False,"{'a': 0.01, 'e': 0.6656441903015212}",20,4,-51.6694106513917,"{0: 12, 1: 0, 2: 3, 3: 0, 4: 1}",1 +408,False,"{'a': 0.01, 'e': 0.6649788788224019}",20,12,-38.46065463062993,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 1}",1 +409,False,"{'a': 0.01, 'e': 0.6643142323222168}",25,0,-105.2660821460501,"{0: 18, 1: 1, 2: 4, 3: 0, 4: 2}",0 +410,False,"{'a': 0.01, 'e': 0.6636502501363194}",25,0,-26.685726078598,"{0: 20, 1: 2, 2: 2, 3: 1, 4: 0}",0 +411,False,"{'a': 0.01, 'e': 0.6629869316007274}",25,5,-54.46426577982272,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 1}",1 +412,False,"{'a': 0.01, 'e': 0.6623242760521222}",25,3,15.179746503759384,"{0: 20, 1: 1, 2: 1, 3: 0, 4: 0}",1 +413,False,"{'a': 0.01, 'e': 0.6616622828278483}",20,0,-87.49173994413013,"{0: 13, 1: 0, 2: 5, 3: 1, 4: 1}",0 +414,False,"{'a': 0.01, 'e': 0.6610009512659124}",25,0,-32.21075295557664,"{0: 20, 1: 0, 2: 4, 3: 1, 4: 0}",0 +415,False,"{'a': 0.01, 'e': 0.6603402807049829}",20,0,-91.006013381632,"{0: 12, 1: 3, 2: 3, 3: 1, 4: 1}",0 +416,False,"{'a': 0.01, 'e': 0.659680270484389}",25,13,-108.66412410542004,"{0: 7, 1: 0, 2: 2, 3: 1, 4: 2}",1 +417,False,"{'a': 0.01, 'e': 0.6590209199441207}",20,0,-36.299714078937775,"{0: 15, 1: 0, 2: 4, 3: 1, 4: 0}",0 +418,False,"{'a': 0.01, 'e': 0.6583622284248272}",20,10,-17.24522793428394,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +419,False,"{'a': 0.01, 'e': 0.657704195267817}",20,9,-2.45092806562617,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +420,False,"{'a': 0.01, 'e': 0.6570468198150567}",25,0,-98.37581166233736,"{0: 19, 1: 2, 2: 1, 3: 1, 4: 2}",0 +421,False,"{'a': 0.01, 'e': 0.6563901014091712}",25,14,10.106723340724464,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +422,False,"{'a': 0.01, 'e': 0.6557340393934418}",30,5,-36.1780553864002,"{0: 19, 1: 1, 2: 4, 3: 1, 4: 0}",1 +423,False,"{'a': 0.01, 'e': 0.6550786331118063}",25,11,-33.51628751053105,"{0: 10, 1: 0, 2: 3, 3: 1, 4: 0}",1 +424,False,"{'a': 0.01, 'e': 0.6544238819088586}",20,5,-67.31657108333218,"{0: 9, 1: 0, 2: 4, 3: 2, 4: 0}",1 +425,False,"{'a': 0.01, 'e': 0.6537697851298473}",25,11,-43.408991912285806,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 1}",1 +426,False,"{'a': 0.01, 'e': 0.6531163421206756}",25,5,-25.602473500680016,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",1 +427,False,"{'a': 0.01, 'e': 0.6524635522279004}",25,16,17.902130051076288,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +428,False,"{'a': 0.01, 'e': 0.651811414798732}",25,7,-18.328955431754,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 0}",1 +429,False,"{'a': 0.01, 'e': 0.6511599291810325}",30,16,0.5688481776671701,"{0: 11, 1: 2, 2: 1, 3: 0, 4: 0}",1 +430,False,"{'a': 0.01, 'e': 0.6505090947233165}",30,14,-0.8529805612881214,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 0}",1 +431,False,"{'a': 0.01, 'e': 0.6498589107747496}",20,0,-126.38762249840052,"{0: 12, 1: 1, 2: 4, 3: 1, 4: 2}",0 +432,False,"{'a': 0.01, 'e': 0.6492093766851474}",20,1,16.610772045353812,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +433,False,"{'a': 0.01, 'e': 0.6485604918049761}",30,0,-36.85270271067129,"{0: 26, 1: 0, 2: 3, 3: 0, 4: 1}",0 +434,False,"{'a': 0.01, 'e': 0.6479122554853506}",25,9,-85.4993058243382,"{0: 10, 1: 1, 2: 2, 3: 2, 4: 1}",1 +435,False,"{'a': 0.01, 'e': 0.6472646670780347}",20,2,-31.29122764390581,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 1}",1 +436,False,"{'a': 0.01, 'e': 0.6466177259354396}",30,1,-176.09147436148365,"{0: 20, 1: 1, 2: 4, 3: 0, 4: 4}",1 +437,False,"{'a': 0.01, 'e': 0.6459714314106245}",20,6,-61.05718832355584,"{0: 10, 1: 0, 2: 2, 3: 1, 4: 1}",1 +438,False,"{'a': 0.01, 'e': 0.6453257828572946}",20,0,-52.6074525092417,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +439,False,"{'a': 0.01, 'e': 0.6446807796298013}",25,14,-5.595766281571513,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +440,False,"{'a': 0.01, 'e': 0.6440364210831414}",20,0,-88.51884612428424,"{0: 14, 1: 2, 2: 2, 3: 0, 4: 2}",0 +441,False,"{'a': 0.01, 'e': 0.6433927065729562}",25,0,-122.59578129326854,"{0: 12, 1: 5, 2: 5, 3: 3, 4: 0}",0 +442,False,"{'a': 0.01, 'e': 0.6427496354555312}",30,0,-97.78138135362731,"{0: 22, 1: 1, 2: 5, 3: 0, 4: 2}",0 +443,False,"{'a': 0.01, 'e': 0.6421072070877952}",20,4,-61.21071957034616,"{0: 10, 1: 3, 2: 2, 3: 0, 4: 1}",1 +444,False,"{'a': 0.01, 'e': 0.6414654208273198}",30,12,-18.687358404872743,"{0: 13, 1: 4, 2: 0, 3: 1, 4: 0}",1 +445,False,"{'a': 0.01, 'e': 0.6408242760323187}",20,14,-0.4116959935095248,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +446,False,"{'a': 0.01, 'e': 0.6401837720616471}",25,11,-134.62320494803464,"{0: 8, 1: 0, 2: 3, 3: 0, 4: 3}",1 +447,False,"{'a': 0.01, 'e': 0.6395439082748009}",20,11,-47.33016818820583,"{0: 5, 1: 3, 2: 0, 3: 0, 4: 1}",1 +448,False,"{'a': 0.01, 'e': 0.6389046840319162}",25,11,-6.773223244544518,"{0: 10, 1: 3, 2: 1, 3: 0, 4: 0}",1 +449,False,"{'a': 0.01, 'e': 0.6382660986937688}",35,8,-100.39757653776367,"{0: 18, 1: 1, 2: 6, 3: 1, 4: 1}",1 +450,False,"{'a': 0.01, 'e': 0.6376281516217733}",20,2,-103.50643164568784,"{0: 10, 1: 2, 2: 3, 3: 2, 4: 1}",1 +451,False,"{'a': 0.01, 'e': 0.6369908421779825}",25,0,-95.47375400093894,"{0: 17, 1: 5, 2: 1, 3: 0, 4: 2}",0 +452,False,"{'a': 0.01, 'e': 0.6363541697250871}",30,7,-33.32684420839206,"{0: 16, 1: 4, 2: 2, 3: 1, 4: 0}",1 +453,False,"{'a': 0.01, 'e': 0.6357181336264143}",25,0,-20.5811641192417,"{0: 20, 1: 2, 2: 2, 3: 1, 4: 0}",0 +454,False,"{'a': 0.01, 'e': 0.6350827332459281}",30,16,-56.490349450444555,"{0: 10, 1: 0, 2: 3, 3: 0, 4: 1}",1 +455,False,"{'a': 0.01, 'e': 0.6344479679482282}",25,0,-116.4727480753483,"{0: 16, 1: 2, 2: 5, 3: 0, 4: 2}",0 +456,False,"{'a': 0.01, 'e': 0.633813837098549}",35,0,-82.25795672682273,"{0: 24, 1: 4, 2: 6, 3: 0, 4: 1}",0 +457,False,"{'a': 0.01, 'e': 0.6331803400627598}",25,16,0.9316443036224729,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +458,False,"{'a': 0.01, 'e': 0.6325474762073634}",20,0,-51.52108875451744,"{0: 15, 1: 2, 2: 2, 3: 0, 4: 1}",0 +459,False,"{'a': 0.01, 'e': 0.6319152448994959}",30,0,-68.10159543051043,"{0: 25, 1: 1, 2: 2, 3: 0, 4: 2}",0 +460,False,"{'a': 0.01, 'e': 0.631283645506926}",20,4,-34.71134223975304,"{0: 12, 1: 1, 2: 1, 3: 2, 4: 0}",1 +461,False,"{'a': 0.01, 'e': 0.6306526773980542}",20,0,-50.889564957845415,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 1}",0 +462,False,"{'a': 0.01, 'e': 0.6300223399419123}",20,0,-7.409383821983095,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +463,False,"{'a': 0.01, 'e': 0.6293926325081629}",20,2,-113.35684924935016,"{0: 11, 1: 1, 2: 4, 3: 0, 4: 2}",1 +464,False,"{'a': 0.01, 'e': 0.6287635544670984}",20,11,-15.46071328503092,"{0: 6, 1: 1, 2: 2, 3: 0, 4: 0}",1 +465,False,"{'a': 0.01, 'e': 0.6281351051896408}",25,0,-31.409292568225695,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +466,False,"{'a': 0.01, 'e': 0.6275072840473407}",30,13,-16.976615403747974,"{0: 12, 1: 3, 2: 2, 3: 0, 4: 0}",1 +467,False,"{'a': 0.01, 'e': 0.626880090412377}",30,0,-68.84194958989087,"{0: 24, 1: 0, 2: 4, 3: 1, 4: 1}",0 +468,False,"{'a': 0.01, 'e': 0.6262535236575559}",30,0,-92.39670419647764,"{0: 23, 1: 1, 2: 4, 3: 0, 4: 2}",0 +469,False,"{'a': 0.01, 'e': 0.6256275831563107}",20,10,-47.3185276831142,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 1}",1 +470,False,"{'a': 0.01, 'e': 0.6250022682827008}",25,5,-68.30844010297697,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 2}",1 +471,False,"{'a': 0.01, 'e': 0.6243775784114112}",20,14,-1.9600069559195212,"{0: 4, 1: 2, 2: 0, 3: 0, 4: 0}",1 +472,False,"{'a': 0.01, 'e': 0.623753512917752}",30,16,13.98522645715261,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +473,False,"{'a': 0.01, 'e': 0.6231300711776578}",20,13,-1.8596208117074822,"{0: 5, 1: 2, 2: 0, 3: 0, 4: 0}",1 +474,False,"{'a': 0.01, 'e': 0.6225072525676867}",30,17,25.796495717629174,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +475,False,"{'a': 0.01, 'e': 0.62188505646502}",20,0,-154.2375349192832,"{0: 12, 1: 2, 2: 2, 3: 1, 4: 3}",0 +476,False,"{'a': 0.01, 'e': 0.6212634822474616}",20,8,-60.14938569343406,"{0: 8, 1: 1, 2: 1, 3: 1, 4: 1}",1 +477,False,"{'a': 0.01, 'e': 0.6206425292934373}",25,9,-35.7511761824895,"{0: 11, 1: 1, 2: 3, 3: 1, 4: 0}",1 +478,False,"{'a': 0.01, 'e': 0.6200221969819939}",20,10,18.388390073505505,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +479,False,"{'a': 0.01, 'e': 0.6194024846927992}",20,0,-6.318199510883709,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",1 +480,False,"{'a': 0.01, 'e': 0.6187833918061408}",20,5,-11.718757693307872,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +481,False,"{'a': 0.01, 'e': 0.6181649177029258}",25,8,-58.85568974752996,"{0: 12, 1: 0, 2: 4, 3: 0, 4: 1}",1 +482,False,"{'a': 0.01, 'e': 0.61754706176468}",25,7,4.240782693382648,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +483,False,"{'a': 0.01, 'e': 0.6169298233735474}",20,16,8.042564295864647,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +484,False,"{'a': 0.01, 'e': 0.6163132019122897}",20,0,-12.368102758069188,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +485,False,"{'a': 0.01, 'e': 0.6156971967642851}",20,12,3.8769610772163206,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +486,False,"{'a': 0.01, 'e': 0.6150818073135287}",25,3,-53.12421411671168,"{0: 17, 1: 1, 2: 3, 3: 0, 4: 1}",1 +487,False,"{'a': 0.01, 'e': 0.6144670329446308}",35,6,11.553098758329375,"{0: 25, 1: 2, 2: 2, 3: 0, 4: 0}",1 +488,False,"{'a': 0.01, 'e': 0.6138528730428171}",25,16,-10.939837667488526,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +489,False,"{'a': 0.01, 'e': 0.6132393269939275}",25,3,-18.899294720355176,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +490,False,"{'a': 0.01, 'e': 0.6126263941844161}",25,0,-90.94313527922388,"{0: 17, 1: 3, 2: 2, 3: 2, 4: 1}",0 +491,False,"{'a': 0.01, 'e': 0.6120140740013499}",25,0,-53.235725015293745,"{0: 17, 1: 2, 2: 5, 3: 1, 4: 0}",0 +492,False,"{'a': 0.01, 'e': 0.6114023658324087}",35,15,-61.61587961579288,"{0: 14, 1: 3, 2: 1, 3: 1, 4: 1}",1 +493,False,"{'a': 0.01, 'e': 0.6107912690658842}",25,0,-44.30699364861377,"{0: 19, 1: 3, 2: 2, 3: 0, 4: 1}",1 +494,False,"{'a': 0.01, 'e': 0.6101807830906798}",25,0,-23.88238805580357,"{0: 19, 1: 1, 2: 5, 3: 0, 4: 0}",0 +495,False,"{'a': 0.01, 'e': 0.6095709072963093}",20,6,21.227547419701583,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +496,False,"{'a': 0.01, 'e': 0.6089616410728969}",30,8,-99.0691017550475,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 2}",1 +497,False,"{'a': 0.01, 'e': 0.6083529838111763}",20,0,-47.07593989630085,"{0: 12, 1: 3, 2: 5, 3: 0, 4: 0}",0 +498,False,"{'a': 0.01, 'e': 0.6077449349024902}",20,6,-0.7001889151285614,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +499,False,"{'a': 0.01, 'e': 0.6071374937387897}",35,0,-78.22500693156549,"{0: 24, 1: 5, 2: 4, 3: 2, 4: 0}",0 +500,False,"{'a': 0.01, 'e': 0.6065306597126334}",20,6,-200.09615042467584,"{0: 6, 1: 0, 2: 3, 3: 1, 4: 4}",1 +501,False,"{'a': 0.01, 'e': 0.6059244322171875}",25,15,17.768397124727823,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +502,False,"{'a': 0.01, 'e': 0.6053188106462243}",30,0,-169.8630329862961,"{0: 19, 1: 3, 2: 4, 3: 1, 4: 3}",0 +503,False,"{'a': 0.01, 'e': 0.6047137943941221}",20,0,5.461633670325517,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +504,False,"{'a': 0.01, 'e': 0.6041093828558647}",30,8,-6.342421471786864,"{0: 18, 1: 2, 2: 2, 3: 0, 4: 0}",1 +505,False,"{'a': 0.01, 'e': 0.6035055754270405}",25,4,-37.73023469885156,"{0: 15, 1: 1, 2: 5, 3: 0, 4: 0}",1 +506,False,"{'a': 0.01, 'e': 0.6029023715038421}",20,0,-8.253741322733612,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +507,False,"{'a': 0.01, 'e': 0.6022997704830654}",20,0,-88.38635277500174,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 1}",0 +508,False,"{'a': 0.01, 'e': 0.6016977717621094}",20,15,7.181696873297881,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +509,False,"{'a': 0.01, 'e': 0.6010963747389753}",30,11,-10.012789439658391,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 0}",1 +510,False,"{'a': 0.01, 'e': 0.6004955788122659}",25,0,-44.41780224768406,"{0: 18, 1: 2, 2: 4, 3: 1, 4: 0}",0 +511,False,"{'a': 0.01, 'e': 0.5998953833811855}",20,0,-19.816223984939402,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 0}",0 +512,False,"{'a': 0.01, 'e': 0.5992957878455384}",20,0,-4.025991034196834,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +513,False,"{'a': 0.01, 'e': 0.5986967916057292}",20,0,-19.610543016726627,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 0}",0 +514,False,"{'a': 0.01, 'e': 0.5980983940627613}",25,7,-7.6715967881323746,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +515,False,"{'a': 0.01, 'e': 0.5975005946182375}",25,14,9.557705171910593,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +516,False,"{'a': 0.01, 'e': 0.596903392674358}",20,0,-122.95317474594448,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 2}",0 +517,False,"{'a': 0.01, 'e': 0.596306787633921}",20,0,-155.96565003399448,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 3}",0 +518,False,"{'a': 0.01, 'e': 0.5957107789003212}",25,11,-57.0983982736456,"{0: 9, 1: 1, 2: 3, 3: 0, 4: 1}",1 +519,False,"{'a': 0.01, 'e': 0.5951153658775501}",20,2,-31.59729046609453,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 1}",1 +520,False,"{'a': 0.01, 'e': 0.5945205479701944}",20,0,-102.10033894108093,"{0: 14, 1: 1, 2: 2, 3: 1, 4: 2}",0 +521,False,"{'a': 0.01, 'e': 0.5939263245834361}",20,7,22.331703330301586,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +522,False,"{'a': 0.01, 'e': 0.593332695123052}",20,3,-86.79090924171513,"{0: 11, 1: 1, 2: 2, 3: 2, 4: 1}",1 +523,False,"{'a': 0.01, 'e': 0.5927396589954125}",20,7,-1.411453963370356,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +524,False,"{'a': 0.01, 'e': 0.5921472156074813}",20,13,3.542076332972484,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +525,False,"{'a': 0.01, 'e': 0.5915553643668151}",25,0,-55.458429926207536,"{0: 19, 1: 2, 2: 3, 3: 0, 4: 1}",1 +526,False,"{'a': 0.01, 'e': 0.5909641046815626}",20,12,5.658389689423194,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +527,False,"{'a': 0.01, 'e': 0.5903734359604639}",30,2,-77.00783966876175,"{0: 20, 1: 2, 2: 4, 3: 1, 4: 1}",1 +528,False,"{'a': 0.01, 'e': 0.5897833576128504}",20,2,-19.55977354157129,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +529,False,"{'a': 0.01, 'e': 0.5891938690486437}",20,14,0.057861494927845314,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +530,False,"{'a': 0.01, 'e': 0.5886049696783552}",25,8,-62.5257144500824,"{0: 12, 1: 0, 2: 4, 3: 0, 4: 1}",1 +531,False,"{'a': 0.01, 'e': 0.5880166589130854}",20,0,-66.59660423905532,"{0: 14, 1: 0, 2: 5, 3: 0, 4: 1}",0 +532,False,"{'a': 0.01, 'e': 0.5874289361645234}",25,0,-46.20355612791772,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 2}",0 +533,False,"{'a': 0.01, 'e': 0.5868418008449466}",20,0,-66.09766649695833,"{0: 14, 1: 3, 2: 1, 3: 1, 4: 1}",0 +534,False,"{'a': 0.01, 'e': 0.5862552523672196}",25,0,-63.509036250643156,"{0: 17, 1: 1, 2: 6, 3: 1, 4: 0}",0 +535,False,"{'a': 0.01, 'e': 0.5856692901447937}",25,0,-83.92693458524677,"{0: 19, 1: 2, 2: 2, 3: 0, 4: 2}",0 +536,False,"{'a': 0.01, 'e': 0.5850839135917069}",30,0,-92.07866370525106,"{0: 21, 1: 2, 2: 5, 3: 1, 4: 1}",0 +537,False,"{'a': 0.01, 'e': 0.5844991221225824}",20,6,-18.926076763769576,"{0: 11, 1: 1, 2: 1, 3: 1, 4: 0}",1 +538,False,"{'a': 0.01, 'e': 0.5839149151526287}",20,10,-66.86210031118345,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 2}",1 +539,False,"{'a': 0.01, 'e': 0.5833312920976388}",30,18,-5.03204873843271,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +540,False,"{'a': 0.01, 'e': 0.5827482523739896}",20,0,-58.38758352832589,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",0 +541,False,"{'a': 0.01, 'e': 0.5821657953986414}",20,13,-6.493802024004286,"{0: 5, 1: 1, 2: 1, 3: 0, 4: 0}",1 +542,False,"{'a': 0.01, 'e': 0.5815839205891371}",25,11,-7.026793110234724,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 0}",1 +543,False,"{'a': 0.01, 'e': 0.5810026273636019}",35,19,-19.253820209079795,"{0: 12, 1: 0, 2: 4, 3: 0, 4: 0}",1 +544,False,"{'a': 0.01, 'e': 0.5804219151407424}",25,0,-28.69317511318479,"{0: 21, 1: 1, 2: 2, 3: 0, 4: 1}",0 +545,False,"{'a': 0.01, 'e': 0.5798417833398464}",25,6,-85.51836509713225,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 2}",1 +546,False,"{'a': 0.01, 'e': 0.579262231380782}",20,3,-36.83578176166194,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 1}",1 +547,False,"{'a': 0.01, 'e': 0.5786832586839974}",20,10,-119.466352303418,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 3}",1 +548,False,"{'a': 0.01, 'e': 0.5781048646705196}",25,0,-49.7744932368794,"{0: 20, 1: 1, 2: 1, 3: 3, 4: 0}",0 +549,False,"{'a': 0.01, 'e': 0.5775270487619547}",25,1,-61.60577507607233,"{0: 18, 1: 0, 2: 5, 3: 0, 4: 1}",1 +550,False,"{'a': 0.01, 'e': 0.5769498103804866}",25,7,-36.90963135957539,"{0: 13, 1: 0, 2: 4, 3: 1, 4: 0}",1 +551,False,"{'a': 0.01, 'e': 0.5763731489488771}",20,0,-34.13140285569666,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +552,False,"{'a': 0.01, 'e': 0.5757970638904645}",25,14,-28.40942473163329,"{0: 7, 1: 2, 2: 1, 3: 1, 4: 0}",1 +553,False,"{'a': 0.01, 'e': 0.5752215546291638}",30,13,-36.63473993087827,"{0: 12, 1: 0, 2: 4, 3: 1, 4: 0}",1 +554,False,"{'a': 0.01, 'e': 0.5746466205894657}",20,0,-12.946609014469605,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",0 +555,False,"{'a': 0.01, 'e': 0.574072261196436}",25,0,-116.59911172386495,"{0: 17, 1: 2, 2: 3, 3: 1, 4: 2}",0 +556,False,"{'a': 0.01, 'e': 0.5734984758757153}",25,9,-34.757254473471406,"{0: 12, 1: 0, 2: 3, 3: 1, 4: 0}",1 +557,False,"{'a': 0.01, 'e': 0.5729252640535184}",25,12,-19.113969389742003,"{0: 10, 1: 2, 2: 0, 3: 1, 4: 0}",1 +558,False,"{'a': 0.01, 'e': 0.5723526251566332}",35,6,-37.618588169773865,"{0: 25, 1: 1, 2: 1, 3: 1, 4: 1}",1 +559,False,"{'a': 0.01, 'e': 0.5717805586124209}",25,0,-50.12983246289345,"{0: 19, 1: 2, 2: 3, 3: 0, 4: 1}",0 +560,False,"{'a': 0.01, 'e': 0.5712090638488149}",25,0,-102.9565761044989,"{0: 18, 1: 1, 2: 4, 3: 0, 4: 2}",1 +561,False,"{'a': 0.01, 'e': 0.5706381402943203}",25,13,-10.789873350759763,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 0}",1 +562,False,"{'a': 0.01, 'e': 0.5700677873780134}",20,0,-91.833814981888,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 2}",0 +563,False,"{'a': 0.01, 'e': 0.5694980045295416}",20,8,-31.760644143685443,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +564,False,"{'a': 0.01, 'e': 0.5689287911791218}",20,14,-1.6755009569429546,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +565,False,"{'a': 0.01, 'e': 0.5683601467575404}",20,0,-58.560701531243936,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",0 +566,False,"{'a': 0.01, 'e': 0.5677920706961532}",20,0,-33.721520559469155,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",1 +567,False,"{'a': 0.01, 'e': 0.5672245624268841}",20,0,-79.06540728688795,"{0: 13, 1: 1, 2: 5, 3: 0, 4: 1}",0 +568,False,"{'a': 0.01, 'e': 0.5666576213822246}",20,0,-43.93931144232756,"{0: 15, 1: 0, 2: 4, 3: 1, 4: 0}",0 +569,False,"{'a': 0.01, 'e': 0.5660912469952337}",25,17,-26.960324112466438,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +570,False,"{'a': 0.01, 'e': 0.5655254386995371}",25,15,0.8705852078113017,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +571,False,"{'a': 0.01, 'e': 0.5649601959293262}",30,17,11.332835961305715,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +572,False,"{'a': 0.01, 'e': 0.5643955181193583}",20,11,-15.98431919577871,"{0: 7, 1: 0, 2: 1, 3: 1, 4: 0}",1 +573,False,"{'a': 0.01, 'e': 0.5638314047049556}",20,6,3.621066558936625,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +574,False,"{'a': 0.01, 'e': 0.5632678551220046}",20,0,-46.44256398700396,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 1}",0 +575,False,"{'a': 0.01, 'e': 0.5627048688069557}",20,0,-29.48802834806328,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",1 +576,False,"{'a': 0.01, 'e': 0.5621424451968224}",20,7,-12.74722469057142,"{0: 10, 1: 0, 2: 3, 3: 0, 4: 0}",1 +577,False,"{'a': 0.01, 'e': 0.5615805837291813}",30,1,-64.43628666787075,"{0: 22, 1: 3, 2: 2, 3: 1, 4: 1}",1 +578,False,"{'a': 0.01, 'e': 0.5610192838421706}",20,9,-12.41565545658884,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +579,False,"{'a': 0.01, 'e': 0.5604585449744904}",20,0,-40.573002003346126,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +580,False,"{'a': 0.01, 'e': 0.559898366565402}",30,0,-139.3362460409918,"{0: 20, 1: 2, 2: 4, 3: 2, 4: 2}",0 +581,False,"{'a': 0.01, 'e': 0.5593387480547268}",20,1,-83.36200417696497,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 1}",1 +582,False,"{'a': 0.01, 'e': 0.5587796888828463}",20,0,4.211578835547552,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +583,False,"{'a': 0.01, 'e': 0.5582211884907012}",20,11,8.75722862478112,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +584,False,"{'a': 0.01, 'e': 0.5576632463197913}",20,13,12.04067720191111,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +585,False,"{'a': 0.01, 'e': 0.5571058618121739}",20,8,9.884753528971775,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +586,False,"{'a': 0.01, 'e': 0.5565490344104649}",25,4,-20.413842719335786,"{0: 16, 1: 1, 2: 4, 3: 0, 4: 0}",1 +587,False,"{'a': 0.01, 'e': 0.5559927635578367}",20,15,-0.2312953839406673,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +588,False,"{'a': 0.01, 'e': 0.5554370486980182}",20,0,27.025962600521385,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 0}",0 +589,False,"{'a': 0.01, 'e': 0.5548818892752949}",20,10,-15.419954295495323,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +590,False,"{'a': 0.01, 'e': 0.5543272847345071}",25,17,14.564793438742711,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +591,False,"{'a': 0.01, 'e': 0.5537732345210501}",35,9,6.774320378127484,"{0: 23, 1: 0, 2: 3, 3: 0, 4: 0}",1 +592,False,"{'a': 0.01, 'e': 0.5532197380808739}",20,10,-10.857693158407741,"{0: 7, 1: 2, 2: 1, 3: 0, 4: 0}",1 +593,False,"{'a': 0.01, 'e': 0.5526667948604818}",20,16,8.077040791270893,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +594,False,"{'a': 0.01, 'e': 0.5521144043069306}",20,0,-54.594304913062814,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +595,False,"{'a': 0.01, 'e': 0.5515625658678298}",20,8,-0.6764834348771116,"{0: 9, 1: 2, 2: 1, 3: 0, 4: 0}",1 +596,False,"{'a': 0.01, 'e': 0.5510112789913407}",20,7,-0.12874229163817885,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +597,False,"{'a': 0.01, 'e': 0.5504605431261766}",20,13,-13.16922414448905,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +598,False,"{'a': 0.01, 'e': 0.5499103577216016}",25,19,13.14956072617229,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +599,False,"{'a': 0.01, 'e': 0.54936072222743}",20,0,8.849760186705277,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +600,False,"{'a': 0.01, 'e': 0.5488116360940265}",25,0,-85.34866761596689,"{0: 18, 1: 1, 2: 3, 3: 2, 4: 1}",0 +601,False,"{'a': 0.01, 'e': 0.5482630987723047}",30,13,-73.10118863124988,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 2}",1 +602,False,"{'a': 0.01, 'e': 0.5477151097137275}",20,14,-0.06477845278312344,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +603,False,"{'a': 0.01, 'e': 0.5471676683703055}",20,9,-12.25349331738413,"{0: 9, 1: 0, 2: 1, 3: 1, 4: 0}",1 +604,False,"{'a': 0.01, 'e': 0.5466207741945976}",30,14,-38.8007181719042,"{0: 11, 1: 1, 2: 3, 3: 1, 4: 0}",1 +605,False,"{'a': 0.01, 'e': 0.5460744266397094}",30,12,9.572903516129122,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +606,False,"{'a': 0.01, 'e': 0.5455286251592933}",25,13,-31.442380108733822,"{0: 8, 1: 1, 2: 2, 3: 1, 4: 0}",1 +607,False,"{'a': 0.01, 'e': 0.544983369207548}",25,17,2.3832927152610486,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +608,False,"{'a': 0.01, 'e': 0.5444386582392171}",25,2,-79.38469844213722,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 2}",1 +609,False,"{'a': 0.01, 'e': 0.5438944917095899}",20,11,-19.23236439654618,"{0: 6, 1: 0, 2: 3, 3: 0, 4: 0}",1 +610,False,"{'a': 0.01, 'e': 0.5433508690744998}",20,0,8.443208809407068,"{0: 17, 1: 2, 2: 1, 3: 0, 4: 0}",0 +611,False,"{'a': 0.01, 'e': 0.542807789790324}",20,6,11.765059325384684,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +612,False,"{'a': 0.01, 'e': 0.5422652533139832}",25,1,-95.8376532207822,"{0: 18, 1: 1, 2: 2, 3: 1, 4: 2}",1 +613,False,"{'a': 0.01, 'e': 0.541723259102941}",20,12,-33.25181331739511,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 1}",1 +614,False,"{'a': 0.01, 'e': 0.5411818066152029}",20,4,14.416356557164228,"{0: 14, 1: 2, 2: 0, 3: 0, 4: 0}",1 +615,False,"{'a': 0.01, 'e': 0.5406408953093166}",20,11,-15.131466284681956,"{0: 7, 1: 0, 2: 1, 3: 1, 4: 0}",1 +616,False,"{'a': 0.01, 'e': 0.5401005246443706}",25,11,9.19880138058289,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +617,False,"{'a': 0.01, 'e': 0.5395606940799943}",25,2,-21.461401086960528,"{0: 17, 1: 2, 2: 4, 3: 0, 4: 0}",1 +618,False,"{'a': 0.01, 'e': 0.539021403076357}",25,13,-35.90160783267561,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 1}",1 +619,False,"{'a': 0.01, 'e': 0.5384826510941678}",20,0,-62.85547592390705,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +620,False,"{'a': 0.01, 'e': 0.5379444375946745}",20,2,-0.1616367306455997,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +621,False,"{'a': 0.01, 'e': 0.5374067620396636}",30,12,7.425129937966592,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +622,False,"{'a': 0.01, 'e': 0.5368696238914595}",25,16,10.996735656792175,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +623,False,"{'a': 0.01, 'e': 0.5363330226129241}",20,13,-10.2235569452175,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +624,False,"{'a': 0.01, 'e': 0.535796957667456}",20,6,8.894001866664015,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +625,False,"{'a': 0.01, 'e': 0.5352614285189903}",20,0,-111.60028681268466,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 3}",0 +626,False,"{'a': 0.01, 'e': 0.5347264346319975}",25,5,-125.81157720600052,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 3}",1 +627,False,"{'a': 0.01, 'e': 0.5341919754714841}",25,9,-67.27067055108955,"{0: 11, 1: 1, 2: 2, 3: 1, 4: 1}",1 +628,False,"{'a': 0.01, 'e': 0.5336580505029906}",30,6,-18.55047747771292,"{0: 20, 1: 0, 2: 3, 3: 1, 4: 0}",1 +629,False,"{'a': 0.01, 'e': 0.5331246591925921}",30,9,-39.24516887203486,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 1}",1 +630,False,"{'a': 0.01, 'e': 0.5325918010068972}",30,0,-49.436260463025576,"{0: 23, 1: 3, 2: 3, 3: 0, 4: 1}",0 +631,False,"{'a': 0.01, 'e': 0.5320594754130477}",25,20,8.492897743339837,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +632,False,"{'a': 0.01, 'e': 0.5315276818787179}",25,3,-1.1838944016354958,"{0: 19, 1: 0, 2: 3, 3: 0, 4: 0}",1 +633,False,"{'a': 0.01, 'e': 0.5309964198721143}",20,0,-7.606675761635235,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +634,False,"{'a': 0.01, 'e': 0.5304656888619749}",30,10,-48.37193368614036,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 1}",1 +635,False,"{'a': 0.01, 'e': 0.5299354883175685}",35,12,-46.04666451408711,"{0: 18, 1: 1, 2: 3, 3: 0, 4: 1}",1 +636,False,"{'a': 0.01, 'e': 0.5294058177086945}",20,0,10.113645553824467,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +637,False,"{'a': 0.01, 'e': 0.5288766765056825}",20,4,1.8884623402053036,"{0: 13, 1: 2, 2: 1, 3: 0, 4: 0}",1 +638,False,"{'a': 0.01, 'e': 0.528348064179391}",20,12,-47.97708671080848,"{0: 5, 1: 1, 2: 1, 3: 0, 4: 1}",1 +639,False,"{'a': 0.01, 'e': 0.5278199802012077}",20,6,-58.407808812475864,"{0: 6, 1: 2, 2: 6, 3: 0, 4: 0}",1 +640,False,"{'a': 0.01, 'e': 0.5272924240430485}",25,14,-39.659514544318306,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 1}",1 +641,False,"{'a': 0.01, 'e': 0.5267653951773574}",20,0,-101.32961915344146,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 2}",0 +642,False,"{'a': 0.01, 'e': 0.5262388930771054}",20,8,-60.590754517403234,"{0: 7, 1: 1, 2: 3, 3: 0, 4: 1}",1 +643,False,"{'a': 0.01, 'e': 0.5257129172157903}",20,0,-80.64424996804233,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 1}",0 +644,False,"{'a': 0.01, 'e': 0.5251874670674361}",25,13,-88.53141224540248,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 2}",1 +645,False,"{'a': 0.01, 'e': 0.5246625421065929}",25,0,-12.729812526656985,"{0: 21, 1: 0, 2: 4, 3: 0, 4: 0}",0 +646,False,"{'a': 0.01, 'e': 0.5241381418083354}",25,7,-9.281206323405563,"{0: 14, 1: 2, 2: 2, 3: 0, 4: 0}",1 +647,False,"{'a': 0.01, 'e': 0.5236142656482635}",25,7,-25.63913190042787,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +648,False,"{'a': 0.01, 'e': 0.5230909131025008}",20,0,-85.55861825607394,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 2}",0 +649,False,"{'a': 0.01, 'e': 0.5225680836476948}",30,0,-106.10948064093161,"{0: 21, 1: 0, 2: 6, 3: 2, 4: 1}",0 +650,False,"{'a': 0.01, 'e': 0.522045776761016}",35,18,-77.2793575064625,"{0: 9, 1: 1, 2: 5, 3: 2, 4: 0}",1 +651,False,"{'a': 0.01, 'e': 0.5215239919201575}",25,9,-37.922804308574335,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 1}",1 +652,False,"{'a': 0.01, 'e': 0.5210027286033344}",35,13,-69.4245444776545,"{0: 15, 1: 1, 2: 5, 3: 0, 4: 1}",1 +653,False,"{'a': 0.01, 'e': 0.5204819862892832}",20,0,-19.793841996191652,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +654,False,"{'a': 0.01, 'e': 0.5199617644572618}",20,0,-34.7290680564656,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +655,False,"{'a': 0.01, 'e': 0.5194420625870482}",25,0,-57.110149270280466,"{0: 20, 1: 0, 2: 3, 3: 1, 4: 1}",1 +656,False,"{'a': 0.01, 'e': 0.5189228801589404}",25,0,-44.27870977845341,"{0: 21, 1: 1, 2: 1, 3: 1, 4: 1}",0 +657,False,"{'a': 0.01, 'e': 0.5184042166537559}",20,0,-16.24864308117614,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +658,False,"{'a': 0.01, 'e': 0.5178860715528314}",20,0,-7.850826936570752,"{0: 16, 1: 2, 2: 2, 3: 0, 4: 0}",0 +659,False,"{'a': 0.01, 'e': 0.5173684443380216}",20,15,-10.75159150873161,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +660,False,"{'a': 0.01, 'e': 0.5168513344916992}",30,12,-74.2512074401234,"{0: 11, 1: 1, 2: 5, 3: 0, 4: 1}",1 +661,False,"{'a': 0.01, 'e': 0.5163347414967544}",25,0,-99.62897409365479,"{0: 18, 1: 1, 2: 4, 3: 0, 4: 2}",0 +662,False,"{'a': 0.01, 'e': 0.5158186648365941}",25,16,-2.6732443514916193,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 0}",1 +663,False,"{'a': 0.01, 'e': 0.5153031039951417}",20,0,-76.23852047563233,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 2}",0 +664,False,"{'a': 0.01, 'e': 0.5147880584568362}",20,0,-98.7043007741741,"{0: 15, 1: 0, 2: 2, 3: 1, 4: 2}",0 +665,False,"{'a': 0.01, 'e': 0.5142735277066319}",20,0,-33.71632332604156,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 0}",0 +666,False,"{'a': 0.01, 'e': 0.5137595112299983}",20,6,-17.59996756654824,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +667,False,"{'a': 0.01, 'e': 0.5132460085129188}",20,10,-46.175736396172056,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 1}",1 +668,False,"{'a': 0.01, 'e': 0.5127330190418905}",25,2,-45.140765102883606,"{0: 16, 1: 3, 2: 3, 3: 1, 4: 0}",1 +669,False,"{'a': 0.01, 'e': 0.512220542303924}",20,0,-21.440564943401014,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 0}",0 +670,False,"{'a': 0.01, 'e': 0.5117085777865424}",20,9,-74.46607015557021,"{0: 5, 1: 1, 2: 4, 3: 0, 4: 1}",1 +671,False,"{'a': 0.01, 'e': 0.5111971249777814}",25,0,30.740602876071776,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",0 +672,False,"{'a': 0.01, 'e': 0.5106861833661879}",20,7,-7.103680829973895,"{0: 11, 1: 1, 2: 0, 3: 1, 4: 0}",1 +673,False,"{'a': 0.01, 'e': 0.5101757524408203}",20,13,-16.16173908807365,"{0: 5, 1: 1, 2: 0, 3: 1, 4: 0}",1 +674,False,"{'a': 0.01, 'e': 0.5096658316912476}",20,9,-36.2879127973414,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 1}",1 +675,False,"{'a': 0.01, 'e': 0.5091564206075492}",20,0,-69.68418858457004,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 2}",0 +676,False,"{'a': 0.01, 'e': 0.5086475186803137}",20,6,-0.46844583620999414,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +677,False,"{'a': 0.01, 'e': 0.5081391254006393}",20,10,-40.16073722261511,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 1}",1 +678,False,"{'a': 0.01, 'e': 0.5076312402601327}",30,4,-73.65116629884406,"{0: 18, 1: 2, 2: 5, 3: 0, 4: 1}",1 +679,False,"{'a': 0.01, 'e': 0.5071238627509086}",25,15,3.664300385951873,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +680,False,"{'a': 0.01, 'e': 0.5066169923655895}",20,3,-11.033915838730973,"{0: 13, 1: 2, 2: 2, 3: 0, 4: 0}",1 +681,False,"{'a': 0.01, 'e': 0.5061106285973052}",30,15,1.00179283946955,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +682,False,"{'a': 0.01, 'e': 0.5056047709396915}",20,0,-37.65606633730899,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",0 +683,False,"{'a': 0.01, 'e': 0.5050994188868908}",20,0,-19.801775519920405,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 0}",1 +684,False,"{'a': 0.01, 'e': 0.5045945719335512}",25,0,-140.06113059571126,"{0: 17, 1: 0, 2: 5, 3: 0, 4: 3}",0 +685,False,"{'a': 0.01, 'e': 0.5040902295748255}",20,0,-131.88301447165836,"{0: 12, 1: 0, 2: 6, 3: 0, 4: 2}",0 +686,False,"{'a': 0.01, 'e': 0.5035863913063714}",20,0,-53.29509278636922,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",1 +687,False,"{'a': 0.01, 'e': 0.5030830566243506}",25,0,-43.180925881657444,"{0: 21, 1: 0, 2: 3, 3: 0, 4: 1}",0 +688,False,"{'a': 0.01, 'e': 0.5025802250254283}",20,3,25.016742797882728,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +689,False,"{'a': 0.01, 'e': 0.502077896006773}",20,11,-4.138513340022335,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 0}",1 +690,False,"{'a': 0.01, 'e': 0.5015760690660555}",25,13,-42.547354603759345,"{0: 8, 1: 2, 2: 1, 3: 0, 4: 1}",1 +691,False,"{'a': 0.01, 'e': 0.5010747437014489}",30,0,25.570920909739566,"{0: 28, 1: 0, 2: 2, 3: 0, 4: 0}",0 +692,False,"{'a': 0.01, 'e': 0.5005739194116277}",25,0,-125.54897751956676,"{0: 19, 1: 0, 2: 3, 3: 0, 4: 3}",0 +693,False,"{'a': 0.01, 'e': 0.5000735956957676}",25,14,21.086281623284066,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +694,False,"{'a': 0.01, 'e': 0.4995737720535449}",20,9,-34.139002520363256,"{0: 7, 1: 0, 2: 3, 3: 1, 4: 0}",1 +695,False,"{'a': 0.01, 'e': 0.49907444798513595}",20,11,15.120558013578592,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +696,False,"{'a': 0.01, 'e': 0.4985756229912165}",20,0,2.895089649160843,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +697,False,"{'a': 0.01, 'e': 0.4980772965729616}",25,12,-30.683084267299748,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 1}",1 +698,False,"{'a': 0.01, 'e': 0.4975794682320448}",20,7,-56.23392592633112,"{0: 9, 1: 0, 2: 3, 3: 0, 4: 1}",1 +699,False,"{'a': 0.01, 'e': 0.4970821374706377}",20,7,-13.300384465439716,"{0: 11, 1: 0, 2: 1, 3: 1, 4: 0}",1 +700,False,"{'a': 0.01, 'e': 0.49658530379140947}",25,8,-2.0480277547584005,"{0: 14, 1: 2, 2: 1, 3: 0, 4: 0}",1 +701,False,"{'a': 0.01, 'e': 0.49608896669752645}",25,4,-41.87509492607174,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 1}",1 +702,False,"{'a': 0.01, 'e': 0.4955931256926514}",20,16,7.254328537726759,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +703,False,"{'a': 0.01, 'e': 0.4950977802809434}",20,0,4.7200674464393,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +704,False,"{'a': 0.01, 'e': 0.494602929967057}",20,0,-81.93385169045511,"{0: 15, 1: 0, 2: 2, 3: 2, 4: 1}",0 +705,False,"{'a': 0.01, 'e': 0.4941085742561417}",25,11,-22.08343375061414,"{0: 11, 1: 0, 2: 2, 3: 1, 4: 0}",1 +706,False,"{'a': 0.01, 'e': 0.4936147126538418}",30,0,-62.09350470039004,"{0: 23, 1: 1, 2: 5, 3: 0, 4: 1}",1 +707,False,"{'a': 0.01, 'e': 0.49312134466629576}",20,0,-27.177788320716026,"{0: 17, 1: 0, 2: 1, 3: 2, 4: 0}",0 +708,False,"{'a': 0.01, 'e': 0.49262846980013547}",20,0,-67.63385324354454,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",0 +709,False,"{'a': 0.01, 'e': 0.492136087562486}",20,11,9.541457175354543,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +710,False,"{'a': 0.01, 'e': 0.4916441974609651}",25,18,12.872689265220494,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +711,False,"{'a': 0.01, 'e': 0.49115279900368264}",20,3,11.111413751738292,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +712,False,"{'a': 0.01, 'e': 0.4906618916992401}",30,7,-76.13726967127096,"{0: 16, 1: 2, 2: 3, 3: 1, 4: 1}",1 +713,False,"{'a': 0.01, 'e': 0.4901714750567302}",30,0,-98.27184152226302,"{0: 20, 1: 4, 2: 4, 3: 1, 4: 1}",0 +714,False,"{'a': 0.01, 'e': 0.4896815485857362}",25,5,25.076074295825645,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 0}",1 +715,False,"{'a': 0.01, 'e': 0.48919211179633154}",30,14,18.07413646999539,"{0: 14, 1: 2, 2: 0, 3: 0, 4: 0}",1 +716,False,"{'a': 0.01, 'e': 0.4887031641990795}",30,11,-3.631211650004132,"{0: 15, 1: 3, 2: 1, 3: 0, 4: 0}",1 +717,False,"{'a': 0.01, 'e': 0.4882147053050323}",20,3,12.10523263950563,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +718,False,"{'a': 0.01, 'e': 0.4877267346257312}",25,20,7.099485928091806,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +719,False,"{'a': 0.01, 'e': 0.48723925167320525}",25,1,-19.903255046324485,"{0: 19, 1: 0, 2: 5, 3: 0, 4: 0}",1 +720,False,"{'a': 0.01, 'e': 0.4867522559599717}",30,0,-32.42842946250414,"{0: 26, 1: 1, 2: 2, 3: 0, 4: 1}",0 +721,False,"{'a': 0.01, 'e': 0.4862657469990346}",25,13,-22.886865514908095,"{0: 9, 1: 0, 2: 2, 3: 1, 4: 0}",1 +722,False,"{'a': 0.01, 'e': 0.485779724303885}",25,11,7.987426870963574,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +723,False,"{'a': 0.01, 'e': 0.4852941873885002}",30,0,-159.4049059608989,"{0: 19, 1: 4, 2: 3, 3: 1, 4: 3}",0 +724,False,"{'a': 0.01, 'e': 0.48480913576734325}",25,13,7.008645504134092,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +725,False,"{'a': 0.01, 'e': 0.48432456895536247}",20,14,11.223698243253144,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +726,False,"{'a': 0.01, 'e': 0.483840486467991}",20,0,-53.40785974555012,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 1}",0 +727,False,"{'a': 0.01, 'e': 0.48335688782114633}",25,0,-70.90298041520876,"{0: 21, 1: 0, 2: 2, 3: 0, 4: 2}",0 +728,False,"{'a': 0.01, 'e': 0.48287377253122976}",20,9,-0.5534284785344092,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +729,False,"{'a': 0.01, 'e': 0.4823911401151259}",25,19,6.769798859868583,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +730,False,"{'a': 0.01, 'e': 0.48190899009020244}",35,18,-16.398238454031873,"{0: 14, 1: 0, 2: 2, 3: 1, 4: 0}",1 +731,False,"{'a': 0.01, 'e': 0.4814273219743092}",25,0,-27.90096101136737,"{0: 19, 1: 1, 2: 5, 3: 0, 4: 0}",0 +732,False,"{'a': 0.01, 'e': 0.480946135285778}",25,16,16.475928604878927,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +733,False,"{'a': 0.01, 'e': 0.48046542954342225}",20,9,-59.96232183555022,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 1}",1 +734,False,"{'a': 0.01, 'e': 0.479985204266536}",30,12,-72.70426504436075,"{0: 12, 1: 1, 2: 3, 3: 1, 4: 1}",1 +735,False,"{'a': 0.01, 'e': 0.4795054589748941}",20,13,-23.549387931955604,"{0: 5, 1: 0, 2: 1, 3: 1, 4: 0}",1 +736,False,"{'a': 0.01, 'e': 0.4790261931887511}",25,13,-12.564824163797999,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 0}",1 +737,False,"{'a': 0.01, 'e': 0.4785474064288412}",25,0,-30.785785973317896,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +738,False,"{'a': 0.01, 'e': 0.4780690982163776}",20,13,10.988751824907137,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +739,False,"{'a': 0.01, 'e': 0.4775912680730521}",20,7,4.125619590699035,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +740,False,"{'a': 0.01, 'e': 0.4771139155210344}",30,0,-92.10605749834679,"{0: 23, 1: 2, 2: 2, 3: 1, 4: 2}",0 +741,False,"{'a': 0.01, 'e': 0.47663704008297203}",25,9,-33.2952052163386,"{0: 12, 1: 3, 2: 0, 3: 0, 4: 1}",1 +742,False,"{'a': 0.01, 'e': 0.4761606412819894}",35,20,-43.91819877750564,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 1}",1 +743,False,"{'a': 0.01, 'e': 0.4756847186416878}",20,0,-38.21930514352048,"{0: 17, 1: 1, 2: 0, 3: 1, 4: 1}",0 +744,False,"{'a': 0.01, 'e': 0.47520927168614446}",20,0,-10.236584146694156,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +745,False,"{'a': 0.01, 'e': 0.4747342999399124}",20,0,-70.9857670634928,"{0: 13, 1: 1, 2: 4, 3: 2, 4: 0}",0 +746,False,"{'a': 0.01, 'e': 0.4742598029280199}",20,0,-78.33550829055058,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 2}",0 +747,False,"{'a': 0.01, 'e': 0.4737857801759698}",20,13,-49.505394376087835,"{0: 5, 1: 0, 2: 0, 3: 1, 4: 1}",1 +748,False,"{'a': 0.01, 'e': 0.4733122312097393}",35,13,-26.372164841975213,"{0: 19, 1: 0, 2: 2, 3: 0, 4: 1}",1 +749,False,"{'a': 0.01, 'e': 0.47283915555577954}",20,0,-32.27355178867468,"{0: 16, 1: 0, 2: 3, 3: 1, 4: 0}",0 +750,False,"{'a': 0.01, 'e': 0.4723665527410147}",20,11,0.70913324077916,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 0}",1 +751,False,"{'a': 0.01, 'e': 0.471894422292842}",20,0,-32.164164286180295,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +752,False,"{'a': 0.01, 'e': 0.4714227637391309}",25,18,1.2091448848033368,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +753,False,"{'a': 0.01, 'e': 0.4709515766082228}",35,21,-12.842385007541056,"{0: 12, 1: 0, 2: 1, 3: 1, 4: 0}",1 +754,False,"{'a': 0.01, 'e': 0.47048086042893056}",35,0,-84.55355223927819,"{0: 31, 1: 1, 2: 0, 3: 0, 4: 3}",0 +755,False,"{'a': 0.01, 'e': 0.47001061473053796}",30,15,14.560906402779208,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +756,False,"{'a': 0.01, 'e': 0.46954083904279925}",30,15,-6.270188993598236,"{0: 12, 1: 1, 2: 2, 3: 0, 4: 0}",1 +757,False,"{'a': 0.01, 'e': 0.4690715328959387}",20,14,-2.6142453395568896,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +758,False,"{'a': 0.01, 'e': 0.46860269582065023}",20,11,-6.802672307694337,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +759,False,"{'a': 0.01, 'e': 0.4681343273480965}",30,0,-48.297073811974585,"{0: 24, 1: 1, 2: 4, 3: 0, 4: 1}",0 +760,False,"{'a': 0.01, 'e': 0.46766642700990924}",20,9,-63.759752607069245,"{0: 7, 1: 1, 2: 1, 3: 1, 4: 1}",1 +761,False,"{'a': 0.01, 'e': 0.4671989943381879}",20,8,19.151179341575194,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +762,False,"{'a': 0.01, 'e': 0.46673202886549986}",20,2,-1.9463886023186407,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +763,False,"{'a': 0.01, 'e': 0.46626553012487953}",25,0,-57.22919635919849,"{0: 17, 1: 2, 2: 5, 3: 1, 4: 0}",0 +764,False,"{'a': 0.01, 'e': 0.46579949764982825}",30,7,-35.2498982889332,"{0: 19, 1: 1, 2: 2, 3: 0, 4: 1}",1 +765,False,"{'a': 0.01, 'e': 0.4653339309743134}",20,0,-38.485761274676115,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +766,False,"{'a': 0.01, 'e': 0.46486882963276827}",20,6,19.271327786874885,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +767,False,"{'a': 0.01, 'e': 0.46440419316009157}",25,13,10.508788526836886,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +768,False,"{'a': 0.01, 'e': 0.4639400210916467}",35,0,0.4262899244944707,"{0: 30, 1: 2, 2: 3, 3: 0, 4: 0}",0 +769,False,"{'a': 0.01, 'e': 0.4634763129632616}",20,0,-75.13432839884766,"{0: 13, 1: 3, 2: 2, 3: 1, 4: 1}",0 +770,False,"{'a': 0.01, 'e': 0.46301306831122807}",20,10,10.353383070652477,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +771,False,"{'a': 0.01, 'e': 0.4625502866723014}",25,13,-35.34406262301337,"{0: 7, 1: 0, 2: 5, 3: 0, 4: 0}",1 +772,False,"{'a': 0.01, 'e': 0.4620879675837}",20,3,6.103654972237223,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +773,False,"{'a': 0.01, 'e': 0.4616261105831047}",20,0,-61.16261411151724,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +774,False,"{'a': 0.01, 'e': 0.4611647152086584}",25,14,-1.6700732779342695,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +775,False,"{'a': 0.01, 'e': 0.4607037809989658}",25,11,0.6417984469187077,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +776,False,"{'a': 0.01, 'e': 0.46024330749309256}",25,11,13.763432032932949,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +777,False,"{'a': 0.01, 'e': 0.4597832942305652}",25,0,-33.90021668459071,"{0: 21, 1: 1, 2: 2, 3: 0, 4: 1}",0 +778,False,"{'a': 0.01, 'e': 0.45932374075137034}",20,14,11.363167651475319,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +779,False,"{'a': 0.01, 'e': 0.4588646465959545}",20,0,-15.754544697047628,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +780,False,"{'a': 0.01, 'e': 0.4584060113052235}",30,12,-28.007061375660086,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +781,False,"{'a': 0.01, 'e': 0.45794783442054204}",20,0,-13.306482891362378,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +782,False,"{'a': 0.01, 'e': 0.45749011548373314}",30,16,-4.026347306944275,"{0: 12, 1: 1, 2: 0, 3: 1, 4: 0}",1 +783,False,"{'a': 0.01, 'e': 0.4570328540370779}",35,0,-34.34107086865133,"{0: 28, 1: 1, 2: 5, 3: 1, 4: 0}",0 +784,False,"{'a': 0.01, 'e': 0.4565760496233147}",35,2,-85.75329398901992,"{0: 26, 1: 2, 2: 2, 3: 1, 4: 2}",1 +785,False,"{'a': 0.01, 'e': 0.4561197017856392}",20,6,-15.69262208709663,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +786,False,"{'a': 0.01, 'e': 0.4556638100677035}",20,0,-41.18431004863677,"{0: 14, 1: 0, 2: 6, 3: 0, 4: 0}",1 +787,False,"{'a': 0.01, 'e': 0.45520837401361586}",20,0,-54.84613471979444,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 1}",0 +788,False,"{'a': 0.01, 'e': 0.45475339316794017}",25,15,0.6421334823532936,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +789,False,"{'a': 0.01, 'e': 0.4542988670756955}",20,11,-51.23186194010919,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 1}",1 +790,False,"{'a': 0.01, 'e': 0.45384479528235583}",20,0,12.509879817562306,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +791,False,"{'a': 0.01, 'e': 0.4533911773338492}",20,10,-74.42311462912406,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 2}",1 +792,False,"{'a': 0.01, 'e': 0.4529380127765577}",30,0,-87.84863285991995,"{0: 27, 1: 0, 2: 0, 3: 0, 4: 3}",0 +793,False,"{'a': 0.01, 'e': 0.4524853011573167}",30,15,-20.626371921901065,"{0: 11, 1: 0, 2: 4, 3: 0, 4: 0}",1 +794,False,"{'a': 0.01, 'e': 0.45203304202341466}",20,0,-0.2984211158197161,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +795,False,"{'a': 0.01, 'e': 0.4515812349225922}",30,0,3.788873874428426,"{0: 26, 1: 1, 2: 3, 3: 0, 4: 0}",0 +796,False,"{'a': 0.01, 'e': 0.45112987940304233}",20,11,-16.735940116696238,"{0: 7, 1: 0, 2: 1, 3: 1, 4: 0}",1 +797,False,"{'a': 0.01, 'e': 0.4506789750134095}",30,0,-60.689488017973936,"{0: 26, 1: 0, 2: 2, 3: 0, 4: 2}",0 +798,False,"{'a': 0.01, 'e': 0.45022852130278923}",25,12,20.333230156826012,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +799,False,"{'a': 0.01, 'e': 0.44977851782072775}",20,7,-33.18298828695635,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 1}",1 +800,False,"{'a': 0.01, 'e': 0.44932896411722156}",35,5,-95.28945294241329,"{0: 23, 1: 0, 2: 5, 3: 0, 4: 2}",1 +801,False,"{'a': 0.01, 'e': 0.448879859742717}",25,20,9.774309061331895,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +802,False,"{'a': 0.01, 'e': 0.4484312042481095}",25,18,2.672526833840066,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +803,False,"{'a': 0.01, 'e': 0.44798299718474366}",25,16,4.358786527325079,"{0: 7, 1: 2, 2: 0, 3: 0, 4: 0}",1 +804,False,"{'a': 0.01, 'e': 0.44753523810441237}",20,5,5.638717307212121,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 0}",1 +805,False,"{'a': 0.01, 'e': 0.4470879265593564}",25,0,-17.910048292370995,"{0: 21, 1: 1, 2: 2, 3: 1, 4: 0}",0 +806,False,"{'a': 0.01, 'e': 0.44664106210226434}",20,14,11.779091108773052,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +807,False,"{'a': 0.01, 'e': 0.44619464428627154}",20,0,-76.36520449935557,"{0: 14, 1: 0, 2: 4, 3: 1, 4: 1}",0 +808,False,"{'a': 0.01, 'e': 0.4457486726649602}",25,13,-28.855742625573782,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +809,False,"{'a': 0.01, 'e': 0.4453031467923587}",25,1,-53.65805204100573,"{0: 18, 1: 3, 2: 1, 3: 1, 4: 1}",1 +810,False,"{'a': 0.01, 'e': 0.4448580662229411}",20,2,-7.276637010258435,"{0: 15, 1: 0, 2: 3, 3: 0, 4: 0}",1 +811,False,"{'a': 0.01, 'e': 0.4444134305116268}",20,7,-8.778390696030332,"{0: 9, 1: 3, 2: 1, 3: 0, 4: 0}",1 +812,False,"{'a': 0.01, 'e': 0.44396923921378006}",25,14,17.367412148781316,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +813,False,"{'a': 0.01, 'e': 0.4435254918852095}",25,4,-70.87339208791194,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 2}",1 +814,False,"{'a': 0.01, 'e': 0.44308218808216776}",20,0,2.7852327801357597,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +815,False,"{'a': 0.01, 'e': 0.4426393273613511}",20,2,-15.85386710419256,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 0}",1 +816,False,"{'a': 0.01, 'e': 0.44219690927989863}",25,5,-51.4631750603727,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 2}",1 +817,False,"{'a': 0.01, 'e': 0.4417549333953923}",25,10,1.3384728361116556,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +818,False,"{'a': 0.01, 'e': 0.44131339926585617}",25,9,28.013916994143223,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +819,False,"{'a': 0.01, 'e': 0.4408723064497561}",20,6,-111.42847460301444,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 3}",1 +820,False,"{'a': 0.01, 'e': 0.44043165450599925}",20,5,-35.40553536854716,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 1}",1 +821,False,"{'a': 0.01, 'e': 0.43999144299393356}",20,10,-18.946038177559625,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +822,False,"{'a': 0.01, 'e': 0.43955167147334756}",25,12,-18.233088936276303,"{0: 9, 1: 1, 2: 3, 3: 0, 4: 0}",1 +823,False,"{'a': 0.01, 'e': 0.43911233950446965}",20,0,-40.76551539749954,"{0: 13, 1: 2, 2: 5, 3: 0, 4: 0}",0 +824,False,"{'a': 0.01, 'e': 0.4386734466479678}",30,4,8.691506071013922,"{0: 23, 1: 0, 2: 3, 3: 0, 4: 0}",1 +825,False,"{'a': 0.01, 'e': 0.4382349924649492}",20,9,-2.5438533348024963,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +826,False,"{'a': 0.01, 'e': 0.4377969765169596}",25,6,-2.1640568001437925,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 0}",1 +827,False,"{'a': 0.01, 'e': 0.437359398365983}",20,0,-49.77105874601476,"{0: 14, 1: 2, 2: 2, 3: 2, 4: 0}",0 +828,False,"{'a': 0.01, 'e': 0.43692225757444114}",30,11,-32.429246666210545,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 0}",1 +829,False,"{'a': 0.01, 'e': 0.4364855537051933}",25,0,3.2438611830675477,"{0: 23, 1: 0, 2: 1, 3: 1, 4: 0}",0 +830,False,"{'a': 0.01, 'e': 0.43604928632153556}",20,10,16.015668004519796,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +831,False,"{'a': 0.01, 'e': 0.43561345498720044}",20,6,18.82448782488005,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +832,False,"{'a': 0.01, 'e': 0.43517805926635666}",25,0,-49.55122336108215,"{0: 20, 1: 2, 2: 1, 3: 1, 4: 1}",0 +833,False,"{'a': 0.01, 'e': 0.43474309872360845}",35,4,-59.41479239659913,"{0: 26, 1: 2, 2: 1, 3: 0, 4: 2}",1 +834,False,"{'a': 0.01, 'e': 0.4343085729239951}",25,16,10.150088854214832,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +835,False,"{'a': 0.01, 'e': 0.4338744814329909}",30,18,17.078781852920393,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +836,False,"{'a': 0.01, 'e': 0.4334408238165043}",25,0,-30.31574498425836,"{0: 20, 1: 1, 2: 3, 3: 1, 4: 0}",0 +837,False,"{'a': 0.01, 'e': 0.43300759964087765}",25,0,-51.36954120033076,"{0: 18, 1: 3, 2: 2, 3: 2, 4: 0}",0 +838,False,"{'a': 0.01, 'e': 0.43257480847288665}",20,0,-24.67508969304525,"{0: 16, 1: 0, 2: 3, 3: 1, 4: 0}",0 +839,False,"{'a': 0.01, 'e': 0.43214244987974026}",30,0,29.012250445948148,"{0: 28, 1: 1, 2: 1, 3: 0, 4: 0}",0 +840,False,"{'a': 0.01, 'e': 0.43171052342907973}",25,16,4.351536035198807,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +841,False,"{'a': 0.01, 'e': 0.43127902868897855}",20,3,-13.106799827440206,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +842,False,"{'a': 0.01, 'e': 0.43084796522794205}",20,13,15.047659789990204,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +843,False,"{'a': 0.01, 'e': 0.43041733261490667}",20,7,15.74602990900702,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +844,False,"{'a': 0.01, 'e': 0.4299871304192398}",25,12,-52.710088873792685,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 1}",1 +845,False,"{'a': 0.01, 'e': 0.42955735821073915}",30,0,-40.09674003580599,"{0: 26, 1: 0, 2: 2, 3: 1, 4: 1}",0 +846,False,"{'a': 0.01, 'e': 0.42912801555963254}",30,16,-86.70221784016815,"{0: 8, 1: 0, 2: 4, 3: 1, 4: 1}",1 +847,False,"{'a': 0.01, 'e': 0.42869910203657724}",20,10,5.444881825158334,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +848,False,"{'a': 0.01, 'e': 0.4282706172126597}",25,11,5.953078487232628,"{0: 12, 1: 2, 2: 0, 3: 0, 4: 0}",1 +849,False,"{'a': 0.01, 'e': 0.427842560659395}",25,2,-62.584590021939775,"{0: 17, 1: 0, 2: 5, 3: 0, 4: 1}",1 +850,False,"{'a': 0.01, 'e': 0.4274149319487267}",35,26,13.907817161051073,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +851,False,"{'a': 0.01, 'e': 0.4269877306530259}",25,3,-41.64345258926882,"{0: 18, 1: 0, 2: 3, 3: 0, 4: 1}",1 +852,False,"{'a': 0.01, 'e': 0.4265609563450914}",25,4,-11.941671791133958,"{0: 17, 1: 1, 2: 3, 3: 0, 4: 0}",1 +853,False,"{'a': 0.01, 'e': 0.4261346085981487}",20,7,16.405125933096954,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +854,False,"{'a': 0.01, 'e': 0.4257086869858502}",30,9,-54.529521895146246,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 1}",1 +855,False,"{'a': 0.01, 'e': 0.42528319108227414}",30,13,-3.1666396180374594,"{0: 15, 1: 1, 2: 0, 3: 1, 4: 0}",1 +856,False,"{'a': 0.01, 'e': 0.42485812046192456}",30,12,7.828162817939138,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +857,False,"{'a': 0.01, 'e': 0.4244334746997309}",25,15,-16.988591683512503,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +858,False,"{'a': 0.01, 'e': 0.4240092533710473}",35,26,6.4580577948952,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +859,False,"{'a': 0.01, 'e': 0.4235854560516524}",30,22,-35.577107235062556,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 1}",1 +860,False,"{'a': 0.01, 'e': 0.4231620823177488}",20,1,-46.09364829726735,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 0}",1 +861,False,"{'a': 0.01, 'e': 0.42273913174596284}",20,0,-131.62618337564575,"{0: 13, 1: 2, 2: 2, 3: 0, 4: 3}",0 +862,False,"{'a': 0.01, 'e': 0.42231660391334386}",30,13,30.024690151345595,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +863,False,"{'a': 0.01, 'e': 0.4218944983973639}",30,2,-3.069644993946187,"{0: 24, 1: 1, 2: 3, 3: 0, 4: 0}",1 +864,False,"{'a': 0.01, 'e': 0.42147281477591764}",20,3,-10.244451696136787,"{0: 13, 1: 1, 2: 3, 3: 0, 4: 0}",1 +865,False,"{'a': 0.01, 'e': 0.4210515526273212}",25,8,-123.25252339718753,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 3}",1 +866,False,"{'a': 0.01, 'e': 0.42063071153031245}",30,22,13.649940222087132,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +867,False,"{'a': 0.01, 'e': 0.4202102910640503}",25,7,-35.74768725246751,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +868,False,"{'a': 0.01, 'e': 0.41979029080811425}",25,19,10.789068251684515,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +869,False,"{'a': 0.01, 'e': 0.41937071034250395}",20,11,16.15415142587702,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +870,False,"{'a': 0.01, 'e': 0.418951549247639}",20,8,-11.52066570511968,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +871,False,"{'a': 0.01, 'e': 0.41853280710435814}",30,7,-19.69284709369229,"{0: 19, 1: 1, 2: 1, 3: 2, 4: 0}",1 +872,False,"{'a': 0.01, 'e': 0.41811448349391933}",25,19,13.608825536447787,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +873,False,"{'a': 0.01, 'e': 0.4176965779979988}",20,0,-43.63283703607279,"{0: 14, 1: 0, 2: 5, 3: 1, 4: 0}",0 +874,False,"{'a': 0.01, 'e': 0.41727909019869114}",25,17,14.560162612324447,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +875,False,"{'a': 0.01, 'e': 0.4168620196785084}",30,0,-41.682135629751855,"{0: 24, 1: 1, 2: 3, 3: 2, 4: 0}",0 +876,False,"{'a': 0.01, 'e': 0.41644536602038007}",20,0,10.91339593176005,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",0 +877,False,"{'a': 0.01, 'e': 0.4160291288076525}",30,12,1.1186301297489532,"{0: 15, 1: 0, 2: 3, 3: 0, 4: 0}",1 +878,False,"{'a': 0.01, 'e': 0.41561330762408843}",20,5,-43.268385958524746,"{0: 9, 1: 2, 2: 3, 3: 1, 4: 0}",1 +879,False,"{'a': 0.01, 'e': 0.4151979020538666}",25,5,10.07190381544618,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +880,False,"{'a': 0.01, 'e': 0.4147829116815814}",20,0,15.454312304929438,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +881,False,"{'a': 0.01, 'e': 0.41436833609224244}",25,20,10.695428013243923,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +882,False,"{'a': 0.01, 'e': 0.4139541748712741}",20,9,-21.586441748042596,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +883,False,"{'a': 0.01, 'e': 0.41354042760451515}",20,0,4.049886975725295,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +884,False,"{'a': 0.01, 'e': 0.4131270938782182}",20,3,-68.6093790800968,"{0: 13, 1: 0, 2: 1, 3: 2, 4: 1}",1 +885,False,"{'a': 0.01, 'e': 0.4127141732790497}",20,12,3.728145430244367,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +886,False,"{'a': 0.01, 'e': 0.41230166539408875}",20,0,-76.18932521086936,"{0: 14, 1: 2, 2: 1, 3: 2, 4: 1}",0 +887,False,"{'a': 0.01, 'e': 0.4118895698108276}",20,11,9.589400097369724,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +888,False,"{'a': 0.01, 'e': 0.41147788611717057}",20,9,-11.09795822799256,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +889,False,"{'a': 0.01, 'e': 0.41106661390143395}",25,2,11.728761530159693,"{0: 21, 1: 0, 2: 2, 3: 0, 4: 0}",1 +890,False,"{'a': 0.01, 'e': 0.4106557527523455}",30,10,-36.948511222587435,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",1 +891,False,"{'a': 0.01, 'e': 0.410245302259044}",20,14,-0.5256127478676591,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +892,False,"{'a': 0.01, 'e': 0.40983526201107895}",25,0,-49.54276892947466,"{0: 18, 1: 4, 2: 2, 3: 0, 4: 1}",0 +893,False,"{'a': 0.01, 'e': 0.40942563159841006}",30,0,-36.376362013268135,"{0: 26, 1: 0, 2: 2, 3: 1, 4: 1}",0 +894,False,"{'a': 0.01, 'e': 0.4090164106114069}",25,9,28.406776852632255,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +895,False,"{'a': 0.01, 'e': 0.40860759864084845}",30,0,-14.33980698889561,"{0: 27, 1: 2, 2: 0, 3: 0, 4: 1}",0 +896,False,"{'a': 0.01, 'e': 0.4081991952779227}",20,10,-4.6374545504826425,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +897,False,"{'a': 0.01, 'e': 0.4077912001142262}",20,6,-1.513144783172442,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 0}",1 +898,False,"{'a': 0.01, 'e': 0.4073836127417638}",20,16,7.530531321690843,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +899,False,"{'a': 0.01, 'e': 0.40697643275294815}",20,15,-3.5110811355056684,"{0: 4, 1: 0, 2: 1, 3: 0, 4: 0}",1 +900,False,"{'a': 0.01, 'e': 0.4065696597405991}",20,0,-5.966529866841582,"{0: 16, 1: 2, 2: 2, 3: 0, 4: 0}",1 +901,False,"{'a': 0.01, 'e': 0.4061632932979437}",25,0,-37.84854904693864,"{0: 19, 1: 0, 2: 5, 3: 1, 4: 0}",0 +902,False,"{'a': 0.01, 'e': 0.40575733301861544}",30,18,-16.77027532726376,"{0: 9, 1: 1, 2: 1, 3: 1, 4: 0}",1 +903,False,"{'a': 0.01, 'e': 0.405351778496654}",20,13,-9.97182052445109,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +904,False,"{'a': 0.01, 'e': 0.4049466293265049}",25,3,-37.472744560965126,"{0: 19, 1: 0, 2: 1, 3: 1, 4: 1}",1 +905,False,"{'a': 0.01, 'e': 0.4045418851030188}",20,15,1.0349655501717496,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +906,False,"{'a': 0.01, 'e': 0.4041375454214515}",25,16,0.9141720183683497,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +907,False,"{'a': 0.01, 'e': 0.4037336098774634}",25,10,-33.32617947837301,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 1}",1 +908,False,"{'a': 0.01, 'e': 0.40333007806711874}",30,22,-5.2223312398125366,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +909,False,"{'a': 0.01, 'e': 0.40292694958688574}",20,0,-51.52467906436269,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 1}",0 +910,False,"{'a': 0.01, 'e': 0.40252422403363597}",20,3,-24.830877949264803,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +911,False,"{'a': 0.01, 'e': 0.40212190100464373}",25,13,-97.35107620795533,"{0: 5, 1: 0, 2: 5, 3: 1, 4: 1}",1 +912,False,"{'a': 0.01, 'e': 0.401719980097586}",25,0,-108.05298055191288,"{0: 15, 1: 5, 2: 3, 3: 0, 4: 2}",1 +913,False,"{'a': 0.01, 'e': 0.4013184609105419}",20,0,1.1582775111657388,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +914,False,"{'a': 0.01, 'e': 0.4009173430419921}",20,10,5.29899534915104,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +915,False,"{'a': 0.01, 'e': 0.4005166260908188}",35,0,-113.31433459293525,"{0: 23, 1: 4, 2: 6, 3: 1, 4: 1}",0 +916,False,"{'a': 0.01, 'e': 0.40011630965630496}",25,7,-3.799069919735045,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +917,False,"{'a': 0.01, 'e': 0.3997163933381341}",20,0,16.733766431552127,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +918,False,"{'a': 0.01, 'e': 0.3993168767363899}",25,13,3.4131609130946403,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +919,False,"{'a': 0.01, 'e': 0.39891775945155566}",30,8,9.755703177128769,"{0: 19, 1: 2, 2: 1, 3: 0, 4: 0}",1 +920,False,"{'a': 0.01, 'e': 0.39851904108451414}",25,0,-31.624195681667175,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +921,False,"{'a': 0.01, 'e': 0.39812072123654696}",25,13,-10.204376378152629,"{0: 9, 1: 1, 2: 2, 3: 0, 4: 0}",1 +922,False,"{'a': 0.01, 'e': 0.39772279950933415}",25,14,-46.93418287584641,"{0: 8, 1: 1, 2: 0, 3: 1, 4: 1}",1 +923,False,"{'a': 0.01, 'e': 0.397325275504954}",25,13,-9.63244678180276,"{0: 10, 1: 1, 2: 0, 3: 1, 4: 0}",1 +924,False,"{'a': 0.01, 'e': 0.39692814882588245}",20,0,4.740253523059098,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +925,False,"{'a': 0.01, 'e': 0.39653141907499284}",25,19,4.919530327449195,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +926,False,"{'a': 0.01, 'e': 0.39613508585555535}",30,23,14.47969316170277,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +927,False,"{'a': 0.01, 'e': 0.3957391487712367}",30,3,-24.385636522999523,"{0: 23, 1: 1, 2: 2, 3: 0, 4: 1}",1 +928,False,"{'a': 0.01, 'e': 0.3953436074260998}",25,0,-32.905877232531566,"{0: 19, 1: 2, 2: 3, 3: 1, 4: 0}",0 +929,False,"{'a': 0.01, 'e': 0.39494846142460327}",20,8,7.803212568226259,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +930,False,"{'a': 0.01, 'e': 0.3945537103716011}",20,0,-123.6349783556566,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 3}",0 +931,False,"{'a': 0.01, 'e': 0.3941593538723422}",20,0,-26.64902971640558,"{0: 15, 1: 0, 2: 5, 3: 0, 4: 0}",0 +932,False,"{'a': 0.01, 'e': 0.39376539153247}",20,12,14.840431062579292,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +933,False,"{'a': 0.01, 'e': 0.3933718229580221}",25,11,6.407529257312363,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +934,False,"{'a': 0.01, 'e': 0.39297864775542996}",25,14,4.555619014872401,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +935,False,"{'a': 0.01, 'e': 0.39258586553151836}",25,0,10.9041239987023,"{0: 23, 1: 1, 2: 0, 3: 1, 4: 0}",0 +936,False,"{'a': 0.01, 'e': 0.39219347589350495}",30,12,-61.03456187114645,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 2}",1 +937,False,"{'a': 0.01, 'e': 0.39180147844900015}",25,18,15.19052686094432,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +938,False,"{'a': 0.01, 'e': 0.3914098728060065}",20,0,-29.241462167829805,"{0: 15, 1: 0, 2: 5, 3: 0, 4: 0}",0 +939,False,"{'a': 0.01, 'e': 0.3910186585729182}",20,14,5.290833407636671,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +940,False,"{'a': 0.01, 'e': 0.3906278353585211}",25,16,7.311737989870123,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +941,False,"{'a': 0.01, 'e': 0.39023740277199187}",20,7,5.5976443138150955,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +942,False,"{'a': 0.01, 'e': 0.38984736042289797}",20,0,-3.636238604562971,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",0 +943,False,"{'a': 0.01, 'e': 0.38945770792119694}",30,0,-38.85612817841384,"{0: 28, 1: 0, 2: 0, 3: 0, 4: 2}",0 +944,False,"{'a': 0.01, 'e': 0.3890684448772363}",30,20,-17.201396692370274,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 0}",1 +945,False,"{'a': 0.01, 'e': 0.388679570901753}",20,10,-22.87091978629038,"{0: 7, 1: 1, 2: 1, 3: 1, 4: 0}",1 +946,False,"{'a': 0.01, 'e': 0.38829108560587294}",25,11,-14.179116362106985,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +947,False,"{'a': 0.01, 'e': 0.3879029886011109}",20,14,13.829896292506437,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +948,False,"{'a': 0.01, 'e': 0.3875152794993697}",25,13,14.712368351729882,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +949,False,"{'a': 0.01, 'e': 0.38712795791294036}",30,10,9.237211017412521,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +950,False,"{'a': 0.01, 'e': 0.3867410234545012}",25,0,3.6032362397907933,"{0: 21, 1: 2, 2: 2, 3: 0, 4: 0}",0 +951,False,"{'a': 0.01, 'e': 0.3863544757371177}",20,13,-0.3024587745008711,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +952,False,"{'a': 0.01, 'e': 0.3859683143742421}",30,24,11.118915804870227,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +953,False,"{'a': 0.01, 'e': 0.38558253897971306}",25,10,10.235262262784111,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 0}",1 +954,False,"{'a': 0.01, 'e': 0.38519714916775516}",25,0,-4.913491543122171,"{0: 22, 1: 1, 2: 1, 3: 1, 4: 0}",1 +955,False,"{'a': 0.01, 'e': 0.3848121445529785}",20,0,0.7601879540554815,"{0: 18, 1: 1, 2: 0, 3: 1, 4: 0}",0 +956,False,"{'a': 0.01, 'e': 0.3844275247503785}",25,8,-23.606163639900846,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +957,False,"{'a': 0.01, 'e': 0.3840432893753353}",30,9,7.398065345835397,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 0}",1 +958,False,"{'a': 0.01, 'e': 0.38365943804361335}",20,5,15.506058477544094,"{0: 13, 1: 2, 2: 0, 3: 0, 4: 0}",1 +959,False,"{'a': 0.01, 'e': 0.3832759703713615}",30,16,29.105915432192216,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +960,False,"{'a': 0.01, 'e': 0.38289288597511206}",25,16,14.358746660584064,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +961,False,"{'a': 0.01, 'e': 0.38251018447178037}",20,4,-82.61713275631593,"{0: 10, 1: 0, 2: 4, 3: 1, 4: 1}",1 +962,False,"{'a': 0.01, 'e': 0.38212786547866506}",30,20,-1.085674176165619,"{0: 7, 1: 3, 2: 0, 3: 0, 4: 0}",1 +963,False,"{'a': 0.01, 'e': 0.3817459286134471}",20,14,12.442977415544116,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +964,False,"{'a': 0.01, 'e': 0.38136437349418956}",30,17,5.679566987493172,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +965,False,"{'a': 0.01, 'e': 0.38098319973933725}",25,7,26.619688736693973,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +966,False,"{'a': 0.01, 'e': 0.38060240696771647}",25,11,-76.09701710881076,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 2}",1 +967,False,"{'a': 0.01, 'e': 0.38022199479853436}",20,2,-20.088764222069887,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 1}",1 +968,False,"{'a': 0.01, 'e': 0.3798419628513787}",30,0,8.355103289428326,"{0: 26, 1: 2, 2: 2, 3: 0, 4: 0}",0 +969,False,"{'a': 0.01, 'e': 0.37946231074621756}",20,13,4.401566901438171,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +970,False,"{'a': 0.01, 'e': 0.37908303810339883}",25,1,-6.5437460809917996,"{0: 20, 1: 1, 2: 3, 3: 0, 4: 0}",1 +971,False,"{'a': 0.01, 'e': 0.37870414454364976}",25,14,-56.230079800018466,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 1}",1 +972,False,"{'a': 0.01, 'e': 0.3783256296880768}",25,17,15.597798147773107,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +973,False,"{'a': 0.01, 'e': 0.37794749315816506}",20,0,-135.0261363758754,"{0: 13, 1: 2, 2: 2, 3: 0, 4: 3}",0 +974,False,"{'a': 0.01, 'e': 0.37756973457577797}",20,0,-19.38902029522276,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +975,False,"{'a': 0.01, 'e': 0.37719235356315695}",30,11,18.707335398197888,"{0: 17, 1: 2, 2: 0, 3: 0, 4: 0}",1 +976,False,"{'a': 0.01, 'e': 0.37681534974292086}",20,8,-14.888418740949717,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +977,False,"{'a': 0.01, 'e': 0.37643872273806595}",30,0,-88.82588678764589,"{0: 24, 1: 1, 2: 2, 3: 1, 4: 2}",0 +978,False,"{'a': 0.01, 'e': 0.37606247217196515}",30,0,-37.59267223383858,"{0: 25, 1: 1, 2: 3, 3: 0, 4: 1}",0 +979,False,"{'a': 0.01, 'e': 0.37568659766836787}",25,3,-15.398171731885675,"{0: 18, 1: 0, 2: 4, 3: 0, 4: 0}",1 +980,False,"{'a': 0.01, 'e': 0.37531109885139957}",25,0,24.306972678564687,"{0: 23, 1: 2, 2: 0, 3: 0, 4: 0}",1 +981,False,"{'a': 0.01, 'e': 0.37493597534556133}",30,6,-5.176728279490052,"{0: 19, 1: 3, 2: 2, 3: 0, 4: 0}",1 +982,False,"{'a': 0.01, 'e': 0.3745612267757298}",20,10,20.46110463751577,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +983,False,"{'a': 0.01, 'e': 0.37418685276715613}",20,2,-23.7732029888484,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +984,False,"{'a': 0.01, 'e': 0.3738128529454665}",30,12,-12.124518836994541,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 0}",1 +985,False,"{'a': 0.01, 'e': 0.37343922693666093}",20,0,11.108014674713743,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +986,False,"{'a': 0.01, 'e': 0.3730659743671134}",25,5,-66.62422577613302,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",1 +987,False,"{'a': 0.01, 'e': 0.3726930948635714}",20,13,-10.03749344910468,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +988,False,"{'a': 0.01, 'e': 0.3723205880531552}",35,23,-1.4831177580802506,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +989,False,"{'a': 0.01, 'e': 0.3719484535633582}",35,0,-12.173962237483458,"{0: 27, 1: 7, 2: 0, 3: 1, 4: 0}",0 +990,False,"{'a': 0.01, 'e': 0.3715766910220457}",20,16,6.590506790052938,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +991,False,"{'a': 0.01, 'e': 0.37120530005745517}",25,0,-23.85283101459399,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",1 +992,False,"{'a': 0.01, 'e': 0.37083428029819565}",20,2,-46.60833422992413,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 0}",1 +993,False,"{'a': 0.01, 'e': 0.37046363137324734}",20,11,-5.500762158133454,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +994,False,"{'a': 0.01, 'e': 0.37009335291196127}",25,11,-62.34039464033758,"{0: 10, 1: 0, 2: 2, 3: 1, 4: 1}",1 +995,False,"{'a': 0.01, 'e': 0.369723444544059}",25,0,-26.04620304633902,"{0: 19, 1: 1, 2: 5, 3: 0, 4: 0}",0 +996,False,"{'a': 0.01, 'e': 0.369353905899632}",25,0,15.505391521749797,"{0: 22, 1: 2, 2: 1, 3: 0, 4: 0}",1 +997,False,"{'a': 0.01, 'e': 0.3689847366091418}",20,0,11.888835296984402,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +998,False,"{'a': 0.01, 'e': 0.3686159363034188}",25,14,-1.1168991009297269,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +999,False,"{'a': 0.01, 'e': 0.3682475046136629}",30,6,2.9121931154649143,"{0: 20, 1: 3, 2: 1, 3: 0, 4: 0}",1 +1000,False,"{'a': 0.01, 'e': 0.36787944117144233}",25,17,3.438575745616106,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1001,False,"{'a': 0.01, 'e': 0.3675117456086935}",20,2,-3.168213213958384,"{0: 16, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1002,False,"{'a': 0.01, 'e': 0.36714441755772104}",20,0,-7.777749623174216,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +1003,False,"{'a': 0.01, 'e': 0.3667774566511966}",35,17,-28.691262206918886,"{0: 15, 1: 0, 2: 1, 3: 2, 4: 0}",1 +1004,False,"{'a': 0.01, 'e': 0.3664108625221595}",25,13,-4.004169916646954,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1005,False,"{'a': 0.01, 'e': 0.36604463480401533}",20,14,-37.559753647245785,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1006,False,"{'a': 0.01, 'e': 0.36567877313053654}",25,13,-27.900526294200187,"{0: 8, 1: 0, 2: 4, 3: 0, 4: 0}",1 +1007,False,"{'a': 0.01, 'e': 0.3653132771358613}",25,10,14.626346952579587,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1008,False,"{'a': 0.01, 'e': 0.36494814645449375}",25,14,18.15627948331325,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1009,False,"{'a': 0.01, 'e': 0.3645833807213029}",20,9,16.38462190206005,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1010,False,"{'a': 0.01, 'e': 0.3642189795715233}",20,16,7.101477695586116,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1011,False,"{'a': 0.01, 'e': 0.3638549426407535}",25,7,3.334609814937492,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1012,False,"{'a': 0.01, 'e': 0.3634912695649568}",20,16,6.876113067139661,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1013,False,"{'a': 0.01, 'e': 0.3631279599804599}",25,19,9.596859790872234,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1014,False,"{'a': 0.01, 'e': 0.36276501352395324}",25,14,-5.358183132912024,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1015,False,"{'a': 0.01, 'e': 0.36240242983249027}",25,13,16.891307495249187,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1016,False,"{'a': 0.01, 'e': 0.36204020854348745}",20,8,16.13050590893926,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1017,False,"{'a': 0.01, 'e': 0.36167834929472326}",35,16,-11.797757244568002,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1018,False,"{'a': 0.01, 'e': 0.36131685172433853}",30,4,11.415827654249904,"{0: 23, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1019,False,"{'a': 0.01, 'e': 0.3609557154708356}",25,19,-11.332698318331918,"{0: 5, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1020,False,"{'a': 0.01, 'e': 0.3605949401730783}",25,18,2.281838614783842,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1021,False,"{'a': 0.01, 'e': 0.3602345254702911}",25,5,31.395940753549237,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1022,False,"{'a': 0.01, 'e': 0.35987447100205955}",25,19,11.284156894451153,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1023,False,"{'a': 0.01, 'e': 0.35951477640832885}",30,0,-107.74756100167562,"{0: 19, 1: 4, 2: 4, 3: 2, 4: 1}",0 +1024,False,"{'a': 0.01, 'e': 0.3591554413294046}",20,3,23.325973741604596,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1025,False,"{'a': 0.01, 'e': 0.3587964654059516}",30,7,-77.99102336534652,"{0: 18, 1: 0, 2: 3, 3: 0, 4: 2}",1 +1026,False,"{'a': 0.01, 'e': 0.3584378482789939}",30,0,-59.73499838045542,"{0: 23, 1: 1, 2: 5, 3: 0, 4: 1}",0 +1027,False,"{'a': 0.01, 'e': 0.35807958958991437}",25,20,8.269348999276655,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1028,False,"{'a': 0.01, 'e': 0.3577216889804542}",25,19,13.761634747172346,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1029,False,"{'a': 0.01, 'e': 0.3573641460927129}",25,5,21.018734083267645,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1030,False,"{'a': 0.01, 'e': 0.3570069605691474}",25,7,13.486378635042948,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1031,False,"{'a': 0.01, 'e': 0.35665013205257223}",25,11,3.757856453849743,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1032,False,"{'a': 0.01, 'e': 0.3562936601861588}",20,10,-33.548413685925304,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1033,False,"{'a': 0.01, 'e': 0.35593754461343535}",25,19,13.890566926393381,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1034,False,"{'a': 0.01, 'e': 0.35558178497828613}",25,13,-10.516203655197694,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1035,False,"{'a': 0.01, 'e': 0.3552263809249515}",30,12,-12.835359865624541,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1036,False,"{'a': 0.01, 'e': 0.3548713320980274}",25,11,11.294989191041084,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1037,False,"{'a': 0.01, 'e': 0.35451663814246503}",25,18,-41.03751792600009,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1038,False,"{'a': 0.01, 'e': 0.35416229870357024}",25,6,-31.105666794961262,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1039,False,"{'a': 0.01, 'e': 0.35380831342700375}",20,0,-0.2514903745848096,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1040,False,"{'a': 0.01, 'e': 0.35345468195878016}",25,5,-24.657123791313555,"{0: 17, 1: 2, 2: 0, 3: 0, 4: 1}",1 +1041,False,"{'a': 0.01, 'e': 0.353101403945268}",20,11,16.469841937729967,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1042,False,"{'a': 0.01, 'e': 0.3527484790331891}",20,10,21.207638390604874,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1043,False,"{'a': 0.01, 'e': 0.35239590686961875}",20,3,0.6245369686723332,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1044,False,"{'a': 0.01, 'e': 0.3520436871019846}",30,8,-54.017302272280176,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 2}",1 +1045,False,"{'a': 0.01, 'e': 0.3516918193780669}",30,20,15.609347534423648,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1046,False,"{'a': 0.01, 'e': 0.3513403033459978}",20,0,-7.087521601021273,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1047,False,"{'a': 0.01, 'e': 0.35098913865426146}",25,13,5.81285175680776,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1048,False,"{'a': 0.01, 'e': 0.35063832495169295}",30,9,-68.47384746496083,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 1}",1 +1049,False,"{'a': 0.01, 'e': 0.3502878618874786}",30,11,-12.71985979643722,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1050,False,"{'a': 0.01, 'e': 0.3499377491111553}",20,0,-37.94484361811896,"{0: 15, 1: 1, 2: 2, 3: 2, 4: 0}",0 +1051,False,"{'a': 0.01, 'e': 0.3495879862726104}",25,15,-5.3208794409360625,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1052,False,"{'a': 0.01, 'e': 0.3492385730220808}",20,0,-52.56340310845206,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 2}",0 +1053,False,"{'a': 0.01, 'e': 0.34888950901015336}",20,8,13.5890878110536,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1054,False,"{'a': 0.01, 'e': 0.348540793887764}",20,0,-20.258448562189727,"{0: 15, 1: 3, 2: 2, 3: 0, 4: 0}",0 +1055,False,"{'a': 0.01, 'e': 0.3481924273061976}",25,9,18.006335568276143,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1056,False,"{'a': 0.01, 'e': 0.3478444089170874}",20,9,-88.56774548468736,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 2}",1 +1057,False,"{'a': 0.01, 'e': 0.34749673837241524}",20,9,1.9429633887685556,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1058,False,"{'a': 0.01, 'e': 0.3471494153245103}",20,0,-94.36872051255312,"{0: 11, 1: 2, 2: 4, 3: 3, 4: 0}",0 +1059,False,"{'a': 0.01, 'e': 0.34680243942604977}",20,8,-9.489548184145756,"{0: 9, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1060,False,"{'a': 0.01, 'e': 0.3464558103300574}",20,11,-24.33479107893493,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1061,False,"{'a': 0.01, 'e': 0.3461095276899044}",20,0,-132.22959013033685,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 3}",0 +1062,False,"{'a': 0.01, 'e': 0.34576359115930777}",35,15,-34.61413084511009,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1063,False,"{'a': 0.01, 'e': 0.3454180003923312}",25,12,-42.464635670238984,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1064,False,"{'a': 0.01, 'e': 0.34507275504338375}",25,0,-16.623997724826832,"{0: 23, 1: 1, 2: 0, 3: 0, 4: 1}",0 +1065,False,"{'a': 0.01, 'e': 0.3447278547672202}",20,11,-40.02694416009079,"{0: 5, 1: 2, 2: 0, 3: 2, 4: 0}",1 +1066,False,"{'a': 0.01, 'e': 0.34438329921894}",25,0,-91.44272194268977,"{0: 15, 1: 5, 2: 3, 3: 1, 4: 1}",0 +1067,False,"{'a': 0.01, 'e': 0.34403908805398786}",25,19,12.974661344458228,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1068,False,"{'a': 0.01, 'e': 0.34369522092815236}",20,0,29.39084970587644,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1069,False,"{'a': 0.01, 'e': 0.3433516974975665}",25,2,-57.61906282673613,"{0: 18, 1: 0, 2: 4, 3: 0, 4: 1}",1 +1070,False,"{'a': 0.01, 'e': 0.34300851741870664}",20,0,-5.794137656102147,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +1071,False,"{'a': 0.01, 'e': 0.3426656803483929}",25,0,12.23342248914022,"{0: 22, 1: 1, 2: 2, 3: 0, 4: 0}",0 +1072,False,"{'a': 0.01, 'e': 0.34232318594378797}",20,7,-35.33242739236544,"{0: 9, 1: 2, 2: 0, 3: 2, 4: 0}",1 +1073,False,"{'a': 0.01, 'e': 0.3419810338623976}",35,23,19.45478118827501,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1074,False,"{'a': 0.01, 'e': 0.34163922376206945}",20,12,3.5472530883099362,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1075,False,"{'a': 0.01, 'e': 0.3412977553009937}",20,11,-7.525428000893216,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1076,False,"{'a': 0.01, 'e': 0.34095662813770156}",20,12,3.3708799043223907,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1077,False,"{'a': 0.01, 'e': 0.3406158419310661}",20,12,-26.8897529113011,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1078,False,"{'a': 0.01, 'e': 0.3402753963403008}",25,11,-38.56356203523748,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 1}",1 +1079,False,"{'a': 0.01, 'e': 0.33993529102496034}",20,10,-38.38381178506314,"{0: 5, 1: 2, 2: 2, 3: 1, 4: 0}",1 +1080,False,"{'a': 0.01, 'e': 0.3395955256449391}",20,0,9.3799774572438,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1081,False,"{'a': 0.01, 'e': 0.33925609986047195}",25,11,1.3082319496383854,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1082,False,"{'a': 0.01, 'e': 0.3389170133321328}",30,22,0.31787552842829503,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1083,False,"{'a': 0.01, 'e': 0.3385782657208353}",20,9,-17.782569264107423,"{0: 7, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1084,False,"{'a': 0.01, 'e': 0.3382398566878317}",25,14,-3.397028906852479,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1085,False,"{'a': 0.01, 'e': 0.33790178589471304}",30,19,15.116904343512594,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1086,False,"{'a': 0.01, 'e': 0.33756405300340836}",20,4,0.4857178334029588,"{0: 13, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1087,False,"{'a': 0.01, 'e': 0.33722665767618487}",20,0,17.533392173841634,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 0}",0 +1088,False,"{'a': 0.01, 'e': 0.33688959957564707}",20,11,5.721256006966669,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1089,False,"{'a': 0.01, 'e': 0.336552878364737}",25,12,-24.788506366405674,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1090,False,"{'a': 0.01, 'e': 0.33621649370673334}",20,9,19.032240480045093,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1091,False,"{'a': 0.01, 'e': 0.3358804452652514}",35,14,29.77682903875806,"{0: 20, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1092,False,"{'a': 0.01, 'e': 0.3355447327042427}",20,11,-5.489583101370618,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1093,False,"{'a': 0.01, 'e': 0.33520935568799465}",20,0,-19.437053231915407,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1094,False,"{'a': 0.01, 'e': 0.3348743138811302}",25,17,14.542136621778653,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1095,False,"{'a': 0.01, 'e': 0.3345396069486076}",20,16,9.328001758459873,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1096,False,"{'a': 0.01, 'e': 0.33420523455571977}",25,16,-77.25749000298896,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1097,False,"{'a': 0.01, 'e': 0.3338711963680944}",30,15,10.472176423779494,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1098,False,"{'a': 0.01, 'e': 0.3335374920516932}",20,12,17.66105946774598,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1099,False,"{'a': 0.01, 'e': 0.33320412127281185}",20,3,1.5902645284386474,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1100,False,"{'a': 0.01, 'e': 0.33287108369807955}",20,10,-0.21206665148163673,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1101,False,"{'a': 0.01, 'e': 0.3325383789944587}",25,8,26.519857687875085,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1102,False,"{'a': 0.01, 'e': 0.33220600682924445}",25,12,7.373155488905991,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1103,False,"{'a': 0.01, 'e': 0.3318739668700649}",20,12,14.587080314157431,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1104,False,"{'a': 0.01, 'e': 0.3315422587848797}",20,12,-28.17497074890691,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1105,False,"{'a': 0.01, 'e': 0.331210882241981}",25,8,25.048091099651256,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1106,False,"{'a': 0.01, 'e': 0.33087983690999206}",30,4,-47.14839400687543,"{0: 21, 1: 0, 2: 4, 3: 0, 4: 1}",1 +1107,False,"{'a': 0.01, 'e': 0.3305491224578677}",20,11,14.771328050519204,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1108,False,"{'a': 0.01, 'e': 0.3302187385548933}",25,14,-5.613053889878165,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1109,False,"{'a': 0.01, 'e': 0.329888684870685}",20,13,12.689095202056093,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1110,False,"{'a': 0.01, 'e': 0.32955896107518906}",25,0,-23.87279501210477,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +1111,False,"{'a': 0.01, 'e': 0.32922956683868165}",20,0,-43.259654214224916,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",0 +1112,False,"{'a': 0.01, 'e': 0.3289005018317685}",30,22,12.201533577971539,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1113,False,"{'a': 0.01, 'e': 0.3285717657253846}",20,16,8.163333634471863,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1114,False,"{'a': 0.01, 'e': 0.32824335819079375}",30,18,18.891935688510053,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1115,False,"{'a': 0.01, 'e': 0.32791527889958855}",20,14,2.4422428186179705,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1116,False,"{'a': 0.01, 'e': 0.3275875275236895}",30,14,4.164126891759928,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1117,False,"{'a': 0.01, 'e': 0.3272601037353453}",30,20,13.207703101718957,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1118,False,"{'a': 0.01, 'e': 0.3269330072071321}",30,3,-56.17899156694076,"{0: 21, 1: 2, 2: 2, 3: 1, 4: 1}",1 +1119,False,"{'a': 0.01, 'e': 0.3266062376119534}",25,17,-7.51129472462989,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1120,False,"{'a': 0.01, 'e': 0.32627979462303947}",25,17,-7.935105730853225,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1121,False,"{'a': 0.01, 'e': 0.32595367791394736}",20,12,-4.898055972627617,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1122,False,"{'a': 0.01, 'e': 0.32562788715856034}",30,21,11.337946830903853,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1123,False,"{'a': 0.01, 'e': 0.3253024220310876}",20,0,15.548708226980743,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1124,False,"{'a': 0.01, 'e': 0.324977282206064}",25,19,-1.3301855839625107,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1125,False,"{'a': 0.01, 'e': 0.32465246735834974}",25,2,-35.98677633835902,"{0: 20, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1126,False,"{'a': 0.01, 'e': 0.3243279771631298}",25,6,-32.333485532533274,"{0: 16, 1: 0, 2: 0, 3: 3, 4: 0}",1 +1127,False,"{'a': 0.01, 'e': 0.32400381129591416}",30,13,0.6388755961466168,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1128,False,"{'a': 0.01, 'e': 0.3236799694325367}",25,13,24.61513844648315,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1129,False,"{'a': 0.01, 'e': 0.32335645124915574}",25,8,8.94661509511064,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1130,False,"{'a': 0.01, 'e': 0.3230332564222529}",20,6,-15.40057134962142,"{0: 10, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1131,False,"{'a': 0.01, 'e': 0.3227103846286335}",25,13,-3.9063445662368035,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1132,False,"{'a': 0.01, 'e': 0.3223878355454255}",25,15,-4.780590951766398,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1133,False,"{'a': 0.01, 'e': 0.32206560885008}",25,16,-6.895945381420156,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1134,False,"{'a': 0.01, 'e': 0.32174370422037013}",20,0,-5.035792855700894,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1135,False,"{'a': 0.01, 'e': 0.32142212133439135}",20,12,14.122673590613896,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1136,False,"{'a': 0.01, 'e': 0.32110085987056064}",20,13,11.373280717908541,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1137,False,"{'a': 0.01, 'e': 0.3207799195076166}",20,8,1.089313752151103,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1138,False,"{'a': 0.01, 'e': 0.32045929992461875}",25,9,14.118600930509839,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1139,False,"{'a': 0.01, 'e': 0.3201390008009476}",20,3,-47.252244765211884,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1140,False,"{'a': 0.01, 'e': 0.31981902181630384}",25,19,11.867905040553438,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1141,False,"{'a': 0.01, 'e': 0.31949936265070866}",20,3,5.037323091366917,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1142,False,"{'a': 0.01, 'e': 0.31918002298450265}",20,12,0.6906863179143137,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1143,False,"{'a': 0.01, 'e': 0.3188610024983463}",30,21,7.008806362768584,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1144,False,"{'a': 0.01, 'e': 0.31854230087321894}",30,0,-77.04815544802064,"{0: 24, 1: 1, 2: 2, 3: 2, 4: 1}",0 +1145,False,"{'a': 0.01, 'e': 0.3182239177904191}",20,3,20.442983225083086,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1146,False,"{'a': 0.01, 'e': 0.3179058529315635}",25,5,-6.449256471994225,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1147,False,"{'a': 0.01, 'e': 0.31758810597858733}",25,19,9.006415513392191,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1148,False,"{'a': 0.01, 'e': 0.3172706766137436}",20,3,-28.733031210534183,"{0: 14, 1: 2, 2: 0, 3: 0, 4: 1}",1 +1149,False,"{'a': 0.01, 'e': 0.31695356451960294}",25,18,14.409270956277986,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1150,False,"{'a': 0.01, 'e': 0.31663676937905316}",20,8,-19.34484653845012,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1151,False,"{'a': 0.01, 'e': 0.3163202908752992}",20,10,12.89535295767686,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1152,False,"{'a': 0.01, 'e': 0.31600412869186245}",30,12,-11.231178246365005,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1153,False,"{'a': 0.01, 'e': 0.3156882825125808}",35,21,16.432804287114042,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1154,False,"{'a': 0.01, 'e': 0.31537275202160797}",30,15,-20.322804105886277,"{0: 11, 1: 0, 2: 4, 3: 0, 4: 0}",1 +1155,False,"{'a': 0.01, 'e': 0.3150575369034133}",30,16,-7.4261704646049544,"{0: 12, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1156,False,"{'a': 0.01, 'e': 0.3147426368427819}",25,13,18.802126112565112,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1157,False,"{'a': 0.01, 'e': 0.31442805152481357}",25,12,10.044849282527057,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1158,False,"{'a': 0.01, 'e': 0.31411378063492296}",25,17,8.50521821021599,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1159,False,"{'a': 0.01, 'e': 0.3137998238588391}",20,10,-4.587879687245311,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1160,False,"{'a': 0.01, 'e': 0.3134861808826053}",20,6,-17.532188330514884,"{0: 11, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1161,False,"{'a': 0.01, 'e': 0.3131728513925785}",30,17,-5.782677281812062,"{0: 11, 1: 1, 2: 0, 3: 1, 4: 0}",1 +1162,False,"{'a': 0.01, 'e': 0.3128598350754292}",30,9,5.023461471725996,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1163,False,"{'a': 0.01, 'e': 0.312547131618141}",25,11,17.336959228157276,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1164,False,"{'a': 0.01, 'e': 0.31223474070801055}",30,16,23.631579943270168,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1165,False,"{'a': 0.01, 'e': 0.31192266203264674}",25,13,19.252159637711383,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1166,False,"{'a': 0.01, 'e': 0.31161089527997105}",20,11,-13.218054404365773,"{0: 6, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1167,False,"{'a': 0.01, 'e': 0.3112994401382165}",25,17,-28.339883439875315,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1168,False,"{'a': 0.01, 'e': 0.3109882962959281}",20,7,7.50847138553133,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1169,False,"{'a': 0.01, 'e': 0.31067746344196184}",25,13,-0.10104525654950391,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1170,False,"{'a': 0.01, 'e': 0.31036694126548503}",20,4,-53.25678143379801,"{0: 12, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1171,False,"{'a': 0.01, 'e': 0.31005672945597523}",30,5,-15.555085576502265,"{0: 21, 1: 0, 2: 3, 3: 1, 4: 0}",1 +1172,False,"{'a': 0.01, 'e': 0.3097468277032208}",30,24,8.60824344281586,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1173,False,"{'a': 0.01, 'e': 0.30943723569731985}",20,9,-23.23926115685945,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1174,False,"{'a': 0.01, 'e': 0.30912795312868047}",30,17,-19.918831895127973,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1175,False,"{'a': 0.01, 'e': 0.30881897968801986}",20,3,-34.75020427496057,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1176,False,"{'a': 0.01, 'e': 0.3085103150663647}",25,16,-3.627588914166651,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1177,False,"{'a': 0.01, 'e': 0.3082019589550503}",35,2,-23.300119845862838,"{0: 28, 1: 1, 2: 3, 3: 0, 4: 1}",1 +1178,False,"{'a': 0.01, 'e': 0.3078939110457206}",25,10,9.387194810616553,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1179,False,"{'a': 0.01, 'e': 0.3075861710303276}",20,0,18.612591173172333,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1180,False,"{'a': 0.01, 'e': 0.30727873860113125}",25,14,6.452991388462329,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1181,False,"{'a': 0.01, 'e': 0.30697161345069907}",25,10,6.493055469793261,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1182,False,"{'a': 0.01, 'e': 0.306664795271906}",25,8,-9.35904135103537,"{0: 13, 1: 2, 2: 2, 3: 0, 4: 0}",1 +1183,False,"{'a': 0.01, 'e': 0.30635828375793367}",20,6,-28.201077675229122,"{0: 10, 1: 1, 2: 2, 3: 1, 4: 0}",1 +1184,False,"{'a': 0.01, 'e': 0.3060520786022707}",35,23,25.206239242513583,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1185,False,"{'a': 0.01, 'e': 0.30574617949871175}",30,16,25.04762102751435,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1186,False,"{'a': 0.01, 'e': 0.3054405861413579}",20,8,21.34490830124239,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1187,False,"{'a': 0.01, 'e': 0.3051352982246155}",30,8,15.075161356545209,"{0: 20, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1188,False,"{'a': 0.01, 'e': 0.30483031544319683}",20,7,2.2384120313543696,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1189,False,"{'a': 0.01, 'e': 0.304525637492119}",20,9,-8.651925656152846,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1190,False,"{'a': 0.01, 'e': 0.3042212640667041}",25,18,-4.6054857759112915,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1191,False,"{'a': 0.01, 'e': 0.3039171948625785}",20,3,-41.17447211161817,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1192,False,"{'a': 0.01, 'e': 0.30361342957567317}",20,4,8.38536011335754,"{0: 14, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1193,False,"{'a': 0.01, 'e': 0.30330996790222264}",25,18,3.8237212936410456,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1194,False,"{'a': 0.01, 'e': 0.3030068095387654}",25,15,1.4096628174295436,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1195,False,"{'a': 0.01, 'e': 0.30270395418214285}",25,8,3.9735774772543495,"{0: 14, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1196,False,"{'a': 0.01, 'e': 0.3024014015294998}",20,13,-9.953600675378333,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1197,False,"{'a': 0.01, 'e': 0.3020991512782834}",20,7,-8.638120812319334,"{0: 11, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1198,False,"{'a': 0.01, 'e': 0.3017972031262435}",35,5,-22.975118591226824,"{0: 26, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1199,False,"{'a': 0.01, 'e': 0.3014955567714318}",30,8,-23.545503708928194,"{0: 19, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1200,False,"{'a': 0.01, 'e': 0.30119421191220214}",20,11,-18.43490224265423,"{0: 6, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1201,False,"{'a': 0.01, 'e': 0.30089316824720935}",20,13,14.441539609003907,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1202,False,"{'a': 0.01, 'e': 0.30059242547541}",20,0,-35.20166317917672,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +1203,False,"{'a': 0.01, 'e': 0.30029198329606105}",25,18,12.43215097660106,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1204,False,"{'a': 0.01, 'e': 0.2999918414087205}",20,13,1.3331385517201781,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1205,False,"{'a': 0.01, 'e': 0.2996919995132463}",20,8,22.28090583787283,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1206,False,"{'a': 0.01, 'e': 0.2993924573097967}",20,14,11.887015040766851,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1207,False,"{'a': 0.01, 'e': 0.29909321449882925}",25,9,-49.47755739526634,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1208,False,"{'a': 0.01, 'e': 0.29879427078110127}",20,1,3.8708890286302946,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1209,False,"{'a': 0.01, 'e': 0.2984956258576689}",20,13,13.38685812388434,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1210,False,"{'a': 0.01, 'e': 0.2981972794298874}",25,0,-10.538673403672085,"{0: 23, 1: 1, 2: 0, 3: 0, 4: 1}",0 +1211,False,"{'a': 0.01, 'e': 0.2978992311994101}",25,12,17.750878610654674,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1212,False,"{'a': 0.01, 'e': 0.29760148086818883}",25,0,-38.50212037955403,"{0: 21, 1: 0, 2: 3, 3: 0, 4: 1}",0 +1213,False,"{'a': 0.01, 'e': 0.2973040281384732}",20,10,-22.35059055249771,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1214,False,"{'a': 0.01, 'e': 0.2970068727128105}",25,5,9.111313115546196,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1215,False,"{'a': 0.01, 'e': 0.29671001429404525}",20,16,9.11974353727252,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1216,False,"{'a': 0.01, 'e': 0.2964134525853191}",20,10,7.863924791534108,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1217,False,"{'a': 0.01, 'e': 0.29611718729007014}",25,8,22.268742523704123,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1218,False,"{'a': 0.01, 'e': 0.2958212181120332}",20,0,-18.71416965731178,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 0}",0 +1219,False,"{'a': 0.01, 'e': 0.295525544755239}",30,10,-9.957061213766089,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1220,False,"{'a': 0.01, 'e': 0.2952301669240142}",25,17,4.727490337529897,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1221,False,"{'a': 0.01, 'e': 0.2949350843229809}",25,8,25.235489154611052,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1222,False,"{'a': 0.01, 'e': 0.29464029665705654}",25,15,-0.9124881496000212,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1223,False,"{'a': 0.01, 'e': 0.29434580363145335}",25,18,15.739100478096827,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1224,False,"{'a': 0.01, 'e': 0.29405160495167837}",20,1,-44.522677525715686,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1225,False,"{'a': 0.01, 'e': 0.29375770032353277}",25,12,13.616562013677738,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1226,False,"{'a': 0.01, 'e': 0.2934640894531121}",30,19,-19.202908707989764,"{0: 8, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1227,False,"{'a': 0.01, 'e': 0.2931707720468052}",20,15,-0.2806679865178585,"{0: 4, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1228,False,"{'a': 0.01, 'e': 0.2928777478112949}",20,10,8.005291784178855,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1229,False,"{'a': 0.01, 'e': 0.29258501645355667}",35,2,14.247415054566071,"{0: 31, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1230,False,"{'a': 0.01, 'e': 0.2922925776808594}",25,8,-46.07678746350241,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1231,False,"{'a': 0.01, 'e': 0.2920004312007641}",20,0,-34.63029443059935,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 1}",0 +1232,False,"{'a': 0.01, 'e': 0.2917085767211244}",20,6,-36.208103177544224,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1233,False,"{'a': 0.01, 'e': 0.2914170139500857}",20,12,8.647847092442756,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1234,False,"{'a': 0.01, 'e': 0.2911257425960852}",25,13,-1.4614976774930577,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1235,False,"{'a': 0.01, 'e': 0.29083476236785155}",25,7,11.62157168338768,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1236,False,"{'a': 0.01, 'e': 0.2905440729744046}",30,3,-56.87891341051374,"{0: 23, 1: 1, 2: 1, 3: 0, 4: 2}",1 +1237,False,"{'a': 0.01, 'e': 0.2902536741250547}",35,22,25.278409279569754,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1238,False,"{'a': 0.01, 'e': 0.2899635655294032}",20,0,14.123094949833922,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +1239,False,"{'a': 0.01, 'e': 0.2896737468973414}",30,7,-36.42941090951078,"{0: 20, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1240,False,"{'a': 0.01, 'e': 0.2893842179390506}",20,0,-33.38838373973786,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +1241,False,"{'a': 0.01, 'e': 0.28909497836500186}",25,0,30.303409845515926,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",0 +1242,False,"{'a': 0.01, 'e': 0.28880602788595566}",20,2,-62.549082160819324,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1243,False,"{'a': 0.01, 'e': 0.2885173662129613}",20,9,-18.17243904414379,"{0: 7, 1: 2, 2: 2, 3: 0, 4: 0}",1 +1244,False,"{'a': 0.01, 'e': 0.2882289930573573}",30,14,15.639332497855372,"{0: 14, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1245,False,"{'a': 0.01, 'e': 0.2879409081307702}",25,11,-64.03786359765448,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 2}",1 +1246,False,"{'a': 0.01, 'e': 0.2876531111451154}",20,6,-1.047502750196915,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1247,False,"{'a': 0.01, 'e': 0.28736560181259563}",20,13,5.619638478138777,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1248,False,"{'a': 0.01, 'e': 0.28707837984570167}",25,16,15.57267345477764,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1249,False,"{'a': 0.01, 'e': 0.2867914449572114}",20,11,-61.09773133389753,"{0: 5, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1250,False,"{'a': 0.01, 'e': 0.2865047968601901}",20,14,-13.46340541347232,"{0: 4, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1251,False,"{'a': 0.01, 'e': 0.28621843526798946}",20,12,3.139003040941942,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1252,False,"{'a': 0.01, 'e': 0.285932359894248}",25,11,23.059858064566292,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1253,False,"{'a': 0.01, 'e': 0.28564657045289016}",35,5,-53.9823055995367,"{0: 26, 1: 1, 2: 1, 3: 0, 4: 2}",1 +1254,False,"{'a': 0.01, 'e': 0.28536106665812666}",20,6,23.834995009572705,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1255,False,"{'a': 0.01, 'e': 0.28507584822445353}",20,14,-30.443586806744708,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1256,False,"{'a': 0.01, 'e': 0.2847909148666525}",25,10,15.974463920345016,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1257,False,"{'a': 0.01, 'e': 0.2845062662997899}",20,0,16.411188839522442,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1258,False,"{'a': 0.01, 'e': 0.28422190223921745}",25,6,4.6833141166493935,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1259,False,"{'a': 0.01, 'e': 0.28393782240057086}",25,13,-23.98457380521916,"{0: 8, 1: 2, 2: 1, 3: 1, 4: 0}",1 +1260,False,"{'a': 0.01, 'e': 0.2836540264997704}",20,8,0.5574169822767221,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1261,False,"{'a': 0.01, 'e': 0.28337051425301996}",20,13,13.417311953163516,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1262,False,"{'a': 0.01, 'e': 0.2830872853768075}",20,6,-9.117329792041318,"{0: 11, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1263,False,"{'a': 0.01, 'e': 0.2828043395879039}",20,13,15.384322258610773,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1264,False,"{'a': 0.01, 'e': 0.2825216766033636}",20,13,-12.79120239200517,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1265,False,"{'a': 0.01, 'e': 0.2822392961405233}",30,0,15.227686826928023,"{0: 28, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1266,False,"{'a': 0.01, 'e': 0.28195719791700274}",25,7,-46.65687417861131,"{0: 13, 1: 0, 2: 3, 3: 2, 4: 0}",1 +1267,False,"{'a': 0.01, 'e': 0.28167538165070355}",20,3,-18.836887204609965,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1268,False,"{'a': 0.01, 'e': 0.2813938470598095}",25,8,20.27785985190564,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1269,False,"{'a': 0.01, 'e': 0.281112593862786}",25,10,-12.891508360857655,"{0: 12, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1270,False,"{'a': 0.01, 'e': 0.2808316217783798}",20,9,18.965121927716766,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1271,False,"{'a': 0.01, 'e': 0.2805509305256187}",25,13,0.06814274969523049,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1272,False,"{'a': 0.01, 'e': 0.28027051982381157}",25,12,-27.37440475120477,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1273,False,"{'a': 0.01, 'e': 0.27999038939254756}",25,10,0.15936200273999113,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1274,False,"{'a': 0.01, 'e': 0.27971053895169634}",25,3,-92.67023358120288,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 2}",1 +1275,False,"{'a': 0.01, 'e': 0.2794309682214073}",20,15,9.159902307691807,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1276,False,"{'a': 0.01, 'e': 0.27915167692210985}",20,10,-4.896182410202646,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1277,False,"{'a': 0.01, 'e': 0.2788726647745125}",25,7,18.486753000227367,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1278,False,"{'a': 0.01, 'e': 0.27859393149960326}",20,13,0.5752588595661638,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1279,False,"{'a': 0.01, 'e': 0.27831547681864865}",25,16,16.974080236902882,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1280,False,"{'a': 0.01, 'e': 0.27803730045319414}",35,12,38.38883644800422,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1281,False,"{'a': 0.01, 'e': 0.2777594021250632}",20,0,16.434012404853018,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1282,False,"{'a': 0.01, 'e': 0.2774817815563575}",20,5,-1.2370128092736035,"{0: 13, 1: 1, 2: 0, 3: 1, 4: 0}",1 +1283,False,"{'a': 0.01, 'e': 0.2772044384694566}",20,13,14.376775383524336,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1284,False,"{'a': 0.01, 'e': 0.2769273725870171}",20,10,19.693969418581062,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1285,False,"{'a': 0.01, 'e': 0.2766505836319734}",25,6,11.891240167251835,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1286,False,"{'a': 0.01, 'e': 0.27637407132753633}",25,9,22.608928727160496,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1287,False,"{'a': 0.01, 'e': 0.2760978353971936}",25,13,16.879403301872497,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1288,False,"{'a': 0.01, 'e': 0.27582187556470933}",20,8,19.52859204828288,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1289,False,"{'a': 0.01, 'e': 0.2755461915541236}",25,20,9.957423341727576,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1290,False,"{'a': 0.01, 'e': 0.27527078308975234}",20,3,-48.15464416705794,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 2}",1 +1291,False,"{'a': 0.01, 'e': 0.27499564989618713}",20,12,14.672030140409985,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1292,False,"{'a': 0.01, 'e': 0.2747207916982947}",25,11,11.876200693575349,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1293,False,"{'a': 0.01, 'e': 0.27444620822121696}",25,0,-2.8266714130665767,"{0: 21, 1: 1, 2: 3, 3: 0, 4: 0}",0 +1294,False,"{'a': 0.01, 'e': 0.2741718991903702}",20,8,20.07492862935444,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1295,False,"{'a': 0.01, 'e': 0.2738978643314456}",25,11,14.682514927144751,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1296,False,"{'a': 0.01, 'e': 0.27362410337040804}",20,5,-63.108877134116696,"{0: 11, 1: 0, 2: 2, 3: 1, 4: 1}",1 +1297,False,"{'a': 0.01, 'e': 0.27335061603349675}",30,8,5.808432769393073,"{0: 20, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1298,False,"{'a': 0.01, 'e': 0.2730774020472242}",20,7,15.791318168839032,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1299,False,"{'a': 0.01, 'e': 0.2728044611383765}",25,13,8.656336050567823,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1300,False,"{'a': 0.01, 'e': 0.2725317930340126}",20,3,27.623987187303683,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1301,False,"{'a': 0.01, 'e': 0.2722593974614645}",20,16,8.364300699800745,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1302,False,"{'a': 0.01, 'e': 0.2719872741483365}",20,4,7.896534633695572,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1303,False,"{'a': 0.01, 'e': 0.27171542282250544}",20,12,-25.514165495185352,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1304,False,"{'a': 0.01, 'e': 0.27144384321211973}",20,4,-22.589335999165808,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1305,False,"{'a': 0.01, 'e': 0.2711725350455999}",30,4,-18.760800954999873,"{0: 23, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1306,False,"{'a': 0.01, 'e': 0.27090149805163766}",20,10,-5.578037757033284,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1307,False,"{'a': 0.01, 'e': 0.2706307319591961}",35,23,11.976648593156206,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1308,False,"{'a': 0.01, 'e': 0.270360236497509}",30,16,21.51942748913727,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1309,False,"{'a': 0.01, 'e': 0.270090011396081}",25,4,4.639576844908412,"{0: 19, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1310,False,"{'a': 0.01, 'e': 0.2698200563846868}",20,6,24.59788590896102,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1311,False,"{'a': 0.01, 'e': 0.2695503711933716}",25,0,17.01445925620714,"{0: 23, 1: 1, 2: 0, 3: 1, 4: 0}",0 +1312,False,"{'a': 0.01, 'e': 0.26928095555244996}",20,8,-56.805103987161054,"{0: 8, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1313,False,"{'a': 0.01, 'e': 0.2690118091925064}",25,1,-26.84997749414526,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 0}",1 +1314,False,"{'a': 0.01, 'e': 0.26874293184439435}",30,16,22.256793226700882,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1315,False,"{'a': 0.01, 'e': 0.2684743232392366}",20,13,-12.530397755170727,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1316,False,"{'a': 0.01, 'e': 0.2682059831084244}",25,13,-21.424132909771334,"{0: 9, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1317,False,"{'a': 0.01, 'e': 0.26793791118361776}",20,0,-26.79077505197708,"{0: 16, 1: 0, 2: 3, 3: 1, 4: 0}",0 +1318,False,"{'a': 0.01, 'e': 0.26767010719674456}",30,14,-16.619766975749926,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1319,False,"{'a': 0.01, 'e': 0.2674025708800009}",20,3,27.479206943091334,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1320,False,"{'a': 0.01, 'e': 0.26713530196585034}",30,18,-1.0970031465409908,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1321,False,"{'a': 0.01, 'e': 0.2668683001870241}",25,17,13.17159637525749,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1322,False,"{'a': 0.01, 'e': 0.2666015652765202}",25,14,22.075451809690204,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1323,False,"{'a': 0.01, 'e': 0.2663350969676039}",30,18,25.6084851235037,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1324,False,"{'a': 0.01, 'e': 0.26606889499380665}",30,15,29.437454533883596,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1325,False,"{'a': 0.01, 'e': 0.2658029590889266}",25,11,-15.539698453293926,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1326,False,"{'a': 0.01, 'e': 0.2655372889870278}",25,18,0.37976219081535123,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1327,False,"{'a': 0.01, 'e': 0.2652718844224401}",20,9,19.660586655325954,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1328,False,"{'a': 0.01, 'e': 0.2650067451297589}",20,11,-47.27444535998978,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1329,False,"{'a': 0.01, 'e': 0.26474187084384504}",25,11,11.691065922813685,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1330,False,"{'a': 0.01, 'e': 0.26447726129982396}",35,22,10.251734700559176,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1331,False,"{'a': 0.01, 'e': 0.2642129162330863}",20,13,9.550706428996536,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1332,False,"{'a': 0.01, 'e': 0.2639488353792868}",20,0,-43.71237430513238,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 1}",0 +1333,False,"{'a': 0.01, 'e': 0.2636850184743448}",30,7,-65.05577341430566,"{0: 19, 1: 1, 2: 1, 3: 0, 4: 2}",1 +1334,False,"{'a': 0.01, 'e': 0.2634214652544431}",30,21,14.172318253409024,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1335,False,"{'a': 0.01, 'e': 0.2631581754560287}",25,4,10.279227415665229,"{0: 20, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1336,False,"{'a': 0.01, 'e': 0.26289514881581166}",20,15,3.9036751833319343,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1337,False,"{'a': 0.01, 'e': 0.26263238507076536}",35,8,3.4993874554414903,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1338,False,"{'a': 0.01, 'e': 0.262369883958126}",25,16,6.393645885849356,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1339,False,"{'a': 0.01, 'e': 0.2621076452153925}",25,15,19.453390813407083,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1340,False,"{'a': 0.01, 'e': 0.261845668580326}",20,2,27.839153835434825,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1341,False,"{'a': 0.01, 'e': 0.26158395379094995}",20,13,11.756512213341201,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1342,False,"{'a': 0.01, 'e': 0.2613225005855494}",20,11,-47.25065997540425,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1343,False,"{'a': 0.01, 'e': 0.2610613087026713}",20,3,26.985506700443025,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1344,False,"{'a': 0.01, 'e': 0.26080037788112365}",25,0,-15.893606309022339,"{0: 20, 1: 1, 2: 4, 3: 0, 4: 0}",0 +1345,False,"{'a': 0.01, 'e': 0.2605397078599756}",25,8,10.245989145330721,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1346,False,"{'a': 0.01, 'e': 0.2602792983785571}",20,0,-21.70096452281863,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 1}",0 +1347,False,"{'a': 0.01, 'e': 0.26001914917645874}",25,5,20.212747739775573,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1348,False,"{'a': 0.01, 'e': 0.2597592599935311}",20,2,-67.94746277385812,"{0: 14, 1: 0, 2: 1, 3: 2, 4: 1}",1 +1349,False,"{'a': 0.01, 'e': 0.25949963056988523}",20,12,-3.90793028191997,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1350,False,"{'a': 0.01, 'e': 0.2592402606458915}",25,17,1.2487824669179421,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1351,False,"{'a': 0.01, 'e': 0.25898114996218}",20,8,-24.62329577007642,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1352,False,"{'a': 0.01, 'e': 0.25872229825964005}",20,8,3.5652316263384645,"{0: 9, 1: 3, 2: 0, 3: 0, 4: 0}",1 +1353,False,"{'a': 0.01, 'e': 0.25846370527942}",20,6,6.129821094622591,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1354,False,"{'a': 0.01, 'e': 0.25820537076292666}",20,10,0.07322684844684124,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1355,False,"{'a': 0.01, 'e': 0.2579472944518257}",20,15,4.780426460130891,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1356,False,"{'a': 0.01, 'e': 0.25768947608804055}",20,0,-35.1705683080659,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +1357,False,"{'a': 0.01, 'e': 0.2574319154137531}",30,23,12.87315762425023,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1358,False,"{'a': 0.01, 'e': 0.2571746121714024}",25,8,25.711355349639106,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1359,False,"{'a': 0.01, 'e': 0.25691756610368544}",30,7,9.584394679654423,"{0: 20, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1360,False,"{'a': 0.01, 'e': 0.2566607769535559}",20,0,-23.775349770673383,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +1361,False,"{'a': 0.01, 'e': 0.2564042444642247}",25,0,8.261847920382484,"{0: 22, 1: 1, 2: 2, 3: 0, 4: 0}",0 +1362,False,"{'a': 0.01, 'e': 0.2561479683791593}",25,8,-74.78416148202942,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 2}",1 +1363,False,"{'a': 0.01, 'e': 0.25589194844208374}",20,9,-21.364094695729253,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1364,False,"{'a': 0.01, 'e': 0.25563618439697783}",30,3,-50.0480409147999,"{0: 21, 1: 1, 2: 4, 3: 0, 4: 1}",1 +1365,False,"{'a': 0.01, 'e': 0.2553806759880777}",20,3,4.3790175272426115,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1366,False,"{'a': 0.01, 'e': 0.2551254229598748}",20,12,3.563937550804286,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1367,False,"{'a': 0.01, 'e': 0.25487042505711616}",20,10,-6.729160554779098,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1368,False,"{'a': 0.01, 'e': 0.2546156820248037}",20,1,-21.077946210880583,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1369,False,"{'a': 0.01, 'e': 0.25436119360819465}",30,12,-17.56053524339816,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1370,False,"{'a': 0.01, 'e': 0.25410695955280027}",35,13,-51.917797288395676,"{0: 18, 1: 1, 2: 0, 3: 2, 4: 1}",1 +1371,False,"{'a': 0.01, 'e': 0.2538529796043867}",25,9,-4.290207641875073,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1372,False,"{'a': 0.01, 'e': 0.25359925350897383}",25,16,10.938558645394739,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1373,False,"{'a': 0.01, 'e': 0.25334578101283567}",20,8,-36.516755837105386,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1374,False,"{'a': 0.01, 'e': 0.25309256186249957}",30,15,-9.112458002845793,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1375,False,"{'a': 0.01, 'e': 0.25283959580474646}",20,14,1.0950650271724558,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1376,False,"{'a': 0.01, 'e': 0.2525868825866102}",30,9,-30.976886393907492,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1377,False,"{'a': 0.01, 'e': 0.25233442195537764}",20,16,7.434488620169845,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1378,False,"{'a': 0.01, 'e': 0.25208221365858796}",20,1,21.889229877158918,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1379,False,"{'a': 0.01, 'e': 0.25183025744403303}",20,16,5.582246983707327,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1380,False,"{'a': 0.01, 'e': 0.25157855305975646}",20,0,16.07912713484534,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1381,False,"{'a': 0.01, 'e': 0.251327100254054}",25,20,10.167093979872792,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1382,False,"{'a': 0.01, 'e': 0.25107589877547265}",30,8,-18.359483318838198,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1383,False,"{'a': 0.01, 'e': 0.2508249483728111}",25,20,8.981054235794208,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1384,False,"{'a': 0.01, 'e': 0.25057424879511875}",25,12,16.25485421291706,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1385,False,"{'a': 0.01, 'e': 0.2503237997916961}",20,3,-66.9902995367989,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1386,False,"{'a': 0.01, 'e': 0.2500736011120941}",35,17,32.26427257125151,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1387,False,"{'a': 0.01, 'e': 0.24982365250611405}",30,19,-9.834010462127416,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1388,False,"{'a': 0.01, 'e': 0.24957395372380728}",25,10,1.9260946377315586,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1389,False,"{'a': 0.01, 'e': 0.2493245045154751}",30,8,18.454820016146837,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1390,False,"{'a': 0.01, 'e': 0.24907530463166816}",20,9,21.254730979983616,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1391,False,"{'a': 0.01, 'e': 0.24882635382318666}",25,5,15.591451684407199,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1392,False,"{'a': 0.01, 'e': 0.24857765184107966}",30,19,17.0673519126621,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1393,False,"{'a': 0.01, 'e': 0.24832919843664528}",30,0,36.711017567480184,"{0: 29, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1394,False,"{'a': 0.01, 'e': 0.24808099336142997}",20,4,8.121439784358186,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1395,False,"{'a': 0.01, 'e': 0.24783303636722875}",20,10,5.172914075813967,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1396,False,"{'a': 0.01, 'e': 0.2475853272060845}",30,0,14.969503680103198,"{0: 27, 1: 1, 2: 2, 3: 0, 4: 0}",0 +1397,False,"{'a': 0.01, 'e': 0.24733786563028812}",25,14,-4.198799112019837,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1398,False,"{'a': 0.01, 'e': 0.24709065139237796}",20,8,20.07260412084174,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1399,False,"{'a': 0.01, 'e': 0.24684368424513983}",30,13,24.1919833446082,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1400,False,"{'a': 0.01, 'e': 0.24659696394160643}",30,18,3.0217693607668332,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1401,False,"{'a': 0.01, 'e': 0.24635049023505762}",20,2,12.584824671780357,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1402,False,"{'a': 0.01, 'e': 0.2461042628790195}",25,15,-11.995147725761761,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1403,False,"{'a': 0.01, 'e': 0.2458582816272648}",25,12,-42.840055515983046,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1404,False,"{'a': 0.01, 'e': 0.2456125462338122}",30,15,27.519759044905374,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1405,False,"{'a': 0.01, 'e': 0.24536705645292634}",30,20,-24.24233421530722,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1406,False,"{'a': 0.01, 'e': 0.24512181203911731}",20,6,11.256774023899863,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1407,False,"{'a': 0.01, 'e': 0.24487681274714082}",20,8,-2.6311249596500774,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1408,False,"{'a': 0.01, 'e': 0.2446320583319975}",20,9,15.740634893047016,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1409,False,"{'a': 0.01, 'e': 0.2443875485489328}",30,19,-0.12432912640083948,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1410,False,"{'a': 0.01, 'e': 0.2441432831534371}",20,11,19.049598121214785,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1411,False,"{'a': 0.01, 'e': 0.24389926190124483}",25,17,13.911907925614331,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1412,False,"{'a': 0.01, 'e': 0.24365548454833486}",25,15,7.691807172045889,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1413,False,"{'a': 0.01, 'e': 0.24341195085092968}",35,28,12.595553402034078,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1414,False,"{'a': 0.01, 'e': 0.24316866056549566}",20,7,10.411825796643845,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1415,False,"{'a': 0.01, 'e': 0.24292561344874244}",25,19,-1.3761468883689043,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1416,False,"{'a': 0.01, 'e': 0.24268280925762298}",35,17,-10.007681206258802,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1417,False,"{'a': 0.01, 'e': 0.24244024774933293}",25,10,26.522444248393885,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1418,False,"{'a': 0.01, 'e': 0.2421979286813109}",25,11,18.519309528701903,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1419,False,"{'a': 0.01, 'e': 0.24195585181123766}",20,9,18.324958928980383,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1420,False,"{'a': 0.01, 'e': 0.24171401689703645}",25,12,20.70771375998956,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1421,False,"{'a': 0.01, 'e': 0.24147242369687225}",20,0,-14.102634710391294,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 1}",0 +1422,False,"{'a': 0.01, 'e': 0.24123107196915192}",25,11,12.148077204184283,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1423,False,"{'a': 0.01, 'e': 0.24098996147252358}",30,13,-44.42747669929471,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1424,False,"{'a': 0.01, 'e': 0.24074909196587688}",20,16,7.315308659660849,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1425,False,"{'a': 0.01, 'e': 0.24050846320834213}",30,0,6.790037884377366,"{0: 27, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1426,False,"{'a': 0.01, 'e': 0.2402680749592907}",20,6,-31.473052534426333,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1427,False,"{'a': 0.01, 'e': 0.2400279269783342}",25,11,26.162913377572156,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1428,False,"{'a': 0.01, 'e': 0.2397880190253247}",30,13,20.754812508162548,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1429,False,"{'a': 0.01, 'e': 0.2395483508603542}",20,14,2.406522066338205,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1430,False,"{'a': 0.01, 'e': 0.23930892224375455}",20,15,4.3944037376829845,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1431,False,"{'a': 0.01, 'e': 0.23906973293609704}",25,10,-14.826557325510857,"{0: 11, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1432,False,"{'a': 0.01, 'e': 0.23883078269819244}",20,12,-5.542329157077724,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1433,False,"{'a': 0.01, 'e': 0.2385920712910904}",20,13,13.605839608532847,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1434,False,"{'a': 0.01, 'e': 0.23835359847607956}",20,0,19.665068000548402,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1435,False,"{'a': 0.01, 'e': 0.23811536401468703}",30,22,-31.213156805032966,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1436,False,"{'a': 0.01, 'e': 0.2378773676686784}",20,12,13.420608115816316,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1437,False,"{'a': 0.01, 'e': 0.2376396092000572}",25,7,10.498387312962917,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1438,False,"{'a': 0.01, 'e': 0.23740208837106508}",20,9,16.98311919946745,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1439,False,"{'a': 0.01, 'e': 0.23716480494418105}",35,21,10.740232390902964,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1440,False,"{'a': 0.01, 'e': 0.23692775868212176}",25,9,14.865934581877472,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1441,False,"{'a': 0.01, 'e': 0.23669094934784088}",20,13,13.392361883313995,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1442,False,"{'a': 0.01, 'e': 0.2364543767045291}",25,14,-2.5361578986949445,"{0: 8, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1443,False,"{'a': 0.01, 'e': 0.23621804051561368}",25,15,-1.8977354784979186,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1444,False,"{'a': 0.01, 'e': 0.23598194054475852}",25,17,0.7429166747964422,"{0: 6, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1445,False,"{'a': 0.01, 'e': 0.23574607655586352}",20,10,-36.46318824693695,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1446,False,"{'a': 0.01, 'e': 0.23551044831306475}",20,0,6.5309455610392995,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1447,False,"{'a': 0.01, 'e': 0.2352750555807339}",20,6,24.373765488733728,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1448,False,"{'a': 0.01, 'e': 0.23503989812347828}",20,13,12.227964791824496,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1449,False,"{'a': 0.01, 'e': 0.2348049757061403}",25,16,-36.7088867974976,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1450,False,"{'a': 0.01, 'e': 0.23457028809379765}",20,7,5.148612570043731,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1451,False,"{'a': 0.01, 'e': 0.23433583505176261}",30,22,16.71825170088153,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1452,False,"{'a': 0.01, 'e': 0.2341016163455822}",20,10,19.818643748513846,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1453,False,"{'a': 0.01, 'e': 0.23386763174103756}",20,16,6.628194638573639,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1454,False,"{'a': 0.01, 'e': 0.23363388100414423}",20,12,0.5843824912720579,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1455,False,"{'a': 0.01, 'e': 0.23340036390115132}",25,0,-81.3675417054158,"{0: 20, 1: 0, 2: 3, 3: 0, 4: 2}",0 +1456,False,"{'a': 0.01, 'e': 0.2331670801985418}",25,3,14.57395388280503,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1457,False,"{'a': 0.01, 'e': 0.23293402966303187}",35,21,22.838523153374705,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1458,False,"{'a': 0.01, 'e': 0.23270121206157107}",20,7,7.745165130576312,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1459,False,"{'a': 0.01, 'e': 0.23246862716134165}",25,8,-6.717945103665819,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1460,False,"{'a': 0.01, 'e': 0.23223627472975883}",20,1,-18.918294038817088,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1461,False,"{'a': 0.01, 'e': 0.23200415453447004}",20,15,3.549971856207425,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1462,False,"{'a': 0.01, 'e': 0.23177226634335515}",30,0,-43.2311896539375,"{0: 24, 1: 0, 2: 4, 3: 2, 4: 0}",0 +1463,False,"{'a': 0.01, 'e': 0.2315406099245259}",30,15,0.5668218677705896,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1464,False,"{'a': 0.01, 'e': 0.23130918504632592}",20,13,13.928972339302177,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1465,False,"{'a': 0.01, 'e': 0.23107799147733019}",20,6,18.167765646807638,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1466,False,"{'a': 0.01, 'e': 0.23084702898634524}",25,12,26.46906125014844,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1467,False,"{'a': 0.01, 'e': 0.2306162973424085}",25,0,-21.35203432797474,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 1}",0 +1468,False,"{'a': 0.01, 'e': 0.23038579631478834}",30,18,22.22019513700769,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1469,False,"{'a': 0.01, 'e': 0.23015552567298364}",20,4,-25.336632424223854,"{0: 12, 1: 1, 2: 2, 3: 1, 4: 0}",1 +1470,False,"{'a': 0.01, 'e': 0.22992548518672384}",20,7,4.9112212822716685,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1471,False,"{'a': 0.01, 'e': 0.22969567462596835}",20,3,1.5181351720710483,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1472,False,"{'a': 0.01, 'e': 0.22946609376090668}",30,4,25.144774045813165,"{0: 24, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1473,False,"{'a': 0.01, 'e': 0.22923674236195785}",25,17,13.111016734214788,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1474,False,"{'a': 0.01, 'e': 0.2290076201997705}",20,6,13.505693822078477,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1475,False,"{'a': 0.01, 'e': 0.22877872704522242}",30,16,-14.673737885120527,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1476,False,"{'a': 0.01, 'e': 0.2285500626694205}",35,20,16.225589681174405,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1477,False,"{'a': 0.01, 'e': 0.22832162684370022}",25,11,0.13257195374224362,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1478,False,"{'a': 0.01, 'e': 0.22809341933962587}",30,19,9.333917385963977,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1479,False,"{'a': 0.01, 'e': 0.22786543992898983}",25,20,7.601796786659003,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1480,False,"{'a': 0.01, 'e': 0.22763768838381274}",20,11,15.605681392784101,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1481,False,"{'a': 0.01, 'e': 0.22741016447634296}",20,12,-5.559307648048381,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1482,False,"{'a': 0.01, 'e': 0.22718286797905665}",25,15,16.869349067221478,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1483,False,"{'a': 0.01, 'e': 0.22695579866465723}",25,16,18.095650351134537,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1484,False,"{'a': 0.01, 'e': 0.22672895630607542}",20,4,8.782274729570112,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1485,False,"{'a': 0.01, 'e': 0.22650234067646874}",30,12,7.9671575531385725,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1486,False,"{'a': 0.01, 'e': 0.2262759515492217}",20,11,2.552771516468286,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1487,False,"{'a': 0.01, 'e': 0.22604978869794498}",20,13,1.2143014237018415,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1488,False,"{'a': 0.01, 'e': 0.22582385189647586}",25,6,0.33860945370220263,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1489,False,"{'a': 0.01, 'e': 0.22559814091887742}",20,7,1.5387174585773795,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1490,False,"{'a': 0.01, 'e': 0.22537265553943872}",25,8,22.385042477123577,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1491,False,"{'a': 0.01, 'e': 0.22514739553267432}",30,13,23.665977957466787,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1492,False,"{'a': 0.01, 'e': 0.22492236067332425}",25,11,11.722116488887162,"{0: 12, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1493,False,"{'a': 0.01, 'e': 0.22469755073635353}",20,12,7.2633206914140525,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1494,False,"{'a': 0.01, 'e': 0.22447296549695234}",20,5,26.985764838899446,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1495,False,"{'a': 0.01, 'e': 0.22424860473053532}",20,6,28.268089079850448,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1496,False,"{'a': 0.01, 'e': 0.22402446821274175}",20,14,8.254899509038463,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1497,False,"{'a': 0.01, 'e': 0.223800555719435}",30,10,31.990352724900326,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1498,False,"{'a': 0.01, 'e': 0.22357686702670268}",25,10,21.948871061830687,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1499,False,"{'a': 0.01, 'e': 0.22335340191085598}",25,15,18.501048906537658,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1500,False,"{'a': 0.01, 'e': 0.22313016014842982}",20,16,6.936593236825971,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1501,False,"{'a': 0.01, 'e': 0.22290714151618238}",25,13,0.4222250806689387,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1502,False,"{'a': 0.01, 'e': 0.22268434579109508}",30,6,24.98078178659032,"{0: 23, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1503,False,"{'a': 0.01, 'e': 0.22246177275037207}",20,7,24.78445319239554,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1504,False,"{'a': 0.01, 'e': 0.2222394221714404}",25,16,16.448419289102638,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1505,False,"{'a': 0.01, 'e': 0.22201729383194937}",30,16,-11.712756730524768,"{0: 11, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1506,False,"{'a': 0.01, 'e': 0.22179538750977074}",25,18,-9.257393298017092,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1507,False,"{'a': 0.01, 'e': 0.22157370298299803}",25,2,-7.6344682580341,"{0: 20, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1508,False,"{'a': 0.01, 'e': 0.22135224002994683}",25,7,30.117692607000215,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1509,False,"{'a': 0.01, 'e': 0.22113099842915407}",20,8,-30.767815899078553,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1510,False,"{'a': 0.01, 'e': 0.2209099779593782}",30,13,18.852911412646797,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1511,False,"{'a': 0.01, 'e': 0.22068917839959865}",20,1,3.724275245873576,"{0: 17, 1: 1, 2: 0, 3: 1, 4: 0}",1 +1512,False,"{'a': 0.01, 'e': 0.22046859952901593}",25,17,4.360068134300719,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1513,False,"{'a': 0.01, 'e': 0.22024824112705108}",20,0,28.449138665232315,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1514,False,"{'a': 0.01, 'e': 0.22002810297334574}",25,3,-43.43035744111968,"{0: 18, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1515,False,"{'a': 0.01, 'e': 0.21980818484776168}",25,5,25.04237820295493,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1516,False,"{'a': 0.01, 'e': 0.21958848653038082}",25,20,10.924724873217967,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1517,False,"{'a': 0.01, 'e': 0.21936900780150476}",25,6,-41.293236400035646,"{0: 16, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1518,False,"{'a': 0.01, 'e': 0.2191497484416548}",20,12,-25.9074426696951,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1519,False,"{'a': 0.01, 'e': 0.2189307082315715}",20,2,5.310636206843242,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1520,False,"{'a': 0.01, 'e': 0.21871188695221475}",30,0,-96.6949028470536,"{0: 25, 1: 0, 2: 1, 3: 2, 4: 2}",0 +1521,False,"{'a': 0.01, 'e': 0.21849328438476312}",30,0,22.913678227471337,"{0: 28, 1: 0, 2: 2, 3: 0, 4: 0}",0 +1522,False,"{'a': 0.01, 'e': 0.21827490031061414}",25,0,16.820168385682962,"{0: 23, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1523,False,"{'a': 0.01, 'e': 0.2180567345113836}",25,8,22.423555157766998,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1524,False,"{'a': 0.01, 'e': 0.21783878676890578}",20,13,-9.556938927512675,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1525,False,"{'a': 0.01, 'e': 0.21762105686523284}",20,15,12.224360919464575,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1526,False,"{'a': 0.01, 'e': 0.21740354458263497}",20,6,13.791491125328333,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1527,False,"{'a': 0.01, 'e': 0.21718624970359973}",20,0,-17.29554656105921,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +1528,False,"{'a': 0.01, 'e': 0.21696917201083235}",25,20,9.501573610203874,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1529,False,"{'a': 0.01, 'e': 0.216752311287255}",20,9,-20.042803353675584,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1530,False,"{'a': 0.01, 'e': 0.21653566731600707}",20,0,29.81323891650483,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1531,False,"{'a': 0.01, 'e': 0.21631923988044444}",20,15,-10.759540532875091,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1532,False,"{'a': 0.01, 'e': 0.21610302876413975}",20,10,16.962849166218685,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1533,False,"{'a': 0.01, 'e': 0.2158870337508818}",25,11,15.979969457996337,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1534,False,"{'a': 0.01, 'e': 0.21567125462467565}",25,13,-1.7469959079457489,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1535,False,"{'a': 0.01, 'e': 0.21545569116974203}",20,16,8.172679126159606,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1536,False,"{'a': 0.01, 'e': 0.21524034317051757}",20,11,8.889978684410417,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1537,False,"{'a': 0.01, 'e': 0.21502521041165426}",25,15,6.149174661657528,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1538,False,"{'a': 0.01, 'e': 0.2148102926780192}",20,5,2.2525460783799263,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1539,False,"{'a': 0.01, 'e': 0.21459558975469478}",20,3,27.63361324247682,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1540,False,"{'a': 0.01, 'e': 0.21438110142697794}",20,13,1.5228296528948224,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1541,False,"{'a': 0.01, 'e': 0.21416682748038046}",20,0,-7.9853799192684445,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",0 +1542,False,"{'a': 0.01, 'e': 0.21395276770062824}",25,12,22.581046565682158,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1543,False,"{'a': 0.01, 'e': 0.2137389218736616}",20,4,-12.63099616060438,"{0: 12, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1544,False,"{'a': 0.01, 'e': 0.2135252897856346}",35,23,20.561882265784707,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1545,False,"{'a': 0.01, 'e': 0.21331187122291523}",30,18,10.622644252628067,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1546,False,"{'a': 0.01, 'e': 0.21309866597208482}",30,15,14.572645401787598,"{0: 13, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1547,False,"{'a': 0.01, 'e': 0.21288567381993817}",30,13,29.889092925828436,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1548,False,"{'a': 0.01, 'e': 0.21267289455348304}",25,8,16.6645784161622,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1549,False,"{'a': 0.01, 'e': 0.21246032795994024}",30,18,21.664667984889526,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1550,False,"{'a': 0.01, 'e': 0.21224797382674304}",25,13,16.558712519507743,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1551,False,"{'a': 0.01, 'e': 0.2120358319415374}",20,5,-14.603808103027756,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1552,False,"{'a': 0.01, 'e': 0.21182390209218135}",20,3,2.7834838115961453,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1553,False,"{'a': 0.01, 'e': 0.2116121840667451}",30,2,18.57973168376288,"{0: 25, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1554,False,"{'a': 0.01, 'e': 0.21140067765351048}",30,1,-3.1355483080326048,"{0: 27, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1555,False,"{'a': 0.01, 'e': 0.21118938264097117}",20,3,-16.90521266403426,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1556,False,"{'a': 0.01, 'e': 0.21097829881783206}",20,12,-8.563145792601063,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1557,False,"{'a': 0.01, 'e': 0.2107674259730094}",30,7,35.79836398858136,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1558,False,"{'a': 0.01, 'e': 0.21055676389563024}",30,8,41.67856571869585,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1559,False,"{'a': 0.01, 'e': 0.21034631237503254}",25,11,24.3939563347199,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1560,False,"{'a': 0.01, 'e': 0.21013607120076472}",25,13,9.929212881577133,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1561,False,"{'a': 0.01, 'e': 0.20992604016258565}",20,13,13.801351641381771,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1562,False,"{'a': 0.01, 'e': 0.2097162190504642}",30,13,34.45081418325615,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1563,False,"{'a': 0.01, 'e': 0.20950660765457932}",20,14,11.22472486600654,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1564,False,"{'a': 0.01, 'e': 0.20929720576531952}",25,0,10.904393445897748,"{0: 23, 1: 0, 2: 2, 3: 0, 4: 0}",0 +1565,False,"{'a': 0.01, 'e': 0.20908801317328293}",20,12,2.574649950310918,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1566,False,"{'a': 0.01, 'e': 0.20887902966927693}",25,13,8.706269604686057,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1567,False,"{'a': 0.01, 'e': 0.20867025504431805}",25,6,-1.1829165272410231,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1568,False,"{'a': 0.01, 'e': 0.20846168908963153}",30,23,11.01086351605243,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1569,False,"{'a': 0.01, 'e': 0.20825333159665155}",25,0,-9.722509365413716,"{0: 21, 1: 2, 2: 1, 3: 1, 4: 0}",0 +1570,False,"{'a': 0.01, 'e': 0.20804518235702046}",20,6,11.308030082019014,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1571,False,"{'a': 0.01, 'e': 0.20783724116258911}",20,13,13.179388245160808,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1572,False,"{'a': 0.01, 'e': 0.2076295078054162}",30,8,8.609195742902353,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1573,False,"{'a': 0.01, 'e': 0.20742198207776844}",20,13,-6.675502618037663,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1574,False,"{'a': 0.01, 'e': 0.20721466377212}",25,11,27.678569710606425,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1575,False,"{'a': 0.01, 'e': 0.20700755268115265}",25,8,11.657512815302798,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1576,False,"{'a': 0.01, 'e': 0.20680064859775515}",30,8,-1.967951368848415,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1577,False,"{'a': 0.01, 'e': 0.20659395131502356}",20,7,-27.598770998495958,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1578,False,"{'a': 0.01, 'e': 0.20638746062626045}",20,9,20.526953469365623,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1579,False,"{'a': 0.01, 'e': 0.20618117632497523}",25,13,20.191040592502034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1580,False,"{'a': 0.01, 'e': 0.20597509820488344}",25,9,24.486014406656594,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1581,False,"{'a': 0.01, 'e': 0.20576922605990708}",20,12,14.416937481537644,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1582,False,"{'a': 0.01, 'e': 0.2055635596841739}",20,0,-0.7081158381571806,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +1583,False,"{'a': 0.01, 'e': 0.20535809887201756}",25,3,9.543355071907339,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1584,False,"{'a': 0.01, 'e': 0.20515284341797715}",30,8,27.220701297324478,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1585,False,"{'a': 0.01, 'e': 0.2049477931167973}",25,17,18.346077463337032,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1586,False,"{'a': 0.01, 'e': 0.20474294776342764}",25,15,-19.501785482466154,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1587,False,"{'a': 0.01, 'e': 0.2045383071530228}",30,16,25.316431609814405,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1588,False,"{'a': 0.01, 'e': 0.20433387108094214}",20,14,0.1137412967110214,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1589,False,"{'a': 0.01, 'e': 0.20412963934274964}",25,5,18.9906241406868,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1590,False,"{'a': 0.01, 'e': 0.20392561173421342}",25,7,30.569632732292966,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1591,False,"{'a': 0.01, 'e': 0.203721788051306}",35,14,-19.416060225507362,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1592,False,"{'a': 0.01, 'e': 0.20351816809020354}",25,15,21.541739125173876,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1593,False,"{'a': 0.01, 'e': 0.20331475164728618}",35,23,22.16865295456767,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1594,False,"{'a': 0.01, 'e': 0.20311153851913738}",25,10,3.5966116413925393,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1595,False,"{'a': 0.01, 'e': 0.20290852850254407}",20,0,5.695354396333492,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +1596,False,"{'a': 0.01, 'e': 0.2027057213944961}",20,14,-32.48900552908498,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1597,False,"{'a': 0.01, 'e': 0.20250311699218648}",20,3,19.208260918896276,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1598,False,"{'a': 0.01, 'e': 0.2023007150930107}",30,8,33.05233014481575,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1599,False,"{'a': 0.01, 'e': 0.2020985154945669}",20,14,10.265466770925462,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1600,False,"{'a': 0.01, 'e': 0.20189651799465538}",25,11,-12.369421732564405,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1601,False,"{'a': 0.01, 'e': 0.20169472239127875}",20,11,-4.401187479255853,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1602,False,"{'a': 0.01, 'e': 0.20149312848264125}",20,13,14.257599314795392,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1603,False,"{'a': 0.01, 'e': 0.2012917360671491}",25,16,19.251895512212947,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1604,False,"{'a': 0.01, 'e': 0.20109054494340972}",20,7,-19.97843733867531,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1605,False,"{'a': 0.01, 'e': 0.20088955491023208}",25,18,11.376193268594655,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1606,False,"{'a': 0.01, 'e': 0.20068876576662606}",25,19,-0.5532009896007708,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1607,False,"{'a': 0.01, 'e': 0.20048817731180257}",20,10,9.51949170942813,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1608,False,"{'a': 0.01, 'e': 0.20028778934517305}",20,15,1.3814226187066312,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1609,False,"{'a': 0.01, 'e': 0.20008760166634962}",25,17,17.636177352932037,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1610,False,"{'a': 0.01, 'e': 0.1998876140751445}",30,22,15.25643685691304,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1611,False,"{'a': 0.01, 'e': 0.19968782637157012}",20,8,10.400163418501165,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1612,False,"{'a': 0.01, 'e': 0.19948823835583873}",25,13,12.15736891151916,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1613,False,"{'a': 0.01, 'e': 0.19928884982836237}",30,24,11.471699536539369,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1614,False,"{'a': 0.01, 'e': 0.1990896605897524}",20,10,16.184267705461597,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1615,False,"{'a': 0.01, 'e': 0.19889067044081962}",35,2,-18.94707632902825,"{0: 26, 1: 2, 2: 4, 3: 1, 4: 0}",1 +1616,False,"{'a': 0.01, 'e': 0.19869187918257386}",30,7,-0.6058766590537636,"{0: 19, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1617,False,"{'a': 0.01, 'e': 0.19849328661622387}",25,20,9.575338405517819,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1618,False,"{'a': 0.01, 'e': 0.19829489254317698}",25,3,27.16908905557604,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1619,False,"{'a': 0.01, 'e': 0.19809669676503922}",25,15,20.309450296391876,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1620,False,"{'a': 0.01, 'e': 0.19789869908361465}",35,11,-14.757611244439241,"{0: 22, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1621,False,"{'a': 0.01, 'e': 0.19770089930090573}",35,22,27.37532592157686,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1622,False,"{'a': 0.01, 'e': 0.19750329721911256}",20,0,-6.565269970110087,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1623,False,"{'a': 0.01, 'e': 0.19730589264063308}",25,13,14.614436164091897,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1624,False,"{'a': 0.01, 'e': 0.19710868536806264}",25,16,-2.179472114832121,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1625,False,"{'a': 0.01, 'e': 0.19691167520419406}",20,6,-36.631662968057036,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1626,False,"{'a': 0.01, 'e': 0.19671486195201704}",20,13,13.147786704262192,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1627,False,"{'a': 0.01, 'e': 0.19651824541471838}",30,13,-18.844367338390317,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1628,False,"{'a': 0.01, 'e': 0.1963218253956815}",25,19,9.034744507960777,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1629,False,"{'a': 0.01, 'e': 0.19612560169848642}",20,3,10.317889720252689,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1630,False,"{'a': 0.01, 'e': 0.19592957412690934}",30,11,-8.485240094902414,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1631,False,"{'a': 0.01, 'e': 0.19573374248492273}",30,17,-17.196872169119146,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1632,False,"{'a': 0.01, 'e': 0.1955381065766949}",20,14,-11.2562232901918,"{0: 5, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1633,False,"{'a': 0.01, 'e': 0.19534266620658997}",25,16,6.880245535819395,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1634,False,"{'a': 0.01, 'e': 0.1951474211791675}",20,14,8.344403735420974,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1635,False,"{'a': 0.01, 'e': 0.1949523712991825}",20,6,12.34218053312038,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1636,False,"{'a': 0.01, 'e': 0.194757516371585}",20,1,-26.69963914613434,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1637,False,"{'a': 0.01, 'e': 0.19456285620152014}",20,12,-2.9292249355128837,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1638,False,"{'a': 0.01, 'e': 0.19436839059432767}",30,12,32.48577486139599,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1639,False,"{'a': 0.01, 'e': 0.19417411935554202}",20,12,-4.923259108458904,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1640,False,"{'a': 0.01, 'e': 0.19398004229089189}",20,10,8.025177027198563,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1641,False,"{'a': 0.01, 'e': 0.1937861592063002}",35,18,18.23998682871977,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1642,False,"{'a': 0.01, 'e': 0.1935924699078839}",20,10,18.223983523846737,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1643,False,"{'a': 0.01, 'e': 0.19339897420195362}",20,8,20.249680830297248,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1644,False,"{'a': 0.01, 'e': 0.19320567189501364}",25,18,13.29478690178438,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1645,False,"{'a': 0.01, 'e': 0.19301256279376172}",25,17,6.231733203927625,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1646,False,"{'a': 0.01, 'e': 0.1928196467050886}",25,18,14.982733673397622,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1647,False,"{'a': 0.01, 'e': 0.19262692343607832}",20,10,6.957375309796641,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1648,False,"{'a': 0.01, 'e': 0.19243439279400748}",30,6,16.811868283108243,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1649,False,"{'a': 0.01, 'e': 0.1922420545863455}",25,0,37.47482612166182,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1650,False,"{'a': 0.01, 'e': 0.19204990862075408}",20,6,10.48365178750198,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1651,False,"{'a': 0.01, 'e': 0.19185795470508735}",25,13,20.798609337713554,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1652,False,"{'a': 0.01, 'e': 0.19166619264739126}",30,8,32.389593637665826,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1653,False,"{'a': 0.01, 'e': 0.19147462225590384}",20,10,8.266466428415436,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1654,False,"{'a': 0.01, 'e': 0.19128324333905458}",30,8,14.056779111664985,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1655,False,"{'a': 0.01, 'e': 0.19109205570546464}",25,13,-13.707742284826747,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1656,False,"{'a': 0.01, 'e': 0.19090105916394629}",20,14,9.175434423856993,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1657,False,"{'a': 0.01, 'e': 0.19071025352350304}",25,9,8.442855767917598,"{0: 14, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1658,False,"{'a': 0.01, 'e': 0.19051963859332918}",25,19,13.558032907703447,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1659,False,"{'a': 0.01, 'e': 0.19032921418280985}",30,13,16.661697420679506,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1660,False,"{'a': 0.01, 'e': 0.1901389801015205}",20,5,17.425081055523407,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1661,False,"{'a': 0.01, 'e': 0.18994893615922714}",20,14,14.94614196573413,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1662,False,"{'a': 0.01, 'e': 0.18975908216588572}",30,20,7.618278212925011,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1663,False,"{'a': 0.01, 'e': 0.18956941793164234}",20,12,-38.7998730827173,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1664,False,"{'a': 0.01, 'e': 0.18937994326683263}",20,12,13.672961563307716,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1665,False,"{'a': 0.01, 'e': 0.18919065798198204}",20,12,16.268857428045145,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1666,False,"{'a': 0.01, 'e': 0.18900156188780515}",25,13,21.50179208698298,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1667,False,"{'a': 0.01, 'e': 0.1888126547952059}",25,8,7.857572539366734,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1668,False,"{'a': 0.01, 'e': 0.1886239365152772}",30,13,4.114361256285431,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1669,False,"{'a': 0.01, 'e': 0.18843540685930069}",25,13,14.27851882069042,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1670,False,"{'a': 0.01, 'e': 0.1882470656387468}",25,6,24.87356619687068,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1671,False,"{'a': 0.01, 'e': 0.18805891266527416}",25,16,4.4606165715084565,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1672,False,"{'a': 0.01, 'e': 0.18787094775072993}",25,14,6.764813464205446,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1673,False,"{'a': 0.01, 'e': 0.18768317070714904}",30,9,38.528140587946844,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1674,False,"{'a': 0.01, 'e': 0.18749558134675456}",25,15,22.287527285826535,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1675,False,"{'a': 0.01, 'e': 0.18730817948195702}",20,0,28.52808964988507,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1676,False,"{'a': 0.01, 'e': 0.1871209649253546}",20,7,24.056205690501535,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1677,False,"{'a': 0.01, 'e': 0.18693393748973264}",25,8,-4.533552923385848,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1678,False,"{'a': 0.01, 'e': 0.1867470969880638}",30,16,-60.91818662481022,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 2}",1 +1679,False,"{'a': 0.01, 'e': 0.18656044323350748}",30,1,-7.686512159679778,"{0: 25, 1: 2, 2: 1, 3: 1, 4: 0}",1 +1680,False,"{'a': 0.01, 'e': 0.18637397603940997}",25,7,16.260064518679705,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1681,False,"{'a': 0.01, 'e': 0.186187695219304}",20,6,27.104238808952047,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1682,False,"{'a': 0.01, 'e': 0.1860016005869088}",20,10,17.624302927728273,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1683,False,"{'a': 0.01, 'e': 0.18581569195612965}",25,13,-17.61300776981644,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1684,False,"{'a': 0.01, 'e': 0.18562996914105798}",20,16,8.97897799095284,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1685,False,"{'a': 0.01, 'e': 0.18544443195597088}",20,15,9.757657143111162,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1686,False,"{'a': 0.01, 'e': 0.18525908021533122}",20,9,13.123643334477684,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1687,False,"{'a': 0.01, 'e': 0.18507391373378718}",20,15,9.746854010121565,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1688,False,"{'a': 0.01, 'e': 0.18488893232617234}",25,6,12.813220974606617,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1689,False,"{'a': 0.01, 'e': 0.1847041358075052}",35,27,14.43142661270867,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1690,False,"{'a': 0.01, 'e': 0.18451952399298926}",20,8,23.83142295408644,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1691,False,"{'a': 0.01, 'e': 0.1843350966980127}",30,10,2.8975973685578245,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1692,False,"{'a': 0.01, 'e': 0.1841508537381482}",25,17,14.56801849981622,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1693,False,"{'a': 0.01, 'e': 0.18396679492915277}",20,13,14.648016937887968,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1694,False,"{'a': 0.01, 'e': 0.18378292008696764}",30,2,20.709721377639656,"{0: 26, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1695,False,"{'a': 0.01, 'e': 0.18359922902771786}",25,9,-61.255835060311306,"{0: 12, 1: 1, 2: 0, 3: 2, 4: 1}",1 +1696,False,"{'a': 0.01, 'e': 0.18341572156771246}",25,20,11.105956363308643,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1697,False,"{'a': 0.01, 'e': 0.18323239752344386}",25,11,4.91446696461491,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1698,False,"{'a': 0.01, 'e': 0.18304925671158812}",20,12,15.888736951484182,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1699,False,"{'a': 0.01, 'e': 0.18286629894900427}",25,15,22.567935152920164,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1700,False,"{'a': 0.01, 'e': 0.18268352405273466}",25,9,27.60324655367323,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1701,False,"{'a': 0.01, 'e': 0.1825009318400043}",20,6,31.174850313965713,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1702,False,"{'a': 0.01, 'e': 0.182318522128221}",30,16,8.788190385897485,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1703,False,"{'a': 0.01, 'e': 0.182136294734975}",20,10,4.985208395181507,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1704,False,"{'a': 0.01, 'e': 0.18195424947803895}",25,8,-7.717113380811768,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1705,False,"{'a': 0.01, 'e': 0.1817723861753675}",20,10,18.707473714626566,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1706,False,"{'a': 0.01, 'e': 0.1815907046450974}",20,13,11.548171246918251,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1707,False,"{'a': 0.01, 'e': 0.18140920470554706}",20,9,20.68768130544627,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1708,False,"{'a': 0.01, 'e': 0.1812278861752166}",25,14,23.275231723005284,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1709,False,"{'a': 0.01, 'e': 0.18104674887278735}",20,0,11.99820921810667,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1710,False,"{'a': 0.01, 'e': 0.1808657926171221}",30,18,24.981741609839595,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1711,False,"{'a': 0.01, 'e': 0.1806850172272645}",20,13,5.04158342187504,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1712,False,"{'a': 0.01, 'e': 0.18050442252243923}",20,13,14.104613310732798,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1713,False,"{'a': 0.01, 'e': 0.18032400832205148}",20,10,15.502389631855007,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1714,False,"{'a': 0.01, 'e': 0.1801437744456871}",30,0,6.951130388583762,"{0: 28, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1715,False,"{'a': 0.01, 'e': 0.17996372071311217}",20,0,15.88786901714491,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1716,False,"{'a': 0.01, 'e': 0.17978384694427296}",25,7,15.230858398690506,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1717,False,"{'a': 0.01, 'e': 0.17960415295929566}",20,6,24.911384639513944,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1718,False,"{'a': 0.01, 'e': 0.17942463857848634}",20,15,10.350360898018968,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1719,False,"{'a': 0.01, 'e': 0.1792453036223305}",20,10,-22.996078296500144,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1720,False,"{'a': 0.01, 'e': 0.17906614791149322}",20,15,3.724565594585061,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1721,False,"{'a': 0.01, 'e': 0.17888717126681877}",30,12,-12.883208739499196,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1722,False,"{'a': 0.01, 'e': 0.17870837350933053}",20,15,-32.97261138340501,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1723,False,"{'a': 0.01, 'e': 0.17852975446023064}",20,8,-21.951214195947742,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1724,False,"{'a': 0.01, 'e': 0.17835131394090015}",30,17,24.588831103543196,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1725,False,"{'a': 0.01, 'e': 0.1781730517728984}",20,16,8.933567766820184,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1726,False,"{'a': 0.01, 'e': 0.17799496777796334}",20,9,9.883099715124011,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1727,False,"{'a': 0.01, 'e': 0.17781706177801082}",20,13,-3.292882019591957,"{0: 5, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1728,False,"{'a': 0.01, 'e': 0.17763933359513495}",20,0,28.356913020393275,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1729,False,"{'a': 0.01, 'e': 0.17746178305160745}",25,13,22.39485965390161,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1730,False,"{'a': 0.01, 'e': 0.17728440996987782}",25,13,-29.386951868621246,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1731,False,"{'a': 0.01, 'e': 0.17710721417257289}",20,9,-26.784423001447852,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1732,False,"{'a': 0.01, 'e': 0.17693019548249692}",35,20,16.516986406844477,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1733,False,"{'a': 0.01, 'e': 0.17675335372263115}",20,12,16.934909217957106,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1734,False,"{'a': 0.01, 'e': 0.17657668871613388}",20,16,7.522431102764807,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1735,False,"{'a': 0.01, 'e': 0.17640020028634}",25,10,16.060534409482678,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1736,False,"{'a': 0.01, 'e': 0.1762238882567611}",30,12,-63.48826811567855,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1737,False,"{'a': 0.01, 'e': 0.17604775245108517}",30,16,-26.860102508583587,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1738,False,"{'a': 0.01, 'e': 0.17587179269317638}",20,8,-18.288667639690235,"{0: 9, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1739,False,"{'a': 0.01, 'e': 0.17569600880707487}",25,18,14.438723351281102,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1740,False,"{'a': 0.01, 'e': 0.17552040061699686}",30,10,-6.743436950969085,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1741,False,"{'a': 0.01, 'e': 0.17534496794733406}",20,11,3.230004072279038,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1742,False,"{'a': 0.01, 'e': 0.17516971062265388}",20,8,24.20369596025034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1743,False,"{'a': 0.01, 'e': 0.17499462846769887}",25,9,27.986650872261883,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1744,False,"{'a': 0.01, 'e': 0.17481972130738693}",35,15,33.344642027087,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1745,False,"{'a': 0.01, 'e': 0.17464498896681085}",20,12,14.641768025458369,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1746,False,"{'a': 0.01, 'e': 0.17447043127123832}",20,8,9.893438038975448,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1747,False,"{'a': 0.01, 'e': 0.17429604804611157}",20,8,-17.48613233773128,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1748,False,"{'a': 0.01, 'e': 0.1741218391170474}",20,0,32.26046807549434,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1749,False,"{'a': 0.01, 'e': 0.17394780430983683}",30,22,11.390884845370762,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1750,False,"{'a': 0.01, 'e': 0.17377394345044514}",30,18,-11.037405670281169,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1751,False,"{'a': 0.01, 'e': 0.1736002563650113}",30,19,21.897124598052955,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1752,False,"{'a': 0.01, 'e': 0.17342674287984836}",25,7,15.889906559243949,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1753,False,"{'a': 0.01, 'e': 0.1732534028214427}",30,16,20.230267980658294,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1754,False,"{'a': 0.01, 'e': 0.17308023601645434}",30,22,15.024208432208226,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1755,False,"{'a': 0.01, 'e': 0.17290724229171636}",20,12,16.2347173679096,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1756,False,"{'a': 0.01, 'e': 0.17273442147423515}",25,14,22.497218843088373,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1757,False,"{'a': 0.01, 'e': 0.17256177339118975}",25,13,22.766273744388442,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1758,False,"{'a': 0.01, 'e': 0.17238929786993218}",25,13,2.985563921154922,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1759,False,"{'a': 0.01, 'e': 0.1722169947379868}",20,14,0.17350375158851117,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1760,False,"{'a': 0.01, 'e': 0.17204486382305054}",20,13,2.2924427413953135,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1761,False,"{'a': 0.01, 'e': 0.1718729049529924}",25,16,15.917565428578174,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1762,False,"{'a': 0.01, 'e': 0.17170111795585358}",20,12,4.760513316062327,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1763,False,"{'a': 0.01, 'e': 0.17152950265984698}",20,0,-50.789573844989846,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",1 +1764,False,"{'a': 0.01, 'e': 0.17135805889335737}",20,8,21.467420980268024,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1765,False,"{'a': 0.01, 'e': 0.1711867864849409}",20,16,7.223586301328523,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1766,False,"{'a': 0.01, 'e': 0.17101568526332522}",20,7,1.4813913391486189,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1767,False,"{'a': 0.01, 'e': 0.170844755057409}",25,13,-1.1784263575812615,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1768,False,"{'a': 0.01, 'e': 0.17067399569626215}",20,8,17.39249729487653,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1769,False,"{'a': 0.01, 'e': 0.17050340700912517}",30,11,-15.30956649612365,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1770,False,"{'a': 0.01, 'e': 0.17033298882540943}",20,8,-1.0690855650874727,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1771,False,"{'a': 0.01, 'e': 0.1701627409746967}",20,11,18.221545202103826,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1772,False,"{'a': 0.01, 'e': 0.16999266328673912}",20,16,8.067934520020039,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1773,False,"{'a': 0.01, 'e': 0.16982275559145898}",20,14,6.549340783560105,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1774,False,"{'a': 0.01, 'e': 0.1696530177189486}",25,12,12.694816900601216,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1775,False,"{'a': 0.01, 'e': 0.16948344949947006}",20,16,4.048928646358128,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1776,False,"{'a': 0.01, 'e': 0.16931405076345518}",35,23,26.553710193701885,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1777,False,"{'a': 0.01, 'e': 0.16914482134150513}",25,0,34.89032269608299,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",0 +1778,False,"{'a': 0.01, 'e': 0.16897576106439058}",25,5,23.86762607509219,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1779,False,"{'a': 0.01, 'e': 0.1688068697630511}",25,14,19.217347530305503,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1780,False,"{'a': 0.01, 'e': 0.1686381472685955}",25,7,5.3834005507600295,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1781,False,"{'a': 0.01, 'e': 0.1684695934123012}",25,15,15.676396383743297,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1782,False,"{'a': 0.01, 'e': 0.16830120802561438}",20,5,19.290356325681262,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1783,False,"{'a': 0.01, 'e': 0.16813299094014955}",20,8,-19.659165819594534,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1784,False,"{'a': 0.01, 'e': 0.16796494198768974}",20,15,9.910617735693723,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1785,False,"{'a': 0.01, 'e': 0.16779706100018585}",25,12,-20.440638742801692,"{0: 10, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1786,False,"{'a': 0.01, 'e': 0.167629347809757}",25,20,9.359281399699045,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1787,False,"{'a': 0.01, 'e': 0.1674618022486899}",20,12,16.533525647032636,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1788,False,"{'a': 0.01, 'e': 0.167294424149439}",20,0,-22.733148913778535,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1789,False,"{'a': 0.01, 'e': 0.1671272133446262}",25,13,-0.4854981721502172,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1790,False,"{'a': 0.01, 'e': 0.1669601696670407}",25,9,-38.42580130275447,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1791,False,"{'a': 0.01, 'e': 0.16679329294963874}",35,18,-11.737120418079751,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1792,False,"{'a': 0.01, 'e': 0.16662658302554365}",30,15,27.96315318735366,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1793,False,"{'a': 0.01, 'e': 0.1664600397280455}",20,14,-9.902190871173584,"{0: 5, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1794,False,"{'a': 0.01, 'e': 0.16629366289060088}",30,22,17.31535225770047,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1795,False,"{'a': 0.01, 'e': 0.16612745234683307}",20,11,-17.394444710004613,"{0: 6, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1796,False,"{'a': 0.01, 'e': 0.16596140793053138}",25,14,4.371227029010265,"{0: 9, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1797,False,"{'a': 0.01, 'e': 0.16579552947565152}",20,14,11.002305877777827,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1798,False,"{'a': 0.01, 'e': 0.16562981681631492}",30,17,-0.0038163647303242065,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1799,False,"{'a': 0.01, 'e': 0.16546426978680895}",20,0,12.924393270889823,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1800,False,"{'a': 0.01, 'e': 0.16529888822158653}",20,8,6.712853491199336,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1801,False,"{'a': 0.01, 'e': 0.16513367195526615}",30,20,5.923632397139144,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1802,False,"{'a': 0.01, 'e': 0.16496862082263145}",20,10,18.79816772661497,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1803,False,"{'a': 0.01, 'e': 0.16480373465863135}",20,15,6.853624762204094,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1804,False,"{'a': 0.01, 'e': 0.1646390132983796}",20,10,14.851223961524514,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1805,False,"{'a': 0.01, 'e': 0.1644744565771549}",20,14,14.50227450523722,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1806,False,"{'a': 0.01, 'e': 0.16431006433040046}",30,22,15.414645690774822,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1807,False,"{'a': 0.01, 'e': 0.16414583639372407}",20,9,21.42807360974983,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1808,False,"{'a': 0.01, 'e': 0.16398177260289773}",30,21,-2.870390323809864,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1809,False,"{'a': 0.01, 'e': 0.16381787279385768}",20,12,14.963714607941638,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1810,False,"{'a': 0.01, 'e': 0.16365413680270405}",20,6,26.707050725574224,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1811,False,"{'a': 0.01, 'e': 0.1634905644657009}",25,13,23.71652538219105,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1812,False,"{'a': 0.01, 'e': 0.1633271556192758}",25,12,19.73903272752626,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1813,False,"{'a': 0.01, 'e': 0.16316391010001996}",20,12,-7.618185844672483,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1814,False,"{'a': 0.01, 'e': 0.16300082774468777}",20,6,-43.35698235956503,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1815,False,"{'a': 0.01, 'e': 0.16283790839019696}",20,2,28.92963104571316,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1816,False,"{'a': 0.01, 'e': 0.16267515187362808}",20,15,4.094406417327931,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1817,False,"{'a': 0.01, 'e': 0.16251255803222467}",20,2,-66.40281443258897,"{0: 14, 1: 0, 2: 1, 3: 2, 4: 1}",1 +1818,False,"{'a': 0.01, 'e': 0.16235012670339277}",20,14,9.394537826852531,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1819,False,"{'a': 0.01, 'e': 0.16218785772470118}",20,14,7.911576414508992,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1820,False,"{'a': 0.01, 'e': 0.16202575093388075}",25,17,16.807792815042454,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1821,False,"{'a': 0.01, 'e': 0.16186380616882481}",20,13,12.827756663766703,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1822,False,"{'a': 0.01, 'e': 0.1617020232675885}",30,24,12.101021440521382,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1823,False,"{'a': 0.01, 'e': 0.16154040206838896}",20,13,15.503591017541705,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1824,False,"{'a': 0.01, 'e': 0.16137894240960493}",20,15,-12.151126792425963,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1825,False,"{'a': 0.01, 'e': 0.16121764412977677}",30,16,30.931664517107432,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1826,False,"{'a': 0.01, 'e': 0.16105650706760616}",25,17,14.95760104189241,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1827,False,"{'a': 0.01, 'e': 0.16089553106195606}",30,18,10.366349432136587,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1828,False,"{'a': 0.01, 'e': 0.16073471595185038}",30,20,21.143198954240876,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1829,False,"{'a': 0.01, 'e': 0.1605740615764741}",30,5,48.282817980477965,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1830,False,"{'a': 0.01, 'e': 0.16041356777517274}",25,18,12.273222265256088,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1831,False,"{'a': 0.01, 'e': 0.16025323438745256}",30,20,18.01219188752438,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1832,False,"{'a': 0.01, 'e': 0.1600930612529801}",25,8,1.3865380330738253,"{0: 15, 1: 1, 2: 0, 3: 1, 4: 0}",1 +1833,False,"{'a': 0.01, 'e': 0.15993304821158225}",20,8,24.662446187746635,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1834,False,"{'a': 0.01, 'e': 0.15977319510324592}",20,11,-8.607902736173662,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1835,False,"{'a': 0.01, 'e': 0.15961350176811803}",30,17,13.548800372668872,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1836,False,"{'a': 0.01, 'e': 0.15945396804650516}",20,10,7.56334080201233,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1837,False,"{'a': 0.01, 'e': 0.1592945937788737}",20,3,16.532410406781437,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1838,False,"{'a': 0.01, 'e': 0.15913537880584921}",20,8,13.883627526419831,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1839,False,"{'a': 0.01, 'e': 0.15897632296821687}",30,11,16.5236416401985,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1840,False,"{'a': 0.01, 'e': 0.15881742610692068}",20,6,27.86170694903754,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1841,False,"{'a': 0.01, 'e': 0.15865868806306388}",20,12,17.64880413809126,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1842,False,"{'a': 0.01, 'e': 0.1585001086779083}",20,14,12.7069817950482,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1843,False,"{'a': 0.01, 'e': 0.1583416877928747}",35,25,19.42453906807763,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1844,False,"{'a': 0.01, 'e': 0.15818342524954201}",30,2,-4.116456745344556,"{0: 24, 1: 1, 2: 2, 3: 1, 4: 0}",1 +1845,False,"{'a': 0.01, 'e': 0.1580253208896478}",20,14,11.195405539226412,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1846,False,"{'a': 0.01, 'e': 0.1578673745550876}",20,6,16.878056895612993,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1847,False,"{'a': 0.01, 'e': 0.15770958608791516}",20,7,23.96553472868662,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1848,False,"{'a': 0.01, 'e': 0.15755195533034191}",25,17,17.467818324821167,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1849,False,"{'a': 0.01, 'e': 0.15739448212473714}",20,3,24.813156544116975,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1850,False,"{'a': 0.01, 'e': 0.1572371663136276}",25,13,0.9087463527200634,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1851,False,"{'a': 0.01, 'e': 0.1570800077396975}",25,14,5.78038689220387,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1852,False,"{'a': 0.01, 'e': 0.1569230062457882}",20,10,3.5519311862757394,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1853,False,"{'a': 0.01, 'e': 0.15676616167489826}",25,5,-4.8840066981507,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1854,False,"{'a': 0.01, 'e': 0.156609473870183}",35,21,25.69806446336811,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1855,False,"{'a': 0.01, 'e': 0.15645294267495474}",35,28,10.102884567347376,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1856,False,"{'a': 0.01, 'e': 0.15629656793268212}",20,5,-48.859291537252645,"{0: 11, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1857,False,"{'a': 0.01, 'e': 0.15614034948699052}",25,7,22.178895434461488,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1858,False,"{'a': 0.01, 'e': 0.15598428718166135}",25,10,29.512492322281794,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1859,False,"{'a': 0.01, 'e': 0.15582838086063242}",35,13,16.655832030378964,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1860,False,"{'a': 0.01, 'e': 0.1556726303679973}",25,11,1.62544778585824,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1861,False,"{'a': 0.01, 'e': 0.15551703554800556}",30,16,27.090380979048604,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1862,False,"{'a': 0.01, 'e': 0.15536159624506227}",30,16,23.171548470614503,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1863,False,"{'a': 0.01, 'e': 0.15520631230372822}",25,15,-2.3730364674378177,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1864,False,"{'a': 0.01, 'e': 0.15505118356871936}",20,9,21.42684775960198,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1865,False,"{'a': 0.01, 'e': 0.15489620988490704}",20,14,11.094287611872787,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1866,False,"{'a': 0.01, 'e': 0.1547413910973175}",20,7,-39.57771356355506,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1867,False,"{'a': 0.01, 'e': 0.15458672705113194}",20,13,17.784936051938978,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1868,False,"{'a': 0.01, 'e': 0.15443221759168632}",25,10,13.661895439020668,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1869,False,"{'a': 0.01, 'e': 0.15427786256447115}",20,15,2.8190833136714057,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1870,False,"{'a': 0.01, 'e': 0.1541236618151314}",25,15,21.86342763520844,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1871,False,"{'a': 0.01, 'e': 0.15396961518946634}",20,8,23.536170591208034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1872,False,"{'a': 0.01, 'e': 0.15381572253342926}",20,7,24.482475748166962,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1873,False,"{'a': 0.01, 'e': 0.15366198369312759}",20,0,-10.37978957187569,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +1874,False,"{'a': 0.01, 'e': 0.15350839851482234}",20,16,7.528491004136336,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1875,False,"{'a': 0.01, 'e': 0.15335496684492847}",30,12,-34.55023747554752,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1876,False,"{'a': 0.01, 'e': 0.15320168853001417}",20,14,0.7533814701320733,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1877,False,"{'a': 0.01, 'e': 0.1530485634168012}",20,11,6.337469655841499,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1878,False,"{'a': 0.01, 'e': 0.15289559135216438}",20,7,23.293065775830225,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1879,False,"{'a': 0.01, 'e': 0.15274277218313168}",25,13,14.92883052907005,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1880,False,"{'a': 0.01, 'e': 0.15259010575688386}",25,13,-2.024210101066431,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1881,False,"{'a': 0.01, 'e': 0.15243759192075454}",25,11,18.248528993846563,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1882,False,"{'a': 0.01, 'e': 0.1522852305222298}",20,6,30.791951807138513,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1883,False,"{'a': 0.01, 'e': 0.15213302140894833}",30,13,-19.88061899323413,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1884,False,"{'a': 0.01, 'e': 0.1519809644287009}",30,13,5.528615675396572,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1885,False,"{'a': 0.01, 'e': 0.1518290594294306}",25,19,8.739866979401445,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1886,False,"{'a': 0.01, 'e': 0.15167730625923234}",30,23,11.261528150896279,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1887,False,"{'a': 0.01, 'e': 0.15152570476635302}",25,16,17.189468820300267,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1888,False,"{'a': 0.01, 'e': 0.1513742547991911}",25,0,41.2733040507632,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1889,False,"{'a': 0.01, 'e': 0.15122295620629655}",20,13,11.236666983882337,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1890,False,"{'a': 0.01, 'e': 0.15107180883637084}",30,13,12.276350064974684,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1891,False,"{'a': 0.01, 'e': 0.15092081253826656}",25,19,12.181688554673082,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1892,False,"{'a': 0.01, 'e': 0.15076996716098734}",25,7,1.66358254773387,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1893,False,"{'a': 0.01, 'e': 0.15061927255368793}",20,16,8.756292114379596,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1894,False,"{'a': 0.01, 'e': 0.15046872856567356}",20,14,-1.5278459720820838,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1895,False,"{'a': 0.01, 'e': 0.15031833504640033}",20,14,10.323632824242457,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1896,False,"{'a': 0.01, 'e': 0.15016809184547464}",20,3,5.676349595999013,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1897,False,"{'a': 0.01, 'e': 0.15001799881265335}",20,0,-26.627759181091857,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +1898,False,"{'a': 0.01, 'e': 0.14986805579784332}",20,12,-19.693911073785067,"{0: 6, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1899,False,"{'a': 0.01, 'e': 0.14971826265110164}",25,7,23.005407828526543,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1900,False,"{'a': 0.01, 'e': 0.14956861922263504}",25,14,-45.268285432322934,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1901,False,"{'a': 0.01, 'e': 0.14941912536280016}",20,16,7.684198766077512,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1902,False,"{'a': 0.01, 'e': 0.14926978092210305}",20,9,23.889008210350852,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1903,False,"{'a': 0.01, 'e': 0.14912058575119935}",25,2,-16.97342309632748,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1904,False,"{'a': 0.01, 'e': 0.1489715397008938}",30,11,4.803965646018897,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1905,False,"{'a': 0.01, 'e': 0.14882264262214037}",20,10,-44.821638729649834,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 1}",1 +1906,False,"{'a': 0.01, 'e': 0.14867389436604195}",30,15,16.004901891671462,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1907,False,"{'a': 0.01, 'e': 0.14852529478385032}",25,14,-26.40290834517412,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1908,False,"{'a': 0.01, 'e': 0.14837684372696583}",25,15,14.863883075837311,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1909,False,"{'a': 0.01, 'e': 0.14822854104693745}",25,15,7.122796309285395,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1910,False,"{'a': 0.01, 'e': 0.14808038659546244}",20,13,6.944923411286856,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1911,False,"{'a': 0.01, 'e': 0.1479323802243864}",25,15,17.645744602785392,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1912,False,"{'a': 0.01, 'e': 0.14778452178570287}",25,16,19.047935316229143,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1913,False,"{'a': 0.01, 'e': 0.14763681113155347}",25,11,26.15092247601291,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1914,False,"{'a': 0.01, 'e': 0.14748924811422748}",25,11,24.1753125036397,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1915,False,"{'a': 0.01, 'e': 0.14734183258616193}",20,16,8.415156060770382,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1916,False,"{'a': 0.01, 'e': 0.14719456439994122}",25,9,-1.5802422085145027,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1917,False,"{'a': 0.01, 'e': 0.1470474434082972}",30,18,24.906112718343934,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1918,False,"{'a': 0.01, 'e': 0.1469004694641088}",30,23,13.214909317938803,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1919,False,"{'a': 0.01, 'e': 0.14675364242040215}",25,14,20.082679400768217,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1920,False,"{'a': 0.01, 'e': 0.14660696213035015}",25,11,13.706017838285616,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1921,False,"{'a': 0.01, 'e': 0.14646042844727247}",20,11,19.97459728024443,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1922,False,"{'a': 0.01, 'e': 0.14631404122463545}",25,4,28.65813540559082,"{0: 20, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1923,False,"{'a': 0.01, 'e': 0.14616780031605184}",25,15,20.900435434423134,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1924,False,"{'a': 0.01, 'e': 0.14602170557528074}",25,11,28.574136264166253,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1925,False,"{'a': 0.01, 'e': 0.14587575685622736}",30,8,-11.15464831227871,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1926,False,"{'a': 0.01, 'e': 0.14572995401294303}",30,18,25.344981259042868,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1927,False,"{'a': 0.01, 'e': 0.14558429689962482}",20,10,7.498636243302622,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1928,False,"{'a': 0.01, 'e': 0.1454387853706157}",20,10,16.330761107193457,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1929,False,"{'a': 0.01, 'e': 0.145293419280404}",20,6,-50.60471318099989,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1930,False,"{'a': 0.01, 'e': 0.14514819848362373}",35,18,19.485514588723323,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1931,False,"{'a': 0.01, 'e': 0.145003122835054}",30,20,9.12955911099183,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1932,False,"{'a': 0.01, 'e': 0.14485819218961926}",25,10,-24.129433053111356,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1933,False,"{'a': 0.01, 'e': 0.14471340640238872}",35,21,-14.427324174475293,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1934,False,"{'a': 0.01, 'e': 0.14456876532857668}",20,8,6.923219703803559,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1935,False,"{'a': 0.01, 'e': 0.14442426882354198}",20,14,9.82529168133969,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1936,False,"{'a': 0.01, 'e': 0.14427991674278817}",30,3,-10.75206166997826,"{0: 25, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1937,False,"{'a': 0.01, 'e': 0.1441357089419631}",20,12,14.46468653354331,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1938,False,"{'a': 0.01, 'e': 0.143991645276859}",25,10,23.620158944345334,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1939,False,"{'a': 0.01, 'e': 0.14384772560341216}",25,6,31.266664147317655,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1940,False,"{'a': 0.01, 'e': 0.14370394977770293}",25,10,2.702233154217992,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1941,False,"{'a': 0.01, 'e': 0.14356031765595542}",20,9,10.265724357821206,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1942,False,"{'a': 0.01, 'e': 0.14341682909453757}",30,21,17.565584178458842,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1943,False,"{'a': 0.01, 'e': 0.14327348394996073}",25,10,21.06881437820722,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1944,False,"{'a': 0.01, 'e': 0.14313028207887982}",20,0,29.237947819436936,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1945,False,"{'a': 0.01, 'e': 0.14298722333809288}",35,22,14.363657196457655,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1946,False,"{'a': 0.01, 'e': 0.14284430758454122}",25,14,-3.0619897715709152,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1947,False,"{'a': 0.01, 'e': 0.14270153467530902}",25,13,25.040869389424973,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1948,False,"{'a': 0.01, 'e': 0.14255890446762343}",35,20,2.278444700887552,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1949,False,"{'a': 0.01, 'e': 0.14241641681885414}",25,15,21.503791676470048,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1950,False,"{'a': 0.01, 'e': 0.1422740715865136}",25,4,-26.36714158043043,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1951,False,"{'a': 0.01, 'e': 0.1421318686282564}",35,12,-19.599857294534427,"{0: 19, 1: 0, 2: 3, 3: 1, 4: 0}",1 +1952,False,"{'a': 0.01, 'e': 0.14198980780187978}",25,10,26.41034533771335,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1953,False,"{'a': 0.01, 'e': 0.14184788896532272}",25,13,23.05249251534391,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1954,False,"{'a': 0.01, 'e': 0.1417061119766665}",20,16,8.737421354603274,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1955,False,"{'a': 0.01, 'e': 0.14156447669413402}",25,18,4.096933351128378,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1956,False,"{'a': 0.01, 'e': 0.14142298297609007}",20,10,18.02047465865089,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1957,False,"{'a': 0.01, 'e': 0.14128163068104085}",25,16,16.303029032553972,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1958,False,"{'a': 0.01, 'e': 0.1411404196676341}",20,13,13.528015854490217,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1959,False,"{'a': 0.01, 'e': 0.14099934979465875}",35,25,18.937658839219026,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1960,False,"{'a': 0.01, 'e': 0.140858420921045}",30,22,15.622338379063148,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1961,False,"{'a': 0.01, 'e': 0.14071763290586387}",25,3,26.24794504150158,"{0: 21, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1962,False,"{'a': 0.01, 'e': 0.1405769856083274}",20,15,10.62734332795312,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1963,False,"{'a': 0.01, 'e': 0.1404364788877882}",20,15,1.801344178359678,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1964,False,"{'a': 0.01, 'e': 0.14029611260373964}",20,16,6.677470191805161,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1965,False,"{'a': 0.01, 'e': 0.14015588661581535}",25,15,17.734411556441472,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1966,False,"{'a': 0.01, 'e': 0.1400158007837894}",20,9,21.98488402989642,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1967,False,"{'a': 0.01, 'e': 0.13987585496757585}",20,12,4.803375799512822,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1968,False,"{'a': 0.01, 'e': 0.13973604902722894}",20,5,29.369676984182135,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1969,False,"{'a': 0.01, 'e': 0.1395963828229427}",20,16,6.148927831650102,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1970,False,"{'a': 0.01, 'e': 0.13945685621505094}",20,5,13.424646656797954,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1971,False,"{'a': 0.01, 'e': 0.13931746906402698}",25,14,14.37807719588513,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1972,False,"{'a': 0.01, 'e': 0.13917822123048373}",25,13,-66.84186080554583,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 2}",1 +1973,False,"{'a': 0.01, 'e': 0.13903911257517326}",25,4,34.069154203891365,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1974,False,"{'a': 0.01, 'e': 0.138900142958987}",20,14,8.562515844643595,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1975,False,"{'a': 0.01, 'e': 0.13876131224295524}",25,4,7.174007200509673,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1976,False,"{'a': 0.01, 'e': 0.13862262028824732}",25,3,33.425809868382245,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1977,False,"{'a': 0.01, 'e': 0.13848406695617121}",25,17,13.379703187800734,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1978,False,"{'a': 0.01, 'e': 0.13834565210817362}",20,13,13.90777513678236,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1979,False,"{'a': 0.01, 'e': 0.13820737560583965}",20,14,8.059922676567744,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1980,False,"{'a': 0.01, 'e': 0.13806923731089282}",20,13,13.043244416215257,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1981,False,"{'a': 0.01, 'e': 0.13793123708519478}",20,2,26.96191059703422,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1982,False,"{'a': 0.01, 'e': 0.13779337479074535}",20,0,34.58718891242537,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1983,False,"{'a': 0.01, 'e': 0.13765565028968216}",25,3,13.590820110418708,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1984,False,"{'a': 0.01, 'e': 0.13751806344428075}",30,16,15.263854718519115,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1985,False,"{'a': 0.01, 'e': 0.13738061411695424}",20,11,10.690373940895288,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1986,False,"{'a': 0.01, 'e': 0.13724330217025332}",20,10,17.68791140170638,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1987,False,"{'a': 0.01, 'e': 0.13710612746686596}",20,15,9.69659305603428,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1988,False,"{'a': 0.01, 'e': 0.13696908986961753}",20,8,8.104574203045134,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1989,False,"{'a': 0.01, 'e': 0.13683218924147036}",25,10,-69.30893929176233,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1990,False,"{'a': 0.01, 'e': 0.13669542544552385}",30,21,16.880370194367586,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1991,False,"{'a': 0.01, 'e': 0.13655879834501417}",25,20,8.905160133640813,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1992,False,"{'a': 0.01, 'e': 0.13642230780331424}",35,25,18.30878109844221,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1993,False,"{'a': 0.01, 'e': 0.13628595368393343}",25,13,11.705753493866426,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1994,False,"{'a': 0.01, 'e': 0.1361497358505177}",20,14,0.0748544136211109,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1995,False,"{'a': 0.01, 'e': 0.13601365416684916}",25,14,22.132568273519635,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1996,False,"{'a': 0.01, 'e': 0.13587770849684613}",30,20,8.726019113841868,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1997,False,"{'a': 0.01, 'e': 0.13574189870456288}",25,13,-4.452087476844408,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1998,False,"{'a': 0.01, 'e': 0.1356062246541897}",20,11,16.3103059744569,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1999,False,"{'a': 0.01, 'e': 0.13547068621005243}",20,0,-9.401106359734387,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",1 +2000,False,"{'a': 0.01, 'e': 0.1353352832366127}",20,7,-0.34254332512388186,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2001,False,"{'a': 0.01, 'e': 0.13520001559846748}",20,0,-45.82654081771745,"{0: 17, 1: 1, 2: 0, 3: 1, 4: 1}",0 +2002,False,"{'a': 0.01, 'e': 0.13506488316034906}",20,6,-20.405662702310263,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2003,False,"{'a': 0.01, 'e': 0.13492988578712511}",20,16,7.847976115084147,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2004,False,"{'a': 0.01, 'e': 0.1347950233437982}",20,12,12.24899924857576,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2005,False,"{'a': 0.01, 'e': 0.13466029569550586}",20,0,22.90675042374131,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +2006,False,"{'a': 0.01, 'e': 0.1345257027075204}",35,27,14.172753836570067,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2007,False,"{'a': 0.01, 'e': 0.1343912442452489}",30,16,23.137260369019348,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2008,False,"{'a': 0.01, 'e': 0.13425692017423285}",30,12,23.520412651300806,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2009,False,"{'a': 0.01, 'e': 0.13412273036014816}",20,4,14.34446542445427,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2010,False,"{'a': 0.01, 'e': 0.13398867466880493}",20,8,9.932689586741201,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2011,False,"{'a': 0.01, 'e': 0.13385475296614763}",20,12,15.219273895250241,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2012,False,"{'a': 0.01, 'e': 0.1337209651182544}",35,17,0.8688194262149551,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +2013,False,"{'a': 0.01, 'e': 0.13358731099133747}",20,5,24.90440868157158,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2014,False,"{'a': 0.01, 'e': 0.1334537904517426}",25,4,29.27350691128377,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2015,False,"{'a': 0.01, 'e': 0.13332040336594936}",30,13,-15.109013706502571,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2016,False,"{'a': 0.01, 'e': 0.1331871496005706}",30,23,13.838886941102565,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2017,False,"{'a': 0.01, 'e': 0.13305402902235253}",20,16,10.916559595631316,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2018,False,"{'a': 0.01, 'e': 0.13292104149817452}",30,8,39.444580609178566,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2019,False,"{'a': 0.01, 'e': 0.13278818689504915}",30,12,-10.453777499848973,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2020,False,"{'a': 0.01, 'e': 0.13265546508012172}",25,17,16.935987002202214,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2021,False,"{'a': 0.01, 'e': 0.13252287592067044}",25,13,23.063240192702814,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2022,False,"{'a': 0.01, 'e': 0.13239041928410605}",25,15,21.912980583167236,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2023,False,"{'a': 0.01, 'e': 0.13225809503797206}",25,0,-17.99150149354977,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 1}",0 +2024,False,"{'a': 0.01, 'e': 0.1321259030499441}",20,4,0.2798676862288063,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2025,False,"{'a': 0.01, 'e': 0.13199384318783022}",20,3,15.504164009218968,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2026,False,"{'a': 0.01, 'e': 0.13186191531957048}",30,20,20.23962167608763,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2027,False,"{'a': 0.01, 'e': 0.13173011931323708}",25,20,8.646383897374493,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2028,False,"{'a': 0.01, 'e': 0.131598455037034}",25,6,22.968848089231912,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2029,False,"{'a': 0.01, 'e': 0.13146692235929688}",20,12,14.708243161262988,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2030,False,"{'a': 0.01, 'e': 0.13133552114849303}",30,16,24.708469603766286,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2031,False,"{'a': 0.01, 'e': 0.13120425127322136}",30,13,35.25987863500254,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2032,False,"{'a': 0.01, 'e': 0.13107311260221188}",25,11,3.70543109823113,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2033,False,"{'a': 0.01, 'e': 0.13094210500432593}",25,20,9.006723950959437,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2034,False,"{'a': 0.01, 'e': 0.13081122834855582}",30,11,19.883089588216446,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2035,False,"{'a': 0.01, 'e': 0.13068048250402503}",20,12,10.90507725721065,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2036,False,"{'a': 0.01, 'e': 0.13054986733998764}",25,11,1.8087193843169729,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2037,False,"{'a': 0.01, 'e': 0.13041938272582848}",20,12,14.137811537398608,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2038,False,"{'a': 0.01, 'e': 0.13028902853106283}",25,13,17.522244816752234,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2039,False,"{'a': 0.01, 'e': 0.13015880462533663}",20,10,17.94660929905844,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2040,False,"{'a': 0.01, 'e': 0.1300287108784259}",25,12,25.512502025347416,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2041,False,"{'a': 0.01, 'e': 0.12989874716023692}",20,10,17.97841059752292,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2042,False,"{'a': 0.01, 'e': 0.1297689133408058}",25,13,6.9257326081916,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2043,False,"{'a': 0.01, 'e': 0.12963920929029896}",30,18,18.5428102214125,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2044,False,"{'a': 0.01, 'e': 0.12950963487901218}",35,19,21.299059141213093,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2045,False,"{'a': 0.01, 'e': 0.12938018997737108}",20,13,12.427643325945951,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2046,False,"{'a': 0.01, 'e': 0.12925087445593067}",25,8,31.750311507819625,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2047,False,"{'a': 0.01, 'e': 0.12912168818537556}",35,18,25.26402684775369,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2048,False,"{'a': 0.01, 'e': 0.1289926310365194}",25,12,-19.963191474599906,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2049,False,"{'a': 0.01, 'e': 0.12886370288030502}",20,1,26.877234006448845,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2050,False,"{'a': 0.01, 'e': 0.12873490358780423}",20,16,8.064636789429095,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2051,False,"{'a': 0.01, 'e': 0.12860623303021773}",20,16,7.689975973106375,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2052,False,"{'a': 0.01, 'e': 0.12847769107887502}",25,17,12.699912721884335,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2053,False,"{'a': 0.01, 'e': 0.12834927760523412}",25,13,-3.532523191627349,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2054,False,"{'a': 0.01, 'e': 0.1282209924808815}",20,0,6.894778147794967,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +2055,False,"{'a': 0.01, 'e': 0.12809283557753198}",25,11,5.178227343413598,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2056,False,"{'a': 0.01, 'e': 0.1279648067670288}",20,11,0.23370539471385676,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2057,False,"{'a': 0.01, 'e': 0.12783690592134303}",25,14,20.4116330547063,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2058,False,"{'a': 0.01, 'e': 0.12770913291257383}",20,11,18.144128283796192,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2059,False,"{'a': 0.01, 'e': 0.12758148761294813}",20,13,14.07886689954026,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2060,False,"{'a': 0.01, 'e': 0.12745396989482075}",30,10,-13.927214781134516,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",1 +2061,False,"{'a': 0.01, 'e': 0.12732657963067387}",30,4,30.05584839111474,"{0: 25, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2062,False,"{'a': 0.01, 'e': 0.12719931669311724}",20,8,21.689830778017036,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2063,False,"{'a': 0.01, 'e': 0.12707218095488781}",20,16,7.530459037197378,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2064,False,"{'a': 0.01, 'e': 0.12694517228885002}",20,13,14.052111941349612,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2065,False,"{'a': 0.01, 'e': 0.1268182905679951}",20,10,4.703753683919734,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2066,False,"{'a': 0.01, 'e': 0.1266915356654413}",25,17,7.827118570835839,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2067,False,"{'a': 0.01, 'e': 0.12656490745443366}",35,21,22.012067627188674,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2068,False,"{'a': 0.01, 'e': 0.1264384058083441}",30,11,12.43525685689358,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2069,False,"{'a': 0.01, 'e': 0.12631203060067087}",25,13,21.175428368183564,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2070,False,"{'a': 0.01, 'e': 0.12618578170503877}",20,8,-12.407036875477864,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 0}",1 +2071,False,"{'a': 0.01, 'e': 0.12605965899519883}",25,11,21.00426293223221,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2072,False,"{'a': 0.01, 'e': 0.12593366234502845}",30,8,-13.143067407772534,"{0: 20, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2073,False,"{'a': 0.01, 'e': 0.12580779162853092}",20,12,17.59678207263115,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2074,False,"{'a': 0.01, 'e': 0.1256820467198355}",25,9,18.26061075541321,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2075,False,"{'a': 0.01, 'e': 0.1255564274931972}",20,12,4.141341366757174,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2076,False,"{'a': 0.01, 'e': 0.12543093382299692}",25,12,26.399152101688838,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2077,False,"{'a': 0.01, 'e': 0.12530556558374092}",20,6,20.709131312394415,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2078,False,"{'a': 0.01, 'e': 0.12518032265006093}",30,12,28.891604865129374,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2079,False,"{'a': 0.01, 'e': 0.12505520489671398}",25,13,9.500304252256496,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2080,False,"{'a': 0.01, 'e': 0.12493021219858241}",20,11,19.631445949577802,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2081,False,"{'a': 0.01, 'e': 0.12480534443067345}",30,20,-22.41040066965236,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2082,False,"{'a': 0.01, 'e': 0.12468060146811931}",30,18,-17.94280396377164,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2083,False,"{'a': 0.01, 'e': 0.12455598318617699}",25,13,25.659054411943238,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2084,False,"{'a': 0.01, 'e': 0.12443148946022826}",20,15,9.007632037494872,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2085,False,"{'a': 0.01, 'e': 0.12430712016577938}",20,8,24.624314845038942,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2086,False,"{'a': 0.01, 'e': 0.12418287517846102}",20,8,21.30307951640159,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2087,False,"{'a': 0.01, 'e': 0.12405875437402814}",20,0,22.073761987733583,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +2088,False,"{'a': 0.01, 'e': 0.12393475762836002}",20,10,22.173191094647855,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2089,False,"{'a': 0.01, 'e': 0.12381088481745986}",20,4,27.86467970045194,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2090,False,"{'a': 0.01, 'e': 0.12368713581745483}",25,9,19.641778471036954,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2091,False,"{'a': 0.01, 'e': 0.12356351050459588}",25,14,14.589982790111282,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2092,False,"{'a': 0.01, 'e': 0.12344000875525778}",25,13,-2.516037310485845,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2093,False,"{'a': 0.01, 'e': 0.12331663044593871}",20,6,27.90314503511945,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2094,False,"{'a': 0.01, 'e': 0.12319337545326038}",20,13,14.889384363638811,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2095,False,"{'a': 0.01, 'e': 0.12307024365396771}",20,13,12.953368411165041,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2096,False,"{'a': 0.01, 'e': 0.122947234924929}",25,13,15.088316286640424,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2097,False,"{'a': 0.01, 'e': 0.12282434914313546}",20,11,4.117777236912035,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2098,False,"{'a': 0.01, 'e': 0.1227015861857013}",20,11,17.1306957978221,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2099,False,"{'a': 0.01, 'e': 0.1225789459298635}",25,11,14.083274896772336,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2100,False,"{'a': 0.01, 'e': 0.1224564282529819}",20,8,22.203485028798163,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2101,False,"{'a': 0.01, 'e': 0.12233403303253876}",30,22,-5.458777376749392,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2102,False,"{'a': 0.01, 'e': 0.12221176014613884}",20,5,4.296795178665208,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2103,False,"{'a': 0.01, 'e': 0.1220896094715092}",35,18,32.14221983193053,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2104,False,"{'a': 0.01, 'e': 0.12196758088649925}",35,21,27.998675182164867,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2105,False,"{'a': 0.01, 'e': 0.12184567426908036}",25,17,-26.60138709497101,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2106,False,"{'a': 0.01, 'e': 0.12172388949734589}",30,20,18.17763165005958,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2107,False,"{'a': 0.01, 'e': 0.121602226449511}",20,10,-14.318314677117296,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2108,False,"{'a': 0.01, 'e': 0.12148068500391276}",20,4,5.719477648382941,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2109,False,"{'a': 0.01, 'e': 0.12135926503900965}",25,10,12.944410340883996,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2110,False,"{'a': 0.01, 'e': 0.12123796643338168}",20,4,21.317969486984612,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2111,False,"{'a': 0.01, 'e': 0.1211167890657302}",30,7,36.18698937749919,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2112,False,"{'a': 0.01, 'e': 0.12099573281487792}",25,18,15.027275608528186,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2113,False,"{'a': 0.01, 'e': 0.12087479755976856}",25,11,6.1933086746946335,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2114,False,"{'a': 0.01, 'e': 0.12075398317946681}",30,12,6.386212100831268,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2115,False,"{'a': 0.01, 'e': 0.12063328955315826}",25,17,14.73586476993988,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2116,False,"{'a': 0.01, 'e': 0.12051271656014938}",20,10,16.61622450024009,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2117,False,"{'a': 0.01, 'e': 0.12039226407986708}",20,7,25.65822096965594,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2118,False,"{'a': 0.01, 'e': 0.12027193199185891}",20,11,0.6078894435555915,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2119,False,"{'a': 0.01, 'e': 0.12015172017579269}",30,6,20.050544288566442,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2120,False,"{'a': 0.01, 'e': 0.12003162851145673}",30,8,45.06027193123996,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2121,False,"{'a': 0.01, 'e': 0.11991165687875927}",20,2,33.69464991315173,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2122,False,"{'a': 0.01, 'e': 0.11979180515772868}",35,19,33.91127243470023,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2123,False,"{'a': 0.01, 'e': 0.11967207322851317}",25,16,12.66400920754852,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2124,False,"{'a': 0.01, 'e': 0.11955246097138093}",20,2,29.329750063645402,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2125,False,"{'a': 0.01, 'e': 0.11943296826671962}",25,7,29.33902276507611,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2126,False,"{'a': 0.01, 'e': 0.11931359499503652}",25,20,9.927471672970222,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2127,False,"{'a': 0.01, 'e': 0.11919434103695832}",20,6,23.795917289079075,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2128,False,"{'a': 0.01, 'e': 0.11907520627323114}",25,17,16.289858827167684,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2129,False,"{'a': 0.01, 'e': 0.11895619058472015}",25,10,14.960917263063214,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2130,False,"{'a': 0.01, 'e': 0.11883729385240965}",30,12,31.853681507979882,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2131,False,"{'a': 0.01, 'e': 0.11871851595740286}",30,7,-25.439568195980915,"{0: 21, 1: 0, 2: 0, 3: 1, 4: 1}",1 +2132,False,"{'a': 0.01, 'e': 0.11859985678092198}",20,8,13.815648636439558,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2133,False,"{'a': 0.01, 'e': 0.11848131620430775}",30,15,24.664439955414622,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2134,False,"{'a': 0.01, 'e': 0.11836289410901962}",25,17,13.630323102883983,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2135,False,"{'a': 0.01, 'e': 0.1182445903766354}",20,11,-2.817387738441552,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2136,False,"{'a': 0.01, 'e': 0.11812640488885146}",20,3,27.23137869687874,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2137,False,"{'a': 0.01, 'e': 0.11800833752748224}",30,20,17.315744965567696,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2138,False,"{'a': 0.01, 'e': 0.1178903881744604}",30,13,27.304150392404306,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2139,False,"{'a': 0.01, 'e': 0.1177725567118365}",20,14,13.542973920911784,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2140,False,"{'a': 0.01, 'e': 0.11765484302177918}",20,5,25.482439341084206,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2141,False,"{'a': 0.01, 'e': 0.11753724698657468}",30,8,14.26744893474744,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2142,False,"{'a': 0.01, 'e': 0.11741976848862698}",25,17,18.235855218689956,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2143,False,"{'a': 0.01, 'e': 0.11730240741045748}",20,8,20.918265418580074,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2144,False,"{'a': 0.01, 'e': 0.11718516363470523}",25,3,15.902418623434684,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2145,False,"{'a': 0.01, 'e': 0.11706803704412637}",25,11,-15.841877558604883,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2146,False,"{'a': 0.01, 'e': 0.11695102752159432}",25,15,12.72268757590399,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2147,False,"{'a': 0.01, 'e': 0.11683413495009948}",20,16,7.672142994622025,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2148,False,"{'a': 0.01, 'e': 0.11671735921274938}",25,17,17.229709665200886,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2149,False,"{'a': 0.01, 'e': 0.11660070019276822}",25,16,17.02938813300166,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2150,False,"{'a': 0.01, 'e': 0.11648415777349697}",30,11,8.720012201284735,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2151,False,"{'a': 0.01, 'e': 0.11636773183839315}",25,17,14.689188001075848,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2152,False,"{'a': 0.01, 'e': 0.11625142227103091}",20,16,6.016625183579581,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2153,False,"{'a': 0.01, 'e': 0.11613522895510063}",25,11,15.170220844576168,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2154,False,"{'a': 0.01, 'e': 0.116019151774409}",25,17,-27.02227355470815,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2155,False,"{'a': 0.01, 'e': 0.11590319061287874}",25,11,12.218729134095764,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2156,False,"{'a': 0.01, 'e': 0.1157873453545488}",20,6,-23.570711301787696,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2157,False,"{'a': 0.01, 'e': 0.11567161588357389}",20,10,5.897178519208506,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2158,False,"{'a': 0.01, 'e': 0.11555600208422448}",25,16,15.75090172948197,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2159,False,"{'a': 0.01, 'e': 0.11544050384088674}",25,11,26.422299045554354,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2160,False,"{'a': 0.01, 'e': 0.11532512103806251}",20,13,13.251367435656547,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2161,False,"{'a': 0.01, 'e': 0.11520985356036893}",20,3,15.80622001742023,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2162,False,"{'a': 0.01, 'e': 0.11509470129253851}",20,5,21.815009694940755,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2163,False,"{'a': 0.01, 'e': 0.11497966411941893}",25,16,16.586307683866632,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2164,False,"{'a': 0.01, 'e': 0.11486474192597308}",20,0,27.60531888868429,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2165,False,"{'a': 0.01, 'e': 0.11474993459727875}",20,10,17.765259469249116,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2166,False,"{'a': 0.01, 'e': 0.11463524201852858}",20,9,19.31154829121431,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2167,False,"{'a': 0.01, 'e': 0.11452066407502992}",20,9,17.720969150508353,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2168,False,"{'a': 0.01, 'e': 0.11440620065220493}",25,17,16.761442859521814,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2169,False,"{'a': 0.01, 'e': 0.11429185163559014}",20,14,14.019470677187002,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2170,False,"{'a': 0.01, 'e': 0.1141776169108365}",25,11,15.628462692858065,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2171,False,"{'a': 0.01, 'e': 0.11406349636370923}",30,22,14.083546625541615,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2172,False,"{'a': 0.01, 'e': 0.11394948988008788}",20,11,16.80338034918773,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2173,False,"{'a': 0.01, 'e': 0.11383559734596592}",25,19,12.41301019597844,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2174,False,"{'a': 0.01, 'e': 0.11372181864745078}",20,2,30.091340145638426,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2175,False,"{'a': 0.01, 'e': 0.11360815367076371}",30,4,31.34377497966377,"{0: 25, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2176,False,"{'a': 0.01, 'e': 0.11349460230223983}",20,15,9.834483164493053,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2177,False,"{'a': 0.01, 'e': 0.11338116442832771}",25,9,21.49018334945675,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2178,False,"{'a': 0.01, 'e': 0.11326783993558948}",20,8,16.898913665451325,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2179,False,"{'a': 0.01, 'e': 0.11315462871070062}",20,10,17.896024827668494,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2180,False,"{'a': 0.01, 'e': 0.11304153064044985}",30,23,15.697768615658466,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2181,False,"{'a': 0.01, 'e': 0.11292854561173918}",20,6,25.407658010732554,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2182,False,"{'a': 0.01, 'e': 0.11281567351158354}",25,11,26.101766984612823,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2183,False,"{'a': 0.01, 'e': 0.11270291422711082}",20,13,12.185845906872293,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2184,False,"{'a': 0.01, 'e': 0.11259026764556165}",30,18,15.873644340978116,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2185,False,"{'a': 0.01, 'e': 0.11247773365428958}",25,13,11.922670530372208,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2186,False,"{'a': 0.01, 'e': 0.11236531214076052}",25,16,13.866305857728939,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2187,False,"{'a': 0.01, 'e': 0.11225300299255297}",20,4,22.42924553372426,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2188,False,"{'a': 0.01, 'e': 0.11214080609735771}",25,3,27.014522370640243,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2189,False,"{'a': 0.01, 'e': 0.11202872134297796}",30,8,20.592446858049097,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2190,False,"{'a': 0.01, 'e': 0.11191674861732888}",25,10,12.999742910909182,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2191,False,"{'a': 0.01, 'e': 0.11180488780843774}",30,23,7.132066690831616,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2192,False,"{'a': 0.01, 'e': 0.11169313880444368}",25,11,26.91729244300291,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2193,False,"{'a': 0.01, 'e': 0.11158150149359779}",30,19,2.8012109841424744,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2194,False,"{'a': 0.01, 'e': 0.11146997576426268}",30,23,12.42911274594502,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2195,False,"{'a': 0.01, 'e': 0.11135856150491262}",20,11,14.852883335781343,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2196,False,"{'a': 0.01, 'e': 0.1112472586041333}",20,14,11.179302215122839,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2197,False,"{'a': 0.01, 'e': 0.1111360669506219}",30,7,25.41295240548881,"{0: 22, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2198,False,"{'a': 0.01, 'e': 0.11102498643318673}",35,23,23.431089800334178,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2199,False,"{'a': 0.01, 'e': 0.11091401694074722}",20,8,26.801074459445495,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2200,False,"{'a': 0.01, 'e': 0.11080315836233387}",30,18,24.135672669988203,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2201,False,"{'a': 0.01, 'e': 0.11069241058708815}",20,13,12.608313423352714,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2202,False,"{'a': 0.01, 'e': 0.11058177350426224}",30,13,30.56144881853337,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2203,False,"{'a': 0.01, 'e': 0.11047124700321906}",20,16,9.591588981647162,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2204,False,"{'a': 0.01, 'e': 0.11036083097343202}",20,10,16.63028783835833,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2205,False,"{'a': 0.01, 'e': 0.11025052530448522}",25,7,32.353052293228714,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2206,False,"{'a': 0.01, 'e': 0.1101403298860729}",25,13,26.65446742809811,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2207,False,"{'a': 0.01, 'e': 0.11003024460799965}",25,3,25.417311301108654,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2208,False,"{'a': 0.01, 'e': 0.10992026936018012}",25,15,19.179648632261742,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2209,False,"{'a': 0.01, 'e': 0.10981040403263917}",20,6,9.905593969639707,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2210,False,"{'a': 0.01, 'e': 0.10970064851551141}",30,8,40.46127832017098,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2211,False,"{'a': 0.01, 'e': 0.10959100269904129}",20,16,7.91105735752854,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2212,False,"{'a': 0.01, 'e': 0.10948146647358296}",20,7,23.38528289231413,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2213,False,"{'a': 0.01, 'e': 0.10937203972960027}",20,16,7.86808800381846,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2214,False,"{'a': 0.01, 'e': 0.10926272235766643}",20,0,34.42113859267642,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2215,False,"{'a': 0.01, 'e': 0.10915351424846406}",20,13,11.7472709103534,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2216,False,"{'a': 0.01, 'e': 0.10904441529278498}",30,14,32.36082952396762,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2217,False,"{'a': 0.01, 'e': 0.10893542538153032}",20,5,16.149172792636733,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2218,False,"{'a': 0.01, 'e': 0.10882654440571013}",25,11,15.552904445904188,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2219,False,"{'a': 0.01, 'e': 0.10871777225644341}",20,0,13.657149602857386,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +2220,False,"{'a': 0.01, 'e': 0.10860910882495796}",20,4,-21.33879551473184,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2221,False,"{'a': 0.01, 'e': 0.10850055400259043}",20,13,2.1016204165946437,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2222,False,"{'a': 0.01, 'e': 0.10839210768078596}",20,9,21.969461121512126,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2223,False,"{'a': 0.01, 'e': 0.10828376975109819}",25,13,11.9651863636334,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2224,False,"{'a': 0.01, 'e': 0.10817554010518914}",20,14,9.13936528903204,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2225,False,"{'a': 0.01, 'e': 0.10806741863482926}",20,15,9.18218202133109,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2226,False,"{'a': 0.01, 'e': 0.10795940523189702}",20,11,3.025706234019075,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2227,False,"{'a': 0.01, 'e': 0.10785149978837902}",30,9,-37.96779730975955,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 1}",1 +2228,False,"{'a': 0.01, 'e': 0.10774370219636975}",20,12,7.169335908032091,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2229,False,"{'a': 0.01, 'e': 0.10763601234807169}",25,9,-16.899211822504945,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2230,False,"{'a': 0.01, 'e': 0.10752843013579495}",25,10,5.274901726405225,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2231,False,"{'a': 0.01, 'e': 0.10742095545195732}",25,12,21.43549189953016,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2232,False,"{'a': 0.01, 'e': 0.10731358818908403}",30,16,-16.8075507973952,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2233,False,"{'a': 0.01, 'e': 0.10720632823980793}",25,16,17.87962966123895,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2234,False,"{'a': 0.01, 'e': 0.107099175496869}",20,16,6.837037176598031,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2235,False,"{'a': 0.01, 'e': 0.10699212985311449}",30,18,23.297454857798122,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2236,False,"{'a': 0.01, 'e': 0.1068851912014987}",30,18,25.232918488128178,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2237,False,"{'a': 0.01, 'e': 0.10677835943508306}",30,16,16.33783065939351,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2238,False,"{'a': 0.01, 'e': 0.10667163444703576}",30,16,27.426076754336993,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2239,False,"{'a': 0.01, 'e': 0.1065650161306318}",20,7,20.3947415939138,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2240,False,"{'a': 0.01, 'e': 0.1064585043792528}",25,15,18.614531616792107,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2241,False,"{'a': 0.01, 'e': 0.1063520990863871}",35,15,37.2850181734775,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2242,False,"{'a': 0.01, 'e': 0.10624580014562934}",20,8,21.915311149787456,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2243,False,"{'a': 0.01, 'e': 0.1061396074506806}",30,24,12.707422184756215,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2244,False,"{'a': 0.01, 'e': 0.1060335208953481}",20,14,11.599123265297873,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2245,False,"{'a': 0.01, 'e': 0.10592754037354536}",20,1,18.430972020227895,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2246,False,"{'a': 0.01, 'e': 0.10582166577929185}",20,12,0.7673132320152334,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2247,False,"{'a': 0.01, 'e': 0.10571589700671291}",30,16,14.524599970243052,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2248,False,"{'a': 0.01, 'e': 0.10561023395003975}",20,1,30.69975882807177,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2249,False,"{'a': 0.01, 'e': 0.1055046765036094}",25,14,-9.631563520865816,"{0: 9, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2250,False,"{'a': 0.01, 'e': 0.10539922456186433}",20,12,13.43409050291864,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2251,False,"{'a': 0.01, 'e': 0.10529387801935262}",20,16,5.600455976574006,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2252,False,"{'a': 0.01, 'e': 0.10518863677072765}",20,0,22.659688145854158,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2253,False,"{'a': 0.01, 'e': 0.10508350071074826}",20,13,14.366501963963646,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2254,False,"{'a': 0.01, 'e': 0.10497846973427834}",20,13,14.053186244485879,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2255,False,"{'a': 0.01, 'e': 0.1048735437362869}",30,18,10.047745715189455,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2256,False,"{'a': 0.01, 'e': 0.10476872261184789}",20,15,9.887147424153278,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2257,False,"{'a': 0.01, 'e': 0.10466400625614027}",35,13,24.88022577774595,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2258,False,"{'a': 0.01, 'e': 0.10455939456444763}",20,14,10.709805586273673,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2259,False,"{'a': 0.01, 'e': 0.10445488743215826}",20,13,10.483503227870024,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2260,False,"{'a': 0.01, 'e': 0.104350484754765}",20,10,16.648973165900305,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2261,False,"{'a': 0.01, 'e': 0.10424618642786522}",20,9,13.308571728353142,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2262,False,"{'a': 0.01, 'e': 0.10414199234716055}",25,13,11.046962182247245,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2263,False,"{'a': 0.01, 'e': 0.10403790240845692}",30,17,25.663624633767032,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2264,False,"{'a': 0.01, 'e': 0.10393391650766431}",25,13,21.591528473635652,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2265,False,"{'a': 0.01, 'e': 0.10383003454079692}",30,14,-6.430405158952235,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2266,False,"{'a': 0.01, 'e': 0.10372625640397273}",20,15,-13.584004541612442,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2267,False,"{'a': 0.01, 'e': 0.10362258199341358}",25,11,20.56605467614716,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2268,False,"{'a': 0.01, 'e': 0.10351901120544502}",20,7,25.206456209378842,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2269,False,"{'a': 0.01, 'e': 0.10341554393649634}",30,8,35.0956454967282,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2270,False,"{'a': 0.01, 'e': 0.1033121800831002}",25,10,27.499763663469622,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2271,False,"{'a': 0.01, 'e': 0.10320891954189276}",30,23,11.41870666912714,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2272,False,"{'a': 0.01, 'e': 0.10310576220961341}",30,20,19.185802319947648,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2273,False,"{'a': 0.01, 'e': 0.10300270798310492}",20,8,23.783717920919084,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2274,False,"{'a': 0.01, 'e': 0.102899756759313}",25,18,13.061602581571886,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2275,False,"{'a': 0.01, 'e': 0.1027969084352864}",20,12,13.509565899202787,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2276,False,"{'a': 0.01, 'e': 0.10269416290817676}",20,12,16.411931507091246,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2277,False,"{'a': 0.01, 'e': 0.10259152007523863}",20,8,11.48271132191752,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2278,False,"{'a': 0.01, 'e': 0.10248897983382912}",30,17,24.937682512185475,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2279,False,"{'a': 0.01, 'e': 0.102386542081408}",20,14,12.474631465982199,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2280,False,"{'a': 0.01, 'e': 0.10228420671553744}",30,15,16.731139448838263,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2281,False,"{'a': 0.01, 'e': 0.10218197363388216}",25,16,7.646037648579199,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2282,False,"{'a': 0.01, 'e': 0.10207984273420903}",20,0,33.897648451609584,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2283,False,"{'a': 0.01, 'e': 0.10197781391438715}",25,14,18.56952766053588,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2284,False,"{'a': 0.01, 'e': 0.10187588707238764}",25,20,8.298457861532228,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2285,False,"{'a': 0.01, 'e': 0.10177406210628373}",25,16,16.51036386069101,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2286,False,"{'a': 0.01, 'e': 0.1016723389142504}",25,15,16.205774148655692,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2287,False,"{'a': 0.01, 'e': 0.10157071739456447}",30,5,36.8880461156445,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2288,False,"{'a': 0.01, 'e': 0.10146919744560434}",20,9,16.275423325485953,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2289,False,"{'a': 0.01, 'e': 0.10136777896585017}",25,0,37.6045606532055,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2290,False,"{'a': 0.01, 'e': 0.1012664618538834}",20,16,7.039050740941633,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2291,False,"{'a': 0.01, 'e': 0.10116524600838693}",20,14,11.017196734856082,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2292,False,"{'a': 0.01, 'e': 0.10106413132814486}",20,3,5.591154584238665,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2293,False,"{'a': 0.01, 'e': 0.10096311771204257}",20,14,10.474893261582837,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2294,False,"{'a': 0.01, 'e': 0.10086220505906641}",25,13,23.139182309992854,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2295,False,"{'a': 0.01, 'e': 0.10076139326830373}",20,10,17.8086629588802,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2296,False,"{'a': 0.01, 'e': 0.10066068223894266}",30,23,10.467212797703578,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2297,False,"{'a': 0.01, 'e': 0.10056007187027226}",30,20,20.642547234917952,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2298,False,"{'a': 0.01, 'e': 0.1004595620616821}",35,15,7.989314021289104,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2299,False,"{'a': 0.01, 'e': 0.1003591527126624}",30,8,16.201527016225377,"{0: 21, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2300,False,"{'a': 0.01, 'e': 0.1002588437228037}",35,21,6.653045807451846,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2301,False,"{'a': 0.01, 'e': 0.10015863499179714}",25,6,-20.799978467155164,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2302,False,"{'a': 0.01, 'e': 0.10005852641943393}",25,6,29.638404826889882,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2303,False,"{'a': 0.01, 'e': 0.09995851790560545}",35,23,19.61876456250599,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2304,False,"{'a': 0.01, 'e': 0.09985860935030318}",20,14,10.177604384507806,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2305,False,"{'a': 0.01, 'e': 0.09975880065361863}",20,6,12.099329480813209,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2306,False,"{'a': 0.01, 'e': 0.09965909171574303}",25,20,10.373573456931359,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2307,False,"{'a': 0.01, 'e': 0.09955948243696745}",25,0,40.92652646961046,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2308,False,"{'a': 0.01, 'e': 0.09945997271768262}",35,15,38.41506668340465,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2309,False,"{'a': 0.01, 'e': 0.09936056245837875}",20,5,21.057915933819704,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2310,False,"{'a': 0.01, 'e': 0.09926125155964566}",25,0,32.76407024902777,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2311,False,"{'a': 0.01, 'e': 0.09916203992217239}",30,9,-4.117793227423465,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2312,False,"{'a': 0.01, 'e': 0.09906292744674731}",20,16,10.079143934921914,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2313,False,"{'a': 0.01, 'e': 0.0989639140342579}",25,13,1.4345166616073302,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2314,False,"{'a': 0.01, 'e': 0.09886499958569081}",20,12,3.4643249131628617,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2315,False,"{'a': 0.01, 'e': 0.09876618400213154}",30,22,12.814139395823615,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2316,False,"{'a': 0.01, 'e': 0.0986674671847645}",25,13,-10.332459461558209,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2317,False,"{'a': 0.01, 'e': 0.09856884903487283}",20,14,12.726655965875326,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2318,False,"{'a': 0.01, 'e': 0.09847032945383845}",20,7,15.886590995196435,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2319,False,"{'a': 0.01, 'e': 0.09837190834314173}",25,5,23.533864297589563,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2320,False,"{'a': 0.01, 'e': 0.09827358560436154}",20,6,13.266823682482105,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2321,False,"{'a': 0.01, 'e': 0.09817536113917512}",20,6,-1.4110211544143423,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2322,False,"{'a': 0.01, 'e': 0.09807723484935806}",25,13,10.648113520665023,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2323,False,"{'a': 0.01, 'e': 0.09797920663678401}",20,0,28.979648428907574,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2324,False,"{'a': 0.01, 'e': 0.09788127640342477}",25,12,27.848114617426155,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2325,False,"{'a': 0.01, 'e': 0.09778344405135005}",20,6,23.254418170235283,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2326,False,"{'a': 0.01, 'e': 0.09768570948272756}",20,13,12.726496671791413,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2327,False,"{'a': 0.01, 'e': 0.0975880725998227}",20,11,13.397124679852896,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2328,False,"{'a': 0.01, 'e': 0.09749053330499859}",20,8,24.66777785054849,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2329,False,"{'a': 0.01, 'e': 0.09739309150071584}",20,15,10.088624241031347,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2330,False,"{'a': 0.01, 'e': 0.09729574708953276}",20,16,7.528987949922739,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2331,False,"{'a': 0.01, 'e': 0.09719849997410487}",25,3,-28.67229284580323,"{0: 19, 1: 0, 2: 2, 3: 0, 4: 1}",1 +2332,False,"{'a': 0.01, 'e': 0.09710135005718508}",25,12,-2.3628101917207815,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2333,False,"{'a': 0.01, 'e': 0.09700429724162336}",25,13,24.172829595570303,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2334,False,"{'a': 0.01, 'e': 0.09690734143036704}",25,8,31.34801624601556,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2335,False,"{'a': 0.01, 'e': 0.09681048252646021}",30,18,-24.194754550696977,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2336,False,"{'a': 0.01, 'e': 0.09671372043304398}",25,3,12.55711382669245,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2337,False,"{'a': 0.01, 'e': 0.09661705505335619}",25,8,21.032751300579935,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2338,False,"{'a': 0.01, 'e': 0.09652048629073155}",20,4,26.101697316951643,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2339,False,"{'a': 0.01, 'e': 0.09642401404860125}",20,8,14.620299383051819,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2340,False,"{'a': 0.01, 'e': 0.09632763823049303}",25,14,-4.2968184542835175,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2341,False,"{'a': 0.01, 'e': 0.09623135874003103}",30,16,-46.67383804138965,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 1}",1 +2342,False,"{'a': 0.01, 'e': 0.09613517548093582}",20,9,20.405109373162073,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2343,False,"{'a': 0.01, 'e': 0.09603908835702411}",25,13,23.16300923809592,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2344,False,"{'a': 0.01, 'e': 0.09594309727220877}",20,11,11.414146965477423,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2345,False,"{'a': 0.01, 'e': 0.09584720213049865}",25,7,5.13681095164954,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2346,False,"{'a': 0.01, 'e': 0.09575140283599869}",25,17,16.29939336991295,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2347,False,"{'a': 0.01, 'e': 0.09565569929290954}",20,16,7.2128686804648074,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2348,False,"{'a': 0.01, 'e': 0.09556009140552765}",35,18,20.86917403845745,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2349,False,"{'a': 0.01, 'e': 0.0954645790782451}",20,10,21.873954407900648,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2350,False,"{'a': 0.01, 'e': 0.09536916221554961}",20,8,7.651370055925216,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2351,False,"{'a': 0.01, 'e': 0.09527384072202429}",20,8,19.5718794507303,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2352,False,"{'a': 0.01, 'e': 0.09517861450234763}",25,18,13.69976530920809,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2353,False,"{'a': 0.01, 'e': 0.09508348346129337}",20,5,27.291474041746397,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2354,False,"{'a': 0.01, 'e': 0.09498844750373053}",30,0,25.762984728158873,"{0: 28, 1: 1, 2: 1, 3: 0, 4: 0}",0 +2355,False,"{'a': 0.01, 'e': 0.09489350653462311}",30,11,0.7650609055044697,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2356,False,"{'a': 0.01, 'e': 0.09479866045903014}",20,5,3.3967881669492117,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2357,False,"{'a': 0.01, 'e': 0.09470390918210547}",30,18,18.879116107030683,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2358,False,"{'a': 0.01, 'e': 0.09460925260909793}",20,14,9.682753911164138,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2359,False,"{'a': 0.01, 'e': 0.09451469064535088}",25,17,18.005866734115166,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2360,False,"{'a': 0.01, 'e': 0.09442022319630235}",20,9,7.073537550624834,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2361,False,"{'a': 0.01, 'e': 0.09432585016748485}",25,13,23.036708847677367,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2362,False,"{'a': 0.01, 'e': 0.0942315714645254}",20,6,22.984914025267813,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2363,False,"{'a': 0.01, 'e': 0.09413738699314529}",20,16,7.595006114509696,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2364,False,"{'a': 0.01, 'e': 0.09404329665916}",25,16,-3.786185662725961,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2365,False,"{'a': 0.01, 'e': 0.09394930036847918}",25,15,18.60035663148515,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2366,False,"{'a': 0.01, 'e': 0.09385539802710659}",20,6,21.466705510122644,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2367,False,"{'a': 0.01, 'e': 0.09376158954113986}",30,20,16.700794546968798,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2368,False,"{'a': 0.01, 'e': 0.09366787481677047}",20,0,33.11755892774858,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2369,False,"{'a': 0.01, 'e': 0.09357425376028367}",30,14,20.910271494682917,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2370,False,"{'a': 0.01, 'e': 0.09348072627805847}",25,11,28.670661619446033,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2371,False,"{'a': 0.01, 'e': 0.09338729227656732}",20,5,-17.733903310395853,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2372,False,"{'a': 0.01, 'e': 0.09329395166237625}",30,20,8.101274804811986,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2373,False,"{'a': 0.01, 'e': 0.09320070434214457}",20,10,-10.688918873341526,"{0: 8, 1: 1, 2: 0, 3: 1, 4: 0}",1 +2374,False,"{'a': 0.01, 'e': 0.09310755022262504}",25,15,18.569841708037167,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2375,False,"{'a': 0.01, 'e': 0.09301448921066349}",20,5,15.915240044070295,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2376,False,"{'a': 0.01, 'e': 0.0929215212131989}",30,17,22.1650141735479,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2377,False,"{'a': 0.01, 'e': 0.09282864613726323}",30,11,22.74366591998209,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2378,False,"{'a': 0.01, 'e': 0.09273586388998147}",20,7,15.551060403440966,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2379,False,"{'a': 0.01, 'e': 0.09264317437857132}",25,7,31.00369840262415,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2380,False,"{'a': 0.01, 'e': 0.09255057751034329}",20,8,12.655927567224623,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2381,False,"{'a': 0.01, 'e': 0.09245807319270043}",30,8,45.26543300762644,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2382,False,"{'a': 0.01, 'e': 0.0923656613331385}",20,1,22.606190857743382,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2383,False,"{'a': 0.01, 'e': 0.09227334183924561}",20,10,8.752350557043373,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2384,False,"{'a': 0.01, 'e': 0.09218111461870225}",25,18,12.615715498769225,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2385,False,"{'a': 0.01, 'e': 0.09208897957928115}",30,13,31.321523203648013,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2386,False,"{'a': 0.01, 'e': 0.09199693662884734}",25,18,13.443665765218853,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2387,False,"{'a': 0.01, 'e': 0.09190498567535783}",20,9,15.192292571921278,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2388,False,"{'a': 0.01, 'e': 0.09181312662686165}",20,14,11.65592605499302,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2389,False,"{'a': 0.01, 'e': 0.09172135939149971}",20,8,22.50129041729901,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2390,False,"{'a': 0.01, 'e': 0.09162968387750484}",25,16,17.795392839426093,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2391,False,"{'a': 0.01, 'e': 0.09153809999320149}",20,14,10.261213593792128,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2392,False,"{'a': 0.01, 'e': 0.09144660764700575}",20,11,8.251606200536191,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2393,False,"{'a': 0.01, 'e': 0.09135520674742525}",35,25,19.777909384618678,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2394,False,"{'a': 0.01, 'e': 0.09126389720305915}",20,16,7.015998841948232,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2395,False,"{'a': 0.01, 'e': 0.09117267892259785}",30,17,21.670333998486907,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2396,False,"{'a': 0.01, 'e': 0.09108155181482308}",20,10,14.815236821103264,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2397,False,"{'a': 0.01, 'e': 0.09099051578860767}",20,13,13.726396245067164,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2398,False,"{'a': 0.01, 'e': 0.09089957075291567}",20,9,24.091984990909094,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2399,False,"{'a': 0.01, 'e': 0.090808716616802}",25,12,24.927419932664144,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2400,False,"{'a': 0.01, 'e': 0.09071795328941251}",25,14,16.49371886851841,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2401,False,"{'a': 0.01, 'e': 0.09062728067998384}",20,16,8.71473778277757,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2402,False,"{'a': 0.01, 'e': 0.09053669869784343}",30,0,46.46710643917093,"{0: 30, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2403,False,"{'a': 0.01, 'e': 0.09044620725240926}",30,18,22.567625947490793,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2404,False,"{'a': 0.01, 'e': 0.0903558062531899}",20,12,3.053145931644396,"{0: 6, 1: 2, 2: 0, 3: 0, 4: 0}",1 +2405,False,"{'a': 0.01, 'e': 0.09026549560978427}",20,16,7.801556719721683,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2406,False,"{'a': 0.01, 'e': 0.0901752752318818}",20,8,9.548047799588053,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2407,False,"{'a': 0.01, 'e': 0.0900851450292621}",30,11,31.28413187176335,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2408,False,"{'a': 0.01, 'e': 0.08999510491179491}",20,8,9.571295591689111,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2409,False,"{'a': 0.01, 'e': 0.08990515478944011}",25,5,30.824418513815225,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2410,False,"{'a': 0.01, 'e': 0.08981529457224763}",30,8,1.6440345294467587,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2411,False,"{'a': 0.01, 'e': 0.0897255241703572}",20,6,12.22156959115232,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2412,False,"{'a': 0.01, 'e': 0.08963584349399842}",20,14,10.679626790738645,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2413,False,"{'a': 0.01, 'e': 0.08954625245349057}",20,15,8.343604887505412,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2414,False,"{'a': 0.01, 'e': 0.08945675095924267}",25,13,-20.028967099580463,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2415,False,"{'a': 0.01, 'e': 0.08936733892175319}",25,19,11.386982611443461,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2416,False,"{'a': 0.01, 'e': 0.08927801625161007}",20,12,6.101069227089605,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2417,False,"{'a': 0.01, 'e': 0.08918878285949061}",20,6,23.851775374474965,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2418,False,"{'a': 0.01, 'e': 0.08909963865616147}",30,14,-25.256338313234288,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2419,False,"{'a': 0.01, 'e': 0.08901058355247843}",25,13,26.550837889442274,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2420,False,"{'a': 0.01, 'e': 0.08892161745938634}",30,18,20.8545280516759,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2421,False,"{'a': 0.01, 'e': 0.08883274028791908}",20,9,22.580828823890737,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2422,False,"{'a': 0.01, 'e': 0.08874395194919957}",20,13,11.94069629264232,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2423,False,"{'a': 0.01, 'e': 0.08865525235443938}",20,16,7.136888182575471,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2424,False,"{'a': 0.01, 'e': 0.08856664141493896}",20,16,8.324081476713971,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2425,False,"{'a': 0.01, 'e': 0.08847811904208727}",20,13,14.835978787862793,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2426,False,"{'a': 0.01, 'e': 0.08838968514736205}",20,13,11.07105286981265,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2427,False,"{'a': 0.01, 'e': 0.08830133964232935}",20,9,19.159881807743563,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2428,False,"{'a': 0.01, 'e': 0.08821308243864363}",20,6,27.541451986614245,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2429,False,"{'a': 0.01, 'e': 0.08812491344804767}",20,10,20.522902862714602,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2430,False,"{'a': 0.01, 'e': 0.08803683258237255}",20,11,16.838903235740972,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2431,False,"{'a': 0.01, 'e': 0.08794883975353733}",20,13,12.123941238536297,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2432,False,"{'a': 0.01, 'e': 0.0878609348735492}",30,18,19.171765578199597,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2433,False,"{'a': 0.01, 'e': 0.08777311785450327}",20,10,20.486694568234398,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2434,False,"{'a': 0.01, 'e': 0.08768538860858248}",20,8,21.409190203803238,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2435,False,"{'a': 0.01, 'e': 0.08759774704805763}",20,11,16.174996418679648,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2436,False,"{'a': 0.01, 'e': 0.08751019308528712}",20,0,7.654359000455442,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2437,False,"{'a': 0.01, 'e': 0.08742272663271701}",30,4,45.1240029062153,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2438,False,"{'a': 0.01, 'e': 0.08733534760288077}",20,12,17.044469115818032,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2439,False,"{'a': 0.01, 'e': 0.08724805590839944}",25,13,14.047658375909128,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2440,False,"{'a': 0.01, 'e': 0.0871608514619813}",35,15,37.54493913798297,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2441,False,"{'a': 0.01, 'e': 0.08707373417642188}",30,16,25.29734990657047,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2442,False,"{'a': 0.01, 'e': 0.08698670396460385}",20,7,2.0241054042649758,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2443,False,"{'a': 0.01, 'e': 0.08689976073949708}",25,20,10.462309166797498,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2444,False,"{'a': 0.01, 'e': 0.08681290441415829}",25,11,26.65767622708164,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2445,False,"{'a': 0.01, 'e': 0.08672613490173114}",20,8,21.3495169223316,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2446,False,"{'a': 0.01, 'e': 0.0866394521154461}",30,4,46.841797255556905,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2447,False,"{'a': 0.01, 'e': 0.08655285596862042}",20,2,22.297391818488,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2448,False,"{'a': 0.01, 'e': 0.08646634637465792}",20,11,16.780565648935614,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2449,False,"{'a': 0.01, 'e': 0.086379923247049}",20,10,18.95380939924982,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2450,False,"{'a': 0.01, 'e': 0.0862935864993705}",30,22,15.361139211970745,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2451,False,"{'a': 0.01, 'e': 0.08620733604528572}",25,20,8.814423056747973,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2452,False,"{'a': 0.01, 'e': 0.08612117179854416}",25,15,18.29915902868833,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2453,False,"{'a': 0.01, 'e': 0.08603509367298158}",25,13,21.114371276024997,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2454,False,"{'a': 0.01, 'e': 0.08594910158251981}",20,6,15.274904733285194,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2455,False,"{'a': 0.01, 'e': 0.08586319544116683}",20,5,28.961037660698807,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2456,False,"{'a': 0.01, 'e': 0.08577737516301644}",20,7,-3.372749541586085,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2457,False,"{'a': 0.01, 'e': 0.08569164066224835}",20,6,-5.197733512202592,"{0: 12, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2458,False,"{'a': 0.01, 'e': 0.08560599185312803}",20,16,6.578734375150956,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2459,False,"{'a': 0.01, 'e': 0.08552042865000674}",20,12,13.786636757740062,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2460,False,"{'a': 0.01, 'e': 0.08543495096732123}",30,23,6.321536682859564,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2461,False,"{'a': 0.01, 'e': 0.08534955871959381}",30,14,18.906240591230222,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2462,False,"{'a': 0.01, 'e': 0.08526425182143217}",20,12,19.32900305874354,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2463,False,"{'a': 0.01, 'e': 0.0851790301875295}",25,20,8.632960785401767,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2464,False,"{'a': 0.01, 'e': 0.08509389373266411}",20,12,7.485757249048737,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2465,False,"{'a': 0.01, 'e': 0.08500884237169956}",25,20,8.375147386052054,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2466,False,"{'a': 0.01, 'e': 0.08492387601958441}",20,13,15.171733540713166,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2467,False,"{'a': 0.01, 'e': 0.08483899459135241}",20,14,9.963387784205327,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2468,False,"{'a': 0.01, 'e': 0.08475419800212207}",20,16,7.0944931272156095,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2469,False,"{'a': 0.01, 'e': 0.08466948616709678}",20,13,13.871709235739381,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2470,False,"{'a': 0.01, 'e': 0.08458485900156469}",25,3,25.515165591617077,"{0: 20, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2471,False,"{'a': 0.01, 'e': 0.08450031642089868}",20,11,12.347826272629094,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2472,False,"{'a': 0.01, 'e': 0.08441585834055614}",20,8,26.284380434716635,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2473,False,"{'a': 0.01, 'e': 0.08433148467607897}",25,18,13.14239319470751,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2474,False,"{'a': 0.01, 'e': 0.08424719534309347}",25,13,20.381699525303592,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2475,False,"{'a': 0.01, 'e': 0.08416299025731036}",20,10,15.720970840948288,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2476,False,"{'a': 0.01, 'e': 0.08407886933452453}",20,14,10.613677676471323,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2477,False,"{'a': 0.01, 'e': 0.08399483249061504}",20,4,26.003310137394127,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2478,False,"{'a': 0.01, 'e': 0.083910879641545}",25,13,25.15608403876751,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2479,False,"{'a': 0.01, 'e': 0.08382701070336164}",25,15,-2.2779204631558994,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2480,False,"{'a': 0.01, 'e': 0.08374322559219596}",25,13,23.722025040869315,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2481,False,"{'a': 0.01, 'e': 0.08365952422426286}",25,8,27.70741834861216,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2482,False,"{'a': 0.01, 'e': 0.0835759065158609}",25,11,12.402601466683414,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2483,False,"{'a': 0.01, 'e': 0.08349237238337248}",25,18,14.909906141658885,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2484,False,"{'a': 0.01, 'e': 0.08340892174326339}",30,18,26.595343926071937,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2485,False,"{'a': 0.01, 'e': 0.083325554512083}",25,13,23.724579466920893,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2486,False,"{'a': 0.01, 'e': 0.08324227060646401}",20,0,8.899139387429212,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2487,False,"{'a': 0.01, 'e': 0.08315906994312262}",20,10,18.5982733766309,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2488,False,"{'a': 0.01, 'e': 0.0830759524388581}",20,12,14.99521211892406,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2489,False,"{'a': 0.01, 'e': 0.08299291801055293}",25,7,34.605577418136846,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2490,False,"{'a': 0.01, 'e': 0.08290996657517266}",30,19,21.513247470937646,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2491,False,"{'a': 0.01, 'e': 0.08282709804976592}",20,7,7.587715024540764,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2492,False,"{'a': 0.01, 'e': 0.08274431235146412}",20,2,32.12358032255705,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2493,False,"{'a': 0.01, 'e': 0.08266160939748157}",25,17,9.887789829155789,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2494,False,"{'a': 0.01, 'e': 0.08257898910511527}",20,11,17.026523160478035,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2495,False,"{'a': 0.01, 'e': 0.08249645139174498}",25,14,21.980415369556447,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2496,False,"{'a': 0.01, 'e': 0.08241399617483297}",25,18,13.116732368527723,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2497,False,"{'a': 0.01, 'e': 0.08233162337192401}",20,15,8.313461159656121,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2498,False,"{'a': 0.01, 'e': 0.08224933290064523}",25,17,15.750200836079134,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2499,False,"{'a': 0.01, 'e': 0.08216712467870625}",30,12,23.024465818216704,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2500,False,"{'a': 0.01, 'e': 0.0820849986238988}",30,7,36.00118830699733,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2501,False,"{'a': 0.01, 'e': 0.08200295465409681}",20,4,31.242685920928018,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2502,False,"{'a': 0.01, 'e': 0.08192099268725626}",20,16,7.272620757585155,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2503,False,"{'a': 0.01, 'e': 0.08183911264141527}",20,12,16.388209212039783,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2504,False,"{'a': 0.01, 'e': 0.08175731443469375}",25,7,31.886359540763436,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2505,False,"{'a': 0.01, 'e': 0.08167559798529346}",25,18,13.92496622121691,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2506,False,"{'a': 0.01, 'e': 0.08159396321149794}",30,23,12.968663629570859,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2507,False,"{'a': 0.01, 'e': 0.08151241003167246}",30,15,26.858287704839213,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2508,False,"{'a': 0.01, 'e': 0.08143093836426381}",25,12,23.13680414727093,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2509,False,"{'a': 0.01, 'e': 0.0813495481278003}",25,8,17.647026516027815,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2510,False,"{'a': 0.01, 'e': 0.08126823924089167}",20,12,16.382733790196987,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2511,False,"{'a': 0.01, 'e': 0.08118701162222909}",25,12,22.29390569291453,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2512,False,"{'a': 0.01, 'e': 0.0811058651905849}",20,13,13.530827560613199,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2513,False,"{'a': 0.01, 'e': 0.08102479986481265}",20,3,22.915635416513986,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2514,False,"{'a': 0.01, 'e': 0.08094381556384699}",25,17,18.433992724686508,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2515,False,"{'a': 0.01, 'e': 0.08086291220670366}",25,13,22.668634277219358,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2516,False,"{'a': 0.01, 'e': 0.08078208971247929}",25,19,12.534883668153459,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2517,False,"{'a': 0.01, 'e': 0.08070134800035135}",30,16,-26.043066555431675,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2518,False,"{'a': 0.01, 'e': 0.08062068698957811}",20,13,15.012189996417362,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2519,False,"{'a': 0.01, 'e': 0.08054010659949862}",25,15,-2.938226566344193,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2520,False,"{'a': 0.01, 'e': 0.08045960674953244}",35,13,32.3314427533565,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2521,False,"{'a': 0.01, 'e': 0.0803791873591797}",25,6,33.60146334052855,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2522,False,"{'a': 0.01, 'e': 0.08029884834802099}",20,13,7.543247872174064,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2523,False,"{'a': 0.01, 'e': 0.08021858963571736}",25,6,35.855329031327635,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2524,False,"{'a': 0.01, 'e': 0.08013841114201005}",30,21,18.186147632227875,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2525,False,"{'a': 0.01, 'e': 0.08005831278672054}",20,13,5.154089218332945,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2526,False,"{'a': 0.01, 'e': 0.07997829448975048}",20,9,12.154755353654902,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2527,False,"{'a': 0.01, 'e': 0.0798983561710816}",20,6,17.262003034593327,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2528,False,"{'a': 0.01, 'e': 0.07981849775077554}",20,5,18.500691540544604,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2529,False,"{'a': 0.01, 'e': 0.0797387191489739}",20,16,7.503544787129154,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2530,False,"{'a': 0.01, 'e': 0.07965902028589801}",25,15,20.797362403337836,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2531,False,"{'a': 0.01, 'e': 0.07957940108184908}",20,16,7.730053019172201,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2532,False,"{'a': 0.01, 'e': 0.07949986145720786}",20,12,13.95869142811357,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2533,False,"{'a': 0.01, 'e': 0.07942040133243472}",20,12,15.932859519639454,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2534,False,"{'a': 0.01, 'e': 0.0793410206280695}",20,14,11.643475932533141,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2535,False,"{'a': 0.01, 'e': 0.07926171926473155}",20,12,14.406532299449392,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2536,False,"{'a': 0.01, 'e': 0.07918249716311948}",25,7,31.639299590001315,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2537,False,"{'a': 0.01, 'e': 0.07910335424401117}",25,13,22.26993517529398,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2538,False,"{'a': 0.01, 'e': 0.07902429042826366}",25,5,33.27571432002753,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2539,False,"{'a': 0.01, 'e': 0.07894530563681319}",30,16,21.630311046294405,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2540,False,"{'a': 0.01, 'e': 0.07886639979067495}",25,17,19.68715598390984,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2541,False,"{'a': 0.01, 'e': 0.07878757281094306}",20,9,18.599141525584823,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2542,False,"{'a': 0.01, 'e': 0.07870882461879052}",20,4,15.7375421173844,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2543,False,"{'a': 0.01, 'e': 0.07863015513546918}",20,11,19.261094189390466,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2544,False,"{'a': 0.01, 'e': 0.07855156428230954}",20,11,17.636244787428026,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2545,False,"{'a': 0.01, 'e': 0.07847305198072073}",25,9,-16.860495546797246,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2546,False,"{'a': 0.01, 'e': 0.0783946181521904}",25,15,-21.15624320465717,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2547,False,"{'a': 0.01, 'e': 0.07831626271828479}",20,11,19.770651105779564,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2548,False,"{'a': 0.01, 'e': 0.07823798560064842}",25,15,19.074840279614683,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2549,False,"{'a': 0.01, 'e': 0.07815978672100418}",30,17,5.599975534608385,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2550,False,"{'a': 0.01, 'e': 0.07808166600115313}",20,16,7.162559973190464,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2551,False,"{'a': 0.01, 'e': 0.07800362336297463}",20,10,3.4054790345319956,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2552,False,"{'a': 0.01, 'e': 0.077925658728426}",25,17,9.45702518770031,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2553,False,"{'a': 0.01, 'e': 0.07784777201954257}",20,14,13.862951189081596,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2554,False,"{'a': 0.01, 'e': 0.07776996315843764}",25,3,31.78887538483904,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2555,False,"{'a': 0.01, 'e': 0.07769223206730236}",25,0,19.737350725516666,"{0: 23, 1: 1, 2: 1, 3: 0, 4: 0}",0 +2556,False,"{'a': 0.01, 'e': 0.07761457866840563}",25,20,11.31646710029731,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2557,False,"{'a': 0.01, 'e': 0.07753700288409404}",20,5,27.950480191472636,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2558,False,"{'a': 0.01, 'e': 0.07745950463679176}",30,16,25.986266614724634,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2559,False,"{'a': 0.01, 'e': 0.0773820838490006}",35,20,28.810469162757673,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2560,False,"{'a': 0.01, 'e': 0.07730474044329974}",25,9,25.386589971850558,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2561,False,"{'a': 0.01, 'e': 0.07722747434234577}",25,16,21.0814767548123,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2562,False,"{'a': 0.01, 'e': 0.07715028546887258}",35,13,-17.30069459823025,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2563,False,"{'a': 0.01, 'e': 0.07707317374569124}",20,7,13.306390687653886,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2564,False,"{'a': 0.01, 'e': 0.07699613909569011}",25,15,21.590159679890675,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2565,False,"{'a': 0.01, 'e': 0.0769191814418345}",20,12,15.304768308977721,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2566,False,"{'a': 0.01, 'e': 0.07684230070716673}",20,12,8.717045921058467,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2567,False,"{'a': 0.01, 'e': 0.07676549681480604}",20,13,10.181422138249347,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2568,False,"{'a': 0.01, 'e': 0.0766887696879486}",20,0,36.17316373695595,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2569,False,"{'a': 0.01, 'e': 0.07661211924986724}",20,13,11.05037259482678,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2570,False,"{'a': 0.01, 'e': 0.07653554542391151}",20,12,16.776719470278366,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2571,False,"{'a': 0.01, 'e': 0.07645904813350755}",30,16,8.117354365862157,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2572,False,"{'a': 0.01, 'e': 0.07638262730215813}",20,10,16.6542753002876,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2573,False,"{'a': 0.01, 'e': 0.07630628285344238}",20,8,11.968819168225167,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2574,False,"{'a': 0.01, 'e': 0.07623001471101583}",20,11,18.978565791062195,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2575,False,"{'a': 0.01, 'e': 0.07615382279861033}",20,16,7.501933214301032,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2576,False,"{'a': 0.01, 'e': 0.07607770704003398}",25,1,39.53493961679373,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2577,False,"{'a': 0.01, 'e': 0.07600166735917104}",20,12,7.361850204183135,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2578,False,"{'a': 0.01, 'e': 0.07592570367998178}",30,19,21.527926110248227,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2579,False,"{'a': 0.01, 'e': 0.07584981592650249}",25,13,21.566979635091084,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2580,False,"{'a': 0.01, 'e': 0.07577400402284548}",35,21,27.041738918924857,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2581,False,"{'a': 0.01, 'e': 0.0756982678931988}",25,12,19.15404650075527,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2582,False,"{'a': 0.01, 'e': 0.07562260746182634}",20,14,13.027242865386178,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2583,False,"{'a': 0.01, 'e': 0.0755470226530676}",20,2,20.807046353134105,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2584,False,"{'a': 0.01, 'e': 0.07547151339133784}",25,13,21.002076078578295,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2585,False,"{'a': 0.01, 'e': 0.07539607960112776}",20,4,16.25616482222702,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2586,False,"{'a': 0.01, 'e': 0.07532072120700357}",20,13,14.660673298179232,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2587,False,"{'a': 0.01, 'e': 0.07524543813360683}",25,18,0.6536412132658973,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2588,False,"{'a': 0.01, 'e': 0.07517023030565453}",30,18,11.91922379211385,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2589,False,"{'a': 0.01, 'e': 0.0750950976479388}",20,12,16.504000251822408,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2590,False,"{'a': 0.01, 'e': 0.07502004008532698}",20,10,21.34728778306748,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2591,False,"{'a': 0.01, 'e': 0.07494505754276144}",25,14,-1.3592206466067873,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2592,False,"{'a': 0.01, 'e': 0.07487014994525974}",25,13,25.346640922320656,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2593,False,"{'a': 0.01, 'e': 0.07479531721791423}",30,14,-10.963640385134337,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2594,False,"{'a': 0.01, 'e': 0.07472055928589216}",20,13,13.710608645146356,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2595,False,"{'a': 0.01, 'e': 0.07464587607443557}",20,9,17.639905856431753,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2596,False,"{'a': 0.01, 'e': 0.07457126750886131}",25,14,24.181307351652453,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2597,False,"{'a': 0.01, 'e': 0.07449673351456078}",20,11,6.0125184982698325,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2598,False,"{'a': 0.01, 'e': 0.07442227401699995}",20,15,8.104707598606446,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2599,False,"{'a': 0.01, 'e': 0.07434788894171933}",20,16,8.358188517625722,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2600,False,"{'a': 0.01, 'e': 0.07427357821433388}",25,13,10.987244127585967,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2601,False,"{'a': 0.01, 'e': 0.07419934176053282}",20,12,12.584832106589856,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2602,False,"{'a': 0.01, 'e': 0.0741251795060797}",20,10,15.399560556169616,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2603,False,"{'a': 0.01, 'e': 0.07405109137681225}",20,13,16.252205497879952,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2604,False,"{'a': 0.01, 'e': 0.07397707729864236}",25,8,9.206877592707471,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2605,False,"{'a': 0.01, 'e': 0.07390313719755595}",20,9,19.55321850335313,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2606,False,"{'a': 0.01, 'e': 0.0738292709996129}",25,6,34.29845819430516,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2607,False,"{'a': 0.01, 'e': 0.07375547863094695}",20,0,29.062929613993447,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2608,False,"{'a': 0.01, 'e': 0.07368176001776583}",25,11,10.83168534378367,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2609,False,"{'a': 0.01, 'e': 0.07360811508635084}",20,13,11.018383395128813,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2610,False,"{'a': 0.01, 'e': 0.0735345437630571}",20,7,25.292436483051194,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2611,False,"{'a': 0.01, 'e': 0.0734610459743132}",20,10,19.232816385583654,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2612,False,"{'a': 0.01, 'e': 0.07338762164662144}",20,14,14.600666077375429,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2613,False,"{'a': 0.01, 'e': 0.07331427070655744}",20,11,15.893061035097496,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2614,False,"{'a': 0.01, 'e': 0.07324099308077024}",25,17,14.982437799424,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2615,False,"{'a': 0.01, 'e': 0.07316778869598221}",25,9,20.108134206074723,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2616,False,"{'a': 0.01, 'e': 0.07309465747898901}",20,9,20.091405580774058,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2617,False,"{'a': 0.01, 'e': 0.07302159935665936}",25,17,8.096397688777556,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2618,False,"{'a': 0.01, 'e': 0.07294861425593517}",25,17,15.702968536850438,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2619,False,"{'a': 0.01, 'e': 0.07287570210383128}",35,13,39.38491299689547,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2620,False,"{'a': 0.01, 'e': 0.07280286282743559}",30,18,24.255936955339052,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2621,False,"{'a': 0.01, 'e': 0.0727300963539088}",25,15,16.807219016547915,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2622,False,"{'a': 0.01, 'e': 0.07265740261048442}",20,16,8.519249804049737,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2623,False,"{'a': 0.01, 'e': 0.07258478152446868}",25,16,14.214954669685547,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2624,False,"{'a': 0.01, 'e': 0.07251223302324053}",20,13,14.327664989767749,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2625,False,"{'a': 0.01, 'e': 0.07243975703425146}",30,22,15.453467758162654,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2626,False,"{'a': 0.01, 'e': 0.07236735348502546}",30,16,14.480973019129326,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2627,False,"{'a': 0.01, 'e': 0.07229502230315894}",20,6,28.561244774383105,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2628,False,"{'a': 0.01, 'e': 0.07222276341632078}",35,27,15.615607552590578,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2629,False,"{'a': 0.01, 'e': 0.07215057675225206}",35,24,23.396965180188474,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2630,False,"{'a': 0.01, 'e': 0.0720784622387661}",20,14,12.449375063868821,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2631,False,"{'a': 0.01, 'e': 0.07200641980374836}",30,18,21.115719964489596,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2632,False,"{'a': 0.01, 'e': 0.07193444937515645}",30,17,15.304146733045608,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2633,False,"{'a': 0.01, 'e': 0.07186255088101991}",20,11,15.86420682214331,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2634,False,"{'a': 0.01, 'e': 0.07179072424944025}",20,10,21.505876553557357,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2635,False,"{'a': 0.01, 'e': 0.07171896940859077}",20,8,22.41710839574081,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2636,False,"{'a': 0.01, 'e': 0.07164728628671672}",25,12,27.015609072524796,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2637,False,"{'a': 0.01, 'e': 0.07157567481213492}",25,11,27.165323288126988,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2638,False,"{'a': 0.01, 'e': 0.0715041349132339}",20,11,21.378502203356064,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2639,False,"{'a': 0.01, 'e': 0.07143266651847373}",30,24,9.879654203517374,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2640,False,"{'a': 0.01, 'e': 0.07136126955638605}",25,14,19.98765061150873,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2641,False,"{'a': 0.01, 'e': 0.07128994395557388}",25,14,5.878912754055888,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2642,False,"{'a': 0.01, 'e': 0.0712186896447116}",20,12,15.462610489147306,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2643,False,"{'a': 0.01, 'e': 0.07114750655254487}",25,15,22.05660948077364,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2644,False,"{'a': 0.01, 'e': 0.07107639460789066}",20,16,8.116088131770722,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2645,False,"{'a': 0.01, 'e': 0.07100535373963698}",20,7,21.834635111517912,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2646,False,"{'a': 0.01, 'e': 0.07093438387674295}",30,17,25.093387771065263,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2647,False,"{'a': 0.01, 'e': 0.07086348494823869}",20,8,21.595989647452004,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2648,False,"{'a': 0.01, 'e': 0.0707926568832253}",25,0,29.48421276076698,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +2649,False,"{'a': 0.01, 'e': 0.07072189961087469}",20,9,18.005474565120593,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2650,False,"{'a': 0.01, 'e': 0.0706512130604296}",30,13,27.203292234384197,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2651,False,"{'a': 0.01, 'e': 0.0705805971612034}",20,11,19.17667722158416,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2652,False,"{'a': 0.01, 'e': 0.0705100518425803}",25,12,14.036095408929668,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2653,False,"{'a': 0.01, 'e': 0.07043957703401492}",20,12,15.954054400338903,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2654,False,"{'a': 0.01, 'e': 0.07036917266503243}",25,11,23.027783771171716,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2655,False,"{'a': 0.01, 'e': 0.07029883866522844}",25,15,20.5220956760356,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2656,False,"{'a': 0.01, 'e': 0.07022857496426901}",20,11,15.643257507105261,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2657,False,"{'a': 0.01, 'e': 0.0701583814918904}",35,21,22.511879907341147,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2658,False,"{'a': 0.01, 'e': 0.07008825817789911}",20,15,0.7896448139989467,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2659,False,"{'a': 0.01, 'e': 0.07001820495217183}",25,20,8.201212971676451,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2660,False,"{'a': 0.01, 'e': 0.06994822174465536}",20,8,18.40129801165515,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2661,False,"{'a': 0.01, 'e': 0.06987830848536646}",25,20,10.409712356815028,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2662,False,"{'a': 0.01, 'e': 0.06980846510439187}",30,9,21.35305478206465,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2663,False,"{'a': 0.01, 'e': 0.06973869153188816}",35,23,22.524433370126932,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2664,False,"{'a': 0.01, 'e': 0.06966898769808184}",20,12,15.238236452160978,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2665,False,"{'a': 0.01, 'e': 0.06959935353326901}",20,10,19.013802291425776,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2666,False,"{'a': 0.01, 'e': 0.06952978896781553}",25,14,19.7502640227867,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2667,False,"{'a': 0.01, 'e': 0.06946029393215677}",20,6,23.927732333152,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2668,False,"{'a': 0.01, 'e': 0.06939086835679777}",20,7,26.491607973028454,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2669,False,"{'a': 0.01, 'e': 0.0693215121723129}",30,20,18.990954067580486,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2670,False,"{'a': 0.01, 'e': 0.069252225309346}",20,9,8.342403937868443,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2671,False,"{'a': 0.01, 'e': 0.06918300769861012}",20,16,9.375407967872395,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2672,False,"{'a': 0.01, 'e': 0.06911385927088776}",30,20,19.41933024493416,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2673,False,"{'a': 0.01, 'e': 0.06904477995703041}",20,16,5.819046608478266,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2674,False,"{'a': 0.01, 'e': 0.06897576968795878}",25,10,29.46880449054324,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2675,False,"{'a': 0.01, 'e': 0.06890682839466256}",35,21,21.77029011287422,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2676,False,"{'a': 0.01, 'e': 0.06883795600820049}",25,15,17.58229097606359,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2677,False,"{'a': 0.01, 'e': 0.06876915245970018}",25,13,26.357683284949513,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2678,False,"{'a': 0.01, 'e': 0.06870041768035805}",20,8,10.252980897455094,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2679,False,"{'a': 0.01, 'e': 0.0686317516014393}",25,13,20.515255489183026,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2680,False,"{'a': 0.01, 'e': 0.06856315415427791}",20,13,11.010143247171484,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2681,False,"{'a': 0.01, 'e': 0.06849462527027637}",35,16,12.46510206458297,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 0}",1 +2682,False,"{'a': 0.01, 'e': 0.06842616488090583}",20,11,17.736643752848952,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2683,False,"{'a': 0.01, 'e': 0.06835777291770583}",20,0,16.276516687087632,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +2684,False,"{'a': 0.01, 'e': 0.06828944931228448}",30,16,21.54006196665906,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2685,False,"{'a': 0.01, 'e': 0.06822119399631812}",25,13,21.813168235531304,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2686,False,"{'a': 0.01, 'e': 0.06815300690155146}",20,1,32.28682076754356,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2687,False,"{'a': 0.01, 'e': 0.06808488795979734}",25,18,1.8083457195556212,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2688,False,"{'a': 0.01, 'e': 0.06801683710293688}",20,12,16.499095516593,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2689,False,"{'a': 0.01, 'e': 0.0679488542629192}",20,11,15.853664595301135,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2690,False,"{'a': 0.01, 'e': 0.06788093937176144}",20,11,19.614193165663206,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2691,False,"{'a': 0.01, 'e': 0.06781309236154871}",20,13,15.18089961345073,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2692,False,"{'a': 0.01, 'e': 0.06774531316443397}",30,18,8.671675939229505,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2693,False,"{'a': 0.01, 'e': 0.06767760171263805}",30,19,19.495730655581998,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2694,False,"{'a': 0.01, 'e': 0.0676099579384495}",20,16,8.483699912432451,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2695,False,"{'a': 0.01, 'e': 0.06754238177422452}",20,12,13.252702213516828,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2696,False,"{'a': 0.01, 'e': 0.0674748731523869}",20,16,9.378019247095825,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2697,False,"{'a': 0.01, 'e': 0.0674074320054281}",25,0,43.99562854478798,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2698,False,"{'a': 0.01, 'e': 0.06734005826590692}",20,10,17.21197712316047,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2699,False,"{'a': 0.01, 'e': 0.06727275186644961}",20,16,9.456927201640113,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2700,False,"{'a': 0.01, 'e': 0.06720551273974976}",20,8,19.628490451984767,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2701,False,"{'a': 0.01, 'e': 0.06713834081856826}",20,11,6.534081373724427,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2702,False,"{'a': 0.01, 'e': 0.06707123603573319}",25,20,10.24538215455189,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2703,False,"{'a': 0.01, 'e': 0.06700419832413973}",20,12,1.7354944706533524,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2704,False,"{'a': 0.01, 'e': 0.06693722761675015}",20,10,21.51157843784405,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2705,False,"{'a': 0.01, 'e': 0.0668703238465938}",20,3,26.17845424977367,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2706,False,"{'a': 0.01, 'e': 0.06680348694676687}",30,20,21.04403084388056,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2707,False,"{'a': 0.01, 'e': 0.06673671685043246}",20,10,20.694270041372516,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2708,False,"{'a': 0.01, 'e': 0.06667001349082043}",25,16,16.688432719363426,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2709,False,"{'a': 0.01, 'e': 0.06660337680122747}",20,8,22.01203333573334,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2710,False,"{'a': 0.01, 'e': 0.06653680671501686}",30,12,34.42158322387855,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2711,False,"{'a': 0.01, 'e': 0.0664703031656185}",20,12,17.461544145597063,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2712,False,"{'a': 0.01, 'e': 0.06640386608652883}",30,19,20.66496320504418,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2713,False,"{'a': 0.01, 'e': 0.06633749541131082}",25,10,15.572440371273238,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2714,False,"{'a': 0.01, 'e': 0.06627119107359372}",20,9,21.10091158618091,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2715,False,"{'a': 0.01, 'e': 0.06620495300707324}",35,24,24.356331423622713,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2716,False,"{'a': 0.01, 'e': 0.06613878114551125}",25,20,10.259422396960822,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2717,False,"{'a': 0.01, 'e': 0.06607267542273594}",20,13,12.28631476123212,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2718,False,"{'a': 0.01, 'e': 0.06600663577264156}",20,14,13.031448503694493,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2719,False,"{'a': 0.01, 'e': 0.06594066212918846}",25,9,19.402497909635823,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2720,False,"{'a': 0.01, 'e': 0.06587475442640295}",20,9,23.385742527380646,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2721,False,"{'a': 0.01, 'e': 0.06580891259837739}",35,25,18.292794742246787,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2722,False,"{'a': 0.01, 'e': 0.0657431365792699}",30,0,43.15042976974986,"{0: 30, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2723,False,"{'a': 0.01, 'e': 0.06567742630330448}",20,12,-35.519298962689966,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2724,False,"{'a': 0.01, 'e': 0.0656117817047708}",25,10,25.53484469948639,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2725,False,"{'a': 0.01, 'e': 0.06554620271802433}",20,10,17.50647825601726,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2726,False,"{'a': 0.01, 'e': 0.06548068927748603}",35,25,18.984723660174712,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2727,False,"{'a': 0.01, 'e': 0.06541524131764247}",30,13,33.103966501148754,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2728,False,"{'a': 0.01, 'e': 0.06534985877304565}",20,16,6.5298730046187705,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2729,False,"{'a': 0.01, 'e': 0.06528454157831308}",25,13,23.088078386617997,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2730,False,"{'a': 0.01, 'e': 0.06521928966812753}",20,9,22.11157066508842,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2731,False,"{'a': 0.01, 'e': 0.06515410297723707}",20,16,9.082618304892197,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2732,False,"{'a': 0.01, 'e': 0.065088981440455}",20,11,17.030384821674474,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2733,False,"{'a': 0.01, 'e': 0.06502392499265983}",20,9,14.416011354765692,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2734,False,"{'a': 0.01, 'e': 0.06495893356879505}",20,2,0.35140763912577966,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +2735,False,"{'a': 0.01, 'e': 0.06489400710386926}",25,0,38.26721153695814,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2736,False,"{'a': 0.01, 'e': 0.06482914553295596}",25,8,17.8655427037046,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2737,False,"{'a': 0.01, 'e': 0.06476434879119362}",20,6,26.458148187858686,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2738,False,"{'a': 0.01, 'e': 0.06469961681378547}",25,7,29.22210145368259,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2739,False,"{'a': 0.01, 'e': 0.06463494953599953}",20,8,22.999038097830315,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2740,False,"{'a': 0.01, 'e': 0.06457034689316847}",20,10,20.88097541850041,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2741,False,"{'a': 0.01, 'e': 0.06450580882068972}",20,15,9.084112528846719,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2742,False,"{'a': 0.01, 'e': 0.06444133525402518}",20,6,1.2601705938090157,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2743,False,"{'a': 0.01, 'e': 0.06437692612870125}",20,6,28.52360665007944,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2744,False,"{'a': 0.01, 'e': 0.06431258138030878}",25,17,11.71458005299305,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2745,False,"{'a': 0.01, 'e': 0.06424830094450308}",20,10,15.813572364465784,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2746,False,"{'a': 0.01, 'e': 0.06418408475700368}",20,8,10.446339688743194,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2747,False,"{'a': 0.01, 'e': 0.0641199327535944}",35,26,21.88062446074894,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2748,False,"{'a': 0.01, 'e': 0.06405584487012317}",35,22,1.9054504426264711,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2749,False,"{'a': 0.01, 'e': 0.06399182104250219}",20,13,11.752725251399303,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2750,False,"{'a': 0.01, 'e': 0.06392786120670757}",25,15,19.817372111633293,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2751,False,"{'a': 0.01, 'e': 0.0638639652987795}",20,9,20.861575507146384,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2752,False,"{'a': 0.01, 'e': 0.063800133254822}",20,8,23.31207214859957,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2753,False,"{'a': 0.01, 'e': 0.06373636501100312}",30,14,28.56042520003239,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2754,False,"{'a': 0.01, 'e': 0.06367266050355457}",20,8,23.987484305332444,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2755,False,"{'a': 0.01, 'e': 0.0636090196687718}",20,12,14.978106398775754,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2756,False,"{'a': 0.01, 'e': 0.063545442443014}",30,14,10.126722160807855,"{0: 14, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2757,False,"{'a': 0.01, 'e': 0.06348192876270395}",20,10,16.34956109551917,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2758,False,"{'a': 0.01, 'e': 0.06341847856432796}",30,14,-23.141181689888057,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2759,False,"{'a': 0.01, 'e': 0.06335509178443581}",25,13,23.81804461012251,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2760,False,"{'a': 0.01, 'e': 0.0632917683596407}",20,16,6.301273826662882,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2761,False,"{'a': 0.01, 'e': 0.06322850822661927}",20,14,11.444641060605669,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2762,False,"{'a': 0.01, 'e': 0.06316531132211131}",30,15,19.665833615929625,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2763,False,"{'a': 0.01, 'e': 0.06310217758291994}",30,17,25.066654814016612,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2764,False,"{'a': 0.01, 'e': 0.0630391069459114}",30,23,15.421729927281097,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2765,False,"{'a': 0.01, 'e': 0.06297609934801507}",25,19,10.690924866467345,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2766,False,"{'a': 0.01, 'e': 0.06291315472622334}",20,13,11.942248093865755,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2767,False,"{'a': 0.01, 'e': 0.06285027301759159}",25,13,-0.44352461890920125,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2768,False,"{'a': 0.01, 'e': 0.06278745415923806}",25,11,26.98188554220436,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2769,False,"{'a': 0.01, 'e': 0.06272469808834395}",25,11,13.716699195585191,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2770,False,"{'a': 0.01, 'e': 0.06266200474215315}",20,12,14.778549891109565,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2771,False,"{'a': 0.01, 'e': 0.06259937405797232}",20,11,16.777399264436944,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2772,False,"{'a': 0.01, 'e': 0.06253680597317074}",20,8,-31.029120329767153,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2773,False,"{'a': 0.01, 'e': 0.06247430042518036}",20,12,20.73372690496255,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2774,False,"{'a': 0.01, 'e': 0.06241185735149562}",20,12,18.31308057034772,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2775,False,"{'a': 0.01, 'e': 0.06234947668967343}",20,3,30.28097729406225,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2776,False,"{'a': 0.01, 'e': 0.0622871583773331}",25,14,-45.9850925239088,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 1}",1 +2777,False,"{'a': 0.01, 'e': 0.06222490235215636}",20,10,16.742299629716772,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2778,False,"{'a': 0.01, 'e': 0.062162708551887165}",25,3,27.59087244020582,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2779,False,"{'a': 0.01, 'e': 0.0621005769143317}",20,12,13.759149204983666,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2780,False,"{'a': 0.01, 'e': 0.06203850737735829}",25,15,-16.20824257238602,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2781,False,"{'a': 0.01, 'e': 0.061976499878897466}",30,16,12.236749674557998,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2782,False,"{'a': 0.01, 'e': 0.061914554356941674}",30,8,43.77993659193883,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2783,False,"{'a': 0.01, 'e': 0.06185267074954541}",20,6,-2.816761824116909,"{0: 12, 1: 1, 2: 0, 3: 1, 4: 0}",1 +2784,False,"{'a': 0.01, 'e': 0.061790848994825016}",20,10,21.218615090226162,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2785,False,"{'a': 0.01, 'e': 0.06172908903095879}",20,4,12.611414293093484,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2786,False,"{'a': 0.01, 'e': 0.061667390796186744}",25,8,22.01812407715879,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2787,False,"{'a': 0.01, 'e': 0.061605754228810636}",20,8,22.454623006109394,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2788,False,"{'a': 0.01, 'e': 0.06154417926719386}",25,7,31.123364816304786,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2789,False,"{'a': 0.01, 'e': 0.0614826658497615}",30,16,-3.1366663574134694,"{0: 12, 1: 1, 2: 0, 3: 1, 4: 0}",1 +2790,False,"{'a': 0.01, 'e': 0.06142121391500013}",20,8,21.654149294391406,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2791,False,"{'a': 0.01, 'e': 0.06135982340145778}",20,15,8.422384544642647,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2792,False,"{'a': 0.01, 'e': 0.061298494247743925}",25,14,17.05134406875508,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2793,False,"{'a': 0.01, 'e': 0.061237226392529445}",25,8,32.46068661800596,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2794,False,"{'a': 0.01, 'e': 0.06117601977454647}",20,16,7.934029094472864,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2795,False,"{'a': 0.01, 'e': 0.06111487433258836}",25,12,25.266891792957612,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2796,False,"{'a': 0.01, 'e': 0.06105379000550965}",20,7,27.492337753082126,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2797,False,"{'a': 0.01, 'e': 0.06099276673222606}",30,18,1.9873263180718168,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2798,False,"{'a': 0.01, 'e': 0.06093180445171429}",25,11,27.459020455184042,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2799,False,"{'a': 0.01, 'e': 0.06087090310301205}",35,18,31.687633651452444,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2800,False,"{'a': 0.01, 'e': 0.06081006262521795}",25,18,16.904421219430773,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2801,False,"{'a': 0.01, 'e': 0.060749282957491574}",35,13,-2.40867934093792,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2802,False,"{'a': 0.01, 'e': 0.06068856403905322}",30,17,23.123678221624036,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2803,False,"{'a': 0.01, 'e': 0.06062790580918396}",20,11,16.22876636066964,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2804,False,"{'a': 0.01, 'e': 0.060567308207225536}",25,20,10.91509877954633,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2805,False,"{'a': 0.01, 'e': 0.06050677117258039}",35,23,8.322665992834834,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2806,False,"{'a': 0.01, 'e': 0.06044629464471146}",20,10,11.463505755436428,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2807,False,"{'a': 0.01, 'e': 0.06038587856314221}",25,13,18.066150357116598,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2808,False,"{'a': 0.01, 'e': 0.06032552286745654}",30,16,26.7853674167796,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2809,False,"{'a': 0.01, 'e': 0.060265227497298776}",25,13,12.223126068783442,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2810,False,"{'a': 0.01, 'e': 0.06020499239237354}",30,14,-14.051296904529142,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2811,False,"{'a': 0.01, 'e': 0.06014481749244571}",20,4,-15.104558595343688,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2812,False,"{'a': 0.01, 'e': 0.06008470273734036}",30,13,25.435871585599873,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2813,False,"{'a': 0.01, 'e': 0.060024648066942785}",25,12,21.720640382320173,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2814,False,"{'a': 0.01, 'e': 0.05996465342119827}",20,11,16.192389506190462,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2815,False,"{'a': 0.01, 'e': 0.05990471874011218}",25,19,9.898526033717065,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2816,False,"{'a': 0.01, 'e': 0.059844843963749825}",25,13,17.814828681534753,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2817,False,"{'a': 0.01, 'e': 0.059785029032236384}",25,18,11.394370596152335,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2818,False,"{'a': 0.01, 'e': 0.05972527388575699}",20,12,13.635440476555285,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2819,False,"{'a': 0.01, 'e': 0.05966557846455646}",20,11,16.033979372242783,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2820,False,"{'a': 0.01, 'e': 0.05960594270893937}",20,12,17.470007052327865,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2821,False,"{'a': 0.01, 'e': 0.05954636655926992}",20,14,12.122220940277003,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2822,False,"{'a': 0.01, 'e': 0.05948684995597202}",25,3,-9.43231495677248,"{0: 20, 1: 0, 2: 0, 3: 2, 4: 0}",1 +2823,False,"{'a': 0.01, 'e': 0.05942739283952904}",20,9,20.953896331733187,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2824,False,"{'a': 0.01, 'e': 0.05936799515048385}",25,9,8.602623700746484,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2825,False,"{'a': 0.01, 'e': 0.05930865682943872}",20,5,22.11074242590253,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2826,False,"{'a': 0.01, 'e': 0.0592493778170554}",20,15,9.30279487921075,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2827,False,"{'a': 0.01, 'e': 0.05919015805405483}",25,8,23.641707420623174,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2828,False,"{'a': 0.01, 'e': 0.05913099748121725}",25,18,14.222397387551357,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2829,False,"{'a': 0.01, 'e': 0.05907189603938205}",20,13,12.883413289871598,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2830,False,"{'a': 0.01, 'e': 0.05901285366944784}",30,12,34.815959315386976,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2831,False,"{'a': 0.01, 'e': 0.05895387031237222}",20,11,16.864319824919658,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2832,False,"{'a': 0.01, 'e': 0.05889494590917182}",20,8,20.97480833901115,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2833,False,"{'a': 0.01, 'e': 0.05883608040092221}",30,19,19.97845726854121,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2834,False,"{'a': 0.01, 'e': 0.058777273728757934}",25,17,13.285132215940422,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2835,False,"{'a': 0.01, 'e': 0.058718525833872284}",20,4,7.086198198969631,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2836,False,"{'a': 0.01, 'e': 0.05865983665751736}",25,16,16.03707425824618,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2837,False,"{'a': 0.01, 'e': 0.058601206141003954}",20,13,10.60537968452734,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2838,False,"{'a': 0.01, 'e': 0.0585426342257016}",20,8,21.382438089701008,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2839,False,"{'a': 0.01, 'e': 0.05848412085303835}",20,9,19.046250384568584,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2840,False,"{'a': 0.01, 'e': 0.05842566596450083}",25,19,13.743230402036092,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2841,False,"{'a': 0.01, 'e': 0.058367269501634116}",30,13,26.656646752296904,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2842,False,"{'a': 0.01, 'e': 0.05830893140604179}",25,17,16.616119266585073,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2843,False,"{'a': 0.01, 'e': 0.05825065161938573}",25,12,24.781370364923497,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2844,False,"{'a': 0.01, 'e': 0.05819243008338615}",30,20,17.601162916991203,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2845,False,"{'a': 0.01, 'e': 0.058134266739821465}",30,15,25.853597114106023,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2846,False,"{'a': 0.01, 'e': 0.0580761615305284}",30,12,11.743189206512325,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2847,False,"{'a': 0.01, 'e': 0.058018114397401704}",35,18,36.24258118039501,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2848,False,"{'a': 0.01, 'e': 0.057960125282394234}",20,10,19.805040452329646,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2849,False,"{'a': 0.01, 'e': 0.057902194127516855}",25,12,-44.75440742790232,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +2850,False,"{'a': 0.01, 'e': 0.057844320874838456}",25,8,26.424608449663104,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2851,False,"{'a': 0.01, 'e': 0.057786505466485755}",20,14,15.155593626343311,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2852,False,"{'a': 0.01, 'e': 0.05772874784464333}",20,10,20.279561086317745,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2853,False,"{'a': 0.01, 'e': 0.057671047951553533}",25,19,10.915639046326266,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2854,False,"{'a': 0.01, 'e': 0.05761340572951652}",25,19,13.162799443102537,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2855,False,"{'a': 0.01, 'e': 0.05755582112089005}",25,11,23.50894457252934,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2856,False,"{'a': 0.01, 'e': 0.057498294068089484}",20,15,9.314113700188045,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2857,False,"{'a': 0.01, 'e': 0.05744082451358776}",25,12,24.38137707235724,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2858,False,"{'a': 0.01, 'e': 0.05738341239991535}",20,8,25.117435816168946,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2859,False,"{'a': 0.01, 'e': 0.05732605766966013}",20,6,27.981246956756685,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2860,False,"{'a': 0.01, 'e': 0.05726876026546736}",30,1,19.285404674729023,"{0: 27, 1: 1, 2: 0, 3: 1, 4: 0}",1 +2861,False,"{'a': 0.01, 'e': 0.0572115201300396}",30,8,-24.97310153197165,"{0: 20, 1: 0, 2: 0, 3: 1, 4: 1}",1 +2862,False,"{'a': 0.01, 'e': 0.05715433720613676}",25,17,13.740388987705863,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2863,False,"{'a': 0.01, 'e': 0.05709721143657589}",20,13,14.090605707906949,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2864,False,"{'a': 0.01, 'e': 0.057040142764231215}",20,14,13.521678261635548,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2865,False,"{'a': 0.01, 'e': 0.056983131132034036}",20,12,15.69176515126514,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2866,False,"{'a': 0.01, 'e': 0.056926176482972754}",20,10,20.249491810030666,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2867,False,"{'a': 0.01, 'e': 0.056869278760092706}",20,16,8.823937592421363,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2868,False,"{'a': 0.01, 'e': 0.056812437906496156}",25,16,15.466485411737404,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2869,False,"{'a': 0.01, 'e': 0.05675565386534222}",35,28,15.92938379795304,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2870,False,"{'a': 0.01, 'e': 0.0566989265798469}",25,13,25.001340496770187,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2871,False,"{'a': 0.01, 'e': 0.056642255993282896}",20,0,9.572615777068954,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",0 +2872,False,"{'a': 0.01, 'e': 0.056585642048979604}",30,12,32.5286480965469,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2873,False,"{'a': 0.01, 'e': 0.05652908469032304}",30,23,15.6526015423012,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2874,False,"{'a': 0.01, 'e': 0.05647258386075591}",25,11,27.028695248894472,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2875,False,"{'a': 0.01, 'e': 0.05641613950377735}",20,9,21.84776445366516,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2876,False,"{'a': 0.01, 'e': 0.05635975156294299}",20,12,15.108165739273435,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2877,False,"{'a': 0.01, 'e': 0.05630341998186487}",30,20,20.772539609442674,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2878,False,"{'a': 0.01, 'e': 0.05624714470421144}",25,3,26.147781238418734,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2879,False,"{'a': 0.01, 'e': 0.056190925673707405}",25,19,13.346249405275866,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2880,False,"{'a': 0.01, 'e': 0.056134762834133725}",20,6,22.78210549995889,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2881,False,"{'a': 0.01, 'e': 0.05607865612932754}",20,8,22.459732686876155,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2882,False,"{'a': 0.01, 'e': 0.05602260550318217}",25,20,10.250303699702538,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2883,False,"{'a': 0.01, 'e': 0.05596661089964698}",20,12,15.067425000266228,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2884,False,"{'a': 0.01, 'e': 0.055910672262727355}",20,13,14.212183485438008,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2885,False,"{'a': 0.01, 'e': 0.05585478953648462}",25,4,26.206297130488437,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2886,False,"{'a': 0.01, 'e': 0.05579896266503611}",20,0,31.903688334436712,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2887,False,"{'a': 0.01, 'e': 0.055743191592554905}",20,6,28.43319011963243,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2888,False,"{'a': 0.01, 'e': 0.05568747626326995}",25,15,19.78990096118009,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2889,False,"{'a': 0.01, 'e': 0.055631816621465865}",25,15,-31.051282638933944,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2890,False,"{'a': 0.01, 'e': 0.05557621261148306}",25,11,15.289030142615708,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2891,False,"{'a': 0.01, 'e': 0.055520664177717505}",20,14,0.03408069465839558,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2892,False,"{'a': 0.01, 'e': 0.05546517126462075}",20,9,20.56447620873003,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2893,False,"{'a': 0.01, 'e': 0.055409733816699856}",20,9,8.695060967586086,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2894,False,"{'a': 0.01, 'e': 0.05535435177851743}",30,0,39.56257125333257,"{0: 30, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2895,False,"{'a': 0.01, 'e': 0.05529902509469138}",30,19,20.1526989225981,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2896,False,"{'a': 0.01, 'e': 0.055243753709895045}",20,13,13.516690604975897,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2897,False,"{'a': 0.01, 'e': 0.055188537568857}",20,14,13.454198575690434,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2898,False,"{'a': 0.01, 'e': 0.05513337661636114}",20,14,11.636992316982443,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2899,False,"{'a': 0.01, 'e': 0.05507827079724649}",20,16,9.134400995587704,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2900,False,"{'a': 0.01, 'e': 0.05502322005640723}",25,8,25.175850850997097,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2901,False,"{'a': 0.01, 'e': 0.054968224338792594}",20,9,3.630985240095429,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2902,False,"{'a': 0.01, 'e': 0.05491328358940689}",25,13,-22.563491792474462,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2903,False,"{'a': 0.01, 'e': 0.05485839775330936}",20,11,16.57203047464593,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2904,False,"{'a': 0.01, 'e': 0.054803566775614154}",25,17,8.125361234480406,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2905,False,"{'a': 0.01, 'e': 0.054748790601490266}",25,17,17.742574028838334,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2906,False,"{'a': 0.01, 'e': 0.05469406917616156}",20,7,24.837891617846907,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2907,False,"{'a': 0.01, 'e': 0.054639402444906594}",20,12,17.630891487317587,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2908,False,"{'a': 0.01, 'e': 0.054584790353058625}",25,18,12.345880841938556,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2909,False,"{'a': 0.01, 'e': 0.054530232846005534}",25,7,32.66754721328435,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2910,False,"{'a': 0.01, 'e': 0.05447572986918986}",20,6,11.207309184932543,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2911,False,"{'a': 0.01, 'e': 0.05442128136810859}",30,23,4.916012480351659,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2912,False,"{'a': 0.01, 'e': 0.05436688728831322}",25,12,21.035810879896818,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2913,False,"{'a': 0.01, 'e': 0.05431254757540965}",20,10,22.598420826316286,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2914,False,"{'a': 0.01, 'e': 0.05425826217505821}",30,13,33.89073857300059,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2915,False,"{'a': 0.01, 'e': 0.054204031032973464}",30,16,28.132844533419604,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2916,False,"{'a': 0.01, 'e': 0.05414985409492427}",25,19,12.107658961765754,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2917,False,"{'a': 0.01, 'e': 0.054095731306733646}",20,12,16.214098189576678,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2918,False,"{'a': 0.01, 'e': 0.054041662614278875}",25,15,20.700632006411073,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2919,False,"{'a': 0.01, 'e': 0.05398764796349122}",25,20,8.344782760370032,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2920,False,"{'a': 0.01, 'e': 0.05393368730035602}",20,14,12.32679384934791,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2921,False,"{'a': 0.01, 'e': 0.0538797805709126}",25,14,24.875932120653395,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2922,False,"{'a': 0.01, 'e': 0.05382592772125425}",30,20,16.832449850615134,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2923,False,"{'a': 0.01, 'e': 0.05377212869752812}",25,18,13.667747723000758,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2924,False,"{'a': 0.01, 'e': 0.053718383445935165}",35,21,18.48059082369622,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2925,False,"{'a': 0.01, 'e': 0.05366469191273011}",20,10,7.170508122469069,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2926,False,"{'a': 0.01, 'e': 0.053611054044221465}",25,2,36.35245481704786,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2927,False,"{'a': 0.01, 'e': 0.053557469786771325}",35,21,18.697593450628556,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2928,False,"{'a': 0.01, 'e': 0.05350393908679544}",25,5,20.771981721411667,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2929,False,"{'a': 0.01, 'e': 0.05345046189076308}",20,10,18.94333802517973,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2930,False,"{'a': 0.01, 'e': 0.053397038145197084}",20,13,13.85132330753459,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2931,False,"{'a': 0.01, 'e': 0.05334366779667368}",30,13,29.511207888009782,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2932,False,"{'a': 0.01, 'e': 0.053290350791822524}",25,17,12.643243987105265,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2933,False,"{'a': 0.01, 'e': 0.05323708707732657}",25,9,26.009847694365615,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2934,False,"{'a': 0.01, 'e': 0.05318387659992216}",25,16,19.274747024977483,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2935,False,"{'a': 0.01, 'e': 0.05313071930639878}",25,12,23.7384535047821,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2936,False,"{'a': 0.01, 'e': 0.053077615143599134}",20,16,6.958285902692332,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2937,False,"{'a': 0.01, 'e': 0.05302456405841903}",20,10,18.408998486774323,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2938,False,"{'a': 0.01, 'e': 0.052971565997807425}",20,14,10.627958181182596,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2939,False,"{'a': 0.01, 'e': 0.052918620908766235}",30,23,12.697834726408832,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2940,False,"{'a': 0.01, 'e': 0.05286572873835037}",20,10,18.932759833013066,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2941,False,"{'a': 0.01, 'e': 0.05281288943366762}",20,10,17.444219208858957,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2942,False,"{'a': 0.01, 'e': 0.052760102941878724}",30,24,11.741229377704627,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2943,False,"{'a': 0.01, 'e': 0.05270736921019717}",35,23,25.417781617758237,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2944,False,"{'a': 0.01, 'e': 0.05265468818588921}",20,8,24.142927342065512,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2945,False,"{'a': 0.01, 'e': 0.05260205981627384}",20,14,10.223614491694034,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2946,False,"{'a': 0.01, 'e': 0.05254948404872264}",20,3,8.874150312761408,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2947,False,"{'a': 0.01, 'e': 0.05249696083065988}",25,10,8.239217032405938,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2948,False,"{'a': 0.01, 'e': 0.05244449010956234}",30,18,23.628348116642773,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2949,False,"{'a': 0.01, 'e': 0.052392071832959276}",30,17,22.56283870526744,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2950,False,"{'a': 0.01, 'e': 0.05233970594843238}",20,11,18.511078846171717,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2951,False,"{'a': 0.01, 'e': 0.05228739240361583}",30,19,20.87996172432439,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2952,False,"{'a': 0.01, 'e': 0.05223513114619603}",30,21,15.588021416762821,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2953,False,"{'a': 0.01, 'e': 0.052182922123911735}",30,15,30.167561726955316,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2954,False,"{'a': 0.01, 'e': 0.05213076528455389}",25,10,27.236274938156917,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2955,False,"{'a': 0.01, 'e': 0.05207866057596569}",20,13,14.305558818181893,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2956,False,"{'a': 0.01, 'e': 0.052026607946042414}",20,16,6.262497142586708,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2957,False,"{'a': 0.01, 'e': 0.05197460734273142}",25,8,18.231179287631182,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2958,False,"{'a': 0.01, 'e': 0.05192265871403207}",25,13,7.917344331392554,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2959,False,"{'a': 0.01, 'e': 0.051870762007995785}",30,8,-15.104744893669201,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2960,False,"{'a': 0.01, 'e': 0.05181891717272583}",20,10,15.803735030320357,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2961,False,"{'a': 0.01, 'e': 0.051767124156377374}",20,12,9.640353672149237,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2962,False,"{'a': 0.01, 'e': 0.05171538290715736}",25,12,23.681428642316863,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2963,False,"{'a': 0.01, 'e': 0.05166369337332458}",20,2,16.732476202953006,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2964,False,"{'a': 0.01, 'e': 0.05161205550318949}",25,17,16.12228103837017,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2965,False,"{'a': 0.01, 'e': 0.0515604692451142}",20,16,6.8249515724849585,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2966,False,"{'a': 0.01, 'e': 0.051508934547512424}",25,12,22.60779675567379,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2967,False,"{'a': 0.01, 'e': 0.051457451358849514}",30,14,27.89967176049877,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2968,False,"{'a': 0.01, 'e': 0.051406019627642255}",25,17,14.415202866630057,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2969,False,"{'a': 0.01, 'e': 0.051354639302458906}",30,18,25.021099561479666,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2970,False,"{'a': 0.01, 'e': 0.05130331033191911}",20,9,21.50222052727669,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2971,False,"{'a': 0.01, 'e': 0.05125203266469395}",30,18,22.126824542070953,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2972,False,"{'a': 0.01, 'e': 0.05120080624950572}",25,10,-28.257583173798768,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2973,False,"{'a': 0.01, 'e': 0.05114963103512801}",30,14,28.610343489930578,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2974,False,"{'a': 0.01, 'e': 0.05109850697038558}",25,11,25.342007949240223,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2975,False,"{'a': 0.01, 'e': 0.051047434004154395}",20,10,-1.622981403901338,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2976,False,"{'a': 0.01, 'e': 0.050996412085361466}",30,18,22.293270589571964,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2977,False,"{'a': 0.01, 'e': 0.05094544116298488}",25,17,-0.3015848306923299,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2978,False,"{'a': 0.01, 'e': 0.05089452118605367}",35,17,25.900928836413097,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2979,False,"{'a': 0.01, 'e': 0.05084365210364792}",20,13,14.328319973390673,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2980,False,"{'a': 0.01, 'e': 0.0507928338648985}",20,12,16.561040713735526,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2981,False,"{'a': 0.01, 'e': 0.05074206641898719}",25,13,22.25244712689835,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2982,False,"{'a': 0.01, 'e': 0.050691349715146494}",25,8,16.863151913940523,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2983,False,"{'a': 0.01, 'e': 0.05064068370265976}",25,18,14.488806150069271,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2984,False,"{'a': 0.01, 'e': 0.05059006833086096}",30,6,46.522485636246,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2985,False,"{'a': 0.01, 'e': 0.050539503549134696}",25,13,9.008817258862168,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2986,False,"{'a': 0.01, 'e': 0.05048898930691617}",30,18,21.39850304447255,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2987,False,"{'a': 0.01, 'e': 0.05043852555369119}",20,9,23.19978509813239,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2988,False,"{'a': 0.01, 'e': 0.05038811223899596}",25,19,11.019082575553064,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2989,False,"{'a': 0.01, 'e': 0.05033774931241717}",20,16,9.51663978734857,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2990,False,"{'a': 0.01, 'e': 0.050287436723591865}",20,9,17.142022248596,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2991,False,"{'a': 0.01, 'e': 0.050237174422207494}",20,3,27.919590105063843,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2992,False,"{'a': 0.01, 'e': 0.050186962358001734}",30,17,25.829955834949494,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2993,False,"{'a': 0.01, 'e': 0.050136800480762515}",20,3,23.584965676161932,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2994,False,"{'a': 0.01, 'e': 0.05008668874032793}",20,13,14.892700714122817,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2995,False,"{'a': 0.01, 'e': 0.05003662708658628}",20,5,13.601902174070705,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2996,False,"{'a': 0.01, 'e': 0.049986615469475894}",30,17,20.96568399954949,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2997,False,"{'a': 0.01, 'e': 0.049936653838985136}",25,7,31.800397419822783,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2998,False,"{'a': 0.01, 'e': 0.04988674214515236}",25,20,12.083271746160154,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2999,False,"{'a': 0.01, 'e': 0.0498368803380659}",25,18,13.386359550801634,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3000,False,"{'a': 0.01, 'e': 0.049787068367863944}",25,17,15.615652041116874,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3001,False,"{'a': 0.01, 'e': 0.0497373061847345}",30,12,35.88956597369877,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3002,False,"{'a': 0.01, 'e': 0.04968759373891536}",25,11,23.34914074072675,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3003,False,"{'a': 0.01, 'e': 0.04963793098069413}",20,16,5.324588481352557,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3004,False,"{'a': 0.01, 'e': 0.049588317860408}",25,20,7.15563307470653,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3005,False,"{'a': 0.01, 'e': 0.04953875432844388}",20,7,12.348407989555405,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3006,False,"{'a': 0.01, 'e': 0.04948924033523819}",25,5,37.415384736736044,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3007,False,"{'a': 0.01, 'e': 0.049439775831276976}",25,13,24.49750346487071,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3008,False,"{'a': 0.01, 'e': 0.049390360767095715}",20,11,14.395879906980916,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3009,False,"{'a': 0.01, 'e': 0.04934099509327934}",25,12,21.557120007173292,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3010,False,"{'a': 0.01, 'e': 0.04929167876046215}",30,12,34.08956779897955,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3011,False,"{'a': 0.01, 'e': 0.04924241171932785}",25,13,22.992844981013352,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3012,False,"{'a': 0.01, 'e': 0.04919319392060936}",25,17,17.201410064902902,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3013,False,"{'a': 0.01, 'e': 0.04914402531508891}",25,15,19.196857156479645,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3014,False,"{'a': 0.01, 'e': 0.04909490585359783}",25,17,14.470340469223778,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3015,False,"{'a': 0.01, 'e': 0.04904583548701673}",25,17,18.006482284532925,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3016,False,"{'a': 0.01, 'e': 0.0489968141662752}",20,14,11.865918104250634,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3017,False,"{'a': 0.01, 'e': 0.048947841842351916}",25,16,18.21565712902675,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3018,False,"{'a': 0.01, 'e': 0.04889891846627454}",20,11,15.361110076966433,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3019,False,"{'a': 0.01, 'e': 0.04885004398911972}",20,11,6.076516308134452,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3020,False,"{'a': 0.01, 'e': 0.04880121836201296}",25,15,20.76027352615398,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3021,False,"{'a': 0.01, 'e': 0.04875244153612863}",25,13,23.520692797725967,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3022,False,"{'a': 0.01, 'e': 0.048703713462689875}",35,23,26.558371388063854,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3023,False,"{'a': 0.01, 'e': 0.04865503409296867}",20,16,9.646269040796497,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3024,False,"{'a': 0.01, 'e': 0.048606403378285604}",20,6,21.029231615097494,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3025,False,"{'a': 0.01, 'e': 0.048557821270009974}",25,9,23.66058391345166,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3026,False,"{'a': 0.01, 'e': 0.04850928771955963}",25,10,12.940283535231625,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3027,False,"{'a': 0.01, 'e': 0.048460802678401076}",20,14,10.183539147601913,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3028,False,"{'a': 0.01, 'e': 0.04841236609804924}",35,22,26.408822866028494,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3029,False,"{'a': 0.01, 'e': 0.04836397793006753}",20,11,21.92900629081884,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3030,False,"{'a': 0.01, 'e': 0.04831563812606777}",25,7,18.212955628326398,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3031,False,"{'a': 0.01, 'e': 0.04826734663771017}",20,13,13.891777015258526,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3032,False,"{'a': 0.01, 'e': 0.04821910341670324}",20,8,24.779848830361047,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3033,False,"{'a': 0.01, 'e': 0.048170908414803745}",30,21,19.017891624529113,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3034,False,"{'a': 0.01, 'e': 0.048122761583816655}",25,20,10.998789877319041,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3035,False,"{'a': 0.01, 'e': 0.04807466287559518}",25,9,9.429212859420094,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3036,False,"{'a': 0.01, 'e': 0.048026612242040585}",25,14,23.904904420832555,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3037,False,"{'a': 0.01, 'e': 0.04797860963510223}",20,9,22.828599339154575,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3038,False,"{'a': 0.01, 'e': 0.0479306550067775}",20,12,15.341539988863483,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3039,False,"{'a': 0.01, 'e': 0.04788274830911178}",35,26,16.976307988937176,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3040,False,"{'a': 0.01, 'e': 0.04783488949419837}",20,15,9.587835119214791,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3041,False,"{'a': 0.01, 'e': 0.04778707851417843}",35,24,18.590237595077042,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3042,False,"{'a': 0.01, 'e': 0.047739315321240976}",30,10,11.924449896898917,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3043,False,"{'a': 0.01, 'e': 0.047691599867622836}",20,10,18.10721661893565,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3044,False,"{'a': 0.01, 'e': 0.047643932105608536}",25,15,17.264614739692817,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3045,False,"{'a': 0.01, 'e': 0.04759631198753032}",25,17,15.675423066111843,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3046,False,"{'a': 0.01, 'e': 0.04754873946576803}",30,21,14.29918216069291,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3047,False,"{'a': 0.01, 'e': 0.04750121449274919}",25,11,24.402950943034945,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3048,False,"{'a': 0.01, 'e': 0.0474537370209488}",25,12,28.162682779711364,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3049,False,"{'a': 0.01, 'e': 0.04740630700288939}",25,12,25.39165045226292,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3050,False,"{'a': 0.01, 'e': 0.04735892439114091}",25,18,13.993509765282147,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3051,False,"{'a': 0.01, 'e': 0.047311589138320786}",30,12,24.72573923460533,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3052,False,"{'a': 0.01, 'e': 0.047264301197093746}",20,14,10.864971231945248,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3053,False,"{'a': 0.01, 'e': 0.04721706052017184}",30,13,20.87883632565108,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3054,False,"{'a': 0.01, 'e': 0.04716986706031437}",20,8,23.725035829330267,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3055,False,"{'a': 0.01, 'e': 0.04712272077032791}",20,6,25.891256692963164,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3056,False,"{'a': 0.01, 'e': 0.04707562160306615}",20,12,15.840446366067786,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3057,False,"{'a': 0.01, 'e': 0.04702856951142992}",20,12,18.27481233906242,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3058,False,"{'a': 0.01, 'e': 0.04698156444836709}",35,21,29.92981467165299,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3059,False,"{'a': 0.01, 'e': 0.04693460636687265}",20,6,25.81058576208238,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3060,False,"{'a': 0.01, 'e': 0.046887695219988486}",25,13,22.9263986603869,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3061,False,"{'a': 0.01, 'e': 0.04684083096080345}",25,17,12.906686435444675,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3062,False,"{'a': 0.01, 'e': 0.04679401354245326}",25,18,13.174223799077808,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3063,False,"{'a': 0.01, 'e': 0.046747242918120525}",20,12,10.891675083393796,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3064,False,"{'a': 0.01, 'e': 0.04670051904103461}",25,11,-7.809487996924111,"{0: 11, 1: 0, 2: 3, 3: 0, 4: 0}",1 +3065,False,"{'a': 0.01, 'e': 0.04665384186447163}",25,15,9.858630277255156,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3066,False,"{'a': 0.01, 'e': 0.04660721134175438}",30,21,16.90288201091673,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3067,False,"{'a': 0.01, 'e': 0.046560627426252374}",20,14,-2.1456096597893204,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3068,False,"{'a': 0.01, 'e': 0.04651409007138167}",25,16,13.507631489561927,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3069,False,"{'a': 0.01, 'e': 0.04646759923060492}",35,23,22.807187502635216,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3070,False,"{'a': 0.01, 'e': 0.04642115485743125}",25,16,18.38959000201861,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3071,False,"{'a': 0.01, 'e': 0.04637475690541633}",20,13,0.00922715153596676,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3072,False,"{'a': 0.01, 'e': 0.046328405328162174}",25,8,28.713880172874568,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3073,False,"{'a': 0.01, 'e': 0.04628210007931721}",25,14,19.909031175462793,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3074,False,"{'a': 0.01, 'e': 0.046235841112576184}",20,1,31.70762391225243,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3075,False,"{'a': 0.01, 'e': 0.0461896283816801}",25,17,18.300866006566984,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3076,False,"{'a': 0.01, 'e': 0.04614346184041627}",30,4,41.31191132597047,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3077,False,"{'a': 0.01, 'e': 0.04609734144261812}",20,13,10.251728979106122,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3078,False,"{'a': 0.01, 'e': 0.046051267142165266}",20,15,9.699534395009492,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3079,False,"{'a': 0.01, 'e': 0.04600523889298336}",25,20,10.271791942337277,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3080,False,"{'a': 0.01, 'e': 0.045959256649044204}",20,12,12.732470939363246,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3081,False,"{'a': 0.01, 'e': 0.04591332036436553}",20,14,10.714046310723457,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3082,False,"{'a': 0.01, 'e': 0.04586742999301104}",30,16,24.899726828009246,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3083,False,"{'a': 0.01, 'e': 0.045821585489090357}",25,14,21.459358579892005,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3084,False,"{'a': 0.01, 'e': 0.04577578680675899}",20,14,10.092102897703219,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3085,False,"{'a': 0.01, 'e': 0.04573003390021825}",30,16,26.421579861613882,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3086,False,"{'a': 0.01, 'e': 0.04568432672371522}",35,24,22.168373242562424,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3087,False,"{'a': 0.01, 'e': 0.0456386652315427}",20,16,6.850665392629659,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3088,False,"{'a': 0.01, 'e': 0.045593049378039235}",20,6,22.779973590178678,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3089,False,"{'a': 0.01, 'e': 0.04554747911758895}",25,13,25.488212259938773,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3090,False,"{'a': 0.01, 'e': 0.04550195440462157}",20,13,-27.81651835264669,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3091,False,"{'a': 0.01, 'e': 0.04545647519361237}",20,11,17.038399096377432,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3092,False,"{'a': 0.01, 'e': 0.04541104143908218}",25,16,12.504814316239003,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3093,False,"{'a': 0.01, 'e': 0.0453656530955972}",35,25,20.777468673825307,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3094,False,"{'a': 0.01, 'e': 0.04532031011776911}",20,8,26.049354939452265,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3095,False,"{'a': 0.01, 'e': 0.045275012460254886}",25,16,14.39383439329859,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3096,False,"{'a': 0.01, 'e': 0.04522976007775692}",20,14,13.252270487483571,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3097,False,"{'a': 0.01, 'e': 0.0451845529250228}",25,12,25.2931812226632,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3098,False,"{'a': 0.01, 'e': 0.04513939095684536}",20,8,26.21743704848001,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3099,False,"{'a': 0.01, 'e': 0.04509427412806263}",30,20,-20.653177140909172,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3100,False,"{'a': 0.01, 'e': 0.0450492023935578}",20,0,32.458545738835355,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3101,False,"{'a': 0.01, 'e': 0.045004175708259125}",20,4,25.15585044232182,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3102,False,"{'a': 0.01, 'e': 0.0449591940271399}",30,8,42.249937493886684,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3103,False,"{'a': 0.01, 'e': 0.04491425730521843}",20,11,14.608117624269774,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3104,False,"{'a': 0.01, 'e': 0.04486936549755804}",30,22,14.056058475807014,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3105,False,"{'a': 0.01, 'e': 0.04482451855926687}",25,20,12.921778656055931,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3106,False,"{'a': 0.01, 'e': 0.044779716445498004}",25,14,16.862414243858098,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3107,False,"{'a': 0.01, 'e': 0.04473495911144929}",25,11,28.303305862478346,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3108,False,"{'a': 0.01, 'e': 0.04469024651236344}",25,8,29.162580631418404,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3109,False,"{'a': 0.01, 'e': 0.04464557860352782}",20,13,13.456778891352956,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3110,False,"{'a': 0.01, 'e': 0.044600955340274535}",25,14,23.442535276595347,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3111,False,"{'a': 0.01, 'e': 0.04455637667798028}",20,8,12.002169429084175,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3112,False,"{'a': 0.01, 'e': 0.04451184257206644}",20,12,15.066183270235708,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3113,False,"{'a': 0.01, 'e': 0.04446735297799888}",30,15,8.038569829290775,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3114,False,"{'a': 0.01, 'e': 0.044422907851287996}",30,20,-3.0353262113656845,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3115,False,"{'a': 0.01, 'e': 0.04437850714748865}",20,2,30.177677624667773,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3116,False,"{'a': 0.01, 'e': 0.04433415082220017}",20,14,10.947835207647795,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3117,False,"{'a': 0.01, 'e': 0.044289838831066214}",25,15,19.276125533803857,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3118,False,"{'a': 0.01, 'e': 0.04424557112977477}",20,8,21.844051206188936,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3119,False,"{'a': 0.01, 'e': 0.04420134767405813}",30,20,20.317877074950847,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3120,False,"{'a': 0.01, 'e': 0.04415716841969286}",25,13,14.343283907185592,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3121,False,"{'a': 0.01, 'e': 0.044113033322499696}",20,10,17.956360203372313,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3122,False,"{'a': 0.01, 'e': 0.04406894233834353}",30,14,28.793223946288258,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3123,False,"{'a': 0.01, 'e': 0.04402489542313335}",20,14,8.232879238204703,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3124,False,"{'a': 0.01, 'e': 0.04398089253282229}",20,11,20.260920607144904,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3125,False,"{'a': 0.01, 'e': 0.04393693362340742}",25,10,-9.146273256304172,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +3126,False,"{'a': 0.01, 'e': 0.04389301865092984}",25,13,22.364518979594493,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3127,False,"{'a': 0.01, 'e': 0.04384914757147454}",25,11,22.67805955131784,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3128,False,"{'a': 0.01, 'e': 0.04380532034117049}",20,10,8.205482042951749,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3129,False,"{'a': 0.01, 'e': 0.04376153691619043}",25,8,28.59744276054153,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3130,False,"{'a': 0.01, 'e': 0.04371779725275094}",25,3,36.30921564573023,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3131,False,"{'a': 0.01, 'e': 0.04367410130711232}",20,15,9.453020587655342,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3132,False,"{'a': 0.01, 'e': 0.043630449035578674}",25,17,15.123015482632288,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3133,False,"{'a': 0.01, 'e': 0.04358684039449769}",25,0,40.37137265646452,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3134,False,"{'a': 0.01, 'e': 0.04354327534026074}",20,6,11.231705041034274,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3135,False,"{'a': 0.01, 'e': 0.04349975382930273}",25,17,12.747817176030228,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3136,False,"{'a': 0.01, 'e': 0.04345627581810221}",30,22,12.650494931448652,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3137,False,"{'a': 0.01, 'e': 0.043412841263181116}",25,7,29.29427202480574,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3138,False,"{'a': 0.01, 'e': 0.04336945012110491}",35,24,22.58389876927823,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3139,False,"{'a': 0.01, 'e': 0.04332610234848241}",20,14,-28.791713737418533,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3140,False,"{'a': 0.01, 'e': 0.043282797901965896}",20,0,-11.434649117487012,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +3141,False,"{'a': 0.01, 'e': 0.043239536738250886}",20,13,12.992675586345094,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3142,False,"{'a': 0.01, 'e': 0.04319631881407622}",25,0,29.2065154497747,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +3143,False,"{'a': 0.01, 'e': 0.043153144086223956}",30,15,29.390135652050027,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3144,False,"{'a': 0.01, 'e': 0.043110012511519386}",20,13,11.492252387052222,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3145,False,"{'a': 0.01, 'e': 0.04306692404683092}",30,20,18.308249710462462,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3146,False,"{'a': 0.01, 'e': 0.04302387864907009}",35,22,15.386368479254097,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3147,False,"{'a': 0.01, 'e': 0.042980876275191475}",35,18,29.582645600549114,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3148,False,"{'a': 0.01, 'e': 0.042937916882192735}",20,9,18.567557137290336,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3149,False,"{'a': 0.01, 'e': 0.04289500042711446}",25,15,19.741608848363043,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3150,False,"{'a': 0.01, 'e': 0.04285212686704019}",20,13,14.066386487683667,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3151,False,"{'a': 0.01, 'e': 0.04280929615909633}",20,16,8.452719162304223,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3152,False,"{'a': 0.01, 'e': 0.04276650826045222}",30,20,17.14867263169773,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3153,False,"{'a': 0.01, 'e': 0.04272376312831993}",25,11,27.28751837268479,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3154,False,"{'a': 0.01, 'e': 0.04268106071995433}",25,9,26.541569491830423,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3155,False,"{'a': 0.01, 'e': 0.04263840099265299}",20,12,14.112349743007703,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3156,False,"{'a': 0.01, 'e': 0.042595783903756214}",25,13,22.50563167120693,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3157,False,"{'a': 0.01, 'e': 0.04255320941064689}",25,20,9.838393397611544,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3158,False,"{'a': 0.01, 'e': 0.042510677470750526}",25,20,12.138170622099235,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3159,False,"{'a': 0.01, 'e': 0.042468188041535154}",20,10,16.532141980401825,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3160,False,"{'a': 0.01, 'e': 0.042425741080511385}",30,8,35.39197560271886,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3161,False,"{'a': 0.01, 'e': 0.04238333654523223}",25,18,12.573937360015956,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3162,False,"{'a': 0.01, 'e': 0.042340974393293145}",30,21,17.628178510013043,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3163,False,"{'a': 0.01, 'e': 0.04229865458233197}",20,11,16.902997840131743,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3164,False,"{'a': 0.01, 'e': 0.042256377070028925}",30,18,19.297876184690693,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3165,False,"{'a': 0.01, 'e': 0.042214141814106466}",25,20,8.696065725722557,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3166,False,"{'a': 0.01, 'e': 0.04217194877232933}",25,15,21.68034888574534,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3167,False,"{'a': 0.01, 'e': 0.04212979790250448}",20,1,27.310170174751764,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3168,False,"{'a': 0.01, 'e': 0.042087689162481054}",20,14,10.7092843516944,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3169,False,"{'a': 0.01, 'e': 0.042045622510150295}",25,16,14.571253977181062,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3170,False,"{'a': 0.01, 'e': 0.04200359790344555}",20,16,7.865919916527773,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3171,False,"{'a': 0.01, 'e': 0.041961615300342196}",35,23,23.712420182043406,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3172,False,"{'a': 0.01, 'e': 0.04191967465885765}",30,20,-24.42998738552834,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3173,False,"{'a': 0.01, 'e': 0.04187777593705126}",25,15,15.335987936047818,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3174,False,"{'a': 0.01, 'e': 0.0418359190930243}",20,16,6.994222194664502,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3175,False,"{'a': 0.01, 'e': 0.041794104084919896}",30,13,29.706957662077787,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3176,False,"{'a': 0.01, 'e': 0.04175233087092308}",25,13,23.675000608040484,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3177,False,"{'a': 0.01, 'e': 0.04171059940926062}",20,15,8.936068768991642,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3178,False,"{'a': 0.01, 'e': 0.04166890965820104}",20,14,13.303633689689166,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3179,False,"{'a': 0.01, 'e': 0.04162726157605457}",25,1,37.73609187599424,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3180,False,"{'a': 0.01, 'e': 0.04158565512117316}",30,11,31.58869499415065,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3181,False,"{'a': 0.01, 'e': 0.04154409025195034}",30,15,27.10178360780925,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3182,False,"{'a': 0.01, 'e': 0.04150256692682124}",20,12,19.534153734255174,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3183,False,"{'a': 0.01, 'e': 0.0414610851042625}",30,16,28.048099152218523,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3184,False,"{'a': 0.01, 'e': 0.04141964474279235}",30,19,-2.822755014203832,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3185,False,"{'a': 0.01, 'e': 0.04137824580097038}",25,12,23.769973412018288,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3186,False,"{'a': 0.01, 'e': 0.041336888237397666}",25,13,22.716031992492034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3187,False,"{'a': 0.01, 'e': 0.04129557201071661}",25,15,21.007250359723447,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3188,False,"{'a': 0.01, 'e': 0.04125429707961103}",20,5,27.833415130896135,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3189,False,"{'a': 0.01, 'e': 0.04121306340280596}",25,17,15.74126918662115,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3190,False,"{'a': 0.01, 'e': 0.04117187093906774}",25,13,21.923363795307488,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3191,False,"{'a': 0.01, 'e': 0.04113071964720386}",25,16,17.008538042118776,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3192,False,"{'a': 0.01, 'e': 0.04108960948606308}",30,18,11.524202775218527,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3193,False,"{'a': 0.01, 'e': 0.041048540414535206}",25,13,24.094316521292086,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3194,False,"{'a': 0.01, 'e': 0.04100751239155117}",30,18,15.988393974820134,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3195,False,"{'a': 0.01, 'e': 0.040966525376082925}",25,15,19.794904021510284,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3196,False,"{'a': 0.01, 'e': 0.04092557932714349}",20,7,19.590978613554302,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3197,False,"{'a': 0.01, 'e': 0.04088467420378679}",20,14,13.056518297832241,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3198,False,"{'a': 0.01, 'e': 0.0408438099651077}",20,3,5.425350188653758,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3199,False,"{'a': 0.01, 'e': 0.04080298657024196}",25,0,34.4279538618268,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",0 +3200,False,"{'a': 0.01, 'e': 0.04076220397836621}",20,15,8.432779006138333,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3201,False,"{'a': 0.01, 'e': 0.04072146214869783}",30,13,-12.00436969502388,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3202,False,"{'a': 0.01, 'e': 0.040680761040495}",20,6,18.804934010536428,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3203,False,"{'a': 0.01, 'e': 0.0406401006130566}",20,6,26.39191611323902,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3204,False,"{'a': 0.01, 'e': 0.04059948082572218}",20,9,12.601193946816764,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3205,False,"{'a': 0.01, 'e': 0.040558901637871986}",25,13,20.992348384085336,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3206,False,"{'a': 0.01, 'e': 0.040518363008926805}",25,20,8.117939481313698,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3207,False,"{'a': 0.01, 'e': 0.040477864898348016}",20,15,9.560015136247594,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3208,False,"{'a': 0.01, 'e': 0.04043740726563748}",20,15,-11.092367173522536,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3209,False,"{'a': 0.01, 'e': 0.0403969900703376}",25,7,28.620108769142007,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3210,False,"{'a': 0.01, 'e': 0.04035661327203115}",20,14,12.974263699284604,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3211,False,"{'a': 0.01, 'e': 0.040316276830341335}",20,6,13.316570313697808,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3212,False,"{'a': 0.01, 'e': 0.0402759807049317}",20,14,12.151768792545171,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3213,False,"{'a': 0.01, 'e': 0.04023572485550614}",20,7,28.5675343872946,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3214,False,"{'a': 0.01, 'e': 0.040195509241808786}",25,10,28.031241832427906,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3215,False,"{'a': 0.01, 'e': 0.040155333823624025}",20,12,16.535214599548056,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3216,False,"{'a': 0.01, 'e': 0.040115198560776416}",20,15,9.84106653086403,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3217,False,"{'a': 0.01, 'e': 0.04007510341313073}",25,15,8.753821702058275,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3218,False,"{'a': 0.01, 'e': 0.040035048340591795}",25,18,16.7337177681648,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3219,False,"{'a': 0.01, 'e': 0.03999503330310454}",25,15,18.46106563492104,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3220,False,"{'a': 0.01, 'e': 0.039955058260653896}",20,8,26.570344833507416,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3221,False,"{'a': 0.01, 'e': 0.03991512317326487}",25,17,3.1542474387929484,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3222,False,"{'a': 0.01, 'e': 0.039875228001002336}",20,13,13.141089254585598,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3223,False,"{'a': 0.01, 'e': 0.03983537270397113}",35,11,34.493668183055796,"{0: 23, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3224,False,"{'a': 0.01, 'e': 0.039795557242315927}",20,16,6.472572633412184,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3225,False,"{'a': 0.01, 'e': 0.039755781576221304}",25,7,30.707861689294013,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3226,False,"{'a': 0.01, 'e': 0.03971604566591157}",20,15,10.064600269754155,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3227,False,"{'a': 0.01, 'e': 0.0396763494716508}",20,12,17.34216053494593,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3228,False,"{'a': 0.01, 'e': 0.0396366929537428}",20,11,16.384978520186518,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3229,False,"{'a': 0.01, 'e': 0.03959707607253108}",20,12,14.991728507187478,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3230,False,"{'a': 0.01, 'e': 0.039557498788398725}",30,11,25.75948610694524,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3231,False,"{'a': 0.01, 'e': 0.039517961061768456}",25,14,19.860675153280187,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3232,False,"{'a': 0.01, 'e': 0.039478462853102525}",30,20,19.400832996361743,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3233,False,"{'a': 0.01, 'e': 0.03943900412290276}",25,15,18.87522867975847,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3234,False,"{'a': 0.01, 'e': 0.03939958483171039}",25,16,17.245241695699196,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3235,False,"{'a': 0.01, 'e': 0.03936020494010615}",20,11,19.43132814495021,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3236,False,"{'a': 0.01, 'e': 0.039320864408710104}",20,6,23.271780573507954,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3237,False,"{'a': 0.01, 'e': 0.03928156319818176}",20,9,23.199307968996347,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3238,False,"{'a': 0.01, 'e': 0.03924230126921989}",20,12,13.682282960557679,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3239,False,"{'a': 0.01, 'e': 0.03920307858256256}",20,10,20.63187878253209,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3240,False,"{'a': 0.01, 'e': 0.039163895098987066}",25,20,12.087077943942193,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3241,False,"{'a': 0.01, 'e': 0.03912475077930995}",20,8,24.884320629382714,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3242,False,"{'a': 0.01, 'e': 0.03908564558438687}",30,18,22.742220022109485,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3243,False,"{'a': 0.01, 'e': 0.039046579475112635}",25,5,31.829402020954873,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3244,False,"{'a': 0.01, 'e': 0.03900755241242111}",20,12,4.045404286171798,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3245,False,"{'a': 0.01, 'e': 0.03896856435728526}",25,15,18.473680602439558,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3246,False,"{'a': 0.01, 'e': 0.038929615270717026}",20,4,20.507621223854738,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3247,False,"{'a': 0.01, 'e': 0.0388907051137673}",20,9,20.40890201007526,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3248,False,"{'a': 0.01, 'e': 0.03885183384752591}",35,25,18.17796797084074,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3249,False,"{'a': 0.01, 'e': 0.03881300143312163}",35,18,23.17132639215164,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3250,False,"{'a': 0.01, 'e': 0.03877420783172201}",30,19,19.35469621112667,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3251,False,"{'a': 0.01, 'e': 0.03873545300453345}",25,15,20.135508132278385,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3252,False,"{'a': 0.01, 'e': 0.038696736912801115}",30,22,14.83343673098343,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3253,False,"{'a': 0.01, 'e': 0.03865805951780893}",25,5,32.908880135312586,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3254,False,"{'a': 0.01, 'e': 0.03861942078087949}",20,16,11.273762893320004,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3255,False,"{'a': 0.01, 'e': 0.03858082066337404}",20,16,9.540679124101358,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3256,False,"{'a': 0.01, 'e': 0.03854225912669246}",20,12,16.061820540905742,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3257,False,"{'a': 0.01, 'e': 0.038503736132273224}",25,10,28.23965469729664,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3258,False,"{'a': 0.01, 'e': 0.03846525164159334}",25,8,18.26915425716964,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3259,False,"{'a': 0.01, 'e': 0.0384268056161683}",30,19,22.79582999996767,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3260,False,"{'a': 0.01, 'e': 0.038388398017552054}",35,5,44.02464106643165,"{0: 29, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3261,False,"{'a': 0.01, 'e': 0.03835002880733705}",20,8,24.048786678893308,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3262,False,"{'a': 0.01, 'e': 0.03831169794715405}",25,17,15.336792421130621,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3263,False,"{'a': 0.01, 'e': 0.03827340539867218}",20,10,16.32310163847838,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3264,False,"{'a': 0.01, 'e': 0.03823515112359889}",20,16,7.2934604033835475,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3265,False,"{'a': 0.01, 'e': 0.038196935083679925}",20,10,17.633135247465155,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3266,False,"{'a': 0.01, 'e': 0.038158757240699226}",25,18,14.097639842558948,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3267,False,"{'a': 0.01, 'e': 0.03812061755647895}",20,10,18.244434222993974,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3268,False,"{'a': 0.01, 'e': 0.03808251599287939}",25,15,16.47464112202233,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3269,False,"{'a': 0.01, 'e': 0.03804445251179901}",20,11,18.66906090216965,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3270,False,"{'a': 0.01, 'e': 0.038006427075174314}",20,14,13.370680581206916,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3271,False,"{'a': 0.01, 'e': 0.03796843964497986}",30,20,10.167084391716669,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3272,False,"{'a': 0.01, 'e': 0.0379304901832282}",25,12,24.344885452125077,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3273,False,"{'a': 0.01, 'e': 0.0378925786519699}",20,16,7.659961436593354,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3274,False,"{'a': 0.01, 'e': 0.03785470501329341}",20,5,29.764507361452154,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3275,False,"{'a': 0.01, 'e': 0.03781686922932508}",20,8,26.105680745938393,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3276,False,"{'a': 0.01, 'e': 0.037779071262229125}",20,14,13.60037934369478,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3277,False,"{'a': 0.01, 'e': 0.03774131107420759}",20,2,28.38690977707942,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3278,False,"{'a': 0.01, 'e': 0.037703588627500284}",30,17,15.903299145938254,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3279,False,"{'a': 0.01, 'e': 0.03766590388438474}",20,16,7.0513140110051165,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3280,False,"{'a': 0.01, 'e': 0.0376282568071762}",20,13,1.491202856056137,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3281,False,"{'a': 0.01, 'e': 0.037590647358227626}",25,13,23.58557815114361,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3282,False,"{'a': 0.01, 'e': 0.03755307549992954}",30,17,11.072589032795456,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3283,False,"{'a': 0.01, 'e': 0.03751554119471008}",35,23,20.494691702614762,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3284,False,"{'a': 0.01, 'e': 0.03747804440503493}",20,9,-21.035370821635308,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3285,False,"{'a': 0.01, 'e': 0.03744058509340732}",25,15,16.266218590739605,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3286,False,"{'a': 0.01, 'e': 0.037403163222367926}",35,23,20.758402117444728,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3287,False,"{'a': 0.01, 'e': 0.03736577875449487}",20,3,27.21895347864693,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3288,False,"{'a': 0.01, 'e': 0.03732843165240367}",25,12,24.32878104259273,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3289,False,"{'a': 0.01, 'e': 0.037291121878747245}",30,20,18.02658836189997,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3290,False,"{'a': 0.01, 'e': 0.03725384939621581}",20,12,17.31543991864544,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3291,False,"{'a': 0.01, 'e': 0.03721661416753687}",25,7,28.581556951504894,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3292,False,"{'a': 0.01, 'e': 0.03717941615547519}",25,17,13.53826216383451,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3293,False,"{'a': 0.01, 'e': 0.03714225532283277}",20,8,19.043678143668973,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3294,False,"{'a': 0.01, 'e': 0.03710513163244877}",20,10,19.609303291753726,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3295,False,"{'a': 0.01, 'e': 0.0370680450471995}",20,12,15.76663187216702,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3296,False,"{'a': 0.01, 'e': 0.037030995529998355}",25,13,16.683818965470298,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3297,False,"{'a': 0.01, 'e': 0.036993983043795836}",30,11,36.7971313298473,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3298,False,"{'a': 0.01, 'e': 0.03695700755157944}",25,12,23.10598655754058,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3299,False,"{'a': 0.01, 'e': 0.03692006901637368}",30,21,19.82078490468156,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3300,False,"{'a': 0.01, 'e': 0.036883167401239994}",25,14,20.264240226097712,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3301,False,"{'a': 0.01, 'e': 0.036846302669276805}",25,16,17.632290083154835,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3302,False,"{'a': 0.01, 'e': 0.03680947478361935}",25,19,9.880020969304685,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3303,False,"{'a': 0.01, 'e': 0.036772683707439746}",20,8,23.19554381261267,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3304,False,"{'a': 0.01, 'e': 0.0367359294039469}",20,13,16.439172352443066,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3305,False,"{'a': 0.01, 'e': 0.03669921183638653}",20,16,6.284161204308538,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3306,False,"{'a': 0.01, 'e': 0.03666253096804106}",20,12,14.245656040661087,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3307,False,"{'a': 0.01, 'e': 0.036625886762229616}",25,18,11.119375357908766,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3308,False,"{'a': 0.01, 'e': 0.03658927918230796}",20,5,25.784033509462002,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3309,False,"{'a': 0.01, 'e': 0.036552708191668566}",20,2,24.902228754511118,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3310,False,"{'a': 0.01, 'e': 0.0365161737537404}",30,15,30.77230772063136,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3311,False,"{'a': 0.01, 'e': 0.036479675831989036}",25,11,27.739787858747746,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3312,False,"{'a': 0.01, 'e': 0.036443214389916524}",25,11,12.813009230289703,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3313,False,"{'a': 0.01, 'e': 0.036406789391061456}",30,12,24.515412542734545,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3314,False,"{'a': 0.01, 'e': 0.03637040079899881}",25,10,18.80729662141239,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3315,False,"{'a': 0.01, 'e': 0.036334048577339996}",25,16,17.77604741413667,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3316,False,"{'a': 0.01, 'e': 0.03629773268973277}",20,6,26.11321688011783,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3317,False,"{'a': 0.01, 'e': 0.03626145309986128}",20,12,16.974087318589298,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3318,False,"{'a': 0.01, 'e': 0.03622520977144591}",25,10,28.399434007292548,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3319,False,"{'a': 0.01, 'e': 0.03618900266824332}",35,23,23.16023622300609,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3320,False,"{'a': 0.01, 'e': 0.03615283175404641}",35,7,41.29723720381904,"{0: 28, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3321,False,"{'a': 0.01, 'e': 0.03611669699268428}",35,20,18.26126046658862,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3322,False,"{'a': 0.01, 'e': 0.03608059834802215}",35,21,26.960819323857425,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3323,False,"{'a': 0.01, 'e': 0.03604453578396138}",25,14,20.6515018409489,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3324,False,"{'a': 0.01, 'e': 0.036008509264439374}",30,20,19.3162359602228,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3325,False,"{'a': 0.01, 'e': 0.035972518753429654}",20,13,13.49710409700694,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3326,False,"{'a': 0.01, 'e': 0.03593656421494168}",20,14,11.59031865132423,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3327,False,"{'a': 0.01, 'e': 0.03590064561302092}",20,16,8.799543078153592,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3328,False,"{'a': 0.01, 'e': 0.03586476291174875}",30,15,28.289940083300415,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3329,False,"{'a': 0.01, 'e': 0.035828916075242495}",20,10,20.48463956788037,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3330,False,"{'a': 0.01, 'e': 0.0357931050676553}",20,16,6.6220532551229425,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3331,False,"{'a': 0.01, 'e': 0.03575732985317615}",20,14,11.362808689362495,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3332,False,"{'a': 0.01, 'e': 0.035721590396029845}",20,7,19.416934077812122,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3333,False,"{'a': 0.01, 'e': 0.03568588666047689}",30,12,36.17971523419021,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3334,False,"{'a': 0.01, 'e': 0.035650218610813585}",20,12,17.5595371183932,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3335,False,"{'a': 0.01, 'e': 0.03561458621137186}",35,13,40.83722321054545,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3336,False,"{'a': 0.01, 'e': 0.03557898942651932}",30,15,28.579617781840017,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3337,False,"{'a': 0.01, 'e': 0.03554342822065915}",30,21,15.754049544100921,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3338,False,"{'a': 0.01, 'e': 0.035507902558230185}",30,24,12.657946483170939,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3339,False,"{'a': 0.01, 'e': 0.03547241240370673}",20,11,7.348911495366137,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3340,False,"{'a': 0.01, 'e': 0.03543695772159864}",20,16,8.60075820547518,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3341,False,"{'a': 0.01, 'e': 0.03540153847645121}",20,11,14.756246938298077,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3342,False,"{'a': 0.01, 'e': 0.03536615463284522}",30,21,14.515962266825863,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3343,False,"{'a': 0.01, 'e': 0.035330806155396806}",20,7,23.186723450425813,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3344,False,"{'a': 0.01, 'e': 0.03529549300875749}",20,8,20.58171962303615,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3345,False,"{'a': 0.01, 'e': 0.03526021515761412}",20,16,7.927545103327995,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3346,False,"{'a': 0.01, 'e': 0.035224972566688856}",20,15,9.35307768603043,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3347,False,"{'a': 0.01, 'e': 0.03518976520073909}",25,20,8.313997790790165,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3348,False,"{'a': 0.01, 'e': 0.03515459302455746}",30,18,25.02641123804402,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3349,False,"{'a': 0.01, 'e': 0.03511945600297177}",30,18,25.071075365621617,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3350,False,"{'a': 0.01, 'e': 0.035084354100845025}",30,16,1.8390246151821243,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3351,False,"{'a': 0.01, 'e': 0.035049287283075305}",20,16,5.268981290833784,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3352,False,"{'a': 0.01, 'e': 0.035014255514595784}",25,18,14.993132808512307,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3353,False,"{'a': 0.01, 'e': 0.034979258760374686}",20,2,-16.06587725130425,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3354,False,"{'a': 0.01, 'e': 0.03494429698541527}",25,13,21.69131878680868,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3355,False,"{'a': 0.01, 'e': 0.03490937015475576}",30,18,23.279225391995034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3356,False,"{'a': 0.01, 'e': 0.034874478233469314}",20,16,7.185253018561404,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3357,False,"{'a': 0.01, 'e': 0.034839621186663984}",30,20,20.778701902465784,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3358,False,"{'a': 0.01, 'e': 0.03480479897948277}",25,18,15.156238571339172,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3359,False,"{'a': 0.01, 'e': 0.03477001157710343}",25,14,22.744580296107383,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3360,False,"{'a': 0.01, 'e': 0.03473525894473856}",20,8,22.69521136285887,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3361,False,"{'a': 0.01, 'e': 0.03470054104763552}",35,17,35.00378197961246,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3362,False,"{'a': 0.01, 'e': 0.03466585785107644}",20,7,20.216969922131938,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3363,False,"{'a': 0.01, 'e': 0.034631209320378095}",20,16,8.511850769786362,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3364,False,"{'a': 0.01, 'e': 0.034596595420891954}",20,14,11.15413318567848,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3365,False,"{'a': 0.01, 'e': 0.0345620161180041}",20,11,16.43233266754009,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3366,False,"{'a': 0.01, 'e': 0.034527471377135265}",20,0,35.77782275269653,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3367,False,"{'a': 0.01, 'e': 0.03449296116374068}",25,13,26.759623016755576,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3368,False,"{'a': 0.01, 'e': 0.034458485443310136}",20,11,16.84603787800089,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3369,False,"{'a': 0.01, 'e': 0.034424044181367894}",25,14,22.304127911988704,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3370,False,"{'a': 0.01, 'e': 0.03438963734347271}",30,16,27.45846569806164,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3371,False,"{'a': 0.01, 'e': 0.03435526489521774}",25,19,10.920843461571508,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3372,False,"{'a': 0.01, 'e': 0.03432092680223053}",20,9,21.372531490725247,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3373,False,"{'a': 0.01, 'e': 0.034286623030172964}",20,6,29.53411405578767,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3374,False,"{'a': 0.01, 'e': 0.0342523535447413}",20,13,11.22117703554104,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3375,False,"{'a': 0.01, 'e': 0.03421811831166603}",20,10,23.348530842876524,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3376,False,"{'a': 0.01, 'e': 0.034183917296711934}",20,9,6.605338157324147,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3377,False,"{'a': 0.01, 'e': 0.03414975046567796}",20,10,17.5650405432138,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3378,False,"{'a': 0.01, 'e': 0.03411561778439732}",20,11,17.116147772538916,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3379,False,"{'a': 0.01, 'e': 0.034081519218737304}",25,17,14.205497653138988,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3380,False,"{'a': 0.01, 'e': 0.034047454734599344}",30,19,17.0022924914081,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3381,False,"{'a': 0.01, 'e': 0.03401342429791895}",20,16,8.597664257939645,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3382,False,"{'a': 0.01, 'e': 0.033979427874665694}",20,13,12.742223147914551,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3383,False,"{'a': 0.01, 'e': 0.03394546543084315}",20,8,24.202323527414727,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3384,False,"{'a': 0.01, 'e': 0.033911536932488856}",25,11,24.896552112347095,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3385,False,"{'a': 0.01, 'e': 0.033877642345674315}",30,11,30.940608471092915,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3386,False,"{'a': 0.01, 'e': 0.03384378163650495}",20,12,12.38377272695043,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3387,False,"{'a': 0.01, 'e': 0.033809954771120046}",20,1,17.1786045190702,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3388,False,"{'a': 0.01, 'e': 0.03377616171569273}",30,21,16.542134824483806,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3389,False,"{'a': 0.01, 'e': 0.03374240243642994}",20,6,26.210124886181966,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3390,False,"{'a': 0.01, 'e': 0.033708676899572396}",20,14,10.562630389879573,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3391,False,"{'a': 0.01, 'e': 0.03367498507139457}",30,21,17.623351599587053,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3392,False,"{'a': 0.01, 'e': 0.03364132691820462}",20,12,15.318566441366244,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3393,False,"{'a': 0.01, 'e': 0.03360770240634438}",25,18,12.864884193301187,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3394,False,"{'a': 0.01, 'e': 0.033574111502189356}",25,15,15.974547391858627,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3395,False,"{'a': 0.01, 'e': 0.033540554172148636}",30,11,34.26754126244624,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3396,False,"{'a': 0.01, 'e': 0.03350703038266488}",25,15,20.492411824546547,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3397,False,"{'a': 0.01, 'e': 0.03347354010021429}",30,23,13.843741999070197,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3398,False,"{'a': 0.01, 'e': 0.0334400832913066}",25,18,13.988484668114115,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3399,False,"{'a': 0.01, 'e': 0.03340665992248499}",20,12,12.504612445479598,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3400,False,"{'a': 0.01, 'e': 0.03337326996032608}",25,11,23.853895388922226,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3401,False,"{'a': 0.01, 'e': 0.033339913371439905}",25,15,21.83770222578286,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3402,False,"{'a': 0.01, 'e': 0.03330659012246989}",20,6,27.6740770719025,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3403,False,"{'a': 0.01, 'e': 0.03327330018009277}",30,19,22.498074068586686,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3404,False,"{'a': 0.01, 'e': 0.03324004351101861}",25,15,15.734419903950078,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3405,False,"{'a': 0.01, 'e': 0.03320682008199072}",25,17,16.140126979157632,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3406,False,"{'a': 0.01, 'e': 0.03317362985978568}",20,9,6.360939655818574,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3407,False,"{'a': 0.01, 'e': 0.033140472811213274}",30,20,19.726753430585433,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3408,False,"{'a': 0.01, 'e': 0.03310734890311644}",20,9,21.13708152994211,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3409,False,"{'a': 0.01, 'e': 0.03307425810237125}",25,13,20.30230036221152,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3410,False,"{'a': 0.01, 'e': 0.03304120037588693}",20,0,31.704573281169175,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3411,False,"{'a': 0.01, 'e': 0.03300817569060575}",25,16,15.632003741737527,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3412,False,"{'a': 0.01, 'e': 0.032975184013503}",25,11,26.02908880917894,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3413,False,"{'a': 0.01, 'e': 0.032942225311587005}",25,15,19.62990368081707,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3414,False,"{'a': 0.01, 'e': 0.03290929955189908}",20,9,20.965511983430442,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3415,False,"{'a': 0.01, 'e': 0.03287640670151345}",20,4,24.32707518263427,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3416,False,"{'a': 0.01, 'e': 0.03284354672753726}",35,17,38.8375979483718,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3417,False,"{'a': 0.01, 'e': 0.032810719597110516}",20,14,10.610777079157977,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3418,False,"{'a': 0.01, 'e': 0.032777925277406125}",20,12,13.150688403546201,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3419,False,"{'a': 0.01, 'e': 0.03274516373562974}",20,5,23.944108821839716,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3420,False,"{'a': 0.01, 'e': 0.03271243493901982}",35,23,13.938724797941182,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3421,False,"{'a': 0.01, 'e': 0.03267973885484755}",25,0,34.3832201563233,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +3422,False,"{'a': 0.01, 'e': 0.03264707545041687}",20,4,17.418531079456866,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3423,False,"{'a': 0.01, 'e': 0.03261444469306436}",20,10,18.47769073155846,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3424,False,"{'a': 0.01, 'e': 0.03258184655015926}",35,13,45.13382989104197,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3425,False,"{'a': 0.01, 'e': 0.03254928098910342}",25,3,36.891884674012694,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3426,False,"{'a': 0.01, 'e': 0.03251674797733129}",20,7,23.96344987909823,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3427,False,"{'a': 0.01, 'e': 0.032484247482309846}",25,8,-12.971039224362379,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3428,False,"{'a': 0.01, 'e': 0.03245177947153859}",25,17,-5.834818487611198,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3429,False,"{'a': 0.01, 'e': 0.0324193439125495}",25,18,12.4992613820656,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3430,False,"{'a': 0.01, 'e': 0.03238694077290704}",20,12,14.486147369409261,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3431,False,"{'a': 0.01, 'e': 0.03235457002020804}",25,8,35.94013241876406,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3432,False,"{'a': 0.01, 'e': 0.03232223162208177}",30,18,21.925273307617935,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3433,False,"{'a': 0.01, 'e': 0.0322899255461898}",20,0,8.610949946729239,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",0 +3434,False,"{'a': 0.01, 'e': 0.032257651760226075}",25,9,31.20528921877043,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3435,False,"{'a': 0.01, 'e': 0.0322254102319168}",20,8,19.6805515568811,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3436,False,"{'a': 0.01, 'e': 0.03219320092902044}",25,18,14.68048189198508,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3437,False,"{'a': 0.01, 'e': 0.032161023819327686}",20,8,24.68721415134668,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3438,False,"{'a': 0.01, 'e': 0.03212887887066144}",25,13,23.56176296284612,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3439,False,"{'a': 0.01, 'e': 0.032096766050876746}",25,8,10.1858326473011,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3440,False,"{'a': 0.01, 'e': 0.03206468532786077}",20,10,19.153068982001294,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3441,False,"{'a': 0.01, 'e': 0.03203263666953279}",30,16,29.09484465773394,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3442,False,"{'a': 0.01, 'e': 0.03200062004384415}",30,22,11.418654276181151,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3443,False,"{'a': 0.01, 'e': 0.03196863541877823}",20,11,18.238941818040676,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3444,False,"{'a': 0.01, 'e': 0.03193668276235039}",25,18,10.647232979530429,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3445,False,"{'a': 0.01, 'e': 0.03190476204260796}",20,7,13.766212643389808,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3446,False,"{'a': 0.01, 'e': 0.031872873227630244}",30,16,25.971074566270914,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3447,False,"{'a': 0.01, 'e': 0.03184101628552841}",25,20,9.209316261268478,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3448,False,"{'a': 0.01, 'e': 0.03180919118444552}",25,19,10.120753679863565,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3449,False,"{'a': 0.01, 'e': 0.03177739789255645}",25,14,21.517827580723598,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3450,False,"{'a': 0.01, 'e': 0.03174563637806794}",25,15,6.001677459475134,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3451,False,"{'a': 0.01, 'e': 0.03171390660921845}",20,13,13.800192421678037,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3452,False,"{'a': 0.01, 'e': 0.0316822085542782}",20,16,8.681932752979042,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3453,False,"{'a': 0.01, 'e': 0.03165054218154915}",25,9,28.907566205937666,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3454,False,"{'a': 0.01, 'e': 0.031618907459364916}",25,17,14.378274823785183,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3455,False,"{'a': 0.01, 'e': 0.031587304356090785}",20,13,9.562079011635246,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3456,False,"{'a': 0.01, 'e': 0.03155573284012364}",20,3,27.538315375887986,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3457,False,"{'a': 0.01, 'e': 0.031524192879891964}",20,12,14.286468749654908,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3458,False,"{'a': 0.01, 'e': 0.031492684443855785}",20,10,20.446769555647727,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3459,False,"{'a': 0.01, 'e': 0.03146120750050669}",20,15,9.488563728801386,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3460,False,"{'a': 0.01, 'e': 0.03142976201836771}",20,13,14.49206332027356,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3461,False,"{'a': 0.01, 'e': 0.03139834796599337}",30,18,21.325915819966617,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3462,False,"{'a': 0.01, 'e': 0.0313669653119696}",20,10,17.11550541804251,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3463,False,"{'a': 0.01, 'e': 0.03133561402491377}",20,13,13.532620299284059,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3464,False,"{'a': 0.01, 'e': 0.03130429407347458}",25,10,19.290436226783076,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3465,False,"{'a': 0.01, 'e': 0.03127300542633206}",20,9,15.550923248983786,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3466,False,"{'a': 0.01, 'e': 0.031241748052197565}",25,19,11.866486383533731,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3467,False,"{'a': 0.01, 'e': 0.031210521919813744}",25,6,33.10709340018517,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3468,False,"{'a': 0.01, 'e': 0.031179326997954438}",20,16,6.88830206742943,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3469,False,"{'a': 0.01, 'e': 0.03114816325542473}",30,16,24.298364876186874,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3470,False,"{'a': 0.01, 'e': 0.03111703066106086}",20,0,36.39099551733163,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3471,False,"{'a': 0.01, 'e': 0.03108592918373026}",20,6,29.43972541517951,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3472,False,"{'a': 0.01, 'e': 0.03105485879233143}",25,7,31.93338389183059,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3473,False,"{'a': 0.01, 'e': 0.031023819455793984}",25,20,8.543031388128576,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3474,False,"{'a': 0.01, 'e': 0.03099281114307856}",25,14,-20.996794438902793,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3475,False,"{'a': 0.01, 'e': 0.030961833823176882}",25,13,24.927364448484653,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3476,False,"{'a': 0.01, 'e': 0.030930887465111603}",20,12,13.53144717901833,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3477,False,"{'a': 0.01, 'e': 0.030899972037936367}",30,19,19.225384725599636,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3478,False,"{'a': 0.01, 'e': 0.03086908751073573}",20,12,13.418141565322127,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3479,False,"{'a': 0.01, 'e': 0.030838233852625192}",30,16,25.978725773189815,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3480,False,"{'a': 0.01, 'e': 0.030807411032751076}",25,15,19.832837737293133,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3481,False,"{'a': 0.01, 'e': 0.03077661902029056}",30,12,38.34924600048055,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3482,False,"{'a': 0.01, 'e': 0.030745857784451616}",20,16,7.142375325035707,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3483,False,"{'a': 0.01, 'e': 0.03071512729447303}",20,12,15.878245296172656,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3484,False,"{'a': 0.01, 'e': 0.0306844275196243}",20,12,14.537511272134006,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3485,False,"{'a': 0.01, 'e': 0.030653758429205646}",20,6,27.437469391436096,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3486,False,"{'a': 0.01, 'e': 0.03062311999254796}",20,9,20.354596659431515,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3487,False,"{'a': 0.01, 'e': 0.030592512179012835}",20,12,16.40144879474247,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3488,False,"{'a': 0.01, 'e': 0.030561934957992438}",25,20,9.769317112837205,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3489,False,"{'a': 0.01, 'e': 0.030531388298909546}",20,13,13.548369579374585,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3490,False,"{'a': 0.01, 'e': 0.030500872171217483}",20,8,17.786179516484797,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3491,False,"{'a': 0.01, 'e': 0.030470386544400145}",20,10,19.93141629999672,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3492,False,"{'a': 0.01, 'e': 0.03043993138797189}",30,21,18.719770663786864,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3493,False,"{'a': 0.01, 'e': 0.030409506671477564}",20,11,21.697282486632478,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3494,False,"{'a': 0.01, 'e': 0.03037911236449243}",20,13,15.44978590387861,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3495,False,"{'a': 0.01, 'e': 0.030348748436622202}",25,12,24.493373985935577,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3496,False,"{'a': 0.01, 'e': 0.03031841485750294}",25,15,20.72193529667525,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3497,False,"{'a': 0.01, 'e': 0.030288111596801063}",20,10,14.63969088955836,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3498,False,"{'a': 0.01, 'e': 0.030257838624213294}",20,13,14.378197803306247,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3499,False,"{'a': 0.01, 'e': 0.030227595909466682}",30,10,35.10364287347998,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3500,False,"{'a': 0.01, 'e': 0.0301973834223185}",25,15,4.815568485543284,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3501,False,"{'a': 0.01, 'e': 0.03016720113255626}",20,9,19.817543287939806,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3502,False,"{'a': 0.01, 'e': 0.030137049009997648}",25,14,8.555520760638686,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3503,False,"{'a': 0.01, 'e': 0.03010692702449057}",20,9,11.472520053855225,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3504,False,"{'a': 0.01, 'e': 0.03007683514591303}",20,10,18.264363511190215,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3505,False,"{'a': 0.01, 'e': 0.03004677334417314}",30,20,22.92372973710934,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3506,False,"{'a': 0.01, 'e': 0.030016741589209084}",25,12,24.3629307423173,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3507,False,"{'a': 0.01, 'e': 0.029986739850989135}",20,12,16.015105679685607,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3508,False,"{'a': 0.01, 'e': 0.029956768099511533}",25,13,22.681010584393807,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3509,False,"{'a': 0.01, 'e': 0.02992682630480453}",30,19,15.035614636600556,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3510,False,"{'a': 0.01, 'e': 0.029896914436926308}",20,7,21.731635250851976,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3511,False,"{'a': 0.01, 'e': 0.02986703246596503}",25,13,23.206840163721456,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3512,False,"{'a': 0.01, 'e': 0.029837180362038706}",30,19,21.514186394005208,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3513,False,"{'a': 0.01, 'e': 0.029807358095295233}",30,10,26.717590802253866,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3514,False,"{'a': 0.01, 'e': 0.02977756563591232}",25,13,19.629551475603694,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3515,False,"{'a': 0.01, 'e': 0.029747802954097544}",25,15,19.324668896651616,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3516,False,"{'a': 0.01, 'e': 0.0297180700200882}",25,11,25.63971167031582,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3517,False,"{'a': 0.01, 'e': 0.02968836680415135}",25,17,11.747718396381565,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3518,False,"{'a': 0.01, 'e': 0.029658693276583766}",20,3,29.383666130512477,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3519,False,"{'a': 0.01, 'e': 0.029629049407711945}",20,10,7.15711730536551,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3520,False,"{'a': 0.01, 'e': 0.029599435167892}",30,20,19.3054150342967,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3521,False,"{'a': 0.01, 'e': 0.02956985052750969}",30,19,12.328166077806017,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3522,False,"{'a': 0.01, 'e': 0.029540295456980357}",20,12,14.106701162105757,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3523,False,"{'a': 0.01, 'e': 0.029510769926748955}",25,8,-15.230731827647405,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3524,False,"{'a': 0.01, 'e': 0.02948127390728994}",25,13,25.369649027699957,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3525,False,"{'a': 0.01, 'e': 0.02945180736910729}",20,3,28.692908346403975,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3526,False,"{'a': 0.01, 'e': 0.02942237028273445}",20,7,25.958694428486417,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3527,False,"{'a': 0.01, 'e': 0.029392962618734357}",20,6,21.39429228607458,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3528,False,"{'a': 0.01, 'e': 0.029363584347699333}",35,18,20.209090571619605,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3529,False,"{'a': 0.01, 'e': 0.029334235440251103}",20,11,17.562682081716044,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3530,False,"{'a': 0.01, 'e': 0.029304915867040746}",25,20,11.428960406526924,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3531,False,"{'a': 0.01, 'e': 0.02927562559874871}",20,11,16.83910194779162,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3532,False,"{'a': 0.01, 'e': 0.029246364606084714}",20,11,19.343679438740832,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3533,False,"{'a': 0.01, 'e': 0.029217132859787758}",30,13,25.626767025589565,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3534,False,"{'a': 0.01, 'e': 0.029187930330626086}",20,12,16.910904486425515,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3535,False,"{'a': 0.01, 'e': 0.02915875698939719}",20,15,8.679940619575259,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3536,False,"{'a': 0.01, 'e': 0.02912961280692771}",20,8,23.40891670112518,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3537,False,"{'a': 0.01, 'e': 0.02910049775407347}",20,8,22.014009885455337,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3538,False,"{'a': 0.01, 'e': 0.02907141180171939}",25,14,21.156737679708357,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3539,False,"{'a': 0.01, 'e': 0.029042354920779553}",20,6,27.574485258752077,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3540,False,"{'a': 0.01, 'e': 0.029013327082197053}",20,14,10.781196560208652,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3541,False,"{'a': 0.01, 'e': 0.028984328256944056}",25,3,24.80513585131007,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3542,False,"{'a': 0.01, 'e': 0.028955358416021718}",25,14,23.09550905437437,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3543,False,"{'a': 0.01, 'e': 0.028926417530460217}",20,13,13.089741602729704,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3544,False,"{'a': 0.01, 'e': 0.028897505571318663}",20,16,9.173162862770042,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3545,False,"{'a': 0.01, 'e': 0.028868622509685086}",25,17,12.63264764556001,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3546,False,"{'a': 0.01, 'e': 0.028839768316676413}",25,18,12.701757186223938,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3547,False,"{'a': 0.01, 'e': 0.02881094296343847}",20,11,16.252402031444774,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3548,False,"{'a': 0.01, 'e': 0.02878214642114589}",20,12,14.914174386100829,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3549,False,"{'a': 0.01, 'e': 0.028753378661002135}",25,17,14.102745913001705,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3550,False,"{'a': 0.01, 'e': 0.028724639654239423}",20,13,-0.29293323924434334,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3551,False,"{'a': 0.01, 'e': 0.02869592937211877}",35,17,36.49402510462674,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3552,False,"{'a': 0.01, 'e': 0.02866724778592988}",20,8,23.98791960458895,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3553,False,"{'a': 0.01, 'e': 0.028638594866991166}",20,13,14.385279809608411,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3554,False,"{'a': 0.01, 'e': 0.028609970586649693}",25,19,11.371266479150089,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3555,False,"{'a': 0.01, 'e': 0.028581374916281203}",30,17,20.309908432874373,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3556,False,"{'a': 0.01, 'e': 0.02855280782729001}",20,7,18.69538667183992,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3557,False,"{'a': 0.01, 'e': 0.028524269291109027}",25,13,16.28755826514061,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3558,False,"{'a': 0.01, 'e': 0.028495759279199697}",35,17,35.77125606174962,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3559,False,"{'a': 0.01, 'e': 0.028467277763052034}",20,13,15.066362914540278,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3560,False,"{'a': 0.01, 'e': 0.028438824714184505}",25,17,14.839929146683586,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3561,False,"{'a': 0.01, 'e': 0.02841040010414406}",20,15,9.657933650583477,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3562,False,"{'a': 0.01, 'e': 0.028382003904506077}",20,7,-16.334815582032128,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3563,False,"{'a': 0.01, 'e': 0.028353636086874374}",30,19,20.86288092531956,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3564,False,"{'a': 0.01, 'e': 0.02832529662288112}",20,3,27.266308919464652,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3565,False,"{'a': 0.01, 'e': 0.028296985484186854}",30,18,24.223978765663347,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3566,False,"{'a': 0.01, 'e': 0.028268702642480412}",20,6,23.666333239431644,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3567,False,"{'a': 0.01, 'e': 0.028240448069478983}",20,11,15.140768838776394,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3568,False,"{'a': 0.01, 'e': 0.02821222173692798}",20,7,21.436142961617552,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3569,False,"{'a': 0.01, 'e': 0.02818402361660106}",20,16,7.741067558857851,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3570,False,"{'a': 0.01, 'e': 0.028155853680300096}",35,16,37.84273484039382,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3571,False,"{'a': 0.01, 'e': 0.02812771189985517}",25,11,27.34147898281917,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3572,False,"{'a': 0.01, 'e': 0.028099598247124487}",35,21,27.37882488310977,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3573,False,"{'a': 0.01, 'e': 0.028071512693994393}",20,14,13.001369635552912,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3574,False,"{'a': 0.01, 'e': 0.02804345521237932}",20,12,15.310246887164809,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3575,False,"{'a': 0.01, 'e': 0.028015425774221808}",20,16,10.11378493505565,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3576,False,"{'a': 0.01, 'e': 0.027987424351492405}",20,14,11.503817217624402,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3577,False,"{'a': 0.01, 'e': 0.027959450916189687}",20,12,3.609892237103624,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3578,False,"{'a': 0.01, 'e': 0.027931505440340204}",20,2,31.009548230113555,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3579,False,"{'a': 0.01, 'e': 0.027903587895998498}",20,9,15.98888176301401,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3580,False,"{'a': 0.01, 'e': 0.027875698255247015}",20,11,18.50644274461588,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3581,False,"{'a': 0.01, 'e': 0.02784783649019611}",20,14,11.457799121891885,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3582,False,"{'a': 0.01, 'e': 0.027820002572984004}",25,18,14.000503706154856,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3583,False,"{'a': 0.01, 'e': 0.0277921964757768}",30,18,20.320245608706678,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3584,False,"{'a': 0.01, 'e': 0.02776441817076839}",20,0,19.061169593329236,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +3585,False,"{'a': 0.01, 'e': 0.027736667630180466}",20,7,-17.16186479701402,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3586,False,"{'a': 0.01, 'e': 0.02770894482626248}",25,17,16.31605107879144,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3587,False,"{'a': 0.01, 'e': 0.02768124973129162}",25,10,24.459880539069875,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3588,False,"{'a': 0.01, 'e': 0.027653582317572808}",20,7,21.425206134610566,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3589,False,"{'a': 0.01, 'e': 0.027625942557438617}",30,18,20.800108142289872,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3590,False,"{'a': 0.01, 'e': 0.027598330423249287}",20,5,27.501006955952928,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3591,False,"{'a': 0.01, 'e': 0.02757074588739267}",20,12,16.59310426282316,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3592,False,"{'a': 0.01, 'e': 0.02754318892228425}",25,18,13.09240621523032,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3593,False,"{'a': 0.01, 'e': 0.027515659500367044}",20,14,10.915487214294277,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3594,False,"{'a': 0.01, 'e': 0.027488157594111634}",30,17,25.26992638429463,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3595,False,"{'a': 0.01, 'e': 0.027460683176016094}",35,22,25.89164381640738,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3596,False,"{'a': 0.01, 'e': 0.027433236218606032}",25,12,23.08412324600504,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3597,False,"{'a': 0.01, 'e': 0.027405816694434475}",25,17,16.74455198763841,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3598,False,"{'a': 0.01, 'e': 0.027378424576081896}",20,14,13.186375890454755,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3599,False,"{'a': 0.01, 'e': 0.027351059836156166}",25,18,14.273154964369645,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3600,False,"{'a': 0.01, 'e': 0.02732372244729256}",25,13,22.504173166184053,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3601,False,"{'a': 0.01, 'e': 0.027296412382153676}",20,8,24.413093327510246,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3602,False,"{'a': 0.01, 'e': 0.027269129613429453}",20,9,21.920880706871944,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3603,False,"{'a': 0.01, 'e': 0.027241874113837102}",25,5,37.641835993687444,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3604,False,"{'a': 0.01, 'e': 0.027214645856121145}",20,3,31.4504801504755,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3605,False,"{'a': 0.01, 'e': 0.027187444813053317}",30,21,16.385513706709915,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3606,False,"{'a': 0.01, 'e': 0.027160270957432564}",30,20,18.93063469348199,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3607,False,"{'a': 0.01, 'e': 0.027133124262085022}",35,18,30.915403957692003,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3608,False,"{'a': 0.01, 'e': 0.027106004699864013}",20,14,9.971146448479482,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3609,False,"{'a': 0.01, 'e': 0.027078912243649965}",30,17,21.685799179686025,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3610,False,"{'a': 0.01, 'e': 0.027051846866350416}",25,20,11.228810915397435,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3611,False,"{'a': 0.01, 'e': 0.027024808540899975}",25,13,22.892133223435113,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3612,False,"{'a': 0.01, 'e': 0.02699779724026034}",20,4,32.376660771298475,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3613,False,"{'a': 0.01, 'e': 0.026970812937420194}",20,13,14.596995755530209,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3614,False,"{'a': 0.01, 'e': 0.026943855605395233}",25,18,14.013095304926688,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3615,False,"{'a': 0.01, 'e': 0.026916925217228112}",20,11,14.56828151345688,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3616,False,"{'a': 0.01, 'e': 0.026890021745988462}",30,15,28.112236029478435,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3617,False,"{'a': 0.01, 'e': 0.026863145164772798}",20,12,16.706819053169788,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3618,False,"{'a': 0.01, 'e': 0.02683629544670454}",25,10,26.035820137206535,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3619,False,"{'a': 0.01, 'e': 0.02680947256493395}",30,19,22.63208089506846,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3620,False,"{'a': 0.01, 'e': 0.026782676492638175}",25,12,19.282167869498434,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3621,False,"{'a': 0.01, 'e': 0.026755907203021123}",25,4,26.334651797263685,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3622,False,"{'a': 0.01, 'e': 0.0267291646693135}",25,18,13.400495400872774,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3623,False,"{'a': 0.01, 'e': 0.026702448864772767}",25,17,14.26971449379359,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3624,False,"{'a': 0.01, 'e': 0.026675759762683132}",25,15,19.817540292037624,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3625,False,"{'a': 0.01, 'e': 0.026649097336355485}",20,8,20.09863565936494,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3626,False,"{'a': 0.01, 'e': 0.026622461559127397}",20,10,18.46904441214237,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3627,False,"{'a': 0.01, 'e': 0.02659585240436307}",30,16,24.865450289955877,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3628,False,"{'a': 0.01, 'e': 0.02656926984545338}",20,16,7.860630209247457,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3629,False,"{'a': 0.01, 'e': 0.026542713855815747}",25,13,24.681694244718848,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3630,False,"{'a': 0.01, 'e': 0.02651618440889418}",25,16,18.542869692366224,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3631,False,"{'a': 0.01, 'e': 0.026489681478159225}",25,15,10.253665263994606,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3632,False,"{'a': 0.01, 'e': 0.026463205037107963}",20,9,21.500964813783295,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3633,False,"{'a': 0.01, 'e': 0.026436755059263944}",20,4,27.336411256462505,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3634,False,"{'a': 0.01, 'e': 0.026410331518177187}",30,4,42.64315678826102,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3635,False,"{'a': 0.01, 'e': 0.02638393438742414}",25,12,0.485713419436971,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3636,False,"{'a': 0.01, 'e': 0.02635756364060769}",25,18,13.902994793285599,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3637,False,"{'a': 0.01, 'e': 0.026331219251357077}",20,7,20.779336459250278,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3638,False,"{'a': 0.01, 'e': 0.026304901193327908}",20,7,24.401345917931895,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3639,False,"{'a': 0.01, 'e': 0.026278609440202112}",20,9,20.85665857871265,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3640,False,"{'a': 0.01, 'e': 0.02625234396568796}",20,15,7.966425605211315,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3641,False,"{'a': 0.01, 'e': 0.02622610474351996}",30,20,18.396515440286016,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3642,False,"{'a': 0.01, 'e': 0.02619989174745889}",20,13,13.398106610548062,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3643,False,"{'a': 0.01, 'e': 0.02617370495129174}",20,15,7.668543938091589,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3644,False,"{'a': 0.01, 'e': 0.026147544328831734}",20,13,14.855256890650525,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3645,False,"{'a': 0.01, 'e': 0.026121409853918233}",20,8,22.642762139379904,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3646,False,"{'a': 0.01, 'e': 0.026095301500416765}",25,10,29.81946151698456,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3647,False,"{'a': 0.01, 'e': 0.02606921924221896}",30,18,24.012572283373775,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3648,False,"{'a': 0.01, 'e': 0.02604316305324258}",20,10,15.002907326590831,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3649,False,"{'a': 0.01, 'e': 0.026017132907431427}",20,4,23.055191519494613,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3650,False,"{'a': 0.01, 'e': 0.025991128778755347}",25,4,25.138222908069807,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3651,False,"{'a': 0.01, 'e': 0.0259651506412102}",25,15,15.988079876979983,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3652,False,"{'a': 0.01, 'e': 0.02593919846881787}",20,14,12.169884970854149,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3653,False,"{'a': 0.01, 'e': 0.02591327223562617}",30,20,20.184797218811998,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3654,False,"{'a': 0.01, 'e': 0.025887371915708866}",30,13,33.58887302644994,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3655,False,"{'a': 0.01, 'e': 0.025861497483165623}",20,14,11.87304539117129,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3656,False,"{'a': 0.01, 'e': 0.025835648912122026}",20,16,7.210509736716084,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3657,False,"{'a': 0.01, 'e': 0.0258098261767295}",20,8,24.570733283523097,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3658,False,"{'a': 0.01, 'e': 0.0257840292511653}",25,12,22.280563594351374,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3659,False,"{'a': 0.01, 'e': 0.025758258109632486}",30,20,16.40627810223614,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3660,False,"{'a': 0.01, 'e': 0.02573251272635994}",25,20,8.986820427970478,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3661,False,"{'a': 0.01, 'e': 0.025706793075602266}",30,22,14.160136257208677,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3662,False,"{'a': 0.01, 'e': 0.025681099131639813}",30,8,23.304560130998134,"{0: 20, 1: 2, 2: 0, 3: 0, 4: 0}",1 +3663,False,"{'a': 0.01, 'e': 0.025655430868778615}",25,19,14.461104982193557,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3664,False,"{'a': 0.01, 'e': 0.02562978826135044}",30,9,37.67648944947159,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3665,False,"{'a': 0.01, 'e': 0.025604171283712656}",20,3,27.562206746530542,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3666,False,"{'a': 0.01, 'e': 0.025578579910248294}",30,18,24.125811299198205,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3667,False,"{'a': 0.01, 'e': 0.025553014115365962}",20,13,13.432446596852943,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3668,False,"{'a': 0.01, 'e': 0.025527473873499885}",20,12,15.92487075566959,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3669,False,"{'a': 0.01, 'e': 0.02550195915910981}",25,20,10.391905673315659,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3670,False,"{'a': 0.01, 'e': 0.025476469946681016}",25,8,33.877650532707065,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3671,False,"{'a': 0.01, 'e': 0.025451006210724283}",20,8,24.392434133225944,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3672,False,"{'a': 0.01, 'e': 0.025425567925775893}",35,25,18.532560552035378,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3673,False,"{'a': 0.01, 'e': 0.025400155066397548}",20,9,21.945928148339206,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3674,False,"{'a': 0.01, 'e': 0.025374767607176385}",20,12,15.74526961545552,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3675,False,"{'a': 0.01, 'e': 0.02534940552272493}",25,7,31.96207171987426,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3676,False,"{'a': 0.01, 'e': 0.025324068787681127}",20,6,28.882518380536084,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3677,False,"{'a': 0.01, 'e': 0.02529875737670822}",20,15,-3.4205833916287958,"{0: 4, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3678,False,"{'a': 0.01, 'e': 0.025273471264494796}",20,10,19.776188422158317,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3679,False,"{'a': 0.01, 'e': 0.025248210425754734}",25,5,34.05691649305956,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3680,False,"{'a': 0.01, 'e': 0.025222974835227212}",25,17,17.43704665714353,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3681,False,"{'a': 0.01, 'e': 0.025197764467676628}",20,16,6.936214492249504,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3682,False,"{'a': 0.01, 'e': 0.025172579297892607}",25,10,26.87122783907677,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3683,False,"{'a': 0.01, 'e': 0.025147419300689974}",20,14,14.010310483061694,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3684,False,"{'a': 0.01, 'e': 0.02512228445090875}",30,6,29.95878069836848,"{0: 23, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3685,False,"{'a': 0.01, 'e': 0.025097174723414068}",25,13,22.512762253697247,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3686,False,"{'a': 0.01, 'e': 0.025072090093096203}",20,16,10.075148040510518,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3687,False,"{'a': 0.01, 'e': 0.025047030534870507}",20,11,15.84178688762048,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3688,False,"{'a': 0.01, 'e': 0.025021996023677443}",20,6,26.64346919663024,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3689,False,"{'a': 0.01, 'e': 0.024996986534482492}",20,12,18.035687128975184,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3690,False,"{'a': 0.01, 'e': 0.024972002042276155}",20,6,20.553073354724,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3691,False,"{'a': 0.01, 'e': 0.024947042522073932}",25,13,24.71080578821859,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3692,False,"{'a': 0.01, 'e': 0.02492210794891632}",30,15,27.594877939581583,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3693,False,"{'a': 0.01, 'e': 0.024897198297868735}",20,11,15.264143822433489,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3694,False,"{'a': 0.01, 'e': 0.024872313544021522}",25,14,23.26671815950266,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3695,False,"{'a': 0.01, 'e': 0.024847453662489916}",25,11,25.566672472614734,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3696,False,"{'a': 0.01, 'e': 0.02482261862841405}",20,8,23.234836187477367,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3697,False,"{'a': 0.01, 'e': 0.024797808416958885}",20,12,4.069428554446373,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3698,False,"{'a': 0.01, 'e': 0.0247730230033142}",25,14,21.151548309088767,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3699,False,"{'a': 0.01, 'e': 0.024748262362694576}",20,15,9.486869334882627,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3700,False,"{'a': 0.01, 'e': 0.024723526470339388}",30,17,24.733374324566206,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3701,False,"{'a': 0.01, 'e': 0.024698815301512727}",35,19,27.72962834595946,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3702,False,"{'a': 0.01, 'e': 0.02467412883150343}",25,19,10.16753933455789,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3703,False,"{'a': 0.01, 'e': 0.024649467035625004}",25,13,25.705081087441187,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3704,False,"{'a': 0.01, 'e': 0.024624829889215685}",20,3,27.89374292299162,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3705,False,"{'a': 0.01, 'e': 0.024600217367638302}",20,6,14.301845694712721,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3706,False,"{'a': 0.01, 'e': 0.024575629446280337}",25,17,15.687370295333327,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3707,False,"{'a': 0.01, 'e': 0.02455106610055386}",20,6,25.919661483543702,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3708,False,"{'a': 0.01, 'e': 0.024526527305895537}",25,12,26.90574545534354,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3709,False,"{'a': 0.01, 'e': 0.024502013037766564}",25,14,19.034161853268344,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3710,False,"{'a': 0.01, 'e': 0.02447752327165267}",30,8,38.22483399299752,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3711,False,"{'a': 0.01, 'e': 0.02445305798306408}",20,15,7.466967683536404,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3712,False,"{'a': 0.01, 'e': 0.024428617147535518}",20,13,14.687872080758241,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3713,False,"{'a': 0.01, 'e': 0.02440420074062614}",30,21,15.610457779462875,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3714,False,"{'a': 0.01, 'e': 0.024379808737919537}",20,8,20.78850580253634,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3715,False,"{'a': 0.01, 'e': 0.024355441115023704}",30,8,38.910320871368675,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3716,False,"{'a': 0.01, 'e': 0.024331097847571002}",25,17,14.51621660982085,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3717,False,"{'a': 0.01, 'e': 0.02430677891121819}",20,14,11.818252604692635,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3718,False,"{'a': 0.01, 'e': 0.02428248428164631}",20,8,-20.424086719518243,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3719,False,"{'a': 0.01, 'e': 0.02425821393456074}",20,12,17.80053735241204,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3720,False,"{'a': 0.01, 'e': 0.024233967845691113}",20,13,15.262637166789265,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3721,False,"{'a': 0.01, 'e': 0.024209745990791363}",20,6,23.53291470162651,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3722,False,"{'a': 0.01, 'e': 0.02418554834563962}",20,16,7.357626954805885,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3723,False,"{'a': 0.01, 'e': 0.02416137488603824}",25,11,26.420487398919118,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3724,False,"{'a': 0.01, 'e': 0.024137225587813747}",25,11,27.249764126224722,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3725,False,"{'a': 0.01, 'e': 0.024113100426816865}",25,20,9.334882850703252,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3726,False,"{'a': 0.01, 'e': 0.024088999378922418}",30,24,9.997081214175548,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3727,False,"{'a': 0.01, 'e': 0.024064922420029358}",30,12,28.99846644828454,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3728,False,"{'a': 0.01, 'e': 0.024040869526060712}",20,9,22.66932198498517,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3729,False,"{'a': 0.01, 'e': 0.024016840672963606}",25,13,24.081419359043323,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3730,False,"{'a': 0.01, 'e': 0.023992835836709175}",30,18,23.159664530052712,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3731,False,"{'a': 0.01, 'e': 0.02396885499329258}",25,14,21.563561671624765,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3732,False,"{'a': 0.01, 'e': 0.023944898118732967}",20,5,15.787582139409704,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3733,False,"{'a': 0.01, 'e': 0.023920965189073478}",25,14,26.2573230587727,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3734,False,"{'a': 0.01, 'e': 0.023897056180381168}",25,16,20.736703418998086,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3735,False,"{'a': 0.01, 'e': 0.023873171068747034}",25,20,11.322046562019974,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3736,False,"{'a': 0.01, 'e': 0.023849309830285947}",30,24,10.944463153157225,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3737,False,"{'a': 0.01, 'e': 0.023825472441136687}",20,13,13.203045660311421,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3738,False,"{'a': 0.01, 'e': 0.023801658877461853}",25,11,28.6534067349105,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3739,False,"{'a': 0.01, 'e': 0.02377786911544788}",20,16,9.33025344833869,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3740,False,"{'a': 0.01, 'e': 0.023754103131304997}",25,16,21.108579246913898,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3741,False,"{'a': 0.01, 'e': 0.02373036090126723}",25,12,19.740488161820586,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3742,False,"{'a': 0.01, 'e': 0.023706642401592346}",25,10,24.738195548571266,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3743,False,"{'a': 0.01, 'e': 0.023682947608561836}",20,12,18.629257786201702,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3744,False,"{'a': 0.01, 'e': 0.0236592764984809}",30,21,16.486637747184982,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3745,False,"{'a': 0.01, 'e': 0.023635629047678443}",20,13,13.772633300214432,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3746,False,"{'a': 0.01, 'e': 0.023612005232507005}",20,11,15.052361053438053,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3747,False,"{'a': 0.01, 'e': 0.023588405029342768}",25,3,37.74111798066376,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3748,False,"{'a': 0.01, 'e': 0.02356482841458551}",20,10,16.890277954173563,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3749,False,"{'a': 0.01, 'e': 0.023541275364658647}",25,17,16.80375839930413,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3750,False,"{'a': 0.01, 'e': 0.023517745856009107}",25,15,19.29327195535013,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3751,False,"{'a': 0.01, 'e': 0.023494239865107385}",20,6,18.393552512937802,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3752,False,"{'a': 0.01, 'e': 0.023470757368447476}",25,17,13.01798729420503,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3753,False,"{'a': 0.01, 'e': 0.0234472983425469}",25,11,15.5311027751878,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3754,False,"{'a': 0.01, 'e': 0.023423862763946618}",25,14,15.293517310323965,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3755,False,"{'a': 0.01, 'e': 0.023400450609211056}",25,15,21.170941165143468,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3756,False,"{'a': 0.01, 'e': 0.023377061854928043}",35,17,34.07068593818627,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3757,False,"{'a': 0.01, 'e': 0.02335369647770884}",25,18,12.830886129666126,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3758,False,"{'a': 0.01, 'e': 0.023330354454188063}",30,12,23.294512314416068,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3759,False,"{'a': 0.01, 'e': 0.023307035761023685}",25,13,22.594537758728737,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3760,False,"{'a': 0.01, 'e': 0.023283740374897}",25,17,15.85724376439441,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3761,False,"{'a': 0.01, 'e': 0.023260468272512637}",25,19,11.064845709846699,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3762,False,"{'a': 0.01, 'e': 0.023237219430598487}",25,3,34.80268672551088,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3763,False,"{'a': 0.01, 'e': 0.023213993825905707}",20,8,24.485096453224717,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3764,False,"{'a': 0.01, 'e': 0.023190791435208673}",25,17,17.35006500969858,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3765,False,"{'a': 0.01, 'e': 0.02316761223530502}",25,18,11.72552364897242,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3766,False,"{'a': 0.01, 'e': 0.023144456203015532}",30,20,23.14492709209459,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3767,False,"{'a': 0.01, 'e': 0.023121323315184173}",20,16,5.056031015231764,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3768,False,"{'a': 0.01, 'e': 0.02309821354867805}",20,13,14.40907579499685,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3769,False,"{'a': 0.01, 'e': 0.023075126880387407}",20,6,23.010649085351435,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3770,False,"{'a': 0.01, 'e': 0.02305206328722557}",20,10,19.19149613933843,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3771,False,"{'a': 0.01, 'e': 0.02302902274612894}",20,9,23.255455397975062,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3772,False,"{'a': 0.01, 'e': 0.023006005234056964}",25,11,24.66898893697172,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3773,False,"{'a': 0.01, 'e': 0.02298301072799215}",20,0,29.855858053823077,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3774,False,"{'a': 0.01, 'e': 0.022960039204939983}",20,13,12.263912768109073,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3775,False,"{'a': 0.01, 'e': 0.02293709064192893}",20,12,14.229211131253354,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3776,False,"{'a': 0.01, 'e': 0.022914165016010422}",20,11,18.267945807788266,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3777,False,"{'a': 0.01, 'e': 0.02289126230425885}",25,14,21.66468378725273,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3778,False,"{'a': 0.01, 'e': 0.022868382483771488}",20,16,9.929470665537687,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3779,False,"{'a': 0.01, 'e': 0.022845525531668517}",25,18,13.77970218960514,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3780,False,"{'a': 0.01, 'e': 0.02282269142509297}",25,19,9.64246073660324,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3781,False,"{'a': 0.01, 'e': 0.02279988014121076}",20,12,14.636809632610667,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3782,False,"{'a': 0.01, 'e': 0.022777091657210594}",30,11,36.1404442247725,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3783,False,"{'a': 0.01, 'e': 0.02275432595030398}",20,12,17.144503587661276,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3784,False,"{'a': 0.01, 'e': 0.022731582997725205}",25,14,-3.5202779271625992,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3785,False,"{'a': 0.01, 'e': 0.022708862776731332}",20,6,26.50253692336736,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3786,False,"{'a': 0.01, 'e': 0.022686165264602126}",35,20,24.598613048916725,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3787,False,"{'a': 0.01, 'e': 0.022663490438640077}",25,13,-20.8421198308913,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3788,False,"{'a': 0.01, 'e': 0.022640838276170343}",35,20,28.963278551439455,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3789,False,"{'a': 0.01, 'e': 0.022618208754540785}",25,15,18.366598648420624,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3790,False,"{'a': 0.01, 'e': 0.022595601851121864}",20,13,13.368344484114912,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3791,False,"{'a': 0.01, 'e': 0.022573017543306678}",30,17,26.49225380651799,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3792,False,"{'a': 0.01, 'e': 0.022550455808510905}",20,9,20.063110048712236,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3793,False,"{'a': 0.01, 'e': 0.02252791662417283}",25,8,30.64898337996234,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3794,False,"{'a': 0.01, 'e': 0.02250539996775326}",20,16,8.621741433252364,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3795,False,"{'a': 0.01, 'e': 0.02248290581673553}",20,14,8.03736112848507,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3796,False,"{'a': 0.01, 'e': 0.02246043414862548}",25,17,12.826310588751046,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3797,False,"{'a': 0.01, 'e': 0.02243798494095146}",20,13,-27.29478278112679,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3798,False,"{'a': 0.01, 'e': 0.022415558171264255}",20,14,11.91484613898041,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3799,False,"{'a': 0.01, 'e': 0.022393153817137086}",35,27,16.133892256602486,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3800,False,"{'a': 0.01, 'e': 0.02237077185616559}",20,16,7.822113460251788,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3801,False,"{'a': 0.01, 'e': 0.022348412265967826}",25,15,21.285437642216227,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3802,False,"{'a': 0.01, 'e': 0.022326075024184187}",20,16,8.504471253038636,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3803,False,"{'a': 0.01, 'e': 0.022303760108477434}",20,12,18.77835250921678,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3804,False,"{'a': 0.01, 'e': 0.02228146749653264}",25,13,18.545266587653828,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3805,False,"{'a': 0.01, 'e': 0.02225919716605721}",25,17,14.652206686894157,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3806,False,"{'a': 0.01, 'e': 0.0222369490947808}",20,11,17.93713921233636,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3807,False,"{'a': 0.01, 'e': 0.022214723260455337}",20,8,19.47306441486952,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3808,False,"{'a': 0.01, 'e': 0.022192519640854974}",25,11,25.08634477113456,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3809,False,"{'a': 0.01, 'e': 0.022170338213776113}",25,14,20.896268553957185,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3810,False,"{'a': 0.01, 'e': 0.022148178957037315}",30,16,22.247233770644076,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3811,False,"{'a': 0.01, 'e': 0.022126041848479317}",20,8,23.07258527774236,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3812,False,"{'a': 0.01, 'e': 0.022103926865965004}",20,12,16.7752152583554,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3813,False,"{'a': 0.01, 'e': 0.022081833987379406}",20,0,28.880879633282106,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3814,False,"{'a': 0.01, 'e': 0.022059763190629637}",20,12,14.698470774274522,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3815,False,"{'a': 0.01, 'e': 0.022037714453644896}",25,8,30.685491187805162,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3816,False,"{'a': 0.01, 'e': 0.02201568775437644}",20,16,6.253819124027354,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3817,False,"{'a': 0.01, 'e': 0.021993683070797576}",25,11,25.74997775596323,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3818,False,"{'a': 0.01, 'e': 0.021971700380903618}",25,11,-16.80430533843945,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3819,False,"{'a': 0.01, 'e': 0.021949739662711874}",25,13,20.303740591800327,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3820,False,"{'a': 0.01, 'e': 0.02192780089426161}",20,14,13.955893172639641,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3821,False,"{'a': 0.01, 'e': 0.02190588405361408}",25,17,15.140350328726273,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3822,False,"{'a': 0.01, 'e': 0.021883989118852424}",30,16,25.106644435921748,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3823,False,"{'a': 0.01, 'e': 0.021862116068081715}",30,19,17.38276557859497,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3824,False,"{'a': 0.01, 'e': 0.021840264879428885}",30,18,23.32953734960023,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3825,False,"{'a': 0.01, 'e': 0.021818435531042762}",20,13,10.144460428954302,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3826,False,"{'a': 0.01, 'e': 0.02179662800109399}",20,13,13.948266325754624,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3827,False,"{'a': 0.01, 'e': 0.021774842267775037}",25,18,13.988946513722107,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3828,False,"{'a': 0.01, 'e': 0.021753078309300157}",30,23,12.475299370944267,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3829,False,"{'a': 0.01, 'e': 0.021731336103905406}",25,11,25.63396449128535,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3830,False,"{'a': 0.01, 'e': 0.02170961562984857}",30,13,35.292771876846615,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3831,False,"{'a': 0.01, 'e': 0.021687916865409173}",20,13,14.089675366605512,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3832,False,"{'a': 0.01, 'e': 0.02166623978888844}",30,12,33.11427003878625,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3833,False,"{'a': 0.01, 'e': 0.021644584378609312}",20,13,12.10942386330251,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3834,False,"{'a': 0.01, 'e': 0.021622950612916365}",20,10,16.413051823904677,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3835,False,"{'a': 0.01, 'e': 0.021601338470175833}",20,5,23.338674967393537,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3836,False,"{'a': 0.01, 'e': 0.021579747928775563}",20,16,8.583183282119435,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3837,False,"{'a': 0.01, 'e': 0.021558178967125027}",25,19,10.956361791178612,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3838,False,"{'a': 0.01, 'e': 0.02153663156365526}",30,18,23.422408325531933,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3839,False,"{'a': 0.01, 'e': 0.021515105696818845}",20,13,14.25767369040024,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3840,False,"{'a': 0.01, 'e': 0.021493601345089923}",25,1,32.78380475984188,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3841,False,"{'a': 0.01, 'e': 0.021472118486964127}",20,14,12.45378531195905,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3842,False,"{'a': 0.01, 'e': 0.021450657100958614}",20,13,17.897404505057576,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3843,False,"{'a': 0.01, 'e': 0.021429217165611993}",20,12,15.540962115544028,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3844,False,"{'a': 0.01, 'e': 0.021407798659484324}",20,12,14.541201110164028,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3845,False,"{'a': 0.01, 'e': 0.02138640156115709}",20,9,19.53224425746435,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3846,False,"{'a': 0.01, 'e': 0.021365025849233204}",25,13,23.640818047841986,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3847,False,"{'a': 0.01, 'e': 0.02134367150233695}",20,11,18.058390717779453,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3848,False,"{'a': 0.01, 'e': 0.02132233849911398}",20,13,15.107309887109809,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3849,False,"{'a': 0.01, 'e': 0.02130102681823127}",20,10,16.594671811518893,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3850,False,"{'a': 0.01, 'e': 0.02127973643837717}",20,14,12.1788821381915,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3851,False,"{'a': 0.01, 'e': 0.021258467338261276}",25,20,8.023075805934301,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3852,False,"{'a': 0.01, 'e': 0.021237219496614494}",20,16,7.6298939168079905,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3853,False,"{'a': 0.01, 'e': 0.021215992892188968}",20,16,7.258223148794194,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3854,False,"{'a': 0.01, 'e': 0.02119478750375811}",20,10,20.457761036203884,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3855,False,"{'a': 0.01, 'e': 0.02117360331011653}",35,21,29.29356728734438,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3856,False,"{'a': 0.01, 'e': 0.021152440290080017}",25,13,21.1867243803163,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3857,False,"{'a': 0.01, 'e': 0.02113129842248555}",20,11,18.872338483770882,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3858,False,"{'a': 0.01, 'e': 0.021110177686191275}",20,3,29.2672245458417,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3859,False,"{'a': 0.01, 'e': 0.021089078060076445}",30,16,10.798889024481449,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3860,False,"{'a': 0.01, 'e': 0.021067999523041434}",20,3,29.60654593379529,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3861,False,"{'a': 0.01, 'e': 0.02104694205400769}",20,13,14.16267892160737,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3862,False,"{'a': 0.01, 'e': 0.021025905631917766}",20,10,17.810326452089598,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3863,False,"{'a': 0.01, 'e': 0.021004890235735225}",25,11,25.283594153041804,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3864,False,"{'a': 0.01, 'e': 0.02098389584444467}",30,21,15.761035301153772,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3865,False,"{'a': 0.01, 'e': 0.0209629224370517}",25,13,24.516139201298344,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3866,False,"{'a': 0.01, 'e': 0.02094196999258292}",35,25,17.61425262792524,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3867,False,"{'a': 0.01, 'e': 0.020921038490085878}",20,15,11.180857389616353,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3868,False,"{'a': 0.01, 'e': 0.020900127908629072}",20,4,31.978271145423637,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3869,False,"{'a': 0.01, 'e': 0.020879238227301908}",25,18,13.511112361639864,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3870,False,"{'a': 0.01, 'e': 0.02085836942521472}",30,18,20.180705319963284,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3871,False,"{'a': 0.01, 'e': 0.020837521481498693}",20,7,26.46952865123662,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3872,False,"{'a': 0.01, 'e': 0.020816694375305884}",20,9,20.449969641133695,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3873,False,"{'a': 0.01, 'e': 0.020795888085809178}",20,14,10.730028651147647,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3874,False,"{'a': 0.01, 'e': 0.020775102592202298}",25,14,20.443580929499326,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3875,False,"{'a': 0.01, 'e': 0.020754337873699742}",30,17,22.210506568772747,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3876,False,"{'a': 0.01, 'e': 0.02073359390953679}",20,13,14.882109494156637,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3877,False,"{'a': 0.01, 'e': 0.020712870678969465}",20,7,23.02527155992848,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3878,False,"{'a': 0.01, 'e': 0.020692168161274557}",25,11,26.50449628731137,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3879,False,"{'a': 0.01, 'e': 0.02067148633574953}",20,12,16.151435698279244,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3880,False,"{'a': 0.01, 'e': 0.020650825181712566}",25,12,23.554118446242033,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3881,False,"{'a': 0.01, 'e': 0.020630184678502493}",30,19,20.776336842437455,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3882,False,"{'a': 0.01, 'e': 0.020609564805478826}",20,0,36.05077172170362,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3883,False,"{'a': 0.01, 'e': 0.020588965542021685}",20,6,28.168552091645857,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3884,False,"{'a': 0.01, 'e': 0.0205683868675318}",20,16,6.644737084657196,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3885,False,"{'a': 0.01, 'e': 0.02054782876143049}",20,14,10.689064014903131,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3886,False,"{'a': 0.01, 'e': 0.02052729120315966}",25,13,24.332568714839176,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3887,False,"{'a': 0.01, 'e': 0.020506774172181743}",20,9,22.134394630422257,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3888,False,"{'a': 0.01, 'e': 0.020486277647979705}",25,19,12.50306951220808,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3889,False,"{'a': 0.01, 'e': 0.020465801610057018}",20,14,11.568855687538935,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3890,False,"{'a': 0.01, 'e': 0.020445346037937653}",25,16,7.237449077310881,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3891,False,"{'a': 0.01, 'e': 0.020424910911166032}",25,20,9.993144715215625,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3892,False,"{'a': 0.01, 'e': 0.02040449620930702}",25,11,26.011601479333237,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3893,False,"{'a': 0.01, 'e': 0.020384101911945913}",20,0,32.765846303065395,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3894,False,"{'a': 0.01, 'e': 0.020363727998688425}",25,3,28.658048276985877,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3895,False,"{'a': 0.01, 'e': 0.020343374449160633}",30,11,36.62817640272706,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3896,False,"{'a': 0.01, 'e': 0.020323041243008984}",25,15,17.225897792544366,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3897,False,"{'a': 0.01, 'e': 0.02030272835990026}",20,8,23.92752065389935,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3898,False,"{'a': 0.01, 'e': 0.0202824357795216}",25,13,23.318564253185073,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3899,False,"{'a': 0.01, 'e': 0.02026216348158041}",20,8,22.463964875896487,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3900,False,"{'a': 0.01, 'e': 0.02024191144580439}",20,16,9.813129217844255,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3901,False,"{'a': 0.01, 'e': 0.020221679651941493}",20,12,15.622293984873629,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3902,False,"{'a': 0.01, 'e': 0.020201468079759942}",20,11,21.52236738574682,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3903,False,"{'a': 0.01, 'e': 0.020181276709048155}",25,14,21.694338281438093,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3904,False,"{'a': 0.01, 'e': 0.02016110551961476}",20,10,22.036038340989162,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3905,False,"{'a': 0.01, 'e': 0.02014095449128855}",25,11,27.258078402351355,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3906,False,"{'a': 0.01, 'e': 0.020120823603918526}",20,12,14.453634925684021,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3907,False,"{'a': 0.01, 'e': 0.020100712837373778}",20,8,22.312640374183044,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3908,False,"{'a': 0.01, 'e': 0.020080622171543543}",20,15,8.285959150577415,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3909,False,"{'a': 0.01, 'e': 0.020060551586337145}",25,11,22.692660466160902,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3910,False,"{'a': 0.01, 'e': 0.020040501061684014}",25,14,18.5461155766255,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3911,False,"{'a': 0.01, 'e': 0.020020470577533613}",20,12,3.640945411060514,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3912,False,"{'a': 0.01, 'e': 0.02000046011385546}",25,9,30.57935983346995,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3913,False,"{'a': 0.01, 'e': 0.019980469650639078}",25,8,28.82551391950403,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3914,False,"{'a': 0.01, 'e': 0.01996049916789402}",30,13,31.371020152091724,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3915,False,"{'a': 0.01, 'e': 0.019940548645649796}",30,18,22.09504307519825,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3916,False,"{'a': 0.01, 'e': 0.019920618063955876}",20,12,13.678957727141956,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3917,False,"{'a': 0.01, 'e': 0.019900707402881673}",20,16,7.626992670229022,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3918,False,"{'a': 0.01, 'e': 0.01988081664251654}",30,19,21.42876053640406,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3919,False,"{'a': 0.01, 'e': 0.019860945762969703}",20,16,8.697133096622643,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3920,False,"{'a': 0.01, 'e': 0.019841094744370288}",30,23,14.083161366939073,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3921,False,"{'a': 0.01, 'e': 0.01982126356686726}",30,18,23.450012624550858,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3922,False,"{'a': 0.01, 'e': 0.019801452210629462}",25,11,25.42911403425279,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3923,False,"{'a': 0.01, 'e': 0.019781660655845523}",30,24,12.44486247461046,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3924,False,"{'a': 0.01, 'e': 0.019761888882723885}",25,17,14.301718477381538,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3925,False,"{'a': 0.01, 'e': 0.019742136871492774}",20,11,20.086312681140285,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3926,False,"{'a': 0.01, 'e': 0.019722404602400184}",20,9,14.964582000971314,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3927,False,"{'a': 0.01, 'e': 0.01970269205571384}",25,18,12.048228061880724,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3928,False,"{'a': 0.01, 'e': 0.019682999211721196}",20,16,5.877943543579519,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3929,False,"{'a': 0.01, 'e': 0.019663326050729395}",20,10,12.128840242547684,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3930,False,"{'a': 0.01, 'e': 0.019643672553065292}",35,16,33.662785475064204,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3931,False,"{'a': 0.01, 'e': 0.019624038699075377}",25,14,18.706017534166023,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3932,False,"{'a': 0.01, 'e': 0.0196044244691258}",20,12,13.937753840164037,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3933,False,"{'a': 0.01, 'e': 0.019584829843602315}",25,4,42.36084806163487,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3934,False,"{'a': 0.01, 'e': 0.019565254802910312}",20,13,14.45802175384921,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3935,False,"{'a': 0.01, 'e': 0.019545699327474745}",25,20,11.712642294179233,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3936,False,"{'a': 0.01, 'e': 0.019526163397740135}",20,12,11.493882494020344,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3937,False,"{'a': 0.01, 'e': 0.01950664699417054}",30,8,35.91025110193299,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3938,False,"{'a': 0.01, 'e': 0.01948715009724957}",25,8,34.1453579197716,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3939,False,"{'a': 0.01, 'e': 0.019467672687480328}",20,12,16.028022738202758,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3940,False,"{'a': 0.01, 'e': 0.01944821474538539}",20,5,17.78057473137101,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3941,False,"{'a': 0.01, 'e': 0.019428776251506814}",25,11,25.526428279986135,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3942,False,"{'a': 0.01, 'e': 0.019409357186406115}",35,23,23.467777490381817,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3943,False,"{'a': 0.01, 'e': 0.01938995753066422}",20,13,11.191943601928479,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3944,False,"{'a': 0.01, 'e': 0.01937057726488147}",25,16,18.731838003347303,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3945,False,"{'a': 0.01, 'e': 0.01935121636967759}",20,6,26.298928844734053,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3946,False,"{'a': 0.01, 'e': 0.019331874825691705}",20,12,2.850513384783655,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3947,False,"{'a': 0.01, 'e': 0.019312552613582255}",30,12,33.16428262825657,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3948,False,"{'a': 0.01, 'e': 0.019293249714027027}",25,15,17.928906312437434,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3949,False,"{'a': 0.01, 'e': 0.01927396610772311}",20,11,18.3602997785173,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3950,False,"{'a': 0.01, 'e': 0.01925470177538692}",30,16,6.754630938669069,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3951,False,"{'a': 0.01, 'e': 0.01923545669775411}",25,7,31.98304677910935,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3952,False,"{'a': 0.01, 'e': 0.019216230855579598}",20,10,17.61508980107708,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3953,False,"{'a': 0.01, 'e': 0.019197024229637535}",20,16,8.458680874699816,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3954,False,"{'a': 0.01, 'e': 0.01917783680072131}",30,24,9.052303250830201,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3955,False,"{'a': 0.01, 'e': 0.019158668549643484}",20,7,25.537223738496248,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3956,False,"{'a': 0.01, 'e': 0.019139519457235805}",25,6,23.957450208496176,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3957,False,"{'a': 0.01, 'e': 0.019120389504349168}",25,14,20.88058874169759,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3958,False,"{'a': 0.01, 'e': 0.019101278671853638}",20,16,7.777675564406605,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3959,False,"{'a': 0.01, 'e': 0.01908218694063837}",25,19,7.164653850644834,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3960,False,"{'a': 0.01, 'e': 0.019063114291611637}",25,16,17.699261599563805,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3961,False,"{'a': 0.01, 'e': 0.019044060705700774}",20,8,23.059578704327713,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3962,False,"{'a': 0.01, 'e': 0.01902502616385221}",30,23,13.760059983458287,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3963,False,"{'a': 0.01, 'e': 0.019006010647031397}",20,8,21.140734886584234,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3964,False,"{'a': 0.01, 'e': 0.018987014136222814}",20,0,30.47340987342699,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3965,False,"{'a': 0.01, 'e': 0.01896803661242994}",20,14,9.8236252898326,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3966,False,"{'a': 0.01, 'e': 0.01894907805667527}",20,6,28.636513924591753,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3967,False,"{'a': 0.01, 'e': 0.018930138450000234}",30,8,40.42043510281374,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3968,False,"{'a': 0.01, 'e': 0.018911217773465227}",30,17,22.36759051552173,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3969,False,"{'a': 0.01, 'e': 0.01889231600814957}",25,12,22.787689731571625,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3970,False,"{'a': 0.01, 'e': 0.018873433135151486}",20,11,15.534964432961491,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3971,False,"{'a': 0.01, 'e': 0.01885456913558812}",25,11,23.712770065729803,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3972,False,"{'a': 0.01, 'e': 0.018835723990595455}",25,15,19.632169174848688,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3973,False,"{'a': 0.01, 'e': 0.018816897681328357}",20,0,33.83342229945881,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3974,False,"{'a': 0.01, 'e': 0.018798090188960496}",20,11,16.848897682238196,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3975,False,"{'a': 0.01, 'e': 0.0187793014946844}",25,13,22.6916746688226,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3976,False,"{'a': 0.01, 'e': 0.018760531579711363}",20,8,22.829211791095734,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3977,False,"{'a': 0.01, 'e': 0.01874178042527147}",25,15,18.35734560818929,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3978,False,"{'a': 0.01, 'e': 0.018723048012613555}",20,7,24.81389203922098,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3979,False,"{'a': 0.01, 'e': 0.018704334323005223}",25,18,12.396376016057758,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3980,False,"{'a': 0.01, 'e': 0.018685639337732773}",25,7,31.119957851295165,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3981,False,"{'a': 0.01, 'e': 0.018666963038101215}",25,2,38.91050713284387,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3982,False,"{'a': 0.01, 'e': 0.018648305405434242}",20,8,20.078751519349737,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3983,False,"{'a': 0.01, 'e': 0.01862966642107424}",20,9,22.36392140293404,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3984,False,"{'a': 0.01, 'e': 0.01861104606638221}",20,0,17.535711255635846,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +3985,False,"{'a': 0.01, 'e': 0.018592444322737798}",20,10,21.913619896837083,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3986,False,"{'a': 0.01, 'e': 0.01857386117153925}",20,9,20.053756388993495,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3987,False,"{'a': 0.01, 'e': 0.01855529659420343}",25,13,23.851411521240376,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3988,False,"{'a': 0.01, 'e': 0.018536750572165746}",20,15,8.692336751305598,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3989,False,"{'a': 0.01, 'e': 0.018518223086880184}",20,2,34.19970050700974,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3990,False,"{'a': 0.01, 'e': 0.018499714119819242}",20,9,20.429272269606777,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3991,False,"{'a': 0.01, 'e': 0.01848122365247397}",25,20,11.279789366804021,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3992,False,"{'a': 0.01, 'e': 0.018462751666353888}",20,14,10.589591674276942,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3993,False,"{'a': 0.01, 'e': 0.018444298142987012}",25,13,19.269708728588604,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3994,False,"{'a': 0.01, 'e': 0.01842586306391981}",20,9,20.303983625045,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3995,False,"{'a': 0.01, 'e': 0.018407446410717215}",25,19,9.550486113280865,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3996,False,"{'a': 0.01, 'e': 0.018389048164962566}",20,12,16.280637416979694,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3997,False,"{'a': 0.01, 'e': 0.01837066830825761}",30,13,28.642934808018943,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3998,False,"{'a': 0.01, 'e': 0.01835230682222249}",20,0,31.975525770221513,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3999,False,"{'a': 0.01, 'e': 0.018333963688495727}",25,7,33.31424872520143,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4000,False,"{'a': 0.01, 'e': 0.01831563888873418}",20,12,18.37674925455022,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4001,False,"{'a': 0.01, 'e': 0.01829733240461304}",20,14,12.551846924697276,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4002,False,"{'a': 0.01, 'e': 0.018279044217825845}",25,7,30.664498329930254,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4003,False,"{'a': 0.01, 'e': 0.01826077431008438}",25,11,28.488577338261976,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4004,False,"{'a': 0.01, 'e': 0.01824252266311874}",30,16,25.93566993540467,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4005,False,"{'a': 0.01, 'e': 0.018224289258677303}",30,20,22.535358460378347,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4006,False,"{'a': 0.01, 'e': 0.01820607407852663}",20,13,13.070371923138323,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4007,False,"{'a': 0.01, 'e': 0.018187877104451564}",20,14,9.17052769074544,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4008,False,"{'a': 0.01, 'e': 0.0181696983182551}",25,20,10.512668152840908,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4009,False,"{'a': 0.01, 'e': 0.018151537701758473}",25,17,16.338771749112468,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4010,False,"{'a': 0.01, 'e': 0.018133395236801075}",25,7,33.68708707547166,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4011,False,"{'a': 0.01, 'e': 0.01811527090524041}",25,12,11.201887330531674,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4012,False,"{'a': 0.01, 'e': 0.018097164688952158}",25,11,26.496249578331323,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4013,False,"{'a': 0.01, 'e': 0.01807907656983012}",30,16,31.5414708584714,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4014,False,"{'a': 0.01, 'e': 0.018061006529786143}",20,9,22.102948940539125,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4015,False,"{'a': 0.01, 'e': 0.018042954550750216}",25,11,25.591904749401426,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4016,False,"{'a': 0.01, 'e': 0.01802492061467033}",25,0,23.68252731515294,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +4017,False,"{'a': 0.01, 'e': 0.018006904703512558}",25,14,19.605986198994824,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4018,False,"{'a': 0.01, 'e': 0.017988906799261007}",25,15,17.111243777247456,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4019,False,"{'a': 0.01, 'e': 0.017970926883917736}",25,19,8.88346908325416,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4020,False,"{'a': 0.01, 'e': 0.01795296493950285}",20,3,29.035528264278696,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4021,False,"{'a': 0.01, 'e': 0.017935020948054412}",20,8,21.28543306486816,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4022,False,"{'a': 0.01, 'e': 0.017917094891628405}",25,7,28.33871731673502,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4023,False,"{'a': 0.01, 'e': 0.017899186752298794}",20,0,34.295610852634866,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4024,False,"{'a': 0.01, 'e': 0.017881296512157415}",20,14,10.843132575475854,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4025,False,"{'a': 0.01, 'e': 0.017863424153314034}",30,16,26.94617370549475,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4026,False,"{'a': 0.01, 'e': 0.017845569657896316}",30,12,36.71305740722536,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4027,False,"{'a': 0.01, 'e': 0.017827733008049722}",20,14,11.998546820426302,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4028,False,"{'a': 0.01, 'e': 0.017809914185937626}",25,20,7.880079974388758,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4029,False,"{'a': 0.01, 'e': 0.017792113173741214}",20,8,22.134896239189388,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4030,False,"{'a': 0.01, 'e': 0.01777432995365944}",20,1,27.6237197905027,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4031,False,"{'a': 0.01, 'e': 0.017756564507909123}",20,13,12.7710898289857,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4032,False,"{'a': 0.01, 'e': 0.017738816818724773}",25,13,21.129469706733758,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4033,False,"{'a': 0.01, 'e': 0.017721086868358722}",30,20,18.807087787487585,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4034,False,"{'a': 0.01, 'e': 0.017703374639081032}",20,12,16.113352749492197,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4035,False,"{'a': 0.01, 'e': 0.017685680113179437}",30,14,35.58028525026694,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4036,False,"{'a': 0.01, 'e': 0.01766800327295943}",25,13,24.153808580656168,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4037,False,"{'a': 0.01, 'e': 0.01765034410074419}",30,19,23.85116921480726,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4038,False,"{'a': 0.01, 'e': 0.0176327025788745}",25,19,11.284977552673723,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4039,False,"{'a': 0.01, 'e': 0.017615078689708876}",25,11,25.07371735961105,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4040,False,"{'a': 0.01, 'e': 0.017597472415623393}",25,17,18.902707611543782,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4041,False,"{'a': 0.01, 'e': 0.017579883739011794}",20,14,13.048151887509288,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4042,False,"{'a': 0.01, 'e': 0.017562312642285412}",20,3,28.668341187412896,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4043,False,"{'a': 0.01, 'e': 0.01754475910787312}",20,6,22.721321072259066,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4044,False,"{'a': 0.01, 'e': 0.0175272231182214}",20,8,22.787984786341077,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4045,False,"{'a': 0.01, 'e': 0.017509704655794274}",25,17,18.815004935274516,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4046,False,"{'a': 0.01, 'e': 0.017492203703073247}",35,13,40.79374873335359,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4047,False,"{'a': 0.01, 'e': 0.017474720242557397}",30,17,22.810186249910036,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4048,False,"{'a': 0.01, 'e': 0.01745725425676323}",25,16,19.545870770468856,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4049,False,"{'a': 0.01, 'e': 0.017439805728224775}",25,3,36.30625413134241,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4050,False,"{'a': 0.01, 'e': 0.017422374639493515}",30,13,33.83337571628095,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4051,False,"{'a': 0.01, 'e': 0.01740496097313833}",20,8,21.977362534270064,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4052,False,"{'a': 0.01, 'e': 0.017387564711745573}",25,8,31.231827905214242,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4053,False,"{'a': 0.01, 'e': 0.017370185837918987}",25,13,23.069551809427605,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4054,False,"{'a': 0.01, 'e': 0.017352824334279676}",35,16,35.36578892991215,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4055,False,"{'a': 0.01, 'e': 0.01733548018346616}",20,1,28.280556430193798,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4056,False,"{'a': 0.01, 'e': 0.017318153368134255}",20,10,18.443523488260812,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4057,False,"{'a': 0.01, 'e': 0.01730084387095716}",25,13,21.259347388471895,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4058,False,"{'a': 0.01, 'e': 0.017283551674625395}",30,19,19.801553196563933,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4059,False,"{'a': 0.01, 'e': 0.01726627676184673}",25,19,11.061792490950825,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4060,False,"{'a': 0.01, 'e': 0.017249019115346265}",25,8,30.61514320465018,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4061,False,"{'a': 0.01, 'e': 0.017231778717866367}",20,12,15.773627068661423,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4062,False,"{'a': 0.01, 'e': 0.017214555552166607}",20,9,20.82264784823285,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4063,False,"{'a': 0.01, 'e': 0.017197349601023853}",30,15,27.50169660528254,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4064,False,"{'a': 0.01, 'e': 0.017180160847232114}",20,15,9.944548862455356,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4065,False,"{'a': 0.01, 'e': 0.017162989273602654}",25,18,15.719959698052795,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4066,False,"{'a': 0.01, 'e': 0.017145834862963918}",20,16,8.253009660510036,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4067,False,"{'a': 0.01, 'e': 0.017128697598161453}",25,16,14.378571399529125,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4068,False,"{'a': 0.01, 'e': 0.017111577462058016}",25,19,10.066710955969564,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4069,False,"{'a': 0.01, 'e': 0.01709447443753348}",30,16,27.592952071612565,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4070,False,"{'a': 0.01, 'e': 0.017077388507484793}",20,13,14.457804267395673,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4071,False,"{'a': 0.01, 'e': 0.017060319654826052}",20,13,14.046315402583827,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4072,False,"{'a': 0.01, 'e': 0.017043267862488373}",20,16,7.038873756048789,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4073,False,"{'a': 0.01, 'e': 0.017026233113419977}",25,15,17.144951221456587,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4074,False,"{'a': 0.01, 'e': 0.017009215390586124}",20,10,21.02154888565834,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4075,False,"{'a': 0.01, 'e': 0.016992214676969066}",20,0,20.142434389948644,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +4076,False,"{'a': 0.01, 'e': 0.016975230955568105}",20,15,8.34029763171913,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4077,False,"{'a': 0.01, 'e': 0.016958264209399526}",30,16,26.135971136812387,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4078,False,"{'a': 0.01, 'e': 0.016941314421496552}",20,9,22.1517243660541,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4079,False,"{'a': 0.01, 'e': 0.01692438157490943}",20,7,25.98795091970599,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4080,False,"{'a': 0.01, 'e': 0.01690746565270528}",30,22,17.901694696857632,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4081,False,"{'a': 0.01, 'e': 0.016890566637968184}",20,12,18.311914475144334,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4082,False,"{'a': 0.01, 'e': 0.016873684513799156}",25,12,23.998934983441057,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4083,False,"{'a': 0.01, 'e': 0.01685681926331603}",20,11,18.12311128618692,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4084,False,"{'a': 0.01, 'e': 0.01683997086965357}",25,5,33.10690074652899,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4085,False,"{'a': 0.01, 'e': 0.016823139315963402}",20,16,6.745375265155651,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4086,False,"{'a': 0.01, 'e': 0.016806324585413937}",25,19,9.893108199792223,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4087,False,"{'a': 0.01, 'e': 0.01678952666119047}",25,20,8.23360541754995,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4088,False,"{'a': 0.01, 'e': 0.016772745526495048}",30,16,23.1690544491992,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4089,False,"{'a': 0.01, 'e': 0.016755981164546553}",30,12,34.247714814522624,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4090,False,"{'a': 0.01, 'e': 0.016739233558580632}",20,16,5.117642417354083,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4091,False,"{'a': 0.01, 'e': 0.01672250269184965}",20,16,10.296625595131793,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4092,False,"{'a': 0.01, 'e': 0.016705788547622755}",25,12,26.27812962134992,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4093,False,"{'a': 0.01, 'e': 0.016689091109185813}",25,0,47.251276400307916,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4094,False,"{'a': 0.01, 'e': 0.016672410359841357}",20,9,20.95916212030069,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4095,False,"{'a': 0.01, 'e': 0.016655746282908664}",30,20,17.489275802746356,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4096,False,"{'a': 0.01, 'e': 0.016639098861723624}",35,13,40.41116920047335,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4097,False,"{'a': 0.01, 'e': 0.01662246807963884}",30,19,24.59728016718112,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4098,False,"{'a': 0.01, 'e': 0.01660585392002353}",25,19,11.515218655222062,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4099,False,"{'a': 0.01, 'e': 0.01658925636626351}",25,15,19.212518566564416,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4100,False,"{'a': 0.01, 'e': 0.016572675401761255}",20,0,39.44973801631559,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4101,False,"{'a': 0.01, 'e': 0.016556111009935766}",20,8,21.77447540008334,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4102,False,"{'a': 0.01, 'e': 0.016539563174222668}",30,24,12.409082282749344,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4103,False,"{'a': 0.01, 'e': 0.016523031878074135}",25,15,18.61820965674827,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4104,False,"{'a': 0.01, 'e': 0.016506517104958845}",20,13,13.128745116593606,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4105,False,"{'a': 0.01, 'e': 0.016490018838362035}",20,13,11.161943572513804,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4106,False,"{'a': 0.01, 'e': 0.01647353706178545}",20,12,13.192913870448322,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4107,False,"{'a': 0.01, 'e': 0.016457071758747287}",20,10,16.212419101879647,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4108,False,"{'a': 0.01, 'e': 0.01644062291278227}",20,11,17.419913227569523,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4109,False,"{'a': 0.01, 'e': 0.016424190507441518}",20,5,24.716089511987786,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4110,False,"{'a': 0.01, 'e': 0.016407774526292645}",20,13,15.629580372080309,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4111,False,"{'a': 0.01, 'e': 0.016391374952919677}",20,14,11.423395401770229,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4112,False,"{'a': 0.01, 'e': 0.01637499177092302}",25,11,29.079152629242515,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4113,False,"{'a': 0.01, 'e': 0.01635862496391949}",35,23,24.722287631505754,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4114,False,"{'a': 0.01, 'e': 0.016342274515542307}",30,23,10.997007878278357,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4115,False,"{'a': 0.01, 'e': 0.016325940409440985}",25,14,19.608261652937635,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4116,False,"{'a': 0.01, 'e': 0.01630962262928145}",25,11,21.569362836724792,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4117,False,"{'a': 0.01, 'e': 0.016293321158745884}",25,11,24.941751646600316,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4118,False,"{'a': 0.01, 'e': 0.016277035981532836}",25,17,17.38775150627851,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4119,False,"{'a': 0.01, 'e': 0.016260767081357142}",20,14,12.799772404299278,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4120,False,"{'a': 0.01, 'e': 0.01624451444194987}",20,6,27.3903306768971,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4121,False,"{'a': 0.01, 'e': 0.016228278047058394}",25,6,21.006389405074863,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4122,False,"{'a': 0.01, 'e': 0.016212057880446332}",25,17,14.794635306778774,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4123,False,"{'a': 0.01, 'e': 0.016195853925893487}",25,7,32.749305070409015,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4124,False,"{'a': 0.01, 'e': 0.01617966616719593}",20,10,18.96191990368722,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4125,False,"{'a': 0.01, 'e': 0.016163494588165874}",20,16,10.647280511246855,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4126,False,"{'a': 0.01, 'e': 0.016147339172631756}",30,24,13.044852755305612,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4127,False,"{'a': 0.01, 'e': 0.01613119990443817}",25,18,2.9088322121365153,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4128,False,"{'a': 0.01, 'e': 0.016115076767445814}",25,15,15.568721855973369,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4129,False,"{'a': 0.01, 'e': 0.016098969745531575}",25,13,20.586507123533664,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4130,False,"{'a': 0.01, 'e': 0.016082878822588433}",20,12,15.626300827024172,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4131,False,"{'a': 0.01, 'e': 0.01606680398252544}",20,10,19.115619211378394,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4132,False,"{'a': 0.01, 'e': 0.016050745209267785}",20,4,29.958199345200413,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4133,False,"{'a': 0.01, 'e': 0.01603470248675666}",25,16,17.071399343789782,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4134,False,"{'a': 0.01, 'e': 0.016018675798949358}",30,18,21.397919228154958,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4135,False,"{'a': 0.01, 'e': 0.016002665129819207}",25,13,21.941947895630236,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4136,False,"{'a': 0.01, 'e': 0.0159866704633555}",25,16,18.254574281893124,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4137,False,"{'a': 0.01, 'e': 0.015970691783563595}",20,16,6.321448971148298,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4138,False,"{'a': 0.01, 'e': 0.015954729074464814}",20,14,11.480867102793667,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4139,False,"{'a': 0.01, 'e': 0.015938782320096424}",20,8,18.56256678073679,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4140,False,"{'a': 0.01, 'e': 0.015922851504511698}",20,13,13.238617471383133,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4141,False,"{'a': 0.01, 'e': 0.015906936611779787}",20,9,20.139961297563303,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4142,False,"{'a': 0.01, 'e': 0.015891037625985815}",20,14,12.525285716030014,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4143,False,"{'a': 0.01, 'e': 0.015875154531230805}",25,7,33.703721042044926,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4144,False,"{'a': 0.01, 'e': 0.015859287311631637}",20,14,9.797114114263302,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4145,False,"{'a': 0.01, 'e': 0.0158434359513211}",20,14,8.620329165710658,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4146,False,"{'a': 0.01, 'e': 0.015827600434447853}",20,15,11.945170837083886,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4147,False,"{'a': 0.01, 'e': 0.015811780745176342}",30,21,16.52543474241672,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4148,False,"{'a': 0.01, 'e': 0.01579597686768691}",25,18,14.616529085351399,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4149,False,"{'a': 0.01, 'e': 0.015780188786175646}",20,4,28.480822462201665,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4150,False,"{'a': 0.01, 'e': 0.015764416484854486}",25,14,17.92908968659942,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4151,False,"{'a': 0.01, 'e': 0.015748659947951136}",20,16,6.7245707008500935,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4152,False,"{'a': 0.01, 'e': 0.015732919159709032}",20,10,16.601108031382502,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4153,False,"{'a': 0.01, 'e': 0.015717194104387402}",20,14,-1.8623038069741769,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4154,False,"{'a': 0.01, 'e': 0.015701484766261195}",20,9,22.982348531892438,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4155,False,"{'a': 0.01, 'e': 0.015685791129621054}",30,5,42.16139041138329,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4156,False,"{'a': 0.01, 'e': 0.01567011317877336}",20,15,2.340709197800676,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4157,False,"{'a': 0.01, 'e': 0.01565445089804014}",20,11,19.039087509022835,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4158,False,"{'a': 0.01, 'e': 0.015638804271759118}",35,21,28.70672198000671,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4159,False,"{'a': 0.01, 'e': 0.01562317328428369}",30,16,25.040919830981654,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4160,False,"{'a': 0.01, 'e': 0.01560755791998283}",20,14,12.240095316094575,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4161,False,"{'a': 0.01, 'e': 0.015591958163241193}",20,12,13.836751485356725,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4162,False,"{'a': 0.01, 'e': 0.015576373998459032}",20,12,15.221733914498289,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4163,False,"{'a': 0.01, 'e': 0.015560805410052154}",30,22,12.675116795157848,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4164,False,"{'a': 0.01, 'e': 0.015545252382451996}",25,20,7.9644775486564585,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4165,False,"{'a': 0.01, 'e': 0.015529714900105502}",20,15,10.53097660633035,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4166,False,"{'a': 0.01, 'e': 0.015514192947475202}",25,11,27.839668485927504,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4167,False,"{'a': 0.01, 'e': 0.015498686509039157}",20,13,11.762246485231504,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4168,False,"{'a': 0.01, 'e': 0.015483195569290899}",25,17,16.57725603326507,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4169,False,"{'a': 0.01, 'e': 0.015467720112739499}",25,20,8.335097883634816,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4170,False,"{'a': 0.01, 'e': 0.015452260123909515}",25,15,17.5887215541137,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4171,False,"{'a': 0.01, 'e': 0.01543681558734093}",25,17,11.875471474014166,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4172,False,"{'a': 0.01, 'e': 0.015421386487589232}",25,11,25.670890458964898,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4173,False,"{'a': 0.01, 'e': 0.015405972809225293}",25,14,20.468213534107544,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4174,False,"{'a': 0.01, 'e': 0.015390574536835447}",30,22,15.795567374996054,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4175,False,"{'a': 0.01, 'e': 0.015375191655021433}",30,14,29.876044651702852,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4176,False,"{'a': 0.01, 'e': 0.015359824148400343}",25,9,1.704976793053054,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +4177,False,"{'a': 0.01, 'e': 0.015344472001604681}",20,8,23.984945493672807,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4178,False,"{'a': 0.01, 'e': 0.015329135199282314}",20,6,27.42592439458592,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4179,False,"{'a': 0.01, 'e': 0.015313813726096408}",20,13,11.706174632100762,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4180,False,"{'a': 0.01, 'e': 0.015298507566725518}",20,13,13.731184967014169,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4181,False,"{'a': 0.01, 'e': 0.015283216705863457}",30,20,21.07382300215173,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4182,False,"{'a': 0.01, 'e': 0.015267941128219376}",25,11,26.281676597982923,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4183,False,"{'a': 0.01, 'e': 0.015252680818517708}",20,14,11.404010258664307,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4184,False,"{'a': 0.01, 'e': 0.015237435761498117}",20,15,9.001484132759222,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4185,False,"{'a': 0.01, 'e': 0.015222205941915557}",20,7,19.18510655875342,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4186,False,"{'a': 0.01, 'e': 0.015206991344540219}",30,14,28.420702949876357,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4187,False,"{'a': 0.01, 'e': 0.015191791954157482}",25,17,17.165570175061056,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4188,False,"{'a': 0.01, 'e': 0.015176607755567978}",20,14,12.699817309210125,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4189,False,"{'a': 0.01, 'e': 0.01516143873358748}",20,10,16.234330697264053,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4190,False,"{'a': 0.01, 'e': 0.01514628487304698}",20,15,10.747159712081382,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4191,False,"{'a': 0.01, 'e': 0.015131146158792626}",20,14,14.534140325811608,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4192,False,"{'a': 0.01, 'e': 0.015116022575685681}",20,9,20.798136070446226,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4193,False,"{'a': 0.01, 'e': 0.015100914108602571}",25,2,41.48195860602,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4194,False,"{'a': 0.01, 'e': 0.01508582074243484}",20,12,14.460133758736209,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4195,False,"{'a': 0.01, 'e': 0.015070742462089098}",25,0,40.638164510941145,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4196,False,"{'a': 0.01, 'e': 0.015055679252487086}",20,12,16.146726965992556,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4197,False,"{'a': 0.01, 'e': 0.015040631098565566}",20,7,24.176445157563638,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4198,False,"{'a': 0.01, 'e': 0.0150255979852764}",20,14,10.86805288544122,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4199,False,"{'a': 0.01, 'e': 0.015010579897586484}",20,8,20.291426244551506,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4200,False,"{'a': 0.01, 'e': 0.014995576820477703}",25,13,25.42753584363982,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4201,False,"{'a': 0.01, 'e': 0.014980588738946993}",20,10,16.161717439847884,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4202,False,"{'a': 0.01, 'e': 0.014965615638006283}",25,16,14.9726249045876,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4203,False,"{'a': 0.01, 'e': 0.014950657502682445}",25,20,9.874387133367904,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4204,False,"{'a': 0.01, 'e': 0.014935714318017369}",20,11,14.925960516984425,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4205,False,"{'a': 0.01, 'e': 0.014920786069067842}",20,0,31.188144205295163,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4206,False,"{'a': 0.01, 'e': 0.014905872740905627}",25,15,18.299661847108695,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4207,False,"{'a': 0.01, 'e': 0.01489097431861741}",20,9,22.376838172003666,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4208,False,"{'a': 0.01, 'e': 0.014876090787304737}",30,24,10.395299525099208,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4209,False,"{'a': 0.01, 'e': 0.014861222132084092}",25,13,11.870002886173697,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4210,False,"{'a': 0.01, 'e': 0.014846368338086832}",30,19,24.11925086418201,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4211,False,"{'a': 0.01, 'e': 0.014831529390459133}",20,13,11.12620316479558,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4212,False,"{'a': 0.01, 'e': 0.014816705274362072}",20,11,16.894419186512366,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4213,False,"{'a': 0.01, 'e': 0.01480189597497151}",30,19,23.699955815272332,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4214,False,"{'a': 0.01, 'e': 0.014787101477478155}",20,7,26.585229879368217,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4215,False,"{'a': 0.01, 'e': 0.014772321767087523}",25,11,26.734389273195035,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4216,False,"{'a': 0.01, 'e': 0.014757556829019875}",25,15,19.419434577588294,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4217,False,"{'a': 0.01, 'e': 0.014742806648510288}",25,9,27.917600773523812,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4218,False,"{'a': 0.01, 'e': 0.014728071210808588}",20,8,20.512060005401278,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4219,False,"{'a': 0.01, 'e': 0.014713350501179315}",25,11,27.475852382576726,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4220,False,"{'a': 0.01, 'e': 0.014698644504901784}",25,20,9.669882366437209,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4221,False,"{'a': 0.01, 'e': 0.014683953207269966}",25,9,26.403533445081955,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4222,False,"{'a': 0.01, 'e': 0.014669276593592582}",25,9,25.944334595930627,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4223,False,"{'a': 0.01, 'e': 0.014654614649193026}",20,12,16.0261302244609,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4224,False,"{'a': 0.01, 'e': 0.014639967359409327}",25,17,14.951846047280117,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4225,False,"{'a': 0.01, 'e': 0.014625334709594222}",20,16,6.549343661666114,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4226,False,"{'a': 0.01, 'e': 0.01461071668511503}",20,13,13.250294482474423,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4227,False,"{'a': 0.01, 'e': 0.014596113271353742}",30,8,40.66363953577046,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4228,False,"{'a': 0.01, 'e': 0.014581524453706954}",20,8,24.879400905076604,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4229,False,"{'a': 0.01, 'e': 0.014566950217585823}",25,14,17.564339218625488,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4230,False,"{'a': 0.01, 'e': 0.014552390548416123}",20,12,17.155264049695504,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4231,False,"{'a': 0.01, 'e': 0.014537845431638198}",20,8,19.387253713606537,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4232,False,"{'a': 0.01, 'e': 0.0145233148527069}",30,12,34.043365386968084,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4233,False,"{'a': 0.01, 'e': 0.01450879879709168}",20,8,19.77114684063628,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4234,False,"{'a': 0.01, 'e': 0.014494297250276454}",20,15,10.207161984985518,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4235,False,"{'a': 0.01, 'e': 0.014479810197759686}",30,6,41.47094039101092,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4236,False,"{'a': 0.01, 'e': 0.014465337625054335}",20,7,22.101559470106487,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4237,False,"{'a': 0.01, 'e': 0.0144508795176878}",25,12,23.596574818108298,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4238,False,"{'a': 0.01, 'e': 0.014436435861201989}",25,15,21.359784876920685,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4239,False,"{'a': 0.01, 'e': 0.014422006641153255}",20,6,28.70676916473749,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4240,False,"{'a': 0.01, 'e': 0.01440759184311235}",20,14,14.163652335493893,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4241,False,"{'a': 0.01, 'e': 0.014393191452664503}",25,11,25.971785810962743,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4242,False,"{'a': 0.01, 'e': 0.014378805455409293}",30,18,21.409862802266325,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4243,False,"{'a': 0.01, 'e': 0.01436443383696074}",25,16,20.464468947451152,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4244,False,"{'a': 0.01, 'e': 0.01435007658294723}",25,3,35.36034901821571,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4245,False,"{'a': 0.01, 'e': 0.01433573367901149}",25,19,11.610496783938931,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4246,False,"{'a': 0.01, 'e': 0.01432140511081062}",30,19,22.87905077670803,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4247,False,"{'a': 0.01, 'e': 0.014307090864016068}",25,17,16.14609035405965,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4248,False,"{'a': 0.01, 'e': 0.014292790924313561}",25,11,26.76456148763439,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4249,False,"{'a': 0.01, 'e': 0.01427850527740318}",20,9,22.07719904186397,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4250,False,"{'a': 0.01, 'e': 0.014264233908999256}",20,11,17.103126524082523,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4251,False,"{'a': 0.01, 'e': 0.014249976804830427}",20,8,24.2874049644987,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4252,False,"{'a': 0.01, 'e': 0.014235733950639606}",20,10,17.090328246482937,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4253,False,"{'a': 0.01, 'e': 0.014221505332183906}",30,21,16.979906466327037,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4254,False,"{'a': 0.01, 'e': 0.014207290935234726}",20,12,10.79639276158626,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4255,False,"{'a': 0.01, 'e': 0.014193090745577676}",25,3,34.875984335182395,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4256,False,"{'a': 0.01, 'e': 0.014178904749012544}",35,15,32.614190834212735,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4257,False,"{'a': 0.01, 'e': 0.014164732931353353}",25,15,19.261293236607223,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4258,False,"{'a': 0.01, 'e': 0.014150575278428262}",20,14,9.710969466334499,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4259,False,"{'a': 0.01, 'e': 0.014136431776079627}",20,13,12.8770483822294,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4260,False,"{'a': 0.01, 'e': 0.014122302410163962}",20,12,17.67110980985111,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4261,False,"{'a': 0.01, 'e': 0.014108187166551869}",20,15,9.716567469704247,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4262,False,"{'a': 0.01, 'e': 0.01409408603112812}",20,6,27.401776483155555,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4263,False,"{'a': 0.01, 'e': 0.014079998989791587}",25,11,26.240082621103138,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4264,False,"{'a': 0.01, 'e': 0.014065926028455206}",25,13,22.568193093795667,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4265,False,"{'a': 0.01, 'e': 0.014051867133046037}",20,9,20.512047435104027,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4266,False,"{'a': 0.01, 'e': 0.014037822289505161}",25,13,23.203277702622294,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4267,False,"{'a': 0.01, 'e': 0.014023791483787743}",35,25,18.817829731778197,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4268,False,"{'a': 0.01, 'e': 0.01400977470186299}",20,0,31.32333598679336,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4269,False,"{'a': 0.01, 'e': 0.013995771929714095}",20,10,19.84601929956657,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4270,False,"{'a': 0.01, 'e': 0.013981783153338296}",20,12,15.778346479541707,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4271,False,"{'a': 0.01, 'e': 0.013967808358746827}",20,8,18.96294383802947,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4272,False,"{'a': 0.01, 'e': 0.013953847531964868}",20,16,10.011840283628011,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4273,False,"{'a': 0.01, 'e': 0.013939900659031617}",25,0,42.18198535162464,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4274,False,"{'a': 0.01, 'e': 0.013925967726000174}",25,5,36.70389859388831,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4275,False,"{'a': 0.01, 'e': 0.01391204871893762}",35,13,39.09417230144926,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4276,False,"{'a': 0.01, 'e': 0.013898143623924953}",20,11,18.842263148448406,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4277,False,"{'a': 0.01, 'e': 0.013884252427057056}",25,13,22.40013850657753,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4278,False,"{'a': 0.01, 'e': 0.013870375114442744}",25,18,14.764304218309919,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4279,False,"{'a': 0.01, 'e': 0.013856511672204716}",20,13,11.669777682616017,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4280,False,"{'a': 0.01, 'e': 0.013842662086479501}",20,6,27.61946689059263,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4281,False,"{'a': 0.01, 'e': 0.01382882634341754}",20,14,9.439847692007401,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4282,False,"{'a': 0.01, 'e': 0.01381500442918306}",20,13,15.357063658713367,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4283,False,"{'a': 0.01, 'e': 0.013801196329954161}",20,14,11.926791902776944,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4284,False,"{'a': 0.01, 'e': 0.013787402031922757}",25,16,17.06152590093724,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4285,False,"{'a': 0.01, 'e': 0.013773621521294518}",20,11,18.50508133198776,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4286,False,"{'a': 0.01, 'e': 0.01375985478428895}",30,14,27.047639671348037,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4287,False,"{'a': 0.01, 'e': 0.013746101807139326}",20,12,14.352954142568274,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4288,False,"{'a': 0.01, 'e': 0.01373236257609264}",25,16,15.078620021594038,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4289,False,"{'a': 0.01, 'e': 0.013718637077409689}",25,18,15.137323720025059,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4290,False,"{'a': 0.01, 'e': 0.013704925297364945}",25,0,37.9837690136954,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4291,False,"{'a': 0.01, 'e': 0.013691227222246641}",30,17,26.84120574158879,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4292,False,"{'a': 0.01, 'e': 0.013677542838356711}",20,16,6.713296188432799,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4293,False,"{'a': 0.01, 'e': 0.01366387213201075}",20,12,14.756187944732762,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4294,False,"{'a': 0.01, 'e': 0.013650215089538058}",20,3,27.981931360945463,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4295,False,"{'a': 0.01, 'e': 0.013636571697281604}",20,10,23.255889676257,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4296,False,"{'a': 0.01, 'e': 0.013622941941597973}",20,10,18.48457086529944,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4297,False,"{'a': 0.01, 'e': 0.013609325808857431}",20,13,13.545470030040663,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4298,False,"{'a': 0.01, 'e': 0.013595723285443818}",35,10,36.44979506015157,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4299,False,"{'a': 0.01, 'e': 0.013582134357754625}",30,22,14.448680295924948,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4300,False,"{'a': 0.01, 'e': 0.013568559012200934}",25,11,23.953420465819768,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4301,False,"{'a': 0.01, 'e': 0.013554997235207374}",25,14,18.946052388780927,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4302,False,"{'a': 0.01, 'e': 0.013541449013212178}",20,8,21.708273691619446,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4303,False,"{'a': 0.01, 'e': 0.013527914332667135}",35,23,25.489574280233338,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4304,False,"{'a': 0.01, 'e': 0.013514393180037542}",20,11,16.552679413190532,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4305,False,"{'a': 0.01, 'e': 0.013500885541802265}",20,8,18.570757872781684,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4306,False,"{'a': 0.01, 'e': 0.013487391404453644}",30,13,29.940672193204342,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4307,False,"{'a': 0.01, 'e': 0.013473910754497552}",20,9,20.51466040355055,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4308,False,"{'a': 0.01, 'e': 0.013460443578453348}",25,15,-22.901955896714448,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +4309,False,"{'a': 0.01, 'e': 0.013446989862853833}",25,18,13.41774514349076,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4310,False,"{'a': 0.01, 'e': 0.013433549594245302}",20,12,16.052000745141378,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4311,False,"{'a': 0.01, 'e': 0.013420122759187495}",30,18,24.674497534522313,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4312,False,"{'a': 0.01, 'e': 0.013406709344253556}",20,10,18.562448960618177,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4313,False,"{'a': 0.01, 'e': 0.013393309336030088}",25,17,15.860414384363386,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4314,False,"{'a': 0.01, 'e': 0.01337992272111706}",25,0,25.05882584940239,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +4315,False,"{'a': 0.01, 'e': 0.01336654948612787}",30,11,20.89390584522021,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4316,False,"{'a': 0.01, 'e': 0.013353189617689292}",20,8,24.72344003240326,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4317,False,"{'a': 0.01, 'e': 0.013339843102441431}",20,14,11.322550564457812,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4318,False,"{'a': 0.01, 'e': 0.013326509927037785}",20,12,14.504059768141568,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4319,False,"{'a': 0.01, 'e': 0.013313190078145189}",20,13,12.788466612820223,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4320,False,"{'a': 0.01, 'e': 0.013299883542443767}",25,13,18.393853585812376,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4321,False,"{'a': 0.01, 'e': 0.01328659030662701}",25,11,26.091181951082753,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4322,False,"{'a': 0.01, 'e': 0.013273310357401653}",25,8,27.87588552231207,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4323,False,"{'a': 0.01, 'e': 0.01326004368148776}",20,7,22.714799863665636,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4324,False,"{'a': 0.01, 'e': 0.013246790265618666}",30,18,22.846374379622958,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4325,False,"{'a': 0.01, 'e': 0.013233550096540928}",25,13,22.951186135172968,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4326,False,"{'a': 0.01, 'e': 0.013220323161014392}",20,14,13.24080713006539,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4327,False,"{'a': 0.01, 'e': 0.013207109445812128}",25,11,25.203966058932536,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4328,False,"{'a': 0.01, 'e': 0.0131939089377204}",25,8,34.21888449446219,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4329,False,"{'a': 0.01, 'e': 0.01318072162353872}",25,11,28.780720221880078,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4330,False,"{'a': 0.01, 'e': 0.013167547490079751}",20,13,14.928271481000712,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4331,False,"{'a': 0.01, 'e': 0.01315438652416937}",30,20,24.118562461956774,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4332,False,"{'a': 0.01, 'e': 0.01314123871264662}",20,12,14.794012366079201,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4333,False,"{'a': 0.01, 'e': 0.013128104042363666}",20,3,27.6588467273656,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4334,False,"{'a': 0.01, 'e': 0.013114982500185848}",20,7,24.357855212320207,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4335,False,"{'a': 0.01, 'e': 0.013101874072991637}",30,16,27.194752657108904,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4336,False,"{'a': 0.01, 'e': 0.013088778747672577}",20,10,19.92536096445078,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4337,False,"{'a': 0.01, 'e': 0.013075696511133368}",25,13,25.813793118980502,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4338,False,"{'a': 0.01, 'e': 0.013062627350291747}",30,11,36.574720950805805,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4339,False,"{'a': 0.01, 'e': 0.013049571252078566}",25,14,22.67678210683684,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4340,False,"{'a': 0.01, 'e': 0.013036528203437736}",25,16,14.094293622079316,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4341,False,"{'a': 0.01, 'e': 0.013023498191326184}",20,6,27.572673465013875,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4342,False,"{'a': 0.01, 'e': 0.013010481202713909}",25,16,15.560621005654781,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4343,False,"{'a': 0.01, 'e': 0.012997477224583932}",25,13,12.779328207320216,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4344,False,"{'a': 0.01, 'e': 0.012984486243932251}",30,14,28.808293452782095,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4345,False,"{'a': 0.01, 'e': 0.012971508247767908}",30,15,26.345792414137883,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4346,False,"{'a': 0.01, 'e': 0.012958543223112882}",30,9,37.294041908903566,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4347,False,"{'a': 0.01, 'e': 0.012945591157002159}",25,18,4.092718424987488,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4348,False,"{'a': 0.01, 'e': 0.012932652036483683}",25,12,24.77180285108338,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4349,False,"{'a': 0.01, 'e': 0.01291972584861831}",20,16,6.60175472104247,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4350,False,"{'a': 0.01, 'e': 0.012906812580479862}",35,23,20.86267749462651,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4351,False,"{'a': 0.01, 'e': 0.012893912219155082}",25,14,17.88992778745091,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4352,False,"{'a': 0.01, 'e': 0.012881024751743584}",35,21,30.48508454741658,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4353,False,"{'a': 0.01, 'e': 0.012868150165357922}",20,12,19.000757547191977,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4354,False,"{'a': 0.01, 'e': 0.012855288447123487}",20,10,15.8790794389306,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4355,False,"{'a': 0.01, 'e': 0.01284243958417857}",20,12,13.378556286010008,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4356,False,"{'a': 0.01, 'e': 0.01282960356367432}",25,19,10.384145506696159,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4357,False,"{'a': 0.01, 'e': 0.01281678037277469}",25,16,19.701083309058827,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4358,False,"{'a': 0.01, 'e': 0.012803969998656512}",30,13,33.65237758208189,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4359,False,"{'a': 0.01, 'e': 0.01279117242850939}",35,19,29.947562181227262,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4360,False,"{'a': 0.01, 'e': 0.01277838764953576}",25,15,20.07104311439076,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4361,False,"{'a': 0.01, 'e': 0.012765615648950858}",25,16,17.536234485615452,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4362,False,"{'a': 0.01, 'e': 0.012752856413982657}",20,10,18.9417675797595,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4363,False,"{'a': 0.01, 'e': 0.012740109931871932}",20,13,14.09754313367211,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4364,False,"{'a': 0.01, 'e': 0.012727376189872212}",20,12,14.795611489932961,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4365,False,"{'a': 0.01, 'e': 0.012714655175249731}",25,12,28.664071307803283,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4366,False,"{'a': 0.01, 'e': 0.012701946875283497}",35,19,33.92565124291034,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4367,False,"{'a': 0.01, 'e': 0.012689251277265185}",25,13,20.69433554848677,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4368,False,"{'a': 0.01, 'e': 0.012676568368499208}",25,11,23.89247278502196,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4369,False,"{'a': 0.01, 'e': 0.012663898136302665}",20,8,22.399178591206486,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4370,False,"{'a': 0.01, 'e': 0.012651240568005305}",20,13,11.952371308783729,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4371,False,"{'a': 0.01, 'e': 0.012638595650949566}",25,14,21.61934307226508,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4372,False,"{'a': 0.01, 'e': 0.012625963372490544}",20,13,15.652423108919614,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4373,False,"{'a': 0.01, 'e': 0.012613343719995933}",25,14,23.0991904534524,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4374,False,"{'a': 0.01, 'e': 0.012600736680846106}",20,15,8.708714845251617,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4375,False,"{'a': 0.01, 'e': 0.012588142242433998}",30,19,19.28169980510929,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4376,False,"{'a': 0.01, 'e': 0.012575560392165182}",25,13,23.54207073591943,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4377,False,"{'a': 0.01, 'e': 0.012562991117457817}",30,18,23.180452792590383,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4378,False,"{'a': 0.01, 'e': 0.012550434405742605}",25,11,25.950192645739268,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4379,False,"{'a': 0.01, 'e': 0.012537890244462845}",20,7,20.37015251458503,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4380,False,"{'a': 0.01, 'e': 0.012525358621074385}",20,11,16.764032342510387,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4381,False,"{'a': 0.01, 'e': 0.012512839523045579}",25,14,19.695391731284413,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4382,False,"{'a': 0.01, 'e': 0.01250033293785735}",30,16,29.250260286331837,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4383,False,"{'a': 0.01, 'e': 0.01248783885300309}",25,12,25.32315530440487,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4384,False,"{'a': 0.01, 'e': 0.012475357255988723}",25,17,16.33210263436264,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4385,False,"{'a': 0.01, 'e': 0.012462888134332661}",25,10,25.99461496760378,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4386,False,"{'a': 0.01, 'e': 0.012450431475565764}",20,15,9.2661028336052,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4387,False,"{'a': 0.01, 'e': 0.012437987267231379}",25,7,28.071834255620487,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4388,False,"{'a': 0.01, 'e': 0.012425555496885309}",25,14,20.338591300686282,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4389,False,"{'a': 0.01, 'e': 0.012413136152095758}",25,17,14.571440028428313,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4390,False,"{'a': 0.01, 'e': 0.012400729220443406}",35,19,26.063091546996716,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4391,False,"{'a': 0.01, 'e': 0.012388334689521299}",20,6,23.59240662922719,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4392,False,"{'a': 0.01, 'e': 0.012375952546934911}",20,14,11.185149997112536,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4393,False,"{'a': 0.01, 'e': 0.012363582780302113}",25,13,23.49901354308027,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4394,False,"{'a': 0.01, 'e': 0.012351225377253115}",30,20,19.682187982620107,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4395,False,"{'a': 0.01, 'e': 0.012338880325430523}",25,11,26.997752554671212,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4396,False,"{'a': 0.01, 'e': 0.012326547612489296}",20,10,16.559113551147018,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4397,False,"{'a': 0.01, 'e': 0.012314227226096697}",20,3,26.484825695508658,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4398,False,"{'a': 0.01, 'e': 0.012301919153932363}",20,4,28.86725074140358,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4399,False,"{'a': 0.01, 'e': 0.012289623383688195}",20,16,8.518162671764909,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4400,False,"{'a': 0.01, 'e': 0.012277339903068436}",20,8,22.76292223388727,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4401,False,"{'a': 0.01, 'e': 0.012265068699789616}",25,19,12.79647845827252,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4402,False,"{'a': 0.01, 'e': 0.012252809761580503}",25,19,9.921756110424377,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4403,False,"{'a': 0.01, 'e': 0.012240563076182176}",30,22,15.89442049482241,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4404,False,"{'a': 0.01, 'e': 0.012228328631347955}",25,16,17.23523405689114,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4405,False,"{'a': 0.01, 'e': 0.012216106414843372}",30,24,10.079728663823294,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4406,False,"{'a': 0.01, 'e': 0.012203896414446235}",25,13,19.461795508446325,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4407,False,"{'a': 0.01, 'e': 0.012191698617946518}",30,16,23.75057965035722,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4408,False,"{'a': 0.01, 'e': 0.012179513013146433}",20,12,14.45633303802483,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4409,False,"{'a': 0.01, 'e': 0.01216733958786039}",20,14,11.06073870609772,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4410,False,"{'a': 0.01, 'e': 0.012155178329914935}",20,15,9.470032452683522,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4411,False,"{'a': 0.01, 'e': 0.012143029227148825}",20,16,7.243593342757767,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4412,False,"{'a': 0.01, 'e': 0.012130892267412964}",30,21,16.503332627926177,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4413,False,"{'a': 0.01, 'e': 0.01211876743857037}",30,16,26.42698292149355,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4414,False,"{'a': 0.01, 'e': 0.012106654728496237}",30,13,28.083813287178163,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4415,False,"{'a': 0.01, 'e': 0.012094554125077829}",20,16,9.09512595418667,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4416,False,"{'a': 0.01, 'e': 0.012082465616214554}",25,19,12.12354934876012,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4417,False,"{'a': 0.01, 'e': 0.012070389189817914}",20,8,23.430572169520424,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4418,False,"{'a': 0.01, 'e': 0.012058324833811458}",35,25,18.854435853047004,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4419,False,"{'a': 0.01, 'e': 0.012046272536130841}",25,8,23.785147485168288,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4420,False,"{'a': 0.01, 'e': 0.012034232284723775}",25,13,24.730579537719358,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4421,False,"{'a': 0.01, 'e': 0.012022204067549985}",20,14,12.353447734298419,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4422,False,"{'a': 0.01, 'e': 0.012010187872581275}",20,13,14.837990999668165,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4423,False,"{'a': 0.01, 'e': 0.01199818368780143}",20,8,11.902562430953193,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4424,False,"{'a': 0.01, 'e': 0.01198619150120627}",25,11,25.25990933248891,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4425,False,"{'a': 0.01, 'e': 0.011974211300803622}",20,2,23.971622631870858,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4426,False,"{'a': 0.01, 'e': 0.011962243074613261}",20,8,19.882574971605965,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4427,False,"{'a': 0.01, 'e': 0.011950286810666972}",30,13,34.98523894687923,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4428,False,"{'a': 0.01, 'e': 0.011938342497008501}",35,21,27.07986772653208,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4429,False,"{'a': 0.01, 'e': 0.011926410121693511}",20,12,14.479956300521332,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4430,False,"{'a': 0.01, 'e': 0.011914489672789647}",20,10,19.10650364832292,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4431,False,"{'a': 0.01, 'e': 0.011902581138376438}",20,12,17.3395606419178,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4432,False,"{'a': 0.01, 'e': 0.011890684506545358}",25,15,22.440954869206948,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4433,False,"{'a': 0.01, 'e': 0.011878799765399788}",25,17,15.382894255125777,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4434,False,"{'a': 0.01, 'e': 0.01186692690305496}",20,12,16.587525609935433,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4435,False,"{'a': 0.01, 'e': 0.011855065907638027}",20,2,23.900164217313517,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4436,False,"{'a': 0.01, 'e': 0.011843216767287999}",20,15,7.720328728881949,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4437,False,"{'a': 0.01, 'e': 0.011831379470155714}",20,12,14.509219037627727,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4438,False,"{'a': 0.01, 'e': 0.011819554004403897}",20,14,11.33547927343136,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4439,False,"{'a': 0.01, 'e': 0.011807740358207058}",20,10,20.853347760224185,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4440,False,"{'a': 0.01, 'e': 0.011795938519751562}",20,10,20.378810897029403,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4441,False,"{'a': 0.01, 'e': 0.011784148477235577}",25,15,21.589581581827396,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4442,False,"{'a': 0.01, 'e': 0.011772370218869043}",20,12,15.456134816996496,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4443,False,"{'a': 0.01, 'e': 0.011760603732873708}",20,8,26.67117133990594,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4444,False,"{'a': 0.01, 'e': 0.011748849007483096}",35,25,17.757046786885752,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4445,False,"{'a': 0.01, 'e': 0.011737106030942461}",25,19,12.533546830707254,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4446,False,"{'a': 0.01, 'e': 0.011725374791508845}",20,10,17.466349020842365,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4447,False,"{'a': 0.01, 'e': 0.011713655277450987}",20,7,25.49680354632882,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4448,False,"{'a': 0.01, 'e': 0.011701947477049383}",25,17,16.67185246512359,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4449,False,"{'a': 0.01, 'e': 0.011690251378596242}",25,13,22.989404951547314,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4450,False,"{'a': 0.01, 'e': 0.011678566970395442}",30,18,24.47161569488263,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4451,False,"{'a': 0.01, 'e': 0.011666894240762588}",20,15,11.230629714863984,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4452,False,"{'a': 0.01, 'e': 0.011655233178024955}",20,16,6.4675967637213985,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4453,False,"{'a': 0.01, 'e': 0.011643583770521462}",25,14,21.426476894112362,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4454,False,"{'a': 0.01, 'e': 0.01163194600660272}",25,18,14.34853913534624,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4455,False,"{'a': 0.01, 'e': 0.011620319874630945}",20,16,8.421486724088702,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4456,False,"{'a': 0.01, 'e': 0.011608705362980011}",20,14,13.419887565425901,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4457,False,"{'a': 0.01, 'e': 0.011597102460035418}",25,14,20.253938429614063,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4458,False,"{'a': 0.01, 'e': 0.011585511154194242}",20,14,13.215388456652157,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4459,False,"{'a': 0.01, 'e': 0.011573931433865184}",25,11,25.25524736520352,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4460,False,"{'a': 0.01, 'e': 0.011562363287468536}",20,12,14.736921640886536,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4461,False,"{'a': 0.01, 'e': 0.011550806703436129}",20,4,24.156440002404402,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4462,False,"{'a': 0.01, 'e': 0.011539261670211397}",20,7,24.62752013135398,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4463,False,"{'a': 0.01, 'e': 0.011527728176249287}",20,11,17.444359348832364,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4464,False,"{'a': 0.01, 'e': 0.011516206210016314}",20,10,19.572842423884804,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4465,False,"{'a': 0.01, 'e': 0.011504695759990522}",30,18,23.276101090641966,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4466,False,"{'a': 0.01, 'e': 0.011493196814661438}",25,8,33.89459268026611,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4467,False,"{'a': 0.01, 'e': 0.011481709362530125}",30,11,33.19867176965074,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4468,False,"{'a': 0.01, 'e': 0.011470233392109144}",25,19,12.970040071793829,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4469,False,"{'a': 0.01, 'e': 0.011458768891922499}",30,18,21.75521504263984,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4470,False,"{'a': 0.01, 'e': 0.01144731585050571}",35,19,31.540857906468233,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4471,False,"{'a': 0.01, 'e': 0.011435874256405718}",20,16,7.12844280840727,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4472,False,"{'a': 0.01, 'e': 0.011424444098180933}",25,18,1.4340456164823008,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4473,False,"{'a': 0.01, 'e': 0.011413025364401209}",25,11,25.636878468573876,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4474,False,"{'a': 0.01, 'e': 0.011401618043647792}",20,12,15.140863862073273,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4475,False,"{'a': 0.01, 'e': 0.011390222124513367}",30,9,37.23898578533033,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4476,False,"{'a': 0.01, 'e': 0.011378837595602027}",20,14,12.64859847780343,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4477,False,"{'a': 0.01, 'e': 0.01136746444552922}",20,8,22.390129432909603,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4478,False,"{'a': 0.01, 'e': 0.011356102662921816}",35,23,24.247308875083274,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4479,False,"{'a': 0.01, 'e': 0.011344752236418012}",20,9,24.620940941593933,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4480,False,"{'a': 0.01, 'e': 0.011333413154667387}",20,14,11.831789453439928,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4481,False,"{'a': 0.01, 'e': 0.011322085406330874}",20,9,22.95416421288794,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4482,False,"{'a': 0.01, 'e': 0.0113107689800807}",25,18,14.816473294164307,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4483,False,"{'a': 0.01, 'e': 0.011299463864600458}",25,18,10.600801910879706,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4484,False,"{'a': 0.01, 'e': 0.011288170048585013}",25,19,11.19090892966299,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4485,False,"{'a': 0.01, 'e': 0.011276887520740558}",25,14,19.055531514752786,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4486,False,"{'a': 0.01, 'e': 0.011265616269784572}",30,18,24.216140593669483,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4487,False,"{'a': 0.01, 'e': 0.011254356284445785}",25,11,28.63073986248761,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4488,False,"{'a': 0.01, 'e': 0.011243107553464221}",25,16,17.13520897262359,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4489,False,"{'a': 0.01, 'e': 0.011231870065591157}",25,7,34.00233425827259,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4490,False,"{'a': 0.01, 'e': 0.011220643809589084}",20,10,20.576503792542383,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4491,False,"{'a': 0.01, 'e': 0.011209428774231766}",30,16,26.431521728872255,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4492,False,"{'a': 0.01, 'e': 0.011198224948304147}",25,17,13.787317030758945,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4493,False,"{'a': 0.01, 'e': 0.011187032320602409}",25,20,10.206566951696137,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4494,False,"{'a': 0.01, 'e': 0.011175850879933932}",20,14,11.621715222238079,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4495,False,"{'a': 0.01, 'e': 0.011164680615117259}",20,14,10.394545806298039,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4496,False,"{'a': 0.01, 'e': 0.011153521514982131}",20,12,2.485166420006892,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4497,False,"{'a': 0.01, 'e': 0.011142373568369456}",20,0,34.425163941112075,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4498,False,"{'a': 0.01, 'e': 0.01113123676413127}",20,12,17.14198528245903,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4499,False,"{'a': 0.01, 'e': 0.011120111091130784}",25,11,25.116872343173434,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4500,False,"{'a': 0.01, 'e': 0.011108996538242306}",35,19,31.62126527679537,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4501,False,"{'a': 0.01, 'e': 0.011097893094351293}",20,8,23.6239525911593,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4502,False,"{'a': 0.01, 'e': 0.011086800748354308}",20,13,11.417291324853668,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4503,False,"{'a': 0.01, 'e': 0.011075719489158987}",20,13,17.75385993369631,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4504,False,"{'a': 0.01, 'e': 0.011064649305684076}",20,7,10.63521476132121,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4505,False,"{'a': 0.01, 'e': 0.011053590186859403}",25,13,24.136782876998293,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4506,False,"{'a': 0.01, 'e': 0.01104254212162583}",25,11,23.62871403829023,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4507,False,"{'a': 0.01, 'e': 0.011031505098935307}",20,12,16.227059494701493,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4508,False,"{'a': 0.01, 'e': 0.011020479107750792}",25,19,14.329787527905939,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4509,False,"{'a': 0.01, 'e': 0.011009464137046305}",30,17,26.087665368166657,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4510,False,"{'a': 0.01, 'e': 0.010998460175806881}",25,15,17.841156770088666,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4511,False,"{'a': 0.01, 'e': 0.01098746721302854}",25,6,36.1557804711389,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4512,False,"{'a': 0.01, 'e': 0.010976485237718327}",25,11,29.862097432648614,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4513,False,"{'a': 0.01, 'e': 0.010965514238894277}",20,9,21.041006572711996,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4514,False,"{'a': 0.01, 'e': 0.01095455420558537}",25,11,14.30326816912276,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4515,False,"{'a': 0.01, 'e': 0.01094360512683159}",20,14,8.500389628173993,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4516,False,"{'a': 0.01, 'e': 0.01093266699168384}",30,24,13.422604257351207,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4517,False,"{'a': 0.01, 'e': 0.010921739789203994}",20,6,22.493127657479814,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4518,False,"{'a': 0.01, 'e': 0.010910823508464855}",25,14,19.88257496417561,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4519,False,"{'a': 0.01, 'e': 0.010899918138550124}",20,11,13.23740257390311,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4520,False,"{'a': 0.01, 'e': 0.01088902366855444}",30,14,28.888497718317968,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4521,False,"{'a': 0.01, 'e': 0.010878140087583343}",20,13,12.937915651797617,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4522,False,"{'a': 0.01, 'e': 0.01086726738475323}",25,20,8.277528925985582,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4523,False,"{'a': 0.01, 'e': 0.010856405549191416}",20,9,18.284052050645162,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4524,False,"{'a': 0.01, 'e': 0.010845554570036048}",25,13,23.689483977390164,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4525,False,"{'a': 0.01, 'e': 0.010834714436436152}",20,13,13.734595822156031,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4526,False,"{'a': 0.01, 'e': 0.010823885137551606}",30,13,27.509556368091104,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4527,False,"{'a': 0.01, 'e': 0.01081306666255309}",20,12,13.658507702855992,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4528,False,"{'a': 0.01, 'e': 0.010802259000622138}",20,15,-12.227261462638046,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +4529,False,"{'a': 0.01, 'e': 0.010791462140951094}",25,17,14.212565422049364,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4530,False,"{'a': 0.01, 'e': 0.010780676072743084}",30,16,27.19647280743776,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4531,False,"{'a': 0.01, 'e': 0.010769900785212052}",20,13,14.475575320340962,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4532,False,"{'a': 0.01, 'e': 0.010759136267582695}",25,13,23.373603669168332,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4533,False,"{'a': 0.01, 'e': 0.0107483825090905}",30,17,24.80647169829459,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4534,False,"{'a': 0.01, 'e': 0.01073763949898172}",25,19,10.078070882429525,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4535,False,"{'a': 0.01, 'e': 0.010726907226513326}",20,15,9.543982392834533,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4536,False,"{'a': 0.01, 'e': 0.01071618568095305}",20,16,7.281403248998631,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4537,False,"{'a': 0.01, 'e': 0.01070547485157936}",20,12,13.312939998100306,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4538,False,"{'a': 0.01, 'e': 0.010694774727681404}",25,13,26.79453505513118,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4539,False,"{'a': 0.01, 'e': 0.010684085298559074}",20,10,19.28099693868967,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4540,False,"{'a': 0.01, 'e': 0.010673406553522925}",25,3,37.52761398783977,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4541,False,"{'a': 0.01, 'e': 0.010662738481894219}",20,15,8.08025804490418,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4542,False,"{'a': 0.01, 'e': 0.010652081073004893}",20,7,23.962839777246167,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4543,False,"{'a': 0.01, 'e': 0.010641434316197518}",20,8,19.741659461727323,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4544,False,"{'a': 0.01, 'e': 0.010630798200825346}",25,16,20.535257104678692,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4545,False,"{'a': 0.01, 'e': 0.01062017271625227}",20,15,9.72513528029955,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4546,False,"{'a': 0.01, 'e': 0.010609557851852787}",20,10,18.610547901541043,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4547,False,"{'a': 0.01, 'e': 0.010598953597012047}",20,9,23.637371346921313,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4548,False,"{'a': 0.01, 'e': 0.01058835994112578}",20,13,15.794600471720518,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4549,False,"{'a': 0.01, 'e': 0.010577776873600335}",30,12,33.46548494566966,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4550,False,"{'a': 0.01, 'e': 0.010567204383852655}",20,0,30.820024124997182,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4551,False,"{'a': 0.01, 'e': 0.010556642461310231}",25,12,24.594261051964118,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4552,False,"{'a': 0.01, 'e': 0.010546091095411146}",25,11,25.418363250774778,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4553,False,"{'a': 0.01, 'e': 0.010535550275604046}",30,16,26.234684445193132,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4554,False,"{'a': 0.01, 'e': 0.01052501999134809}",25,14,19.631201314079703,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4555,False,"{'a': 0.01, 'e': 0.010514500232113012}",20,15,8.64975697164592,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4556,False,"{'a': 0.01, 'e': 0.010503990987379034}",20,12,15.169221514333058,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4557,False,"{'a': 0.01, 'e': 0.010493492246636918}",20,13,14.466749584152648,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4558,False,"{'a': 0.01, 'e': 0.010483003999387931}",25,13,22.212345520947572,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4559,False,"{'a': 0.01, 'e': 0.010472526235143808}",20,10,19.36147708681848,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4560,False,"{'a': 0.01, 'e': 0.010462058943426795}",25,19,11.511178731689547,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4561,False,"{'a': 0.01, 'e': 0.010451602113769604}",25,10,22.92432980511572,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4562,False,"{'a': 0.01, 'e': 0.01044115573571539}",25,15,19.25985191561593,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4563,False,"{'a': 0.01, 'e': 0.01043071979881779}",25,8,20.842213185160322,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4564,False,"{'a': 0.01, 'e': 0.01042029429264085}",25,19,10.776577787931059,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4565,False,"{'a': 0.01, 'e': 0.01040987920675907}",30,22,15.80545708339976,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4566,False,"{'a': 0.01, 'e': 0.010399474530757374}",20,16,5.490729519370127,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4567,False,"{'a': 0.01, 'e': 0.010389080254231065}",20,8,24.966252371146968,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4568,False,"{'a': 0.01, 'e': 0.010378696366785877}",20,14,12.468144334228608,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4569,False,"{'a': 0.01, 'e': 0.01036832285803793}",20,11,16.561258443836945,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4570,False,"{'a': 0.01, 'e': 0.010357959717613696}",25,13,22.148381809122718,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4571,False,"{'a': 0.01, 'e': 0.010347606935150052}",25,9,24.021768563242205,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4572,False,"{'a': 0.01, 'e': 0.010337264500294195}",20,8,20.711086758827783,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4573,False,"{'a': 0.01, 'e': 0.010326932402703702}",30,22,15.53157313171737,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4574,False,"{'a': 0.01, 'e': 0.01031661063204648}",25,19,12.36337141506266,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4575,False,"{'a': 0.01, 'e': 0.01030629917800074}",25,7,29.762992824979026,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4576,False,"{'a': 0.01, 'e': 0.010295998030255039}",20,12,16.6114180964884,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4577,False,"{'a': 0.01, 'e': 0.010285707178508234}",25,15,20.221474257572144,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4578,False,"{'a': 0.01, 'e': 0.010275426612469454}",30,20,20.279325173324498,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4579,False,"{'a': 0.01, 'e': 0.010265156321858154}",25,19,11.953590786253681,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4580,False,"{'a': 0.01, 'e': 0.010254896296404022}",30,6,43.66797059224402,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4581,False,"{'a': 0.01, 'e': 0.010244646525847041}",25,9,28.352513747605556,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4582,False,"{'a': 0.01, 'e': 0.010234406999937449}",20,12,14.780477609567342,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4583,False,"{'a': 0.01, 'e': 0.010224177708435698}",25,15,17.245196528234825,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4584,False,"{'a': 0.01, 'e': 0.01021395864111251}",25,19,13.059155260769355,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4585,False,"{'a': 0.01, 'e': 0.010203749787748823}",20,15,8.576227753566641,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4586,False,"{'a': 0.01, 'e': 0.010193551138135765}",30,16,26.702146443634877,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4587,False,"{'a': 0.01, 'e': 0.010183362682074704}",30,23,-6.7879196960072825,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +4588,False,"{'a': 0.01, 'e': 0.010173184409377162}",25,17,17.746006668343288,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4589,False,"{'a': 0.01, 'e': 0.01016301630986488}",25,16,16.503865124882104,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4590,False,"{'a': 0.01, 'e': 0.010152858373369763}",20,10,15.469038527295595,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4591,False,"{'a': 0.01, 'e': 0.010142710589733856}",25,13,26.077905824037682,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4592,False,"{'a': 0.01, 'e': 0.010132572948809385}",30,16,28.958697897023868,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4593,False,"{'a': 0.01, 'e': 0.010122445440458715}",35,21,28.027956422530387,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4594,False,"{'a': 0.01, 'e': 0.010112328054554321}",20,9,7.641182573903276,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4595,False,"{'a': 0.01, 'e': 0.010102220780978834}",20,12,16.04948702230589,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4596,False,"{'a': 0.01, 'e': 0.01009212360962496}",25,11,22.045980244463863,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4597,False,"{'a': 0.01, 'e': 0.010082036530395536}",20,9,22.289918047037133,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4598,False,"{'a': 0.01, 'e': 0.01007195953320349}",20,14,12.824428293405468,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4599,False,"{'a': 0.01, 'e': 0.010061892607971811}",30,18,21.77065678608712,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4600,False,"{'a': 0.01, 'e': 0.010051835744633576}",30,18,24.007278051174985,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4601,False,"{'a': 0.01, 'e': 0.010041788933131934}",20,12,15.131367149759665,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4602,False,"{'a': 0.01, 'e': 0.010031752163420051}",20,6,24.634919285154755,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4603,False,"{'a': 0.01, 'e': 0.010021725425461177}",25,13,23.96791034930674,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4604,False,"{'a': 0.01, 'e': 0.010011708709228555}",20,11,15.024636927440227,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4605,False,"{'a': 0.01, 'e': 0.010001702004705479}",25,15,22.08324180787924,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4606,False,"{'a': 0.01, 'e': 0.009991705301885246}",20,0,30.60918051652356,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1,True,"{'a': 0.0, 'e': 0.0}",25,13,24.245183411275722,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2,True,"{'a': 0.0, 'e': 0.0}",20,3,24.380711326619,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3,True,"{'a': 0.0, 'e': 0.0}",30,22,15.796632268943457,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4,True,"{'a': 0.0, 'e': 0.0}",20,16,6.7759542353579905,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +5,True,"{'a': 0.0, 'e': 0.0}",30,22,16.069300106675666,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +6,True,"{'a': 0.0, 'e': 0.0}",30,21,18.85495444814331,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +7,True,"{'a': 0.0, 'e': 0.0}",20,2,26.62957430279652,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +8,True,"{'a': 0.0, 'e': 0.0}",20,8,20.42049781373089,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +9,True,"{'a': 0.0, 'e': 0.0}",30,20,21.161776577693406,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +10,True,"{'a': 0.0, 'e': 0.0}",25,15,18.385644477435942,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 diff --git a/smartcab/logs/sim_improved-learning_ref.txt b/smartcab/logs/sim_improved-learning_ref.txt new file mode 100644 index 0000000..3976e9e --- /dev/null +++ b/smartcab/logs/sim_improved-learning_ref.txt @@ -0,0 +1,292 @@ +/----------------------------------------- +| State-action rewards from Q-Learning +\----------------------------------------- + +('right', 'red', 'left', True) + -- forward : -6.29 + -- right : -2.60 + -- None : 1.29 + -- left : -8.27 + +('right', 'green', None, False) + -- forward : 0.68 + -- right : 2.01 + -- None : -4.62 + -- left : 0.69 + +('forward', 'green', 'left', False) + -- forward : 1.87 + -- right : 0.73 + -- None : 0.70 + -- left : 0.71 + +('left', 'green', 'right', True) + -- forward : 0.39 + -- right : 0.08 + -- None : -0.46 + -- left : -1.15 + +('forward', 'green', None, False) + -- forward : 1.82 + -- right : 0.84 + -- None : -4.82 + -- left : 0.79 + +('forward', 'green', 'right', True) + -- forward : 1.37 + -- right : 0.09 + -- None : -0.39 + -- left : -1.54 + +('left', 'red', 'right', False) + -- forward : -3.20 + -- right : 0.22 + -- None : 1.90 + -- left : -12.99 + +('forward', 'green', 'forward', True) + -- forward : 1.64 + -- right : 0.10 + -- None : -0.88 + -- left : -2.77 + +('left', 'green', 'left', True) + -- forward : 0.13 + -- right : 0.14 + -- None : 0.09 + -- left : 1.60 + +('left', 'green', 'forward', False) + -- forward : 0.53 + -- right : 0.98 + -- None : -2.71 + -- left : -11.58 + +('right', 'red', None, False) + -- forward : -12.03 + -- right : 1.86 + -- None : 1.60 + -- left : -12.51 + +('left', 'green', None, True) + -- forward : 0.36 + -- right : 0.35 + -- None : -2.36 + -- left : 1.91 + +('right', 'red', 'right', True) + -- forward : -0.79 + -- right : -1.39 + -- None : 0.73 + -- left : -1.56 + +('right', 'green', 'forward', False) + -- forward : 0.34 + -- right : 1.77 + -- None : -2.31 + -- left : -10.89 + +('right', 'red', 'left', False) + -- forward : -9.37 + -- right : 1.85 + -- None : 1.03 + -- left : -8.93 + +('forward', 'red', None, False) + -- forward : -12.35 + -- right : 0.83 + -- None : 1.91 + -- left : -12.56 + +('forward', 'green', 'left', True) + -- forward : 1.75 + -- right : 0.16 + -- None : 0.17 + -- left : 0.21 + +('left', 'green', 'right', False) + -- forward : 0.69 + -- right : 0.19 + -- None : -1.51 + -- left : -5.68 + +('forward', 'red', 'forward', True) + -- forward : -2.35 + -- right : -3.97 + -- None : 1.75 + -- left : -6.59 + +('forward', 'red', 'left', False) + -- forward : -11.63 + -- right : 0.76 + -- None : 1.89 + -- left : -11.97 + +('forward', 'green', None, True) + -- forward : 1.83 + -- right : 0.49 + -- None : -3.33 + -- left : 0.51 + +('forward', 'red', 'left', True) + -- forward : -8.27 + -- right : -5.76 + -- None : 1.83 + -- left : -7.61 + +('left', 'red', 'forward', False) + -- forward : -8.95 + -- right : 0.56 + -- None : 1.86 + -- left : -9.58 + +('forward', 'green', 'forward', False) + -- forward : 1.89 + -- right : 0.54 + -- None : -3.24 + -- left : -13.41 + +('left', 'red', None, True) + -- forward : -16.95 + -- right : -6.49 + -- None : 1.87 + -- left : -16.03 + +('left', 'green', 'left', False) + -- forward : 0.41 + -- right : 0.52 + -- None : 0.57 + -- left : 1.86 + +('left', 'green', 'forward', True) + -- forward : 0.08 + -- right : 0.61 + -- None : -0.55 + -- left : -2.98 + +('right', 'red', 'forward', False) + -- forward : -6.69 + -- right : 1.96 + -- None : 0.87 + -- left : -6.21 + +('forward', 'red', 'right', False) + -- forward : -4.60 + -- right : 0.27 + -- None : 1.94 + -- left : -12.99 + +('left', 'red', 'left', True) + -- forward : -3.07 + -- right : -3.46 + -- None : 1.65 + -- left : -7.31 + +('left', 'green', None, False) + -- forward : 0.76 + -- right : 0.78 + -- None : -4.68 + -- left : 1.94 + +('right', 'green', 'left', True) + -- forward : 0.11 + -- right : 1.49 + -- None : 0.09 + -- left : 0.05 + +('right', 'green', 'forward', True) + -- forward : 0.03 + -- right : 0.99 + -- None : -0.54 + -- left : -1.92 + +('right', 'green', 'right', True) + -- forward : 0.01 + -- right : 0.78 + -- None : -0.24 + -- left : -0.98 + +('forward', 'red', None, True) + -- forward : -16.98 + -- right : -9.52 + -- None : 1.92 + -- left : -19.57 + +('right', 'green', None, True) + -- forward : 0.26 + -- right : 1.81 + -- None : -2.39 + -- left : 0.42 + +('forward', 'red', 'forward', False) + -- forward : -9.87 + -- right : 0.61 + -- None : 1.92 + -- left : -9.80 + +('right', 'red', 'right', False) + -- forward : -2.53 + -- right : 0.46 + -- None : 1.71 + -- left : -12.16 + +('left', 'red', 'forward', True) + -- forward : -6.27 + -- right : -3.81 + -- None : 1.55 + -- left : -5.92 + +('forward', 'green', 'right', False) + -- forward : 1.93 + -- right : 0.29 + -- None : -1.54 + -- left : -7.30 + +('left', 'red', 'right', True) + -- forward : -1.93 + -- right : -1.72 + -- None : 0.89 + -- left : -4.55 + +('left', 'red', None, False) + -- forward : -12.82 + -- right : 0.80 + -- None : 1.88 + -- left : -12.24 + +('right', 'red', 'forward', True) + -- forward : -4.53 + -- right : -1.52 + -- None : 1.00 + -- left : -4.54 + +('forward', 'red', 'right', True) + -- forward : -3.43 + -- right : -1.75 + -- None : 1.22 + -- left : -4.20 + +('left', 'red', 'left', False) + -- forward : -9.92 + -- right : 0.67 + -- None : 1.93 + -- left : -10.43 + +('right', 'red', None, True) + -- forward : -14.26 + -- right : -6.93 + -- None : 1.71 + -- left : -11.28 + +('right', 'green', 'left', False) + -- forward : 0.38 + -- right : 1.91 + -- None : 0.45 + -- left : 0.40 + +('right', 'green', 'right', False) + -- forward : 0.20 + -- right : 1.59 + -- None : -0.79 + -- left : -6.21 + diff --git a/smartcab/logs/sim_no-learning.csv b/smartcab/logs/sim_no-learning.csv new file mode 100644 index 0000000..f56fd99 --- /dev/null +++ b/smartcab/logs/sim_no-learning.csv @@ -0,0 +1,31 @@ +trial,testing,parameters,initial_deadline,final_deadline,net_reward,actions,success +1,False,"{'a': 0.5, 'e': 1.0}",30,0,-189.18766695428616,"{0: 15, 1: 5, 2: 6, 3: 2, 4: 2}",0 +2,False,"{'a': 0.5, 'e': 1.0}",20,0,-32.028728542392514,"{0: 14, 1: 2, 2: 4, 3: 0, 4: 0}",0 +3,False,"{'a': 0.5, 'e': 1.0}",20,12,-6.61394572212318,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 0}",1 +4,False,"{'a': 0.5, 'e': 1.0}",20,0,-105.96250760705891,"{0: 10, 1: 4, 2: 4, 3: 1, 4: 1}",0 +5,False,"{'a': 0.5, 'e': 1.0}",20,0,-148.94203511584809,"{0: 11, 1: 1, 2: 4, 3: 2, 4: 2}",0 +6,False,"{'a': 0.5, 'e': 1.0}",20,0,-50.92941811419935,"{0: 13, 1: 0, 2: 7, 3: 0, 4: 0}",0 +7,False,"{'a': 0.5, 'e': 1.0}",20,0,-47.545391189460986,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +8,False,"{'a': 0.5, 'e': 1.0}",20,0,-77.40255656893456,"{0: 10, 1: 6, 2: 2, 3: 2, 4: 0}",0 +9,False,"{'a': 0.5, 'e': 1.0}",30,0,-139.0246068390602,"{0: 20, 1: 2, 2: 5, 3: 1, 4: 2}",0 +10,False,"{'a': 0.5, 'e': 1.0}",20,0,-61.37583009358228,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 0}",0 +11,False,"{'a': 0.5, 'e': 1.0}",25,0,-81.4946198129636,"{0: 17, 1: 4, 2: 2, 3: 1, 4: 1}",0 +12,False,"{'a': 0.5, 'e': 1.0}",20,0,-65.60843961080717,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +13,False,"{'a': 0.5, 'e': 1.0}",30,0,-122.25152672899478,"{0: 18, 1: 3, 2: 8, 3: 0, 4: 1}",0 +14,False,"{'a': 0.5, 'e': 1.0}",25,0,-130.54699646076554,"{0: 11, 1: 5, 2: 8, 3: 0, 4: 1}",0 +15,False,"{'a': 0.5, 'e': 1.0}",25,0,-159.93976619888116,"{0: 17, 1: 4, 2: 0, 3: 0, 4: 4}",0 +16,False,"{'a': 0.5, 'e': 1.0}",20,0,-41.230151913538315,"{0: 11, 1: 6, 2: 3, 3: 0, 4: 0}",0 +17,False,"{'a': 0.5, 'e': 1.0}",30,0,4.418273616665318,"{0: 26, 1: 2, 2: 2, 3: 0, 4: 0}",0 +18,False,"{'a': 0.5, 'e': 1.0}",25,0,-51.82444395636539,"{0: 17, 1: 2, 2: 6, 3: 0, 4: 0}",0 +19,False,"{'a': 0.5, 'e': 1.0}",25,0,-174.23957942445747,"{0: 11, 1: 3, 2: 9, 3: 0, 4: 2}",0 +20,False,"{'a': 0.5, 'e': 1.0}",20,0,-92.19225710620512,"{0: 11, 1: 3, 2: 5, 3: 0, 4: 1}",0 +1,True,"{'a': 0.5, 'e': 1.0}",20,0,-272.6295078055859,"{0: 5, 1: 3, 2: 6, 3: 2, 4: 4}",0 +2,True,"{'a': 0.5, 'e': 1.0}",20,0,-89.70516983314789,"{0: 13, 1: 2, 2: 3, 3: 1, 4: 1}",0 +3,True,"{'a': 0.5, 'e': 1.0}",20,0,-40.372218124024705,"{0: 15, 1: 0, 2: 5, 3: 0, 4: 0}",0 +4,True,"{'a': 0.5, 'e': 1.0}",20,4,-84.79055985923387,"{0: 10, 1: 1, 2: 3, 3: 1, 4: 1}",1 +5,True,"{'a': 0.5, 'e': 1.0}",20,0,-93.53703439272299,"{0: 11, 1: 4, 2: 4, 3: 0, 4: 1}",0 +6,True,"{'a': 0.5, 'e': 1.0}",20,0,-99.59745080640693,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 2}",0 +7,True,"{'a': 0.5, 'e': 1.0}",20,0,-58.149657299144096,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +8,True,"{'a': 0.5, 'e': 1.0}",25,0,-65.96100362059256,"{0: 16, 1: 2, 2: 6, 3: 1, 4: 0}",0 +9,True,"{'a': 0.5, 'e': 1.0}",20,0,-188.629556046148,"{0: 7, 1: 5, 2: 5, 3: 0, 4: 3}",0 +10,True,"{'a': 0.5, 'e': 1.0}",25,10,-91.40865250704636,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 2}",1 diff --git a/smartcab/report.html b/smartcab/report.html new file mode 100644 index 0000000..83f8217 --- /dev/null +++ b/smartcab/report.html @@ -0,0 +1,19184 @@ + + + +smartcab + + + + + + + + + + + + + + + + + + + +
      +
      + +
      +
      +
      +
      +

      Machine Learning Engineer Nanodegree¶

      Reinforcement Learning¶

      Project: Train a Smartcab to Drive¶

      Welcome to the fourth project of the Machine Learning Engineer Nanodegree! In this notebook, template code has already been provided for you to aid in your analysis of the Smartcab and your implemented learning algorithm. You will not need to modify the included code beyond what is requested. There will be questions that you must answer which relate to the project and the visualizations provided in the notebook. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide in agent.py.

      +

      Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

      +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Getting Started¶

      In this project, you will work towards constructing an optimized Q-Learning driving agent that will navigate a Smartcab through its environment towards a goal. Since the Smartcab is expected to drive passengers from one location to another, the driving agent will be evaluated on two very important metrics: Safety and Reliability. A driving agent that gets the Smartcab to its destination while running red lights or narrowly avoiding accidents would be considered unsafe. Similarly, a driving agent that frequently fails to reach the destination in time would be considered unreliable. Maximizing the driving agent's safety and reliability would ensure that Smartcabs have a permanent place in the transportation industry.

      +

      Safety and Reliability are measured using a letter-grade system as follows:

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      GradeSafetyReliability
      A+Agent commits no traffic violations,
      and always chooses the correct action.
      Agent reaches the destination in time
      for 100% of trips.
      AAgent commits few minor traffic violations,
      such as failing to move on a green light.
      Agent reaches the destination on time
      for at least 90% of trips.
      BAgent commits frequent minor traffic violations,
      such as failing to move on a green light.
      Agent reaches the destination on time
      for at least 80% of trips.
      CAgent commits at least one major traffic violation,
      such as driving through a red light.
      Agent reaches the destination on time
      for at least 70% of trips.
      DAgent causes at least one minor accident,
      such as turning left on green with oncoming traffic.
      Agent reaches the destination on time
      for at least 60% of trips.
      FAgent causes at least one major accident,
      such as driving through a red light with cross-traffic.
      Agent fails to reach the destination on time
      for at least 60% of trips.
      +

      To assist evaluating these important metrics, you will need to load visualization code that will be used later on in the project. Run the code cell below to import this code which is required for your analysis.

      + +
      +
      +
      +
      +
      +
      In [2]:
      +
      +
      +
      # Import the visualization code
      +import visuals as vs
      +
      +# Pretty display for notebooks
      +%matplotlib inline
      +
      + +
      +
      +
      + +
      +
      +
      +
      +
      +

      Understand the World¶

      Before starting to work on implementing your driving agent, it's necessary to first understand the world (environment) which the Smartcab and driving agent work in. One of the major components to building a self-learning agent is understanding the characteristics about the agent, which includes how the agent operates. To begin, simply run the agent.py agent code exactly how it is -- no need to make any additions whatsoever. Let the resulting simulation run for some time to see the various working components. Note that in the visual simulation (if enabled), the white vehicle is the Smartcab.

      + +
      +
      +
      +
      +
      +
      +
      +

      Question 1¶

      In a few sentences, describe what you observe during the simulation when running the default agent.py agent code. Some things you could consider:

      +
        +
      • Does the Smartcab move at all during the simulation?
      • +
      • What kind of rewards is the driving agent receiving?
      • +
      • How does the light changing color affect the rewards?
      • +
      +

      Hint: From the /smartcab/ top-level directory (where this notebook is located), run the command

      +
      'python smartcab/agent.py'
      +
      + +
      +
      +
      +
      +
      +
      +
      +

      Answer: The smartcab does not move, it seems the simulation is in a state where we can observe how a fixed position still generates variable rewards. The only way to move the car is to start another trial. The driver is receiving both positive and negative rewards. For example, if the light in front of her changes to red, doing nothing will create a positive reward. In contrast, if the light is green, and there is no oncoming traffic, doing nothing will create a negative reward.

      +

      To force agent to move, could use simulating annealing algo, something to do with heating and refreezin slowly in metallurgy.

      + +
      +
      +
      +
      +
      +
      +
      +

      Understand the Code¶

      In addition to understanding the world, it is also necessary to understand the code itself that governs how the world, simulation, and so on operate. Attempting to create a driving agent would be difficult without having at least explored the "hidden" devices that make everything work. In the /smartcab/ top-level directory, there are two folders: /logs/ (which will be used later) and /smartcab/. Open the /smartcab/ folder and explore each Python file included, then answer the following question.

      + +
      +
      +
      +
      +
      +
      +
      +

      Question 2¶

        +
      • In the agent.py Python file, choose three flags that can be set and explain how they change the simulation.
      • +
      • In the environment.py Python file, what Environment class function is called when an agent performs an action?
      • +
      • In the simulator.py Python file, what is the difference between the 'render_text()' function and the 'render()' function?
      • +
      • In the planner.py Python file, will the 'next_waypoint() function consider the North-South or East-West direction first?
      • +
      + +
      +
      +
      +
      +
      +
      +
      +

      Answer:

      +

      agent.py: I chose to set verbose, update_delay and log_metrics. Verbose=True will produce more debug output for agent movement in the simulation. update_delay sets the time between state changes in the simulation, and corresponding screen updates. log_metrics=True will write simulation metrics to log files.

      +

      environment.py: the act() function is called when an agent performs an action.

      +

      simulator.py: the difference is that render() renders the GUI of pygame, wherease render_text() updates the console.

      +

      planner.py: it checks the east-west direction first.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implement a Basic Driving Agent¶

      The first step to creating an optimized Q-Learning driving agent is getting the agent to actually take valid actions. In this case, a valid action is one of None, (do nothing) 'Left' (turn left), 'Right' (turn right), or 'Forward' (go forward). For your first implementation, navigate to the 'choose_action()' agent function and make the driving agent randomly choose one of these actions. Note that you have access to several class variables that will help you write this functionality, such as 'self.learning' and 'self.valid_actions'. Once implemented, run the agent file and simulation briefly to confirm that your driving agent is taking a random action each time step.

      + +
      +
      +
      +
      +
      +
      +
      +

      Basic Agent Simulation Results¶

      To obtain results from the initial simulation, you will need to adjust following flags:

      +
        +
      • 'enforce_deadline' - Set this to True to force the driving agent to capture whether it reaches the destination in time.
      • +
      • 'update_delay' - Set this to a small value (such as 0.01) to reduce the time between steps in each trial.
      • +
      • 'log_metrics' - Set this to True to log the simluation results as a .csv file in /logs/.
      • +
      • 'n_test' - Set this to '10' to perform 10 testing trials.
      • +
      +

      Optionally, you may disable to the visual simulation (which can make the trials go faster) by setting the 'display' flag to False. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation!

      +

      Once you have successfully completed the initial simulation (there should have been 20 training trials and 10 testing trials), run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded! +Run the agent.py file after setting the flags from projects/smartcab folder instead of projects/smartcab/smartcab.

      + +
      +
      +
      +
      +
      +
      In [5]:
      +
      +
      +
      # Load the 'sim_no-learning' log file from the initial simulation results
      +vs.plot_trials('sim_no-learning.csv')
      +
      + +
      +
      +
      + +
      +
      + + +
      + +
      + + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +

      Question 3¶

      Using the visualization above that was produced from your initial simulation, provide an analysis and make several observations about the driving agent. Be sure that you are making at least one observation about each panel present in the visualization. Some things you could consider:

      +
        +
      • How frequently is the driving agent making bad decisions? How many of those bad decisions cause accidents?
      • +
      • Given that the agent is driving randomly, does the rate of reliabilty make sense?
      • +
      • What kind of rewards is the agent receiving for its actions? Do the rewards suggest it has been penalized heavily?
      • +
      • As the number of trials increases, does the outcome of results change significantly?
      • +
      • Would this Smartcab be considered safe and/or reliable for its passengers? Why or why not?
      • +
      + +
      +
      +
      +
      +
      +
      +
      +

      Answer: +The agent has almost 40% bad actions, with more violations than accidents as would be expected from a random agent. It does not learn from mistakes, so the rates dont improve but fluctuate randomly. The reliability rate is about 10%, but given it is driving randomly you would expect this as it does not chose its action based on a destination. The average rolling rewards are negative, due to the high number of bad actions committed and inability to learn, so it also doesnt improve over trials. The rewards suggest it is not penalised heavily on average, so not actively seeking out accidents, but rewards are still consistently negative. The number of trials does not affect the outcome - as expected, as no learning is happening. The only visible change across trials seems like random fluctuation. This smartcab is not safe or reliable, as it cannot learn, and thus gets safety and reliability ratings of F.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Inform the Driving Agent - Learning policies¶

      The second step to creating an optimized Q-learning driving agent is defining a set of states that the agent can occupy in the environment. Depending on the input, sensory data, and additional variables available to the driving agent, a set of states can be defined for the agent so that it can eventually learn what action it should take when occupying a state. The condition of 'if state then action' for each state is called a policy, and is ultimately what the driving agent is expected to learn. Without defining states, the driving agent would never understand which action is most optimal -- or even what environmental variables and conditions it cares about!

      + +
      +
      +
      +
      +
      +
      +
      +

      Identify States¶

      Inspecting the 'build_state()' agent function shows that the driving agent is given the following data from the environment:

      +
        +
      • 'waypoint', which is the direction the Smartcab should drive leading to the destination, relative to the Smartcab's heading.
      • +
      • 'inputs', which is the sensor data from the Smartcab. It includes
          +
        • 'light', the color of the light.
        • +
        • 'left', the intended direction of travel for a vehicle to the Smartcab's left. Returns None if no vehicle is present.
        • +
        • 'right', the intended direction of travel for a vehicle to the Smartcab's right. Returns None if no vehicle is present.
        • +
        • 'oncoming', the intended direction of travel for a vehicle across the intersection from the Smartcab. Returns None if no vehicle is present.
        • +
        +
      • +
      • 'deadline', which is the number of actions remaining for the Smartcab to reach the destination before running out of time.
      • +
      + +
      +
      +
      +
      +
      +
      +
      +

      Question 4¶

      Which features available to the agent are most relevant for learning both safety and efficiency? Why are these features appropriate for modeling the Smartcab in the environment? If you did not choose some features, why are those features not appropriate?

      + +
      +
      +
      +
      +
      +
      +
      +

      Answer: +Safety: most relevant are light and oncoming, given that respecting traffic lights avoids accidents and the direction of ongoing traffic affects whether you can turn left on green or not. I dont need waypoint as direction of travel is irrelevant for safety, and dont need left and right as this is handled by the color of the light. Also dont need deadline, unless you allow for reckless actions in order to meet a deadline.

      +

      Efficiency: most relevant are deadline, waypoint as efficiency depends on how much time is left, and if the next waypoint is an efficient step towards the destination. Anything in inputs doesnt matter, as they dont impact the time to destination. One exception is oncoming, as if it is none you can turn left immediately, else have to wait one timestep.

      +

      Interestingly, after running simulations, it seems removing deadline as a state variable reducing the variance in my reliability estimates. It also makes it easier to check states, as there are a lot less. It should also be noted that including the deadline could lead to the agent making illegal moves to meet the deadline, like running over a red light, however removing deadline ensures good behaviour after only 100 trials!

      +

      Including right and left would lead to an increase in state space, making it harder to interpret state action reward tuples. The edge case with left is if cars on your left go straight, and you turn right on a red light, which is allowed.

      + +
      +
      +
      +
      +
      +
      +
      +

      Define a State Space¶

      When defining a set of states that the agent can occupy, it is necessary to consider the size of the state space. That is to say, if you expect the driving agent to learn a policy for each state, you would need to have an optimal action for every state the agent can occupy. If the number of all possible states is very large, it might be the case that the driving agent never learns what to do in some states, which can lead to uninformed decisions. For example, consider a case where the following features are used to define the state of the Smartcab:

      +

      ('is_raining', 'is_foggy', 'is_red_light', 'turn_left', 'no_traffic', 'previous_turn_left', 'time_of_day').

      +

      How frequently would the agent occupy a state like (False, True, True, True, False, False, '3AM')? Without a near-infinite amount of time for training, it's doubtful the agent would ever learn the proper action!

      + +
      +
      +
      +
      +
      +
      +
      +

      Question 5¶

      If a state is defined using the features you've selected from Question 4, what would be the size of the state space? Given what you know about the evironment and how it is simulated, do you think the driving agent could learn a policy for each possible state within a reasonable number of training trials?
      +Hint: Consider the combinations of features to calculate the total number of states!

      + +
      +
      +
      +
      +
      +
      +
      +

      Answer: The state space would be: 2 (for light) 4 (for oncoming direction) 3 (for next waypoints) * 2 (for left=forward). I think the agent could learn policies for each state in a reasonable numer of trails.

      +

      Thus a total of 48 states.

      +

      To see if how long it takes to learn 48 states, you can run Monte Carlo, see below.

      + +
      +
      +
      +
      +
      +
      In [2]:
      +
      +
      +
      import numpy as np
      +import random
      +
      +def percent_visited(steps, states):
      +    visited = np.zeros(states, dtype=bool)
      +    for _ in range(steps):
      +        current_state = random.randint(0, states-1) # random visiting
      +        visited[current_state] = True # add to visited list
      +    return sum(visited)/float(states) # return share
      +
      + +
      +
      +
      + +
      +
      +
      +
      In [3]:
      +
      +
      +
      import matplotlib.pyplot as plt
      +%matplotlib inline
      +
      +states = 48
      +n_steps = [s*40 for s in range(50)] # jump a little bit
      +coverage = [percent_visited(steps,states) for steps in n_steps]
      +plt.plot(n_steps, coverage, label="coverage of states")
      +plt.xlabel("n steps")
      +plt.legend()
      +
      + +
      +
      +
      + +
      +
      + + +
      + +
      Out[3]:
      + + + + +
      +
      <matplotlib.legend.Legend at 0x2782390>
      +
      + +
      + +
      + +
      + + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +

      So this means, it takes around 250 steps for an agent to visit all 48 states if it does something random at each step. This corroborates the idea that without deadline convergence happens after around 250 trials.

      + +
      +
      +
      +
      +
      +
      +
      +

      Update the Driving Agent State¶

      For your second implementation, navigate to the 'build_state()' agent function. With the justification you've provided in Question 4, you will now set the 'state' variable to a tuple of all the features necessary for Q-Learning. Confirm your driving agent is updating its state by running the agent file and simulation briefly and note whether the state is displaying. If the visual simulation is used, confirm that the updated state corresponds with what is seen in the simulation.

      +

      Note: Remember to reset simulation flags to their default setting when making this observation!

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Implement a Q-Learning Driving Agent¶

      The third step to creating an optimized Q-Learning agent is to begin implementing the functionality of Q-Learning itself. The concept of Q-Learning is fairly straightforward: For every state the agent visits, create an entry in the Q-table for all state-action pairs available. Then, when the agent encounters a state and performs an action, update the Q-value associated with that state-action pair based on the reward received and the interative update rule implemented. Of course, additional benefits come from Q-Learning, such that we can have the agent choose the best action for each state based on the Q-values of each state-action pair possible. For this project, you will be implementing a decaying, $\epsilon$-greedy Q-learning algorithm with no discount factor. Follow the implementation instructions under each TODO in the agent functions.

      +

      Note that the agent attribute self.Q is a dictionary: This is how the Q-table will be formed. Each state will be a key of the self.Q dictionary, and each value will then be another dictionary that holds the action and Q-value. Here is an example:

      + +
      { 'state-1': { 
      +    'action-1' : Qvalue-1,
      +    'action-2' : Qvalue-2,
      +     ...
      +   },
      +  'state-2': {
      +    'action-1' : Qvalue-1,
      +     ...
      +   },
      +   ...
      +}
      +

      Furthermore, note that you are expected to use a decaying $\epsilon$ (exploration) factor. Hence, as the number of trials increases, $\epsilon$ should decrease towards 0. This is because the agent is expected to learn from its behavior and begin acting on its learned behavior. Additionally, The agent will be tested on what it has learned after $\epsilon$ has passed a certain threshold (the default threshold is 0.01). For the initial Q-Learning implementation, you will be implementing a linear decaying function for $\epsilon$.

      + +
      +
      +
      +
      +
      +
      +
      +

      Q-Learning Simulation Results¶

      To obtain results from the initial Q-Learning implementation, you will need to adjust the following flags and setup:

      +
        +
      • 'enforce_deadline' - Set this to True to force the driving agent to capture whether it reaches the destination in time.
      • +
      • 'update_delay' - Set this to a small value (such as 0.01) to reduce the time between steps in each trial.
      • +
      • 'log_metrics' - Set this to True to log the simluation results as a .csv file and the Q-table as a .txt file in /logs/.
      • +
      • 'n_test' - Set this to '10' to perform 10 testing trials.
      • +
      • 'learning' - Set this to 'True' to tell the driving agent to use your Q-Learning implementation.
      • +
      +

      In addition, use the following decay function for $\epsilon$:

      +$$ \epsilon_{t+1} = \epsilon_{t} - 0.05, \hspace{10px}\textrm{for trial number } t$$

      If you have difficulty getting your implementation to work, try setting the 'verbose' flag to True to help debug. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation!

      +

      Once you have successfully completed the initial Q-Learning simulation, run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!

      + +
      +
      +
      +
      +
      +
      In [5]:
      +
      +
      +
      # Load the 'sim_default-learning' file from the default Q-Learning simulation
      +vs.plot_trials('sim_default-learning.csv')
      +
      + +
      +
      +
      + +
      +
      + + +
      + +
      + + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +

      Question 6¶

      Using the visualization above that was produced from your default Q-Learning simulation, provide an analysis and make observations about the driving agent like in Question 3. Note that the simulation should have also produced the Q-table in a text file which can help you make observations about the agent's learning. Some additional things you could consider:

      +
        +
      • Are there any observations that are similar between the basic driving agent and the default Q-Learning agent?
      • +
      • Approximately how many training trials did the driving agent require before testing? Does that number make sense given the epsilon-tolerance?
      • +
      • Is the decaying function you implemented for $\epsilon$ (the exploration factor) accurately represented in the parameters panel?
      • +
      • As the number of training trials increased, did the number of bad actions decrease? Did the average reward increase?
      • +
      • How does the safety and reliability rating compare to the initial driving agent?
      • +
      + +
      +
      +
      +
      +
      +
      +
      +

      Answer: +From the q table it seems that the agent learned for example that continuing to drive on a red light produces negative rewards. +Compared to the basic agent, the default Q learning agent has improved total bad actions (down to 10% after 20 trials vs 40% in the base case). The reliability is also improving over time now, so are the rewards.

      +

      Exploration factor declines as expected across trials to zero so the decaying function is implemented correctly. I had to apply one fix as epsilon 0 was internally represented as -0.0000 which cause issue with probabilitistic action choice.

      +

      The number of bad actions descreased with increasing number of trials, the average reward increased.

      +

      Safety is unchanged at F, but Reliability has improved to A.

      +

      The lack of learning enough shows up in sim_default-learning.txt, as meaning states are still 0, so no accumulated rewards as the agent has not visited them yet. With slower decay and more training could probably get better value out of this default agent.

      +

      Here the bellman equation iterative update algo: +image.png

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Improve the Q-Learning Driving Agent¶

      The third step to creating an optimized Q-Learning agent is to perform the optimization! Now that the Q-Learning algorithm is implemented and the driving agent is successfully learning, it's necessary to tune settings and adjust learning paramaters so the driving agent learns both safety and efficiency. Typically this step will require a lot of trial and error, as some settings will invariably make the learning worse. One thing to keep in mind is the act of learning itself and the time that this takes: In theory, we could allow the agent to learn for an incredibly long amount of time; however, another goal of Q-Learning is to transition from experimenting with unlearned behavior to acting on learned behavior. For example, always allowing the agent to perform a random action during training (if $\epsilon = 1$ and never decays) will certainly make it learn, but never let it act. When improving on your Q-Learning implementation, consider the impliciations it creates and whether it is logistically sensible to make a particular adjustment.

      + +
      +
      +
      +
      +
      +
      +
      +

      Improved Q-Learning Simulation Results¶

      To obtain results from the initial Q-Learning implementation, you will need to adjust the following flags and setup:

      +
        +
      • 'enforce_deadline' - Set this to True to force the driving agent to capture whether it reaches the destination in time.
      • +
      • 'update_delay' - Set this to a small value (such as 0.01) to reduce the time between steps in each trial.
      • +
      • 'log_metrics' - Set this to True to log the simluation results as a .csv file and the Q-table as a .txt file in /logs/.
      • +
      • 'learning' - Set this to 'True' to tell the driving agent to use your Q-Learning implementation.
      • +
      • 'optimized' - Set this to 'True' to tell the driving agent you are performing an optimized version of the Q-Learning implementation.
      • +
      +

      Additional flags that can be adjusted as part of optimizing the Q-Learning agent:

      +
        +
      • 'n_test' - Set this to some positive number (previously 10) to perform that many testing trials.
      • +
      • 'alpha' - Set this to a real number between 0 - 1 to adjust the learning rate of the Q-Learning algorithm.
      • +
      • 'epsilon' - Set this to a real number between 0 - 1 to adjust the starting exploration factor of the Q-Learning algorithm.
      • +
      • 'tolerance' - set this to some small value larger than 0 (default was 0.05) to set the epsilon threshold for testing.
      • +
      +

      Furthermore, use a decaying function of your choice for $\epsilon$ (the exploration factor). Note that whichever function you use, it must decay to 'tolerance' at a reasonable rate. The Q-Learning agent will not begin testing until this occurs. Some example decaying functions (for $t$, the number of trials):

      +$$ \epsilon = a^t, \textrm{for } 0 < a < 1 \hspace{50px}\epsilon = \frac{1}{t^2}\hspace{50px}\epsilon = e^{-at}, \textrm{for } 0 < a < 1 \hspace{50px} \epsilon = \cos(at), \textrm{for } 0 < a < 1$$

      You may also use a decaying function for $\alpha$ (the learning rate) if you so choose, however this is typically less common. If you do so, be sure that it adheres to the inequality $0 \leq \alpha \leq 1$.

      +

      If you have difficulty getting your implementation to work, try setting the 'verbose' flag to True to help debug. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation!

      +

      Once you have successfully completed the improved Q-Learning simulation, run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!

      + +
      +
      +
      +
      +
      +
      In [5]:
      +
      +
      +
      # Load the 'sim_improved-learning' file from the improved Q-Learning simulation
      +vs.plot_trials('sim_improved-learning_ref.csv') # e decay
      +vs.plot_trials('sim_improved-learning.csv') # gompertz decay parametrized to go to 0 at around 1600 trials
      +
      + +
      +
      +
      + +
      +
      + + +
      + +
      + + + + +
      + +
      + +
      + +
      + +
      + + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +

      Question 7¶

      Using the visualization above that was produced from your improved Q-Learning simulation, provide a final analysis and make observations about the improved driving agent like in Question 6. Questions you should answer:

      +
        +
      • What decaying function was used for epsilon (the exploration factor)?
      • +
      • Approximately how many training trials were needed for your agent before begining testing?
      • +
      • What epsilon-tolerance and alpha (learning rate) did you use? Why did you use them?
      • +
      • How much improvement was made with this Q-Learner when compared to the default Q-Learner from the previous section?
      • +
      • Would you say that the Q-Learner results show that your driving agent successfully learned an appropriate policy?
      • +
      • Are you satisfied with the safety and reliability ratings of the Smartcab?
      • +
      + +
      +
      +
      +
      +
      +
      +
      +

      Answer:

      +

      The epsilon decay function used was e^(-0.0005 * nb_trials). I also attempted gompertz decay, but needed to parametrize the function quite a bit. With the first i need about 4k trials, with gompertz about 2k to converge.

      +

      Epsilon tolerance was 0.01, alpha was 0.01 and constant over time. I used these values so that the simulation could learn a lot from historical mistakes before it started testing. A low alpha was chosen so that learning could be spread out better over the large number of trials.

      +

      Improvement over default q learner was vast. Initially I tried using better decay functions, but it turned out i needed more training. Accident rates are now will below 5% and reliability at worst is around 80% - 90% and i feel i narrowed the standard deviation of rolling reliability. Rewards are almost constant at 2.

      +

      Safety and Reliability rating are at A+, which is incredible. I would certainly say the learner has learned an appropriate policy, although it still has a rather high variance in reliability.

      +

      N.B: Removing deadline from the state variables reduces variance in the reliability running average, so I did this for the output.

      +

      Including all features is possible with advances in computing power, as opposed to using a priori knowledge to reduce space dimensionality. But a priori is NOT reinforcement learning - the agent must come up with all rules by itself, so you should not remove any features.

      +

      It seems running on all features except deadline, leads to a slightly lower reliability after 10k trials, and reliability variance is up again (not shown here).

      + +
      +
      +
      +
      +
      +
      +
      +

      Define an Optimal Policy¶

      Sometimes, the answer to the important question "what am I trying to get my agent to learn?" only has a theoretical answer and cannot be concretely described. Here, however, you can concretely define what it is the agent is trying to learn, and that is the U.S. right-of-way traffic laws. Since these laws are known information, you can further define, for each state the Smartcab is occupying, the optimal action for the driving agent based on these laws. In that case, we call the set of optimal state-action pairs an optimal policy. Hence, unlike some theoretical answers, it is clear whether the agent is acting "incorrectly" not only by the reward (penalty) it receives, but also by pure observation. If the agent drives through a red light, we both see it receive a negative reward but also know that it is not the correct behavior. This can be used to your advantage for verifying whether the policy your driving agent has learned is the correct one, or if it is a suboptimal policy.

      + +
      +
      +
      +
      +
      +
      +
      +

      Question 8¶

      Provide a few examples (using the states you've defined) of what an optimal policy for this problem would look like. Afterwards, investigate the 'sim_improved-learning.txt' text file to see the results of your improved Q-Learning algorithm. For each state that has been recorded from the simulation, is the policy (the action with the highest value) correct for the given state? Are there any states where the policy is different than what would be expected from an optimal policy? Provide an example of a state and all state-action rewards recorded, and explain why it is the correct policy.

      + +
      +
      +
      +
      +
      +
      +
      +

      Answer:

      +

      I have now removed deadline from the states, so answers are based on this: I find it surprising that its not required to know how close it is from failing in order to get good reliability.

      +

      I have defined states as waypoint, light, oncoming. +Examples:

      + +
      waypoint=left, light=green, oncoming=forward, left!=forward => should wait for oncoming or go right or forward. In the simulation, going forward has the biggest reward, followed by right. Waiting actually has quite a negative reward.
      +
      +waypoint=right, light=green, oncoming=None, left!=forward => should turn right. Simulation agrees, right has the biggest reward.
      +
      +waypoint=right, light=red, oncoming=forward, left!=forward => should wait. Simulation agrees.
      +
      +
      +
      +

      States: The few i checked seem to have the right policies. Removing deadline, it seems all states chose the best action.

      +

      A state i found where the optimal policy is different from the learned is:

      + +
      waypoint=left, light=green, oncoming=right, left!=forward. It prefers forward instead of wait, although the next waypoint is left.
      +
      +('left', 'green', 'right', False)
      + -- forward : 0.13
      + -- right : 0.44
      + -- None : -1.44
      + -- left : -6.68
      +
      +
      +
      +

      An example of a state with all actions and rewards that has the correct policy is:

      + +
      ('forward', 'red', 'left', False)
      + -- forward : -9.09
      + -- right : 0.73
      + -- None : 1.87
      + -- left : -9.62
      +
      +
      +
      +

      here the light is red, car wants to go forward, oncoming goes left, so best action is chosen correctly (do nothing).

      +

      Papers on learning rates for later:

      + +
      http://www.jmlr.org/papers/volume5/evendar03a/evendar03a.pdf
      +http://karpathy.github.io/2016/05/31/rl/
      +https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0
      +http://mnemstudio.org/path-finding-q-learning-tutorial.htm
      +https://www-s.acm.illinois.edu/sigart/docs/QLearning.pdf
      +http://www.umiacs.umd.edu/~hal/courses/ai/out/cs421-day10-qlearning.pdf
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Optional: Future Rewards - Discount Factor, 'gamma'¶

      Curiously, as part of the Q-Learning algorithm, you were asked to not use the discount factor, 'gamma' in the implementation. Including future rewards in the algorithm is used to aid in propogating positive rewards backwards from a future state to the current state. Essentially, if the driving agent is given the option to make several actions to arrive at different states, including future rewards will bias the agent towards states that could provide even more rewards. An example of this would be the driving agent moving towards a goal: With all actions and rewards equal, moving towards the goal would theoretically yield better rewards if there is an additional reward for reaching the goal. However, even though in this project, the driving agent is trying to reach a destination in the allotted time, including future rewards will not benefit the agent. In fact, if the agent were given many trials to learn, it could negatively affect Q-values!

      + +
      +
      +
      +
      +
      +
      +
      +

      Optional Question 9¶

      There are two characteristics about the project that invalidate the use of future rewards in the Q-Learning algorithm. One characteristic has to do with the Smartcab itself, and the other has to do with the environment. Can you figure out what they are and why future rewards won't work for this project?

      + +
      +
      +
      +
      +
      +
      +
      +

      Answer:

      +

      Smartcab: it cannot see what is happening elsewhere in the city, so no point optimising now to make some headway a few roads down the line. It would need traffic reports to do this for example. Further, the agent cannot see how far it is from the destination, thus cannot optimise the path.

      +

      As traffic and lights and other cars movements are random, there is no benefit to learning to go towards the goal directly, as the environment keeps evolving randomly, so the agent cannot control the environments future. So lets say driving at the same speed to keep traffice flowing has no benefit down the line, as no traffic jams are avoided or created. Further, as each trial has a new destination, the learned Q cannot incorporate how to get there fast, as this info is useless in the next trial.

      +

      I wonder if there is a way to parallelize this implementation?

      + +
      +
      +
      +
      +
      +
      +
      +

      Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
      +File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

      +
      + +
      +
      +
      +
      +
      + + + + + + diff --git a/smartcab/smartcab.ipynb b/smartcab/smartcab.ipynb new file mode 100644 index 0000000..7dfc4f7 --- /dev/null +++ b/smartcab/smartcab.ipynb @@ -0,0 +1,690 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Reinforcement Learning\n", + "## Project: Train a Smartcab to Drive\n", + "\n", + "Welcome to the fourth project of the Machine Learning Engineer Nanodegree! In this notebook, template code has already been provided for you to aid in your analysis of the *Smartcab* and your implemented learning algorithm. You will not need to modify the included code beyond what is requested. There will be questions that you must answer which relate to the project and the visualizations provided in the notebook. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide in `agent.py`. \n", + "\n", + ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "\n", + "## Getting Started\n", + "In this project, you will work towards constructing an optimized Q-Learning driving agent that will navigate a *Smartcab* through its environment towards a goal. Since the *Smartcab* is expected to drive passengers from one location to another, the driving agent will be evaluated on two very important metrics: **Safety** and **Reliability**. A driving agent that gets the *Smartcab* to its destination while running red lights or narrowly avoiding accidents would be considered **unsafe**. Similarly, a driving agent that frequently fails to reach the destination in time would be considered **unreliable**. Maximizing the driving agent's **safety** and **reliability** would ensure that *Smartcabs* have a permanent place in the transportation industry.\n", + "\n", + "**Safety** and **Reliability** are measured using a letter-grade system as follows:\n", + "\n", + "| Grade \t| Safety \t| Reliability \t|\n", + "|:-----:\t|:------:\t|:-----------:\t|\n", + "| A+ \t| Agent commits no traffic violations,
      and always chooses the correct action. | Agent reaches the destination in time
      for 100% of trips. |\n", + "| A \t| Agent commits few minor traffic violations,
      such as failing to move on a green light. | Agent reaches the destination on time
      for at least 90% of trips. |\n", + "| B \t| Agent commits frequent minor traffic violations,
      such as failing to move on a green light. | Agent reaches the destination on time
      for at least 80% of trips. |\n", + "| C \t| Agent commits at least one major traffic violation,
      such as driving through a red light. | Agent reaches the destination on time
      for at least 70% of trips. |\n", + "| D \t| Agent causes at least one minor accident,
      such as turning left on green with oncoming traffic. \t| Agent reaches the destination on time
      for at least 60% of trips. |\n", + "| F \t| Agent causes at least one major accident,
      such as driving through a red light with cross-traffic. \t| Agent fails to reach the destination on time
      for at least 60% of trips. |\n", + "\n", + "To assist evaluating these important metrics, you will need to load visualization code that will be used later on in the project. Run the code cell below to import this code which is required for your analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Import the visualization code\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Understand the World\n", + "Before starting to work on implementing your driving agent, it's necessary to first understand the world (environment) which the *Smartcab* and driving agent work in. One of the major components to building a self-learning agent is understanding the characteristics about the agent, which includes how the agent operates. To begin, simply run the `agent.py` agent code exactly how it is -- no need to make any additions whatsoever. Let the resulting simulation run for some time to see the various working components. Note that in the visual simulation (if enabled), the **white vehicle** is the *Smartcab*." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1\n", + "In a few sentences, describe what you observe during the simulation when running the default `agent.py` agent code. Some things you could consider:\n", + "- *Does the Smartcab move at all during the simulation?*\n", + "- *What kind of rewards is the driving agent receiving?*\n", + "- *How does the light changing color affect the rewards?* \n", + "\n", + "**Hint:** From the `/smartcab/` top-level directory (where this notebook is located), run the command \n", + "```bash\n", + "'python smartcab/agent.py'\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The smartcab does not move, it seems the simulation is in a state where we can observe how a fixed position still generates variable rewards. The only way to move the car is to start another trial. The driver is receiving both positive and negative rewards. For example, if the light in front of her changes to red, doing nothing will create a positive reward. In contrast, if the light is green, and there is no oncoming traffic, doing nothing will create a negative reward. \n", + "\n", + "To force agent to move, could use simulating annealing algo, something to do with heating and refreezin slowly in metallurgy." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Understand the Code\n", + "In addition to understanding the world, it is also necessary to understand the code itself that governs how the world, simulation, and so on operate. Attempting to create a driving agent would be difficult without having at least explored the *\"hidden\"* devices that make everything work. In the `/smartcab/` top-level directory, there are two folders: `/logs/` (which will be used later) and `/smartcab/`. Open the `/smartcab/` folder and explore each Python file included, then answer the following question." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2\n", + "- *In the *`agent.py`* Python file, choose three flags that can be set and explain how they change the simulation.*\n", + "- *In the *`environment.py`* Python file, what Environment class function is called when an agent performs an action?*\n", + "- *In the *`simulator.py`* Python file, what is the difference between the *`'render_text()'`* function and the *`'render()'`* function?*\n", + "- *In the *`planner.py`* Python file, will the *`'next_waypoint()`* function consider the North-South or East-West direction first?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "\n", + "agent.py: I chose to set verbose, update_delay and log_metrics. Verbose=True will produce more debug output for agent movement in the simulation. update_delay sets the time between state changes in the simulation, and corresponding screen updates. log_metrics=True will write simulation metrics to log files.\n", + "\n", + "environment.py: the act() function is called when an agent performs an action.\n", + "\n", + "simulator.py: the difference is that render() renders the GUI of pygame, wherease render_text() updates the console.\n", + "\n", + "planner.py: it checks the east-west direction first." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "## Implement a Basic Driving Agent\n", + "\n", + "The first step to creating an optimized Q-Learning driving agent is getting the agent to actually take valid actions. In this case, a valid action is one of `None`, (do nothing) `'Left'` (turn left), `'Right'` (turn right), or `'Forward'` (go forward). For your first implementation, navigate to the `'choose_action()'` agent function and make the driving agent randomly choose one of these actions. Note that you have access to several class variables that will help you write this functionality, such as `'self.learning'` and `'self.valid_actions'`. Once implemented, run the agent file and simulation briefly to confirm that your driving agent is taking a random action each time step." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Basic Agent Simulation Results\n", + "To obtain results from the initial simulation, you will need to adjust following flags:\n", + "- `'enforce_deadline'` - Set this to `True` to force the driving agent to capture whether it reaches the destination in time.\n", + "- `'update_delay'` - Set this to a small value (such as `0.01`) to reduce the time between steps in each trial.\n", + "- `'log_metrics'` - Set this to `True` to log the simluation results as a `.csv` file in `/logs/`.\n", + "- `'n_test'` - Set this to `'10'` to perform 10 testing trials.\n", + "\n", + "Optionally, you may disable to the visual simulation (which can make the trials go faster) by setting the `'display'` flag to `False`. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation!\n", + "\n", + "Once you have successfully completed the initial simulation (there should have been 20 training trials and 10 testing trials), run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!\n", + "Run the agent.py file after setting the flags from projects/smartcab folder instead of projects/smartcab/smartcab.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VeX9wPHPN2GFEJARkL2UTcIMoyxZVsQIokIsQ7EK\nttSJLQURpLi1rtqqtS3iCMhS/IG1gESgiBIwbHA1CgJhk7DM+v7+OCfXe3NvJokJyff9euWVe85z\nznOec+54znOeJaqKMcYYY4wxxpiLF1TSCTDGGGOMMcaYssIKWMYYY4wxxhhTRKyAZYwxxhhjjDFF\nxApYxhhjjDHGGFNErIBljDHGGGOMMUXECljGGGOMMcYYU0SsgFWOicg3ItIrH9tVEREVkUbFkIZf\nisjXXsuHRaSP+/oREflLUR/zYonIZBFZfRH7fywio4syTSb/RKSDiGwXkTMicufPcLxNIjL2ZzhO\nZfecGhT3sYwpbSw/MyVFRBaIyEMlnY6LZXlI0bICVgkSkSkiEi8iP4rIvADhg0Rkr4icE5G1ItI0\nh3gmuF+KMyJyXkQyvZZP5XR8VW2pqp8WwXlsEpEL7vGOisi7IhJ+sfGq6ixVnXKx8WTnlcGeddN8\nQESeFBEphmM9ISKve69T1YGqurCIj5P9nM6IyOGiPEYZ8kdghapWU9XXsgdm+zyfdr97bYszQW6h\nXUXk+gLs41NwU9Uf3XM6WDypNCZnlp/lrrjysywiEiwiP4jIF8V1jJ+bW0A9574Xh0TkdREJKel0\nlUaWh5Q+VsAqWQeBucA/sweISB1gKTATqAXEAwFvylX1DfdLUQ24Dvg+a1lVLwsQd4UiPIcsv3aP\n3xqoCzxRDMcoaq3dNA8GbgOKvZbhZ9Da672/PNAGxfT+X0qaArvy2Cbr81wb+Bz4VzGnaQJwAhhf\nzMcxprhYflayBgPVgA4i0rE4DlBCecdQ973oBvQGppZAGoCSzzvzOL7lIaWMFbBKkKouVdX3gOMB\ngm8AdqnqIlW9AMwGIkWkTWGO5T4Jmioiu4Bkr3VZzRd+ISKficgpETkoIs8V5sdEVU8Ay4FOXscO\nEZGX3SdQB0TkaRGpmI80e2p/RKSNiKSLyG1uHEdF5EGvbauJyDtu+neKyB/Fq6lGHmneC2zKluZa\nIjLfvUb7RWSWiAT8vojI39w0JYvI5yLS010/ArgfyHoi+7m7fpOIjBWRqu76K7ziaug+ta3pLo8U\npznbKRFZLyLt8nNO2dL3SxH5WkRmikgS8Le84haRKBHZJiIpIvKWiCwVtwmEZGsiKdma3Ljv9/Pu\ndTssIi+JSOVsaZnuvoc/iMivvOIKFZEX3X1Pi8gnIlJBRNaIyB3ZzmufiFyTwzmPEpHd7rmtFpEr\n3fUbgV7A6+61b5LbtVPVdJwbQe9rk+t3RUSuFZGv3PA/5/H2ICKtgB7AJGC4iNTKFn6T+z6luPEO\nEpFnge5e5/FsgPehlvudOCoi/xOR34s4tbTue7jGvdanxGleNdjrmHeISKJ7zG9F5Ka8zsOUb5af\n5Znm4s7PJgCLgVXu66y4JojIhmxp+aOIvOt1Pnn9XnvyDhEJF5EP3TSfEJH3RaS+V9xXishG97fj\n3yLyqni14hCRvl7vzVYR+UVe1w5AVX8AVuP/XuSU9s9E5Fr39SD3t3GQu3ytiGzyei/i3HM5KiJv\niEiY1zECfdZ88kegUk7pdn9rP3avQ7I4+VI/r/Ac7zW89n1ZRE4C03I4RqnLQ4wVsEqz9sC2rAVV\nPQt87a4vrNHAEJyn8tmlAVPcsL44Tw5/XdADiNOUYgROWrM8AkQAHYGuwADg9wWNGwjGeYp1BTAM\neFREWrhhc4FwnNqJa4FxBUhze5ybbu80vw2cBloAUTjnlFOcn+KcW23gfWCRiFR0bzb+DGQ9kY3y\n3klVz+Fk3jFeq8cAH6nqSXEKan/FqV2rDbwJvFeYGwWgGVARaAzcnVvc4jTBeB94Fedp84dAdAGO\n9WegEc41aQ20wjdjaAoI0ADnM/eKiFRzw14E2uD88NcCHgIUeAOvGkYR6QFUB/6T/eDiPL2dB/wG\n5+nzJ8D7IlJBVXsDm3GfUKvq97mdiJtZ34JTAM+S43fFvdF4F3gA5/N4FOczm5sJwAZVXQx8j9fn\nwc2IXwPuAWoAg4D9qvpAtvN4IEC8r+C8581xvvd3ueeSpR9OTUJt4C9A1s1fTeBpYJCqhgF9gJ15\nnIMxubH8zF+R5WciUt1N59vu369EJNgNXgZ0Ed+HSbcA77iv8/q9boZX3oFz3/gK0ATntwXgOTcd\ngvP7txbn2j+B7+92M+A9YAY//b6/5/7m5MpN/1B834vc0v4JznsD0B/4Fuc3L2v5E6945gCXe8Uz\nI9vhPZ+1QuaP/XA+/1nX5D33PYO87zX6AQlAHeDZHOIvVXmIcamq/ZXwH86P6bxs6/4BPJFt3X+B\nW/OIazCQGGD9YeCWAOv65BDPNCDWfV0F5ya3UQ7bbgLO4jzdUZwvbQOv8B+AgV7L1wN73de/BL4O\nlCacH6LX3ddt3LjreG27HRjhvj4I9PcKm+Idb7b0Zp3PaTfdinNDXtENb+qur+i1z23Ah+7rycDq\nHOIW4BxOUz2fc8h2vca6r4cDu73CtgA3u6//BczItu93QI88zumU+/eU1zXOfj45xo2Tif0vW9hW\n4KFA5+/9+QAqAKlAQ6/wq4A9Xmk5DQR5hSfjPJWsiHNj1DrA+YW62zVxl/8C/DmH9+BRYL7XcjBO\nQadn9uufx+f5lHsuJ4C+uWzv/V25E4jLduwjOR0P52ble2Cyu/wI8JlX+BvA47mkc6zXsvf7UBnI\nAFp4hd8D/NvrPdzpFVbL3fcyoKZ77tcDVXI6b/uzv0B/WH72s+Znbviv3XQF4fxWngWu8QpfDPze\nfd0ROIlT65Kf32ufvCPAsXsCh9zXrYDzQOVsx84671nA37Pt/wkwOoe4DwMp7p8C/wbC3LC80n4t\n8Ln7Os69RnHu8mfAsByOOQb4NKfPGnnkjwHimxxg++3ATeTvXuPLPL4jpS4PyS295enParBKrzM4\nT+i91QBSRKSJ/NTp90wB4tyfU4CItHOr/ZNEJBl4GOeJSX5NUtXqQBecJ0EN3HjFXf7Oa9vvgIYF\niDtLhqoe81o+B1Rzq9Mvx/f8cjxXL+2BMJw2y78Aqrrrm+L80Bx1q75PAS8A9QJFIk5zi30ichon\n46pC/q/dR0A9EYkUkdbAlcAHXumYnpUGNx3h5H7t2qvqZe6f91PVw6qa5rWcW9wNgAPZ4v2O/GmA\nU1Da5RXvezg1SVmOqmqm1/I5nL4D9XEyzW+yR6rOE++lOE9mK+I8UXwzlzR857VvBs7NR0E+c5PU\n6e9RBbgR+EDc5kx5fFca4PXZ8zp2Tq7C+ewucpffBqLkp6ZTjQlwPfLhcn7KeLNk/955D4Jyzv1f\nTVVPAr/CeVp9WESWi1czVmMKwfIzf0WZn00AFqhqpvtb+T5ezQRxaquyajVuARarair5+732yTtE\nJExE/iki37vX9j/4/v4dVdUfc0h7U2Bstnynm7tfTq5RpyZ9KNAB50Y+61i5pX0DTjPUOji1Um8A\nrd3lSDccEWkgIovEaa6ejFMLk/2z4n0OhckfA23fgPzda+T13pe6PKQQxyqTrIBVeu3C+REAnL4p\nQEucduzenX4L8mHWXML+jvMUpqWbsczBqY0pEFX9AngKeMldVpwvYVOvzZqQ+01nQY+ZCSThPHXJ\n0ji/+6rqmzhPlP7ort6Pc0NQ06uwUl1Vu2TfX0SGAL8DRuI8/a+F8wQv69rlds1xM67FOJnfLcAy\nVT3vlY6HvdJwmapWVdWl+Tm37IfKtpxb3IfwvZbgvGdZzvJTYRScH+Ish4B0nM9RVrw1VDVQM57s\nPPvmEP4Gzo3/L4Ek97MWyEG8Pm9uU5mGFOIz534+Psa5Xlnty3P7rhzC67Pn3izldvM1Aed3eJc4\noz6uw3mvsm6O9pPz9cjts3UYyMT3fcv3905VV6jqIJybgO9x++0ZU0iWn+X/mAXKz0SkJU4z3tvF\n6cdzGKdlxPUiUsPdbCXQXJzRUMfwU/PA/PxeZ7/O09y0dXev7VB8f//C3abVgdK+H6c2yzvfCVXV\n53K5JE4iVFfh9Id9Mj9pV9XTOE2b7we2uHltvLu8U1WT3XiexsnTOrjn82v8Pyve1yCv/DGQQNsf\nJH/3GrneQ1BK8xBjBawS5fZ3qYLTjChYnA6GWf1rluGMBjTK3WYWsE2dARmKQxhwWlXPuH2S7shr\nh1y8DlwhIle7y7HALBGpLSJ1cdo3v3VxyfXzLjBDRGq4bbXvKuD+jwO/FZHaqvo/nKrzp9yndUHi\ndNztE2C/MJxmbUdxmlzMwXkilSUJJ2PLLXN/ByfTi+GnjA+cdtO/E5Fu4qgmItEiUjVgLAWTW9zr\ngCridGKtICIxOH0OsiQAnUWkvbv9w1kBbib2T+AFEanjxt3YLYjmyt13vrtvPXGGHe4jP/UliMO5\n3o+62+VkITBSRPq5tV3TcDrex+frymQjThv2K/lp5MHcvivLge4iMtw99oP89MQ1e7zVcDr/34rT\nRDLrbyrOU94gnO/SJPdcgtxr2cqNIgmn3b4f9wnyMuAxcQYOaYnTvCPP7504A61c6763P+LcAGTm\nsZsp5yw/K1IFyc/G4/TvacNPvyGtcX7zbgZQZ2CRZTh9XCvi9j8q5O91GE5txSm3Nsh7/qcvgX3A\nQyJS0f3t/KVX+BvATeIMshAsziAVg0Qk4Ii3ATyLU3Bsm8+0f4LTvDKrv1VctuWs8zkDJLvX+v48\n0pBX/hhIY6/tx+IUOv9TwHsNP6U1DzEOK2CVrIdwajum4XQEPe+uQ1WPAqNwbiZP4nR+HFOMabkP\n+LU4TTReJochdPPDrYH5C86QvODcgO/GuUFNwGl7/9RFpdbfQzjX6TucTqfv4twc5ouqxvPT0y1w\nCjuXAXtx+uAsJHATwQ9wfnC/welEewynsJVlAU5tzwlxRrALZB3OTUkNnFGSstL0X5xmWq/i9In5\nEqeWK68nWnnKLW73/RuJM0jESZy27B947bsD5/1bj3N94rJFfy/O07l4nP5W/8bpyJ0fd+Ncyy9w\nbhD+hPs00X16/CZO0863czm37cDt7rkdxenUe706IwLmV9bISmdwMqgHVHWtG5bjd0VVD+F8T593\nj12PnAt2N+J8tmJV9XDWH07htzpOP4/1OG3d/4pzLdfw09PQ54DxInJSRAJ9nya5/78DPnbPI8fr\n5iUY5zfpMM570B3npsSY3Fh+VnTylZ+5D+7GAy97/4a4v0Ov4d9McDCwMFsT7YL+Xj+D04TuOE4z\nu5VZAe5v9Gj3OCeB6ThN1350w7/F+Rw8gpNXfodz056ve1F15mdawE+FurzS/glOAWpdDsvgvJ99\n3P2XAUvySEOu+WMO1gGdcX7vZwA3uDVskP97jUBKax5iAHG+D8aULSJyH/BLVb06z41NnkRkAU6z\nirklnI47cQYBseFgjTHlwqWcn4nI+8AmVX28pNNSEkRkMnCj5Vnlj9VgmTLBrfbu6VaBt8d5Kras\npNNlio44/Tbuwnk6Z4wxZdKlnJ+JSA8Raeam/TqcJoLvl3S6jPm5FWsBS5xJ6vaJM1Gd3wRpInK9\nOJOfJYhIvHe7UxG5R5wJ9naJyL1e6zuJM1Fr1j5R7vood12COBPAjSzOczOlTmWc9tgpOM0EFmBz\nMpQZIhKNM9z51ziDghhjTFl1KednjXCaDqbgDCAxUVV3l2ySjPn5FVsTQbdj+pc4k5MdwJlLIsb7\ni+Z20DurqioiEcC7qtpGRDrg/KBE4cxz8G+cMf6/FpH/AM+p6ociMgxnbocBbofsVFVNF2eyz204\nc1cUpN+FMcYYY4wxxhRacdZgReFMjPetOvMtLMCZkM9DVc/oTyW8UH7qvN8WZ6K0c24B6ROckVJw\nt8maT6MGTgdHvLaFnyZLM8YYY4wxxpifTYW8Nym0hvhOkHYA6JF9I7cp3+M4k8Nd667eCTwqIrVx\nRiIaxk8jcd0LfCQiz+AUEHt7xdUDp1q9KTAuUO2V20n+ToDQ0NCubdq0yb6JMcaYUmTLli3HVDW8\npNNRlOrUqaPNmjUr6WQYY4zJRWHzn+IsYOWLqi4DlrnzJfwJGKyqe0TkSZwZws/iDIWa4e5yF3Cf\nqi4RkZuBf+BOAKqqnwHtxZlM7w0R+dCd/8H7eK/hdpLv1q2bxscXamocY4wxPxMR+a6k01DUmjVr\nhuU/xhhTuhU2/ynOJoI/4DuDdyNymQFaVdcBLdyJ61DVf6hqV1XthzPXwJfuphOApe7rRThNEbPH\ntQdn4rgOF3sSxhhjjDHGGJNfxVnA2gxcKSLNRaQSzqSCy703EJEr3InyEJEuOCPnHHeX67r/m+D0\nv3rH3e0g0N99PRD4yt2uubizxotIU5xZzROL6+SMMcaYLHmNmmuMMab8KLYmgu5oflOAj4Bg4J+q\nusuddA1VfQVnRu/xIpKG09dqtNegF0vcPlhpwG9V9ZS7/g7gBbcwdQG3PxXOTNzT3Lgygd+o6rHi\nOj9jjDEGPKPmvozXqLkistyGpzbGmPKp2IZpvxRYHyxjLg1paWkcOHCACxcu5L2xuWRVqVKFRo0a\nUbFiRZ/1IrJFVbuVULLyJCK9gNmqerW7/EcAVX08p33CwsK0a9euPutuvvlmfvOb33Du3DmGDRvm\nt8+tt97KrbfeyrFjx7jxxhv9wu+66y5Gjx7N/v37GTdunF/4Aw88wHXXXce+ffuYNGmSX/hDDz3E\n4MGDSUhI4N577/ULf+yxx+jduzcbN25k+vTpfuHPP/88nTp1YvXq1cydO9cv/NVXX6V169Z88MEH\nPPvss37hb775Jo0bN2bhwoX87W9/8wtfvHgxderUYd68ecybN88vfOXKlVStWpW//vWvvPvuu37h\ncXFxADzzzDP83//9n09YSEgIH374IQB/+tOfWLNmjU947dq1WbJkCQB//OMf+fTTT33CGzVqxFtv\nvQXAvffeS0JCgk94q1ateO01Z470O++8ky+//NInvFOnTjz//PMAjB07lgMHDviE9+rVi8cfdz5O\no0aN4vjx4z7hgwYNYubMmQBcc801nD9/3id8+PDhTJ06FYABAwaQnX327LMH9tkL9Nn75JNPCpX/\nlPggF8YYk5cDBw4QFhZGs2bNcFsVmzJGVTl+/DgHDhygefPmJZ2cgsrvqLmeUWwrV67886TMGGPM\nz65c12BdccUV2qRJE+68805GjhxpGZ4xpdSePXto06aNFa7KOFVl7969tG3b1mf9JVCDdSPwS1X9\ntbs8DuihqlNy2sdaUBhjTOlX2PynOAe5KPWOHj3K2rVriYmJ4Yknnijp5JhL1JEjR0hP95tyzRQx\nK1yVfZfwe1ygUXONMcaUbeW6gJWSkgI4mfr48eP9wstz7Z75ydSpUxk6dChXXHEFR44c8Qu/8847\nCQ8P5+abb2bXrl0lkEJjTAnLc9RcY4wx5Ue5LmB16NCBOXPmcNttt/m1+b9w4QKtWrXi3nvvtZvm\nMu6FF17g5ptvplu3bmzfvt0vfM2aNaxatYpvvvmGb7/91icsNTWVNWvWcOrUKRYtWkSFCv7dGstz\nQT01NZXMzMySTsZFO378OJ06daJTp05cfvnlNGzY0LOcmprqt/2JEyd45ZVX8ow3PT2dyy67LOD6\n4OBgzzG6du3Kpk2bCpTmhx56yNNxOZAOHTowduzYPOP59ttvWbBggWf5s88+47777itQWso6VU0H\nskbN3QO8q6qWcRhjTDlVrgtYlSpVYubMmfzjH//wC1u6dClff/01L7zwAsOHDy8TN4nl1bvvvssd\nd9zB4MGDWb16tV/4mjVrWLRoEVu2bPEbXQegRYsWntf/+9//fML+97//eW6QW7RoQatWrXzCL1y4\nQNOmTYmJieHNN98sN5+jGTNm0LlzZ0JCQhg1alRJJ+ei1a5dm4SEBBISEpg8eTL33XefZ7lSpUp+\n2+e3gJWbsLAwzzHmzJnDjBkzLio+bzt27KBChQqsXbvWb8Sn7LIXsHr06MFzzz1XZGkpK1R1paq2\nUtWWqvpoSafHGGNMySnXBazceA+j+etf/5qgIN9LlZaW9nMnyeQgLi6OBx98kFGjRrFw4cKA4a+/\n/jpr1qxhx44dfuHeBajsNVTgDHu6fPlyduzYwYgRI3zCWrduzffff8+OHTt45ZVX/PqQrFu3jv37\n97NgwQLmzp3r9zm6lCUnJ7N69WoSExP9wnbs2EFCQgKZmZncfPPNfuFlabj1p556ig4dOtChQwde\neuklAKZNm8a+ffvo1KkT06ZNIzk5mYEDB9KlSxciIiL8hunNS3JyMjVr1vS8zimuOXPm0KpVK/r0\n6cNXX32VY3yxsbGMHz+egQMH8sEHH3jWf/nllwwcOJDIyEi6dOlCYmIi06ZNY+3atXTq1IkXX3yR\n1atXe74Hx44dIzo6moiICHr37s3OnTsBp/bs9ttvp3///rRo0YKXX34ZcJplX3PNNURGRtKhQwcW\nL15coOtgjDHGXBJUtdz+de3aVXOSkZGh//nPf/TGG2/UH374wS988uTJ2rNnT/3nP/+pZ86cyTEe\nc/EyMjJ0w4YNet999+mrr77qF/74448roIDed999fuFPP/20J3zKlCl+4Zs2bdL58+frhg0b9Pjx\n40Wa9unTp3uOfe+99/qFr1mzRm+55RZ966239OjRo0V67OL00EMPqYgooE8++aRf+GOPPaaABgUF\naUpKil94//79tXfv3vrKK69ocnJynsfbvXu3z/KsWbM813XWrFl+299///2e8GeeecYv/I477vCE\nB/pM5WbWrFn69NNPq6rz2YmIiNBz585pcnKytmnTRrdv365fffWVRkZGevZJTU3V06dPq6pqUlKS\nXnHFFaqqmpaWpjVq1PA7RlpamgYFBWlkZKS2bt1aa9SooVu3bs01rs8++8yTllOnTmmzZs30ueee\nC3gOLVu21AMHDuiKFSt0xIgRnvVdunTR5cuXq6rq+fPn9ezZs7pq1Sq9/vrrPdt4L0+ePFnnzp2r\nqqofffSRZv2mzpgxQ/v06aM//vijJiUlaa1atTQ9PV0XLFigkydP9sR16tQpv7Rlf69VVYF4LQV5\nRlH+5Zb/GGOMKR0Km//YPFg5CAoKYsiQIQwZMsQv7MyZM7z99tukpKSwadMmrrjiCvr27VsCqSwf\nHn30UR5++GEAbrzxRu68806fcO/+c4FqoIYOHUqVKlVo0aIF7du39wvv0aMHPXr4TVlTJObOncvN\nN9/MypUrGTRokF/40qVLeeedd3jnnXeYOnUqTz/9dLGko6BSUlLYuHEjn376KU2aNGHixIk+4U2b\nNsX53SFg36AxY8bQvXt3oqKiqFatmk9YYmIin3zyiWff6OhowsLCiulMiteGDRsYNWoUISEhAIwY\nMYL169czdOhQn+1UlWnTprFhwwaCgoLYv38/x44dC9j/KktWE8Gs44wfP54dO3bkGNe6des8aQkJ\nCeG6664LGO+mTZto2LAhDRs2pG7dutxxxx2cPn2azMxMjh075tmvSpUq+Tr/FStWAM737NZbb+Xs\n2bOAM7lkpUqVqFu3LrVq1eLo0aNEREQwbdo0pk2bxnXXXccvfvGLPI9hjDHGXGqsgFUIn3/+uaeJ\nU5s2bejTp49PuKpy9uxZvxtLk7uMjAwSExNp2bKlz/phw4Z5CliBClDdu3dn7ty5NG/ePGABKiIi\ngoiIiOJJdB5EhMjISCIjI/3CVJWVK1d6lq+55hq/bebNm0eVKlUYOnQotWrVKta0elu9ejU33HAD\nAH369PErYPXs2ZOgoCAiIiJo166d3/7NmzfPcbLYTZs2UaFCBdLT07n66qupX7++T3hKSgpfffUV\nnTt3vpSH7fYxf/58Tp8+zdatW6lQoQKNGjUqUDPJPn36cPDgQU6cOMHSpUsvKq7Y2Fh27txJs2bN\nAKfJ4dKlS/2av14s73kFg4ODSU9Pp23btsTHx7Ny5UqmTZvGNddcw/Tp04v0uMYYY0xJKzsdQn5G\nAwcO5IcffuCZZ55h+vTpfjeBn376KfXr12fSpEls3bq1hFJ56UhOTmbKlCk0atSI3r17k5GR4RPe\npUsXoqKiuOOOO3jsscf89m/RogUzZszglltuCViQKc2WLFnCo48+yqBBgwIW1B9++GFiYmIIDw/n\niy++KLLjnjp1ipkzZzJkyJCAtXe9evXyvI6Pj/frc9iuXTtOnz7NF198wdy5cwt07DFjxnDw4EFe\nfPFF7r33Xr/wRYsW0bVrVyIiInjrrbcCxjF79mxPNfzs2bP9wp999llP+AMPPOAX/tprr3nCs9eI\nFkTfvn1ZtmwZ58+f58yZM7z//vv07duXsLAwzzQQAKdPn6Zu3bpUqFCBVatW8cMPBZsiadeuXQQF\nBVGzZs0c4+rXrx/Lli3jwoULJCcnB+znlZmZyeLFi9m9ezeJiYkkJiaydOlSYmNjqVmzJuHh4Z4+\nWRcuXODcuXN+55L9/N9++23AKZQ3bNiQ0NDQHM/jhx9+oFq1aowbN44HHngg4O+jqpKcnFyg62OM\nMcaUJlaDVUjh4eEBb9zAuXk7c+YMr732GpmZmfz973//mVN3aQkNDWXJkiUcPnwYcAaGuOqqqzzh\nIsJnn31WUskrNiJC586d6dy5c8Cn+Lt372b//v2A01ysY8eOPuGqytKlSxk4cKBnAITs0tPT2bVr\nFxERET4PAipXrswTTzzhmSD55MmTPnFcfvnlXHfddTRp0oRevXr5jX4YFBR0UTW04eHh/O53vwsY\nNn/+fAB27txJUlJSoY/xc4iKiiImJobu3bsDcNddd3nep65du9KxY0euvfZa7r//fq677jo6duxI\nVFQUV155ZZ5xp6Sk0KlTJ8/y/PnzERHGjRsXMK6oqChGjhxJREQE9erVIyoqyi/OtWvX0rx5c+rV\nq+dZd9VVVzF27FiSkpJ4++23mTRpEjNmzKBSpUosWbKEzp07k5GRQWRkJLfffrtPjeWcOXOYOHEi\nERERVKu62JkjAAAgAElEQVRWjX/961+5nlNCQgLTpk0jKCiIypUr+4y0mJycTGJiIgcPHmTmzJks\nWbIkz2tkjDHGlEqF6bhVVv6Ko5NxRkaGdu3a1dOB/vPPP/fbJikpSTMzM4v82KVZWlqarl69WidN\nmqRbtmzxC//tb3+rgNatW1djY2NLIIWlz4EDB3TOnDnas2dPHT16tF/4F198oYAGBwdrdHS0X/gN\nN9ygoaGhCujXX3/tF96tWzfP5/Q///lPsZxDQaWnp+u4ceO0atWqGhQUpAcPHlRV34EPjhw5osnJ\nyeXuO1TaZWZm6oULFzQlJSXg4BVnzpzRzZs36+bNmwMOZJGSkqKbN2/WDz/8UKOionzCsEEujDHG\nlIDC5j9Wg1XEgoKC2Lx5M//973/58MMP6datm094ZmYmvXr1olq1atxxxx1MnDiRqlWrllBqfz73\n3HMPf/3rXwGoXr06Xbp08QmfMmUKN954I3379iU4OLgkkljqNGzYkJkzZzJz5ky/ZpMAH374IeD0\nXQv0GTp//rxnwIFPP/3Ur2/btGnTSE9Pp2fPnjRp0qQYzqDggoODmT9/Pi+//DIbN27065+VkZHB\n999/j6pSqVIl2rZtS8WKFUsoteWLqnLmzBlSU1PJyMigbt26PuGpqameaRAqVqzo11zXexLuQJMz\ne7+Pec3NZYwxxpRm1gerGIgIffr04dFHH/Xrn7V27Vq+/fZbtm/fzsyZM8tMJ/4saWlpfpPxgjNQ\nRZZFixbhPBT4SZs2bRgwYIAVrnIQ6Lo0aNCAqKgoRMTn+mbp2bMnQI6DIIwaNYrRo0fTtGnTUvc5\nDAsL4+qrr/Zbf/LkSc9nJzg42ApXRSwtLY2kpCS+//57v2ahqsq+ffv43//+FzDc+71IS0vLMbxi\nxYpUqlTJ7zegUqVKdOzYkSZNmrB9+/aiPC1jjDHmZ2U1WD+zr7/+mqpVq3Lu3DnGjx/vGd45y7Jl\ny9i9ezeNGzemb9++OY7EVtocPnyYhx56iGXLllG/fn3PhKNZhgwZQrt27Rg0aBA33XRTCaWybJkw\nYQITJkzg6NGjfp8jgDvvvJOJEyfSqFGjEkhd8QgNDSU8PJyTJ09Su3Ztv/Dk5GSOHj1K7dq1qV69\nepma2Lm4Xbhwgd27d3sKRvXq1fMZCTAoKIiKFSt6BjxJS0vzC69atSoiQsWKFcnMzPS5/kFBQXTp\n0iXH90REqFy5cqkr7BtjjDEFZQWsn9mkSZMYM2YM77zzjs9ADlkWLVpEbGws4AzRnb2A9cwzz/D1\n11/TqFEjxowZwxVXXPGzpDsvYWFhvPPOO5w/f54TJ06wZ88e2rZt6wmvVKkSu3btKsEUll3h4eEB\n119++eU/c0qKX0hICE2bNqVx48Z+NSAAx44d4+TJk5w8eZLLL7+8TBUui1vlypUJCQnxNCtNTU31\nKUAB1KhRg4yMDCpWrBiwIBRoyH5vpaHAKyLBQD288j9V/b7kUmSMMaassQJWCahRowZ33XVXwLAD\nBw54Xge6OVy+fDnr168HnKG0sxewbrvtNpKSkmjUqBHTp0/3zHVTFFJTU1m1ahWLFi3ikUceoWnT\npp6w0NBQhg0bxpIlS2jUqBH79+/3KWAZU5QC3ahnZGRw6tQpz3KgecMyMjKsGSo/NeHzLkCJCA0a\nNODAgQPUqlWLSpUq+e1XlL8nJUFEfgfMApKArDaMCpTMRHnGGGPKJCtglTK33347PXr04MCBAwFr\np7KG7QZo3LixX3hcXByJiYkATJ061S88MjKSjIwMGjVqxPz58/06qp85cybH4bdjYmJYunQp4Eze\ne//99/uET58+nalTpxIVFVUqnlSb8iU4OJi2bdty/Phxzp8/7zfwh6qyc+dOQkJCqFOnDpdddlm5\n+5xm9bE6cuQIYWFhfsPFV69enXbt2pXlZnr3AK1V9XhJJ8QYY0zZVb7uLi4BEyZM4OmnnyY2Ntan\nhijLiy++yEsvvcTvf/97vxquzMxMnwlMGzZs6Be+e/dudu3axUcffeRXkMrMzKRmzZpUr16d9u3b\n+430lX2giuy6dOlCz549y91Nqyk9QkJCaNSoUcB5ppKTk0lLSyM5OZnvvy94izARYezYsZ7l9PR0\nwsPDGT58OODULj/xxBOFT3wObrvtNl599VWfde+99x7XXHMNAL179851/8TERDp06OBJ8+HDh8nM\nzOT06dOe5oCJiYm88847iAgiQnx8PHfffXeRn0spsB84XdKJMMYYU7ZZDdYl5rrrrss1fNOmTezf\nv5/Dhw8TGhrqE3bkyBHPxLK1atXye8KflJREeno6KSkpHD582K+J0IgRI3jyyScZMWKEDVRhLjnn\nzp3zvK5du7bfg4D09HSCgoJyfEAQGhrKzp07OX/+PCEhIaxatcrnIUZ0dDTR0dEXnc709HSfIc1j\nYmJ4/PHHmTRpkmfdggULiImJAWDjxo35jjskJISaNWty8uRJQkJCPP3YsgpYt9xyCwDdunXzm2Ki\njPgWiBORFcCPWStV9c8llyRjjDFljVU1lCFZo3Rdf/31PjdjWerVq8eRI0fYunUrixcv9gs/evQo\nVapUAQI3P6xduzZffvklTz31FN27dy/6EzCmGNWvX5+IiAgaNGgQcGCQw4cPs337dvbv38+PP/4Y\nIAanFnfFihUAxMbGego54AxKM2XKFABuvfVW7r77bnr37k2LFi083zdV5cEHH6RDhw507NiRhQsX\nAk7T3r59+xIdHe03UMSgQYPYu3cvhw4dAuDs2bOsXr2aESNGAHhqor3j7tChA3/96185fdq3siYx\nMZHx48dz++23M27cOM9w6NOmTWP9+vV06tSJ5557jri4OE/N3IkTJxgxYgQRERH07NnTs8/s2bOZ\nOHEiAwYMoEWLFrz44ov5eh9K2PfAKqASEOb1Z4wxxhQZq8EqR0SE8PDwHEedi4iI4Ny5c5w4cYLk\n5OSfOXXGFMDqAf7rmtwMrX4D6ecgzn9eMFrcSqUWt9KgViXY8EufoMyBH3Ps2DHS09NJSkoiLCzM\nbwQ9gDFjxjBnzhyGDx/O9u3bmThxomfQmewOHTrEhg0b2Lt3L9HR0dx4440sXbqUhIQEtm3bxrFj\nx+jevTv9+vUDYOvWrezcudNv5NDg4GBGjRrFu+++yz333MMHH3zAgAEDqF69us92WXF/8sknbN26\nlXHjxtG+fXufSaTr1q3LmjVrqFKlCl999RUxMTHEx8fzxBNP8Mwzz/B///d/gFPgyzJr1iw6d+7M\ne++9x8cff8z48eNJSEgAYO/evaxdu5aUlBRat27NXXfdVarnJlPVRwBEpJq7fKZkU2SMMaYsshos\n40NEqF279iUz/5YxRSE1NdXTNLBixYrUqFEj4HYREREkJiYSGxsbcHJnbyNGjCAoKIh27dqRlJQE\nwIYNG4iJiSE4OJh69erRv39/Nm/eDEBUVFSO37uYmBgWLFgA+DYP9JYVd/Xq1alduzZdunQhPj6e\nlJQUzzZpaWnccccddOzYkZtuuondu3fncWWceMeNGwfAwIEDOX78uOcBzLXXXkvlypWpU6cOdevW\n9ZxnaSUiHUTkC2AXsEtEtohI+5JOlzHGmLLFarCMMZeewXE5h1Womnt4lTp+4VWAjh07kpycTEZG\nht8oeufPnyczM5M9e/YwePBgpk6dSlxcHMeP5zwYnXcNWKA5u7LL3mfSW+/evTl06BDbtm1j48aN\nnsJW1qS/3ipWrEh4eDjBwcHUr1+fsLCfWsA999xz1KtXj23btpGZmelpElxY3ucYHBzs6eNZir0G\n3K+qawFEZADwdyD3kUKMMcaYArAaLGOMwam9rVGjRsD5s44ePQo4/Z+GDx/OrFmz6NixY4GP0bdv\nXxYuXEhGRgZHjx5l3bp1REVF5Stto0ePZsKECVxzzTUEBwdz4MABduzY4Sm8ecddqVIltm/fzsCB\nA30Ki6dPn6Z+/foEBQXx5ptvkpGRATgThXvXdGVP89tvvw04TQfr1Knj1zzxEhKaVbgCUNU4IOeS\nrTHGGFMIVsAyxpg8eNdARURE+A1hnlXDlZeRI0cSERFBZGQkAwcO5KmnnuLyyy/PVxpiYmLYtm0b\nMTExnDhxwjPcuqqSmZnpE/fgwYMDxv2b3/yGN954g8jISPbu3eupNYuIiCA4OJjIyEiee+45n31m\nz57Nli1biIiIYNq0abzxxhv5Sm8p9a2IzBSRZu7fQzgjCxpjjDFFRvLTdKXQkYv8EngBCAZeV9Un\nsoVfD/wJyATSgXtVdYMblgikABlAuqp2y7bvA8AzQLiqHhOR2sBioDswT1Wn5JW+bt26aXx8/MWd\npDGm2O3Zs4e2bduWaBrS0tI4efIk4eHhfk0Id+/ezYULF6hduzb169f3m+KgqGVmZrJjxw7S0tII\nCQmhZcuWF93cr7QI9F6LyJbseUBhiEhN4BGgj7tqPTBbVU9eRJw3AbOBtkCUquYrU7H8xxhjSr/C\n5j/F1gdLRIKBl4EhwAFgs4gsV1XvXtVrgOWqqiISAbwLtPEKv0pVjwWIuzEwFGfI3SwXgJlAB/fP\nGGOKTMWKFalbt67f+rNnz3rm2Dp27JjfBN8XIy0tjSNHjlC3bl2f0fmCgoJo3LgxIsJll13mV+Az\ngbkFqaKeQXkncAPwal4bGmOMKR+Kc5CLKOBrVf0WQEQWANcDngJWtiFyQ4H8Vqc9B/weeN8rrrPA\nBhG54iLTbYwx+ZaRkUGVKlW4cOECtWrV8pkkGJyJg3/88UeqVq1aoILQkSNHOHDggKcZYKNGjXzC\nA/UVM4GJyPOqeq+IfECAfEZVCz1DtKrucY9xESk0xhhTlhRnAashsN9r+QDQI/tGIjISeByoC1zr\nFaTAahHJAF5V1dfc7a8HflDVbYXJ0ETkTuBOwGd+GGOMKYzq1avTvn17zpw541e4Ajh+/Dj79+8n\nJCSEBg0aULNmzXzFW6FCBU+/riNHjlCvXr1SPcdUKfem+/+ZkkyE5T/GGFM+lPgw7aq6DFgmIv1w\n+mMNdoP6qOoPIlIXWCUie4F4YDpO88DCHu81nKF66datW/F1QDPGlBsi4jMcehZV9YxAeP78+RyH\nMc/IyCA4ONhnXc2aNQkJCQGgfv36AQtvJn9UdYv7spOqvuAdJiL3AJ/ktr+IrAYCjUYyQ1XfD7A+\np3RY/mOMMeVAcebYPwCNvZYbuesCUtV1ItJCROqo6jFV/cFdf0REluE0OTwJNAeyaq8aAVtFJEpV\nDxfXiRhjTGFkZmYSGhpKamoq4N+sT1VJTEzk1KlTtGnTxlOgAqfQduWVV1KxYkVrflZ0JuAMvOTt\n1gDrfKjq4NzCjTHGGG/FWcDaDFwpIs1xClZjgFu8N3D7S33jDnLRBagMHBeRUCBIVVPc10OBOaq6\nA6cpYdb+iUC3QANhGGNMSQsODqZ58+Y0btyYc+fO+dVSpaWleSYrPnToEC1atPAJL+7RCMsLEYnB\nyX+ai8hyr6Aw4ETJpMoYY0xZVWzzYKlqOjAF+AjYA7yrqrtEZLKITHY3GwXsFJEEnBEHR6szbnw9\nnAErtgGfAytU9d95HdMtcP0ZuFVEDohIuyI/MWNMuSQijB071rOcnp5OeHg4w4cPz3W/+Ph47r//\n/oCT82YVriDnubRatGjBvn37fNbde++9PPnkk8THx/vNyZXdvHnzmDIl91kr4uLi2Lhxo2f5lVde\nYf78+bnuc4nZCDwL7HX/Z/09AFx9MRGLyEgROQD0AlaIyEcXmVZjjDGXuGJt1K+qK4GV2da94vX6\nSeDJAPt9C0TmI/5muS0bY0xRCQ0NZefOnZw/f56QkBBWrVqVryHZu3XrRrdugafQqFy5MrVr16ZG\njRrUrFkTESE9Pd2nv9WYMWNYsGABs2bNApxmh4sXL+a///0vTZs2zTHugoiLi6NatWr07t0bgMmT\nJ+exx6VFVb8DvhORXwEHVfUCgIiE4DQ1T7yIuJcBy4oincYYY8qGYqvBMsaYsmbYsGGsWLECgNjY\nWGJiYjxhn3/+Ob169aJz58707t3bU+sUFxfnqeU6ceIEI0aMICIigp49e3LgwAGaN2/Oiy++yPjx\n4/nFL37BuHHjfI4ZExPDwoULPcvr1q2jadOmNG3aNNe4t2/f7pf+Dz74gB49etC5c2cGDx5MUlIS\niYmJvPLKKzz33HN06tSJ9evXM3v2bJ55xhlwLyEhgZ49exIREcHIkSM5edKZk3fAgAH84Q9/ICoq\nilatWrF+/fqiuszF6V2cie2zZACLSigtxhhjyigblsoYc2l5p5gGfLgl70HdxowZw5w5cxg+fDjb\nt29n4sSJnoJFmzZtWL9+PRUqVGD16tVMnz6dJUuW+Ow/a9YsOnfuzHvvvcfHH3/M+PHjSUhIAGD3\n7t1s2LDBZ6ALgI4dOxIUFMS2bduIjIxkwYIFPgW7/MSdpU+fPmzatAkR4fXXX+epp57i2WefZfLk\nyVSrVo2pU6cCsGbNGs8+48eP56WXXqJ///48/PDDPPLIIzz//POA00zy888/Z+XKlTzyyCOsXr06\nz2tYwiqoamrWgqqmioh1dDPGGFOkrIBljDH5FBERQWJiIrGxsQwbNswn7PTp00yYMIGvvvoKESEt\nLc1v/w0bNngKXQMHDuT48eMkJycDEB0d7Ve4yhITE8OCBQto37497733Ho888kiB4s5y4MABRo8e\nzaFDh0hNTaV58+a5nu/p06c5deoU/fv3B2DChAncdNNNnvAbbrgBgK5du5KYmJhrXKXEURGJVtXl\n4JlX0QZJMsYYU6SsgGWMubTko6apOEVHRzN16lTi4uJ8BqmYOXMmV111FcuWLSMxMZEBAwYUKN7Q\n0NAcw8aMGcPQoUPp378/ERER1KtXr1Bp/93vfsf9999PdHQ0cXFxzJ49u1DxZKlcuTLgjJaY0xxf\npcxk4G0R+QsgwH5gfMkmyRhjTFljfbCMMaYAJk6cyKxZs+jYsaPP+tOnT3sGvZg3b17Affv27cvb\nb78NOH2z6tSpE3B0wexatmxJnTp1mDZtWsDmgfmN2zuNb7zxhmd9WFgYKSkpfnFmDb6R1QzyzTff\n9NRmXYpU9RtV7Qm0A9qqam/A/8SNMcaYi2AFLGOMKYBGjRoFHBr997//PX/84x/p3LmzX21O1kTB\ns2fPZsuWLURERDBt2jSfQk5eYmJi2Lt3r6dZXnb5iXv27NncdNNNdO3alTp16njWX3fddSxbtswz\nyIW3N954gwcffJCIiAgSEhJ4+OGH853mUqwCMFpE1gBflHRijDHGlC3iTDtVPnXr1k3j4+NLOhnG\nmDzs2bOHtm3blnQyCmXJkiUsX768QIWp8izQey0iW1T1osajd4dkvx5nwuHOOJMMjwDWqar/BGTF\nzPIfY4wp/Qqb/1gNljHGFJPly5czY8YMJk2aVNJJKddE5B3gS2AI8BLQDDipqnElUbgyxhhTttkg\nF8YYU0yio6OJjo4u6WQYp8/VSWAPsEdVM0Sk/DbfMMYYU6ysBssYY0yZpqqdgJtxmgWuFpENQJiI\nFG44RmOMMSYXVsAyxhhT5qnqXlWdpaptgHuAN4DNIrKxhJNmjDGmjLEmgsYYY8oVVd0CbBGRB4G+\nJZ0eY4wxZYsVsIwxxpRL6gyju66k02GMMaZssSaCxhiTDyLC2LFjPcvp6emEh4czfPhwwBkx8Ikn\nnii24yckJCAi/Pvf/y50HL179w64/tZbb2Xx4sWFTtfKlSsLnSZjjDGmrLECljHG5ENoaCg7d+7k\n/PnzAKxatYqGDRt6wqOjo5k2bdpFHyf7JMVZYmNj6dOnD7GxsYWOe+PGou9udKkUsEQkSERuLul0\nGGOMKfusgGWMMfk0bNgwVqxYATgFnpiYGE/YvHnzmDJlCuDUCN1999307t2bFi1aeGqHVJUHH3yQ\nDh060LFjRxYuXAhAXFwcffv2JTo6mnbt2vkdV1VZtGgR8+bNY9WqVVy4cMETNn/+fCIiIoiMjGTc\nuHEAJCUlMXLkSCIjI4mMjPQUrKpVq+aJb8qUKbRu3ZrBgwdz5MgRT3xbtmyhf//+dO3alauvvppD\nhw4BMGDAAP7whz8QFRVFq1atWL9+PampqTz88MMsXLiQTp06ec6nNHLnu/p9SafDGGNM2Wd9sIwx\nl54BA/zX3Xwz/OY3cO4cDBvmH37rrc7fsWNw442+YXFx+TrsmDFjmDNnDsOHD2f79u1MnDiR9evX\nB9z20KFDbNiwgb179xIdHc2NN97I0qVLSUhIYNu2bRw7dozu3bvTr18/ALZu3crOnTtp3ry5X1wb\nN26kefPmtGzZkgEDBrBixQpGjRrFrl27mDt3Lhs3bqROnTqcOHECgLvvvpv+/fuzbNkyMjIyOHPm\njE98y5YtY9++fezevZukpCTatWvHxIkTSUtL43e/+x3vv/8+4eHhLFy4kBkzZvDPf/4TcGrXPv/8\nc1auXMkjjzzC6tWrmTNnDvHx8fzlL3/J1zUsYatFZCqwEDibtVJVT5RckowxxpQ1VsAyxph8ioiI\nIDExkdjYWIYFKsR5GTFiBEFBQbRr146kpCQANmzYQExMDMHBwdSrV4/+/fuzefNmqlevTlRUVMDC\nFTi1ZWPGjAGcQt78+fMZNWoUH3/8MTfddBN16tQBoFatWgB8/PHHzJ8/H4Dg4GBq1KjhE9+6des8\n6WjQoAEDBw4EYN++fezcuZMhQ4YAkJGRQf369T373XDDDQB07dqVxMTEfF+3UmS0+/+3XusUaFEC\naTHGGFNGWQHLGHPpya3GqWrV3MPr1Ml3jVUg0dHRTJ06lbi4OI4fP57jdpUrV/a8dgary11oaGjA\n9RkZGSxZsoT333+fRx99FFXl+PHjpKSkFDzxeVBV2rdvz6effhowPOucgoODc+wrVpqpauASrDHG\nGFOErA+WMcYUwMSJE5k1axYdO3Ys8L59+/Zl4cKFZGRkcPToUdatW0dUVFSu+6xZs4aIiAj2799P\nYmIi3333HaNGjWLZsmUMHDiQRYsWeQp6WU0EBw0axN/+9jfAKaCdPn3aJ85+/fp50nHo0CHWrl0L\nQOvWrTl69KingJWWlsauXbtyTV9YWFixFPaKg4hUFZGHROQ1d/lKERle0ukyxhhTtlgByxhjCqBR\no0bcfffdhdp35MiRngEpBg4cyFNPPcXll1+e6z6xsbGMHDnSZ92oUaOIjY2lffv2zJgxg/79+xMZ\nGcn9998PwAsvvMDatWvp2LEjXbt2Zffu3X7puPLKK2nXrh3jx4+nV69eAFSqVInFixfzhz/8gcjI\nSDp16pTnyINXXXUVu3fvLvWDXLj+BaQCWePV/wDMLbnkGGOMKYskP01Xyqpu3bppfHx8SSfDGJOH\nPXv20LZt25JOhvkZBHqvRWSLqna72LhFJF5Vu4nIF6ra2V23TVUjLyLOp4HrcApu3wC3qeqpvPaz\n/McYY0q/wuY/VoNljDGmvEgVkRCcgS0QkZbAjxcZ5yqgg6pGAF8Cf7zI+IwxxlzirIBljDGmvJgF\n/BtoLCJvA2u4yLmxVPU/qpo14scmoNHFJdEYY8ylzkYRNMYYUy6o6ioR2Qr0BAS4R1WPFeEhJuLM\nsRWQiNwJ3AnQpEmTIjysMcaY0sQKWMYYY8qT/kAfnGaCFYFlee0gIquBQKORzFDV991tZgDpwNs5\nxaOqrwGvgdMHq8ApN8YYc0ko1iaCIvJLEdknIl+LyLQA4deLyHYRSRCReBHpk9e+IhIpIp+KyA4R\n+UBEqrvrK4rIG+76PSJi7eCNMcZ4iMhfgcnADmAnMElEXs5rP1UdrKodAvxlFa5uBYYDv9LyPHKU\nMcYYoBhrsEQkGHgZGAIcADaLyHJV9R4veA2wXFVVRCKAd4E2eez7OjBVVT8RkYnAg8BM4Cagsqp2\nFJGqwG4RiVXVxOI6R2OMMZeUgUDbrEKQiLwB5D7RVx5E5Jc4/bj6q+q5i0+iMcaYS11x1mBFAV+r\n6reqmgosAK733kBVz3g97QvFHdkpj31bAevc16uAUVnRAaEiUgEIwRkyN7noT8sYUx6JCGPHjvUs\np6enEx4ezvDhuc9TGx8fX+h5s7w9//zzVKlSxW/S4PzKLR3NmjXj2LHCdUV67733/ObZKsW+Brw7\nPzV2112MvwBhwCq3NcYrFxmfMcaYS1xxFrAaAvu9lg+463yIyEgR2QuswOkgnNe+u/ipsHUTTgYJ\nsBg4CxwCvgeeUdUTAY53p9scMf7o0aOFOS9jTDkUGhrKzp07OX/+PACrVq2iYUO/nzQ/3bp148UX\nX8z3cdLT0wOuj42NpXv37ixdujTfcV1MOvLrEitghQF7RCRORNYCu4HqIrJcRJYXJkJVvUJVG6tq\nJ/dvcpGm2BhjzCWnxIdpV9VlqtoGGAH8KR+7TAR+IyJbcDLLVHd9FJABNACaAw+ISIsAx3tNVbup\narfw8PAiOQdjTPkwbNgwVqxYATgFnpiYGE/Y559/Tq9evejcuTO9e/dm3759AMTFxXlquU6cOMGI\nESOIiIigZ8+ebN++HYDZs2czbtw4fvGLXzBu3Di/437zzTecOXOGuXPnEhsb61mfkZHB1KlT6dCh\nAxEREbz00ksAbN68md69exMZGUlUVBQpKSk+6Th+/DhDhw6lffv2/PrXv8a729Bbb71FVFQUnTp1\nYtKkSWRkZABQrVo1ZsyYQWRkJD179iQpKYmNGzeyfPlyHnzwQTp16sQ333xTZNe6mDwMXIMzXPts\nYJi77ln3zxhjjLloxVnA+oGfapfAmRvkh5w2VtV1QAsRqZPbvqq6V1WHqmpXIBbIytFvAf6tqmmq\negT4L1DgmZeNMaWcSPH85cOYMWNYsGABFy5cYPv27fTo0cMT1qZNG9avX88XX3zBnDlzmD59ut/+\ns2bNonPnzmzfvp3HHnuM8ePHe8J2797N6tWrfQpQWRYsWMCYMWPo27cv+/btIykpCYDXXnuNxMRE\nEtvkhj0AACAASURBVBIS2L59O7/61a9ITU1l9OjRvPDCC2zbto3Vq1cTEhLiE98jjzxCnz592LVr\nFyNHjuT7778HYM+ePSxcuJD//ve/JCQkEBwczNtvO4PinT17lp49e7Jt2zb69evH3//+d3r37k10\ndDRPP/00CQkJtGzZMl/XsaSo6ie5/ZV0+owxxpQNxTlM+2bgShFpjlM4GoNTCPIQkSuAb9xBLroA\nlYHjwKmc9hWRuqp6RESCgIeArPbu3+N0YH5TREJx5jl5vhjPzxhTzkRERJCYmEhsbCzDhg3zCTt9\n+jQTJkzgq6++QkRIS0vz23/Dhg0sWbIEgIEDB3L8+HGSk52uotHR0X4FoSyxsbEsW7aMoKAgRo0a\nxaJFi5gyZQqrV69m8uTJVKjg/JTXqlWLHTt2UL9+fbp37w5A9erV/eJbt26dp6nhtddeS82aNQFY\ns2YNW7Zs8ex7/vx56tatC0ClSpU8NWBdu3Zl1apVBbhyxhhjTPlRbAUsVU0XkSnAR0Aw8E9V3SUi\nk93wV3AGqBgvImnAeWC0O+hFwH3dqGNE5Lfu66XAv9zXLwP/EpFdOBNI/ktVtxfX+RljSkgJj4Id\nHR3N1KlTiYuL4/jx4571M2fO5KqrrmLZsmUkJiYyYMCAAsUbGhoacP2OHTv46quvGDJkCACpqak0\nb96cKVOmFPoccqKqTJgwgccff9wvrGLFiohb0xccHJxjXzFjjDGmvCvWPliqulJVW6lqS1V91F33\nilu4QlWfVNX2bsfgXqq6Ibd93fUvuOtbqeq0rFEI3REJb3Lja6eqTxfnuRljyqeJEycya9YsOnbs\n6LP+9OnTnkEv5s2bF3Dfvn37eprcxcXFUadOnYA1TN5iY2OZPXs2iYmJJCYmcvDgQQ4ePMh3333H\nkCFDePXVVz2FnRMnTtC6dWsOHTrE5s2bAUhJSfErDPXr14933nkHgA8//JCTJ08CMGjQIBYvXsyR\nI0c88X333Xe5pi8sLIyUlJRctzHGGGPKkxIf5MIYYy4l/8/encfHXZb7/39d2ZqtTduke5oudKOF\nlkIpZVPZQZTFXdGjgiIqKKg/RPke0aMe9bjviMiioqCiwAEVAT2yFmmRlhZaurfpnrRN26RpmuT6\n/XF/JjNJs0zTTCaTvJ+Pxzwyn/uzzDWTaTrX3Pd93eXl5e2WO7/xxhv53Oc+x9y5cw9LaGI9P1/8\n4hdZvHgxs2fP5qabbuLuu+/u8vHuvfdeLr/88lZtl19+Offeey8f+tCHqKioYPbs2cyZM4ff/OY3\n5OXlcd9993HdddcxZ84czjvvPOrr61udf8stt/Dkk08ya9Ys/vjHP1JRESqXz5w5k6985Sucf/75\nzJ49m/POO4+tW7d2Gt+73vUuvvnNbzJ37tw+W+QiWoB+aUe3dMcnIiL9iw3kRefnzZvnixYtSncY\nItKFV199lWOPPTbdYXTL/fffz0MPPZRUMiXt/67NbLG7d7tokZlNiO7Ghpf/Kvp5BYC739Tda3eX\n/v8REen7uvv/TyqLXIiIDGgPPfQQN998M3fccUe6QxnQ3H0DgJmd5+5zE3bdZGYvAr2eYImISP+l\nIYIiIilyySWXsGLFCk477bR0hyKBmdnpCRunof8HRUSkh6kHS0Qygru3zGWS/qkXhqxfSag2WxJt\n74naREREeowSLBHp8/Lz86murqa0tFRJVj/l7lRXV5Ofn5+S60drJ05x9zmxBMvda1LyYCIiMqAp\nwRKRPq+8vJzKykp27tyZ7lAkhfLz8ykvL0/Jtd292cxuBH6nxEpERFJJCZaI9Hm5ublMmjQp3WFI\n5nvczD4D3AfUxhrdfVf6QhIRkf5GCZaIiAwU74x+fjyhzYHJaYhFRET6KSVYIiIyILi7ukFFRCTl\nlGCJiMiAYWbHATOBlmoa7v7L9EUkIiL9jRIsEREZEMzsFuANhATrz8BFwNOAEiwREekxWmBRREQG\nircB5wDb3P2DwBygpPNTREREjowSLBERGSgOuHsz0GhmQ4AdwPg0xyQiIv2MhgiKiMhAscjMhgI/\nBxYD+4Hn0huSiIj0N0qwRERkQHD3j0V3bzWzvwJD3H1pOmMSEZH+RwmWiIgMCGb2K+BJ4Cl3X9FD\n1/wycCnQTBhy+AF339IT1xYRkcykOVgiIjJQ3AGMAX5oZmvN7H4z++RRXvOb7j7b3U8AHga+cNRR\niohIRlMPloiIDAju/g8zexI4GTgLuAaYBXz/KK65N2GzCPCjClJERDKeEiwRERkQzOwJQhL0HPAU\ncLK77+iB634V+A+ghpC4dXTc1cDVABUVFUf7sCIi0kdpiKCIiAwUS4EG4DhgNnCcmRV0dZKZPW5m\ny9q5XQrg7je7+3jgHuDajq7j7re5+zx3nzdixIieeUYiItLnqAdLREQGBHe/AcDMBgMfAO4ERgOD\nujjv3CQf4h7gz8At3Y9SREQynRIsEREZEMzsWuBM4CRgPaHoxVNHec2p7r4q2rwU6JHqhCIikrmU\nYImIyECRD3wHWOzujT10za+b2XRCmfYNhMIZIiIygCnBEhGRAcHdv2VmZwDvA+40sxFAsbuvO4pr\nvrXHAhQRkX5BRS5ERGRAMLNbgM8Cn4uacoFfpy8iERHpj5RgiYjIQHE5cAlQC+DuW4DBaY1IRET6\nnZQmWGZ2oZmtNLPVZnZTO/uvMLOlZvaymT1rZnMS9g01sz+Y2Qoze9XMTo3av2hmm83spej2xoRz\nZpvZc2a2PLpmfiqfn4iIZJQGd3eixYDNrCjN8YiISD+UsjlYZpYN/Bg4D6gEXjCzh9z9lYTD1gGv\nd/fdZnYRcBtwSrTv+8Bf3f1tZpYHFCac9113/1abx8shDPV4n7svMbNS4FBKnpyIiGSi35nZz4Ch\nZvZh4Erg9jTHJCIi/Uwqi1zMB1a7+1oAM7uXUMK2JcFy92cTjl8IlEfHlgCvI6xTgrs3EBaH7Mz5\nwFJ3XxKdU90jz0JERPqFqMjFecBeYDrwBXd/LM1hiYj0msamZip3H2BddS0As8YMYeQQDfjqaalM\nsMYBmxK2K4n3TrXnKuAv0f1JwE5Clac5wGLgk+5eG+2/zsz+A1gEfNrddwPTADezR4ERwL3u/j9t\nH8TMrgauBqioqOjucxMRkQwUJVSPAZhZlpld4e73pDksEZEe4+5s33uQtVX7WVdVy/qqWtZV1bK2\nqpZNu+o41OStji8rHsSssUOiWwmzxg6hYnghWVmWpmeQ+fpEmXYzO4uQYJ0RNeUAJwLXufvzZvZ9\n4CbgP4GfAl8mjKH/MvBtwjCPnOj8k4E64AkzW+zuTyQ+lrvfRhiKyLx581q/w0REpN8xsyHAxwlf\n/D1ESLA+DnwGWAIowRKRjLOnroG1VbWs2xkSqHXV4f766lrqGppajhuUk8WksiKmjRzMBbNGM6ms\niMllRTQ7LN9Sw/Ite1m2uYZnVlfR2Bw+GhcPymHmmCHMGhdPuqaMLCY3W/XxkpHKBGszMD5huzxq\na8XMZhPGwF+UMKyvEqh09+ej7T8QEizcfXvCuT8HHk4450l3r4r2/ZmQpLVKsEREZMD5FbAbeA74\nEPB5wIDL3P2ldAaWbo1Nzby8uYbte+spH1bIhNJCBufnpjssEYnUNTSyvqouJFBV+0NCFd321MVL\nDWRnGeOHFTCprIgFk0uZVFbIpLJiJo0oYsyQ/A57o+ZPGt5y/2BjE69t29+SdC3fUsO9/9rEgUPr\nAcjLyWL6qMEtvV0zx5Zw7JjBFOb1if6aPiWVr8gLwFQzm0RIrN4FvCfxADOrAP5IKEzxWqzd3beZ\n2SYzm+7uK4FziOZumdkYd98aHXo5sCy6/yhwo5kVEuZrvR74bsqenYiIZIrJ7n48gJndDmwFKty9\nPr1h9b5YQrVw7S4Wrq1m0fpd1CZ80w0wvCiPCaWFTBheSEVpEROGFzKxrJCK4UWUFedhpmFDIj2p\nobGZTbvrWnqfEnultu1t/Wdq9JB8JpUV8cbjxzC5rIhJZUVMLCti/LBC8nKOrndpUE42x5eXcHx5\nSUtbU7Ozrqq2VdL11+XbuPeFMAsoy2DyiOLDhhgOLcw7qlgyXcoSLHdvNLNrCYlPNnCHuy83s2ui\n/bcCXwBKgZ9Ef7Ab3X1edInrgHuiCoJrgQ9G7f9jZicQhgiuBz4SXW+3mX2HkNg58Gd3fyRVz09E\nRDJGy9e87t5kZpUDJbnqLKGaOrKYt5xYzoLJpVQML6Rydx0bdtWxobqODdW1vLB+Nw8t2UJzwmD6\norzslqRrQmkhE0qLmFBaSMXwQsYOLSBbczZE2tXc7GzdWx8lTqEnKjY3atPuAzQl/EMbVpjLpLIi\nTp9SFu+JKitiYllhr/cWZWcZU0YWM2VkMZeeMA4Ic7y21NSzfHMs6drLC+t28eBLW1rOGze0gJkJ\nSddx44Ywekj+gPmCxsKSIAPTvHnzfNGiRekOQ0REOhHNp53X9ZEdnt9EtLgwYWhgAWGurgHu7kOO\nPsojk6r/fxqbmlm2ZS8L11azcG01L6xrnVAtmFzKgsmlnDJ5OGXFg7q8XkNjc0i8oqQrMQHbtOsA\nDU3NLcfmZhvjhxVSEfV+xZKvCaWFlA8rJD83u8efr0hf5O5s2nWAJZV7WFq5hyWVNSzfXNOqt7gg\nN5tJZUVMGlHUqidqUmkRw4oys/dnV20Dr2zZy7KE3q51VbXEUo3hRXnR0MJ4T9ek0qI+XUyju///\ndJkGm1mpSp6LiEimcvd++8m+q4Qq1kM1f9JwRgzuOqFqKy8ni8kjipk8oviwfU3Nzra99WyormVj\ndR3rq+vYuKuWDdV1LFq/m/0HG1uONYMxQ/Kj5KuICWXRz9KQkA3RvC/JYDv21bN0Uw1LomTq5co9\n7I7mR+XlZDFzzBDedlI500cPCQUmRhQxcvCgftebM7wojzOmlnHG1LKWttqDjazYFnq5lm/ey/Kt\nNdz59PqWL2cK87I5dkzo6Tp2TKheOH5YIWOG5md0QY1k+hkXmtlLwJ3AX3wgd3mJiIikUaoTqiOR\nnWWMG1rAuKEFnHZM633uzq7aBjbsqouSr5CEbdhVxxMrtlO1v/XSlsOL8qhIGHY4uayI+ZOGM3Zo\nQUqfg8iRqjlwiJcra1p6p5ZW1rC1Jow4zs4ypo4s5vyZo5k9voQ55UOZNmrwUc+NymRFg3I4acJw\nTpoQL6bR0NjMqh37WL5lL69EPV33L65s1cOXZTCmpIBxwwooH1bA+GGF4efw8HP0kHxy+nAClkyC\nNQ04l1AK/Qdm9jvgrsSiFCIiItLz+lJCdSTMjNLiQZQWD+LEimGH7d9/sDEkXG2GHS5av5v/TZj3\nNXlEEWdMKeP0KWUsmFxKSYF6uqT3HGhoYvmWGpZU1rQkU+uqalv2TywtZP6k4cwuH8qc8hJmjS2h\nIK/fdpj3mLycrGiIYLyYRnOzs3nPASp3H2DT7joqdx+gclf4uXBNNX/au5nELp6cLGPM0HzKhxYy\nfngB5W0SsJGD89M6J/SI5mBF61X9GigirB1yk7s/l6LYUk5zsERE+r6jnYPVF3X0/09nCdWUkcUs\nmDw8zKGaVNqnEqqe1NDYzJqd+3lmdRXPrK7i+XW7qGtoIstgzvihLQnXiRXDBnTPgPSsQ03NrNy2\nL/RMRcP9Vu3Y31J8YvSQfGaXlzBn/FBml5cwe9xQSgqV8PeWhsZmttYcYNOuA1RGCVgsEdu0q44d\n+w62Oj43O/Swlw9rnYCVDytk/LACRiQ5RLO7//90mWCZWSnwXuB9wHbgF4SFGk8Afu/uk470QfsK\nJVgiIn1ff06w2iZUiXOXBkpC1ZWGxmb+vXE3z6yu4unVVSyprKGp2SnIzeaUycM5Y0qY8zF91OB+\nN6dFUqO52VlbVdvSK7Wkcg+vbNnLwcYwL2hoYW5Lr1Ts58gh+WmOWjpTf6iJLXsOsGl3SMBiidim\n3QfYvLvusGHJg3KyouGHIeFqm4iVFoUlKVJW5IKwMOOvCAsyVia0LzKzW4/0AUVERAa6nfsO8oE7\n/3VYQnXZ3LEDPqFqKy8ni1Mml3LK5FI+df509tYfYuGaap5ZXcVTq6v4yiOvAlBWPIjTp5Ry+pQy\nzphSpvlbAoT5gJv3HGhJpJZuqmHZ5hr2Rf/uCvOyOW5sCe9bMIE544cyp3wo44cXKFnPMPm52R0W\n5IEw3LNtz1csEUssShJTkJtN+bDu/w1JJsGa3lFhC3f/RrcfWUREZIDatreeyt0HlFB1w5D8XM6f\nNZrzZ40GYMueAy3DCZ9eXd2yFk/i/K1TjylVpcIM19Ts1B9q4sChJg40tPl5qIn6hibqou36Q03U\nHDjE8i17WVq5p6X3IjfbOHbMEC6dOzbqmRrKlJHFWr9tACjIy2bqqMFMHTW43f37DzaGBGxX66GH\n3ZXMEMHHgLe7+55oexhwr7tf0O1H7SM0RFBEpO/rj0METzjxJH/pxcXpDqPfcXdWbt/H06vCcMLn\n1+7iwKHW87fOmFLGXM3f6lHuTm1DE3UNjdQ3NLckPSEBauRAQlvbRCgxSUpMnGLJVOzYhsbmrgNJ\nYAZTRhRHvVJhqN+MMYMZlKMiFJK8VA4RHBFLrgDcfbeZjTzSBxIREZEgR9+Yp4SZMWP0EGaMHsKH\nzpzcMn/r6Wj+1o//sZof/n215m8lof5QE9W1DVTvP0j1/gaq9h9s2a6Kbe9voLr2ILtqGzjUdGSr\n+OTlZFGQmx1uednk52ZTkJtFYV4OwwrzKMgL2wW52eTnZVOYm0NBXrQdnVPYcl52dHzr+325jLf0\nb8kkWE1mVuHuGwHMbAKgtbBEREQiZvZp4FuELyWr0h2PBInztz59/nRqDhzi+bXVLQlX2/lbsYRr\nTEn/m7/V1OzsqWugujYkR1X748lTdW3Cdm0D1fsbWi0UnSg/N4uyqAT/mJJ8jh9XQmlxHkMLcynM\ny2mV4CQmQonb+TlZSn6kX0smwboZeNrM/gkYcCZwdUqjEhERyRBmNh44H9iY7likcyUFh8/fejqa\nv/XM6qrD5m+dMaWMBX10/lZsWF71/rbJUbRd2zqB2lXb0LK+WKIsg+FFgygrzqOseBDjhxdSWjSI\n0uI8yorzEu6Hn4V5yXx0FBnYuvxX4u5/NbMTgQVR0/X6dk5ERKTFd4EbgQfTHYgcmbFDC3jHvPG8\nY9543J0V2/a1lIP//aJKfvncBrIMZpcPpaw4D3dodqfZw1Aed09oC/fdwQnHxNscJzquuYNzoWXb\n25zbnHDNWFttQyP1h9qflzR4UE5LUjSxrJCTJg6jrCgvWvw5JE1lxWF7aEEuWRqyKtKjkv0aYhCw\nKzp+ppnh7k+mLiwREZG+z8wuBTa7+5Ku5vCY2dVEI0AqKip6ITo5EmahwtyxY8L8rYONTfx74x6e\nWV3FwrXVbK2pxwyyzLDo+CxL+IlhBtlZFrWFbYuOz4qd26rNyMqKnxu7VuJjhMc8/NzCvOyWoXql\nxXmURT1Nw4vyyM9VIQeRdOoywTKzbwDvBJYDsa9KHFCCJSIi/Z6ZPQ6MbmfXzcDnCcMDu+TutwG3\nQahi22MBSkoMyslmweRSFkwuTXcoIpJhkunBuoywFtbBVAcjIiLS17j7ue21m9nxwCQg1ntVDrxo\nZvPdfVsvhigiIn1IMgnWWiAXUIIlIiIScfeXgZZlS8xsPTBP85RFRAa2ZBKsOuAlM3uChCTL3T+R\nsqhEREREREQyUDIJ1kPRTURERDrg7hPTHYOIiKRfMmXa7zazAqDC3Vf2QkwiIiL92uLFi/ebmf5P\n7VgZoKGWndNr1DW9Rp3T69O16d05KZkqgm8mrE6fB0wysxOA/3L3S7rzgCIiIsJKd5+X7iD6KjNb\npNenc3qNuqbXqHN6fbpmZou6c15WEsd8EZgP7AFw95eAyd15MBERERERkf4smQTrkLvXtGlrf+lw\nERERERGRASyZIhfLzew9QLaZTQU+ATyb2rBERET6tdvSHUAfp9ena3qNuqbXqHN6fbrWrdfI3Dtf\nTN7MCgmr1Z8PGPAo8GV3r+/OA/Yl8+bN80WLujW0UkREeomZLdY8ARERyRTJVBGsIyRYN6c+HBER\nERERkcyVTBXBfwCHdXO5+9kpiUhERERERCRDJVPk4jPA/xfd/hN4CUhqXJ2ZXWhmK81stZnd1M7+\nK8xsqZm9bGbPmtmcqH28mf3DzF4xs+Vm9smEc94etTWb2byE9vlm9lJ0W2JmlycTo4iISCqZ2R1m\ntsPMliW0DTezx8xsVfRzWDpjTKcOXp9vmtmK6DPCn8xsaDpjTLf2XqOEfZ82MzezsnTE1hd09PqY\n2XXR+2i5mf1PuuLrCzr4d3aCmS2MPjsvMrP56YwxnTrKPbr7t7rLBMvdFyfcnnH3TwFvSCLQbODH\nwEXATODdZjazzWHrgNe7+/HAl4lPJGsEPu3uM4EFwMcTzl0GvAV4ss21lgHz3P0E4ELgZ2aWTBEP\nERGRVLqL8P9SopuAJ9x9KvBEtD1Q3cXhr89jwHHuPht4DfhcbwfVx9zF4a8RZjaeMEd+Y28H1Mfc\nRZvXx8zOAi4F5rj7LMKargPZXRz+Hvof4EvRZ+cvRNsDVUe5R7f+VneZYEWZW+xWZmYXACVJXHs+\nsNrd17p7A3Av4Y3ewt2fdffd0eZCoDxq3+ruL0b39wGvAuOi7VfdfWXbB3P3OndvjDbzaWdYo4iI\nSG9z9yeBXW2aLwXuju7fDVzWq0H1Ie29Pu7+t4T/01s+HwxUHbyHAL4L3MgA/8zTwevzUeDr7n4w\nOmZHrwfWh3TwGjkwJLpfAmzp1aD6kE5yj279rU6mh2cx4RdghOxuHXBVEueNAzYlbFcCp3Ry/FXA\nX9o2mtlEYC7wfFcPaGanAHcAE4D3JfxxTjzmauBqgIqKiq4uKSIikgqj3H1rdH8bMCqdwfRxVwL3\npTuIvsbMLgU2u/sSM0t3OH3RNOBMM/sqUA98xt1fSHNMfc31wKNm9i1Cp8tpaY6nT2iTe3Trb3Uy\nVQQndTO+pEXduFcBZ7RpLwbuB653971dXcfdnwdmmdmxwN1m9pe25eTd/TaioYjz5s0b0N/4iIhI\n+rm7m5n+P2qHmd1M+HL3nnTH0pdES+h8njA8UNqXAwwnDPc6GfidmU32rtYnGlg+Ctzg7veb2TuA\nXwDnpjmmtGqbeyR+eXEkf6uTqSL4ls72u/sfO9i1GRifsF0etbW9/mzgduAid69OaM8lPMF7OnmM\njmJ61cz2A8eRZEEOERGRXrTdzMa4+1YzGwMM6OFL7TGzDwBvAs7Rh+LDHANMAmK9V+XAi2Y23923\npTWyvqMS+GP03vmXmTUDZcDO9IbVp7wfiBWS+z3h8/iA1UHu0a2/1clUEbyKkNFeEd1uJ3TXv5nw\nh68jLwBTzWySmeUB7wIeavNEKoA/EobzvZbQbtFjvuru30nmiUSPkxPdnwDMANYnc66IiEgve4jw\n4Ybo54NpjKXPMbMLCXOLLonW45QE7v6yu49094nuPpGQTJyo5KqVB4CzAMxsGpAHVKU1or5nC/D6\n6P7ZwKo0xpJWneQe3fpbncwcrFxgZmz8YZS93eXuH+zsJHdvNLNrgUeBbOAOd19uZtdE+28lVCwp\nBX4SfQPT6O7zgNOB9wEvm9lL0SU/7+5/jsqv/xAYATxiZi+5+wWE4YU3mdkhoBn4mLvrH5KIiKSV\nmf2WUH23zMwqgVuArxOGLF0FbADekb4I06uD1+dzwCDgsejzwUJ3vyZtQaZZe6+Ru/8ivVH1HR28\nh+4A7ojKkjcA7x/IPaEdvEYfBr4fdVDUE9UoGKDazT3o5t9q6+q9ZmavuvuxCdtZwPLEtkw1b948\nX7RIIwhFRPoyM1scffkmIiLS5yXTg/WEmT0K/DbafifweOpCEhERERERyUzJVBG8NhqW97qo6TZ3\n/1NqwxIREREREck8yfRgAbwI7HP3x82s0MwGR4twiYiIiIiISKTLKoJm9mHgD8DPoqZxhMosIiIi\nIiIikiCZMu0fJ1TW2Avg7quAkakMSkREREREJBMlk2AddPeG2EZUynHAlrkUERER6WvMrNTMXopu\n28xsc8J2XptjHzWzwV1cr9LMhnbQfl/C9rvMrEcWqDWzr5jZ9T1xLZF0SmYO1j/N7PNAgZmdB3wM\n+N/UhiUiIiIiyXL3auAEADP7IrDf3b+VeEy0mKpF64cejVPMbLq7rzzK6/SYhOfWnO5YRJLpwboJ\n2Am8DHwE+DPw/1IZlIiIiIgcPTObYmavmNk9wHJgTGLvlJn9r5ktNrPlZvahJC/7bcIirG0fq1UP\nlJmtMLPyKIZlZvYrM3vNzH5pZheY2bNmtsrMEte5m2tmC6P2KxOudZOZ/cvMlprZFzp6bkf8Aomk\nQKc9WGaWDfzS3a8Aft47IYmIiIhID5oB/Ie7LwIInT0t3u/uu8ysEFhkZve7++4urvdb4Fozm3QE\nMUwH3gGsIFSnrnf308zsrYQv898WHXc8cBowBHjRzB4BTgIqgFMAA/5sZqcBO9o+N5G+oNMeLHdv\nAia0HbsrIiIiIhljTScJyA1mtgR4DigHjknieo2EXqybjiCG1e7+SjSE7xXgiaj9ZWBiwnEPuHu9\nu+8AngROBs4HLgL+TUjOpgDTouM7e24iaZHMHKy1wDNm9hBQG2t09++kLCoRERER6Sm17TWa2bnA\n64AF7n7AzJ4G8pO85l3AjcBrCW2NtP7yPvFaBxPuNydsN9P682jbQmpO6LX6irv/ok38U+jguYmk\nUzJzsNYAD0fHDk64iQxczYdg5zOw7ldQX5XuaERERLqjBNgVJVezCL1FSYkqTP8A+GRC83rCcD7M\nbD4wvhsxXWZmg8xsBHAmsAh4FLjKzIqia5ebWVk3ri3SKzrswTKzHHdvdPcv9WZAIn2SO9Qsh22P\nh9uOf0Lj/rAvOx8mvg9mXA8lM9Mbp4iISPIeAa42s1eAlcDzR3j+z2ld7OL3wHvNbBmwkDAKGrND\nyAAAIABJREFU6kgtA/4JlAK3uPt2wpyrGcDCaP7YPuA93bi2SK8w9/aXtDKzF939xOj+D939ul6N\nrBfMmzfPFy3SsF3pQO2mkExtfyL8rN/eev+QGVAwBrb/I9425gKY8SkYfR60nkQsIt1kZovdfV7X\nR4qIiKRfZ3OwEj8dnp7qQNKi+VC6I5C+pGE3bP+/eC/Vvtda7y8YA6POhdHnwuhzoHBcaK9ZASu/\nD+vuhq2PhlvJLJh+PUy8AnIKev2piIiIiEh6JNuD1XK/P5k32XzRj46Pf2ge+TrILU53WNJbmuph\n57PxhGr3YkhcnzBnMIw6K55QDTm2816pg9Ww+jZ47YdwYGtoG1QGUz8KUz8GBaNT+3xE+in1YImI\nSCbpLMGqA1YTerKOie4Tbbu7z+6VCFNo3jFZvujLCc/fcqDs1PgH6tL5kJWbvgClZzU3wZ6XooTq\nCdj5VEiyYrJyw+8/lnCXngxZyRTabKOpATb+DlZ8F3a/GF07Dya8G2bcAMPm9MzzERkglGCJiEgm\n6SzBmtDZie6+ISUR9aJ5807yRY98J96DsetfbXowimHkG+IJV8kszavJJO6wf01IprY9Dtv/Dg27\nWh8zdE70+z0XRp4JOUU9+/g7nwqJVuWDtFSeHXUWTL8Bxl0MlkwhT5GBTQmWiIhkkg4TrIHgsCIX\nDXtCdbhYwrV3ResT8keHRGv0uTDqHCjqTvVRSan6HbDt77A9+h3WtvkeoGhCKEAx6hwYfTbkj+yd\nuPatgZU/gLV3xKsPDp4K0z8Jkz/Qs4mdSD+jBEtERDKJEqzOqgjWbU7o/Xg8Pq8mZsj0aDjZOaFX\nIm9oagOWwx3aH3qJYsP+9ixpvT9vOIw6O95LVTw5vb2QDXtgzS9CslW3MbTlDoUpV8O0a5W0i7RD\nCZaIiGQSJVjJlml3h72vJiRc/4DGffH9lgXD58U/yJedGtZHkp7VfAiqXwi/h+2PQ9VzratBZufD\niDPjv4dhJ/TNYXjNjVD5pzB8sOq50GbZUPH2MHywbH564xPpQ5RgiYhIJkkqwTKzAqDC3VemPqTe\nc1TrYDU3Rh/0H+/gg34BjDij73/QzwQHd8GWR6DyAdj6WP9LbKsWhkRr0/3gTaGt7LRQEKP8su4V\n2hDpR5RgiYhIJukywTKzNwPfAvLcfZKZnQD8l7tf0hsBplKPLjTcWAs7norP32o7VG1QaRiqNuqc\nvjFUra+r3RgKQ1Q+EObFxRIPiIZmxubCvQHyhqUtzB5VuzGUeF/9czhUE9qKJsK06+CYqyCvJK3h\niaSLEiwREckkySRYi4Gzgf9z97lR28vufnwvxJdSPZpgtdVSbOEJ2PZYO8UWJsZ7XUadDfkjUhNH\npnCHmmWw6YGQVMXKm0Monz/qDaE3Z9yboagibWH2ikP7Ye2dYfHi/WtCW87gkGRN/wQUT0pvfCKp\n1lgLdZUtNzvmA0qwREQkYySTYC109wVm9u+EBGtpv1gHK5UJViJ32L823rvVWbnwEWeEYW4Fo1If\nV7o1N0HVsyGhqnwgvEYxOUUw5qIoqXpj/+mlOhLNTbDl4TB8cMc/Q5tlhddk+g0w4nT1gkrmObQf\n6ja1SqBatg9UQu0mOLSn1Sl2BUqwREQkYySTYP0CeAK4CXgr8Akg192vSX14qdVrCVZb3gy7X4on\nXG0XvIXQw1V2KpQtCD+HzoHsvN6Ptac1Hgi9epUPQOVDcHBnfN+gEVB+SUggRp+beXOpUmnXi7Di\ne7Dx3vhcv+HzwjytirdrQWzpGw7tDYlS7aaQLLVNoOoq48NfO5M1CArLW252+j1KsEREJGMkk2AV\nAjcD50dNjwJfcff6js9qOfdC4PtANnC7u3+9zf4ZwJ3AicDN7v6tqH06cF/CoZOBL7j798zsPmB6\n1D4U2OPuJ0TnfQ64CmgCPuHuj3YWX9oSrLaa6mHns6Fnq+o5qP5XfK2kmOx8GH4SlC6IJ16F49IT\n75Fq2A2bY0Uq/hqG/8QUT4byy0NSVXYqZGWnL85MULcFVv0EVt8KB6tDW8G4UOJ9ytUwaHh645P+\nyT0kRu0lTInbiQVoOpKdDwXlYUmCgvKERGp8/P6gsla9s5qDJSIimSSZBOtEd3+x04PaPy8beA04\nD6gEXgDe7e6vJBwzEpgAXAbsjiVY7VxnM3CKu29os+/bQI27/5eZzQR+C8wHxgKPA9PcE6sjtNZn\nEqy2mpugZjlULwwJV9XCwxc9hvCBJNbDVXYqDJsL2YN6P9721G5qU6SiMb5v+EkhoSq/DEpmaZhb\ndzTWwfpfh16tva+GtuxCmPx+mH49DJmW3vgkMx3aH/7N7nutTRK1qfUXIx3JLmidKLV3P2/4Ef+b\nV4IlIiKZJJkE6x/AaOAPwH3uviypC5udCnzR3S+Itj8H4O5fa+fYLwL7O0iwzgducffT27QbsBE4\n291Xtb2+mT0aPf5zHcXYZxOs9hzcFXq2qp6LermeD8NxEmXlwbATE5KuBeFDTW8kMO5Q80pY26ny\nAdi1OL7PsmHk66Oeqkv6f5GK3uTNsPVvYZ7Wtr/F28deHIYPjjpbCax0bd8aeO3HsPaOjofwZReG\nXqdYotReL1TesJS835RgiYhIJulygR13P8vMRgPvAH5mZkMIidZXujh1HLApYbsSOKUbMb6L0DPV\n1pnAdndflfB4C9s8XoaMoUvCoOEw9sJwg/DBuubV1r1cNa+E7eqFsPJ74biCsfGEq3RB6D3KKeiZ\nmJqbwmNVPhCq/+1fHd+XXRhiLb8sfNjX0LXUsKz4+2LPclj5XVj367Bu2JZHYOjskGhNeHff6d2U\nvsE9VDhd+cPwXiH6sq3stDAHsm3PU26JknUREZEkJLWCqbtvA34Q9WbdCHwB6CrBOmpmlgdcAnyu\nnd3vpv3Eq6trXg1cDVBRkcE9KZYFQ2eF2zFXhbaGmoRerijROrAFNv0x3CCUPB92QusCGkUTk//g\n1FQP26IiFZsfCuXoYwaVwbiEIhU9lchJcobOglNuhzn/DatuDXO19iyFhR+El26CqR+DqddA/sh0\nRyrpdGgfrL0bVv0I9kZrx2flhSR8+nXhSxgRERHpti4TLDM7FngnoYJgNaH4xKeTuPZmYHzCdnnU\ndiQuAl509+1tYsoB3gIkfhJI6vHc/TbgNghDBI8wnr4trwTGnBduEHq59r7WppdrGexaFG6v/TAc\nlz8qJFuxAhql80KZ9JiGPQlFKv7Sei5G0SQYHytScZqKVPQF+SPh+C/AzM/Cht+G4YN7lsLLt8Dy\n/4ZJ7w3ztIYel+5IpTftXQWv/SissRYrRlEwDqZ9DI75sNbiExER6SHJzMF6jpBU/c7dtyR94ZAE\nvQacQ0h0XgDe4+7L2zn2i7QzB8vM7gUedfc727RfCHzO3V+f0DYL+A3xIhdPAFMzsshFKh3aB9Uv\nJPRyPRevRhdj2WFoWen8sDbV9n+0LlIxbG68SMXQ4zVsqK9zD7/DFd8N62rFjD4vDB8cc0HoEZX+\nx5th66NhGODWv8TbR5wZeqvKL8uIEv+agyUiIpmkywTrqC5u9kbge4Qy7Xe4+1fN7BoAd781mtu1\nCBgCNAP7gZnuvtfMighFLCa7e02b694FLHT3W9u03wxcCTQC17v7X+jEgEyw2nKH/WvixTOqFobe\njsS81LJh5OuipOpSKJqQvnjl6Ox9DVZ+H9beBU11oW3IjNCjNel9kFOY1vCkhzTUhN/xqh/Dvmia\nanY+THhPSKyGnZDW8I6UEiwREckkHSZYZvY7d3+Hmb1My+znsAtwd5/dGwGmkhKsDjTWQvUi2PUC\nDBoJ4y6GQaXpjkp60sFdsObnoWfjQDSSdlApTPkITP04FI5Nb3zSPTUrwjDAdXfH19IrHA/TPg7H\nfChj/x0rwRIRkUzSWYI1xt23mlm73RVt16TKREqwZMBrPgQb/xCGD+56IbRl5ULFO8PwweEnpjc+\n6VpzUxj+t/IHoSpgzMg3hN6qcZdAVlL1jPosJVgiIpJJkpmD9Q13/2xXbZlICZZIxB2qng2JVuWf\nwtwdCOuXzbgBxr5JBUz6moY9sOaOMAxw/9rQll0AE98L066FYRk/yKCFEiwREckkySRYL7r7iW3a\nlmqIoEg/tX9dGDq45vZ4tbniY2D6J2HyByG3OL3xDXQ1r4Tfz7pfxufRFU0ISdXkK/vlmnNKsERE\nJJN0NkTwo8DHgMnAmoRdg4Fn3P29qQ8vtZRgiXTi0F5Y84sw9Kx2fWjLLYEpH4Zp10FRBq8jl2ma\nm0IFyJU/gO1/j7ePOicMA+znPYxKsEREJJN0lmCVAMOArwE3Jeza5+67eiG2lFOCJZKE5qawBtrK\n78LOZ0KbZcP4t4bhg2UL0htff3ZwV0hyV/0knuRmF8Kk/wg9VkNnpTW83qIES0REMknSZdrNbCSQ\nH9t2942pCqq3KMESOULVL4R5Wht/H18brXRBSLTGvyXjiyn0GXteDsMA1/8amg6EtuLJ0TDAD0Le\n0PTG18uUYImISCZJZg7Wm4HvEBbv3QFMAF5194z/6lQJlkg31VWGcuCrb4OG3aGtsAKmfyKUA88r\nSW98mai5ETY/FIYB7vhnvH30+WEY4JiL+vUwwM4owRIRkUySTIK1BDgbeNzd55rZWcB73f2q3ggw\nlZRgiRylxlpYezes/F58Qduc4lBsYfonYPAx6Y0vE9RXhYIiq34CdZtCW04RTPpA6LEqmZHW8PoC\nJVgiIpJJkkmwFrn7vCjRmuvuzWa2xN3n9E6IqaMES6SHeDNs+XMYPthShMGg/NKwePGoN0B2fmdX\nGFjqd8Lmh2Hzg7D1UWiqD+3FU6JhgB9QL2ACJVgiIpJJkpkwscfMioEngXvMbAdQm9qwRCSjWBaM\ne1O47V4SerTW/yYUx6h8IPTIjD4Xxl4cboVj0x1x79u3GiofDLeqZ+JrjQGMuTD0+I25ILyWIiIi\nkrGS6cEqAuoBA64ASoB73L069eGllnqwRFLowLYwR6vyT7D7pdb7hs0NydjYi6H05P6ZVHhzKApS\n+WDoqap5Jb4vKxdGnhV6+MovgcLy9MWZAdSDJSIimSTpKoL9kRIskV5SVxmGEG5+BLY9Hl8gF2DQ\nCBj7Rhh3cSjokDg0zh2aG6D5UHyB472r4NAeaKwLFfaaDkDesDAMEeC1n0D99tAeO2bYnNBDBPCv\na0IhjtIUfF5vOhiGSFY+GApWHNga35dbEp5n+aWhx0pDAJOmBEtERDJJh0MEzWwfkJh9WbRtgLv7\nkBTHJiKZbseTsOvfocdm2sdgytXw6ndh659h/3o4sBkO7oR1d4eb5YRkqbEOaI7mJjmUzocLng/X\nfPptsGdp68cZdVY8wVrxHdi/BrILwi2nMF4+3j3MeVr9s5DkHPefMOK0o3uODbtD4lj5IGz9KzTu\nj+8rHB/1Ul0KI14H2XlH91giIiLS53WYYLn74N4MRET6kYY98OKnYO2dYTt/ZEiwAHb/G/auDInP\n4GmhzbIgd3BYyPjgzvh18obBkBkw4szQO5Q9CE78Tki8YslTdkE4LubiZZCV1/6wQzN445LQy7Xi\n2/DY6SE5O/lnMGRq8s+vdkM0n+qBkER6U3zf0DnxpGrY3PCYIiIiMmAkNUTQzM4Aprr7nWZWBgx2\n93Upjy7FNERQJAV2vwT/d3EYpjfzszD9hjC8L5kqgg27YcujsOWRMKSwYVd8X04RjD4vmrv1RigY\nc3RxNtaGOWKrboXzn4VBpaG636Cyw5Mi95AYxopU7FkS32fZMPL1IaEadwkUTzy6uOQwGiIoIiKZ\nJJkiF7cA84Dp7j7NzMYCv3f303sjwFRSgiWSAof2wTPvhtlfguEndf86zU1Q/XxItjY/fPiwwOEn\nxasSls7rfqEM95BQucOjJ4e2Wf8Pxl4EO5+KJ1WxNaogrPU15sKQVI19Iwwa3r3HlqQowRIRkUyS\nTIL1EjAXeNHd50ZtS919di/El1JKsER6SOVDsPIH8IZHwjC+VKjdFBXKeBi2PxGKV8TkjwyJztiL\nYcz5kNuNKaLNTbDqp7DsK3BwO5AFJJRSLxgTeqjKLw3DCrWuV69RgiUiIpkkmXWwGtzdzcyhpWy7\niAgcrIZFn4ANvwlzj+q3Q1FFah6raDxM/Ui4NR6A7f+I927VbYS1d4Wb5cDI14Vka9ybYMi0zq9b\ntzlU/Kt8MFQAbD4U7YiSq7FvhuP+39H1komIiMiAkUwP1meAqcB5wNeAK4HfuvsPUh9eaqkHS+Qo\nbPojvPBROLgrVOObeVN6quS5Q83yeLJV9WzrRXyLp4QS8OPeFCr5ZeVCzbL40L9dCX8DLAvKTo/m\nU705HDf24tArt/5eaNwLk96ful46aZd6sEREJJMkW+TiPOB8Qon2R939sVQH1huUYIl0U3MTPDof\ncFhwZ1hnqq84uCuUYt/8cCib3qpQRnEoZlG7Id6WXRCGFZZfFpKp/BHtX/ept8OmP4RFgY+9Mayl\nlVOQ2ucigBIsERHJLEe80LCZZQHvdvd7UhNS71GCJXKENv0RRr4hFHWo2xKSkazcdEfVseZGqFoY\nVSV8BPa8HNoHjQg9VOWXwuhzQ7n3rriHRZKXfTkUv8gfBSd+Dya+K7XPQZRgiYhIRulsoeEhwMeB\nccBDwGPR9meAJUDGJ1gikqT6HfDCx0MPznFfCBUCC8emO6quZeXAyDPC7YSvQe1GOFgV5otlZR/Z\ntcxgzHnhtuPJUAwjJ5qS2lATfuaV9Gz8IiIiknE6K3LxK2A38BzwIeDzhCGCl7n7S70Qm4ikmzts\nuA8WXxvKr8/5Ghz7mXRH1X1FFT1ThGPk6+Dsv8W3X/0feO3HMO06mHF9GIYoIiIiA1JnCdZkdz8e\nwMxuB7YCFe5e3yuRiUj6vfpNeOmzUDo/zLUqmZnuiPqmirfD3tdg+Vdh5Xdh6sdgxqegYHS6IxMR\nEZFe1lmCFatVjLs3mVmlkiuRAcAdGmshtxgmvjeUPZ/+iTDcTto37AQ48/dQ8wos/29Y8W2oXQ9n\n/C7dkSWnqT6sM1a3ERr2QMVbQ/vmP8OBytbH5g0LCSWEKoz121vvHzQSxl8W7m/8PTTsbr2/YFyo\n6giw/rfQuK/1/qJJYRgmwNq7ofng0T03ERGRXtZhkQszawJqY5tAAVAX3Xd378ZKnn2LilyItFG3\nBV64JgwHPOcJrfvUXftWh0R1yNTQs7Xi2zDzs1A8ufdjcQ/zzuo2huqJB6tgytVh34ufhvW/DnPs\nYgor4LKoyuLfL4Btf2t9vZJZcPGycP9vp0HVc633ly6AC6K2R44Ppe4TjT4vPrzywUkhEU00/i1w\n5v3h/v1lcLAauwIVuRARkYzR4VfS7n6EM8BFJGO5w7pfweJPQnM9zP5qaLN0B5ahBk+J369+PiyA\nvOYXoUdw1udgyPSee6ymeqirDAU8ajeERGrWzaHHcekX4dVvhGNaGEz+YKj+WHwMjLs0zEsrjOan\nFU2MH3r6b6CpTQ9SYk/m6x5MWJg5tj+hquQ5T4RKjokS1xA7fyF4U5v9+fH7b1wWrWk2rvPXQERE\npA854jLtR3RxswuB7wPZwO3u/vU2+2cAdwInAje7+7ei9nzgSWAQIQn8g7vfEu37JvBmoAFYA3zQ\n3feYWS5we3StHOCX7v61zuJTD5YIofdi4ZWhjPmIM+CUX8CQaemOqn+p2wyvfgtW/ywkO5PfD6fc\nESoTdqZV71N0q9sYesPyR8KK78GLNxx+3qUboWh8GMK38+l48hT7mTe868fuQ1SmXUREMknKEiwz\nywZeA84DKoEXCOtnvZJwzEhgAnAZsDshwTKgyN33R4nT08An3X2hmZ0P/N3dG83sGwDu/lkzew9w\nibu/y8wKgVeAN7j7+o5iVIIlQhgO+OgpMPUamHathgWm0oHtoQgGFsrGA+x8DpoOxJOouo0w/QYY\nOgvW3QPPvbf1NbIL4bwnYfhJUPU8bHssofepIsxxSuwl6geUYImISCZJ5az1+cBqd18LYGb3ApcS\nEh8A3H0HsMPMLk480UPWtz/azI1uHu1LnBCwEHhb7DSgyMxyCPPFGoC9PfycRPqH2k3wytfgxO9A\n7mB441IVsegNBaPghISO/B1PwuOvb3PMGBj/9pBglS2Ak37Qce9T2SnhJiIiIn1GKj9RjQM2JWxX\nAkl/Eoh6wBYDU4Afu/vz7Rx2JXBfdP8PhARuK1AI3ODuu9q57tXA1QAVFT2wHo5IJnGHNbeH4gY0\nw8T3wYhTlVyly7AT4Izfh3WzCiugsLx179PgY2D6demLT0RERI5Yn/1U5e5NwAlmNhT4k5kd5+4t\n5ajM7GagEbgnapoPNAFjgWHAU2b2eKwHLeG6twG3QRgimPpnItJH1G6A5z8chpSNOivMtSqelO6o\nBrbcIVDxtq6PExERkYyRyskWm4HxCdvlUdsRcfc9wD+AC2NtZvYB4E3AFR6fRPYe4K/ufigaevgM\noDH7IjHPfSCU1D75p3D240quRERERFIglQnWC8BUM5tkZnnAu4CHkjnRzEZEPVeYWQGhUMaKaPtC\n4EZCQYu6hNM2AmdHxxQBC2LniAxY+9fBwWik7Pxbw/pFU69RIQsRERGRFEnZEMGoyt+1wKOEMu13\nuPtyM7sm2n+rmY0GFgFDgGYzux6YCYwB7o7mYWUBv3P3h6NL/4hQvv2xUGyQhe5+DfBj4E4zW05Y\nvedOd1+aqucn0qd5M6z6Kbz0WZjwbjjl5z279pKIiIiItCul62D1dSrTLv3SvjXw/FWw458w5gKY\nf1uoPieSoVSmXUREMkmfLXIhIt2w+WF4+p2QlRuKWEz+YEYtKCsiIiKS6ZRgiWQid9i7EnY+GdZS\nGnsxTHw3DDsRxr0ZTvxWKPktIiIiIr1qYCdY3gh1W8IaQJYNlhO++c8pTHdkIu1rboJn3w3b/w8O\n7gxt+aOhdH64XzgWzrg3beGJiIiIDHQDO8Gq3QAPjGvdVjQBLl0f7v/9Atj+RJR4RUlYyXFw/jNh\n/5OXw+4l0b7omGFz4dS7w/7n3h8eo+X8HBh+Esz+Uti/+Hpo2N06uStbAJPeF/bvWwP5IyF3cMpf\nCuljmg/BrhdD79SOJyG3GE7/LWRlQ2MdjL0IRr4ORrwOBk/RMEARERGRPmJgJ1iDRsD8b0BzY+jN\n8ibIKYrvn/geKD057Isdkz8qvn/YiZAzODo3OqZgTHy/ZQEOzfXQGB1zsCq+f9diqKsMj+uN0HQQ\nDu2NJ1h/mQuN+8JipIXjw5Cv8W+DKR8KQ8S2PQ6F40J77pCUvlSSYs2HQoIN8OJnQgXApmgVgiHT\nYcwb48e+4eHDzxcRERGRPkFVBPtaFUFvDomZN8OGe0MCVlcJdZvCz/FvhVk3QUMN/GFo/LycwVA0\nHmZ8Go65EhprYf1v4olZYTnklqino684tD8s+rvjn6GHave/4S3bw/DUVT+FmleiHqozoWB0uqMV\nSStVERQRkUwysHuw+qLYArCWFXrQOpJdAOc9DbWb4EBCEpZbEvbvXw//urr1OTnFcPKtMOmKcN7q\n26LkKyEJyxumJCwVGnZDVj7kFMC6X8HCD4aeS8sOPaFTPhKG/uUUwtSPpjtaEREREekmJViZKjsP\nRpwOIzrYP2QGXLqhde9XXSUMmRb273sNXvnv0FOW6HUPQfmboepfsOonMKgsDD+M3ca9GfJHwMFq\nqN8Rb88piieHAge2w86n4nOo9iyFM34PFW8N8/Bm3hR6qMpO1Rw7ERERkX5ECVZ/lZUdFpftaIHZ\n0efAOw9C/bbWvWDDTgj7D2wJBT4O7orPBQK46N8hwdr4e3ghsafFQqJw4Ysw+BhYfy+suyshAYt+\nHvuZULCh5lWo3dg6ecsrCUMdM7EHrXYTNDeE575/HTw0ObRnF8KI0+D4L8HQ40NbyUyY85X0xSoi\nIiIiKaMEayDLyokPDWxr/GXhBqF4R+O+UIAjP5oPNPo8OP3e0HaoJvq5FwYNj85pCMPiajfE9zXu\nh2M/FfavvRNe/ebhj/uuBrBcWPKfsOn+hASsJFx7/s/CcWvuCFX2EuWVwJyvhvurfgp7lrfenz8K\njv/PcH/F92Df6tb7iypg5o3h/vKvh4Qz0eCpMOOT4f7LX4L6nXBoD+x8BmrXw6T3w6l3QdFEOPF7\noSLk8BPjxStEREREpN9TgiVdy8oJc7PyhsXbBh8Tbh2Z/B/hlqi5KT6McPonofyyePIVS8BiyUjx\nRCiZFd93YDOQMASx6jmo/FPr6+ePjidYO56CbX9rvb94SjzB2v53qHq29f6hc+IJ1ra/hWF9icpO\njydYmx+B2rVhXlXZKTDjBhh1TthnFj9ORERERAYUVRHsa1UERUSkFVURFBGRTKKqBCIiIiIiIj1E\nCZaIiIiIiEgPUYIlIiIiIiLSQ5RgiYiISJ9mZp82Mzezh9MdS7LMbF4U816z3l1/JBNfLwnMbFn0\nu3tbumPpSWb2reh53ZXuWHqDqgiKiIhIrzCzCcDVwDnAVGAwsBvYASwF/gY84u5VbU6dE/1sU961\nT4sWlmSp92BFMTP7EFAO/Mndl3RwWCa+XgOemeUD06PNl3rwuvOANwHr3P3unrruEZob/eyx59WX\nqQdLREREUs7MbgReAz4PnAIMBfYBw4HjgPcAdwHntnN6IbASeK43Yu0hsQSrJz8oG/BN4BagoJND\nM/H1kvDvIIfw72JND173fYT3zKk9eM0jFUv6B0SCpR4sERERSSkz+xLwBaAZuB34IbDC3RvMLAeY\nDVwKfBhY3PZ8d8/E4VI9nmABUwiJaWNn183Q10tS1OsJxJa5SMvaRGY2HiiNNpVgiYiIiBwNM5sF\n3BxtXu3uv0jc7+6NwIvAi2b230BDL4fY46KeptnRZk9+oDw5+vmKu9f34HWlb+jxXh4zyyY+PO+w\nLy96SSxx3ODue9IUQ6/SEEERERFJpSuAbGALcEdnB7r7wbbf3JvZJ6PJ8X9te7yZ/TvmodIjAAAg\nAElEQVTa9x4zG2Fm3zSzVWZ2wMzWmtl/Rh8wY8dfbGZ/NbOdZlZnZn83sxPaXjc69uHo2p/tKF4z\nWxMd86Y2uyYT5pc1AcvanJNjZueb2XfM7Hkz22xmDWZWbWZ/M7OL23mcd5qZA/dETbOjx43d9iQc\n2+HrFe03M3tb9PwqzeygmW0ys5+bWUUH55wUXXNfdP4cM7szOq/OzF42s48dTTEPM8s3s4+a2aNm\ntj0hrsfM7ONmVtzOOUXR8302+p3Wm9mrZnaLmRV28Dix1+dv0XP5gJk9bWY1ZlZlZveb2eSE4yea\n2Y+i99NBM1ttZtd28hwORdefYmZvMbM/m9mO6He8wcy+YWYdDe+MvRfbnVsXPd/rzeyf0fulwczW\nm9lPzGxsm2OzzKyW0NsZe7wX27xvLm9zTq6ZXRn9DmIxbzGzX5nZdDphZjOi90SlhX9/y8zsw8k8\nr37J3Qfs7aSTTnIREenbgEXeB/7P0K17N+B+wIGXu3n+HdH532jTngscjPZ9ENge3d9DGIro0e3r\nhATv9mj7ILA/Yf82YHA7j1sZ7b+gg7hKEh5nfJt9b43al7dz3lkJj90M7ALqEtoc+Fibcz4bxdkQ\n7a+JtmO3h7t6vaJ9pcBfEx7nUJvXogo4vp3zroz2Pwd8OjqvmVCgJDHu67v5Oz4RWJtwnQagmpCg\nxtravsZzgVUJ++sS3g9O6K0p7uT99GPg4ej+gTa/gzVAEXBJ9Fo3R++rxOf6jnauPS/atx+4LeHY\nvW3O/Qtgbc616LEcOLmDa29MuMaB6Bbb3g5MSTh+YvTeiF2zoc17ZhtwTMLxxwAvt/kdJL439gOn\ndvD7ez/x96YnPKYDXyT+N+BL6f571Fs39WCJiIhIKtVEP2e209OTjNiwqbbffs8A8qL73wX+SfiA\nORQYATwe7fsI8CPgMkJv2uDodhnhA/woQoGNFmZWCoyLNjsarnUC4UPxbnff1M6+js4dSUj6ziAk\nAMPdvZAwv+q+6Jivm9mg2Anu/g13H03oBYTw4X50wi3xdW339Yp6dB4BLiAkJhcD+YTXYk4Uaylw\nTzs9UbFrTgW+ShjyWeruwwivX+y1/nQ7z7dTZjYT+DswCXgSOBsodPdSQhL7DuDvia+xmU0jVJyc\nQkgY50avYSwpqiYkbV9v5yFjz+UKYBahul5xdLsu2jcZ+DLwO+BXwNjofVUB/Ds65oZOrl1EmE94\nNzDp/2fvzuPkqMr9j3++WViSEEIIBAhLArLvEFZ3QFlEweUq6hVFFNn8CS5cUES8giiIoAIqIoKI\nIAgKXkAFBDc2Awgk7KskhCQsCQkhbHl+f5xTdE1NV89MMpOZyXzfr1e/uruWU6eqe5J6+pzznIgY\nCYzJ7wH2IF3/snWBkaTv5D2Va7R+Pt81SYHhhqREJsOA7Umf3arAj4t9IuLx/J05LS+6rPKdWS0i\nHsnljwGuJSXZuIgUvC4fESOAjYHr8zmdV/1uSNqdFLQOBk4FVo+IFUnfi0tI35V35M0HxPgrwC1Y\nZmbWt+EWrH79IN1Iln+9v4d0k747TVoYKvsOARbk/TatrPvvUpm/brLv1qX1C4Atm2zz+7z+1Mry\nXfPy6S3qdmTe5sYm6/6Q132li9dqMKlFK4BtKutGlc5ntUW4Xmfm5Q8BKzXZd2MaLUY7VdbdUDr2\nPk323bK0flgXznd5UmtRkFo5BnfyGt2d97kEGNRkm8/RaHUZWnN9ngHGNdn3rtK5nNRk/b553bNN\n1v2og32HlM73p5V1TVs98/neQ2pF+3jNNZlAo0V0dGXd7/K6o1tc02vyNl+tWT+SlNkwgK1Ky0cD\ns6hpvSQF8E+WrsmErvw99OeHW7DMzMysx0TEVaSWgWKc0GakVO1/BJ6RdLmkHWt23xBYltT164HK\nuqK1YBZwSJN9p5VeHx/N54wqWoSGVpZ3JgNgkTig2VxTi5SsICJeJ3X7gkbrXLXMmRHxdE0RTa+X\npPGkoAPgExHxfJNj30e6GYZGgg4q78+NiCuaHLdc3sKaujXzRVLLzePAJ/P5d+RjwOakz/3AiGh2\nvD/l5+G5/EJxfQA+HxHTaK9YNhn4epP1dd8ZaHxG9wLHVldGSujy5/x2Qs2+1e/MAaS/mQsj4kKa\niIjHSAGjaLS8Fjoa17UbqUXtHxHx7ZryXwDuz2/XKq06ktQyd0tEnN5kvwWk1kmAObmeA4KzCJqZ\nmVmPiogzJJ1LSsX+HtI4pDVIN7vvB/aV9NmoZBikcdM5Jd+cNlv324iYQ3tFwoaFwC9qqrZOfv5P\nTdmdCbCqXfFG07gJbXdTK2kFYH/gvaRAYWUaN/1lT1Xed6ZOddfrk6SWkL9HxC0t9p9BuiZvBA+S\n1iS1VABUP59CEcTMiE5mN5Q0CPh/+e23ImJeZ/YjjQcD+ElEzK3ZZkbpdTkQKq7PbFKLWTPF9+aX\nTb5zUPOdyV3nikD0tBbB4vT8HJXldYHQYfl5b0l1gTU00qDPL9VpRdJYLKj/3hTlb9mV8vPnd3Be\ndmqL/YrPYkBNet2jLViS9pD0QM64cnST9ZL0w7z+bknblNYdKWlKzkJykdLs1kjaStItkv4taZKk\n7fPy8Tlryb/z4yc9eW5mZmbWeRExPyIuioj/johxpJvR00lZzgScJmlUZbfihrhVK9H/1RyyWH97\nRMyo2Wbz/Dy5srxlC1a+J9mopm7FvtMjYmZlv7eQWgLOIHWRXIOUMGIm6Ua0aOWbR6M1qXo+rTKx\n1V2vXfNz3bUqrJifn2lS5jPUT1xcBBbV69jK9qRxQ68Cv+3MDvm675zftjqXFUuvm53LtRHRbjqA\nPO6tyJZ3VU3Zdd+ZCaXj/r5F3YpgtfqdbPedy5kBi+WjSOOa6h4i/S2VA7/ic5kVEdOpkDSUxsTe\nK3RQftEoU0yAvC2p9eoV6q8VeZs25zUQ9FiApZQW9UxgT2AT4KN5IGPZnqQBk+sDB5EH50kaR/pV\nY2JEbEb61WW/vM/JpCwkW5EmLTy5VN4jEbFVfhyMmZmZ9UkRcU9EHEnj1+8VSF2hyoobxGor0VjS\nzTmkObSa2bLVekkr0WhpKt/ULkMjeKq7KdyadMPZLg07NcGZpAmksS5rkLqJ7QGsGBErRMTYSAkJ\nTsybN5totjOprpteLxrXtTYAysFL0RJVDtCKMu9sUqdq3bpyE13U6b7cBa0zNqDRdbJVMLdpfp5V\n6U5ZnEvdd2ZT0uc6n0aXuKq6lsRi+X8i4hnqFZP+vvEZVVo9y+UW9833RIQ68RgaEa+W9u/oO7MO\nKbnH3E6Wr4h4vHK+90bES01Lb3u+AyrA6skugtsDD0fEowCSLiZ1Dbi3tM0+pCbYAG6RNErS6qW6\nLS/pVVKWlKKpPEiD7SD9UlBtQjczM7P+49bS6+pcR3WtNsXyGS3GI3V00183pmljUrey+aSEEM28\nLz8/1OTmsu64R5HO71pgj5pg5YPN9pU0hEbQ0JkugtXrVbQM1nWpA3g36byfpm1wUZR5Z7s9GhZl\nnqOx+fnZLuyzUn5+PSLmt9iuyNB3Q2V5R90si/O4p2ZsV7mM6rkW+9aeT26RKsYbXt1k32qrZ/Ej\nQrOuip3R0fkuTvnF59duPF8hZ3ssWvwGVIDVk10Ex9G2eXsq7QfeNd0mDzr8HqmZczppYFwxKPAI\n4BRJT+ZtjintPyF3D/yrpLd236mYmZlZDykP9n/jxl7SKkDxo2tdgFXXha88Hqajm+nq+vXz86PN\nbrIlDaeR1r0rCS7enJ9/0yy4krQdsEN+Ww1m1ieN03qF9sk+iv1bXa8X8/NqNfuKFAAC/Kpy3h1d\n6yE0Wlq6chNdjFGq3hu2UozTGpzPt1l9ViElhgD4ZWV5cX26+p0oyhhFYwxWXQvWGOodQeqVdUNO\nKlLdt1pm8Tms3yR1fmcUwU3d+Kei/JVyqvZFsUaLdcV36jVgyiKW3y/1ySyCudl+H9I/umsAwyX9\nd159CHBkRKxFyl5SDLicDqyduw5+Efi1pJFUSDooj92aNGvWrJ4+FTMzswFJ0ha5K1+rbdYCvpzf\n/rXU/QgaN51TI+K5yq4d/TI/nsZEwHU3l3UtEcWN7Jiam9ozaSRCqHZdXIbUAtas3GH5eeXK8iIZ\nwUWlY1fPq+g+NrMm8QK0vl5Fee+u2fcYUgA4h9LQi9xtsAg46671xjQyF9Z1q2umCDDWk7R5yy3b\n7lOMnWp3LjnYO4/UYndTzmBZ6EyrZ0ffq3KrZ3VMUxGcrdlkSAySdga+QPpOVrMT1rUAFt0gRwCf\nqalTUf7oJouL701db6/7aQS6zeb1alX+w/l5fUkbN9l+LxqB7v0R8XKr8pc2PRlgTaNtKsc1aZsy\ntdU2uwGPRcSs3Jf0chqDGj+Z3wNcSuqKSES8HBHP5te3kwbhbVCtVEScHRETI2LiKqs0/fHDzMzM\nFt/ngIcl/VjS2yUtDyn7mKS1JB1DGguzOmnup+rY6VZJHTrb1euhFl3J6sooWohWA06SNCIn5dpS\n0u9IPwAXmfKqwdumpG52L9K+e2FxnC9K2gHSeHVJewC30Eh+8BrtxxcVCRFWzzfqrc6n2fUqsih+\nUtIhpc9inZwU7MR83I9ERPnX52Ic/HxqWs5oXOt7K+N/OvJnUnfEwcBvJe2WA1QkDZe0u6RflYOV\n/FkWkzGfLGnXPOa/aAG8HtiLFFDsR1tdycLYUYBVDazLLVsvAG/UW9IwSZ8jTUuwDHBCRPyzUm7T\nlrOImAzclt+eLunLSpNgF8ddTdJHJP0J+FST+hbfm31y8NlGRMymcU99lKSTJL3RyilptKT3SrqU\nlPeg7M+kKQUGkRo1ivMdIekIUpbGIs4YUN0DgZ6baJg0hupRUivUMqQvY3XSu/eQBnyK1Cf1trx8\nB1JT4rC87nzSfAWQfr14R369Kyk7EKRZ2wfn1+uSArXRreroiYbNzPo+PNFwv3wAf6ftBMMLSeM1\nXqksvwvYvMn+v8zrT6wsX5aUeS6AjWqO/c28/uKa9bUT8ub111XqWBzvaVL2v2L5WpX9DsjLb25S\n5talYwZpPFTxfhKNiYsnN9l3KCnoKvZ9Ptflnx1dr7xONCacDVKrxZzS++eAfZvs9+m8/pYWn/Op\neZtfLMJ3ZDdSMFqu13M0Jjx+mdJEwXmfVUjBa7HPAlIAWLyfAmzS4vv0nZq6TCjVoelkyaReUwGc\nUln+9rx8GvDZymf8eun9mVQmRibdIxd/Exs2OeYGudzy93F25ZwDeFeTfb9auU5P58fEyvWcUinr\nBVJ3zPKyzzYp/4uVbcrnezdwU379pd76d6i3Hj3WghWpCftw0mRv9wGXRMQUSQdLKn6lupoUhD0M\n/Aw4NO97Kyll5x2k2asHAWfnfT4LnCrpLuDbpOyDAG8D7pb077zvwdG+idzMzMyWjL2Aj5NaT+4i\n3dCvQApWHgUuAf4L2DYi7mmyf13K8U1oZHp7sObYHbVEbEQK1BbQvFvbh0iZjf9D+pX+YdI9x6Y0\nEkU8HxF1qdTbHTci7gTeQUq88BIp4Pw3KWvyjjQSDjTb91Vgb+AC0tj1IqV2uZtabUr7SHfDHyJ1\nUbuTFLiIdI91IinAbZZavDtafWpFxHWkwPMc4DFSK9pg0ud6PvD+qLSKRWph24EU2D2Sz+NF4J+k\nCa0nRkQ5oVpn61msX5RWz6IF6u6I+Bnpe3876f51Dqn1as+IOCzaj+vbhBZJVSLiQdJ4wm/l475I\n6jL4EvAv4CRgu4i4tkl9vwt8hRRAvUb6zqxKqTUyX8/tSOOlbiUFV8Py9v8GfkAKINvNgRYR3ye1\nnN1DChIXku7dv0b6ThfjKwdcC5ZyBDogTZw4MSZNmtTb1TAzsxYk3R4REzve0sxsyVOaRPsA4LsR\n0W7eVxt4+mSSCzMzMzOzfuKNFqxerYX1GQ6wzMzMzMwWQSVNfVfmAbOlmAMsMzMzM7NFU05TX5dp\n0QYYB1hmZmZmZoumSHxxX9TPUWYDjAMsMzMzM7NFEBG/ighFxNa9XRfrOxxgmZmZmZmZdRMHWGZm\nZmZmZt3EAZaZmZmZmVk3cYBlZmZmfZaklSVFfoxZhP3HLM7+HZQ9MZf7giR1Z9l9lZIX8nkvNROA\nSzo8n9ONleV94nwlrSBpYa7HuEXYf3Le90M9Ub8Wx/1tPu7xS/K4vW1Ib1fAzMzMrIUiS9v0iHim\nvCLf8O4NPBYR59fsX0wCO626fzd4Y4LZiIhuLruvmgCsALwOTOnlunSnIknFvyvL+8r5bgkImBUR\n07qyo6TlgA3z2+r59bS667pUcwuWmZmZ9WWrk+YX+mOTdZ8AvgHs1GL/IgjqiRu8niy7r1qb9Hlc\nHxEv9XZlulHdZ9lXzreo36JMZrwZqVFlLvBIt9WoA5JGkgJUGFh/I27BMjMzs74rIi4ELqxZXXTZ\nmtSiCAdY3SgibgQ26u16dCdJQ4BN89s2n2UfOt/F+a71Vktr0eo2OyIeX4LH7XVuwTIzM7N+R9Jg\nGt2Pbm+xadHFsFuDoDzmaoueKNuWuI2BZYFXgXt7uS51Fud73CN/A52wOK1u/ZoDLDMzM+sWkp7J\nA9q3abLuJ6VkE+1aBCRdldcdWVo2qrTPannZIEkvAq8By+dN7yhtF5Len7ddlkbrw78lrSvpDEmP\nSnpJ0gOSjpO0zCKc7ro0xuZMrrkeG+Xj3SfpxfyYJOlQSU3vwSStKGk/SedJukvSLEmvSJoq6UJJ\nm9bsV75Wq0vaStIFkp7KyREuzNttm7eZmxM4bCnpF5KelDRf0j25fk2Tdkh6Lu+/Y2X5B/PyKfn9\n2yRdKmm6pHmSbpf04VYXVNJYSd+X9LCkBZKekPRdScMk7ZPLv79VGS3KHifpR5Iey2U/JOno/DkU\ngcB9EfFKZ843r1sz1+/f+Xq+nK/j3yV9U9Kale0X9bMdTOrmB+l7vJmkX+bPdoGkKZL+X91nRgeB\njqThko6Q9FdJz+Y6PS7pLElr1JRZ7LuDpEskzcjf79uKv7+OjrtUi4gB+9h2223DzMz6NmBS9IH/\nM/zo+AE8DATwtsrylYAX87oAdqysn0AKVOYCK5aWvy1vP6O0bDzwNDAnr3slvy8/1svbbpu3eQHY\nD5iX3z+fj1fU5/RFONcP5n2n1Kw/hhQEFseYAywsvb8UUJP9vlna5lXg2fxcLJsPTGyyX3GtngEO\nKe0zO5/r/+TtPp2X3wx8KW+3MF+TKD2OaHKMtfO614HhlXX/m9ddDJyWX7+Wj18ud9+a6/UW4LnS\ndi+UPqO/5esZwMWL8Fm9O5dXLrv4LM4DTs2vz+/C+VbLfLnyPoCduumz3TSvfwk4AFhQOo/y8X7U\nZF/R+FvZrsn6icB/SmW8lB/F+xnAm2qu69dK13FhpT4HkFqWAzigt/9tWtIPt2CZmZlZd5mdn0dU\nlh8EDANm5fejKusPJvWq+WVEzCktL7o2vfELeEQ8HhGrkW7iAS6LiNUqj2Ig/1alss4HfgysHhEr\n5Tr8Kq87LLd2dUXtmBhJXwK+TQr2PgeMiogVSdfgs6Sb8Q8BH6sp+0vA5sDyEbEysAzwZtJ1WB44\nsck+xbVaHjgT+AWwVkSMIrW0nVvZbv1czteAlfM1GQtcV6pD3TEeiYgXa9btRrq5/iwpWB5Fau0r\nrlO7ciVNAP6PFIj/Htg4IkYCI4GvA28FipbNLrWGSNoil7kC8EtS8D2S9Pn/EPgk8PG8efWzbHq+\nklYBLsllnkkKQJbN5a4E7AH8Bri7SZUW5bMtvmsLgZ8CZwNr5OOtAVyZ1x8uadvKvuuSruPrwD2V\na7M+8GdgzXweG5K+o8OA7fP1WJX0d0Nl388CJ5ACxK8Co3N9JgA3At+nZlzbgNDbEV5vPtyCZWbW\n9+EWrH7zAK4l/WL9kdKyIaRfyOcC38rr9yutX5YUeC0ENqqUd07e/pQmx/pdXnd0i/r8iMYv6p9v\nsn5Uaf3GXTzXP+T9vlJZvhPpZvYRUoDTbN+iJeP3XTzm1nm/F5qsO6d0Lie3KOOG0nb7NFm/ZWn9\nsMq6Y/PyS5vs9xiNlpxmrTD7UGmNLK37W153Gc1b9a4q1WnPLlyvocD9tGilBP5VKvudnTlfUgth\nANd0499Oq8/2lFIdj2qyfhgpmA/gpMq6pi2twGBSwLUQ+HhNnSbQaJ0aXVq+Po1Wrvc32W8sjdbi\nV4Bluus69ZeHW7DMzMysuzRrwfoAsBapK9aTedlKpfUfBsYA10VEdXxNuxasks6M7yj2vzYiftRk\n/QukbmyQbga7oi5xwMmk1riDIuJJmrstP6/VxWPOy8/NxowV9ZlCCgzqFIk5zo2IK5qsf770emHN\nMdpcc6V03OPz2xMiollWx6LcNtdZ0rtILVRzgc9FvkOvuKb0uistWPuTWmWeAI6u2ebq0uu6Fqzq\nMdfOz692oS4d6cxnO4kUbLUREfNpnMf6NftWz+0A0riuCyNl6mwnIh4jdTkVUJ7c+DhgOeA3EfG7\nJvvNoJF4pt24toHAadrNzMysuxQB1gqlZV8gjw+hkfWv3EXwkPz8w3JBlYH91Rv6FWnc0DftfpQH\n/BfBxDk19V2bdC8UpFa2TpE0mkZwdFdp+ZaksUQBXFifc4CiO+L8JmWvDXwG2BXYgHStqvdrT1X2\nKV+rH9Xd0OakC6Pz25/X1G3d/DwjIhZU1tUFHMV1DhpdEevKfbyy/OD8/Iuonwh6Rn6eFRFP1WzT\nzKH5+Ywm51It+8mIeL6yru58i6Qm75X0G+B04NaIqAakbSzKZ1upx/drAlCAYvLhauNJ3Q8Rh+Xn\nvSU93aLaK+fn+QCSVgI+mpd9r8V+xXUdeAkucIBlZmZm3ae4QR0BIGk7YGdSV6oHJa2X14/K67ck\ndal7hLYtCZBuQJcjdTGqtmwVN/SzImJ6TV0mACuSuutVy66W82huBeis4qZ1ekTMLC3fKz+L1E2q\nI20mfZV0KCnhwnJ5UZASFLyc369A6g52X6Wc4loFqetineJG/RlSkotmimvSJjOipOFA8flVxxYV\n5d4ZEdNorl25SvNP7ZbfNmtNK4zMz52+WZc0lkZAf3mLTcfk5zaBegfnexEpSDqA1AL7YWCmpD+Q\nAsV/NqnPIn22OYvfqqSW1lafbfGjxYzK8nZjBXOZxfLqeMhmXqPxA8RupO6FT9a0VBaaXteBwl0E\nzczMrLtUuwh+IT//ID8XCSyKLoLFr+hnNvn1v7ghvy8iql2xOtM9sNjmwYiY18E2Xb0JrNuvGNT/\npYhQJx6fKnaU9F+kRAPLAGcB25ESIawUOXkHafxUs+MW1+rhDlp4iu3ubNESUndum5HuG2dHxBM1\n5baaj6xZuRNoBE93tNh3UZIlbE4KdJ+PiEdbbFdMVt3p842IhRHxaWAbUtA0mRQEHQj8Q1Kb1sHF\n/GyL6/ZAi+8xpKQUAHeWjltuaS2Xu0l+vqeT39Ohpb/BIpiu/axz6vtiqgYHWGZmZmaL4Y0ugpJW\nJ/2yfz8pUxmkMU8Ao3I3v4+Rxp4061bWavxVZyZO7UoQ1tVuTHVByKr5+TW67n/z83ERcVhETIqI\nonWjGOdUtPbUjRW6k9Y6s13dNSn2bZYZrzPlNvs8i+u1MCJmU2/Pmjq1UrQg1pabv4MdXdNm5wtA\nRNwZEV+OiM1JY72KlrJPS9q5tOnifLbF5/Fci/NYm0agWB6vVtfSujjf0+K6VrtTlu1Kaj0GB1hm\nZmZmi6XcgnUoKYvbD0utJUUL1ihSeuzhtE/NXmgVYG2en2tvfulcENaZbbqyX9EKt0FXCsstDcWE\nyBfXbHYQjbFb1UCms+fRcrvcZW+Tmm3qElwMojQJbk25a5HGfkVl/+J6DZI0pt2Oad/3UJosutk2\nHVi9xQS8n6cxWXVnE1w0FREPklLvF1301oRu/WxXpd4XSff0V1QSq3T0PV2/xbXpSKsJiI/Kz09G\nRG1guDRzgGVmZmbdpfhVexXS/E+zSXMPFYoWrJVIyQ2K5BfNtLrBLbo9teoO17L7X241mNDiGE1J\nWgbYuGa/YnzRxyTV3hBLWjaP8SkMK71eucn225LmHIKUbe+RyiYdBliSlqORYa5uu41JN/ov037c\nW93nsR4pUF5IfcBbfBaPR8QLpeXl89ijSZ3HkrrUUVOnVh7Oz8uRJgWulr0NafJiSN/Lxyqb1AWU\nreZLW53G2KN78/PifrbFtXuTpA2b7P82Ulfb14Dja/at+56OICXdqJUDxLLiur5ZUrPzOZhGa9yA\nTHABDrDMzMys+xQtWO8iBVk/j7YT0s4lBVVbkW7mm6VmJ9+4FWmhm92kFa0E++RWl+r+K9FIpV0X\nTGxJY4xOpzMIksYDDQVeBB6qrDuPFGisBFwvaZfihlzSYEmbSToaeJBGsgNIgWIxCfOpOdsfkkZI\nOgi4nkbGwbvL46cq16pVF73NSMkJ5gMP1GxT3JDfWx73VsnIWNd18KFoP/lwtdw2n0XutlYk2zhF\n0m6SBuXHHsBNpKAF0jxOXenSNolGZr2fSNpJyTKS9idNqFwEP9Vr2vR8JY0C/iPpREkTJQ3Ny4dK\n2p00D9xg0rQARRCzOJ/tcOBN5PmxgF9L2iCvWz4HM1eRktYdExF13Qur130yjakCTpf05XKwJGk1\nSR+R9CfgU5Uyi0mNRwC/yd0TkbSypBOAM0rbNpuE+3xJIakrwXK/4wDLzMzMuksRYA0hBRrlmy1y\nIot5NLIYt0nNXlLctD9Vk7r70vz8eWCepKfzoxiHUtxYPp3n5Glmccdf3VNNzJFvXI8gnftm5Jtn\nSc8CC0gTu54EDImIZ0v7LQS+kd++BXhS0vOk6/lT0tieIsteXVe2GRHRKt12ETC0q3eTc6tekwmk\nLHevU8kuWCp3UcfDHUm6NquRApQXSQHHNfl18R26rcm+tSLidRpTBIwnBWtzc9nn57Kvqql73flu\nQeqq91XSBMXlz/aPpO6VN9NIY764n+0WpHv1aaRWqq2BB/L+LwA/JgU63yMl21XHC9IAACAASURB\nVHhDpaW12WfzCVLwN4w0t9YzkmZLmg9MJ3VnfDfpO/uGiLiPRqvzrsATkuaQMlN+DbiRRitcs+Nu\n3WLdUsNp2q25556DBx6Al15qu3zHHWHYMHjiCXik2ooNvPnNsOyy8Oij8Pjj7de//e0weDA89BA8\n2WT+xV12Sc/33QfTK5l3Bw9O+wNEwCJ3GzYzsx5SHvh+ZUQ83mSbOaSb12ap2QsdJRj4Lil9+6dI\nN89jSTfSRctMb4y/AiAifiTpNuD/kW6oVyPdBE8n3axeCfy+yX4/lvQi8BXSGK5XSclBfhwRf5BU\ntPTUBViLNf6qg23KrVR1c2Mt0rWOiFslvQM4EdiR9DneB/ya1D3wurzpjS3KbyoiLpP0XuDrpTrc\nS/renUx9gFV3vveQutTtQgp+Viclc3iO1Hr4a+CCHNyV67G4n+39EXGRpLmkSaQ3J/0d3QScFhE3\n0N4mpJbW+bRvaSVPm7AFKQh9L6n76Ihc7mTSdb+8JhX7EaTJmz9H+vt7HfgnKX39BTQSclRT3y9L\n66BvqaH6LJ3dUHhq3v0Bqbn0nIj4TmW98vq9SF+AT0XEHaX1g8lNvBGxd2XfL5Ei9lUi4hlJ2wNn\nF6uB45vNLl02ceLEmDSpVQr/pdhTT8Hf/w5TpzYeTz4J558PG24IZ54Jhx/efr+HHoI3vQlOOQWO\nOqr9+unTYbXV4Ljj4Fvfar9+3jwYPhyOPBJOP73tOgkW5h/VPvMZ+HllDsSRI2FOHgf9iU/ADTfA\nmmvCWmul5w02gEPyfJXPPQcrrABDh3btuphZnyPp9oiY2PGWZrY0kbQ+KWieB6zWxbnKzHpNj7Vg\n5eDoTFI/7KnAvyRdGRH3ljbbkxQxrw/sQGrq3KG0/gukXzFGlpYV2WjeTdtZ1ycDEyPitZwa9i5J\nf2jZX3fePLjsMlhxRRg1Kj2vtBKMaZrIpu975ZUUoCy3HEybBr/+ddvgaepU+MUvYPfd4V//gv32\nS/uNGNEIUl7NXa7f8x6YMCGtKxuXu3nvtx/ssAPtjM5jIT/9adhtt/brl8tdzg8/HN7//vpzOeoo\n2H//tssGD268fuc7U/A0dSpMngzXXJPqWwRY++4L//hHCvaKc9thh0ZQePfdKWBbYw1YZpn6ephZ\nz4qAWbPa/9hTfm9mA46kYcBvST+an+ngyvqTHmvBkrQTqRVp9/z+GICIOKm0zU+BGyPiovz+AeAd\nETE9DwI8n9Rk/MVyC5ak3wLfIvVZnVjtny1pAnALMK5VgDVx1KiYVLSIFNZZp9G17aMfhdtvT4FX\n8dh4YzghJ3u55JIUpBXrRo2CVVeFtdem2738cmp1Wn75FDTMnJlaiMo3IzNmwNlnw2c/C3feCdts\nk1pxigBjzTXh0ENh221TS9DUqWnZyJH9v7tdROrOOCyPV73kEpgype0N26abwqW52/6ECY3PeezY\ndI3e9z74+tfTst/9DlZeOS1fY43U7dHMumbhwhQ8VQOm6vtXXmlZjMAtWGZLIUlvJaU2/xlpIt1X\nc7bDXYFvk7rh3Qvs0MEku2Z9Sk+OwRoHlAfZTKVt61TdNuNI/ZRPJ+XRX6G8g6R9SF0G76qm7pe0\nA2mywnWATzQLrnLGloMAxo8bB3/7G8yenQKOOXNgSOmSbJ3H4RXrp09vtPAAnHhiagkpe8c7Utc1\ngC22SEFPOQB75zvhq19N67//fRg0qLF++PAUPG25JcyfDx/7WONGZGaeH+644+Cb30wB0QUXNLrI\nbb11er3ttmm7zTdPdR45kqaKYy4tpEZwBfDhD7fe/pxzUoBVvskruicuXJj2f6309Vl1Vfj85+HY\nY9P6k09O13v8+HTthw9vdhSzpdfChenft2ZBU/F62rS2/2bWWWmltj8Elbv+rrlm+mHLzJZGO5DG\nqv0/YKGk2aReS8XN2O3A+x1cWX/TJ5NcSNobmBkRt+eBj8XyYaTMLe3mM4A0UBLYVNLGwPmSrqkO\nxoyIs8ljtSZOnBhssUWTkrJmY4zK/vrXtsHZnDmpxajw4Q+nm4w5cxrbzS5NKH788TB3btsyDzgA\nzj03tVRNnZoCrokTGzcc222XtltllbZlVQ0ZUh9cGey6a+v199zT/qZxvfXSupkz4ZhjGtsOHpwC\n2q9/HT7wgXTjKfX/VkEbuF5/HZ5+unWr07RpbX+EqLPyyu0DpvL7ceP8A4XZwHUj6Z6sSAayAo2E\nERcDF5bTxZv1Fz0ZYE2jMREgpBmtp3Vymw8C75O0F2meiJGSfkXKGjSBNL6q2P4OSduXU5NGxH2S\n5pFSpPZcFotRo9KjzrHHtt7/+efhhRcawdm8eemmA9LN+UBNwNHbBg2CjTZKj2ZWWy0FxtOmwcMP\nw623ws03N8Zy3XYb7L13yri4446w006w/fZtg2+zjrz+OixYkLoHL1jQ9nVXn7uy7UsvpW59r7/e\ncR1XWaV5i1Pxfty49GORmVkTOUOdb3ZsqdOTY7CGkCbS25UUNP0L+FhETClt8x7gcFIWwR2AH0bE\n9pVy3gF8uZpFMK97nDwGK4+7ejInuViHNA/BFjXzZwADPIug9ZzJk+G001LQdd99aZkEt9ySAq3/\n/AdefDFlaxy0iFPRvfRS6uL46KNtH0880bkuWdZ3LFyYgptqoNOZAKcnrbpq625748Y1ktb0MGcR\nNDOz/qTHWrByoHM48CdSmvZzI2JKnnWaiPgJaR6CvYCHSWnaD1iMQ74FOFrSq6QJ/g5tFVyZ9ZjN\nNmukmJ89u9HCtemmadlPfwrf/nZq/dxhh9TCteOOKetikSkxInXRqgZQxeOpp3rn3GzJkVIAs9xy\nKclKs+dW6xZn2zFjnNjFzMxsEfXoPFh9nVuwrFc89hjceGNKsPLPf6a5xZZbLs399dhjKQPkrFmt\nW6KGDEkZL9ddt+1j/Hh3yepvpOaBzpAhHseXuQXLzMz6kz6Z5MJsqbBwYWppqmuFmjGjse2CBXDG\nGe3LGDQojXPZYgv4yEdSevl1101dtIb4z9fMzMysr/EdmvWuiJTc49ln2z6ee675svnzUzKJZZZJ\nEw339uvXX28+FurRR9PyVvP7LLNManGqtkJNmJCCs8mT07itm2+G1VeHAw9M1+vtb0/bFV0LN9us\n7STMZmZmZtZrHGBZ93nllfrgqFXQtDQnZRg7tn0AVTzWWKN1kotttoH990+vi6688+enOYOuvhrO\nPz8tGz4cTjopzdM1d27qYli10UYpacHs2e3nboM0PmzlldNnMmVK+/VbbJHGjM2cCfff33791lun\nLInTp6cuj2UjR6Z5jDymx8zMzAYAB1jW3Msvp+5tM2d2PmCat4jzAA4blm7uq4/Ro9svGzYsBWSv\nvJIe3fF6ccoAWHvt5gHUhAndN79PMRZn+HC44ooUcD32WGrduuWWRkr5Bx5ILVxVv/41fPSjKfja\nZZf26//wh5Ra/qab4H3va7/+xhtTudddBx//ePv1kyalSa6vvBIOPrj9+vvuS3W84II0z1s1M93u\nuzsAMzMzs6WCA6yB6OWX204YWp1E9MknU2DVVYMH1wdGdctHj15iqZ6XKlIjkCsHPBtsANdf3377\nIoPhVls1X19MuL3TTq3X77JL8/Xrr5+e99677fqI1Go2fnx6P2hQClD//ve2E9XOnZsCrGOPhYsu\nap8e/LDD0jm/+GJK4rGo6e3NzMzMetjAziK4/vox6fzzYcUVG48RI/p35q6XXko3rtWgqfx+1qyO\nyxk8OI37GTu288HSyJH9+9rZkrVwYQrkp01LrV+QWtquuqrtd3fEiNRaCrDffnD55WkOpiII22gj\nOO64tP6RR1Ir59ixDsKWIs4iaGZm/cnADrCkaJekfdCgFCiUg65Ro9q+r3sU2w0f3jOBxvz56Wa0\n2tpUDqKe6cTUX4MHpxvU6sSh5fdjxzpLnfW+hQtTC9jo0en95ZfDbbe1/e6PHg3/+lda/+Y3p26O\nQ4akMW5rrQVveQt85ztp/Y03pr/TzTbz97sfcYBlZmb9ycAOsFZcMSZtvDHMmdN4zJ+/+AUPHtw+\nSKsLxsqP4cNT61KzLntTpzZ+xW9l6NBG8FQNmorXq67qrHO29Iho/KBx3XXw4INt/3bWXx/OPjut\nX3vttGzYMJg4MXWJ3GsveNvbeq/+1iEHWGZm1p8M7ACr2UTDr74KL7zQNugqHrNnN19efXRHkNbM\n0KH1QVPxetVV3TXKrM7dd8O99zbS3995JxxyCPzgB+lv/8ADYbvtUvr7LbdMqfSt1znAMjOz/sQB\nVjXA6g7lIK2zQdmcOSkL35gx9UHUmDEOnsy604IF6QeR0aNTVsa3vjV1w4WUfGXbbeH442G33dq2\nlNkS5QDLzMz6Ew9C6AlDhzYSP5hZ37Xcco0slhMmNLoWFunvb765MVbrz3+Ggw5KrVvFJM9bb+30\n8mZmZtaGAywzs7I114T/+q/0KFtxxRRY3XwzXHJJWrbMMnDPPSk9/n/+k1q41lprydfZzMzM+gwH\nWGZmnbHjjnDxxen1U0+lFq7bbktzkQGcfDKceWZKMrPjjo2Wrp13dtdCMzOzAcRjsHpiDJaZDTxT\npsBf/tLoWvjYY6k17Mkn0/rzzkstXjvtlCZedtDVaR6DZWZm/YkDLAdYZtYTZsxI3Qa32y6932QT\nuO++9Hrs2NTC9YEPwP77p2WzZqXpG4YO7Z369mEOsMzMrD9xF0Ezs54wdmx6FO6+GyZPTq1bRRKN\nceNSgLVwIay2WnoeObKRJOeAA+DQQ1Nm0m9/Oy0bPbqxfvz4lF3UzMzM+gwHWGZmS8KQIbDVVulx\nyCFp2euvN55/8IM0mfizzzYeRWvWc8+ldPFV3/42HHMMPPEEbL99I/AqArEDDkip559/Hm64oX2A\n5gyIZmZm3c4BlplZbxk8OD0PHQqHH16/3dixqRXr+efbBmAbbtjYf999G8sfewwmTYJ3vSutv+8+\n+OAH25d7ySUpW+KkSSlQKwKv1VdP48f22CO1rHkOMDMzs05zgGVm1h8MGQKrrJIeVWusAT/9af2+\nW20Fd97ZCMCKlrIttkjrX34ZXnwxjRl75pm0HuDvf08B1kUXpQCwOgn65z4Hq64Kc+emAGzEiO4/\nbzMzs37GAZaZ2dJu2LAUZNV585vhppsa7xcsgGnTUuAGsN568LGPNSZivv12mDkTPvGJtP6ss+Do\no9NcYeUg7NRT05iyxx6D+fPTspEje+48zczM+gBnEXQWQTOzrnv55dQ1cdCg1MXwL39JKemLIGza\ntDQ2bOhQ+Pzn4Ywz0n4rrJACsHXWgauvTi1fN90EL7zQCMxGjmzTJdFZBM3MrD9xC5aZmXVdOUHG\nxInpUeeQQ1IrWTkAe+mlRhB18slwxRWN7UeMgG23hRtv7JGqm5mZ9SQHWGZm1rM22SQ96px1Fhx1\nVAq8iiDMGQ7NzKyfcoBlZma9a401GuO9zMzM+rlBvV0BMzMzMzOzpYUDLDMzMzMzs27SowGWpD0k\nPSDpYUlHN1kvST/M6++WtE1H+0oaLelaSQ/l55VK647J2z8gafeePDczMzMzM7OqHguwJA0GzgT2\nBDYBPiqpOsp5T2D9/DgI+HEn9j0auD4i1geuz+/J6/cDNgX2AM7K5ZiZmZmZmS0RPdmCtT3wcEQ8\nGhGvABcD+1S22Qf4ZSS3AKMkrd7BvvsA5+fX5wP7lpZfHBEvR8RjwMO5HDMzMzMzsyWiJ7MIjgOe\nLL2fCuzQiW3GdbDv2IiYnl8/DYwtlXVLk7LakHQQqbUM4GVJkztzMgPYGOCZ3q5EH+br0zFfo9Z8\nfTq2YW9XwMzMrLP6dZr2iAhJ0cV9zgbOBpA0KSJazI5pvkat+fp0zNeoNV+fjkma1Nt1MDMz66ye\n7CI4DVir9H7NvKwz27Tad0buRkh+ntmF45mZmZmZmfWYngyw/gWsL2mCpGVICSiurGxzJbB/zia4\nIzAnd/9rte+VwCfz608CV5SW7ydpWUkTSIkzbuupkzMzMzMzM6vqsS6CEfGapMOBPwGDgXMjYoqk\ng/P6nwBXA3uRElLMBw5otW8u+jvAJZIOBJ4APpz3mSLpEuBe4DXgsIh4vYNqnt1tJ7z08jVqzden\nY75Grfn6dMzXyMzM+g1FdGkIk5mZmZmZmdXo0YmGzczMzMzMBhIHWGZmZmZmZt1kwARYks6VNLM8\n75Wk0ZKulfRQfl6pN+vY22qu0SmS7pd0t6TfSRrVm3XsTc2uT2ndlySFpDG9Ube+ou4aSfp8/h5N\nkXRyb9Wvt9X8jW0l6RZJ/5Y0SdKAnSBd0lqSbpB0b/6ufCEv97/VZmbWbwyYAAs4D9ijsuxo4PqI\nWB+4Pr8fyM6j/TW6FtgsIrYAHgSOWdKV6kPOo/31QdJawLuB/yzpCvVB51G5RpLeCewDbBkRmwLf\n64V69RXn0f47dDLwzYjYCjguvx+oXgO+FBGbADsCh0naBP9bbWZm/ciACbAi4m/Ac5XF+wDn59fn\nA/su0Ur1Mc2uUUT8OSJey29vIc0vNiDVfIcATgOOAgZ8xpiaa3QI8J2IeDlvM7PdjgNEzfUJYGR+\nvSLw1BKtVB8SEdMj4o78ei5wHzAO/1ttZmb9yIAJsGqMzfNuATwNjO3NyvQDnwau6e1K9CWS9gGm\nRcRdvV2XPmwD4K2SbpX0V0nb9XaF+pgjgFMkPUlq3RvIrcRvkDQe2Bq4Ff9bbWZm/chAD7DeEClf\n/YBvgagj6Wuk7jsX9nZd+gpJw4Cvkrp1Wb0hwGhSl6+vkOaxU+9WqU85BDgyItYCjgR+3sv16XWS\nRgCXAUdExAvldf632szM+rqBHmDNkLQ6QH4esF2XWpH0KWBv4OPhidPK1gMmAHdJepzUffIOSav1\naq36nqnA5ZHcBiwEBnQykIpPApfn15cCAzbJBYCkoaTg6sKIKK6L/602M7N+Y6AHWFeSbm7Iz1f0\nYl36JEl7kMYXvS8i5vd2ffqSiLgnIlaNiPERMZ4USGwTEU/3ctX6mt8D7wSQtAGwDPBMr9aob3kK\neHt+vQvwUC/WpVflls2fA/dFxPdLq/xvtZmZ9RsaKA0Ski4C3kH65XwG8A3Sjd8lwNrAE8CHI6JZ\nEoMBoeYaHQMsCzybN7slIg7ulQr2smbXJyJ+Xlr/ODAxIgZs8FDzHboAOBfYCngF+HJE/KW36tib\naq7PA8APSF0pFwCHRsTtvVXH3iTpLcDfgXtILZ2QuuHeiv+tNjOzfmLABFhmZmZmZmY9baB3ETQz\nMzMzM+s2DrDMzMzMzMy6iQMsMzMzMzOzbuIAy8zMzMzMrJs4wDIzMzMzM+smDrDMupGklSX9Oz+e\nljSt9H6ZyrZ/krRCB+VNlTSqZvlvSu/3k3RON53DCZKO6I6yzMzMzAaaIb1dAbOlSUQ8S5rvCUnH\nA/Mi4nvlbfJkqoqI3RfzcDtI2jAiHljMcrpN6dwWdrixmZmZ2VLILVhmS4CkN0m6V9KFwBRg9XLr\nlKQ/SLpd0hRJn+lksaeSJmGtHqtNC5Sk+yWtmeswWdIFkh6U9EtJu0u6SdJDkiaWitla0i15+adL\nZR0t6TZJd0s6ru7cunyBzMzMzJYSbsEyW3I2AvaPiEkAqbHnDZ+MiOckDQMmSbosIp7voLyLgMMl\nTehCHTYEPgzcD9wBLIiInSV9EDga+FDebnNgZ2AkcIekq4BtgbWBHQABV0vaGZhZPTczMzOzgcot\nWGZLziMtApAjJd0F3AysCazXifJeI7ViHd2FOjwcEffmLnz3Atfn5fcA40vb/T4iFkTETOBvwHbA\nu4E9gTtJwdmbgA3y9q3OzczMzGzAcAuW2ZLzYrOFknYD3gbsGBEvSfoHsFwnyzwPOAp4sLTsNdr+\neFIu6+XS64Wl9wtp++9BVI4TpFarEyLi55X6v4maczMzMzMbaNyCZdb7VgSey8HVpqTWok6JiFeA\nHwJfKC1+nNSdD0nbA2stQp32lbSspFWAtwKTgD8BB0oansteU9KYRSjbzMzMbKnlAMus910FDJN0\nL3ACcGsX9/8ZUE4BfykwVtJk4CDg0UWo02Tgr8BNwDciYkZEXA38FrhF0j3AJcCIRSjbzMzMbKml\niGpPIDMzMzMzM1sUbsEyMzMzMzPrJg6wzMzMzMzMuokDLDMzMzMzs27iAMvMzMzMzKybOMAyMzMz\nMzPrJg6wzMzMzMzMuokDLDMzMzMzs27iAMvMzMzMzKybOMAyMzMzMzPrJg6wzMzMzMzMuokDLDMz\nMzMzs27iAMvMzMzMzKybOMAyWwpJekTSTp3YbjlJIWnNHqjDHpIeLr1/WtJb8utvSjqju4/Z10l6\nR/5s5knao5vLrl7vbvkOSDpQ0h+abSvpPElHddc5mJmZLQ0cYJn1AEmHS5ok6WVJ5zVZv6uk+yXN\nl3SDpHVqyvlkvhmfJ+klSQtL72fXHT8i1ouIm7vhPG6RtCAfb5akSyStsrjlRsQ3IuLwxS2nqhQA\nvJjrPFXSdyWpk/u3CVJ6wInAyRExIiL+2OT4T+fvxDxJ0yWdI2n5RTlQd30HIuLnEfHemnWfioiT\nYYlcOzMzs37BAZZZz3gKOAE4t7pC0hjgcuDrwGhgEvCbZoVExPn5ZnwE8F7gP8X7iBjVpOwh3XgO\nhc/k428IrAp8pweO0d02zHXeDTgA+O9erk9hHWBKB9u8O9d9IrAz8OUer5WZmZl1GwdYZj0gIi6P\niN8DzzZZ/QFgSkRcGhELgOOBLSVttCjHyq0eX5Y0BXihtKzojvdmSbdKmi3pKUmnLUogFhHPAVcC\nW5WOvbykM3Nry1RJp0ga2ok6f0fSOfn1RpJek3RALmOWpK+Uth0h6de5/pMlHdPZlpKIuB+4pVLn\nz+XWw7mSHpb06bx8ZeB3wLqlVsKVJQ2W9HVJj0p6RtKFktoFt6XyD8vd856VdLmksXn5VGAN4M+S\n5nWi7tOA62h/vU+X9GT+jH8kadmaenT1O7CvpMfz9T+xaPWTdLCk62qOcbGkY2uu3Tq5JXFkafud\n8/EHd3T+ZmZm/ZUDLLMlb1PgruJNRLwIPJyXL6qPAO8CVm6y7lXg8LzuraSWsM909QC5a+C+pLoW\nvglsAWwObAu8A1iUMTmDSS02bwL2Ak6UtG5edwKwCqn15z3AJ7pQ502BnSp1ng7sCYwEDgbOlLRp\nRDwLvB94tNRK+CypBendwFuANUnX87Sa4+1Fapl8PzAOeAa4ACAi1gRm0mih6qjua+fjluv+/VyH\nzUktihsAR3d8JTr1HXgvKZjbHvgo8PFOlAtAzbV7ArgV+GBp008AF0bE650t28zMrL9xgGW25I0A\n5lSWvQCssBhlnhYRT0XES9UVEXFbRPwrIl6PiEeAc4C3d6Hsn0p6gRQcLA8cWVr3ceAbEfFMRMwg\nBUOdDoAqvhERCyLiX8D9pMAN4MPACRExJ9+0n9WJsqZIehGYDFxFOmcAIuLKiHgskuuAv5KCpzoH\nA0fn67uAFFR+pGZc18eBsyPi7rztUcBuklbrRJ0L10iaCzwBPE66pkX3zwOBL0TE7IiYQ+quuV9H\nBXbyO3BSLvcx4AxSkLW4zid3z5S0DOmzvKAbyjUzM+uzHGCZLXnzSK0nZSsCcyWtXepi1WE3spIn\n61ZI2kTSNZJm5EDpOGBMF8r+XESMBLYBViN1cyMHGKuRAoHCE6SWm656PSKeKb2fD4yQNCgfo3x+\ntedasikpYN0feDMwrFgh6X2SbpP0nFKikF2ouR75HNcCrs7d62YDd5L+7WzWWrgGpesREbNJwXNX\nrsmeEbECqfVqM9I4vaLsoaTgsajL70nj4lrq5HegfF2fyMdbXJcB20kaR2qZnBoRd3dDuWZmZn2W\nAyyzJW8KsGXxRtJwYD3SuKxyEosOu5GVRIt1PwPuANbLgdL/Ap3KqtfmABF3AicDP8rvA3ia1HWv\nsDYwratltzjmQmAGqVtcYa3O7hsRFwB3A8fAG9f6UuBbwKo5UchfaFyPqJQRpPPZJSJGlR7LVQLC\nwlOUrkceqzWSRbgmEXEtKfnJd/Oi6cBrpM+xqMeKEdEs0KvqzHegfF3XzufSpSo3OYd5pLFZHyO1\nbLr1yszMlnoOsMx6gKQhkpYjjS0arJQ+vEgq8DtgM0kfzNt8A7grJ2ToCSsAcyJiXh6T9NnFKOsc\n4E2Sds/vLwK+kZNBrAp8DfjV4lW3nUuAr0laMY9LOqSL+58EHJYTMSxPagWaCSyU9D7SuLHCDGBV\nSeXg9ifAdyStBSBpVUlN05aTrsdnJW2WP9vvAH+JiKe7WOfCqcA+kjaOiFdJWSl/IGmMkrUkvasT\n5XTmO/A/+RqPJ43XaprZsoVm1w7gl6TxXnsAF3axTDMzs37HAZZZzzgWeImUgOC/8+tjASJiFmng\n/4nA86SkAh2Oo1kMRwKfyV0Oz6TrN85vyGO8ziAlcoDU1exeUqvcv4F/klq5utOxpOv0BHANKeB6\nubM7R8QkUir8L+ZWpy8DfyBleNwXuLq0+V2kTIlP5G54o0nncx3wlzw26iZSd8lmx/o/UkB3JakF\naDUWfUwaEfEUcDH5uwMckcudRBrH90dSYpCOdOY7cBXp/CeRWvm6Gig3u3YAN5AC239ExPQulmlm\nZtbvKPWAMTPrHyQdCewREbt3uLH1CZJuAs6KiO5u3TQzM+tz3IJlZn1a7ga3o6RBuXvbF0jdLK0f\nkPRmUjr5y3q7LmZmZktClycbNTNbwpYljT1aB3iONI7nnJZ7WJ8g6WJgd+CwZlMImJmZLY3cRdDM\nzMzMzKybuIugmZmZmZlZNxnQXQTHjBkT48eP7+1qmJmZWTe4/fbbn4mIVXq7HmY2sA3oAGv8+PFM\nmjSpt6thZmZm3UDSE71dBzMzdxE0MzMzMzPrJr0SYEk6V9JMSZNLy0ZLulbSQ/l5pdK6YyQ9LOkB\nSbvnZctK+qOkyZIOLW17tqSmk4CamZmZWc+R9Kk8qXmfIulxSV/uwvbvZjJcEgAAIABJREFUkBSS\nxvRQfULSh3qi7MpxevXzkPR/ks7rreP3lt5qwToP2KOy7Gjg+ohYH7g+v0fSJsB+wKZ5n7MkDSal\n/v0HsAXwibztlsDgiLhjCZyDmZmZWbeR9DZJV0qalm/AP9VkG0k6XtJTkl6SdGOeI7BVuceXf9Tu\nxvo2CxJ+A6zb3cdqcuyuBkDbAWf1ZJ26aHXgD71diWa6Goxae70SYEXE30jz2ZTtA5yfX58P7Fta\nfnFEvBwRjwEPA9sDrwLDgKGA8rbfAr7eg1U3MzMz6ykjgMmkCdXr5o47CvgS8HlS0DATuFbSCkuk\nhh2IiJciYmZv16MgaRmAiJgVEfN7uz6FiHg6Il7u7XpYz+hLY7DGRsT0/PppYGx+PQ54srTd1Lzs\nWmA8cAvwQ0nvA+6IiKdaHUTSQZImSZo0a9as7qy/mZmZ2SKLiKsj4qsR8VtgYXW9JAFHAN+JiMsi\nYjLwSWAF4GPNysytYN8ANs0tPm+0jElaMQ+tmClprqS/SppY2ndFSRfk9QskPSrpiLzu8bzZpbnM\nx4vjlbukFa1nkvaT9Eg+zu/LLU+Shkg6TdLzkp6T9D1JZ0m6seacxgM35Lez8vHPy+tulPTjXMYs\n4J9FfcutMpK+KOluSS/mFsNzJI1qdryOrkXN9mtJuiKfz3xJ90var7T+jdY/SePz+/3yZ/CSpDsl\nbSFpM0k35Xr+Q9KE6rWtHLdll0BJ6+V6PZ3LvEPS3qX1NwLrAKcU35fSup1z/ebna/ZjSSNL64dJ\nOk/SPEkzJH21rh5Lu74UYL0h0uzHLWdAjojXIuJjEbE1cCnpH5xTJX1f0m9zwNVsv7MjYmJETFxl\nFWdyNTMzs35jArAa8OdiQUS8BPwN2Llmn98ApwIPkLqlrQ78JgdrV5F+tN4b2DqX8xdJq+d9TwA2\nz+s3BD4NTMvrtsvPn81lFu+bGQ98BHg/8O58rBNL678MfAr4DLATqXfSx1uU9yTwwfx603z8L5TW\n/zepd9Nbgf1rylhIunfclBScbg/8qMUxW12LZs4i9bR6Zz7GEcDsFtsDfBP4Lun6zAYuynX6Wq7f\ncsAPOyijIyOAa4B3AVsClwGXS9oor/8AqTHjf2l8X5C0Oel7d2Xe7wPAVsC5pbK/l8v9ILBrPo+3\nLWZ9+6W+lKZ9hqTVI2J6/sMumpenAWuVtluT9l/oQ4FfAjsCc0h/xH8hfQnMzMzMlgar5ecZleUz\nSIFSOxHxUm7ReC0ini6WS9qFdIO8Sg7SAL4u6b2kse0nk1oy7oiI2/L6J0rlzkoxGrPL5dYYAnwq\nIubkY58NHFBa/wXguxFxWV5/BO3H6pfP6XVJxVCTmRHxTGWTxyLiS60qFBGnl94+Luko4ApJn4yI\ndq2HtLgWNdYBLouIu4o6dbA9wPcj4moASaeSxmh9PSJuyMvOAM7oRDm1cn3uKi06MX/mHwJOiIjn\nJL0OzK18rl8BfhMRpxYLJB0C3ClpVWA+cCDw6Yj4U15/AClYG3D6UgvWlaRmbvLzFaXl+yllDZwA\nrA8UX26Usg3uTQqwhpF+kQhg+SVUbzMzM7P+ZlvSfdOs3KVrXg7ENgPWy9v8GPiIpLtyl7u3L+Kx\nniiCq+wpYFVIXe9IgeMb93a5J9NtLLrbO9pA0i5KWaunSpoLXA4sQyOIrerqtfgBcKykmyWdIGnb\nTtT77tLrIoi+p7JsuKRhnSirKUnDJZ0s6d7cJXMeMBFYu4NdtwX+u/Jd+Wdet15+LAPcXOwQEfMq\n9R8weitN+0WkD2DD/MU+EPgO8C5JDwG75fdExBTgEuBe4I/AYRHxeqm444AT868NfyI1B98DXLCk\nzsfMzMxsCShaFMZWlo8treusQaQb9q0qj43ICcMi4hpSS8z3gDHAVZJ+sQj1frXyPujZe9AXW62U\ntA6pe+R9wH+RgodP59XLNNunq9ciIn5O6tL5C2AD4CZJx3dQ7/J1ihbLimu3kEait8LQDo7xPdI5\nfx14O+kzv42a8y4ZBJxD2+/KlqSGj393sO+A0ytdBCPiozWrdq3Z/kTa9tUtrzuy9HoBqW+vmZmZ\n2dLmMVIg9S7gXwCSliP9uPyVFvu9AgyuLLuDFJgtjIhH63bM3e8uAC6QdA1wkaSDcwa8V5uU2yUR\nMUfS06QxXH+BN5J5bEfroPGV/Lwox59ICiiOLH60Lyd6aFHXVtei2fZTgbOBsyX9D6kr5PGLUN86\ns4CxkpRb/SAFPq28BfhlqTvmcqTWpwdL29R9XzaNiIebFSrpEdL3YUfg0bxsOKlF9JFOn9FSoi91\nETQzMzMbsCSNkLSVpK1I92hr5/drwxtd504H/kfSByRtRppbdB7w6xZFPw6sI2kbSWMkLQtcR+ri\ndYWkPSVNkLSTpG9Kemuuz/9K2lfS+pI2JiU2eLQUUDwO7CpptTxkY1H9ADhK0vslbUhKyrE6rROe\nPZHXv0fSKpJGdOF4D5Gu7xH5vD9KSkJRqxPXorr9DyTtIWnd/HnuQeqN1Z1uBEYDX1XKDnggaSxV\nKw8C78/fhc2BX5GSZ5Q9DrxV0jg1sj1+F9he0k8kbS3pTZL2lvRTeKM74M+B70p6l9LcbOdSCdQk\nnSTp+kU+437CAZaZmZlZ3zARuDM/lidllbuTlNGtcDJwGnAmMIkUiLw7Iua2KPcy4GrgelKrx0dz\nsLYXqdXoZ6Qsg5eQMuQVU968TOpBdBcpGFsBeG+p3C+RsuQ9meu5qL5Hahn6BWn6HQG/AxbU7RAR\n00jp508kdXXsdPKHiLib1Jr0RVLQ8xlSJsNWOroWVYNIGQDvJU0tNINGroFuERH3AYcAB5HGb70L\n+HYHu32RlEju76Rsgrfk12XHkRLMPUL6vhTX7G2kjJB/JV2Hk2ibcOXLpPT5v8vPk0mZKctWpzHG\nb6mlRoviwDNx4sSYNGlSb1fDzMzMuoGk2yNiYsdbWl8n6U7gHxHx+d6ui1lX9aU07WZmZmY2wOSk\nE7uTWkaGkubW2iI/m/U7DrDMzMzMrDctJE0IfAqpa929wJ4R4W5G1i85wDIzMzOzXhMRT5Ky25kt\nFZzkwszMzMzMrJs4wDIzMzMzM+smDrDMzMzMzMy6iQMsMzMzMzOzbrJYAZakwR1vZWZmZmZmNjAs\nbgvWQ5JOkbRJt9TGzMzMzMysH1vcAGtL4EHgHEm3SDpI0shuqJeZmZmZmVm/s1gBVkTMjYifRcTO\nwP8A3wCmSzpf0pu6pYZmZmZmZmb9xGKPwZL0Pkm/A04HTgXWBf4AXN0N9TMzMzMzM+s3/n97dx5v\ndVXvf/z1FjQhB7SISwqhiHbLuaOiqGmW2eRwK691U3G4pOXUJY3U1NIc0vzl0OAYmGTirEUkYg5o\nqKAEDjmjiYgD5ogM8fn9sdb2fNmcA5y99zn7nLPfz8djP/Z3f4f1/ey9xXM+Z631WVXPwQL2As6O\niK0i4tyImBsR1wITKmlQ0vckPSLpYUlXSVpd0rqSJkp6Mj+vk88dJmmGpKmShuR9fSTdKskVEs3M\nzMzMrENVm4QcEBGHRMS9pR2ShgFExFFtbUzSesBRQFNEbAr0APYDRgGTImIIMCm/BhgJfBE4Bjgs\n7zsROD0illT2lszMzMysSNLeku6S9LKk+ZKek3SjpD0qbO/g/IfzhZL+1Ybr+kg6RdLWldx3Oe1G\n4bFE0quSbpL0yQrbG5Tj3LCFY7Mkja46aOu0qk2wzm9h3wVVttkT6CWpJ9AbeJHUSzYmHx8D7J23\nF+VzegOLJA0GBkTEHVXGYGZmZmaApKOAG0gjlw4BvgSclg9/poL2PgpcDNybr/9sGy7vQ5rzX9ME\nKxsNbA/sDPwI2AGYIKlPBW0NIsW5TIIF7AOcWlmI1hX0rOQiSduT/qPrK+n/CofWIvU6VSQiZks6\nB3gemA/cGhG3SuoXEXPyaS8B/fL2GcAV+dz9gXNIPVjLi30EMAJg4MCBlYZqZmZm1ii+D9wYEYcU\n9t0OXFLhlIwhpN8Xx0TE5FoEWCOzI2JK3p4s6U3gSmAP4A+1uklEPFSrtqxzqrQHazVgDVKCtmbh\n8SbwtUqDyXOr9gI2AD4KfFDSt4rnREQAkbenR8TQiNiV9BeCOakZXS3pSkn9KBMRF0dEU0Q09e3b\nt9JQzczMzBrFuqQ/cC+jOCVDUl9JF0l6QtK7kv4p6fd5CkjpnNHAHfnlpDwkb3Th+AhJf5f0Xh6m\nd5mkdfOxQcCz+dRLCkP6hku6QNJcSasW45O0pqS3JJ1Zwft+MD8v9Rd5SUdI+pukeZL+lZcq+lLh\n+C7AX/PLiYU4d8nHZ5W95+H5+FBJYyW9KelFSedLWr3s3htKGp8/35cl/Tx/ZpE/H+sEKurBiog7\ngTsljY6I52oYz2eBZyPiFQBJ15N6yuZK6h8RcyT1B14uXiRJpJ6r/UhDFI8jdc0eBZxQw/jMzMzM\nGs39wIGSngFuiognWjlvXWAh6XeyuUB/0nz5eyR9PCLeIw2Nm0aaZvJdUhJT+r3vzHz++cCxwHqk\noYibStqB9If0/wKuJ41iujnf9+kc4xGk4XfjCjF9E/ggcFEF73tQof2iDUjDCZ8m9cR9BfijpC9E\nxIT8nr4L/JL0u+gD+bpHV3C/3wFXkd7j9sApwOukoYZIWg2YCHwAOJz0uR1KC50bkk7J120QEbNW\n+E6tpiodIviLiDgGuFBSlB+PiD0rjOd5YKik3qRhf7sBU4F3gAOBM/PzTWXXHQCMj4h5+dol+dG7\nwjjMzMzMLDkMuBb4GfAzSa+RftH/bUTcWjopIh4Hjiy9ltQDuIf0+90XgBsi4mlJj+VTHi0Nycu9\nL8cCP46InxTaeAKYDHwlIm6UVBpe90xhOB/AK5LuBL7N0gnWt0lTTp5lxZRrAPQENsvvdwrNiVzp\nfY4sXLAKqQDbxqSkZ0JEvCmplEw9Vhbn8vw+Ik7O27dJ2g74BjnBAoaTRmxtFxH35/v/GZhOWS8b\n6ffgf5NHfVnHqijBImXYkOY81UxE3CfpWlLmvxh4iDQJcg1gnKRDgOeAfUvX5IRqOLB73nUuaQ2u\nhaS/WpiZmZlZhSLiCUlbAcNIv28NJfUU7SfpRxFRKniBpMNJCdlgUs9RySYruM3nSFNXxuYkp+Q+\n4C1S4YkbV9DGr4A/SBoSEU9K2gbYitQjtDKOz4+SWcBnImJR8SRJnwJ+DGwD9AWUDz2+kvdpzZ/K\nXs9k6QIgQ4HnS8kVpKkzkq4DNi9emJPUn2B1UekQwWn5+c7ahgM5cz+5bPcCUm9WS+e/C+xaeH03\n6a8OZmZmZlYDEfFv4K78KFUCnACcLOmXEfG6pCNJw/vOJfVGvU5KmqYAq7fYcLOP5OenWjn+oZUI\n8wbSXLFvkwpzHEaqRn3LSlwLcDnwa1KsuwEnkRK2z+YaAEgaQOqxepTUW/c8qVPgVOA/V/I+rZlX\n9noBaThgyTLTZLK5Vd7XaqzSIYIzWU6XY0Rs3toxMzMzM+vaIuJFSZcC55GqAt5Pmgs/qWwI3QYr\n2eRr+Xl3UmLW2vHlxbQox/QdST/L8fw8IhavZAxzImJq3p6c5/ifTJrjdE3evwewNrBvRLxQujCP\nqGpvc4BPtLB/maJuVl+VDhH8ck2jMDMzM7NOqVRorIVDH8/PpQqDvUkVpYsOWsnbTCTNGxoYEROX\nc96C/NyrleMXkYb5XUPq/blkJe/fkrOA/wVOknRt7sUqJVLvDxuUtDFp+OQLhWtXFGclpgAHSdq2\nMAdLwFdreA+rgUqHCNaycqCZmZmZdV4PS7qNNMf9WdK6p18kDcEbFxHP5/MmAD+QdDypR+szrOTy\nPbn4xVmkAmqbAHcC7wEDSPOzLo2Iv5KGw71Gmv81g1QI7dmIeC23M1vSzaQ5YrdExD8rfdMRMV/S\n6cCFpHlc1wG3kYYEXiHp56Rhez8mDRUsLn/0RD7vYEnzSAnX4xHxVqXxkCoX/gC4XtIJNFcRXCcf\nL5bMP4k0xHGwf2/veBWtgyVpcn5+K9fqX+q5tiGamZmZWR2dQOqJ+QlwK3A1qYz4KGD/wnk/IfUg\nfY80H2pz4PMre5OIOB4YQSpoMY5UNfoHpCGDT+ZzltCcVNxGKoH+lbKmSsP5KinNXu4SUoG1EyUp\nIh4B/gf4GKm64HGkz+GusvfyGqls/BakZPEB4FPVBBIRC0lDKGcAvwHGAP8klYMHeKNw+iqkEvLC\nOpzynL2G1NTUFFOnTl3xiWZmZtbpSZoWEU31jsPqS9JY0pC9DYsLIXdXkv4I/GdEDK53LJZUOgfr\nfZK2BnYkFb2YHBEPreASMzMzM7OakjQU2BL4b+D/umNyJen/gLdJPXprAl8HvkRag8s6iaoSrDy+\n8+ukFbUBRku6prgegpmZmZlZB/gbKfkYQ1oTqztaQBqCOZA0BPBx4NCIuKyuUdlSqhoiKOlxYIuI\neC+/7gVMj4gVLSbXKXiIoJmZWffhIYJm1hlUVOSi4EWWXjjuA8DsKts0MzMzMzPrkipdaPgC0pyr\nN4BHJE3Mrz9HKstpZmZmZmbWcCqdg1UaVzeNVIaz5I6qojEzMzMzM+vCKl1oeEytAzEzMzMzqzlp\nEGmB5GqMIWJ41bFYQ6i2iuAQ4AzgExTmYkXEhlXGZWZmZmZm1uVUW+Tit8CvgcXArsAVwJXVBmVm\nZmZmZtYVVbvQcK+ImCRJEfEccIqkacBJlTYoqQ9wKbApqXDGwaQa/1cDg4BZwL4R8bqkYaQEbyHw\njYh4Ml8/DtijOy4wZ2ZmZmZVmQ3s2MZr3m6PQKx7qjbBWiBpFeBJSUeQ/oNdo8o2zwMmRMTXJK0G\n9AaOByZFxJmSRgGjgB8AI4EvkhKvw/LrE4HTnVyZmZmZWQsWEzGr3kFY91XtEMGjSQnQUcCngP2B\nAyttTNLawM7AZQARsTAi/gXsRVqVm/y8d95elO/fG1gkaTAwICLuqDQGMzMzMzOzSlXVgxURD+TN\nt4GDqg+HDYBXgN9K2oJUBv5ooF9EzMnnvAT0y9tnkOZ9zScld+eQerDMzMzMzMw6XKULDf8iIo6R\ndAtpntRSImLPKuLZGjgyIu6TdB5pOGCx7ZAUeXs6MDTHtDMwJ23qalLv1siImFsW+whgBMDAgQMr\nDNPMzMzMzGxZlfZg/S4/n1OrQLIXgBci4r78+lpSgjVXUv+ImCOpP/By8SJJIvVc7QdcABxHmpd1\nFHBC8dyIuBi4GKCpqWmZ5NDMzMzMzKxSlS40PC0/31nLYCLiJUn/lLRJRDwO7AY8mh8HAmfm55vK\nLj0AGB8R8yT1BpbkR+9axmdmZmZmZrY8lQ4RnEkLQwMBkUbxbV5FTEcCY3MFwWdIc7tWAcZJOgR4\nDti3EEtvYDiwe951LjCeVLr9m1XEYWZmZmZm1iaVDhH8ck2jKMjzqppaOLRbK+e/S1rkuPT6bmCz\n9onOzMzMzMysdRWVaY+I50qPvGtI3n4ZmFez6MzMzMzMautjSNGGx/B6B2xdS1XrYEn6X1Ihiovy\nrvWBG6sNyszMzMzMrCuqdqHh7wLDgDcBIuJJ4CPVBmVmZmZmZtYVVbXQMLAgIhamKukgqSctF78w\nMzMzM+sMZgM7tuH8V9srEOueqk2w7pR0PNBL0ueA7wC3VB+WmZmZmVm7WEzErHoHYd1XtUMERwGv\nADOBb5PKo59YbVBmZmZmZmZdUVU9WBGxBLgkPwCQNAy4p8q4zMzMzMzMupxKFxruQVrsdz1gQkQ8\nLOnLwPFAL2Cr2oVoZmZmZmbWNVTag3UZMAC4Hzhf0oukxYFHRYTLtJuZmZmZWUOqNMFqAjaPiCWS\nVgdeAgZHxGu1C83MzMzMzKxrqbTIxcI8/4qIeA94xsmVmZmZmZk1ukp7sD4uaUbeFjA4vxYQEbF5\nTaIzMzMzMzPrQipNsP6zplGYmZmZmZl1AxUlWBHxXK0DMTMzMzMz6+qqXWjYzMzMzMzMsk6ZYEnq\nIekhSX/Mr9eVNFHSk/l5nbx/mKQZkqZKGpL39ZF0q6RO+d7MzMzMzKz7qigJkTQpP59V23DedzTw\nWOH1KGBSRAwBJuXXACOBLwLHAIflfScCp5eqHJqZmZmZmXWUSnt5+kvaAdhT0laSti4+qglI0vrA\nl4BLC7v3Asbk7THA3nl7EdA7PxZJGgwMiIg7qonBzMzMzMysEpVWETwJ+BGwPnBu2bEAPlNFTL8A\njgPWLOzrFxFz8vZLQL+8fQZwBTAf2B84h9SD1SpJI4ARAAMHDqwiTDMzMzPr9CJmkZYSMusQlVYR\nvBa4VtKPIuLUWgUj6cvAyxExTdIurdw7JEXeng4MzdfuDMxJm7qa1Ls1MiLmll1/MXAxQFNTU9Qq\ndjMzMzMzs0p7sACIiFMl7QnsnHfdERF/rKLJYaRhh18EVgfWknQlMFdS/4iYI6k/8HLxIkki9Vzt\nB1xA6gEbBBwFnFBFPGZmZmZmZiutqkp7ks4gFaR4ND+OlnR6pe1FxA8jYv2IGERKlm6PiG8BNwMH\n5tMOBG4qu/QAYHxEzCPNx1qSH70rjcXMzMzMzKytqurBIhWj2LJUsU/SGOAh4PhqAytzJjBO0iHA\nc8C+pQOSegPDgd3zrnOB8cBC4Js1jsPMzMzMzKxV1SZYAH2AeXl77Rq0B0CuBHhH3n4N2K2V894F\ndi28vhvYrFZxmJmZmZmZraxqE6wzgIck/ZVUnWVnmteoMjMzMzMzayhVzcGKiKtIVfyuB64Dto+I\nq2sRmJmZmZnVjqThkqLwWCjpaUmnS1q9wjZPKVV3LuwLSadU0NZoSS+sxHml9zGosG+WpNErOOcU\nSdUsJdRSLLPKPtN/SZooaccK2+uT41xmXVlJd0i6o+qgrd1VPUQwr091cw1iMTMzM7P293XgBdKa\no/sAP8zbR9ao/e1z++3lT/kec9p4zsnAT4HbaxzPX4BTSB0XQ/J9xkvaPNIaXG3RJ1//AvBg2bHv\nVBemdZRazMEyMzMzs65jekQ8lbcnShoCHCzp6FLhsmpExJRq21hB+68Ar1R7Tg29WnjP90p6CphM\nqoh9Zq1uEhGP1qota19VDRE0MzMzsy7vQdLSNh8u7pS0gaSxkl6RtEDSdEn7rKix8iGCkjaS9DtJ\nz0qaL+kZSb+WtE4r1+8g6QFJ7+UheEeWHV9m+F8LbSx1TmEY4wmF4XynSBqZ31vfsuuV4/zDit5v\nC0o9TwPL2txP0u3583xb0kOSDiwcHwQ8m19eUohzeD6+1BBBSbvk43tKulDSq/lxpaQ+ZffuK+kq\nSW9Kel3Sb/N1IWmXCt6jLUfVCZakHSUdlLf7Stqg+rDMzMzMrIMMAt4AXivtkDQAuA/YAvgesCcp\ncbhO0p5tbP+jwIvASGAP4Cek6tDjWzh3LeBqYAywN6mi9PmlJKMK2+fn0Xl7e+BS4LektVMPKjt/\nd2AD4DcV3GtQfn66bP9g4EZgf9J7uwW4VNJh+fgc4L/y9hmFOP+0gvudBwRpeaIfA1/N+4quB75A\nGg66H7AIuKC8oUJiussK7mnLUdUQQUknA03AJqT/QFcFrgSGVR+amZmZmbWDHpJ60jwH66vAMRHx\n78I5p5AqRH86L5cD8JeceP2ENsy/j4i7gLtKryXdAzwF3C1pq4h4qHD6msCIiCj1HE2QtB7wY0lj\nImKpghptiGGKJIDZ5UMYJV0NjJB0dqH9bwP/yMsGrYjy57kKsBHwa+BJ4PKyGH5auGAVUvLYHzgc\n+E1ELJBU+iyeacNQy7siotTLd6ukTYBDJQ2PiJC0O7Aj8N8RMS6f9xdJN1PWy0ZKNv9NStisQtX2\nYO1D+ovGOwAR8SLpH4aZmZmZdU7/IPVgzAMuAy6KiAvLztmD1MP0hqSepQepoMMWktZa2ZtJWk3S\n8ZL+IWl+vvfd+fAmZaf/m1SZuugPpERgvZW9Zxv9itS7tFuOtz/wFeDilbz+m6T3tAB4BNgU+EpE\nvF48SdKQPExvdj5/EXAoy34GbVXewzUT+ADQL78eSvpcbyg779ryhiLiiojoGRF3VhlTQ6s2wVqY\nM/0AkPTB6kMyMzMzs3a0D7AN8EXgNuA7kg4oO+cjwAE0JwKlx9n5+IfacL8zSD1iVwJfAraleShc\neXn41yNiUdm+ufm5XRKsiLgfmAaUhuodCiwmDVNcGX8mfZ47AMcAvYDrVSh9L2kNYCJpyOUoYKd8\nzeWkZKga88peL8jPpfv3Z/mfq9VYtVUEx0m6COgj6X+Bg0njWc3MzMysc3q4VEVQ0u3ADOBsSddF\nxDv5nNdIvUxntdLGi224337AFRFxWmlHTjhaso6kVcuSgVJPzOw23LOtfgVclIcjHgpcExHliUtr\n5kXE1Lz9N0lvkKbOHElzQro98DFgp4iYXLow9wq2tzks/3O1Gqt2oeFzSN2L15G6N0+KiPNrEZiZ\nmZmZta+IWAAcS+qxKq6zNAHYHHgkIqa28FjQUnut6E3q/SoqLypR0oM0J6xoP+B5qk+wFpJ6l1py\nFfAW8HvScMRKiluUjCEVBDlWUu+8r/T8/ueQqyjuVXZt6XNtLc5KTCF9ruUVIL9ew3tYQbVFLs6K\niB+QujzL95mZmZlZJxcRN0t6ABgp6cKImA+cBNwP3CXpQmAWsA5pftGGEXFwG24xAThQ0kxScYv/\nIg2na8lbwM8kfZhUKOIbwGeB4ZUWuCh4FPiSpAnA68CLuX4AETFf0mhSxcSZEXFvpTfJhSVOAv5I\nKmDxc+Be4E3gl7lI3AeBE4FXgbULl88l9R7uJ2kGqc7Bs4VCI5XEc2suLHJx/lyfAr5GGq4IqbAF\nAHmo6OXAbp6HVblq52B9roV9X6iyTTMzMzPrWCeShowdBhARz5MqRf8dOJ30x/RfA58Gbm9j20eS\nqg7+lFSCfU1S4tSSN0k9VgcCNwG7AkdHxMrOh1qeI0gJyy3AA8CIsuPX5OeLqr1RRPwJ+BvwfUm9\n8sLH+5B6kq4lzUu7lDQvrXjdEtIQxXVI8+MeIBXcqNY+pET3LGBYMQlUAAAN90lEQVQcaX7Wj/Kx\nNwrnrZJjVA3u2bBUyR8DJB1O6kbekKVr/K8J3BMR36pNeO2rqakppk6duuITzczMrNOTNC0imuod\nh3VNkn4KHA18NCLerHc87S33TB4ErNvGIZ+2ApUOEfw9qWLKGaRKKCVvtWFCoJmZmZlZXUnailRL\n4Gjg4u6YXOWFmtcmlZFfjVSG/3DgbCdXtVfREMGIeCMiZkXENyLiOWA+qVT7GpLKFyxbaZIGSPqr\npEclPSLp6Lx/XUkTJT2Zn9fJ+4dJmiFpqqQheV8fSbfmBdzMzMzMzJbnBlLVv9uAk+scS3t5h9Rb\ndQNwI/B54Pj8sBqrtsjFV4BzgY8CL5PKTz4GfLLCJhcDIyPiQUlrAtMkTQSGA5Mi4kxJo0i9Zj8A\nRpLWcBhEGjM8kjSG+PQ8htXMzMzMrFURMajeMbS3iLiG5jlm1s6q7eU5jbQ69BMRsQFpBewplTYW\nEXMi4sG8/RYpWVuPVMKyNLlxDLB33l5EKnvZG1gkaTAwICLuqDQGMzMzMzOzSlW7uNmiiHhN0iqS\nVomIv0r6RS0CkzQI2Aq4D+gXEXPyoZdoXhjtDOAK0hDF/YFzSD1Yy2t3BLlqzMCBFY9mNDMzMzMz\nW0a1PVj/yitx3wWMlXQeaYxnVXKb1wHHlE80zGsgRN6eHhFDI2JXUkXDOelyXS3pSknLrFAdERdH\nRFNENPXt27faUM3MzMysM5MGIUWVj9H1fhvWdVSbYO0FvEtalG0CqWR7VbX6Ja1KSq7GRsT1efdc\nSf3z8f6k+V7Fa0TquTqVNDnxOOAS4KhqYjEzMzMzM2uLqhKsiHgnIpZExOK8ANyFpLKPFcmJ0mXA\nYxFxbuHQzaQF56B54bmiA4DxuUR8b9KK1EvytpmZmZmZWYeoaA6WpLWA75IKUNxMWt37u8D3SSt+\nj60wnmGkuVQzJU3P+44HzgTGSToEeA7YtxBLb1KVwd3zrnOB8cBC4JsVxmFmZmZm3dNsYMc2XvN2\newRi3VOlRS5+B7wO/A04lJQECdg7IqYv78LliYjJuZ2W7NbKNe8CuxZe3w1sVmkMZmZmZtatLSZi\nVr2DsO6r0gRrw4jYDEDSpaTiEgMj4r2aRWZmZmZmZtbFVDoHa1FpIyL+Dbzg5MrMzMzMzBpdpT1Y\nW0gqlU8X0Cu/FqmS+lo1ic7MzMzMzKwLqSjBiogetQ7EzMzMzMysq6t2HSwzMzMzMzPLKh0i2C08\n/jjsvHO9o7CSHj1giy1gp51gxx2hX796R2RmZmZm1jYNnWBJ0LOhP4HOZf58uOgiOO+89HrIkJRs\nlRKuwYPTd2ZmZmZm1lk1dHqx8cZw++31jsKKFi6EBx+Eu+9OjxtugMsvT8f+4z+ak62ddoLNN0+9\nXmZmZmZt8DGkaMP5BxExur2Cse6noRMs63xWWw2GDk2PY4+FJUvgscdSsjV5cnq+5pp07pprwg47\nNCdd224LvXrVN34zMzMza2xOsKxTW2UV+OQn0+Oww9K+559vTrbuvhtOPDHtX3VV2Gab5h6uYcNg\nnXXqF7uZmZmZNR5FtKWHtHtpamqKqVOn1jsMq9K8eXDPPc1J19SpsCgvhb3ppkvP4xowoL6xmplZ\n+5E0LSKa6h2HdTLSIODZwp7ZwI5taOFVIt6uZUjWvTnBcoLV7bz7LjzwQHMP1733wtv5f4sf+1hz\nD9dOO8HHP556yczMrOtzgmUtWjbBeo6IQXWJxRqChwhat9O7N3z60+kBsHgxzJjR3MN1220wdmw6\n9qEPpaGEpR6urbdO88DMzMzMzCrhBMu6vZ49U+K09dZw1FEQAU8/3dzDNXky3HxzOrdXL9huu+Ye\nrqFDUzENMzMzM7OV4QTLGo4EG22UHgcdlPa99FJKtEq9XD/9aapg2KMHbLllcw+XF0A2MzMzs+Xp\nMnOwJO0BnAf0AC6NiDMlnQV8AZgeEQfk874FfDgifrGiNj0Hy1rz5pswZUpzD9eUKfDee+nYxhsv\nPY9rww29ALKZWWfgOVjWIs/Bsg7WJXqwJPUAfgl8DngBeEDSn4GtI2JzSZdK2gx4CjgI2KN+0Vp3\nsNZasPvu6QFpAeRp05p7uIoLIPfv39y75QWQzczMzBpbl0iwgG2BpyLiGQBJfwD2BFaVJKA3sAj4\nPnBBRCyqW6TWLa22Gmy/fXqsaAHkNdaAPn3qG6+ZmZmZ1UdXSbDWA/5ZeP0CsB0wHngImAS8AWwX\nEacuryFJI4ARAAMHDmyXYK37W94CyFOmwDvv1Dc+M7NGVBpZYGZWT11iDpakrwF7RMSh+fX+pGTq\niMI5lwK/ArYGdgdmRMRpy2vXc7DMzMy6D8/BshZ5DpZ1sK6yxOpsYEDh9fp5HwCStgIEPA58PSL2\nBQZLGtKhUZqZmZmZWUPrKgnWA8AQSRtIWg3YD7i5cPxU4EfAqqQqgwBLSHOzzMzMzMzMOkSXmIMV\nEYslHQH8hZRAXR4RjwBI2huYGhEv5tfTJc0kDRH8e92CNjMzMzOzhtMlEiyAiBhPKmpRvv9G4MbC\n6++TqgmamZmZmZl1qC5R5KK9SHqLNG/LOo8PA6/WOwh7n7+PzsXfR+fi76Pz2SQi1qx3ENbJuMiF\ndbAu04PVTh53taHORdJUfyedh7+PzsXfR+fi76PzkeTSwLasiFmkYmhmHaKrFLkwMzMzMzPr9Jxg\nmZmZmZmZ1UijJ1gX1zsAW4a/k87F30fn4u+jc/H30fn4OzGzumvoIhdmZmZmZma11Og9WGZmZmZm\nZjXjBMvMzMzMzKxGGibBknS5pJclPVzYt66kiZKezM/r1DPGRtLK93G2pH9ImiHpBkl96hljo2np\nOykcGykpJH24HrE1ota+D0lH5n8nj0j6Wb3iazSt/D9rS0lTJE2XNFXStvWMsZFIGiDpr5Iezf8W\njs77/XPdzOquYRIsYDSwR9m+UcCkiBgCTMqvrWOMZtnvYyKwaURsDjwB/LCjg2pwo1n2O0HSAGB3\n4PmODqjBjabs+5C0K7AXsEVEfBI4pw5xNarRLPvv42fAjyNiS+Ck/No6xmJgZER8AhgKfFfSJ/DP\ndTPrBBomwYqIu4B5Zbv3Asbk7THA3h0aVANr6fuIiFsjYnF+OQVYv8MDa2Ct/BsB+H/AcYAr4nSg\nVr6Pw4EzI2JBPuflDg+sQbXyfQSwVt5eG3ixQ4NqYBExJyIezNtvAY8B6+Gf62bWCTRMgtWKfhEx\nJ2+/BPSrZzC2lIOBP9c7iEYnaS9gdkT8vd6xGAAbAztJuk/SnZK2qXdADe4Y4GxJ/yT1JrrXvQ4k\nDQK2Au7DP9fNrBNo9ATrfZHq1fsv9J2ApBNIwz/G1juWRiapN3A8aeiTdQ49gXVJQ6KOBcZJUn1D\namiHA9+LiAHA94DL6hxPw5G0BnAdcExEvFk85p/rZlYvjZ5gzZXUHyA/e7hNnUkaDnwZ+J/wIm31\nNhjYAPi7pFmkIZsPSvqPukbV2F4Aro/kfmAJ4MIj9XMgcH3evgZwkYsOJGlVUnI1NiJK34N/rptZ\n3TV6gnUz6Qck+fmmOsbS8CTtQZrrs2dEvFvveBpdRMyMiI9ExKCIGET65X7riHipzqE1shuBXQEk\nbQysBrxa14ga24vAp/P2Z4An6xhLQ8k9t5cBj0XEuYVD/rluZnWnRukkkHQVsAvpr71zgZNJv6yM\nAwYCzwH7RkRLk/ytxlr5Pn4IfAB4LZ82JSIOq0uADail7yQiLiscnwU0RYR/oe8Arfwb+R1wObAl\nsBD4fkTcXq8YG0kr38fjwHmkoZvvAd+JiGn1irGRSNoRuBuYSerJhTSk+T78c93M6qxhEiwzMzMz\nM7P21uhDBM3MzMzMzGrGCZaZmZmZmVmNOMEyMzMzMzOrESdYZmZmZmZmNeIEy8zMzMzMrEacYJlZ\nu5L0IUnT8+MlSbMLr1crO/cvktZcQXsvSOrTyv6rC6/3k3Rpjd7DaZKOqUVbZmZm1r31rHcAZta9\nRcRrpHWbkHQK8HZEnFM8Jy8aqoj4fJW3207SJhHxeJXt1EzhvS1Z4clmZmbW5bkHy8zqQtJGkh6V\nNBZ4BOhf7J2SdIukaZIekXToSjb7c9Jio+X3WqoHStI/JK2fY3hY0u8kPSHpCkmfl3SvpCclNRWa\n2UrSlLz/4EJboyTdL2mGpJNae29t/oDMzMysS3IPlpnV08eBAyJiKkDq7HnfgRExT1JvYKqk6yLi\n9RW0dxVwhKQN2hDDJsC+wD+AB4H3ImIHSV8FRgFfy+dtBuwArAU8KOlPwKeAgcB2gIDxknYAXi5/\nb2ZmZtYY3INlZvX09HISkO9J+jvwN2B9YPBKtLeY1Is1qg0xPBURj+YhfI8Ck/L+mcCgwnk3RsR7\nEfEycBewDbA78AXgIVJythGwcT5/ee/NzMzMuin3YJlZPb3T0k5JnwV2BoZGxHxJk4HVV7LN0cBx\nwBOFfYtZ+g9KxbYWFLaXFF4vYen/R0bZfYLUa3VaRFxWFv9GtPLezMzMrHtzD5aZdUZrA/NycvVJ\nUm/RSomIhcD5wNGF3bNIw/mQtC0woIKY9pb0AUl9gZ2AqcBfgEMkfTC3vb6kD1fQtpmZmXUTTrDM\nrDP6E9Bb0qPAacB9bbz+EqBYAv4aoJ+kh4ERwDMVxPQwcCdwL3ByRMyNiPHAtcAUSTOBccAaFbRt\nZmZm3YQiyke9mJmZmZmZWSXcg2VmZmZmZlYjTrDMzMzMzMxqxAmWmZmZmZlZjTjBMjMzMzMzqxEn\nWGZmZmZmZjXiBMvMzMzMzKxGnGCZmZmZmZnVyP8HfU4u7i7hS2QAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the 'sim_no-learning' log file from the initial simulation results\n", + "vs.plot_trials('sim_no-learning.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3\n", + "Using the visualization above that was produced from your initial simulation, provide an analysis and make several observations about the driving agent. Be sure that you are making at least one observation about each panel present in the visualization. Some things you could consider:\n", + "- *How frequently is the driving agent making bad decisions? How many of those bad decisions cause accidents?*\n", + "- *Given that the agent is driving randomly, does the rate of reliabilty make sense?*\n", + "- *What kind of rewards is the agent receiving for its actions? Do the rewards suggest it has been penalized heavily?*\n", + "- *As the number of trials increases, does the outcome of results change significantly?*\n", + "- *Would this Smartcab be considered safe and/or reliable for its passengers? Why or why not?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "The agent has almost 40% bad actions, with more violations than accidents as would be expected from a random agent. It does not learn from mistakes, so the rates dont improve but fluctuate randomly. The reliability rate is about 10%, but given it is driving randomly you would expect this as it does not chose its action based on a destination. The average rolling rewards are negative, due to the high number of bad actions committed and inability to learn, so it also doesnt improve over trials. The rewards suggest it is not penalised heavily on average, so not actively seeking out accidents, but rewards are still consistently negative. The number of trials does not affect the outcome - as expected, as no learning is happening. The only visible change across trials seems like random fluctuation. This smartcab is not safe or reliable, as it cannot learn, and thus gets safety and reliability ratings of F." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "## Inform the Driving Agent - Learning policies\n", + "The second step to creating an optimized Q-learning driving agent is defining a set of states that the agent can occupy in the environment. Depending on the input, sensory data, and additional variables available to the driving agent, a set of states can be defined for the agent so that it can eventually *learn* what action it should take when occupying a state. The condition of `'if state then action'` for each state is called a **policy**, and is ultimately what the driving agent is expected to learn. Without defining states, the driving agent would never understand which action is most optimal -- or even what environmental variables and conditions it cares about!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Identify States\n", + "Inspecting the `'build_state()'` agent function shows that the driving agent is given the following data from the environment:\n", + "- `'waypoint'`, which is the direction the *Smartcab* should drive leading to the destination, relative to the *Smartcab*'s heading.\n", + "- `'inputs'`, which is the sensor data from the *Smartcab*. It includes \n", + " - `'light'`, the color of the light.\n", + " - `'left'`, the intended direction of travel for a vehicle to the *Smartcab*'s left. Returns `None` if no vehicle is present.\n", + " - `'right'`, the intended direction of travel for a vehicle to the *Smartcab*'s right. Returns `None` if no vehicle is present.\n", + " - `'oncoming'`, the intended direction of travel for a vehicle across the intersection from the *Smartcab*. Returns `None` if no vehicle is present.\n", + "- `'deadline'`, which is the number of actions remaining for the *Smartcab* to reach the destination before running out of time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4\n", + "*Which features available to the agent are most relevant for learning both **safety** and **efficiency**? Why are these features appropriate for modeling the *Smartcab* in the environment? If you did not choose some features, why are those features* not *appropriate?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "Safety: most relevant are light and oncoming, given that respecting traffic lights avoids accidents and the direction of ongoing traffic affects whether you can turn left on green or not. I dont need waypoint as direction of travel is irrelevant for safety, and dont need left and right as this is handled by the color of the light. Also dont need deadline, unless you allow for reckless actions in order to meet a deadline.\n", + "\n", + "Efficiency: most relevant are deadline, waypoint as efficiency depends on how much time is left, and if the next waypoint is an efficient step towards the destination. Anything in inputs doesnt matter, as they dont impact the time to destination. One exception is oncoming, as if it is none you can turn left immediately, else have to wait one timestep.\n", + "\n", + "Interestingly, after running simulations, it seems removing deadline as a state variable reducing the variance in my reliability estimates. It also makes it easier to check states, as there are a lot less. It should also be noted that including the deadline could lead to the agent making illegal moves to meet the deadline, like running over a red light, however removing deadline ensures good behaviour after only 100 trials!\n", + "\n", + "Including right and left would lead to an increase in state space, making it harder to interpret state action reward tuples. The edge case with left is if cars on your left go straight, and you turn right on a red light, which is allowed. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a State Space\n", + "When defining a set of states that the agent can occupy, it is necessary to consider the *size* of the state space. That is to say, if you expect the driving agent to learn a **policy** for each state, you would need to have an optimal action for *every* state the agent can occupy. If the number of all possible states is very large, it might be the case that the driving agent never learns what to do in some states, which can lead to uninformed decisions. For example, consider a case where the following features are used to define the state of the *Smartcab*:\n", + "\n", + "`('is_raining', 'is_foggy', 'is_red_light', 'turn_left', 'no_traffic', 'previous_turn_left', 'time_of_day')`.\n", + "\n", + "How frequently would the agent occupy a state like `(False, True, True, True, False, False, '3AM')`? Without a near-infinite amount of time for training, it's doubtful the agent would ever learn the proper action!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5\n", + "*If a state is defined using the features you've selected from **Question 4**, what would be the size of the state space? Given what you know about the evironment and how it is simulated, do you think the driving agent could learn a policy for each possible state within a reasonable number of training trials?* \n", + "**Hint:** Consider the *combinations* of features to calculate the total number of states!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The state space would be: 2 (for light) * 4 (for oncoming direction) * 3 (for next waypoints) * 2 (for left=forward). I think the agent could learn policies for each state in a reasonable numer of trails. \n", + "\n", + "Thus a total of 48 states.\n", + "\n", + "To see if how long it takes to learn 48 states, you can run Monte Carlo, see below." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import random\n", + "\n", + "def percent_visited(steps, states):\n", + " visited = np.zeros(states, dtype=bool)\n", + " for _ in range(steps):\n", + " current_state = random.randint(0, states-1) # random visiting\n", + " visited[current_state] = True # add to visited list\n", + " return sum(visited)/float(states) # return share" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH2FJREFUeJzt3Xt4VPW97/H3l4SbgNySVuUi4EZbQEQNN61FbBWstepW\nKmoV7W45SEX7nKebevSU3vCotbv11BsP7aFo6y4qWrWWbt3WawuoQUFuoiGhENSaBAm5kJDL9/wx\nK2GSTJIhTDKZNZ/X8+RxZs1vZr5ZEz/85rfW+v3M3RERkXDpkewCREQk8RTuIiIhpHAXEQkhhbuI\nSAgp3EVEQkjhLiISQgp3EZEQUriLiISQwl1EJIQyk/XGWVlZPmrUqGS9vYhIStqwYUOxu2e31y5p\n4T5q1Chyc3OT9fYiIinJzP4RTzsNy4iIhJDCXUQkhBTuIiIhpHAXEQkhhbuISAi1G+5mtsLMPjGz\nLa08bmb2KzPLM7N3zeyMxJcpIiJHIp6e+0pgdhuPXwiMDX7mAw8dfVkiInI02j3P3d1fM7NRbTS5\nBHjEI+v1rTezQWZ2vLt/lKAaU5a78+ymD9n5SXmySxGRbiRn1BC+eHK71yEdlURcxDQM2BN1vzDY\n1iLczWw+kd49I0eOTMBbd1+Fn1Zy65Ob+VteMQBmSS5IRLqNBTNOSolwj5u7LweWA+Tk5IRyZe76\neuc/39zNnWu2A3DHZRO4espITOkuIl0oEeG+FxgRdX94sC3t7NlXyfeffJe1O0v4wr9kcdflpzJ8\n8DHJLktE0lAiwv1Z4CYzWwVMBUrDOt5+8FAdz2/9mOrauhaPfXKgmode3UkPM+7811OZO3mEeusi\nkjTthruZ/QE4F8gys0Lgh0BPAHdfBqwBvgLkAZXADZ1VbDK9WbCPxas3saukstU254zN4q7LJzJs\nUN8urExEpKV4zpa5qp3HHfhOwirqZioP1fKz/9rBw+t2MXxwXx7+5hTGfqZ/i3YZPYzPDOit3rqI\ndAtJm/I3FazPL2Hx6nfZva+S688axb/POoV+vbXLRKT7U1LFcPBQHXf+ZTuPrPsHJw49hsfmT2Pq\nmKHJLktEJG4K9xjuWLONR9/YzTfPHs2/zzqFvr0ykl2SiMgRUbg3s3f/QR57aw9XTxnJkovHJbsc\nEZEO0ayQzTzwch4A35n5L0muRESk4xTuUQo/reSJ3D1cOXkEJ+h0RhFJYQr3KA+8nIdh6rWLSMpT\nuAf27KvkidxC5k4ZwfED1WsXkdSmcA888HIePcy48dyTkl2KiMhRU7gT6bWv3lDIVeq1i0hIKNyB\n+1/Ko0cP48ZzNdYuIuGQ9uG+u6SS1W8XcvWUkRw3sE+yyxERSYi0D/f7XvqAzB4aaxeRcEnrcN9V\nXMFT7+zl6qkj+eyx6rWLSHikdbj/+vX8SK99hnrtIhIuaR3u7+zez/SThvIZ9dpFJGTSNtzdnYLi\nCsZktVx4Q0Qk1aVtuH98oIqDNXWMzu6X7FJERBIubcM9v6gCgJOyFO4iEj7pG+7FkXBXz11Ewih9\nw72onGN6ZXCcDqaKSAilcbhXMDqrH2aW7FJERBIubcO9oDgS7iIiYZSW4V5dW0fhp5WMydZpkCIS\nTmkZ7rtLKql3OEkHU0UkpNIy3HcGp0FqWEZEwiotwz2/uBxQuItIeKVluBcUVZA9oDcD+vRMdiki\nIp0iLcM9v7iCMeq1i0iIpWe4F5XrTBkRCbW4wt3MZpvZDjPLM7NbYzw+0Mz+ZGabzGyrmd2Q+FIT\n49OKQ3xaWaOeu4iEWrvhbmYZwAPAhcA44CozG9es2XeAbe5+GnAu8B9m1ivBtSZEw5wyY3QapIiE\nWDw99ylAnrvnu/shYBVwSbM2DgywyLX8/YF9QG1CK02QgsZw17CMiIRXPOE+DNgTdb8w2BbtfuDz\nwIfAZuAWd69PSIUJll9UTmYPY/jgvskuRUSk0yTqgOosYCNwAjAJuN/Mjm3eyMzmm1mumeUWFRUl\n6K2PTH5RBSOHHkPPjLQ8liwiaSKehNsLjIi6PzzYFu0G4CmPyAMKgM81fyF3X+7uOe6ek52d3dGa\nj0qBToMUkTQQT7i/BYw1s9HBQdK5wLPN2uwGvgRgZp8FTgHyE1loItTVOwUlFRpvF5HQy2yvgbvX\nmtlNwPNABrDC3bea2YLg8WXAT4GVZrYZMOD77l7ciXV3yIf7D3Kotl49dxEJvXbDHcDd1wBrmm1b\nFnX7Q+CCxJaWeI1L6yncRSTk0uqoYn5RZMIwDcuISNilVbgXFFcwoE8mWf275fVVIiIJk1bhnl8U\nOVNG66aKSNilWbhrwjARSQ9pE+4HD9XxYWmVDqaKSFpIm3Av0IRhIpJG0i/cszQsIyLhlzbh3nAa\n5KisY5JciYhI50ufcC+u4ISBfTimV1zXbYmIpLS0CnedKSMi6SItwt3dyS8q15kyIpI20iLci8sP\nUVZVqzNlRCRtpEW4F2jCMBFJM2kR7g1nypykMXcRSRNpEe4FxRX0yuzBCYO0bqqIpIe0CPedRRWM\nGnoMGT00YZiIpIe0CPf84nJdmSoiaSX04V5aWUNBcQWfP/7YZJciItJlQh/ubxSU4A7TxgxJdiki\nIl0m9OG+Pn8fvTN7MGnkoGSXIiLSZdIg3Es488TB9M7MSHYpIiJdJtThvr/yENs/PsC0MUOTXYqI\nSJcKdbi/UbAPd5h+ksJdRNJLqMN93c4S+vTswcThA5NdiohIlwp1uGu8XUTSVWjD/dOKQ7z3cRnT\nNd4uImkotOH+RkEJgA6mikhaCm24r8/fR9+eGUwcrvPbRST9hDjcS8gZNZhemaH9FUVEWhXK5Csp\nr+a9j8s0JCMiaSuU4f5mwT5A88mISPqKK9zNbLaZ7TCzPDO7tZU255rZRjPbamavJrbMI7M+v0Tj\n7SKS1jLba2BmGcADwPlAIfCWmT3r7tui2gwCHgRmu/tuM/tMZxUcj3XBeHvPjFB+MRERaVc86TcF\nyHP3fHc/BKwCLmnW5mrgKXffDeDunyS2zPgVl1fz/j/LNeWAiKS1eMJ9GLAn6n5hsC3aycBgM3vF\nzDaY2XWxXsjM5ptZrpnlFhUVdazidhweb1e4i0j6StS4RSZwJnARMAv4gZmd3LyRuy939xx3z8nO\nzk7QWze1bmcJx/TK4NRhmk9GRNJXu2PuwF5gRNT94cG2aIVAibtXABVm9hpwGvB+Qqo8AuvzS5g8\naojG20UkrcWTgG8BY81stJn1AuYCzzZr8wzwBTPLNLNjgKnA9sSW2r7i8mo++KRcQzIikvba7bm7\ne62Z3QQ8D2QAK9x9q5ktCB5f5u7bzey/gHeBeuA37r6lMwuPZX1+w3wyOr9dRNJbPMMyuPsaYE2z\nbcua3b8HuCdxpR259fkl9NN4u4hIuK5QXbezhMmjh5Cp8XYRSXOhScF9FYfYWVTB1NEabxcRCU24\nF5dXAzBiSN8kVyIiknyhCfeyqhoA+veO6zCCiEiohSjcawEY0EfhLiISmnAvr24I955JrkREJPnC\nE+5Bz13DMiIiIQr3hmGZ/hqWEREJUbgHwzL9eyncRURCE+7lVbX0751Jjx6W7FJERJIuNOFeVlWj\n8XYRkUBowr28ulanQYqIBEIV7jqYKiISEZpwPxCMuYuISIjCvbyqRsMyIiKB8IR7dS0DeuvqVBER\nCFO4V2nMXUSkQSjCva7eqThUpzF3EZFAKML98KRhCncREVC4i4iEUijC/fBCHTqgKiICIQn3ci3U\nISLSRCjCvXFGSIW7iAgQknBv7LnrbBkRESAk4a6FOkREmgpFuJdXRw6oav1UEZGIcIR7VS1mcEzP\njGSXIiLSLYQi3A9U1dK/l1ZhEhFpEIpw10IdIiJNhSPcNWmYiEgTcYW7mc02sx1mlmdmt7bRbrKZ\n1ZrZFYkrsX1l1Vo/VUQkWrvhbmYZwAPAhcA44CozG9dKu7uBFxJdZHvKq2p1poyISJR4eu5TgDx3\nz3f3Q8Aq4JIY7RYBTwKfJLC+uJRp/VQRkSbiCfdhwJ6o+4XBtkZmNgy4DHgocaXFr7yqVleniohE\nSdQB1XuB77t7fVuNzGy+meWaWW5RUVGC3jpyharG3EVEDosnEfcCI6LuDw+2RcsBVpkZQBbwFTOr\ndfenoxu5+3JgOUBOTo53tOhotXX1HKyp05i7iEiUeML9LWCsmY0mEupzgaujG7j76IbbZrYSeK55\nsHeWiuo6QPPKiIhEazcR3b3WzG4CngcygBXuvtXMFgSPL+vkGtt0IFioQ2PuIiKHxZWI7r4GWNNs\nW8xQd/frj76s+GmJPRGRllL+CtVyLdQhItJC6od7w1zuGpYREWmU8uHeOOaus2VERBqlfLhrzF1E\npKXUD3cNy4iItJDy4V5WVUsPg2N6aRUmEZEGKR/u5dWRqQeCq2NFRIQQhHuZpvsVEWkhBOGuhTpE\nRJpL+XDX+qkiIi2FItx1daqISFOpH+6ay11EpIWUD/cDOqAqItJCyod7eXWNxtxFRJpJ6XCvqaun\nqqZewzIiIs2kdLg3TD2gnruISFOpHe7VmldGRCSWlA73MvXcRURiSulwP9xz19kyIiLRUjrcyxoX\n6lDPXUQkWkqHu9ZPFRGJLaXDvXHMXQdURUSaCEe46wpVEZEmUjrcy6tryOhh9OmZ0r+GiEjCpXQq\nNkwaplWYRESaSulwL9Nc7iIiMaV2uGu6XxGRmFI63Mur1HMXEYkltcO9Wj13EZFYUjrcy6pqdBqk\niEgMKR3uWj9VRCS2uMLdzGab2Q4zyzOzW2M8fo2ZvWtmm81srZmdlvhSWyqrqtXVqSIiMbQb7maW\nATwAXAiMA64ys3HNmhUAM9z9VOCnwPJEF9rcodp6qmvrdUBVRCSGeHruU4A8d89390PAKuCS6Abu\nvtbdPw3urgeGJ7bMlrRQh4hI6+IJ92HAnqj7hcG21vwb8JdYD5jZfDPLNbPcoqKi+KuMoWGJvf46\noCoi0kJCD6ia2Uwi4f79WI+7+3J3z3H3nOzs7KN6r7JqzeUuItKaeJJxLzAi6v7wYFsTZjYR+A1w\nobuXJKa81mm6XxGR1sXTc38LGGtmo82sFzAXeDa6gZmNBJ4CrnX39xNfZkuHh2UU7iIizbWbjO5e\na2Y3Ac8DGcAKd99qZguCx5cBS4ChwIPBDI217p7TeWXrgKqISFviSkZ3XwOsabZtWdTtbwHfSmxp\nbTu8fqoOqIqINJeyV6iWVTeswqSeu4hIcykb7uVVtWT2MHpnpuyvICLSaVI2GcuDhTq0CpOISEsp\nG+5lVZo0TESkNakd7r11MFVEJJaUDffy6hodTBURaUXKhrum+xURaV3KhrsW6hARaV3qhrsWxxYR\naVXKhrsOqIqItC4lw726to5DdVqFSUSkNSkZ7o0zQuqAqohITKkZ7ppXRkSkTSkZ7mXquYuItCm1\nw109dxGRmFIy3BuGZY7VXO4iIjGlZLg3LNShYRkRkdhSMtwbl9jTsIyISEwpGe4NY+46W0ZEJLaU\nDPfy6lp6ZfSgd2ZGsksREemWUjLcy6pqNCQjItKGlEzI8qpaHUyV0KupqaGwsJCqqqpklyJJ0KdP\nH4YPH07Pnh07KzAlE7Jh/VSRMCssLGTAgAGMGjVKawWnGXenpKSEwsJCRo8e3aHXSMlhmQPquUsa\nqKqqYujQoQr2NGRmDB069Ki+taVkuGsud0kXCvb0dbSffWqGe3UtA3R1qogchffee49JkyZx+umn\ns3Pnznbbr1y5kg8//DBh7TpbSoZ7WVWNhmVEQqS2trbL3/Ppp5/miiuu4J133uGkk05qt73CvZO5\nu9ZPFekijzzyCBMnTuS0007j2muvBWDXrl2cd955TJw4kS996Uvs3r2b0tJSTjzxROrr6wGoqKhg\nxIgR1NTUsHPnTmbPns2ZZ57JOeecw3vvvQfA9ddfz4IFC5g6dSqLFy/mzTffZPr06Zx++umcddZZ\n7NixA4DKykq+/vWvM27cOC677DKmTp1Kbm4uAC+88ALTp0/njDPOYM6cOZSXl7f4HTZu3Mi0adOY\nOHEil112GZ9++ilr1qzh3nvv5aGHHmLmzJlN2tfV1XH99dczYcIETj31VH75y1+yevVqcnNzueaa\na5g0aRIHDx7kJz/5CZMnT2bChAnMnz8fd4/ZbsOGDcyYMYMzzzyTWbNm8dFHHwHwq1/9inHjxjFx\n4kTmzp2b8M8u5RKyuraemjrXmLuklR//aSvbPjyQ0Nccd8Kx/PDi8a0+vnXrVpYuXcratWvJyspi\n3759ACxatIh58+Yxb948VqxYwc0338zTTz/NpEmTePXVV5k5cybPPfccs2bNomfPnsyfP59ly5Yx\nduxY3njjDRYuXMhLL70ERM4IWrt2LRkZGRw4cIDXX3+dzMxMXnzxRW677TaefPJJHnzwQQYPHsy2\nbdvYsmULkyZNAqC4uJilS5fy4osv0q9fP+6++25+8YtfsGTJkia/x3XXXcd9993HjBkzWLJkCT/+\n8Y+59957WbBgAf379+d73/tek/YbN25k7969bNmyBYD9+/czaNAg7r//fn7+85+Tk5MDwE033dT4\nXtdeey3PPfccV1xxRZN2NTU1LFq0iGeeeYbs7Gwee+wxbr/9dlasWMFdd91FQUEBvXv3Zv/+/Qn4\nRJtKuYRsXKhDwzIineqll15izpw5ZGVlATBkyBAA1q1bx1NPPQVEQm3x4sUAXHnllTz22GPMnDmT\nVatWsXDhQsrLy1m7di1z5sxpfN3q6urG23PmzCEjI3KleWlpKfPmzeODDz7AzKipiUwQ+Le//Y1b\nbrkFgAkTJjBx4kQA1q9fz7Zt2zj77LMBOHToENOnT2/yO5SWlrJ//35mzJgBwLx585rUEsuYMWPI\nz89n0aJFXHTRRVxwwQUx27388sv87Gc/o7Kykn379jF+/HguvvjiJm127NjBli1bOP/884HIt4Lj\njz8egIkTJ3LNNddw6aWXcumll7ZZU0fElZBmNhv4v0AG8Bt3v6vZ4xY8/hWgErje3d9OcK2A5nKX\n9NRWD7u7+NrXvsZtt93Gvn372LBhA+eddx4VFRUMGjSIjRs3xnxOv379Gm//4Ac/YObMmfzxj39k\n165dnHvuuW2+n7tz/vnn84c//CGRvwaDBw9m06ZNPP/88yxbtozHH3+cFStWNGlTVVXFwoULyc3N\nZcSIEfzoRz+KedqiuzN+/HjWrVvX4rE///nPvPbaa/zpT3/ijjvuYPPmzWRmJi7X2h1zN7MM4AHg\nQmAccJWZjWvW7EJgbPAzH3goYRU2c3j9VJ0tI9KZzjvvPJ544glKSkoAGodlzjrrLFatWgXAo48+\nyjnnnANA//79mTx5Mrfccgtf/epXycjI4Nhjj2X06NE88cQTQCTsNm3aFPP9SktLGTZsGBA5KNng\n7LPP5vHHHwdg27ZtbN68GYBp06bx97//nby8PCAyzv/+++83ec2BAwcyePBgXn/9dQB+97vfNfbi\nW1NcXEx9fT2XX345S5cu5e23I/3UAQMGUFZWBtAY5FlZWZSXl7N69erG50e3O+WUUygqKmoM95qa\nGrZu3Up9fT179uxh5syZ3H333ZSWlsY8XnA04vlnYgqQ5+75AGa2CrgE2BbV5hLgEXd3YL2ZDTKz\n4939o4RWC5RVR76qacxdpHONHz+e22+/nRkzZpCRkcHpp5/OypUrue+++7jhhhu45557yM7O5re/\n/W3jc6688krmzJnDK6+80rjt0Ucf5cYbb2Tp0qXU1NQwd+5cTjvttBbvt3jxYubNm8fSpUu56KKL\nGrcvXLiQefPmMW7cOD73uc8xfvx4Bg4cSHZ2NitXruSqq65qHOpZunQpJ598cpPXffjhh1mwYAGV\nlZWMGTOmSb2x7N27lxtuuKHx4PCdd94JHD4A3LdvX9atW8e3v/1tJkyYwHHHHcfkyZMbn9+83erV\nq7n55pspLS2ltraW7373u5x88sl84xvfoLS0FHfn5ptvZtCgQXF+MvGxSB630cDsCmC2u38ruH8t\nMNXdb4pq8xxwl7v/Lbj/V+D77p7b2uvm5OR4wxHvI/H81o/5H7/bwHOLvsCEYQOP+PkiqWL79u18\n/vOfT3YZSVdXV0dNTQ19+vRh586dfPnLX2bHjh306tUr2aV1ulh/A2a2wd1z2ntul3Z/zWw+kWEb\nRo4c2aHXyOrfiwsnHEdW/96JLE1EuqnKykpmzpxJTU0N7s6DDz6YFsF+tOIJ973AiKj7w4NtR9oG\nd18OLIdIz/2IKg2ceeIQzjxxSEeeKiIpaMCAAXTkW366i+cipreAsWY22sx6AXOBZ5u1eRa4ziKm\nAaWdMd4uIiLxabfn7u61ZnYT8DyRUyFXuPtWM1sQPL4MWEPkNMg8IqdC3tB5JYukD3fX5GFpqr3j\noe2Ja8zd3dcQCfDobcuibjvwnaOqRESa6NOnDyUlJZr2Nw01zOfep0+fDr+GzicU6aaGDx9OYWEh\nRUVFyS5FkqBhJaaOUriLdFM9e/bs8Co8Iik3K6SIiLRP4S4iEkIKdxGREGp3+oFOe2OzIuAfHXx6\nFlCcwHISSbV1jGrrmO5aW3etC1K/thPdPbu9F0pauB8NM8uNZ26FZFBtHaPaOqa71tZd64L0qU3D\nMiIiIaRwFxEJoVQN9+XJLqANqq1jVFvHdNfaumtdkCa1peSYu4iItC1Ve+4iItKGlAt3M5ttZjvM\nLM/Mbu3i9x5hZi+b2TYz22pmtwTbf2Rme81sY/Dzlajn/K+g1h1mNquT69tlZpuDGnKDbUPM7L/N\n7IPgv4O7ujYzOyVq32w0swNm9t1k7TczW2Fmn5jZlqhtR7yfzOzMYH/nmdmvLAGze7VS2z1m9p6Z\nvWtmfzSzQcH2UWZ2MGr/LYt6TlfVdsSfYRfW9lhUXbvMbGOwvcv2WxuZ0fl/b+6eMj9EphzeCYwB\negGbgHFd+P7HA2cEtwcA7xNZNPxHwPditB8X1NgbGB3UntGJ9e0Csppt+xlwa3D7VuDuZNTW7DP8\nGDgxWfsN+CJwBrDlaPYT8CYwDTDgL8CFnVTbBUBmcPvuqNpGRbdr9jpdVdsRf4ZdVVuzx/8DWNLV\n+43WM6PT/95SrefeuFi3ux8CGhbr7hLu/pG7vx3cLgO2A8PaeMolwCp3r3b3AiLz3U/p/Epb1PBw\ncPth4NIk1/YlYKe7t3UBW6fW5u6vAftivGfc+8nMjgeOdff1Hvk/75Go5yS0Nnd/wd1rg7vriax0\n1qqurK0NSd9vDYIe7teBP7T1Gp1RWxuZ0el/b6kW7sOAPVH3C2k7XDuNmY0CTgfeCDYtCr42r4j6\nitXV9TrwopltsMh6tQCf9cOrYn0MfDZJtTWYS9P/ybrDfoMj30/DgttdWSPAN4n02hqMDoYWXjWz\nc4JtXV3bkXyGydhv5wD/dPcPorZ1+X5rlhmd/veWauHeLZhZf+BJ4LvufgB4iMhQ0STgIyJfAZPh\nC+4+CbgQ+I6ZfTH6weBf/KSdHmWRZRq/BjwRbOou+62JZO+n1pjZ7UAt8Giw6SNgZPCZ/0/gP83s\n2C4uq1t+hs1cRdMORZfvtxiZ0aiz/t5SLdzjWoi7M5lZTyIf0qPu/hSAu//T3evcvR74NYeHELq0\nXnffG/z3E+CPQR3/DL7SNXzt/CQZtQUuBN52938GdXaL/RY40v20l6bDI51ao5ldD3wVuCYIA4Kv\n7iXB7Q1ExmdP7sraOvAZdvV+ywT+FXgsquYu3W+xMoMu+HtLtXCPZ7HuThOM3f0/YLu7/yJq+/FR\nzS4DGo7YPwvMNbPeZjYaGEvkoEhn1NbPzAY03CZyEG5LUMO8oNk84Jmuri1Kkx5Ud9hvUY5oPwVf\nqQ+Y2bTg7+K6qOcklJnNBhYDX3P3yqjt2WaWEdweE9SW38W1HdFn2JW1Bb4MvOfujUMaXbnfWssM\nuuLv7WiOBCfjh8hC3O8T+df29i5+7y8Q+fr0LrAx+PkK8Dtgc7D9WeD4qOfcHtS6gwScFdBGbWOI\nHGXfBGxt2DfAUOCvwAfAi8CQrq4teK9+QAkwMGpbUvYbkX9gPgJqiIxd/ltH9hOQQyTMdgL3E1wU\n2Am15REZh234m1sWtL08+Kw3Am8DFyehtiP+DLuqtmD7SmBBs7Zdtt9oPTM6/e9NV6iKiIRQqg3L\niIhIHBTuIiIhpHAXEQkhhbuISAgp3EVEQkjhLgKY2SSLmtFQJNUp3EUiJhE5/1gkFBTuEhoWmad7\nu5n9Opg7+wUz6xuj3Rwz22Jmm8zsteBq558AVwaTSV0ZXPG7wszeNLN3zOyS4LnXm9kzZvaKRebi\n/mGwvZ+Z/Tl4zS1mdmXX/vYiTWUmuwCRBBsLXOXu3zazx4lcjfj7Zm2WALPcfa+ZDXL3Q2a2BMhx\n95sAzOz/AC+5+zctsjjGm2b2YvD8KcAEoBJ4y8z+TGR++g/d/aLg+QM7+xcVaYt67hI2Be6+Mbi9\ngcjCDM39HVhpZt8msnhILBcAt1pk9Z5XgD7AyOCx/3b3Enc/CDxF5BLzzcD5Zna3mZ3j7qUJ+W1E\nOkjhLmFTHXW7jhjfTt19AfC/icy+t8HMhsZ4HQMud/dJwc9Id9/e8BItX9LfJ7IS0GZgafBNQCRp\nFO6SdszsJHd/w92XAEVEQr6MyDJoDZ4nsgiFBc85Peqx8y2yBmZfIqvh/N3MTgAq3f33wD1Egl4k\naTTmLunoHjMbS6R3/lciM2nu5vAwzJ3AT4F7gXfNrAdQQGQ+dYhMP/wkkTm1f+/uuRZZyPgeM6sn\nMjPhjV35C4k0p1khRY5AsGhG44FXke5KwzIiIiGknruISAip5y4iEkIKdxGREFK4i4iEkMJdRCSE\nFO4iIiGkcBcRCaH/DzmPP6RgAACvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "states = 48\n", + "n_steps = [s*40 for s in range(50)] # jump a little bit\n", + "coverage = [percent_visited(steps,states) for steps in n_steps]\n", + "plt.plot(n_steps, coverage, label=\"coverage of states\")\n", + "plt.xlabel(\"n steps\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So this means, it takes around 250 steps for an agent to visit all 48 states if it does something random at each step. This corroborates the idea that without deadline convergence happens after around 250 trials." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Update the Driving Agent State\n", + "For your second implementation, navigate to the `'build_state()'` agent function. With the justification you've provided in **Question 4**, you will now set the `'state'` variable to a tuple of all the features necessary for Q-Learning. Confirm your driving agent is updating its state by running the agent file and simulation briefly and note whether the state is displaying. If the visual simulation is used, confirm that the updated state corresponds with what is seen in the simulation.\n", + "\n", + "**Note:** Remember to reset simulation flags to their default setting when making this observation!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "## Implement a Q-Learning Driving Agent\n", + "The third step to creating an optimized Q-Learning agent is to begin implementing the functionality of Q-Learning itself. The concept of Q-Learning is fairly straightforward: For every state the agent visits, create an entry in the Q-table for all state-action pairs available. Then, when the agent encounters a state and performs an action, update the Q-value associated with that state-action pair based on the reward received and the interative update rule implemented. Of course, additional benefits come from Q-Learning, such that we can have the agent choose the *best* action for each state based on the Q-values of each state-action pair possible. For this project, you will be implementing a *decaying,* $\\epsilon$*-greedy* Q-learning algorithm with *no* discount factor. Follow the implementation instructions under each **TODO** in the agent functions.\n", + "\n", + "Note that the agent attribute `self.Q` is a dictionary: This is how the Q-table will be formed. Each state will be a key of the `self.Q` dictionary, and each value will then be another dictionary that holds the *action* and *Q-value*. Here is an example:\n", + "\n", + "```\n", + "{ 'state-1': { \n", + " 'action-1' : Qvalue-1,\n", + " 'action-2' : Qvalue-2,\n", + " ...\n", + " },\n", + " 'state-2': {\n", + " 'action-1' : Qvalue-1,\n", + " ...\n", + " },\n", + " ...\n", + "}\n", + "```\n", + "\n", + "Furthermore, note that you are expected to use a *decaying* $\\epsilon$ *(exploration) factor*. Hence, as the number of trials increases, $\\epsilon$ should decrease towards 0. This is because the agent is expected to learn from its behavior and begin acting on its learned behavior. Additionally, The agent will be tested on what it has learned after $\\epsilon$ has passed a certain threshold (the default threshold is 0.01). For the initial Q-Learning implementation, you will be implementing a linear decaying function for $\\epsilon$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Q-Learning Simulation Results\n", + "To obtain results from the initial Q-Learning implementation, you will need to adjust the following flags and setup:\n", + "- `'enforce_deadline'` - Set this to `True` to force the driving agent to capture whether it reaches the destination in time.\n", + "- `'update_delay'` - Set this to a small value (such as `0.01`) to reduce the time between steps in each trial.\n", + "- `'log_metrics'` - Set this to `True` to log the simluation results as a `.csv` file and the Q-table as a `.txt` file in `/logs/`.\n", + "- `'n_test'` - Set this to `'10'` to perform 10 testing trials.\n", + "- `'learning'` - Set this to `'True'` to tell the driving agent to use your Q-Learning implementation.\n", + "\n", + "In addition, use the following decay function for $\\epsilon$:\n", + "\n", + "$$ \\epsilon_{t+1} = \\epsilon_{t} - 0.05, \\hspace{10px}\\textrm{for trial number } t$$\n", + "\n", + "If you have difficulty getting your implementation to work, try setting the `'verbose'` flag to `True` to help debug. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation! \n", + "\n", + "Once you have successfully completed the initial Q-Learning simulation, run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FVX6wPHvm4TeQ6gBaSo9CRADRJrAqrQIgkKUJhbQ\nddF1UYOgFF3XH+pasLKsCwgbUDqCugSJgNSAIVJVIEgQAwmQBAiknd8fM7nc9AAJN4T38zx5cmfO\nzJl35pYzZ+bMOWKMQSmllFJKKaXUtXNzdQBKKaWUUkopVVpoBUsppZRSSimliohWsJRSSimllFKq\niGgFSymllFJKKaWKiFawlFJKKaWUUqqIaAVLKaWUUkoppYqIVrBuUiJySEQ6F2K58iJiRKRBMcRw\nr4j86jT9h4h0sV9PE5EPinqb10pExolI2DWs/52IDC3KmFThiUgbEYkSkXMi8sR12N5WERl+HbZT\nzt6n+sW9LaVKEi3LlKuIyEIRmezqOK6Vlh/FQytYLiIiT4tIhIhcEpE5uaT3EpEDInJBRNaLSKM8\n8hllfzHOiUiyiGQ4TZ/Na/vGmGbGmC1FsB9bReSivb1TIvKFiNS61nyNMVOMMU9faz7ZORWy5+2Y\nY0Tk/0REimFbb4jIbOd5xpiexphFRbyd7Pt0TkT+KMptlCITgdXGmMrGmFnZE7N9nhPs717L4gzI\nrrQbEbnvCtbJUnEzxlyy9+n34olSqdxpWZa/4irLMomIu4gcF5Efi2sb15tdQb1gvxcnRGS2iFRw\ndVwlkZYfJZdWsFznd+A14LPsCSLiBSwFXgY8gQgg15NyY8xc+4tRGRgA/JY5bYypnkveHkW4D5ke\ns7ffHKgNvFEM2yhqze2YewOPAMV+l+E6aO703tfNbYFiev9vJI2AvQUsk/l5rglsB/5TzDGNAk4D\nI4t5O0oVBy3LXKs3UBloIyJti2MDLio37rbfC38gEJjgghgA15ebBWxfy48SSitYLmKMWWqMWQ7E\n55J8P7DXGPOlMeYiMBXwFZEWV7Mt+2rQBBHZCyQ6zctswnCniGwTkbMi8ruIvHM1PyjGmNPASsDP\nadsVRORD+ypUjIi8KSJlChGz4+6PiLQQkTQRecTO45SIPO+0bGUR+a8d/x4RmShOzTUKiPkAsDVb\nzJ4iMs8+RsdEZIqI5PpdEZGP7ZgSRWS7iHSy5w8EngMyr8put+dvFZHhIlLRnn+rU17e9pXbGvb0\nILGas50VkY0i0qow+5QtvntF5FcReVlEYoGPC8pbRAJEZLeIJInIfBFZKnYzCMnWRFKyNbux3+93\n7eP2h4jMFJFy2WJ5yX4Pj4vIw055VRKR9+11E0TkexHxEJF1IvJ4tv06KCJ98tjnwSKyz963MBG5\nzZ6/GegMzLaP/S35HTtjTBrWyaDzscn3uyIi/UTkFzv9nwW8PYjI7UBHYCzQX0Q8s6U/YL9PSXa+\nvUTkbeAOp/14O5f3wdP+TpwSkSMi8oKIdZfWfg/X2cf6rFhNrHo7bfNxEYm2t3lYRB4oaD/UzUvL\nsgJjLu6ybBSwGFhrv87Ma5SIbMoWy0QR+cJpfwr6rXaUGyJSS0S+tmM+LSIrRKSeU963ichm+3fj\nGxH5VJxacIhIV6f3ZpeI3FnQsQMwxhwHwsj5XuQV+zYR6We/7mX/Lvayp/uJyFan9yLc3pdTIjJX\nRKo4bSO3z1qWshEom1fc9u/sd/ZxSBSrTOrmlJ7neYbTuh+KyBkgJI9tlLjyQ12mFaySqTWwO3PC\nGHMe+NWef7WGAn/CuiqfXSrwtJ3WFevq4WNXugGxmlMMxIo10zTAB2gLdAB6AC9cad6AO9aVrFuB\nvsDfRaSpnfYaUAvr7kQ/YMQVxNwa66TbOeYFQALQFAjA2qe88tyCtW81gRXAlyJSxj7h+CeQeVU2\nwHklY8wFrAI82Gn2MOBbY8wZsSpqH2HdXasJfA4sv5qTBaAxUAZoCIzPL2+xmmGsAD7FuuL8NRB0\nBdv6J9AA65g0B24na+HQCBCgPtZn7hMRqWynvQ+0wPrx9wQmAwaYi9MdRhHpCFQF/pd942JdwZ0D\nPIV1Bfp7YIWIeBhjAoEd2FepjTG/5bcjdoH9EFYFPFOe3xX7ZOML4G9Yn8dTWJ/Z/IwCNhljFgO/\n4fR5sAvjWcAzQDWgF3DMGPO3bPvxt1zy/QTrPW+C9b1/0t6XTN2w7ibUBD4AMk8AawBvAr2MMVWA\nLsCeAvZBqbxoWZZTkZVlIlLVjnOB/fewiLjbycuA9pL1QtJDwH/t1wX9VjfGqdzAOl/8BLgF63cF\n4B07DsH67VuPdezfIOtvdmNgOTCJy7/ty+3fm3zZ8d9N1vciv9i/x3pvALoDh7F+7zKnv3fKZzpQ\n1ymfSdk27/isXWXZ2A3r8595TJbb7xkUfJ7RDYgEvIC388i/RJUfKhtjjP658A/rB3VOtnn/Bt7I\nNu8HYHQBefUGonOZ/wfwUC7zuuSRTwgQar8uj3WS2yCPZbcC57Gu8BisL259p/TjQE+n6fuAA/br\ne4Ffc4sJ68dotv26hZ23l9OyUcBA+/XvQHentKed880Wb+b+JNhxG6wT8jJ2eiN7fhmndR4BvrZf\njwPC8shbgAtYTfWy7EO24zXcft0f2OeUthN40H79H2BStnWPAh0L2Kez9t8Mp2OcfX/yzBurIDuS\nLW0XMDm3/Xf+fAAeQArg7ZR+F7DfKZYEwM0pPRHrymQZrJOj5rnsXyV7uVvs6Q+Af+bxHvwdmOc0\n7Y5V0emU/fgX8Hk+a+/LaaBrPss7f1eeAMKzbftkXtvDOmH5DRhnT08DtjmlzwX+kU+cw52mnd+H\nckA60NQp/RngG6f3cI9Tmqe9bnWghr3v9wHl89pv/dO/7H9oWXZdyzI7/TE7Ljes38nzQB+n9MXA\nC/brtsAZrLsuhfmtzlJu5LLtTsAJ+/XtQDJQLtu2M/d7CvCvbOt/DwzNI+8/gCT7zwDfAFXstIJi\n7wdst1+H28co3J7eBvTNY5vDgC15fdYooGzMJb9xuSwfBTxA4c4zfi7gO1Liyo/84r0Z//QOVsl0\nDusKvbNqQJKI3CKXH/w9dwV5HssrQURa2bf+Y0UkEXgF66pJYY01xlQF2mNdDapv5yv29FGnZY8C\n3leQd6Z0Y0yc0/QFoLJ9S70uWfcvz3110hqogtVu+U6goj2/EdaPzSn79vdZ4D2gTm6ZiNXk4qCI\nJGAVXuUp/LH7FqgjIr4i0hy4DVjlFMdLmTHYcdQi/2PX2hhT3f5zvrL6hzEm1Wk6v7zrAzHZ8j1K\n4dTHqijtdcp3OdadpEynjDEZTtMXsJ4fqIdVcB7Knqmxrnovxbo6WwbrquLn+cRw1GnddKwTkCv5\nzI011jMf5YEhwCqxmzQV8F2pj9Nnz2nbebkL67P7pT29AAiQy82nGpLL8SiEulwufDNl/945d4Jy\nwf5f2RhzBngY64r1HyKyUpyasSp1hbQsy6koy7JRwEJjTIb9O7kCp2aCWHerMu9qPAQsNsakULjf\n6izlhohUEZHPROQ3+9j+j6y/faeMMZfyiL0RMDxbmeNvr5eXPsa6i3430AbrRD5zW/nFvgmrGaoX\n1l2puUBze9rXTkdE6ovIl2I1VU/EuguT/bPivA9XUzbmtnx9CneeUdB7X+LKj6vYVqmmFaySaS/W\nDwFgPZsCNMNqy+784O+VfKBNPmn/wroS08wuXKZj3Y25IsaYH4EZwEx72mB9ERs5LXYL+Z90Xuk2\nM4BYrCsvmRoWdl1jzOdYV5Um2rOPYZ0U1HCqrFQ1xrTPvr6I/An4CzAI6+q/J9ZVvMxjl98xxy68\nFmMVgA8By4wxyU5xvOIUQ3VjTEVjzNLC7Fv2TWWbzi/vE2Q9lmC9Z5nOc7kyCtaPcaYTQBrW5ygz\n32rGmNya8mTnWDeP9LlYJ/73ArH2Zy03v+P0ebOby3hzFZ85+/PxHdbxymxjnt935QROnz37hCm/\nE7BRWL/Be8Xq9XED1nuVeYJ0jLyPR36frT+ADLK+b4X+3hljVhtjemGdCPyG/dyeUldBy7LCb/OK\nyjIRaYbVhPdRsZ7j+QOrVcR9IlLNXmwN0ESsnlCHcbl5YGF+q7Mf5xA7tjvsY3s3WX/7atnNqnOL\n/RjW3SznMqeSMeadfA6JFYQxa7Gehf2/wsRujEnAatb8HLDTLmcj7Ok9xphEO583scqzNvb+PEbO\nz4rzMSiobMxNbsv/TuHOM/I9f6CElh/qMq1guYj9vEt5rGZE7mI9ZJj5fM0yrB6BBtvLTAF2G6tD\nhuJQBUgwxpyzn0l6vKAV8jEbuFVE7rGnQ4EpIlJTRGpjtXGef23h5vAFMElEqtnttZ+8wvX/AfxZ\nRGoaY45g3T6fYV+xcxPr4d0uuaxXBatZ2ymsZhfTsa5KZYrFKtzyK+D/i1XwBXO58AOr7fRfRMRf\nLJVFJEhEKuaay5XJL+8NQHmxHmT1EJFgrOcOMkUC7USktb38K5kJdkH2GfCeiHjZeTe0K6L5sted\nZ69bR6yuh7vI5ecJwrGO99/t5fKyCBgkIt3su10hWA/fRxTqyGQjVjv227jc82B+35WVwB0i0t/e\n9vNcvuqaPd/KWB0AjMZqIpn5NwHrSq8b1ndprL0vbvaxvN3OIhar7X4O9lXkZcDrYnUc0gyriUeB\n3zuxOlrpZ7+3l7BOAjIKWE3dxLQsK1JXUpaNxHq+pwWXfz+aY/3ePQhgrI5FlmE931oG+/mjq/yt\nroJ1t+KsfTfIefynn4GDwGQRKWP/bt7rlD4XeECsThbcxeqkopeI5NrbbS7exqo4tixk7N9jNa/M\nfN4qPNt05v6cAxLtY/1cATEUVDbmpqHT8sOxKp3/u8LzjBxKavmhstIKlutMxrrbEYL1MGiyPQ9j\nzClgMNbJ5BmsByCHFWMsfwUeE6uZxofk0Y1uYdh3YD7A6pYXrBPwfVgnqJFY7e9nXFO0OU3GOk5H\nsR48/QLr5LBQjDERXL7CBVZlpzpwAOsZnEXk3kRwFdaP7iGsB2njsCpbmRZi3e05LVYPdrnZgHVi\nUg2rp6TMmH7Aaqb1KdYzMT9j3eUq6KpWgfLL237/BmF1EnEGqz37Kqd1f8J6/zZiHZ/wbNk/i3WF\nLgLreatvsB7mLozxWMfyR6yThFexryjaV5A/x2rauSCffYsCHrX37RTWg733GatHwMLK7F3pHFYh\n9TdjzHo7Lc/vijHmBNb39F1723XIu2I3BOuzFWqM+SPzD6vyWxXrWY+NWO3dP8I6luu4fEX0HWCk\niJwRkdy+T2Pt/0eB7+z9yPO4OXHH+k36A+s9uAPrxESpvGhZVnQKVZbZF+1GAh86/37Yv0GzyNlM\nsDewKFvz7Cv9rX4LqwldPFYzuzWZCfbv81B7O2eAl7Carl2y0w9jfQ6mYZWTR7FO2gt1Dmqs8ZkW\ncrlSV1Ds32NVoDbkMQ3W+9nFXn8ZsKSAGPItG/OwAWiH9Vs/CbjfvsMGhT/PyE1JLT+UE7G+F0qV\nHiLyV+BeY8w9BS6sCiQiC7GaVrzm4jiewOoERLuEVUqVejdyWSYiK4Ctxph/uDoWVxCRccAQLa9u\nXnoHS93w7Fvfnezb4K2xrowtc3VcquiI9ezGk1hX6JRSqtS5kcsyEekoIo3t2AdgNRFc4eq4lHKV\nYq1giTVY3UGxBqzLMVCaiNwn1iBokSISIZcHC2woIuvFGphtr4g847TOA/a8DBHxd5ofYOcTKdZA\ncIOKc99UiVIOq012ElZTgYXouAylhogEYXV3/itWpyBKKVUa3chlWQOspoNJWB1IjDHG7HNtSEq5\nTrE1EbQfTv8Za5CyGKwxJYKdv3D2g3rnjTFGRHyAL4wxLcQasLOeMWaXWCNr78QaJ2KfWL3hZGA9\nYzHBfn4G+6HsFGNMmr3+bqwxLK7k2QullFJKKaWUumrFeQcrAGuAvMPGGndhIdbAfA7GmHPmcg2v\nEvYD/MaYE8aYXfbrJGA/dnfHxpj9xpiD2TdmjLngVJnKHDRNKaWUUkoppa4bj4IXuWreZB0oLQbo\nmH0huynfP7AGieuXS3pjrF5YthW0QRHpiHV7vREwIre7V/aD8k8AVKpUqUOLFi2yL6KUUqoE2Llz\nZ5wxppar4yhqXl5epnHjxq4OQymlVDZFVe4UZwWrUIwxy4Bl9rgJr3J5QM/MJoRLgGedBofLL69t\nQGu7GeFcEfnaHgfCeZlZ2A/K+/v7m4iIqxoeRymlVDETkaOujqE4NG7cGC17lFKq5Cmqcqc4mwge\nJ+tI3g3IZyRoY8wGoKk9gB1iDdS5BFhgjFl6JRs2xuzHGkCuzZUGrZRSSimllFJXqzgrWDuA20Sk\niYiUxRpccKXzAiJyqz1gHiLSHqsHnXh73r+B/caYfxZmY/Z2POzXjbBGN48uqp1RSimlclNQj7lK\nKaVuLsVWwbKff3oa+Bark4ovjDF7RWScPQAbWCN77xGRSKxR14fanV7cCYwAejp1vd4XrGe2RCQG\n6AysFpFv7by6ALvtvJYBTxlj4opr/5RSSim7x9wPgT5AKyBYRFq5NiqllFKuVGzdtN8I9BkspUq2\n1NRUYmJiuHjxYsELqxtW+fLladCgAWXKlMkyX0R2GmP881itRBCRzsBUY8w99vREAGPMP/Jap0qV\nKqZDhw5Z5j344IM89dRTXLhwgb59++ZYZ/To0YwePZq4uDiGDBmSI/3JJ59k6NChHDt2jBEjRuRI\n/9vf/saAAQM4ePAgY8eOzZE+efJkevfuTWRkJM8++2yO9Ndff53AwEA2b97MSy+9lCP93Xffxc/P\nj7CwMF577bUc6Z9++inNmzdn1apVvP322znSP//8cxo2bMiiRYv4+OOPc6QvXrwYLy8v5syZw5w5\nc3Kkr1mzhooVK/LRRx/xxRdf5EgPDw8H4K233uKrr77KklahQgW+/vprAF599VXWrVuXJb1mzZos\nWbIEgIkTJ7Jly5Ys6Q0aNGD+/PkAPPvss0RGRmZJv/3225k1yxoj/YknnuDnn3/Oku7n58e7774L\nwPDhw4mJicmS3rlzZ/7xD+vjNHjwYOLj47Ok9+rVi5dffhmAPn36kJycnCW9f//+TJgwAYAePXqQ\nnX729LMH+tnL/Ox9//33RVLuuLyTC6WUyktMTAxVqlShcePG2K2JVSljjCE+Pp6YmBiaNGni6nCu\nRmF7zHX0YFuuXLnrE5lSSimX0DtYegdLqRJr//79tGjRQitXpZwxhgMHDtCyZcss82+QO1hDgHuN\nMY/Z0yOAjsaYp/NaR8sepZQqmYqq3CnOTi5KvLS0NM6cOcPNXMlUqqTTylXpd4O/x1fUY65SSqnS\n76auYB0/fhxPT08qVqyYa7vaH374gW+++Ybdu3dz/vz56x+gUkqpkq7AHnOVUkrdXG7qClZqaioA\nFy9epGrVqjnSX3/9dfr06YOfnx9r167NkT5z5kymTZvGrFmziI2NLfZ4lVLXT3x8PH5+fvj5+VG3\nbl28vb0d0ykpKTmWP336NJ988kmB+aalpVG9evVc57u7uzu20aFDB7Zu3XpFMU+ePNnxwHJu2rRp\nw/DhwwvM5/DhwyxcuNAxvW3bNv76179eUSw3i7x6zHVtVEoppVzppu7kQkSoXLky586do169ejnS\nT5w44Xhdv379HOmzZ88mKioKgA4dOlCnTp0s6Q8++CDnz5+nfv36vPbaaznS09LS8PC4qd8CpUqs\nmjVrOnpkmjp1KpUrV3b0hpSbzArWuHHj8lymIFWqVHFsc/Xq1UyaNClHr1JX66effsLDw4P169eT\nnJxMhQoV8lw2s4I1bNgwADp27EjHjjn6bVA2Y8waYI2r41BKKVUy3NR3sJo1a0ZSUhJJSUn4++d8\nnq1r16706tWLli1b4u3tnSPduQKWWwVt3bp1rFmzhtmzZ+e6/Vq1alGrVi18fHxITEy8hj1RSl1P\nM2bMoE2bNrRp04aZM2cCEBISwsGDB/Hz8yMkJITExER69uxJ+/bt8fHxydE9b0ESExOpUaOG43Ve\neU2fPp3bb7+dLl268Msvv+SZX2hoKCNHjqRnz56sWrXKMf/nn3+mZ8+e+Pr60r59e6KjowkJCWH9\n+vX4+fnx/vvvExYWxsCBAwGIi4sjKCgIHx8fAgMD2bNnD2DdPXv00Ufp3r07TZs25cMPPwQgKSmJ\nPn364OvrS5s2bVi8ePEVHQellFLqhmOMuWn/OnToYK7FBx98YCZOnGhGjx5tUlNTs6RdvHjRAAYw\n7u7uJj09PUv6+fPnHellypQxGRkZ1xSLUqXRvn37skxPmTLF8b2ZMmVKjuWfe+45R/pbb72VI/3x\nxx93pH/66aeFjmPKlCnmzTffNMYYs3XrVuPj42MuXLhgEhMTTYsWLUxUVJT55ZdfjK+vr2OdlJQU\nk5CQYIwxJjY21tx6663GGGNSU1NNtWrVcmwjNTXVuLm5GV9fX9O8eXNTrVo1s2vXrnzz2rZtmyOW\ns2fPmsaNG5t33nkn131o1qyZiYmJMatXrzYDBw50zG/fvr1ZuXKlMcaY5ORkc/78ebN27Vpz3333\nOZZxnh43bpx57bXXjDHGfPvttybzd3TSpEmmS5cu5tKlSyY2NtZ4enqatLQ0s3DhQjNu3DhHXmfP\nns01vuzvtTHGABGmBJQVRf13rWWPUkqpq3fuYqo5cCLRrN37h/nPpsNm+qq95ol5O0zf9zYUWbmj\n7dOuwZ///Oc809zd3dm6dSsnTpzg7NmzuLllvVl48uRJ3NzcyMjIoG7dujd6L1pK3TQ2bdrE4MGD\nHU3sBg4cyMaNG7n77ruzLGeMISQkhE2bNuHm5saxY8eIi4vL9fmrTM5NBDdt2sTIkSP56aef8sxr\nw4YNjlgqVKjAgAEDcs1369ateHt74+3tTe3atXn88cdJSEggIyODuLg4x3rly5cv1P6vXr0agLvv\nvpvRo0c7OgHq378/ZcuWpXbt2nh6enLq1Cl8fHwICQkhJCSEAQMGcOeddxa4DaWUUupqXUxNJ+ZM\nMsfOXCDmTDIxpy9kmT59Putz1OXLuNGwRkUa1Mi76fyV0gpWMfHw8Mj3mYXGjRuTkpLCyZMnSUhI\nyJE+d+5c9u/fz+uvv56jcqaUKvnmzZtHQkICu3btwsPDgwYNGnDx4sVCr9+lSxd+//13Tp8+zdKl\nS68pr9DQUPbs2UPjxo0Bq8nh0qVLHc3+iorzALru7u6kpaXRsmVLIiIiWLNmDSEhIfTp04eXXnqp\nSLerlFLq5pGSlsHvZy9XmI5lq0CdSrqUZfmy7m5416hAgxoVaF2/Gg09K9CgRkUa1qhAQ8+K1KxU\n1nGjY86YoolRK1gu5O7uTr169XI8v7Vu3Toee+wx0tLSOHLkCHPnzi3UlWWlSrupU6cyderUPNPf\nfvtt3n777TzTZ82axaxZs64phq5duzJ27Fief/550tPTWbFiBYsWLaJKlSokJSU5lktISKB27dp4\neHiwdu1ajh+/sqGR9u7di5ubGzVq1Mgzr27dujF27FheeOEFUlJS+Oqrrxg/fnyWfDIyMli8eDH7\n9u1zdLSzdu1a3nzzTR555BFq1arFqlWrGDBgABcvXiQjIyPHvmTf/wULFjBx4kTCwsLw9vamUqVK\nee7H8ePH8fLyYsSIEVSpUoX58+df0XFQSil1c0lLz+BEwsU870D9kXgR4zSErbubUL96eRrWqMhd\nzWtZd6M8K9h3pSpSu0o53Nyub0sxrWCVQHPmzCEtLQ2AAwcOkJKSohUspUqIgIAAgoODueOOOwB4\n8sknadu2LWD1Jtq2bVv69evHc889x4ABA2jbti0BAQHcdtttBeadlJSEn5+fY3revHmICCNGjMg1\nr4CAAAYNGoSPjw916tQhICAgR57r16+nSZMmWXoxveuuuxg+fDixsbEsWLCAsWPHMmnSJMqWLcuS\nJUto164d6enp+Pr68uijj9KqVSvHutOnT2fMmDH4+PhQuXJl/vOf/+S7T7t37yYkJAQ3NzfKli1b\nqK7slVJKlX5nzqcQ/vNJfotPJubMBUcF6kTCRdIzLtegRKBe1fI08KxI52Y1Hc35Gnpa/+tWLY+H\ne8lq7SXGuQp4k/H39zcRERGuDiOH9PR0nnnmGZYtW8a2bdto0KCBq0NSyiX2799Py5YtXR2Gug5y\ne69FZKcxJmcXrze4klr2KKXU9RAVc5Z5W46ycvfvpKRlAFC7SjlHhSl7BapetQqU9bg+FaiiKnf0\nDlYJ5O7uzsyZM5kyZQq1atVydThKKaWUUkpdtUtp6az56QRzNx8l8thZKpZ154EODRh2xy3cVqcy\n5cu4uzrEIqUVrBJKRHKtXG3dupXffvuNBx980AVRKaWUUkopVTi/n01mwbajLNx+jPjzKTT1qsSU\nAa0Y3KEBVcuXcXV4xUYrWDeQQ4cOMWDAAOLi4oiOjub555/X7t2VUkoppVSJYYxh86F45m2JZu2+\nWAB6tqjDqMBG3NnM67p3OOEKWsG6gfz1r38lLi4OgDfffJPRo0dTu3ZtF0ellFI3BhFxB+rgVPYZ\nY35zXURKKVV6JF1MZdmPx5m35Si/njxHjYpleKJbMx7ueAsNPSu6OrzrSitYN5A5c+YwaNAgtm3b\nxsqVK7VypZRShSQifwGmALFAhj3bAD4uC0oppUqBX08mMW/LUZbsjOF8Sjo+Darx1gO+9PepV+qe\nrSosrWDdQDw9Pfnf//7Hrl276Ny5s6vDUUqpG8kzQHNjTLyrA1FKqRtdWnoGYftPMm9LNJsPxVPW\n3Y3+PvUYGdgYv4bVXR2ey5WsTuNVgcqVK5dr5SomJoaffvrJBREpVbqJCMOHD3dMp6WlUatWLfr3\n7w/AypUreeONN4p8u4888giffvpplnnLly+nT58+AAQGBua7fnR0NG3atClwmf/+97+O6YiIiBwD\nFZcix4AEVwehlFI3srhzl/hw/a90m7GecfN3Eh13nufvac6WiT3551A/rVzZ9A5WKZCYmEi/fv04\ncuQIixcv5u6773Z1SEqVGpUqVWLPnj0kJydToUIF1q5di7e3tyM9KCiIoKCga95OWloaHh6Xf5KD\ng4P5xz9xf0XtAAAgAElEQVT+wdixYx3zFi5cSHBwMACbN2++5m1mVrAeeughAPz9/fH3L3XDTmU6\nDISLyGrgUuZMY8w/XReSUkqVfMYYfjx2ls+3HGV11AlS0jO489aaTAlqTa8WtUvcIL8lgR6RUuDx\nxx8nKiqKpKQkBg4cSGxsrKtDUqpU6du3L6tXrwYgNDTUUckB69nIp59+GoDRo0czfvx4AgMDadq0\nKYsXLwaswun555+nTZs2tG3blkWLFgEQHh5O165dCQoKolWrVlm22atXLw4cOMCJEycAOH/+PGFh\nYQwcOBCAypUr55u3s+joaLp27Ur79u1p3769o3IWEhLCxo0b8fPz45133iE8PNxxZ+706dMMHDgQ\nHx8fOnXqRFRUFABTp05lzJgx9OjRg6ZNm/L+++8XwRG+Ln4D1gJlgSpOf0oppXJxMTWdLyKOEfTB\nD9z/0WbW7oslOKAhYc91Y8FjnbindV2tXOVB72CVApMnT2bLli0cO3aMDz/8kDp16rg6JKWKR1iP\nnPNueRBufwrSLkB435zpTUdbfxfjYNOQrGm9wwu12WHDhjF9+nT69+9PVFQUY8aMYePGjbkue+LE\nCTZt2sSBAwcICgpiyJAhLF26lMjISHbv3k1cXBx33HEH3bp1A2DXrl3s2bOHJk2aZMnH3d2dwYMH\n88UXX/DMM8+watUqevToQdWqVbMsl1/emWrXrs3atWspX748v/zyC8HBwURERPDGG2/w1ltv8dVX\nXwFWhS/TlClTaNeuHcuXL+e7775j5MiRREZGAnDgwAHWr19PUlISzZs358knn6RMmZI9nokxZhqA\niFS2p8+5NiKllCqZjp2+wPxtR1m04xhnL6RyW+3KvHpfawa1b0Dlclp1KAw9SqVA27Zt2bp1K6tW\nreKRRx5xdThKlTo+Pj5ER0cTGhpK3765VOKcDBw4EDc3N1q1auW4m7xp0yaCg4Nxd3enTp06dO/e\nnR07dlC1alUCAgJyVK4yBQcHM2HCBJ555hkWLlzIiBEjciyTV94+Ppc7x0tNTeXpp58mMjISd3d3\nfv755wL3edOmTSxZsgSAnj17Eh8fT2JiIgD9+vWjXLlylCtXjtq1axMbG0uDBg0KzNOVRKQN8Dng\naU/HASONMXtdGphSSpUAGRmGTb/GMW9LNOsOnMRNhLtb1WFE50Z0blpTx129QlrBKiXq16+f5VmN\nTMnJySQnJ+Pp6emCqJQqYvndcfKomH96ea9C37HKTVBQEBMmTCA8PJz4+Lw7oitXrpzjtTGmwHwr\nVaqUZ1pgYCAnTpxg9+7dbN68mYULF15Z0LZ33nmHOnXqsHv3bjIyMihfvvxV5ZPJeR/d3d1JS0u7\npvyuk1nAc8aY9QAi0gP4F5B/byFKKVWKJSSnsmRnDJ9vPcqRuPN4VS7Ln3vcykMdb6F+9QquDu+G\npQ0nS7GMjAxGjBhBYGAghw8fdnU4St3QxowZw5QpU2jbtu0Vr9u1a1cWLVpEeno6p06dYsOGDQQE\nBBS4nogwdOhQRo0aRZ8+fXKtGBUm74SEBOrVq4ebmxuff/456enpAFSpUoWkpKQ8Y16wYAFgNR30\n8vLK0TzxBlMps3IFYIwJB/Ku3RaCiDwgIntFJENESm3vIEqp0ufAH4m8tOwnOr2+julf7aNGxTK8\nO9SPH0J6MuGe5lq5ukZ6B6sUCwkJcTTxyXxIvW7dui6OSqkbU4MGDa66C/NBgwaxZcsWfH19ERFm\nzJhB3bp1OXDgQIHrBgcHM2PGjDy7gs8r7+joaMcyTz31FIMHD2bevHnce++9jrtmPj4+uLu74+vr\ny+jRo2nXrp1jnczOLHx8fKhYsSJz5869qn0vQQ6LyMtYzQQBhmP1LHgt9gD3A58WtKBSSrlacko6\n6w7EMm/LUbYfOU05Dzfu86vPyM6NaeNdzdXhlSpSmCYsV525yL3Ae4A7MNsY80a29IeBFwEBkoAn\njTG77bS/Ao8BBvgJeMQYc1FEpgKPA6fsbF4yxqyx1/HBKuiqAhnAHcaYi3nF5+/vbyIiIopob0ue\nL7/8khEjRnDp0iWeffZZ3nnnHVeHpNQV2b9/Py1btnR1GOo6yO29FpGdxpgiuTMkIjWAaUAXe9ZG\nYKox5kwR5B0OTDDGFKpAKe1lj1KqZDh3KY2I6NNsO3KabYfj+el4AqnphoaeFRjesREP+jekRqWy\nrg6zRCmqcqfY7mCJiDvwIfAnIAbYISIrjTH7nBY7AnQ3xpwRkT5YbeQ7iog3MB5oZYxJFpEvgGHA\nHHu9d4wxb2XbngcwHxhhjNktIjWB1OLavxvBAw88gLe3N5999hlvvfVWwSsopVQpZVekXDaKsog8\nATwBcMstt7gqDKVUKZZwIZUd0afZdiSe7UdOs+f3RNIzDB5uQtsG1Xi0S1MCm9Xkzlu9cHfTTiuK\nU3E2EQwAfjXGHAYQkYXAfYCjgmWMcR4pcyvg3A2VB1BBRFKBisDvBWzvbiAq8w6YMSbvp9BvIoGB\ngQQG5nyG2xhDRkYG7u7uLohKKaWuDxF51xjzrIiswmoRkYUxJt9RokUkDMitbfUkY8yKwsZhjJmF\ndRERf3//4ms6opS6aZw+n8L2I/FsPWzdpTrwRyLGQFl3N/waVuepHs3o2KQm7RtVp2JZfSroeirO\no+0NHHOajgE65rP8o8DXAMaY4yLyFtbAkMnA/4wx/3Na9i8iMhKIAP5mX5m8HTAi8i1QC1hojJmR\nfSN6FdHy6quvsmPHDkJDQx0DliqlVCmU+czVVd3GN8b0LsJYlFLqqp1MvGg19zsSz7bDp/nlpDWc\nX/kybrS/pQbP9rqdjk098WtYnfJl9AK6K5WI6qyI3IVVwepiT9fAutvVBDgLfCkiw40x84GPgVex\nrkS+CrwNjMHaly7AHcAFYJ3djnKd87b0KiLMnz+fKVOmANC9e3e+/fZbvLy8XByVUkoVPWPMTvul\nnzHmPec0EXkG+P76R6WUUgU7fjaZ7XZlatuR0xyJOw9ApbLudGjsycB23nRq6klb7+qU9dCOwUuS\n4qxgHQcaOk03sOdlYXdMMRvo49SsrzdwxBhzyl5mKdZYJfONMbFO6/4L+MqejAE2GGPi7LQ1QHsg\nSwVLwcGDBx2vPT09qVZNe45RSpV6o7A6XXI2Opd5hSYig4CZWK0mVotIpDHmnquOUCl10zLG8Nvp\nC3aHFNZdqpgzyQBULe9BQBNPggMa0rFJTVrXr4qHu1aoSrLirGDtAG4TkSZYFathwEPOC4jILcBS\nrI4pfnZK+g3oJCIVsZoI9sJqDoiI1DPGnLCXG4TVTS7At8AL9jopQHdAu83LxauvvkrDhg35+OOP\nWbx4MWXKlHF1SEopVSxEJBir7GkiIiudkqoAp68lb2PMMmDZteShlLo5GWM4dOo8252a/P2RaHV8\n7VmpLAGNPRlzZxM6NvWkRd2q2inFDabYKljGmDQReRqr4uMOfGaM2Ssi4+z0T4BXgJrARyICkGaM\n8TfGbBORxcAuIA34EbtZHzBDRPywmghGA2Pt/M6IyD+xKnYGWGOMWV1c+3eje+KJJxgzZgweHiWi\nlahSJZaI8PDDDzN//nwA0tLSqFevHh07duSrr77Kc72IiAjmzZvH+++/f1Xbbdq0KV9//TXNmzd3\nzHv22WepV68evXr1KjDvOXPmEBERwQcffJDnMuHh4ZQtW9bREc4nn3xCxYoVGTly5FXFXEJtBk4A\nXlhNyjMlAVEuiUgpddPJyDD8fDLJqlDZTf7izl0CoFaVcnRs4knHpjXp2MSTW2tVxk0rVDe0Yj27\ntsenWpNt3idOrx/DGusqt3WnAFNymT8in+3Nx+qqXRVCbpWr5cuXs2vXLqZNm4Zd6VXqplapUiX2\n7NlDcnIyFSpUYO3atXh7exe4nr+/P/7+hR9KIy0tLct3ctiwYSxcuNDxvGRGRgaLFy/mhx9+oFGj\nRleUd17Cw8OpXLmyo4I1bty4a86zpDHGHAWO2uMu/p45NqKIVMBquh7twvCUUqVURoZh/x+JVg9/\nh+PZEX2aMxes0YPqVytP19u8HJWqxjUr6jlXKaMNOJXD9u3beeihh3j11VcZOXIkly5dcnVISpUI\nffv2ZfVq64Z4aGgowcHBjrTt27fTuXNn2rVrR2BgoOMZx/DwcPr37w/A6dOnGThwID4+PnTq1Imo\nKOvGydSpUxkxYgR33nknI0ZkvXYUHBzMokWLHNMbNmygUaNGNGrUqFB5O1u1ahUdO3akXbt29O7d\nm9jYWKKjo/nkk09455138PPzY+PGjUydOtUxZl5kZCSdOnXCx8eHQYMGceaMNR5vjx49ePHFFwkI\nCOD2229n48aNRXKMr4MvsAagz5QOfOmiWJRSpYwxhl9PnuPzLdE8OX8nHV5bS7/3N/HqV/s4GJtE\n75Z1eOsBXza+cBebJ/binaF+DAu4hSZelbRyVQpp+zDl8MEHH5CcbD1QuXXrVs6dO0e5cuVcHJVS\ntv8WUwH0UMGdiQ4bNozp06fTv39/oqKiGDNmjKNi0aJFCzZu3IiHhwdhYWG89NJLLFmyJMv6U6ZM\noV27dixfvpzvvvuOkSNHEhkZCcC+ffvYtGkTFSpUyLJO27ZtcXNzY/fu3fj6+rJw4cIsFbvC5J2p\nS5cubN26FRFh9uzZzJgxg7fffptx48ZRuXJlJkyYAMC6dZf7BBo5ciQzZ86ke/fuvPLKK0ybNo13\n330XsO62bd++nTVr1jBt2jTCwsIKPIYlgIcxJiVzwhiTIiJlXRmQUurGduz0BTYfimPLoXg2H4rn\nZJJ1Ydq7egV6t6xD52Y16dysJvWqVSggJ1XaaAVLOfz73/+mfPnyLF26lDVr1lCzZk1Xh6RUieDj\n40N0dDShoaH07ds3S1pCQgKjRo3il19+QURITU3Nsf6mTZscla6ePXsSHx9PYmIiAEFBQTkqV5mC\ng4NZuHAhrVu3Zvny5UybNu2K8s4UExPD0KFDOXHiBCkpKTRp0iTf/U1ISODs2bN0794dgFGjRvHA\nAw840u+//34AOnToQHR0dL55lSCnRCTIGLMSQETuA+JcHJNS6gYSm3jRrkzFsfnQ5V7+vCqXI7BZ\nTfvPi4aeFfSu1E1OK1jKoUyZMnz66ae8/PLLNGzYMEuaMYbly5cTFBSEu7sOXqdcoBB3mopTUFAQ\nEyZMIDw8nPj4eMf8l19+mbvuuotly5YRHR1Njx49rijfSpUq5Zk2bNgw7r77brp3746Pjw916tS5\nqtj/8pe/8NxzzxEUFER4eDhTp069qnwyZd7Zdnd3Jy0t7Zryuo7GAQtE5ANAgGNAqerNQylVtE6f\nT2Hr4XjHXapDp6xxqKpVKEPnpjV5oltTOjetya21K2uFSmWhFSyVhYjkqFwBLF68mAcffJDWrVsz\nY8aMHFfxlSrtxowZQ/Xq1Wnbti3h4eGO+QkJCY5OL+bMmZPrul27dmXBggW8/PLLhIeH4+XlRdWq\nVQvcZrNmzfDy8iIkJIRnnnnmqvN2jnHu3LmO+VWqVMlxtwugWrVq1KhRg40bN9K1a1c+//xzx92s\nG5Ux5hDW8B+V7elzInJ1NValVKmUeDGVHUdOs9lu8rf/hPX7WKmsOwFNPBl2xy10blaTVvWqai9/\nKl9awVIFSk1NZdKkSQDs3buX8PBwrWCpm06DBg0YP358jvkvvPACo0aN4rXXXqNfv35Z0jKvaE6d\nOpUxY8bg4+NDxYoVs1RyChIcHExISIijWV52hcl76tSpPPDAA9SoUYOePXty5MgRAAYMGMCQIUNY\nsWIFM2fOzLLO3LlzGTduHBcuXKBp06b85z//KXTMJZwHMFhEHgJaAvVdHI9SykWSU9KJOHq5QvVT\nzFkyDJTzcMO/cQ2ev6c5nZvVpK13NcrowL7qCogxrm1240r+/v4mIiLC1WGUeBcvXmTGjBm8+eab\neHh4cOjQITw9PV0dlroJ7N+/n5YtW7o6jKuyZMkSVq5ceUWVqZtZbu+1iOw0xlxzf/R2l+z3YQ04\n3A5rkOGBwAZjTEZ+6xYHLXuUco1LaelE/naWLYetCtWPv50hNd3g4Sb4NaxOYLOadG7mRbtbqlO+\njD4OcTMqqnJH72CpApUvX55XXnmFcePGERUVlaNylZycTEhICM899xyNGjVyUZRKlRwrV65k0qRJ\nfPbZZ64O5aYnIv8FugL/A2YC3wG/GmPCXRmXUqr4paVnsOf3RMczVDuiT3MxNQMRaOtdjTFdmhDY\nzAv/RjWoVE5PiVXR0U+TKrTatWvTu3fvHPM//PBD3n//fT755BNefvllJk+e7ILolCo5goKCCAoK\ncnUYytIKOAPsB/YbY9JF5OZtuqFUKWaMYf+JJDYfimPr4Xi2HT5N0iWrI57mdaow7I5bCGxWk45N\nalKtYhkXR6tKM61gqWty/vx5Xn/9dQBSUlK06aBSqkQxxviJSAsgGAgTkTigiojUMcbEujg8pVQR\niU28yN++2M2mX63RF5p4VWKAX30Cm9WkU9OaeFXWcT3V9aMVLHVNKlWqxLJlywgJCeHUqVM8/vjj\nOZYxxmj3pUoplzHGHACmAFNEpANWZWuHiMQYYwJdG51S6lp9s+cPQpZGcSk1g5f7t6JPm7rUr66D\n+yrX0S5R1DXr3r07mzdvZsOGDZQpk/WWe2xsLO3atSM0NJSMjOv+LLlSSmVhjNlpjJkANAJCXB2P\nUurqXUhJY+LSKMbN30nDGhVZPb4Lj3ZpopUr5XJawVJFQkSoXz9nb8evvvoqu3fv5qGHHmLkSB3T\nUylVMhjLBlfHoZS6OlExZ+n//iYW7jjGkz2aseTJQJrWquzqsJQCtIKlitGFCxdYvHixYzo4ONiF\n0Sh1dUSE4cOHO6bT0tKoVasW/fv3B6weA994441i235kZCQiwjfffHPVeQQG5t4KbvTo0Vm+o1ca\n15o1a646JqWUuhrpGYaPww9x/0ebSU5N57+PdeLFe1tQ1kNPaVXJoZ9GVWwqVqzIgQMHmDhxIvfe\ne2+ugxPHxuoz5qpkq1SpEnv27CE5ORmAtWvX4u3t7UgPCgoiJOTaW5qlpaXlOj80NJQuXboQGhp6\n1Xlv3rz5qtfNy41UwRIRNxF50NVxKKWuze9nk3l49lb+75sD3NO6Lt88043OzWq6OiylctAKlipW\n1atX5/XXX2fNmjU5Orr46aefaNiwIY8//jjHjx93UYRKFaxv376sXr0asCo8zndj58yZw9NPPw1Y\nd4TGjx9PYGAgTZs2ddwdMsbw/PPP06ZNG9q2bcuiRYsACA8Pp2vXrgQFBdGqVasc2zXG8OWXXzJn\nzhzWrl3LxYsXHWnz5s3Dx8cHX19fRowYAVgXLAYNGoSvry++vr6OilXlypUd+T399NM0b96c3r17\nc/LkSUd+O3fupHv37nTo0IF77rmHEydOANCjRw9efPFFAgICuP3229m4cSMpKSm88sorLFq0CD8/\nP8f+lFT2YMIvuDoOpdTVWx11gnvf3cBPMQm8OcSHDx5qp12tqxJLexFU10VuvQhOnDiR1NRUZs+e\nTXx8PEuXLnVBZOqG0qNHznkPPghPPQUXLkAud0kZPdr6i4uDIUOypoWHF2qzw4YNY/r06fTv35+o\nqCjGjBnDxo0bc132xIkTbNq0iQMHDhAUFMSQIUNYunQpkZGR7N69m7i4OO644w66desGwK5du9iz\nZw9NmjTJkdfmzZtp0qQJzZo1o0ePHqxevZrBgwezd+9eXnvtNTZv3oyXlxenT58GYPz48XTv3p1l\ny5aRnp7OuXPnsuS3bNkyDh48yL59+4iNjaVVq1aMGTOG1NRU/vKXv7BixQpq1arFokWLsgyUnJaW\nxvbt21mzZg3Tpk0jLCyM6dOnExERwQcffFCoY1gChInIBGARcD5zpjHm9NVmKCJvAgOAFOAQ8Igx\n5uy1BqqUuuzcpTSmrdzLlztj8GtYnXeH+tHYq5Krw1IqX1rBUi6RnJzsuBovIkybNs3FESmVNx8f\nH6KjowkNDc21qauzgQMH4ubmRqtWrRxNYDdt2kRwcDDu7u7UqVOH7t27s2PHDqpWrUpAQECulSuw\n7pYNGzYMsCp58+bNY/DgwXz33Xc88MADeHl5ATjGn/vuu++YN28eAO7u7lSrVi1Lfhs2bHDEUb9+\nfXr27AnAwYMH2bNnD3/6058ASE9Pp169eo717r//fgA6dOhAdHR0oY9bCTPU/v9np3kGaHoNea4F\nJhpj0kTk/4CJwIvXkJ9SysmPv53h2UWRHDt9gfE9b+UvvW6jjLs2vlIln1awlEtUqFCBsLAwwsLC\n2Lp1K23bts2SboxhxYoV9O/fHw8P/ZgqW353nCpWzD/dy6vQd6xyExQUxIQJEwgPDyc+Pj7P5cqV\nuzyYpTGmwHwrVcr9Smx6ejpLlixhxYoV/P3vf8cYQ3x8PElJSVcefAGMMbRu3ZotW7bkmp65T+7u\n7nk+K1bSGWNyr8VeW57/c5rcCgzJa1mlVOGlZxg+Wv8r7677hbpVy7NobGfuaOzp6rCUKjS9DKBc\nqnfv3kyePDnH/DVr1jBo0CDatGnD8uXLXRCZUlmNGTOGKVOm5LgYUBhdu3Zl0aJFpKenc+rUKTZs\n2EBAQEC+66xbtw4fHx+OHTtGdHQ0R48eZfDgwSxbtoyePXvy5ZdfOip6mU0Ee/XqxccffwxYFbSE\nhIQseXbr1s0Rx4kTJ1i/fj0AzZs359SpU44KVmpqKnv37s03vipVqhRLZa+4iEhFEZksIrPs6dtE\npH8RbmIM8HU+239CRCJEJOLUqVNFuFmlSpeYMxcYNmsLb6/9mX5t67Hmma5auVI3HK1gqRInIyOD\niRMnAlbTpbCwMBdHpBQ0aNCA8ePHX9W6gwYNcnRI0bNnT2bMmEHdunXzXSc0NJRBgwZlmTd48GBC\nQ0Np3bo1kyZNonv37vj6+vLcc88B8N5777F+/Xratm1Lhw4d2LdvX444brvtNlq1asXIkSPp3Lkz\nAGXLlmXx4sW8+OKL+Pr64ufnV2DPg3fddRf79u27ITq5sP0H61mpzD7rjwOvFbSSiISJyJ5c/u5z\nWmYSkAYsyCsfY8wsY4y/Mca/Vq1a17YnSpVSKyKP0+fdjew/kcS7Q/14P7gd1SpoRxbqxiOFacJS\nWvn7+5uIiAhXh6GySUlJ4a233uL//u//SE9P59ChQ9SpU8fVYSkX2L9/Py1btnR1GOo6yO29FpGd\nxhj/oshfRCKMMf4i8qMxpp09b7cxxvca8x0NjAV6GWMuFGYdLXuUyirxYipTVuxl2Y/H6dCoBu8O\n9aOhZ0VXh6VuQkVV7ugdLFXilC1blpdeeonDhw+zePHiHJUrY0yez4oopVQeUkSkAlbHFohIM+DS\ntWQoIvdidf8eVNjKlVIqq51HT9P3vY2s3P07f+19O4ue6KSVK3XD0wqWKrFq1qzJvffem2P+Z599\nRmBgII899hiJiYkuiEwpdQOaAnwDNBSRBcA6rn1srA+AKsBaEYkUkU+uMT+lbhpp6Rm8s/ZnHvhk\nCyLwxdjOPNP7Njy0l0BVCmj3bOqGcvjwYZ599lkA/v3vf+Pt7a1dvCulCmSMWSsiu4BOgADPGGPi\nrjHPW4skOKVuMr/FX+DZRT+y67ez3N/em2lBralSXp+1UqWHXiZQN5Tq1avTr18/wOr57MUXdcgZ\npVShdQd6AXcBXV0ci1I3HWMMS3fF0Pf9jfxy8hzvB7fjnw/6aeVKlTrFegfLbp/+HuAOzDbGvJEt\n/WGsQRkFSAKeNMbsdkp3ByKA48aY/vY8X+AToDIQDTxsjEkUkbLAp4A/kIF1dTK8OPdPXX+enp4s\nXLiQgQMH0rRpUypW1HbaSqmCichHwK1AqD1rrIj0Nsb8OZ/VlFJFJCE5lcnL97Bq9+8ENPbkn0N9\naVBDy3BVOhVbBcuuHH0I/AmIAXaIyEpjjHO/wUeA7saYMyLSB5gFdHRKfwbYD1R1mjcbmGCM+V5E\nxgDPAy8DjwMYY9qKSG3gaxG5wxiTUUy7qFxo2LBhuc5/4403SE9P58UXX9QBipVSznoCLY3dda6I\nzAXyH+xLKVUkth2O57kvdhObeJHn72nOuO7NcHcTV4elVLEpziaCAcCvxpjDxpgUYCFwn/MCxpjN\nxpgz9uRWoEFmmog0APphVaic3Q5ssF+vBQbbr1sB39n5ngTOYt3NUjeJnTt38vLLLzN58mS6dOmC\nDuapioKIMHz4cMd0WloatWrVon///MeojYiIuOpxs5y9++67lC9fPsegwYWVXxyNGzcmLu7qHkNa\nvnx5jnG2SrhfgVucphva85RSxSQ1PYO3vj1I8L+2UsZdWPxkIH++61atXKlSrzgrWN7AMafpGHte\nXh4Fvnaafherh6fsd6D2crmi9gBWIQmwGwgSEQ8RaQJ0cEpzEJEnRCRCRCL0BLx0mTlzJmlpaQC4\nu7vj6akjv6trV6lSJfbs2UNycjIAa9euxds7v58yi7+/P++//36ht5P52c0uNDSUO+64g6VLlxY6\nr2uJo7BuwApWFWC/iISLyHpgH1BVRFaKyEoXx6ZUqXMk7jxDPt7MB+t/ZUiHBqwe3xW/htVdHZZS\n10WJ6ORCRO7CqmC9aE/3B04aY3bmsvgY4CkR2YlVYKbY8z/DqsRFYFXONgPp2Vc2xswyxvgbY/xr\n1apV5PuiXGf27Nn8/e9/p0aNGsybNw93d3dXh6RKib59+7J69WrAqvAEBwc70rZv307nzp1p164d\ngYGBHDx4EIDw8HDHXa7Tp08zcOBAfHx86NSpE1FRUQBMnTqVESNGcOeddzJixIgc2z106BDnzp3j\ntddeIzQ01DE/PT2dCRMm0KZNG3x8fJg5cyYAO3bsIDAwEF9fXwICAkhKSsoSR3x8PHfffTetW7fm\nsccew3mg+fnz5xMQEICfnx9jx44lPd36+axcuTKTJk3C19eXTp06ERsby+bNm1m5ciXPP/88fn5+\nHIzkgNsAACAASURBVDp0qMiOdTF6BeiD1V37VKCvPe9t+08pVQSMMXyx4xj93t9IdPwFPnq4PTOG\n+FKpnDbbVzeP4qxgHSfrHaQG9rwsRMQHqxngfcaYeHv2nVh3o6Kxmhb2FJH5AMaYA8aYu40xHbAe\nVj5kz08zxvzVGONnjLkPqA78XDy7pkoiDw8PXnrpJY4cOUKzZs1ypO/YscMFUakiI1I8f4UwbNgw\nFi5cyMWLF4mKiqJjx8uPirZo0YKNGzfy448/Mn36dF566aUc60+ZMoV27doRFRXF66+/zsiRIx1p\n+/btIywsLEsFKtPChQsZNmwYXbt25eDBg8TGxgIwa9YsoqOjiYyMJCoqiocffpiUlBSGDh3Ke++9\nx+7duwkLC6NChQpZ8ps2bRpdunRh7969DBo0iN9++w2A/fv3s2jRIn744QciIyNxd3dnwYIFAJw/\nf55OnTqxe/duunXrxr/+9S8CAwMJCgrizTffJDIyMtfvW0ljjPk+vz9Xx6dUaXD2Qgp//u8uXlgS\nhW+D6nzzbFf6tq3n6rCUuu6K83LCDuA2u7necWAY8JDzAiJyC7AUGGGMcVSGjDETgYn2Mj2wOrUY\nbk/XNsacFBE3YDJWj4KISEVAjDHnReRPQFq2DjXUTaJatWo55n399df07duXoUOH8uGHH1KzZk0X\nRKZuVD4+PkRHRxMaGkrfvn2zpCUkJDBq1Ch++eUXRITU1NQc62/atIn/Z+/O46IutweOf84ACiji\nhiugZIJLbklaubaZtmh5SytbzNT8tS9WlqXWrbzdbpvVTc3U6maatmheu10tU1sswSUVN9xwB0ER\nRJHl/P6YgYuyjQoMy3m/XvNivs93O4w4M+f7PN/zfPnllwBceeWVJCYm5k6S3b9//3yJUI7PP/+c\nr7/+GofDwV/+8hfmzp3LQw89xJIlSxg1alRuIZe6deuyfv16GjduzCWXXAJArVq18h1v+fLluUMN\nr7/+eurUqQPADz/8QHR0dO6+J06coEGDBgBUq1Yttwesc+fOLF68+CxeOWNMVfHr9sM8MWcdh1PT\nGdOvFSN6XGD3Wpkqq9QSLFXNFJGHgO9xlmmfrqobRWSUa/1knMMz6gH/FOeV5ExVLa4wxe0iklNW\n9ytghut5A+B7EcnGmdDlH29jqqSkpCTuu+8+AObMmUNAQAAffvihh6MyZy3PcDZP6N+/P6NHj+an\nn34iMTExt/2FF17giiuu4Ouvv2bXrl307t37rI5bo0aNAtvXr1/Ptm3buOaaawA4deoUYWFhPPTQ\nQ+f8OxRGVbnnnnuYOHFivnU+Pj643p/x8vIq9F4xY0zVdCozmzcWb2Hq8h2E1avB1w90o11w/gud\nxlQlpXoPlqouUtVwVW2hqq+42ia7kitUdbiq1nEN6+tYUHKlqj/lzIHlWn7HdcxwVR2TU3JXVXep\naoSqtlbVq1V1d2n+bqbi8PHxye11aNiwIa+++qqHIzIV0bBhwxg/fjzt2rU7rT05OTm36MXMmTML\n3LdHjx65Q+5++ukn6tevX2APU16ff/45EyZMYNeuXezatYv9+/ezf/9+du/ezTXXXMOUKVNyk52k\npCQiIiI4cOBA7lDYlJSUfMlQz549mTVrFuDs1T1yxFnE9aqrrmLevHnEx8fnHm/37qLfQgMCAkhJ\nSSlyG2NM5ZWemcXP2w4z8INfmLJsB7ddEsrCR7pbcmUMpTzRsDHlQUBAANOmTWPAgAH4+PhgxU3M\nuQgODi6w3PnTTz/NPffcw8svv8z1119/2rqcnp8JEyYwbNgw2rdvj7+/Px9//HGx55s9ezaLFi06\nre3mm29m9uzZPPnkk2zdupX27dvj4+PDiBEjeOihh5gzZw4PP/wwJ06cwM/PjyVLlpy2//jx47n9\n9ttp27Ytl19+OaGhzqrlbdq04eWXX6ZPnz5kZ2fj4+PD+++/T7NmzQqN77bbbmPEiBFMmjSJefPm\nldv7sERkPVBo96eqti/DcIyp0OIS01i2NZ5lWxP4dXsiaaeyqOPvw5S7OnNt20aeDs+YckPUw8Nu\nPCkyMlKjoqI8HYbxsJkzZ7J582ZefPFFqlev7ulwTB6bNm2idevWng7jnHz55ZcsWLDArWTKFPxv\nLSLRbgwbL5KI5GSJOUPLP3X9HAKgqmPO5/jnwj57TEVxMiOL33YksmxLAsu3JrDj8HEAQuv60zsi\niF7hQVzWoh7+1ex6vakcSuJzB6wHy1Rxu3bt4pFHHiElJYXvvvuO+fPn07x5c0+HZSq4BQsWMHbs\nWKZPn+7pUKq8nOHiInKNqnbKs2qMiKwGyjzBMqa8UlV2HD7OT1sSWLY1gd93JJKemU11bweXtajH\n3Zc1o1dEA8LqF3zvqDHGyRIsU6V98MEHufeRnDx5MrdymjHno3///vTv39/TYZjTiYh0U9VfXAuX\nU07mgjTGk1LTM/lteyI/bXEO/dt7xDmpeougGgzp2ozeEUF0CauLr4/NLWmMuyzBMlXaxIkTCQ4O\n5rnnnuPTTz/F39/f0yGZM6hq7r1MpnIqo6Hqw4AZIpJzB/5RV5sxVYqqsuVQCsu2JPDTlgSidieR\nkaXUqObF5RfWZ1SvFvQKDyKkrn0eGnOuLMEyVZrD4eDhhx/mzjvvzJ0TKK81a9bQsWNH+4LvIb6+\nviQmJlKvXj37N6ikVJXExER8fX1L7RyueRMvVNUOOQmWqiaX2gmNKWeST2TwS+xhlrmG/h08dhKA\nVo0CGNY9jF7hQUQ2q0s1b+vUNaYkWIJlDBSYXK1evZquXbvSp08fpk2bRuPGNht9WQsODmbv3r0k\nJCR4OhRTinx9fQkODi6146tqtog8DXxhiZWpCrKzlZgDx3KH/a2OO0pWthLg602PlvXpHd6AnuFB\nNAosvQsbxlRllmAZU4CTJ09y1113kZmZyaJFixg5ciTffvutp8Oqcnx8fAgLC/N0GKZyWCIio4E5\nwPGcRlVN8lxIxpScpOOnWLEtwVnxb1sCh1NPAdCuaSD/16sFvSOC6BhSG28v66UyprRZgmVMIfr0\n6UNMTAz+/v689dZbng7HGHN+Brt+PpinTYELPBCLMectK1tZt/eo816qrQn8ufcoqlDH34ee4c4S\n6j1aBhEUYNOPGFPWLMEypgC+vr689dZb9O/fnwMHDnDhhRd6OiRjzHlQ1RLvChWRvwIDgGwgHhiq\nqvtL+jzGgPN+xX1HT7ByRxLLtiawYlsCR9MycAh0CKnNY1eF0ysiiHZNA/Fy2D2rxniSJVjGFOGK\nK64osP37779nwYIFvPLKK9SuXbuMozLGnAsRuQhoA+TeeKKqn5zHIV9X1Rdcx34EGAeMOq8gjXFJ\nPpHBn3uPsjbuKOv2HmXtnmQOp6YDUL9mda5q1ZDeEUF0v7A+dWpU83C0xpi8LMEy5iwlJSUxbNgw\n9u/fz7Rp04iNjSUkJMTTYRljiiAi44HeOBOsRUA/4GfgnBMsVT2WZ7EGziGH5jz8viOR2IRULgyq\nScuGAdStIonDqcxsNh045kyk4o6ydu9RdiTk3ipIi6Aa9AyvT6eQ2lzcrA6tG9XCYb1UxpRblmAZ\nc5Y+/vhj9u93jgIKCQnJV/0sPT2dVatWcdlll+HlZRMzGlNO3AJ0ANao6r0i0hD41/keVEReAe4G\nkoGCu7yd240ERgKEhoae72krnf1HT/Dyv2NYtP7gae31alTjwgY1admwJi0bBNCyQU0ubFiToJrV\nK+zUDarK7sQ01u45mvuI2X+MU1nZgLN3qmNIbQZ2akrHkDq0Cw4k0M/Hw1EbY86GJVjGnKXHHnuM\nevXq8eabb3LllVfm+5D/6aef6Nu3L/Xq1WPkyJG8+uqrHorUGJPHCVe59kwRqYXznqliu55FZAnQ\nqIBVY1V1vqqOBcaKyLPAQ8D4go6jqlOBqQCRkZHW0+WSnpnFtBU7ee/HWBRldJ9w+ndoys7E42w7\nlEJsfCrb4lOZv3Y/KSczc/cL9POhpSvxauHq7WrZoCaNA33LXeKVdPwU6/YcZc2eo6zb4xzudzQt\nAwA/Hy/aNQ1kaLfmdAiuTcfQ2jQph7+DMebsWIJlzFkSEe6++27uvvtusrKy8q3PKeeemJjIyZMn\n860/deoU1apVjWEvxpQjUSJSG/gQiAZSgd+K20lVr3bz+J/hHHpYYIJl8lu+NYEJCzay4/Bx+rZt\nxPM3tCa4jj8AofX86RUelLutqpKQks62+FS2HUpx/oxP5fuNh0g6vid3u5rVvWnRoKYz+crT89W0\ntl+ZDKk7mZHFxv3JrN2TzFpXQhWXlAaAQyC8YQDXtmlEx9DadAiuTXjDmlY23ZhKyBIsY85DQUMA\n69atS+PGjTlw4AA33HBDvvVPPPEES5Ys4YYbbmDkyJGEh4eXRajGVGmq+oDr6WQR+Q9QS1X/PJ9j\nikhLVd3mWhwAbD6f41UV+46e4K/fxvCfjQcJq1+Dj4d1OS2ZKoiI0KCWLw1q+dLtwvqnrUtMTc/t\n6XL+TGH51gTmRe/N3cbXx8GFDWrm3tt1oSsBC63rf84JTna2suNwKmtyi1AcZfOBFDKznR2UTQJ9\n6RBSmyFdQ+kQUpt2TQOpUd2+dhlTFYhq1R2pEBkZqVFRUZ4Ow1RC2dnZrFmzhvbt2+Pj87+x86pK\nWFgYu3fvBuDHH38stFKhMVWdiESramQJHetTYDmwQlVLJBESkS+BCJxl2ncDo1R1X3H7VdXPnvTM\nLD5cvoP3lsYiCA9deSHDe4RR3bt07lVNTssgNiGFbYdSc3u8Yg+lsD/5fyMLqnk5uCCohivhCnD1\neNWkWb0aVPM+PfGKP3Yy956pdXuP8ueeZFLSncMWA6p70z4k0DnML8T5aFDLF2NMxVJSnzt2KcWY\nUuBwOOjcuXO+9j179hAfHw9ArVq16N69+2nrVZXBgwdzySWXcOONNxIREWFj8Y0pGdOBHsC7ItIC\nWAMsV9V3zvWAqvqXkgquslu6JZ4XF2xkV2Ia/S5qxPM3tKFpbb9SPWegvw+dm9Wlc7O6p7WnnMxg\ne4LrHq+EVGIPpfLn3mT+vf4AOdecvR1C8/o1uDCoJiKwds9RDrgSM2+H0KpxAAM6NaFDcG06hdbm\ngvo1raqfMSaX9WBVwauIxrNOnDjB0qVL2b9/P8OHDz9t3fr162nfvj0AgYGBJCQknNYDZkxVUpI9\nWK7jeQGX4Kz2Nwpn4YtWJXV8d1Wlz549SWm8tDCGxTGHuCCoBi/2b0uPlkUPB/SUE6ey2J7wv2GG\nOT1f2aq0z+2ZCqRtk0B8faxCrDGVkfVgGVNB+fn5cd111xW4LqdABkDfvn3zJVfbt2/n559/5rrr\nriMoqHx+STGmPBKRH3DOVfUbsAK4RFXjPRtV5XUyI4upy3fw/tJYvBzCM31bcV/3sHzD7soTv2pe\nXNQ0kIuaBno6FGNMBWcJljHlyPDhw2nSpAnffvstt9xyS771c+bMYezYsYgIY8eO5a9//asHojSm\nQvoT6AxchHPOqqMi8puqnvBsWJXPj5sP8eK3MexOTOP69o15/vrWNA4s3eGAxhhTnliCZUw50qBB\nA4YOHcrQoUMLXJ/Tw6WqRERElGFkxlRsqvo4gIgEAEOBGTjnt6ruwbAqlbjENF5auJElm+K5sEFN\nPhveNV/FP2OMqQoswTKmglBVBg4ciLe3N3/88Qf9+vXLt83HH3+Mn58fgwYN8kCExpRfIvIQziIX\nnYFdOIterPBkTJXFyYwsPvhpOx8s2463Q3i2Xyvu7Va+hwMaY0xpsgTLmApCRHjqqad46qmnOHbs\nGLVq1Tpt/c8//8yIESPIyMhgw4YNTJgwAYfDvuAY4+ILvAlEq2qmp4OpLJbEHOLFhRvZk3SCGzs0\nYex1rWkUaOXJjTFVm337MqYCOjO5UlWee+45MjIyAJg/fz4nT54saFdjqiRV/QfgA9wFICJBIhLm\n2agqrt2Jxxk2cxXDP4nC19uLWSO68u7tnSy5MsYYrAfLmEpBRFiwYAGDBw9mzZo1LFiwAH9/f0+H\nZUy5ISLjgUicEwPPwJls/Qvo5sm4KpoTp7L44KdYJi/fgY9DGHtda4Z2a46Pl12vNcaYHJZgGVNJ\n1K5dm3//+9/s3LmTZs2aeTocY8qbm4FOwGoAVd3vKnhh3KCq/DfmEC99G8O+oycY0LEJz13Xmoa1\nrMfKGGPOVKqXnESkr4hsEZFYERlTwPohIvKniKwXkV9FpEOeddNFJF5ENhRy7CdFREWkvmv5GhGJ\ndh0rWkSuLL3fzJjyydvbm5YtW+Zr/+WXX5gxY4YHIjKm3DilqgoogIjU8HA8FcbOw8cZOmMV938a\nTc3q3sweeSnv3NbJkitjjClEqfVgiYgX8D5wDbAXWCUiC1Q1Js9mO4FeqnpERPoBU4GurnUzgfeA\nTwo4dgjQB4jL03wYuNF1VfIi4Hugacn+VsZUPLt372bgwIHEx8ezYcMG/v73v+Pl5eXpsIwpa1+I\nyBSgtoiMAIYB0zwcU7mWdiqT95fG8uHynVTzdvDCDW24+7JmNhzQGGOKUZrvkl2AWFXdoaqngNnA\ngLwbqOqvqnrEtbgSCM6zbjmQVMix3wKexnUl0rX9GlXd71rcCPiJiM1vYqq8sWPHEh8fD8Ann3zC\nwYMHPRyRMWXPVeRiHvAlzvuwxqnqJM9GVT6pKv/ZcIBr3lzO+0u3c337xvz4ZC/u6x5myZUxxrih\nNO/BagrsybO8l//1ThXkPuC74g4qIgOAfaq6TkQK2+wvwGpVTS9g/5HASIDQ0NDiTmdMhTd58mRS\nU1NZtGgRX331FU2bWseuqZpUdTGwGEBEHCIyRFU/83BY5cqOhFTGL9jIim2HadUogC/uv4wuYXU9\nHZYxxlQo5aLIhYhcgTPB6l7Mdv7AcziHBxa2TVvgtcK2UdWpOIciEhkZqQVtY0xlUrNmTb766itW\nr15NZGSkp8MxpkyJSC3gQZwX/RbgTLAeBEYD6wBLsHAOB3z3x1imrdiBr7cX41zDAb2tx8oYY85a\naSZY+4CQPMvBrrbTiEh7nOPg+6lqYjHHbAGEATm9V8HAahHpoqoHRSQY+Bq4W1W3l8DvYEyl4HA4\nCkyu4uLi+M9//sOIESMookfYmIrsU+AI8BswHOdFOgFuUtW1ngysPFBVFq0/yMv/juFA8kkGXtyU\nMf1a0SDAClgYY8y5Ks0EaxXQ0jWR4z7gNuCOvBuISCjwFXCXqm4t7oCquh5okGf/XUCkqh4WkdrA\nv4ExqvpLif0WxlRSx48fZ8CAAaxdu5Y1a9YwadIkfHx8PB2WMSXtAlVtByAi04ADQKiqVumZuE+c\nyuLf6w8w6/fdrI47SuvGtXj39k5ENrfhgMYYc75KLcFS1UwReQhnNT8vYLqqbhSRUa71k4FxQD3g\nn66r55mqGgkgIp8DvYH6IrIXGK+qHxVxyoeAC4FxIjLO1dZHVeNL/rczpuKbOHEia9c6L+BPmzaN\n++67z4YQmsooI+eJqmaJyN6qnFxt3J/M7D/28M3afaSczCSsfg3+OqAtt3cJteGAxhhTQsQ5LUjV\nFBkZqVFRUZ4OwxiPOHHiBMOHD2fWrFlMnTqVESNGeDokY04jItE5F93O4xhZwPGcRcAPSHM9V1Wt\ndX5Rnr2y/uxJTc9kwdr9zF4Vx597k6nm7eC6ixpxW5dQuobVteHBxhjjUhKfO+BGD5aI1HPj3ihj\nTAXj5+fHv/71L+655x769Cm0bowxFZqqlvqkbyLyJPAPIEhVD5f2+dyhqqzdc5TZf+zh2z/3k3Yq\ni4iGAYy/sQ03d2pKbf9qng7RGGMqLXeGCK4UkbXADOA7rcpdXsZUMiJSYHKVlpbG7Nmzuffee+3q\ntjFFKGTie485mnaKr9fsY86qPWw+mIKfjxc3dmjMbV1C6RRS2/4/G2NMGXAnwQoHrsY56/0kEfkC\nmOlOUQpjTMWjqgwdOpS5c+fy008/MXXqVHx9raKYMYXImfh+vqcCUFV+35nE7D/iWLThIKcys2nX\nNJBXbr6I/h2aEOBrxWuMMaYsFZtguXqsFgOLXfNV/Qt4QETW4azY91spx2iMKUMzZsxg7ty5AHz6\n6af079+fW265xcNRGVP+uDnxfc62JT7J/eHUdL6M3sucVXvYcfg4AdW9GRwZwuBLQrioaWCJnMMY\nY8zZc+seLOBO4C7gEPAwzskaOwJzcc5LZYypJO68805+/fVXPvroIx588EFLrkyVJiJLgEYFrBpL\nMRPf51VSk9xnZys/xx5m9qo4FsccIiNLiWxWhweuuJDr2zXGr1qp33JmjDGmGO4MEfwN50SNN6nq\n3jztUSIyuXTCMsZ4SrVq1fjwww/p27cvAwYM8HQ4xniUql5dULuItKOIie9LOo6DySeZG7WHOVF7\n2HvkBHX8fbj7subcdkkILRsGlPTpjDHGnAd3EqyIwgpbqOprJRyPMaYcEJECe65Ulblz53LLLbfg\ncNicOabqKmri+5I6R2ZWNj9tSWD2qjh+3BxPtsLlLerxdN9WXNu2IdW9rbfKGGPKI3cSrP+KyK2q\nehRAROoAs1X12tINzRhT3rzyyiu88MILDBw4kE8++YQaNWp4OiRjKp09SWl8EbWHL6L2cOhYOvVr\nVuf+Xi0YHBlC8/r2f84YY8o7dxKsoJzkCkBVj4hIg6J2MMZUPsuWLeOFF14A4KuvviIyMpJnn33W\nw1EZUz6oavPz2f9UZjZLNh3i8z/i+DnW2QnWKzyIF/uHclXrBvh4WY+xMcZUFO4kWFkiEqqqcQAi\n0gywubCMqWK6devGo48+yjvvvMMVV1zB6NGjPR2SMRXejoRUZq/aw5fRe0k8foomgb48cmVLBl0S\nQtPafp4OzxhjzDlwJ8EaC/wsIssAAXrgKjVrjKk6vL29efvtt7nkkkvo27cvPj42t44x50IVvl6z\nl8//2MMfO5PwcghXtWrA7V1C6RkehJfDJgM2xpiKzJ15sP4jIhcDl7qaHivJm3iNMRXLkCFDCmz/\n4Ycf6N27N15eduO9MUXZdOAYj89ZR7N6/jzdN4JbLg6mQS2bzNsYYyoLd3qwAKoDSa7t24gIqrq8\n9MIyxlQkX3/9NQMHDqRfv358/vnnBAbaJKfGFKamrzezhnfl0gvq4bDeKmOMqXTcmWj4NWAwsBHI\ndjUrYAmWMYbY2FjuuusuAL777jtGjx7Nhx9+6OGojCm/Quv6c/mF9T0dhjHGmFLiTlmim3DOhXW9\nqt7oevQv7cCMMRXDBRdcwCOPPJL7/G9/+5uHIzLGGGOM8Rx3hgjuAHyA9FKOxRhTATkcDl599VXa\ntWtH+/btqVevnqdDMsYYY4zxGHcSrDRgrYj8QJ4kS1UfKbWojDEVzu23315g+759+2jSpAkidq+J\nMcYYYyo/d4YILgD+CvwKROd5GGNMkTZs2ED79u0ZPXo0qjZ9njHGGGMqP3fKtH8sIn5AqKpuKYOY\njDGVQFxcHH369CEpKYk333wTgDfeeMPDURnjedHR0akiYp+nhasP2HQwhbPXp2j2+hTNXp+iRZTE\nQdypIngj8A+gGhAmIh2Bl6zQhTGmKA0bNuSyyy7jq6++IiAggDvuuMPTIRlTXmxR1UhPB1FeiUiU\nvT6Fs9enaPb6FM1en6KJSFRJHMedIYITgC7AUQBVXQtcUBInN8ZUXtWrV2fOnDmMGjWKhQsX0rlz\nZ0+HZIwxxhhT6twpcpGhqsln3KCeXdjGxhiTw9vbmw8++MDTYRhjjDHGlBl3erA2isgdgJeItBSR\nd3EWvDDGmHNy5MgR7rzzTuLj4z0dijGeMNXTAZRz9voUzV6fotnrUzR7fYpWIq+PFFfZS0T8gbFA\nH0CA74G/qurJkgjAkyIjIzUqqkSGWhpj3JSamso111zDypUrCQ8PZ/HixYSGhno6LFMOiUi03Stg\njDGmonGnimAazgRrbOmHY4yp7FasWMEff/wBwNatW1m5cqUlWMYYY4ypNNypIrgUyNfNpapXlkpE\nxphKrV+/fsydO5fbb7+dN998k0GDBnk6JGOMMcaYEuPOPVijgadcjxeAtYBb4+pEpK+IbBGRWBEZ\nU8D6ViLym4iki8joPO0RIrI2z+OYiDzmWtdRRFa62qNEpIurvbmInMizz2R3YjTGlL2BAweyZcsW\nHnzwQU+HYkypEpHpIhIvIhvytNUVkcUiss31s44nY/SkQl6f10Vks4j8KSJfi0htT8boSQW9PnnW\nPSkiKiL1PRFbeVDY6yMiD7v+hjaKyN89FZ+nFfL/q8Dv0VWRiISIyFIRiXH9rTzqaj/v9+hiEyxV\njc7z+EVVnwB6uxG0F/A+0A9oA9wuIm3O2CwJeATnPFt5z7lFVTuqakegM5AGfO1a/XfgRde6ca7l\nHNtz9lPVUcXFaIzxnObNm+dry8rKYvXq1WUfjDGlZybQ94y2McAPqtoS+MG1XFXNJP/rsxi4SFXb\nA1uBZ8s6qHJkJvlfH0QkBOe98XFlHVA5M5MzXh8RuQIYAHRQ1bac8R2ziplJ/r+for5HVzWZwJOq\n2ga4FHjQlauc93t0sQmWK4vLedQXkWuBQDeO3QWIVdUdqnoKmI3zDz6Xqsar6iogo4jjXIUzcdqd\nsxtQy/U8ENjvRizGmHJOVRk5ciSXXnop8+bN83Q4xpQIVV2O82JiXgOAj13PPwZuKtOgypGCXh9V\n/a+qZroWVwLBZR5YOVHI3w/AW8DTFHALR1VSyOvzf8DfVDXdtU2VLVdbyOtj36NdVPWAqq52PU8B\nNgFNKYH3aHfmwYrG+Y8hODO9ncB9buzXFNiTZ3kv0PVsAwRuAz7Ps/wY8L2I/ANngnh5nnVhIrIW\nSAaeV9UVZx5MREYCIwG7sd6YcuTVV19l+vTpAAwePJhffvmFSy+91MNRGVMqGqrqAdfzg0BDTwZT\nzg0D5ng6iPJERAYA+1R13RlzlBqncKCHiLwCnARGuy7mG6eivkdXWSLSHOgE/E4JvEe7M0QwwWOH\naQAAIABJREFUTFUvcP1sqap9VPXnsz3RuRCRakB/YG6e5v8DHlfVEOBx4CNX+wEg1NXl+QQwS0Rq\ncQZVnaqqkaoaGRQUVLq/gDHGbXfffTcRERG5z7t0qbLDwk0Vos65Uqp0L0RhRGQszgu7n3k6lvLC\nNXXOcziHdpmCeQN1cQ75egr4QiwTzauw79FVlojUBL4EHlPVY3nXnet7tDtVBAcWtV5Vvypk1T4g\nJM9ysKvtbPQDVqvqoTxt9wCPup7PBaa54kgHcrqDo0VkO86rGDbRlTEVQEhICCtWrOCtt97ipZde\nwuFwpwaPMRXSIRFprKoHRKQxUGWHMBVGRIYCNwBXaXETdlYtLYAwIKf3KhhYLSJdVPWgRyMrP/YC\nX7n+bv4QkWygPpDg2bDKjQK/R1dVIuKDM7n6LE9Oc97v0e58g7kPZ3Y7xPWYhrPL/kacb36FWQW0\nFJEwV0/UbcCCs4zvdk4fHgjOsaK9XM+vBLYBiEiQq7AGInIB0BLYcZbnM8Z4UFBQEK+++ire3vmv\n/dh3LFOJLMD5JQfXz/kejKXcEZG+OO8v6u+ai9O4qOp6VW2gqs1VtTnOZOJiS65O8w1wBYCIhAPV\ngMMejah8KfB7dFXk6tn8CNikqm/mWXXe79Hu3IPlA7TJGYvoyuRmquq9Re2kqpki8hDwPeAFTFfV\njSIyyrV+sog0wtnDVAvIdpVib6Oqx0SkBnANcP8Zhx4BvCMi3jjH1o50tfcEXhKRDCAbGKWqBd0Y\naoypYCZPnszKlSuZNm1agcmXMeWViHyOs/JufRHZC4wH/oZz2NJ9wG6gyk4GV8jr8yxQHVjs6qVZ\nWVUrAxf0+qhqlR/SlaOQv5/pwHRXafJTwD1VtRe0kNensO/RVVE34C5gvauGAziH4J73e7QU9zcn\nIptUtXWeZQewMW9bRRUZGalRUTaC0JjybNasWdx5552oKjfddBOff/45vr6+ng7LlAERiVbVSE/H\nYYwxxpwNdy4F/yAi3/O/oXqDgSWlF5IxxvzPzz//nDs8cN++fWRkZFiCZYwxxphyq9gES1UfEpGb\ncQ7BA5iqql8XtY8xxpSU999/n5o1a7Jo0SK+++47AgICPB2SMcYYY0yhih0iCCAizYCWqrrEVSLU\nyzUhV4VmQwSNqRhUldTUVEuuqhgbImiMMaYiKraKoIiMAOYBU1xNTXFWaDHGmDIhIgUmV7/99hu7\ndu0q+4CMMcYYYwrhTpn2B3FW2TgGoKrbgAalGZQxxhRn9erV9O3bl+7du7Np0yZPh2OMMcYYA7iX\nYKWr6qmcBVdZxypZ7tIYUz6kp6dz0003cezYMfbt28egQYPIzs72dFjGGFPmRKSeiKx1PQ6KyL48\ny9XO2PZ7ESlyrLWI7BWR2oW0z8mzfJuIlMgktSLysmuqHmMqBXcSrGUi8hzgJyLX4Jz1+dvSDcsY\nYwpXvXp1Zs6cSY0aNahTpw6zZs3C4XDn7cwYYyoXVU1U1Y6q2hGYDLyVs5xzgVycHKp67XneQ99V\nRCJKJPASkvO7eToOY/Jy5w9yDJAArMc56e8i4PnSDMoYY4pz5ZVX8uOPP7Jo0SLatWvn6XCMMaZc\nEZELRSRGRD4DNgKN8/ZOici3IhItIhtFZLibh30D50SsZ57rtB4oEdksIsGuGDaIyKcislVEPhGR\na0XkVxHZJiJ5i9h0EpGVrvZheY41RkT+EJE/RWRcYb/bWb9AxpSiIsu0i4gX8ImqDgE+LJuQjDHG\nPV26dCmw/dSpU1SrVq3AdcYYU4W0Au5W1ShwFgzK4x5VTXJVh44SkS9V9Ugxx/sceEhEws4ihghg\nELAZWA2cVNXLReQvOC/i3+Larh1wOVALWC0i/wY6A6FAV0CARSJyORB/5u9mTHlSZA+WqmYBzc4c\nw2uMMeVVQkICnTp1YurUqZ4OxRhjPG17EQnI4yKyDvgNCAZauHG8TJy9WGPOIoZYVY1R1WwgBvjB\n1b4eaJ5nu29U9aSqxgPLgUuAPkA/YA3O5OxCINy1fVG/mzEeVexEw8AO4BcRWQAcz2lU1TdLLSpj\njDkHycnJXHvttcTExHD//fdz7NgxRo8e7emwjDHGU44X1CgiVwM9gUtV9YSI/Az4unnMmcDTwNY8\nbZmcftE+77HS8zzPzrOczenfQ88soKY4e61eVtWPzoj/Qgr53YwpD9y5B2s7sNC1bUCehzHGlCuZ\nmZl4eXkB4HA4aNasmYcjMsaYcikQSHIlV21x9ha5xVU4YxLwaJ7mXTiH8yEiXYCQc4jpJhGpLiJB\nQA8gCvgeuE9EariOHSwi9c/h2MaUqUJ7sETEW1UzVfXFsgzIGGPOVb169fjhhx8YMGAAd955J7fe\nequnQzLGmPLo38BIEYkBtgC/n+X+H3J6sYu5wJ0isgFYiXP009naACwD6gHjVfUQznuuWgErXfeP\npQB3nMOxjSlTolrwlFYislpVL3Y9f1dVHy7TyMpAZGSkRkXZ8F1jKpusrKzcnixTcYlItKpGFr+l\nMcYYU34UNUQwb6mZbqUdiDHGlJSCkquMjAyefPJJFi1aZJMSG2OMMabUFJVgFdy1ZYwxFUx2djZD\nhw7lzTff5Prrr+fRRx8tfidjjDHGmHNQVBXBViLyJ86erBau57iWVVXbl3p0xhhTAr7//ntmz56d\nuzx48GAPRmOMMcaYyqyoBKt1mUVhjDGlqF+/fsTGxvLee++xdu1aunU7fdSzqvL000/Tv39/unfv\nfuZknMYYY4wxbiu0yEVVYEUujKl6VDVfArVixQp69uwJQLdu3Vi+fDkOhzuzWJjSZEUujDHGVET2\nDcIYU6UU1Dv1zjvv5D5v06aNJVfGGGOMOWf2LcIYU+VNmDCBESNG4OfnV2ABjMWLF7N27VoPRGaM\nMcaYisatIYIi4geEquqW0g+p7NgQQWNMXseOHaNWrVqntWVlZdGyZUt27txJ7969mT59OmFhYR6K\nsGqxIYIVU3R0dANvb+9pwEXYhVxjKpNsYENmZubwzp07x3s6mPKsqCIXAIjIjcA/gGpAmIh0BF5S\n1f6lHZwxxpSlM5MrgIULF7Jz504A1q1bR8OGDcs6LGMqFG9v72mNGjVqHRQUdMThcFTdG72NqWSy\ns7MlISGhzcGDB6cBlgcUwZ0rSxOALsBRAFVdC9jlW2NMlRAWFsbgwYPx8vLi/vvvx9/f/7T1hw8f\nJjY21kPRGVMuXRQUFHTMkitjKheHw6FBQUHJOHunTRHcSbAyVDX5jDZ70zTGVAnt27dn9uzZ7Ny5\nkyeeeCLf+kmTJhEeHk7//v1ZtWqVByI0ptxxWHJlTOXk+r9tQ3+L4c4LtFFE7gC8RKSliLwL/FrK\ncRljTLkSEhJCUFDQaW0nT55k8uTJqCrffvstu3bt8kxwxhhjjCk33EmwHgbaAunALCAZeMydg4tI\nXxHZIiKxIjKmgPWtROQ3EUkXkdEFrPcSkTUisjBP2+sisllE/hSRr0WktqvdR0Q+FpH1IrJJRJ51\nJ0ZjjDlXiYmJdOnSBXAmYDfffHO+bY4cOVLWYRlT5Xl5eXVu1apVm5zHc8891+hcjvOXv/yl+YwZ\nM+qUREyffvpp7ejoaN+c5ccee6zJN998E1ASx77xxhvDwsPD27z44osNzma/w4cPe/3tb38LKn7L\nysff379TWZ5v8ODBzfL++5+Pl19+ucEFF1zQtn///md9y85LL73UICUlxXqgSlmxRS6AVqo6Fhh7\nNgcWES/gfeAaYC+wSkQWqGpMns2SgEeAmwo5zKPAJiDvneeLgWdVNVNEXgOeBZ4BbgWqq2o7EfEH\nYkTkc1XddTZxG2OMu5o2bcrChQvZsmULe/bswdv79LfULVu20L59e2699VYeffRRLrnkEg9FakzV\nUr169ezNmzfHFL9lycrMzMz3PpDjm2++qZ2ZmZncuXPnkwBvv/32/pI4Z1xcnPe6detqxMXFbTjb\nfRMTE70++uijBmPGjElwd5+MjAx8fHzO9lSVXnGvy5w5c3aX1Lk++uijoCVLlmxt0aJFxtnuO2XK\nlIYjRoxICggIyHZ3n6L+rk3B3Hm13hCRRsA8YI6quvsfuAsQq6o7AERkNjAAyH3DU9V4IF5Erj9z\nZxEJBq4HXgGeyLPPf/NsthK4JWcVUENEvAE/4BRwzM1YjTHmnEVERBAREZGvfdKkSZw6dYrPPvuM\nY8eOsWDBAg9EZ4znDBtGyIYN+Be/pfsuuoi06dPZc7b7JSYmenXu3Ln1/Pnzt3Xo0CH9xhtvDOvd\nu3fKk08+edjf37/T7bfffnjZsmW1goKCMr788ssdTZo0ycy7//z58wPGjBkTkpWVRYcOHdI++eST\n3X5+ftq0adN2/fv3T1q2bFmtxx577GBKSorXjBkzgjIyMqR58+bp8+bN27ly5Uq/JUuW1F65cmXA\na6+91vjLL7/cPm7cuMY33HBD8r333nukqGMPGjQo8fvvvw/MzMyUOXPm7OjUqdPJvHFdffXV4fHx\n8dVatWrV5u23347buHGj75nnDwgIyN6zZ4/3sGHDmsXFxVUHeO+993a/8847Dffs2VO9VatWbXr1\n6nXsgw8+2Pt///d/wT/++GOgiOhTTz11YMSIEUcWLlwYMH78+CaBgYFZO3bs8N21a9dZJ3OFGTZ/\nWMiG+A0l+zfS4KK06QOmn/XfyP79+73vvffeZvv27asG8Oabb8b16dPn+NKlS/0ff/zx0PT0dIev\nr2/2zJkzd3bo0CF90qRJ9b755ps6aWlpjqysLBk/fvz+l156qUndunUztmzZ4teuXbu0b775ZqfD\n4aBLly4R//jHP/b07Nkzzd/fv9N9990X/9///jfQ19c3e+HChbEhISGZGzdurH7HHXeEnThxwtG3\nb9+j06ZNa5iWlrYmb4x33HFH6N69e6v369ev5ZAhQw737NkztaDYMjMzeeCBB4KXLl0aKCJ6zz33\nHFZV4uPjfXr16hVep06dzN9//33rlClT6r7xxhuNVFWuvvrqox988ME+cPbwDRkyJGH58uW1Jk2a\nFHfttdemlsy/TtVQbBehql4BXAEkAFNcQ/Ced+PYTeG0N8C9rjZ3vQ08jbPmfmGGAd+5ns8DjgMH\ngDjgH6qadBbnM8aYEqOq7NixI3f5scfcGlltjCkB6enpjrxDBD/88MM69erVy3rrrbfi7rnnnrCp\nU6fWOXr0qPeTTz55GODEiROOyMjI47GxsRu7deuWMmbMmCZ5j5eWlib3339/2Jw5c7Zv3bo1JjMz\nk9dffz13aF29evUyY2JiNo0cOfLIkCFDjmzYsGHTli1bYiIiIk5MmjSp/jXXXHP86quvPvryyy/v\n3bx5c0zbtm3T3T12/fr1M2NiYjYNGzYs4W9/+1u+eSK+/fbb2JCQkPTNmzfH9O3bN7Wg8wOMGjUq\ntEePHilbtmyJ2bhxY8zFF1988o033tibs++UKVP2fvLJJ7XXr1/vt2nTpo0//PDD1nHjxgXv3r3b\nByAmJsb/n//8Z1xJJlflzf333x/yxBNPHNqwYcOmr7/+evuoUaOaA3To0OHkqlWrNm/atClm/Pjx\n+55++ungnH02btzoP3/+/O2rVq3aArBp0ya/999/f09sbOzGuLi46osXL6555nlOnDjhuOyyy1K3\nbNkSc9lll6W+++67QQAPPfRQyAMPPBC/devWmODg4AJ7p2bNmhXXoEGDjGXLlm0dP358fGGxvfHG\nG0FxcXHVYmJiNm7dujVm+PDhic8//3x8zr6///771l27dvlMmDCh6U8//bQ1JiZm45o1a2p8+umn\ntXNi7Nq16/EtW7bEWHJ19tzq71PVg8AkEVmKM+kZB7xcWkGJyA1AvKpGi0jvQrYZC2QCn7maugBZ\nQBOgDrBCRJbk9KDl2W8kMBIgNDS0dH4BY0yVJyJ89913REdHM2/ePK644op82wwbNoxWrVrxyCOP\n4OtbIkPzjSlXzqWnqSQUNkTw5ptvPvbFF1/Uefrpp5tFR0dvzGl3OBwMHz48CWDYsGGJAwcOvDDv\nfuvWrfMNDg5Ob9++fTrA0KFDE99///0GQDzA3XffnXuzZXR0tN+4ceOapqSkeB0/ftyrV69eZ1Zi\nPk1xx77jjjuOAHTp0iVtwYIFxd4PVtj5f/3114B58+btBPD29qZevXpZhw8f9sq774oVKwIGDRqU\n5O3tTUhISGbXrl1Tf/75Z//AwMDs9u3bH2/VqtWp4s5/ts6lp6m0/PLLL7W2bdvml7OcmprqlZyc\n7EhKSvIaPHhw2K5du3xFRDMyMiRnmx49ehxr2LBhVs5yu3btjucM3Wvbtm3a9u3bq515Hh8fH73t\nttuSATp37nx8yZIltQDWrFlT87///W8swPDhwxMnTJgQfOa+Zyosth9//LHWqFGjEnKGLeaNMcfP\nP/9c49JLL03J6a0dPHhw0rJly2reddddR728vBg6dKjdRHyOiu3BEpHWIjJBRNYDORUEi/0HB/YB\nIXmWg11t7ugG9BeRXcBs4EoR+VeemIYCNwBDVDWnFOwdwH9UNcM19PAXIPLMA6vqVFWNVNXIMyuC\nGWNMSevcuTMTJ05ERE5rX7FiBTNmzOCZZ56hVatWpKSkeChCY6qOrKwstm7d6uvr65udmJhY6EXm\nM/+/Fifv/SwjR44Me++99+K2bt0a88wzz+xPT08/r4ICvr6+CuDt7a2ZmZnFBlbS58/h7+/v9j07\nFZWqsnr16k2bN2+O2bx5c0x8fPyfgYGB2c8880zTXr16pWzbtm3jt99+G3vq1Knc1/TM16V69eq5\nUxR4eXlR0L+Zt7e3OhyOnOcFbuOuomI7H9WqVcu2+67OnTv/CNNxTjJ8rar2VtUPXAlMcVYBLUUk\nTESqAbcBbt2AoKrPqmqwqjZ37fejqt4JzsqEOHvR+qtqWp7d4oArXdvUAC4FNrtzPmOMKWsffPBB\n7vNu3boREFAixcSMMUV46aWXGoaHh5+cOXPmjmHDhjVPT08XgOzsbHKqBc6cObNely5dTrvi0aFD\nh5P79u2rtmHDhuoAn3zySb0ePXoUeFUkLS3NERoampGeni6zZ8+um9Nes2bNrGPHjuX73nU2x3ZH\nYefv1q1bSs7Qw8zMTBITE70CAwOzjh8/nhtTz549U+bNm1c3MzOT/fv3e//xxx81e/TocfxcY6lo\nunfvfmzixIm5lRh//fVXP4Bjx455BQcHnwKYMmVK/dI6f8eOHVNnzpxZB2D69Ol1i9u+qNiuuuqq\nY1OmTKmfkeEcaXjo0CEvgBo1amQlJyc7AHr06HH8999/Dzhw4IB3ZmYmc+fOrdu7d28bDlgC3LkH\n6zJVfVtVz6rajapmAg8B3+OsBPiFqm4UkVEiMgpARBqJyF6cRSyeF5G9IlKr8KMC8B4QACwWkbUi\nMtnV/j5QU0Q24kzuZqjqn2cTszHGlJWPP/6Y9957j+DgYF555ZV860+dKvGROMZUGWfeg/XAAw80\nXbduXfVPP/20/j//+c89ffv2Tb300ktTxowZ0xjAz88v+48//qjRsmXLtsuXLw+YOHHigbzH8/f3\n18mTJ++69dZbW4SHh7dxOByMHj26wMp7Y8aM2d+lS5fWkZGRrVq2bJlbkGLIkCFJkyZNatS6des2\nGzdurH4ux3ZHYef/4IMP4pYtWxYQHh7e5qKLLmqzZs0a30aNGmV17tw5tWXLlm3vv//+4Lvuuuto\n27ZtT7Ru3bpt7969w1988cW9oaGhmUWdr6I6efKko2HDhu1zHhMmTGg4derUPatXr64RHh7epkWL\nFm3fe++9IIBnnnnm4IQJE4Jbt27dJjOz9F6Od999d8+7777bMDw8vE1sbKxvzZo18w3rO1NhsT3+\n+OMJwcHBp1q1atU2IiKizUcffVQX4J577jnct2/f8K5du4Y3a9YsY/z48ft69eoV3rp167YdOnQ4\nfueddx4ttV+wCpH/jbA7Y4XIF6o6yDU0MO9GAqiqti+LAEtTZGSkRkVFeToMY0wVVlD52+zsbLp2\n7UrHjh156aWXaNy4sYei8ywRiVbVfEO9Tfm2bt26XR06dDjs6TjOhr+/f6czq7UZU9ZSUlIcNWrU\nyHY4HEydOrXOnDlz6v7www/bPR3XmdatW1e/Q4cOzT0dR3lW1ODKR10/byiLQIwxpioqaIz7rFmz\niIqKIioqivnz57N79278/PwK2NsYY0xl8csvv/g/+uijoapKrVq1smbOnLnL0zGZc1NogqWqOd3j\nD6jqM3nXuSb4fSb/XhXMkTWwoAVUr3/GI6iAtvpQrQ44vIo/rjHGnIelS5fmPh85cqQlV8aUMuu9\nMuVB3759U7ds2VLmE2SbkudOeZBryJ9M9SugreLRbEjd4Xy4QxxQra57CZmv66d3AJxlNSJjTNX2\n0UcfMXjwYP7+97/z9NNP51u/f/9+GjdufNaVzowpI9nZ2dnicDgKvgfBGFNhZWdnC0XPUWsoIsES\nkf8DHgAuEJG8xSICcJZAr/jqdIQbvoD0w2c8EgpoOwynjvzvubsc1QruDcublOUkY76NwLehJWTG\nGPr06UOfPn3ytR8/fpzIyEgiIiJ4/fXXiYy0W5RMubMhISGhTVBQULIlWcZUHtnZ2ZKQkBAIVNrJ\npktKUT1Ys4DvgInAmDztKaqaVKpRlRXxglotgZbubZ+dCemJBSdfhSVlmcfhxH7nwx2+DaHuJVDP\n9ah7iTMBM8YY4M033+TAgQMcOHCAAQMGsHPnTqpVyzePpTEek5mZOfzgwYPTDh48eBHuTQdjjKkY\nsoENmZmZwz0dSHlX1D1YyUAycDuAiDQAfHGWQq+pqnFlE2I54vAGv4bOh7syTxSSkBWQmB2Pg5OH\nYP9C5yNHjeZQNzJP0tUZfIqrZm+MqYzS0tJyJqbkxRdftOTKlDudO3eOB/p7Og5jjPGUQsu0524g\nciPwJtAEiAeaAZtUtW3ph1e6yl2ZdlVI3Q6Jq5yPpFWQtBqy0s7YUKBWxOk9XbU7gLfdCG9MVbB1\n61b++c9/8sYbb+DldXrhnV9//ZXOnTtTvXr1QvauOCprmfb69etr8+bNPR2GMcaYM0RHRx9W1aDz\nPY47CdY64Epgiap2EpErgDtV9b7zPbmnlbsEqyDZmXBsEyRGOROuxFVwdB1kZ5y+nXhD7YtOT7oC\n24LDxzNxG2PK3L59+2jZsiWNGjVi4sSJDBo0qEIXwqisCVaF+OwxxpgqqKQ+d9ypIpihqoki4hAR\nh6ouFZG3z/fExk0Ob6jdzvloca+zLSsdjv7p6uWKcv48FgNH1jof2z90buflC3U6/S/pqhsJtcKd\n1RCNMZXOuHHjOHHiBDt37uS1117j1ltvrdAJljHGGFMRuZNgHRWRmsBy4DMRiQeOl25Ypkhe1f/X\nS5UjI9U5r1fO0MLEVc7hhod/cz5y+NRy3sOVt6fLP9QqFxpTCXTq1Im6deuSlJTE66+/jsNhF1PO\nh4hMB24A4lX1ogLWC/AOcB2QBgxV1dVlG6Uxxpjyxp0hgjWAk4AAQ4BA4DNVTSz98EpXpR+mkZ4E\nSdH/S7gSV8GJffm3qx50RhGNS86ukIcxptw4evQo8+bNY/jw/EWeZs6cSb9+/WjYsGL8//b0EEER\n6QmkAp8UkmBdBzyMM8HqCryjql2LO26l/+wxxpgKqqQ+d4pNsCqzKvkhd+JAniIarvu60gvIlf1D\noF5XaDYImvZ39poZYyqs6OhoIiMjqVmzJs888wzPPfdcue/h8nSC5YqhObCwkARrCvCTqn7uWt4C\n9FbVA0Uds0p+9hhjTAVQ6vdgiUgKkDf7EteyAKqqVie8IvJrDMH9nQ9wVi48vuv0oYVJ0ZC2x/nY\nMw+q1YFmdzjvAatzsQ0nNKaCUVWeeuopAFJTU4mKiir3yVUF0RTYk2d5r6stX4IlIiOBkQChoaFl\nEpwxxhjPKGoerICyDMR4iAjUDHM+mg1ytmVnQcpWOPBf2DnTWThj2/vOR+12cMG90HwI+DbwaOjG\nGPeNHj2a+Ph4Nm/ezGuvvebpcKocVZ0KTAVnD5aHwzHGGFOK3LqEKSLdReRe1/P6IhJWumEZj3J4\nQWBraPUo9FvjfEQ8CtXrwdH1sPoJ+LopLL8J9s7PXzLeGFOuiAjXXXcda9euZdmyZURERJy2XlUZ\nPXo0v/zyC1V52Pg52AeE5FkOdrUZY4ypwopNsERkPPAM8KyrqRrwr9IMypQzdTpC57fhpv3Q40to\neiOgzuRq+U3OZCv6CWfyZYwpt7y9venWrVu+9m+++YY33niD7t27c91113kgsgprAXC3OF0KJBd3\n/5UxxpjKz50y7TcDnYDVAKq6X0Rs+GBV5FUNQgY6HycOwq5/wY4ZkBwDW95yPup2hrCh0PwOqF7X\n0xEbY4qhqjz//PO5y5dffnm+bY4ePUqtWrWq3H1bIvI50BuoLyJ7gfGAD4CqTgYW4awgGIuzTPu9\nnonUGGNMeeLOp+UpdY4ZUcgt226qOr9G0Ho0XLcBrv0DWv4f+NR2FsiIfhi+bgw/D4J9iyA709PR\nGmMKISLMmzePYcOGUadOHW699dZ82zzyyCMEBwfz8MMPExsb64EoPUNVb1fVxqrqo6rBqvqRqk52\nJVeo04Oq2kJV26mqW6UBExPhyJHSjd0YY4znuDMP1migJXANMBEYBnyuqpNKP7zSZaVyS1jWSeew\nwR0znAUycopQ+jWGsLudPVuBrTwZoTGmCBkZGfj4+JzWlp6eTsOGDUlOTgYgKiqKzp07l0k85aFM\ne2kQiVRv7yiuvhr+8he46SaoX9/TURljjCmpz51ie7BU9R/APOBLIAIYVxmSK1MKvHyh2WC44j9w\nUxx0eAUCWjrn3op5Df7dGr6/DGKnwqlkT0drjDnDmckVwLZt23Lbw8LCuPjii09bn5WVxZNPPsmP\nP/5IZqb1VrujVSt48knYuhVGjIBGjeDqq2HyZDh0yNPRGWOMOV9nPdGwiDiA21X1s9IIsSXlAAAg\nAElEQVQJqexYD1YZUIXDvzp7tXbPgcxUZ7uXLwQPdM6t1fBKkKp1b4cxFUlmZibLli0jOTmZgQMH\nnrZu6dKlXHnllQC0b9+edevWldh5K2sPVs5njyqsWwfz5sHcuc6ESwR69oRbboGBA6FJE09Ha4wx\nVUep92CJSC0ReVZE3hORPq4qSQ8BO4BB53tiU0WIQFA36DoNBh6Eyz6Bhlc4hxPungU/XgPzm8O6\nFyBlu6ejNcYUwNvbm6uuuipfcgUwb9683Oc9evTItz45OZmMDJvKoSAi0LEjvPwybN4M69fDuHFw\n+DA8/DA0bQrdu8Pbb0NcnKejNcYY466iug0+xTkkcD0wHFgK3ArcpKoDyiA2U9l414Cwu+CqH6H/\nDmg3AWo0h7Q9sPFl+PZCWNILdsyEjFQPB2uMccddd93Fww8/TOPGjQsskPHKK6/QqFEj7rvvvhLt\n3apsROCii2DCBNiwATZtciZex4/D449Ds2Zw6aXw+uuwY4enozXGGFOUQocIish6VW3neu4FHABC\nVfVkGcZXqmyIYDmg2RC/zJlUxc2DrDRnu3cNCL0VLrgXgno4v30YY8qt7OxsgNNKuasqLVq0YOfO\nnQAsXLiQ66+/3u1jVvYhgu6KjYUvv3QOJczZ7eKLncMIb7kFWrYspUCNMaaKKYsiF7ljOlQ1C9hb\nmZIrU06Iwzlk8LKPYeAB51DCoO6Q+f/snXecFeX1/9/PNtrSWWApK02qSi8CKiJdpK5RTNRolGii\n0eRrbEmM0Z+JLUXTNPZeWECxAmIvCIgo0ru0pfeFZcv5/XHu9d7tbXbn3t3zfr3mdWfmmZl77uzs\nPPOZc55zjqnoeu8c9WwtvxuOWYyMYUQqMTExBepkpaen/5D4omHDhowYMaLAfrfccgtz5szhxAnr\nXoqiUye45RZYvBg2bYIHH4SEBLj9dujcGXr2hLvvVq+XYRiG4T/FebBygGPBRaAOWkjRoeU/GlSJ\nhZWIebAimMPrYNPTsPEZOL49tL5xb0geBcmjodlgiK3lm4mGYZRMbm4uixcvZuPGjUybNi1P26pV\nq+jevTsALVu2ZOvWrcTFxf3Qbh6s4tm2DWbNUs/Wp59qTqHu3UOerdNOM+e/YRhGWfCq3ylzFsHq\nhAmsKCA3B3Yt0CyE217T5BhBYuuq9ysouOp3tqcJw4gi7r77bu644w4Apk6dmidhBpjAKgs7d8Ls\n2Sq2PvoIcnM1dDAotnr3ttujYRhGSVRZHayK4Jwb45xb45xb75y7tZD2rs65L5xzmYGCxiXu65x7\nxTm3LDBtds4tC6xv6pz7wDl31Dn3r8r8XUYVEhOrAmrIS5B6AM6dB91ugkan63itHW/BVzfAm101\nG+GX03Us18kDfltuGEYJTJ48mVtuuYUOHTqQmprqtzlRTXIy/OIX8P77KrYefRTatYP774e+faFj\nR7j5Zli0SD1dhmEYRuVRaR6sQGKMtcBIYBuwGK2ftTJsm+bAKcAk4ECgqHGp9g1s91fgkIjc5Zyr\nB/QGTgNOE5HrSrLRPFhRTsYOSJ8PO+dB+jzI3BtqczHQZIB6tpJHQdMBEBNX9LEMw/ANESE3N5fY\n2Ng8682DVXH27YPXX1fP1nvvQVYWpKTA1Knq2Ro0CGKsDKFhGAYQHR6sAcB6EdkoIieBl4E86d1F\nZLeILCYsoUZp93XOObQe10uBYx0TkU8BGyldU6jbCjpcDkNegCm7YMxX0PPP0HwYuFjYtxC++xPM\nHwIzm8EnU2H9/+DoZr8tNwwjDOdcAXFleEPTpnDllfD227BrFzzzjCbF+Pe/YcgQaNsWfvUrDSvM\nyfHbWsMwjOpBZb7Sbw1sDVveBgz0cN+zgF0isq4sRjnnpgPTAVJSUsqyqxHJuBho0kenHrdB1hFN\n/75zrnq4jqyFrbN0Ah2vFRy71XwYxCf6ar5hGEZl07gxXHaZTocPw5tvqmfrscfgn/+E5s1hyhT1\nbJ1zDsSZ098wDKNcRPPtcxoB71VZEJH/Af8DDdPw2igjQoivD63H6wTqtUqfp4IrfYEKriNrYe2/\nICYemg0JCK5RmqnQWcyMYVQnnHN10FqOa/y2JRJo0AAuuUSno0fhrbe01tazz8Ijj6jna/JkFVvD\nh0N8vN8WG4ZhRA+V+RS5HWgbttwmsK7C+zrn4oApwCsVtNGoKSS2g07T4ayZMHUvjPwMTvsjNB0E\nkgO7P4Rvbod3+8GsFvDZJYEU8Tv9ttwwjArinLsAWAa8G1ju5Zyb469VkUNiIlx0Ebz6KuzZo0Jr\n1Ch4+WUYMwZatIArrlARlpnpt7WGYRiRT2V6sBYDpzrn2qPi6GLgEo/2HQGsFpFtHtpr1BRi4iBp\nsE5n3KkZB9MXaCjhzrmQ8T1seUkn0IyFyaOh5ShofhbE1vbVfMMwysyd6NjeDwFEZFmgfzHyUbeu\nhglOmQInTsC8eSq4Zs+Gp59Wz9eECZokY/RoqFPHb4sNwzAij0oTWCKS7Zy7DpgLxAJPisgK59w1\ngfZHnHMtgSVAAyDXOXcj0F1EDhe2b9jhL6aQ8EDn3ObAsRKcc5OAUfkzDxpGARIaQ0qqTiIaOhgc\nu7XrAzi4XKdVD6q4an6Oiq3kkZDYCeLsCcMwIpwsETnk8haCKlWIuHNuDPAQ2hc9LiL35mtvCDwP\npKB96oMi8pQnVvtM7doqpiZMgJMnYcECHbP12mvw/PNQrx6MH69hhGPH6rJhGIZhhYYtTbtRPDmZ\nsPfzkOA68HXBbRIaQ53WUKeVZjb8YT7wWac11G5uaeINo4x4lS7XOfcEsAC4FZgK/AqIF5FrStiv\nNOVGbgcaisgtzrkkYA3QMpABt1Cive/JyoIPP1SxNXu2hhXWqQPjxqnYOv98qF/fbysNwzDKjlf9\njj3xGUZxxNaCFufq1OteOL4L0t/ThBm7P4Hj2zTE8OQBOPRd0cdxMVC7ZUBw5RNf4csJjSHvW3bD\nMCrO9cDvgEw0+mEucHcp9vuhZAiAcy5YMiQ8MkKA+oHSIYnAfiDbO9Mjj/h4GDlSp3//Gz79VMXW\nzJk61aqlY7dSU+GCC6BhQ78tNgzDqFrMgxXFbxGNCEByIXMfHN+uhY+P79D54zsgY3to+cTu0h0v\ntnZIhOUXXz+IslYQV7dyf5dhRAB+Fxp2zqUCY0TkqsDypcDA8EL2zrn6wBygK1AfuEhE3irkWOEl\nQvpu2bKlCn5B1ZKTA198ATNmqNDavl3F2KhROmZr4kRo0sRvKw3DMIrGPFiGEQm4GKidpFPjXkVv\nl3MSTqQHBFeY+AoXYcd3QNZhOLpRp+KIb1QwHLFuG2g2GBqdYV4wwwjDOfcBhYy5EpHhHhx+NJqh\ncDjQEZjvnPtERA7n+65qXyIkNhaGDtXp73+HRYvUs5WWphkI4+I05XtqKkyaBElJfltsGIZROZjA\nMoyqIDYB6qXoVBxZRwuKsAIesR2QdRAOHYRDheRwqd0SWo7UzIfJI3X8l2HUbG4Km6+NjsMqTRhf\nacqNXAHcKxoOst45twn1Zi0qv7nRT0wMDBqk0wMPwFdfhcTW9OlwzTUwbJiKrcmToWVLvy02DMPw\nDgsRtBBBI9oQCYQl5hNfR9bDrgW6HE7j3oEiyqPVwxVbyx+7DaOMVGaIoHNukYgMKGGbODTJxXmo\nsFoMXBKe1dY5919gl4jc6ZxrASwFeorI3qKOW5P7HhH49lsVWjNmwJo16nA/6ywVW1OmQOvWfltp\nGEZNxbPkSiawamYnZ1RTRNSrtXNuIBHHR5BzItQeVw+aDwsJrvqdLZzQiFg8zCIYPvInBugLPCwi\nXUqx7zjgH4RKhtyTr9xIK+BpIBlwqDfr+eKOaX2PIgIrV4Y8W98F8gQNHqxia+pUSCnB6W8YhuEl\nJrA8wDo5o9qTfRz2fBoSXAeX522vmxIIJRwFLc/TLIaGESF4KLA2oWOwHBoauAm4S0Q+reixy4P1\nPYWzerUmx0hLg2XLdF3//iq2UlOhQwd/7TMMo/pjAssDrJMzahwZOyB9fkBwzYfMsCgmFwNNBoQE\nV9MBVrvL8BW/swhWFtb3lMz69SGxFTxVvXuHxFbnzv7aZxhG9cQElgdYJ2fUaCRXCyfvnKeCa89n\nIGHj/uMbqlcreTS0HAWJ7Xwz1aiZVLSjc85NKa5dRGaV99gVwfqesrF5M8yapWLriy903emnh8RW\n9+6+mmcYRjXCBJYHWCdnGGFkHYFdH2oo4c65cGRd3vb6nUNjt5oPg/hEP6w0ahAeCKynimkWEbmy\nvMeuCNb3lJ9t20Ji69NPdRxXt24hsXX66Tas1DCM8mMCywOskzOMYji6Sb1b6fMgfQFkHQq1xcRD\nsyEhwdW4l4YYGoaHWIigURw7d8Ls2Sq2PvoIcnOhU6eQ2OrTx8SWYRhlwwSWB1gnZxilJDcb9i1S\nz9bOebB/kYYYBqmVFKi9NUqnOsn+2WpUG7wUWM6584EeaB0sAETkLi+OXVas7/Ge3bvhtddUbL3/\nPuTkQLt2IbE1YICJLcMwSsYElgdYJ2cY5SRzP+x6PyC45kLG1rztjU5Xz1bbVE2WYU82RjnwMIvg\nI0Bd4FzgcSAVWCQiP6voscuD9T2Vy7598PrrmiRj/nzIyoK2bTXte2oqnHmmFkI2DMPIjwksD7BO\nzjA8QAQOrwmN3dr1IeRkhNobdIH2l0G7n0A9K2pjlB4PBda3InJG2Gci8I6InOWBmWXG+p6q4+BB\neOMN9WzNnQuZmZCcHBJbQ4dCbKzfVhqGESl41e/YOxzDMCqGc9CwK3T5FQx7C1L3w/AF0OVGqN1C\nxdc3v4PXT4EFw2Hj05pQwzCqjuOBz4xAYeAstDCwUc1p1AguvVQ9Wrt3w4svqgfr8cdh2DBo1Qqu\nuQbeew+ys0s8nGEYRqkwgWUYhrfE1oKWw6Hv32HSNhj2NpxyMcTWhl0fwMIrYFYL+PwnOp4rN8dv\ni43qz5vOuUbAA8BSYDPwoq8WGVVOgwYwbZqGDu7ZA6++qiLr+edh5Eho2RKuugrefRdOnvTbWsMw\nohkLEbQwDcOoGk4egq1psOlZ2P1xaH2dZA0fbH8ZNDrNP/uMiMODNO3xIpKVb10toLaIHCpit0rH\n+p7IIiNDwwdnzoQ5c+DIEfV8TZigYYQjR0Lt2iUfxzCM6MfGYHmAdXKG4RNHN8Gm51VsHV0fWt+4\ntwqtU6ZBnRb+2WdEBB4IrN3AHOAl4H2JkA7P+p7I5cQJDRdMS9OwwoMHoX59uOACFVtjxkCdOn5b\naRhGZWECywOskzMMnxGBvQtVaG15GbIO6noXC8ljVGy1maDhhUaNwwOB1RTNGHgxcCowE3hJRBZ6\nZGK5sL4nOjh5UlO+p6Vpva39+6FePTj/fBVb48bpsmEY1QcTWB5gnZxhRBA5J2D7Wyq2drwNEhhx\nHt8QUn6kYitpiKV8r0F4XAerFXAhKraaAy+LyO+8OHZZsb4n+sjK0mLGaWkwa5aO4apTB8aOVbF1\n/vk6xsswjOjGBJYHREwnl30M4gKvwXZ/qimumw6EhIb+2mUYfnFij3q0Nj0L+8P+RxM7QLtLof2l\nUL+jf/YZVYKXAitwvERgCvAbIFlEfIlDjZi+xygXOTnwySc6ZmvmTNi5E2rVgtGjVWxdcIGO4TIM\nI/owgeUBvnZykqv1gjY8BtvfhAvW65iTjybA9jcABw27QdNB0Pwc6HCZP3Yaht8cWgmbntPp+PbQ\n+qQh6tVK+REk2NNMdcSLjs45Vxu4AJgGDAbeBV4G5ouILyksTWBVH3Jz4Ysv1LOVlgbbtkF8vCbG\nmDoVJk6Epk39ttIwjNJiAssDfOnkMvfD+kdhwxNwdAPEN9K38T1u02xqJw/B/sU6LmXvQti3EBp0\nhZGf6v5LblDPVtNB0Gwg1LI7t1FDyM2B3R+qV2vrTPX8AsTU0nFa7S+D5NEQE++rmYZ3eDAG60Vg\nBPARKqreEpETXtlXXkxgVU9yc2Hx4pDY2rxZixgPH66erUmToHlzv600DKM4TGB5QJV1crk5cHI/\n1E6CY1tgTgdIOgs6Xg1tp0BcMSmJRODkAajVROfnDYb9i9QDBlD/VOh8nRZ5DX5XjJWlN6o5WUdh\n6ywVW7veBwL3sVpJ0O4SFVuNe9t4rSjHA4F1GTBbRMpd2do5NwZ4CIgFHheRewvZZhjwDyAe2Csi\n5xR3TBNY1R8RWLo0JLbWr4eYGDjnHBVbkydDspW6NoyIwwSWB1R6J3dsC2x4EjY+CY16wrA3dX3G\ndqjbuvzHzToK+7+CvV+ohyt5NJx6rY5bmdMemvSDZmdCs0Hq6bJ010Z15thW2PyCiq3Dq0LrG/ZQ\nodXuxxX7fzN8w+sxWOX4/lhgLTAS2AYsBqaJyMqwbRoBnwNjROR751xzEdld3HFNYNUsRGD5chVa\nM2bA6tX67mfoUBVbU6ZAmzZ+W2kYBpjA8oRK6+R2zofVf4Odc3U5eTR0mg5tJ3v/XeFk7ICV96nw\nOvB1KAvb4Bf0rf6JvXBsk4q92ITKtcUwqhoRffGw6VnY8hJk7g00OGg5QsVW6wsseUwUEQEC60zg\nThEZHVi+DUBE/hK2zS+AViLy+9Ie1wRWzWblypBna/lyXTdokIqtqVOhXTtfzTOMGo1X/U6MF8YU\nhXNujHNujXNuvXPu1kLanXPu4UD7t865PoH1XZxzy8Kmw865GwNtFzrnVjjncp1zBU6Acy7FOXfU\nOXdTZf62AhxeBzmZOr9/MRz6Dk77A0zcBOe+U/niCqBuK+j3EIxZBBce1nFbvR+EZoO1fcebMHcA\npDWE+UNh6U3wfdhYFsOIZpyDpv2g38MwaTuc/Tq0napjstLnwxeXwsymeu0vvwv2fqkhtUa1xjkX\n45wbXM7dWwNbw5a3BdaF0xlo7Jz70Dn3VSAssTA7pjvnljjnluzZs6ec5hjVge7d4Y474Ntv1Zv1\n//4fZGbCTTdB+/bQvz/cd5+GFRqGEZ1UmgerlKEV44DrgXHAQOAhERlYyHG2AwNFZItzrhuQCzwK\n3CQiS/Jtn4YOyPhSRB4szsYKv0XMPq7jQDY8Brs/giEvwykX6fqYhMgbC3VijyYJ2LtQvVz7v4Lc\nkzA5XcMIt70BR9ZpeGGT3lbc1ageZO6H719Vr9aez0OeXYCExurdajlKPc312vpnp1EAz0I1nPta\nRHqXY79UNPTvqsDypWhfdF3YNv8C+gHnAXWAL4DzRWRtUcc1D5ZRGBs2hFK/L1qk63r1Us9Waip0\n6eKvfYZRE/Cq34nzwpgiGACsF5GNAM65l4GJwMqwbSYCz4qqvIXOuUbOuWQR2Rm2zXnABhHZAiAi\nqwLHK/CFzrlJwCagcl0y2cdh2S2w+XlNQJHYEXr+RdOpQ/FJK/ykdhKkXKgTqMft0IrQGK3tb6hY\nBBWITftDx6ug/eWWLMCIXmo1gVOv0SnrMOz6QMN3d87TTJ7fz9AJNGNn8mgVXC3OCdWnM6KdBc65\nqcAsKdtbxe1AuOpuE1gXzjZgn4gcA4455z4GeqIvGA2j1HTsCDffrNOWLVrQOC0Nfv97nU47LSS2\nune3btkwIpnKDBEsTWhFaba5GHippC8LFJC8BfhTmS0tDVlH9e03qGdnzyeQPAaGL4AL1kKPW6FO\ny0r56kojthY06RNaHvg/mLwDzpoFXW5U8bj+f6G7ePZxf+w0DK+IbwBtJkL//8CE9Vp/rv9/dF1c\nfTi8GtY8BB+dD2lNYMF5Oq7xwLJQ5k4jGvk5MAM4GQg5P+KcO1yK/RYDpzrn2jvnEtD+aE6+bV4H\nhjrn4pxzddFojFUYRgU45RT49a/hs8+0ttbDD0OTJvCnP6nQ6tZNRdeyZTr81DCMyKIyPVgVJtCh\nTQBuK8XmdwJ/F5GjhXm3wo45HZgOkJKSUvwRRWDfYtjwuIYXuRiYvBPi6sLoJZEXAugFdZJ1vFjb\nydDrXsjcp+tP7IY3OuuYlq43QqPT/bXTMLygfkeof61m4czN0vDZnfPUw7V/iaaA3/U+LLsVareA\nliMheZR6uCw7Z9QgIvXLuV+2c+46YC6apv1JEVnhnLsm0P6IiKxyzr0LfIuGrz8uIt95ZbthtG4N\n11+vU3o6zJ6tnq2//AXuuUc9X0HPVt++5tkyjEigMsdglSb70qPAhyLyUmB5DTAsGCLonJsI/FJE\nRhVy/A8JG4PlnPuEUChHI7Sju0NE/lWUjf3q15clt9wCo0dDnz5aETDIrg/hqxvg4LcQW1fHVnW8\nWlOf18S71/Gdmhhg0zOQc1zHrXT5NbQao8LTMKobmfsg/b2Q4DqeLzKsca/A2K1RkDRUPcKGp3g4\nBssBPwbai8jdzrm2QLKILKqwkeXAxmAZXrBnD7z2moqtBQsgJ0c9X0GxNWCA1t4yDKP0RHyadudc\nHBqDfh4as74YuEREVoRtcz5wHaEkFw+LyICw9peBuSLyVCHH/5BCklwE2u4EjpaY5MK50M5NmsBZ\nvWDEcJh0OdTdBYt+rqKq3TQNLTL0oXP9/2Dtv1R0XbBOvQCGUZ0R0RpbwbFbuz/SFw1BYuvqGMzk\n0Sq4GnStmS9iPMZDgfVf9KXbcBHp5pxrDMwTkf4VNrIcmMAyvGb/fpgzR+tszZ8PWVlaW2vqVJ0G\nD877DtkwjMKJeIEFP2QJ/Aeh0Ip7wkMrAm8V/wWMATKAK8I8UvWA74EOInIo7JiTgX8CScBBYFnQ\nSxa2zZ2URmB16iRLzh0C77wB2w/kbezeXT1bo0bB2WdD3brlPg/Vktws2PMptDhXlxf+DGo3h87X\nWVFXo/qTc0Kv/6DgOvht3va6bVVoJY+GFudpog2jzHgosJaKSJ/wbILOuW9EpGfFrSw7JrCMyuTg\nQXjzTfVsvfuupoBv2VILGqemwllnQVxEDxAxDP+ICoEV6fTrliRL/ngIcrIgqw9s6Q5L9sOHH8PR\no6ENa9XSO1JQcJ1+ur2dDic3Bz6fBltnAjGapbDrrzULoWHUBI7v1ALjO+dqza3MsDpHLgaa9A8J\nrqYDIcaebkqDhwLrS2AwsDggtJJQD1aZU7d7gQkso6o4cgTeekvF1ttvw/HjkJQEkyer2Bo2DOLj\n/bbSMCIHE1ge0K9HK1ny3DRNRd6wW6jh5En44guYNw/mzoWlS/Om6WnZUoXW6NEwYgQ0b171xkci\nRzfBmodhwxOQfQQGPAqdpvttlWFULZKrWQeDY7f2fqYe3yDxDdSrlTwKGnTT7KO1W0B8Q3txkw8P\nBdaPgYuAPsAzQCrwBxF5taLHLg8msAw/OHYM3nlHxdabb+pykyYwaZKKrfPOg4QEv600DH8xgeUB\npe7k9uyB995TwTVvHuzYkbe9T5+Q4Bo82O5QWYdhw5NwysX68LhzPhxcDh1/BgkN/bbOMKqWrKNa\n4DsouI4UUR4pppYKraDgqt2yiOUWmlK+Bogxrzq6wLG6omOCHbAgWFPRD0xgGX5z/Li+P545U8du\nHT4MDRvCxIk6ZmvUKKhd228rDaPqMYHlAeXq5ERgxQq9M82bBx9/DCdOhNrr1YNzzw0JrlNPrREP\nQsXy1Y1aWyiuPnS8Err8ChI7+G2VYfjD0c2QPk8LHmdsheO74EQ6ZB8tcdcfiK0TEl11ihNjLaO6\nWLKHHqznROTSktZVFfXb15e+f+zrx1cbRgFyc+HAAdizF/buhZxsrULTrKmGEzZpYtkIjZrDR1d8\nZAKronjyFvH4cfjkk5Dg+i5f+ZN27UJia/hwaNSoYt8Xrez/Clb/Hba8AuRC5+uh7z9Kv78I7N6t\nqZEihdhYDRet6QLa8IbsY3BiFxxP188T6SHxlX99ThmKfsfVK16AhS/H1am831cOvE5yEbYcCywX\nke4VPXZ5MIFlRCoiYWJrD2Rnq7hqGia2LBuhUZ0xgeUBlRKmsX275kidO1c/9+0LtcXEwMCBKrZG\nj4Z+/WpeKp+M7bDuP5DYCTpeAdnHYdtrWsA4tpDQyoMH4cUX4bHHtGR9pFG/PpxxBvTsGZpOP92y\nThqVh4h6u8IFV34BFr6cm1n6Yyc0hrptNAti3TZQp01gOWxdfGLl/bZ8VFRgBeov3g7UQTPVBt+G\nnAT+JyKlKWLvORYiaEQD2dkapJOWBrNmwa5dGjY4dqyO2Ro/HhpYBRujmmEhgh5Q6Z1cbq4myAgm\ny/j8c71jBWnUSJNkBD1cKSmVZ0uksvlF+PzHUKcVdP4ldPo5JDSBzz5TUTVjhnoJARITNUg8Ujhx\nIq+ADuKchoaGi66ePbUoiXm7jKpEBLIOFS/AgssnduVNxlEU8Q0Liq5wMVavrWd1Az30YP3FLzFV\nGCawjGgjJ0e75bQ0Hbe1Y4cONx81SsXWhAnQuLHfVhpGxTGB5QFV3skdOQIffBASXOvX523v2lVz\np154IfTqVTMexiVXB/6v/jusnQ+fxcGnibD5YGib4cPh6qv13NSq5Z+thbFrF3zzTd5p9eq8QjpI\nkyYFvV3du9tIYiMykFzI3AsZ2wLT1rD5wHR8m9YAK4m4+mEiLJ8QCy6XImuihwIrBrgEaC8idzvn\n2gLJIrKooscuDyawjGgmNxcWLlSxlZYGW7dqMM6IESq2Jk6EZs38ttIwyocJLA/wvZPbuDGUmXDB\nAk3jE6RjR71TXXihZimsrmIrNxfef1+9VbNnQVZAmLRsCVdcAT8aBj1HRtfvz8yElSsLCq/9+wtu\nGxurwjq/t6tly6q32zBKQgQy96nQyiO+tuadL80Ysbh6+cIQ84uwNrjazbwSWP8FcoHhItLNOdcY\nrYPlS7E+3/sew/AIEVi8OCS2Nm3Sbu3cc/URZvJkq2RjRBcmsDwgojq5rCxNlhEe7BykffuQ2OrX\nL7rERlHs2AFPPQVPPKF3ZNAxamPHwlU/g/PHQ+4ReK0tJLaDLjdCu59E3CD8UiOi4/Pyi65161Rk\n5qd584Kiq2tXqwhpRD4ikHUQjm0Neb0KiLGtmtSjBNyP8TTJhXPu62BxYefcN/hHKnkAACAASURB\nVCLSs6LHLg8R1fcYhkeI6FDptDSN7l+3Trv1s88Oia1Wrfy20jCKxwSWB0RsJ5eTA59+qneomTMh\nPT3UdsopeqdKTdWEGdEktrKztcrhY49pafmgsEhJgZ/9DK68UscpBcnJ1KyDa/6uhVsTmkCrsdDj\ndmjoS/Iv78nI0MyT4aLr22/zejODJCRoSGF+4dW0adXbbRgVQUTr5eX3gB3PK8Tcjw57JbC+BAYD\niwNCKwn1YPWu8G8pBxHb9xiGR4ho1xb0bK1cqY8rQ4bo48uUKdC2rd9WGkZBTGB5QFR0cjk5mhwj\nKLbCixy3bRsSW4MGRW6hik2b1FP11FMh++PiNFD76qs1cLu4vK8isPtj2PCYFmsd8aEKrB1zYdcC\nSB4NSUMgtpqMZRKBzZsLers2bix8+9atVWj17q1hlR07Vqm5hlFZeDgG68fARUAf4BkgFfi9iMyo\n6LHLQ1T0PYbhIStX6iNMWpq+QwR9R5yaqoWN27f31z7DCGICywOirpPLzYUvvgi9Etq2LdTWurXe\npS68EAYP9l9snTwJr70Gjz+u6eqDdO4MV10Fl19evsBsyQWcvgpbcS8sv0Mzn8XWgebDIHmU1tiK\nqYaFOg4fhuXL84qu5cvVCxYkPh5+8Qv4wx/Ms2VEPV51dIFjdQXOQ1O1LxCRVV4ctzxEXd9jGB6y\ndm1IbC1dquv69g29L+7UyV/7jJqNCSwPiOpOLjcXvvwyJLa+/z7UlpysYis1FYYOrdqqgKtXq6h6\n5hktCQ+a+e/CC1VYnX22t2GNWUdh90eaiTB9HuRmw4RAdsb1/4P4RtDyPKhVTcVGTg5s2KBi6803\n4bnn1APWsCHcfjv86leWpdCIWjwWWI2BtsAPxQdFZGkp9hsDPATEAo+LyL1FbNcf+AK4WETSijtm\nVPc9huEhGzeq2Jo5Ux9pQAMygmKra1d/7TNqHiawPKDadHIisGhRaGTpli2htpYtNdg5NVXFTWWI\nrYwM/e7HHtOxY0FOP11DAH/yk6orkHHyECQ01HPyRmc4uh5w0LS/hhK2mQRN+lSNLX7wzTdw882a\nmRJ0fNs998All/jv1TSMMuJhiODdwE+BDUCw0xMRGV7CfrHAWmAksA1YDEwTkZWFbDcfOAE8aQLL\nMMrO999rjq+0NK25BdCjR0hs9egRXcPOjejEBJYHVMtOTgS++kqF1owZoQx9oCF5QbF1zjk6Dqoi\nLFumouqFF+DQIV1Xrx5Mm6bCqn9/f++Gudmwb3HIu7XvS+h8A/T9m4YVbngSkkdCYgf/bKws5s2D\n3/42FOzepw888IDWFDOMKMFDgbUGOF1ETpZxvzOBO0VkdGD5NgAR+Uu+7W4EsoD+wJsmsAyjYmzf\nDrNnq9j6+GN9tOncOSS2akqpUKPqMYHlAdW+kxOBr78Oia0NG0JtzZqFihoPG1b69N+HD8NLL2kY\nYPi5GzBARdVFF0H9+p7+DM84eUAzE9ZpCXsXwrwzdX1iJx27lTwaWgyH+ER/7fSKnBwNGfz977W3\nAhg3Du6/X18FGkaE46HAmglcKyK7y7hfKjBGRK4KLF8KDBSR68K2aQ28CJwLPIkJLMPwlPR0HdKd\nlgYffqhdW4cOIbFVXarXGJGBCSwPqFGdnIiGjwXF1rp1obamTWHSJBVbw4cXFFsiWrb98cfh5ZdD\nSRUaNdLwv6uvhjPOqLrf4gUicGSderd2zoPdH2hdnvM+gBbD4OhGLajapC+4KA+ty8iAf/wD7r0X\njhzRUMErr4S77tLxeoYRoXgosPoBrwPfAZnB9SIyoYT9SiOwZgB/FZGFzrmnKUJgOeemA9MBUlJS\n+m4JD+U2DKNU7N2rYmvmTHjvPa3+kpKSt3qNRcMbFcEElgfUKIEVjohmnwuKrTVrQm2NG6vYSk3V\nsLJXXtEwwBUrQtucfbaKqqlToU6UFv7NT04m7P0Cmp0JsbXg65th1QOaHKPFCPVuJY+Eum1KPlak\nsnu3iqpHH9VeqW5duOkmDSVMrCZeO6Na4aHAWgE8CiwHfqjsLSIflbBfiSGCzrlNaGZCgGZABjBd\nRF4r6rg1tu8xDA85cADmzFHP1rx5mrw4mFB56lStuVWVOb6M6oEJLA+wTg4VWytWqNAKVgMsjKQk\n+OlPNRNg585VaqIvnNgN6e+FPFwn0jUj4dS9mgL+8BqomwJxUSgw166FW2/VAHeAFi3gT3/SYs8V\nHZdnGB7iocBaLCL9y7FfHJrk4jxgO5rk4hIRWVHE9k9jIYKGUeUcOqSJdNPS4J13IDNTu7bwHF/W\nvRmlwQSWB1gnVwgrV4bE1ooVMGqUiqoJEyAhwW/r/EEEDi7XsMG2k3Tdm101xNCFhVO2mQBDX9X5\n19rCiT15j9PuxzDoCZ2f0QhyTuRt7zQd+j2syTleLcSj1O3/oOc9OpZsViGhfaf/EXrcBse+1wyK\n+en9IHS5Dg6tgnd6w+pceCEb1gfuAZ1awd8egUHNYcE5Bfcf/DykpEL6+/DhuILtZ78OrUbDttfh\n04vAxULzsyHlQs3eWKtJwX0Moxg8FFh/Q0MD55A3RLA0adrHAf9A07Q/KSL3OOeuCez/SL5tn8YE\nlmH4ypEj8Pbb+hjz9tsaJR8cdp6aCueeW/ph50bNwwSWB1gnVwI5OeZfLwwR9Wzt/Rxyw5KSNewB\n7S/V+eV3Q86xvPs17g2nXKTz3/weJDtve9NBKuByc+Db3xX83ubnQKuxkJ0B391VsL3lKGg5HE4e\nhJWFlOppfQEkDYHju2DN30O/5b018PBHsO2grhs6CK7pDD3yibhTLoHGZ8DhdbDxiYLH73AFNOgC\nB7+Dzc9rjbIdb8GxzeDiYPxqqN9Rv9NGJBulwEOB9UEhq0tM015ZWN9jGFVDRga8+66KrTfegKNH\nQyMhpk6FESO0VKdhBDGB5QHWyRlGgJMn4b//1TFa+/frumnT4M9/hnbtyn9cETiwVMMsu9+qwmrR\nz9UbGPRs1W7uyU8wqh9eFhqOJKzvMYyq58QJHauVlgavv65JkRs00ACd1FQYPRpq1/bbSsNvTGB5\ngHVyhpGPgwfhL3+Bhx7SIPaEBLj+evjd77wrFr3yftjweCDEMgaaD4OOP4N2l3hzfKPa4KXAcs6d\nD/QAfniEEpFCXMGVj/U9huEvmZmwYIGOiHj9dU2YkZgI48er2Bo7VvNAGTUPr/qdmp3McvduuPFG\n+Oc/dVTk2rX6Jt8waiqNGsF992lmyZ/8RP8f/vpX6NgR/vY37ZUqSvebYfwaGLsMut8Ox7drXTIA\nyYX1j8HxnRX/HsMI4Jx7BLgIuB7N+HchcIqvRhmG4Ru1amlZyKeegl27YO5cDdp47z0VWElJWrnm\nlVc0rNAwykrN9mAlJcmS48fhWNhYmU6dQjWiHn5YfcodO4amSC2iaxiVwdKlmsb9/fd1uX17DRu8\n6CLvxlGJQG4mxNaGvV/CvEGAg6ShGkbYdirUbeXNdxlRhYdjsL4VkTPCPhOBd0TkLA/MLDPmwTKM\nyCQ7Gz75RMMIZ85U8VW7NowZo8Jr/Hho2NBvK43KxEIEPaBfv36yZPFi9WStXw8bNujD3uWX6wYD\nB8KiRXl3mjhRq9wB/Otf+sY/KL6SkmzwvlH9EFEP7803h+qh9e8PDz6ouW+95uAK2JoG38+AQysA\nByM/haTBliCjhuGhwFokIgOccwuBKcA+YIWIdKqwkeXABJZhRD45OfD55yGxtX27Rs2PHKlia8IE\naGLJcasdJrA8oFSd3KFDKryCU3KyCjARDdjNyAhtW7++jle55x5tf+opTRDQqZNWv7OMfEY0k50N\nTz8Nd9wBOwMhfBMmaEhh166V852HVsG22dD1JohN0OyLu94PeLZSoV7byvleIyLwUGD9AfgnWs/q\n34AAj4nIHRU9dnkwgWUY0UVuLnz5pYqttDT4/nutq3XeeSq2Jk3SVPBG9BMVAss5NwZ4CK0f8riI\n3Juv3QXaxwEZwE9FZKlzrjbwMVALiAPSROSPgX3uBK4GgkWGbheRt51zPwZ+G3b4M4A+IrKsKPsq\n3MmdOAGbNuUVYIMGwSWXwN696tEKkpCg4VW33aYC7fhxDbvq2FHXW55QI1o4dkzHZd1/v87HxsLV\nV8Odd2plx8pk/eOw7t9wIPBv3XQgtL4EGk6G9HSN5wh+hs+np4f+Jzt1Cnmdg/Pt2tn/YATiRUfn\nnIsBBonI54HlWkBtETnkhY3lwQSWYUQvIrBkSUhsbdyo3eCwYSq2Jk+u/K7QqDwiXmA552KBtcBI\nYBuwGJgmIivDthmHDjoeBwwEHhKRgQHhVU9Ejjrn4oFPgRtEZGFAYB0VkQeL+e7TgddEpGNxNlZq\nJ5ebC1u3hoRXMATx0ks1zPDrr6FPn6DB0KaNPuj98Y/6X7p7NyxcCG3baluzZhYaZUQW6ekqqh57\nTK/3xEQNI/zNb6BevYodOysL9uwpKJqCn9s3wbaNsGc/HM2p+G9xTv/XwsVXuACzsZe+4KEH62sR\n6e2FTV5gAsswqgci8M03KrRmzNBcac5p9HxqKkyZAq1sCHFUEQ0C60zgThEZHVi+DUBE/hK2zaPA\nhyLyUmB5DTBMRHaGbVMXFVjXisiXpRRYf9avkkKqtYbwtZPLyND/ynABtmmThheec45WxJswIbR9\nrVoaZvjiizo2bOVK9YC1aRMSYUlJEFOzE0MaPrBqFdxyi16zoL3JXXfBT3+aNyw2J0dFU2GCKf/n\n3r2l//7YWH1dmNQYWAENgZYtoX1f6DIC2vXU5aZN9fj5X3ps2ABbtqhILIqkpLyCK3zexl5WGh4K\nrAeBL4BZEgFx8SawDKP6IaLDlIOereCQ5SFDVGxNnaqPa0ZkEw0CKxUYIyJXBZYvBQaKyHVh27wJ\n3CsinwaWFwC3iMiSgAfsK6AT8G8RuSWwzZ3AFcAhYAnwfyJyIN93bwAmish3hdg1HZgOkJKS0nfL\nli3e/nCvOHIEVq+GbdvUE7Ztm053360Pdf/5D/zyl3n3iY+H5cuhSxeYP1+nNm3yirAWLUyEGZXD\nhx9qxsHgg2O3bnrNhYfoFSdiwomJUeHSsqVes8V9NmkSuqaPbg4lyNgXSFBz1kxoOwVysyDneMHv\niquvHrONa2H9Wti4CTZshA2bdH7TZg0HLorExIDoag/tT9HPDu2hYwf9/bUb6XbZGSDZYTs6iEs0\ncVYMHgqsI0A9IBs4gaZqFxFpUNFjlwcTWIZR/Vm1SpNjpKXp+3TQ9+NBsdW+vb/2GYVT7QVW2DaN\ngNnA9SLynXOuBbAXHaR8N5AsIleGbT8QHe91ekk2RnUnl5ur3oCg8ApOt9+u4Uz336/JCPLXLTp4\nUHOMPvoofPBBSIAFRdiAAfbAZ5Sf3FwtHHL77bB5c8H2Zs2KF0vB+WbNKp4U5tgW+H4mdPgp1GoC\nax6Gr24ouF3qfkhoDF/fAqvuL9j+o0xI3w1vXQdfvQ670Gl34DOj4C4/EAd06KwCrM4aqLcRmgMt\ngCSgWRcYv1q33f0JxNeHBt0g1saDgbeFhiOJqO57DMMoM+vWqdiaOTP0DrJvXxVaqalw6qn+2meE\niAaB5UmIYGD9HUBG/rBA51w74E0ROS1s3d+BPSLy55JsrPadnIh6DYLia8cOmD5dBdSf/6wZ4bZu\nDb2dr18fDh/W+V//Ou8YsOAYsYkTQ8c2IWYURWamVm6Mjw+JpqQkXfaLHe9oVsL8dP6F1uDa/THs\nK+R+0PVGcDGQvgAOfJO3zcVC0k80zHDJTFjzLXy/F77fB1v3wZ7DRdvjHHRvDRMuhdGj4cAvIGMl\nuDho2A0a9YTkUdD+0or97ijGS4HlnGsMnArUDq4TkY+9OHZZqfZ9j2EYRbJpE8yapZ6thQt13Rln\nqNBKTdXgD8M/okFgxaFJLs4DtqNJLi4RkRVh25wPXEcoycXDgVolSUCWiBx0ztUB5gH3icibzrnk\noABzzv0a9YpdHFiOAbYCZ4nIxpJstE4OFUoHDqgA279fE2yApt6ePz8UopiRAd27h4KKzztPQxjD\nPWC9e+u4G9CwsMaNNXuiYdRUjh3TFFNFjfvKCUvQkVgXBnWDvk3gtJNQdx20HA6Dn9P/07dPh7pt\nVHg17qmfDTpDjI+itZLxMETwKuAGoA2wDBgEfCEiwyt67PJgfY9hGKCPV0Gx9dlneqvv3j0ktk47\nzd5lVzURL7DghyyB/0DTtD8pIvc4564BEJFHAtkC/wWMQQNtrgiMvzoDeCawXwzwqojcFTjmc0Av\nNERwM/DzMME1DA05HFQa+6yTKyUiWg/s4EFNZw3w8MMaVBwUYFu3wuDB6rUA9XZt2qSei6AAGzUK\nrr1W27/8Uj0arVtbemyjZpKRAZ98ov8z8+aFXl4EadcORo2E0WPgnMGw9lY4+A0cWgm5J3WbbjdD\n7/t0fNf6x1R4Ne6pIY/VAA8F1nKgP7BQRHo557oCfxaRKRU2shxY32MYRn527IDZs1VsffyxRtx3\n7hwSW716mdiqCqJCYEU61sl5TGZmSCw995y+uQ+GJ27dCiNGwD/+oXeNOnXgZOAhMSlJBdiVV8J1\n12n7Cy+ExoW1bq3bG0Z1Zts29RrPnauf+/eH2mJjdXT06NEwYjh0SYTD30HD7tCkj4Y2zu0f2r5u\nW/Vw9bgNkgZDbjbgICa6ip17KLAWi0h/59wyNOoh0zm3QkR6eGBmmbG+xzCM4ti1C157TcXWBx9o\nsEOHDiGx1a+fia3KwgSWB1gn5xM5OXrHCM+OuG2bpqX/+c+1Blj+Kn1Nm2oGxWuv1QyLL74YSpPd\ntm3FEyIYRiSRkwNLl6pna+5c+OILyA7LQNiokb6wGD1aPcMpKXA8XceIHfwm8LkM+v8Xmp8N216H\nzy6BRqeHwgsbnQFN++n4swjFQ4E1G80+eyMwHDgAxIvIuIoeuzxY32MYRmnZuxdef13F1nvvaVeQ\nkhLKRjhokCWH9hITWB5gnVyEkp2d1/sVnCZPhpEjYfFizXYYJD5ew6keegjGjlWBtmiRiq/27aF2\n5D5AGkapOHxYX0oEBdeGDXnbu3ZVoTV6tNbRy1/oef/XsOmZkAA7GahsMX41NOgCO+bCvoXQpD80\nGwi1mlbN7yqBysgi6Jw7B62W9q6InCzF9mOAh9CQ9cdF5N587T8GbkFTvx9BazZ+U+BAYVjfYxhG\neThwAObMUbE1b54GArVqFcpGOGSIvW+uKCawPMA6uSglJwe2by+YOODmm6F/fx0xOnWqbutcKAPi\nP/+pI0Z37ICdO3Vdo0b+/hbDKA8bNmjvOm8eLFigXt0gCQkwdGhIcJ1xRt7XmyKQsU2FVvJYDRv8\n5g+w4h50aCtQvzM0GwQDn4CYuCr9aeFUtKNzztUGrkHrKS4HnhDJU4yspP1j0WRNI4FtaLKmaSKy\nMmybwcAqETngnBuLZs8dWNxxre8xDKOiHD4Mb76pYuuddzQhdIsWMGWKiq2zz4Y4/27fUYsJLA+w\nTq6acuSIJgwICrCgCHvuOQ1ifughuPFG3bZp00CR2I66PilJg59F9E5lQc5GpJOVpUljgskyFi/W\n6zdI8+YqtoJT/vDbH45zFPZ/BXu/UG/WiT0w6jNt++zHcHw7NDtThVfTQVCniON4iAcC6xUgC/gE\nGAtsEZFCiqEVuX+J5Ubybd8Y+E5EWhd3XOt7DMPwkqNH4e23VWy99ZbmUGrWTAN/UlPh3HP9rZIS\nTZjA8gDr5GooW7fqQ2j+tNkrVkDdunDTTfDXv2qYVYcOKr46dYJ771Xf+6FD2mavhoxIZN8+9WrN\nnavT9u1523v2DI3dGjq0dFk8v70TdrwNB76GoAOo7RQ4a6bOH1oFiR0h1tuyDB4IrOXBovOB0iGL\nRKRPGfZPBcaIyFWB5UvRJBnXFbH9TUDX4PZFYX2PYRiVRUYGvPuuiq033lDx1bixljFNTdXhu5a8\nuWhMYHmAdXJGoSxdqkkFwsXX4cMqzAAuukjDENu21fFdsbE6BuyNN7T9+uvh6681LCs2VqfOneE/\n/9H23/5Wx5gF22JitLLg73+v7XfeqePIgu2xsdCjh2ZZBBV/x47lbe/WDcaP1/ZHHgllaAzSo4fW\nLgNNsZ+fXr00niArC/7734LtAwboSNpjx+CJJwq2DxmiZekPHoRnn9V1sbF6TCvk4R8isGpVaOzW\nRx/B8eOh9jp1tPbd6NE6vrFNm+KPl31cQwv3LYaEptD+Esg5CbNb69+4cS9oOiAwlutMqNO8Qua7\nhg0rKrCWhguq/Mul2L/UAss5dy7wH2CoiOwrpH06MB0gJSWl75YtW8r8ewzDMMrCiRN66585UxNl\nHD4MDRpoTrHUVH3PZkma82ICywNMYBmlRiQkEubM0fLrW7aokMnJ0bCroDC56SYVWLm52paTox6w\nZ57R9mnTYPlyXR/cpl8/ePllbR8yBNauDe2bk6N3wVmztL1VKx1DFs7FF8NLL+l8gwZ5x+QAXHUV\nPPaYzsfE5A0hA/j1r+Fvf1MBlZhY8Pf/4Q9w112Qng7JyQXb779fheO6dSomw+nSRc/NuecWfm6N\nquPECfj005Dg+vZbvy0qFgcVFVg5wLHQ4aiD1lx0gIhIgxL2L1WIYKB242xgrIisLcku63sMw6hq\nMjM1uCEtTVPAHzig3f348Sq2xo7VIJ6ajgksD7BOzohKRPKKt5wcFU3BO2N4/aQgtWqFMssV1l67\ntu4vonfdotpzc9VLlZ86dXTKydEQSsgbFP7ww1qe/v33Nc/shRda1cRIYOdOrbk1b55mKcwvzMuL\n5ICLAZzOZ2foeoeud3EQE4/WkS8ad+SI51kEy0IgrHAtcB6wHU1ycYmIrAjbJgV4H7hMRD4vzXGt\n7zEMw0+ysvSWn5amxY337tUuftw4FVvnn1/4u9aagAksD7BOzjCqmPvug9/9ToVYx46hqol9+5rY\nqs4c3wl7FwamL2D/Ehj9pdbl2joLNj2vyTOanQlN+kKcviyojDTtZcU5Nw74B5qm/UkRucc5dw2A\niDzinHscmAoEY/6yS7LZ+h7DMCKF7Gz45BMVWzNnap6v2rVhzBjtnsePh4YN/bay6jCB5QHWyRmG\nDwSrJs6YofEKrVvDpk0qsL7/Xse2mdiq3uRmgYtVb9aGpzRF/NFAbS8Xp8WQR3yEi0/0XWBVBtb3\nGIYRieTkwOefh8TW9u1a+WPkSBVbEyZAkyZ+W1m5mMDyAOvkDMNn9u/XJCL9++trtORkjVNITdUw\nwoEDTWzVFE7sgX1fqofr6EYY8lJEeLAqA+t7DMOIdHJztQLIzJkquLZs0eTJ552nXfSkSZoKvrph\nAssDrJMzjAji5ElN1DFjho4JyspSb9bf/qZ3c6PGYQLLMAzDf0Tgq6+0e05LCyVCHjZMu+fJk4su\nsRhteNXvFD/C2DAMo6pISIDLL9fS9Lt3a7r3Xr20+DNo+vwbbtAseLm5/tpqGIZhGDUE5zTZ8X33\naQWbr7+GW2/V6jXXXqvBJ8OGwb/+BTt2+G1tZGAeLHuLaBjRwVNP6Z08M1Pv5lOnahjh0KGaRdGo\ndpgHyzAMI3IRgRUr1KuVlqbzAIMHq2dr6lRISfHXxrJiHizDMGoWV1wBe/bAiy/CmWfC449reqOs\nLG3//nsdoWsYhmEYRqXjHJx2Gtx5J3z3HaxcCXffrSU1f/MbOOUUHUr9wAMaVliTMIFlGEb0UL++\nFmqeOVPF1rx5WuMLNKdsq1bq5VqwQJNmGIZhGIZRJXTrBr//PSxbBmvXwl/+ohH9N9+slVn69tV1\na0ssxx79mMAyDCM6SUyEQYN0XgTuukuDwJ99FkaM0DDCRx7x1UTDMAzDqImceqqO01q8WL1XDz6o\nQ61vvx26dIEzztBue+VKvy2tHGwMlsXBG0b1IiMD3n1X0x0Fg8A3b9Y7eUoKxMfrXT4hQdtbt9b2\nL7/M25aQoKN6ExM1nfzu3XnbEhKgQQMb/1WJ2BgswzCM6sXWrTBrlnbRn3+u70e7ddPuODUVTj/d\n3+osXvU7cV4YYxiGETHUrQtTpugU5Lvv9I5+6FDebfv1U4H18ceawTA/y5ZBz56aPv666wq2r1+v\ncQ8PPKBxEQkJeUXa0qVaKOQ//4Gnnw6tD24za5bOP/aYZk8MJzZW2wEefljDHsNJTIQXXtD5++7T\nniqcpCQdpwYaIP/113nbU1Lgn//U+VtugdWr87Z36QL336/zv/qVFkEJp2dPFa0AV1+tAjScQYPg\nttt0/ic/gSNH8rafey7ceKPOT51aMKRz3DgMwzCM6kXbtpoQ+IYbNOPg7NmaIOOee3T81qmnhsRW\n797RWwrTBJZhGNWf8ePh4EF9VZaVpdPJkypSACZO1DiFkyfzTh07avuoUSqy8rcHU8gPGKAjesPb\nsrKgdm1tT0xUoRVsy8jQz2AEwf79mqQjnLiw2/O+fQXbGzQIze/ZU7A9mPwDVPzkb4+PD83v2lWw\nvVGj0Hx6esH25OTQ/I4dBXPzduoUmt++Xc9/OPv2hea3bs1rL8CBAxiGYRjVl1at4Je/1Gn3bnjt\nNRVb99+vY7Xatw+Jrf79o0tsWYighWkYhmFEJBYiaBiGUfPYtw9ef13F1nvv6fu3tm1DUf9nnll5\n0fmWpt0wDMMwDMMwjGpF06Zw5ZXw9tsaYPHMM9CrF/z731r6sm1buP56+OijyK3OYgLLMAzDMAzD\nMIyIo3FjuOwymDNHo+FfeEFraz3+uCYOjtTqLCawDMMwDMMwDMOIaBo0gEsu0fxPe/bAq6/mrc7S\nsqXmXJo7t+Cw3qrGBJZhGIZhGIZhGFFDYiJceCG88oqKrVmzYPRoXR4zBlq0gJ/+VBP0ZmZWvX0m\nsAzDMAzDMAzDiErq1oXJkzV8cPduDSe84ALNSnjBBdC8uVYLee01OH68amyqVIHlnBvjnFvjnFvv\nnLu1kHbnnHs40P6tc65PSfs655o45+Y759YFPhuHtd0W2H6Nc250Zf429mLN4QAAIABJREFUwzAM\no/pTkX7MMAzDqFpq11ZR9cwzKrbefluzD77zjoqwpCS4+GLNUHjsWOXZUWkCyzkXC/wbGAt0B6Y5\n57rn22wscGpgmg78txT73gosEJFTgQWBZQLtFwM9gDHAfwLHMQzDMIwyU5F+zDAMw/CXhAQYOxae\neELLOc6fr56s99/X8MKkJBVfL78MR454+92V6cEaAKwXkY0ichJ4GZiYb5uJwLOiLAQaOeeSS9h3\nIvBMYP4ZYFLY+pdFJFNENgHrA8cxDMMwjPJQkX7MMAzDiBDi4zURxiOPwM6d8MEHmgr+s89g2jQV\nW5MmlXyc0hLn3aEK0BrYGra8DRhYim1al7BvCxHZGZhPB1qEHWthIcfKg3NuOvqWESDTOfddaX5M\nDaUZsNdvIyIcO0fFY+eneOz8FE8Xn7+/Iv3YzvCN8vU9R51za7w1tVii/TqLZvuj2XaIbvuj2XaI\nbvujzvbMTC1ujEf9TmUKrEpHRMQ5J2Xc53/A/wCcc0u8qNZcXbHzUzJ2jorHzk/x2PkpHufcEr9t\n8IrwvqeqifbrLJrtj2bbIbrtj2bbIbrtj3bbvThOZYYIbgfahi23CawrzTbF7bsrGH4R+Nxdhu8z\nDMMwjNJSkX7MMAzDqKFUpsBaDJzqnGvvnEtAE1DMybfNHOCyQBamQcChQPhfcfvOAS4PzF8OvB62\n/mLnXC3nXHt0wPGiyvpxhmEYRrWnIv2YYRiGUUOptBBBEcl2zl0HzAVigSdFZIVz7ppA+yPA28A4\nNCFFBnBFcfsGDn0v8Kpz7mfAFuBHgX1WOOdeBVYC2cAvRSSnBDN9CdeIIuz8lIydo+Kx81M8dn6K\nx9fzU5F+LMKI9ussmu2PZtshuu2PZtshuu2v8bY7kTINYTIMwzAMwzAMwzCKoFILDRuGYRiGYRiG\nYdQkTGAZhmEYhmEYhmF4RI0RWM65J51zu8PrXjnnmjjn5jvn1gU+G/tpo58UcX4ecM6tds5965yb\n7Zxr5KeNflLY+Qlr+z/nnDjnmvlhWyRQ1Plxzl0fuIZWOOfu98s+vyni/6uXc26hc26Zc26Jc67G\nFkZ3zrV1zn3gnFsZuFZuCKy3e3QpKeoc5ttmmHPuUOCaW+acu8MPW4vCObfZObc8+D9RSLtzzj3s\nnFsf6Jf6+GFnfpxzXcLO6TLn3GHn3I35tomoc1+RZyLn3Bjn3JrA3+HWqrP6h+8v9/NKSddYZVOE\n7Xc657aHXRvjitjX1/MesKEw+18Js32zc25ZEfv6fe4r1M+U+fyLSI2YgLOBPsB3YevuB24NzN8K\n3Oe3nRF2fkYBcYH5++z85D0/gfVt0QHwW4BmftsZSecHOBd4D6gVWG7ut50Rdn7mAWMD8+OAD/22\n08fzkwz0CczXB9YC3e0eXfFzmG+bYcCbfttazG/YXNx9NPB/8g7ggEHAl37bXIiNsUA6cEokn/vy\nPhMFft8GoAOQAHyT/zrzyfZSPa+UdI35ZPudwE2luK58Pe9F2Z+v/a/AHRF67svdz5Tn/NcYD5aI\nfAzsz7d6IvBMYP4ZYFKVGhVBFHZ+RGSeiGQHFhei9V1qJEVcPwB/B24GanS2mCLOz7XAvSKSGdhm\nd4EdawhFnB8BGgTmGwI7qtSoCEJEdorI0sD8EWAV0Bq7R5eaYs5hdWIi8KwoC4FGLlAXM4I4D9gg\nIlv8NqQ4KvBMNABYLyIbReQk8HJgvyojmp9XinmWKAnfzzsUb79zzqGZvV+qUqNKSQX7mTKf/xoj\nsIqghYTqlaQDLfw0JsK5En1zaARwzk0EtovIN37bEqF0Bs5yzn3pnPvIOdffb4MijBuBB5xzW4EH\ngdt8ticicM61A3oDX2L36HKR7xzmZ3AgjOod51yPKjWsZAR4zzn3lXNueiHtrYGtYcvbiDwReTFF\nP2BG8rmH0v2/RcPfoLjnlZKuMb+4PnBtPFlEiFo0nPezgF0isq6I9og59+XoZ8p8/mu6wPoBUR9g\njfZCFIVz7ndobbEX/LYlUnDO1QVuByJqDEOEEQc0QUN5fovWr3P+mhRRXAv8WkTaAr8GnvDZHt9x\nziUCM4EbReRweJvdo0tHcecQWAqkiMgZwD+B16ravhIYKiK9gLHAL51zZ/ttUFlwWox6AjCjkOZI\nP/d5iNb/t1I8r0TiNfZfNPSsF7ATDbOLRqZRvPcqIs59VfUzNV1g7QqGFwQ+a2wIU1E4534KjAd+\nHLjwDKUj0B74xjm3GQ1HWOqca+mrVZHFNmBWIJxnEZAL1NhEIIVwOTArMD8DDUGosTjn4tFO7wUR\nCZ4Xu0eXgSLO4Q+IyGERORqYfxuIdxGUnEdEtgc+dwOzKfg/sR0d9xqkTWBdpDAWWCoiu/I3RPq5\nD1Ca/7eI/RuU5nmlFNdYlSMiu0QkR0RygceKsClizzuAcy4OmAK8UtQ2kXDuK9DPlPn813SBNQd9\nyCHw+bqPtkQczrkx6PiiCSKS4bc9kYSILBeR5iLSTkTaoWKij4ik+2xaJPEamugC51xndGDoXl8t\niix2AOcE5ocDRYVVVHsCns0ngFUi8rewJrtHl5JizmH4Ni2DXmSnWStjgH1VZ2XROOfqOefqB+fR\npAX5s7bOAS5zyiDgUFhoTyRQ5Bv8SD73YZTm/20xcKpzrn3AY3dxYD9fKc3zSimvsSon3zjCyRRu\nU0Se9zBGAKtFZFthjZFw7ivYz5T9/Fc0K0e0TOhNbyeQhT4M/wxoCixAH2zeA5r4bWeEnZ/1aMzp\nssD0iN92RtL5yde+mZqdRbCw6ycBeB69iS4FhvttZ4Sdn6HAV2g2oi+Bvn7b6eP5GYqGZXwbdr8Z\nZ/doT87hNcA1gW2uA1YErrmFwGC/7Q6zv0PArm8CNv4usD7cfgf8G83mtRzo57fdYfbXQwVTw7B1\nEXvuy/JMBLQC3g7bdxyagW1D8O8UAbYX+rwSbntR11gE2P5c4Hr+Fn1oT47E816U/YH1Twev9bBt\nI+3cl6mfqej5d4GdDMMwDMMwDMMwjApS00MEDcMwDMMwDMMwPMMElmEYhmEYhmEYhkeYwDIMwzAM\nwzAMw/AIE1iGYRj/n707j5dzPP84/vnGHvsuRYQ0qH0JtSQopbT2tkS1YvspLbVESW0RS61VLbqg\nFVRLLLWUUnvFntgptSUVkgixC4nk+v1x35M8GWedmXPmLN/363VeZ57tfq55ZpIz19z3fT1mZmZm\nNeIEy8zMzMzMrEacYJnViKQlJT2VfyZKerOwPG/ZvneU7gnRRHvjJS3WyPprCsuDJF1ao+dwmqQj\natGWmZm1Pf/tMet45q53AGZdRUS8C6wHIOlk4OOIOLe4T77RnSLiW1We7uuSVouIl6psp2YKz21m\nvWMxM+su/LfHf3us43EPllkbk/RVSS9Iuop0g71exW8IJd0iaYyk5yUd2MJmfwUc18C55vgWUNKL\nklbIMTwn6UpJ/5V0haRvSXpI0suS+heaWV/SI3n9/oW2hkp6TNIzkk5q7Lm1+gKZmVnN+W+PWf24\nB8usfawO7BMRowHSF26zDI6IKZJ6AqMlXR8R7zXT3t+AQyWt3IoYVgP2AF4EngA+i4jNJH0XGAp8\nL++3NrAZsAjwhKRbgQ2B3sDXAQG3SdoMeLv8uZmZWYfhvz1mdeAeLLP28WoTfwSOlPQ08DCwAtC3\nBe19QfomcWgrYnglIl7IwyheAO7O658F+hT2uzEiPouIt4F/AxsB2wE7AE+S/kB+FVg179/UczMz\ns/rx3x6zOnAPlln7+KShlZK+CWwBbBIRUyWNAuZvYZsjgGOA/xbWfcGcX5wU2/q88HhmYXkmc/5f\nEGXnCdI3h6dFxJ/K4v8qjTw3MzOrO//tMasD92CZ1deiwJT8B25N0jd2LRIR04DfAocXVo8lDalA\n0sbAihXEtKuk+SQtDQwERgN3AAdIWjC3vYKkpSpo28zM6s9/e8zakBMss/q6Fegp6QXgNODRVh5/\nCVAsw3stsKyk54CDgNcqiOk54H7gIWBYREyKiNuA64BHJD0LjAQWqqBtMzOrP//tMWtDiijvkTUz\nMzMzM7NKuAfLzMzMzMysRpxgmZmZmZmZ1YgTLDMzMzMzsxpxgmVmZmZmZlYjTrDMzMzMzMxqxAmW\nmZmZmZlZjTjBMjMzMzMzqxEnWGZmZmZmZjXiBMvMzMzMzKxGnGCZmZmZmZnViBMsMzMzMzOzGnGC\nZWZmZmZmViNOsMy6GEmvStq0BfvNLykkrdAGMWwv6ZXC8kRJA/Lj4ZIurPU5OzpJW+XX5mNJ29e4\n7fLrXZP3gKQDJN3S0L6SRkg6plbPwczMrKtwgmVWY5IOlTRa0ueSRjSwfRtJL0r6VNK9klZqpJ3B\n+cP4x5KmSppZWH6/sfNHRN+IeLgGz+MRSZ/l802WNFLS0tW2GxHDIuLQatspV0gAPskxj5d0liS1\n8Pg5kpQ2cDpwdkQsFBG3N3D+ifk98bGkCZIulbRAJSeq1XsgIv4UETs1sm3fiDgb2uXamZmZdRpO\nsMxq7y3gNODP5RskLQXcAJwILAGMBq5pqJGIuDx/GF8I2An4X2k5IhZroO25a/gcSg7M518NWAY4\nsw3OUWur5Zi/CewH/LDO8ZSsBDzfzD7b5dj7A5sBR7d5VGZmZlZTTrDMaiwiboiIG4F3G9i8O/B8\nRFwbEZ8BJwPrSlq9knPlXo+jJT0PfFhYVxqOt7mkRyW9L+ktSb+uJBGLiCnAzcB6hXMvIOmi3Nsy\nXtI5kuZpQcxnSro0P15d0heS9sttTJb088K+C0n6a47/OUm/aGlPSUS8CDxSFvOPc+/hR5JekbR/\nXr8k8HdglUIv4ZKS5pJ0oqTXJL0j6SpJX0puC+3/NA/Pe1fSDZKWzevHA18B/iXp4xbE/iZwF1++\n3udLeiO/xhdImq+ROFr7HthV0th8/U8v9fpJOljSXY2c42pJJzRy7VbKPYmLFPbfLJ9/ruaev5mZ\nWWfmBMusfa0JPF1aiIhPgFfy+krtCWwLLNnAtunAoXnbQFJP2IGtPUEeGrgrKdaS4cA6wNrAhsBW\nQCVzcuYi9dh8Ffg2cLqkVfK204ClSb0/3wF+1IqY1wQ2LYt5ArADsAhwMHCRpDUj4l1gN+C1Qi/h\nu6QepO2AAcAKpOv560bO921Sz+RuwPLAO8CVABGxAvA2s3uomou9dz5vMfbzcgxrk3oUVwWGNn8l\nWvQe2ImUzG0M7AXs3YJ2AWjk2o0DHgW+W9j1R8BVETGjpW2bmZl1Rk6wzNrXQsAHZes+BBauos1f\nR8RbETG1fENEPBYRj0fEjIh4FbgU2LIVbf9R0oek5GAB4MjCtr2BYRHxTkRMIiVDLU6AygyLiM8i\n4nHgRVLiBrAHcFpEfJA/tP+uBW09L+kT4DngVtJzBiAibo6I1yO5C7iflDw15mBgaL6+n5GSyj0b\nmde1N3BxRDyT9z0G+Kak5VoQc8k/JX0EjAPGkq5pafjnAcDhEfF+RHxAGq45qLkGW/geOCO3+zpw\nISnJqtbl5OGZkuYlvZZX1qBdMzOzDs0Jlln7+pjUe1K0KPCRpN6FIVbNDiMreKOxDZLWkPRPSZNy\nonQSsFQr2v5xRCwCbAAsRxrmRk4wliMlAiXjSD03rTUjIt4pLH8KLCSpRz5H8fk1+lwL1iQlrPsA\nmwM9Sxsk7SzpMUlTlAqFbE0j1yM/xxWB2/LwuveBJ0n/bzbUW/gVCtcjIt4nJc+tuSY7RMTCpN6r\ntUjz9Eptz0NKHkux3EiaF9ekFr4Hitd1XD5fta4HNpK0PKlncnxEPFODds3MzDo0J1hm7et5YN3S\ngqQFgb6keVnFIhbNDiMriCa2XQI8AfTNidIpQIuq6s1xgogngbOBC/JyABNJQ/dKegNvtrbtJs45\nE5hEGhZXsmJLj42IK4FngF/ArGt9LXAqsEwuFHIPs69HlLURpOezdUQsVviZvywhLHmLwvXIc7UW\noYJrEhF3koqfnJVXTQC+IL2OpTgWjYiGEr1yLXkPFK9r7/xcWhVyA8/hY9LcrB+Qejbde2VmZt2C\nEyyzGpM0t6T5SXOL5lIqH14qKvB3YC1J3837DAOezgUZ2sLCwAcR8XGek/R/VbR1KfBVSd/Ky38D\nhuViEMsAxwN/qS7cLxkJHC9p0Twv6ZBWHn8G8NNciGEBUi/Q28BMSTuT5o2VTAKWkVRMbv8AnClp\nRQBJy0hqsGw56Xr8n6S18mt7JnBPRExsZcwlvwJ2kfS1iJhOqkr5G0lLKVlR0rYtaKcl74Fj8zXu\nQ5qv1WBlyyY0dO0AriDN99oeuKqVbZqZmXVKTrDMau8EYCqpAMEP8+MTACJiMmni/+nAe6SiAs3O\no6nCkcCBecjhRbT+g/MseY7XhaRCDpCGmr1A6pV7CniQ1MtVSyeQrtM44J+khOvzlh4cEaNJpfCP\nyr1ORwO3kCo87grcVtj9aVKlxHF5GN4SpOdzF3BPnhv1EGm4ZEPn+gcpobuZ1AO0HJXPSSMi3gKu\nJr93gCNyu6NJ8/huJxUGaU5L3gO3kp7/aFIvX2sT5YauHcC9pMR2VERMaGWbZmZmnZLSKBgzs45P\n0pHA9hHxrWZ3tg5B0kPA7yKi1r2bZmZmHZJ7sMysw8rD4DaR1CMPbzucNMzSOgFJm5PKyV9f71jM\nzMzaS6tvOGpm1o7mI809WgmYQprHc2mTR1iHIOlq4FvATxu6hYCZmVlX5SGCZmZmZmZmNeIhgmZm\nZmZmZjXSrYcILrXUUtGnT596h2FmZmYVGjNmzDsRsXS94zAzK+nWCVafPn0YPXp0vcMwMzOzCkka\nV+8YzMyKPETQzMzMzMysRuqSYEn6s6S3JT1XWLeEpDslvZx/L17Y9gtJr0h6SdK38rr5JN0u6TlJ\nPynse7GkBm8EamZmZma1J2nffEPzDkXSWElHt2L/rSSFpKXaKJ6Q9L22aLvsPHV9PST9Q9KIep2/\n3urVgzUC2L5s3VDg7ojoB9ydl5G0BjAIWDMf8ztJc5HK/44C1gF+lPddF5grIp5oh+dgZmZmVjVJ\nW0i6WdKb+QP4vg3sI0knS3pL0lRJ9+X7AzbV7snFL7NrGG9DScI1wCq1PlcD525tArQR8Lu2jKmV\negG31DuIhrQ2GbXG1SXBioh/k+5pU7QLcHl+fDmwa2H91RHxeUS8DrwCbAxMB3oC8wDK+54KnNiG\noZuZmZnV2kLAc6SbqTd237hjgCHAYaSk4W3gTkkLt0uEzYiIqRHxdr3jKJE0L0BETI6IT+sdT0lE\nTIyIz+sdh7WtjjQHa9mImJAfTwSWzY+XB94o7Dc+r7sT6AM8AvxW0s7AExHxVlMnkXSQpNGSRk+e\nPLmW8ZuZmZm1WkTcFhHHRcR1wMzy7ZIEHAGcGRHXR8RzwGBgYeAHDbWZe8GGAWvmHp9ZPWOSFs1T\nKt6W9JGk+yX1Lxy7qKQr8/bPJL0m6Yi8bWze7drc5tjS+YpD0kq9Z5IGSXo1n+fGYs+TpLkl/VrS\ne5KmSDpX0u8k3dfIc+oD3JsXJ+fzj8jb7pP0+9zGZODBUrzFXhlJR0l6RtInucfwUkmLNXS+5q5F\nI/uvKOmm/Hw+lfSipEGF7bN6/yT1ycuD8mswVdKTktaRtJakh3KcoyStXH5ty87b5JBASX1zXBNz\nm09I2rGw/T5gJeCc0vulsG2zHN+n+Zr9XtIihe09JY2Q9LGkSZKOayyO7qIjJVizRLr7cZN3QI6I\nLyLiBxGxPnAt6T+eX0k6T9J1OeFq6LiLI6J/RPRfemlXdTUzM7MOb2VgOeBfpRURMRX4N7BZI8dc\nA/wKeIk0LK0XcE1O1m4lfVm9I7B+buceSb3ysacBa+ftqwH7A2/mbRvl3/+X2ywtN6QPsCewG7Bd\nPtfphe1HA/sCBwKbkkYl7d1Ee28A382P18znP7yw/YekUU0DgX0aaWMm6TPjmqTkdGPggibO2dS1\naMjvSCOsvpHPcQTwfhP7AwwHziJdn/eBv+WYjs/xzQ/8tpk2mrMQ8E9gW2Bd4HrgBkmr5+27kzox\nTmH2+wVJa5Pedzfn43YH1gP+XGj73Nzud4Ft8vPYosp4O7WOVKZ9kqReETEh/wMvdTO/CaxY2G8F\nvvzG/glwBbAJ8AHpH/M9pDeDmZmZWWe2XP49qWz9JFKi9CURMTX3aHwRERNL6yVtTfqAvHRO0gBO\nlLQTaU772aSejCci4rG8fVyh3ckpR+P9YruNmBvYNyI+yOe+GNivsP1w4KyIuD5vP4Ivz9EvPqcZ\nkkpTTN6OiHfKdnk9IoY0FVBEnF9YHCvpGOAmSYMj4ku9hzRxLRqxEnB9RDxdiqmZ/QHOi4jbACT9\nijRH68SIuDevuxC4sAXtNCrH83Rh1en5Nf8ecFpETJE0A/io7HX9OXBNRPyqtELSIcCTkpYBPgUO\nAPaPiDvy9v1IyVq31ZF6sG4mdXeTf99UWD9IqWrgykA/oPQmR6na4I6kBKsn6ZuJABZop7jNzMzM\nOosNSZ+XJuchXR/nRGwtoG/e5/fAnpKezkPutqzwXONKyVX2FrAMpKF3pMRx1me6PILpMSo3prkd\nJG2tVK16vKSPgBuAeZmdxJZr7bX4DXCCpIclnSZpwxbE/UzhcSmJfrZs3YKSeragrQZJWlDS2ZJe\nyEMyPwb6A72bOXRD4Idl75UH87a++Wde4OHSARHxcVn83U69yrT/jfRCrJbf4AcAZwLbSnoZ+GZe\nJiKeB0YCLwC3Az+NiBmF5k4CTs/fOtxB6hZ+FriyvZ6PmZmZWRsq9SgsW7Z+2cK2lupB+sC+XtnP\n6uRCYRHxT1JPzLnAUsCtki6rIO7pZctB2372/KSpjZJWIg2P/A/wfVLysH/ePG9Dx7T2WkTEn0hD\nOi8DVgUeknRyM3EXr1M0sa507WYyu8BbyTzNnONc0nM+EdiS9Jo/RiPPu6AHcClzvlfWJXV4PNXM\nsd1WXYYIRsRejWzappH9T2fOMbvFbUcWHn9GGuNrZmZm1lW8TkqktgUeB5A0P+lL5Z83cdw0YK6y\ndU+QErOZEfFaYwfm4XdXAldK+ifwN0kH5wp40xtot1Ui4gNJE0lzuO6BWcU8NqLppHFa/l3J+fuT\nEoojS1/WFws9NBFrU9eiof3HAxcDF0s6ljQU8uQK4m3MZGBZScq9fpASn6YMAK4oDMecn9T79N/C\nPo29X9aMiFcaalTSq6T3wybAa3ndgqQe0Vdb/Iy6mI40RNDMzMys25G0kKT1JK1H+mzWOy/3hllD\n584HjpW0u6S1SPcU/Rj4axNNjwVWkrSBpKUkzQfcRRridZOkHSStLGlTScMlDczxnCJpV0n9JH2N\nVNjgtUJCMRbYRtJyeapGpX4DHCNpN0mrkYpy9KLpQmfj8vbvSFpa0kKtON/LpOt7RH7ee5GKUDSq\nBdeifP/fSNpe0ir59dyeNAqrlu4DlgCOU6oOeABpLlVT/gvslt8LawN/IRXPKBoLDJS0vGZXezwL\n2FjSHyStL+mrknaU9EeYNRzwT8BZkrZVujfbnylL1CSdIenuip9xJ+MEy8zMzKy++gNP5p8FSFXl\nniRVdCs5G/g1cBEwmpSIbBcRHzXR7vXAbcDdpF6PvXKy9m1Sr9ElpCqDI0kV8kq3uvmcNHLoaVIy\ntjCwU6HdIaQqeW/kOCt1Lqln6DLSbXcE/B34rLEDIuJNUvn500lDHVtc/CEiniH1Jh1FSnoOJFUy\nbEpz16JcD1IFwBdItxSaxOwaAzUREf8BDgEOIs3f2hb4ZTOHHUUqIPcAqZrgI/lx0UmkwnKvkt4v\npWu2Baki5P2k63AGcxZcOZpUPv/v+fdzpMqURb2YPcevy9PsnsXup3///jF69Oh6h2FmZmYVkjQm\nIvo3v6d1BpKeBEZFxGH1jsWsUh2pTLuZmZmZdRO56MS3SD0j85DurbVO/m3WaTnBMjMzM7N6mEm6\nIfA5pKF1LwA7RISHF1mn5gTLzMzMOo2ZM+H55+GBB2DUqHpHY9WIiDdI1e3MuhQnWGZmZtZhTZsG\nY8akhOqBB+DBB+G999K2Xr3qG5uZWUOcYJmZmVmH8fHH8PDDsxOqRx+FqVPTtlVXhd13h4ED08/K\nK0MP10M2sw7GCZaZmZnVzeTJaahfKaF68kmYMSMlTuutBwcdlJKpAQNg2WXrHa2ZWfOcYJmZmVm7\niIBx42YnUw88AC++mLbNNx98/eswdGhKqDbdFBZZpL7xmplVoqoES9JcETGjVsGYmZlZ11FekOKB\nB2D8+LRt0UVh881h8OCUUPXvn5IsM7POrtoerJclXQ9cFhEv1CIgMzMz65yaK0hRmjs1cCCstRbM\nNVd94zUzawvVJljrAoOASyX1AP4MXB0RH1YdmZmZmXVoLS1IMWAArLIKSPWN18ysPVSVYEXER8Al\nwCWStgT+Cvxa0nXAqRHxSg1iNDMzsw7ABSnMzJpX9Rws4DvAfkAf4FfAVcBA4DZg1SrjMzMzszpw\nQQozs8pUPQcLuBc4JyIeKqy/TtIWlTQo6UjgQCCAZ0nJW0/gGlISNxbYIyLek7Q58HtgGrBXRLws\naTFgJLB9RMys6FmZmZl1MzNnwgsvzJlQuSCFmVnrVZtg7RMRo4orJG0eEQ9GxM9a25ik5YGfAWtE\nxFRJI0lzvNYA7o6IMyUNBYYCxwJDgG+TEq+D8/IJwC+dXJmZmTVu2jR44onZydSoUS5IYV8maVfg\nKGB1YGHgbeBJ4A8RcXsF7e0P/AJYCfg0IhZr4XGLAUcAN0fEE609bxPtRmExgCnAg8BxEfF8Be31\nAfYFroiI18q2jQXui4h9K4vWOotqE6zfAhuUrbuggXWtMTewgKTppJ6rt0j/ELfK2y8H7iMlWKV9\negLTJfUFVoyI+6o4v5mZ2SyffQajR89ORF56KQ2f6+wmTpxdkKJfP9htt9kJlQtSGICknwG/IRUx\nOwf4BOhLmh6yNdCqBEvSV4CLSdNJ9gM+a8XhiwHDgPFAzRKsbARDzSHFAAAgAElEQVTwR9Jn0LWB\nU4DbJa0dEe+3sq0+pDhHAa+VbdsNcCG4bqCiBEvSpsBmwNKSjipsWgSo+DuuiHhT0rnA/4CpwL8i\n4l+Slo2ICXm3iUBp6uwZwBV53x8B55J6sJqK/SDgIIDevXtXGqqZmXVRH3wADz00O6F6/HH4/PO0\n7WtfS3OP5q7268kOYMkl07C/AQNgueXqHY11UEcDN0bEAYV195CKm/WooL1+pM+Jl5ePgKqzNyPi\nkfx4lKQPgb8A2wNX1+okEfFkrdqyjq3SPxHzAgvl4xcurP8Q+F6lwUhaHNgFWBl4H7hW0g+L+0RE\nlLpzI+IpYJN87BbAhPRQ15B6t4ZExKSy4y8mfXtC//79u8B3kGZmVo2JE+ecd/TMM2k+0lxzwYYb\nwqGHpl6dzTeHpZaqd7Rm7WoJ0hfbX1KciiFpaeA04BvACsC7wAPAzyPizbzPCGBwPuRupS7Sy0vD\n5fIX4D8FVgM+Bm7Kx0/Jw+5ez8deIumS/Hg/YENgD2CFiJheiGlh0iioiyJiaCufd6mHbI5v4iUd\nCuydY+wBvEiqmn1r3r4VqTYBwJ2a3Q38jYi4r3yIoKR9gcuATYHDgJ3yc78OOCYiZvXwSVoFuJA0\noutj4ErgJVLP28oRMbaVz9HaUEUJVkTcD9wvaUREjKthPN8EXo+IyQCSbiD1lE2S1CsiJkjqRRr/\nO4vSO/gE0nytC4BjSF20PwOOr2F8ZmbWiUXAq6/OmVC9km8o0rMnbLIJnHhiSqg22QQWXLC+8ZrV\n2WPAYEmvATdFxH8b2W8JUsGxE4BJQC/SvPgHJa2eE4VTgTGk6SU/JSUxpc97Z+b9fwv8HFielLCt\nJWkz0hfouwM3kEYv3ZzP+2qO8VDS8LuRhZh+ACxISkBaq0+h/aKVScMJXyX1xO0E/EPSDnk+2hP5\nuV1E+gz6eD7uhWbOdyXwN9Jz3BQ4GXiPNNQQSfMCdwLzAYeQrtuBNNCpIenkfJyTrjqqdIjg+RFx\nBHBh2eRAACJi5wrj+R+wiaSepGF/2wCjSWN+BwNn5t83lR23D3Bb/pajJzAz//SsMA4zM+sCZsxI\nPVLFezdNzN/HL7FEGh734x+nhGqDDWCeeeobr1kHczCpN+Vs4GxJ75I+6F8WEf8q7RQRL5F6YIBZ\nt/F5kPS5bgfg7xHxqqT/5F1eKA3Jy71TPweGR8QphTb+S5rHtFNE3CipNLzutcJwPoDJku4Hfsyc\nCdaPSVNNXqd5kjQ3s+dgnQ08wuxErvQ8hxQO6AHcTbol0SHA7RHxoaRSMvWfsjib8teIGJYf3yXp\n68Be5ASLVDRjFeDrEfFYPv8/gaco62Ujff6dQSrYYXVS6RDBK/Pvc2sVCEBEPJpvUvwE8AWpSs3F\npOGIIyUdAIwjdQUDkBOqfYHt8qrzSPfgmkb69sLMzLqJzz5Lc6ZKydRDD8GHeUr5iivC1lvPLuTw\nta+lG+SaWcMi4r+S1gc2J33O2oTUUzRI0okRcVppX0mHkBKyvqSeo5LVmjnNtqThdlflJKfkUeAj\nYAvgxmba+B1wtaR++ZY9GwHrk3qEWuK4/FMyFti6OOQQQNKGwHBgI2BpoDQG8KUWnqcxt5YtP0sa\n1VWyCfC/UnIFs6bMXA+sUzwwJ6mnYHVV6RDBMfn3/bUNB3IGP6xs9eek3qyG9v+UNOa3tPwA6dsH\nMzPr4poqSLHGGrDXXrMTKtc1Mmu9iJgB/Dv/lCoB3g4Mk3RRvi/pYaThfeeReqPeIyVNjwDzN3OK\nZfLvVxrZvmQLwvw7aa7Yj0mFOQ4mzb+6pQXHQqqS+HtSrNsAJ5EStm9GpJqhklYk9Vi9QOqt+x+p\nM+BU4GstPE9jppQtf04aDljypekx2aQG1lkHUOkQwWdpousxItZpbJuZmVmlXJDCrL4i4i1Jl5LK\nt/cjzYEaRLpfaXEI3cotbPLd/Hs7UmLW2PamYpqeY/qJpLNzPL+KiC9aGMOEiBidH4/Kc/uHkeY4\nXZvXbw8sCuwREeNLB+aRVG1tAumesOWWbWCddQCVDhHcsaZRmJmZlXFBCrP6KhUYa2DT6vl3qcJg\nT758f6f9WniaO0nzhnpHxJ1N7Jf7plmgke1/JA3zu5bU+3NJI/u1xFnA/wEnSbou92KVEqlipcJV\nScMnxxeObS7OSjwC7Cdp48IcLAHfreE5rIYqHSJYy8qBZmZmswpSlJKpUaNckMKszp6TdBdpbvvr\npPudfps0BG9kRPwv73c7cKyk40g9WlvTwtv25OIXZ5EKp60G3E+6AfGKpPlZl0bEvaThcO+S5n89\nQyqA9npEvJvbeVPSzaQ5YrdExBuVPumImCrpl6Sy6LsD1wN3kYYEXiHpV6Rhe8NJQwWLszn/m/fb\nX9IUUsL1UkR8VGk8pMqFxwI3SDqe2VUEF8/biyXzTyINcezrz+v1U+kQwVERMUDSR6Shgir+johF\nahijmZl1QS5IYdbhHU9KqE4hDUebQUoghgLnF/Y7BVgMOJI0j+l+4FvAay05SUQclysM/jT/BPAG\nac7Ty3mfmZIOBH5JSnbmJvWSjSg0dS0pwaqkNHu5S0jzyU6QdENEPC9pb9JzvZlUqn0oaejgVoXn\n8m6+X9axpOswF6lWwH2VBhIR0yRtR7oV0R9I98H6K6kQyJnAB4Xde+Rzqrwdaz/Kc/e6pf79+8fo\n0aOb39HMzKpWXpDiscdg2rS0bY01ZidTLkhhrSFpTET0r3ccVn+SriIN2VuleCPkrkrSP4CvRUTf\nesdic6p0DtYskjYABpC+bRgVEU82c4iZmXUDjRWkmHvuNMTvsMNckMLMqidpE2A9YE/gqK6YXEk6\nitRz9TKwMPB94Duke3BZB1NVgpXHeX6fdGdtgBGSri3eF8HMzLo+F6Qwszp6mJR8XE66J1ZX9Dlp\nCGZv0hDAl4ADI+JPdY3KGlTVEEFJLwHrRsRneXkB4KmIaO6mch2ChwiamVWmJQUpSsP9XJDC2pKH\nCJpZR1PtEMG3SJMZP8vL8wFvVtmmmZl1ME0VpOjdG7bZJiVTAwa4IIWZmXVvlVYRvIA05+oD4HlJ\nd+blbUnlOc3MrBMrL0jx+OPweb67yxprwF57uSCFmZlZQyrtwSqNqxsD/L2w/r6qojEzs7poriDF\noYe6IIWZmVlLVHqj4ctrHYiZmbUPF6Qws25B6kO6QXI1Lidi36pjsW6l2iqC/YAzgDVIc7EAiIhV\nqozLzMxqZMYMePbZOROqUkGKJZdM86YOPjj9dkEKMzOz6lRb5OIyYBjwa9Jdqvcj3UHazMzqpFSQ\nYtSolEw9+GDDBSkGDoTVV3dBCjMzs1qqNsFaICLulqSIGAecLGkMcFKlDUpaDLgUWItUOGN/Uq3/\na4A+wFhgj4h4T9LmwO+BacBeEfFyPn4ksH1XvNGcmVk5F6QwM2uRN4EBrTzm47YIxLq2ahOszyX1\nAF6WdCjpjbtQlW3+Brg9Ir4naV6gJ3AccHdEnClpKDAUOBYYAnyblHgdnJdPAH7p5MrMuioXpDAz\nq8gXRIytdxDW9VWbYB1OSoB+BpwKbA0MrrQxSYsCWwD7AkTENGCapF2ArfJul5OqFR4LTM/n7wlM\nl9QXWDEi7qs0BjPrOt5+G6ZOrXcU1fv0U3jkkYYLUmy6KZx0Upo/5YIUZmZm9VdVghURj+eHH5Pm\nX1VrZWAycJmkdUll4A8Hlo2ICXmficCy+fEZwBXAVOBHwLmkHiwz62Yi4KWX5uzZGTu23lHVVrEg\nxcCBsP76LkhhZmbW0VR6o+HzI+IISbeQ5knNISJ2riKeDYDDIuJRSb8hDQcsth2SIj9+Ctgkx7QF\nMCE91DWk3q0hETGpLPaDgIMAensyglmn9cUX8NRTs5OpUaNg8uS0bemlUwJy2GGw+OL1jbMW5pkn\nDf1zQQozM7OOr9IerCvz73NrFUg2HhgfEY/m5etICdYkSb0iYoKkXsDbxYMkidRzNQi4ADiGNC/r\nZ8DxxX0j4mLgYoD+/ft/KTk0s47p00/h0UdnJ1QPPwyffJK2rbIK7LDD7EIOq64KUn3jNTMzs+6p\n0hsNj8m/769lMBExUdIbklaLiJeAbYAX8s9g4Mz8+6ayQ/cBbouIKZJ6AjPzT89axmdm7WfKlFRe\nvJRQjRkD06enxGnttWHffVMyNWAALL98vaM1MzMzSyodIvgsDQwNBEQaxbdOFTEdBlyVKwi+xux7\na42UdAAwDtijEEtPUlGM7fKq84DbSKXbf1BFHGbWjsaPn3P+1HPPpfXzzAMbbQRHHZUSqs026xrD\n/szMzKxrqnSI4I41jaIgz6vq38CmbRrZ/1PSTY5Lyw8Aa7dNdGZWCxHw4ouzb4RbLEix0EIpidpz\nz5RQbbwxLLBAXcM1MzMza7FKhwiOKz2WtBLQLyLukrRApW2aWdf1xRfw5JNzFqR45520rVSQ4vDD\n0+911033czIzM6uxlciF0lpoPyJGtFUw1nVV9TFG0v+RKvItAfQFVgD+QCO9TWbWPTRXkOI730lz\np1yQwszMzLqaar8n/imwMfAoQES8LGmZqqMys07FBSnMzMzMkmoTrM8jYpry18+S5qbh4hdm1oW8\n8cac86dckMLMzDqBN4EBrdj/nbYKxLq2ahOs+yUdBywgaVvgJ8At1YdlZh1FqSBFscLfuDwL0wUp\nzMysE/mCiLH1DsK6vmoTrKHAAcCzwI9J5dEvrTYoM6uflhSkOOIIF6QwMzMza0hVH40iYiZwSf4B\nQNLmwINVxmVm7aQlBSkGDkw//fq5IIWZmZlZUyq90fBcpJv9Lg/cHhHPSdoROA5YAFi/diGaWS25\nIIWZmZlZ26m0B+tPwIrAY8BvJb1Fujnw0Ii4sVbBmVn1xo+fc/6UC1KYmZmZtZ1KE6z+wDoRMVPS\n/MBEoG9EvFu70MystUoFKYoV/saOTdtckMLMzMys7VWaYE3L86+IiM8kvebkyqz9NVWQYpll5ixI\nsc46LkhhZmZm1tYq/bi1uqRn8mMBffOygIiIdWoSnZnNwQUpzMzMzDq2ShOsr9U0CjNrUEsLUgwc\nCF/5Sr2jNTMzM7OKEqyIGFfrQMys5QUpNt8cFlusvrGamZmZ2Zd5RoZZnTRVkGLhhVNBikGDUrl0\nF6QwMzMz6xw6ZIKV77M1GngzInaUtARwDdAHGAvsERHv5Zsa/x6YBuwVES9LWgwYCWxfKsRh1hG4\nIIWZmZlZ11fpjYbvjohtJJ0VEcfWOijgcOA/wCJ5eShwd0ScKWloXj4WGAJ8m5R4HZyXTwB+6eTK\n6s0FKczMzMy6n0q/I+8laTNgZ0lXk6oHzhIRT1QakKQVgO8ApwNH5dW7AFvlx5cD95ESrOlAz/wz\nXVJfYMWIuK/S85tVygUpzMzMzKzSBOsk4ERgBeC8sm0BbF1FTOcDxwALF9YtGxET8uOJwLL58RnA\nFcBU4EfAuaQerEZJOgg4CKB3795VhGndXWMFKeadNxWkGDIkzZ9yQQozM7M6iBhLWSeAWXuotIrg\ndcB1kk6MiFNrFYykHYG3I2KMpK0aOXdIivz4KWCTfOwWwIT0UNeQereGRMSksuMvBi4G6N+/f9Qq\nduvaIuCll+ZMqBoqSDFwYEquXJDCzMzMrHuqahp9RJwqaWdgi7zqvoj4RxVNbk4advhtYH5gEUl/\nASZJ6hUREyT1At4uHiRJpJ6rQcAFpB6wPsDPgOOriMe6KRekMDMzM7NKVPWxUNIZwMbAVXnV4ZI2\ni4jjKmkvIn4B/CK3vRVwdET8UNI5wGDgzPz7prJD9wFui4gpknoCM/NPz0risO7HBSnMzMzMrBaq\n/d79O8B6pYp9ki4HngQqSrCacCYwUtIBwDhgj9KGnFDtC2yXV50H3EYq3f6DGsdhXYQLUpiZmZlZ\nW6jFwKbFgCn58aI1aA+AXAnwvvz4XWCbRvb7FPhGYfkBYO1axWFdQ2MFKeaZJ82ZOuqolEy5IIWZ\nmZmZVaPaBOsM4ElJ95KqtGxBukeVWd1EwIsvpnlTTRWkGDAANt7YBSnMzMzMrHZ6VHNwRPyNVMXv\nBuB6YNOIuKYWgZm11BdfwOOPw3nnwW67pSIUa6wBBx0Ed9wBG24I55+fhgFOmQK33w7HHw9bbunk\nyszMuj5J+0qKws80Sa9K+qWk+Sts8+RSVefCupB0cgVtjZA0vgX7lZ5Hn8K6sZJGNLPPyZKquYVQ\nQ7GMLbum70u6U9KACttbLMe5QQPb7pN0X9VBW7upeohgvj/VzTWIxaxFXJDCzMysIt8HxpPuNbob\nqbDYwsBhNWp/09x+W7k1n2NCK/cZBpwO3FPjeO4ATiZ1WPTL57lN0jqR7sHVGovl48cDT5Rt+0l1\nYVp7c3Fp6/BckMLMzKwmnoqIV/LjOyX1A/aXdHipYFk1IuKRattopv3JwORq96mhdwrP+SFJrwCj\nSLcNOrNWJ4mIF2rVlrWPqoYImrWFN96Av/4VDjkkJVBLLgk775yG+fXokQpS/OMfKfF6+mm48ELY\nc08nV2ZmZq30BOmWNksVV0paWdJVkiZL+lzSU5J2a66x8iGCkr4q6UpJr0uaKuk1Sb+XtHgjx28m\n6XFJn+UheIeVbf/S8L8G2phjn8IwxuMLw/lOljQkP7ely45XjvPq5p5vA0o9T73L2hwk6Z58PT+W\n9KSkwYXtfYDX8+IlhTj3zdvnGCIoaau8fWdJF0p6J//8RdIcpbokLS3pb5I+lPSepMvycZFviWRt\noOoerDzWtF9EXJbfpAtFxOvNHWcGswtSFCv8jRuXti20UCpIseeeqXfKBSnMzMxqqg/wAfBuaYWk\nFYFHgbeBI0m9QXsC10vaNSJaMy3kK8BbwJB8jpVJt/K5jTSMr2gR4BrgLOAVUi/QbyV9FBEjWvvE\nCjYFHgZGAH/M68YDnwKnAfsBZxf23y7HuX8F5+qTf79atr4vcGM+zxekonCXSlogIv5AGs64O6mm\nwRnMnnpT3k653wD/IN2WaLXc/gzSPWNLbiBV1/4F6bp+F7igvKGczF0GfCNX8rYqVHuj4WFAf9KL\nehkwD/AXYPPqQ7Ou6Isv4MknZydTo0bBO++kbcsskyr7HXFESqjWXRfm9iBWMzOzWplL0tzMnoP1\nXeCIiJhR2OdkUmXoLfNtcgDuyInXKbRi3n1E/Bv4d2lZ0oOkD/kPSFo/Ip4s7L4wcFBElHqObpe0\nPDBc0uURMUdBjVbE8IjSZOw3y4cwSroGOEjSOYX2fwy82MIkQ/l69gC+CvweeBn4c1kMpxcO6EG6\nDVEv4BDgDxHxuaTStXitFUMt/x0RpV6+f0laDThQ0r4REZK2AwYAe0bEyLzfHZJupqyXDZhJSs4q\nus42p2o/vu4GrE/uEo2ItyQtXHVU1mW4IIWZmVmH8WLZ8u8i4sKydduTepg+yMlDyR3AOZIWiYgP\nW3IySfMCRwP7ACsBxYqFqwHFBGsGqSJ10dXApcDytE3xjN+Renu2Ae6S1AvYCTimhcf/IP+UTAE2\ni4j3ijvluW6nkHqulmP2FJ3PKw8dSAU9ip4F5gOWBSaSKn3PAP5ett91pOc5S0RcAVxRZTyWVZtg\nTcsZcgBIWrAGMVkn1tKCFAMGwPLL1ztaMzOzbmU3UqKyNHAU8BNJj+YP1yXLkBKifRppY0mgRQkW\nabjbYaTk4iHgI2AF0rC18vLw70XE9LJ1k/LvNkmwIuIxSWOAg4G7gANJQ/gub2ET/wROIo3g2pj0\nfG+QtGFEfAYgaSHgTtKQxKGkYX/TSL1XlQxDLJpStlxK2ErXthdNX1drI9UmWCMl/RFYTNL/kd4o\nl1YflnUWb7wx5/yp559P6+eZBzbaKBWkGDgwzaVavMEprWZmZtZOnitVEZR0D/AMqVfq+ojI40t4\nF3iANBeqIW+14nyDgCsi4rTSipxwNGRxSfOUJQPL5t9vtuKcrfU74I95OOKBwLURUZ64NGZKRIzO\njx+W9AFpysxhwDl5/aak3ruBETGqdGBZ72BbmUDT19XaSFUvbkScK2lb0jcZqwEnRcSdNYnMOpyW\nFKQYNMgFKczMzDq6PO/n58BNpPsslRKC20lJwfMRMbXK0/QEyntP9mtk37lIc8KK1fsGAf+j+gRr\nGtDYp5K/AecCfyXNS/pDFee5nJRc/VzSRRHxKekaQOE65CqKu5QdW+p9quWnp0dI13U3YGRh/fdr\neA5rQLVFLs6KiGNJXZ/l66yTa64gxcCBcOSR6fc667gghZmZWWcSETdLehwYIunCnFCdBDwG/FvS\nhcBYYHFgLWCViGjNsLbbgcGSniUVt9gd2KyRfT8Czpa0FKlQxF7AN4F9Ky1wUfAC8B1JtwPvAW9F\nxFsAETFV0ghSxcRnI+KhSk+Sp82cRKrsdwjwK9LQyA+Bi3JxuAWBE4B3gEULh08i9R4OkvQM8Anw\neqHQSCXx/CsXFrk4X9dXgO8B6+ZdZt37TNI+pOIc20TE/ZWe05Jq74O1bQPrdqiyTauTTz+Fe++F\nU06BbbeFxRZLPVFDhsAzz6SCFJdeCi+9BBMnwnXXweGHwwYbOLkyMzPrpE4gDRk7GCAi/keqEP00\n8EvSl+i/B7YE7mll24eRqg6eTirBvjApcWrIh6Qeq8GkXrVvAIdHREvnQzXlUFLCcgvwOHBQ2fZr\n8+8/UqWIuJVUFv7oXIZ9MqkHaS5ScYkzSNNp/lJ23EzSEMXFSfPBHqesEEWFdiMlumeRerHmB07M\n2z4o7Ncjx+hyYzWgSr4UkHQIqTt5Feas0b8w8GBE/LA24bWt/v37x+jRo5vfsYuaMiX1So0a1XBB\nilJ1v4EDfRNfMzPrmCSNiYj+9Y7DOi9JpwOHA19paYXEziz3TO4HLBER1VYytAZU2u/wV1LllDNI\nFVFKPmrFxEBrZy0tSLH55qn3yszMzKyrkrQ+qYbA4cDFXTG5yjcQXhR4HpiXVIb/EOAcJ1dtp6IE\nKyI+IHUr7gUgaRlSl+NCkhbK3cutlm9idwWpqzpIb/bfSFqC1LXchzQWeI+IeE/S5qRu62nAXhHx\nsqTFSF2g2+fu1m7JBSnMzMzMmvR30mfOO4BhdY6lrXwCHAH0Jd0j63XgOGYXNbE2UNEQwVkHSzsB\n5wFfAd4mlaH8T0SsWWF7vYBeEfFEvmHxGGBXYF9SKcwzJQ0FFo+IYyXdAPyMlHjtFhFDJJ0L/KMl\nd+DuSkMEW1KQovTjghRmZtZVeIigmXU01X7MPo10l+i7ImJ9Sd8AKp5/FRETSDX7iYiPJP2HdHO5\nXYCt8m6XA/cBx5JKXvbMP9Ml9QVWbEly1dl9+ik8+ujshOrhh+GTfAeLVVZJBSlKCVW/fmlelZmZ\nmZmZta1qE6zpEfGupB6SekTEvZLOr0VgkvoA6wOPAsvm5AtgIrNvkHYGaUjhVOBHpPsYnNBMuweR\nq8f07t27FqG2i1JBilJCNWZM6rUqFaTYd18XpDAzMzMzq7dqE6z38x25/w1cJelt0ljPquQ2rweO\niIgPVeh+yfcYiPz4KVIPGpK2IPV+SdI1pN6tIRExqdh2RFwMXAxpiGC1sbaV5gpSDBnighRmZmZm\nraXhugvYprBqJtAnhsUbdQrJuphqE6xdSL1HRwJ7k6qUnFJNg5LmISVXV0XEDXn1JEm9ImJCnqf1\ndtkxIvVcDQIuAI4hzcv6GXB8NfG0h6YKUiy8cCpIsddeMGCAC1KYmZmZVUrDtSLpHltFPUhTXM5o\n/4isK6oqwYqIUm/VTOByST1IlQWvqqS9nCj9iVQo47zCpptJN547k9k3oCvaB7gtIqZI6pnjmUma\nm9XhtKQgxZFHuiCFmZmZWY39iJRQlRuMEyyrkYo+uktaBPgpqQDFzaS7fP8UOJp05++KEixgc9Ib\n/1lJT+V1x5ESq5GSDgDGAXsUYulJqjK4XV51HnAbqXT7DyqMo6ZckMLMzMysQxjcyPrVNFxfj2Hx\naLtGY11SpX0jVwLvAQ8DB5KSIAG75nlRFYmIUbmdhmzT0MqI+JRCV29EPACsXWkMteCCFGZmZmYd\ni4ZrE2DVwqp/AjsUlgeTiquZVaXSBGuViFgbQNKlpOISvSPis5pF1om4IIWZmZlZh1fee3UM0Bso\n3b91kIbriBgW09o3LOtqKk2wppceRMQMSeO7S3LlghRmZmZmnYuGaz5gz8Kqp2NYPKfhupI0FQVg\ncWAnUrE1s4pVmmCtK+nD/FjAAnlZpErqi9Qkug7ABSnMzMzMOr2dSQlUyV/y77+SiluUpqgMxgmW\nVamidCAi5qp1IB2FC1KYmZmZdTnF4YEzSYkVMSze0HDdD2yVt+2g4VomhsXbmFWo2/e3TJkCDz44\nZ0GK6dNdkMLMzMysK9BwLQt8q7Dq3hgWbxWWr2R2gjU3qQr1+e0TnXVF3TrBev55WHLJ9LhUkOKo\no1yQwszMzKwL2Zs5P/P+pWz7dcBFwPx5eTBOsKwK3TrBmndeOP74lFC5IIWZmZlZl1QcHjiVsjlW\nMSw+1HDdzOz7rK6n4Vo7hsWz7RWgdS0N3cm62+jXD044Abbc0smVmZmZWVej4VoPWKew6pYYFh81\nsGt5r1ZjNyQ2a1a3TrDMzMzMrEsrT5TKE6mS24F3Cst7a7i6bFE3a1tOsMzMzMysy9FwlQpWlLxD\nSqS+JIbFdOCawqrlmLMwhlmLOcEyMzMzs67o28AyheWROZFqjIcJWk04wTIzMzOzrqilwwMBiGHx\nCPBKYdXOGq5Fax6VdXlOsMzMzMysS9FwLQHsWFj1agyLh1twaDEJmx/Ys6aBWbfgBMvMzMzMupq9\ngHkLy1e18DgPE7SqKSLqHUPd9O/fP0aPHl3vMMzMzKxCksZERP96x2Edi4brMWCjGjW3agyLl2vU\nlnUDnaYHS9L2kl6S9IqkoXndWZKekXRFYb8fSjqifpGamZmZWb1ouL5G7ZIrgH1q2JZ1A50iwZI0\nF3ARsAOwBrCXpHWBDSJiHWCapLUlLQDsl/c1MzMzs+6n1gSn9zcAAAiwSURBVMP6fqjhUo3btC5s\n7noH0EIbA69ExGsAkq4GdgbmkSSgJzAdOBq4IKLJEpxmZmZm1gVpuHoAPyys+gRYn/Q5sTVOZnai\n1gfYErivuuisu+gsCdbywBuF5fHA14HbgCeBu4EPgK9HxKlNNSTpIOAggN69e7dJsGZmZmZWF98k\nfW4subWS+VMariuYsydsME6wrIU6xRDBxkTE2RGxXkQMAU4FTpJ0oKSRkk5o5JiLI6J/RPRfeuml\n2zdgMzMzM2tL5cMDr6mwnfuBSYXl72m4FqywLetmOkuC9SawYmF5hbwOAEnrAwJeAr4fEXsAfSX1\na9cozczMzKwuNFyLALsVVn1MGu3UajEsZgDXF1YtBOxeeXTWnXSWBOtxoJ+klSXNCwwCbi5sPxU4\nEZgHmCuvm0mam2VmZmZmXd/3gQUKy7fEsPisivZGli27mqC1SKdIsCLiC+BQ4A7gP8DIiHgeQNKu\nwOiIeCsi3geekvQsMH9EPF23oM3MzMysPdVqeGDJA8CEwvLWGq4VqmzTuoFOkWABRMRtEbFqRPSN\niNML62+MiJMLy0dHxNoRsXddAjUzMzOzdqXhWgUYUFj1IXB7NW3GsJgJXFdY1QP4UTVtWvfQWaoI\ntokxY8Z8LOmlesdhsywFvFPvIGwWvx4di1+PjsOvRceyWr0DsA5hH9J8/JKbY1h8XoN2rwEOKywP\nBs6oQbvWhSki6h1D3UgaHRH96x2HJX49Oha/Hh2LX4+Ow69Fx+LXw8w6mk4zRNDMzMzMzKyjc4Jl\nZmZmZmZWI909wbq43gHYHPx6dCx+PToWvx4dh1+LjsWvh5l1KN16DpaZmZmZmVktdfceLDMzMzMz\ns5pxgmVmZmZmZlYj3SbBkvRnSW9Leq6wbglJd0p6Of9evJ4xdieNvB7nSHpR0jOS/i5psXrG2J00\n9HoUtg2RFJKWqkds3U1jr4Wkw/K/j+clnV2v+LqbRv6vWk/SI5KekjRa0sb1jLG7kLSipHslvZD/\nHRye1/tvuZl1KN0mwQJGANuXrRsK3B0R/YC787K1jxF8+fW4E1grItYB/gv8or2D6sZG8OXXA0kr\nAtsB/2vvgLqxEZS9FpK+AewCrBsRawLn1iGu7moEX/63cTYwPCLWA07Ky9b2vgCGRMQawCbATyWt\ngf+Wm1kH020SrIj4NzClbPUuwOX58eXAru0aVDfW0OsREf+KiC/y4iPACu0eWDfVyL8PgF8DxwCu\nhtNOGnktDgHOjIjP8z5vt3tg3VQjr0cAi+THiwJvtWtQ3VRETIiIJ/Ljj4D/AMvjv+Vm1sF0mwSr\nEctGxIT8eCKwbD2DsTnsD/yz3kF0Z5J2Ad6MiKfrHYuxKjBQ0qOS7pe0Ub0D6uaOAM6R9AapN9G9\n7e1MUh9gfeBR/LfczDqY7p5gzRKpXr2/pe8AJB1PGgpyVb1j6a4k9QSOIw1/svqbG1iCNCzq58BI\nSapvSN3aIcCREbEicCTwpzrH061IWgi4HjgiIj4sbvPfcjPrCLp7gjVJUi+A/NvDbupM0r7AjsDe\n4Zu01VNfYGXgaUljScM1n5C0XF2j6r7GAzdE8hgwE3DRkfoZDNyQH18LuMhFO5E0Dym5uioiSq+B\n/5abWYfS3ROsm0l/KMm/b6pjLN2epO1J8312johP6x1PdxYRz0bEMhHRJyL6kD7gbxARE+scWnd1\nI/ANAEmrAvMC79Q1ou7tLWDL/Hhr4OU6xtJt5F7bPwH/iYjzCpv8t9zMOhR1l04CSX8DtiJ96zsJ\nGEb60DIS6A2MA/aIiIYm+luNNfJ6/AKYD3g37/ZIRBxclwC7mYZej4j4U2H7WKB/RPhDfRtr5N/G\nlcCfgfWAacDREXFPvWLsThp5PV4CfkMauvkZ8JOIGFOvGLsLSQOAB4BnSb24kIYyP4r/lptZB9Jt\nEiwzMzMzM7O21t2HCJqZmZmZmdWMEywzMzMzM7MacYJlZmZmZmZWI06wzMzMzMzMasQJlpmZmZmZ\nWY04wTKzNvP/7d1PiFVlGMfx7w/CRO0PlEgwRdGgQbSI8g8DuYqkXVBEq4KKVkG5iVmli1nWxq0K\nokhoBUIouGhRhFlM9sdxMLVoUZBCtinSkHla3IOcuTjOzPXQ2O37gQv3vLz3eZ/3Li489zmcN8ld\nSb5pXr8m+aV1vaxv7tEkt80T7+ckd84xfqB1/UKSXR3tYSLJm13EkiRJw++WpU5A0vCqqt/ond1E\nku3AH1X1TntOc3hoqmrLDS63Mcm6qvr+BuN0prW3mXknS5KkoWAHS9K/Lslokukk+4FTwD3t7lSS\nj5J8leRUklcXGPZdeoeO9q81qwOV5HSSkSaHqST7kpxJsjfJliTHkpxN8ngrzKNJjjfjL7dijSf5\nMsl3Sd6ea2+L/oIkSdJ/lh0sSUvlIeDFqpoE6DV7rnqpqi4mWQFMJvmwqn6fJ957wOtJHlhEDuuA\n54HTwAngUlWNJXkWGAeea+Y9AowBtwMnkhwGHgPuAzYCAY4kGQMu9O9NkiT9f9jBkrRUfrhOAbI1\nybfA58AI8OAC4l2h18UaX0QO56pqurmFbxr4uBk/Cdzfmneoqi5V1QXgU2A98BTwNPA1veJsFFjb\nzL/e3iRJ0hCzgyVpqfx5rcEkTwKbgU1V9VeSz4DlC4y5B3gLONMau8LsP5PasS633s+0rmeY/ftY\nfesUva7VRFXt7st/lDn2JkmShp8dLEk3mzuAi01x9TC9btGCVNXfwA7gjdbwT/Ru5yPJBuDeAXJ6\nJsmtSVYDTwCTwFHglSQrm9gjSe4eILYkSRoiFliSbjaHgRVJpoEJ4ItFfn4n0H4E/PvAmiRTwGvA\njwPkNAV8AhwDtlXV+ao6AnwAHE9yEjgIrBogtiRJGiKp6r/zRZIkSZI0CDtYkiRJktQRCyxJkiRJ\n6ogFliRJkiR1xAJLkiRJkjpigSVJkiRJHbHAkiRJkqSOWGBJkiRJUkf+AUEBBDn4ezDTAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the 'sim_default-learning' file from the default Q-Learning simulation\n", + "vs.plot_trials('sim_default-learning.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6\n", + "Using the visualization above that was produced from your default Q-Learning simulation, provide an analysis and make observations about the driving agent like in **Question 3**. Note that the simulation should have also produced the Q-table in a text file which can help you make observations about the agent's learning. Some additional things you could consider: \n", + "- *Are there any observations that are similar between the basic driving agent and the default Q-Learning agent?*\n", + "- *Approximately how many training trials did the driving agent require before testing? Does that number make sense given the epsilon-tolerance?*\n", + "- *Is the decaying function you implemented for $\\epsilon$ (the exploration factor) accurately represented in the parameters panel?*\n", + "- *As the number of training trials increased, did the number of bad actions decrease? Did the average reward increase?*\n", + "- *How does the safety and reliability rating compare to the initial driving agent?*" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAABbCAYAAABpofqOAAAgAElEQVR4Ae2dTcgV1xnHx/ZdiEgQCS5cSAhBQgoi4V2U4EJCFvISgqRBJJRQXtpSsugiBOnCpZQQJIQupGQhRUIIoRQJRbqQ4EJCF1KkBClFpLgQKiVIcZGFYPlN5rk999xzZs7Mnc87/wuXmTkfz8f/eeac55w5cybL9BMCQkAICIEoAru7u0+jmcoQAkJACAgBISAEkhC4du3a0w8//FB9ahJaKiQEhIAQCCBw/PhxNaQBXJQkBISAEBACQqAJAocOHXp669YtDVCagKc6QkAIzBsBZneef/55NaDzdgNpLwSEgBAQAi0icPny5acMUFokKVJCQAgIgXkgsH//fs3uzMPU0lIICAEhIAR6RODkyZNPT58+rQFKj5iLlRAQAhNHgIaT/8TVkPhCQAgIASEgBEaHwIMHD+hfNQE4OstIICEgBEaJAC/s0WgWjecoZZRQQkAICAEhIASmjAATgFo6PWULSnYhIAR6Q4DGUk9NeoNbjISAEBACQmCGCNjTk2JCcIYISGUhIASEQAICxQ4ietScgJWKCAEhIASEgBBYBwF2xOS/Dg3VFQJCQAhsNAI8MdEuIhttYiknBISAEBACI0GAnbv07slIjCExhIAQGB8C9oj5/fff1yzO+MwjiYSAEBACQmADEdja2tLOXRtoV6kkBIRACwgUgxK9CN8CliIxLQSYvWRbT639npbdJK0Q2AQEWLHAAGUTdJEOQkAICIFWEeBFeC3pahVSEcuyjICfb+aMfU9//J8Pj3ZhtKlg0IXuoikEhEA5Ara0y50c+UF5FeUKASEgBOaBwL1797JXXnllHspKy94Q2NnZ2XPmzJne+DVl9MwzzzStWllvKhhUKqICQkAItI7A7u7uHoh+8sknC9oanCyg0IkQEAJzRcBmjN944425QiC9hYAQEAJCQAgMgsChQ4ey69evL3hrcLKAQidCQAjMFYGvv/46V91mcOaKg/TuBwF7x4P3nFhvbR/83N3dzZdWcXS/tUN5loaRTh3OkZRlECxFZMkY6fxZnmX0KBPjRV14UAe6Dx48qFSeQTxrw+FhheFvPGPyW1k72jIv09HVz8rE5LZ8HYWAENgcBFi18Pjx48xtuzZHO2kiBISAEGiAAAGWBXwNqquKEChFgKDd3jnhWzruu00E6rbPP0F+8a2djPLUM8Jc26DAnvSRRxmXng04yIvxIgDw/R3aLl3j6x8ZzJi8xt/KlMnvYmD1bHDCtatvTG7jo6MQEAKbhUDR9jxlUgLNtjZLPWkjBISAEKiPwMOHD7Pjx49nt2/frl9ZNYRADQQuXLiQ7d+/PyPIp9pXX32VPffcc7nv3bx5M/voo4/yPJY4PHr0aInysWPHMt6NOnfuXL5G2zJfeumlDB/md+DAgezbb7/Nz2O84MEyCmYq7Zf6zsnFixf38PTEZjihZb8q+a1c1TEmt+7PKuSULwSmicCrr76aC04bwk+Dk2naUVILASHQEgLMXO/s7GQvv/yyBictYSoycQQOHjyYMRDwBxgE+0ePHs2++OKLjBfIedLAQMT9UbfOL8aLgVHqYCTE78SJE9n58+cz6DNYoUyK/CFalsZAzPSLyW1ldRQCQmCzENje3qYdeXrjxo1cMb1zsln2lTZCQAjUROCbb77Ja7z44os1a6q4EKiPwLvvvpvhc/bkAQoMFj799NNs3759+cCENBuY2BOW+pyyLMbrvffey+7evbtEMuWdE6tw8eLF7MqVK4snNKTXld8GIkbzzp07dhqVe1FAJ0JACGwcAjxRtifAG6ecFBICQkAI1EGgWNevD9DVAU1lkxHg/QnexeC9EJ7SUZEj71vge/wZqPDnXQ6uGZCwBps6nFOed0S4dt8LIZ008lirbS+WV/FyZYA+PKnj1qtSEFnt/RjKlskfwsDKG3/omR6ufC5GVTIpXwgIgekiQPvD05PpaiDJhYAQEAItIVC8lLsUaLVEWmSEgBAQAkJACAiBBASKjTbyiRot60oATEWEgBDYXATu37+fK1esed1cRaWZEBACQkAICIGRIsDGIPzY+EKDk5EaSWIJASHQDwJa49oPzuIiBISAEBACQiCGgL2Hxjt5GpzEUFK6EBACs0Dgu+++y7a2tHHhLIwtJYWAEBACQmCUCNjghAlDDU5GaSIJJQSEQF8IPHnypC9W4iMERocAL9WfOnVKL6GOzjISSAjMEwG+06TByTxtL62FgBBwENi7d69zpVMhMB8EfvGLX2R/+ctf8q/Jz0draSoEhMDYEODDsPbT4MSQ0FEICIHZIcB2pijN9yX0EwJzQgDfZ4vjf//739nZs2ez7e3txVfr54SDdBUCQmAcCDz77LO5IDw50U8ICAEhMFsEisFJ/n2H2YIgxWeDAN8b4VsotmXn1tbWYgtt21Kbbw3wbRGWe9ngfTYASVEhIAQGQ4C2ie+cFG3RYHKIsRAQAkJgUASKj8jlM8h1BeHjccw8E+AVH47S8fsPaAmHCeBQDFCW3J7gQP6cfwROPjwBH3bbXT7gefr06cWHTpccWxeTQIAJEWwaapsmoYCEFAJCQAi0gYANTo4cOUKjmPRTAKfgzQ2KpnROAMesZBEEBP2dpyUaeMvHp+TXvqyaeQ/e2qNPtMHJj370o+T+ePRKSUAhIASEQF0EbHDCE5CUuszM0RES5GnpSwpiKiMEhIAQ6B4B2vIPP/zQZt3zJ4BF+949c3FoBYG6/XErTEVECAgBITA2BKwxTHmMzGCEgQmzymPTQ/IIASEgBITA9wjQrvPuFJNIem9qOl5Rpz+ejlaSVAgIASFQE4HUxtDKlS2HqclaxYWAEBACQqBDBJh0Spl46lAEka6BgPWz2ExbCdcATkWFgBCYJwJ8sfby5cvZzs7OnnkiIK2FgBAQAtNC4Pbt23tee+21aQktaXMEtoSDEBACQkAIlCOgQUk5PsoVAkJACIwRgYsXL2pCaYyGqZBpck9OWPddPPqpUG0c2axPn/NSkCnZa9NtJVuMo02QFEJACGwuAlNqZ+taYdP7yLp49FV+aj7Vhp9En5ywXeaXX36ZHTx4MMefLzY+evQo++yzz7LDhw8PMhJlJwaE2d7eHoR/E0dk1H79+vX8payhcEuVu22bT81eU7JVqk2tnGxhSLR7pBH+05/+lN27dy/bv39//pVt43D//v3s2LFj2aVLlwZrM00WHYWAEFhFYO593ioi5Smb3EeWa14vt02/mlrfDVKd+Ak7G7CtZrFl5pJFANz9ouxSZscXPC2Z6otNY5e9C5uPXeeYu05V7pg+pE9Vpz7khgc7cK3Tttje7LSPvh3Yb187xvio6FoIDIuA+rzm+PfRLjeXbtiabfvVlLFuInu0PyaDjtRGaiEz09myRVsor8s0gocpL49C/lDw0iVmKbS7svmU7TVWW6XYM1RGtgih8n1atDGMV1nJ4ZF78RGwlbzintf2wyvIKEEIDIOA+rz1cd+0PnJ9RL6fBGw7fp5y3w2mdf0k2B8z4gPY0BMT13DW2RZE3KxOz4cYELWpELhhqDZprkurS5tP2V7r2Cr1Y37r2q5O/bnaIgUjawzX+SItNo9hzLIvBi5lEz4pcnZRZoy+2oWeoikEDAH1eYbEesd1+sj1OI+zdld+FetXxonCqlR1/STYHxM4s2RrlfxyilXus7Olg+eJzbIkk7xqpENXg5qubL4h9mpkq7EFfHO2RUoLYe3ZOvcY7Wbx9GSFJRM+Y/MJE3Kscpl8OgqBthFQn9cqoo36yFYlGAmxLvxqQ/puLJTsJ25/nL8Qz3KpnZ2dbHd3N9/Lv8ze7PfPz45lZdvK44XTX/3qV9mNGzeiJBm5nj9/fvECPwV5KSdaoWYGGH3yySdL9Nkk4OrVq8k8Dh06lH3wwQcEMsl10OvEiRM1pa0u3qXNh7bXULaqRj29BHZ/++23swMHDmQvvPBCdvfu3Vq+ZpxkC0OimyON6fb2dvbWW28ttZ123x45coR2K/l+70bK+VGlY//4449zxV9//fWVe4fJtXPnzskuLboG7e7PfvazjH7xt7/9bU6ZOIFr+u6bN29mDx48yD7//PM87/r16xltnG8HbGPxxa1bt7J33nmH2GRhK2x75cqVPAbZ2trK/vrXv+ab5LDq4+rVq/nGFGfOnOF+XNSB4Sb3eW2ZsU7f2SSeaUvOMdHpyq+G7rvtnhki7l3Yt3gqke8otUiMnNAwMBLCIJEirSfzaKuKn/v4i8AAGYtR2Nry0Fi69G10V2CRTJ/Rdd062IZHY8lMEgt2afMh7TWkrYC+jdlo7A2GhR/nFqXjdZ8epvrRnG2RcivYvdz0yYm1hxz58wQFzKHn2i9Flr7LtOGrfcucwg8boJvZw18HXtgshZTKNECAJ4m0VW7/y/3An/bZSBZ9+tJ9Qr5/L0Iv1AdSjnvN6FUtIdnUPs/0X/dYt+8Ef91LWdaVXw3Zd+NLdf0h5n91/GSlP+bm5x8j7qYXDUdSWbfeOufIVtbRA6Lf0boN4zq8DawAvaXGN4UHAWbVOz0uHW78Am83uZXzLm0+lL2GtJUZxfdDS0892sDaH4xbRw4d9Ax11iEec7ZFCA8/zXym6X1GPd/m2JCAOLbUy5dhqGtf7qHkaJMv9vTbWOzh2nfsdmkTjyFo4fsu3shQYL7Uj4faOvo82ixXbmi5EzOWR33Kmj19u1s5O1LWp215/rGQf0kOv4x7Dd1CHzd5cd5ljLJgssaJtYPF0aUUjXPqxjMu0U0678qvhvSpJv4Qs2kdPzG+bvux0sHGGAGY31BwU/rBlFs/JZCiowzcGEamtJGwwI2RJg1ViE6VjMbIPwKSOztDPvqAg1+2igey+dj5NLiGjvFFlyZ/aIRoO2ld2ryUd1f2MswcHTu3lcuL83UDvpAO0C3smfuCdcbGu8LvZmcLwyrlXivaipVgyrCtOtIOhIKiwkZB7CvslftsFd+K9rKqep6/rq8mMem5EEFgiCXp4M4x1D+E6iitGQKhgTn3Q6jPZIVDKD6gj6AOgxX6X9rFkDTWl3CvF/d9qJilTbrPC+FkitmxabsQ6ndicY7xwj4pbayVH9uxTlxV4Vtd+VXQ5w1H8/1NiXvRK9QfJzmZdbi+oXDQssd7ZQ5MZ0HnTsNV0mlUNjzQKQYRGHSlwauS0QweOC5mZiwPeUMdexWP1JvZcLYZKBqOuv8yexR6dGnzoezVm62wNf7m//FjP43rkL+YP3nHFR2c/DwPX3fS8sfKJfbeeFu4WHBO+8S9Exo0+GVDjaFfJnZtdUNBQ9HmLdnJ6FS1E0VdK750TGwvl+p06KtLfMZ8gU+AXcl9MmbxJyVbbHBCekCRpb4aO9Feuvcu/lvWfpIfoe2zm3Sf13a74IGz0u/E4hyrlxrPWPkxHWm768RURUwWU6Ervxqq70bPZH/AL8va1Tp+Yn0qtsnBpjFYXETgLwYkQSFoGAqiwdplN5VVKBuclOXB1+dNQ+Y3ZlUymhzu0YDygw/wCjlrFQ9wCNVzedo5vOHj87b8dY9d2nwIew1pK9cWvt+5eVXnMR2oZ/df6F4q87s526IKb/IN86r2L0SraJCDHQg2AftQvTJ7UT5kY59OmV39srHrdXw1RnPM6eDaVXs6Zr37lg3/9vs5rkkPyLJkE3zS93+uzVeL+3VBhmto05/59RaFipOp93lV+qFmk3bB2kD/3gAv344upshTlu+W3eTzrvyqzJbYzL8XuEfsPjG8q/oaK+ce6/pDFY86fmK86Y9/gFDvv/9+dvv27YV8OClO546G2DGK3bzcHbAox+j6u+++yy5dupS0HGHBpMbJ3r17o7uDnTx5MpffJffmm29m7JLDbx0ZDx8+nNM4duzYgjxBIjuJ2A5aYJTK49GjR9mLL764oFV2sr29vQeb/OY3v7HAtKx47bwubT6EvYa0VW3wIxVCOvhFz507t0hK8TvZYgFX6yfsNrR///7s8OHDS7sCwejx48dLO/uRlmKv1oUUwQUCd+7cWdr1aZGhk9EgcO/evYydQ93f/fv3F5fEGe7vwoUL3Fd7rl27lu8I5j9VdstuWp/n6rbOeajfCcU5Po868Yxfd5Ouu/KrIfpu7JLqD6n92dp+wkiFEQ4jFxuUcM7NTnrspie9ataR+lXOWDZKhL7J5NMhr5hVXmQxenTTYjJShlFfjDYEyccIRrx43JzTJ71Y95fvbFCFA7SsvNGrOpoDVJVrko+8Xdi8C3tNwVbYwJ+5qGsX6vv+yH3IZIHri8UMQ6XfzdkWKdgXOFa2YSFatFmxto088wV812waa4tc+jGabpmy9tItV3Zu8pWV2aS8FFw3Sd+hdKGd8mfUrf0KyLTUv+LX7pIu7k/sZr7q0qVtc/tT7rGq+2JKfZ6PVYr/hvRvs+90ZWoSz7j1N+m8C7/qou8G8zb9IaU/q+Mn0f7YGNE4cKNzBCDXiSwosjRuGOt4TXHSqGd/hLNzjqGbLHRTGQ/oh+qQjzw0WJThzzngW12OvoyWRzn48ljO0vyjNY5Gm3xwMYysfIyH5XMEB/c69bxpvRT6bdjc59OFvaZiK+tEfUxSr9HTfMl82jpgBqrkuR20lY3Rn7MtYpi46dYY1vlCPJgXbUbefnDttznYypZFlNnL7O22j+u2l65+Zefr+moZ7bHlcQ/R1o1Nrk2SB4y5F1ivjg/TR6Ifx6IPy+MAynF/4POUtfuEsuThl9a/ms0oQxr3q0uPc8PQ6NGnF3JY1tJxCn1em+0CtNqKc1wgu4xLXD5TOW/br7rou8GyTX/gPkPOMhvV8ZPk/piCxQ2f80YpGhVXEBjToJjSbp6dlzUUVqZscALfOgoaTTtWyVgFrtEpO1bxwHHdhrSMlp/nY+7nt3ndhs27tNfYbdV3wFfld3O2Rcp9YY2h286l1Gtapspe0F23vUyVrW9fTZWri3KhSasu+Ijm9BAYe59niK7bLrTRd5os68QzRmPTj+v6VZd9N9i34Q9V/VldP0nujxl0wNycKNKZ5fkE0DZIsfJ2XPemgg401gjSS2UEQJN1jWMpD7ArgF+DRfdV27R5F/Yau636CnIdTyj1O8p1de+M3RYORtHT5MYwSqF2RpK9qqiWTeZU1bX8AXzVWPd+TOmDehdKDEeBwNj7PAMpxYfL2oWW2utcnKnEM4bdEMc2/Kqrvhs8WvKH0v6srp+4/XH+QnzMcMePH89f7MThefzKy+f+r3gh/el//vMfXmRbeTHUL+9fE8Ayq/XkyZPs5z//eXQ099lnn2W8/NbkVyYjYDz77LNNyC7VKeOBk/KCPi+5L1Ua4UVbNu/CXlOw1e3bt3u1cZnfmXvN1Ram/5iOKfYqkze1vSyjYXl9+6rxHeLIS5n6CYEQAmPu80LyhtKq2oW2+k54TymeCWHVV1obftVF343+bflDWX/WuZ8Us2ulazirjN10OZNP125AP32d65ZGj6UiTG2Gsg2bA0jb9pKtSt2sNFO2CMNDI83Ey5ju0bbay7DG80tleUQfbcf8kN0cjcfa57kIr9MutOn/Y2orXXzGeN6GX7Xdd4NTm/4Qw72Jn4yxP47pt5IOqIUCK3ljTGBdH53jGGXrQ6Yp2WvTbSVbrHr8pBvDVXWUIgQmiwArKOxfdznImJSeUjtbF7dN7yPr4tFX+an5VFM/UX/cl0eJjxAQAqNGoE5jyGNqZrHGqBCdwRjlakumIbDfdEzbsk0bdFhbz8AEWsVk3kb7cxuYiYYQ2DQE6vTHm6b77PUZopOfMuh9BSiyS7WXdGGLOo0hZcteOK3WoJsSzDI3eYTejTTdUO0b+zlg2o2l6lO1e9BWGNAWFlt11yemGkKgJwTUZ9cDOqX/trZg0/uzesjNpHTfnfyUYe0zQJFdyj2lK1vUbQyL2d3Kvd3LtWknl2AOXBgwWWDXDuVxUukD+7lhOgZLs2TF3RUUO6/zfsUYdJIMm4+A+ux0G6f233X743QJVHISCPTRyU8CiIiQQwUossuqQbq2RZPGsNjSc/HxOGbQ+hocIC9Ly+xFyzE+yVm1YnspXWA/d0zbs04zSo4/5wQYqJCWMtPajKNqCYF2EFCfXY5j3f67SX9cLoFyJ4dAF5385EBwBB5LgCK7fL/NoROwdLqUqmljiHy2xTq7fcX+BFrMAjOAcdwteEowZk9CYvTc9Lk++o5hn4q14fzDH/5wxW5zxTTokD0m0u5hF/4EfFzzRKVHEcRKCDRCQH32MmzrxFJN++NlCXQ1eQRinbwbALV9nhpAAK4FESlBYJtyDh2g9G2XVJsMYY+ubUFjuG/fvkbLSJgVqoNJ0YmttBt17I2toJMy2FlhtEEJLvahQUYI6xjOwnSDHEOqCIEBEIi1LW3GJT6tJv22DaR8Wl1d1+2/1+mPBzC7WHaJgNvJ9z0ICAUQ6DrUjT6moG8ou4Rs0rc9+gwWbaaGJxZd3GfQZwa4aKRXngIVa+vzNffMGPe5RKwLfYekWYa1cB7SMuItBDYfgaH6bAYWqf229UNdDUagu07/XUy6WX+5+U4jDceDQFkAgZQKIvq3VZlNNt0edCg0qH3sDgTO8KHxhq/WK3fn6y7WZ8+ezW3MU67uOIqyEBACQqA/BDax37bBSWiw1R+y4jR7BNwAQsHaONzBtckcgro+BydmYWavjh49mgfMc1+eZZh0dRTOXSG7TBc/5gnrcqqu5oKABv7DWnpT+m0NTob1I3H3EFCw5gEygsuZBXVLW5n2Af9PfvITBXM9AE1nd+rUKQXNHWNNcDS3neM6hnQy5FO3iZ2MQhMWdOr9djHB0egd0AmbTaKPGQEFa+OyzsyCOtt5a1xGkDRCYEIIaJnihIzVgqg8dbbdBYsn0C1QFYl1EJh6v63ByTrWV10hIAQ2DQENTjbNotJnEASKteKDfANoEIVnxpQnZASQ9mK1npbNzAE6VrdYHmjvY3bMTeSFgBAQAiNGwNmlbsRSSjQhMA0ECF6deyp/t6rL3YH6pN1k+9Y+5euTVzFAmYZTSspJIKCnr5Mwk4QUAkKgDwSKnbom+14CwSC7qhUvE/YBWc5jKL69KShGjRFgmU+dbwD1GVS3xSu0o9AmD8zAbZ1tYhs7kyrOBgHbHVQfYJ2NyftXVIFL/5iLYzMEbInClNdNs/Z7iAbd58v1WHfuqTt4o6NkJm+dGeK6PJt5sGr1hQDLmmLfLbLAigAev8H2U25T+sJUfMoRmFMsZctC1W6W+4RySxDAeewRd6yYH7jEyjVJT+HfhG7fdYbWY5OCyaa2s6CCwKMpjaHrEUAPMTjx+dKRjhFHgsRiyUCSqcDSZsabDrbq8kwSTIVGgwB+bt8tmsO266MBfsMESYkB5hJL2UQhJv7BhtlZ6vSEwM7Ozp4zZ86UcnvmmWdK89fJTOG/Dv2+6g6tx/nz57OzZ8/2pW4yHwK7P/7xj8nl1yn4wgsv5NX//ve/r0NGdbMs293d3bO9vb1nTGDgSzs7O7VE+sc//pEdOHAgr3Px4sXa+jThWUtAFR4cAfz84cOHew4fPpx9/vnn2bVr17ImvjK4IhJgUARSYoC5xFJ3797Ntra2cntocDKoW4q5EBgWgU0JJtdB8aWXXsqr37lzp5QMTwVsyQaz6ZxbBXv0Tjoz7gSnxZOMfFkQ18x+UYcZV/68NGxLhyjLzL7N1kO3jB+zbZSFH/UePHhgonR6LONLHjraEwp05hzd0JM8E86lQ16BFQFeXsf04po6HMHO8HGxsXxmsaFFXf7wQ4ZPP/00++9//5vduHGDwVPluznw+tvf/pYxWDVdTA+OJkOZLjGeMf1cfZDd9S3jo+M4Efj444+zU6dOZQSZ45RQUgmBaSDw+PHj7ODBg9MQVlIOi0CsM0UqOmqCAZOQsm7ARLBgQYeV8Y/kE6S5gQv1LLAoCwpc/vAuC17gGwogfXmGuHb1KJMzhkUssAGTWMAGH/LBGbp2XVbelY06PIIlkCoexZK98ovJRsGYPvgEcplsyEn5ruxHAMvLnq4vryhSJFAGubg037blHVYHeQ0Tyhu+hoWVs3ToQYN0t7xd+/yQ1w9eKWPyGP22jyl80clwNPuaHKav0Slwz3Ekz8eRevijYUMZd2DgY0U+5Y2ftUVc+2WtTOwILdODMjEbxXQJ8azSD36+rWPyKV0ICIFpIUC/QLtCn8nR+jW08Nsb8qz9Io92rap9J3/KsVTRzi+18dOysKTtDYGqztS9oayTdoVLDZj8ABe6RicWFJDv8rfrWPDi6+IGkMZrqKOrR5mcZVjEAhtoxwI2w8wNwqrK0/hZUAldt4GN4ReTrUofZDGaZbhYmXWOfqMeo4UuLl6UM/3oHPjjz1YGuW0ggT4MWsAMDK2z4Zw6dh/4Pmy0TCbKgZ1dc4Su0XPT2zxP4YuOJi+6gyt+Qpr5TYgOclLX1Z00ro2en086aaZjWb5f1urEjtAyvpSJ2SimC3V8nr58lHH1o7zLMyab0oWAEJgWAn7/hfS0i6Rz7rY3tDXWZ5iWtPcp7TvtkU2MGV2XhvELtU1u2+O3VW55X5e2Yikm75gkRAdk1rIus5yOKwhcunQpsyUvlsn1hQsX7HJx/Oijj7jZFtecpK6TZJ3uN998kwcA3JjuY72bN2/m63lx2H/961/ZvXv3lnikXiDz/v3781labvKvvvoqe+6551Kr91auTM4qLI4dO5bLee7cuaXlBa4NWUf/7bffluoTK49tnjx5kh0+fDinD57YLeUXkq1KH5duGS5uuabnR44cye7fv59U3fVPKnCNr4M7f/z56tWrOUasS9+3b1/+1Idyv/71r/HBjPuFsmB69OjR7NVXX83Xq7/88ssrMvj8KJB6b60QWzOhLt8nT57s+eCDD3Kux48fL+Ve5Zd+5UePHvlJSddFJ5hUlkIpNqoiBs8U/UK2rqKtfCEgBMaNgGKpavsQD/Czd2C/f/Okup5KzBCBlM7UhaVu4Gd3JRkAAAgJSURBVOLWPXHiRMbL2XTO9lKhBQVffPFFvp6X0XydwQnBi3X2HC2AdPmO7TwmZwoWpmtXOjEoYUbnxo0bT4uXQbOf/vSnBNmVLH3ZUvQxogR2NFxd2u/kyZMMIDJmheq+0P3uu+9mP/7xj/Mg1gZuDKbNj19//fV8UPLPf/4zH9iB4fPPP5+rx7sJDF5svbr5t1vfcLDje++9l/3+97+3y/zYxzsndfkyoGRWzXRj9u/hw4d558M6fXzA8GLCgAEadnB/vAf0hz/8Ibt69Wp+Lxs+lCHPcHTrhM7xP2vPqt4t8uuX2YiONKQLA0+fJ+1bmX4+X10LASGwGQhY25OqzRxjKd7z42f9r56cpHrLDMvRmd66dWtJczr2X/7yl0tpXBC4sNOC+6sTMF28eDG7cuXKIoCATllQ4PKxcz8AdoMQAkh7OmPl7fGhXY/hGJOzLhZd6fLaa69lzAKBHYNGCy7r8qvSxw/sYrjU5Rsr/9Zbb+VZPFGL/Qi0r1+/nv35z39evG9CWRrTL7/8Mnv77bfzx/MMorkf7EeQzo5ghhUYGj8Gd+z2Qx0wZVcp89sYP+iAPUuCqENdeHEPUcf4tn2s4svAjpfOv/7661wObMiOa8jI/80338xFcvGyPAYmpP/ud79bLIdiKQFPXWxwA6ZMOJjO4AYODF7RG7vQXnHN32xFHjbgyStYwavsZ7Soz6CpzEYxXaDv8yzTD54mb8ryjTL5Q3nQd9MZKIKjm9bmuc+vTdpGy5aauMtYLK/to69PV/jBh8kLd4lNmS51MfD1KKM9hry6eIxB5pAMiqVCqCynEZ+lTjYt19TVLBGgk7cGkCPXAEEgQgPtvndAQ+IGTOS5+VUA0slA18oxs0qaBW502tCjUw3xt/IWvFCXht5kNvmgx5/yxmuoY0iPkJymWwgLa8DBxg1sSCfNMAAHzs0mPu+q8mAEprxHYHSqOtGYbGX6wMfNhwZpHPGvruyHXug3lC+IrxDoAgHuJe4ZlzZtgdvWunnrnof4rUvTr087R1tAepeDLOiH9OkSP2xV1a4iV10MQnr4uI7xOhWPMcruyoTPKJZyEfn/edHHL8Uv/8/VmRAQAkKgBAFrXK0InZ01tpY25SPBDgOUKesg2YWAiwD3qE3wuOldnffFr6+AtS99XHuk6pZaDtpD6OHqtM55HT3X4aO6wyGAjXkZHj81KbSsy5DQUQgIgVIEeO/jlVdeWZRhmc8bb7yxtBRvkTnBE96d4YV/e1IzQRUk8gwQsEkCnhgwoKZD508Hz2w6EwY81QYKlk/633jBv8kvAoLc33maSj1o8mdAw5MV99qF1nhxtCcYMX6kh2R26YXOkRP6yMDR7kuO/ndoQvXdtBgt5OIpsA3g4GO6U79v/FyZy859DLhGD7OF6YU+ZXqU1XFpYAPKmkx17YlfMvFjfgkdfI5r13eR13QwXu6xSk/K1pXNpa/zYRBgOTBLumzp8zBSiKsQEAKTRYDOg78FDAQ0k1UmILjbWQeylSQEBkWAAQNBnQlBsGaBNQGgpVtQynXo6Sb57r3LtUuXANENJDl36XNty8J8+v51TGaTNXT061AG+YynL3+IhqVV0UJeNyC2ANjq+/qQ7vNvEz+ftsnhH/1yXLt6+HL716ZHVR3zA7O/j6f5oC+ff02fga9aOvLaeZk/1dGzqWwmh479I1A8LVlqX5BCu3X1bwtxFAKTReDy5ctL2xRPVpGI4GfOnMk3ZohkK1kIDIoAL9mzhTeBHoLYlui2YxwBPE83Kcfuc3V+bCHObmr82HKcmUzbHY3dgyyPfJ6ish02cvAif9m2zjGZb9++HRXPtl51eca2sY8SKTJSaKErs7f82ICBWX5m4Hd3d5Pbu67wq9Kv63y2gccP2IEOXk3sST12LwTXIhjN/cdkr+NPVid0bCpbiJbS+kGAzQK2trYW/mVcNTgxJHQUAkJg9ggUg698Fsc649mDIgBGgwA7oIW21D5//jzfIOKbMk/ZOS72TZm6AXdIcYJLvs2TssU7/JpsA15369WQnJbWJq2+8TMdmhzdrfT9+jE9QnX8XTBjPujzCF3rkwEhVOadxi6t77zzzspkit45mbdfSHshIAQ8BE6fPp1vy+sl61IIDI5AbEttZoxZXsNMPx8A5emK/QgmLUC3baotr8mxj23A62y9WqVDCi17QgQtcNy7dy9Lt/InBX3jV6VPLN8fRPi2DulRVSfEK+aDobJ+mj4Z4CMy72tbKkj7pZ8QEAJCQAhUIGDLOiqKKVsI9I4AwTPvCbAWn7+9UMw5y6zsb4KRb++lUJd1+azxZwkY1/w5530rZtS55tzySePa3gtw6cGLAIOynMPTzYcWaRx9mU2+2BG+9p4ER66NlslrwU2MhqXHaJEPbfAx3JATHayur0+X+Pm0TQb/6NrMMDA50QNfQCezKfUtnzyzi6WF6lDG/MB4mBxN7Gl1kQs97dpkMP91/SmEh5UPyQzNdWQzmXTsBwG33eiHo7gIASEgBCaMAB0fDeeEVZDoQkAIJCBgA6CEoioiBIRASwjYILQlciIjBISAEJgHAswUM0iZh7bSUgjMEwENTuZpd2k9LAKsTrAneMNKIu5CQAgIgQkhwPIBljVwnJDYElUICIFEBNylSwqUEkFTMSGwJgJMCPBfk4yqCwEhIATmiQBr1VkjPU/tpbUQEAJCQAgIgfYQsPeI2qMoSkJACAiBGSKgJyczNLpUFgJCQAgIgcEQ+B/bXCpev77hDAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "From the q table it seems that the agent learned for example that continuing to drive on a red light produces negative rewards. \n", + "Compared to the basic agent, the default Q learning agent has improved total bad actions (down to 10% after 20 trials vs 40% in the base case). The reliability is also improving over time now, so are the rewards.\n", + "\n", + "Exploration factor declines as expected across trials to zero so the decaying function is implemented correctly. I had to apply one fix as epsilon 0 was internally represented as -0.0000 which cause issue with probabilitistic action choice.\n", + "\n", + "The number of bad actions descreased with increasing number of trials, the average reward increased.\n", + "\n", + "Safety is unchanged at F, but Reliability has improved to A.\n", + "\n", + "The lack of learning enough shows up in sim_default-learning.txt, as meaning states are still 0, so no accumulated rewards as the agent has not visited them yet. With slower decay and more training could probably get better value out of this default agent.\n", + "\n", + "Here the bellman equation iterative update algo:\n", + "![image.png](attachment:image.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "## Improve the Q-Learning Driving Agent\n", + "The third step to creating an optimized Q-Learning agent is to perform the optimization! Now that the Q-Learning algorithm is implemented and the driving agent is successfully learning, it's necessary to tune settings and adjust learning paramaters so the driving agent learns both **safety** and **efficiency**. Typically this step will require a lot of trial and error, as some settings will invariably make the learning worse. One thing to keep in mind is the act of learning itself and the time that this takes: In theory, we could allow the agent to learn for an incredibly long amount of time; however, another goal of Q-Learning is to *transition from experimenting with unlearned behavior to acting on learned behavior*. For example, always allowing the agent to perform a random action during training (if $\\epsilon = 1$ and never decays) will certainly make it *learn*, but never let it *act*. When improving on your Q-Learning implementation, consider the impliciations it creates and whether it is logistically sensible to make a particular adjustment." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Improved Q-Learning Simulation Results\n", + "To obtain results from the initial Q-Learning implementation, you will need to adjust the following flags and setup:\n", + "- `'enforce_deadline'` - Set this to `True` to force the driving agent to capture whether it reaches the destination in time.\n", + "- `'update_delay'` - Set this to a small value (such as `0.01`) to reduce the time between steps in each trial.\n", + "- `'log_metrics'` - Set this to `True` to log the simluation results as a `.csv` file and the Q-table as a `.txt` file in `/logs/`.\n", + "- `'learning'` - Set this to `'True'` to tell the driving agent to use your Q-Learning implementation.\n", + "- `'optimized'` - Set this to `'True'` to tell the driving agent you are performing an optimized version of the Q-Learning implementation.\n", + "\n", + "Additional flags that can be adjusted as part of optimizing the Q-Learning agent:\n", + "- `'n_test'` - Set this to some positive number (previously 10) to perform that many testing trials.\n", + "- `'alpha'` - Set this to a real number between 0 - 1 to adjust the learning rate of the Q-Learning algorithm.\n", + "- `'epsilon'` - Set this to a real number between 0 - 1 to adjust the starting exploration factor of the Q-Learning algorithm.\n", + "- `'tolerance'` - set this to some small value larger than 0 (default was 0.05) to set the epsilon threshold for testing.\n", + "\n", + "Furthermore, use a decaying function of your choice for $\\epsilon$ (the exploration factor). Note that whichever function you use, it **must decay to **`'tolerance'`** at a reasonable rate**. The Q-Learning agent will not begin testing until this occurs. Some example decaying functions (for $t$, the number of trials):\n", + "\n", + "$$ \\epsilon = a^t, \\textrm{for } 0 < a < 1 \\hspace{50px}\\epsilon = \\frac{1}{t^2}\\hspace{50px}\\epsilon = e^{-at}, \\textrm{for } 0 < a < 1 \\hspace{50px} \\epsilon = \\cos(at), \\textrm{for } 0 < a < 1$$\n", + "You may also use a decaying function for $\\alpha$ (the learning rate) if you so choose, however this is typically less common. If you do so, be sure that it adheres to the inequality $0 \\leq \\alpha \\leq 1$.\n", + "\n", + "If you have difficulty getting your implementation to work, try setting the `'verbose'` flag to `True` to help debug. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation! \n", + "\n", + "Once you have successfully completed the improved Q-Learning simulation, run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FcXawH9vOiXU0FvoPQm9KL1ILyJClCYigp8N2w2C\ngNiwIFiver2KIlIuTQUsIEQ6CJjQO0G69N6SzPfH7jnZ008CIQHm9zx5cnZndnZ2z56deedtopRC\no9FoNBqNRqPRaDQ3TkBWd0Cj0Wg0Go1Go9Fo7hS0gKXRaDQajUaj0Wg0NwktYGk0Go1Go9FoNBrN\nTUILWBqNRqPRaDQajUZzk9AClkaj0Wg0Go1Go9HcJLSApdFoNBqNRqPRaDQ3CS1g3cWIyB4RaeRH\nvTARUSJSMhP60E5Edlu2j4rIvebnV0Xk45t9zhtFRIaIyKIbOH6xiPS6mX3S+I+I1BCRjSJyQUQG\n34LzrRaRPrfgPKHmNRXP7HNpNNkNPZ5psgoRmSYiI7O6HzeKHkNuLlrAykJE5EkRWSciV0Vkkpvy\nViKyXUQuicgSESnjoZ3+5o/igohcFpFUy/YZT+dXSpVXSq26CdexWkSumOc7LiIzRKTQjbarlBqt\nlHryRttxxjLAXjT7fFBE3hYRyYRzjRORL637lFItlVLTb/J5nK/pgogcvZnnuIMYDsxXSuVWSn3h\nXOj0PJ81f3tVM7NDptCuRKRrOo5xENyUUlfNazqcOb3UaDyjxzPvZNZ4ZkNEAkXkkIj8lVnnuNWY\nAuol87s4IiJfikiOrO5XdkSPIdkPLWBlLYeB14GvnAtEJAKYDbwCFADWAW4n5Uqpb8wfRW6gM/C3\nbVsplc9N20E38RpsDDLPXxkoDIzLhHPcbCqbfW4NPAJkupbhFlDZ8t0XdVchk77/24kywBYfdWzP\nc0FgLfB1JvepP3AK6JfJ59FoMgs9nmUtrYHcQA0RqZkZJ8iisaOt+V3UBRoDL2RBH4CsHzt9nF+P\nIdkMLWBlIUqp2UqpucBJN8X3A1uUUv9TSl0BxgDRIlIlI+cyV4JeEJEtwDnLPpv5wj0iskZEzojI\nYRGZkJGXiVLqFPAjEGM5dw4R+cRcgTooIu+KSLAffbZrf0Skiogki8gjZhvHReRFS93cIvK92f/N\nIjJcLKYaPvq8HVjt1OcCIvKteY8OiMhoEXH7exGRf5t9Oicia0Wkobm/G/AcYFuRXWvuXy0ifUQk\np7m/gqWtEuaqbX5zu7sY5mxnRGSZiFTz55qc+tdORHaLyCsicgz4t6+2RaS+iCSKyHkR+U5EZotp\nAiFOJpLiZHJjft8Tzft2VEQ+EpFQp768bH6Hh0TkYUtbuUTkQ/PYsyLyh4gEicjvIvKY03XtEJH2\nHq65h4hsNa9tkYhUNPevBBoBX5r3vrS3e6eUSsaYCFrvjdffioh0FJFdZvn7Pr4eRKQS0AB4HOgk\nIgWcynua39N5s91WIjIeqGe5jvFuvocC5m/iuIjsE5GXRAwtrfkd/m7e6zNimFe1tpzzMRFJMs+5\nV0R6+roOzd2NHs989jmzx7P+wExgofnZ1lZ/EVnu1JfhIjLDcj2+3tf2sUNEConIz2afT4nIDyJS\nzNJ2RRFZab47fhGRz8VixSEiTSzfzQYRucfXvQNQSh0CFuH6XXjq+xoR6Wh+bmW+G1uZ2x1FZLXl\nu4g3r+W4iHwjIuGWc7h71hzGRyDEU7/Nd+1i8z6cE2Ncamop9zjXsBz7iYicBuI8nCPbjSEaLWBl\nZ6oDibYNpdRFYLe5P6P0AtpgrMo7cx140ixrgrFyOCi9JxDDlKIbRl9tvApEATWBOkBz4KX0tg0E\nYqxiVQA6AG+ISDmz7HWgEIZ2oiPQNx19ro4x6bb2eQpwFigH1Me4Jk9trsK4toLAD8D/RCTYnGy8\nD9hWZOtbD1JKXcIYvGMtu3sDvyqlToshqH2KoV0rCEwG5mZkogBEAsFAKeBpb22LYYLxA/A5xmrz\nz0CXdJzrfaAkxj2pDFTCcWAoAwhQHOOZ+0xEcptlHwJVMF78BYCRgAK+waJhFJEGQB7gN+eTi7F6\nOwl4AmP1+Q/gBxEJUko1Bv7EXKFWSv3t7ULMwfohDAHchsffijnRmAE8j/E8Hsd4Zr3RH1iulJoJ\n/I3leTAH4i+AZ4C8QCvggFLqeafreN5Nu59hfOdlMX73Q81rsdEUQ5NQEPgYsE3+8gPvAq2UUuHA\nvcBmH9eg0XhDj2eu3LTxTETymP2cYv49LCKBZvEcoLY4LiY9BHxvfvb1vo7EMnZgzBs/A0pjvFsA\nJpj9EIz33xKMez8Ox/d2JDAXGEHa+32u+c7xitn/tjh+F976/gfGdwPQDNiL8c6zbf9haWcsUNTS\nzgin09uftQyOj00xnn/bPZlrfmfge67RFEgAIoDxHtrPVmOIxkQppf+y+A/jZTrJad9/gXFO+1YA\nA3y01RpIcrP/KPCQm333emgnDphqfg7DmOSW9FB3NXARY3VHYfxoi1vKDwEtLdtdge3m53bAbnd9\nwngRfWl+rmK2HWGpuxHoZn4+DDSzlD1pbdepv7brOWv2W2FMyIPN8jLm/mDLMY8AP5ufhwCLPLQt\nwCUMUz2Ha3C6X33Mz52ArZay9cCD5uevgRFOx+4HGvi4pjPm3zuWe+x8PR7bxhjE9jmVbQBGurt+\n6/MBBAHXgBKW8hbANktfzgIBlvJzGKuSwRgTo8puri+XWa+0uf0x8L6H7+AN4FvLdiCGoNPQ+f77\neJ7PmNdyCmjipb71tzIYiHc69z+ezocxWfkbGGJuvwqssZR/A7zlpZ99LNvW7yEUSAHKWcqfAX6x\nfIebLWUFzGPzAfnNa+8KhHm6bv2n/9z9ocezWzqemeWDzH4FYLwrLwLtLeUzgZfMzzWB0xhaF3/e\n1w5jh5tzNwSOmJ8rAZeBUKdz2657NPAfp+P/AHp5aPsocN78U8AvQLhZ5qvvHYG15ud48x7Fm9tr\ngA4eztkbWOXpWcPH+OimvSFu6m8EeuLfXGOnj99IthtDvPX3bvrTGqzsywWMFXoreYHzIlJa0px+\nL6SjzQOeCkSkmqn2PyYi54BRGCsm/vK4UioPUBtjJai42a6Y2/stdfcDJdLRto0UpdQJy/YlILep\nTi+K4/V5vFYL1YFwDJvle4Cc5v4yGC+a46bq+wzwAVDEXSNimFvsEJGzGANXGP7fu1+BIiISLSKV\ngYrAT5Z+vGzrg9mPQni/d9WVUvnMP+uq6lGl1HXLtre2iwMHndrdj38UxxCUtljanYuhSbJxXCmV\natm+hOE7UAxj0Nzj3KgyVrxnY6zMBmOsKE720of9lmNTMCYf6XnmHleGv0cY8ADwk5jmTD5+K8Wx\nPHuWc3uiBcaz+z9zewpQX9JMp0rh5n74QVHSBl4bzr87axCUS+b/3Eqp08DDGKvVR0XkR7GYsWo0\nGUCPZ67czPGsPzBNKZVqvit/wGImiKGtsmk1HgJmKqWu4d/72mHsEJFwEflKRP427+1vOL7/jiul\nrnroexmgj9O4U9c8zhPtlaFJbwvUwJjI287lre/LMcxQIzC0Ut8Alc3taLMcESkuIv8Tw1z9HIYW\nxvlZsV5DRsZHd/WL499cw9d3n+3GkAyc645EC1jZly0YLwHA8E0BymPYsVudftPzMCsvZf/BWIUp\nbw4sYzG0MelCKfUX8A7wkbmtMH6EZSzVSuN90pnec6YCxzBWXWyU8vdYpdRkjBWl4ebuAxgTgvwW\nYSWPUqq28/Ei0gZ4CuiOsfpfAGMFz3bvvN1zzIFrJsbg9xAwRyl12dKPUZY+5FNK5VRKzfbn2pxP\n5bTtre0jON5LML4zGxdJE0bBeBHbOAIkYzxHtnbzKqXcmfE4Yz/WQ/k3GBP/dsAx81lzx2Esz5tp\nKlOCDDxz5vOxGON+2ezLvf1WjmB59szJkrfJV3+M9/AWMaI+LsX4rmyTowN4vh/enq2jQCqO35vf\nvzul1HylVCuMScDfmH57Gk0G0eOZ/+dM13gmIuUxzHgfFcOP5yiGZURXEclrVlsAlBUjGmpv0swD\n/XlfO9/nOLNv9cx72xbH918h07TaXd8PYGizrONOLqXUBC+3xOiEUgsx/GHf9qfvSqmzGKbNzwHr\nzbF2nbm9WSl1zmznXYwxrYZ5PYNwfVas98DX+OgOd/UP499cw+scgmw6hmi0gJWlmP4uYRhmRIFi\nOBja/GvmYEQD6mHWGQ0kKiMgQ2YQDpxVSl0wfZIe83WAF74EKojIfeb2VGC0iBQUkcIY9s3f3Vh3\nXZgBjBCRvKat9tB0Hv8W8H8iUlAptQ9Ddf6OuVoXIIbj7r1ujgvHMGs7jmFyMRZjRcrGMYyBzdvg\n/j3GoBdL2sAHht30UyJSVwxyi0gXEcnptpX04a3tpUCYGE6sQSISi+FzYCMBqCUi1c36o2wF5iD2\nFfCBiESYbZcyBVGvmMd+ax5bRIyww/dKmi9BPMb9fsOs54npQHcRaWpqu+IwHO/X+XVnnBDDhr0i\naZEHvf1WfgTqiUgn89wvkrbi6txubgzn/wEYJpK2vxcwVnkDMH5Lj5vXEmDey0pmE8cw7PZdMFeQ\n5wBvihE4pDyGeYfP350YgVY6mt/tVYwJQKqPwzR3OXo8u6mkZzzrh+HfU4W0d0hljHfegwDKCCwy\nB8PHNRjT/yiD7+twDG3FGVMbZM3/tBPYAYwUkWDz3dnOUv4N0FOMIAuBYgSpaCUibiPeumE8huBY\n1c++/4FhXmnzt4p32rZdzwXgnHmvn/PRB1/joztKWer3wRA6f0vnXMOF7DqGaAy0gJW1jMTQdsRh\nOIJeNvehlDoO9MCYTJ7GcH7snYl9GQYMEsNE4xM8hND1B1MD8zFGSF4wJuBbMSaoCRi29+/cUG9d\nGYlxn/ZjOJ3OwJgc+oVSah1pq1tgCDv5gO0YPjjTcW8i+BPGC3cPhhPtCQxhy8Y0DG3PKTEi2Llj\nKcakJC9GlCRbn1ZgmGl9juETsxNDy+VrRcsn3to2v7/uGEEiTmPYsv9kOXYTxve3DOP+xDs1/yzG\n6tw6DH+rXzAcuf3haYx7+RfGBOE1zNVEc/V4MoZp5xQv17YReNS8tuMYTr1dlRER0F9skZUuYAxQ\nzyullphlHn8rSqkjGL/Tiea5i+BZsHsA49maqpQ6avvDEH7zYPh5LMOwdf8U417+Ttpq6ASgn4ic\nFhF3v6fHzf/7gcXmdXi8bxYCMd5JRzG+g3oYkxKNxht6PLt5+DWemQt3/YBPrO8Q8z30Ba5mgq2B\n6U4m2ul9X7+HYUJ3EsPMboGtwHxH9zLPcxp4GcN07apZvhfjOXgVY6zcjzFp92suqoz8TNNIE+p8\n9f0PDAFqqYdtML7Pe83j5wCzfPTB6/jogaVALYz3/QjgflPDBv7PNdyRXccQDSDG70GjubMQkWFA\nO6XUfT4ra3wiItMwzCpez+J+DMYIAqLDwWo0mruC23k8E5EfgNVKqbeyui9ZgYgMAR7QY9bdh9Zg\nae4ITLV3Q1MFXh1jVWxOVvdLc/MQw29jKMbqnEaj0dyR3M7jmYg0EJFIs++dMUwEf8jqfmk0t5pM\nFbDESFK3Q4xEdW4TpJn16omRdO8Bp/2BIvKXiMyz7JsuIgnmX5KIJDgdY4tIlGXZvjVZQiiGPfZ5\nDDOBaeicDHcMItIFI9z5boygIBqNRnOncjuPZyUxTAfPYwSQGKiU2pq1XdJobj2ZZiJoOqbvxEhO\ndhAjl0Ss8w/NrLcQuAJ8pYxEabay5zBCeOZRSnVyc47xGI6sYy37ZmL4qKxRSr130y9Mo9FoNBqN\nRqPRaDyQmRqs+hiJ8fYqI9/CNIyEfM48heFU+I91p4iUxHAedLtqYzp3PogR0ce2rxuwj7RoXxqN\nRqPRaDQajUZzywjyXSXDlMAxQdpBoIG1goiUwIjG0gIjUpWVicBLGBFf3NEEIxfOLrOt3MC/MDRm\nHs0DTSf5wQC5cuWqU6VKFU9VNRqNRpNNWL9+/QmlVKGs7sfNICIiQkVGRmZ1NzQajUbjg4yOPZkp\nYPnDROBfSqlUsaQJEpFOwD9KqfUi0tzDsbFYtFfAGGCCmffC4wmVUl9gOsnXrVtXrVuXodQ4Go1G\no7mFiMj+rO7DzSIyMhI99mg0Gk32J6NjT2YKWIdwzOBdEtcM0HWBaaZAFAF0EJFkDE1XFxHpgJG0\nNY+IfKeU6gNGQkOM5Gp1LG01AB4wY/nnA1JF5IpS6uObf2kajUaj0Wg0Go1G40pmClh/AhVFpCyG\nYNUbI5GpHaVUWdtnEZkEzFNKzQXmAsPN/c2BF2zClUlrYLtS6qClrSaWtsYAF7RwpdFoNBqNRqPR\naG4lmRbkQimVDDwJ/ApsA2YopbaIyBAz8dqN0BtH80CNRqPRaG45Zs6iJSKyVUS2iMgzWd0njUaj\n0WQtmeqDpZRaACxw2veZh7oDPOyPB+L9qWspH+N3JzUazW3B9evXOXjwIFeuXMnqrmgykbCwMEqW\nLElwcHBWd8VfkoHnlVIbRCQcWC8iC3XuH41Gcztx9OwV1u8/TceoYn4fc+bSNXb/c4G6kQUysWe3\nJ1kd5CJL2bp1K+3bt2fOnDmEhYVldXc0Go0XDh48SHh4OJGRkXgLZKO5fVFKcfLkSQ4ePEjZsmV9\nH5ANUEodAY6Yn8+LyDaMKLpawNJosilKKYdx5MSFq3wWv4eX2lUhJChzjLuUUny3ej/3VS9K4Tze\n55wpqYpL15IJD/O+0PTR77toUK4g9cs6CjjXklO5npJKcopi74kL1CyRl6DAtOv65/wV8oQFExYc\naN/X8K3fAYgp3ZIS+XK4Pd/nf+yhScVCVCueB4DBk9ezdt8pEke3JW8O176mpCp2/3OBykXDaTdx\nKduPnidpXEd7Hycu2sljTcqRP1eI1+sE+DHxMCt3n2BcjyiXstfnbeXL5fvYNKYtby7YzhPNy1Oq\nQE6HOt+sTGL0j1t4sG5JOkYVp2Lh3BT3cJ03g0xLNHw7ICIK4PPPP2fw4MFZ3R2NRuOFbdu2UaVK\nFS1c3eEopdi+fTtVq1Z12C8i65VSdbOoW34hIpHAUqCGUuqcU5k9RUjp0qXr7N9/xwRF1NwFnLxw\nlbDgQHKFZnxdXinFP+evUsSHcOGN6X/+TZE8YTSvXNhh/8WryVy6lkKh8FCfbSzefoyBk9bxYWwt\nahTPQ7lCuRk+eyNT1x7go9hadI4u7nLMV8v3cfLiVV5oWxnA6zg0/c+/OXDqMsPaVEIpZRdsDpy6\nRJN3ltjrrR3RisLhYew9foGS+XMSN3sjdcsUoGaJvHT+eDkA+97qwNYj56hcJNxBQAKYv/EI//f9\nBgCSxnVk48EzrNpzkseblaf7pyv46+8zVCkazvaj5wGYNrghDcsV5HpKKhVH/GxvJ/6F5pQukJNy\nLxsGZ1/0rUNggPDoN+v4T7+6DP1uPUteaM7ufy7wyKQ/AWhaqRBtqxVh5NzN9nZe7lCFwU3L27dT\nUhVN3l7M4bNXWPRcU1q/vxSAnCGBXLqWQlCAkJyaJoN8NaAuLasUsW/XfX0RJy5cZemLLVAomr0b\nD8BDDUrz/Zq/Adj9RnuCAgOIjJsPQN4cwZy9fN2hbPLq/Zy+eI33F+50+a6Gt69CUGAAD9UvzZsL\ntvHdmv0kjm7LxIW7aFu9CAVyhVC5aJ4MjT1awALef/99hg0bltXd0Wg0Xti2bZvLpFtzZ+Luu87u\nApaZi/EP4A2l1GxvdXWKEM3thFKKuq8vombJvEx6pD7/nLtCnhyO2g9/+GDRLiYs2kn/RmV4tWsN\nt3Ven7eVeRuPsPrlVi5le49foOX4P4zPb3YgIMAQcrp9soKEA2cAWPRcMyoUzu21H8Nnb2Lq2r/t\n20teaM7nf+xh2p8HKJInlEpFwpn8qEPaVvsE3sqvzzbl8vUUzl2+zsRFO5nxeCOHyb6NpHEd2X/y\nIt0/Xcmpi9ccyj7rU5sh321w2FehcG52/3MBgKiSedl48CyD7i3LyE7VAPgz6RQhgQF0/WSFwzls\n5539RGPu/3SlS3971ytFsbw5+HZVEict/bi/VgnW7T/N36cuebxnVkHNG8+0qsiwNpW4npJKtVG/\ncD3FkDEeblCaKWv+9nF0xljyQnNavBd/Q200Ll+QlXtOui3b/3anDI09d7WJoI3Lly9ndRc0Go1G\nc5siIsHALGCKL+FKo7ld+GPncUbO3cScJ+7h5MVrxO84DkD9N3+ncfmCjOpcjXYTl7HhlTYU8GLi\ntWDTEZ6fkUiPOiUA+GbVfrYcPsfUwQ1RClbtPUn/r9Y6HPPP+SsUzBVKoClEXbqWbBeuACqMWECq\ngjbVitiFK4DW7//BlEENuKdChH3f+SvXyREcSFBgAF8t3+cgXAG0eC+ehxqUBuDYuascO3eV79f8\nTYsqhejy8QqOn7/q9rrum7jUYXvJjuO0qVbEpV7igTMOwpAVZ+EKsAtXABsPngXgy+X7qFEiLxev\nJTNizmaXY7p/mta+O+EKYNqfB9zun/2XcwalNJpWKsTSncf9Eq4APvh9F9+v/dvlnmWWcAWkS7ia\n9Eg9Bnz9p8t+T8LVjZBpUQRvB8qUKcN3331H165ds7orGo0mG3Py5EliYmKIiYmhaNGilChRwr59\n7do1l/qnTp3is8/cxvNxIDk5mXz58rndHxgYaD9HnTp1WL16dbr6PHLkSCZOnOixvEaNGvTp08dj\nuY29e/cybdo0+/aaNWu0xt+CGLZC/wW2KaXez+r+aDQA+09epO7rCzngRSvhzPWUVFq8F8+8jYcB\n6P/VWg6cukyvz1fZ61xLTgWMCWnnjwwztqemugoJNs5fuc4TUzZw+XoKQppZ3br9p6k44mcqjfyZ\n52ckuBxX/43fGfD1WlbuPsH1lFQXAcxmWbZw6zGXYzcfOuuwXXPMb3T4cBmRcfMZO8/VNbJUgRx2\nkzMbL8/ZRKO3FnsUrtzx2LfrWLrzuMt+T8JVenl2eoJb4Qrgr7/PuN0P8Nb9Nf0+R+PyBR22N+w/\n7bD9VMsKPtvwds/e7uF/X5xpXrmQ/XPiqLa84+SLZTMPrVI0nO2vtXM5vlG5gjSvXJigAM/mnTfT\n/+6uFrAiIiJ4+OGHqV69elZ3RaPRZGMKFixIQkICCQkJDBkyhGHDhtm3Q0JcV279FbC8ER4ebj/H\n2LFjGTFixA21Z2XTpk0EBQWxZMkSnxp8ZwGrQYMGTJgw4ab15Q7gHqAv0FJEEsy/DlndKc2dRUqq\n4stle7l8LYVTF6/R+aPl7D950aHOf5buJTJuPleTU5i1/iAnLlyjuwdthjtOX7rGvhMX+dfMjQ77\n9xxPO8/8TYftnwc3LQfAit0nuXA12W2bo3/YYv88N8G9puTEBddFKoBlu07w0JdreOzbdfyZdNpt\nHXfE7zjOy3M2sff4Ba5cTwFg57ELHut3inL1ucoow2dvAiA8zLuBWNNKhbyW30xyhgSyanhLn/Xy\n5gi2a3JiShkLf9dTUu3lVYqG83zbyozsWJWpjzVk5pBGPttc9lIL++eoknnpVa80SeM6Mvf/7uH3\n55uxbWw7e9ALd7zerQYl8uVg29h2THqkPoufb8bEXjHkzRnMg/VKEV0qbYHSJjgFBwYQFhxI0riO\n9nPVLZOfz/vVAWB4B8+uBtvGtuOJ5uXtbTUqV9BjXV/c1QLWyZMnmTJlCgcOuFebajQajS/eeecd\natSoQY0aNfjoo48AiIuLY8eOHcTExBAXF8e5c+do2bIltWvXJioqinnz5qXrHOfOnSN//vz2z57a\nGjt2LJUqVeLee+9l165dHtubOnUq/fr1o2XLlvz000/2/Tt37qRly5ZER0dTu3ZtkpKSiIuLY8mS\nJcTExPDhhx+yaNEiunXrBsCJEyfo0qULUVFRNG7cmM2bjdXVkSNH8uijj9KsWTPKlSvHJ598AsD5\n8+dp37490dHR1KhRg5kzZ6brPmRHlFLLlVKilIpSSsWYfwt8H6nRGCQeOMOn8bu91lm07Rivz9/G\n279s56fEw2w6dJb/LNvrUOeNBdsA6PfftQQGGNO7ExdctQl/7DzOZ3/scdl/4YohJAUHBZCS6t4/\nP8GDpqS1xXzPyubDadqkohkMbmEzTQTY8bqrZsKZVXtP8v2av2k5/g+3gQ2sBAYI/453vRdWWlc1\nAmpYNSieOHTGWLCqXCTca706pfO73V+laNpxm1+9j8/61GHJC81d6uU2g41408bYCAwQiuVNi5Y3\n6ZF6/Pvh2i71zl6+btcKPdakHCGBAQ5BTWzmmoOalKNR+YLUjSzA7jfaUz+yAFWL5SHe0s+JvWJI\nGteRUgVy8lybSgA8ck+kvTymVD7KF8pNjhDDj2/fWx1chMCiecLo07AMK+Ja2uuVK5SbbrVK2OtY\nr9/mV/Z0q4oO7cSUysfMoY3JY0ZkfPTesiSN68i2se3o16gMxfKmPZeBAcJL7arYg2+s2ptx08G7\nWsBKSkqiT58+lC5dmkKFCrldyT1+/DiLFy8mJSUlC3qo0Wg8MWbMGEQEEWHMmDEu5c8//7y9fPz4\n8S7lgwcPtpd/8cUXGerDmjVrmDJlCn/++SerVq3i008/ZdOmTYwbN47KlSuTkJDAuHHjyJEjB3Pn\nzmXDhg0sWrTILxO78+fPExMTQ5UqVRg6dKhdg+WprbVr1zJr1iwSExOZP38+a9eu9dj2jBkz6NWr\nF7GxsUydmpazPTY2lmHDhpGYmMjKlSspXLgw48aNo0WLFiQkJPD00087tPPKK6/QoEEDNm7cyJgx\nYxgwYIC9bOfOnSxcuJDVq1czatQoUlJSWLBgAZGRkSQmJrJ582batGmTntut0WRbEg+cYdkuV/Mw\nf+j6yQre+WWH1zo24efMpWt2bVHOEPdakjX7TpFiCWAWN2sjqeaEcc/xC/T/ai3jft5uL4+Mm0+H\nD5bR979rzXNcZ/vRczgTEhTA0XNpeQg/WZImmBw9d4Wth8/R+K3fWbn7BEt2/MM3K5McfLNOX7ru\n9Rr9ITQokD9ebO6yf2RH91qJ71Z7j9bpSZC0MrR5eXa90Z5Jj9QnaVxHv4Q8dwFAOtYsxoq4ljxQ\npyQP1itUFaLTAAAgAElEQVRp31/QvEevdqnO82aUQjCEqHY1ilI2IhedLLmp7qlQkNplDAEt2an/\n/2pXxeW8zkJYg7IFaV+zGJMeqcemMW159N60lBgP1ivFvrc60DGqGNdSUh2Ccmw57PpMBAUGMGlg\nPWYNbURkRC77/nY1ito/P92qIlvH3kf3WiVdjrch4igETn60vttAJ87YhL4hzcrTq24pACIL5vR2\niJ0cIYGM7VrDHhnSSu96pfxqwxt3tYBl5cSJEwQEON6Oy5cvU61aNVq1asXIkSOzqGcajSa7snz5\ncnr06EGOHDkIDw+nW7duLFu2zKWeUoq4uDiioqJo27YtBw4c4MSJE17btpkIbt++nXnz5tGvXz+v\nbS1dutTel7x589K5c2e37a5evZoSJUpQokQJ2rRpw9q1azl79iynT5/mxIkT9uPCwsLImdP7QLV8\n+XL69u0LQNu2bTl8+DAXLxrmRJ06dSIkJITChQtToEABjh8/TlRUFL/88gtxcXGsWLGCvHnzer/B\nGs1tQtdPVtD3v2tJtphUpZfIuPkM/taILnn64jUHfx6bqdbchMO8+6shjOUM8RzFr7QlB9C0Pw+w\nYPMRjp27QiuLpskaRXrrkXM0KJeWS+mJKYZflXVinzdHMOevuDcFBOjw4TIOn73CQ1+u4ZGv/2T0\nj1tYvfeUXZvjTptmwxZkwh/KFMzFm91rEls/7Zgetd1P3i9dS//i+GtdHd1G8uUMIdgSIj00yHf0\nxLBg1+n1+avJlMiXg/d6RlMsbw577qr7a5dg05i29G8cSagHH6BapsYrR3AgUwY1tD8bVuEIoGYJ\n13eqTdhb9FxTPugdY9cGNa9cmPCwYPYeN8wnbRrG9KZCyRkSZBf2177cinUjW7sImJ4WAzxRt4x/\niYvX7jsFGNq317rVYMfr7ajoQ3voTFCg6/W+0d3wFRtlRm7MCFrAsuD8UP3vf/+zT4LGjRuXFV3S\naDR3AN9++y1nz55lw4YNJCQkEBERwZUrV3wfaHLvvfdy+PBhTp06dcNtTZ06lc2bNxMZGUnFihU5\nd+4cs2ff/MB3oaFp+WgCAwNJTk6matWqrFu3jurVqxMXF8ebb75508+r0aSXK9dT2HL4rO+KfnDN\nImAlp6TafYCc+SHhEH8mnXLZ/5sZtGHQt+vo99Vanp76Fy3Hxzv4wtiwCVg7j513CexgC0ZhI1W5\nRpfbdOgsl66lCUwRudN+s/tPGsExrBqokMAAzl1x1UJ1qFnUZZ+VXKGB5Ai2mXjlYtFzTe1lw9tX\n4ftBDcjlRVi0YQ2Q8FCD0rzRLS3Uu7tJsi/WjnDUkLx1f00WPdeMgrkdc2kV9CMJrjO2XExWnANg\n2Hp88PRle0Jhm0mesxYmxLy+K8mOz9NTLSs4+DDlyxnM/4Y0ctBkFTVN4CoUDqdrTAmc+b8WFSiW\nN4xfhzV1KbPxcIPSfmnuCucJc3iO0sv3gxowvme0XQj0F5s/oj/CrzOX3QjhgQFC0riODHQSYNOD\nFrCA3r17c+zYMYKDHbNQR0dH2z/XrJnxyCcajebmM2bMGJRSKKXcmgiOHz/eXv7888+7lH/xxRf2\n8owmGm/SpAlz5szh8uXLXLhwgR9++IEmTZoQHh7O+fNpYW3Pnj1L4cKFCQoKYuHChRw65Dksrju2\nbNlCQEAA+fPn99hW06ZNmTNnDleuXOHcuXNu/bxSU1OZOXMmW7duJSkpiaSkJGbPns3UqVPJnz8/\nhQoVsvtkXblyhUuXLrlci/P1T5kyBYBFixZRokQJcuXK5bYuwKFDh8idOzd9+/bl+eefZ8MGz9HH\nNJpbRZ8v19Dxw+V+mYv5wpb3B+Dxyeup8sovLnWUUjwzLYGen61yKbNh0yr8mHiYvccvug0EEWAu\nCredsJROHy2nVmnD4f+BOiW56jQRv5acavcPstHl4xU0HrfYvv3FUkefLnAUsIIDxa0Gq2Au7xPq\nwAAhbw5jfhUaFEjZiLQ8VR2jitG4QoTbib8zveo5arkCLKZvwYHup7PO5nFWf6bC4Y4+YWHBAVQo\nnJsQp7by5Uy/gHXGjTlk+UKO70abRs+q3aldOh/v9Yzml2cdhR2bAsCmdFw3sjXL/9XCpW+hQQHU\niyzA0OZpCX+rFM3jta91Iwuwangr+3fkjte61siQ8JJeGleIoEcdz6aEzrzUzjDvK+xHgmlP2Hy3\nXmhbKcNtuEPnwQL++usvNm7cSNOmTR0igkVGRjJr1ixCQkLchlLWaDR3N/Xr1yc2NpZ69eoBMHTo\nUPtiTJ06dahZsyYdO3bkueeeo3PnztSsWZP69etTsWJFb80CaT5YNr799ltEhL59+7ptq379+nTv\n3p2oqCiKFClC/fr1XdpcsmQJZcuWpUiRtFwtLVq0oE+fPhw7dowpU6bw+OOPM2LECEJCQpg1axa1\natUiJSWF6OhoHn30UapVSzOZGDt2LAMHDiQqKorcuXPz9ddfe72mxMRE4uLiCAgIICQk5IYjLWo0\nN4N1Zijq5NRUAgNubBJp1TT9vv0fh7Lfthzl1MVrdK+dJky4CzMOrv5KH/zuGrTmmpNWy+Zn9ffJ\nS6xz0o59v8a9L5I7QcBKQQcBK8CtmV/OUO/3rEnFQszbeJij5ww/rkCL0GMzJfOUR6t43jAOn/Ws\noQ8LDqBnnVIOgtTHD9Xiye//Alx9lHJ4SY5suxd5vAganvi8bx2up6Taz/vxQ7VZsuMf8uYItkcW\n/LxvHYdjzpnCqtUMU0R4wI2AYdU0Ai5aord71OSHhMMOSZYL5ApxazKYEQL8CKaRFQxtVp78OUPo\nEp3xSJCP3luWQrlD3d73G+GuFrDKly/Pnj172LFjB23atGHDhg0opUhNTaVEiRIUK1aM+++/P6u7\nqdFoshHO2rKXXnqJl156yaXejBkzHLbXrFnjtr0zZ1yjcgUFBXkMrFO4cGGPbY0aNYpRo0a5LQNo\n1aoVrVo5msUEBQVx7JgxyStSpAjx8fEuxznva926NWCkuvjxxx9d6r/++usO29u3Gw71JUuWpEMH\nHcFckzGUUrz9yw561yvl4FB/s0jNoPuU1ZfJnSlfaqoiIEAYPHk9ADktkdkeM32ufFG3TH67IGjj\n6nXHc9n8jda6MT3MqHKugEU7FRggdqHAirPGx5nQoAB7mPRQp7o2gccayc3G94MaMDfhEDPWHbSH\nDXdm+2vtAcfvoHnlwkzoFc2w6Yku9W2+UTZtkkiaVqis+UxZhZT0YD0uPCyIIc3Kk5qq7AJWfidt\n0znTjNAfk7oLXnzfwNDuOWv41rzcisB0+lNZWTuiFf9dvo9B95bLcBuZjYg4+OJlhLDgQB68CUEt\nnLmrTQSdtVLvvfcederUoV69enz33XdZ1CuNRqPRaDTO7D95ic/+2MMgP4WS9HLejX+Rlb3HLxAZ\nN5+VexwD1Dj6XblKMntPXHTIE7XtiGs0Nl8EutEgfPD7Li5a2r3oIRfVjWDL5/RMq4psP3rerRnl\nzmPuTYhtWJO3Bgc5XodNwHIXWCEsJJC21Qz/rvEPRruUW7Eenzs0iJaV07T0Vu1Y7tAgvh/UgNlD\n7wGwB5V48b7KNK9c2F7fZnrm+XzG/6rFDPM7pXAQZmzfl1XzY/OzsmET7CLCfZsg2o615R7zh+DA\ngBvSPBUOD2N4+6r2BL6a9HFXC1jr16932P7+++/tn+fNm8eVK1c4dOgQR44c4dQp1xUhjUaj0Wg0\ntwbbpNWdU/rN4L8r9nktt2mQZq4/6LDf2h+bsGUVOlq//wddP15u39551LNAEiCu5mBghF53R/XR\nv9o/X/RyXxIOpGnKy3rR/lUq4qi9CQo0nP2HtfHsn/LrFlczR2sUvdCgQLtP0OZDhnC5580O7Hmz\ng1cBIEdwIK2rFWHPmx0oX8i3Vmn64IZ2M7y8OYMJNzWF1lDjQYEBNK4QQd6caT5hANWKOfopPdG8\nApEFc3q8VzaNWlpCYeVwLQFuBMYQpwiBz7apSHhokF8arD4Ny/Bm95puw7Brsid3tYDljYsXL7Ji\nxQpKlixJ8eLF6dmzZ1Z3SaPRaDSauxZbpDh3Zng3A+fIe1Yen7zOburlHDjh+Pk0vyRb39pOWOpQ\nZ8/xi/bPK/Z4TtGQquD3bf94LPeGP4Ln+J7RbhPX2niofmmW/6uFfdsaPKKMJbLdR7G1AMNHy50Q\nYg3THRwo9iiBjcoVBAxh2Vkr17h8QYIDXf2z3Gnv3NGgXEHuq54W0dAfq0h7tD83p/jh/+7ll2eb\nuD3usz51+DC2FvlNQU0px+fCnz4PbVaev0a18Rigw0qOkEAealDa73uhyXq0gOWBgQMH2v0SABYv\nXuyltkaj0WiyOyISKCLFRaS07S+r+6TxH5tJlXPggpvFlsPnWLz9GL0+X2UPGGHj1y3H7OZx1gmx\nUoo2FmHKnYmgM9WLew88kMtH0AhPOAe9cEfTSoW8lgc5TfatE/pBlpDVNsGkTpn8zH/6Xh53Ml3L\nZYmMN2/jEXt0RW99/P6xhux6I81H01tACn+wmjNWKpKbJ1tU8Fi3rpm410renMEeI+cVyRNGl+ji\nDGhs3JM6ZfI7aK2s5oILhzVl3lP3urQhIi73W3PncFcHufDGfffdx+rVq7O6GxqNRqO5CYjIU8Bo\n4Bhgm+UpICrLOqVJF6mmhHUjyXy9sXbfKRIPnOFqcipXk1PtuXje+nmbQz2r0PHPeceoetdSUh1M\n0txRyIdJWFCA90n3yI5V+X7N3+w9cdFrPXcE+8gXFRwoDsE+gi19CbUIPO1rFGXlnhOM7lydnCFB\nDO9Qlc8tYd6tIeGrF89j91Vy1v55w12y3vRw2ZKD7LdhzdzW+bJfXX7efNTFP8pfGpUvaM9Dddhy\nzdavML2JbzV3Blp09kDRokVp0aKF74oajUajuR14BqislKqulKpp/mnh6jbCNvG/EQ3Wv2ZuZMDX\nax322YIgPN4sTQuTbJEyPv/DMT+UVVPR4M3fHcp2HD1P7dcWeu3D8t2eTQTBUTBwR94cwdTIYPht\nZxOzER2qMqx1mn9VUEAAVvchawLfUIsPUYFcIXz6cB2K5HGN/mdjYq8Y7qlQkGdaV7TfT38SAm94\npQ1fDaibofxT7ugW4zmEd+tqRXwG0PAX6/3xx+xPc2ejnwAP5MqVi4IFCzrsS06++RF6NBrN7YOI\n0KdPH/t2cnIyhQoVolOnTgD8+OOPjBs37qaf95FHHuHzzz932Dd37lzatzdCFDdu3Njr8UlJSdSo\nUcNnHWugn3Xr1vH0009nsMfZkgPA2azuhCbjpGmw0idgpaYqrphCy/R1B4jfcdxtu1bByWbSZg3/\nbcNbQtYjXnI22bjgJtpftWJ5aFIxAsDeV0/kDg3yqSUr7ibsOaQFdWheuRCx9UvxWNNyPNM6LS/f\noTOXKVUgzdcqyE3OKnAf9e+Th2pTP7IAAK2rFqFbrRJMGdSQ0KBAe4hyfwTDArlCaFmliM96/uKu\nr5lBQYtmMuwGzRs1tz9awPLAnj17CA11VONfueL7xanRaO5ccuXKxebNm7l82TAFWbhwISVKpCUN\n7dKlC3FxcTd8HufFnNjYWKZNm+awb9q0acTGxgKwcuXKGz6ns4BVt25dPvzwwxtuNxuxF4gXkeEi\n8pztL6s7pfHMnuMXmLwqyb6dYgo7170krLL6Tl24msx7v+5g2IwEqrzyi8djbL46yQ7h1lMdyqws\n3XWcOq8tdBvWvbRFOPGGs6VcZERO2lQzhIpnpiV4PTYsONCnluvY+atuc0fZItlNeqQ+b93vqsB1\nFv6sPkLOUfCc6RhVjPY1jSAToU5176kQwbTBDRnStLzXNjIDd0JyZvHpw7VZ9Jx7c0TN3cVdLWDl\nz+/q1Gjjyy+/BKBXr1706NGDbt26kTOnfy9OjUZz59KhQwfmz58PwNSpU+1CDsCkSZN48sknARgw\nYABPP/00jRs3ply5csycORMwBvsXX3yRGjVqULNmTaZPnw4YyXybNGlCly5dqFatmsM5W7Vqxfbt\n2zly5AhgRDldtGgR3bp1AyB37txe27aSlJREkyZNqF27NrVr17YLZ3FxcSxbtoyYmBgmTJhAfHy8\nXTN36tQpunXrRlRUFA0bNmTjxo2AkXR54MCBNG/enHLlymV3gexvYCEQAoRb/jTZlFbj/+CVH7bY\nJ8hp/13rzlh3gClr9lPu5QX8mHgYgA8W7eTjJbv5IcHY9qQZsrW3em9aKPRZGw6RnJLq1hzxr7/P\ncPLiNWqO+c2lbP7Gw35dm7MJWc6QIL8jxIUEBfjUcqWkKl7tUt2v9qw4hxe3+kH50zubEOYu/HrD\ncgVvKC9TRsmkmChu6VCzWIYTFWvuLO7qIBenT5/2WPbzzz8zfPhwxowZQ0BAAOHh4QT4cDzVaDS3\nkEXNXfeVfhAqPQHJlyC+g2t5uQHG35UTsPwBx7LW8X6dtnfv3owdO5ZOnTqxceNGBg4cyLJly9zW\nPXLkCMuXL2f79u106dKFBx54gNmzZ5OQkEBiYiInTpygXr16NG3aFIANGzawefNmypYt69BOYGAg\nPXr0YMaMGTzzzDP89NNPNG/enDx5HHO3eGvbRuHChVm4cCFhYWHs2rWL2NhY1q1bx7hx43jvvfeY\nN28eYAh8NkaPHk2tWrWYO3cuixcvpl+/fiQkGKvs27dvZ8mSJZw/f57KlSszdOhQgoMz5jCemSil\nXgUQkdzm9oWs7dHtRfyOf/j71CX6NYq85edOSVUEBQreYlu8NHOj/fN3q/dTMFcIR885BqCYvGq/\n22NtJoKbDqVZkL79y3ZSlWJA40i/+rhqeEsavbWYJU7mh54ICQzgqiUsfHCg+B0AIjQogMpFw9ly\n2HPC4rpl8hNdKh9TBjVgxJxNJJ285Ffbzq5DRcLTTA39kVNsGsRTF6/6qHnrSLmFGiyNxoaWGLzw\n22+/UbVqVSpXrsxTTz2V1d3RaDTZgKioKJKSkpg6dSodOrgR4ix069aNgIAAqlWrZk/7sHz5cmJj\nYwkMDKRIkSI0a9aMP//8E4D69eu7CFc2rGaCVvNAK97atnH9+nUee+wxatasSc+ePdm6davPa16+\nfDl9+/YFoGXLlpw8eZJz54zJXceOHQkNDSUiIoLChQs7pLfITohIDRH5C9gCbBGR9SKS/iX+u5QB\nX//JqB+2ZMm5bVqkVMtEOTJuvksodRtr953i4S/X8FOiozbpjQXb3Nb3lFfrwKlLfgfUyBmcvvXq\nYCcTulkbDhHo5yJuSFAAT7esSK+6pXjOQwLgHnVKAoZp3kextf3ul82/bOmLLVjwdJN0a5xsyZhX\n7D6ZruMyk9ZVC2d1FzR3IXe1BssbDz/8MMOGDbNvz5o1Kwt7o9FoXPCmcQrK6b08LMJvjZU7unTp\nwgsvvEB8fDwnT3qeSFj9OP3xA8iVyzVhp43GjRtz5MgREhMTWblypYtPlr9MmDCBIkWKkJiYSGpq\nKmFhnqOA+YP1GgMDA7NzMKAvgOeUUksARKQ58B/Ae4QQTaZz+uI18uQI9mgiZ/ODcvaHSlGKAL8M\n1zxzPSXVHtDCmfX7T7P5kH9xUYKD0teP4EDhr1fasGjbMV6cuZG6ZfK7aLD6NyrD7L8OIcC5K2m/\nq9CgQCIjcvH2A1EopWhcviAPfLbK4VhrHiZbuHl/eOQeY4GndEFXl4iyBT2/n2zYBLQetUv6fc7M\nIq59Fcb9vJ2u0SV8V9ZobjJag+WBli1bcvDgQYd92XjioNFobiEDBw5k9OjR1KxZM93HNmnShOnT\np5OSksLx48dZunQp9evX93mciNCrVy/69+9P+/bt3QpG/rR99uxZihUrRkBAAJMnTyYlxfDlCA8P\n5/z58x77PGXKFMAwHYyIiHAxT7wNyGUTrgCUUvGA7xmjxgF3QR9uhLOXrlPrtYW899sO+z6lFKN/\n2GzfPmcGk3Beo7iRvqSmKq4mp7DCS8j0Xf9c4OEv1/hsq0HZAi4+Va92qc7TLSuw6432zBrayL6/\ndmkj8ESACPlzhdCzbimWvdSCbwfWdxEw/69lBTaNuc+l7aKWCIEi4jZinUOodT+0UE80L0/eHMFe\nw4tHRuRiyqAGrHm5lcc6Nh+umiWy/v0wpFl5ksZ1zBK/L41GC1geqFChgstq8pkzZ7KoNxqNJjtR\nsmTJDIcw7969O1FRUURHR9OyZUveeecdihYt6texsbGxJCYmujUP9LftJ554gm+++Ybo6Gi2b99u\nf89FRUURGBhIdHQ0EyZMcDhmzJgxrF+/nqioKOLi4vjmm28ycOVZzl4ReUVEIs2/kRiRBW8YEWkn\nIjtEZLeI3HgYyWyMJ3O69NLpo2V0+2QFGw8Z4+q/4/fYy5JTFd9Y/KVenr0JcPWlsZkMbj/q2RfJ\nE9+uSuKN+dsY8PWfPuv6YvrjjVyEmAfrluK5tpVNgcWaS8oQhqzh3EsVyElQYIBLG7a6zvfcOUy8\nu9xS246kLZb4E6X8pXZVSBzd1me9eypEeM199WzrivSsU5IH65XyfVKN5g4mU00ERaQd8AEQCHyp\nlBrnVN4VeA1IBZKBZ5VSy82yZ4DHMN5M/1FKTTT3Twcqm03kA84opWJE5GHgRUvzUUBtpZT3eKce\nOHjwIBMnTuSxxx6z70v1EhpWo9Hc+Vy44BoXoXnz5jRv3hwwIgcOGDAAMCIKujtWRHj33Xd59913\nPbbjiZiYGLemhr7ajoyMZPNmQyNQsWJFexRAgLfffhuA4OBgFi9e7NIngAIFCjB37lyX844ZM8Zh\n23aObMpA4FVgtrm9zNx3Q4hIIPAJ0AY4CPwpIj8qpXw7t92GnLp4jeL5cngs/2TJbjYePMPnfet6\nbWfzIUMo+mXzUZcyZ83U36eMAA2pTs++zT/q/JX0W5ccPH2Z7Ufca2wzgnOuJWuYcpvWCtznwLLh\nrMEKDzWmaFY/MFtSZCvuNFTWe2ULpnErotvlyxnCuz1vTuJejeZ2JtM0WJZBpz1QDYgVkWpO1X4H\nopVSMRgD3ZfmsTUwhKv6QDTQSUQqACileimlYsxjZmEOlkqpKZb9fYF9GRWuAJYuXcqgQYPs4ZLL\nlCmjowhqNBrNbYpS6rRS6mmlVG3z7xmllOdQsv5TH9itlNqrlLoGTAO63oR2syVPTNngtfzdX3fw\n6xb/A51UdDPpdxakbILHMackvku2/8P1lFRWZiCgQopSnExHpLueddLnU2Q1SxM//aGcNVG2Ni5d\nM8x4P+gdw7oRrf06vzWMe6n8OSkcHsornZynYBqNJrPITA2WfdABEBHboGNf1XMKk5uLtCigVYE1\nSqlL5rF/APcD79gqi/HGehBo6ebcsRiDXIaZMGECQ4cOZcuWrImapNFoNJobR0QmKqWeFZGfcBNp\nWinV5QZPUQI4YNk+CDTwdsCOHTtctJUPPvggTzzxBJcuXXIbndKmHT1x4gQPPPCAS/nQoUPp1asX\nBw4csEd8tPL888/TuXNnduzYweOPP+5SPnLkSFq3bk1CQgLPPvusa6cbGgYiCQfOuNW0Tpw4kZiY\nGPu2c53PP/+cypUr89NPPzF+/Hh7e/9+ezRU62WvN336dD754r9Q7xn7vn1793LiRHW7JsvGM9MS\nGDX+35wt0Yj0MnPWbM4X9T+6Xr6cnlMP9OnTh++++85hn/X6K1WqxJSX3mTtvlN89/NyCCniUCcm\nJoaJEye6RBG0t2Heq8AAoWfPB1wC69Ru0RFjHRsCUq6SGhjK4u8+oPlHhtllp06dWDviBZd+2cju\nz96bb75J48aNWblyJS+//LJLue3ZW7RoEa+//rpLucuz58TkyZMpVaoU06dP59///rdL+cyZM4mI\niGDSpEkulgkACxYsIGfOnHz66afMmDHDpdyW8sKaBsNGjhw5+PnnnwF47bXX+P333x3KCxYsaA+y\nNnz4cFatcgxmUrJkSfuz9+yzz9rTZ9ioVKkSX3zxBQCDBw9m586dDuW2Zw+M59g59kCjRo146623\nAOjRo4fLs9eqVSteeeUVANq3b8/ly5cdyjt16sQLL9zez15GyUwBy69BR0S6A28BhYGO5u7NwBsi\nUhC4DHQA1jkd2gQ4ppTa5ebcvfCwgigig4HBvjqvkwprNBrNHcFk8/97WdkJ69hjjbyocTVvU077\nxJSLC4W73rfrYfkzdNaQS47BLTpGFWP+xiMe6+88dmNp0+6pEME9FSL4/uelHuv4CkaR7CHaYQhp\n2qpy27/nbFA+cpze47auRqO5NYg/oYMz1LDIA0A7pdQgc7sv0EAp9aSH+k2BUUqp1ub2o8ATwEWM\nvCVXlVLPWur/G0NDNt6pnQYY/l4+w3uJiMeL//DDD3XuK40mG7Ft2zaqVq2a1d3Q3ALcfdcisl4p\n5d2xxwsi8oxS6gNf+zLQbiNgjFLqPnN7OIBS6i1Px9StW1etW+e8Zpi9iYybb/+cNK6jz3ru6iQe\nOMO5K9dpUrGQvd63A+vT76u1AMTWL8WoTtW5dC2ZOq8vsh/3cIPSvNG9JsNnb2Tq2gMObXasWYz5\nmzwLRs70qF2SWRsO8k6PKF6atdFlvycmPVLPHhAjYVQbYsYutJfZrtWfe/Ti/xL53/qDbuus3nuS\n3l+sdmnjXzM3Mn3dAd5/MJr7PYQ/t507cVRb8nrRtmk0mvSR0bEnM52KDgHWMDIlzX1uUUotBcqJ\nSIS5/V+lVB2lVFPgNGDXa4pIEIbJ4HQ3TfUGpmakw7GxsSQlJXH16lWeeuopfvzxR5555hmGDRvm\norbVaDQazW1Ffzf7BtyEdv8EKopIWREJwRiDfrwJ7d5SDpy6ZA+H7o36kQX8au/EBVf/pq6frKDv\nf9dywGLqZ/W3mrr2AKN/3MzsDY5Thfw5Q7hyPcVFuAK4dM1z0IgJvVyDLTQqXxCA79bsd9gfFux9\nOlS+kOErVi4iF/lyhlAyv+dAH94INc/jzh/KkwbrpXaVeahBaTrULOazfXcRBTUaza0nM00E7YMO\nhldt2mkAACAASURBVGDVG3jIWsEMXLFHKaVEpDYQCpw0yworpf4RkdIYwlRDy6Gtge1KqYNO7QVg\n+GU1yUiHp06dyuLFi5k8eTJt2rRh+fLlfPjhhwDs37+fe+6554aTcmo0Go3m1iEisRhjT1kRsQo+\n4cCpG21fKZUsIk8Cv2JEzP1KKXXbOe82eWcJZSNyseSF5m7LyxfKxZ7jF2loCii+WLrzuF3bMnlV\nEu/9lub7MXTKevtn54AWM9a5apGup6Qy5y/367NnLnsWCrvXKsmw6YkO+2zBHzYedEwgnMNNLikr\noUEBfD2gHtWLG/mdfhvWlI8X77bnffKXwuHGHMI51DqAp7ReBXOH8mZ3/3LuaQFLo8keZJoGSymV\nDNgGnW3ADKXUFhEZIiJDzGo9gM0ikoARcbCXSrNZnCUiW4GfgP9TSlmTUHnSUjUFDtgCa2SEY8eO\nce3aNcAxLPucOXM4dOgQX3zxBdHR0bdrHhiNRnMDiAh9+vSxbycnJ1OoUCE6derk9bh169ZlOG8W\nQLly5dixY4fDvmeffZa3337br7YnTZrEk0+6tc62Ex8fz8qVK+3bn332Gd9++22G+5yNWAmMB7ab\n/21/zwP33YwTKKUWKKUqKaXKK6XeuBltZgX7Tlz0WGYLFZ7qZ3Lfy5Yodq/8sIWzFkHIFqId4KdE\n7+Z94WFBrNl3iuFmLiyXfnnwS/JESJD7aU8PH1ECgwMDaFGlMIXNHFA5Q4J4qV0VXrivsr1ObH3f\nuZ+GNCvP691q0L1WCZeyi160cf4SrKMdazTZgkzNg6WUWgAscNr3meXz28DbHo71qIVSSg3wsD8e\nR01XhrCFY+/atatDxJlr167Zo5AMGDCA/v3dWZxoNJo7lVy5crF582YuX75Mjhw5WLhwISVKuE6U\nnKlbty516/pvwp2cnExQUNrruXfv3kybNo3Ro0cDxuLPzJkzWbFiBWXKlElX256Ij48nd+7cNG7c\nGIAhQ4b4OOL2QCm1H9hv5ko8rJS6AiAiOTBM15OysHu3DTZBxjnZryc+/2MvDzco4zbvU63S+fjr\nb2PN1FkzVSg8lOPn08wLc4cGkXDgDJ6w5oiKLpWPq9dT2H70PLH1S7utn9NDmPRyhXJ5vhj80wzd\nW6GQWzNGKyFBAfRpWMZtmVVYfKdHlM/zuSPAR6AMjUZza7irlzo8RXI6cuQIy5Yto0kTRxlvzZo1\n9s/OSQU1Gs3dQYcOHZg/33Aonzp1KrGxsfaytWvX0qhRI2rVqkXjxo3tWqf4+Hi7luvUqVN069aN\nqKgoGjZsaE/6O2bMGPr27cs999zjEm42NjaW6dPTXE6XLl1KmTJlKFOmjF9tW/npp59o0KABtWrV\nonXr1hw7doykpCQ+++wzJkyYQExMDMuWLWPMmDG8954ReC8hIYGGDRsSFRVF9+7dOX3aSB/VvHlz\n/vWvf1G/fn0qVarEsmXLbso9ziRmYCS1t5EC/C+L+nLbcT3FuHXOJn2esIVU7/PlGpcym3DlDqtw\nBXDEKfeVMykWSxPDhC8vYAhxADGl8jnUr1g43G07IYHep0PBPsoBSph+WRkVjqzJiR+s51sbptFo\nsi+ZqsHK7oSGhlKhQgVEhM2bN9v3P/roo/Ts2ZMmTZrQunVrFi0yohkVLlwYEUEphVKK1NRUAgIC\nSE1NRUS00KXR3Cq+z6Tf2kO+J4+9e/dm7NixdOrUiY0bNzJw4EC7YFGlShWWLVtGUFAQixYt4uWX\nX7bnMLExevRoatWqxdy5c1m8eDH9+vWz5y7ZunUry5cvJ0cORwf6mjVrEhAQQGJiItHR0UybNs1B\nsPOnbRv33nsvq1evRkT48ssveeeddxg/fjxDhgwhd+7c9pwl1sA+/fr146OPPqJZs2aMGjWKV199\n1Z47JTk5mbVr17JgwQJeffVV+/syGxJkJgIGQCl1zQxKofGD9JoIdo4uDuBV+3QzsGp9QoMC7IEi\nbP107m2lIq6JjcH3oqk/AlZMqXwkjGpDvpwZe6yaVIzI0HEajSb7cVcLWBUrVuTTTz9l0aJFjBgx\nwqEsNTWVUaNGOUwWQkNDmTdvHoGBgXbznU2bNtG5c2fy58/PkiVLyJfPcbVMo9HcWURFRZGUlMTU\nqVNdEiOePXuW/v37s2vXLkSE69ddHfCXL19uF7patmzJyZMnOXfO8Enp0qWLi3BlIzY2lmnTplG9\nenXmzp3Lq6++mq62bRw8eJBevXpx5MgRrl27RtmyZb1e79mzZzlz5gzNmjUDoH///vTs2dNefv/9\n9wNQp04dkpKSvLaVxRwXkS5KqR8BRKQrcMLHMRoTmwbL/Mfufy5QMn8OwjwEhygSHkpmpYFx6JdF\ngxUSFECn6GJMX3eAOmXM/FhOffAmSI27vyZxHny9Av00vcuocAVG37a/1o4zl3xHc9RoNNmbu1rA\nAmNC4ixcAVy/fp3XXnvNvv3uu+9SokQJqlSp4lCvc+fO7N+/n/379zN8+HC3WcA1Gs1Nxg9NU2bS\npUsXXnjhBeLj4x0y27/yyiu0aNGCOXPmkJSU5DZzvTdy5fLsB9K7d2/atm1Ls2bNiIqKokiRIhnq\n+1NPPcVzzz1Hly5diI+PZ8yYMRlqx4bN1DowMJDk5Bt30s9EhgBTRORjjOy2B4B+WdulW8Oircdo\nWqmQxwAPVvaduMiV6ylULZbHYb9NU3T8wlV7zqVuMcWZ2LuWvc77C9MiBZ66dI1Pluy+oX5//1gD\nHvqPq4nhhF7R9uiAB05dtu8PChCaVCzkkF/KT4UbgF9h6jObsOBAiub1HtFQo9Fkf+5qHyxIC2gB\n8PDDD9s///ijYxqTF198kfj4eDZt2sTmzZvZtm0bYEwqbLhbrdZoNHceAwcOZPTo0dSs6Rg6+ezZ\ns/agF5MmTXJ7bJMmTZgyZQpg+GZFRESQJ08et3WtlC9fnoiICOLi4tyaB/rbtrWP1mio4eHhnD9/\n3qXNvHnzkj9/frsZ5OTJk+3arNsJpdQepVRDoBpQVSnVGHC94DuMlXtOMOjbdYz/bYfHOlZNU4v3\n4mn/gasvXYopqfyUeNi+b9XetMWFNXv/n737Do+qSh84/n3TEyBASKihBIRQk1CCgHRBWeRHWVBB\npYiCoth2saICyrKKrquuuhYEZNWAjWJBBQRB6SBdqkREeu8lyfn9cWeGqclMCgnk/TxPHu4999x7\nz1wgM++cc95zmNfnbXPsf7H6Tyb9nJ6XphMVFkKVMv6vN+Wtd8o+Z2x87yS+frC11/OiI6zvmhMr\n5vz/UCml/FHse7BSU1N54oknCAoKomXLlo4PJ94MGzbMsV2iRAlOnTrFhAkT2LBhAyJyRX7oUEoF\nLj4+3mtq9Mcee4yBAwcyduxYbrrpJpdj9g9/o0ePZvDgwSQlJREVFRXQkg/9+vXjiSeecAzLc+fP\ntUePHs3NN99M2bJl6dixIzt37gSs3vg+ffowc+ZM/vOf/7ic88EHH3Dvvfdy5swZatasyaRJk/xu\ncxEUAvQWkduAekDlQm5PgbIPN9vltLivu0w/unmch+J584aX3qpzTqnacyNIoHeTKrz+w3a3cv/n\nYJ7PsNpdsXSEIwHGi70b8fjn1lDA+LKR/PR4RwBaXxNLTIkwXvhrI4b+b5X3CxZR2/7xl4BT1iul\nCk6xD7Cuu+46mjZtSnJyssdk9LZt27Jw4UKv550+fZqDBw/SoUMHOnTocDmaqpQqZKdOnfIoa9++\nvWMoYMuWLdm69dIwqbFjxwJw+PBhYmJiAIiJiWHGjBke1/FnqN7DDz/Mww8/7PP+vq49aNAgBg0a\nBFjLT/To0cOjTp06dVyyDjpnUU1JSWHp0qUe5yxYsMCxHRsbW2TnYNlSsvfAWnC4MdYiwz0B77/g\nryL2UCS76VA5pV7PzDLZng+uGfDsMvwcnxcSJF7rCt6TRwWSUMoe5JUIv/Rxp0/Tqo4Aa/fRS0MM\ng4OE1c909vvaRUlocBA5rJWslLqMiv0QQYDMzEy2bt3qsZDnvffey4QJE3ye5zykUCmlvJk1axYj\nR450rKGnLi8R+RjYCnQG/gPUAI4aYxYYY7LvlrmKGI98epfk0DnlSHCRHW9Bj733KCe+EkPUrxzt\nNblEIMkz7L06kU7Rh78JK5RSKreKfQ8WeP6yjoiIoESJErz22muUKlWKMWPGEBMTQ2Zmpsu3x3Pm\nzLncTVVKXWG6d+9O9+7dC7sZxVl94CjwK/CrMSZTRIrNWCp73OP8Nnfw5Hm+27jPseBtRg4R1ncb\n9+V4n7zFLN7/OoKDxCMYeuv2JtSK855q3Rt7cBjpY4HhV25J9lr+1QOt+WrdXt7+cUdA88CUUgo0\nwAIgKiqKX3/9le+//56HHnqIc+fOce7cOUd2sLlz5zqCMPfhOZMmTWLlypUEBQUxYMAAUlNTL3v7\nlVJKeWeMSRGRukA/YK6IHAJKiUgFY8z+Qm7eZWAFKM4hzL0frmLV70dpWzuOauWicpy789DUNdke\nh8Cy9bnzNgesXAnvvVpdG1UCYOOYG7nuxR9yTGl+wR5g+Rg/17Fuea/lDauUJjoilLd/3JFjAKqU\nUu6KfYC1bNkyZsyYgTHGawYtu0OHDhEbG8uAAQOYMmUKYGUSu/vuu8my/fI9evQoH3744WVpt1JK\nKf8YYzYDo4BRItIUK9haISK7bdkErypZWYaMLENYSJAjwHB26NR54NLcq+e/3uRR5y+vLWL2Q208\nyp0594rtPX7Wd0UvmlUvy8rfj3o9FhkazM9PWIknZvzyp9c6JcJDHIsKZ+dCRvYBVlA217Cntdfk\nEUqpQBX7OVhr1qzhhRde4MUXX2TDhg1UrFiRihUretSLi4ujbt263HnnnY7hPuXLl3cEV4AjdbtS\nSqmiyRizyhgzAqgOPFHY7SkIvd76mTpPz2b30TM8mPYL4BoM2bftscUXqz2DmF/3nvAoc+ccdgQH\nkHgCIDz00sePjEzD58Na0SPFSugYERrkWMD4+FnfPVTO2QS3jv2L1zpVylrD+6LCvQdY2bXbfs6Z\nC3nLhqiUKn6KfQ+W88TcOnXqsGzZMs6fP++17pYtW+jSpYvj+AsvvECjRo1Yv97KRtS4cWOv5yml\nlCpajDXu+6rMIrh293EAPlnxh1PppXDIvjaUkH1QlJVlXHp4SoQFc9op2HAe2pddT5A3ESGXAp6T\n5zNoWr0sq34/wsw1e1zqOQdi7px7sHwtopw2pAVr/zhGaLD349mlfC8VHkKnehUY2Kq6zzpKKeVN\nse/BSk1NdSwWPGHCBJ/BlZ378QkTJjBx4kQmT57sMT9LKXV1ERHuuOMOx35GRgZxcXF069YNsDIG\nvvDCCwV2/zVr1iAifPvtt7m+RqtW3kfEDRo0iM8++yzX7frmm29y3SZVMHYevrT2lXMPlj0wmrHG\n+/A7u/V/HnfZr+SW7MElwMomUJk2tIVH2bzNBzwSY9iv4fzFZ7hTIPbT465LovgT1FWIjuCGBp6j\nUi5dw/e5IsKEgc1oUzsux/sopZSzYh9gNW7cmMzM3Hf/N2/enDvvvJOBAwfSsGHDfGyZUqqoKVGi\nBBs2bODsWWu+yZw5c6hSpYrjePfu3XniibyPOsvIyPBanpaWRuvWrUlLS8v1tRcvXpzrc30p6gGW\niASJyC2F3Y7L7YSP4XV7j58D4JU5W70ed66X5RREua91lZnNMbvq5aKo7CMLn3tuC3vGQOewKcKp\nByu+bJRLfXsP1rUJMd5fgB8CWbRYKaX8VewDrLy66667GDRokNcFSJVSV5+uXbvy9ddfA1bA069f\nP8exyZMnM3z4cMDqEXrwwQdp1aoVNWvWdPQOGWN49NFHadiwIY0aNWLatGmAtWhvmzZt6N69O/Xr\n1/e4rzGGTz/9lMmTJzNnzhzOnTvnODZlyhSSkpJITk6mf//+AOzfv59evXqRnJxMcnKyI7AqWbKk\n43rDhw8nMTGRTp06ceDAAcf1Vq1aRbt27WjatCk33ngje/fuBaxFjR9//HGaN29OnTp1WLRoERcu\nXODZZ59l2rRppKSkOF5PUWJb7+qxwm7H5eYc9OQmTUNmlnHpxQpxG2Znz673xerdLN5x2Os1BHwO\nz6sa4xp42QMs50WBo0J9z2Sw92DlJkj66oHWDGtfy69EGUopFahiPwcLrAWF3377bcd+eHi4x1DA\npKQkEhISmDlzpkv5xIkTATh48CAfffQRZcqUKfgGK6WgfXvPsltugfvugzNnoGtXz+ODBlk/hw5B\nnz6uxxYs8Ou2ffv25bnnnqNbt26sW7eOwYMHs2jRIq919+7dy08//cTmzZvp3r07ffr04YsvvmDN\nmjWsXbuWQ4cOkZqaStu2bQFYvXo1GzZsICEhweNaixcvJiEhgVq1atG+fXu+/vprevfuzcaNGxk7\ndiyLFy8mNjaWI0eOAPDggw/Srl07pk+fTmZmpseXQNOnT2fLli1s2rSJ/fv3U79+fQYPHszFixd5\n4IEHmDlzJnFxcUybNo2RI0c6ftdlZGSwfPlyvvnmG8aMGcPcuXN57rnnWLlyJW+88YZfz7CQzBWR\nEcA04LS90BhzpPCaVLA61a/A95usTPTewohSESHZLtqbaVyXJ3YPRuzZ9f72yVpHWdPqZakQHc43\n6y+tnRUS7D2IaVs7jo+W7XLs2wOlKKc1q4a2rcnydO9/RfZ62Q3z86VhldI0rFI68BOVUsoP2oMF\nvPHGG+zevZsZM2YAnvOsAG655RZatmzp8xrffPONYx6GUurqlZSURHp6OmlpaXT1FsQ56dmzJ0FB\nQdSvX5/9+60Puj/99BP9+vUjODiYChUq0K5dO1asWAFYQ469BVdg9Zb17dsXsII8+zDBH374gZtv\nvpnY2FgAYmJiHOXDhg0DIDg4mNKlXT9MLly40NGOypUr07GjlRZ7y5YtbNiwgc6dO5OSksLYsWPZ\nvXu347y//vWvADRt2pT09HT/HlrRcCtwP1Zii1W2n5WF2qJ81vW1RdwxYZljP8yp56hkhOf3qdER\nodmuX5WZleVIiAGeAZa3Uz8f1oq4kuEudUJ9REB/vyHRZT/YS4/U9fXKc3frBKbf5zl3sExkmEd9\npZQqCop9D9by5cuZMmUKxhhCQ0N91nv66adzvNbPP/+cn01TSmUnux6nqKjsj8fG+t1j5U337t0Z\nMWIECxYscCxI7k14uNMHzWx6CuxKlCjhtTwzM5PPP/+cmTNn8o9//ANjDIcPH8527b7cMsbQoEED\nlixZ4vW4/TUFBwf7nCtWFBljvEeuV5FNttTqUWHBnLmQSZYx9Gkaz2erdlMm0vv720Uv62TZVSgV\n4bJ+lPtQP19hTTmnAAt89zC5Z/6zp0wPdgrkRISnu3kOmQUoHRXqqKOUUkVJse/B2rJlC2+++SZv\nvfUW69atK+zmKKWuAIMHD2bUqFE0atQo4HPbtGnDtGnTyMzM5ODBgyxcuJDmzZtne868efNISkri\njz/+ID09nd9//53evXszffp0OnbsyKeffuoI9OxDBK+//nr++9//AlaAdvy4a0a4tm3bOtqxd+9e\n5s+fD0BiYiIHDx50BFgXL15k48aN2bavVKlSBRLs5ScRiRKRp0XkXdt+bRHJ07ADEXlJRDaLyDoR\nmS4ihTZGfPH2Q45t+7pNWeZS0JLhpasqvmykS6IKd1nGNZFFqNtQv0xjmLp8l/tp3NuulmPbGCgV\n4T248zX96fCp7LP52kXbeuV0GpVSqqgp9gGW8zdflSpVytO17rzzzrw2Ryl1BYiPj+fBBx/M1bm9\nevVyJKTo2LEj48eP97q4ubO0tDR69erlUta7d2/S0tJo0KABI0eOpF27diQnJ/O3v/0NgNdee435\n8+fTqFEjmjZtyqZNmzzaUbt2berXr8+AAQMcQ6DDwsL47LPPePzxx0lOTiYlJSXHzIMdOnRg06ZN\nRTbJhc0k4AJgH2v2JzA2j9ecAzQ0xiQBW4En83i9gGRlGb7fuA9jDLc5DQ10Pm4f4uccKHVItNKO\nJ1Ys5TXwsruYleXSw/XXJvEux42BJ75Y73GerzWp3LkP7Vvym/UlwZ7j57xV9+BtSKFSShUFxX6I\nYGpqKtWqVWPXrl18/PHHub7ORx99REpKSj62TClV1HjLFtq+fXva2xJuDBo0iEGDBgFWRkFv54oI\nL730Ei+99JLP67ibNGmSR1n37t3p3r07AAMHDmTgwIEuxytUqOCRlMe9Hb6SUqSkpLBwoecavAuc\nhlXGxsY65mDFxMQ45pEVYbWMMbeKSD8AY8wZyePYMmPM9067S4E+vuoWhI+W/c4zMzfyUp8kr8ez\nnJJUOAdSzmXZ9RZlZBqX81pfE0v6CzdR44mv/W7jiXOuqeKbJ8SwfKfVy5rXuEgDK6VUUVXsA6zE\nxMRs50aMGDGCl19+2euxZ599lpSUFIwx9OjRw7FgsVJKqSLngohEYosvRKQW4N9YNP8MxspQ6JWI\nDAWGAlSrVi1fbmhfz2r/Ce89PlkGRw9WhlNPlL03KzPT0PV17xkw7efMsWUhBN/ZALNz7IxrgPXC\nXxvxzo+/0al+Bcfwxc71KwCBB0z2+j9sPpBDTaWUuryKfYAF2U8+9xVcAaxYsYIxY8YURJOUUkrl\nr1HAt0BVEfkIuA4YlNNJIjIX8DaGc6QxZqatzkggA/jI13WMMe8C7wI0a9YsN8tSeWmb/drej2ca\n4+iucunBcio7d9F3kou3FuxwWQfLOeFFbpWPjuBFpx63BSPaU7F0BAA+lsvySXuwlFJFVbGfgwXw\nyCOPuOzbh/g4i4+P9ygDa3K3iCAiVK1atSCap5RSKo+MMXOAv2IFVWlAM2PMAj/O62SMaejlxx5c\nDQK6Abcbf1JF5iN7gOFrGpVxGiLoPAfL0YOV5Tu4AlyCqxn3X+ex0HB2or2khQcoEeYapNWILUGE\nLXALvAcroOpKKXXZaIAFPPzwwxw/fpxjx45x/PhxRowY4XJ8xowZ/PLLLzz5pOv85dOnT7vMyXBe\nK8Zf27dv5+OPP2batGlXwhwGpZS6krUDrgc6AG3yejER6QI8BnQ3xpzJ6/UCvr/tz0wfcZ1zkouL\nmZfqOIYNZrcIlhvnNbDSX7iJ5PjsF+l9obf3eWHZTXu7sYHVUdiwSrRfbbJf6pryJf2qr5RSl0uB\nDhG0vfm8BgQDE4wxL7gd7wE8D2RhDa942Bjzk9PxYKyFIP80xnSzlaUAbwMRtnPuM8Ystx17ErgL\nyAQeNMZ8l1MbV6xYwRtvvIExhtTUVB544AGP7GBffPEFPXv29DjX2yTwQM2fP5+hQ4cCcNddd5Ga\nmprnayqllHIlIm8B12D1XgHcIyKdjDH35+GybwDhwBxb4LDUGHNv3loaAFuE4avjLMtcGg7o3Fvl\nLbNgTtznX5UtEZZtfft9/9Iw+wyZzjrULc+GMTf6PRTxm/X7Ar6HUkpdDgUWYNmCozeBzsBuYIWI\nzDLGOOcKngfMMsYYEUkCPgHqOh1/CPgVcP46azwwxhgzW0S62vbbi0h9oC/QAKgMzBWROsaYzOza\nuWvXLqZMmQJYPVJNmzblhx9+cKkzd+7cAF+9/7Kc3vQ0SYZSShWYjkA9+zA+EfkAyH6BrxwYY67J\nj4bllr1TyVeglGWMR2/VP2f/yor0oy5l/ghxWy04p+F89vsGOuyvZLj/H0v+PHYWgJPnrpwFr5VS\nxUNBDhFsDmw3xvxmjLkATAV6OFcwxpxyGrNegkvZYxGReOAmYILbdQ2XAq7SwB7bdg9gqjHmvDFm\nJ7Dd1oZsOQ9XyMrKokePHh51IiIicroMAAMGDPCrnrOqVavSqVMn2rZtS82aNQM+Xyl1+YgId9xx\nh2M/IyODuLg4unXLfr3alStX5nrdLGevvvoqERERHosG+yu7dtSoUYNDhw55PZaTGTNmeKyzVQRt\nB5zT91W1lV2xxDZIMLsAy30O1js//uY47pxZ8Kak7NeBdF9k2N8AqyDzULSoGQO4Dl9USqmioCAD\nrCrAH077u21lLkSkl4hsBr7GSnNr9yrW2Hb3WbgPAy+JyB/Ay1xa2NHf+w0VkZUisvLgwYM0bdqU\nDh06ALBhwwaPDxihoaFcuHAhp9fK7Nmzeeqpp3Ks5+706dPMnTuXhQsXsnLlyoDPV0pdPiVKlGDD\nhg2cPWt9cz5nzhyqVPH4NeOhWbNmvP76637fJyPD+zfyaWlppKam8sUXX/h9rby0w19XSIBVCvhV\nRBaIyHxgExAtIrNEZFYhty1XJMcerEvDBzMyPeucvXhpgEfjqmWyvZd7ggtv+S5mP3RpWpv9q9OC\nzPR3fV0rvftlzSyilFJ+KPQkF8aY6caYukBPrPlYiEg34IAxZpWXU4YBjxhjqgKPAO8HeL93jTHN\njDHN4uLiqF69OvPnzweshBPu5s2bR2JiotdrDRkyxLG9bt06n/WyE+Q07CIzM9vRjEqpIqBr1658\n/bW10GpaWhr9+vVzHFu+fDktW7akcePGtGrVii1btgDWAr32Xq4jR47Qs2dPkpKSaNGiBevWrQNg\n9OjR9O/fn+uuu47+/ft73HfHjh2cOnWKsWPHkpaW5ijPzMxkxIgRNGzYkKSkJP7zn/8A1vzSVq1a\nkZycTPPmzTl58qRLOw4fPswNN9xAgwYNuPvuu13m8Xz44Yc0b96clJQU7rnnHsfvppIlSzJy5EiS\nk5Np0aIF+/fvZ/HixcyaNYtHH32UlJQUduzYkW/POp89C/wFK137aKCrrexftp8ryto/jjHjlz8B\nzyyC9jlMWcY4pWT3zBh49sKl95ychgu6z/MKdus1+ubBNtSrdGk0/6Uhgtb+9PtaMXVoi2zvEaic\n0tQrpVRhKcgA60+sIRh28bYyr4wxC4GaIhKLtT5JdxFJxxpa2FFEPrRVHQjYv779lEvDAAO6ny+3\n3367y37btm1Zv369R70HHniARo0aOfZ37doV6K0AiIyMpFy5cpQvX57SpbPPyqSUshEpmB8/0Hpi\nkgAAIABJREFU9O3bl6lTp3Lu3DnWrVvHtdde6zhWt25dFi1axC+//MJzzz3ntVd71KhRNG7cmHXr\n1jFu3DiXocWbNm1i7ty5LgGU3dSpU+nbty9t2rRhy5Yt7N9vLQD77rvvkp6ezpo1a1i3bh233347\nFy5c4NZbb+W1115j7dq1zJ07l8jISJfrjRkzhtatW7Nx40Z69erl+B3266+/Mm3aNH7++WfWrFlD\ncHAwH31kLe90+vRpWrRowdq1a2nbti3vvfcerVq1onv37rz00kusWbOGWrVq+fUcLzdjzI/Z/RR2\n+wLV482f+e3QaeBSMGMXHmq9tU9d/ocj+LiQmcXp8649oyec5i6Fh2T/ccC9J8o9G2B0pOvcKXu8\nFmSLsBpXK0uLmuWyvUduGe3DUkoVMQUZYK0AaotIgoiEYSWgcBmGISLXiO23tIg0wcrGdNgY86Qx\nJt4YU8N23g/GGPvEhz1YqXbBmrS8zbY9C+grIuEikgDUBpYH2ujBgwd7lNmTYDjXef311/n+++8d\nZW+++SaVK1dm3Lhxfg0ptOvatSuHDh1i//79TJo0KdDmKqUus6SkJNLT00lLS6Nr164ux44fP87N\nN99Mw4YNeeSRR9i40TOHwk8//eTooerYsSOHDx/mxIkTAHTv3t0jELJLS0ujb9++BAUF0bt3bz79\n9FPASsJzzz33EBJifcCNiYlhy5YtVKpUyZGVNDo62nHcbuHChY75ZDfddBNly5YFrF77VatWkZqa\nSkpKCvPmzeO336x5O2FhYY4esKZNm5Kenh7Yw1P5YsyXrv+unNerAogIsXqwdh054wi+Nvx5ggaj\nXBPr7rQFaAC3X1vd5/1G3FCHymVc/10GuwVY7j1aWbYIS/Dvi4vcsAd52oOllCpqCiyLoDEmQ0SG\nA99hpWmfaIzZKCL32o6/DfQGBojIReAscKsfCzUOAV4TkRDgHDDUdr2NIvIJ1rj6DOD+nDII2m3Y\nsIGMjAyMMdSvX9/jeHh4uMv+9u3bWbdunceHp7179zJy5Eiio6MZPny4P7dmzZo19O/fnw0bNnDL\nLbcwbdo0v85Tqlgr5E9U3bt3Z8SIESxYsIDDhw87yp955hk6dOjA9OnTSU9Pp3379gFdt0SJEl7L\n169fz7Zt2+jcuTMAFy5cICEhwe/fM4EwxjBw4ED++c9/ehwLDQ11fKgNDg72OVdMFaxJP6e77K/6\n/ajLflhIEKXCQ+iWXJlDp87neL1qMVGEZdOD1btpvEeZe0DlHnDVrmCtTXWtLRFFQdDUFkqpoqpA\n52AZY74xxtQxxtQyxvzDVva2LbjCGPOiMaaBMSbFGNPSeQ0sp2sssK+BZdv/yRjT1BiTbIy51nme\nljHmH7Z7JRpjZvvTxl9++YVnn32WMWPGMGvWLEJDQz3quPcsLVy4kOTkZHbu3On1ms8++6w/twbg\n22+/ZcOGDQB88sknAfV+KaUKx+DBgxk1apTLMGGwerDsSS8mT57s9dw2bdo4htwtWLCA2NhYoqOz\nX1g1LS2N0aNHk56eTnp6Onv27GHPnj38/vvvdO7cmXfeeccR7Bw5coTExET27t3rWLz85MmTHsFQ\n27Zt+fjjjwErSc/Ro9aH9Ouvv57PPvuMAwcOOK73+++/Z9u+UqVKcfLkyWzrqPyR83eQ1ppVUeHB\nGGP8qp/TmlbuwRPkPGSwcbWyLHmyIzd7Cc7yy6U5WNqFpZQqWgp0oeErwf79+x0Zuc6cOcPq1atd\njlesWJHNmzf7fb27776b3r17O/Z37tzJq6++ioiQkJDAQw895FI/y23isa6FpVTRFx8f7zXd+WOP\nPcbAgQMZO3YsN910k8sx+wfQ0aNHM3jwYJKSkoiKiuKDDz7I8X5Tp07lm2++cSnr1asXU6dO5e9/\n/ztbt24lKSmJ0NBQhgwZwvDhw5k2bRoPPPAAZ8+eJTIy0mM9v1GjRtGvXz8aNGhAq1atqFbNymBe\nv359xo4dyw033EBWVhahoaG8+eabVK/uewhZ3759GTJkCK+//jqfffZZkZqHJSLrySbRnDEm6TI2\nJ89OX8h5YEZoUBAhQUFkZBm/Onv7pVbN9rh78ASeWQS9BTmVSnsf7ppf7K3S8EopVdQU+wDLfR0s\n929hJ02axBtvvJHjdTp27MisWbM8hvisXLnSJS2ye4BVt25dl31vb2RKqaLh1KlTHmXt27d3DAVs\n2bIlW7dudRwbO3YsYGXsi4mxhkrFxMQwY8YMj+uMHj3a533tc6CcvfLKKy7bzvsAqampLF261Gdb\ny5Ur5zKP1Nmtt97Krbfe6lHu/Pr79OlDnz59ALjuuuuKcpp2+wiI+21//s/25+1e6hZ57gktvBGx\nhvBlZhm/6qdUu5Si/fq65Zm3+YDLcffhgODZg5VZCL1I9gQa2oGllCpqin2AlZKS4tieM2cOcXFx\nLsdLlCjBv//9b0daZm9KlCjBvHnzvB7LaeFO+8RygFatWmmApdRVZtasWYwcOZKJEycWdlOKJWPM\n7wAi0tkY09jp0BMishp4onBaFrgzFzL4+ydrPcrtwZRdkAghQUJGlmHJb4c96ruzB0vpL1i9rmv+\nOMYvu44y5ksraPY6RNAW3MSXjaRCdARxJcM96hS0Sz1YGmEppYqWQl8Hq7BVqFDB57GSJUvSpk0b\nateune01Tp8+zeOPP+71WE5DZZzXwQoODtYAS6mrTPfu3dm8eTOtWrUq7KYUdyIi1znttOIKew/8\ndOVu5mza71HuvtDwpR6sLM5d9Fz/yp17b1RK1TKULxVx6XpenpI96GpTO47Ph7XyWIj4stAsgkqp\nIqrY92C5K1WqFA888ACZmZmULFkSY4xfQc/48eMZP348YA2dsadQbtasGW+++SZBQUGOIULOoqKi\nHEFeyZIlycrKcgm6lFKX+Pv/UV25CjBhwWBgkojYFxw8ZisrNOcuZnL+Yhalo1yTK506n0HJcM+3\nZy8j9bwKEiE4SLiY6d+z9HZd56GF3nqw7MMGQ/xtVAHQOVhKqaJKAyw3999/Py1btuT0aWt9kGee\neYaSJUtSrlw5l3TML774os9eq88++8yxHRMTw3333efzfqmpqVy8eJEjR444MnmVK1cwizEqdSWL\niIjg8OHDlCtXToOsq5QxhsOHDxMREZFz5QCISBBwjTEm2R5gGWOO53Bagev62iJ+O3TaMTRv/4lz\nXDvOGm7+8ZBraVUrFrCey9mLmY5heTkRsTIJZmYZasWVYMfB09nWd+/BArihwaXRHZGhnsmX7OeE\nBBfe/8WEWGvOc/1K2WfhVEqpy00DLKwJ5PZ0tjVr1nTpQbJn+XvzzTfp27evo9xXcBWoH3/8kSNH\njjj2MzP9WrpLqWInPj6e3bt3c/DgwcJuiipAERERxMfnb2pvY0yWiDwGfFIUAiu73w65Bj7fOw3/\nW/bbEUeA9cnKP3j88/X0TKns9TqRocGcvXjpvUOAYHsWQR/3DgsJ4kKG9f7mLcAKDwlm5dOduJCR\n5TWwsxcVZg/WddfEMvuhNtStWKrQ2qCUUt4U+wBr3bp1jBgxAmMMjRo14pVXXnHJJHjy5Emio6MJ\nC8t+nZDc+vzzz1323dO2K6UsoaGhJCQkFHYz1JVrroiMAKYBjsjGGHPE9ymXl3Oo4jxU8vuNVuA1\nY80er+ddzHR73xAh1DYHKyvLe4gV4Rxg+RiVHptN4gr7EMHgQh7SXk97r5RSRVCxD7COHTvGnDlz\nADh//jwbN250Ob5nzx6qVKlCly5daNeuHZs2bcrxG/SaNWs6tjdt2sS//vUvRIT69evzt7/9zaWu\ne49VxYoV8/JylFJKeWfPO3+/U5kBanqpW+ic46JlO7OPATPck1xgBUA/b/eeQbBJtTJsP3Ap5b63\nHqycbNlvfRF56vzFgM9VSqmrXbHPpuC+Dtbx466jR+wL/0ZGRvLjjz/6DK4WLVrEyZMnOXPmjEuQ\ntnbtWiZOnMj777/P3//+d8fcLrvmzZvn10tRSinlgzEmwctPkQyuwHVdqVPnMwI6N0iynxv1xX3X\nUbZEmFP9wAOsBVus98IPl+4K+FyllLraFfsAq2HDho7tn3/+meeff97luH3h4HPnzrmU33XXXY7t\nuLg4WrduTcmSJYmMjHSZoO2+MOm4ceNc9ps0aeLYbtCgQS5fhVJKqZyISEMRuUVEBth/CrtNzpzj\nHF9D+/y7juQ4dK9MlHOAletbKaWU8qLYB1juc6vsPVYAVatWJTExEYCdO3e61GvXrh0vv/wyAAcP\nHmTgwIFer9+oUSOX/djYWJ/30/lXSilVMERkFPAf208HYDzQvVAb5UbIn0gnSODAiXNej333cFsA\n6jklhshNVs6keCvb/b3tsl/rUSmliqNiPwfr/PnzLvulS5fm6aefxhhDmTJlHOXOgRBYadqdhwJO\nmTKFKVOmAFZP1IYNGwBISkoiJCSEjIwMx/WdRUZGUqlSJbKysoiOjiYjI4OQkGL/16KUUvmtD5AM\n/GKMuVNEKgAfFnKbHLbuP8lT09c79nPTfxUabK19JQjHz3rOjRrUqgaJtsBqdPcGTF3xR26by4CW\nNRjx6VrqVdIMfkop5a7Yf5K/cOGCy/5zzz1HrVqe38hFRUW57Lsnw/B1LCoqipMnT3Lu3DkuXLhA\nyZIlXeomJCQQHh5Oeno6+/fvZ9euXS5JMnJy4sQJZs2aRZs2bahevbrf5ymlVDFz1pauPUNEooED\nQNX8uLCI/B14GYgzxhwK9HxjDBMW/eZRBvD74ezXsHL2Tv+mDJ68EhHYe9yzB6tB5UsZ9yKc1rbK\nzeLOvZtUoVpMFKk1ygZ8rlJKXe2KfYBVvnx5Dh065BieFxcX57VefHy8402oYcOG2QZY7k6ePMnZ\ns2fJyMggOto1peysWbNIT0937Af6RjdkyBA++eQTqlSpws6dOwkNDQ3ofKWUKiZWikgZ4D1gFXAK\nWJLXi4pIVeAGINfZHo6fvUhIsPcR+49+us7v69jnXXkb8Te8wzX0bFzFpax8qXAOnDyfq94yEaF5\nQkwuzlRKqatfsZ+DtWXLFrp168b//d//8eijj/p1jj+LAd97772sWbMGgK5du1K9enVq1arF6tWr\nXerNnDnTZT/QsfCffPIJAH/++SeLFy8O6FyllCoujDH3GWOOGWPeBjoDA40xd+bDpf8NPEbuRvUB\nMHvDPo8Fe42B8xmZZAXwpdvZC9Z7U2So65D25PjSjLgxkVC3IO7B62sDUDpSv5hTSqn8VOx7sE6f\nPs3SpUsBuHgx+/U8unTpwvLlyzl69GiO133nnXf44IMPePfdd1m5cqWj/M4772TLli2OfefEFhMn\nTgxoeCBAmTJlOHbsGGD1simllPIkIv8DFgKLjDGb8+maPYA/jTFrc/pyTESGAkMBqlWr5nIsI8sw\nZcnvbvUh8elvA2rPgZPWsMDKZSJdyge39r5A9x0tqnNHCx1arpRS+a3YB1jOb4o5Dc/77rvvcrxe\nVFQUZ86cAazU7gMGuGYBDnJLndujRw+qVatGZmYmycnJ/jbbwZ9gTymlFBOBNsB/RKQW8Auw0Bjz\nWnYnichcwNsK8COBp7CGB+bIGPMu8C5As2bNXN5sMjI9M8i+t2inR1lOqsZYc4WbVCvL9fXKM3iy\n9eVebrIEKqWUyr1iH2AlJiby888/IyIeCShywx5c+dKyZUuX/Z49e9KzZ88831cppZRvxpj5IrIQ\nSMVK034v0ADINsAyxnTyVi4ijYAEwN57FQ+sFpHmxph9gbQtMw9rXjnrkFie7x5uS50KJTWoUkqp\nQlTsA6y9e/fSvn17goKCqF27NuvXr/dZ99prr2XZsmV5ut8777yTp/OVUkoFTkTmASWwElssAlKN\nMQdyez1jzHqgvNP104FmucsimNtWeEqs6Jk2PViDLaWUuqyKfZKLrKwsLl68yPnz5z1StrtbunQp\nxhg++OCDXN0rNTXVa5a/Xbt2sXXrVrZs2cK5c94Xh1RKKZUn64ALQEMgCWgoIpHZn1Jw/vH1Jse2\nt6AoP9xQvwIAPhIUKqWUKiDF/teuc5IJ9/lRvtStWzdX91qxYoXX8m7dupGYmEjdunVdEmD4o0qV\nKogIIsK2bdty1S6llLraGWMeMca0Bf4KHAYmAcfy8fo1Aum9cp5jlZlliCsVHtD9pgxunmMd+8jD\nIO3BUkqpy6rYDxGsW7cu58+fJysry+81qMaNG5djndKlSxMbG8uOHTscZRMnTvSoN3nyZJdhiYGu\ng7Vnzx7H9vbt26ldu3ZA5yulVHEgIsOxklw0BdKxkl4sKsw22WVkGUKDAguCKpeJyLGOPfV7SLAG\nWEopdTkV+wBLRAgLCwvoHF89Uc6OHz/ukTQjMzOTzMxMgoMvrVHivg5WXhYKDjQ4U0qpYiQCeAVY\nZYzJKMyGbN53klin/cws1yyCNcpFkX44+4RJpSOt963YkmEcOuV9ePvzPRtSrVwU7eqU93pcKaVU\nwSj2QwQDkZqaioi49Bplxz2L05AhQ7j33ntdypyHKM6cOZMGDRoE1KZGjRoRERFBZGQk11xzTUDn\nKqVUcWGMeRkIBfoDiEiciHhfIKqAXXRLy57hlkWweUIM2XVobXruRiLDrC/qujaq5LNeXKlwnupa\nj+AAe8eUUkrlTbHvwQqE84LBvnz88cc0bNgQYwwhISE5Bkxr1qxxbNerVy/gNq1bty7gc5RSqrgR\nkVFAMyARa/5VKPAhcF1htgs807QHBwXhnrm9W1Ilvlq3F4CoMOute+XTnSgTGeqxSLFSSqnCpQFW\nPrvtttsYOnQop0+fJjMz0+O4eyKNXbt2ObYjIwstoZVSSl3tegGNgdUAxpg9IlIw6fsClJFpOH3h\n0vvFnmNnPeq81rexI8Cyiy0ZWGIMpZRSl0eBDhEUkS4iskVEtovIE16O3y4i60RkvYgsFpFkp2MP\nicgGEdkoIg87laeIyFIRWSMiK0Wkua28ua1sjYisFZFe+f16Onfu7NccqWnTpvHRRx8xdepUj2N3\n330348aNY/fu3fndPKWUUr5dMNZEVQMgIiUKuT0O01b+wfGzFx37P2496FFHh/kppdSVo8B6sEQk\nGHgT6AzsBlaIyCxjzCanajuBdsaYoyLyF+Bd4FoRaQgMAZpjrVvyrYh8ZYzZDowHxhhjZotIV9t+\ne2AD1iKPGSJSCVgrIl/m52Tm77//HrCGAd5+++0+6x0/ftxrefPmzWne3EqtO2XKFDZv3sz27dvZ\ntm0bZ8+eZc+ePZQpU8YjOYZSSqk8+0RE3gHKiMgQYDAwoZDbBMDynUeyPW5fz0oppdSVoSCHCDYH\nthtjfgMQkalAD8ARYBljFjvVXwrE27brAcuMMWds5/6ItXbJeKxvH6Nt9UoDe2zXck65FGGrVyAS\nExNzrDN58mRCQ0N5//33+eGHHwBISEhg+fLlAGzZsoXz589Tq1YtBgwYwOLF1qNYtGgRrVu39rst\n4eHhjgWSN2zYEHCSDKWUKg6MMS+LSGfgBNY8rGeNMXMKuVl+2X/yfLbHVz/TGe3fUkqpoqMgA6wq\nwB9O+7uBa7Opfxcw27a9AfiHiJQDzgJdAXuGiYeB70TkZawhjq3sFxCRa7HWNqkO9PfWeyUiQ4Gh\nANWqVQv8VeGZHdCbp59+mmuuuYbU1FTWrVvHyJEjadeuHdOmTXPU+fTTT9m3b58juALXrIL+sAdX\nANu2bdMASymlfLAFVHMARCRIRG43xnxUyM1yUTE6gn0nzrmU2dfIuqdtTepVivY4J6ZEYEuNKKWU\nKlhFIsmFiHTACrBaAxhjfhWRF4HvgdPAGsA+A3gY8Igx5nMRuQV4H+hkO28Z0EBE6gEfiMhsY4zL\nO5Ux5l2soYg0a9YsV71cNWvW9Fq+c+dOTpw4QXJyMrt372bfvn0sWLAAgEceeYRSpVznU9eqVYt3\n3nnHpaxEiSIzLUAppa54IhIN3I/1pd8srADrfmAEsBYoUgHWzOHXce24eS5locHWdOknuwaeaVYp\npdTlV5BJLv4Eqjrtx9vKXIhIEtY4+B7GmMP2cmPM+8aYpsaYtsBRYKvt0EDgC9v2p1hDEV0YY34F\nTgEN8+F1ONSsWRMRoWzZsgwbNoyHHnrI5XhCQgJz58517GdkuHagnTx50rE9bNgwUlJS+Omnn7j+\n+usBmDt3Lk2bNg2oTV26dCEhIYGEhATq168f6EtSSqmr3f+whgSuB+4G5gM3Az2NMT0Ks2HuIkKD\nqBAd4VEeFRbspbZSSqmiqiADrBVAbRFJEJEwoC/Wt4cOIlINK1jqb4zZ6nasvFOdvwIf2w7tAdrZ\ntjsC22z1EkQkxLZdHagLpOfnC9q5c6dju3LlyrzyyiscPXqUFi1aOMoTEhLYuXMnv/32G2vXrvV5\nrYULFzrSss+bZ31bWaVKlYDbNGnSJJKTk2ndujXx8fE5n6CUUsVLTWPMIGPMO0A/oD5wozFmTQ7n\nXXbiYyZV3UpFIpu8UkopPxXYEEFbNr/hwHdAMDDRGLNRRO61HX8beBYoB7xlm9eUYYxpZrvE57Y5\nWBeB+40xx2zlQ4DXbMHUOWzzqbCGFz4hIheBLOA+Y8yh/HxNzz77LM899xzh4eEMGzYMgLCwMKpW\nrcqOHTuIjIykdOnSLF26lLS0NDIzM2nbti0LFy70uNbGjRs9ymrUqBFwm+6//35mzJgBWHPKxo4d\nG/A1lFLqKubIf26MyRSR3e5Dx4sK+/Re93lYZaN0jpVSSl1JxFoWpHhq1qyZWblyZc4VbS5cuMDs\n2bOpX78+tWvXZtOmTS5JJd577z06dOjA+PHjeffddwF45plneO655wB48skneeGFFxz1jTGkpaWR\nkZGBMYbbb7+d4ODAhoI4J9yoWrWqy8LFSil1tRCRVU5fwAVyXibWXF4AASKBM7ZtY4zxzBpRwMIr\n1TaVBr5KRGgQUWEhHDltJSsqERbMxue6sHX/SW74t/XF3P0davFwpzqOeVhKKaUun9y+9+TYgyUi\n5ZznRhVnYWFh9OhhDdk/ePAgW7e6jGpkyJAhHudMmjSJ3r17k5ycTJcuXVwCrO3bt9OvXz/Wr1/P\nkSNHWLRoEY0aNaJcuXJ+t+nXX3/ljz+sZI116tTJzctSSqmrljGmyE5geq1vY2at2cPX6/cCl74w\niwy91OSHrtfgSimlrjT+/NZeKiKfikhX8Sc/eTHRsmVLevXqlWO93bt306tXL7766iuPY/Y1sR59\n9FHat29Phw4dWLFihd9tyMzMpF69etxwww3ccMMNHDt2LOeTlFJKFQkNKkcTHnLpbdj+ButcFhai\nwZVSSl1p/PnNXQcrrXl/YJuIjBORYt9VsmPHDpf9bt26+ay7c+dOnn32WY81quxrWDnHrYGsg5WZ\nmemy794mpZRSRVd82SivvVPhIUW2000ppZQfcgywjGWOMaYfVoKJgcByEflRRFoWeAuvANHR0Ywb\nN47169f7rLNv3z7i4uJcyqpXrw5Ao0aNaNOmDe3atSMmJsbv+7rPnyvO8+mUUupK9NN2p1xMtu/a\nQoJ1sIhSSl3J/JqDBdyB1YO1H3gAK916CtY6VAkF2cCi6ocffuDXX38lODiYMWPGkJSU5LXewIED\n+d///sfevXtdytu1a0dUVJRjTldMTAzTp08nkFGYISEhDBo0iG3bthEUFERycnLuX5BSSqnL7s9j\nZz3KNMBSSqkrmz9p2pdgLdTY0xiz26l8pYi8XTDNKvo6dOhAhw4dAJg2bZojgBowYABZWVmsXr2a\natWqkZSUxF133cV7773ncv6PP/7I7NmzmTXr0tJgIsKUKVMYN24cQUFB9O/fnyeffNJnG4KDg5k8\nebJjv1evXtn2oimllMpfIvIAcD+QCXxtjHksp3NiSoTxSCffI+1Dg3TelVJKXcn8CbASjY+xZ8aY\nF/O5PVekhIQEDh48SFZWFvfddx/79+/nww8/ZNOmTXz77bckJCRQqVIlj16sIC9vokuWLGHLli0A\nzJo1K9sAy93Ro0fz9kKUUkr5TUQ6AD2AZGPMeREp7895VcpE8lCn2p4HbO+0QUHag6WUUlcyfwKs\n70XkZvtCvyJSFphqjLmxYJt25ejVqxcdO3YkPT2d4OBg5s+f73J8586d7Ny5k9mzZ3Pfffc5ypOT\nk5k+fbrL3Km5c+c6tpcuXVrwjVdKKZVbw4AXjDHnAYwxB/JyMZ1Fq5RSVwd/Aqw4e3AFYIw56u+3\ndMXFiBEjHL1OTz/9tNc6AwcOZNSoUS5le/bsYdiwYaxevZo9e/bw5ZdfcuONN7J9+3YAx/ys7Oze\nvZsjR44AUKVKlby8DKWUUoGpA7QRkX8A54ARxhiva22IyFBgKEC1atUuXwuVUkpddv4EWJkiUs0Y\nswtARKqjX7S58CcxxcKFC4mKinIpu+++++jVqxf//Oc/+eyzzwC45557uP322xEROnbsmO01T548\nSXx8vGN/yZIltGjRIhevQCmllDciMheo6OXQSKz30BigBZAKfCIiNb0NqzfGvIu15AnNmjXz+h4a\nWzIsv5qtlFKqEPkTYI0EfhKRH7GSyLbB9i2csnTr1o3GjRuTlpaWbb3atT3H3P/xxx8uAVqHDh24\n9dZb/bqvfR0tu99++00DLKWUykfGmE6+jonIMOALW0C1XESygFjgYKD36dW4Co/emJj7hiqllCoy\ncgywjDHfikgTrG/oAB42xhzK7pziZsCAAZw8eZIHHniAVq1a+awXGxvrUVauXDmaNGnC6dOnCQoK\nolKlSn7fV9fBUkqpQjUD6ADMF5E6QBiQq/fHf9+akp/tUkopVYj86cECCAeO2OrXFxGMMQsLrllX\nlnvuuYclS5YEdE6dOnV45ZVXuPPOOwkJCSEqKoovv/wyoGtER0fz+OOPO9bjatKkSUDnK6WUypOJ\nwEQR2QBcAAb6yrrry6Q7U/lyzR6P8u8facvOQ6fzp5VKKaUuK38WGn4RuBXYCGTZig3xNOwdAAAg\nAElEQVSgAZaN8/vpo48+ioiwdu1avvvuO5/nbN26lW7dujn2S5UqBcAbb7zBCy+8gIhw//3388QT\nT/i8RlhYGLGxsY61tBISEvjXv/6V15ejlFLKD8aYC8AdeblGh8TydEj0zBtVp0Ip6lQolZdLK6WU\nKiT+9GD1xFoL63xBN+ZK1ahRI8AKtPr378/u3bsZP368S50KFSqwf/9+n9ewr4m1fPly/vzzTwCm\nT5+ebYDlfJ79/koppZRSSqnC40+A9RsQCmiA5cMNN9xAkyZN2LhxI0lJSV7rPPXUUzRo0IBOnVzn\nSzdu3JiXXnrJESj9+OOPjmPLly8H4Pnnn+f8+fNkZWXx3HPPERJy6a8tJCSEsLAwgoKCCA4Ozu+X\nppRSSimllAqA5NTrISKfA8nAPJyCLGPMgwXbtILXrFkzs3LlyjxfJyUlhbVr12Zb5/XXX2f48OHE\nxcVx+PBhR/nIkSPp3r07O3bswBjDggULeO+99xzHz5w545Le/cyZM0RGRua5zUopdSURkVXGmGaF\n3Y78kF/vPUoppQpWbt97/OnBmmX7UT74sw5W6dKlERGX4Aqs4YXvvPMOEydOBKBfv34ux8+cOeOy\nn5WV5djet28fPXv2JCgoiIoVK/LFF1/k9iUopZRSSiml8oE/ado/EJFIoJoxZstlaNMVp3fv3jRv\n3px3333XZ52+fft6nYNVs2ZNl3lUrVu3pnHjxhhjCAkJ4eLFiy71nYcHnjt3jmXLlgFQrVq1vL4M\npZRSl8GqVasOicjvhd2OK1AsuUyDr/TZ5ZE+v9y70p9d9dyc5E8Wwf8DXsZa3yNBRFKA54wx3XNz\nwyLl1E5Y+RA0ey1Pl3n66acBeOedd3z2Zk2ZMoUhQ4Z4lFevXp3U1FROnjxJUFAQiYmJdOjQgczM\nTIwxXLhwgVdffZWLFy8SERFBeHi441zn4Z3OQZpSSqmiyxgTV9htuBKJyMqrZZjo5abPLm/0+eVe\ncX12/gwRHA00BxYAGGPWiEjNAmzT5XPhCGx9Pc8BlrMGDRqwceNGx/7dd9/NokWLXIKrxMRERowY\nwY4dO6hQoQJ16tShTp06fPnll2RlZbkkq8jIyOChhx7yeq9KlSoxf/58Tpw4QUhICCdOnCA6Ojrf\nXotSSimllFIqMP4EWBeNMcfdemayfFUuzjIyMlyCq06dOlG6dGmaNm3Kli2XRldu2bLFJeDaunWr\nY65VSkqKyzWzS0ISERHBtm3bGDp0KAB33XUXEyZMyJfXopRSSimllAqcPwHWRhG5DQgWkdrAg8Di\ngm1WITFZkHkeQnKXpe/tt9922Z87dy5z584FrKGAcXFxxMbG8u2333qcax/i98cff7iUOye18KYo\nrIM1d+5ctm3bRlZWFp07d6ZOnTqF0g6llFJXNd8TnVVO9NnljT6/3CuWz86fAOsBYCRWivY04Dvg\n+YJsVKGZ2xYO/gx9jkBY2YBPX7Bggc9jTz31FEOHDmXv3r1UrlzZ5Vi9evX46KOPADh27JjLsbCw\nMMaMGcORI0fIysri+eefp0yZMo7jkZGRlCtXjqCgIEqWLBlwm/PDxIkTSUtLA+DDDz/UAEsppVS+\nM8YUyw9q+UGfXd7o88u94vrs/MkieAYrwBpZ8M0pZAd/tv25GKrcFPDpn3/+eY51SpUqRWJiosuQ\nwYoVK7Jy5UqWL1/OwIED+eCDDxzHduzYwejRox37vXv3pn379o792267jdtuu42ffvqJoKAgli1b\nRvPmzf1KHZ9fFi++1KHp3gOnlFJKKaVUceJPFsH5gMfYM2NMxwJpUWEwBlwCktwNtevVqxfTp0/3\neszeu1SyZEl2797tcmz+/PnMnz8fgJtucg3s9u3b57I/ZcoUR4C1Y8cOevToAeAy9yunYYX57fff\nL2Ubdu+BU0oppZRSqjjxJ7f3COBR288zwBrAryXoRaSLiGwRke0i8oSX47eLyDoRWS8ii0Uk2e14\nsIj8IiJfOZWliMhSEVkjIitFpLnTsSQRWSIiG23XjPCnnZhMv6rlJCkpyeex9u3bs3PnTtLT0zl9\n+rTPei1atOC///0vb731FhMmTCAz07VtzlkCz549y8aNG12CK4BTp07l8hXkjj3IA6v9SimllD9E\nZKKIHBCRDU5lMSIyR0S22f4s63TsSdtnii0icqNTeVPb+/52EXldLucwjkIgIlVFZL6IbLJ95nnI\nVq7Pzg8iEiEiy0Vkre35jbGV6/Pzg/vnc31uXhhjAv4BlvtRJxjYAdTEWkNrLVDfrU4roKxt+y/A\nMrfjfwM+Br5yKvse+IttuyuwwLYdAqwDkm375YDg7NrYNAFjPsKYjPPGGGNtf4Qxu78yuZGZmWmw\nur88foYPH+6yHxERYUJCQsyRI0fMPffc4yivUaOGOX78uDl69Kg5fPiw+fPPP13O69Kli+N+a9eu\n9Xqv48eP56r9uTV+/Hhzyy23mD59+pjly5df1nsrpYoHYKXJxfuV/hTtH6At0ATY4FQ2HnjCtv0E\n8KJtu77ts0Q4kGD7jBFsO7YcaAEIMNv+OeFq/QEqAU1s26WArbbno8/Ov+cnQEnbdiiwzPYM9Pn5\n9/xcPp/rc/P88WeIYIzTbhDQFCid03lYa2dtN8b8ZrvOVKAHsMlewRjjnI1wKRDvdN944CbgH7a/\nSMdpgL0bpzSwx7Z9A7DOGLPWdu3DfrTRJn+G1HkLvh955BHWrVvHG2+84ShLTU2la9euLFmyhJiY\nGJf6iYmJlC596fG6DxEcMGCAY7tOnTosWbKE/fv307NnT0cbLvcQwUcfffSy3k8ppdTVwRizUERq\nuBX3ANrbtj/AWofzcVv5VGPMeWCniGwHmotIOhBtjFkKICJTgJ5YH9quSsaYvcBe2/ZJEfkVqII+\nO78Y6xO+fbhPqO3HoM8vRz4+n+tzc+NPFsFVWP/oBMgAdgJ3+XFeFcA548Fu4Nps6t+F64N9FXgM\n65sZZw8D34nIy1gBXytbeR3AiMh3QBzWX+h495uIyFBgKEDTBFvh2pFQ/0mnWrmbg3X+/HmX/ebN\nm3P69GnCwsJcylesWMGKFSu8XuO7775z2f/3v//tsu+8CHFERAS7du3i1ltvBaBPnz58+umnuWq7\nUkopVURUsAUQAPuACrbtKlhfxtrttpVdtG27lxcLtgC1MVYvjD47P4lIMNZn3GuAN40xy0REn1/O\nvH0+1+fmxp8sggk51ckrEemAFWC1tu13Aw4YY1aJSHu36sOAR4wxn4vILcD7QCes19IaSAXOAPNE\nZJUxZp7zycZKF/kuQLOaYkVSm1+B467zmHLjyy+/dNlfvnw5y5cvB6B+/fpUqFCBcuXK8dlnn/l9\nzRdffNGxXaVKFXr16uVyvCisg/X999+zZs0ajDHceOONHoslK6WUUrlhjDEiUjhvblcAESkJfA48\nbIw54TySRp9d9owxmUCKiJQBpotIQ7fj+vzc5PD5HNDnZufPEMG/ZnfcGPOFj0N/AlWd9uNtZe7X\nTwImYI29tA/ruw7oLiJdgQggWkQ+NMbcAQwEHrLV+9R2LljR70JjzCHbdb/BGtftEmD5tG+uX9Wy\ns2bNGp/HHnvsMQYOHMipU6cCCrCcHT58mHHjxjFq1ChHWcmSJalRowYiQvny5XN13bz6/PPPefdd\na5mDMmXKaICllFIqL/aLSCVjzF4RqQQcsJX7+lzxJ05TDPDxeeNqIyKhWMHVR06fxfTZBcgYc0ys\njNld0OeXE6+fz9Hn5sGfLIJ3YfUS3W77mQAMBv4P6JbNeSuA2iKSICJhQF9glnMFEakGfAH0N8Zs\ntZcbY540xsQbY2rYzvvBFlyBNeeqnW27I7DNtv0d0EhEokQkxFbHMd8rRy6ZBHOXyMR5npU7+7dK\n4eHhNGnSJFfXP3funMuaWABdunRh8+bNvPnmm/To0YOFCxfm6tp54TysUdfBUkoplUezsL5Mxfbn\nTKfyviISLiIJQG2spFt7gRMi0sKWiWyA0zlXJdvrfB/41RjzitMhfXZ+EJE4W88VIhIJdAY2o88v\nW9l8Ptfn5safOVihWNn/9gLYItPJxpg7szvJGJMhIsOxAp9gYKIxZqOI3Gs7/jbwLFa2v7dsAUiG\nMaZZDu0ZArxmC6LOYZtPZYw5KiKvYAV2BvjGGPO1H6/PW+tzdVbPnj2ZMmWK12Ph4eEAhIaGsnr1\n6tw1y80vv/xCr169OHDgAGfPnnXc58yZMy5DBwua8zpYISH+/JNSSimlQETSsCbHx4rIbmAU8ALw\niYjcBfwO3AJg+wzxCdaXpxnA/bZhXgD3AZOBSKz53FfNZHkfrgP6A+tFxD585in02fmrEvCBbR5W\nEPCJMeYrEVmCPr/c0H93biSneTsi8qsxpp7TfhCw0bnsStWsppiVY70caDsT4rsHfL1XXnmFv//9\n716PrV271rGdnJzstY6/XnzxRR577DGWLFlCq1atPI7v3r2bKlUu31zBzp07M3euNcTy+++/p3Pn\nzpft3kqp4sE2pzanL+CUUkqpQudPN8c8EflORAaJyCDgayDvE5aKMpNxaTv9Y5jTFs4fyfG0v/3t\nbz6PPfLIIyQnJzuCqxIlSgDw8MMPc8cdd/g8z5snnrDWbPaVjv1yp2nv0qULgwcP5s4776Ry5cqX\n9d5KKaWUUkoVJTn2YAGISC+sxQDBSiQxvUBbdZn47MFq/QlUu9na/tg2H6veo9DYI+u7h2uuuYYd\nO3a4lNWoUYP09PRL923WjCeffJJvvvmG999/P1dtz8rK4vz582zbto2kpCRHeXR0NOvXr6datWq5\nuq5SShVF2oOllFLqSuHvRJ3VwNfGmEew1qByX5vq6pKV4VmWcSbH006cOME///lPj2GCr732msv+\nypUr6d27d66Dq8ceewxjDBERER5JJUaOHJnn4Gr8+PHUqVOHevXq5bqNSimllFJKFUf+pGkfgpVI\nIgaohbUQ2NvA9QXbtEJkvARYfpg5cyYDBgzwKN+7dy9NmzalcuXKVK1alYsXL/Lee+/l6h7x8fEu\na2O590A+/vjjdO7cmcaNG+fq+gAHDhxg2zYrOePRo0dzrD979mwWL16MMf/P3p2Hx3T9Dxx/n0kI\nIbZIbLETWRBLGtSStGhR1aJFbUFRVUu1qrp8La1uv9aulLaW0kVLi+61ldp3JasgEmsiIUFIMpnz\n+2OScW9mJpkggp7X8+TJvefce+6Z0Sb5zDnncySdO3emdevWt/xsRVEURVEURbmfOTKC9RLmbDWp\nAFLKY0DRbLh0t5y5teSDe/futVk+YsQIXnvtNdatW8enn37KBx98kGc706dPt1t3+vRpuna9mR3/\n3LlzVtfc6j5bObKybqasd3Jyyvf6v/76i2nTpvHee++xe/fu23q2oiiKoiiKotzPHAmw0qWUGTkn\n2enRH+wdmuNW2ijM/yWvXGnrPmvu7u4EBtpfSmAvE2GOX3+9GQCGhIRY1ffp08ehftjz0EMP0bFj\nR0JCQihTpky+18+aNcty/O+//97WsxVFURRFKRghhLsQ4lD213khxBnNefFc1+a71EMIcTpnnygb\n5Ss1532EEF/codcwTQjx8p1oS1GKmiMB1hYhxJtASSFER+AH4OfC7da9KP8Aq3v37pbjkSNH5nnt\n999/f9s9+vvvv6lfv75VuY+Pz221GxcXx/r16/n777+Jjo7O/waNypUr39azFUVRFEUpGCllkpSy\niZSyCeZlHDNzznM+JBdmBinl41LKK7fxuBZCiAZ3pON3SM5rK+p+KEoOR/5jnAgkAkeAF4DfgLcL\ns1P3K+2o1Pz583V17u7ubN++nR07dnDs2DFq165NREQEc+bMoWzZsgV6jq+vLzdu3CAjI8Nm/d9/\n/+1wW7aySIaFhVmOc7+O/Pj5+RXoekVRFEVRCocQop4QIlwI8TUQBlTRjk4JIX4WQuwXQoQJIYY6\n2Ox0zJsa536WbgRKCBEphPDK7sNRIcRyIUS0EOIrIcTjQogdQohjQgjtlJ6mQohd2eVDNG1NFELs\nEUL8K4SYZO+1FfgNUpRCkmeAlb3D9XIp5edSymellM9kHz/YUwRtceAlDx06FDc326PuAwcOpE2b\nNrRu3ZrJkycDsGPHDtLT03Fxccm37X79+lmOIyIiuHbtms3gCMx7a+Xn/PnzPPTQQzRr1swqE2Ht\n2rUtx1evXs23LS01gqUoiqIo9xQfzCNaflLKM7nqQqWUzYGHgFeEEOUdaO9boKUQona+V97UAPgg\nuy+NgZ5Syocxf4g/UXNdIyAE89r/d4QQlYQQXYAaQAugCfCwEOJhB16bohSZPAMsKWUWUDP3/F3F\nPg8PD935//3f/zF8+HBdMgohBJcuXeL555/ntddeIyEhgZYtWzJ06FBdhkCtPXv26M6nTJnC3r17\nCQ8Pt7rWYDD/s5pMJnr27Em9evXYtm2b7prp06ezb98+Dh06xLRp+s3AfH19HX/BQN26dS3HderU\nKdC9iqIoiqIUquNSyn126sYJIQ4DOwEvzNmi82PEPIo1Mb8LNWKklOFSShMQDmzMLj8C1NJct0ZK\neUNKmQBsxRz4PQZ0Bg5i3jaoHuCdfX1er01Riky+adqBE8B2IcQ64FpOoZRyRqH16j518eJFpk2b\nRlRUFBUrVqR9+/b4+voSHR3NokWLLNfVr1/fahrfhAkTCAoKAmDBggW6jYkBS9r0HPPmzQOgXbt2\n5FayZEkAvv76a3788UcAgoODddkBy5e/+SGVu7u77v4VK1ZYjnv06JHnawYYO3Ysly9fRgiha1dR\nFEVRlCJ3zVahEKID0A5oKaW8LoTYBpRwsM2lwARAu1DbiP6De21b6Zpjk+bchP5v0dxTcyQggGlS\nSt3GnEKIeth5bYpS1BxZg3Uc+CX7WjfN14Or3ggbhflPEfzxxx/p27cvU6dO5fDhw1y8eJHvvvuO\n33//neDgYPr27curr77KlClTEELo7p0/fz5eXl54eXlZBVdaAQEBunNbI1gpKSmAPnBydXXVXaN9\nvslk0tVpg6TOnTvb7UuOOnXqkJSURGJiIvv378/3ekVRFEVRilxZIDk7uPLHPFrkkOzEGXOAsZri\nWKA5gBAiCKh+C316WgjhIoTwANoC+4A/geeFEKWy2/YSQlS8hbYV5a6xO4IlhHCWUhqllFPvZofu\nZzt27LAcHz16lE8++YR169YB8NNPP/H0009b6nOP9NjbQyu3w4cP687d3d1p06aNbgpgxYoViY2N\n1a3Runr1KqdOnaJmzZoA9O3bl5YtW2IwGKheXf8zcMuWLZZjbWCWmppKbGwsTk5OlClTxnLfjh07\nmD17NgCenp489thjDr0WRVEURVGKzK/AcCFEOBAFFHQjy8/RJ7v4AegvhDgK7MI8A6qgjgJbAHdg\nspTyAvCbEMIH2JX94fAVoO8ttK0od01eUwT3AM0AhBBzpZSj706X7gUm66KUo/netXHjRstxVFSU\nbj1W7hGr4OBg5s+fb0nnnjPq5KhHHnkEg8FAgwYNrJJk7Nixg4MHD9KtWzeCgoIs67c2bdrE4MGD\nAahZs6Yl2MpNO6Ll7e1tOf7nn38smxx37tyZ3377DYD333/fck3uhBmKoiiKotw9UsopmuMYzIkh\ntPVemtPH7bThlV+5lPI6UFlzfg3oYKdbTTTX9bfVPyml3QzV2ctSbC1NaWKjTFGKXF5TBLURQevC\n7sg9RdoIsBK353vbs88+azl+++232bfv5rpLW9n4HE3GeOjQIauyTZs2MXr0aAIDA9m4cSONGzem\nUaNGlvobN27g5OREvXr1LGXFi9/MVRIREcGaNWtYu3YtUVFRura1mRBLly5tOdYGXk5OTjb7mnsK\no6IoiqIoiqL8l+Q1gvXfS8VucWsvvWXLlgwbNgwhBI0aNaJBgwaW7IFGo5E//vgDIQTVq1fHz8+P\nRx99lCVLlmAymfj+++/5888/rdr08PAgICCA5cuXM2DAAMCctS8+Pp6srCwyMzMB+PfffwFz4BMU\nFESNGjXIzMykcuXKNGzYEBcXFypVqmRp95tvvrFkD5w6dSqTJk2y1KWmplqOW7RoYRldK126NA0b\nNiQrK8syPTB3kFirVq1beu8URVEURVEU5UGQV4DlI4T4F/NIVt3sY7LPpZSycaH3rqjYGsFyQK9e\nvejVq5flXJtyfdCgQZbj4cOHs3DhQrZv305cXBwmk4mBAwdStWpVlixZomuzXr16REdH079/f2bN\nmsX+/fs5fvw4Fy5csEpOAZCVlcXOnTuZNm0aDz/8MDNmmEfUg4OD6dDh5si9NjDKSeue488//6Rx\nY/M/r3Z9lo+PD2PGjMFkMun2u3r88cctwWFwcHD+b5SiKIqiKIqiPKDyCrAKthnSg+QWA6zcxowZ\nQ8+ePSmRvAm3xFUMWQRXrpvXYyUlJTF06M1N03/99VcWL15MSEgIoaGhlvKdO3cyZcoUvvnmG10g\n9MYbb/DQQw9x5swZOnfubBnByrF+/Xr++OMPy7k2cQXAwYMHLcfr1q3j7bdvTn3WrhfTBmIxMTEM\nHz4cgDZt2vDUU09x4MABjh41r09r2bKlVbZCRVEURVEURfkvsRtgSSlP3c2O3FskHBgPbvULdNeZ\nM2eIiYlBCEG1atXo1q2bueKbkVAbIs/C/34wb+SrXZ8FcO7cOSIjI3nrrbes2v3222957733GDNm\nDAkJCbz66qts2LCBDRs20KVLF5YsWcJff/3FG2+8YblHu+dVjkOHDtGkiXk9aMeOHS1JKlq1aqW7\nzs/Pjxs3biCE0AV1tlK779mzhzNnzJun79q1y+H3SlEURVEURVEeRI7sg/Xfc+kgRE6Hvbb2w7Jv\n9erVhISEEBwczKxZs6zq2wb58eabbzJ27FiraXk//fQTvr6+nD592mbb4eHh9O/fn1deeUVX/vXX\nX9OsWTMmTtRvqF6hQgVGj9YnfsxZrwX6aYG5pxoaDAZcXFwoXrw4zs43Y/DKlSszdOhQhg0bZgke\nMzIydPfmbGysKIqiKIqiKP9FeU0R/O9Kibil27TT8GxtuBvcri3BQe8B5gBIy1amQK1Ro0ZZUqRr\naacBatdCubm5ERwczNy5cy31J06c4KGHzPsI9u7dm4cffhiDwaBLJw/mPbwyMzMRQuDn52fJPujm\n5sagQYNwcnLC09MTME8L1Nq/fz89evTI87UoiqIoiqIoyoPKoQBLCFESqCGljMr34geBNN7Sbdog\n6eTJk7Yathw1b96cDz/80DLylDPNzp7Y2Fi75RkZGTg5OekCvFOnTtGzZ0+eeeYZVq1aZbl29erV\n7N27l7FjxxIYGGizzSeeeIK4uDjL68jJDPjbb78xZMgQAEJDQ1m6dKkuDTw4nnpeURRFeXDt37/f\n09nZ+QugIWq2jKI8SEzAUaPROLR58+YJRd2Ze1W+AZYQ4kngE6A4UFsI0QR4R0rZrbA7d7/p06eP\nZdPdUaNGWV+QK/iwlQXQHg8PDxITE23Wubi40L9/f/r06cPSpUsBLNkDtVkAjx8/bgnoli5dyscf\nf4wQgmbNmuHn52ezX9opgLb2wcodUKnRK0VRFMXZ2fmLypUr+3p4eFwyGAzqkzdFeUCYTCaRmJjo\nd/78+S8AFQvY4cinSlOAIOAygJTyEFC7EPtU9Fyr53+NDa1bt2bcuHG88sorBAUFWdWfOHGc1atX\nWzL+de/enVWrVvH999/zzDPP5Nn2Z599houLi936lJQUnJ2d8fX15eGHHyYoKIhDhw6xZ88eAKpV\nq0Z0dLTl+gsXLjBw4EAGDBhgSXaRo2TJkpbjnKQYYA7yWrVqRVBQEHXq1AH0AVjlypXtjorZ8913\n39G+fXvWrl1boPsURVGUe1pDDw+PVBVcKcqDxWAwSA8PjxTMo9OKHY5MEcyUUqZoM8jxoG9CLJxu\n6bYuXbrQpUsXu/WbNm1i2BebeOWVV5g+fTrbtm0jPDwck8nEI488QtWqVTGZTMybN093X7Nmzeja\ntSshISE2NyN2dnbm33//5dSpm4kfR40apZuyeObMGV3gpJXr35bff//dMvVPu99Vy5YteeaZZ5BS\nUrFiRUt9amoqGRkZNjMX5iUjI4PnnnsOML83anqhoijKA8OggitFeTBl/7+tpv7mwZE3J0wI0Rdw\nEkLUF0LMBXYUcr+KlixYoOConDhGCMG5c+cYNmwYM2fOZPbs2bi7uzN79mxdUoocXl5eFC9e3GZw\n9emnn5KZmcnixYt15baSZjRq1Mhmv8aPH09AQABNmza17LdVrFgxihcvbklwAXD27FleffVVxo8f\nz8yZMwHzfls+Pj40bdqUN9980+H3AvRZDRVFURRFURTlQeBIgDUa8AfSgW+AFOBlRxoXQnQSQkQJ\nIWKEEBNt1PsIIXYKIdKFEONz1Y0VQhwVQoQJIV7WlDcRQuwSQhwSQuwTQgRllxcTQiwTQhwRQkQI\nId7I/TyHpcXf8q15yRknatSoEQcOHNDVnT59mn379rF3716r+9atW0d8fDyffPKJVV3jxo0BKF++\nfL7Pz50tUOvff//l0KFDJCUlUbt2bTIyMkhPTycyMtJyja3U7mlpaZw9e5b4+HiSkpLy7YOWduSs\nRIkSBbpXURRFUfLi5OTU3MfHxy/n680336yc/13WevbsWWvJkiX5/5J1wPLly8vt37/f8gvv5Zdf\nrrpmzRq3O9H2k08+Wdvb29tv6tSpngW57+LFi04ffvih/T8QHmCurq5N7+bzevfuXVP77387pk2b\n5lmnTh3/bt26FXjZzjvvvON55coVNQJViByZIugjpXwLsN4BNw9CCCfgU6AjcBrYK4RYJ6UM11yW\nDIwBns51b0NgGOa1XxnAH0KIX6SUMcD/AVOllL8LIbpkn4cAzwIuUspGQghXIFwI8a2UMrYg/S5M\njRr5M23ac4SGhvLLL7/o6nbt2sX48ePt3AlxcXGWtV3t2rWzlK9YsYI2bdrQtEHGAr4AACAASURB\nVKn+Z0THjh2pX78+8+fPt5T16tWLFStWkJmZaXf0yGi0n0HRw8ODl19+GYPBQJUqVQB94os1a9aw\nbNkyQkND7bahVbJkSa5du4aUUk0PVBRFUe4oFxcXU2RkZHj+V95ZRqNRt4ek1po1a8oZjcaU5s2b\n3wCYNWvW2TvxzLi4OOfDhw+XiouLO1rQe5OSkpy+/PJLz4kTJ9rOpGVDZmYmxYoVK+ijHnj5vS8r\nV648ZbeygL788kuPDRs2RNetW7fA04EWLlxYadiwYclubm4OZ1vL679rxZoj79R0IURlYBWwUkrp\n6P+8QUCMlPIEgBDiO+ApwPLDTkqZACQIIZ7Ida8vsFtKmZZ97xagB+ZgSgJlsq8rC+T8cJJAKSGE\nM1ASc2CW6mBf7wpXV1dKZprXQeUEKDnCwsJ05926dWPdunWW8xEjRnD0qPVbv337dsuxj4+PZcQp\nIyODdu3a6QKspUuXkpaWZjmPjIxECMGYMWMs0w9PnTrFzp07LftgtWjRwjJNMD09nU6dOmEwGKhZ\nsyZgXnc2btw4y5TBw4cPO/x+CCFwdXV1+HpFURTl/jNkCNWPHuWO/rBv2JC0xYsp8HSTpKQkp+bN\nm/uuXbv2WEBAQPqTTz5ZOyQk5Mqrr7560dXVtelzzz13ccuWLWU8PDwyV69efaJq1aq6Tx3Xrl3r\nNnHixOpZWVkEBASkffXVV6dKliwpq1Wr1qhbt27JW7ZsKfPyyy+fv3LlitOSJUs8MjMzRa1atdJX\nrVp1cteuXSU3bNhQbteuXW4fffRRldWrVx+fNGlSla5du6YMHjz4Ul5t9+rVK+nPP/8sazQaxcqV\nK080bdr0hrZfHTp08E5ISCju4+PjN2vWrLiwsLASuZ/v5uZmio+Pdx4yZEjNuLg4F4B58+admj17\ndqX4+HgXHx8fv+Dg4NQFCxacfvHFF702bdpUVgghX3vttXPDhg279Msvv7hNnjy5atmyZbNOnDhR\nIjY2tsDBnD1D1g6pfjTh6J39b8SzYdripxYX+L+Rs2fPOg8ePLjmmTNnigPMmDEj7rHHHru2efNm\n13HjxtVIT083lChRwrR06dKTAQEB6XPmzHFfs2ZN+bS0NENWVpaYPHny2XfeeadqhQoVMqOioko2\natQobc2aNScNBgNBQUENPvnkk/h27dqlubq6Nn3++ecT/vrrr7IlSpQw/fLLLzHVq1c3hoWFufTt\n27f29evXDZ06dbr8xRdfVEpLSzuo7WPfvn1rnD592qVz5871+/Xrd7Fdu3ZXbfXNaDQycuRIr82b\nN5cVQsjQ0NCLUkoSEhKKBQcHe5cvX964e/fu6IULF1aYPn16ZSml6NChw+UFCxacAfMIX79+/RK3\nbt1aZs6cOXGPP/741Tvzr/Pgy3d4UEr5CPAIkAgszJ6C97YDbVcD3Q+/09lljjgKtBVCuGePRnUB\nclL7vQx8LISIx5w+Pmcq4CrgGnAOiAM+kVImO/g8x9zmKMu+vXsto1TNmzfXrVmKiNBvbqwNrsCc\nYt2Wo0ePkpycTFpamm463+HDh+nduzcTJkywlK1YsUJ3b/369fH29tat7TIYDDz11FMEBwfTrl07\nLl26ZKlbvXo1nTp14rHHHuOzzz4DzKNQXl5elmvOnr0jH8YpiqIoym1JT083aKcIfv755+Xd3d2z\nZs6cGRcaGlp70aJF5S9fvuz86quvXgS4fv26ITAw8FpMTExY69atr0ycOLGqtr20tDTxwgsv1F65\ncuXx6OjocKPRyMcff2yZWufu7m4MDw+PGD58+KV+/fpdOnr0aERUVFR4gwYNrs+ZM6dix44dr3Xo\n0OHytGnTTkdGRob7+/unO9p2xYoVjeHh4RFDhgxJ/PDDDyvlfq0///xzTPXq1dMjIyPDO3XqdNXW\n8wFGjBhRo23btleioqLCw8LCwps1a3Zj+vTpp3PuXbhw4emvvvqq3JEjR0pGRESEbdy4MXrSpEle\np06dKgYQHh7uOn/+/Lg7GVzda1544YXqr7zyyoWjR49G/PTTT8dHjBhRCyAgIODG3r17IyMiIsIn\nT558ZsKECZY/fsLCwlzXrl17fO/evVEAERERJT/99NP4mJiYsLi4OJf169eXzv2c69evG1q1anU1\nKioqvFWrVlfnzp3rATBq1KjqI0eOTIiOjg738vKyOTr1zTffxHl6emZu2bIlevLkyQn2+jZ9+nSP\nuLi44uHh4WHR0dHhQ4cOTXr77bcTcu7dvXt3dGxsbLEpU6ZU+/vvv6PDw8PDDh48WGr58uXlcvrY\nokWLa1FRUeEquCoYh8b6pJTngTlCiM3ABGASMK2wOiWljBBCfAT8hTloOgTkZJ54ERgnpVwthOgF\nfAl0wDxilgVUBcoD/wghNuSMoOUQQgwHhgM0L/CsVcnNlVQFJwSW6XBCCN30ukGDBln2sLLF09NT\nlyVQy93dnRdffJGRI0daRqymTp0KYMn2l9uECRNYsGCBbl0VQHJysi4bYHJyMpUqmX+Wa6fxae/T\nTje0tYYsL8HBwWRkZGAymdi2bZuacqAoivKAuZWRpjvB3hTB7t27p37//fflJ0yYUHP//v2W6SMG\ng4GhQ4cmAwwZMiSpR48e9bT3HT58uISXl1d648aN0wEGDRqU9Omnn3oCCQADBw60fCK5f//+kpMm\nTap25coVp2vXrjkFBwen5NXX/Nru27fvJYCgoKC0devW5bsezN7zd+zY4bZq1aqTYM5A7O7unnXx\n4kVd6uR//vnHrVevXsnOzs5Ur17d2KJFi6vbtm1zLVu2rKlx48bXfHx8Mmw983bcykhTYdm+fXuZ\nY8eOWdIuX7161SklJcWQnJzs1Lt379qxsbElhBAyMzPT8gdh27ZtUytVqmT546lRo0bXcqbu+fv7\npx0/frw4uRQrVkz26dMnBaB58+bXNmzYUAbg4MGDpf/6668YgKFDhyZNmTLFK/e9udnr26ZNm8qM\nGDEiMedvK20fc2zbtq1Uy5Ytr+SM1vbu3Tt5y5YtpQcMGHDZycmJQYMGXcp9j5I/RzYa9gV6Az2B\nJGAl8KoDbZ/h5qgTgFd2mUOklF9iDp4QQryPeQQMIBQYm338A/BF9nFf4A8pZSbmaYfbgUBAF2BJ\nKRcBiwAC64iCDUkl7gDPNgW6Rat48WJUqODGwYMHadasGUOGDCEkJASTyYS3t3eeAdaCBQvo0aMH\nN27csFl/+fJlSpYsSf369SlfvjwBAQEcOHCAH3/80erayZMnk5CQYHMz5IEDB3LkyBGSk82Df82b\nN7dMK6xZsyYdO3ZESkn9+vUt98TExFiOT5w4gaOklGzfvt0S0GVlZakAS1EURSlUWVlZREdHlyhR\nooQpKSnJ2d4altxbmORHu55l+PDhtVetWhXTqlWr63PmzHHfsmXLbSWyKFGihARwdnaWRqMx347d\n6efncHV1dXjNzv1KSsmBAwciXF1ddX8jDhkypEZwcPCV9evXH4+Kiir+6KOPNsipy/2+uLi4WO51\ncnLC1r+Zs7OzzPmw2tnZ2eY1jnr99der2evb7ShevLhJrbu6NY5kEFmMeZPhx6WUIVLKBdlrp/Kz\nF6gvhKgthCgO9AHW5XOPhRDCM/t7Dczrr77JrjoLBGcfPwocyz6Oyz5HCFEKaAncnDN3J2xoC2m3\nPgXOmJlJcnKyZVPdbdu2sXr1alatWsWFCxdo0MD2/w/NmjWjXbt2jBs3zqquWLFilC9fnri4OBYv\nXsyxY8fYs2cPAwYMoHnz5uzatcty7aOPPgrAN998w4IFC2w+q0yZMvz888+W87Jly1qO27dvT+vW\nrWndujXXr1+3lLu7uxfgXbgpKSlJN1qmHdFTFEVRlMLwzjvvVPL29r6xdOnSE0OGDKmVnp4uwPw7\nKCdb4NKlS92DgoKuaO8LCAi4cebMmeJHjx51Afjqq6/c27Zte8X6CZCWlmaoUaNGZnp6uvjuu+8q\n5JSXLl06KzU11epvr4K07Qh7z2/duvWVnKmHRqORpKQkp7Jly2Zdu3bN0qd27dpdWbVqVQWj0cjZ\ns2ed9+zZU7pt27bXbrUv95s2bdqkfvDBB5ZMjDt27CgJkJqa6uTl5ZUBsHDhQtvTg+6AJk2aXF26\ndGl5gMWLF1fI7/q8+ta+ffvUhQsXVsyZaXThwgUngFKlSmWlpKQYANq2bXtt9+7dbufOnXM2Go38\n8MMPFUJCQtR0wNvkyBqsVlLKWVLKAkUWUkojMAr4E4gAvpdShgkhRgghRgAIISoLIU4DrwBvCyFO\nCyFyElisFkKEAz8DL0kpL2eXD8OceOMw8D7Z0/0wZywsLYQIwxzcLZFS/luQPjsk7XT+19ih3Qfr\n2LFjDBkyhM8//5zFixdbEk7YUq5cOUqVKsXAgQOt9ruaO3cuycnJVinc4+OtR9s3bdoEwLFjx6zq\ncmzZsgUnJycqVKiAu7s7FSrc/H/78uXLTJkyhalTpzJnzhzAvK7ro48+0rVx+fJlHJE7c6CLi4tD\n9ymKoihKfnKvwRo5cmS1w4cPuyxfvrzi/Pnz4zt16nS1ZcuWVyZOnFgFoGTJkqY9e/aUql+/vv/W\nrVvdPvjgg3Pa9lxdXeVnn30W++yzz9b19vb2MxgMjB8/3mbmvYkTJ54NCgryDQwM9Klfv75l6km/\nfv2S58yZU9nX19cvLCzM5VbadoS95y9YsCBuy5Ytbt7e3n4NGzb0O3jwYInKlStnNW/e/Gr9+vX9\nX3jhBa8BAwZc9vf3v+7r6+sfEhLiPXXq1NM1atSwn2L4Pnbjxg1DpUqVGud8TZkypdKiRYviDxw4\nUMrb29uvbt26/vPmzfMAeP31189PmTLFy9fX1y+vjMu3a+7cufFz586t5O3t7RcTE1OidOnS+W7O\naq9v48aNS/Ty8srw8fHxb9Cggd+XX35ZASA0NPRip06dvFu0aOFds2bNzMmTJ58JDg729vX19Q8I\nCLjWv39/x/6QU+wS9tJjCyG+l1L2EkIcwbz4yFIFSCll47vRwcIUWEfIfQVdSfb4HnB/yHxsvAZ/\ntYbqPaHR/+zf8405cPpmB/T7FH766SdSUlIYNGiQ5ZIFCxbQtWtXjEYjtWtbLw47f/48lSpVIjU1\nVTeqBJCSksK5c+fw8fFx+GV4e3sTHR1tVb548WIGDx5s857Y2FhL32rWrElsbCxffvklQ4cOtbrW\nkbTrCQkJVKlSBSklFStWJCHBkYFRRVH+i4QQ+6WUgUXdD8Uxhw8fjg0ICLhY1P0oCFdX16a5s7Up\nyt125coVQ6lSpUwGg4FFixaVX7lyZYWNGzfaznRWhA4fPlwxICCgVlH3416V18TKnHVOXe9GR+4b\nQjPod+o7uHzY/JVXgJWtXr26HDq0moCAAMsapxwhISGWbHyjR49m7ty5uvpLly5RqVIlm2uwpk6d\nyvTp0wv0MmwFVwDXrtmfBVCuXDn+97//YTAYKFeuHGB/Wl9OIo+8eHp66qYIKoqiKIqi/Jdt377d\ndezYsTWklJQpUyZr6dKlsUXdJ6Xg7E4RlFLmDI2PlFKe0n4BI+9O9+5FmqBB5hEcGNMgai6k3czr\n4VqyJD/99BM3btygQoUKbN26lffff5/z58/j4+PDjRs3ePHFF8nKyrJKQNGoUSOEEJaMflozZswg\nPj7+lhNENGvWzHJ89OhR/vzzT3799Vd+++03XYbAc+fOERAQQOPGjXnssccACA0N5fLly1YBm72N\njBVFURTlXqRGr5R7QadOna5GRUWFR0dHh+/bty+qYcOG6fnfpdxrHEkN0hF4PVdZZxtlitbhtyBq\nFkTeHFkKCzvK1LlHGTt2LCVKlKBt27a0bdvWUp+RkWHZXyq3/Ob7RkZG3nJQc+DAAcuxlJJnnnmG\nq1fN6xtTUlIsgdsPP/zA5MmTAXjrrbeYNm0axYsX5/Lly0RGRjJq1CgOHz7MV199ZdmcWFEURflP\nMplMJmEwGG5vA0lFUe45JpNJACozWR7sjmAJIV7MXn/VQAjxr+brJHDnk0fcL7RTBPNaZ5T4j/n7\ntZt7V+WMfdmbVnc7WfSGDRumO8/IyEBKybJlywrUzrVr13TBXFxcHGBOjJETXIF+H6y1a9fSrVs3\n5s2bxz///EOtWrUcft6jjz5Ko0aN8Pf35+LF+2q6vqIoimLf0cTExLLZf4gpivKAMJlMIjExsSzw\nwG42fSfkNYL1DfA78AEwUVN+RUqZbPuW/wIHf1ck77cqKl7cmQoVyhAREUGbNtb7aXXq1Mluc++9\n9x5vvfWW3frSpfWbhKempuLu7k6DBg0YPnw4ixYtcqjboaGhnD17ls2bNwMQGBjIjRs36Nu3r+46\nX19fy7F2BAzMmQ1Hjx6d77NMJhM7duwgPd08+q2mFSqKojwYjEbj0PPnz39x/vz5hji2JYyiKPcH\nE3DUaDRaZzhTLOwGWFLKFCAFeA4s+1KVwJwKvbSUMu7udPFekx1gmXKtv1rfFmr0ggb2Awuj0Uhy\ncjI7d+60GWDZ20S4WbNmdOnShaVLl9pNsd6vXz+++OILy0a/9erVw8fHh4iICGrUqMGSJUsYOnRo\nvkklMjIy+PHHHylf3rxRfE7q9CpVquiuCw8P1z1bO7Vx7dq1DgVY8fHxluAK1D5YiqIoD4rmzZsn\nAN2Kuh+KoihFId81WEKIJ4EZQFUgAaiJeV8r/8Lt2j0schYcfA3qPn+zLHGb+SuPACtn7Es7vU7r\n8OHDlmODwWAJOJKTkzl69KjN4OqXX37BYDAQHBzM22+/bSm/fPmyZZPhI0eO2E29npvJZGLgwIGW\n8xo1agDQs2dP0tLS2LhxI2BOK//uu+8yffp0xo8fr2vj/PnzZGVl4eTklOezcqdy9/T0tLpm3759\njBw5kiZNmrBw4cJ8MxMqiqLc6ypWrCgLMpVaURRFKRr79++/KKX0KOh9jiS5mAa0BDZIKZsKIR4B\n+hf0QfekYmWA1ALeZIID48yHMQsLdGdIgBsvvTSQJk2a2Kx/5JFHLFPzxo0bZ0m9HhsbazdY6dWz\nKy91hEa1tzi09xRgd8rgI488Qrdu+g8cjxw5ApinDj755JO4u7sDN0ebbI06hYWFWfa4yk/ZsmWR\nUlKjRg2bWRCDg4NJS0tj7969dOrUiR49euT/AhVFUe5htWrVYt++fUXdDUVRFCUfQohT+V9lzZEA\nK1NKmSSEMAghDFLKzUKIWbfysAfCtVufGenucoV58+Zlt3MKipWF4uUs9RUqVLAc16tXz3L80EMP\nUbt2bQYMGMDy5ct1bb7SGd59FkyHOlO6dGmuXLmSbz9yr5nKkRPc2ePq6sr//d//YTAYKFGiBJD3\nPli2fPjhhyxatIhJkyYxaNAgLl/Oe7PwtLQ0y3FOZkNFURRFURRFuVc5svD0shCiNLAV+FoIMRuw\nvxvtg27rU/lfI+2vJXr11VdJOhMBa2vBqvK6uoyMDMvx7Nmzee211/D19WX8+PG0bNmSr776ig8+\n+EB3T9Na5u8GU5rV5sX2FOST05deeomkpCTGjBlD/fr1mTBhAuPHj2fUqFGcPXuWCRMmkJWVRWZm\nJv7+/lSqVInKlSvbnMqXlpbGG2+8wcmTJ3nllVccev6YMWNo3bo1LVq0oGHDhg73W1EU5XYJIRYL\nIRKEEDazZQmzOUKImOwsu81sXacoiqL8tzgSYD0FXAfGAX8Ax4EnC7NTd08hrecx2d+zasaMGdy4\nYHsEKSYmxnIcGRnJ//3f/xEeHk6vXr0s5blHhoyanBXOzs48/fTTuvru3bsXpOdW5s+fT0pKCnPn\nzuX06dO6OiEEQggMBgPOzs4cPXqU8+fPc+7cOZvTA7UJLVJSUhx6/uzZs9m2bRu7du3SbYisKIpy\nFywF7Kd3Ne8JWT/7aziw4C70SVEURbnH5RtgSSmvSSmzpJRGKeUyKeUcKWXS3ejcfUvaz9TXpQlU\ni7S9hC2/DH/Lly/nzTff1JXlzpfRsGFDnJ3NMz+XLVvGiBEjHOjwTR06dLAqszcN8NQp87TUhIQE\nAgICaNy4Me3bt7fbtjZJR06bHTt2pFatWtSoUcNuhkRFUZSiIKXcCuQ1NeAp4CtptgsoJ4TId/Hp\nmTN3qoeKoijKvSivjYavCCFSNV9XtN/vZicLTWFlpMsjwPr1Nfu3RUdHW44ff/xxq/qEhASrMg83\nzWOlpF+/fpaNgkNDQ9m/f7/drIW2rF27lj59+ljOZ82aRcWKFW1emzMiZTQa+ffffzly5AibNm1i\n1izbS/Q+//xz3XlmZia7du3i1KlTxMfH66ZIKoqi3AeqAfGa89PZZVaEEMOFEPuEEPvOn4ctW+5K\n/xRFUZQiYPcvbymlm5SyjObLTfv9bnay8BTS3ofS/hTBvLRo0cJyPHnyZKt6W+ua3DX7C2dlZek2\nAAZ48803MZlMLFxoO+PhihUrePbZZ+nevTudO3fG39+f7777jlatWhETE8PYsWMpV66czXsPHDhA\nenq6LhEFYEnlntvTTz9N2bJlcXNzo1evXkRHR+sSV9gaKZs+fTq9evXi2WefZffu3TbbVRRFuddJ\nKRdJKQOllIHFi8Pzz0OuH52KoijKA8KhCEMI0UYIMTj7uKIQonbhdusucfWCCoF3vt08RrDyog0g\n9u/fb1Xfr18/Xaa/9evX09C/geU8r5GqF154wWZ5//79iY+P58cff2TUqFHExsYCsHPnTurVq0fd\nunUZOXIkM2bMYOhQ/abdmzZtYurUqdSvX19X/ssvv9gcjXrsscd46623ePvtt2nRooVuPVnp0qVp\n0KCB1T3Tpk3jhx9+YNWqVboRPkVRlHvAGaC65twruyxPtWrB8eMwaVJhdUtRFEUpSvkGWEKIycDr\nwBvZRcWBFYXZqbvGUAw67YWqXe5su3YCrBtZxfO8TTs1r3Tp0lb1lSpVIiQkBKPRyOjRo5k0aZJl\nHRTYHuFyxK5duxgzZgwzZ860qjtx4gTnz59n3LhxVlP8fv31V7vrs+Lj463KjEYjEyZM4PXXX+fN\nN9/E2dkZLy8vqlWrRmBgIMWLW78/2jTuZ9TCBUVR7i3rgIHZ2QRbAilSynP53eTmBiNGwMyZoAbm\nFUVRHjyO7IPVHWgKHACQUp4VQrjlfcv95g5PFTTanvdRorgzZNlfZ+Ti4mI5treP1KxZs5g3bx7H\njx8H4EYPIDvb+60GWABz5861W5fXXlfOzs64urpaTRO01X9t/6SU+Pj42AzE7GndurXD1yqKotwu\nIcS3QAhQUQhxGpgMFAOQUn4G/AZ0AWKANGCwo21/9BH8+isMGQIHDoDmx7+iKIpyn3MkssiQ5r+W\nJYAQolThdqkIiDscYGXYTrKYmXnDuvDGRcuhn5+f5Xj16tU220hKSrIEV5D9j1LIXF1dSUxMtFqL\n1aVLF6ZNm8a1a9eIjIykWLFiAJQpU8aSyVBLu0+XowktQkND6dSpEx06dLA5hVBRFKWwSCmfk1JW\nkVIWk1J6SSm/lFJ+lh1ckZ098CUpZV0pZSMppcObDJYpAwsXQng4vPde4b0GRVEU5e5zJLL4Xgix\nEHP62WHABuCLwu3WXXanAyyT7SmCwtYGxPGrLIfaEZpLly7ZbMPeyFZ2JWXK6POPjB07No+O2ubt\n7a0737ZtG56enlZ7V2nXdTVo0ICMjAyklKSkpFCrVi2rdrdt21bgvixdupTff/+d9evX4+npWeD7\nFUVR7lWdO8PAgfDBB3DoUFH3RlEURblTHNkH6xNgFbAaaABMklLOKeyO3VX5BVjFbGfRs8tOFkFn\nJxuFppsjOdqpeLYSVnz99dfMnz9fV2bQzQqU9OjRQ1c/e/bsfLubW+69sM6ds72koGbNmgCkpqZS\nt25d6tSpQ+PGje22+9NPP1mVdenSxbJh8bvvvmtVn5WVxYkTJwrSfUVRlPvGzJlQsaI50LphY5KD\noiiKcv9xaOhGSrleSvmalHI8sFEI0a+Q+3WX5fM21H2+YM0VJE27JsDy8/NjzZo1rF692mawkZKS\nYjWypVt2JbNs7p9VsmRJx/sDliCuf//+9O3bl08++cTmdSdPnjQ/VkpOnDjByZMnOXLkCO7u7jav\nr1Spku48NTWVXbt2Wc5zJ+2QUhIcHEzdunWZOHFigV6DoijK/aBCBVi8GI4cgf/9r6h7oyiKotwJ\neW00XEYI8YYQYp4Q4rHsLEmjgBNAr7vXxbshv5VMBVjpJCWYChBgaTIOuru789RTT9GjRw9CQkKs\nLtUmiejduzcjR47EyUkTYUkTzz33nNV9oaGhrFhR8MSPy5cv5+uvv6Z69eo26/fs2UNKSgoXLlzQ\nlWvXWmnlTlLx7bffWgWM3377reU4KiqK7du3A/DRRx+xcuVKq2QaiqIo97vOnc1ZBadPVxsQK4qi\nPAjyGrpZjnlK4BFgKLAZeBZ4Wkr51F3o290TbzuhBACtlpuDJkdJU8FGsDQB1g8//MDYsWMZPXo0\nW7dutbpUGzytXLmS/v37U6dWTZttaSUmJtK/f3/H+5TN3d0dT09Pu/eeOHGC119/3WbyievXr1uV\nPfvss7rz3GuqfHx8aN++PTNmzMDPz4/mzZvr6vv06cPo0aML+jIURVHueZ98AnXrQmgopKYWdW8U\nRVGU25FXgFVHSjlISrkQeA7wAx6XUj7YS3HLadYQNfkQavenYCNYRoj7wfHrNaNdf//9N3PmzGHe\nvHkcOXLEumu5svidOHHCHNBZnm07nfqvv/7qUFd8fX1158nJySQmJtoMlsAc5NlL4R4TE+PQM7Ui\nIiJ46KGHmDlzJhERETZHq/LaTFlRFOV+VaoULF8O8fFwC7mJFEVRlHtIXn+tZuYcSCmzgNNSygd/\nCa6zdoPfnLenAAFW5hU4XoAki5pRJ+0UQHuBi5Z5rZQ2wLKzwbGDK6cjIiLs1u3atYsdO3bQvXt3\nXbmbm5vNNVf2sh1qX+Py5cttXnP69Gm7/fjiiwcrgaWiKEqOli3hzTdhvqqKCgAAIABJREFU6VKw\nkRNIURRFuU/kFWAFCCFSs7+uAI1zjoUQD+4EBqFJ9ZeTXbAgUwR/9LBbdS2zmHWhJijy8vKyHK9f\nvz7fRzVt2jTXqJXJboKJHNq9tgrC09OTIUOG6DIBBgYG0qZNG4xGI97e3tSrVw+AOnXqUKJECZvt\nTJ48mSlTpjB16lSeeOIJS/ljjz1mOfbwsP8eKoqiPMgmTYJmzWD4cDh7tqh7oyiKotwK691gs0kp\nbSUVf/BpU7aLWxjByoMxMxNyx1ia9VoNGza0HDsygmUymfQBlimLRo0a8ffff1uKxowZw5w5N7Pq\nh4eHF7jfYA6atL788ks8PDzo1q0bYM5w+P333+vWWaWnp+Pi4mI5T05O5tlnn8VgMFC+fHkqVarE\n888/z4ULFzCZTFy4cAF3d3cSExMt9zz66KNs2rTplvqsKIpyvylWDFasgMBAGDAA/voLnP6bv40V\nRVHuW4W6oEUI0UkIESWEiBFCWOXZFkL4CCF2CiHShRDjbdQ7CSEOCiF+0ZQFZN9zRAjxsxCiTHa5\nuxBisxDiqhBi3q13WvubLPvtcSpYmnN7nGy925oRrPz2wVq5cqXuvHnz5uDZTtdWjRo1dNfMmTOH\nRx555NY6nK1Zs2ZWZZs2bbLa1LhXr15UrlwZME/lK1u2LE8//bRluuC3336Lv78/vr6+NG/enCtX\nrtCjRw8qV65M1apVqVy5Mjt27NBlG1TBlaIo/zW+vjB3LmzaBB9+WNS9URRFUQrK7gjW7RJCOAGf\nAh2B08BeIcQ6KaV2CCUZGAM8baeZsUAEoP1L/gtgvJRyixBiCPAa8D/gRvb3htlft9hx7QhW9noh\nvwlw7k+4fPiWmwWwmZ9Bk+SiVatWbNiwAZPJ9lS/3MkmevbsCeGbbxbcOG8zo9+MGTOA7CmFt6Bm\nzZocOHBAV/b111/zyCOPsHnzZhITE+nVy5y5/8KFC7p1VmvXrrUETdoA8syZM5QrV85qpG7nzp20\naNGC0qVLc/jwYc6fP6+rb9Wq1S29BkVRlPvJ4MGwYQNMngzBwdCmTVH3SFEURXFUYY5gBQExUsoT\nUsoM4DtAl95dSpkgpdyLJqFGDiGEF/AE5oBKyxvIyWG+HuiZ3dY1KeU2zIHWbTBYH7u4Q5dDUHfY\nbbWs3bLKQjOC5eHhQfv27enYsaPNUSNt4OLt7W3OKqibIpjJM888Y3VfkyZNaNKkSYGDk9mzZwPo\n1l1p7d69mwYNGhAQEKArzz36lhNElS9f3ma5lpOTE9OnT+ePP/5g9+7dVvW2Xp+iKMqDRgj47DOo\nVQv69gU72wsqiqIo96DCDLCqAfGa89PZZY6aBUxAlyYPgDBuBmrPArZ3wbVDCDFcCLFPCLFPu9ZH\nc4Hm+M6+PflNEfzhhx8YMmQIgwYNsplaPWeUCCA6Opp169bpA6x9L7FmzRq7zx9bwNy/+V3/+eef\nU7VqVatRsw4dOrB161a2bdvG5s2bCQwMBKB///68+OKLdO3a1W6bgYGBCCEQQlCzZk2r+vfee69A\nr0FRFOV+VaYMfPcdnD8PQ4YULN+SoiiKUnTuyU2FhBBdgQQp5X4b1UOAkUKI/YAbkFGQtqWUi6SU\ngVLKQJvZ6hI0G/xaBVi399vN2dZC5fSLlt+a+/btY8mSJSxbtuzmPlipUbCjP8T/REmX4rpbT506\nhS7+TNrD3r17ddfUrl3bcty7d2+GDh2Km5ub7hoXFxd++umnW84wmNtff/1FsWLFaN26NSEhIZQs\neXMN2/z58/n5558ZMWKEzXvbtm2bZ9u9e/e+I31UFOW/RQhRUghhPYf6HhcYCB99BGvXwrxbX12s\nKIqi3EWFGWCdQT+65JVd5ojWQDchRCzmqYWPCiFWAEgpI6WUj0kpmwPfAsfvXJcB96Cbx3d4BMum\nuO/hWwN8IyjpfHOmpGUfqU0dIPZr+KcHHH5Dd+v27dutNhfOHTydPHlSd/75558THR2tK0tPT6d7\n9+6cO3fObjdbt25Njx49HH5Z9vbByuHp6WlVFhgYyK5du3RlJUqU0CXpWLBggcN9UBRFARBCPAkc\nAv7IPm8ihFhXtL1y3MsvQ9eu8OqrkOtHpKIoinIPKswIYi9QXwhRWwhRHOgDOPQLTUr5hpTSS0pZ\nK/u+TVLK/gBCCM/s7wbgbeCzO9przxDNyZ0dwcqPq6t5pKd+ZehcYhZc3A1pmk13Iz7m+QE3g5wZ\nM2ZYBVidO3e22bbJZOLSpUskJSXxww8/2Lzm0qVLluOQkBBdXXp6Oj/++GOe/a9cuTKVK1cmMDDQ\nKtAD88jWt99+S2ZmJl27duXFF1/U1e/bt4/Jkyfz6aef4uzsjI+PDzExMbp+KYqi3IIpmNcFXwaQ\nUh4Caud1w71ECPjqK6heHZ55BhISirpHiqIoSl4KLcCSUhqBUcCfmDMBfi+lDBNCjBBCjAAQQlQW\nQpwGXgHeFkKczkm7nofnhBDRQCRwFliSU5E94jUDGJTdlmNz3jyDbx4bNBtViVxZKQp5AvwLtZbw\nTBB8OwqaVEqAv1paXfPFMMGVK1fIyMigatWq5F6i5u/vrztfvnw5AHFxcVSoUIGKFSsyZsyYfPvi\nlGvjlX379uV7z8aNGzl37hz//PMPjRo1sqylOnPmDFu3buXxxx+nb9++vPTSS1StWpX58+ezevVq\nXRs3btxg5syZGI1GIiMjmT9/PocOHcr32YqiKHnIlFKm5Cpz6Ae6A9uNlM3eMuSwECJMCDH4jvQ4\nl/LlYfVqSEqCPn3AaMz/HkVRFKVoFOocOCnlb1JKbyllXSnle9lln0kpP8s+Pp89UlVGSlku+zg1\nVxt/Sym7as5nZ7fpLaWcKDVz0aSUtaSUFaSUpbPbcmxX3Wrdbh5rA6y7PIJVVpzjh7HgYT34Y5EY\nvhoPDw8GDRqU3SV9gOXn58e6deuYOnUqCQkJ9O3bF7C9r1ZeNm7cmGe9j4+PVZm/vz8uLi4Yc/3m\nP3ToEMHBN4PYzz//nIcffpjExESrDIWlS5cmK+tm4o/3339fVz9+vNV2aYqiKPkJE0L0BZyEEPWF\nEHOBHfndpNlupDPgh/kDvtwf3L0EhEspA4AQYHr2rI07rkkTc2bBzZvh7bcL4wmKoijKnXBPJrm4\n67RrrXQjWEXz9tSoaL/OALgYbvBys81w+merAAugZcuWTJ48GU9PT8taJ2dn21ue3bhxg9jYWPr3\n729V99prr9GypfUoWpvWDxMZGWmzvYyMDKvRr1GjRlldFxcXh6enJytWrNCVp6am0rlzZ3r06EGV\nKlV0devXr+dtzV8VSUlJfP/99/z4449s3boVRVEUO0YD/kA65rW7qcDLDtyX73YjmD95cxPmfTRK\nY97fsdDGl0JDYcQIc+KLfGZtK4qiKEWk0DYavn9pg6rcG1cVfY5cgwEmPgkPVTkHW7tBFes1V9oE\nEzkjV1WrVsXf35+wsDDdtRMmTEBKaRXo1K5dm169evHxxx/rymcNgDFd/6Xl1VrsORxrs4/aESjQ\n79+Vn507d7Jjh/mD5ePHj9OgQQNLe/v27aNDhw6Wa6OioixZBVu2bMnOnTsdfo6iKP8dUso04K3s\nr4Kwtd1Ii1zXzMO8vvgs5sy2vaW0/uRLCDEcGA5Qo0aNAnZDb9YsOHAABg0Cf3+wsb+8oiiKUoTU\nCBZgN3AyOBh/tr17HyO6FC9GYON6mhLrESwpJcWKFcPJyUk3mvTOO+8wc+ZMatasyZQpUwCYM2cO\nc+fOtWpjy5YtPPTQQ1blYzuBMF6lV2C63T6OHDlSd37y5EliY2PzfmEan3/+OWXLlqVp06a64Ozs\n2bO667SBXO5RM0VRlBxCiM1CiE25v+5Q849jzlBYFWgCzLO1ljjfLUIKwMUFVq2CEiWgWzdQeYAU\nRVHuLWoEC3JNs9MEW6ZcW2w1mgInllrfXynEdrueIZDw9+30zIrRmEnUsRg61MousDFF8Nq1a/Tv\n3x8ppW4frJw06y+PGQ0GJ0uQZUtaWlqe/ShTxg2wndY9J7FGjo4dOzJt2rQ828vx4osvkpGRQWpq\nqlVdZmam7tzd3Z327duzbds2UlNT2b59O61bt3boOYqi/KdoF2+WAHri2DQ+R7YbGQx8mL0eOEYI\ncRLwAfbcenfzV726OelF+/bQuzf89hvYmQmuKIqi3GVqBAvsB1jJB/XXlaoJFW39AW/nbRR3flTF\n2QBZuu7mCrDOb+Lq2f0sWbKEpUuX8vPPP+vrjy2E75wh4Z88n/PPP3nXR0VF51mvVa1atXwzAQ4e\nPJgVK1bQoUMH3ahVz5492b9/P/Xq1WPPnj088cQTliQafn5+TJo0ifT0dI4cOcLEiVYJvhRFUZBS\n7td8bZdSvoI5IUV+HNluJA5oDyCEqAQ0AE7cud7b17YtLFgA69eb98hSFEVR7g3q8y5AF1RpU7Hb\nCpBsTRu0F0g5OsWwAFxdoF9HL8xLAcBqiuCm9jTWnOasxzKZTDg5OSG/zi7fa514QqtkyZI888wz\nrFq1yuG+PfHEE5w7dw4PDw/ee+89mjdvbqnLbx3WkiVLWLJkCTVr1uR///sfM2fOxNnZmQEDBjB0\n6FBiYmIs15pM5teclJSkSzm/bds2h/uqKMp/hxCigubUADQHyuZ3n5TSKITI2W7ECVics91Idv1n\nwLvAUiHEEcwLd1+XUl6806/Bnuefh7AwmDnTvB5r+PC79WRFURTFHhVgAUhtUgZNgGWwETjZ2gvL\nXrZBUThvb3nvJyFmQXZ/rKcIAnzxxRcIIahY0ZyS8PLly7r6tOvX7bYfFBSEl5cXxYoVs3uNLQsW\nLKBSpUoUK1aMRYsW8e233yKlpFKlSg63YTKZGD9+vKW/ycnJVkFeztqrM2fOcPjw4QL1UVGU/6T9\nmH+4C8xTA08Czztyo5TyN+C3XGWfaY7PAo/dsZ7ego8/hogIeOklc8ILza4YiqIoShFQARbog5RM\n7V6UNgInk43kDsIAvuMh4hN9eSGMYAG8NnUB0/tln9gJsJ566imcnJwsQVL58uV19ceOHQOgc+fO\nJCYm6jYS7tOnD8HBwfz777/s2LGDU6dOOdSvnMxYFy9eZMSIEfleX65cOavAz9/fn+3bt1vOJ0+e\nrKufMWOG5TXlHhV74oknHOqnoij/LVLK2vlfdf9ycoLvvoOWLaFnT9i9G+rWLepeKYqi/HepNViA\nbtQqQpOW3NbIVOk6Nu43wOnc0/IplDVYACZdTGU7A2K1Kh5UqFDBMk1PCKHLtJczEPfbb7+xd+9e\n3b2vvPIKAKNHj7YbXOU140/aGuWzIXdwBXDw4EH69+9PaGiobh8sNzc3du7cyYgRIyx7eiUnJ+vu\nVZsQK4qiJYTokddXUffvTipbFnKW3HbqBImJRdsfRVGU/zIVYIF+FCjrxs1jWwHWQ/Oty4QBrthI\n+pB21rrsDjBp9+eyM4I1paf5uzaoql3x5lRIR2KgiIiIAvXLyckJZ2dn0tPTKVPGKkuxQ65fv878\n+fNZunQpmzZtsmQFvHLlCpMnT6ZkyZKWa999913Lcb169QgJCbmlZyqK8sB6Mo+vrkXYr0JRrx6s\nWwenT5vTt+eTDFZRFEUpJCrAArtBis0RKOdSNq6z8zamF85HiBOe0CblsN33fq0NlC1b9magczmM\nYzNu1jdt2jTfkaajR4/qzgcPHmw5blDbeh+XrKwsjEYjgwcPtplm3RH169dn2bJlGAwGfH19SUhI\nsNTltJmUlES7du3YuHGjpU6bBKOoxMbGUrNmTWrUqEG7du2KujuK8p8npRycx9eQou5fYXj4Yfjm\nG/M0wX79INe+74qiKMpdoNZgAbY26wWg5nPWZZdsJFWwF2A5l771LuWhmjYflp2+13A36afg/dZQ\nV59fVj+kxNl0VVe0ZMkSFncwH1d0sx+br1+/Pu+28/DVV1/h7+9vOXfWbOySkZHB3r17adu2Lenp\n1mvhfvnlF7p2LboPpY1GI3FxcQAFThCiKErhEkI8Afhj3gcLACnlO0XXo8LTvTvMng1jxsDYsTB3\nbt7TuhVFUZQ7S41ggf0RrOLlrcvS4h1v13AX/si213cHvPvuuwghrIKtOnXqwI5+dM8awiNNbLwH\nQELChVt+rj0NGjTgo48+0pX5+/sTFRVFs2bNuH79OkFBQTaDK4DXXnvtjvepILTvo6Pr0BRFKXxC\niM+A3sBozJkEnwVqFmmnCtno0TB+PHz6KXzySf7XK4qiKHeOGsGCggUpBbn2Xg6whLCZwKJUqVKE\nhYXBj+a1Tr2aXWKzjT2CnWyE5pMmTWL//v2ULl2a0aNH0717dxIdWGndsmVLdu3aRVRUFFFRUbq6\nVq1a0aBBA4deUmRkpEPX3apOnToRHh6Os7Mz69ato2FD/aigp6cnf/31F0ajkdKlC2f0UlGUW/Kw\nlLKxEOJfKeVUIcR04Pei7lRh++gjiI+HCRPA0xNCQ4u6R4qiKP8NKsACdJn4/N6E8PfNx04lrC+9\ndtLxZu9GgGVveqOWjSDs0qXLPFPpO7qPh66aTzevXbvG6dOnqZd9btTM3+/duzewEgCDjekmL774\nIsWKFaNUqVK6ZBT52bVrF0LYTrzx6quv2r0vNDSUZcuWOfyc2/Xnn39ajmNiYqwCrGXLljF69GjL\nuRrFUpR7Rs7Gf2lCiKpAElAlj+sfCAYDLFsGyckwZAi4uUGPByp3oqIoyr1JTREE/UbDJbN/54ri\nULyc9bXHv9Cfl6gMiTugjo09K8XdGMGys4K5yuPm7yajzWtiYo7Tyf8aTzSFebM+0FdqMilGnbtZ\nHBQUZDm2FWBVqVKFihUrMnHiRIe7D1DRDY7PgFVj4YUXXsjz2unTp7N9+3YOHjxotdeWOQC8O3L2\nEdPaunXrXXu+oigF8osQohzwMXAAiAW+KdIe3SUuLvDTT9CiBTz3HNzGEllFURTFQSrAAv0IT87m\nwJUfgW8ERM7SX5uqn8KGW11Y3xrO/GzdbiFtNKxjMtoud6loTsjxXTHYZR38acdWXnphqK7uzz9+\nu3mdNmGh5mR/rP0uZWRk5NVjnZc7QeJnUNsTegZBxYoVGTRoEHXt7JI5cuRIHv5/9s47PIqq++Of\nuymkAQkQCCQgvUmTjgVBOipFpQs/RJEir0i3oSjyiiKivNJBitIVQRQQUaQJCALSixTpLSRACElI\ncn9/zJaZ3dmSkBjK/TxPnp25c9um7Zw553zPww9TrVo1g6ohZH8dLL2BWbKkaz00vcBGSEhItu5F\noVB4RwjtKZeUcqSUMl5K+S1a7lV5KeU7Obu7f4/QUPjxRyhfHtq0gc2bc3pHCoVCcW+jDCyAvBUc\nx+FVoNYkKNtPOz/0mfkYOxaIqAYRVc2vZTfpt9xcsMBea52oE1+5XDXUqUpPpl+/fvZTXeksLLq3\nUKtWLfvxxauuK0ZE5KVRtdzkCvBdrmpcV+P5qFGjGD58OF99ZdzzrFmzkFIyffp0WrZsydNPP+2S\nc1WzZk2f180MPXr0oF+/fvTv3980L8zPz4+goCAsFgvt27fP1r0oFAqfOCOEmC6EaCSsKjRSymQp\npcl/sHubiAhYvRqKFIGWLeEvE0FchUKhUGQNKgcLoER3uLITQopA/log/LVjgNIvex4r/AChheG1\n3AMrKjtdy2YS3NV/SncvHw+UL1cWrmzXTmQa6ekOL56fzj6yHTdo0IDixYvDaesQp/maN2/OxFdL\nUSJuAr8d+wZvZqknvvnmG4YNG2Zo+z9rdvayZctYs2aN6biff/6ZJk2acO3aNQ4fPkyNGjW8y9Fn\nAG/hiw0bNiQ4OJigoCC2bt2aZesqFIpMUwF4DngbmC2E+BaYL6XckrPbyhkKFYI1a+DRR6FpU1i7\nFipWzOldKRQKxb2H8mABWPyg1hfw4JuQHAur68DhL7Rr6V6qNAoLxO2EC79CQG7XazlFWrJnA89m\nXAHINF588UUWLlzIggULeKLh4/ZLNrXA3377jY6NHarGerPl8ccfp0qVKgSfmQtAg5IXySy9e/dm\nwYIFhrbq1atr25TSrXEF0LRpU/bu3UvZsmWpVasWo0aNyvQ+MoOUkri4OOLj4401yBQKRY4gpYyV\nUk6RUjYEagPHgHFCiKNCiH/3H8QdwgMPaEaWxQJPPAEHDuT0jhQKheLeQxlYzkhrTtN+az2msyvc\n9wWjEeNs0PwbOVjukKn4+uMtXbokNWrUoH379nTo0IFSJRyG1FmdnfBZV5PBwOZN6ygjfiM0wLw+\nVUaIjY1l586dhAVBmFXE8cknn6Rdu3Z2Q8sTjz/+OBcuaDW6hg8fTsuWLZk/f/5t78sXVB0sheLO\nRUp5FpgBTAKuAy95HnHvUq6c5r0SAho2VEaWQqFQZDXKwLKRkgJbt0Kqk0BD8c7Gc0su43mBhx3H\nzgaWn+9S5VlOeGWfQxRtXqq4uDhiY2NJvWVuKCXp0r30kXfJs+GlKn+QO+Cmve3nTEpV/bBsMQDX\nZ2hfp06eZODAgezbt49du0wKcjlx5coVw/nKlSvp3LkzCQkJmdoPwPz583nllVfsRZmFEGzYsMGl\n3+XLl/nqq6+YM2eOQdJdoVDkHEKIICFEOyHEEuBv4AngdaBIzu4sZylfXjOyQBlZCoVCkdUoA8tG\n68pQty6MnWBs93dSgyvpVKmx1AsQWgKKP4/Lt9OsjhZA7SnQYqfve6s4zHsfF4TPIYq5Q7V95suX\njwIFCnDgwF77Nb0cuz4s0EymXU/9+vV9WjvVKQLztebwYg+HOuDkSRP45JNPOJDBT/8TJ04Yzm/c\nuJGh8TaOHDlC586dmThxoqH9888/d+n7xhtv0LVrV7p165ZpA1OhUGQdQoh5wEmgPTAXKC6l7C6l\nXCWluxoX9w/ORlY212pXKBSK+wZlYNlYdVh7nTnX2H52lfH8mvMnkAVS4iD5sqvHSLgJEQyK0pQH\nfSUz9bSkZ5ELPet/W2sMv9NJvxsMLN2xxcvU+fPn93i9ZcuW2lJOkXT/93w7pk+bYj//6OOPGDVq\nFJUrV2bbtm2sWbOGXbt2sXPnTpYtW+Z2/jNnzlCoUCG76ERGCh/ruXjRPJ8sPNy1RtqKFY5w0uyW\njFcoFD6xCiglpWwnpfxWSpnkdYQTQojmQohDQoi/hRCmRf6EEA2EELuEEPuEEOtue9f/IhUqOIys\nBg1gz54c3Y5CoVDcEygVQWduXjCeX3IKBSvRHS46FZS9FQ/nVmliGXrcGTgZVRe0BGasPwDSZwMr\nJDiQHTt22M83bVxP5Wjt2N9PYNMMDAzwBzTjy5s2n1lIXpUqVShbtiyNGjWid+/eNGvWjLT01YY+\nJ0+eIuTUCYpaz23rVK1a1SDDHhUVZc+1MiNXrlycP3/eyy49c+LECRdPmI0mTZrc1twKhSL7kVLO\nuZ3xQgg/YALQBE1DdZsQ4nsp5X5dn3BgItBcSnlSCFHwdtbMCWxGVuPG8PjjsGoV6Mr+KRQKhSKD\nKAPLGWdtAj+nEMFYZ/ltCUWfhWsHTAwndwZWBh2HaYkZ6w+aByvNR9EJmUbXrl3ttacKRRawXxo6\ndDDFnwjDYrFQvvx8SNHuK7x5sMwIDw9n8eLF9vOffvoJFoVBqiN8b/PmLYTWchhYFguQBs8++yxS\nSnr27MmGDRvcGlflypUjPDycfPnyZXyDOvbt20flypWRUlKjRg3atm3LkiVL7IbounXr6NChg9vx\nDRo0uK31FQrFHUFt4G8p5TEAIcQCoDWwX9enM7BESnkSQEqZeRnVHKRCBdi4UTOyGjWC77/XwgYV\nCoVCkXGyNUTQW2iF0Bhvvb5bCFFdd62/EGKvNeTiNV17VSHEZiHEHiHEciFEHqc5iwkhEoQQvsVo\n7f8Y5nnwx4QW06TaT34DUmqGiwEJt67B1f0Q51S50a0hlcFve3qK9z6ug/DuZ7J1TTXkKIWGOIQ8\nypUtyzPPPEPbNm3Ik+K4p/DzMvXKlStd2tavX090dLRdKCI6Opp06TrRjg1L7Me2EMU2bdpw48YN\nZsyYweHDh92ue+jQIbZu3coLL7zA0KFD3fZLSkriu+++49SpU6bX33rrLbsSYM2aNXnrrbfo2bOn\n/bq+bpiNkydP2o9/++03t2srFIp/DyGERQjxsPeepkQD+n8Sp61tesoCEUKI34QQfwohurnZx8tC\niO1CiO2XLl3K5HaylxIlYMMGKFYMWrSA5ctzekcKhUJxd5JtBpYutKIFUBHoJIRwLmnYAihj/XoZ\nTT4XIUQloCfa08OqwFNCiNLWMdOB16WUlYHvgCFOc34KuN7du+OiUwhgYITx/NoBOPUtbGwHF9ai\nGS56LHDeKmiwtafxUj5dXlNUY92QDIYIusvl8oSUuLrj3PVNY+TIkaxevZolS5ZQtaqjWLKUaVSu\nXJknHqlsGDLDS/3lP//8k9TUVJf2s2fPGo6Tko3GY53aNQk8u8h+LoQjXysj0ufr1q1jzJgxdO3a\nlS5durioCw4cOJBnnnmGhx56iKQkY1rGyZMnDfldISGaF7N69eq88cYbvPXWW7Ro0cJlTec8r+Tk\n25etVygUt4eUMh3tsyi78AdqAE8CzYDhQoiyJvuYKqWsKaWsGRkZmY3buT2KFIH166FyZXjmGfiX\nqlwoFArFPUV2hgj6ElrRGpgjtTvnLUKIcCFEYaACsFVKmWgduw54BvgY7WmhLQnqZ+AnYLi1Xxvg\nOOC7ZNzl343nzvfwSRcdaoCB4UYP1gOdwaJTCrx+yDg28jFosBLyVoBt/XQXMmrXZqamUrrv4058\nTcU85ajYZIB2HusoQnw1Lg5wSLnruXzpEh07dQKMxX+v3dQ8PH/88Yf3XaalGX4Ly5cry56/HOtb\nBDRr1ozOnTtnyiv09ddfA1CvXj369XP8DCZNmgRodbc2btxI48YOA3j69OmGOcaNG8eMGTN4/PHH\n+f77792uVaBAAcP5tWvX0N9ITZ06lW3btmGxWHjppZeoVatWht9UoGv/AAAgAElEQVSPQqHIFL8I\nIZ5FC+XLyD/UM2CPWAaIsbbpOQ3ESilvADeEEOvRHgy6d7Xf4eTPD7/8Aq1aQZcucOECvPaa93EK\nhUKh0MjOEEFfQivc9dkLPCaEyC+ECAFa4viQ24dmmAG0s7ULIcKAYcB7Pu8w6QKkGD0bpMQZzx/o\nCDut0YbC32hgVRwK33nIZxYWKNIcQh8whgtmNAdLpkOtSRkbc+ATzfPmC39PgR0DHd48XUjimTPa\nj8fMwLqwaw5r1qxxaQ8IDKROnTp2z5Mn0tONSsmxsZfx16116uQJXv6/Z8idvJcb8ecMfYsWLYqv\n6BX+AMqUKeN2noceeshl/LVr11i+fDn+/v64e/r811/GENFbt24Zzt9++22mT5/O1KlTDbloCoUi\n2+kFLAZShBDXhBDXhRDXfBi3DSgjhCghhAgEOgLOT1mWAY8KIfytn1d1gLu+qlSePLByJbRtCwMG\nwMCBYBIZrVAoFAoT7kiZdinlAeAjYDWazO4uwHYn3gPoK4T4E8gN2KyBEcA4KaXHirL6OHgST5ss\n7nRedRRcP6Idr6kPld52XFtpIrUepDe49BrnurBAZwPLPzcUcxJM0Mu4y3Qo09t1LT2PLHRtS8ug\nIvEaa+2qdIdhsGGD5iz0N4lqnDFukOk0wUFBNG3alKioKK9LOmdgbdq4zrDWR6NGEPRjUaY8u4dd\n/zX2rVjROeLUPQULGg3h3r17M2zYMAYOHOgiKV+xYkViYmKIiYlxmSctLY3Lly9TtWpVHn30UcP8\n1aoZfx+Cgox10PR5F1u2bPF57wqF4vaQUuaWUlqklAFSyjzW8zw+jEsF+qFFShwAFkkp9wkhegsh\nelv7HED7nNoN/AFMl1LudTfn3URwMCxaBK++CuPGQceOkJRhoXuFQqG4/8jOEEFfQivc9pFSzgBm\nAAgh/ovm3UJKeRBoam0vixb3DtpTw+eEEB8D4UC6ECJJSvmFfkEp5VRgKkDNksJ9qEjBx+HiOujU\nDhKBF4FbV+H3rp7fdet/YKE1F+fKTggrrh0bDCzrca3JcHAspN7ExdSoO8vcgHOHJRO1ssxIugwJ\nx+ynV2IvAxBgYmCZtQHcvJlEqMXiU85UsJMCfWBIPuRNh6dq1uxZfGiVCy5RUPMShYaGEhQUxOXL\nlzUlQh/o0aMHy5Yt48cff+TVV19l4MCBSClJS0vD39/4ZxAWFsbp0ybGt47du3cTGhpqPzfLt3JW\nMqxcuTJ7rEVmqlSp4tO+FQrF7SOEEEAXoISUcqQQoihQWErpNY5ZSrkCWOHUNtnpfAwwJgu3fMfg\n5weffQYPPACDBsG5c7BsGdymUKtCoVDc02SnB8uX0IrvgW5WNcG6wFUp5TkAWy0RIUQxtPyreU7t\nFuBtYDKAlPIxKWVxKWVx4DPgv87GVcaQkAT8sAN+BWzBJLFePA8XdDWyknVS4gavlfW4TC94+rC2\n1skFxnmC9N4fH1IGMlpbyx1LImFrD/tp57q3WDccCpo863VnYIG5IMXkyZNZv349L7zwgr0tLtko\nDPHD7+cM86YZIwipUqUKpUqVIj4+3sVj5GkvFSpUoE2bNkybNo1GjRpx8+ZNateuTXR0NBs3bvS6\ndxtt27a1H9+4cYPk5GSklC51v2bPnu0y9v3332fAgAEMGTKE9u3b+7T3zJKcnMyyZcs4c8b5mYZC\ncV8yEaiHJqkOkED2Cl/cUwihhQguXAh//AGPPAJHj+b0rhQKheLOJdsMLF9CK9CeCh4D/gamAX11\nU3wrhNgPLAdekVLGW9s7CSEOAweBs8DMrN249fXiegjQhZXN8HH8djdiFp5CBGuMc53HLE8rpJj7\ndbPKwHKiRN5Y6peHr18v7/MYd+ZJ7969eeyxx+jcubO9LTDQ6HkTQhPJsJE/t3GOI0eOcPToUa8e\nJhs1atQAYNeuXfa2ixcvUrNmTbZv387Fixd57LHHDGPSnK064LPPPuOxxx7ju+++M7QfPnwYKaVB\ntj0kJITff/+dcuXKMXXqVHt7mzZt+PTTT/n444+pX7++T/vPLAMGDKBNmzamKokKxX1IHSnlK2iP\nzZBSxgGZqeB+X9O+Pfz8M1y8qBUiXrs2p3ekUCgUdybZWmjYW2iFVc3pFTdjH3PT/jnwuZd1R2R0\nr6ak6MK+9rvvZlxclwVcUPcWPBlYRZ81mcik0NSTe2Gxm7SBbDKwbETmTndku9mWdFMLSwjBihUr\n2LtuJqt+WMyv+xzXihQpwrlz53j44YcJDw8nd9guSHLkmlsEXNE5gwKdfkPLlnVRP/bIyy9revIV\nK1akXbt2pKWlERUVxcSJE92OiY2NNZz36NGD/v37U7hwYTZsMMr6p6enGwwyPz8/rl27Zg877NWr\nl30P/yY2lcRLly6xdOlSOnbs+K/vQaG4g7hlLR0iAYQQkbjW3FD4QP36mherVSto2hTGj4c+fXJ6\nVwqFQnFncUeKXNwx3LzqOE4ECjaGiOqa/Lo7bujiJgJ1QepmOVg2Yrd52YjVJxSQ232XbDawzp9y\nVRwWAgoVclXUS0pKpmXLlgypsphf3oRwrYwUwYFw7pyWX/X777+zYsUKLpw3KgOWKV2Ske0c5/63\n+Rs6duxYAKKjo3nppZf4+++/yZ3b+H388ccfDedrnR7Lbt++HSklc+fOdZk/ICCA9PR0cufOTWho\nKGlpabz99tuGPhlThc4a9AIb5cqV+9fXVyjuMMaj1U0sKIQYBWwEPszZLd29lCoFmzdDs2bQty+8\n8go4iaYqFArFfY0ysJzR3ws7R4oNXQNxO8AS6KQW6IZkh2qcR5n2DW1xYaPOyvDlBt2Src5I8oa4\ntr33el/On/We41MgN/RrCokzoUNd47WkFON7a9umleHcTL3QmZo1a5q2+/tBscDDhOQSzJo1i2bN\nmrF7924++ugjQz9nr5izYMXu3buxWCz2GljVqlVDSomUkooVK3L48GHKlClDhQoVABg9ejQAM2fO\nNIQyjh49mk6dOtGlSxdDyGJ2cPPmTbuIh6+5agrFvYqUci4wFM2oOge0kVIu8jxK4Yk8eTSxiyFD\nYOJEzdhycv4rFArFfYsysDyR6nS+0/pa/VMo8pT38dfdZQE7fdulSaRK2k3XNk8ERmSsfwYpYOY8\nOzIR0p2/SSbdPoX//Z92vOA/xmubnBxjhw8dNJwvX+a+llfx4sUBzcNkxjtt4ec3YH4/2Lx5s2kf\nIQSlS5c2tBUuXNjtmoCLcXT9+nV27Njhso+oqCiio6MR1ljKDz/8kAULFjBv3jxmzZrlcY2swmKx\n2NdXKO5XhBBfSSkPSiknSCm/kFIeEEJ8ldP7utvx84OPP4bZs2HTJqheHbZ5C8hQKBSK+wBlYDlj\niwp8oJOrBwvALxgiqvjmMRJA6g1Nhv2y7gZfH86XclUreJyrkHGsNFvc01rZGyLojty5TVxbXkia\nm5s+z1Xl/efg+UeN137++SfG6rL2Wjxllp+mceLECUDL28ofZrxWsWJFulrnbl0Dg9iEHrPwuaZN\nm3p9D0IIu+GS7lR901aouEWLFggh2Lp1K6AVK7bxyy+/eF1DoVBkGQ/qT6z5WDVyaC/3HN26aQaW\nEPDoozB5sm+BFwqFQnGvogwsd4SVcPVggeZZuvAblHkFKr7hel1fj0pKWBQG3+bTwgpt6EMEE09p\nr3pJd4Arem+IL59UOeOlaFrZtc3bB2surjOx7V8MN4mMREpu6sQ0YhPgus6ZFxXuOuTXt+DyFChf\nxNG2f/9+tyIcem7cuMG6detYtGgRf//9N6Dla2UE5xC8nTt3Gs6vXLkCaCqCNsqX912VMTP06dOH\n4OBgQkND/zVvmUJxpyGEeEMIcR2oIoS4JoS4bj2/CCzL4e3dU9SsCX/+CY0aaaIX3brBjRs5vSuF\nQqHIGbI3ceduwT8UcPokuLzV3IMFcOATqDcH9pvkSOs9T7FWIyktCeJ3O9oN+VhZ9SPIGQOrpZv0\nHnft3rBYNI+U/VzALd23tHQhOB9vHPO4lvpE25rwoa7Smi/fkVOnTtGgQQP7+dWrV8mTx41Sownb\nt29n6dKlHvvYPF3Dhg2jcuXK+Pv7U7t2bZ/XyAyTJzvqoL7wwgt07949W9dTKO5EpJQfAh8KIT6U\nUpo8EVNkJfnzww8/wKhR8O67sGsXfPMNKJ0dhUJxv6EMLIDgIsARY9uFX2C3aW9Y9CN8PxjMtRUc\nnP3BzQU39bHuQto8GgWcN7RJCT8Oydx8FgF+um9PucKQTxf+F5PPdYwv/PDDDzz1lPe8uaNHj5qq\n/i1dupSff/6ZCROMtUlr1arl0jciIoK4uDj7uc3DVbduXR588EEXFcOM8vXXX3P27Fn8/f3p0KFD\nhj1uCsV9yFtCiOeBElLKkUKIokBhKeUfOb2xew2LBYYPh7p1oVMnqFEDJkzQPFoqHVShUNwvqBBB\ngOtOxpUtXcpdmswkYNxMOGVyTS9YEVrch8XdxNMZpOB9CRHMmYD3/P7nvXfKAH4Wo4EV4PQI4PWn\n3Y/19OFdunRpHiquiW2YKSLa8Pf357333jO09enTh9atW9OqVSs3o6BKMdjyHjxcFv766y/Dtaio\nKPs8efPmZdiwYe434AMTJkxg2LBhDBo0iJMnT3rtHxKS8Tw5heIeYwJQD7BVOU+wtimyiSZNNA9W\nzZrQvTt07gxXr3odplAoFPcEysCKBc46eRS+sL629DLWm4Ceu7pVR6c7js0UBAECdclG91G28Etd\n21CtqiOxy7kOVq4AfKZYAcdxuXLl2DFKk4sf1d79mKCgILscu41JkyYhhKBZs2aG9urVq9uPlw2E\nOqVh07swaNAge/sDDzwAQGJiIpMnT0ZKyccff+z7mzAhNdXxi+fn590DumXLlttaT6G4B6gjpXwF\nSAKQUsYBgZ6HKG6XmBj45RctZHDxYqhWTaufpVAoFPc697eBFQu8Cvxw3fy6t0gub/e2CcfN29N0\ndZaCo6DQE659zhqL37L9VTj0P/drBRVyf+0u4uHgpdSs8ZD9PMDpe+yp8LAnD9YHH3xgPy5ewLxP\n586dKVOmjNc9vvbaa6SkpNC7d2/GjRtHyZIlDV6xxYsXAzBv3jy70qG/v9EVd/iwa+FmXylbtiyR\nkZHkzZuXq24eCdvqdEkpqVzZRIlEobi/uGVVDpQAQohIwM3TLUVW4ucHb74JGzdq/6Mfeww++ABS\nvVf4UCgUiruW+9vAsqlmr8vkeG8ZbAnu6mDpPFKB4dDoF6g22tgltKTjePc52LsUYt2kC4Q+ALkK\nQON1EFbK266zndv1t4XncVi2BZ30Jnb+oxUrvvEl1HcjxLdmzRqXtuHDh9uP05xuq/r27curr75K\n8+bNAde8qvZ1Yd/HUNJaW9rPz4+FCxfy8ssvM2DAAAoXLmxwMobk0l718u0BAUbX22effWa+eR/I\nmzcvly5d4urVqxw5Ygxv3b17Nx9++CFjxoxh1apVmV5DobjHGA98BxQUQowCNgL/zdkt3V/UrQs7\nd0KHDlqO1qOPwsGD3scpFArF3cj9bWB5Iqa1uaWgvzn/EWvAiRvK9HUc++uUGo7Nchyn3oBLv0Op\nno42Sy6HGuFx4KUl8MIpuLTBfJ0b/2jXCtaHos942NBdgk6JMTbBeGnVX1qx4pBc8FUfGDx4sMtw\nmwfJHa2cqt9cvnyZ8ePH07dvX9auXcuyZcvYvHkzK1eu5KWXXmLhf6BiNHzeTROwGDt2LF27dgXg\n+eefZ9u2bQYDa8OIQAoUKMDYsWPp2LEjO3fudCn2u3LlSh++EeZYLI4/W+caXBMmTODNN99k6NCh\ntGjRItNrKBT3ElLKucBQ4EPgHNBGSun5H4Uiy8mbF+bOhfnz4cgRLWRw7FhIy2DZR4VCobjTUQaW\nO2S4Q+xCzy3d8W/A5rbQPgEarobwyrANGAKcBfJWhDjgdyBZZymkOgrOcv0I/PwIXFjraEtPhhvW\n8EK9E+zGP+73awnSXiu9475PSFH317KQ200Zu3TJURPs/FU46xDkY/SHo+zHFgvUqOFaK3TKlCkZ\nWm/RokUAJCQkcOXKFY4dO8bu3btp0aIF06c78uXCckHjxo0NY7/++mtSUlLIrwsnrV4shaJFi7Jz\n504WLlzImTNnAKMxWKxYMZd9XLlyhapVqxIdHe1RUKNOnTp069aN7t27u9TTchcy6Cu3bt0iKiqK\nggUL2sU5FIp7hAvABrT/yMFCiOpe+gMghGguhDgkhPhbCPG6h361hBCpQojnsmi/9ywdO8K+fdC8\nOQweDPXrw21ETSsUCsUdh5Jpd0ej2eZ1sG45ne8+qdXRKtwE3kkE2/34DKDml/AOcAXto920sK7V\nA7HR5DO56n9h7Ujgpus1Z3JbQwMDwtz3yZXfUdj4DmbZ0u94qaF2bBFa3asiEdr5H1s386Q1VC9f\nKHTq1ImOc7XzrFAAPn36NGvWrDHUkbIR6O/dO2ZDL9M+duxYGjRoQK9evShYsCD+/v6UKuUI5axe\nvTopKSns27fP3nb27Fm3c3ft2tXuQXOmRo0aLFy40H4uhKBLly58/fXXPu37119/5cKFC947ZpB9\n+/YRExND3rx5s3xuhcIbQoiRQHe0R1a2R0ASMEmANYzzQ1MbbAKcBrYJIb6XUu436fcRsDprd37v\nEhUF332nebT+8x/NmzVqFLz6qpa3pVAoFHczyoPlDnchC84GVrJOsGK6zt2UCpxdoRlXAN+4mc+d\niiDAg29A9bEet2nnog+JZDYv1x2OXqa9RgmoXsJxvmKFo7aYLdcpK+ncubNLvpSNikUtjGoP9bzr\nYNjFLQB+++03hg0bRuPGjZk0aRLz5s0zeKh27txpMK68MWbMGN555x3ee+894uONVZd79erFH38Y\nc/XOn/ddSj87jKspU6ZQqVIlihcvftseNoUik7QHSkkpG0gpG1q/PBpXVmoDf0spj0kpU4AFQGuT\nfv8BvgUuZt2W732EgOef17xZjRrBwIFQpw78+WdO70yhUChuD2VgZRRn5aMUa8NFp8/VXPnAL9jY\nZvahId1YcqV7a6/63J2IauZ904DfuznOn3KTOWzJgMZ5DqI3sJxVA/08/MbWr/EAfZs4pNy3/J2x\ndcPCwoiMjGTbtm32tmnTptmPw4PTebM1/D4iY/OC5sH5559/OH78ONu3bychQQsZNStqDBATE+N2\nrqFDhzJy5EhGjBjBqFGjDNfy5MnjItKRmgG5LmcDyN3+MkLv3trvcnx8PKNHj/bSW6HIFvYC4V57\nuRKNseLhaWubHSFENFp8wqRM7+4+p0gR+P57WLgQzpyB2rVhwABISPA+VqFQKO5ElIGVUZwfwKdY\nXVo9exrb/cMgzSm071O0Glt6Z4U7D5Z/qPaqN7DSU1z73QS6AW/ecLTlKWc+579EZB7vfdwRa6lA\nk8aN7OfOoSJ+TnGAvRxdaVLyHyZ0h7fbaOfJzt5GE1q3djyMthk9ehGJzIa0BTnZsuvWaR7GUKvX\n7fp1R2mAPHkc37DNmzeTnJzMqVO+hXJ+8sknLm1SSvLnz28/X7Zsma/bpk+fPkRHa/ePrVq1chHn\nuF12796dpfMpFD7yIbBTCPGTEOJ721cWzf0ZMExKT+EIIIR4WQixXQix/dKlS1m09L2DENC+PRw4\nAL16weefQ8WKkIF/XwqFQnHHoAysjDLR6TzFavTs329sT3ITlrUZozhwnrLw6DeQ90Fjv6MzXMdG\nNXVt+8j6esx8ubuN/IVLE57XoRhRobwxHk9fbwpgcg/XOZ5v7rtUfWRkpP24bt26gFGZ7/PPPzcd\n98svv3icN9ikhGmfxpDwJTz/KJw7dw7QJOGvXdNET6ZNm8aNGzcyFC5ohhCCy5cv2+tgZcRI9Pf3\nZ+vWrcybN8/nvC1vPP300/Zj5/BFheJfYjbaf8vRwFjdlzfOAHp1oBhrm56awAIhxAngOWCiEKKN\n80RSyqlSyppSypr6/zsKI+HhMHEibNqkqQ62aQOtWsHfGYxIUCgUipxEiVxkFOcUFVsOlvOTfjNv\nk5643bB8F5w/D088AcOuw7NAOcAvBKRJWJfF5Md1xLXJlLwPcvsVqv4FZBrBQY5csWNHj0Alx+UR\nz3qfolBUNHDUoGaYO9i87/nz5wkICODpp5+mWbNmAAwYMIBz586Rnp7O1q1bTccNHjyYFxtArZLw\n2leu180cPxNfsL52h0+XL6d69ers3LnTfr106dI0bKipe0RHR3Pq1ClTD1LlypXZs2cPACVLljRc\nW7NmDWvXrsXf35+GDRvSoEED8zfugejoaDp16pThcWakp6dzURc++9RTT2XJvApFBkmUUo7PxLht\nQBkhRAk0w6oj0FnfQUppzxIVQswCfpBSLr2NvSqAevVgxw4YNw5GjoQHH9TCBt96C3Ln9j5eoVAo\nchLlwcooMU7eAJsHy+L0rTwCeIqGWvkQ/PgjfDkd6tWFfSfBlk6TlqjVxwLjnfqJuY5js3ysuF1w\n9YCbBbM21CvbkGmGsMkKRTI+xT8nT/LRRx8Z2tylEv3www/cunWL5cuW0KtXL5588knat29P//79\n6dSpE/ny5TMdd+vyTqb31EIU//ufx12uV37QfZimnwW+/16LTtJ7yzZu3Gg/PnPmDD/99JPp+JUr\nV1KnTh0effRRtmzZYrg2e/ZsDq35LzFn36dZE81Y27t3L3379nU7X3bibKQ+/PDD//oeFApggxDi\nQyFEPSFEdduXt0FSylSgH/ATcABYJKXcJ4ToLYTond2bvt8JCIChQ+HQIU3a/aOPoGxZmD0b0j0G\nZCoUCkXOojxYGeWmUxKWOw8WOML3zHgvHYIPwSGdC8qgdyEhNdFp7XOOY4tJDNqeEZASB43NFAWz\n2cBKJUt+m67EXiLdcoMC1vNnannsbsrfR08gCgoqVaoE6XsBSPfgvCtbGPaMhs9WwbD5K5gzZw4j\nR47kb2tMysRHXceE60IVB9Rw/X5Xq/Ig67YeMl3PIhzCE13aP0ntfHtYdSAPU6dONb4PXUxM586d\nmT9/PgCvvPKKi2FlIyUlhW/6a8dr98OlS5eoXLkyAJMmTSIhIYHQUC2/T0pJeno6frpEt7S0NCIi\nIkhISMBisRAXF0fu23hcrPfACSHo6ZyrqFD8Ozxkfa2ra/Mq0w4gpVwBrHBqc63joLV3z+T+FB4o\nUkQzqvr21WTcu3fXwgjHjQP1zEahUNyJKA9WRnEW/bt1Swvzc/ZgeSMiDP76y3Ofv6dpRYfNMPNU\n+QVD4mnz/kKQbSGCZ4GXgSxI2dm5Ywe/b9rovaMH0tI1z0lunXiEJ/PylSZajauh1ui1//u//zMY\nN+7W8MSlC2fJ76Ykmb+/YMSIEQDUDfmJVx87Sb/ae12ELXr0cCSY2YwrgBkzZnDrlrmCR4sWLezH\nBfNAwYIFDdcPHXIYfQkJCfj7+xMUFGQvfLxq1SquX7+OlJK0tDSDhy0z6AVDpJTMmjXrtuZTKDKD\nTpq9YQZl2hV3EHXqwObNmrF18iQ88gi0basJYygUCsWdhDKwMkq803lqKhQu7L4MfVHzZiLqurmg\nwz8YzvzsOI/Vr2tVoauna/MLdp/7FWpNE/gBGAEkmnezk6uAlw461gLJwErfh7jDz+JZit0XbqbA\n6NGjSU9zWMOexPA8GUshISGm7RYvDsEmhbdweQp81hWmTp1K0aKOXwSBpG3btowfP55mlTVPVkuT\niM/AQBMvJZCUlETPnj0ZPHiwiwHUpUsX3TquTJgwwX5844YWhpqcnEyy1RO7d+9eQ//33nuP7du3\nu3+jXrCtYWPo0KGm/aSUPisn6rl69SpXrlzh8uXLt20MKu5thBBPCiGGCiHesX3l9J4UGcdigW7d\n4MgRLTfrl1+gUiVNyPeMs/yIQqFQ5BDKwMoKHnpIM7RMcePGWLXG+7w/nYDxuryZbSY/Lr14w7GZ\nbjxYfvDwHO1wPlp+2Bbw+OM3Uyx0h7uizJmgRgl48iHv/TxxPl6ruZR40yGT78nA8mQrbdiwwbQ9\nwEs4ZPf62mv/5vDyyy8bjAebAbl69WrTtT/55BO++OILLBYLSUlJrFmzhokTJ1K7dm3Kly8PaLlW\nY8eOpWbNmnTq1IkXX3yR2NhYQ5FkM6eq/npiYqI9hM9mSDorB44bN47mzZvbDbCMkpJiNPjdyVO3\naNGCYsWKMXjwYJ/nTk1NJTw8nPz58xMZGel2boVCCDEZ6IBWEFgA7YAHcnRTitsiLAzefhuOHtXC\nBmfPhtKl4Y03IC4up3enUCjud5SBlRXolOBcSM5EWJ4lF4SVhH4fwjX9DaqXJ/TuLgsJAXkgVlfp\nOAlXy8KSy3Gsz/f6F3Gn9pcRnq0NH3eClCSH98TMkLGF0xUqVNDkqsZhN57JQD/TZo84O1gsbsJK\nx4wZY7/epk0bmjRpwrx589i6dSu//vqroe/OnTtZsGABX375Jf/73/8M14oUjiJIp8gIUKKEXfCM\nkiVLkpaWRmJiIjt27ACgffv2LvuJjY3l7Nmzvr1JJ6ZMmeK1z/Hjx+0CHGPH+qKcrZHgVIU0K4oi\nK+5ZHpZSdgPipJTvofn+y+bwnhRZQGSklot16BA895wmhFGiBLz7rjK0FApFzqEMrOwmyZ1nyxMS\nEkwKW+U3Eb3S37T/A0gTU0Kmw6HxkJ7kaEvDtchxSIxmZOWrCRfX+r7dzLzFbKRofhjyFBT2P2pv\nqxjt2m+/tXbZpUsXXS9acVYjtPHV7OkZ3tcFnT7Kl19+Se/e5iJkFy5cYPPmzaSkpNgNj40bN3Lz\n5k3y5s3L+++/bzpu5syZhvNBAwdw5coVjh07xokTJzh//jzDhg0z9OnQoQPt2rWjc+fOJCUl4e9v\n7ppLT08nOTk5w0aMTVDDRqFChVz6ZLYmUKpbr7FC4YLtn1+iEKIIcAsonIP7UWQxJUrAV19pzzsb\nNYL334fixeGdd5ShpVAo/n2UimB2k5zBm8BlQKsUcz2Kz87eqOcAACAASURBVHbAUKCqrk3f723g\n/+pBF11bMlpY4PHPoYSu3TSsT0Cr47C0CKQA5ilArniuuXtHsPk9x/H2Y5pohLdaTxEREeTPn9/0\n2uj/vs+nbTO2h0PnoHCEdvziiy8SFxdHrLnQIHPnzqVRo0aGtqCgIIQQDBkyhCZNmuDn58f58+eJ\niYkBNO/UnDlz6Gb9qz59+hQxFYMNXitnVqxYYc+TunXrFl27dqVhw4b4+/vTr18/QMsFmzVrFh99\n9BGPP/64FtroKeZSR65cuQznNWvWdOkTGhrK6NGjCQsLIywsDCmlT/NbLBYeeeQRUlNTyZs3L1FR\nUT7tSXFfslwIEQ6MAXag/eeclrNbUmQHVavCt9/C7t2akTVyJHz+uRZGOGAAuKm8oVAoFFlKthpY\nQojmwOeAHzBdSjna6bqwXm+JJrvQXUq5Q3fdD9gOnJFSPmVtqwpMRktuOgF0kVJeE0J0AYbopq8C\nVJdS7sqmt+cbyRlMUFoE5EUzcMz4GNCVw3IJC5z9O3ygEwtYB/wM/Hoc5uj6hddE+9bq93oJDn4C\n54FBwECgRsa2fzcQli+GON0jzd6NzPvFxcUZcpb0nDtz8rb34c0Dc+vWLSZOnMitW7dIS0uzGx1B\nQUHULXQUQqKh1tOGMcuXL6eb1fCbMOELPmz6P+dpDThLtMfExFCkSBHi4+Pp168fXbp0QQhhX3vN\nmjX89ddfVKtmosphQo8ePQyeurVr1zJs2DBq1arFc889B2jy7c6eNV/Ily8fG78dBVt7QA2lV6Aw\nRwhhAX6RUsYD3wohfgCCpJRXvQxV3MVUqQLffAN79miG1gcfaKGEPXtqhpZVOFWhUCiyhWwLEbQa\nRxOAFkBFoJMQoqJTtxZAGevXy8Akp+v90Yo76pkOvC6lrAx8h9WoklLOlVJWk1JWA7oCx3PcuMos\n04DZPvYVoa5tRYuBLXXIpjyY5uQSm+ZkXG0G5kZCahrYtCEyk9JyF0RtlQ8/TcT+vuwcoxWNDvTw\nmGHVqlWm7bnM7S6fGTJkCOHh4eTO7UYEBfD396dPnz68+uqr/PTTT3ZD5+1+bWDz8/BLQ5cxeiU9\nARw7dozq1avTtGlT3n77bUPf2NhYhg4dyqhRo5g6dSqhoaHMmjULPz8/8ufPT9euXZkzZ46LZP3V\nq77fl06ebCwXlJiYyMcff5x1RY+399PCabe+kDXzKe45pJTpaJ9FtvNkZVzdP1SuDIsXa4bWM8/A\nF19AyZLw/PPeK6UoFApFZslOD1Zt4G8p5TEAIcQCoDWwX9enNTBHaokdW4QQ4UKIwlLKc0KIGOBJ\nYBSaL8VGWWC99fhn4CdguNPanYAFWf2G7jimAutvmF/bgPad8tWE/gLgb3gyzWEkZea34xKOzIZE\nICgDe/gX6VgP4CqRebz1NCczIhf6qDebuIS+nlVMTAynT2sqkB06dKBz5872a3qDpGWBZfbjP//8\nkxo1NDdj9+7d+f333+FZ7ZrFAqVKlbL3/fnnn/H396dQoULExMRw4cIFu9HVo0cPevbsybp1xqLJ\n3bt358EHH2TVqlXEx8cTHBxsL1zsC0lJSabteu+dlJIlS5bw1FNPuYQUeuXGCetC7vPoFArgFyHE\ns8ASqdRQ7ksqVYI5czRP1mefwbRpMHcuNG0KQ4ZoeVs+Rj4rFAqFV7Lz1jca0Be2OW1t87XPZ2gZ\nR85BcPvQDDPQpHbNKk11QMs8ckEI8bIQYrsQIvPFfe4U1nm4ZvvJevrAWIprXa/w+mBzWOwl49jM\n2utAT+saPrD0r0xaOrfJsGFvGM7zWFUMIyIi6Natm9txMRmI42/WrJlL26effkqRIkUM8ucLFixA\nSklqaioLFiwgKCiI3bt3s2XLFsPYuqUdx3379iUxMZH4+Hhmz57N+fPn7dfManW999579O3bl1at\nWhm8XbZQwdTUVAL8oH55xxiLxUKzZs3o0LoRrZ5+mnwZSGI441SY5oMPPmD06NG0a9fO3vbNN9/w\n3HPPUbJkSZ555hmf5wZI1wm1uCu+rFAAvYDFQLIQ4poQ4roQ4lpOb0rx71OsGHz6qVao+L//1bxY\nTZpoIYVTpsANN88sFQqFIiPcgb4FEEI8BVyUUv5pcrkH0FcI8SeQG6dsJSFEHSBRSmlqHkgpp0op\na0opXbPtrTkh9wS2m2tPP+HFGPO5AAIsDgEMX+u26sUNbWarLQBnp5NCXOEWplMUbTTKx8WykK0w\n6NQFQ1OwVdgjLi6OLwYPpnBhc+GE18zfhilm4XDLli1zKcJrq+Okz4tq3bo19epp1aQrVqxI4cKF\nuan7jf/jjz8IDQ0lIiLCZQ1vxZDz5ctH1apVqVSpEtHR2nONF198kd+mtWPdcIeRtWfPHs5vnwRL\nIuGvNzzM6GDq1Kk0atSIkiVL2tvy5MnDsGHDGDp0KC1btnQZc/bsWb777jv++OMPn9Y4dOgQSYmO\nitknTpzwaZzi/kNKmVtKaZFSBkop81jPc+apjuKOICJCq5l14gTMmAH+/tC7N0RHw8CB4BQZrVAo\nFBkiOw2sMxi9SzHWNl/6PAK0EkKcQPOJPCGE+BpASnlQStlUSlkDzUt11DglHXHjvfKKk6fgrkY4\nvbrDuYTX6TlgS+sKAkr19L5WbpM2mwLh4061POuYC3c9VLe593WymvHA5C8NTbYiwJ8BuatU4Wgz\nc33fa0m396dj8+Dofzxr1hiLT2/bts1gNCxZsoRFixZxwcfn7t0ahlLQwy3kc889x65du9izZw/v\nvvsuAA0aNODh+i1AWKj2SCt7X3Hoc+1gv6ts/dGjR5k3bx4zZ85kw4YNxMXF0atXL3799Vf69+9v\n73ft2jUCAgKwWCwsWbLE3p7uVCDM1xyvHTt2GEJ6nOcxQ0WH3b8IISKEELWFEPVtXzm9J0XOExQE\nPXrAjh2waRO0aAH/+x+UKQMtW8KPP0JaBrWqFAqFIjsNrG1AGSFECSFEIJrh871Tn++BbkKjLnBV\nSnlOSvmGlDJGSlncOu5XKeXzAEKIgtZXC5owuT2L3trWnszmX1nzX+4JLE6v7nC+Jw3IBTaBuHzA\nUatBdBItYHOrl/lirK+2G99CTp9MS2MwIz0xc4VssxqLgFxo6ioAwd8nm/aLrvmiz3N+0M61LSUl\nhblz51JCV+O4aNGipOk+yceNG2cYExgYSIUKFYiMdF8YWU/JfDf4a7SFsLAw6pTPTcLx1cTHx/PP\nP/9w6NAh4uPj6dy5M48//jiPPvqoo5iwTAOZjrA4lDwOHXKjJ4+mDNilSxd69OjBrFmz3OZd6dF7\n6dq1a8cTTzxhP+/Vq5ch1NEdaWlpBi+dfk4zRo4cSWRkJB9//LHXuRX3FkKIl9Byd38C3rO+jsjJ\nPSnuLISAhx+G+fO18MERI7SaWk89pdXTGj4cjh/P6V0qFIq7hWwzsKSUqUA/tA+yA8AiKeU+IURv\nIYRNt3kFcAwt62ca0NeHqTsJIQ4DB4GzgL66an3glE1YwytebsiylEpZNE+Qj/1sd556F4mZreBs\nYOXK5/it0F9biOZbHG8yh94pYHNE2bxgo3UuskRc+RWt9ld8Dsg5PeTaZLE4/aiumA/9a+0sn5d5\nqw00f6KOIVwOYOLEiYbz119/HX9/f4QQ5M6dm8OHDxuulyhRgvz58xOWJ6+9rX/LXDzfqBCffvop\nISEhLmtH5U3n+vXrbBl+ndDfm/Lm4F488MADlCtXjiVLlrB161bWr1/Ppk2bSLSF213X1m1SK4oO\nHTrw9NNPk6qzk6dNM3ohv/jiC/vxl19+6dXQAQzy9xaLhQkT7CJvHD9+nOvXr5OcnMykSZMYP368\nY286ypUrh7+f419Y6dKlXfrY2LdvH++88w6xsbGZkoRX3PX0B2oB/0gpG6L99TtnoCoUABQuDO++\nC//8oykQVqoEo0Zp6oONG2tGmA/PkRQKxX1MtuZgSSlXSCnLSilLSSlHWdsmSyknW4+llPIV6/XK\nUkoX4Qkp5W+2GljW88+tc5aVUr6uV4Sy9q3r8wb/Tb9/Vtlyvv5TD7YWyNUbWL+a9EvDaEilJMFu\n63GgLv/I062IfvxX1tcQp+sb0IT41+vaJTADWAT+f/7jYQE0aZPLnrtkmJeBscam1k8/6dMfRbVi\nGRNU2LF9K8eOGe3+TZs2Gc5rlYTDY6FxJUhISKBYsWKEh4cD8Nprr9n7Cd0P9bMuyXzV4wIDBgxw\nW2j3hx9+sB8XCHNYw8nJyS51sABuXtU8uTUqFmbq1KnMnj2bVN3P+OWXXzbMr1+3UKFChIWF8e67\n7/L+++9TsaKxMkOuXLno1auXi/FYvnx5ihcvbj/39/fnq6++om/fvvTv358pU6a4vK9atWrh5+eb\n7JdzvpsKFbzvSJJSJgEIIXJJKQ8C5XJ4T4o7nMBALTV75UrN2Hr/fTh6FDp3hiJFoF8/LbNA/TtR\nKBTO3JEiF/ccQvy73jKAffFaPSv9/WeYSXHYdIwGUp/ZDtmQ554x9nOH/sMl2ekVtPnmWPvp63vp\nx839zf38Z4H/4ojb85WDQIKH6xfQZOV1XLp4IVv+KAL8vYtOfPsalImCn606Ejdv3mTIkCGMGTOG\nuXPn2utgpV49Yjp+0KBBpu2vvOAoRpwvXz6KFi1K6dKluXLlCj179mTUqFF8/fXXFC1alPfee4/O\nQ7QUxkFD3+b999/n+PHjBg+WM3XrOp5p9O7dm5CQEEaMGMHw4cNdDJnk5GSmTJliMPps1KtXj1Kl\nShEVFUVsbCxSSgYNGkTTpk1566232LNnj8nqvt3ZxMbGGs6FLnlr6tSpPPvss6xdu9anuRR3JaeF\nEOFouqY/CyGWAV6e6igUDooW1cIEjx6FNWugWTOYPh3q1dPytd55Bw4ezOldKhSKOwVlYP0b+Pvh\nkObLAtpd997nYCocjobf9I1uqgCnOx3fspa4/16XF+XpPtbM+DrvdN1WvDjJqd1GkkEM0kis+0tu\nSQFGohl27pgIjAZ0zqg//9yeLX8Unz3vENAA47GNovkdx9euXSMkJIS33nqLIUOG2BUGAWS66w/j\n6tWrrFmzhuBg1xjSfz53HE+aNJnExEQqVapEcnIyQ4cO5a233mLv3r2EhITw66+/st8qRSMEjB07\nlv79+1OqjEO3vU2bNob5hw4dSvyeGcTv+IxBgwaRmJjIhg0b2LRpEzdv3jQdp5dUT01N5Wb8aarm\n3cfpk0c5f/48p06dIjAwkLFjx7J69Wpu3rzJ3LnOkpeA9E3qUi+AoVcwPHr0KL169WLJkiWGumPu\nSEpKYtGiRS4eOMWdjZSyrZQyXko5Aq1u4gygjedRGkKI5kKIQ0KIv4UQr5tc7yKE2C2E2COE+F0I\nUTVrd6+4k7BYtJpZ8+fDhQswcyaUKKGFEFaoADVqaDLwZ++MtGKFQpFDZGehYYUNPwsEZ9Fc0cCl\nTV67AfBAqOalsXHN3PNhMHQigB3Wm/kJS+ELCfOEZwPL7Jqz0WbBYWMmAGFO45I9hNxl5rc0EC1f\nLdxDH1tt2iTAmhLkZ8mepw5+FqNRVb4I7POgqZI7d26D0p6ehVvg+UeNbd9++y3fffcdAV4cpRaL\n5s1ZunQpJ0+edOzP6mFNS0sj0qoKWSnGNsZCwUJFIEF7PNugWgHDnCEhIbDbKvrxYHcOHjtD/foO\ngbbSpUtz69Yt2rRpQ4MGDfD397fLwgPMnj2b8qdeYthjIK7CsPmap6tq1apYLBa7ceTv7/kXITEx\n0TQPDSAyMpKnnnqK9PR0atZ0VGiwqTRWq1aNXbt2IaU0eLecefPNNxk3bhxhYWGcPn2avHnzuu2r\nyHmEEEFAb6A0sAeYIaX0VEHQebwfMAFoglancZsQ4nsp5X5dt+PA41LKOCFEC7QS8HWy6j0o7lzy\n5oXu3bWvc+dg4UKtePGgQTB4MDzyCDzzjPb1wAPeZlMoFPcS97eBFRIC+uT5unXdS7WHhUGCp3gz\nD/j5Q6wHD01GSAMOf+Nb36tOT9kDwjFaXFacjaEEJzWMmDYgdRWD/cMg1fq9iMM1L2w2oCtUSxpG\nA2sSmpxJgK7PzUDconf+pQPl+sCRSe772xD45jjUOfYswsTAshmINqT1KwOWWHKq0cD6aRjE/Md9\n/zST/MBSpUpx6dIlJK467S++qBk4AV7+ogN111966SVWr17N2bNn7QbWiBEjKHRxIvAd/1hz3tav\nX8+FrpWIsNou8ac8SEmmJhi8RRUqVGD/fu1eNC4uDiEEAQEBBAc7njikp6fzSFntuG1N+ObvWlSs\nWJEqVaqwYMECRo8ezT///OOiTrhlyxZswYmHzsL1/fsNxpOe2rVrs3z5cpf2woUL07NnT9LS0ujY\nsaNH4wocyo4JCQnMnDnTkBunuCOZjeaj3gC0ACqSsWDj2sDfNuEkIcQCtEL3dgNLSvm7rv8WHFqq\nivuIwoXhtde0r8OHNWPr22+1mloDB0LNmpqh9eyzULZsTu9WoVBkN/d3iKDzf7ktW6B9e2jd2rWv\nr8aV2R3ujUQtHygrOA8cjIOT5k/qDbzpdH7JxLgCo4F1FWPY1dwAOL3U2KdYR4h8DEqO0XQidznN\ntxqj2mA6xlywPWiKgum6xp273ed5fas7TgNyFXDTUccNtLBEX8QJdQaWnwVCA5yuO//o5wBdfZhX\nx9MPQamSjkeY0fk89zfz1nz++eeMHz+eXG6MqEfKGsMBzQi0ergGDx5Mnz59WLJkCW+++SbVq2vV\nohs3bkzlylquXkQth9reX7sddbud602dO3fOfvzVnJkEBTnCFA8cOMD169f5/sO6vNkuHxEREYSF\nhXFQl6xgsTj+DeXy1/ZWpUoVABo1asSOHTuIjY1l7NixhpyujRs32o8lRuGK3377jcWLFxtCEVu2\nbEnz5s1p0aIFFy5ofwsVK1Zk6tSpzJgxwyd1wQoVKtiPq1UzyWlU3GlUlFI+L6WcAjwHPJbB8dHA\nKd35aWubO14EVmZwDcU9RtmyWr7Wrl1w5Ah89JGWhv3mm1CunKZK+PbbsHmzqrGlUNyr3N8Glp8f\n1K5tbHvzTS2IOrM89bT3Ps6EZbD/wR0wz0zz3Au53LTrp4oBaunCnpKt1ofeyPhgMXy/AWIr4JXh\njSAPRgPLplzoLL3kHCV4Fi0NXe+ISwNCS3hf1+YwNCunlO60lu7YYoFHyriZy8Zq66tZaORetLyu\nk8bm0CAIDjJ66aKiojgZ71vsaO3atcmfPz/NmjXjiQaPmPZZORQKmBV91rFxfE0O/DiUZs2asWvX\nLob0bUfCup4807YNq1atsr4v7Wdu8TO35Lo+b7Qu9QWS138/kRIljD+fr96uRasHtjKph6Nt0aJF\ntGrViiZNmhgMsmIFoEOHDgBUr16dyMhIAv3hnWegclEMuWh6L5+UmkJhcnIyzz77LA0bNqR9+/bM\nmDEDgDFjxrBy5Up++uknVq1axYABAzx/o9ywf/9+pJRIKWnQoEGm5rjTOXLkCKVKlSIiIoIaNWpw\n+XJWy3f+q9j/uq2lQ7INIURDNAPL1FIXQrwshNguhNiu/z1W3NuULg1Dh2rPb0+ehM8/h/z5YfRo\nre5WVBR07QoLFkCceV17hUJxF3J/G1gHD8IffxjbFiyAZPPisj7x3XcZH5PRyMPtx3UBKhnA3b38\n3KKO40ggWReKZbsl0e/xx6vwBZDiQ9jjyF80iXpn71QaWgU05zaAo8B8YAiuXrg0IMhLod1/gHnW\n4yZO1zYD3YA/dW1OIYKnnUU1nA0/W16XmVdyIpqHbr7rpaAkYw5caGgIqSk3XTsCwTpb7JNPPmHr\n1q3UrVuXqKgoCkS4WlHjxn1KWIiz682VwKvbKR//MU2aNGHkyJHs/f1bnqxwiVqlcNSaktoP4rmq\njhtrfXhj6WDjL58tPBHgf+3PIYTgkbKw/QPoWA/61jEWKQ4ODub48eMsX76cNWvWcOSIeW5gSkoK\n6enpDGwJ7z0Lu0droXk26tWrZz+uEK15u4KCggy5a3369AE0IQ498+eb/IAUAJw/f55jx44RHx/P\njh077CGedylVhRDXrF/XgSq2YyGEa6ytK2cA3T9IYqxtBoQQVYDpQGsppaksj5RyqpSyppSyZmRk\nZCbeiuJup2hRePVVWLcOLl6EefM0NcKVK6FTJ4iMhPr1NY/XX39Bum8aPgqF4g7k/jawbLVxcutu\nWEeP1jJX72TKNs2cKKE7oYrtugiYncCfOgPzHeCQ09ii4VBXgK9PYU/gKmCYjia9rifVus47gKuK\nt2OcJQCiPXgKPwBsWRHFna59YV3jS+t5cwwBP4H+JiXLnPduK6b8gaMpLr2IdnDV2uAUjbndpPT1\n5XPHDKIU8bpSTU9Xdxznz2+VF5Tpmqsm3dWwfa1xIl7Sh1xITU1lxPMxhIdCUIAmLAFw7bLmfsvj\nd4UKFSrg7+9vFM84bpRmLFDAIX9oc9JtfBdqlID5/YxrBgYInnvuOebMccyRmJjIiTij9Z8vXz72\n7dsHwIO6n4++WLNeSOPaTTx6WsqUMbolbWIYKSkpzJw5k3HjxjF+/HiDAZcZXnnlFXr37s1//vMf\nl5yxuwXn/D+zfMC7BSmln5Qyj/Urt5TSX3ecx4cptgFlhBAlhBCBQEfge30HIUQxYAnQVUqp5CUV\nPpEvn2ZUff21pka4aRMMGwbXrsHrr0O1app3q2NHTQ7eqsejUCjuEu5vA8vG4MHGc18fG1WqlPk1\nJ5q0RXiSvNMR4iUOzEZbY5FXn42yc7rjC8D7QHHd3XugP9yS2ieBL6zD1bhLwxg2aGv7E8/YKtfU\n0CUbBTgZxPqQx1N4ZguaRXUdeAOm5Q2kgHPIprOB1cJ1mtwPNDA2OL23miVxwd+CwXAJDwWOAF2g\nuk6yfdSoUVR7sBQJM/04M8HCvj07XSfb/Tak+178OG/evKQkXKButCZluGBIQQ4ePIgQgpuHvwbg\nt58Wc+DAAVJTU03VCY8cOcKTTz7J+fNmcZjmBPpJvvpKq0a9dOlSVq9eTa9evQgONuYUxuliZfx9\nKCHnTuW/dOnSANSp4xB1E0Lw0UcfAdC6dWt69OjBwIED6d+/v0u9LJ+5eQE2/x95z0xhypQpfPHF\nF3dtMePy5csTE6PpNOTKlcth4N+HWMMK+wE/AQeARVLKfUKI3kKI3tZu7wD5gYlCiF1CiO05tF3F\nXYqfnxYuOGqUlrd1+jTMng3Nm8P69dCzpyYFX7o09OoFixf7/nxToVDkDMrAAq1yoB5fnti+9JIm\nF5QZJk6EWttc2+PifRuf4qNixndOoT23I2QYpTNijl7WDKF33/VtrHNceS6gGK5GVyreS39+gebF\nkbqfUQVj+BcP6o5/djOPzVsUj2ZEbgNOQuU/U3jeuR6Ss4FlS2HXpaD5n5pn7OODNynAHwpFRhgb\nF2svz+pu0erVq0e45TxhQZo4hrjl9A1NxXMhaBN+/fVXonRr37x2iffffx+A/FYDs00NKFsY8oXh\nYmAtX76cDz/8kBUrVri8VVMlPuv+gnRRjGPGjGHkyJHs2LGDVF0l43KFNeELm9CFWc0wT0ybNo2x\nY8cybdo0xo0bR3p6+v+zd9ZxVlXbA/+uKYYZSrqEAaRDHqKgYgeK+kR95rPbn12I8YynKHZiooLx\nDOzuQFSku6S7a8ip/ftjnzP33HPPjblzhyHW9/M5M+fuPvvse89eZ629Nm+++SbGGPpfcyaPnWOY\n/uf7GGMYPTr8e/jaa69x5513RtWG7bvvvqUbPv/1l8eb4uKPYN4bPHhGMbnOWsfMzPgmmzsjDRs2\nZNGiRRhj2LZtW+l9qGjGjh3L8OHDGTFiBPn5Cez1t4MwxnxljGljjGlljBnghL1ojHnROb/UGLOX\nMaarcwS7slSUBGnSBM4/H954A5YsgalT4ZlnoGNHu//WGWdA/fp2363LL4c337Qarl30nY6i7Jbs\n2W7aXd4IN3lib4/J/ebNkJsbmWfrVnjqqeTqmzMHbr89ubwAM9Yml++T+EmiMjJA+NuShKMNgO0E\nCyDFBNjn+cgHMOGeDtdPCk/j1UDtTXyWEyZEtd7iE5bcuN+xXgndFRixrMmWYTV/FxPVaXNGGuRv\nXEcNr3WcIwRneB6Uw4YNo3vzkLlZrt9ZyT3ADdj1cwlQnJZL+/btMV5TQ2Po3hImLAhpjHKrwMzH\nYOw8yPdZu/3555+8/vrrPHpOQHsiKgSuAE6G5556lO0Z9bn22mv5/Xe7n9u6det497z1NHHu29f9\noOWNJXTt2pVJkyaxV8DXz0/NmjXp3/8qBg4cyIsPXgbYdoPdtLl69eps2LCBHpnv0bcPjJs/gsWL\nF0dorFwhc+HChaWaNi+TJoXG2ogRI0o1Y6NH/sb+Tr9deGQOHY+/p9T1fTK4rulzcnK45pprIhyH\n7I5cfvnljBs3DoDRo0dHdbmvKHsSItChgz2uvRaKimDMGLuO67ff4P334ZVXbNqmTeGQQ+zRq5fN\nU46fIUVRysGeLWC5+2Cdd559BQRWK3POOTBvHhxzjE3ToQP4F3q//Xby9T7+ePJ5AX5bFj9NqqmZ\nCxs2x08XRJCZ3q0BYYkIWAAYyM2D9rfC9Edh4Xvh0Rs8565cWESkswqXWYDX6vJnX7wrYPnNOlc5\ndUVbsjcT608sylDJTId0v6DZGfgb8pxNkO8/Hc45aBtve/aWbu73Ur8c+IaEXMdPWpRGl0NO5fQT\nezFt8jjoa8Mb1ITR98Mr3mt32rZfCxgR7qeCtWvXMnPmTNqMaRtRR9tGvoBtWJf570LPy9aRlZHP\nySefXCrAzJgxI+zNa4v6du+tQ3r14oFjJrJ3WsjX/sqVK6lf3zo5GTp0KBc4SqL82Rs4Y+BAZgAf\nO2vjql8Cm7aF1hDl5+dzkLMzQ7c8w9rcXHJyqvLm5VtZshau87xneeuttwIFLC/Tp08vPS8s2Frq\nROa5c7dA499YtfoiFi5cyPjx4ykqKqJly5Yce+yxdHnwJwAAIABJREFUkQWNuRZKiuCA0N5ut3te\nwJxyyil7hIDlXetVHuFUUXZnMjLslp09e9o1WyUlMGWKFbaGD4dffrFaLrDLy7t3hx49rMPkHj2g\nceNKbb6i7DHs2SaCbdrAzJnWdU9mJixfbv2ppqfD3XeD66XsYse/9MaN4Lzh3qHsDD43ChJf3xNB\n0PZbSwPC+gHxlHN7AYVF1tFFlfC1ISbNcfc9zxO4DqjRwWrvnvOV45IFm8SjZhrnqzPaioptxDdp\njMGtJwZsm7Z/6PTGG2/krr7Qsj5cEzAvD2vH30Ru+BxAl71LYP6bXNlzXtjaphxHC3XZEaGwEmcn\n6Ls/iDQRfOmll2jYsGFgHd/7lbOeodN8+YM0Wvxf7rrrLoYPH06fPn0oKiqKmFAfcsghbN24NEy4\ngkgNkkv19+EfQKkPzxJ4+mx72rt3b3r16sW4ceOo6rFRrFOnDrWzt3Lq/nBtb+j7zz6lca6reC9+\nb4fDhg0rPS8p8tnfLv2C+vXr0717dy677DKuuuqqUpfxYRRuglnPwewXKdpqTT/9zjFeeCGBTbV3\nAxYuDO1tMGTIkMpriKLsQqSlQZcucPXVdnPjJUuskczQofbdcX4+PPaY3eS4SROr5TrtNOup8Jdf\nYMOGuFUoipIEe7aAlZ5uV47+739QWAh161qNlR93I9SSErt74I6kTRuIVBJE8m/g58HgmXSmlKIk\njbuPJrr3wiC+ixO/Acj7JzzwH5jyAEwFXgFWAic6aha/l/3a3aBe73DBax/PeQlUK1oc+uw3tYu1\nlMYrKHa+L07jw7nqaOsvJAzP3PrJJ58sPa8Zb1/pOdg+SJBWtdYFOq7wIs6NGz03UsCCSEHAZW+/\nTwSPgDVtMXw1UWjTpg1FY27mxj5WTda6TcjL34i67/Lpp5/SumW4beW0Jf69r0JmouLf1+wWuPAN\n649k1KhR/P7777z22mtkZYSrDL3LxYZcV4epU6cyYcIEHnrooYjrqlo13NOhdx+sb7/5KiK9H++m\nxy6DX3yi9LzfrTcBdpPpU089tTTc7wGxohk5ciT169dHRKhVqxbz5s2LnylB5s6dG9Ur4X332e9P\nRkbGLu25UFEqExFo2dKu4Ro0CEaPtkLWn3/aVQ2HHWZdwPfvD0ccAbVq2fSnnQb33w+ff26dbOh6\nLkUpH3u2gDVtGmRlWcNmCAlSfi6+2K4gdd25T51qXw2VhVoJegj0s2iRFSLi0QdYv90aXlcEAZPD\nhEj1CHPn1OuXw4hN1tX7L8DbIKuGR6ZvCcx/C+p1DzcdnOw5zyZca+UXsPwPGu9+wV4BqdUllBuP\nkiSvHvAEcBOkBWkB/SQ6J10LUgDt2gS4NvRQKDkcOxD2y4MOTQLiEx0TnmRVq0BGVnWKNy3iiAaj\nOXqvL52YkKRz1sU307dv34i1Xdm5NalXrx7GGKZOncqF5/QtjQu7RWuBFZBWDEd6hKLxn35K5usF\n4CjBatWqSe3atUvja26fQIcOHdh3330DTfL8AlabNtbesKSkJK6wesUVV9C7d++I8JZVQqbHLfKH\ncOMlfcjIyGDffTvzwsVwxVES7DSkoljyFRkL3ijd0HnDhg1xTSUT5eKLL6ZVq1Z06dIlfOwUbYYv\n2nNI9c+5DRhz/PE0bmTtTAcPHkxeXl6pV0NFUcpOdrY1Kbz+eru6YfZsWL3a7r/14IOw//4webI1\n3PnnP+0y9Pr17SqJW2+1ruTHj7dLzxVFSYw9ew2W+2txxx32iEbNmuF7Y3XoYB1juBOPffaxv1jR\nqFLFbnqx3uMoIiPDrlZNtI3x2HQ+1GuQWNodid/cLlV8NwymeD6PAV44D7r60rnz5AEDwsO9ypfj\ngWlplEpvbQjfyNnvoa8jdr8wCF+7Ne3hhJoeyESsO3uPyeG0GwlttPwxcJUn/SzsGi/vnD0RT4Lr\ngGuhTQ24946Azbk8SFoGN/WB4wKcyN12IlFNBAGmLoaO7pzYsy90i3rQot5Gzj62WekeWXbT1ZAQ\nccsRS7jxrfD9rwBatmjB2rw8mtdLo7AYOnXuyveOo+wwGcTTD9s9359/Amk/YdcEdoG/Z06nbrVi\n+MR6Qlm5ag1bFyygefPmgddUu3ZtSkpKKCgo4PPPPuO7D5/lnf+9xWn/OoOcqpn4F/kVv78XaceP\ng9zmYKxZa0lJCQ8//DBTpkzhuuuuI239xFKnLNf2hq0FXzN58mTuuvwI0n66DzBwToLeOh2MMUkJ\nZSP//JOe806gO9Ys9R95sGU7VK+e4LYQ2LV5Z599NsuXL6d69eq8++67NG3alOLiYl5//XUApk2b\nxl9//UUv52XQn+/340Bm0JUZ9uv7+ed0HjQIsBtLL1hQDjtcRVECqVPHuoE/7rhQWH4+TJpkXcVP\nmGCFqmefBWeLRNLSrLarQwfr0bBjR3verh343j8pyh7Pni1gJUturnWOccABVnC6/no4PmBzJJc6\ndSJd+RQW2tdEix3TtO7drWugZPl8LdzlzGgzM+w6pZ2BRLYVqo7jHbAMTAnYg+tRIh1KrCXkkj0W\nabmhRvjbvJVw4cW77ZN7W5v2heU/BJe9DRiOnUiPABYDjxGuCXvVqdfV+NWCqt75urd/CgHXGjEX\nu3btERITsBxrr7SN0DmOh8Wq29dyXP3guIFnw219M7jkcNi83U7GvXT0Khzeiszv3YB45fIl8HVo\nZ+UbjoeCYljg2+dl27atDHrmcf5+3NbZod+E0jjxako9Zpveb13pMHDUXXs3bcwj9/fjWqcfFixc\nyo/39eLqw9bywtLb6Hf73WH1Dxs2jEcffZQj1q/n3A2z+dej8OKPv7Hs4EO45aYbrMMVD2mF63jp\n+hbs0yiDTnun8W3W09Su15Q7nJc5P/74I/89cQWHe/qqapZ1xpFWO3k35V26dGHq1KlkZmYyduxY\nOiW4X9/XX39Jz3b2/IbjrMA3bnF18rt1i53Rw5o1a/juu5Cd75gxY8K0Tzk5OWzZsoWCgtCatQnj\nx3LgPygdvyt79Sp1ZHLnnXcmXLeiKOWjenU4+GB7uBQWwqxZ1uBn6lR7TJsGX30VekfsmiV27GhX\nNbRuHfrfuLHvBZii7CHs2QJW69bQp0/8dH5c9+SnnALVqkHv3lajtd9+0Llz5EbFDRpYDZi7SP6h\nh+CDD2Ctx6PDCy9YPX2yZGbaA3Ye4QqsYiKeLfeBxF97lQiu44oulJqBMR64KU6+nwDxSDu/+eJ/\nw24j6rIMaIydyLu3Or0qFEZZLfwL4FpZ5WJn+u8BxwCuEshVbrrl9STclb1XUvDK4WsJmTS6eccB\nDYCxDaHR8jDHGWUx2Uy/F6vtuQw43Iatzoe6jkLj4bNh8M9w6RGB2UN49yLbiBU4NwDO0qLvPxrE\nYWlbw+TNfifCH6s64VVTbtu6mZHDv6ZKG6iSGb5+LS3NM9Ce8IRjvRou21SV1zZugbZSuqYuMwO+\n++57rnUsO4sNrFy+mOqZ8OaQwREC1rJlyxgzZgwtgVYt7LVceRRIXh4/PdaVI/zeE7Eu74/qYL+P\n2xdPYsISu79WjRo1WLFiReAeXwcddBAsCu2p0K5dO2bOnElWVha//fYb3bp1IyMj+k93UVERxhgK\nCgrK5I2vpDgk9FzraEa7tcq2izbisH37djIzMynyaeVdQSo9PT3QmQlAZoa7xtX+GzhiBANKSqiK\n3QPuxx9/TPgaFEVJLZmZIW3V6aeHwgsK7JTGFbjc/998Y+NccnOtkU/r1uGCV+vW1r+YCl/K7sqe\nLWDVqJH8XlZgV4m6uGuy/MIV2I2Ljz7auuwBuOCCSF+pnTvbsKVB7vUSICMjJGDtLFQh0uGEnzSB\n7OrYmXc56en8949qd7+qww6zm4f4WQxsiaNqG+v7vBQ4mJADknnvgOvF0I9X7joUu1HxN1h38P2x\nJol+ziC03xaEC0beIWacsg7FCn0GeBwrtP7pqNrG3RrSrnjLKSBci+bHda/vsdCqmlsz7IKO6kjZ\nuBPYghWyHgcawso/BrCg6Wpa+ywO96oebnNSi8Xsv9+RuPaZ3nVP6VODpfi6uTDjMZiV9U9YPxlO\np1RwzUiD8RPGl6Y1Bm47yZ6vWG4vfvPmzeQ6++BtcV6s5AC58wi7D7NmTAsUsC45PHSekZlN7yN6\nIyJs3bqVvLw86s29Db/rzGnTpvHXoHO5yHmLPHPmTJ4FOhYUcHmPHtQ89FB+DRrHDl4hJ5Yg5qfn\nAd0jtb0lie1Onp0dGvu1cqwWcsRMaNIkZOcZIVwt+RKmPshZ+y60fencwnOANXPn0rRjRw7YZx+e\nrlWL6z78kJ8SvhJFUSqarKyQ4OWluNguHf/7b6v5+vtve0ycCB9/bONdcnIgL8/6GvP+d8/32ksF\nMGXXZc8WsJJl4MDw9VReGjSAFT6PBOvWWVNCl6CNKLZuTV64AitcNW0KL74IV14ZHlc7G9Ym4MM7\n1cQTrgBKDKxoB4wqf32rsRP3mVHily0ODl9JfEciQXt5zcVxod8ErlkCzaP0sdek8GvP+XaskPFS\nQJ6LfZ+jPWQMMAErOFQntGfXn540Lc5j/389yuj7sdo3b7uaxSg3gNUbC8n1+GtpEWRCOAGYDxxG\nuDt8CJclHEXw+nWryQxY9jTinQm0Pyq8jfu3D1V49OE9gZExTSOrOr9w++TOxtx5ADIcuzcZ8Op1\nDXj1m9B3taDI7gcGcHs/q/bs0qULTz31FCeddBJ33HEHB7WBV2c5GTx91LNHd+CP6A0Bnn76Scbf\n8Dj7ezXVfwyH+eFOJLZs2UK1jJCk0xBwLSr/DfQbPpylS5fS2PM7UlhYSOaKr2DDNCaN+pZBtx3N\nypXL6dC+DYUJegA9oc9xMCx+unhcc9o+3HPcbKjaJNzWyM+0h2H1H6F9wXPhbOAdYNGyZdCxI/cf\neCDpF17Iy4Q7/lQUZeckPT0kJB1zTHhcYaH1F+YKXfPnh44RIyJdxlevHhK6mje3UxzX1bx7nh3l\nvaaiVDYqYCXDbbdFjzv1VGvu52X5cjjjDOuOZ3PAgqDatZPfbv2gg+CPP6wGa6+94Ior4KabQmaM\nAPcMhNvvCA/bmZg9IXrc8fvA1zEciHgZDZxK9DVXs+YEh48PDo7LMuCvxvCMo2qaFCVdjMsr1a7F\ne0vn9RDoTevOnacARxH8je51Gu888xpsuLhUqAFCwlgQRcHnaVk1CC8kIJ+7FCmf2JsfO+WmpxG2\nJxcAW+GyHwrhB8LW1a2f9zO0BzbCS21G2kBv37TBjoGBThXOOraffhvL0cuw/TQX2AdO6bSCYz0e\n0HOqhlSup3dbx7aJD1O4fQtDhgzhpJNOok6dOrx9xRrSbnYyOILd0KFDWbHgbmgV41qxGrfJkyfT\npUvIa0hJSWGE1WZhYWGY6WAtj/+VzNJ8NsAYw/UX9aZl8ffc4CwDzV78KbccbhfbTZ5vTRsbNWoE\n0x+3e271eh/qBJgjl6TGtLhKpjNAO4ebWGJKYNbzsHdftqfXQ7ZtilCgurJyn969mVxcTPq557Ll\n+eepsXw5ePbJUhRl1yMzM2QeGMT69VbYmjcvJHjNm2ePX36xW5H6qVMnJHD5BbBGjew77zp1ojuJ\nVpSKQgWsVLNokdWdP/gg3HKLDatSxX7DN2ywgpCXf/8bbr89toB1111w0kl2G3Y/v/9uPRi6LnwG\nDYoUpKbPqHjhqlEjWLYsfrogimOYIY0tY5nRLafKTkfia7aGJaB1jGVlFcfRRCleLY1XwHLnxNOx\nDiwivYvD1L/Z54H74WTChRGvE40pQKcocZ7zJk2bwVqvSs6HN18sB5gnU7oGKyMNmk4C/sJ6dOxC\nuJfHSUAtoBn0auysY3wJK7gOIfyaZhHGwfUasezuZTZNZyfwTUqdhJS6gt8M3bp0hI3W7WXTda/D\nOmhfG7758iM6tGvJurVryPPutuB8pa674AKevIS4AlZGGmzKXw9/XQ6F62G/p5k3ZzatPJa9C/Lr\n0bZtW+p2bIuriq2RTun9z8Duv5XmzBbGjx/PyY2/5yjPvSveOLf0h712rvXs16hRIxjv/B7NfBYO\neiOygSZSwBo/ZwvrfvqJI488snSdVVrATGX1Rx+R8ehD5B/QmZxz28OsW6FRyMXlokWL+M+1fRly\nxji+f+ceZjd4gG6rxtPDq5babG8nQM1qjl4rPZ2c+vUpXuPzeKIoym5HrVrQtas9gsjPtxspL1li\n/YO5h/t51ChYFfBTkZ5u3c43bGgFrlj/1SxRSRUqYKWaL76w/2++OSRguYJRejpcdhm8/nrI/c5b\njos176rQAw6wvxQuDzwQchOfnQ3eDV7Xr7cmiK650PjxkcLO/vtb00GXNLGmeYnQti3MjGZz56E8\nevpYst/KRFwAekhSxgukdvwklGQRW4KKwyFO9ng/6EVYRyA/E+60witQluD3FB5i5Dwb57VOdefT\n+Vih43JCQkIUDdbaVcuoG0vZ6hV2YilEip32boU2DYEHnPBJwEOAu/yqE/A6Vmt1OVSvmhZqMwT3\n3dOh05YL7IBoBNZsESJNCr8E/gfpHWfCHVDS4mLS5r0GwDGd4bObYVvhPDZt813fCmCW9U+y6nPg\nyIDr3IRdtLUZPhz2DnXqlcCvrwDw7CvDOP8QQmqpQigetoo1E++i1kGhi3rSU+dVl17KNa/Y/KtW\nrWLJkiW09o3T4oLNuPspD33tRdLbdCA/Pz+0o0C0dVUBGqzNWwv56aefGPfnd2yZ+Bhrt9fk/Hu+\np5vPs2CdV1+BP0dT88/RzO3Uito5wMIPob01tVy3bh1rFzl7NhSs5cEHH2TYZb7KtoVuexXnRdTv\nDz3IwV98QTX/3nSKouxxVK9uXcK3axc9zbZtdrXF4sXWeGjFisj/U6fa86CtHDMz7fvwOnWgbl17\nuOfRwmrWVKFMiUQFrFSzfHnk3lXVqoXOX34ZnnzSumj/739D4V4N1l9/RX5bb701VJYrYDVrZvXm\np5xiy7zhBvvrkO9z8ewvK0i4arcPzAgwxUtEuGreHNYk4o89CvHkk5o1rd5/5rT4m+lOiRNfFv6O\nnyTcP3gSvAt8QHTByKUEu65qIeFC0mZfmmpYTY13I2WXgiwo9HT2MOz+WvtiHX0sAJpg3aqv8+Rz\nlykVwbw5i6jbluh47898rAv5IL7GaqxWwaF+M8LXgJuBE4EeWBf0awEDtbOctY+HAXOwY8f/KxZv\n6zi/gDXd+T91M6vTO1Nj/gdklQC/2W3GqmTao2YO4b5Ycij16FhvpVOudzh8hvUW6dD4kvd5qu52\nblhrr//gQ50yXSZByx+BH1+wa9ecxeMHedqbPngwRdlZfHrIoSz4/GxOP+lwGjauGnbRVWSLvZcz\nIb3NRkSEpx9/gLscZypvvP0ep+/3esTGyd9/9zW+JRM0qAmFKwpZM/kRHjoTYC13vj2Ibt1eDU+4\nNdQxLXOsKe6WkTfz+aQmnHnmmRQUFHCusxzrmE6QKQHSt+c6f/zuO9avX8+2Eda1hfwbKIc/IkVR\n9gyys63L+JYtY6czxr6fDhLC1qyxx+rVMH166Lw4yvwjI8MKWrVrWw1YrVrRD398zZo7n38yJTWo\ngJVqGgRs9us3C8zNDXfRDtZAOC8vcpXnyy/D5ZeHPnuNkGfNgt8cn+Jvv20FrJ9/hk2bwj0Sxlpo\n7lK9Rvw00ViwADp1gilJSjd16sQW0DZsiOwXl2qE1jFBfAGsLLQk3EFFEBvK6TykhGAB03Xn7lJE\nSFMzI0pZRdgNkrtgN04u9kkSSwqs+3YXV4B0BYxXsQLCz75y12P74S7oVgI8SMi9vIehf9Xhgtae\n+7gkMk0pxYBryvGLL24t1mFHH+B3rLZqsnPeC3udrzlpC0jc9bzryd3f3573DXULJ9vyNgEfQsd1\nwBFYYQrC78kjQHfP5yKsi/yvnHb6zUs//ZkFh9W0ws9iqOvvH2/ZHq1ucVYm6QUhCTzjueeZN38U\nt5xtoMh/sxwGA3PBNPwA6XQBwz96xHqsBNZvgW3btlkBq3AjFKyD3Obcdst1HPPf8GJa/CgcfUpr\nxnucvAy4J0BqLvYITI6gmZ4G33zzDWeeeSYtW7Ykt21Te+HArVf1pUWTr7BvDByc+7D52CrkNi6B\nH46g8RZnAWNZvVUqiqLEQMQKO3vtBe3bx09vjJ2GuMKW+997vmaNFdpWrLDvptevt0c0wcwlNzck\ncNWoYd+jV68e+4iWRoW1nQcVsHYEibhKFrGu2hf53NVVqRL+2WtKWKVKSDtWt26oHID334dPP4Xz\nz7cbT2zfHlmWlx4Hwuhx8dsZjdqJ2NNFoW9fePXV+OmC2BQ/SdIkYpYUT1uSLH7LyCKsKVlHrHbJ\ndWKZJnC1gWexAtNXboYA13qGSIceR0KY/+sgc821wCBgq7Md1zwCBawLeqzhviF1uYfVwdcUjSAP\njUXY/bM+9oTNxQou7ruJHKyb+USFamcCX5gfssorrct7noXt3zWO7DaSkPmf30+KP+8wrDA6h/A1\nbQBFm3nilA2lGy8387/T8Jbl0WimZ0iEUJi1Lc7Ad8Zl2rJR8FEDvvPsKNG1ud23iqKt8GkLKFgL\nPV/n2A6RNz/jT8NR7abT9vS+sNXZm6s43D3onXfeybnj/6J0jlJMqYDluoyvXbs2tbseAgveAeCq\n/adDYR1Y5xGwnCGb3rklSye+SOOCCdRyx9l0FEVRKg2RkBDUKs56Wy/GWN9mrrAVdKxbFzrfuNEe\nS5daYyT3KIplcu+hSpWQAJaTE3zk5kaPi5UmO9seGRlqEpkIFSpgichx2BUR6cBgY8xAX7w48X2w\nU7sLjTHjYuUVkdpYw5s8rBHSGcaYdU7c7cAl2Ef8dcaYbyvy+hKmVq34aQAmTQqN2oED4aef4MQT\nQ/FBLti7dYM77rDOMiC0VqtWLXjkkVC6rCx4+mmr/37oofAyLroIzj4HnhsUvW39+9s2+TkG+Pcz\nUFINhg9P6DIBePhh643x889hyJDE8wWRmwObfZPD+llQpSB48p4o2SdgF+jsBBQAVwFbwTzjWXbU\nuB78uhJOAhKx0sz1pfNtLrQ53yaJYK6vLT7+XplO6/rF/Ofhd+H7oxNoSBzmEC5cAQXb0siiJFT/\nxVhTujL6PxhTx24TVko0AcvFa3Hr33rA7wzEG+9/IBoQMdaz4l+Ebx7tTx9WbqQEuWhWNDWmwznY\nLQACTE8Pal/VvpDZusAKVwDrJnLTdVfCyhfD0ppCkI0badagnmcNW3gnfDL0QQY0IGQ+6bwMSEuD\ns88+O5SwxNOY7Wsj1s6ZvbohjCP7j3S2tpxvHZu47wmSfP+SCsrzHFMUZc9GxAo71apZz4bJYIx9\nR+4VuGIdmzbZY8uW0LFmjX1/7w3bvDl469ZErik72wpzrtAVdF7WsMxMO1Utz/+dSfCrMAFLRNKx\n772PwdqFjBaRz4wx0zzJjsf6EmuNXW3xAtAjTt7+wI/GmIEi0t/5fJuIdADOwr7jbwz8ICJtjDGp\nNBorG088Ac8/D9dfn1j6Pn2stgms8HHbbfab5XLFFSEBK8exWcrKggEDQmmuvtqu4QpyOnHddfb/\n3Xfbb5pbV/Pm9vDSsSPcf7/9tvbuDR9+GNzmDj3h/KsBgYs9mzfVxr9/ajiuq/shQ6KX7aVmTTAb\ngvcj7t4RirKsR0WXjGqQHqsBCfDeTiJcAWyHghbNMWctIjOtJDQ3Xb3efkN6Yjc/jsUWYm8sDORm\nVidcogjAEXDmrMmlVR2ramvU6kDIH0FaUTkcfngJeFuXVuy403Pn6VOwpoRldICw7xEHELbvWpBD\nD+/6O6+W0q+c8wowRVCcUYt0VzrzCTdFxYWhH9znAhrmKwsAA6awOMKPR+smDYlpv9oVuB+oExmV\nkVWNjVu2sG35PNxdxT758H8ce8JpEWllEzB4ML/OhsMcpxSrVyyhpLg59evXp6CggNZNqsIqTyc5\nbU+TNPr06cOqVasoLCyk/uqxpddfVJCPkcwwTeLSogU0uR14aArFB7aF/QiZbybokyfVlOc5Fqvc\nBRsWcOUXV8ZKoiiKEp8c52gQHBwLgxWwigqthizWUVhkLcGLi4OPomLYUAxriuzqhLC0RdbwoXid\nkzY1O4IEImJf7qWn2/+lR7q1qvB+TpPQZ5Hw9N7PyVKRGqwDgNnGmLkAIvIu1jmz98F0MvCGMcYA\nI0Wklog0wmqnouU9GTjcyT8Uu4LjNif8XWPMdmCeiMx22uDdcnXHcuON9kiU55+PDBOxApR/HVU0\nt+uuCWFWjJl0dnb4RhTZ2SGBDeyOf/76ZkfZi6r9hSFHD507w2THu0IimwxDyLTRT/MmsGJJyF13\nzZrQoDqMDtgsuFk2DHjbOv1wSc/YvQxg10FW/xIo8r1u2ubc7/cId20exHbCtVd7EXJmUQurtRkV\nR7gC66BiFLRKL7EahvpQjRGwASj6v/j547GRUjM6LxnTsWuLVjoBv2CdTPgeLMWZkB7DaUjOx+Ot\nBsnFO6QGYa/Ju1f4eOx6sm1EyjRer5XPQNo6zxsAX9r0LcAAp+yqhGtoIFx4+wVrmmiCHUxeMG8F\nPIkVMA2hPnHZihU8gywJc1ZR+GRzZOv60jFzfNFKMj8bbMvKxa5t9LyaOmi60/YMIOsUIB3S9iKr\nOJNPirNhqUfAehMryK8BHqtPlQ1rSS8uJj0XqGKvW1gIK8LHcoOSkGeVvPdnwjfYMdqE2Ov5Kpak\nn2PGmKg+TddvW88nMz6pyHYriqKkjnQirS5iINjHRaxpmKs/MCb8PNp/A/alYwJpvXmK4qQLjCv9\nkzxiTMW8GhSRfwHHGWMudT6fB/QwxlzjSfMFMNAYM8L5/CNWWMqLlldE1htjajnhAqwzxtQSkeeA\nkcaYt5y4V4GvjTEf+Np1OdYhNUBosxmlrNQl8n2+khjad8mjfZc8u3rfNTfG7FCH7eV5jhljxvjK\n8j57OpFan6d7Erv6OK5MtO+SR/sueXb1vktA06diAAAgAElEQVTq2bNLv+M3xhgRKZOEaIx5GXi5\ngpq0xyAiY4wx3eOnVPxo3yWP9l3yaN9VLt5nj96L5NG+Sx7tu+TRvkuePbXvyrmJT0yWAHt7Pjcl\n0tAjWppYeVc4ZoQ4/13jmETqUxRFUZREKc9zTFEURdlDqUgBazTQWkRaiEgW1gHFZ740nwHni6Un\nsMGxW4+V9zPgAuf8AuBTT/hZIlJFRFpgFxx7VrIriqIoSpkoz3NMURRF2UOpMBNBY0yRiFwDfItd\nGveaMWaqiFzpxL+I3bWnDzAb6+Psolh5naIHAu+LyCXYLTvPcPJMFZH3sYuPi4CrK9WD4O6Pmlkm\nj/Zd8mjfJY/2XRkpz3MsDnovkkf7Lnm075JH+y559si+qzAnF4qiKIqiKIqiKHsaFWkiqCiKoiiK\noiiKskehApaiKIqiKIqiKEqKUAFLAUBEXhORlSIyxRNWW0S+F5G/nf97eeJuF5HZIjJTRHp7wvcT\nkclO3DPOXmW7NSKyt4j8LCLTRGSqiFzvhGv/xUFEskVklIhMdPruPidc+y5BRCRdRMY7+zFp3+3E\niMhxTt/PFpH+ld2enQF99iSPPnuSR5895UOfOwlgjNFDD4BDgW7AFE/YI0B/57w/8LBz3gGYCFQB\nWgBzgHQnbhTQE7uR99fA8ZV9bTug7xoB3Zzz6sAsp4+0/+L3nQDVnPNM4C/n+rXvEu/Dm4D/AV84\nn7XvdsID6yRjDtASyHLuRYfKbldlH/rsKVff6bMn+b7TZ0/5+k+fO3EO1WApABhjhgNrfcEnA0Od\n86FAX0/4u8aY7caYeVjvWQeI3ZeshjFmpLHfnjc8eXZbjDHLjDHjnPN8YDrQBO2/uBjLJudjpnMY\ntO8SQkSaAicAgz3B2nc7JwcAs40xc40xBcC72HuyR6PPnuTRZ0/y6LMnefS5kxgqYCmxaGBC+7ks\nBxo4502ARZ50i52wJs65P3yPQUTygH9g34Zp/yWAY2owAbtp+PfGGO27xHkK6AeUeMK073ZOovW/\nEomO4TKiz56yo8+epNHnTgKogKUkhPOGQX36x0BEqgEfAjcYYzZ647T/omOMKTbGdAWaYt9sdfLF\na98FICInAiuNMWOjpdG+U3Z1dAzHR589yaHPnrKjz53EUQFLicUKR42L83+lE74E2NuTrqkTtsQ5\n94fv9ohIJvYB97Yx5iMnWPuvDBhj1gM/A8ehfZcIBwP/FJH5WHOzI0XkLbTvdlai9b8SiY7hBNFn\nT/nRZ0+Z0OdOgqiApcTiM+AC5/wC4FNP+FkiUkVEWgCtgVGOenijiPR0vMGc78mz2+Jc66vAdGPM\nE54o7b84iEg9EanlnFcFjgFmoH0XF2PM7caYpsaYPOAs4CdjzLlo3+2sjAZai0gLEcnC3rPPKrlN\nOys6hhNAnz3Jo8+e5NDnThkoq1cMPXbPA3gHWAYUYm1hLwHqAD8CfwM/ALU96e/EeoOZicfzC9Ad\nmOLEPQdIZV/bDui7Xlh1+CRggnP00f5LqO+6AOOdvpsC3O2Ea9+VrR8PJ+TNSftuJz2c34VZTj/f\nWdnt2RkOffaUq+/02ZN83+mzp/x9qM+dGIc4F6koiqIoiqIoiqKUEzURVBRFURRFURRFSREqYCmK\noiiKoiiKoqQIFbAURVEURVEURVFShApYiqIoiqIoiqIoKUIFLEVRFEVRFEVRlBShApaipBARqSMi\nE5xjuYgs8XzO8qX9VkSqxylvsbtXR0D4e57PZ4nI4BRdwwMickMqylIURVEqHn32KMrORUZlN0BR\ndieMMWuArgAici+wyRjzmDeNs6meGGN6l7O6HiLS1hgzs5zlpAzPtZVUdlsURVH2FPTZo88eZedC\nNViKsgMQkX1EZJqIvA1MBRp53xCKyOciMlZEporIpQkW+zhwR0BdYW8BRWSGiDR12jBFRN4UkVki\n8oaI9BaRP0TkbxHp7inmHyIy0gm/2FNWfxEZJSKTROTuaNdW5g5SFEVRUo4+exSlclANlqLsONoB\n5xtjxgDYF26lXGCMWSsiOcAYEfnQGLMuTnnvANeISIsytKEtcAYwAxgHbDPGHCQipwH9gX856ToD\nBwE1gHEi8iWwH9AM6AEI8JWIHASs9F+boiiKstOgzx5F2cGoBktRdhxzYjwEbhSRicCfQFOgVQLl\nFWHfJPYvQxtmG2OmOWYU04AfnfDJQJ4n3SfGmG3GmJXAcGB/4FjgeGA89gG5D9DGSR/r2hRFUZTK\nQ589irKDUQ2Wouw4NgcFisjRwKFAT2PMVhEZAWQnWOYQoB8wyxNWRPjLE29Z2z3nJZ7PJYT/Hhhf\nPQb75vABY8yrvvbvQ5RrUxRFUSodffYoyg5GNViKUvnUBNY6D7iO2Dd2CWGMKQCeAa73BM/HmlQg\nIgcAeyfRpr4iUkVE6gGHAGOAb4FLRCTXKbupiNRNomxFURSl8tFnj6JUECpgKUrl8yWQIyLTgAeA\nv8qY/xXA64Z3GNBARKYAlwNzk2jTFOBX4A/gHmPMCmPMV8AHwEgRmQy8D1RLomxFURSl8tFnj6JU\nEGKMXxurKIqiKIqiKIqiJINqsBRFURRFURRFUVKECliKoiiKoiiKoigpQgUsRVEURVEURVGUFKEC\nlqIoiqIoiqIoSopQAUtRFEVRFEVRFCVFqIClKIqiKIqiKIqSIlTAUhRFURRFURRFSREqYCmKoiiK\noiiKoqQIFbAURVEURVEURVFShApYiqIoiqIoiqIoKUIFLEVRFEVRFEVRlBShApaiKIqiKIqiKEqK\nUAFLUXZDRGSOiByYQLpsETEi0rQC2nCciMz2fF4uIr2c8/tE5LlU17mzIyKHO/dmk4gcl+Ky/f2d\nkjEgIpeIyOdBaUVkiIj0S9U1KIqiKMrugApYilIBiMg1IjJGRLaLyJCA+KNEZIaIbBGRn0WkeZRy\nLnAm45tEZKuIlHg+r49WvzGmlTHmzxRcx0gR2ebUt0pE3heReuUt1xhzjzHmmvKW48cjAGx22rxY\nRB4WEUkwf5iQUgEMAB4xxlQzxnwTUP9yZ0xsEpFlIjJYRKomU1GqxoAx5lVjzElR4i40xjwCO6Tv\nFEVRFGWXQAUsRakYlgIPAK/5I0SkLvAR8B+gNjAGeC+oEGPMUGcyXg04CVjofjbG1AooOyOF1+By\nqVN/W6A+MLAC6kg1bZ02Hw1cBJxbye1xaQ5MjZPmWKft3YGDgFsqvFWKoiiKoqQMFbAUpQIwxnxk\njPkEWBMQfSow1RgzzBizDbgX2FdE2iVTl6P1uEVEpgIbPWGuOd7BIvKXiKwXkaUi8mQygpgxZi3w\nGdDVU3dVERnkaFsWi8ijIpKZQJsHishg57ydiBSJyEVOGatE5FZP2moi8j+n/VNE5PZENSXGmBnA\nSF+br3C0h/kiMltELnbC6wAfAy09WsI6IpIuIv8RkbkislpE3haRCOHWU/7VjnneGhH5SEQaOOGL\ngcbAdyKyKYG2LwF+ILK/nxKRRc49flZEqkRpR1nHQF8Rme/0/wBX6yciV4rID1HqeFdE7orSd80d\nTWINT/qDnPrT412/oiiKouyqqIClKDuejsBE94MxZjMw2wlPljOBY4A6AXGFwDVO3CFYTdilZa3A\nMQ3si22ry31AF6AzsB9wOJDMmpx0rMZmH6APMEBEWjpxDwD1sNqfE4DzytDmjsCBvjYvA44HagBX\nAoNEpKMxZg1wCjDXoyVcg9UgHQv0Appi+/PJKPX1wWomTwGaAKuBNwGMMU2BlYQ0VPHa3syp19v2\nJ5w2dMZqFNsA/eP3REJj4CSsMHcAcDbw7wTKBSBK3y0A/gJO8yQ9D3jbGFOcaNmKoiiKsquhApai\n7HiqARt8YRuB6uUo80ljzFJjzFZ/hDFmlDFmtDGm2BgzBxgMHFaGsl8SkY1Y4aAqcKMn7t/APcaY\n1caYFVhhKGEByMc9xphtxpjRwAys4AZwBvCAMWaDM2l/PoGyporIZmAK8CX2mgEwxnxmjJlnLD8A\nv2KFp2hcCfR3+ncbVqg8M8q6rn8DLxtjJjlp+wFHi0jDBNrs8rWI5AMLgPnYPnXNPy8BrjfGrDfG\nbMCaa54Vr8AEx8BDTrnzgOewQlZ5GYpjnikiWdh7+WYKylUURVGUnRYVsBRlx7MJqz3xUhPIF5Fm\nHhOruGZkHhZFixCRDiLytYiscASlu4G6ZSj7CmNMDaAb0BBr5oYjYDTECgIuC7Cam7JSbIxZ7fm8\nBagmImlOHd7ri3qtHjpiBdbzgYOBHDdCRP4pIqNEZK1YRyFHEqU/nGvcG/jKMa9bD4zH/nYGaQsb\n4+kPY8x6rPBclj453hhTHau96oRdp+eWnYkVHt22fIJdFxeTBMeAt18XOPWVlw+B/UWkCVYzudgY\nMykF5SqKoijKTosKWIqy45kK7Ot+EJFcoBV2XZbXiUVcMzIPJkbcK8A4oJUjKP0XSMirXlgFxowH\nHgGedT4bYDnWdM+lGbCkrGXHqLMEWIE1i3PZO9G8xpg3gUnA7VDa18OA+4H6jqOQnwj1h/GVYbDX\nc6QxppbnyPYJhC5L8fSHs1arBkn0iTHme6zzk4edoGVAEfY+uu2oaYwJEvT8JDIGvP3azLmWMjU5\n4Bo2YddmnYPVbKr2SlEURdntUQFLUSoAEckQkWzs2qJ0se7DXacCHwOdROQ0J809wETHIUNFUB3Y\nYIzZ5KxJuqwcZQ0G9hGR3s7nd4B7HGcQ9YE7gbfK19wI3gfuFJGazrqkq8qY/yHgascRQ1WsFmgl\nUCIi/8SuG3NZAdQXEa9w+yIwUET2BhCR+iIS6LYc2x+XiUgn594OBH4yxiwvY5tdHgdOFpH2xphC\nrFfKp0Wkrlj2FpFjEignkTFwm9PHedj1WoGeLWMQ1HcAb2DXex0HvF3GMhVFURRll0MFLEWpGO4C\ntmIdEJzrnN8FYIxZhV34PwBYh3UqEHcdTTm4EbjUMTkcRNknzqU4a7yewzpyAGtqNg2rlZsA/I7V\ncqWSu7D9tAD4GitwbU80szFmDNYV/k2O1ukW4HOsh8e+wFee5BOxnhIXOGZ4tbHX8wPwk7M26g+s\nuWRQXV9gBbrPsBqghiS/Jg1jzFLgXZyxA9zglDsGu47vG6xjkHgkMga+xF7/GKyWr6yCclDfAfyM\nFWxHGGOWlbFMRVEURdnlEGsBoyiKsmsgIjcCxxljesdNrOwUiMgfwPPGmFRrNxVFURRlp0M1WIqi\n7NQ4ZnA9RSTNMW+7HmtmqewCiMjBWHfyH1Z2WxRFURRlR1DmzUYVRVF2MFWwa4+aA2ux63gGx8yh\n7BSIyLtAb+DqoC0EFEVRFGV3RE0EFUVRFEVRFEVRUoSaCCqKoiiKoiiKoqSIPdpEsG7duiYvL6+y\nm6EoiqIoSgoYO3bsamNMvcpuh6IoezZ7tICVl5fHmDFjKrsZiqIoiqKkABFZUNltUBRFURNBRVEU\nRVEURVGUFFEpApaIvCYiK0Vkiiestoh8LyJ/O//38sTdLiKzRWSmiPR2wqqIyDciMkVE/s+T9mUR\nCdwEVFEURVEURak4RORCZ1PznQoRmS8it5Qh/eEiYkSkbgW1x4jIvyqibF89lXo/ROQLERlSWfVX\nFpWlwRoCHOcL6w/8aIxpDfzofEZEOgBnAR2dPM+LSDrW9e8IoAtwnpN2XyDdGDNuB1yDoiiKoihK\nyhCRQ0XkMxFZ4kzALwxIIyJyr4gsFZGtIvKLs0dgrHLv9b7UTmF7g4SE94CWqa4roO6yCkD7A89X\nZJvKSCPg88puRBBlFUaVSCplDZYxZriI5PmCTwYOd86HAr8Atznh7xpjtgPzRGQ2cABQCOQAmYA4\n+e4HrqzAplc6kybBxIlw3nnx0/75JyxbBqeeWvHt8rN6Ndx7L5xwAhx/PBgD//0v1K4NGzdC//6Q\nnh49vzEwYACceCJ07RoKf+EFGDsWzjkHvv3WlrPXXuF5hw+HoUMhLw/q1IGCAujeHZo2hYEDobAQ\nRGy5EyZAo0a2batWweOPw1132fzLl8Odd9pjwwZbXn4+1K8Pxx4Lr70GbdtCjx7QrRt8+SV88gl0\n6WLLz8yEUaOgZUvYtMnmb9UKjj4aiorgjjtgzZrwth97LBx+OLzxhq1ryRK45BL47TfIzbVhq1fD\n+vXh+dq3hwULYMsW2HdfmDrV1pGRAf36wVtv2b6fMCE8X4cOMG8ebI2zQ1F2tm27MfB//2fbvnFj\nKL5RI3vNS5faz9WrQ+PGsHAhXHghDB5s63Lb1bChvf9Lltj0++4LU6ZAcXFw/Q0a2P5cvDgUJgJX\nXmn7feHCyDzt2sHpp9t73qEDzJxpw9w+6NDB1t+sGUyeHHwdydC5sx07tWrB339HT9emjU3n9mOX\nLvY6GjWC6dOheXPYvt1e+8SJZW9HTo4to2pVOOUUeOABW14qceuYPt1+7tEDjjsOHnzQfs+8+O95\nsrhjcerUUFidOlCjhh1zhYUwZgyUlNi4rl3t/Y02tvzUrWuvK2hMJUuXLraP3D6pW9d+nxdEWS3U\npg3UrGm/E7G+m+3a2eueOdP+vs2bZ393H38cVqwIT+v+Lpx6qv0eDxsWv90dO8KcObBtW3D8scfa\nfh092o7Tv/+On6esdOpky/WOXe/v926400w1YArwhnME0Q+4GbgQmAncDXwvIm2NMfk7opGxcPa8\n22n2vRORLGNMgTFmVWW3xYsxZnllt0GpOCptHyxHwPrCGNPJ+bzeGFPLORdgnTGmlog8B4w0xrzl\nxL0KfA18gv3xaQ88CmwCuhlj7o1T7+XA5QDNmjXbb0G0J9xOijiiZCK3rSxpU80HH9jJ7T772Ifj\nmjV2UuGNP+206PnXrbMCQceOdpLhUr26FVZcHn8cbropPO9ZZ8F770WW+dRTcMMNdhK2bFl4vyxZ\nAoMG2Ynha6/BxRfb8GHD7HVkZVlBzeWEE+zE3sUYOOoo+OmnUFidOpEClJt26lQ7cahd207mwApO\nbdtaAe7770Ppzzwz8nrq1LETZ4C1a61g5adxYyso3HorPPqoDcvIsBNdfz5XgAmiqMgKAi6//w4H\nH2zvZ3a2vR+uwFerli1nlecxdvDBNo9LrVrh6TdvDk08mzQJjVuXzZvteAA76axe3Z4vWQJnnGH7\nxhsOViDOz4cnnogcH5mZth+8E9fsbHt421WtWnB/xGL16vCJZbVqtiw/69eHxnHduratsYSfrCw7\nLhKloABWrgx9fvVVK6g3bGivPRV468jJsfctNxfuuQeuvtoKiu5LFO89TLZvwY4TV3CoWtV+D7Zs\nsWPZT9OmNq07tpo2jV++tyz/mEqWVatC97ZRI3seq47ly+13ziXad3Pp0pAQ6eXJJ+HGG+2Lp9xc\nG7ZyZej369BD7Vj/+WdbdjTWrAl9R4LasHo1tG4dejnhJxVjzft98pbnXntamv2dc7H3W8YaY7qX\nr+adA8es6xpjzBBPmABLgeeMMQOcsKrASuAWY8xLAeVcCLzuC77IGDNERGpi51B9garAOOBmY8wY\nJ29N4Dms1VANp+5njDFPich87AbwLguMMXlOfc8ZY6o5ZdwL/At4ABgA1MdaKl1qjFntpMlw2nEh\nYLCby+cAHYwxhwdcUx4wzxc81BhzoYj8AkwHNgMXAPONMfs77X3OGPOYU8ZNTn2tgPXYueUtxpj1\nTvzhwM9APWPM6lh94W+fk39vJ/0hQDawELjXGPOuE2+A040xH3iu52zgKqwiYYbT/hLgZWBfYDxw\nnjFmnrdv3bm0E+bvf//nVsATQA+gOo6Qboz5won/BTjMey3GGHHiDgIewmoD1wGfAbcZYzY68TlY\nLeG/nP5/GjgIWG2MuTCon3ZbjDGVcgB5wBTP5/W++HXO/+eAcz3hr2IHkzdtJvATdqA8AXwA/DNe\nG/bbbz+zq2Gn56lPm2r+9z9bd8OG9vOyZaH2gI2PxYoVNl1aWnh4bm54OffdF5n31FPD07jHo4/a\n/xs3GtOkSXjc/PnGXHWVPR80KBQ+dKj9f8IJ4ekPPDD8szHGHHJIeFiNGsHtMMaY8ePt+ccfh9p9\n2mnGdOxoTI8e4elPOimyjK++CuX7v/8LhdepEzrPz7f/r746FPaPf4TyXXJJKHz69Oj3Yu7c8Lp/\n/DH03xhjXn89FDd4sDG//x6e/h//CP/sTf/yy8YcfHDoc0lJZP1vvhmKf+GFUHijRqG+ef758DwD\nBthw97/36NXLmIsuCg879dTI60iG004LL/euu4LT3XFHKM2vvxpz4onBY8U9jjiibO2YNCk8/4sv\n2v9LliR3XfHquPJKY6691pi99jLmqads2Jo1obTu9wiMeeml5OucMydUzvnn27D334/srxo1bJz7\nXcrISKz8994LlfHMM8m304v3t2PduvA6nn46Mn23buHXMm1acLktWgSPFXfMv/VWKO1RR4WP/yOO\nsP9jcd55oTxz5kTGn366Me3aRR+z8+cn3kfROP30UHnesdu8uQ1r2jQ8vf1dZowxlTOvSfWBfXF8\noS+sJWCA/X3hX2IFjKByqgKPYSfsDZ2jKtb6Z4ST9wBgH6wl0EagkZP3WWCCE98ca2l0uhNXz2nL\npU6Z9ZzwC4FNnvrvda7lY+yyjgOBBcBLnjT9sRP204C22In5BuCXKNeUDpzq1N/Bqb+mE/cLkA88\nDrQD2jvh87EClFvGDcCRznz0MGAS8KYn/nCn/Lrx+iJKGz8HvscKRi2wy1yO88Qbdz7rtMFghZ0+\nTrt/BqY6/4/ALpUZA3zu69spvnr9/e//vC/W2quzc8/vBAqAdk58bWARcJ/Trw2d8M7OfbwZaI0V\n0P4EPvCU/TywBCuEdgKGYcfTkMr+Pu3oY2dy075CRBoZY5aJSCPs2xiwN2pvT7qmTpiX/8Nqs3pi\nv5BnYgWuzyq2yUo0XHMc+32LNBfyayn8+NPHCy9L3szMyLexrtmgH/cNrqstilWH3wQpVlu9bXFJ\nT7dlpPlWRgaZCHnzec+97czOtv+9GpVo+aJpr4Li3Pa44f5yoqUH28dVqgSnz8gIvgex2uxviz9d\ntL4LSp9of8QiWjtipQtqj0jou5NMe4LGdzLlJFqHew2FhaHvgVd7kYq+jVZOUHn+uETrTFU7Y5UZ\nr45kxpCXoO9E0HiId32JtDPWb1wq+i/e75W/Dv9v526KY4OAzwiUFUCToAzGmK2ONqzIeMzSRORI\noCtWMHJ/Lf8jIidh17Y/ghUkxhljRjnxCzzlrrIKNdab+OZuGVhhcYNT98vARZ7464GHjTEfOvE3\nELlW33tNxSLi6q5XGkcT5mGeMebmWA0y4Zqn+SLSD/hURC4wxgToh6P3RRSaAx8aY1wj73lx0gM8\nYYz5CkBEHscKaf8xxvzshD2HVTwkjdMer+H5AOee/wt4wBizVkSKgXzffb0VeM8Y87gbICJXAeNF\npD6wBbgEuNgY860TfxHgMe7fc9iZfo4+w6pCcf5/6gk/y/Ea2AIrNbuDG8fb4IlYASsHq0o12Lcz\nSiXhmrhEE7DiPQjLI2B5zWuC8romYv4474TWxTWh8wtYQXX4w7Zvj8znb4u3Henptgz/2rQg879o\nk1e3vvT0UDleASuZSa8/zm2PVzDylu/vW2/7/fEZGfEnwdHamZER2RZ/umh9508f1K5k8OeLdk3R\n+sDFP27KK2C55mEVKWBlZNhx7X4PvOM4VYJL0PgNKs9NFzRGY+EfX6mgrAKWv95o7YgWHvSd8J4X\nF+8YASsV/Rfrux9Uxx4iYKWS/bDzplUissk9sJqHVk6aF4AzRWSiiDwmIoclWdcCV7hyWIo1FXTN\nEBvimdsZqw4ZRfKMjZdARI50vFYvFpF84CMgi5AQ66esffE0cJeI/CkiD4jIfgm0e5Ln3BWiJ/vC\nch1TvKQQkVwReUREponIOueedweaxcm6H3Cub6y4CwBaOUcWVqsFgDFmk6/9ewyV5ab9HewNaOsM\n7EuAgcAxIvI3cLTzGWPMVOB9YBrwDXC1McarK7gbGOC8bfgWa+s6GXhzR12PEon7FttdI5CsBssr\n9BQXRwpBQUJRtIe+O/FLS4v+ht/bZghNVnJyoqf3ts9LSUlkPn/+RDRYQUJCtImgW19mZsjRhleL\nEy1frMlQNIHJP4l1z2NpsIImmNEmS/HamZkZ2RZ/umgarCBBqCI0WNGuKVofuPgFrLJOVv3p3X5I\nldDgL8sVEqNpsFIhvEJik2xvuqAxGotoLyDKQ6wXELHaHq8d0cKDvhPe88JCe8S7D/Ha6QrU0UhF\n/8X67gfVEctx0m6Eq1Hwr6Br4IlLlDTshL2r72gH/AfAGPM1VhPzGFAX+FJEXk+i3f7RYqjYOejm\nWJEi0hxrGjkdOB0rPDirr8kKylPWvjDGvIo1DXwdaAP84ayZioW3n0yMMLfvSgg5enOJ9+17DHvN\n/8GaRnbFCrOB1+0hDRhM+FjZF6v4mBAj3x5JZXkRPDtK1FFR0g/ALowMirvRc74NOLbcDdwFMCa+\nkFKZ+DVYfu1OvDeNiWiIohFL++UVPKKV7RWwymIiGNS+aBosN20iAlYyJoLeCUhlmwh6BcQgQSZZ\nDZZXeCyLBiuojRUlYCV6Tf50OTnhDlLKq8GK1k/lIegaSkqCtbOp0mAlYiYWFJdonalqZ1CZaWmR\nL3ditT1eO6KFxzMRLCqy9ykVGqxYv8mp6L94v1f+OvYQDdY8rCB1DDAaQESysS+Xb42RrwC7bsnL\nOKxgVmKMmRsto2N+9ybwpoh8DbwjIlca6925MKDcMmGM2SAiy7GOE36CUmce+xNbaHRdTyVTf3es\nQHGj+9JeRE5MoK2x+iIo/WKsg4qXReQ2rCnkvUm0NxqrgAYiIo7WD6zgE4tewBsec8xsrPZplidN\ntPHS0RgzO6hQEZmDHQ89gblOWC5WIzon4SvaTdgzfo52Q4K8R+1MxFuDlaiJoFeIDBJqgoTMWCaC\n0UyGvGV7NVHuZMWviQqqI8gNdDwNlo4kcQwAACAASURBVP8NbXFx5FvYIAEr2uTVrc/7dj/VJoL+\nCVw8E0Fv+1NtIpjMGqxdwUTQP252BQHLvSZ3vHm/46kSXHZlE8FoLyT8lNdEMJ6A5WqwUiFg+X+T\nveO2MkwEdwcNlohUE5GuItIVO0dr5nxuBqWmc08Bt4nIqSLSCbu36CbgfzGKng80F5FuIlJXRKoA\nP2BNvD4VkeNFpIWIHCgi94nIIU57/isifUWktYi0xzqWmOsRKOYDR4lIQ2fJRrI8DfQTkVNEpC3W\nQUUjQhqbIBY48SeISD0RKYt/0r+x/XuDc91nY51eRCWBvvCnf1pEjhORls79PA5rjZVKfsE6pbhD\nRFo5FmHxNi+eBZzijIXOwFtYL4de5gOHiEgTCe0z9jBwgIi8KCL/EJF9ROREEXkJSs0BXwUeFpFj\nxO7N9ho+QU1EHhKRH5O+4l0EFbB2URLV5lQWFbEGK5H1V7HSFRVFn5RFE7CircEqrwYrlSaCO1qD\n5V/jEU8b430ZkGoNVrw1WLuqk4tUr8HasiWkQUkV0a5h2zY7lr0vP1SDlbiAVV4NVrw1WBUpYHnH\nbSo1WP6xu5trsLpjXXGPx64lv885/68nzSPAk8AgrFe5RsCxJvYeWB8CX2Hdo68CznaEtT5YrdEr\nWA9272O9+Lm7AW7HWhBNxApj1YGTPOXejPVwt8hpZ7I8htUMvQ6MxJq9fQxE3VHNGLMEuMdp3wrK\n4PzBGDMJq026CSv0XArE21g3Xl/4ScN6HpyG9Sa4gpCvgZRgjJmOdet+OXb91jHAg3Gy3YR1JPcb\n1jX9SOfcy91YB3NzsOPF7bNDsR4Pf8X2w0OEO1y5Bev18GPn/xRguK/sRoTW+O227ExeBJUykOim\nmZWFX4PlFz7imTdWlImg/822663NW3aQBisZL4JB+VximQh638KKxDcR9L7FLYuAlajGJppGLdE1\nWP52R9N8JLMGK9raIvdzNOF0T1yDlcr1V/46vFo4V8CKlTZVdUYrz6+5SvR+VuQarKD2VsQarKDv\nhPfcNRFMxRos/2+yO25FUqNNinaPd2cByxjzC5FravxpDNbM7N4ylLudAM2GI5Rd7xxB+QYQZYmG\nE/851tOdN2wIVqvmfo5oa0CaIqwGqVSLJCLjsW7ko2KMuR/rWt4bdniUtHm+z88Az/iSve+J/wXP\nvYjXFwH1XRsn3lv2fHz33di9yPxh3wSEvQT49z972hM/hPC+XoD1deDlMV+ZI7Hrq/xtHkNs746b\ngfOdI1qaC6PF7U6ogLWLsqtrsJJx056oBqssJoJVq9pJuLds74avZTERDAori4lgkAaratXKNxEU\nCXcbXlYTQX+71USwckwEUyUwBNXhFRK3bYvdD+VpRyJaDFATwVj1FBaWfQ1WtO0TvJuvQ2jcpkrQ\niXaPd2cTwT0Vx+lEb6xmJBO4DLtn1mWV2S5FSZbd4H3PnsmuosGK5kUw3hqyRAWsaF4Es/3WxASb\nCLoTAm/ZXoGkPF4Eg/L58/s1WEVF4ZOTnJzgvoo2efJ6EXT/R/Mi6D0vy4SorCaC/nZHS19WASsz\nM9Q3ZRGwgtpYURqsRK+pogWsLVsqXsDy9rl/orsjTO9ixSVa545oZyKmd16iCQ3R2lcRJoLR4v2/\nv+64TZUDJrcN0cbT7qjB2oMpwWo9RmG9TPcEjnc0Joqyy6E/R7somzfDZZfB8uWwYQM0a2YfarMD\nfbuEmDULrrsObrnFPrSuvjqkofjkk/C027eH6njiCfjmG+jXDyYk4IzT1ebk51uB5Z13wuNdYWTo\nUFv3r7+G4hYuhCOPtOclJbZdzz5r6/dz770wytkpY8YMyMuz/4MErK++inwwuyYt/frBCy/Y84ce\nCuX54ovwdC4bNoR/PuEE224/QSaCInDuueHtgJAGa/r02Pn9+bzn7ia+3je88+bFzxcP70TqxRfD\n85dFwPJra7zpEzWni3fu/Tw+YEXAriBglXcNln+i+cUXqfc66tcmuW18992K02AFlZmIgJWMBivV\n7XSFhLIKWP/f3n2HSVKV7R//3rsLuyw5iwSXhQUEkZxRQRQBJaoIiiwKL4KA8IKvIirDqARF/Sko\nKoICggQJCohIUBZBEZYgGQHJOS9hI/v8/jhVdk1Nd0+niXt/rquvqjpVder09MxuPf2cc6rW51ar\nffm/z7Wu8+yz8PzznQmwyvLf2071sMivUf7yygHWyBMRT0TElhGxaEQsHBGbRMRVg90us1a5i+Aw\ndeGFcNpp8MYbcPDB8MQTqfzaa2HVVWuf9/GPw913V7ZPOaWyvuuuPW+kL7kkXePNN3sGSD//OUyb\nVr99xf8QH34YHsuedz5uXAq48v377JOWW21Vufa++/asa9dd0/KAA9JyscXg1Vcr+zfZJJ173XWV\n62yzDVx0Uc96VlsNPvzhtP6pT6Xgb6+94AtfgHvuqf1eFlootW+HHVJgdeONvY+54orq526ySbpO\nteAQYPnlK+t5gLXeeulntuOO6YYl/2zz9/2pT8Eyy1TOe9/74EMfSp/7jjumG6ztt6/UWbTLLpX1\nrbZKP6e11qr93nNf/nK6Sb///rS90kqpPZB+rjvtlD6D1VdP32J/7nPw5JNw9dWVOj7wgfQznDQJ\ndt45vdc11kjn3nVXWlazyiqp3XPmwLvfXSlfZJHKerEcYP31e25/4AMpcF1jjfQzWm65FMT/5S/p\n57Dttr3fRyu23Tb9DU6ZktY32qj6cZtskva/4x2w8MKw3XZwww3pd3ibbdIXH2+8kX6vNtssBfDN\nOugg+NOf4D/Z5MsbNPKIyxaucf/96Xew+LtW/r1bddWen3k7Dj88/Y5vvXXaXmkl2G03uPjitL3w\nwvDpT6f1nXdOn3v+b0hf3vWuVNeMGfCe97TXztx226V/M7baqrFr7LorXHppmqb/4INr17v77unf\nlTzjnv8+5yZOrKx/9KMwdWr6G8r//dphh/rt/uAH02vdGhM+F/9GFlkk/Z5+8Yvw4x/3/vtr1Yc/\nDNdck/5einbfHV55JS2L1lqr9xeFZmaDIiLm2dcGG2wQw026/Ys48cS03H33iOuuq5T/4he9jy1a\nc81KebVX0W9/m8r22KPnMePH993Ob3yjcvy//hWx9dYRW24Zce+9qezcc3u2sXjtbbap3rb99ot4\n5zsjvvCF6u0+6aTK9oUXVtavuKJ+W48+unLs2mv3rvu006p/Bn/6U8RHPtLz2IMOipg6tbJ9ww3V\nz82vVXTkkRHzzRfx6U9HrLJKKrvkkuqfTaO+9a3K+Tfe2FodRVttler6858bO3677dLx++7b/rXL\nzjmn/s9miSUa+/xHukUXTT+Hv/+9/6+17rrpWu94R/9fy3r72c/Sz3/XXavvnzu3vX9Pih5/vFLX\n00+3X1+nAFNjCNxf+OWXX/P2ywn1YaqYISp2x4h6T4zokEauUWzf229XZsfLv9muN4asVjePOXPS\n+bW6rhTHRRW7CPY18LlaFzvou0vVfPP1rrvcvnrdbMr158/BqjedfLPqZRVaUWvMUy2deh/16u7U\ncSPdQPwc8t8xTzYwOPLPuNa/0Z3sJtof3SnNzEYKB1jDVHEa9HIwU9bphxI3EmAVg745c5oLsGrd\nBLz9dvUZ16pdsxhg9TX+olaA1UhgVm3Gr1ZvPEaPTp9VcQB6uzcunZoeO5f/LjU7psUB1uDr9DTt\n9a4xENey3gbyd90BlplZbW0FWJL8PeUgyW90I3oHM2WdnnGwvzNYtQKsPINV6+at1QxWsb5qAVat\n9owZUz2D1WpQk9dVnOa63RvVTmew8s+t0cHk/XnD3WidvtlPnMEa+fLf9U5PaFLvWuV1MzNrP4P1\noKQTJa3ZkdZYw2plraoFLp0OsBrJiNXKYOX/EdebZarVDFYxwJp//sp6uxmsWgFlf2SwIAVYQz2D\n1egNtDNYQ8dA/BycwRpcfXUR7I9rldfNzKz9AGsd4N/AaZJukrS/pEX6OsnaV+wi2FcGqxgQdeI/\n3sHOYDUSYDWTuWmni2A7Y7DKP8e8rpkzh+4YrGYzWIMZYOU/X9/8JQMR9DiDNbgG8ude/LtyQG1m\n1lNbAVZEvB4Rv4yIzYGvAl3AM5LOlFRnsnBrVx40zZ078BmswR6DVes/8+I1m8nc9NVFsN551TJY\nQ6mLYH9lsBoNsPL35C6Cg88ZLOuk4mfs50+ZmfXU9hgsSTtJugT4EfADYCJwGVDjyUDWqmJgU2sW\nwZEwBqsTswgOhwxWOZDsjy6C/TWLYKN15e9xMDJY/Xnt4cgZLOukgRjnZWY2XLU9BgvYGTgxItaL\niB9GxHMRcSFQ49Gq9Un6X0n3SLpb0rmSxklaQtLVkh7Mlotnx24h6U5JUyVNysoWk3SVpBH3nVq1\nTFWtWQSL3QKH0hisdjJYeWankQCrmcxNrQCrkfP6YwxWJ7sIdjqD1WwXwZzHYA2egQw0ncEaXA56\nzMyGhnaDkL0jYt+I+HteIGkLgIj4UrOVSVoe+BKwYUS8BxgN7AEcCVwbEZOAa7NtgCOAHYDDgAOy\nsm8Ax0VEhycnH3zFoKSvWQSLZcWAaKD+Ay5ev1NjsGbMqJ/BKl5zOGSwyvKb0pGUwco5wBp8A5FV\ncgbLbGSStIuk6yU9L2m6pMck/V7Sdi3W9/nsS/NZkl5t4rzFJB0jaf1Wrlun3ii85kp6UdIfJK3V\nYn0TsnZOrLLvUUlntN1oG9LaDbBOqlJ2cpt1jgEWkDQGGA88TcqSnZntPxPYJVufnR0zHpgtaRVg\nxYi4rs02DJgnn0wBhQTTp6eyO++ENdeE117reWwxKPnBD9Ky1hisYtkyy6T6G8k8bbJJY+3O23zL\nLWl5xRXw6quV8ksuqRxbbRbBRx+F1VfvWecaa8BnPgOXXlr9mjfeCE89VfuG+aabKuudyGAtumha\nFmckBHjHOyr1luseNarxay+2WM/t/Kb0qacq63nbiu1qRqczWAsvnJaNBi39mdHI27DMMtX3r7JK\n/117OFl88bQciC9XnngiLT0mZ3DkfxNLLTW47bCRRdKXgEtIvZb2BT4KfCfb/cEW6nsncCrw9+z8\nDzVx+mKk8f4dDbAyZwCbAe8HvglsDlwpabF6J9UwgdTOXgEWsCvw7daaaMNFS7cekjYj/eItLenw\nwq5FSFmnlkTEU5K+DzwOTAeuioirJC0bEc9khz0LLJutHw+clR37WeD7pAxWvbbvD+wPsNJKK7Xa\n1I65//7K+nPPwYQJ0NUF990H110HO+9c2V8t67P00n1nsHKvv169DUcdBccdl9ZvvrlS3shYq49/\nPC0/+lE4//xK+UILwQEHpECwWgbr1FN7dukDeOCB9ModfTR861s9j3n8cdhhB9hvP9htt7S+0UZp\n3xJLpOUvfwkrrQRf/nIKKvMb7Vre977KejGQOf54uO022HPPnseffz5ceWUKtPbZB954A846K+1b\nccV0Q3/ssTBrVvo5FE2Zkn7WN98MJ57Yc1/xW//ll0/L/H1svXX991BLsc5agUgzfvc7OPdcWG21\nxo4/8MD02X/sY+1fu2y11eCww9LvXjWnnZY+q+WW6/y1h5NrrklfWpQD+v6Q//22+vtq7dlmGzj8\ncDj00NrHnHNO54Ltk092MD2P+DLw+4jYt1D2F+CXLQ7HmES6VzwzIm7oRAM75KmIyL+qvUHSNOBs\nYDvgvE5dJCJu71RdNoRFRNMv4ANkMwZmy/x1ODCplTqzehcn/dEuDcwH/B7YC3i1dNwrVc59P/D/\ngNWA80l/FMvWu94GG2wQg+3KKyNSKBPx8MOpbOed0/Yll/Q89tVXK8fmr4MOijjllMr24YenY195\npfexL70U8e539y6fOzdi5ZUr27nf/CZt775773Py1/LLV9bPO6+yvs02Effem9bPPTdipZUiJk+O\nmDMnlY0aVbvO/PWPf1QvL1pnnfTzioh4//sjttqqtc9hiSVS3d3dletcd13j5+fn3H57a9ePiPjV\nryr1XHRR6/UUXXhhqu8d7+hMfWb1LLBA+38HZu0ApkaL9yB+1bw3ewP4WQPHLQ38gvT4nreAJ4Df\nAssXjjkDiNLrjML+/YF/ATOAF4HTgSWyfROqnBvAPqTeU88B85XatDDwOnBCH20P4Dulsndn5V8p\nlR8M/AN4GXgVuAn4aGH/VjXauVW2/9HSe94n278pcA4wjdR76yRgXOnaE0mTyL0FPE+aXG7/7PwJ\ng/274lfl1VIGKyKmAFMknRERj7VSRw0fAh6JiBcAJF1MypQ9J2m5iHhG0nKkX6r/kiRS5moP0h/Z\nV0h/iF8Cvt7B9nVctXFVjRxb1GgGq1b9UvUuaHkd9cZL1XrGVrH7XDGDlX/b2Uh3xUbGcYweXWnn\n7Nmw4IJ9n1NPM2OwqmmnO1qnx0t1sh6zRuT/Bszr3TLNRpibgcmS/gP8ISL+XeO4JYBZpPux54Dl\nSGPlb5S0RkTMIHWNu5UUPBwE3Abk93wnZMefBPwfsDypK+J7JG1O+lJ/N+BiUg+mfEDBw1kbDyZ1\nv7ug0KZPAwuSAr9mTSjUX7QyKVB8mJSJ2xG4XNL2EXFl9p4OAn5Kug+9JTvv3j6u9xvgXNJ73Aw4\nBniFlMBA0vzA1cBY4EDSz20/4BPliiQdk523ckQ82uc7tY5rtYvgjyLiMOAnknp1JIuInVpsz+PA\nppLGk7r9bQNMBd4EJgMnZMs/lM7bG7giIl7Ozp2bvca32I4BUy3AyrtvlLtx9BVgFYONagFWtbLc\nuHG1j68XDBWDquJ6sTtgcQyWlIKsRgKsRm7SxozpGWC1OqFBHvi1G2C1M6FC8XqdukHN63E3HhsI\n+b8BnljEbEQ5ALgQ+B7wPUkvkW70fx0RV+UHRcQDwCH5tqTRwI2ke7vtgUsi4mFJ92WH3BtZlzxJ\nE0hBVXdEfKtQx7+BG4AdI+L3kvLudf+JSnc+gBckTQG+QM8A6wuk4SaPNPA+lY3/HwOsnb3fm6gE\ncvn7PKJwwijS5GurkYKeKyNimqQ8mLqv1M56fhsRXdn6NZI2AfYkC7BIma6JwCYRcXN2/T8BdwDl\nMS9zgbdJmS0bBK3exv0mW36/Uw0BiIh/SrqQFP3PAW4nDYRcCLhA0r7AY8Du+TlZQLUPsG1W9ENS\n+nQW6ZuLIa3W1OvFZbVjc1KlfNy46pNc5MpjnoqqZbCqTfle65hye2tlsCAtOxlg5W2YM6f1G7s8\nmC0GmiMpwPL0zTYQHGCZjTwR8W9J6wFbkO61NiVlivaQ9M2IyCe8QNKBpIBsFVLmKFea1qqXD5Mm\nXjsnC3Jy/yR18Xs/adhIPacA50maFBEPStoIWI+UEWrEUdkr9yjwwYjocfckaQOgG9iI1C0y/x/2\nAdrzx9L2XfScAGRT4PE8uII0aELSRcB7iydmQWppFLsNpFa7CN6aLad0tjmQRe9dpeKZpGxWtePf\nArYubP+N9M3DsFBrOvVqagVYeR1jx7aewSrPlFc8vl67ivuK67UyWPm+esFesY5GjulEBisPQJp5\nDlY1nQqwOt1F0AGWDQQHWGYjU0S8DVyfvfKZAK8EuiT9NCJekXQIqXvfD0nZqFdIQdNNQJV+Mj3k\n0zA9VGP/kg008xLSRGhfIE3McQBpLNNlDZwL8CvgZ6S2bgMcTQrYPhSR/nWTtCIpY3UvKVv3OCkh\n8G3SmK12vFzanknqDpjrNUQm81yb17V+0GoXwbuok3aMiPfW2mc9dWIMVl4+dmzfGaxaN9qtZrCK\ngVLxmvUyWI0GLq10EWw181MtwBroMVidnlK9WI8DLBsIHoNlNm+IiKclnQb8mDQr4M2kcfDXlrrQ\nrdxglS9ly21JgVmt/fXaNDtr0xclfS9rzw8ios7Xyz08ExFTs/UbsvH9XaQxTr/LyrcDFgV2j4gn\n8xOz3lT97RlgzSrly1Yps0HW6n+D/TDp8rypWhfBRo4tajSD1WwXwUYmuZg5s3r7+spgNaLRDNaM\nGZXrjJQxWJ3OYHkMlg0EZ7DMRp58krEqu9bIls9my/GkGfCKPtfgZa4mjRtaKSKurnNcftexQI39\nvyB18/sdKfvzywavX813gf8BjpZ0YZbFygOp/95RSVqN1H3yycK5fbWzFTcBn5O0cWEMloCPd/Aa\n1iGtdhHs5MyB87R6GaxGxmDlDxqW0k1NXxmscp25YmCRB0ONZLCKAVYxqOtrDFYjmh2D1YkugsWu\nkh6DZdac/N8KB1hmI8rdkq4hjW9/hPTM0x1IXfAuiIjHs+OuBL4q6ShSRuuDVJnhrpps8ovvkiZP\nWx2YQpqqfUXS+KzTIuKvpO5wL5HGf91JmgTtkYh4KavnKUmXksaIXRYRT7T6piNiuqTjgJ+QxnFd\nBFxD6hJ4lqQfkLrtdZO6Cha/yvx3dtznJb1MCrgeiIgaTyRtyBnAV4GLJX2dyiyC2ePk+e/dmqSj\nSV0cV/E9++Bo6XttSTdky9clTSsvO9vEka1egFXOQlULmubMSa88Y9TqGKxigFWuo5EJKcrtG8gM\nVrG97XYRbDeLNFSnaXeAZQPBXQTNRqSvkzIx3wKuIj1rdDPgSOCzheO+Rcog/S9pPNR7gY80epGI\nOIr0TKf3k2YC/AMpoHgFeDA7Zi6VoOIa0hToO5aqyrvztTI1e9kvSZOrfUOSIuIe4DPAu0izC36F\n9HO4vvReXiJNG78OKVi8BdignYZExCxSF8o7gZ8DZ5KeNfbT7JDXCoePIk0h7//9B0mrGawts+XC\nnW3OvKdeF8Fyl75qAVaeHcozRp2YRXD27L7Hc1UzEjJYxa50zmCZtcYZLLORIyJ+Trqh7+u46aSp\nyg8s7VLpuGvKZYV9v6EyU3Wt6/ye+jMKfowUFP2pjyYX66zVnllUnoeVl11Az6ngAc6rcu4vqBLk\nRUS5vjNI2anycceQnoVVLHuYlD38L0mXk6atf63euTaw2h6ZIWl9SV+SdEg2jeeI95WvwJKNzGdD\n+kZXqtzgHnAAbFOYD7FaBuu229LyT4V/Gr71LVhrrbRevHl5+2343vdg1qx0rYsvho99DB6p8sSH\nzTeH++7rXQ6w/PKV9bx9J5+cln/9a/33mPvSlyrrxQDryCN7BliNBmzVZjZcuzQ/5Esvwb/+lX6+\nL77YWL3VTJyYlgstVP/6fWknMGq3e2K9OidN6kx9ZvWsumpaOoNlZgNN0qaSDgA+Bfwwy3aNKJIO\nl7S/pK0l7STpN8BHgRMHu23WU1v/DWZ9PD9Jeqo2wBmSfld8JsJIdGITv8blYOIXpe8yqk3TvuGG\n8MQTsEBhaGRXYeL6+eevZKPy+tdfH9ZZB+65B/74R/hcA8NKd94ZDskeCXj00XDssWn95uwJC4sv\nDs9XmxC0AaNH9/4WOw8aJkyAF16of/5XvwpLLFHZPvRQePll+PrXex53zz09t1sJiiAFpn/9K2yx\nBZx0UmrrCis0fv7VV8Nzz7U3mcSmm1bWO3WDutZa8OMfp6DbrL9NmQK33upJVcxsUPwDeIPUde6U\nQW5Lf5lJ6oK5EqkL4APAfhFx+qC2ynpp9zbuM8A6ETEDQNIJpCdKj+gAqxnNTL1e7pJXK9Mzdiy8\n+WZanzUrLXfaKX17fPrp9c8t2nnnSrZq/vlh6tQU3FVrW7OqBQh5gLXNNnDLLfXP32mnntvbbZde\nZauvDjcVnpG+cqMTwpYsuSR8IhuKe8gh9Y+t5kMf6vuYvrQ7g2E1o0b1zCya9ad3vjO9zMwGWq1u\nfiNJRPyUypgrG8La/Z7xaXo+PG4s8FSbdY4ozQRY+bF9TY9ezNLkAdbo0T2DmnoTWtRSvqlvJ8Cq\nFiDkZY2Mz6iV/erruJHSNWmkvA8zMzOzeU2rDxo+mfSg4deAeyRdnW1/mDQ1p2WaebZVoxmsYoCV\nT5NenLWvketC74kPyt16WgnSctUChLz+VgKsWl2OytfpVOZnsI2U92FmZmY2r2n1e/L8Sde3kqbi\nzF3XVmtGoFYyWM0EWLUyWJ0IsPorg9Xo7IBFtQIsZ7DMzMzMbChpdZr2MzvdkJGqPwKs4lidTgZY\n5aCo0xksdxFs3Eh5H2ZmZp2mbl0DFOZkZi4wIbpaf7CwWSe1NQZL0iRJF0q6V9J/8lenGjfU5Q/V\nrKevQKcYxDQzyUWuGGC120WwbCiNwXIXQTMzM1O3VgS2LhWPAvYahOaYVdXuJBe/Bn4GzCH9sp8F\nnN1uo4aLvrJTjRwzmF0Ey8ptHQ4ZrHKQOFIyPyPlfZiZmXXYZ6l+/zp5oBtiVku7AdYCEXEtoIh4\nLHty9EfbqVDSYllW7H5J90naTNISkq6W9GC2XDw7dgtJd0qaKmlS4fyrJPX7k1gaCWL6u4tgPsnF\nmDHtZ7DK5wyHMViNXHc4Ginvw8zMrMNqBVKrq1ubDGhLzGpoNwiZmQUyD0o6WNKuwEJt1vlj4MqI\nWANYB7gPOBK4NiImAddm2wBHADsAhwEHZGXfAI4biCd4NxKA1Dom715YbRbBTkzT3kqAVS2D1eqN\nfrsZrPJ1Gw2wRkrmZ6S8DzMzs05RtzYFVisU/al0SL9msdStY9StyF7X9ee1bHhrN8A6FBgPfAnY\ngJS2bfmXW9KiwPuB0wEiYlZEvArsTHoyN9lyl2x9dnb98cBsSasAK0bEda22oRn1gpi3304BS60M\nVjlbBTB9Orz0Us9A6/XX4a23ep5bzGC9/npalsdgzZ7d2Hsot7m4PnMmjBtX+/hcMeDLtTsGq68J\nOHLlcXAjJfMzUt6HmZlZB5XvMb8C3FPY3kPdqnJXYjaw2gqwIuKWiHgjIp6MiM9FxG4RcVMbVa4M\nvAD8WtLtkk6TtCCwbEQ8kx3zLLBstn48adzX14CfAMeSMlj95sknK+v1AqwxY2DzzWsHWNW6AX7m\nM7DUUvDII2n7qqtgkUVgwQV7njt9emX9meynUs5g/d//1X8fAMsv33N7scV6tj+id+aoWiZp4YV7\nl40f37vstdfSsvx+igFjLg/sZt3wUQAAIABJREFUJkzouV32nvf03B7umZ+JE9NyuL8PMzOzTlK3\nxgKfKhT9K7ribuA3hbLFgR0HtGFmVbT6oOEfRcRhki4jPWC4h4jYqY32rA8cEhH/lPRjKt0B87pD\nUmTrdwCbZm16P/BMWtX5pOzWERHxXKnt+wP7A6y00kpNN/DhhyvrfXXD++c/ax9Tb5zVq6/Wr3eJ\nJXqXlTNYZUcdBccdl9YPOww23hi22qrnMaus0vu8LbaAK69M63/8I6y4Itx3H0ydCieeWKl71qwU\n+K2xRgoqd8p+Ay67DHbM/qnLs2077AAXXJCCp4cego9/HI44AlZeGZ54ArbfvhK0/fnPcM898O53\nV39fxxyTAsH8vQ33zM/VV8PjjzvAMjMzK9mJFEDl8knVfkv6wj3v+zIZuGgA22XWS6u3cfm3Bd/v\nVEMyTwJPRsQ/s+0LSQHWc5KWi4hnJC0HPF88SZJImas9gJNJKeMJpK6LXy8eGxGnAqcCbLjhhg1M\ntN5TMYPTziQX5fFWzShmmnLlDFbZxhvD4ovDK6/A5z8Pa6/d2LWWWqqyvsMOabn22rDoopUAa7nl\nYM89q5+fZ6Cg0u1v7Fj45CfT+kYbpeXJJ1c/f7XV0quWMWPg2GMrAdZwD0wmTqxksczMzOy/it0D\n55ICK6IrnlC3pgBbZfu2V7eWia54HrNB0uqDhm/NllM62ZiIeFbSE5JWj4gHSA+Ruzd7TQZOyJZ/\nKJ26N3BFRLwsaTzpD28uaWxWRxUzJM1O014cL9TXTIGttKte9mb06EpbGhkDlavVNa8YaPZ13Vxf\nz93qhOGewTIzM7Oe1K1lgY8Uiv4aXfF0Yfs3VAKsMcCngR8NTOvMemu1i+BdVOkaSErPRkS8t402\nHQKcI2l+4D/A50hjxS6QtC/wGLB7oS3jgX2AbbOiHwJXALNIf2Ad1WwGq9o07MXyVgKsaoHKmDH1\nszfFAKuZLE8jAVa9+or7BiLAGu4ZLDMzM+vlM/S8Zy0/c/VC4KdAftcyGQdYNohavR39WEdbUZCN\nq9qwyq5tahz/FoUnekfE34AGO8A1r50ugsXugH1Nxd6sRjJY+bU6kcEqXqvRDNZAcAbLzMxsxCl2\nD5xOaYxVdMU0detSKl/Ar6turR1dcddANdCsqKVZBLOHCj8WEY9lRZOy9eeBlzvWuiGo2Yf5VnvO\nVXG9kwFWvezNqFGtdRGsVWejXQQHOqPkDJaZmdnIoW6tCxR7Rl0WXfF6lUPLWa1+fSaWWT1tTdMu\n6X9IadlfZEUrAL9vt1FDWbGbW7MZrFoBVrNZl2pd7foKsFrtIlirbY1msBxgmZmZWRvKgVI5kMpd\nCbxY2P6MuuV+LTYo2n3Q8EHAFsA0gIh4EFim3UYNZdUmqqhnIAOsas+oKu5vpYtguxmsgZrkIq/b\nXQTNzMxGBnUrn7Ai9yIpkOolumI2cH6h6B30nBjDbMC0+33/zIiYpezuVtIYqk9+MWLUCpiK+uoW\nWFyfMycFMbNmtdeu0aN7BzDFoKrVWQQ72UWwvwOsCGewzMzMRpAd6PnF/QVZIFXL2aQv/3OTSROf\n1aRuLQQsVe+YguKDcsapWxMaPO+N6IoX+z7MRop2b0enSDoKWEDSh4EvApe136yhq1bAVFSczKI/\nM1jlAKocwMw/f3r4b74/z741E2C120VwoDJKzmCZmZmNOI12DwQguuImdeshYNWsaCd1a9Hoitfq\nnPYJ4NcttG0T4JEGjz2TNOO1zSPa7SJ4JPACcBfwBdK3BN9ot1FDWV8ZrMceg9cLQy+LwVYxSzVz\nZjr28stbD7Dmn79SNmZM7y6CxUCq0WnVa12rbKhN057X7QyWmZnZ8KduLUHPWasfjq74RwOnFoOw\nccCnOtowswa0FWBFxNyI+GVEfDIiPhERvwQ271DbhqR6Adb998OECbDyypWyBx+srM+cWVk/7LB0\n7MyZzQceW2yRlhtvXCkbPRoWXLDnccUAbPRo2HnnynotK6zQc/td70rLHXboWd5oF8GxYyvr665b\n+7h27bZbWi68cP9dw8zMzAbMnkDhToZzGjzPswnaoGv1QcOjSc8aWB64MiLulvQx4ChgAWC9zjVx\naKnXRfCxbNL6N95Iy0mTemaRihmsa6+trH/zm3D44Y234dOfhs02g4svhilTUlkeYD3wAKy+eior\nB1jnnw8vvVS/7n//G8aPr2x/6lOw6aawVKl3cqNdBOebL7XplVdgk036fm+t+tWvoKsLlhnRU6yY\nmZnNM8qB0dHq1tEt1LO5ujUpuuLBajujK84AzmikInXrGKAr25wSXbFVC+2xeUCrGazTgf2AJYGT\nJJ0NfB/4XkSM2OAK6mewypkoqecxtSayKGeNGtm38srVg5zVVoMtt0zrxeBu9OiUTXrnO2tfC2CB\nBSrrq66aMlUrr9w7M9RoBitvU38GV5CCyzXX7N9rmJmZWf9Tt94NbNTBKvfuYF1mfWp1xMqGwHsj\nYq6kccCzwCoR0Ud+ZPhrJsB6++3GAqy+HhBcS/G8YpCTlzeaZaol6swH2UyAZWZmZtaETnfr20vd\nOjq66t3ZmHVOqwHWrIiYCxARMyT9Z14IrqB+F8FygDVnTu1JLopanYWvVgCVr7cbYNV7zle7dZuZ\nmZmVqVujgL0KRW+Shp7Um569mmOoBGoTgA8A17XXOrPGtBpgrSHpzmxdwCrZtoCIiPd2pHVDUH9k\nsOppJ4NV3F+vnlrqBVjOYJmZmVk/+BBpjH/uj7XGT9Wjbp1Fz0zYZBxg2QBpNcB6d0dbMYw0E2DN\nmdPzmOIsgo2qFxhVC6qK5e1mmYrvtV67PDW6mZmZdUi5e+D5LdYzBXgOWDbb/oS6dXB0xZstt8ys\nQS1NchERj9V7dbqRQ0kjDxrONRpg1ZumvV5g1N9jsOoFWO4iaGZmZp2kbi0C7FooeoP0jNWmRVe8\nDVxUKFoI2K311pk1rt0HDc9zBqqLYB4kNdpFsFpGqT8DrKL+fICwmZmZzTM+SXrcT+6y6IoZbdR3\nQWnbswnagBiSAZak0ZJul3R5tr2EpKslPZgtF8/Kt5B0p6SpkiZlZYtJukpSv7y3egFWWTmD1UyA\nlU+x3ugkF8V5cQaii2Dxep6Tx8zMzDqgU90Dc38Dnilsf1DdqvNwHLPOaCkIkXRttvxuZ5vzX4cC\n9xW2jwSujYhJwLXZNsARwA7AYcABWdk3gOPyWQ47rRgwlQOQTmaw8ocEN5rBKgY51TJYnZ7kot7P\nwczMzKwZ6tZEYMtC0TTgynbqjK6YC1xYKBoFfLadOs0a0WqWZzlJmwM7SVpP0vrFVzsNkrQC8FHg\ntELxzsCZ2fqZwC7Z+mxgfPaaLWkVYMWIuK6Raz39NDxYmpfmxhvhySd7H/vAA/D5z8Nll1XKygHI\n7bf33H7rLZhdmFT0+usbaVWSB1iNTpVeDHI6lcF65ZXa+4rXcwbLzMzM2rQ3aTbq3KXRFS1MD9ZL\nOQvW6WdsmfXS6vxvRwPfBFYAfljaF8AH22jTj4CvAAsXypaNiDzF+yyVGWGOB84CppO+kfg+KYNV\nk6T9gf3T1gastlrPAGHLLWG99eC223qet8YavesqBz+HH977mDvuqKyfcUb1Nq21Vu+yF15Iy7vv\nhiWXhJf6eMrYUktV1t/5zp5L6PyDhpdeurK+zDLN121mZmaWi644hvTsqk7XeyM9A7d26jqGfmij\njTytziJ4YURsD3wvIrYuvVoOriR9DHg+Im6tc+0gBXFExB0RsWlEbA1MJPWzlaTzJZ0tadkq558a\nERtGxIa1rlHORNXS1xgsgGnTau9bZx2YPh0mTkzjtV58ETas0qrnn0/HTZ/e85oTJ6bl/PPDYotV\nyo8/Hh59FM45p1LWTIA1o4HhpIstlo6bMaPntc3MzMzM5mVtPcEoIr4taSfg/VnRdRFxeRtVbkHq\ndrgDMA5YRNLZwHOSlouIZyQtBzxfPEmSSJmrPYCTSRmwCcCXgK83/n6aa2wjAVa9Z1+ttBKMG5fW\nR49OmapqgdCoUZXjyuUACy3Uu/xd7+pZ1kyA1ehzrcaObbxOMzMzM7N5QVsz7Uk6njQhxb3Z61BJ\nx7VaX0R8LSJWiIgJpGDpLxGxF3AplT6zk4E/lE7dG7giIl4mjceam73GN3P9ZidraCTAmjGjdnCT\nzxRYrc58DFY9eb2NTGDRzCQXrUyIYWZmZmZmbWawSJNRrJvP2CfpTOB24Kh2G1ZyAnCBpH2Bx4Dd\n8x2SxgP7ANtmRT8kPZRuFvDpZi7SSMDU7PF5gFXt2GoBVh7kjR3b96yDeSDUSEDUTAbLz7UyMzMz\nM2tNuwEWwGLAy9n6oh2oD4BsJsDrsvWXgG1qHPcWsHVh+2/A2q1cc86c5o5vN4NVrSteMcB6/fX6\ndeeBVSPBUyuTXJiZmZmZWXPaDbCOB26X9FfSDC3vp/KMqmGnkxmsceMqk0DUGtM0VLsImpmZmZlZ\na9q67Y6Ic4FNgYuBi4DNIqLdp24Pmk5msPJJKaplsPLJIeoFWI1MNJF35WskeHK3PzMzs3mXpH0k\nReE1S9LDko6TVGUqrYbqPEZSlMpC0jEt1HWGpCpPIu11XP4+JhTKHpV0Rh/HHCOpnccIVWvLo6Wf\n6auSrpa0Zd9nV61vsaydvZ4pK+k6Sde13WgbEG13EcyeT3VpB9oy6AYqwJp//jS7YL0ugtWCr1qc\nnTIzM7MGfRJ4kvS80V2Br2Xrh3So/s2y+vvLH7NrPNPkMV3AscBfOtyeP5OejTUKmJRd5wpJ742I\nR5usa7Hs/CeB0hNZ+WJ7zbSB1IkxWCNGp7sIQgqkFl645758fFVfk1z0JT/WAZaZmZk16I6IeChb\nv1rSJODzkg7NJy1rR0Tc1G4dfdT/AvBCu8d00IuF9/x3SQ8BN5Bmwz6hUxeJiHs7VZf1P9+aFwyF\nLoJ50NRIF8H8WE9gYWZmZi26jfRYm6WKhZJWlnSOpBckzZR0h6Rd+6qs3EVQ0qqSfiPpEUnTJf1H\n0s8kLV7j/M0l3SJpRtYF75DS/l7d/6rU0eOYQjfGrxe68x0j6YjsvS1dOl9ZO8/r6/1WkWeeVirV\nuYekv2Q/zzck3S5pcmH/BOCRbPOXhXbuk+3v0UVQ0lbZ/p0k/UTSi9nrbEmLla69tKRzJU2T9Iqk\nX2fnhaStWniP1oe2AyxJW0r6XLa+tKSV22/W4LjzzuaOv+KKyvqRpak98gcMR7QWYDUyZsoZLDMz\nM2vTBOA14KW8QNKKwD+BdYD/BXYiBQ4XSdqpyfrfCTwNHAFsB3yLNDP0FVWOXQQ4HzgT2IU0m/RJ\neZDRhs2y5RnZ+mbAacCvSc9N/Vzp+G2BlYGft3CtCdny4VL5KsDvgc+S3ttlwGmSDsj2PwPslq0f\nX2jnH/u43o+BID2aqBv4eFZWdDGwPak76B7AbODkckWFwHSrPq5pfWiri6CkLmBDYHXSL+l8wNnA\nFu03beDttlv18ldeqV4+dWpa3nsvfPe7Pfc98khlvTzd+quvVi8HOPpo2Gcf6O6GXXaBQ+r0iF5+\n+bT85jdrH3PUUXByrz+hvi25JHz+882fZ2ZmZkPaaEljqIzB+jhwWEQU++UcQ5od+gPZo3IA/pwF\nXt+iibH3EXE9cH2+LelG4CHgb5LWi4jbC4cvDOwfEXnm6EpJywPdks6MiB4TajTRhpuUvrl+qtyF\nUdL5wP6STizU/wXg/uyRQX1R9vMcBawK/Ax4EPhVqQ3HFk4YRQoelwMOBH4eETMl5T+L/zTR1fL6\niMjvFq+StDqwn6R9IiIkbQtsCXwqIi7IjvuzpEspZdlIwebbpIDN2tBu7mNX0rcabwJExNOkP45h\nYfHFYdKkynaedSqbMSMti1On77tvJTP11lvVzzvllLR8++2Uycrl6+v3miMGJk9O+3feOS1POql2\n+xdaKB2z1161jzn2WJg2rfb+Wl58Eb73vebPMzMzsyHtflIG42XgdOAXEfGT0jHbkTJMr0kak79I\nEzqsI2mRRi8maX5JR0m6X9L07Np/y3avXjr8bdKs1EXnkQKB5Ru9ZpNOIWWXtsnauxywI3Bqg+d/\nmvSeZgL3AO8BdoyIHl/PS5qUddN7Kjt+NrAfvX8GzSpnuO4CxgLLZtubkn6ul5SOu7BcUUScFRFj\nImJKm22a57UbYM3Kov0AkLRg+00aOFKlm109s2en5fjxlbKxYytjtmp156s1Nio/vpmZAs3MzMw6\nYFdgI2AH4Brgi5L2Lh2zDLA3lUAgf52Y7V+yiesdT8qInQ18FNiYSle48vTwr0TE7FLZc9myXwKs\niLgZuBXIu+rtB8whdVNsxJ9IP8/NgcOABYCLVZj6XtJCwNWkLpdHAu/LzvkVKRhqx8ul7TxdkF9/\nOer/XK0ftDuL4AWSfgEsJul/gM+T+rQOG40EWHkgteCCle59Y8dWAq9aAVY+UUU5oZ2PmWpkIgsz\nMzOzDro7n0VQ0l+AO4ETJV0UEW9mx7xEyjJ9t0YdTzdxvT2AsyLiO3lBFnBUs7ik+UrBQJ6JeaqJ\nazbrFOAXWXfE/YDfRUQ5cKnl5YjIBo3wD0mvkYbNHEIlIN0MeBfwvoi4IT8xywr2t2eo/3O1ftDu\ng4a/T0oxXkRKcR4dEXU6tQ0tUmNTs+eB1IKF/FwxwKo1yYQzWGZmZjZURcRM4P9IGavic5auBN4L\n3BMRU6u8agyqqGo8KftVVJ5UIjeaNCasaA/gcdoPsGaRskvVnAu8DvyW1B2xlcktcmeSJgT5P0l5\n36d8+d+fQzaL4s6lc/Ofa612tuIm0s+1PAPkJzt4DStpd5KL70bEV0lpz3LZsNBMF8FygJWPrWo2\ng5VvO8AyMzOzwRQRl0q6BThC0k8iYjpwNHAzcL2knwCPAouTxhdNjIhmpsG6Epgs6S7S5Ba7kbrT\nVfM68D1JS5EmitgT+BCwT6sTXBTcC3xU0pXAK8DT2dwBRMR0SWeQZky8KyL+3upFsokljgYuJ01g\n8QPg78A04KfZBHELAt8AXgQWLZz+HCl7uIekO0lzHDxSmGiklfZclU0scmr2c30I+ASpuyKkiS0A\nyLqK/grYxuOw2tPuGKwPVynbvs06B0yjY7DyLoLjCj2F8+BozpzaddTKYDnAMjMzsyHkG6QuYwcA\nRMTjpFmi/wUcR/oi/WfAB4C/NFn3IaRZB48lTcG+MClwqmYaKWM1GfgDsDVwaEQ0Oh6qnoNJActl\nwC3A/qX9v8uWv2j3QhHxR+AfwJclLZA9+HhXUibpQtK4tNNI49KK580ldVFcnDQ+7hbShBvt2pUU\n6H4XuIA0Piufg/q1wnGjsjY28LAgq0etfCEg6UBSKnkiPef5Xxi4MSLqzGs3dCy99IYxevRUnn02\nbRczUcUfyy23wMYbwwc+AFOyeP6EE9Kzr956C+65BzbaqHf9v/sdfPKTaXKMN9+s1L/EEvDyy/Dn\nP8O22/bPezMzM5vXSLo1IjYc7HbY8CPpWOBQ4J0R0cL8y8NLlpn8HLBEk10+rQGtdhH8LWnWlONJ\ns6HkXm9iUOCga3YWweI07Xn2afbsSoarLM9glWPY/JrOYJmZmZkNHknrkeYROBQ4dSQGV9mDmhcl\nTSM/P2ka/gOBEx1c9Y+WughGxGsR8WhE7BkRjwHTSVO1LySp/NCyhklaUdJfJd0r6R5Jh2blS0i6\nWtKD2XLxrHwLSXdKmippUla2mKSrsoe49amZSS6KAVEjAVatWQIdYJmZmZkNCZeQZv27Buga5Lb0\nlzdJ2apLgN8DHwGOyl7WD9qd5GJH4IfAO4HnSVNQ3ges1WKVc4AjIuI2SQsDt0q6GtgHuDYiTpB0\nJClr9lXgCNJzHCaQ+g0fQepHfFzWj7WP9jc3BquYwcqDpzlzagdptSa5yK/padrNzMzMBk9ETBjs\nNvS3iPgdlTFmNgDaneTiO6QnRP87IlYmPQX7plYri4hnIuK2bP11UrC2PGkay3yA45nALtn6bNLU\nl+OB2ZJWAVaMiOsaud7cuem5VnvsAc8803PfjjvC37M5ZB57LC3HFh4Fl2efXnsNjj++ev21JrnI\nAytnsMzMzMzMRpZ2A6zZ2dSRoySNioi/kmadaZukCcB6wD+BZSMiD4GepfJwtOOBs4CvAT8hzVDz\njT7q3T/rUjh12rTU9+/882H50vPBL78cTj89rc/MeqceeGBabrBB5dlXzz6bJqvIHXRQWv7615VA\nasaMtDzllDTpxQknwLrrwsSJff0UzMzMzMxsOGm3k9qr2dO4rwfOkfQ8qZ9nW7I6LwIOi4hpKkzv\nlz1fILL1O0gZNCS9n/S0akk6n5TdOiIinivWHRGnAqcCLLjghjFrVl7eux1518C8C+Caa1aOu/76\ntJxdeHTeTTfBJpvAT36StvMZBydNSssDD6wEaV/4QoM/DDMzMzP7L3XrGlKvqdxcYEJ0xROD1CSz\nHtrNYO0MvEV6MNuVpCnb25qvX9J8pODqnIi4OCt+TtJy2f7lSOO9iueIlLn6NmmA4leAXwJfaqct\neWCVL4tjpsrZqfL+4natBxGbmZmZWePUrRVJz8cqGgUMi0cE2byhrQArIt6MiLkRMSd7CNxPSFM/\ntiQLlE4H7ouIHxZ2XUp66BxUHj5XtDdwRTZF/HjSNxlzs/U67a/fnjyDlS+LY6ry8VNvvVUpK4+5\nyrdHtRvGmpmZmRnAZ6l+/zq5SpnZoGjp1l/SIpK+JuknkrZVcjDwH2D3NtqzBekP54OS7sheOwAn\nAB+W9CDwoWw7b8t40iyDP82KfghcAfwI+HkbbWkog1UvwHIGy8zMzKyjagVSq6tbmwxoS8xqaHUM\n1m+AV4B/APuR5tEXsEs2LqolEXFDVk8121QrjIi3KKSKI+JvwNqNXa/+/kYyWNOnV8rKmar8eAdY\nZmZmZu1RtzYFVisU/QnYvrA9mTQ5Wn9d/xgqz8qaEl2xVX9dy4a3VjuvTYyIfSLiF8CewJrAR9oJ\nroaiehmsagFWOZBygGVmZmbWMeXs1VeAewrbe6hb82M2yFoNsP47d15EvA08GREz6hw/JFXLYBUf\nJlzOYBUzVHmwVS/AynkMlpmZmVnr1K2xwKcKRf+Krrib1KsqtzhtTrZm1gmt3vqvI2la9nodeG++\nLmlaJxs40IoBVjGDNXp0zwCq2iQX5UAqD+CcwTIzMzNry06kACp3drb8LVD8ytyTXdigaynAiojR\nEbFI9lo4IsYU1hfpdCP7SzMZrPIEFo10EXSAZWZmZtYRxcBpLimwInv21ZTCvu3VrWUGsmFmZe68\nVlIrg1XrGVf1Aqy5c6uXm5mZmVlj1K1lgY8Uiv4aXfF0YbvYTXAM8OkBaZhZDQ6wSpZcsrI+Zw6c\neCJ8//s9uwJCJYP1s59VymoFUuXsl5mZmZk17DP0nPn67NL+C4HiXADuJmiDap4OsCZNqqxvumla\nnnwyfOlLaf3tt+GMM6qfu+iiPbe33homTuxZts46cPDBcN55HWmumZmZ2byoGDBNBy4q7oyumAZc\nWihaV91q6JE9Zv2h1edgjQjjxlUfh7X11vDgg/DCC5VxWGUSfOxjcPnlafvii6s/B+vkkzvbZjMz\nM7N5hbq1LvDeQtFl0RWvVzn0bGD3wvZk4Mv92TazWubpDFY9o0enDNbs2bWPybsJltfNzMzMrCPK\n3f3K3QNzVwIvFrY/o255kIYNCgdYNYwZk7JXDrDMzMzMBp66VZ6w4kVSINVLdMVs4PxC0TvoOTGG\n2YCZp7sI1pNnsGp1EYSeMwuWZxk0MzMzs7bsABSnXL8gC6RqORs4qLA9Gbii3gXUrYWApRpsz2KF\n9XHq1oQGz3sjuuLFvg+zkcJhQQ3NZLBGjeo9/srMzMzM2tJo90AAoituUrceAlbNinZStxaNrnit\nzmmfAH7dQts2AR5p8NgzgX1auIYNUw4LamhmDJa7B5qZmZl1jrq1BPCxQtHD0RX/aODUYhA2DvhU\nRxtm1gAHWDU0ksHKuwW6e6CZmZlZR+0JzF/YPqfB88pZLj8TywacQ4MaRo9OAVa9MVjOYJmZmZn1\ni3JgdLS6dXQL9Wyubk2Krniw2s7oijOAMxqpSN06BujKNqdEV2zVQntsHjBsMliStpP0gKSHJB2Z\nlX1X0p2Szioct5ekw9q9XjNjsBxgmZmZmXWGuvVuYKMOVrl3B+sy69OwCLAkjQZ+CmwPrAnsKWkd\nYP2IeC8wS9LakhYAPpcd25bRo2HWrPrHOMAyMzMz67hOd+vbS91Sh+s0q2m4dBHcGHgoIv4DIOk8\nYCdgPkkCxgOzSU/sPjmi7hSeDZlvPnjllb6PgRSMmZmZmVl71K1RwF6FojeB9Uj3ec04hkqgNgH4\nAHBde60za8xwCbCWB54obD9Jmh7zCuB24FrgNWCTiPh2vYok7Q/sD7DSSivVPG6ffeCtt1LwtP76\nUO3QPfeE556DzTdv6r2YmZmZWXUfIt335f5Ya/xUPerWWfTMhE3GAZYNkOESYFUVEd8Dvgcg6TTg\naEn7AdsCd0bEd6qccypwKsCGG24Ytepef3047bT6119zTTj11Jabb2ZmZmY9lbsHnt9iPVOA54Bl\ns+1PqFsHR1e82XLLzBo0LMZgAU8BKxa2V8jKAJC0HiDgAeCTEbE7sIqkSQPaSjMzMzNribq1CLBr\noegNUm+lpkVXvA1cVChaCNit9daZNW64BFi3AJMkrSxpfmAP4NLC/m8D3wTmA/IRUXNJY7PMzMzM\nbOj7JLBAYfuy6IoZbdR3QWnbswnagBgWAVZEzAEOBv4M3AdcEBH3AEjaBZgaEU9HxKvAHZLuAsZF\nxL8GrdFmZmZm1oxOdQ/M/Q14prD9QXVrhTbrNOvTsAiwACLiiohYLSJWiYhjC+W/j4hjCttfjoi1\nI+Izg9JQMzMzM2uKujUR2LJQNA24sp06oyvmAhcWikYBn22nTrNGDOtJLtp16623vijpscFuhzVs\nKeDFwW6ENc2f2/Djz2ySBzMFAAAF9klEQVT48WeWvGuwG2At25s0nj53aXTFzA7Uez5wSGF7MnB8\nB+o1q0kRNSfSMxtSJE2NiA0Hux3WHH9uw48/s+HHn5mZ2dAxbLoImpmZmZmZDXUOsMzMzMzMzDrE\nAZYNJ36s8/Dkz2348Wc2/PgzMzMbIjwGy8zMzMzMrEOcwTIzMzMzM+sQB1hmZmZmZmYd4gDLBpWk\nX0l6XtLdhbIlJF0t6cFsuXhh39ckPSTpAUkfKZRvIOmubN9JklS+lnWGpBUl/VXSvZLukXRoVu7P\nbYiSNE7SzZL+lX1m3Vm5P7MhTtJoSbdLujzb9mdmZjbEOcCywXYGsF2p7Ejg2oiYBFybbSNpTWAP\nYK3snFMkjc7O+RnwP8Ck7FWu0zpnDnBERKwJbAoclH02/tyGrpnAByNiHWBdYDtJm+LPbDg4FLiv\nsO3PzMxsiHOAZYMqIq4HXi4V7wycma2fCexSKD8vImZGxCPAQ8DGkpYDFomImyLN2nJW4RzrsIh4\nJiJuy9ZfJ938LY8/tyErkjeyzfmyV+DPbEiTtALwUeC0QrE/MzOzIc4Blg1Fy0bEM9n6s8Cy2fry\nwBOF457MypbP1svl1s8kTQDWA/6JP7chLetqdgfwPHB1RPgzG/p+BHwFmFso82dmZjbEOcCyIS37\nxtXPEhiCJC0EXAQcFhHTivv8uQ09EfF2RKwLrEDKbLyntN+f2RAi6WPA8xFxa61j/JmZmQ1NDrBs\nKHou69ZCtnw+K38KWLFw3ApZ2VPZernc+omk+UjB1TkRcXFW7M9tGIiIV4G/ksbh+DMburYAdpL0\nKHAe8EFJZ+PPzMxsyHOAZUPRpcDkbH0y8IdC+R6SxkpamTRY++asu8w0SZtms2PtXTjHOiz7GZ8O\n3BcRPyzs8uc2RElaWtJi2foCwIeB+/FnNmRFxNciYoWImECavOIvEbEX/szMzIa8MYPdAJu3SToX\n2ApYStKTQBdwAnCBpH2Bx4DdASLiHkkXAPeSZrI7KCLezqr6ImlGwgWAP2Uv6x9bAJ8F7srG9AAc\nhT+3oWw54MxsVrlRwAURcbmkf+DPbLjx35mZ2RCn1IXbzMzMzMzM2uUugmZmZmZmZh3iAMvMzMzM\nzKxDHGCZmZmZmZl1iAMsMzMzMzOzDnGAZWZmZmZm1iEOsMys30laUtId2etZSU8VtucvHftnSQv3\nUd+T+XOdqpSfX9jeQ9JpHXoP35F0WCfqMjMzs5HLz8Eys34XES8B6wJIOgZ4IyK+XzwmewiqIuIj\nbV5uE0mrR8QDbdbTMYX3Nnew22JmZmb9yxksMxs0klaVdK+kc4B7gOWK2SlJl0m6VdI9kvZrsNof\nkB58XL5WjwyUpPslrZC14W5Jv5H0b0lnSfqIpL9LelDShoVq1pN0U1b++UJdR0q6WdKdko6u9d6a\n/gGZmZnZsOMMlpkNtjWAvSNiKkBK9vzX5Ih4WdJ4YKqkiyLilT7qOxc4WNLKTbRhdWB34H7gNmBG\nRGwu6ePAkcAnsuPWBjYHFgFuk/RHYANgJWATQMAVkjYHni+/NzMzMxv5nMEys8H2cJ0A5H8l/Qv4\nB7ACsEoD9c0hZbGObKIND0XEvVkXvnuBa7Pyu4AJheN+HxEzIuJ54HpgI2BbYHvgdlJwtiqwWnZ8\nvfdmZmZmI5AzWGY22N6sVijpQ8D7gU0jYrqkG4BxDdZ5BvAV4N+Fsjn0/FKpWNfMwvrcwvZcev47\nGaXrBClr9Z2IOL3U/lWp8d7MzMxs5HIGy8yGqkWBl7Pgai1StqghETELOAk4tFD8KKk7H5I2BlZs\noU27SBoraWngfcBU4M/AvpIWzOpeQdJSLdRtZmZmI4ADLDMbqv4IjJd0L/Ad4J9Nnv9LoDgF/O+A\nZSXdDewP/KeFNt0NTAH+DnRFxHMRcQVwIXCTpLuAC4CFWqjbzMzMRgBFlHu8mJmZmZmZWSucwTIz\nMzMzM+sQB1hmZmZmZmYd4gDLzMzMzMysQxxgmZmZmZmZdYgDLDMzMzMzsw5xgGVmZmZmZtYhDrDM\nzMzMzMw65P8DZcFf3XHMSTYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VUX2wL8nL70AgdBbKAICSehNOop0QUXBpS2riK4F\nhdWI+COWXV0bWLAXUJGyKG3RRVqEiIIgHWlC6D2kkz6/P+a+l/eSlwIkBGS+n08+uffO3Jlzy7sz\nZ+bMOaKUwmAwGAwGg8FgMBgMV45HWQtgMBgMBoPBYDAYDH8WjIJlMBgMBoPBYDAYDCWEUbAMBoPB\nYDAYDAaDoYQwCpbBYDAYDAaDwWAwlBBGwTIYDAaDwWAwGAyGEsIoWAaDwWAwGAwGg8FQQhgF6wZG\nRP4QkY7FyOcrIkpEapWCDH1E5IDT/ikR6WxtPy8i75Z0nVeKiIwXkZVXcP5qEbm3JGUyFB8RaS4i\n20UkWUTGXYX6fhGREVehHh/rmmqUdl0Gw7WGac8MZYWIzBWRKWUtx5Vi2pCSxShYZYiIPCIim0Qk\nXURmuknvJSJ7RCRVRNaISN0Cyhlt/SiSReSiiOQ47ccXVL9SqoFS6ucSuI5fRCTNqu+siMwXkcpX\nWq5SaqpS6pErLScvTg1siiXzMRH5t4hIKdT1ioh84nxMKdVTKTWvhOvJe03JInKqJOv4E/EMsEwp\nFaiU+ihvYp73OcH67d1cmgJZSrsSkTsu4RwXxU0plW5d04nSkdJgKBjTnhVOabVndkTEJiLHRWRL\nadVxtbEU1FTrWZwUkU9ExK+s5boWMW3ItYdRsMqWE8BLwGd5E0QkBPgWeA6oCGwC3HbKlVKzrB9F\nIDAQOGLfV0pVcFO2Zwleg537rfobA1WAV0qhjpKmsSXzrcBfgVKfZbgKNHZ69tXcZSil5389URfY\nVUQe+/tcCdgIfF7KMo0G4oBRpVyPwVBamPasbLkVCASai0hYaVRQRm1Hb+tZtAE6AZPKQAag7NvO\nIuo3bcg1hlGwyhCl1LdKqUXAeTfJdwK7lFL/UUqlAVFAhIg0uZy6rJGgSSKyC0h0OmY3X7hFRDaI\nSLyInBCRaZfzMVFKxQFLgBZOdfuJyAxrBOqYiLwmIl7FkNkx+yMiTUQkS0T+apVxVkT+4ZQ3UES+\ntuTfKSLPiJOpRhEy7wF+ySNzRRH5wrpHR0Vkqoi4/b2IyPuWTIkislFEOljHBwNPAvYR2Y3W8V9E\nZISI+FvHGzqVVdMatQ229oeINmeLF5F1ItK0ONeUR74+InJARJ4TkdPA+0WVLSLtRGSbiCSJyFci\n8q1YJhCSx0RS8pjcWM97unXfTonIOyLik0eWydYzPC4if3EqK0BE3rbOTRCRH0XEU0RWicgDea5r\nr4j0LeCa7xKR3da1rRSRm6zj64GOwCfWva9T2L1TSmWhO4LO96bQ34qI9BeR/Vb6m0U8HkSkEdAe\neBAYICIV86QPtZ5TklVuLxF5A2jrdB1vuHkOFa3fxFkROSQiT4noWVrrGa6y7nW8aPOqW53qfEBE\nYq06D4rI0KKuw3BjY9qzImUu7fZsNLAAWGFt28saLSIxeWR5RkTmO11PUd9rR9shIpVF5HtL5jgR\nWSwi1Z3KvklE1lvfjv+JyIfiZMUhIl2cns1vInJLUfcOQCl1HFhJ/mdRkOwbRKS/td3L+jb2svb7\ni8gvTs8i2rqWsyIyS0SCnOpw9665tI+Ad0FyW9/a1dZ9SBTdLnV1Si+wr+F07gwRuQBEFlDHNdeG\nGIyCdS3TDNhm31FKpQAHrOOXy73AbehR+bxkAo9YaV3QI4f3X2oFok0pBqNltfM8EA6EAa2B7sBT\nl1o2YEOPYjUE+gH/FJH6VtpLQGX07ER/YOQlyNwM3el2lnk2kADUB9qhr6mgMn9GX1slYDHwHxHx\nsjobbwL2Edl2zicppVLRjfdwp8PDgOVKqQuiFbX30LNrlYAvgUWX01EAQgEvoDbwWGFlizbBWAx8\niB5t/h4YdAl1vQnUQt+TxkAjXBuGuoAANdDv3AciEmilvQ00QX/4KwJTAAXMwmmGUUTaA+WAH/JW\nLnr0dibwMHr0+UdgsYh4KqU6Ab9ijVArpY4UdiFWY30fWgG3U+BvxepozAcmot/Hs+h3tjBGAzFK\nqQXAEZzeB6sh/gh4HCgP9AKOKqUm5rmOiW7K/QD9zOuhf/cPWddipyt6JqES8C5g7/wFA68BvZRS\nQUBnYGcR12AwFIZpz/JTYu2ZiJSz5Jxt/f1FRGxW8kKglbgOJt0HfG1tF/W9DsWp7UD3Gz8A6qC/\nLQDTLDkE/f1bg773r+D63Q4FFgHPkvt9X2R9cwrFkr83rs+iMNl/RD8bgG7AQfQ3z77/o1M5LwDV\nnMp5Nk/1jnftMtvHruj3335PFlnPDIrua3QFtgIhwBsFlH9NtSEGC6WU+SvjP/THdGaeY58Cr+Q5\n9hMwpoiybgVi3Rw/Bdzn5ljnAsqJBOZY277oTm6tAvL+AqSgR3cU+kdbwyn9ONDTaf8OYI+13Qc4\n4E4m9IfoE2u7iVV2iFPe7cBga/sE0M0p7RHncvPIa7+eBEtuhe6Qe1npda3jXk7n/BX43toeD6ws\noGwBUtGmei7XkOd+jbC2BwC7ndI2A/dY258Dz+Y59zDQvohrirf+XnW6x3mvp8Cy0Y3YoTxpvwFT\n3F2/8/sBeAIZQE2n9B7A706yJAAeTumJ6FFJL3THqLGb6wuw8tWx9t8F3izgGfwT+MJp34ZWdDrk\nvf9FvM/x1rXEAV0Kye/8WxkHROep+0xB9aE7K0eA8db+88AGp/RZwMuFyDnCad/5OfgA2UB9p/TH\ngf85PcOdTmkVrXMrAMHWtd8B+BZ03ebP/Ln7w7RnV7U9s9Lvt+TyQH8rU4C+TukLgKes7TDgAnrW\npTjfa5e2w03dHYCT1nYj4CLgk6du+3VPBT7Oc/6PwL0FlH0KSLL+FPA/IMhKK0r2/sBGazvaukfR\n1v4GoF8BdQ4Dfi7oXaOI9tFNeePd5N8ODKV4fY19RfxGrrk2pDB5b6Q/M4N17ZKMHqF3pjyQJCJ1\nJHfRb/IllHm0oAQRaWpN+58WkUTg/9AjJsXlQaVUOaAVeiSohlWuWPuHnfIeBmpeQtl2spVS55z2\nU4FAazq9Gq7XV+C1OtEMCELbLN8C+FvH66I/NGetqe944C2gqrtCRJtb7BWRBHTD5Uvx791yoKqI\nRIhIY+AmYKmTHJPtMlhyVKbwe9dMKVXB+nMeVT2llMp02i+s7BrAsTzlHqZ41EArSrucyl2Enkmy\nc1YpleO0n4peO1Ad3Wj+kbdQpUe8v0WPzHqhRxS/LESGw07nZqM7H5fyzj2o9HoPX+BuYKlY5kxF\n/FZq4PTuOdVdED3Q7+5/rP3ZQDvJNZ2qjZv7UQyqkdvw2sn7u3N2gpJq/Q9USl0A/oIerT4lIkvE\nyYzVYLgMTHuWn5Jsz0YDc5VSOda3cjFOZoLo2Sr7rMZ9wAKlVAbF+167tB0iEiQin4nIEeve/oDr\n9++sUiq9ANnrAiPytDttrPMKoq/SM+m9gebojry9rsJkj0GboYagZ6VmAY2t/QgrHRGpISL/EW2u\nnoiehcn7rjhfw+W0j+7y16B4fY2inv0114ZcRl1/SoyCde2yC/0RAPTaFKAB2o7dedHvpbzMqpC0\nj9GjMA2shuUF9GzMJaGU2gK8Crxj7Sv0j7CuU7Y6FN7pvNQ6c4DT6FEXO7WLe65S6kv0iNIz1uGj\n6A5BsJOyUk4p1Srv+SJyG/AoMAQ9+l8RPYJnv3eF3XOshmsBuvG7D1iolLroJMf/OclQQSnlr5T6\ntjjXlreqPPuFlX0S13sJ+pnZSSFXGQX9IbZzEshCv0f2cssrpdyZ8eTFcW4B6bPQHf8+wGnrXXPH\nCZzeN8tUpiaX8c5Z78dq9P2y25cX9ls5idO7Z3WWCut8jUZ/h3eJ9vq4Fv2s7J2joxR8Pwp7t04B\nObg+t2L/7pRSy5RSvdCdgCNY6/YMhsvEtGfFr/OS2jMRaYA24/2b6HU8p9CWEXeISHkr23dAPdHe\nUIeRax5YnO913vscacnW1rq3vXH9/lW2TKvdyX4UPZvl3O4EKKWmFXJLtBBKrUCvh/13cWRXSiWg\nTZufBDZbbe0ma3+nUirRKuc1dJvW3Lqe+8n/rjjfg6LaR3e4y3+C4vU1Cu1DcI22IQajYJUp1noX\nX7QZkU30AkP7+pqFaG9Ad1l5pgLblHbIUBoEAQlKqWRrTdIDRZ1QCJ8ADUXkdmt/DjBVRCqJSBW0\nffNXVyZuPuYDz4pIectW+6FLPP9l4O8iUkkpdQg9df6qNVrnIXrhbmc35wWhzdrOok0uXkCPSNk5\njW7YCmvcv0Y3esPJbfhA200/KiJtRBMoIoNExN9tKZdGYWWvBXxFL2L1FJHh6DUHdrYCLUWkmZX/\n/+wJViP2GfCWiIRYZde2FNFCsc79wjq3qmi3w50ldy1BNPp+/9PKVxDzgCEi0tWa7YpEL7zfVKw7\nkwfRNuw3ket5sLDfyhKgrYgMsOr+B7kjrnnLDUQv/h+DNpG0/01Cj/J6oH9LD1rX4mHdy0ZWEafR\ndvv5sEaQFwL/Eu04pAHavKPI351oRyv9rWebju4A5BRxmuEGx7RnJcqltGej0Ot7mpD7DWmM/ubd\nA6C0Y5GF6DWuXljrjy7zex2Enq2It2aDnOM/7QP2AlNExMv6dvZxSp8FDBXtZMEm2klFLxFx6/HW\nDW+gFcebiyn7j2jzSvt6q+g8+/brSQYSrXv9ZBEyFNU+uqO2U/4RaKXzh0vsa+TjWm1DDBqjYJUt\nU9CzHZHohaAXrWMopc4Cd6E7kxfQix+HlaIsTwD3izbRmEEBLnSLgzUD8y7aJS/oDvhudAd1K9r2\n/tUrkjY/U9D36TB60el8dOewWCilNpE7ugVa2akA7EGvwZmHexPBpegP7h/oRbTn0MqWnbno2Z44\n0R7s3LEW3Skpj/aSZJfpJ7SZ1ofoNTH70LNcRY1oFUlhZVvPbwjaScQFtC37Uqdzd6Cf3zr0/YnO\nU/wE9OjcJvR6q/+hF3IXh8fQ93ILuoPwItZoojV6/CXatHN2Ide2HfibdW1n0Yt671DaI2BxsXtW\nSkY3UBOVUmustAJ/K0qpk+jf6XSr7qoUrNjdjX635iilTtn/0MpvOfQ6j3VoW/f30PdyFbmjodOA\nUSJyQUTc/Z4etP4fBlZb11HgfXPChv4mnUI/g7boTonBUBimPSs5itWeWQN3o4AZzt8Q6zv0EfnN\nBG8F5uUx0b7U7/XraBO682gzu+/sCdY3+l6rngvAZLTpWrqVfhD9HjyPbisPozvtxeqLKh2faS65\nSl1Rsv+IVqDWFrAP+nl2ts5fCHxThAyFto8FsBZoif7ePwvcac2wQfH7Gu64VtsQAyD692Aw/LkQ\nkSeAPkqp24vMbCgSEZmLNqt4qYzlGId2AmLcwRoMhhuC67k9E5HFwC9KqZfLWpayQETGA3ebNuvG\nw8xgGf4UWNPeHawp8GboUbGFZS2XoeQQvW7jIfTonMFgMPwpuZ7bMxFpLyKhluwD0SaCi8taLoPh\nalOqCpboIHV7RQeqcxsgzcrXVnTQvbudjj0uOsDeLhGZkCf/oyKyx0p71Tr2FxHZ6vSXIyIt8tZl\n+NPig7bHTkKbCczFxGT40yAig9Duzg+gnYIYDAbDn5XruT2rhTYdTEI7kBirlNpdtiIZDFefUjMR\ntBam70MHJzuGjiUxPO8Pzcq3AkgDPlNKLRCR5ugPSjt0nIP/oX38HxCRHmgb1v5KqXQRqaKUOpOn\nzDBgkVKqIM8pBoPBYDAYDAaDwVDilOYMVjt0YLyDSsdbmIsOyJeXR9GLCp2VpJvRgdJSrYXpP6I9\npYA2EXrF8nBCXuXKYrhVn8FgMBgMBoPBYDBcNTyLznLZ1MQ1QNoxoL1zBhGpifbG0gPtqcrOTuCf\nIlIJ7YmoH7meuBoBXUTkn+hZr0lKqV/z1H0v7pU5+yL5cQABAQGtmzRp4i6bwWAwGK4hNm/efE4p\nVbms5SgJQkJCVGhoaFmLYTAYDIYiuNy2pzQVrOIwHXhaKZUjTmGClFK/i8i/0RHCU9CuULOtZE90\nXJkOaKVsvojUt9yDIiLtgVSl1E53FSqlPsJaJN+mTRu1adNlhcYxGAwGw1VERA6XtQwlRWhoKKbt\nMRgMhmufy217SlPBOo5rBO9a5I8A3QaYaylXIUA/EclSSi1SSn0KfAogIv9Cz4Bh/f/WUqg2ikiO\nda499tAwdCBAg8FgMBgMBoPBYLiqlOYarF+Bm0Sknoh4oxWfJc4ZlFL1lFKhSqlQtGewh5VSiwCs\nCOlYkbXvRAfJA1iENinEikbtjQ5YhxW1+h7M+iuDwWAwXAUsl9prRGS35dn28bKWyWAwGAxlS6nN\nYCmlskTkEWA5YEN7CNxlBV1DKfVBEUV8Y63BygT+rpSKt45/BnwmIjvRHgZH280Dga7AUStauMFg\nMBgMpU0WMFEp9ZuIBAGbRWSFcU1tMBgMNy6lugZLKfUd8F2eY24VK6XUmDz7XQrIlwGMKCAtGr02\n66rx888/89VXXzF69GjatWt3Nas2GG4oMjMzOXbsGGlpaWUtiqEU8fX1pVatWnh5eZW1KMVCKXUS\nOGltJ4nI72gnT0bBMhgM1x3J6VnsO51EqzrBV63OixnZLNxynK6NQqgV7F9k/pwcxdnkdKqW872s\nuny9PHD2/VAalLWTi+sapRR9+/YlISGB9957j5ycnFJ/YAbDjcqxY8cICgoiNDTU/M7+pCilOH/+\nPMeOHaNevXplLc4lIyKhQEtgg5s0hwfbOnXqXFW5DAaDwU5cSgafrDvIY71uwtfLli99yIyf2H8m\nmQP/7IunLf9KopwcxcItx7m9eTUCfa5cjcjIyqH/O+s4eDYFgF+e6UW18rmKU1Z2DscuXCQ0JMBx\nbPG24zwxbxtjOoXydJ8m+HnbOJuUTlZODhsPxVHOz4uO9Svlu76ZPx0iaulumtcsx4z7WlG3UgDu\niE/NYMfxBLrcdPmOa42CdQUopUhISHDsJyQkUKFChTKUyGD485KWlmaUqz85IkKlSpU4e/Zs0Zmv\nMUQkEB3TcYJSKjFvel4PtldZPIPBcJ2Sk6MY9dlGfDw9+GR0m0tqA3/YdYrq5f0Iq1WeM4lpTFu5\nnzkbjwBQK9if+9q7DvZk5yj2n0kGICU9m/L++RWs93/8g9eW72Xif7axemI36lcOtPJnkZGVQ3CA\nN1FLdnHgTDIPdW9AwyqBVC3nS3xqBkfjLhJWqzxKKbYfSyC8Vnlmrj/kUK4Adh5PoEqQD61fWsGF\n1EzH8W8e6kjruhUBiD2XCsDM9bHMXB9Lv7BqfLfjlIucNSv48fUD7V2UqJnrY606Eun2WjSHXu5H\n4sUsYs+nEFE7t//+7KKdLNt+kh6NjYJVJnh4eNCgQQP++OMPAE6dOmUULIOhFDHK1Z+f6/EZi4gX\nWrmarZT6tqzlMRgMfx6W7zpFzIFzAKRkZF/SrNG4LzcDEPtKfyYv3MnK30870tbtP5tPwdoUG+fY\nTkrPpLy/q6l2Wma2Q0kBuO/jDUT/oztKQbOpywFoGxrMr7EXAIg5cA4vm/BYz5v4JOYQCRczWfFE\nV/67/SRvrdrPl39rx+8nkwCY+de2jPn8V1Iyspi98YiLcgXw9YajDgUrO8d1jCqvctWkWhB7TiXx\nf4t3MWusXr7zWcwhYs+ncmfLmuw+mcieU0lsPRrPQ1/9xqnENKqW8+GDEa0p5+fFsu0nAViz9/IH\n+4yCdYVERkaSmZlJ9erVqV69elmLYzAYDIariGiN8FPgd6XUm2Utj8FguD44GpdKpUBv/L0L74p/\nEnPIsZ2UlnlZZnkZWTkO5epfQ8JYtuMEpxPzr2f+6Y/zju2tR+OpWcEPEeFkwkUqBnjzfvQfnE1K\n54MRrTlwJonXf9jHmj1nOJGQW5ZduWpRuwJbj8aTma14Y8U+R/pt09Y6tkd+uhGAHo0r06RaOQBS\nM7I5m5QOwLapvQF4bM4WVuw+RXJ6M/y9bLy75gAASx/pzL7TSRw6p2eg9pxMZFy3+vh42nhi3lYW\nbjnO0m0n6NSgEi/8Vy+LHdSiBvd3qU+/t9cx5L31AFQt58PpxHTHPkD/8OrYRHjnku+2xihYV8j9\n999f1iIYDIZS5vz58/Tq1QvQM9U2m43KlbXpwMaNG/H29nbJHxcXx/z58xk/fnyh5WZlZRESEkJ8\nfHy+4z4+PoSFhQFgs9mYMWMGHToU34fPlClTCAkJYcKECW7TmzdvTosWLfjqq68KLefgwYNs3LiR\nYcOGAbBhwwbmzp3LtGnTii3Ln5xbgJHADhHZah2bbDl5MhgMhnws2nKcCfO2MiiiBm8Pb1lgPqUU\nmw9fcOwnpWVRvXzR5Sul+ONssmN/y5HcMu5rX4efD55nxwXd7jy7cAdxKRm895dWnE9Od+R75Ost\nPOu3k4SLrjNJLWpXoE/zaiSlVeL1H/bx+Nyt3Nq0iiN9QHh1ziSm89Go1vwae4EHvig6qPoLdzTH\n30evl0pJzyIpLZMgH0/K++kZtP7h1flx31maT13OP25vDECdiv6E1SpPWK3cG3Jb06qO7T7Nq7Fw\ny3EenbPFceyNoRF0b6xlfaRHQ95dc4CKAd7EPN2TZ77dwYLNOuRuryZViOzThNoV/XnnviLFd4tR\nsAwGg6EIKlWqxNatuu8cFRVFYGAgkyZNKjB/XFwcH3zwQZEKVmEEBQU56ly2bBnPPvssq1atuuzy\nnNmxYweenp6sWbOGixcv4ufnV2DegwcPMnfuXIeC1b59e9q3b18icvwZUErFANefXaPBYCgT3lm1\n3zGj8/NBPWPUe9qP3FQ1iBn3tXLJu+WoVoLK+3mRcDGTpDRXZceOUorlu07TvXFlvG0eTJi3lSXb\nTjjSV+05A8DwdrUBCAn05kxSOqkZWczeoNdkHT6fSlxKBv7eNlIzsgHyKVcAzWromaYgX638ZGTn\n8N2OU9QK9iPm6Z4uebs1yl3DtPelPqSkZ7PjeAIXM7Lo3rgKX284wm1Nq1K7oj9Z2TkALNh8jAr+\nXgT55qooQ1rWZMHmY2w8FMdry/fSvl5F5jxQ+IDj7c2qMWtsO55fsouD5/Qar8EtazrSJ93emEmW\nsgbw1O2N+fmP89zfpR5/veXKnSyVZqDhPz3Hjh2jefPmtGzZksGDB5e1OAaDoQx49dVXad68Oc2b\nN+edd7QxQWRkJHv37qVFixZERkaSmJhIz549adWqFeHh4fz3v/+9pDoSExMJDg52bBdU1gsvvECj\nRo3o3Lkz+/fvL7C8OXPmMGrUKHr27MnSpUsdx/ft20fPnj2JiIigVatWxMbGEhkZyZo1a2jRogVv\nv/02K1eudHzvzp07x6BBgwgPD6dTp07s3LkT0LNnf/vb3+jWrRv169dnxowZACQlJdG3b18iIiJo\n3rw5CxYsuKT7YDAYDGVBWmY2oZHL+PLn2Ms6/5N1BwmNXMb0lftczOVqVNCDW/tOJzvW/Tiz+4T2\nlzOpdyMAjsZddFv++z/+wfivNvNe9B/8/evfWLLtBC3rVGBYW61QfbRWh4f9S/u6ADSvUZ7UjGwe\n/Tp3due7nSc5m5RO85rlOfRyP269uYpLHfVDAuhyUwgPdW/gODal/82O7TZ187t19/b04Iux7Vj4\ncCd8PG1UDPCmW6PK9GleHV8vG2M716N2Re2W3dPmQQV/L/acSuKXg3EuHgC9bB58PKqNY/+h7g3w\n8Ch6XKtbo8qsmtiNlU925dDL/bAVck6Vcr78FNmzRJQrMDNYV0Rqaiq7du0CIDk5uYjcBoOhJImK\niuL5558HYOrUqURFRbmkT5w4kTff1EtiXn/9dSZOnOiSPm7cOD7++GMAPvzwQ8aNG3fJMmzYsIHZ\ns2fz66+/kpWVRbt27ejevTuvvPIKBw4ccMxAZWZmsmjRIsqVK8eZM2e45ZZbGDBgQKFlJyUl0aJF\nC9LS0jh16hRr1qwBwM/Pz21ZGzdu5JtvvmHbtm1kZGTQokULOnbs6Lbs+fPn8+OPP9KkSRM+/vhj\n7rnnHgCGDx9OVFQUAwcOJC0tjZycHF555RXeffddFi1aBMDKlSsd5Tz33HO0b9+eJUuW8MMPPzBm\nzBg2bdLmIPv27WPVqlXEx8dz8803M378eL777jtCQ0P5/vvvAVy8sBoMBkNZEbVkFzPXxxL7Sn8A\n0rOyWbzlBEPb1EJE2GrNJH35y2FGdgwtVpkbD8Vxz4c/uxybvlIPfA2KqEG2UqzYfZo1e88UWMap\nhDRsHsLwdnV4dfleNhyKY3DLmvx04ByNqwUR7O/N0m0n+Pa34wC8vSp3YG3uuA54enhwIiGNtfvO\n0uWmEJpW17NPfZpXY+J/tjlmtgBe/d9eAEZ2qIuI5Isx9dfO9RjZoa7Lsfu71GdgRA0Wbz3OiDxp\ndro2Kr4nvkUP38Iz3+7Ay9PDoRzaCXJae1aQe3V3iAgNqwQVO39JYRSsKyAzM3fq9MCBA2zcuNEE\nGzYYbiBiYmK46667HCZ2gwcPZt26dfTu3dsln1KKyMhIYmJi8PDw4OjRo5w7d65Qr6POJoIxMTGM\nGjWKHTt2FFjW2rVrHbL4+fkxcOBAt+X+8ssv1KxZk5o1a1KlShUeeOABEhISyMnJ4dy5c47zfH2L\nDuAYExPDsmXLAOjduzdjxowhJUWbYgwYMABvb2+qVKlCxYoVOXv2LOHh4URGRhIZGcnAgQO55ZZb\niqzDYDAYShu7Z7yU9CwCfDx5Z9UB3l1zgEBfT/qFVSfWMjGrXYwguHbyKlfOvHp3OC/8dzcZWTn8\n9fNfC8yXnJ5FoI8nnjYP2oZW5JeD55m1PpapS3bRP6w66VnZrPzdVUGrW8mfF+5ojo+nngH6Ymw7\nMrJy8PQQx6xPgI8nL97RjOcW78pX56AWNQAc65/uaFGDe9vUpkP9Sm5lrFrOl3FdG7hNu1RCQwKY\nM8696Z/zjFVopeI/h7LCKFhXQIMGDWjYsCEHDmhvJseOHTMKlsFgyMcXX3xBQkICv/32G56entSq\nVYu0tPyTRPZSAAAgAElEQVQenAqic+fOnDhxgri4OL799tsrKmvOnDns3LmT0NBQQJscfvvttyVu\n5uzj4+PYttlsZGVlcfPNN7Np0ya+++47IiMj6du3L5MnTy7Reg0Gg+FS8bIJmdmKQ+dSaF6zPKcs\nD3vJaVkAHI/XpnkZ2TkopRARdhxL4L3oA3h4CPe1q8MtDUMc5eU4uRGfdm8Ezy3aRdSgZnyz+Rj3\ntq2Nr5eNyoE+5CUpLZNNhy+wYvdp/jUkjKS0LIfXwFsahrB6zxmmLtFK0bId+U0KAVZP7J7PFM7b\nM/+KIOcgupun3EpqRjax51NoG6pdobcJ1SZ/5f286OR0bWXJlP4307ha0HURzsOswSqA2NhYQkND\nady4MX369HGbx9fXl4iICMd+dnb21RLPYLjhiYqKQimFUiqfeSDAG2+84UjPax4I8NFHHznSL8c8\nEKBLly4sXLiQixcvkpyczOLFi+nSpQtBQUEkJSU58iUkJFClShU8PT1ZsWIFx48fv6R6du3ahYeH\nB8HBwQWW1bVrVxYuXEhaWhqJiYlu13nl5OSwYMECdu/eTWxsLLGxsXz77bfMmTOH4OBgKleu7FiT\nlZaWRmpqar5ryXv9s2fPBrTpYM2aNQkIKNh04/jx4wQGBjJy5EgmTpzIb7/9dkn3wWAwGC6VjKwc\nx1qmgqhprYWye97LUVpBsvfjz6dkALBu/zk+/ykWgNGfb+T7nadYtv0k//7fHpfyDljl3NKwEkNa\n1mLn87dzd+tazBnXweFoYUB4dUe9dsKifuCvn//K1xuOEJ+aQUp6roLV28lDnjMVnGJV1azgV+g6\nI2dCQwJ4uHsDejSuTKVAH2pX9HdRuno2qcr/JnRxcQRR1tzfpb6LjNcyZgarAHbv3s3hw4cBvZag\nICZMmMDQoUOx2WyX5ELZYDBc/7Rr147hw4fTtm1bAB566CGHa/XWrVsTFhZG//79efLJJxk4cCBh\nYWG0a9eOm266qciy7Wuw7HzxxReICCNHjnRbVrt27RgyZAjh4eFUrVrV7Wz6mjVrqFevHlWr5jbU\nPXr0YMSIEZw+fZrZs2fz4IMP8uyzz+Lt7c0333xDy5Ytyc7OJiIigr/97W80bdrUce4LL7zA2LFj\nCQ8PJzAwkM8//7zQa9q2bRuRkZF4eHjg7e3NBx98UOR9MBgMhithyqIdzN90jI3P9qJKkHvT5yrl\nfIk9n8rBs9oU0D4DZVdW4lMzHHn3ntIDThecjgU4xbKKT83gMcs1+EuDwwqU66aqQcQ83YN6z7iP\n6HDoXAqnEtMIsNyX167oz6GX+1Hvme94vNdN9GhShTOJaXRvXIU9pxKpXt6Pcn6X1q1/qk+TQtPt\nsakMl44opYrO9SelTZs2yr4gOy+LFi1iyJAhjn1392nr1q3MmzePl19+udRkNBgMmt9//52bb765\n6IyG6x53z1pENiul2hRwynVFYW2PwWAoWSKe/4GEi5msmdSdeiF6hv3QuRRylMImQqCvJz1fjyYx\nLcsRl+qxOVtYsu0E0+6NYEjLWgz/6BeHS/WBETV4Z3hLGj37PRmWa3Gbh7Dl/26jnK8X//jPNv5j\nxVOyO80ojIysHHq8Hu0wQ7QzMKIGS7ed4KHuDXi6CEXIUHpcbttjZrAKoEGD3AV7np7ub1NUVBTn\nz59HKUVqamqhpjEGg8FgMBgMhquLPZZTSrpeT5WZrRUaOxX8vUi01lodspxZZFszWJlZ+v+F1Axu\nvbkq51PSiUvRwXjtytWHI1vz4Jeb+e3wBbo3roKnTc96tahdsBMjZ7w9PZj3YAc6/3uNy/G1+87i\n721jUu9rx0TPUHzMGqwCCAsLc6zPcPYW6Mzx48fJycnh73//u8Ndu8FgMBgMBoPh2sKuYNnXWdmJ\nT83t4x06l0JWdo7DgcSxC6mOPMH+XpTz9SI5LYuMLK1c1anoT4f6lfD0EFb+fhqA3Se1CeG797Us\ntmy1gv3Z/cLt/PfRzg5X6gkXM0nNyC72mirDtYVRsK6A9PR01q9fz/vvv8+qVatYvXp1WYtkMBgM\nBoPBYACHIgSQkmF5BLzgPlhvxQBvktOz2OnkEOPt1QdQSnEqMY3gAG8CfT1JSs9yKGtjOoVS3s+L\n+pUD+OqXI2w9Gs82K2ZWrUtw6Q7g7+1J85rlWfKICV/xZ8AoWFfAoEGDHNuTJ0+mV69eZSiNwWAw\nGApDRGwiUkNE6tj/ylomg8FQemw8FOfYPpOoTfuenL/Nbd4p/fW6z02x+pxyvnp5iD0QcP2QAAK9\nPUlJzyLZUrACrTzB/t4A7D/t3uPqpeBp8yDEcuE+dWDTInIbrlWMgnUFvPTSS/zlL38pazGuK7Kz\ns1m8eDFr164ta1EMBsMNhIg8CpwGVgDLrL/8vuwNBsNV41RCmlsnYiXFiE83OLb3nk5i8+E4x5os\nZ/a82McR/2n2hiMA9GxSBYCY/dq5xaAWNQj09eR0YrpjNszuQv2Zflo5234soUTk3jC5F5+MasPo\njqElUp7h6mMUrALYtGkTwcHBlCtXji5duhS4DsvLy8vt8WuZCxcusHz5cjIyMorOXMJ89dVXDB48\nmG7duvHrrwVHLzcYDIYS5nGgsVKqmVIqzPoLL2uhDIYblT/OJtPh5VWOuFKXw8yfDtH536uZtqLg\ncDp2ziVn8O/v9zr2l0/oCkBIoA++XjYqBuhZqEPnUqhR3pdODXRw3aMXUgny8cTf2xP7cqg+09cB\nEGApWOX9vKw69CzZX9pf2eS4zUO4tWlVPMz6q+sWo2AVwIYNG4iPjycpKYmYmJgClZFJkybRoEED\nqlevTpcuXUhJSbnKkl4aOTk5tGvXjj59+vDAAw9c9frfeecdx/ann3561es3GK4EEWHEiBGO/ays\nLCpXrsyAAQMAWLJkCa+88kqJ1/vXv/6VDz/80OXYokWL6Nu3LwCdOnUq9PzY2FiaN29eZJ6vv/7a\nsb9p0yYee+yxy5T4muQoUDLDywaD4Yo5Zq2FWr7rVKH5jsal0vP1aNb/cS5fWtTS3Ry7cJG3Vu13\nxK5ypkm1IKqW8yG8VnniUzMIr1UegF+e6UXdSv40qhrI28N0vEE/L5sjsHD7+pUcMaXOJKXj661j\nUQ0Ir+FSfiVLKfO30u0K1v1d6hd9Awx/aoyCVQBZWVku+9nZ2W7zNWvWjPj4eE6ePMm6deu4eNH9\n4slrhSNHjnDgwAFABy692txyS+7izSZNTFwHw/VFQEAAO3fudPzOV6xYQc2aNR3pgwYNIjIy8orr\nyfv9GT58OHPnznU5NnfuXIYPHw7A+vXrr7jOvApWmzZtePvtt6+43GuIg0C0iDwjIk/a/8paKIPh\nRiUpTVsGpTk5onBHl1fXcPBcCi/99/dC8zkH/rWTeDGTLjdVplKAN/GpmcSlZlCzgh/Vyvvi62Xj\nhye60amhnqny8BC8PHS3uHZFf4J89azU2cQ0/Ly0AlWtvGug4kqBWsHysxSsX2MvALkKl+HGxShY\nBdC2bVvHdkREhFtTwLfffpsZM2Zw/vx5x7G8HaNrDW9vb8d2tWrVrnr97du3Z8yYMdx///2kpKTQ\nrVs3OnTowKOPPnrVZTEYLod+/fqxbNkyAObMmeNQcgBmzpzJI488AsCYMWN47LHH6NSpE/Xr12fB\nggWADlr+j3/8g+bNmxMWFsa8efMAiI6OpkuXLgwaNIimTV0XNvfq1Ys9e/Zw8qR2HZySksLKlSsZ\nPHgwAIGBgYWW7UxsbCxdunShVatWtGrVyqGcRUZGsm7dOlq0aMG0adOIjo52zMzFxcUxePBgwsPD\n6dChA9u3bwd0LMCxY8fSvXt36tevf60rZEfQ66+8gSCnP4PBUAacSkgDXD395SU9K3dwu1awX4Fp\nAKctJxZ6O40j51OJS80g2N+LykE+nEpMIyU9y7Fuyh322FZ1KvoT5Js7g2VXsCr4u/YFKwVoZxT+\nXrY8x70x3NiYQMMF0KlTJ5RS5OTkkJ6ejp+fX748TzzxBDk5+sf48ccf4+PjQ7ly5a62qJeEp6cn\nAQEB2Gw2goKuft/ivvvu47777gP06P+UKVMATJBmw6Wzsnv+Y3XugUYPQ1YqRPfLn15/jP5LOwcx\nd7um3RpdrGqHDRvGCy+8wIABA9i+fTtjx45l3bp1bvOePHmSmJgY9uzZw6BBg7j77rv59ttv2bp1\nK9u2bePcuXO0bduWrl31WoDffvuNnTt3Uq9ePZdybDYbd911F/Pnz+fxxx9n6dKldO/ePd/3prCy\n7VSpUoUVK1bg6+vL/v37GT58OJs2beKVV17h9ddf57//1X4foqNz78fUqVNp2bIlixYtYvXq1Ywa\nNYqtW7cCsGfPHtasWUNSUhKNGzfmoYceuibXpiqlngcQkUBrP7nwMwwGQ2ly+LyOMZVqOYyY/+tR\nth6L519Dwnjzh72EhgTQpFruN+6H3afJzM7By6bnBs44KVQAzy3eyYt3NKdpjXK0/9cqx/Fawf6U\n98vkbFI6cSkZjtmmwqhR3tcxg5WVoxwmgj6eued+MKIV3p5aFk9b7nzFgPDqLvuGGxPzBhRCSkoK\nTZs2pWrVqqxcudIlLSsry6FcAZQrV446derg739pcQ+uNlWqVCE5OZmEhAT27St6UWhp4uPj49gu\nC4cbBsPlEB4eTmxsLHPmzKFfPzdKnBODBw/Gw8ODpk2bcvq0DkIZExPD8OHDsdlsVK1a1cXhS7t2\n7fIpV3aczQSdzQOdKaxsO5mZmTzwwAOEhYUxdOhQdu/eXeQ1x8TEMHLkSAB69uzJ+fPnSUzUsWL6\n9++Pj48PISEhVKlSxXGd1xoi0lxEtgC7gF0isllEmpVQ2X1EZK+IHBCRK7cRNRhuAE4l6hkse6Df\np77ZzteWB7+3Vx/gyfnb6Pe26+DVkq0n8p0/tHUtADYfvsCd7/+Ur57aFf2oXVH3zfafSS7UfG94\nuzr4eHrQOjTYMYMFcOR8/vX1jau5DnDd174ObwyNYPq9LQos33DjYGawCuHll19m717tcea2225z\ncSWanZ3N1KlTef755wG49957AUrV3ej1xoEDBzh06BAXL16kWbNmNGjQgPfee49ffvkFm83GsGHD\nWLNmDT4+PlSoUKGsxTVcbxQ24+TpX3i6b0ixZ6zcMWjQICZNmkR0dLSLiXBenAcRivNtKGwmt1On\nTpw8eZJt27axfv36fGuyisu0adOoWrUq27ZtIycnB19f36JPKgTna7TZbNeymfRHwJNKqTUAItId\n+Bgo3ENIEYiIDZgB3AYcA34VkSVKqaI1V4PhBsbuLj0xLdPFQUVh38rM7NyB7RPxei3suK71Wbjl\nOFk5irTMHLLzOLuoHexPvFVXfGomtkI88718Zxgv3xkGgM0vN9+F1PyepAPyKGr/GhJWYLmGGw+j\nYBVCQa7ZQXcqoqKiCA8P56677gIgODj4aol22ezcuZP7778fLy8vwsLCeO+990qtrnfffZe33noL\ngDfffJMnnniCtWvXOtaFNGzYkIYNG+Lp6XnFnTyD4WoyduxYKlSoQFhYmIspXXHo0qULH374IaNH\njyYuLo61a9fy2muvsWfPnkLPExHuvfdeRo8eTd++fd3+ZgoqOy0tzZEnISGBWrVq4eHhwaxZsxwO\nfIKCgkhKch8ks0uXLsyePZvnnnuO6OhoQkJCrnlzaDcE2JUrAKVUtIiUhG1yO+CAUuoggIjMBe4A\nClSw9u7dS/fu3V2O3XPPPTz88MOkpqa6nRkdM2YMY8aM4dy5c9x999350h966CHuvfdejh496pht\ndGbixIkMHDiQvXv38uCDD+ZLnzJlCrfeeitbt25lwoQJ+dL/9a9/0alTJ9avX8/kyZPzpU+fPp0W\nLVqwcuVKXnrppXzpH374IY0bN2bp0qW88cYb+dK//PJLateuzbx583j//ffzpS9YsICQkBBmzpzJ\nzJkz86V/9913+Pv789577zF//vx86fbfqbMZrB0/Pz++//57AF588UVWrVrlkl6pUiW++eYbAJ55\n5hl+/vlnl/RatWrx1VdfATBhwgSH+aydRo0a8dFHHwEwbty4fNYjLVq0YPr06QCMGDGCY8eOuaR3\n7NiRl19+GYC77ror36BOr169eO655wDo27dvPmdbAwYMYNKkSQD53jsom3cvOaQZ5xrqupSCHcdz\nHXx2u/V2aPt4vnIAXnvtNT44uwOA+BrtoU5Xzh/dj5fNg6wc/S3rcWtvaJf7Dl88d4waNUMd++v2\nn3O5D4W9ezV9K3C8xQN0bVQ5993r8A8A7h48EI+cTPPuXWfvnjPF+e5dLsZEsAC+//57Xn31VQDq\n1avHkSNHXNKVUiQnJ9OxY0eGDRtGeHg4S5cuLQtRL4n4+Hg2bNhATEwM27a5j2ZeUjivW7P/6DZu\n3Og49sILLzBs2DDuvvvuUlX0DIaSplatWpftwnzIkCGEh4cTERFBz549efXVV4vtcGb48OFs27bN\nrXlgcct++OGHmTVrFhEREezZs8cxaxYeHo7NZiMiIoJp06a5nBMVFcXmzZsJDw8nMjKSWbNmXcaV\nlzkHReQ5EQm1/qagPQteKTXRLuDtHLOOuSAi40Rkk4hsKmzwzmC4ETgf2tNl/44ZuaZ9GX4hhZyZ\nOzuVEVAFz7R4fD09HGuhPLIuojxc5w58PD2oGuTD5eCVFs+nw5sy476WjmMBZ3cCIDnX7Gy94RpA\nStOkTUT6AG8BNuATpZTbADEi0hb4GRimlFrgdNwGbAKOK6UGWMeGAlHAzUA7pdQm63go8DtgjyL3\ni1JqfGHytWnTRm3atMlt2tNPP+1QsECbuzVo0ADQSorzbFX16tXp1KkTWVlZvPHGG4581yKrV6+m\nV69eAISGhnLo0KFSq0skd3r9xRdfZPLkyQwYMMAxWuPM0KFD3Y78GAx2fv/9d26++eayFsNwFXD3\nrEVks1KqzeWWKSLBwPNAZ+vQOiBKKXXhsgXV5d4N9FFK3W/tjwTaK6UeKeicwtoeg+FGoP4zy3AT\ntqpIXhzcnJEd6gJwx7sxVPD3ZtbYdmw+fIG73l9PzQp+zB/fkVteWY23zYPpw1rQL6w6AKGR2vvr\n+39pRV/r2OWQlZ1DUloWwcZT4A3B5bY9pTaD5WSX3hdoCgwXkaYF5Ps38IObYh5HK03O7ATuBNa6\nyf+HUqqF9VeoclUUeeNeOe/ndchw8uRJvvnmGxYvXsyFC1fUVhebRYsWMXHiRCZPnsyWLVtc0n78\n8UemTJlCVFRUPucc4eHhju3Y2NhSk+/cOdeAgM899xwHDhygZ8/cUSvnwKf/+c9/XMyYDAaDoSRR\nSl1QSj2mlGpl/T1+pcqVxXGgttN+LeuYwXBDcjEjm7NJ6fnWQjnTqKr2Yvzq3eEF5nFm/oMdAUhJ\nz501SkrLcjiiaF03mFEd65KcnsX3O3Q4i9eGhjuUK2dCQ67MMtjT5mGUK0ORlOYarOLapT8KfAO0\ndT4oIrWA/sA/AUcwSKXU71Z6qQkOOtbNF198QXJyMkOGDKFKlSqOtMLMO67GAu+kpCSGDBni2G/Y\nsCEtW+ZOX7/11lssXLgQ0LNrJ07ket1xnnkrzXuYkJBAcHCwi8KZnp5Oq1atePTRR7HZbLRo0YIx\nY8Y40s+ePUvt2rXdlGYwGAyXh4hMV0pNEJGlONsXWSilBl1hFb8CN4lIPbRiNQy47wrLNBiuO2Zv\nOIwgvLRsN6kZ2XRrVJlZY9u5zZudo+jbvBpt6hZv7Xrb0GBEINVJwUpMy3K4UgcI9PEk4WImLy3T\n4/K+eWJThQR6cy45gwBv437AUPqU5lvmzi69vXMGEakJDAF6kEfBAqYDT3FpgSDrichWIAGYopTK\nF5xGRMYB4wDq1KlTYEE9e/Zk8eLF/Pbbb/j4+HD48GGHp7uqVasyb948h+fAd955h2rVquHp6Umj\nRo0uQdzLY/HixS77qampLvs7d+50bNsDk9rx8PCgWrVqeHh4YLPZUEqViqLVoEED4uLiaNy4Mfv2\n7cNms5GZmUnPnj0ds1jJyckuClZZBD42GAx/er60/r9eGoUrpbJE5BFgOdoc/jOl1K7SqMtguJZ5\nduFOl/0f953laFyqw0W6nYsZ2ZxNTqdVnWDqhQTwVJ/GvPq/vbgjsm8TagX7ISJ42zw4Hp9r6ZKU\nlkk5J1fqAXkCCFfwc43H981DnZi94Ui+gMUGQ2lQ1mr8dOBppVSOcydfRAYAZ5RSmy1XusXhJFBH\nKXVeRFoDi0SkmVIq0TmTUuojtLte2rRpU6gF8JtvvsmCBY4lYQ7XoZ6entxzzz306tULT09Pypcv\nX0wRS4a83sY6dOjgst+7d2/2798PQEiI62JREcmndJUm27Ztw8vLC5stf9yJwMBAxo0bx6effsrk\nyZOvyeCkBoPh+kYptdnabKGUess5TUQeB34sgTq+A7670nIMhj8ba/aeYVTHUMf+uv1neWrBdhIu\nZjIwogYiwsPdGzoUrHFd69OxQSUOnk3hxf/u5tabq9Cwih5nT8/K4ZvfjvFoz4b4e9tIz8qhnJMS\ndWermry2PFdRC8nj2KJupQAm9zPreA1Xh9JUsIpjl94GmGspVyFAPxHJQs90DRKRfoAvUE5EvlJK\njSioMqVUOpBubW8WkT+ARmgnGZdFUeZ+lSpVutyir4ghQ4ZQt25dhxfDNm1c1949+uij1KtXDy8v\nr6syo1YQp0+fpnPnzmRlZVGrVi3Wrl1LVFQUO3bswGaz8dxzz/Hhhx8yffp0F4+DBoPBUAqMRjtd\ncmaMm2MGg6GEqBTgquSM/FR7Eo6oXYHON+X3FhjZpwkeHkL3RtqEsEaF/H2DPaeSGP+VHjep4qRE\nVS/vmjck4PI8BxoMJUFpKlhF2qUrperZt0VkJvBfpdQiYBHwjHW8OzCpMOXKylcZiFNKZYtIfeAm\nrtAFb48ePVi0aNGVFFEqtG7dmtatWxeY3rhxYxo3buw2bcmSJY7ZogEDBvDiiy+Wlpj8+uuvHDhw\nANAONUSEdevWsWaNDkXTunVrfv31Vzw9PWnVqhVhYSZIn8FgKFlEZDi67aknIkuckoKAuLKRymC4\nMbiYme32uFeeYL+dG4YQc+AcHtZxEXGrXAH8fjLXMKlaedd4gP+b0IVTCWmkpGdT3t9YxRjKjlLz\nIqiUygLsdum/A/OVUrtEZLyIXLaHPxEZIiLHgI7AMhFZbiV1BbZba7AWAOOVUpfdeH7++efs3r2b\nYcOG8eOPP5KTk1P0SdcBR48eZdeuXWzdupWzZ8+WWj1paWn5AtYBLrG3nnnmGe6//37GjBlDeHh4\nvrVlBsO1hogwYkTuWE9WVhaVK1dmwIABhZ63adOmy46bBVC/fn327nVdozBhwgT+/e9/F6vsmTNn\n8sgjBXoNB3QwzPXr1zv2P/jgA7744ovLlvkaYj3wBrDH+m//mwjcXoZyGQx/GgoK+ZNWgIKVcNHV\nWdjMv7Zlz4t9Cq1j9cRuAOw6katgtc7jJKNJtXJ0b1yF/uGX74bdYCgJSnUNlju7dKXUBwXkHVPA\n8Wgg2ml/IbDQTb5v0N4IS4QVK1YwZ84cQEeidl4jtnnzZvr06YOXlxdt27albdu2xMTEkJWVxdSp\nU+nSpUtJiVHibN++3bF96tQpsrOz3a6PulK2bNnCQw895HIsLS2NoUOH8uGHH7o9Jy6uaH345MmT\nnDhxAk9PT6pWrWocYxiuKgEBAezcuZOLFy/i5+fHihUrqFkzX0zZfLRp0yafKW9hZGVl4emZ+3ke\nNmwYc+fOZerUqQDk5OSwYMECfvrpJ+rWrXtJZRdEdHQ0gYGBdOrUCYDx468o0sU1g1LqMHBYRP4C\nnFBKpQGIiB/adD22DMUzGP4UFDRT5axgXczI3X62v+taKE+bB55FdEXqVw4kyMeTXScSAKgU4I2/\n8QhouEYptRms6x3nuFfOHR2Aixcvcu7cOU6ePMn58+fZunUry5cvZ9WqVZw+ffqqyLd7924mT57M\nhAkT8iks8+fP5/HHH2fixIkuI9KZmZl89NFHjv3FixeTkJBQKvLljSMGsGDBAnr06OHYDwhwjUWR\nnp5eZLmzZs2iTZs2tGjRgunTp1+5oAbDJdKvXz+WLdMBK+fMmcPw4cMdaRs3bqRjx460bNmSTp06\nOWadoqOjHbNccXFxDB48mPDwcDp06OAY9IiKimLkyJHccsstjBw50qXO4cOHM2/ePMf+2rVrqVu3\nLnXr1i1W2c4sXbqU9u3b07JlS2699VZOnz5NbGwsH3zwAdOmTaNFixasW7eOqKgoXn9dO97bunUr\nHTp0IDw8nCFDhjjCL3Tv3p2nn36adu3a0ahRI9aty+e49VpiPuBsipAN/KeMZDEYrmmUUnyy7iBx\nKRlFZwZS0t0rWOlZuT+5Hcd1f+OzMW3o3riK2/xFUTnIh5MJ2pPg/yZ0vawyDIargVH9C+Bvf/sb\nXbt2JSsryyXGFLjGwfL09HRRwK5GHKypU6cyffp0EhP1NHn//v158MEHHekff/yxI8DwnDlzHHGw\nzp8/n68sd4pQSeDl5UWdOnU4cuSI41h6ejphYWE89dRT+Pv7ExERQatWrYiPj8fHx6dYs1HO9zev\n4mu4gfi6lGK43VeoY1FAzya98MILDBgwgO3btzN27FiHYtGkSRPWrVuHp6cnK1euZPLkyXzzjevE\n+tSpU2nZsiWLFi1i9erVjBo1iq1btwJ64CQmJiaf05ewsDA8PDzYtm0bERERzJ0710WxK07Zdjp3\n7swvv/yCiPDJJ5/w6quv8sYbbzB+/HgCAwOZNGkSAKtWrXKcM2rUKN555x26devG//3f//H88887\nBjiysrLYuHEj3333Hc8//3y+4ObXEJ5KKUdvUSmVISImWqjBkAelFNH7zvLSst/ZdiyBd4a3LDR/\nakYWn/10yG2a8wzW/jNJANxU5VKi77hSKdCbg+dS9LYJ9mu4hjE91ALo3bs3vXv3BrQSEh8fT2Bg\nIMNpHSMAACAASURBVJ6ennTu3JkzZ86QmZmJzWbjxIkTjBkzBk9PT5o3b17qsi1fvtyhXAEsW7aM\n5ORkAgMDAW36Z8fZJXtqairly5d3mbW68847S2XUuX379hw+fJi///3vfPbZZ/j4+ODh4UFERAQR\nEREueQuLR5YX5+uZOXMmL730UonJbDAUh/DwcGJjY5kzZw79+vVzSUtISGD06NHs378fEXEblDwm\nJsahdPXs2ZPz5887fs+DBg0q0KPm8OHDmTt3Ls2aNWPRokU8//zzl1S2nWPHjnHvvfdy8uRJMjIy\nqFevXr5y8l5TfHw83brp9Q+jR49m6NChjvQ777wT0E5rYmNjCy2rjDkrIoOUUksAROQO4FwZy2Qw\nXHMs2nqcJ+bp9dLOZn0F0euNHx2zSnaevK0R01buc1GwNh6Ko3KQzxXFoXJeruHhUUoDbQZDCWAU\nrCK45ZZbHGZ269evp2PHjnh5eVG5cmVHnqpVq15VmdzNkqWmpjoUrJEjR/L000870pYvX87tt99O\n/fr1iY+Pp3379mzcqF2lxsTElKqsM2bMYMaMGSVW3oABA3jvvfcAaNasGbt27aJ27dqUK1euxOow\nXAcUY6apNBk0aBCTJk0iOjraZWb4ueeeo0ePHixcuJDY2Fi6d+9+SeXmNZt1ZtiwYfTu3Ztu3boR\nHh5+2d+dRx99lCeffJJBgwYRHR1NVFTUZZVjx8dHu0K22WxXZQb/ChgPzBaRdwEBjgKjylYkg+Ha\nY1PsBcd2kK/7bmLsuRRqVPDD29Mjn3IF8Fivm/jsp0OkZWoTwTOJaSzeeoKeTaq4KEmXiu0KzjUY\nriZmDVYROCtSR48eLUNJcvnnP//JV1995XLMeaR87NixNGvWzLH/5ZdfuuTdtWuXy/7V9JD4wAMP\ncNttt9GnTx8OHXJvUlAYzqP7Z86coXnz5pQvX57q1asX6MXIYChpxo4dy9SpU/OFFkhISHA4vZg5\nc6bbc7t06cLs2bMBvTYrJCSkWAMEDRo0ICQkhMjISLfmgcUt21nGWbNmOY4HBQWRlJSUr8zy5csT\nHBzsmOn+8ssvHbNZ1xNKqT+UUh2ApsDNSqlOQP4LNhhucAKdlCovW36FJjEtk+6vRzN54Q635z/Y\ntT4Afl42xwzWY3O3AOB5hbNOvl6629q0uhlUNVzbmBksN6xbtw5vb28CAgKoVq0aHh4eBAQE5DO1\nKStuv117Fs7OziY9PR0vLy8qVKjgSA8JCeGxxx5zrMvy9/d3Of8f//iHy6i1O8UkMTGRzMxMvL29\n8fPzK7H1TuvXr2f37t2Ant2qWbMmHh4ejBgxgooVKxY5stWkSRM+/fRT/Pz8SExMdHg6CwwMvKJR\nMYPhUqhVq5Zb1+hPPfUUo0eP5qWXXqJ///4uafb3MyoqirFjxxIeHo6/v7+LklMUw4cPJzIy0mGW\nl5filB0VFcXQoUMJDg6mZ8+ejoGOgQMHcvfdd7N48WLeeecdl3NmzZrF+PHjSU1NpX79+nz++efF\nlvkaxBO4S0TuA24GapSxPAbDNYWHU1ua6sZEMN2alVq950y+/sP+f/Z1KFG+XjbSLCcXf5zV66b8\nvK/Ma3HnmyqzZu9ZnunX5IrKMRhKG7mRR/3btGmjNm3alO94QEDA/7N35vEx3G8cf89euUUk7iiK\nUCRRxH3VFbSOFqVVlDpbVIuW8kNTLb1p66hqq5TQIq6icZ9VQl0Vt7hDJMi52SPz+2Oyk509klBa\nrXm/Xl52Zr4z891NNjOfeZ7n85CZmQlI9QXvv/8+1ar9819mURTZtWsXWq2Whg0b5isovvvuO155\n5RUA+vXrx3fffSdvO3nyJNOmTSM7O5vKlSsTFRXltP/w4cP56quvAPjiiy8YPnz4Xc31zp07XLp0\nCa1Wi7+/P2XKlGH79u35pkxFRETIqYuF4dixY7Rs2RKj0Ui1atXual+Vfx/x8fE88cQTBQ98CFm+\nfDmrV6++KzH1KOPqZy0IwgFRFO/Jjz7Xkr0zUsPhJ5GaDHcBdoii+Lc3OXR37VFReRiYvPpP5u9J\nAKD1EyWZ11f5tbueaqT+B5vxNmipUaYI++1SChOm5T1Yajd9B+WKefNNn7q8tvggvxy5xoaRTalW\n6t6jT6IocuDCLepWKHbPx1BRuRvu9dqjpgg6kJOTI4srgBUrVnDjxg3FmEWLFuHp6Ymfnx+DBw/m\nq6++onHjxtSvX19Oz7GRlZXFsGHDePnll/+yJfq6deto1qwZjRs3Zvv27fmOff755/njjz/o06eP\nnC6YkZHB5cuXWb9+Pbt37+bAgQN4enpy9epVpzRBkynPmtVgKJxTT7t27WjZsiXt27dn5cqVhIaG\nUr16dXr06MGlS5fcpkzZKIzF/cmTJ9m+fTu7d+8mKCiILVu2sHjxYsaNG3dPKYcqKg+a1atXM378\neIXTp8rfhyAIi4FTQBvgS6ACcEsUxW3/hLhSUXnYyTTl1VK6ahRstkpfm2xLjkJcTXDobeVplyLo\nqdNStqjXXxJXIGUCqOJK5d+AmiLogCvXL8f0uOzsbPmfyWTiwoULshGGzRLdxsqVK2WTB6PRyJIl\nS+55brZeNwCDBg3i1KlTLsdNnTqV06dPK9J46tSpw/Xr1+nZs6di7Pjx4xk/fjz16tWTrZu3bt2q\n6Je1ePHiQt0c7tixg6ysLEASeDZ27drl1imwf//+cnTt4sWL9OvXjwEDBtC4cWOX46dPn86cOVKv\n6lmzZnHw4EHmzZsHwNy5cxk4cGCB81RR+Tvp1KkTnTp1+qen8ShTHbgFxAPxoihaBUF4dFM3VFQK\nYPnBK1QI9KZMUS83Akv6+lhzlF8jx4QoT71GTidMM5rx9VBvOVUeHdQIlgMeHh4K1zuDwUDlypUV\nYxx7MeXXBysmJkZ+7VgLZWPcuHGUL1+exYsX5zs3e/Fw+vRpnnvuOafoGsCSJUucaiTi4+MxGp2d\nfmzs27ePLVu2ADhZT9vXd7nDbDYrGgUHBQVRvXr1fPeZNWsW8+bN49ixY1y+fBmQjAGaNGnidp/8\nPntX4lhFReXRRhTFWsDzSGmBmwRB2AX4CYLw99q/qqj8Czh+NRVrjkhCciaeei1ZdgLrif9toPe3\nv2OxOgd+g3w96FYnWLHOx6AjPVu6Zl++lUXpop4PdvIqKg8RqsByQdmyZalXrx4tWrTgvffew2Aw\ncPXqVVnMvPLKK2RmZnLnzh2mT5/OoEGD2LVrF3v37qVv376KY9WuXVt+7cpWOSEhgWnTpnHx4kV6\n9eqV77zmzp2LKIqyA1hMTAzPPfccXbt25cSJE/I4V6mIjz32GAaDQdHMt2PHjooxNiHlKMRsUSl3\nTJs2DT8/P8LCwti0aRO//PILHTt25M8//2TBggUEBARQrlw5evfuTWxsLOvWrePIkSMMHToUQRCo\nUaMGfn7KxoPuagP9/f3l1++88w6hoaF06NCBzp07U758+XznqaKi8mgiiuIJURQniaJYDXgd+AHY\nLwjCnn94aioqDxVmO/G05cQN/ryayo1UIykZJrLMVnaevonJhcBa+VojAhwa/xbx0pNqNJOTI3L+\nZgaPB/k+8PmrqDwsqPFaF3Tu3JnOnTsDsHTpUgICAgDo3r07P/30E1qtFi8vL9kyvGLFim6bdY4d\nO5a33noLi8Xi0pRCq717Rx37KM7u3bsBeP3112UjjmnTpilsnDt37kytWrUoW7asvL5OnTqsWbMG\nkHp9NWjQQBaAs2fPZvfu3fz444+88cYbNGzY0O1cRFFk3LhxABw6dAiNRkNgYCCZmZl4e3vTu3dv\nevfuXeB70mg0PP/887IrojsDj+HDh/Ppp58CUsQqMjKSzp07U6RIESeRpqKiouKIKIoHgAOCIIwB\nmv7T81FReRCcuZFG5RKFuybm5IjM23WOnvUek1MCW1YrwZYT0kPlCymZrDh4WR5vsTo/APUxON9O\n+nvpSc0ycy3VSJbZSqUS7vv8qaj811AFVgHYGzzcawqaRqNxaxTh4+NDyZIl0el0lChRolDHW7hw\nIZmZmXTp0kVeZ29K0a1bN2bMmMHevXsBuHLlihz1smFrDgrw4YcfKmqehgwZwpAhQ1i4cCG3b9/m\n4sWLbNy4kfLlyxMSEqI4jmOKYsuWLQE4fPgwYWFhim0mk4n69evLBiGxsbHyNl9fX5YuXVrge7cX\npHfu3JHTN/v06aM6tKmoqBQaUQqT7/in56Gi4ojZmsOF5IxCCyRHFv9+kXdijrJkUAMaPB5Y4Pg9\nZ5P5YN0JTlxLo2O41LVgRKsqRNYoydvLj5KcbiI1K+/BrtlFBMvbw/lhcRFPHWnZFq7elrJgyhb1\nchqjovJfRRVYDqSmprJ79265t5SXlxeBgYHodLpCNQO9W4oVK0ZiYuJd7dOmTRsANm7cSFJSEnq9\nXtHwVKfTERUVRdu2bQHXNVRDhgyhS5cueHh4UKFCBaftly9fxmq1Krb179+fb7/9VjEuMzOTtm3b\ncuLECS5evCivdyVGjUYjhw4dAiRB9dFHH2E0GtFqtYwcORIfHx9EUczXfj4wMJAVK1ag1WpZuHAh\ny5YtA5SCUUXlQSEIAr169ZIbfVssFkqXLk39+vVZu3Ytq1ev5vjx44wdO/aBnP/QoUM8+eSTrF+/\nnnbt2t3TMRo1aiSb8tjz8ssv88wzz9CtW7d7mtfVq1ed6jdVVFTunsmr/2TR7xfZN74VJfzuvm7p\n1z+le4qktOwCRirZ8GciT1WTHvT6GLQ0rVIcgFuZJgJ89ACUK+bFF1vOOO3roXMWWEF+HoginL8p\n9cDy89Tf1XxUVP7NqALLgdOnTytuEl544QVOnDhBUFCQvM6WoqfVahEEgZycHNLS0jCZTOTk5Chq\nrRITExk+fDg5OTmUKFGC2bNnO51z1apV/Pbbb5jNZhITEwkNDUWv1zNgwABFzdHAgQNZsGABOp2O\n6dOn5+uYZ2/+sGnTJubNm8eAAQPkdX369AEgPT0dvV5PTk4OGk1eSV6PHj2cbsLso2Q2KlasyK+/\n/krTpk0VAuv27dv89ttv6HQ6SpYsyWOPPaaoDUtPT+ftt9+WlydMmIBGo2HdunVyI2VXeHl58eyz\nz8rn2LdvH1arVfHzUVF5UPj4+HDs2DGysrLw8vJi48aNiujw/XIMtFgsLpt7R0dH06RJE6Kjo+9Z\nYLkSV3+VQ4cOERcX99AKLEEQNEA3URR/us/H/RjoCJiAs0A/URRv389zqDx6bDuZBECWiya/hcGg\nk67laUaL2zEnElOpWtIPQRBkI4pMk5UzN9IB8PbQ4ZF7HLM1h+upkljz89Cz41SS4ljz+rhuEVQu\nQDL2ir+WKu3rqd5yqjw6qCYXdly4cMFJRERHR2O1Kv/IRUVFodfr0Wg0vPfee5w7d46iRYtSokQJ\nJ3vx5ORkli1bxooVK1i/fr3L827YsIEPP/yQzz77TO7pNHr0aNauXasYN2/ePEwmE5mZmaxcudLl\nsbKysrBYLDRp0oQ33nhDXp+QkMDNmzc5deoU586d49YtqXdFYGAgnp6eaLVa2dxi//79Lm/CKlWq\n5PKcIFmx23P8+HEaNWpEvXr1GD58OMePH+ejjz5yuz9IPcgOHDhAXFycW2ONvXv3snbtWjZs2ED7\n9u3ZsGEDn3zyCU888QQHDhzI9/gqKveDDh068MsvvwDS3wf7esf58+czbNgwQIoIjRgxgkaNGvH4\n44/L0VZRFBkzZgw1a9YkNDRUTo3dtm0bTZs2pVOnTi4dOEVR5Oeff2b+/Pls3LhRYUazYMECwsLC\nCA8Pl2ser1+/zrPPPkt4eDjh4eHyd9rX11c+3rBhw6hatSqtW7dWpPseOHCA5s2bU6dOHSIjI7l2\n7RoALVq04O2336ZevXqEhISwc+dOTCYTEydOZOnSpdSqVatQqb5/N7n9rt56AIfeCNQURTEMqdfW\nuAdwDpVHDFsdlKtUvMLgpZeiST/uveBy+77zKbSbvlPevv7YNXnb5VvStdfHoEWfK7BSs8xsPC71\nqXRlcNG6umtDzuJ+UmbJ97sTAFSbdpVHClVg5TJ27FgqVKhAp06dZFMLG4726u+99578+vPPP1fU\nV9lblQOMGTNGfn3hgvMfu4MHD8p9nRxJT093O1935hgzZ87E09OTypUr8/nnn8vrL168yNdff03V\nqlWpVKmSbBRhLyjPnJHC/vXq1VMcs3r16hw8eJDx48e7nY+jEYa9Ecfq1aupUaMGX331ldv9bYwf\nP56IiAh5Lo5ERUXRsWNH2rdvz/79+1m1ahUvvPACffr04aef7uvDaZWHnRYtnP/NmiVty8x0vd3W\n7PrmTedthaRnz54sWbIEo9HIkSNHqF+/vtux165dY9euXaxdu1ZOG1yxYgWHDh3i8OHDbNq0iTFj\nxsgC5uDBg8yYMcNlj7s9e/ZQsWJFKlWqRIsWLWSR9+effzJlyhS2bNnC4cOHmTFjBgAjRoygefPm\nHD58mIMHD8oNx23ExMRw8uRJjh8/zoIFC2QBZjabGT58OMuWLePAgQP0799f8d23WCzs27eP6dOn\n8+6772IwGIiKiqJHjx4cOnSIHj16FPqz/JvZJAjCaEEQygmCUMz2768cUBTFWFEUbX/s9gLB+Y1X\nUSkMNmt0o/neBJatP9Xxa6kuHXmv3ZFE1N7zKQBcTMmUt6UapfR+b4MOg1a6RbSJLpD6WdkwaDWs\nG+HeJ8YxYqVGsFQeJVSBlcuHH34IwM2bNxXCBNz3rwL44IMP8PDwwM/Pj6CgIIoVU16v7VP8unbt\n6rS/oyCzR69X5ivbp9+sWbOGNm3aOEXXsrKysFqtinQ9gMGDBytEj1arlU0wbJw8edKpfxZI0aiS\nJUs6zcdGrVq1+O233+Tlp556ilKlSlG/fn2Cgwt3v2G7WbThrmeXYx8s+zmpfbBU/g7CwsJISEgg\nOjq6wJS4Ll26oNFoqF69OtevS0+Ad+3axQsvvIBWq6VkyZI0b96c/fv3A9LDDXeOpNHR0XKj8J49\nexIdHQ3Ali1b6N69u5wma/sbtGXLFoYOHQpI33f7v0UgNQa3zaNMmTKyQc3Jkyc5duwYbdq0oVat\nWkyZMkXuUwfw3HPPAZITaUJCQuE+tIeDHsBrSMYWB3L/xd3H4/cHXKcpAIIgDBIEIU4QhLikpCR3\nw1RU5AiWqya/hSHTlHeddBVxskW40owWRFEkIbdGCuBGWjZ6rYBBp0GfK7ASU6XrcaCPQU4VnPZc\nKKfeb0/1Mu5r0x0jVq6cBlVU/quov+0uqFOnDq1bt8bDw4OyZcty6dIluSaiQoUKBAQEyCl2nTt3\npmTJkqSmpro8lr+/P97e3pjNZpe1GY6NiY8ePYrVasXT09PJ+e+XX37BarXKtRmbNm2iY8eOWCwW\n3njjDdq3b+82ta5NmzZkZWVRuXJlLBYLmzZtIioqSjHGbDY7pfrZWL58OcOHD3daf+XKFQ4fPiwv\nDx8+nOLFi9O9e3deeOEFUlJSqF+/PjqdDqPRSHR0NBaLhfj4eAYNGiTPzbHexJ2Yq127Nhs3bgQg\nMjKSfv360a1bNzw8PKhTp47LfVT+o2zb5n6bt3f+24OC8t9eAJ06dWL06NFs27aN5ORkt+PszVfc\n9Xazx8fHtY2x1Wpl+fLlrFq1ivfffx9RFElOTiYtLe3uJ18AoihSo0YNxUMTe2zvSavVOv39epgR\nRdG1ci0AQRA2AaVcbBoviuKq3DHjAQuwKJ/zzwXmAtStW7fgXwaVR5bcANQ9R7Ay7Wq3si05TgYU\n2RbpuDtOJZGUls2tzLyHk9fvGPHOFUJajYBGyKsJC/L1IDlDynrx9yrYsMLXIWKl0bg3sFJR+a+h\nRrBy+eabb/jss8+IioriiSeeYOPGjaxdu5YBAwZQsWJFqlSpQvfu3TGZTAQGBqLX6xk0aJDTU2FH\n5syZQ0ZGBiaTSTaWsKdBgwaK5eTkZMLDw6latapcK2GPvZgBWL9+PRs3bpQjVlFRUdy5c8cpWpaV\nlUXnzp05ffo058+fp25dZVFqUFAQNWrUcHvD5HhekGq1HB0Iv/zySyZOnCjXpRQrVozTp08THx/P\n+fPnadCgAU2aNOGll17i8uXLXL9+neXLl1O6dGn69+9Pr169+OCDD6hVq5bLebz//vuK5e+//55B\ngwbx+eefF9ioWUXlftG/f38mTZqkcO8sLE2bNmXp0qVYrVaSkpLYsWOHU1quI5s3byYsLIxLly6R\nkJDAhQsX6Nq1KzExMbRs2ZKff/5ZFnopKVLaT6tWrWRTHavV6tSAvFmzZvI8rl27xtatWwGoWrUq\nSUlJssAym838+eef+c7Pz8/vgYi9+4kgCN6CIEwQBGFu7nIVQRCeKWg/URRbi6JY08U/m7h6GXgG\n6CUWRkWrqOSDvfPfvUawsuz2M1mcRZq9ecabPymv7YmpRjnFEJCjWABliuY5GhZGYLlyFlRReVRQ\nBVYuAwYM4I033uB///ufor7JPrJisVhYtGgRZ86cwWw24+Pjk2/6YGFwjNTkV3cFEBISwsGDB9m5\nc6ei9sOWHmezk//55585efIk69atk8dkZOSlAdjP+4MPPiApKYnQ0FBee+01fvzxR7777jvFeb/9\n9lunm6ykpCS3gswW4XOHl5cXZcuWpUSJEvj5+REaGsq3337Ljz/+KDcuthEXF8fUqVOZMmWKHL2y\np23btnLdiYrK30FwcDAjRoy4p32fffZZ2ZCiZcuWfPTRR5Qq5SpAkkd0dLTsnmmja9euREdHU6NG\nDcaPH0/z5s0JDw/nzTffBGDGjBls3bqV0NBQ6tSpw/Hjx53mUaVKFapXr06fPn3kOkqDwcCyZct4\n++23CQ8Pp1atWgU6Dz711FMcP378oTW5yOV7JLe/RrnLV4Apf+WAgiC0QzLP6CSKYmZB41VUCmLk\n0j/k15n5CKxzSekuxRM4R7AcybBLIdx15iYAP/TPe8hjn1Zo/8QgNDiv5Uugb+FaozxR+v63t1FR\n+TcgPMoP3OrWrSvGxSlT8C9evMjvv/+OXq+nXLly+Pj40K5dO3Q6HU888QRpaWls375dHn8/Pr+6\ndevKDnj79u0jIiKiUPsdOXKECxcuoNfrqV69Oo899pjTmD179nDo0CFKlSrFk08+Kdd37Nmzh4MH\nD+Lt7U3dunXZtm0bp06dokGDBixevJjff/9dfhJuY+jQocyymQhAvv2qVq1aVaBd9ahRo9BoNGi1\nWt5//33MZrPLpsx9+vRh4cKFgJSSOWTIENq3b68YM3HiRN599918z6fy7yY+Pp4nnnjin56Gyt+A\nq5+1IAgHRFF07QddCARBiBNFsa4gCH+Iovhk7rrDoiiG/4VjngE8AFue6F5RFIcUtJ+ra4+KCkDk\n5zs4eV2KBk/pUpOXGpR3GnPgwi26zt7DpI7V6dfYOfO10dTN3EjLxpIjsnV0CyoGKVOPZ249w8e/\nnlSsWzKoAYcv3Wbq+hME+XoQN6E1ABXGSvXRY9tX43qqke93J1CnfADLhjTM9x7AxoAf9rMpXnIo\nTZj2dCE+ARWVh4t7vfaoNVgO7NixQ7Y5thWS2xdyX7hwgaioKEqVKqWwLb9y5QrZ2dmYTCZCQkLk\nnlIZGRl069aNDRs2ALB161ZaODiWvfLKKwiCQEpKCvXq1aNatWo8//zzTJ48Wf4DlpqaSr9+/Vix\nYgUAH3/8MaNHjyYsLExxrOzsbCwWCz4+Pty6dUthG7948WJZYDVq1IhGjaQHuZs3b+b1118HJBdC\nd9gbauRnKPHqq69SrVo1Nm7ciFarpVKlSpQvn3eR2LlzJ82aNVPsYzMZeffdd5k4caJim01cgeRI\nuHLlSr7//nuioqI4f/48AQEBFC9e3O18VFRUVACTIAhe5D6UFwShEnB3nVgdEEWx8v2YmMqjzdXb\nWQR4G/AyaBXRoztZrq+zx65I6b6nrrvOeMk0WynqbeBmejbZFucomL0Jhg0PnYba5SUH5UAfg9P2\nysV9aVoliFWHrvLlC08WSlwBlC3qBcD61927Daqo/BdRBVYu3333HWPGjFFEbVwZLZQvX55vv/3W\naX316tVlo4vbt2/j7+9PXFwcLVu2VNQmtGnTxkmcZGdnY/8088SJE0RFRVG2bFnZCOLGjRuyuALJ\n/r1EiRKKuq6LFy9Sp04dTCYTW7dupXJl5bU/OTmZgwcPotPpCA4Olt3GDh06VPAHlPsebdinGwKM\nGzeOwMBAfHx86NGjBx999BHTpk0DoHv37owZM4YJEyZw+fJlp1Qle7Zv3862bduoXLkywcHB7Nix\nQ7Fdr9ezZMkSfH19+eOPPxBFkTVr1nDnzh2+/fZbXnnlFXns5s2bGT16NFarlZYtWzJ9+vRCvU8V\nFZX/JJOADUA5QRAWAY2Bl//RGak88oiiSKNpW2haJYiFr9THklOwwLJlzui1rkVOpsnKY8U8uJme\nTeIdI9VKFXHa7oinXiv3rRrVNsRpe5CfBzXK+HPwf20K98ZyebNtVdrVLK2mCqo8cqgCC4iNjVXc\nmIPkEla7du1CH8NVL6zp06c7FX471iwtW7ZM0RDYHntnQkdBA3D+/HnF8muvvcbNm1I+dZ06dZwa\nFX/zzTeyE+DcuXMpV64cI0aM4PTp0/KYsLAwatSoIVtAAzRv3pwvvvhCjsoBFClShOvXr5OZmYnR\naKRSpUpYLBYMBoOTu9jPP//Mzz//7PI9OrJlyxa2bNnCl19+ybBhw3j66byUgqZNm7Jz507ZQOPY\nsWPodDpZZFapUkXxc0xNTZXF4+OPP644z+3bt7l8+TIGgwF/f39KlnTdKFFFReW/gSiKGwVBOAg0\nAATgdVEUb/7D01J5xEnNkq6VO09Lv4pNqxRn8e8X0WoERc8pe4xuaq9A6oFlsuRQsogHZ26ks/KP\nK7SoWkIxJjNbEliDmz/O19vPAVIEK8jXw20aX5Cvc1SrMPh76WlYKfCe9lVR+TejmlyAU1Pb5hzk\nXQAAIABJREFUF198kVWrVjFy5MhCH6N8+fJUqFCBkJAQcnKfQGVmOtc8f/LJJ4pl+0a/juTYPckK\nCgqib9++iu2bNm1SLDvWTBkMBvbt28exY8c4e/asQjDqdDr27dunEFcjRoygUaNGCnEFUlQpPDyc\n0NBQunTpQlpaGhqNhhIlSlChQgVGjBiBwWDA29sbg8FA27Zt+eSTT2jdurVTOqQNeyMRjUbj5A5o\nE6n2UcSYmBhCQvKerDn2wXIUr/bncOwXFhsbS2hoKFWrVmXYsGEu56iiovKfoznQCngKUHOWVP4W\nskxWt46A19OkHlN+uT2jRFGkuJ8Hpf09yXZj026LQLkqAbel/zWrIqXNB+WaUWw/lUTvb38nJ0ck\n02ylQqA3A5vmPXj00Ofv+BdUSFMLFRUViQcawcp1WJoBaIF5oihOc9jeGXgPyEHqITJSFMVdudve\nAAYg5csfBfqJomjM3TYcqWGkFfhFFMW3BEGoR26PEaSnk5NFUYwpzDzthdCwYcMUjnS2nk0WiwVB\nEKhRowZarVYRzQFwVbBs3wMHJFtzR3t0rVaLXq93Shv86KOPGDx4sLxctmxZ5s+fzw8//CCvCwkJ\noVmzZlitVnr16iU7C9rmotfrCQ4Opnbt2rIldJ06dcjIyCA9PZ1JkyYpzhkYGOi0zpFVq1Zx5swZ\nnnzySXmdvdNiTk4OGzdupESJErLjX6NGjTCbzdy8eZNly5YhCAJ6vV6uHytRooST0GzQoAFWq1Xh\nRqjRaHj66ac5deoUANWqVWPChAkMGDAAvV7vVIdlS1EEnCKUtkgfSFFEFRWV/zaCIMwCKgO2J0iD\nBUFoLYria//gtFTuM28sPcQTpf0Y1KxSwYP/Jmq/txGdVuDo5Einbbdy+0p5GSSBYzTn4KnXYNBq\nXDoAAmRmSyIqy4Vos4kvHw8dgT4GjLk1WIMWxJFtySEt20KWyYK3QYefXZ8qD13+z9s9CxBgKioq\nSh6YwBIEQQvMBNoAl4H9giCsFkXRvgBnM7BaFEVREIQw4CegmiAIZYERQHVRFLMEQfgJ6AnMFwTh\nKaAzEC6KYrYgCLbY9zGgriiKFkEQSgOHBUFYI4pigZ0wn3nmGcqUKcPOnTsxGo3MmjWLRo0aUbt2\nbW7duiULgcDAQGrVqsXmzZvR6/WsX7+eVq1auT1u165dqVq1KgaDgU6dOlGzZk2nMT169KB79+5E\nRkbKEamxY8cyZswYl8ecOnUqiYmJmM1mihQpItupN27cGI1Gw/79+7FarXJj5Bs3bpCYmAhAyZIl\nZfEVHx+vOG63bt1o1aqVQmC9++67zJkzB29vb86ePSuvf/XVV1m/fj1Fi0qWrXq9Hp1Op4gg2UeM\nXFk85+TkcPv2bfR6PXq9ns2bNzNkyBBEUeSZZ56hcePGiqbJHh4eBAQE8NlnnzFz5kxZkE2ZMoWo\nqCgGDRrklOZnn1bp2K/LUSCrqKj852kJPGHrVSUIwg9A/g2+VP51xPxxhZg/eGgEVqrRLAkhN75Q\n6bliyZArcIxmKwatBg+d1qVBBeTZt1+7k+W8LVdgeRu0eBm08rLNkyIj20JGthVvg1bRp6qom75W\niwbUJ/5aqsttKioq7nmQd5n1gDOiKJ4TRdEELEESRjKiKKbbNWb0QdlyQQd4CYKgA7yBq7nrhwLT\nRFHMzj3Gjdz/M+3ElKfDsfKlWrVqvPjii/j5+TFv3jyGDx8uR1/sa6tMJpOcumY2mxWRG1d069aN\nyZMn884777gUVyA1yu3YsSOlSpWiSZMmNG/enBo1arg95tixY5k+fTozZ84kMDAvr9le0Gi1Wjw8\nPNBqtU59vGzYDC5sBAQEEB0dzdq1a7l06RIdOnTgnXfeIS4uThFJA9i7dy+TJ0+Wl5ctW0bz5s3p\n3Lkz5cuXZ8OGDQVGhTQaDf7+/nh7e6PX62nXrh2zZ89mzpw5PPPMM07vKTs7m7fffpsFCxY4RQYn\nTpzIkiVLnM5h31Ns7Nixim0vvvii/Pqv9jJTeXQQBIGXXnpJXrZYLBQvXlz+nXVHXFzcPffNsmf6\n9Ol4eno6NQ0uLPnNo0KFCorI7t2wcuXKfM1rHhLOAPa9LMrlrlNReWBMXXdCfu2qrYsssHIb+ial\nZRPk64GH3n0Ey9YoePeZZCdHQNuyt0GLt0Er11vZ2BR/nYspmXh7KO9fdFrXt4ONKwcxoOnjLrep\nqKi450GmCJYFLtktXwbqOw4SBOFZYCpQAngaQBTFK4IgfAJcBLKAWFEUY3N3CQGaCoLwPmAERoui\nuD/3WPWB74DyQG9X0StBEAYBgwCnvlH2jXQ///xz2rdvT9WqValWrRoeHh74+fkp/kA63ug7smDB\nApKTk9m3bx+hoaGUL1+eiIgIuY4oMTGR/v37y+NtToSTJk2iQ4cOTiLIkR49elCvXj00Gg1ly5Z1\nOSYwMJArV644ia2AgADmz5+Pl5cXn332Gd988408vl69eqxYsQKdTsfevXt56623nI47Y8YMvv/+\ne3Q6HdWqVZOjVMWKFSMy0jkNIj+sVisZGRls3LgRLy8vOnToAEhCMTIykl9//RWQ0iafffZZlixZ\nojC/sI115MyZM3Kk6tdff+XAgQPUqVMHAF9fXwYMGECpUqUoXbo0oigW2nZW5dHFx8eHY8eOkZWV\nhZeXFxs3bnT73bOnbt26TunB+WGLQDsSHR1NREQEK1asoF+/fnc193uZR2FZuXIlzzzzjMJp9CHE\nD4gXBGEf0gO4ekCcIAirAURRzL9xn4rKPXA2Ke9BX5bZirdB+b1OM+ZFsERR5GJKJk2rFOfq7Sy3\nNVgZ2Xm3Nq/MjyN6UIO8c8gRLB3eBp1Ts+KJq6T7nNCy/gDMeakOKRnua8FVVFTujX88T0oUxRhR\nFKsBXZDqsRAEIQAp2lURKAP4CIJge2ysA4ohOUGNAX4Scu+MRVH8XRTFGkAEME4QBE8X55srimJd\nURTrOtbsrFu3Tn59/fp1li9fjoeHB/Hx8Rw6dIidO3eya9cucnJyMBqNiobAFy9e5MiRI8TFxcnu\nf5988glvvvkmS5YsYfz48bz00ktUrVpVju44pukdP36cy5cvc+7cOacUtkWLFjFkyBAEQeDxxx+n\nR48elCtXjmbNmtGkSRMqVqzI1atXmTlzJp9++ilz50rlaBqNhjJlylCyZElFxMtgMNC3b1+ef/55\nRfpcVFQUxYsXl8WjK+Hi7+/P4MGDSU1NJSUlhXPnzsnbbEYbcXFxrFixglWrVnHp0iXF/ikpKQiC\nIP/7/PPP8ff3p1u3bjz99NM8/vjjBAcHExcX59SXy2Kx0KFDB44cOUKVKlXk9a5cAG3Ht+Hpmffr\noNFoGDt2LP7+/uTk5Mgi7kHx3XffMXLkSK5evVrwYJWHmg4dOvDLL1LzzejoaNnVEqRG4Q0bNuTJ\nJ5+kUaNGnDwpNfPctm2bHOVKSUmhS5cuhIWF0aBBA44cOQLA5MmT6d27N40bN5Z78dlz9uxZ0tPT\nmTJlisKIxmq1Mnr0aGrWrElYWBhffvklINV8NmrUiPDwcOrVq0daWppiHsnJybRt25YaNWowYMAA\nxcOjH3/8kXr16lGrVi0GDx4sR5N9fX0ZP3484eHhNGjQgOvXr7Nnzx5Wr17NmDFjqFWrliKd+CFj\nItAeya59MtAhd92nuf9UVO471py875VNTNljE0t6rYbLt7K4kZZNeDn/3AiW9L3bcSpJkS5oX3v1\n27lkTiZKbsU/7Emg25zfAPDxsEWwpOPnOATPvD2ka3u7mqV4sb7yYbOKispf50EKrCtIKRg2gnPX\nuUQUxR3A44IgBAGtgfOiKCaJomgGVgCNcodeBlaIEvuQDDKCHI4VD6QDrvPycjlz5gwvvvgiH3/8\nMb/99pvTdld9sEC6cbel4Nl4+eWXCQ8PJyIigv379wPum/Haoj3169dn+vTpLtOLSpUqpXDWW7Nm\nDV9//TUg2bPbGhfbuHjxImXLlmXYsGGMHj2awYMHO6UjzJ8/n02bNnHlyhXFtueff97lPAHKlCnj\ntG7WrFl06dJFXq5QoQJ+fn5AXurdF198QdeuXenSpQtTp05ly5YtCIJAUFAQ1apVUxzP1vDYxvnz\n57ly5Qo7d+5k/fr1im1Wq5VvvvmGuLg4jh07hsVi4dNPP+XcuXNMnTpVMfbAgQOK9+nv76/YfvTo\nUcaMGcPw4cOZPXu228/gr7Jnzx5eeeUVZsyY4ZSqqHKPCMKD+VcIevbsyZIlSzAajRw5coT69fMC\n89WqVWPnzp388ccfREVF8c477zjtP2nSJJ588kmOHDnCBx98oOhld/z4cTZt2uTk5AmwZMkSevbs\nSdOmTTl58iTXr18HpJYLCQkJHDp0iCNHjtCrVy9MJhM9evRgxowZHD58mE2bNuHl5aU43rvvvkuT\nJk34888/efbZZ7l48SIgPfhZunQpu3fv5tChQ2i1WhYtWgRIdY0NGjTg8OHDNGvWjG+++YZGjRrR\nqVMnPv74Yw4dOqRowP4wIYri9vz+/dPzU/nr5DiqiIcAe4F1+Zazs7AtRVAjwO1M6Z6hjL8XHjoN\np2+kc/jSbfp8t0+RamgfwQK4cls67qTVUnRKrxWoUcZfimDlRrTMVmU0zNugmlaoqDxIHmSK4H6g\niiAIFZGEVU/gRfsBgiBUBs7mmlzUBjyAZKTUwAaCIHgjpQi2Amw2fSuRLHa3CoIQAhiAm7nnuZRr\nclEeqAYk5DfBO3fuEB0d7fJmpmnTpoSGhhb6zdqnC9rqtGwmEI7Yoire3t7ExMSwfbvztT07O1th\n8uDYB8u+Rxa4Nm04d+6cfLOTlZVF//79EUURjUZDZmYmH374IQsWLHB64rx69WpatmyJr68vERER\nfPDBB/KN4tChQ2VBdvv2bSwWCxqNhnPnzrF792569eoFKMXl7NmzZQGTnJwMQMuWLdmyZQuRkZE0\nbNjQ5ec0fvx4Rf+qUaNGMXv2bDnS2L17dzw9PRk1apT8GYwbN04eb+9MWL9+fYKDg+Vlx3RA++hW\nQYwdO5aYmBg+/vhjOnUqOKto4cKFitcLFiwo9LlUHj7CwsJISEggOjpaTme1cefOHfr27cvp06cR\nBMHlQ5Zdu3axfPlyQPoeJCcny9/nTp06OQkhG9HR0cTExKDRaOjatSs///wzw4YNY9OmTQwZMkRO\nKSxWrBhHjx6ldOnScpS9SBHnJp87duyQm5c//fTTBAQEAFKD7gMHDsj7ZmVlUaKE5CVkMBjkB0J1\n6tSRa1VVVB4GTFb3/aH+CczWHA5dui0vz9p6lm9fVqb+26JamSarPH+9TkPCzUwyTVbm7pAyROxT\nDTNNVlo/UZJN8dJDlo9/PUWTynkZOQHeBjz1uRGs3Josx/IvH4PaBlVF5UHywL5huUJnGPArkk37\nd6Io/ikIwpDc7XOArkAfQRDMSEKqR67pxe+CICwDDiLZt/9BngX7d8B3giAcA0xA31yB1gQYm3us\nHODVe2kiqdPpqF27Njt27Lir/SpWrEjNmjXx8PDAx8cHQH7C7Mhnn32GwWBg6tSpLntl2bDvg/XK\nK6/QuHFjWUA89dRTirGffuqc4WIfgbt69aoczQkODsbDw4PY2FiX6TydO3fm9OnTVK5cGQCj0Shv\nK168uHwjZx8RqlOnDuHh4bRo0QKr1crevXvp2rUrmZmZTlEokFIeDQaDXGfWsWNH1qxZ4zTOdtMH\n8Nxzz/HFF18o3p99FDEnJ4ecnBw0GimXPb8+WI60bds23+02jh8/zocffghIn5OromVHIiMjOXLk\nCFevXqVnz56FOo9KARTic3+QdOrUidGjR7Nt2zb5oQHA//73P5566iliYmJISEhw2wfOHba/HY4c\nPXqU06dP06ZNG0B6eFCxYsUH0sNNFEX69u3rFBEG6Ttnezjh2FBcReWfxr5m6VaGiQCfe2uOe7+4\nk6V8wLL5xA2sOSJaTd4DPlsEK9VolqNMeo1A0ypBnLyeRkKy9HDV9icvJ0fkeqqR8OCifPXikwxb\n/Afx11L5Ke4SOo2AJUfEN9d+3ccjz0XQEX9v1xk6Kioq94cH+ghDFMV1wDqHdXPsXn8IfOhm30lI\nufKO603ASy7WLwQWOq6/GypUqMD58+ed1h8+fJjU1FSMRiPVqlXD398fDw8PDAaDfLMxa9Ysp/3e\ne+89heOYPdOmTWPq1Kno9Xo8PT0VIqZbt27MnTtXEVWxpeS9+uqrbNu2jZYtW7Jq1SomT56M1Wrl\n6NGjiuPbek2JokiRIkVkR72nnnqK0qVLA7B79263n4W9OOnRowehoaFs3LgRnU5HbGwsERERCvED\nUgTJdkxBEORas379+pGQkEBaWhofffQRZcuWJSgoSFHEb//+QYooWSwWRRPogIAABg4cKH/Wnp6e\ntGvXjlGjRskmHjbBs2HDBjm6UL9+fWJi3LdEswm9whhd2EckbPb9BdGlSxdFSqXKv5/+/ftTtGhR\nQkND2bZtm7z+zp07sunF/PnzXe7btGlTFi1axP/+9z+2bdtGUFCQywiTPdHR0UyePFkRoa1YsSIX\nLlygTZs2fP311zz11FPodDpSUlKoWrUq165dY//+/URERJCWluYUGWvWrBmLFy9mwoQJrF+/Xu45\n16pVKzp37swbb7xBiRIlSElJIS0tjfLly7udn5+fH2lpafm+BxWVB43Rrk7pRlr2Py6w0l3UXC07\ncIkeEY85jUnNsmCxStcvvU7D6MiqzNt1Hn2uu5+Ya4x85XYWtzLN1HqsKE8+lncNnrDymPzaz1MS\nT156nVuBZTuXiorKg0GNESOl8p09e5bDhw/z2WefYTabefzxx+nevTsgpaKdPn3aab+0tDR8fX2d\n1lutVnbu3ElkZCQ1a9bk2LFjct2GIzZBMmrUKD777DNAarzrKF5sFClSRE5Lu3XrFocOHXI5zj76\nZR8li42NlYXNiBEj5IjQzJkzmTFjBtWrV8disSiepFevXp3q1aszfvx4uclvzZo1ycnJITQ0lEWL\nFjk1XxZFURYs33//vcs52tOrVy8iIiLIzs5m0KBBhISEkJCQQMWKFQEoV64cEydOdLpJ3LBhA5mZ\nmSxdupRSpUq5fM+///474eHhrF69mgYNJLelM2fOyBE6k8nEc889h9FoLNAZ0j5t827SClX+WwQH\nB7u0O3/rrbfo27cvU6ZMcXK6tIn3yZMn079/f8LCwvD29lY0D3fHkiVLFCY8gOyoOWrUKE6dOkVY\nWBh6vZ6BAwcybNgwli5dyvDhw2XHQ1ufPRuTJk3ihRdeoEaNGjRq1Eh2Va1evTpTpkyhbdu25OTk\noNfrmTlzZr4Cq2fPngwcOJAvvviCZcuWPVR1WIIgHCWfth2iKBbuSYnKQ8/p63lpdOnZ/0x0deKq\nY5Tw82BYyyp8EiuZ3MztXYdBCw8AkpCyJ9UoPbTLMlvldD69VoOnXouXXsuV29I1Z/eZZNYdvYZ/\nbr+q8oHe+Hq4voX7uJv0K21LETS6aEicZnTTmEtFReW+8EgLLIPBQIUKFQgICKBYsWKkp6fL9TxP\nP/20LLDc3XS7W9+jRw+5xiIqKoqjR49y5swZhcCKjIxk1qxZTJ48GV9fX8qUKUO7du3Q6XRue2Y5\n4q5ZbseOHRXLWq1WFlxWq1UWWJ9//jk9e/akZs2a+Pn58eqrrzodKykpiQ0bNmCxWGRxBXDsmPS0\n7Pjx4/Tu3Vu+mVy8eLFsdBEbG1toy/a+ffs6rbMXiZcuXXJyI7SxY8cOtmzZouhtZTQaEQRBjmgl\nJSUpRFelSpV49dVXFZFHs9lcoMCqXbs2Fy5cwGg0unRYVPlvY99bzUaLFi3kVMCGDRsqvidTpkwB\npNpDWzpssWLFWLlypdNx7HvLOWLv1GnD9kDG9tp+GSAiIoK9e/e6nWtgYCCxsbG4okePHvTo0cNp\nvf3779atG926dQOkRucPcR8sm4vQa7n/2zIdev0Dc1F5gLz07e/ya0cjiL+LBb9dAGBYyyqsPXIN\nQBFF0mmVWRL2Fum217rcFEJ/Lz2JqXnZHW8vO8LkTlKfzNL+Xi4FVr2KxQgpKZlOeRm05Ig42bC3\nfqKk2ttKReUB84/btP+ThIaGcvLkSfkmxL5m6ZdffpGjVrVr16Zp06Y0a9YMkOokDAaD20bDy5cv\nx2YBHx8fz4kTJ6hcuTJ37twhISGBs2fPsmjRIlJSUkhKSuL8+fOEhISwY8cOdu3a5WRN7o6nn36a\nAwcOcOjQIYoXL06RIkUoUqSIfFNnIzk5mYyMDIxGo6JxskajoWHDhrIDoNVqJTU1VZEGd+bMGfr0\n6aPo1+WIvQvi0qVL5dft2rUr1Ptwh5+fH4MGDXISnEWLFuXbb79VrHMUO7169XIyGHBc7txZ0fe6\nwDotkET5Y489RkhISKGf0qelpbFlyxZiY2PZtWtXofZR+e+wevVqxo8f79SwW+XvQRTFC6IoXgDa\niKL4liiKR3P/jQUKV3yp8q/jnxJY9tR+TDK6alIlz+hY79DQ91amSW4ynJwrhAw6ablobp2Up15a\nTsu2yJEnfy+9oparWinpOm4vumxOgddTlSn48/rWpWQRNQNDReVB8kgLLEds6Wg2bHbrP/zwAzt2\n7GD79u2Iokh6ejrZ2dmKep1Lly6xZ88etm7dCuS5/iUmJjJ06FBCQ0Px9/enQoUK7Ny5k8DAQIUz\n4Pfff09mZia3b992utFPT09n4MCBDB06lLffflteHxgYSO3atQkKCiIpKYnU1FRSU1Od7Mj9/Pzw\n9vbGw8PDbY1Rhw4d0Ol0+Pv7K2pKChOlsRXeA06i46efflKk1RXEpEmT5P5VXbt2ZdKkSU4phu3b\nt6dVq1aK89q7DdpwjPA5Gg60bdtWTmUURdHpc3OFKIrcuHGDK1eucOHChUK9p/Xr19OqVSsiIyPl\nqKjKo0OnTp04ceKEUzsClb8dQRCExnYLjVCvgfly61/cgPZ+pwieTEzjt7PJ+Y4ZtCBOfm3NESlX\nzJvygd4E+eZlRujtIlhGs5XkdBOPF5dS8neeTsodI/1ansjtb1UuwFvex+Y66OepfMAbUUGKkIcF\n513H8gRWtrwuQDW3UFH5W3ikLy6nTp2iWbNmzJs3j8zMTCpXrsxzzz0nb3fXB8sVX375JY0bN6Zl\ny5ZUrVpVjups3boVQRDklDrI64M1adIkEhMTnWojTpw4gV6v5/XXXwekeqJ58+YxZ84cl/VMJ06c\nUCw7prm1atVKFi0tWrQgLi4OR+zfq73wc2zGDPDBBx/w1Vdfycv2DX+nTp1Kenq6bFHfo0cP9u7d\nS9u2bRXNhd1hE7UAO3fupGzZsnTs2JHRo0fL66Ojo/nmm2+IjY1FFEXmzJnD6tWrGTlyJElJSfI4\nx7SqgtL/CoPJZKJkyZIEBwcr3nd+2Ds8JiYm/uU5PMoUxrVR5d/NA/wZ9wdmCYKQIAhCAjArd91D\nzbU7WUR+voNzSc7pqYUlKS2bCmN/YfeZwhvr7jydxJPvbZRv+h92bGJwQBPpQen9jmBFTt/BC9/s\ndbv9Zno2scfznINvZ5owmq146pQPKTV217/T19Ox5Ig0rBQIwN5zKUBeiqCNW5lmSvh5yK899Rqn\nSJglN6U+wDsvS8Ur14p9wzEpVfHVFpX4dWSzQrxbFRWVv8ojLbDS0tLYuXMnAwcOxMfHh7Vr1/L0\n008zbNgwBg8eLJsgFAb71LuTJ0+yefNmtm/fTmxsLNOmTVOMtdUWeXp6yjfrjlgsFr744gu2bt2q\nsEJ2lZZo67sFUoG6oyjasmWL/Hr79u2KBsY27E0tFixYIJ+zYsWKikao33//PePGjeO1117DarVi\nNBoVtR8GgwEfHx9FD6q5c+cWul+OLQ3TnsTEROLj4xWfsf17+PLLL5kyZQozZsxQCBj76JutgB/g\n4MGDBAYGUr58+XybLLvCXoiazeZCpRXaG3PYvweVu8PT05Pk5GRVZP2HEUWR5OTk+24gIwiCBqgs\nimI4EA6Ei6JYSxTFg/fp+KMEQRAFQQgqePTdMWvrWU5eT6Plp/fWC/lmejYR70sP8X6Kc13H6oqj\nV+4AsOu0a1F2J9NM19l72Hbyxj3N636zI1cI1n9cEisZbtzzHhQ307MVy7cyTWSZc/DMjSItHypF\nsO0bD9/Okq6Tjwcp2zPYUgRfrG+7bokMbSFlh1xMyaCIZ9516ONuYczrU5e+jSoQ5Gsgskae2ZO3\nXjr3ykNXAegQWpoSamqgisrfwiNtcuGITqfLt9YoPypWrEhISIhc4J6cnEzDhg3lG/IhQ4bw9ddf\nI4oi8+bN4+DBg6xZs4YyZcpQtWpV2rZtS2xsLAEBAbJdMkgW8REREcydOxeLxeLyxiM4OJghQ4Zg\nNBoJDQ0tMK3PPspj44cffmD58uWYTCZiYmIwm82ymLMXePYCQ6PROEWFmjVrRkpKCpmZmXTq1Am9\nXu/SadEdvXr1UlhR26hRowa3bt2So3/279FWQwZ5DZhNJpPCJMNeCKWmppKSkkJKSgoVKlQo1Lxi\nYmKYNm2ak538woULefnll/Pdt3Xr1litViwWC5MmOXUeUCkkwcHBXL582eXvr8p/B09PT5cPnf4K\noijmCILwFvCTKIp37uexBUEoh1TLdfF+HteG+S82zz1+Na8pva+Hjgpjf2Fen7q0rl4y3/1sVt+p\nLqzGAU4kpnLgwi1G/3yYuAltXI653+TkiAiCc6N4yEsJDA/2R68V7muKYE5OwQ91HN0BM03W3AiW\nJJYqBEppfvbNkG1RttL+SndcW3SqY1gZFv9+EWuOKIuqTfE3qF46r61D97rl5NeOPwdbiqANx7RC\nFRWVB4f6bbPDXUrg/v37ZRe6xx57jODgYLy9veU0OJAaAc+ZM0ex35w5c4iMjCQkJIR3331Xsf3g\nwYOK2qQNGzZw7do1SpQowdtvvy1HhTIyMvD19WXgwIFO89qyZQuDBw/GarXy1FNPubUNCGtGAAAg\nAElEQVRDL1asGCkpKfJyaGioy/duL0jsBczYsWPp06cPixYt4vLly0yePFnuiVWnTh1FBOv48eN0\n69aNpKQk5s2bR/HixZk9e7biXG+++abLeYJkx26LUEyYMEGOVB09epRVq1bx0UcfYTabFTb2L7/8\nMu3ataNIkSKylfTLL79MdHQ0ANOnT1dE4eyd0NLS0jh79ixms5mKFSu6TSO0Tx2159q1a27fi40J\nEyYwYcKEAsep5I9er3eqk1RRuQs2CYIwGlgKyHnQoiimuN+lUHwOvAWs+ovHcYnJ8tcElr00OH9T\nettztp8tUGD5ekjXAHepdrcypejLzXQTl1IyKVfM2+W4+8HtTBPjVx7jlyPXMGg1nHq/vdMY2+dk\n0Gnw8dDd1xTB21n5W5ov/v0ik1YfU6wzWXLIMlkpltuLS58rtOx/nunZ0oO/0kWVD069ciNPNkFk\nsYoKcVSmaOGiULZImA0/T7X+SkXl7+KRFlharVaObKSkpGC1WomKipJv4G1CYNy4cWzevFmxb40a\nNRR1VaIoOtU2jRgxgi+//JKQkBCXqX32kSFBEChTpgwgNQO2WCx4e3vTsGFDt/PPysqSG/FWq1bN\n7bi4uDiFCcQbb7zhclzv3r3ltDf7+YaGhhIaGspLL73EwoXKXs47duxQCKygoCBMJhMhISEcPHiQ\nyMhIhg4dSmxsrGxN3bhxYwpD586dZYG1adMm+vXrh06no1atWkycOFEe58qdzf6zHTlyJGPHjuXH\nH3+ka9euREZGcv36dTIyMggLC5NTQY8dO0aNGjVczsXLy8ulWUerVq0K9V5UVFT+cWy+86/ZrROB\ne/arFgShM3BFFMXDBTUpFwRhEDAIlCnLNrJMVtYcvkr3usGKCI27CNK9YMuu1eS2sMhvzrZAi9VN\nSm5KRp7oiFp7nG/61L1v83Rk8uo/+SXX8tzkIqL3x8VbxPxxBcgVWAadIoI1eGEcpYp48m7nwrVA\ncSQlIy/9z2LNQWdX/3Qj1cg7MUfl5VdbVGLWtrNkW3JITs+mSkkpg8PmFGi2a/BrE4GOjn5euZGn\nMkW98DZoGdkmhCJeeeJoUkfX1ylHHOu03PXNUlFRuf880t82Ly8vqlatKouJW7duySlclSpVkgWW\nK3HkmKpnH/2xx2YN7lh78+KLLzJ69Gi2bduGXq9n0aJFtG8vPZV75plnFNbn7rCPMuVXC1SxYkXO\nnDmD1WpFq9VSrlw5l+O+++47p3Wpqan8+OOPWCwWbt4suEC6ZMmSciStXbt2cjSqoDoyV9i/J7PZ\nzNq1awHXvYgcEQQBnU4nn9doNMp1YXq9nhIlSgDSZ3P06FGnOdojiqJTamBsbCx169Z12xBaRUXl\n4UIUxXsKfwqCsAko5WLTeOAdCmn1LoriXGAuQN26dZ1Uy4cbTjB/TwIlinjQomoJeX1Ccp7pkNma\n43TTXIjzyq+NFulv6r6EFJbsv8QL9ZyFng1bpMVdepwtggWQfh9FoCvir6Xlu/3ZWXvk1watBl+H\nCNavf0rmE/cqsLJMedf3LLMVP7ufQUJypmJsm+olcwWWlaT0bFk8GbQaBEHa34ZNBLpL3SvmY+DY\n5Eg0GoE/r+ZlthY21c/+dyU4wMspoqWiovLgeKQFVkBAAK1bt2bMmDEEBATI9TsAZ8+eJTExkVKl\nShEREYFGo+Hw4cNcvXqVkiVLEhSkrGUWRZERI0Zw8eJFRRPRN998kzVr1rBlyxYyMjLIysoiJycH\nb29vunXrJosF+4vgW2+9hdVqxWAwMGnSJLcF302bNuXkyZNotVqFSYUrCtOzyWg0kpycjNlslmuT\nkpOTee2119zuY1//BDBz5kxFCuLhw4cJDw9nwYIFZGZmYrFYnD47R/bu3ctXX33FlSvSE8nnn3+e\nn376Sd6en7vj3LlzSUxMpFKlSly7do3XX3+dxYsXA65FaLly5cjIyECn0+Ur/DZv3kzLli3l5aJF\nixZaXJlMJtavX4/FYkGj0fDss88Waj8VFZX7iyAINYHqgPxHVRTFBfntI4piazfHCgUqArboVTBw\nUBCEeqIo3rVd6I006SGOY+2QfQ1WapaZQN+C3VCzLVZ0Gg1ajUC2XUraDTu77nErjroUWLbIVnau\nGFt/LNFltMvewt3L8GCbrqdkFs4uXiOATqvBx0NLRvb9M7mwCVOQIo32qXbnbyof+NlEzI5TNzFb\nRYrluvppNAJFPPXcsRem2Rb0WgEPnZbNo5rTyoWRiSbXUdDe2KKwQsl+nIcqrlRU/lYeaYF16dIl\nPvzwQ7p3705gYCCBgYGK7VevXqVUqVK89957GI1Gvv76a3x9fenfv7/TxSYxMZEOHTpw7tw5hcAC\nqYarQoUKct+kGTNmMGLECJdRnZycHD799FM5IjZx4kTOnj3L+PHj0el0VK5cmcmTJwOS819ISAjb\nt2/nt99+w9fXl4YNG1KnTp27/ix27twpO/g1atSI3bt3K+blSN26denVqxfDhw9XrHdsCjx58mRi\nYmIICAgotCBZunQpixYtkpc/+OADhcAKCQnhxo0bchTKnunTpxMfHw9Ihhlz585l3LhxJCYmOvXB\nAqmhdEEIgkBERIRiXZMmTQgLC6NEiRIFHmPr1q106dJFXlZd8FRU/n4EQZgEtEASWOuA9sAuIF+B\n5Q5RFI8C8h+hXOv3uqIoFt4L3X5+CLnHdTxP3us7hRRYNSb+SuPKQfzQvx5Gu4jJldv59yR8bfFB\nktKy+WlwQ1Yfviqvt+SIiv5NIIkeP08daUaLXGdkz7Erdxiz7Ag/DW7wl2t/UvOpgbIXoLaIjY+H\nTu4XZU9BaZHuOHMjT0RlOrgT/nY2GR+DlgyTlWYhxfHItWWfvycByGsSDFLjYPt6roxsCz65aXtB\nBfxcA+w+48JGMQ12426m/3t7mqmo/Bt5pAWWjR9++IHg4GACAwOpWbOmXFtlLy7mzZvHyJEjASny\n5Wh6sG7dOrkWqGjRoty+fVve9umnnyrqhGwCYM2aNZhMJiwWi+y0t2jRIkW6ocFg4ObNmyxduhSA\nevXqyQLLxq+//srUqVMByb7clcA6evQocXFx6HQ6atSoQe3atRXb7cWlfSqgY4TKRlxcHHFxcbz2\n2mtOroXh4eEcPnwYgJUrV3L06FGOHDmCxWIhLCyMJ5980uUxbXzzzTeK5W3btjFz5kw5kjZjxgxM\nJhOzZs2Sz7Ft2zbMZrP82YIUkbt16xYREREYjUZmz57NkCFD7uki6+hcZzKZXPYTc4XqHKii8lDQ\nDcmi/Q9RFPsJglAS+PEfnlOBZJqslPH35OodY4FmCzYsOSLbT0l/s7LN7k0yrDkiWrueS7Y6p6Yf\nbeFSSp4YM5qtTjf1qVlmygV4k2myuHQ6/GzjKeKvpfLcrD1sGNlMcZ67QRRFl3VXNj7akNcH0hax\n8fXQkXjH6DT26JU7hAUXdVpfEONW5NVY2af4Afxx6TbNQooz4ZnqeOu1ThFI+yhSUS89tzLzfobp\n2RZ8cntVFSkg7c/HLkro2CfLHfbntvxFN0oVFZW7Q40ZI/VRKlWqFPHx8QwaNIixY8cyatQoRYRk\nzJgx8mtXtUr2YsxeXAF07NiRr7/+GpBqt9599135dZEiRShWrJhco+V447948eIC65fsa5LcpQqu\nX7+e/v3706dPH9ldzx57gXX58mX5ddGiRalXr568/Ntvvyn2c2UJ36lTJ/m1wWBgxYoVvPTSS7z8\n8svExMS4nJ89jsYRAwYMcDrP/Pnz5dfbt29nxowZsuCyUapUKUaNGiXXTw0dOhSAUaNG4eXlRVBQ\nkPxzsREfH0+pUqWc3nfv3r0LnLc77FMay5cvr0awVFT+GbJEUcwBLIIgFAFuAK4LUu8BURQr3E30\n6r21x1l2IO9vbW4Aix/3XqDBB5vlvkpGs5XiuXU8hal1cnQddBQE9riLDNmLK2kOzjfnWWYr3gYt\neq2GNKPF6QbeP9eU4fSNdPacvbugniiK7E9IQRRFzFYRUYQxkVUZ0bIygqDMAvj9fJ4JpE3E+Xjo\nXNq0O0afAFb+cYWYPy4r1qUZzW7t8e2PcSfLzIXkTEoW8aRsUS8CfAz5puL5eiprwzKyLbLxhCAI\nfNwtjA0jm7rc1/7eoLAPCO2jjvn9HqioqNx/HukIlq2vjg2dTueU8mbjlVdeYebMmYBk3uDqWI40\nbNgQnU4n26ynpaUxevRoSpbMs8fNzs5WGGA41hctXbqU77//nujoaCwWi1MaI0h9lnJychBF8f/s\nnXeYFFXWh98zPTnCMOSM5DhkFEkKBlRQERFRxICKrHHNuuq66oqKKwrihwqiyCqGZSWYQFyR4BAk\ni0RBhhwHJnRPd9/vj+quqU4zPcMEBu77PPNM1a1bt+7tCVWnzjm/Q3p6etD5P/bYY+b2r7/+GnC8\nZs2aZi2um266yeeYVeAhNjaWIUOG4HK5cLlcREQE3kzuuOMOsrKyyM/Pp169eiHrUYXihhtuwO12\nm6IWYNQRs2JV4QqWk9W0aVPi4+NJT083wwubNWsGwL/+9S9zXf7CFhERERw4YCREnzhRkFTcsGFD\nM2zSijX0LxQXXHABSUlJOJ1Oxo8fX6IQFY1Gc9qsFJEqwLvAKuAUsKzwU8qO93/eCcCQTnV9/id4\nDYbMY7lUS4gmx+GkeqJxjwhHetza5/Apu0+IoD/Hc/N9Qs9CYXcGjpHrcBEfHUmOw8UPmw9y10er\neH9UQSh1ikX1bvHWw/RqVr3I63j5z6+ZPDRrLW8O70jfFsZ5MZERHMzKQynYcuAULWoZ0RXBZOwT\nom1BjakcR+Dn98CnawC4pmPBPbzdc98xsF0t3h4RGA1i/Tyf8qgH7jhcIETin49mfZ8WF2XzUV/M\ntrtIiCnob61pVRpYPVjv39K1kJ4ajaa0OacNLKtxBYFKf14yMjJo3749PXr0oE6dOrjdbv78808f\nNb7u3bsHnDdp0iSfcLiHH344oM+7777rIyIxbNgwkpOTGThwIGAo21WvXp0bbrgh4Nzc3Fx69OjB\n7t27sdvtZGdnh/XwHkqK/Ouvv2bbtm2mIeLl3//+N8ePHycvL4+mTZvy+eefFzp+gwYNeOONN8z9\nr776ytx+6aWXuPbaawvNExs+fDjDhw9n2LBhHDlyxPTQ/fLLL4Ah8241hK+66ipq167Nrl27mDBh\nAgDbtm0jNTUVgCVLlnDBBRcEvdbRo0dZvXo1OTk5VK9e3cdY8xqWa9asMYUy/Akn323cuHFF9tFo\nNGWLUuoez+Y7IvINkKyUWlcRc9mflWfefNfuOUF6/Sr4/+e2O904XG7cqiA/J5ziudY+P289HNT7\n5CU3iBFi5fK2tfh6w/6gY+Tlu0lNiDDrOy3cfNDnuPVWNOWnHTw5sBVghCWO/Xg1o3s3oXPD4Hm5\nGR4j80SOwzRoYqJsLN1+BIDpy/7gpWsMMaXzqieyeb+hMnjcE34XG20zPTZ5Pqp9Rb/g8/afv34/\n89btY2A7XwHJHIcLpRTHcvLZtM8Qxkq0GEn++WbWeIW46EhyLUbeKbuzTIv/WsM6+7UMzFnWaDRl\nxzltYFnJyMgIqbQ3adIkPvywIA/6yy+/pFmzZj4GlrWQr5dwvDUZGRkBKn3NmjXj2WefxWazmTWa\nghEXF8fmzZtN+fG8vDzi4uKC9r3wwgv5+eefARgyZEjQPhERETRv3jygvXXr1ub27NmzWbx4MQ6H\ng+uuu44+ffoUvkCMkMFOnTqxevXqIvta8eadgW9IROPGjRk2bJi536tXL3r16sWff/5JdHQ0X3/9\ntU+NMv+wyrS0NDPPLCsryzSS7rrrLp+f6ahRowB88rr8ycjIKNaaNBpNxSAiHwE/AYuVUpuL6l+W\nHMt24PXnhEqncTjd5HnkwasnGQZWOB6sPccKwvsOZOWRm+8i2hbBZ3efT7XEaC4ct6jgGkXk5XgV\nCIN5wfKcLmKibKz983jAMTDC56zkOJzER0eyPyuPbzbuZ/XuY2Q8FVSgkSMehcLqSTGmERgTGcHr\n16dz1cSfaZJmhMJnHs9l3vrAYu/xUZE4nG5cbsXjXxTY0DlhfH7WeY+duZotL/gWNc5xOHljwVYm\nLNxKsxpG7vRzg3xfWjZIjWf3UUO+3erBio+y+YTqZdud1E4Jr2hwSYgupqS/RqMpPbSBhRFiV5jM\nebA8I68ohZdgNZSef/55H+9NMD788ENmzpzJ2rVrTUPGqxS4ZcsWZs2axapVq0J6SmJiYkwDy+Fw\nhDSwvvzyS5xOJzabrVi1m/Lz83n99dfNcMB9+/bx5ptvAob0ezgGFpSsDpYX/xpjycnJQftZwwZr\n1aplhgBavVJbt24lOzubtLQ0unTp4mPAZmZmYrfb8Wf//gLF5XvvvZdu3bqZOVmhJPQ1Gs0Zx1Sg\nF/CWiJwH/Ar8pJSaUN4TcVpqS3m9Q/6ZmXany3wYr+YJ4wumjOePtV7SwZN2XG5FbFQEHeoHijvY\ni8jL6deyBj9sPhg0RNCe7yY2MrQ8+/ZD2T77f5u9kfHXdzBD+grznnlrbx3LyefKt4wXg/kuN63r\nJCNSUHz5qzUFSof39D2PIZ2NML+4aMOwyM138fO2I2afeev3cUOI2l95+S5io2ymF8yLNxfrlvMb\nMn3ZLuz5bn783fDWbT14ijZ1kqmR5Hsf+M89F3DLtAw2ZGbhtlhYcX6hi1YVwXD4Ysz57PD7XAvD\nK/FeUoERjUZTcs5pA6tjx478+OOPIR/YvXTt2pVTp05x/Phx4uLi+Oqrr3zyqMAQg3jyySeZNGmS\nmbvj/7DudDpZuHAhl156aUC7v9Hhcrm47LLL2LlzJ+PGjWPPnj2kpKQEzG3Lli1ERUURExNTqJFY\nvXr48e/+83j88ccBI4TyvvvuM495DTt/vvnmG77++mvy8/MZOHAgV155JcuWLSM/Px+n0xl0Hf44\nnU5ycnLIzc0lPj7e51gwA23fPt+3mL169eL++++nZ8+ePu1btmwhNzeX3NxccnJyaNiwIenp6cTH\nx/vkfEFBbtfIkSO56KKLyMnJoUaNGhw7doyxY8eSl5cXtiT+999/z969e7Hb7WZIo0ajKT+UUotE\n5CegK9APuBtoA5S7gWXFmxfkb+zYnW7Tc5QSH0W1hGj2nihcZh0w1QPrpMRyPCef6EghNqrAEFrx\nVH827D3BrdNW+NTI8qdmcgzt6hr/q1/55nc+vet885jD6SbzeG6AByzX4TJzkA6cyCPeYlBsP2SE\nenu9cIWJLniNEqt6377jedgihCpxUaYAiLfY8V8HNOfeiwtC2+M8ynz+OVeLt4YW2zia7aBOlTh+\n25fl0+41sLw5ZTkOp09uU1xUoJFZLTGGF69ux+BJS+jTvODeGxdt42Se0zTmTllELsKhc8NUOjdM\nDbs/QMaTFxMQf6rRaMqcc9rAioiIKNK4AkN9zqtA93//9380bNgwIJTO5XKRnp5OUlKSaWD16uWr\nBhTME+bFX6jhxIkT7Ny5k9dee42HH36YAQMGULduXS6++GL+8pe/mP1SUlK46KKLiI6OJiUlpUiP\nWXGxztnlctG/f3/mz59PXFwcx44dC3rO9OnT+eSTTwCjvtaVV14ZYCQVxaOPPmqKUbz22ms+x0aP\nHh3QXynFrbfeyrRp0wD47LPP6Nu3L82bN+eHH34wCxxba1ZFR0dz2WWXmaIlTz/9NC+++CJg5Mv9\n9a9/BQhaI+2ee+7h5MmT/Pjjj9x6662FerLmzp3LVVddZe43b95cG1gaTTkjIguBBAxhi8VAV6XU\nwcLPKnt+2nKYvi1qBBgcDqfbbIuNtFEvNd4n/C8UXiMiOS6KE7n5JMTYfIQXqifFkJZghByOnJpB\nxpMXM3/9PqomRBMh4HWujejekMbVjJd2VqU+wMw98vdC7c/Ko7EnfC/H4eT6LvVJiYtiwsKtXNjU\nKDDvzRGzevH8CXZo5PkNAWiclsAOj7G270Qe9VPjfIwrKDB68hxuqsYXGGRQ4Knyx2tgLd1+2KNU\naLR7PW7JHgPruTmb6NSgwBsYqshyh/pV+OPlK3za2nsM1tW7j9G1USqn7M4i5dlPlxrJOspCo6kI\nzmkDSylFRkYGKSkppKSkUKtWrZB9R48ezaxZs7DZbLzzzjsBx9esWcP1118PGHWyPvjgA1q0aBHQ\nz+VyERUVZXp3/vvf/+J2uwO8Mvn5RpiC17hYsWIFK1asCAjvy8vLY/ny5QCFeoZ++ukn1q5di81m\nM4vkhoN1Xi6Xi44dO7Jp0yYAdu3aZdbfsrJlyxZze8OGDWzevJkff/wRp9NJq1atAmTYg7FgwQJz\n+7///S+fffYZERER2Gw2n5wwMOpkffTRRzidTpKSkjh50kh4zsvLY/PmzaZASM+ePZk7dy6PPvoo\n8+fPNz9jLykpKTRs2BCn00n9+vWJjY31qZmVmZnJO++8Q35+PitWrDDPczgchRpYDz74oM9+sDBE\njUZT5qwDOgNtgRPAcRFZppQq2mopQ6Yu2ckzV7UOMFasIYKx0TbqVY1jY+aJYEOYWOXLD5+ym+IP\n/nk+Vg/Mtxv389ycTeb+QwOa85d+Tc3wMi9Ol5tIT06P1zN024WN+MtFTbl6kqGweuikncZpCSil\nyMpzEhtlY2y/pkxYuNUsuBtMyS/H4SRCCjxt7iClLLyGQtMaicxZu491e46z60g2jaoFRm7Ee4ye\nnHwnufkuru1Uly9XZwJGmGUoAwuM0MYejauxbIcRWuj10iVbxCvW7Sn4OQQbKxT1U+PNOew5lotb\nFbRpNJqzi3M6A9LpdNK9e3datmxJhw4dCu2bnZ1NVlYWx44dC5pvZTVEjh07xhNPPBHUwLr88stZ\nuXIlycnJfPPNN3Tt2pXo6GgfufM9e/bwwgsv0KlTJ9LT003DDYycKyvWh3X/Y1a++OIL7rvvPsaO\nHcuiRYtC9vNHRPjkk0/o3bs3s2bN8hHuCOWR69u3r7ndoEEDli5dypgxY3j44Yf5+OOPw7qutTDz\nNddcw3XXXce1117L4MGDA6Tht2zZwtSpU/noo4+oUqUK48aNY8KECfTr1y/AA1elShUaNmzIJZdc\nwv333+8zziOPPMIff/xBXl4ef/3rX4mIiCA7uyDefd++fbzwwgsBqoD+hpo/1t+XDh06kJ2dzY4d\nO3xk4DUaTdmilHpQKdUbuBY4AkwDgis0lCNeFblcP6U+u9NNnsfoiouyUa9KHHuPBxbPteI1Bq7t\nVJfDpwpCuPf5Fd21Glh7jvval1G2iADjCuDTlX+a215jMDEmkvT6VczaTVM90vOT/7cdMMQ8vLWY\nvJ4gfyW/SYu20fqZbxnwr/+ZbcEMLC9NaySSm+9i0MQlrNtzggZBDBSvByvX4SIv3+UTxpeVV/D/\n2lrryhtueCArj9opsaR68t688/Yp2mtxsRXHwPL+rE/lOTl00rh31ypDkQuNRlNxnNMeLK+nw387\nGFahhWC1n/y9X/7Fhr2MGzfOzGkCgobZHTp0iIkTJwLGA/k777zDyJEjsdvtNGrUyKdvamoqS5Ys\nIS8vL+i8vHiFKQDmzZsXYFwUxrBhw0zVvmPHjjFq1ChcLhdJSUlB+99yyy3ExcWRn59P+/btcTgc\n3Hfffdx7770+BYIL44477uDEiRMopbjnnnsK7WuVlU9NTeXRRx/l999/JzY2lszMTIYOHUpUVJTZ\nT0SCqjN+8cUXvPHGGxw5UpAUbTWO/H9HNm7cSFRUFFWqBCaPW7nyyis5cOAALpeLlJQUU8Xxn//8\np8/vgkajKTtE5C8YIhedgT8wRC8WV+Scrmhfm6/X78PudJHjcNKtcSrjh3ag1yuLDBVBZ4GBlRAT\nicPl9vEk+ZPjMV7a1U2hQWo8byzYGrSfy2Ig/N//dvgciw8R8matN5VjMfygQEb+m42GINAnGYYx\ndjzXgYgQbYvA4TKuaVVCPJiVx6vf/g74Fjd2FyJu2KyG730nWC6XN2wv1+Ey8sIsRtCW/SfZeSib\n/q1r+qgjHs12oJTiYJadGsmxDGxXi/nr93Pcoyro9cD5U5wcKq+gRbbDaRp3MYUIhWg0msrLOW1g\nWYURcnNDR4ns27ePXr160bZtW9LS0rjmmmsC+rRt25Z169bRrVs3XC5XyFwo/4f0Xbt2BfSxesPW\nrl1LnTp1aNiwYdDxBgwYYApIeOtEFUXLli3D6heMqlWrmnlOoWjfvr1PCOLy5cu57bbbmDhxYtAi\nzcGIiYnhySefDKtv586deffdd0lMTDTFPNLT0806Vjk5OSHVFe12OxkZGeTk5PDBBx+YUvZenE4n\nd9xxB4sWLfIZ48UXXwwIVQzFW2+9ZW5ba6EVlpOn0WhKnVjgdWCVUqpoOb5yoF3dFOat20fmsVxO\n5Tm5sGkiNT2hcHanm1yPTHtslI0YjwfF7gxtYL36nWGsxEfb6N+qpmlgvXNTJ59+jaqFDkvzd169\nel17Hvl8nU9NpV1HDM++15CpGu9bQ9LrJbJ6f7zbVgPL37N25JSdaokxuIrwYFkJVmjYa1DlOFzk\n5Lt8jMYxHxvlQv54+Qqf+l7Hsh0cy8nH4XJTMzmGvCMunC436zwy9MFUGCF4EeZQeI2xU3anOW+v\nh0+j0ZxdnNMGVnx8vPkQPnXq1JD9tmzZYgpL9OrVi7vvvjtov3bt2pnFi/1FEbz4i2rcdNNN2O12\noqOjzVwffwGE6OhoFi9ezIUXXhgwnteTlJubG1LVD+C6664zCwQHGydcli5dyvTp07Hb7fTs2TOo\n4IQ/3bt3Z8qUKaxatcpHhbC0SE5OplmzZmRkZJCfn8+mTZvMnysULqV+7NgxevfuHfTYjBkzSEtL\nY//+/ezYYbzl/c9//kPnzp196mUVh5SUFDMHz7/QtUajKTuUUq+JyIXAzcA0EakOJCqldlbUnBp6\nwtt+33+SI9kOYqNs5gP35v0nTWMrzmJgOZxuEvyiwTfuPcG3G/Yz85fdRv/oSKsMF6sAACAASURB\nVJ8Ctpe28Y2wiLRF0KxGIlsPnipyjle0r80jn6/j562HaVEria6NUnntuy3mvMBXBtztVjRJS2D1\n7uMMTq8LGEaE12OTbQkR3OsXnvjYF+toVTvZLDQcjLpVfF+WFZaDNeOXXShl5LD543YrHw9WtsPF\nmBmrAKiZHEvmsVycbkWOp4+/EVk7JZZ9J/J8QjGLIiYygsgI4VSe0wzntIYeajSas4dz+i87Pj6e\nAQMGcOONN/rUUArWz0tOTk6hYwZTnLNy2223+ezPmDGD2NhYnzyetLS0gPO2b98edLzo6GgaNWrE\nN998Q3R0dNA+YCj7ZWVlkZ2dHbLQcDhs3bqVKVOmMH36dBYvDi+6RkQYPXo077zzTthen+Iyb948\nHn30UUaOHMmnn35KixYtqF+/PvXq1fMpUnzXXXeRmppKjRo1+Pzzz82frb/iIxQoO1rDBGNiYkps\nXIERbun9Wc+fP7/E42g0muIhIs8CjwFPeJqigBkVN6OC/BuvV2XLgZPm/6s5a/eyYNMBAGKjI4jx\nGDOfr9pDpp9hcsWbP/PmD9vM/U4NqvjUV7L+D/Ty5T0XBLTVqxoXYIzFeYy+bzbuZ+g7y3w8NkkW\n4YenBrYCDAGHlLgo2tVN4eqOhoEVHRlhGlgHTxa8/LKq+4FRYPgtyzqCEREh/Ht0D3P//v7NAvp4\nw+5+/N2QrPdKrFtxuNw+a8lxuEy1xJrJMdhsQo7DxVJPHa2YyAgus3w2vZtVp26VOO69KDDcPBQi\nQmJsJNkWD5YuBqzRnJ2c0x6smjVr8t133xXZr1atWowaNYr4+HgaN258WtdMS0tj4sSJvPfee6xZ\ns8Zs91cRfPrpp3nhhRfMfatHxkqPHj349ttvQ3phvBRXJj0UViOuMI9ZefPnnwUJ2K+88go33ngj\nXbt25e677+bqq6/mxIkTxMXF4XA4zLw3h8NBfHw8NpuNjh07kpeX56MO6DWwpk2bxsmTJ011QX/c\nbneh+W8Ay5YtY9WqVezcWfCyvKi8P41GU6pcA3QEVgMopfaKSPBE0nLC3yvilTj38u0mI6cpNspm\nPoi/OP833ly4lfV/962naKVe1aL/31uNI4Dh3Rrwz2vbBfQTEZJjozjiUdnzCm1UiY/y8b5UiTfG\nO5GbT16+2ydnKcpmhAjm5bv4+Jfd2CIEl1txyOL96dm0WqHFh62cf1411j57CbFRET6hi16qJ/m6\n+M5vUo3ZY3uaaodgFEo+ZikqbA1drJEUy/aDRhjkz9sOExMZgYjwzs2deXr2emYs302N5BiWPH5R\nWPO1khAdyUm707ye9mBpNGcnZfqXLSKXicjvIrJNRAKy+UVksIisE5E1IrLSE76BiMSKSIaIrBWR\njSLyd8s5Qz1tbhHpYmmvJiKLROSUiEwszXXUr1+fadOmMWnSJJ8cmpIyduxYVq1aRUpKCvHx8cTG\nxgY8oF999dU++08++SSDBw/2McoA/va3vwWVSi8rmjRpQqtWrejcuXNQT1tFccstt/DII48AhjE6\ndepUFi9eTFZWFv/973/58ccfzeLHXiIjI4mMjOTOO+8E8PGuvffeewwePBgwQjabN29O69atTWGP\nmTNn0qhRIxITE3nggQcKndv777/PFVdcwb333svrr78OQKtWrU4rF06j0RQbhzJ0zBWAiISuzF5O\n1KkS52OIPHF5K5/j3lSkuCgbMZZ+J+2ln0LmLqQulde4ArhjuvES6rmr2vj08XqJTuTmk+f0rTUV\nHRnBvPX7mLTI8E55RTY27S1QUs3Ld7N6d/iijilxUSEFIuKibdxxYcHL0LpV46iW4GvM2p0unrQU\nMt5zrCA6pXpSjI/aoHUt3rDI4qgHWkmKjeRUnpPHPdcOZiBqNJrKT5n9ZYuIDZgEXA60BoaLiH98\n2EKgg1IqHbgNeM/TbgcuUkp1ANKBy0TEGxOwAUNm9ye/sfKAvwGnbwEFYeDAgdhsNqKiovjmm29O\ne7yIiAgOHTrE3r17faTAvfhLfx89epSvvvoqIEQxLi6OSy655LTnEy4xMTH89ttvrFq1KuwQwfLg\nsssu45VXXmHmzJlmm8vl4vDhwz79fvrpJ55//nn2799vFv99++23eemll6hTpw5t2rShadOmJCQk\nkJOT4yNLb8Vut7Nr1y5Tvr8wxowZ46MW+eKLL7Jp0yZ+/PHHEq5Wo9GUgFki8n9AFREZDSyg4J5T\nrjStnsiCh/oQHRlhija0q5sStGhtZIQQZYsIMCY27Q3+f+fTO3sEbQ+GV14dCpdGt7L9kHG/8g+7\n8xbiXb37GL/uPu4T+rbjUDZ2p5tl24/4nLPgN6PO8yWta7JqV/DC9W3qJDP33uLnDUd5PENeQ8zf\nILJbxDEaVos3jbu/DmhObJTNp16X1Qj2epwKM0gLIzEmkv1ZBREp2oOl0ZydlOVfdjdgm1Jqh1LK\nAXwCDLZ2UEqdUgWVERPwvFlUBt7s2yjPl/fYb0qp3/0vppTKVkr9jGFolToulwu3243T6Qwaz15c\n6tatS3R0NFWqVOHQoUM+x7Kyspg4cSLp6emcf/75PuGDhQk2lAfh1MGqSLp27crkyZOZMmUKd955\nZ9A5fvjhh9SsWdNHFTAhIYGXXnqJDRs2EBMTw/Dhw0lKSuK3334Leh1rzTGrMbxu3ToyMjLIyMgw\npfr966Zt3LiRtWvXBpXo12g0ZYNS6jXgc+ALoAXwjFLqzcLPKhviom2mYVUzqUDIIhhewyDG70H8\nuneWBu2fEl9g+BSV39OyVrIZ2ucsxGBoUj3Q2Zcc5xvW7g13fParjQAcsuRXdW+cChQYNSPP91XF\nvavPeSGv3b5eCm3rpoQ8HgqvZygt0ZiX/2dhd7pJio3kwqZptKlTID5V1ePpyrGEK1qNs/hoY91e\n+fbi0qZOsk+hYu3B0mjOTsryL7su8Kdlf4+nzQcRuUZENgPzMLxY3nabiKwBDgLfK6XC0yAvAhG5\n0xOOuNLfsCkMax2s0zUs/vGPf7B3715z398rZbfb+fjjj+nduzfLli3jn//8J88//zyvvvqqT82n\niiAtLY17772XMWPGMHTo0AqdSzCaNm1K7dq1OXnyJJs3b+bgwYMhJdr9+e677+jYsSMbN24024IV\nlQYjhHPfvn0cOXKE994zXoI/++yzdOjQge7du9O9e3cWLlyIUoo77riDUaNGmefOnDmT9PR0Zs+e\nXfKFajSaYqOU+l4p9YhS6mFgoYiMqOg5efOF/IUrvHgf7q2qgGAYAMG8KFZDbfmTF7P40X6FXv+r\nsYZ3yF/cwsq3DwTm+Cb75XA1r5lIbUvRXGutrck3dQYK8pzuu9j3PlYlPor3b+lCMJyuknmKoj1q\njF7DLyU+irdHdDLzzOxOF/kuRZRNaJJWIP3u/bx7NS0Igbcat72aGe2FSd0XRn2/wsj+hrNGozk7\nqHCRC6XUf4D/iEhv4B9Af0+7C0gXkSqe422VUhtK4XpTgCkAXbp0Ces/t1KKyy+/nL59+5KXl0e/\nfoXfsIpi0qRJPvv+YhEJCcbbQm9xYG9uUZ8+fUolB+x0aNiwoU/R4jORjz76iC+++AKAzz77jJUr\nV9KmTUG+wEMPPeTTf+7cuSxYsIDp06f7FIiOi4vD5XLRq1cvtm7dSlRUFAsWLKBFixbEx8f7CIcc\nPnyY559/3mdcu92OiDBlyhSys7MDiiyfiR5AjeZsQ0SSgbEYL/i+Ar737D8MrAU+rrjZQYtaRl6n\n1cD69+geDH93OQBx0V5PTEzAuSftTpIthlfjtATqWwQuUhOiSU0IrS4L0KBaPDteGkiEfwEsC1G2\nCBY/2o8HPl1jhvIl+4UIighXd6zL5B8NxVtrrS5viJ03r8k/XK96Ugw1LMIUHRtU4er0ujz71Uby\ngtS5Cgevt6y2RdZ9YLvaLPr9oHk831O02bp2r8Hz9JWtOZztYN66fT5hfO3rVeGnR/pRt2p4L+78\n8Q+t1CqCGs3ZSVkaWJmAVXKtnqctKEqpn0SkiYikKaUOW9qPi8gi4DKM/KtyR0R49NFHzfC4Z555\n5rQejg8cOGBu16hRg8OHD9OiRQuzLT4+nrZt27Jhg+9y//jjjxJf81zCvwZW69atUYXkFyxZsoQJ\nEyYEtOfm5vL+++9z6NAh82cWapx169YFtCUmFrwVDZbLtXbtWo4fP06VKsELWGo0mlLhI+AYsAy4\nA3gSEOBqpdSawk4MBxG5F8NgcwHzlFKPFuf8m3s05Kcth0xJczBU8uqkxLL3RJ7pkfJXxgPIys1n\n1a6CmlE//LVPiULYCzOuvNRPjefxy1sy9J1lQKAHC/ARkoi2FND1GhFZeU6ffS9JMb6PIhNv7MSS\nrcZjQJ2UkoXFn/J4yzrU8w0vNAs25xsGVrQtApvlMzueY7zwjLJFcMKjMrgh0zffrUEJvVfBCOez\n12g0lY+yfHWyAmgmIo1FJBq4AePtoYmINBXP3UBEOgExwBERqe7xXCEiccAAYHMZzrVIrDk3pytP\n3rBhQfz5wYMHgxb+/dvf/hbQtmvXrtO67rnCNddcw4MPPsiYMWMCZPX79u1LdHQ08fHxLFliSPYW\nFkI4ffr0AOXBYFjzqapWrcrBgwcZNGiQ2ZaYmMiff/7Jzp07qVOnDgCvv/46a9euLf4CNRpNcWii\nlBqllPo/YDiG6NKlpWRc9cPILe6glGoDvFbcMSJtEUy7tZtZlNfL3hPGi6JYi2rdeyN9w+iy8vI5\nYckFKo384MJIiLbkA0cFPj60rm3JZbJI0EfajAK7DqcbEaPwcM1k4576yKUtEBFEhJevbccr17Wn\nbpU4BqXX4S/9mnLvxSULi/fW3fIPwfOKhbzzv+043YpIm5j5cADnWbaHdS15zcNQ1CqhwajRaCoX\nZebBUko5ReQvwLeADZiqlNooInd7jr8DDAFGikg+kAsMU0opEakNTPcoEUYAs5RSc8HI2QLeAqoD\n80RkjVLqUs+xP4BkIFpErgYuUUptKo313HfffbjdbqKjo087tGvMmDE8/niAar0PVoPOy3PPPXda\n1z0X2LhxIz/88ANOp5PWrVv7hAbm5+ezdu1a8vPzyc/PNx9GLrnkEpKTk3nwwQcDxrPb7WRkZOBw\nOMjPz6d27doBfZRSpKamcvnll2O32+nbty/Vq1f36bN69Wq+++47XC6XT/5dKJVCjUZTapgWiFLK\nJSJ7lFKlJYY0BnhZKWX3jH+wlMY1cVhC5Pq3rsmFTdP4eZvh3cnKdRIbQqq8LEgsonhxxwZVzW3/\nmlqxUTZO2Z1E24yaUj3PS+PLXzOpmVxgcNzQrYFP/4cvbUFJ8X5u/iISXoPrf1sOUScllihbBAPb\n1eLLey6gaY1EH89cjybVSnz9UPRqVnBv+Pzu80t9fI1Gc2ZQpjlYSqn5wHy/tncs2+OAcUHOW4dR\nEDLYmP8B/hPiWKPTmG6heD1KXqn20+Gxxx4jMzOTt956C4DLL788oM+gQYMYO3asT77Wc889x333\n3UfVqlUD+msMDh48aEq19+nTh2effdY8NmfOHJ8cK6+h3KNHD3r06MHcuXNZuHChz3izZs2iWrXA\nm+yqVavo06cPDoeDDh06sGLFiqC5eTk5Obz99ttMnjyZHTt2mO3dunXDZrOZdbU0Gk2Z0UFEvDFe\nAsR59gVDtDY59KlF0hzoJSIvYijYPqyUWhGso4jcCdwJ0KBBg2BdfOjUoAqrdx/nz6O+Ikhv39SJ\n+ev28fiX68nKM2pOAUwb1fU0lhEeibGFPzJ4ZeYjI4RqfjljMZERnLIXyJJ7Q+PClYcvLvkecQx/\nGXSrR8vhUkR5DL5ODQLvqwkxZWu8dmmUWqbjazSaiqNIA0tEqimljhTV72ynT58+rFy5EoCMjAy6\ndj29m5n1QT9YHSsRYeLEiUycOJEqVapw4sSJgD6aQKzeRa93KC8vL2gYYJcuvuE2rVu3Jjs7m1On\nTvGvf/2L1q1bh8yPstlsZv2ywkJGs7KyTJESKy+//PJpi6VoNJqiUUqd1lOyiCwAgknsPYVxD00F\negBdMWptNVFBkjWLK7D02tAOXDT+f/h3TI6NoqdH4e79xTtp7ZEYb1P3dOzE8AjH4Jg5ujt1UgL/\n33oNG28umTf1qLD82NPBKyZRJd73hai1nliuw0mULXRYZXl6BzUazdlFOB6s5R659GnA18FuHOcC\nVpn2iIjTT11LSSlIvG3d2r/+si/WHKDT9Z6d7bRs2ZIZM2Zgs9moUaMGEPrn5R/qWRx1xOjogvwC\nh8PBunXr2LFjB/Xr12fv3r243W4aN25MamrwN5SvvfYa6enp2hup0ZzhKKX6hzomImOALz33xQwR\ncQNpQPg1QEJQt2ocMZERPDeoTcAxbxhbxh9HyfjDELlIjCl7UWCvcVKY8MQF56UFbY/1eLfqelT9\nIjwhhq6SiQQWyaOXtaBpjUT6tajh0x5jyR3LzXcVWodKC1BoNJqSEs5/5OYY0um3AW+KyCzgA6XU\nljKd2RlGTEwMsbGxuN3uUpHXfv7550lOTqZevXoMGDAgZL+8vDyef/5501sSbk2nc5UaNWrw559/\n4nA42L17N926dfNR8/Oyf//+gLbly5dz0003Ybfb6dmzJ5988gknTpxgw4YNxMbGUrVqVZo0aQJA\nixYtyMrKIjo6ml27dtGyZcuAN7HXXXcdU6ZM4aGHHmLTpk1888035rH58+ezfPnyoOGhGo2m0jAb\n6AcsEpHmQDRwuPBTwiMm0sbvLwT//+AfqpcUE2kWwC1rvhhzAY3TAgsPF8VV7eswYeFWs67V0C71\n+GTFn/RsWvp5TmAUBL6pR8OAdmuIoFtBZCEeLIBxQ9rRpk7xCx1rNJpzmyL/I3vezH0PfO9RTJoB\n3CMia4HHlVLLyniOZwRLly4t1fGqVq3Kiy++WGS/66+/njlz5pj7zzzzTKnO42zktdde48gRI6r1\n1ltvDTCw5s6dS82aNc399evX88Ybb/Dtt9+SmZnJ+++/z+TJkzl16hRLlizhiiuuAKBXr1789NNP\nAD75U3PmzAka5uJ0OqlatSrjx49n/fr1PgaWdwyNRlOpmQpMFZENgAO4pTyiPGwRQnRkhCnkULtK\n+SnTdW5YMq973xbVmbBwq5kz1rlhKn+8fEVpTi0s/HOyiqpDNaxr0flyxeWuPk3Id56TwUAazTlD\nWDlYwE3AzcAB4F4MufV04DOgceizNaeL1bjShId/HSww4vw///xzHnnkEe644w6GDh1qhgTu27eP\nqVOnmufcfvvtAAECFN6x/OnUqVPQdmttM6fTGXB8xYoVtGvXLqgyoUajOfNRSjkw7o/lTlyUzTSw\nWtUu+/yr06Vt3RSGdq7H7b0q9pEhPjqS5jUT2XLgFBCoMlgePHF5q3K/pkajKV/CiSlYhlGo8Wql\n1B5L+0oReSfEOZoyoF69ehU9hUrB008/TU5OToC4hd1uN4s1Hz5cEMUTTBLfyvnnn09eXh7NmgWv\nx2KtawaG1/HVV1/1UQpr3749x44dw+l0Mnz4cBYsWMDTTz9NkyZNGD58eHGXqNFoznHiomxmDaye\nIfKeziSibBG8OrRDRU8DgNsvbMxjX6wHoGq8zmvWaDSlTzgGVotQIQ8emXVNGTJv3jzGjh1L//79\neffddyt6Omc8e/bsYenSpbhcLmrXru1TGNjqRTp0qCAHvUWLFrz77ruMHj3aZ6y4uDi6dOlihgVa\nUUrhcrnM60ybNo158+Zht9sZMWJEgAzz5s2bmTFjBi6XiwULFgSdk0aj0YSLVxIdoGVtXe6hOERa\nhI9ionSotkajKX3CMbC+E5GhSqnjACJSFfjEW9xXU7YMHDiQnTt3VvQ0Kg05OTlmWGXTpk3N9j17\n9vh8jlaJ9Fq1anHHHXfwxBNPmJ6tQ4cOkZYW+q3wkSNHzGLCqampHDlyhFGjRgX0y8zM5N1332Xu\n3LmsWrXKbL/ooouIjIykVq1g6s8ajUZTOEkWoYuEclAQPJuwClvYghRM1mg0mtMlnP/K1b3GFYBS\n6piI1CjsBI2moghWBwvgpZdeYvLkyeb+ww8/HHBuv379OH78OA6HI2S+VbDrHD16lMcee4yYmBj6\n9+9P7969zWN79uzh73//e8D5Xbp0Ydw47QDWaDQlo0p8QamIhHJSEDwbGZxep6KnoNFozkLC+a/s\nEpEGSqndACLSEAJqH2o0ZwS1atVi9uzZREZGkpBQICXcv39/08Bq3bq1Tx0rL7NmzQr7OjabjYiI\nCGw2G/n5+bzyyiuAURMrPz8fp9NJUlJSyCKar7zyCs8884zPHDUajSZcUi25Q7FR5S/UUJnJyi2o\nLRlZASIXGo3m7CccA+sp4GcR+R8gQC/gzjKdlUZTQhISEhg8eHBA+zXXXMNDDz3E5s2bef3118Me\nb9u2bezYsYOYmBgaNWpkClokJyebHrIHH3yQN954A4Bx48aZnqnu3bvz6aef8uyzz+J0OqlRowb3\n33+/OXZaWhoffvghQ4cOLfF6NRrNuYnXgyUCKXFaqKE4HM/JL7qTRqPRnAbh1MH6RkQ6AT08TQ8o\npUqlkKJGU16ICOPHjw96LDc3l1GjRpGXl4fNZuOzzz7j6NGjuN1uJkyYwMSJEwFDnfAf//iHz7lL\nlixh0aJFQcd1uVw0bNiQ5557zmzbu3evaYDl5eVx/fXXh/RyaTQaTSiqeDxYY/s2RXQeUbEoaS0v\njUajCZdwA7djgKOe/q1FBKVUoLSaRlMJiYiIMMMDo6Ki2LlzZ1BJ9mBy7hdeeGHQMS+55BKaN28e\n0P7yyy9z8OBBpk2bdpqz1mg05zIjz2/Emj+Pc8sFjSp6KpWOC5qmMeGGdB+hEI1GoylNwik0PA4Y\nBmwE3J5mBWgDS3NWYM3Hys/P58MPP/Q5HhcXR5s2bWjUqJFPeyjP04IFC7j44otDXi81NdXc9uZu\naTQaTXFITYjmg1u7VfQ0Ki2D0+tW9BQ0Gs1ZTDivb67GqIVlL+vJaDQVgYjQs2dPlixZAsDPP/9M\ntWrViIiI4NChQ+Tm5hIZGcmIESN8zvv0008Dxho8eHCAIeZPKKVDjUaj0Wg0Gk3lJxwDawcQBWgD\nS3PWMnz4cNPAatmyJT/88AOAmduwfPlyMjMzqVevns85/kyZMoUaNQqqGGRkZDBz5kyzaPGQIUNo\n06YNgwcPJjIyMmgYoUaj0Wg0Go2m8hKOgZUDrBGRhViMLKXUfWU2K42mnOnbty+TJ08mNzeXdu3a\nme0tW7Zk8+bNABw/ftzHwArGkSNHfAys9evXM2HCBABGjRrFkCFDGDlyJCNHjiyDVWg0Go1Go9Fo\nKppwDKyvPF8azVlLmzZtaNOmjbm/YsUKNm3axJEjR2jSpAldunQJKnLhP0aDBg2YPXs2TqeTmJgY\ncnNzzePx8fE+/ffs2cP3339Pv379igwr1Gg0Go1Go9FUDsKRaZ8uInFAA6XU7+UwJ42mwvniiy9M\nOfUHHniAJ598MqCPV+RCKcWvv/5K69atOXz4MNdccw0AderUYd68ebz++uvk5ubSqVMn89ybb76Z\nGTNmAPD9999rA0ujOYdYtWrVYRHZVdHzOA3SgLOhXMvZsg44e9ZytqwDzp61nC3rgJKtpWFJLhSO\niuBVwGtANNBYRNKB55VSg0pyQY3mTMftdpORkWHup6WlFdpfREzjKTKy4E/K6XSSnp5Oenp6wDlH\njhwxt+12nd6o0ZxLKKWqV/QcTgcRWamU6lLR8zhdzpZ1wNmzlrNlHXD2rOVsWQeU71rCCRF8DugG\n/AiglFojIk3KcE4aTYWSnZ3tUzx47ty5pKSkMGzYsCLPjYuL45JLLiEpKYlatWqF7NewYUNatWpF\ndHR0QOigRqPRaDQajabyEo6Bla+UOuFXKd4dqrNGU9mxyqgDzJkzh927d4dlYKWkpPDtt98W2W/y\n5Mklnp9Go9FoNBqN5swlIow+G0XkRsAmIs1E5C1gaRnPS6OpMKxhfl6sxYi9PPHEE3Tq1Inu3buz\nYMECn2Pjxo3jrrvu4vbbb2fnzp1lNleNRqOpAKZU9ARKibNlHXD2rOVsWQecPWs5W9YB5bgW8Sbq\nh+wgEg88BVwCCPAt8A+lVF7ZT69s6dKli1q5cmVFT0NzBvLxxx9z0003mfuvv/46Dz74oE8fq1f3\nlVde4ZFHHjH3e/TowS+//AIYUu9XXHEFY8eOpXHjxmU8c43m7EREVp0teQAajUajObsp0oOllMpR\nSj2llOqqlOri2a70xpVGUxhWL9b1118fYFwB9O/fH4DExERuvvlmn2MbNmwwtzdv3sz48eM5dOhQ\nGc1Wo9FoNBqNRnOmEI6K4CIgwM2llLqoTGak0ZwBrFixgho1apCUlMQVV1wRtM+0adP44IMPGDBg\ngI+gxYIFC8jOzg7obw0zzMzMJDMzE7vdTsOGDWnQoEHpL0Kj0Wg0Go1GU+6Ek4P1MPCI5+tvwBog\nrLg6EblMRH4XkW0i8niQ4yNEZJ2IrBeRpSLSwdPeQkTWWL6yROQBz7HnRCTTcmygpz1aRKZ5xlor\nIn3D+gQ0miDMmDGDgwcPsn37dgYMGBC0T7169Xj66afp3r27T/vjj/v+qk+ZMoW3336b+vXrm21v\nvvkm3bt3p3fv3vz73/8u/QVoNBpNCRCR+iKySEQ2ichGEbnf054qIt+LyFbP96qWc57w3Od/F5FL\nK272gYiITUR+FZG5nv3Kuo4qIvK5iGwWkd9E5PzKuBYRedDze7VBRP4tIrGVZR0iMlVEDorIBktb\nsecuIp09z6rbRORN8VORq8C1vOr5/VonIv8RkSpn+lqCrcNy7K8iokQkzdJWbusIJ0RwleVriVLq\nIaBvUeeJiA2YBFwOtAaGi0hrv247gT5KqXbAP/AknymlfldKpSul0oHOQA7wH8t5//IeV0rN97SN\n9pzbDhgAjBeRcAxIjSaAAwcOmNsxMTHFOjc2NtZnf/To0YwZM4Zq1aqZx8S8kQAAIABJREFUbVZv\nlq6DpdFoziCcwF+VUq2BHsBYz737cWChUqoZsNCzj+fYDUAb4DLgbc/9/0zhfuA3y35lXccE4Bul\nVEugA8aaKtVaRKQucB/QRSnVFrBhzLOyrOMDzzyslGTukzGeWZt5vvzHLA8+CHLd74G2Sqn2wBbg\nCTjj1/JBsGuKSH0M7YjdlrZyXUeRBojHOvd+pXksvpQwxu4GbFNK7VBKOYBPgMHWDkqppUqpY57d\n5UC9IONcDGxXShVV9b418INn3IPAcUAnRGtOm/HjxzNr1qyw+w8ePJibb76Ze+65h7Vr1wbtU79+\nfbp27UrPnj2pW7duaU1Vo9FoTgul1D6l1GrP9kmMB/m6GPfv6Z5u04GrPduDgU+UUnal1E5gG8b9\nv8IRkXrAFcB7lubKuI4UoDfwPoBSyqGUOk4lXAtGakqciEQC8cBeKsk6lFI/AUf9mos1dxGpDSQr\npZYrQ2XuQ8s55UawtSilvlNKOT271mfyM3YtIX4mAP8CHsU3xalc1xGOh2cVRkjgKmAZ8Ffg9jDO\nqwv8adnf42kLxe3A10HabwD8Y6ju9bgwp1rcsWuBQSISKSKNMTxf9f3OQ0TuFJGVIrJSiw5oQrF8\n+XKqVDG84y+99BKffPJJ2Oc+8sgjfPjhh0yaNIn27dsH7XPnnXeSkZHBzz//zO23F/w5jR49mkaN\nGjFv3rzTW4BGo9GcJiLSCOgI/ALUVErt8xzaD9T0bBf3Xl+evIHxkGWt3VkZ19EYOARMEyPc8T0R\nSaCSrUUplQm8huFV2AecUEp9RyVbhx/FnXtdz7Z/+5nGbRQ8k1eqtYjIYCBTKeX/hrtc1xFOiGBj\npVQTz/dmSqlLlFI/n+6FrYhIPwwD6zG/9mhgEPCZpXky0ARIx/gDHe9pn4rxoazE+Ke6FHAFWc8U\njxpil+rVq5fmMjRnETVr1iQ5OdncD1YbqzAmTpzIiBEjGDZsGEuXhlc2buXKlbz33nvs2rWLW2+9\ntVjX02g0mtJERBKBL4AHlFJZ1mOet7yF13ipYETkSuCgUmpVqD6VYR0eIoFOwGSlVEcgG08ompfK\nsBbPC/HBGAZjHSBBRG6y9qkM6whFZZ67FRF5CiNU+OOKnktxEaO01JPAMxU9l3BUBK8t7LhS6ssQ\nhzLx9SDV87T5j98ew31/uVLqiN/hy4HVSikzIca6LSLvAnM97U7gQcuxpRgxpJqKQilwHIOY1Iqe\nSbHZv38/u3ebobsMGTKkWOcvWbLE9HrNmjWLG2+8kYkTJ1K1atWQ5zidTnO7SZMmxZyxRqPRlA4i\nEoVhXH1succfEJHaSql9npCag572sO71FUBPjKiWgUAskCwiM6h86wDj5fEepdQvnv3PMQysyraW\n/sBOpdQhABH5EriAyrcOK8Wdeya+6TBn1JpEZBRwJXCxKiiUW5nWch6GAb/Wo1NRD1gtIt0o53WE\nEyJ4O0bc7wjP13sYrsOrMH4IoVgBNBORxh5P1A3AV9YOItIA+BK4WSkVzBgajl94oOcX2Ms1wAZP\ne7zHZY6IDACcSqlNYaxPU1asug++qAZ7v63omRQbq8eqU6dODBs2LOxzjx49yrJly3zaZs6cWaSY\nhcPhMLejoqLCvp5Go9GUFh71rPeB35RSr1sOfQXc4tm+Bfivpf0GEYnxhOc3AzLKa76hUEo9oZSq\np5RqhPH88YNS6iYq2ToAlFL7gT9FpIWn6WJgE5VvLbuBHp7nNcFYx29UvnVYKdbcPeGEWSLSw/MZ\njLScU6GIyGUYIbWDlFI5lkOVZi1KqfVKqRpKqUaev/09QCfP31C5riOcuKcooLU3xtRj4HyglCo0\nhkkp5RSRvwDfYijFTFVKbRSRuz3H38Fw4VXDUPIAwyjq4rlOAoYa4F1+Q78iIukYbtg/LMdrAN+K\niBvD8rwZTcWyZaLxffNrUOeMUYkNi3r16vHyyy8TFRXlU+MqHGbOnMmuXYGaLDZbgfjRgQMH2LBh\nAw6Hg4iICLZv387BgwcZPXo0I0aMIDEx8bTXoNFoNCWgJ8b9c72IrPG0PQm8DMwSkduBXcD1AJ77\n+iyMB34nMFYpFRCefwZRWddxL/Cx54X1DuBWjJfklWYtSqlfRORzYDXGvH7FUI9OpBKsQ0T+jaGi\nnSYie4BnKdnv0z0Y6ndxGHlOwfQHypQQa3kCiAG+9zyTL1dK3X0mryXYOpRS7wfrW97rkAIPYMjJ\n/6aUamXZjwA2WtsqK126dFErV4ZV0ktTEmZ6ygjU6g8XfV+xcylHnnrqKV566SVzf+bMmbhcLoYO\nHWpKvn/66afccMMNAIgI3r/Dtm3bsn79+vKftEZzhiMiq7wv4DQajUajOZMJx4O1UES+pSBUbxiw\noOympNFUbp544glmzpzJvn37+Oyzz7jqqqsC+lhra1lfcmzYsIHvvvsOu90e9DyNRqPRaDQazZlN\nkQaWUuovInINRg0GgClKqf8Udo5G40u5FykvFX788Udmz55NZGQkvXv3ZtCgQWGdl5iYyLZt2zh5\n8qQp9e5PzZo16devH4sWLTLb7rzzTqZMmcKllxrhlG63Gyn/Au8ajUaj0Wg0mtMgXO3p1cBJpdQC\nT3JikqcAoUYTBpVTtXTlypVMmDABMIydcA0sMPKtQhlXAOeffz4//PAD1apV4+hRo0Zenz59mDJl\nitnHbrcTGxtbwtlrNBqNRqPRaCqCIlUERWQ0hiTo/3ma6gKzy3JSGk1Fk5WVxSOPPGLuF9fQmT59\nOoMGDWLgwIHMmjUrZD+rmMWIESN8jrlcFZ6TrNFoNBqNRqMpJuHItI/FUBXKAlBKbcVQ7NNozlr8\nJdW9YXvhsnnzZubMmcPXX3/NsGHDGDRoEMEEZXbs2MHUqVMD2keNGkVCQkLxJq3RaDQajUajqXDC\nMbDsSimzQI+IRFJZY740mjCx1sFKSUmhT58+xTrfv47VvHnzguZT2Ww26tSpwxVXXFHo+RqNRqPR\nhEJEqonIGs/XfhHJtOxH+/X9VkSSihhvj4gExLl72j+17N8gIu+V0hpeEJEHSmMsjaaiCScH638i\n8iQQ5yngew8wp2ynpdFULAkJCUyaNInIyMgS5UENHz6ctm3bmgWKrTWwAI4fP86kSZOYOnUq1apV\nw+12c//997N9+3aeeuopatasWSrr0Gg0Gs3Zj1LqCJAOICLPAaeUUq9Z+3iKqIpS6nQLU3YXkRZK\nqd9Pc5xSw7I2d0XPRaOB8Aysx4HbgfUYRX3nA6XytkKjOVOJjo7mnnvuKfH5rVq1onnz5syfPx+X\nyxUQHrhjxw6efvppcxtg1apVACxcuBCbzUbdunXZvHlzieeg0Wg0mnMbEWkKfIVR1LcjMEBEfgHa\nKqWOi8gcoA4QC/xLKRXO8914jOLTt/hd6wXgsFLqDc/+ZqC/Z+zZnjl0B5YDH2MUt60ODFdKeYuS\ndhSR5UA14J9KqamesR4HrvWM9blS6vlgawMyi/kRaTRlQqEGlojYgA+VUiOAd8tnSppS4dQOyD8J\nVTtU9EzOWWw2G5dffnnIY6HIzc0FYNu2bWUyL41Go9GcU7QERnqNGL9w9VuUUkdFJB5YKSJfKKWO\nFTHev4G/iEjjYsyhBXA9sBlDmTpPKXWBiAzBeJF/nadfO+ACIBlYLSLzgM5AAwzjTID5InIBcNB/\nbRrNmUKhOVhKKRfQ0D9+V1MJ+Oo8+Dod9i+s6JlQWetgvfXWW9x2223cc889/Prrr6U6dtWqVWnZ\nsmWhfbSKoEaj0WhKge2FGCAPishaYBlQDzgvjPGcGF6sx4sxh21KqU2eEL5NgPfhZD3QyNJvtlIq\nTyl1EPgJ6ApcAlyO4alaDTQFmnv6F7Y2jabCCEfkYgewRET+JiIPeb/KemKaUuKH/mA/UtGzqJR8\n9913TJs2jcmTJ7Nr165SHbtBgwb89ttvjB8/3qfNyiuvvFKq19RoNBrNOUl2sEYR6Q/0BnoopToA\n6zBC8MLhA+BijNI9Xpz4Pldax7JK87ot+258o6n8RdQUxlvaF5RS6Z6vpkqpDzzHg65No6lowjGw\ntgNzPX2TLF+aykLOnoqeQaVk7ty55naNGsWrTDBnzhwuuugievfuzauvvhqyX0pKirm9e/dun2PF\nKWys0Wg0Gk0xSQGOKqVyRaQNhrcoLDzq0m8C91ua/8AI50NEugH1SzCnq0UkRkSqA72AlcC3wO0i\nkuAZu56IpJVgbI2m3AiZgyUikUopp1Lq7+U5IU0Z4LIHth1dBb+/BenjIK4SK9YpBQcWQrUeEJVY\ndP9icNVVVzFnzhw6d+5Mjx49inXu/v37WbRoEQCLFy/mt99+C1rv6vbbb2f16tW8/fbbPu1Dhgyh\nRYsWJZ+8RqPRaDSFMw+4U0Q2Ab8DvxTz/HcxxC68fAbcJCIbMIQsdpRgThuA/2GIXDyrlDqAkXPV\nEljuyR87CdxYgrE1mnKjMJGLDKATgIi8pZS6t3ympCl13EEMrG+6GN+d2dDrszKeQBmWTfvtFVjz\nODS5FXoEGjCnw+eff87ixYvp3LkzERHhOHsLsNbRAlixYkXIvi1atCA1NZWjR4+abaHEMTQajUaj\nKQyl1HOW7W145NstbfUsu0El2/36BG1XSuUCtSz72RiqgcFIt/S7Kdj8lFJPhzgXpdTrwOuFjavR\nnEkU9tRoVSboWdYT0ZQifpLguHJ993d8WLB9shzKWLjzy27sjS8b33dMC348JxMcx0s0dHR0NBdf\nfDFVqgTUWiySSy+9lJdfftncj4mJ8Z1WTg4333wzcXFx3H///aZxde211/Lzzz8zePBgcnNzcTqd\nJZq7RqPRaDQajaZiKMyDVYZuB02Z4l9nz3nKd3+5pXRFsPDB0saVV3ZjRyVBfggDKu8QzK4HiefB\noPKVPK9Tpw5jx46lV69eOBwO4uLifI5nZWUxY8aMgPO+/PJLduzYwZo1awD49NNPuf7668tlzhqN\nRqPRaDSa06cwA6uliKzD8GSd59nGs6+UUu3LfHaakqH8vB6FGThuR9nOBeDk1rIb21aI4NG+b4zv\np7aX3fULITExkQsuuCDoscLqYFlrlOTnl6H3T6PRaDQajUZT6hRmYLUqt1loShflVz+pMCOqPAws\nx1EjTC+6+KF2p0XegfK9XjGIi4ujXbt2rF+/3qf9/vvvZ9u2baxdu5aoqCiUf7inRqPRaDQajeaM\nJqSBpZQq3cI/mvIjwINVSBhgcfOjsncZIYiJxSngDuTuK38Dy3nmlsdITExk3bp1QY8ppXy8WBqN\nRqPRaDSaykPxpNE0lYPieLCkGL8Cbif8txF81SQwz6tIKsBg8M89K0eWL19O165d6dixI3fffXeR\n/d1uNzExMSQlJVGzZk3tudJoNBqNRqOppBQWIqiprJz4zXd/1X3QIoTKfnEMrBMbC7bd+WCLCd3X\n30Dw96qVBUqB1fOTf7Jg2+2CiNB5T6XNqVOnWLlyJQBr1qyhR48ejBo1KmR/u92Ow+HA4XCQn5+v\nPVgajUaj0Wg0lZSwDCwRiQMaKKXKQdO7kuHMgcw5UL0XxNcpu+vk7oPvehqGUssHC+/7fTFU9aUY\nRodV7lw5gcIMLGfh+6WF2zKucoJEFexbxT1UPlB+BpZ/HaxDhw4V2t9uLwjj9Jd012g0msrGqlWr\nakRGRr4HtEVHy2g0ZxNuYIPT6byjc+fOByt6MmcqRRpYInIV8BoQDTQWkXTgeaXUoLKeXIWzYzr8\n+QV0mQQJ9YP32TIR1jwG1brDpcvLbi4bXoTsnbD6oaINrKKo2gmOrTa2i5ODZTWS3EEMptx9EF3V\nUPbzP15WtbDcFiPKZYcIi4FlDY10OwpXHCxlOnXqRKdOnVi92vicExISfI4rpahatSonTpwAYMyY\nMdx6661kZ2czZswYjh8/Tn5+PnFxcSQmJpbbvDUajaY0iIyMfK9WrVqtqlevfiwiIkLHPGs0Zwlu\nt1sOHTrUev/+/e8BZ78tUELC8WA9B3QDfgRQSq0RkWIqHFRSVowxivTmHYBLlvuGn3k5ZtQr4sgv\ngSFqpUmoWk+nS0R0+H39vUVWsnfDfxtCQmMYvCPweDCDrDSwGm6uPIiyGCNue/B+5UBycjLz58/n\n8OHD5OXlUa9evYA+XuMKYM6cOezZsweA/fv389NPPwHw97//nWeeeaZ8Jq3RaDSlR1ttXGk0Zx8R\nERGqevXqJ/bv39+2oudyJhOO2z5fKXXCr+3c+IfpyjW+H8kwwgCDYX1wL0vJc6tgw5rHT2+s3MyC\n7aRm4Z9XmAfr4P+M79k7A/uCJ0SvDLDOw+1X7yvf8pmVhxy9HzVr1qRNmzZ07tyZmjVr+hwTEbp1\n6wZAhw4daNq0qXksIqLgz1LXwdJoNJWUCG1caTRnJ56/bR36WwjheLA2isiNgE1EmgH3AUvLdloV\nTN5hyBjt23Zqh+++y254uP783NKWV7jww+lgNRY2jYP0l4P3K0p9Lv+Ub32o4uRGqUI8WAEhgeXk\nwbIqJlpzrlx5sP87y/XL38Aqinnz5jF//nwGDBjAL7/8wtChQ4mMjOT333/n119/JSoqitjY0g1r\n9KoTahENjUaj0Wg0mrIhHOvzXqANYAdmAieAB8IZXEQuE5HfRWSbiAS4XURkhIisE5H1IrJURDp4\n2uuLyCIR2SQiG0Xkfss5qSLyvYhs9XyvahlrjeXL7ckXKz67Z8Ge2b5tLj/vSOYc2DGt8D6lib/0\neihDyr+fPzl7fPeLY/iEChHM3g2/3OY3j3ISufAxsCwhgVl+eizlHCIYDmlpaYwcOZLatWszcOBA\nRowYwejRoxk/fjzHjx/n0KFDPPXUU6d9HZfLRbdu3RARIiIi+Oqrr0ph9hqNRnNmY7PZOrds2bK1\n9+vJJ5+sVZJxhgwZ0mjatGlVS2NOH330UZVVq1aZb84eeOCBOrNnz04qjbGvuuqqxs2bN2/997//\nvUZxzjt8+PD/s3fm4VFUWR9+b2dPCBD2fZVFECIQNhEBlRFcUUdEEBVUdBgdd2XmU8FlxmVARVEE\nN8TRERUUcUNFBUFZBGQLBBDCvoYl+9Kd+/1RXd3V1VXVlZAQYO77PHm6uupW1a3qQOrX55zfiXr2\n2WfrVsQcTjcSExO7nMzzXX/99c2Nn/+J8PTTT9dr1apVxyuvvLLMZTtPPvlkvZycHBWBqkTcRLDa\nSyn/DyjTk54QIgp4FRgI7AZWCCE+l1KmG4ZtB/pJKY8KIQYD04GegBd4QEq5SgiRDKwUQnzn33cc\nsEBK+axftI0DHpFSvg+87z93J+AzKeXvZZlzACsxUGpq1issbp05Ra0yMTvmGdebMZo7nIjwsUsR\n/PXm8LEny+TCKLCM9z8qwXT+kxvByszMZPDgwXi9Xpo2bcoPP/zgOH7JkiVceOGFREdHc9lll/HZ\nZ585ji8LR48eZcWKFYH3xcWnXjRPoVAoKpq4uLjSTZs2pUceWbF4vd4wJ1mdzz77rKbX6z3erVu3\nQoCXXnppb0Wcc+fOndFr1qxJ2rlz5/qy7puVlRX11ltv1Rs3bpyz3a2BkpISYmIsnkH+x4l0X2bN\nmrWjos711ltv1f3+++83t27duswPWNOmTat/++23H0lOTnbd1NTp91oRjps7NUkI0QD4BJglpXT7\nj7cHsFVKuQ1ACPEhcBUQ+M9OSmlMNVwKNPGv3wfs8y/nCCE2Ao39+14F9Pfv8y6a+cYjpnPfAHzo\ncp7hWEV13ESnvAXW6/N2gTcParTX3pfHDMM8vtQb6phnXB+2zlgnZhKKkSJedscOiWBlho89bvo1\nqbQIluG4Ibbspv8zynKdFYDP52PTpk0AbN26ldWrV9Oli/0XZYcPHwa0/8CioirWTt4sqJTAUigU\nJ5PRo2m6fj2JFXnMc84h/+232VXW/bKysqK6det29ty5c7ekpqYWXXHFFS379++f88ADDxxOTEzs\ncsMNNxxeuHBh9bp165bMnj17W6NGjUL+eM2dOzd53LhxTX0+H6mpqfkzZ87ckZCQIBs3btzpyiuv\nPLJw4cLq99577/6cnJyod955p25JSYlo0aJF0SeffLJ96dKlCd9//33NpUuXJj/33HMNZ8+e/cfj\njz/e8PLLLz8+atSoo07HHjp0aNb8+fNreL1eMWvWrG1dunQJeSi5+OKL2x48eDC2ffv2HV566aWd\nGzZsiDefPzk5uXTXrl3Ro0ePbr5z5844gClTpuyYPHly/V27dsW1b9++Q79+/bKnTp26+y9/+UuT\nH374oYYQQj700EP7br/99qNffPFF8vjx4xvVqFHDt23btvjMzMwyizk7Rs8d3XT9wfUV+ztS75z8\nt696u8y/I3v37o0eNWpU8z179sQCvPDCCzv/9Kc/5f3444+J9913X7OioiJPfHx86YwZM7anpqYW\nvfzyy7U/++yzlPz8fI/P5xPjx4/f++STTzaqVatWSUZGRkKnTp3yP/vss+0ej4cePXq0mzhx4q4L\nLrggPzExscutt9568Ntvv60RHx9f+sUXX2xt2rSpd8OGDXHDhw9vWVBQ4Bk0aNCxN998s35+fv5q\n4xyHDx/ebPfu3XGDBw9uM2LEiMMXXHBBrtXcvF4vY8eObfLjjz/WEELIm2+++bCUkoMHD8b069ev\nbUpKinfZsmWbp02bVmvSpEkNpJTi4osvPjZ16tQ9oEX4RowYcWjRokXVX3755Z2XXHJJrtU9U4QT\nMTwopRwADAAOAdP86XyPujh2Ywj5z2+3f50dtwJfm1cKIVoAXYBl/lX1/QIMYD9Q37wPcD3wXxdz\ntMZnIZTMAssyymUjwuY2gy/P1kTWkhHwTdey1yRZNe7N2wXb39eO6zQv6Qvur6fR6RGesswjkk27\nkbydoe9PRgQrrO+V8fwnodGxAfO3PKWlzl8SFRYWBuzY69Sp4zg2JyeHDz74gB073H0RVlpaSv36\n9UlJSaFTp06MGDHC1X4KhUJxOlNUVOQxpgi+8cYbKbVr1/a9+OKLO2+++eaW06dPTzl27Fj0Aw88\ncBigoKDAk5aWlrd169YNffr0yRk3blxIc8v8/Hxxxx13tJw1a9YfmzdvTvd6vfz73/8OpNbVrl3b\nm56evnHMmDFHR4wYcXT9+vUbMzIy0tu1a1fw8ssv1xk4cGDexRdffOzpp5/evWnTpvSOHTsWuT12\nnTp1vOnp6RtHjx596Nlnnw177pk3b97Wpk2bFm3atCl90KBBuVbnB7jzzjub9e3bNycjIyN9w4YN\n6V27di2cNGnSbn3fadOm7Z45c2bNdevWJWzcuHHDggULNj/++ONNduzYEQOQnp6e+Nprr+2sSHF1\nqnHHHXc0vf/++w+sX79+46effvrHnXfe2QIgNTW1cMWKFZs2btyYPn78+D0PP/xwwB54w4YNiXPn\nzv1jxYoVGQAbN25MePXVV3dt3bp1w86dO+O+++67sH4rBQUFnt69e+dmZGSk9+7dO/eVV16pC3DX\nXXc1HTt27MHNmzenN2nSxPLh6YMPPthZr169koULF24eP378Qbu5TZo0qe7OnTtj09PTN2zevDn9\ntttuy3r00UcP6vsuW7Zsc2ZmZsyECRMa//TTT5vT09M3rF69Oum9996rqc+xZ8+eeRkZGelKXJUN\nV7E+KeV+4GUhxI/Aw8DjwNMVNQkhxAA0gXW+aX01YDZwr5Qy22JeUgghTfv0BPLtIm1CiDHAGIBm\nzZpZT8iNwCpPlKskG3Z8oC1nb4SanZzHOyG98MNFkLMFCifB2fdr64+uCR0norWxpSUQFRuMYEUn\naddZphRBg5iJtJ85UlYZAsccpfI52LLvngu1TjDVOn+P5uDY/v6Ix2rUKLTpdI0aNRzHjxw5kpEj\nR1JYWEhBQQEHDhwgJycHIQStW7cOGTtmzBg+/PBDGjZsSGZmJrGxzlb7999/P2eddRYJCQm8+eab\njmMVCoWioilPpKkisEsRvPrqq7M/+uijlIcffrj5ypUrN+jrPR4Pt9122xGA0aNHZ11zzTVnGfdb\ns2ZNfJMmTYo6d+5cBHDLLbdkvfrqq/WAgwA33XTTUX3sypUrEx5//PHGOTk5UXl5eVH9+vUzuzGH\nEOnYw4cPPwrQo0eP/M8//zxiPZjd+X/55ZfkTz75ZDtoXwTWrl3bd/jw4ZC0iZ9//jl56NChR6Kj\no2natKm3Z8+euYsXL06sUaNGaefOnfPat29f4WkQ5Yk0VRZLliypvmXLlkCdQW5ubtTx48c9R44c\nibr++utbZmZmxgshZElJSSC1qG/fvtn169cPPCR16tQpT0/d69ixY/4ff/wR9oc6JiZGDhs27DhA\nt27d8r7//vvqAKtXr6727bffbgW47bbbsiZMmBDe58WE3dx++OGH6nfeeechPW3ROEedxYsXJ/Xq\n1StHj9Zef/31RxYuXFht5MiRx6KiorjllluOmvdRRCZiBEsIcbYQYoIQYh3wCpqDYMQPG9gDGLvz\nNvGvMx+/M/AmcJWUMsuwPgZNXL0vpZxj2OWAEKKhf0xD/P/5GBiGQ/RKSjldSpkmpUyrW9emptOb\nH77OHJ2ySjmzEmZGYWGs2xInmAbmK9bEFUC+4f+lBf1Dx+lphHpERxeBUf5IvJNQKsmFRUNg52wt\nArZxYnBbyH4W6Y4+cyqiYfze+fB1Vzh+gqnx5s/A+BmZBdb6J07sXACrHoDM/2gRyD1fwvf9wk1D\n/MTExJCbm8uOHTtYtWqVvZg3ER8fz4YNG2jQoAFt2rRh5MiRYWNmzZoFwL59+3j//feZNWsW7733\nHllZWWFjAT7++GOWLFnC999/z8cff+zyYhUKheLMxOfzsXnz5vj4+PjSrKws2y+ay+q2aqxnGTNm\nTMspU6bs3Lx5c/ojjzyyt6io6IQMBeLj4yVAdHS09Hq9ESdW0efXSUxMdF2zc7oipWTVqlUbN23a\nlL5p06b0gwcPrq1Ro0bpI4880rhfv345W7Zs2TBv3rytxcXFgXvbb902AAAgAElEQVRqvi9xcXGB\nL/+joqKw+syio6Ol3pYlOjracoxbnOZ2IsTGxpaquqvy4eYDeBs4BlwipewvpZwqpTSLGitWAG2E\nEC2FELFowifEvkwI0QyYA4yUUm42rBfAW8BGKeULpuN+DuiuCjcDcw37eYChnEj9FdhEsBwEQ2CM\nRQRrvSHQZ0zlM5ouHFsPK++H4qOaINs20/bBPXgugwi0qsUyb9MFh34dekNeq8iStwB+uxsW/1mL\n/Cz+Mxz6WYu6BeZfxgiW8Z7+NAiOrtZs7k+EIpOg8DkIrIrAaG+/8HI4uAiW32E7PCkpiWbNmtGl\nS5eIUSYjeqogQF5eXth2YzTsqaeeYtiwYdx0001s27YtbKyZvXsrpJ5aoVAoTluefPLJ+m3bti2c\nMWPGttGjR7coKioSoKVT626BM2bMqN2jR48c436pqamFe/bsiV2/fn0cwMyZM2v37ds3J/wMkJ+f\n72nWrFlJUVGR+PDDD2vp66tVq+bLzs4Oe/Yqy7HdYHf+Pn365Oiph16vl6ysrKgaNWr48vLyAnO6\n4IILcj755JNaXq+XvXv3Ri9fvrxa3759w/8YnaGcf/752c8880zAifGXX35JAMjOzo5q0qRJMcC0\nadOcc/lPgHPPPTd3xowZKQBvv/12rUjjneZ20UUXZU+bNq2O3lPzwIEDUQBJSUm+48ePewD69u2b\nt2zZsuR9+/ZFe71ePv7441r9+/dX6YAniJsarN5SypeklGV6MpNSeoG7gPnARuAjKeUGIcSdQog7\n/cMeB2oDr/mt1X/zr+8DjAQuNNiuX+rf9iwwUAixBbjY/17nAmCXbqxRbqxqqUpM/8+5EVgHfw6N\nnJQYMgSMUbKvOkHGi7DmUdj8Kiy9WYvwOBFSd+WP5FiJioDA8gs6XfhEJdlfx+ZXYPMU2DffMHcX\n1x/YJsNd+4qPhY8zi7T83ZD5oTtDkZ2z4dOGoeuMIrgyGhsnWUShzCmZFUBCQgJNmzalZcuWYamG\nUkoaNAg6DW/fvj2wXFRkErV+hgwZElh+8cUXWbhwYQXPWKFQKE49zDVYY8eObbxmzZq49957r85r\nr722a9CgQbm9evXKGTduXEOAhISE0uXLlye1adOm46JFi5KfeeaZfcbjJSYmytdffz3zuuuua922\nbdsOHo+HBx980NJ5b9y4cXt79OhxdlpaWvs2bdoE/qiNGDHiyMsvv9zg7LPP7rBhw4a48hzbDXbn\nnzp16s6FCxcmt23btsM555zTYfXq1fENGjTwdevWLbdNmzYd77jjjiYjR4481rFjx4Kzzz67Y//+\n/ds+8cQTu5s1a3ZyC5lPEoWFhZ769et31n8mTJhQf/r06btWrVqV1LZt2w6tW7fuOGXKlLoAjzzy\nyP4JEyY0Ofvsszt4vZV3O1555ZVdr7zySv22bdt22Lp1a3y1atUiunTZze2+++471KRJk+L27dt3\nbNeuXYe33nqrFsDNN998eNCgQW179uzZtnnz5iXjx4/f069fv7Znn312x9TU1Lwbb7zR4qFNURaE\ntOmnJIT4SEo51J8aaBwk0MqfOp+MCVYmaWlp8rff/Jru4CLIeAW6vwar7oPM90MH1+0LAxcF32+Z\nBiv8OjGxqZamd9770GK4YczroVGaixdqaWUAF34HDS7Wlj/wR4UbXapZqu/yZ0QON9z27wfAwZ+C\n7/+0DL7tqS23/RukTdZqvD421Pr0/1prmJy/G67aCUlNYctUWDEW6g+AAz9CYhMYYkp9/u1uTWAZ\n6Tsbfr42+P6in6C+/1o+bx3aiHlYsSYWNz4P0dXAmwsd/g7n/iv0ehteAgO+Ce73TQ84skJrotzB\nbAxpYl7bYIqkTvfXoI3/fu/7Fn68JHT78AhNmCOx+qHQNEnQrm9oub9kdM2YMWNYsGABe/bsYerU\nqYweHew7FhsbS3JyMj/++COdOoXX9a1YsYIePXqErLP7d69QnKoIIVZKKdOqeh4Kd6xZsyYzNTX1\ncFXPoywkJiZ2Mbu1KRQnm5ycHE9SUlKpx+Nh+vTpKbNmzaq1YMGCP6p6XmbWrFlTJzU1tUVVz+NU\nxSmxUm/ue/nJmEiVs2CA3zRBWtdHlZjqU/UITo2OULs7bJsROfJijDpZ1XnFVHffrNhn4RxotIkX\nUdBoULDWSk8pzPL3Q6rdQxNY5tRHsO7xZZ6vUw1WaUkwUhZfH3JztfRHM7GmyPcR/9wOLwsfa2Tb\nu+HiCio/RdDqM/O6zJooOAC5f0Dd82DdU7Djv3DxTxDvrh/k/v37AymABw4cCNlWXFxMVlZWmBmG\nTvfu3Zk8eTL33KP9k/773//ubs4KhUKhUChOKkuWLEm85557mkkpqV69um/GjBmZVT0nRdmxFVgG\nK/SxUsqQcIIQ4jnCe0+d3uiOdIeWQJ3ewfUxNaHkWHiKm56WV/9CQ31TBHFkTJuzeliPTrZebzyf\nTklu+DZjnZN+PdGJoefTxyS1DJ+zLIW9X0PGS+HnN9elGdP7ck1frEhvULjF1dG2e/1RngJDxkWi\njWu/J0K90tJbrNdXtsCyqs3DZSTo8xba/C5ZAese19ZteydypA74+eefmTdvXuD9xIkTLcfFxcVZ\nrge49dZbyczMRErJY4895m7OCoVC8T+Eil4pTgUGDRqUm5GRcdIbZCsqFjcmFwMt1g2u6IlUKbsN\n3huF+2H3p8H3sX431BKTwNIFhogO9pSyfAA37mN46PdZCClPNLYP7OaaJuP+ejQp5Pz+45gjWPpx\nYmqE77PjQ828wQrztemi7tASi7HFhvNU96/zC64jK4Pj9PtRsA/S/x1c72Ta4URl12DZiV836OLv\n8K/BdSVhnQcsMUesrNwCBw0aFLFB8RVXXMGll15KIC1WoVAoKo/S0tLScruiKRSKUxf/v+0z3lHy\nRHCyJ/0LMBZoJYRYa9iUDFg8VZ/GrHX4Rl8XCCXZUOoDj/8hVhc1nuhgSp1ZhBgfpiFyBAsR3lA4\nsK9JMFiZXFgJvLAIVlFwvfD4e2R5tes4+LP1uQGyN4W+168/e3P4WG9uMEVQv3/6+4VXBMfpc/n5\n2tB7VV6B5WTTXhFEEtBuEIbvNIqt26J4vV4yMjLwer14PB7y852FXUxMDF9/HdajG4BDhw7Rt29f\nMjMzAyYY7dq1Y9OmTZbjFQqFooJYf+jQoQ5169Y97vF4VNGnQnGGUFpaKg4dOlQDOGObTVcETjVY\nHwBfA88A4wzrc6SURyp1ViebY2vtt4koTSSUZIM3OxjRklYRLFOK4PaZoe8jRbBw+ELAHJExCjQ9\nmmYlKuwiWJ44bd7ePE04eJKD12HFlqmm+ejXbxEELTkeFCP6/bKq9dJFl1mIljuCZbj/FSGGwo5v\nl75Zan0fAtvNHjF+bCJYWVlZnHPOOQDUq1eP9PR0PvroI4YOHWo5vqSkhPHjxzN06FA6duwYsi03\nN5eMjIyQdZXpfqRQKBQAXq/3tv3797+5f//+c3CXLaNQKE4PSoH1Xq/3tqqeyKmMUw3WceA4cAOA\nEKIeEA9UE0JUk1LuPDlTrGKE8NdhZWt1WLpgKPVHjURUeJRIJzo5WHsEkSNYQgRrp8yEpQhamFxY\nCiy/aNINMPTjRBkFViHEJGsOhm4J1GBZZICUHA9eX+B+WdSnma9JRzgILLv7A6ECyymdb90TgAc6\nlbEWyU605WyB6u3c7WfsD2Y2TvFjbOrn9XqpXbs2CQkO4hd48sknadCgQZjAKiwMve8XXXQRjRvb\n1L4pFApFBdGtW7eDwJVVPQ+FQqGoCiK2ZxZCXAG8ADQCDgLN0fpadXTa74wiJll7NfaCMqYIRpui\nRDopnUNrlEIiWH6BFJYS6DJF0Mrkwqo3le6IGEgj9D/ge2LDa8ecIlhmnCJYxceD90J3CrSKYFmt\nA01o2uGU+mcUVVbRJl+htv+6Cdr7lM7Q5Cr74zkd38jBRc4CyzhnY1qgTQQrNjaWDh06EBUVFWgq\nnJMT2Qreqg9Wq1at2LhxIwUFBXg8HlJTUyMeR6FQVC516tSRLVq0qOppKBQKhSICK1euPCylrFvW\n/SIKLOBpoBfwvZSyixBiAHBjWU902tL6Vtg6XVs2pumFpAjaRLDMAsL4oK2PNYoi6XOIYJmEhc8i\nRdBKYHmiQ7cFUgRjgxErXWBFl0FgBUw+LIwVtky1iGDproJ1oehQ6LrEJlqvLh3jcth5baJeoNV+\nBZYtxNCPgyDl3OD7rOXa/OucB3EumqXbpQhGwvi5GEWVjRFHcnIyGzZsCFnnJq3PqgdWXFwc7du3\ndzdPhUJxUmjRooUym1EoFIrTACHEjvLs5yYvukRKmQV4hBAeKeWPwP9Gs8duL8NZdwZT1owip2Cv\n9hpdzTqC5c0LCghdhFilihkFQ2mx+xRBK5MLq+iOOYIVIrBMESxPGVIEpUOK4L6vDREsUw2WcY6B\nazIdY/dncHSN9XkdI1gGgWUlhg4uhIzJwfcb/qWZbixzmUbsNaUI6tGvSIYaRkv7jBcN690bcdxw\nww0MGDDAccy8efOYMGGC62MqFAqFQqFQKCoeNwLrmBCiGrAIeF8IMRlw2V31NMDOtQ+gZmctXc1j\nIbCO+c1TancPj2DtmAUfVYNj67T3upBZY2jwqh/LKJx8RbhOEfRa1WBZpQgaIli52+G4f956DRYE\na5fKYi4REFg2gtAugmWM2gREl0WqYPrz1sc1C82+s6H/N/5zWkSw6p5vfRwjRlt+J8yiLc4fMY5k\nqGEVWQTXAuvVV1+la9eubN++nXr16vHuu++yYsUKUlJSQsZNnjyZJ554Aun0O61QKFwjhHhbCHFQ\nCGHpliU0XhZCbBVCrBVCdD3Zc1QoFArFqYcbgXUVUADcB3wD/AFc4bjH6YTTQ64e9bESWLrAia0Z\nHsFa8ZfQ4+jbrc5rTCP05lAugeWUImiMYH3XJ7jeKkXQ3MzYiVJTyqGZQASrpv+9VQTLv84cGYLw\nvmOBffznS2wKQ/Og6TWQ0NB/HIPAytmivbb7m/01lBWzkNKvbfWDzk2mT1Bg7dmzh3Xr1pGZmcnd\nd9/NTTfdRFpaGl9//TW9e/cOM62wSif0+XzMmzePTz/9lDlz5rg6r0KhYAYwyGH7YKCN/2cMMNVh\nrEKhUCj+R4hYgyWlNEar3q3EuVQNTg1pk8/SXj2x2quVzXpUYngEyxMXehwr8wirCFbRYWw1r3me\nBxYYtpnS/4zoNVilXq2hr3FOZodBOyFgJL6B1ozZyrmw7d9g88vacuFB7VVvaGw1PiC6yuAwqO/v\niQ0K15hq2qtuQuIrDpqL1L0g8jXFuqi/kjK8rsvodpj1G9SziZZZRRbB8Xdv2bJleL1efD4fJSXB\ncdnZ2SxdupSYmBjq16/PL7/8QnZ2dsAMA6C4uJiYGG1uzz//PBMnTiQpKYnMzExAM9GwMsRQKBSh\nSCkXCSFaOAy5CpgptbDxUiFETSFEQynlPod92LwZBg7Ulo2ePlbLkbaXZezpeqzoaIiPt/6Ji4PE\nRKhZE2rVgpSU4E9sLAqFQlElODUaNodThP+9AKSUsnolz+3kYBdFSGwCSc20ZT2CZXwg1h+2oxMh\nOklb9uVrNVSF+0OPZSWwpEUEq+gwxNa2madJcISYJfgf4JffGb6fuQbLOCdzDZabCFbzG7Q6InME\nq81YOPeZoMDSCTQaLoH8vYT8SpUWa3b3Vp+BrcDSa8gM4ibaL7C8ubDnC/815UNCI0ioH/ma4l2Y\nw+RsISy66Im2XjZjJ1x99oYdffr0wefTPo9du3YxcuRISkpKWLx4Mb179wbg2muvZcKECSxYoInt\nxMRErroq1BXx+PHjHDp0iEOHDgXWqT5YCkWF0RjYZXi/278uTGAJIcagRbmIi+tMfn5ohrrVcqTt\nZRl7Oh+rpASKiqCwEAoKoNShW4eRatWgSRNo2jT42rw5tG8PHTpookyhUCgqA6c+WMkncyJVhvFB\n3uhwV/3s4HqrFEFjBMvYB2v90+HnsOovZRXBKskORnyMyNKg+UWLGyHzP9bXYJVWJ0wugjrRiYYU\nQX8EKZLAqtbKIDb9x9OjRp4Y61RIXcRJr2YoETLvIs3Jzwr9/qx7Qpvfuc/41xtMOgLX4hdYRYdD\nz+G2r5edXbyRpaMs9iuwXjZjF8HK2w4FByxFYFRUVEBg1alThyZNmgCQnp4e3D0vj6VLl3LvvfcC\nMGzYMN56663QKfpCP9MhQ4YQHR2NlBLhZIevUCgqFCnldGA6QFpamlyyJMIOClu83qDgKiyEvDw4\ndgyOHIGjR4M/hw7B7t2waxesXw/794cKt4YNNaGVlga9emk/DRpU3XUpFIozBzc27QghzgfaSCnf\nEULUAZKllNsrd2ongeMbYKX2cEpCQy3aogusWt2C48wugsZ0saiEYIqgLx/Snw0/T4zF12T6sfZ/\nH1wnfdYP44G0uBhrI4oShx5JdhEsT0x4BMtOCBjnp/e9OvCT1vtJN+7w2ORiBFIUS+DoqtBtviIo\nsLFkLy3W6sz0nlVt/qJFFK0EVlQCwQCr8dwuTTuc6qd08neFrzPed6fPwCn1cut0y4bHvXr1wuv1\nEhUVaoOfnR2MXObl5REXF0xHLS4uZtWqVWzZsoUhQ4YQFxfHuHHj+Mtf/kJpaSk1a9YMM8ZQKBQn\nxB6gqeF9E/86RSUSHa39JCWVbb/iYk1sbdwI6ena6/r18MILWpQMtAjXRRfBoEFw8cVaqqFCoVCU\nFTeNhsej2bK3A94BYoH/AH2c9jst8BXCjv9qyyIGklpCdob2/pxHg+PMEaxSv9ufJw48UaERLDMN\nB1unu+nHWnVvcF3hwWDtEsC2mdDqplAbdWHxkZUcs3dDNNZgmSlriqD0Be/Xvq/hiKGPiy54oquF\nmk1YWdzr+PJh4wvW5yotgdxtwfdH1/gFlkFsBs4h/Oc1iRyre2Wk59uwbLSW0vllJxi4KOh6aMZc\nV9dqdMUIrKg4y9ULFy60XH/HHXfw+++/s2fPHtLT07npppsC2zp37kyPHj3w+Xw8+eSTPPbYY9Ss\nWZOaKg9GoagsPgfuEkJ8CPQEjkeqv1JUHbGx0Lq19nP55cH1hYWwejX8+issWQJz5sDbb4PHo0W1\nrrtO+zH5CSkUCoUtblwErwauxG/NLqXcC5x56YOeGOgxDer1hwHzg3VV+jYI1k0Z66/AEMHKs4gU\nRQejPkYO/hQqIKxYerP2uvrB0OOZKT5mX0tmF8GCYGNhK4HV/XXo/BRcYkjhk6WQZ+y3ZhB1+j1q\neXPoOYyNjs1mEkWHIWup9byRUHQk+LbQ/8xiFcGCoNFFyLkdIlhNr4Hm1wffH18PmR/Yj0/pHFwe\nvBq6Tw0VdGZxZ8QpMmgX+bMhOjqaN954g6+++orDhw+HbHv44YcDKYGPP/54mY6rUCjCEUL8F/gV\naCeE2C2EuFUIcacQQi94/QrYBmwF3gDGVtFUFSdAfDz07g333w+zZ2uphUuWwKOPQn4+3HefVr/V\nrx+89ZaWkqhQKBROuBFYxX6HJAkghChjUP40ISpBi5Bc/CM0/FPoNnMEy1h/BZqISGisCRBztEpE\nB0WOmSU3uJvbH/66Gm8OFGWFb/fmWjvx6ecHTeDE1Qnd5rGpweo0AdrcoUXxancPjpc+6GZo1Bsi\nsPxCwSxqhCcoMGv6RUqTq8PnGV8fBv5iOLTpXhZEEFjRFgJLOAgsj78PmFUtlxU1U7XX5sMg5VyI\nijXVz5UzguUijXH06NG0bNmStm3b8v33wZRSp35XuhGGQqEoP1LKG6SUDaWUMVLKJlLKt6SUr0sp\nX/dvl1LKv0opW0spO0kpf4t0TMWpT3Q0nHcePPGEFtnKyNCWDx2C226DRo3g7rthw4aqnqlCoThV\ncSOwPhJCTANqCiFuB74H3qzcaVUB0Q66UX9Q3/mx9mqOYIFWj2SFXQQL4NjayPMyRz92fmQ9ziy8\nov1BRl3clXqhWmttueuL/jHmCJY3dB8z0gfNhmrL8fVC0xLtBBYE75+eOtj+vqC7YGBMNCQYqotl\naWhUTndNtEoRBGtx5OTsFxWnpRYaRaeTKYZ+b4zmJ10mBpfLEsHq/Z5hjpEjWGvXriUzM5MtW7aQ\nZCg6+P7777nmmmto1qxZ2D7/+Mc/wtb98MMP3HrrrYwYMYJ33nkn4nkVCoVCAW3bwmOPaYJq8WK4\n8kqYPh3OOQcuu0yLdikUCoURN32wJgohBgLZaHVYj0spv6v0mZ1snARWvN/lbf93kLNVS8mDYAQL\nwgWDjlMEy425gpM7HWhCo7QECoM23DS5SkvvA0OKni8oEur6y+fsarBsBVZp8D5580LFgZPA8kRr\ndWu6CImK12qdjFbznlitx5ZOabHJFj83uN54Ph1LgRUhggXaPAr2astunACNoq3mOdBlEqx+oGwR\nrBhDhq2N+F66dCnHjx+nqKiILVu2BNY3atQosNy7d29mz57NoUOHqFevXsj+eu+s++67jxkzZhAV\nFUWrVq1YsWIFANWrV2fUKAtnRIVCoVBYIgT06aP9vPgivP46TJ4M558PF1wA48fDhRdW9SwVCsWp\ngJsIFlLK76SUD0kpHwQWCCFGVPK8Tj5O6WFNDNbfxcfg257acqGhltlpfzvB4gazcUacoU9Wx39A\njY7asu5+GF8fLvgManYKPbf0hkd/AjbtZRBYgabKeVB8NLhNP6bVvnoEq8QgsMzpimfdpkXUer4Z\nvB5jBMvrT3ovT4pgx/BoTlBgGQwgrExKdALRPdN3ErpYKksEyxMHDQf5t1nXzo0aNYpBgwZx1VVX\n8c0335CZmcnvv/9OY4sq66lTpwaWmzRpgsfj4ZdftHTL3Nxcjh07RlZWFh5P8J97YaELca9QKBQK\nS+rU0Wq0MjPhpZfgjz8098HBg2Gti+QUhUJxZmMrsIQQ1YUQfxdCTBFC/Elo3IVW0Dv05E3xJOEU\nwarVTesBBaHRCKPjX4yN70dpkXu7cCt8pmraPh8Gl5OaB/tm6QIrrAbKIoKlC49ABKtQi4Dl7fRv\nd0gR9ERZ36uA4LHoraRHfQI9s+Ih0ZDWVqc3nP2Ittz4Sv/YbC1aqBOIYOkisQwmF50tepPp22IM\nroE+J4Gli0+TwNJTMZ0iWOa6PE8sJLex3uYnNjZ4fQkJCTRv3pzU1FSio8ODzs8991xguVq1apSW\nljJx4kTWr1/PsWPB3mj9+vXjjTfe4L333uPOOy2aUisUCoWiTCQlwT33wNatMHEiLFsG554Lt9yi\n9d1SKBT/mzilCL4HHEVzULoN+Afa0/MQKeXvJ2FuJxebB90ACQ011z87tz67CJav0LoPlpHYWlB8\nxHpbsaF5sCcuVJhUax0USfoDvtnYwViDFRAn/o891h8N2z4Tds0ORons0h11kdF9Kvx6U+g2p1qi\nIr/bnTFFMNEQial/oSbcINS2fOv04HJYBMt0nR6L+ildDDk11DXasjtFsEpt6tN0YWe0pjdj/mw9\nscH7ZfN7d95559GgQQNiY2ND6q6siI2NJT9fm/umTZsC6zt16hRY/uijj7j88stJSEhQTYYVCoWi\ngomPhwcegNGj4ZlntNTBzz6Df/4T7rwTok4gkUWhUJx+OKUItpJS3iKlnAbcAHQALjkjxRVA4QHn\n7REeiB0FVqQIVutb7beFCKzoUAESWyv4XhcgYcJDj2CVGOqI/GPq9Q2O8xoiZXF1bSZTqr00vTZ8\nU1nsxqPiQ++XsceUUSgZ7/WBn6DUZ58iaGVo4SZyGG+oXXKMYFnUYIG7CFZRqJ06UXERf5+mTp3K\n/PnzmTdvHm3atLEc06dPH4QQgSiVsemwmb1795KQkMA///lPatSooWzcFQqFohJISYHnn4d166B7\nd7jrLq2X1urVVT0zhUJxMnESWIFQjZTSB+yWUp65hRuRHsadGuZCMJJkxk2KoNP2EoPAEjGhYiS6\nWvC9HkGxc9fbOj1Ya6VHdmJrapE5M+b6KB09ghWdGH69RsMKnYE21kpRcaEGIUb3viiDcDJaz0sv\nrLrfXmBZNRV2rH3zOyB2eDi4yutgchGxBst//w/9Asc3hY4JE1gGe3hfkcMcobS01NaOfdmyZaGn\nKQoeq2fPniHboqOjkVIyZcoUcnJyeOqpp0LGKxQKhaLiaNsWvv0W/vtf2L0bevSAp54Cr0PXDoVC\ncebgJLBShRDZ/p8coLO+LISweJo+zTE3wTVj7oUFobVIdgLLKoKlG1PoOPVrMkawmg4JjWDFJAcf\n1O0EljHdr3B/+JiERoRhFlgpXfyv3QxzNomXRpdqr8b51T1Pe217V+hYT3yoxX2sKYVStz83i7bN\nLwfXGfcHG0t2+z5RAVEXX09rMA3OESwrF0EICtiSHMjfC9/1gS/PDh1jJbCiIkRE/cyfP5+YmBjq\n1KkT5vqnNxW24umnnyY1NZX4+HhiYmIYOHAgQoiQfY4csUlLVSgUCsUJIwQMGwbp6TB0KDz+uNZf\na9OmyPsqFIrTG1uBJaWMklJW9/8kSymjDcs2RTqnMec+57xdFyVGtzijMIo2CSw90pFybriAajHc\n+thWGAVWt1fCG+PqgiZgIGFOnbNIGzNGYazEnVlgXTAX2t8PfT827GcSWIl+oWZVbxZyDqFdr1Eg\nJTUPHa+LVatoYe52/z4tTOeIILDOGR+6KdpgShJwRiyHi6Bu4Z+7FfZ+Yb2vUwQrgsA6evQoPp+P\nrKwsCgpCI2yLFi3igQcesNxv4MCBrF27luXLl1NcXEzbtm0BqF076EJ55513snPnTsfzKxQKheLE\nSEmB99+Hjz7S3Aa7dIGpU0NbSSoUijMLVzbt5UUIMUgIkSGE2CqEGGexvb0Q4lchRJEQ4kHTtppC\niE+EEJuEEBuFEL396ycIIfYIIX73/1xq2Kez/3gbhBDrhBAOnWNN6C6BdugiaM+XxkkGl6NMEZV+\nX0DHR7V+VOaoh1nUOKYIHtdea/fSDBVCUgQTg+9LLHpzga+fjV8AACAASURBVPUDvPF8Vuc2Gj8A\nJDWFrpMgsYnhGmzS73RXQ7vzRcVr9y3KSWA5fGx6rZw5tdFKYMnS4HLnCXCtQegYa8B0sVceF8FY\nw/WufsR6X7PAik4Ifm42AmvdunV8+umnTJkyJbCuevXQ7zX69u3LxIkTWWvjCSyl5OabbyYmJob4\n+Hg+/fRTZs2aRUKCJmA///xzDh48aLmvQqFQKCqW666D9euhXz8YOxZGjIAch/JdhUJx+hKx0XB5\nEUJEAa8CA4HdwAohxOdSynTDsCPA34AhFoeYDHwjpfyzECIWMCqHF6WUE03niwb+A4yUUq4RQtTG\nUEfmYsLO23UTiB0fBNc1NvTHMqcI1ukBjS7RlsOMJ8ogsPQIlp6O6InWekWJaK1Jrf6gHmh+bJ7H\neeHHjCSwPC7sjixT8oCGA/3n7W1zPv98jSLK6IwI9umWYDCbMEfqLK7DKLBA6yHWZizs+C+0uMFw\nPv+v1u7P7M9rlyIIUO0sLYJlrJcrLQnOqRwRrJdeeom3334bgBdeeCEglKzo1KkTH330EYsWLSI2\nNpYXXniB2NhYiouLiYmJwev14vUn/nfu3JnmzZsH3AYTExMtj6lQKBSKiqdhQ/jqK3juOa2P1sqV\n8MknYDB9VSgUZwCVGcHqAWyVUm6TUhYDHwJXGQdIKQ9KKVdgEkJCiBrABcBb/nHFUspjOPMnYK2U\nco1/nyy/OYc91Vq7vxpzs1iAtGB0IUwUGCM0YdbpDhGtev1Dt+kP7caUuta3Qqub/efxC5YDP2iv\nZkvw+DpQvZ39+cvbo8sughVfD647DhcvMpzDIIZ0YVXvAi2dMKVLeHqlUwTL7IQYOEeECJZO91fh\nmkOhDZuNNXFW+4AhRdDiutvdHb7OmG5oFlieyC6CxmiVlJJatWqRnGzTaw247rrreOWVV4iPj6dP\nnz506dKF2bNnU1IS/KcV5fcJ7tevX2Bd9+7dWbNmje1xFQqFQlGxeDzw97/DggWQnQ09e2ophAqF\n4syh0iJYQGNgl+H9bqCnzVgzLYFDwDtCiFRgJXCPlFL3Er9bCHET8BvwgJTyKNAWkEKI+UBd4EMp\n5fPmAwshxgBjANo0t7Mjt8AcMUk5N7S5cJhIMKTySVMgzSwOjM55aS/DV52D74uP+o9v83BtrhvK\nWhY+Jr4+ZGdYn9/JYMMJo9DoNjl0m7mPljlFELQUvyv/CL1PgTEuIlhhItXqV9lGLJkjdElNg8u+\novDPEoKpmlafg5VBijdPSx8s9YWLXiEMLoLWAis1NZUrr7yS6tWr065dO8sxVmzatIklSzT3xmuv\nDdrpv/POO1x6qZZNa2xWnJ+fH9KMWKFQKBQnh/794fff4frr4cYbtfTBf/5TE2AKheL05lT9ZxwN\ndAWmSim7AHmAXsM1FWgFnAvsAyYZ9jkfGOF/vVoIcZH5wFLK6VLKNCllmrmmxRFzCmG0qfmrURSk\nvRq6zVi3BRYW4zFw6Xro9yXU7AT9vwluCwgsm2azNTo4zxtMRhdCSy0MbKsAgVW3r/048zmM0am4\nWtbXFWMfqQkYX7gRWHbRKCv02rFSm04EhYe013gLUW41Xz2l1JurzSM6Gf58DIb63R4DLoLWVum3\n3HILc+fO5b333uOyyy5zeRGh4slIfn5+YFt8fGiE0Kl/lkJxpiCESBBCuP+2QqE4CdSvD999pzUj\nfvZZGDJE1WUpFGcClSmw9gCG0ABN/OvcsBut75YejvkETXAhpTwgpfRJKUuBN9BSEfV9FkkpD0sp\n84Gv9H0qBpPAijILLEMKn1m0+EwP7WaBFVcHanaExn6/jkaXQEt/CuChxdqrXSPj1qOdpw0mgWWy\nLSq3wDKmGUZoMiwsarCcsOrNpWPX8NdtiqAduvDT+1JlfgBb3wxuL/ILLKseYVYiMXuj9rpNq6PC\nm6NFtAK1dO5cBH0+H6Wlka9DSsnhw4e55557GD9+fNj2pCTtvHPmzGHSpEmB9ffee2+ZImQKxemI\nEOIK4HfgG//7c4UQn1ftrBQKjZgYzVXw1Ve1+qzzzoPt26t6VgqF4kSoTIG1AmgjhGjpN6kYBrj6\ngyal3A/sMnzbeBGQDiCEMD59Xw2s9y/PBzoJIRL9hhf99H0qhLAIlskcwJhWZo6mdH4q9L05La6O\nReZkWD8rG4HliQmtJzrnsfAxVml4dudxizGCVZZGyk71VTrxDgLLrgYrkk17JAKufn6B9csIWH57\n0P5e7zNmFa2yEr85W7TXVffbnM+dwBo3bhxRUVHExMTwwgsv2I5buHAhdevWpU+fPjzxxBM88cQT\nIdvPOy/c7KRdu3YMHz6c/fv3O85BoTgDmID2ZdwxACnl72ip6ArFKcPYsTB/PuzZo9Vl/fZbVc9I\noVCUl0oTWFJKL3AXmvDZCHwkpdwghLhTCHEngBCigRBiN3A/8KgQYrcQQs/buxt4XwixFi0d8F/+\n9c/7LdjXAgOA+/znOwq8gCbsfgdWSSlNuXlhsyzDFZUhRdAcTWkxDOoPCL6Prxe63dLJz7TOLoIF\noc00Oj0Rvt0palQhAitCBMvK5MKJ6ITwOi4duxqsE45g+e+RrzD0fuqpfgGbdov7ZXVNRVnO5zPb\ntG96Cea2goJ9IcPy87UaO6/Xi8chMX/RokUh78ePH0+9evUC/a+uvfZapJQBowuAjIwMevTowT/+\n8Q/nuSoUpz8lUsrjpnWu/gC4aDdSQwgxTwixxt8iZJTVcRQKN1x0Efz6KyQlaTVaX39d1TNSKBTl\noVJrsKSUX0kp20opW0sp/+lf97qU8nX/8n4pZRN/A+Oa/uVs/7bf/bVSnaWUQ/wCCinlSCllJ//6\nK6WU+wzn+4+UsqOU8hwp5cMRJxhJGIRgThE0RbCiHCJYAAO+gxYjNIt1c82S1TzMD/J2NVgQ2pDX\nym7eKYJVXpOL3G3B5bJEsNykCAKk/iu43Mhfg1R/gH0Nlp5KGUI5UwSN91MXWE427Vaft9k50Iw5\ngrXqPsjbDhu17gNZWVlMmjSJ1157LbCLnU07YJlGKIRg8+bNgNZX6+OPP2bw4MGcddZZIeNyc3Od\n5+rA0aNH2bBhQ7n3VyhOEhuEEMOBKCFEGyHEK8AvkXYytBsZDHQAbhBCmAtf/wqkSylTgf7AJH/W\nhkJRLtq1g19+gTZt4IorYMaMqp6RQqEoK6eqycXJIToJekyDgUsijy2LyYVdb6nz/qNZrAuh2ZQH\ntln8LS5LBCtCmpmjqDHXOzkJuZBzGswZIkawypgiaJ6HPscDPwav1Sx0TJEfoGwRLGOKoPHavP4U\nQbvIGYTavOsUR4pg2bkIar9nO3bs4MEHg723q1Wrxh133GF7uMsvv5xx48Zxyy23AFC7dm3q1atH\nr169tKMKQa9evYiNjSU9PZ05c+bQpk0bunbtSps2bQLHWb16NZMnT+bQoUOO08/LyyMjI4MmTZpw\nzjnn8MYbbzhfr0JRtdwNdASKgP8C2cC9LvaL2G4ELRKWLIQQQDW0/o4WfT0UCvc0bAgLF8KAATBq\nlOYuKMuSdKNQKKqUyrRpPz04a4zLgSYtaq7BMooMVw/2huNZPbSbRcuJCCynCFbKuaHvExo7H8uK\nMtVguYxgGQVWbEpwWRc85nO2ugUO/xq6rlwpggVBowvQarCkNKQIWvTBEgLqXxjsRQZQEiEqZOci\n6L8u3ZRCp3HjxrYOgQBpaWmkpaXx3HPP0blzZ3w+H7fccgudOnXiueeeY8iQITRrpjV03r17N9dc\nc01g319+0b7Iz83NpW/fvuTl5bF48WI+/vhj2/N9/PHHjBoVzIQaM2YMt99+u/M1KxRVhN/46P/8\nP2XBTbuRKWj1xXuBZOB6vwlTCMYWIfq/RYXCierV4csv4dZbtabEhw/DCy9YJ6ooFIpTCyWw3BIp\ngmXcXmJO9bfC8FWU1f+WZYlg6ccSNgFJpwiWuR6s7ycO57EhUtTLKBbjXPYeM7o01ukVXNYdGc2i\ntPVtsNwc4SmDwEpsBiyB7M2hDai9uaHiyu4vm/neeyMILDuTC/911apVi6uvvpq8vDyqV6/OSy+9\n5Ooy9u3bx9q1awF44IEHAuuHDBkSWF63bl3IPrGx2lzS09PJy9NSIj/5xPn34OjRo67mo1CcCggh\nfsSi5kpKeWEFHP4StLrfC4HWwHdCiJ/1dHfDuaYD0wHS0tJULELhithYePddqF0bXnoJcnPh9dch\nyuK7PoVCceqgBJZrIti0GymrwLIiTGC5SN2zS9UzRo2M4gFCbce7v6714SoLNTtFjmAZ67yqtXJ3\nXGOEUMRozXyLj0CJ/5klrA+WQeAkNoX8XdD4CnfnAqh5DuwAsjdBA0P7tFKvIT3Q4S+a+d7rkbaG\ng2Hf19BhnPV4s8Dypz7WrVuXOXPmuJ+/H7s6LWON1kUXXUTt2rXJysri4YcfRvhFY506wd+FFi1a\nOJ5HmnJVdJGmUJyiPGhYjgeuxV0an5t2I6OAZ6X2j2KrEGI70B5YXv7pKhRBPB548UVIToann9ZE\n1syZmr27QqE4NVECyzVmgeUUFaof+XCR0tfMoiXJRUqJ3iw37FiGuba4MXSbMf3ObfqekZqdI48x\nXos5YuZmH0+Mu75XV27X+lUlt4GDP0Ojwe7OBf4IFpC/OzRFUPqCBheWVvB+uvwbspZDq1Gw8d/B\nFEFd+NUx2aSbXQR1nM7hgr/+9a8MGzaMtLS0kPXz58/nb3/7G6ClH27cuJH09PQQ+/aUlBQeeugh\nYmJiqF27Nk7cf//95OXlMX/+fOLi4hg3LsxcTaE4ZZBSrjStWiKEcCOAAu1G0ITVMGC4acxOtFYi\nPwsh6gPtgG0oFBWIEPDUU1CtGowbB/n5MGsWxLssa1YoFCcXJbDc4ibp+ZIVsG8+NL/BxQEjRLCM\nUZ8uE90JrDibh2KjcDILk5AGyeX4n9qNzbtxTLRFHykrQhoZx1hErCx+dau10H4AmpQhegVa1Au0\nyJexLkoaIlhWok6nRge45iAUHtQElp4iqDsSmu+THsHK3w1fpQbX26V5uqRevXoUFxdzzz33MHny\nZACio2BY2+WaSYi/XUDdunWpUaMGv/zyCzk5OVxyySWkpKTw/PPPuz7XY489xmOPWfRdUyhOMYQQ\ntQxvPUA3wOYbqSBSSq8QQm83EgW8rbcb8W9/HXgKmCGEWIf2TdwjUsoINqIKRfl45BEtkvXXv2oO\ng599plm6KxSKUwslsFzjQmDVTtN+3BAxgmVIuarVzd0xY2tZrzdGsMzCxOh+GFWONC83Nu9GcWHX\nMNlpHyuBVSaLfRckGQSWMYJV6nUXwQJNhOsuiXpkStoILOO9PrY2uHw8HbbNhBbD8ZbiaGxhxfLl\nyxkwQBNR8fHxFBYW8peLYWT3w7DgQhgeFPaDBw8ONBnevXs3jRuXw+BEoTg9WIn2rZZASw3cDtzq\nZkcp5VfAV6Z1rxuW9wJ/qrCZKhQRGDtWE1WjR8Oll8JXXymRpVCcaiiB5ZawyMIJ2vjE1HTebhYY\nbrATWMb6rbBUO2NdUTmuydF8Qz+HQUyUJ4IlTCmC0UnuhZpbdPfEgr2ak6CO9AZNLpwiWDrm2qpI\nESwzmf/Rfo6sIKb7lMDqNWvW0Llz5HTMkpJgD68mTZpw9dVXc3Wjr4DwXlV16tQJCKzDhw9z8OBB\nnnrqKWJiYujSpYtK+1OcMUgpW1b1HBSKiuTmm7X0wOHDlchSKE5FlMByS0oXyHy/4o7X+Qkt2tFs\nqPX2EIHlMloTZyOwjHVPebusxwAR0xaN9HwbtrwGHf8ReWxIiqDbCJZDimCHv7s7RlmIitPOIb2h\nJiXS59wDy4zHZL8eaIzsUmDpbJ4S8jbKpWVUXFwcZ511FiUlJfTq1UtL+Vu0BXaHC6yuXbtSo0YN\n6tSpQ2xsLNu2bePTTz8FICcnx1FgzfB3vty9ezeDBw8mNjaWTp3KaJCiUFQyQohrnLZLKcvuJKNQ\nnCJcf73WRWTECLjsMs3SXYksheLUQAkst7S9W3ORWzdBewBveMmJHa92d7jA4W+7Nz+4bGdeoZPQ\nSIu8NLrMeruxzkqWWI+BsvWNaj1K+3GDUVzERojcWe1jNrmIqe7uGGXFEwM+s8DyllFgRWnRTlkK\npT77CFakYzW/gZtuimHmzJmkpaXRoUMHV5dwwQUXsGXLltCVRdZNj999993A8ueff85VVwX7p379\n9de25ygtLQ3pgfXYY49x1llnhZ9Xoah6nIoxJaAEluK0ZtgwTWTdeCNcfjl88YUSWQrFqYASWG6J\nioX290Lbv0LxcYivE3mfEyHfEGmq3tZ57KCVcGQlNLrUenvdPsFlY/pbGJXUmsUojuLqQMEBLXoX\n6yAcnSJYkQRnedHPkfVbcJ2xBstNiiBo0SlfoZYmGKjBMkWshNDW2TWJjorj7bffZOzYsaSmpgas\n1N0yceJEpk+fTvXq1fnm7j3UiZBlatXXqrS0FI8n3HSjsLAwbJ0xNVGhOFWQUrr8FkihOH254QZN\nZI0cqRlfzJunRJZCUdUogVVWPDGVL64g6GrnhoQG0NgmegVaTY+OL/zhOEB1d1GSMmMUdVFx8MNF\nmuve+R/Z72OuwRInKYIFsPnl4LqyRrAgVGDZRbAA6vWD/d9ZH8NXTFRUFD179nR3ThNffvllIKLk\nzQMiBA4TExPD1pWUlBAXZ23dP2rUKLZt28bChQtJTU1VBhmKUx4hxGVAR7Q+WABIKZ+suhkpFBXH\n8OGayLrpJk1kffEFWPy3rlAoThJKYJ2qnHW7ZvVdlma5dhTsDy5bCayrMiE3E2p2PPFzWaE3N05o\nqL2KKPvIjY5THyynyNeJYCWCyhvBgsgCSzfPsCLS/YnAAw88wIpff+KtMdDARVbmgAEDWLx4MS+/\n/DJ169alRYsWltEr0MTY22+/fULzUyhOJkKI14FEYADwJvBnVCNgxRnGiBHaq1FkJSQ476NQKCoH\nJbCcKDyoCY+UzkH77ZNFVBx0rCAXt7WPBpfNDW8BkpprP5VFTDL8+UiwFkyWOkfSwLkPVmWlCFqJ\noN8fgosX++fkzmiiQgTWrk+00FN0+fI8LrvsMjbMuYPmx6YFVyY0ChmzdetWNm3aREFBAUePHqVV\nq1aMHTuWrl27kpzs0u1RoTg9OE9K2VkIsVZK+YQQYhJgX2ioUJymjBgRjGRdfTXMnQs2iQgKhaIS\nUQLLiT1fwrLRcOX2YAPb041SQ21M6r+g3T1VM4/YlODy8fXajxPmGqyTYXJh1dOrtERrHAyhPcOc\nMDoJShsXQQg1FTn7YdhoavK74RlIfdrdOU0IIWjeqCYcsx/z/vvvM2HChLD1y5cvp3v37uU6r0Jx\niqLnKecLIRoBWUDDKpyPQlFp3HgjFBfDrbdqToMffwwxLru9KBSKisE6B0ih4fM7+Vk9WO/8GL7p\nrn1V5Jb8PcF0s5OFMVKU0rV8zYSrAqdGwyczggWQna69RrlMaI/yf13oK3SOYGEQWO3vD998PNxa\nvUyYa8ZKQ40oEmxyR3r06OHoIqhQnIZ8IYSoCfwbWAVkAh9U6YwUikpk9GiYMkWLYN14I3hP8qOH\nQvG/jopgObH7M+31+DpIqB+6rfgYHPlNewiueU7kY+Vmwuctoc1foPtrFT5VW4wGEz8NguuLTg+R\nFWZyYUjPq7QIlk0KoM/f08ptul5SC8jOgKNrI6QIGgRWXG2L+Zzg9x/mc5oEVtu2bbn88suJiYnh\nyy+/pLg4WPcVHR36X8P8+fOZO3cuY8eOJTk5mblz55KQkEBxcTH16tUjPz+fjh07kpaWdmJzVigq\nECFEjJSyREr5lH/VbCHEF0C8lPK4074KxenOX/8KBQXw0ENaU+J33gGb0lqFQlHBKIHlRCDaZPE/\nUrVW2mvxEXfHyvH3CMr870kWWKZap4I9UK1l5ZwrewvM7wEX/wgp59qPi02BFiOcj2WuwTKKkahK\nSii3s0LXmwZHu4xgVT8b9s2Hgz8Ge2pFElhWBhqxFqKrLJgjWKYeaEOGDGHIkCGAZtNeq1awUfXt\nt9/OrFmz6NmzJ8eOHWPQoEGA1h9rypQp3HNPeKrpI488ogSW4lRjjxDic+C/wA9SowgoquJ5KRQn\nhQcf1ETW449rhhdTp9r/qVMoFBWH+i7DCd2eW1rE1nd/rr26dXsr3G9/rMokKhFaGVrBVGaK4uYp\nUHIM9n7lPK7UG9ny3Bi98cSc/PtmJH936GskdCG2dXpwXaQaLEvK0PjZCrNoK7XvVRVjStDfsWMH\nf/zxBwCHDx8OrM/MzKSgwLqXWn5+vuV6haIKORtYATwK7BJCTBZC9KriOSkUJ5VHH4W//x2mTYP7\n7itbZYNCoSgfKoLlRKvRcGhxMEXMyIEftFerbWZKS7T6p17vVmz0aM+XUKtr0P7civg60OttLQVt\n48TKFSql/mhZpMiLiIJ9XwMvOowRMHCxJkKEJ3TeK8ZC7nYYUNF1QhG+1jv8q7vDWKUSRqrBAs0u\n31cEGS/DllcdBZErzKLO4XhWfbD0lMGUlKBBSUpKCq1ateKuu+6ioKCAAwcOEBsbS2JioopeKU45\npJRZwDRgmt/c4jrgRSFEPeBDKeX/VekEFYqTgBDwz39qkayXXtIiWf/6l4pkKRSViRJYTtT2PzBa\nRan0CEupC4G18j7tgfnaw9a1NuWhJBsWXq4tD1wCdS3s10GLFvkKoHYP//sTfGh3ot29WtQmktte\nwz/BsTWRj1e3T3DZZ/gMCg9C/s7yzfFEaPMXd+OszDCs/pKZbdp1q/y65/kF1on1wgpPO5RBwWoe\n6vHw+++/s2TJEnbt2kXLli3p3bs3ADVq1GDp0qXExsYSFxdHhw4d6Nq1q+OpCwoKeOaZZ0hMTKRW\nrVqMGTPmxK5FoThBpJR7hRBvAUeB+4HbACWwFP8TCAEvvKCJrGef1UTW449X9awUijMXJbCcOLIK\nGl0KyWeFb6vWWqurajg48nFytVQrvusL5z4DTa468bllvBxc/q4PDLeJ+R9aAgv6a+IHKjeCVb09\n3FAa+Wux4mOaQCwL3tzg8q7ZZZ+bGyL1uWp5k7vjuDXDsIt+6tGusohhbx4c/BkaXBTc3yoNs7Qk\nUMO2Y8cOlixZQklJCcuWLWPgwIG0bNmSO+64g5UrVzJhwgSuueYarrvuOnr27Ol+LsCxY8d46inN\nV6BBgwZKYCmqDCFEPHAFcANwHvANMA74rirnpVCcbISA116DwkIYP14TWQ89VNWzUijOTJTAcmLl\nPdDyZkhJ1d77irQH2ZjqsGceVG8H0S56I7UYAfu+geyNsOy2ihFYRYcjj4GgyUWdXlDzTUhseuLn\ntmPPF5C1HFKfCl0vZVB0yVLY/23Zj+3NOfH5RcKYxnfRD7DgwtDtrm3aXY7zWdcyBVL7yiKwltyg\n/U52/L9g7ywrwWgQWL/++isjRgTNRqZOnQqA1+ulT58+eL1ePvzwQ44dO0aNGu6t8bdt28bTTwf7\nd+3fv5/ff/+dc891MD5RKCoBIcQHwMXAQuB9YLiUMkKXc4XizMXjgbfe0kTWww9rIuuuu6p6VgrF\nmYcyubCjtERzgPPEBEXK4utgdm0tvU16NYv2rN8iH8voPneiaV86RQb3wsZX2o/TH+KT20LrWyG+\nbsWc34rdn8KGp2HHR1papB6lWvs4fNEBSn3lN9loPrzi5mmHsWapXv/w7W4bDbt1GzQ7POoEGhWX\nQWDtmae9bp8ZXGdOQQTI3xVYNFuxg2Z2ERUVhdfQNGXmzJkMHz6cW265hRkzZkScyubNm3nnnXdC\n1hmNMhSKk8g3QGsp5XVSytnlEVdCiEFCiAwhxFYhxDibMf2FEL8LITYIIRae8KwVikokKgreew+G\nDIG774Y336zqGSkUZx4qgmVHUZb2ummS1teo3V1Q4xztQfYbQzH/+iehy0So3tb+WH8YHjYrqgaq\nxXDIfA/qXQB9HVLm9Id46YXDy7WoW6whGiElrH0MWt8G1Vqc2Jx0QbXkeu3Vmwft7tEMQbI3QnEW\nRFcr37E7PwmHfoHDi7X3iU1ObK5WGPuD/dcD/b6EhZcF17kVTq5TBG0iWHokbd/XWtS0LLb0RgFv\nJbC+7BBIJ23evHnY5ssuu4zffvuNGjVqcPy4ZjH/yiuvsGWL1mYgLi6Ohg0bsnLlShISEujfvz/p\n6ekcPXqU48eP83//93+UlIT/jmdnlzElVKGoAKSUMyOPskcIEQW8CgwEdgMrhBCfSynTDWNqAq8B\ng6SUO/0GGgrFKU1MDHz4oSayxoyB2Fi4yWUWvEKhiIwSWHaUGFLSdCMLPVXQyJ55UDM1PC3OSM1O\nsPcL/7EqKILVaBA0vASyN2k1TdGJ1gJAd/Y7vhGW3gwXfq/V6egc3wAb/gkHF8LAn0P39RVqkbLE\nRu7mZK7vanwFfGVowjynPlzn7wvVZZK7Y+pExUG9PkGB1WdW2fZ3g9l1LzoB2oyFLf6+ZW4jWK5T\nCeO1KKk5lc+Yqrjvm8gppUbP3UgCy0D37t354YcfWLlyJdnZ2Vx++eUcPnyY7t27h4zTxRXA9OnT\nyc/P5z//+Q8AkydP5qGHHgo4Dt5///20bt2acePGsWrVKrZt20ZSUhIe1d1ScXrSA9gqpdwGIIT4\nELgKSDeMGQ7MkVLuBJBSHjzps1QoykFcHMyZA1dcAaNGaSJr2LCqnpVCcWZQqU89kVIrhBDthRC/\nCiGKhBAPmra9LYQ4KIRYb1pfSwjxnRBii/81xbS9mRAi13y8MmM0VdAfWg/9Yj22KMLfU6PwkD4t\nVe5EObYBjq2DvB0wpy58lAT7LGqbanaGcx6HeP+XqnYpeu3+Fr7u5z/DZ43dz8l8bEvB5x/jiQaf\nD2bNgj173B2/naG5bUW5MRoxC52SnGC6HpQ/gmUnzC6Yq4nvi80ZRQbBZJdGCFo0NDtD+/wD4w3G\nGS4MTWrVqsXhw4fJy8sjIyOD9PT0iPts3rw5sBwbfyI0swAAIABJREFUGxti4z5nzhweffRRVq1a\nRVpaGlu3bmXNmjVcffXV+HwV8HuvUJQRIYRHCGFjsxqRxsAuw/vd/nVG2gIpQoifhBArhRCWcQAh\nxBghxG9CiN8OHTpUzukoFBVLQgLMnQvnnw833gizK8lDSqH4X6PSIlhuUiuAI8DfgCEWh5gBTAHM\nKR7jgAVSymf9om0c8Ihh+wvAiTdISj4LLvoRFgwICizbBroRXPNKvRCdDJenQ/7eimk+saBfMI1R\nZ/8CzQLdSK2u2k/WCu298aF7z1eQu01bjrEwMcharr36CrVoSyTMEZPM/4SPiYqHGh20qNmymnDz\nzdr6oiLt6zMnopP9x0iEH/4EQ3ZEnlNZMKfiFWWFRpM8LlP1zELMTmDV6QmXrg1fb3RYtBPEviL4\noj3kZYauL0MEC2Djxo0899xzAAwdOpTzzz8/4j7Ll2u/F0lJSaSmpjJ8+HAKCgqoXr06N954Y2Dc\nt9+GCv7i4mISElxGARWKCkJKWSqEeBXoUkmniAa6ARcBCcCvQoilUsrNxkFSyunAdIC0tDTV6lVx\nypCUBF98AZdcokWw9KiWQqEoP5UZwQqkVkgpiwE9tSKAlPKglHIFEFa0IaVchCbAzFwFvOtffpf/\nZ++8w6sosz/+edNDQui9g4B0UDpKExBFEBWkWHDXDpb1Z1l314IoNnRtKCqioihdBVcBEVAQEKRK\n7y3UUBIC6cn7++PMZN6Ze28ICKIyn+fJc6e80+69SeY755zvMcSZUqo3sANY95vPPrIolOsoVtd2\nVMBrENH5e+tkT3Ejq7MlYlOkMpRuGbQP0WmhNWQdC1weFkSgZKVA+n4nOmMKrB97wPL7ZTpxWuC2\njZ6W18Jaqrf/0i1CUrdAm0+d+YvukT5ZJ/dIL6tffnHWffXVqfe/8mF5zU07ddTwTPA2SM487P5s\nCyuMvWL0dJtLRyY40/bndXSFfI42J3cHiitzPBRKYEVGOgIyJyeHLl268PHHH/P8889zxx13uMYO\nGzaMp4zGKVWrVqVNmzb897//ZdSoUTz+eND6/3yC1Wb5+PxOzFFK3aDUaT/d2guY1quVrWUmicAs\nrfVJrfVhYD4QJJ/cx+ePS9GiMGMGNGsGffrAzJnn+4x8fP7cnEuBVZjUijOhnNbavtM8AJQDUErF\nI5GsZ87CMSSys+MzqPewU7NkRyIaDYXeibI8vmbBaVwAJS6BKjdIOtfWD8T84beQmyZ25yZlLoPq\nAwLHbnwVvqzo9EQKFRFJ3Ry4zI5qFSSwPlcwubi85mVDh6+ddTEVpE7MFlllL4c1zziW60ZtDwdW\nwtHloY8D7ojduWiYXLq1ez4sslAiJQBTqFXoDu0mnN72poOhzoHNb8PMS2HBDcagPO9WgYT6rK3v\nzsGDB1m4cCH2PWdYWBiJiYkMGjSI/v37c9dddzFy5EgmTZrE4sWLGTJkCM2bOwYvtWrVcu02NjaW\nRx99lLi4uIDln376KdHRp2HW4eNzdrkbmAxkKaWOK6VSlVKFeXL0C1BbKVVDKRUF9Aeme8ZMAy5T\nSkUopYoArYANZ/PkfXx+D4oVg1mzoEEDMb+YM+d8n5GPz5+XP3XludZa4xSsDAVe01qfCL3FaeTB\nH5oPi2+WqIstsPIyoVxniewUsbRi64+h/j9D7gaAWn+DVqNFQCy9E9ISC3F1BWALtGIN5LV4YzGo\nKFY/cKyd3hdXTW70S7UMHFO0NkSXDly+0u5AeIqHvtmWccXSu2CekaK4Zwp8UVbev2INxUgjO1nW\npSF/yW3Wvuh2ZwxGXpaca4MnRPjos5xlc9FdUPJSmS53BVz8jzM7RmQ89NoG1+2HTjOCN6ouCKXk\nXECE5MbXZPrwYmdMqCbFJqHEoSVOd+7cyWuvvYa2rnHKlCk884w8n3jooYdo2bIl9913HxEREbRu\n3ZqSJUsSFxdH2bJlqVKlCqVKuSN+MTExvPzyy5w86X6AkJ6ezvz5832B5XPe0FoX1VqHaa0jtdYJ\n1nxCIbbLAe4DZiGiaZLWep1S6h6l1D3WmA2IHfyvwFLgA6312lD79PH5I1OiBHz3HdSpI2mCP/pN\nB3x8zohzKbAKk1pxJhxUSlUAsF7tXLFWwMtKqZ3AP4B/K6UC2udprd/XWjfXWjcvU6aAnlCHrL8q\nOSecyEmwWqSyl0PxhhQKW8QUtklwKGwDjpw0ea3SR6JtSQsDx+ZmSOQtqhhU6wdxxkcyIA/654h1\nerCoWlQJ2XfRWoHrgpHofbBrEZkgxz9gPQ5LqCcCy8TSaCEFjc6DjIMQW8GplTqT6FJBKAXx1rWW\n7SAmF2b91OcK1j1fuH3F14TY8r/hXOxmwzmQccBZvnuymKScKmoKTrpgY4/DpVWnVa5cuYBNoqw6\nuIULne/S9ddfT5s2bQgPDyctLY2DBw+ye/fuQvXEspk3bx67d+8u9Hgfn7OJEm5WSj1pzVdRSgV5\n2hSI1vpbrXUdrXUtrfVwa9m7Wut3jTEjtNb1tdYNtdavn5ur8PH5fShdGr7/HqpXhx49YFEIfy8f\nH5/QnEuBVZjUijNhOmA5IzAISc9Aa3251rq61ro68DrwvNZ65BkfZfvH8jqnM6y0DAk7z4G2HuOG\nQ/Ph4LyC9/Xz3+Hbpo7AyviNDlJRpSRy1mo0tP4I0vdKtG1ZECfA3HQRhbkZInDSDI2rFGx9F46t\nlJooL9nJEoVa82zoqFvxxs50MCGmIsRVT0U4Ii6+BhTz9A2zNUReiMjMDz3EdCO6jByzxq243PYA\ndo7/bdHBk7tg9ySZXjsUJifAhpfcY1b/58z3fzqEWSmdOsftbvjTjbDh5dDvk4ktQL3uiFYEq3r1\n6jzzzDOEh8v6m2++mY4dO/L999+TkOB+uP/zzz+Tl5dHz549UUoxZMgQhg4dypYtW/jiiy948cUX\nefbZZ10OgyZbt24N2nfLx+d34h2gDWKpDnACMWHy8fEJQtmykiJYsSJcdZW7ZNrHx+fUnDMXQa11\njhVBmgWEAx/aqRXW+neVUuWBZUACkKeU+gdQX2t9XCk1HugIlFZKJQJPa63HAC8Ck5RStwO7gBvP\n1TUAYnax50sRMlFBnPaW3i29qC66Gy59I3hT2JyT0o/K7o8UqsFsYYkqBjUtjZm2F7aNCb3f3AwI\ni5Go2dwu0HI0XGSZF3xupP6FRYrDodnzyjZVWPMUHF4InTxVr1pLA+CsFEmDW3K7s67uQ7DpNSjX\nSeZVhBOJqf84VKsM1HTGp1SGK8aFdurbZx27zOVQuZf8mKRsgEXWvdPAM0wdzDQ8Vcwat5bvwYb/\nQuqmM9vvmZBfM5cdGKnb9kHBzYy1FvFspxGGRUOpVnBkibVPx2nwqaeechlXzJs3j86dO5/y9N55\nR3qDtW7dmrFjxzJ9ujw7adSoEbNnz2bevHmEhYXx3HPPnXJfPj6/A6201pcopVYCaK2PWQ/+fHx8\nQlChAsydCx06QLduMt3sXHlx+vj8xTinjYa11t8C33qWmWkVB5DUwWDbBnFsAK31EcQOt6DjDj3d\nc3WRY+Sv6TzyIyXrXoSEi6GK4SqfbomGre/Bp7ugRAsYNsxZ/0NPaTJcrKE7KvFbyDwioq5EU4lo\nHLbi98HSxqoPdNwQzWObAkJFyHV9VckRJ7mehshZKQSQmQTzr4MG/4bV/4L0fc46WxTYtWphxlet\n7OWwySNWEo9DuQ4hL5k3KsCR/fBrn+Dro4o70+kHCpeel5QE27dDq1YybwuPuGoiiu1UzkPzHXFV\nLejX8uxj28PrnEBDjxPbYfmDgdvY6Fz5TO0oV3g0XDFXeqWBa3+7d+/m5ZdfJjs7mypVqlC7du3T\nOs2IiAhXE+Hrrrsuf3rSpElBt5kyZQpffPEFMTEx9O7dm169egUd5+NzFsm2WodoAKVUGQrlFOPj\nc2FTubIIq/btoUsXmW7ie2T6+JySP7XJxTkjdau81n0QqlzviIVNr8H+WZCaKn2bwDFtyANGzoRn\nn4UcQ0Dt+5+8hkdDkarSW2vTGxIVS5xWuFoaL4fmw+zLxAb9sJEcnRdkXxWvglq3B7oIuvol5ci5\ngSOsUtZCvGHOYDv/meRmAhrWv+AWV+Bcd+uP5FUZAmvfLPj+Kvf41OPwfSd3FCn//DT8sh+2A0cO\nwvZPYEKU2L3bxFaA9l9BxR4EpA4CHFkGCwfAiZ3Osrp1oXVr+Plnmd9rnXOla639AFElYednzja7\nxp/ZZ3a6mBGsvKyCx3rRns84LEp6c8XVcC8HDh8+zNtvv83777/PlMmTiI0pRL8zg5o1a9KlS5eg\n655++mkqVXKMQ2fOnMmePXvo27cv48eP56OPPmL16tWndTwfnzPkTeBLoKxSajjwE/DC+T0lH58/\nB9WqibAqUgQ6d4YVK873Gfn4/PHxBVYwclIlUnHxw3Jzat+Q5mZAVhiULw+XX+7exgwyZAW5IY4q\nBeFRktJ3dLmkFs7vDTs+DRx7yvOzapki4t3Lg934n9ghQsQbPfPetK+x0sTsqM3MS+HEVrGjr9bf\nMdYwsSMkZjQstiLUuQ86fgtd5jvLL5voTO+fAck7POcOHPrBXQuWc1J+0gxxt+MLie7kZYtdff65\n5IglfIevRWx5Sd8Puya4DUaOWb3EbJskW6Bu+0Dq1mLKQot3Ave16t+By8429ucV7H0/FXk5cHyL\nY3pip12GWxlRRgSrYkVJCY2PgWl3rOXqsCeZMnki06dP54knnmDKlCl8//33JCYmkpiYSPfu3V2H\nqlmzJv379w96GvXq1aNKFcdUJSEhgf3797vGfPTRR6d/fT4+p4nW+jPgMURU7Qd6a62Dh1h9fHwC\nqFVL/lXGx8MVV/g1WT4+p+Kcpgj+aSnTTn4A6tzvpIXlZsKqQ5CWFvjXZZUxnZUlj3pMR7zKvST1\ncKllv52Z5H61mVpGrOBNQeLFvumOiJOxB+eKgUa78YFjF98iNVjtrUa+tsAK1YsrM0nqsBLqWjVZ\nlSSKE+xGP5hV+HWGiUZCXWc6Ig4ufUsaG4fHgjdL0tZoZhRufm95zxqNdZblxkk0xryGpEUw2/q8\nuvwIZds747d9CPtmQLF61vUFcXC0G+CWsCzac9MgaYGIvT1fBI7f9BpU7A4VugWuAzgwV4xHatwS\nfH1hsFMEN4w4/W2XDYGdnzuftV0XmO9M6IjrcuXKcc8995CybRbVSu2A1DXccF17iC1Pz549Xbs9\ncuQIM43uk7Y4K1WqFFu3bmXmzJmsX7+e0aNHU7JkSYYNG8a+fftITk4mMjKSOnXqMG+e2xBmxw6P\n0PbxOQcopT7VWt8CbAyyzMfHpxDUrAnz50OnTpIuOHMmtGlzvs/Kx+ePiR/BOhVFKkKJxiKW8jLB\n1BS5uVD5Wpl+01hupw8qJTVNAzXUGSImFHbUxRZwyqNxMw87TnahMCNYtq14++kwtyscXekea1vL\nh8dCh2+slEcNST+BCpMb+UpGDYwdQcpJl0jekWVQtS80Hi7Lj60WEbhvlrsvk82xVYHLQGzkl9/v\nnLfXYd3uaGZG4VS4iIQTRv1X2gnH4MGulVtuuCd+30EEjs2S28UJcf3L1jZBhKUtsKr3h0qWqKhv\nRal2T3LEqcnerwOX2cy9AhbfGnp9YfB+L06HHZ+46/zsCFaYFcGa0UQaPgNKKerXr09KkiF0QjgU\nHjhwwDXfo0eP/OlatWoxZMgQ3n77bbKysjhw4AANGjSga9eu9O3bl969e1OqVCn69HHX0AWzivfx\nOQc0MGeseqxLz9O5+Pj8aalWTSJZZcuK8cVPP53vM/Lx+WPiC6xgbHwDJsVD9nFIXgObRjo1SDmG\n815GBpS4JHD7E0a05+RuqfvR2olKAJTrIg1zo0rCikcgdZuMCS8SvGGwSbZ1LuFFoFQLKN0Wdlr2\n8XYdkY1t0x4WDpWulv5MuyaKOUa3JdAvA4o3csbbfb7SrJ5FRWuJSUbtu2U+6ScRgcdWyHLbJdAm\nzVOLZbN3mnGMIBEskCiWKbDCoiVKdvK4s+zwZsON0RJYEUXd+zHrxWKtGiBbNBz4LvC4dkpnXo4R\ndTSij976MoBqAwOXecn7DWYmv0VgebGFlfn9WzM0fzIrK4tSZrZpiCbGMTEx1KxZk6JFi9K8eXPe\nf//9Ux5aa83mzZtZuXJlfm+t66+/Pn/9ffcFtKrz8TlrKKX+pZRKBRorpY4rpVKt+UNYLT58fHxO\njypV4IcfoFIluPJKmfbx8XHjpwgGIzdNIh1hUXDwR4m8VOsH/TLho4+ByTIuIwNQgZ4KgwbJY53s\nEzDN6v1T/5/Q0LHDJrq0mE8sGiBmFyWaiZgp0VSMKza/LVGvYNS4WURYmGWKdXgRNPgPbHlHmvq6\nriXDaZabOB3iakKO1RdJhcGc7jBjNtQGmv5dHP5AxE2ZttJsOPOIiIxiDSDLqlvKOSnW7Je+Ad8a\nvbAijMa83vOwqT4Qch8OHOMVWHuttmkZRnSl9NVQpDLUHiy1Vie2w/EN7v2YUaq6D8Kqx5z5re9D\n9Zsg1vCatSNYs9tJry0QV0ibXwa7bc4BoksGv86jy53p3AwIiw8+7lREFj31mMIS7olgeWjWrBk1\nsjoAdi2aCM5NmzYxa9YsoqKiqFu3Lunp6XTq1IkTJ05w7bXX5m8/c+ZMFixYQHZ2Nj169KBDB8cN\nUmtN3bpOqui8efMYPHgwDz/8ME2bNqVIkSKFuoQxY8YwZ84coqKiuPXWWwtlJe/jo7V+AXhBKfWC\n1vpf5/t8fHz+KlSqJMLqiivg6qth+nRJG/Tx8RH8CFYwTPc1++Y0L1NMArKMqMSsWVD7XkjzbG89\nqXf1pVKR7gjC8vthUhERLyBRl6xkOGI52u0KUk9lU/QiqGa1/zqxXV5LNRfB5K0xslMEARbcAD17\nQ5NbIR0xspgwG/4LDEO2twmLguKWF+v2j0RE5Zw0mteGwS/3iRBsOdrZLjyEwIqxUsHafCoW6g0s\nAy+F8y3svhWeewVGv+eOAi4x6t3CykFcVWjxtkTetn8MGQcDr9mmWD2o3Nu9HgVvGjmdr74KKSny\n/tsixGygDIGmIFveI4CMJJjZ3DiP39DvrFSLM9/Wi50iGBFczHTu3Jnrr73aWbD0Lsg+zrBhw3jw\nwQe599576dy5M2vWrGHMmDFMnDiRgQMH8rPlvjhjxgyef/55RowYwcSJ7trBsLAw4uKcnl0DBw6k\nS5cutGvXjt27dxf6EpYsWcL48eMZO3YsW7duLfR2Pj4W/1FK3ayUehJAKVVFKdXyfJ+Uj8+fmfLl\nYd48uOgiuOYa+Oab831GPj5/HHyBFYzcTEnRUmHODXfSIolkpBoudzfdBDGlYU/w3bj6F4VFBE/7\nSrISmA/+INO2I58uoEXLzgmSUgiw6S15DY+F8DgnerP9E6mXavYqVL/ZOYeF2yAtA+w2VHbJ1n5g\n/QcimMASlJYwy7TSIvOynPM6sgy2vC2RnovugIR6znkE45JX4YofJBIIgHXT3xwoYkV5RvwDRs2B\nu+6Bdu2cbcONBs9paVY9XDbk5Up/MZsaVvNls/5o2wfi3GiScxKmTHEve/sNic6V6wz1HhVzk0qG\nycMxT21b1pHAa1Th7vnfYufujUSeikbDQq+zo2FRnqjbD9fA1tE8/vjjTBr/ibP88GJY9wKNGjmp\no+3atXMJJRCLd4CiRZ1o26hRo1BKMWfOHOfUGjWiSZMmtG3bltRUJ30zNjbEdwW48cYbqV27NpUq\nVWLNmjVkGc6ckZGRIbfz8QnB20AbwM7tPWEt8/Hx+Q2ULSsW7g0aQO/eML6AZ8M+PhcSfoqgyZEj\nEsnIy3KElS0yktfAllGQ9lDgdikDgc/dy/LyQBsCS0WI6UXvPfBVFQLYPVF+bIIZSID0qVo0QG6o\nGz0pFurbP5Tz7L1HBI7Og2WDJWrW56gc1z4HmzVAU4BYJJwFTACaH5bt87Ik8vHll9D3MbgK6J3p\nROGiSzn7mn+9k6ZnR0u8RCa4GwnnWmIkAgi3zm+l0ZP611/ltdFQWGaaXKRJn7L/1ZFoWI2bYaEl\n2ho9DWh3/65g9UQ/3QjpFd3LFjwN1ZGoWDPLEKP6zZJ+mekRU8UbQXaQxsvKqM9r/bETtTsTwjz9\nqOKqw8mdoceXah56XXQZefVGsPZ9A/u+YebMJhStsw7qGevSEvm//3uGlStXcuhAIu9/8BHZ2e6G\nxzlWv7d//etfDB8+3LUuKclxx1y82PkuDxw4kAMHDpCenk58fOj0ycTExPxIVWpqKvfccw9du3Yl\nKyuLyy67LPS1+vgEp5XW+hKl1EoArfUxpVTwnFkfH5/TonRpiWT16iXPnY8dg8GDz/dZ+ficX/wI\nlkm5ctLsIaw+XHSnLIsqIa+20UF2kCa2MZUDl2VkBEawANY9/9vOMd/YwYomtHwPrk8S4RNVzOq1\ntQf2nYTD18GSiY5AmG1Y99lu2yXaOsuWI8YMP3wPnwLJOfDBB5CbB/9DRFf8RVCqtdQk2SR+Ka/F\n6kNctcBz1hpuvhleesm4DkuMRADYJhNBonYxZWHnLGc+Lc15L2d9Cdu3Oev2fSvCprxRn5O0EI56\nLPVzUt3NoMFJ8zQjYtVuhEtHBp5TZDHICiKwtlqmD/UekzqvzW9BUgihfCq8tWz1Hws+zqagiKct\nhr2izSIqKopob1AoPIaoqCgmjvwH8+5eRO2sKdSv7zZfqVOnDgBxcXFM8UQEExKCR+A+//xzxo4d\nS7t27Rg2bBgvv/xy0HFmbVZaWhrly5cnISGBhIQETpw4g95gPhc62ZZzoAZQSpXBaQ7h4+PzG0lI\ngBkzJFVwyBB47jl3pxofnwsNX2DZaC226wA5jeHS12W6ZGv4oB28aEVUvjZu9ptYNUqZQaIkaWlu\nFzlbkGwZ5R4XXQoaPxv6vI4uh5SNzvyx1fL64xapKg2LkDRFgPUvwY5x8PFH8BAw+CNoMwD2WonR\nH3hqgiKKuZsiZyJRtxv6iwD74hiYaVwp68TK/MrF7ia/Nj3WBTe5WLYMPvsMHn/cWZZr3dGHA2EF\nfA1/GQxJ6535tDSJxO0C7v0CahnRqmX3OTVipyL5mHve/kdQ/grPcuMz7PoTXDYZIosHj2ClW010\njywVe/iVj8DaAlL3grFlFHyuIM/znymuhjNdPUjrnlDXHVPWqSMMDx5dbNGiBRXLedIHw2Ng20cw\n2xLgq8W2vkIFp4lzsWJO6mbv3r25+OKLAXj00Udp3jx0RC0pKYlXX32VN998k/FB8km+/vpr9u7d\nS+PGjRk2bBiXX34506dPp1evXvTp08dvTuxzJrwJfAmUVUoNB34CfuPTLh8fH5PYWJg6VZ6nPvkk\nPPxw8OemPj4XAn6KYF6e3OAnJzvLci27bqXgUArMs0wrOgLaSANLT4cDB+CNN2S+O05kaMYMuNgy\nrLjuAMSGSBcr11kiHsUaQlqi0yuqfFeJgM1sLul1fVMkPXBOR3nueu+7wLsSiQm30u22fyTGFG8t\ndR8jwl074xz7BljwoTOfiRzzmCU+3njHPX7ONXBTBkwpHlhfVLVv8GMcPSquil5yrb+6EUCEJbBC\nPe0y9asdwdoZYuykOEkrbGAZhoXHuG3b7eOkeASS/bEWqeQsW/cirP4XlLkMUjc7vcuO/AIpayUy\naKZKZlt28od+cJaF6CkVEjvCmXPcvTyuOnSeI3Ve5TrAzk/d60sGETR1H4Kmxj1kePAIVnp6Oiez\njnqWKljyd/ei5DU8++yzZGZmEhUV5RJY4eHhbNjgcXMMgVlDtWHDBq688koiIyN59913qVy5Mlu2\nbGHjRnmo0KlTJ6Kjo4mOdsRhpvVAIyUlhQULFtCpU6eA+jAfHxOt9WdKqeXAFchve2+tdeG+sD4+\nPoUmMhLGjoUSJeC11+R2YvRoiPDvNn0uMC7sCNbWrdCwoURx9hhOFUufgK8l/cl1I54KZBsRjbQ0\ncaCzMTMFb73VcZHb9D1MnRz4KKfVGDG3WDYY0GLbXqKprKtyA+y3omX1rPQwO2pkahvDNICwaLmh\nL+a52QyPDh6rr/6Ue15RcA+udGDFwyKuokpCTHnoOAP6pUPbEJWtTzwBwW687chZOI5ALIzAOnFC\nREZWiLF5WW7Hv1p3BI7JiYAcT8RHBQ7Lr6kKi3bXr1W5TuqhDi9xjw9W7xXCGj0k5bvKa5FKbkEU\nESupj2YdG0DXRdA7URpie4kt795H0TpBD9nvokXc6WlnRmSxwIEbXuX2229n8ODB3HHHHaFrqDz9\nvzZu3Mj8+fOZM2cOhw4dokKFCvTv3x8QsfTdd9/xzTff8JKVQnrypGOzbwunGjVq0KNHD66//nqa\nNm2K1ppu3brRs2dPevf2ukT6+ATlILAAWATEKqWCNDEMRCnVXSm1SSm1VSn1eAHjWiilcpRSfUKN\n8fG5EAgLk+fOQ4fCxx+L+YWf2e1zoXFhC6yUFLn5X7oUtmxxlh/ZJbVM9hibph9K1MomKQmMm8GA\neKBtLtDtZuhzI4wYAVcuhR4b4Lr9YpaQmQTbxsCC6+GnvhBfS7Y5OFeMNUDqeQByLIEV4/QgckXe\nkn+VnlqlPDVhYdHuVMD86/SYN0QUEZEXirnANqvOqMatcP1+qNjdaWQcjD0ei0U7DdM2TIjAEVih\nMIMrBw5ARDzEOr2VqP9P9/g1Q+H4Zplu9LR7XZnLoeuuwGMEE1i2k19eltuKPsMycEhe7R5/utGq\nYIRFSVpfWKTTUBkC3RmvmAst3oEybZyoW4f/uYWgt5eW7Sbp4crqmwIXBuvztWNsYO3Z+pdg9mWQ\nY/1e7J4ME2OctFTg8ccfp0OHDnTp0oUHHniAhQsXMmHCBNduOnToQNWqVQExwvj666+ZOHEi/fqJ\ngcns2bMJCwtDKUXHjh05evQoS5dKpPb7778Pel0+PjZKqWeBX5FUwVetn1cKsV044jZ4FVAfGKCU\nCngKZY17CQjSydzH58JDKXj6aRg1ShJ6OnbXUX6aAAAgAElEQVSUf98+PhcKF7bAstm0ABa968wn\nbXUiD6bA2jnbai5skZkpfz1svEYBdsTJNlR7/HHpb1TsYokuRJeDSYDtg7DvG0kTjEyA3ZNg79ey\nfNFAiUCdtBru3jLNOYYpsEKdR3i0WwiWsSJcXvGTluakBwZjEnDCEoA5hXwc5W0kawtUW/BF4DgP\nHqlEAInWj82uXSIEqxhph0XrQsLFzrwGjlvmF2YvqoEaus53PtNKxvHKXw1dFriPHV1WXpMWQCmj\nZc5GK2p5xBPBqnwtv5nwWMg4BCnr3dEvW6zblOskPdhMKvWAa42mzBEeo4mwcLdQDEbR2vLqiULl\nY9Vi5bPqcTESOWDdV/50o9SD2c6OuFMCJ06cGDTilJaWRqtWUqdYq1YtrrnmGm688UYaN5Z+ZAsW\nLODrr79m6tSpJCcnc/Soo7pr1KgRsD8fHw83ArW01h211p2sn8J0q24JbNVab9daZyFeq8F+0e8H\npgKHgqzz8blguecemDZNnmW3aQMbN556Gx+fvwK+wAJY9gqsN56CJ2P0v3Lsptky3h3B8uKNYOUE\nMYIwBdtn/WEaMBKwM9aOLIGrLUONY6vk9fBiScv7z2UwooD92X2Yjm1xj0mo7wisEkBxa/qwpykx\nwHM9A5eZpFkmB9s+gDXPFDw2GF6BFQ7ssR5rrfP0q9LA1gbuZampIjaTtjvLSjSGS16D5pbj3wig\nitU49ysrmlfOupfSefDTIzJdsSJYURN0DJQ2nBFBIkk2YcaHG2sLM8+vT40g5hOnEjReLrbaABxe\n7K4HU8FCbEFQhrr2RrBAepYVhJ0aqEMILDuqCiKsbCI86YJGJK1evXpcdtllVKzoTmNcvHgxq1at\n4tixYyxdupT27dvnr3vjjTeoWLEixYsXZ9iwYSxZ4ojZqCj53ezatSvNmjWjYcOG+PicgrVA8TPY\nrhLuToeJ1rJ8lFKVgOsAj4ORj48PiLPgjz/KM9y2bWHBglNv4+PzZ8cvOwRITgMzW+4wTlTlXSOy\nlYk7guWl2ZPwRSRc/xTUqyfugEeWIv/bLVJTwTYHOLzTWT4DKb+OAWIri915mcvEWGHJYBj1FgS7\nV08zRNyVS2Bcc1iw3T0mojictMRUDE6EK5jA2nYw9PUBHN8BlmmhK4UtFEU9N/np6ZCYCMMsd72C\nvoHzgISmwDp59LV4sZh65GXDqg+ccSUucQTIsvvAztzLTnUaL9sCQIXBNsuJpFgxePRRuPFG2P6F\nCIZyHZ39xlV3ps3+Xi3fg12fuwUQuNPnrtkEsRWCi5yCsJsBZx5115IVlrBTCKxTHt+6Bw3VJNnc\nf7LxvfaeqyFIh1mf9e7du3nkkUdIT0+nYsWKHD9+nO+++46kpCQGDBhA27ZOy4DMzEz27xdXxqef\ndqd51qxZkxIlSvDdd342lk+heQFYqZRai1HVqbXudRb2/TrwT611nirgQYhS6i7gLiA/HdbH50Kh\neXP4+We46iro0gU++QT69Tv1dj4+f1b8CBZAWiyYrZJSgOoDZNpMmUtDbvDDwmDAgMD9VO4EjQfK\n9IYNYgJR3PN03RREGfud6UXAHcD3sZLKFV0aso6JJfgG4AFPnZGNmfoX7rkOmxNHnXHRgJ15Fkxg\nTdsauCw+Dhpb08d3OmlkZdoGjvVSs6Z7PjkZ/vMfZ35zAduOAbZ/JtPVrBuS7GyJ1IXKULzoHqgB\n1Cgl9W0ArT6Ey6c6Y05Yb0DZsmC70+UQ2CQ5rgo0+I+IMtMsIjIeilR2xJvNvO7yWrqNpPjNvxa2\nf1zABQbh57/J66rHoPyVMl2qVejxXsxmwjEVQo8LRaQtsIJEX8EtsNKNiKM3WqsClXPVqlWZNGkS\nkydPZuPGjVx55ZU8/fTTjBw5knbt2rkaEhfxppYa/PTTT6e8DB8fD2ORGqkXcWqwXi1wC2EvYHaG\nr2wtM2kOTFBK7QT6AO8opQLyYLXW72utm2utm5cpU8a72sfnL0+NGrBoEbRqBf37iwmGb+Pu81fF\nF1gASd7an9pOfYsZsbJv6mNjoXOQ9P3YPMja7cy/839SxxNrvM2mwKre35m2fRf22DemCvZ8Czsm\ngOc+3oW5v/hakHBp4JjkXY7AiiIwglWrVgEHQCzV7UvIA5pazWG9xgvBsM0sbPbuhRUrnHlvvVjA\nsa3XGOtYOTkieEw/CbNpcHxNSS2sVBTmdLGOUdSd4pdiTVeoADGWcMomsE+U1pBxUNJFvU+mI+Lc\nAisvG45YtvyHF8OC6+DgPNjxScHXl5cjhhy5VgTITgsFSe1sNQY6fF3wPkzCY+CKeXDZFKn1O12i\nrOiqYVLhwkxBTDPuM72CTEVIBNFLXi7hKx+gdPr8gFVt27YlJSWFwYMHM2bMGBo3bswPP/yQH8my\nGT58OAD//ve/ueWWW+jbty/79u075aX5XNCkaa3f1FrP01r/aP8UYrtfgNpKqRpKqSigPzDdHKC1\nrqG1rq61rg5MAQZrrb8661fg4/MXoGRJmD0b/vY3eOYZSSA5WdA9jo/PnxRfYAH8utY9n5rnuKKZ\n7ntp1s14bGygeQNA+hew6GpnfuEUOLIW0o1HNLYgSk2FA0FqR+ZYN6X1n5dmwY/+ApFBzB+8+wMR\nCMoyNihnOPOlZzh/waq0dyJYdn1ZiRKh9w+S1mfvLg8RDyA38+XLw7MFNEoOJrCMZrV8mUgAQy3X\nxGIRjsCKNQWWctu0m59R/UchMxx+2inpjAARnlS5E9bFlC0rf+1BLPi9EayTu6TWrOHQwMdsbcfL\n9dtmEEdXOutijc/LTLULZpW/bAj8ry4ssiKiOalQzKo7++UOqPV3iDnNp93lOkLVG0KvDytA1do1\nWMdDtAgKj4YT26X59e5JznJvA+30vTA5AVI9EdF93xC5YzRT/xF89//73/9YsWIFq1at4tdffyUq\nKory5cuzbNmy/DF2H6xp06Yxbtw4pkyZwrGCzFl8fGCBUuoFpVQbpdQl9s+pNtJa5wD3AbOQXIJJ\nWut1Sql7lFL3nOuT9vH5KxIdDWPGwH//C19+Ce3aiX+Vj89fCV9ggRMhKm+9HtgGP98m05lGqCTb\nutGNiQkUWEWKQMlSEGbcUG/bK/VdJrYg6tlTekQFY8IE+OoXqQtbvh/qFyBgTIGVkwZ7f5DpbuWh\nspXulWe4CCaUgnjr3L+xohSnElgARSzDB7N9VHgZOHgQnnoq6CaAYcduRY327nXS8v77X3Hy89ps\nt7HE1PEcqH6nTNuRJjtaZQos+zNKTBQRc5Vdx2Stj6vm3n+Otf+4OIi13OhMYxMbe77/KPD2fPr5\nNolOpayT+XlW/6qEi+G6ROeYtsD6tjHMbkcA26xGz3u+kHPPToGyHWVZ4+GB488G5bqEXuc1q/Cy\nZyp8XRu+qed2kjy8OLjpyc7P2bx5M99++y3Tpk1j/54tgWMMGjRo4OqDZacKlilThn79+nHLLbfQ\nq1cvNm3axPr16/PHZRRUG+njA82A1sDznIZNO4DW+lutdR2tdS2t9XBr2bta63eDjL1Naz3lLJ63\nj89fEqXgoYfkNmTnTmjRAvzsb5+/Er7AMrE9pnJw0ptMgcVF8hIbG3jDvXu39A4ygwNpwI6f3eNs\nQfRjAdkpAwbAUqOA/+9/Dz3WjK2PGgVfWVGSCpdDguXapovAdsv4Ii4OEnq491GvXvB9Jxg23xHW\nheUB1fpDRjGoUUBTYhtbYFWvLq+Jic57YFlw43WBS/xAomwaSLOUlC2wjh+XzyTXELhpaTBlClSp\nAo88ArGWgLNFmDdVrsxVzj6jLAfDVAVRpdzjbIG1dlege2S6lbZW3LoGu2dWN6uOqPsKiUTZAit5\nDYxdDM/9zb2fBKufV1QJEVe5GU6915mYVBSGNp9A4+fguiBpdRGFMC7RIZLm1wwNNpgPP/yQHj16\n0Lt3b4YNfzl/TQtPed6MGTNo2rQp48aNY+7cuXz99dfUtGr4qlatyoQJE/jkk0945pln+Oyzz1zb\nNm/enHTjM9Jak+cn9/tYGNbs5k9hbNp9fHzOId27w5IlULy4VF6MHBk82cPH58+GL7BMbHGUAXxm\nNV81BZbdmDc2Fkp5bsZLl4ZNx93v6GYgp7x7XFoI8wAvB9cWvN52IjRt2o2bV8q1cERJRgb80zLJ\nyMyEvn3d+6pZU4SJyZvXOGl5AKUsIVG0odTXbE5xargGDw59nrbAsnsV7d3rvI92FDDWU8sVhZhx\nAIwd6x6TnAzPPQfKsFBPTZWOhiBRsbettMMsoK+nMS44Yik2FnIOibNinoYsjzGD3Wy6LtIl0cQ2\n0LBrs1QklO/quPBFlxR3Q1tgZQKfA09+7P7vUdmqhS/dRsaW7wZZ1vuz7L7Acz8bxJSGhv8Rl0Mv\n0aUDl/0WdJ6rD1byUadN0FIrMNusWTO6dOlC06ZNAWjSpAmdOnXimmuuIS4ujkWLFrFq1So2b96c\nL6IOBzFoycjIYNy4cURHRxMWFkZ4eDhbtwYxbfG5IFFK9VBKPaaUesr+Od/n5OPjA3Xrisjq1g3u\nvx8GDoQThWy16ePzR+XCFljebKjLrdcsYMx2qbsxDRTsm7qYGAjmArXKigi0aCSv2cAGz017YQVW\ndnTB60uXdp8TwEGjx2VkpCNKzPSppCTo08eJHoGItbYeR8CYLY5AA4i1jlf3EWmGbGZ6PflkAdfh\nEVjbt8Nqy0fdFljmcUC+lbHedD3jq9qkift9fOQRMNLF8smJDKy/AjhmJXuHZ4mJha3vkj11PHYE\nK5tAEdj0RXlN3Qp7vpQm0GbfLBA792us8ypnuEGnGuYPTZ6Dq9dA87ek+XTnWdDyfVlX8ZrAcz/X\nlLn81GNOC03dunWpXFn6kcV7PmqtNSuWL2f25NcpX9Yt7urXr09UVBTt2rWjWbNm1K1bl5Urpdat\nSZMmAUfKysri7rvvJsuoybvrrrvO8vX4/BlRSr0L9EMaAiugL1CtwI18fHx+N0qUgOnT4fnnYdIk\naNlSzJh9fP6sXNgCy/uw/pIebre4LE9vH1vMxMY6Asfknv+D1h9BhlGo9LnHxKGwAiuloAZROOYM\ntsOatw4qKsoRLmYaYUyMXOPVhhlHkSJw2WXu7Rt3cIsKu4YqJwfafwUbDefBWbMCzSxs7OXWDTab\nNjnr6lsphkaEg7qWI3JcAbVApUvD0aPO/LffBh+XmQ1zOgYuT7Pej/AM6TdlZ8UZ0RXAEVjbgRkz\n3GmCJZvL63dtoEI3sYJv/Jx7+4hYJ92vodEh2jx3ECv/eCNfLiwSitYRO3ibI0fkv09uLmeVGre6\n5+0+XF66Lgy+/FRozc0334zdHyg+2HOD7R/Ctw1h6Z2uxbm5ueR6rjfG+k7ffffdLFu2jDJlyhAb\nG0unTp0o6u25BsybN+/Mztvnr0ZbrfWtwDGt9TNAG6DOeT4nHx8fg7Aw+Ne/xGXwyBGpyxo//nyf\nlY/PmXFhCyxvT8g6vZ30rSZNPPVXOIIrNlaESner71HdunDLLVCuDtS8DdYEiabYnDwZaOoQjFW7\nC15vpwZ+952cs9fJzxRYhwzhcPfd8mrejBYpIhG56f+Ae4BVk6HFSHdkyRZYubli5Z1siI3bbpNq\n1WDY0bMgN7/5wsoUtU2sHlvFPKmVZlrdihXuyGIw/l0WqgOHAu3AybL2lWTZn9sCK9VTZ6XCpN/V\nLVZE8vhxed20CXZYDZkzD8OSO0BnQ3x19/Z7v4EVD8O+WbDC6P31leHgvOlN+KYB7BwPSYtgWnU4\nvERs5fOMa+zaFa691t34+mzQ8j33fKi6r2DphIVC3us9e/YAgREsdB7pq16S6e0fM974bxrjjWwC\nY8eO5ZlnniE7O5tLL72UQ4cOkZaWxty5cylSpAjd7d9Jg0aNGvEfs/eaz4WIHcZPU0pVROLSZ/ql\n9vHxOYd07iz/5ps2lXTBu+/2rdx9/nxc2ALLS6M+IkxATCwOHAg+zo7sfPUVzJ0r7cmLFRPjiiTP\nk367x1R/q+fV44/LzbLNwIHu8XZtVSiqxkO1atC+vbOsdevAcabAMnsEXXutvJqCRykxnxg4Cn4C\n9AaJopgRrHDL2twWNl6Tj7ffFvHVrRu88IKz3E6kLhkiMuKlWEXpsxXlSckzBdabb4be3k47LJod\nKKBtsizzg8PfQt0HoLxlgpF6Qo7z7bewyupHlXUMalnRypQUSbFs1Aja3Qx2IGrXBMhKDjzOkSWw\n8b/wQ3fYbhiLHTsGeVZkJmmRNCVe87T01Tq5C3SO1LlpQ2BZqXH5zo9ni3CPiPH2Auu2BC6bDPE1\noGSLMziAfG7/93//R7du3bioukc4Zx4lM8P5zzlw4EDq1atH8+bNKV++PDk5OWit0VpTtmxZ3nzz\nTYYOHcr+/ft57733uO6667jqqqv41opiTp06Fa01lxkR2bVr17Jjx44zOHefvxBfK6WKAyOAFcBO\npCrSx8fnD0ilSjBvHjz2GIweDZde6m6h6ePzR+ecCiylVHel1Cal1Fal1ONB1iul1JvW+l/NviRK\nqZ1KqTVKqVVKqWXG8qFKqb3W8lVKqaut5V2VUsutbZYrpU7fIap4cSeasnBhcOEC4sQHcjN+/Lg0\ncBg5Um7Kf7jaPXbnTnmtWjX4vt591xFVdes6UZJgJCbCzuOwY4fjygewdGng2MhIp07sPStK0bix\nc32mQBo3TmqkTmTCWqDZUzB1augIFgQ/z/r1Jbb/7387y+x6o0ILrPLSy2r4i6HHFNQwIycH6pWF\nycfkFqp+wNcOMizhEgnMaAplrPS85GRJw+vRAzp0kPTGhk/CHOtajx8Xt8jsbPnsjWzHfGt1E1O8\nmBmUiUtgcrz0kzppXUtuhjQrBhFXlXpCWUNE23gbHp8NynYIvrzuP6B0S6jaR+Yvmxg4pubfxZo+\nFJYwfvXVV5k1axaDBl7vXp+XSXHldjPcuHEjy5cvZ/369YSHO/3cqleIy4+ATZs2jdWrV/PVV18x\nc+ZMdtq/ZxZr1qxxzaekBDE7KQRvvfUWN954I3PmzDmj7X3OP0qpMGCO1jpZaz0Vqb26WGvtm1z4\n+PyBiYyEl16SpJ/UVLklGzEisC2lj88fkXMmsJRS4cDbwFVAfWCAUsrr630VUNv6uQvwdCulk9a6\nqda6uWf5a9byplpruwDnMNBTa90IGAR8WqgT9WYhmWmByUGiEuCIk4MHoXdvWLRI5mfMABXljpzY\ngqRCiGyUokXh449lumLFQEt2s1dWbKzcYCvlRNpCERUltjwgggzc0TEzglWypBOZsu+1N2wILrBy\nckSEBIvubd4cuMyOYBWm1xY4EaiLPTftubluowuQaJy3/iorCx7qKs+os1pD/O1S//WekQqXaQkZ\n+y1Mt/R7SgrYDW2PHxfr9421YcFyZ71pUGGW6BWpHHgtYdb7p4HXDPvzPYtEUK14GI5YNv55mZJm\nCBI9bPIcXBwk7dJ+DzIOS98pr2X6kV9g4+uB2xVEzduCL8/zpMjG14AG/3YvqzkI2k8rYOd57N+/\nnylTpvDpp5+yb7fnOxKqoTEQZz/IAMhJZ8ljO0gdA6NHj2batGmMGuX8ufD2wYo1oq/9+vXjgw8+\nIOdUaaUeVq5cyQMPPMDkyZPp0qVLvsGGz58LrXUe8r/Ins/UWp+Z4vbx8fnd6dwZfv0VrrlGIlrd\nuokhsY/PH5lzGcFqCWzVWm/XWmcBE4BrPWOuBT7Rws9AcaXUGeXFa61Xaq3tR+HrgFilVMFWfJFF\n4R6r6eqll8qr8cQ8n397birtGz/b9KC4Zc194gQQDTEeg4qIiMCUOpNPLS14332BPalMYbL2n7DL\niiIMGhR6fwCtWsn+TEzTDvN83nnHmb4EiI6UawmVInit92M06NBBxJstLG1B4hVY3kbN3uXe8Tk5\ngQKreHG46qrAfSRbx85S8tnt3Qv33OOst2/GbYEVaQlpr4AaOBBuuMGZb9bMvb72o9DAqu3xNikG\nI4JVGQ4a5iYnrH0kGrVYuZlOzVWY2UwtBD/fJn2nDi92L/+uNax4yImG/RZyMwOXNRkOJS915ku1\nDrz2Zoahx/qX0AtupG/fvtx6661UzPTUH2Y5zo1ZFOGzzz5j6dKlLPl5MV+9/zBkWwI9wxH0bdq0\ncUWUYmJi+PDDD11RqxLW96dLQ8jaNpFu3bpRokQJxo0bV8iLh4iICKKjnT8hPXv2LPS2Pn845iil\nblDqXISAfXx8zjWlSklizfvvw+LF0j5z7Fi/Z5bPH5dzKbAqAXuM+URrWWHHaOB7K93P67V8v5VS\n+KFSKlho5AZghdY64A5RKXWXUmqZUmpZUkYJeOkbidS0bCkDLrrIGWyLisc9aWa2wLLNCmJjJa0s\nPR2iYuCrFtDAGF+kiNspz4vpwFexonudLd4A9o6F7Qth+HAnohSKChXgek86lh3RguCmEwCvIREe\nr8Cyj3eq5hQvvSTRH/u9s6OA3tqyUAKreXMx5Rg40J1WWb584HsY6l7pUyvSkBsT2CAYnGX27qpZ\n2aQnT7pTH6tXhyuvlOlHH5VIn7k+qrI0Ey7Zwp0OqDXceCOM+FLmEzypfkFOiewUEUuVekFkcZh7\nJcztGjguIwM2LYM7F8BLQEIz9/rS7ayJs3AfmZtx6uXhUYF1W+Xd510x5yfirCE5lvbNs9/8bOf7\nFFW0EgMHDqRFixa0LL2eixPvIveHXnzxxRcs+tlJg83KdJ9XRkYG69at49ChQ6xfv57ExESGDh0K\nwOx/wRcPwe5tazlx4gS33HJL4a4dMcfINCLae/1Hpn9m7gYmA5lKqeNKqVSlVAH52D4+Pn80lII7\n75RqjIYNxV+rRw+pnvDx+aPxRza5uExr3RRJIxyilLLvUkcBNYGmwH7gVXMjpVQD5Nbz7mA71Vq/\nr7VurrVuXqZMGREOGRnOY5CEBGdwbq7c1MfHuyNbdvTniy/kNTZWBFqrVnBim9wom216ihRxCzcv\ntj3OwoXgfUpuChOdDZ+skLRBb6NjL3l5gVGzu423JJjAucKwag8VwTrm6RXlZdo0+WuXkyM/hw7J\nX8Wynh5R3r5SmzZJ84srrhATi+nT5b2vUUMs5YsXDxRYlbx63aKMFQTNjYH//S9wvS2w7MBLFUtg\nZWTAHkPvHzsGdqPatDQYOtTd2PnYDkhZB51muC3Vd+6EyZPhg+8hD9joqaX3uP/TY530vNr4KtQZ\nAnFVxOAimMBJS4OPBsPW4/ArsHmbe32sZSJRQOpdofGmCObjeWQYZgisbj9DiSbSrsCgRBwUiYaI\ncMjKgYxoq+4tx4gI5hjifccnAIQnzeOGG27gpoH981dVrliK999/n5EjR7qOkZ6eTsOGDalSpQr9\n+vUjzNCYxayve5g3CmqQkpLCiBEjeP311/nkEzn+woULuf3227npppsCjufl5MmTHDx4kF27dpFq\nRjp9zjta66Ja6zCtdZTWOsGaTzj1lj4+Pn80atcWT7E33pDXBg1gzBg/muXzx+JcCqy9QBVjvrK1\nrFBjtNb26yHgSyTlEK31Qa11rpVXP9peDqCUqmyNvVVr7bnzDMLy5WDdSOXbXx886B6TnQ233+7u\nP2RHsLZY3XbT0qQP1TvvwIloGAmYgZ4iRaBdO0kxC0ZSkrz+4x+BoqhzZ7iiJthmgzmeyFXt2sH3\nefy4iEezjsq0UvdWiXbvDt2t1L8GDUTkmNvaAuutt4Ifz+aFF6BKFXjgAbmuvDzpW+UVR14L7jp1\noG9fmbZrXbZtk8bEu3aJDb43YjV8uLx6o3lFYuWbPTmI5VBSkpMiaJ+SfS7p6W4L/ZQUOQcQl8Rn\nnnH6jgGcOAjrhosLoIkpwnKqOAbRNjEXQ2PLVr/l+1CsPoxfD4OB2QtkeXZYYB82ENGXYuwwca17\nfY4l1je+FrhtKOJquOftZsNVrg8cC1DOEqR2KqMZwSpl/Tp6xOE/H7qTYpamPnoCwqOs3yFTVOUY\nPryZRgNtIMr4iMsUL8Kdd97JkCFD+PHHH5kyZQrTp0+nTp06aOs/bNGiRZk68ZP8bRJiYdCgQbz0\n0kvBrwl45ZVXeOyxx3jooYcYNGgQs2fPpm3btnzwwQeMGzeOIUOGBN1Oa0379u2Jj4+nfPnyVK9e\nnalTp4Y8js/5QSlVQinVUinV3v453+fk4+NzZoSFyW3Gr7/CJZfAHXeIQbPZatPH53xyLgXWL0Bt\npVQNpVQU0B+Y7hkzHbjVchNsDaRorfcrpeKUUkUBlFJxQDfE3w5PjdZ1xvLiwDfA41rrwndFHT3a\nPR/M2OIj99P4fIFl1//06OGsi24BiwGzP6odLRo8OPg5JCVBdLQIEy8ZGfDGHWAfIs9T71Lf6xti\nYd/kmymG5co50w0bSgpcC8t6+9prxQO1YUMYNUoieb16ybo6dZxGwaa5xl13BTYotjl50qlXMs/B\n5sEHg28Hzl9Iu85m+3b3NXlZvlxS+Fq1kvnYeNi2A3YfDBxr9knqsRp6rHcEVkF5BrY4PWzc+Oda\nAuP79uInO3OmzNuCGeCYDhRYOeFQbYBEsnQknNgJ72+HFGDkc7B/E/SfD3etdhwLbTZsgMmGi+L0\nse5917Ka9R5bDVmFrOMv10H6YV1ppeF1miGRqGoDgo9v8gLUHgJdLDEYEQdtP4P20x0R7Nm2drVS\n+VGk4xmK6FjrQYIhqnTOSd56603Wrv5FIoMGpsDq37cnj1tpu+3bt+eGG26gZ8+eJCQkcPHFF1Oh\nQgUqVKhA72u65G9TvAh06tSJfv36sSnIf+Cff/6Z555zN4peGsydMwivvPIKCxYscC3L9PbQ8zmv\nKKXuAOYDs4BnrNeh5/OcfHx8fju1asmtwqhR4lHVqJEk+aSlnXpbH59zyTkTWFrrHOA+5B/ZBmCS\n1nqdUuoepZTtOPAtsB3YikSjbAVSDvhJKbUaWAp8o7W27l552bJi/xXoBNhhmfuAi4CnDAt3T15a\nEMyIhJz4qS/OjjKFhUHNmiI6nntObKRCp6cAACAASURBVNaPWDdvhgFavuOeGcWZPFmEAcDrr4u9\nuc0nnzgpdI0bQ5QhUMp63Or69HFcAk1sMWK68ZnphtHRkv728svQqZP8hRo/Xs5jzx5x3evaVSzg\nly51LOvtqErbtjJmwYJAY5A6deSvm32TGR3Ea+Tii+HDD+W9U8rpE7Z6tUSNWreWiF+VKsHrqMBJ\n52zcWK7DTpsMDw9uI5+d7W6kUaIxRNdwztN7492unTNti72jR51ludavzwmgSxcR3PXru403SvWD\njz0Rtsxs2DgX7gWuHwbHDFFfBNi6E1KyYF+mk25pcsS4thWz3E6CVXpD+S5wbAVsesO9XW6uI1a9\nXHQXlLLEdkQclG4VusYtMl4aUZdu5SyrPhAqG+mtUcWgv3PeTepVpailYzNyIh1jDKMGS+lcHn34\nQa7vnh+URkeVRGtN3+t75S9bu2opq1evDjit8uXLs2HDBvbt2yciyth3sSJw2223UbVqVerVq8f0\n6e5nPXZKoMlnn33Gs88+yyuvvMIy210yCI97azQJ3iTZ57zyINAC2KW17gQ0A0LYxPr4+PyZCAsT\nH6tNm+RWYvhwScQJViHg4/N7cU5rsLTW32qt62ita2mth1vL3tVav2tNa631EGt9I631Mmv5dq11\nE+ungb2tte4Wa2xjrXUvrfV+a/lzWus4w769qZVeGJqoKHj4YZmuWVPS2cxUQJsRI9zzdgQrK8uJ\n6KSlyc1rvNXKq90rzvgHHpBXM5WtTx+JawP06weXX+6su+UWqd4EiZgkWFGqki3gtQ+dtMYtW+Dm\nmyUS9c9/us/RFlimqFNK9jdkiESe9u2Djh0l/W3KFOc9mThRHgeBRLiKFQus2TLnvWYYJ07I/mwL\n9WA36l26SOqlbfAxcaIIiaZNZX7pUtlXQVEl+5xtbCF3ySXw7LOB44NFJ7t0gfvvl+mNG93rbEH6\nwguSh+DdR148HI+EE2FOyuWGDe7vUF5D2OcRSBmZMOVuiWyt3QG/GtmsGTg28iCCMFiqoE0OcHyj\nuAZmJcOmt+CAleaY63mEd+ed8rjvww/hh56w58vQ+z0bhIVDzb8BEM3J/ChURrZ2BFaO2zQlLpr8\nXlcAyqopu3+I4wJZMh7SCvN40qjvKmZ8XbXWjBkzxjXU2ydrxIgRFCtWjKeeeopHH32Uli1bMmjQ\nIF4wm2hbNG7cOH960qRJpKSkMOhULp8+vzcZWusMAKVUtNZ6I1D3PJ+Tj4/PWaRcObk9+uEHuS3p\n2VOSc4J1kPHxOdf8kU0uzj2NGonY6NxZxNHllwfWJlWpIulnJvYN9LhxTt+khAQRCEWukflwI6pk\nCzIzRc/c18KFgX2lmhutv+bshWINxfwAoFo1ia7k5DimE7YAsLFvGM3+QImJsGaN1IotXAhHjshy\nUyxFR0uEzusW6DW3+PFH2RfI+2iTkyPCDeCVV5xrDIUpAM36t/vuCxR1Zl8kcKfrgSP0Fi50Ik4F\nXUNysjsi5WXFCnk0Zh7H3Mfnn8O92XC0gK6HpnOjTXo6hFV35p8wxGAGkGkIsj59ChZYWcA3DWDL\ne3ByJyx/AKKsps5mHdSaNU6q6+iRsO9/sCBEjdXZJEpMPhNicvlwtIj2Rk0uNQTWSddwr8AiR4RU\niWLOZ//AXf04cuQIt956K+/atZNAUlISycnJTr8rwwK+lKe08eJqCbB9bL6dfboRJW3Tpg133nkn\njYzvtdaaTz75hHnz5gVc4iWXXELbtm1p0KABzZs3JyHB9074A5JopZF/BcxWSk0DCuhY7uPj82el\nQwdxGnzxRZg7V6JZDz7o3PL4+PweXNgCa+dO+PJLSe0DaRjsTWezXeUGGDUldk1RVJRz0283Et57\nEIoByUbdlr3PK66QiNnkyc661FSJJo0f7z7u3/4mjnwAN90kNS7NRkjd05dfwk8/iemCHQU7ftwR\nJGPHOvVI5s15TIzT1NheN3iwRHHMc42Pd5wNbbzRnexsJ3WtefPgroT2ddvnYEbpbNobdeYHDjjz\nr70WmHroPaeBA93ztvX8tGmOa2G/fo5Y9Uaw2reXiFMoDhwQwT1jhrPM/At99CgU3GkteCJ4RgZk\nGL96KUbK32ogy5Omuq0Avxa71CfzMGRYtV+XfyEiK9dIrXzuKWf6mGUiEqx31+mg9alt+yPldyU8\nbQdrfpWHEfsPHSVH233V3Ntf0rgO9WobtYhZ1meW53yPq5SJZt26dXz66afce++9XHnllXTs2JGy\nZctSokQJIiMjWb58OWQ6n9Vbg6BWOahduzYHDx7kpS6LpJeY1ZT56aef5ptvvmHq1Kk89thjFC9e\nnNFWfWaTJo4laLDaqjFjxrBw4ULWrl1LjRo1Atb7nH+01tdprZO11kOBJ4ExQO/CbKuU6q6U2qSU\n2qqUCsgHVUrdZLUNWaOUWqSUahJsPz4+Pr8fUVGS2LNlC/z97zBypJg5v/qqUxXg43MuubAF1pEj\n0ivKFje33Sb1PMH4/HPpbvfWW1J/BDL99tsybQusZs3gHaBckBtrpSSq06ePs8y+QfW6ByrlmEyA\n1AuNmiqmHLt3y7K0NBGJI0aIwOrYUUTBrbdCmTIyxnyaXrq0u1FuZqYISK8de1ycexwE1gGBkx75\n5puOGLQpU8Zptb5jhxxnwgRn/euvw733OmmTkybB88/LcTduDGwqXBhKlnSmbRGckOBMewWW0ZjW\nlb5pTg8fDusNl0BvDVOTptDw+dDntGGDu58XiFB8xxBN3sdq3rTIgqzxw62+aWlHINu6vuiS0kQ7\nxxBYk4ymxlGWEM3LgvWe9NfT4YknRNSa1vYB52eFo7a+x1dTJwGwdt1mcvKszzfDbUTy1eRxvDfS\n6LyQnUyF8mW4eeCN+Ysic93vx3fffcePP/7oWhYfHw+7J7mWPd5L8f777/Pxxx/DCfkcc/fNAkRE\nxcTEsHXrVl555RXXdo8++ihvvfUWo0ePDlpv5fPHRSkVo5T6h1JqpFLqbqVUhNb6R631dK11AaHh\n/O3DgbeRdiH1gQFKKa+z0A6gg9a6EfAs8P7Zvg4fH58zo3x5KRdfvVpKux95BOrVk1TCgpJrfHx+\nKxe2wLJJTpaeSu3aBa8X6tVL0sSqVJHUNaVE5DzwgNMLq2FDuOEGiLRCGoUNDthRGW/6m43tUJiT\nI0YOIClwIAIFRCCmpIiAKltWzslOGbRrs9q2lUjM0aPONWZmSvy8fHkRIrfdJutiY92phfZYL6aj\noNcB0XTSy80VD1Wzb9Xnn4vJxyy5waVsWRE2K1eGrkx94gn3sU1HQHsfNrZwLVrUEVjelEIT200R\n3Gmip7LbXroKThbgpbJmjSNOq1WT9zc3190Ly2vIscuTueQ1YjFJPQxzgTYjYYFl4BEeCw2fFOMJ\ncDeyBogtBx2s93j7h6H3fSrsWkBvawOTkzvzJ8OV/DfLygVlW7sf9ZhH5Jx0mVMAtKh0mKYVHFFV\nt8wJxo8fz8cff0znzmIZH21FS4sWLYpSiqJFi7pSBAEG3Px3OnbsyLNGfZ7OdT6IV155hX/+858s\nXOg2IS1Tpgz33Xcfd9xxB1eZBiYeUlNT2bp1K+vWrWNPQaLT5/dkLNAcWIOIpFcLHh5AS2CrVRec\nBUwArjUHaK0Xaa3tL9vPSLsRHx+fPxANG8ot0KxZUl49aJCkDk6YEFgZ4uNzNvAFFkj/qY4d5WZ4\n/vzA9Z99JkKncmWxqgFHwNjuehUrSiSn8zUwAzCN44K56NmEimDZdOwor+npzo26LXa6d5cUuJMn\nRWAVKyY38AMGiIABaNJE0u1+/VVi5GFhTtPjDz6QKJhSYmphNyJ+8km56TcdFYM5+dkCa/Rot1th\nML77zj1vuxN27So9yMaMkSgWuAXBrl1OaqHZ8ysyMlA4mH8l7fcqPt4xq7jppuDn9tFHIn5sTNv9\ngsSDjbdGzyQ726lJ8zZX9lLCen3Vcw9YkGFCWpYkOwE8aaWlhsdCrduhoiVAvTVcqVtBhUPtwZCZ\nxBlzySXy/TLrBQPOz4nG9e51NQC1LqpHeGSQlFLgwfvu5N2R7gjSrZeLzbpNXPI8+vfvz6BBgxg5\nciT3338/ycnJaK05fvw4ubm5VKhQwUkvtLc7/hN5uTmcNFJNMzNOkm19jw546yAtdCG7V06YMIHa\ntWvTsGFDhg0bFrD+tttuo1KlStStW5fvvL8PPueK+lrrm7XW7wF9gCB5ygVSCTDVcqK1LBS3I/8B\nfHx8/oB06ybPdqdOlduIAQMkcWnKFF9o+ZxdfIG1apUIkHHjxHrGS3y8/Ngpd++9J6/2zb3dHBec\nWib7Xe3aSW7u69QJfXxbYIWKYNl2zxkZjlAzDRyeeEJqkdavh6eflmXFijkmF2Fh4pLXqpVE6ubO\ndSx1Jk6U17vukn3YYjEmRmqqzGiet/4JHFEYzCYeYOjQ4MtNypWTNM1PP3WWXXedM121qtMzy0yd\nCyawzCibbblevLg453m59FJneulSdxTJjMYFs9uuWNE9X1AKn0lUVMFtAE7dVAC8rVHNYM+Og3AT\nMH4GpB+A49Z74I0+nkQMLnLTpU5pu6eXVmH45Rex6I+JKTjPokzb/MnePUVgNWveiogw9/uQEy33\nrJeW3sruHVIXlxst73NcNJROcOrx8jTUu7gu2dnZ1KtXjzfeeIMoI5qqlEIpFRDB4vgmVsx4lRu6\nOmnAq1euYNeuXSxbtoy6dd2mcjExMWitufLKK0NeXt++fWnatCmdO3dmm1Erl+GNAAMHDx5k3759\nbN78/+ydd5gUVdaH3zMZhhkykjOCgAERFFwVMwYUlVVWUcy66reYVgkGdI2Ys2JYdM2CIkYEMSGK\nIoiSRCQnyWGAYdL9/jhVVHVPT4IZJnje5+mnu27dunVvVXdXnTrn/s78QIjDKGt2/Ul4qUPKDBE5\nGjWwbi5g/eUiMk1Epq1duwcPNgzD2CPi4vS2Y+ZM9WDl5uqt3P776xT2wnSlDKO4/LUNrPj4yJvl\nWDfTxx+v7/XqRZb7N/dhFTxfMMFPhfzRWDVqjoy+Kw7RsaOKXhQ096tLF/WwJSWpF2nQoEDYAvQm\nd/hwTXTr54GqWVP3u2WLCnhkZGjZlCkwa1Zwk9+ihUp2d+8euc/vvtN9ho2Oyy4Lku2CBjH7+4vx\ntL7Y9OkTOU/sjjsC0RGf007TuVAXXxyUdeigfQwT618xPR1i3SBPmgSPeXmi3nknkJSHYFwQJFgO\nk5BQ/DliYYOqME8mwAGh8LP9O8FRMfbRqH7kcnb+Klx6Gfx0LXzlzeGLNrCWosZV41OgRhtIiaFu\nWRQ9e6phOXWqHo+RMaadZG3epQKIJEKe14+4JFj5cWTVOA3jTIiH1CQ9Zrk19MHESUcdQN+ugREX\nJ7Bq2Xw+9RI7iwhxsc5HtIEFPHrfYPZxQQ6tHVlw0UUX0a1bN94MzxFEjaSbb76ZO+64gzVrIjM+\nZGdns3TpUn788UdmzpzJF198Qft6W3j7+hrcfl5D9aBFkRESBKlRkMfaKG0OFJEt3msrcID/WURi\nJMvLxwogHP/c1CuLQEQOAF4ATnfOxdQqc86NdM4d4pw7pH79+rGqGIaxF4mL0yCgWbP0GXt8vM6U\naNMGHn44/1R0wygJf20D66CDAs8UaJhcz56BUh/oYw4IFO3uv1/fO3VSwyIsvT57Nnz6KRyUBM3/\nDglpBe87K0vnKY0dqwIRBV1wDz9cPWw1a+pjlmi1Pn/u0K23BmGLvgdr/nydd/T110Hy2/33V4EJ\nUCPloovyz5+aM0eNj3/9Sw040HF26hTUic59ddRRkW107x54sPwQsksv1UdGfjjhhAlw9tmRhkcs\ngyYxEYYOjZxj1a6deroyM4P5XoMHB/PSfNauDdQFw6Sl6Xy699/PHzoYNqbDBrTP9dfnP2bhen37\nBl6zcMyBn+OrINqHvGp16kFqw/x1ul2VvywWyfVg63xYOyW24bkEyGsGpy0IQglLQrQHJpbxuO57\nmOUZ3/scFYQLxiUBkR6s6gerymGdVPVYAUg1z0jZFJWCAGhVHz68cgC0aaUPDkLk+cfcz4OVvt+u\ndTVSImXgD24dx+TJkyO2v+eee3YpCI4YMYLhw4dz2mmn0b9/fwYMGADA448/TosWLVgSmi/3j86/\n8feuGQw/eTUj7rk9X58/+ugjxo4dy2OPPcaqVavYUFiKAKNUcM7FO+fSvVeacy4h9Lk4evo/Au1E\npJWIJAH9gYgs1SLSHHgXON85Zxl3DKOSER+vtwEzZ+o8rbZtVfC5eXMYMiT/tGjDKA5/bQMrmoMP\nVgGJ557TuSUQeKp84+L884PlW2+NvBnv2FG9JXlZsPx9nd/UrJnOzYqW2r7+ejU0nnsOJk4suE95\neRqel5Ojnqi7745c73tbFi0K1O58A8tXzatVS/3fvifNvwFdujTIjRTGD296+eVgm4kTI2XT69WL\n9M6Ew/og0vvlH6MXXlBlQX8eWyxp92hDLUzYS7F9O9x1l84b889VcrIKdoR54IHYN/8LF6px2bJl\nfm+Ub8glJwcy62Hv5jHH6LZhsrO1HRE13CZM0PKGDYNxhj1wsQgbkCkp0Pj4yPU9gENDU0gKM9ha\neKp7Kz+JLVDyLdDqUHjrZdhZCjf6fmLsMOFEx5vnwKJQGKiEv0s9IVXnwPU+MDCAEtKijFggE/V0\nzbgHnlu5BRYuhn4n0a9fv12hgUOHDtX8Vi5X95MXuPnq1UzktN7BMaxdPY/00LOCEw+AwR1HcunB\n82gWMqKnTp3KW2+9xbueqE1bfx6jx2effUaSCyUrzolSEXV5pP96JZ2WnkuPzYN47s7+zC0sRYBR\nIfDCCq8BxgNzgbedc7NF5EoR8bNf3wbUBZ4WkZ9FZFoBzRmGUYER0antX3yhwRnHHqvaYq1b63PT\nCRMKj/I3jDBmYBWE75HwDaPjjtN8Vb73Z8sWNVBizT857L9w8q8a1rd8uYb1tW0bqaw3Z44q+v30\nU6TAQjQTJ+pcJy8cKp/KYTjUyBdzeOIJnY/lq6HVqqXrHn5Yl/3HM3Pnxg7tipV36aWX1LhzTl/j\nx0f25eqrI+uHle/C852SkvRf65//jFQVBPWSxZovFYs5c9TAfeWVYF/vvgvffx9Zb8MGla4fNiwo\nO+88+OAD3Xb9+khZdgiM1qSkwMCqXTtyvX+swxx8sIpiHHts0MaWLYF3MpYnLUzYK5ibC62jvJq9\n4+HwY7Tfr70GJ59ccFsNjlQv1s51sT1YH3nv/S+ErwsR0dgTwkmEd6wEfwpMvcMjDay0dlAtCNXt\n0k6NqF0eLJ+Og0luEUPFL2sLO5YGDylGjx4Nn6u6IPEpcOjzu9bddVY2PWt9E7H5xilD+PXXX/nq\nq6948ZZeyLbFMO8hrr76Ko7qnMqUEU145mI4YX8NG3TOER+Vo23z5s3EZQchiX1OOT7Cu8XWBbDk\nDdrW3U63NjDwCMiyQP9KgXPuY+fcvs65Ns65u72yZ51zz3qfL3XO1XbOHeS9ClF9MQyjMtC9uwpf\nLFqkYsxTpqhARocOGuBjAQhGUZiBVRBNm2p+nzvu0OUDDtCb8REjVH7m1VfVMIol/d36QkjfN394\nWdjo+OKL4LMvIx4L3/vTp0+QfytM2MDy5zJ17KhKdH6Int++H6pXu3ZwMx9r39E37jk5amjE8jj5\nJCREqsnFxwfhleHt8vJUL/XppyMNy9xcNYSKS3SInoiqEEaFiwEq8PHDD8FyvXrBcufOkXPaIMin\nJRIYWOEQzoULI+ej+bRvH2lMJSTo9r6KoC+zH4ubboo8ThMnQi8H4al/Ha/SPp1/fqQoic+x3rt/\n81+zoxoYMQQXIlgZmqv0889w3335pePDhI+lT9g4/Pln/b20vQAuBvwIPz/xca39ISEk6pKYDqnB\n+eza0TOsog2spNpInahzBZAM/x0cePNGPvcMrPXC/nJ3wj694KD7ChxO3Jx76dwqnSMP706TJkE/\n/q/BEL4cso0eTVZw5bEwfjCMGT0agJdeipS337BhQ4QncN7smQwLG/W5kecgORG+CP0H5HoPanJy\ncoqtWmgYhmGULc2ba4rOZctUi6t2bZ3+3aiRznD45BPLp2XExgyswmjaNDIszs9t89JLsUUuYuGH\nr0GQeDeaWN4Qn7Dgwi/556KQkhIo8PntTJsWyKJ37hzZBqi/2w95izXZ/rjjghC3Dz5Qeff33y9Y\n6dDn88/BT/i6YUNgbKSkqEJjamp+Y8anpImFfWMyfH6+/joyN1f4uPrjAf03nDtXDcn69TUM0sun\nBATeqszMwMAKJwv2E1NH48/PAzWE/OPuf1cKu3G+//78BmxabTgztDzwxcgQ0ejQR18pPzdXkzUf\n9xV0fSRQlAxTJ+SRC4kvcO21GnQ+blz+bXwuuSR/WdpO8JL28vbbmvIgz8FOYIZXxxedSKoNPULK\nhfX/pu/p7SPrJUcJy9Trwcw5nmJlOOqxHjSom87MmTP5+eefOeaIsAPBO+aNCs5fBcD7LWBiL1gc\nhDFWjxFZekafExARGjZsyA0nw7vXQruGsHnzpmDOF5CSBDtDoZnPPv1YRDtJCbDDS30watQoEhIS\nSEurwUldEsnYYAH/hmEYFYnkZBgwQINkZszQmQ6TJultRPPmOgV83rzy7qVRkTADqyT4anQtWxbf\nwPrxx+DzySfrDbufU+rOO9VQiA6VCxMW0UiPMSdbJPBQ+AbF2LH6ftRReqMbfePetGngcSgoN1Pr\n1vq+bl3grSnMg+X378gjg376kvbJydqXjIz8xt7ukp6u4ZfbtwfGwKpVkUbH/ALmm8+fr14W/3g1\nbhwZ4uiXZ2UFxkdYFc4P14wm+jxGj7UoFcHo45tcF8K29/btkUZctMcvZDNFpBx45538+9oQ8lr9\nFvr8wgv6vmCKSrjHIuy1bQB0AxLzYK0Xeucfs45e3rLoUIrkulAnFDZas6O+i/dbyvI2CIvEVG8G\nDY5g/kLPCxw2sGoCG6ZxQNIXHLjifJh1V7DOeY8Wax8Ah42KPR6f9VPzl2UD1xJkNtqmxs+jjzzE\ng+fBGd3g85Hncu3AY4N9ASmJMD/0/Zs3J1AuBDWw0r3fySOPPEK/7rD1uW1MGAIpXx9XaDe3b9/O\nhAkTWB5OW2AYhmHsFQ46SMMEV67UgKauXeHBB1Vc+aCD1OP1++/l3UujvDEDqyS8+qqGfe3cGXg2\nijKwEhMjPT8rVwZzoxo2VKNg6NCCt09J0bC6G28s+MZ+8WIV0vBv8P0QN9+bFOb00/Xdv9mPJU0P\nGoJ3//0qJOFTlAfL5/DDI5cL2sfucM01+j5okI43KSkydDK8rwYNguTFYXzvXlhQI2zcVK8eGIm+\nUEhYzv/QQ/U9PHerX7/8+wkbZYVJu/uJjcN92H9/aDkAaoUM4DrJOg/QJ5x4uSVwcP9gefJkmP8U\nvNcEfvMMrPRQGGcTAu/luyFDrU0b/W7M/wxWfKhlK1dGBpyHPWI5qIHVS4KkxX7OtK5eCOPOkHhH\naguI9757rS9S71VqS12O87yPed7cpMSQdzVF2/hi8k9em8EqsoAdq2D6tbDpV5j3MDGRhNjlhbEU\nWAv4DtAV7wOQFBcYU82Sl5A4MXLaTUoi3HDDDUFBbqTQyAGdO+zKr7V27VreGRSsS9zxB9u3R4pk\nzJgxg9dff53t27fTvn17TjjhBFq0aMG3/n9JJWDr1q0MGTKEM844g7f8HHyGYRiVlKQknQkxbpwG\nKD36qF5Whw3T9KcHH6wR9wsWlHdPjfLADKySkJICrVrpzaaf1LcoAwsiw8/WrQtC/Xr00Jvq6Bxb\n0YioGl5BubL8uUf+DfxVV6nQAmj+Kh/nAu/WiSfCqFH6qCUWiYn6KMYXvBg4UGXsi8NVUVLixTXM\nisPjj6uHJHwswvPIfOPSDx38+9/V2AA1GsPqf1dcEXz2k0E3bqznuVevYF3dupEiF86p8RT2WHny\n3RGEx52TExg00Z4q30Bs2TIo++wzNTDOfgOa1IVmCdAwTQO+Bw3SMMBwOORiYH3IYHztNfhquopL\nrPSMo87pGj4Kmsln61Y49wQ40DuWq1bBFefpA4QVf6gH66GHdJz16+t3LCsr8MACZAJ9usEZdWHh\nKNi2NDCwNqniHpuz4E2vbv2QCmJKQ50rtcLzQMaFxgOR87SygRUruPwSz8AO60NMBcLaJlne+NZG\nteGHIHo8/wVF42Vr2PVP6SsShhUS1+U3cm668nSOPvroXctXXq4KkjlOjbydO7byjZcCYUuM+W63\n3norw4YN45NP1HX222+/cd555/Hqq69yzDHHcOedd9K8eXPGFRbKWcF4/vnneeCBB5g6dSoPPvhg\nzHH7OOfo1asXvXv3pm/fvjYvzTCMCs0+++ilefJk1T975BG9lRgyRJ+FduyoU62/+SZ/lhOjamIG\nVkmpXh0++ihYjlITi8nLL+v8oObN9Qb1+uv15rZz59Lp0++/azpyn5QUzZ4HsWXYQZUEBw4s3LgL\nGxlXXRXpxSmM6Dllxd2uOIjkN9ji41VUomZN/Xf7/XdV8/PxjbFly+C332K327q1/ivOnq37CKsZ\nNmoUOVdtwwbtQ3icseTlw9+NZs0CUQrfED7rLLjggsC4a9pU+7dsWSA33/Z0GHsXLMuBOV5o3uOP\n6xjDyZEBataNnB91+Us6BcnXVqnfJX8fXxsPb4+BdVPV4H/+DUgHfgf+9XxgkOXlwbfjYHGkAh/b\ngc2psGGdep6+7R8YWMne+8ot8AEwD0j0jllGBnT2RCCWeh62+GgDyzvmOcDlv0LTphx04d2wjUgD\nCwIPE6ho9k1oaN+m0Jy1cFgiUKPrrWQUof+B55TLXSvwPDzx6AgWLVqUX4Y9ij49GkTIvHdo1woA\nF69jWrt6haodAm+//Gi+7R9++GHuuecePv/8c1599VX+8B50LF26lG7dunHbbbexePHiiOTFFZ25\nc+fSo0cPHn/8ca699tpdIZKxmyMA6wAAIABJREFU2LlzJ1999RXjx4/nk08+QaLVUw3DMCoozZrp\ndOYpUzSH1qOP6nPKRx/VWRQNGqiY8RtvRIpLG1ULM7BKyjXXBLLXsQQiYlG7NhxxhP7S/LxSxd12\nd7noIhWr+N//iq5bEElJQd6vQw+NPZcnFmVpYBXEmDHqh09MVOMxPP8pfKynTAm8UU8+GdlGs2aB\nNyy8fVoanHaafm7USD04qamR4YixhErCHibn1JvWq5caF1Onqtz6yy8HYZugxlY42XLmWvgoKnly\np07aj7CxWKuWekqj86RlJ2mGHoD9ukWumzBBle/uPQKGHAYrlkBz4BTUKJs4Dz77JKj/yf0wxJsf\nFPa2PfAV/Fs0efGGRYGBVcc7ljl5UAuogxqvw4drCOaL3hy95WNV2EJC3uBNwFvjYJH3ebX3m9u4\nWfsWUoAHwHeq5QHLQuW+KAZATqQx8o/zLyMptQ4xaeMZqt6Txi3V46AW5GVvp3Xr1lx52QWxt/Nx\n2ZHLeRoimBevDweSEgIRjJO7Fjy3cfPmzaxZs4ZbbrkFgLvvvpvNM59i/ai6rH6/DzfffHPh/ahA\nJCQkMHPmTP7+97/nk7mPJjOkfJmVlaVGrWEYRiWjeXP1bE2YoAFMo0fr7cRnn6kYcIMGqoV2/fX6\n7H7r1qLbNCoHZmCVlEsvDT6fVIQyWSyyszXM8Pnni65bXC67TG/ewyQk6C/6H//Ys7bD8uSvvVa8\nbaKNx+LmttoTjj9ew9leeSX/OpFIQ3OjJ+rgG02x6NMn+JycrMdh+3YV1njlFXj99WAenr+PaMKJ\ngP15W2PGqAxR9+7qDX32WTXEfv01dj9+f1q9RD41a6qXKj09cl7Uxo1qFEbL7o9yGj4IUCvKY/DJ\nJzpf6ZWlsBDIBQ4GwqKDG0IL02uAF/VHdkjoIsPBdgdDgceyYLP3SK52yOjcBNwF5ORq6gPn4N4b\nILO5eol+nQ7fbYSfgJXArwI33gwPEjl+0FBDXzvGt498AyvKrok4R7mZQOg8VW9CUu32xCTN8yom\nA2cdwH3H1YC/Q7UkiI+D9IxvYm/nk7Uxcjlbj2Ncsh6Tls0bMXjwYG9d7FC5O++8kzPPPJPOnTtz\nwQWBQXdU43nUSVzPPhkf0Lxx8URjZs6cyfPPP8+7777LvHKSunrmmWfYsmULubm59Is1ZzFEamoq\nV4eEZ2688cay7p5hGEaZkp6ugSujRqlG1fff6zPRevU0c82pp+rz3549dR7Xxx9bvq3KjBlYJSU8\nwb9//4LrxeLUU+Hoo1WUojSDcEeOjC3mUBqcd14Q6laQ4mA04Xp9+sQ2PkqbSZN0Nuk3Bdz4ttIQ\nrYiwx8LCI8Nj8D1V1appeF/LlhpQ3aOHlkeLevhcd50evxNPDOav1akTGFugCZfD/YsmLw7Cp7ZF\nCw0PvO02zcvmM3q0/lsnRYXZfRWyOM7sBx9+GMw927IFEqqrUZKBhhMmAgXYeuzMgYM9Zb/Nodi6\n3wgMmzMHw1ZPGGSfqATa24BNOyOXL1kKw1PhsN5w63R4GDXUDkvTsNRNqMEVJhzW50+DW+O9R4cO\nbvdcXdlbwOVB3e66XK8HSBwc9UFs8Ys4z5t2D3DLKVx79Q2wEXofewRXHAsjCnhu4RI97+jy9+l1\npM6ty8vLI2+xijokJqm3ql5qDmef5KUsyM4vo9+iWSNuvfVWTjrpJE444QRefjmQtW8QtpNjhCpm\nZWXlm980fvx4Lr/8cs466yxe8JUi0flft950JdeedwgPDT5jl0rizz//zNVXX83AgQMZOnQoq0uS\no64I4uLiWLBgAZtjpQ/wSExMpHfv3ruWM4vK5WYYhlGJiI/XW4GhQzXDzcaN+n7zzRqRf//9qn9V\nt64GrVx2mc74mD+/8IwvRsXBDKySMneuChrMmRMk0i0ukyYFCoJhz1BF5uCD9Rddo4bO1iwO4dC5\n6ITAZcXXX+ffdxhvvgs33xwo8RUmOx82sHzFxW+/VaPsn//URMB33KFB1QUZt8nJqjz56adFn2/f\n6zd1Klx+eWA8LVgbeKBq14aZM3We2eTJmvD32GN17tjVV+u/b2HGbPXq+o/tiy9s2QJJdaAaapg8\nB/RmV+qofGRmwi/eDX1GDsSK8ho9Gn735MP/FiOxcsL+wed1QHISDL1dHzhUS1CPUTbwwXZI80Ig\nZ0eP45DAY9U9VN70EWh3a2TdVd4cst+egPcawn43AgKNT9Xy5LpwelTeqVoHBOsB4lNo9Pl8uAaa\nZs1gyNWF/O4TA2n56lu+wznH3LlzGfPBJAA+nuzJSe1cC5NURXDT2qUAuP3vZFuOfn9feEaVELds\n2cKHH37IxIkTAahZHfYNiVNefskA1npB/OPGjaN27dokJydz+eWXR3Rr/fr17FMTzuoOzet7J27t\nd2S+tx//Oeg5Hj3lJ244YCyMa43LWEK/fv14+umneeWVV7j33nsZGlI6nTFjBm+99Rbjx49n6dKl\nBR+LGOTMGMb2j/5G+rR+3HpOrQgp+zBbt25FRGjVqhX77bcfTcNhs4ZhGFWMatWCKP/vv9dn+V98\noULOLVvqpfXii6F9e31Oe+yx8O9/6zyu+fPVKDMqFmZglZTDDtNws/32K/m2YUW/cOLaik7r1hoY\nXJCKYTRhI6dr14LrlSa+sVSQgeHPC8rJ0dA4Xx2xIMJj8D8nJKjh8+yzOneqUSMNrt6TOWa+R+3n\nn/V9xgwNH13puW0a14fLgSHAr1O0LC1NRTwGDlRvVLNmGnswcmSkVysa32j0xQWmToUmp6qBNR84\nY7J6ggpLr5QTSll/Xgyv2w8/BJ/r75N//SWPRC7HxUMr75w1TQvmi43JgWZeYu5JUW08NiswsOqE\nBE+mL4amUWqOW71QvdwdgEC9noCD5NDcq+qNoc/vsP9w6PUpdH0MErxj9STwyVyopoZTXGYGTber\nVDvdnoW/R3qK5ITvWOfF0NdKVc9LVlYWSZ6TbOJvobDJzNU0atSIV//7NABfTplBak0VNznu8M6s\nWbOGn376ib59+vDc8cdzITCsDupt9Pjmy8947rnneOmll5gyZQqbvLQCa9asIUy3bt345j81GT0I\n+tV+lmnTpsEfL9AgUb9nWTmwaRvg8sjeOI+4uDhq165NQkICGzduZOTIkbvaevPNN+nfvz+9e/fm\n9ddfp9js3EDC3HuovvlbGsfN5v7+8N577+Wr9t67Y3jisjq0/vMOFr52BHPGXctzTz9R/P0YhmFU\nclJT9fZg2DCdm7V+vWpwjRypGmZbtqje1bnnqtFVs6ZO8R80SOt8+22QZcYoH3YjMYyx24S9GH4i\n36pI2DjZW5666NC4aB56SLVSTzpJffNFiYyEx+B7sMJJn/eJYTzsDu+/r/+MkybpnK0HHtDy4cPV\ngGudAL5AYR0v/KxmTZVSHzUqaOeEE1Tko7D5Nf6YfAGPpUvBpaqQw3Zg8GMQapLmAks9d1Y6ELYl\nuqdDy9qoCgUqzhHtjagTQ0Ai2uPRuB488W/9nJgQ+Y+UGhX+Vk1gh4OMTJjuldWoBonb1Ot13WNw\n9EWR2/y4Vo3rNV8CLjCccndE1ktrC/vfDmObw/Zl0OxelZb/AeiyAzp7YaA5qER+HpCXokqHyfXV\nI5WQDtUbs7N+b8j8lOpJ0KBBAxISEnjdcyjlSRJ58dWJy93OuytOZvXq0aR7XVqyciM09kITf7qO\n1X/W4qZhozkS2CUvsxxVTDxDF6snwVNPPcXq1au58MILARCRfHm0+vXrR95rqizauMYWmnTrxuox\nR+N/i7MT6qmM/fZvSZIs5s+fz9KlS/nyyy9JTk4mIZTzbcvmDSTGQ56DWtFz/gph0fwZtAJWbYJ6\nNXQ+2/aMjfnqffneQzx2Wg7wIyz6ERa9GulRNAzD+IsRF6czEzp2DJ7VZ2drMNVPP8H06fr+4ovB\n82TQ578dO2qYYadO0KGD6oA1bLh3Zm/8lTEDa2/ih8t16lR07qvKTPhXW5pJhgvDN4IKmtuWlqb+\n9OISy8Bq2VIfIW3aBF1iSJ7vDr7k/A03aAjgwoW6/O67QZ05I6F5b6jm3Q7XrKleuMzMoJ+XXKKz\nZNeFxCei8eseEkqK++dGmPILLMmArj0j66cnsGtyVbQOQ4fOcPa58FMjfbyWkqLSeFmh4+975QCu\nuxIeeTZ/n5rsAwme7F9SDUjwBDISBd78KbLuCfHwftT5PfMduD3IN8W5nuWRIJDjGYcf/Q9yvNDc\n+AIMLJ+er8PEI+C7X+CjOI27qH8gVPMM8nXAMDwhkAuh1yi4zDMSen0EC0fRpFYOrIbqyeySUU/y\novIeeOgxMr+/iuq5i7n7CQ1bbdu8HrCOE089B3Z8Clt/hz8ncsBG+GIV+I8CljeoS9NN6wPvHXDC\nAXDfOJ0fdUDDTSx8qQMtD+qLdLk3clwujzgJYkj2378z0777glO8r/HOnTup07ypJlb21BabN28e\nIa4BwNyHeOqIF3nmSNiZDc/Pfp01a86kQYMGFMbq1as5o89x/HwPrNkM+9SvA9kbuGPYDfnqSra6\nABevhZb1AfJAipEOwzAM4y9EYqIqEB54oIYPgl6y/Iwzs2erATZ7tgbGhJ+7paaqoRX9atNGjbLi\nZCAyCscMrL3JuefqzXqsnElVlaI8S6WFn0tqT1UTfUJP7CP+aTp2LJ32w20PHKghh/4/5AUX6PLw\n4TrPa9+LI/swYIDGCzz4IHjy3TRurHLvdeqod3ThQg3a9tXa2rUL8m/Fxens2qlT9d+0V6/I5MH1\n6qmhVj1kYEWzvTF0uhqePV0fHPjJs0EDjwcMUB1aUIXHOx+INLBq1VJDNTtP510BbMsM5nVlO3g1\nap8bmkL9bUHikHHjoHOvyDoLPGMtx0GDeFiTC9/8E3r4fUsGBHJC43UOpn0Cf7wN1Y6Ge4E/RgdB\n7UnJgZG9lEiVxS+/hPOAuk2gwd/gl1tg/QJYDG12qOq9q8suL1XiqvfJjdPv1pndQGruR89u+8Ca\nL2nUbF/YkAHLNQTx7scTGbYzOP5N16yHG4B9IC8uhbi8TO49B77bcChfTZ5Kq51jaZUMzL2P4/9v\nHDmJDZgwYQIJ2xfC+PBkNXjggjQ6JgfLzuVpYmtgzq8/0mFmdeK8+aIrgIn77cfAiy6CVZ8RJ448\nB8mJEL/uG+bOnVukgXXlFZfyzIX6WeKEuKSakL2BFYvn8uSz/yZz0xK6dOnCBVfdyYGd2wOz2OHS\nAC/eMi9avcQwDMOIxtfhatlSp1z75OVppqD58zXYxX/Nng0ffBBkHwK93WjSRGey+K9mzSI/16pl\nHrCiMANrb5KYWHLlwcrO3vLUHXmk+sULE67YXcp69uioUSr/f8QRuuxLUm/cqPOloh8lnXJK5D8n\nqL9/7FiV0u/SBUaMiPSyhb1JoAItU6fq5y+/jFzXq5fGGtTYAMfVg8lroH4OLAvNv2rXVg2TRo10\nPzNmBOvaA4OuU4GPtLTA0EqJg0zvWDZIUIXA76aDr5Yfl5x/VmjtWrDRCyT/ZnEwRwtgxAWQdmdk\n/bAHrUUHWDM7UBZs90+9IrT/V6AmCHDPPYGhiq/WFzIsN2+GLl0Ye1Bj+sZ7c+O6gVvbBFm8Aj4H\nDjtJjdS4ZBi8AhbDIPS1NS2N1M8zVMo+8U0SRS2bYX3h5m2/wdi5urvNk+HQ4PcyqFc2zIfZnTrR\nackSzZ+2H9DmVOIOug8+1kTl99w2iAlT5nNQo+dg9Sp4GIQ5LF4xh14tWtBx35WMDE3/BDix8XcR\nyyJxfDj+K05tCx03P0LORY8T5823awKMiofDevakfa4+Ap05ri5d/lzPGdtqsO2ppzTtQEEqox92\nYOw5Qc42SawJiToPcPTzQ7nrkG+JjwP4Ej4Zx0UX3AeTx7Bfx06w7nvdKNdUBA3DMHaXuDgVK27V\nSoWNw+TmwrJlanD98Yd6wJYt0/fvvtMUqNlRz1pTUvS2o6hX/fplc1tWGTADyygbXntNf62dOu2d\n/SUm6qss2BuPaf72NxVPufLKYI7U44+XvJ3bb1cBjB49VCJ/yhR95BT9D3fTTaqoCNC5M8yaFaxr\n2FDP3VdnQ1oTuGuJJ38fSshR6zGYngldH4Fp0yKNwDvqq/rkm29qWz6N0mCR5/7pocYDAKsaAasg\nPjm/MmH3Q2H8eP086iQY/gn4Oh6TN8G7n0bWbwa0A2bWhXjPmKt7PDABOnrj7foo5O6E7wZCj5cD\n71sq+RMYJySotP3vv5N+zwus+l8fGpELySBNG8PiFTpX680XIGtfOOV4WPpZRBNpi7eqEuTvwEE7\niU+upUZf9RYkvLkEPvBr3q5vHZrA9hXU8KardapTR9VLAX4BcrbBAVlQpyts+ImeHdPp+cVcmLxK\n66yAXT1YuZJJnhP5xS/hopOaEbd5GTwFE46Po0c7qJGcR+0u/+L1F+7m1LbADkjIycUlwp81Umm4\ncRvXHQ7z5s2jfZIaWJ0+2AQ7oCEZMO0dnXV91lkR43744YcREXrV3ZcuCYGB1eGgIyFbRTja1FxD\nfBxs3g5p1SAu449QDrHQlyHPDCzDMIyyID4+8Hodd1z+9Xl5eluxdGlgfK1apbm8Vq/W24XJkwue\noZCSorc10a86dfKX1aypz5Vr1tSp8nHRD10rEWVqYIlIb+Ax9Er5gnPuvqj14q0/GZ1mf6Fzbnph\n24pIHeAtoCV623K2c26jt24IcAmaMvVfzrnxZTk+oxDOPbe8e1B67C0v3IAB+vI58cSSiWl06aKP\nn26+Wed0QZCrqzD23TcwsC68EK69Vv/Vjvak7etflj/bYVJWMJ8p+h9w3wlqFI0YoS+fPkfD42Nh\n6BXQ8TnIPgBe/wU2pwGrIO4PTXgcZn1IlfDoi+Hp32CxVykJoDE8OAJuvAn2Bf6Mg6cehg6D4JyO\n8D2QehAc+X+QEjL25oyAVZ5x5ueMqkWkgSWic/rmzIE5czimcWNY1g6Yp/u+ZQi8+gHM+hl+mAGL\nFkHLByHv35pP7EVgzT/IXbGc+Ee+0XlsuZlqSAK0uRTWerLy+7aF+Z6E+7wVEYdg+vTpHOx7Ud8C\n2v0MjfoF45n7ALzzlapBHhNsN/tAIW2mYx8v9djJowFpCFuXwQw4/pNvoe6hkPknUq0hZ//7EKb8\nfAY9PW0SqQFTM7dxOpAu8NioUXQ8cibt6kHSjlwQyOtci7hfNwVhmyEeuf922tTN4I4lsCmUVz1x\nwzcQp1bfCX/rCKt/Z0vakVRnFnG5GyDTU0CU0PeqHD1Ye3IdMwzDqOzExWmwSqNGkWk8o8nOhjVr\nAsNr1So1utavj3zNmqXvGzao96ww0tIija709PyfU1P1Vb160e9+OtO9QZkZWCISDzwFHI9qX/0o\nIuOcc3NC1U5Cnze3Aw4FngEOLWLbwcDnzrn7RGSwt3yziHQE+gOdgMbARBHZ1zlXxOkzjAIYPVpn\nhvohe3ubTz8tuk6Y1q01FPCww4pXf+RIePJJTYb87ruaNr537/weu0GnQPy38NzcoKxGbmBggQpd\nnHIKvPUWPPGEinCsiDQU2L+DvrddCAJ02A/4JZDMz8uJNHCSEkFCKnPvLIEfQhZYNSBjJ1x/I+w3\nHR7+EnKrqXG1ZQvQCpgL1ISmfSL7krsNsjZpmKNvYHWJgxWeIXPTGXDi1VCnrhqcX32lYZC/eSGC\nyUDH2nBDe/jxMPjhCg3p9Nuqht6O9zmcuVPG0xn01tuxy8CaN38BHbzxLu/Vi6a+gdW0FtTcDrM1\ntnFLWBIqHk34nLEQmvSFdVPIWz+NuB1AHeDQu4Bb4HSofWInHn6rLvumfkUnB/tsEeLqHAstT4c3\nboHUA/VcV1NDrW/fvtBgAEx+ddcYXGJN2LGZJmlpJCQkkBSfG4hsVIO4/dLg101sWbqUjJUrqVOn\nDikpKeTm5tKmbgZf3gJH3x156LOpzua1K6iXBrN++JSDm0Oz1p1g1UrI2EDG+kUq7JG+n3qu1v9Y\nbgbWnlzHCmt3yeYlXPnhlWXTacMwjIpAQ++FPpNs5L18HJCdpXpdmZkqjpyVpa/s7OBzVhbsyILN\n2Vo/KwuytkDWuoJ1zQojPl4DnhIS9LP/7r+il3eXsvRgdQcWOOcWAojIm8DpQPjCdDrwinPOAd+L\nSC0RaYR6pwra9nSgl7f9y8CXwM1e+ZvOuZ3AIhFZ4PUhcrKBYRSXs87KF/ZUoRk9Wg2G4j6euewy\nfX3vzXPJyoo0rmbeoje3ae2gQ8i4SkiAajmB5DnAyScH6eW/+06NjSuuUJ//Pfdo+Sbv7+bD+fCP\nOtD9IuCt4BFWVL5fqlcjYi6Ur7joUwsgXv+ZN/WBjfMh3VcO/Aje/lg/v/ACfP659qV2bU/b9mvI\nyILHOsKvnjDGPmnsUrBIe0+VGxP+hPpem4sWwUZPdGEzsPC/sOgVmHedlk2YAGf4KoZeH5e+Q5Np\nc3AJIDnAXUDSYkiAuvGv7hrzjl8mBOPK3YRLrYZ/JrrUBnw7czOwOQMerMas3DfoXBfiNm6DPwFJ\ngTc9j98f0HjMbzyYWg/WpMBdmcTlOk0H4AvPHHEQtGighuzWHbBhqxqdvrMyB07sUQfe30y7X7Yz\nqvp4Umah8QHeocf9CUDSC/fDqHs15iMpnri8LMa7RBiZzUtxsOYOPTUpiRAfv5Ha2UAcHFB/p867\ny/0YNqyGPEjMeRESYGfcGyQ1S0UygZFnU07s9nXMObeqoEY3ZW5i7LyxZdlvwzCMyomgFlkMjTRB\nn2+GNJpwbvdeOU4zr2SGyqLb26NhuD1toaCGRfoBvZ1zl3rL5wOHOueuCdX5ELjPOTfZW/4cNZZa\nFrStiGxyztXyygXY6JyrJSJPAt8751711r0IfOKcGx3Vr8vR1K2g0/F/o/Ki+s5Vg6oylqoyDqg6\nY7FxVDx2ZywtnHN7KbGesifXMefctKi2wteezsAsKj9V5Ttp46hYVJVxQNUZy195HLt17anUIhfO\nOSciJbIQnXMjgZFl1KW9iohMc84dUnTNik9VGUtVGQdUnbHYOCoeVWksxSV87akq47dxVCxsHBWP\nqjIWG0fJKcupXitQTS+fpl5ZceoUtu2fXhgh3vuaEuzPMAzDMIrLnlzHDMMwjL8oZWlg/Qi0E5FW\nIpKEClCMi6ozDrhAlMOAzV7cemHbjgMGep8HAu+HyvuLSLKItEInHIckyAzDMAyjROzJdcwwDMP4\ni1JmIYLOuRwRuQYYj06Hfsk5N1tErvTWPwt8jErbLkA1ti4qbFuv6fuAt0XkEnSK+NneNrNF5G10\n8nEOcPVfQEGwSoQ6elSVsVSVcUDVGYuNo+JRKcayJ9exIqgU4y8GNo6KhY2j4lFVxmLjKCFlJnJh\nGIZhGIZhGIbxV6MS50g2DMMwDMMwDMOoWJiBZRiGYRiGYRiGUUqYgVVBEZFmIvKFiMwRkdkiMsgr\nryMiE0Tkd++9dmibISKyQER+E5ETy6/3sRGReBGZ4eWNqZRj8ZKIjhaReSIyV0R6VMZxAIjIdd53\na5aIvCEiKZVhLCLykoisEZFZobIS91tEuorIr966x728ehVhLA94369fROQ9EalV0ccSaxyhdTeI\niBOReqGyCjmOskZEentjXiAig8u7P4VR1a5Bdv2pUOOolNcery9V4vpj1569MA7nnL0q4AtoBBzs\nfU4D5gMdgRHAYK98MHC/97kjMBNNcN0K+AOIL+9xRI3peuB14ENvudKNBXgZuNT7nATUqqTjaAIs\nAqp5y28DF1aGsQBHAgcDs0JlJe43qjJ6GJoc/hPgpAoylhOABO/z/ZVhLLHG4ZU3QwUilgD1Kvo4\nyvgYxXtjbe39d8wEOpZ3vwrpb5W6BmHXnwoxDirxtcfrT5W4/hQwDrv2lOI4zINVQXHOrXLOTfc+\nbwXmon9Mp6N/snjvfb3PpwNvOud2OucWoYpW3fdurwtGRJoCpwAvhIor1VhEpCb6Y34RwDmX5Zzb\nRCUbR4gEoJqIJADVgZVUgrE4574GNkQVl6jfojn00p1z3zv9d30ltM1eI9ZYnHOfOedyvMXv0bxK\nUIHHUsA5AXgEuAkIqylV2HGUMd2BBc65hc65LOBN9FhUSKrSNciuPxVnHB6V8toDVef6Y9eesh+H\nGViVABFpCXQBpgL7uCDHympgH+9zE2BZaLPlXllF4VH0y54XKqtsY2kFrAX+64WavCAiqVS+ceCc\nWwE8CCwFVqG5ez6jEo7Fo6T9buJ9ji6vaFyMPk2DSjYWETkdWOGcmxm1qlKNoxSp6L+hAqkC1yC7\n/lSQcVTBaw9UzeuPXXv2EDOwKjgiUgMYA1zrnNsSXudZ2hVeZ19ETgXWOOd+KqhOJRlLAuqKfsY5\n1wXYhoYD7KKSjAMvRvx09KLdGEgVkQHhOpVlLNFU1n5HIyLD0Jx+r5V3X0qKiFQHhgK3lXdfjD2j\nsl+D7PpTsajK1x6o3H33sWtP6WAGVgVGRBLRC9trzrl3veI/PXcm3vsar3wFGnPq09QrqwgcDpwm\nIovRsJhjRORVKt9YlgPLnXNTveXR6AWvso0D4DhgkXNurXMuG3gX6EnlHAuUvN8rCMIfwuUVAhG5\nEDgVOM+7YEPlGksb9AZqpve7bwpMF5GGVK5xlCYV/TeUjypyDbLrj1JRxlHVrj1Qha4/du2JKN8j\nzMCqoHgKJi8Cc51zD4dWjQMGep8HAu+HyvuLSLKItALaoZP2yh3n3BDnXFPnXEugPzDJOTeASjYW\n59xqYJmItPeKjgXmUMnG4bEUOExEqnvftWPRORaVcSxQwn574RxbROQwb/wXhLYpV0SkNxrOdJpz\nbntoVaUZi3PuV+dcA+dcS+93vxwVTFhNJRpHKfMj0E5EWolIEvpfOK6c+1QgVeUaZNefijUOqt61\nB6rI9ceuPaU8DrcX1T7sVSJllL+hbuZfgJ+918lAXeBz4HdgIlAntM0wVBXlNyqo+hbQi0DFqdKN\nBTgImOadl7FA7co4Dq+RJeaiAAAgAElEQVRvdwDzgFnA/1BlnQo/FuANNHY/G/3zvGR3+g0c4o39\nD+BJQCrIWBagceL+7/7Zij6WWOOIWr8YT8mpIo9jLxynk1E1vj+AYeXdnyL6WuWuQdj1p9zH4PWr\nUl57vL5UietPAeOwa08pjkO8hg3DMAzDMAzDMIw9xEIEDcMwDMMwDMMwSgkzsAzDMAzDMAzDMEoJ\nM7AMwzAMwzAMwzBKCTOwDMMwDMMwDMMwSgkzsAzDMAzDMAzDMEoJM7AMoxQRkboi8rP3Wi0iK0LL\nSVF1x4tIWhHtLReRWgWUvxVa7i8iL5TSGO4SkWtLoy3DMAyj7LFrj2FULBLKuwOGUZVwzq1Hc5Ug\nIsOBDOfcg+E6XiI7cc6duIe7O1RE2jvnftvDdkqN0NjyyrsvhmEYfxXs2mPXHqNiYR4sw9gLiEhb\nEZkjIq8Bs4FG4SeEIvKBiPwkIrNF5NJiNvsQMDTGviKeAorIPBFp6vVhloj8T0Tmi8grInKiiEwR\nkd9F5JBQM11E5Huv/OJQW4NF5AcR+UVEbitobCU+QIZhGEapY9cewygfzINlGHuPDsAFzrlpAPrA\nbRcDnXMbRKQ6ME1ExjjnNhbR3hvANSLSqgR9aA+cDcwDpgOZzrmeInIWMBjo59XbH+gJpAPTReQj\noCvQHDgUEOBjEekJrIkem2EYhlFhsGuPYexlzINlGHuPPwq5CFwnIjOB74CmQJtitJeDPkkcXII+\nLHDOzfHCKOYAn3vlvwItQ/XGOucynXNrgK+BbsAJwEnADPQC2RbY16tf2NgMwzCM8sOuPYaxlzEP\nlmHsPbbFKhSR44AjgcOccztEZDKQUsw2RwE3AfNDZTlEPjwJt7Uz9DkvtJxH5P+Bi9qPQ58c3uWc\nezGq/20pYGyGYRhGuWPXHsPYy5gHyzDKn5rABu8C1wl9YlcsnHNZwOPAoFDxYjSkAhHpDjTbjT71\nFZFkEakPHAFMA8YDl4hIqtd2UxGptxttG4ZhGOWPXXsMo4wwA8swyp+PgOoiMge4C5hawu2fB8Iy\nvO8A+4jILOByYOFu9GkW8BUwBbjdOfenc+5jYDTwvYj8CrwN1NiNtg3DMIzyx649hlFGiHPR3ljD\nMAzDMAzDMAxjdzAPlmEYhmEYhmEYRilhBpZhGIZhGIZhGEYpYQaWYRiGYRiGYRhGKWEGlmEYhmEY\nhmEYRilhBpZhGIZhGIZhGEYpYQaWYRiGYRiGYRhGKWEGlmEYhmEYhmEYRilhBpZhGIZhGIZhGEYp\nYQaWYRiGYRiGYRhGKWEGlmEYhmEYhmEYRilhBpZhGIZhGIZhGEYpYQaWYRiGYRiGYRhGKWEGlmFU\nQUTkDxHpUYx6KSLiRKRpGfSht4gsCC2vFpG/eZ/vEJEnS3ufFR0R6eWdmwwR6V3KbUcf71L5DojI\nJSLyQay6IjJKRG4qrTEYhmEYRlXADCzDKANE5BoRmSYiO0VkVIz1x4rIPBHZLiJfiEiLAtoZ6N2M\nZ4jIDhHJCy1vKmj/zrk2zrnvSmEc34tIpre/tSLytojU39N2nXO3O+eu2dN2ogkZANu8Pi8XkftF\nRIq5fYSRUgbcDYxwztVwzn0aY/+rve9EhoisEpEXRKTa7uyotL4DzrkXnXN9Clh3oXNuBOyVY2cY\nhmEYlQIzsAyjbFgJ3AW8FL1CROoB7wK3AnWAacBbsRpxzr3s3YzXAPoAS/1l51ytGG0nlOIYfC71\n9t8eaADcVwb7KG3ae30+DrgIGFDO/fFpAcwuos4JXt8PAXoCN5Z5rwzDMAzDKDXMwDKMMsA5965z\nbiywPsbqM4HZzrl3nHOZwHDgQBHpsDv78rweN4rIbGBLqMwPxztcRKaKyCYRWSkij+yOIeac2wCM\nAw4K7buaiDzleVuWi8gDIpJYjD7fJyIveJ87iEiOiFzktbFWRP4dqltDRF73+j9LRIYU11PinJsH\nfB/V5ys87+FWEVkgIhd75XWB94DWIS9hXRGJF5FbRWShiKwTkddEJJ9xG2r/ai88b72IvCsi+3jl\ny4HGwGciklGMvq8AJpL/eD8qIsu8c/yEiCQX0I+Sfgf6ishi7/jf7Xv9RORKEZlYwD7eFJFbCjh2\nLTxPYnqofk9v//FFjd8wDMMwKitmYBnG3qcTMNNfcM5tAxZ45bvLOcDxQN0Y67KBa7x1R6CesEtL\nugMvNLAv2lefO4ADgP2BrkAvYHfm5MSjHpu2wMnA3SLS2lt3F1Af9f6cApxfgj53AnpE9XkVcBKQ\nDlwJPCUinZxz64EzgIUhL+F61IN0AvA3oCl6PB8pYH8no57JM4AmwDrgfwDOuabAGgIPVVF9b+7t\nN9z3h70+7I96FPcFBhd9JIr1HeiDGnPdgX8A5xWjXQAKOHZLgKnAWaGq5wOvOedyi9u2YRiGYVQ2\nzMAyjL1PDWBzVNkWIG0P2nzEObfSObcjeoVz7gfn3I/OuVzn3B/AC8BRJWj7ORHZghoH1YDrQuvO\nA253zq1zzv2JGkPFNoCiuN05l+mc+xGYhxpuAGcDdznnNns37U8Xo63ZIrINmAV8hI4ZAOfcOOfc\nIqdMBL5CjaeCuBIY7B3fTNSoPKeAeV3nASOdc794dW8CjhORhsXos88nIrIVWAIsRo+pH/55CTDI\nObfJObcZDdfsX1SDxfwO3Ou1uwh4EjWy9pSX8cIzRSQJPZf/K4V2DcMwDKPCYgaWYex9MlDvSZia\nwFYRaR4KsSoyjCzEsoJWiEhHEflERP70DKXbgHolaPsK51w6cDDQEA1zwzMwGqKGgM8S1HNTUnKd\nc+tCy9uBGiIS5+0jPL4CxxqiE2qwXgAcDlT3V4jIaSLyg4hsEBUKOYYCjoc3xmbAx1543SZgBvrf\nGctb2JjQ8XDObUKN55Ick5Occ2mo96ozOk/PbzsRNR79voxF58UVSjG/A+HjusTb354yBugmIk1Q\nz+Ry59wvpdCuYRiGYVRYzMAyjL3PbOBAf0FEUoE26LyssIhFkWFkIVwh654HpgNtPEPpTqBYqnoR\nO3BuBjACeMJbdsBqNHTPpzmwoqRtF7LPPOBPNCzOp1lxt3XO/Q/4BRgCu471O8B/gAaeUMgkguPh\notpw6HiOcc7VCr1SogxCn5WEjoc3Vyud3TgmzrkJqPjJ/V7RKiAHPY9+P2o652IZetEU5zsQPq7N\nvbGUqMsxxpCBzs06F/VsmvfKMAzDqPKYgWUYZYCIJIhICjq3KF5UPtwXFXgP6CwiZ3l1bgdmeoIM\nZUEasNk5l+HNSbpsD9p6AWgrIid6y28At3tiEA2AYcCre9bdfLwNDBORmt68pH+WcPt7gas9IYZq\nqBdoDZAnIqeh88Z8/gQaiEjYuH0WuE9EmgGISAMRiSlbjh6Py0Sks3du7wMmOedWl7DPPg8Bp4vI\nfs65bFSV8jERqSdKMxE5vhjtFOc7cLN3jFui87ViKlsWQqxjB/AKOt+rN/BaCds0DMMwjEqHGViG\nUTbcAuxABQgGeJ9vAXDOrUUn/t8NbERFBYqcR7MHXAdc6oUcPkXJb5x34c3xehIVcgANNZuDeuV+\nBr5FvVylyS3ocVoCfIIaXDuLu7FzbhoqhX+953W6EfgAVXjsC3wcqj4TVUpc4oXh1UHHMxGY5M2N\nmoKGS8ba14eoQTcO9QA1ZPfnpOGcWwm8iffdAa712p2GzuP7FBUGKYrifAc+Qsc/DfXyldRQjnXs\nAL5ADdvJzrlVJWzTMAzDMCodohEwhmEYlQMRuQ7o7Zw7scjKRoVARKYATzvnStu7aRiGYRgVDvNg\nGYZRofHC4A4TkTgvvG0QGmZpVAJE5HBUTn5MeffFMAzDMPYGJU42ahiGsZdJRucetQA2oPN4Xih0\nC6NCICJvAicCV8dKIWAYhmEYVRELETQMwzAMwzAMwyglLETQMAzDMAzDMAyjlPhLhwjWq1fPtWzZ\nsry7YRiGYRhGKfDTTz+tc87VL+9+GIbx1+YvbWC1bNmSadOmlXc3DMMwDMMoBURkSXn3wTAMw0IE\nDcMwDMMwDMMwSolyMbBE5CURWSMis0JldURkgoj87r3XDq0bIiILROQ3ETnRK0sWkU9FZJaIXBWq\nO1JEYiYBNQzDMAzDMMoOEbnQS2peoRCRxSJyYwnq9xIRJyL1yqg/TkT6lUXbUfsp1/MhIh+KyKjy\n2n95UV4erFFA76iywcDnzrl2wOfeMiLSEegPdPK2eVpE4lHp38nAAcD5Xt0DgXjn3PS9MAbDMAzD\nMIxSQ0SOFJFxIrLCuwG/MEYdEZHhIrJSRHaIyJdejsDC2h0efqhdiv2NZSS8BbQu7X3F2HdJDaBu\nwNNl2acS0gj4oLw7EYuSGqNGfsplDpZz7msRaRlVfDrQy/v8MvAlcLNX/qZzbiewSEQWAN2BbKA6\nkAiIt91/gCvLsOuGYRjMmwcPPwxnngm9ox8VxeDBB6FBA7jggpLva9IkeO21/OUtW8Ktt+Yvz82F\nYcNg7dr861JT4T//gZo1C9/ne+/Bhx9GlonAZZfBoYcWr9+ffgrvvJO/PDkZbrsNGjaE9evh9tth\nR1SGrMREGDoUmjeHrVvhllsgIwM6dYLrr8/fZmam1t+8ObI8Lg4GDYLOnXV5wQJ44AHIyYkc1z//\nCV27gnN6TFetKt4Yo2nbFoYM0c9ffw0vv1z8bTt0gH//O395Vpa2uWmTLjdqpOdQJH/dZcvgnnt0\nm9KmdWv9XgFMngz//W/+On37Qp8++vmZZyB6inNCAtx0E7Rpo+d86FDYsiX2/mrUgLvv1vdopk6F\n55/X81UFqQHMAl7xXrG4CbgBuBD4DbgNmCAi7Z1zW/dGJwvDy3lXYfLeiUiScy7LORfjX7H8cM6t\nLu8+GGWIc65cXkBLYFZoeVPos/jLwJPAgNC6F4F+qHH4OjADOBc4DRhejP1eDkwDpjVv3twZhmGU\nlOHDnQPnTjih6Lq5uVoXdm9fffs6l5DgXNOmwatmTW1v06b89X/7TdfVqRO5TYMGWv7RR0Xvs3t3\n55KTI7ePi3PukkuK3+8TTnAuMTGyjYYNtQ8vv6x1xozR5X32Ceo0bqxlTzyhdT77TJeTk50TcS4v\nL/++vv9e69SrF7k/cG7w4KDeffdpWZMmQR0R566+WtcvW6bra9eObKc4r/R03XbbNm3rnHOci48v\n2bY5OfnHNm2arqtb17latfTz8uWxj/kzz+j6Ro1K3v/CXv73bcsW3c955+UfW1KSc0ceGfSlVi3n\nUlOD9U2aaBsjRuj6yZNjn7OmTZ2rX1/XTZoUe5yXXqrfx1h9Baa5crqvKe0XkAFcGFUmwCpgWKis\nGrAVuKKAdi4EXNTrQm9dTWAksMZr4yvgkNC2NYH/eeszgYXAtd66xVFtLg7tLyPUxnDUaOwP/OHt\nZyxQL1QnAXgE2IgmlH8Q9TZ9WcCYWsYY0yhv3ZfAM14ba4EfQ/29MdTG9cAvwDZgBZrAvlZofS+v\n3XpFHYsC+tgMeN8bz3ZgHtA/tN4B/aLG0987Bzu8+9sDgM7AFK+fk4FW0cc2xvnOKGS5jdev1V6b\n04FTQ+u/jD62oXU9vf5t947ZM0B6aH11NEotA/gTGAp86J+bv9KrQqoIOueciBT6bMo5l4MaVohI\nIjAeOF1EHgaaA68458bF2G4k+mfCIYccUjWffxmGUaZkZur7zp1F1y1OnaL2dfDB+tTe5+mn4eqr\ndV20N8rv2/PPq4fN55df4MADg/VF7bN3bxg7Nihr27Z424bbOPxw+OKLoGzlSmjSJGjHf//6a9h3\nX/28dSukp+evc9JJ2p/sbEhKyr8vgLffhqOPDsrD7YTrLV2q3i2Apk3z7+vxx2HAgOKPFeDRR+G6\n6/R8V6+ubXXqBDNnFr3t/ffD4MHBtrHG9sYb6lkbOLDg8+CXz5kDtWqVrP+F8eST8H//p+2npel7\n+/Ywe3ZQ56STYMOGyL786186NlCvYWJi/mM9ZgwceWTk/r7/Hnr0KHycLVvCH3/kXxfLs1fFaAU0\nBD7zC5xzO0Tka/Tm97kY27yF3qSfShAptFlEBPgI2Oyt2wAMBCZ53rBVwF3A/t76P739+zL43VBj\n4zL0Jjq3kH63BM4BzgBSgTeBu4ErvPU3oobApagxdhVwHmpkxGIZcBYwBp1CsoFIr9kA9F7vCIIo\np2jygGtRQ6kF8IT3Or+A+oUdi1g8DaQARwNbgPaF1PW5A7jO69MzwBvoMR7mvb8MPA70KUZbBVED\n+AS4BT1m5wDvisgBzrl5wJnATOAlrw8AiMj+6PfudvQ81QEe9er5YaIPAsej52aFV/dI4N096G+l\npCIZWH+KSCPn3CoRaYR+kUBPULNQvaZeWZirUFf6YegfxTnAJCCfgWUYhrGnRN8kFqfunuwrOTmy\nzF+O1bZfVpJtirvPkhpYtWtHlkX3IVZfC6rjG5KZmQUbWEX1OTNTb/Lj4mLXKaid4hCr38VtJ7xt\nQQZWcnLR53BP+l/c/vnvhR1r5/LXSUiA+PjiHevijLO0x1iJaOi9/xlV/ifQJNYGngGWAeS4UFia\niBwDHATUdxrWB3CriPRBjYwRqOEx3Tn3g7d+SajdtWqjsckVHe6WgHrNNnv7HglcFFo/CLjfOTfG\nW38t+efqh8eUKyK+Sb/GObcuqsoi59wNhXXIOfdoaHGxiNwEvC8iA51zeTE2KfBYFEALYIxzzn/M\nsqiI+gAPO+c+BhCRh9A5Wrc6577wyp5EI7t2G68/4Uc/d3vnvB9wl3Nug4jkAlujzuu/gbeccw/5\nBSLyT2CGiDRAvVqXABc758Z76y8Clu9JfysrFUmmfRz65ATv/f1QeX9PNbAV0A7wv9x4aoOnogZW\ndfSJhENd5oZhGKWO75XaGx6snTshJSWyzF+O1bZfVpJtirvPkoylOP2O1dfERPVCRNfxDaySjjlc\nv6hxFdROcYg1tuK2U9zzWdQ59MtL2/goztjCxzE7O3K7WHUKO9bFGefunCMjH13R+6a1IpLhv1Bv\nVxuvzjPAOSIyU0QeFJGjdnNfS3zjymMl0ABARGqihuOuezun8WY/sPv8VFQFETnGU61eLiJbUS9L\nEoERG01Jj8VjwC0i8p2I3CUiXYvR719Cn30j+teoslQRiXoUU3xEJFVERojIHBHZ6J3zQ9Dor8Lo\nCgyI+q58661r472SgO/8DZxzGVH9/8tQXjLtb6AnoL33xb4EuA84XkR+B47zlnHOzYb/Z++8w62o\nrj78LnqRZiMWEEQ09oYRxAK2CNgrGhTsvX0kJjHq5aaIJTH2xJIIClGxYyOKip0kGBUVo6JgQ0VU\niiJ9fX+sGc/cuXPOmdNuY73PM8/M7Lpmn3Nh1vntvTYTgBnAJOBMVY3K0JcAfwh+bfgnJge/gc2T\ndRzHKTt1rWBlc1RyKVjxOvWhYOVT0ZJsFUl+EQ+nvBWi2rVpU1vBShrLcihYlXKwomOU63MP0+MK\nXTlI82xJSmCasS7GwVrNFaxQUegaS+8ayUtLM+yFfbvY8WPgYgBVfRxTYv4IrA08KiIJIU7ysjx2\nr1T2HfS7XJkishE2PfJt4AjMeTghyG6VVKfQsVDVv2HTCG8DNgVeEpFReeyOjpPmSAvHbhW1p0C2\nzNPHH7FnvhjYA/vM/02W547QDFunFv2ubIsJH6/lqbvaUV9RBI/OkrVXlvJ/wObqJuWdH7leAuxb\nsoGO4zg5KFbBWrnSpkkV2lc2RyWX4pHkbGSrk9RGJRSscJpYfPxyOXPxKYKFKFitW9dWsJL6KoeC\nleQ8rrVWcXWjRMco1+cepldC2UnzbElOcZqxLmaK4GquYM3CHKl9gP8AiEgb7MflhDiUP7AMiP/r\n81/MMVulqh9kqxhMv7sDuENEHgfuFJHT1KI7L09otyBUdYGIfI6t6XoaLBR9cJ/LaQzjZRbTfx/M\noTg//NFeRPZPYWuusUgq/wm2FuxmEfklNhVyVBH2ZuNLoKuISKD6gTk+udgVi1MQTsdsg6lP70bK\nZPu+bKmqM5MaFZH3se9DX2wNGSLSHlNEE1ZMNm0a0hRBx3GcRkGxClYx0wWbkoIVbyeX8pRtiqAr\nWHW/NskVrLpDRNYQke1EZDvsHa17cN8dfpg6dzXwSxE5VES2IhO17R85mp4NbCQiO4jI2iLSGpiM\nTfF6SEQGiUhPEeknItUisltgz29F5GAR6S0im2MBED6IOBSzgb1E5EfBko1iuQa4QEQOEZHNgD9h\n+0TlCkb2YZA/RETWEZGEoP5ZeQ8b3/OC5z4aC3iRlRRjES9/jYjsJyIbB5/nfthsrHIyBQs2caGI\n9ApmhOXbvPhd4JDgu7A1MA4LxhFlNrCbiGwgmX3GLgd+IiJ/FZHtRWQTEdlfRG6CH6YD/g24XET2\nEdub7e/EHDURGS0iTxX9xI0Ed7Acx3EKpFgFq5jpguVSsPKpHyGq2V+gC1WwsjlY0fFr1ap25Ldi\nFaxcikk2m9KqKvkoV5CLOIUqWJVwPNIGuahLBaupOliYsvJqcLTFosq9Cvw2UuYKLKT5Ddi2M+sB\n+2ruPbDuAx4DnsJUj6MDZ20wphrdgu2pNQGLdjcnqLcUm0H0OuaMdaBmBLuRWJS8j8ke8S8Nf8SU\noduAqdi0tweArP9qqmoYpe4P2FTH1MEfVHU6pib9H+b0nIRFMsxFvrGI0wyLSjgDeDKwcXiO8gWj\nqm8Dp2NbEE3HlM1L81T7PyyQ3PNYNMGpwXWUS7AAc+9j35dwzHbHIkI+i43DaGoGXPk58Az22T2D\nRYR8Ltb2emTW+DVZGlIUQcdxnEZBY1SwmjWrGSY7G8uXm5OVTw0qxu54O7nKxF/EO3TI1EnqK6yX\ny+a0ClZDCnJRqIJVialzaYNcLFmSiSAYrRcvE9qaVAbyO5KVes6GgKpOIXtY8bCMYtPMRhXQ7lIS\nlI3AKTs3OJLqZV2iEeQ/jEW6i6aNwVS18L6WrQllVmAK0g8qkoi8iu37lBVV/R3wu1jagCxle8Tu\nr8VCnkeZEMmfQuSzyDcWCf2dnSc/2vZsYp+7qk5LSJuUkHYTtcPzXxPJH0PNsf4Qi3UQ5Y+xNqdi\n66viNk8jd3TH74DjgiNbmRHZ8poS7mA5juMUSGNUsCDdOqq065lyEapgaRSsNNMIW7dOF2kvaZwW\nLqxZzhWswkmrYKnaflelKljxkO5xmriCtVoSBJ34KaaMtMT21tomODtOo8OnCDqO4xRI+OK3cqW9\nUKYpC/WrYEG6dVRp1aBcrFgBq1aVT8HKp94sWWLTDFvGYmc1JQUr6mQ2VAUrtCGtgpUr4mGuHwOa\nsoK1GrMKUz3+jUWZ7gsMChQTx2l0uIPlOE6DRxXOPBP23BNGjSpv23fdBWuvDa8mrB645RbYZBNY\nf3047DCYMwcOPhjefjtTZq+94MgjMy+DU6daew88YPfhGeC44+wZROx8W55gx+++a85KNgVr2DB4\nLQiOO3++2XbDDTXLRIm/tM6aBQccAC+9lEnLpT7Mm2d277kn/PSnMD3YseXrr+Ggg2DkSLjmGth7\n7+w2tG4NTz9tbTz2WPYyU6damXvuqane/PKXGRvC4/bbLT9pLdebb8KCBfZcL7yQ/Fxz5lg7V12V\n3e58hHWqqqyt774rXMH69a9rP9ttt2UckbDcGWfY8zz5JKy5JmyzjZV96aXKKli//a31s3Bh9u/k\n4MFw1lk106JlXn3V2hg/PretrVvb3+aee0LPnjBokDntn30Gn3/uClZTQ1U/VtVdVbWTqnZQ1Z1V\n9Yn6tstxisWnCDqO0+BZsQJuvNGuZ8wor5N1dLBpxB571JxOBtbn+0Fw2fvvh113hYcegq23hv32\ng1desZfz554zm7bYAvr1s/KHHmqO4eefZ9pftSrT3jPPWP7xx2e37blgafDWW9dM32ADGDIEHn3U\nXrK32w5efz1j20knWfCIOHEF64UX4JFHoGNH2GUXS8umPhx4oDlUK1aYcvfMM7DvvvZy/9prMHFi\nxtY5c2DgQHM+4wwfbk7nihWw6aY2jnGGDYNx46xMr16w225W9qCDzJmLq4YbbWTjHWeDDez85puZ\nfbTWXrtmmYMPhv/9z9r80Y+gb99M2ULYaCNzwufOtbb22MOcgjRssonZ8dVXtZ+te3cbe4AuXaBr\nV/jiC3OOq6rgm2/s2G032GorGDq0cNvzseGGcMQR9l1escL6GjKkZpnw8162zNbLDRlS+3t79NGw\neLG10aOH/TCRjVNOgRdftPKzZ9sxc2bmx41NNinjAzqO45QZd7Acx2nwxCPBVYKkqX4aCxC8YIGd\n//IX6N/frh96yF6Oc62L6d8fpkyx+8suM6UizMtFmB/2FdKihTkprVrVXtPy179mnKU4SVH1oOaz\nZ1Ow9t47o0yFU8SS1qItWWLl7ror2Ybzz7cjF6ecYkecBx/MXS/OAQfAn/5k9oU2Hh5b5j9oUHpH\nKBetWsG99xZXt02bmkpnNpo1M6f/sMPseaLO8nPxOF1lpGVLmDAhd5mttoLJk3OXGT7cjjSMHm3n\nefNgnXUy6eHnuM8+6dpxHMepD3yKoOM4DZ7wRbJt2+ICRRRL3OkKHayo81HopqjRuvmeJdfGty1a\n2At3IXs4Ja1JipNmHVKojoX2RdtJmj5WX6RZF9TYyLcOq6kR/S7lilDoOI7TkHAHy3GcBk90s9ml\nS2srS5XuNyR0sKIvd4Vuihqtm0/ByuU0iSSrSLlePLMpWFHSRNITqTndMNrOggUN5+U3GnWvlAiB\nDYm0+5k1FaLfpWXLms7n6DhO06YkB0tEmucv5TiOUxrRzWZVba+muuw3pL4UrKT1VGFb9aFghf0k\nKViFhCevNK5gNX5aRBYyNKXP0XGcpk2pCtZ7InKliGxRFmscx3ESiCpY0fu66jekPhSspOh40bbK\noWCtWlU7LZ+TFHXW4s/RUF5+XcFq/ES/+03pc3Qcp2lTqoO1LfAucKuITBWRU0SkYxnschzH+YGo\nghW9r6t+Q3I5WK4dUfIAACAASURBVGkVrPgv8rnIt5dSuRSspM2Q8zlJUecu/hwNxcFyBatp0ZQ+\nR8dxmjYlOViqukhVb1HVXYBfAlXAZyIyVkQ8iKrjOGUhrmBV4uUyquLE+w3JNUUwrYKVq/1C6kKy\ngpVvb6EkBSspLZ9CkG0NVpq6dYUrWE2L8HNs1qzmDxWO4zgNjZLXYInIgSLyAHA18CdgY+Bh4LEy\n2Oc4jlNLwarEy+WyZTXvV62qnVYOBStKJRSsXOWzKVhJaa5gNUyiz1RXaxEbCuHn2Ng/Q8dxmj4l\nr8ECDgKuVNXtVfUqVf1CVe8FJhXToIicLyJvicibInKniLQRkTVF5EkReS84dwnK9heR6SIyTUR6\nB2mdReQJEfEIiY7TRKiUghWNRhiPTBh3riDjYLVsmUkrRcEKN+3NRjEKVtS2OK5gNRzbiiX6TKvb\nNMHwc2zsn6HjOE2fUp2Q41T1RFV9KUwQkf4AqnpOoY2JyAbAOUAfVd0KaA4MBX4FPKWqvYGngnuA\nkcBg4DzgtCDtIuBSVU2Y8OM4TmOkUgpWkhMV7zNKqChFF97nUrBUrY9cv7jnepZ8ClZUkQp/2c8W\nECNePmpzU1Wwmje3qWRNVcFa3aYJuoJVf4jIwSLynIjMFZHvReRDEXlQRPYrsr0Tgh/Nl4nI/ALq\ndRaRUSKyQzH95mhXI8cqEZknIg+JyJZFttcjsHPjhLzZIjKmZKOdBk2pDta1CWnXldhmC6CtiLQA\n2gFzMJVsbJA/Fjg4uF4elGkHLBeRXkA3VZ1Sog2O45TAV19B7972sr/xxrDrrjBwIJx7Lvz973Do\noYW1F75Idu5s5512gg8+SFd31SpYc02zZdttYe5cS1+yBH7yk9rlv/4adtjBykYJlaH4r+fh/QUX\n2LNGCe+zRREEWGMNK9erl11vuSW8+SbssgtMmpRfwXr5Zat/003pVKcFC+Dtt21c7r7b0l9/He67\nzzYJPu+85OdM6vvFF63vq66q3U9DoU0buOEGGD3a7huSbcUQfn/+8Af49NP6taWuueACuPPOxv8Z\nNjZE5BzgAWzW0onAEOD3QfaeRbS3PnAz8FJQf+8CqnfG1vuX1cEKGAP0A3YHLgZ2ASaJSOci2uqB\n2VnLwQIOAX5XnIlOY6GoZaIi0g/74q0jIv8XyeqIqU5FoaqfisgfgY+A74EnVPUJEemqqp8FxT4H\nugbXo4Hbg7LHAn/EFKxctp8CnALQvXv3Yk11HCcH770HM2fa9dKl9iIOMGVKce2F6sMee0DfvjB1\nqjkhcYcmiYUL4Ztv7Hr6dHj3XVh3XZgzx+5Deve288yZ8OqrsOeesM8+0L+/OWjvvWfld9qpZvst\nWmSUofbt4Wc/g2eegZ13Nodp4EA47LBM+SFDYNQoOOAA2HFHU7kWLIDvvrOxmjED/vlPc5z694dz\ncswFOOcce5aQuG1x+vSx8+uvw3rr2XXz5jZN8bnnzMkDs719+9xtnXuutfHyy3a/1lpwzDE2DnsX\n8rpUYX7/e3jlFbvefHN73sZMq1b2TO+8Yz8adOkCQ4fWt1WVZeJE+O1v7fMDGDCgXs1ZHfk58KCq\nnhhJexq4pcjlGL2xd8WxqvpCOQwsE5+q6tTg+gURWQiMA/YD7ipXJ6r6arnachowqlrwAexBEDEw\nOIfH/wG9i2kzaLcL9ke7DtASeBAYBsyPlfsmoe7uwJ+BTYG7sT+Krrn623HHHdVxnPIzZYqquQ6q\nRxyRuY4ehXDTTVbnk09U33jDridMSFf3yy9r9jt5sqXPmGH3d96petxxqhttZOnPPVezXBqOP97q\nVFcX9Fh68MFWb5ddVNdfP2PjxRfb+a67CmsvHx98YO2OGaP6+ed2fcMNql27qp56qurUqZb26KPp\n2zz9dKvTs2d5bXWcYgCmaZHvIH5kfTf7FvhLinLrADdh2/csBj4G/gFsECkzBtDYMSaSfwrwOrAE\nmAf8DVgzyOuRUFeBEdjsqS+AljGbOgCLgMvy2K7A72NpmwfpF8TSzwJeBr4G5gNTgSGR/AFZ7BwQ\n5M+OPfOIIL8vMB5YiM3euhZoE+t7YyyI3GJgLhZc7pSgfo/6/q74kTmKUrBU9VngWREZo6ofFtNG\nFvYGZqnqlwAicj+mlH0hIuup6mcish72pfoBERFMuRqK/ZFdgP0hngP8poz2OY6TguianHDdVBzV\n3OuFktpr06bwfYDi5eLrhsI2C9lPKhuF1gmfpXXrmnWTwsGXg2xR9cLnL2adUmijr4txnCbLv4Hh\nIvIB8JCqvpul3JrAMux97AtgPWyt/Isi8mNVXYJNjXsFcx7OBP4LhO98lwXlrwV+AWyATUXcSkR2\nwX7UPxS4H5vBNDHo9/3AxrOw6XcTIjYdA7THHL9C6RFpP0pPzFF8H1PiDgAeEZFBqjopeKYzgRuw\n99D/BPVm5OnvDuBO7Bn7AaOAbzABAxFpBTwJtAZOx8btJODweEMiMiqo11NVZ+d9UqfsFDtF8GpV\nPQ+4XkQ0nq+qBxZpz0dAXxFph0372wuYBnwHDAcuC84PxeodBzymql8HdVcFR7si7XAcpwSii++z\nOVjLlqV3IKIR4ArdByheLh75LmwzHlGvGIeh0DpR56RVq0x6Ujj4cpAtql74/MU8e9RJdBynSXIa\ncC9wBXCFiHyFvejfpqpPhIVU9R3g7PBeRJoDL2LvdoOAB1T1fRF5OygyQ4MpeSLSA3OqqlX1t5E2\n3gVeAA5Q1QdFJJxe94FmpvMBfCkizwKnUtPBOhVbbjIrxXNKsP6/BbB18LxTyThy4XOOjFRohgVf\n2xRzeiap6kIRCZ2pt2N25uIfqloVXE8WkZ2BowkcLEzp2hjYWVX/HfT/OPAaEF/zsgpYiSlbTj1Q\n7FZ9dwTnP5bLEABV/ZeI3It5/yuAV7GFkGsAE0TkROBD4MiwTuBQjQD2DZKuwuTTZdgvF47j1DFp\nFKx8IciT2mvKClZUzatvBauQfsOyUQfRcZymg6q+KyLbA/2xd62+mFI0VEQuVtUw4AUicjrmkPXC\nlKOQzfJ0sw8WeG184OSE/Aub4rc7tmwkFzcCd4lIb1V9T0R2ArbHFKE0XBgcIbOBPVW1xo5zIrIj\nUA3shE2LDP/1fidlP9l4NHb/BjUDgPQFPgqdK7DJ9iJyH7BNtGLgpP4Wp94odorgK8H52fKaA4H3\nXhVLXoqpWUnlFwMDI/fPY788OI5TT0RVo44d85dJ016zZhZQopIKlmppClauPaiSiCpYGvmdsTEq\nWGmnezqO0/hQ1ZXAc8ERRgKcBFSJyA2q+o2InI1N77sKU6O+wZymqUC+f1XCcD0zs+SvlcLMB7BA\naKdigTlOw9YyPZyiLsDfgb9gtu4FXII5bHur2r/QItINU6xmYGrdR5gg8DtszVYpfB27X4pNBwyp\ntUQm4IsS+3UqQLFTBN8gh+yoqttky3Mcp+mTVsEqpL3wRb5SCpYqLF9emoJVKNmm11VKwcq2L1Q5\nFCzHcVYfVHWOiNwKXINFBfw3tg7+qdgUup4pm/wqOO+LOWbZ8nPZtDyw6QwRuSKw50+quiKlDZ+p\n6rTg+oVgfX8VtsbpniB9P6ATcKSqfhJWDGZTVZrPgC0S0rsmpDn1TLFTBPcvqxWO4zQp0qzBKlTB\nCl/kQ5Wo3ApWmFaKglUoYb/ZHKxK2JCkVrVuDYsXl6ZgOY7TNAmDjCVk/Tg4fx6c22ER8KIcn7Kb\nJ7F1Q91V9ckc5cJ/0dtmyb8Jm+Z3D6b+3JKy/yQuB04GLhGRewMVK3Skfpg2KCKbYtMnP4nUzWdn\nMUwFjheRn0TWYAlwWO5qTn1Q7BTBckYOdByniRFVjTpn2aKxWAVLpOaaqUJsgewKVphWTCS9Ygn7\naBbbSaZSClbYZ1ytatPGNlguRsFyB8txmjxvishkbH37LGzP08HYFLwJqvpRUG4S8EsRuRBTtPYk\nIcJdEkHwi8ux4GmbAc9iodq7YeuzblXVZ7DpcF9h67+mY0HQZqnqV0E7n4rIRGyN2MOq+nGxD62q\n34vIpcD12Dqu+4DJ2JTA20XkT9i0vWpsqmD0X/J3g3IniMjXmMP1jqouKtYeLHLhL4H7ReQ3ZKII\ndgnyV4UFReQSbIpjL39nrx+K2SAOEXkhOC8SkYXxc3lNdBynsVFJBQtqRv0rxBZIr2DVxdS3bH3U\nh4JVrHrnUwQdp8nzG0yJ+S3wBLbXaD/gV8CxkXK/xRSk87H1UNsAP03biapeiO3ptDsWCfAhzKH4\nBngvKLOKjFMxGQuBfkCsqXA6XzGh2ePcggVXu0hERFXfAn4GbIRFF7wAG4fnYs/yFRY2flvMWfwP\nsGMphqjqMmwK5XTgr8BYbK+xG4IiCyLFm2Eh5H11bD1RrIK1a3DuUF5zHMdpCpR7DdbSpTVf+otV\nsFq2TK9g1UVUvGzOyfLlufNLIZuCVax65wqW4zRtVPWv2At9vnLfY6HKT49lSazc5HhaJO8OMpGq\ns/XzILkjCu6POUWP5zE52mY2e5aR2Q8rTJtAzVDwAHcl1L2JBCdPVePtjcHUqXi5UdheWNG09zH1\n8AdE5BEsbP2CXHWduqXYNVg/ICI7ALtiQS9eUNVX81RxHKeJc/nlmesuXZLLfPSRTfd7/HHYb7/a\neRttBFOmQP/+MGECbLllJr9Nm3QK1vjxMGxY5r5dOxg92o4wumHr1pYO0Lt3pmwhUfHWX9/O2aZD\nZiN0oDp0gA03hHdiQX4r4by0awfjxtkR9tGuHbz/Plx0kQXBaFHA/wzh2HX1ZdaO49QjItIX2A44\nCvi/QO1qUojI/wHfYopeB+AIYAi1nVqnninJwQrmeB6B7aoNMEZE7onuieA4zupHhw62kfD48bDm\nmnDrrfDll/DrX2fKvPSSna+9traD9WywAcQtt8DWwaYLUQerdet0CtZvI7uAvPACfP45TJ8Of/mL\n2QPmYOy7rzldDz4I//oXbLJJYc978cVW59C0u60EHHYYfPONOYGLFsEjj8DEifBcMNmkEgrWn/8M\nTz4JV1yR6eP8881JVIUf/7gw53L33eHKK+Ggg8pvq+M4TgG8jDkfY7E9sZoiS7EpmN2xKYDvACep\n6t/q1SqnFqUqWD8DtlXVJQAichm2o7Q7WI6zGrN8OZx0Ehx4oN2feKKdow5WoWuo9twzk5ZWwQrp\n3t2UMDCn5pFHzMESMbWmQwf41a9g/nxzsIYMSd82mJMyYkRhdcCczwsuyNxvthmsWpVxsApRktKy\n9942FqGD1aYNbL45jBpVXHvt2sHPf1428xzHcYoi2zS/poSq3kBmzZXTgCkqyEWEOdTcPK418GmJ\nbTqO08iJr5lKotA1VNH20ipYIfH1VNENfqNqTbaw6XVJ9DkrtXlvPGCI4ziO4zjlo9iNhq/D1lwt\nAN4SkSeD+32w0JyO46ymrFpl0wPzOViFKlhRR6BQBSvuqGTb4De8j4dNr0vqwuGJPp87WI7jOI5T\nXoqdgBLudP0KFoozZEpJ1jiO0+hZtszO+V7cv/8+XXvZFKzFiwu3LVo/3iZUTjEqhLqOytcQntlx\nHMdxmhLFhmkfW25DHMdpGqQN9b0o5XaL2RSsr78u3LZo/XibDYWGaJPjOE5DQqplMrBXJGkV0EOr\nit9Y2HHKSUkTYUSkt4jcKyIzROSD8CiXcY7jND7SbtS7YEH2vBUrMtfZFKxCpgjGyaZgNQQaok2O\n4zgNBamWbsDAWHIzYFhCccepF0pdaXAb8BdgBfZlvx0YV6pRjuM0XtIqWLkcrGgAi2wKViFBLuK4\nguU4jtNoOZbk99fhdW2I42SjVAerrao+BYiqfhjsHF1ggOOaiEjnQBX7n4i8LSL9RGRNEXlSRN4L\nzl2Csv1FZLqITBOR3pH6T4hIPS5Td5zVlzQKVsuWuR2sqDpVCQUrbKshqkUN0SbHcZwGRDZHajOp\nlp3r1BLHyUKpTsjSwJF5T0TOEpFDgDVKbPMaYJKq/hjYFngb+BXwlKr2Bp4K7gFGAoOB84DTgrSL\ngEub4g7ejtMYSKNgtW5dNwrWypXZ+4+32VBoiDY5juM0BKRa+gKbRpIejxWpqIol1TJKqkWDY0ol\n+3IaN6U6WOcC7YBzgB0x2bboL7eIdAJ2B/4GoKrLVHU+cBC2MzfB+eDgennQfztguYj0Arqp6pRi\nbXAcp3CWLwdVmDcPPg6WGOdysFq2zDg/y5fDhx/WVKQ+DXbT++abzHUxCta8eXbOFqa9IapFDdEm\nx3GcBkL8HfMC4K3I/VCpltjOh45T95TkYKnqf1T1W1X9RFWPV9VDVXVqCU32BL4EbhORV0XkVhFp\nD3RV1c+CMp8DXYPr0di6r18D1wN/wBQsx3HqiAULbCPfwYNhnXVg//0tvUOH2mVDdSbq8EyeDD16\nwKGH2v2778L119v1Y4/B+efXbi+NgvXNNxmVbMcda+Z17JhsY8+edu7VK3fblSS0bZtt6s8Gx3Gc\nhoZUS2vgqEjS61qlbwJ3RNK6AAfUqWGOk0CxGw1frarnicjD2AbDNVDVA0uwZwfgbFX9l4hcQ2Y6\nYNi2iogG168BfQObdgc+s0u5G1O3RqrqFzHbTwFOAejevXuRZjqOEzJ3rp0nTcqkXXgh7LJL7bKz\nZ1t49V/+Eh55pGZeqHzNmVMz/bTT4MADYd11M2mtW5vytWpV9k2BQ/Vqv/3g1ltr5p1xBnTrBrvt\nVjP9qKOga1cYMCC5zbqgVy+YOBG22qqy/cyaZePnOI7TSDgQc6BCwqBq/8B+cA9/uhsO3FeHdjlO\nLYrdaDj8teCP5TIk4BPgE1X9V3B/L+ZgfSEi66nqZyKyHjA3WklEBFOuhgLXYZJxD2zq4m+iZVX1\nZuBmgD59+tRyDh3HKZ1hw6B589rpP/qRHTvvXNvBCqf8xZWp/faDQYNqpoXT6JYuhbZtk20I2znx\nRGjXrmZely5w3HG164jAwHjw33rggDr4/bVHj8r34TiOU0ai0wNXYY4VWqUfS7U8CwwI8gZJtayr\nVToXx6knit1o+JXg/Gw5jVHVz0XkYxHZTFXfwTaRmxEcw4HLgvNDsarHAY+p6tci0g77w1uFrc1y\nHKeCRPesCsm3jigpP3SI4murkoI+hGm5HKywHV/T5DiO07iRaukK/DSS9IxWaXS+wx1kHKwWwDHA\n1XVjnePUptgpgm+QMDUQk2dVVUtZPXA2MF5EWgEfAMdja8UmiMiJwIfAkRFb2gEjgH2DpKuAx4Bl\n2B+Y4zgVJCnYRL5IeEn52RSspLKh05RrHVaY51H5HMdxGj0/o+Y7a3zP1XuBG4DwJ7XhuIPl1CPF\nThHcv6xWRAjWVfVJyNorS/nFRHb0VtXnga0rY53jOHGSHKxyKlhJZaMKVj67XMFyHMdp9ESnB35P\nbI2VVulCqZaJZH6A306qZWut0jfqykDHiVJUFMFgU+EPVfXDIKl3cD0X+Lps1jmO0+BJUpHyqUYt\nEn7acQXLcRzHiSPVsh0QnRn1sFbpooSicVWrontiOU4uSgrTLiInY7LsTUHShsCDpRrlOE7joZgp\ngkksWWJ7abmC5TiO40SIO0pxRypkEjAvcv8zqZaEcEuOU3lK3Wj4TKA/sBBAVd8D1s1Zw3GcJkWS\nipSkUOUi3Bdr+XJXsBzHcRxDqiUMWBEyD3OkaqFVuhy4O5L0I2oGxnCcOqPYNVghS1V1mQRvRyLS\nguTgF47jNFFyqUhp6dQJ5s83pyhsr3lzWLkyWYGKhmnPZ5crWI7jOI2WwdT84X5C4EhlYxz243/I\ncCzwWVakWtYA1k5pT+fIdRuplh4p632rVTovfzGnqVCqg/WsiFwItBWRfYAzgIdLN8txnMZCLhUp\nLR07moO1dKm116yZqWArV+YO0+4KluM4TpMm7fRAALRKp0q1zAQ2CZIOlGrppFW6IEe1w4HbirBt\nZ2BWyrJjsYjXzmpCqVMEfwV8CbwBnIr9SnBRqUY5jlP/fPopvP9+/nLlULDCjYBnzYI33jDnKpw2\nmGuK4Jw58PHHsHAhfPWV1X/7bXjlFXj22ZplHcdxnMaDVMua1Ixa/b5W6cspqkadsDbAUWU1zHFS\nUJKCpaqrgFuCAwAR6Q+8WKJdjuPUM1ttZaqS5pn0W4yCtfnmdt5iC5gxAzbYAP73P9h550yZY46B\nf/wj2UFaay07jxiRvy9XsBzHcRolRwOtIvfjU9YbB4yK3A8Hbi6TTY6TCtF8b09JlUSaY3sNbABM\nUtU3RWR/4EKgrapuX14zK0OfPn102rRp9W2G4zRIooEncgWt+NOf4Oc/t+szzoBRo2CddfK3P2sW\nbLghvPaaKWVHH53JO/xwGD8evvzSnK8k1loLvk6xKcTKlTbl0HGcpo+IvKKqSXtpOo0MqZZ/AzuV\nqblNtUrfK7URqZZRQFVw+6xW6YBS23SaJsW+dvwNOAlYC7hWRMYBfwSuaCzOleM46cg3BTCqYG25\nZTrnCqBnT2jZEnbaCdq3r5nXuze0apXduYKMCpYPd64cx3EaF1Itm1M+5wrguDK25Th5KXaKYB9g\nG1VdJSJtgM+BXqr6VflMcxynIbB0aW0HKJ4fUux6p3i9NO342irHcZwmS7k3CR4m1XKJVhUxbctx\niqBYB2tZsP4KVV0iIh+4c+U4TZN8a6yi+cWud4rXS9OOr61yHMdpeki1NAOGRZK+A7YHcoVnT2IU\nGUetB7AHMKU06xwnHcU6WD8WkenBtQC9gnsBVFW3KYt1juPUCytWZK7zTRF0BctxHMcpI3tja/xD\nHi1m/ZRUy+3UVMKG4w6WU0cU62ClXP3gOE5jJOo01YeClcZ5cgXLcRynSRKfHnh3ke08C3wBdA3u\nD5dqOUur9LuiLXOclBS1/FtVP8x1lNtIx3HqlqjTVB8KVhrnyRUsx3GcpoVUS0fgkEjSt9geqwWj\nVboSuC+StAZwaPHWOU56PL6W4zi1KFbByhXOPReuYDmO4zjAEUDbyP3DWqVF7Lb4AxNi9x5N0KkT\nGqSDJSLNReRVEXkkuF9TRJ4UkfeCc5cgvb+ITBeRaSLSO0jrLCJPiEiDfDbHaQwUq2CFe2cViitY\njuM4DuWbHhjyPPBZ5H5PqZYNS2zTcfJSlBMiIk8F58vLa84PnAu8Hbn/FfCUqvYGngruAUYCg4Hz\ngNOCtIuAS8Moh47jFE6xClaxuILlOI6zeiPVsjGwayRpITCplDa1SlcB90aSmgHHltKm46ShWJVn\nPRHZBThQRLYXkR2iRykGiciGwBDg1kjyQcDY4HoscHBwvRxoFxzLRaQX0E1Vp5RiQ1Nj6lS4556a\nkeGc2nz/Pbz8ct32qQoTJ8Ls2ZXtZ8kSeOmlwsqHxBWsl1+279O998Jzz8ELL5Run0cRdBzHWe05\nDotGHTJRqzTPHIpUxFWwcu+x5Ti1KDaK4CXAxcCGwFWxPAX2LMGmq4ELgA6RtK6qGkq8n5OJCDMa\nuB34HvtF4o+YgpUVETkFOAWge/fuJZjZeOjXz87PPAMDBtSrKQ2aU0+FO+6Ajz6Cbt3qps+ZM+Gg\ng2D77eG//61cP2efDbfeav316pW/fC4Fa5ddstdL03YScTVqvfXy10nzGW29dXH2OI7jOHWLVuko\nbO+qcrf7IjUdt1LaGkUFbHSaHsVGEbxXVQcBV6jqwNhRtHMlIvsDc1X1lRx9K+bEoaqvqWpfVR0I\nbIzNsxURuVtExolI14T6N6tqH1Xts8466xRraqNk0aL6tqBh80rwrVu4sO76DPt69dXK9hM6b/Pn\npytfyBosgDFjrNyGRc5sbxb5l+jFF+HHP85f54QT4O3IROI33oB582DBArN/+fLKj6vjOI7jOE6c\nYhUsAFT1dyJyILB7kDRFVR8pocn+2LTDwUAboKOIjAO+EJH1VPUzEVkPmButJCKCKVdDgeswBawH\ncA7wmxLsafSoZq7LsVbGKS8N9TPJpmCtXJlcfo01oFWr8vS9/vrpyonUVMy6d4eOHctjg+M4juM4\nTrGUFGlPREZjASlmBMe5InJpse2p6q9VdUNV7YE5S0+r6jBgIpk5s8OBh2JVjwMeU9WvsfVYq4Kj\nXbG2NBWWL89cp1EinOxORCWoawcr6nDnIpuCle07VM71UIW0FQ0L72uyHMdxHMdpCJSkYGHBKLYL\nI/aJyFjgVeDCUg2LcRkwQUROBD4EjgwzRKQdMALYN0i6CtuUbhlwTJntaHREX5QbqlrSUAidj7p0\nROuqr/DZog53LrIpWNm+Q+WM6FdIW9Gw8C1bls8Gx3Ecx3GcYinVwQLoDHwdXHcqQ3sABJEApwTX\nXwF7ZSm3GBgYuX8e8KXtAWnUB6cmdTlOde30pn22xqJgRSl2Dy7HcRzHcZxyUqqDNRp4VUSewSK0\n7E5mjyqnAeAKVuHU5TjVtdOb9tkKVbDK6WD5/laO4ziO4zRmSlqDpap3An2B+4H7gH6qWuqu204Z\ncQWrcFzBKlzBKqdT1Kykf5Ucx3GcJERkhIho5FgmIu+LyKUiUtTPZCIySkQ0lqYiMqqItsaIyCcp\nyoXP0SOSNltExuQpM0pEStlGKMmW2bExnS8iT4rIrvlrJ7bXObCz1p6yIjJFRKaUbLRTJ5Q8RTDY\nn2piGWxxKkCh4bYdV7AgY1eLFnWvYDmO4zgV5QjgE2y/0UOAXwfXZ5ep/X5B+5Xi0aCPzwosUwX8\nAXi6zPb8E9sbqxnQO+jnMRHZRlVnF9hW56D+J0B8d8wzSjPTqUvKsQbLacDk2jDWScYVrIxdnTrV\nvYLlOI7jVJTXVHVmcP2kiPQGThCRc8OgZaWgqlNLbSNP+18CX5ZapozMizzzSyIyE3gBi4Z9Wbk6\nUdUZ5WrLqTw+GaeJ4wpW4dSl01PXDlYhClazZra/lStYjuM4TZr/YtvarB1NFJGeIjJeRL4UkaUi\n8pqIHJKvsfgUQRHZRETuEJFZIvK9iHwgIn8RkS5Z6u8iIv8RkSXBFLyzY/m1pv8ltFGjTGQa428i\n0/lGicjIYFvyZgAAIABJREFU4NnWidWXwM678j1vAqHy1D3W5lAReToYz29F5FURGR7J7wHMCm5v\nidg5IsivMUVQRAYE+QeKyPUiMi84xolI51jf64jInSKyUES+EZHbgnoqIgOKeEYnDyUrWME8096q\nelvwBV1DVWflq+dkZ+5cuPlmC6194onpN15NIupUvfACjBsHw4alq/vtt3DDDTBrFqy1Fhx9NGy1\nVfG2FMO778I//gGbbw5HHVUzb8kSuO46s3PzzWHo0OL6+OgjGDMGZs+2+ylToF07+PRTOOQQeOcd\nGDSohIfIwsyZ8PvfZ+7vusuUoP79Yd11S29/1iy4+mpr8/33Le3WW+G44+Daa2HVKvuOqcLpp0OX\nLvDdd3D99fD001avdWu4/Xb4859hzTVh2rTkvlzBchzHabT0ABYAX4UJItIN+BcwFzgfU4OOAu4T\nkYNVtZClIesDc4CRQR89se18HsOm8UXpCNwNXA7MxFSga0VkkaqOKfTBIvQDXgbGADcFaZ8Ai4Hf\nA8cDV0TK7xvYeUIRffUIzu/H0nsBDwb9rMACw90qIm1V9a/YdMZDsbgGo8ksv4m3E+ca4BFsa6LN\ngvZXktk/lqDNrbHpoDOBw4Dr4g0FztxtwMAgmrdTLKpa9IHNE30YeDe4Xx94sZQ26/LYcccdtSFy\n7bXha6/qZZeV1tajj1o7nTvbWUR1+fJ0dR96KGMHqB57bGm2FMNZZ2X6jzN5ciavRYvi+7jkkprP\nuf32Ne+T+i4H551Xux9QLdfX8phjktuvqqqdNnas1Zk4MZPWr5/qXnvZ9W23Wf4RR9h9z56q3bqp\nrrGG6oYbpv9O5WLECNWtty683pAhqgMHlt6/4ziNH2CaNoD3i4Z4YHuGKvYS3gLogjkQK4CzYmX/\nhjlVa8XSn8SmGIb3o+xVskYZBUblsKMFsGtQbvtI+pggbWhCnx8CEnuOHpEys4ExCc/aI2bX7xPs\nGYM5HRJJux94O8WYzgbGB8/UCtgCeBZ4F+iSo16zoM4twOuR9B6BnScl1JkCTIncDwjKjo2Vux5Y\nEhmvfYNyR8bKTQzSB0TSjgu+D3vU9/e1sR+lThE8BDgQ+A5AVedgCyWdEli8OHP9/feltRUqWM88\nA1dcYa/OaacKRu0ohy3FELVh5crkvIMOghUr7Ci2j7ZtbWwOPjh5fFRrp5XK4sXQtaupQ1Fmzkwu\nXyjz5mWuly3LXH/+ee2y4WcbjumMGfDSSzB+fM38FStMxfzgA1P+Fi2Cjz+2YBilctttMH164fUe\necQUN8dxHCcV/wOWY3uY/g24SVWvj5XZD1OYFohIi/DAAjpsKyId03YmIq1E5EIR+Z+IfB/0/XyQ\nvVms+EosKnWUu7Dpdhuk7bNAbsTUpb0Ce9cDDgBuTln/GOyZlgJvAVsBB6jqN9FCItI7mKb3aVB+\nOXAStcegUB6N3b8BtAa6Bvd9sXF9IFbu3nhDqnq7qrZQ1WdLtGm1p1QHa5may6sAItK+dJOccJ1L\ny5alr9EJ67dpk1knk7bNeLn6CJKRaw1ZNBBDvGyhfYRj07o1LFhQu0zUQSkXYb91sX4p6gAlOZDh\n2EW/L9FzNN/XWzmO4zRqDgF2AgYDk4EzROS4WJl1MTVjeey4Mshfq4D+RmNK1zhgCPATbCocQPx/\nlG9UdXks7YvgXBEHS1X/DbwCnBYknYSpOGNTNvE4Np67AOcBbYH7o6HvRWQNTInbFtsvdregzt8x\nZ6gUvo7dh//Lh/2vR+5xdSpAqb87TxCRm4DOInIyJjXfWrpZqzdLl5pz1bZt6YEpwvrheppoWtq6\n2e7rgngEu3btaueFDtbSpRaUoZg+wrFp0ybZwYqWKRdhm3Wxfkkkc53kiIZjGf2+RM/RfF9v5TiO\n06h5U4MogiLyNDAduFJE7lPV74IyX2Eq0+VZ2phTQH9DgdtV9YdVx4HDkUQXEWkZcwZCJebTAvos\nlBuBm0RkA8zBukdV445LNr5W1XCF8ssisgBbx3Q2GYe0H7ARsJuqvhBWDFTBSvMZucfVqQClbjT8\nR0xivA+TOC9R1WvLYdjqTFTZcAUre/+VUrC+/Ta3HeWiLhWseL/Z0uIKVuhMuYLlOI7T9FDVpcAv\nMMUqus/SJGAb4C1VnZZwFPKTaztM/YpyfJayzbEADFGGAh9RuoO1DFOXkrgTWAT8A5uO+NcS+hmL\nRRL8hYiEPwuH5x/GIYiieFCsbjiu2ewshqnYuMYjQB5Rxj6cGCV5ziJyuar+EpM942lOkUSVDVew\nsvefpGAV20dUwcpnR7moSwUrynff1U7LpmCJQKtWNfM7d65d33Ecx2mcqOpEEfkPMFJErlfV74FL\ngH8Dz4nI9Vgwhy7Y+qKNVbWQ6HqTgOEi8gYWTOJQbDpdEouAK0RkbeA94Ghgb2BEsCSlFGYAQ0Rk\nEvANMCeIHYCqfi8iY7CIiW+o6kvFdqKqKiKXYJH9Tgf+BLwELARuEJEqoD1wETAP6BSp/gWmHg4V\nkelYjINZqvoVRaKqT4jIi8DNwbjOBA7HpisC/LD3WTBV9O/AXr4OqzRKXYO1T0JaBQJar164gpXc\nZ10pWPnsKBeVVrCy/Ve0cGGyLdFzdByi30NXsBzHcZokF2FTxk4DUNWPgD7A68Cl2A/pfwH2AAoN\nK3Q2FrHuD1gI9g6Y45TEQkyxGg48BAwEzlXVtOuhcnEW5rA8DPwHOCWWf09wvokSUdVHsbDwPw/C\nsH+JKUjNsZlfo7ElNeNi9VZhUxS7YOvj/oMF3CiVQzBH93JgArY+6+IgL7owollgo+CURFEKloic\njknJGwcedkgH4MVyGLY64wpWcp9NUcFq3762Uydl+mctW2CObGvMwnPz5jWDYkS/h74Gy3Ecp3Gi\nto/UmCx5TxB7qVbVT7CX/VxtjsICWETT4u3Mw5ymOPFyIyK3O+Xocwyx51DVHinKvAjsmK1dYH/M\nAbsjR5m4LT1y5O0Su38a2D6h6KhYuQex/bLi7Q2I3U8hwRHK8uxfEvsMAmVyMRZVMmtdpziKnSL4\nDyxqymgsGkrIogIWBTpZKKeCtXSpvSw3b16cgtWqVeZFvT4UrKVLMzZkU7A6dKh5Xyj1qWCttVbl\nFKFsTuGCBebEhQpXNFplkkLlCpbjOI7TVBGR7bE4AucCN6tqwjyPxk2wgXAnLIx8KywM/+nAlQWu\np3NSUtQUQVVdoKqzVfVoVf0Q+B4L1b6GiHQv1hgR6SYiz4jIDBF5S0TODdLXFJEnReS94NwlSO8v\nItNFZJqI9A7SOovIEyJS6vTHeqOcCtaSJdkjwqWxIxqVrz4UrCVLsitU4TiFL/yNUcGq5BqsbE7h\nggU1++zUKbdC5QqW4ziO04R5AIv6NxmoqmdbKsV3WGCRBzB17KfAhcHhVICSnBAROUBE3gNmYTtX\nz8aUrWJZAYxU1S2wjdHOFJEtMJXsKVXtDTxFRjUbie3jcB6Z/QsuAi4N5rE2SsqtYGXb0yitHdH7\numbp0uxrrOJrmBqjglXJNVjZnMLFi2v22amTK1iO4zjO6omq9lDVtqp6sKouqm97KoGq3qOq26lq\nB1VtpaqbqerljflduaFTavz932OO0GRV3V5EBgLDim1MVT/D4vWjqotE5G1sY7mDgAFBsbHAFOCX\nWLjLdsGxXER6Ad2CeakFsWgR/OpX9lK6YoVNq6uqgm7din0a+Owza2PqVNhuO1tvM3p07ihs48bB\n5MkwcGD2TW8LIa2CtWwZ/OIX8M030KyZ7cH1t79Bjx6ZMvPnw9y5sO66dv/113DhhTb9cLPN4M03\n4Xe/g9dft/b23z+9nWPHwlNP2fX668PIkXDRRfDFF7Dllsl233mnTW8Ln+uJJ2C//dL3GZJGwZo8\nGTbZxJ4vnDLZsSNccUXNvbkefxyefNLSw3VMd9xhaQAHHQSHHQYvvQQffAADBtR26ubPh7PPhiuv\nNHtWrbLv5ldfwW9+A//8J+yxB2yxBUyYYOO1665W98svbdy+/x4+/jj7M0f77NAB7r0XTjgBZsxI\nVrDuv9++x4sWuYLlOI7jOI6TE1Ut+gCmBefXgWbhdSltRtruge170BGYH0mX8B7YDovv/wywIXAX\n0DtPu6cA04Bp3bt315CnnlK1VSmZ46abtCTGjs201aaNnR99NHedzTe3cqNHqx56qOpWW5Vmw7Bh\nqhtvbNfvv29tjx1bu9x//1vTzvDo0UP1sMNUt93W7u+6K1PnwQdrj9n48ZnrQujdW7V9e9W117a6\n11xj527dVC+80K7vuadmHVBdc03V+fPt+sADC+szpGdPGydV1dtvz9g/aJBqhw52fdhhqtdfb9fd\nu6v+6Ed2/dxzNdsKy8+YkUnbfHPVdu1sbPv1s7QTTrByd9yhunix6g47ZPrt1MnOL79sZWfNyuRd\ndVXmcwrHIDrW99xj9xtsYM/VvLnqFVdYXnW15fXsqXriiaonn2xj1rdvzc9w881rPtM551h6WO7G\nG4sbZ8dxnEoTvpf44YcfftTnUaqCNT/Yjfs5YLyIzMXmeZZE0OZ9wHmqulAiYdVUVUVEg+vXMAUN\nEdkdU79ERO7G1K2RqvpFtG1VvRm4GaBPnz4/BLJOmgJWjvVPIYMHmwqQr82lS+FnPzPF4phj6m4N\nVmjroEHwwAOZ9NNPhwsuMLWlV6+adcs5ZkuWwJFHmqIzfLipOJBRtS69tGZ/GnxyZ51lU9x22il7\n1Lx8JClY7dvDY4/Z9fbb1wyy8cYbMH067LZb7eddtCjTZvTZDjvM1ME5czJpm2wCwwK995VXMuWf\neQb23DPTRvS5w/azTVkM06dMsfajXHKJHXEGDqx5H1eoLr0Urr0285kMHpzct+M4juPUBVItk4G9\nIkmrgB5apTnmbjhO3VFqIIiDsBCP52Px9d+nxHj9ItISc67Gq+r9QfIXIrJekL8eMDdWR7C1V7/D\nFiheANwCnJO236QX1nLtQQXp92qKrnGpyzVY8T2lQnLVLeeYxdcjhVMjo2lJIdvLMVbxMY8Ttl3I\nnmLxcYqvqYs6vkn9RduItpVvymjUxrQkrbmKEtoZOli+BstxHMepL6RaumH7Y0VpRglLVByn3JTk\nYKnqd6q6SlVXqG0Cdz0W+rEoAkfpb8DbqnpVJGsitukcZDafi3Ic8JhaiPh22C8Zq4LrVCQpL+Xa\ngwrS79UUVVPqMopgfE+pkFx1yzlm8Yh6oSMRTYs6GtH9vcJzOaIIJjk9Ydth+9F1X9n6jCtY8aiQ\nUcc3qb+wXrytfA5WfFzSkLTmKkoY5j/6mTiO4zhOPXEsye+vwxPSHKdeKMrBEpGOIvJrEbleRPYV\n4yzgA+DIEuzpj/3h7CkirwXHYOAyYJ8gYuHewX1oSztgBHBDkHQV8BhwNfDXtB27glXTzpCGqmDF\nlZq6UrDatLE9pApRsMLPoFAFK2mKYH0oWGHa998X3rbjOI7jlJlsjtRmUi0716kljpOFYtdg3QF8\nA7yM7fJ9IRZ84uBgXVRRqOoLJOxKHbBXUqKqLiYiFavq88DWhfZdaQWrY8d0bVZCwerSxa5btLAI\ngQ1NwVK1NU7ZFKyQSihYK1bAypXpFay0e4rVhYK1KiG4aiUUrDDtu2B1ZatW6dt2HMdxnHIh1dIX\n2DSS9DgwKHI/HPhXBfsfRWavrGe1SgdUqi+ncVPsFMGNVXWEqt4EHA1sAfy0FOeqvqmEghV9MW7b\nNn+bK1faC39UTVm6NBPQoVgboi/y2ZSefApWOE0sycmJ91eMjWFfYX/hep9WrTIv9JVQsJLWcsUJ\n2y5kT7Gw3RUrzBEqRcHK5mBlC1YiYtMY05JWwQL7LJo12i28HcdxnEZOXL26AHgrcj9UqsV/BnTq\nnWJflZaHF6q6EvhEVethG9ryUekpgvkUj2heXCUpNjpeaEP0Rb5169zR/7IpWEl1841ZWscw+txR\nBat1a3MWRGr3nTRWpThY+RSscIpgWgUrHqAirmDl2rA3rmBlmyKYbfzDcUtLWgUrW57jOI7jVBqp\nltbAUZGk17VK38RmVYV0ocRga45TDop1sLYVkYXBsQjYJrwWkYXlNLCuiL8oh+pRudps1sxUhVxO\nQJIqE00v1oa4gpUrTHs2BSupbnTKXDQtZMWKdDYmRedbsCB330ljVcznlW3Mo4RtF6NgxdW55ctN\n0Uoau2h/2drIp2DlmnqYjUIULF9/5TiO49QTB2IOVMi44PwPIPqTrge7cOqdohwsVW2uqh2Do4Oq\ntohcdyy3kXXBkiU2DS6kU6fyKliQf51QNjWlFEev0gpWu1icxjAQQpifhlwKVra+61vBSpq2GCWb\nghXWKUbB6tQpvYJVCM2bJ/eflOYKluM4jlNPRB2nVZhjRbD31bORvEFSLevWpWGOE8dXUwTEf/nv\n1Km8ChbkXyfUGBWsuJOwcGHN/DRk21+qIStYSdMWV67MXMcjAMafLZeCFQYjiQe56NSppgNbLgUr\njitYjuM4TkNCqqUr8NNI0jNapXMi99Fpgi2AY+rEMMfJQrFRBJsMs2bBqafCm2/aC++331p6x47w\n3HMwcCCMHg19+2Zv44EH4M9/ztw//zzsuivMmJFJCwMP3Hgj9O8PxyT86WdTUwYPhgEDYPr0TNlj\nj4WTT7brRx+FK67IrHnq2RN+8xs488z8ShDApElwySV23b59zbx43ccfhx13tJf9t96qrWA9/XTm\nesgQq7PLLnDZZWQlrBNVeZL6fvRRe+6xY+Ghh2qWad3apiTutltm/dE++8DFF2fauP56mDAhc7/X\nXrDmmjXbCYNDRNXM1q3NsXnpJdh665rpS5fCyy/DhRfa9L+Q664zG59/vvazjR6dW8ESMVXpD3+w\no2dPS487v9Hv0O672/n552HTTSmIeNAKV7Acx3GcBsbPqPnOOi6Wfy+2XU/4P+twbLsex6kXVnsH\n66WX4MknYeed7YW8XTuYMwe23BLuvhumTIEnnsjtYN13H/znP9CvH3z4oaW9/jr06WPO1Jw5cOSR\n8PHH9sI/YUKygxVXU/r3N0fvrbfs2GADe3n+739h/PiMg/XAAzB1qpX/+GN7yd5uO5g82Ry9Aw/M\n9JGk9ITOynnnwXrrwbBh8NFH0LUr9OqVKXfSSXDzzdZ/aN+QIeZ8vPoqbL45TJsGs2dbYI727eHd\nd832XA7Wu+/aeeedMyHlo+MA9qy33ALjxsHVV8Nnn1n6FlvYefBgeOGFjIo0Y0ZmvENuvx3efx+2\n3Rbefts+q4MPzvQNZvMvflHz89l/f/jXv6ztaHqoSE6aZN+TgQPtO/Ttt5Y3c2ambL9+GfXp8cdz\nK1hgn8WVV9p1hw429v372zM8/7x9t9q2hbXWgnXXNYcwdMALVZmOOsrqbrMN/Pvf9pnGGT7cHLED\nfOmw4ziOU/dEpwd+D9wXzdQqXSjVMpHMXqzbSbVsrVX6Rl0Z6DhRVnsHK3Q2JkyA7t1r5p12mr24\nptm7auONTYn505/g5z831WbSpJrlLroIJk7Mv3dS+OLdowc8+CDsuafdH3kkXHUV7LsvLFpUs94G\nG1j/N96YUa4A7r3XHKWQJAVr6VLo1i2jwt1xB4mMHAmdO9vLPtizhApQNkaOhJtuyl1m6VJYe23Y\ncEO7P/xwszvqgPziF6bgnHpqZrreDjvAGmtY/k47maMccvLJpnjF+9l9d3NITz3VHMulS2181l/f\nyoiYGhilb9+abYfE98eKqncAv/61OZann575bg0dak5ovql8V1yRcbCuvtqcN4ARI7LXOfxwc/YL\nVZm22QYefjh3meOPt8NxHMdx6hKplu2AbSJJD2uVLkooOo6MgwXmlP28krY5TjZW+zVY0SAESaTZ\nXyk63SufepCrvbiCle063kZS/6GDlRQhLu7gFRIYIVoujVJS6PhF280W3S4MOJGr/6R+4+MUD1xR\nKNE28u0dFU0L16mlVZoKLefrpBzHcZwmRDwqYHx6YMgkYF7k/mdSLc2zlHWcirLaO1jxjWbj5Iv8\nF7aRdo1KrvaSnL2k63gbSf2HDlbSHkdJClYxL/tpHJPWrTMbKGcjPl0u21hGo/Dlm2KXNM7xcYoH\nriiUcCyz2ZItLdtnk6ufQsr5OinHcRynKSDVEg9YMQ9zpGqhVbocuDuS9CNqBsZwnDpjtZ8iWB8K\n1ldfJeclOXulKljx5yqnghUP751EdE+nFlm+bcUqWGuvnbvfulCwcoVcb5Wwl3x0/F3BchzHcZyc\nDAaiIdcnBI5UNsYBZ0buhwOP5epAqmUNIMcbRQ06R67bSLX0SFnvW63SefmLOU2F1d7Biq97ipNW\nwQqj7zUkBatVq0xEvWgb5VKw0hBVneIRCqP9V0LBWrXKlLPQsUsap0WLKqdgZauTdJ22TppyrmA5\njuM4TYS00wMB0CqdKtUyE9gkSDpQqqWTVumCHNUOB24rwradgVkpy44FRhTRh9NIWe2nCC5ZkuyI\nhNTlGqxCFKxs+1FFFaxcezrF7S/3y37c5lxOaqXWYMX7zab0VUrBymVX/DptnTTlXMFyHMdxGjtS\nLWsC+0eS3tcqfTlF1agT1gY4qqyGOU4KVnsHK596U+garHzT5sqlYMWnCCYpWNnWANWHgpXLSc2m\nYMWnFBaqYEX7Vc2u9DU1BSvcy8txHMdxGjFHA9HJ9uNT1ourXHEVzHEqzmo/RTCfelNMFLxcNFQF\nK639lVKwouupstlSioK1fLk5WWnHKQ0NVcFyHMdxnCZA3DG6RKrlkiLa2UWqpbdW6XtJmVqlY4Ax\naRqSahkFVAW3z2qVDijCHmc1oNEoWCKyn4i8IyIzReRXQdrlIjJdRG6PlBsmIuelbTefg5Wk+BTa\nRtr2ClGwVqzIbKpbqoJVySmCaRSseP+51sOF5dN8btF+42Obb5zSEI5lseNXKQXLcRzHcRozUi2b\nAzuVscnjytiW4+SlUThYItIcuAEYBGwBHC0i2wI7qOo2wDIR2VpE2gLHB2VTkW96XJLiU2gbadtL\nUrCi0+Ti6ktYPknBymZTmza1w6ZXcopgGgUr3n8+BStNePWkMYqm5xunNISfZbHjl7ZOtuiLudp2\nHMdxnEZMuaf1DZPqbKvtHaf8NJYpgj8BZqrqBwAichdwINBSRARoByzHduy+TjVnCM8fmD4d3noL\nNtkke5k2beC//4Vu3bKXmT+/9ot7587JZdu0Mecmqb0FCyzYRnQNTfSfg3gfvXtDs2bw+efJAQ6y\nOVgAPXpk2v7008o7WAcckF1hmTMHdtklcx+Wa9s2ua1zz00/RXDAAAtiEqp9accpDW3awCefwGef\n2XjGCaMmrrFGcl9p+037X0I4bu5oOY7jOI0VqZZmwLBI0nfA9th7XiGMIuOo9QD2AKaUZp3jpKOx\nOFgbAB9H7j/BwmM+BrwKPAUsAHZW1d/lakhETgFOAWjffkuOOgr22Sd7+XPOgbXWym1cs2YwLPin\nYMAAGD0aTjkluexRR9lLefjCH2fLLWu/UF93HcycCT/5id0fdBDMmGHriuyZYMQIu+7WDS680Jyu\nwYNrt3/oodZWVMESgRNOyP2MIV27wiWXwPbbpyv/k5+YQ7RoUfYyInDiiZn7/faDs8+GM86oWW69\n9eCii8wha94chg7N3ubuu8NZZ8HixZm01q1h0CC73m0362PxYjj55HTPEueEE2DZMlvbdeyxyflz\n58LIkZm0vfe252rdGrbZJnf7b7wB06altycctzPPzF/WcRzHcRooe2PvfSGPZls/lQupltupqYQN\nxx0sp44QVa1vG/IiIocD+6nqScH9sZgzdVakzK3AjcAOwL7AdFX9fa52+/Tpo9MKeYN1HMdxHKfB\nIiKvqGqf+rbDKR6plvHAMZGkw7RK7y+inebAp0DXIOlb4Edapd+VYNsoPMiFk4JGsQYL+wOJTqrb\nMEgDQES2BwR4BzhCVY8EeolI7zq10nEcx3EcxykKqZaOwCGRpG+x2UoFo1W6ErgvkrQGcGjx1jlO\nehqLg/UfoLeI9BSRVsBQYGIk/3fAxUBLINyJahW2NstxHMdxHMdp+BwBRFdgP6xVmieWc04mxO49\nmqBTJzQKB0tVVwBnAf8E3gYmqOpbACJyMDBNVeeo6nzgNRF5A2ijqq/Xm9GO4ziO4zhOIcSjB95d\nYnvPA59F7veUatmwxDYdJy+NwsECUNXHVHVTVe2lqn+IpD+oqqMi9z9X1a1V9Wf1YqjjOI7jOI5T\nEFItGwO7RpIWApNKaVOrdBVwbySpGZAQlspxyktjiSJYEV555ZV5IvJhfdvRAFgbmFffRjRAfFyS\n8XGpjY9JMj4uyfi41KZcY7JRGdpw6ofjsPX0IRO1SvPsRJqKu4GzI/fDgdFlaNdxstIoogg6lUVE\npnnUpdr4uCTj41IbH5NkfFyS8XGpjY+J4zhNiUYzRdBxHMdxHMdxHKeh4w6W4ziO4ziO4zhOmXAH\nywG4ub4NaKD4uCTj41IbH5NkfFyS8XGpjY+J4zhNBl+D5TiO4ziO4ziOUyZcwXIcx3Ecx3EcxykT\n7mA5juM4juM4juOUCXewVgNEpJuIPCMiM0TkLRE5N0hfU0SeFJH3gnOXSJ1fi8hMEXlHRH5af9ZX\nFhFpLiKvisgjwb2PiUhnEblXRP4nIm+LSL/VfVxE5Pzgb+dNEblTRNqsjmMiIn8Xkbki8mYkreBx\nEJEdReSNIO9aEZF4X42JLONyZfA3NF1EHhCRzpG81XZcInkjRURFZO1I2moxLo7jNH3cwVo9WAGM\nVNUtgL7AmSKyBfAr4ClV7Q08FdwT5A0FtgT2A24Ukeb1YnnlORd4O3LvYwLXAJNU9cfAttj4rLbj\nIiIbAOcAfVR1K6A59syr45iMwZ4pSjHj8BfgZKB3cMTbbGyMofYzPAlsparbAO/y/+3dX4xdVR3F\n8e9KKpVpBRPRCh1MGxpLQkgsKjQlEiMENBJKIiEkIOVfjPFPxBfSYgI+9IEH/BNfTLSNgjZgLcQ/\nAQJ69rr0AAAF4UlEQVRGE4jBKSkDpe2AiIAwY0uJVVEUsHTxcLb29NqBzvTOXHr2+iRNz933nH33\nWcncmd/Z+54LayC5QHPRDzgXeK7VVlMuEdFxKbAqYHun7dGy/Q+aP5gXAiuBW8putwAXlu2VwO22\nX7X9DPAUcPrsjnrmSRoGPg2sazXXnsmxwFnAegDbr9n+G5XnAswBjpY0BxgC/kyFmdh+ANjT0zyl\nHCQdDxxje8TNXZZubR1zRDpYLrbvs723PBwBhst21bkU3wKuA9p32aoml4jovhRYlZG0CFgGbAYW\n2N5ZntoFLCjbC4HnW4eNl7au+TbNL/l9rbbaM1kMvAj8oCydXCdpHhXnYnsCuJnmavtO4O+276Pi\nTHpMNYeFZbu3vcuuAu4p21XnImklMGF7a89TVecSEd2SAqsikuYDdwDX2n6p/Vy5MljNPfslnQ/s\ntv3wZPvUlkkxBzgN+K7tZcDLlCVf/1VbLuUzRStpis8TgHmSLmvvU1smk0kO/0/S12iWaW8Y9FgG\nTdIQcD1ww6DHEhExk1JgVULSO2iKqw227yzNL5TlF5T/d5f2CeDE1uHDpa1LzgQukPQscDvwCUk/\npu5MoLk6PG57c3m8iabgqjmXc4BnbL9o+z/AncAK6s6kbao5TLB/uVy7vXMkXQGcD1zq/V86WXMu\nJ9FcqNha3nuHgVFJ76fuXCKiY1JgVaDccWk98Ljtb7ae+gWwqmyvAn7ear9E0lxJi2k+VPzQbI13\nNtheY3vY9iKaD1b/xvZlVJwJgO1dwPOSlpams4Ex6s7lOWC5pKHys3Q2zecYa86kbUo5lOWEL0la\nXvK8vHVMZ0j6JM0S5Ats/6v1VLW52N5m+322F5X33nHgtPK+U20uEdE9cwY9gJgVZwKfBbZJerS0\nXQ/cBGyUdDXwJ+BiANs7JG2k+cN6L/BF26/P/rAHIpnAl4ENko4CngaupLkYU2UutjdL2gSM0pzj\nI8D3gPlUlomk24CPA8dJGgduZHo/M1+gucPc0TSfTbqHI9gkuawB5gK/KncVH7H9+dpzsb3+YPvW\nlEtEdJ/2r1qIiIiIiIiIw5ElghEREREREX2SAisiIiIiIqJPUmBFRERERET0SQqsiIiIiIiIPkmB\nFRERERER0ScpsCJixkl6j6RHy79dkiZaj4/q2fdeSe96i/7GJb17kvaftB5fImldn85hraRr+9FX\nREREdFe+BysiZpztvwAfApD0deCftm9u71O+RFS2zzvMlztD0lLbvz/MfvqmdW77Bj2WiIiImFmZ\nwYqIgZG0RNKYpA3ADuD49uyUpF9KeljSDknXHGK336D5Iu3e1zpgBkrSE5KGyxi2S/qRpCcl3Srp\nPEkPSvqDpI+0ulkmaaS0X9Xqa7WkhyQ9JumGyc5tygFFRETEESczWBExaCcDl9veAtBM9vzPKtt7\nJA0BWyTdYfuvb9HfbcCXJC2ewhiWAhcDTwCjwCu2V0j6DLAauKjsdyqwAjgGGJV0F/Bh4APAGYCA\nuyWtAHb3nltERER0X2awImLQ/vgmBchXJW0FfgcMAycdQn97aWaxVk9hDE/ZHitL+MaAX5f2bcCi\n1n4/s/2K7d3AA8BHgXOBTwGP0BRnS4APlv3f7NwiIiKigzKDFRGD9vLBGiWdA5wFLLf9b0m/Bd55\niH3+ELgOeLLVtpcDLyq1+3q1tb2v9XgfB75Puud1TDNrtdb2+p7xL2GSc4uIiIjuygxWRLxdHQvs\nKcXVKTSzRYfE9mvAd4CvtJqfpVnOh6TTgROnMaYLJc2V9F7gY8AW4F7gaknzSt/Dko6bRt8RERHR\nASmwIuLt6i5gSNIYsBbYPMXjvw+0bwH/U2CBpO3A54CnpzGm7cD9wIPAjbZfsH03sAkYkbQN2AjM\nn0bfERER0QGye1e8RERERERExHRkBisiIiIiIqJPUmBFRERERET0SQqsiIiIiIiIPkmBFRERERER\n0ScpsCIiIiIiIvokBVZERERERESfpMCKiIiIiIjokzcAjgftaSMY73kAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the 'sim_improved-learning' file from the improved Q-Learning simulation\n", + "vs.plot_trials('sim_improved-learning_ref.csv') # e decay\n", + "vs.plot_trials('sim_improved-learning.csv') # gompertz decay parametrized to go to 0 at around 1600 trials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7\n", + "Using the visualization above that was produced from your improved Q-Learning simulation, provide a final analysis and make observations about the improved driving agent like in **Question 6**. Questions you should answer: \n", + "- *What decaying function was used for epsilon (the exploration factor)?*\n", + "- *Approximately how many training trials were needed for your agent before begining testing?*\n", + "- *What epsilon-tolerance and alpha (learning rate) did you use? Why did you use them?*\n", + "- *How much improvement was made with this Q-Learner when compared to the default Q-Learner from the previous section?*\n", + "- *Would you say that the Q-Learner results show that your driving agent successfully learned an appropriate policy?*\n", + "- *Are you satisfied with the safety and reliability ratings of the *Smartcab*?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "\n", + "The epsilon decay function used was e^(-0.0005 * nb_trials). I also attempted gompertz decay, but needed to parametrize the function quite a bit. With the first i need about 4k trials, with gompertz about 2k to converge.\n", + "\n", + "Epsilon tolerance was 0.01, alpha was 0.01 and constant over time. I used these values so that the simulation could learn a lot from historical mistakes before it started testing. A low alpha was chosen so that learning could be spread out better over the large number of trials.\n", + "\n", + "Improvement over default q learner was vast. Initially I tried using better decay functions, but it turned out i needed more training. Accident rates are now will below 5% and reliability at worst is around 80% - 90% and i feel i narrowed the standard deviation of rolling reliability. Rewards are almost constant at 2.\n", + "\n", + "Safety and Reliability rating are at A+, which is incredible. I would certainly say the learner has learned an appropriate policy, although it still has a rather high variance in reliability.\n", + "\n", + "\n", + "N.B: Removing deadline from the state variables reduces variance in the reliability running average, so I did this for the output.\n", + "\n", + "Including all features is possible with advances in computing power, as opposed to using a priori knowledge to reduce space dimensionality. But a priori is NOT reinforcement learning - the agent must come up with all rules by itself, so you should not remove any features.\n", + "\n", + "It seems running on all features except deadline, leads to a slightly lower reliability after 10k trials, and reliability variance is up again (not shown here).\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define an Optimal Policy\n", + "\n", + "Sometimes, the answer to the important question *\"what am I trying to get my agent to learn?\"* only has a theoretical answer and cannot be concretely described. Here, however, you can concretely define what it is the agent is trying to learn, and that is the U.S. right-of-way traffic laws. Since these laws are known information, you can further define, for each state the *Smartcab* is occupying, the optimal action for the driving agent based on these laws. In that case, we call the set of optimal state-action pairs an **optimal policy**. Hence, unlike some theoretical answers, it is clear whether the agent is acting \"incorrectly\" not only by the reward (penalty) it receives, but also by pure observation. If the agent drives through a red light, we both see it receive a negative reward but also know that it is not the correct behavior. This can be used to your advantage for verifying whether the **policy** your driving agent has learned is the correct one, or if it is a **suboptimal policy**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8\n", + "Provide a few examples (using the states you've defined) of what an optimal policy for this problem would look like. Afterwards, investigate the `'sim_improved-learning.txt'` text file to see the results of your improved Q-Learning algorithm. _For each state that has been recorded from the simulation, is the **policy** (the action with the highest value) correct for the given state? Are there any states where the policy is different than what would be expected from an optimal policy?_ Provide an example of a state and all state-action rewards recorded, and explain why it is the correct policy." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** \n", + "\n", + "I have now removed deadline from the states, so answers are based on this: I find it surprising that its not required to know how close it is from failing in order to get good reliability.\n", + "\n", + "I have defined states as waypoint, light, oncoming.\n", + "Examples:\n", + "\n", + " waypoint=left, light=green, oncoming=forward, left!=forward => should wait for oncoming or go right or forward. In the simulation, going forward has the biggest reward, followed by right. Waiting actually has quite a negative reward.\n", + " \n", + " waypoint=right, light=green, oncoming=None, left!=forward => should turn right. Simulation agrees, right has the biggest reward.\n", + " \n", + " waypoint=right, light=red, oncoming=forward, left!=forward => should wait. Simulation agrees.\n", + " \n", + " \n", + "States: The few i checked seem to have the right policies. Removing deadline, it seems all states chose the best action. \n", + "\n", + "A state i found where the optimal policy is different from the learned is:\n", + "\n", + " waypoint=left, light=green, oncoming=right, left!=forward. It prefers forward instead of wait, although the next waypoint is left.\n", + " \n", + " ('left', 'green', 'right', False)\n", + " -- forward : 0.13\n", + " -- right : 0.44\n", + " -- None : -1.44\n", + " -- left : -6.68\n", + " \n", + " \n", + "An example of a state with all actions and rewards that has the correct policy is:\n", + "\n", + " ('forward', 'red', 'left', False)\n", + " -- forward : -9.09\n", + " -- right : 0.73\n", + " -- None : 1.87\n", + " -- left : -9.62\n", + "\n", + "\n", + " here the light is red, car wants to go forward, oncoming goes left, so best action is chosen correctly (do nothing).\n", + " \n", + " \n", + "Papers on learning rates for later:\n", + "\n", + " http://www.jmlr.org/papers/volume5/evendar03a/evendar03a.pdf\n", + " http://karpathy.github.io/2016/05/31/rl/\n", + " https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0\n", + " http://mnemstudio.org/path-finding-q-learning-tutorial.htm\n", + " https://www-s.acm.illinois.edu/sigart/docs/QLearning.pdf\n", + " http://www.umiacs.umd.edu/~hal/courses/ai/out/cs421-day10-qlearning.pdf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "### Optional: Future Rewards - Discount Factor, `'gamma'`\n", + "Curiously, as part of the Q-Learning algorithm, you were asked to **not** use the discount factor, `'gamma'` in the implementation. Including future rewards in the algorithm is used to aid in propogating positive rewards backwards from a future state to the current state. Essentially, if the driving agent is given the option to make several actions to arrive at different states, including future rewards will bias the agent towards states that could provide even more rewards. An example of this would be the driving agent moving towards a goal: With all actions and rewards equal, moving towards the goal would theoretically yield better rewards if there is an additional reward for reaching the goal. However, even though in this project, the driving agent is trying to reach a destination in the allotted time, including future rewards will not benefit the agent. In fact, if the agent were given many trials to learn, it could negatively affect Q-values!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional Question 9\n", + "*There are two characteristics about the project that invalidate the use of future rewards in the Q-Learning algorithm. One characteristic has to do with the *Smartcab* itself, and the other has to do with the environment. Can you figure out what they are and why future rewards won't work for this project?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "\n", + "Smartcab: it cannot see what is happening elsewhere in the city, so no point optimising now to make some headway a few roads down the line. It would need traffic reports to do this for example. Further, the agent cannot see how far it is from the destination, thus cannot optimise the path.\n", + "\n", + "As traffic and lights and other cars movements are random, there is no benefit to learning to go towards the goal directly, as the environment keeps evolving randomly, so the agent cannot control the environments future. So lets say driving at the same speed to keep traffice flowing has no benefit down the line, as no traffic jams are avoided or created. Further, as each trial has a new destination, the learned Q cannot incorporate how to get there fast, as this info is useless in the next trial.\n", + "\n", + "I wonder if there is a way to parallelize this implementation?\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/titanic_survival_exploration/titanic_data.csv b/titanic_survival_exploration/titanic_data.csv new file mode 100644 index 0000000..5cc466e --- /dev/null +++ b/titanic_survival_exploration/titanic_data.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q diff --git a/titanic_survival_exploration/titanic_survival_exploration.html b/titanic_survival_exploration/titanic_survival_exploration.html new file mode 100644 index 0000000..338e4b4 --- /dev/null +++ b/titanic_survival_exploration/titanic_survival_exploration.html @@ -0,0 +1,13379 @@ + + + +titanic_survival_exploration + + + + + + + + + + + + + + + + + + + +
      +
      + +
      +
      +
      +
      +
      +

      Machine Learning Engineer Nanodegree

      Introduction and Foundations

      Project: Titanic Survival Exploration

      In 1912, the ship RMS Titanic struck an iceberg on its maiden voyage and sank, resulting in the deaths of most of its passengers and crew. In this introductory project, we will explore a subset of the RMS Titanic passenger manifest to determine which features best predict whether someone survived or did not survive. To complete this project, you will need to implement several conditional predictions and answer the questions below. Your project submission will be evaluated based on the completion of the code and your responses to the questions.

      +

      Tip: Quoted sections like this will provide helpful instructions on how to navigate and use an iPython notebook.

      +
      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Getting Started

      To begin working with the RMS Titanic passenger data, we'll first need to import the functionality we need, and load our data into a pandas DataFrame.
      +Run the code cell below to load our data and display the first few entries (passengers) for examination using the .head() function.

      +

      Tip: You can run a code cell by clicking on the cell and using the keyboard shortcut Shift + Enter or Shift + Return. Alternatively, a code cell can be executed using the Play button in the hotbar after selecting it. Markdown cells (text cells like this one) can be edited by double-clicking, and saved using these same shortcuts. Markdown allows you to write easy-to-read plain text that can be converted to HTML.

      +
      + +
      +
      +
      +
      +
      +
      In [5]:
      +
      +
      +
      # Import libraries necessary for this project
      +import numpy as np
      +import pandas as pd
      +from IPython.display import display # Allows the use of display() for DataFrames
      +
      +# Import supplementary visualizations code visuals.py
      +import visuals as vs
      +
      +# Pretty display for notebooks
      +%matplotlib inline
      +
      +# Load the dataset
      +in_file = 'titanic_data.csv'
      +full_data = pd.read_csv(in_file)
      +
      +# Print the first few entries of the RMS Titanic data
      +display(full_data.head())
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
      0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
      1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
      2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
      3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
      4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      From a sample of the RMS Titanic data, we can see the various features present for each passenger on the ship:

      +
        +
      • Survived: Outcome of survival (0 = No; 1 = Yes)
      • +
      • Pclass: Socio-economic class (1 = Upper class; 2 = Middle class; 3 = Lower class)
      • +
      • Name: Name of passenger
      • +
      • Sex: Sex of the passenger
      • +
      • Age: Age of the passenger (Some entries contain NaN)
      • +
      • SibSp: Number of siblings and spouses of the passenger aboard
      • +
      • Parch: Number of parents and children of the passenger aboard
      • +
      • Ticket: Ticket number of the passenger
      • +
      • Fare: Fare paid by the passenger
      • +
      • Cabin Cabin number of the passenger (Some entries contain NaN)
      • +
      • Embarked: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)
      • +
      +

      Since we're interested in the outcome of survival for each passenger or crew member, we can remove the Survived feature from this dataset and store it as its own separate variable outcomes. We will use these outcomes as our prediction targets.
      +Run the code cell below to remove Survived as a feature of the dataset and store it in outcomes.

      + +
      +
      +
      +
      +
      +
      In [6]:
      +
      +
      +
      # Store the 'Survived' feature in a new variable and remove it from the dataset
      +outcomes = full_data['Survived']
      +data = full_data.drop('Survived', axis = 1)
      +
      +# Show the new dataset with 'Survived' removed
      +display(data.head())
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      PassengerIdPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
      013Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
      121Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
      233Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
      341Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
      453Allen, Mr. William Henrymale35.0003734508.0500NaNS
      +
      +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      The very same sample of the RMS Titanic data now shows the Survived feature removed from the DataFrame. Note that data (the passenger data) and outcomes (the outcomes of survival) are now paired. That means for any passenger data.loc[i], they have the survival outcome outcomes[i].

      +

      To measure the performance of our predictions, we need a metric to score our predictions against the true outcomes of survival. Since we are interested in how accurate our predictions are, we will calculate the proportion of passengers where our prediction of their survival is correct. Run the code cell below to create our accuracy_score function and test a prediction on the first five passengers.

      +

      Think: Out of the first five passengers, if we predict that all of them survived, what would you expect the accuracy of our predictions to be?

      + +
      +
      +
      +
      +
      +
      In [44]:
      +
      +
      +
      def accuracy_score(truth, pred):
      +    """ Returns accuracy score for input truth and predictions. """
      +    
      +    # Ensure that the number of predictions matches number of outcomes
      +    if len(truth) == len(pred): 
      +        
      +        # Calculate and return the accuracy as a percent
      +        return "Predictions have an accuracy of {:.2f}%.".format((truth == pred).mean()*100)
      +    
      +    else:
      +        return "Number of predictions does not match number of outcomes!"
      +    
      +# Test the 'accuracy_score' function
      +predictions = pd.Series(np.ones(5, dtype = int))
      +print accuracy_score(outcomes[:5], predictions)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Predictions have an accuracy of 60.00%.
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Tip: If you save an iPython Notebook, the output from running code blocks will also be saved. However, the state of your workspace will be reset once a new session is started. Make sure that you run all of the code blocks from your previous session to reestablish variables and functions before picking up where you last left off.

      +
      +

      Making Predictions

      If we were asked to make a prediction about any passenger aboard the RMS Titanic whom we knew nothing about, then the best prediction we could make would be that they did not survive. This is because we can assume that a majority of the passengers (more than 50%) did not survive the ship sinking.
      +The predictions_0 function below will always predict that a passenger did not survive.

      + +
      +
      +
      +
      +
      +
      In [45]:
      +
      +
      +
      def predictions_0(data):
      +    """ Model with no features. Always predicts a passenger did not survive. """
      +
      +    predictions = []
      +    for _, passenger in data.iterrows():
      +        
      +        # Predict the survival of 'passenger'
      +        predictions.append(0)
      +    
      +    # Return our predictions
      +    return pd.Series(predictions)
      +
      +# Make the predictions
      +predictions = predictions_0(data)
      +
      + +
      +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 1

      Using the RMS Titanic data, how accurate would a prediction be that none of the passengers survived?
      +Hint: Run the code cell below to see the accuracy of this prediction.

      + +
      +
      +
      +
      +
      +
      In [46]:
      +
      +
      +
      print accuracy_score(outcomes, predictions)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Predictions have an accuracy of 61.62%.
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Answer: 61.62%

      + +
      +
      +
      +
      +
      +
      +
      +
      +
      +

      Let's take a look at whether the feature Sex has any indication of survival rates among passengers using the survival_stats function. This function is defined in the titanic_visualizations.py Python script included with this project. The first two parameters passed to the function are the RMS Titanic data and passenger survival outcomes, respectively. The third parameter indicates which feature we want to plot survival statistics across.
      +Run the code cell below to plot the survival outcomes of passengers based on their sex.

      + +
      +
      +
      +
      +
      +
      In [9]:
      +
      +
      +
      vs.survival_stats(data, outcomes, 'Sex')
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Examining the survival statistics, a large majority of males did not survive the ship sinking. However, a majority of females did survive the ship sinking. Let's build on our previous prediction: If a passenger was female, then we will predict that they survived. Otherwise, we will predict the passenger did not survive.
      +Fill in the missing code below so that the function will make this prediction.
      +Hint: You can access the values of each feature for a passenger like a dictionary. For example, passenger['Sex'] is the sex of the passenger.

      + +
      +
      +
      +
      +
      +
      In [47]:
      +
      +
      +
      def predictions_1(data):
      +    """ Model with one feature: 
      +            - Predict a passenger survived if they are female. """
      +    
      +    predictions = []
      +    for _, passenger in data.iterrows():
      +        
      +        # Remove the 'pass' statement below 
      +        # and write your prediction conditions here
      +        if passenger['Sex'] == 'female':
      +            predictions.append(1)
      +        else:
      +            predictions.append(0)
      +    
      +    # Return our predictions
      +    return pd.Series(predictions)
      +
      +# Make the predictions
      +predictions = predictions_1(data)
      +
      + +
      +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 2

      How accurate would a prediction be that all female passengers survived and the remaining passengers did not survive?
      +Hint: Run the code cell below to see the accuracy of this prediction.

      + +
      +
      +
      +
      +
      +
      In [48]:
      +
      +
      +
      print accuracy_score(outcomes, predictions)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Predictions have an accuracy of 78.68%.
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Answer: 78.68%

      + +
      +
      +
      +
      +
      +
      +
      +
      +
      +

      Using just the Sex feature for each passenger, we are able to increase the accuracy of our predictions by a significant margin. Now, let's consider using an additional feature to see if we can further improve our predictions. For example, consider all of the male passengers aboard the RMS Titanic: Can we find a subset of those passengers that had a higher rate of survival? Let's start by looking at the Age of each male, by again using the survival_stats function. This time, we'll use a fourth parameter to filter out the data so that only passengers with the Sex 'male' will be included.
      +Run the code cell below to plot the survival outcomes of male passengers based on their age.

      + +
      +
      +
      +
      +
      +
      In [56]:
      +
      +
      +
      vs.survival_stats(data, outcomes, 'Parch', ["Sex == 'male'"])
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Examining the survival statistics, the majority of males younger than 10 survived the ship sinking, whereas most males age 10 or older did not survive the ship sinking. Let's continue to build on our previous prediction: If a passenger was female, then we will predict they survive. If a passenger was male and younger than 10, then we will also predict they survive. Otherwise, we will predict they do not survive.
      +Fill in the missing code below so that the function will make this prediction.
      +Hint: You can start your implementation of this function using the prediction code you wrote earlier from predictions_1.

      + +
      +
      +
      +
      +
      +
      In [49]:
      +
      +
      +
      def predictions_2(data):
      +    """ Model with two features: 
      +            - Predict a passenger survived if they are female.
      +            - Predict a passenger survived if they are male and younger than 10. """
      +    
      +    predictions = []
      +    for _, passenger in data.iterrows():
      +        
      +        # Remove the 'pass' statement below 
      +        # and write your prediction conditions here
      +        if passenger['Sex'] == 'female':
      +            predictions.append(1)
      +        else:
      +            if passenger['Age'] < 10.0:
      +                predictions.append(1)
      +            else:
      +                predictions.append(0)
      +    
      +    # Return our predictions
      +    return pd.Series(predictions)
      +
      +# Make the predictions
      +predictions = predictions_2(data)
      +
      + +
      +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 3

      How accurate would a prediction be that all female passengers and all male passengers younger than 10 survived?
      +Hint: Run the code cell below to see the accuracy of this prediction.

      + +
      +
      +
      +
      +
      +
      In [51]:
      +
      +
      +
      print accuracy_score(outcomes, predictions)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Predictions have an accuracy of 79.35%.
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Answer: 79.35%

      + +
      +
      +
      +
      +
      +
      +
      +
      +
      +

      Adding the feature Age as a condition in conjunction with Sex improves the accuracy by a small margin more than with simply using the feature Sex alone. Now it's your turn: Find a series of features and conditions to split the data on to obtain an outcome prediction accuracy of at least 80%. This may require multiple features and multiple levels of conditional statements to succeed. You can use the same feature multiple times with different conditions.
      +Pclass, Sex, Age, SibSp, and Parch are some suggested features to try.

      +

      Use the survival_stats function below to to examine various survival statistics.
      +Hint: To use mulitple filter conditions, put each condition in the list passed as the last argument. Example: ["Sex == 'male'", "Age < 18"]

      + +
      +
      +
      +
      +
      +
      In [40]:
      +
      +
      +
      def checkSurvived(data, filters):
      +    all_data = data
      +    for condition in filters:
      +        all_data = vs.filter_data(all_data, condition)
      +    
      +    print("nb", len(all_data), "percent survived", len(all_data[all_data["Survived"] ==1]) / float(len(all_data[all_data["Survived"]])), " in cat " + ' | '.join(filters))
      +    return all_data
      +
      +vs.survival_stats(data, outcomes, 'Age', ["Sex == 'female'", "Age > 0", "Age < 35"])
      +#vs.survival_stats(data, outcomes, 'Age', ["Sex == 'male'", "Age >= 20"])
      +
      +print("full:",len(full_data))
      +checkSurvived(full_data, ["Sex == 'male'", "Age >= 10"])
      +checkSurvived(full_data, ["Sex == 'male'", "Age > 20"])
      +checkSurvived(full_data, ["Sex == 'male'", "Age >= 10", "Age < 30"])
      +t = checkSurvived(full_data, ["Sex == 'male'", "Age >= 10", "Age < 30", "Pclass == 3"])
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + + + +
      + +
      + +
      + +
      +
      + +
      +
      ('full:', 891)
      +('nb', 421, 'percent survived', 0.17577197149643706, " in cat Sex == 'male' | Age >= 10")
      +('nb', 351, 'percent survived', 0.18233618233618235, " in cat Sex == 'male' | Age > 20")
      +('nb', 205, 'percent survived', 0.15609756097560976, " in cat Sex == 'male' | Age >= 10 | Age < 30")
      +('nb', 144, 'percent survived', 0.1388888888888889, " in cat Sex == 'male' | Age >= 10 | Age < 30 | Pclass == 3")
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      After exploring the survival statistics visualization, fill in the missing code below so that the function will make your prediction.
      +Make sure to keep track of the various features and conditions you tried before arriving at your final prediction model.
      +Hint: You can start your implementation of this function using the prediction code you wrote earlier from predictions_2.

      + +
      +
      +
      +
      +
      +
      In [52]:
      +
      +
      +
      def predictions_3(data):
      +    """ Model with multiple features. Makes a prediction with an accuracy of at least 80%. """
      +    
      +    predictions = []
      +    test = []
      +    i = 0
      +    for _, passenger in data.iterrows():
      +        
      +        # Remove the 'pass' statement below 
      +        # and write your prediction conditions here
      +        if passenger['Sex'] == 'female':
      +            if passenger["Pclass"] == 3 and passenger["SibSp"] >= 2:
      +                predictions.append(0)
      +            else:
      +                predictions.append(1)
      +        else:
      +            if passenger['Age'] < 10.0:
      +                predictions.append(1)
      +            else:
      +                predictions.append(0)
      +               
      +               
      +        i +=1           
      +    
      +    # Return our predictions
      +    return pd.Series(predictions), test
      +
      +# Make the predictions
      +predictions,test = predictions_3(full_data)
      +print accuracy_score(outcomes, predictions)
      +import pandas as pd
      +#testdata = checkSurvived(full_data, ["Sex == 'male'", "Age >= 10"])
      +testdata = checkSurvived(full_data, ["Sex == 'female'"])
      +
      +surv = checkSurvived(testdata, ["Survived == 0"])
      +
      +gb = ["Pclass", "SibSp", "Parch"]
      +dfall = pd.DataFrame(testdata).groupby(gb).count()
      +dfSurv = pd.DataFrame(surv).groupby(gb).count()
      +
      +#dfSurv / dfall
      +#dfSurv
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Predictions have an accuracy of 80.58%.
      +('nb', 314, 'percent survived', 0.7420382165605095, " in cat Sex == 'female'")
      +('nb', 81, 'percent survived', 0.0, ' in cat Survived == 0')
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Question 4

      Describe the steps you took to implement the final prediction model so that it got an accuracy of at least 80%. What features did you look at? Were certain features more informative than others? Which conditions did you use to split the survival outcomes in the data? How accurate are your predictions?
      +Hint: Run the code cell below to see the accuracy of your predictions.

      + +
      +
      +
      +
      +
      +
      In [53]:
      +
      +
      +
      print accuracy_score(outcomes, predictions)
      +
      + +
      +
      +
      + +
      +
      + + +
      +
      + +
      +
      Predictions have an accuracy of 80.58%.
      +
      +
      +
      + +
      +
      + +
      +
      +
      +
      +
      +
      +

      Answer: I got an accuracy of 80.58%. Initially i used the filter function to check various features and compute the percent survived. However, to get a better idea of cells of survival / death, I then moved to using group by count to compare dataframes for dead against all female. I then tried to find cells that gave more than 50% dead females. One such area of cells gave me the result - see code. Turns out class 3 with more than 1 increases your probability of death as a woman.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Conclusion

      After several iterations of exploring and conditioning on the data, you have built a useful algorithm for predicting the survival of each passenger aboard the RMS Titanic. The technique applied in this project is a manual implementation of a simple machine learning model, the decision tree. A decision tree splits a set of data into smaller and smaller groups (called nodes), by one feature at a time. Each time a subset of the data is split, our predictions become more accurate if each of the resulting subgroups are more homogeneous (contain similar labels) than before. The advantage of having a computer do things for us is that it will be more exhaustive and more precise than our manual exploration above. This link provides another introduction into machine learning using a decision tree.

      +

      A decision tree is just one of many models that come from supervised learning. In supervised learning, we attempt to use features of the data to predict or model things with objective outcome labels. That is to say, each of our data points has a known outcome value, such as a categorical, discrete label like 'Survived', or a numerical, continuous value like predicting the price of a house.

      +

      Question 5

      Think of a real-world scenario where supervised learning could be applied. What would be the outcome variable that you are trying to predict? Name two features about the data used in this scenario that might be helpful for making the predictions.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Answer: I could use supervised learning on a set of bonds. The outcome would be outperformance of a bond against the benchmark index by 3 % over 1 year. Two features that might be helpful to make this prediction is the credit rating and expected remaining life of a bond.

      + +
      +
      +
      +
      +
      +
      +
      +
      +

      Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
      +File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

      +
      + +
      +
      +
      +
      +
      + + + + + + diff --git a/titanic_survival_exploration/titanic_survival_exploration.ipynb b/titanic_survival_exploration/titanic_survival_exploration.ipynb new file mode 100644 index 0000000..49b3547 --- /dev/null +++ b/titanic_survival_exploration/titanic_survival_exploration.ipynb @@ -0,0 +1,865 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Introduction and Foundations\n", + "## Project: Titanic Survival Exploration\n", + "\n", + "In 1912, the ship RMS Titanic struck an iceberg on its maiden voyage and sank, resulting in the deaths of most of its passengers and crew. In this introductory project, we will explore a subset of the RMS Titanic passenger manifest to determine which features best predict whether someone survived or did not survive. To complete this project, you will need to implement several conditional predictions and answer the questions below. Your project submission will be evaluated based on the completion of the code and your responses to the questions.\n", + "> **Tip:** Quoted sections like this will provide helpful instructions on how to navigate and use an iPython notebook. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Getting Started\n", + "To begin working with the RMS Titanic passenger data, we'll first need to `import` the functionality we need, and load our data into a `pandas` DataFrame. \n", + "Run the code cell below to load our data and display the first few entries (passengers) for examination using the `.head()` function.\n", + "> **Tip:** You can run a code cell by clicking on the cell and using the keyboard shortcut **Shift + Enter** or **Shift + Return**. Alternatively, a code cell can be executed using the **Play** button in the hotbar after selecting it. Markdown cells (text cells like this one) can be edited by double-clicking, and saved using these same shortcuts. [Markdown](http://daringfireball.net/projects/markdown/syntax) allows you to write easy-to-read plain text that can be converted to HTML." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
      0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
      1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
      2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
      3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
      4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
      \n", + "
      " + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from IPython.display import display # Allows the use of display() for DataFrames\n", + "\n", + "# Import supplementary visualizations code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the dataset\n", + "in_file = 'titanic_data.csv'\n", + "full_data = pd.read_csv(in_file)\n", + "\n", + "# Print the first few entries of the RMS Titanic data\n", + "display(full_data.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From a sample of the RMS Titanic data, we can see the various features present for each passenger on the ship:\n", + "- **Survived**: Outcome of survival (0 = No; 1 = Yes)\n", + "- **Pclass**: Socio-economic class (1 = Upper class; 2 = Middle class; 3 = Lower class)\n", + "- **Name**: Name of passenger\n", + "- **Sex**: Sex of the passenger\n", + "- **Age**: Age of the passenger (Some entries contain `NaN`)\n", + "- **SibSp**: Number of siblings and spouses of the passenger aboard\n", + "- **Parch**: Number of parents and children of the passenger aboard\n", + "- **Ticket**: Ticket number of the passenger\n", + "- **Fare**: Fare paid by the passenger\n", + "- **Cabin** Cabin number of the passenger (Some entries contain `NaN`)\n", + "- **Embarked**: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)\n", + "\n", + "Since we're interested in the outcome of survival for each passenger or crew member, we can remove the **Survived** feature from this dataset and store it as its own separate variable `outcomes`. We will use these outcomes as our prediction targets. \n", + "Run the code cell below to remove **Survived** as a feature of the dataset and store it in `outcomes`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      PassengerIdPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
      013Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
      121Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
      233Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
      341Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
      453Allen, Mr. William Henrymale35.0003734508.0500NaNS
      \n", + "
      " + ], + "text/plain": [ + " PassengerId Pclass Name \\\n", + "0 1 3 Braund, Mr. Owen Harris \n", + "1 2 1 Cumings, Mrs. John Bradley (Florence Briggs Th... \n", + "2 3 3 Heikkinen, Miss. Laina \n", + "3 4 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n", + "4 5 3 Allen, Mr. William Henry \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked \n", + "0 male 22.0 1 0 A/5 21171 7.2500 NaN S \n", + "1 female 38.0 1 0 PC 17599 71.2833 C85 C \n", + "2 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 female 35.0 1 0 113803 53.1000 C123 S \n", + "4 male 35.0 0 0 373450 8.0500 NaN S " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Store the 'Survived' feature in a new variable and remove it from the dataset\n", + "outcomes = full_data['Survived']\n", + "data = full_data.drop('Survived', axis = 1)\n", + "\n", + "# Show the new dataset with 'Survived' removed\n", + "display(data.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The very same sample of the RMS Titanic data now shows the **Survived** feature removed from the DataFrame. Note that `data` (the passenger data) and `outcomes` (the outcomes of survival) are now *paired*. That means for any passenger `data.loc[i]`, they have the survival outcome `outcomes[i]`.\n", + "\n", + "To measure the performance of our predictions, we need a metric to score our predictions against the true outcomes of survival. Since we are interested in how *accurate* our predictions are, we will calculate the proportion of passengers where our prediction of their survival is correct. Run the code cell below to create our `accuracy_score` function and test a prediction on the first five passengers. \n", + "\n", + "**Think:** *Out of the first five passengers, if we predict that all of them survived, what would you expect the accuracy of our predictions to be?*" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 60.00%.\n" + ] + } + ], + "source": [ + "def accuracy_score(truth, pred):\n", + " \"\"\" Returns accuracy score for input truth and predictions. \"\"\"\n", + " \n", + " # Ensure that the number of predictions matches number of outcomes\n", + " if len(truth) == len(pred): \n", + " \n", + " # Calculate and return the accuracy as a percent\n", + " return \"Predictions have an accuracy of {:.2f}%.\".format((truth == pred).mean()*100)\n", + " \n", + " else:\n", + " return \"Number of predictions does not match number of outcomes!\"\n", + " \n", + "# Test the 'accuracy_score' function\n", + "predictions = pd.Series(np.ones(5, dtype = int))\n", + "print accuracy_score(outcomes[:5], predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Tip:** If you save an iPython Notebook, the output from running code blocks will also be saved. However, the state of your workspace will be reset once a new session is started. Make sure that you run all of the code blocks from your previous session to reestablish variables and functions before picking up where you last left off.\n", + "\n", + "# Making Predictions\n", + "\n", + "If we were asked to make a prediction about any passenger aboard the RMS Titanic whom we knew nothing about, then the best prediction we could make would be that they did not survive. This is because we can assume that a majority of the passengers (more than 50%) did not survive the ship sinking. \n", + "The `predictions_0` function below will always predict that a passenger did not survive." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def predictions_0(data):\n", + " \"\"\" Model with no features. Always predicts a passenger did not survive. \"\"\"\n", + "\n", + " predictions = []\n", + " for _, passenger in data.iterrows():\n", + " \n", + " # Predict the survival of 'passenger'\n", + " predictions.append(0)\n", + " \n", + " # Return our predictions\n", + " return pd.Series(predictions)\n", + "\n", + "# Make the predictions\n", + "predictions = predictions_0(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1\n", + "*Using the RMS Titanic data, how accurate would a prediction be that none of the passengers survived?* \n", + "**Hint:** Run the code cell below to see the accuracy of this prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 61.62%.\n" + ] + } + ], + "source": [ + "print accuracy_score(outcomes, predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** *61.62%*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "***\n", + "Let's take a look at whether the feature **Sex** has any indication of survival rates among passengers using the `survival_stats` function. This function is defined in the `titanic_visualizations.py` Python script included with this project. The first two parameters passed to the function are the RMS Titanic data and passenger survival outcomes, respectively. The third parameter indicates which feature we want to plot survival statistics across. \n", + "Run the code cell below to plot the survival outcomes of passengers based on their sex." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAGDCAYAAADHzQJ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXHWd7/H3104gCJE1cAMBEhlUCCQBml0wFxxAiUEd\nIEFkwKsCLpC5OirgAogoI+IdNwbh6pAraAhxxMgyoIyACIIJJmgCTNgkgUBCZAkRMAnf+8c5HSqd\nXqqX6u6cvF/PU09XnTrLt7b+1O93fnVOZCaSJKla3tDfBUiSpN5nwEuSVEEGvCRJFWTAS5JUQQa8\nJEkVZMBLklRBBrzUhyLixIi4pRfWc0pE3NkbNXVz+5dFxBe7sdxOEfFSRDQ1oq7e2H5EZET8XV/W\nJTWCAb8Bi4jHI+Ll8h/eMxFxZURs1t919bWIGBERP42IZyPihYj4U0Sc0ohtZebVmXlEI9ZdKyI+\nHBEPRsTy8rW9MSKGlvddGRFf6cK61vkykZmnZ+YFdSz7eES8s2a5JzJzs8xc3ZXH08H6vx8R/1Zz\ne3BErGhn2gGttx8Rt0XER3qw/fMi4rya2+dExGPlZ2pRRFzT3XXXrHN8RNzWzn0jyy8kL9Vc5vbC\nNs+LiKt6uh71LwNe78nMzYC9gWbgC/1cT0NFxKA2Jv8IWAjsDGwNnAQ804vr71MR8Q7gq8AJmTkU\n2A3ocdAMUHcAh9bcbgaeAA5pNQ1gdiMLiYiTKd477yw/U83ArY3cZo0tyi8um2Xm2D7aZrsGwudA\nBrxKmfkkcBOwB0BEfCgiHihbgI9GxGkt80bENhFxfUQ8HxF/iYjfRMQbyvs+FxFPlss9FBGHl9Pf\nEBFnRcQjEbEsIqZHxFblfS2tkJMj4omyJf35mu1tEhFTI+K5sqbPRsSimvu3L1vgS8vW05k1950X\nETMi4qqIeBE4pY2Hvy9wZWauyMxVmfmHzLypXH587bbKaWtapW2s/5yyV2Srmvn3Kh/T4NrWcET8\nW0R8o9W6fx4RnyqvtzxfyyNifkS8r86Xc1/g7sz8A0Bm/iUzp2bm8og4FTgR+GzZ2vtFR9uKiN2A\ny4ADy/mfL6ev6QVo7/0QET8CdgJ+US772ZrXelC57FYR8e8R8VT5+l7X0TrbeKx3ALtFxDbl7UOA\nacCmrabdnZkra7cfEReW9323rO+7Net9Z0QsKLf/vYiIOp/3mzPzkfJ5fzozL2+5MyI2j4gfRMTi\n8jPylSh3FZTvhZ/WzPsvEXFrndttV0T8r/Iz81xE3BwRO9fc962IWBgRL0bE7Ig4pJx+FHAOMClq\negSiVW9M1LTya57XD0fEE8B/ldMPiIi7yudxbkSM78njURdlppcN9AI8TtHaANgRmAdcUN4+GtgF\nCOAdwF+Bvcv7vkbxT39weTmknO+tFC3h7cv5RgK7lNenAL8DRgAbA98HflIzXwJXAJsAY4FXgd3K\n+y8Cbge2LJe/H1hU3vcGipbZl4CNgDcDjwJHlvefB6wE3lvOu0kbz8OvgN8Ck4GdWt03vmVb7Txv\n66yf4p/bR2vmvxi4rLx+CnBnef3Q8vmK8vaWwMs1z99xwPbleicBK4DhrdfTxuM5pFzP+cDBwMat\n7r8S+EqraV3aVu062ns/tH6uWr3Wg8rbN1D0LmxZLvuOztbZxuN9DHhfef164DDg6lbTvtTO9m8D\nPtJqfVkuswXFF5SlwFF1fJ4+CPwF+AxF672p1f0/o3jfbwpsC9wLnFbe90bgv8vn+hDgWWBEHdtc\n6/G0uu8Y4GGKHpxBFL1zd7Wqd+vyvk8DTwNDat7XV7X3vm89T00d/698fJsAOwDLgHdTvK/+vrw9\nrL//920oF1vwuq5sld1JEaJfBcjMGzLzkSzcDtzC692eK4HhwM6ZuTIzf5PFp3w1RXjvHhGDM/Px\nLFszwOnA5zNzUWa+SvHP4dhYuyvv/Mx8OTPnAnMpgh7geOCrmflcZi4Cvl2zzL4U/zC+nJl/y8xH\nKb4oTK6Z5+7MvC4zX8vMl9t4Do4DfgN8EXgsIuZExL5deA5br//HwAkAZQtscjmttd9Q/FNseV6P\nLdf1FEBmXpuZT5XrvQZYAOzXWTGZ+Rvg/RS7XW4AlkXEN6ODgWXd3VapvfdDhyJiOPAu4PTytV1Z\nvte6us7bgUPLFv5+FF8kf1Mz7eBynq64KDOfz8wngF8D4zpbIDOvAs4Ajiy3tyQiPlc+1u0ogu6f\nsugpWgL8H8r3aWb+laJ7/5vAVcAZ5Xu9Xs+WreTnI+Kfy2mnA1/LzAcycxXFZ3tcSys+M6/KzGVZ\n9FpdQvHZfWsXttmW88rH9zLFF4gbM/PG8n31S2BW+TyoDxjwem9mbpGZO2fmx1sCMCLeFRG/K7tH\nn6f4ULZ0eV5M0TK4JYru+7MAMvNh4J8owntJREyLiO3LZXYGftbyTwh4gOILwXY1tTxdc/2vQMuA\nv+0pWrotaq/vDGxf88/teYruxe3amX8dZbiclZmjy+XmUHzxqbd7tPX6f0rRpT2copX+GkXgtN5u\nUnQnn1BO+gBFyxOAiPjH8stGy+Pag9dfgw5l5k2Z+R5gK4qW3ClAu4PJerIt2nk/1GFH4C+Z+VwP\n19myH35P4NEyLO+smbYJcE+dNbVo773YoSwGUb6TovV/OnBBRBxJ8T4dDCyueY6/T9GSb1n2Hore\npwCmd7HebcrP8RaZ2bLbZ2fgWzXb+0u57h0AIuKfy+77F8r7N6f+17w9rT+bx7X6bL6d4oub+oAB\nr3VExMYUIfUNYLvM3AK4keKfA5m5PDM/nZlvBiYCn4pyX3tm/jgz307x4U7gX8rVLgTeVfNPaIvM\nHJLFvv/OLKbomm+xY831hcBjrdY7NDNrWwl1nzIxM58tH/f2FOG4gqL7FICyFTys9WKt1vEcRY/H\nJIrQntZB6/MnFD0ZOwP7UzzvlLevAD4JbF2+Bn+ifA268Hhey8xbKXYb7NFWvXVsq8Pnr6P3QyfL\nLgS2iogturjO1u6g6O05mte/SM2jeJ8cDfw+M19pr/yOHlt3lb0O11LsTtqD4rG+ytpB/KbySyUA\nEfEJilb0U8Bne6GMhRS7AGo/G5tk5l3l/vbPUvSObVm+5i/Q8Wu+1mcB+B9tzFO73ELgR622v2lm\nXtTjR6a6GPBqy0YU/2iWAqsi4l3Amp92RcSEiPi7soX7AkVL/LWIeGtEHFZ+QXiFYj/wa+VilwEX\ntnQPRsSwiDimznqmA2dHxJYRsQNFELW4F1gexeC+TSKiKSL26EoXezmgaY8oBl4NBT4GPJyZyyj2\niw6JiKMjYjDFfsyN61jtj4F/pOh2b6t7HoAsBsI9C/xfigFaz5d3bUrxz3JpWeOHeD2gO3s8x0TE\n5PL5iojYj2Icxe/KWZ6hGKvQorNtPQOMiIiN2tlem++HdrZV+9gXUwzsvLSsdXBEHFrHOluv5+Fy\nO1MoA778QnVPOe2OtpbrrL6uimIA5dERMTSKQYbvAkYD95SP9Rbgkoh4U3n/LlH84oGIeAvwFYpu\n7ZMoBkF2ulugE5dRfG5Gl9vYPCKOK+8bCqyieM0HRcSXgDfVLPsMMDLWHtg4B5hcvk7NFO/tjlwF\nvCcijiw/l0OiGLQ6opPl1EsMeK0jM5cDZ1IE63MUrdCZNbPsSjEw7SXgbuDSzPw1RfBdRBFYT1N0\nP55dLvOtch23RMRyirDZv86SvgwsohhM9StgBkVriCx+zzyBYh/pY7welpt34SG/kWIA1PMUXaQ7\nU7QaycwXgI+X63ySohVTz77RmRTP09NZjCnoyI+Bd1LzRSAz5wOXUDy/z1B0Nf+2zsfzHPBRiv3o\nL1L8o704M1u6/39AMU7i+Yi4ro5t/RdFi/jpiHi2je21936AYrDcF1rtG651EsX+9geBJRS7eDpb\nZ1vuoOhZqa37NxTvwY4C/lsUPSjPRcS3O5ivHi9S7B56guK99HXgY5nZcgyBf6T48jyf4jWaAQyP\nYhzKVcC/ZObczFxQrudH5ZflbsnMn1H0oE2L4hcef6IY8wBwM/CfFF9g/0zxhby2e/3a8u+yiLiv\nvP5FioG3z1EM4Gz3i2u5/YUUu4fOofgisZBiAKK500daRrpK642I+BgwOTPf0d+1SNJA5TcpDXgR\nMTwiDi67Nd9K8ZOen/V3XZI0kHm0Ia0PNqIYcTyKoutzGnBpv1YkSQOcXfSSJFWQXfSSJFWQAS9J\nUgWt1/vgt9lmmxw5cmR/lyFJUp+ZPXv2s5nZ+oBb61ivA37kyJHMmjWrv8uQJKnPRMSf65nPLnpJ\nkirIgJckqYIMeEmSKmi93gcvSerYypUrWbRoEa+80t4J9TRQDRkyhBEjRjB48OBuLW/AS1KFLVq0\niKFDhzJy5EiKk/NpfZCZLFu2jEWLFjFq1KhurcMuekmqsFdeeYWtt97acF/PRARbb711j3peDHhJ\nqjjDff3U09fNgJckNVRTUxPjxo1j9OjRjB07lksuuYTXXnsNgFmzZnHmmWe2udzIkSN59tlne7z9\n6667jvnz5/d4PV3x7ne/m+eff75Pt9ma++AlaUPS2635Ok5YtskmmzBnzhwAlixZwgc+8AFefPFF\nzj//fJqbm2lubu7dmlq57rrrmDBhArvvvnuvrnf16tU0NTW1ed+NN97Yq9vqDlvwkqQ+s+2223L5\n5Zfz3e9+l8zktttuY8KECQAsW7aMI444gtGjR/ORj3yE9s52utlmm/H5z3+esWPHcsABB/DMM88A\n8Pjjj3PYYYcxZswYDj/8cJ544gnuuusuZs6cyWc+8xnGjRvHI488sta6rr32WvbYYw/Gjh3LoYce\nCsCVV17JJz/5yTXzTJgwgdtuu23Ntj/96U8zduxYvva1r3Hcccetma/2sbT0Ppx11ll873vfWzPP\neeedxze+8Q0ALr74Yvbdd1/GjBnDueee25OntU0GvCSpT735zW9m9erVLFmyZK3p559/Pm9/+9uZ\nN28e73vf+3jiiSfaXH7FihUccMABzJ07l0MPPZQrrrgCgDPOOIOTTz6Z+++/nxNPPJEzzzyTgw46\niIkTJ3LxxRczZ84cdtlll7XW9eUvf5mbb76ZuXPnMnPmzE5rX7FiBfvvvz9z587lrLPO4p577mHF\nihUAXHPNNUyePHmt+SdNmsT06dPX3J4+fTqTJk3illtuYcGCBdx7773MmTOH2bNnc8cdd3T+5HWB\nAS9JGhDuuOMOPvjBDwJw9NFHs+WWW7Y530YbbbSmpbzPPvvw+OOPA3D33XfzgQ98AICTTjqJO++8\ns9NtHnzwwZxyyilcccUVrF69utP5m5qa+Id/+AcABg0axFFHHcUvfvELVq1axQ033MAxxxyz1vx7\n7bUXS5Ys4amnnmLu3LlsueWW7Ljjjtxyyy3ccsst7LXXXuy99948+OCDLFiwoNPtd4X74CVJferR\nRx+lqamJbbfdlgceeKDLyw8ePHjNCPOmpiZWrVrV7Vouu+wy7rnnHm644Qb22WcfZs+ezaBBg9YM\nAgTW+qnakCFD1trvPnnyZL773e+y1VZb0dzczNChQ9fZxnHHHceMGTN4+umnmTRpElD8zv3ss8/m\ntNNO63btnbEF31qEl764SNogLV26lNNPP51PfvKT6/wM7NBDD+XHP/4xADfddBPPPfdcl9Z90EEH\nMW3aNACuvvpqDjnkEACGDh3K8uXL21zmkUceYf/99+fLX/4yw4YNY+HChYwcOZI5c+bw2muvsXDh\nQu699952t/mOd7yD++67jyuuuGKd7vkWkyZNYtq0acyYMWPNPvsjjzySH/7wh7z00ksAPPnkk+vs\nsugpW/CSpIZ6+eWXGTduHCtXrmTQoEGcdNJJfOpTn1pnvnPPPZcTTjiB0aNHc9BBB7HTTjt1aTvf\n+c53+NCHPsTFF1/MsGHD+Pd//3egaGV/9KMf5dvf/jYzZsxYaz/8Zz7zGRYsWEBmcvjhhzN27FgA\nRo0axe67785uu+3G3nvv3e42m5qamDBhAldeeSVTp05tc57Ro0ezfPlydthhB4YPHw7AEUccwQMP\nPMCBBx4IFIP3rrrqKrbddtsuPeaORHujFNcHzc3N2evng7d12TfW4/edtD554IEH2G233fq7DHVT\nW69fRMzOzE5/W2gXvSRJFWTAS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEGvCSpoS688EJGjx7N\nmDFjGDduHPfcc0+P1zlz5kwuuuiiXqiu+A16FXmgG0nagMT5vXusjzy342Na3H333Vx//fXcd999\nbLzxxjz77LP87W9/q2vdq1atYtCgtmNq4sSJTJw4scv1bkhswUuSGmbx4sVss802bLzxxgBss802\nbL/99mtOpwowa9Ysxo8fDxSnUz3ppJM4+OCDOemkkzjggAOYN2/emvWNHz+eWbNmrTml6wsvvMDO\nO++85tjxK1asYMcdd2TlypU88sgjHHXUUeyzzz4ccsghPPjggwA89thjHHjggey555584Qtf6MNn\no28Z8JKkhjniiCNYuHAhb3nLW/j4xz/O7bff3uky8+fP51e/+hU/+clP1jrd6uLFi1m8eDHNza8f\nxG3zzTdn3Lhxa9Z7/fXXc+SRRzJ48GBOPfVUvvOd7zB79my+8Y1v8PGPfxyAKVOm8LGPfYw//vGP\naw4dW0UGvCSpYTbbbDNmz57N5ZdfzrBhw5g0aRJXXnllh8tMnDiRTTbZBIDjjz+eGTNmAMW51I89\n9th15p80aRLXXHMNANOmTWPSpEm89NJL3HXXXRx33HGMGzeO0047jcWLFwPw29/+lhNOOAEoTitb\nVe6DlyQ1VFNTE+PHj2f8+PHsueeeTJ06da1TstaejhVg0003XXN9hx12YOutt+b+++/nmmuu4bLL\nLltn/RMnTuScc87hL3/5C7Nnz+awww5jxYoVbLHFFsyZM6fNmlqfya6KbMFLkhrmoYceYsGCBWtu\nz5kzh5133pmRI0cye/ZsAH760592uI5Jkybx9a9/nRdeeIExY8asc/9mm23Gvvvuy5QpU5gwYQJN\nTU286U1vYtSoUVx77bVAcf71uXPnAnDwwQevdVrZqjLgJUkN89JLL3HyySez++67M2bMGObPn895\n553Hueeey5QpU2hubqapqanDdRx77LFMmzaN448/vt15Jk2axFVXXcWkSZPWTLv66qv5wQ9+wNix\nYxk9ejQ///nPAfjWt77F9773Pfbcc0+efPLJ3nmgA5Cni21tA+i2GRDW4/edtD7xdLHrN08XK0mS\n1mLAS5JUQQa8JEkVZMBLUsWtz2OtNmQ9fd0MeEmqsCFDhrBs2TJDfj2TmSxbtowhQ4Z0ex0e6EaS\nKmzEiBEsWrSIpUuX9ncp6qIhQ4YwYsSIbi9vwEtShQ0ePJhRo0b1dxnqB3bRS5JUQQa8JEkVZMBL\nklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JU\nQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEND/iIaIqIP0TE9eXtrSLilxGxoPy7Zc28Z0fEwxHxUEQc\n2ejaJEmqqr5owU8BHqi5fRZwa2buCtxa3iYidgcmA6OBo4BLI6KpD+qTJKlyGhrwETECOBr4vzWT\njwGmltenAu+tmT4tM1/NzMeAh4H9GlmfJElV1egW/L8CnwVeq5m2XWYuLq8/DWxXXt8BWFgz36Jy\n2loi4tSImBURs5YuXdqAkiVJWv81LOAjYgKwJDNntzdPZiaQXVlvZl6emc2Z2Txs2LCelilJUiUN\nauC6DwYmRsS7gSHAmyLiKuCZiBiemYsjYjiwpJz/SWDHmuVHlNMkSVIXNawFn5lnZ+aIzBxJMXju\nvzLzg8BM4ORytpOBn5fXZwKTI2LjiBgF7Arc26j6JEmqska24NtzETA9Ij4M/Bk4HiAz50XEdGA+\nsAr4RGau7of6JEla70WxG3z91NzcnLNmzerdlUb07vrUtvX4fSdJ/SkiZmdmc2fzeSQ7SZIqyICX\nJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySp\nggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIM\neEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJ\nkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpgjoN+IjY\nNCLeUF5/S0RMjIjBjS9NkiR1Vz0t+DuAIRGxA3ALcBJwZSOLkiRJPVNPwEdm/hV4P3BpZh4HjG5s\nWZIkqSfqCviIOBA4EbihnNbUuJIkSVJP1RPwU4CzgZ9l5ryIeDPw68aWJUmSemJQR3dGRBMwMTMn\ntkzLzEeBMxtdmCRJ6r4OW/CZuRp4ex/VIkmSekmHLfjSHyJiJnAtsKJlYmb+R8OqkiRJPVJPwA8B\nlgGH1UxLwICXJGmA6jTgM/NDfVGIJEnqPfUcye4tEXFrRPypvD0mIr7Q+NIkSVJ31fMzuSsofia3\nEiAz7wcmN7IoSZLUM/UE/Bsz895W01Y1ohhJktQ76gn4ZyNiF4qBdUTEscDihlYlSZJ6pJ5R9J8A\nLgfeFhFPAo8BH2xoVZIkqUc6bcFn5qOZ+U5gGPC2zHx7Zj7e2XIRMSQi7o2IuRExLyLOL6dvFRG/\njIgF5d8ta5Y5OyIejoiHIuLIHjwuSZI2aJ224CPiU61uA7wAzM7MOR0s+ipwWGa+VJ4//s6IuIni\nrHS3ZuZFEXEWcBbwuYjYnWLw3mhge+BXEfGW8mh6kiSpC+rZB98MnA7sUF5OA44CroiIz7a3UBZe\nKm8OLi8JHANMLadPBd5bXj8GmJaZr2bmY8DDwH5deziSJAnqC/gRwN6Z+enM/DSwD7AtcChwSkcL\nRkRTRMwBlgC/zMx7gO0ys2WQ3tPAduX1HYCFNYsvKqdJkqQuqifgt6Xobm+xkiKkX241fR2ZuToz\nx1F8SdgvIvZodX9Sjs6vV0ScGhGzImLW0qVLu7KoJEkbjHpG0V8N3BMRPy9vvwf4cURsCsyvZyOZ\n+XxE/Jqia/+ZiBiemYsjYjhF6x7gSWDHmsVGlNNar+tyilH9NDc3d+nLgSRJG4p6RtFfQLHf/fny\ncnpmfjkzV2Tmie0tFxHDImKL8vomwN8DDwIzgZPL2U4GWr44zAQmR8TGETEK2BVofYAdSZJUh3pa\n8AD3UbSmBwFExE6Z+UQnywwHpkZEE8UXiemZeX1E3A1Mj4gPA38GjgfIzHkRMZ2iV2AV8AlH0EuS\n1D1R7AbvYIaIM4BzgWeA1UBQ7D4f0/jyOtbc3JyzZs3q3ZUWPwNUo3XyvpMktS0iZmdmc2fz1dOC\nnwK8NTOX9bwsSZLUF+oZRb+Q4sA2kiRpPVFPC/5R4LaIuIGan8Vl5jcbVpUkSeqRegL+ifKyUXmR\nJEkDXKcBn5ktJ4l5Y2b+tfElSZKknup0H3xEHBgR8yl+w05EjI2ISxtemSRJ6rZ6Btn9K3AksAwg\nM+dSHIdekiQNUPUEPJm5sNUkD0AjSdIAVs8gu4URcRCQ5XndpwAPNLYsSZLUE/W04E8HPkFx6tYn\ngXHlbUmSNEDVM4r+WaDdk8pIkqSBp55R9F+PiDdFxOCIuDUilkbEB/uiOEmS1D31dNEfkZkvAhOA\nx4G/Az7TyKIkSVLP1BPwLd34RwPXZqbHpZckaYCrZxT99RHxIPAy8LGIGAa80tiyJElST3Tags/M\ns4CDgObMXAmsAI5pdGGSJKn76hlkdxywMjNXR8QXgKuA7RtemSRJ6rZ69sF/MTOXR8TbgXcCPwD+\nrbFlSZKknqgn4FsOS3s0cHlm3oCnjZUkaUCrJ+CfjIjvA5OAGyNi4zqXkyRJ/aSeoD4euBk4MjOf\nB7bC38FLkjSg1TOK/q+Z+R/ACxGxEzCY8tzwkiRpYKpnFP3EiFgAPAbcXv69qdGFSZKk7quni/4C\n4ADgvzNzFMVI+t81tCpJktQj9QT8ysxcBrwhIt6Qmb8GmhtclyRJ6oF6DlX7fERsBtwBXB0RSyiO\nZidJkgaoelrwxwB/Bf438J/AI8B7GlmUJEnqmQ5b8BHxXorTw/4xM28GpvZJVZIkqUfabcFHxKUU\nrfatgQsi4ot9VpUkSeqRjlrwhwJjy5PMvBH4DcWIekmSNMB1tA/+b5m5GoqD3QDRNyVJkqSe6qgF\n/7aIuL+8HsAu5e0AMjPHNLw6SZLULR0F/G59VoUkSepV7QZ8Zv65LwuRJEm9x9O+SpJUQQa8JEkV\n1NHv4G8t//5L35UjSZJ6Q0eD7IZHxEHAxIiYRqufyWXmfQ2tTJIkdVtHAf8l4IvACOCbre5L4LBG\nFSVJknqmo1H0M4AZEfHFzPQIdpJUIXG+xy7rC3lu9tu2Oz1dbGZeEBETKQ5dC3BbZl7f2LIkSVJP\ndDqKPiK+BkwB5peXKRHx1UYXJkmSuq/TFjxwNDAuM18DiIipwB+AcxpZmCRJ6r56fwe/Rc31zRtR\niCRJ6j31tOC/BvwhIn5N8VO5Q4GzGlqVJEnqkXoG2f0kIm4D9i0nfS4zn25oVZIkqUfqacGTmYuB\nmQ2uRZIk9RKPRS9JUgUZ8JIkVVCHAR8RTRHxYF8VI0mSekeHAZ+Zq4GHImKnPqpHkiT1gnoG2W0J\nzIuIe4EVLRMzc2LDqpIkST1ST8B/seFVSJKkXlXP7+Bvj4idgV0z81cR8UagqfGlSZKk7qrnZDMf\nBWYA3y8n7QBc18iiJElSz9TzM7lPAAcDLwJk5gJg20YWJUmSeqaegH81M//WciMiBgH9dwZ7SZLU\nqXoC/vaIOAfYJCL+HrgW+EVjy5IkST1RT8CfBSwF/gicBtwIfKGzhSJix4j4dUTMj4h5ETGlnL5V\nRPwyIhaUf7esWebsiHg4Ih6KiCO795AkSVI9o+hfi4ipwD0UXfMPZWY9XfSrgE9n5n0RMRSYHRG/\nBE4Bbs0nz2A/AAALQElEQVTMiyLiLIovEJ+LiN2BycBoYHvgVxHxlvJgO5IkqQvqGUV/NPAI8G3g\nu8DDEfGuzpbLzMWZeV95fTnwAMUI/GOAqeVsU4H3ltePAaZl5quZ+RjwMLBf1x6OJEmC+g50cwnw\nPzPzYYCI2AW4Abip3o1ExEhgL4pegO3K088CPA1sV17fAfhdzWKLymmt13UqcCrATjt5BF1JktpS\nzz745S3hXnoUWF7vBiJiM+CnwD9l5ou195Vd/V0akZ+Zl2dmc2Y2Dxs2rCuLSpK0wWi3BR8R7y+v\nzoqIG4HpFGF8HPD7elYeEYMpwv3qzPyPcvIzETE8MxdHxHBgSTn9SWDHmsVHlNMkSVIXddSCf095\nGQI8A7wDGE8xon6TzlYcEQH8AHggM79Zc9dM4OTy+snAz2umT46IjSNiFLArcG/dj0SSJK3Rbgs+\nMz/Uw3UfDJwE/DEi5pTTzgEuAqZHxIeBPwPHl9ubFxHTgfkUI/A/4Qh6SZK6p9NBdmVr+gxgZO38\nnZ0uNjPvBKKduw9vZ5kLgQs7q0mSJHWsnlH011F0tf8CeK2x5UiSpN5QT8C/kpnfbnglkiSp19QT\n8N+KiHOBW4BXWya2HMRGkiQNPPUE/J4Ug+UO4/Uu+ixvS5KkAaiegD8OeHPtKWMlSdLAVs+R7P4E\nbNHoQiRJUu+ppwW/BfBgRPyetffBd/gzOUmS1H/qCfhzG16FJEnqVfWcD/72vihEkiT1nnqOZLec\n18/4thEwGFiRmW9qZGGSJKn76mnBD225Xp5A5hjggEYWJUmSeqaeUfRrZOE64MgG1SNJknpBPV30\n76+5+QagGXilYRVJkqQeq2cU/Xtqrq8CHqfoppckSQNUPfvge3peeEmS1MfaDfiI+FIHy2VmXtCA\neiRJUi/oqAW/oo1pmwIfBrYGDHhJkgaodgM+My9puR4RQ4EpwIeAacAl7S0nSZL6X4f74CNiK+BT\nwInAVGDvzHyuLwqTJEnd19E++IuB9wOXA3tm5kt9VpUkSeqRjg5082lge+ALwFMR8WJ5WR4RL/ZN\neZIkqTs62gffpaPcSZKkgcMQlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4\nSZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmS\nKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirI\ngJckqYIMeEmSKsiAlySpggx4SZIqaFB/F6ANU5wf/V3CBiHPzf4uQVI/sQUvSVIFGfCSJFVQwwI+\nIn4YEUsi4k8107aKiF9GxILy75Y1950dEQ9HxEMRcWSj6pIkaUPQyBb8lcBRraadBdyambsCt5a3\niYjdgcnA6HKZSyOiqYG1SZJUaQ0L+My8A/hLq8nHAFPL61OB99ZMn5aZr2bmY8DDwH6Nqk2SpKrr\n633w22Xm4vL608B25fUdgIU18y0qp60jIk6NiFkRMWvp0qWNq1SSpPVYvw2yy8wEuvwbnsy8PDOb\nM7N52LBhDahMkqT1X18H/DMRMRyg/LuknP4ksGPNfCPKaZIkqRv6OuBnAieX108Gfl4zfXJEbBwR\no4BdgXv7uDZJkiqjYUeyi4ifAOOBbSJiEXAucBEwPSI+DPwZOB4gM+dFxHRgPrAK+ERmrm5UbZIk\nVV3DAj4zT2jnrsPbmf9C4MJG1SNJ0obEI9lJklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkV\nZMBLklRBDfsdvCR1S0R/V7BhOK+/C1Cj2YKXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIq\nyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiA\nlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJck\nqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmC\nDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4\nSZIqyICXJKmCBlzAR8RREfFQRDwcEWf1dz2SJK2PBlTAR0QT8D3gXcDuwAkRsXv/ViVJ0vpnQAU8\nsB/wcGY+mpl/A6YBx/RzTZIkrXcGWsDvACysub2onCZJkrpgUH8X0FURcSpwannzpYh4qD/rUTed\n198FdMs2wLP9XURXxHnR3yVooDqvvwvoFj+DhZ3rmWmgBfyTwI41t0eU09bIzMuBy/uyKAkgImZl\nZnN/1yFtqPwMds1A66L/PbBrRIyKiI2AycDMfq5JkqT1zoBqwWfmqoj4JHAz0AT8MDPn9XNZkiSt\ndwZUwANk5o3Ajf1dh9QGdw1J/cvPYBdEZvZ3DZIkqZcNtH3wkiSpFxjwUjdExPiIuL6/65DWJxFx\nZkQ8EBFXN2j950XEPzdi3eujAbcPXpJUWR8H3pmZi/q7kA2BLXhtsCJiZEQ8GBFXRsR/R8TVEfHO\niPhtRCyIiP3Ky90R8YeIuCsi3trGejaNiB9GxL3lfB5eWWolIi4D3gzcFBGfb+szExGnRMR1EfHL\niHg8Ij4ZEZ8q5/ldRGxVzvfRiPh9RMyNiJ9GxBvb2N4uEfGfETE7In4TEW/r20fc/wx4bej+DrgE\neFt5+QDwduCfgXOAB4FDMnMv4EvAV9tYx+eB/8rM/YD/CVwcEZv2Qe3SeiMzTweeoviMbEr7n5k9\ngPcD+wIXAn8tP393A/9YzvMfmblvZo4FHgA+3MYmLwfOyMx9KD7PlzbmkQ1cdtFrQ/dYZv4RICLm\nAbdmZkbEH4GRwObA1IjYFUhgcBvrOAKYWLPvbwiwE8U/Hknrau8zA/DrzFwOLI+IF4BflNP/CIwp\nr+8REV8BtgA2ozh2yhoRsRlwEHBtxJpDxW7ciAcykBnw2tC9WnP9tZrbr1F8Pi6g+IfzvogYCdzW\nxjoC+IfM9LwIUn3a/MxExP50/pkEuBJ4b2bOjYhTgPGt1v8G4PnMHNe7Za9f7KKXOrY5r58P4ZR2\n5rkZOCPKpkJE7NUHdUnrs55+ZoYCiyNiMHBi6zsz80XgsYg4rlx/RMTYHta83jHgpY59HfhaRPyB\n9nu8LqDour+/7Oa/oK+Kk9ZTPf3MfBG4B/gtxTiZtpwIfDgi5gLzgA1u8KtHspMkqYJswUuSVEEG\nvCRJFWTAS5JUQQa8JEkVZMBLklRBBrykNpXHC58XEfdHxJzyICSS1hMeyU7SOiLiQGACsHdmvhoR\n2wAb9XNZkrrAFryktgwHns3MVwEy89nMfCoi9omI28szdN0cEcMjYlB5Zq/xABHxtYi4sD+Ll+SB\nbiS1oTxZx53AG4FfAdcAdwG3A8dk5tKImAQcmZn/KyJGAzOAM4CLgf0z82/9U70ksIteUhsy86WI\n2Ac4hOJ0ntcAX6E4lecvy0OINwGLy/nnRcSPgOuBAw13qf8Z8JLalJmrKc6ed1t5+txPAPMy88B2\nFtkTeB7Ytm8qlNQR98FLWkdEvDUidq2ZNI7i/PbDygF4RMTgsmueiHg/sBVwKPCdiNiir2uWtDb3\nwUtaR9k9/x1gC2AV8DBwKjAC+DbFaXQHAf8K/Ixi//zhmbkwIs4E9snMk/ujdkkFA16SpAqyi16S\npAoy4CVJqiADXpKkCjLgJUmqIANekqQKMuAlSaogA16SpAoy4CVJqqD/D4fPhy9k8RkrAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vs.survival_stats(data, outcomes, 'Sex')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Examining the survival statistics, a large majority of males did not survive the ship sinking. However, a majority of females *did* survive the ship sinking. Let's build on our previous prediction: If a passenger was female, then we will predict that they survived. Otherwise, we will predict the passenger did not survive. \n", + "Fill in the missing code below so that the function will make this prediction. \n", + "**Hint:** You can access the values of each feature for a passenger like a dictionary. For example, `passenger['Sex']` is the sex of the passenger." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def predictions_1(data):\n", + " \"\"\" Model with one feature: \n", + " - Predict a passenger survived if they are female. \"\"\"\n", + " \n", + " predictions = []\n", + " for _, passenger in data.iterrows():\n", + " \n", + " # Remove the 'pass' statement below \n", + " # and write your prediction conditions here\n", + " if passenger['Sex'] == 'female':\n", + " predictions.append(1)\n", + " else:\n", + " predictions.append(0)\n", + " \n", + " # Return our predictions\n", + " return pd.Series(predictions)\n", + "\n", + "# Make the predictions\n", + "predictions = predictions_1(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2\n", + "*How accurate would a prediction be that all female passengers survived and the remaining passengers did not survive?* \n", + "**Hint:** Run the code cell below to see the accuracy of this prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 78.68%.\n" + ] + } + ], + "source": [ + "print accuracy_score(outcomes, predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer**: *78.68%*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "***\n", + "Using just the **Sex** feature for each passenger, we are able to increase the accuracy of our predictions by a significant margin. Now, let's consider using an additional feature to see if we can further improve our predictions. For example, consider all of the male passengers aboard the RMS Titanic: Can we find a subset of those passengers that had a higher rate of survival? Let's start by looking at the **Age** of each male, by again using the `survival_stats` function. This time, we'll use a fourth parameter to filter out the data so that only passengers with the **Sex** 'male' will be included. \n", + "Run the code cell below to plot the survival outcomes of male passengers based on their age." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAGDCAYAAADHzQJ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVdWZ7/HvzwIFFRW19CKgYKK2oIBazkpoTauJBGK3\nCmq4agY1TuTqTYJ20mi8duyoSSfRxMbWQLcaRIxKHOIUDTEqWGVAZbDBEQgCoijgCLz3j70KD0UN\np4ZTp9j8Ps9zntrj2u/e55x6z9p77b0UEZiZmVm+bFHuAMzMzKztOcGbmZnlkBO8mZlZDjnBm5mZ\n5ZATvJmZWQ45wZuZmeWQE7xZiUg6Q9IjbVDOWZKeaouYWrj9myT9sAXr7S5plaSKUsTVFtuXFJI+\n355xNYekPinGTuWOxTY9TvCbCUmvS/ow/cNbImm8pG3LHVd7k9RL0t2S3pb0nqSXJJ1Vim1FxO0R\ncVwpyi4k6RuS5kpamd7bByV1S/PGS/p/zShrox8TEXFeRFxVxLqvS/piwXpvRsS2EbG2OfvTSPn/\nIenXBeOdJa1uYNphdbcv6UlJ32zF9q+QdEUaHiJpXfo+rZT0sqSzW7F7rY6pnnlnSVqbYqx93dAG\n22zVcbT24wS/eflKRGwLHAhUAT8oczwl1UCt57+BBcAewE7AKGBJG5bfriR9AfhX4LSI6AbsC9xZ\n3qhKZiowuGC8CngTOLrONICadojnb+n7tB3wfeBmSf2aW0iJz3A8k37k1L4uLOG2itIRvjebCyf4\nzVBELAIeAvYDkHS2pDmpJvKqpHNrl5W0s6T7Ja2Q9I6kP0vaIs37vqRFBTWYY9P0LSSNkfSKpOWS\nJknaMc2rPeV4pqQ3U036nwu211XSBEnvppi+J2lhwfzdUg18maTXJF1cMO8KSZMl3SbpfeCsenb/\nYGB8RKyOiDUR8deIeCitP6RwW2na+lppPeVfns6K7Fiw/AFpnzoX1oYl/VrSdXXKvk/SJWm49nit\nlDRb0klFvp0Hk/0T/ytARLwTERMiYqWkc4AzgO+l2tvvG9uWpH2Bm4DD0/Ir0vT1ZwEa+jxI+m9g\nd+D3ad3vqc7pZUk7SvqNpL+l9/fexsqsZ1+nAvtK2jmNHw1MBLapM+2ZiPi0cPuSrk7zbqinJvtF\nSfPS9m+UpCKPPemYR0TcC7wL9Ev7dJekt5SdJZoqqX/t8ul4/lrZmZbVwN+nz/31kt5I6zwlqWvB\nZs6o7/vSUpK2knRdKnOJssswXdO87un9WJbep/sl9UrzNjqOdd/ntNz6Wn76HvxF0s8kLQeuSNO/\nruw7/q6khyXt0dr9sjoiwq/N4AW8DnwxDfcGZgFXpfETgc8BAr4AfAAcmOb9mOyffuf0Ojottw9Z\nTXi3tFwf4HNpeDTwLNAL2Ar4D+C3BcsFcDPQFRgIfAzsm+ZfA/wJ6J7WfwFYmOZtQVYz+xdgS2BP\n4FXg+DT/CuBT4Ktp2a71HIfHgL8AI4Hd68wbUrutBo7bRuUDfwS+VbD8tcBNafgs4Kk0PDgdL6Xx\n7sCHBcfvFGC3VO4IYDXQo2459ezP0amcK4Ejga3qzB8P/L8605q1rcIyGvo81D1Wdd7rTmn8AbKz\nC93Tul9oqsx69vc14KQ0fD9wDHB7nWn/0sD2nwS+Wae8SOvsQPYDZRlwQhHfp/WflXQcT0qfjX3S\ntK8D3cg+//8OzKhzPN9L79cWQBfgxhRfT6ACOCKtW7sP9X5fmoixsc/Nz4ApwI4pzt8DP07zdgL+\nCdg6zbsLuLdg3Q2OY93jXHeZFMca4CKgU9qP4cB8sjNOncjOJj5d7v+TeXuVPQC/2umNzv75rgJW\nAG8Av6KeBJiWvRcYnYZ/BNwHfL7OMp8HlgJfBDrXmTcHOLZgvEf659ep4J9Br4L504GRaXh9wk7j\n3yz4R3oo8GadbV0G/CYNXwFMbeI4dCf7ETELWAvMAA5O84bQdIKfWmf+N4E/pmGRJfHBaXz9P9g0\n782Ced+qXa+BOGcAw+uW08CyXyL7B70ivcc/BSrSvPHUSfDN3RYbJvh6Pw91j1Uar32vO6XPwDqg\nez3rNVhmPcuOJ0tOW6TP39bAeQXT3uWzHw7rt5/Gn6T+BH9UwfgkYEwRcQxJ+7MCeCcdw5ENLLtD\n2s72BfvwXwXztyD7kTawnnVr96He70sTMZ5FllhXFLwOS5/F1aQf5GnZw4HXGihnEPBuwfgGx7Hu\nca67TIqj7vf2IeAbdY7BB8AeTe2XX8W/fIp+8/LViNghIvaIiPMj4kMASV+S9Gw6PboC+DJQe8rz\nWrJf2o8oO30/BiAi5gPfIUt6SyVNlLRbWmcP4J50ynMFWcJfC+xaEMtbBcMfALUN/nYjS5K1Cof3\nAHarLTeVfXmdcguX30hEvBsRYyKif1pvBnBvM07L1i3/brJT2j3IaunrgD/Xs90gO518Wpp0OlnN\nEwBJ/1vSjIL92o/P3oNGRcRDEfEVstrYcLJ/qA02gmrNtmjg81CE3sA7EfFuK8usvQ6/P/BqRHwA\nPFUwrSswrciYajX0WWzK39L3aceIGBQREyG7pi7pmnQZ5H2yHz6w4TEu/BztTFaLf6UEMT6bYqx9\nPQtUkv0wqin4DPwhTUfS1soaNL6R4p8K7KDWtRWo+73ZA/h5wfbfIfvh0bMV27A6nOA3c5K2IktS\n1wG7RsQOwINkXzYiYmVEXBoRewLDgEuUrrVHxB0RcRTZlzWAf0vFLgC+VOcfS5fIrv03ZTHZqfla\nvQuGF5DVMgrL7RYRXy5YpujuESPi7bTfu5Elx9Vk//iA9Y2fKuuuVqeMd4FHyE51nw5MTMm8Pr8F\nTk7XGg8lO+6k8ZuBC4Gd0nvwEuk9aMb+rIuIx8kuG+xXX7xFbKvR49fY56GJdRcAO0raoZll1jWV\n7DT1iXz2Q2oW2efkROC5iPioofAb27c2dDrZD60vAtuT1XBhw/ezMJa3gY/ILpO1h7fJzhj0L/ge\nbR9Zg0GAS8kuwR0aEdvxWcPGhj4jq9PfrQum/a86y9RdZwFwbp3vcteIeLqlO2Ubc4K3Lcmu9S0D\n1kj6ErD+1i5JQyV9PtVw3yOria+TtI+kY9IPhI/I/mGsS6vdBFxd22hGUqWk4UXGMwm4LDX06UmW\niGpNB1Yqa9zXNdWU9pN0cLE7K+nf0jqdlN1K9m1gfkQsB/4H6CLpREmdya4LblVEsXcA/xs4OQ3X\nK7KGcG8D/wk8HBEr0qxtyP4BLksxns1nCbqp/RkuaWQ6XpJ0CFk7imfTIkvI2irUampbS4BekrZs\nYHv1fh4a2Fbhvi8mOy37qxRrZ0mDiyizbjnz03ZGkxJ8+kE1LU2bWt96TcXXxrqRXSdfTpb0/rWx\nhSNiHXAr8FNljUgrJB2evlttLm3vZuBnknYBkNRT0vEF8X8IrFDWgHRsnSI2OI4RsQxYBHwtxf51\nmv6xchPZ97x/2v72kk5p5a5ZHU7wm7mIWAlcTJZY3yWrfUwpWGQvsoZpq4BngF9FxBNkie8asoT1\nFrAL2fVwgJ+nMh6RtJIs2RxaZEg/AhaSNaZ6DJhM9s+SyO5nHkp2TfA1PkuW2zdjl7cG7iG7Hvkq\n2dmHYan894DzU5mLyGomC+svZgNTyI7TWxExs4ll7yCr2a3/IRARs4HryY7vErJTzX8pcn/eJbue\nPw94H7gNuDYiak//3wL0S6dC7y1iW38kqxG/JenterbX0OcBssZyP0jb+r/1rDuKrC3GXLLr598p\nosz6TCU7s1IY95/JPoONJfifk51BeVfSLxpZrrX+i6ydyyJgNp/92GrM/wVeBJ4jO139b5T2//P3\nyS6LPJtOwz9GVmuHrFFgV7Lv17Nkp+8L1XccvwV8l+xHTX+g0Zp4RNxDto8T0/ZfImtLYm2otvWr\nWYck6dtkDYq+UO5YzMw2Ja7BW4ciqYekI5XdW70P2fXAe8odl5nZpsZPFLKOZkuy++b7kp1Gn0h2\nS5+ZmTWDT9GbmZnlkE/Rm5mZ5ZATvJmZWQ5t0tfgd9555+jTp0+5wzAzM2s3NTU1b0dE3YdwbWST\nTvB9+vShurq63GGYmZm1G0lvFLOcT9GbmZnlkBO8mZlZDjnBm5mZ5dAmfQ3ezMwa9+mnn7Jw4UI+\n+qihTvaso+rSpQu9evWic+fOLVrfCd7MLMcWLlxIt27d6NOnD1mHfbYpiAiWL1/OwoUL6du3b4vK\n8Cl6M7Mc++ijj9hpp52c3Dcxkthpp51adebFCd7MLOec3DdNrX3fnODNzKykKioqGDRoEP3792fg\nwIFcf/31rFu3DoDq6mouvvjietfr06cPb7/9dqu3f++99zJ79uxWl9McX/7yl1mxYkW7brMuX4M3\nM9uctHVtvogOy7p27cqMGTMAWLp0Kaeffjrvv/8+V155JVVVVVRVVbVtTHXce++9DB06lH79+rVp\nuWvXrqWioqLeeQ8++GCbbqslXIM3M7N2s8suuzBu3DhuuOEGIoInn3ySoUOHArB8+XKOO+44+vfv\nzze/+U0a6u1022235Z//+Z8ZOHAghx12GEuWLAHg9ddf55hjjmHAgAEce+yxvPnmmzz99NNMmTKF\n7373uwwaNIhXXnllg7Luuusu9ttvPwYOHMjgwYMBGD9+PBdeeOH6ZYYOHcqTTz65ftuXXnopAwcO\n5Mc//jGnnHLK+uUK96X27MOYMWO48cYb1y9zxRVXcN111wFw7bXXcvDBBzNgwADGjh3bmsNaLyd4\nMzNrV3vuuSdr165l6dKlG0y/8sorOeqoo5g1axYnnXQSb775Zr3rr169msMOO4yZM2cyePBgbr75\nZgAuuugizjzzTF544QXOOOMMLr74Yo444giGDRvGtddey4wZM/jc5z63QVk/+tGPePjhh5k5cyZT\npkxpMvbVq1dz6KGHMnPmTMaMGcO0adNYvXo1AHfeeScjR47cYPkRI0YwadKk9eOTJk1ixIgRPPLI\nI8ybN4/p06czY8YMampqmDp1atMHrxmc4M3MrEOYOnUqX/va1wA48cQT6d69e73Lbbnllutrygcd\ndBCvv/46AM888wynn346AKNGjeKpp55qcptHHnkkZ511FjfffDNr165tcvmKigr+6Z/+CYBOnTpx\nwgkn8Pvf/541a9bwwAMPMHz48A2WP+CAA1i6dCl/+9vfmDlzJt27d6d379488sgjPPLIIxxwwAEc\neOCBzJ07l3nz5jW5/ebwNXgzM2tXr776KhUVFeyyyy7MmTOn2et37tx5fQvziooK1qxZ0+JYbrrp\nJqZNm8YDDzzAQQcdRE1NDZ06dVrfCBDY4Fa1Ll26bHDdfeTIkdxwww3suOOOVFVV0a1bt422ccop\npzB58mTeeustRowYAWT3uV922WWce+65LY69KSWvwUuqkPRXSfen8R0lPSppXvrbvWDZyyTNl/Sy\npONLHVsDAZfuZWa2mVu2bBnnnXceF1544Ua3gQ0ePJg77rgDgIceeoh33323WWUfccQRTJw4EYDb\nb7+do48+GoBu3bqxcuXKetd55ZVXOPTQQ/nRj35EZWUlCxYsoE+fPsyYMYN169axYMECpk+f3uA2\nv/CFL/D8889z8803b3R6vtaIESOYOHEikydPXn/N/vjjj+fWW29l1apVACxatGijSxat1R41+NHA\nHGC7ND4GeDwirpE0Jo1/X1I/YCTQH9gNeEzS3hHR9DkTMzPrsD788EMGDRrEp59+SqdOnRg1ahSX\nXHLJRsuNHTuW0047jf79+3PEEUew++67N2s7v/zlLzn77LO59tprqays5De/+Q2Q1bK/9a1v8Ytf\n/ILJkydvcB3+u9/9LvPmzSMiOPbYYxk4cCAAffv2pV+/fuy7774ceOCBDW6zoqKCoUOHMn78eCZM\nmFDvMv3792flypX07NmTHj16AHDccccxZ84cDj/8cCBrvHfbbbexyy67NGufG6OGWim2SeFSL2AC\ncDVwSUQMlfQyMCQiFkvqATwZEftIugwgIn6c1n0YuCIinmmo/Kqqqmjz/uBLWdMu4bE2M6vPnDlz\n2HfffcsdhrVQfe+fpJqIaPLewlKfov934HvAuoJpu0bE4jT8FrBrGu4JLChYbmGatgFJ50iqllS9\nbNmyEoRsZma26StZgpc0FFgaETUNLRPZ6YNmVWsjYlxEVEVEVWVlZWvDNDMzy6VSXoM/Ehgm6ctA\nF2A7SbcBSyT1KDhFX9uqYBHQu2D9XmmamZmZNVPJavARcVlE9IqIPmSN5/4YEV8DpgBnpsXOBO5L\nw1OAkZK2ktQX2AtouOmimZmZNagc98FfA0yS9A3gDeBUgIiYJWkSMBtYA1zgFvRmZmYt0y4JPiKe\nBJ5Mw8uBYxtY7mqyFvdmZmbWCn5UrZmZldTVV19N//79GTBgAIMGDWLatGmtLnPKlClcc801bRBd\ndg96HvlRtWZmmxFd2bbP+oixjd8I9cwzz3D//ffz/PPPs9VWW/H222/zySefFFX2mjVr6NSp/jQ1\nbNgwhg0b1ux4NyeuwZuZWcksXryYnXfema222gqAnXfemd122219d6oA1dXVDBkyBMi6Ux01ahRH\nHnkko0aN4rDDDmPWrFnryxsyZAjV1dXru3R977332GOPPdY/O3716tX07t2bTz/9lFdeeYUTTjiB\ngw46iKOPPpq5c+cC8Nprr3H44Yez//7784Mf/KAdj0b7coI3M7OSOe6441iwYAF77703559/Pn/6\n05+aXGf27Nk89thj/Pa3v92gu9XFixezePFiqqo+e4jb9ttvz6BBg9aXe//993P88cfTuXNnzjnn\nHH75y19SU1PDddddx/nnnw/A6NGj+fa3v82LL764/tGxeeQEb2ZmJbPttttSU1PDuHHjqKysZMSI\nEYwfP77RdYYNG0bXrl0BOPXUU5k8eTKQ9aV+8sknb7T8iBEjuPPOOwGYOHEiI0aMYNWqVTz99NOc\ncsopDBo0iHPPPZfFi7OHqP7lL3/htNNOA7JuZfPK1+DNzKykKioqGDJkCEOGDGH//fdnwoQJG3TJ\nWtgdK8A222yzfrhnz57stNNOvPDCC9x5553cdNNNG5U/bNgwLr/8ct555x1qamo45phjWL16NTvs\nsAMzZsyoN6a6PdnlkWvwZmZWMi+//DLz5s1bPz5jxgz22GMP+vTpQ01N9iTzu+++u9EyRowYwU9+\n8hPee+89BgwYsNH8bbfdloMPPpjRo0czdOhQKioq2G677ejbty933XUXkPW/PnPmTACOPPLIDbqV\nzSsneDMzK5lVq1Zx5pln0q9fPwYMGMDs2bO54oorGDt2LKNHj6aqqoqKiopGyzj55JOZOHEip556\naoPLjBgxgttuu40RI0asn3b77bdzyy23MHDgQPr3789992UPTv35z3/OjTfeyP7778+iRfl9InpJ\nu4stNXcXa2bWOHcXu2nryN3FmpmZWRk4wZuZmeWQE7yZmVkOOcGbmeXcptzWanPW2vfNCd7MLMe6\ndOnC8uXLneQ3MRHB8uXL6dKlS4vL8INuzMxyrFevXixcuJBly5aVOxRrpi5dutCrV68Wr+8Eb2aW\nY507d6Zv377lDsPKwKfozczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAnezMwsh5zgzczM\ncsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAnezMwsh5zgzczMcqhkCV5SF0nTJc2UNEvSlWn6\nFZIWSZqRXl8uWOcySfMlvSzp+FLFZmZmlnel7C72Y+CYiFglqTPwlKSH0ryfRcR1hQtL6geMBPoD\nuwGPSdo7ItaWMEYzM7NcKlkNPjKr0mjn9IpGVhkOTIyIjyPiNWA+cEip4jMzM8uzkl6Dl1QhaQaw\nFHg0IqalWRdJekHSrZK6p2k9gQUFqy9M08zMzKyZSprgI2JtRAwCegGHSNoP+DWwJzAIWAxc35wy\nJZ0jqVpS9bJly9o8ZjMzszxol1b0EbECeAI4ISKWpMS/DriZz07DLwJ6F6zWK02rW9a4iKiKiKrK\nyspSh25mZrZJKmUr+kpJO6ThrsA/AHMl9ShY7CTgpTQ8BRgpaStJfYG9gOmlis/MzCzPStmKvgcw\nQVIF2Q+JSRFxv6T/ljSIrMHd68C5ABExS9IkYDawBrjALejNzMxaRhGNNWzv2KqqqqK6urptC5Xa\ntrxCm/CxNjOzjkFSTURUNbWcn2RnZmaWQ07wZmZmOeQEb2ZmlkNO8GZmZjnkBG9mZpZDTvBmZmY5\n5ARvZmaWQ07wZmZmOeQEb2ZmlkNO8GZmZjnkBG9mZpZDTvBmZmY55ARvZmaWQ07wZmZmOeQEb2Zm\nlkNO8GZmZjnkBG9mZpZDTvBmZmY55ARvZmaWQ07wZmZmOeQEb2ZmlkNO8GZmZjnkBG9mZpZDTvBm\nZmY55ARvZmaWQ07wZmZmOeQEb2ZmlkNO8GZmZjnkBG9mZpZDTvBmZmY5VLIEL6mLpOmSZkqaJenK\nNH1HSY9Kmpf+di9Y5zJJ8yW9LOn4UsVmZmaWd6WswX8MHBMRA4FBwAmSDgPGAI9HxF7A42kcSf2A\nkUB/4ATgV5IqShifmZlZbpUswUdmVRrtnF4BDAcmpOkTgK+m4eHAxIj4OCJeA+YDh5QqPjMzszwr\n6TV4SRWSZgBLgUcjYhqwa0QsTou8BeyahnsCCwpWX5im1S3zHEnVkqqXLVtWwujNzMw2XSVN8BGx\nNiIGAb2AQyTtV2d+kNXqm1PmuIioioiqysrKNozWzMwsP9qlFX1ErACeILu2vkRSD4D0d2labBHQ\nu2C1XmmamZmZNVMpW9FXStohDXcF/gGYC0wBzkyLnQncl4anACMlbSWpL7AXML1U8ZmZmeVZpxKW\n3QOYkFrCbwFMioj7JT0DTJL0DeAN4FSAiJglaRIwG1gDXBARa0sYn5mZWW4puwy+aaqqqorq6uq2\nLVRq2/IKbcLH2szMOgZJNRFR1dRyfpKdmZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeWQE7yZmVkOOcGb\nmZnlkBO8mZlZDjWZ4CVtI2mLNLy3pGGSOpc+NDMzM2upYmrwU4EuknoCjwCjgPGlDMrMzMxap5gE\nr4j4APhH4FcRcQrQv7RhmZmZWWsUleAlHQ6cATyQplWULiQzMzNrrWIS/GjgMuCe1CHMnmRdv5qZ\nmVkH1WhvcqknuGERMax2WkS8Clxc6sDMzMys5RqtwafuWo9qp1jMzMysjRTTH/xfJU0B7gJW106M\niN+VLCozMzNrlWISfBdgOXBMwbQAnODNzMw6qCYTfESc3R6BmJmZWdsp5kl2e0t6XNJLaXyApB+U\nPjQzMzNrqWJuk7uZ7Da5TwEi4gVgZCmDMjMzs9YpJsFvHRHT60xbU4pgzMzMrG0Uk+DflvQ5soZ1\nSDoZWFzSqMzMzKxVimlFfwEwDvg7SYuA14CvlTQqMzMza5ViWtG/CnxR0jbAFhGxsvRhmZmZWWs0\nmeAlXVJnHOA9oCYiZpQoLjMzM2uFYq7BVwHnAT3T61zgBOBmSd8rYWxmZmbWQsVcg+8FHBgRqwAk\njSXrNnYwUAP8pHThmZmZWUsUU4PfBfi4YPxTYNeI+LDOdDMzM+sgiqnB3w5Mk3RfGv8KcEdqdDe7\nZJGZmZlZixXTiv4qSX8AjkiTzouI6jR8RskiMzMzsxYr5hQ9wPNk3cXeAyyVtHtTK0jqLekJSbMl\nzZI0Ok2/QtIiSTPS68sF61wmab6klyUd35IdMjMzs+Juk7sIGAssAdYCInuq3YAmVl0DXBoRz0vq\nBtRIejTN+1lEXFdnO/3InnHfH9gNeEzS3hGxtjk7ZGZmZsVdgx8N7BMRy5tTcEQsJj3SNiJWSppD\ndptdQ4YDEyPiY+A1SfOBQ4BnmrNdMzMzK+4U/QKyB9u0mKQ+wAHAtDTpIkkvSLpVUvc0rWfaVq2F\nNP6DwMzMzBpQTA3+VeBJSQ9QcFtcRPy0mA1I2ha4G/hORLwv6dfAVWSn+a8Crge+XmzAks4BzgHY\nffcmmwKYmZltloqpwb8JPApsCXQreDVJUmey5H57RPwOICKWRMTaiFhH1tf8IWnxRUDvgtV7pWkb\niIhxEVEVEVWVlZXFhGFmZrbZKeY2uSsBJG0dER8UW7Cyh9bfAswprO1L6pGuzwOcBLyUhqeQ3V//\nU7JGdnsBdfuhNzMzsyIU04r+cLJEvS2wu6SBwLkRcX4Tqx4JjAJelFTbKc3lwGmSBpGdon+d7Nn2\nRMQsSZPIHp6zBrjALejNzMxapphr8P8OHE9WwyYiZkoa3NRKEfEU2S11dT3YyDpXA1cXEZOZmZk1\noqgH3UTEgjqTXLM2MzPrwIqpwS+QdAQQqdHcaGBOacMyMzOz1iimBn8ecAHZPemLgEFp3MzMzDqo\nYlrRv407lTEzM9ukNFmDl/QTSdtJ6izpcUnLJH2tPYIzMzOzlinmFP1xEfE+MJTstrbPA98tZVBm\nZmbWOsUk+NrT+CcCd0VEq55Lb2ZmZqVXTCv6+yXNBT4Evi2pEviotGGZmZlZazRZg4+IMcARQFVE\nfAqsJuva1czMzDqoYhrZnQJ8GhFrJf0AuI3sWfFmZmbWQRVzDf6HEbFS0lHAF8meS//r0oZlZmZm\nrVFMgq99LO2JwLiIeICs61gzMzProIpJ8Isk/QcwAnhQ0lZFrmdmZmZlUkyiPhV4GDg+IlYAO+L7\n4M3MzDq0YlrRfxARvwPek7Q70BmYW/LIzMzMrMWKaUU/TNI84DXgT+nvQ6UOzMzMzFqumFP0VwGH\nAf8TEX3JWtI/W9KozMzMrFWKSfCfRsRyYAtJW0TEE0BVieMyMzOzVijmUbUrJG0LTAVul7SU7Gl2\nZmZm1kEVU4MfDnwA/B/gD8ArwFdKGZSZmZm1TqM1eElfJese9sWIeBiY0C5RmZmZWas0WIOX9Cuy\nWvtOwFWSfthuUZmZmVmrNFaDHwwMTJ3MbA38maxFvZmZmXVwjV2D/yQi1kL2sBtA7ROSmZmZtVZj\nNfi/k/RCGhbwuTQuICJiQMmjMzMzsxZpLMHv225RmJmZWZtqMMFHxBvtGYiZmZm1HXf7amZmlkNO\n8GZmZjmiEKLMAAAQJ0lEQVTU2H3wj6e//9Z+4ZiZmVlbaKwG30PSEcAwSQdIOrDw1VTBknpLekLS\nbEmzJI1O03eU9Kikeelv94J1LpM0X9LLko5v/e6ZmZltnhprRf8vwA+BXsBP68wL4Jgmyl4DXBoR\nz0vqBtRIehQ4C3g8Iq6RNAYYA3xfUj9gJNAf2A14TNLetffim5mZWfEaa0U/GZgs6YcR0ewn2EXE\nYmBxGl4paQ7Qk6zzmiFpsQnAk8D30/SJEfEx8Jqk+cAhwDPN3baZmdnmrsnuYiPiKknDyB5dC/Bk\nRNzfnI1I6gMcAEwDdk3JH+AtYNc03BN4tmC1hWla3bLOAc4B2H333ZsThpmZ2WajyVb0kn4MjAZm\np9doSf9a7AZSX/J3A9+JiPcL50VEkJ3uL1pEjIuIqoioqqysbM6qZmZmm40ma/DAicCgiFgHIGkC\n8Ffg8qZWlNSZLLnfHhG/S5OXSOoREYsl9QCWpumLgN4Fq/dK08zMzKyZir0PfoeC4e2LWUGSgFuA\nORFR2EhvCnBmGj4TuK9g+khJW0nqC+wFTC8yPjMzMytQTA3+x8BfJT1B1tHMYLKW7005EhgFvChp\nRpp2OXANMEnSN4A3gFMBImKWpElklwHWABe4Bb2ZmVnLKLsM3sRC2an0g9Po9Ih4q6RRFamqqiqq\nq6vbtlCVsFfcIo61mZlZYyTVRERVU8sVU4OvveVtSqujMjMzs3bhZ9GbmZnlkBO8mZlZDjWa4CVV\nSJrbXsGYmZlZ22g0wadW7C9L8iPjzMzMNiHFNLLrDsySNB1YXTsxIoaVLCozMzNrlWIS/A9LHoWZ\nmZm1qWI6m/mTpD2AvSLiMUlbAxWlD83MzMxaqpjOZr4FTAb+I03qCdxbyqDMzMysdYq5Te4CssfO\nvg8QEfOAXUoZlJmZmbVOMQn+44j4pHZEUiea2cWrmZmZta9iEvyfJF0OdJX0D8BdwO9LG5aZmZm1\nRjEJfgywDHgROBd4EPhBKYMyMzOz1immFf06SROAaWSn5l+OYrqgMzMzs7JpMsFLOhG4CXiFrD/4\nvpLOjYiHSh2cmZmZtUwxD7q5Hvj7iJgPIOlzwAOAE7yZmVkHVcw1+JW1yT15FVhZonjMzMysDTRY\ng5f0j2mwWtKDwCSya/CnAM+1Q2xmZmbWQo2dov9KwfAS4AtpeBnQtWQRmZmZWas1mOAj4uz2DMTM\nzMzaTjGt6PsCFwF9Cpd3d7FmZmYdVzGt6O8FbiF7et260oZjZmZmbaGYBP9RRPyi5JGYmZlZmykm\nwf9c0ljgEeDj2okR8XzJojIzM7NWKSbB7w+MAo7hs1P0kcbNzMysAyomwZ8C7FnYZayZmZl1bMU8\nye4lYIdSB2JmZmZtp5ga/A7AXEnPseE1eN8mZ2Zm1kEVk+DHljwKMzMza1PF9Af/p5YULOlWYCiw\nNCL2S9OuAL5F9rhbgMsj4sE07zLgG8Ba4OKIeLgl2zUzM7PinmS3kqzVPMCWQGdgdURs18Sq44Eb\ngP+qM/1nEXFdnW30A0YC/YHdgMck7R0Ra5vcAzMzM9tIMTX4brXDkgQMBw4rYr2pkvoUGcdwYGJE\nfAy8Jmk+cAjwTJHrm5mZWYFiWtGvF5l7geNbsc2LJL0g6VZJ3dO0nsCCgmUWpmkbkXSOpGpJ1cuW\nLatvETMzs81ekwle0j8WvE6WdA3wUQu392tgT2AQsBi4vrkFRMS4iKiKiKrKysoWhmFmZpZvxbSi\nL+wXfg3wOtkp9WaLiCW1w5JuBu5Po4uA3gWL9krTzMzMrAWKuQbfZv3CS+oREYvT6ElkD9EBmALc\nIemnZI3s9gKmt9V2zczMNjcNJnhJ/9LIehERVzVWsKTfAkOAnSUtJLuffoikQWSt8l8Hzk2FzZI0\nCZhNdpbgAregNzMzazlFRP0zpEvrmbwN2b3qO0XEtqUMrBhVVVVRXV3dtoVKbVteoQaOtZmZWbEk\n1UREVVPLNViDj4j1DeAkdQNGA2cDE2lB4zgzMzNrP41eg5e0I3AJcAYwATgwIt5tj8DMzMys5Rq7\nBn8t8I/AOGD/iFjVblGZmZlZqzR2H/ylZC3afwD8TdL76bVS0vvtE56ZmZm1RGPX4Jv1lDszMzPr\nOJzEzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAnezMwsh5zgzczMcsgJ3szMLIec4M3M\nzHLICd7MzCyHnODNzMxyyAnezMwsh5zgzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAne\nzMwsh5zgzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAnezMwsh0qW4CXdKmmppJcKpu0o\n6VFJ89Lf7gXzLpM0X9LLko4vVVxmZmabg1LW4McDJ9SZNgZ4PCL2Ah5P40jqB4wE+qd1fiWpooSx\nmZmZ5VrJEnxETAXeqTN5ODAhDU8AvlowfWJEfBwRrwHzgUNKFZuZmVnetfc1+F0jYnEafgvYNQ33\nBBYULLcwTTMzM7MWKFsju4gIIJq7nqRzJFVLql62bFkJIjMzM9v0tXeCXyKpB0D6uzRNXwT0Lliu\nV5q2kYgYFxFVEVFVWVlZ0mDNzMw2Ve2d4KcAZ6bhM4H7CqaPlLSVpL7AXsD0do7NzMwsNzqVqmBJ\nvwWGADtLWgiMBa4BJkn6BvAGcCpARMySNAmYDawBLoiItaWKzczMLO9KluAj4rQGZh3bwPJXA1eX\nKh4zM7PNiZ9kZ2ZmlkNO8GZmZjnkBG9mZpZDTvBmZmY55ARvZmaWQ07wZmZmOeQEb2ZmlkNO8GZm\nZjnkBG9mZpZDTvBmZmY5VLJH1drGdKVKWn6MbXbvu2ZmllOuwZuZmeWQE7yZmVkOOcGbmZnlkBO8\nmZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeWQE7yZmVkOOcGbmZnlkBO8mZlZDjnBm5mZ5ZATvJmZWQ45\nwZuZmeWQE7yZmVkOOcGbmZnlkBO8mZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeVQp3JsVNLrwEpgLbAm\nIqok7QjcCfQBXgdOjYh3yxGfmZnZpq6cNfi/j4hBEVGVxscAj0fEXsDjadzMzMxaoCOdoh8OTEjD\nE4CvljEWMzOzTVq5EnwAj0mqkXROmrZrRCxOw28Bu9a3oqRzJFVLql62bFl7xGpmZrbJKcs1eOCo\niFgkaRfgUUlzC2dGREiK+laMiHHAOICqqqp6lzEzM9vclaUGHxGL0t+lwD3AIcASST0A0t+l5YjN\nzMwsD9o9wUvaRlK32mHgOOAlYApwZlrsTOC+9o7NzMwsL8pxin5X4B5Jtdu/IyL+IOk5YJKkbwBv\nAKeWITYzM7NcaPcEHxGvAgPrmb4cOLa94zEzM8ujjnSbnJmZmbURJ3gzM7MccoI3MzPLoXLdB28d\nQdbQsXTCjykwMysX1+DNzMxyyAnezMwsh5zgzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxy\nyAnezMwsh5zgzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyL3J2ebDveeZ2WbECd5KRleW\nNqHGWCdUM7OG+BS9mZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeWQE7yZmVkOOcGbmZnlkG+TM2sjvi3Q\nzDoS1+DNzMxyyAnezMwsh5zgzczMcqjDJXhJJ0h6WdJ8SWPKHY+ZmdmmqEMleEkVwI3Al4B+wGmS\n+pU3KjMzs01PR2tFfwgwPyJeBZA0ERgOzC5rVGbWsbmnQLONdLQE3xNYUDC+EDi0TLGYbdqc9PLL\n760VQdGB3khJJwMnRMQ30/go4NCIuLBgmXOAc9LoPsDL7R5o+9kZeLvcQbQj729+bU77Ct7fPOsI\n+7pHRFQ2tVBHq8EvAnoXjPdK09aLiHHAuPYMqlwkVUdEVbnjaC/e3/zanPYVvL95tinta4dqZAc8\nB+wlqa+kLYGRwJQyx2RmZrbJ6VA1+IhYI+lC4GGgArg1ImaVOSwzM7NNTodK8AAR8SDwYLnj6CA2\ni0sRBby/+bU57St4f/Nsk9nXDtXIzszMzNpGR7sGb2ZmZm3ACb6D2pwe2SvpVklLJb1U7lhKTVJv\nSU9Imi1plqTR5Y6plCR1kTRd0sy0v1eWO6ZSk1Qh6a+S7i93LKUm6XVJL0qaIam63PGUmqQdJE2W\nNFfSHEmHlzumxvgUfQeUHtn7P8A/kD3s5zngtIjI5RP9JA0GVgH/FRH7lTueUpLUA+gREc9L6gbU\nAF/N8XsrYJuIWCWpM/AUMDoini1zaCUj6RKgCtguIoaWO55SkvQ6UBUR5b4vvF1ImgD8OSL+M93p\ntXVErCh3XA1xDb5jWv/I3oj4BKh9ZG8uRcRU4J1yx9EeImJxRDyfhlcCc8ie4JhLkVmVRjunV25r\nFZJ6AScC/1nuWKxtSdoeGAzcAhARn3Tk5A5O8B1VfY/szW0S2FxJ6gMcAEwrbySllU5ZzwCWAo9G\nRJ7399+B7wHryh1IOwngMUk16SmjedYXWAb8Jl2C+U9J25Q7qMY4wZuVgaRtgbuB70TE++WOp5Qi\nYm1EDCJ7MuUhknJ5GUbSUGBpRNSUO5Z2dFR6b78EXJAut+VVJ+BA4NcRcQCwGujQ7aOc4DumJh/Z\na5uudC36buD2iPhdueNpL+l05hPACeWOpUSOBIal69ITgWMk3VbekEorIhalv0uBe8guL+bVQmBh\nwRmoyWQJv8Nygu+Y/MjenEqNzm4B5kTET8sdT6lJqpS0QxruStZwdG55oyqNiLgsInpFRB+y7+wf\nI+JrZQ6rZCRtkxqKkk5VHwfk9k6YiHgLWCBpnzTpWDp4V+Yd7kl2tvk9slfSb4EhwM6SFgJjI+KW\n8kZVMkcCo4AX03VpgMvTExzzqAcwId0ZsgUwKSJyf/vYZmJX4J7sNyudgDsi4g/lDankLgJuTxWv\nV4GzyxxPo3ybnJmZWQ75FL2ZmVkOOcGbmZnlkBO8mZlZDjnBm5mZ5ZATvJmZWQ45wZtt5iStTb2B\nvSTpLklbt0GZZ0m6oS3iM7OWcYI3sw8jYlDqye8T4LxiV0z3t5tZB+QEb2aF/gx8HkDSvakTkVmF\nHYlIWiXpekkzgcMlHSzp6dTn+/Tap5sBu0n6g6R5kn5Shn0x26z5SXZmBoCkTmSdhtQ+jezrEfFO\nesTsc5LujojlwDbAtIi4ND3Ray4wIiKek7Qd8GFafxBZb3kfAy9L+mVELMDM2oUTvJl1LXhs7p9J\n/V0DF0s6KQ33BvYClgNryTrLAdgHWBwRzwHU9oyXHl/6eES8l8ZnA3uwYTfIZlZCTvBm9mHq8nM9\nSUOALwKHR8QHkp4EuqTZH0XE2iLK/bhgeC3+f2PWrnwN3szqsz3wbkrufwcc1sByLwM9JB0MIKlb\nOtVvZmXmL6KZ1ecPwHmS5pAl8WfrWygiPpE0Avhlulb/IVnN38zKzL3JmZmZ5ZBP0ZuZmeWQE7yZ\nmVkOOcGbmZnlkBO8mZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeWQE7yZmVkO/X+MNe9ZpwgVcQAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vs.survival_stats(data, outcomes, 'Parch', [\"Sex == 'male'\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Examining the survival statistics, the majority of males younger than 10 survived the ship sinking, whereas most males age 10 or older *did not survive* the ship sinking. Let's continue to build on our previous prediction: If a passenger was female, then we will predict they survive. If a passenger was male and younger than 10, then we will also predict they survive. Otherwise, we will predict they do not survive. \n", + "Fill in the missing code below so that the function will make this prediction. \n", + "**Hint:** You can start your implementation of this function using the prediction code you wrote earlier from `predictions_1`." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def predictions_2(data):\n", + " \"\"\" Model with two features: \n", + " - Predict a passenger survived if they are female.\n", + " - Predict a passenger survived if they are male and younger than 10. \"\"\"\n", + " \n", + " predictions = []\n", + " for _, passenger in data.iterrows():\n", + " \n", + " # Remove the 'pass' statement below \n", + " # and write your prediction conditions here\n", + " if passenger['Sex'] == 'female':\n", + " predictions.append(1)\n", + " else:\n", + " if passenger['Age'] < 10.0:\n", + " predictions.append(1)\n", + " else:\n", + " predictions.append(0)\n", + " \n", + " # Return our predictions\n", + " return pd.Series(predictions)\n", + "\n", + "# Make the predictions\n", + "predictions = predictions_2(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3\n", + "*How accurate would a prediction be that all female passengers and all male passengers younger than 10 survived?* \n", + "**Hint:** Run the code cell below to see the accuracy of this prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 79.35%.\n" + ] + } + ], + "source": [ + "print accuracy_score(outcomes, predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer**: *79.35%*" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "***\n", + "Adding the feature **Age** as a condition in conjunction with **Sex** improves the accuracy by a small margin more than with simply using the feature **Sex** alone. Now it's your turn: Find a series of features and conditions to split the data on to obtain an outcome prediction accuracy of at least 80%. This may require multiple features and multiple levels of conditional statements to succeed. You can use the same feature multiple times with different conditions. \n", + "**Pclass**, **Sex**, **Age**, **SibSp**, and **Parch** are some suggested features to try.\n", + "\n", + "Use the `survival_stats` function below to to examine various survival statistics. \n", + "**Hint:** To use mulitple filter conditions, put each condition in the list passed as the last argument. Example: `[\"Sex == 'male'\", \"Age < 18\"]`" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGDCAYAAADd8eLzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8VXW9//HXxwMKieWEXhQV61ZXUUE95oASPzW1JLRS\n0YyL3kps5P7qV5npVetXWVqP2+Q1vHXllxZOpTiV5XVM06DAcuiSQwKBIE5IWYif3x9rHdwczrDP\nOewzLF7Px+M8zl5rr+Gz9tp7v/d3jZGZSJKkgW2Tvi5AkiT1nIEuSVIFGOiSJFWAgS5JUgUY6JIk\nVYCBLklSBRjo0gYWESdHxC0bYDqnRMTdG6Kmbs7/4og4uxvj7RwRL0ZEUyPq2hDzj4iMiH/szbqk\nRjPQKy4inoiIv5ZfcE9FxKURMayv6+ptETEyIq6JiKcj4vmI+H1EnNKIeWXm5Zl5RCOmXSsi3h8R\nj0TEynLd3hQRW5TPXRoR/7cL01rvx0Nmnp6ZX6hj3Cci4vCa8Z7MzGGZuaYry9PB9L8bEf9R0z04\nIla10++A1vOPiNsj4gM9mP+5EXFuq367RsQrtTVsCBHR7oVBWn2WW/526OH8JkTEop5MQ/2Hgb5x\neGdmDgP2AZqBs/q4noaKiEFt9P4BsBDYBdgGmAI8tQGn36si4q3Al4CTMnMLYDfgir6tqmHuBMbX\ndDcDTwKHtOoHMLeXavpn4FlgckRs1kvzhPKzXPP3516c93r6w2dBrzLQNyKZuRi4GdgDICJOjYiH\nyxbeYxExrWXYiNg2Im6IiOci4pmIuCsiNimf+0xELC7H+0NEHFb23yQizoiIRyNiRURcGRFbl8+N\nKjdzTo2IJ8uW8udq5jc0ImZGxLNlTZ+ubTlExA5lC3t5RDweER+vee7ciLg6Ii6LiBeAU9pY/P2A\nSzNzVWa+nJm/zcyby/HXa6XUtjrbmP6ZZUtp65rh9y6XaXBtazci/iMiLmw17esi4hPl45bXa2VE\nPBQR76pzde4H3JuZvwXIzGcyc2ZmroyI04CTgU+XrbjrO5pXROwGXAwcWA7/XNl/bSu/vfdDRPwA\n2Bm4vhz30zXrelA57tYR8V8R8edy/V7b0TTbWNY7gd0iYtuy+xBgFrB5q373Zubq2vlHxBfL575d\n1vftmukeHhELyvl/JyKinhe+HO6fKX4Yrwbe2er5I8rPxfMRcVFE3BE1Wwgi4l/K9/izEfGziNil\nnvl2UtMBEXFPuSzzI2JCzXOnRhuf84jYnOL7YIeoafFHq607rT8f5WfjMxHxALCqfJ3b/XyqF2Wm\nfxX+A54ADi8f7wQ8CHyh7D4aeAMQwFuBvwD7lM99meJLfnD5d0g53JspWro7lMONAt5QPp4O/AoY\nCWwGfBf4Uc1wCVwCDAXGAH8DdiufPx+4A9iqHP8BYFH53CYULa9/AzYFXg88BhxZPn8uxRfrseWw\nQ9t4HX4B/BI4Edi51XMTWubVzuu23vSB/wY+WDP8BcDF5eNTgLvLx+PL1yvK7q2Av9a8fscDO5TT\nnQysAka0nk4by3NIOZ3zgHHAZq2evxT4v636dWletdNo7/3Q+rVqta4Hld03Umw92Koc962dTbON\n5X0ceFf5+AbgUODyVv3+rZ353w58oNX0shxnS4ofJMuBo+r8TB1C8d7dCvgWcH3Nc9sCLwDvBgZR\nfCZWt8wfOAb4I8UWlUEUPwru6epnuVX/HYEVwDvKdfu2snt4HZ/zCaz/3l/nvdN6mLKOeRTfJ0Pp\n5PPpX+/92ULfOFxbtrrupgjNLwFk5o2Z+WgW7gBu4dXNmKuBEcAumbk6M+/K4tO8hiKsd4+IwZn5\nRGY+Wo5zOvC5zFyUmX+jCMLjYt3Ncudl5l8zcz4wnyLYAU4AvpSZz2bmIuCbNePsR/Hl9PnM/Htm\nPkbxw+DEmmHuzcxrM/OVzPxrG6/B8cBdwNnA4xExLyL268Jr2Hr6PwROgrUtthPLfq3dRREeLa/r\nceW0/gyQmVdl5p/L6V4BLADe0lkxmXkXRWjsQxGYKyLi69HBgWDdnVepvfdDhyJiBPB24PRy3a4u\n32tdneYdwPiyBf8Wih+Od9X0G1cO0xXnZ+ZzmfkkcBswts7xpgI3Z+azFOv8qIjYrnzuHcCDmfnj\nzHyZ4n28tGbc04EvZ+bD5fNfAsZ2oZV+bdkKf65lSwfwPuCmzLypXLc/B+aUtXT2Oe+ub2bmwvKz\nUM/nU73AQN84HJuZW2bmLpn54ZbAi4i3R8Svys2dz1F8AbRswryAoiVxS7mZ7gyAzPwj8K8UYb0s\nImbFqwfm7AL8pOULB3iY4gfA9jW11H65/QVoOUBvB4qWbIvax7tQbBZ8rmbaZ7aabu3w6ynD5IzM\nHF2ON4/iy7GuzaxtTP8aik3UIyha4a9QBEzr+SbF5uGTyl7vpWhZAhAR/1z+uGhZrj14dR10KDNv\nzsx3AltTtPxOAdo9+Ksn86Kd90MddgKeKcOvJ9Ns2Y++J/BYZv6F4gdqS7+hwH111tSivfdiuyJi\nKMWPw8sBMvNeiv357y0HWed9XK7/2t05uwDfqFkHz1C0nHess+aWz/KWmXlszTSPb/X5OJjix1Jn\nn/Pu6urnU73AQN9IRXEgzzXAhcD2mbklcBPFlwuZuTIzP5mZrwcmAZ+Icl95Zv4wMw+m+CAn8JVy\nsguBt9d84WyZmUOy2HffmSUUm9pb7FTzeCHweKvpbpGZ76gZpu7bBmbm0+Vy70ARhquA17Q8X7Zy\nh7cerdU0nqVo6Uym+DKf1UHr8kcUWyp2AfaneN0puy8BPgpsU66D31Ougy4szyuZeSvFboA92qq3\njnl1+Pp19H7oZNyFwNYRsWUXp9nanRRbc47m1R9OD1K8T44Gfp2ZL7VXfkfL1kXvAl4LXBQRSyNi\nKUUYTy2fX+d9XP5grH1fLwSmtXovD83Me3pQ00LgB62muXlmnt/Z55y2X5t1Pg/AP7QxTO149Xw+\n1QsM9I3XphSbzpcDL0fE24G1p1pFxMSI+MfyC+l5ipb2KxHx5og4tPyieIliP+4r5WgXA19s2XwY\nEcMj4pg667kS+GxEbBURO1IET4v7gZXlgThDI6IpIvboyibziPhKOc6gKE7t+hDwx8xcAfwPMCQi\njo6IwRT7Nes5cvmHFAdHHUfbm9sByOLAtaeB/wR+lpnPlU9tTvHFuLys8VReDeTOlueYiDixfL0i\nIt5CsX/0V+UgT1Hsy2zR2byeAkZGxKbtzK/N90M786pd9iUUB15dVNY6OCLG1zHN1tP5Yzmf6ZSB\nXv6Auq/sd2db43VWXzdMBb5PsVVgbPk3DhgTEXtS7P7YMyKOLXc1fYR1A/Fiivf5aICIeF1EHN/D\nmi4D3hkRR5afjSFRHMg2kk4+5xSvzTYR8bqafvOAd0RxMOM/UGyR60iPP5/aMAz0jVRmrgQ+ThGk\nz1K0MmfXDPJGigPJXgTuBS7KzNsovhzOpwiopcB2wGfLcb5RTuOWiFhJES7711nS5yk2TT5ezvdq\nigOPyOJ84okUX56P82o4vq7NKbXtNcBPgOcoDtjZhaJVSGY+D3y4nOZiihZKPefmzqZ4nZZmcUxA\nR34IHE5N8GfmQ8DXKF7fpyhC4pd1Ls+zwAcp9oO/QPGlfkFmtmzO/x7FcQ7PRcS1dczrvylavEsj\n4uk25tfe+wGKg9vOKuf1f9oYdwrF/vJHgGW8GhAdTbMtd1JsOamt+y6K92BHgf4Nii0kz0bENzsY\nrkPlD83DgH/PzKU1f3OBnwJTy60/xwNfpTgwbXeK/dkt7+WfUGzRmhXFGRO/pzjGoNsycyHFLpcz\nKYJ7IfApYJPOPueZ+QjFFqTHyvW3A8UpnvMpDn67hU5Oh9xAn09tAC1HqUr9SkR8CDgxM9/a17VI\n3RXFAXuLgJM7+bEi9ZgtdPULETEiIsZFcW7zm4FPUrSopQGl3PS9Zblb6kyK/dW/6mQ0qce8yo/6\ni00pzlvflWKz+Czgoj6tSOqeAyl2rWwKPERxZHpbp1JKG5Sb3CVJqgA3uUuSVAEGuiRJFTAg9qFv\nu+22OWrUqL4uQ5KkXjF37tynM7P1Ba46NCACfdSoUcyZM6evy5AkqVdExJ+6Oo6b3CVJqgADXZKk\nCjDQJUmqgAGxD70tq1evZtGiRbz0Uns3WFJ/NWTIEEaOHMngwYP7uhRJqowBG+iLFi1iiy22YNSo\nUUTdt7RWX8tMVqxYwaJFi9h11137uhxJqowBu8n9pZdeYptttjHMB5iIYJtttnHLiiRtYAM20AHD\nfIByvUnShjegA72vNTU1MXbsWEaPHs2YMWP42te+xiuvvALAnDlz+PjHP97meKNGjeLpp9u65XTX\nXHvttTz00EM9nk5XvOMd7+C5557r1XlKkjo3YPehr2fatA07ve9+t9NBhg4dyrx58wBYtmwZ733v\ne3nhhRc477zzaG5uprm5ecPW1Mq1117LxIkT2X333TfodNesWUNTU1Obz910000bdF6SpA3DFvoG\nst122zFjxgy+/e1vk5ncfvvtTJw4EYAVK1ZwxBFHMHr0aD7wgQ/Q3h3uhg0bxuc+9znGjBnDAQcc\nwFNPPQXAE088waGHHspee+3FYYcdxpNPPsk999zD7Nmz+dSnPsXYsWN59NFH15nWVVddxR577MGY\nMWMYP348AJdeeikf/ehH1w4zceJEbr/99rXz/uQnP8mYMWP48pe/zPHHH792uNpladm6cMYZZ/Cd\n73xn7TDnnnsuF154IQAXXHAB++23H3vttRfnnHNOT15WSVKdDPQN6PWvfz1r1qxh2bJl6/Q/77zz\nOPjgg3nwwQd517vexZNPPtnm+KtWreKAAw5g/vz5jB8/nksuuQSAj33sY0ydOpUHHniAk08+mY9/\n/OMcdNBBTJo0iQsuuIB58+bxhje8YZ1pff7zn+dnP/sZ8+fPZ/bs2Z3WvmrVKvbff3/mz5/PGWec\nwX333ceqVasAuOKKKzjxxBPXGX7y5MlceeWVa7uvvPJKJk+ezC233MKCBQu4//77mTdvHnPnzuXO\nO+/s/MWTJPWIgd4L7rzzTt73vvcBcPTRR7PVVlu1Odymm266tiW877778sQTTwBw77338t73vheA\nKVOmcPfdd3c6z3HjxnHKKadwySWXsGbNmk6Hb2pq4j3veQ8AgwYN4qijjuL666/n5Zdf5sYbb+SY\nY45ZZ/i9996bZcuW8ec//5n58+ez1VZbsdNOO3HLLbdwyy23sPfee7PPPvvwyCOPsGDBgk7nL0nq\nmersQ+8HHnvsMZqamthuu+14+OGHuzz+4MGD1x4B3tTUxMsvv9ztWi6++GLuu+8+brzxRvbdd1/m\nzp3LoEGD1h60B6xz6tiQIUPW2W9+4okn8u1vf5utt96a5uZmtthii/Xmcfzxx3P11VezdOlSJk+e\nDBTnmX/2s59l2oY+pkGS1CEDfQNZvnw5p59+Oh/96EfXOy1r/Pjx/PCHP+Sss87i5ptv5tlnn+3S\ntA866CBmzZrFlClTuPzyyznkkEMA2GKLLVi5cmWb4zz66KPsv//+7L///tx8880sXLiQUaNGcdFF\nF/HKK6+wePFi7r///nbn+da3vpV/+Zd/4ZJLLllvc3uLyZMn88EPfpCnn36aO+64A4AjjzySs88+\nm5NPPplhw4axePFiBg8ezHbbbdelZVb/MO16f5gNZN99Z+cH96o6DPQe+Otf/8rYsWNZvXo1gwYN\nYsqUKXziE59Yb7hzzjmHk046idGjR3PQQQex8847d2k+3/rWtzj11FO54IILGD58OP/1X/8FFK3o\nD37wg3zzm9/k6quvXmc/+qc+9SkWLFhAZnLYYYcxZswYAHbddVd23313dtttN/bZZ59259nU1MTE\niRO59NJLmTlzZpvDjB49mpUrV7LjjjsyYsQIAI444ggefvhhDjzwQKA42O6yyy4z0CWpwaK9I677\nk+bm5mx9P/SHH36Y3XbbrY8qUk+5/gYGW+gDmy30gSsi5mZml8599qA4SZIqwECXJKkCDHRJkirA\nQJckqQIMdEmSKsBAlySpAhoa6BHxRET8LiLmRcScst/WEfHziFhQ/m/7OqgDxBe/+EVGjx7NXnvt\nxdixY7nvvvt6PM3Zs2dz/vnnb4DqivPAJUnV1xsXlvlfmVl78+8zgFsz8/yIOKPs/kxPZ7Khz5et\n5/zNe++9lxtuuIHf/OY3bLbZZjz99NP8/e9/r2v6L7/8MoMGtf3yT5o0iUmTJnWpXknSxq0vNrkf\nA7RcemwmcGwf1LBBLFmyhG233ZbNNtsMgG233ZYddthh7S1GAebMmcOECROA4hajU6ZMYdy4cUyZ\nMoUDDjiABx98cO30JkyYwJw5c9be5vT5559nl112WXv99VWrVrHTTjuxevVqHn30UY466ij23Xdf\nDjnkEB555BEAHn/8cQ488ED23HNPzjrrrF58NSRJfanRgZ7ALyJibkScVvbbPjOXlI+XAtu3NWJE\nnBYRcyJizvLlyxtcZvccccQRLFy4kDe96U18+MMfXns984489NBD/OIXv+BHP/rROrcgXbJkCUuW\nLKG5+dULA73uda9j7Nixa6d7ww03cOSRRzJ48GBOO+00vvWtbzF37lwuvPBCPvzhDwMwffp0PvSh\nD/G73/1u7eVYJUnV1+hAPzgzxwJvBz4SEeNrn8ziurNtXns2M2dkZnNmNg8fPrzBZXbPsGHDmDt3\nLjNmzGD48OFMnjyZSy+9tMNxJk2axNChQwE44YQTuPrqq4HifuLHHXfcesNPnjyZK664AoBZs2Yx\nefJkXnzxRe655x6OP/54xo4dy7Rp01iypPiN9Mtf/pKTTjoJKG61KknaODR0H3pmLi7/L4uInwBv\nAZ6KiBGZuSQiRgDLGllDozU1NTFhwgQmTJjAnnvuycyZM9e5TWntLUoBNt9887WPd9xxR7bZZhse\neOABrrjiCi6++OL1pj9p0iTOPPNMnnnmGebOncuhhx7KqlWr2HLLLZk3b16bNbW+25skqfoa1kKP\niM0jYouWx8ARwO+B2cDUcrCpwHWNqqHR/vCHP7BgwYK13fPmzWOXXXZh1KhRzJ07F4Brrrmmw2lM\nnjyZr371qzz//PPstdde6z0/bNgw9ttvP6ZPn87EiRNpamrita99LbvuuitXXXUVUNyDfP78+QCM\nGzeOWbNmAXD55ZdvkOWUJPV/jdzkvj1wd0TMB+4HbszMnwLnA2+LiAXA4WX3gPTiiy8ydepUdt99\nd/baay8eeughzj33XM455xymT59Oc3MzTU1NHU7juOOOY9asWZxwwgntDjN58mQuu+wyJk+evLbf\n5Zdfzve+9z3GjBnD6NGjue664nfRN77xDb7zne+w5557snjx4g2zoJKkfs/bp6pPuP4GBm+fOrB5\n+9SBy9unSpK0kTLQJUmqAANdkqQKGNCBPhD2/2t9rjdJ2vAGbKAPGTKEFStWGA4DTGayYsUKhgwZ\n0telSFKl9MbNWRpi5MiRLFq0iP56WVi1b8iQIYwcObKvy5CkShmwgT548GB23XXXvi5DkqR+YcBu\ncpckSa8y0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANd\nkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKk\nCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow\n0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAl\nSaoAA12SpApoeKBHRFNE/DYibii7t46In0fEgvL/Vo2uQZKkquuNFvp04OGa7jOAWzPzjcCtZbck\nSeqBhgZ6RIwEjgb+s6b3McDM8vFM4NhG1iBJ0sag0S30fwc+DbxS02/7zFxSPl4KbN/gGiRJqryG\nBXpETASWZebc9obJzASynfFPi4g5ETFn+fLljSpTkqRKaGQLfRwwKSKeAGYBh0bEZcBTETECoPy/\nrK2RM3NGZjZnZvPw4cMbWKYkSQNfwwI9Mz+bmSMzcxRwIvDfmfk+YDYwtRxsKnBdo2qQJGlj0Rfn\noZ8PvC0iFgCHl92SJKkHBvXGTDLzduD28vEK4LDemK8kSRsLrxQnSVIFGOiSJFWAgS5JUgUY6JIk\nVYCBLklSBRjokiRVgIEuSVIFGOiSJFWAgS5JUgUY6JIkVYCBLklSBRjokiRVgIEuSVIFGOiSJFWA\ngS5JUgUY6JIkVUCngR4Rm0fEJuXjN0XEpIgY3PjSJElSveppod8JDImIHYFbgCnApY0sSpIkdU09\ngR6Z+Rfg3cBFmXk8MLqxZUmSpK6oK9Aj4kDgZODGsl9T40qSJEldVU+gTwc+C/wkMx+MiNcDtzW2\nLEmS1BWDOnoyIpqASZk5qaVfZj4GfLzRhUmSpPp12ELPzDXAwb1UiyRJ6qYOW+il30bEbOAqYFVL\nz8z8ccOqkiRJXVJPoA8BVgCH1vRLwECXJKmf6DTQM/PU3ihEkiR1Xz1XintTRNwaEb8vu/eKiLMa\nX5okSapXPaetXUJx2tpqgMx8ADixkUVJkqSuqSfQX5OZ97fq93IjipEkSd1TT6A/HRFvoDgQjog4\nDljS0KokSVKX1HOU+0eAGcA/RcRi4HHgfQ2tSpIkdUk9R7k/BhweEZsDm2TmysaXpSqZdv20vi5B\nkiqv00CPiE+06gZ4HpibmfMaVJckSeqCevahNwOnAzuWf9OAo4BLIuLTDaxNkiTVqZ596COBfTLz\nRYCIOIfiNqrjgbnAVxtXniRJqkc9LfTtgL/VdK8Gts/Mv7bqL0mS+kg9LfTLgfsi4rqy+53AD8uD\n5B5qWGWSJKlu9Rzl/oWI+ClwUNnr9MycUz4+uWGVSZKkutXTQgf4DbC4ZfiI2Dkzn2xYVZIkqUvq\nOW3tY8A5wFPAGiAorhq3V2NLkyRJ9aqnhT4deHNmrmh0MZIkqXvqOcp9IcWFZCRJUj9VTwv9MeD2\niLiRmtPUMvPrDatKkiR1ST2B/mT5t2n5J0mS+pl6Tls7DyAiXpOZf2l8SZIkqas63YceEQdGxEPA\nI2X3mIi4qOGVSZKkutVzUNy/A0cCKwAycz7FddwlSVI/UU+gk5kLW/Va04BaJElSN9VzUNzCiDgI\nyIgYTHFe+sONLUuSJHVFPS3004GPUNwLfTEwtuyWJEn9RD1HuT+NN2GRJKlfq+co969GxGsjYnBE\n3BoRyyPifXWMNyQi7o+I+RHxYES0nP62dUT8PCIWlP+32hALIknSxqyeTe5HZOYLwETgCeAfgU/V\nMd7fgEMzcwzFZvqjIuIA4Azg1sx8I3Br2S1JknqgnkBv2Sx/NHBVZtZ1XfcsvFh2Di7/EjgGmFn2\nnwkcW3+5kiSpLfUE+g0R8QiwL3BrRAwHXqpn4hHRFBHzgGXAzzPzPmD7zFxSDrIU2L4bdUuSpBqd\nBnpmngEcBDRn5mpgFUUru1OZuSYzxwIjgbdExB6tnk+KVvt6IuK0iJgTEXOWL19ez+wkSdpo1XNQ\n3PHA6sxcExFnAZcBO3RlJpn5HHAbcBTwVESMKKc9gqL13tY4MzKzOTObhw8f3pXZSZK00alnk/vZ\nmbkyIg4GDge+B/xHZyNFxPCI2LJ8PBR4G8X14GcDU8vBpgLXdadwSZL0qnoCveUyr0cDMzLzRuq7\njeoI4LaIeAD4NcU+9BuA84G3RcQCih8I53e9bEmSVKueS78ujojvUrSwvxIRm1HfvvcHgL3b6L8C\nOKyrhUqSpPbV00I/AfgZcGS5L3xr6jsPXZIk9ZJ6Wtp/ycwfA89HxM4U55M/0vDKJElS3eo5yn1S\nub/7ceCO8v/NjS5MkiTVr55N7l8ADgD+JzN3pTiQ7VcNrUqSJHVJPYG+ujyQbZOI2CQzbwOaG1yX\nJEnqgnqOcn8uIoYBdwKXR8QyiqvFSZKkfqKeFvoxwF+A/w38FHgUeGcji5IkSV3TYQs9Io6luF3q\n7zLzZ7x6lzRJktSPtNtCj4iLKFrl2wBfiIize60qSZLUJR210McDY8qbsrwGuIviiHdJktTPdLQP\n/e+ZuQaKi8sA0TslSZKkruqohf5P5Y1VoAjzN5TdQXEr870aXp0kSapLR4G+W69VIUmSeqTdQM/M\nP/VmIZKkDWva9dP6ugT1onrOQ5ckSf2cgS5JUgV0dB76reX/r/ReOZIkqTs6OihuREQcBEyKiFm0\nOm0tM3/T0MokSVLdOgr0fwPOBkYCX2/1XAKHNqooSZLUNR0d5X41cHVEnJ2ZXiFOkqR+rNPbp2bm\nFyJiEsWlYAFuz8wbGluWJEnqik6Pco+ILwPTgYfKv+kR8aVGFyZJkurXaQsdOBoYm5mvAETETOC3\nwJmNLEySJNWv3vPQt6x5/LpGFCJJkrqvnhb6l4HfRsRtFKeujQfOaGhVkiSpS+o5KO5HEXE7sF/Z\n6zOZubShVUmSpC6pp4VOZi4BZje4FkmS1E1ey12SpAow0CVJqoAOAz0imiLikd4qRpIkdU+HgZ6Z\na4A/RMTOvVSPJEnqhnoOitsKeDAi7gdWtfTMzEkNq0qSJHVJPYF+dsOrkCRJPVLPeeh3RMQuwBsz\n8xcR8RqgqfGlSZKketVzc5YPAlcD3y177Qhc28iiJElS19Rz2tpHgHHACwCZuQDYrpFFSZKkrqkn\n0P+WmX9v6YiIQUA2riRJktRV9QT6HRFxJjA0It4GXAVc39iyJElSV9QT6GcAy4HfAdOAm4CzGlmU\nJEnqmnqOcn8lImYC91Fsav9DZrrJXZKkfqTTQI+Io4GLgUcp7oe+a0RMy8ybG12cJEmqTz0Xlvka\n8L8y848AEfEG4EbAQJckqZ+oZx/6ypYwLz0GrGxQPZIkqRvabaFHxLvLh3Mi4ibgSop96McDv+6F\n2iRJUp062uT+zprHTwFvLR8vB4Y2rCJJktRl7QZ6Zp7am4VIkqTuq+co912BjwGjaof39qmSJPUf\n9Rzlfi2we+fAAAALY0lEQVTwPYqrw73S2HIkSVJ31BPoL2XmNxteiSRJ6rZ6Av0bEXEOcAvwt5ae\nmfmbhlUlSZK6pJ5A3xOYAhzKq5vcs+yWJEn9QD2Bfjzw+tpbqNYjInYC/h+wPcUPgBmZ+Y2I2Bq4\nguIguyeAEzLz2a5MW5IkraueK8X9HtiyG9N+GfhkZu4OHAB8JCJ2p7h7262Z+Ubg1rJbkiT1QD0t\n9C2BRyLi16y7D73D09YycwmwpHy8MiIeBnYEjgEmlIPNBG4HPtPVwiVJ0qvqCfRzejqTiBgF7E1x\nC9bty7AHWEqxSb6tcU4DTgPYeeede1qCpO64686+rkA9ccj4vq5Avaie+6Hf0ZMZRMQw4BrgXzPz\nhYionXZGRJv3Vs/MGcAMgObmZu+/LklSBzrdhx4RKyPihfLvpYhYExEv1DPxiBhMEeaXZ+aPy95P\nRcSI8vkRwLLuFi9JkgqdBnpmbpGZr83M11LclOU9wEWdjRdFU/x7wMOZ+fWap2YDU8vHU4Hruly1\nJElaRz1Hua+VhWuBI+sYfBzl+esRMa/8ewdwPvC2iFgAHF52S5KkHqjn5izvruncBGgGXupsvMy8\nG4h2nj6sruokSVJd6jnKvfa+6C9TXAzmmIZU044/Pf8npl0/rTdnKUnSgFLPUe7eF12SpH6u3UCP\niH/rYLzMzC80oB5JktQNHbXQV7XRb3Pg/cA2gIEuSVI/0W6gZ+bXWh5HxBbAdOBUYBbwtfbGkyRJ\nva/DfejlndE+AZxMcd31fbwzmiRJ/U9H+9AvAN5NcfnVPTPzxV6rSpIkdUlHF5b5JLADcBbw55rL\nv66s99KvkiSpd3S0D71LV5GTJEl9x9CWJKkCDHRJkirAQJckqQIMdEmSKsBAlySpAgx0SZIqwECX\nJKkCDHRJkirAQJckqQIMdEmSKsBAlySpAgx0SZIqwECXJKkCDHRJkirAQJckqQIMdEmSKsBAlySp\nAgx0SZIqwECXJKkCDHRJkirAQJckqQIMdEmSKsBAlySpAgx0SZIqwECXJKkCDHRJkirAQJckqQIM\ndEmSKsBAlySpAgx0SZIqwECXJKkCDHRJkirAQJckqQIMdEmSKsBAlySpAgx0SZIqwECXJKkCDHRJ\nkirAQJckqQIG9XUBdVn5Itx1Z19XIUlSv2ULXZKkCjDQJUmqgIYFekR8PyKWRcTva/ptHRE/j4gF\n5f+tGjV/SZI2Jo1soV8KHNWq3xnArZn5RuDWsluSJPVQwwI9M+8EnmnV+xhgZvl4JnBso+YvSdLG\npLf3oW+fmUvKx0uB7dsbMCJOi4g5ETHnpb++3DvVSZI0QPXZQXGZmUB28PyMzGzOzOYhQwfG2XWS\nJPWV3g70pyJiBED5f1kvz1+SpErq7UCfDUwtH08Fruvl+UuSVEmNPG3tR8C9wJsjYlFEvB84H3hb\nRCwADi+7JUlSDzVs53RmntTOU4c1ap6SJG2svFKcJEkVYKBLklQBBrokSRVgoEuSVAEGuiRJFWCg\nS5JUAQa6JEkVYKBLklQBBrokSRVgoEuSVAEGuiRJFWCgS5JUAQa6JEkVYKBLklQBBrokSRVgoEuS\nVAEGuiRJFWCgS5JUAYP6ugBJUoPcdWdfV6BeZAtdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQ\nJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJ\nqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoA\nA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQK6JNAj4ijIuIPEfHHiDijL2qQJKlKej3QI6IJ+A7w\ndmB34KSI2L2365AkqUr6ooX+FuCPmflYZv4dmAUc0wd1SJJUGX0R6DsCC2u6F5X9JElSNw3q6wLa\nExGnAaeVnX+bccEjv+/LehpsW+Dpvi6igaq8fFVeNnD5BjqXb+B6c1dH6ItAXwzsVNM9suy3jsyc\nAcwAiIg5mdncO+X1Ppdv4KrysoHLN9C5fANXRMzp6jh9scn918AbI2LXiNgUOBGY3Qd1SJJUGb3e\nQs/MlyPio8DPgCbg+5n5YG/XIUlSlfTJPvTMvAm4qQujzGhULf2EyzdwVXnZwOUb6Fy+gavLyxaZ\n2YhCJElSL/LSr5IkVUC/DvSqXyI2Ip6IiN9FxLzuHNHY30TE9yNiWUT8vqbf1hHx84hYUP7fqi9r\n7Il2lu/ciFhcrsN5EfGOvqyxJyJip4i4LSIeiogHI2J62X/Ar8MOlq0S6y8ihkTE/RExv1y+88r+\nA37dQYfLV4n1B8VVVCPitxFxQ9nd5XXXbze5l5eI/R/gbRQXn/k1cFJmPtSnhW1AEfEE0JyZlTiP\nMiLGAy8C/y8z9yj7fRV4JjPPL3+UbZWZn+nLOrurneU7F3gxMy/sy9o2hIgYAYzIzN9ExBbAXOBY\n4BQG+DrsYNlOoALrLyIC2DwzX4yIwcDdwHTg3QzwdQcdLt9RVGD9AUTEJ4Bm4LWZObE73539uYXu\nJWIHmMy8E3imVe9jgJnl45kUX6IDUjvLVxmZuSQzf1M+Xgk8THEVxwG/DjtYtkrIwotl5+DyL6nA\nuoMOl68SImIkcDTwnzW9u7zu+nOgbwyXiE3gFxExt7wyXhVtn5lLysdLge37spgG+VhEPFBukh+Q\nmzRbi4hRwN7AfVRsHbZaNqjI+is32c4DlgE/z8xKrbt2lg+qsf7+Hfg08EpNvy6vu/4c6BuDgzNz\nLMWd5z5SbtKtrCz271TmV3XpP4DXA2OBJcDX+racnouIYcA1wL9m5gu1zw30ddjGslVm/WXmmvL7\nZCTwlojYo9XzA3rdtbN8A379RcREYFlmzm1vmHrXXX8O9LouETuQZebi8v8y4CcUuxmq5qly/2XL\nfsxlfVzPBpWZT5VfNK8AlzDA12G5f/Ia4PLM/HHZuxLrsK1lq9r6A8jM54DbKPYvV2Ld1apdvoqs\nv3HApPKYqlnAoRFxGd1Yd/050Ct9idiI2Lw8OIeI2Bw4AqjiDWhmA1PLx1OB6/qwlg2u5QNXehcD\neB2WBx59D3g4M79e89SAX4ftLVtV1l9EDI+ILcvHQykOJn6ECqw7aH/5qrD+MvOzmTkyM0dR5Nx/\nZ+b76Ma667d3W9sILhG7PfCT4nuGQcAPM/OnfVtSz0TEj4AJwLYRsQg4BzgfuDIi3g/8ieKo4gGp\nneWbEBFjKTaHPQFM67MCe24cMAX4XbmvEuBMqrEO21u2kyqy/kYAM8uzgzYBrszMGyLiXgb+uoP2\nl+8HFVl/beny567fnrYmSZLq1583uUuSpDoZ6JIkVYCBLklSBRjokiRVgIEuSVIFGOjSRi4ijo2I\njIh/6utaJHWfgS7pJIq7V53U14VI6j4DXdqIldc2Pxh4P8VVqoiITSLiooh4pLwP800RcVz53L4R\ncUd5Q6GftbpSl6Q+ZKBLG7djgJ9m5v8AKyJiX4p7aI8Cdqe4utqBsPZa6N8CjsvMfYHvA1/si6Il\nra/fXvpVUq84CfhG+XhW2T0IuKq84cXSiLitfP7NwB7Az8tLFjdR3OFKUj9goEsbqYjYGjgU2DMi\nkiKgk+LOf22OAjyYmQf2UomSusBN7tLG6zjgB5m5S2aOysydgMeBZ4D3lPvSt6e4IQ3AH4DhEbF2\nE3xEjO6LwiWtz0CXNl4nsX5r/BrgH4BFwEPAZcBvgOcz8+8UPwK+EhHzgXnAQb1XrqSOeLc1SeuJ\niGGZ+WJEbAPcD4zLzKV9XZek9rkPXVJbboiILYFNgS8Y5lL/ZwtdkqQKcB+6JEkVYKBLklQBBrok\nSRVgoEuSVAEGuiRJFWCgS5JUAf8fDd+qD278eEEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('full:', 891)\n", + "('nb', 421, 'percent survived', 0.17577197149643706, \" in cat Sex == 'male' | Age >= 10\")\n", + "('nb', 351, 'percent survived', 0.18233618233618235, \" in cat Sex == 'male' | Age > 20\")\n", + "('nb', 205, 'percent survived', 0.15609756097560976, \" in cat Sex == 'male' | Age >= 10 | Age < 30\")\n", + "('nb', 144, 'percent survived', 0.1388888888888889, \" in cat Sex == 'male' | Age >= 10 | Age < 30 | Pclass == 3\")\n" + ] + } + ], + "source": [ + "def checkSurvived(data, filters):\n", + " all_data = data\n", + " for condition in filters:\n", + " all_data = vs.filter_data(all_data, condition)\n", + " \n", + " print(\"nb\", len(all_data), \"percent survived\", len(all_data[all_data[\"Survived\"] ==1]) / float(len(all_data[all_data[\"Survived\"]])), \" in cat \" + ' | '.join(filters))\n", + " return all_data\n", + "\n", + "vs.survival_stats(data, outcomes, 'Age', [\"Sex == 'female'\", \"Age > 0\", \"Age < 35\"])\n", + "#vs.survival_stats(data, outcomes, 'Age', [\"Sex == 'male'\", \"Age >= 20\"])\n", + "\n", + "print(\"full:\",len(full_data))\n", + "checkSurvived(full_data, [\"Sex == 'male'\", \"Age >= 10\"])\n", + "checkSurvived(full_data, [\"Sex == 'male'\", \"Age > 20\"])\n", + "checkSurvived(full_data, [\"Sex == 'male'\", \"Age >= 10\", \"Age < 30\"])\n", + "t = checkSurvived(full_data, [\"Sex == 'male'\", \"Age >= 10\", \"Age < 30\", \"Pclass == 3\"])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After exploring the survival statistics visualization, fill in the missing code below so that the function will make your prediction. \n", + "Make sure to keep track of the various features and conditions you tried before arriving at your final prediction model. \n", + "**Hint:** You can start your implementation of this function using the prediction code you wrote earlier from `predictions_2`." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 80.58%.\n", + "('nb', 314, 'percent survived', 0.7420382165605095, \" in cat Sex == 'female'\")\n", + "('nb', 81, 'percent survived', 0.0, ' in cat Survived == 0')\n" + ] + } + ], + "source": [ + "def predictions_3(data):\n", + " \"\"\" Model with multiple features. Makes a prediction with an accuracy of at least 80%. \"\"\"\n", + " \n", + " predictions = []\n", + " test = []\n", + " i = 0\n", + " for _, passenger in data.iterrows():\n", + " \n", + " # Remove the 'pass' statement below \n", + " # and write your prediction conditions here\n", + " if passenger['Sex'] == 'female':\n", + " if passenger[\"Pclass\"] == 3 and passenger[\"SibSp\"] >= 2:\n", + " predictions.append(0)\n", + " else:\n", + " predictions.append(1)\n", + " else:\n", + " if passenger['Age'] < 10.0:\n", + " predictions.append(1)\n", + " else:\n", + " predictions.append(0)\n", + " \n", + " \n", + " i +=1 \n", + " \n", + " # Return our predictions\n", + " return pd.Series(predictions), test\n", + "\n", + "# Make the predictions\n", + "predictions,test = predictions_3(full_data)\n", + "print accuracy_score(outcomes, predictions)\n", + "import pandas as pd\n", + "#testdata = checkSurvived(full_data, [\"Sex == 'male'\", \"Age >= 10\"])\n", + "testdata = checkSurvived(full_data, [\"Sex == 'female'\"])\n", + "\n", + "surv = checkSurvived(testdata, [\"Survived == 0\"])\n", + "\n", + "gb = [\"Pclass\", \"SibSp\", \"Parch\"]\n", + "dfall = pd.DataFrame(testdata).groupby(gb).count()\n", + "dfSurv = pd.DataFrame(surv).groupby(gb).count()\n", + "\n", + "#dfSurv / dfall\n", + "#dfSurv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4\n", + "*Describe the steps you took to implement the final prediction model so that it got an accuracy of at least 80%. What features did you look at? Were certain features more informative than others? Which conditions did you use to split the survival outcomes in the data? How accurate are your predictions?* \n", + "**Hint:** Run the code cell below to see the accuracy of your predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 80.58%.\n" + ] + } + ], + "source": [ + "print accuracy_score(outcomes, predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer**: *I got an accuracy of 80.58%. Initially i used the filter function to check various features and compute the percent survived. However, to get a better idea of cells of survival / death, I then moved to using group by count to compare dataframes for dead against all female. I then tried to find cells that gave more than 50% dead females. One such area of cells gave me the result - see code. Turns out class 3 with more than 1 increases your probability of death as a woman.*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusion\n", + "\n", + "After several iterations of exploring and conditioning on the data, you have built a useful algorithm for predicting the survival of each passenger aboard the RMS Titanic. The technique applied in this project is a manual implementation of a simple machine learning model, the *decision tree*. A decision tree splits a set of data into smaller and smaller groups (called *nodes*), by one feature at a time. Each time a subset of the data is split, our predictions become more accurate if each of the resulting subgroups are more homogeneous (contain similar labels) than before. The advantage of having a computer do things for us is that it will be more exhaustive and more precise than our manual exploration above. [This link](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/) provides another introduction into machine learning using a decision tree.\n", + "\n", + "A decision tree is just one of many models that come from *supervised learning*. In supervised learning, we attempt to use features of the data to predict or model things with objective outcome labels. That is to say, each of our data points has a known outcome value, such as a categorical, discrete label like `'Survived'`, or a numerical, continuous value like predicting the price of a house.\n", + "\n", + "### Question 5\n", + "*Think of a real-world scenario where supervised learning could be applied. What would be the outcome variable that you are trying to predict? Name two features about the data used in this scenario that might be helpful for making the predictions.* " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "**Answer**: *I could use supervised learning on a set of bonds. The outcome would be outperformance of a bond against the benchmark index by 3 % over 1 year. Two features that might be helpful to make this prediction is the credit rating and expected remaining life of a bond.*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +}

      ClE? zY?Itga=viH2GgixOC_L=_RvOEiFDic(SMr%adqtrj1oriul7v-6F))G2!HI*;Pc)!^L`5v$~xmrzxV+S z{CLe{->1wF(3S^fB7xf^xJRHzx#Z z?&}18o_BB@eK3yxbMiRt{NEmTi}?-6@T**Zw3F_GqW-tgzh>{U-w%lK zFMIdj@;LtKF7kVOr}|Suv7df$P~g9JJe~e?_UvH4ta>wW<>%dl68ww)XBzl@Jl*}_ zKdbfc`v&_t?`K@}?*XPd_o}c?R_UM?Vqp4}Bp2KL1oo zF#l9c$k%7>Mz4)tZcgjBc)4zL6H*i?;x|wC+uwjr23ppjew2UP_}SP7y7sSraq#8_ z{FB(9otJI%WuT_z&jSJi2CfkPlh-;pz*qg`^P&cLu>m4f7c{V8`IFBcGLYE|ALJ(t z@Krx~-AM!dPtkv#^K_uQWk?C&JlV0`QTao_^sp9ZM7keKjq zJ@>bH*?%sdEb&|UkOBE74jd*lNH_X!@LB7-af{bBC(1x~#af?@Yu9;haMIIfe&J^R zM~eS`S<+a-tMx${XC`Of7Hew;}-Y-Sp2W; ze{v1%pAimcsGS2FS5r8r!2)}DgrL4eH&p+lf|IH90-ui@!-&q0*HcCRlr#SF)oecaY$N*=fNx&$Qh;M|+g^2=CW(XeZbSjThHFmx_&_oMst))$4qH&~qS>~Icy zUr&TXAAhHP=6UmzBBnBCUgG$~xlnrc$ur>G>BAuH%zBI_WRU3NZb&3y6{%4giqwbC zC0dF3WKH>8@^$WcKrK=O7Eazk53D3M)~m@O?S;6beIHR3e+y?PeMfe>!c>;-L+F?F z4HfUWj}qZYymp*ASOTt~t(S*^tw&yAAO11&m9r0L9T9^>TL=@s$GSYj{5!r^ z)C#g4bvOadA;7?P6Nw!%hulhbz&G3Vh~+9pTIO;$n)78gyffwkbp9g5BI#ruwC=#^~;|pcIAnOMMw&X{H^ItxrWjjA2bG1xlczg(%`{oGj z&UZwqH$`F31rGFidmB!bRC8_MI2ps z%cY;pR)t;b%n>UrfyMp(NnnF0QjX9k((*#+g`ONy-f))OZ&xFhDgEF|t~Gf2eFa+- zJ&|Pi84!NcM!d;*4*9xTh!+0#0SSlAg!7(`r_*-t!2IDU=&@KjZu7PRb0vDvttv<0 z6j6!c_%vcQ*A{noKo~N!h`Y*i4|{zdz>ydB;p@?D zP8rJ+N9m+vcOz|=#f1+7Rr!{6_b?NfNOwLjqI)NM@Q>Vw%#{VXxM`Ls^T0C#zHr`* zr+$~j7y81;H<#&vX_X;kQ{Gb|4~7#a{T#7e(1`tHq+$B^x!l&7A?T%-JsEwRA@*KY z*lnW}sfe9IuTc3TuQYP`wH26tDSrXHA#2KR(V;(bXF@9jK>^ola^o}i0x^@an;Oi>(O6tRbUVyD2cu8Fwm z@K|D-dJGi(IDmN`nZVp9f@r*oB{7>Sa6!8-RL~Rxyy$2kG20YpSyf`)3neIh+zqzh z(vt4odXlZaR0k64MCePeh54OJ$1(F(l#@G&Wh4cyrsHuZ*>UYEV|TBSgqPeUM-QB% zd+ZKE|Eytrt;a{P?Qn{Yw0=sjRI=d9T${vn$K6M0ZUb$VtpmM>-azw@55vpW`w$`K zc)_XcZ#Xn-F=Z+G5mRBuiPEHAOl`3fgu?!mk-q{Mdqg{BxRlp`;5HRuOB zD7;FYhT`ilLe+P{+z9b;c-HI9*hEVk`SEt3?b6pcdQ!c3Q)8r)g218$2Cy- zejVVTj28YT{TAJMR*r0CJ}MG$ENy|sb`|4LTTASY?y&Py9q0*%I;ottFr-lv z0fnSh_}@6=nKbuMa^`wFF~nzK#zHaPvUN9@yR}_JdDmoK&f^F4Y;OtJ+clcMydGiW z@N%eoeh9OFr57K+oXVsqTH~OV1$4>Er$8d6nDuxx7ndoYAXXQ|kkIM{WGC)ob(2lW zmQ7 zH)mDx9Y;)i>`{)(s9tO|Hl6IgT8R&R?*WeM?o%JFx&c(z!d}~(k=eUz zXn}?jaWzhWe(vQc+$0Ya7dC^SSv?SZO~y@Yh7lp}{rP6^P4N)-3!w6HDaqE#AifS? zG50e z(8#IG_v5p1$l(Hdr`;W(YZ=e>t5{*>{b?jiVl2|<&L^E4-?3fW&4|<#mMAZPWa^1R z(CqMm{W8_^vjkYuwAh&#W9 zBVxaa8+A8~rGA*A5SlHRxlatOGdK%eVw(#B(NXFNSq{AYoJp&A5}Y*7Xv?r|Y6Up-{?zo&s7B^@|UIF*Da?S*FRg4lu< zY4}v;7$xi@&R(uq&RTqGLAY|SzED9bnm=oLK}eJbN;T|8&Rea}-DrDC_3l0Wr>24W zkzFZBW!Wio@RK9ED=ZZ)n8pCNCmi;Z@D^(NoI`N;gCIj^LZ`-ef=iokb1JptSjo^m=;nb=B(eu3(tpT9(!2`k9)AU5 zIobO*}f=MK|gX|D$LN-YEZkZnT- zJA!fZCVR^M-DS3L-es88v;g6?CqUDq6R_ctC-2&t^R&mVP$H9bfQ+dhPxqZ#LQG7p z88yy+Qr8%YzK_{V*X;+usW+ZyBQ1|tEtjU>1clKb%<_5nT$5?*XWDoym`5AQegIYc z`{?O}26o-YhqyuS3^hD61RDy+P%nqt;5XI7iA94Me*U=~oYR(~0BXZ^*J&hA<7zcy{qiN5Hew2| z>Qe*ludfc{k|p@;E`pa1LC~>Sj9Iv53qQDDhmkR}#)r1Cv`+JV;Bmj4jr(AZyT}PL z_M9ZDl3YMkdmpi9y=RfHqL@U!rpei$GT^h|J>`|p0nsmP$@D$TNzb_zSb3o@p*M)o zxh{(M#^F7nQvU)B5s@j-zB2(o-0q2?hc4Rp#2*c-I?RFV`*5=HNs{hRh5ed@VENbv zsv38JkISdv!tPh7f6+Dcz*&K)?M;BS+so0Zhb(w9?*-^j?uJ@DNx1ppa8fttENAhx zdH8^P9@skK3MpyLB()je@X^Q15$;31sHIi0IxI zMvJv(k$qZ-h%%7mpDY9GT3=BD8~|K@tRybAD@efD<=8`h8`0G4hYhL9xTg9b;ID~< zOS6+vu<25C!$uYhg-hriX);88)558oXjg3AGmXreI2B96JOE}+pbGtZsq>#Nq56B( zX!q!~NKHKuw?tV&;e*zwG~gk4g~i|k#p7U`K0!@^T)ZyQ4!n$*jP*6P0`}bul4N5@ z&WG&5j(jaBoS#ogeX^rC`QHUTKNQQPry-La@<=^Em=1XslYczb9{5=2!-YL(cxT_= zrX$T=NxXdsDV*~S9($5V;@fizL_K0L}wYS`@}^*W)UBKc1PS+UL2a}sEsvsT~NzmH!AOPWq!e2 zFZPnqD^ylmij-bHV{3g1kWz9g@KhO%&gm*#4xh(kK;{?hZD2@U7TE33;Z^}0E~1jCD1mLoNNAy=bTD|mO9~}&`=IuE1H96 z%3i|qxeIVi>rHmJApUFE@QGSo5rO8+Jp|{fsPIQ-DKl{=gGs4jE8$&8g;&zVc>R&p z%!YBV$l@7Vyu$E%^g2HUxYl|!KPeaE@?C{6)nEuS>5>=!`kZNu?N>|O^rL`o3~vN| z!Drb|NtW1e@d=W*KmtuayMS2Nyk&#a&B)UCESVDr$^KDSLB0DM%JZWhNav-A;uyZ8!#WGj2!f7Yj-qiJ|_U$`v7k?=gzuExMF$>wA1WB-Yg$EGU^gtF% zJE<$~LYULW08N)fWcRL_3S7iRA&;!_jmZm<&*mc_AToyYy4n}HPo&UW>$~VxRxu}h z$tHH%k7017;~v)TjW8H0dJ71rTqII*Z(zgO``86M!7b0y;K^0{@tOz8^ySs}1Q;_8 z&5o#r@_zHsyU~wGyrvdfwCxZ)?^*5)R(xp1Kqq$WB2YLv}eO?uz9yJr_0iv4X}~J!U}!J@t^`S5AsKa zRy=^){Mo2TeK1x&R}eqnE6}>Dg3BIz;PY4?b_9`auA#iCibSb50nR>BftHSDLHFBdKx)oASpM=jUbt#FQPp41 zxiZxPw+9!1^!!pnZOSCJpT6R{^fYL*D;&I>C=cHi&cRzg6yj0R3$a#54g39q13km} z6BU0m5>+=Hgfk6P_=+*gj2|bM@Kjp~yD$Zg$rj_er&TkHzrG}|;3@QxkC#M-w-=DR zq?=vWWJVli5Ya1wM176Ge_VP)!B_ggqjxze&0kKOJ(lD8soO~793lFcwh~^iybp9O zdJVlYN8n*cSix$GLD;T2g8MGy7&;c#LOlsD#qPX#G9ob=m!BUFkMqnZoIO7dT_wILNnA!Beg&k}K>1G|zN-PQ_Nhi<-_N1y zNv=2`axX`uHU+spo=dG6l8;@|LrB1p5FBnO4z;@(O7!dupe-Va*Ewn76*cK7d+1qg zdoKzee;tGT5+_0*b{RBseF!c4f)>KE31F)2)D5f1 z?s|JVAn`i6Vp7C}Xm^o5wwUO&7t$qP7DBa)A9%qy6T6(AMK3)PNH^a$<6G$}Fd^Nc zNUiP)-P|%0p50N1oIGXmwo#jjs?#`5nzRD>v^tYjOBN!hY7Uc89nbLIyLW(o)q2Xg z>og~7@l5h{-ehue9)ryyWf)d|_e9VCk>$7%3bj|SDLo`DMG+R%3a z{wVRZr$pXgW+z)-hI1b;K*H-zfWoE|aC(y`PsZsy{aAoMHVg1av;cqXIK6~?7T}La z0sd&Z7m8w}H`5J=05~JSA5vrG@pS?IxGBIN%V*{D=D8))o&x-FNq|3;)P!W1crD!*$sr(#C`==TY`lCL6oyRjcE;dO2_VKXpI|D;IX1@$5{&76) zA3KldkNWs;8!x2)-)JBIZThhJXVk|(`S9c)#QS4={(JTB?2QA@>wiZ79%$u4g1LMH zzd`=`y^n?KTOIm`w*w^BP#9tR;VDfvx(Vc=<4C3w0* z8Bdg72Clh@V`-yMP;e<7bvQ`^GZ81W)ObCP^NB(FlXrn<3pa9`Z>XRvVfrZX{b!WX zx|FJ4q>K(+odQ*>#HhH=hhXva-HPRy!LhmvjK@6U~!C8B`@V@>B>=AjC?uhBe z%MD+klqJvLsX1KA`kFjX-_{O+`7ES#j?&ql@5u=lA-dsZAP6wR(0zF>;6~m=>5X6Y z54;_4E&X;-+rkvK1e~GaqAzsT!^hZj!UU|gnhP~;+p(BmEaCO1f}4|1(`JpgVE26% z-Ahj+O>OGbmwBgQ-sk?fC&B9V6QS+fqi|)mFwD!7gqtK}C^4pzZPFVL>rOZT|Jdyy%yl<>5_uRXKiUeD zWxBxKr3;~qV>&8zUXGsBx1z$!k60N+SwY(};Wk%Qr=8FPK;&CYKLL+4#q1#?*g0CTY!vfuPn2A^ejO1^_q|Qko zOwSl)p4@{i3+{2>h{mJ$m6o7p#C!Z^C`-(a-NvhYw4vXS!@&8iDU`7;N0#&DvF)00 zq;hsY@vJ!kyQ7w)_GDQoH+c+{|0YLo?ufyy6Q`4Ir!1;9Cma{1w}S%V7C|nsoXjg8 zP3|q=L+7|lApMzO&9;i=_*hgsR7ilP}pa8vAy$VC*JA;v-dPp`YB4d`w5STH{WBoF4{zDayN55jyRD$Uv7~Mb8{lZ zc7liF7Xq7@T5$Y@C)xkekKEm1ich|ZAU^aVo$%*Z5x+gq=rE7GD+FP)1XtyKrB zdJiHi|J_u!$|7Xxdo>m~J6}s+ zk9=BzghNVD{P;|CE-(&$UK@>TbF0Dg+EIA-^*FF(*=Vd8cocW5({mb@zG5PUVR2i7v<@1=7u0;XIV^JPQ*cCGwFguioEA%#RTi(U4jeG zUBt&eo6za!o`Po&MPUEM8F<~UWu$1X6*Stb$e0G5!Tw;w6Gw-FkvKUyG4BrHe1OHUZ}~Q(=iqAUK=mP0J-@;li6+fMtR{_Hf`} zx7~GkciC=e6F!qp%?U#pl}XSKzD1>}cj(?XCA1v=3fFx&hhyFd`uUitc&NyFSjY52 zp0Wmf%GnH8KiNgH{Y|(+ZR07Q(tLb5OK+yn=4CuFzw`9I@4`%@q$tso8PCuqoxG;- zmvqT{GbTKJ2+!ZL00~CJX70Vmf%mAfgl?7Pt-Z5tW=*jfFSnA0#j{$-J7pPs;X4OB z*d+sZIbNh~Joj)`e_277g%4$?uU84leWUQYqT#+M+XG<@_8|>$!9p|#Z&PQ_4Izt51+d2Ti_2JwPy9gWRc+nOh z1S+VyqwjB9*jw`!q3XurFr__$K4`rM7iJsMXIheZPVI94Lb8b!0E1`^tJoJ31*Q;T9^lBmz38fcVe477GyLcchA64p0=M!MEJ z(X!e}_{9em;IwNwxTm54JijT^YZvL`*u6v9a!H5^eV?&QCUxN)O5nquCqPQfi#n=% z6zshJ0$J)t(pe(w>B;Nv!&8qFu=8Sq@H$tVHRTL=oVgS(4j&C4XjX!HD|wQ*yAVCi zy$#qi21v8&8&e=`%UkK51a%4z(JxOMgDZ6+%%QL)yb=vt`ntnpM#8F^FjtO&v`y`d zje#Ms4#CJo)|OWmH+1F=jrXK>HI3wK3`kY;XZG9@VYK(zW?=As6CL6mO8xjTnbrsu zXLqKk)9*fq(9g5R(^gaNqWd9h(CW5Qq_uwtJu*+1X63p-akecz|4cDn`XGcg<5Ha7 zv-z;cWhcs*Rlu1gnA2n@TS3*FUV@e!)dq=b2XI}L3#q=p9m~dzg64Jr=+#~Y59>XU z?w1i*Z-YMSPa92QYc|39^?TTW1T~oMJPq0|v4k?4vQX%{kH6))fpo|Q{8Bd`Fp42$ z)Qo+kCk~&9vets;4DvCV-CP!U@CV4$P z@vFK_aL_?wL(Y+YcRAYL?*S=Yf0QXcl|hcJ7{Y7zD58%VMT4g%?|F7w_mH%(0)6n* zEBZ~V0{=qSD8_7p1jk)FgN{#@fa*qJi09~y0*5%0$Yuj7Ynl`}EIgXZau6Y*o(G6( zK^wlcz6!`b83F9!Ot7Y3mROFPNL(37oHs<3NT|2KV*9h`@FiJzHYWnU9XA5|pci0Q z|3mbkb~C6Q)50oV#bCdZ7n&nohfR0Wc;4GJFsfq{=$?HI2vIql=b`N=$4r$f6Q2y5 zq?BO!=y0%ijxsDRQh@g74x_3K2~g5G6JL^%gp=n_z?b(0z#(^cVVEgFZtZ%4T?#8< zk6J27TwDXzmH?D!5{}=q)j)s2W^8lt4(!3r0;^#N$1FYuYZ5AWyZL7r`zj9-Yn4ns z1q#!TyT<@?@*q7j~)VCv2cz4o6%$0Go^C;hSI;*tl#7xRa@hT1D@oryIAjK3rwg zRUJ)b*o5JadFJHU%$<0Qa{|zvG8v4myZ~MYE=9_Q$>?O*)Jh{)BTvga4NLRT?-ChjscFD z_mF6s6Xw2?!OHRC?4HFUbljtM3WUX?!+q^y~DdU z2@&a%A84eC97#Nr1XYZOVP}_aswRB`qCc|8f}ILtyClHb^O$<7w~(^19?!Ywt_1rU z9>LVn`tbDd*Q~$va1>P#i?sLOqe`ARQ_uO;)SI%KFeNPku~Sv3Y{ygj>rx9i9VrB_ zZdZlFyla4BpFUvQMu2H2u5%~pkE3(K+hFiLBebl?I`p(}kIB~&bx>b{ zrOzWt5+5eT+8d}a2EL*od-H7SZQcxg=)`fR&S48NNl&M89v{cc*B5Z;?jy)&#u1>p zqYEZP_fk(EoPlL|EmUi38Z^D}1==i)fpv2#^>NsBc9E$#YAV_dD`Zlkt%o;gaCit$ z%xOZsqTyiACuwk4w+r;Yu|)>61Hfi?b<~^c3Hq+zV4o=3QOxuw;QYOMu>9d!;JaW1 zP`BB}(W{C_B3< zFj%5Qd%r)2q!xZ-S0r4(YbNJXC5^YytBPpQxLcCg7d4Y7C%f>AzU^@Os2DJMCr3k37LWM&?cR^^4)1n|m7=r9eZdq9<`GyjZ&2kt$% zho0hW%hZ25&XGq102fu`>sq6M?n@!Zgd#M@y%N9sm65ex0-1bFWx zLxqR%x|7$D;-|WBqyHQrax4Qxj6X_pvW^iW?HF7YbeufTTuPIT=J@E6_0V#`2h6w) z1#OQsL0)<^>?{4weeRSAoVX6?+N{qoq_L1*?^+G*_nY90FM^PGJHS&~+CcF!0C%5C z0wb@7&^${Pi=T7`=Uol4`5p_rnsngqk9**Q>xT5QcRSILeaSGy>phD5&`ev?H)%gb zNqXsqOW0;@I$AiM#vL~{!D}~#=!#>eFfYLc%JIX=`-lFl>aj80sF`)xFVbvgRhAcT z-RA%HU6()>!RZCb*ts~^epbnQSXrf{Z`juCu_rw{{5mv_r~ z&&)Ue%Xup{J^|b2z9EdmWGt<<5(Gw%fzi!8+TEd_)9>U?2cFo^z1QzR8{c_AM~2Ly zQQRneCR-1Ezf_85RQl0n(!1#SLtNnMhx=)YuS0_QI?zK}0e|e?$r=q)1(x|k(6+H- z(2)CGY~7S?Y}WkAtg@sa|1{4A2ggJqA*0{|)wA{aE~B4tIG--FYl<|v?9%P5hGGB~ z7F$bM$ev-vLK(DKP7+Zwm7s6VZIoptiZ-WyV81H*QsYieM2lKj>~dHe-`Vi zo=>H|wwin(8hdDEm=a3ZaJgS5}_c8~KIH*E~yFeaW_Xx;0 zA4285hrmdseAaih8x=id9+JL14_91GVdX7rQB{5?yX|B%O82+Ly><^#yJs(Jvuh^1 zT5K842R;Y$0k!%u2<20Y=Yk7_rT|b4G1~U1+T`Zp%dHY0A%{ZGR=K$rFKDV-w*0 zZSk!2%lSAwJEK6C8;#RS??As-5N2b4*7B7#$T#Zd1>~eNlhz}wD?Xbn4B=6E`{a1< zS3Rbck3Gd1zPh}NX-2sUer&!yuvS=xdr4lKvczb^8x zxu%5{1&%J5Nl$Q?0H^Ecd?ZqrOW|OGky(Cq< zfA={O@^-cUhQNiSwk?Os7(biXyVa7-lV=jkr>an@fk!#d^97qMw-NDqf*j2)f9w_J zPV(*px*$RmyWXZ?L2fJ*IysV+Jb0D8-#G;{F9SIuPL?Qv(@!~WiN}Y6*OSTLc4Dpe z79e&<6SzhLw(2sF8zzOn-%Q18=eD6ESLN|KrAhP~ znIK9*X9zns%ny2>dc}M3VK}3=*^$__o**xUZwWp-bCsxFI>IC=CzCgoqP#6_S@df~ zOR&!5A#YoJ4f-(kA$&D0leRvq!aoRwnElQ3P|(%GbhJS&uoS#HQloJRtyEq|N;95t zpAMHGPK{w)`>#XEv`>2p&+sLdJP`xr)9zA!6I_7EczM!}6o|Oq7(6#vjojZ~4VO54 zLM6))c(ZpN?2Asu24gRQH|2sk7DGdUP{1bEU3V2IzpDt(pi(Hh`T(3Z!yW|R*p22^ zUP7Y1<(%y<$I!L(4$8>|&?)8`RLadH>fm7^*mzV8ItSYl`RS*jgsK9TaMOX%whqaE z7T^}wmGmm-e5ik)14GLLP=DQJ^x9`4_9NnKPIf+8{LB?fBOM&)r->(A7C}`JIdETQ zGF)+fCL{Auo1PlzL`=hnk;V_Qw9U$q$d%G2J6naYR<0By#9DI~C@UjtkEx_~nJ|*d z`UWox-Wk~bW_#JRIEun*vXO`}A$7B+>|^tIJ`o zW)svhItg#b4TbS@C=}ANfR$XU4a58o!=PsXjGd%No4!zk${JFz;)Nx2FPX)TnX?1M zJsN}3FVqxB#0g^;k1%#d(F8Wg=ROK(Im-3O69!pxJ;2I|6HxQzFe+-fIAs(k&Y32X zN%h@bhrG+1^ywX9==@G&Af~dJg~^F1^?(e9yi%&Z*a$mBA7iW3t=T)}I=Jek8I@qL z2+Yl6L2Z{6a+VkdM#jogMoV-!Nk)6Xml@%xNF$L0Un-(~rc>c(BWt{-J%~^eH%Yf+ z3VpOwN|1;W7JMN@0fvx9STJcGUbRCTzBJ6oG49Ktm~jRQ?k_^-lMT@og$TN`G8fNQ zh{oTJbOHS&eLCS{KAXD72|Ye1Xc^b?^gk}#fuCK=WN%#dV$ZBe#__u=xitowfEil} zE-asgu1J(nFBd3L0h(9zgB1{!8WE0!dYbj`-84exYZk)v$#LMcX9nU0H-Kw1c+{co z`;e;nWp-Mf5!>$Cf{MhG0SMGY*(JrSQ z99p*+ip{Qr{&KQpwb=yR5IB)K>@N#dxpiF8qi;~8Su7PbTZHD7-$9I%V2)_`V*C+K zq9>;pfT5m8(b6Ms;Oc}?U~$AWoOJL5+kB~;6@CziC)&LQLerA-%)Wi6OsZER+ty&p zcKrg%SSO!_V&cGZ=@UwP`a3F;GG)~@&Oz}4AJp2JkM?+u#adPA+$pK*7=t0mQ|BD# z?Zg7Kzafo1e`FEZVf6?&){R0kd{69<0EoNXrgPr!gY157I>KzwJHQv1*)(q`3svE?EoD6RlokJ3D|5p9!;08ww-agiOL#0i=4+RE3_7i)9q8dia)zoimNWQ4(B z*PUqP>1delBu0WS?1eqoL~x&u3`fkE!3~N9w4Gx*)_HXnclcz(;Hp??Jz_ta5PBTV zkQc(;#bPXb>NNgdI2q|KP~^NngYnSY(d_)4TYZgy)+Bjo%O)CEhAAwzXW+tZRV~SGM(I#4M%D%)6qkL-~fO z0DH|Rs4!n)6b*$%S3%7_DSF}N2XxkoHu8G3 z5UrQlg5m0V%yTxzM=kOgjrkLK%428n<{u8Fjg+&X?73__C(ZWb4H;P>t}d#Wsx9Ts+zwOh#mduBK5 zmt)92Ny()+mo!<8SQCXHOADUyaoRgb|3ZP(G=I49`xDi!s(?*prg<)O{6 zPprX~IRw@>LYqeiVZXy^@a)PHjIV1VqX0WF@>(!hx;Kw4+z zYUZrY#<%P=i({xO%^7$%9A!85da`y0)2X9#B3b4A^_&mOkF&E6by3}ieDTX|E8v** zWq?yOimomZXFbR1(s$hsgV-opaP9F2K!S%tr%$=K%^Bmb9x5=t;tASvP93!_nTR$| z&PMy5#z4nqdq9tyV63**0<{~2!n2Wvz|!Ob?GTrW3Qp(goX{DthPNKd7e>K) zTUqi(WdiAGwu0t`x_DMVGi!N#1^ROH6V9oK0CJ<0k@vTy@X}pnyzATvx`xVQHn!Yg zjz68i%iDO4R~|NUrkz9)ws;hYO~<)mnc^EHB%*`%nIcElUuuRyVoi{7jDzlZEYGk_ zmMJn&XNGs~Bx@gk#H~`vFz{IdDD+=Lo82sDr_W5GMQfwLiYGrPwVG3Ox9}b)t<6IE(JtPm|7F z0!;aI3FK^=1p1V3K%>={soO~+wD-q;$};gAx9H&rdU!7fYF?RwBSs6}DO&?UQ{`r~ z$Tfm<$w(YUZV5ry%?s)WS5SU$M?>MgyHVK-Noe#oyTDsD4>IL93c6(P!84x9Aa>#e zpgOCqpn1hzAYr%{>(8BsBgPbiX>mE|sdf)LGD41W9p1%uq!~lC7l*-8+u<-qj?0O< zGX=`{+M(>?O|*i;G}J9p3#Hwjg3CwF1NUQ^l)B`3#X%sT?e3Tn&oC z3aQpHbrRw@9q$+vLW8OMK){eFlbx}ayV`OdHzMyc+q!2Bf7rQS3W7p02JyRc8a6CfpiL{s?` z3S`&7SGHW zgns=xLT@}iM|IRC>0s7gE~>cCo`EmeuAMr}D!P-2e&s;3XT*`gFe%pd>0@4v+H$s8 zX$?6P`wc&nDF6>ey+rCGFK@{QH}v zrX!LzP6{WdDzZ==NJAh*f;P395@n4zG2|%{(51|y}EzGl~Y7!&J^|#azW@Fln;nn~b_Q`WwlH_)R*gWxP zZ+VW8-4UK>cVi-2t0+fRm7l?%ahC90);;VMAjqkDx{z*ApMxj)PZs3;KSr;e`$*uc z$)w{(1YH)PhYfkBDe7#&_fCGqId_(l-&OSjKZ_X>?&6~GaWhFuv>oiUHwUFduQ>Pn zO<_dp0GZ&cK&*7Wkl$q|!0)1;q?GfJhpIH$O7lpNH8F@f;6x&2a*!z8EG51n>uJLG zb7;Bkc_g{kn^el3fNsTAyqx0u<+B@(ql(4jp}*oSFxl%Px%_-Jtnm|N+xO`4Ll0Z> zU0!)HP8D3P&vGArk7Om}kB&l*J%^FvE=R`dxCguckR>|TzMSg3t08h~P58xnU9Qfl zEY@wXh_$;Z#|))tqL~+Us7UY+JbJi|-l&*_Z%q+)_*(9j8`4fryc$pNM#(*N<_gES};q^J3HI?ljkJpLs5ag39 z!oDNBVE~c`)?I~A;p`IfVfGCq85_jOd{75JT$m1{p3R2J4vOS@gdwtvUO^ikbEr}B zN$|N^l>}7J;OK6$1l>lH==j@b$X&H7yiHB(U<;CgUTc@4!jzi4n z&PU8;y%(@YAH(Cy#ni7&k|kTZ(C3|mq)qFDa!G5U;ek-%RaL|ePIh2gYh4-j<4N@B zMp^Xg{R5cFPse&F4mBWMAlDv(ey7~#sEhf5{lCQ}&`j_?E&#U0b71NlJK}v;0&fvF0Q{G+ z;8^lGIJQU?3O%(g3r?vjciJCKOWM_`^s1?B^VU7sXt6un#uD<{U@xh#@uL;Wb7`sd zW0a)Vjm&0n=^_;gbi;WG%=$0|Mjmd3y*4GZ&?kjxNypK>CikGxtz24u@*bJ{vyuH- zk`7~bd9a;dENHOk5Sba-K+ox2r}?vIGdAW+8L@ji=<{M1r0gaE8~Dp%-G~|^c|U}h z)H*`OB9^Y(Q-~%ERIz#RCI9y>@yjQ&J-L}~kGZ>Fnp}=q)qy0fS28-wW6;37-;8+8 zB!05-5++tln!Pzqf^B)3K+8nma8a)nUnzb$zt7+d)7D+cr2W20@0=eZjqk%)q4Jz^ zl3XJ=|L2pwWGAw|y-`rplSkW@KS6HSG#Cfx_0(cKgWek%!$u_l!`!4$Y_ z^39{|Q+^=F>)zju z3a)%dHc8GT8RJyQQtw<+c`_MkIh=r6x3{5VhI@#YT0GkLMNo4!5;M%|U?Q^~GP{0h zq7OGKp+{aQ+H>wK@~@u48g=QhH9mHN*a9vM_|%RIQ=r;JPsU-wah^*`4l~g)1-?#I zg-Ny-m;#?PG~p>r`@)1-G-ClOh?q*_FUk}9?^8)v!((!2-7BQ~#RE=$dKBq&S5hQ9 zhlGB50mdhm68_Z%JWJ;%rjg?sIQruUIRg?4;S)V2vg}j|SastY=zT4SDLQQd8rk=} z!L(4Y=iOEivvw)2;m#{7j`YCwE%GG){83!joe7vAQQD~+g-5r}fc-8GJk9D*UZqGV z>@6-O89u7e==y3nv_Y0*w_rEeeq(0i7G0 zPG-KpPY0b2u;!{N3=I)y`r4E6>Csd4-TG?eXAl4bYO=|T(QuNJ;6}3eIWPs9lMOS{ zXxrr*AY+LcxxafHx?U{K4r_kI?~gQrecjUJ)$vW(^3y!n9Gb&9JZcMm+yn51djXMN zU5`Z!)`O)gu3+f&BaULfIUelY1U_4-;NJn|xUk2VCv-lv^v!xviX(X>b?yp~6B19w zWsZR0h&H+^Q;Y=6_b1_@3qj$oDzf18el$2F*l}-PCYy9iVV<}MY% z@6r~sHuWPZyph3MJxP?lUcDDum$|W~j+(HWbkeTGcVuzvE7Bf66?{MFO>sms5_)kF z?f&|l$XoP7wqgKSZr(t~e~3i;z(cs|bTV+S6zD@87x7WgPlA}Z`TP=(YSy6WC}TNq z7WcT=DZZN49lD%7iDL(Up_QNG8N2MY>~n!mxcqSutr1P7X81U&l5ygGT`0*9?i>;L zj!TinnMllzk*Ak4jsh)Z9aeu;KiIt-vH8bD$l6x{WWhuWR?+q#?QY+XHi#ca?aw=j zzi>ZPkNymb<>kn;#qv;W-D+BIp-(FAkD+4ewJ@H$oO1MJY3CgwR_I;0Y0o!P)-x@Z z)C&F=<%l^Qog+f~Y>Nf{*b4M$x(2No?1L{vCc{ncQ=rc2S}0+YMVky)lIPd9(7yg? z_~qMXTC%2_xTfc^O($76@1Z4Im8nFR%N3B{D(7j2;X(Q?YywlNsmYkzJ5t3sOB6qN z8C0Fsfx8BTndP~{wEctubhx*LPSV(c5{h!zPfdKjPTgz1e&{l8u-gT$B~ZHTZ_%KSV#b$)wGC_@7`Gip;3 z>8s%nq`YV~8+9xcbV%p14H2ivWR6g*LpUGmcCn6VFFcWy4>H6Q@A$tq3PImW9-6+Z$f`#23^)d@}Jk{tky_-y{~C z1~RwN6XJlNrrtmH0^l>yeD8FmcJCfKWac*!u3ep;&F85c7512)tJgJ7A95C zo!O*&O7Pb2$5dCXoE+KjOPnkW=+K^3^u=~Te&XkQNX_*vxz*MJ(<_gI;XYAlgL07m z^l%*R@BqlROH=Sd7F~I3!OFaI<;yFD@{8*3F=uMlb3>a7`LVN2(Ca|IatH`?0m=;F3@H)ipDT!^_}RYl*Pp6qy!s$ zX`n1T-JFeCGliI07vk{(+&u4}=5*h>_2|aa)2LLtg#>IYhjJ-ZU~u6pFz0d@RO$$) zZ*oP+=lfdpz4kIBbgc)@FjJ(jf+SExfIXC3VnLdMW3i8^KhSWQL92YF(C)?6M7Vbn z@g6=-TugU>3OEO-teXt3+9|=A;fZ7`8v%~wi(O_gNY}=Sa z`CmFYLz_0jBTM3FQF|#0-(*7%fetcdStIf2nFJ%QeFu#i63|vQpQPO=qe9`^IGQTS zpmc5sQkuPpzQ?QRd#B^<&!5uV?TgykswuzO;?`PZI$McJJ+YFtS^R(+?0pMc?(RiP z-D`=_s635-6+o-o%2BoS17tpa0prKdrA@cCF_p54Xx4aXdL!5r)d&mxm%L5XDC!mN zGb`pzS1G1qsWC`0m>L-%@cB-p zY4^@Wpp`EL+M_PufIBvL<=j^6S^pMmb@~#$`Ey{~Twj{w{mb-Wj5jv@n2u?&G=9)| z6~0=3mgsH00}Ey!@EzULwONR z+BKF<-=0R>w~l9R4sK(THA89pP9+?DErZ_D2}O;^k04<~Z93u+PPS}#jfLCK;Ol+C z#D=Xw5(b;8*w|}y$4@H^_G9R45rT4jLV`rxme|*iu3To0dHzDOI1KW(L>se;u|--UuFT=m1UKA9<$kW5~;K@nrXPF#$qxEyvY7A2zKSA>U5iBc0I?Vb(cW zCd1H75x21JXDe|Cv_9M z;j?G!sLh^i^nH9djB!~?1}|)ZS3mp!2Q=>x-mEG3fXE%}zP^*R7aW9RGa7kTnMt6e zH6ELLhjI=``T;%7ad_71GT^D^2~QLV!}lVWO#=fAk)gqRvO6)6=b)HR?}(d&6Lx*H zJ$Nckb#mnv#|c~RZ!cgMfZhlA!2=^ zG!5HvI#i}o#f==e)O|18dqWHE7#N`qXMYMXwHipnl6-u9xi9S&dy2ZvYLQ{4Fddc| zgu}7ppv9?|xZv?AByv9$CLX*E&IAk5_oiVSg-m^RTi6! z0JIj(qPW?EBVIb4HL<=8y3=e~@oQSd!`q%@-Cn{z-nx(O+I|FyiY6i#_aEfey$>+2 zQV3d}3&iSI?O=SU4^=eMBn=fxbT3B?{e(QCxH1PPd2#9MF&{Z2-}UKt`CV8}&xP04 zEP*BN8j`@gJFs4|2`(M?4u5kU4`pxUbFL&~Kv^-EcCd`>xw{)zE;&jLogloZ^Jhuy z*`2)6mDgyGP6z0U86uezj^L;9yK&F#GTgPhmdMrt6siSKsj)uUZoD4y_bucpytoA( z_b8!uIE`ehCWB5CLR|4XtiU8u@vAlLxuVzX=uZ(QK&G7;m?X`g9@-CgJ%ME8**R!e z^%fO9?xg<0)lkJqi>@90iU;$q5x0mkX61@;?86s2tb+$egZ!y9)8`>E+mwmZf;^~O z#RA}wok}gDmtvQD?>NRQN@)A~SVF_@Ld`)5q~SV`6wg}&4^OyZdUbIrnBFT5WqNd| zT8b^Myp<}zv&n)13%7A>Y%alDcZ;Fu3T5)c>JCa))Ps`3^Wc$$5$JkQ8|zGwql&Ly zk|KyXgrbXpEM#ySJb?07i0XFVCPpA7Gwy$e@LjG%7ILSkt% zjp=H<4HL|gVNHt@s(7G4zH~d&mZQsP@PIh#U)o51Sp<-!hkC(Xe9_4+eQkKe>*_kF;6E0LM(jWV-R?Ae)-|xP)`plI8B6z0a)wOM z42C=xXBCZyX-=LEz7-e^yKyi+Fme!ATME-0cWJPdZ$%5oMdOd<=ds9u9PJ6UBe5S% zU|UZBG-IQ%+4n_Y>Ko)91=gD~z!Q&hn%_Hs%+pTw%Ut6=x7&&cLwtBLKi>BR1>2RtRcllGxl)VVtZd8^D4 z_@y0Tf=vJ~c;XL^&ueSs>XQkds2&Ewoyo*Y(w8JDVHy$kiY@W&V1wUH!!B1;xjs4L z`M0g^keTBgG_$Z(qp6L>|1J*D#*YIMm^&-&}cvhWQj9=~Cbhc~zK=nDGK#47fGTNzZw?Q0 zi#S_lSAyYXAz-1|bjn|=N|ZfvNl$zkne4n8)p>u1+e77<;LCpH^F^$g%!wH=#%~wA zwm}`WPgX})*Yjz_)+#y@qlWx%eSbGX-2Md|^j3H8z?}8=Xv8X?&5b3_q5cri0S)-3uNI$`hZl5!bRQwbn z+jonzLR*r+p@r*-cxow?bSPrNxR<%#lJ9Z-cj@qB#+CD@ULHTY=e!N=STsoA zNi@>=Wsg~{t-Z{%W=YnlwY;B$MD|>R z%g}a4vLOg}+MHwBtg_+Q=QCljMIm!rE)($-DrjSv80+>0qS$k)^z{Ng(kauAeXKi4 z+}<`cP-hICUqm5d%%^oR2%RNM;jiv*XwyM0>?b~sd8Xh6j}1+MxskHa>&SOFZBZKa z@`SH6dW~DmUSV8xwj>l z9C8<9f{%-!%ioLP+hYZAkxx9DvwaN9mltM3i{;Q==ZQ4%R3x^HPRAz?zNEo@e9pQ| zNiy)z2+3ZW4ou(gW=8hKaocQ@xhYch?Co>M`PG{rbDeS@5YO8>pjW+ye*1cfEj)Xk z89ZJ?t@qX=nYsdGQXT|duO{;kf0E=@49Ifr$J((-w+ZU;gOUA_DR9p+Yvx)dAD6v5 zz^pCvft5qAz|8Go%>JhVXy&mDY8`Q%PWUa4W*r<)wX&Y#7pwDd)sGso_3%|>>OL1< zS6qQKPVc0jubR-n{B`8bl6ty7TM0{TdrZX~rV-m~S20)TFe#n&nXq9yQ3BnKI-K*! z`h&4BPLl;X122KthK*42s3|QBo^{v+eEzve{uRzuX6cCl?o){({^Wc!r10GsZNCwK;(H<)KkWoo!@dAr*G!@% zycINOK#HC&^5BM9UT0_V+t}vE=FCflD5Ms#hte(%@t-8e@|Onk#6Hbo#TB%O%T2$kegZ0A^&}pjaxnh7 z4=aAPAac<%Xy>wFaPiY9R5tvKH$`coApR)0^=$!jq^%5l1?Hj+&$3~Cfg?;mrGR+1 z)}WQE3aRG2D>T-%0`A*H1@Ts^cr6!i3#)iMFT@2>~; z5<5w^?isYwLmuL(b-+V#W~&|VL3RoaksO6%gkhVZlW9D0tC&Qjd+mVR$XzVASQnZ0 z$$~@)V~DSa60x)EaY^=LcgR4WcI)J#O;B9kcAnM$|Hb`tN0 z6OhfDHnOk#C>g#o4{$lpNq(*pBKv~@{k{P<%y>;MU2H<13>3JxCSG7FjmPs(%#NYE z6EnCMP2|bgDGAiu`xKhKU>sZixf{7==r5N7UF%v<>7^ND>(N`NL7+FdF0z8kD=g3qmB~=e8PZ;>1ysDS1`gY0kPN4% zc;XX(5HU@SmfV;F_eEFn5)LQAPkK7^3g;fO6c*;L?w8^!3N^E0GxAyaB7d%acpLU| zeML=rETPUhHjp?2BAe^NIKM!EO1lgxBrS`Mt<&OJf4}-Jx`3;a&=cY zewyHXNj@EA6^COr)iI3NQfc_zVj6UfS7bzWQ=#=O5h^Y=hhFWggjW3#M0)K*Y_@!X z0N-{7dHwtg?0%~X6f(+49Gr;!3Bj(_Cr9!ALB^?_;L;AHgRoG0MMab=1Bcg_DNn7j;m_BwGC#;`=)!R>DnN7*q+_3^ys*6J3hY@ht^*s-CpN6&;!Fbi_ zD`+671;=aMfWeBtfcxkHUQAUZaPCWo#nl!xT4M&?TDutP>{vzukH&CfW!iD=W>xAr z!wLrPo6jMId!aYeg1z$vI?aRIjF{md^I>H$>r~aw>h_p$FNO-y))+5RvhXNQQ2j(Z z-n~R#)hp?)E5fK?K`3-mI1ioozhfuHsWJ8Y4VYoKD|Cv1IMsE00K*sD<}8|a9C?n$ z@=OHr3T^G_AShM>Cq&;yVRz=i>g&P+Ja%ci@o*?);Q?}IgEXF%b^_0x`3i@P)6@Xpx2a)ior@C8W)8mrRssw^o5|R6$2<*0mniu>X)re>wXDp z4Sg^s6($?7%f%d=ry)chM7BYR0yXF``UoTRsAY$JbbiX(TWPZMd^q*LR;DQe*P53_W>`CPH z%=w1wJ13!LwW)OE))G2su@PSMI!qK3U-0s+>hbZIDI|D!1M1i&3&+TPgq!z6(%G?q zmM=I=T#nwLbA<-*rnU?8gS7$a6%E5?PK(I;22pDH$sCz&+KSlA6NqSt5ft*SH(k3! z0>;~KhhI;9CN1<5UavovYW?Wr-OGpw{6?#G$DKVNDeF1ElHiNDFZOp%< ze1N}8ZU`M-=EZ&F=ET>#8G$;2vtZrrRMhR}&g^auVWaic(2#}!ojQLP{yjL0Hn57^ zLuZ57=9CiF!`zx-tgK;)UohQw(UCM+-KIvRDrEPp5!yd0M4|#ug7>+fXgljni?*qv znZcoG?GZWRsW2TT#oFMJXVam-*M8{EhEs=(blmBzKs7H1@LWfKLYqtJBq&`CMg80Z z^X#UOskgjz+y{`01I0T zT8zp;-4P)evqJ=VoKT^u-gA-LfmUdCGoJ>AEW{JPiNO~^GBo05Hri1w02VM5p#|&D zkqOrf;aXw@H6K@%mq{g(;njQShKrYQhe7O2>4LUVc z@n<8NHd_VJ9SOvIupi{u#a0%ZDOjB_~{0Ox^{Q8GvQTRrcs z=p?Yudp=yRat^zjyOMG`%uCDaFumvYfip%i85bXk$Loc@at6FBcnQB>frKuR@`!z2 z@RpngFqt?NjWwt~Aq7I(r_gqsgtwylL z{Sn>_qKN0b3#O|TZeZ`&a$tGo=&YIw4WzIn8699xGEGAp(YBT?>}1>JaK)uTQYDwl zYfkt^%sQ_VCp}w~+gAx}7v1D#9Jog^jE12pbD9(@G?8r0OHkHpFCF$u28WGLKtrEI zkRQDaqz-q3KI34H``9GYpY4*wELfCCFP;Fw>^jpyB1`m1C|D?(j0 zaq2Qfl190o7T9@<$ncXpn474;X_OTqIrY6T%qkVE`dtjST{R~0CB<;EmN(o~B+iHw znG%P!chEV9NEn~71THu@6PcCA!L#?>X+`xODtEsMwzr%iZSW-yUf)u7;OGJx^H~FC z7DnK(1`MBWQ>Av|BdC1IB(CH_O>Sl1U3QaA5Bs}2gbS8lC$@90QBUvhz;u;5ySbIi z$gVg|M`~6gmzF3LY!VMPL2bT$P$IJ==NQxfB$-~BFonISeN!-xjqvrUGSr76v2d6i zqdHCjRs~7Hc58KJPu4YBS~TknwIONss%YD9eNgc8 zDHKyYLhUOy(US8r)Yfo3>kmKjlw8f&TIDP<%Va(onQ2Ai_f4TUa!QeV;&n7IO_4To zUPJ2!00$KNLGSJ>(A4J`jmTR`YKFJd>ET&0>1hNFx^jiYoGfE`GAXd80kHw1Q>cr~ zHIltGpWdv>r8q@}(b_eGQD`v}1hpd6X?_<3KUf6sFBNB&j=B+xnX6#K?QPUqDj03u zR>1x!q5RsQw$y5;-~60Z?OO@nTt(w}Fk zN&iObXv1M;?+oBKnUSn+^Gouy$%j0cTuBf6EvAle08RTM$Ee@iO+Q?kjC}QWKtHo6 z7`IOXt(wr^y{?W zWf)alvStib5@>#vBl@=61(uH82V>|oG+%EriOwQ)U}}eCQDvu1|+O zGlGfNu1NCp#(C!1`9ze^{Tfd2evAUbb5QZZT5zK4D{$Z)fy$|GId?)5;MH|3 zNPF6fLmEZVjT&<-)Hg&DqHlu3J{oY`8g(>oqb5}Sun5}Jh{DPK=g9Ca73Ajh1hjn` z!(@K2U_9RP>Hex?jF!bQrZh1W&ahs>-aUR2?Rk8b3Fo%3!T!!=9t)0hamP}&gG!B1?Dh8HYl*@y(lyKws6Qn8cF0ZN5 z7#mItCC~bnLB~5ilIyh^LcJMGoP?0qwl5pF3@A09&sKGy=#Q6qle z%#UpF90}m%zKIVDcJX&;7_-lp0+H*sMV-MASAE zVEW?%$ysEB_p3?32RCkzInxS3xyoU%OxBy17y1%+=Dpwz7$4-!w3mY0%hY&^ZC^Ob z*WJO3N6}dAPBZQ=JP+ih)v(+5tuXTV8L-!`9;7&ggCEA(*!9dVc>eZ6(BTq=+_!Y2 zA0?A$NmnEjvMq#p%6@@Ea#HMbyEZ5(HJfSL=gN*ZS%WQ$x0#o=tyhb-I(*E8K#7^)7-TZAZIPR9|i~9ns^UZf=+4U#s#l9WT!IFZ9Bm@~fvw=nSm!P4N3V3jLB6WGV3kA)525+w9um(O$m|JqA zbdmQXCaSc7ak=sY)NL?fwYpW2-P}yZ$!-!q;DRd&C|(Il*JNXr59t@)R^I%fr&z(fCB}T^waNN^<8~P-{IeZ>IsZ4 z7*rEQ$v|=>Uy!pbFHhAbXwbbYz7g|t>yYNMb~@mDll*RY$ht*q@U5Etm^Q<7zVgCT z{4>qHboN(Yu0((UH>&UuzqzY~+kR6THWen}I&n{I_qdNleI4Q)IqF1ryJcXvcPyNK zES6e}2LZ#1F<3ck6L`OKEwpld43)lV^9mnmBH7KEoX*9b#KJugmB{De7u@soivX9e zuk|i0e!!y4S%OksmQUe0?=A3F$9!sb?IN=IR0IdZ?=bF~((c)I_>3DPZk4{J`D z3??Nck`-Cgh|t3hvSU&zseF2lh|w)jYK#egsmMFla$OJ1TDX*7#NE&D&6Q#O zmtV5t%rZedhdg=g5VnQmpt_!+s1&z3=d+YEdiIj*MdQNMzG963DPLQma^>M zPcl6wkuiyD$i|6sFv0ykDJUBcT!w~NySB5eX0R^#y1>jtQtUZRRNj4DiM!30#7SQ5@G*+lc$lrJz%+6V&8}kRMNWgV)Kfz{*Pp zD<7CF&>ww>&}c5FWKSfiTcyf5s{IS}GGEC^pDu4)rU<$^s7)IE!w7z*K|Mt^iAtm; zF}NW?4qK+cylhR1Cr%*2o!i)fQ&^InBWG+ZCB$=^-v|tx_i9 zE~m*gqcqN{q;6st{?YX83j}3eGqiE!ENA(ZD3ow*JxL8YMh14pP>1tDWdBGeSs}<{ z=1-W6q+uv6ICYA&(}irRO*&h8?jKA+dA~63e)a16SXsLU+ds;_)xSR23GbAqi-9rU=@`Ou`+{+^JG= z8tNXvuyC##GjVSw19+;eYlI^nI;zYb$ zOa{KL4~ORL8uD`BJj_3&OJ2QC62zmbA@g>MgGwGlA;dHB95WMJze>kJ0ij^GK^jq= z-vaIk@DybhRgTiix>ffexQm<45`P!2{oTCOG;lmFek*1xxZlb;le|!t)8B zICMVL(7l82DSN?Oqa|>aq5_#~E=?ruCc?@eUpOnjc4B86IilzMgVXzH9uD@p%xUSm z0eUhFN&d1WoTlIUs7TovR0z&*7q7TYlouWW?!N83*JFfX$o=E6kntc3=jUOm$r9+G zsun40k3||~VYIjTn83EOC~wMNP5b69rCBsnU?)F@l2tLLd*-`=L77r)oos+5lZrv$ zxf`6;@-*P|se!YyC6IXjSn-;GY;L(1u;7pPZ0Ld@! z6ESI7c*QUZ{+>UFD0-|X#hz;P;)A2aw!)U=^L2m1nKm3Nh?glla~iC8dlCd^Dw&$p#lWX;q>!mg2haM=8f1IKo-^T1B5_?(jN+yI zh^JF69l!K4+_BIAz1}CpY)zF#TO(9ZYVk`b;&Yg$?)#0h`Y*sS4>oX@wyxqfqlWsB=V^R>TJ4% zV};s@?3FasD>;P!5zqVY@z|yR6JGUy?*Hrf)t*QG!uJ;cj}X!Sh~Mw|A8-F(zy4Dv z-Q};5+Eo5RjsIVa{AYG)s{fqsPZfd!wSP_*_18F_`~NxJ|6)4-HedgvT>U*x{NJQZ zNa#=dugj6q=g(LFuiM$Yvt zKc}<(>$XerKd1YD#*qKR1O21C{Y|ojMgF$lKl_&4U*rDg{=Y7N1xNojLa@kxT+%}MsfVJ3;&RN+6{S`S-f+CTAy~QXL+@b7Gzjj2Z@iH1~eBx zrqxy=Ft|Pryxy3B_APdW!2{=Db-yz2fa41KXoWxeIdv2!KTu~&)Wn(kgXid8|4WRx z{{iN%?|OLMGN1NJrXtVg1I&*v&jdIC=ZKNe0-WKn4tUDzL7R(Gq-JM6j1u6mz2L@^ z2tl1fkEubNw9l#}Z+R-Gz-bduKEpt{#A+^bDU$cmmlL1X3#lspQ)R zFtT_6cwe+cx6mXI@zWaSe<;E7z8^_rT8wR=r!{Vr^tlu0yfO@~7Nz2sinC!~Y7h=T(~obZpNEs% zKXJOmw?Vn(Aw2HGNPK^(7qNa}!m;)GP3js`IcqnVLd!Y>3fG3=9N8w+IyjL;iI(CK z{S>;w*_538cAf<1E&+#B=OYu5{q*(@5o)mBi*c_PW+zX0iW>X!*k2I`*fd*xPH4Fy zdg{KN-hZ;6&3fO-$eqc8Ij&WlfcnMQ_=Q{Pk$P9oI%$92#ryc61;jYhvz zPJ`c@Jz&20cl^`Rm}=HLBcrxPxY}BTRk?Z#<(`pXd)ozh^WQ3vrN1Y@T?tsdGy$2J zZ(ww{Ww6KfR}v%Px!AB|5ct?lhRH2c2v{@^j(aOll-m~)-lTpXDJZ^p7KWvyp}ZxVz?wi$ zD61z&E{|D2uQcyMNoSwK{`(hcta&?{gjLv)b>WPM(jZ!u5eB9o5~UYBPoc^(UnYNR zHoJFdKJh-a0~bMM*!0^Jt`VL?Y}zbgs*Mg!R6RFgWJ81gP$J9@BCR4t-0VPbH1zI!IXij?_bo^n!piD2eGe-go zSzj{M(w7E1Xe&^jsEk*RjDyWV@iAfM*R)*02lNZCpX>ew`pAW3E!LT8Zq*=8@uz3xKBXL<%Fh zw97()YB|3~n*=dw8o!K~&13JgA7pp2&*$e5wYqCarT-p}r441&fFH&lbH2~ejb*Umrx?g>J&6~) zixMH#De%mNXu=H4gI;-2kkxA?jul^dj;}dHs9}uBzAI%wBZv!y9FuwBkCR}RR3)$Y zf+X3xEYEy} zqxc+H*U^IWSEvxa&RKYCUMOc!IT4z4{4_0C`2g>Vl_UGZ0T||c6JVSTUdc^_%y&Xw zN|oZl`Vv%~@_+|C#}Vxb3#ni8nR1IevgEkV3b^#)IE0@F(=PiOl3l!yS)dvO8`~Yw zfooCJa#lIdezq-iOU1O1{35lLa`ahE2Ld1%rfZvlWyu8?w5Z^S2puT%tqrHWnFH0Y zPlPqP%SiJFh;>VMqRnTFVa35PRMmJGl~Q?Tv|Jbg6AgxJ&|%hKG)Mj0}qaYhL6io)(Ztxdb0J6K z(u7qw2iO-czHfD2FEBeGkuMbB~fE8%$&rO`}8wS90kVJUzJO;8yT4y&)8t=#ca*#oqXxr zBHUlw3YjGfyqS&qC5&>h4fDsYO#4frt3L2|YWE*C?|-xfe_fdb{c}40Uv!p-{yAOU zUvv(K|2f_Nn83g3#edaa`eP^k=k{N>7ySN<_QL;f`|*L`QEiIB*w$vhVlnN>omR7y#M zQizfaY0#hy5h+tdrV<$=GL&(*-~Bv)Joeu2dmMWo-|;=)aeRMW_jz6GKJMRI*E-j| z*7-Y!f7}iX|IgdC|D)aRUH^GI#eY0L5b>Y4`(LB^_qqFD>DfQ)XS)0Y^563R`8*r+ z4?UClx2mW7U%i>ARfC57_cn)RSkOe=-?yN2&uVVxVv486?}lgVZot{SzR-5N9oCfhL__@xG~V$tj;xr9 zUiW<_ju%GT=K*c|DrlvN!=@>+{g9;vDPVqaW;l5)JNU^31|bB3p3)G20KeG-BCQ7QZlz=g#iI)+Z!@!-pDB{<;$$ zzb;`C@i==p;xNqF5zMB)lVx(nVd&#M4|L1T*f%+I>^qCXR^2@Ovo?qp9;pY5h8gtP zu5WlI#gA7SJ_2lyfQ?riVY5pSoKozM+iSO=&D}#(DLEMb%qd1;q62JGpN+D^1+;xo zg2Rn_phZ&?b5tyV`A4kT_asx$j2y)ab9V9g>bp43rxiS=HG}5K>3CSz31w#=VRnkQ zfgI(`PxdwY0%qXZ8i#MkA7l1C#z{B5sSuw$IxH@kBrB=99nTHcYl#=KK1$Yq3KGwc z86%Nf-$ne~sxJ<-+$lYNr-@D1J;7_r&-3i|R%zSZO0ktb#e|tDV#9zpa6U{E`<{4B z&uQv%5@1gae$QuLyUwQ1yXvqZcVl?b(_H)_&VkbMu`nm&1<3BMXCIBT*|W->@H1VP z?HRd{eQ?mipZ)#u>sN(ui+5tMA~BX)C?B#_!itF64tEqh0SqU46ky| zqJn=JD|1~Wt!Y0kI-I^NF3{DMgbY8=8{!m1z1@Y9JC!TNsvk2Y)~Y>30|O9M^CP4a zN4#dE`?c}hZr6FmEk*091)s!|mVKGowPX>#^hSBl!RTY92p^~F^YJ?G=&3E+S@yjh zwEI&NR+5&@%T_$X9tRUZr9Bq9l@Gw}saKfRsuZ?7X*+BRRAcgAmNVPZ)i@wA4ik?0 zv6yY~7&KxXOoL9(sVTaUI#vdg^A1vvnd)pH&Ea)dzry@ZM*eQ{Hu7QW-TuH-pJWws4-rrxZnPcYU$sb6@Fhmn3oYyOhbw}!F&r&qaR!V^@} zZh^kVaWFOHE~sWHcOLhvSZkjw7=KHf{i12?Pj)D7RZ7F~jA6{8`(ixkDFxe#bew0A zP2E-WvDV};oh53r%LWl#E~^TrURwjd3PPYJbtN>f9fvIQ7?xZQrz3urLB}l_HY3{! zo|>58!4LB>O#LYa`Q3*ryT7m#dd67j?ZWCp`oP_jHvG@NI3CHbqo2JoHmay$UGoyG z>pu^rM-MS}>jK1QE3vZRZ!An_A;?(dAj!VNgdvlpF(0eMa)kbxW zQ?*etEPsP|Gj6Kn$_HifJ(r3DRwhX0>{NKuh=;s3DTkLH>uMc7?~8b6w1nL(s}RlK zsbbqRYdkhq7P=18=Uzix)cbU6$2BYn+lj4PcR}91TtM$QkkM?w?HhaI zD3fCLz&H#)J$j2d@!u$UwSpI^Me*TnkCAH3K+C&RaeVYZtlwjbN+#>su9lk+>hcCB z&wI?4Pn`yXoGU=bMuSy9bdg3E`iOI#t;FmbY7&bMZQi8thd+|N-f6SpDzV+IzX=868jGGR#(0$YIdU;%$X7$$MH9%mHIe@u zX9Z-kVVBapRyFlC=s z$Kv~n4DfAe!%y$8LWlY^c&MF%IKUUA1qq<{UX3Pl754gW1b-7p(0h6cWXo5=CH(_n zTA+)UA93s%|CsKzyNP!nhIh{QDCoFc2sAeVCON*q)B+W>uPS4Oh7p);{RwZb|4HRs z*YK&%F?{N{COodfI|DE>*%khIDe@ai^M@y?Oc65;GP@we|NNk+Sx_~mgux02f?-FD~<6Fgk_ z#pFOfCtlgQTSc+B@n~=6`*57NKXN&Y+;t1AADKbm^r?KYF@P66$e7JCI`gO(^OMWs zmVGr?;L9ZN&p8j8E6+geqL=Jj*DEaSY7yL-wvD|%(Vw|&ipMznY}nzYMh|KAB(EQI z5j>AXk@WOKR=-c@3KQ@4v2we6f@lSg1g}+j!iXIU1&uB0*mXLY7O;b^nxxP3K5xd3 z9)Z|(Z4JimiGU}4E`WAj98=t6jnB^XV`onQK)Y+dwZGF0h)E4Kz7Kuu8-RGB0c)c&G0owHmg< zmYu_d&&$h&*B?^od+TM?I&+BN-?xrrq!Zd^s!i5Svm)`HSYAyuE|t(tS&XE(x(MyUQq7?6fT9Ek`rpJw43v02yHN- zRgT&qU#tXhFcI9=rP3cygK(7bLAqz(2XME3MM{?4z_ZyBHl%3=_-S6E^P`VZwJGD_ zP@V?du$+uTCa$1ItB%04rUdkGvZ7mNjDf3~k?8XHnHWA~J@>5Z+|N0e^Mg+dn98Pb zHr+T_jNd8p{gq8zMe8c-v9^}k#&d~bZV}$m-pkI;3S<|rB}(=$j^$%Fw7?M4Nqp$U zi}XO&cUn_aNjCmCfe!ZsvLd%Dmg+i^L38uKR@R!Ssyf4BHCvju&WI{Cd($z?HsDt_ z9Gx81=#woWP z`92MbS-PoU^RyBsm!`r{KRqn05pj^s6PoknCbsR{g>&noVC(y{@E|!6a=JI8HK^k8 zxN=sR8i6CHw4vU&U-ZswKi;h)hQIFh949jmBo=P?jK#J^Y;LLe?)`m zCYCwV4OH~5L&gammX$JHx@W<9@lHF6vP(22F4T};nbB4J7MUwKRplhEHyAB>ds|)X z`QRacoVrc=G9-_^+C7Pje*(Gcz@FBMQ6-{JpbASXbrSL83K(_kcIO&z-uX_aahWuL z>(>r4$zCt&xZj&yEX(5B2Q}EZOUa-fcmZzCKLZXvuh_dsSD4A(V(={3#s+h)_@ds7N}=K4bG%tW}r`p~#?6}Ej-B!6p7u`nnV@~>6GUGV@! z@72RwuSI;a;R!vn_9oiI?84vOcf*sKvvBNUB3$|M0+$X_#n`NJW|k0vu5N7@)BQIc zZSTixdhFqk%%9^1R}WNUZs>S#7%m=VfgT$I*vHfNph)`@hVE}-tFF31vi@~A`&5Tz z6i%0p7S@Z!1DM#+>F*fqYsj4^bQL{fawYBxVg6S_bD4{qphHC*Up{@g1Q-XrrE6?$cW-zv;Irv2f?kQ}9phAmhhY zfqsB7-Wht1>P{os49bF7^^Oe~dWh1cD4Mk{lVzZ-8(hmp!fU@=w7HXIwY4kD>tvB@)o1V=T z$9T!999@Pd(jH zV*nAE0~puo#;(`gq8lu|P(P~_Z$UZ?uB`%9uTc8bG?nc8u|}92B}?lg{#ezmwj@UC z7pw|a7|>P2&cNdleTi~Sqwr@;iSXrAt5BG>mP|ZWK$M?fvKqVc98u0vq)a?6_`i%L zQpa6n?sGlb=sJKzPwWRz)5ejoO^UGM}>aEp(L}+ibUxiAWJKP zNo4Fx8g@^XEJ_NY7tKuJ>(6wdbjV%e<0J#igTwjaUNWrU+#Bp1GPDOJsLENjN$?8iyY4nN5nA&X&dG8xa zqJ=?1`_-`!arT-cRL;M_qj4l5DdGBSkrlLkcpMK5?-caPef z$`W)>4xs~%XVQG7P_o+U2=Pz9U~WGZ+6M2(If|=b(B6HZo2*7ZE$GcsjUxDf zJOSU`*$;a33TUiLfs$`Js9Vd>Wc4Ge*-(S+O5qrn9SI)e3*h>ueK1$`Icl``#)i~$ ztpDa+cr2h5Ga`P_v3jfd_&w2F@lPYJTH=NqX3fNkZ$og;a&z=OvzbjiRtq28KA@gU zBU`p@CM1=4#Qu<-TGG<_z$)kPxFnRwZxX@4zDTSv&c1kn*BX^nAy*mpz=|L>wjya2H z+KW27vY=Y+7Rg%jMA$!Mn6T4BBs(U#TP>1bD#QhOS;mZ)_QvXs+5u|eq5unznxcX;ADv?{&v#*Cax3<^F1H%bVegHd^i)_#$JWu=~`@m*J;wT zo!J-rcFwBHQrlVH-k^DtT=7h21kncB+B?A`1l(3jc9qB_jkW!rdEpOXbQ4cu9u=E;cjM!|#n zJ9x%K7PK|gvA{TpEZ(tW)s|ZDnMm-d9HSCxzy^?bFnq!ns`jlSd!DV zueh=E|K#?=pOO^k6fta_x8#MRsd&%KQ8e0kL~8fQio4HL5??e|@YX4s*1LREC4OrM zvmujji90(6;PD3zxTH)4ikd_ot$(w^Dt=kq~>?_u$f1n`JYhJ?l@ z=xz6zEniyBDh%VH_`C)C(PJl*EnAGs!eh|U+mdxAYQ@v9v|wY)K@3v8LhtN(2DNr$ z>094t$Q!(P#OI3;QW^r2a3yF}M1a=zeyCos4i^jwqjjaT&|}hR3|u+|b{V_ir(kdG6ur>DvN*nIxh<#ori<7>67mq)D&5O<3`1Ixrl0$3! zM6(=gNu<>;uKGe-JmbDqS|yR^Z+_q7!5Z;A{?RLG->?R8LyijDcJ_eimL-QN-!(gJ zlTYdEKRvkdvM8!l?asWWc+vJo4YpvLXzMA_1ev zThY9kV>;KgNGyNyOw1p)p6A^k!yip3=M9Yo%xrTw^EU|=$A*bK{8|&=p?#I*ud8Jx z`?$opGvkiF?p`*3b|8CFl_+Ul63gdrY5{YzNxa_WA|03golYvLB)5K^z(aKcS$w7| zPSAHG`SbE%Q&(#?O3fKgsN2%t>y2pnOK&>Gdjl>IhvTR*YV@Oj2t3Q~i~9a;RAQVNd#=3fZN|F7}*fAfid%m3%&v;O+O z`%C73$>Lw~ zU%w|x|9Woympt$<`7eCpU-%?{;p?=w{7e5Nf8mq-g-`MqKFMGBB!A(P{Dn{Q7e2{f z_@sZ~lm3NI`WHUwU-+bd;p@zC_AmXD{)JEa7rxFiG5^~BKk)riiI4tsg8Z9a|L671 z;y;l7Gw$ba{ry}1ztHCw|IYgSZ~D6aABVNDISCdj_JxPxeaV*kbQ)DtV`Veu7CG=U zP^gLwrHPp$$~Ib%#93d7Z)~=ewQdbD(l8}ib|>lXfg=QSyMe;@rLwS1PE{xzQcoQg znt|n@Dj*+U5rfi3=zT?w%-FFLRJU~_4u$K$d-_hilz)?|oas)_ISmrh$toIglGBUF zAA{vfS^E4~3M_u4hVd2hBzI~m{BrfeG)-%9!isZzZHOMfVH(3es0OielFP`(a(+5u z8`JOh2)8SFu**^JU}XQR;s>KL3gL^G{+A4%TpKBd%e`b%Hl3oC$wlnPl^1kLh&D(L zeiX)AB*TjfudH-Gn7|DA`NE9@=c$>#KgJ9TrQ*3}BBT7<%2ux%wb`-)%A=y8U%ELF z?AJ=2GO`-gk;S)gFm|mQ3r2Aa}r9Zk6bJD|0Tyh%;}Ej*LZxoM1SHlVz zsF_Z$_mRU*ZwYRA-c_`=oFXdem$7Mm@3AXW9NCCUS^oBggm2iP%~rX*;0@U^Y+;He zJHFzQxUR7qRJ&R*&vX04-<9vhsQm}n=U$f}K6*F{ntzH)r@Vu7_gq@>T?Ko|?WQlH zSHK1DWwgNcC9T=E7C%Q_p<|p*QOU@9+BbAC4M@p_rP-;l(angmKn9~aIhlYZUGVw1 zF%Vu53Y%=Zfy#(Lde_4W2B&q<1{Vn(nUp~ux84BaIGGK6u0^Gl;T6L&6&^E7Sy@TLTPysf-i#-^ z1~K;yGEy~<@jN0$52dv-yd>6=p6ukFAI{rL=Z<@grIQ=z+<F*c(Tjwno?HJZ5t7Cdem;GyP4y`RpC1Aa|Q4?ou;n#4K2wSlcm?j#G>`oRs3<6HN1V1s`ZG$E#lUt zC($?jpja_15CU2nKvAuTuKNUVZgT7=i&WkPetl1~t-52_)Y)Zdn^6hvPFi$*fFjHo=}zOi6_P~XZ2H0Cm+;Bp z1ex}!nHo>x=r?6MF~3?temo#FfB$Ndc=`mHT$4buZW1!5cn2<Jqvv;}TW7HXI%{DbPa0 zBATNt&~qJQp>zxdhog6B=-UlYl{Og+4VLngHp=2J?OOEe*TSl--B9L2C`%VCxPxjU znw&A`%hS4vtSRqK?Ok=~rzd8o7Baef7v3pDod(7hJnj#@B5Qff!9Fw>1W=^#!F2+HC>)rFE+%YKl*&& zybvsQaAkI}Qz7&4A^vsQb?%qai+PoA!gCg@(5xs3Q}<8DZwfcqiaT$h&!=d%?XWJN z*FOpLC3CSe{}0nSA11xUpNQ4P!Q#kyOk#R;Iq&genE30}4~g#*8*!Dchs0-^jriwJ zPw~*&Eh_pQ!Sy>&iKDwzK*%~(TmToTx@Hi+JLU!5 z=6Z?E`LK=3AK1eZGV1x}6eG6gatXXWSqFX2n&Wa`C4Q~w7yFVO4Zo|C*q)=CS@(76 zxFu%@ZaG;1Uj-E??3G8iPe_G;SCurq{0N;kuAJB`AA{NcciG4Atw6tK(qDS5sUKaPzL9m$TmgfJ%YtGrKWeJmm%62$LFd^6@lTg>yy-U%?Qgw@k=n9w zeb7fX?o=K7+)@WS)+EEYgeLgWYdmDQ9s&$}W0VJ{n!3 zTG^DguITyZ46UfK2L0aKsQR3ttfyQvzK*em_~O3vKZA zI!vl6FTlo!-RaFs=~REu7V`MHEzUasnXNh519#gxf!pa3a638>`mU1Fj9Y5~>YkFJ zXEfRGbxjbvpoXkYe?jZD4^c3WhVt05y#w%1e@Mh<=-eTKWoL@!8KM_6S(-_IKhgx(Up?^ivsV)QmMx|hi2NxJ z6+L6ESW4>~9+_V&w)#)v#Ul&FdXH;-(SV_RwW_hSvN;l>ga{UgDdpu5H^*b{x}SzSAjh`S1em>t;i!uOAFA zjfKsQlpVd}%TzBbLgX|jcB=L)CS_fO4el3cSSK%Z;@n3#YHms)XeK_}kxLZR=fbng zx5?uxk$9)cjDM_bfN`6A;Q0IB^yHopSh&5IZjCj<3xkTuzDv4n$dRd76KYHS_cNTG zu7m*}_95mwL1y}K_H|7qq_`=wquuY(Fs90<9Gb-kM5W+7kil6w=iuXgJ^b!`7nZee zVclC6!t~{~EN|B_Hm6J(_CA_|4jWgnkfAElmeiACWcxU=kEB#o?g-^WE;aI)bz3FR z@*4RxhXPTwe!@enqqz1yC+UHd33&8RBrgmv zsumskCjC8ow@saTY7b|Rd;KJ#70T?O#vFd7V;?>=c7{I%03V+pf{}wZGELJ!Hf`N2 zD!W06txVTvi*i0g%+vumH~BP~4A} z_?iZSgZTk6a9KP|?K+2euFHlil*b#1=lGvqnb7`C4(qQ}P<=H=Hg(W- z;;r6}=Q^ZR?RGj2dU%4F4^79Rjoaba;h)4o$N(j~9k|rrfTb-7Bo{AVN7J;QSncWn zxA$pdtkQZ=eV$IEhq(|vJzbbQT#kM;`a<*%rV4o-7h%N|Z>GD+3BIj}r5>#p>85jI zXvpSfGQLY0eRF>gvHLB<3~LQwj$u9N(Myfy+|;3@ax|*9IDq|fH|$cD2gQpPL%2ka zk~DvI>1_ZTYa9tq2|-{PxdG&le5d6OnY2q+W4xi%Mh_IU(x8q)+$cAQ?zcHc*Q(8d z!8fFmMl~ZIaCaqZ9CMLx-|2;o>3QsfON5wObfWVdA`y2hU13u%xU)s`$4ZP>{H8~e zO0al@1*>;_B(aa1$J-Zb0d*>1LyO;#g-)+&+SfwTR63MB)g4V&f7*f85v#~~y=l16 zJ(f-Q*%j>%?59m*9@EQ7j!4`*X++M0Ju?>93 zW^aE*ms|hDYew$EJHu)^W5;fCuHp!GY5YpKf(~w8XiHifYeCRy#HyNYFs`jDjgqOQ z?P_IYQC?4c{!kAOFK8u_I~Hggx1Y}bLqO9okfeQ{Oplulr{xc|=?%{UGSw-O${nZ` zvcyAzMnfQ_uah9tswbU2@SE@&dXnpVm0|GGN^(i_2wAawBDrX4M$h&)q&?m^ll95@ zw7?^a%&oXW4{huYM)MTGZAl7keR_`WOFTmIlV!pFT_W6fxIh=wFC{*jq2y89GTc6| zgc$AX1-Jc_>9(Fr;qamnQ0S9Gy2mc0cVd&E_3V1Sw@HVqIn<-ImM>G-+=X>(31cfR z+++P@JAeccI_8kBX0&TZj7Z*2Go$vAw{f$9>PhFUeJN+$P7+4)2|T}#j}w#IyR8qiRmrI zE9YYDH(S&y>VVDy(751T2|Vxr6*sQBPd`rR%O{6gGV>#DFlxk0EH^8~3HfVTy4Otf zm>kTNLhoR=Q`gyBvjfmRyNmcdO(Gsxv4-t4dVre_pThRFFR)!ZAJ<;A<&%gfPUb(@ zYLy5M=564yRDtk@$4^K}pNE z>+0-4E#9b*P{;2u~RsGieJTHx+pL#0>PGvx-ex z;srTJ@_F^dSA1WZG0TpO!ZXR?80sI3NtJ$h_~T2q_;GjSS;?$+yU5-Bvcbe+8;(|u zXF5IiOI>@*N&(XA%Kehel$&W0pO-5--9?UMp&7L>JSKmLu+jRt2CfCxAvAa3@(-SmbJY=2*`{8QmF#UWghA(~u7zPtUKN zL8JC$k_wm0!k@%D!l*b@-(IU5ZW5I9rEn&(6w56^od^wX{sDaSGDgXzcTj2#O|Ij zWPNWMb4r%H^13VBE;>$DUz8!|ulvxS{U?*q6Gm`M@hE*id=YUdGK1GXiBN8Si>2C4 z;+AQetol$tT-a~|?=Nh{&s`$e`ym5yvXefW+EpI|EYu) zx{A784&mxW=joA@9oVAKM&eIQp|6Klk!2orRPT7Pa5%RIUF54nhVaWIPR#}E_xg~# zGA1Pc?GLMI$5lw&^>k`zY(b0XnUMPjN{R2u{dC3FBQ&GCFEzOSbCfXRsR-twGwCtYwa`6a4+-3?1a>tkBY5v6XJwoe0N@yU^ag z8qDqe0dAB(7^&e87@ZLU_Oah!%Fy|+$#NB1%rBuGoxVROx}L{#RdP^gYK1OILvc(* zZ#G1+E4G=)@H5(bQC&)y;vqFK8yvyyznAie=09j_8;pV7JAL5$Z^q%hILe(aV%Jt% z;EUUXn0A5zfAehyOqUJ73onD2I^7|?(pyb(FDy`$yJ;%9eQY=1blY33d+|!*)#51L zj_EDg5;k7!W)jPF>&{BwFWZIZ0`hp-yR)L^d39?DxF{h@>VQ?%-4b>xlF~vo1n04=3s9qkz zMy@-|W?T=!Qq?7>dGrWA$k`6D4PVHSq<+{i=qG8|W(X69N0EzDg3utS8*e{)0^WTx zfz{33VgL6Du+aB3-C6)R)UW3IH#;Q|Dfclz$^+k!`S#(>|RK(?S) z8w`7L3XRvFqt5vXJUXjCzfw2@BLXkMo}#O8RP8dnC^-QW9$K(AwaL(1y#)uK*}`@n z`$@OBJ%!m1-(q!Jqh!+7{^G6YE&R0X4sk$X8#@yn$sJ24N=850&&@aHh>fdadGUHr ze)(6o&b;#Gn08fzFFUKn-xRHu9&4E-#+J4~_xF0@fG|f;xW5xdpfPK+(3<&y|DYf z(@>*09N!f!Li=86R9~kLsCe1an>Li5J`MEzom~3E@g0Ua41o{5K2VE^<}lcVz?b5W z!i-ZK>WMX}QPExA!_ddgLc;NYZ63 zUH3z`pSsYlKMV#e8xOBLWm-T=_X3pLKM@4oAR6?`-)8jlryTJjJ@G zVrFUZ0=j(Y!h%W`Lgl$G{Of=a@pJuCoT;6Nuljb{Jg=sqtlTg*s5*i*sic71@j%uk z{W?4O*$0!mtz-qSXR|iFS8VBzXQ<%wmPb$0X7?Ys@b&i%(QCAgSnHZ7nk}kkLkIO` z*X#PQhfZ#6VDxep{Oc6=uDXT>UX(|WE@E!gY`mkF&VDMq=*Ae&mmT#H-^uz6Vu7?I!o9x3k`#ZCCm#u77Xs%UrkpkV+C=VxPGlU);atKcx zg|O|%t=!54_!_reQ2n7p1D^-cy1UlEd+!$dP46PiJGf4`Ah%y|32vZXAI}Rv=3FAP z%z9IsUVg%z7jvjqwGH~u{~~w>2cv!JEHcsFTzL1|7=zTDNEeHv^!j);nCrU@PL7yD z)K?n`2UR-b6rQXmM>g3*%KGGL(0;^Ub*yBs^tZAvE;X>IWIao~ z)I&%Lc~6GA&WF1PWXRXgji|U`yCAi!v8o-Ag1)b=3Z8@AsOwA;z(Bz5o^ z^O+3V97oKf8;KC74~LcB3vwkT!iPKdBzV(yvS!Kw+U`ApTvi-IthhFvYb8f}J_&^8 zxI6IC;tEOLaSc~^^`Ik^s%Ue256s$8M}v%q(vfpB=tY8B2bX2jwZZ_9cj$n5uIWli!VCP0`WocJ(Y59);I^#@FI2~?9 z7hUhb9a(|o=_4CDCMXzdmUzMV`-Spfa=JxP7J1^F;-J9+nc3V9j#nm&sc z$#-`}>Qvi+IsIbjXcbesK!}ISv;8_V;3tAy=~nVn!=Ls^98WWfMi9B~G1TLo0}PzA znvV1-6+*&h3A;m_=_Re<^s(1bYT&I-sxQu<_mr*)+n%ha_Hv!}grH?OoQ@YN1$*aSq(}V-8C>#Scsw|cE>8)E)%$a)#*%5|T!b@K zv0X=>n^xk$9y;Q=Ne{$R7Kto({wOi~i@UgJ_8+!x`X}}=B?fgpjM#$#wd`oPEF1m1 z5L%AwfMSgrYxlUs3rZB3*^F#fa-oqeIIWDu?Y&`$ZXf#FG6fcSdlG+x5L771B0q*j z(*-+MqHwT;oZ7I5PDHQ^oH+7c>miUF0YNJyK{EncGDY}@ZJJV=^GutL3BHTD z+tOgkvSK2BJ{lojz4@Fcb!*1VTYi}N(-{)-3Ygx8TO{|+O1|{c4m!fT2G*<=`SXR_ z!76G8cJrX@ew7ohrv>!Im)oRue;yp_mPD^86yvs^Q8d2qCbV+WU?+8Y(I7(KEY4kC(57DEtAHk^ZFNu_tw(Jper9d(b_bkCTII zJn6CIRWw^OO;~35PG~V}C(6%^Xj$MJa?SI+kg>;=RC)}BM~8yp_n=v9b5;s}?O)Gs z?CQ%4pGtXJpA57y3}U@k6ryd{>)`3?hFZ0N9}f(K9!zVqz$luYV37P>}kACKJ=6A`K z&QVzgn}0tA*QG1y_^IJ&QgRAJF^hyYRu@-!!$)Aap*J zNP}J`no+_S@(F4Gh7LG}>5@oN{4)vl8$2J1_!cLj-k>q;a}QG=z0xB7`| z6vpt?ohiy|HQw-^^S6n~sweogUBj5n)m<1Y26L}@NfKu=P;8Ek6F190;jdpDWPUX+ z_%mcY4E8T)U)Sr>=xclUtCz0y{Kb5@Rx_2)(6NCN+oCbP&u}*AT@3PPb+jzIk!af% z!S?Y7D4u+ePg0K21ui?$^(Xuga;d+&{xK}94KLlZ}T6ATPAdudFNc$H#K)>_a*yZU~?0ToB^BfgL=7=lFB10R<7_NgG zHpkG3-yf3HSFQAQ(>$tu#fdGKPZPgA=qE`SuE7RL8pV#wF=FAT`TWJJm#o#fAG1vg zXD@E9TZ_|2Pc*ZXFSKi9-rG_wCyc>{`&z@xQ*=H z*ZWkdtQ4M3xCzTT*I&KVs?NL^&(I*R2$YtG(0Q}u$Y^g%=(WZZjr#2X!vp^0s9qAN z8SJDggFM;Y8CH_}$)hC?Tx+;`A4SPok5I|jT!Ht>l73+WT5n#nX+7?3ofE-A?nMvD!4QIdkeRAwx3meeCff%Db zJaN9n8qL~iiJ*-ezDA*+`$-t(xsWEkRwb5(Rn#S^Gk)>B4Q^4gq<=PjgFP)LQEPz- z?6OpV6LWRht&mmZWLhZOs?nFe_C7;1Z~cbh_6_9N{BEe0x(KWKFgy@!MmNgnlBtW8 zV9@)8^wuA3l$jGwf4#1R3vPGm>GRv+QTScB+v)4m6mp-8)jP@5Ui5_2nJEx#(1mUJ z)CY{7oWqfm4451EVec7Pv{uiJL@ZB+ns{pryQztMR971EpnRESkpWj0y zhc3S2{__WkBh#I^VMAYj;X)3a@cTper43{Co3qGEaVW2JHl-u)_l1?0zp$23$Efo# z72H1U4jR9kfC&oI>2Z56QeR*T0rn0Qh(G4qj-+oZbufhavLkD!k;Ivw==$7!_{+R?5|r-`CyAO^27@s*_H>j5`l!f1Cng>L47~(})Hu#}k+MKr()F5YZm0h~k1! z>J;n>Ydt#mGOnv>_}7WhtK$>Pj$TEVO?$#t{OSh1K0DB3+FxKfLwhwkA76}gS8utI!WdnlG_mq+Z=q+=Sm`*wns)XQ%y_avmshcNcR>M zRUS(6?nkg;H*1-AsEw&B*>d|n0esGFcYe5VE4tOZ#csj+3_{H$8@4HkGdyHOueLO_ z|L}*6Z?vH8qdRRcql}pO+Wj=%cQ8N1y3**b@5$mJpP2qsV|uS#4(Ir9$1)=y{4+g> z8Y!ocllfNE>iI*mrNJ4^25HlYLvI6ro4|%PU!u#3uag9Ief+XmOSs)>gtna6DvWq9 zr9YMWP^S^Qh?S8Q)byPX4LA4Dx7Fps)#|-gJ_@&p*~U5&vG5h0d37dGPJ#)n1^crnyM+^u+pvGA3Wwi{DGnV0CXpppT9dxR%`~ zxtgB1;Y^jl{2K77kp|I~CesUgwK#T?FAdKy0lQ~sp;7k{9VL;Hgft_epPno|xqUnt z`YIHx77ikgw%_UZIi45j$7HCl7k%=whFR^jbz>+9kODA z)x)eBC|@xJ375lzE(z!rkna50ITma z$+AVY@bKytQc~#yX1E9qUv0r8A(=!M$8mR@jXD2?QgBe)3B5B;k=cpAxG%o1$b#AC z;2+zE8pMV0VHIEa)&47}gXkh3ip%+zr+!i2hrL;Ax)s%5l}sBq889mu3AU0ehq)R7 zFkJTw^7;e$S8X4u%>jER>Nkpk_!`=KRKdnR3eZb74eNE{xMZ6`yrEdmxo@=vRqiy- z=x+sak&Yl6R}Bi;Yl(WI8<*9O=eBDUlldopb4$nwxPJ94$DJMm);0m4r54V$=9$B+ zi1A=y*1^r3^9G7ks)@UYA~~ZKO(yOv=H4o3gR|QaGSTQHQ3`P)e!QXSvkybbsa-d? zt9v3Kcfx7Xeuk1C5?okcW(8?KZ4TF(7GR9tYEt~p9$%loNOW(0<}|x^!Nog0K_3GI@({AeYM$7W#3YI>iuon=*_5dKr>GMu?^H$0-Ze*_^-sA+ABVx z_f}Dg*>Th^ONW?L93!jt&qGn*8ZzoeH|{m`4EI9S zZ;NQ{lRUaCyo2|RNQ34scb-8#&XS6zsjH8$gNHw2w|XXXxB9_u*79ttsvpi*)`T7| z>!`;91D3N&l3Ny^2Jhu_={ncp%rN5xuNgK@T#~Uz+@r@Z(fC3Gu|-swIBia>Fk-)q z&}v%G%gmi4{MhieRm2O`Jr2&CxU8Y5qriDO@ zPYR8U{X(rHLTNw$Y?yu_fCN?T#a;WPaQgccnm=3xU!9pj>CZ;E`#_&QKk7+0WajcW zqivxkM1g;v=Ylo29BEG9{_J_*<9Jk9$X>eUvl#;~&~OQj2IKFLqX|Z|>9iz2c!oa} zy;%f%Ep2IzsXtW>P2vLvd=l0AiN%3)GKDj5n?yPbXNyDX#|lB~f_a^6dp`VJPhr*3 z1mW=B+x+W^GnsE)KD{5F%1_yLSai^JmhkXIv9LHwTBzvtoAoSNPme3O;DMF5SoU^3 z7@4$>hoN3jGp`=G)(!ldev46VVJ58+&t{t)_S5A(p1_RppU7SPt0;Z99P;+|WDb_+ zVC4D~%KK-r=aIW5@sDt#;22CQGd(!nq*tKDo|(#@v*1e4*uk)rc1|&GIu~U0gp)Sl zVEcN`bjYv@)7*nvTu=G^rn@{{iPWBY(?ibdx$Y@zNy|!o;uU2CCm{=x!lSvlxAx=9 z%%fcI<@>lHsg}6t{v%@FPm7G{jwd8;6O1vsWBM$v9~ZyZjbj=fgiaa>;*8OXoO|O-z zfF0Ap^~=A&FxhmbV6%h%KFHHchPzN#qlvnwpCS1>=aEa-3kWlB;T$S1;?rIV+~QZu zxdp9`D6ce=xaGHSJ?@5()9bdd$+Rg!rtfxr;AU>G z$EzMA;C{dzQd5~tZTj9JbfzA=(dRMo4z3`jSWjMzSxQ#c*I?StV63c}iL-RONczq3 zq{Uz*F)L{23JX@^aFG>A+04O{xv8AJ&Ryu`vJxL>K4ll2)M3t38}|0rC-~^AgDsaP zp?%FYklBzxyZ7v&BX*^uO~?iqCo_tuNxloKtfgtxRB1FHu!-b1I^fx>D}a~eK1QpZ z6h@@m2wA5#^V=@E2&uEji-PZdq19BH-kiOkp3YL{OHQirzL#~_oew5-LiHp+fy_0Ug01^`_IQ6Q85Smq;U$K$y?S@x z!=@J)RKe(iQ=$0QY!p1wB4o%Z9*h@lA=#(Ou*mBg=^2-aeKn`j9hWlkS0}{{DxNHF zwki}}tz`-R0;ryyjUSpv(MTsl(CUt$k^L`HVSWPDGxY`qX-X{C8RE)TS&YvsrcFbd zVQ1xF>R?_0Z?o(0g^L^ovrwKnZGzd!z4*bYj_9eSPA6?2%Y5z-RGB`OO;hq@g&GfN z#U+M@-U~>AcP<`zQcQ~^vAmv2p2UbZrj?6AsomD8{PNCQqA^iJ#XH?!3Gz3yMYS2L z#2WXW@K3(y@b~sp{^*>qy#Df8!feBv{Qi@fv?Mx>#`dw`)v}L?8mG(@4C_LL)-M(O z?l=|RKYtiCvp2*Vy-L+Nd*RtBf4cU;Q>O6R5LG81gUx2|B{}{-xxrw}nyMr@>HftK zAb4Ya#!d3<`&FE2P3Rr>2lycNCmEsqj#FOr4)nDKg3sU<6wnfEMn__smKZh$u0@tp zg`RG&SyAj3vZ!Gkt9p|NWOgJ5&iAK22bD27B9{6bdP_Ha89=*Y0%2g|L{b^)gZodZ z(bp@NcbEJ zdU2Ka_7n)n|BHdgI&zdqov8Y@E z8K~2TrWM4ua}22-WlUUZT1g3i0xydD!QI6(pnpvvC=RZM@TWk@l1GyK+#-k)C$NQk zX29c*LveBZ6IwLC2^TgkMhm?d)X%h~hLap6XZS6W-u9c^HG7C7CD@FR~bVgVk(Q6)NW!3MWql2}LQDd|3B-(dq$xS?5S?o)}s2mppw~<(3m{$txp%jFS}| z`zn@pEZRfWuLKK483z2v%?kW4J8z~utOsv9-wX9k2I03jWt!dj6)b06VE&6zNw#e| zj8k0921rHYo(MgBw>J-&u?=0|!9&x=d@|f8iS(TtNoIVPqOZ3%lJT#*AocALw&Kl0 zGAG%VjH@{Xb@M)(j#k(O-S-9V%lCdHtxO6!Or%MlnTyGjIAyqaIEpkUCUX&c-Ar?O z1`+Q!LEP2Hhq%DOJXg?X13BN$k>z7GVELGH60YP5WT$<(@CP0cvh^+6E)P){P)Gm?b&91qG$=Fsg~$(cT%%UKU7l1wZX#=)H0{E@}#d zsyjuT^kqt-Dx5+729MjS$H5Kt1oFXb5m9nF511^AdwWXp==PPb-r&wU$0YH0T{*t= zmMiP3*uf^QmuTIo?8DD(vP}286IB~|7SH)bW7g-Fc(pc?C2rbH?}Rkb@Dfk9%5p3% zO*#V2*Ms1Vdq0???MF_$J&03(^W<#0KZGh<e67EaM zaNhL2BmeYqAlsGRho(-QOkGcFvNF?$Lfe{pKDqEYU#zalmTV#tE;fgIJsuL1{*0B{ z41xiZKQgO6x5&i~I~bpn$<{1yfy;sK(R7RqaO%qdy~k z{Dzo*Jco^Hc@oz4Qdo1PnB;FhjAJcpOzpcvv6qY$_qx2DxX36IEp0gxsSpRlUdZA| z!%m|9`UiJoN0Ojg{W#)JN17aTM2EE-!lLDGpSM7iHiuE+H(7&?6j9;+S$Gxv!|{lih9 zt9X=je{`nX5+CuWW{no+={3@R)x8AHMpjtn8pw`JkEI6pgK6yW%XEHYBufokO3$6m zM~`O<;B(_%3738=ulDN_4cr{X7WQ>w0VyMKPhcZh`$@y&_A<;0b>!;jQ@W-+j|x3E;o+TjCE556ZWjCNyNxFl}zRE171ln1M+A>_@b z1!Q($AQ@=gfCKaw0rcsK2UhQa7hM;~h14zhbVMFgj`f4{`yVqe2PHiBMjyO;)>6kc zC!l&yFS=V#pW0?vQr4vjpD3?y=lXKiNcT?_Ndm8b&rbrf^F5sT0 z+j63Z0$EW^xts%a+!jf^j~)DqS5*6Oy@tHR7v>V(i(of+>vfO3G-x2bye(k%)h4L$ zeoQRp9pp4OmU3iwUl@Nf85|y*<&NF)A+C;FiF{KjVZ-+0E0W8s8s_pB&D7|svG3W} zwrgyX>?9V`sl&7+F+`{JcX7?tcQp8NHtv~HhKnUyEfdP~u%_=WcII#=omflQn9f(! zb66J?FWE)re*8}2=Tt(k+0VH>0|TSA^sP{6pZF!K4)4f15^bhr_Cl04dz z!!6%_j=TL<2Bz#VBELsH;ubIPG&91Y$BAU^a(g`Gok8q(|AzR-uW?wHM1#sw7jouGek0^K zci1Tg7GFGvC56gR>EF#wNsk2QN4H6OOgdE?W+b!~`3Y?+g6IdOIfD3AFJYu%Up7*I z1&e&IMKcZ>vjv~S*qw-vxN2ayWIpk*wnqT{y{wq8yX(tt%HCo*Sp}@H{{@_-w+fv* zHKC|}IIW1d%dL4nlWMMb#MvIb427D@=yds9=+XBYC=T$&z4QukJ{8WbT*>AJe3Ufq?r@?vyU)UhLN)qrsW}yXRq?v_ zq9pPBvHbR^1Ni%?gcK&8!y+{EP}N~AbL%Q%4TIpx9`yUY9syLGlEV$ zq75IHFQrGrqo{dEIPW#BU8GdsSKI*Cg=P6=qV@n6u~%LVe>Py4BuC4H?`9f;spmSO zETn<&bG(J#w);Up9B|?vti2$L)QJ`Hx=#q#dd2bHzh1LqhcVQ3=Nt?@@sgc03xp#J zYI(V#CGhb~25x8%+kB7xOQG@+VKSW|jp1iY$d!zhv1yqiiry zEubF*@34U;e)#(RCa?-NV8SL#;@(YJuIne_nbrX7oPD5cy*>oy^rMRhjiWA0Q&4%S zJm?L`5%`^d~zV^(VP4fJ-` z;^rF%@!-$-D5v{|x*KV*-izPkBFQ`VtGPco#dVGtx6Fq+z0XD4%utf7k&UXcL8Lyf zioKXSPUN!2U9?supP%N+i)NbTh(g1Z_^_>UEb?vc7qb;YoSAzi>opI zy$>5xA<+u{ah-1#%L~#jWBA>}IP7^8>LyanJh` zwBU|1>mW}t+J7hXz3EQ2td+b6)o!3uSrYD=$iYRu1WXJVjpcXqSlf3HrLGMVtv{R1 zkGf?p>Y3#uIdY3h)miLP9&~s)hLmvw-(!?U^{78O?L#rUqjT9Bc=<*XP zPP5N{qiM&1S; z{7mY1OVJ5S%7|W3Bu+WtLv_!eCB)fBc{|s)k_HFfgXgM8CWqQ%rJ+Sko9c z4`0Bj+emKnvEkr#Fbz+IPb5mW{HRp2BJuZsZ@PK;U^Ix0;m#S{hihgx;a#aWS_Z8q z4l7H!XP3OW6%B{EajVVHxW^81&0{oJ*u5nYE%QlcX#zMI$+6_bFw(X7H+8f(hYH-s z^;I>ZVXNm8vlsrj$TbDWjXQ}S@5zDR0tu)85idbjw}XML3!2yN=hCmcL5KJ-dIX-J zJ91QoOOs{^5i2k8**|>w5B)Sn`)i}=gcF+Vz-vh@hVZ4#a8?9M=$*{IsvSUS<=(WS zT$aX!P8H1F>q~g3iu}y{d|bTMhG{&LBYFK)pt0Xb8qODyr_UW&9OKE<_@$hJi!OT{ zAWx)v>R@DU8g8rFkIK0h$i3;cT*EUxLWU}mpzJXGVya7S-8utX+ON>;!%JXP9~r2u z?Mc@+_T_p7KEr|$d$_l0Jz<)`dy?eSm#nLQ0u2Rb7(6!}4oYH()nz7}X`L-N-kV28 z)Yie!XbBH6FCCsOks>zW2}fdFvB0sCj<}x0De70?^E8&#uGV&()=O>V_S*y4*zZ_88uMQR+Jy5Ff0@>y_6t88g zke@+-bJj{zk@7TVrq#*awCP8eK2?YMqQm$uQiP*p24dZkk#vH0Jngt@iros&$w#+I zvyCLZadB2u;@4I$xNzO;zM^zm}a3ydq3?xg-qRX2O$O z2idV?%GS5#F#GgL{IWcORgG9k`)46Wth8iZJFSG+1ue|EU=_dg!9f1m!g|zA%EV{F zF)05PNEc5qArm5%nECW@k|8p{X18uyW|R)`28(dPF;)7zUJ-RZoFGMdGe|7=8+?N= z5!+KGI4SrT$?NZc;+Aw&Zi>fRe{&dnPQuyV;7Fz>t5Eq@d&w(_dT!|43gRUShp|)o zpmqKgygRUov;@hMDQN**tp5Q}aoq%_$8;dha6B0jp^kmGdT{40_u}Q|@7TMdKYKJR zjL6-ejGxvIfawRTaLIw4(2!b$i?-`h`|@PEQ<6_Irhgk(9F|J#CauMR`3vaPQ|WN| zrwdfwXo2sV7s9q72TP(kZNyxA|#Z^3ZFD}_)A-lu{)!?Xou4#Hv8;A zUjK0>of54;N1Bbt^;5R757tNd{1=;8cnRU_(=GWW_Z9G)jT&`6xf|5y>ChXoiqK*^ zh1N&Jkat%lI9AhSNo>>{O)r$f{lsRh(Rn~Z_nqT%ibBab-F8^5B?S*hX<^E3J7WJ_ z2}76m#|1%hxLC#y+HZb@lHEKwbiTlcYO!3X=`*75DT}f5VxWDTD*TQ$1Dl~PxUV&X zRLJTOVd*o{@7XT$FmV{3Ua_4FN+>1;w~NVB{|e~8_7+wi(xi2xNx4!F zT+*gRov&u2!{b_*P$0?O8()esRdR5opq9K?6$V`k_Fz1(MvHrmg3(U*NT03Vk|$mX zTHQ0_@5v|%XHBF9Mejp=|Fr8ulF3N6f36Rsy8Bp3zbwj~AHe!9a%QqJz#R6G*SK# z3kMhEa0`DZ7AwK2&U0?NtiYu6 z7)iOc7skhElhG#erW>~X;6B$kkUM+@v@Ksx+!kyjN(bY)673Fdzw38cET_#5z4zh0 zdM=}BuT=P}WBh50Ne&${>Ia>_?iNO*g}_58MQWvV1PV6Z2J58?xaQ_wJP|HOt+$WH zMvH7o&4o@{owE*R`TN0VTSlxmUE)4h&L=u$rSMd33g_n4Nk#?SCxL2lq<&W&_sYSA z986e5tiOLYon%_db@3h~=w}(%$73#e5gp6fW?FNZcOSz~!((KU_C~lk!+~b1#gGNf ziY&5tGkH8_7O`0%8 z68GaiSVDpFP7tYI0b{EeR(<9gY4lpj=H^Gh>pE2!U?AZ&jv5Hj=GwHia5`N#N`Wd| z6vG||8FJiy6FlEB3}?ATUm3osK$&WWkE7a_2JFT2<3ejl0AKSWi67$?adfBz&o6zj`2K5Qa&`y z;!Dd0MS+T98a>t^#pF*OqsGIEp<+om$+;AOO}+c#$Y*(!jFxbIS1qU0=k`b6jRy3{ zxj;J8;1FNAdo5@zXZ)eAO#F}`;U#Jz;%E|*?9909tE*V4zj59w;H1ir|$huCZ5MDd#Dc46=C29fsB?c(jjdBOH}IiEi^ ziLZRuM_4~2Ug)t?R>*0V=qH?iPxrq`Mn0Tfa_EbSbxb~?g%;XAf^(Cb$Y;arxHq)} z=tFImm3ayLzm!r<=^yOxdUF4(^fGtK$^2hxX#fAv%lwDxo|M#|`g(u1|8;%6a`}JQ z$4B|!ipKq2Pt^I}cKA{(s;8*X?1h{fEEE{o6(UXWQe?x|ehR z5JNOR^rv#|0?58T(X3g#muBS;?ewu2sel* zJBobejkslE24iq1SWcKqz zBwp9ehgD{=6jM`i?9SutNKzmk&#`A0C3;HzE(TIE3IgdL! z1vyRVO-dZPV5OroH|C-qEbV z>TKxhMA~ZuV;7EuvMp0A*cTy>zF(!mM<2JKX}L9QkHuD2e)#}7R$UFv#hGN=iV|?F z^?)~5j+00CJP5mzK-RTMFg%IAklut<tmW?ArH>q4;IoC0)ke+*K7O;ofTIqhc++|bD$&@^%jmL{A7TbCUS)&$UG zhYM6s`U6ujNnr;1g|yv6%u9;{>FbUu{ItYDtikXlSu`8Jck8 zoDrHUPrhEEBzo%GAMTkZ;P0s^kYacj4Zhjp%Hz_w()$X?jP3>R zq7A8QA3&|i+sJXxL^5@|JhUbbh0G(--134~++-bXF8_+8@9h>mHS!Z@_woSL&P;~W z2H(LfZ#*u$r~v2Y%aftUrjq8aOo%?xj=8lvKx#)5O9__YO@FHKU)>(?d70*XVst28 z4;{oCo}I<=@}z~|2^stz-@8Q1H4j2ZwUQ3$Sa^0|4!obxK%NG;la1O}NPVjx*1y&S zMWROVbtSp@LIcvf;z50dA+dwrVByb`Q^vg|_-69P^@BP2KpWEu_f1KRzb2I47)VyVdr4OBKSv73`4Y9IBDh(FWXq>8 zPDbt^*OJ;ut{v}<#~w!!qp~P^DY1|Swa7E?PuE#or92BFz0fPNnxfJu8r$}mbuNix zMM`_g%559bZ1gr~KMNfNWTBH>2-^dY4dvY4IK8^scAaIQrMIao=c&UhKr zjEUxo23;XWhM!ISdW4gYWtTAH!(A@gSrNT&OXIyCn{k#zgY}Y$050?pu~bSSo|2s2 zi11N#Za{Ad#uCQ*JvHRl^;O_EhQ8qYub9P`FZIT3=m5CC^kBtsOE{g(WB5>XxyKUvj(Z4 zoAO7TL8sz=kMXFM$)TLgD_F4d15Mdrha$Nlko0LK1dX`@PU3H{q|JzY-%K&EILDD5u9Ua{)TWVjDjx{nuB z^ZkYLpEHDeY0e_!UTUHStGUcu`>`-G)01C0<)~$Xt*{R z+&kWaX;mh~&B_3q_+T0p90u3J#jp&6K&&ju>o_Zoo5CE)oI}&VSMMRG-G3Uy^!26V zJ3EPsRT*x&Qh@HghEUI6UbK^!#^Dl9Spn{VLu=0A+;VQ>QW*_$j^KL_amin z{(zfcJ<5wZC{Dz$m6yn;I(e8hZV`;^-Ubmr9YY~N!^Hr z=%G6n%|Bhl>EZ!&m{uk@hw6f%rli)`r-ewCWKzphCWtw@!odi6p=_}zI5a&{}Aer7)^ zcMEY;ST`qsCYr=oOd;7@Qi#!3f9_*+CE0Hi!ddnGNMQH`kWLJMF)Axyx8xZkC-KiM zs<$A}{s<{7nFfQu%z%A6CxO&R0e8E80lPp)iRRvKKL1V}fAy`psIXH*ls`y~-`R7p z=;4KL>~y<@Na>)T@Z*~U5gqD+!%w z59icY&M8{Ip z*orG1!terBL3v37XSUZCI&ZEaPR4Vgaj+`1K72qV@-pOnKmljJYCE(|Qh*^*i-~1e z8u>&A!lN5J+*J?awofx5V~74WZIC@oR1>`MMy&>Mus8|N152RyEOq=iX(oox8wjCg ztB8{4Dx$jdCfu5+MsZ9COj)srXHy;ds?Oe^MuS(R6)uoCSlDbJAPskl(MUYyt z9#!^9=Ab_ZYgcFRTKf+1VJAu@wGFd{qhmA$r7sm!?Wdy9HdldPclxw&K6ry*p<)i1 z)+(Y4P$TT&Jc8m#|zo24J>beouFq{#9d%`c-TCU%Y>tw|Bdz`Vm3eoQ{##iEDa3(Ae zwCh5k%>EZ7Hx9!42WG-e*9fR7aDe!o6JgP|9(46pV`vrJgfC0gg|{A$`Jqz`Ma%PQ zg+cH7^X2E1M9+?|<%>*qh~`X;6W;BpCEM8q?3t+r`8)TZy^2KdG2atn0#ad-VIZ0G zI1-nik-<{46j-lQ1|inNah2J0+|;BEC!OEG&gsv{!VF(%bA3&rO9ofVAYFK<4;>>) zr*HeTQsveZ3~^nDi4ik!j$lYTzDBUD$G5TW+ip?IOeX4oLSMA2TM$3Gb4)aQt&}k7 z*eB7I*c2hHDMZXgofhrsmc#c8nowj(F?y6d4VUCMjO#TWJ!V?7(iTR00}Q#jS3P9fqdY0}HZ4F%gIwcYA5ew`B? zH|ZKEL`@{S@ArhHM=4ldokvG~uEC?{bXm!>3|6Bo%`5o@^CKpxvX8IZVBBE?I@}pq zLX~O@1L}ir%-$ z`iVW@XOtlrhI?|;)em#d*Y&tT(T9oN#I@+7Xig?g{S7^A?!&QH29lbbx%h4p2Zwv@ z=REg>OLAS6QRAd8wcezR>s5dq9&n1vjR|8bJ0CDEVFX)b=}fnLdC6LDq*23h%`9hY zE6bcA1G6rBlN}%B% zf(d3Jw951}e%ztUs%IxK!7_~v_qF8ryVU#>$t2& zhKN>h-<_TjbL~=`7jI0|Je4H+CT}4oDH1c6>(k;B>!7u6Au&spfuX~u;Er@7x}nkr zH|GV>oHheCZEFZi$a%~fEH_aYV}-u+BB<*43v}0}m#k#tXnx3$7_#2uJy>~L!)E0_%t}znMZVjp18ZSwz3~d zq0BYFjBjcSwv zC`_qWL$8*PaBZ$8tyAG~?Dll>B>oi<9$CX4zX+Hy#)xQNKhIe$t>)$r>LkOtVyx^P zNVZf4VT|Q?+>&gM+voaXUi@RY-8>u|8`r^ff#RszD@TD zKls#F7XCZ|57^iE+!#Lic_|+-PFGNjTf}_Z zuR=&c5RJF`#O8G{;nh=4ICE=&6 z^Z>+FJCo^q=ECBt`QUE94$8jQaA#tp$VrE#-0F=w;O6rTZv-77bBlN5!pjSBK-yVc z^uU@nUN{61TFb~Vk6&cX++^%YBdAtg6?Xq_rj=tyv+wIKupI4iyp^*8JMLqFMLl}3 z=-*mQ%4`V#RX>(5Q}{+~M<>G@?NQJ?X&Fpg^o>0FtPcC$t%GSNZ$oj(b=207fu^2& ziGgAt=&3Rc#Es@~DZG+9clrYtH^rK(4w8lsW|e3Xw~>7AV=v)8_Cu#vJ}5S7N1fsT z7%-%UE1r9VOw+c;54Ef4)IKwCIMHB36kHg+*TSA0m*^rCRZ>pk=ZOY2c)xK7D>^@r zpZ{(SZ=XIHqP(*4fMH)SEjf$YffiT*QLsF;1)KwdfvlCHgC~r}y>>Im(*gb9JWhaN z?b9W7X@aFERKfRVs4lcyjS6TpOhKLV+u04tbER_2blS`1IN74OnKtZjMaR+^tW#AB8)^@* zxmtVZfQn*z<9R8btjc7=-TdjV&eO~$Vi>=;Ig%fFc^U6Kp&IAu*pi7aCAzxFcVL52 z1Kl{F80LD-W3$~~ApNz2U#;?j6T zKT}@&m?M^7yTpW7Y5H;Oq2Y)?ZVRo?AJI{c@9LcOMVsUwA7} zy^*nO{RJ8R#CsS1xr;SFA%6(9nr8wHPhX>0w+t3fb!Q6uCG~LYZ?F}nT{zNvAg?+n zh;1Gt7UtgHMw1jn*cYnKcWbTZ)pN~wuhlE5y<93$F8@N~RiDCzpFT`eITzQ3Oys9O z=V-w*OE#e>i{wWD-t_Q&W?;J$x8PB(AF-jcZJj~yaS&a2 zt_ZmDV7A3C3qSenW{)MhuNv*An4(K04G`PW;t6uJI{gOqYaC7=_cWsIa#dtd{9u}6 zVT5l#4P!#27S7zii@7hcrje3d^Pl7bs#FHE*oR@Xvd=zdcYgpskp}TolN|WNVH2=v zN;?N zbQ{5cw>{2$l8|a0+{d)9cu{$gi?Hs%K;GT`reM3Tjm>md6_sv%#jg(25xWP(^X<7O zc#jzce9XJw{M9eJ_|>CdGO*c2=jESaJzl3%&!x$NN1+SvG5x2|gJ|-`R~Ct$r%n{) z`a6oZh0Z~$5wuW#yaMs6p7VJjm#v6(V-G9_l@ouY?5oa@ZjKn zw&ZsuU(J1E_Am8BTj~bz8JB1At0G45&e1n`pJ^t1lq9FrF?BHQ+8x5uyzMD@Jy%HR zGLZOoh2XAQ%MMtHMe9F<;7~MByfq?_cl(~odxrb)vjc1R2k*!6f5&0|iqrjxzx;Xq z|A4y;`v>k~@fWD$@3_l8C+{+s*du9OJ**KKqaQ$N#;({_yWV+yA%YGKJKO(Z%0E5szoviu z;~bWiYWicr9}NHbdHCv2!wmZ8dIF8rLf9>k1-rFBA(sE`jLK`~ZISW?{t9lWyWoO6eo6wAqR@!qy5CbSDZH zQzhS-xrO|h-x_9-{d7!&ZXcoxkM%Tji<39A-L{gud49h{N2GJanw2#pWLy@5O1L*a zlN=lI(CgNSMI-i-#1jp)P<&xT!GfJ;ds|_goR}zVj^-hv4N$MHZyl{vv%{QhBbFE`yayo|D6c`w>AI&G1vc# z`S@TNC9Lh-%w32WCG3pd%*D)29nH*P8Rg6!EZwY#n3>pFIhbG>)x4d|i5OMgT+EH_ zVFd(WUH_kzSKehWjF8%DFPGm;Zwm`}3p4JJOQbQDQIIi~kWknpO%xmnjg`_b3pBK! zKiSKr$>8RVOxU7x%H$U`GdZsQnJ=-Cd+Xcflv`KJ1Iq0G+SX{x<&0WoFdUBTz302$ z0E;}lcfRR&-v8zuXy0(3bbQZn|4WEr5*dfihG<(_U25ZB>~-WFtX4!y@$cxfaK6e! zDcnhHG(jWwurt>8A4-&9_`om@g`_Z}v(s)T@jgP2YwQAJZcB&LtgY34#NbR=W9KAo zeLZYOFBnu8r|eHe`a%~vJ73=?r1_MWrx&3$5RZEGo_$tMFpozhc00fli5cVgZNGK@ zq>8~WQjp&Jt0x&!Vf=!28>44m5?KYi4< zLc6skJBW-36~)cyV@a4B^$2s*PU~n^ob4u1!qaJ}dLeD5MuM3&@Ur?z9mwo-ldc%^ z*U;>3&IKk%W|)W=$oERR#}YPWD?kl!8Ga3byky4!KP{tjn$3AA3isd_H&^m+$ zn(tE6dK2DAs+1-PkUR~f&BBp?v2Fwn#YH4bX;+DjvZT05aZHnf+{~`XX}J*Ypu>}E z>GUE#?$g&-1BEiXCCXkp5t(pQQdRn___O9K^?*h=!7yXV@opAA}3M+U#wfPJw# zR$aJH(h*98?+E8*SBgsMW~lqwEUh6;p$sBMF3RZCwAx z$~Qs+=-$&n>m)aYNNJD(*t$S8hxAkkgH(plyZqAR3-Pq13(qlbrRLi#6_xi-NHR~L zYay2h>bZGhk$Vb@TErI=lnCvcAzGHK6*GN*49|L5W$Nn>_l4&|W%kXm>bnOk>Hr*U zX~KYvOXebQ+Bp>t%+ZdbaJS2RE9wU-oe{DUzsG(yCb)UTFdZ*FsU{@2|IuwBz7{1< zkO?uymmtO(*%Gz4442~k^ZB|D-LT02nFa&RqdvY^G5+iEf1xiMqmeYaubO1RNQ`oO z7?SSmoOFPX%orkIOO z{8prK_(DUgaU+X`3g6am@*K`@zKc7dcdX6;%eSO`%sr=%Yn4J<5cYspJPz)3kwUko|1omTH|epdx&~-<_P)D^DAvaSqt(6T}R#v zyCLC=e7l0Z7dD?GlAwRc23)+Hj^C~n4+PVH=5jtgIcy>QespUvT=gE>V8_3r-PE9S z)NXHe2kjq=%g4jvp4-?~zgAB`qCZSd%ABO5VZOrlLKb}V=y@u5WY8{V?@4vIT31nn z+R180>{uvp9(n30hz;suRA~-bs=~~fCPp%n%G!GaRL6BT(N%cQ@pKqU4Sc+#DZ?H) zx<$uc`S88>E0dP+MIw%sOl03-hBH0F%&u!9>EN3bt|UFOdWJ`rBgqtA4zvyt!nTE=G~MK&-_J2t}#%8_iWDXm@J;#E$?%AOI% zbvH$;k}V|1o|619iq94`i@VSitrRQk+T4lLyuhkDvu(9QTE~s-9rrkuIOUT8uXNZr#x}$P- z86@%fhT5*WuPW?``O}_=^Lfz_hxQ$PCPx*Pbl8Jej{S0F-^-0Mq1$79{dM1{f9$YUE zaU>rgV)04gVB(mR;)6&I|Cs(?3rUo0=#4~;!Ath5r{07&?I0m8HLa6n*Q@8GWqAq( zxg}Jz&!0d8A#8%FeMP&$nZzyzXhSKeEpjo(DsbEyMETQb-eQY#)DfXFuc^x*lE?IALipaDaY9k%z~K}&jpqo zqbD36gZ5*v&YB#cD%|Dr zlxip=&bzs6zOdd3H*MkAw-%8XJf8MlXo#EfB;6W{+qliN`ZA)bgD;-o5=thF8Qa#~ zSxt4mHcaP_h295#MNP|F?Lcjz0D0Ftf9=~)42Z6YY^azt2hB}*G)5Ct_p^cPYX6Mg zj9PBQpLy#;CutF46+a>taOzrvi(R`KE_hbBuf)YEZaTUW$rashPmTK5DV(5x2s#@_ zJ&?IKqq{e=@W})}w6Hd~^L*sh>7aB&;MY7Z{-~(uMB>^0#r9RkR!W5~?pSGWX&<#%v{rs=CD>Yx9GFg4VAK9f=tLEWpqB&px4Wqb~pNH#VcRanJN?s8F z&Uss2+$jC^%fTpd{9=gxTv3>t#oxDW%k8ea(Lk5XMOe+*Cluqz&U&766dt?z?bO8+ zzdSww{kxTt~S5M*1PMw@=s#$pB)cHNk{J5!IK}5ddxv(D+?%kuI%vVm zVp7@fei5YJO|ht8=~;n2!Xv^~1zFHZR}jB$+flPLO51#SMJBiK6O=kOjXhhTKp7=MHom%= z^y8_w^Ygn<$3H2l2`LqB`Sys7vAx#HfnlcNzTrer{5GT0_Pg@No3-3~K;MkQ-Ma#G z+l|8T7P^j#x=*su?2Y=I1XS$X+D~l+;(}+E(oDCMUy?XxWg1pgr(T;ad?KcgRbd`; z9{Z$DgF=xm6CD3SVHGD6aAHx#RoYZYCwltsZV2QmzliaemQIy-^C;~M zuf`*IqrizqN4dH{XVzd)&iQ!AgqitB-XspNfJLA#ZyqsD}F2N_O8w-j|jd4SZi-09nje+$IdM+ z(ky#0XF(2Ze37}>6K!Ey>-hHww`ZydOlPuv*z;Nu43Gzc0<;|Dod{0w&OA?(BQ{^}{-$3D_+D{AVYn+z{;?UZ*gX@QpttbtU ziZv#EA7U4Q&xWKEShyWTgZ-x8JasR}8osxYfpF2+5zYFm9$L zE8IPf!wB8$BGQ#(0JT9;k;v<@Q3BTan`;xvRA~Gcr4xa>oZdFF4%}wK{`p_84Swe0 zsQxdAV8fV~Y?r#m$)_O89U%|i1iQ8($EeUx>@1o|yZamZWz6J7aYCzB(|H(+s@#mM z4AfYo?%-^)f$P~2;q@*dDC{Gm`U0-DejaE^c#<)3z)P4%Kxz0$2GQT>xzVoazu6Yx z(uYy`j0J?`*={9GksRwHpG7sv#9|Uo-19sWpmH?@N=C9OxM2=cDkG$#$lMn(HuDE!AmIlmO3e@KZK8<|;dmXlmqB{?V1NJ}6! zDjx0Da{THRN*Dk^aDo`a`y2+uZ_cUv`*Q`K3@Yn2jR7Igm=ol4O5E2n37^QpRzkROeP3Xn+H>Z4PB7HL zxG|)DVqVr!)(pChNo5^2lb=hZSVM%*p-eL1yi4o86J~8PRAZi&71Lyc1QUj*KU%I$ z9D+hFlmJi@h2c3E{jXK*MuRgtEG@Cq8 zNRmF8JW(cf6e@LOQhFaydLJouBvN|sQF^aYdT&vBFH!0upu&w=^+BidYF&DtDs_}D zbu^Ydu`YEaS9&j2>S9>h%&3wbrS>dF(@mP*O_JW0Jdq<+Myg_+sJ20po*`xKT)Kc) zMHizcLy{gMHG*1oC{ELr9K)iLEJ>phkh3CC{3^-zophXO9T0ttY5gTIy;JhK$rc!U z?6~m3HytSZuxkB9oAVuaY-t@3am={*5y=)9eayJ<0huGH_^`I1vrNz@BQO;BgK6RNt0^$xRv zcm^XyELB0=3wwrFI+=vlSdFOhG*B&|wG37BW~5G7dmgIp|G!}|7qA#w0(0P$1WO;H zB-Y3cIgUZZCFoqJKhzBdC6+CzLby7lm0;lj1?ncrAOJkFKCf>uukZdm-BpvpFc})s z*XM2d%yludf?Raj8HKXQALm|^I6u@)d;f4b#dW9e!#=_y$0mOm0d5oYy)@i9WCeeC zLd5)oBcYW%rlN@g)wbFmh1-6TXlEqrY;CrLO^QHDJt;$22T?jA0P2-oYH{l175(yN zCVL7b_zh`R*u8G{zBRp4_pv{XI9u>#7W(DsB!^u>xg5}B#NNYQlC<4bu4n2Uf;l8Slk?8ZR+uk>!zZ&f zEFjZlv(4q;8dXN_T58WD(hj zvq!f*zhy+W`J8+3M<-!2{VCzgn{7}JkO>cC%?Z*VgzDEkV$Bic(g2tmt3tS>)Q6JP zG7s2xG%FaPccgI4+SFcoMHfNKh-An69p+Mszk zg~EV0C~H0JI3va5;|%^t?ccRr*%{Yf8ET683i9q^JgO=r`5+K$K8J28E3fD{aLaVkA6wZ&=LkT8?Tj+8Y0!A{#cRnCnW z*QAEL38W*i|22Jy|GVvY6-%HrhVlK{x(fH#?E?WP*2K%KFYJWCH?)V~Th!9$_|NEf zT143`#GP5d>&=PJ?a^v>(6 zH4Z3|Mg>PLPlpOcU@W2nLuT{RkUWV0WT~U0k7oI zxq+Yp1s}y;Gq%Nh@m&gfd1<%S177dH%^63)iX-4nM{sS&->}hKZfaSAEVf=D(eq7#zi{b_wKM+|9Vf{GCr^Qr}~X#sd?Q+&INvk>?ty8DS5n6N55Mt zN^dJ}gI&M5_f}oL?+k7U)NV(DQha4)&K7+29b#nm47A=0e9NwVDao$8DNCW$cS@^!E)R3;B$*=dujjYE|t*Mv5d5LOP2(#y5M z3rqy6O(oYG{shjCt4WPivpvlFnL~AJbmjY_@&6b49&AekFlrieX6M(OWO~F4&>WX? z4xUnmy=Iqomkv}F<$773&eLjbVhVk1XxQ8xWMU|q&Py#P9`H1ZX=?Z3$i6k0)$dMX z1T_vd4%N)m%{0u^N;RF(tI*qFWy70942!FjG{$MxVATfNTVFPuq;}$RHf=56HP_LjjFj7TOkR&eg^tGUsv>=DY^Yp-C*xovVp z8HH;~&F!fMl)-Hip^ei%);UBVh@a>GHBn-vfQWRv+j{{}k;*>;VXa{o42eFm7Yd2= zBivvXppqCwd5yRX1ApeNW4 zY#wYLG#@$_4i}0SNh70^<8A@)FHmgv8tAn<1H=z*0@efTf_1^RgO7qUgiMPll8~If zGs61z`uV6vBXjQTqv{dC%Cbo4|HWG>J@l)y)kAZz1?b@ z-M7KZuiJ}mU@opO&6p5DV)5r%G=XsUJiS(YUr=8(+;`%4W}{<~uhCW4p6{vl?xu3m zjlk|2^!U+akpJYesxw9cc<*}H$}YqswNBy}>mbtUV0@8t2Y8-wQ4hZTkE@Me=8UD; z-`&^=gXva?QlGNBs5>EFIBv8!K#$ur#y|XPAr2vThCzR!=3P5~j3yLSIAi35JgqJm z_UfYp39ZBfgQE0JP}gAADBh{9TW-WZgvrLRPs^+VgYdZs9}V7@5D`JArY%3q@jnKJ*MlSN~@2eKF1jn-HbpJi*xe)<_7~dTD@-`)J`T>o?6Q#i1_v3O$tWBJ08UMkc_6 zj1By8KP$ZD_1Sfa{;Yqdx=1Kh2)8Qbz7Ti2ay#9a`HAw0(;L#4_*YC2d^!NTcL<|# z$8xrXP#QqSa;AMISll3cKc8S5$V!Wy^eB@dn;^9!bzjC{MLA@!9Ha4HfqXx*xV4o6 z7+$AuG3t}UHxf1#$`FQFfA0Rf2HSc3;l*O&u@iC0V2wK=(pC8bz1ZTf^&^_O`N^Lx zv~Y`8Hf{aQBs0+amkaC<;|k15W&4z zUR8ex%Tha0AJc7%>qC>uj*Z@>SFT*YlPK6tV)|K_zV9hVVX4qGd48A9ouiA&3ajd< zIIVccZf2>$U^U)y0%%S#2RHmMd7%f9ezyzXpD6bKf*_ImA`FPe;4`4vz`^nCcwi`9 zqQPdbQOik|@vl_~*K!Ne)RwncY~o?Xt>F8kZoJqyv)3rq7%>UrdY_fjLGl8fZ~xpO{{aq{}tcQx!U+Z^i?` zKhWu1Gc7k&?V|^VXC11hq7zvyj}J<^6k^{ZxJp_~t~PFiG%sxQhTkq~@J78FH0^h7 zaA5cw6+z=&jS&1YXW52kN9k`8HOnVzfI`rZg@CGVs zX%yX7ESN1m{?;keW99K({3p}lLS^fcR_^b9l@ph!Z~hJ;+W~|#6va1$S!l_1TaNY#>^|&(?_RSlXf;( zLb~_KQnbYD{nQ(iJ%}>Ak74c62c&DiflnqaJJ1e-4wbHeIc@0+z=JvV0&sAg8b#z2m7! zW<|p)U<&)40yd5X?hSS1a>OC?J9@5p6jwFQTS5bb)22aR<3C=_PDVkaGS)3(~ zUX&LeF3x=bYn2}oF?di8OMQBzJ?OB@mX#*{KB(b&vO;4NppJ6&cm^4}MZ>ne#I^0P zS@q^8M@>_P)`jpS_;WZP;dn?O)oK~^g`KqSzyU=83lv^ z#)eF4g|vLSb^hGdfg;^)#vQ#exiHBn+>WJ(Xp}qCCKA zxKJD5wY)zs!)3YAqQTCf@7PshYgb!-G73wx^#_ry2%Qa>U{IQ4Fg8$} z4r3g*IQkooyL9!Oo4-bG(KMbwSDU{ud%JQ~i>>yU$&tAXq_r+AAYZdQdd3|(Fko~U z)jf2~jW}EYxksiwivmMLf*?#a{>MK)%GgWaGUdr6MclXDm6jR75lyex*!cVDr!HIM zJIqq(r*+zh`Zear$d=_%i+bXlZaddOe(46{4 zN2@=S@qzwI>*{?)R+MpP9gxZYmU@1?#GZOUdjp@Av9z4VFwXI@IRdrQxBjCYEH96MR1?X=Y?z?|=nlukTx z>6CViLJ-XpS8aioVMl~K-Iio$5ROu43q6bc#e+tbOkQWkUei8&1SU;AlkEC&r%$|byJ&J`@7ku zF7K&X{f}84MRYVf{;$ zB1W}>afT=+t8PS=g+=9xojvw~yY44ry`sFmX_~fy^vnlunU0cb)e`h-eR^zku9~&c zut|w?+06_dO-PHwIF;+n#kBeG#-0{9FSgt1mwb693j>Dfv45*W$W_dniH68T$rf?8>@+-9?s)v$lZU7m z&^V5m7?(3NOr{xnZ+i)eM1o*A1sFF*K2 z)?pL)cixQo#*1PjZ9gbeEX)02QJK8)Ca%QI&q41iZ;0H$6Y+tHMPBgve`;D8bXCUL z1z$BQs?AP(rPZ5f^**=^2!nq$reNueAtV*KBR%CEoYtrBP+~c6{=v0+_ua-X08R?O zA4!t*7J~|pGkvCFOpem`)!P!h&U4H5e0t(ltRy0-!VS_zip|my?_$hM_wRTXQzeL! z`*S29E7WZ0UKB?8>XBiVf@D5EdKA_!f0_b0&rFs#TQ-ED+iK7zBHz$KX6yZmHM}A< zKk1aOV@R+Z-$z0B@1qN}HLh~a!+G8}^hIHPF0+{(+?({*&GiX zADWFnP<7<2*<=n`UhjAswTJEiVrIh>aia&~Jo~{2YUGvf5LaATMrcqdSLmg?aVwh2 zobNEJlCb(bU6nzFDh9p>srqf?^BdvO9@2c5*lNLjQcXHZikB>jTBZ!3EwUC0&Bosr z39IDBrq8L`+VuzS+Btf?nF8s$UzhbKr zR|OQ!O)5xYIz(DbAgEf1t9{Uz#H8dIIvr)6ri8izC3#kdS*v!KG^=dT$Q7eg58ggo z4VQG{^)HzE;Ged9aq|C05EnBnr#MW78Si5_i5~V3HZHdYV3@-8fM7eH@`b*) z{gnPgh%2$FVIToJF-1Aag#~_KeV-^%?w*X}tVqvxq52kO5#Kov=aPwm-Pq;rezll# z4FW?DM~MP)V&z*xocgSd70qsyF8NNs5!a^;ZfX1S|EK`x(w8uW&n z^Sa}J7qGtvS{rGkTIjh@8@niVG|OgfT8XRLafb*wucfLb12&~|G+AOA#Q3VAG`Bu= zRmk7F@0p*#K$G~3IRw#Y4Mv5nAh>Le zF(EmQ`$|3=tG3(0lEsw7*p!85y!PHenD<5dQl@Xajtn0*oNcWW8;m2URd*=_zloyV zLptG7B$~6LteEIS(e{G-NUwyNq`yfIiUS2o@6H7MCG6;zAFUJn`m|rC9WoKU0FOL~{&{?r; zhv59Jk?wZmVC`Gmwb@?9TGAIbX|vhtQB-{}scS2+3d(D!RCK7HX`pgBVK}eXT`|nG zk^ca})3PPR@DUp3Wv;L3Zvs*iIg|8(-2U0#1}?CEtN%qkcH4Ea8K9*P4t$T!qSYJ$ zM{X8Z{O=m=?7T$Lu?stA!g2Npu`(8Q2K9JK@0myw?sU$7iOq)I!oo1D0C$DiHCHk0MQmR7?E8KbE=?P-X z0(!V#85|vKoHfM!j(hchO$Yy^d?hpWI>Yx9qs|pUm3%uz+NuV>7uh)7M#T@`=lAib z3F=-SaJ9r$?B(hMcN_U04OWKuJR1H#-u&RAriv}Tm))06{H>e# zKDKxYa;EM++jl%>3P}{QPvfQ-?P{{`hCnJW#{c%0Z+(On@2ejigXc9xE%yB5p zIuT9HJ`%HJ<5MtpgJV7GNi?SBgcYONs4C_#EEEW1c^n0s~TR*3Uh5|n*D>-{ro%QK!^28Qkr8-RrBL-#L6&(Gud zs}sTg7mVjc*;wAZUct_j;MHF(o07Na(`TyL4(t%t1u7&1*#<{@o%aP@l+SC-t5 zrfklG19yw`PrVdK;zfT=hW}R!)LI~S;ORRj(#*d>fk$^BI~4zT4SJ8vrj;5NIt&i?ote9hy=gh0 zY64Sv&lm#S7gtSCkNo@E;NoY@2i>oUZ2aVOQOS?(ODO0GbQ*ELe+TtjhcC-D>Y(+m#6TS; z!A)!3iucQKk`9Gj)xjAAcpqW)ad+b7wfjyN*-dr^pUdl!ZSNmY>oU3icYDqi0$L$I^pW#Nu z2Qc=QEJCEQrW7Xl2jk6eP&*zrM-Qc;V?Fl`U{v@E| zVOmlbq2a8R-Q%|A#_sT(gZ|#r#wF%Xo*Nrx15z)hGV!exF{722qsPzaU{yeKb?v-* zmvx+4u%uZfsn?8h{BLB&!)x}P-3PG%D?Rf=QW>z|!dP`tC2{qrjGEkq-&QUxG>;Bh z-=#`zBpW8PHblwaNj|OG0df8d)#_=4&f}y)O-xj~$9#=n3aVGXbUNM>F3C zUEhx+`N|;06yVQ8VuL@cbMKuhB;uL-QyE;y?MEZ0imqY)tehb17cbwVFa0w(j6)rg zxsC*U>qy(u>dpfwosv{0pp0Sf#*ctB8h4OHh$yvSUasglIXz~iW zOnlhW8PR>egSN2I@^hKdU*WRIkg9$~FwRmO$D3(3IGcB{p_1&kGLSJ=dp zj|{o}3zkMRy#Mt-Q^k3Vc(rA_o$xu1RePw%i(gpYS$b_~{ka@`MhzlT%1^X;iL*-= zsp2xIaHCD0880g>$7_&X_KUiAuN6~CvT|!#L1eWMv?i&}FtS`)@DswFnaV3EK*&3L zqg~3Gy6jD(+d}w*1GtB3krv3DlJl!v31$~U>od-%oK`H&b~SL@o#y5_wm1DZf|(p_;2h@rvCdnt*^H4|Gq!8>|lbt`8w-0#Ct!3|CZU= zO*MoE^W@&WA^B@g?o033c1#>0iia1vuL*v6HfC6DQ8SG`I8yL3}u#n6MEyZ zFaCoMr%jn)Oim;NG+-H-qp^7LWG&m$gQt%lHLT<7v2XQpwnA*4Hcu-$1BX-(^$b+q z1BswvT3XtbGS#eNC;P^pKqS+MppjI+9#pUuqr;gK7kKtc&$=_^L z(CfwDxABgjaGxf-^i0s3Oud#(e~_#EF~oeAB5Q1$kSug}R` z#Mbw&3G;MYPHv3^hAjZy2^3@f*S!m!ek+OVa?A%#A76#V{GT53(D-MF&+t(TU)_?1 zzQJ6c{^H*Ky+}I1zu*;?ds57~V6)bc+2yKb7qcN~h178}#iW+|#8-&2=Sqfw+KlDO z#L=;eEJl!u3TZbE^0{}VpIg8&yk%NQs(-@Y1CY1qbx@rSmz6SR$i-G4*+^wWGq5?~ zbAYF%V}kR~)2%@`dqZ*7YqF_1oC2(&7J%kJ=5D{7t_@RO5w5%Lk(mOOQb;}`FuU;= zwimhtN6p6NuynN?gl|`O*4l+hdyu!zn|!4+t*JDrO4z!5owKsig@D==a-u4HuRRGO!3Zsw(D8D^Sw z)8o`e{QxA~i(jA|T;-&KwG0GD_3jWu%x5+1mOY-|`5djcbiMxeiVfbFl6p` z6t>QNmlV`%Y%CJ)E{z zg0V_e%$C_@d!dhzR?TCFF~l)M?PCeJ$0$zT@H~`*M?B4s1ZeKj&hfcE{?h<&Dbr9Kvc-5SOS)*brN& zlDEgkvvNW^!);q8Hs?6?xV%$aYJr#boZ1l`R;d}IS8dscH|xj4ArZ)95t|LB?V>$S zD$np0qshQnTjkDxowwt&vk|iKJDr+zwy)Y1G z#KOd1n+x<(?m5QvCdUSy^LlLgsEPnsx25_*P`v$r+_RLZrA1sHyCU7VagrdYvCWIL zshLW*c+nM&UfM_5BAzbb z9I31`H8oe-sj)Knm(>Cuo32G^o6jYE%Qm50{Tm=wpXy+CU>quQK&D^6(R}Cpmf|qL z_nj5W_%yFg{V`ATnU%BWs7@B~;$6J8#c>vF+Tv7X`?L>zaiu}C9c3IgJ4c@E+pCZH z<(fHUmC~ETr|k09@&yzt103u}D_S;dIdB+{36Znm{#POnv5?>+7^C;{QzVEIRG7QR z^aV0CQVo?2Dl&Nr>=yUybY#+es)qe)F6E_W)*8#3Adt4~()nWu>lwRtf$NF8Ij3*s zBCp_(##QX2tS1o}i?qk_e^rIs z^_o(f1inQPhx^575^PU?8UF-!cL2Z&W|Q(SJ25h)jDhB zs!h6mjdRS8Lc#+SKh8!ojyKB7;x)@rd#gqYULWrBvI5SkEHE2U8jnP7`2l8T=EQwN z_mED*R9*}3c((dt3&YNk3O?nb3+`S-DxqsP056{o&};-Gm37({qmV z4yv3i0B?8CXP=5Cf~ur=Y;le4q2m~3@YtB#B+fjUzX#Q3kk zY~LG^3U-4Gh_8r!T3?Hszq17z=d7;I!K>+|k5q$rBM6O5ERZkOF^R|yF*V+(zTwh` zps{H+s)ByZsfed5PHsuJEX0h++)iTp=6ekTXG)5xDk zf+eA`CD+pYcaJ#PFZnL8`N~ys(fhWK*cLx;FQPcr?I&TsIVLHfQ$E`$hlI$pl$l8B zy*O+gELAk z%vZ2xN__0SEwd7fJhN&eh z{4;96ts#Vb!UCZ;qwd**M{C%3R-r>2ss{-NCRbUwf0QV?A759XzEBTIxO`X8c(Sl? z!tX7$5A7OueNPP%>5dBv#s0z`cjx1L(t>p<5ZqXeAf8FjO++_l$M$NI%O=TtGx*+F z8@;!>_FK6$&gfedhnmgC>e5G7G(_|j9ho({C_$3_OEtdyc`8RlN@|i-xzj3 z#HsM5ntw{a{i#}Naqx`ZNYhFUo~>La9|@~RgtHX;0_kpW*ISi?3CO(6qj_(K#;>Lt zE>VhP-sWh15O*S*`ubJ#e#rhAFyaZ9$==l5Z;Jo>x7ku%v$wa(OI+7gR>!+5{H{^f z0pdyn=_d~?mZE_JOV$zv#in)q`#mXXq)kOm?v*L$_C2?#a0a>D&P2#x)+-=6rOwP) zC^1l3BtBM~oe?tqBO<)Ve%fn6cspJE!-=cROEx;6{f(7cY|}9Jpe_pV{Y#1+GsUpg z@QM9~$IVnhL#cNz|466Kg$KUt0j2c}dvBGrnnr*4?S3j|4F8Oxkkz}INtH6UCUVVbWfd|+ex&$kuYkS*dilCu&e{84pfdumOOr! z>x7b0=*$zJ!wLdHmUG6pXtKYRG5Ab=9okhmk@yJnL7qi%St0-iIa#qkm0iR_<}ta! zRRLOts@f{nxtg1E`|JGe=I<*0s>>ffx@Ut^Zzc>CAj7=w_IgR1XN)6r-8>K7=8l!c zGezH`o>HdS3~R+@o_iU*zW}{Zmc0q$B7Q zNfgdIPmeL=6<$fJz!wNMkW|ieY{;%)y8UfL4kY5IlC3)T>Y@Iyv5wa-Ogo*PJ-Z$O z*9`bc@)CUL(G&aCR~{a4)vWjLL?lj)Bn$1+9_bVI%`*Ux^o!xwO%7SV@6Tz3L|KPI z10iDTJ_Oljek^YWlUZ-apK##)oV*G?0Y1T(vP?4|-F1QjY?DzejUl6ZV=L^If@CHp ze+*3H_Dfkaj!=X~My9dSNaJ=q^E(ObL7n>sU8?c^%?C7EZy5$n8Ve717l$)48t@85 zUb3yxf8@-g)$$r=drkyj*wRc5sCM_@>-0qG1)7sb<9S|Fl{^vGku~v&icz^NloX@X zN3h~C+z9-!uF0bhzJ|p!C)^hgFMLEpaF~of3@A-tWG=K_Z@jgV?epxFt>rkji2x_56#Q!*j|CTQ0{X*1YA-5$KGkBFf^g6jMxZo>rH&3yy zds!J=h2RitI-HP|qwY;*FiHm|qaBLS&;CKn`b{ksxPmk7}diJN}Uj5fu6Cc$w3lh8jX?)ruG zhru0W>oWn5;Z^pT%!;*)tyXV;L+_vOJ_WIOo`0MOaq73`lHzi8R$J?gKmHmNj2oie_96{}L@99&~+pI}oFIL3H+BX1)C_W>{OgFDlmZxvReu7Ob&oqrwY zkT$+J4;=5X;sZavJq zJ0Y{>@D=$&KRw=_#BNC3tZ{UDf&_+8r$F6DsMAC&Z_xGW`>wqevat$szEDqsL)2#P zK4~O5Pp=%lpCsR4uCI=`NjoFl%J!0%WoB4o&P`igv|APw)K`993IJu=b zTnV{Hnm&xZgv7v?WH)LoBh+MvI!B^^J~PS`fiJVEoybF)i`7ULkBTFYI2Ng8ia1Wr zKP#&abA}#?V=>YV!v`K2349~wX4eZ+EA{OEga4znlX0Gcr;eRR>g{1k^bWc-%ff{#c=opiMT`8*}SxIntnTe4y_54302aqnJRB`kR-QClUBa)wn)JQzJ0sZQ1u zjd5a;P-2OFa`gzk=24sFCxf)BZ!&;hIAog3bg5Z_=!Ja@ksb8svqfar2NH3N^T+^% z7DRORpA^;ItW*4V@y-oEAg#N3gANSwm}0>fr-QF#Z(#@_|9cwk=Zn86J4&4otsJj!cPd;QXg?-f(O2v^eLX zAs^hUCZ`1H5_}83YApdHGH>$au(wZMt+d6^OZQ4ysJRZi{>^~{UUU&HpkxI@8-Lb( zu#ig=ioJ`$kJFsxx}m~Dxt;sF!m)!g@g|f^rAK5gps>aczZzkDhNFo5G|-6&=E)^T;h9u*Ph^J z;uN18r)7#oF=^>peMfvWQQ_k!LPt}61) z@-A-w>^dGR?AO7rNF?a?E2*VnnoK^@iEv?j%t|HPrl9Rbg;GqO6)xjvG+vArq%bE0 zg+|3Qs&XX7QB129)MZ>e&QE)LAaS2q00ny*2Y=ltv_#a3h^Hq_yT~!J2kqnw5cQX- zV@osgW}G+0GETH2-+9b6$6Eb)OkPWjL$UU49hxmsL0w~Lhp7wmiU=hE7~*lh!wOGt z=^Q(@eS|XPB>LGbMI%Nn4uo?njnK9-PuXjL%dX^AM8tKM`@$Bmfs0er zIpMLY3rStFLS%mW-sBn~XDhZOVr#Vl#(N6)29*)hAwa01 zE0hQ+cPPwU99Ri=?gPL^)5Qy2_Jtzhlwouo9Yg9VCYuh49(&|9ytv5!opPs$CJ4`` zM3Q)w-M!k5Evg7{(Oe4SlBLOVvNF^$Z(SoBsA5=e46|~5tc(8O`xwbsDPdwx! z&!F{J9Z@{euhkL?5|DEpBu#u}NnGC$8n!7ov%XcKh{T@27E8DmoVI1i)j*P*Uib`3 zEO+hXIxdAVm&c`l%o_(Ly&F$(_vw#i*;jQQpE}w%RNDnXue-1Q>d4yaj_XFw*E!p~ zoZ77Mt+%x!%`QK`I0$~`x{r>w>+O!)yu3Fc?VRr{^lYA-yaP!!pBvcuAwo%kxKN-V zSA)9^ZR|*G3rtg-P+?#FJN%oU3McH^gYIYK8f%AHbcZZPL<+_n_}b0b4gP6s6UJt6(~h*-Ho})e#DWt| zTs*^XrV$MgD)2@&@|})|9LMGpE>c<#GBO081Fc>HYp*-I^tiM|fvcUiuU`(^jDiy^ zk02qE)d?C-v6(-Y^$AH~Bz!mm6fRP;WQ+XDW^LEa&`)a$@f->rgBnwU!h(!%1SmGE z^A{xhE>Q3Zn%+q3G~d>zxtB+ucya5{?BJu(VXUs=1@rI)yu1C04>wv0J!|y)zLS}q zn}C{K4(#-Wq_@9VbRc8H65pXlf5JoZSG|n_YZ^Kx^&LqBw-Cw!K@dTxX&6-CSFiUmnZiok~5qd>XBA?%VAIjlj*9aF%}aYHGs@nUYN`jiVlM=m8v z?KUIS2a+oP(pST$)Dq(Ua*7Jo^ccd8;S~B}BJZ1V@PNU_D}8iPb%?U zmJqsODf-$Qm!u0Y?Ku+ZQXW!LAtM4=M0_s0wqXp3sPt|I>zf0H?}``S6ebU0YAOzM z>*a&T17L|!?j8V!sFC}QM1d>9GJIiN5LteFM^vj2P1_{M`wspcak)P46FSqBV7=h> zc`Pa`{*&4u$uP^Kb=pN#jYTj`L}EX3R4F8E}t}Lv<@*KQV&QiyR&uD9eJ@flG6(d!BoK`2Pg zlEm)|wWURyAiqFGOLKpBf6W1u&RHNCUkbb*K0dmAdAk<+qL)v$liKL()TSmosPLA* z|6CbC1o4VmrIEg?RWq@P+dBTDm& zU(jo=T!j>Po-(W_A(DVqgj6Xc!2=W&S56Jb` z!tP3eWw8JsVDqa*F|dNb2dlf=}v6yK*#S zne~Mo@bIg}GgyUUp#mG|1>5-$$_5`m1sj+I8z2A+^m2d1G@tG4?*1>Dlg~!`d$;rgJs^>!e{c>l61+0CP z6W>Ehm%#ZBaYXYVoAH}OaM;l0YuG^c?w=tVw50+nTZkBMzFx07TpEjO@?MGW;%hk~ zf%}wH=cuR{TU$rv>61FTI5t>YhV1GGdzIf}5O4r!6GKDp(9qB)#i`yV*uXuku}HSE z8@1|hlYDwzS<}|qM%$OeA3uNTh|v1a;no9{58R3G%UcS12@>L(`1kiAArY6M)nj#{ zILsxTI&R_;lD+YGF*kE#eZj|Lb79u%7cuqW(w0Ws_9&>fmbKCVLjo?VP=w?>^5YF& z`>B=^8rrg>!M5A}YHJsS_QtFA8T||ShOPF(feUNSXF_iL$aCLzSMgWR7_KZ%vo`z~ zOphzGR2=!X-SJA_c6ae!KA0$}(8m?-!Ow@7RB_0*f`>ZsR7&xO zkSpiI1m-rh`$;Jup*|k2^eeFC^BV&T69F2Ngq`KO<7<5=%kd4u^);?uzV`R}xjzQ* zzDbj;>29LNyXm;a3@pT4)i%Sw+~vt7;-%M*C$0u0Uga5-;t{!|S2xDU(==8Zv5u_8 zd>c7gqd7GEVM8&|;)Le2E&1hk`FEmqxVC$)pe37F(9mqO0{*Cmvjo$&KOMgU)X=ch zY$H63IpDb?4copC;eP#kkj{~q#<9{VHwhZZKb2vcjH`|4{PIW#aJEj@rcyp}F0 zEuYU4+^|7P%vjj8#B4bA%h5d$y;)rRd(~B+`vEqyo`DPJ`owLhNcVd_Z<81w&>yA48?x#ou4s%r}>Y%&IEc@7?WsQ{Cs)-~vp{W-BeF?j%w`;ko1%5}G(7tgH zl95J%xpL{z4`l3?MJmY!Djcg{%|dKC;T(}hTK%g>+;HWW$J1y^xB4dCOeW>#$)I`Z zS(dvb&9<)7w`6k|=qPp6XUl-o&Q!M%p*!kGx!jYC}>I36u(v1tL)LuUCayBEIgh#WC0U2a0=69Q=JDo;lCtIl%CM{i3 zffY}0KI|AKRFV4%BcO!4z|6qRuU26budk7H=~>*^de@QG5L-9ZmV`KfI3<;jd2L%; z+;XdcFAJYihJ5f=B8Bka_e;^fYYcGt$$EJhrhf+QOGwyRbcXS{WNb8Adv%%&1Yw_V zP6k-7IM}}2&g$H>JcOKctmzCqS@Oj%jL~r-$|~R(`Fgx&?=V*6X=*&2i;kW8Y$<@a z>h#4(>at67x_w)6uIS`J@-M(g_Gz~Z(6_q_@2l3Eb$+k!c51y?Q4e~T62ouql}WyU z1r8)wd4=k7+l>KA*AC7q1cMQ_o! zOm`0j52eoqs3pEM-s0X7^--X~8ET+V;>Q>+*+ubPZuzTs@-6S(+6)e`GeM>_`Kvx) zgTh2N)UWTLVVF;@UHtXlyt^W{;+x^yNjtQ zh(s1DdV^0&sNHfo=KEW81-ui=jx1iv9v5mT4Fr3Z_(uH|X1u%j%cU>%jiKC&MSl1y zbmb_-Rner^zJ?TW^^#;+lWwIoR)dvqd#AP0!)9yT1QTIh%N9LfU9tD_G5``7^sV_= zxFU5D11zu5+4!@eCEq?!e{6VycHA%zcBfy_sVMZLpt^CXap@()IGy7Aiq4A8@r~6@ z$-$yS$z;=bu}|lj&oQDEVo9sD&2dYk&M~4jV(G!sbqVut#=MTj#uSeZ#%vJ!3i>hX z;^n86z(&|oX3l{)wA0VuJ-IzeeC`__e#kv9Jp(RmJN@Uu@4*Sb)>Av|QawxitebR3 zQIy`R95=1l77LC{jMZ!yb_TxXpXKwi4G0EP7@rxJ#?-~+`xL)^J9b^V$jdTO$oFY_ zwK+bzcRGGpyvP+?7t8`dJwqMi-6I{R-pd_hoME(Fe}4WPE!U{9KZMzP0(_WzxcY;t zvY!Tu3wJHmo~wL$(dbtID$FT7wdj6iCV`WWEwcUGK(;pEZ{GvjMFa9&_-7gIj%hUVCGoWkVdCr^WsVUHPfX&g^b!+SQ(aNu*Y56``Y)y>| z5n1t5C>3$1jGy75yXL{+kz4{Bk3#D64~aGesX#TJF$(Nx3H+9JO=^XB{EX4=z?&by4(PwV9uhFJ1Jj4G&N<)^tGJo+IrCB)t88FYlo?56TK zsA)pU=|YI(*(c-K3h6@G+`cw!z8+DWlvmMDH=$R`;herjDMF6p*(M~Vp!L#+Z;4np zrWsFl@lSOjPj%T(H&izVcFN!dh<{!;UVuNXI!sfpxYKG>F}ch~(z$jjnLZZcx%u*4 zSiEG9b8Nl5Pd<`l8lth1tJS~ws#*qd7saXUUavjXyUAOj6&jJ~j~^6{7Vwm&J3(Ht z%cn8z$8QK7L2#RG9UaC4JT^Gvq4j4+TDa?_~+{hxVIp2P54TEv5bkoT3(T2jRQp54>0*D#z5%Vgc(*&p>|h{$DZ7Ey5= z6v*-lB%j-}4-gxtee@kti@cGb5w$mZR*du`C>R46Czie}S2adi+4phbnJjTFaxHb# z4(8rOoas-U=r@tBbRe#v-Owdl>D2k`jNDgSQ$(G-k7Mup)Qx#^S*1rtwJz93h^^oZ z%x{M_cFc{aS!xMPTZok}Xc62|Yb9UL@-!AXliGaO(OV6)C)oC~$9mznXw>;*ZQz+_ z7{OU%I$zHlp<3*=utNU!G!9kqce~>s2AeHVD-mEKe^F4Jk{#mEx5nlw48h z@jfOL8d*%IkQr0OXlC5ctvSw6D?Ij@O?pu_(43XmSF*te{`xTx;lS7;EscusbgOx*`ASeSA^Rz}i?^Toh)mF1NxfFPF{Zy?;wIOJ5X* z*TTN?ZG*LLXY7yWj_LTAL#j1jNz7yxm+9&1VM}xi`@uwZt6=e{*U3x4Q~ZTc3#o&@ zWjB{AOB3YE;%Y6SeA>xSW?KnOr@PPeuVKdnp&H|kIWzamW9TZ_auOtlDDAZ0PTMmN zNl8osLoUBbf9Gg-UkAur+2XWW6U)+G3UEB-5{+IbVb!`PC*d zYwl@oeokHuRlohz_Q185(6&vN!&bfe>ABLU@$Ib5GQ~5hDPn)>*!10}JeynhZOtWa zVPUe$ckS5QyJ4Y`_PqOXpZ}c?88o}SdR%R_u~@|gw7q*Urdr{u6nqRFS0uO%boZl- z2Cn4mjYrl+a%m4Ds(mpk+hocSe#OKvYoZ4+n}&Ms^uwY!2w?Ms8x3laQ*hN zJTy)p<2t!eotgUR${|-ym??g}@!H8KNABlfcpmCdvqWeW@_^PdFIi7(h9%LxJPfp# zBGG+6Jh-#PQ{r@tl)IznyeAO|5G6*Y-5Lo-V|O~AzNu781L5Ph^3?s1zfGf`uPE~F zHRcv*yb(RYz!`XMn3HGHi5j0uiS>D}{1eR45LcF0e76Flyoa1wZ8oKnHKe$LT&dRB zIotfKm2MBKHD-G9`^VW_QOv2%L4@ljvNn={&IVn9Z!ihox=MA~EqhFo-X)8eEC#;& z3OBHPC*5_a=8bc?qh$#71nV^&@mR;Zmg+rD?~20`=shR7_-QWc0Txb@_T0_`MZCwSCBw z)`R`p?TPO;&wPjkXg{iqJDhDerUzCX_{N-ZS*bB?7bA_43F6E<(0s?(e;sq@VWivZ z*}y9J^OcCoA%sS;3CH&m=0UN)$OPla$Jn$ z)eZf6cU9u^9Q`;efEl+)Ea;Kz!h+e7k$VQ?$PV&7fXCHqe`$@yj@9MIdP`VP%q$)= zRw!PWyedYum0o4B>}`pf<@Vst@@m|u(--o*T*{v$_WkB_O=$s}I_y5_>R|{=XLlRa zh1h9(%QexdRY{wsmY`itN;WRMrI&HPO{lD_=Q%waOFOXF{>WKoe@l5F8>0Vhjl)Vg z=kZAW+>7$@ShhOKqvj8(gAaNm%UKUWif#N#uEDH>vGd5ceJiim5Q1{3eQs?YeJlJW z=g7m!H^yzXY2{TW9deN|Y{Y(+T4{dLfzU!DJbi=Fegsy%3Uo_}V2w%FMUJgKZ3g{Q z%vOoq$6wZ!ixdz>nI-W({n|%B3wpQLALkuV~p{QD`Mk6SQP9`*CI( zlu)k%feQGfWd*r2EcU|qOi`aWXNZ*k@O+L+KF1m?Xqh3u3Q1sQjO!^hEjTEUE|vDs zw4fr2eNjRzO&X_tWq>Zg?Rau3Eo2x)Q&Mj!T~#@z<&IDPx-gtPnk?JCi|v3|+GLe{ zHY4<1Rjm+8GoJIvqa|_m+c8B`@``NOb)timdCuzBbMiGBea44an_t!Oo?pfGpjxV( z%Dn=;0-e$`XiyWB_6YU}3IW#!PbNnwPuNe`<`w)Z#7t4~QX{1^Yu7aH^&EN~%30(; zMwItTm6E)w`E^HkzWiy^^w9B9@KIPMecol9k$l2H#f zBjU__g-Wxo-C~8(wZ_}9JQjA@r-mp#WXY!~WEA5R;G&vk-nk&C?6OjK>bNIy|8)O! z9q7`u#>m{jTz@bO{T)$u_s4zVJ%oFZcZ+vW+sFi!kdben9u3a&!s5b^<*C9V_ejiA zc3mf_(2tGpzN+g656c_BvYVby`F4{(R=i}7rVsOs?7E)q-DmHjp87m9Uw?bHmHDYt z#G!1oXHl4lPEDe|OlQ5PpGco@e@(k5vq$$-KO=EOo~`OVWhtj=P5&Z`JhW0+q za{^>i%ZTA#=$_A>>7J=<6}n15QqTzP9=B|kQgKEDgW8+QgmzL1_MDNsBC>KXgX~<9 zMSY=gyIg~2Qfc^cO@)$nStUb|1z$tpk0|_VJ!{Qs7iCYaEJe@Kc18lApascjorSNn z-yW}X?3W>>g7pfNhPIORq9QFlz=g`7ww|)?aeLDEv7EF2p0{%?sOCq=A5q47ufi(8 zf<}k(LfHwU=N$DMa?-_|>D&Rs^PIdzZK0O8y!V=eqPO;%6>r5`&Uq6d0JRL3QRJ@1 zW6?pbQq_`ia4vf;n~@r*58O$Lx5&(I*sI^s8oZlVi%uuZuTcM@6RkPF9&IH58)YiZ zg6l+!5kO$&twoR*^&8uKX&K@~dpTq|WFEDla+&KyYMFYOdcIOCta0U!JpJ5A1z$sT zgKcHDW#aO~ywaJJb>|&@r6ixxs~V!2X{8Vk8n$KS>@iXkv9shCipox&bROm=m`s=A zHII=ay8#Vf$3~aN#w_PXdp*O~wWTFITY-zy^HU-!UW|;_Uh>SaiN2cAjKEB>9wyf! z9$UmZz6-l`wD}p{d3SXU`U8Q9D?{r{yos-d>O93?ii4b;ChR7VPIkv!m=I33b+&ZS zk~Verbg*379ouihY6K^WGYEP?eA%uYpOSXHhFfT@VsBIr(hUPMZTYxEkexeDytq%* z4xT3-dV~3d?0i0P^*oiurG2XaDK!(=RqwJBIW5)X}?je*|8Y3#6OiPhNn94Q?m9y^{m34>kGM07DAWh|xC zu!Z$uKn~TD)Wl@W+fdec)M&JaIQ*5%#dh)cqFAj|k6K?=xB$kz^k_m-Zx1nse1DTi z!1p-?S*CXBFBR(2K5LeEC=^cBH^|eIPgGuXp#CvTflvUgXl`-#<87snoCeR0_~9b_ zwD_-ErRW6dWXDX)(&Er>GjPWkC9Ss>v@zE;HZN3Th3cU+R}sWH@2-cn_nw*E^5v>H@XHhA@|Xe-Rl!N3U3(;ZI2|>Xywd5l! zi>mu{E8Cv-Kuu9u%|Ng1UJve_tiDbC#dw~{vQCLf2alwbN&Wx_2;7A+_KOV5Rn1gt zHek~o;9KChB6y-lfEk*{4qesu0UcIuIWBe?oaRuo%$9GP43v5aOE$1(#Bi34$>YHw z5|pZ-jrKd_N>5_-V0g;Yy*Vbi&MO0JLURdcjl$_QMcYY#Om59M`j%j-0Ax(N zL+YTSWQ5`lg+3PS+9?@k99^@Bkn&u5r$E6e9FT}_Gm&IB5exo6mj*7ZYmaU$jB78{ zc|3S33mR4T_j5jI9hSsrg+NckFJpeGb|hl~3`4<7{2PQRh&QAmrkSV@y$~8PQi9P^ z{9iSt+_8N^gfTm-`mVR{OQ3G!uVUFTt0+fSFd zq1+?a`;Sjg7PKSS%JN!5ORT~(x|`yLseW1V%7Wb~>#?OFQN_noNZM#2WC8<w<26)0)aKfdkUhqA%RzgI(>GR%W*4hXU+>s^dT{2 z*BfoS;uG?OV)bkU(5_vpf1a*Ut+pY&a*jTi;x?zfNv{MYXDm14?|)=Bn}vu79;JxW zZM2rZ-;2IhE(ivl(G<|}v9xn0BE#7u3`0M9xXbn#vHUF$ZWfXpf}9ND!x4iauK99UIyp=Zdhl8LYan=OLK7s8ln;m!qXTcAeh4 zKZp`KvP+O2Jmjm zt>-{BLcB_>h}9qw2k+HDsP)ikAjb%k@grE?`kk?AAf6Zq@S`Yn#c%o-=V%B;m1Rh( ze#@sT1|-gwjF_wJag;gWtGYw~i~3zYN$^7Txu=sv3o{Z1Ws`w*3V({u<#$OCn}u|t z?(0%Xfnom{P?oTK0GRZDvJ)~8!z_XbDit>Tmd{eXh=0e;mso?K)=SaVx=d2& z71{CcMg_l|1r?KJ?HepO*?pr3#oRMm6LxRp76dB4#BW2f?a{vET3AB5Q1V6f;va>* zeUAkV@~=<>n{FzyYdhn8S{L6lJZPxv;6gT89=G6tJ%C3%2;qA})E-tI6zY#_388qC;RVIFi}w*@BCrZpaT<&cUswXN z#0(6pQdojsaT-CT9s)}sDm+V4LLon|7%)9sVn$1+75*=Pp7HiB9QhPPAD)*?OUFZ+ zbkgus&991PRe8^c?m>ysBWxKnFE>?CMj~0oOTv2ChrStK(WC(tDFD`78=*XkKYo>E z9K`MCQWe(&ymA09QP3Pobyi0M+2 zBz|g$OP$@J@>ms*NgtcXWh*94orPyB&N0^|XIh$t|6PpnU4eQiBj7up2)Su&3EpQ5 zn6NaFynXn;WD;BA9uSJRd)(Usva1rz7{dDOkV)zQEulCP#+OjVYu% zSKUzl?v-4G0V~56u20dXDS}TCCRj(|rh*LFrUJrS0YA(~Okgoiq~82`3Fh7`N?gSc zxx0Z=KXqH?O$l59-rx4{=G%Zdu|pKxim}aRti&LLF-2B~2m-{_g8* z$_RTof8F0h`AA(^|7EmK4<6#E|I^-gAKqI3_y^bPw~4zy8&61=S>M)YhuuGBmkjfL z3A_Kc-ap*R1E8UH92m~9XVcGk%)rQY^!chyn*biS@1K$nh>^hI#i(^MU~(^yb+%Tz6t69WN} ztni@DHY=!N4srUoRsC2{Qp*$@j@G{D=uE$If`a3jDGhg*q#Jft;K3F&P2Q`78@%5B zpY&!m);7^sRX1ckSmwd?9IyCmMmGYkUcO7F!HvL&mSR-F%@)C*l^V_j7niJi)R(jg zT`r5=SCh@}-$ry#FN*$#V24MTj=*-Erhwn*9U&x}QYG7uAIN&;x&j4&ZgAC4U>3#3gwf6mu^X4b09-eww3u2%B+N#s^}c6wpTVS?}@G z-b~3;K;$T=H53cJFU-p5X9RAXuoul|!RAoZqrMO*qd?gs#8>f*ne1yA5Q?8TF5Fj^ z(4F_6=>|3H@?ZB?$uc|(;o@!&@)2?@SE!{Nd=+3V4*PB=?-6A=<18<)fc+1IbZ zyE>i=Wbo-Jkav8h!Mh#)+n?2i})|BkiX zb3CIYl!6WAhVM&<+LjNv{xq1}-CIMbW@kltuQlE`uU?>>KjnhO-{{aYee5 zbcI}^S%JTV_5uL&@fuN{Kp(x2 z499**0!fAxhVoM&dZ-9|Uk;R!A_VJ@#LHLGx6hw^(L;sc`?8_76(Fvt(;wsIU+mF* zb^ZhRKgOSVsa{AT$xy=-V*JngH2$~=!bo(VVX)8x5yC`*CItF2NO;d-o&0%r$x&KD z#g6)Nt&9{!<-*sacvPebKO`ypA}J$?q*9AoLxq^O6}YYjCH`&fHsz}aI_p0wWkOS# zwnN1RI`e<)RkNwfWwSWGmvw4#R*HI;DQ43Fi^K6$`ysmyt>N5d2$kPeubim+eylD%Zqtaw&`sqcIF$sfvPz%3rTy!O zFJC4cPuFY_TMom^E}i7t;v*vio~%c+H+@p`lnxQ|14_pH#ieT!(3!fXo=(5%#jeC` z@tC%Wxb1K~hiQOF^677^Jb{?D%Rh2!D|2qkRYj-p-Ugre z`)Yq&vQ(J(X8I_dZd-dP{qzwJ51^XDOzZwJMX2S6e3}yg!^&@8@m3D}g=Qr|1f8_~ zNN#3amHbo_j#~cs|8v+iO4K>}QndgJ>Je^63+`fM!3^%MWFeI7v1UOS5QD+pVZ$m) zrGM^}sWU_w`{7Hx+vU}qeV`3yGZYlWPfy%s2363nV+v2$WsLgI>7h&Z50*UQVv*!; z8>@IlhQ|P|Sm^}+8>}N*h*_LCmO4cPRo~N?K_qwYd6c&E*0ZP|l%Lh!n!{J#QjEmd z{Y<@N{~`RY%GC4UB(?k0A(RJ%riYM8r??lVY-CJ63)5 zPu2R$qDlN{fxowJ@2shqP`f8U9Gy_H>F~u-q67RXmcxlZx$4k03mS6_=GDwiPnj<> zVM&-|6|UF>QMoUf)^WKw{q^>|M`>t&J92%Hiyd@*2#Ou0)6a50Jn|GWBZ!3&Ke-gR zcmuYDEC{BQ@w49eh-YoXRPe&(=zUs1Ioshc-_ z<8q^u3-rx2ryQ$CH_?J;uPnHdi=U=yL9U+_VEaPrI@>z3aEv;%03e})F&GASfVun1 z67)7pdmxPRilbQ7b5Fo~;O?FHg8fVasLrXFZPHE?W+#VUXuvw$SRoGhXuJ#|ST*Qs z-43i_K!Q1Db4txivc?>@~Bb63pF~QM?48ZB#RdIicLFK%T{IF|z3z{L+IxNQ| zSR9VP#1w~y-3;klLEp9xE9EJs@eTaK^UPe{(t%jsd?y14kO5Zj-=kC>qQF%i?{|3_ zoTesH`m#d`j0vN%*X-uuH3z(cmeh?Z;L_QntwaT68J>yWHgT82LB(06Sqre`e*}BU zZs|e_o(X?we4L@6zD4 zI$b%+pOPw!5!2tAGIJD-%(@7jQzm4*dy7^BeUY*hSVNQYBv@V+?O6gcxX zyO7lu+I;S_hdhHcQz-BzJ^Q+PAbIYHalw)zIBZv^cZw^Tt$i5ZbCr9GH{jm%TPS0P zf<`LqeZZbzQ27oen(uZzdOCv}X27A-p73KF={n6Ebj=NIT_2#%;*=H*d{f#kFDd0?uF-p@9d#{ME=%`XF$w1 z(Q|PLn-M6q#eWELk@tg&Y#&&(jBLk-+5N5sB`%7Y1Fgk1HeX)P>k-GL{$O@N?2xSY(9^Qa?Cmqw*LrnO>B^@!H84BoYS5ceO z-)1e#2&iexKT~9A!^O;W1m6$dVp>uXCr?|@9s;3vG%`ER{t^os@LpV>1y!Ltfq zc_+My^>W%n?{Un1!){!UbQ{aRWPD-#PcEY0MOGzvK-gwQElQB%>O%!5GEP4e-T9OSV_AXu%u&) zlJh2>ZIPz{K3(j0s4RR-OA1o?G;4`*1VEh^&`L*ooGZ^n4>%T)<_@TH09GJy zmWz&il`N?N8Av!sCC3MHKe+$99-)O=c-j+yUC5#lf|Fi+{2EY)0AwKGq?Z_fDM=;a zq?a65%P|Qm(G;|p|JWm2c>Fh@4*lQSKMc|V*5<^M%R|C;^3 zqN+J2OC_4n7W+~kR+dbF6`wdqrN+w?>!M1QKFoiZ{qTf{0?@O=^m@N(5Q3RN}eN@vlC#<>!jwwG_RMD{;j|M2i1*GVL<@@V#G zWU#`Og7O{}6DnzB1jBztL_d+JI6rP8fNApB8!h=}|B~dC0C{s*` zq8UNJq$H6TmIQpsrzxZf|4@}r)BhJO{3J0f^%tf5w_+=C0N3C8GA_~p833lxU$x|s@F*P6mdXmFE_$HDn>@HyK zZFVy1Bh>6~3`v7Q3p&m_W;taBrB<)MFPNlS4S%(gY}) zae+OE-haf!9jxV}y~vZxpIl2gy2Vq-h9{i#3nNSy=S_7$@GhF+ihA`lgc&qZT9@LL zt)4Q8;IWQ=4B^6Y5LdSr+f>Hr%vgB(v1s^xd?cD6{7CmD|z@MwRv31r&;kN*Ak@W@M4&YT=o4_ISF{f zs?`-gMY#EhvovVnai{NCnK$D@s{v+K`7iY3t)WAExfkIBaXj(TI^Uq~gFC44$?eh= zp(Z{^h<#iw+|6@}1%3Q&yX0Vdqx zIpbkDd*a`0X>e>qGps{1T0=8@$cwXwG{twvY%zIPKJku*rRb5H_=xpc2`CO#+G3}< zb&u(`9?|Yr3c5%8_%%O53f@*0=KFxz(o#*1QcpT=aT2$gQ0T?`EjSHWqF<(syU7c- zteNmr6HMA~@e(_5bI{ReH= znc}kOv()JmdvwxN_)g^!hSXAUW8>7fi(qw1-sRbK@G5@&F!iY3@-I88v~F_-Z5Awg zbI8>)4o>-#oCh&He`c#;Up*Y6PI7S0+Rfi#&*1I;(_uJNct);A&0$1?naL7=j#@pS z5(sItfpTAiYqKU?$3AZk@+`3PqB%ec)LtS%q2RIIeM)rG{zZ`pBHFdeukFR1Ac$~{ z>V>@Mi#YE&nQfj}t1q7A%5s4C0rN0aupthT&)fK}+jG)$^#^O$nd$nEz1s#-8#Bg* zW#9wn;B(LL5!a6Yl3NZU>TT?-bsr+eWzU40A%vcWoM5to;6V?8fZL8_8!Nc&X(Tt* zW)!X4jzOC}%laa+t=vpfwora0kFU74dk4BLp_CwZfR_!F-V$=P+zfHPH)BQqtNnE= z_2JFuGvW@O?Cp~q^R_EI-5&bhs}ZbSN2co*d$$9mHg=2)t3X#SoSn;&S-0t+?1 zxcYc|Zu*>A>Olv4o9;gRla|LS38kuYZrUv^Ob)3}cZ$);syl|NZW<_hszHLPTk?AR zC4{JDqVZ)@1%&*A5lt$ajC*E^ocJoyFymcfBUiC>^~DHh!`&1kSD|zq#R%iW-570= zK3HFjzu)Ldwj)H9it3k5B@@>7kHRIh_oznNVCARx4td~>BS_X|Ojnq2jN*-dd~}PK zLZkmsmDPi{$YeL=4`4hrF@58%#bjT1LRytwMm16ig+jS|C?OwX?ogcf3v1vsjVVXj zR0!QI8SII=!K*`se$?G)?HdwF$^BPJNw&1W_($zJ&JO33n>@;m4`Eikkz^+5FTAm6wjR?Pp(J|a!~QP^R?XI1 zFH7um-EAw7tiP|@_O;GjRmrtk+L`^J;jd>?`LI4PYqDvcDxQz#rj5RiJ<+x?^e+lM z*xPaEbz6tyXNI4&ocJ#>opPC_j!`$P_r{JIb#5j;Aa@Rgy~{CT5fZe$+6cCwi@-nx0HqDR^2BWdj)H?xa*tSRub3b(eMaPPKF^*Ibg;{`98NMJ#{$0j4PjDELEyOOx z5FBl?a(RJwf+KNZh$GZ4VggGziBZgotYZAKsMH@6b^{Fg5SU7YHO#aY)ry3>4xYZV zqA-{cy6AneMs-wv6QNN<2nNo856_Tdys-V7&>4aHn^^y-rgv)I6TkX7ozrB%=_*b` zOLzEip5}iiWkTvA|GSVa%Khht(;TsN$}&K~b7GOWyl@Tbu^ZVTUk~34-aY!;dtxr% zvrwt9`%!PZJs`>V(~t}H$wYFYqubi87COsaPS(Kkn`%Y;gH^meIYHD+_>OXdn?dB_ zwb++kkJ??OZ2h-&)o|Y_h*lMT_!U)tWb;2p3@>Q)B7r|MdtO8SOv^kFlzW5phQATT zJ*kjNwjwEWE^QyGBL+@Y4%_v91C#-B$Fz)-AN- zJk1-uX&vkTPeh4@x0sm(p3`2!yRAqs8If>^DYjVp7lfik5h#~Ol>^2nFzp*wN%f~s z`saPF6k2xCLdX@z;)}@IdQhuXPKvk4iYLRqz&>NL{VIG-+Rs$*0%k22QA0z0()Hf@CWBcU_aB5CR1J&#%~C#r=|p z?IT&sk}bwqE8QcGVo7Z?vB-aADT6#>psxJQ9T-3G>~x6_1V~omUHY3l3VuNCQla$= zF~Ao@8orStVlenenKJbo`ELIC&y-_#wUr(B$V->=p9)btJxywop~Bfl)nR5@$t z(iX8sZGQd_Wv!z~b(&CxrJD);>uC&^Y;Lr;4FDeWU*!{4B=nM{f4D7H5V{SaBLbJn zuoQeX^0^o{GO*MVMRU-I$(t| z>+)emJO{%j&dnW(+2)gA;h4E|Hfe--J_ZFd|Cxm5AvnjpdZXF1q`%@!R42VUq}iKQ zyf>j2PW`F)Yb(Cw|AW#~jFwfEJ{0P93$-WO1NeUBEYv7R@KIwxvI9D7)~=85~7k=`_5 z&V>WJ$D(O42_7ouemoujaC|3>DxVv{ZtGurficQd*{s_pYc|5TZ#{~AdqL%Wl8T@h zxbXW!LK=P!9LWet^hfomw!~a}(|zq!&mZ-w4ghCByVXPm!F4I@%Wtv&HYMua-vJ(> zo=x0gWQ!IJO_n%1|0c?$m-=_=W;5>-MSPBb9H@KFcO1;JAx9g;{#R9fUI}HrqrsE< z@oSi{TApI!zUqIST78i;XCinnKsfMmhTs@L3DD;JfZ}uzN9qxmvw#7Sqb&Wu3_)V% z`;Zq7T+Tsu4#>_S*12%kf$z^B*TFzhNF7w4ocD~{s{<60-{)4OOa=+?&_pAIw@M5ZWc#&C8E5UPJ@lmPAwqv9^*<4ic0$ z4MAYza1>7CCiE$)`*(!nk2dm^g5h0=I>V1W~BtQ(JJI92eCYG^QlIpyc-FXc7FX+Gfq$4?_$ z?l`90Bb%CFNKI_3d6YNlq*Wq)c#q1^ws6aF+zS&|I~O8^y8yj_%h|x{=Bi?S^h1rn zN9@?u-uS;!O0(~UFt%^{#yveeRiiY(h{cW=G$Ky^-=zcRf+p@H?1HHHSs_T{62Thc z!C><4E8aQy(F?q?AeTxKl90cQ5gn@MoPtpAHatPZcf-^4F7r{|2mcm_=MbL48Ei$Rx(O5vp;XlSQ%VZeD!T+F@Qh%U5JzP9H0;~ zi6zi10N|9wN?QFNX>l!F;%&|p$=9U-SuZ6^RQeOKLZSbxs2?|(Y;sMF?;`{FzeY8! ze;NTKIQ}3phwM#2+8DsWe0A`HRS5O}X7Le}!_^~3Xn}aLfnb43ydk>}uOUXWkEBaR zQXX7Bfm{yJwp07hlNAsDOoSGbwjxA$=1E-Sy~hGM0g6nSg+d$)o&0Agn&jtD3X0F@ z=y{>=$_3QZU^6_5t-;Xk|04*iRVOtO_FI*BB&fo8=@gf=zD|*(o2{2!E#{cc&r`6WgoU z-)DIyd%iG+a+r5=ugVFYpg(@v4{>=kjNRN@66e$+jhvIpKbf@f;^fy2R!ELLBKTez z;oT4#QKQlp%+r{}f1C8A(w^!GyCgjL+;x-dBkUrg?`=|Lp@y%e7ObAgX9r%O-8jM) zx!vp+eqIP6eL6QL^*!#6_PMV@{cnrLIzyb>`ZEvA3EBPe+5J32EQcZwWx7UNR1GJ9G=QpI#as>263 zg!)N`zSqsa((X(mc+`rMfMTQ={(q%iEgA#)*q0VTf?8rwSeF(s#7Ywo?;psc)!%ha zv41STI;#EpoU7W_$^p%l-{^r5f6$@z=&H`M5DMaLhAdRNU7)DMiMC3tniRu9- z!5u!5OCnT{s1U(^iL7lgI-!3GaI@DrX(V5#-&OMQix{x`zpM-=dGl|=%xnP9T}L`t zcYtnZ|p0b>O;&+zK;hH0g3?(@BR5e;?l?kSvgG)#B3X<9zR1-7A%YMSQjvHWf}jS2Iq;d;s8?`IbOOCOWcVS0FgnjtGKrR8<4qHIUbO8}~14kBfff zR^-$5r&tr(an42d!%Qxa5fFYh4sh2;v*(zTd0!Ll3}H)Gtc4-e4d$YpYz@1o`Nw}+ zjNpRhSvmj+tXdQi+BN}O{doW5 zGsG<)F=viYJJ`ulvL^h`JOTS=Xsbwh>Ho3V!V`K2d$C5gM%d#O;BJq0hP>4(_8*EN zhV9)OA(RHs>R{UEGPoeBbw$_8%9WR{0RTDWp`41Lwcx$Ch>za zq{Hg?+i#8fXZ$bolRu~uSvXiR;@#l)|1>50LbhEK!TGgxi>+<)!uNUo+f!4xJG$8d z^4YEKy?A?o2RojCrHQUEAB-0gbj8IbiQYgxxU{nGE zW1{e6`^^PfBQ-p)R;3vJsGjsA*nDxJ$QzSm+XI+Z<(%cobbe3uA({Q4sx(K!dg9*2 zneMR>-AK(Gr|OA%kV%HgMtp#W2pZLC`Zo z#>OE%f`q{l@L!=uaSzSIh(~X^>xLu}U|+85^3A*C+SK;;z{hoc0?n9op6|n|?%;z2 zAc#?I=)I{SDo8zUhuXcUDs9H1F0{e*YR+zLX;iz}!Y{nE&1BlJai4L3r;^dAAfAd|H94AshZi%?0|Yk=kA= zVi4tT2-Fnm;8}%e1EZWrs&(IejeNK(#y#NjCY?R^`PzM_jLi4_KgPol)+)=mS?!+E z-hMN3g)Pz5H3i*3mGPF=!5^i9_!(f~7>|YoABlNiwJ50FNKFR`xr||HLk+l&^aKf zmBWy%I#Tf8!u5kc6Wfwebw;wnzkcNDGqwtpt*Y|7cRg$pMR z1aFECm=BMvV-mDemd!^a0T`f2*xJBe6N|?8`!&?75FDM^}zmKOEz-F)u6ZFgkqjEF=gtc362n8GqBNoea*gZV*L4 z3Nq~AN#G{BCz-nMntJbV`9mDxo*qi^#jX~T8{ag|rrhtv#+~qn!-#!tx3{^)Jvo^V zcRYh*#+=6~>H)yFd>`3lDQBEGsFbtnK4m9p$&*#PY&g=a{~_9FtXBXjnjeB@Q-c?# zz0;Bx%EjRyO;pbx!D8mnFn{+Jp}}sVLByiLd?8a_kGwnX^K#u5YQD%?bsx8DG3QyU z(O!v$*&@^=BSGxZzi-wS6WVV1nDC&~-8i4+3ygVul- zE21GXRHFjV?=G6C)%z0{^48DxLTuVlJE= z2o0HMw0w5f{^Wi(X71{0=DPRdJ9;FPy*S>#w1--6#RnWrC77aUT+lb&SuP(M;L)|F zTz3XVdQaDJKYvLEmOo-LIpXGz3Jv(Y0=RHJIo1cZ9l1W4KsP9H2L`GT2WBuyh8Km0wEf%n3e+iF`~h%&tg#G7pc6TG z`dRA?37Ewbc9l4wHo$4pB*Nko+0N#}RE<(1x+cZ_v^?$cdQBh5E&YbHcrgD97<4S& z257sm<`7#RAnr&`>Pj$B)ik!GL5c=5-F zGwkS`9RL&%JV2I+wSD#;yiJpd!#%fdA!EmaFl}KQScI?N`XX*nMZ&$M8zLXSa?KT& z*@mMT@|En2azTvWH6|*lFyHiG9Zzx36GpQUP=8v*|`LXj4E8posij7L4oqtSp>&gjCn^}l-+-O)bJ;< zTTL$5T)}c>C9D#_PIgx0QP&g}$Y_Tx1U6;jykI)wI-)v~-t*#4o*9eSXbBW&ea;GN z$$p{O5e|-# z7j6(=LL1v%Nq2S++;D~AC^OvTE|oLia?8nlvO057;;Qo|`EOMv{RNlNg$35mOWMeoO}>2dH*rcj$Ncp_#6Jg>P97dn`F- z)n^njfh~t8y@J*luJv;75Lz|jY#gr0vo>VL9wX-^1MAw#cIiama2qz~yZa_W2tbH^ zb1uvKn!ns%<}mBorG!fB((Cipi(w=iA|pTd5wjMQglKUcNn5UoPow z@QrCwD@cCYo))>jnijbP7XUZG@svpi4A=Cu{oOQho&N&mDI!^dqEqn-GizZ#)VB|t zaACj{PZ8OB%bi8fm((9ONhL5k`UB=5iDl7Sdok~GrOrSb!q18y5HTYq;i~p?R-^u) zWC%>%g+H@9OKH2|C+P;ij`TDQ|2T?8zCTpUXmET{&F7*2vzm>$;y**7AMeU@nJEHe z%_3p{3(qFN*!V%LOgMBl?nM@C%jN*n{ql zP&sI$1w&I3Pr=+b)rfdk4NXr`@62h<&)d&CwBx2Sv+B@z2eSZUG0+q$TxhCxdak>XG9%s`u`QVK z^P1>>_l64IJo}hExqbSDw^n7wpG5a@>w6vlmWuxCR<2G|USOzqppCe&gfNfsGbf)Oz+d zGFb(r3E6xUAc{J>Q-@I8ofa%Eyxn|4X!PPD$$_uti zKarQ4;r7&d5QIN82@TLjMs`YY=6!*l{B%l)F7w20i4$YSWr2+Ax0z^MWr3zrA!Z?$ zS2ax~kUA+eyB-O9f?^$0wTcj6C-?H*>?2nKd%T%a$oemkg?N&BBdgjEk(JK) z%U|lF?i|iYIqxiudTjD`DdiP81hoj5XV$tX>(752X=^o9+Re@mzy+7k%r@w$q|Bx! zSuQ|6TBegjP=z8zRyG7HvYwn<(+T12(&PV)PP5{ zvdkBN)ci`4>lKA(^HcNICuXdfD6d+NH3;Dq1tO(*CBF|fp8>|RiQinP)phaBPIW@2 z4SN%>4Y6P9lYF)1+ChaCbDq7G352ofF$b?&jJX(c#XT7GRe`dMxhi9{I(5-WBU1VCN)v36 zlYf2!Yi4MZdzx5>*P?Qe-Y+u0!@&giz6#N<{vD;0swg{GlLKfbDZFd&JMJc&juejU zjtGwQ7`GLrEmeWz63n8^pMAr0e(3nie9oO>cVworakH&D*oXp%(AC*avkZzJh1pGcL21eFcoe17~ zfnradQ9A@-l;B>o<%qLpO%Q_9l}g7~)H0 zQbA`icy%!e_5=V#kxwn7*)qaT`?&%eYQtiQH#2!@>Pw#%6@cwabmAo9BmfezJwu5s zs#rISEC=QXnphwPQYm}|4{ikykLtL-l(se!?(nZN0!O(YZl>uARNWI@Rl$*+JzY2S zMa;YBZ#;$%IVea46e`^w81`++lTHwblW9B$ikT9LZzT%3uJ>vMKN>Y7uIIR08nnjr zt$f(|l1mB;^g!m=F{t||!mpgoEcv!XpyiSId=Hp+{L$Yu#YhfEBGd6hlAMp~mO`q? z(U)GH74kRBUydMENT0S7TSYNCSPGazURRIs?tUNK(UE`gMNT5|nmAfPHgoH*r(U8_UKq+zI~5Iu5K-03OA0Ql1+HXNi4ic>FT z%P;Kb3#=83Vh3qR935y@${xVhsIywb)Tmcl!Ib_Zuv)?7t5;gWq^nn&!+8A_oYYzW z3YBIs*6Nj}Fxr0wRrN{}7y)%LrV8>IBAgO~SOnM-gP6ZUB*I+rd*~}Ri1?RaR%{TA zpkAyQ9p~QXueD?#aIZgHbNDc<<im;fi)d1m#{g&32 zT%tcPXd5iQFrOOI&|2m@WA)^ZpKF_18hl_7K0~Qsw0&lZ5=l`m{5e^G(33W3p&W#( z9e&q@S&+79pzc=r3LpxsfQ&Tzv7tuhjt#E|W2NCQ$|1H-kJf|`SPq$6D!Nbqk#h@i z&~VJ)zT<9Wi*pbruk)Bd+gggvksfeIHFnr<9eFDC(^iW zeJ6!n)qo0PHC8xdFNNHVJen{kvcf_AgW4&9cM|NjKV3eoNFheH#^x0);pWRjPvU*} zg$K5ZkilBOy3zfZwqvs&iE>hfCcH-L(s!k8ac* zC;VxtdEL;(K3wX9-6fZ|cC$F__%mZG!a%{-rt zzwxd)=Mq&IpmC-B5KhQP-QAbqdsK=NPB^O1OH!qx>FOiAcX}0E`t_-drdEzVE-G-* zeZsqcBGz0e%p8T|-4Zlu)YsD+5f+Y*8SozOt~9MIN(q*J2Uj_=8JqUlZ?1_*SIVdp znRScF_#;OLB1abl%gnG2-hX7mk5-WQM6N-hK|W0tmJv5V_sxiFeauo2Tsz>TuHPx%-+uIcCpk0F1qWr5IS zo_`X!CMb`>2{K)cMvm_oiumae#Qp5rqMijM^T2GXm!O(1kjuiewAmy}+N4 zT~pub$)*iI_dnDoDsJC9hXG+4g=`&vQ`@z)hfJ8gzrFWX|7G`9hw}yEK>BCMi{{=p za;A*I%M7PTEIw7LVGoV!kvFX|36y7%;l;IZ_C@V34?6Jqn?_RV8_33P4ez%XkI}le zc>MIMq<88L%#*ZXWraNQo}6+eDZA1VEZhOm6Ff$wLX7=-hy9X$_Lv>f!~F)rf7O>l z`|@Vr)boui&fGR0qcrI%S;gp1>@iLYz0~;fa}Xc}*vlB(bM^whk0yNfY5~a=mZeNw zB+TpjDxz?h)Q?b%;T=^Kxycxz4ZtI- zC$IY{NCCo;z>)tFv0&l3{lErnH>NmwD#-MrBQBC0_{l-P^YyJm)@%G%tNEMAlVX{r zAa&E;(>c68jA^xyA4YT_sJLk^krvbQyS}zu+_b+6KZUl*4*`8~#P>?hZt43BLXZJ*my%7#2t6 zwPX;AY_e})~#u%>k+ zQVB(p2&SZr!HnUMzCtX(<3q#`$cUVHnqwIRQ@4L;CKS6lU@?`;bUHXt;{8i^B|KIRZAnT{%ZnZ)lsK0q zYpqyVS2VSxYI#ypd;3+ZAP^_j7R|F6Ym!2;HdM@7s~{AIE>BX{A`C-IT;$}dm0;r1 zmqJ(7!c6S#=mssyMQOqUrYRK5XlGG=3O;F?f|_jm-N%QL^yiC`^jIco>}u=>tOukA zq7p!xs8x*ZtNT0vBbKTlHT$f7C&S-a%#-{jHaGOOVTzUkKT{Cm>+=tFTG2D7j&P$1 zdv=^}5imFb*u4glRef-YR2*Lswg!;;4hC;h_#-Zic^x5%jIpv6sl2&2!!o+JoxT&V zHNBmSux&dCozA@v#X|Zwxdpmj*B#j%g;UHE8o&eWyF*tlBG&{)>r)JwT+s~LjhT~^ zI)$2i`~gqEZLmvIBqdR>3M zDG*llDc~Uz=1gELIefJJwzZ>@>@<4iy6KV3JCEK*ve{@zCplBnQ<=b?vKn69I}=tl zq5Yl%_AW0?K2_BXd4QWCUuCT%h;boQ3HPRx+n>k2K0+hUr>M{n`gi^`1i{^NImJ zg=fsi%*Qrt-0%zE$E)j{++LwJ9u8eTa`^Vf*eS$cQDq)!`eGtw-)6{pjTH)kgBRNj z2~-I=eA+!pr)dPyllTYsoj)2so4lm|Fm#15M$8{HnJ{6uU?=5FMNRA2G4X}sn;EO>L%ek|Lq2DTwsQ`ju_UJ6}x} zJ&pQlIiv6Ec`Y6h6SNd!=cKqpE!sPkK#%p1OWvpmHb6*a7iD8z$tu zn(zuZKjN31=%G;&DBaI>plKQcAmTgw#4D@NY#5;l5j*>gWPbMtX-yYlS_FNp?Sj@a zq*oNV`5nSrG3w_OOoyr^Q`v$YV(^0x!R2_ zUsKP7$~v^b<3_p(Rq{$yd0SET=LPkh)FhP_GtBpxjkZRl(P0#eR;)(CS{q2^U4e;f z?48-Z{lhW{L$?rR?t(WV_8X~PrC0!Q?(R$Z> zbQg`k@Z&sNQW&@E$4v7RQQyz7ZRs7nH^w~g{Iv1$%P*;hKZ=^lc66;zsQF<8)D2#W z90bC~FfF*DUa77+7N%3Bh?YkU(Ehg678ZN0$7X2EO1LzDX_s(Qoxl`kvhQ<|7{_;qdRYubkhnqf~GQ z5f;o7nNA|mK$K=?_LU6{GeKcLQiFBL1vm6t-9R5)!+)X6k_)cr^}2z!xQ73vy10h( zk_#^AuDXG`xGzd={vce#Bgq9%^m;uiTuH5x4>*YF06S`L!b|q*_e&kOZ{qztZ+jHu zXB={OoJw^E^htu2h}ypsaj|Zr8B;TWvRRD&TDz3Gv0kk`BPOS+q{b)mlV{l16>p__ z=()oVt;`qCTt7Y94m+C9p1B`-m~v?lL~-F}m>^u_L{~AC8UokoLUZiI0+~kb^E43l z6Cphd{q*Q^G!P7aqYP+^pJ7c1z+5Xpw5p2!lMZN4`IX>IsKQ)-6)Px0Krt|R+LR8+ zqRTNy5HK!rs|qHB=llR8bFl-LW9`d;ThD`Ta z0>PuH5m{5sX7;j#1OiO5r(tezHy~(xZ*0QNL*<*D;*3&P0Zp8Xe&X8q*)T5IyOc|9k0kcuaXx?t2doi;@bS%NNeWmJanlQjVq?uG{v0E?C^65-R+Mv z3o~=>pK=7amP8}DmGbvyiW{qXSXr)%C)T&@L1s12>sc#) z_Gh_5cN1Chl+qeSALEgign|W00Il$Ma|0R^fw1y+e%@&zUVF__oPPCsqT0#tZR3_l zd&tU4d9wkpj&&XSBr8$x>ED}sx9ckmYDb&JVy_*lM$uQ&mFM3tA`fb>D7TugR$YX# z2U^d%u~-4XU!DmREGM`PM0ED&9ym`_?VLJrZ-~H5VG^^~?7&^{>a&#zkBY~FoA+LF z70@-Mq~Ve98I<8RfWG{Ecy8CF?Yx#yEpx|HmHisyO#$|Cagw(a=w^H39IaKUBdQwR zKcbm=jBg^jZGUDfj0tZupEvv^+@<(ERHf~?(+w1!ad#BnglE&jefhwe-L*dJ+{_sT zR%LqPf1@;6Z6kONZA&@LCh5z1I{~qk-#gRt*W9&noex~_ zOl|BjTXlnuAJ^tUubuhH)NkE{V@;kq2KdI~(FBv~)I8Y$>Lq5b8Liq-Vx-Ai3j<@As$K z)$!XfjxS(55l z--heHUF}uT_Q{xjdzj*FvrlggXn)0U`{a#g=H=%Ly3U^Om)L6^Z=b+vy9WE3Z8KPl z7%z&cex0xChG!^+^nbmDl4V_Za{5k}|CCO3ynTj1DI0%qILX-p?#pr>o|B1B-SP*fj9M=khkHoEkieI`@j;iT{StPDYE zSIg_$*k1qf-9u9A`lIc$w*37SKtp(4-BE92vHDsx<73MUYo~fr z5$c}e6sb1zxZJI`C3fk%4qUGlb5XtcQ~=HyDTA16=)Lcqjjh%z+@aZ6LL^)*!Pi(Q zeJLov1-x1c+un-INb&Xj0yk0Qf?(5uX7)X`^U>)I!%1)5>A>91V%8~cQ{34%Lf;Kx zUH0sz6E~MC!>e$hQdHfg{u;`L^6o40>lxu#38|T|h#cv|`1|JO2NWzCYL+epf$eybX_khgp(a{Xn)6fAQ8;MMSW@QVCN5Ro%I-;INZcMv$_trayA z9wFd_w0EGmjmmdusiOnVHh7+Z#N^2IL1zo^(n|s|w>FOTtQy=ZasoRf9vM}JTF&|6 z)}4W@$5feDjeX(-W5{cj`iqHAz)OZmAD{})RT)^;_w^yp=V}Fc%lFz%B#kuPN%Ljo zz%dqZd`@HcD{|Z-U0yc3`G&ou6PWb+FzVcm`-}U7 z);f6j`4ivCGpUmQ1M-fPeI=LefdDGU4bUg!xv^p3?(i*9GbMD4XvYiV4QiW`D2Iz* z_;OYE{`L1;B40sv(`K)?Us>W?yB)O@Rq}(#V;ig+_kQ>rFW}&0Ue$MB( z#5Zz{MhYJNau;Y55PodsId{u?_Eu8LSB;`xufILdIhZg1jJ^;x(Gt`?b zWT6{)G@E@S)c^&aZZB$aLGCXaxWg5B(4=sBg1aDmW{P!*a9QWl;ECYLwG}aiFTpPCYpnS_%f`FAuHbUBK+2`_A7()jZ1)cv}Nc#ZHX8rkmz?NqT;p0K0(r9(lrc zO>Ze8qxy$$t&^EY&+JpDPwFb;R74Cn4DlD*^gA)y0cUH%V%gE>zYPu>>U?jEBQG*2 z3ioIALQ?xH-_KJzmvx0Sdx`6&PNFNz_*C1Hr?!0bqXN=BVhRnRqWdtB!Sl>>B9qj` z@GxMncU$KSht3*>(+tNCW7N2H$C~mj=+^Q{Zv}e?(8$g&^Ve>UjL5cT9$~O-tNL|L z;`cHU_H# zyIW8gre4%cjJkZ-=$?tI4?w$SS?WMSp>Yd;y*lULsT#IQT2$?t*FGhwQm@Si-N9G2 zP9rX@TC{>tEhWldt_l3Uym9zU-fO3HK8>d8?-o4?b$PFPzukpZ)e>FF+;z!f;%bJV z>G>E&U7>KrTX{}?OPm=^4Pg=;j}75^Vl!^t%t9HjJo0TD(6O%V>+UJLI^(E0I-(Ft zU9T*A8PcnND+;Kfc~G=}vf1)dJ(VEu7kq1WDJ9;IjgF`z{Z-_}DzfCwLG%jXeUAL` zDmV@lp0eiGi+;FDvoI9mXw}J|0Ge^Xh&0bu+%ajJ zzcWFFM4dr^Jg-qefUn9&Pt&*I0YZ`Uwn{r<9P5aMJ?00^dQVt=x3#m;%7C>7gwg4R zmL|JQ8BEK=HT<;TtSmcEuWSGvP|K$&n$TDE#+VxzV1|j_{D&b=*Yq_#q@_qXn|SRp zpy}d*Oapk{@bv84%ZDp~mpSWpDYxUmxYqG-wCqJ2; z{chDZv}Aj#FcKKCMdMyIw=aB6G{Gp{8piN1^1?7|6T`KeqE=Z z#?`(n@5(c}ef{H+DO?MT%Qop+{KfJ(5WR-dfb!+Kckb=Ur^?HzJuSd)!o0hyErdE3I2 z=`0%G)WV|kuMybRRsAfBFGHE5o1<2b;_7T#B(Pbv7c$GV^s%w6XRftkTqmeV_*qx3 z5k^0m_B*Y_Y;KfZlUlo>80UA;jW)It#F5*OS~=Gj7d2hbfh%cq#m&>qL5aRLP<|ED z!tg}^4gL>3+5nPCNo~h{hx;xJGqTQaasOdRjo;TDv;L)Ot{Z6`k-xtfSZ(0U(ybiU!ffvkaf+ax^%nODlL1t7B^5=mXo`Laq%V2bgonEp8={YR%+I~%)9y`dv!(O9 zUOvzdSjeq3 zm=bLKyg4e}O#k>-v*s-{&+>_dqO(A=?y>c%ogItU&*lCT>-FQkW~k%!CaLCtT-7421l6Q0$@(^c0-uL^;Fz0ENf@KWgt z+$!A3>}md~@h!of$DK!Wm(RM-y55=ZhOa^U+32}l9glm1SHm)?r<;e{;`;!u)$2IA z<*BvNweYU;j>oI!u9#>2b;hg9tLt^etJ|x){5HvB_?V@|t;Ow_z&@y9YHbg6F}EPl zg4%+5qE#`pY;|`1yVc4|!$R7k_{F7|m2>I!le6Rg4lOo6$5$fLkiNjN$e$lGN%=+S z*_;jcla*ysZP^7rbB!M-EYi`(EHc%YCr}P81t5Qx0fw11PzMXi8ZGLE8Ar#u-}1_^ zdgW1(kB+Qm2rV8nQ3VObIw5|Prf(kRBO~|L38`GumL+)l@Ua>=eBLLGA(KM~WY=}TuYt$}UretL zg7?UGYa?sOU;hLVJVyy>{Hk(`IXEWXy*uW+guAsf=p}9B4`_{F8Cuh{GagS|-bE=N zgH~+{pmUS8ZwzmZ9x*#(0Gf>_HZMlUwO4|Ng^nNZY)+}oP`pGM758Gh*E{l2HYVez z^sgS4y(rieGaRO>*#T3Wz&o+!(xz3(`M@E$5KLPsv<%>sni+99+$0|f`Iqi^rK3Y9CAuSy|R4_^Ssek_VK@GpI(@RhKai)@x~k3P7_@FXwR#hy38RbxaZ#x%4S%7* zM{8a`WtO#TN6VU9x80WS$kQX)g3N_0ijhAJdv$wVMkk9{U~v!P;JxYld^}AmA|kk@k`HR(nkw zrEf)Dvitg_DfITwxZEN2dZMDduUMNF*k5=7y=YNtRe|^}1w|w-REp93?-ZWn5Y23c ze59B%)pI5m6W`^P>P7WTzE#6W1zfO36IKHJ;`41~MoI-N$9hvW(_iRvh*>g@=F5FU zI`!%1VP?KS`|zklu2ABzdZvMj=jLPvdrHW~^pO7`Rx7qCE9FjAgyQ+TRUuJg6P-)? zw~}Sm_9TlwZgjZBu-IBr8!`ngm@TN$k2G*v(%i;+q6m^Qs>ycB776@$1Q=yD_-y6>LO3HkWM6`O~3{?^od4!Rqj zU8<0((jF2Uuw6W`b_r<4;ID&7D@1>S9Pz~pi7EGyq8ecB5`F!bAsb|BI!^qT3spCw zI*0?!Va+hIuv4gCpnwR^Vcw@mD>7MbFs~FKs5|IWYF`Bd6s|^=a}62z71BT1Q(#yU zvQY{Dkb#HIj_#dj=?(O9VFLHBkp2(;{eO-wIxtsmOg88)8Ic9QJeos}%MN!q`2%CF zuKd9sw?Np}!C4^8tK=6w_!d!l&7259eWVs?6c!jgijZWe3db{R|M`M18#f(CJuFC! z3B?_G9Tb-6--y1A#JAzQ$9pA1C&gS%b*M}+A~J5Txj~*OZC!Rao-&~(V7}QIz|d*H zs>gNz?%;PUhxZm8LWLro8Y6@v^!OPKsa>q5wxODJUDJV^pn|!eFcQ_Fkab$xVR!oY zsWN2l)y;tA;VFsa| zQ$|cT{C0uB!PJyt@@Jav!59;oX+!Vt)ftT6x!Pk-)7Bkqz_sx@MXl3W4sb;Q&NDhv z{M{~1GBica)0zJZu0T=0co>iL)r?2_!FcjH_H+7kb$~NKx;gr{Cv%;F&OlNg?F=S7 z#2G?(sB;`w3!Osg;0$wyOO7+b89~k?o#VMW${9rtqn**@cA|44SBspJNq>rSD(O#i zPA8u;oHI%J3#V9mJ7+m#h=F5~<~-*-?mFK&pKytD5oyLb8 zSw{M|oVQ5xw(~Yu-*Mg{ez~(;x;o`fxpdJikeHRuN{*|XRn%d%vzi>%IBQ71)>%s( z);sGtzVEy*N^?YUG)LqJN0eC25oMs}h|(O6_=Ti8HBJpzVT$5urYKpODN0-CJ7+IP z-&K<2+O91YtT9>~H^xnnR&Ju3L`*ZcnMAwI-DHV(Q(Q(dw}qQZ8pm~|t()ei5ufg+ zORC$_%^-cIn??F;w+(69y6q(0ZSQs9CO`V?(O1sA$>QuCn@vXJjr%@ zxxI+#{@(o~^}p4H~@+bFC@&*oluHb;22bcbgTkq)7u zp`nBeLxs{YG%Pe+x`jrBMi4VHbiDKqoe(-f`h-S>MoHh$=nxjI898ar3}L^aUxa=k zxuN1vG53xMjgiiwvqNVSGd6S%Y0eFuOB(n(Ib0aJP>Mpo4E<92!P?tMVrJXSw&G^C z%WNmjGTUdimjRg_GCRmIn$1gh*nBr}GP`GXm!!-dnLQ*Uvu9>c86-+wY54tc!|am{ zi%*U)c+J$44M$Hl?0ke_=OYa}cMUr~!LakuhMgA~b{;b9Jj1Z_;f9^thMgxHMxM;w znv0(X+fFt-dxYWHBMr}X4bL8Jcy`F}>!m#h-ss75IDfi1Ggy+GwGv!hCe3>tgNf&t>&YchEE`=XI&7LpM$n%8%2@B7M zg_q%>ya*TXZn$`FxcDoQC$F;il-Fc2;WyZO!qDHOhD+Fc!qfHdk@dQ?}_kp#q!5>)5o-gZU1K|%~@cA(KkGWdO-UlAPiD%y|Tkw#o z;PeCKQ#gG$`5aC^2u@!k$I3SLV`RI0MR*r1{}{vahrsf`mE+_)_QA3j#($ipe%$xPGGH`ppg3Pc&S= zh2i=E!}T4*^^Z4Pf0W_+CmOEr8LrdXQLGBX#9lc)-l#Gl3*Qc9ZURRYcM{; z5NinGq1Fh(Bdy~JkFtt5o@|}M@l@+H(w~kOk%$*@2Kk(6ok>2wu+Ant7LTGi9>w`w zEy1ry#ILxJC;g>$5uU?1e2f;>#rPNj>r(4dNyF2az_VXwO(J|HUWa46j!}3W*Wr^~ zZ(UCdOu++5#{;>McK8i`NK4~~BpN>?-nzxQh462!zry?P$KU8?{Eacj-#FFy8)J;W zaklX{&N2SRSmSS;Yy6F~jlXe@@i)dAf8$)^Z;Ubi#u>)n_=WK|&NTi;vGF&~F#g6b zjK6WF@i&T%zj2!JH%>SH#%adiINkUgrx}0abd{u%WPoa}noEI7Q7ME|RVraeIfTQVKmv{6s1r#U{Op5f|?>P6DO ztX?L~617A+tM}A<99JnAiCUx9NUmC^*2yVqi`qiWR`scLQnjj9|39{EOItg}j*<3u zydBRm!A_8lb~C$~oMflksgiA{+vyxz+AX=-&TdC~?OB~?53mPFEBku;dKqTlWKZRI zi~R?VFW4{0FynU($G>_8UrT#dAv~++B{TJ(_*Yr@S8%V?g?L$A@v@dlUg}%;T0QZ# z-X{JXJg$CtT&oDLPF+iQ9o|{xuT4TL{P-AMT3)Q@Fo>L>VP$Kj7{ z!XMj=R~Cg=22)Snfo~R+LP6%9&=hh6*?FM4BpEfe^yTI@8D5eFb;ZbOxEyMU@ z!;L4FY&PdJw*zl;Rr^jM<2wyEUQ@F1k&=xUlx#eo5ytZw zX*?g-cs?f>&u6spe2R?c6EdDphVgAO@M_xNBeiwf!n3tk)6aM{`A&|L19$J_bdvtY zx9N><(-j`y4G$;ZcsQ+%hcn3O<@A!F#?L7;n zPoD94`Wc@m&-gsY8lR`PbB=Qk_iE3l(0D$X&IQf|#AyGgpYeZ=bAILgij?D>@jTtd z&c!^@CC&uWT;^PcZ*aMDIrm=STtUp0&XpXsr_{%IN<)pOlxaMr*3Qk&&D2NxOZmoM z>gwF;+)7w`P2G&w)Wdj9z44l6OHb#|&Y#KWZakZBiBJHGW7yY?b?<>U(x^M~OgC*AcV3`u zgZ9S~@yAZ2K1FzCiSEhn$%M6UmS}vl6!$b27U7=Zo}yz$UR84vA5&%^8C_2Agk z%j0TquP;8{0Iz^F1HGe(8R8A$c#?OLWP7K1r%8M74DSr-=oNd#a*}tJcNXy_UWv5z zCV5wJ^+xX|;(zP?mY8YYG-9TE(@Fma?+?Ui&oke<4WBdL`;&*4f#*4!qxL+H!P~r_ z<6Q3ne8`9JIrH&0AC>;b+Z^cq)BBecdarq}5&wqwCdXwSBQl=nyE4do&wCHAb(ObD zhIt#j4a8S@RUCJEJIQmmw_65#-+1515O0sSM+%J>dW`WxTZfJd9Vhw5=NxE!&Oyf8 z9Av!B*2de+H{NEq&{?6g2#>+r>}|ZwKE~VZA385|9^sNui3~PA=lRCxEDT)~x=1oZ z<3i)PYeHy(0709`e*5%aom~ywX{$FCjA>}Z~WC{ zNcQ~a6iSJwS{ zcm38!lKfhKqd)EYe>?DiGPWPE9xB&gYrY$=tS|Xg^M1hKi0qdC;@jqw>_pB#X3PDN ztLt**zq4ikcS=6=uLK@u9^d=UmS0`}tId%Ww|-SaZTxYoPqlu2Pl|er(q)_TJo&F| z{+0icQVv+*=HFcR3vEC87dk2qY_)LT)vqO=*YMZfBEQ*}?T?Inp7z6j2Z}q!amN&W ze_bARIhkW=-5WNfYp?>%ANxbg`SIHiUd`x$+B+jFn!>A->sDi`I?X)9_QR1Ow|>2r zibzm?!gkmz{c^$GX@0ipr3(GY)TGkSm7rgtd#*{W$Zd=vW_&cy99eC6xLZ)SbKS@+ z_4kH5sBUQ&@%*}4XPP5t|Ox&D+$UCOj29PnOW zb|n8`6Z&)*8W#So&iao*k^hXnp*K^Iy0_|rSWKzEul<7iosVqUH4S^#=+*bEqW0f9 zVu~^a2));?Z=H45guD##$mi0b86(AYw*0>pJ#p- zEo}WYdfhtDKF2TSy#Gpk(-UZ=((m9H?L2{yX;;5xqr980YfaveeJg6YvlIW)!T_y4uaL;ai1VZF_w`*mMSsUzIe2iXo~ z*NqYRhyA9KLG;Bx7IQ%oZBhCikRQY)4)!kdVctC_GGZu$*>mIwZikCw2Sc*&d$;^Y zwR3iOT>qY5vB>^$avj>_NH&UL?H2}*z5^!-h@#ZT7fFt1hhZ0PXr z`)T@IDgUL7-ql=B|Mu4*S!-nU(>-CvzQ`|#w36=`3lFOf|FPeI`#Ev?@Nwe@=DVLh z!^P{a9Py{wH;()?eLn2%2+T|!nin7Ru2T82o38U9{K2*Ud;Yx0r@CCtZ|EIjCMXx~ zeWPX>;iDY(8^zk^^^^QMFRY@@=Q1AgG=Jj3_!4QGe7kDz;mnIQ>YX2mQNbS=e|TF` z7^NEj?@v=(TD!JUO z?h(~WwH8aYRc*yKYkZywdaS~D&tBa+jSq+q-u25GR{xeW)n4VxFKlHiIm@gq z8e_-VadNhuU?<90yP4fw&b3?EsdB#U*lAK?d$uPR*=_CiGS2R3ca)3W4ekcH#Qo6y zNG^3Zxtrv2cZ<74e(iqhekxbEpSz#SME47KyG(L-rzOecw6wHLxizgY?N@SF+QhU! z$_r_Crp=cXX)mTNl26lC2QB$Bm>5j8S_h8_j<<4xlY-Y)nQ9$sJT886=(XuaSK^F~^)cqe$L zSPS)cyw+P@v3Iuhws)R)zV)tG;$38|@GkQ%x7K)*yx&;s($}P~wYKPQFRiWVwdu81 zwf^?f`Xck#%ww$`na5=wXVqqo$Q)sPiH@!_I;zYHG^JXjsZmB#&9;qZ#~RJHjAq9g%}y|y-386QR^rul>bl4(I7>}I*KKtD zH>8}ZZYIqw=zTPLKNG8%h4!Zy?QdbUKVY;!Xx7U$H|ym>>Om}_hgmh(T|I(5w8S3% z&QY(RbFqrYI6jVT1dVN^7~5!pZIqGQi&%(jETo6AkXFV*TATHCZPZe=RC=jpSW9PP zEp3gpv^Un$9&1@G9n8AB9JB5&PgP(!9kHAZ96!K*vaz3y96!Q}+8ZlsZC2&AQJ-N; zov@`E^4zAjW9K{64ocUn^>U1LC1YKCrKj?-u`FX_sm8|AjEyxj>-Ri65lhQ3tN6Ov z&9S$1?5zbyy`s;->Ku+PwwGpXFB#iwOFr$eK*v~MhOxjnEbv2)8?nPAV~4rM4s(qi z#u__}#SXvVSc5foG1jPzHAZ2Lqa-eEblPZ1Ogk~{bV*7(1N)3I_Sx0gXK(EDb;(Uz zh?Vv=Ycu+!Rb#7`wpFpQ)nO7F93C7Y3Bi%U)1^!BjNo{)a^reY+Il4h>wQI9244-n zDz3I+Nx_B}Ng%j5xL7iSZv>YTUKU(Nnzw>)admlcximLxJVIuTNB7{$;A*Z`1S>eM z53VOY)=s!GxJg2k?z57g5O9>jTF)Xq==GiFWQTi_Fjw^BdtM=IO*lZd-2lQOYoXWTd%p-TsnHm zUNTof6X{@9lH_?oFGRdvPtwY3>19Y8FVoB9UQmYk_Ff0#J9;_9ck()uf3BCy)h=Ea za_-^vB1W${$pM4%$+@4`kGuMN{R!(;D0$vMZ=iGnn}$icH{2U8jyJ*^A%u1DR-dWz+#GmJ#$MJmceC`6#2w&!1 zM)-2?a&nmDT`g(eWbazZ@UHW&o?*_tpeM>j*H{Nd~9R$RV($}W1 zl^{5{nedkMt zxQ|&|e3V&R+}Erv&Npj|``<-K;I{Y1S6^Fl&qR%-Z7a zW^Hj#v$nX0SzDZE))sd$Ym2*@wZ&b`+TyNeZE+W~wz#WVHyqyxwKZPHHo)sxgVb>b zsiPxEtydDq8C-6s2CKoKgGT3WYM2@Zj%bW-V=%hEIz^o#0}N94GDzJ{6{}*>YrO8J z#;7r*KU<9ji8OY%QRk}jNv{#SR|LT?R2PE64RL(D8XrOP751 zQ}Y$hjE1{d2mC&hXC3Lb`3GEo{?x+@n+UW+hGYo2XR&RmV>1w%JE}kk^?-JJ7 zouO8!6@>Mg=?sJ5nFhhL41#wu2%fIitM!Z)?}Ov%2FF9{LvTD@eGHDLgX5bx>NVCG z2F+WlFTnA1gWXx`OZ6q;Z$R)A^_}{TqsH+Zo2HNyvktqt9c4!o)@a_sjs?wA%$n>L z2Gauu(_Mq4=5~7!KgA%vYgTplGpoAe-Lu@Y#5V6U#hUk-V$F)WICrzVS=xa9pGk~c?N)Qt zxZl>@;qD;)PIo8AuidZ3Hf!&cS$n6<+Pk>4^U}_f=(O=^Ah;O=+NI4%`;)XXBSE*c z$I>2?)@hHY{X??To=2Wy>>9e;C`mT{Z8P1kgx~(2MywP_OiSzQnvD1fw`@{Y{G3A1A=Ci zVM~MioxN^ecjEPm!iO9<;RBgebKn@Cu%dTe3F z4A+bq35*$2h}Yvpd$SI*x%WHocf{z`kS)w=$beZ5+1#uGOf{j^q zVO9aQXgRv&Xh|_E`I0k-WeyY1tmkVkmh{)_`RK?Aa=lD7?|aRbhvj*xmRe{^jE=D! zD?M^{^byJ7PA}v2j71rXGv3HplCd=7?TmLaR%cXXe2}pvV{1lr#uphi8QU^yGrr9D zCd1E+&P>W|DRyR>|7>Qu|6FEEzg(=0%`(Frf2XhPJvlRd?=Lf3epg}AJx97Zq?;pA zq$p@~y;;U0|EP?`NV#8{@vc8U<2__0pV#>18Ec7K&-r~mZzTRB!k?J(*2)Nz_Z;#b zZ}QfqPpvO+S|sjUDQZ}wy}9Pzo;-6BW3FZIwD%CU0t4_#9x-ptiTsw`GQUNk%=>b- z+%D8z=E>i<=LvR4{>AQ^_s!DG+hsvn&F;yE>>=~p59w0H-cmki&yX+JGv#acEc32c zD=WroC9SPaR%hvN^{{$KfqAQHpf$i6AV-@wrUse!qmHpov`&=4)=AdMGQ>K^I!BH( zzpPMbjkCtdFzXWQ5*cn?WnCpBtf|&5GSYg&dO}8-F?X~&MjeB{t4H1Iyu*P5tA8@-jZwZ8P>>6j4YqXAJisBjk_2%s${ld z{CAs?;vV&t+9mg@-L}YmkcgnnvqN@5Fdz_bpa>fN<|<&kSXt*w=y=G_c1YvMmi&<#yQ(LTeg{Z9=4me9ddgZ;9t5@DzUG%DYtE*l~Z*|ja=&kO0^}N-?4Y?t!r+!D-%5yupxmGW| z4&LhP_Hu_dti^uugLyb|1FRaOb&yv(9uM zb)T?`-BR}-);VsaTV-9yxK?A0XDs{Lx;*XvwEL~AA!rJ}zhkhYbxrW%;KkOpAbFy7 z9k?B`ZqZ!anh7Siwf+SE?r8l5{@uyC$Ls2KweAIbds=fe=eF*HZ5LR7^#*z8Sr34F zjP-QKg_bJjQB^WF>AzrB~emo49W#d}?ex5!(pqV&7MD#m-)dsoGJ zYrI`5&fD$%TXpij3)!lxUYV_WhlYhtRDD7xg-%jOhfWEdp$6%-*J@~JZ0LM-T&N^8 zPK^wW4_&HG3|$twOq~+?b?6FpYRgeAN2}8_W@XGmyDgEZGWCn7vZz<1-iUfTY6Y?` z>cgl_QJ+O^kJ`ogTWD`wbn|E@Iz75|bcd)nqPs-rMdwGYi#|GPd-Txgk)$b$E{Z-q zdQ9~B(c_{gL{EyoHu|RM-$l=eo)vv}^k1VNj-HQ{Mn50@QuOQ5OQM%YuZmtzx}xZh zxMvIZR7clF?~dLZ6BUyXlM<5_N%_~9jObM{ZDMj_y2bR4=^t}UOkvCkF(*f@i#ao9 zY)nba_?XLMu8O&y*r~ewnCUUMnewlVxs&o|#N4AxkC{u^Got6m%!__0=JA+k$njq> z3!=(m7R4-!=@#`y%)2pbVm8El60;TS+CbhrdHPpl`t!tbF?(VqHYPSHHZ|6Zxhgg* zwq0!J*dDQcqqfHu#14+x8aq5{Q*=@6Xv&@&dusH!*y7l8V}BWYN$eGrd~LW~p75pE z$+0&?uZq1T_7Aal#LkYL6Z>H7-=oLGJ{kL5Y+3B9v2XCav=>+2j$IMEF80IdhhsOz zex`dOc6-dS*j=&T#;LeC>UmXM^Ef9iJ+5_Jhqx}Z(fa81ad~n1aYx4ujT;$P6nA>u zn7H%fy2Oo(cH$<)O^UlV?k1f}+=OT+>W#SH#m$Hv95*X!d)(b|e~o)MZhl-TSDME? zANNw+>v2oCXL;PJxb<-##ath^C3ZArRL9lEWW?=`+Z!K6+s%uf5T6jA5}y{I5#J_0 zNB3-exA@-i{o{|(tsDJPd|~_v^y7s1laVvy$Hte$kB`5cR9D4cA3rtr+_(<$)9Iga z@wdg_8Gldw-1vF%kHD#V?CqAOCLrn)nUzpTuvCuZiCozb8QwViJ-P zQllrtRY%WC@Zwe_WSKh8PiXi5vG@LAR#j#H@ZM{$z0dxAe(Zhb9L5omh!AN)BEk`o z01*iZ5fO1joJJan2#FApaKwp-Xhb4HL?R+29wZ_pLP8`&L?l8)M4S)_2?>dZ5D91A zb${+N%%DBb`#yhsuj_rjSDtHb7i+J*_WHfo`rM!U-fnxjL-oKhx1&7cc5%D8J>9-$ zTWh#Gz!vTRcd%;za{IWoNR6r$?l5-$##+~8La_71W+{NxPccr^V zwQi|Z>8^J-xm(>G?rxP+nHu|{yU(q254*?Qlj?WII_jRc4kR?|gxSh%X|_%DwYGc0 zv%S!Zy<)GG*VgOcb+X5JUA^vJZ*!H`&l~6s@yfjlugV+ajrS&b)!sC3rdjUIrrz`B zc?-QI-g0l1x7Jgmz}w($HYd4$Vum}~JZP;@ExE+o=FyDVqvRy1s z`jh>s{&Y{xYQNTO>(8;a`1Acm{!)L1zuI5tZ}hjQ-*$hOzt=4G5BP`tqy7p1w0|zp z0?QMDZygFUYU|rFXcM##ItE?Tnz7Gs9drwN27QA8Dt@qgI2h)iwnn*&t?j{xU}P{l z7-t;~CI(Z28g*CRo)pXoW(9MD1;OHAS+Fu#qtdKbWuq0S4y(_3weF}@N3Abg?J?Hg zV3WN^9uBrzr_Gt(a$336f4VyJD5*}86t*DCNSgN}+#7NN-nq~h;J z`bUtaHDm?StVZ|?xQckO40myEkCT*xaP=v~|5fchbm1Y-3EIs{jwC4#BK$jqKY%<8 zS&#U?kyLvZk^>O)Dz5G%DK{c!J>(A|Z-E?&G;+Md)HX;zvSqK3{@NpgfPG<+q~b zT*7}s{uT0l$kC`pO`&aXM(fdC7$@dQT)hk7Nx1rLgnx?gqsV!m_NGcR4dFlI>W8@N z3rMpM;d`_@luY3&>SCCX+=G2lBh+1>k95oqqZsmskd?@7B1TRpuv#9*}OsFA?z)-m4nVYqsN*A3w)`6gmQ$U7l#gT(5j zW(}nr2ibsrK^vOK(f%zU-$L7ROgG3rh~c&O8HC?KZneka7Yu697m`H+9te}xj>jFHSO#&eCrub?jbQTHy80+Q!D+Q&r8 zm{|FZEs%I47-$W%C&G_GE`~&3OYSvZ19^o!jj)EhK8u(I2>%`OBgFhC?!~%l9D=+A zwcxqD9P%{eA0WB?KMnabV$d?iuP`bGqGgUjehc`))wntZF%e_}cYPlcy(1ojyaN(% zTm5~c3=#7K$d{2%SA@4~yES@$QOr!lY(g(!oslm=uE5os5MGSj@a`5{5dSbFKX(r# z>Y{%G@(#k~(AJRE5-h7GJyMm6LN_0^@9o6qr?P~RFsa>ajm#I`YYOS=J)UUPn6>XsQDeX@6 z`!sx-w$(eo&iuYOl()!J08y}m+Up?y}Ah%aiT;%ZT*^@HxYzj#!w@i&Rb z)jB;ytWsMebrcvk#g8z-I1mVA zzznqSm`O9KO);}(R(r_oW%kmlGr!3ELVGy#bmnPoD!h0+66K;6T1_-6dQAIX^knp; z_N!=7v`AYO{XANt{W@A2Ez^DjKZR?fby_U^q^V;6*o7p<;_3Yc(L)x3b#@{Nss^}`M4ygE_fm9#N zJ(_z|dmBjgq1E&7RpVu&ag6{1Rv5#z-qQ7xv4nPRs3 znaO_NaUIi-Y2bN_||M5@%JY-jHIs;fg&*$|$0|jS{1^ zO1Di^80}QvXWn#8_>tQ}?Efjm8#ZyRpmIYaB2R8Apv1ggZ)2rC0Tl zmh@#t=4DH9R<<$v$o8_M7$UpKZtCAXWnVc!ERloNZL_oFZ%F z43&14oGTZ|#bUf%rrPDKTq)NO%0cB<_x3HI9T%_;RlYIu451xjCjFZ+4`UIb9;z({ zs=B4jwuF5c)6K4`O$LhbW_PoM7gIBS1mQXL5Ua#kYPGgniz@a1cE(cGGaIc^vD4}-_ldJsnYq6a z8)0O`tT2T&O0`10QD%*8JSoWsutrqs9h59b_^Z6yB4!FC-mKzoghwGflqF(_ZK_*U z^?NS7`*GG%xt&vT2uUMqTKxs~{d|s6`@BjOe{aJXdaKpXQ*s#M--R53{BaT!Ux&mx zF1~~K+xb}(F1)LzpbQ5P&-t{hA4|1BP46e1TXdxK@<9soepFzWZ%AG}DF=yji@Xl^ z-atD@iM899jc45lIl1YbAwQtI)SHR+rgx!ieDzIS-K7twop=3W6>}%9egirDpnelQ z1u6TXRJ)NLyKSQed6pu51+I?bT0?#nd)aYFIkNr~^$YUMAh$jU4@W%SAI8_}pH<-EqoWQwnm%u*T$&uhd3wmN$Ez6gmb7xwYClQQc`@2VobcV zP4tLaj+kM1BF>y9`q#V?F*qTJiIAQ3E;Qbd=R*xQsPG4$J*`-wYH{+aqTNXp?( zlyC^bH$sj_dh72V~hZ$l9(@6DcX(S{rw9ip?r!lu6Q1O2{COkez-0b zxa+q18YLe_ZtJO!RKL>+a~ze*_zCKAqG3JN2<>)HeG&CLX46-Yb1!ZOeU_3RVs_yC zW_^vqCgu+BtBlcfmw15cE|=nowUDjoS@JV@A|omHVO$MpD8;TKR=bLAy4r_nBDzxT zD*nBv_}{mu5NZ$6js8BikLZ43Co$y0UZNViiHr9VUDf-pH{ORkRr)kI5>1wslm}ZoSc}8os!&qgM8l871cHy zRcnqCOHA9CY=){WryHee4*`7*wG_<{+PSDwEG5m2*;VaWx~p`x>N!iXgQ=DyRc%KZ zqs)G)O*hhRMs8}<=cruAt5#ol0dWO}W-!i!Q9V-XmbwS-=X= zcaryOw<0EuFwhk~DVtX!ya@7Jki7e29DvW%e};6B9;l%F2PBskc$5TgBTqmAL1IKg z0@sp9ki#y7e+G%(G*C_h7_tQZ!+0reAGHE%R6vqPAk3o$c!K2pAonj&1*0Akn1*_n z9-{q`HA;o=)mQ0j^mY0M{dxTb{U!Ys{ZIO9`WyN|wGz-weoFpQE|>oySIDQ;%>R`- z#q5!<$-VM*wFbN)_sawFpnO{%l1Jpb@~HfqJT3pBR)!DcS^1$nC;utW%a3HeY%sOV zw=?%=9>_eH`A+7c%)^;SGT)7^i*AW-jfO_UqVi~XG$N{qDxd-mn*j_fPhKW2Aj|CHUGeKor$`&xEy_Vw((>>Jtr#T$z^6>l!yQoOZz z+a;g7q~pJNBmd@&{F^uOe>HDJy?3l(|Ni^`-Jg0BStA?&EpGof%Ef!e=6oKtFWhQ& zk~`GCushg1$JFjmfXx&BH+-H(6l=o;KF>_^p!z?dSXJgJbx)PL=d4O!Z!RYs%iLh4 z3MtpBYexvxB5sd7Q(*VBlg9|fGAo*JENc`!pIAOBujA%yYqH93i8Ym;ZcSG?)|#6w zNl&%rD7ng-ujGU zm}<&2vV6>{L>F@m@qEncMBl`K#9(6gs3*_n=c*d+A+C>-eN#YCypgfsxq8OoVPkBR@&4zdu;kIG`lx)edI~IgWbur z?XG4A;`&&t?S86HkJ$sw4rbQ^>!->T_CRL+$TN1e*_QY|_H28ex~IVQv4-1g6I}{y zpQ-}eN2ng2W*@YV*vHLz_9^=;^(--di0gya-9wBYd%tbCq*K zm2|V}?Fr6lbBS}#?rI%i?vS-w9!u1@88`2?WX=%AKwH(`E8LE9hug*NqQ=}tx0|(H zjfyR5E^KvnCE8ny)crlpR&HP75;1?sSwsw?#6)v5v54H7!~kLu*+<;D&UANyHQ8NE zqe9JrBZ;}pDsqb4_3nCeo>l8^vWlGPiHYu3^OP!c%G}^iRPCc$SLL?D-OW5BYl3^s z9OIO_C)H>@te$zsJ#Ve{gxkiRl*m{^JzJh>_o=1&92NrQvU`EDRJ1_kZ9>`wo1I2-Zr&n z9CJH*JFUIm9yMzYG-Dqfuoih|tzBNdFRhKlK(b2wB5O5qkcffgcXrP>ONoPIt+Ps; zby$Ij(JwCH0XKM&aolG#1X+V~1&H^h7cVdjP$gRCj&{4eOnnV}%S2QjXJ z1ph)lgYZp|;3JqV5S{}$7Sh7K(DutGo3!zT6BQ6!)_V)EU5t*+PKP)T6;8%{j>O5S zaC+twQj2Ei!X$EL{tk0SSkGJnSq%wh1hbjMdECWkeQ-bopUznai&HP3TvM3kE;(sGSlHjgnJ`=19AiZOX67qEHLAXkV6p9?2<eU%Fu+=G&M%cO#y)@nDe%%y;HT7+*rm zypC`$Vz|h*2;U1?R*)**09!;Lz40(w326!(sDD8AfHWb&o-1%(I%C#!MfwaR_--cm zAT#g4<5MN4r@V_W^KMWc!Au#9cJV1(4aGOmVidj}^1G1W<`}45ffdNSLdKB5eULoY zJ_pI@6g2z=W(_b50p>*kS-BMXfGr}x@-V*1>jStmz(ox3VhrwC#>}vCN{(lC9#~)o zBQA`=fN{ed2Z42f850IrR|YT}wZ3T>Q6w2Tn+`5a8~r!lOe%IG2TKvxG=_e zggu0r=Yq9SVvfi(V$fC+xd~SLsW;?SJX@KOjas&A+&?LODgxaN=qqS4N7SI3{L-%uu zcBA^0K=*SgbU!Vj`)LK;&*jkiwALQhexQ9y`=Rz@tyKGowm|!$_LTZvtF6?2rFGXf zs$UQ7MQxk*C7?sS@O9bV+8?!D+Vwz+ZU9o$7f8{K`1({oUFxCMUr*_mX}9U^_4eA= zfCyCq3%XbTvi@al6tJML0}C1rENBd{pl<>N8mm8|*J$_YEA*$eZ$S(7ZD^q$6Wv5l z?MI@w__8)%+$08Si^U*y9$pHx=V|e%n614a=7^tYFF{B33UpNOKu7g1v{OgLCb3m} zPizw}Yp293;*fTRupr$hEJzQ;F>y>!iuc9e^^`a*{;5aeBSX_KF@zE5ml;VTr(a2k zklvXPA-yYMLHgCk6~>i%H)EHvOTW(4O;hh-CQMtu-t^40euEjAkv_o8nmPR|r0dcL z5hA4DLK-i9FloH>TL~A^hY&8L-$uBQK9q1F{r0FhD%OWZB~gif2YnGoFONn=+oU1Wr;=_=e}r^n`gch;rcbADf$HCnHb*b%Gon|bo%(Fj zjp=jZT--wcaePT!qR)$4#-G;b$L-<{`r^1W?x;T%cZxgf%i}I_nf^3kP5NrWn)Kh$ z*Ie{9gf;2U#3SMn`da$_ivC;r=8C>9zAql9KTF^K)_)&A5Kqyci>u>m{e`$DuFe%y;uG;{{hjzsR_MooM14SCU)0ZL zbJ-U9IiOD;(U%qV`t0YkWqL!ld$yNI5bh*`>|@y|Bw~&dV+kQFdYWmm*JJ zwh(QyPiLPNpU(a|`;2HyIzMq`_U-Hm@wx2Zv;Pp+lGUx~N%}w0i}Zh@H|hVx^@K-> zK7>b!8wigQeF={eH|Vt<@^m1+MLrJ1{rPl0EhgsUd{#U_wyxsAe2e@gVsgGszKwW@kTFqB$e4JT zkTEfpkTLN{zFYn}QIr2t{(3Q;{Hcf^l0~X`EI%NBiKkk&@-`!&@=HfLeIovLeIp{^VRuB#FG4X^WPWC@;}J`NIaeYasF|!HvdF^ zfp|8*F#l8W`~2ekQ{uV&FY_zJ3;EyV*NT_&zsqkHujIGnw~N>FJMyoHI^bpp^SkqV z#oPIP`M1T9{5vfSak53P7X6KMivcaZVqDVV<`%aZm(n*CjW+aU3**z5^uJ_)(YEBV zlG$o!Dm2Zipg-fvf|XKb!A@x^Stwa^toejcFh0TP#6>npD}YMO0V=UH;j8N_$o{Cw z`iL-zCPaemjXsV*Sc?+NRO+4=Y>ceL*2E5#7WPGqIyBl9HMc1uYa$hUu{}{$qb*SZ zQRqPSLn_r0b$uGFh}No_uCq5-hwRO&4pZ%IR8ztitVQ;IdmEz*))qn+tOJZKSd;BN zO}0dhc0~4CvLRCCvz$R}L6jJ2jV0uOZHNdnAiRJ|PxeE$?X0ki$%e>o>kNl2R7K*v zv(Xlb8TJsTzq7?21N30Hv)5YZ9I!Vx*%qnNP35v#qX;Xo>&emxIDt<{fgQRX8|{h+ z1F)tyS`n%G9ZKZgafy}IxkN{Gj-NtkfHR!XfW%05uIiCCDt>{xI5F35%SZrO7TMj| zwkT0Yr~O1F(iH_txRXklb;@Ya%j5!n-YdsJ>X%O~c#n$7YkP>VB?P{!B&QP*OVq2ud;wEdPz)y5jp^L1Mf^K#zcY$}7t&!~I!C;jm&4ww# zutdJm8p-bwOmwyfQ#?DU31+C4nikA*R~9Ui@??`lb0S!iI3KJJHYFwoTZ7T=nP7+N ziAnaPV0X|h*ca3Vhl3G`F2S+jq~9O^Iuo1^MQHnj5+}pZJ7NzBW2@3GcjsE?)GV4E z7AG=6UwfcGKWr7Y_3W@iFeB__Rfb)IanA6td)Pbd7Y+=Egyo4$SP@n!ImSH`j`xe) zli{SWI-I6PYaRWCGsD@=C^ZAsEDYy`YDTJ(&Y(Z1znatg!zJPJa8<$z*M=Js?VUd1 z=5U)`AMOnIg!|R?4&lM@h+i2V_cqu^!c*3{@N8Hg);p8kyjm?zTGQ3jyILob(jR1R zOS;KavM5=SY#p{uw)2bp61C!VNtRlb$yjIjThyGcPHs=`N}NybO&&-da!Qg%lPA2{$9%3-bcb}Obk}ruT3yq< z-MPWUbU$Z!dZ54B8J@7xL!5T$ay743_y>Yb>56n!dW^F-Jw83jE>Bk{wx*}4bwQ1m zj*~gPSuyIc(x7#e?kEB6R;_=n2pIC6d-@16VgwqAEd(Fo6b*?85rQRnJBGfE2H1l z-`9BRVn#)QL&)d_PEGgROfPhsApC$`fNNYU(M+h@^!uSVx4}#gJuq0uG zNdn~(I717@PJm_=7!0s86gZK~sr5%ym{0$FF6Za+xe#?RnIppJCgX5GOeOO(fNnA$ zLf~vFfFTJWKqj!F0&kN`#TWzdQMN`XoMM5`S&UDx%^S0YQPTqQ%C>U_RxKp#%_OrQ zz?EeV5L@V(%$4~iw>-5WqrBoMScpKmk7u7!_ko>pk>~ zAgO;1{6-BijPLS!nr#umr)4&hKwTtT1Tp#uq*I~?3up}xN{R8n7>NlymHD40`paO8 z7o6Rh>&q4|@)RUEz>Kn3V6hZ1Fd)kE1BAJkzX{3QBVd_k8%Ur;7RIMB8j?|4^pxaz z4TQ!-nI$Y>B{)@T{Et;B-$iR+hF*lB0++HF5dqp{A|J^p5ziE!gRq8`%r|EAg^^Td zS@S&NUIuC+P*VvUk@+!_nNJwK`Wu?th=NGA7-Tyx%n=LiAb@SK?VrgOTo}oW`WINo zU|E@Hf5z_x+LMv~0y@Gg47V*KTiq!}SQtydGR154+f|xJh(j*FLp)fWF>i3W7$s%< zr2_MeQ5i;Fu~HTAX4X+))Je?o0)y&Fu#SP+Chp^rP(P^=Nix7&Dj;^eR%8Aq@Z1E? zS>QS**2aQ`Dz8F3U#_Fv4CY0{0#;z`vHi1vZKnYGE--!suz$vcSl3|`qfM?LX<{~s z%OQcR7i_4W0e}7##52}~Ss*a87||410mK@#Eo&G&T*doB-ivsYzknjMH80zFVze_C zPynGU*e@`Hoktqm4})tZm_NtpH8Zi0Jp)cJfKN+CNioJu)~M`d5GRDdDMd zGWwC*Z3B909oD6@$g>}h_CMxCq+|;SjLZTqUPiOtLl}D}#;~=PWPfo1!`AT?d;W?`Tl@uD>x+IR>em=9?7n#fsr>TvzLmZTOL;=R zFaNII?*HaL{+s{!Z~o)|&HP8T=O89|)89otwEi{U&NhqXdb1U!GTX{JvxEBUB+r0( zCy0CZ|LR5S<36+ws(X&8dycDnPO0=~RqA?6nhPzrkaC`RoGnN%_M;{1nzQT}pQh&% zMy>KXsGh!1Kl zpO$s5xhE}ImuQ*D$TNgzTSp1eHv1*InF9&cHY=KNZS~~w{9IMT4e+Y9Co$2SmYDJ} zw%uA{+o}4h_F}Z#oR`>YE-Y~E>Im<)P8SgGGwRY8-RQln{6A>?_HUiIGAMigB2TCqJ_{d=A~W-l~t;@8Rb_9_)y@TO&rwRa}EC1w%F&OB}(Omrg* zT$QtmP;k4RTGx@(v*6jKoFcUDhJtUcgQ^tt}-xKpY6his0AsNUWH zRvnFq3bWdophn34Mx5Ln4=-Eu;d^bov&cMX?=h>KrS=Bm*r_tlBhOoMU!tQt>1>hb z2`6{QufT{=AFIru)Uesb=DTQeG_JGcP)$o z+gWjeLpMV1v-Y|pF-i`Yt(+Bhd7`7WPTfD+jM+OE`{r_1lXtGfEOSYsr#0POoES_v zdSZmT#vIRHx@c684=s4>n&u1zgRah;1aDm{)!3P)Mi906U^Nzc63(v1&n(8;8$EU< zRF34eOCI(*$n{<)YYVaI?0Jl@yX~#cW+!imH}K;gyxf-Zj5pJpZHD$tv)G$wmwOAX z)#{!l)*-iL!JpTLCbZq#FZU7JZdWnZu2K-z-jzLfF=tM#8Fj>)BhFl6pF7g;W3^`Q zUCse(oj=?<>K*Ybt-XzYyvT!>Uu&=O=g1uwd+)*uL~Oe=1rJ*5RSmZ~tF0~m7JGv! z{O#6JHAfa-u;^l3iEUi4$2EY9S-_$A1YSUMfN@B$DGDcBKGi>?9ncCq1PL6_!aloT zYlZ!{g>w|M9oR>U1&bNu3B8Ake-%04JR|SahH2!RM@i#-gqK6+5c3+sH$lEbQrr!B z4PquB&2LGX&mv|E}dyuo&67NbHqYgsrySezU4DuH^)TT#y4DAioF;abETLCm|5PeN{j zEJj_1A^bAZKaZGB2=_<)jmY7jh~eI!g*3My9(`wh4{{^oheLKj%HJR!=ZAuaA;yUq z?P8RT*;$O$vQHPrCD8(AjNI-*ZgU`i4tWjPw@aK1Eu5Jp+ui{OG1<2q+C)4@Gs0{E zt9U-2v(4XsKmw&@t3i`3GJ8>aiy1z@fMh&^Po6xw$|;R8mY8_rEzG!2Y0I^OKP>}Z za|GMxVVtX{@Ekm;Vs1nEFNgeIVGgQzISI4xX0+H-sP!Lk^&sxuiSV}}XF`rg{69$A zqxEAdJw~I|fUCE0Jjp}}VkSfKeC&vOF+${nkWb+0DZ~#z7*7!%&u%eVBYQzgxePHp z(#{s<3)L5=T#Kzmfi5vZC$WM_AeaTKz8c)y4|V)C!b>54iu|ucEmooA7)1%5iR<+7 zTEVKafDr(_Dxek2Uj;s50(r4m6TtS1tSw+`S7;y#UXB>wWCR2Vy9KPxVl)cKSHb!d zsDXS}-$BR%%JVbGH&Ba*P-c|VnvVDtkV6sE3gK@cWmkk3L!yrA%u8uPTzwVo@E&5Y zu3G$*>u@!LtBfl0JYr0l$2_oR_NOHo(Et|4*pu~mq2)EKy_B9uK3kMB|B%skUdjjBY`Kfj!I%aT5L-SosGdN z*)d8Bnhzc)Kx!C|D|p&tRErTk&KYaI$?qD*98pfq*G5rkC3$@KtbRcMvs@*AEmzCm z$hGpfa-IC0I`M3j&#Cjw^K!HNgWMutQ0Jc)_}+%9*?KdF7ltMX0xmfG3;S-zuo zB!5+BqW9!+c_Q<@=-Q}zbXznsx>pn0lmCbONG#CW18KQIds_RIx|@)e{$Lc|q-|9r zVF2)!o53g?1V-U4z+P?z_A&(6%Wc43hH8J+-qUUe_EHY)5EXqY zScH#&MOXtC;dj9zoCX%*_rM~Y9z{`B|9+HPI!yBlkgTX2E4y-W*^HwBgTT$_hWGS9w#hCJOwu2O0fBU1vcL*u=#!s zHs5Nn`F;a7-x{#_o&lS0E!cd&B`+Uh9eMc>uY#lZ1~_{A!O?pY9K8eN!w7`}Bc0JI z)i`IOGsUTKW;nB)xy}M-vAS!Sx?`oY##yiK+2m|>b~wA8eNLTo*g58$bj~>EUE$hx zYd3Ubx7cmvwskwWo!qW&cel6O&(Yk0?hv=!t#GT{G46PGl3Q(0b*H&A-P!IuccHt) zUGA=O*E;Ln4en-ln@YXY-Q(_e54uO(YWKK%%3Z6{omF*L?c>&aQnk-~)jC5}`}FW! zY8@|S5A}-d;a-V7!R_v~wrjn1Ua6PzI(ucd>-F&Zc>TRW-cZN#hI^IXC~vGc!JF(& z^`^VASL@ADG4q`P-XdqPx73;Ct?*WR>%5KjA#aPf9d#P$?NW7GsPf+H_Et6OKsE9X zxE0J6++XRh@z?vC{KfuOe}})@-Q(|5eL0eP-Yr&R zXO~~+A9kz#W2%i~)py0-3jd_r!P)Jf@y`cB)oY0AKdxUZw>q$c(48H`PMe@OXce># zIs~19u0eNuYS26A=d@A1s`@$*!N4F4hNwI%f^sJxR0LIS_h5`WGZ-IC3aW!?!A!S4 zm>tXu7J4#R5-bl^1#6v-sxNm18yqXx9Bd1A277}2s$VLDgTayDcyLPHc~<=`59+~>*k*qKH}SVl7@>=E_}`@8dKRD^@Vp?-T` zv*-I0!{K3NI4T?)P6#K5Q^V%xuU7JIVi zhTHA3a96n3o)aDj4~2)E0pZc`M0h$pm(=XNYVK%BE9rZCo%P9#`sI@?)qL6N)h62{ z+b26Fy9CFR-PBx~k?fi5>(5FKNDfX8OO9|_2GuG&GCA6fljD*TlT(s4$r;I6$+^kV z$py*9$z{ov$u-IK&amVrrzW{Ixg)tdxi49lJe)kHp6RQ$x05H6XOibr!ddJcNZCm( zS(ge^u{$JHta`RS)yiA#uJuQ&5jQccbc<7M{oSb!sZKPK!xA;WDpFm8eyQ%M-ZYX^ z{Zvg4B}b^yKG4s2yHW#FLsI3bid0oXIKcWP#8c4}T~p?xm3 zB(>aaWlwc7sa0;j)LJ!H=A||`BT}1F+fqCIW62R-r9C#aC$&E~m^!FRH7a$)o2+Wm z#*-@T!qjnRSn8Bhqtc&E)u%S6W!iPC)2Vb(x+L8?IPM+tDxEID{&YJ#MZNFtRCSu~ z3{IB@YtyCa&cS%K#0R~;Z;(AIz1OWuA5bX{rH`ghxaH~7>2pD+jFz!7ekPO2 zI|G8{{(_)wre&s$w>r~4(=pQ}(=F326=r&>HL==Xpi=d9?aYA8;LNbh2yc<<<+<*{ zbUU{?Gcq$eGtQZknW(~3GBv^4%*3Em(oY@F%*f2Lhr3moxtRr-#hGO)_m!EIc4=yV za+o*OF3GG(^;2u;JZGG{JhMKm^xVv*%vQIzUl&wmcBIc`cBjX>%Y)@=?X5@;%IwS3 zxwAc)Ih;9`IT=)?Ph=*hj=RN~GyY*U-uh8>3Fnh^TASJu@Zh?Hx!ii26kXqajgwR1sB0V}kwB_-Im8 zoo*LRi)JR5MYE%M{zS)eW9L}3Fxk}qT|sidwz5_Jw2*-i<5PBZTf^aC^{HR^~M|E%uwss z=GgVrFHXfp?!vevZXJoZo#*!gmS>VJdX$&CfOWD(6Z3}Hc8j@7?6as_)9JL}!-~0+ZNW!l79^j^ z+3uHpUxOc4U?FWlO7{7~{;U{(;j<_+7nu3Qy7xPponXHX4~vZVjYd9<^^8aO5SItx z2O#-$3dSGvHN?A!e+Ke6B=hx{MZye0ws2;?9y1()^clrS&zuNmTnfZ6V}gCTf70T* z1JVovkEyxEHMan`X$2iV^K?Fil<#w?*yAA5zlVGnQ@#voz68l^vNi~FY4LPsWiqGC z=-#li@q8|Rj(pgcHJFlu{hl&Lb_>@LvILU3NX!FbOGvg11m{RFPBftDRLpj9!X^Gi zf#t#Y0`p868TU9$Y1nqIU^mNkVT_6Gc-caay;`xAdq=bhTR8KmV@#0wXkS50cjOFC zEAt)HvvvX@rI?LK1Gb}4gOtoUVlQOOd1TvZwx(vb1=~h8V{WpSHfC8$jC1yR$;=c+ zY6__It>~T8O`J{UZiv4lrY|Iq0p>dKXlIVkwYc{kq+x4wMs_Z;Ge?`~NK=n+qqR9n zwm@c7g)v$7K+eofMr4=~!}VI+K)41oH<_cye!BR}2<)GYQB<~cWi1F}I$)U<*i}5j znQz71O!iLCTqiK~jBO}0vu;_-Qch3*7q;#^2f5$hLLHm)F&PD8n|646W1Dv7HX7IA zDHZ5zM%!7_Pz67@>>-W6Pr(QgGq2gdI^%=Qxt3sdGxAtqFaep8%~*8>4|0q@R%0%F zh%oajnGwvr|3%0~ekIBYX`@n};edx^*kjz$NTVEh?CXeKm$Y&zA9>QOz8EtHXe2647Hw%93$0L3# zmy^c~TCd>89`XE^0q3`1L(X0hnXjs$Rk3at7lbuB+RNPbgvMs5LGrYpaL&@#6{UV{?yihUVk#-Jp; zhA=;!=Qy`RIdbFP36K)Z$HJG4zKVAHqx3vNzK63Sgr>nX}KHMVUMQN2GiZx8^dKn(O5ax!Ar zSIYpzWA`O__scpD?Cw~f$C{W%-wJqQ0)4^jE&J+ZPYTU_C`?4oytiZ@3OpJ=;Wwec zi+`N+;Z+V#xfEfEF#BJ)88Phjd=n(zCahD@#_R3>kLy$#S*=vx-T&+UKF+{x*DQPy z1D9l+No4P?=waGLA z`kHpo*IWU8O?&8Tu7tj(1N1eYC4G(Fk@PkCRq)wx1AI30h0lf?NnfM)gXe}X$GhT> z^!{MXP6A{0K`>?~gE9LZFlMKKG5Zi0v(;eCJ`Bd}R4``03&!j;FlK)O#_T-O;OLKM z-^rfPH-ZPd9X!}Sfd{)AJlI#kgWZ!i@+JCfq;1jP2lw?1xUV08`+64K*AKycJxAIW z{hy?55ubwJf-B&+pgsH+TnWDg9Z1_EK1?5L7BB$-A|qg`h3DS!Rh8a z&i~FMfwea=&N`HsXq`w*QR!<`>KQ5>F*bW97O0eM5)EMZT$A>Cw&u8ITE{@ zdnmBGQ<;dTsq!D4(CmTg85w&BmB=nnw6`k~9qp<_U-Da!7(tv(bI%2Dh{rE{`xHz~ ztDU{gDm4$%=?kdD)nuL~`#~f>1*&CK3llrjn%u<9wDvmvtpmi(v`#d7 zIdte-u^N{{wL)M1`soGV1q&|z@~N|3wTWuerf;7nW;rL!Q%&DLwZkU=g~YG4+$OIC z?32Lik?8A=ChvrnbSJ7lQ@_MMYl1sPjg3=HUpuw7^Y>1z9_*2T{SmnPtf}OE&^&9k zbNAs}r)ShyIo_NpX_Ym8-PG%9wez}L!<+jc@T$}kCnWZ%QCQZ*lC&y`BiZQ<% zB571K@giwN75ornyyI$A%mO=-xRI*=5`CNVBZ(WCr~x~&z2BMq4LFs=j#Q)VMDy>P zGB47fL!8LONM=Q<5vV147CZ`cqc58#Mtf_?pMbl}n{6Js_zS0j-{?=kYVDL+oyn_! zniD;OF7AK?+5Pvl`rtdKgM(qgh{P=Gkhhk63fN3Vxfu*s_mwgx+b-N8OP4C-j?1&7Il0Qn9G&YSh2AP)jz7{>NyH5xaB#nz~>RnXHZ zvu6h@!?s}u^GMh!?Aqilz&{<9led6yOgKIk3 zOUTmS>zb@23;)Ev8}0bnhMz6?Qv*_ilXIHe?vveqY6jWtrxv6Z!%}}`Y7JTHhcVge zr*@NlzS~jVeb_t&>-_C(olkc8Y?bf#NVjdY%1`%B_e&2<4@sA^?L92-x23Do)9khB znd#a7q4d1;!t|2#^7N|o+VqC>=JdAo&h(!2{`A2xP9I4h5B90m_=tHbeJXvH*WmPW zT7T2^YV{pTD{r!gf5<%UpSG7|)Vk}<&bU^eOv>J7S7a`Dy)@p(*Kh6=4_!EW_7XqB z*}13IXzkaYzS1MAkcM$uW;@-Cn9kY}jW~G}!`A1Fg7*5Tw~}`^9H;XgV!lgX>tlRX z+=A!!f;@*bJrHJ}n3pzO+qg?-%tUl;ICSAm+5z9v`7}LO+}az{~os_5StahxrxIs^9g!EGQn~)>*OEvoD63MU7_eNEk z2;t8n2a;WIbtr|+<@FzFgvwHUSwX%>B}cdq!pA6VT!WZ9A#X#T6(o(%Xf1FqqqAWS zS0B_`YGmoyfE+$YHA4JY?Ni8~;sJ4^jkDqVbmq&k7NM@z1! zy)4-l7d!#*7m5bx2kD&E@QhaQ%PI0Y*_!py_o^_T*~`#Jee@6M{Dm0ylF9xq8HGDb zy(tOD(#1a;x~iCZ3d>dvTQss(S0$7k8eXE_q*}{%KsicK@*a>!$y(017VYp7YIh9w zvh8v8CgjtLzR$?E?}9P#b13cHhBnkwxY`XP1W2QKJM3a_Mm(eI1>_Uu>_G7s;h#C= z(*@~o#kU}zLii@gGPRp;v}x{*kvRs)emE7AHr9u zlK|QK{zD@#9hA=(8}6Z5gR76>u4|C~a>REpjHSy|_|rVvF@A2RQDOWY{diBqY!!0_ z%Fp)b#qdSgS3j-NROm}J`VR6ot)d*-+eJjj`l*Ea0a3Vs3vBg|}vo#ygzFGCL0 zp3oZgFWt00>gjA*-VJSjv$$HxJ7~PAQ94*FAn>9bSJ^Ie66St4Jojsu#ca*_I=+b2 z9{mpcX|^RWj^TU0>$Hh1b6J$T}0Or~e)QeD*zn~?n8&)cLH`d#0@ZA3R z0y6s>SccIx5To=o)!k^_KrPdYR#D?m=+hA6q%Y>kIT~YX2J~X?-4wJg)$%b2ny6H^e-Fe1@V%Z4rI} zvQocaqwlJHUCAfZ30ci$)a6=~p&jbJfyyriBOlgD-BNfnE<&pkd!BVtY;)YAejMdY zE1Rf953(1Td+1G6@I6q5k;c9a?m)ksM0&<~#ujG80gOrNyOvmuZ^BwJ40Zn#N;nlW z_j=5N0aSi-5xr%^-*sC5Z$;aF1~vT*(z^)Xj~d;NJS#Es-@|NehjBHOzSw3scZl4oNs@E4k{!d;(3*)+VV*)v3E)Z%`$)fXCcCFfx$FoM^{hAULel~@(qL3VG* z5*mq-&>Ew0O2Y?uhh9yx{%OJ?>8&b0Ld {#O>(Mr!9vD1Y%eu*JBL4GenLdSn@1(B2LoF$jB#nEq zGW5k-#M!DHS=QC^w*jGPm2txqB{fQ;b{b?Ke>HmN zixd`LMekH%%?uFkf^pIpewfPf9X}uO4>X+6bgMny;HMi#XrwVG&p=18a^kscg)bh* zx^z2gbe;CRMl+rIw-eT`Yw&g$gc$ZbdpW}F377Hb38>vXlClkr8QB6O=Oe7ZcQnxV z8?S7_;N>PYSOE$nc*X*1EM2QVY3r+PH>r}jiXS5vDp>Ra%yGnei%-@?6% z^iZRnB<~YQvK8E&xc4;X+E9E8ku8FJv`-(b`5WOOW;SNcP`v5BjUD)pk^TnAUWor1 z!grE1euKVyLQ{Qe{6fcE`)H0vx?LI-y-}CpC`lje+wZ|>1WQ5mN89oj*#C}Ik#X$X zP};V%?lB&!wbHs=goid_!lc9M^ohR!I4iO5TQ`%Xh-<`Le_l8(ki?FYpJZ$^)UH%B zIpP|KE)M|5c2BL(^=(@$bK6%D4U>aphav+wEN{^YgyB_iM(K9}lMd zD)%fH@~VA2*BzqTXO3!}LBxr64pZy6lP<93$9g4RYkNAF@}0f1CYC&LPS$M@#D^Snh)UvH_m!kxq{dE&@>yS%;L0jiUC$UCa)G*8v2T-B+!cYVq`I&I3 zYM=Ju3cFpnI$Q^){6?BF;TCo0c7HC73YF8YW-Rv$40qzTyBqA`^lxUj`|Xo$+_uT~ z_G)6c+pUw`l0DVDoZuWz_O;8B1JoR>O%4vKf+~9`G2Q(&Ds4)Q_j78FSwV$kB}b}R zmPw9Ij#G1NljAqB-<^@kxz3E{{P*N0Cm$B6aDf5uEMpFQ@?^LrdB&+D{=2GZn2Mdj zsbZ%l)hgANSnjE=#B8T0IxSQERKIR&&S+1KXD)kcrYh&=18 z&grsr4|gr`(cOOOLFu94QJUN7;coYIrJC!riI1M1KsX)(H zw%&@c5B-RVuEuLCs;&B~a64u4#78GKdip5%=sh!i8yV=#I#;7;sGrYFB;I*uhF9u$ z$;?WQxWG4GsaDw9%$m&l%qD+8W@~0gX1Cp$c;uPGD%G*fNwxM43J=(WGG{X9-6}Ps zM@J&EqmcOGQLCt}-#+RPby8&>keWnX@u+vyPpwjO8kyqhBI1gx)wYJ&;@%0TC2_*j z2Z%2oEsT~#%hf79*PokQ5R^x&)LVUnTAeN8i4#kl*x}I;?+~%VgUxP5FeW-1)yFb+ zqa(r0IF+6g7ZC$IZkO7l*4o*bnz%IX9GAsC;y!VIw`)8o9vTl!etF4=C`p4q1J^}d&2}W zUGRTs3-1(hZeeb3DSU>CAXl=U_F~W+WBkP zICGoKl4kxpSf~~lf)=!4>;qAPZOVS4E#{$PrkL!Z1>@ghzs&3nhIzrvdSjOQ=MgiM zM+?$0bMqoEF-Q;Ae502b#9)kF>>mc>zqd;`!->p3D;6vCAc-%TLqBsf{$SE(=F%~P1r!Nujj-lmWV+=TFhi;W<7Yg3Dno* z@0`P4#N_n>=q9uL#CSX%toa1=T^4)y1{c!g?|Y-yn)|nr_ml4Nf9mDNd=TyYD7=T*4qP3e_08il(;+y1>{f#mcmc5y?pI`RZ{4&zR ze}(lt>W!*0n0Q(oSLTAzpgO*Q03u(sI;_k0SQU{#x7luLg5Ohp*;z0nI0asyx6 zM61d>(6$9%K!^tixxj{=3JLo#n|%c40_YvkV$}ztlbC7N07-3}}`f?Of9z{NHp(L2UaxhkA z^eOws`4>Kju&SHv^@Y78v7aUORQ4L~odgsaZ+VL?D*k|Y*p$fLs3Y59T#b14fXv_O zXPZCp!EL-x9iY@^9cC8vBvu1fo2PLvm*EkN2iO}W;7M6d#?>W|Y)|$kY>e(id%lla zUyU$Z8{`o41WL~AZ?;-MsRaAQW{arjxebx?JCMuJZf`;|LxjBv@jIQz67N8s;$B0Z z&3zo*&-)OhXB7X_NC_*hg6|{royBZx%mvBb^V!Oc--+B`Y%%jwv=a6|30Mgv*tg73 zvI($YgOb1slfWA%ft(X~e__P$^2Owb&A=e^& z9n!Pa*N-3k9UfWxR(N>=`WBh?w|7gM1Qq zHS;CKJ_(Iq(M36ynhE(hS^#H(i@Zx=BsBLcC15!!rXZdz z0N6_A7>+p*@tJ~IW;0O7i@Z^x zWj^7Js^C4p;FAh>@mDUId#1v(Ozdf8C)A5Aj4epm3(9ZuT89|6$y*NjYe@9$1r1o~ zMS7`54H%ifwZHHeT(B@`SI~iV#{b*FPq>ECu^l*nC4t|Eqnn;%R2mZ~_o!!ty|n%d zO=_lQX$j5N9L?1{l`haiEvconw3g8#E!MK?&YYIlT4=@EC0dDgDYRv!T1V|_?K6qkus;&Rbid`h$tpB8P!XGA-3g=jCX6dlB8MXC6l=qRodoy6xwXYmEmMSPJo zRHB>cF0K<_61~LrqK~*y^cS~^+r*<{mUv9e7C#bm#E->X@e}d5m@l3X3&fLRq4=p- zBz`6qi=T@n;um76cuFi2zZA>Ge~1<0X|YnQ62BI!#c#w~u}(ZIHi+Mg=fo!Qyx1(Z zh}Xqm#4&MP{9T+D9~isHGQl)VX(mj^^vu8v%_LbOm|3$|<`?~$1UPw`kG~YY1}ftEN&HF9=DF$#BJlx#O>oN;|}rX z;!bhb`0BVU9uVIZkBIM$N5|iaC&mxN55|+@@5EE$>bNF;ES?kZqVH11^;s<|ve|4t z`$YE1?859%vx~Do&;BAyc+#)3Z)Oi<-^$iy-_9P&9xV!rt|}Up`%doB+|P2)J> z&uz~AA-5&>LT+pB#oV^sOS$d2mvcLEujF>-{z%`2%{qGj~4sQLaAMkk|5hUgZ6JalTFd z+I;u?hXi}DtCw)kp`ds~cYG4_)F zC6AG>ZQ6A<{pr6j1{p(*;cC{6GR7JcjLF7SW4ckR!gGxI#v)^>`deYFHr5#%jV;D@ zW0$elIH2x1r0zMY?m3~-pH`{QNzGU!E$JiWeB-Fh$h>SR+sO8^qwFHP$)2*W`ZxV+ zfE+A`$q{m-94*JGR1>KTa*C```5jOtSfui-l{2UWa+b<FM6t+1cIMD=Pv5A%qZuD?ucP1Q1t5L|AcMS0oDp0wN+J5(Fd& zNC-hbB^-iCI7ko?5xEBm5<&s(;B3p45AK3iK*Zsi&!4>uCvI@J^ntBE+#2o=E)~$q_Ez4q^#! z#1pQcA*OI4i^z*heBt`S#*E=Y66QH<6w6&B#v;#Y@${TNv|;av=YWu6s9e3Quc198 zMzOcGr@%8>@9%A=ANO|j6nHxeKW&98>?x5ld;7~g_f`uZwMJOVEPM}@drb6$S3C7m zxLqUe!5QvpEBBX({Hv9FOhk#S@g5f?yWW`MJ*7|fo)M+EPaiA!!-e$Ae9W^#xb5%r ziu{-5BulDTlu}=hztNr)_v*V+;G;tP`ugfT8-4ZqtcFuFjWl+qge99e?MV?ijh}C= zci)w}Q$%ho_LRy!DxS8!3&tu>C%-0|dF)k@B_vY3PwrL`(hbCpm8SXxxogGKRiuBQ zzk{fS3%#O5MLC!HJBhL!efe3Np0@I|O_9z@Bkdn=RQSTQcf}L;&-D%PFA(*w_|gs* z-*V%EZ$9oe`nSn5H);Qh_tcd;SX9jxbvlsp%`jT{x)`%PEBnr8`1~v7GGF7ZX3b3TAFKN{u;0lHZ5UpD$zr3`byN}upb4p2K)W6 zX%BM;xFV`3`4HkYCKMNwXr$i7Nn4JuQ$wNklOC5j2LTRQvN#ZZvl>k z%OAr`%*$%L2{vlH3E?*$V^X6?K#U^M$dRbq+pZWt`aRZ^(z#fdjUVADMp*vU_z~}a zY5WL?zON6Xcs?3`e2-kh=CZLQAe}fzG6WAjSGN189Jd4?E~p}myZa*o>~B~Bzb9M zys`d|GNtpNyg1d6<{>WE^AXx->iMwwDx^T`A@oU!l;_itdzG*m2OB@kcteFw7=cb0 zfi@U{9w_mb$cGr*e+76C>?tR=1D64lK;o!b4>L+o=wLGZDe(0XVnI26qW`pPq?cUM ze`Nh{cG=&RJFYWV*>PQ`LS80orl++qcjrIlukcs->wF{M!gugpd=KBp59rO!5#}g! zv^mxsXO1@~m=n!OR=!nW6SEnwb+x{2b+c}^x?8tcJ*@9oJ+0nWAM1AO4(m?qF6(Y< zkadq$lYArjX7a7%=H%Ao_Am9YFZHl5^|1dkJ*>NEHYR=f_l5qZiocmcU;VVM+MuaQ zJ$1yVbk!q5Pwg-C)LNmZj?m8w_h*C-$PBN(Qs`JFTrLxK)mP}NZKT$KyDpb&tRgm< zhOt6#9U;P=EMlA{G}Uo31ww~iDKys+LT}w<%oZBlL8-Np&MIQ~Os!S#@5$Dyp}CF_ zTB6WfrPeA!oJ`?~)Nk^1Fc#?tFP&~B^rcVEw=yPr#tT_QUeGyLLhGHYukOC(A zxr9Wd!wUKKc-9GRWuthyO&_aHzuIQB5%-5Z$AlD{JSXv!ObFSe&+2EqQ7J9-*|FY? zXMwj|%Is|>^Zb*Ou!PL|CZ)|D7a_-mcGl=rEbj#2R%x(8Q!e$4_bwFqH$v*No|)d2 zBBnL^4r82my*^87w4&rDWB>g=q0360_PB6yTwf(OFUDhF6$YnkMOO< zxmcwQnymMr?~pOhcT|>;NbwQ9TCy$(4fU)%MP8pq+za|-PgkMSp7JIZK-2HCyCX8~ z+WkUv3yRZ|!Y7tS;_;-}35;ixMyk$Dq8U`uxQMlr5dBfbX9uo8V(L`03cb){gD#{& zYt?(gd_Ax=Y`OxW3+a6t^{1h=YBucAkJm^igubeO2T1H%bXI#~wnt+Bq9l^__qTowI9F?-9xVi=EMH?=%;enTm%x&AZebo>WA1EiBXi;82@pp zk4|TIC>|(U3qUI-8gnwz-b*^Og_s#JmZ8q|#+)0i+frvY(|I`1L)6UkZ(+U>SOkO? zszVRgNjl=rqn(7OU_(5f#Oz6PL9`NT1f(X0L3NU{s-JQ{d}Fr3iK>3eeOYw2ER8JC z3LRp2q;*@w6H07@G$(^G1G_?!N{7a|rUG1~zSgEl?{+=OGOWwMZikDhM-1 zYP1bN8XdR>2yIjUHV|)zhjd_CZ3q3F`1lmp9)*wEsC7Y%#A`|VGwmQHhD749BYrws zgL7DFp0xgg`1{l;@Kg#k>hviNJA+u;XgwFrXc0dno##XG(!481zH~ZaA2VshWT#Fl z$GCvn1r5zvyAN0l*`bMPC@&4;LE6JWdMjy!>oMT#z*&$TV^|tS0YvPPhEW)!Eqo!L zjX5x5Tt&&4f7lq$!F(O?H9W=WA!&weHGlvAdCl;WCM@1K-sj7|FZ9<>{0$U( zw45iEzjo?+>35Z{w5p*G0>7a~5+qN^0P$twj9cx$)Yre%*T2-)|I74s@eb-eKXb11 zlK#2)D%xkyM*8Ojp?}Vjx~J4U4Od@pq=hbexy~uI%`TVCkdBgbqsA0t1~f`JS1M;h zYem>&jpdjtT_sasFnzJmGM5<}M7ToF)c1W_(-eB5-%H`QiM2`!V{@qFEvde&#BKkOplIh&b6m6 zzN8y^dic_!{Eq0gI61kR^hBW}t@2gslSxa|#|k}BXo^B-UF;hy!mRey87+MEzEQHI zJQt<5=qb2#cJd_#K4VnlSx!;1vLpuxTcNF8;^Xs8G5X4RPJdGTDLqi+^bw&6RyRI7 zxnVBTKis>lLGRN~NsUjR*TBCgOGwnUgAFGp3%zldf0sVN*e~?Ly+X?$;y)m?=dnVk zUM#{G?LVyVyONjBJ3%t@c}@m0M&CfW(MIy}8TEm7o~DwUFVIc=^$b*9;^o8HbiD;o zTtT}n8Xy6JJHg#8xJz&e5Fohw;1=A2LxA88!67&d4#VIUTm}YrclSI0dGFpjx88ZR zyT84l02?5W+ofIOP*g10!1tMg=GwqU z6$Gx8wR`R?(w+{$+hk{`w)iJmuIo_gQ2Id2F@_Qn8*__NHj|=;)Bzq~K=A@wOIPgL zRI#7XsS9VnhT|nx2fHAcQ%y&a?((Mj9LR1az83FvFUKXUvgJ*;9XFda5d5QGK=@); z-S|*js_9$Af<1^-1?q!ZphG#wa;G~$(B_r^ z2-``Z&KFCH|Jq;gLfP(LlvLE_ELwj~D$a8~l> zRNtmSj~Q_0YdE@KH;(65`6Ig{Q^-$K9II!o$n9KIm_YFBL23FuzEdQocVx5dAR1#H z9JftjoU}3K`Br6$m6P4z|vt)Z+ z@{UoUa9{jwut(~oeKkxd3{7ZIgp(ns`dws(66Og?0VhhwlM#>&I6V{NdN)l}wP3kf z=zgRsX;;#~4)8?X)v!rJ$eGTcFU2*-7#k``?gZQcI+?3*ZYG%n^e}^YYi%*eeMd$5 z-l@<8@Z80>opc`}p$lhpe1b(R7%8e~@?A^oD#`rhsD<$#E*Xvs*;x1Hl$ooZVU4>GQinmGD7d}_^ zp3!sS%tVzY0B-%xbmmV8YK|g6hNxJ>aQep%gyrhvD5{Oa&SnkG5$nH|KI2{y4%<8z zL{oE-uZ5b7WiA5~CQ0y;TG*u)Rf3Eloot(dr2!7m_Udb*?^EE1yQYD3>#k?JzUIz5 zZlY$6y`|ILle5L6s$0_A`JS|Ms%JEON4YZh1fqOg;FE=eg>^Zu7eB{!e$;!#mk?1K2rNL-xLGAuSl2T2LXRqxbOh?s;`|!p0Ho9W}&6iu-dLz{) zu`>WWfbb04Sf}XVSC>S|kTJ7a!ts)_j7UjWaZTqeg0$CJNS^S{qHmbk?~C}`R9}pz zLErWV2Jebzjj*w=nW)sA63a@lCgqcL(ilo(U^kWPSI>vL$C7)Q(|gPqAhIa9{V9=t z-JDC4i;S8uddF7I_(@{Km;QHx--GuP)uJ7fpb%vxUBz~Bi3wyQ8{8 zV8w)nFK0RvtBB!eU`MAxu$WUIHpVB=%MpAjytPPaX9n11Eeh=YhFV{ZwbVR|7gAD2 z_!3fGY1a*G)~#Jwif!o%ISDZxenD^AaLaY;$%$lGSkXWAHNOAmw+?FP7JA!|IFjJk zW%+sY+S{$x?Xsyd%Q%e4KFT2=HP0}Na!P`45PHc%(4_Qp)Zb7Vl-u5i#coiQ!n*P5 z7HruqRe*R*aATTOX5Qaj*!@yZj*_JTf-5l6!twPw|H&BtLmt&e-SdY0I zxWvSGg40RSH97(XK1?bI-qFQrqzkenG|Ts$xboTq&HWrvDyL%we#Y-9Y=Ax> zzk1cO;MO70HOiHz^T}^RiF6yZ(aC*dYTf2b`?o6@$lLQGF7I=z{1H;Y2$G7M7OSb(nM~JFi3-WS(Xm@fz*Ox_D zSyhc?{^Vb`m=9Nlnq+%ot-^sEF8GG^b{9#Q&+mrKa$`0-%g#N#ZS5_y_(n+O@ zUxa4jA0L69DZ6r0TSXeU_^KXTohEti)YM}vGjS?_17a(R15!!eD@Ebi{YsH*$EYeT z8(|$HW$W^(R_kcDwB6^)8qF=_q6?frz8vc?v1%dZIIYp2?b==F>F+QQes<|%zU%ss z{pD9f+NVYtitm{dy?$`WaTfmXuneHofz>jP;v3ThJ_&t_n`+^$Otl|5XM0}t(z}x@ zLk=`*Xgu^OUCLMCxOK{I_JVmrl=gV0_YpmsrWdn*+{T6bzZ^=-nF*I9VcO8+KjzB1 zfqC3ix!3yeV&;~A#AOH}L|>zCex)=dt5BR1R0?Duu%^8Ci4xS0e;38}GyyIR?mJh8 zVypZs+?QN~=q zPfdy@i-%9~nU6>7l0fnvIp6=C$On>IT~u^q>cfyPywR(Qws-qHhC*~`M=x`^Xv`ev zvK3bl&ehJzB3EY=ccGV zl^2%PnzI1!d*1s2NZ z2q|$*+ma9`lwva;mr|7&nGtKTfEjB5-^nZ$w+L8c4MFHz1n7lyT>ZuOcAq$zx_%LA z$7LIA_7`h~-rpSLjp@UIUErf98Cgg zvezFQTViEP9=f!)2~u>Yl2Hg*?TRH0keb1&|6R~J0{Sn#9XUgUlBYS52KBxcjKZxFWjOsZ^5 z`(!7@(lCf$q$DvyqXZ zpdphB(07Gb-N4rE+>~D}iGf-RW0C)E@6w(dUa|WmSk^ubODa7#Y>FPR!s?w~Z)1G> zrL%ZxUHO(pmm&?Y&dg`m1pkI%%Dm{7_8Tg4&B!Jt#_P_mOl@}ljRoGFMG`~;fdozq z8Gv%XQLxSum#-wS%4?8MeisUW0G5VY0P)A)&F7&KG5h=LKZA(KD9A8wp{-LHi4A;@ zKesDls|ifU(hM5&$r7vPyFRz^e~w$Qr7?^w*GfjiJ=-miSlgF*D^I6d-EXY>({g)* zRG1Ul&BrC2I&4d9fW>m>8OIw_6tY-1uj^)h^8C`jv`972snlUtH@+cN=UA7!(WawW z8CW};7paNFz+1a0ixKtM!N=FV#$91!U*EDORoS#yzRD4-L>9!)pmCSB#27MtTisKgFD$ymrh zL|l^C!6$86p$l~IN)c3h&CvKql-R}hgyyn<=zBlW$92hJ;KUw3`@t70uPPAfVlkXg zMlNDpUS;W<+*MhtNQdzyR8dS{i93zoc@Z%}iBEsnk|Y-=*Q{~u(A@p}F4?|GEB;&0 zA?_#38*Wt{1iGv$UXdn&S(W-lMSA_sx-nap4Erkl;Ar`r?b=v&O2nlFrp?+hVsd{f zyEON&mkZ2@`ZVPK2wF+v2XJ*uVK_Ue((S^r&%|y%OlY8j&WX)s zKJ#Gc^?qB2xk8E&JC7dJe^rq4FDJ2+&n|5n7Nk#DZY-!GqgcaUBU>XR%Jw(7oDcV9 z+0`R3AQq>{CR(MaK)Ek?_b|?-_IfYskZNkeA0-tMv^r6;&1{=$7Gy?)YZ7kr?Mxxj#KnmQ;v_GlqFw^PiEgJTBM~?)9%lrKUZ~r@9NA z3OLT)DX0#BC)dSUq0sx2rMfWExbbw#tj`^K>~*=*Hz@lpF4YYA$MaUE6Zc5q-6Tr9 z&Gc8&s=oK@g)`6KT#Fxr8pNu-3wW`9)2D=uVj(J&`3*hn@^?jJQy)Y9;CiSA1h-QN z?E`F!g>_zmR_DC?W~%ef(_{x#pOVz}cunJ@k@f_pypNxG50u_WEb`q}!R{rpHUu?`sr2WkwSN&__-rJ+E*HHnUP+v|A6w{ zE__S_lZD3OJ&aA>XK96EJ%vG4W$YRNw5jvpsWxh%u-s1=HkdedPdIxFw3mNgXMD&S z3ovNT$+yFio|6z`lg)A>R0>r|sAyuVXQDg;<#auza=+!2YMKGXeyuA1iUuq&6h^F* z(_lU~pNF;m#ntCH@y&P9`V}DDy*hd=Mg(D`JJYkrzvEPn}=SZ0WEqgF+3(CGNn<}+#%KHCQ;cO_u7{WBd$rH?RZ}`ddQO`hR2UNdM+-_NGk>zbkj<}2tQ3m6HV!o# zn4ki20+WVRyTet`mSSfr$PK%NH#`ueWk=Hs0bJJ;ssGGz z2hzmV^rt=g9}GyjF#-hVhMh{M+EjYdhQ1gUKcM~!@Ffp_acS|!wfu7CihNrGe*vQy zfNBx<{tJKcp&a2z!6CnpHNBhkx0iZj>4eEL<$Y_xA5C@XAl!%J)XVGXHzTnxZ@9_OW>531^Wa8DP_ zCt@tbVps`QFshR_W1t#i8j8cQTVDhr@@9j0%PRCxiReq45b-*@N#wc*L$aqUR$oK}ou>*=9Udle6SDXZkHg^6_+l_2Y`EHGcag#a8ce&P0UPZupcL-48y_Of{ zN$kR7K+BV(KwxV{s%MO2H;e8ejQAA3k7kPQ^uDx4+*MsTdLE~pPPA_{TBv0FH*El! zZKpQX+r`QTFaVDmJ6bL8F%NeGka zkE^p7UGyu?nT?A6+_~Ki3hDAs05EPfSJ)&2LCk7 z*aW1)rGe3N^n+i!gx=uY8vU4isKz3_9Fdp}WgiPxc8daIWsl=2U-nVG8%(4eP@$qi z6Fng?QYYbp2S+^?RW`PF~e#&>8Jt(>zkR15!QtjSG2`WYgRdyLjvI~sNi+!rrA z!^<5wPlh(f)Rty!nx#*1PksCOEY{M2VC9!{qgLB3hLQ=<*b~$Szk1v|px-&=<9+)H zJbk|8olJLsx+dNa?045Jm&AdJpD{u;#z8M@O@*zUa~E&nJBM$J$x&kE_D8P=YvU}Z zcYYY+=%>}Y9$k-ipDEg+v!s|;r4Cg)+Mh$)M)uD5eQsr5#Z=pBc2xl3&p(H%I`7HA z2FIK(qD-e4F5^T*Xn(#%)5rhO;~u6-|Wm|E!A-{3rr1@^Kk+`GW}R z^T|#-sQ;}F{0d$L$ANdiL^zG7U;?m8Z6F*hb~aBKr|G-t%d|qNd1+u8Ok&Cnzw7N~ z9Y4ZB>yZMv#P`ED?uA_NKUjfsy2jQvx;DEuA{rH-7M&Rv=38sOiU(AGSq>--xNcdR zr_@32Q|cz}8|&8YV_m=k08+l!UI8;w?pFXQ|0?(RCkkTg*!W*=18cvo2G(Lx2gHBH z3=EQ6iCM()Q1A_=$EU|<#%IK5sp=RvgKTc<9UK2vg0#ddx?qy>08RZnXbrSxv1Z9> z!3pZLm~~Qh>){*m;^tfW()5Dr+x!yOIrv)K33*L{Ngp?MuD!TQZ9n2KPdHcv7B6MQ<_6B^`LTnT>#YOk_LS!GcxnK6 zs|NUcgfAp-g0EsV?cqFz$|V!7;tgt~#yo}^BpKQ*ygO&7O%1WkZA`oi z=h3Uk?bgc3mfy;69hD1jD?n;X{7q^sS~F#a!Y<{88f;LJb+L6Bpd$iDqmLv}Ho;j>(NobXP!LP6jF^rLQgc@w@*#@5U8y7#? zy{Rtq_d#S{+?_0{zXg!AA7Hq-sl{wNf$rIGy6C_=_W1fN0S$|YO<^Z^B{G{2dY1fI zC&BG>n~otZr-Xs7%8-EP)W|)h&=-}K*7|THwFn5`V`^TpNTU95`QMwl3x)r7cukrJFSTAv;=pXbgs(Vur_ee@5AODmSgZKDVXmD{A1#8~CTBXiwT=Q~r#b^ITGu-CC!zLW zckAZ*0DH;`Q>g`KzHns|RVGOGgHBURi4Lb-H;8$4U*(u!K4N7UvF>Rh zFEP5MtkG4wa_my)W4lVmomlAT(w%Tz~r`Fb> zo3oXxr4ROqJ+&F*@T|-RMY>ECSU&nl^BL}zYo?mV>>ilydH!j!7F!Fr_RPyj>Ajb_ zMD5{?W@{Gw^|{A33k=eKf3gl3Xi+MbG1-lQ288O_3*HuDR>l!)yDQ`78q|)}_@b0G zIDMtXGFc<=xmpq5SdM)>aE}IjP*2VsJve-W(9JO$E{+xWa>hQ*x-L-qQ`QpbV3ML| zzsu&@KW*E1{JQS9ZnloHuD4$D#S^n#ZtcS|s>nMLG!aCRk0PRgNd&1IH=I~|6V6() zS|sPs&OdH`BT;-VfwP9&gCm3|gyj-x!$Z)jyL^Awk+&eUV0yjxLh&*x7)0ecI&Hsm zR3+9yu}8Gm;NQ+i5+Mu92{H^84e}3q2|@_wb;rc`dxZvvffV;a1q<^?G%0u{s3GVo z2sJn+cr=KGB00Ybt{TY^{`B1`;wb|8dvfnukWb{Ez&YOezi&2yMg?hbo#4-t@7usU zwO;9r!cHG*Kh&bviq_&RST6WWA^Nr>_#!;PBfUdHI10MyCI7@TD~uulCx9H>J1X6z)6J0>m}q z@uJOpK0d$VhAv7WV=Pqhuqcj5%RGdwJY4sSlX3F{4vWNNr-z{~*ZFN!13{J7$Gx(s zYyKB_$OK3E_Rd=eAQ0|3bARWnMZ*GWL03!EiKW~kQSJs?SioEoCLVPDy_m+n3d@5m zD1u_6lvkO%@z=b1#jKAlLZgqvPd*L(qN-UB+r1mt&ZwJzO*&pnb_qR zUy9eQmm(v4`;ff@Vm)Puv#4Q1s?n+NlSHBK1%YgdQEsM31AEuoZtJMVT7scV*E;I5 zZ;fl$=HeVJ#^{-^Z3{$N-$@aWx*;YyFHDJux(mld(-4rZnVBA)q<<$D)A+=;a`AeoXCjC z&gcWm)M2H%d74oGzm-M6IA;y(Wk(8{?o!{jc0cA=nL2>MKh%*oeK>w>3u??nq+(iD-XNWzF5N|e3MR#e=wUROJB-0Ag9XoNam@m zA=aK`X{V!y$2y}yZ(V78;yrtF;Mfn)O2FJ|{E^+QQ{Rn)OW->Qh_@ept|VyiV_(1^1Exq*b?>r=-K_2 zW-4uAh~SdV57jsKY+ZPP8l=<#d6T>Td|OL+F9wS59Kt+Du&+y5iL~0os69Mzmx|qI+Ukq}&9=?;D^Lfh!!emdTT{Zx6rW92i}q9Ft=;L& z>z|k4r$$U5rk8|pVa~>v6Pgnm@}BX|+6Z5?+?@+=Kat&!UhvD;p(0d{-t{7C?7Gel zr)I{+ae_Uh-AS+nO1uePxvWC(5mLLj9q(NMH&WHCt+5M{wQLiW^$)u+*%uBThKwYy zfoywFPmHv_^~IS^TuQI6o=pW=*PN|WP$DJ@{8YJ_jq^AKW-_pR6jp(+cL{-{$|D4a@SxqU?jq(Q1}dTdgQ)RKla-xbBipOZ-9q(=ZO945 zg81ZVV<6y7z9M0{75Z`;a~lIixW(~};*+l5x5b2>LFIsF(7}@}Xzy*SbSEE_==3@3 zHvcNT;sDZO%3mqIPrp(mHp}J_b91IRpxvtTJQWAIj9uRn&B=j72_{uF0FaZ-tL{-+d~^6D&iPw<=7K@krR}14c|v~3*SYX z%TukEubwBQTayRnzv*9&ZD&1BZ|e^?U+2;CGw>gcCh8~Y-=rljB`w|T3^ym89dhh> zjGmO#Si4rgaO)+p=p_zR4FyV}Uh1B}=@&vn2ns}pif`XJtrmJE5%~OwAHN;B3wcol zQP}7Ci7(XjKPB|v`cmg2KgIefEx-LX(yX0@!#zT38LeMwts?)BE;%5eJOI(Kevw>f0;S5W-jni*TxAwJG#wjdM z_iy6%b9vPW9qxrf=a#SjbR&sNV;&+kg18R8mJtl+I+uaK<}ihdHs z5hWMJ7sVB&Fy{nPjH+k4snu=lf9 zx3{&ovUjxqavZiWy%4={xX`vRu+X$ny|B6vys)uQw=leLu+X|7GxIsbYW8b76SsM4 z*4V#!m{4Ki;^MK@ElB22;(5~IYwi&-nhq;{?2>uM zGXcs`m9LvbLPqIy4;6^Y;*1{#H~L&4y<_Tb?o3@ z5M1zG++L_$R9}!^h+PC+1Ycy{|Gsx_b>kMxxV0PU%uMsJon}{Vl}fs`9+-&HJ8Nz@ zX~_X{d$g|nb988K5QgTQIJ&+Si-O6QYmcUL0jiDGP&XOji=UmdMy54QkVTRchgVX!1}(aIdOq4FS`YeL+FJ$;x;T0j+EvwTWdmoP!7~ftj|?X;S8+C<3Q}p( z%-q4owacR*LJqNYq?fpy@K%n(_;>3PZiw!B2PMx5{oF_b4PUOw*6z`fDPIf zEZA58;iI;;9}mqQ7MyXl+W9xCo8BN`tvf!F%`151*0g;*vY6(^xTiB-p3N<|m&AIY z9G+CNA5fCiKOAilW07U?WMNsaRPS5wS?}a3;p$w^uA4`i^Iy7J3E4T>c?QV_i3Yg_ zDF!T$n)-?DiBE}0NpgvUNu`M}`e8TSYJUD~yWO_d53R+m%5M6*O=BnNOS(WqQMU@$ zr#-E``CW`LvIJpvPxVva@?z_i8{rQ7uwibykf-74z_LSYyW8C!`G{zyFZJEaaziVj zx*l^nmxd#A4zr48kzNtB2wKXlVW_^M(W&A8A8sxU_wvWtve}l|zS-p2U$e`zJ+q0k z(X*Me;j^i;dvYIKKTvjhTG`;Pv__iH}mol0eoB~(#I|{uS zE>-q&M%&Z*rn`X|9y13&T-vBts8{G$#0)b|6HgPW6*1)@MG-|2rE;Z%r3|H|#n#1p z#e~IaCE7*WrI2F&lICL1;=2;e5*Vp)(VA+Wvhfh)^5tRi;o{jM;7fo_z|3>%gTs~Z zHmrtmm|wWdE+GC{?BV4SX&17MIZTl&E)?kZTJ&80zhCrMsUrzuQ6F;V)8|~ z`}fa{4~3}ocwd>)bwAgbsC7^OO!;7k%7=}b@i3T3jRe}9{Wgkv%EP!(_XyY- z{qmh{Hllmx!j4e*2^?9LHCvj`B{mXzaKlPbC#->AKbu=6X8inWQ(^-nRCXwlD$yvh zE0HTvEitw-DWT`4bMrS)HV8C`Gzc|_HPAJ%G;p{vy0OCU2tK!b zd6r8;OTzw`M41mV#WKnz)%k0$R3&dnzq7ez^@X(ovjdQsjh+Ma#u@ROOqGiB672?A2*tTP?aTDQ>4br^kQ?*<_ z`n{vj%ku)X8PYEo9Z#6YET->Q*QcLon8>J*mYmANVxuvgU*x9HoR~|eN%x}kSIJf> zJoOhNkv>V;YNf9HBltob2wQbvAxL>`HM~9eA zIk`lUyLhK~Oi@3riRDBG+6vUSnV9}N{aQR%+*mB7B$ph=mh(-h_=nX&$Fxkbl9G06 zHQS0#Th$NkgH>3adW2GZN-nFYp-=U-S%w+`YfLKLh`MD){bjwCrNam`O*7S<>Bwll zz0zqhsJ`3M-SWn=aAY7wnKetDuh8CO@wr~cQfVYLt%_M+zbW5dX>q(>)beQ*BZZ7j zSnW1oaj_nCN3XR@q+P@)mz9H&gUv~6wWLGJd++je$A9E04U@fwrG|q-Q>@z0>>>G* z=z)9GI*o(T*Z|bw=l<|`$+puza+gBEDy|;T@%;TEg|aBE6R8;Yj+e%&)dwRl~>hsF|#e^&P{9^hcTY_Vrc6 z)%3nuqyX2J;W~PTtZYZu>fwHrLTVlCD*5k4%v|_8_+!j^+Q5o^ovGFWeVK{qztOMw zbNG$;QY^CHe^sS_<7_q4>#vOV#z$o#&}OaB(XA^n^Y1T-Cc|%Mxz!}C6i|2R*!mUneE4Nr@oH@2v5%g!&PZmExkQ)?}cF`9n9d~NYf=^VFRAhGB6 z4RWv+UT|*Gc$Td-+~iN}?7gj5v!{4sBN+`~2*6zotTjLW=wa{-ikO?ySY-0h+DG4O z8L+y7HyY2~gPiZ$Gj+uo4;t-Oc?mcDY~CYVBsLm$GOM|A>=0i1=X*|WPjc4()NtbW zjshIek96s~C>B7`l}EOXc^Nw~Uk4qD%3YfSiZ#0@=xQhI2SR48v7WL1pq zd^xc^u_T|?vZ*<*z2!c!7SZ?B)E}jR`Z$Qj+Xy%2EYAkiyyWUbT~1U*s$X=UxK#mX zHl;0vIrA!4q&Y{~4DQ;V-qpFKrQV7hlc-*L6ZI>;5hqcK*Bb z@m-^w%S^OGr zxR0!#*^YRRctOKHD?Uk1O#!B48^V=^7w^UK-h4XLW1`44tl1b==>n2cqXUHl8dBrd zaL!8c2c8C>?8am`Z2!zt8X6k`tlW(2A?Yi7U8dNWQJ|_>{W9ce%RfgDy{f5n;@zI) zpVhPgd!U!sw~Gf_1G)%A%jcj-w`a$_P@5-?+b1YdzFTNxL)5V}swnNF>fON@&K(26 zeh4lqS@ne5kJ9g5>&e26vcVdAzjzS^w_uO|&eq`#lU_Z#+s|2?`q!QqpHQ>koZ~); zyT%F0#qP7sm4S% z1||a=N*u5t^M6@*pE7p#KHP*t7GN4mpv6ZLtREyC)E+eLM6hf@6N>C7V-nX*Dy3+K zOoix+yOHH(+fx%&O5eke4T?Hf2C1&+INPxJkumlvfa!y=aB5Y-tHF!Gi!ui625rs< z)a-;Vt&yWL2Gv9EQCtJGesmiwAB`1SRJ+AKJmDQ{)J}vblW&em<%*1Jzk~S|->toO zM07*~q5H`tH%YX-aGrk*vkN*3>cYOKmGs9^&Fh>Q%AOPMMd zX&ErC?w|*pe?}Gu#4SAvfzarJX!5s&_dwQtNh+o(n71=gAP+wB3;1@x?T|{Oh z$+u+5;t$RWUJ7o~6&CA!JbvGi@GYG3U($zFv@E00+OrQ& z%nRQU?1CD>LXs_&5#F>^_5)xMIVX1K62CW~Zap0iBaBr-0Eus6)Ca=Lb)l!aXH^p(Mv2=zLTU$wa$JU~I4&cnVwxcDc9e{A&=4 zr1DPXy-LrOq1UN4WAA05=q-)3xa9SJnF_34XOi&6?*i}wC@_~Y0pm-?_Jp6>ZUi__ zF1(07;hb`?ixIM~g^hZqjAeaR;ursRj|Ei#229JYOMw%>5y9p`@qg$H z3JpY2{Lt^tP&>8$64?n#7;uTgW zMjNQ08vRzhUs!SiJ>XqulB)?8m4yxxo)Wg+GH03#ip$Kj1`z?e5;v-zl$O(^k~&n^9g^YCvJqjvhPSHNvV2qqmNWyA zpN|T(+Ymgk>!rS`wZu{{Gv*GM#3c~1o6DE~3)Y@>N3BkF)hJ$8XY^kRjnt%^cBH9% zpG$i#osM150aDTKI|Ro{S>3z-)`I9@E~6}m3N@(B<&zD?k^;X9o@YoimUXid?i$QR zr0j}Zzq>l;!E_OcBOljV=LQSHKAs#w zX;l-tP$N$=m1Gc6I_o4&v3URSoGw_k=b84OzUeB;758Uxge%r`>uwRGUBS<)U#k2K zioP^?BwI}#efL+ce?dPDkmz)pg+>hp!&=(!zY4V(@3R!j%9DOW3Ov!hcko}Fl82M( zc{W2PN3&VowANyu{ZU-Le$mnReWvkEqbp*1Df+PuUy#{NVLrQbgus}3zUPvi7MEXaJCjwas>BE<5`TI&ZH z-6U`6EXUVD-2op!lGn>hH!{~t&4tFD82;wL9$%q-6TS46j{}n*E&TEB6Q9MpNkaum zcJ0%*J`b9Dn0T0|^kjz$qEh)xNKGdSO zSt?S83`Ay{&xW5F=C`>SrNpZT?UupF-T6&a?e=@1sB#Lv8J<7C`kP+j_d;)WAEwsx z3`xd)&P$Q>tK@O2u?JX2&jk;Ki-p=(=cJ#fiHJUGh0Tg-dTxMsOi$L}8!$RJ7R(D) z2D5=3z>Q#c97}y_=QQap!xAODjVbreHpg#}*uyqiL;mt30(bm;hI$Lz_pm76JID9c zaE|bfa3iyLls6yb{o&M&gMJWFu6&U9gi|*N!n0l%L%1VqnUH{@`B|>BAQ%&c<^`{z zJ%oi4(V5CBq^sdrCI5E_`O?4t0)l=y798j^S5yz%VT8|}RM6swIr@T`7 zkvRdR;=K0pRJhxpVQBs%NT^$z;r{UbqENRJ!;bb)>U{zl)ddaFPcVOwQ_rhq`WifJ zz>T&&;7(VUvHc^zcWz6z58rHS_*{_y4PYQ~v)mkbV4{0J1Hr zAwH=1pWw8X6x24oc_mfL3*^={N`Y$rzUJoZ|9C*B4bq#mf)P&pf#*pv0bU@ zI?pU?AvJAx zLBz;p$d^>1A$2)E#x9{`V^Om*IkcO|d~#C=&9P6YVLa9$c8_xl1qMHjDf!1Pnhj4{ zb^gR$>d*vaQy9Y8_$4hslaQDoKP+ElfhI{3GC4pA7cf}78 zV18I$LCpD&1g_vCOvK)IM4nGz_v}(c?!ft=JnO_JIUy->?*?9@{6R| zpQUWR)UwPu?#8zxk9deTft=Go=QPOTt-YFbw}ar#R^x$~xPN2pfBP&PJZEk>S;5nH*^((9^FfoR>Mu*R(+Z5<8Ur zhwe;yy2O@SSMjI@eLfsO19a)J%H-46|HC$)YFE*C10`@sYf=?1BAZdMv6fl&y0I6{ zFTFAAlysu#8B0S2s2{`zA|tUzP_{S#ZPhiviG+`i2< zFXE?=*f!Gqo2U+Gb^`*0O;CK$-ELgPpn2yQ2Qt=kjcUNZcRb*(G%noYIJOva)Rf)1 z*(THSgkPQIcDvC=w+H#pd^~I(VY5xM#g`B=CWz#+l6a+W(7a39as$={DK5q zAGZ!$e+OGH7=6@4I^`H$+J)CbCkG7LjG7z_d*Lh!)EK8o@f%F>3sk?%`F8oDJM5`G ze3P4al$?0vPX|F#te#PbHN}Y)jfqDriq(9I)iunmQ0CT4N^R_ITWTe?MHJUY4ObY^{G8G74LY4R z5}mdj9ppx_T9FQdu2`+2SUs*-O_E|@m~6n$)Y`_}+Q!uCsO9Re?YdGhQWcSSCaeg` zRRkF+f?)MpHD9WoB&(fZc2r%XJ-1=!)nY=~HBaX7>FcO12XvKrKJ+aiZ~g4z>iO)M z`b}qsH-2~Kr(SAmRX>kLLt`kPj8g?<|L&mi@uk4hSAwEIybN=$s{(S=D=mEYTTGIo zJbs#DUhaR<_0Hjyb<4hRY}@GAoup&iX2-VeWW}~^+fF*R)3I$^H}BqOpL6f`-TU7h zW7MdsQKRO1p1BIYGed6hzcC_kGS7^k6h84ed%k;^&wRgRn19t^%m`|zM}#J?%sz9^~luB*)F}Ex`sC2$#(Vlr10|hXcCqpqR^f2yy|`E$aObic~*LkUj>D_ zMy@()`wV*T9XTL|MR=1oh7^)LnliU8`zM6qx}+H;!YaTHU`9(&qt1%<_-(Yn+i<`# zwJ~U2t}fkIy}Fo$GGN!KnO7#V%wtCAfT31(wT5H(c7Oi3#2l$;)y@4<-}p+s45~4} zm_0h3KG{Ou3M+Xqe|7Q>{*2^R`s#kR;I5eddj!Q6Ji#1CK$Sq=jl-v}|55TPCt_|< zNi%-DwNSHUJJVC-I@@u|cGjXr_f)MaTV`H{U1qA}s5o8ZL*&SRmFv1dGl+RE`ayn! ze&(|n-zJGK&Xbj%ot~7Qm7bAaqIj>1jPk`0Ur8*og+|pbP*@rvK0BGy@;3}k29?S~ zweXk&IbL_fxr;JPw%x5I&`LXvxUeJ0J?NKVs&1hVgjCr5wEoEgH?k`rT>ClRrx5Yv z^R8Qhi5nZIFTTz-mLgu9L-^y z54`PI&B3Ib3^X0UHk%YiOxS98tX<2!CA=ok6bNDZcUE3O;GC*5Y+ z)=0;7#(rCQCvH!g>ru-!!L5*)N8=nuw)%4Xa=<`PY6M=9#6vb_du)VZvDq9x*Z32Rxp#qi_Pl>|?RRGjNYQtvBk| z7&4DCo#K=;8R4y4oVP^pRbES9y|2a3na_leO!tNN0QZUa0{8Xz1oyu82KPCyX>Q}s zL9ea%UT*8pMQ%eMvuqYVrs*_a=IIPyHip!%pA6}QniIRpCMU`I?zA-r4ezSGFdD=( zR>r?qR0qN}7{{CAZ(R2v_j;lT!@uZ#*gpwxNN%=+YHE5)Mrd@rCC^e9`&vem*@1J@XA*?L7}Smnt^f;5H9GuJW$g zLZ0X1*Y~?5XVEPUtunT;{*8{%?Q_`=t8$r}YEp8^&T7890O^>S`cBoZ(>6$1HU5qr z4^-FI)MczLtxldFy1;&Ceim(v*;xAy+8FvS+F1Hd+L-!o*x35^U+VeJUmE$2Us`RM zxz^d%cdTwTcdW3jZCq%c6Fj<}XS*uQpt8JZgDnZ_IXYRyW$# zmaNLH&7Yq-G1ytj?RzvkWZ8HN&6&nr@U+0 zJS|LgTHd7}uuNOVxoYc-ciJ90k9JViSY{tH)CsPdj-}iff9blb5o)Q}4^Cem7C{H1 zZEnP5U}lpsg845435qizVG%(SDM$qfrQtxI!u@RYg+ikN1{sRILV7`h3Z#TK;{vV9 z%4fD-^rs{A&j+7_LV-&TUXH`Yvu>JSZJ>xr>GaA~G9J*Ms_pc2+*)&Vxw^b+@x1!P z_`Cgl3xif)aZaKxMk5#DhRqNls^Qxn@;9ej=uB>U?seX=@$+6=!`CDGZ%*^f>pblD zkVnIJRq{*@l2cvV3aN_kLBkr5`)x-|I=6d)o z@NWL*?i)F_NIm$}m>G6nO$MPDQifhT!FE1Z&4uB%E_DxW*E(f|xe~y#+B9`vIahR4 z^FcK@8~qXawN@YiC=mD>W|)NXausdS-OXNnf8vR~&FCGqg(B;bISy^(_9x&SN^!|2 z_2`gpdZV}rV#A<0@I|Nm{yR>ETHgdV|9~vQ;1*Q4kW_G_A~YHUlS}^Qjv*}M71pkn z0w#K}+Y-(|kK$FkKRE*)oU5)HqK=C!GnWuM?E%vpU%|3$Q;voia18`lE0J}PE^ zn0nFyK8c~A>*CnUF&ai80os-wvy6iRLlp(eah+74U1OHYcf?U z`Y!354dV+>;Z-?a;7$*|&|Weu=HyxOE(SI1T=;P=#cgX7OdQ0a8EX`WhrTkUxZ!Ot zx{#+D%1M|XqZWG)H<$`7sP+xwML4-2pK!=_V9|e+*%3;v-?7aCJa<430pNkd70<%i zz!fh>+0a4U8C#HpUaZqW@b5mKKvw&Rw_c?Oh&Lg*(J8lz%Y%qFzJgsU!+!JGKVu-% zxskJ>%pULW?uGWFZ-t2+#60uA`?q?K{%CnLGkYMo)(MP=b|U@Z^o^t2`CZdGiB~dI zraxzHhm-2?$nKe%EMx@2%%nhG|Hq-VGvMVQ%K;yJEHp!wC7xgpOiUdGv?uVuk4n zO}PL|eSk&H>adPdk7AEV^>w#}q3zkveHa-Jc84HXPF)6rlm|uazUot$t`xCj-P1j8 zft&?v?s0S*4Bwe5JDL}pmes1mD4Q8F8-u(bZC*Qpo!n zzWAQwoWtqENAE_Td!66ECL90~xtvbnCi}Q%KHo{sr zX$9+eqKBj^oce3CP%N{TXL`X31`PM_E%8i7m5_=mXXKB|2=94KDkHft=8CLHeL zMU7B?X$F7s+bY5rRzI)1cw0qZx#2vumNR`MDIWx4zP$%69z>LfmPa{MAEJGuU{Fdp1~SnNcaRQ~L{n@XXc za%7i0QLV1z_E)sKn=1odC7Pn}%y!D&;68dPTH7J7gop0Ai?-?zd!WuJqQ*$k#)0HxUL!NG_dndg6b^N-Q9si3 zui5iM3I7s{lJ=Ph2dCAdo>36$e5dU*b^@?eflQHF%D1@ z4D?f}RZwApSjy8oknxz4MRT7!FmffM%Szqp4kV%6fEvXLF)(2O|`^VsSAwWR~9 z0#M|_?u1oj^acuVH!J=C)(KYIR(U4D3lzG>c@MjvugvbVX9qkrFDh6DNlonW9D4JV z2C`-<&&=(EaR_}wrrr9ykfc#yI?wadBw8MD{x)2C9G7uuSoim`%2=njJV0nu`a7!a z(8G-*FKMYf9fy#v!pkKbZYq$}kZR88D6uk8{wXQ|-AKY$8E;$4`B1rfbm{18ofKf! z>~9fjdM%wTH5{i76PG-#Z%&faKRt4UY(LIzNSGTFyK<3a8NB zj}tx>K+owg@)H+Cj{fHEs6;SZB6yyjA0KX>K*af$>n{wUK?kAWoj1w37vb)(V0S9R zPRw_~UXd8(+mjCbRWDM%E_Bm#cJPyBsD5?VTBwc5(GQ`E>g?bPqJf{uyl`T-#KDXq ztGkY6yGFn8Y{KJ=MP96v2sYOj(-EkH)&qDK6Nm(hHS9aEbW23BW9787{eIb z7&$sQ80%aA^JHsa0mH~h^pohH2X1Z{20?vCV^LchCn5$R3E_VpXha!d7=(=-4Zo@N zZJhp@awO6u`hU}Y?^AMjbTYP)K*CAi%G^-E#?;FATS*3`@AIh=vHg38vb)_k_5Z2ezs{lL zY~b{-wg0l^KZM`9{0}`0gBlUXznJjy5^2LQh}am~8vSFb|2{RH__whCu=!`>w{T@! z6&v$!LSrJvpZ{MC{*n8idu94w{O4XN|6@X`|6XGL&yv8m3mE^;{69wdk1Kpz#mU&= z`(Rf3PR7E<{|JO(kT$k4buuGjWMO6f#qpn`DE-@?zD56+XSrpbcR}jm4X*HUYgRuc zR6o(56jq$Z7b)>MkJd*TX(ns!hufpG4*8i6rEUsI*g?4~iTjg|iw+e~xL>w#aWQkfHM$p{<0wE8)4kW41RM2ne*Sxz-uR&Q)2faSltkk>AV}5CUzz4S9BBK~rYS($g&XHiQ zZy_8cSu%86$=qMMiXpdK!R6)IR^e*Zy#~~1KZ%uo8MNxOBA^(FC3V?-Qf786S+CZe zefTb`K+W0*YD8P(t-FMobaeqMM4KY*QZa0HS`3ECkVqlFu2}^BkYcS`ZW?@Z=4lLi z1x{?S#aXZ0Wz%J9>A&L+T=N|bmkHoQl}&e}ggq&~mj**@*VrBy1>z_h*>V;mR+* zW;w*p#^a+JGdf_d%JTtPe@CCo`vM324zo$4$;wIP`q;uxCCnY;nCIhHyeEXQ0!8sX zWg0XiyaUl-I%?wLFPQ^zTsyyW1TTiXFeDV@F*p%hLm>?wEP210NaS^LsyLhBzcF z-I-6;&zMb;W(c2lmazj5hYh5hN=f)ePpAll2l%383Kbsd{bavzV`kD4 zcmIro9ZxAoJUVLe59&EO_uRJRzK~AW<6!bT&zLGdi!_xf)=uLr<`u@}E8~d`8J|wh zmogh&sIeb7nqV+lbUe^9ep$+;nZI&X)zmmTT;aGYSrqwlaOsl9VwqA2c6D&!{CGe2 z2`Ulhe7upnw6r78fja?%Br@@K@X3T+^~7%P?R`fwcPI3-y|sn9pD&H|A*9Q*RAAJj z`tVkk>KND2V{{3>sx-GRJmHy-L%1&pSq#k>^q*NAj1L(Wul)LewvFaE60|7LaA{~zlA48AP; zORx=h?YiyBUA=uWIsPvs|Kk2~O^CSg@n0JK|JnST=D!4deZfdGrH`g8mg2DokPJnu z!}zYy25v)9?TAB&$?gjQD+ia$(`W=X=Vl!fp%+Kcwk4xTP0-hyuGZXkJ~MI+dXrp4 zqR^GXR`IWWhrUaa_~rf6J$z3QCy*M_M)jqYri*acn_$qTzi$fkGvoS0|KLisvl%Fl zxd$`^$(4bvJo}C+f>T@w20~N!m_-=APF6IY+O<*JOT#RAJDl@TQhv&uzH_HT_i}3 z91#e@8)Iw+bMUwA6!N@(6QKY1EPVLxy3G=tv{GCO3#(a3@#CDk{}Grz!`o#FYhTMz zbP8(}J7Y?M>f)f3n_)@ks2(w=)OlsNj4X@C&P%GQVu_dg4}OcoaAgWt+@G+1V6t=P zSLdcjeT!ZlHZ9+ic2H-~Ci$&UVXeJ#Y_y|;eB?SX1Two{nFp&(g2pQH>%dtmYMg>3 zd2m}UsW%H%>OAYSD@tmX4(uLnzm)qISte?*G3=aImiAZ+GR{fbrtwpo{K89 zE7WMuuuW9?^FXCH0HADe74Q8k)vG(_8@9(gagZU7+D*>=KA6gXJMCT}7Jg0_IISRd z#^l~qhqaiNREig0^Nc+q^A5zY%aFHbbBfNenh|s7^aIu$=H1|`0uy$+vUv8_qgB&I z6=;vI@QWd@lS~!Wer-IDZ7w98?1Iumny75>-)N{t=>5RUf1~$-viDb^@q4> z9TqtwX&?|=Ei9ooFdpEBEp~{Sf4o#WljITY>oNi%))6G+HJGv=uQFwxl#^o<{fYiA zsjdj2iKk`F{LLH*p-LtN4|!%`-*N5?31J}tYOh^Al}(}GbovnI)o~(^c2J5$_EA_MzPa!jmyYYi#FyX~zZOGFpqut(n=OglUfg z(=G6kV0GZ$z(&Boi@--~@xV?1`g~WGQLJM8f+rEWsQ!<3JjeBHrN?&Q&BDM983blk zSO#7f0?O1psZzZR_jK*gDta6Wndqf8l+Hv5433+I3)bNEaZDu$I_BWuT&grP?9 zO)N<$My|awsYu9Qm~&>O!BTx%3u_??Azi~P$EVH!xIs>j>jr%d$9L;X2NqZQlbzPA z#CVa0sgVZ*2i8bDI}T^TB|o^oZ!%QP4oC3oFZbr}k>gQiimX zLuk&DDzc}R9iVXW^0(B0q7bC-IT^(g^lYo3P3g_5!6`vXA(t*vFk57onM*ADg)^rf zkFhsr2Sk3d1RVBf{qKsJ;p6#%)NRVrVprG`%N<{KJBf`iEMs`V$H)UlaJkhAdVLFhZt4yI% z9>F3$wIAGasQZ?^_CWEt!B5p1-`Sn*o_4ofXEZS_YcPdsY+yv&8$h`OlNJxP5?crB1q+mZ2nRthXr!pRwS{3eeVEH4{z|n zRGa6B#%Oo>Zf_iQXo1pupr2M^502%lr~^V(y{oKG+>9J=gg-1%4#d}nc0A>V5hdq6 z=$uAEw|~%XcjO0-nwAarN3;uaN*YV&bb1^;JB@lT9uW^|?2w-Sm@H9-gfw3P`7VVT zRtfZn?vV1ID;a4h9;i4`T2$c*;!8g_lpo{!j2zn`E2-Tv2{>QL%HsfbwMPQaYN_)~gBjDZDKM@+Gt#1Gb6P6b|&sKjkC0?OK4r(tB2b z0orR>kWAED0p=sM%?9QpQ{O2#x=3Z)+-0~p89JS z41fvU$-gbO-^@qK;mg1M29`~6%>y$0opQSU8)S>@8V*n*ktK)xj3B`+x=jhNMRkks zWd~3|;St-V_F@5qz(k=VBhyKM`oRbYS;T<5MYc1*x&^iwL39aOLV&wPw<`+Q)u7%n z0Su^aiM=UM+=Ai0alHZ{h^WsXfN4~>P~{II0HpZM8?;w+uQ%8wnH?gPD;uB#YF%O* z0i*@BHLAC&@KjU$CIfn1cpC_S3w=%jZbMWX)B6BcO=3p}uoRVf0a8OM==eWUnHK6x4k*PB@SUl$Nj_BfthE0?G+lT|75| z9}?gKVhyGN-H2pHJ|mnP$Dhd$3h)4N2D5-(Kq@7d7a1b{ThfQ;E+a0Vx@ZJh(h>T0kj~zAUYt~3fkCy z8Ge?^A>gYVTlHaP?J5G?)$?G)Tr1M`t6{{#o5NEq``BxR9a zGlTGvC4I0_J)r<{ke(Rb~KL2sXr?<`0W}Izys%yNq*@nW! zEwUsYp>1=Je_Rq^2o{a<%v$y;q4>aF_6n`|fD94>9T|s<|Kq2mUf{Y*YVRIcw@CRX zIlvalEwXnB+RIuQ)FtKhw6qvzn+ELDQh6Tc`anSjx3{1m-Nla~$^rv~o2fhu*elM6 zL%g0_y50+5^upcth&1{_#Np|;-&fWV2D>DcX%E=%%-Zk# z_SJ%PSwBtjsegHEubByAZ&X2A7tos+a|-bK&-4|@TH9X@(A%%G6GcEvah6N*nM<*> zYQqGOUSbNSZyDS+p4zJ>o*28X#Jr$4=A#B{lmp12{YZo%&vc<%fzR-vF#_+L12qEg z)B`pA?+l^3!OxTf3<6$YyO_iTfzLk&7($m;2>jgm2Brl%5qG=*%2V5~@#6!NU)1M-r&f&7esA0Rh4;+nN&b0h4$ ziOqjg01!Yfz*eCeQOt;Eq;tdgNdW8s2#^P`Q>X(8rz(c`zy+Elm*k6?TO5&g5dMp4HFjW+F0X;u{KEMIkD-$k|OXL%T3pY8eenETlq8kh8nMnNXveB zJxzLz9;sR?5Pi>X9gUASxUZa->(fEZ#ifa>>1FX?%Al*um4}sSixCA`*Dv0MF0H6tEbCD0qBAgQ1e_u(FWw@zW=S4PIf>K4%MD~EE17z zc_k^3f<8ql43ri`iFzT323~ttFP&qmE_6`UH+Y_xPcKyfNgFgEpc@~6?#qLi2WJLY z+7q4E<@n1@ez_-+SYLZR1=lCTi1rSUtPNPgvvV87M&}j*56j%Pj)S_x%i{08syB6R zu40)MPz$b0j6tl&07=IHf z5+<~HKP1h$nD->Qt4j_RZl1sPgp~|9NyA}&lBc80D*b?AOw7thDgx6B?9E`5G^{Y~ z7TO7tCCD#boBiQ?*Q#fse^*;;c=EH!cX>X@*Dy;e_~k7`;VHg|hXl>p@(N01i56#S z!0~MT<)LNWpLTJwKe;+v;c#0(%GvhrTE`17!hTrk8A~8p=j--DXszYy+V-g*ao}K$ z*mxM}eb3Kdw>J;}c`W(@s{VNz*)IA5E4Wp9E#x&M7oinsbgj+Et2uLg_lu9%>gfv- z^dJZEE6JKTk6N&(GG(lNCY-D-#p|J!U7e?-OhGr1FUJNQPpjZjMg*G$$i zy%SqI#@30pv^o|L}AHLvBdI()A1G_La^hb@wgQE5kj@J$x@ip4e>4tlEs) z&ifhvhi$H{0FDIl(N7QkPe61o1yBx{ z4S~q;jO&b2@35&~!?c4rJDIc3W#;}9hZCMRB2P?rjE|oWRQwHy2XYoapD5ppv|2Y? zmjASl;8&CnOuY-r2VPgC55OnLCrU@8CU0r>O5k*p_w1E{c$g;ksAW{ECqTbJ;?a=XN-M(V3^`#Hnv5d%zcEsC&rNgb3jd|_}uQBgzUCQb~^nV zh^uuX&C|J46*C%{-1FV9(|7WyU|->{euZH97_F>4f~gyb{Xfb>&J)EKS9!E~yz~+C z^W)o=HN7vIdia|Vl7{cF!(lzSY$Y*U(mFZ(z9POtSB^bb-(a9TFOVLHQ+$4juG{D5 z3(QKqfjz$YF*8)#+vdO0Tv*+Qk|Yv=2m%5GX3+vrn8ldOw2Y_-1|c)Z3xyL?;}w}C zr!ERmGVMi}yhWVM@f;RmIOv2D;wCCIF`3-P@IVY_3V|x%#Zop88mBF=ubcL)Sl^(E;Y_T zTdtRnOfzXztVnIc`(Y?9a{DAjP+3xpAEzI#grC!7#5f_ zU2n0jf9G$KCODLk;UwC?Um73bxJyI+-QCp5pl-_Wm#3X}_9#gEWk`Ob@_nz5K@Hnds}-m}FCRp*p$>u>M=hlSmXQ@)(lVW(gm1n2vq_ z&0gZ?^DVCf7EA!7b^1nd|MRwPs~Y9`)00P|Mjtcb9?}SQ%KRA}Z9Y_i6A0#>o>-xm zwLQCrK~g;?StRW5w4z?Zk?DP@vbASPHIc^3&5~U{DINi9os+5AYpgg$(Yl0NIOy@E zgVtpp>Zm|{($&Z#3SGd?C><1IgkQbrLTY|Ra5ru`gCgz1@eQi^^*VoK4-}4d=CzvQ zA5VnGvuuZbRRtXC! zuuyf6+!Wb|o{sQ*=HEhxI6~pWLWy)}nazw8B zB?8p5ghjXVaNxz8*h=lk$=A;dT#Q`bV39X9k?*Jed3Jubv>J zxBJ4v=qkH}Dx>~-zske=ga|)dHc3UODm|z%gVNxwO0>#P2D~bpdR?i*$@~gPeJch~ zZd-*+sIpq)RMrG#O-G7NP@d*cERp8u;`=&n!ODePsESOfN+y!E&#@U_;Fw&)+ba+D z*o>$d`x7Y1Dqr^aq)T-1>6BX~9c1O0lx52_i9;0KN^A}mG$$sx5iNw}ib)H@yRT}w zcB92*+(d9BKvRE+h)W;fE1>_$Y4+kS!#vni){)jQ-ZgeL=P;k$H7~@nwO7Rm@7?FNgccGM;pJNFl-efSIjD>#jn4v*i>Tm$zp-V1!jQ2pib*v9JBON=o zqEPc-x?!w19LKXZ2&4KL3@c`v0)_=|<*CHICsdEFJhK#R1>w;;>zL+`1HwmBJ6Iv=GVr=y!ef2x9uS5Y zASv%w;D!ub;r|oLJ zZYA{DXUlN{PBhxdzltme<9o;<>lenC_w7}Smb=~U@pxr3YHg|Q>nOD}a+X?u1|&Tf zvf|v-F5m**>C#?d9Z@xdVP^alcy95Fe1i*T>M$Z#=n@AUKU1nYui8;Dk>q zX3LW&wo73qE5j*sG~hte+-gR6D*{rdxzq9MQy;=tKNvP^ze-wI$DCCi*$r+^2gy6A zI`_wt$(CGR;4lK@Gor{G2tT(P0TC8PLfs__5FcdM7m@cW;(_0C z&s-lw$<_9C8ZnQ<52z3|;v+C3vAp;0Rpdg?u^-_`nWB|$NhBE#9&X{?f+U-98iiQ; za*{KvW@=FfibdGl=S)W<$Me!SNWE}ZH%6+LNqWVV2NmDAwVDqX{taEi zt&_~VF-eMlu@N8wuFivIW3i7)H9}<`?!4q)Z_h5{Yfx>*dp#TyQmqh-c|y*k9aOp( zK-!a(gqLlNK*49c-ew>jvJ5Y>WEw8JjhlHTjVpO0j@7Qrlb}i^s|gYTuf}#PTP$UI z0hx0xG0J4Q5k~2zUUiXhyvyDcH@m5Z&}=#>1uBJGN0RTTLWug?RO;%!*`2dBUw8aR zS9{B0CH{xqcy;rOle(Xf)T0Z1cQJ(;xu-~_J#Lgu6y49BVe2X=9bJMjds5J4lMFVm@sWqP{fICVS4IZ z@fN>jxWc)_e!eefa!LtZG_Qy*LRWX-W<;a7bPr0vjr8AKrF@+9? zlPRPzvB^Ju``3Uo70R)(pFMFaFb(y07t{i~gAMFyWI#1@8A-MYbw8cN-_xj3B*Edt zj76ag!w^wHD&6r0zes;@Qc5<;7bphB9sn+3l5i3@Z^Zj5XDSXtm$_eg++=x*Js^^$ z09Ht7HAaEjQl&oro?xGN0T8cUa1Ta(=`!i235w2kx-PYpK*gtJXpC}%m}d>~Xa_uy zk7Zbc!wxL&ygz}v7~_;MzJre(cYkiwF_nl-|D1AH1=hK#Y5t{3ARWx+P=ID>edE{T zdHj%)oD-Q5A?u21)4Go|gE-2!Wa&I2Esh<=Wr{c%m|otM^vwSKhtx+vsC)_cR~YE# z@SOp0#=Y9PB~wPv!jp{dWh7LH+?RNfUXUWOlG`iAd|AOto2044-+lXb(vpRukx5x| zZ*=)4IB-!si%#sxiC`dpy@{ZJcszX8{)ts5fW!&c7I=3;%#DY4wY2ncLyl<0q6p{& z9K$ko&r`?>@q;ZsBaO&>qIk}p(;>Dn@RgKBh62rNT*;8E(l3!PI1bsAEuzz@sfR=P z>7^|NM~zz7h8X5CQGL9p3bWj3cZNWfX?{5$O9YcME-mgmFM<01>lrMrzU_f2(~L2aF} zOwp)vU3;Cm^@KFnp;_g`Se?xAvkx`JY|O5kTJF zAcf-~-Fj{V<9slj<$Y1OBGku~#vyLpWsn6XO~0x@xj8Nl^q+PjdF4!v-ClHZmNITH zvnkhJ4=!-ot0FZDff~;Ms2rh zTT5mB?2#ehf+kU}9J1w2DjcI%bENZA?8M z9`=#JgG<)2*aEK9Okh9!Irhh--&y7pVjc=iPN$_2#1)xOy--xKofkd2s|BGn0Qrpt^t+a14a(q;0DGZI?U;S}ajbb$D(dnA5Q?XT`MUEr{uM%LqEhSK zLl9j(RUVw9Fu9Rg9vWxp6~_{e2_VnGKj~dX8DUgT*u}i}d*(>15zjL05 z5nTae0`rj?YT0FfnRx^c)3O*dRO;?-tTVdX903a`H_y3W^~sHpAXOqJVJ!QT2pXgd zfASz1=%cFLw=Fz`%6n4ZC71GlBoviar4eLa#&W#YnwaIF28qQXyhg_}mdIAlN6vd1 z7=%qRl^&2~p|UJ1*#wTk%eB>+Tf9OH6$Y8}2!ah&g1mxf_x(oJmcLTDMcGQY{w1;_ zpC{7iBkVgeM*Gs{9tW2obZdR{7!~3;B<-^xl zgGUz~=5IhnjTlrIXWvdkPM>mm&lEFG<_w}~NZr+F_S5v|e*Di98$u`h`AJr=n^cV& z(qRjBSx=~;!OSyz6F#h(h!Q&$;qfybhfTFKhP%W|bsvE!u|X*>B7?}H7k7n(RQKdh zU>X*Y_q-n!fgi*?L*f&&>ssfR31Z1OOeZo4EyiX=4FtMH>^u^_m1Bvum83!(qcbHc z{4hEu(U5CR!DTI}Qfaz+9ilHIaHFN-kS5kAShp|oC+ymoO66Gi4~Y0hxG9H9C3j_B zotC1cNeXl?FM#q)dr3m(uFJwyn#>mVlhlTOj%_0}*^GqbdRYof>>Ljs@)YV)j0hcx zCJkBebd2pZ6XZ-TXICd|Wh(9?9;^8Aoc0e(#%JypPGgXZR*yUtDe_*4ksRFRDe> z?CNJOda)HZ{%=4)*3 zaRg<>&&!uJA}D!7eDV57lbihzhsy3pScrK~BqLv0kNujS8}k)b9qx$f>u=75DCZ^D znG2tYY!KNrz$(!YOC_&{?I(EJ9}OF${3Q0Fb}9Z*lg%CGjKaxgpgQkud-(#+46S23 z=dE`{9%F)m+{7twB`7P}&#T&1V}62OC0oXE{unr^*wnI&tD}(0iJnIG5(QkfLUPFb zopr^mh$%Z)U)BrXh*l3LS4wB2HKD-UywlEEq+~OPX+yZ7-B`#eHh4ckJ-)QjXmQ(O zu-hI{HdM3(TC@+eVwjro6<;((HqZH(!$$in zOPh>4n>bms$=g1aBDq{8Q0N_cdq&o2GH=kjPG^ERgROYu25mV&fE4`GY!>HrB#utw z*%FnoCnt7_!Op5DAP0S>~U{h1V5aoX9+O0SUg9Jd!Z*0fG$D~-BOrP?qQ zXeNApn=%6}+{$9122R~KC$A+raaCMVqJ<&({qD!{$! zVv|bG0VtN^WcEj=k7Xrl%Bq- z8GR}CNeu&N{1aAGbWN^OtsLHuS<}iN-W$I*5`e)oE+f;-7x%GL z2RbSLnrdGBhLG6s9{;;Omw~SBZt8n?=>WZio>5c+qlO-g`;O!6V%^P%N7u-uv~gKp z95gdu-M4Y$&vc4d#_Pt^!%CpTt}fr1N0V=dVXR-y0=yXQCwD6Lf+kezLP^pe7qL}v zf7I^>dwi(p!0ceIbm>U@_~pb@j$S93Y;&Rqss2jDH8DqPi2x#iKvk+5$;h=2-MwQy z=j*pG$x&sn|D!9>0{w(I;J6@_W2NI&&VQOM>v5nf~fdj`phG(3P7P+Ts55>;7+M z!+-sa~{E2ZgUG^;t!^&IXpEpT41)DkY6}eSybOp0+W1ijQ@Fa>!EP zreX492#!BQIw$%F-ARRm$uSd{MTmgqJoUauR=L+xOU?4j{lmke5M;_4o7SPu3_2K% zQ7Wg1FM>y$LnF&5Y86VF9R=aoO=w;OyYjN$eX;Ni?B7FiTC|oH%Dwe;9v#L(p68q6 z{hMR^+`R;GFMZ>=brD&NdF$zk5s%gF*e1|d$4YrP9lt+i%rB913}Ng_w`64;yDlMg z@pRbO+~TX}HXAD^71Mp77p`>GZ~%TvdH1n**f5DyxI$X440zz*7?!h z>+G{vk^EnR**cm8F0$0|S10u;8i8@gyX7ayq{g~qW1r>9RNnX~5Z+MPrQ&PlGEGO? z{H|wS;u&*}iN4dbgPK$|n9YP4R2gW&g<%EF_?mwp$5k<${oVYj^fAM@FddUl((+%fD4bwP)tJv^*Y_kIT`U`Ftt+w-XgNXsC+(h>Vk7z8o)3>{ z9-xifQGzt4=U96Wa$1WT9_zpkA+z-M7unACHczxZvJZg~D|#Kqv!o*&v+Z~JEQh)t zTh1&AnAMr6gXgk^bqPWDL>3n_u3|SB5^(*4h><}F{`nZ3DrAbyGJ0gX;td0KMtWU~ z0DLjXpC75pEFU5rfp8h(iibJee)bwJ4(tgXHRNx3EpB38`xkQb+QRew3+$j*dzRaZ zc*glr<5tkTGPhb@ZIxxJM0q#D>o$fYW_$cd!F|;&bCQFBavoVRJY%HaI;R875#K7) zJ7pIq+MPuDU9uG%aF;;&AIBA6x-`6iN+&lMxQH z3}MlnAK^NNaYdSZ{Dt4OrS&dn*+N`3+qCGFt$K_jZloQdN1fm(b&7sobi_|)TFWkQ zb8OJh#P;x8VMiyq%4hAHwl7}-$W9+ddSLUPu7|I+{VU$;+GeFq98{aVeY;{UjnZgZ zMtsC_Q!~K$7XuAU?L_&5DIH*RnEG(&J@4ScjXnEa2)nTluMXCWIw&>}KH4J@jiti5 z6=^Rtq>`4A3>}wp&7FHCn#8off4J^{@f^MvT5*(9zyLyV4tz44rJ^S z1x2JZhT2F;a*wT*1olAc^f>?WTzX;bQ4tCavr}$3$k4b?7b=U^Ec5GN@fks1 zIw8?LiCl{`_Og9G2y6H*Oz+aqQ+HKg*XP_9i;JFtXh8z_T6{oMMF7hmAN@Z7|#KZ_c%toMsXa_55}&FaLE-wZQ0yAEtfsIfjw?^j86Xj9oz zzzD_@(FpOJOord&lui8aW|e+f5`LgBQAiA`Q+3O9q;W2L{1Sm}FQL}z_i^~KD4am- zc*FGOr_Yt_C)ONx7H$qX%6u`K9ByOmB~RxI!(k)vb|%pHL} zc^AedwuTbMoDx8BU{rbPr|pDxo;W;y;JUN(eX}BOq*Ce+6&{VTFiKZDbYHK9(a)VW z0tE8soT~&H>9&$tis?$^eXtZ0G+5pwE3}Y7Iqrc{cHG5Dd?+2O9K)L z>Az)T3aGd7Z2UTI8uLM4`?nt<#6&sQ1SLV%n6y1Cq}|ml8oNm7yrstMeFbThP1r zWfVzsw`|M7A;R&nKCIU4yYKSK@&NYlWq*afjHhgS6&_(gv#5EL@&wsNq5=JCfF-gW z+6Id;YsE~djxlKNG`RmE3-y6HnMgH2w1UGFH?UfG{-Duy-?5f?*@huol04cJAHdD} z$EsmybX(nXY|nTMc4+B%d2j{2F?Z3ePhJruMZbecD350Q+6g?E?yrPdxtxl(wtaT< zOqY8)g=G}DEff}7T~KZl%(f|Q zFuY~Wf^(jZ+pcS29rHEkVP-5n?>1=%WM|O(^QU2IcWtA641v)oG1gROC(+LaqsjMfW4cd&;N8w9lQxqJUGWOkYfWWimc5U0>gYK8NMY{%4=^ptLpmmcK_8x&N9D zqdz_dE)LfjpW)%bwHT__RnhoB{9UuoflvFC!}AS+5$E-HS%vL_`28sHtl^+W>^is2 z67xduX3x?x1^yF2Bt?~NgQZ)AwMXW{V_M5}n!Vt7G~R}Ba_)kP41&mcn0n(UVjR!U zGHmnr0uoFi{o3OAHq@kaG}wN;8_!vs0UyHR)HjpkmNExl)AF;*<)QbI$N{TW0dyZ*?jln!skC$x@ z{L8U>9LvZ~Xt<&MAC}z?-U6U@qu~SuvKO0NRLX>1w?OSr3)lJmo>s7$tGQOhAM3zq zdx@7aqTGBhimmq(%QXdvk0+-*3a=qg#Y&o|U{G4RPE;`AK@H;!Q2MUJ%_Eu$H)Q1% zjW4Lv=7D&sLnV4QnSAr_<=00-9?+5qrsbwrvse=HHaZ&c&@<=r5_h@k;#Vc^o}TCO zYBw$eos!Y+bPgUa3I+p#>Argw`ayJZFJqd0%U?A895OS-EBCwk4iAD2TjEL6MU|P{ zwkr)vu^TA3sppFX&#QbU4I$&{ z!WeJrHL6`(?@>E4^=J+))3s^Tn5eyMA1eZ8&=CXR4WeI{CKZivaQeQsa@ox{TBRHr z@{wW?EJY;ghwWFySjQ4J$fhgvPIgiksADASXr6C4Pxzb_*?X%6So`$g6p!E zkvADe{g;R#=Ae`Axy#0fTS8s?*?c&`REbKVgU4|LZBdW;!6_ZfjiWqlWK{I9XKNRV z-ue(t;<_~(bk&PgvM}wiFK*k0UJD|Be{(>x?$a3%fQekp1ZhLSY2<1afROFZrQ+{! zPo{Di@YJ!k*=uJgu+Eukk5r(r`+MaV3Kl*tQ~tvL30&?K?0Q1c$oe{?oDF--KMsxl z#o)p%m6l;?Xr-t=edf29h1=w=;Sl-h48s_4j^_{NVKzy(AtpD;rRO^F)X;=5Ts zFq-8mDJW6K=3z)w1)A)Kad-+e`WE@RgSREYnaz2zOOXMtCY|PM!^Cz=p$gR}S48ru zMau2BBjv-T;Ie`R3!r`b5?iMEzp}^M{2T7y)OlXO$|&?dpUNZC^iv6Ru{WHrx^iYL znl(TDL1J7JXj4P!$ltlXhbdfyyGxepRgMmT?YAg>)1*@|P@hVSO$$4m`nM#O+W&qn za`3l$`JTO&pjPMb+Lf;P$yn7Kb8X-33fpsr1a;L=Sz5dGB6>2hlT1%@3U}xyg82LA z4>C)}`aThQJ5U|Ly6E#6X0}RF9b)@_4`kwPDGW%3kXA$2uFk@|i@R%vR(#qW{pydi zq_Yd)#CuuE|+wr=A_Myj{hOtkJHf}C5-J-p64AF)@no<$BNHZlnZzLI|Ah8kvM z9j#^j;=QVx3dSdf=2lw#%GutY3f%KgDFi1d{6<~}*K{+fZhf7PWqO9qlp=nQnS&NTb??m+>Vf@Kd z`b+!+jX}BfXV;1`w$%v&6<%cTdCR|;Ud5Rg4OyQTlRcQUKCG%!(_uXYNI;4IaMtsO z()}~a(K3i@$w)idG4TJYbT>N)*(QI<#f$fbK2Dh`<|x^A%a1j3iYP8rqTH6{ATg_|-86g-`nLiEp%~&E8 z(2ciqJ*LD)MgR6DEVFb251s&)AS%^GEmmT;IT!nhfR@h50GBR+zYZ{rNOuVMIjCr5 z219F1UKFhK?~*6S=1D|cC?s{SP)498aYMP9twD2L z7|T*wxUv6JovB8^tj5y(8n=?ZFm#E~jJY#SuW449_s+0>@0;p!kEQ^nw{)?nMmX&9WQd< zeTH;loKGlD`{B!SR&(?!NGd<`+v7QZDLRp+m`R%AMgO+S)~mFh-1&?0yfH=AEZ6P!28J?ck%udZMH77@|eo&o5mC{g6bI%^z@%P`W+h16xF zqhgDaqH!jh5lfCdEa9eH6#rs>Pa@wOf57A`P(O1*0#Z6WMGdZ&jnI+OQfQ+HliX%J zgRwBda8G_IFq&oyR9Q7sVG-3@-w;Fo?pH+SWHbjemew~d%(b*E2rDY-B)Cc^xws64 zTZ5M-voDi8pK#j4FX}((6neU^i+w5z9J`{)6=_!7CKh`w8}J{Z-W1W_e;>>r2gdFLsdU>tpDrNX z0-<XRQBf<_OIc#-1v2hU-L zkfg^F-1w!!?SIju$Cu~ajn42*ZTf}k3)~nI_#M6+(PS0Fv)`};GFS0H^B)>|YU1S# z!HS5z4`uKRDdmsSu8Cz}e9d)z;mR2jTUv0Ie^~W_+zVsZKT5)5ihw*zo&@;t{1f(F8 z>cqu;Vsr?!_{$g?Hp*G5&$c1fzi@C5id1*U2^XbKv~XBoASztV zSqm_=m9!o6VxVV#&d*xJzsj)sh19C@5fXf-sG)+Q`-{>OW7KZ#RwZ6-`_2eRdqN~) zyMFq}Wu9<{!;qIBUv{$+FZs?nmh66i%V7NI^pfdZReP-r{d4cp>*?wdzzY=Y)A)0x zTt6oNJX&)IDW5V#1ggKsd}i!{Tj$cidM25;Rz+VZl$b{GlR%mrC$yDjl)|*9;!3m5 zwE^VDU^yK5HB-EB4z{hMNBFzbBA%!=T(e{4Xe5HAINaK5Fs6hXDWIwYxg{ap+FL!hg~wA3lI(V+65?FWKQo=t5w z44%VY#WWey)ohI)?%VA`_QY3wpT!h!zA%D&p<;5ap6!R}Y3KU@h7vxuPg4d>y#4Wb zrxdAd>b!7ne$}1z2IU)a*g4Jw?Qi@km#!sy7=HH0+H4vK>aMAw*ln*=ic)|Wxay^o zyYz(k^BDKOv5Upei+%IT8I$Kl!SX&`vvH=cJEr5E9q_xmKBEtRgZfRNZbnJWD0v+e z?0|E4%&atzwDtrNvHU%>oP6aX^_m(hSXYanv~x{sy!KdkTz|!1sYGD(kC%hZA5WCh z3Zivz%$JB2YGF#!kun24!pUW=9nSf+scl;Y~F(fFOlQ`3c@pc@*SoV9ne1RTJ7ddHZ3OK_7od$dLp4K$=xzb+<;V!BgUyWwEq{OHnKkGi8bzkk#FPzmoIAYi1~&~sQntgGEmJa<;L_^1 z_(`M8oOa?alwB-r#QjVH(`*vLDLu31KMmbJ z=M!vO+t=r=T*yA$Sk};IaK%C%AmwyBG}=cCaJQ!GN`BLk*Ff_GL*%W@xn=Dmd#v(`k5LPExN?=O|xHL`eiAdU*IcK%hp18+O2+ z;Y4_y+@q z)s{o5*f>AU)*cp_T-Pf#M%*PA=N6e#3LKyj`-Idko&UW{SW{r^(PX){qf!c z7GmSQ(Ac%T?`SG0QHrhoYWEgM$QG@P2Ae|dzhXs`GD)gs7x3<$$k;g@Ck_z_dq=tj zn}AFr&rAu@Ll=33G+V=U!}o3=IOV)pB^z%1y`?-xj3^wY^(H;FLN}2=yCo90w9hiN zQX~VT8av_B+#DfN+RUID1@qz>uk@S#pB&QKv-sBPfz+XH`*$<)LGK*j8##D=EBWb^ zA*~-)M02h9vtupu2^eC(GfiE58XtZ7E7cH5Z<{!P3DNt`Z{}7We{E!AVSnO}|3V|>D zql(O*6b*N>dTb!s)Ydp5w7wz|pfCx_KHIxs4()tZ1xG-a>)Q&xmUJ66MqbRGlnNy$R{)p1}r-2+CndvY&!syC+bxvK5=9os4ns|Ld&ag<5F}Sx{iv1Z_w9^ z5qf_l>FWW25=qElZz|ino+{GLFYCP1Z;yrOjEcy2=UxE!MKO;!HioYrNHy@XIn=3eX~RK}3LrzTwi zR_kj&IaOJ8{`%!I&{@O*G&0fzB2iFlB*z4AAUKdj&ci4gqY{(-?(##npapY*`odQN zNd+iRoi5c{e8HgBqUZ8pQU~jiqScqOPY|&-7PaWcoYscQp1ojHbp##3JBeJ}O3kaX z`U#VvDS1i$%mwwMoLA8za55f}tAQSx;JE;CytJqmg)CQ7TVJ|(Ts?h1?5Z$h`<+?D zC-`r(vhN-aHaOyd#ut%lYr*@`a;$jOjVPX(=Tioi!jG(vnv>5DBmgq4ZEQMjH(8%b zr-x_baueJzlU0KP^kjvQN=Cijg#`_jAT3(VwAO%Y_fKSF`}3{Uz)2Lk^Ia{WX8c|#UXeAQbTkd%S?IvM9Rnw4Jy|CL#vV-^ zQtZ&Gv_X|EpALrl@R`=Sw|D_|os^tGshg& z|HyDZzmVOmeq;|dTp|*godpO1gwz&5;`rj9-;3iWe!-2Yk}(XX_&`ZXf%pYgZUljT z$r)afZ8NYa*Z@zDmC+_x_X|AUKN6KM_Py{puB_r0BF@dUDFhQitFCLe?WdX8PbEsO zEQMoy&PvX=3d)+wtJhBVaJduNS{^*Mpy$5#v&E)*WZXNc(N2F%MPN1#mNt#9d)y0n z3VLsQ{}4S)A@*`l)z;SRyf@Fy!CHM-#qca}6XLUo4KB!+rjc%* zYL;>ib#eyoa|#KU*`DT+p0hqDutJte#HaeNA{}{&f0)Q7n@k(FpevmSmw@|=;(Z`3 zXi=`FG}I7GEO(%Xw80vhi)W#RzN(N4i9~bW-&}sKBq8H zc{kywbA!KkVxuvSEgTC8{)9eAT4vVi$Ve->IH+E>2`{e2(9+PL^Qj511lpUO3r&6+ z99MVC3^cnTsX;r+rqhG8has0!B;I;owwwkWp1!K{PZAiXus1u6?_>A9?e$1ZX`UF{>E`#!B1S1!&r#9I{Bn*cA{GOty= zICg=NLdSfE!_jIVvG`2UwdbV_0V0ga$wh9ZWop;1Uq&rLTKmIRCQc6hk;T=lu034> zLQ0wGD`>cLPYZ}#Yo>H2!;x~o?{zQe=jF78{g`od@MDa=_yXUwapvzT#4B*I-qY(8nlM8{1z@PnTT4c) zw$~uPy_?vS=+%5RX~W3fr9 z#_p}g(!vZ+pk7pbg^F;CoupIf;8CoK%g{uvVWAK{h?7xV%*F8tjEtItDzyx@|olv}F)-NQGxD-gk3 zBXCSR`Fx7K@}!VOfzpMbv|{J)88h5zhWr(Fp^kq~jq;s|?6SapdfA?6!8^*YrGHlY zO1@;$-l(Pq)Pq{(-1e`YlG!65;_KWMCtFj$aHp>Ba|Vv_mUFbvlT7}0SccPRBEQ4p zuRIEE$nrpW_ld&MWQTlGoy{K^G@v4>ho(zmdR-*FVN18kY4l>D5pb8ZFq|)6po8AX z$t0aYe3=A`$}oV1TA_!wr$?sOX?#?P2+Gv=!(+r>34?=lh2%gfI6NXMRB1F{Xl>f6 z^!V!@s(F-XlF~|^v^bUch|=uJNhshnwCKb=^N02e+Jkg2a=*ddztfs*@C0Pie9+Sgy@!JN*rh3!2{MRN?a&4kDzKXa}ldPqqd5*y?E-RXRneDL(QdGI5 z%+S)L$M$FaxRr)z-kR*f`uYah@Psx}7nf>QLVjQ+CbW03Wv*w&ji=6lv#wp|_#+;Q z506O>+{v(+WgMqb+eYLS!Sg4)>qz^)=%lxU_84;_7{{5c_+FsTaGZd+pm4H(NO`l4 z{yRL6yVP{mA;PKc`#ILLiB$b7Zhz$ z_zhPoX&?CU*LHCraJ}tgxj@a<)UoCEDM$YGQPSRqC2AVMGz&+yZg?2z;6dRe^u!`; z2F29O%E>WR0K4)@KbzK5fd4D@98+TpWOUB6?Z~TeX)H#!vLWF$a2YKKka^}Z7CJT% zd_=?cabzrJ;}0cCA48#J2BYin59yySihT?*tr8ZBLHuhU%kWYg+mEh4x~lk@&K%#; z?Sf!D&UrWlgso%e}K zOWg2W!qHN81B%Zhn@hr}W9q2$gUfYH_s*lShzC;3Ktn}&CQngj&D#EMj#xkd+$TI- zG_&>*sHKzAjqKCfQ&FqYbZe&dCb}VP=+_uJos4ikOK>)4+*IF|X+^ z0^N9!nyXf2fGuR_O;ey(!f~8f#Hp80LK(v4yjSe-tk<<#Cz4+dkM3{%uG=ft8G!^w zG&W0=E1)|na2wemfjJB4Um{F>1G3$c)6(O*hk5*yVqRY2))t%+}IOS#058Q(~;fX9|-%M%Y~>+x3C`#&-= z=DO)Ba=b2i0O$(E=%M1_xlL4&1-w`fKN=l4=%%{eu z!QdT&zi9ZAK4D$j3;v;WH*fOi-7bZqK)$NaE~w><=^EO4DFD}(_4{J(YxC<>bK^nd zNRImxFMNJ+GK|y(o*LWjr-zy+4DZLt0k+aiusO9tDrTCUjQ*d%(X~1DPlyo?tpob>bVq#lM&ibRc$3 z1{cTD^{Rl(aKMKxdyEbx2{j^9| zs;pVV%zb+r;rn_NmoO{C6zj%pKsv!{UhZk-ZL+r77N@Pb)~;=pCb%FdwOLtn<6P5Y zD>@)qa=#+%T_Y^%w-OwHSkoBxWggH5cpxGAlYa;RJX#oN6fgYi!mC;E^aeZ@7>T`v zhBW9uj@|^AxC(x_aKG0(cDDXFInLnGlJWBqd!N>$kNewF4$i#KzhsW1^Niao`!yU= zR$mTbP7?*PCT&a#45J7CTg0frrpI_U-6836cZm`2h6o+`f5Ru9H+8}x)6MUun%1_h zmjdN3eILWGOBBkpcIQ(H-IR|rPtN`MoAzC3uSpVw?d&vH{aefGo~F{#{ye$>oLa_E zHumC$*%>g{2y2wm+;ni)xM1mO{0kfiyb`&sB&v3n*bAj^T0RvFaAPARc00d527Pv2 zSovWe!w`~Gsle(m z?`HG0C99POn*2UqHxoxkwv%v${rCjKM(@Hjj$(b)sV&8&C0D%j&#vJ@LkzxbI|s%W z0rw_(EPc5`N4S9neEx;^S4OITfZbovNHYDuG=TVZiVLGxny2EfEg8zL=Tyy*NdvPY zKBL~BjyUni@o<$16RYC@{O!X%f4gu?MG~0Aoxi&zWfS4o%?o`2TS*1 zNPAVUX^5~oHOekHStY4Ptly7DDJA1@%f6ODVeV_L z>w7ydAi0ONf&j}CCXMvfshs${u7665DrAL7^*vPySj*BU7@a({VK!66g3O zKSI-C`ys!h_^K}?c447)H!9Y1`;~nN@AGL21c*P@tCEn^A2yeM?n)w8;0wXEGM2eOa%`0*Ya4vPoAR7i&P}9o|JX&j()t)ZkY(wJAik zsP}EpQzD-Pp&4)E7RtxPLeH-PsNr{zc!4vr_xme1Z$bXgM1A4^XXlkAq+Pe`os~_G zEAOw)RI#9%MDwiLS(Y@6G#wYeF*>o&D4kooonI0cFBlA!yPUd+yC(gO5J8QtLGv>; z@9iCjBz?tv8{zpD*gu|NTW5U_UyZVv6>iS59h}VqAAHV|5FEm? z^#xhiglf#J38VUVRgB$xh(2(8+n-5ihf-L2yC9LaXOx9alpu4$L1Z&85s(sCdq+@B z_k;fj+J;$IwSTE@yO@>5{l~Z4P~eJ}ix+8pu1Ct&q?lp!*9lnP>maYN;R~Oa+#U_i z=B>>9g7=*dMlV7<(GPl(Y?A0a~Ab1S3~zP&hma zr72vb{BKi*DE!CDdtT7V0~=Zc@YgPA4Go9ogOPO_C@akF(d@Z_S(wfqzqlvpQMrI{ z5mTbMT>qmPF;fzw!>w8>Z80lbPFSo#Rd11}88Kt=J~4{i#)fYwQ59XjI4FOnTlL@v z!*x}>hZb-V{2y!9eX~eMFJumEPlHHD!C%S2v3ijguOIB+lW4zb#%~0tb&e+HK3y&# z5#I{*Wccs<^ZDl@_G4D`t!l0ZXHpJffVP4^VMyo-OT_EwMo^K8>WTJ)w*D$=?Hcub z6I}IoMx&(7`IxH3`1!wi;~Hiv&Zm`ie8`{a(fos4jW}@<<0}d4NVV=$X%|Q7O--|p zKgGaOX-KojhWl^J6rk?-e#{;ac|o;lQAIVR@-;60>lVHIq{RLgKP{;0I9+y+3)Ky^ z0^JA&u_A9`)tAjLpvEIfD~kpHzfIeG_ceShh%nD?*c^|Xl^hsZCqVj++0@w{nRgF=v{(jcj`GWPSr0kEtnEG2xBlU&IZPpU2 ze_4M~G+ad0ul|%A`A_`4RA1;t((UKWHeC)VISMTL+oHZ;boN)VgqeKl5yhd)iH;M` zrbRu0g-_R5eoS*AwpOD7X7&H*3Q5Mj23Qi1i^NGhoyn&fQ4$MvHU8I>}uj8(=Yz#qJ$1%4)~ll)PbPa;IRTEse+ z4A~s5z&V`x+@t!BhlA}q6x^TWuk(WV)7PAsL72+*)X02mNIfY)Rn5w4E;`E*##9vs zdmX9VnV5_VSth_)a9uw_?01rD-3liaF~^#pDl(dHb#xQyJrf8^RrPk%BbY(?a5`zvYWIlyXkbpZhmK5z= zEsrwQ%M#iJrNUHe;>U4WpfziKt%RwMZ=tSK@ z014%Db!HAH_DGPt z^9@KhPGrWnKeWnOB^Y&NN~;|`Gb|{`I5&&3DYdBhy)vQa4=k%Zu(AVd!Hi_V9d&di z)~^yWbD&M_KKwXBC8rx(Y&+Xf*)R@@XY^$S`4A3@LQ7RNH%?nDWh*p>OtsqLnVKc< z_Z==cakwPHTK0Q_l!rUtGPPKkAB%-f2Ew6yd60OzDoQDW!8!veYD;gOt%CYUEJ3*8 z+A#{ggeedHn30{L6wL`>X&$$6`O}s$+mhBKEzY4Udeu7Ct11(gqjKqH&1Z_Bx9-=1&#gH-FucYWSfH1#nB#IPinvD)I z@=SPCKdBM)HXv>5mihb~1zx;#*ybkURjQ_%AFectGd{Tx)()&`(DTVxo>2H|SM01W zIp5_Go6VZ%rC>59{k9#)IokCDiCaX2>FGp-f?No2^1O>@F$HO9xZ<8-oLMEV-EE>z zk18~6(;Cf|DDM8=119&WbAR(t6h(P~$yOuFp$+D75ZGXYEKT&_S$UB-_ocp*} z-Yi2{p5b=`J=xLt3tY2V!Z*ZG{h@O4`v=Z?P5IfEmQc6rs1%$!iAt&^b-|Z*n`%K} z_OaZCmdC*&l*J0dr@3yq+fUXY{`N(>8yj=6)ls^~b*QREqR4e-V^rnhFGvP=P=hRN zI-6M+WOXq#B9ru}E&KLwtP$HbdJ$HIJ2xGYmiQaI_fBr0dtvUF)7J&Zu=0&V+?UD!5m1T^w(h|*S_mf zEaPBlz?oF*@An3+A3e)xqZ~K&U2%FpgX7OTOiDk8_Pq$xRB4dhBguoNXIqtt9p!yw za_h@$E2)^ub5_eWoStUS!1eFIUPN$I`$xR^0W*@}iBe9~=uz&IVYnM9h_Vs?a;eT_ zdCE8pAg9u)sj~KFC{Teo!}M7h48!+RrZG`O@CG?F+_;B$-@!GVO2QTMVM$_@CDGGmfDi866`b$v|#G@;y*8KEJ#g}rXeOZ?rU6&GfbWTu5w8vf5w zDyELrr-BE{7i|4xQrmu-!ZHj>j&jm9rVG1vF#1e-_bY`FojMD& z+#82ThlYE}`q81O8N1Yo_>%bFPffGa=dXL33pf}$t=RY1xb!U{PVME1+#PxW-Et0F z!8LUp=|zT934&<_PTG=}pGlo5wKru;6667-YZer_10F0V-ca)hjlODRXOQ{p)a#)3bxc)Pu#?htPu(CtDli{Kg`~ow5ghTNQVGcWWbe?PgPj z`>VwZzEykfZH?Ybi=noAn#&TRgSLcO028n+f0p~w!Wg;oh_5z^N6O@Rx>brMfxEWV z2v`Cvl^^fVEz}qrOf5>K@q{uCHCKJ^_?ZG z&6_|q0)=@E%S+!hGz|{RGc`_xgevFLz$!Wh8X(~TU68>EOQuj;Ygt+Ah^{%wbz;I? z0#tKmV1E+dc>9_LC&78YTb_}rU`}&@1K3(yS}j3bm{)@4SzMmH0a4*>$#KYVRg!vU zw$<;xdKhxBwdRi0RpG`;=_uQo5x(9cc95;70d))FxuGFem&mjo_s*K5^Qw7zkTm(Ur_+^^J)^Pa}W*TkpH z*cFY2E{byIZH+lYx@^V~=|8a2jc_70gt`UV3~8OMP}RZ0jif}Nba2Lr#`KZqE<|6I zdt7(%7i0Zh;%2Eh#a!aLo(0oEp5(B+i6@Z-jD3DfK~NQBPoY^^*@wtI#E{^o^1imb zI`2GwjImg%Z^&|57u6!mR^hbjV5kO>o{-_;=xR0Pz>UpaQ1t1#p2m2)R^DPf$&sSI zL1$MX-XlU#PbY%1sD!>!e%zK`k)`-BGW9C5qP(IaQv(bJuu~b0rSt9AdLK_!dq_XG zrXHl!({R`B7{^1$iz-Sg)ijuhfbs`>zslymYUxWTDjLHRMhPaJ2$eR!&;L5U^vgt@ z4ONpgv5Q{n8k$t-KFoMvF%is?|Ay20f@+y+q&s3sO{F;sP!-Wx8O<>7%)5>vMPpNgHntg9*$NLl+jy=3Sh zwnlV6K`Tf6uxmf-;b(SsJA#myc2jym8KAVahW1;|UfP6D`GG10PMxNShC*dglJJmP zIP-W>B9nAYnIvQfVxSt-stKz1K+eQeO<;)!<&PKhcH|VamgP{lHM^Ju=5bc-G!0cc z$y~>3Pw+>tq|aky4E$~@wtx*2+RAZcf+8Gab2_ipL&hR{NcI@>>EY7z`_8a?>=TNxSRF&&`70s{BivVp*Z zgA#crV4iopMpDjFNeNrEmxUA!kXGXcpI!IVZM%H!K#4dZMyBq{uFK<1O8$q4qrBP< zZPP8JqD)kvzAw>xR%a4PCQFLiG@16W_ zV7KYKJ*5bmQ`a)McGa%O6+|;gdfpS=7+l~I@}{)0OCn}gkLE+@M!wU9AuE4SZ&O3puWOPfK`z6scaduBLq6M zadE`^_uSb(!AQrc-;h+8v&1s+Eck2RDLPWL2PIAkEd|htI04U?PZJ@O1>k z9X_|MyGp;4H~iTBFJ|@hro91Q)&Zj}%xz&|pDHXcN{rK0%fQFrT-$tA#l084W?W_7 zyrPl4v5439F6F*SYPAaxhSVQH7SbK{&j$GdNg8K^o=TZa`&;;r#&=QfGD@Od0zL{h zKEkL8p0o~N$tP4YkejB;>K;e$D#zA^OnA?qZfQ!>rtS+F9f^&+z}?*)NX8CHjHk!R zUd)UI@r|nFEVe6Fe|Vk*uL0`|kwH37g{YFz-Cw^=O6qC5M5*3#MY^2`vXq@smLVcG zc+L_tVi&gF5SBg_y7`Lld9z{I^*o|fT2fP{kz@;f!@)64_w#dZ3-cWg&AUIv>3fI6 zYc2?A{(8!>6_=(gy`1GdZ@|}ywBD_qopnjQE|GnITDyPOJ!SAH5q=Yde~iwtNM`ua z^YZ2s!Ebac}k)mf-)X za)9C6Pbr>OGsoU^eF>mH6zO!=wqma9<>+)psQnMf_!l0svulLG4mH=^T|d27JZrA0 zD652b$UCgF)x1ewJrRSl)@4Km74qps{-hwdGk*-#rjM_3EBYD2j!xsrz~pZ^|5K}b z?DwNKyx<_?hOs7Uix!+$7vY9(!@HN>L{12c=?^P-`R}FLJU94<-Kq0m8dA2;5zCU5 z4QX0qMmKq?EPSZa{*G6Vk)PjE9C}21Q!}XUM%A671HgRRNz}mFi}jU^}rk}><}4t2!j4QDvRl*0PDw8 zGQ%wCFA}1>6vf+3$iejkbKC zWq$6_m16@SGMFXx1vmUXKl*)Ym=}vwyNzV~iFiAyM0*1{_>>B~b}2`=6_NU9Ei2%h zs2**Ps2SL?&8|Z%ZFRH`BS1DCvD;g(;@0*JB382d`<3nG<8)=%n)XxYW)cUV)q2%j z>x`3`%~1(q5J^aG3N&*C!R0Y~zNy7^JRdmUZSy4XbFR~-G)4$IajvBe&!qC4x)PL@ zy2F2k8ye&F+18Nga6(Ts7Ro4T37THY$EV z4&df?z@|gvfa@L5J&NTX)Qv0n9azSWw`U@cWjfM{$7V3X=Qt0o&_87Vw=pnSTvlea z+C2Ni$N}lfb$;U~+M9myn)#N$@=_;7M!zDZh%8~$1^wSaa9%jn*CiPI!5Vo zUmUt-Gup3=r!;dnOkeAYJKhO#V~~y5>m=k5b8S4@4OL`KNz&Z;SO|EJNlp}J)$;l4 zn?BvVxsg()O)8pz;?C7kf5+)<2ZuF!0jS`(hnk6?DC3!%uZRp2qAZdUNP=Q?;=u59 z&nn=^rxV~YU&SF|QD3~DPsqPLJ$Z8<2q8ej9-S<}+iA91uc@~%Cxmi^-?zvq(>MJS zZfxP&nbPH+g>9@)EvW~nMqlR}HpbO>U3>cmh7s8KI$PUPYO0?KH#F$NJw}oxvN)U2 z=c_Cz=?pKkMZnFvBukHHqcxQB5z?oW>)NBjVEDB7JIM4yB?XtMtQJE$>Gku2o#ZPF z+Z?F(KWz%a5+$0WELQ?+W8|l{KO_yKh9p0HXVh-}99OoH#`a7ibl?C;ng=_6eqHsH zEtum34=;y?z<6)>kQIY=Taw5ihYr7nC#Nt=UzjO~rLKt~wuB>2L#sENiz|z*ppwaC zCSyA{R>*$=g+O}0v*TYQooloNb` za(|O-AT{5#6?M6L`&Lt9rk^TFm!3U~Tl{s2LpoLeRGv?4&UdvQZ{90gO2d>cx>c8l znxWsAWy_2ig9pbNZZOa|tdVzB^_vCZV^OdS)j0yaozewrNu@ z>esC?x4(Xy9B$?id-t~-IzSd|C1T7sjE_rFvT2>!>eDiXo!y76m?sHo#28@?ACex& zr)N|&^|DoI+Tp;+B{eNo?Qny`V~txqtzz1|{h3XfO;Xvm0A=IeLh~?tNXy}t!@6%4 zsBAYW+iil|EkNLAO(wba7d0(vn%0E>rnO4J`fF}>3+4{npRhmS(BMOZcUSJNl)hx! z@@>nvxVN}T&Vv^|j~X8=?3bh79N>2PsXW$cFeggna{EF#8IOZ`T$WxAY}vBqK=WRw zojDyj^FPI7pU%&r^Bn&MEu!;_200zf=^DK7z?PP#j}{H_*qF!eulQ+h8AeV;Yn_2< zA@0+sA-2F4{68OBhuhck$rk#PI<@)PK~sp{;M%J@!=ibAI_wL-b#iKEg z&EFK7oNnd}3ATl;nZ$1EXsyiSR2B|)OR9C^vJV-?dk zS-oy+xrl!2-{-?gT^*4D}@t7fWlLY-9}AupW3zu^xOr6YH_dXJI|IsS@k4{WvduRBn+MhMb;%mKUat zFBsv4i_a`Vyn}u_TtG5J(d{j10awBbI1L_vC(s5yMY&itx7L3j$b!51(PhJrS1+;}g9jxQP}Z+6NyQ8=!F z*Cm7S+IKvh3+F=}Tmoz0E|krUunRtbhu~>=30{LQRs9gWy2(H*?*PSU>GCt1m%?pu zH%fCAybJr_VR!~!hS%XMRX-G*kO`-t49|oT`quSjuomvYE0UXFH+%>i;8}PD-hi*^ zI>~Ai1}?~=Yo-Y>9jc%aE{EG;9dK9;@421?<2 zMfHGAc(ru{N}lHx7LI|_ipHJph3UmbW4-cT2G)sza4?}aUNN3Zx1{84?~C9H)a$+2 zejMBk@54v%C^W%#cniLvHcs4a428}xNq$ZhmOvqVOUGj&0^HCS((sx%3C@CYxB%v% z4_FHSfcwA(XTUA62R??!U^DE1x8Xa*K_qInAAKje3rvPuxDXb=GPo1&2RjtOt*{q9 zfyd!_*a`2zA^5(ucU`G%9pOWS8wr~TUm|>+aCd1*WxZ`b;a7w|5jIP-I|#!G6G}_! z%IztHX@tEAa|nkJjvzd(v~+fjy^wG^VI^TB;bOv-glh@c6FyD&3gHonMi0Uq!cm09 zWt9~(jcJ7E5!MqfBwRwcl5iE_8p1mX?<=dSo^3ot_&DLygwGScM7WdiZNm3wR8*B1 z`w2fMJV^Kh;o%vzC8b8QM2CYgoG^hfg)ozFAmNCLs)~9?0bw!WWWs5LGb-w;D;<@D zwa9FVV=mzxgj)%}lIRqKIfO$9M-ZM?S=BJxSx7j6a0=mc!dZk>g!P0MR#ul*Iu{dO zPPm+KCE+T zi!ihrGgmZW0$~ziDq%WdU&4WeL#u1cs$8Q8^9hS;Xh)U1pZMhOm)v zKHs)4Ao4Hd9Aj|@jFxF^cNUClt;mkh?e!w`(lL;phkljlSy$|`f*e_afh z{D~67eMcL1Iu1R5636}la@_Oa<E zW4Q?TISX*_yNKiw8c?&X-hZOb$#cbUZ+K!1|C2b5u#oT!!XjF~ntIoo7CJ6|*D zqaWwtHAf|07hH(fG=TE;wK~4OukL@MUhJRZ*5XyiE2d(+s+sT?$_%efd?@Y2OO*FG z%6AL`j){{*j@MGr^4jPxmSU*H@CxrlsNpqG(qG6KUIG3-YIqft{1_Skk+KV zuI<+jap0lc%QN{#qx1>-482jmT)#oTTYp^t)b6$? z*wgHT?fLd8_DcJF`*Qm&_6O`w+qc{I8gCjO8$URj9Pc~6a!z$tITt$baK7&R%6Y^U z=}LC>b&YTpyUJYku1j6lx$bm5>UzQTw(C>ZPo{20n#pEgbD4Rk`K-Cq{K6gWPH~^+ zu5#bvZgRix$@J8EF7~YSJm7iSv)^+>xJ10@D+_K9yrbBG8@3`q|e60$60 zb;z5c5E>uaBlNn^^`Xy(?hM@*`fX@)mhdmDIyai(<6sO7DP^stcqM1d3EHP$n}xWM(&K<7x`^u zbCifmj7pCh5>*g2HL5CVVbs-8YogXiJsY(%YG2g1QO(gJIx#vudPsBu?oFf~9YFCU z@`fP#z99PTAbOV{tp}aAJ0!6Gu6G2|DPscrPni-#R|VBy z5k%h^L*&B(l_#k@P31W!sy%4F$}d;>3YFgy$i<*H17|sSVIVzpRABv~ zYXj+FL0TAoVGun(kRA~mM8^lweS_%iAbK*=tc|}B%Yx{YLI0T1rKnDwDvCM1rGt#AU zrK6FlD$h~*X)2$f@-mgzs{CS=uT=S+Dt}bvTUGw1%J-}Mkd==Dl?#<8sytKW!&F|V z@@XosQTbw(tMNyv@keb``74217!w*O^)Vudjt`=T1ktnnXzc$q2t0pUb`U)(kUlFs zh<-GXKD#i8ZuFy(|Faho9gA0iLr{1HxWAf;`!#vjcp+R4SHlgk2JVLS@HjjRTVW^c zf_?Bgd~0!gc7e(#t9+Kq=c;^}%GG*4d!5QRseGr(-&gq;DnD%HQ*<;vQpYz&n8Ihz8dbk1&~Bk@}K|nWjdcraZ~CyH&1M=rlF@G&TCP zeJVew@*`GWqGVqZ9mvCU8Lgdd7Fs%kXpYz0k)R}2TCZ}Y=h9_VC&<^8KCbd6m2X%1 z`@!-ki&nWe&@Rd*Q@{Q-Z&7*Bo}p}eAYHBp&Z0ash#nkB&%7{@o^>RMJ{(A&H#dmB zG>E=Dh<@FVMk$~7u^)}|IX@?eE)J}J{`{cxy94RUA%T*se1K?&(ns4mvd$_SsZ<)N zd|TyvRsOk^S1GSsrRrC057tMGvdWsq;4>GfRdhjdAg8ss_O$@**F~z_OJ{h;v_SQ@K<%>@C_lA8#qx#9yDn7Tec>G{Uk?VCrErMH zYt|mn8<#LtYrK*Jy5on_70+pgJ*Q$o%WRpD)4J!f z&MRA4s=U`y6*ZPA87@;hm1W9qmZ_L|rP}FS8D#HQ&JChh1P`TQ*tyFVgiMt=0U*FfhO_pYZ z&{k<$$CX`OtL*C9pRD{kwL84-glp_ZwL7>`N&ZH)N^aa4Y#(cs$5`VHl+Bu2s_F8x z`(e1HD}u=|UDZ&ww?@U0HHy71ra;es z`}QFEtH4Ng`$4~}RV>{3Z6JMDXkh)j!h`7G^T|PUN)Vk20at_Tk^^_7_d0@Tdl0P$ zuE~3~AUf8M#{Td12GMs0()W!Bl+XIN1L+4-0_#6GH;{g4nO}XRAHF4s-V{i0@CNq3 zp(=1aZKw>K?}qvyx;Bu0Bxt|%$SXngOM&#GDYPD2`FV7xA1%+12%?7twI3QpPY#^l zV|ND8y94Pb$^zSOTpvh3**l1SJcxcjh&~d?@209i`l$r+5pDDXf$g8#6hsHf>zNIK z^s`lg^m9D|?cur4gXqJ7^KVKGq6Y@jn~wz2&p!}IZ?Ol_m4Wn&X@T_C!XWzcKzbVl z(Lv+CJT!=I45BX#qL&2G%LD0GqJ!ueLG)3-c!KhMH9pYZUk%dltCc}?m0ygI^x{DM zzj|??{$Bkw(0^=?4?Mp;CFp!|5Sid+Q*I_hyu@)vg=_6yM>-%OveQ5 zI)+zxwoqFbJr4^9yE{*8b&nA*h$ito97j!XP z49D0gV}!;>@-cEeEnJI|zpVp|%d1evJ=iiG5nsZ&x~#pS z*pIw6;n|NU-zq-F{CT85p?s@f%}-U$&s5FNRm}scrjOsT#BV&XpnD6##;IID}13}GR#h{dyxu$ZON_x2{UDR3F9WV2xjt7g@(j9tL$ z;YzlQErY+aRqQ5M!MxoI%yhky=K?!aD(R7+;F27riH;OEn16) zo3svE2Ux9j(YnCRT6e8G+@fV_g>b7@uQkB4+8k{TG-(%V7s6(3fwmBy*DlpAg%`9d zv@766?KJfVf*2x( z@Qz}r7|IjHFfojG5+lS2?iFLi7~WY-6;pYVC=+G8i3>7<2}V9v52RMzlp!`Ug9!w8BZ5W#1ft%mWgFNQ(Psk z;#uPF;_tk-SSeQWKH@rY9q%h{5I69CVwG6Mv&Cw$n)esCh+BA$SR>Z(0b;FK%Lj@( z#2tK)xKrH82aCJK-TV}>PORfY#C_sEeyVstJiv#F^E=&;$`tNKV7^k zUgZU1huFc#iPywyyimL$-r#45x5Qh#NW3H7;p4@-;$2=W-V^WfGsPaUhffe6iVyij z@s0R~PZEd3A%2$lLHxici=V_#{A}@y_?1sV<1Hco1?0IHJHn2j7i(cH=sj$j4Rl&( zHd<$PT4#n9uf>ByOVX0SsikVE;F4Adrfs@yI=F3RwleV8X4qzcu+6f~f)HD+trkLU z^|pElvo+cpAzXNc7a~NGNWwLqERrEgq=*!V7O5f?Vnh$o17by*NP{?$F47@hWQt7a zAo_?tkRbYre$Y|$7yTho3=jjLlNclhfmfU&PJzziRBz1@sY1#Zu@imW$=kPh2gohHP<-xCZ)*YsIyYBd!YI39vCL>75Bn$alg19 zMu>lkf5J%dka!42i49@{j24fIM`4V3Ts#hWVx!myr-@Bs6O0wlh-V<5{NL&1{|eA| zz5wIUcW#A3@e+E^GsG+CZHvTq^tR*0PV~0L;&t@0XNot`%T5q)qnDj1c45qzBz9xW zI7_^bF=MjWC-%YF;-EMPQ^a@TJ2*#tFTRJV;z#i#oGX47Kf^Tjc@cRv)R%ni6=+*F zb`CoS50|rYVEPmK6QJ3T*^dEt3~>xWKiqD8?bi3-ZGG`%eM{tSi&fb7wA)y_jr}*- z7_*%x?{%>xtuG&?PlAMi`%CB1w;wKsWv~)f!yRxRY=BMhJiG#L!u#+sd<8$?&K{VZ zxt()?JL{bF&UutKI4`8U(RmT&bDRq>ugB6t%IlqrC~t5sro7SlH_GQYFTuP4>s?BD zz4J248=RL@-srr7@;T0>m^Wg*Wt7)DucW-ext#Jw=T(%?asD0iIaqH6<@L^MC~t7C zq`c92E#-5Z^FhP27b7+}mmoGeuST5nZ%E{Nnt7e`1|^vrm1I^a$=swQvsy{!W+jnZ zltgY-61h!DWUZ3O?MfndD2e<-N#rgik-L>d?okq1rzCQ(lF0o^A`d8u{8LF}y^_d- zN+Q?c{Og=+NFsNVMDF`HCGxP6$Oa{mN0dY!RT6njN#qG7k&Vh$o>Y?Aq$Kl{lFZXe zGS4WM@}82&`${5vl&$PllKDVM zW}lMGhe|U0m1I6r68S_)){U8;4j|Z2YsCUx6dS^XJ@1iH` zUG)^bo17VP^fQ3(-h}$T1He*w4%=9t$7H;+wTAC=*URL+DPDW& z*0_;+lpd|e=&^d79XExEdrwh#sy-=r-N18@fYx>Mq^X-MU8?dWasX%llnA z&TSDgDcflJDf$p_>$!R^2t1b!vHWhnjz7R3$KIUJy_I?-Ex*yMO;!p9X`7``k{v2=OoB8v6 z%ZYSMz2D96#@^TQb=dm@`~mF!L5|)TIoyH0%X!G&(;@PNy`EqmB(sl|%w)Thv@U8V ztpVHFsBaIw!usAGWwBMVLR-Ao$wmG4sW1Wc?;f#cVHL13%lVx z^f7y2FMI&|;6vCCAEC$j1U`k&;Bzf4+u;@C|$m-^p)uqBr^xeuAIj7x)zp z!@uAN{02wi7&Jo*nlaPP(2BJ2TCsMfHbI-HP14TNCTnMFQ?zrmsoJ^PG_6FNu9a$K zTDdkuo2kvxDzx*o^R-HCwpOK8Yc<*h+FEV5_MY~>wny8meW2~rKGgPWA88+JpJ<0j#y^>6fV z_3!jU`uF+|`j7fg`p^0=`mg$7{a^YK{WtxneoSxHTWlU%xRGlNGlm-@jFHADW3(~G z$TLne#v1v?=|+Ju&L}j_Fp7-vMzL|GF~OKjy7zENq+HmZzjqsF+vs5R=0dZWQ;H0Bs{jd{j}nC2S`jD^M`W3ll!<6`3y z<5J@?<8tE)V~MfUSY}*lEH|z)t~UN|tT3)IRvOnD*BRFvHyAe>tBjkB)yB=nEyk_J z8sj!&t#P|?hw%^NPUC*#0pp*>dgDRkA>(0VgYk&*sPUNbxbcLs(Rk9>WISa&Z9HQ< zYdmK(8JmsgjV;Ct#*4;QW1I1k@v`xX@v5=i*kSB6UNc@d-Z0)Y-ZI`c-Z6F=?;5*} z_l)YGX?$gTZ5%YdF}^jvGY%Qw8$TF_ zjei+OjNgo-#xbMWXmNmp8Fv|X8}}INjC+myj314kjGv8Pj9*=IUGrQQx-N3fcP(%& zbS-i%cKywDvFj4orLN0dmzx)v^UVe3LUWP1*!-J$v3ZGksd>41g}KCBYA!RcG?$xK znOB>CH&>Xe&6~|z%v;Sh=56L$^LFzN^B?A&=3VC9<~`;*^Ir2l^M3Q6=6dr%^C9zL zbA$Pa`KbAr`JCBgZZ@Acx0o-OFPdA;SIk$<9p+B+HS=}z4f9R&E%R;j9dnnt+x*D< z#Qe-WV18+SZGLBdZ~kchWd3aaV*Y9#HveTFF@H0Un$2d58{EvTxw%_++uU~dC+<(( zpSeGGA8>!+{?h%G`)l_>_c!iu-QT$nxxaV+;QrD5lly1)FYaI6hu!~jA94TYKI%T^ zZg#hLz{5P6hkJC7&13f%9*4*2ad}LS+vD*FPlzYf6Xpr`M0g@SQJ!c|j3?F;=ZW`p z@FaLTdJ;XIJYG*{Pm-sLC)v~0lj6DAbBpIz&l=Bdp0%FaJ$HEi;knaum*;NJJ)U*+ z9Syp-PxsgtX}4+ULFvxE zujDJ?6TXVCf=?;3e@1cZbBbFBC~kd0aqCO|IDZ1Zq6l$NAD|CpKzHCZo6F{6nYK_{ zD9fUI?7i(D**|Ar7@0<2_AT9S|Iu}Y>t;=J-Q{{ti*dc|I;{1kyYAEJe!Ki+$q)1i zl_W@m0^9+u#t85%dS@KMybLt)GL;^nl6*!J3ek{YZbSNA^CiUh%$E`OnA=j^Mihg^rSKh3sId*eS8V*?}X|J(8Pey2qTb;oFg%2=2J8~10&Pb6elNPjFi#QijCzb85QUM7xD1;Xm}IG!L|tKA6@>p zMZ?x;hjDQg#&7?qn2Wm)x%aSk9&+DNh&zveseQ+9xa&9zcN}YI&v6^>IF6vzPC!dN zSK6g7c51T&eliVzVh!j6l++sv2DmnjBsKVcMp7vu1I z<{t9{^Fv=e7SSSxV)8e?8FA z9mT~G>`U!ev5xk?+plFw_UrAdSU3A>`>m{}{Wkl3EW`eQ{ZTf^{j%-IZd&x1tF@U`+pP#W;977#L*{hCWj$v%OW0YeQ+u_J_+M%U95mvh(* zb>wlsBMb)8=aFOS)1LA(s2WDwy9n3guHY`pCH0J=o=i+s)o%@3TE@FZ+P)V;{2p>?8Iu`-FYU zK4YJ=1MCa-CHsnf%?|2Z*ZD8}SALlPiyz^?@uU10Z{{uk&M_UQqHA=gL8rG#h0(pA zSWKMWPNt*ey5UUIKz_nZ{xpmOr8*GziGwk@UBD{5?LZ7(x+oO;d(6uFRs_g(3zg< zCecdm!YWxMB-7_*y0Qk=2=cwi3vf*@WlNzuyOJ%39&80$0cp5`S3@uP#$QNhO>8q{ zu&rzxWU=jRJM^LZO?_$QWz(MeG`j0FmF_xCYrPltg1Q%WB}%HJmZfFkjxk%y#vS7b zZ3ONZPt#7r9b=JJggeHG+C;G7zNZ}QxZ^n=cZ^G1%fR7U?pgt+>u%RQ5bC_yGuq&K96Hb( zy)?%p*8$g;kmCB<^&QSj&NQ87nng3srkUno{JRUU5AMOMj8kdWBWc#7F)sZAV=*cn zqwgtbxH~^jJ$=o`^;t$Ux=PNG716qf)+0doGBq}f4Q)N9v0^5_*AUrS4_CkmWHDG9 zjIxjt(MiWPl8c?>Vvt-MBo`;{d(QzENyj9uyGceK*IBN!K;V`6LI}aDua&6#>s&WO z0$zhX4#}>KuIC^duf)ECA+GOThoKzz5Ldu#+%2qt3vqYw09=f*|1r28WBq$@E9rhC z>HbNK;2*&zvVf<^0-h!dc!n(CS+aoV$O4)$vVRAgF}i>M|FQQTa8?vq`|zp0b0^%H zY5I1k?g7Lh=OO2u5s;h(Bqzy93?L$l$SO%hBqsq$B3TdwMAlW8bzMb8L`>+qihzoM zgzwaIdxqPHuI}#Z_kREH&;4<_rk?JKr%s)7x~iHE@(h24UgG&Yk&dvAQ98?Wd~UV?SQ4^@G?GYJkW^oJ8K{j~w?*wz?@Mb$NBEgr#8X(? z7`omgSouzD2`R2?9oHi>uJ;JFr`kDj8r7u|aXm6ad7UGRBC9y({gGFg+b*Um{^eNM z*|GBEM@h>1xoezD?te$J@{e4n1#&0?Ig|=H zlmOvoV%a>#}pav+CX$e|1pp@V9_iqvy@%06M3`L40-}T{ zFRF|BqM2yRrRyyQixFZR>n@YUG%-WWw|YhR4pqBO2udG=G+?xGs5Jw$a}?-Vs~?I~*F+Dp{J zwYR8^YadYu*S+Mpf70q7|+S!mhd|>)vD?*L}&kaJ`aj;CeMVitDvxQ(akmv2d-EOCX=YqBu)}Ts+Tf z{8uTaU3s=wx0P1`(;=)cXk4qNOh<^@n2r?9n2r)Hm@W{vGhHNFGF=$9N#puDOm~Kr=i|p@?ij8q zb2Zm9f$834);GA0iE1@dauU<4$;nKwC8v%5OT16XZ z8@<5u*z5Eb9cRn`D<0ea`#k0(k9oZi^HNz+S=3~1YARZ?gzU=o?$5PY$E~%1TWCG5 z-Ngo6dx(v=-YGWW+EYA>Yj3d`*FNGoTziQvxb_uWaqTCz;o3j>7Io!1=2KU$<*m5x zP0qx1Uvhq2uOt`1^=fiKT(2b;Qdh2VVO;BoCFsAU=(%O+x#j4&73jH@=(APmv!~IE ztI>07&~t0ibI+*$NVd`94q9BI#a*@(qheH^=VIRzB_w#w1&??tZS{Tj>H z#gQeErIBTk<&hPUm625}YY#*YMqY{>io6^-9Qjk^75xWY(?fcK9@Z1}Bt1EDF>)#L zW8`w=O5|$fS}KdZ)Y++XQXfy9oBBlRywoRC=chiEx+8UG>aNu1Q+KECNqr%8Z|c6( zW2whePo$nq{W$g0)KjTnq<)$DRqE-~GpXm&lG2jXQqm%6scC6x>1ldeuC$VArP4~L zWu=u#E1Om>t$bRAw2En!(kiD_NvoPxEvcV2dsttDkk) zZ@FNV8SuSEL(hetBQx>Y#LZ+S?o8ZCPT~)VKd|1$whFn*R$=|-MC3Cnt}GVTW~TAn zU7c%sq#e#-8l2wIcSnki^U6YZD> z?N|skFO8a4M$Oxx=Ix=Qbc$Ji;Yc_gqp%q%zixfX7tjAUa`DgeV~lq=g(x_Mz$qd0 za3cCsM}Ou*e;Vk|DEiYxe_H5I8~y2^KPCFpMSpte&kXcuZtgdi^7y4s4eN2G*ID26 zN30t2;8Oyh3h=20J`MTLriF9GJ?pVnk|PDOM>-@2MgcfE3{Fl0C-WS_8kF;E{iBAm zy|vhz=Je+2&B^xd3hZ<-4v=Q3y{f|K32p9rd?>wQ4ieJ=l_uXF+TKh*rY3euObf&* zO>r2l2*k0ZX8UrkAE(kBuiC;WWE3JYiW|i_Cd=Tt+^A%*u42?OYEg>Oz-Z3*v@}|h zWwbNek!{>z+(C|Ur*S7qq|!p|^!OL4s3#+MG8NC%1ud<5LwiB{l6&Y3|38niDY+cd zR`c&IjyuNxPsYX12$j-a;JAbQ|COBh1Z|u)E@W$~ICdTX-<*Sp5YH#tEWRe^#A#Yn z?KH>U&;P%>ey8>>|L@QJ)Kn`UcW++g)tckWYkA}DR{5}w7s?&V3>CS4zxYa8WgUGi#`P_j>(%HeZnR|{FJW{rI#4O2 ztI?fGV~mtD9yK1N^5FN_NM@axjBrXgg`e!HM!eD6=*Qz_fH9a7jUmQR9x20(k(6eP zHbzq}W2|ux8OD9aeLU(W7!Qy%9yBIXhB3vMLV1j-#x%-nJZ8+JTa5+ADlW%rmK$na zzs4o%kTXJ~evT?HfxN=VD+PI_A}<|zD?0NW8}=fhFD$qZu%DVnqp@NFXT_cq^_| zJA_*2gxVm){A4sV8bi{R#WNli@}E&sH2bOR;WmCa?n$u%C8>Z<6OW;LX%h3vqij{q zrzLC;tfS4egDrxC^a>qeo8TCoq*H7aoTCeLRV1)|X$UFuvV~bpWQmGwW7ZXoMGLkv zJF|Y>_eMLDC8ow4RG4XDqX^R?Mp33k4VKE~AXWHkVP>V4KS*XRys>lsDMsGAbBsa~T!6g_SI3o6D$du+3#uF{(1HYE)xd zjb*fER5xlctzqy?V$|e*(O7ENW?I{*!?X@dYt5)@)MHxDV0+D|Z?L__GebkB4Gp&1 zj7Hpkn$g%`+s$ZVuB4o@MO@?XY%IyA-lRS)rz( z-l6+L^Fo_LuZBJiT}|*3$|tl)=$|ktVL`&Sgd+)Ggtc(qaOH68@Zj*2@RIPZ@SEYU z5)%_M6RRh-PaKvwEpbKS3yDV)&m={X3MJJ}>YOwx>CvRsN&AzIC4HByCl^bupWH2Z zT=J~sb;*a4Pb6PRF;hyVG*0Q6a&OAqluaqGqLofD{2zB!CnJ zQWQwh08$J{F(AbPNO2&=ffNrQC4iIwQX+tq1X2=6$pBIcNGTwt0!V2frGb zN&%!Ykjg+R2aqa2ssO1HK&k?%3Z!ZPsRpDPkZJ*>I*{r>st1r7KxzP~5kP7JsR^WJ z0I3C}7LZy2q&AS+Kxzk&IzZ|GsS`lz0;vn6ZUCtVq#lrZ0i-^V`atRjkOn{+0BI0F z8Ukquq+tMQ1f&s=MggQTkj6k72aqN}ngD4MK$-$+3Z!WOxedr|KyC{l&44rm(ky^9 z2hto!^8nHUNDCk>0!T|BErGNQAZ>xP1=2Qvv;)!(NV@>i0Z0cR9Rf&KAYFlU4Ip;_ zxdX@@0i+v{Za}&PknTXb1L+<>?gVltkUIlNPar*k^b8=qf%FE_JAm{7(g#SN0MZvo zUm$%0NIxL`fb1Aq(wG9Z8q1TqlFzyLA`$RHqt0?1$>gMkbVAVYu*0Wu_j3 z-2r4gknupq2atP!+ymsE0CFFY`+(dRKqdg00AxY{nFwSekck200U!?mc_4s12;@N^ z4+fCQKqdp396+W3nF3@=0GSG8Dv+rG=rOan3v$g}|RD3C{iJQ_eA1M(P< z#{$R2p}_o%mgwsfXo6i3&^YhG8@QjAhQF=93XRm%n2Zm19=?C;{jwYkhwtS z29PI!JOSj105T8AJRtJ|$O0e>fGh|g3xO;IvM_)w0N1IT6|n}KW&AkP7L4#;x>WDAfjK(+*stw6Q{*&0B$0oev*TL9S( zWIK@U0b~b|9YA&jkextw0@)crb^+N1WLE%r9?0`Ro(~|qf$RpdJAmu~vIoeX0P+Hm z7l6DFK=uOJ3uJEq*#~4FkbME!!-Wl{;MNVTacwWV&Iz?yb65H!iWQr0ZR*nVA%ivr13*m8Cq z%Mr5zF)GECNKu7W=Y-begx2PSo{7tO1Jc--lg6f;yPnGlZOI93%?WLbOJh6I*pZXQ z&YZh;<%FI`D8_eEjSzlfFNKUweBH;_&N->Q2yDM!&vf`9uloiEQrH;G{FVfMOJ;r> zK@sp*S(96zC9Ok}Q$g6k}Box^3x!dsTSer`M>xePq|jLv?{Uc~G}jPg`Y zHg;3|8DnUScb^@rYm!3RRQ~0S zj~C~~RZ7r?;g=9Vj*CzExe?m9KX{jj(ih_5VaQv&C%ey0LRUQvkYW_Zo7 z$0iCL@5B$r$EtJbIrV{JidY?pSEts8L~Aib%nih=Gwl=9%1+T<1lk8Dd?%>YKcc$m z9YEA-im*t)FH_VHVCvlbFnytZjFt*uYE6a^G7zWEf7L{?dV3HTtIiJu zgh=ya6_<@LHvR7YaE-aSkWrs=Qt!ZSHSS=^o(T_RLEl%d@yKkD(`r4>cMK99RR;iN0S|g`3>q7hMNAyxy1Hf?G(v4|-jEfj3s_ z?btx1hc~NYn|OockK#Sr_1GoasMtFzaayY$7e7_&%JFOQ9_@PU2(203S!rUwmKGP^ zS&eM<#!8FC#n#sf#NJqmIpRcId630}=Xxn@}o-T`zWACZNrnuNs zY7B{FjJC;f@kj99Nu4A(DK2)GSjT@I1An%Ui(e)b_Z{?CS!TyhM~XZ%&@oXYE`Ai= zLGh>)h2mnn3H99owgdTz3vuxcF`iUgpO1^p5~}B0b7&&H8W%5x>RHv+ulTWwJMr$r zXv+N?0#7A@gK(y!@<9Bice@&MOdq2!->qg5jYrfF&S3)EwqfG|9zTgZejel$7xUbk zY%JyZHpN)UydB{&vzkZUTAo4Ej9omFrTgQexzFh-D3w~R9yW$D7ZQ)nv0NTC6KTdX z%%LG;8_$@DDEDHz{st;Ga)yAeCEvHtbPMP}(AA{gH5TEYYRhq?{;3wT@ixA%KW3iz zkKdPTnCm9<^Scf87FFXX{#AMnIK5`9L!~0UG^D3iZRDlwGmR4rbr!O^sy8OxAnUps z-6-~+zNcDuB~Aw753}TNDvtOwMRu%OpH^P%5?cbX3ph5f zSS#iQVyAFyB9F(Zf!JYuJtHQAzpux3=Ib$@XSxPr>+|)H=;qHP*|DYgx=A$l$5D1H z&+jx}l=WwpdH)NvYt^fLcnqIwOW9v6;t@>4KOZarbmZOwYKOI}pX(K~--ntZn@OwE_TWie;PQd;nn6sAR|`zg4{rMDUW#av=CBa5%K@l&ZT^kY44 znPUDg7XQ;W$u6VD+Les%iasCR9o-XsA-XrZFZyD1fAm1~VDzQvq3Fxe!_hxQUy1%X z`fBvG=<88+Mo9?eA(SVA^4NYlqoSjuW1?fDZS;;g+#F$!G)I}E%`xU! zbDVj%Io{l5K5yj`U~^`tf5ddga0t+Ccx&sgiMm#jn9%hqA*Pu45epRHG|e^_5y|FpiczP3(V z-&kj?v(`CVvqN@*9kvtg26jWck=@vCVmGyKvzyt??H2a!c1ydJ-P&$rx3$~Z?d=YB zN4u*%!X9alvPauv?6LMZ`yqRZ{Rexhy~18;ud<)ESKDjswe~aiI(w(R%YNS8ZSS`a z*oXN4e*38Xj{UCvo_)-I-#%`CV4tu*v`^X}*&o}V*q_>;*{7V`P97((bBmMDxz)*Z z@;e2bf=(f)uv5e->J)Q|J0+Y_P8p}HQ^l#ueVAePGl#L%xyNJm^{w>--D4-&xoM)^$?imR>^tmU z^tgSueJ?GrAGT-G5_`S9iPqSA>=$S~bIyyj5&W{re%XGTHrt=uKhOcEq*IdKbV@r} z^mnJ6Q=Z;tZYo8On=8##=F{eCbB(#ye8ya7t~WQB8_iATv*u>=IdhA-)!b%oH+Psj z&9mk?^IP*f^Lz8W`Ga}Eyl7rBe>5+fSIn#CHH$1^Y1U9{m^IuQVU4s#S);8n)>vzt zb+vtG3JTL-Lz)`!+f>m%!9>l5o!>oe<= z^||$hb;Y`BU1N1k*k$apb~(GeUBRwsSF$VHRqU#EHM_c9!>(!9vTNIQ?A*QQH=JMe zH=INe5qw399z<^uK^Q#|(L2!-CCcc%jR_K>NAJBGW1@~aB3kr5I#GwgsG|(S?f1K% z^}KujfoH9A*4g{)wa%OCda=uAe|C$HOecs3^Jq!8M1&3X+VZlAmo1_o>roCze(0P>N;eR+zr_8H<{ zTdLT45(rrVhz@0J33xV2_603w17$yth~~XUWoc!Q4t?KZ_pJH9=#;c9{vnFtq%GyG zzAf&pvMswU-V@Ig(mPyA+LqifYzQ_yxh1hh4}nkjp@G;soGC$72=Y1bmv@?2cR+Wh z3w}IcDqtw{vtUE2@gS52X$Z_}SepO5U+-f)YT62gLyM3AWGgZdDY6UNZNi3l|7rPT zUN2-UXOgxr?PGC83&;aOavV@_(pkcNMW4^DKg_3uzRUo5i{j9lJZbakx}o~7GYJBvTFy{p1b zBes5WFb$JPl4#DVcqL}rl!fXY`J$Oq2Q9QY1&xJHJ~!tp-G6lwLSN*p$S*`B1_7-x9M`XeR-4QOnwzf$pn$|!#P$!w zc6aUBJ@2i{HR`4Q#0F`NFUFR!r2w%UuG93%#0503-8~exzHY);Yj>${iLicnVZZ&o zu-}Rebt%WQ&0SDOD%pYh&`bmM-?}lTl=qpWwj4<9g`c!&YO94P@96?+@>rW#F%d7< zZ41>un57MSxV?ni%qLYs-xB2rW#ymbLSltUg-L&7WSPx1QfG#DHOZHnwp@%gt4Y2T z(ys=8ux6HYN)_MLEuH%&hK>q`bzjq>8Pi3waMTEg*WK_MYddZJEbNcFJZCcA)}wGU z7%@Hfo_@8@O_+DC%X#nXq!RXY+(>1hFHNu3%&fNDLHF?j0eMMn zPeRtj9aif)NK2vaKNb56mNW#@XeZ5(YVv56m0`*C7qU7on%BTA@A8*3mAo`!Sy_VR zO>+}YN}R)uPHM^F2*<23ImsM8`y{}uD%f zYbM;)sM5H=oLtj;hRV+RLW;ZlIZ5=uxPjLRA9EzF--NEFOrIPNA|b&*sS+ zh&+a5m*)>eKE6B32O^{Hjytnz5sbeGCT0@BVkEM#jYG`PB)4ZNT(I0Zc3sAF=)WAt zwk$f|+rp$Z8LY4AOFKc%ynr}CsR{vAQQ-x5!l4I?SKo*KB-^J-4C*Bs&s7bHn~T*+ zoxBySqdj?RzBT{)M7)mPvuA&6KidRYM>a|gN{`n#Mad`GHc5VK5ap!AiKHD>JxNIT7dj>{B-k7 zbNtPg^mbK#N2^v#+IFDuuo{(lo0)~s_}vgNy~Wk$T<#YC%eJ7xh_sbKVa#c5o51)a z|3L~}dz-3-?f3#@%YX{ho@t>mJ_^~Lroy*}Tf7w+1FnhDgtb*KGp`9v8}fN$K5OPQ zC+XQ?Hm3YX)~1?ACB0SkEA$doa}o{ELxkBRXKH_l6mZwRED6P2%}`ip$&yJ{h;Y5{BQ$LQd%1NqE@h0KFBEbZw7bzJS)d^{SN zeEc$*m4&vDB3ocB?Y^#{{U~|u{((LI z_?a)(IFYFovAw=%=z;)rq~tBsH5p{TZu~N+=mY!}^(eq%NKWSg0yl~1j=D_XyybG= ztI3{SaTS^<&#WbQ!`(>Wr(VPSdjg1%%qv+@Ou95NejtEP%@|ClFihufdgwG=b7~EV z^Rk_;SzNGpd65Kd8MfhVjdMDTwHb8bZmtR&<&3}d5E(VBw7jc=f-<7!X7+&kQ4KB% zB`HV^W7XZ#TIs}z<`lBNe+UWYq)MLXNXf5)Tw7lsFYb!v_~!UlRC_K;YGSjgMk4fA zE@v;38Kmx9wyEyRKbMJ_QkDQqJx^4OXR67Y6)99jiRXCp2j?9A5gJF7S<<_G+YjLt zMe2zvL-f3_QY7D|NqMK~IOtM1sHFuAEWVP!rd-;{qPazFgVDmI{p`}Cv`IbNLdJ@z zg>1Dk0&lx){f$H3|5dH!<8@B;p4tUz8sV4Csa8;@wwikfb0{4(6QL6)7k&!QUBRJd z5<{hE+eU+~N(~1?^DS`LWe1zFp*4gz{(J$7tn#hjq)Z^@U}ug0k+x%arFF(%1#0_p z%Urb16OZxTKlk%uh0A?s)k()|uLz`?IF8N{b|8SOM*4;dvJG@PLD^J!Q0|)*%0uwL zqaSnk8LwG_iGm?{Lly%kzxNS;%?9=ni)Q`K_?YInE92q%<{^zOahFZzN-+`EFTc#? zvK)`HCE^_yNcRZ!9Jr zrD$Z(-^&oS>zA+L_qXl|&6#hRo7E;bi8$WHPXe}it%W0y=iX9ZZzW6(Z!Bv-(WRDy z-r0sBSx66FRE?Q?!sbz1g3D&Z@$tt&SDFnS4%4nMk}?s=h-8!=ML4u8 z(GRF8`a`XeA_I2J@MPFQt#?MBxh#N{re1VkJ=gQjJ4l$rGwT+H~{snc5mlL+fd`4b^Mh=lrJVy@679=3; zkan*}aErK1Oe3NOQ4l$BqCxS|$Vq{swi=mG>M=@Qps`rDZcn;vqvt>o^i+86YX7a* zqxplpoSG3oTr_+XAP>G$Ik<%&{b`|fiG5<9%}8T*|LgUB(Cf|j-d*Z_&4`rcz6Dq8%UQ&d*OFMK-bI+d5S5Ql5Jj(QGvP8+ zS{&Fraxx;zx7CKerr|#ic39-@x%RT}djwy9gWNYDMJhqWyanNp8ss6ic^~r)!CwN; zrlP)PBHk@MHbtMURxh?SZei}T0Ibyao;=(#{j4We!9CbEtdTnAhm z?940fd6k4}npOkZP!1@E-2It1!1DUQ5q#=kZPu>&neViBqUUuSVY9d@7hQME+(TQY zhk0us&IQsi78lgq-Pi%14kNA}?0`5}M*p_SVlLc52Y5Q)dw0>ZIYc}pcji1qCXPdV z_5A}-NNEQyi&Z9e-j<^~wkhZ=ggh)(Wv6rC+3D3dXbRnEr) zq8GH(^!Lj+A!n1i`d1E=)4?X0ty3};85pJWL?lblYnC>#B~<#pbxczvIecT=M>5f7CtU&~iBZNyE>&M^$`#SnlA|tJ zzP{X0C^VSjQ&l-6c+o}i^MR}4!{u*_KZ!XD2vb7eRqxdM&e!=Y&+Vwg0TfdF#>z$> zRxdWXc`o>sJxO%$Qk?#aE!l=FjSCaTk8O`1+3(h`kB@im{BG+QGw*JLy@w5Y(o z!z9+l{6wF6N;_FM#W}tw0}$jWB=0?O57+KC-xCV4<4+PRJ#YFhYn#Op;v6@6i2zGk z>Lhy3ODgk@oR4r$*rq#^W;sXOc-UmBa~o|X(%OFDJ<*mm{^tBc(djL9*`M0_p~Ax2 zs;Un?wlv6|x()W`IcF6#LbVsj%bk^{8buu!Xc`Ro9cG^z$vX6?{WEzm^Vkha zR81BFr25_Pxq4Ss^`S6V2wjq=K=Yof(7{)YUnyd?$Cy)0w~?G{DNQD#@oha76Okm5 ziot_dm0ULZ6eu3JhHEN`@WkNQe9H2B4B`0$3x@hlpp4mbCo#k(ZslZ`-6{#up(@ zkB6YS^KZWZT^-F`ud+MzcbC-ow{cli3%6SJS4JhdOp{yrM#}k{jq5`Dc zPm)e(X5QXl{ZDV?Tj2*8A4ZxxTESr7+Z&AJ zIVs|*S9ltuB(=NO(@{RYeBr$by7>^4x!V+eDf3Ol+Ina)R3xm%Eor=Pq8I&=FSdU0 z+J>_y`X>Z51z-g}i|_l3b&q(hUaa$<1GOT9QgC8#aIwfzW~alD)g0Z8#KaqUIrH(O zUDNI7CidY6bp{7h$&2-D60RYOL%5Wko@-6v5Qyw+xs6lVSEI*2ZjcjJ2ku}ch8hND zMMydP z$2AE)(a3nj$GCB-YUT8l-wziY$Sx-n2~DtEAgZBZ2lw*KAM@u$#=gV`f2{L;kmSrq*mW$wA1iKul;+;qCP zW2j~hKR4N^*19mCu&3C(&G+`ig$;*5b2AIm>#H~(*HlSH(TD+^bnf9K0f~_eRKE4; z7Q&!8A|a67Lu-xRmUn@UADU7%?A*{;tMRLEzDsmiX_vjk*a!+qjx&DOCy;oT`txNY z@QjRX?*3zDWi90HcjFiLVw81(mjIZ0EOic`;$gjGm|bbSY-)Jb{JqQmGe;Q<1Rrpn za&U5!Hf0U5j9=W|sg;xwbbD$O?5Jw)@OU>Cm=T6}+A>eZJ|BH!)s`+qdq)7!;inhG zHv;T8ae*cqngXF%WVro$y~-VrM@plLUQ4OT6_!pDZ+O7iqj9vmD4nWp$PurcG~H=! zQETL{?1rLWqz^nJ>&}jizGSo-VdFwAST3u5*rh4Pa$zpc!U5!~adPW%9qVxiE=}vU zi${DIKT_Wya2IogdmpfA-FeYnw%SIS^5m`A5a37ie{?58Rzkf!Z4v2e?jn8vomiU< zUHxcgqVr@DF#UUoN_1bFU?uPw+cTZ4Ey0+O+*$p<3mUu2E!pKNx!y5>scL3;_8A3XL~YqK?LrCENgdW;O* z<(*sDb}ptqFg`FwoJbx>s$v`c7n)Lh0$O?S+`4#IN3#Rh;vmq|3QPfp@uA#%Ry&H$Uy`s`hW1I&Nh4^q2gnaEd?H56<)jf| zYtjfAkg5AK^YcPHGxU+euN}Y^q*idkm%a()2 z31T%tZP_@NL}Um>|!U>$*_sAD!Ui4tw_tCAB}oCbYrh z1BcOuA(r(F*M(v>G{!mTftFepv1BqE0!M*`exIp#K0leuEA|8clg_mfdkVugT60O6 zgUhvY4L`#+J~r?6e=|EK{sh%v&38NCZZu#J^#7rc^RbwTc@ve|u>jHp9OqtN)KS8bvOs~puttnS`Zb>e7aVr*4JfVjL&R$;E7&ZuFz z9ph9TGkT7Gy`2;ImjF*0NPVDIT8^(Y>APrhv+@(_o2KY?Ru$-UH@<5F@ow&SeAMvZ z`F;L-e?H#-`LGpWyf0wYk88dpj4!^cZWz}FTL*W&Iuck|51*&$)jccpj}&O&h_SQz zOyU7W7+M}zts>p3;`}3&G0I5gWa7mfxGy$B z=Rwb}isA6Ao zWrk3ggi*|YrI-()koro|5=s$pw?ZgzUny{()t~gHKMNNTd0=hzqPLqTCUX24mGw)m zUMuyObrE;EC2r*bo!2^X3D)*c4gbjUlnqq8HkM^)Er{4qmrN@CB(ul*i^ZqX?6>uH z{Ij=pBH>$~o(%Uq%Zw1I|F5lqsjcBbTf^hF28Ol>>Tk9gSoiM~ou zD59Z9?B97+WJ6EGSYbm=V-tB$KG}F`?0Bliug0eD(g`Qzm4YTE%qArSCM8rRC0V=8 zELb-Q&xLY{*BZgYe)nCu!{B<_3y=H&G;KLV)tbacyZ_K;{~QU-_P;_n=l>{~`u#(j z{+_<<>?i!)uXMLM`+GY3IXnApJNr{Q`wf2gPyg;0``zz7o*6rysWFxbFA&QLOEL{h zS_n%5geCz(k^o^ztzVN`Lz52far+W*pFiL}C*(d?Zl$=#P4SSM;sH0s``wlANY)3M zEF_u;#%yVp>>%Mcm%(nwVgEKFI{PPo_fK~A$A>1_6^-V;%NthC6O_*rRLm1pc7^H( zptVpBk@K2|Ou?NkL(=JeBUbzsaG9T~zlbCf20r(ef1@vY^(BTcU8M3(A@{c=I7SF< zfMot&;eMWzJwISnT$TuLa}Avq&@k?3{jd~VxAkeoMt0Zv{4<8(6U8TlZV`XzcuKf# zS<#e~Y7S{hT;UX#s&l~7N&b|-4myaZq1GZPSW_)5F6ACG{}X0j%G3{v zXLQ57KAMUGLRX6svrZ>*wfCTpqoi)Xt&l;qoUw@Km#DL>&nvp7!gKucIc;ke8VsA$ zXPEp7$$5`6M4@j=_4o6=4KMvxx^|gm7No{`K%lV%Xgn~%dy=4PluPF<0A*=}KG*KO zI-HXH#wsr}71&}q c9q}nVySt@PKuT}-gQ%=l#Yf;rSQr#)Cam04~+lW(Jx%13& zZ}@v5;C8sts98e=&f;f6Uy@$lPcony|f9%Ikc{|W9RKcEoMCI z(&J_9k1HV4dd&pHb&|B1&RLY&7Q|CcZmt6lnE_g@);~Sjz|uBM`!c-#Pz;901!y)0 zm4PG{_V#_D;d_#R@r6f=vXFcs;1PGom^=|Ia2b^wb3#5Fsm+sR%1)g_; zbpb3gGgn7)(2C~`?5+RVcHD|zKh2f*|JhQcS#>;%ysJohya!lk*NnVDx!6hj=tcZ; z&Dx9Ds}M+=V%f2Y+V3+AG@A}~YFMXP;ik3g@joiM&FL%WYLGTjfckAWy5+fb9DY5_ zKioc?JzNS1ZqK*)C|pT5qlPZQz6y|RFSIa*RT|9z(GA#^08o3uvi?EA`SjH;0k#0= z1}c^{>@e+62FruBZ^L9Y@~Y)ZN2gHRo>+fe5GVxk!Lm?z(r6oUI*l^{n_QPfe^0RxwVp?Tw@J9neln_1es z={rp_E-Zqy6wRKd&DM5sRqK2p1%6f?({0dy3=IFGUD)eL$m!7Bu$Wv$Gxk_J%21vE zeZrV?!2*xiB49CV;t!|`#4EEXx0rW&`1??PfQE&JMd`hty5AF}uJu3bf2TyT>b0j2 z0`Avh6$98jPT2z}69YurpEU=Nv_JF@;BBY2-8K%O-9!$eZF%D@6kziHSk(Z|7A07r zQ9)3ESUbZ~<;)mRyVODrrgVvw3Sj2TpPAg%QD_fY{`z=FLI$(WpGT)BqDZRdN9(1&n54Vn6*EawwfoHH$#Ge@tSKF^8aP^NM;Ti* zWehd~r?qVNomx*B$Q9(}15RP5u=1>%*c&qMnNhS|MZ^vCMsTSD3 zfYsYF&6L~Kx{Rn*PN}33R6bmL`j&y}ZHjEz2G2INbsbJ3ZodBVNQKA)D$S}7+6Q(@ zANC=m8VL^pohm;`Ttd@+Cj11jX(=v0#F_&VehL@Z4?%{Ij)EHgWmcBfaXqhR!nMz4 zV#JP^@%bs!d=3VeaYRfrs=y-esTTXCdc^!E=Xb@PHV@V%@JcKcH*Zq@!O&XZgq%)R zRKSU47-Mj3vs0%fB=3gZE>y01aP(TYj1X*w`Ue{v4z6GflXEHg2O|!ixy1x_x!$`a zx*c-uzB3qwb-Z2=x9lbBc+i<=+40do;Q@XHrnzzrnMA+qkRD^Vma;KoX`aD0`3brR zIu|hoknHN=5%%S*D_O zKk;ROVIOCC-87!6T;i%=Z}KxNPazvr?JW>{lU%y|5M>{B1g)a~J~2H5j|%$|V)y|1 z#DuV(&t7Z{o!=n85VBmb?Rp)z_6DhmuRHdrKk!?+lH)fb82ci}yWRn^vQ?A~(%Q8I zN%|*06XuHIwQ5P{+=^7P`u>q$yuuY9iC_DLW61Y2%GS0dwb|clYpQZEsV(h8$d=QL zt2%6E3_8}mu*6MsG<9KKy;uuf41tqFtkHSZ-AwQ0`LhUanN`T<%$}T<&V`X8+FKZ2M+x zW2}BGW^8dRbgXs^Jr+KeI#xY~7%Lcq6i6s4zwLX=8i9C}Lk^;ANtP#xByk}55~^(S zhO=D&r#${AUr9bXl$Jn{+~h(13wz$NiG1UHTlvAzR02T?ll%4T_MBq_`3CZkP(uPJ zxd}l%m%ZTFe7?8*ZYYufN-=-0p6w3g*qg5*pB1`HH2II@dgjHjU6damGIB46M2gf)e4A;kPXQGwdtZve>;AUlm{NYU zLfTg$LUW=PCNIKm)iHy7h{DX*YC;f^7xQ+&7+F4}f<%ZcX$$?ST#-i>Ue5$ zda_M74u01Wb0dl~INjae*_Id=m2|f&LKUvy+*g!3$}DA9bvF+cPT!q&ZTD|0kH;6~ zy_1U#rj?`7`U+8XWZH2gd z$szue4%?b|VDcW~K;T?pULQ|B4ml-aE?GYn0V$MOufVy7rwUoW=HA2qclu&mIiEEw z_yLZ0+b+LMKK|-R zoW9mEr-jELerQecyB=yv*N{VvClnAFhrYw2a zRYo5d7`~pX&}8=?hQ1in{MoxE0G9F8G>h)9k!QHy1Fr{~?tw(BR|>51LsDarKQag_ zM|MebIf;kIgA=S!)jd1kuG46lRciER+>G?0#gRF#A{mZ>nRLfb+kT~O-^~cK=vFg8 z*;P!|Ne|Y^^d(t@r!5SwZ(?0^xb6MX$<bxJT8%x^S4qZBVKCdPK)HqGgNZV)aG_|M z&(Z2Ss`@l!O2BcAC)CzFdu>I!@6n%8?M;U@O@~+Rs}yU0xYz!$_I}su{Vo?p3Z|u# zrJ=i#7P?k4yI^%+6<+^y8$$}dyOI(Lk`lVsFuPDUyKpkQFf+SYXgc(DUp-j=gYx{- z;T8AeKWL3do7gh=NjKb{tA_k#^j00wuT=4qYZ$`!ga{E{Gy-e;9VTl0%&Fr`l$BGv zA&s}vUwuyTOXy1`KorV=Oxk zVYi1cOWX_?Hv_xgow>o*gYmr`xkoTN{I29J4hqJPbOaw*j$S!~@KY(J$t#zg&Hv22 zge2vp((Ygc2HsK$)VfJ*8PB_3=|Cla^1fo%n{FYf7&M#Ewxd>2o1aL~t<<}?%|gN4 zGK#rHZCo;xw^HDLgN_Zo&k_WllMX1>{t{r1u1q1X{U*SxR^e-W2Q1(ptf2a7qhzdN z*vpW3i>cst^qmeHu|cufMV%1aRi6A39ro|ez+8{}Px%jJtPXj7k*v#+qy}q#pnR3x zm(x5#H6o2tu|u3B*Znr$7Vw}2sAZRoys~R9((G>wmi_zkZn|g%4ZM0QeDR^g9#@Ns zORb6fZfT2yOADm6*{mzJr4(4v0I&8kpYar3Ty$ZPfSCmDE~CG+TrNFuQGow6ofTYT z^02rg2?gr{19Bv?J0xADzo<7S}~6UpT5@frt_Bb=JQsn#YhYR=Eb>!Z|&7j zK#w4r)-$@5b1~6{7ha#Wnd&~+vblKdLI^K3?T79ex(b%%WRGj%k>j) z(+Y!57t^~Mjr!qWcg^3Iu8U~~KQTX&iJ zmWIW77iM_1=_vF-+>Nm%cCpum3SJSIwJ_w2X>@b-HEjXAm9#&0RDM5cfccaPoVX0^)dOJ#=dfj??7&C+MeLm zUqo%*o-px;1}^)S>!Kii*-}H>eq)cuY!22m&rK?i+#ubNG_4AnB1cfF*$cWsPLB#R zuCzfKj}kM^yi~|0L$jeQ$4o!gar5Wmi@cPqX*652flJcDCV8_SCUJCd$s;~U0h4mI z5$(|-{hVSTZG-KyR$Acpg=GRb6*e%lvFqraa19B1d!qq;ndsUN-_*H`3o=4*$M>Ia zx?hG!v&kiMZz>;KUq)W*2Xkrlk8aW(vmUEmYF(yWn?U6g?KX`4HKB@$D}yJ;#Qq8v z$!Qz$$F(N08yH`TCgP>E#kZJ2%;$403_m7s$!KY2ab~HbNqMoO#kC3Sx#D$;L2M%S zS-e-=SG-p|gRVLsVBmSM%}s@f(GF;U+uZ6ewpi{NpkSKXc-FO32T z+L@ck{{hc5ov}*rT8TE|taVtNF)_0%D|0Ew9sfsIs&D2Anhzto_FowY6h@5Eo;i? z+Lqi`Hb-V5J>3!CdwKX80{2auSEd8fs9okxS^938S=V&Q6NhLL<`763=a__2hvRsk z^d!B-|F59*_-(=;?c$fzyiW{x7k|CAgziVbT=`PVWyFUWHVpD?&B5Pl)yN7#!WW`cSFmkwv+l1nP zOxv%?;o|>qb8+Hw_W)`euWRVqEbKgKkLF?s}QcK7@Ymi zS+h`Bs}QE?A^d#`e`86YkQRF9$r5@!-acuPKr*6&r0#h=*tQ?zmQVW{cjp3EdPt#A zUgVNFZ#7XrCnY!jAJIy3>9m-{d(Fz~4C5XnJ8TkF)2hGOpF9aSWdFixWmuWcsF|&O z^|5Z{kXYH(N7x=|SX?u$*Sgk-tNp~UyHe?wyJN3iozg&jj_GU&0lt5MVBf*WuOIJi?M{lSQ z0W(F*GcR5YLv(BP+79GVMHvjIW!W=nbaZMU4Wjv95nm=;7*3~i9$gOTyBMW7)r&7F z$-RF}TITv_Jbm*l_8^X{fULG8n}Jk#tl;;DH(k1z#ODd=bq@+34N78Z?1o2*iuos7 z71BcD?wdcOv*;BEv3&b-vyoAfAOBUh%E|5EGlJiTdEJukYKHU1K*pG;BKfFmP`>Z0 zPz)&~d+_<|6Yfy~LeN9~O|#z7=9oNBdO6gq;1OFZ$rU%gevRH}P#&7D)Kg)4=;WRi zi~JA)-&Xjfibvbt*%#MWJ({eP7wAeU8ihJ|#oTPhJprGA4NFJi<+82)0ad{nGahYdeLtSjLqc>Xc(A8X9k{$=rv@}UZ!DA!6!zIOyN8we}>}cQ8nvAy{F}nnxxEz(wu0I zx7IQ--B-xYt<@$sML(>K2oC+yQe$2W=zGjCOlpa|xE&dN0%mHCT# z3m5Jg!RX%P-bC{Kk49Jfn?->1kFKyT4oPXgAc=^+h%&beiqEMTs}-wwCfWaFf3Jr1 zqYZwh4spC}{xD$vLN~nlNrCpj*s0xzVwjqxa=|Hfhxkp}Uu&Bd(oC)nq=%LJ*!l=OH?2T~?_M&2j1X)&xdZsJ2cZ)Yq zL-3pruGAi$r9Ijcrku58|JCvC6FBns|FHy`r48 zW&bt!?$iH&4If(zKkr9{W7&B>b{2k~{@}zM9p1pf`*HZGsX}6?m>>f(q4<++bolfO z-a{J4k1K_rZB-r{Hrs!+Obl%h%Ip|;2lX5Og?vG{Yw^13jY=n)j%-&`_ZQLoE_4!g z)wl6qM4W`XpI=wKQ&}B<;a940ocPgFd&MaF-<2a}kfmVg0YvE#)bI!aqdj^Y&~u@Q zO}SHQX*-RO>=y$j4=s(O|M3GUgKPyuVO2`M3c3Dpcs)RgC5TnMIJl2Y{xfFzG{56T z_l_`0)lrpgrKST(jZoe9E>%yJPs5x3s=u2?SVk#z#DdcQw7Dso=O`~F%0cNT6xVVmUCh;`_=UyhEee4J83CA0NRT-Q|PxNOg zxRW57Tkk(YXZX+&98M}UCtVfESy7Pb1gvSp;EN*j1zbi|Aiu!)Zwj~2@iYWbM{a=dE5JxZC^bEe+cDU8I2RZqZUYEH&P(%@u2*V zkfxqpH~5D@lbU-c`}57Gd?jq&j65Y=&|==n@aH|7*K(rFzhd|5S`V%Qmv2Q!xw-9L zd2VGN;EU_)so~o)SZ>o9kCFfbJUx||2miPVK5l{_%NajL zC6AysYwta+-jTL-a89`N&_Iud7!Nxe-=+DyOFVlQOa3k_&hPrR_tEVF@KtoM)l0xx z!TbULOvkP7!Bmdb;;nn@%&)Ou^M}xa-`b9E21{!rYZ{JxtX-`uMTRdD-5ZYx)`_gE zkG_i7x7ncW5p0eDQ-8{*Q)yEzQUy~d(yK)%x}U_;Qzfy83V$(H_ZdPy(;9*`RyUF~ z?lgXHG+Vg85Z{>R>|N71OIyQi)!G*qm%{*%J4>1stZB85pLaf^JtIHsJR3iYJj*x} zxC#h#$d;@&ScJMWt|KA=)U2#460))A0%_Temw@cJ#<=P@Vx}%;J!S~=iqt^XJBgjy z7Y!-_Nhul#2aj?Ul_dEjOR7B*K`JS(Q}t)*hwuJ;`?f}FCk{?ga3z44}K)t}pR1JXm{+!pRN$yNdd#U!F zKc$c?7bl#?QuGvY13=GKrQ8syUy2sxeVeoLDSB0qZ~8NbP4%3gn_t4`%mQJU-p{-VaHV z-~uNF@iaeV{0~P?3)5g=v#Rfqa_$p1bzD*XQS6P~k7(ar5KJXH|G7)+?7X-_z0!2M zX&rlIiUBUJ;5>^EH9I%G_>G;|tKneh#SS)|?vD&-OJuU}N9#FIhVxdfeAc4d*M_D# zODs^aXD&3@j_+mhQ*|ouZkvffzlM>x4iz;SxT&joz?Jp72!^=`3%)wfoae3)Z}&z! z1KXi_I-VY?!d6+h*faa1?DTT{!y~c;PQxGZ-BL9wLD1W(0YS}2d5_S(E7for>=|1- zNZmCLxsZ11les)Hvyc+ds^EHC3ctc4i{Ns*`!FoDJ#x8mV!;&Kn6_MshTa4PhA$&Z z;n58SEBTT=Xo9u!iv$xb{G~?DSyJ=6x1?QU;pE{X z;h6BNC-{b2;t$O3Im<5N3$EBkc~`A%s8I8pC5yGafCWWYz_znQ`!pwmgsN*FdSAaC zq~_|a(hHqgFl(2|hjRu58oCNk!;g*vAPaAU?ArGsaINkAhwV8Pa5d~1Rr^vU{EE?Z zU8bOyc7L`EyPs*h96$q^tah9*aP@4(<3r-n1Yq{sk(x$DZ9Dac0yxeax()Ii*{ z%W-Zqs6T_ksp^4N4F{%t_{8h#&70xn2A67ALY91BYLQ91ep<3A8HxGcQiRyq2 ztumLhnc2_-G;*`~zAQU9l+1j&aka(QMgvD8x0%>q>JXFKNo$)m!7m&Zx?rTr9_}0@h5t z$$qhvmv~y9rC$o~n1c5Q1Zf}zpBu-=^iym@F&+IaJzTp9JjP(nw#&p`}(W z%Vp+{2e9-CD2kUH4%mhMkG|`eS`82Ac0LPPMvnqZ`zpTlvDbcZvF^~=p&dV99cP_< zLwt6b--&YUD0IJ-^&=0bW@-CTgEncAjgk zp=GhJFnEdu#ij0$;m}xPGTaoMU|8(cjE~ErYhA1RZSSuiHR9=@K3z)dn4fOk?N-~x zre4|El#Mj7hmlwmTNRq!On%|o8PJI!&a9B zKY6ia0G2YgV{Ph0Zyy8VeAn`EL6ht02u)EON za!Y|kz5JN==TmzCQ?3ho=Qur$NP0j-QHw=4loy0hy4!MxcfC)@J}XBj(&lR zn%}PoJ|Uff$G-uChdEk^SjHQ!|4!ark7mRROfEq0B$z8pMY(H)^4$}wX{ItpPrz$@ zGut%(+?Jk(ySh*pJQ+Q3TFkqUU%!dwU^ur7sCEbI2E6OYcfZ}FiM`rkWH>LIWjq%( zd3P#$XO2u?nfh^Qt7*TOC*G=qc->}#Y?5m?eJ2Mw!cPt|p4-K_W{a?9tUOQpZ=4k{ z_1ks(_Ncm761aiu#rJW%+M}Yxb8}n;GDyd-_y0_7zOe<@3;rM4-U2GFE$tQ!5Zv7z zLV~-yCqQu5!kysm!94^G4#C|axVyVU;qG4WD(7_H|8)O--|O4|ePhfq`S#pPmbGof!M;(K~?A=JHoquDyeH4@oQJE38DU)QOZY#m(jgf8zG05 z#P&0;d!OSw&>T95kmB(K49Z7hipK`YYd)##v+#Y_nEkuR{k!n}yXbu(v`OFhIYP`i znFN!hB$K4*lfD!=nK+ZAn3JT0lbPVNA993vaxzIK$3yq!qxR(^_T^*t$0PU0qxai! zCVeS$Dt09ZXXQLkUg0BYVA|e&1@~HtlTAiANpP)XNmB)}`bQ3S>vG-~Pq3~VR0|kB z#RGnwjA{e|+FQdwB0$h>{|PBR8?dh@it9zdR&7NTnBivRReNFn{BVEOX9!4+FMhF} zRKja`DDH=dHnOK7AliAf-=LLZZre!!!bF!7wQ~2F_fHK_o(ex7-pk419QDH@M_Zp1 z{#uGN_`L7ClbjUmyu+>STPP&-x;mKwRJ*Yw)!`8=25(?OfwCvLcS_g)l1Iw(sSY?b z8{KmY?hX*9j!wrk5D*R58r`YJ1eiJ}#q5slGL#dc?n}LvkQ6OlB(HG_njTdgIzQC{ z7ZP$`PBBNv^PQye<1ZD5JZ?gX1Wcx9qaP=gUlNt_Nwe2cZa#c)UaB!I(c!BcEmMzP zvw76xk=*Y$kG|&2U9Jc2djOHST&&nq=Lv0}n^(EGh$o`MZv%PyR#pOXZ$?jlKy9=& z<#%&6(5uG$SZ%Ow+j-m1L>xt&%V)c_;A>?T4Qos6wQLAlaFFsy!qNTI+-9%t89nB@ zd`9AR_tp03+Q_kC#rEk}!`A+SKyH6_2H>XA>`~xHZElWwiQe!vFxQiIpXq34(j!Ap z$dUfn{32hjt4roKtf%AgQIf~_^<#;Jz>T`V%IDV8&2o?pT%GP~FVt3D?y?_X37x>4 zXu)d(8A`N8X2;Do7S9-;-BiI%!R^a%r(pRJr}2I4CX}+fx0ZK5i_5?^d5to|(j<#> zrAyw=&tGe2ii#?Je%`qnEXv5v4bDd{!`EUf9juILET;q)T0(lFc0Qz(7h>I1oF^s4 z+w^g`h$rPw0qxDd9OFMNEEFXzR}uEv;<-Ncl!jU9A;@FId&qtI!S18;WeS=;<{x0Q@s3DmR#`|MjHt2w8Y2>Ne38AQ z-z!zDnH#?xwdL{LYY)}>K}o3$Y-IcO+#nY9-f_#9@6c$l{k-iZPH=uf`OpSbe6i<% zWch_Xn!>U9#ij59Fy`G(d=n=Ul`mKQa10{=3w6h#oR)mmLqFj`wVR$NzYMU-+2o$liBtC$u7} zd-bB#t^L}8UYzvE*&99mkW#_>>-3GZ3KdMT7NI@0px)ej#d3Gwo5ywbm3$^(VP*(- zW~!28`>QI&c@@m$H7!d$Ko;c9Kbw0iI2wIOX?`|br5tsTc2E*6({6V)^J@teKf|d= zFy4YevqY1)=}@UUoj=bkV;G;Bh38<(Zn0pEWcE2R3uT^Gb(n=(Q;!En&Oi^|*}xuozD@1QA(TJJ2b*!qYee-tinU4OQWHfgtL%p`Sp zz9iLhW3?gQ`jc$iH>;R~+_CZoSXHK*+l1vOHg&(3TukJkLxU%)%c*QZ4gxaW{I>p|_~JpRRZSpeISqYr9;T=b?}?YH@zF*;mrzQQc`AG@T9OU-+JpX z+7k5LniNfF+oEnx>4^ShKR-Q8{fNG7-ezFhl4?o_sL=gYE6xHtRk380d*-M~tZbuE zsjSbZWE{rn=%(gf41y|#nAPFV1Y2oY@Wb4=qd_rmwb~i}Y}H}E&2dQkyqOqX|@jyktqZ5R2;TA1>iPg5u;+rmoD-AoHbu>f^b!l0~-Qq)HBmqSHAT zYaGV`#8S1ca#{hA<|b}>wOd2kIuGA10!DCQ`W`+eH_dg{l{JEi)28K( z`Ui?WX06(dtIu99Sefg6d+B&3Y({l^;NATndM<4duWU?G8Lwp7w);mKA`WVGtY~r5 zWrf1V-U(%@eu_CTyD=ksv>yJN;yQm(j$Jbd$P;BzSfLmVl-|J#(X@9Gf zhxZnbOx1}EDF|>5hZJIO7z)TV?+edl6?o^7N`mV$t;{SU%RXxO(@~soT4!?TxoX8q z56Wt@P?`m|i{(8e7ZEHfR(H%f>U)R^=`c%h1+AYBb~E^ZXoT}Ngt4L4#P{|EJElvF zTOPx@wU~MRmyohwaRK4iTC8stHDaTn7d7%Bs;j&{G;4Bp>umtc)7-`TgfpgaePbzV0+kRRQ`#VwV0Aw;zh9;t{#aaKp6Ro1#BO=k74y8E%(tP z^+a`D?Ow3L+O5*$~Gh}c`*21z&W$=hvp;x0lK7C*ZZQ#N*V0~{W{lC zeBfE+g=?R=o!h5f*3a^N`2E~acxG6@YmUfxDg2TGz|WPwbUr+$xC_>l#o@@sfD{wf zB_-t)mE=_tW#|mmuu)K{r?n1L%t=pSy7QU3Kz%4*tJ@mc1NkkXHYs4n*J|v+@S-i5 z4$6=OToAG22Qw*7hxR!q{a2{V9B#Of4d%uTIIIrTFIWhhcv$|hEtlW8A!xF(K8xU| zB|_&A`2-NS>&y%(Q@q_HL)zQK)udwFn0Eex?i1wOMZHU5(m~ddB_WY%@txnwLo`?} z*J9du!Ak{ZBTrPQ2^C4Lhqq{Wy4 z;%^5GCea01NE2~&N+b<0NM;%`Z;FlMIN)X@y%Vdj3;ogNbNH;1ul5ddbN9^*koY6o zA}M6JCsop!!{{}=s68bnmp|K)x8iFw^*f0dz7A0!wtK!Ab}~w_rJs&6X|9sxN<8Re zUDe1Z{6j1k^#7^bGsS3Vfm>A@p|K=Ee?p;#)nVABA&VCQZ^Qz~a82GzNX_WMe0eKB zoGCj#kXcE|C+jZhKks*i(dv;sBJ|wklZxkrS?3PUR}9~Mf42?|UU7Qnv(2Yk#?S+InHSH0Kqb#R82|a7!|jjh z0|^XZoG)VDAH#dyz7;&`H5=co**jl!yg%mgx+Qv;@gK(l*7V+6vj}QOj_26roEYT@ z_-F-X!kkajKC>HmXgRS9Kw40kvMH?{*42RoL#Vzd5z z_jBeumn}WqyBlnra-IGJw#Mp6I(dg3x3VE62D3oUDWI2N=(w&|`O<)QWNobcJgbtY zVaJ-AKiMQ=&>I}n+0_wjF9h!}$XS1@|7ew%VE23AP85sj%ipyUvygw}O zmngQVRSS&!nWE`wI+u}BXJ&fxPhs%QMPz@`g5ARqC{!NzA;SKh|y&fn6$E6T)~iq-f2$pz*61X`d@ znNp#cmWecXf{q|oa3>|RPLD!o?|(tHSE1cEqCqI!R%*asOQ8I)P=|=EHmLxaOANLV znpc#j5!*I!c@t$HNjHn`kGioF$S-eJvth5ldS>CSAhu?suE5@PL!Fad2l&~9t>TnlPj z2q+d6c7u#4pxYP_w2w7PGq=RBZl{p-I_)>1mIygdoi z2EP;Kzo1Y3#;$*zYob=m$u9w_IhWqcOa16TQZ#^|6Bk2TAj3IEgT2`Bdl&mAYyvB- znw}T_TQ)v>2$ng-ys(VH%jAeq>Vp*9>;BOuj5(Cerlfg)8m}^!lfO{xL$es_*iCTT z1Zu{XyZp3ZznSlDa}_g6UpH1?G6Wj{XJmItBJK72k~j(?;Sn9^l1<8c zytxjodvMiY>wBcR&b>;Kwl~$;+tHGrpe2HwMfEeHY@GD#Lr|gLv*ZXHbYcgy8KyMYYnq&1!xm*%G$9if2G^2zj9|} z)=7BJ_cr=|roNtlI@BZEjC=Cwko^|Q*N)}gbW zQ~N?(8|;au$=}6F(h5ylqR~@$|EN{f=_IBQ9<_1 zBnt#r)c{enI|_Y!Ul7`n|Gf-O?h{nSG7XyRZC9!!_aAPj6`wHbMG3 z0@w~R%?@c2S_D$;pm9#o)4HetE_b27clcb%5OF#UH6Ud+bv0my0njb5ben(ty_WZA zf&noAmuP``PO#}6?+pj>~!4Dqf@CKknR2+azys{a25_1-2G7{Yc4|%FS(-6SKSiLr5kzaoH9rI;~MynNWnZD+J3Fus|4#A-Aj%d zo`P26W+xA&0-1GtHMd^NDox#q@D*J|Zn~!idJiLXneIDm;4MWG##=5^)CI4GaJ?sl zVF(5cYz5h4JD(3L$)FLHlJ{ap@*-2dr;xNdWjyd+ugcPRb4`DIjh+Z}{s5k;J|0Te z#jl|=axobxk6cX1PC;Ui_cvvokcCMd6lTLWe+M;cob?}z(pgCG-^u-1sT6|W4#f)N zW4srGG%OpE|~p47ytfi z|MCjpkR8yAgQe!hMwc-dZdSQPrFKt2=cSWJmRk`!u0D|eW)X`F7M4}P*QeJ1#<%ye z-4LW-^-`hX3vt9`0D>-U_q)NZe1Y6m?BGX8mV&r?Z$JV)lI!P=#T*0aWkU4Lmgvk< zoCc^+>h!kCmdM_gpXJm&`3-iGJK5z=ZOEj0pm#E z{3bFPXCDTkQCL(}PoIXN5q%X);sTzGbtLtlazs^6uf~=ky**1}Bc6;-BsF6n1}@O3 z1E#8nKk)V>iT4goP%knD7YOVfV8ChWwOnIU#R2~6y|-m)(~dmDVY@?fL}mHENUj{F zQL)t0%Yk2Ab;2|c!#|0eseK>a6S{CGUV_VwVqSuCJc-fqhSE@0*_}Ww|sDr|NPaKX*suD+EA11$ul~T zkfQJYovZRNp?c`MzJxSieZA0D7_F|l354>%xi11MZ;UoH-B4bTi~vNDA$tID-yL&P z!VUgir?DIU6aay_eL>xir34mZ$ zP(37@OdUgD)=lJwyc=c}WjB!CC!y1z;SnWc@Sz2fZpUY?L1<2zp3NUWrvp+gG#IZ^ zgnoe>Wvlb|;}s+O12_49_4%Zs@o5JXM1m1mRbsOPkg$yldt8#Fj6DBWAL_Bg`->3& z8&pyKeOT1aZsuTTe#G(4OaOgk;Kez=tRJocMGG8LCsi^MlNhh8Kav}CzUVvI_@^NJ zVV)o?nK;9r_CYP745RTvMl^d8v|4c4K?+bZv=qR%gWMwJa1=YSie*z7aU!g;u}GLy z-ERk(!6Di~NURUse@riB(067ePzGd30iDcml>qM}0g+~#Jojvozn|F|A@JwFr=_+VD`ToY+1f(kp?Epn}3GeTj=m{@S(Hw|v{{2T0TPLT_- zG11`@is-z&q0uNgxqW@H!s*`=!|ctO{a~QXnZLHVX7!?_(up|Entv8?L`YShNGpCd-S_2NLdXV^GWLMX1FSj)3^TMluLmN)z7#60vIYvZ$dM zKA3+L`BxG|Etas%KM}Th5hR0Z)=z|575_xq2_xigc|! zWjbCo{KHTrXYoyk%cjwL&JvBnMbw%-5Q4_w-q|oOe>qA_NjLEDyz#H0v2IA|QLHm@ zb-CD_^FT9-<~;ck@4qRARSh&_X(q7(->|6xlSrA)fzUoJ9TkJG)v)wkL%5j8NgYaV zxP=>0hg^iOOG`47QXd}QOOXED&&Bfoo)e>Vtr#x&>E9RQ4Bo)Q#Qp;nuWj@bKDz~y z+MNTDeOfwWxb81tg#MNI>brp~$i6Km_8$;Kzq)cl28OF{nBH(G_sq8eLBHeIb@A^k z=k)xrzQN$Z@dS?*Qf1$p|3*E<^~}($8`vFd8b*E`FopJP8k2T{m>oc|9_`ub?w*g`?#bed)5=(A7JHxc4xWO=RB?Ema?ok_T0<%yH4~)*)}b@AFgB zu}_;dOKg*_e14XSba807a?I&QIjbA3&i)y02TBWu{>P-D&oQSSb)#zJJ^Po?JRfFs zCM$)2T{+OyazYk4wMc}Gv~b=D-^-OzLwq zT@z&{W`${NYx{fA)!sM2F)&c(&=)9aeT05$D-|!t9;kzCQX`v3*wz9lI|eE?$CVH^ z{ijq_WNBSY@T0gdzxXdwv9iM(=|Cr@GW>wHU~WBe%XK3YeKRy$&He8Td*yC<+EH6FgIlKiYYjeVuN)* z%fS%{eivcBszClNGQqgYaRqnxGv${Z%bvV zHd%Oq2KvJP*uj5NuMBeZ&2CRmAXswnX&H(6(e1g5eV1Pv=_!>Frj2seU7$h_axTgcmBNiXw9h+~DAvn+l+V)& zPytEba4VIG6!-tu@x@ai^6-VfK~VjsJU5aLw9<+q;RqO|k^u#=8}?LgMDQ7+0sV1V zr0|b%8y~3lV`6`^M1bCJ@}Y7=_Y@SRD=w<=Eta9xSS#WFMeE zs!|rc`G!FD--)+e<`C=KB?b7J57M7RlpyR|?E{I-R^D+@6nQUfR7jg+Ditwj#Ku?E zEP^*5Mj0kCLmJef_r!A9Y#kaVlsTbxOyxYgTLvn_V|+Ruv4KaWQ&; z0vF56*Sl0!CgqWQl^iO0E!n=vw|BtRs}x&sZzdFIa(^VxP>W{N;V+Avgo@M{Hn){j zKF=n(S0F_nZ|Pof{{D;cOVS}JV0Ss?mq0VD8gm8h?(8@8mBEG>_rNE!do}<&3ut!9pDxO?3N>r zJoB8sSK^RaSs+8rx{6O@*eV?kb+)+V6KVNE@k`1C9f%W#&d(81Vg{5EJY5)>Haow@ zUvVe-m?nm?hqu{yLFVa*JI)g<9&Wz65yunRh>XZe4_{ zK6u)c*H#|f1rhh2#co|6eiCHuu_iI)Lm%Cs|0gEq*M*?E(1-s0=2&r zYFT(bZ<#XF^8}zx9Bk8Ke*trhKc_*Leh~nT(_Gd}j3^_eX+0xWFiy&z+EZQcq3hzKlzmR?mC{tMKk_Mh(owvbQ?x+|lk)tom_uK+ofinxnEdx#Zo0*r%7Z_zdCCCPEIc!s^>ff(v zZzpLOH-AvOden6DE*d0HN=X%lqzX{J?bMP2l;u{=DQ?e1<>NR+9S{gw!Ow@$$jwi$ zy|LLQqjyJ31Esa>H^*skQq(i3Gp(!R z$mJC8%L4MR=ev$w%+IL36J|;YQjcW4+4UynAsly$cJl~#D}EV1w#Zk^Nw8oCXI5v< z22Oz6icfBCAA5k*7j6SO{8S`#DFF$xouBd-_Rb%y{>YP7Do`!2`_pUm+zj(HK(6Js zW2~8_sa^}^fHW9uDuU$6wQXyC-_6JNR-X{=?{!Gtlkz}T5Qvx#_d#+Q_!AZ)a(-K_ zKGELMKVIIjDqkLJB6f%ce;HnhT^xK+?*Q7jph!d9PwfW-FV!(#T9FfZ@?$jaUqMCu=eQbg_yjN7RGJ1vg~1H)Xquo6QDm@AuT{Ba1jHp+TU% zizXH>>_v;KFyYX)*X$ z%6;ScufKCGJ33|G@MONplI3{Xwq15{!)rP!T<=bmC zd@%%c1Cq3SVbgQNs_?`c_rQ^V#ENkzjCnvLaYSHpCuHIY#XatMR6l43C(h?y!NtZ- z1}{V1Qr+sJQ%Wg~PPlwNMz6g?#b^+u2G^S}o!Nij%Gq-jA3qz=(ckCck0H|Nv>qPR zb2qNw-L1aygfW`)*^=YA$WKejB-8UuaZgS@p*HorLAv9q+CVhy#2vXL zs_{|;F(6mZ`#fb9+Gi%X8&~qPF8Hu&tR)bT2fnC06zS2Gb_>mKW*!X~Je`2ci&b9;Z{_d!j=OP!(MA!&b}g~iBUDkp!an7)Rg46M<`6HB~lTh3h9=bg# z7)lkAhqKbZQsEk7{sPoNHO!k^bTAHX(I;;)d&9#Fd&R3j;#I`IQ3(>SBn>qXLM!tj z)569~4-fm?D_&rjGmY|hpo;%A%u!-dw15R;vM|}aHq+b*=>!W+6CsQ~$h_zcGB%p- zXACezK4UN-gyC2kzo%lw!oWwEoKa+V#*!nZrcI-Q#L6kkH9vfxp&y!$aQ^J=_AJQn zLrT()8nYhKf7T6j-8kVpzcp-W#j|7TTLvHXy8Sxbk-E4PZD~PcV(J-2T!d9uzz3HP zP}ih6?HLwzQz0O!BZ|?Amhz6tsJTeJ+IJ@Q&<)X>-(>K)CJ?XS*=L7M-`zkbZz222 zSUoAhNs^^Dw5Z_)N2ed1z|=pKlpA4P%KtT?B;nGb)Qe}%i^P40tbnNWfxmi4L`}pP zyQg@ZvVttpi{znHOz`sgtV zbBU#?%4p`VmUZ4AlMB*Ac#C^{m1q#l zJQUru$mNx5R2k%zZSrFaW-r+}=w>M*v@*0J=q=qH7~~mu2YdOO@HA&GueCDthNmOk zJy_(Kwh!v~TayL4;G0qtNCC4_Zq;3w-aXawp^g1vU|5i1*rOsKst4VG;&Wd6lxU{m zCM9e8he2*lnRK5WBp!BFIn*I4yr_5 zoNd=ta@>)6q)7ZmXIG`~*w;|cWTYh0{X0tx>#jmy&G`8-8^5-O>aiJ^+__=LQjxR2G)#Wo7__p@7ZCZT8?Ucd{~T!wQ(<>+usbYKzeLaQ5`PuQ_Re9u zy8W`_YChUq-rN6tNBL7%`UCEVBF9&R2sP?DY~2!75i|=M2`z2SaUV(DVe=;QNePo8 z)2%Y;FLbFYWnOe@r~N}9^O@eqTcZ=7xqUzs$=tq32_vmIDRxebrNZb$lQb{x$34Rv zpW0*5VaB|Sh#5!CCm*Wzgt{}cRT8iW)wD&Br{_0=sNpC`S7^Gr&T6H42|dC+5E(ea z7+Q-M>jF`O#M(`!#3(!jE#36y11{MPWS)-SS41}@G>mPj4-&y|bUTUy%9m3r5@Yt)hV^~H5E_D%C2lMNRkyLDkGxIzn zVXM}?FaYr{&+#w6AiFn8z9wEo-ZB7Dw)8+;Q5@TA1P*p`fp!E|1HU*_By$5oObm(RD=fxAhHvY&TXK0f)J*WP;f zrmuhs-D2YdQODE^{7R=}IJgb@cn{3StA|u~$EgTU{;;{>qZxO2@d6Gn!xz zA9Ahb?+p(uZz#+qA&PqV+^bLcSq3CG7& z9`C5UG39<$FdUtuZgtmNz1F0j7}{;5eZcF?IqWq+cQZbgRhD4v-f(cJ{{?Cs9BLd_ z52=sEsY}I)Jl=BY%6~(YGDGQzDWW`z#X55_!EtvyX@WaHgM97gwDQ2oTSt08G__8V zPworbWr?^?!axPaLjpzn)#07W!1-HN{urcj%I;6b8evHCWZhR_$&o=Mm?joL%~~oR zobbmb{z!Cj0BT1@k>I@)JNQ5KN+l}Fx_IdmDkZ+KycX%9;TD#q&leHdTA(+Mb#E`bTe)1b8p*wetLO$ax%M^Pa+IFjHO<~J~1WOzto25IId z_iDR@m)j)Ww)ZHv9eVd9w_<`set`}#4@ON3EiiLkfJa7d$kJIa_&gn~S@H6SPv0{o zcuW8)7*t|x<|rQ&XmO>W8}q@2&)&ozn~ce1^O|~oVdoUGaYqdJek%+S#@RoGPpiI~ zWY?vy7`4JLb&pQqHw(+-Q47@wqU7#S9C^kf|GbtL!Ovo|`l(|F!Y_WH7Z;+(l^`?$ z)WQ#(O@b{hhx6uOT)MJ9@bUg>ba~_8!OkO)nntpU^+I+h?iy0y_DXbOy)IoASjwPx%i(>!9=E!sghqFD)t(~Y5laMs1zVKhRw zVRWhuWwrCJwvFYm(Me)cS5c1}{%6|VCGq;YtV-mLw8z&c3MmTtvGWL&^F;diV0B~ zqH=XuYe6QJL~3tt5*3ch{;(23eL+L%1bpd4fA2@S@gD29Ef+N{aXA$JPXq-B#K1u` z<1UmNoQb6^Nc;sR<*`A#pYHL;gx@T%r34BSTjry1DC?)cPQvlsHqNvGZgyfwI?*tZJ&`hjD%UTysJ+g04%AzP+hnuu=YacY=a@x4~(in zPoY5P%M3{$?;hI&>|Iq}xxe}$(EbUo58&Pt@f)uv>yuqeHI=vYr2-KeHJ_f+ zpT(O3@Yt9RBc-X@N-2J0B%=AfmZq$qjV3tXSL^>{hhGMEi7zW+UtBiDtm(%c<~HqC z|386XtDgX|-Z%wjVJcz$hUvRW`%|m;jq3&MaJt(P0>2G(Mxyi1*%#dxLY>3)HIJC9 z8(-fNwzcm+LCEDw}T?>;Kl4 zJ3K2f)p3cM1pUE7?!2Bh+SLBfA^6PT*-GnVsESUVWY~&s!t-|{ zA<*YIEx*U10|641c!^!VD*x~VqpEd1#{M< zmErG;-ae~9`p`lMCHQ52>X4`2DEPZ9KIoKV%&W+%8);I&0XETHF+=>mA?7^V%>poF zgOf~lRVfeI7h}wq{sK$N)TPjT&YYqs^M48lehFTd$Fv+#o<07n@Uos9j91!i{h;TP zSYPbR3egwUfp&xk^?wv=^+f*w#WO1zZPq_pw6}36o?QNloJXC%!qNkkqctRTO-$}A zJO55$+OzOLVCI_S|4&)0SeoT;>k?4&B4oEIFq;O%8Cm20^U#nfZdlI{*E3A_nA)W( zX`%Oz1D#uprekV{MVamDqyY{hu=now%@jZx!82fZVayT|2SQ010T|1RaV~%6BoyN$ z%r&X$H|gMp=^MNwFy#OuF6p}-NSPAKn;uD-D!+c3O3F{#*~=$3u1cpE`%bgYP8|1R z&;g}7EsB1RW_VGy-vmE}QR;PBqO7*v@quk`JoJ5aS|I%%*)Y$*@5}yGNNXXKP@DN_ zNuK(o;M=Y8$ETt^kjj+LKgvJWYyQI#mj-_^gqrZ(V$y=TAsT^D| zIEvnqGGb{Uhx1>Dhq6Ju%GqNog>2aWyRg^mGt3Bp8@0Uy`j4K-2Bz_D(;skRt%(?E z`3lMm`6uWGB>jO*Fe9xo73 zbHGRLfol{OEWQ5)*7m@WGXt|t6SK{_+U+H)Y~(%Lymge&x?|QB6&O$<5>evv!!ybf zV-E5!6ees@A=OGTiJUlpK(;t+gl_gN%Xd&|$fqs| z>dk5|D(gfhiEtA(>m883#oZLnfKD+|60~mh*^S0b`+$3ylcIfNA-9eS5#w!F({YgF zBI21LQ%eLwPp^*~?$f4@6)M0;K5e*77@(h3$)vD=`~DcwOXb7z;_m>fIDuLPTrWU= z!0+ZG9>ZR>kU}Y@Ta3IWO;^M@hOFVpU`O);-~9sL`(t9PTNDKB=qQB#J`zy?YPQDu z)?-6myLF+$&BB8G`(qlcTTFx}_#j$yM%CCT+Ct$_9l6 z?f1tFShRW6D$+8Av55-g3{{D2xAGfMhOG%2^0T!;#TJOF(=NsNCn_?IMTv7Z)Ky(MBgjKv{%$7`AsCrp9Y({ktN4HnrmJdWKUMRGJu-KV_ z;o~B`ds$nK3Ku+u_x~gL{2*LsZA#nE z(f9(nU-%%t2Nrq#;drK0pQ#MNuLTvm2b>vgQ3bf+=J6492+5dy?$e69dhf5~`nmVs zQIhN-@Hz4gte`lU5HwBq&RR8j2&&WAJEN!zNs_Gg606oV#zAS&XZ@u8->Ai2&vEnE9z#Fe3bygBuf7j0GEq1&5!PX4=$z6%@N%6-) zVLh&M+)v_2pE&G7hAA{lR5#i@v zSmg3Qouc;W&}kC>!_Vi2x!VothPW0S6ieNXy}Y9qN7q0QIV1FrSqw{~17Q*kiZe8b z+Z=NHqZkD{v|*UPh9OxZUMMxppP>t0C^3v-i2nkB?7u>DST2!bdUo*R$Ip)N+~&V| z2!Fq(VT#>fEVeXPQ4Pb;V4p4%l7uH>-taw6>f(ox?1VQiIDLJbxnaVfb+0_qw%TPU zJzlwXoy$~49a{ET-6ex&w?QMYr`}~+$fWcDV{hlDAJ5^GZH)x)=$wq6zG@2FSmoDqC@-fL*^JKAn_6nK z)s>|z&B^|M$PJzA#@X(C+g&L4FfS;409-Fb_e#RHK!GnRjLiRSnV$}tvtoHo@|&kR z@j)UP3L9l}DB=y2eNo*nTqmNM=9&<62Q{CE&05R^aOR8vzvGEXKV z-v*(m(aVAPG~9c@-dUP9Vx-9ZhVC-7)$cEdmAnEwS9q5;4Bh*(!<=J zxrzNx=?+}7-w;dV0bn;LHF!lwf_52C?cPqn{tsioHN$qJwuM~*F_M^@kkYP{Q1>3# zl-EI$tM2gf+xsknqVxTMMHHuxYGO;D+;fgW7oM{iM9q#G`)=gfDL`a20W#HcLvlgO!G^2afn++ z+e>bQJwtU}ve)af+jl?02Tb}0jfQ*KxAy)VEHnz!m;EvPkJp&hqdm^Vz8yz+G7AFL zbiHT-UP~)|)fR;4{(qBa+F?x>Xj+doq5c74LPn&I_)nji{y+tbc4FM*T-+dSBtX-I zpQ)sF-FnDq-TkYz3R$ahrStKo!$S8?Wyml971!W53QjY1j{igo)~zgp=er<*_^ynP zfbqOasUZOA_ijPz5P^>@-#2E<3Q}5PB8tQt~uEy z)J*o5xb}2I4)mpf@e;!~+4Zm=vWzTmG*KsRZ=@thZ*NhiStjwDU}x;AiX4ZyJ++*2 z^zgF0L&{zR#i&(fK(34F?n)UeV>ionX12REDP28ROOE9Vtx7!vN#b zeY`f4{v%2^H7a~LID`nj>^wSSXx`TQTl4#yg%m?=x4^Hoo@659>Xit&)cFS!j&CcEO+3nC6Uf5!+0EWJ`OE zV5Sy=qihCNG1`Z4tdrZWpXco!F?YyT3+5hkTDN_4hdb_0N8-5uXa>{|0a#8C6zglE zg>9b7c1Huxy^b|W{lgl6s+jpBde{RdP2u@ zhdsYgOw8mk&iWoBdt*mGkRFt#Igk>R<{4`wBw@~0`<@vKM0B;*&w$cLbN#lw86xTz z&do{S+-eMlr%E~kIw1rTDyJ8T^*#T>fO}=!l>y~mr{q}R$&V0DK7&&A>_m}92mP$? z#d51Gqq3GYh=*svSEf^qCrm6?be*pVCuLpy6~WtHP{wV+O0P=4iY{EZvg@59x8N*S zz7n`*^$8SCMy`9axxGq@oeEsip7!%z8>JI<%r_EwSbyAU;+ae0|1K+`ADvZOt#GR# zw>97j@jau#8!0Vs!wb-NY@o3Hs0hhoWDW}cF3wEfYl&oU)e z73TpvaYSjpV^rVDHrXz)zfN*(C%;L1@HMr0izu{hHTb9+o|-H7Y$!Tf^M|Dq;jAxN zwy)>J->yV`Y=8wV8x@<;a=<0>t@_o_jAh^Z(2N1NLx4p7sYb70LjD#YL+QU4t^K$!(rjb#ef!>yM<%^tl#KxC81KUj=Ms{T{?6VVQ z8(zVdc#L(NoLi2tg05RDavUSHhl@00Z8J+P_tSJ?-Ae;2s`??^CsGNy{ua6BP2wr(_rX2gtqq(xSpnh{I4j*Cp& zfPHw?TfDqZu@tQ8#!@IkdgRQ6)^AwCW7y_9aHUfM`-><=YY0LCYB3%mikEcXN5o2` z45Cg&VqEuyB?@=YJig#@cn76UtUqUd`T5ut9W`4`T1OS5(h zgA^$|%UJ&!5YO+&!xuU(mMoODeLpZiWTY|uur^+Jfc9AZk?R9uosFoCy9a{H!$PFN z^Y@&m)=b4K^6LZiI;&kf(I`ul`XR4l9-J88l2fUcYN<3JbsI$pkNRofy<`#9V^VY)pMu%{ z!`52|#nn9F!XX3*8YH-f;1=AS;O?%$EqE4L+}+(B7H1*Y5`sf;_XLN<7uRp!Uw!xf zb*rXp`gx|Och0G;b82S#Ov_(=xZYw3J1a{vLAKF9AEQx4I%oQ1g6dRSlwNyKLsC>^ zQ*>?dc^h0gV>lhaBPqom(Q+vllg2yzmC}!)J4Ke{Yxh864Zk%z>66~0=v+gJO(Dz7 zScopdA%3r}ljX-svDmrDHp59R%dmb|%I~br)6S^p3ZGON&lPA?iFr_l`}`&HqlYz7 zvsH{MJn|PA!nPI<-#_3;ip@+Vc;v4(-BEO^$WBFIKO~mdp-txFu!GsFZtd3^aUaoq z^MI|KLE4Wz7DFRQI=+mT1yzoPS^}UM&0!P`B&1hO&ft~be{;)n3tOa!19WxN6s6-1 z#Aw)m;x^w2=BNERk9@LW;355J;yG$OYoVb$u$s*VJp7}WmE&wdry}oZDSulI?&P=k%#1XUZua|}C zn#uh3X?!xBs=3U>CvX0Al{~DAcK_cs=UOGzlU=6CLePeFaqgKU>^01)%K8TFS?7D+ zcTZM|zDqU4t^6dr-iER=wiUo>0P-vgH{i3cHJ1J0uzmp$QK)()KRWPdsDDS&F`6^@ z8n3&{-7dOgg!KB8yY_r_ENnA$F9OLZB$7l;vl=a@Q((S4<^Zi)iu_RFdp)wVgEZd^ zQAgt74B3%v%ptj-VfdGP(IOu1poQOiKeAix53h=KjF?p%T9OSgA9NgQj4@7W4SZMX zJZCzl&Q`!H;1=CZ6{tjjtv}fCAkZs^Hw?=`^;7CxId$qxIZf(<$<&^$Rg2Y1hJk>( z;f}56*E)XP8hVmQWCO%$Y3_NF==9>W1-%x6T5x%B+)p_NIyM4AhuVItEwmHAX?3GA zFizfAo0CtjwLf(nn0+EiTVlSlPb+pxUlFv~W<(=cz~k63a6Z`P4TNmroX}lVW|m$P zYWCx;U~?#T6=UMpM|}WKZ_zZ$oj^eT1E2>f)FWy#hlU`FjXW~a6;J(J>-q?29k713pR zlX~)G|J`w0pTI6-BDYL3I*r};0+Rf0$+;{~ZjfB|nccVT;y*7v?>mMQT}E%eiUX;8 z@M(AG?sFiSGcGWsj@)F*g=*M8ETPq^tBXM|@WJl7oSDHorwjIdd8Dmp%=?5^H(8 z9IHPaoa@3v!m{Z+lRWH+yMGk_U~w*X4U#dEW|#bV-1XcG+3RbHxUamgJhqDGqaP+6 z9~vLBqI7Q(P~P}9@x^A?aNK6xX7>$D045+XmFobZL&=KyL+kdlea=rco--q7Y}XcM z>0ahHW#j~;8OqtrcG#7M`NDh!MvPpX6H~@(_v$ZE-4g&>qE<Qa03@<0x|yilK-h&8M0 zR-du;1?2_o_8}7cxWs(VHqV4Q!&}1-(DLg_p0C~@`da$yNS^WRavOu$+KTJSYY>kj zyY)DDW2U+Gwl?9KWI=bqL}YOVg?4ee&Q^D>b2aUx`r+D3xifuZb^`2vO?m=5M)q;( zOj_6L8F98Wt=x2M1Fs%EpLpHSKGfded!hIj`h)$!qDzpC)3QzH+h&*fh-Imhq6g!f z@4i2QZT@W{8a+e6UqCfVD>27}Y03slFy%aD3;hz_Rm8FUjn=dIBj9oK;fHUXh;G22 ze3!{Z`W4?3v8$nz=Nq7ZlmC=xrK)@o=WK!8w5Er@eRP_|;jG5@1J$z9ik}Zxsb&g# z1xd+i$z@_W8p5=O1!)?bWu>C4-eL7AFJ1LH^*Jxe^%3Dh#WXM)UsVsa;QwfFER7AF?1>22bg7mknp z&K$pV3W^DIj#ErfPDr>Xx-SXXV|iXaf5W;(@A-0e0|m}@4HazN=9E0uiCKsqBs`St z@dt1Ov6x^o|3ph+K#h?KjMu~JYGk^GI-`ZvEUAAo5(f*m7!73%^?fIOKekG z!Wxz7?ar9bWL-LM8GqBc@J&5zig2p$W7Gkf+xi}V7J9l2p|YO+)nENr+jnd#JHTP7 ztu?t_CHn%RcIjywTZKBofNbB8de;Z+(7#{LbbpO>60pLB6Rwub0dQ2nZk&X zCjWBXRUl)wfNVoFS}~h1{*dC#dyXRGcW4&la1SL{>!Q$se~2I9r7fw&-gfsD@EVA; zPBH0w9y-%wIRRAX#5E-ZXvK=@67DTY1ROFXtGsw=O8TKb&zD%M$NaRY899gCr|8V1 zJ@LGhG41B_o;jY$)6y%1PduFib!b98o_|P=ssKZvs zgA?5|6fl-{Rwh=$31G^L@<+iB%Dg6z-*rbKa#n>&?B$Bs0YL&ajjF5{3;A#!va9?{ zH1X?x-(^3V#l#0abjpu*`n z)eX`O&a=E98+r7pDoe{8nulEs{DGpKxw}Xu=i|(!orZ;}G%QkT_XrjNcBcG%@|b1~8`j;Iyy|7o`n<$4AR#9} z9FRv`-Asqwx-AuGf6OkiDaWp%Df7^4T6Rsz``3-JV&A|A3z0bNoPKK(RG}ZFakxFv zn+Kv+n6rqVRLKfa25?+MDRdUT#Hqt2j3-xNyYy22>gVyN`Xc$JoUZutgP5zYSD%mN z63R&sXv8UV(8t5BqV8MovHa~{%wFUQa`F$SGe&{MX>f4?Db|i1_*#igC%};>TrlBM zkoGKX2$$8=XK4T&)4;{DpJ~6gwZZ`B) zHTQEW`+c`U5_SPT`#87=)FLu9toQ=s9zzlOnWdz56VdmH!TsrO^BffYn>P%pKvF zjb6p6U#%oJkE>ABMr|mX&Pw?WYI!bJRL_VH28J{_U_T|cQZmLZOw)lH#}m6|TGDRJ z=8wNJNCiwGFe#$oj80Pv%Iq>yx@GmcWsSQr>a&rjE26k9XBfG1mCl+UVu%Yas!M|+ zVv(s!au_rn!%GQl_?Jyf!UR#E?!CZi_?>6sUNp=2a^jw6=^^yGK>ncTz;I-)?XZ(U`_*_;miFq| zhoTIMa#fsiZggn;Y$N9+q?Zw&`;l2 z44g)q*jm}>R_!D3H3*n@G*Y`Upr6AQ<(U@bWiJhNEx@JbV2|<{9YQFHLR*J{aaETm z>w+qBeF27v7|Ft~*q)ZCGUZ&%-^7d9LvQ-te6}~3Rc|5(AECaRPLK7!KehlK|U@Uxjyp~ixY1J~ZS7%--jQyZ|1bHQZ+ z>(7pg17TV-unj01(^=bn026hfbUSUkq2ZYvMSKnPd?O-YOD_2wQQKE}AL;pyhY}pG zF(qhCE(N{U5gqkOm#tDrP-~r`DV+L$mr{uY;WvUS6v~ozcr$6d)XH{vZiUL>L0Grz zU+ZQVKNo2(B&Iw#9T{9!05du=jLJ;qn4Tro4>HC-dbIKzGVDAZKPdtC3HJ%3`3>`G z<<|EcOO$LnoAaWDdIW`VHg}IDUpDhLlWf|WNdYh4U&Q?inhTn8h3P*4u=r7u_8Z)Z zs$_FZQjd0oD6AeDpBO8-2`f(*B`|yB5f0cX!=9^Nw02ydfJ|7%1n=l~64cUXY(ECc zFe4kR6~qbCK9@1)#Sj`N6OYR9ylg@-g~| zY*J4m2O{#6lDF~)5SK#c#i_Q)`mYUoxAF`A)C>OR3;v9t$4{U~PW{`j`nOh%r;774 zU=Ozz6$APy2nl!If-317K{?WQ4~aL}9-CHMoVXxjC)+`aLIth|J+2iH@iPcB#3DlN zm9&W44B6pVAU|EaItdiwQKgv2S$OT(?>{43cl=pM-E~>ts~i_}-J}mqOEtFAJ+Dt& z46f%k<8}Cz+|=2XAB}JStM+rz<4qD$t#_)1-lkO}1ihxSSg(K;MDSU^UVqA#Fo?;R zPCtVfG{#x02vYo|-l1fmtEU^-+9pUj*J%F;2+k)8h-g zY4QnTinDH%QH*kEkyxPm?i?b+rI(? zhk}(B9Ml&a^g)XnwPGMKH3hr2FAi-=3(oqkCte>7l$r<>!90dE#Iv#xYKYMA&H7;{ zp2trY{(C=fiN`y?+q+YQebG(-Z_RYLRd^Z&RK0?<2gjkj^4>T6QxzbI8GY|}MM79q zz$pP~yD5@;y%7b6pTNV6RAhhiq=M_O$j}%n?yqlL%NXCjCG|j( z{YJ1D!(L7BQ;4UuAoP8Pr!=xhzh))O?sb;o8uY5aQ-E}m*t;T;Sm~P9k)yx=y+pl1 zZe{j0BBE_^wNxekOdjH{nMptSc;9l%psL;0LDNaGKlJ3}kD#j0KH3qa+#YhqSJlaw zGvzZw{zr2)1fGlTVlw|K!0Sg|x7}0wE&J}qj(-uTyT^y}B=!1OF23dw6m~m$^ZRIZ zr&hE1(BCk#=HO`H%m|jt?DB?|(RkO|gyK0Rg8e3G&R&qmd}DCC9?}Nwe>6_apX^TP zMzo>H2>||J-Y&@5PVN$-K1m4PaA#L>6X~W@g`~gW4P`AJkDt@QZ1UT1lP_o|?l+`e zw4XW%Zwk&>>OwJU`D?BrA-MUH{rNecOXDxRq!NxJCl7e%Q$l|u%{08Sx40*&JhW_| zQT$B)+PxXkz7nRn&LfzZ3e|lm5JNiyIK4VFU3&A(*g;MFW!f`*(Yrr%Wu)ax3VYeO zdp=R@-uyP|`FPmMRr!eG`N~=M2;8L?_brr|(@eT=e7Jb__XC!y^rxKK__)g-R^;Bb z%};gI6qRLb5TC6srMz)zzC{X%XZ_iCdmG{qdR5#7+Cm zG6jcL_W5(_0sRH4_1jz42X=C#+pE`^-bp~$^o30{KySLIl0I}}Y-4RH<#*|`zpBwF z0iZtLwQbn&tV~m#V99(&kDt2ZjBxa>n^_sHFVtDQUlxf6R{!rMJlXY=jp_$p5D6Y!$i^s z&7EIdJLPBa4T-gXqW8W2RdWHK@}YC=D}BEpjn@a3P`eGX(_ z!G+kx81x9V{0exuNZdTuj%u0!MRU{EfuhL#_N{EHU+#bq6$?+8YOAHMt1u*ft5r3L zTy|s$baini@^qUZjZu|90uY+73s}J&`u7;HC+AZ)qPozXS0QU5JoXAolZk?%-m5P? zqPV;so**u8*i27qiUo*<2)<0;UzGcnz~_Hv@h-tUf~&rt@|*e|v&Fn6@y=Kzoo(h7 z&|L(dYY`XW0X*qTd6}#mBxlW`-or$?eOvc4k0s~NLCp?UCz}kN`sOZvd)rSKcft_T z^GD>PbqblM3LhJ2flwj16EIrgn%c7-e}-sY)vyb){w1{4eHwR5V)o(wt)SoFvax^* zT0m+^k86KD^zp*Qm6_LzJ`fjF)f150>uX$5ZO%7YIMcTpq`R2=`PtX%`nkd>jY}jD z)LKHw0sp3V*lx?1dc%rpsK7kTU-GpAou3q3^42O0dNdloc+vx{}C-}Bo2 z=x5`5CN5HN7b9T0)fN{}(&L?46mam1;+6088nAuXJQEIkav}Rw|M=oJ zbQz!jb-ZSB57S@fWi9!jIsIpt!I*d`&|m02d;nre*k)Oa7?D zKj%VmRH^FXdh8#^b-eGGnnRx89((3LbgCbqzZ4=kbnVWYca7k%U(?KRZM-$CjY%)+ zFR<&X<4y8C4JZ(!vAPY-E4YWj3WIMM{VMK}qDf>4c*Jt9PoFPsyaQDYjvnubeXEO3 zozIHzX5(g4qt{u-6-)v)3|!!ck2IrMZKo8(S=^e>_0D+kJj;H#b_}T;-n$KlKeBAP zMxH!=+KzkNSYPfZ;ca&EkFdYH{UP)!8s?3P6Y>-l1QwYTXCoawOY}biaEug+;TxW+JnwzQTsYE~LZDm~J4yB_4(ng89xS8s@wd zej?&!K*Z|l5p4nu+`ELo`wKAD3?`(Nz5J^X)eaY333X@I+0+5$woc(4nix+M7%Z)P zulE!t@x6SK_;)5yyR^!F;pdWDe8v&SNBofQO?Jk1#(Acbd#kQrPi+$g^?pI}vaAnV z9P31GY@3gI89(3qK?&>RYg|y!{HoAL|Jq81E0!^FXZHN)_OES#Nb|RQ?A{tN+r-0rt*G5LerY@71K?%LjpCdMD$f*&FqETH%L28?1gW95zye@c{URy8}EV*q@QmjW0*`u3^;ac zWNWH=>Uv5%H6T7Mr=wyCULlv0CD+_WG*VEj&{&q*w#%84YfTfMmflgt1g{D>!u${Y z`wwNn(YnnsU%c%t^Q7iK|{wlo`x6Y||G*+&hy z!2$!^Kpl=?sWueU{|UU=98Uh`w#l4ClfB=;skPbi0`^_$?&tnbYeQKM>E{|P ziO;MOK8mzSlO^XE15N?egk2IEhav-36IQnS(f@0%fj0x-$`5V891eOaJ9(qp{R~b$ zGu$^O+)-DR-(h6if3!55cKMGchtn*IBMKt~XUyz^TQs|0WkG5t9{mct__BUwU0ace zqs;N2;a~+`duXm!n6SIgu?u`dhf^j8dMX`VlJ|W{#<>#{ahG1ZA7nQwp8gF-q=}IU z=)n2y{}c(hGMg$!b`QFYps`^L;J*aG4IxK=-1bHn|Kro){HFHH_Z>Gl4=jZ{z#pZI zH>!dwE^r6!|9KMQ7Zb?YQ60^RTLX1153~NK)WMa_G(OUHT|jfvurUAo!zCa z0Tt_Kk=Ct4E#~GoK08kHBr^aaY*fT7<+TYUu6jwK8vdAc>Ey$1=ww{jgKp@p4DYfV0CgZikd$d zB~kSRp|I|s1`SQ$aACGReWAe;Dum9?&(cq-ES6`Gy06zWg-3*uS` zYTnROO>gX75^rssUXqglyQ@{N2qfC%G{()uoeX-pH3mG%WHt~mv%-a!Y8c3UwXv|z`h)%leQICv&)Ao`v2m=*SCVE@gPw`wc%3>v-{O3eJ>|KnV~3j(8S4Od zY=f?GGNrijRpkRr7?wLj*dL*Bq3Kogz4x)ZY%u3J_@?Ctdm_7dY0Q#8>XomeFwxQt zmyLvnMn28-m7FT%o4pIIpd@-?O*eJ9KzKIv| z8s1JMu*sQ0wXfk$tg*?nSwaTB4S8+6=WqjB0E6!;_9}*9S@*P;Aa31a`kL|igZafh zzJq-dcT9Y)9-f}Ejy(f+Rs{rRs#hO(5&Km$XYrTXJ)ODc@hANI0ImS37m+>S&IlLm z3nI!N#Dhr*7=sm)umm`W{wcCTpIB=MO;2L9Nm7SyS5KWe=g5E-G^2%QTY@{^#$>2n znWjBoEwgVhUwia-uEBm9pyO1-YhP(OFEK&Ji~=|^@Jxd50tavYvJccDF~Ce}PMUxJ zG^k_QQVf);W}K4*f3!zH`hS$7N=eq#GBtDtHFSKe15nu`2_Tk`y?|jxLC6IoxAe^SCNf%tb7r^~LEm$AB>val*ux z-Ttoc1rZSFSsDIYFg2~%*^gUsT7!F3D-wl_ib9P{3o#Pq(K0$`O9Sh>YT{8vsD`AL z5N$4QIV@F7qB=!`rHlw)kuhI`?BY1paSl;S+A}b^u8`Z**VLEOpWKfe`|JQ3d6x!Z z#_1VdjCza46$A@(Awb=9hX5iG1*oxhLWRXuhTR#oX_A;UV$|`%3K;lq6!pRi}r+b)RkDndxM0J63waH_tc8J=LAkfb2vVV}i(r#U9y5iWx5#wJ<>dFA2V#OYEP& zr6eJu%CGuKbUrKkX*Sm`QfyZ^Ot3;|HtC@S#;xsP&CgZY^xIDhHPeMa+cV!izodM^ zaUZFFpWi*vrjCoSid}#`2y)ydIiIVWr#gWpBKB?z(fJzDAe zhdLNVn)imcsCfQ|yj`u{`{Dcd0=oRnQ=>K$8Gk_@Iz=jf<>q<@^${Oxn+X6AZ=m>5 z!bC!)OQ!D?1~ z6f14WiHjdAVHwF4&ZCK!SXNLcbIw&RT)?r5gqnG28p|jZ%h(soNE6Fgf@<;sS2fDH&WNR_p;MRtC@!X*e4_F>IJ# z${>(`lNkJ;sTpT!zAKRWANv4tZhwHM!%xg*DeHU!}vx=q`{`N z{)#P4D%~)Pu}EzT{JYIJ?dj&G9|i`zEyx>=ksA@T?)@uAO};b5ux{CWZ;h@k93@mi zy+KjeIsVv*t!qL(8Y5!CzBS4x{nb^P?5hzVl7aCuOqO;@RobpfKIrEqfw~FFjJVN# zEW@}c&FH9B7MhCScXv#gKb}M!i&p(>Dg+tJf0@^eq|ylm5e@-3RJ87b6IT z1Wv?KroV_fP<_F+<8mFM+tx8S%>$9klX}Y*ATo|tBE!It0FKt+l5^M0iwh*wJO1By z{PxFOH$hDA){=1=(gFhwIo}eLqrP+GxB(MA$`Eh2e)Djk{ky_oxttzr!79^;Bh$zl zWaK~ve&5{sttH!jFS~tMe-adti}oKT=_@DLR*&I0xQ~@!m-|)tYJoulFV+|&<`^Va zAYz`OOv^wcN)E~*qrvQJVpHBP^jRstbnlvow#Vr9JlqArX5X?LCf+qU{u<_tNwSi1 zZxx8herq~`B5OXXNTkfmO_+(UreHp5G?<$4MiUa$ONR!u0X&F0{6VEk_j+86g(ITypNlkMwb(~n!q&KsP zm}ZzRma5+D-EuC@w{*`sPqs?QL{=gR-nMK5W%Y{7wylO9{E+8b{$rN`^8jX<;Im5f z<<02c7aa_!8`Q0(uB(pd*mJjwNVx(qGR3 zxS8n9|D3^Hx4`}W_bUItvFHCkgfbpq z*v3*Tl_+P6OFW0FRo0q$p>a$POGF=16tXe={DD>i*$AvhqwjZIRu-o){zfA zw|m7KXBd2Wm;^(YuO-qjr`DWp`J_e0kF5)9Pte6zmk5hmTWP?Gm!y9yX46uJHk;vl%;UxzJvA%(7Biuupy!{M&%eAR|D#VTPAYl<3qXQeW``mH zLv-CG_9b^Ug=GxP6T%b1qW-IZt(5$qgqH4<>It=xpwt=0 zvMNSUE*$n{NNw<`htAdzvsp()$J4JiahMr@G_eO zKeNQymo~Gi$2mnYO<+1IUU@ydIb?b)!Z5^|Hxsy$>gsW4#(pxh`NBVH&9J|AxQ06M zeV?rmU`4M5zfUBqsM==q!tW;f8VITzz-l9aIl#yJv^=$Oz*<)5+(-i+Q?JU8w_rx0 zqPMH4R!fo$Lj;nT`^5XiQ#N@v5@}&-8LXjR6X*@t_I;9>C@(P+e$@j6l1{DIZcCDt z=;;4=z7z1HS9LTG>xbsL2)YE-K&RMM%=E0(1j2dF@ zkT<6K?*%68ZFt<6RtxK3c`%VXv0uEyK~4==;M#~VwP4mzg9#ZMniXv?N%B@ad%+xX zGu9h`R@!r=winRTE3o8=GR@0Npc6;eByqHvuyp1asfx*0f@$0&Q2`!Ejyu7zPgHps zsWpE=M#XUxqebwBST44kChc2+J?)aLhHKAB8;)*%@@R8KY4x#wZIjq|0T$#kTWf>z z3Z+*alETz6-l!ER5g4+YXj_m)hP zFPYKJV&&Dx300pSEtx1`3-IY$egS~DB%;MAROWqc%h*?vsm(aIQpme2nP4hNTbq*tzS^Xpk4|4bVjAdk>)1;Sj-#`nn-n17G{%g!Ip z(9h7@5+2Gjeeq^rHY8n&d^_7lR(G(}fu`&KHomzu`4Ym;tOaL$mwlJJGY<78xZV-)v6S#_ubga>Pt5Yaf)^BBe8P!RSMOr6I1o;Vakj zluXe9CuN%l40mfz|DZ#%a`!CAs0YFoGVmPjz9X8K00M3JO7PAh(N zU}#$Q{&vVygWFZygUR~2Jnb#*`0FOpc(5+cKez40ktACq-qUjr&O@@qH6QN zosrke?dog|)63s~Dd1OyWkQCp(n7O*S`oHs765Y18fM;XH?ECd zASj`5+F;N2{vnnWy)@s`_G6e867VFN_08n^-(|bK1mElCqUO4P8ltojjIz5FW}Z+g zZ_a|f9oqkrH|9aH2>Udvn+X|xLQ*2+w84SjiRRQp&hoP=lcaEgKK#M`H)n`vh{;Er zfNs${-qoDAWg$X|%7BahY8O@g_YA%6bqZKl$iIJ|7S@G6?9;iBSQ}3x9E}U?d{BSi zT(@#I(&BA2gWpXnIvb4@Iayci{e_&QK=G?AM|Z;E-Q6F?2mV=kr2=z7F1D!X33EX{ zQRZm2$jQ)R#Vj_>kK3f!8TiB42@ZKE=t80<66(tcmUMu$E|RLz^bE%VsN0)Yywh(2 zSxRjpmxia;i9D;_IG4Nbj~&m9^W?`^w2S1Y@r4b(3BHt89Up#vkkS-;+s?2ZA7Yg1 zPX9AO9dPUFjjQcZps~2=-|L@M-C5s`&amje?w@zm?$R+em>41jbS-ax;=dd;5 z_Yo!2OH73Nxhn402=4M%3MT(XD5) z$8|J^4}yT6?u(7P;1>pgy+9H1IK#uN-!00nX9PX8PvH`^At`ZE;Jl2dz3#!q4-VkFlEdnwMgTFYjUTdqt;C z7w~2DAM>S+uAUBgXY|WO;3kG}o#>hEbiH&}--YR=8u6Se=D3oQTSP9X|S+88JP*k(Wq| zhoOFylxJ3v(L1G73CUqG*zsa2bhATgyWX<6Pz{5*fUbJ@$u%>Xw>g>=ha;~#y^EsH zJFjLJ8M~u0Y7xoxnntUoJ}{L_=B$)7#aD+{-QS*rizti6+dstgM*u3>tvB@mFheFD zP`8_kEVf(w&*h~}1eKUq>%`J#N3{riVff~^^TO(hvfWZIvRa34j!^8U)Az>)w2cnR zzaiWMc~Rtc>5pVQ`+3#0Ue#6}IAbsRXvj0Xl|jvoE^FWBW71z)6Df{QgFCKGJmasyIq# zNN>-2H@QFgTMxQ5p@w~u)4T(3rU#MWx2MLZ>y`Huw-j?+Gu?zjmkh@P#HY`v&z1iW zytxekQ~vL10*JOT%ySb0;|C~M*JRgarwzfH(9<8@!be$uRm5Ww%olIk@z$d%|GD0} zma6j5R!Jc|UA;Boi7Eyxxm_^#%(=5Gz)7S?4be8xN3IR?xB4RgNes<`MfyZ~hA36NmN zl_!4LTF0MsI+QHvI9c;z0Mz=jwj_v0T{;84*ZkC;f@V7_$6k`PA-M5*k~ z$XlOCC8-DFD1ar^u1zTSdnL)b`! zw$@X1OIPMO<5OkZCw3(Tc_{@EEb3Y>3$zm&%`u%ItPq*xnT29qX=qaVu>S{LsIGxT zkG(Z+0M=a%wn@3M{1fW0{urF{zeXvkobMR9_+txc4Q>wcX}prFw;F$I=V{PTS0rL(J@S%grjx?o30?N(HfCn#Rj-=mN>B2gLi@ z;ovr%h19msu80jU8&Z*@HMsX%U))lR*u)gKoFz`9wsh~Cj8gkwV=Z2zI~7!tW>Yjw z!sdFY3zW8$W!F#oSpWgJ-rPrZ?9iCTrU2X?v4vr?WjQb9EiXyuf&)6{QC|5cf^U)C z@14G7gYr^?FJiJS3jU~USv+lt;NU~cvW6G2O7aEXe@>4vmS-fT4(W+>Ew;eD#hc^O zGGq)#)*@->3eZqc<@_ow-2y2T zCh zm|}B^ZWUiGby8G#jAa3me#1Zb=+vJ6nTMNFqvwr*WhF0blo+ZLxZF;`!L}q>BfO{< zzI;i7x+0^PO?ec);$zRIu|j{bYIZ^q3KV-EH^abKMz?V46Ka$j0d5Mj%O;?WtGy?p zZzVv|G5Jc^8e%wK8;-9(RvShRi8n-fbg#>aF|I0F#qM;#Yh%1AB+yH#awY`HMCe+Q zjM@+}%Ak#UdpAOY-aZ!knciCOoWh@GYl!PXOJOeVXTK(Z6~6T6%inL=AT^xH#o~k| zl|<)jwoDU0KZR>6wyRpi=^`*?DtfLHu6rMLiOr){%rdABUMnP>9;6k<2%34lyVYB2R9HCWc}lEGhCAwo85qQnD`YEEGlDw{P>!ZK0vhmCBLg<`Yw zr%LrE{u-KXNm7i%A+L81p+(v{za{hGAis^s%^3P&#^()sy$?&qh0l2H=-vqrKi(2=AhguSZ6DW6e%s0itKR-2VcfiB8RlxB%(vi(6HphpfAl#U=@X>9ANf$5H&jeuvDdDc(DH0$O^ zn$nLxP0G@T)D<9EKIga?w|y79T(@O{bzgnt6&PQ2>J^+i|M$MWuPNPKLqFx0k$s|^a=XV~%8|#-ArD3uXMIUTcoIe8(wma<&vDfnisodKRj_NeP)B`6e|9*BT7K-w zEOJZM)g+GufC6Q<339|-Lz_{W4Am-fvpcoVfI>2M2i z?9>zX2|ICJy%XIAl7H7Xts)$cP4$N2;ZJ1reA>n2X%1r)xh`sA*U1pY95nsHNP8y zd^KCbXo*G18?Qw1smn?Q_9Ijl#NlL6eCqXOLw?@WZB9oq zO$8JeAEbPVv1`#amz`HwYu#!E3$uRk6~3bM@>S-Rv;8M~+&vW_9x3^#o~ptC%fF$x z$pmz*qMwME6QmVKv>cY6=8C`CHP2%ZrjtlLn?uE4Im-3)xrJ8VIKA-p7R4RJX~AT{FEj^Yev~+>&-51$uk5@jzjHGz3!a5qHH+sz z_H6(5RE*ylo%mV(>S% z_V(qEZ)9qBP2)%W^Y8(v1KvLV@Icm@sR*pI(LHm*>S{T(%vGGsWqtJdEDBh~v&s`x z^ZiKS)DGe7&#KdiyH1~zSG3SF(ICu;(e> zur97M@0wCz!DI{1tXD<%##iPV*0#8A1Ob)uW;bdCO!Kq{JwpLd?TnsbSu=3>j+EBQ z&#GFRq_Y`F3Y(jMqtUnD@UE^Yyo0)YBlRHbS3<27c>z;POhs;co+rYrp@dWF3!jRV z2^~94vTk)}@1-?>>w9nQrH)xxksAX`O|gFLNpU~>68 zmRGWAboY5QfVMv+shRA>uX{xg89g)<*;H4uOHqM+FyEIasr!g7M|PnA(qO@KYLAgK zx8uK!Ax{(o(k>P+qM`LTH=kn1DWP%aGM^Vt!n)MV*O?NkS7pSXqdW<(qM#7MqJqT) zsE$*$Tg)XP{+#jBYqrTa-ryX^o-EtNUqKmat?~Noe%T&$(R%~+r{_|;i@%>zWf|^F z&QE6?L+`G4Rp0RpmI5n#Ty+nRn*XjdT>EibV~+`AX7RY2dFjvAJt(RMQj0Eyd9ONN5rMtR^Z(WW3s!QV#MtsyCTqpKULGJcKBo4|)SW*pw z1VKurhSr1c$b)2u(S%8UV0dVl;U1*^`Zz@#L|j;avXCOyK;4j|QH04g{kYY;RY)6L zCNZDe-pd@~kJH1)PvBwyo$g@mZ%rzJAL~z|3)K+l2xALSG)fFmz4`ljXKE%E8r@CU`-&LY8OS={yVefQU`x-(r})6+9Gr>4$yPd`VVGz5OWK!c$D z;Qd$@PLXT&!}471ADf6waGF;s=&J-`47uXD;=>+{F34E)K@|>-4qS3Z!~}>uh&&&Q zWm~>l)H`rY;~43uJCw6lDYm$_a2*D1A^l)MHAME*y=TYR8tZ#E24kJdeOSCPyQe<% zMDOB5wju4J@iDECncq zGyXua(w3R3NLcyRo0@Fu_N7zE8S8L<+>(+bd(u1fWIUVQFK>QaDAi9i4o7;k=)Zzv zpJ}vw(txUvs{dXnAHN=s9?Ho@R)tlGJwp$da;)>LMVF+O0?ImR@PN2L>Da@hLmau# zSBw|9XV?rZM<8E-E@saR4y$cC&&qFh)k=Pt@sj9X8_o9(wQbs(@Ci*Zs`?$=5a{?( z`)0&ApE$HvsDw~i%GEvfPQ2VrGOq5C$gJVHYvFs6IdK1!zF}d{>8I@h7<#5~>Rj)z ztGMeDJ^ZaQ&M;LC45%LU+W=^q zORmcaUp}L6wt!Xq*HU%=BP^5)!r(xmMrf=XuG;E2%|3CdjZ+z({>T+^L8I-wtSY{+iT~SpF-BOjGtK=1$xp|c=L9K zW_TwP*X*1DI)+kw}(E{{G6n7#`Av>GP#j zK3~4pElDz&?A7iXXfQJOHYkV6%6|?w2tTMs&)Um-7(9TJaL zx3W;Pz}Su#kMGI;$eH`c;A`i{u3l8j+~2vsLr4*c;ooEqX)lS8_SCIXdOw#1ap`|T zPYQt=eRAZ805aJG+4e(&op<;bK;By>|G$C+hAWaW&%`tRyoH2@geE@0M&$TC!XOAO z2<-Yr$GUq)}_i|3kSLQ#PVv9NDP=uG6aT;vpofc}Uadvpe4GCOITesyxXkSFre z;WLTne+81We`TXvLd+#ThJ2y;(JvmW&_5NaAERI>;Kgrji`=D4P)#JQj$$zviCKAk1`VsE! z!=MmDl2#&*s{dx$$YB()p0jU9zubppq|d8A-?EWwOICe+JC>p87m#lI<)>J{z`IVq zE?OO~|Hb!i_$K5o@BNFKQBaIT+*`BfUVA3Ul@|8>&;zAHl>R5^;soy8X~<7gAt&# z^ETU_CQlgE1Pv;WFf)9(c-FOSlAWARwpRg2n zY&()Myi*tP>3jhhu1c#83xRFIIFx?uPFeb5A18j^jFXmG7F^T+oXRB>uUA97P7(FT zOH9o!0#fus#`5VGz{kHww8A&Z7MEi^`D4oOBgXt0he!v-JcmpN)X?!E_S}{HZfU(Ga}#PpYorK#)v{l{(1^v2}!&j#vY=}g_DHut9vFTQPEP24YSjxfIur) zqnDsUHOjH7vV?m!g(V0*cA;OA4ZUaR#033=0fT<*U5)0>rw+^@P~-D6?W zUpjhFEy8wCt2NX$l^rL-X-MRSz~%Fw_3o$n4H3WeUL{e=^mv!~K(t!%K8 zo>J>qE2RlDMR02iX}}ZN|5Uk-B9wRHTNT@ku>|r3gBV9O5>||{IPwJ(7)K_d3Pzz= z?;Vtvc=$8k!-XSGrM3D+b^6CK@}wgb8ZyPvg&f1P_&<-X>s{cYY#{CE!PyX)&Fg{{vzZ#S%~UwAoc6WUe9NGI3vR53=^i#-~N zlEnWy^&0~j_fYp`0;i(Oifhb+mJU6bCrum~3M;>B-fp^DZs$nizrSI)Zpp}fDD7)J+ z=j0KF1#44tSQsk3a2KVqZPfF zt)(XnZjSbd?tUlW!*fwb^?e85J(I4`e|saN>Z&)@*jy~9O%5P`S0a_(3HLY0f0RfA zoinm04wn8H{K2U-KwvWRJB$aF49zOg@$=wy;Pmt5*BABOo^u;^M2>ljaV(QAUF87*i0 z=ZQ7AiFcwNusBCwPO4WgV$=$tgXLQ+WsonYbL zf{Tuijs?G^uXT-o`R4iN;gw9y9H=nV9KnoZHVVP9oYh(TZIApuLMK7+ua&?2%3}a)+0w2ylcG(!}%6yGikneB+sm!>TnOg|yf$%}xe4Kc`RQ&>>=LE?Ad*f)&CF zC@>K^{LqKd7jDexmc~(2oe}DqEnSnG5!AUWU27=t;i)mc<~TJRdqS|{Bn89!t8Z-d ziyo4ehs|p$#-s$5DteZLZJw4pCIv=*APXD6V-2lb0kglo^*zsmtVL4( z;)wStmG}PPW>R|W;hmLT)=s;?(C*AH!KgM0 zkKGlmGk_Kn>n4Bc8&jdXo?n{hy6%gv++N3P$Mk@o$SbzhSoL6c@Y(nKyF(X+;i$5Q z7w=(%-Cl#;;8s6~!SKaHO~5;NaeS6icxao5^fsloW=ePJZX2k@IKO%?wk);w;9cW7 zjJ#)}DzdmWc@Sdj&ykSN@=DzFZ*pG)NVVNqAvt_xe0t_niN3gh7Nj_Ou!ff(Ia9FI zGuX4sbrhK(Zjv`ci?zeL!+NRfeZ1{vgR{{QDG)Y=@Wa?|sMxI@>gF5AP2N zLg$G1{_puC7UY&V`I`L%V-b6_<$>!4Gs;~C_jmh90^{VSTo0e0t5hbKzv@mz25jc8 z;O#r0$pRa3j*-!sj*21Sgj^ z{8pL7OW=qarBi+Tr~VZ_Ls~{OHInuUsA1MAL&9z<6M)CvFSDoo<3aj)?10&+1H=AX zfLZ#}W22y9K=B2Y)hDs;tYf`iU6fR-t8xqNx2UxX8#Nzg=M_aSNymJvhP;+0rT^ycppS;se zEj8#T^h&sGvV25}`S$xBMvmgE&;Q&~d(j;#LMM#=2D#r1`!bT=PR_nlJz$87X0jxL zN-KAx`ez z*ys0F|DX%KOXU=XQ#8k0P_DmA)&bQ^8Pi#;k`0uCiRTF^8RrVU9NVFRd|#d4Ef1|< zod@E-X3M9r6j3wE=zK4tVwBUN6b|M1Ft_#9m)=oj`}@UF|9!tZ8^c9aztMJT|5j+< zfHN-}E6;_0Kk`Lt{~ruejBI&t&I?sG5jK_?#w_Iqs?~m6hpeBf#*W6R_r}H`<3e|~ zTIO0MMnxO>492d6d(-Xs?Xm5%^?^6-CcjILKO2z-(^Ce^D*m0UL8~ISy}_t>{Gt-b zo#|PBqlot5K6>>c-Uf0lqbwSK;l&X6`>Fp6Yz^4n`loiHSGX2Wjk7>!SX|E1tzh6p z<__&vEmCIij&GSQdDlKhy&D#}iI%jT6-YC}U?yfbO7rel{^%4pY7GjTvA#x(oUy-F zpQP*{#bWVP{x@Bm8+2C<_x4&r>8TCqA|hz?0NR?S43ThVyPyw>4;o%tDAE;PD%{*Q zJTM!F)|_lC6k+E!A3poc0(zWXHE(0Qf(ukO{H&h&_8vnnL`FyjET22^p2u;WzTH6|8#(LFS4w1Fvaio(h?1s+24cAM#XF-b zb4eDbMHkOShT~qTUv1g2a9Hti&PjCsqStudZLiJA)HyP7#)F_qh|pU$o#vTfmUv)0 z+CkPJUYGrS*L}+tb{_+0AE@0;M2WAkuPTzNomTzKRxXQOz8eX&cFPvfv!$)#j_2(J2?J{un#&bBq8yJ zzlTpJu-U{7i0Tr|kiCx;N$s=+(RN>+H+W>UeSTKHaj18;R{Ej9V0@>Aj@{Ai8|H3_ zl%AVI2J6a1lTWPu8hhTIQ$Q}aO)j@4T_S76?l_EpFEoJx-!>1Wai%alcS`B1U_1j| zpeO44#1QcJQFrqg%K&AMXZCFyjr?ajA)uboRvyPK+mYmwn4 z;o{bbx+PYhB?+ijHHP3p3i+H$U{c?PB>kfHbIDuXGPFLGS-gnWQ z+->2LHQkl3Lv}hhs(tOFoAV7(2>aLyRXTVc7cO8IZnx!o?|m!EZO0a?gzA;iz?TAu zVF&4Lyq({L+h$S~qal_3@l96hdrlgJKbw0mInez6E$H9wBdeEgq$TOnKLF^7pWMdV z%FU+76V+is$(Doe^mJb zH88^dWjcnYDfAG1JNuFbf8aBnB4dK_Jp^zhmp>+xn>xzwZ*z$4@H$9k*Flq;L%>{G+|Hgh?X_ zGpmKLKBV0d$MpL~79PT;E8a#{%a^MzuU>o8I~Bz`9)>MgC{_b5)8w($#ckjRj!1-Y zPIA_{kiQBP@8Vo{VXi-sxO}r01!G(?{;z=lV4(=(s{)=W|{~K$-ax*{_pRth-RAilWauxm&k+Zg0=2{jCnV5S^p7- zwO^nPIF!v)TKFGOrj@^~pTR{O@vU9$SwpKTp)0-SOrdx2B+#2{=$QB!oBg)E>$mOW zv8CHb4FWz}K$^0cPDTP(!I2-d`3 z-yCKQ2HOIp#;L7yzP>z;DEbwEd`+JJ-hjor<<%z6M&fP-s#&%OG|zTkG`rsJvfQH| zX>WcVEZlWt3$ko^EM9y+)C@qyIusrBdO@EK{HRDf9SEN`EryB6nfsgC)IyAe-|CPS z{Q~_uR*5RBs4IQy?XF@U2T3R=Xzqn-Nt%4W;SKvyMY>;u?RF78*3Vyb?Nw3q_z50k zgGc3x_JxVgn7u0-rbTxQfx}q*`@r1j@k}512>;)W;bS)6v%JL3_9vzCaL%y&As(ud zCBNyDt9GAPZI7Fn^J>0wKZ@dK;hQge8ZT0`S%3|19CYtlCqHjlPu(?N;~3>NzMt4{ zjnK7(>Z}ui*iqMYV%fbcfw)oJQ&IX^Vp+*9x09%b+J!eSwN`^y7Udw%w;Ps!?SR+4 zqmbgNEBdAGOYiWs$vSA|+oekjib5+z#@6-2C%mL zuseGJcDZ^DSzU!zLmyvR;Ho>pb8nk%w`QAfBS|9HDo~d@twRo4q?&x3B9&laiOP zSr&WPAMmZ)#zL>JyDDkqQhhV&#(4BFgh9ELDe~CYUEXf%#YC?yKI2U)a(IOOO-#ID zc>B!CnFQM@`|q24^Jl*6BUd{oJ4ZY4sne+|i35oniF1}qmRpvyfrEkDZ3|}=t#$=N zPvQx|76D8S3~H;>=VPuPJGyL_)9?A#y|Hkdww-pGwwDG?JJZ|MJJ#FM+tY)t{#!j+ zJzm{fg{>a&AM$VWpL!0t4!Ul*&bSURt?`2!0B787e_Ey6hFXT&hFWP_oPnu!<>_yT zKayL^*CS8e?lkU@?`-Y_?*brfl(w~AsqJ%}tDTdbGwXXB`x{3aI~!-hyTZr9Tl{Cj zd&1DQ?Nc{HCp)m=&2W~Ca>UR-S;WL<`_iWbprmpb%|d+9aZmgf{@I9@JdDlbgrvHx z`J3Uwr)kV{4RH7Zqwffom!Fu6>REW#=%I?bc z3dt<8%3h#DvU&AYLmAuDhbbepr~H?&q@Om{cyDarFT>h_{mv$p*f zetjgMy#5%F0cfo+e}bzI1*Yo*^dZDb=DF6%*3~AZ&|fCy&>Cn8v;f)w&47v>u0q>R zjvcMnR5fxwFPVbtygrYZgfiCm39U9xXP)Y9Pr4{N7eiQRfQ=CNx`u-6D23&RiI@is`hW~a_#uckq%7f zVEORS$;SD_<;3v>Oyor5n&FU<_x7-%E8V;kw?luGS;rCgFo{>(le(+W^Y)Zkie*;@ z5|n0Ffiz-u+goT^!#VO+3SXuUOu@!ia0hFs*W_aI9!fT*ejP=4)D(ld;2ST*4Y+j_XRU`ou`gbVoTNjIxr; z@K&>@m<@y~>3p7N^t75A$8#G|ms)1Rl+2`v^D zId{d@{m+2T$_4HL?sYYbbWodVx_tJPZTKY(Bx#?R(lf|b^HmI@2Z4u}L9`&K5Icx) zTYQdz%Rvq-1l9s04)fb^i|xe*bOM+4VEhm)uLht!kKXOF`SPC?X}#N+wTD}_Cdu2{ zhj>{1QQF^GSgTw4x-G7l7CTMH>%Q$yLHvWR~M{NA*!UoU3Y z=bxOlDBQ2oDlscswaOQ4nHrMzsC3IKBNy4Ny*4nQ8c<~UPS+;aELVS5M}sg;d!QMt zp{l8>-mbw-w>hY4U@>!1Xz|6vy5f%lpi;V$hI%hXFlm^5eNmnAj#2ic$YoLwa@3a4 z99RgzVEnpR&L{--SEN3Qu??p@BD9Td8eYp^tddRL9;}{Ob3}Srw)tGWS5YWn{(CQO zuS~N^O3$PM-a3wJHp5b}wrGD~KdZh-mxB>nvE%$4J<(tWP}K4|RVZH~sL=|nx>(e+ zu6M0-)iX$NEpm-&>}z8+|3n$55Z4yC%ly8AVp?C^+gFI|2sVv(fqJ%a*IvugQ~+e! z=)DAF?=b9&o3MvdU(e=M-S7i=zzv{C&`W`0l42555^UdMtZFR>vSIz*60?AlCtV2tp4YvxW-*0Y0&_E$3WI2#EUbsbnyJ6 zMc=8Tp4tPF^@3k(`*89>DWC#S1gHX(0s82(FH8-n*hj}{E_B%b;T%;su9n%oG;3km ztk5`KGu|{l=2(_o$Vfvol&v1ev7V8^u~hfnyj=Hc*+|ATwU04e_LMzt*>YyioEcb7 z8n4?1A_fwYb&l0V7Kq*$tq_HFkLAW_isK4D1p7#d|i0N8a$Fbn1S`SF!5h>Q+o#2Mlly6IbUZiaTC2VW zKTlvD?7>E|1uj%xwGahlHcp=xpMBzyAHG~k?~(|aQKXU$7^@at4p;A6WISV8~{l-akZ zjnKjg*^H^~h!w*Pvc+;!TNXF+yH_6-kjR!6@4&=TQstG;P4A^b)V750=g5^oWWz$n zilZ%1ktvLkA`>4jx~~t|@T=Ddafmhp*>ALH4k7M{CmF{BBTxN!ENHaF%Q;s}iHvU%0gnjMg`_Vk90wc?oJbJHu6!h+gkY?p za&BTT7UCS;v`v`T_t|viYjQ++x{4gp`kCiOEbhQld(@!He#j4_=9tSnRbD*i@L>_L zE#4q7ZAPv`R<9(Ywnpcb_H2r4?$jY+cISoVYcTiUY@+P!owvTbNUUJh@99<~;zo=? zjy%Gxuj81sySEPwY7Tb~j0GwmhJ;y9=8VNC0!5No>&lTVY+# z1c%0)8E}mh$*4z+{FEctu*6nZC@tbt54IF!eZpBat;6(G{LqW2&SX??$xbH1HNiQ@ zIW%viXQ5}TXQyYWC*HEr5b6+aDL{4wPQ6V-O+ihMN>#$h;?Cp%vI4npcC9b-hu=&U z{-ef>8YWdt$;y^ZNz4|vm;_@yUdbc;zSa^T@0H=aYHAhu4-7LIHSo-Uzfi{aVWDMq*b~k z&kz?OO@IOy_N98=t~7e__g9QE%ng1T*ch0da#nL!bJ%l&Q=3!47S7=TiA$hKz!J{j8lAE#JokY|*qD#gZrFV`K_b(#_XZueD zggL>v=@MrY>m)9k2(vUUQ@xi(4C`q0|+hW>z}Lmi<4iyVtri|-4*#Vc;3IktePrlU}0u&oq?6*BzX*u>UU8%STd z%?k;f_WWY9#pIG&nN~BisKmR#{oA3*mgHR>{x&T)jW1dPYysvF3uv7!#hN8Vyk*lZ zB<4Zdmd2*o#@u$jNj^{;Rwpz|V#2c=e?oVw@soh{w?l_e`m|{?rYG!OA>Lz2>wW%L zA%y3Ihc=81Eewqf?F=mq-xZ>3qzkTPy=$zCry**P!J_zUsxx!H_C>%;UFT4)qXeHZ z@zibj~cOGPYBcc*oe19lA`=x73CZhvox0ORjPvdAp0ymdY!|edxEy<0?hE8+dKSly?Gc%Y z{P&pQT;Pm6W0JX(ftk_D2?uidb0lVtZ`4>HTeHrW=n(vlRR|t@>>Zc{1wPvpJ2yIK zI_KAqwNA9owGOq4MEv0%k;@-n7@a1$xoI?Ft;YVNwyhhtTzoX|E`=% z+?D%kQpOO;+Q+q#2xD(O5w%Z2ZJ|f722KQa_$5caG})YNfp$taGCQW3NzVQm{jsfv z;+<2*++EympTfD~PPwiS4}=hR>VQ9j`Ec z6WYt#&N|K7%YtT|8SEMy8*CX!wk&q~JJfqIY@y!S_4=ItP8dc1=XfV@%JCld7JkY= zvNiJ|-{12N`_3ae_RuIRHqb=SDn%C^E}!N@EIn%BI&N z3obBRXiP9OYatLSNGJr9u)jJfxc3r#`ikZeg@N&Bmo*DvU1*OFdUUIQsqaeT1+q8A zGwFZ_vtM<}ZeZD$@i0l4yAOHQcT!gqAEKE21^m!~+EQnnWJ>YQ3H+()YmadV1-F6= z!I9ujaQs0WI2_y#P6k(l1!lg42%iY;cWnzD384r|%MdA7-38p$H4hbENUleW-wixs zc#m|Ucg=LUc*U{ICGU-0r1~g{6}<#fNqq6S(I+=#aF9!hx=;kuJefW0V@%#Lk?S7= zezc4>Cmqu+Hv3z6E~f87P9RpNx3F{AE$oW;n)vIE<3E8ej=%#STp#V{-s&Chf6?&A zUhk+g8U@i2=?*EB^dS4&pniAaG>qjs`Jw#E=_T^j?QLF=;R*f~|8?cnqlokEQa}EtPk7Rn z(3UV+m}O!qxY3kTF{Nm+#ycqe_~S(v%?pQwl!V3D48L-TTfwNKUbB$|s44x4v~?Q* zEc0Pr9@DD&C)%?WU=o!P5D!;O%x7bcIEk%K+cM5woHNAd&m@~$#9GF>xB^U3NjW*$ zPdXc6B2wjD-B3?4NYPEvOi{OBcENc>l4oQK>gj##$PcOvQdeLLnnN1Yb|tUhV$4YO~MDUW6{(T0H#b%xY#&}*qXRpIE}c9nlF)g_>%SE``Aphdio8> zB$9Hf<}=56u9Ae|Z7n!qP1rCE>DxRZ$#*ryCZ-ZpbtyZvQ3cNw=9Pco`-UI#74M_0 ze}bshccvJ0Jknv*l#jQ+c)qFltUi~BN_I)zWNNTbsSsMADxBUBewtGl`^53d`Etn# zg5Z(@`GoX|*q_RO&p*+h%m2n-(Vxj5mN3fPzedRWbMXu6mnb+Tc%?6s=ssi)d{YF6 zbc?&X;rU@Eik1Uk2Sx%Z!bY+gl~}0#>Uhg}hcW;*%x)Nu;qv3afu3#8-o#sR`Gp7^sL1hgA^9r^Cft4%=pusdv0Nh(DNZaGS;;3s*PyY(is_M{Bck5xg3Z|2=LW%5vS8M|jPI+PU6kgbvhuww$(qy0nQ3*tm9$wxkE;+INJPSkE+ zJhuRB=xj{p+dj-+;%6x}>Fw2b#*ZB&PB9y*bhUWvdYC_0P0e4r?h%ejm+jPPGoLxp zB-=A=j&w;pkZ8L-yk3e67A2EXjnIrL-$XU-nUA%-4StSr~n>5DYSug$c_OTP=~*47xy z4qS#MVq4QMCKFdLYt$ARdks{Dbz*;^N7W`O=hbz5Ck2I8Zhzd>za1|*yill|*O1a} zu0yGgK=BX=O#J$H*PwcEL7nd-FG0#X1Lf zuoG_*E9rrJaJ-pA0i(J$t_m#STv$d%^TmB^1Ju!hwkg3@lm(s?rZR z2*&|48(BHR7T33|*}Q!L6bq`tyzsm@yir4?|2_|n9_2XyUd%}!v?J(|xBeZ}!%k3Y zNra~Lh4445i=n5q2fvHqbfRa4lRp}1GQT#(g+%{9ePkgbWM(9{N2h@D-%#(T0K(tE z)50=bf;F5qOJ&5>s_4sN5x4e2D!4=+0xpZbFem*sdzqll{YGw&n}k_zNd z&NSDBTI1;a<_fn?ie)jXJZjimtfS&g@9vue62GN`XNLz^gOl`mT{bRMo1 zNXX9TqCrqz$f!JOa$TD4sN1)y)F;#>RJUezt%0|Sw^FxK*EAex%Hgi$?u%6y=;DT~ z0Ika!mprXMHDWh59(&g`wYoXM8dg&qovj3xr%Hi3?FDXpk=C5`Rlu+M>g`=_@%)BW z>%BTo2+ju+|K0~iEAWTAHZ^OsWqxb4C6apE3L#yuwEYgww@M*xuiRUwkW-_IxteYb z+(N53^J>@Hzn>>HfllioZ8NSTIdlH0uDY&#w^{tonR6R`&ddCMKv|$lX6@p_CxE{? z(Gavqz-?)wEFBUqIK;@xwm4A@&}i1k)LyJC0cbWaIu_cAubYW&W13s9qq;`vCL=3+ zF{{JXZYFF&bFVp-S$9n1n|-c5&1~avJ+N$&sUL0&chx=)@{#YX5>8Vwv@gInR(oLu z&@9Qn$o#{Dgg(~Z>>Sg~AFQIy1EA}ZnKwZ{4>^A_Dd z-QLqj`5SG*-QeNi6!=dG&gV^(7pV`f;p$l816f7+iX5t}}Z94cBN zaB6VQb8~vFp~MruFQ2Y;2=`m6IbApzZFFX9I*dSlX~8!r=>$!jHulR4HO*V1eMZVW zCVgy8@hCJ4t%+eM#e^0Gb}j#iHyv7Yi&f|F7Vsb`(QtuwMI zD~I-smdMdx(jyf6GBDGmxFanIAe>c}0j=$H%_GMUZMNbO zAohyJvc~(D8>JGV82K8DU8)Fsja5`nH!H~kjMNmZC|;%Ea5CBHEzYkrv{`0)=+8+x z+o@~MH5FwldZpbi8QSvCyEGh0%#{|^OOBo{p_rvyA_xJZlCg#%2xu+~oEew`B3OqcnM)$cUpy@nZ_LdtP9pxVO zSN{8b6GLgr+}U=*OWwH;PR`2VMGsE$8uB*sV)9O7AxSe#M@*?qx=egkTul2o=HcCi z1ysvwo3pFzg`jswg2r*%)aoXj=thw0*lZFuQ@P$^la0m7T3sVZdh9gGhv^F-s)5Mf zqj*nY>>(+fN!zNZDWM@O=}`-4?NZ*gu*_fKY6?wRtgYP9qiNXpHzbGNxMw*P%?edmKIlCYjf!FqH84~pk1$dML-YSbZWW2=~;4P0S#SL zuQUg=16UdjY~vy15Mv_kRb*RPTRPiPTg#2Crii8sMFB`1M8Wo!+a8ePt_qL@*p7K{ zB{uChjo8kunl(*WLLDmY0n1JOuC2DMfVrkRTSbWHRB4lWZN+Vdn{#_TNU}Y< zL1Nh;Z}JiH8+HS$gsHC{nv@E**?7_fP6P%8)nwc!c0 z8>=l07rK&$?ru>8zu0e9G|9TUB3L8I!T=C(!`ePkC#n`gq$X%$0^P`IV4_s_%6)dqrp2H?;TWpEtAox2vfvsG^>=Pv@EvD#u!=U zX|xYBVsi=gGFCIzC#M=DR3}?w(`3uW-eY6w?;zVBJc;C^>B4mu-jCxIYrXi2l70A% z&A0~d`?f?b9_`0>hee6b`;L-thTp>9W2|+a#au!R!ExPs1@ucA{I)NDp&g6uIl!ovw{;+6Vyi@6F3vrvtkp3X*>l3X{44L zaR$@R8dn^arTa1axU=$Um}&8|$y~);XL6ZoB37@om9x*fSGY&kY1V1bSpwS*ZiC07 zTijI=%S@$mLOS9_AB8)%qr6jLVB59%dS4skkPV3Z3mxtL>wAXE1s&Xqs9N-Sz- z;qZ9R6qs*UmXY^VVAtf`ed@7J{$R9j3@jE@y{ogUv{~{2+}W;FLrR`P^>YMr1ip)u z3X}-YD=!c)5hsgO3X}@aP0hX-fVF(3z)DL@BE??HVAa!U;Ox!t6@^6q_lF<^pZ;$T zdm;THUVGKj1yX{P_F*YlGt6fZ?)1i?-pt$b=!R-}6b5038t{_d0>=3mq_uQ;^0E=` zT*l>bM72!YiXfeSGzwJuQuOW!-ZE1uqHx~Ih-i17Z5BCSQ>$IGLe|U94}FQvCL7Tn zhL{YLY~mFI!q0f{H+cmM4n(*=IK2-y$Q~+sZe^4;%`q zuNSX2-6Jl8_IF+{AN+#47dJE59)Ilo-g%CHnIj>9WglhloSm~=vs|$FO{aK7O*yD| zok@AU)yI@{8s=*G0o$0dtafU}Ft23BDZ~gl*v!bg2CnTqB0HoI9w3*^L6m;duTe33 zikEk^x6n(d7{ghTpM=n!`Q?;E!L#$j!Mvd_87YqHrRqaTNRl7LTd?N@2#VWzi)lJ=`{iLpimxooSvEDo41KXGQ; zZVyu~7_Ue{g*pU_3NV7xmq-MP!|UNh!^U&1K?tY6n~Rt?qo`$S`uDlTaJC`qIe9-XI$q^G3V%)irU-kIoyYsr}%9|2&2m z7s6BhJ*Z?pfHRLBaWH<|18${b@IYkXfEvExk4;#xjhy~rJK6)}+r8HlC%LA#f`udj z5PkbY8@VJ7@YA^vqAGcMm47egrEK~$@i(@-l&YRQjf7C0AMuUTcf$SQW^KsZbZm;q z=*r=##akd%s>(a!*@Tch&)kUAd>wclcrKHjP=r){9l@!6KT_uwf>BpF6|Q!4H7lmd z%#?%^E@v6kAoh7=(hgg5mfJGDB;HNVKFrfH`Z~!X!I$wxhf`i8_BI@+VUxQKJzvsm zH)WV@J9PMZ*oBSi5;GQmdt`WgSm8p$RLe9e1t*m_l}Q+%kIpGBh2$v0B~)2bOL{S+ zm;y=;?Jq91n^He&g+=GDVs5Y_E?^PRHK?Z$AaaNqaR+(itpQ-R*G*pUbVu&yUI!ky z?zmpb9s=)_rqB+;PN0ize$8C_Q2VCWu-Cj-uh*#8dp5Gp-Ol59pV%(E?4IOZ`HRBG zS#SKVi!Ph&5%c0PDAGN>cVm~?rs*cZq49q5Jivud#XtBzlQ$cjj>NLrPP-@ecf-{K#Da@*Y8 zI(F(1oIy_%ndSsb7?I457{U6bD+*}+JxVAU$!?wX#O_tUE{7OxS7?305#xdN&=21!&wpY`|~dDN;?rlL@BN*%a3N?zP*7 z9 zed^?hVooLqL#g}3Y_qqA8ZQ? zfAT_XhF@^zz0TdTAT`Wuk0zbrInUavBnx^D>mrL3jEE)}EH@ao?E!rI>$}6Wr3J+0 z#8r5eG1BW%*eL9OHTCm9W6}mQ{;;QCzKrdChaO)ViHDcvKeT7S(TJ$=R-XO}7FW)t zCOY&r!U|gM{X9L=fmU`JKwb&>cowl850(~TOgP`LG=eHlDbr>6s{ebL2lPD?dX;z7 zhfP%m2|SKXeSvc&Z8{(RKLDRVV83nQcxX@d)^M@#O5ecywY|3eCR-e`mAy8uD7r}B zYlC=ax33)uw~@Z}8mg0C9q~?ZZ=QKaxNn}=mK06!9pUy^l&iMOqTc>X{i?`Kp|Gfo z+j~(pg~p=x-u7HHl|Ct*zPrf1`^P-K6m=DCV?N48V?@!;qCGs86z%7IGhArkZ6Qm2?U1r-Es0ctV?v5|MBc~6>m zq@R`?=~yxXn)XwUulikKZ`A(i@;d zmcw!A9_yf_t8hihwvwG($0d78_M_eog-$b^E$L=H+bllIz$Y2lf8ln=arrz0d<^nC zN|Q=c;7^cED@`p;<2b!OL1_k`Y$!GH_+M%-^|GzwvkNR2CmJYlA1$5C=NkAtL+L`c z!=+0~mzS;x(!-puUcWBvAM~-o z9Kt?K$oF7bka4W^B%h4nXTr~Oe6r7w$-W@z0A;&SdKon1;o@``6UPDm%ceXC4U7KKlo z9w{4v_R2m_s9%N8k%Z2YlsWkvNuN_B;gcj~i~6>AoGA&NE8+fCw&CWJCH?g`o*&#e zX~L&W%5}Z{jnA2cX+Ce#d**}!_r37h6aKW8yLT99=2UM<8lQ@2FC=)2FC>_1asLYgl#U_Nj?RF zb03AlGWG07a4Oro;Edqx;Jn}hZo8~6rh|)v%eXyrTL^aYxsTvR)+2xORZK_BVtkYE z|Lwp0zq0>=uUA&^+b;5F86|voo_rK&0q0H7%YhN#JO_F(=-K%Gw9DZ99Gq@oD>#1y z2El<$=^H@xH+mL<#<#6WRp9&<@q2)ega3Qb`+<*w^9oS?J(@v`*EP870Dl`0zl1E0 z0=)-_Utd#n;C~VvHE(|cR)cd4(w<@L;qTOzuC;-G23U*~QAS0=Q}|UY=`84P0+B0e zF>p8H{{S*KEOQy z&N^TsI4=Oz8pN-xO9ycmDaucP^DgLA&|d;V8!~=>U4jOr$AD;!A{!ce2ytqF(2O({ zw5kELJ?Rwi&v@z_o>E(v+Me+X>e71T2Rf0_PUIYLkRKWOk>?}kUw}`dyvU)Vwgi+> zi3H9AqP55?fzY#pXO$lTO~5iB`kI3Fqg(;50YLA@*JI~vruMva4Zbv*?-L<<)`1FFAc{00y` zML@n#zj+h=OQ8J-$P{S**PjBt7YNM@$QLgG(QCvnfiJ4ku3snoG3Wz8^snn^|H6hE znFAU*yuSJRRl--n$pQzO7xx3vX0F3Ji5bA>f$OALU^JHw^v^(V1icaT8=#*CJq`3U z&?iBk1pPGV>!3dg+6DS;&~Jm@26`LlnV>g^Fq-wlG$G&J3;tfv>p|Cpeh&0=puYip z4fqoHFM(bRdNJry5MxbgxD?m>KjXoj|00+H8LQ9a;(cxpDKLz?Y z@CdLTh?ue}#|^vy#CRdMJ}{5@)JHhx5^ylCNoa=>dXw}PBt!x40=^DZ<*4@g1n@983qY%u z?R(&$ZA+KH`2*VgZ@~E}IO=zsE=0?p3A!9T{bAs}Ky~y)-;p6-DPYtfR|>4Fg0gEc z9w}cyOpIAFtdpFN6u$);mO)l++5{l$F^(vH&=}q1 zN^mgdDro0IZA-B5N+IgS1sd%{S_+Oj8vY7t!DoV77V}8o zQqP0nd_v=9)Xo7tjW9#|66i-kw}SpSXa}B3BTNs;EP%|}d>8R6G@}`{evWyae^*p! zXA&yck>d655E?Wi8MU7z+>EDQW@*-aA6=2qTg)DGtoUH>Nd_W|bw#lk0U=DkbgX- zeG>Fw(2pTzI?7mqn7@YPUnBLwNS)$b`x)2QwV!F913wRZRn9obY2-439t%1{lLZ_H z$>0DV1pi^w(Zkv{q@IO1Oh2eB$5VR{a~dQ=SDICz4}e|>dOLD^lylOPgQv2=UxGLf zL8kibJi-Tnp9tw;BrqTN2%f4(ep-O9@hGod#I}_4EVo~8WsJC+@cWFK#~76#fYTl! zgCjGoyUH{p(T71FMx0TIGYWJio~>lM=V78}YpI3k9@bVfjkL0vqwHgjoDI%rwWJx% zBiboUs~qIyabPrZ@>$(Aj-z{;X_hQcXE~Y%$eE6(rX&7N#7{&j-^1NR+)YHe76SiE zjl*S8{tG2anS){OQ`jPlp`t`x`dCDff1r*b%^^d-dK z4g54Xaj3Opj8YuR_;W_0xs1CRDGulAWk%v(V;>S2$E{0>Lk{avJ1-*-^+<6A=RqFM zc@RC|%tE@Sff*>#Jt$EIN|eFU?d9})6IohF+wwlXMH0xnCei!1;MEowq zpNaTgtSjwI=&g%&Mf73B8HG5bz$XdX&*&hh=SS>sa1JA6SPl_IwD(kbZq6l!)U?!J%qAIp-Z_i^`qX!0!LydR1~ z7DMA;lsi!`--qTqk&{lO`yFT?2I+P}12ND*Co~WP4Rk^SG0;FK+Vgjyfllt}L=$Qs zQ8}o!PH4LlDSiVfR&t8UD&|Dor3DQR^dIp_-ItkGIh-PKX3$fakdOcgnaHyN?dK{u z29<+S7=cft6b4wTr_tKqh5k1{OYcHU?;_>^Xz5+_?hWXV_iBDZbTy-VFC^cqD<({5 zRJH-ffpf3!QE(mwJqGj`&{3eHK$n6p1^oh^eSv9c<}D4i7VQ@p<+qSlGSkXzaFW6C zYuF;a!YKPy4)SmgdB_C)dC-1c8hXt-qEjG01JX`FS_a3_WHCxV2j9Xd{T$l(Ipo|A zT%^W9i54*u9R)fHbSdak(43-$QYUdZakZSXRB!jAZgBPHZhG-L~=}NJ}^?{pezdze-*G4 zoJiE#K}Mpv)=+mubFF<7C5=R`mY}4OoHywrFcNut7^ypu`ol;oh;&agivLnMNO3Jt zM!R|gWs!0B7&P`eIKRTPuY>QoN2 zv>I~ixQs+|dFzn#$5A6msFBAJ|8d0sEbug*dK^!k##4{8W{4gGItp|Y=u*(7paVqz ziBW!B8zlNKjPm0>2PvPAac*_@BhNOJu?O_?Xea8}(Zl*wUSQ&_VzZj)g@zkq`GX`-!9nvRDZUt7WI@GKu`b|bT0A1Y&T?J6~07^X?_&mxUK-r&1 z*#jv1^C)`&Wq%%J51{O$QT71$Xrf;L&3gD5^bmlylaQhjDJH?Pe9W=83<%0V9HA`i!a=Yf~Chd8E|=3>%jXjKPY{Z{)1)BLRV zCEYzlkJ4V^H33F>6w+0Yhxv@M0{L4QHHnPm#qDL9k?8M&{x0aNps#{H1lr9s+E}f2 zAJMxRr8MOHcN&_5D0>*C-}SI1`5jV0iqh{O4Kj)5vg|=we#iM#R;#&%epa!5q(K*Hf74g3Ib-KHVXDH%*l>_<5QI=rQ(f^*9N2Itug-)afYb`9b7i z6qj1_Afr4A?c^#n{|;iljb~Hw>|trsA%UfGVjr&Jm( zHW`R~O3QKg0PZe_hL_`R0q!=U)Z@`Nw<2%j5vLXO_t64}Yd=Qxr!+LDmM~sO!*$as z{xU{M9V1@QJ_J42AXkk0p`ZIzR5c9E+z-u+f@bcAW=26X_antounhYdHJ@YsNT(oe zE2I2AqxMaeMqQvi>oT>oD2^88(z1Nwu>CoLXJ<1?M?(FMIj;e`khdYB9>;kbf~Q{6 z(5zp+#3;Rlr(S|&4`RNAc76%Hdmr~`YWcq*enwA<;5jn;v9&#H&)Xw*2%go_T%P8D z%t-|2zf=x;%S2qSQ=p|z-0j5O7{04(0pEbs4Y+H- z9QK&4m3tgCr*bdi->drtyj+i9pOEwRb8r@^9Qe#%4EbHZ zKu&%EpNgOT6!3B8kT>FCS{qI2{+f}-Q;e#(`#j&(9%sIE8mYinp%L&=(7yo95;pLx zN2|x&=Ml_zt60L!0aE5BXNjW^lD8H+7(zBCvJkMQ(XMcfb--FCfM&&Mk zN|VpD1itbEm4>vhu^i2Nj5LaUi|9B;=?G%(M$9DixT8qxFw&~Td_Rg&GGNAik4mHU zW`a`+PG)Fk&87Gbqq2xm*R9f_+3_-Nb&Se=q51E(c=pPuJj8j^Wuw#&A^sOpx*U}B zi{Ruy+K-WLPR|}n_ig0=*T}zWSJR=N@8PL*a9)F)x!}B}&NO)@tBt|zdkdt+s$Lvs zXWzi=>^GRt8Zc9ifXsMEh~SvID?Bm|z+5lF2+lh0#gS#O8%yB{+zstr=eeQgr>LDa z?&I1z9=|k?u+`Q5hT}xM$#HaFha5M@i7;~fPVxn~5|V1yfX!woC+0OjNwBhf0!o24FTc<;lFNct zTBu8=n3sCSasDyy{tD*ZU04%)3$y|2ichQSin@U~;W;k>l<@ry~yy$isB-r>p#H z`#=wb0PA$E=p>H zPh|ntFv<^rHehY}0kniH&98`4tbLiDx`=jrKVlAt_fm}UcOr9iC3tFL$n*RS%Vd<3 zdPc#&{R?b9p_Bs&bsS&Hfn~d(dxYmHI_@bKkjjI2b`<*c51H1^2Iq&We3nDr;8XC^ z*a!O&qf~e8eMY`3{}FMXgRlN6c;nw=-$t3IVQ=Squz{!99!9KS)LwzlDL8NB+mL;e zxA9ZjLbiB1Cv&t$$oV6@-!H*C8p^($E>Fw-&UTH*`nPa*Km?Z}IRc(D+dc9bcs}?B zo>FIRFZJ+Q2zb=;%W59j;zg`LJ`b^XNAt%&@|-b*>O70-Eg{6*glTy`FqM(gQjvRf zJ7V6?NHq8KdsLqjaa8_c)`{{oG;_FTJl{qBA4L8i*Zv8!$UiZCjq7eO)0zq3VD=$> zl`R$J_7ME5L&yo!hZ)Hi`Y!w*o>iS^4bzN%z^mSM33w zD=AprQaqR`6k?{}L5*C--2YFQ`(K7lTaNs^g!$BJ%)%Z=t7}HOf4#;&ReBGvV>rL+0=KF|KPGD-C?q0b%gz(;X>O%2-8FEK}Mht5xd zu7Yh@4$c8^mLuKex)(768Vvd(Xzqi>avt~^;+zk)`2djR7wA4icM}gYWx4GFXPu6z-kZHO-;{$tEhtW4|LR9aoh#NE}9^J{hW z68SvMxl-bo)?QO-#IHmdkDx?)tSHvuSv|bg*OC9vA^+zPGX*h+;n^wNH#O%p-(y-` z8`O^HxrU~Tunc+rjq0yrb@3tKDy+6GhE`vI5sssU7py;%9I#-76C*k4G(DkxU4X@-bB z8m)(YHg(6R=l^5xeZZr-s=eX!ZzgG)PKPwml%|wIO4F34Au}YCnRCvBG==$}G-8Y? z(nvAV6p^NsBBc~DM&u%Hh`zG%E+$@y7$Z*0%Nd(;em zifuDLMSTDzJcj4G@Z86Q1g-cC_K<1fojh9fWu(bL$uF}+`3rjZWjy_5JFWZbzuEcS z%gYJ#!FQupoVNyf%VCGhQU5B?k@zkD9Nxf>#4hn6PH!(p4NFiT1tq+K5)|}_jxRW; zA#Xy;hlOsVCa+^?$>~g`bNm}t z9vdG^v=nuC8$Dc#rz`{i9(J3%m}<9U&$$-mWMW_X73^tWLkXXN$-HBv{Xebv%J-SdUq{U!!=APRBX|eeRUuX`)L{=(Wi(C%)hIcF%@wV-6*4s9I`V20acKf8& zT8hQ9KHP#H_;;TB$}M=xojhu`<r$GKDv?T>kd{a9{lA}!JH}S*? z+Rx}IH!@WwAkB8^iq6dD1nR^Uv=|EeKVUO`CVd2%`%rm9dahi9LMttA@2PD75TpJ7dR!F`f zcs%z()E_oYc@UC(t)3(+m@4lwwM&9WY}ocAirvUm3CDT&rJ;l}lz{h#DrUO<8T8&A z){e9ds|G)JoAx@a*6Yk8b}ia+9xc5Hn>HPMJ#v*H7yjyuEEt#h2hrPTS1HEgFs#Ja zAU}+HeiE^FBleT%v9Yk9%dl&`pJ$M~-^LaI-#Fw3%(CA>^D)-iE_})Q33z;;B@N-& zt>9lkOBX?cU&Qhy)bNY^^-3MiU$4|x@J;7u;@6P&4F7u7e#boQ=Ni26&SEOBu{4l> z(d~`+wG{&DabpJev6G~Qy(nSM97b@4ODtrt7#ALEY^MIe}M0^uOZEA{CA=16x1IQ zWj4M7{1tD;z5$EzjfBzIV=$j%f1A=z0Dlj5MBl;t*a+UJkL6z$^6S`1R^WG8h5e&! zMInEic}4Jlweb$Wn15}Nb;^cr@Ys26{pfifoj)3hoF2|Wlxe9;tT5jXt z^=|EP)(Y)Eh#p{GIi&HvXa`fZTjRfZIKnBV(@f=A$Q58}+rw0|gJx^|J|Te8%1}-t zTPM{-IhQz%eJb*niRUs^IzfxIk=)xV`dmFqvDM(`LtepDovX6;Rx>XhW-5+}HmP4Bs-T2oO-5T-z7Q0p+17|Bf*uE50=h$;%insKs##2x)!;|l_?!4C=H(v# z+g++>6UmcVBDJZs%1FnUD!W-OwQ+jeWaJ$I>PE>MMQNNyNmTi_Qi{5h*K~Cg{5oh8pN^`;6#P@3R0FMd43p`1mXZLfvP2%Q@*mNY)Jw`gWPX?1 z0m+|G@{3HRbDUoK8`nXS`n~v1hY3vWpJ2*=sZNsZh)sj!XOO%H{&DbMN9^}VyMAlm z%rwqBwBIJo=J#nVvAZEzgxE#kb@002Ii>AJme_7&iS0&6?ttVDmZ*PbUj4J+IaY0g zqzUP7L(1C(kG#o{Btw!6$%BwQ$P#4?^U4^(bFB6=)aPfAY(eZ6!6UW`u~m5b3_N#+ z;8Bw&1%+fjV&|h>i;-(F^Y%FUA&&Yygql1gc+~AKNbZ8 z=OBL$^3Oy5dBLMTZKz2bYSjkG1xPMHasee5po9XHR)CiN1m*mMB?*PhClm@Ev9l06 z3s1=epDB2h|0|ULE0q5$q@RK`Q&9d_@vN^Ry$5m+Qoey)Z$SP6)*_eJSd{6eV9o$rr&#!AHSYg0DpSJxIR?WgbPDM^WYklsN(E z=OX=Fq#1@Z!@#2-6!e4Ag&KB&?|{4m<-n4tup~CjIGdPp--G;n;17U503Q0F3Vnbc zs?bCGDAaQl_*=o>iZY?wHt4nud2Pt6O~D-eDr)6K|94`J{~OZ$o6s3Zpdq&9LMtG_ zoU(~I1#6=TYx6bmUjq+4(S)A-4(0z2b%15I3CsL0>i;g}PoZRtowf^kccHJU(O1>r zVNVocPi7*`OjsL?bppoPUW2yRpiK0M4Sk~i0?+yd_*U?(C}$eVnFjt-;6H^lZzIjy zkUJoEFrRpw>zRmomk4{92zzM17tg&H&;1OZ`x(>?u~)U&AhS;!|tJ{j^aLjFa_lORum95X@{ zGh&fgE3p>GF=|D^&I@}Ex(az$A^oG^A4NGkQO-`tv3hD)J?(SQGjlM4Sa%exJ1VT4 z3M*&(658@5$i0wzk^V18{}+^rQPwcZ37r=WP&W;|;%VllHc%q#_(qd;@)-$eP}1ph7Y-$EL!_=;HZu_~!A2rGx@PQWbN z4>}Beh?%Zorfc_szYje0K@<9b@->uiD?$I1Kzzk|ozS26b!VTTi8hZC{FCSrxP{SbBgA)bZ4 zvZJpOFk2JEY~70Tw<0}eoDDP1j=Xl{)ixr{M({rc|5NaG@OIP(Rz-zXQ9p~Gj371w z$zzCp3_R8s73+&F15eC=9QHwlebCUWn&{Ph@cHP;kD@0(3i))%r-KiH522hRDCY?H z6W~uE?-R)T1bC!ZMEZM><{t3ahXC|Gk9thw5EQT}(q2f+tXf9zFk*sIvS1O7YU z*MeV*axj_-MpHpgD(Fe|44!p{dHEdk@;Rh|Wl&%l6lj_PP1AmW=l%dZ)*uaQkTwbY zB$U~VGMmBw8vL)pZv(##b-N#RyC3rRAb$_#Ohq|U!G8k$Cy)j^d=)!z9*l%k+D8C0h)^QE%xcUyB^$z417Y*ZLdj{n^ zgEZLLs@U0TC{q)Ac+7MaGhKn5S77JWlaQZ;9Qz6d`wH8SQ09+NP9w@`1do}eiGA0X z!G9U)u}`*PpRE2EW&RjE?3Ic&RE2)3LO<(~w;p-_h`fJ<{07KxK%e-~CqCqbHCADb zRm?;cGf_ofsiLo*M&74UCaj`OSjFE%{(Gdy_^KG+1nj#Kuy)(ZkiHD*cO(67q{lk0 zVjWiv@CJD7omA|d?B7Q{zmGngjXs40_&tR^m5M!;)GhT&mpzn(YNXGGYC>~E^Fxb5OGC>-D?_V8>p~ktTZlG=c7$52 zYc8-Sv@dkPx(ohp&bTcxm{!{3H2gsZ##2{A1}8@X|0H zUK*<4rD2A)T>CfaG3`Zdt@J6aMf;m6~R@w)&@5OHwU){x6`#VxI5SyYzwvrj|4k| zCvcq(o(*;fdy#)eFwQijg_0;d9XuU!^2M5@+((*pzokhjcs}cpLZfyM=@V;@MkA6- z`o!8}hxR0p?mR?V#oj$`AbqJMtzwP25gL;Wj~+LX);vMF#rokS?RbGSj5Q;L^kNHX z80$o;^aHwvLnlT+CvGK;*hiYoo;z+ME%+_z9P7dD(1Ub%>$rn-;fyp2qdr=8(saTfc&!DBIVFN zEH6>NG9G~y+OWWi_g$+3YXchsn*&>|YdhWT#I^fK`oec`EpX4_g%pe!Sp~|a7-}My0Wdy4eBKnUgMe^j0DRDu0ZdUO9R*C zl6!|~c3Kb2x0)$v-Dy~Ypsw{bRXg1MW zQ97;#p~a!PYh24i4WTum_0X5@&?dB)u25rWTkvFHNvJurE3|h|IajXz)I*o`DReM& zICRvyj$79$*6+|6Xl`5ReCPt}Lg*6fOju$42q%V8!Va{yD4ZG|$u%NMrH4mTd52k3 z!sE~%>EZF=T<+DdhkHM4a!-eg!=Z3#xI8>9JR`6nJd5(pp|ap9r50pAC11d&6<6aU0Ep!ia`B z)*DHRI3pt>>EY9X_Q;q>CY8l=7A@kGl$PfSwJ4Gu=#01{-bi6!MPxFSeTmX-rn!_I zi4eCTQWmKoIz2KoQWKdQnIBn%x!ftP$kNC%Zf#^`WOZa+WMgCt%~rmWB2AGUkrrq; zJt?w>%G<}YF>-)#DAEx*7C9N|iku5ZB0a&f$VD!NXI@l_+J&ZuGNQ@RlxSLXRH!nV z5onKQ1*eA^f<4ikXdd@)>kM=}C+vXqeDp%}Qm8Vf#1dl;x>92!Nr(B$iH(kpi;X8;Z3uM7a$}xgPt0UJ zjTOg2vC>$1Y+7taY*uVepgcA&m=s$``p6o2JhmiOA6pS>CJj9tN{+1x&zN#4m>p`S z88<(+Hdq*{3m%AVh;0roi)|%+-V@WQ=qb^Nn^}@n;tb9&8Bvm6GNvT6B)h~7E4aGE%NDStuw-(ur6f|~ zEGffPL3Zwtuyv7&lIi?3*5Hy6f%1}>Y|Tn$QpudMreto({E|h%NJ)~gTx`2&UX2Tn zD;YsEU*eiX>q?fEETd~>$?B4IWTB3iY%JM0g>^+Q*;3NPHYu>VWJhE~NlPfFWKYSy zXhz9_P*KUDl8%yNB_~6*C0!-wD5j_6VzjPQDz%p;^NcM`DNQRK73hxUm1dM?mFAS@ zmFlIVN{dPZrLoefrIn>sp{mkq!XVFQ;db_Y793Mr6|D;vmaZ=?DmfWk6wN{m{GkQf z*&kXo77npTw7}WHKGA}UO3x4Wix%9&p3zDx!}XSTwA5f^kcYI=;DIY1(n>2Io=0=7 zB{Z8or4g+sJ*_0{jhzT)h7Lcxf^4IG%B3s5)50r)Jr8dW9(#CIWQXvfHsC=m)bKFX z5`NUqQfl~7V=rohe5hrYxnmCOrtbg0XI}pwbmsLeX)gS%jUXxoMoMyEw3Hf1r)x}L zjM;9s2QmYh4~=+e1o-SgwtudFZoo~KH{gY=kgmyek<4f|ngbEK$^vDDm4%go3c98T zrt{wekWnq6XE^ceM#8Tf1;1!i?0Gf(qOsvuj2(O41pJCg#IKke@XO^!{BlXgp4Wjr z@6FirI`Nxj7=EqXBFWB~&N*n)DE>t-Wt}8X*+}6Q3Y)ZHQ#MZ7a$RU5>>#v!0QOke zXW_tg;t-+Z8aQU*B%$j%agNYq;i5o5vS7EuWI_rdjWFsO$RK202Xd@3@+|0tq9F)e z1F<2P`Y)i8P<0Jd6J}onwL`GrI*ZLZSr+A$15wUIU|tVBEie@r2xKz(X+KkD+}X zEWS>J2&IJb4*7gcY9tfckt8&Jwz>fnGxV{RnA8kTl4454N|K ztsJmpA?K9K_9ZmpYWs0nM+T4UK!00(6iUBR=g^p|>vY+k4A#wo`D@LsQ0A1&Iv>iO zab;-ba_1)7^f{_Z4A+R7oxQ;bn!}lq@OMB!?fOoY26Fc znio#7((D+7J=eg{b@|ve&~;^fy=sjeK-wS-U0(;*%m2zcSvlqEwXk~1l{IkCdKXR; zdKsqYhBGXl`X`)Y=`7igFx4fjTX98JNY4+)#Jmkp74wPP6{cr~>3QL5YhDb@g8{op zwlqB3vU4l0%#kqFh3yvSzib1C&aENy>au;Y<`&8*75X1uAnJHI|8_Co!nAIOY26Of zGs3h!hu4UDvrXbQglYbTH(B{U%>E3q_#&VcJ`Sc|Wm9=pCmG59~2G zj`ta7ggpx%7ik9e1Yz2Hgei{K|1j-0*v^G7Smj=_Kyx%g`-=$eEg}wKha;3fGSaf2 zRHulwe~1t+@0a#pv7=nhKp7ktq5VT7*Q(c0J3Pb&U*5x5c9_dT8MN1k4D2li@^gCA zx?e8(fZG-+wq$jK&~Oc0&t9;3%9TCc;CBI!+J9wlHh#+0`!COw%lodY z*0M$`Z|;>o8JJrUYhM*%4D6%kU71%A+EYblSm1k_XAz2z(42`Zu|PH>vf^rekF2t= zR?M#m?R6qFw<5H!iEO|2d}G@fp}kCm_A(KgW0AHi^DWXoh(BVXQ-J4Qg!V6y(^h!) z${dW)Jc`gfi^K=bKjNdBs82LW*sQ2itUUwZJ!O>iJDM)q9Hl)&G*j3vwja@Kv8D{9 zkJ9=drFA|^>wk2z(8nm*z$mT%QCgd$)5X3ZI#ZOx{THRRKT2yq_O>+sQQ8AU7g<;; z`kebNO8bB)?E#{+2Z*i{wmZ7fN>6KSl-BYnt&_Y5jMBP2V4I_RuB=N@+6zQ^-6fk5 zr8Sd(Q$%UqjM6$8r8PdBK;k7&3Bg%+g6yqF|#Jq};9f;9d9iw)~Xzhy8 zx)sY1>pSAI#GGTE>m8$YEJo{BOc!;J(fSn&h%t{*-C|QkyJBRIVzh3>s)bFsY;$S+ zV%C}&W03yF77Ke9qxlqS4Zf4G}kZ({!o|My+l|1s~% zv@C5Oe^FHqNZ*$veHvi~VHRNyVIE=Opm2#5))Q6`RuR?`HV`%wwi31zb`o|IS_y50 zcES-tC*g#J(}c5xZbC01E=h()NFq4Jvy2ghbi$ZHVdkLwY=WEMB@_}S4+g`T*CZ8;UdCP!ZN~2!fGr1I>JW67D5wY2cd-ufN+S=K{!S@N$4V+ zBlHk1N^ogr+6gqL%oNcsGmS9H3Nx;Rm(yp7KIIVUQ^ft{_#8qWK_?Uu0)*I=ko(7+ zN~jzZRuQTPg|i8@S3<6{xqz^kP)At)uZ28jSB0b}W`lS>>NAjj>JY3Uthd57mYxlQ zxrxvy`rF(_XdV>qBJ7pEuP5pbJyjp6kJiUAe9iiJJy-YWre3Uv^isWCpXO`SXXvx^ zIr=<(p}s_~r)!12N?)sQ&^PN__3ipjeYf7Kx9RP`5xo=lC-l?$S-l(R)#HX{B1#Ab80p3sAk)Y;+=kaEG$tDnqs*w#TaD?)Oryq_Ys@zm8B2|2#!6$gvCi0NY|*=o zCS!-uV(c;Y83&9*Mu&0CIB9el=LkK>bI~M?F_X;{GtC@jW|&!K4v=T+W)ToDW586i z5~wn(&Dp+Yv(~y6T;`ZxU@o?Z@Va=#);cEzUHr9|aMC0R;RoXRk=Cc~8xl0zA(+%7ql zG0IpeMafj|l~R>&D&Lewr~x%7-D<0~Jtf`d810xK-R^KXilzG#5Kk2qd%{6zYw;}ypqX^ErF@wT+oan5l;+VcP7n#ppCJQshj zvP-&;G&$FThhSPLwh$V`GfD~N7H?XXx!AJK0~UIym0n_5=4qC7F1BQ=2Hmf@nNK{U#^btrKJhhe(2NRUPR*k^HJZ|jd39xGZKf4Lk#4q4woQ>F z+pD%$CB-qyF-lS$xsF^(b3EjjEZH1EM^s91lscwK$&N=IGiV$hcRV58;iz>yC5?70 zbUY`GaV&LwK^o`S?bt14I{wq~pVGaKvyQV;*8k$tWhqzkT>0yxF*~H2ee1^te4BiY zzHPo{!YL9SJ)EDxV`pSLNd^3Er zd~fvj^gJx9-&o^~rifFVidZ>H18)MxU$C&lsUE(wFMX^p*N*eVx8h z-=a6^JMF4ww{h}cmb|cwHG181tMuw4P8O`Q+GuQN(=Gg6K zu^BQ;&GLc%dtW~e?N2K-j+@iW8N^xrYtAy~7>(wnoG=jbH%{;48)tO%(dLV zm%|O_W^=2#{c?W~>34Idx!Y_t+b)OghHf4)JBRkWdBQwxo;AD8UNi33{7IMl{R8^j z@AQxGr~Bqy?sqF3kY5hR_%r?4`niE|@w@$AU$?)Iv|e>S=nRwA$D9vKH#i@4J}TYB z-%72yQ01(mxiG`|DVhtPcGgIC=WOR^q$KBOX?7$#pK?AW-Ar@jbCT2ftn*oEIL(pg zr4i20JC{ngIqRHt((TTA=Q1hX`4yTqcRJTOH%s?Aw>V#w+%)T&$=+U`r*|evrJnt4 zx4bj;Vqa0gJl{b*!{ZiSi^ssv?F{NQ}H4=CedpSvK-=Oq;S++)}ICKDor zGT&rhg}2pn(l?zj)7$E+@wWNq`sNcB5x3O0%(v3F+PCtqG~(9f@62E8+ep}wzth)L zaL~8I*FxAs+`jzr`SHBt`ElQY{J3|!?~t#L&{vN*Xhd%4aBX%v>Z1r5 z+)LEP<;G~jIBu=CSD$K(*QbtNO)c1*A2)IhkC9uDL!5d2cLmZwtqUZh*rypGqm)oi z+%$Un3}Y5y4xWC*m}e{`EJ4qA8ui8sqkeQm^yi)1ja7G+8f!&=8XJtwgste$oyK;9 zkhd45^pbqHv0+Rp*V@~9SJ9m-?kX}`->)x5o6&9@G1`5LjLuPYtUbmF!fDnXoXZcg^4 zdoEHKG0V&fbGkXR;GkJ!&Nb)j+ss8Ys%y>p=2GvHf(7O>!btMgs0XG8DI)#f_F z#`o)>xy5WUcbH9gZZ})*I)AlBntRNBqa&l!%>(8kv*YT!{C4x0d6LitJ^LpbsqZz< znLUJyLI?fQopbz>-_APdIp9zBr}&fg^ZvAgh5*k%Fu$QX=pSY5^pDEhJD`L93_{j` z4*GKldC)<=(+Nd<=MN0%r$6SOinvNb)j*uchq&H?EPr)D);*_K3;eVFwf+VE+R>~1 zi@lrmJb#^k`JJWy2JQ*6o;Nt}c4m_G%yN#WUDX3lx0K-YId$nKr|I;Q#hm0Ul7=}y z>inp5i*uUu6H=;kg>wb|N@$p6cc(k2lig+OtHAoIu)YbfzBj`9-URFGg!LT;>pKG0 z_f}Znk+8n$u)cS|`i_S6&4TsilXI8JyYY8C*xjYg0c0!uXBeEO)OEuSF30b!_dn>(F-fGtl@9dFrZ>@KMyVARu??>+R)_IqYk#c*z4c;~0^{!>!P2NWD zHgB_cSAMd0uXn%er1zlru=i+QllQpyR6*w0RU_*u&l&Ie`~}_%`9&i)OsMl-8Vt_k zQ+$a&$8D!P^}bYZ*4TRYRNqM7Xx}*Bcwes1<1_Ore8pV9fjSP_Dg#G!(44YS$IBc3nyQmul3KN3b*M!f%Tr zYL7hpJfIfLzRb%7wFnjP3nV!wCaJ_r4B{OHfr41U)Ca~;SXodtVb-<7f%t;z4+&>m zVeQcHfh{842aHtS<&nApBb9`ax)CFl`~iDU{%@X@SN?`BwHuHvjPPvmZ1!yRYzH=Y zc6xSuT0L!^cDir%9PxB|>OChQKkYetUFi1oa%k1&L8{FZXMkD|a)u-o)@pFOvM+0( zYPE}7kc4r(1?@^jJBCv`Dx`Yoh{^BhQ?n!~e}@3`o&X^x?kChpQucgHK2?(L-zg<~ zGCkRJWqRBmFNKAk$;3xI_?`M8HR3)_LS1hB7gNj9B55b;Tu!@kDW{a`*C9!_P~Gy6 z5l#}isD7!WX{IENzeM-vgbaKS;Ucv`BG?JkZcmDolHZENME+^w&gOUL_vXhv zT7Iu5$>YqQ<{6P+>`6yYkF(Z=`>1vgI3J*2+Y@MYuw!*d!s?LhETYxHfpy_#tP8{b z3pr(Jq%;QY#owT&)B|#UE#~6KoE5y|CtD&b$CZnu4arJ}#A8@#p^8wAP|lxi-Cu!1 z<$M@FSf=DJc%S_0^ouX^{Ji(0j^dUN%G)p`|C(#o<$CJ*Vd<{bCV};YO@rBqhQL;7*Q zax^!Rd@#2xw<33X?#$ep+_|~)a~Bcj<}M{H!~M$K)fBEHY$R;SZOYw2Xvy6}Xv*D3 zIDq>@l&&eagK&&+GPf)DTy9V9MZ(G49+yP0Gw({yJ?BbsrGX#i$`BzTi_&&cm_zY7 zt~{4ce32`F_##&&BSkYZ%6!A_fCr2?QR9y2EmLCB!Fcgd~E~ z9d~z696?B*I0k$sA$y`WF>|6D_g+FFVe-TX?#m`txO*o~pEz^kbjn{tm`j*Xm_Bh4 zVd=zW;8zj~C)QB78u#l68wpz`HsOB9#1<-J&%}Me0m30dhjq_5Hi$nk@g&mh8HBDu zdCyJknRszxPo6~KxjZ`|IZq;_;65#H6vYi7gOHV%L-IU=o>!C?$cquC5{mLF2~~O3 zgxR>S&09d>VheSI<#`PxUqe`*w<)hNZyTYRu#2!MZ!cj#;UL1pBs)qtPB?}5#=J9x z^Mnhyzm%`!HRdPgJMvQrBMGAkiTUFQ;|aM4JtQ*;#e@*z9r>k%a>6v+&&Z!e;hg+= z*NuhwOY-XpEAm$nzm|B$s{9Qk+f3L>*iP6<*qz^+-$rPs_}!GQ4Om6H(^lG_w$cu@ zmG-Euv`1~lF7A^*T~yx9L2(*9qBWu6Mp zbizz4Ec4V*SVQ+UxF4E+u4ley5n-tnE+ecYtR`^WI?A_^umxe0X9tBXggu0Ho_(GJ zoXdqc_!J2~g1)B(s1>1<&98NzwO1;X)yOI}6P#hXZQ5R`&iZ>o5%cO+pnA+=zecbs>; zH<#ccn1pfOVsFS>>MbWsBZRy&yt5F_@y_!uBrLJQ!KlB6Yz1Kz__g%>4TQ~vwcf4X z?Fe^T;a0?7on|-gTP?J4=xrw)@pck_!c*hjK-f$;;XUo$j_|A%o<{uDX}WRWYN3ro zZ!aP4?ex_6G+&a>Nf<%UeCfV12s3@zJ~zQ@g@aLe4cTNu1bmsV!Z+PF(^o@aUc5yf zj767u@f~8BZ#BP1CM@-Bgp9Gpx6HMM!Y0BF+_$g{*yGzb1P3nj))xwdCkgz8q6c3o z`0KD35l>$Mav&;zuNR}(4` z)`G9Yx=-u7zSvc**SV_QIMA^!0>IdLxC~z&Go=5b_s` z_4+}=VSKSTifnYohEl$q0AQ_a=1x2mRnRx|CpnrRQ#jQ!eFSF^cJgoxvP8;zT}k>p$Wp1%T6 z$osUzW()15s@)#iUmYi$;(ZqOSmVt-B19bT(`a0C=aYON-}9FNilcEhJMeX&%REQu zAzUPMF!;^C#h=4{G9ksEW_I~U;XcDWNolhD61Uf%L-IVo?k^$)_?^AK(qBb9quSN% zr}p`4-Q)cW2#YC>QRiRoZ}9W`%0&8wm_)x2lT*e?wv_wn*WzgWT6EK|MY~j%mY6n1 z`dHe%^vkgpzZ~oNSLLud!{$iRuqTH-Dak3H8eSkNe9V&a8~RoG3ssfaeGbT4^bjPQg#5}0?W%$j&Vh>4;2YJI{3TqHPzUzUy96h(PsIuC`*B{n8@yY6nM*+W zewNF(SZB8L3GIKt3GKNkp_i#zhP=f%Q{BrF`4(+G_XBc`z^Uw+NV5U7f@yqiKl>Rk z?PnhZyZia%{0gp{a)^0(Jork)7K48U{86M_#Jn6w3F8p^Q{=jcH2;n?8IXS)@;vZa zh_!?NH25zer5C0B7Aemlb^-Vf@F}8hkerNff`s$tfX;wC&MD(%TpumMycUUnhgw}J zS|qXO*m>M{cvgt(Lr>xJ+fTDZI)>P46H z7vya~FWt`dkz0{+0*{@%PP8r#Uk28gatZb5li85uqR+?0_oANc0doiQ%5L!EKodc8 zn9|dCgWrqN*gtFsw@XfAsw@GW4M`j{4|S{KF;X_5$97BXiSqC0t8+p_AU_4VALFbFVH3pTIQH&FK@M zC)zU5A|4%k9>>~#!*#Hg_Fu$^{{XZJ^OW=6E^5L&^&9u_A1n-TT+&}SZq^U-19a>Sx<@db?ftV{~ufe z+PEF9zJc{n4q--AqX$m#bLAF{PAjLeLmR1GdvV$%_g)69*-2rwFcX&}Zx6@Xw{iLM z5tfjxn+prcJ(+^MIb2)f*)v)dV!d(r2jRM@CD7^$9x3S}x1D;U3H={MN^VOm{u|Ig z;E7q#a4zTB_*apad%KozjgHjpQ-wBJF1IZGmQX8ygN_-`3&|GNg zNUU5{oSyWGwcU=VbXq<09gOm7taRUj?c)BafbFek3E5<}^T$A&(Z+4CJmWCeRwDgw zkqb|miTa$usF{|n*3mQklvmJ)4Wbn&Cz0i}n)6s+gr%Cy&$X}Ozayqu{2JByHHqwr zdI?WC1q(J8b1DPnH}P|67XJe?@n)W(upaY4S3_41Vvaj7BQ#jr=}3P87JDUX(uozh zPFjIFGryMBPhM@gH_|XG6)s<$hW>9su5;34>}T>}pV=du7bUMpnjZAS6UbX<)gPlT zED7igZlkh9c>_F+qpc17lZVzFiT?s?(*fw%PtbPuLOYeI?L1R;CrVh2`8yjD6aBV~ zOCwA51N0S-Zx`rF=+Yv{ov*q6jw z2A!|P9Mr768Ta06(6J@bDB|~Gp6)_>f6ui4g2tX=l9&=d13XdT|3#8;5-&WzSUz8H z7PRHz1zue&e=hK0VR>&69$RqEyztK=e6k2{EW!he<$L8xP@K&xe5?rXDwbar;Y&q$ zQ4zij;4?*dOA&rjEZ-=?JA*iBAE!eLk0+Lw6P(*De3}S9Cc=Y>@LeLjmRSBuP(#Z{ z2|OuSeo1i3x9~+GypRb0Bf|5D@Ht|68$sKJhY{gh#PTX4{D}xpA~;=Ncn=YNLoAOW z@D*Zt34wnQ%QFakf(UOQ!Vie$0R+B3gx3$@??ZU{uzY+7?;h~$Av}5rFCM~whw$7X ze0B(L9hQd6NEnt(RQ4_ExcC4{@X;W=GYG#7!Xtz5#UQ*e z2>%Ph^MdfXAiOOI4-3Mpg7BvxJShkt3YPZ-aoW6?p<+e|ZwSHltEUy7L|KIWy03QLCcK{(59syt|JDirsG&I3U!3P}o#ZdPMTpb;#ku`BvEMqYU!2m9Gt$M${NhZ0>ok6x z!!J(Yx6a;&#SrK1TPN)cZx`Yud~vQmW~ewzU!0;Z&d(Po=ZiD*#cBECoP2RYzBn6S zoQiLqhc9dn&cGL^-&^P2ixclff8vyTalXAc*$G`s&OCZgoGmX-l^5s9i<9KV8S>)vcyVsL zbz;2G5Mi~%8YET|*qrzynvZCujdr~88^I@mcY}9>cY&Xv#hBWbfS*S+*Y+ZKANU&Z z_kj;1*Lb4YR%stWX^S})>8EL#Ol@WG$VR_?;;H=hES_p(|9v}<=3AV%4}9M%C}%0; zPl#Gsbu&@&Q{V%T3;rhX4}v$qKSt&Jfos@zg8i^lZB4XDq`wbo9zksRRO5kCgLJ@+R;b!MB570e&~v zAzp~|CM2s6I}xRcT(rN9KLF~&*txWaKnsw5ChG7w=#N>`Y)4ts?C-IrflmTI0sI8; zZhI#r8zDIY{!3g3dlUF0;QJ8EKX}*Axe}G;(f+s3?`j^4KjJ&KTIf8QisSi)EJkbFjT4c#{QHLt< z1>ir85}^NyH={nFs86n_k9{@j)5`jQR_9x-cA?}?BF!U6|7GwV&;;c2gU2jRfF|3~ z-h>jgf}i4+P!s5_%Wgw#1$Yfl`3w5wOOUt_OQREi0MwPBf(p(56X>syvLEsZsPit= z8DrP~5_=l${~7r2arvOR{oet9FX%GvNh|gxP|TYCh2RBE1APHlig%k5-f#E63yGk3_bYXQJ`VaFP<$!q$FJ;u@pS-S3Z&0N z@)l^7csGdHXA%21Q1Ons9W)5ZYoK_SD533A4NAao-Z)B@qmZMoB)p;OM=lvXCgE*~ zgs%qu=m+@=ko1G%-MEamzVaMM@SR0^0_mT_Q|2-4gXGd@5c?^_{sD9b+M=R_#fZHK zigwBP>LG0ey$g~rf&U5e;+sXh8S?Lg;v0&z1@sa^fO4%GxAqKZv++Nh!K=9f(pL-$ZvywnyHGqDfp5i zqqg!Lkf3!6zUjz+1f7m@ppDWai1kB`_Y%?;MRS$uO^{>GO8CknJq?K%@v|ra{SX(U^HWe0v7!fjXxGOfKLU!971Uft&1Er< z@C8b?As2dB`UU7VP-v+Hos^(g{ZD~Mzez8G{u&gvLhA1)t1e-#N$B%_(F2%wGUkPZ zFFyS{`e}{se;E>dQ`0;cBaDS4zTBaF8E@NU@kK_AEZ$Jbc>5%O6LRQ}G8Gc>#Ls~* zf*duJVSiM-VOH>!M27uQVDU86N)?*{fEt;@ASa)c4@KZ!C)KHm#GDRPXFWSO- zz)H)|0To}Vl>0$3k591hz z^@xjoU=rE|?dr#O)qeD99A6OPus?BF$herrqwo~0_!{hU93}L@KF84;eXz8BG9(zg zKG={rc4&QA_4@F)3YV}J_hDq?*kkme4sq-l`<9|UNYf7s(~s8mVGkU~Iv9tQj$0Y-zaNmEb|tcOGxM}R|2`d7Zl#fD^ zi1c;f&qHoNat4y`g7P=A6WWh>FM;puC-_a58Y7EHyd4s|3ObC_^!Y6HfF}2?g`YdAmK_7u+D)>);eiG@w0X_`6h-u#mq`V)J2BbNF zXYIyQk|22tX)-~dhI}N_&xd3N_ytJ$68LJ+7g7E{kj4kecai2Odf*&-;3>567}{t9 z{Shety<(4uwU6U{DbHDXQ~y@xxm`s06t~~T&w`dfQpjoI4}ss!dsj%R`Ms08sqgQI zeVEht@!y2pOsh2QNNFELE3BP+)DpRgNVHaPl<4>){D}93i<-lOQ1i5 zWCBWdAlF3V(@}Fx<-d%ojk|dqwF;tdKm%7})K=U0ugKoO-%Y*2bC4u&g1(0|lfgfN zyng_7paf{F?KEf}=pN7x-=^_jWEuU7nCD*AZnJY+-q8NWZ5QpbT|yoHo%-P&mdKf0f}-`Y{$$z( zZ2>hvw}G;LhO`c>AO)cOF6*868t|E*kAr>+a(aoF0{}{2P#b0hC*DOX97F9SIFd1APwE4*CU9 ztWDZUrv2>q`6c@up!`?sxAI!7yu>;~{5sU!M9n{rdM2Xg7r;kB`EZm>DY+drsj|JweEenR?Mo1wiP$F)yB4ue zBbGE-8K&i+OkTf+!L~flb4nRze+)XnE4#1XffikYhBQNd7Ih0i-$IDx-^D*qa6nRl zwiKdWZJ@sdeGnz=N8SYF%3+DR0rHEG)S~bTa-K?ESJaj}CGlYF$iiV?jw9r8&^Ckk)`) z^O4I$Z$E=H6`&u7gilX-!6x>u*pYJGh?asrj6Luy@Z*q1$J4Qk=KUMR{u}u1Tp#5x zknlJ07c{o9@APfwr>K8NJrhCs?d6<4UVTE!-;kd7#^3InhgdBpi!TJ zJ$#gT?OE<0r5XLhlFzA^FoQ(ww@~MggI1!3Cqa3({!C+Q_J~Rnc~w7aW{7`1k-kw+ zCa*}|d*$Q^oHjoA#PQbmLB=WM|C}EzlW}7CKP#tm5PxD&n$ttloxSEWuctmAmhM`0 z7Z^BIec(QRCB!M~gTQ4Ow2#B7>urPj@4u@b+y8}rZ2jPV#N5h%?njTc@h!`br$!aT(1`W6zF5bANyC)MU!XVq@-Z6$2Cc*ah`ZbGZYw-MS2 zM+lvS6IMDtA^0@T2=1mZ?(5Yx-)TLGAWjP&p^ve`Og&q76U2GJg?hva#rd@rIKeiZ zFvbcq^|_ROE~TGO>E`Q;tgsB{3NN)z7G73?P~oPaFXPQ z0FhqA@wvbql(vKN@x8z~gd35LTsEaMrV`(S`$|Kikn(xA8F_}C zP-RpT_?+Ga6fP#z5%>gNmaifC8e_e&iTFkWpMYFV_Y9F<#O*TnQdmo9!2N#0CdjyK zPIr*_!?-_c9H)@;og$neSZ61ji8wdeLA=8pNf-@&9Lf0%W#&DmiLjUuqO=Nyr4(Ok zmg{4PpJtpv{0wszl~+z>lw09Q@Z(Vir8Vc!{XC>yNNF9$8ImOuQc(`ciC-c@j^lbD zZ#~IZ;GR!a9)q$hnRULh!`x2TK-fvx4ZfA+ZDu?8BW5SU6NJ;0b~A-%DPEkYyn)YD z=6HXS-$`-Z#CKcaPVj9ggVOp(m=1qB(vG3D4$9X{<@8dSy?FixN|R}Y8f2}U*Pl)I zZoc<>{e={AS(c32yN8H6k|74jT2kx)*$ zd&$rVMdmCcneG`#Z^Z>jxAG`$9_8cv7$J{kTsG3xQ``#NSDI^yr+fo4bAwS$m~Cz~ z7ErjDP)As9Zijpg$=8_O#wOw$3ETWml6M0ly@=c8*C^ad*pB=CgiVlf*_6(oP4{lx zAN3bfNcje2dZE9}UqP5onCY+a&-Is)Y`zuNaQxsjdZ9TE_lqnnC0T`k8DXV=HQlcx zY$R*}-{jwcu*C|S5Px-=J-FXzfy(nA@E;;{PxpY@mHq_;67$yD#A)aRbh4E zY<<4Jtgx1_fcjy+zou|8!ueKM!|_+Aq5k9hIstAkh06%&zry8&2ErQfO@-?bwpd{k z;;&A#2lrQ(cZkq|@-`JV61G|4U^HJtwu`VA{Qkm&gu_-i7)P%mJ5D$S{!HQd!V82; z0+WOe~hr*EAO<_0WGYI7t zOpfzsPb&AjaX)K-pEPgMLc$V4Jz)i56=5x5!=%lVwh|T+mJsR*D+sFyYY8HL`=p(d zc28<0v`uQCbYxQJq!WbGlg>`+p43Z-7imRFMb4rTMd|+^Pcg6!|Mc)0NgDp-@RuZQ z_>YJ0k&NN{ZoMcynD%Jeqsl`1737vmab9VblpskDoVX16fwNcLEBVd&yYlzu@5hOI zH>J=%KIOKQ+lY6ixFlQJ@U-FVSwd2VeRUZ9)=b=prBMjf40tgVHn&Nw?#g&%B=cd|0|`)m@;4uxHTyzCq!EA>gtO5jw2CTlwGI zkE{QMeq8oX`tjKRkbXQVEtcYPqMRb9%j4u6*((>zF}X^fBQKFx${Xb!@@{#*d`Rw; zPs!)xUPV!ol@ZElB};KDrV>!flxa$}GFMrs)F~^KwaO-?N!h9FRSqael;cX5(yd%l z?W$89sb;9zsz)tSBWk%?rPiqP)WzyDb(Oka-J)(+cd7f-cJ-)wQa!6)&?GHMOVvhc znOd%E7tx}t*&CwQUOSKi+8f~MtRcqGvXl>eI?U;62JFi`|X*P!~%{In1-j-)8 zw1sR_ZPRVDY_+yUwt8EGZJlkiZJVvd)@nOw>#&`$ow4=U;`T&|n!%^(xl<*@)$5A8 zo$e%(CA(AHY3@;%V@FbKr+dT$jc&3%u0s@`=1w8*lsnZu(sco`NtAblq=}sF40o10 z$DQZaB~^s(B6q+YlQdU1o};-Zb9yRIMd)>paTmI?DZhtL?YnYjA4$a7eY4zi-1GRf zK6=`0SFLM-dmeE!T&rAb-8IBjxTd?S-Lr{{xfZ+XD5v5oc7@#2UDJq5cUQWr+||^g z8Lm8c$Q2-NI@KZKF5_5N#8u|1kd)jWR}Md!V#{0}m+2}dE=IYj{=`|eBCdjR&*bOw zGr4TyxP~Gx$5GkDRUy8XxH<0eTz}%`Q)?HwmlC&_%B@AM=DBnETtedJQv5({oqM^v zfw&d!ReTO1aqHY0-7DRziCgd9MDdNpZN}MzJBi!jZlU}f+w9)u-s>j&j57$Qaj&`e zxevGxxpxqE(0v%Ap}5=KN4UR}tK^feS*X=1&X2r& z;^JxIdZ^rs?qkGVa9^VM!^HLCB*r#LnJ7)PQ|un%l!=M%^Z##m?*SLZ)%_3O*_mAs zQE_*{6<)#6s*n zYK$=m?>T37fyZCk@BdHU=kvZfxo6ItbMKuyckVs+%;0`+=x)ghb#DggZ5V^PSA$dx zr7wgoDl0pytZWvR4K0S!BS8|v9KxJJ(?D_zQ-*0mlR;7=W^HIEketF?pe(GtU~`1B zQ6NR@De zgcxv4hO7)xhq%)7bqu{7;zUnh9l}BsG;-X7Uk4Y{xbg^o9Q*>Li=jG1LIue?)D&D8 zd>y2dFxEE)U$oAYGnV%M$I(@yb61G2dN}uBRcaL1C}mYO`!tW3QuCyyk>TG5Ude>= z=qfbz57Uq`ywWnC2b2wImNm_{ruTJAAgzRyW0l`O-)v1txz@B7(gABaW=;8!&Qv&F z{EKwuy<}^jtz9>*?XVqf=`N(l*5iu`>5Vm&NC`$0C9E&Z0g@9W7f9}qydjw+Jzgs; z5K?G`W8L>sL`O>|Fb+z7;t*!)IftXBVr-7%f z(Q8Z?53{-zk;EuEmMMEH`$FVANI8^MQjSuNWmT1V%Kc2K{6=|}xu|%RoYho0t6Z47 z%AoRL9;y&kDATE$tD=~$DsTQghF|%r!YB}>)ZBT7wfvPR4 ztxQxMSDj$Ns;^bwuu#z#^-GMbxcT#s| zP1Wh@bks7>ZvSRy;i-J#i+Nax3F0C=jzW{OZ9&Beio-btUkh8 zslQa8WUbYg)Zeo<>ig>ZtgZU7`Uy)?KT|(r?Va76-B<@_PiGzL=PajwHU zJ101|VO`)IWgzS7obEiB^>!ZSJdE{m9_>7ar8-Y^&SL$XKXzWg1~_kZ-pbNyEUU4M z4XUxC#tN2>Xlx9zYeHo((`<9hBK%=$#4=&l&SLY~5{7Rjn^`W~$BwZAc9C6Yx7kDX zoV{knoD5>as+^j0<#Z4q`g6ft1lJH^#8@tYYtMDzdUB}{D`s$`AzsYpW^wbmCEQ9b zhuh5Ma(f|mJjUg7XSjgusD&%g~`M>7J)RdZitV?H&hDNA4`-4e6b~xWRoQlxHr{Vm*mI_dE!Wp zBYhO*iK6R9(sd&(CMxAk+@0FyLR@NtLs>gRDSs&D7c(fo3G<7ol;4~3yHkF5YO{-2 zLOh@NG2#c1OLr>f65oth5p(ETP%7}PxCCSeaX#L)IO})js33WA@Zs-R74YFFSv5_8 z<|%WB@uicAOwJs+t}KZ$u>jJAe=Tu;D_yU0kf_O@NPN`xZ-kRuKcY+Dx>pw}w ze_{Uzk_GxWFjtawm&)|^Ovy~FA@poNn4OE*RwfIG3y2HKfwUP?E}cP~8&Er-cF=lA zTZ49zoCoiHGSm719a7MENRvsL0ou6%4oE?nK}+a3D+r#v|11AjLDL{5LYhNoT|s-@ z|9a4PNJ&AHNuCh|v3byF|9qq%Bcz@rK`a*3&wnRUkSQpgj$MQ5(pcg&9E_ztnlET9 zaWH=9_X@HFvdy>)9+!y!az1d$pC;K~*#9i?e=FZgNI8%;L(2Wj{9NFHKTN`(*#3zm zhorEbdn_;0J1`d($`V;Rn*$@|G`r6!IEV@Zt_R$P^f2IgE!Tk80mXr`K>J#*fmH+5 zfe#4OfdcM_WrrLrrj2R@Mw<;lIGD0fl%BxQ?891Fmd#40vsJ z1il+`;qeG^+$RXe>3kTi3pBf!zh)1N**F@r$29ai9Bu$N7I$yr+T$-xYu*0W68E?A zJ%j|Ft=4Nu#ebdO?Gnsr`#(ul|HA%%pLm<>cE3!=L66G()BT70kM+;;pJvMNpX0xP zJVzgR3XGmYE6BxZ3K%CpAU{c7qZ4b(n7QY_mSle`AH1KKA$m1uKpM?>b0#I5U3f3Q z+&_hJ=IlR7v;M;VPo()w0Y^-nYk7P0ESjaT$!sk<0`Xok#CH)8&t*XTmJ9LPW0`}@ zB#V+I%d%vvWrt+fWNUz<`jHI19=Awic_UsO5-qEu|465A$jBIrAlB8j|^~xd?NU{K^P1Af6i&Y-Ft& zrAx*Ht2Nk0Rx3zw-C*guMzxL1JIRXDQlnZb>+{-1QdyL0F`w5`S)W21nTMOlnh%lG z)u&LpU!Q$8f|~QdiqZ+6ePBIdKJByIMsRma&6h~>_E`?rL*}hM<84GW=aF>6XFOQ9 zns@qiw~=3oSpX|acYV5pb+viDPZJwKS#PKdrD;A*z`DS^)W={Wza^9#rOiIDCYa}# z7x*Y_L^Ur($?W8#0Be@HtKq)kzIhsQziiA+Qknr~EwnMxaN2O%oQ2#k)tqh~PEvy5 zG+3j|{R~?TTg~an{bHeA9Z7m&fat{>X^u0@G0cJbf&2NJJDTf~bkQ&e%lh3lq(hE$ zB-3rb$7X?~*M@YkhWh0j5+Q#glIf)18OV)Np&=2h-e!{_)EsCCMKW#lyJD84eFli6 z&F*FggNxbQ;DThD;dj6+Ny`loNt+$aPWm@CGA%MKH@lEDUJubf_KyCFjm!?FeUKX@ zQ+NFpu)fhBC@0f%({jHOlA7ot^7gx{Us+CmkNsXiew0e|E6JK!PNv8Q?PJS7Fqx~{T%GMj1 zOmAP2O!Z9)(1YYVM-Lv^`(Z^gdHCMP+WAObKzoM(WT z(2&D;!)8i0yYOCq&XD^jY42ay|A_=KAsjJr>bd25(tK*GVF%wUdp&BKp?WMM~sb-zMqc zt=re+8>ll%+3fS&v%Y72V=knY42Fu=Z@|jyMgTL`N1REl>%eBjW78si0Q6gwTrlGb^wl+(f z;QI|~gRA>ai40Y3lKW1u zY}CiOFL7UD*bYgFl0;xxst^qJ+8x$flq3R6hJLMkvU{>&w0pAtI!Y3OB}G5Y zJ=Q(eFu*-le*z_mU|l=lebQYtbaWTpMSVVUiNLbkd#k&Pp_#jjyNiB1a*60plii99 zwcU!{iuDVSO9U2geXLuN!Q@utR-_+|Tq3A#hTg+1Un1|-Hpwj?EW`C<-L^~QebFYl z!P=)!bz5K~eOkE;mQHS?ZKO{sm%$R{*4;+>y5%ywJw@q*-J&GYN7y8{D6sgKlU`9S z|Hr%S7tFt=siq%Gq&4|jO$p^BmW{-HQ0YrCr?r=oKA15$GJOOjh@(N4>vgXAuK9Xn zIftXaJ{Wj}z9H^QtLdld2Up6_WI+8RG$UZWpQxD#EtsU4#01S0%@iire5CmZ)_fV9 z_tEr$+=DcOAopO+V8}gHGY#5;d${W8>$MU%gAv1f=X;;=zDRF_U(h`*)GUOuD>N%W zlcUMOJCb$b{jn5R!p1V@Xs{+TB++{Or&1H^F}i{-zJi?e4_>Pir0x~YQz{$>yq9eE zD*ns&ZT^G%9{*pv??7Fi?hw!k-D%x9-6h>M;6=Loqcw<#y%b)KUP>>G zmj{r+%M21G(W|yseXk~7(QvHo6%QnmP9#c#(dAwCm(XfVuB@(9vPw#|(wS9O)=;{# zDoU-=i&avV}65`6^o~ zUvH<$KYD0~^rZQ`)siLXMT4`AK(Xk|r zx5k^b*Z64ySO-mz#=^R2LNuYQnI_&)nF&MNpnk7nF}+O?e#q1dCW84^Ni<3&nuocJ?}z#3{l-1&k~)0(Vfmg=LFnE z=dSbCnV>&Bluq=o_f$$1%vBSp31n`XU`;S{*Mw=YO<>GUXH7;({?_9^l^R-)%_`_(E654| z@bzq|J)|xb&U;okroNYK_wD~L_kr;b`e5{b?Y_rq9kfnBE?Rf3H;_pi2yvkU938ZE zwUOE=ZJag{B$Kuy=)00F8T9?M>Du979Sbq(H0>Oa7HF4hSA%^TSR=LT%g6y}t9B>w zJnbRv3GHdP);aAZ?KLU?aQ+s`gXFf+gLx>lQ67$3cMl~>P=c^O*}lb>pe7(7yiT87I>ugz6Zw6fsi8My3?RNSsw8o zNm|_XUH=dJ>c+~Z;H%MNo5^GQlgADuk1dkNZcH9Kiad5KdF(jy*zx4C6Uk$DAdme4 zdF)Q)vAdDS?nxdynLKt1dF)j3*!{?34OZ&hO~{ zx9J3=)Biv{73;giOm56g0m;!#>81hh=;q;OfMj+PL0=or>jN3wnz%)~#Y0MR>jcqz zirWCUAwVOcWkr)h%!cKH9sXXwbR5d^*7Vzb+_@+N5z6_D(m}`(Gl0*K z^d$!R1vy8*Aisi~KSIA{Zx8Q5pOnyV-)Zke39I87;(W-?;%~=!Md>8OjgZg4-`w+i z=(qTY3v!;2W1bV!uXobJ~l-cmN(n^DHw7l~p?oFI9oCNP+d*eHi(4a?hYZi z9^74myE_MWcMTp6?h+uuJ-8p-A-KD{yASvCyz;#>^Ht4M%~bV|-rcL$wR-JUUA236 zuWL|tB^_Cj{$*80Bdk_}`%}560S^k~YoSo|AMh017=6V|jH%C7OmE_$f??vve!Suq zW&{_R0-k<|dmPm!5n7BU!KP<{w5NW^Ua|(=?1|(`A~(4k`mm-BOj{*;_puB`TV}EL|eGg~t?+kMD9*$PX-k(}Lf}fH_)u=Z@B+dK6;R(hoMQ+z)w~S+qEFR18$-(22v=^G4Xy^e)?xr+}RKZ<**i(LpH%Yv$ z@O9GO2xh4inLNX$v=Q?0Abmduf!B!&CO6Z@$pgR$(_8{#;xJJJKb z+<3>xVMmVz4j;xjGN~PG_-pA2w@Jy`<6ZMKk^RAqUjg|$XD8Wcswf}aH0jSbo$skWC#ky>??^$AC}+v6JX}|nLoJcw zyAFASlm_yB%m%_C-E967Oz+yWPD`cZ&wf0Uce#85DumEF=U*=f9s|1?zfw0^u9`dy zHQkXP^hhR4_kNES(O9#stS7gjZLTCGbw3Rj(iwfeOq`^n8T2NKUpDQ>ASHnIan!_F z8IzmCG^^x1qb2YC6{b(7_Zz>sk*_dNeb%1h%!n$09+s5yJ#0d9d})&;IV60z0AT}_ zvduA655*7BKg6BCcBEH7x!lX~M&?_8@-9a;!`x?Yyd0D~M{476T~9X&4C|An6#pnM z$6H)~8n^CeQEd%GUCLO|a)v(o&#xsH*ha4jq}}{4m@Cp^mWDs7d*MLzO|~;5Aa6t1~$dmSMGnO(}+^8^{XKiWAg zBCs2{6rTP|^5DzOz-zBeC+Z-@gWz;?0xEBeEAL*HNfP!`gGLjeh?I@XPdbpRp1QM z+r1L;VEtlBmlP+t=MZlG6i;sDtei@H4r*NLx3crjAe=v$^^Jd0{{Tw~b|NGvAWeZ%izh;|hp zQ(g5Le1fIw{#2op$2x=#mb@6O$w7o91-c|(OSS%s?&#AFpZbZzmjOU$n6C3r#S+Am!>38S0UfS3?U8qfC7Z+*f zQv+7q<5c&Hjr?{fDw(V+xv$4^EgFJWYBPUr@*9)3=*($FZaA!{!)*$%=Hs*Do_P%E zuw@^CvNU`7IHlimtm;jWrPHLAP_v?Y3G(%2@_$N*O#fu3(rZ?tNL9KXm$5-J&=e`& zoLl9Fr(O#}E61MlOIBL8pUfVbdZSjqY;m@FhvjJ>l6hsAsO(diB952yff+3L>3Ik~ zu?$CpA%8`5m9X;APEmY>zsxA|8!32QD0m&BRP*84977DTWFl%X*!^-gC`GUYuMy`i zcxdrT@F&?c;<_uAi^|mA(<87RZN5p<*Jrpkgd4p5X&R-V$ZKW9l{p3{J$_9wcGLg% z1!GFFP`QrKLgWzW?UECv(E!KsA|YyI7gq2E~J~5Wfxnim4!Cd?^vF=5gw>sRK}Up(XbK{WDcysB)P7p}(8mqMdr%>HXncIri( zz?b*5B=qB>x$@zS=7a(qrb8H2p>A0$(D+fxPZt$DAj`gO=(Cg(_YM|C89{O>f%uzjXLbqvIR~Ej#Qi(C@khDqM z`xWL&Ql-&(K{D?Jjh020~rZA~D*hR9jH_W-U6iu_#?P*Im!v;BTX_I}_gbID= z*D2&AN`K-K2Pm})9al3*{~dLP7YpCVj_KyfIN>3NyoV0XU#NmPZS)N+chc&3;gFEG zUNma)n1P+5yT*DJAqlV8nrQ=hC%cdKKmDo-S79bMx%8u}Cz6Wy<*97`4muZg`_ga9 zD#(1s9Yep!w6yz7RFT=r9q~<@i3`)ZIMnCq@@{8W&uir|fFhhbPnp#dxP@xON8SKQ ze>`UQojx}wJiRUc zF|Ym0)0itEit_Gg`+RjcmwiI16NS~`W|V4kC>6eLD^_Txy$0<=LXgcAtIrTihyq9* zF`}{LZ|B<>TzSm;gA2Ege3yfGYybxwYd6R z5jxKB6uMxc#{$>|(YVvW_bSR5nqMFvQ6fp7!>>;oS)l8>I?`~X!(+-|DZ){Qd5(_{H;>lS#~Qr5?Hd~ zK`32#epdi3%|xc1@1rOE0&!X7T9kTlb}&L013BUG)m||}^Xoh%{#^W&XdP7QkrTBS z^-xdb0H%Ya+tDA?_+SQ#S03*gHNqH5n&pV{L}|7_QvxAw`k)-D*P^egpf0YjF$W_^ z>zF}&$|O(s%B)YiVKXFIhMkEQbSq*lDXzHjy^WYck}u@R!}-)qs}72`)OScpzx_Ks z6q_m$FO|0HGRxTQXESozzqn;d^(n#k?oOXL5*?^%)N0)A80o5cvlq&UcyI7B zmbfYu`*Yc&61A|C-RW9;*M^{B3n+E@#XV-Yi?cqmv~rkEOo-6pw-g44<)aczQRFcv zU0?`I{w-tQy~_tf`@q(X9ROJLQzz=G50vwM6f|f_AvK1CON4~Ff1i#(DB9}Pf0r34 zjYys}(59@j{uyU^iS3uK8e3QBH?8V}I>}+PtT*3g=ex>_t~>^nG1tJ3YH7eXV{(ap zJ4M|5enwn>Dq!llZZPql<fpt6>&9A-sUJ?j9`Ybs=2ukkU%5H3rc4wC#z3}y^8&EIGo)-Ht zQ>n1n75}vIPE#9AMF|S!cqJSiJUxll{`OELq0b!0-Shv$CB{|$V>(@#GL=v5C)SDg zer3`7ETMjxI%@WjjusZ$jOQDOVvCvCrr%F%Vb?j427F1qUPWTU&D+@Nc8q(*r{Jjj z!t7tIwo;dZ$YSfT73Y5PRvWQ4gxC{X^-^)PiC<%;TbX?^CN$wHb7aa_Bsuo%4lZj2 zTjlKy#)zb^b8vCT=xNx<>5nDq16)!V9Pa;g<-P4IwA--IY;P0Xj~)}6yVo+DkZl{2 z_+|8|ec(rlf5*55qYj+)ENHf*YPb`KugZo!$rn>vDtK1e8;3kNr6 z;U%A4e7$Pi>^Ln=_TjhHP;!9oX39<`usjEbqs)EGS9&kfK3HT;aKIeD5x z1mOX;?wKZh26JYz$V>mU3x3Z#Fe*!E3~&&=`nbZ#RBXOvc$pEp~YLQX@$FcV!qP#YL_$G`j@4-XAY<1W6)F= z2eoO3+z%a=2Is_+hf)`rA97DpPv+6om6lE6%;osXb%#eQiqHE$iHh+Y^P)ep)+}@# z$Pk(^&EB+KJy`aHJxV|OxTeiJyu>UNgr=7A>pi-$T8tATIkCcyr?;I&`XxjEwR5+? z#ldY`_3H8nct!rOk|ld~$8V07d?RWxQ@=kn`R>s__Og~XNMzG3Q_=sf=B5i5C`J5M zT=zErE12ND&B`G`Q7&3UDjRI?;qJb)JYN;wzzg=P%A8ie_g>t@e?Hs$ITqUW>kl;7 zot!feMLkxo%9U7?GW1A*gkZh^)I1g@DgnAygo+jnZaf@xOKW`CUJ4dxZC{T?VBf> zZ4?lAw!5xP{_D2t#MBu1=WhNMTJY?;{ZL13dF8~#LrysetXr$wDC^ob_WVBQaHa>a zI~qal#da7l)M+~g&u?8iFcljt1+2LnZJq78XiC&B;Ly(cy{d3BfnO_3Oiq>zsU3>f zMD=NHW_PGR`2HMa>*4QI(-QG+cdn10ieIUr5;RUP@D>+Xe;X}EdnXDSOp7&0>F(BU z8K#`>{Pk>q1j&t4Fvh^Z(na9R^_vT?f+#+SV z*pA7@M6+rchpTRzo=@G#0U+WW3HUgo_IOlSMrgtH^vqN}%Kxb{0t{L)R)O)rW0Z^> zqigDkc#r1meYT{Ved5w5zp0j*K>U=Grtn0& zVUa0romD`9#M5_3-Q!+;UxA|w^Ra_$|M5AdYeaRBOCs7E8R)brS6w*QTS<2MaSFFk7+kp;;e(rU&U{(P4k;(+ERXr zcm8u#T{j#(J|_ygc{%}}E>Zi#BIo9xP#3hF^W@(cUQ3dK>FZRJhiX1U@(DiBoHxw> z6lgB;IVDN|+OfdRVto94#f_rzM5o;{?RfW5RlTPz_&e89QNu`(F zq)9xKZd4xz2@%5_e8aaOJIBQmZl|et!k`KczIWKgcjs4bu3M8too!7$L7u0NV<$qq z;~f+3ecc2_7&aa9yls6}1Hr2I2q3#yQbKRf4NCWLeV>Uc#o~vhf_{7Z)$VGxj={?g zzS_0odG7&b(ssEv^r2=_zM(45o36!Q9~rIZweMa)DrcVt?AG3X(rr-3Eas6Vjz;I7?PuTm0jhZ%t zILkk)R#;xQA{fOaISouwHS>&4EmlcLebXoQr_XWuJ6LL0rR?UJUmni>Ce;>ot2*32 z9hKX?4u+86(@Xpo#EVR6uj^ZMG0Tps`jc%t)Nx~4bR9b8;!o$vO171{SG{k3f{Qt+ zryt0|0sC_GJWi*E)UVoHs^J(xqx0S77OSV%px!4OHl(LaO4zcPk}}t#YJvpv7x^#r zl(keLcg~U>UQ|xuN-PQ=iyNA*Vr7l4~=U=1Bi&3W;n^F?5HZt{LB&%%V zn+gDugrk@3+vTW zhkgIY!>-WwMkyHAi(^l#w`)jE@7EjU!KF*|p4PVu){~*Rf?IC|eq2Kr+na@zVNwaK zPec!u3g_~Ou~!n;ihk9*qOjp(^BDB74fn5gmP1=8E-1E7WMeD=3L44y1qlW*pFN{ zie;@pH)0ps{dKm+ZaME;i!mt6Xi9$;I!OA%qlmsq*L#xbxH7pNe(^^AL5q|lMf5Bl zpJ}+yr(kDwb$UaWmrxXAII+rNG%%dDi>lIU&{SQ1ssQ`G&Bx?WTJPstK)lZUwBhQZ z`52tEc^`}!J)G;KdxH7*%=+#zJd_&h(O6f-&|l!fY?aAI&p_g|6+ga>gOSH}=V`XR z6vmhE@iLRNYFYiUa-`S|;D29Aq*FoQWGNDC(ebKPmY8T!c2`)R7rvr4_sU;rvzbUO zzc1gyZ@!;q+c<(OlzF@PdRRf-3f98B={jw`g=z?QeYv_0qwHEg+amOBa2a@sxWv^k zeR?Na_s`Z$8^7eW8p2#U(>1Wum4Dr-GCbX`wRoR8eQfUSsl|~KaO|b;Da!1xYwVoI z+N{l2usy8>3T1Yz>US8c4sVlWzuKppXt-u->|Ad)8ZZ)4WiL$siVq6#_jldTJ--nu z4A82OpNY_SSg3&3HPc?LByn1En>aOTO}RfRFS!#YbrDXSx3#@qmWoBi_j4H(=!x!8 z&hdRbN%ILWOEed<$EL7fVBPQE{#)jb^&Xe0;_7oyA3>mtaP7E55Cw&aS!e4tjsGuDy%qhmY-|cgg4`#)AOSm)7ugvQ> z>N!J9<+LSceUv$?Bbe9h@6bu|A+x>>q{Ov1$lxqH2|a>mh(Pt<|5@w{^Rn7kY_1Ji zFXwpUXk@p@GMC6<7X5y0b{x=FqOP|W_Guw?TR^Nh{u z?86)v%iSQswGlezQvb5~7sU()0uSS)?UlUtR+uNQ588^s$Dl+R6pog2$CkBCoJ>K# z#e3_jo;BlRoPY(Ns}(15X@2neg`^l}qBkn9$Zg=P94{2sYx9qt>uYrh-E^sBLpwI5}UQ2+!{yHU}P+E2d zr)AGR{s6`9kK3%p8J4p6QgxYKidLOh-{U;^v*4@&j&+t7h5Y9Gq5&bflXO45<+8i2 z6GBY`u-9gddC7T&!yKdF{Y{TSbij#iqp!7CA6%bTpG6P;)X3m+|S6dY+U| zN3_8~^KK)~(`b$+m}lkvIwdNK1ex&g>B0DcI**-Emict52&J`k+wO8yDw&P+uA(td z%lAv~ShEvwq0``+Aj@!45PZ8iin3-SseyV&@LFEoV-fAYtQB{?Imt1d;)b^(DA@8C zPgRtHe0~y#zxuvftS*I$LbPzMwxy(=JPE(9RTH8IkX@kL=62fZe!uI!eLfG_4Pej~ zxctORdQ4W?t4l=xM)_Gs*shK zBj?!5P!))xTTrUoty5m^Y%<1kIxdw(=e3q150XB+SDz$m4W4zoE!_cC+jIrAg4f=1 zx+w@rEs5B)l1W*vduPj@=d8UNI`($ipWn94=TTPIG(0EuEnZB|RqpS=)G0AOWbdaR ze^Mwqs56qHd+h7dobJQAyyoPJ6tnIQGH5Lt&%ji&=HD-RmEJ&DDGcds#ii2|S=WZo zywA@8US%v)LRcKw;ikJ+9c0dqm#k4MD#*Y49Rd7WNGR~|)gkUrq!d?Oe_i6sV%P3oNr%butVzF~V;Eu*n-mWdBMHVQ7TUu>N4yh1<6 zAl4dvLTB=zzTHgkY)*LH6 zp7@84@HrO}5fgEc(^zzkE&j^fi{=BL|0%8%5TGJ^!FUdUa0(jELNK#8b#ZkzGq(Gu z=3rut0N^2GA^WGo&yT0s|l#w;c+{!fKok`;kj+{^{|A#H5$`cIP!nJ(G? zUiM?0s+WtanVqz~xx>HY6rD}YoUQCF$N;P#NGb@-DrOc|A2xWA0oeZCpz7x6X!~*S z>;sntK~NCkA8<7XDQR(eV@EP(Y15AmD_1WB=6}%tvBlZS(bd8EU&=-PvCNf>hvUOc zF=NMXW>yxKu4J5Sfd91Gm5h;ALRk^$KNjsA~TNh@13Rx$wR zf43+Y+nN1OFG#x@+gbrd>@94~KFnlR{g|T$8Gz&8L)5$+Kg9p1f&ZF{s+)=Hzxw{e zq5lYe*!th{2+W#f0Iq*&5fmiTM_`t)2RfMkF0rBA&S2O32nb{h< znu(kJ1Bk#ZXJ&8VYWV@o&Bpy-b5Z?wRDD4IM|^o^owUPx>h;YE@w=R_u9Y=d*0<_d zQF_h#)YfSW9mRAXk7yRrK@?J`qf+a1 z{Y-z+R;(e!dN{8b4NW!135O;yrcxt34TkEsNBw~LaEIo8rn%d7|!pm-HQ=_(I+5V0EFgGdbTuM z+v0ONcJ!PrS&Upc@>^iv;YOh44%G`zzma%L@uo_@+IwHu7gAK#2Yo73!_`46YD)>? z47D%bNy60T{l0PK1xu6*_sdDEy_uoMIc}rDUdR)Lqd)-V*8_j+vfzhyG)1ju@9h-I zE3hG1ugFsOo6GZDPSLhXBgM=8rx07Ai1Ncj|Fg@}#xE~}*KlSY@7;a6x< z;8{Py*7XPD6aIs7->J9j7R`HoryWa@?mS0NGSJzX z{l|s!?J9N0+mrpQl!<)ecWn`stdau~Q*m81RLW=?XnhpTt4%PG-fk!w7-c9tgjNLq#w>Ws`5*K;w;I#iM_*YKTC2JixW;A<{dfVS496Rn4b?^`&)?WjFisAn4q; z0}`t$LX2(lo#i4Y=iz)osAmGlX8@ibE6*ed!Y>whY>h%)a4^Pex&5Sv%oc5GItQUWu0c2ARonbz<1v8 z?wn>gcO({Hx2^>1hGXnD{ubXYqfuUfeX+wZ{DILS>-G4!&PZAoyOUbBL6U5-7OaOE zMm>c!L=!LcECFpiseIk9flcc8=5X`!If1#4CCN z;g0u*^Xo+ZiNA!C9!M|5GzOfmdw5rw$_N3tKZGa*VCn-@^;d$6e>@ZZaCDK-89@G} z^TIB(VK2hg)R6~wCbH^zyFf}t(j}`bt_A0{j;+j?63qI5n44Y<)e#JpkK}=Wb(NE= zW=}1%=T5<_8AvzrJ`R1r(aoH9$UZ zZpfqm;DG43ZU>_6y@A?_id+bdkRdOM`oUxm9=DEVlV*W-7Wv_m1%Y<&OzR%-z9cOO zugvh>(U$o4Ul1-xf9(cR{lf0Mu7Vts;(MeShF*f!f_mQM?Gy{V4a9~Z%|&%&%7vX^ z_>EDqaYsfSfUeW+Abk1~Ofy&|zWQS9N+LvP78t{Rp_praLB0ol2k`_k0@)Xc9cbUF zB8)lYBKe%q;quHnJ|}oFa&(cpA%^t(^I4H4&ONWp&KWfEBb&~ser!$icHG;3i4Vlf zrz5DkS1z+=J|*%uA~UD4;-t*zsU~mJUF%#q%;6mbW&TFEqYP-bfO+5N0fGtFG?eMh zcP+H+xADJ%e{q_|l^O0yTEbHEP{5G-Js-(oIC{&-z=VJ2_k85GB5r}1*OH_X{ zGnHWPVGoz=EYTYgX9MlfJn1ja$x@a4_DJk_<--5%^$*>~|M~FV0lf(P@v#URnm)_L zzjHmy0miAG^pZ}v`q~TY#lR4vmQTFfV{{?0#y{jFHc_=>Nw^DqvzFAqx%G(2g`PRb~{Jh6IEbO7OvW#I&qt)|#Q zJ(9Rjdza)*=S!C}X>sZ0s}8OQSAgmL=D&hnRq!wa_BBdr@e4%dYn7m_C09-4C#5;e zyq)=BlvLBzRLixdCD&2bNs8e`f~JzVHk57j}Ofp>RVCPmxXs zL{mQ8Iv6*hIXBPR zFA8s>@&2u!w9a_oeo7En{@|Z5jm#>*e}~5Z^}ZUE(<>VLSnyIalp1O(Gi2$1FXQxn z!|LzYwUT!jeZK=2Ut4qvtpQTQ(d2@fuWY|#WGPD(Q*DwdeI3|C+KlXEa zK}o2!vZ1i0w8liEsm<2hO4>=;Sj68z(p$&cnFTa zFMF#F>l@rritrHTD5Xkx;Zq8A3hpwF&!M;yRRSH5ZQYB(8`cBOk{!@I9!p_u{u=Tq zt*XP^p3WE3Lnr$k)v47PRzPY%uNXNSo%(0#g-L|TRx+)PlNZFSxW_4$pPdnBtCu+5s)utp`lYz zGem=FgG#%S>;l|`Q=dPpLaWaP|AJ7Po8b3{=BJTm|LhB$Lt*J_^pICVyQ=bofAWFn z3&Y`7Q`!daHhLYh4&3YYv$Sp{0Ycs`8vaMt4#{o7x)oxHO_0(v*}Oz0k+G(2#m+F3 zyIGs3W~X9UX^ZTW$D7Q+M&&NJPAv}nz>NOZ<+e^ndZM#dn=o+(4iZ+!PG0`r(B+8D zvT0vZHT%rQMi$_K>uQ3HE~dI{Bx!V-%b_H~Cj31X)K!|oSskHfJE6l9(c+!25{y5q zp05u+3aX@A5?0a7Ejd+AV!OM0)601lMj4hk%_k1Nlfg?ex)s)Sc+YJdSw(zWJhyRq zhV3~e1K$bj8uH;61Uj+o+BN+&Y|GO^cyiaVPf5Sgi!Z*Zcd`fn1mS#ru->3hQbxc9 zvFMp3fh;9Ts*qdJM?QPRJEPgl2%v3Z(jN~}W@A;9yF4$yvir&=uBc?1Mg|W{yWx`? zx5?iKt}n1>WU|xrX|8H=lmw~LB}*eGS@Zeu@q9r%>{k+%4y%pP-@-KB6D5G1jgU6Q zA_j}Fug~KgAlAVOhj(8ue_M|z@4K|KglA`WtBcHIv>N(O3-E4_>;D{2%2W%d3D2vA z>0E1!y!83Qr{Z{__tL6p5f%wmZSd+N^m1}VQk5D_Ir z(v*>3wWbHDLfEpnD|auZ6VQ1d;+`MDlD?gfM-CpaR%Dt?zG{+){fQ&H{DS<9j_#<%h)Ca4`X^=DiA*H{D>P|{ZF4HjO{T<5V+rHTDMwhb)hWh(bbx4L`DuLXCVW+?f>L8t-KATucMB&Zpa` zoVdL2pC&{HWG2Y96ifZu#orqmtB4M)spp^@Qy_Sk zKC6>!t(ZpM##N={A|}|tdfd7uy64Vus%XS>w-yoaQI?_AjFPB{Ak&q69#p1CA-_gO zxDBjygB8a~=yE-=CbdP4&upl$#@#P-LYsy80lO=rQ^fGiK50_W2*ot2A9k;W_tIHZ zZGv-VN>X(NEi|)Um7KP2;wl?L@96MKnb<0*Sq>MmKC|#9Xbkte-3^?toCcf8~J@6i?Z@_=OKJ>l$ce?@bt%b>s4o&i;px9V@ON6>%1J4SxmIJjW(djYSxCm?3<8`hbvr@<=@i>FvsUqJ%l zql{@KVO@+I`(_S?FD;QFxq~AQXTk$3(R2}8oMU`gpfZMP;?OUVA3#A{5RYhx^BAsO zWYLOl_pQd9P`9_iIRpn(vR%GQIgiA@%ccZ`)rf+Mrp`#zI=g4qS8*?T5Lmx4 zpd|}h<&nt~?vUWYAtC*^Zurb9b}N$RUi-mBVIvlFCb%VfkBQo%$e;^7hFu_L?V<^5 z#B?uGLnDhulm_12$+HOLKKQ9m9v5QO$-hBQ0D-vzUlxvbqP+kki>)2+yQSpOO8!|i zP2S{G34N?s<}3ao7FmTh@zQ$9x2$jI?-lTqqcYVRmf9}M8@?$LS&AXrxCA>U2%BFH z`R&gvf$l%3Q!Ro$dvew7RhGC087&jTq!@%UvD|7Q^ZLjn^u+Q%4jwQ4akGphG<}Lb z{KI`wtJAdKY@tkk&C3>vg8tffk3;7(t7pY1jC*kpM#c+91F& zUTq4%2G4~AsKG|no#uk?f&$b4m{S5ZSPF9hexO4$IaFW@TVWLY`9YCppiBT$KR5oi zksK261XK;^AI3ujj)DMy{y{uw;0!89S3 zJ&yjDY(N$39v;wtAZ?v>j|=1#3g|E&9RWRJ0}V_@qdFX94p14v1yj1N8F`r;+y)nU7L{czV-9nP&@o6iWO5wKNN){kwSarTuS8(-nkqSd(m?lbOLq`Uedi8SeCg z#AK5RS*zuVsEoVhcAc>M#DcpFQ?4l?rEXrfws3>EK(a8W>IXY`=0SZldqYsdExVKc zj4GrlBc%-uPprANymUx{OJ4P?@ZVpi*p&3N+9J{c>?uuslZK|eRlc_+ ztEDZ8YB>&?QBlEk9W=%{`$*2uUFwtp?ND!4l zpcyLq8mo~aD~(b?nVG;K!)j%QpOioCY?YL+g7Mq*GbL@(SJedZG8C1BZ^v@EUxlUl zE0z=^V^gkGFr*^G6SQPjlA3;3HVbDZasRIL5;mc!o)#yh)X1>>)hibnX~3ppk{jtQ zu34f5M2E;_P*j}BteIgkqL*-? z7Zr!dC{b0f&?topc0^?El&^$mQ0@rcL*}l4GG|5eXL&nPNh`8LA9I1EyjODOqV$*? zKFhCP5g9tYS+Yx7kr^_O0V^V|hyuA(oiQo7rfj$-bih(Ww>L{}NqVwF97!j?cC0h5 z=?DmOcVuKLb9bC&+@Qq3 z!JQ(kpVGlmni7>}qm);+!5e%jPF^uKn30+Bv7hmVkK<9cA&8UACiCRx!Ms3tzfA#ARUQJ9~VP*aRQ=fR)YFOyg3PDYu8 zB_%J;@q>mIlwlo&B`$9#e3e&-Lgsa&!$irWtV$PWo54nJ{e^f0lrgw6n)~%9j$)q2 zw}P+Y^qC^k2o((J2_I<>lDzK(;4Fj1Wa-ao+Zvvp+Am;@` zAK*Kw17jh3;@;3V#G39Pd*4w!NiRq?^j{Iq*Kg?C17O;q9}qXV^V^Yc#seE697JD` zbE}}=K7BC%ptiWQR~^>0b-+HAGHnSIB6)i66a~xr>2^^7nRcWlBw}TXK42E&NnY%*QqI5m#4eA^; zk3%c?bUe zXz=yk@4Qhe29ADJQ^3x(Zd(V2HCD~z+sxHhTIshs$RB&Xmg$ZMeXgX_n{07j|1tO0 zy*3B-Yp)Op9noz?Y}HA{c5h%>onLIp|C8r-367b&>u#8nhzl^@{6075hp3~Akg1b- z&r$!EK5Lm5cWNJtvySu3#_aC3OJ3r5#VO-G8ho?KhisKAhDVNc2( zo(Q`&f;Wq_HVhguJi~CD5Q4Cz;$~wdo`6d-un9|bsBc&%@8?}jq~CKfeRj_PaG}00 zwef_E0Ui2w>gi%IKQ?l3c1iJ;R*t$7aKg)t=n-%F^6n3c%D4A~x@+7S zJaz-*d7aAiqRsA%tKp14RE)KIAb%3F*L)8YJ3RzaSuR_o$ak{27_NBBi2Q^ALQc`F zk6r(5nwyFsbLbjd=#XdzC*Z;RQJ~oLW(U%Ze6}`lrJy*q^^+rD<4Y$~XK3KhK;ppD zKtzaT2wg~Bh)l?RXii8@C{Bnu$T_Gvh`-R~pT!~eq5eXaLzRCjhq!@$f@lvU>2wz6 z%0>Kx^apDKUJFVK=>Vb*dI=&50uizz5GD{um@OBcg_H%A1(yYO0?ra*2HG6@2%0>on=zc3RSY#j0+lqnP|#9<)2Fdf;a zG{|p|U!fBqM1;SPL83wQLcc(eb|OYVdqPx0aCO2sLJOq97z;rPB?$3Cd?C0Y(AgT;0r`gD344Lt>D0L#CjJTJ z98wWF1|l1ZAN~P<1HN-RZ~!6}DhwhVG8O^_5(Nqc;&ct?aR#}9+=S>zy@Aqs8u*cr1L_V6jM@a_$hJY%868Lnu@0?= z+JxfBxIxfK(m5Mg1_2#N52*>k1bgyXFU;HGw43D}FdBe#P1^G^@c*pZMgqYJ5schv z1kJJlf%N}r^}np}LvkVQSs7rt2aNvDst`NzTjm5w2FkmY!2T0SX$H@2&^7^ zzQr)WMf(YG@_UmSeJjjKa)$0@`0ntl+oi59 z+qP{RU)i>8+qP}nwr#V^wmtpN#mqSoD`Mxxd+}cGosqeo%yKBf7C*fG9>4Gn^V5Gm>J5rsdn-JmBNRiHFrB} zFt2AJD~vyTa=GpdacTK>&>*fYn* zv<93SE2IO>UtIIS^o(fvks>kj84eH~$lAXPT{t>`wco1isYcs@oKQM2N8T`UcpmWIq_5-H#c=t# z5kzcZ&xPciey{`LyaBL<1PouBHQ6*@eo44EvhK({A-Lc$?ua-*k`Iorh7^2(O{GOk zg$9_>KiFTu`^0F`JdrsdP*0MNgdPxIm^>i$sl&4;1kaG~H19YbFc*FwFz;MmF?p&+ zz9JsXP%S^P{#mwSlJg3WKl*X)aWLCF&qr&=^>lBXOR;EvAaD5p1T#)7mus_`W8vN6 zG@oGV^ZoU7uO$45V&BA?9PfekvT@K=$G^W@^^V+%_(jZMGa_v;x~P|)K^Oc}4aA0D z=Lj^FlNqJ&h~4n9@BQHlh0#?*V1P@xE*+A=VNb?iZcEmM*st{34dC2P{$;X7cV#i$ zuhg}Z8={+bxqnt4jL7P;q8J}y^SN+SE#kCvIE50)G1J+xCyY+M2)ikAP~fSEOblij z$bwSZCxvR!h3d@w>BbJQ5KLFUT03M5uRG@m9-xF9Ds^-R^nYe$T{6ve%|l@x*vT(+Ch@c39{L*J@c1c5?(;Did6!GA@Lv0mPDM!ChTn&IPd zzS^1X4T2{S%I*w~(`usEY!29Mn=BS3OqCNmQjTXyFqZx+WBW-lqj5Muxgn4H*m3-_ z_+_!_#g)hw=wQu6-oJrh^0OGKIyD`I2hFtrxyHs6h(nFvC0hhl>$Pfr6QPsC7>Yqm zoUxIFv%IJU(CI+=gcFGnMJ~o9-l+bRQAII<2!@FPONi0@EcEsh!@wd&GipzQeRz0N zOh?BjuL3KqjPCnxS(!6nz@&_h)JRo+-N6qYE7Q2%EZ_$60PzF^@dU!T*f3;&AE_er zgd%j0gvo#F?|m3!u>tHX7Ul@JqfBzR6GLYo%255U*jS`}7)n|ryLe#XS1(*4b|d~_ zyNK8W<={jqDct&hX4&D#6^#=@We~_A0=O^<@y{)mC&|=d+ocXyzVwQXxM&^2L>EDEw&^u=*U?lyq~+AA5gE)XvQwuZSJyQq}zW7Ys}!W za!z?zN+fvpcjxZd&z6U#u6Z$Sc|=ZHMK_lvFeX&E@^ya&gwqB920Y^deiOp3GS+^&79y0b4mh8%e2e_NY#w6xCwdrZE8$VD6$h zZIkHmh@H%^V&H;-Qm8JGm^oDiKH77P=GT=lM^ey*j0({CU&O5vWP=a8BhM9rphhb4 z1|`A`v2l#=<5wSIh)Ihi78wwz!-?SAa*un_6CQ_<=y?tE7S37;m?-R_@&BL{($hnp z7LJ7`tK?21*eVAITMR7~rl_4-We=RTsBe)jkL@CJ2LJov0U=>@+|!r+`q*F^Mm$O} z+l4m-EK9q%w>|uaL4nIwp=uKB$7KO0q0k(Ofu15e1y#gcqqw5~OI55u1MhEu#P9p= zfGDjjs6~Endfp!L!b|(A-*ghuiUlGxDs?m;OsI&~z)(g7f{9jd^)oYt2P0YHbU90R z;z3G;R3Oj%!YW0$0~FvyA~YC9C1%8i1j?0#1dB%DGW9}lV59{mLo(qGtO${O`t6|l zk$Fp$O~I0MXY4Qj50jOxUq!W#0bTQkq=|U}D37es+f}S+bm}{q&JSXIT5E5Kdl%<) z*Oe~i!NsVtA{bI|GdOMz)6YbyD(>8FmR`WnehTJMEU_9|0NZit z?S~~X$)~_$NkO_LMfdgGQDMzU?kxU;WJyAzEP1Gs1Oy2yF^_<#^#7A0EwnO+j@;5e zfYlNQR|vsYK(8gnaJYx8h5v}qhRRfkfjYWWw-<)mTQIy)-UBQ3wC4a_dCtH{oS+~p z^(OP;k1?&G!5h#-f6-j}#=b91XUe3#bT)o2oeGXs#GsN^+w_h@o2$&>@Qa;H-oBV+ zXYWxnc?(!}S!;c47K83H+@46+(P2b#VZ<8W8ta^NfmaKciSBq09TxyB zme3bZY)1@%{jZGmzfz6G;ed8f#L5)e^OGZm{sv+|@Zc^ktdeYtb`~~%7-c78^DP)p zP<}_$NDp)gZ(K|gDbXjzn1>#CTUPM=UkD2{wG^53Zk*b%%DB}WS=9&BLm`MMGjYTo zCd)VxqDu{!Vo;CcHLD*%MqRmlO9r#-;D|Rq4GmP9gyir4DyElRLS}6=6 zKG3jLv`>n)#Aud<$9rZ_shXn%KqETUq{Y|AYigsK2V4GHZ#(_N8)2n{%nJA)+)v{a zF*0w4*okWl*p1YVcn^Vum~gZ+_pnQACyhKMqVN4yGgBfGGgKJye1WvD#HzB1giOf_ zRl}3nDP$a8xJwGvOQsO%MH^jQQ*LRAS~NBpF)}J!#DQI%b9Lewvl}5XGHTGo7gA0*0h72N0*Pgk6So*9(kpauwf2e zUE@~K%u*hVUNJ~pmjN#W{4os$y-SUJXU5+uw@@YxG0?B^nrU zxN&>;WhOCF+C2o!cEvtwSWLuZvdbYMNnC(lwu`-lButU$AmKy8t@8DU~m{27VuU3 z2~qYNNr*r!(&@Es&JfPA^OBOW1NefoIWr|y|4KlDS`|`xHyUunC~9=UhOSmgIkR{s zbm1b=J|CKza?rm5P-_>jnW!wQ>y}sC8WP)DBVCe~wzYiEa}SX2{SV!or6ODp-?nmU zW}@6bj_qX!WDvDzsslc42G{Ctd!}Nk{|amiyhN!G5>d%ZQ`t9G4^6jlmZ3WiP~uGp zck13Y15MN5 z$DV8qRobzcIKwJz>$z|(?AH4o(rWX$Q>m)Fy!*Nmy^6c3=uK{Z_p(~^_1%!9H%fD{ zy4}H?-uV`z_>oG}aTD43;`4Re5X|>}B0KZ3uIz}W_4OL@BvzBr_;-VBs2hCk`b4j0 zv;f&D^;D5`thi?4Kh9`UOIo$gE3(MtqsE0mPYHk@(VIE9P6<5C;M`$w(-FfDh*B-{ zJu^UBNUw-Z6D!t?=(J=U@FMtKu*QAq2~pX%ccHVcjUW?Q2|pe8runuV0w?xe5xLj~ zgRPm4t2DOL9LkL3P0zJkr?ur1`*!ENKirE8&km5_l|&H~dyFm$+)obA#d;)auJRoa znDJA+l!ARoEhMrSww3aNdQjqeP{X`w@V)8qHxzztIIst2(G?|ShV}U|0f3qRAMvTD zhKtd4Z*E4`=%IrQO!>Q^pVABo>qsxuhkbve9s&sA)tGstB5))41^6i5#Dys(N{(JJ zfS6nWUYx!mkCzPgT}~$OhV`5FHuMzeMxC6|TN&^t_nIsNCYl=S0SPctHFcAXM$--~ zR%w~YWoinClhTqcHcM1uVim_+la4h%_R6xsXwbQcB{*qWRa+uQ{_%Vh9mFhPOlEAQ1E;7elbX+_Fy4zFfenN6#ZU`X zJrK4{WcF+fs8qN*iPr#Mri}H=J}U@Pj|v{zQmO}73x37SzA(H?x0qDRzr4?gjzqIW z-9}v^5~rkv`9;4iMA~Q;1JW5YG+OwLtV@BZn_eFoa$#Jv76Hi$H6WD8pqip+V-TTU z2cz6=ONsw1PU$IV9zJb8kF50U-j@A1?tv#c^X4q8*+d=?^}7W@!h7b^`6)O%8Df39 zaz=AKOR?en9V}nOQG&+7|KJESn6$8>k=@s)hN|-@>tV)xy#Iu@r-W?tI?|Qc;|jNt zke35qm7cFu&jz3(vmW65kU^`JW@6_-gPAyJ5Yt>{0D>!PB4Y5pwQ!l0PID0!YWeHq z0duO+?VJnOC1_k{M)=St&aG*89UVbzfZ62`KHb!TX?@Fs*fSA^_NKJJEf)eK77;`2 z=-=LV;S)VnB2RsG_U%jh8%lQB>d^Lk^prfP%*OOXYJ{h|J(}nJj6IER4fC)D^&>U< z``fQ7Zq0r;=zJk3@Xh29?;(%ZFqS)n=0}9uF)`)@FHJ71j4n7}8c`Pj^8e&{l%44A zecUFzYXL(=0Oee-@!vZ#KXLz9Tq9mEAD|f^^zVN9oi5jKKYlSEWJ^&koT&0pz1$hX zn$6YL7;$|^GqIE+-H64?5-eQ)Mnn0z@)mntLB9DuX2RP??0k-g)492*ut}>kG%B_8 zF%$@<1A!>X-&sC{7Yj#8PrnYH5;-DeDp?GD#C3MrpP8AFGad7G z$t;Wm*v>wrZu@padQuC3=0BiP_Am46=?0UB=7<9XsUQ-w{E?y!BnV?%;Ymqwxx9h^ zlLO}I>@+~7V0HozQOEoxA-P=wzjLdxMX`Y0f8l?%4~8s0FoN3_{QL{m!f@>%E}0N^ z3D=8~4u1$Scp5k@-CFJ1N#1`b9l?B^2R~dxeso8ohJ*#DZ@H(mG|;Nrt=PAR4CU$C zLcARUi&8^f$_#rkS$OE>NbYyj*Nuw&BU8)au0+0qu9q*5$xN1uBC*sr`B;Ol)*r2> z{!Ixg;F~bdNjNMNlSXVU$2PQAM@f1b=p+sAl11|O4>%GJQ$i21=`Zi&0zOdHgtlpr-({#lAUN`VXU2*=;pCeaDI{X9{sNgDv)BaP+TP)Zv4L^Z6RDAC%# z3~*R7M>X;+Z^f&ge-Ajbfc-x=+xCChFqh& zIdZ8~q%8wtT-8oZ1WNJO=-sQhltd4vPiqk0hy+MS`Htbp z1+YoXL&?F*8Xx1(vhAS{LvZ>`)CXT%sXbLw)U;I2e@?Dcs|aJ!I75fw>^frN#h_x{ zF3E^+6V>=}7@kb+bwwMHiG7)Y!DKuu=#Q+fGjk|!Q^~d48@Zqe=bP)=0GR823fE&6qrzLa(Eo)r;M_-C=PmW?m9o~Q#Pn{+g=M&Ys%S1-nD^x*NqiC zkoF-}wzk?ok9YoC1IA{($$JrolJQ54D}^wARId%DB7}oxw^S>3@G8D>_9fBmXC--z zuU5Hvr7XBfZtsm4Q<2&Z0-fP?Y5 zCz*9e%EBcf>G%x$OF&uuzJ1ry#hg(?wD_E{EfWyWA|6hgu42`VQVo17;a+-}}Tw z$=<=UM#?)~WR={(vsMbjk>a~cGlqjV->3_BxSqf}1vq<<$GH&1Qy(aS*`*QQdOG@+ zA`pX1tk_5_HBF@=u(^~w)Z3pVMHv~N%uP^N4Z_YSsDjWw>hbnGz-RGQJ<=;}n=j); zc3ZC)-l-$}Cbg!BEWbGyus36_%x2v{cj^68gbqZY*p4rCn)w>z>v z=9{ql2!HhPo~|IJtilmyH-M=_U#WQMVkrUUE{A0|wpj^%)G=QwW#ClEFA52EEtc_cC^8xFWS-r9zsQ_L$i z<#I|2C?x}`%J2o_lDYX^y9FXs{%h9`b7#m4s3#9q^a6iWu7gQtq)EbPKRuuHe!9e( zorjBygV%d|{o%IvW_$fM>4l=27lTZ$dVjPI321_Ky$K3mN2+3)w@m43)gMm69i?8O zU`5cZYUg)FgO6+oq(+m6a>-^5ITeoHuchRJ^4Z~!G5);^mxQ2 z@(r@ybT4l{l`-rAx&X?N;}>(2p*ZDWT?Ta&l1bzhsUBVtsG}jEJkt)9_s_eg9gWN9 zv@9nd1Nt|lyBe6CJp0G5Lw5kWqndt1GZ%MJ>!!3#C4d9d0*nkVU<(`T;5O|L<&L*D zcaeE(16_Al4v+8t@UVvx2KK;AaFJ(vyt*1H@$O{5Jt5%|fn$m9xn2&e5|v}Nn&`_1 zQoS9Kp3?pnAfpc>FXXHD2aEWF;rcdAtTrSNL5PpTgCzS#%B52wAQ+lKmk+7QD|{L zQ#DnosyqDEoZjHX@3&{4X0D{S^V@+QkJQ|&0y?AO!Um8J4t;^A&q2e*kSc0B^ zvblA*uJ91`&vjlB_7eqZ?#6 z0?u8oV}Z4tb)}cWU^GF(M~_5}kS!==HTGx&07%WF8O_L74!P)!Hjd*~{cHE#>%k_c z?L_m-=+2`dP~5D?x+cyzbaC}yMFPc3ZN%TTQdx)B+w@9L(=ihp%}i+bH~rcYQC&5T zWa4p;R=;i%?yc9ZejQ6$hwnMdXlP%Ti3E;9s9mu9W+dvepT+%1;{to1_oFR#DE~VZ8qnUa)gAho1G^Adz7VV| zVyx>7ScMnd8 zx=(hx_Q)#%ClwpgGp_rZ(x`B)1o-)Bh=Rlz^}neCRG!gFTT8MgDQ7~mXCJdCvEN#RT<20AEm-`%aDK&Dflrd~Xsl+NDLAYH~kn|^| zV}vs~RCJmKt1g$KU&#cH9MWs(`JUXjS%q`t$flP5?vXt{U;J(QLKer^QL{<&^EpXM}kJ{1Fh)C(yS#bIL9<8TW9L<^SaXj;T% zoP)D_Ydr@1tq~he!-0C?E^jD)2kHirQ`JGsYb<|n_c#_pL#$yH&B34iJFo9Jk8Z|R z{x;Vh?@pp|7YWN&hqPvSB^4y`bayfhvu&-l`T4pK)<`-;9MF(3(KfJ-M3@eYE;6BOlvvGHwYS}$5Eq??9bf7)ueJ04>^(jts3x~CH6;1GB;-K z8c7Topl*{=A5MLswP?(KGdmjv4pNavbAG1E_s)xZsn8ZQn;ms6M8P~9ebR~K?nBx8d_be@L_|UA6h@3M zTij)7-G7p&a&u0wB$(p13%%;<^GHZA;#Y|rLLgD5CHf1a7PSoAbP2W?*MKPXAL*r&BeDD{!|)%b$Ig14nrFw2^KrEZ!Xx1+d+S zxDjz#@D9t8O6=+a!0O8693BEF0@}#QPa~|!M#a6_8CI_D&n0VYE4Js7R9fyvD_b@j zk5Q*DbFzz-EtCTWwCn5mT0bJd`aNHio>bg6Pi8fk7W0=Ujx?;r+@%eqf2u~BpTb$% zA0D>qG^nCw0v8V;-Kfi}xzMnq0aUW(=H+Dp3>#2}j}=xp8U7{(Vnd}cdeY0^UT5oC zJ&#qix(S@&kqWbT1G*vGE%5GF#D_$-Ly7Xx@nnGng|7wNrLdK8(%HEuXhwgJ$8aH5 zIxVB3Mf$E&rx8*W(8JOS?pj?)iFeOM9#t&ui|l^i^)&LJkNOT-k@Hkm9d)S+LrRy)%ZhanvuhexV35tUNyE(G+S~4mk-qDwM|m(#+ZJTayO-?5{}zGb`w>v(0nl<9Rw- zjpfZ}!G=0de_?#QqRHWU=sbEG43|DW@{F|>zu@iiiR%z^O)#oE7Vj1=R8r|zufFL7 zspt`~V8^JPH@?CV6(tB2A)=I%V9HPD+myWy{k_x`j#DgEb=Du%Jf*k*e< zn$~D-kpuxtM21Qze|K0xZ3M-HcebERX3P-u=4Y$V1sR0is)8pZ zq^RSK>JpH+U1ro-s++klC?p|Y){^yY4BszPZ)S8^Tasqyy6@17Dn z99)QikwER*x&KQ+DQHyO2u&oayKIfY;j$^1UGlON9E@ja4l%H02*r$!&PqYEyrJ>s z1AcN1W1ABlx#{B)$sgbm<{@Q+NIsc+A?WjPTG-~+wkO5Y3cFX9A_fgiNTkcs{%oNL zG>V1zUA(t%J&>|tiN#547N(l6|8v+(X~1aNI6+&c5;4k)T1={!)?PN39Y-3IOj}=8 zE{<8ba*wgE79USzu0|YV#qKbzrCC8TlCkW2QIT~1>4uZLOYdp&le|r28+S5%C`p#3 zKeJE~)Upy^sTOgo8S`+wTAVaHzLcp|LTsxQkQ!spk8PMaZ@$8bWGG_Y_GqdZfgG_m zvGgx|ufYg1T8C_!`i)@DfBICm0G2un%Z7~eFHFc4R_pClDD&)56$zwp>eqB97BsFmWa)* zaSu7#tFKte-En%KjIS2^1PS5@7CL7bv6K}|g)RzgN`@3aov`NCqFy}zchf{HZp8R& ze4Ch33jq!uCicznb67v@h_3SWOfY)2=}X z*qj~ucXXXX(b;7i{Tpg)>#B55f(WP^O4>QQj%5#?#Z8;J#Tk1967ZHrP_xW-X5yJqNqB9BmzM z8bofEZEH0}O=>K@vam<%d`xiEQ1;|DvL^J6qut2CA>(<}X@&;z-&qE+5ALiE8b@QW zVl#xj?JzRBr?Jmjo&ylWo@{j=bwID{bh?6RfnU6OXzyqijBn_Pqp_w)1q!r zmxhRkHj)^Nvs6zF6C1XhdG^|-e>dhWP_S|>QYs`+Eo9rLQ(~B|oFhVwMuRgwCZ>YP z<+!)N`_5^jRH!Xx<@DSZtQ12gPA2@tiq>qEDpnbPgmu*Fk|~uZX0=j_>3t?q(;^k| zJ}Urrwfbkv8Yr>qUguDEK1I~e?n?7JN1h0m-2k(^yJ}b_4~v*XDv&*=q3g$VMYt1= z9LtmvIi%?%+#f_nNG%DYCir7Km&_@ok;hc@Z|Lq`=D#Dbji)ZXd>)yk9qbEwzmEO9 zzZwPh^d!v1NX^M(LiPg{>&aulLS;@s0ym2N{Hf@&KTItRJ1|UUHi_wLJcnfJFE)uBq#Q~X97q0=Q70PrH~fSMUf4o* ze7tT>FKKQoJl_01k?vE&tKv9URJm}+BUM$w4P4HMYG{SvO9=bD@ubjD=oAVuI3Vs5 zpP>eU!ucDF(6*QFsa<=(8Q4|0ulA1`yaChBpA|0N(}mh)M~`LjddDK7w(y$;dDVw$ zc;~R8oB9Y4c)B89G!ES=qO`l;uh|}>;0Q%*=NurlvC7`?;l(*|uQXT+HIAPYFKjdT zVPr>{%=`2f7=XnjoXIPWoJq=(Nyu9Dm;T7o1&RvK$pvH@rVrrkPTc zh8?j}4{g^P=(mp>C>~`RXAI^nvS20GTk@^3@Vd)7EC#KuQzC7pY%i(sEA{u+R<~@_ zU?k^J_5pF*;@DF2^-hvLU72q;Hsk%Sk`WiAeC*jAMD}Kv$#v;oo)q#tS-KaHu%;_- zn9n`P~%S{`o$$k_sx_DEE5e|&@(#4F&e^KV#ivls?b;sm-z2%i#~4}Hze z8`dM<$0zaxl#NBsoh?)UG&qji3~gxt>rvaZ^{{rkwN=ozGUU&!wb|d7h$16zZemX( zd<|zEtUv1GxR3v(udddtnn59WS{{WF%NwcK-}_Uk*kXTfBZhp|YVC1&|0A`)kbrj! zlS%B(fc~ceP$8p|5xz%H0h+9poS2TH$jZ0h{_1?7TkT3?(|0>1>4)lj&8h*U>_aI5A4t3}!)a z5Hg*#1GS;B2yfz*a~@CGp=Y<&yK4i^YLRaF8s$9t5q&D4JB{r`V;z35It@(T_t|h} z%q@$+QW~y78v>uqqZltJ>3il9Tk1aFAPx?;niJVp47^?!c$tdzmxq@M8BM#67L{2Y z2@t4W(Zq)(=VSOMjh`PY;ayi6E4;(-dN&9%br|UlHru{?- zyJhKS0(p2n8`jMSj;Z1y-%Mk61Ax_MoqgS?Ufp(|U55I0+tc({05Zko4DTXgSpU@U z6vs)5IXHN>I9q>cUSq^umhfqIDr~lad`t@IRnDAreVv|- zp8dC^x4GD6j%#MG@zOBSr!uTzK>YoQ^`_l5@piWp3n3@4N`O`rwo@r>R>v=;;SNFB zU!NK|^xtk-*?H$yZn4U8viMP&n;%I?Iy{Okd~WFHe$rx|5#N-R9A>|~Gi^>^D4h)a zmJn~GTX1hcfq_z!3B}M#E+<^s8G3Y{5hnx+|AYcY)SGaOjXpqEo!h1S`4+=`{7<}lIAR`<0 z%w&D@9%K%{*tLZOWXNJ#CJ_C>El{dciIa6=EfLaPNv2Dg5{?wJQ(>lNDo1c#tJn@` zC2~U%QpRk0=2LKL5(t#hTBa}?of*F*tyQNMnoA;&5s5lDM<3uM9nIjL$uoqoiaC@Z zk{)n#ZD(UB#|$M~x>?NET0t5(xDv6>%Pppj8=pY<#U^FcLq)bVN$OK;Yfw47fXX!J zYjuLWnj=#|R!l-o9DvaYHZzd^qN}ivnFB=;TC7$8OZKx{Ix1IWA=KaPa$i(cdxpZq zGlC1n2SusOOIQwFMRBb68l!$6ZI2fo*xSV??6J$3o*YUf^R8@4vi8<;r2DF6B)%B# z3OnAXXqNCXf}HFE;r(6K@2ix*EurN7jd9fO+hN^NeZIB_LbMF$L+mMg?e;RY=D)>| z!kMzoLeDSb^ky8wZpjcl&Ift4Iury% z6C$)FCDns9VI#=V**QePvMyY=dFVY*>PWKmQUoT;BPD{7YQIo)MiU5cekrg(4>GcV zf5M-<&ZKr4!?FIx&_(jML$R=zuQP2gR~*eB$V$Wfyg3I;Mpkdtn#D&J#FC?k>G;7LfHt^+ys6|Th&OC)YW>|K5_F-e1G5QNN#7MA>q2w;JbhT{Ww z^THb8C${dGSpxNGpd8!z#mXAj9i4xD#xs94qrL2i-$}+cznwL9JkoFlQtr>6Lf0W8 z;+QQXSu>9q@w-YVrf@hIjKKV~a*G29mbadatZ#3$fkS^CE$muh-lLQ*k@lkx-rZSI z2Y6QXPv$`W+=rFqzF!pwJh-zUawyfv7!|W$*rXx>k|e4fM-Obtnjbl)vIY(O@Sugs z6Y?f_ga-8@7=N6~{(~}!auWT$Bfn{so@e}wUFX*}rJ12^taWmIa56XUVot`EQnhqe_0AI%%E=?{u z!TI8GRpLtYq+dfvBuSU;6`udBo!G{Dk}`e=PHZPZ3GvjErt2RBui&|=OTDP1a1=7Q z2fOU*(gL6ea-)Dsqq@Q)fz^YM=68 zRh)OH$hLhZ$ehos&FYGM`bmL_MiMh9fHV&mlPn{zXyzF4?}e&a%U~TqEg;=+S&6{$ z^3h&{1m~2GQP@nRX0G>l<0a6gr#N48%SMRa^@Ww0g94FRey9aji?%COmcda*ASTu; z#CDjnsL-l$@MSzva;M{kXGp`kmi9}vi#54w`V%br@9UtQ$S%1hmFB~OlHoCVfO21P zej%gz;Zvt0Fm@*_Iw!M-F*#Y-!Q_o_PIQ;r+rJMRP*qqac1lA#Fk^S|F3xnRIN0=5 zUS^^$9MVva&jqt-=_yi+pKlY5dFaDWR{7uL790YRynh{n(1HaM^?86ujCT7U4*og} zOtGdgK0P`)U#l2su=hBhiAJba;e@8;4|T1g5vmgtfP8Ir{U=guHV|5awh_eKD2sgR z zu~mEN*XWbCrq3ltN(yV~uxM^=xcQjb6IfaU3kXG!w2+%!Tqiu(j~G-h{G;GO#fJ}J zS@g)=?jO5bllxsTb}#Rb*x+~G*%UmeoV@|T(=w>-CdDl^a_t6;AaF3X5U7#5`kTReRUG?^J1rmL#I88a=qs-KosF8DBMyl>x~ z8HxuoeH|TQOMBS5%v(EYJ?%Rfq{*x5#n;wW_M}=0IuP;ka`Afun|~cTl1=oewu|Pm z_BUx%VX07<4aitk^|V$v50N~y_G>d5diSl8%)WzD_ZAAbgkuODa`k=#FCdh8h$}i6 zL+fzT4ZVNf?nf!y!pWuVLL?0#GyIUfkNPiv?kqKcodt0;yL5|Z-(uuDjJj0|02yM? z&uwM2cmQ{ykfX1O!0-eA~uzS3n5GEmkLv(!cSHNBj*qSw4o{k*reT`An11FEMw(8fDDcvM3jZ}7ydg$Ie8#bd47QZrWlP@ zy+x%}I0`XGj>I?dW##g#vpaclFxiAdV2m84I?CzlQcAX^%}aaRyI*?su?-S+8{S%W z4NHSl2<(sBT`mybWTCY5kucdO%x<_uAlq%#O5V{Gzj<2x!WwQF%|WKiE{nJlnwjri zYBUp$u@`YRaSUn<3Q68A91*JSG+)#W=qJTs!rEe)id!4xwYdMpS^tHv&^j#g#Kd0} z6uB{wIA?hl(rnd*QnjQngF%Bah2-T3<>5W9l2Lg%`=%2*B*lq@lP;+GL{1&+Y1pErQJ z87vEZIp^t2JqBH<-v-0cjC*7{odcI^l6;}uL3#4_YZSFZ+i%nc=W;ImA_*uf)%wGd zl!-IgNw+P@f7z+taMEWR$=-j&*k99DLs>t{bp9NL$wSoki%9K6Opk3aenqm?2|l#j z=pyvwmJg(FVDItlyN6NfXnSRK1E=yP8b(dBsJLm|CUA)Y#qHlERVa*e?tAE2@eAH< z3hK+-+Kjon&Z{ke9k7j03of!UKq_jUTu5xU^db@l+~gu++O_wm0^XkiLs3MmYtIa! zzRv}nl#C3ot+&-j(KI14`uQcvx~pTgJ4pKzhN^C|SS;o8jO8NKI=scs*t8wjFT)@B z8$_#i02O{!J^tc06%_2}V!|cSFLFf-dK3koz~WeUVHEG@!5spbFsU@+DOq#U1L`tB zM;QSH)#H~Wc0(?rKLJsa7EuZLP9omqcrPn6HR5}H|BGM9WEezP8w#ON8|>AIUqs!- zSStb!&ekBTAprS_RikLz@PKE)$3DRJ_cVDw=0lZw#S`@ z?tGKul>Q#g7M3NcUEuN;w{PM%$~;^x3ipaSg$2#diJV^rxLO<7zd8s+?c<3xXu~<* zBQ8i(wMo_|VQSkY?(ZXs`;%{)#T`)UH9g}G|0xz`TBOv&KQW?Qvbh=Q*)ap3x^!7o z3PlpO^Jgx&G}xBcZ+&~;@ocX4yjZ@yECnnlzq|i#XshmEGQe&JVb)1My!;W2;6xd~mDxVJkD;C8R+DVIYsL((fjKiw-CcCszUV167 z?MWodV}Nu^NiNYG?8ou8^mw$924V%>8b7gM1e0I{Us%~Id0Ji^oX;mfJ6$!9U`STu z)ohKb45VMPjzy9zD0AUvLAbg;B@ObdLszyhy}bb&-$BLy=F?Qmtlx_Ck<`i}Na;fD zHruCY!qu$e%9h>}P(j=*t~MgRGbU*_$$veU*mx7<7_s870KqVBq8r2H=^g=+Vl@8q zE}Z&#q$uxHAfd*&NT^)%I`XgbDZf0p^XVGOW(;PK4 zenpB_t3-(s^2)zGY)ZQv+PdNrqNb3qK+#->w|Z(2;|4KTgmxmlm3Auo0{61J_T$8- zyioTct59e|Y-VluR^uZ=WV_Ud^Fx$2vvr0HM{RCh$U8rAEaao zUj=F#sMpo>ZqAY)^HU}B#N`vTJ287-w3hXus|S9?yJ#yMEN3-I!*Y}pP#q_k;gIUK zna;2MX$oBXp6z#seX|Fkp2H9Ds{wf-> zVo7R$`gOR;&!GhJ@ojbf1<|9=2SK)AnCvnCGquQXXrdVkUpN`*bX z^5%7z$W7`Xbr^dH`-9k3s~-O;whNmCG;hOZ@n6iBMfAsSht66fYh@3%?P}ArtiElR zZ184m@OajpJJwx4xxc&rcVi=CTgPU{$oN=%Y-9DegZuk7{-%5Ib~b0t-VMDTrD(NE zm;Z4v;M#zaZLhqb6C*o;~Ky3E~%x^#jg~abun_z!~&i`>Ve# zfN$&G_!|LypOwuC)~xbwrw$S_ zx!N5@*&5ezRtLL^UvG`KN5UORo8PH`ew@;m>MLdPO9MEw&Roi7?VwTU*u6YWVQh zAxE$ZtMY*#&BV~o?DRBU9URI{Wb0t|Qk5O77;t1wIl4yzJur_3(_4TtFG$(53(^V) zls03fAtr`$!bDaaMI(sA(59R~_Y@EiOqaotpiWz!=#tFw8oBGsFQY9GnQZiD5BB;x z;94}4=8Ps$7VFz$Zu2_@bCr*lkacYykmr|{s-d)%j#*=2TWONh%dg2K*tryNh5S90 zAcFYkF$|Lv0pjoA2E6F_Pk}_YiPajX6Kx#y-lHy8l!aPSO{Su4SuUDuN@Zb0=S*Nw zDK28Y0CXRoK&7`ZDv3Cv0jH*-IiV?&$_5MwB%$*WNJ16Qs79-Fhn*{@^5RSn2Arj@@*vqCrCN#3a?Ib{2PUU9a<@_ z)Bd`)r?Oph?MFKxr>1WX z!Q@-}v3AY|Sr!c55*%$$1x==4s(qBg_D&x^bo|g>Rqn2yo3lr=9UClrU?JDn5uW+!?OD<=k<;rQnS z=?lcZ4^c6tpO)H7U&+eZ)u+xCPpA_17qkEJtujhU%Z(@x?`Df@Z*^WVvtLodO*!uk zts)%?&ikISfxiMP0s?J5&3mujU1QQ-;an~i9;8-L+F#O$^f=Op^P)zih=N9>+rZ4< zFUFBiyIY5mBHUlKU%P*5YQL7W55X#|_DUG%JRPu)L%U<%IhY-2%~ockQBQrco~R$j z?72Wz233Gjf{Ky?NQ<@}YEC3WNO;iBn>*1^E@5dbte&d}>YzR_j0NmDA&@o7kQOi& zkl>OIC|32nf9_v_LdJKMvY2;A-iyUVhtrHIxL~jEM2XleDHSrlMwQOxn7Fn^FD>%{ zd^`#JJdpoTj2ODpH8>N3URelwWg)m1O9%xMLL3U>;_sXj{ad$$RETr4aiEOgF7Xc+Zjz{BlwJ)>VR!VZ zEAAe)_+Obixb+y12YEci;b98*g~5RqA719ez3|Vp7ccYT9(2@$mwE6Ii(l=tzNC?fww$vFH?vEJnru;l4T2 zPV#UsnW+6N=EXS*eGvn`s5pk$7cdH@o1~oO#Vr_1B0Yr;h%SOWjuRx2zkqs0y24hi zEdP>>f_nj)oqoMimY0!#B~*H^-R$D!!0?639IPekm{7 z)N0}l*zb@~Fpw{)#lKLu0lswMl_Fny7N5_w03y`GQlv;dUI$+TaXje7gC0ES#)B?A z=)^+~JS@W_B;MGBH#Oo-F}%3~=R8Jykdul4;A=(&#Gmtk5ja*l3|}*97!HDm*|uJE z9wd938|DskH*zvAqcdf>>fS(a;{z3V1^lc6Mm9LTDZ8iQnhK%|95oLh{P-%Q`P2*P z^aVh3kuytM8Ht-2iT@#%WSniiEa&FnSIN}k_hir)ja1+y`Vt-Zl3+z`1wjB&m5E;i zIQA-RloOqS-vsdI^pqH-ql>I7^syA1ey+mBl0T{2WK{lbQezIg+~rm^`E`PLn$*}L zE_VpL%fAD38^EUy9{`>|CWvnlN*$PUZk>YoA%VX}DD_^O#R)krH?T{5CO)iGUOckI zb=DwPGJxrF4Pd%b378Ixf9O|^D zIBo%R;T-I)Xu-{r_A(U?nQ$eXDdjMC2d`Gdz|Lko?s$yFPNmb4A+Q0PN$m*2?9e)K~bWAr(k0UlT4 zmi*faTp#i{{RWln!uMq=-fedVbc8bhPK8#lrbyUhb65W3u)Qy()@$+e_)}WFMn=*q zdHxhWOv61)83UW2hI%c3lDq+BwdX|Y*#RX|P$${(h#j|}bfN_hYHPJbNQv8En6A-= zTk9cNt+>0_s?ztW`enmdzm&#3@%V@H zH*$Ko&o3ckc(oiJ%OAs^Q~-aV8#Wbnczs%v$;uJ?y#d&;nbw+kkJe(gaTgzzb9Rit zI*D%*8On~uutw}YgxTcA#sz%CJO(SR7w}CPCmVRgdL+Z|)! zrl78>q9R>J{8FuEG|523RFN)^cg0M8d$~iSGxC0i-r%x0YX=iIsZAbJC{z{#v=RWV zK1u7bAXbM>B3h~3$>;EmFeQlJli@MFTcxdd#y4j@s6A4BiaJ_IKs7W-E&LHt;90(k zX9V#)s```w&Mc&x8dkKYp;xVclS^4pqnK)vnu0bPTxn_Ir8y}@F(O)VWTLtOMYP+t&GWO zd`xh%zK;s*Tm|{KP$3V0LXaO_wt*JfORUJzlE64EvK2isVIgF4-{z(}?uqvAZ8b#0 zK{G>>P(8_2;k37BpuaEL7G&gd;9=KjbQ+b#`{;*c=Z%lHq4eb5$Q#m&kg9*u}iS zO?Z+i{ET3lQ&)XlP?rj{l-Qz|0Z}PHyn3rKAjH>Oy}XH~6Wf~Gw=~#1Z8Pc0v9O#) z9Hs9H_k_!Ucd2$&1`h%}HBQ6k=D925znXqyVmw#lbX};dT;S=ZQQdc;+n1M+D2!;x=7yewXfTRqXm@ zGArJi5JA)7w`pf1v08BAAsRVszn7p<)GJn~4W??7iaaD?uZb#?k{%JhT`vspte zunCJR;{ESdZc@9s65;~UCVd(o5M9OsME`c@8ZwW4y+d2fa1_P9i}xc;1e0X zJm^zAnmput%=B3KVaE~eVHCf}i3>;Gta?FQa9~I(9u<;@%6*RsXN>l2^ z*r;i>byT%WYYFgY2^me&Q8V=Rj;Xa8<{DaSHy8o4hZvxrhRl_HRpv^gk|L=8t<|Xr zjoM!BthYFvmV6qpUIzJ(|C7b(u+-L#rEChNLSw*4tQ>!v*ahZnGd6&2!QK!vI-__e z7RGe=7%*vF`1twCDEJB3TNd!~({gMODlo{g0nT~uwW(Z#)bjO}pTf?bVyn;B zQOEF1WrOUb0KULDdQ!lQ9QX>gI{To2zU3F_TWT{83h;Y?NO^D#S@J~|TWc9Uftac=f=NRVejdk{jUDH_Oh}t#rRN_v*rN1-U=x1gBVm0ZbmUy#d8YP*bU3~VhCQo8k;x)z=S~$3{G9WKO3P$>q8f;P<(T;akR=r{9934>$5$H zSpJd1`%?Q;9xiJgZvdKV8j_oBV7y3)?y{@G4^DTTIs4-|p%)s-voeMf=4Ubb-L;Z>F^9AungB1%9 z84JOTbCxnZE>K9WrQ2Of9@mPw#oE~wOzMUMZbc>P4HRT7_1V%7w&Eb2yOxob{3#S z6}|xXID?g#vyOv&L9QgR5_dU6_0^?kl+uciA~`fh2alD`FZw;MZzW@@b;7~9kFW*!QP1M3Es*Pzm# zYMb+%YM5)Tja1D>j+jfRE7dtBUT*;ZLjs%Iz`SjnYw(;BmS3=5X<)UX}8-7pJ+^?>ARXSN5*A*sBu>OXE7hnD4jHNkk6K&r?+F)(VD)>gRa>i@#wwR-vtIZ}Cog#<^e{k^bpg!v z8SpfEfV!l;Sq=EzaKAEuGLNPZ*oatxRex;Uz2!Y!lhv)r+wqXX->a;1)rN%V4- zPA&Cy;Mvj3l-3n_ajCD9o^G*Kl!wg)0i?7h&S$IM*1Y8FWMkp(a9K6 zUC1fZ`e)0ZvCP$cTzix{COQUbRA^Xq3`~XdEalG#mN{+B#|3n*=o_S$7Zw&4gRdxh zGa2P8odZ$PfGIeU%518)dE2(OT4NP)2hEyzuT^vpyjlkMz0f^i3(t%zfMX|l2*~pj zN$}<6{sEeK_{%6B(2dr4_-q&p-2$~u^+IUQ#~NL;#v@DhYHz+Ec5K&#R4)iipIKj1A|IYm>9CG5<9e))Xsafi(c znS$2By?)w>Z{j)d6lt-S@7J&feBD`3g{MMoUBK68oS3@&!CzGVS0zzd`;fJP3e2e< ze4hV4Pw=LPsH3Gjj!iA!ax4?5EPqfCH;)d~J|v)PdDVlcKn!S0o-#coNx0bL7;QW@ zwR$~RZK|gDR<_LR1r*7Zr8lKKO>wuHCMmg0WQd_LzlXS+&`y(W@y=$NEAJuh|^Vq(aS6lTxiwflqifrQtLYo6B!8 z1<=mfen79Msn1|lqEB=N^SeWk>ztlt+=oMtS((T5hog_nMIChkwM2N~&2PSne0-z( zus-ydVAW^z%wvN7usr&>`3n?j#9n9Yt{Y+)Mm-{?Opt5_MMLo)qM;sj*? z7){)vS?L$2vlChq-mfGhv*uaPGesA_xIKZm{grfr+Vf0_b6OOT!85su?*Z@5 zfQ6)e%XD4&J# zUZ7wU_$rCKf{z;yoZcY&HiW!bnouh4*lw4D0-KgwW?ORiD=70w3y zZDKc|fVZ#*7>1uaqfn^K3;5kOwrI&x) zdYJWpjJgUKs^`J~%QiC0XuVecaRHn``9CIrbATFt9{gXhK*bD$-e1fx06PrjAF19y z!dA_VPEgLd0I)r{>wkVAi7rbN-~4`DcgR2VJYG-I=1*|VUcqFY1sv7 zNoD>N99!nW`>ETPk9`dqd*_O=cdjvZe?>!md9Y|aldNB42X!ZA>$c@xA z@PM;obQF%QJ8QGCkqEVbfB!VgrWS}@88%&3=2jZcP*hUc*$7J*@KZ^&t;x?`f>{vQ z*a1)Es^R}U_>J~-g_lrR!fmz@@p;vOY7bR}vDQAm-?CF4TE*(B8$6DxN< zyQDAU#;VOH2Ic;c(WO(+IGATTQ`=;N&6C;I-ncOnQOOyFj5aikZmT))v7O2M3rb7G z_Xm;x5kRi(0qfhH)={~SMp{Q|RNPGsR3vjgK^ft^OqFd6VS zuyM8vQsS`isCD|nW8g;s66WuwG+^j?Tn?&W-T)__q%K2G3!fE=^zH{Z?bz} z{K5lx_uS&!_=m|y&>FWYai>|s0&)Dj%H_8XP%N0c7t$9{0Tx`V43A}4G=ah4RlHMv z#e4k2K*-#lutlk~ggtIi=$5@FJ)R0EP!%3u48F!LhP~neAYnGO+7<(pc?{g;AwU@h zi-`9~FDyQPPK^%&9Wa2w8;t%FB$F~j4xpQpwlps)fJ2Ga<~aO!uqP4k0{@`Sx{JJq zj8oSFde>oolo_CXrm7w+U3~#Q?OEEFfp0D8YTE_0o$j)}ECoBa%2AY*ev&c!Ef$}N zp*3diPD-t_>Nt}Mr}E}iJ}@#eS{68G)T=hpZDK0}nehIo0| zGcX}@_0lsip$vSx^bAGWL1w$y3UpPGB3_2Kc$ZA0v%p&@`nv|LcYO@tL{CC=Yy^MEV^iRLlzas|6?{K~ zO#%Mn`CpSN>K`#9W=8zyC=3;~!#^yj{L?JmyR`UQ{&|_k;51sjIvGt&$uxSG(dyC3 zs5dpNLMGSfHS}=}s{}+epncKYi#5a<*{knk{O3sqjBoMqG7|qUV9FifyLgiNBHXN( zhW^$t+O}7%Q^WDQ@OdImv|s>*iTi8GnVbxRNi{gT=VeSzfIDIqvt**&qV#`U$LFVY z;6MDc3Jvh;-wCB)amvPz1m4f_4TfM3bm7Z(@*L~H`1{}%A&C?#Z7YK zB$`1Yf$`tZOwDYeaIMp-v+31j?O46T-7r>-1J}c3c5no>{oDCXul+E;`MYYKp#ZF= zcE9|ipUutv^v6HgBco}ORv~nCJ-EYPgFEzM9inyDiPd&GX&nlDJqzzt2RE67g+7=~ zCEjtgO1fouK)Pi(O$zlmwYpRdQN+C_9sX-a{b((z*4uP8rv|4cr>Cc71m`dt9lV0r zbBwUg{p?3C@1_(qK{34gJNQ#Sd<}o<+e%Ia?v|Ea$Pa`2y={@jUzE)QiYCPj2#0?f zqcI!!4KNl#o(2TPU`h3xuf2|Tjz0z7iy~T}r(sok{?kC;K(9>WvgoXOhOB6hnJn@4 zasoIkz}~Ym*+-tpfBxxH`7iywidRt(Z?F6E(`P29=AZe}Itt8KN(H;YT@UW=S#)<* zA~oIkhfW(=>^VY*>43Ta&}r7DLbnHQjuY<>9IzzbgLp0yf7V>lUO_NG8QNSLT-Mi{ z9gvZ%(+qqr1ySA}x8Sc&o_YGq;AQ~%z&(Br-*D<_eBueERz;CAaJyf6W**Fl+ZSa( zB7XxU^aRo**Ms-JM(=L~nuNgaC3h1aqmF@@9>D@=#SLW-_HaO9rjf!tN7*yzJxnAO zHKqv43K7^9M@&ZIR+=;GbQYF2s|;SV#cNRF`8$^#O9sh1ipx;{|H5DS%H_v64(jxo z#hff9t420CD@uWZ=!Vf_@LPphanosb68QY4Q`F3|5Hec!ZJHO@Nx1CWbXowPU+J=M zS*rQ?b0=;&e{~&vy?Np4y3=I?*NzV!84i~XTr)m+bT~}t4}R;To5vph)-eITKJ={{ zH$FC-X+H4K#*L58f!Bv&Txszy1T71L`PPgyshL?IY-ccD4YW@C8OIg?wbSW~7a-1q z^;RexoxlGLi$#(1H zRweYM<&28lbdrJc&Rcmk{SAU5a1x+6s1vq>nRGXxZ!30GlwuRH?_6~N{9p|W#BKA8 z$J1b6z#B5kdfr6R@ky>>0dG7-PoWYonCV7HwZsRT2Uo<=C5%wGhK3iN7Qj`gg$INV*cec#pH-%yHsy^QAbulHR#006gR57*&=tuN4x=8Z6rmMbqxa-KqdbJ$r4dCiB zHDian+IMvND#ouHxL(aFWt4(tX507mhHR;kRMYmpDi!dMWrR#&Y+8RXz4@-qF;DB3 z#`K}_#EH>+_coi{ZboBtneiIJ=28 z@mfQ`Z;r1!*4?sitX@q}Rbz+1toJRdWL2^tR*uD`EJWPPEfDm4NG8K#3j}rE6y>~I z;`Y!2Za&LRskX|dFsW%RY`zA>5yEshtImrja`4P^f^@1y>Pjm$UZef~B5+L=rLoXE zhlilqk9%cRdfoRFusGhUmtS09bQ&7AOUM6A8N4yKztW}s9&5_)CGs)+)gE8qHMq$$ zrBKUX0|I6?xE&6TY*RuYq+pfr-sdL+@8-pI#~8U^<^eNM5GAY*|KZtiRk%uRUm$u; zV`|R=j-6?2q-q!NrqdOhO-n*06(f~|=ub7mv(F0P^a^3GL;HZp#mwe`U>7+ zg&{A2AQ+wYN~I3u{;m&wWlzKI(Ud_&!6mqX_FaAH1H&<2|Fs+3iBOr|VR1VNmr~16 z27SKSn=L#1*?rY#4?JF_1^p%pp1))gibYvPlE|u8G&Gg3Xmn9%5b~4Mp{M4?ZkS33 zd3|E|x+f2X2HFz50;knVRj^^GdistHQPS2vG?Co@(3a3Mmio=@fq|a1&6}CYv~6v5 z;h$dr$!mMVeZoDTn;!q--`%^XS*g|WP5_%Yg_hF}-t_rN)@5NEcHO(RWv1P)F}rm) zeRY4Va%7iS%da9&0NHV4ol?Av*n5Vi&HMt6|v3 z_OBP9+K|KY={}X-p$i3Qodb5c+W|QG1Ii2Rcna&n4v4XlIAO&MSeUS8R4&$!B7Lgb z=ZH>V;4?&LMy;xDqM{eAn>sEQnOm}VGWb=9jj-TEYxJUE-9&X z1X>W~!lCIm*VgI*e+&IXYsnw9T=nGs9iN(Oi3}d>Zl20`D|bDp?wVp48F z@-N@EQvPKtRYKkJb|fn@?&N}@a{TxgXCot>m3ozoRx6a@*74M~`!>f2Tid{f1KzuaZCHahw<-?fB94Q?QT|adcD&Q>nb=s*MH*4N!Dr7 zH157{bi*gE>E8U=Umm^bX(5pu-c{4Its@YFx*-cB>02u?VHd)LT?iAJMNDX36%(2Z zn9%&bFd_M^O5rOfZvMi~Nb=xUPTcf`U6E%jE&E3M_O>}K&FIxd=mZH99()mE!hb$7 z@z~*XW1R~A6g=gsJ3n22{8LTEElb--wX%y=wAd)w(V%y(O;#Z7$v1Lr8gf*Z@PU`g|+kO<{VK2P|r%pnBF$h zT{gJc6ZR^2hu-EjmHDmVexbc?*M12u;@BR579RpMm?)sdN}?~L85$1`Wr9OP!3?Pd zHhn)pi%onJZ>mLTv3I;;(c__dCrww37SYwcwIW&^_f#wjXn^I0el4_E`vJk?L#;=@ zc%W@=qLEe5q*kL$jUVo8-`VMlj$b!;9MDTnGg{>wf{Hbxsm5&sRVuiihNR@$#&t(J zHs7@cK*h~X9fwC^w@o~-r_Shdv08)ESY~$z-M-fK)wP?JfTAz6sV580O|q{uz>$ZLWO=lz!p}o3KY?K zu*Z}6tRS8V3}f~C#);(rG3Xvr=)GuX?2F%HfXfBDncz8@!4q?PlWz7Q&XoT&o^Qs# zxdJD;%m$auq9F(5YP70L@$TJ4oVW|vgGUigynZ=OgdRxtEbu_|mfGj=CaeN$1P~DT z4;7nNI3UZ@3TUo@ix5yeE%+LNaX2ra>n`;>O8vFfoDLtoCTM)L`=(Puv#>73!LkJf zBUhF8?8|n{j>bcyH*9E`2qMtf0=+bYF7NdBCJ#S(xZ(8P&m3;lSuGk3Z{u}#USV}v z-R*n(T4&O3^>WZi5vgtW09iNy?84UpW`y~x7o{$`i_d4wEHSvX504&8c+)nk_w6dwDS@G8l8G28l9SY9j!$~SQPzL1s8h(lbmc^6u{;BU;&bLUI8Sf zuLP2Q9T?oX(HkaP0-P>Be9e=G0t1-}EpXa!IiqBPwS(1g4-wMVHn^d3-vgV1Up3bP zP}Vb4A7EKBTyQrSaX@p7vu>V z|Lw(x^?CqF|9cHc8ZHYWKuTg`Kw6$fc(e}d!KIauwQzYhj}O$sb=oi#np%*KqzXrB z3P)-RM^F#aHh2Nz|Py^ZI0zki3Lm0(~!)RH#^tT6m8eSkQ z85_jLfZVVpBK!qWay>ey9^-E=#gJiH37ZB(UNs2G6gUCSW4v|9ZYad~t} zhcWcRmGmQo^8t%W{{bKmhO@>HkneiGK)z5wb}5p7wt4Q!13UljP-D3NP*?LLK=L~f zlCOYE$9fL;hkoR&A5RH~0hVvxC6xQR_H?FaTHLqacGIo+z`9#E$IHjA9h9*A=wxl@ zH4^~KA4*qGuj}<7EI(7;nY2PQ-`wD?IdSo`@&2|Jue%kY`2#>VjREcbBtr9@Vx(<3 zn(vqoK=loDK}K1g0eC=OUJB_;l=l*>hq}8QU7{8|8HfSEMaz-BZdp$FQgFYl>{50K z zZJQU+Cs60TxJJykus#6)smkE7nB7Ljzi~!2Maoo)cNo3duCus#xdoL^LHMxsW)-1v znt3y?mVI2V6bq@q{Y?U#9+g#L&Dh}rPT#f^@x7%G@vS*mZKC75VYoMSiryoJdmGjc z_ts>Tf_McC_ND-0-y;Qk8&(hY)?Gf>YXUc^&?qk6r8R13N~P2MpmU3%R9~z6;+Kz5{3je8&@8)efB@Hm6(PcGjUhX`+dBE#ys<7C7HaYJw zXbilDb2*I_{W}|Kb{@HV<7Y!~r8AJX0K)CJ7I1t0CAdA4F%^LOI{>u*5@PP%rguaM zygXvhSS85*4utE!L~wmKWqPL|p3AX1{x@UwK%?-nZFSSVl`Js(YKAFqpK58`)a>$f z?(4n^I(9OZMj_N}O#AfZ?TPA%t{7~O2MNm60fG))Ga7NF24c-y+sp9s?A2p2&TNBC z#S9)RfMK>od$_zSZl$$WgU+g@Y{{;Or!Hc#`D~Qds%MRyhIKg%{*LXfRqH!qDv~O1 z-vnlLaPeL8c3Bw!s7WcRoAj~^_~LwsqOimQ{)G%{3fYry%VJ)RQ+ao(_M%ejgsuVN z^<`i^!vUn8d|N0v)lxVY0QSOKxXYt;7lGjV?K<|8a)a9hyU^q-fO|+mzZSonHn^iM zU)-hnB$!Tg{!>K$qxgQj$?JO^d$ zw)lI}0+3LW5=nH#cg|>Elo8>SKVk$%}|vEUpH{uOr1Bq zdG?OJo{!uzJD!v?EN8XALTHs*)wu0Mr`p7;5@Sb4Cif_LlXl1Lqds5L5R{|D;$KMZ zazx!GA?g;0sCl4q&scUcdsji!@H2p@;fJds>YC+XZ*NH@!!#9r)w;XqRf)NU#Uv}kyoSQr*66E(bvM=XYLT}qmXxd= z>lH12DMXa`yRUZdN4IZ(XnWF~nP~%X&>EY(cV_c#8>5z*@um!z1mE4dv#Kv?HYA6e zwr})U>o&Kyudf8KZ9_}Prj!w9+V=N_16^C2<0ILO+uD%nuc+VA7Y(#e)<^r=n;eej z?qU2t(}Tu9joVdKQDKd3$#cQ_%B0O%S5xEg)Q8QE3bamr3{Y|aP_hQ=7P~8+as#ha zKaX)7mWH!J7cm-bjc>)<-zY1S$9LP_mhW2=CuU6G+<4<#LRtG80yrFixFcsosN4vAP zY;SNkZ=AcUcKe-Uet*+YbZWPXH31rp02&Pg8o}xXXA&eQN+Wt1bJMiZf z@Gzt1?QaYGZYuESRgj@$G`KyFmR!-dw9bQ-+o}Y@80j+bL7)I;;q6X8^LR=MR)|v)M2=S0{*?u;?mLIkb_U#bXHa_XRSJ&m6H>HxxymuYB^nG^riS* ztm)v#wl&Xmmou=gR|br}uX#&b<5YW@t9^IYT^aF1vu`2bE-z@yocyG%Gd%skOcGzW z;r1;Ft-+vF^ELx((#Q?KoYjohC%ThXnT#}f@C9J@0U+S*I%WPp2_iZ&3*}*(GVuHti3*7|0`haDShxQWa-~nvIbWW zKU==SvN+dc)Aw)fn;on7vRtTR?*rQcU3EbuaJ zM@QnlHI9&V`yFFtf#yMI<)^_cX$+jXL;C$Uk$zd^u1KURsg6)b%@ zzKH3tGQd5RL*sVnz>lKpIf4W#xtSm{yrQbPE>T`alc875yVI|c?_uc+XPZN>3g+Ep z`Za-EVd?2r4LyDNobKR@-`I5D)+%@FRBP=>${yW#$K>Xl#zOlKwoa$r-`YGqwZ$0k zuidc0W3S)Plp3hC>_2>9KW=>BF>m|Mj^t=hi`~-DHc-*DBU>KqoJ?)FJ?Uuf9KwH- z9vsZLsuNLjaC_e9Z>UPz%!#TdU;pTcWUE>wdEX#Le}I_lPHV9iDDB!%`>%XHdHov| zyDe|XONIUQR~jTq_qG2DrEu%t5Gr=dEpHSI_?0JbWh;}ntz4w*z{%~A-lia@BxnY> z-F5wyqgQ49xS=N9S3Yy&pf@)4k!^jm>*{>k&)WgL>W3zMC>VhCPzV1kO@6Bi)9KNk`2e90M=Am$`x7y(^)bvqa2n(@3QFe?( z0*Hy5NSwx0wgp^unjJ3#FQ=#tlKp<+b+NvMg`ds~>^Q9aP@NXQ32Vi7jF*=6rB8hQ zLpPkgy1wPaKiv2s@Orv@_-Nn6wSC^m$dUey*Y?lP}B#rv-O3dzQ0WDtK%KO zYiit@O{l;#Qv|K#8#f$ko&NAt+|+a1!3#tJCTRO~4!u&&xl9I^*{s1;lMh|HJsKTs z^!Y+w1@AO!&AgTil-W{~*LStv@W5B+UQ_C%eLKkO0F_Fzv^AGRdp4J3X&IEI{R52J zjGMq)Ni454OUsB^+CQMM&p6D|GDX4tpN{-o*D&{`xwhGj4ZMOPHCm=-)tU`qxHlukKFi-Sfkavt)pzIMhj3vk413?QNsFv z*?SYXIIDYa{8?t-_ZbEl9+nvf28MkJkN{y11Q19f;nHi>DYc1bEVwZ>bmTD{s{tzBHMajVz3B+UCg=XnMOvee#B-}nFC&mT_m zo%5XMEWh(TzjMy-+0L1_S)4bvSzInzgx5=+m*%o@+rW`M6>Vg_Z5w%$?ZBU~=I zz!$ei5v0ehg0y#+AT7F$-`C0aa2aHMHZHeDtr5^5H4IO-SF2GYMV_WZ!!dL{Xd~UG zkv<|lMxW|48b*_wlPKCC-Z&eCtXxZFtPW|V54|KH zo6SgI$zrumHjB27g{hINqM;Goa+9Rgi{naiCq=foCS z^e}e~qZKLCl6AGUWLL`1Z03z2H%L9nK$_c%#xqosje#p`=)%gCEbSIj_YmL6 z_y>$px~w)`8U5LrcQ2@IO16i!ESi1qf-JOE$!ht3)Kr~a$^QS7cM3U$%385vv?l(Y zLUw%hZJWyM$tecK=$V>i#4wR=Zz4KnBAZT_ z$RubYACsCM;mk}XBNInb8745&?PYY?eVmrb^7AfkMoX)&2c-SN0)^(HC+Y8O&!6}A z&o#FBXUMCOHgQv{vv2B5dO2BXgZ-`C>dEn>7I;iwG~1`YB^ujfslMrVW1CK}Fg-jj zD|x2RTU0vo6^&kf=CO3{jk6Wv+mWaEJ7G00Va|wSYGxUmSxPsh<>{FEBXLMAlg7<5 z@$-krjRd8CJm8H8X}o??qt%rlON`a7zVjWR>Kjx zpSSfW*`l1ibx>uovo1OeHn_XHyXzj@VQ_bM*fourP3>@m2@YylKvJ4n!>8DdxWP-pMFXjgU%9f;a?l`Hn0rjx)VH)=2y)J zqiH$8Ekn|{*qp4!cN)Tx`ebomXeKW319I%zo*r#Jx<7r)O0S7L015Ah)7{Z(sc1S- zSu3_I30Uk28^Z60X;|#$QQjwza?4}0c{wCLssLZHW@4A zt3Rq`0*E=d#%DPRp58;Peh1ot8}Z`Gn6ieg{hC&xq`?rVq~ME^O_zLBk<5rJ7-}F* zit-}4gnS{*)UA^~pB*A|rBQh60zz0GlP&S2kmP9!YcmsHz@o0rkyTM&w)d1^eoDt4rRKuXYqkcxRoh1(oTo zG?!w})|pC_A*N3pfdx(qH3>HWGEtJC2B3mdh9!O>x>AHnxn-y{>@`rqL1LeYOq3yr zomf8RO)Su&AeQ3?&rfB`!dT&g)t`IEW~1r5UBY|Eg|VK2Itn82N+VEqIDCJxMMA}3 zPsBzF*$1SBk2wr5A4!+Qw{|l$pKqCUpKp=BQpLUKJBb7Jocf!ie8W9NkC%MIOyI;; z+{bqXi&iYQcGoH$N7dpfUzq2Mk+*ohYQf@~uMm}~`b5+fNE$xClZzAv+LhnKFI{|$ z<nx(-R&Pz~5~vi7x%^lbnG1$B=AN&9m`)5?&9uZ#H<-n9&y z>q%Y9O@i1(#b#a0$@=FPol;2@arDQ<9sLF~u~gBcAs!4BYTEvKt}3O;{cVbLt&+v@ zbFov#_qfm0bbA^%x&U&UsAOP9uVtzG(HjZ#OK;rz{JKifF?Dl;c)n}b_Es*PPhz*y zTMMNtRSK~Dkx&1}9=raV1vbjS83}E*(WaLN)?4aOuk9jEQGMgSDRPqD?Lyz6WqP`_ zy=m3o_)?6HzIff0^J=|raxo&E1t88^729U=dE5!USwg?n;%3^`*Ftu*ypG2PHh*qk zvVnXVLD<8~&a*!}_XSxuw+mCN9+$%=rZXaC?4wD1YdL;KBYS2!RdEszHM-8X+>tHV zbcF-a&FKML!9(x*>o5ZUr~3usFcW!D9-6JejK}7njLsp*hj`pwmTmg-7bVmA#A-k@I^DGQ4Sv=)>0 zlxK@0iMXaBZuSeik*EGDI!eF}ofPGjbL~1;N8l^aSHv;Cv!hvhI&DI_a>mk;T+`;T ztZtvbw}5$@cDP8Hz7jrJD@#qiZZl8)ER$12$x->Q$MnE82$JL2Z_`51EwDW2aXqV( z$#v_V_hx+qgP&2;Ro$YhZQ02!g~pv9AIl{h0Da`fz;2qM4G-IYt zsX@X_9S)4t2gC+vrQu8UI+c0mWkL0jn)h27{5>1xvMuhzFf2u1Vk+_b_t!>C&zyWP zt+{^H{*QL{2bb~2TCR)bV(Z9Ak_+>FywfA6=Jx2RvXKr*`AQ5+0NIxOQL-S>58&xNqQReODPc`uCRI;+cMfF2uZg0a7OR?-qKW6c@?B1>%cyzK!leeSCcqTx z{Z3}_Z@FU$N#$QNW8Jnu@y~H1xESzigCy%DaKtisC~El9djl+@|7#A1+nCVYuAjdi$Ww_4~@oO@r|vfhr)z z*!be$HoMv!Yl}!+)M>T0#v`QT^ayJ^fbUA%`N+F#l3+vw)9w*;co?mAk7oH*7j3+7=5)?Q8GshLhDX z&?lS^OVq%_-Brj1-&6Qi$aDD~pyA(8c4f+>SHq>l06;6})+Fn7l*>-Ht#F~cZAtsE zzHq_5s+y?ep`o!t!|N*kG@W8-Uf71|gu-S$p!;2lkB<(AxjIxuK z4F9En@cHRSWQ9)?V`@Uqfg~1x(alK?rAbk-W~H!rQGE+>jD@GbavPxyinS~A0|z8~ zRtJ$fj6xLIoJN9DznJxM`YT9cb{Oc|;!~Abe(Y#JqB&=Ei3Nxi#GG8ob$;is;Fp*( zy|r^0?>-~k-%BCw)=N=Z=UF|afh+3MIBMV(6IN?&K94uzvcEaNq~Ll`r|{Gkmy~e0 zI$LQbw+U^Xya@x zdOhMVHIK_LDlGckQBOySk&+ZI#pN?tAj5D%VcD^I%*?H$)dif%la8KituPA_>Mcq# z(ePFLY_)b{@H4@0O>;OHUebRAan>PF7wJ^Jq+3^q$R|l`?Fp}E)h}8_4Gy`p7eR3D zfbDV692+8yR0n*|RTlDy26*YzsS*9atBxxMAP<42UJ7Bbq^;Ly*I66bDH?rbWQLP* z9|e`IO1V0@7fi$i-o$7;n=GHJ7J_wbMRDpkwPZ|gOunM12r$$3Yq zRdEU{r7dSEm6Kn5{_~0J4O^5C{j?FdCM<3D7G71ON%VsZRsZcLwxgMi+7-a4zU@B! z1S~6#{;+UibDQDrSSG-dBF#>R59HBGQeVJHFix3XuQj?@4}$WRQu=PARz73LQdTX? zgm_49f|*`1aL&4BLzy9#qM?zKq@~-;-<+^o(K=0lcIpXp8YqUKH5TKm@LNvtXdJr9OhH&Pm-YWsc&DL%odC*`71F7^KP>A8;|O8fj_T zY56*d2Q5H4@%1XDC@FudZMD=os9U+|G)V$-$8Laf;+9#}9p&^h>3aLuOp`$V#P$kq zOQ%=bX;@eN_ym0nHlhoMvkFS)3}xU^JMlYmEQ&Qr#T#`?qagCp;lyG;k3^(l)f zt-W*2?B)6hmsK@OIO2o5^8Nd7YDFp?gLs)IRR!Y^a^>Qmm~Ok*`IiM_pmt0Xn6oic z>?~Qt2&sNOO6BkjbXkc^oBlg{9IN_{Va?Vlwu9ZZEhHAma}EhsAS=*0Od?m4QC#9> ze51vkMF?;?wVJkTK=3#TuV50~{yW?BjHZh(@=4R2*@XWG%F}BVwwX(Hcog3W1pt0)I z+jEW+qjC|?5@g|Pts8`iO{s!^h&?2+$>|>4ICzH`ximG#-m9{-@@{@T@FZ8Po3;XErzUDmo|k#EudQuxdE_Yo6V{a` zQE+Hf#s_m$4W6CJ0>WIe7mI7-m=g`r@Sm(-)Ij1JAVRF_#{S^1-zcy%X8V=XZOc~Y zE9du-Q6PhAsx9Aw@GW0-!M;t2O<2=zedC$^WRP5%&7m7=l~k#zbvNG9AFLYfIAW4p zzMVkp{l={*>t3;2+<*SbbSs2oSa)oO_!f*v2CLW#SZC~ULdxNg*nK*C5yvW^2*!D zF4J*KyRjii5CmsH%wA()f!aOU=?#5zR2_vscC= zS=Z96mpQHGqMZ?gy!sB*b#z@Ced*)TP&nbu;LFn2oNZ<0Ix994^=;@7^$Bon%9$9e z?C~OX2-GO=^-iU=IJ+vn*JkP5I4)^BYzmwQHkv2vCubXHYvao`@-*^5h`9c1u2B`* zt>oA`b-<00DqHETq9{v2$}3O@)x^9fiSHrlTtW~QbaFw>8yQXLYRc#1e))AS!un@P zXaiPZaS}QfhM9D?+Q|~l`_Lra5kbB0QO7LH<1!!9r-sK{{qx}9b2A#ZuF5Z!SfSr@ zra@1yLW)8{C`)4hDl#A(ax%ia9zNc7`}*LU{*O&gs9_Gz=eeH&cx>x+y z;^jFn&p*Yn#|I}niM+Y|+qnYVt@I>kzng@Q4-1uKTv5`$4*B?ZFGn9oWWu{-@=K{p z&1bw!VV6{r_gA$`noGPJz~0jj@0X?F_xRViH{Bx1%pD{aMxqtEI)_4P83!AMH01B*ti<>L6aXu&N*(b}jMgzI<+2;hj z3h>gDi|W53WPOF#5XVokp~a6lD67h@f3#U261j#VR4->y=*HqWxi2cAnhSx6AYixN ze$B9cBC$)RySh?qBXGuKEj-T$Mezp zq74HwN}U)4K3bjM@IFlI1Zz*R1-c-gJLO|y=Jo_H)qm%`+2R9e2Yvn5#CTpQ1oVRT z2=1O(Mh(gC%7s4==ZG(PpOE3BH_31yaUeY(6(4RnJjLzlSuuIA2r7VM^`Y@Rg%j%o zTm=KoZC@wI0xk_n#HX~JndvFGN!=!GPAI$JF+OpdV>U%ecn^09kD$`(Ibl>gQa8gM z=NuYU<2F#sDzq|8YDzqc7c1wAOb)5kIr+TB!f+;%a5f9Q3&SXS;VZ=trg<8hC|V0C zCdc~f#WcvNTKCaX69&FJ)u2%^#8)k}=(qDN7^OqJ|91xkeg6 z6oSo66ktcvDSmu7EoXV_S+Ol|6m9_9c6~+04en36XX{k`<1)+;rFlDxMG`!FV%VXG zj6BtP4^c28;qxcuDi5y_lbfTpj?a|QdHUkvyaR=D^fvb1L)NnAVWNX1@n$v_O*(a; zy_U;<9NME(hRiV9)(Uj1T9nY>EpJLzF544Y9sjd+?6c#`xHhhDD*F(f)&yWORa#;3 zgdT)^USn!@M5K{YJiteeqrBsRqEn0Aa5P>qm7T`xwkWQe*n;}T#Z!LYq9a8aWOH(- zU(TJx13HkNsROF@mrjJah74EicyhkuJ?8cn9BQ;GIX)31u`9Tw6Y zg0IMt{NQ}|=QQw$W^DwCgSy8VuxvpU0TQVBZnUzf1d14j1NeX=Fl_HoLOhZ$s`~^x zEI0V()J*w~_oy*}eZ(C6X4a^t(tqzaKlD zFSD^!?o?%STT4!BMVMHnhm@F~GlPfH5My0&t1}e?&B`1=4wfA6(?W8Rw30R|GZM0` zMWth?rj9GWcjNrD|1^+Bz_3T45IZHCF8_3Y!NdFekf@SEkQZ$Qc8*syW0%kTn;h5N zYKMBqiA=5+d{|g8G}lH`?)Kt9_~r|TwUxT6r%48vH;2lPTHn*UWcW>><;u_c&vT+V z+~DJ7xnZDAdpKt&Uqa*tWut-V{AFqJ?~1A7*!}THkd!tomMvRA%L+6P4iPR)t$EN? zCWf9>!COmb)S=I|Wef)vZiwF6{p=e2T2u*=SAY%!Rm3f*`12jDtsi|GjZ;G2PTV32 zF+iyzWA>OGhd}(mm^N$70EmO`tD2tad|6}+IG6n*XWJb;7g>94Q2 z2K93ilM03fLTWPx`R>`4{;d;@Ao`azh-H~#q%0PAST7}dmaT6sS-3m%tCch3qQ6Am zj1Cgkg%9RU=pRp9XvEtpjd(R+W{s!qkLxwH*4a5Z1@}6zGfY^_%{E#T5plKCBj#Jp z{KHzRcpXiqO&}xbr<+(!1vB)Eu+}U%`$07cf1!wZ7{!Jsr;#t8;~8#q?LA4|kZeQ$ zbgn4{Mrc%rqFF5yf_eNG@(3^Km@?w}F=L|iXhogd#TBoMYB1_9YV^b$y-2itP^78r zTB9P25;6miZ@5#KlZW^Uuf}!`Y3OY|gk|fF&Bkt=X)$g520N;5aC4-_J2IHX@H~YR zRZy&)3^LRUrv4}t)OIMtPB(0`(!g&e)?;OpuoyeT-&aNXTJN8w5=9eNV-mi#$Z&<; zx%W8T%CgG^L_4z4r}QF(t*qB(yG@1o)wOvcKVCCZ3`mMVs!O6Z&O=ZdQ=oHhA}^k+ zOek$I*R1m$AUdF}lT7d@Nd3^S%^u3iHoP6SfrI(0Wi_h+;C%PUkB$>Z(U6GL{;dc6 z1&X&y$A%6xFTQhL{<)A{z#+1YA`l@YjE^VjJzftEMu1Zw7n)h2OW3~SUe3Zo+4S~Y zk9NFbR(jM;9wu?{R}Dv*rc20ynahvb$+Ii?)Y%gTC)r<~;p!SK$K1$O-KLI>q$pc> zjwbFS{&q049%~2wmdy*fX!wGcA$m&Q8pRTEmGEuML|e!@Pv{w{e2Cc;h&_LPrKx5K zTmfar6I$mhOES|C9_1)%ox>!X;+D%#yu&2*6G>L{yrN}y+)*o!Z2LM>zPZ`))iLLI z=geuZiwEhLFD5kNiFze!(hJUTmoV^-R`EA1+j|A-`dPN&BN)R|7NA^6rxyE8Nuy_? znRh`Ao#)He#dJTfw|Tjn$5p$lakMTi)L?igi>8b{HPG~rj&c`*y)T>o@*F>C5^a}z zWiXEC>xDP&KW@s9{1g;P1}dg2>zvDh?s*1No{E=7K(79*Nts@~rs~+J6>|zyy+6ko z%47_?iRLuNJL4fIvD5CB*RA6ZH#3dgCnDq-n0#(=DrFg=*m658ymYCvT4J2Ng**v6^t{<6X#IYF3 z^f4E|*OROP!FS!5Qf!i@0AC_Ev?JRj)j4Hpl$kD1ytp+c5)JbNGLuwnDHnt2Xfy-{ zQ#I=_sttSw->Nk2IQdd!VMOPQ_=1$__JBsnM#&xzi6%&t&=U)(CWi&8w~`F>X|Pj8 z#a@)536lqYJQ*u{Wrz5LBVsWoG`v}Nn{=(yaghTAtXcg=((?0k$(EU*6{!Q0)7pSs z(LL{MdSg8&zp--$h2}!?*1IUHXJgAWUIk%gbt^xEeLc(t#e7e08o&ncdp*vs9#GR= zElEu&CrL9aCs&!mY~RagyXG$gYyU9#(eof%!Rtm8nY{LTYwm2B^m>`7@Z`D6o=bufw@H{|Yxt{9pxy zQ~TK0$C|E-?I*`LLZ$20duUI5vtWe{#*1fw|C3>F&yM)^ct^A}LUp)pnXFb>Vn2*c zHxiL{b|bo_(xcFvuU=&2UB~tHK(2A82|tJiWY=r64X^UTN>`r=tY5Q|>7!WON+0HB z?Hm)&Sm846?{!wazA|RsAnzbx-6i^(45mAJ*N?$HHnVTPhlLD z9T;eWEdc$r#vKHfUocj(-8H!d8jB*NTB!{``Y2nBrCP`3;1ie_d|QXx?~6((O)^(- zI51HayZL^!q7PIxF?Z23CFK*D_?WT3M5U?F%TlP)qqm`KR^t@kV*OjL3RJ*H#5*{N zaZq436rX%gE=7!;Ik@T)u2HjSdyAip3rJayCP+SeMr-k7PI)H8qsgpM<`j6xE}H z?Nb(ly$uf~XUoWo6AKD0mhJdDkMRe1;CbPkKV&hz`Dq*?mG32dATQ~%Ub;{Z4#TPK zzcy)$J-ecm>3YDZ@tj_d;hK1Aise{YcTtm|jF|DnPG?FIH5J8_nfi8JIOQ>-5N*tv z_7t0Ay?|GQHm(+MQ58Q#e_OYBHwbxR)js?8L7n~CnoFg4Is66J-q4M*&QLv1U@*b% zSspZ6G&&$w`2fLJweKw5zLDBg!VtT%*<5IcRB%^YsuN+8X=zx7h@o=ui{xx>{i(7x zILea7(!=s>PJC|P((;Bje;w1hub9Tkqy&MUw104%TWYg9)gx>^g>Vi2_on%Z(gc2O zOhHTX`lanyUHWLJbkusDG@aGBZu4~=$gXmw;9}g4TAH;m>FKvj1gnY`hgF8^Os30V z5)9A6rhoLT$)svm5v7QIBaLcPflm3@s^;3folAQ~^mrY+n_c=u+;&Y%7Gl(>A)C$R zR0SRAmt)<09#mdAA!o{2GJ-J_MrvfgU4$C3s(Q$?Nr+mxGj&Y7>u7|R$>iz?xRWQK zR@92!Ra|-6Ub*!$P+kF8=k=1hSfW(#nZ(4$RnE3UVV7>oEpe&4FSMtdJf8^9_8PBg z&zdRFPnc1a+s}D}4kaV*QJpyEBXfG+5DtKBZX@_HZ4HT2%;_z&Q z%9p*AX61`C+oP~v<(*H4XxcDiqJAP9E@aSyL`0k3QqSv#HsCNL7^nXmZ*Dd^L8Ah! z|2?yw4NwPO%O$5}%wu_115G{W78kSQ(jl^nOPriF7l4&|rHi!qoAF;1LO`yZS{KXy z7cm$#GksHonZgsqNX*s+AGl_VnV;5wjgFfz#I%JwWxO#9M`bxr=1OjuR+LWud0Km> zxYN}W5SmN4TgFp$r#Fa`W=!0VaI(q|`Ghw2HhAs+TBbY+D7k^9=v?7)8?=L7%3qWP zr{#2X(~?-6*;E(cZ&{9p|h=U zoI<#mnaLv(?Zq%fM&YnA=!@n+PMv$`9Ny}lBZ%u$dS6HJA9vhMu05`^aJP7xT5TK- z1xGD_=+y0TJ6u+79?a_P9VZ#8HWA8K)pb_a`e`JZZ8z6FHSNqw1dAK_DOzi0^qXn; zu#J|`)tP8qOug7DIOd?oQp`R0#xR!{OiKveO9@SOcxgXl=^Rm10|!J~xvJGfthW!c z4fi8C%J33-n}Cp_x(i#gEv)Zqrn7$R5AbCNQcVxZAbt(h3cwY_cKhF$g_+ZJq781A1kplMfw zL095+(U`Z)#rqNP`pBQ*kq`xVPz#SL4>wl~ylsR$20$pLCd=N?tL2 zmNHE`m9t$&T-r9+2!eX0jV(5qgR!zjN?8IXB=30v&ooE-&8$L{w?bq`vW=mIML;He zB`2O;Fsd+QYSP<`r3aj1u3}@)h~5&8E0AWQnMTKe^1gyv8itmsmXE2GrMZ+pO-+Rn zUia$v`I@MUU-d5?Ho+5S%q}zi&#y=!;!p7n9 z!O!R;Jj^yvED$JT5{%H?Gp{AB8lTy7rdlo5pT$iqi%}6S0yGX^L%crlopWvxCW+^- z8p}%m!(Prn(88A3IA54sn#j#6~>U8ku8G*?ugl zCaJP?Xp66rshM_>OostgIHsPx(pA(BC>$|m*NC*q+7NuNV%TcjlYVHb!$=}*)EgeF zlov9eUT9QZqK$IJq|HuxXXcXKY7|FO5JQ?W!er?U*wmqIUZUfooH{w9aC&*+nZtJ5 zv9y_lQ!NE0Stqks(KNPOky+oKso)k$GcdLL-sb*N&WtjMv zT!6d6bm+n~IilZMS$a5Bi9i|DXE8*PtaVbYuWKN6o!ErVVCSlxT*c_rS{E+G$IcSc zg6>0LY^)RFUjI<60=$i+9nb0+xx>ilR7xy6De1cav6pDv-U<97d0pNVGXD#yN@qRmeQ7yaI#glmLcQ&eKM3pmt1kP5Zt*S z)J)e-YHM9-4@tL=j&)?B3OhLWnWmnVt(2jzqDR^Eie$DbaAjb$avpfkX4&N_lv#}! zgmAR9)Xio%SWTflT1YvsTg%wKXfs_h59?*cT-d;{1)`{?uWT#m$<|qEF1Vgmdi^6$ zJ$0Q_fJ>`&tKB-jir36}swxdXOu0<=QCNO65tbdFoN4fgdffkT^M=8(3E}HVx|-9# zhql4!MZ}P2JPz%$PPT4b5){oh6k7_?6ZS;*=K1+Rm9KT7-AJO+aiotnZnsHIo{q!m z8S{pjCiNj$)rSC$p;hC^Tw!2gTKGr`iokh;hI;dUQBjJ2^Y&7ztN#W&{HEh<^CTQy zzU{+z_Jj!PbgfE27E&YPZTzRkPrhvVs24URF-sucqQc$d;_irS43(eNC{4qGwiH;lW6QUAaVw<1;KJ6?ir z`Ltoy6}SRISwS0)dXHR36D&u-)~1OTb+MFx+d-LL%6T4(6q*Uj{5%d!VT=bo zt@0x>6S8MqAVybVH*fiF%@p>Ui>_d_~ez@c}h zUD(+v$4z~(>yZkz@u?VqdYR5%Y`h@i>F?A2O zgPrH9GS6CDsgL-w=PIodpS#~xhfS;REY0lpC%P=^<~e(p<&R6gr9xW{)?`ahLUTh! z&>3hM_VzvGPZlc6cc?T<+AAAs;E0V}Tet_KfY7gxHDjr-ZlaV=zZdoy%cy3aZ4_xksz3n{wq z30ZWmA3jI=u3eqCcZ_B!o++m4yH%08t?klow)zgA^&1?@zDrphhbtSp?XRx(>+jo_ zIp^7{-l&%=8{J#)M;rDR9|n(U8|GC>x?bC>zMT)7)>ArE+757by$mgo&D$ToXHeUl zt(RF-3%@U?j}UdcpI(UcKPT_6)|nmpH@FVhp91iF|9KGFJyG_{o!PxSXQzKv!(8|O ze{_7#RC)hzRsVy%C#+|AWq0xH9k$!~IN9%Q26%n8*{^gF>8@||t=ByzGi{c&G+r#W z+p}#n-8I=?Eh%FCt@8N4mHc<(zBIl{5a=5IF~xrEW~TqdAm}eyc*Vgn4(oy*FIdL) z2It1!_=X?e^*u9m6CqO6cVuK4d?umCcm~UlDsPI7)yLzGss|$yWqIuQ&skn&&;5)@ zkK?|jnaND^pMaU-KWH;cf8vhMBGc{@95{cnNY-W=p$)2qLsJvxKVgFq4*I65LqBj@ z7^T%*#v;2AYznzYEU@7wv!SX2_%VG1>eC&Cg4O*3O0wWsI}js9x6E}ypSf$W>RMyh z_J?L5}So;s={FubqalXr)P%wZ+aO59%?8tTi zygit}$Xv*q)QBE#9pD9eD1;Xi+$(?KrxG6#QS?V92m+7jI~BEfj|L_AGul7y(`=Zg zE$Hl@**uA9w35IdsW5US{^VQVzB;5jod5tMi|r0)Rfa6p`_`7v1P;TdYH-M5@W&|D zh-Z*8yb_(uZ->@3ewQW|S9# zpHKjnA4On<-tQyB?<_B==Y9lD;M=vf;^N-VyxU6Z1GyrM3ZHNMFq7Idj0#|0y$*B= zsWxI~$Em84eDL_95fyor^{^F!aO`3^;BAW4ss{HSe{%-R!O;WI$7nbeZ3ML%=n!I+=SkVC;7O`(1;3PQq|`o?Vpg`lJ98K z&4TlYj>HRBeth}e;Diw$81DF$i_pn`u!-2mdFL+$wuu|831(3vW041Z!QJuGn-H({ zjTf&Asw=^BLcyiv^XA$OP@d$hVK<5W-zB~aQCf-?Zsug=(rn zB0tey#2`=!AwBaX{$$PQgL8=$|4Be^RwPFiCnmZ6-<|UrLG}wA@P)_4^UG9VMv*** zeh`QAJHr8Y;P*rt%boK1_J4-TuHP{YF%XC^*9dUBHbsN%#seDrFLr^3 zd~KK!-QfESk{@(lvEOjXC->lR-W0gPuTRi%jwad7?*tCN1h+qYeuVpuTelS{vKci@W|9@rYU_A67(x+dtVvo?L1JsU9_;BbPsGR?zna2GCH)ui2Z$=B9 zL2Ai9feKE;Y>Kf`Ct9cyEYtN?X@4nky;r18ps zD&n6DSlq1L~6+Y zu(f=N*rnmfaT}3PUB9!GeOu~%SPkLS0>=-LzYN(g{tp|>kL(TZ4zJaaGulDK+6}|+ z*LD>$ZeRaOa;v`#9{a%YH!KgY6!GUOmmgp50yHrd3=i@MZZCLC zeaQHR;m|_pyI*%?hb-eC5dUL-B$v5^mE^%5XH{N%Z&{YV;cl~tL-WgDLkuQNHyaxi z5iR3gd>JF=O(DW%jo2g02kw0ja0_9(VUnq}pGaZ=&ojpn5$6B#R9WnlaYx+yBp>hS zNZaAN+(}=8BG}hRm$DdfTvZw-L28H^b;=xd!oT4k7KHN9`<|ZH4cV4I^#Tq+Nw5&z#vNB1PJyrqrcu37Ql(JTz#N#{aJbRE@wib4 zpv3cxe>3g-g8heCkRJm3`o5U%^q$!6{4Z$RFsA^J#gm?79d-+0-MxS9n!Aze!?!O3 z4ULLpV909y2ThiT*zagzou}xF%q_g<^|q?`-Q|I z{-s%QT}t^P_oI`2LGW~o=pFyxk9(qs4@mdSUE^3=fn|3@ch(o&ZbG2iH?LkPY<~WM z1kFQ=>~U6z|5E3>4Wbuu@V(o5X8zo{JL{P%F;4xYE`#vl_r`q!vG3mIh-37y%~gX< ziI@A$vCFfk_k@@N6Q%DH{K@c+{omZNL=W2x(jW6&JR;COIsOfqP7%e9q)gxYjQEFffdC>u+y~&l zDyj7Q3Xi=6eg-Oj14PM#PvyA?f~o%-n4EW2)bzykfN&C75#HEwA-`IUNY0uQM9AIUwE7HIL63FB7zV2cGr0N|b4Uh`}9B`m?xIIH~LQ)&uh(5kmmd@!7+Dd?u|VFc|RC=Boa9-JNPNT^fx-| zC)5+li#$5&SO10Q@UWh`?yo}H)1}y_uaw*uVFoiT+2RK>?)SjpZ@DBt zEq=s~6j9)QSBd8q75REy$bSK)WLjW>YTt4(ep)~xYk|Eb4*C7R63HA&9A)pUtB$2zvVx=#B+ebr_>;dSp5>!-D_aO;-95UOQK#2Aqe)=a{pa z021EnTDXBj6ke(~bh~{?o3vaCU505)$z7hq4)!19aeLg7}`2OZJY0~Xa>fQ67s~R|ck>k&@ zD4Lq~hb57q+=EB55S9UqUv_{|5)XK0?Shsu2ll{UKv&cox$*g8=$-xs#2vWN`mh^f zW*Ns06mv-nfT^J!!QgN4!t^ilFR4s|zxPqK?F5#?mLudw2uh0(fk-no2eNP`r04K+ z&SZ&8(&>Vt#(}Ao)NGxVMdOSxPn4!&e(MWTJ}wZ`@bQS;K>dkG)nRtaf&!_ zvP&fZANFFfio&&m?+x%mR%eF$lE4cI{`e(CeA^Hv;WfkW_iI0VQ%Bk5TZ!)ppzM-U zQJtcudBaSjr*RQ}Nl94HpfzM^S(Mud|Ckw;8r_DN;397vWUfpY8H88}huL3cI-#?y zWuf6$8&%s!D|(BRQi>)vp<__}iZaW}K?g?T7`Z5Rj>lprw$iU+9ZCr=l`d1T8s73w z4G@kIx6mHG)7qD%7qb~gDb>qQT#I5qtQffFAg$09nhR^(^xq@CXuqyZlX6;8x~o7cBVaV$e%AwZaEqD<%GRK`;rno!Dw!PliZAQWO4z+B~=lYUo` zkVIPME!L}zGyfKUH+KVFa1-F{ydt|6p2_3ZQN~@oNJlXdX6Zu%B-tAb;t&uX!!Jme zlwM(-gQ^#}U3Uc57c3dG)rK90GYEc>L6-4-x(#Vh^o70x%m!=&$iX9X9_r{%I(pa@ zE3pgX#kPn3u6Q`CmBP&`x>g-RP_dN4W)4t#c5&eH?&;LiYFLIbH! zCSiU@wB%kus*EJ>Wy;V#GJ#^SC4$%qrxK4*C4cuIsS>QB@6Z&?3cGSh<`g?>Xnh~? z0Xyl0pwTD#*hCtQxevmCqBGxt<)4S*TgN8dvJ>VDOT*RTfoxyKNAf7{`X>~Cbu?5C zz)dmuld<{wT_ke@($Xh-IvFpOO<}US_q>8zziO15fS3d2j8qG*wift%=mxvM>FNi8 z#0!&#vf|^*kwp?WVWc$mqV%1@><4MILVz| zMOHhf!3xm#LnPzGojiLi;YJ5we?A`Xd3A2VVvR6R@GN0gJjIRoL+bX%BI1CAe9Ge1 z^at7+O%X?)3u>}ioaRN>GCbDYDBKjV;DFcMb5b;ufwZZ)1d^nb-f^BVZdD*;(L*QQ z+sHM@0?Rgem8WPpPcKU9AzGu4y0QJ$QouNUc4~a`=61OL6Wo@i{}-T=Z^u>x_YAtQ zi-%UBhv4um+8Hw++Td#J(_lFp5CfABanN!EyYmB9*&8oB!%(c0 zOG#6BR+fWjF8SIxY&qCNDMDdd4>dcEWU>0_bk^LQ!zUQa8V4{pzHp*R*`!R^{K2)x z!igt4TP_oq_AB#ir7o3L-=PzX4esb9u}`{J%YB11i#uS}5zdqE4glg8l1)BWUZU_y z449=ooz?Gn)H}YVvT`jz5YP=Ytx_+%zB$=_LTWkxE_y&yk&&>tG-Bd?9DVFA2djOq zOtbuJ&X+2VU)g7~A||4ROlg3A(U+FQT_#~6Ak2!Aug#kyrEP_g6_So(51F+$z~A=g zf?H2+xJ6w2@9=&J#`Rhpmeg9$-7G6^tTtEFirB4Q^fc!ir{uL{IB#G@56d;zjN&i) zYJ$=M>rhNfd31^kp%!N4{#K>NX;kBQhG9jl8~fzRMbazGbfUPN#4XA93pOC9bo`=H zwB#iD6tCpGc#PyR?3*j89v4G*@}g#9Q`TZG%F$pO`!5(tkWgur5r5y5^a;Er8L2+r zx=p1O4fKRcy5`5}zcm<;)Q23mj8X!(Z3D(&s*I(ll7!M4rzg8MU2Wm1h3${>zyQyu zls(@$csE^iG0nDJV8+-6t)~xXvPQQS%o(*4!JVW{6tCyJ$d?tGh+D0TSTy!2Eia+u zoYrV;7}{XNot11NorUON^z=TXyNZDZeE}6lBxJO@KJDaxv@1Jg%TEcgg>HW z18IZ8eo6kY-N44hhev=lWKqF}mxGT)iita&VTBTj``Gy>T2lq!?{NH`nmEH`Lm(DR zUF>V}y)_ca9+mUno&fO*xd}-kI4}$p73Uy{O(fRZPnJP~o+mD>9S1Z)hKP&_9HR0U zmJwY>KaG)%4xtRZMz&(X7s3HYO=F;t z6KE}4v<1P^Nitmn%p&JPq#yk2{;{n@Za*3Lj@0o- z#a%wxH2SAQ@-oA29$83)6x{>qG4HB3DXSnqF|A3(x3ZAh4q6)U55q)%L80Jy$5|&R ziRPFE8ovI5_>(%-Ez0>ZBW z!b4QvNTQqU(w=ZAnt8ku%gX?;|Haf<0M*e1i#oWwdvJI6;1V>ryUW2{g1fuB1a}A= z+=IJ?gInO>u8;rLy;ZMvs&=<(wzuc&+1aX@o^Bl(8B6JCZOTV#1Nb=Tb~FG1DH00m z1Dwn#?@>~T(2zcB9KDXUVHIu*TB7~5D11KP^0^kfByPwneAaJ`?w@3(m=U6xaf#au z2@OJ;E3ABXPYTyGG+3yTmkypBN1bRA`4B#5g#9>)B{;r=z@3ITgt3J#8L5PbeKijK z$MeZIl7;3OLnI27kD;OCJ}1$+g#I}QWF5++0B0c*)DQyEac3omFh`rx0Gb$iE?F6g zMv`fwg!pDEKBY|;DtF5HQKg88q6*VBs(NSVa&d$ftR%w2#6~|atS1yz@evx;qA2op zlcc*5xp{9|*}_ulN)u8B5ey26+vC*+zG6ca^~S*x*~SG~1vT zu*r2tVyi>=YF(dfLCstE$T^J-P_yo_HMZ@B7E&!U_>Ny(0$`;j;n_YrN8Q47VQ**i zP5ZmA!AA6R`aO*a{d}vZu^~WAS+ZQ11d?9mPgPk_j(HofsJf0IqV>Dpx~`Ar5quo8 zFqmpa+FX~>ZQ0|lWwF+}8jLBR<>v13nJVMa$9w}c4_XcTL72|l@?iYOK_+vy0TWK# z)73$bh`GuGru3rtddc0b?%dYK_8cQyaQz<61n+WTgO5%x_aD?e?Gbb>vG)x1lD~!oiamoJ?D=h->D5NE z?ulBCY2k1X8ijvMVNZPp4RjFTg||_aXI>SFam=anPZBDOODN#Lu24_9ThDIHDj1Eb z+zWH9CuE8os#=oVV8cF&eqGMN&sFBc&>V5GhqN>2)W*{5>s(`49&Bp}Xo~=wzpROP zgc?j34x={nHk#Z|oYDE>367JRw>OHCZ>2T+u5LB?>Rc;6=$!@JbNT+_uAxKGa&Z`Ph?LLRQ!-Gg+0llyQ*5G!n{tdxxF!Bd#JuCqA zG949k-M?Xa*@g_Pg#?6bJ3s>sAoA;SCUSNG&OrYD96TUSP`mEsG6ZNjxSe_10nY11 z$g2wq=uZR`Mg|4IfCAt^@5msK6>QQbx}7o2D%GVXG$=i&J#CvA8pHwz=<44PxxDAT z^kDV!g$L$+0kHmTU+LS3IO9>8I^RD#BV|e3oH%HH>9Dd@?b~qO23uU-kLZKAdK31TA^t;0;AIC5U>y6W zv>hi@-;E0NhXDFx0foQ(*Rp&#z(sI7T{Eg5O4Il@O5>XR9wZPcB%l`> zF!O1NzKyPJuvt$=#?9vhrw?d4V(wz3NCLyDHKrc&)1D5LUK^00I%t4z-^OR%&26yE zHaKG&taEu!dwDMss5^4KkJOi7fq*{^boJ(Jat2Zdw}0`fraJWvYUkc|_%uBR&>!i4 zbzIm6Gnc1na8$2yl_xMm1HSj`;dyPyYW{@)7(oCc#@E@l!8VuoWZPhpOOJ5y{;fUP z^Iu(-F;v%>HMZvsx^@Vl!6#Jc|A7h(5dCa;-$u$dSnBc~*6Srvc>3nd3>YKa@4J@b zhrne;-y3`(J=2K|L|FpG9Q)Huko`?b~3D&vtyo$L?*V={!D| z+q}LsiN6Dy%3k4`Sl)ZhiTXGAyf$D!j<5jF>4T}~13pl4zaBcUHMpJpKarcrpmSKj zCw%_Pd#y{4Y#U>T?bGcBZHTXCpj0iG>2GobNqpfuVlQ-c4?r%iyzZgxD?wqcf`QdpH z!T#5oYqwF}QUl@t`-JnM0D+JIKyW+SSUdQ&V{$~s+%X`7DXmvp^G~48@}FL6z5aq^ zhuy7o2RHz4PwC@x z(sDKEjn;ZUHgg<1PYhfN@w;qz-yI3n=(W@SZRXUCl1+~}9d2%RT>&0)LpHf|z2D9^ zje2`}a!J4T6C}$IH!-X^o+McMFT4XtUk=~jc$1L#=c7C|7&ObgZ|5$yFRG2o2ow}I z-B-Zv7aKBYbshQd24b9rKjeSYpY*@ySUX0eym+p_m%kCIyGWNk%A$Xm?nV+M+8TKp z_;-_~$H-4qwyYqnAWhh&FX=xwzzH#i@&&d%5sE$1P;DsSxB`l#{9CWUckH)svO+b|vMEb6c&(hBCt zJdx`_BdITRV1A4IMb_qn*U?iBV>jJ?duPP}~o$9BLN!^HqQ9a4_!P3PcMJkESg@(D6FftgE z6ReYN(I_Oy!gFg1RnqDC8?5+0jSCA44Z3b`jq!tbf?tDQb7qaS1}THc=j*^#8_sW7g|;$O;CN1Br1I6Q4!XY8^Qq4AFflyGX({blpT z3}}er5PVT4$b0jQWg#{;p%h*F7mQF%`BmN019L3PSszj$bnfhZ@?4(rg$!All^57B zJz(wi=XxMEYy$cTkd=Q+Xosk#kU%W8T(Dtyd9iBP@b^AA(A1YJJeMG_|8d~YBjVK z9QI8O29X8SI^UZt=h;yboFc=f9KNRuxo!DB{B`9m%jPPe6J1TMiSIPj6i)nzI-J~RcVrDv*koOOoc?zk7_X@v|qZjV_2F>)XHjBjqMiTgESKaL1p~T zGFoH*mGYM!;6KVX{kxiOxnuoS?xYOirZmF88 zqax+0g$!)BDr^YhI|tGOjsW$P10&`y-9!shcZTS_CkBD&5- zumsS(k#n{EI+;JN{9$vC(8W7A*^*sVlp2t|Lla(=F)07|vq`lWD^tijd7kW7&5!+Z z2+Pm>#C#Sc%3fHQpAHt^;LT}=_iyJ5^Y)Q2VM`OF!rFr;lRa|IkdY6N;TJys5^1~q znbVL&A&LeZSxcwC_2HBS%w_>8j3UEwsek=W$s?juy8m|kD$zM^G9x8 z`Gh{Tnob#OynSG@X*w+TmFZh;7#!B!{?UE`5_DSiVHOp)qK4kTrP8LbL8>+R-+29+ zl#^8|nVOkx9f!Nw*Acg61wFKG%GN(3b?GOKVn>mM5U*+X*bx$)xuqtST z=`Te5dqpl0oHm~k!BS|biG8vnDPCi<&Rpk_z+aokWzwb-rZV${{GZ5U!iHkPq)t*& zP}j}Vcy>3Obq?U4NaZu)Vd11-SPuNIml(7=y>2gEa1ztpIoMmm)$NKQu%R3W#REH0 z81KZQm`iR2jzeqqcdfY~`D*?(=sqbZxdlO!p|%iBt5<58r%#xcH^6wJ*huV&yyYbC`GKIjGwH#ZDv++?b8DWO$FiyF zP572nUi2={*)Ck~<8i;w$;U8&g(~;Cyp2Wr3;2$?6iEC{=VcAy2Z)T{&`=Gf$|=yp`U2{43^H7}lhdg;c#C`KrluG8qLq1sQ3TFBL@q^3( zd2hd8Ts>RYx_ysYv?{<2o~w)6&O28F-C-|Rt8p?Iq#H<{*p7@X%$73KVdV0XWim=T ziQ?E|;>J|flFFrhN)i}ng(dL&-W09O1(LI+$|fdP#|#wse}&gkgGfYDG~eY2Jf13i z-!;CeWmxNxy8OdTp{rP^>pMGc+iu&Arx&ic%U!neEZ9W3U%6N`chj}hrEwS@!G#Ig zi;2FEjSbZvN=+jb0!jp+k|~_Yy{LTm&qklVTIgWi@h6%s&XDN8-r*_j)DWa2{@t9$+vyW5M7XUAlhDu?_@m3G{4Q_9&hd>~F}~uU z^kBP{#{c=O;p26kONb*#z4QVlnXXtRG~tHxL399vavgWz{C?KbfM|} zsY1@DcsJZAKZ`_u{;X6vtACVNU;c?%x4$M5(3xcX+2A3H2N_kZSkal;V;~ahjY6bZ zLFYiTw_7vm#Q&^P!3a}+)s0k=$;l|h=^YStaZ0mef6>0rAZfn!)GV@x6V<|1Yx zB-Z|FCul-3Trk!VTNpQ)HC&VD|OT@wt<6pC$lAH zFUu#ZdOFe~SM7zQ`p{Z)cGA}xBVF5uxhoZy&qUkod|wLs1dvm@c1Rx6>ktOZ=q7Fo zQ(i&r*xv;Cq@QfIcNsqYW{XhnYiEhV`|{Xu&qGE{sG+x|GttNfDlQ@ILwI)#9+mF; z2D7@6S;7yUMBKuQ*kDKc)wN-jOWs-|V4ToJLhc$!?)!Y5h zzPpjnSx9Q#6LNVKHijSj6z4=a(ssrilNMiK3eQ%26rM}7&kaiUl0SdCpZkYc++)qma=&qs);-=2PiX{Q8B(9VHNwl!X(eNv<1btyoMT zd5YyA$z^vrYZx+#E4hL0P(XVlhyj*v!JC7Syorpb5=cL$`UFscm8a-NIyWrgdx*-L zfhA1$s|>4FqNOC4s`}@#eQ``w9Ytr-u~Kn8n#4xqJ?5tJE&Bh#P#b(k`)39<_f<8= zI@X$Su1c~RjcAo~rcSX%@a91F-&AbOMI3Sc~MmY+~g%ADdE&IR?pUj9NLa5NrQp#Yjsm2Z;TS zYJt>a>*BpAB^rUWW8^3B^cZpR%_r{8;A7k3(?~}`9twbVX`(g8+@|CfO=rO|d2s=n z%w{ApwNLIbLU9E(4&fZSs@Ni>ZkDyc-2e0^S}i7gG+>;Om^4G1>pL zD-Q3dvI#v+rs?poj-KN`HKO}i@hw(kaGrL4<3`XD3w(>+=`6|3e}N->qP02gmEf=Q zb`pIi6Ey3Pe)Vn9AaFlH!u9T`B9J$V#1A@cQtg23#L{B&+!3%MuJfl&6e2bnzjpbE z;|T25LS6|ER5JUZ>JG9NEav?re_#D;Ykb9zUb@8+6QuSo5AOWZEq}b( zOE7vS^juR)--{SDn2S1u~>WwkpL%KGgH^ZFsz-#i9xV6Z*AJvs=9fU zf1lV@zL-LnI~&7+(18eyOM*>8mPcxUZ$Pq1xQQi0HY*s&!VpN&41_4Xun7QVk&!SbR*aQ zT3J3lM7bXEUFZ%2*#fHDM+NsuZsd0<47u|$0E7Ud3tTd6GO_|vBYY#0Ey67j@Gpxo5kKdHA}^e6suHo`Dyy8{d)$myvfzBQu$)2bhL zCyH-(Mh%Mvb#wDZfpIMKCt~ymR;8sGWuq*%q>T3(|&)+>|798&AN9EMLB^Y5(6h?F(` zI(J=hl#_n!LA|T;WbG{8fT|H zu=-lc`;eBYl_qtoT;W95s{s?`3qlw_(mQxgp|1ml(mju_i@sR)>1!i18l%{Uim$@> znuuZ#V(_8THuj^tY7?rty2NGo+sQ9vMO)E>46hucj~GOxuYN_(sQIPs=HP6VJVFd7 z&;@Yx>(LR}sH!@1pW~w70Lr{*hhOMLbgv+XHC~w2Uzibb0yjjFm=|7u0Cd=?4VbAn zDX8-@Qb(Tk!d|_q%jr+r-fwHu)aG;EPBsL}N=IqS8b8_ zWgOA`ZG&&lWr_x=JnrKvz+bx#I5Vn#mAh)#TFt8#zjx&~y0D+iK<-^e@&+;V;2p!K z`f+O2iPLDt&9f@E=IZ$=N3r2FM~~{dj%%aMY{okK(i}n!Ug{;sJshq4nhn3gdnu441YdNO{c!^y`X*;Z(Et0yYK%=D3AN8R`yyA1N@T z?4J5KYWQXBUNF4dR0;WLXaLKNSbgpaeNw)&sQJ}yq208@Op5OnH!AvvhbVvHF?57<|HvY z!9`HMP+rDmDR!S!{nd3iEs&rTc>Yx*V7BYmO%kvE)zz;tbPFko&PQJXYzL#8sdu(A zjX_(?d2YSA(A@omhf7JSTgD=WVt(zTU*NcJ z(+6FF?;_$Q=|TUwPX0f%a=HXTi|#F6oR%v+ss6LY0PIS5Ehjph-}U9Y-S7xzlWC$V zsR$?&%lZiVCx86^_$q3snpH)ksx8S|RL$r7Vz30&a~-^6`}c~9Qg`!Fce7K!#fb_l zD$4=xC$=GOlYEj7W>)tfpwVFDMv;>Pz18K6%Xjm48K!4yDmrvqr_{{~)--#N^bH?s zLP~8Qoc@$%jcNICe?M8OSwIlcGvIwub~wXm74VXjd&jV#PB{C%ln^GLg1dY>VY!3P zU_*1_?`jPLF5;}jnHMkfMbaSFsr2bosl~v(`=KwjHY^VrljgysNvZpTx>fo6Vz%u# zOYf1I1>Dy~4F5=VTY_jr1q%@3%Mfr)5W5N^%!>6)P5r!s&Nb1{0+%LmQ=~dS&`s9MqeG zqCI$;Wu-B1Cn&$)PkHMeDvaz?lR??Z?~4VX(x;a$n^MuYAMV!}2Pf|Dr$+1f$x2Bp z>5A{S%SrFI6L+uAm)Gopo#?N7tdk0Iybl%acJ!YWZ&8zyNzavge{2=7{QDdvKQ9Td zD?H0uK6EEO$Kcf4($w47)LZ+&=ew%Uf&2ZI$mfTU*i(<{RQ&~@bn=2|P;H(v#WYj_ z@A2p(?$`U1?;cU_$Ev|p!o{>~|7mF{QTb;BO7Y4|(Vp)1rhKkH=%q_(ees_go^Fvp zw^Q|5a_TQZ=YC7gj~M=HZA2S=mTp=>hrPj0JJw^dW%_#$dF9I)+&$Eok=Y|bhc!)h z5KA4dmYIDjyZGM9WqOk^bNMhk+{U5!eXz{sALK;FJ_UTl8)sHM}d zvvd#N(v>xm#6NRsG8?e7lEe^o{Hqo9k$6!hV|$tJ*f?h|`x#Z{Hi3F-fg37;^%d{w6b=Z#gAzT) zBfau`I&yqEB7C%?nu#6i@OK14!axV|_4w240~RNtf1aBOd=m->YlEe>y5P-?XE zwZMlX-^(QgNgf!08E=b8!`Ohx7NlW$^z+psCz~zH-O^y2G<^bA9D-;Pc2J!s6eZ$i zO`Qja)ZBHgge}B>rY9on3|bJPc@=QRo5`#JMY%{?nz;pW>5)i2sZSR z%Bh_SrvPJsF}yVN%Dd6Jyr5eTx$0+5B@h79%{$1w@kXOuJwI8E^~vg3O?(Qi3TdnH zj!BNESWs?JZY}Ph-k{#rEP_meOlri8C5@rGgxDC^qPdZQSWL!RnIx0vXM#6|F^!lT zjrDWqEr4b`+ZkyeDOhV!X&T9Ln~G2xaUrT{tfMQ$T|Z|L&movyNKzcUXe4iiMa}d%4dk-|pc>2AO`XCx?yc ze-&q!MBd>ZhG!36!7Le~Gt~P_f4+|wg-7h_-sIukFfn_C5zS%rZ(vX+?cvqLupfH?FE-M!ctDso6Yh<) z=`Za+L@^eo1OSTkn1fgOM)8_$#bNozWFuuTpz%(x@;DBC?)^Ig2&Px$EQjZ6S zBpNj-x9u|H9&Pkc7Me@#yWl^Enjf`?jLanQ$sVa)o!doI|v5h2DQC-C5E=sOsww1`Pr2N;XLm^@Q z%_51OW5?e4R|j@gBE?E5>NWg|+m~jVqz$b&jM)fXhnWyFO8#AlJpZTVuG|$B z7oKud#kTELix*+jFy}5ohja~wU169uG(&h)Yfk-$8TFY(BL7K+kD>WmAQ>Jyso(o4|Lzz4G(PJxd{*zNSf8R*$c1x zjMOcPsN@G{F#NFVdrT96Ejj?+wYuWmuY8c& zcdQh7TK83Lhpb^djb7{40T@5S`a@awZ-w+ip>d;dONqV~%!%9veN^~=7Wo&3l>6~6 zKEhM7*UJyLv(F-0YR1I&4RmU{)bb1r10hsBp0lD90z?&pf3aa5_W#gEurtB3k677p z_?&tgP<@2Zy6+2~L`{GtCB-Er?MZozyu{z79Q4E>!y%3E`uxk}oJ z8j=aSkQRZQP^1wN@=oeL!xZFNHby7u|q$Yio zPzhC&uH3#3bqk-wIEN5PjJoX|_K}Huvtb+NZa`H!v zIx8X79F>0DuZBvkhUz9NdCW?lqJS~VuZYS;TWBTJo4G zby9trWREK5lcwChAa&B7JjE7c)N3KtbxHErj6B6Bh5%Je{$Etr)yZQ3d5TXA0a}>! zs+}%0Rz3qSGmDP& z?u|Y@yu!Uxenfo`+x)!KH1=IHv^OqlL&pb9>4l7JT(|Xkvx11+KnV{KU&;PNh)1Fw z4U$jFTqkv4;!nwh43AznehtjJcZ|FoeKgy?R(w^wq{xtB3CY&>wP3redj9Rx8IW(N zC~8z+XH>W{%bH3#Ncx7X;sX%(--6f{iQ3_gdSEA*VP;f)2HmN91EP;8AUi7xLdxv^ zareu2vdq<0jNV22Pzx)Hey^`7sMYFkIsn_MkT4vxZ!SUksPNt(%u8LdeopgIYq+!Y;Y5$*{>jyoTfbfX*z89e7>0MH^~CZ{7?{`F?|H-f zp|E@HNDvq-8pJI!UNF=nG*uw&U4M8iqv|5q(5?KmV$muZRF*I8h7}kEIMjR8eCJ@@ z-+1)s*_%1cv^AQ}Fat9_BG&lh7=^WpPRt3Kp=}MVAMlxj3AW#CY6Ce?lh-QbEw4L! zD-GQ87GZ%bY_fWAo`dEcaOK!PolXPKHOApb9~{?x?mr zjea`I{tRn?#~sAH{gN=q;RTsKn9=~5FCKWwRTFGw%q@gux6OZxIx{HX1+hE`y9&=* zT8n7i8w>HJ2dReDS@wC`|sne$2j$hZaHey-r zwCryA+1kG~KsV6gr$uBo<>&ojh>j+>xaOr)uhy078VC`F7 znzhv|411mPv^(jxnByfn+6|GnFDS@!-@r>Nf3WK&$Pd0?@?uBrvD*(fFm>k0?$Pzt zyC)v7&w4HV%G{Ij5!XAlwR3U(@F?;wvNa>R4fh!F`t>7{Y?tiD^gRls4Jhud?Jeo8 z?yb03*jjlwB|C<@MY{`mmU$+BGwas=ko-{pQ25aQ5Ercp{6#j`JD>2+=ydCN>)+_@ z#qHkn!!z1*!n5-8%rn9p-dpK=b%6YbqG;_$UB(*xafEI2?wsittLU0_aw9FpOp5-2HNs4pz+*-%fv8fw(CqX+AzqDsb#2i)v z$m@2vq?f&~V{nWcmM|o?Upk+C2;UZ&Gn|MrHfe;;ti`#49X6qHgwG7f-ap1mLzoiV z6*oR2Jc7MvSkl)qlWF@GpukDWR!)RQ$Qc_En>E5@)^^pvKI%1;X(wbm$w|t2NQ4v{ zHbP<6*f^wZE9A(;na`t1FoRzmXBEdi;yR+c=WUjE72F6~HMZw6bwg7+|H2hfKAauA0VWK06?H|DSdm-ISWH+VN%VQ^V@M&Y5i6O@LxEX+yalnl5LJ z_p;ftpIuPvtgbn8Te|l5+R<8zWvpeFQ#re^yVTZspLL%RT?b*i+Q$6mW!)LQ(;B>* zj9PKKoYu{C6L5=RV|2|*EpH8Pt?;tmvf(LUd1F~{xog>XS;VgQF6u7pF6^%CF72-M zF7K}UuH-J|uGxLyd04>a%{H$opjk z4@HJj>_ieYQg~2dVk9AA&|=07Q8*683{m1xrcu}=HB+QfTFF#NPDiQ7>^ewz27+YIu<-OFjhRaJC-~)Kem@-kwi-|L8&aQIqS)F3=-KiD=1{1pADJM zyP*c+j66I%-r;X;9pybaTtZxo03y)nvjc{1yhw=$B6%@H4mqC`9%E+?Tz6cf&x}<5 z3Me?Aevj6Zp>y;fUb#VWN~IX$ea7*jgmr^6M9PFnv4G9}Irwj0_}-^qIXGesgL0vA zCVuYio@~l@YLsirZ@^Ed+PudyfAQa(!2_vVuR#y<6I6H650ro3^z-pm2(!?- z@5pUJbERZ0#JS-2YAkmDaxW4>E)d$qi7n__Gyk+(u~`YK+brDt0^yp@j}&|e>k5T` z=zPPsTmhqL3;4(|tq~n~{}AkXzmU`>kod6u`wAGD%$%DzHoN6KAAqN#JmSXZ+)&}_ z`sCmios!2U{pUC{GOqi>RGs(*ZFh&PWTyllZi3R-#qBAOnJ`^SFgC`OJ%Cnb*s|j} z(Jo==k3^l|`p%y{t=98L6fKhW-DorNT7KM}=sj#(@Koim_V3+Hae3?C0{^y<2-=R? zuiT$?7|hj~SFBmBrGcBl4EOvV8ZY{Sn<6uHmIVNFRlId>u&xJKG_LL8)f?C=MHus=mmvKipyuBGn7`8Ra_ZoCpbeDAJY$Jq=BSjrOzV)7< z`t%?=Vv$5MjhXgQc6=5yb${^@b$oXA2zT`aTi(d$Xvx@|z1`?hLz%0rym|03wm`&U z>aSzek$PwKRwU9Df)YBhYRm&m*wlDtGG=+R3VA$YXbccTbExDY9!6`bAL^7z6q5mZqt-&=I z4c4mBwm%}obuFylyC3GPc)NI8-b2nw!->R>Sf7l^bgkc@zx%9wyJuTunfX!dQo_Uc zvSfR-2Cfb@z^XgM%E_H=+}fDSk|>Tbu6lJ@rB=nEjai-64PgVLil}PB5QQ6_+qg?y zE40qIew^0&>`q0KE~Xp9meh9IBSJS+w}Dq;C9KZOSKL9|VO6gvz9`-vaGXBNdZBqu{RjrQ7{7#?um)W!eKa zYsm}hiaEW4YXfzZl5;Fct-XKS2)i7uQe|z%|0sp_H+b+GV^lmjv|+=$!)wTwy_vgk zLlo?m3Eg-yrpnqKJj5Qp9rUdQF$B3nYCs*q&O;r+RKZN6siWzmS7LOqsc@<=st7u% z7Ak$Z8cA;_f3qxfEHvEyagXYo(LH+K_^=jm4Oa*p_q*-}>lH5``Qy)LO4>)8cR|)2tM@!1k_d{xMof-lPm=u)e98-m zaWc=nTTXz0{JA)>4M`$EeEj2{H}r=?=;<(xSLUqxdm{Z?PZ&z=6}l4=DbDfB4yxNA zrS!)^Gt%4T<*_H+?rjWInlU7)RZ*O+N|uH(YHnP*F2S^khK@$1JYYOGMsovoe$G~K z(EHY{op9~+i7Dei+}#Io2+0#17fNVPOcassPu7KI+xW7^RXJtZK%fE#_9E4f^>~Fe zZxC-oVKI?9)2N*AXx?<9-}J0fzF+ydyj**HuEyK>lB(vRY+uny>me%tkGQr@6HhB1 zr3JRbWpcU6`CwJvE{t*XUe{NjA5^>v38DXS8~(M<@4PR~EQlXR{E*8PR{PN9M$T!n zVp0R0^C9a(Lh1(U=4)vdSx&)DwoeT=>GU8S2SL>YJVYy-I8#tesc6La*@BCZ&f{Ux z;ECCkKxCBJj6m3o644Jx!d=qS?;Vi-&swwaZ_g{U`2H{Ld@|R<4I{c4O^v|15e}5m zA4|OHj4g}}HN+Sz>pS_<6&Ntql4ANt?yw;vI0G7g(cu?56bQ9KM{r74WP3ab|3kGQ;K1wU${elQhY$UY{;?@;Hr4IG8!c&TQ`lvs+x+QZtfP7xxc4BIUB zG}CYPH|&+czKwS(n}4l)kWrju?n$_~dwG?`0s7znB0)JXu|bV&Gnn8g3~=`$U9ye5 zq8UR>y-8=k;IStMLgvUq8B(CEDiAh=aTzn(^i7mPgyHY>hB)9K^hSX3PXZ%I@K-__ z;8p}|8qijFkNU~=7Z$?@I|LfH@#{E>FNH^*|8!t|Q;rlYBmd$;i!gPt3EQFC(+fjV z({*NNjArPH>YEC3-ap_J2lPRmN0u(Pe$P%iIpBmODYDVYht*LLw2>~K=$bk7b0uig zw>}qlcv(t*j``iPrF45F^iQtb)?iSR;e#0nT%r$ zE$p+5qh;+!FkMUVJduk9R6;(HN4%=Uz9xPT7^4)$rWI9>dY#qjd-Qnf#;K*=3Qc~L znK9$CY{I{9BCMYJ*C<`XZ#TSdcHz?i!ITg;gfmH{*;n4Yw))SsEw|RxZcVx^4QyWD z+)bAgLKi`KhW`?kCw@e>XwO_;W~0&iPuC&U5lWLt#t6&8nf+=S|BdS6Pu*8g95+RP zpq+wH1UES-&p-|cXD1J&?TYqdZ4nyxZMGbGX|UgY(?Qz(jju{gHtG0PgjGe(#ozyH z++%p3PIAnac=|pBulaXUecWjDElkXz_HYLD58-`uRs^Z20)%0zQSR99uT_Y#>jZta zMYNSaoec-oNlNqB*C$#Bsb#ww6-wKiJ7rz9g-bWr%4B`n^kueJStQnDxWBFE7{s@r z*|BUvm}pUUhZux#;jJJM##d3#3we;tlh@$P7uBH5d!PA~-stF+Ccp^IIsu(ai6F00 z#{lHH_{8+K-0^BMoz$VHD8yzeJxkaeiRq!@vNNFrg*&TGcUYZ>wrT!>u6(g!&Npo1h>eO6PjNOj^nS1?I#K+aH* z$_^)t-N1KlkMB(p_ZkyxW8*~D6}36wXpy%%Ra3BrP@;S^^k(7^%45hlOL}ikW)FQH;4L=0BJM-E|Gg7+hVGXwCzwkLEE)fruJ?b)~@8PxOLoTeBIumu}v4Q zCS;ksdi8nn`LBRINn^b3miB1P-ZEO7NyJ%$!+N^I28P}$&RNWv!2PgCxPMfh%}VR( zTE_Yvc;XE9{=h@x1+gn>bJfw*$cDGIzNz`l(!=$|R&b+7dX<7AG!j9}Yq#`KBNx*u zhCy5;rbf(HwD8UFixz4vdpXLi3%f1asDEB<+@QZfC@2`WC8qkDFK5Jgzx0#qD}N+R z0ZJVNZwGk?#BRS)aPM{}iYJqb+_|=szw6j5r0uvrQk^9tn+NYe_Y0B}_j#x2Po9pO zcl5f7)y;I%2NdkC4b`)rBvVh{=uHwj56{w7f2`s29D0u}@y4zcjbPOm&5eH9%@B$^ zzUaj#iuj~wN8%%z<5w-qTce!*k3T|b(}{BP(8-pW`}man`HC(zN|e2s(x9Kx0hDn- z%34)NxwBVD%dg^^tBCt=n};ggIv;ASkAcghq36aZs`J=i6?eD>#j=&fZgheU7mA)@ z=lw>kMGUf)6An3*Zgi3kn=z-X2&ay8xC+voK@9zCRS%lqsO}86ebjVnTD<4gz6x8E zRuG=hYptvYAJ z;a^ziBab7GO4-(yq^-wCxYjX7#m@O+yQWA(CM$`J8j@iGf%rh$O29m;s{=pjg((Q) zl~L(W!Stzh4m&{b9n3JX(wej`du}tq=1KitOD~c6T5#4vFeYK)oxS`+F#NaK)kVd1 z@_NAQX~@mukLnEdHpJE?)SFWqjb!-=52v_M#v3=o65!|JWKIqD z-Vi(ST>SV=6C;le-^Cd|g>S3>HSi3Pm^|f&bxLYG>J4I}(Rb%O{roO;SLdlB#Rbb} zAAXn{E7Nx;huHLjMN1?HbPBWm_Tpq0&Q_%s&czm7CQf=$#X*8W9Q+lImS=lAen@J< zcoHoi{hO9Qx<1K&o!nz1U#oRR0?)Vv>uj!z;NQcNuOIeMq3*uyZ(UvcX-C?k$)hjB&A26cS0=S%60BL66-Hdy+?+>1x_ zlmD8P^`weHC5(HxTU@Y}u}jAUp%xIL%UWBKzCh{@Y;#R<#aeV05H#2^ZA$8#=CUGO zr1V$T=BUf+M+k*70dmOb0v85P;_l~H2)>BXt`J0~bF30TwsB4pz~ba$Oy_O$dGdP} zEycOge3P;&=0uowp%F~kvA2r;e*m^XNxxG7Rh$Q$IdHBs&sm23SdM-}zTdB5k8Ucn z(5Pxrw#BHe0JRmSwk&E(P+JwKEsxrYQ(I}&R%L4IZ0COGeyCd3;^Wlf({QQt47Phk znHR%0h_)wsJ<(1?CndgJhkik(E<;+e%;P-(I(ocZrxjuH_f%@rFB4RRbi!}IQFWlR zc4cQb(i!TLlkK!1PnSv8q(OCcjr5|WSCyaNsLqqFWJ{?hmqI`Ep2J}b%ad6M&WIDL#a_Ty`=W^;fxaV>%b#Tw+)JF+RUyOS$r-6feF6VNmA<~A< z6-ci@AFVl!oW@8SI~YlvCO9t|dhMo2n>tq^y$Zdx=43g|kT!F0zveV|aKDC;AscD7 zgS$588kC>rv~Y0m=3MLG-py(0;NH!-4rfwxT44;)oYqngoi=DI8d^+y($5ZZ?odlL zw42UIJ7a{&me8_l0#uGB$hfE-30wEK8 z$V5UW5;D<;Od@0wA(MQ_WI`qrGTDbrA!G_6Q+&w1gxpKWy*{LXkOD#qe8@CHrV%pD zhde;Y1B5)_L#7ilosj81E5h05RS>!_&6SA0)#Xe*SAxj8Z;zO1avXqdeKICyi9w+2+AF_;) zWrQsAAYrwDn9kf(geNj_y;$a){LfshS^Z15o)3E4=eC&YhIGfK3Ei=2 zN_T9U(H)!SbjRjex?|Il?%1@ZJ2uzT9h$Uk0CYz8 z0qE>{JiDIG=&k^r(SBdvFL$oS9H2eB4UBb$iu63NE#$yZ)z77{3f99ecpDDFVK@$_ zaKB!WrL)>B(T{oZE`!?PKSp;P=F58xDrW)ZEKJH-L^+F-a+XleQp%AvK29~tv*l%H zPnMmnC_8&9spVBv$1`PhtS&3{T-n*$va{#Q&ekQ>@dDMczO0T7Wu-QjoxMnB3B9W* zEd;OF0^GR;`Bvne%4&O=utGJ?2;GM)zc<(q0?q)`H-q#og!+~TCh42)jKuX&#JRKV zKB41`N3DyJ*14p0aqLS5J!Pq)T0@J(KA`nEom9>i%GpXe@=oO>XA>kp5m}}*MBYVA z+%0UQ?jy>3KbqE1-jCK=(A}SzDzCbR`*dx-x_4iiE3}HhwJCU1NzP{{SPAIbAUbp( za*%zF*X3y=eYr(!57yIE>#Xk2m*%f#>#?31cr@2q`jFXdJ_O|NP2o{f%kW{NSw8l^ zrZ2A-%ayHbo-em8yBRpPUc^d#`3+c8(6M!S9QGkqSaqap=&pHrZjcFjCcZs6SN=Xd z*4~dzX3Kr~^4IG*YsYfgY+t_oZF^n5*~vOGpM2<-zIFNb4{OAF_z?LvMS$saq_gHe zO#Xg;0FKB5(Kqqs`lU25k z?Zy0k^c<}`ccC^k@yv=H(;6k^PtiJK{t9}IR-T)uwW4QM8Y|T7r2J0OvgH#i%}mN| zu2oAsv0^jXp``rUvJ{i=IUY>P_1G!QX+YMtraT``vriMxso3hI+{4m_Sct4`Qd0gN zdhR5DQ7}I#cO#R(?tFmsvtv^JVkWh3yL!vAG-yfuo_AEL+Ke5S{3#JiMNiUy;d~m9pNYa;0|Cvk#{w&MzmOGDw5y zw;kmjh=1zYu7(=Z)9Hn!WfalSqH?i?ak#e)I1|u*f@nVzvBm`$dqd75jJILuanx-S zZDu)I-3pALwzClXm$3J>U#PEd;d95!fFYi8SXa)KKoM!-yHAelLLX zCr}B?$tAi1)V+PAYl-$Fx*X)Q#v1hhQ!^L|@*^eY(bM=|%4Qz^x1X156zeA8^_v{| z6jj43{!x8bV|}e~4P{Y%Hq|HJ+Nc7hziq5LUF0Z`%O@sX$k%mtxI;PsQg2ipCjM9V#U7vBJ}(%*&Y=sN^|A=Y4zAfw$_(B4|A)q6>N?#cQWP%(H^Jx zat9$l&L)w5m*;juegNZ4XJ2k}mXmvS|~dz&Bgc*b6KW}EOY)JSY69m z?TNONumVO_z_G58I716?y%{8(50TD?N#{*xE$XB7A9)|6^xX=Q6PqT6{{4(Re7wk%DIJdx+mpyq8#+Zv9ndq zt(4O(sZ3|e$w|t&jdFU@RYu}lvJ|BFjKCrXc; z_!W@o(CA%YMkhxf057^ex`Ea+Ec#{i3?zP;q+^n2noI2r0%-&7lkzxp#zU?>nWPeB8LFN~sV5DoCsoSwu(oKo=8 zPAnZ`F->{kOo~~Fn&$nXhJxr+RYN6erAI9AcUwvLj11&W>5#QPrgGCzGBwqa$p52E zO8cnc>Z)RNWAw%7rszx2&CxB|4ozYjKMbTHIyP~f}Uyr^K-5r&` zRl=!1K>abPKc1>*XmnU~cyvT`WOP(?bo9>XnCM+t>YnJ7=)E|?`=V2$_eZBiAE0Yw zA2vqmw@aixdM|rhysfgQ-ZS1a0N!?QhwLd^2k*xQ$MRxBVnbuYV#8x2Vk2XtVxwal zV=u-w#a@bSj%|r;jlCQzjBSf;kL`% zYr2+eyAfBo6m#a%;O6xpmx&-3<2MOkea(H{{mMP+e(iqae(N4{zjKef-@89} zn#Voe3wS~AYA@Tn#%tkS>$UW*^ICbWy*A$UUR&=5ubp?J*WT;kb@XoXZuUBRdEO9j zs5i_T?v3z9dUt!1y?eYV-cs*zZ<+Umx7>TuTj4$Bt@Ji{8@(63O!?R+&V}sD^+!;d+iM<&+1n0VO_k5`9Ug~B; zmV1la9ooBhy9LnIeau}5J>93>wb0jn!+jS9yFa?Wz@47qRfh52E#56K)4R><4zs*b z-WZtY-RnIF3%#ek)$pYElD8S2M$LH{o*{i%?Y-i?2Wz}9yKIE%Fw7OT6d3b>0i!`gk~Q z#;v#=kHkg1LfnZ*|hSzDU34m4+dY0mo5oDHTq8%A?BmgXj(=HsEnJ(0BAWz6uNSF*u$|ou}5NaV~@t>#U6{zk1dETj4g^SjxC8TjeQ&|j(rmQH1=8S^Vk=$!?7=8 zM`B;aj>f)@eG~gOb}aT??6}**?dkS%d%JzyzHUFazdOLa!_9T?bEmrZyVKkU-0AKj zcd@&~UFtsXu5({-*Sj0sjqZ!?CigvepZmVM-~GTn;C|>HbU$(rxhLIU-Ba#w?rHCA zuZnk$SJgY$OZU$6s(I&o)x8V68s3FoO|O<$+q=lC<6Z1!c%8f+UQe%=*W2sk_4WFB zcX?yIao%`uhWC&+)0^eZ_8#`;c#n82D@t^=B$yAJcI`(4}1khvM4MFry z8^FLTUxZM+alA48-#XZjM6DEk6}Xj zgH~xl{3bjf>MMCOmAr*YcA}EMQ^{MYB#sbgu|Jf*uT_oW>U@e;J-vPytp<35aUF&| z!B{mK%71gMbX~GQ_8e>Jfo1z+T`WE*K3HBaTaFFEc^rn<$*XRr?~J5lJk3t5?b0^M zUZlMQT0B?fY^9u+lX5mw&X%N{Ldw~ua{jFC(mv*?J}$((3h249|LCo629M_AW}1sz z(ARE*P8cr^!|mu<>%k=S^;f{uc$4_G@IbsR%IeX0Uu^4%_~Y@X;ps}VD$Rp+X`9mC zfX!*&opk~1AuE4c-PiKy?o8rd*CIlmrIn*xkyfC-0j^MQ1dZRqac_ld)qxP;LvY0! z~xoVG{_$_L=XWgUH{~vpA z0w-0CwGW@%s_KpIOV@I9Z!a|6O|wIT?6QgMo6xMXiHPi*fPjdAEg~wzC@3PM2#AP? zs0fG(sHn&&A|e7JjR*+149X%j$RPDSIhAgz3fyMqKi~WPzqj&xPL|5e%}q{DPI8l6 z^`*o1x@4c$_pOgH%4i*eT2itHWsUv;e3TYQLrbU@sD_rH>MDloDpt+$73ZuZa_05< zC?4Yhi%MX`kxEIvQobz2DdWo_$r`?c++Tw}xTdc*W%%m)>QR=jfv+Kz@iq2cM`iI; zt*N}Pov%Gr^mXucq{_a|7)w-TeKp`?{S)cbB z!jIIw!gBnM6t8bYQkyqUbdB>f|qwYlU>P}Qb-HDRaoe&3iBB|~~ zj=B@2s5?=Hx)WuoJ5d>RCn~G%MCH|;sG_nlq! zz8bz76zi+wtAjD!wZ8h`hep0e;D;vQ+C*O)Ut4g+4Za(YTAr^HdWu`Y$3CvlAwI}( z-w0@DN+Jvdm!VhUF<~k0NeJ3<0JpD+{v-!F?E};WI_wiPfcukS&|SCESm=~1XcBUM zj_!qKScBHF-uH<$$-0X^weGQ&&}a7J_60iYBsz(rr&H1?DSA0R$0vF_w&RFCPKJ{q z`Z`%omblr;b#g^Nr-oBQ+~U-B>WKc%wa&F-fYZ=vCL{yFjg{ls8dYP@(B<7H3-oLx&&XMm)l7{Vp`cvHqPH+GMj40N&GDDh?Ku{@ zTV0BS*4BvPq0cv?1ZeT?s08%)PL!zhH%fx;Hi}9r9iEb*zmF#$H10GAV(8lxfWDng z5;}GjvX!1q4wrbU)g5wI&7j3Xt9=eRSm|2{`SG{F-%ztp2A-r?=z0n0NulXcJTyHo z&(65jhz51t!QTOrXGs7YiZQ}c^gON*pJGI5@Vm(nH%l%D^$uh*Kl#!K{@q167(pE6 zGd4;va51dD-Tnb!5&LEVLGsB9Z1lDYn z^cT?EMsPo2@Y9kWR~S?d&$$xmzv_DxBa2hMGq_`+?*cgek{`7LS^6wFO4Ft^=+}p+ z6twHFDHD2ikg~Woa-dJwqOz!y`c#hVq!M)Ko>ZCZp$gYSF0|;osT!AKbuPziphrJN zHK0j9O*NG!O?8wWP4&2B>vPFAgcfa6Bi5dq%HeVxHJ4N56zU-JWj=M3)8sVDlhfsN z>Lh2#nbcW6Bp;?5e^*Mz zh_gGMNR@szmwpXycTFKlw$K2s<5YhtVrTiYP@Wb270JM8wmQphgGWWgdR}OLq7u*5 z|EMKaXdYR@98AEe0Pf z@hw3PFsg&}!>Eo-HL8Q$d(rnI`7o+mMSeA|qX6@b#K`V7vY~^|B?o-@6nZOFuVtZm zU!)3wU?50UpmhtXs%pwcgO$Ywe{b z)_!Y0U2h$*zM`hqVe1Grw~krIsFn4t^*yz=ez1O^cGgMj6t%a0vI?n#^|SReb+&%7 zexWW_P!e^OF6p7}GFHZdGvZ|laE2*Ox=DJakNV1hw5gv=m8mp9X2=X0C^Kai4U##s z9QxS`vH}g4m1GqfA*;!1bepUpYtm?0Th=3`%|b`LT<3I2*Y0!Sbxz+GhyFL~-0PQq z8$6rpPXo7>0_VE@wfvCT{s#WWl<02){!a$~Hz&WprN1@W`wjj)=pCKWBGR};WS~X7 zPo)EY4}1XaN7~Z!V;k+H-bZKkss$S5%{d47C?g z94-zo(i8u;1^nOA0z%_}mAZzX=Xt9udM`EefO22pTZD3d+V>2~`gz|9)U)boOZr~& ztwkxXQ>DrMVG73ebEpyeym{0(@I>GVx*k2pB5KNdUJLH|24j4G5uJm^(hzO9#1PS@;m4^lKkoZbhNcBe;KsOdj5K7YxVv0$?|{f z-%irM!@mRl>`wnKN>Q^Ul-$xn#{eCsqchP?l?JgsbL1hA&flTzd*@0|uSNTAB z^tn|6RjGVnP+$;M3`_}3LI11DtTLBb71j`{aXD4za=M1gsTRs9j%u@p(Ac`&x*a?= z8M@c?JO)=iH*wExTt#PaLr1LyztWz({GX5i3;c=}b9syynm>O*#k2NUdyt0WYXOe_ zI&>%2mWj1uU)Xh_RWd92-k)2aBccAS*=%0&r`Zx3xbx{&2XoKpxJF&*zLbW57RH1RC8ZY{+XTZOy_LKJ8{N6m0 z!(UO?ahv-i*JbiJJG=%%xm?Y&TWJAk#?~9wTU5c?YJI{h_kOG0$A;$VxEvEujuW8U zs}gL&rPkW^+vTV|ms-(@1#0zY(afG&5ztUe)HSS2?dA9OmBPYYggQ_s2tuPO3dMZ` zNr7CQ(`;+A^&wS|LEA^U&VFYsj>n&son=Rr|F46Y{bi z&t3h$s_VoR&pVdE(Nt*ljC4n6??1loWb0$lgm&H?8D)p3GOkm{!3NA-TEK5U-lBI^UxscG%9 zc2lxVHaOLG*)F8&u{~tj@pb}9I|()J*a6$33>!bnM1`kNmR-uuplmw}_s_BO>`qk4 z?qYYLDt0%!8|tQ~-HUSVo9zBn-5y{Mq&oIsdob0rhuTBwT6?5Dit5{A>$|F=}%e;zWb1D8jSz+Hi9GzgmJ(=;mZa$q&(2hKxsOlSROnKi|l zN-M0@*6Xy=+GM>$YqUKxKdSN*Csp~0 zQ>y&LX;psWj4D5IL6x7lsLD_LqRLNPQssxrLirgns{D*NRenaiDnBDZm7kGlFR~9B zKKp0;g3*=vXd?60OwBQ`7R!JMVIc+;@>vrD!ox&cq4dqXurQaXV`TH05e>s*8W&t{ zo^dJ)6J$8gJ4#;@+#czQal4v#`W3AZI-H|t06Z)YV*KU(Qog zSR*LGe#&0RGh3O^n7%*>9l@BxjWNeJi1!ccIK^5&TBj-AI%{1ZQ+hDA2w-dxN0v;K zNo32C(oZQ;$~4N5p~aLl?&t|sxDW^6;w;ElrK_k z`HEakb>&+5I$bL_$W7E(ek4Dl=JI2?om$A9@-u2BcgruRjodE}Q3rWk9>@6RM|py} z$)DsIx=|L&3mE160-jgzvC3oI_b8rq9!7i~9^b{F{me$+@krniic@b3DIO!WpP`%l z68MD@AswHmB@e*?_G1m&_T7$XP#a!!VuJzzqpP?A$#aQOW zxZ;sq(YKe^@t9x@G-Yybc5ddce_l;1^l5E}=r!grmSZfbDzS`e$TF(0wFhO>A2Q)> zdY`p+rMHoN-agN3_Ebta2yY2Z<#IoyX756)317#5o{$#Bnv=zvQwD2J)ue;8uL;w$ zMk+mv<7INZiX5*#-%ZJNPe{+=8F(M}Mrr(HRrtwrc|@ahHDX;&@^#rd2itTGDsjp+ zIpyY@gO!`x zsnVN7OX%{OlYj=%`ahI0#8Dl_SPhU@zk$T(4BUZI;f%AqDty-;skca)Vc~x-e-CS{M zVzy3gk)_GcV7QsshiPS44mRGD>7kU=8|~ zR|Bu2Z&6aKs#@7Vx%_6LI?tb9!=vk(kktRcNdKI54pKEyCQ=>LumjmzRaT{Xvc7Bt zxuhggND4KE6zU6EG+d5?6jF2SE#yo&6H-XctG9xrUI3Z1 z>_c>;{hj?C^-%f&^<)Xto6BD5Q3TzoE_&>mj@lm=TD_jYC;6x^qNH2BFp}?&QhTk~ zwYk{!2FFS!$Lfs{jfxYpH*5P1uKgi_{(5F2t~mZpI{r;M{!PX41!6~kvGz?)XGP$t z-_&TMzq0(6Zi&z08J`2cySU8+xXqN}Hp6YDO&8x$xDyLoTij@>^vs}GZz4P&p zLVHZO-0nCHAE!}<)5zg8%3YDhCQf6f{~@F?8?w*yFQoAfUAdy;kC)K9TtW}&Ia~Ek zP07sw%gs_OH*^1BdZBrz_n51`@_mK$4*5=@MgQbCLho_^KpLSZ+RUY*-p&)hop=4I zt3&>s>3H2<}QC7Bu#5TwX?$dwEJUoc7yVsw!5r}FW4u9tK*at>6- zNX`GJuKs|po*bBptMf4$`J-hJS|Rcwx1!a5@S0EyQ}2h3z&cB<7;!~hb(eKl#9UwK z9v|^NUb*W0Oo+ciGJYF#*fPj*H6sH#fF5Eb_Ye=F-+$Qua7fqjw}ehjtW%dPPQ%e@ ze5~%}TgGLwB=8K%*{5+C;^ ze(p;G+?QDBKVBh;{^M0j;WbO?)?{l6Ww6Z6)McB2(#k{$d$@#?i=SheevVHN&-own z9BcG*q;gGHFRp39CqZUWYwAVQp*JoE2OSrt+6^MQia}zcm?;*Bm&7KqQydY6Mx2pq zR52PGc}9O@gfYR$Hy$yT8ZQ}2*Hml2K1S-LofC?i!q>SukWl^>4qB7Hn*&}7EOoYX z%#$25bnOlfITaT2DTkcqkm7HEIqz{=A8=YbImS;>F*b9I4>`tX9OFz>jQ2UlR*tcY zW1NkOv4vxN#4&brjKZ*-?ctDfVIiM$$oa64y&Up$SjZO~av>~aABX%iETn)#E{28d z=a65*LJn|9Ff8N;6_QdSEaXQHNel})$RQ#uW0!a|O4h$k%MD2K#^g&gCM*szfA zI3(_JNJ@for<7CS;4!!JO|k3yV%KqYg;F@gDHvgCe$63n4ngd&w7x8MeXCPQ`yVJR zCQ}CMc%`+>i2fGt4xV38>l4)oG{KqY%*Uwl3FirNISZY|c)BId5{h+Ra9*G|=SAm5 zig#XiUPjDUoL8uXv({OQQhLpKoszDQ>Yu81jaH~;a@M9)prTzhi}k&Ca!)i*DBnY2 zVJ?~ma~%Fj#i9R=`CgUJ{ffi?i?fHZJmX6|<6Dwvd~0$pyYYYCZbJou$^ ziS7HH2f0qw7Y#1YweIGt)c)rFVIhWagqpX=iwK*@=jS#I3v-D9#&%JMF0ahqO;?*~ zO>|D6<&tv>J)v-ZQhl3q7QK_pIfwqn?fi@$#pC=FeMXG)3-TMAA|N;8Q#_E`B~oG` zg&}>>6R0mi2mWibv`a9eJ!KctXr4D!UpFuDtMjvJ9?i$Hz|XQEVwTpvXkVmM`;vW$ zPbvRDGgn*t-(M@p65h*mzCNDwl|1Kb^PF!A&-teDoNp%2iK(>&p7nL^hGvQ*+r&HlvoZi|j(JWH;H3TFV}?2epxXWnXG5 z`^kRPPWG3BsJ$F2hfybWQI6+`EAt$2Rh}cR!E?klc}Aud&k@(=IpR7zJ5!J6h_B^2;`;oYjrlpRgaNizbA0*k0L zb9yGvSZ6W6mt}r0$NXNN`Mm&|Gdq^SBK?$-MP6^VSmPt)`JRb_jScsep7##@bqSF7JUWD3`0YG@6K zbWrwLT=r$T?8|Z4SKzX*#BHz|uPwfY*A_S6dC!Ktwzv_OXk%Vmd>zk$Hs`Wz$z|D! z*A};z2a4Z8b>>p(!llxUOXWr`l|Hs(JJi=+g|bm^Xj=V|_QJd!$GjcSPn*EJU4nT# zk-0jFx!Po|F3DV-%v^0TS4%Dno6Evst}ew~oyDA-&7540Ik`M@az*Ck%FM~tnUm`< zC)Z_8zLq(;0dsN_F3px)nyt7r+i+>NV@}RvPVUN_+?_f3M&{%m%*j2OlY22I_hwG+ z!<>8zbMgS@+Er^v-wA zhjX36xlZL=r*W>+IoBDSYc+a}{WUF(bu2gQSRU4qVt6FtF8Z=Lh0aL`g%zFq5bA9{ zS0g}wO+~GL@VpzZJ`Je%1#!Q&-;DPyb#~&MY`W2@=rp9UPGhGx%_!EEi}n@mRk{|x zXD6$>+P&y(a5g|Uebadpy6M}_+t5wlfj%2cMeCjaSgya|Jl@4uoo4sl{2b~%-EZxZ zBiu=)+!VAmdTcck>!t4ztM8D`E3S*4U?1P(E4~MRRf3;UVEh+)bD`*K|6*Bz>1Yr} z4r6H|O$DaYOqxyeXaOw=^DXD~z^imF{hYTZ)RNi*ouPa51z!%M(P6#`_&=0;^^JNV z-{i6x$$7mu>=}CTvkkfYBz``v#CPy=i3Zen8Vr_5|LQZE#rf*X`J8}f?aNO$8qcTR zL6eSGRPS|AKdN@R!_^04sMb`ZSMBFqKFG5chohgwzlL)>v^dA1x>0ls|KDGiz`tKx z&=B|u9)T-6s{K zR%GW;(fjXYox=m1A5Ps;CssKa>x{9+TDM!{tntkexo@1}O~zHJKJ8<+vPr1nV1 zQD{H5+T*JBW2+sn{C#3^N)(EJ>hC;y4QZqqWsHihHlABO13iO1Lp`^9#(VBCv&=GP zS+l%Z(X4D%HLID|n6=D0W<9gM+0blkHZhx;&CS+kUvq#t$Q)vhG;cGVw=3mW+%}30+<~(!0`GmQ^Txc#fmzYby>X1-x= zFyAuYG2b)aH~(&aXntgVY<^;XYJO(!Ha|DNFbmAD%pc5?=4tbcS%~MjMVu7S%EVc5 zmV~$YU!ql8g{JVvsSOfd%33W_ySjZ}&=vW;wtH!2tvD8bd*)tX9p z`g{6QqGy0-03~?_c?OZ`8R8j2B|T$3V=37)&NGg@o(Y}_M);4QXDYLFwmom(2&1X{!5nN3 zri$hWa|Bf~N13CjvN_ruO;yZs<~XWqPB14>t~t@1NY%`#=2WU~=9~F+jXB+%PBqN? z&HJgQ`JnkA)iP(9v#7TDkogeRG3S_bsIK{_`6$&hA2T1LYt6^a$Em*gH}h}QzPt$egGv+hY#C+C#maaFSGoPcT=JV$B)XaRre1V#qFPbk> z3v-pZidveh&DGS(Tx+hS*5*2M9knrEH(#f==6Z8IwKLx|-=y~DCUXZZWq|p80|K0d+FBnp>%}xy{^0UCiy~cIs;GFn3TlbEmnJx|_SqU38S^vX_faqNfO&v=o5#)L)WZL^qpf&9kIVC`=}g807Jr z|BSg5cb$5d#$Qn+F;Jj=yI*s^roQ$V^9#AuH_!Q98d{YY7NaDiA%?~j5T97#R_|wp zOYN&qr381tZMmh}c02AAcd9$ho$glOwG-|Pclpq)GDfS73^h9y`Wka6q@6K>ioRxS zh%LErmgmpAJ8QqPZMjvB3F3{I2md1EWct(JP>K{%#o(&)l7*OBMnL^()49>**_r442Bu@D`xc7 zOo>a8CNVk6q(qtQNTZ)GlwVGP{`afXSO4m?I?*qUwaAbT*$XZAvK|+%#Vx0oXf3U$ zO|*r!(N3igqdheE7ihhIiFW)~=&yX)TAdC2kdi9=HACfVKt(5|#uc4v${I@s%MZ0W z&aKW?*C$Y~(ypS@VK1LSTy(B=D2+jssNMt@YlGpXY$WF-sjqKUWSYygHq$yx>oTp! z^jfC%nKokDg=ud^|KxWRCqO&ZXXO=Z-{HFVzn8COOxs?O$A9_6N_Pf-PwV%-oIF-c z6jQ}?F;mPI^TYzNL@XCCsc-#>O=64s8lc!K4ydmMLc1vx7Y)ORGtAJ}2aR$@6{7~Y ztT7}(TS$QJkYW9eA;zfC_YaL3{C&jv#zJGMvBFqotTQ$m?;0N%+l^huKI5Qq%s6hG zHqINDTy9r_E7>Jo>8@;71y`=CmaD$2iL0fny{ogUhpVq^fNPj*v}=NEvTK^_0oOyW zxvnQ%i(SiHD_yHyue;uIZFX&S?QrdJ?ROn^ee3$sb;fnUP3{zOuX+Kg#)rY)GZWZH^pYo=|Owq@FmX?vy}n098`g=sgYy_oi9 z+K1^)OmAk|k7<9Vw=x~TbRg5gOouQX%5)gh5llxiy^ZN;rem1i&U8G}2~6)`I+5v} zOz&bkh3QnLcQd_*=`^O(na*H(Khp=8&SLskrVlZFnCWb$bC^ED^iigBnLfsJ9@8h7 zKFM?e)2Em&WV(pyVx~_sUBdJkrc0SFWBMG^u-h-^nT{u<=ySw-$?;NAb5 zcMu|mGOy?dCeUR5LhwU0m!6=-w2W5LYI>dCqRq6GcF-Q$PlxGS`Z4rSFm=@F(!nI2=ho#`h`cQE~w=}xAfG2O*AqjN zwt(q>r-VGN<4k{G`Xkd5OiwaB#q>1OpO~IudR9^ISf;l#9mjM$(+N!PU^+3DhRb-Fp-og1AVPS5}9 z+Ll}jIEhY4$EVJXax$DOC)cT=PKk1^bsDO(p`7OGR46_Z>i_iFTyeYtxadTw3gopH z*^BL`?Irdz_EP&{rbs4f=uQi zaF6dc3Z0|DIkyJuS<;YiNb!Fv((3A zdTWEV(R$N*%X-_|WPNQNv5s2Dtaq$$tZ%LFtnbzPL+c0YN9%+-gTy**{bZf7&RT`m zyOvsW|9{u{7-}`XI#E)6Nu-=Q$AV8Na9R7ceOTLHvwiiGF4Pwy)R??A7B2%V&hB2ENErl=z7iRL0t^bteEIPzGZtCTr)kM%{EdtaElAk6(` znEODO`>Qbb!7%rsF!#|g_pvbdH(~B?!`$D6xxWu{|0B$OJk0$=nES^t_lYp~$uRe+ zF!$*&_fKK&GhyztVeZ0W_ivpeB19gq9M9wTA4B+CH2Kg0X48CV0Ly6=`hWGkn;rZ$ z9Cd!>c{I*Ak&N+crl^3?Ydz6Kv<~Bp&$Yc*+h1sVpSBC4IOt1lAJFz!+CHf5Ls#WA zmvuzjN40%S+uvyWTWx=*?eDey4{aaU_7B?rQQIf9eNx+}w0&CJKWY1nw$Ez2P?z=P zQ&(D3mUYfLZ~bgtu>NUXw0^NJsndz1kcMPtuVoGF7I@bXiJf$kOWUBbhDB$Q)T#mXqbxN(Wgpp9Sb-(q1^`JG=`inKo`m6Pj^{_SD znqxge;pc>uqh#w*Yp(T}HP3q7ns5Ehdcu0rT3|h8EwmO{i>;?EbxP*t^Fc;YEg4iR zZf(PM*>2lo$JnuUoLX^fm#`D1yq*UE0pH zv+QiUjGbebwaZzXt@o`h*5B2dUTcT-skPJkj92#l+KD2wsfB%qJ<-0?o@C!;PqwGn zQ|-I$eES}IntiW5-7areuq)b??8Joa_3z{MeEVlWMI> zL)l0+me;8@J+i56CY#F^vZZV#Tgx`Gt!yXT%Nt||Ib4pABjqT0n;fmy@yOfdI5}QU zkax(5@=iHP-X$l?DRQd3TXvLrvXksAyU4Dxn_4#_^W{Bqn!Hy|m-opT@_zY%>>+!~ zUb46BqxPf9n`J+Fi|j9Nl>_8JIY4${#C8YlC$L;`G|Z}&XteJdGc{N zU;a(47**@DvwUA}k$;yT$PeXK`H|eFRu{=nr@nQF9HFGRdv92#ytU z)h%*4HADLKRriS(-@&)c8RD#Cdob*xo!aV)Zq=jSgFT{G$E;u-?=9Lw+i4f=V=eDT zDuh06h=gK2FIUtO4WXB}hi2YgeUnNI6QjihF;&bE4~cnVp;(4{Epz5F9l~@x)9Fla zXSz`5@KyFrV7i#;M5araKFzVl>$Dc>YZmFJdW=I~WSYjz3t(EAoZ%5DI%$ z-?1nqWsh<0)Al|5?`uq_aM&~*XNb1PJCB8Szrr2L$5icB|K{tkg<*G@t^b>&?Z=!q zbZ#Gu$VGU(-`^>(_SpvbjhCA7X&W_*r|NfB*c_hW@9zv(`{+WY;#YG|$~U~&4uy_l zI+W=QrjIb4rcN#46h`V4M)H*-bqXVO3L`m%k(|OvPGKacFjA!uwL@R6?MndPWA>ia(E%m;m#|9_bOf0+M&SpWa9!(VWU*vJ3>(%jsCsm0A< zKA*!aZVtD&Io#sraEqJ6Ep86W1m&B+bTQM3OqVcynq!UEX)V&%6xmO4=!;DAnZCgP zOwsWNl_U>EqvF52DOcOz$+r(GGloHcj)2|Dn4%{S&mxMVMb!K~uKMQiKi z+kb(}v79=erEpFwwsMnqwszi*{(!A}Vml?(+@nB0$+W`=D-GG{08Ddy^D% zoNHul_W*iWBtj3<@;hm>y_dGF?aZXw5K;l~RimgUw@d0U*m zA`z(x>$8_}H*N4yKeMgi@GPB0WjJA|-Gve&sP#Y<5uN0G2UoxRq&|W5f}S6g9cK1r zndrhce);Cc=QGF_oz6dU=f?)+ej!nnz$dpZZ|PmovY4{SnPRopm43omA|KYam{VDQ zwnJN^IdCUbayqqmms5GdqdxCmQ*x<8?{ZY8ELAh72j*Vx1)4Lia?k7TJhF-J^b0nU zJLjiIDqr1LhIqle1cbkBAdYE?#LkgqH?lvg#<*1`| zy#w6>Ze2qr;3*3neq(o1CA7Wr^x5l8_Fv|AWF?ppitEEp6iSrSr?$_acpjDRBFU`M z?C>wSMt1D=mf?Jncge?DJf*B;QrFqT~&bmed8L)dfn) zcHe)h#@;H#&R1f3rC~YpM+7#|obaB}Ip;d3Vy)BWq-Cp4ohHLlV-UFNt@pV5f%bGr zN#)O!Ll$5hhi9x;wI70-Q(&BL9eQ>r|4jZtJxcu>T|Y_y7++sG zJGm+OE_sexlX{h!i`w)=pkr%Is5JvsGI2!3O1eBbCV3*6G z2+B*@fLvUE^J*%sTjeh0MyFEX z`TZ;SW01ZV$zg(^zdzhoFJSZZl}?Oblg;6hC@KwaEw=Afc@1;x>u`I9?2*H<^k*hO z;b*BhmG;{yM1yzj69>neKFyjCN~(D&<8y6lE^v;f>263oOKc0$+9A+}rK@$7~Lk*t5>S~`^CX*!tWnQl)pU%`t*7LjhGz&A6tH7Md- z(1>HSR^qDeOtIw#yh?%N2Gs*JKpvH$$fD|J7NbHcn=4~qjB25MV=1?LZ@rZG=(p`o zEX5e)t*7Z79v|UDz0=L%H;nn*0erKp1Q)No2^qOKx!)an_B^34-1inLiN7M!Gu7z4 zIiOyD-IYk7^)s2fCHtX9R!yuv2Pbt2c(NFh+J3xJ1P4E9PuJ}Gjrs>_`yOqj zyr~n3dv{}Rfm~e+R-#ojv#uo@ZpJKqthtx8ul`*|DE31L#C3;+&M0K#emk^Aq#QIg7W{n4Qq9Hy$+)*uS5^MUZbmu#2IeP z;N`f1TdUL=*dHEx^F~+Pz+%7Lu2vy4# zdE^Q#I3tf1fdx|BpZ@$eCAKhAD z{`&NRJ+-NTEp-`(F-{C*WnWXE(2xqy*Ob|=ts=itUqXGNwT5|10q#Gh1y)-oB?y-j z0fwjH$iObkBjn>+{T_rzxn@5V1um))m+!g4fSW=J)+yIAB( zeQ$S#vXw`N7iNtXLsC)e*c(x!bZ*qHUZ$ztgu#|low-0wmd02-9VsE`Fi~hXxs*KLwug|R(q(<*mT`J^oE?OxWt#eu%5^jmU+>QL9uHlfqPXQ?t`Dy{Lt9&b z`zx;7w`s&wE85bxn}F6_O~0bt=8d#NUQe)R?;v?PdJa39TtJtDI;v=-Us{xrol)t=C^F13mui`ayZu zRtxY&>hVeNdR>Udjc4W5Z2c=ukm8or0vaBgfvQ8Awi5v!d9Wc%K!!~ zicB=WV-?4H9zq*}HSVfke41_Duh^Y>kbRiAp^K1;wZw1aJ~Z&DemcC?-Gd&8kIo|$ z;PA72gTD6OW29J+#!h77GF0n(38{v8MePPAQXwr6wThG`KTSK<_mt1ulB9CE|9a8*S~a>v2aJ(Ew`O76_@F&p9nGRxGEUP_V8i%2g5uPW zO^!8^;#9Oj@fZv(8E-IaRZWOKT`ETz#4+!w7F1BcW>iaG*Yxtw57rP5 zMuhU_up7QlT09mDeT&*6p2`omAf*3kdWTv)e_8P`1IjHfa9XLq{9tB#Ir9K&>tB0* zOR{cn!K1mJu~t)XPO&yM?dLi({Dp_P+rtDv%p`p&8}9bAHxqdPb2 z>aSNfZ;Gr3H}MIrBUyOYw4_;hH@9$DYNuIj*R{xp*~r{x6|3)Sx06+$uGv-C<_K5^ zv`|`khqW95r{xAW>#eUh`--lc3%A6~x>dB$T6Pq)+>*A{OTA0RweZvlByzDn(&%7C zH7l;S^PlGceQmb7wQhzZZX0Xt&DG9FDl;vIjHTBp=cB8o=f-RN{f^RC8%`L09lx`; zq#kEWB}wJR$ZXG)WM`Yx8&uXSo8D7fTrEqEy^DP+Z8sT|Hr1^g%W0dd&&XUWTOOVN zKz-Bf+0#e9E-}SAFa7G0JvAe?gBeLmJSP@cru0V9R(bptDgwnQJDskiC@(uY*Qs2C zdMPT_sBwkDE%JRgf|Fq?B06kc@*9|Vd!n%lvlR}4XG_d&Ldi43_gme}!;Wv8LGvzf za%Z*Yj%!Okc@H5i_pBwBe)8+Zwz~b6Si){zg)OX2)t70%b=KQ+isR=VzS&xT$Sprg z`KzzDQ_S7_0wI0!nmqSNU3{r5{i{?->ogU&8cmi3A6iXSjc%l6jd#9cweO+(Z zR?8N$8(W52Q_L2omAPkC9X(@*tR!*kk)xYfzPyP_(AaHPeD5FQ69-jP^j0fzSlJ61 z^{7+qhI_hZQ&ue7KfAWXWz`zL8$GAMWtEJl*-cL)=7`>>HJ-59Wj~U;_3aNX(i23eplmAJLWL&Es^=rR$LHUwdrd${7G)bswsmQ}E7s+cV0m@wv$PLz&IT;uJuwA`1w{=^O!-d-)0CA{mg92K-?d;JU>)jybyzY#z^ z(8oN`Cpy?dIS?57_>y~8(43Z=S?jIV#v&)LtIg-yv+Ddub@#Zty)-q7Z&{x_?l3P` z%lQ<;*)&@(uI0?4;|y4fdt7YYw)~@VK(o@eI{JnQ&R@T0gs^cL+K>;%E1)~l z@Lc@4$ZNuHOZ?@PDDG|x_kalbfao}66UofL`l8KmbBkk4fZ>m4vcFmKXCl=nn&F(z zbDHQgqv#9tf!K4J*fXQ}3$%OO4P*R`e$*Y(3GRVD$_bIQ;f?OIx9GFF*bosW*1;v- zfj-s=Q7-nuCDDODU)6`9c)H@p{?_y7^h?qFt?mg@7E#9>W6_&jvH;&$9?HRV%*~PL zGp*=zB@hzN)}qhWV$Wxy&u0?PcoNT9;?LUR&+FpPJfhD$63@WD4R5jMSMldpiDziB z=Wx+y;Ng)FeU<>S#PhKD^RU=6rRX!I_%o%%^WqaL=-PM454n689M0I0GQ0iR%^{^d zXRSY8WB2IiPVvqH-#hs726>5fV02OKQ0&Pz^nr<%P?ONKu_sZzDH*<9$l@k^oA6*g zx%jC$WH!&V7n5_yb(?(+`O~ey>lbz-rRApTBx1U+ltkaevBrXs5=>=B=5<0P{(f0fajW)4Chnp6RLDR zzQD+SKJLQ64&Hm_f15hjJLU}0Hft^)lfKd7<(X`a zp2eKS4AItB&g~aa;MGps&VnBbR+7Y;g&Xzr<3uf%)JH9s_^$tHSzKqg>*&VI(47J8(`n%F@c=FvG$pElDR zwzWZY;YGwh)<{3P(1`eqKe``V&vS2`=S-L2HYfev5EokD&n6(^&fNMlNd^ryLjE_bu7)uSm__lvIEzMlh9PD)); z-zgE&n{4KOchGDuzSVTQPxe?3>b_pmWN(<<{2awA9gwwTG5wRQs@x*m#>wV-novGo zLfF&sv59u+M=fxvZnD^J;fYRddqb(iE*-be*li<>y05;bw|ar}m$=g#K6DypRPGoC)^*Y7V3u*X}klPrbP~qm0Pb z-+e6L3(Znz6VGX;=4HvmIa!Tw2!mtnY3M1ru&NE|dl$-|&OW+9lJ2^5D3Ukitwuzp zE#Pfg(B4E@<6Zraie19Db$;7U@^zvIudpXQyRavD`KBMTsgHCATm(9{?BU*iiDaU_ zbj$aUtLQ%jNS;g1P*_k<6&BY5j7~IEiV_^<*5CS1qsCozN}NA--uflK4{`^8-Y6la zo%oQ;3nE^?CY7ltHtsmxOJ`J&KVlx1B%s^slL@5gNPM}-^yf9@66WUdbhUC_Vc0D2 zi?O}ae1JS7ZXHu!ctyXb>2^8k-T)76Rl2vuU#~XWUUM&&e=ibNp~JY4kzZ3BD3_~X zB;d=J*R9GY!@Q|;#>FX-F;OO^~BT|aEpga=4i{o*b#-R8}h*4BFq;DyU5usO1F^fO?Xxv0&!5+1fgoA8q_G0y0M;?H;Wj>PaXh@X^3Z3 zhKFM}#+&35RNY96cX_PpC2y~7uf`NAQ_}9tY2TtOvo?>7=J<>6>oO)un5E|pxBj%O zN<+_m_6i19ls1(pl>K-gD~7k0;L~VS;$9dXqSO=!a)Vgzh&5|;`=MVoNYz+n>=*t{ zaGL_v-)*Wj4bzq;1jk(^oGe~cbC!=_&AX?;A*}P^o>556NbQ z-%*mQ*tMRqw%?CD?arTRW}`wxT^TpC-43e5KtmpH@&$jlp+v2!wt2i`Y8$n!Y^-p; zRYB@o)XtGmoCufguatQ;_sm{P$M!_}>oHt}qu?8FVg4wTte{sN4hW9+c10<5Bx#pe zgj}aCG1pOm0M9nhSj}FIUGG;i!RbWMmx4+O2k4Z1tRO5)=c~eF2|q_TSIl>6u?=ZW zBM{F)hZ|Be`hm_VHqs|{n4h<7Z73Wlj$IL15v?%UzZC~w5_iS)rH4OFul#`yRoKro zAuZEHHOv}6)MqY1@@=iyH!t0!#CYo7<%F%5n%dy_jyMI^WyOk}moS=+ZaBZw7rk=~ z;ZvT37el9h(^fB?7fL5qEb1-^v~sfMVv~G+)t^v+fbG(6$k-4Ygl}O(kkd0B24D`* zOen2MsFq3&l$(&UP$eMBf!>bqF5CPDP!0lDAXmgpXisoVa2~;#b6(rL8)*T=s^}13 zh~sf1->;`!Ng#`F*%TydoA^M$iVQ-u~Lz8>O^}mBVu(YxciP##` z^wmgV7@qVyQGilqrKgn(P0(z!ZR4{=REriH z(}Hs-53cwL`WwJAVYZ@;Kwp3=h}Sm;asf!UEv;~0!Tt~h5CtXysJFj4APV9PZNkEX zK!NR*yYMOoKLv2J!ge~r`{V#>E)~v>M!=S9K!Ny`0{%-E$u0}Z?hMTC49U(K+|D{^ zMW&art>&UPT!#aSGBDUG*q%@X_FcywGOeu}Dvy9X?F`%Fisy9F#|@(XL1dE73d6Tt zOXHOYnKa~i}V}xlI z6QtRGD&dqTOE4f27sE-qNm;_`F&X)-zSd!l{mC6SrpXD)k=7xBErq_HAhRb z6mG6f4j#cTsHr0Ixp&#|0P5$FxEESNqmbl$eD-Ga!pAN*K5y`bt*dYJ(hGsAt8cA# z6;`>LaD_;smF~|qu<}FVL0HLiR-I=Yt=|Y9V|FUSGU@unQpqOIc$;{7pfj+(;`N2F0q2Km0nY>B36KxW0hj|A3^?kro>;Jdf&y4^K>dMCkE}wn|@fi7yqJ{R4ogm}e7Tz)320kz0I?^!`{II{V zK|JJ8ukT;y1=`1G-L2sk_(Z^~AILrOE7PCVx+9SIK0YiD_;hIAxH~KoAD9i99Y4^E zw4L7|`Ef>y67^+88ViaxLQL2lM1ll^g@4na9Vbb)nF6?@-WfEIU-_<(c*h;L!?)vB zfGvHxB%9-h%!Zl*#J5M&hxj7;EhuhO13(OjPsj7asQ`Rw(S%@^Zs16jzsJG1qOY1m zYY|#~8qd&_cv=WyF_oMh%s@FCL9#VLrszP-F#}lP02z?m6JURr>w7>;bD;kdun3@s z(SwX(dznMG(}g$e(Js`t+aq~vv;#i2^R?ZTU=H6wTT4K6ltF5!L6*@2 z{zbyGq!Fw}&u52KI6YGQXH*O;0#O)B zH7lHKK_XobQmhf7L?=j%nU4F<%ln1 z_;)E>7L6S9s`8!Z~mXY*cW%;F0t3B|JbqS(FBZ87h^ zpU>DY3G?uUxV>Pkoscxm*Xq2NXP>DVKzx@F(87JUu)Hg>JmzVfaW^ZtoDkm12<>Kt z^EJnOnWDSP(fkh;EgtB$*Hmk}icN#M7T)Hwhi(Ov=fYV$QTz;WzB-sMzv%AlHIJ7Y zX4K*e?Z<_;QiEHZ(BHK&pZu}@9iPZge}N8&7Xcz5o<6BO{IEPe=sZ5CUI27={+h?1 z4Ktsn)P6|0;+lD3eh&&){0oBCBex<6M|+BB)rx4-yIY#u512JMGe6xR8Qa{H{cF0w z27ZTYc+VR1qi4hF`|EU|E&GMdP_#af=)Ah?tYa=;^ttj;i~lOZLviLXx)7ddsnVy; z^^8--jrgqX|6ITRBz)Tfq2`P5S0^bhk+h^$s+hX&G2pufnHQEuCNFO~hKvCb2m1wD z6vzzFFu-R*F(Gdt*%ZEOL%)R_>tK+NrY9&J9lp2;@Ok!?1 zqKW&T&7Coj8vIaN@Kz^u{frRWBnMN}8ri-Ssa6&kb&8!aGM&GRTsoczHFV*$wL7$E zj;5qFvI8lRtt=?&6uV=hIvEjviG|$_sof2jxj#8ngDO$eu5p)8rV5&175Y2{Df3xp zAdjVCW;RjtJIDpyWdbfzk!#($S{3{JbdpNhVkdPZ!Y$Iuka_87z)}Ln1Tpey65v$8 zE5MgQ*a9*I>GRnYpv&MEz-u5+!4U$&1i$7pI}pr3v=Umtegn@0rw>RKq|IlWfwF*W z0$&5?03is71E2wt0AL0rbzd~#c@gM9b3s$VroqMojsgwJH&P>=X9ny~6-c7)K9j0#Y0(OHAuQ%8o|` zz7Jv==+wJee-H@U>syZjdL>NfL4tWts15#+`BW=(rC}qok`qk18?(K`iM0*ID+rGa zHvoDq2&Mog3Go92jS7Yg+~YSV(KhtehNH&?C$BqxE)U`~LHJRe4CGvZ3&?Z4$j4s7 zC+EHZ1KbGI7zmf3Wl@C1KjL*7^y45O(kJZpx4tPTq+vLaY1~Vsi@0Iu0qtJn>x}J! z4hU(9e3$<~+pvLiC{zT2KTt+{?L)AxK>dh8Gy))O0H8_%D#ukgf|kT+BVY}IEP{v% zm{ico&@=|gx+rB3Do_<5s)0KBxC#WVP-UPC5LTegf!u<+`GgMi3Pctl-ym>7V*}3u zC;<0@%K11m_!gi|5L%$sf$W0Xz}&ust)RysE)X|C5~6<}q_8d`-5uZ@V0;0&faGl? zBN_*e1f&gcS?~+U67WY*)_~VQXpk6=fj`?^%+MYX9_ZFH_2yGx%U>eAX7N{nz9;h0)bwD$KV&uj>z&-FW zU=r{O*b4l|NE2*AKf&yTRBDHQ3H*`phA@ki9CBy>rTo1d4|N(L@+fS;S!B137b})M|dr*7utbqUZp~K0? zz~L$!Nytd<0jAPt42oI@3N2ZH%G?+vF!09a!Fy=fdeqA&@brCRYlgA_Q6rOn$loJ1 z-TWH37(JMGn0T5wVUC#*I)0!EOl_}+E#QaK8S*DvNLS$JGC1D$))(SD<`GJn9$>U4 zj89((Z@j*LT>nrpAF^)X8FygEoEtq5|GC}fN=<%E;D|Xg>h5jEZXCc5$6IrSZ#qjy z0~w-Y1_}lfsJCbiP@Hh+yQ@=>@dKH?L`E`TqXAeBK}SZ)0V>1@lF-tM!ZuI}xFZl_ zibgh``Ctkttx$$+2FnmL<3ok+2vWMzF|1{x*>Dcvgv3x0kh=k&;q9z}@r7d#pVh^c z+?$JkLVS}3Z8v_QNH`keOF+8nKs|C6$|9quhym)b-BplN!~|6o9KpX8k|HY#Vj_^u zz8!V_I*;ODB-4{VP z3z+JBwx+=J$7sfw>6_eVu} zWb1zJ(rZ`<*Ek&_$q@EPpuaKW({3qu&<*i12d=h{*CYIuKCnph%{OjG#6HFv&qNpa z6_U`c$ZKOL3e11R+giu{!br_p)hzhI?NIgA1?r43F zqq9%vD;F?!%W7Yd9*O-t)TpaUDgRL;{qIWT9%cD7lzSUaBq#s|i^O~5n_3qvlw!&j z)uWQ`pOW^Kb3D?X`%N(U(TGb+52)Nw%PV|dq&uhX6DDxIkc=zTPWV~?T{?oZ0YfM3 z?O&mH(7e)(xxV~Dm?-1BXGkg=O1ZBz)ST*A zZK`99v#j+`rXviY!W8ku_R{m8r9#*t!w_Mqj3X?q;a)CPkSmUCYwsN)57>dr)BfUyEXa$gm*_ z#35iL=wAv1zd#C8A@{MC@3N>!3WcKk)Z<_%T@9Pv!_Fd{K^wnsA5Lon8#Yf_Ak0FO z9SS>I=Ad?4I>514Ir(J8+PxN2%U(2Ouz($d8?0!|WCbrC+gp|xgiHNDM9kQ1Q2+J) zNo9=+Fr(?|{7|BYjU4glvO_}mL@B>%#q*!dQXtvh%oHHtHtlSt)%o*1)DC~#uk;YU z-qr~q{TszQ?lZ^n4kZqA-e5}*?u{7Zd&Yc?Z~H;B^(@t0iBVd%oVXVzNaJb8$#ubx z4Z4wqg7uMbHaCKkbnxpVl4aK)ea-+?HjJ7HgD}{|13x!_GH~OVlH+AG*3YRZ@4uMQ zem8}AoyU}nFQflvwn%~zJ&k(GnZ>sn$1@Mhr0@2vj}mKqc)sIu3swLr8jb5~4ZpBxO!%;A&CAcL3VFwS=LXpvaXx1iw>l zf&1znJeP3788ok6N2X-wi$HHf>^A}>L(UE8uLfirNJs!G4`jliaKmpgf%Qy?gn`#g zLhP*%3#@ZSY~NFj#{KS1HOuEtBDEL7BObyH;U$QA$F7+)%_@}*Xn3LGqaRL_oHDp` zZp}u7fopSM7<=*CP+!$vRG)M7!3lT`0$}w18j!s~AWZ?lDP3A3couNy`Fvy|(8phL z@>yLH*>Tq_EQ$(Z!~S8MUotknV*!Y^gT{dBBsKw{ zxCI9BbJB$x^r9I~v{=^2JC>=9kflKj-72|l*G#&j3S3eF>3xaFH>yOUK_rPQ5emPN z0i?xKIH#|y29*B>=Mx^MevT(9ETV(mB3Ym0$at1(MGF400f~$!Dl{U~|8FA3UXhWH zN=$szwIVY=&5*?4Q&~C=s%e;L28p7XWb*&XL?<%e-IMjnj*Mr$cBJ5+8W_%a;zT1l z+TGLf$&QY9zIJ5bpBfx)d*a0U7e!JGq}1(RR9=rS{{FF8wAVV=(*y&~?75BC*|A49 zZ}vN%@z;9jmtu>S_}+x_@@Yi7y)3*MVbJ4O1~`OOfZ)Y}QQS_A04%sGBXmab>wh8` zJ-Xg#a*uil#?HR07 z0mwjll!Gv0Y!`!dssyCLUMYd<{cGaDi3fFD+U|wT+i$pLj{;mqmAybtLWh?UtA%Ru z&3`A((;-EUxOT^d*djZ8*S#`4iOqjiQYn&SJN*yT%o#Z`BWY$~@*tr(?R)yI$^(&h zW42KM?y&CnwCU!Bu<9~KyO8@aC|>~{rYVpwhO)xM*a7x z)!HZJRi9*fP+idngM3|dl%3pyNX%Pej|x{}mNRNd@mpM>BYJF+1-{t7CK(S8QL&5H zGe^ZL+Qb+cqvI8=U=RLR>7J*a32La1llXVtU%Spm>EOR!XOqm8w6XHZ$;E!I;TO0O z$;3*VkJ&V)+d?(k60uhEu})G#eI_Ul)!~-*lD*svdoHmyM2*z!{(*3Aj9P3b5RGHpE9c@QOA{}FBK8pG=;VQ%dGgEtr$5`L#1lI4(~2j zvzQ!4^(YtGh-lHCafAD)1o&fEoVli)_)4DSH-9@$k~R!$vh+$MISJV*G^ zD^sT=hhE0-X?ctzQf*B?bn(p|cD%}`4I`fZuv=!w+6=&rqq2;4f@kn`dSl>0JEPXF zcpl-VNvFkAf#S!4lbKZvE{7bs3iN%07FvS>YcE{R@rQiU;2O?Nf*VCPQpo2y4>yZ!JjyxNFkTYO-gZ25MUKo}c7#iLX_wow?w* zZNo;MD_&`@jKK#t3HK;I6ZP&5QFF|6e0Vp@HUv=`Ldq5ucky=L6W~n0Vl|ocph%UmaR0}SO zt8B(skf>}%R)j0KQUc{kPOGJSGX&|Se3QRu*H9&El3ph6AUpb-_ONIkan zpaM;p5(brOuoBzQjDQp{lF-v4G6uK9lDq@BA0n@Hc zj1~hH>Ly2dv&vfdf!M$*M<&Ixb(oJ(RA!<<)ycXPMXw?zMJw~9{mMNE|U zG&JYirs#dLb5u|3+ny~75Vd=v;$cbXOlP_ES#`>f9HBN`)?icvfXq#1dH8dv4XJQfl$=1NxXxQ^rC6wjFj~C994t8otcyol z8})87>6``S7Pfz`TY`QW3toeHdKTq`ye#No4|rsB{5-$Gi8+Kn)MGwfDzu|_uEh?u zR@5l0Gr7Ph62_I5NluSLomVvCzOBV>K2z)<1d=w(XH3vyB*iAE4s+q4O zg%)h(e*cnJ%a#zPO{gw%7+VmU>IV{Z$Q#9Wq6|1x`b_lly8$PTRYmp`KHX5( zeV}Fo6%*bept4So0mF~9AEOe_&BURQ+w|i6!nq)k1$z z6^g4O6JPavT*c6XmJQG?q4lSx?}7$MOEfmsq&+H0`W2(}i~FfoPBLuQy5H@}&8nJX z8l!X+zt@yesH@QO=W?ceNe_Ko-hI#T@GohHiZ|<1cPeVnRdocnNsf*Pf^y{<4jxdG zj8k+UU9`f!G359Y*mXnQ9AJxr?mYc&Ba@FlHlR{SE)rYkk6b9K2dRxmbI@;vq0*=i z9&SR@Mx8Z5K`VbDcZ*q=g!x$31 ze?AdK+Z4UpBg#K8(OUkjKjAk5k5jry%5CK?Sg|4Q_YROwSzU6#CdW%BN0>;+m`H#s zG@(&sNukQH`hM^}y!|(a*pX<%J#Qz-Jl7{i++@&SKbOvJ)4X~;Lv985mR+FH2K7F3 zUNUjUY*{v4!)K2>;7C5{QTn5J#+;{mg)=rLV&YF}bau*-dOrnV!)rL%5`)mM*uzwF{>EJs z)Q-AZTqcc*tCWh!I z`q(D=2qxMESQ;-3DCmucc&B4l0Ws93shxdvtG#q1WG`E!FSR5u%c$>DpXCk=C_Ufb zVtwuzzCH(FSa-C?s9HgC?KsC(htz5wEnWZi%8+=NFh0{6@q zswVcQH`~V>Q9g+Ap>4C^D?&`Pj~d|+i|I`EAu!ob+5bb##UshDIejcZhUFv4@RXp) z&NSA;$%a(9>~_Y$a?a-jNxK58R(D=yK%1V0F){g9Xa*=Gswjna zTe8{6C96`=O3xz42L}#}cAc2(HRP%=P^`rUv{33*6do2evatIb2T zg=D+NVSnYMe2st70Nz=m5s9fJSVsiQK1IRW7QNvYKQ?mjBg3Wrm~>B?bVozlDzqZ0 zFe|cRXTHYC@MavdBUQc>U;R$i5xK%CX@gIUcli&9`$@zsB%1b{tTNR%L~~M;G@2!9 zHjY$j4#+aBx?pL36FuAz5}zRXdYJ#>r?M5l_BtBCWdguwF+jv&3WrY*Zg?H_;xg&N zXVFE(p%=x3OB(DmsYlkNi>6BzgMv%!b^8m|K=hfEGObd}y1^#pG>ph;nv~Kt%ri77 zrB|WbO-XB-6fvz*iL$Q+y0a&0x+Q74?G=Cbus~ZiWds7pgmKk~1BeX6e;{{kNO{$R zCabD04ZaRf-gK|r#_Yq6w>dH+uRmtmaOj9>&pG{?YvKvt%m=fPFM5^GtR+0-+|bM$ zxHVz36^qrFanSK^IEfrDi_2+$v00^>GEC+2UGkkM3TvsTnv7)7egioV!gQIY%o$4P*10CJC zkxMwXE@sjHD!B(D5Sa^|#8svu#&9M{#GNB%lUXyJ#FGZ8vh`YY?zW|vbDN?mQ?7oZ z=Bk8+$;D?*&RcnEvCEGiS~BORPR=)YYQ>bA7KtHfEnF>N18E;yo?&N{oVN{v-pa!( zrgYfD3r3!C=VX<4^8`ue80FyyBhsj?MprE5^3A~JenX1MMvjS2sle03WGj^UBKxC4 z;^8MS{FH43=e%l7g1g(TT*2$u$vLhL0pFzh;uX!<`)#W~+oD56CVN!h{mO|53@D+M z61eQ~;F({YpqgWRSB<$7Cr_U00FH6>@h~6z)zs0kdVg2%03oa=XR35 z!J?~%GY9ul{+^!8Ms%ET?H{XL-AQMp zn~h-JN8)Lokz2%@D(PJ1Nmj%t{taJ@CI8@qthmtzA(xK?%E8U5Q|Hg(5wywfjnMn@ zsh(r5Oy4>WGl+po-B+q?P^^%$QcB{0SS*$! zt4}2|BfHh?uwAk#t>FPE+w!)4L1J)flt!)etzL?gb&85H65=u!YX*iqV1eh0=L|jy z37PVJa3(rpT@En@#nir_{DN}ilWZ~U!!1F^;|h6>?l&i2PC-YK>;T*q!jWHDCEWC~z+O!$4faC=@=}fR1oBTlWFY===BE(~c-< z>#ys^T`ft=B%G&ReA&t)&tgu?@tx^0R-t8T5mup8su4<|F&+8OtmVS!)S`*P3sj=9 z|3t}DqLIQXRHC7Or&%1HM}s{=n~mVulojlOA%c}wa6ET~a&E<6;NETus^VodUsoE! z$L1md1S<{T+HML`;&sN*ZhruAd@FU(cy0#$h&C%bANt8%%{*fE%o6Y^&VzgojJ$OE zSZMpvMx?y3mP{~F2l(|w()nS|h~qeggt+-AaU(cmFf7_!C~`qbJMIp!*|4R(Ck{~A zFy_6h4v5)sN4=LjKF3J^?|yg(avezZeqwC+WxAlmm72~J_9DcNV1UynS>8u(OJ2`g;m|Mo0Eq5C+} zNe)tF6e|{OM+cka2>0ubp9jd$$Z~9bz{QYDhONms8x%qOs(cM|d^p;^`C+63MfTvC z0D#^p&Xab7#5}#xkQx2PiwGT*pLP7;%nX9Yvo>|vk*mLQ%%&EK+XDbXBgU9g$N}TC z4Gjl21EwWRYk^>!PoK@W?D5*4^Ji<^4R+mqg&{G|)0l-P(wn@wn7>=MDN$QYoA@>I zApxFX+k+ESE+lE&q!qR%3^{>Dg>nT9+mb7y{_=8MY3t-L|_JpWJ7Rs z(0lFxy#YhbBn)iBAsW|hWcIV@6d9@ckH9Xd2UH=MP9)B?2rSc0=)W1D@YJ#9!KwgN&Y;xps`5`iA#ICU=n+gyDA;pu-PXZU+7x zU9x6p2grfJ$dK)5n_<#rK~`m;+?ZXM*=L!8W2O_o;=eluj&5*doKZM$n&f5$ADG=j zwQ%&&XFCIXDlOyj+6(x+$?@t7FRXl@GQfv*c0}|mTCD6hBYt|;Et8J)bC#A$5CT~j zrrBOm=)<+)iRSnWYa-TVezO`|AlQ+F(P`RRQumH~JGFu5y34E;Sw-X;z_OYZvo zl*FPR+`EF{g^}-_zk=t5o8RWrpl*+5%-4_u6ro)mL-4+^5b6d=q;1cVd$_<5>XM?y zJk`neS6X_oA=H-aEPgvs&8VCRe!jw`3t8Sl@Ib@tHS&P_9p-KT(+PLk`+5cH^F_uG zhb}yR+jt~E-lWE>-J(2~OWKR&9(>+tk?SNk^mdUv3uKL(_?2PN zUbG~@6E=tlS7rOESa&;3&$#gj{$NRC*B7%|{LSJXNX9YvSzHAAAjd^Mg(rog;S_FPKQe*i_(m-O;W;1gGXD*7sk^^Wxg&QW zRP259>T4X7XU=ctR&vjC#ATc&;GL=v=93}D;ku{)fDiG0VloK3xKqoI$i_2>Zb?wu z*G4lNDRCW<(?JmPDbsSNb$Hl6E2}mTac1fZ443^sJYBzkPobX5a$xeKt z|EA^YRi>cCKWgAhlTT=Wl&U$wf1jeY=J>-Ay5=v3BOm{v{FZp^?T5JopfccvOH zM~BDs)9Rg}9Jz49Yd}#&`i5q@y0sYB#*GyWXTBB_T!O4`{{xDN4^gX-ceB$V_<7O3@?4~OY4C- z>nARfcbPb^lpYiQ%RCU|j7I4rdMykh)==#9ci{@JJ}?q~e;%dwRJ!EfW_=Ixe~@|A zQYXXuEb`jyQC#@-?}y}%34TfasZwGDCD8w80P$b{7ohr!C2C3&o%R`k|2K7ZWd+jG zqVMZldvs*8vNF=#0`&H6bdxy#*R@B(iyq-)aa*qsaGo^B)`2n*C63TS;G(UOYKQMLg9hwlWkZk>6qm#i)t2lhArGfH7n(`R%JC_?_= zsB8&oW!i#b0`;lLlK+F|G)I{l51O0D6_Hfy+7wodI5p27>qmcvNWa%9c*Ulkl>Vk) z;l=-F^Q5BHxFV!DLr+mVZ` z$oj7=26m>^C}&Xq*mu=6I+3bD8NF>jXXe}6OSas|^oqo5Q6>gz$^JoJ13icbX<1GW zt8Mk5{(qyY%gdD%GH6W_vBI#^y}}hlJ}}aJPf1YwFJ|fdx6Z-;=?r5}!_*hXs`0=t zJRbb^56no;t7A}lGQp4n2_1FXvXVsY=|0wd%l~BFR|1Mm6_3`H@;d*oRKvu9l9!Pp zA3M!UBA?hj+Ihr=@YC5jfed%)Wrab82`29&_U=EN0q9U2gtw+qcbw80gvE;3Q;gDk z&woMIF~zTol);3>n%K1|1eT1nJLXC+d%I&Kl1Nqx9I*ql{oWQiW2?P;tgHt)Bc+ka zOrTeiBPs@A*Pa?eZb)-wGDqp1ytbEJ#(|c>{woCi^eeYrf&L>S5ub@CfI+jSnp(mgz=oEg&JDxg2C*rxQrZQrrlYM` z6JC+XCB-m&>>(;78~yedCd!$w}1+M-o{zqjk#41gCS@HtC2hg~&Ro*`SnUAyLVC+JsHh-Iv%hxU@1QCJjCJA_!*S;Ske*gItr}q7E z>G)?YyZ6U0DzZjTe1&|Yjo`rv&Y<=K>+0htO;6Fu z`Luk(f*Y&vqvBA#UD84ZFlFoer+x~0T0x{F`7%AW>L>dDf2gzf<~_EzB^!>MCP@Ib zBf_w>7w&By8Gh18;1$TD@hXf*>qfin!!vcw9_7XOQw`^+R_W^x?d8^k?+ucdm7M2Q z7`p7SwqgykmP^uOISj%>4!*_3zTAi?_TC7F8bdOcpw}`Z9e5W;M^u7WIo=7P8Yc?nMWvf+1#>vbuA*(ND@o&1(af@!0_~Kh&m}@b~n7jl9)- zu<9<1QWX#nt|T^bE;E8y^D>F}JGZnNF45^ayssEcMM7c%OElLq*0>s6g%CEgqvbi` zz*=U9C1AGDHQwkQ@4+5U1$iGyWpl^U37;&m*I_k&=6Y=ZmCmVF){j+AzH{;YE$>s; zeOY0-6}C}zOGrOlS`p5N{MvxN&P{^Nf69s3Gu)OGJA>zj)AOqo0-FMfNgwN%G7D6q zvni|oFxM~DNzf)rpiLtgG>zcU#UUU!`%IS7i4{_X9_{{CWW;Fj9+1V!@yQEnB!;ir znfm927~WWCEf-#17}>a6(J+x|KebFcGUlHy%fH&RQV$IN&R{ryr>Tpy+Iv9ro%r8A zUE@@!ccyz-eO>h)iT`oSdG)s~l8K@DoBLyA-|we>&+|Tm&A%)cwPN%BX7r;l3DxH^ zJkn6j7@Daye_+Hcshgi{ey&f!H0avRroI75CO1rAF6f@;@74p6y0T8~XA(WNcZdY; z*P)7o%HLBOSZbE~NaK%Z3vpO8uS{tbQ=Mw8q!k}I|Cmb6KK0J$^8#p=x(qxF__X;} z$hFR>H1Xe#We=Htfs&r2n(?%%+^#aKgjSTw7f(^9&h*lv@f?m>Y9{ z`n6@L8l1li<~*|P)aO|fN`!lQBy!{K{Gk+$Z=COYi5d9pkh`i+ueW;p54TmPZB@#q zX(y{5Ufhb=VK3=LN5t{`*yr*pyi+sqvURwBi_4cU@N}eP>dNPSFB`sGdE3?gn+xM8Qk{!3^H^f1 zB@uaK*?#?xdhGA_u(<1)S!?@$>nHtyD!8(X>JJn9=N=E}y#mFB>3{UnJL}zOl+yCA zY5&y=z)_0mdqwjyl6hU;4=3-7?Ye&Eld+$OKNw1p6#t`7`nSQGo^QxJwEZ?^Yxix? zdPY8OZoP$YmSn+pjOM^l{00g4`%z-z-|8R3`Q>T(_Q?cMHXU23Wo` z$`<&4UR^@IH5wF*^903B*2=>4L1z&4fY~>}d(^0L;j>)PJyG9r-y=1$A)d=MxsdzH zgo{#d585*QC~c>_2IVueHg>DWfe9~NUWzY^1vL4exv2*5DSR%KO+I@HI*^skF0!QN9%;r5S5#H?k5SdfEh z_eHXeAm{WZ<7_A-W8QH{Aq7fTEN>gZ4%fy)&v#N^b*t<_>x3L{BS%1-PBL4(XZu+sU*u#prvVGfW zmdW9lf(iWh3^viaws@sL^kxLd6YT$Twe{PGFKF|@1V^tK5-YD$sfqEYN zKfA^~4+4-6&kiy77O=)a1mEOn->FJ`x(j^JcKHAWe|WUkfvvVOds-;2=l<^cxvB_Y zWQz^SG6R3_L>td!%2mOi6H!0^lF&KLX~J-T2n-sg*>lVC!L?msb(uMG1N1GIFJdFp z5r)xq)ioc1jH5F)u?W9}c<{Bx0Q<}sneF~<53IzyY;Tlg#ea0c&$DiCAeA*|w?!3) z@7_2yei8j#pXe^Qsx207N6&6}R3Mw6K}+ki$*k%JRUrO?$WRj!&EicJ=8fic9xZt> zP>{*4fXAp%0(`k4pPCy#SqvLfo!RyLkTh#f{iAtHVU0H{>S>doMy6Hkpv{#$TuOfe! zDdZd)l4rPe<4k%q`(-zv$udq<7Hav{S82m#W<-aNXUt`*1aXbw3QAE8jr6mv+v`r3 zkDFf~6w(#&u>MrdC;Y?R8nd=Q??(PG^0|Ei@7pae;DfHC44@@?NL11h8}d> z@KdEaVMdTPksJ~B0sqH1;U*uOu+EUc=zPxFz1~1Sz9qt3*5|not&J74xv%Y^56>5} zz~Fg*B&MD{Ar*VWB-hXaUfr9#T0`y~OqVU^47@nepXt{tWuK4M7@Hz? zR}@~a{k%|Vupmi&LY+KE@M!TCwCP$D{6+N%#Qr7iNSVs|&CwK8z2-03}tT;NJ z+}haa6wEiqgPDUcPKM>}R|i`W1!3TH$c6Ox4?0x;;onV8J``-ocdz`7&==oxx9WmR zC!TJX?026JNF{$x--RJ#ts{@;mQFp! z`%Q|(zV0DYtr?<+o_8;aHXY4^@Zu^%Px!gopY+b5*X(AoC}}cS#=QLXh+9qRpAnJh zP_b%8)f*b&p|D?b$+co7K{Ub#G--F_MRSB;s^}?6Vz92`@c>yh%upvPWG(TF_Yj3L z#Y{J{K$3gWv_tL7S%k$m^yo3&lK_M0GVur}kQ3WCbXGoURWLt&IY@_Rvq2c4bV(fL0S)UXpQuYPsrtNHnPgJ= zd9^}K@_T8x9@T`EXI%f?vo0a*Mii^hTe$~5U0{!i2hKPp)kVZ zaW)vcYN6uouH!3OD;vEd%3e8RFU9#KCEYZ7Tpk7S!^y`{6`(_@MUFyf!(4D!}K%?VO3a zcwPnnJdjo=-<_w%ekq=nN7TnZPfVzfyH47vcP0FO3NQJ4WbE+f zFbiKgbTw(MzMV)Fo_r`0a}-yJXZzJ{>?lsvI*3&_eNWuKgN(ZGL?UM@!}4}saur#& zwQNmb>CLWnt`b*Y`-g9>2O2=I>5Jy8t#gr=?HvX^t3Km-^NKdZG*DMtC)nr9mQ#pJ zf^q9w*k$19oqOwAB)U`HL3>P_7_1lSy6CxPmEiL!fhUoh@4HI!Dv7C2*UnMSRG4SL zX$YrKf@grI3hgMYPq?qPMmVI#$XGPSC$3AK{io0(H@@U%m63DerZ=tb&qtPaedIR@ zy5T#Et5E&jW4YrJFw_SCkg-OTXiuD)#y_#i?7a)bEdxOld&hh7nYp1U|Mt<_RV@`J zWx7o-#xlIgeIV6y_ka{+QDz9}72$)s`n&$M8Xtik7h|0#cQVKDlrAFSrgMIulhCX%C~ zc_s1%p0#_>Cw8N2=laZx8t?|tBwR}SB+wxOPb={4O2^x?2#?67ck)CTY`)R8AUV^w_rKE>nDa{^=|d~xyOm2M z)pIEv$QN|dfPl%=ZpNT|j*91VvAo^N8E$eq-G2Q`F)SGymPF{MqxKLH=wk(_)2iod-2IRMNmM@51eevO5$#iZ zSMV4ZLqZDUw0WoT1~>O*`Bk&Zzf4EM2FX-3Gcim1#2D7QGb z_=TOVoh@s`;=&?SA$iuc7d=1yh{2ASnuJf^T zCGW3!MXs7;drRlf&%N7}GWMBY=J$a^cB{p{W^dbX+k;%r5C0r$c#5@%M>zCr9V^ zCls7{7Rlk-_FjC=j@c7KLW&5AUGiPKl{iG4r2R^~V;oieRNPX0U!7-sUp#aDQk-p^ z{bFvfmu2&X;HHdau}|Yk%t?$-BKJ~e<%(mgOKU|u7b!(-U2?Bsui@ft@3rigi%%z| z)dqpxSCdx;K&K!}r|HS~5!s51@aidSd*1jeqFEDx3(CifY_g?96E;*cvLJ!67sWr? zEVFG?;o`OV{tXSQVr#8xOXem{CXk5Xp}Fd6-RUe z%O8#0yFkQw!;a(5hqhekyb**McnmB%!$&7ctPS~`Ww`?bXCZCkLlX4S8Kc66Wi|H& z{jUA5VN$KkeyWqM7kT^Q${izt4VO;0_{YfAJ5=tfq#x(>@u|sSn_kCKV8o?DaLJ{^ z@eGRV*zA}ewbnKl=sF!4=z6gVNjzJH(-f~A2X|h7yQ}j3?E6__7PzB4)#nfPqn)BX zk=PEF&EL!230BG9%00@hP(2wv8=VFR*!u6n68+asI41Hh+K+=x0kbXBEn4|I^-|p$e*?kVAguyhmOO5-dsNGe$BJTVw>S+q~lejRiPV+&#kzC6fB$s%Q8`PaRu-hH-U;vnKP z&Y(mT(?MB~DpF#+E}h~MegGcETR>8K;f-ZHRb;g@U25Ud`!gc0ZxilcbI_d6}-u(*XmgNCu6MoYU zIM|jR@9;``Egy=Tk;5LkzA_V|up{{>kcaE_%!|(i#|z(!-vr-_;EdY_3-uU9QTdn& zi-`&s6YZ%Z0bdA6d>|dd-0;%x z4Y}jYn|QrDU>&48XzTA?-kR^9-eTgC?%z#NEwy$xGzL&@XEC+B z=6jX|9_04m3+&tTn+~`rkZfs|4`EP@{)Wz96o)A(w10c`gLd>*13RaeR3syE4%Mws;D~Ly{oAk9B2=6=f4uz1&&Pj)Z0`?ICG55d3vwjB5)|Hz zEs5fCH^rRI_m-yOS0G(rx9hD)mw1Qp$4A?#-*m`a&JLKBk zamGj>H1WIpaBOt|9nIP@D`;}%`V5TFzk>@JsmArIF1Oatoh(USGp>2p!dmuF2+m{I zW~ri^UnAM-C!8Tr%9{gSL0diOt!Z-r^x6}gDtxzTYI}=ff!H1yFi}N;r0&m%A@>(6 zo4+}aG!rWPuG`U>b36JtjXdes#IGby=EF|mJMf0%j(gz2*j3K~aE4LA!U{YuNnV*M z$!5h*0U6KLRMBEy-sFV3`ery<7e5nWLrFHZpJd+J7Z4-wD>o=@zwps6buCuy??SI4 z9VrtQ@_!CaY24@+R&~@N^|<%9Z#K2h_Yf;lc|+&&R{4?Hyim^@OQ@3FX)VC-RuwcZ zbrauhQ@*e6)rPx*m}P_rDRB_opXJVmn)M z{<+lbk%NxeV3p{?q=Gw~~lRch?ZLf+&@5kb3N`OR+7l}B`A zdtTQoy(LyHB|87+w+I{QsdX?aCmt)sa|rYMiKbp)K{C!s;B}9p0YQ0WCTOL2g=5Eo zWzpCo@2>Q&)UDZo#RO4zQb)8#!4^kCKcr`A6;m$TUTtVaHJN15GBp)VqoT_EVW)n_ z+aeLoFanx8Vm^Su#4>2}U{0QjH2OpB6(Hh14}(b)i?8s>jE}UHknbq&P%{p|U};}f zRKax~0U|~9(0(IGoi|!*o0?*|-Ge!#Y3}V5dc^A@0@4iIOe$5OU5@^SZ+!g?1D9B( z+Td+8Y38e=s}+N8uD-6S)`g9Yjg>rufyus~PPvSi#0SZnYr*Mqd!xlH#5s40S$k*F zgCG^v!a^i7%Jz+Bu8LfibA62nYZ-(9LXdW@Q>|U(DS(KtdI($R()v|(DL?aSo)8Ib~LO74wZj>HFT!`JnH%4}jU-inm8lSY%C z|3Iw0@M$IjH4%Z((Ny-{*u?5a!~89{J_ar=RFh5d$wWEU+aRWzU>Jb zl+$wFxgsTc5t2OAsF1d;u6_KxrL^KAihf6rn|n?%Eylqn2yd+~TB<P0;kIfo9cc|R!vcQ?Pf^vgzN5nMK^z|RT zv|^*@DqLE9+&Ak%RF&`*Klovjk=jP_cEddI@`>q1>)6?HHior=C{#8F1x+% zWE)ok6RIt_b`p7ZD(3eb7AQZ#;ufN*!0>|O8O87)wBw2q-!othe-6?E%J(Yz&YJ8> z=V0*#ks;xG#|N?iPC--)bYg8J{?5ha%$EVhNemwj-Ff$0@ZRoDeQ#%b7>fY$TOq;7 z+N3ABY@{s09-jy6X{B(c|0K}g7rTfTqyCFQUv?!NRW?^(J6;LHT()jAu{*Ijh!o*ihT4&Z zII9HVNQPn6-<~_nm;NI`@nxjhxWeuIM%}@rz*u2KFd{f1$c$rq(Rzo+OV1_bGY{Kv zdK>~5fy<|FU16bhFpL*>LFLJNIm{ic#5?zzX(ZPsvt=9jxB#qgM+zDUsg1Ku2NJpG z_>adGSVh>!O4tr5YH)SiU3S!4v1EAoPMd+Je3?^x_J%!llor?{fn9b&6}Xb>pHdE9C|Ni zFm}%X%P)Gc*x(r7n$^VM0Q(1q+O4NU9aFT=AKr5S;_bGrD838p%X-ldy@+j?4RP$S zvrX4yq&K6f!jG~ln`Yf!;VDz{sv9i#n3##tBRO39I)Y5sVcgZy*Us_m7wHZuCn3%) zZz9>v5n=l&e6AyYET9+v%avbW!|Rz)xwj!R;6#&P@8;~$vxzV4J0vt1@(=UvX#Zf{ z#5gv&Qa*g0^@JC-R;6c#7bQe+w(-2VF?oWcp=P~(ZUDut*B1RAm)=ttOu^7+#3cY^3y4yq#PRv ziG-X&u#*@oiGKhYQ~Oh-kT5Ix4z#+=zVK@#8a`b@Nm9NdHs3oE<~+l&Pc$((@~NE9 zcuI!KBR?ZJe}}ld-muP4S{JT!X<8!;tpozE1MGb5eBEwTE=?PS{i}fJ0Ks;EsUuS3 zkp8fu4-A;IIGoT*^{Zvb+`>q}z$mz3cua9vF|#crI|FBA#N7m;x+RoL?Mrg4;xn~; zXw$S%4)Txp$CJxBEY6w(&LI#_5VE6Q9yv!gjaGs!$mPS?ti!ML>WsCA0waTpH zu}zzm-~kf-`+trE(5yh_21WvMS0J`ok;76(+gt5cf|uT2o~FAy%X1$Srk1H~{Yfh6 z>yB&FkBQd&lDB|+!2U5l)9gRjOsT+|_R{uJYX4uC;U7H^Y5V!Gd^Rn?&AM9Fe*SWZ zLz!%yJ3^67u(pn&cDg#h3P1MiRvOa|G*#08tL_t%L5i}{#IF$s=Vh_UglCgqf|u|kry*B+4ca|q&MTMZCc%Y~O6bh;biY_LJlDdsWghm+Ezp08skfri3 zHt9=|>}P3@GFR@>G#whb7m?H7b=;*`*DQZWYX9auHy+&;JF*SFKWw`c&3A+5UK(6_ z-%Z#yOV$Eg#!99D&24siqyv+*fC9w9m^kWbE;Zv_V#k)YSKg?=1+elBXlnJU62O7z z3NDZgW-MFDAL)aUII1^%T>R6;9N6bo08fC54C~YV4mz3$ZQD^LPxP6)S2S%0iAn}k zFuM38(%clOl38u-=8p_eLRF78a+|IQf@yBkZu%;7kWluk?3G9=T6SGscG;mN8Qvcs;c~0CKg;AI;5qwRzyIQP zr`GARqtQ7OFDT>gD%DXi)%&@eB+z)wph|zIGbq7?#kb#eW%K888TMs|-5UEHyb^S- zg<$i=OQ)srv}!VXEjMVJql(;?lB90?WSK9DP`Q)5SbZcBLmx~FXbEiI{m2Z1GXIu+ zmq1SUsGG1N$%?5jJSr-tBnlh-{^!+C|M&H(rlj+)z@cX?>#vE~`-}Z%_JjH;Y}mc# z@!4x$LLxQy%jR+79R0~q5zwd33%5ff(^r0k2js8y zsLAe`-g6e6Ufym5BiyS&!*Av7E!Su*ysv@ebYS(> z7K>@#)s2wnbP(6TauZDcO8!Q~?Oj5e!EBY5L$FaE78k*tb(^uqE8z{--1gX>yPNa! z9dWPI>p>v}qWRc4c(5B*Li)#66@d1VQ=ijagte}7zU9_}XkQO4GWo#eYJytzP8`Jo z7!C#dy?09Nd4b@#yAxFWWE&y3C-14u-tF!l)O#%I4xXK00lZq8`(Pnqd%I}C!B{Q1 z=TGz{ax47B5(W#A+|TfRm zzi%)L^}3^Hn?~s#1F+w72n}WfuU0RK zb%Re32aXaB3B1f%1nyU==LgEbq8xeIQr?72*; zVgA>M%BA6nq}f}GsLr5Ov2fF=VX9%oNbM^*&k^8=BS2Q4`{t_FXQkI#LkV2I>UyQ; zamb0}CcDS*kD6#gwnFK8=K5#(6MVSLqV4tr>(3r| zeUa=GiG%^xHRIho?vO2Pj!Or3iXj$zgjd(cdgmdb%%qa_a>($xysapn{2klt`$E%= z)c3ZBnCxe@$z}eMxBK}`g_zB^3uD`W?=5GVMK^f;7oI3u)7+S-80TxnVoBj zAX;}35K+@^>U{d_K*E)0GW;gb{Q4>9OPiwG1oYgnh8eZdwMCqLPN+c3@*{OGT$q@jKV8YcK{l@ONp4KYexC z`__z#*~1aC%sbpuq$Y~?`oZP>Zr_;F>q1fKd&d0K)Fg1rkGTMyedeJJnn(P$Sjc#p z^L~%qKL#g|9~{PCgfFRrQmO-$9Nq<@o(d1ST7-n{2Jh&0n3>R~o=Zb#iRIp2rKS3X z-GQh24Rb&!p%81aZq+Nv2B8xkQ4jsTX|~^UEByYw2lS(kG`ei=tYz_jik>0{Ey80) z78R8eST+%l=&SPV?@F6rZgks}gZor2Jw-$#h8vOP-BdFj{se@7ihU+sQHzuIAr6wj z8{)a3LDlkZh0&T%0Oy~}vGPymqW>^fzJX06w?@%z7cl>bt_A5YMKSGkxcyDS$JQy$^?%ev480(wMTZR=Q{tq&Ko^`T8j)9&WAtII)-r% z4Qqol5np-3GG%B0t<<$Y8X5B}V`X=fU$qIL(Vj2Xj6gfiH)U@MWwG_<;h#5MixCC|d6d=c5{FUmCS&-C}j55EQ=;wI0peL1$=j0Yo*23%vgEF`~>mC4gM zIJU=9ur5dLyhH>IXS^>2R(r2ZYI2KOifE6c+6DtO=`_!y?RPjO-;4UWMhKH0GC5)3tG@C4IcHoI;8S>%rS3=$kT!=iaAVU*35O~rcy zOjSR3z>RPp2mb(6k~JGmj>eeitn=*4)4Yjn z|4pvSL24`L&+E#CF;R?1D(e&7Ab;GDB_RVzx>X|GB25Vg&M8qz^S+8i>pmCy^p7=L z;D=7RF3$|Xz+bblVuj$sA^R_06a?ip?GyNv1EO@W54`G3^uQppaBq>t zSCFZR*vX;Ed^^yxfs54Awh>euPB;tOqk+aQNBH0zc%4-k(PvBqo_<8iF1}4ncKuGU zMRAH*CuhRWS**InyhU;*=pTP0cB^T^TnPdUP;F)GeQK2nNpDZNe{-MQp1hXQIMsNH zj~w$-3y}+n#2;wcGCpf7U@P^~<9mn96J+i9~m;%F%1sB*3n+Lojj0KVG=5xvthS#8r_T>+HUa4bb zq$^uu=*gsfkM^oPCSPJSEkP@~II%9Lgys{pBZ|R=~cZ7 zMV}#6BFBEG9(#mSQ=D4KiOY%m$AFSS)j^3>O-%PHdgu_%9c7DY z&KsxF68g+-VbK`VtZYSwuka(y&3%>gm=7xk5^-7_PchKUWQ%-{{53jpRK-AtZ=6S5 zO8$%4xh-(`Ilq5tRXY=>=kjKgoXPLZolGW4c+(iSlnD!@a-a-dj?^~~RyJWqGftsA z@7C9@ZcZMp46fdX9<9uP^{d#;%F~y9kqKj4i8S|aK@7)aItyFJ;o1Voq%JRo)5~A1 zz#wTo>(oS?GN+iWVYgXbjRtr;4kb@|*<)8ruY3Is0{|T_-S~SKjVn37?0L z2kD!UoQTm6j6?c|ac_2o6mzW=9Bro;qz2qg4qK(|cd2)%OLKM|_8bbfa1UG*1kG2J zS%_vA(=^P>l_}^T^(>9pj?RNLzYKsLstT29W$D%%(|M<#t7eN^3zp8ktbtWi#jRzg z#RNL-FMJl$Sk1vBHpD)QPCjU5=Q&zo`K1CJ;XJHc*vAodZU{iL^6ynsHjYJ{vl$CD z;kg2a6=*v2cOB!uOc%Z4tn$2lZ8|o(z5<&0grX}P6agRrivtD-WC4Z4=GZV4k5TEAIb9yYk=q`I{oC&AYfLN3(8(9}IH#>xDb4t=&x5B;vgyP>?#kEF)h|^| zyL4%^;3>jqlNMF!T3^((@LOG$=@FQunt&1}4<>23dYRjn^L(3{P8o zfTFhw4*q(stT#Is1_9uDiM|ez`glY04e({Ta?GPcV(7N^)up$?kHQZqK}*csnr{bX@vnTo>Dc)BWz2?Z=`xpN1r%X)OBj>5xh}^U^TI-4q(Ddyri9&i-_%P zi+Cr^oFDWoK1dL9q}i#RC6X|u*+I+@NoX3!d2jgaI|0pFfUhB>yl+-~I-CV^T?6|C zB3m0Goe?Z!4V@R{kDX(k0NHCVQGO97>*eYp(nN zE=J8ncvLkXzLp8r4bGta(K2nER?!Y_mlHS-KIbg7m_a_sA($cfxd1w%Ye6NWh=ixx z_DxR9Xv=6dWAswrXhY;bBB3Z@=nSCb{uO~vF(9SzNcTSCIYG%iQzfbh#rU|#AmaHw z=q~cZ{`>P+-Wna69a1a!rIBj+$1}%75|Ed&S6Js*`;eE~iS)ay%1o8Tb^`m5(rkt2 zIzpo6)#KD@KZNb3R@i|p+`hH0zal(p>i)Ju#cI!YNlnY4BA z?g!1x?9=U{41%ANs!@ds%u+H$*4EV~wMWlBf&m>ylG`I@KYun*EN8qbuhX%bs;OgF zm>Qj^Nxp|JLYo@uXDOle6N~6)<-UeFE;%^Mld*9Oil~Yb+~6C$)bN=Wp^pqIXDc-j zEXQVvt+%LgG=Cc>ayicNt|h>MjP8D@KIF|UYq_KX)PO1~=!yNDx~_AHKu)tgL!J7Y z6DDUq5<5Z1q?e0t7xi%L8XX!78aC@r?1tcrkG4D`eXu+-OO&PYeI0x?Vg%%Y;TlJi zM<22W7Om1S9=-E^gz;_m9Xc_2g@7hd-uW^9w`c30A_+z1fKpkDU6fm&E}|~5w;d66 z{(JC<#Si0sbuwuTPM!4PRTv(6#cwf1{F6^BdN$kh$#$N4eFV;pGgUWx_ zk2#Kob?6u-rg7R)C3%1vo>p@@0!zgSdmYz1D%w;QIw=6sD8V|xPJhinVwOgGz=uJa zMf~aAvBjm2h=dD#hbGNHGVj$Qc!6i#W!>eT7(5srY=j&4x$MF&FbN^IDA%-)_Jr8F zfL=VFyw|*Do&*%#V%g(6U`JuHWpCreQUQWXwY@4iwt z3^eTCS^O@FL6xftKlHy4OPiTkC4wQ~$SAngad=I*@Qw(uC9hl=>BO;X@CM#~uY27{U|&?^MPgQHN27 zl@R}#a#Qe)b6ftz_fEZu^bJnXw>O13>zSW|j@*_*|48>q{|PNoqkY9%*fHi#yDefP zWV6n?&gy_`#7~tINlosZAe1Wz=1m=SpLL&o-&9e{ zp-{RDiJV7`qShZQ(LHmD%zm&Git)cgvZ9&jK8BMo9Yuvng-Icl!^1e-%~jVmoYTiR z?hj*y#1?TsK~9Ttth~?dYCX02x@36hebSRF0{eE=-?s8IHA&nH-WN zfo=cfAS`)DXCe#@Q9CGQ3WOIVQY;qEyFe{WARz}`|A2{j_qWV^jY9ha(^ z7Dz_?(FkUlWS`2QyRg5tA5TZ|rWI9A>e5~42lHFx&&_El2IscF%pp4?>wLKS`0?uF zVEr{E<#XM$w;vHd?kM@EOy^AH2Fp=8X*J6C#6qHHjmga8T&HVA#~8t?09t#W1AxpS z77D9>S1Op`7cGodokQ)kuOCi)ODtk&X8nTzB9^>gyqYBvO$lB_$ML{$$@`#RdRbUd zsR1rh0X-?bEMCPOy)ES})!xS}B~bg`Iko;kRr71-)E2Q{wpA$j{XZCB{=>KZV8Pp3 z%y`((z~(hg*NA&J`yY48%}u`M7aZ})?%~PqEDV+e44WRZy$@x3-^=#W$@Wq_y$IB5 zSlcwa7H3^LR$mB7jD=s8ICaQbUyGOiOZ>~OD)LY9zs1v~V;0M6ag&BMVsuRsrw%aI z(s8NPwRqOMeU{FVQVmwivu6&>)(Tmj;~1sB4>XS7`^WWgrg5ZjJT^5uNti@u+9148 zo>cw@Dyr@r+5FT$hDo3QA@@_y@%t;^$>SuGSEq!Yog0V}Dzz(z@!i7Rl6M9S z&eD)~zsY!Ujz{0LCaL=osrfl-kVmjRy)t}wcQks{^6081PQ9s$%gPd0%B6v8%LZ2} zqwnfMq4X9;vCfLbXyXg zQc(CQ75^-Mq)9T;9l)`9m#08e#BqgjYs+T)@HW4U4-++JbGBw+Us@+Eq&R@#45}+? z7=JV>)f6@vI;uVzDUmdSdPl`bi+a~EDFgd_6M;5lcgjGXp4lj`)6YH%sKr-%b|wj& z{B*sW8c76*A_CCJ-q1KXe!3FHIC1^1(xB_SRPxCkVE$Q|DczZ;s8*SYbIIz5mGZYV z{!kaE{L;AdP_aGCnUJv5EABY}2u#dZg$K6ToOL)_&-GTRQ*Rhu?xi<)S zHaM-jkIlPjExPl+hm?ijvT_A;TLy?)1`t@HEPBssiXTobQH-Er%jLjn)9PYdcw}Cf z_j9i`(;b@Y?jPmu&s`;SX7ZLQ%E*%a$ei88>H8m}w`8y-M|iS{*@=bhZ|-4d+Z<K)cVJvjy-nPfg$^-{eE{5aisuj$u&^ z3FstB&g}xULK6XyJC0S(Sbr07 zk~^V!Xmkq?(~*shDD z%@Ev~t((rTdnI(pHC7CKpGl1kRs z<}h^O{}ilC1d6uT=4ioYer;~;Bsn~E(N*9i3Hc0GPj`}JPlZRKw+M-YM`~By zRt-M-r}~f;T6mFjZojv*S6I=LWO2)Z3sE({_muNAyVXh1nf{r)Erf-VZD63fnN67e zx;nX18J-Ct@HJIKq8{_9Rva~oDzvBg@WdZp2Q0cCK*B*V)#fBa2$5`9x4~7 zf+i=3DS!1O#1gTcWmP1w(dZUP+|t~-YY#sMjl1D||NZQ}{)aAk&*gRU=pYxb<)|_j zk7el<8bMK)C%XcDaJz_c&r`j|(yp&mOSNB8k28-l@mbGu=x04oX$VAKG3t%kk5Q^H z_hIy5xV`ihOPGvk(Cl9v?MVPrE4rtT`-=$QtzThIiox}sqS*QJU-Z4~TYGnppUWKK zoyT<`_Bg?nW{uwVJ7P;X#O>zO?9+b=aP@a#y&|d-j-qh=r2$K4a2qcPrHTX}wV<~( z9yp0V=Lquq#rv+O?{INMq&{Xn!~j3hwLSX>UFf5LkF>LTsAkk>&-w$0{X@zPN(_-{{uf@E zj^umTbJ*kP$UNVEk>&!OC!h4W__H--3;Ex5{f9X&6*qR&Ap4XFElM9c&I@ZpvW+*XYk&VBH<7A?Grov|BI@x z0IH)2x(ycG-Q9u(4{pINxI=IY?jGFTg1fuli@Uo!T-+Tl&g1*vU$5$IP3_L^Y)yCd z&em@C^qf<0KeG*|x6k;d{-$nkJ7*V~LUET^T$$5o^i~LSmsqy_=`P41E-FthUd~;L zdFJIb&XUfXQ$CO%(VB}1dEf!z-wNqZX;~-s7#HR0?}zS&gh`i3VX@PtnXPFA?n`ph z8vV`ciC%?{7)m*2svEyq6FI1G@(?r9d$rS7zWHL^r+lg(9k zuo?GfxIwe6IsbiszgFSIBkU3lap3CI#@fGbc=5g3n73Egw3^M9>%;1O0nb>_TF`pk zY?AYkpoQHJaxVNp#;M4GcJ4US?Cas}mm%iuE74*_`)r1P9~^VZayk32OOEaWhqsV( z$Z`fI&lqzP6n+UtO=w&5L<(GAols<emH z=Hlff**k)dHH+Q8XZ7DP7lYZe2JS?P8`1Uz;ewpEI+%~;6Z4{pFnU5pLC#K-<=l@O8?SpaWd4OchyKa>R z7i;24=_H|5g_W66)f{o9S=_>Ap1EM#llGrXb^s07$-Q_1mg1FcZbgn1ls;wrOt<7G zI0xf>E?OMxFe)yWYOj;M{VX()StOUrsyA8m>VM3xJ_Y~Yp#Bkl^QXq%V@}$xSY>XGH%*u21VqDA8d!}uYT?V zGXSDgaGU)!e^?vY(eDG@G0=a;;njT&#PHM)l4R?M=PCFXV>XHB7>_8x(rcWyIa;^- zZ?h*;TJF+_H*0Qc8{^V^Qci&pR>x^@3f0w$XB=yuw5{f%+lB+T29Y3)Yk<{*B zIAW3;()OW0qAGS{?btfu5g|3<%{Vre!~NffS*efi+_ZohVEdoN8tn=>)ziDfUC%ke zqHF`J3@TDUI2)RMjD6+)2y-|DA%R+Y%H;UMZ>aRB@n(0To^1}CgXw*EQP=xyAq13k z19&!3)O~;nJVoDKlwD>70yo00z`{=4-TZh~sNEe#*s%d ze*;xnm(osuwgqRF#dt08;-*??H1g*a8WsU{*Tp4KvX(&hD-T*doc ztsyeyJnvlafD~A6^&UO(I$6)!G_3pcuqV8;?+s^meBGkH9}^?GI;hWz+KjgZcb9sz zCe6O7Y4_*(7J9>gdp;^9@s7aM(D^Qw6#a1vUQJv-?daz$pSMh-e_vPVnnoK_uJP@G z;+u(ACO-~y0N;bk+CRYq?QcP{$ z4~!cgj3Tc0WgB~SUk;anqdBY9bACGp6&SaT2e5}5&+d_d;g(j>UhHOKx3pt*2O-0< z!;0@QQ{l<94iRF-s+E6IMWzkN7dZ-YSm7#Gng*MaLa_f(6%lgd@6!E_8Y)*Ktyuh1 zDeDv^t{IO**i~ZNuIw@-(-c1H?$V0Ib8xF&cB=wb)n}c1Ec5zSlVM4>`>nF(E&9Fi z_dq+r>A{!E46a=QV>0zAky8Iu>uqu55J)jyJ0!6)d*dHG(de3LdV|QNX}Fwi@Xn2_ z1g{y<8A?m6!shi3h>N-l0PK4Ok&dCnA;8AJznPccFN6g#qxtG66nnMLxM&CyYE04K$S?|&Vy(S{{b-qqI?xGHx!+1^ylX&CY8$@Fp zaAvbF<{lVrfbp!On*df>btuP6ge-XngfmOF7uNXI?BJ%z7vA6(?ZZw5Q0HRosWnqx z&3Tk6|N4@vahLw0m`apBO$3gdHr(5Vir`OFZzAU(F`12+Y}tcG`HBTv@7RZ!p6Y-mC@p0Q?s&lc9n z=E(jznO}3hzJzjNU2+|DjnrEarM4aEtGMsm;?%_l*h0Q=qXoBRy$D3VY}nqnb^pZh z*v{y~yvOA)Xj76fQN_as+{o<8NRi@eaImKTUF)^**ET0yu`uPML@ndP&x*Sc-4$Jb z8$)uC;7YL;tj54l-}7o32n<2OcNE8%g4Ne6Z*<4FIkyc`tosR1FOw!wsq57P2Jypc zWX#b?mbAi3lvJdn8@2^_HRV+^Gj!P zO0`I?lG!Ni7^zC@fKsH!5+7BhlGW=om?vZ+@I$=KWD5%MrPpQSrl5}z9_yrEtG7`@ z7*d{TuQMn=WB`92XAA#v^f#IxCTi0TPPY_Fy95{X<@y%_z)B4H0%5Xywu2kb0nM|x z2`T*s2=8n549CJ4el&3po&cV!wgjU=GBfhF>qc_=1B6)%wl;{X$b_AK070)8qLsUm zZg>ZRaRR_d*Tod~vSiPJ+DsqFd8^BRYeeaF4L_7Ab^T)wSm%f}&R-;)Hf)O2=suBm z-ce)1(3kMZ0PB|l5*?)u_kQ}WoOqL7&lKKOA3vej-TQ-LaL~&{6I7RDL$`D7#XzKA1>eYV5{;g1q=fg_q zk{xXc*sS7JJ3{OJ_HRqrU(EjP*RE$FiS7E|d2Rx3Bkax*01U%R)nHY(c?*8atx9q@ z7G&$cpK0ArDy1m95qRo0zsCoN>>yNYqgDz0zUvp?`YF?7O689??a4%+;U$qpGK*dg zYo@YaTemL=1(v@I)vhj~QcJDNr0JA7FzBtzWa*?$R&fB5eQizu>ZJ8lRrXa?>TGll ztaqk5h-J8SVzyOt(<@AeiQJOS2DZ30}8K@)tR@1v8Tce_4grjo_F;xA6f zdF1dNj>Iipka!=|gHP6&kKdYxymcUH%{F?2@Q@2?S)av!)FH@K$M88NoI5{5gB4G6 zMVzMp@--;}CdI_NETYfPIge}zYD=1{(pjvTk?DRCir06fHMi1q2*|%_2cOM9_fAzD zto3&?y0jpq6^ZD~(NHH{`L{|BSj>{uG@>?=!!P|=itr$g4FO+NrV`$O=H9)8M+RcTFNH=j3WZMz9G zbWU@~D_Sg|tXZvj_Af|wzAV&OpOjQ9EiE6c;!sS609qEnnAPdlgmz-FtAe_$Ltg8>!>e2ZysUK8e7w^JW zb!}|t7DBizLYim7m{esktDWg#RkeD`P1~TKTIbEI)F+yn-QPu=uJmZnmn{B#I ze$82V(uTa+q#cz^sp&xGICLS~uQd0m&#_0a^>E2uX}+eosaZb_JKuO=m! zFI@Z$N*s^gTB2N@C!Z)DJlc(dfY#{vvwvwGIvrv#AtCsmz^I|lM$oEVd`^-^?K>5N zmyM%njBIkzjWa$&mN%S34Sf!+E~g#|J(T1yY1nsVTUmf@A)E3AlkweH1{xp6HG_3^ z5+B|E&We9KoI^(v`ecgt=b*9tIqzd-vKjlG>)3Btr(CG3gpD>}uPy523OA5)SrY_D)ocz7lNFe*zv#gY4bgZu1?EH&2jFaRBwW5RS@N*bL zEb0#nk^R(q7PkFoKVfFczW8syeRXWsOsfJIQ7m&S&ClcinwSzsQr&4q5dF6r>S^eo zk)-^k6lGETJYg%!NeJ6OVrF`Ur%JYJPZ;8j;tA7)Jb+nowBT7e#(h^d&hJrRGeRKI z{moC@9OGXD?cz#K0Ux!M{30f%uCHJs_fVtQi*bpl1nbLzN5Bxa>>oRb3)BMYz z_KA-%(|yeK^X=`l6zApqsop=;ON!zFIR*vyE^9M&p48|j2zskTEg&8Qab9w(ruH#o z)vTs=QG>VrM-&6LwOND~fmgjR=57DR7v(-M0J?fQ zl4l;Aw)y2-+Tr_&z$daDX`_cPu7;ZZ5FAPy?gQ5-P#{%A-CfJ$!E;3WPhyOh7qZMF zCnZ{kjnCiBPV=Tu7PPIV{b)8tUb|`S+xPa9+rsu1RU6ik!g5^z9FeaEQ}cS{XK!CK zA7f&BXk!H}Q9@7c9%=|+X>YQjXjdr*!{t!ybjDqFfVNk^1B(g4#UV$aVj&pAUDSHNu$= z>xPV*mg1H&36uq(1g3NN#RSAgzT$Hufpqx62^&s1hY-^%*(X`qf}J}eMl$D9c1H8Z5%fu6YK zrg_IHy6;?DsPiTF<|UaTsz+?xMZ=48eS@wnSnsS28Z_pu5kI%I#f=Bb@Yxl)eAs}U zMA||MGJiJn7u*x8@*eXZ8`;+Z>A<&+wjkWWY)Sl@iM8D_7fjlD*#rwHliU--aQe`! zyj8tc4Ue#WrZ0dG1Lsz@@Ea?-7%cor!Gi`zLmk(+FOed$Z$-IEepq*qA23ueUe7F| zfY=X&o7&2y*Cmm~vG>!r?uU27cf+ub9wCG~2PwZ$zcN33{P+F$roxw{Cxd+F4~Y+k zZM*9abP)IJWx`h1m|q-`e~dq~2`U!!uTWvbFD`INu%jYg(4K$w(Ewl#PMPqIRL167J@o0rl!>=4r6lWne_p5aILp zJ8~G&7txnt{AZ3k`o|BrH>f*AThFc_j|x;TvYhV}I7p9$O-38A%`O6X=UK3o?i9<#v|{@GF3Yn{i5nO>aFk zOQLo1;9^$XzoBAQJos-XmDW8K$A*$Zz$Ob3d^i1xww{0erMcR2gws4uR3N(?aDmo5GGYzT?5JG6Tb7D8M2j4( zZXIZ+Hat^ud^AtBo`~yztCn6eB8hA2arymG=rM+DLdgKT=y60bH^HD+AnpyJm#ZtH_F$;| zpyh=auI2tvn{DCu|C9OuS8fa-)Lo`I*|3^#6hwZK_`7V!I_3E)#)awr96ZCf#&)(6Rr)CUaAIGxknnY z&_9vnJDMvjKb#koevpqpS??k24cZ0XFfH{o{WLsi(ti@p4MJN9N)Jk}=lJV*K6EQ= zDq_X(oT83F#Zq7jZ%LLvIu+eZO9<6ubvbW!NR;& zxf;2+kGL?*q5!vC?nhjxmr{RO$ke}nmbs|CsW8t0ejeKh_Md1I{`%Megx7cf3Um^* zFO$efNJu~3fBlB*C4?f3e^2ga$gTOR597mhMeyi{)DHiwzRff(1oIBvN_l18e}VKR z5q1-?9krG3io8^_LfNCr@m72PplNgh?^_nDDz9;=^Wd-JsJyeNyjgs)BK8m&bEM=+ z>x@af|NoBHC}DomNFhS%R{Snb{ipDy*JXs7t5p)6k@NNtz5$h>X&t$tTNUWK8oQtO ze7CHx>V?#%for&$wDCHrqT4u;=B$e-6RbNPNC)I0|60OZ=+#~FZkKcWuo6SkpeCSK z$GkLKxW#1A?eI+%*{3`JvO0x3T=BVti;GtvuW;W{=c+ z;0Lh2yvX>ibP}jzh%fo%ck@(%=O)Z%@cb7iUmnihOapmykrMaBbkD8(PT7fEEpIV% zv4$T%C-StG%YtiSYEYVj6ddrI0u*L)>dA0zi=Dh%o^6Z%Sm3zL0V}l{L%8aqRv)t; z1mt<9DfM%kJENy*9D#c0-Z?Lys}8(hd_M9~DpmICejW|qwqqKnP4e3zYT_Qntaw3T zLoQtAQ+x=$eH0pvZ(h>~;H3lwWnVw}5XM!yV{Z?i5j^f*I0nfj|p|D1UNX^c3=y)uY z{yKWuGs2Z+{LRRBcfW3OQ4enMke{cnq0}DN9-X961kr*_P~Z6O>@2tqf;$7$Z{&{% zqeec0-l6mk+NRz9*=>b(mdsD1=8@7dIdiCrALA>B$Xy_Dic#Bz2=s|`B56n%XM>8Oko-b&PRya%Md!&16eRSll4i&XAhMEY=n7alM=TO%lG5XART1GCqf^TN zD!(}+9-`*|?dj<29tR1*nET$Oq9Ga%ugnv?%Eg|!_;r%lkNxQazVc`F`$~ea=V}nG z_H7JGRXQaHQNv%Cdios$=6=HO<7a3WKE>Raj``UwBxRdlH@_Bo5PA?Ans8iaM{{-r zx4;~4GTPx3c{X&c#KBf|RMnv%aG3l)_sSG~-+J*=#DAxKRs2Q6u@tCE>rQ2%OgShc z9~{%GNJV7_w?CqrJ-#oko87-ZLRW*|YhIw5CYuaY4VO&@sQUNpSjZYS77b40EQuX> z4(p<(osv5UU{!|-Yr42I%JAb*lSJ~yiiZ#7XAR{C4&_G<zUHg9<~wSya(fhgYS3I?i4#=mJWk|`+Cc+M+j=#2%>StGq~T?`15bw@4yOh18uHH_%Q)$1ML`IpIrjX;hN?R0r#;qLO40o zq2X_&u@wh@>N2sb6>`uNM%`f7W1EHi?K&cN+Fz&v?w!O&F@1>J7`IRH{MI%Z$z1xA zb^97aTGi=p5bG(QNGbS3F#{*3m*^jHv6n?VAH`Pg3rpb*Z+CN3rU@tEzG0yiIfw7d zE>0i}>n!)Fo%3!+w;C5a3P(HFE)fMV7g#4QERJ%!ntG&TvLnU>>|Fa$H)+m8c4RhpvE%Wx+ww zgPn^V^~RednABl`P`zx8Zs84Q6o)SYvPA1)>>^cZFx)Dxmvb8UwM?4ReeR8>8v9=A zGcv0)t16{QejUV-H9Wj=?qKY41%KX+8RSaV*kz_^sw`HfX&My=@w$ur>?LwXkfXoU^yDF9Pve3>pJ^A!2HB%ieo$5a#&z4%&V9cEQfiKX12~g z5qp|82OJAO{O0M@C7<8#gpGchCJ{v_q!BNvg`=?@f3AyJCy2Rtn1%4Cwh(tuTn%wMG1q1NO(z-vVf8z7EsMI zx4^Ud0qM7gp|P_}lmd2ctF;tVIiVc0btbmTL`?ojokNJ=NM5>tcw+2CFehcSOAJSa zTJUodFDCt1$f8&GOxiZIkN^;~nmyZ$jV&BfA(aZl|lY9V}m+O0TW^ zi(bw5NH9z3wn2vL^@Qwz(uF#?f5>@w%eT$%3%ee_)o^g@wP^d= zSpPTYr|TgtTd+SOq(E8NRzt|su^fDtInzG4(iDQ7PRZjJ{I_|^(ywaeNUMR&tz@OJ zbI18)#n3uhkI@(5MFssABUr4m{rY)Zm0a@fn?qJksMeg^FM~!Xk%zxT-F^uK@(2D3 zB;@B7{=jib0>%hd8_%&TOXe{QC`!tk+E~^c+Rvn`ribN+mAVx?^+7Ry z^0?$}Ccav`vy_#M89aI6lhwznZKo?e$kx;!-lRwgXd{CWFqc#Am)vjsprucs8o=)& zT)Yig-T<^{OJqKI!X3w1FBp3=&4R|4q=o|=D`n*#j0%St;?q4apJp{vdWq6 z)}M`)w3K;Wk)5-#2&-y~G5c6|ZW@)iEvH2DltU5wfs8-FTZU`=xBQ6qmn66RD9-Om z=JXdcj#G~71=!gO07+~9DX7S;%QjLv?-V<(Uyr(5x>7}wK8SzY2fX$rI{P{)h1b+N zzgeBoc41oZ4dlpFy&b!2bMrtiDJ7 z_|W_4A8cBV_xa~#gkxP@_b_$OAAm8y{B@uK&ZgNT`=Rou)|6+qIQ>*XlY(tkq#IG8 zy|v30WFuGdTH4^bb3qoyLFlsl_O1^!gsoH9nl7x(!!NzAEz;cQceK^5xV5cEjU_#k znw@)eku~oE^^sdL%4k^Dufq*kVC@|N9JY&t0{&{>$W?e7HrGx^*IB}V9y%|$@A18M z*f!bm+3|Fis`qUJNd_IAG1{95s#iv&lCaHb zjLpA^Gmv8Nd$4#1Q4J_fB<|}P;z|sTH%|%+2CaM2khAy$Ii`%J5-q0Krr74+d8V97 z-}I+wlLjlYGnV*b53Q$K_U?&pi1Pnx;Bg|~5I)Db)q;6P@ANN;CGI;uC-POqE+H?C z=lfp(V6Zb+SDxLmPfweFJ>HNhdyMt@+i+Xzs{6;m8(|YnI-eYHvp_#_a<}E)BWjoT zS^H7@7w#6Y)2XcDlHY*D<<{lKC7;5VMS1*EoFYy_thAqdoI7gtG1?b+>AH1}^@+I$ z;mw`s`DIH$F1b_EJ9av_Gq`i8H1*PQOXg%k^AcmwGxb@|7x(_UR)+Czp%vAMPLSEVg~o zjYWX}kKmt70puLi+%b)Bs!)3T_C(M8?{6CfcV9a=m^EoNb8Hd05V-RB9_2s!w}CxG zt?bLp%P|)yu1Kzh^gS0nMy<4(7>s#d9;DrO+XFp<&IVUE+xvIIS0~#G91QMy_ILt# z?d0xI0&*qK4{u9EAKhvA_wG3JH#7`^kMb!2*Hd=&Y?=59_2%<^*sp@o_mDf>tq5H+ zP1kL@$y-~zk8f3pzGoe4Gkf?nCOBRD)F0ySku?Y5eB z&e_BLHj?Sy8}|*Z7jUK)(p7Jv1913M>F!*Q^y;(=3e7}S1UmnqkCm13UOvth0~e25 zvf=k9uvYP2{j0koR`I3VVmd#Z5Yux|5j_$#Rz{X z4NUCKkYZO-JEdMDVr_`2}Xk5AjT^BG`fJ)&31E7DJw^JUwxmBZQeNT!t$gfcKF z?(NnMdFO|48BFV|zxi%3NBIq%tq%Qp?}UI z8&JvIDK}Q80#D6qk4Y;uR4yhY%rVv!RT{rMp~BbIDaR@{?EK?+vy#5OW3{Xj%Y-(QA z$9BCrp;XPul4_}5^c4`?c-HoMcywl&Uu_|8p6kDSc_he3ZhE-5KGv^n@{3gjD_02+ zl`GI|9dj+N4h@y8sams;=3MM+k49G&f2PpA)B#f*t!2S7O#6!|wqp+aqc`ZeWw;fC zgG4#E+8>w~CbMuYZ`_Vz?>WY9Y+%r`*Ta@F*x>nnif?nK#KCT-$xtd7P0ds02BlwYO!kS)4(t zgV87wQ4oUnaXqWjG&!Dd^{yB@DyS}+k)>mNLMDq8Sc3Q4dn%~Rn=m{7b9jm$)c(nP z`D)*Q0|Kd_>Mv4ww1G zKl?@YXfJJ_Q{PuX61x4z8%xJ8rk>A6^;B)JHAgP8*t($ zp96c+1A9tHR2PZPDtVTl<^!`71(vm(r1tePkUwSor}Z_RReuSI^5>bJ;C=3=dy=Q?|Ed>9G$j682-cvc5249eznE{51{Ei|3ksSfrP{{T9Agvr zlF8*#3+O7%l_KLD8QWe$Gx0EzFQgkjcT;Lc+`fv1^W&S6&BPlToF!Ji3ksV$IeJYa z9OIUpPwLUauMSTU2^F^j9ZuL^V~x_9h=Ox+2Pg3v{;-p|PHKXj2HA4h)gRNW&NAx) zymt?yl1~~20?|8hOr>-~{?Xt22EN_w$hCf`x=omKOjyYHCOl~cMh}XKE)P4rZkW-x z!*npKm%c6PPxvlM-&j+d(?FtK}@iLxwA&^`FpX(cuydHZR6ZP`m02?;P$>;OypnfXJImNS)F? z+|0iu_aNtzuJqUzd7^qA&E?W6aQ>a*`q0#8eUTNVl-m>;_P!Id@s`#W9=g26eAyet zTY7C(EK#Z{pES?MQsJX4;`l*XwC?p)CVo6=F1+ns7Fk6ZdSAC5bd7y0qQdV?kN^ELqZ%QvgawJ*`*L00oa; zHtnYuDq8nz9p1sQMK{x@(HqWv!cp#2JEkrD&IWI{r_CG1F>tD%o^NUUH>=3jd`ifIOZ?7WC)Z2526>W$SF2Jr?;ztGFN zX?YP%&q|NfW=ir62D&5iuqhb^RikSDIrBF;W@xh(7`YC#M~H6=Xw~H#xePo<$Ya;2 z{Skw=(`YxSD={({z};s+e=!~CiJ%nNBZ(ogRQJNv$(nw^I|rS{uM`+ol6rES#xGFP zE?Ui3_{O3L@Pg^il&r3e-?|$mO=C9&K9_*X(JOqx!0;0cop1fEpKsz(h$;J%SA60U(nTM!tWfY- z^8M1)ndSqVrp%4vXR@h5l8=^a?U@u%_u?-mM|79Ze%hlg+*T!j1%FAqn8)Ew?~QUy z1>@yJS@0PB<(S66?AU&XxbOa3{O<2pg0GvUH+B1%qqLM;b=$+4V2;9U_@y`}T#u=; z$+miL!Iw?@H1kHc`p5B@g-<6ZPM-_-M|(x?(bCjultz*_b%I3)NvNb%UEw`eQ&j$I zAmuxvy2x?Ch}qlR$?o9p-u8#4%S~5B>!X3HO240&RBv{xLYk&|sXK=kd}n>7kCv~N zh*n``ex-(1PQ9-w)L2MLG$Wx37l|NAwklWCGdQY##q@R*hxKEm9(&wCuetM&%8Iq= z+UO>;SJxlKmCp2+@nd`9Ez5Pz_pBp_XaLKCDfIzMHRe+PDQ=B%d-k>U_CP7R3%Z-e ze5&8jT>q)f{sbjr_9TH!(<1C?Nc6?SJVmdKeF9S)9IOZsGm<%nG!{}3ADOOie z>2w@X-&-$QD1KpDWSVT+vFkCUr?pl8ZfgEOy4|mTkHYCQ??dF((b&jQ1<2((A;kSgJ>bdcd zNWz2m#N~+hzJ?J&L^mUIhk?qkwsdlL+5cs8rC5c&sGt(Q7Ej zE^<6djseY_-tWS%KhyU#!OU+-{EVRwws$K8Rgx}W{4R_Zc}?TGcZi?deDItp-n{KBw63fOax9nINiS(rYf^q|XN5)gF8 zmhEH8t>~`wIC2$nb#nE*vvXB^Weu_!7!WV$wF}+4Tx4jcB|^AF^h1BIAG@%PGX({L zDA9R#!V0ndFq}Xvl$}y$g@%P%R1682$7shy^gn$mK9`W6NLjl3EX@oI#E(i{Ru@D{ zU`L^BUwsR!##f=TX z?)t?3<7zvgb)W)~p|7vEpcNT0mg$*`KTk)^-SLof;3eXI=N@DUN(1qLosu?$+*JEm@!X&^m75Ul4BUwYSRZU#EgLf|G-jv$)CZ_DD7nTU7Qo zJ^UV3_DIIOgdB6AT7_O++np-sqo3clHM=B9@FeiB#H)YBj)G z;za{?SP$PemD($64Q4L#dv{P>^P^=_|4CFDXLrYiSQ6goeT@No_G~ z!)KN|fAD3JG7I|-EA46hD87x@VFF1R*4T>!G=2nly9K>qU19)3LA*6+KsRPMRK|C% z6gPJZT>K~0V8U?ax+N#-Ig{9_7w--J}pRb`askXED%-{U=3(Ck4 z=hsGiyc2ho z?YwqlF0ZW?YD&y+nST7dyS(K59_2{M4_BJdS>rFmT1Zt3Yl{t$d6 zNocz?R@~_N&Eocf@lMt&nJWS>KMIla^)hfO$PR7`Nf1$xRz0*AMd)T@WmGl@vC3Ko z#K04S;ME6?UP!Ic!m>6t^n2{N>ND~_)nO(Y(Emn+CwB8n8+ zx`|}!!t$klC3r->%BX78;Ss>L4c)>&E$Q7@@F9_HOPx~!m0Z1mx>&G)K zE>hsOLy(3I;4U=n5bBVyH_;K2xOLH?c3QjW04Br-uJ*44KrH^Da?Au@grI$)UoB3( zbbHD}U(3|3n%dlHc76=DwyaZ7;xJ-{W1aL9&yUC@@B{BTv$J?^n@HztOU^8 zcEm%pNfuo>K&3r3`JuMTXP%%6Xt9?#*b4!S+l);@&ab|#v<%O$v#jS{SKA`RLLmH4 zIZ1taEFm9>p8ImvO6GK9IG?rM6NhJ4^N0UpOI;kS{N8;-vifJd;W((Fd#Wh8p~*se z#<5qe(Wn{6CRdF$W-Y=M`<#jQmvd=p$C3NYNdBC-p7N>ORm}mWcdAuMGu{&6OXg|UAm=v{ zk{AZ^o@Fh&={ACSork_iMo><~gNA9w9gv{dgl1Vo;x1!cmWd{N6+)NLsVW_R5Z}`@ z^V0AZ|0w1&gE+)s{?hg36=UerC^1bzghUzeEj+I1j@2DOuwg=b7H&jtna-Isdx?p= zG1*2UpJ>u&Cchlau7CHg?|=phB5orPBZvp8jYz*ERg(W}OBw-R%@4V-jSuYlBO_pl(xF2PDv`1 z1$uB-m`IIGC!kXoAhzIy%HHg1Dr+i>O5I?@hTkAn15F_99Z7|%OlUxv2~Rm&`+IV>BkUq)be*bCPpPCev|9b7XO0iz>@89dY+?!feuP<80LI z*=**lVRyU_|JYDc3{z7wuWUz=i0DCu%&Dx7ENzMceU?6Ng>&^Thw*WMps)1tr-h2F z;klD+Y1Y+SBkk>uA$rA%&Vw?+?#Cmub47YZhq7Loy_POCdcjaxftmU4E$nkV%W0=X z7exExPB>qPecH#4DUtZBGovT3C#8LUEbs){H#=oJnjgv8Se>4!6U%iTE)y155m!;v#e4N&0TP8%#HDo^oW}kjeJUy*8?m zG`I|7tTk6mmZY}vmNZi*_MJWSL^P5sNR|;YrH-8C$ulp~#eXa{{k0Fb=GoI<`nIIK z^mT{3tr_SFd}u`hpa56(hTs)j6);_alYFr3t)A<>HZHV4*j89zz=a(6cd!42?l#%d zHx*_FfL9XVl-{;$lDuo%x?u13+QAJeDMzq7mrJ)xOYy;KB4@d@v6f22AbdFL_VZ>c~Hm{c}e}AUxYyF@@m>e+OUY z2jp;qTJ}t~w_;vN|1JC$n zL%*fto11Bb9fLf&HWr(jL&V+m>g<6Fdb%M226(~L1nO6CkMPx&F7OR!Xw8o@#JkmU zFY#q+P+!umQR!Q^du&3o0G(^bWGhIfaP5|Lc5R%QP1^2bzzR1COc}dbpe*_S1I9o( zzc|mkP}-PxDUYvrg?F`=M{|aEBlR%#gLjK}yLUJDiFaSwWZ6>hLGNM0quvwc^}OPE zPkGOH&)Mg&=l5RlUaC+XQz{ZGk_l5Q(xrc{$YL*7F{EN>#R&3*M#boo82g!u{EEVg z681S2p3+(DNh*wrXhqC9s-n4Kf^!rse^tfgifI)yE9O+puUK5MtYT%wnu_%mn<}|JNz!c&mZ>J_#6G>{geDt{WJWt{qy__WlUS>@h>ebk#UraQv56Yt0{Ix z+~{BD-$=N{zrC=NZNtC2XqA7Tf4Bdj|FHk4|AhaP|BU~f|APOLp>oQ?WFxUK-AFc4 zjdU5g6|@^!1xt(}#!#|7#HhvyWAwPGh4YR4!V;s#tvhTv0vJD@foAdI6``k z867r<(P^ADx{ZrQZ$Ot3W?(=dC6E@#2xJFxcwPjC1x5zOP?S!wdSI-?fGyyZ5qQAc z4}-ueE+tS8Yz<5dOc^&dFg-A9+=;;4zygY*DWVQ62`mq+GWoT@4LrXBn`KXOJRH~t z+{LvD>3!!NC%PxxwKwQVos@<^>CEnL$U;MM!dz_<~^>wR-ceV6cW~eXtQYUSe=ka4N;3 z6p;pJ1ZM~5Q7lSvX>eh1X>f&oNN{y<9icC{k!&&++(NM>jZ1L5#Nh7WzTm;K=HOvk zp~y3rO%5Ino}hKJIe3crGr@Dg3$C2tC0-FiYA7+397=U3h0;S=p&_B6p%J0cq5M!` zs3hbG8KJ23?WXsh7K(+MLlZ)iJ#)%~p=qI+(i4W}gyx49hn9s_hSr4EyS9Zkg|>!v zg!af7z*QC6PiqranNXW&YkZ9k9SI!^b%Z)YXG7f~thS-vucz9?uw=!D~TeJA2*8_Q>wYJ{ea;4oc)!c$Y>FM~>2Z z0iKako`{@s=S9v$&QU}`aYf`pd6QcbrFEa>Br&2;hMD$^=6DzhtdDu-2$tQ=E0me5w|EWT9ftqeNSDyu5%3p*=Y zD<@V?p)}L!?ySnWl?y7DR4%8xt18!4Zm8T`xvg?n<=)Bzj^o8gD-RW)s%)=3UU{-O zukv)Uqq3{=d}U9SsIpciRSm2fRFzp`R1GePRpnL0^(U~E-Q zsk5rFYJAnCs;Q-|RWqt)SIw(hShcijg`?h?TeUhKhgYqu+E}%vYJ1gg;`db@tU6qE zwCY6Fsj4$o=c+DLU8+{A6RVS}Q>)Xfv#N(w53L?iJ-Rwy?m&xO)rG|lxzmw*it3VT zPqiU;dDYR<1%$Ec=HgSl)>ls`SzJB2dV+I&^|b1l)pM%nS1+z!R=u+7g5xBoEKaIk zQ#`18ef6elbDw3OU%ex~pOt&e>OH)#EOwR7Fy155x2Gpd~q{&#tv9~6pCc7k7lT$OyIjUx4 z&6t|8HMSaOjaTjmYl1aZHT5;EH4|&5aGX;!y=GR;T!+p(>zW0?B{j=yR?)7R0}FwXTwm zT3>CLu!fQMnBElr>tJE1A5*z9iu@SM+&QY=aSfPDRtR&`%8N7Fp>k<1d@`{sV(O4|j9GeiE z9Gh0=iOn?9V{>BjdF_ZTjxCF=WF&q~Y<+A~Y-?->;hsL+A8U&pi5-h|#5!YVDOb1L z)5W@D7h}D3dfkA!l)ALKjJoW)oVsCkBV%*ee=@qq*Nv$g8ydpivd#u{y4Kdw{;n=q zS5;SE*IGBRZi;(g-E`Ngx>lV~4sasyR3b>a2WZedHZ$((Qxo%tCuDZQ)pH+9D z?oeHO-SN7URio-o*LBsMuj{E7_15~N`hkRl>ND#Hv(K#01rDztRi9U1KuahG%QdCGv3`90r247#GwNs8&#PZpzqEcu{p$L4^&9KA1ajDmhMMcQ*Y9?u z)$gl6Sbw0F+ECa~(%@+@8lnxchUSYbU}IHdePe6m#KtL=BO9kT&LW)KxS(ObiAx%nI~O*t zYFyj6p>cELwz~GlU5$Gi4>TTXY;Qc?c(Ux$Z zbxj+awlr;T+TFCT>0oHFdq&e?_q?W~O(zIXHJxcX*L0!jQnT8e*qlt5TJLL4Z_a8S z5ul4eh{(Hw1#Ii@r>H&1Au+&ry$X7ilp`OS-)mo=~Sj9tQIuhxRD5D~u!buq1FhE9q}GA4PF~+z2k{=fHIuEeb+9}gV*lVC z-Pd+PNOzuj)Alj)mGus z1!A^XD1ImAh_}R_!~yZHGC;hoBq=wD%gT+)EsCO~D>+J{;!%9ctx8yFQZkelWsZ`o z%vF{s4rQ70tm0Q*Qr=J^+6&qX$`pOF{x#+6`b>S6@`OHD|F$w+U!*TmX6oP9f1rF* ze@_3gGF#uMZ&IGtx9Tq|^YvfpzfuZzxOj!}{-(@9QV@4&?`Wr~YSU zh5mv5fwD^foBomVBmHCjva-fMa#CnhQ9_76CUh6RBZ`LnZ z$0+}>=2^!om#yQhg{p3~S<6(b)oqQc$<|tHy_#Wdv`$j9tY5RvQ17=sZC#*#!Mf18 zLj98UIqO=r#QMDTdDUy(X#I^^VQsUvsb94ovL00@S&v(ftKYD8SUc3|*7vMu)PJ*{ zwVqSIY5mZ8UY%pTVC_}sCWwR^)I|vc6K+wTOSm=RF7?L=LlQo(Zc2DGVZ6FK;qipU z>e+;65}whL6270XLc1a1`Gk$y%?X#z0$qLz23daz16+LKGwd(y~nZ9 zy?^B7QNrEkKH@&+?r?Y7myG1U)t^B2eh&8jH=&Td_mI_JRxS&TY&=Ei$qy$#EG)@i zO8yeQJ$i?_MqML>`n>wQP}CRH7lf*AQeULhJJp@SqV82+qnYxC`i4kU-&EhE`SLsU zh!~(ARga1!^^fWwY1aHn{gX&mPpSV&bLRu~1DZP*)Q`kKP0fr zr=%-zGRo(od@8!{6W2kUj`G=P{EDBE_FeFK$>hl{kmu`vWqH!w=lIOjGlKG%m$~O2 zjjP1tai8)Sl$JJ6o>=^(lys)YPfPi|iR;FjK1C;=a+CSRLjD>8e{D|}L&QD8B8JkH zAReGAQH-JMI($cAfXJuodQm8fs5kj54ap)v*Nq}1!Xib`)`j#@z#?uI&2*)T$HioE zi+Dmz6Ss;d>AFpPi>`F?R*S^#;`?;nA$~|#ruYfj{^!K=bloX7(v>Y83SEQ6 zPP*^M~JT`j!YaW9#0&TI7UoP%umc0UrT&6@li1)(V18#zMfc< zSSy}LtV^sD-=MMWqSmwRkD}2NWvhwS5p5*eLbTna-6riLIw&G#>&iBkZ7JJcw!3U! z*}<~IWk<_Sl$|0xQ+BTG0$rC}sw>fz>`HZ|yRuwETti(WT%%q2u0mId%i}U!QCG~> z?3&=3?3(79>6+u3?^;aPGS^Di8rOQ)Cf8Qi4%Z&nepj38i0fGD1y_fw({?Yc;O zuUmHyaHphRaHqL5+}Z9N_b~TJy2iN2x@~SJU0!#P?pC?$-L3A4?kRLlch5@0Ujnnl zEG@KDRwh^BUrHDMKeO{Px^9HEr@-28g0-vVn-gS8KWwWq_{Z-=#Kz}hom z?Vp3SXTjRDVeNOp+6Tkh?}oJxfwkWQYrj_Qumnq*j=q11*oNnhSDrnd#VIH8{QQxhKJv3iKE>kaj(x=cf8`0}e@*iF zWUFhUYYK>;O7b(wB_pF$E#lQZzQV^>`OiY}NZ@MX$e@38@L4DxJ;Wo3coY$jB>4AA1R*1bt0^8o z{3}YOXo7T5R51iZQ3Ya&{=`pTuO<)07yT(pamHt*_>8UF@41M z#}e^VX6E~zG?!0ASyvH1Z^kb_XZcqopGdFzM1FoQ-Jkdg_0`0AcgZK#cvj87C(BP? zt3LmX%DecvwpUzD^69pB(5EQVJNOfn>mA?3Sk7(ZXYKr?o&766XJC^BTa<+2Px% z&1~=d#69kxE3)MCc5ZjY=!$&q3x3+pzLRw_Re0p{c7ED^^;35AFZC(b1nR?zHMCBe z>siJ6vW|E^S8O6Z{4Aby;NBj7B42R?@4dv=+5Te`*U1!LQ_QshZKbsl&+@r$ofT)} zIZF@p_$q6-DK`jP;7wVqSyeYw>)O$bPtOpIT!( zCHZt$HWSv^__}J6Z-8qGQ+$mC#n;AuYvm`_$oM*Gk}rkUL0$`a?W6V3m*zUnggm^~ zbxG>;Sw#GH1Afgn95BbofB44sf5*Ys3OUVTUO#x=@;u`CB;R}R&0=5Vo9kP^^CCVE z`url<7VBX@=UYO)DLzN|EfDfsoImaZubx|1&#Sn9>6=@mgZ-v&xo;JZIlpZY&yO-_ zzR9;QeDFK*cQ4q7b9>MR^9>B-`&T~5te3CH^y6`PZ$BSp)){TR+8@W;!*BVR^iO@= zKk=u2Vg6dle;&9(pYoIad?oy2+(-8FhnyCAI1T$I>H~jL`Ck7({~&*+e=rlrHay-O z)8GvhmXXhjzljo$U*d11AP%9pgWpWyc!GUe{0)_OOu%odz^C#0&v66!I{#At3SOiA ztNHyDey75}+rRHx@1z)sh{sHSiFdjcz&d(_Tc|H7NmK?ZR59MAmg|(PVqRgKV2OQ#$&(! zWcKT);<`9-JQt^{V!FNz`iJ+&X{aWW4q?JhhR@}KSpVIUa|f0FTYo0EHhSuH{U8^ z>ObH3{UY`e#(txX?bA479Q#xpLu7OqolLMtBFsbbTl@|ZelHrm@j1wIBB0B+k>c}@ z=M_JZ;`tWHk#8pP+emoN%p`6v@3FX_xXl4)z#9k#s-TBn%4&?p{ z4hm-S8%DfO;J1mmpZFakPS0-{@!LhgnqVWxfb9R{zFEFa6r2GfeZ0=FZS#9Y-0$+O zqTp(_v*5bmM(#%*$KaOWcHHCliCD+M;9>UV{5DbWlzfjUcq#q{(UtdyxPSQ_BKR?C zKfgrx`{5XzBD1{_;QQ`3pXPtl=-Rs82B}_;#N97O)VKUEqHV z90625OMJ3jPeR9+D4$RgfG7t_0qIude+&_&);W-;LUj`Y6bSzx1TG1B;O6 zSHQ0#Wdq}7lig8v$N19qa^2sy?=Er#SjfZsxz zucOD%OR5|Z6}+_1`;qdes0l_~{Wf=FZk&?B(uSXfdhauApbr1r9k|} zJM9m^F4PC}RQnw8cfel)F&FfQfv^w_eSR4>CY}eP$HdQom^ETN5Vj#Oi^Y26l0A=k zA<(yCI&cdRb|o-J1ZI}_GH?~}C%~P+d!P-LAgY0KWc}b#Pw@-j7m!l&@GX}y>&?Ia zjaeoh0iwsmSAb8Mt?LGMp^e?ZF0`~8*oF3X1G~`bZeSPM-VJ2F3H+-jcA+=AfnDg6 zZeSOBrW@FW{^AC<8`y<@>jrkA_qu^y=)-Pc7kaWA*oFS=26mxW zyMfHNF;6|&g+A;CcA*cufyArumMZ?Ly8_EpV1Ww!fO;SJ93Z@nBImCG#B5TAg1;5~ zM?m;bWgQUXj=zMfsM1eDk19Re7~ol;Tq!!unjA(=4x=W7>Vsx|Sb~vNP;>H`eD^lo z#avVVZq|Y20mwbbbrEvdr-Hwnt&D{HZSb&g&QH-~*MlK)IGZguGaT z6x3gN0oV+Loh$bv4d#L(zZ?obpkjWh@LGzTvvR$VmOlyjCM1|^$`0^ZK+JvhHPjPp zrScLan5Qaymyj!RKBI;a)NX#2%arlJ3J$h8mSs41?8%X zkp_PQPsNPW9srMZO_d%Jenx|@RwW++4u=FisXhrwDflmfmv+?++zScpO)CS!-)b0l z4cr9+q9eT#a*Vik0TSu|XF-B~)?|e99(Y)bh6q8w z6a0rjL{QotNclcct|su78cJ8tx9Sqc%Thn$Hx+BQf;B?zh2@|h)Xga6QKZC5t;%%- zcB>)A)8MhST%fEEY*_m#!vqwx=foj*1Xb!m zZ)lrEP;H!y1Ogf!z0qi@O6s#wcZY3ENN&2P+74x=W7y@(uoBlW>%k8I{~-7WnHRHZRabf+(j9~&Et7FKhP&SfKc8@fe6fN21(^Oq>S%D$3KN7y0nGEa9Ss3&>=rMoQGGg`mMb-w&l$nOQt zB^-`44|2^3SEJ6;z)KtiTm-qyyAl2KF#50sz0{1mkZVUFNkkffTKx=?FQfDgs9`DO zH-dizdcKake}JApp#C?a?R59!H@MF~e#5d75)1Npl)avEaV}}b4btlfW8hX*P&<7I(;!Yb(m4F;dI9CfW}f)pCl#39avw zJV#1E6?H2{-G-p_VwCj^_&XWJc}UQc>MKClw*EP!8G*KpfF1!$D}`J@F3|s|C*A!4 zuO^JDK(97(uUa3&*fk>kGnP8i{3@gRjFh04UNI3ZMOkavw)NLx;cJm{Ez+E3wA_sn zw*%L5E|P2ozaIR0@N>b>1>Xg}3w$B*_cE$$d-qe_c3UWo^;f9pZj^Ns_zqabO{RoA zlJ>eK4fPq#64d8<)Zr$sv+_3AR`atrP~JwbzK#A_1+2qp{v0VkgtezIDjy={he(6; z%7>grPetjAFc!Z+pD#j97NOiHfLl@eBFyWp=z&F;*IUs8i!iUZq6ZeidY?cKEaDlh zKLOkc$#2o;MJVehD65Fe(!R@l!tECDQotHHtIit1+ z_z0uYWBHIJjKseM{w?r3!S6)gY~;!YUxK_P%%e{Z>93Ks+{36ILjSAGYcn9h%vHVm z5t6*bsCuOYb=Zws4F~@%@MA1*b4tro#OFf)2xvP2Z5c>;2`O!m*wDHUkjBoad>|!A znG7sNOWy>(jy9H}jjyAPrD)^pXk#hb_d2;`H}0J$mQqWApR}zJHhWnu56^w27d?m zJCG)W`0p{Q{@x3`j-#G$!n)o?ZJ(Ar+ISMZ(W(z&Ue<@bpYkrocLmyh9{4VLX&q|* z7e-|rG^|6)hf#Cbwz3c@UqD%{DC-5Jd;ux*k>&-Y*`U)}tbKz~*?`jR=)HR}7IrB? z&)f(7cJ$1B=oveD=05a{9X)d&dd7~q(1o6{W4?DW63@L9Krc-}>6cN~AdL8Bc)48W zt%c~5Tq)slt%VleN91x@#D9zUozlk8u02S<0g^pZf|foG+=TY-!OY!+nfnrY#(|!B z3F%)#${13N?2LBrP z*TA2Jp0muuo^Rz+tOHQut>}5DM$3r?v)ah@&jNy^!K8T?Py~! z+SraZ_M(mLXk#zx(2hFvV#H&X160ahMrDv`|Fp}{_Ax3advh64%085G6594b+ev8K z2W=-U+j$-_QvJD?R&g)UmYdh>J1u)j@^i$Qcf$L<&v}&vjN*M$!utP>QOyK?3HWs$ zL4grevls0X+G1DjGE|+LS zO*+wv>1ahK`sz(isr`aeDsP%~rZmb^jN<)-e9HR-a0`#4HiE~?(uJ{;QDr*#U5wOA z+^c^;iDOKB7LsTAE-d7A9v8h7=`)b`h~%Ly0~$^+>bFBf2InRIS@09VPXu2Lz8d^% z;IaPlc3_urB==YG@P;-1moflW3*eoFGF$tm>V zLf|6YZNptebjl*s{CeD-j+SOvegm6fJA52AIg?SyId!XknJs})2}p_c7D}JWs5}V` zUqza9jL|#56)5E$)Mv2lfAsJ>vWGEW-a-GQW4^qD{z-?0zk~ishfi3+NIdt|os7yG z(7z3q^9D2@XWsHEqk3FQxLnJteA+<#MDRQ}cOdT!WhzoWXW}ieV_dC0%D9Wry4j`F)U&(|^zFAoTBn&P|Bh_n@pzoJQS@eUsd+pMqTt zfg~T2A&_KY_i?=?m3c@W#J*m@-#%!bNaRq7w^_@He-av2L&JMG-?&rqnB#xIe&js% zCQnEn8W!_>r=2XXeT!jx|B2n-4o2lak>&>ET7+Eby#<2L4Y=HST(15z?EME=nh5^_ z-UmH5W8ZW=Bsa4}AB}y}Y)0#H$wU5%+()x!S}VEqTQReCV-{~jyY`_i8&RL3$h!^t zhxYQC^%iQl7&UxLo*g0Amyv4>>bwqpavvn?u**hD3I<1!fW63VZ~31M)6H-o2>dOQ_)tXm}19W%~uS&QrvCwC{5IgxgWK@1iED(2#~Yq@o`l!inf5q*($BKaZ53=QvFtz^Hy6Gj1S9 z+7!dHPkz9Xjx~ZL>LA2jDpoW^#g?=1eghH1oM-D&-ZbMwjsUZuGaa!aJTR>Yw+lYo z+0VT6+lZt7fLLe-n84r!i~5f1bRurFB8s6ULjq8{=sy!vZ)!~k1Rx5MmJ z5*&y(4nxl&)MpC&2TKlo#ar+#N8mBOh=?c=k;APV^H>L1ZXgLfm70q9|01KBifH7Z z++QS&Mufm8ff?8zoxuKL5ANv|G-2V1gBP9V(*Fm`@Ans3zr#E~O`}NOEqIsr zG4ZuXS&NpY!w*Rn@-#*I9vD{4Slhk|XFkeRVsfC`xCpPM6 z%>9pWnsF3oI3Jl3*6>4}zlN|==iaW;XHj}D`g1Dk_C@GPhMsTgybiWX9@h0VwC#rG z49S}(v3z=#ug@mQYkE6-Z2eoz%abUizn{~KURZJ?O2kO%ckl_Jz^S0}7v>dt+VEHK zr*MXIK=P==Z7i|0u|&HKr90%w9!?r}A_n*-*F^m_x6v{TZTvM--iFrQf)*jKashQK zMq4g$Y^IF?-wyd2$s^?koC|G0{e#dm7kYxwY(pLHL#;kQZMQ)~4ss!qQQm{(2}lm= z?6<$Hv#&mgI47G=nG#;dxmGqL>zPk zB)raTu_nvfax9eS;yBIHi*v#UVHFR_If; zwG5%Vozni{6<@I2%CRWYya34xJYPuRG)fglum{nUiV|m_#3c9uxhKtp`~>8wX0*e8 z<4uXUdq3{ZMxW=Qw%L&6A$=asPE&DqnkP^AIWO($5Q)h>An<2sT^d@q6S0%VJ!V;r z6H$#dTh_2_7J@E z9>_O9z73XnH|l&4xn5$_Q!(RSK(229bNOtU^k0O}FM%a6-(wvoIGQC?&R~_?ifHN# z#`jsAqZaA6GY`pcA^8y`zrB1jm6e6{F&z=nCamVahlY=l{$oT_Q?ODGfaFD#5im@ChlrCG zV5k2>)c-@|oq*alpgw;@eI}rWf5hGS@-C+r?J~jv+R=OK7zLgVs9#{7{4hsrF+^(z z(PPh{4@(er*W>hWFUDd5B>xV{dpP6Wgthnx5brZ6XRt==kmzRoJb-e22k7Ox(Hc>U zb(TuhBREO>BI=Wi{yB%cx#lRdM2=1yeEV#9*2nL(P$V#!XCl&k1@b>%eu#MJ)V_?` zCPL3b)M^xJbpSnIDW4QzEt`iO>pJXM=OO(WozuLmlRwmN$5?o?46ERk`gc5otYP%VOtcX*%Q_j7*O3O% zvUM6HA6>SSo+-RT(O2m&Fpn0cVXu^rRo>rZSH-HrQAM zGZfE!)h`f6JH9pQJ?`QtJ+A!^YXbs z@8@}rbKQh|UcVppd>+=aA9cGCBZA$W1-m&FyE%1?PTpG&=(jO1&)HDVm24HNkKb6+ zXKEiXkMut6FC=+VQF?-mE`{FU^OxEqXoiwTxtAc$%R8kaLiJrn%gd5StwwNEU1q!qio_h9qmQQIe=?KmW(AZfu$}D~_PW>ID zG7EZ6>eo@4f0ya83S{x~5$kO@t&-0xJ1}Zd)a}b?buC(r(?vA~NeLt|NSyLXC4B54 z;3A+8^ZjY`z#EY406t?r*<4EeF|@0c{TQvh8Ca3o`@M)XFTkH)My^-T+Zm|&E4b^y ztUr$vtqhzuW>|kgX_Cy7VfLA$af-VeF&myxtA*C<;k|iB)5g5|D)?^wD0-6PtIOC0 ze2f$0d-=UY^6ESj*P~}%!${#whUQ%p|H}@Q;#D=s>xh=Cw{YqDj|q1(uXgEw75vT& zq1LUh6?}%ke+BY5qtc9A4o1s*M%@Y=rccM*Y{AO-Yr&@$tl<*hwfd0D3ml2{>mo2w z=T+dC_6;6cji0D`nOA4>zn)XaGinpH6VS$gr+z=9k}Y#Va+py+%Sf$YT&;bFTLC?V z@EiN29^4HwT4q7RMc@hGJm6-H&)#zwwOmGZhZe=WV9UG+$v{gOwdE7PB$kN7%!}iU zl%DzhoZgZLJz3DX3weiYeC{_yTgH~4twudJ@X0yyZU&A4o-*sed=Pn8YW&{yW!J{Rv?^^XeRx&u?d_{G3ST^vWWjmr;8RX`WH>&YrrE@B!^rl=gfuT!lgc~rfTFi*XQ z_c)whaRJL2#orh;4H_KK=2vfHucE#Ioy=cQ-(_zMegjfEp`jOfKL@@O_^QG^yajbQ zqufO)hber5#Q(BKQ7$Q+>@gUXkCpT6XVl?@d(@dYok->NRO#SaF)EL$X)IB<@!FyM zC*@5CW&npVl1@VLF8GDOfyxP_Ji(p;{Bec%o3B9U8_F8OCCcwP!bIM`aUF!<9k&qr zIYw(L_&|^5B>{~{~Qw1p#R9ahOw8UrXMAc$F|vyn1}G^m3fgghvD*;l|$)U6Zs?1W}$ut*Kr zXz4uUoyU@dOy(0ZC6BxJ;O;%p@GEHhmE@uSJS69#Eeg$1)B(M%qqnu+AkA+eZ-Bf3 z{MW&M9cgAF%}nqf@E)X@g*3CkPX#{}{IlSnWnO_5Dbk8ydpc}S&BvJLL+7ud^Vg7f zK;8i!{iC9P)N|m^A^lrO{}%e+ivG7k|03vL1ile`Blz{;*Mr{?J`a2z(xYdr=o$3@ z^c+CxccSz=QPy8k)?blkBhqXHk2b1kqq+n94&;T^X|OuWHdy;M$YIHvwB+Z&KL`F^ z@b`j;chcaUEK87g3HW{B_o4o)Q2$ln4}(99yyr33W-=<$Pp${TQ(10-hFhc!KwgHt zWzYj3sKW>9a>S*_counQAny#+XUxH5spNjOiOMi|&JOG`~K-)7&2|u3zKd&D_=|`Y>FfZ9nxN1=HO(r-a}tO&YX5is8^a=tes zO*3kaRVe|hk`;d2nknZO>hN1=_$?&Rra_zfG)jCLrM!W zVL#d==$Rya0@`>d=I=&W=3h}Re1$H3MHkX{p{(CQ{yXq%z^_3XtUel6AMHc%A42~K zlsf|T0dECwLES85UxuD+Lr=EB()_Ru zKgvS%VnOs`L4R7%pVl`}pEr;fBa(m-u_CV(d3BVf%d+5OHTYQVVek)wccTw~2+0po z3f3=+jGaCY4W9@9Mett)Uk<(;8V(`vA@taL=&|>}{~i3_k$w)+&p{3AP{TUNDFsWNIp z%%CA=u%Ijp%F-u8&t&jF1OGGd>%gx=dUz*`j6xyTAlG1l8Z6NAI?}uj`3cBRpuO;= zR`^m4F@S~`K`0uQ1DW%rgD=;C~MuE44185%@qI zK2Sj{ry!QIJ_(&qqO5PAtZzVn5A^pyj>thn_^KBELZ5jZ#`m;V1W%!sR4=6CJ6tZ6 zL#bv+;rW9@0}0C_s(y|_s(y@_s-KqvuG8!it%)%@zwLY@YVCd`0DxH`0DvR`09BMzIuKyzIvXEub$tBubvMT2gE@! zOtjJUAijD&0$)9U2wy$_JidB9O1vljEWRM#r)vzpef~v!`}|Az_W2|D_W4+R`}|RS z`@8_(J}*=EB~fE zDaw^^D&G`7eEZywZ=W0Z_IVIrJr5}_DZdn9#Ry|4f0NM2HwyXtd;Gn< z_;>b<$+)KRH`(z0JbXc~@9TN|*Espw&wq)N{|+avP9Xm^&JOwaIQe2rQtu;6y5F>< zfheDCNTpG`hwO>1N2d`PLH5MfV}Vw9g{)%{Sr}W!K(dRqWMOO*sp3VtZh=jt!6t4ci`Yw+%wNL4jjZ4uvN^Vc+hGS8 z`1<`FWD93RCPqC=Nulw+6C<6C(Y*`fI+(__M%;}Ny@y70qR3IE(1_;ZYxegk^Jx@^ zVifPkC=SE7>mN{lscaL&DgGFhn0IA7{4@2N{4+mw&GFCoFZM6%yH@(wnAiGGU7P${ z{X5KSkAFX1Z6vw+I^sX(@1U!buCuthffxO~@ypPS0oS-vI6wWSnOBB+Wg9tk4I>(P zjcbfC*0A+mPNbEW*SvzCx~hzNqt%$$cTF*-o7b#QU2}~EePt~%meb`V$<@~?W391) zE-r5~u5HFH!oA2LuLIZ6KFc_S{IlXcYqXo!apNRir-{~H^9m1`}(epfrIhO z?ETHgDz@*yVOZ|gz|p`7wz0q|^u!sqkH9(NE}*q}flEP^YZO$WU1}mr2_|BU76g-n zsmuk_x%Y!v=;?ys5SlxS1A}SatO*V^yulHqeOGX_e@8GsSV-2~87v`d9}x5yJwbyk zd8F?|FdFa~BZGxxCmEDB7HkeqFwO@j2d4#jKC=Cf49-C-J88tMMn-UcZ~|#u99%|o zhtr@%NGazEk8Xy4e{f}Bs&T+SGq{H2Ih1ah|E!S{Tu8~o*zgG>7(PXJdMMpQs?W*r8RA;Q*6=xFdf+g%`$G6qM2#fE z3!0uRl1zSyJYDEyFfo`INsXkFpW7>aT_h_qgiGU+B14V#$O!gkgeM~-BBLYuk-|tx z#AD=yt{ETnqRicDso6qy!U5SbZR zNTtjnyUHVfkQXMO;qQ*j4~&m2jx3`)D1P7imr;TjV=#4jh^U+=;r9Q(Ddl8=-%jo=%HwP^muev zU^e}p46TZuj&@P%^U(p33DKTP5ja?BtxT#MSUD&`D+FCux{~M`NY|i>L1js0NfntDnVzsGTrrrg+=^VthSN2QE|%rd zRX`WzD^*L?3I|=T3Ku^YPIe``sf-ltZUlBWDt0s)VqP6P8VhzYR>Zss*u^Ab7jqqU zF4tq{l7yHy88PpThI%Co~lP;LQm%K|WRH8(pii6J*3{8$(nX@) zPm)i+1`W81QvMs1MwD?4$|lOW1`Ycpq1~T>d?Sg*nDgTr#P@t-iEJkC{EXx!3SNW8 zm{dhn{~4*3XktH_(vRY4rklUBh~^S4=vP*MT4Me#{|vN>Xzf+`H(W)VuR)x58__PJ zz2@(Me^Q@+Mu&*nuR+I&PF{mfUqxO0e0P6;Yx>H#AM>5}_W2iIkN1=QBW@%8$2H#H zW*_;*l{)*apR7}#Kk4rS;`7&>TfAn(ZQh^c{iIFT%lrO;M1zPjrH|nC#XnfexlR6D zqT$lN`bT-;C;fRu1#%7WJG|1jb9>3&{Vs2xfA;%`!m_>o8rcv2Mlbv&>jaG_nnW~} zXa>=2qIpE|{*Cu%p}9`R*RV5J`WbqbN*#R9PwD)tWxYN%PFIal-+->C(9wSDYyUOYB&@A*x_W($ub2Nf>tu=d zlWU>jy|M=OTkraO7Te}_^OwhbpD8E*;pcv&7{gC(@}Dr}G>3Wpz`X5}^T|&!g`e8W zzQ}*hoEPzV5ci8Cr5^aXDgEXMjTieZmG^QzCk#OpuY{Jmg~`K5mOm&^HP zP+Vgq%6c2r*G8)8!#B$|7-SnpmYMHg`Jb!(__fl+>wGPL9H#~S=%1DKul(t*tLSP! z+22GjF@Rhdv-5ZBPtn43)&O4Uad+G{y*1Mn20R8#UOr%=pD18#GEx zKSptf!8UkI`ZI&<(1>1%2@LXo@MX0AbKJmw&Y<{;*Jy)cEQ884D3&s~OfHMcFt`kg zhm4h`|1|w2=S6H5kDIn$@uSdX>OdXWnEvwEHT>{ZKDaN2G5s*>;&{y97>nW^V^hEU zow7an|HI6bu75-8f5nCr{cOe9qC6`$8_-+?f)h=OY?p*{>t`V ziM#s8Sj)`38U6a?s=3AU&)D(ld1dUm5@Q(@ry6b27sb;VN2FaF$D}>=`GJFSUa|e* zmtt6>)8r{mHM%ABpKk`+9r*~OSK4Pl_kKE#AqotT1bduj&OP#5ffVyM?aCbFIT4_C z2eSLkKblv8968?t)IS08hk-G2?THh&7kjKW+2#PnmI0fooBT(>X|~f$A0Yn|ApaAf zcrn2Kgn9D80j>|HpDx!wCgh`-AV4u-fMY-|e}S}9UJC;h`vs^U0;^kZ4^SHe6uSjDZd)t;f7~|*sJ(%9lUQbxwjDSw`#r$@a9Y|~piA~6k7MAx zd9O$62ny-TgA_LfDfS6c-Gdb81Zmy|DZU9(ToW8F`!_hs^kdZiV4nF~AnhSY@lB9o znjpn8!EitOp}ymIAV_gdkYbwPcvEir+#tm?!KqR|&yyg(q|5}hULCb~$}D}-Gq8bFjn zltz>x%d}_zliwWkcbJ)eB+(ctw~r;V$+{u^O4$axlgLXHl=8mcDx!K>S9|M~Hrpo> zO(B|2G|SXC*DP-V(GsHNrhFCATA~f6-pxeYh;|X}B|1QKh^U?DIMGS-_jJGCc=|4) z^X6~6neTkR`#nN9Xo@T=_-crkP{Ox~ZWKmpQJi!*}J^5hkh;KQCHWw6SPQ(e|R z*RImRA7&qEA7dYDx7nR`uRUn5ve(;N?Gx=&?9=VD>~rl4>`Uy+ z?W^o-?Hh1^ihZ+vn|+skul<1ikiFf0+

      ~x+j9cfi+n9itj9DJKB79(Ys{DuKHJOPc&|Eu_k$vhn=+K8aRawg$m73( zl%(mh^*=VrTd0oQtSy|@(PH6f&dbmcI#$>n97R^rl+jAk$}v^t#b#=hj+VS@>*%ep zj;6wNHg$9aZJDAsQZDh{m)f`s;2&{u+pdNM{PsR5%W9WVn`^dKf)Nsvpy-aRKLrD)`6~0k@p%3(<3RScR zzbt4%U)YH=n(Qd})~kL7QJ68{R?@tf!gI=2_AOU8n_e zkgd2VX;f-HlOTuhzN|7wDd0>NgR%w#R~_kDc&FO@ zHPr(Dr+ltfO`KNkS^3+6j#+uUb6!Y>dyH%a^7iQ!6t1jkG$euzfeHK7qpw0)c}}mHc^@dWgE6RO_Uc|MW#>FM3LZE0v&=OAwY}p>@Y~0XU%>q>nIZ z6)MDFWIg6|wy%vgmE*L*U#U^;|LLxdP12GcZlR>>)Is@Nr2aC6-|ti(;%`U0KK)#) zT`xYA1%txTDhhD-Enl;0 z{7*IUk0KTN(0kh?mN{+ajn(_VXZe;oHsbG*+!D{7s8C^&? zfo}spBh=>zYrttOFsGV}e&gT7EMhG%5e)KQTr$ZXP+wVtKV*R#Bo3@T`FAb;#d9WA zmDNauAFkaItYjYCU>W4s>IbS{v=WqJ7!L6@S`(qg#$YyD75q@+&{6S68vf8G2Iz>= z_QSmg8wTI22G)3x`BnQtek(wSB`JBAq3WUFEL*`txCgw6Y>S9Yz*$ZTk8!{ejj4|} z;=%~H2hmm~LuDIS#C<9-ra&zZPX?nveWe@!!mOY@ues*EOQ&K*AghjZV73@RmQ>Ha zEd{ZttE=pTLaq@l-3=+O|BllqLPd}v;C|62$yIu#|0${#GEy-3>C>M<`?o5gPW0_k zEB^!8B~2^2yK0?CwTLc0S7=YPSvr>aDcJ>+y8jR7DYKEB4z#*T{_Dc>T#M_ShCLK~ zqpJkxyrdPo?T4+sD-Yh^Gxtyx#elcO8>i$8%Oz7Dl$lh7~gQPK@Y#3>Un`5k2g z4k~Ia<>ZrKBQl9Fut?yeG|}lEU=4fKb`UgyU-4SNkD_Hn_N-qMH~@sudUj_`9M6%U zjj=YP#d`^xzX;h4qg-pFOtw)j5|pyXO{S+|Gv+a!9=K%>PSTt*G!IRPaF6LPh9d_8 zP~TGL6p&RB^`cu4halZt4f~R^NXz|7>Tn&3s{Z(vd7{0;3$Y zjiCz>*46NyV%>~cnHS5^t%^H~RNRZ4mDgZaUfzlp8aXR#KhUgA9Mf^N56*$Cq1Sr> zw#W3uyh=@gqulftUBVR(_X^f>%>+#n+qi_2pl{v>Tq)&$BYQ#xtKo;n^+PpbJGkHr zNDAlEH&7<(Nu2QTt>gGrjruE^mfT|mVb;l z1sia3;fuAUb*^tL$3Q#KVHI?3HG`v9>SpluXI3-Vh`Eu?pc*a2zhJq@xttgD{R93l zbT;bX>z5*$fvdk&UyBd@pY;9Ib76gFeRTqT$HOR&(070EArI4WUM;!UR|@%{9ZTiv zb*Sl=G~EBq7!7~@Z>`}k}F^9)<)`g1S=`r%^neD zHmmzU*X(99$7=oNpu0ur_X-&&M8EgpIz{#evzx8zXX)2}C}L9+eJllcPH;5g5GGDP z4qFS>1Q)EG<}HLnu_jQw+9*y(lfLOYv%}S>HK<%;!5W8%ogk| zVikwH7wRExwYn2Cr1>ljeKgHjg3uYm;0W~_+#UjBwJM<{p)LWPNzRUah4(Mng75j1 zpEc@ow7ZBgW_&WL-e8Xh5PVxLV`Wqx3O6H04&U9FT2+ zDgBPRFkd$o58BaiJn$VJlKX;h%5y#DCWqSQ_x>bF3+t+Ob68g{&@**qz!YcIpO30{=;~cKNK9S1F*`bRHNe*vsjDxj?Xa$L zL^I85D9CDECFE&ceFiN$b#<6KRnXP&7b0{uF3r+a)GaQ_xa|>h7b9rV%&0G%nO=|r z7np3R1u;dVfpZt_8dQsxrGZ=gT`0?FL;_)T=~FV1XZh37&}(HBt>wP(wcrNMglX#6 zu$g&mswzQUk&8#gLZw~ts9~)dCG0k+G>8!qkbka}w4DD&AB+DJc99P1dI+Lov^7)r zWrubBAnuKH*7XbM>rr*haKCU}@58|w-7iu=&#dbw|E24CB*r>NU4ID=i&@ucu$UZm zeXcKKZNx0~r+STy8Z!m?yT!hV3u`VP!mztvrl*E>i;xBCH^Bk zK|T6~rLOP^U_BXLgFYBBK`p}W-|G!G{;vjs2crJcbal(?G1JxM@PSex!{oC@eTdHB z(DPmJt(eo*I#?@CtMFGoZ=|9hU{!@X)t95RqCYtR0@^D4=SZ#TAnG7ux_X>p?pgz% zJR70y!>N|Gv2TbAWc-Ixu-`jFSSg)@XBa)xYGs!LN3?MLdGOe;Vr}wyFTPTiU9pf{P)WALn)zGCd=iN`26!$*^;~3K^E@3}blD z8Rk*!Gs$+9zD|Ks-KaC114;6ZVEhThF?9%YDnFY8Bi;POE=W>M9HlgcTzqI%%={>C zQgVva_mt~p4PrM+G27{=S!_VvPD`#af$PRONWu%pZ!pE__;r2JxL3U_t`9`O*Qi_2 z22d%jk5m+e#Q!)%Ta_cKaUN zuYO>(?b?V?q$^LcnkkNAV1?~i7h>_k=aH~^SBq83lDxF4N?y`$>eHVLR`Ocq&mo7gl91+`pl7be2)7W=e)wy%%)2rf)p7(p5Y*@TCpRJ*7h#Z- z7p>JohB@l@MCW3d4F-j`wI3XZRj$tk@CHWN+`;NcA7=>2t@Twx(c$l6d!)ZhD0D%E z8(s7UjnT_r>&8{yRp1jJ{2lo!W$OofLz5V)LBZ8ebmizb*IO=UO$(`hV8+bwI_e)C zzw%=E2o2f%30AHZMQ?{u!y(~mXvF{26i`D?pr;nyGoa7!3%|yZI{6w}xalw^b?%V= z5q=3nzxp1JVNJs#j`wfx9}h8v_eC@(%CeD)7i~ixe{ci-4Eg0-ip4+iLCnI*rg*s2 z5S9byQ4!FqPO~NKDiVs^UyjgX4FynWJz;`DHpb9;5>;`n&?WAT=2svrQiU5ITPD8K zKLu}R_G(NRW;O&Ddnap6W698)x}jG`H^-oO3Rw$k0sEIOy=o2}GQyVEWQ$kvYQfY) z@6my{A7#XW$b`8GHyzGcvmvcqgBhf<2EQ4@j1f86nV!mGxN;2XBSuiVoNx?(cbp+T zjT^sjsUF#6L$F&eWs=gV9>NhNR0&8rcJ!v6tUJB2p1sfPW~k8d3Nzj~^QexlPMoMt zL))*foCmdXtyw3{!KG%QlEdZM+_u&Vq-`Rvj zh;wWqu9!`=iV&9}iQO_Ddx>OGdpLFP3bXeH6s{F#KKdZLj!8CqaVO-d&hFaXz|+CM zutKB`!kT(Zoe4KmORdB`G(ahiL6gq3EU>6A#xQV8wNZ@m@;ZDa5f5D28n^*mzdf9w z2hE%L#yRu4Q0ZOBxG2H5{!_*uK$taY5;ocs?gv*GJGf-uC2pXQ;YI0%7j zFU>v7?~qNuQW1WHA=f5pE(|rn$4*4B2Aw@9(`7&=Gh;nPLVuyKULMkF_W8Q5!uU{i zK#YEg7sJdqolJ$@I5=Xm7tI1Q+CbECcp8NdZx0+Y2YJz{d9+KoA4~49DENoW31=2?#DY8o{DGqw;U|f$H)SDWD|w!`cON# z-5~ay>3a>Fk>`SUmMvP(t!t6PY*LuDr~~c5)Pj0dD`e2I&t7#cy-eCUI{DXRtVRvR z-7ydwH>!$D;3N7;^l&|UW`V2aZ1ayv_`_uNoj`&iETY$sPE=VNwrk-uE9G>ukSR(=h}&eB@g8WD{0`P98(D9{I>> zis1zS4q#u4ej<;}V`<*V$iBM~Vl6I(4Qf7ryS@qKo3KRM!2Q_TSGi2a?krpikG+7I zewu3hP>=VhyBpBkBQ|(11~DGw>Y%xR%y^|5$tOHH= zV)imar`JG*s0+A}W#Kx3?!VI(EvR>Sme+b-s$~!~&)#E34wndK!D9p^nxSXiZ4Np( z$EvF%tV($pz;vfqs~7%6g<_Lkol=fjiRYng2Nxvbg=AVLcj=4q#^EJl?Ad2;@!b6o6)-v_ zn9~!%^SBLGjlT%QT5(P`J~$z+P~E;6ePUZu;8wgp+?H@OfSX|!w7Ua$CKuf@*vN*b zFeEWEa$3Pb!+J*~e1-PtAcSFdDDp2bwu=Bf^EM3*6v(CJq{`%)t+V z$`SZiZGf!}EX2{saRdML%P}UbaN!m%5>dx8bpX%?R}-$-?&@W{%^%T@j6Mi}*%6S- zyN4Gn_uMlJEycfJ1=iCQaJg1^ULHDD%FM+pM3rZ7`p{>XZbz%d9;E)G7g{#2_{N4V z*np*yZ2s_fRw^D#L1s);hZ@xoU=m< ze#H$9XK%hG#lJZ|d-H8wU%6ENE=znK%jqRMDz65kS!t~3>5niYrWd@az|5C|Fw>5mM2MAqMo zcB=}W1L1>5Ko{+3>e{NQ)q$zos-~{1dU!Uz3odh|L#p6(r0er)Xy4+XB|icyz4*@m zW6u1ZM$*I6VFK60>3sA$Fp9LQa+Z{`t{~t7i^np9l_ZVvmQ?X-N+$}wEr~yKf$e{4 zEWXF+kFcLgCheSuCF&=cGpVPtA6C7_dS>YMoqrQ)xdQ9SROxLxWT@JUL-*_XgDPRS z*p^&@Ic}%dQ=zcTW55p#6#02v_-9YWc1DTteU_8xR`pbV1&)SnM~J3>K@9?k)}mKc zSMgLSLren&aJzg)x^qBM5AY<2g}u#3JsJ0KuhjR0PD^P`o*MMSwwFei>nY7y61^@*V45))#L#EPs|WO|`mtyF?wX zQ`f>VcyJv^V0OE{r0ewThSGulW9g;mEItOeg{$<8#m8Rb=P8Si@#d}49{yu<$~*aw z{eEHM;M$h>nm9~x=W8jeu_sM4$ea_^nP3>B-#QigNGs&3dM?RIx?U9=xhi`%tGCZl z*47uTUcQu8sD3Z4%c^?TCu*|`wl*@m!;Nc=trt-5k^sk?G(S)%r) zRaIP^i(esEiP_UG9BlW#(9rKkposnj_dvZiM0(*h`r{V;@hA#JcE+7;R%bku)N~gf zf~4jp-+w&8vy{yMo>ZW#*DfL^2VyQC@WHmsC}LbN$iH;1c#YRfe>9RDj*#J_B!1SS zjUtDu^g0vGCnPy0dnZSV5vPvmqL1s3XY|Kz6o?d~lP$*8q^8BV8OaI$M{AORuACQkcn)hp3kx|pZV`Y`xvtK;JL>zs;2nHOG|6UTdQFkX)1yf z>Od%L;EWptWb~8Kpw=><%>nD$chpe%dZ!v>f@WyYmJe`kBsC_Bo+96MppW>H-_eVe ztV1Av97s{54}Jr$LCY%$w38B|euc5ug=jl`!xNiM$Uud9=R8&fGpWC$RdK@C zGpLGx6@uz}uxSQ9Hs1zzc(k^H9I)0kF=;*#PM)Jn!uCN!~uonx(z$}b!>51CoYv#Cr9J6)r z??D9j;mYm0`pvV$xK}#`M}AKUbPk+~2Mdfbi8w(On3!li8}C1qVYdppOdwy1ZWRa< zZVdHqd-rjd=jHuFw$Jtd6e>M=5&r3JY^}@tEN-)M=Y+}@NOK<6w_`nqchl?}*QUvE1m%-DB+VZ;xB_ zS)wO*N5G9zXw3S|&l#aY34|AWcmSHF&9vqijhK% zG6}Q4!e1EP_TvLBroQqJ60|ssU3Ky$GNzGj9ix904F98fN$%1vi-K6!hZfY0i zjDO(i-9R@LvA#F^tJT;#?I z^c1&D$#@OO{jkfZgLO<*Yv zUyD+Ll{Cl#>*4&sbpV0&R7qex6%klZ-ql$bLsMAplpSR&EBg_H!4X^~l#c)7c%@KL zk#TVqBn!Pi$*ceOyj#-K&5z$+dr{SH&lK7I&3Vnz*C0=sW)8xrU-$TTH*J!H@-PL7q?ZKz;btE!wGL&{Tbzh{#H`Of1fT19(8bFtvg?E^ua@hVmySP#Mv>>n$zSoI z;RgRFV14LZzC@J4ksHa9!dbG3$EPt7#j-QUP8i%7a zfEoac8Ow5qEa1L09jnmffyeRYy37cd}ikN zp6r0=2-Wn1W&=S`$$a+5%KtcTgpDRX6z4s4{$84R1MZJir*M{!${IB$CxwrZmJAK# zHQ~w{bpr?)Z8NYRd8skA39GB(Be+e)9C?E?;=(&zZz28)7Rv>%vuVKU2xZdX#RVz6 zP-rw>W!W0&%r^pYT%}pvv{6Qtu!C(an}FWNE<~_A9Sj2NxGEZU6E$7L}`aaWcL>v2(e6 zgFEDdBijPG7qz49jZIA0r557q2-|PO2ZwkkK1g*bC8;r9lETRC3eE=~_hYEROu0*F zcA1A9_{*CZ990v@{Wb2Gbo(3PaV(az1)}2EMMl|b(AMJ zvql8UuL(;uc&*B&DELPIE=t5-VJ)uZixz(vS|3O0I0|5g>B}dM3OKVpNyns)~UjTHrPKy_GafNdh&J~oskC*j4o(57PKLlZ7tPy(Oy8HdBv4q zRTA<&4iNc1DA$dvTel^+d_!wEX0`_>CSn`ZHy(c#`ljGtTswN79zLHmKVOzl3=nfb z2T{2EbI5@iqxDmonq(&83ZV|}mw}=h{L1lAeV69XpK;j_FhCFJ6nJT+w-M*>kN0H) zo$)x5yAZ|x&FFB)D+n;TL?sBmYE>Wo3FB|#tgPZArBl)V@MvRhRwgQiucY9z7#JCd zQoj){7Iqn+;}qkH#DsUM_}cu)5!mVfLl*KHyYO5KwyV>#irYZellL)* zqI0}cc>r&~6ee|h*Vxjn&VNT1dVwc*_at>4R}f{bVDmV;b7yieJ~IovchYYyq6v$G z5|)EENDE%(;#6g{hfKt-;X+ek8}L4fA(L7lgQ`<-+WF>(hYkNi;u%Lw_#!NY0}&0 zp!d8pCw}+i!HmtAlF(k@rp_Ll=2?0bMsgfqoQ9leq?i%;0N(?5!@Z7E_UK0iZuMQy zPOg6yAHl88c}LXeM=?rasg7CBe+UzTu?-PNxf$+ymk+(c+(1wxu-U^149-tmuyWI< zV-PvZEd<_KKSyVV@!(SLVvh-v%kb&RrDx)ItPDSf!5Pk3s&m2sz)>pXWDZP~>QzS` z$3}#zBsI(t6EcTS7*u*GURFuKqsc~o#uY|V6~+YrX7|82+|qXGs(a#GxAp};fh=T> z%%>(U#o79iP|RhmP&U-U1NW~k2I>7QQJjPYNR~Pmx%enha6*Q9do;akocq^?hmdnGeHwDkT!A>$`{UcWM$40S{w*mWP{_8i;y@8zkQN7%Sgqoa$)@VYyEWCt+r0hEX_3JQ%vs^)y z6fH;5gOy<0mu|{32HPQ&#ZOtTZ$ixxo)RE@s~Tib3rLFumkDr<6L`0=$P3Oz2rUiH zq>{ou{J$UPmbrM&+b=@wmj#e1#J8PIAv_ff7}FYQDfcCsd_A|5d|`N8IG|;&FUkD& zG5NM^Dr|whoSu;5608Y$eULdh$s+WvIQ1?X5bBEIM!rUwl7?34DJe-lIq~2PRmqNL zoY!GKWz}wafy?Vg^}=+#b%%)&ZK8&4$W!?r46xPYL}#!Cq7rJKJrfUhxSgF6JMM27KmQ@Y;jFa+Y0*zqBQ!2iYYf(`kfo zuKiFAcrDpw;4!hb1l$vH_=k_-*DVa4^=dFo>9lAsRRsU7!}Nw2;XWuEU#m@@um=lkw8B@pp-o_scay|o-Hl**mKzejy-r# zu^$E_d9sH(pih0E0HZ8#d{Y59e+mo#m6n07=1Z5Ze{>rC z!>Ra!{!}_sy}nHRg0=tTXW%-*MH4vYh`;jimsce}M_&y>E_SMaJ_~cLc-w4s=Yw)w zEybv+2Ak;NCvlXVto9y?lYygx8R%FDXRZJ_f8yD}--4piooE%cC7rJFd12{i_#U+b2d}K8|Ay^8vT`A}(@+b)!Y79O zH+Ck#S2cOEx(x|m>*vs8HBxdoVV&yv3JT?|tIt~}no-Yh!31G7@S*?FHR7-hnM4~` ztCs1Lh{iIh+P#=`CZ)9`KwdQeA25l12kUWoZ^}KxGhRLs;II-F3rdHdyhT`!ZxwoE z2~?e-C;m6MjAHlkmRvH;yoF%t%V1JJ%RLhOmUNzu0S2QSZn7QX+s_^i>ql1ilfIIv zMVB8IEv3@?}d8th9}!@Au=^ zfE)cr)Cr#mym$FV-L%b3@y0Q*P?Lae-xi$c4vvBMv>h?%Q`;tmGD8~ zGVBa2j8DR1v`w9h5;H_2aM@!j`B3b?TN8u%Ax=qWwPyct+u5po9py7 zHXn>n*qmMO8Pk@1{8j{5y(RB-Vvb-H`wwMJ=J+kkYdB#>4ewWWSrNQn!#+ow66XZo zRZ3Dftd*V42GwWj@laq^;^=xj&i5LONnD6LY?kQ|YEXCH$F=BmOG&6KxAE2wdyK8{ z-EaOhKJ2;Q>d6zwy*tAVzrC^9-;fL!{?(q`&75U|BNK6A0E48}pfms6rvj(Xro&o1@K{P{bag)&}v+M)R$AK~M$rwM0 zo8)S~*?BZSCk}Q+e!AhtSlQLc&oq(~_OzU22C-@nf9Q7>Shxp|M8{pO@$5y zVOz3_uuW6eWk~J8a{P^7-P20@84J_>m%B<&HHxx^pL#3sG7WcvCvfV(9l|fA&q8|{ zXcT1{u&+GXZMU9s1)PH?8Aa*FU>FdAld8@*D0f5UCk@O>IEHmc$fz$#-=k(ApaqX# zLU+A3K+L-aqIKSyxaVNmVXVo7ukTPnhzCj>j-&g0+i^fOCZGvP)Z>1mD;yg@K6zT< zWOeSTjH7DD50#;^Oz6~@+7_6V6-cFK@lR%enu17p_z}7<%jd_SdT#Z&aB_6(z|C>_ zS(GIi>Ad!VdyEOm3Gc?m8E@gsfjbfk+DHKPLlSsSEsm2rndCgW#LmpH6{(j zSn<}tJ%Q9wRy`-9AdK;nI5_3n)x(fO8bhXkLQWjsj-QYYUo`gWa1hm96>q)wsOt>% zW$Y<3Mx_~<@TTP$qmr^SZ@U> zopm%XHO^D914=hWqk~|ut=#LWVDtrsZGT&QStnz3R!evI927?+Y249U0;xeQhBS;`QRyWEvWJ$HX4C`qW0(OCmGKbHNY z=l+lIRXI#u&%L|l$3d*9UFRZ4TAZ7Bo{FvVL%M2YqHC4y$^Abq#`(j=!!(2Ow5+@2W7oE;eJ4vbBj6&RZw7@H#Nfp9&AM+CO7 z|D}G@BkETUm!>2jcCc45cC?L&;kq8fx*n62Ej3h@l--wggxDO>RYqLtt;QI%OSqv> zk2h2v@GN}-zvwz!PHm5&;A5oDKJwhZ7+;C-cN$}?`Whqkl@VWhi!ny(Dg(6Ul5Vmw zhV?WC^^_s?GzRt5GVW*|G7rafTzSlyS$Uv*kf`~b2(-IS6{Mb^F|Z&*)I5f24y#rq z5!KEPWa2zutZLKErF)YNF4aVr<&vL=}ij zCK+2=h}RmpXHp@IL|G;2_*+%I8u1=OI1ZJaf#JnS=8hu<9Y~FN$2D+s!WNeFw$$;% zvCM+iNfY8jguT%2d>IEMFl1s$H{|VE>ewe@IttG+IE1{Z{_P>Gh%nd<;s}*yj!>SL zPBJ#nvR^mcxf9O*G~*QPadzVHf_q5s7-V!w*pj{b)=r+6;#-Cu9SL3sVvaUwDV~|V zWqzmOg;}?qHhd&o%E&BZWY)mWfi9S}4VUL7myA-_?Fctd{hkSyShVwS`VzzbTu-mO zL+tKb*kH<%r1ey+=O1~8jN;Y+cC1J(kk<-CP=;bK@6bA86(sj6J~Hqy#@Id!j$q6fg*Mo7 zCOz9}MgvFUfgHQtBm8;EXl8EzyV$o3`9GkJ!Rh_n1}*2nRQVg3(vxAmy(`@jo{!>I z@ZIv2DKYvZPo4f><&}R`|7(QoM@xTwwON331w(*42AR>oSgjG0bacF|AEt%q&!fXj=GUcJg z74v-b_(hQTzdava_-qQSAOxtVPE+S#lRfJBXg6pW*efj({?wZd(yyUMJ|BG;F(#Hd zp-%3npO2;@uyKUtP8U3*4qq5-TTK0dG45b~lK+}ym;ag+_y`to(?35WFeZbJAJgvx z6~oz)Y#gr7Pn>=uZcm+%j0=^aq596#pXWAf;?4L7X< z_7B3vX%^@1-=9~S{Yjy{nWGjYx#!#HG$g z7CadrDBH)YyLZdhL*9OQI)1_K`n*Q2CW2*6Q&jowiP+%fL55L56u~IW1wS0j=3wlV zD;w)BqJIbOF8)aG(G_lW;{okx>4U8~DL)Uszp(qNh@Am3TFI7Toa2R~v2$f?*6^ac zFs&5e(R$f|d(+E4`-ELjDFw^PHb0W$T@nzgf4QHq&L2&SM&&cWb$<?=Bq=ryc1$eI~@G7o08qdri1SXQp&F*itwquYFTcv}G%%zB)PJ7H5o2!&>4} z5!L5n#mY&%;Mi1^w_f~*{SA5h3p*=P0{U2d$92E$2G{raE&5Qox$_&i0n2LEKna$L zCEWlIwtUL~Xx1TLpgEabK0KEFd_vZw;MC?x!H3KFSKOqmmA4~N+9~8sZb`sYiY=BJ z)s6bp=gNLEWg3h0B_uWFzFrMUhy71H`@Ux0>!%NStw@2B8dDX78b zt$W#6IL7kbzH0E~RXOvt-#>+)jy-27wejyLrH=>ohY#xDUs&CuntBNYn&Zj^ElCDe za-PB;WIrG$6TRwpKSHMbtjQ&37@0wREu?avLAL~6Ha&!s#ds>$SjqE`W5ee2#mCc-yKFZWE{MKjPy#2{cQBpsf#M--X9aF-_8j>c5mtF_&N;G!y7&;! ziraOJ*~Wi;jkqi@(Ba9IV}ateh>Y^pfIKdc!se)&^t^QWu61K_TnF!j!-u~&;CGcJ zzj!JRvmfNGlI@7-+r+2eDM#9@^Q#y6nou;{`B62!S)~}F)<+H<}+Aryo|t~eKr1#76E zUS>oz)+JjGmJg#s~!7!ojlG1D0f^j$GKB$pRW+w_5d20_YLQZNS zi&+QPP(PlEIl|p)=d~uQsg3c-gsBgMqf0HhgWB*^uof5%uzIfN!cH47@_6p<&*Hjc zPx*}{9AES*_Du%~Sk*G!eGb*gj)#571XmT97jN;(a}F2vt_>Ph!UNXbOM2TN!n%@P z!Ze-)tHaImY6XemFb~}DuWvXE&+9HeCK`QT-A*+R`Sd^}UUwcxK@6q!zUYn| zbciI+^35gi=+M!;=SS%x=A6s50`@r(mC*&A$|pK$P!loeqHXo}FC2tpjal#&NbhUnlR-R;~CBSY*jo)J8T5I08Nh3S6-d!4;E1s#|hV8H64 z3b2vT(n^mzmb?5N786^tLJ6M*fOh&Xs7AH1VJXb?0)*f z8MOgHiE1ux+=7t{%#-N!EaM@aVXx;Po0Pdk)gYHyT;0PGL&GJ^v4|wg_O{fA{qlmg2R;^J%eM;cG(^MN5brsXMd6!xqa-D46|j3hd{DUw~#-eopBW zG_d#=bptyO4eSfMfi<#$b$$Z7JcuyMeUTITO}@y9T(W%kBz99ca_?)4bBWUyYotfs z)_cWCh*LRvb|O|GYg-cf7q7*BW+DEg3Ik*D_yBfUAI1ZF`DtEt`zA8m>QyhC&q;MH z_7}YBlAGahM;O@^53)}zRrkz-MT{SXfSVTcQoPm+=1>cWQFW<@F+^(m@>8|`39m@I zctOxQ{U=`Iaj6zR?lHJ+C^JjeeanOjUOvKzbyuRRf3aLJ*WI_9g{*VN>Upj|CS(Pt zE*0y_hzm}wnItnD9vFOpY~uWLdmP8lxfmZ;KW|%3yk6GqzM{G{)$EwGoOaz~T24&> z^Q!n8wB_{CTz;0sU(Hja-OOuQ?na%MmeZGXyL6}av6zWdlYU?o*Qmi#)l1b1PQ>;c z`t&Y`c~a!7nZxxeI;a|f7J&6)a02>F3YLud$tv{@XpBL9GSwCNc3YWy#b$2hSI*2U zW|)+}cp(9)^f2+Xx;$r+H+Vsro`>??FLQ z@QO6m^9hgZ=>F4dkLxX0tr(R-TY{1KlGXeY_j|^E$qiv=PF6Sv)sOV|VKfmze&~b) z0VrVqz){>RbYb{6?Yl6)E!N+f%oG-t3{a-)`Y!}ZoE&`mT!aXe;1sL; zSw8QwnJ!-wSjWs-#H_G#(GI%?CP-sUu~hMxNk^)cRCd>g^HAFz;b;Q1g>7#}>B6fyNi;c$sKtpf z98_AxV>p;+a?tIDlWY#UM{)ouGSogbE%9&Ke zRbjG#v4@L!x8b%to_J{}oD{kwG%SP{Zh5b2tyoHpa757?cFDIe!7=CO;XoR~DAamZ zy^c}&|3C^|)B)5VOsKaGM?zg`LxsvRFacubM@7*uj{%3(lnGhjt)7YjK27@Q|36EU zox*=29;*g5Jc^?YY%yWs9nMI(PCbQ>pCi5iYEGU8))pY#wxKXIxX2s&0Nw#!0eG)T z_fy=&M5UU?cCWF?qDo|$GvugjKhV@kE0p&aGZAg@j(QJMF)YCZ1J^9V?m@4UwlS4% z1T)0Nw(U>Amgl9;U<=E{2Ai|5=!8LakBQ{0p3SjCfm3m-wcc$=5@B(YiNfN@Bi1W) zsQk&K`29CpR=ovxo0DLUlT|cS-bruzb@{?9;-t|;(;ZFJi-U~?+u)LeGteaeh)F(g zn{J=IodEx96(LN@s-w^7^MEEUH3^$_v}vnD6aNRs%@*(A{B9GV@oTfWo19;5BS>?H z0mJ5wYBno5lcvt8h+YcB63&r`I~Q75Su5&Xr@df8h?u+>!3!7W20E+jaId8-Ze;Vt-1pHtd$M2(=Hr9AdC$#9@5S;z zI5ACa$3{ZTo*q_YSU&|iTg$8kD1rGtI3Z1~U;%5zwIR6=mhMw9o4$MeV=YVY0?DXKo0h0r>GgNRjexE-GXFJb8K%rXR zyN4^#IXH1_VD`}9{G7n-EPOwE#I(TdTs8O^I6wxdziz~UvwH>tANrw6*!*2B=Ij7v$Hf6OwrT zHy^}jfLt%UM1!w`1psJJMjKDezJ+)S_|p0mIidafCV_X_$HcdQAht@jDpKilz&&9&1o9jl*V&6c3KcMTnFe zQo1MMhnXnVf8`N8?GYR^sHBVU5Ztf9U^D*4<3wO|&cnIb@Jd0dzA_d6&MO{``#;<8 zJFh9ITFIPh_T8w_`MJR{148phU}!H4Vs96RHC#_8fmmxZvb^DA$hDBfhgMj3oQS|e zQU8e<%y)#~m1%(Ss^(%TKx7mkG(M#E)s1p=Bw7C%47P&>{6ug{}J*TKaafRafZ&L|oO%F8I(qdLKg* zH0yvms=2-c%{M~IU?mHI6=^}?3b+*&5EQETMH-MV*XBM-?bY%ih}ora{iajx@oInw zC6Zhql8CO)vW0qOL6lIZ`KDXCc2%+MMCm$1_%<2Vy1u71QrF{cZq=@nyqgD6>b7vpUo7SgBljaRyEoBksC{z zEtk#K_wY8GO~5FR(pG=pYKyI9%R123Q3w*n)^rD3Y?&(@+FCUuQd=9z*0nZUHwrIO zpR;VXj@%i;R>Lo|H9MBA%@~cs+KOhYYZP0JWJ_O+#U7>h(m$*#v0jo=iN(=uo#H!W zu{CF32ij_YextNSN=~-MW3$2>UDc844sGGO#CEcEv0QW|Y-QVQW!h}j{V_^g=lGIe z3J))H9_@gwi(=V&2nQmZY$bw1n5_fTBH2nq_fSu8t4+79)hjJ+Jtj%f)`ih*rTTI$ zwiZ1z3O$iR?fwT-QGIe5G;QfkPdUE>gXZXAO-8y~>}cUYonjA-S;D&v=Bl5QchqSP zdH*+#hT_67*0kdOfv)L)Nm2%sy^<6$e0M}?H{CbS5@WoMI$IiLsGl)M5TL#n}0nCB|k+iWo0RQp6a4TU2fI^`*QV9(kI6 zxo`XvDu@!pfX+J><4bwQ$00@{U`)e7R#R$>n&|SQfEyj;4D3OTqjU+{k z%CZ)~* zwZAyv_KOwcXE58b7&GwdP{e>c#Zep2;)V{(7R4Nv2D?@L0sok_G5=AkQQa&_sf}wS zDYfy#tubQQweerXn2wr^s*OudD8_>r|4%5!m)=M*awx{rs1j3*nnx@#o|2@9@wg;K zjLc{;PWR2T8r8CYbucUc3H4_&ucx+`p=sx=e4QwoBOGq2iQ;f3Idlt$Vl4EqIZUwG zdhC`c?VjpeZn2fz5nG9|Y^6uBwba2@W)xfHQvWbyOk-jG!-hnrwXpTg+suX}QJLdy*8kZi2rpV!An9&z^Jk z#&YCq0-Smuf<&?PEmq%7wst$%ijQJzBiR~lvvq~d)@3$Z`w$Hp!B)C2c|&;IP2UsC zo4P!ft*fKhYIm@8(}YNEHIl8hw7|5*_rgP#w*D?j(blEWZ1wXEwb<%NWoixd8>Ovn zpV`{-`W(7qcuYYgTkT}4x6M``o2_Jc*a2IgL69i6LZ3#mwaCGiCyK3^WXo%_ zRb;a@&SvY=-$t=@ns1%O)`$-~U~7CVTfQi^);QR@9d0;l-h#Hu$<`}0thBb?SY~N! zog_tDS4Okd*VkyV)$~ONY^{fWqqMcBDN^3LKVkh&_%a**P8)unB$-onCcIDJ8!dQvj?D$K3yuYK zzLOD||MhYg?|=V`R*b`iJ5%(bSHFMN43R9~fDfj@xL3`zh_q?^pP;3WPbA5lsti%E zzU9KuwhkD|BtzBX9GZz>C?T4m3I{_cYlcWx7|J0-lWm4(*bGgOBy+0f8^O>vVThBE zIS0Q7HhMeR&^D7F_|ECJM&Py0^bk(Opp%n`RM1Sq?}IgCwvUgNTKafLlFX^Dx8ZkU zYIeXsa-~BH8b0wC;8Qd_iHP*&gr91|Uv0yCCCQxX3xtgN+C}FdBPCM3PT&o&=8xU;Wk4TNRm0#HpF`R<_SaNErv!c02|+r zb+Dl;=u6;-+lSXTN5F+a7#J67coGr#M#8Uyp=7p?SC?4&cutbcsqzTFM&O59@bk(6 ze_JfP&jBxPNt*#xlPl7bh`_fK{$d+G+lJ4SBy*}dM7a8z1U}7zU-mHIe;5-Z{lO1y z=?TBv0e_K(ClP^9gGWQX1jEOaeq+Fr{&`6S0l?oL3ttii?`Ao@ zx1?SeEz*;Sbj}>Y53}Jfwc!U#k~vkw^?)BM@P}Y>>CTzF4DiSDW2A4{A1Qr~1Ad5x zClQf;CgC^0zA~kMy~>jQMM*NJx`OcK0>96KAHlifkFoFRW8r@n1;5$>|I$d2ongJC6Z)LwewoQw+j4H z3*LJ_;D64Ik^YSdJ+-%cEVq3!;iM%vn0u!YS(W7?-Tf$7X0oY;6tNhq(A&# zr1Vo9@WVAci3ofe9J1>5Pb}%TRa(-&B1z^{6A8as;Fnwd-n$g=i(=t#iGpA5fPWQt zykb%&5o!53gumQ|&$HowElK87yRQL!lfdU%(vP?Y@Nu#5-|dT(ey0OITf>uxNI#SC zwXpKcy05FSq<>A4%&7_qpRtK`Kgfc2-3$1;N5v?=Gz#9$a%SCc#P!jToz*0RgG8<@W9gpm~fk`N33{kxIUPjSFss^M8w;HwG01vZQ+eS_bU zev>2xWHR7=)dJd%m7C^dQ6;3W7#Sn|ZBg)54*1tE73oPt;5QO}v<-iS4S$&=nN#hX z4fsZZZ?@oFiviy$7XF95k<#yUz+bN6Nkrfq3BRq;l77eCmh^8(k~!5>!l%B@y5DKR zFQPem&xjc5k3_*Iv7A}=i5i|n1iqc{cwi%}{Bbt?2uU)hdVdz+a|M2#1>gDs;Jd`a zmqo!3b--8Vi1JB9;M1_5r0QTVnsvW(u_gUxNiwIJMtCiKwFTeQ0QjoQW28U2$5y`A zcbx?e(?fOE@Fb%9J>kdL@C7#fC`mG>+FxwJS6J}1I|1J{7Jj}1p4QGhiva|t;<9se zJQBenOhg(Gz5&*mDgCZRmh@XC$((8i;kEK_w&1|&9gL}b+4NchP%{0tj@f+U$!HBSS4 zu1J5K1uqV|-m&o8cSK5`eOeo+zYpuol)mu}OZq*MWKMMh;S)Eb4ufeH{G2BMzhYR7^y8!8TOIJr zhlunfBJeqcpJu}s+whYl$(%|d_}iBw@QD_D`jdb^Ef)UmhDhl%SeXK z?}vG0O8@cgmh|sRk~!6lHvA!kC+I=92{EYZ@k?T)pAZE<-2wjyJa#ZQNJQ$sobWSj z_}Mo66iG6t`p*EDwi zbE=yNze?aYTJTMXqEyuv$4Kvuf?wuh)CZ^_(qsVru6^5&655DNiwJUE#P&9XFiTI(aoZVrTpcI zp)t}=s*6c|l0uFBbmYHzVPb zw%9GdkA^1^J>MS#{Kv4)OzE4;Ea^X#By+0Y6F!Gzf-^1n5laETYDkRqQ=;HA9Prf_ ziu5ER@HvE^ZNp!0!(Syy=2WeP7JRM+KkqBR_m73YKMMY42mF&7o4AM^xt60IV%=^r2`&A3=4>&s|j@!mY5mf*nTS|<_AHRjtGpAZU5z-GOncz+v{v%ZGo0<5fb{zrCh;Y4;wzyU{ zExf*T3!F>X(HfpaMEZ8ZSHSu++tw1nlt9zFB*~nrw+)Y%g-z*e5#*xsPXHgU;kkyK zV=>@W+Xjj9NkrOK+K-^#$%gM{!@DHOoa&JYka4L6iY28W-soOOiR&sWyCt1@CPI{MZw~C))5e4*0r(B0Y)dj!pP3 zHhgy*K3skD&ix`vo0KU-`Nv{Wb^u7!6M%x?>Zb)}JZ;ee*2o{gPx( zbsFIhiSnmd@Vlw}D^CF5*@oZmfNwZYq$d&G*$Lm(hWFU;iIQYa^*HvCeS@~K<>y%N z>1_FLosVC3uZwB<_inPJPhmN;<6WWQNksR1!Y|owNx$s(mh_d9WKPw`hR?9zrR9%5 z0leFWpYDL)ajr;DBBK08!gsUbd)n}wCCQw!Y3*Ao(kEH)((>OP)Uot|jh6JK4)}2z zo{xo^HB0&i2Yi8sClOJ84&m>sx1?YGTTA+Y zB$-q7Bm5Cj{x%C{*jw0z07!qB$-q7 zx8axD@GAj7DHgtS6#Nti`~(e8B2xF&gzss?pK8M=Ns>9$U$7BvN?&flr_+D%?zu72 z-wVAvrN7w$|IXPWJ&8!&ZzTMKFhES{SKMStACx3>s?DD6#NMe3QTrwcwLK27FO0{I*vkmA}sczb`|SPa?YCw}X0b8@`VX zpDan{RDZ)pw9j3K7932o;XeWV2fvDuJ}(O1#d2oLpQ_{|Jmjv+k>Jw4{GP zlFX@oMfgmCPqg5@{|5Z@SopeEBBjr8z`uW%NKYaHKa=pM+VFjC_>(2coN5g=qJ2{Y zejTh(J?M_$8uG()Vx%7v1wY;aKTX4vh`^TcB%<~nhoF2hEI_sbE>DY5$)S3@Cdgb%Q1S!;)l9HIVSF0>3d5er7CuvICxjZnMRJ zS54ROBqH#Qgzsa+_qX9sktB1fwb%*vrPrec2UkbJ|0^R#`UhUJr6+s}%b6|z!*r3J zM5ON9311DP+^qY*%(bL{RFcf8&Ii1$@nCQ%zVvxPR?UiqKRF6M*8zW(hG%(!Px~3v z``Ykl+3=~7WKQ)gc7lDSB7G_T)||9HiZ$dXXT?arXMLpf^BnM}X?PM5_#DDN0i)cM ze)aX1^p8oBIn{-PUnTG}E%;2to~k*q@VlbmmpkA;#=CV`){=<8&m??58~$t?{&Yz) zr>enDu&+Vjb1nF$p8@~rnK9B&jDoLqz|Yq3BqH$TgkJ@t+?4)r*ICm4Ns`Q|E+TxZ zzz?$EYkvg%Z(`whuZvWEvje^fcQQhH5)t@n!uPk~e`Uj`Ns>9$3)l(vr8S@h2U9Hg z%yz(k);~u2LI=Fpm&{VS-D9)n8Vye(0>6>)f7xV7zvfy?`jwJoPBnz^;|0Fm8g#vn zpy^!~3t#kNr1Uv91L}#sB0Y%+d?Vq{vfVWU3;Ymc`+X=sVqb2>*zpU(k=fceTtkTk_@9zwPBogqZ30{kM)XiK?_L0x#sVLG zR!e*+LgL#rFpJ9wKa;@2ZQ#po;GvRaPPGI3zP9IRwkJ!2E(MjPb!LYY6SPNdvK*F!J^e+Sm5;a~F_ z3VleN7f|R+Kbo!uU_U1yZ>zunX~r1y7@k+PthE-d*NM(`=alGW^&u;|S0pKC{hpO1v#VU}K$`-rLwES^0?bNtXsjav z&g)o!!qiv+Qo{nIg+u^yfNE7g!<;e&NU#NHE2bNET{duM8~CT06rMTN1K2n=fp4~em!X-dEvLsw zoNEF%L;!C)MI>f%J#Y~CUYK!aHwp@xNPM>>nNy__Sc$|_EZ`;@23N!afBz3HabpDV z+Zvd~35=Wmd;UMx-akI7;_4sYkO)B{yFiqHr~%PZp%x4x7(@^juo74Z1P}sPQP(YP z5q1%(KyVYy<#IKZV534s4VEg8=Fvp4f(;T$kQDrZiV`c;)J_aqRK%#@e%|jh_wL>W z`s4Y&zJDb5?wwy}&YU@O=FFLM60LSmw3;EW%%&d0NpUdqHBPbN@m7mk(CS+~PU-GS zyVZ2&k8_Rbx>XjJR=25#AvM{3eRLKvD}8-HUYSh|V5>8v)xPmo=Y5J+3r}sequuJr zq*niSwji0srPU^NQKHrUiB_}amD$wuI2VS$r-DV=4b!=n#TkZhTgNABS4H&u6!-(k z_CUThX|T#i$ATN@;DoQ#Ly!Ab$#J%(5d8wNd=YlBBiw+g-#}!a8C{;`33sA5vAis` z1YF2WxQ4zjEZ*|qiL@J~I{z4Gg8khN#KV1>!=Fc++J~aMHDy?0;gKYQmW>qp6&^EL0;80(*t*_>1xwLVAP2e5>Gvmo+7FDoHn%? zk%w9KR#&Q^EK{{Y)&qFA)J{O?zw{Ia+Z@eYNwC7dx2l-|muY*|2v^3Qr_BhV2*ah$ zc4hqH*NGY#{|s%bzd)#TT71Kmj%0X2qw6*AGrQ=kKD7;DBG2lNfB^eq(=wx%@%k&I+9wZ2axR9>k5_#jp`Kz#4#IBM|x_)Fs#e24WN*V&n)l zj&=h6YD7I^gb4NSgvrdL*767$@gYn+;k+IZs0S(oJCoL*#+G1iH)H+(tP28q)ARpc zgjT`)z05zQ3?2fj$dPd65u`5iI`N3f^JuO8I0)*PyQxc z#Y-3oj;rC{td9Huq8dGzU99&vcu|Z!GY94_Obh?S8kebagNap7hReV$0mXnxg1N{b zmV@iTg=xqac?US0^-IB_w|ELN1&C0n%uGzR%>LnJRQWYdfo(+hNaKjuwDl8A4bql4(O-3VYR6>Sf;U-^7oEr=DwjpW zKJzOxFEbFk!m!rxS6-H3mEy&y*@*vYaH@_M<}L1lw|pH}A|6&ER>KQOkQFdwy~l3g)!Nr3KU%*E9E>lDi*rnxV#$TM2|lY2zjq4SrM`(78we7kw+=!+^LtZ@4x8P<7r8K4g~c`q z>hVPP;-c%8V^Fn~aoBZVQ?6uf>^6eBWJVADptBhANi80ZREq$o?nA8VWtqN3?aY*- zp;vlK?#6ThtxCA}!ZtM;Qa~t$!FyEWSsnzeKN|V5DNWdIzD_W(1_F$BZUBmg#Q|tX z08S(U@MSK@zN8ue7#phizhpE1n}V*?`udVe{Gv2bU$O;no-|ayG}C8}C!8K@9h0X_ zM);bRYz$2rXvjPot6@d48djv%LS(16%Iv2xGGv60{+fI@gVa`DF5y%VPNd#*h;58a zL!S}rBfs9$tbYUB-~=f4r=PPJIb?7ulGHAoY!ufb34wcs#scc?QJ5k_qRS8YCVNNw z8{x!LhXZOdMj=><9VrMY&CVKNkM|=NFic6KYQsS=)U|}V8iPno{~e!NyE@nisI|}^ zf*+06bfw87lr`tU)E~b2!PJB=Lo!Ow0ua_+Z(xlzh4`UJMBPwyoSo)*4wNFq_AF3} z8OKKZNc$vp)g7;^6M=o64$1V>E~k4Xb9ID30eaeCD9YKdz6733gz7yA9QWTDz9Onp z!WsA%86MmSytVcZmgB*`72|XSLA1IA*V`W!%ZG5c=Tcg|!7}^f9DH1Tfcf8pbO?s9 zdMAUW^-4gr>hK{9QZi85XDmV}?=wm!fEG-DmQgbvFUIyU{4XKj)B{ho_e9$|MwWop z_PJ%U2T|r^`TZJHfaQ1lX!N>`0n%+23n&mX&lSz(V`7XvuZE3awGCzf?0_1Xs@Wbk zhjabpveoKbK+j%u!_yei65ur6r=EEr1+6j;)d}=rx@84WkD7Qjt1S+woAv^kZ8M`Q zWm;a1WhS6f_Tk%+nb8&UZHOR!JMzusyx^pmUI1H_L%=b>=_}woy`Ow5OV^HCu`Cj# zQXD=Lq#}8)S4-tttQO)4|GmDO_2NVSy%WB{92Qhy=@cN%qiT9K!p>l79iOJBk+}~c zw*DZ~h@N~^eJ_$irm;K|SnU|F@-o%YnP^gXa?e^gm6b6uWlV+@W=1ZzWVA5but$N% zPhwTdZM`iP8@7Qz!(D7-Tl}RSmkP7_y7?Gj+^2T@vAsv)pFwYd&tT)&K{{cUn!5`~ z^sif(DYFw{x^%V$nSnKdNhj21RP} zAEFEsY8NOiY*cT(j8IwqRNef^7y+M9R|8Uk(z&DJ)OA5{o~HI>>MG%QNB}0`Kxcy- zIb3h>+&Hh%7@_Lo(9xn0e#`0>TurB%|cpUlz=WjRfea`~I@bYL|rUuXX7h=1Oa@9-Ui^3xk_S@8gVi>%l>5udZ1&pY^;qtyy7mJvRW6`*2w zeLt4^p49by_;b5Hw(H37ORomz8(M#ZivO(B!wZ5(!C+cHinh&PIX?VJw5{jL{^1X! zDl_~(YtI(~dSgBp?@?ZsvJrz~whJVY9A4gSM_#V7P2DEOBw%z0{z8z&& zTo7#wt|*JP-P+O>KXZ1Q9SkoB4?dgssYlMDSeNOE{D|=YRDLC=8AGOmWTyU#1KA+s z(IC+Q3P@<>YSLGjSbJ3J{SL311UN?LLk5yyW_fky(Rxpjo)cUz)rel2F?>9k1iUq% z&U*zl__sk0GV`_~ay^AeEL-3FVDnOj)63ntWMIKuD{YXh?+xH&>9K`A3LxqQoR*{b zXcSKU2E`#U9a!|Xxx5-&Ds)4FOFi)=nmGXJ_#hXhSY)fZ0T2*OgttwK!#5y{Qhb{a z(~E00;t}pgwmn8W(|^>sCXLa)+??zL*ap(sQM&yIoJw6^_fXbDX%=a-1nUmY{p++pTuK+{U?!Vz&ucM zVs#2>wxUK5dtR;+!bbLv&}?KikD(!T+$GO)^~W|W67K0Z9v1K}CC`%}!#E28{}6dQ z9TBf~oAse~*MIYow`|8Z?{#XJtfH7e!&YFcZXWPXn3$2edor{@`D#Wv8XoHd8;om) zCX=*{73p)~C4J7UM0k1X2N+U-@$|F@dqf_P-~$o5yVtSxA{)7`Bkn<8JDLF_aO!N< zC>@oG`i@tBZ)ZbH09#wo_+Qn3)v5I}EG1nM`b9U z{hdQe@vSH|63BkM-hbRzB-s%~9NWOPgb5L0eAxNwmQ`0U2P@B~Zu65DO2{z1opsgW z`GFb)ltLXpEkCsmkup)oPm=1us`#yW1r%h1^Ub+wt!H9&Zu%63p&0op@})U0y?=*L zHX=M=JFGrGM1ku5`{6U8BJr6=s6xF8s7XX(Kzurcm@s!hHpwvj$IUru2>K3t7hy(i(C>W> z8O>OcX5^w#jzl6#M1lFOYD@uN8_Tc+S*ljv2jYF8s>Zu3J_P#<8p??oD}2U^Of~=P z9}pMVx#0TE=%6hfqDn zxLzUeEMwe2#C#|nmmNTeg@6PFRJ~fylxPrRa%uws^~%E;p89bUux<9_>^3F^j7d`; zO@Dp6#~3%`(F}Rce)K@W%lJL-(I$D$Hzoy*Nehfg3yn!(<30)-#v^O+zjV@4qVvV9yo@DR=;pss%`Q)p?RhsoKZm-icwS@byTuCN6Y-UWcF2 z6$?a9zd-$FCYBg$V$eywhia;cW7Kc{I01!*t9~FXYht##19h4c8ExGTgTWr$jF03I zaTWU*l;Wb&m$lj?ZPV*}Ky2ah=}zEBGs-bAUn1bSZQ)+#0kZ?B!jH&F=?GlX9gA&! zTJHCe7PIiU8I|tVhC3tO+$%XOgvPyIJIyZ9+U)6Ip;dv{6ew$|RNg%jOm&i@x9kZ(u(5vIG_ z+Q&h~kn&jm$1aUziEb*uGb99`N2e-rZ-cphKz7~voWIObD?uHaF}+xaDXX{}HXB;H zzmIe*~+EMJ~%%Z{vExOrZHk1=Fp?i1cFqVD1fho_gvjW$r`XU~SPgo`QVE z`xFqHus2Gbr6mTSkI0hhqc?%?LXgK?Yfz7Ks}FLW!|hnQm6xunKl%ZuAt*38x@;uQ zk)k_>BMdh*<~)3h5i%#@*GUoQb80bp5fYfof+JP>n}>}Z8SZM19gaaUN2USW0rdf{ zZ{+j900>*JHh#wmH9UZ`x1aJApPFDR%%Sg&gKc0*Z%MD8;UEbRwM+mYcBi-^Jc$zI zG6m`?pJp;P9h;NWwqBN#lgi%reLNoUi_Q{Q05<8gbh6lSJ zfO$)rC)XS9T3`;Ej9m~`XE3PTDCF!l_7Ogx> zPVX`x`v%mNlH?u#gZWo;NYM%;?O_J9-s{IwH?Xw_nvjfLbRF$M5*tdJCgsn;q=HfLK@CatB5(KuZi% zx2cHmdW~He1e7-SwTEs7f?IwF>bN~4@EKuq(~a~wv*vPUN?c+c z2sZ<#QiaFWFFl>0R?E!^pX-dkeJhETrJY!A;I5Hrp4MFKf^Vqo2pnaY2dq1MH`kBO z09N;@8Q-2DVMA_=-je0XhXzi~#~epVRA!{3aLQ?AmD!^ZqX?=H#+2#^ML7Bfk<1*M zVT{W#$3m*`xg-|U#tGRTd-*f1fE^dAose9b+5;^==RHo>Bh==q%z27tvM}NTGGbN@ zv?Lw+Io2$E-tt!j)aEt}k-&!}!V-uTKvo1hADjTMuYgyfWOTGrFC>QzD%t*15U^Idhy9DLdGRKDeP@1C1FM zI6>t{sFn@C5Aia(ot1-~#A>7!X-hpahR9^!RI}nCVwL*U3cVgN4C5^I&nd!c^>$}= zVr)Sy5`d8d8p`HbY_EVucSj(5#@{rujSkeH@QlRsfapEjgFvX)7|MloWLhWw^s4vT zL$!KcFXTPSaZZoc4&(~?;ni9LQ}3Cv_F-n1#n7vsME1#(U!|cMeovNHnl)c-6XiLcOOfsmL9! zluDg~Lo`-)15+gGJR;1;Yq~C;KXeY7sEa3Dh6MD6z3=CJzE(8d^`549dRL_994pXZ zAJr|vOpGmk6HE2j2^plgk!e{v;jc(=dfHE?bkiwyu9V?A#m2#tiOK>xf$DIy^4oZk zP-j3s8;Ke@OXCT^r!E5S$s%)*V)to4qEC0mOO8M~^l4G({hUN^3if=g?VzYfZfNL$p5teN5XDy=jYQiZ!juOql}ZH0M!Y z@G;Eao6S5NYV#x?`nAfmhj7MYL^iA6)dHRd^&zZc>~UDH`^CLJ`qdurkOBuR1qJ49 zQPZF5;<5YJSf6r$u#a-a;Cev87OQ{b%-lJgx`QXVrtXZy)Q#S>8G`j@Eiuz9Ml*QQ4epi(3^fEHAfuPh0iMW-7+#NpBjYU30ZjYMBM?mc1H9)s}5HH zONkzV6JdReWMC=Bro09l4je*-QjG0kycyecMflP!?vjQ4u$})=w45C424DcIK!dsz zSfl>Cw{)yQwX^HvX@hC8h_&uc{5O~M!qR4r0L|ES#HJ%AC2BZ)p|0V>r9h1sy{K-G zXPH!kaR$4))s&vH59koqAp*$W_{-T1spSc~mIql2ihg)6k3Hr`I!3p%BPrpt`E{98 z7|x0csyq=d>f1H8M@l}&d~j=Ohewx)V~#`8W%P&M*%50H%Uqgn?? zt&m&PGq4@vE+H|75SpWh7bXUeGLye7dQ+KfDrFEUTTkp=HZL31yVR1c%1>ahM;jzpm@ZnVyE026q^33v#J zHLc8<9w6X`Ddr^MnwZxO>IxesA_YVKL2tk`8!!=9klD&sEuEhR=5%L<1=US~TE7`v zRj)pr_iPA6ufKd>7aS;2X`nH3e!ncK2-bJtQV3#`QGr za*!(U(}V>gPsMm!_0?PBa9=N5T9434)6pZ9NYhzO#8;z1fauE&J5%6n*!o z8zCV@cctY<+9H321&o}7U| zP2pr|4i3N)6;R%03eaWv0J00H!uPNsrJ4=1AnYZbUsdP+5IeTBUAPn2YV_k1>eUSX zP6=bDTcNh%2jr{0s&o;1Sfzpy2jRj?6^*Af#-)G56Z8V+lj#skbman1WT+#Z{WRF` zb?|AedJuiV=VxICY4yWdYK$PWSq(?qE!;m@d3Eai0~ob&3-B5}?EBK|gS7Oex67Em z=@5cg*~m1CDC!?LadBrGnV!fuU+0q}=0BgD&*$U|rO&PREJRl92~`EMp*^%})_JGb zIxXI5Coe-XfqO%t)lNn#G+i)C#fAoU=z_H=w-IY~YU5v#A)&~57UUSGQ-=cpf2$6U z2VYH~5GPn>o{uDwK@t(QfuXrBGy@`!Xe5>vHXAkMo5lvRuX<0VK6!^?(W6HHlLB*O zNbkZX98N*LFMEU7mm_tar{4xV;~0yg@mZ=~AZ}EDJ`>2l1kgkeXPJ$ml-@Ia^`k^T z7Tkj3r9IS@Qmg{|vgg{UR?jBATn6$0z0QS7dH5w-5i>fJ60C$SHu(Bp7*JSSv58Y7 z&nDt3%p>aN*f>o0vFX7o)EZC^eRzWRm((IWP3aK~NM?>EJ$ACoWh*DBH9hC?{_X*Otf!ATmsmqTm5(?eL)!JX0_mLY;z*_@W*~ zufcp8)%%}9v*zIBxrH3XM)g!j^7$h5IG+|FP!C^xHansw%k*egrAXpHL%mB;WA|7+ z&}L^?upxgy{b&Z@wYYEw)R2F2`@!$B{osqeqGf~g$hM}-uOUaQ6%zUP^DFF{U&Df1 zNb0WnbuaoApI^o|M6oJII9-Hsbn)9PXxE?tg=F^6ja@j2 zazcHArRWmymuy%vfHdK7u)74xX7!s6D1H@-udRfNKifQ@I$xt#qKtejMLpg{FLVfR zmqEdW&=U*y$owTcTcwU-z+BuTJm%ES>h)#SVJxa{{s9p}*oEEe_!6^06X0ttdX>2o zlODbH*`jS9Tpek_*3_d36_RRFUx_gh(x$}9sOZLosZ!H;-9(FHexa`_b+NA15tti$ z02vD`3ljhiI^U#j#ceEL8}=QgVIK^Lmt!ymz5$P+_?Bbla z-HRslTE7B~V2yW+Zi)GsZRH&*n64JSf#OtL&Qo6(ra4pUP`#&NpLB@Zef1PfE3An# z)LX6`vih_k6IY+rk|Cg;b!DjcY_n4rFg5RxntC#*ABzP!#gex|B%nj8_W^)IvBceF znIB1-i%jl-xM7nOM>H5IvS095s{L)kD&yM(|7K^8;NJ|6%CiA%5USK548AjgV5;{n z)Gjd8$yVpUW{1)WE#K~c9pGpQ%)c2%=|{pNumYeKM|7Eb5RGZ-m`PI-n3ko`iUg#w zN9}LYBYPfY>LIz2&5>8kyvl@B){N6A;hk^as;5uQ0zNmZlD{E=GC8)HS8DAdnSZ?& z$j_(km?JxKK!KlChk1yUU?H{$?3Qd!5rYSU(DYmqG58(mwp!YAw{)r`+?@uAmcKMW ziCBc+OCN_&JnmGXxZ@+XP|UMt?w|ffN{9UW3Rnc#()|#M704-jYIDY_zs;Zz|NUr8#2Nqcw=*>OIGw&_sB~5vCSX*wATU41dr`pF*&(HIDl} z#E^D_1SDbT_o%spY#tT}0#L1$eE4k+T!XrZ6DT1JZK5?75dUxS&5JAP)2Yx{o=KED z>VyVWi_vxA`(~*0S~~qFe2=#AeJxb)#P{fvHX#pgu+g^y)e+yf$xOojS6Vw2-yhy@ z7s#^FCZut7okKJ_V1 z&Sc>@cyk=-7h_!~(yK5TTu2`Xi=`xLxA!Ll62uP4)ABbt61C9SwS9tVSWext z%10?cxwDcEy@hn%j4Lx*uG$6V>m0S{s#Bo1;UDUP-w$JzOmmvtc_K3lOfHx*U5$X| z4i+@n-rbEM0{p$~O+6NqE>sdw*D;tVTMp7C%Bb+2qkb5EQk$Sx@U;h3~@C9-046BlfpbQWf^ zC$NKS(25$imBz3xfcJR}u`?6EdS~OXx@9-&vsZDwWOFyp^8y@eBHdoG*9w*!R9I?= zysR}lrf7BwsOuM94q}k;TF9w;Q8QHg-jccK z2hi4Gm_{44?yMWV_<)OomW5J{PCyroEBA=eyfE|h`I_M=P>(Yxv(&A*i9r$kLCkXF zk0jij5PmX*ij#yH+){W<=AMvr7S>X3l|p9+vq0$(`eB6Z+A593u7cZwz1%9T7mylN z`H2&;mV1flNxiIfJVY=y@IUxeg~O*RR2HZSqXTKEg8P=2p|fh8N=~m&H=w4PEhYKi zIXh8Z9u&4xp^j0-rP=5wpd4;F>Vaaw`iy-XgpEysS_&|j_KM_bR^P(KglpDc31W@U zdf+R1`2V2anJ(?I1G2E4@S+3%M!#c%g`Q5oGXlCPp_U6pYgew$5m+14HyBy;XQSwM zZkLWUsBeK|-2u+Q-+*e|@E74eE!fnqQ9V+^U5l3W^n^3??0WwO@R&~KwJ>x{r(R_6 zX#_Uuf3|C~kyt)HiQmoE0w@ny)O8;Sao|>+zOHp{a6VJ*9k{<)^#dWqIoFDxYtFUg z`xCfsvfBSKnV&WgQn>&x(W}a#u3m{K>By6-4sT4RXMd)(j`JnDiT}wDw0;-oy86Hl zybNSlWzQQ!5W?c#cP$T>RK+Fo1ymR#_k|BGj{J(9teqD z+e5;C9N?2FKl~jCKZt7dc3dVGFDzv19UTo=)F&Eg9YfuN1M#`_@t7!Q?S|ilTmx?K z?O@Ffctp0&-$BkJP1#@{+tDt34%9toYzC^Kei@nW?RSRfEmSn=*p76aROL!Kg7?oAaLioV{wqJ_piGB{(? zWK`0EF&uywX9ge>r;SF1E+DL5*n;Mh@XtXzlGzXcolsE0k>Q4b`J? zNVA=BrsnalsT>$ngU9btedmC#WYJOYy=}|tT7Pb8^s*cOn5XB?POV|N<#K282>&ll zo-e2Fe|->6stjlU`@X&Z#Q-?d1H8EpKyI;66DS^wg%*9{iZ)XC8W0S07P#u~QO!_A zKuN~g(HJmh`iz;GDs&iVl9f9#3}v(rlacr_QKIqM1HECdz9UC~UOtR71+1|fp|5Fe zpRc+W>X|m^8%#fB`*g0uI7Gb^!n|?w!|37vi~M#FTV%BOujDs%TS9)DC-U2Tk>6I# z{`c}*9}IMy3of-gu<)3(5Rs2R3!;g`?QlHd$74?7$J=D_hRkCx-FXf5Nit}6^nsVX zB7?AGuaPA?Sy`dh5_OI^*#g)>j4j=;LBKlB8%7Yr^BQm-9oL5@D^J_wv;fuj1^=o% zUG;-?^(|X4xDe}ge@YU}kuDg>xo ze9fIaPm<@i<_2H4lb_PbgNGG1tn75>8N&+e7N=F=^mX-4T$r3z_ae<(y<=X(k=eDd zK%QYtnoWJkTi0W#a4n?~MBf~2LS493xJNh@_&74WH%rsk8%IfBjcPZZE_vb1%Ut6m z^DB8jjP=K-%{;hlf^o(N3anbpKll_?EiQ|2M~O)T)O*z2cZpVSF)#ePR}W<4?$XIN z)Xvs~G9q1347NEh*EvVLs!}h4cL2SZhGIlG7n(Otm=`hNEpM>2%tn0{C9lqL)cF`S z0WrWAFv&*djfjH_GpM97HN=i)f@D{ugc(v>94ndG)NMeA}6yRYaR1ACU-hlVWMnaqHKS=>;Zrg z-82TJQ0rhkAYqTkkkprq#}BbKFX3nP8OFi1bRz^dx~YvIgU4;DFFB4^=7rjwnRk^a zrimJ!Z}=>5#R9Oj(@@p7i}&aSj8K3#MYju@X-UTyL`Ptw(_owK44Ahh$OMen zeLGS;McYXO9&gDjs5I2Qco6uP zP)@b(j^44r<1OaBRTADhjwOZ3oIi3L4RDuYyx!D@w}e0ZV6H6(%9;srvTL9jU}0TP9twF|A)g;p{7_xKjQBMg{- z|Lyevt96?zy;^sdqOHu zePEQtmaN$!bgtsr4yiX$C8JT(DB~$a{iIZa6Rr3lO{Satm3pI85?alVjUXg#x?iFX<5+ z&yjgYhGN0-U}tn1{lQu8N^i9BI17jDEhcJSwR0m$aE}UJLEk{IXWyf&A@bT0_6k|3 zv-L^ddKeG=oLzfPEyN`1WrBl|e6s<_|B1`O@aF&}1&3K(cXD7ECw&#kAX84~`0K&HYncd+It#eh;T_av<>9L~=R;rv4zc7OV3J zw>DyUOQCUK_e_3*6N{blyHUM_r)xKG{31=avJn^zX6+JGaB!NJ8QqkHi9lJ!C$frB zl8)annGX#%$Ub2un8ulMCi`(@CT>@b<6yp+@l1RSsB^L=$L*G1n;c{!C*2-kff{JJ z_;k%ra5`MV)<8X4U1V}=V(436@e60ibROC=HLJt_KsT*MI^BK!IiRbCAi==|{>zlv zRRTo>*44eRYxoNw(zd*+a<^XkhM~unWYH7MlL31cTM1xVtVR7;vPSwRW$UZ6iH)z$ z*3Pc+9{|2+yEN)8ejh(90e9EvtQ0mOC^PGFju|yjmEtsfsIG~o$Lg=I5vs^?ki|>A z6WX&Y&@o!`8zs^?iv%1B9!MJ|o#qm))A?ULi!&?Kv)HbON3_p88>c5}oaW={ z*f37tj_-R7i>PmHZ_3jgm67vi|553<4r{DqgHY_;WH&lRZGt)olt0)iA?D%Mg-yn4 z1Ygw@JnJ$jSlq{{rL(AR_)LDX(5_!9y++rK#&lD;uP=HS6qHe5Nhj53nOq|Ku|I=h zEvsALp{o7yefuD^43nA-UPpYxIu)z%WjG9O`6UEY4S*pe(fXLfAv1#kBHpzryPA{) zN|eh4>n7+`!GeTZa?D!{7Upq)ngO6%E|!|(WJdZ5>XFRmNRFu&1kFn#np0`(FS}&G zf0UH%RN8t%vOycJ=_=fj)YS4Z5aObAg0Mz|Aci?Rq>#5{8?rgQz96_U(QB>?Kl{Yh z>5V`i=Trq`z!uz`_Gn9TduF&z$Ti9T8C1ZUU*>d1^FrvnpzA_w(!4KV?e7AmWQJA= zbeGs`h*w?p_HGgo2`yH`?`qHH3@kt>0DH0y00?9;)7@BNs9QJ>Xj< z{K8sC_A>-t_2kDO;TqDuDeOjFJ`&zQFxjxWfw@73$A4_t@gGVs{HKR+qr}5{{QhWcl#f1iK2_w3a7?VX&Qm zW!93C>O-Ai3qLx`!ZCRbS#Mx6ui{IS<`AwHHG9qlkxQGVFlV>}i7m{CEyUH5G=c$Z zzQ=z_#nnK8VYlZj(mYbD}UJ% zZ5EfT#0kLNXp(7rtHEf`gT>+7%(PB2ooTew7D=zExyY73UBy7EpiGOSr0)C3hZUFO zuZsB!O!fR3*JWW^+o0jISEog&+a)g+pC4a$qlevBj^(V1J@_-P4TU<*0%sm-%t%vT zXeQv7xs3V4Jg$l6WV__mR8No>kT}<_#bFMfV7ndFE0A3;t8ML|Uc^gP3SiO7_V3P% zL$c~HM=(F%?`xVTI|D?!j982>t}52^Ppbu6p~^b{?_c?5saTKmI{Y{;VCW zzcM_L9>KJI$bV@fe{@ef^%#oKA~{~-gt`DF;JUQrSmeB*k41ipBDO^-n~Cm$Ph2UM z7KWjywA^|aW%jE55RG`FFRx8~`xFp6?Re`2B!DUEchIuqyimOYJfPo~BPseyFJszq z6IVF{8Iku`W>ZM6r=y}y;9iTaKV8!f2! z&^jApgP0+o4G2`XOiHNmS{m*hiiJAbBF@^$Fh#|to z3#>)$ZZ_LRUuk!9Np0lo{_ni;-4xzX{I&mwSmL&NU$?wQiHPLEb0jhM0&{pvxNW_^ zY4h))DTeU}l;S`$Um;EpfSVoLD62p`?)jT&ljT2zi~;qlancFY3Nibxzlz|vdZ(OH z)SVlLHF`MU2ExZJg?&74_^Wb6e+*H+8v6^1_U5>Z{^KZDK%!ViXme^Q=$rch5a^j% z;7&DvCx_2lyn`jC9nIMddzfrM3bz2w1l0RN+W3n+ZL!!@o&)e{HE&ezYl{xq=~I{i zGB5ng{f-m6S-mwHL@_R7v~Czqk?w&HQ}}%gsB^(DM4G;HG#9^WwV7EHhD=R8bw5J` zgF|sbX*&#+9hhG>W2ytj5W6RBK2SJ@wKS?}ALs$T9<{Y@#uh4@$D2DqOV|YBV9Dj1 z5tkVZzsfln!cFs|M&4m?TV)g;Q4d4HAO>baL|wJ~XyCfkG;hfS{GbhDo(i>tWq@Rf zWQ4rI{iwg?a-@dZSu5I2M+SAhlj;jLGqt-;h~deBaVK_ANE>Kx}*20SMXX6kmNT4OUpx@K(WbZV#IRHi<{vgjNf#Gq`QliEEv zkEyGqtj{j{grtT)0wi$%!2IP-{%*mg%#WQ8;l!nUrY><(GlOfGnuApD3veEhr=S_k z45-ykhKyh(Gj!D%j_V8q0_s*LL+4;MGkgJpJJuoHTU<@b^B?Z-KN4;8Ezby@7p!AC z&mE$*M_8VYaK?@asEeH{ejIFOmZy;=lr|SP{f`QeZvgRN1cfq+9nvFHrvq7%@`9vz zi{HR{h{7LA9D-iOZI$qyayQjO7v&Ou$>bOK)GR`29}dD`v4;&oyv?g_S; zUn)OdrUVM62Ytv)CR7{+)1^ZRix-Ntd{G|3sG&mb!UO_o4deS8*Fc#C=O5zsF!Hu3)nKwVsC`%KBUAaJO+9nE z>xo*lq6f5(+tCOwbw%$GUytYJgKY%c(B**IeHTEV*b8z9*7aM8R`m2lZh$&Z-@L{R zFxw*MDgh*%YyVukmsc9#uQ&WSE4imil;~!I?MyQ6f^G2oocN7u>U(%<+nzJg4c_G; z!wsEffBbf&_|2$LUqE)Szx{0#nMbqALRmlv@K)%vts~;6N3>qSZPI=Rr+wVR$X<(+ z$ZaSCx@c5izX-@yjPY4x2QErA#}14w8HvvU^{~#+to9=VK_P~tc8gCO&`|%LPpt%7 zi&s?aTQ9mtOCuELc|qPhB-0aN*k6tHf=>3*2{Cu_R~{$h##o?aGwci zu1ZOP=Q1o=;(tiiCG)+KW6PNPGIMl#>aN_;X)C|vL5R68r6+U` zdsHciMqKPjO{)&`@I66ttL0)1R}>zsl*;)ZeRI&pba@un7lwz1R)8Tg+?}(q(lErH*D*Jv?d6Q{7x^d%pyNIpK+2 z+`dbjWB3o4-xgT@L$(YG_?oqG(IGBX>Ze%9y)SgY*HF7zB2XN{4xop89oG(@Gef$LJ*sZ=C!O#?0uWrF4;|L0JcXas6t;3!qSFW+3~W@1LAo5S$?EDwz2#; zBp`~14fu!~p&Iq5Ot61OdsTw(SbPuV9Apy+3!oO;U+^xi-iY5hn8}Ai?cjK&IRHoT zY7)N5nBj+H8i5bya*S+KD6RiDk}cAt`Y{`XpC)5@lVpR}ODWeRo^a76cv0|}g$Kwd z%stT?eV*uznI3hbp8OX6FCo8E9JMW@@_aHi9bZ*Rf;VPCqhnd)gX9hOU%Xb|sJg>% zHu%aFoV=*hR=(TwmRg`O`_Y)AAb)6>UWM*|6CCg{P$M^*s0Pjmu=rz>!#kNGJOBB- z4qS|fV)IQlZO$dKuf|eajp2R;2mbvnMPif0n_WeLq=X3&;vW{Qe)bd$$`>o>y2r3rPHd7X-%cm8jWd3OQ$ufVMk@j z06ys|R6~BtP?+REK`d+^#nmhH_o9DJFHqR@QSD*LRd{tJ9F22iFOz4ZxPrE#1bQdnOKdEQ+Jhb`0Gmj)rP;R)Zb{81h5Je1au!& z9aI$p48N-Bxmhw;%C zg**k6bb{+e*qXfzv{C2NN3$bk$ePvA*SYjb-Jb(gCysd{AAn*%?;21()@@1nW>YP?&t$vXc1I`rEVA+e0)F|79O&>1H{~(bep^oz;|w zb3$3c1E;HIsJohb?P~63HQizB1JJ~|cr&bm^Rba1dpX-FR+Z5A^0Z|=pSq=#C4gUJ zCmnqwjb4pvNV8Yq$sxAS4wq)c$CyVf8Ri!yv2ee9bB+&ZBWbw-bt$h-*?!FFjL}Lv zKcEKTwg(0hekpCq3Ti<;{UM|*g|{Rl?>KfSCM0-xhwvX&pS*%r51tSk*2mk1K8*e5(laOEAKEoxNfN0B=6(#9#9YB9cH#;=K**afsGEX9vdtj zy>Ru|TT4gZwt8%+bo8RFz5DcO2j^q`Ux~J*Eb3uhlfnyL{x*8zqGrKy$E976_4_8^ zX@nR_h(jq*@kMV=^Qfx;D8SSLR(ts7+nKN3lx4ZylwA{`Rbuls>gZePKVx%Y3epa|QPW8qPWbPBt|LQ6|??SmYgN|?- zCFcxJ_#$Q-&us6+v!x>&_$}54I!SpHS&LSLJdtb}0^DGCZnxKaeDMljdNCF1;;}(n zX`iL5Aj?J-=S$+mTN#uCj#c`y)J%eL1`p0SY=_5!iG`-5A2@@y zz>r3bnrwV9wsU@C&G@VI0RoOk{q*U$U8gS?M#3p`_@%$-IV@K(x?nSp94-HgU2MoZ z!+>=q^-|TkmBPBxLijgt!e#g5G19gl7gmY-Z&0YSz0L&}z)}&_@m77|Q8hWyQfKvt z%XCXupd}i@=uvWysjhVIGg4`1K*P;{uoQi0eaf^119I&Tb(ce|tKgw>X<@PY<^NEV zFK5756MGJWSc2nYaR0&BLD+}4Z-Iw^v%DZx&!C&NN-`5!NT|tmT>|Ys7Ss7S4q`TSB~I4Nf#%XQ zt0YZ647(ID8)m{S-N>~5IHc^0j|c*Z|L4{lLVIf5g(%XX$~sMkweE~Ff`_2c5F#{% z2x+cL5L(kQapVmMz{X@f64Ls{YS@EV4Lght*8+LuH9`s~#vei{!Lear26_9c-5fGz zP)p=hj@}0d?G&pU`3XFJmOQIfKAtXlq`bZ6@o`H|{et-wJ)CsEEghHJu&mR|hHtu= z3#vB}NMH(84~IXX>Y?KzE~z|3!D<&!oe;OhjL>CGL2UW}lGb|-8j?5gbV1PdbP&k= zZb+KnlqoFn_688(FcE9|H|Az@XegoF{a!ox5fsbCLAh9 zT>ysnm2C%iQ>H>%uTuGmHb+aFxZ@#hMap6S_Elsnn+YbGS%YREp6*jW!Ep&IIE$qO zo9YTE8(gdYU1_JG2pNwgDApZq||FGbtlDkpe^eQ10d>Iws zc>rMwKDmZ_ZM)M9x3=eAlQiCX{!w$|>`_#KuLIa9KLv1h0M9LFMQ`xICz^KMG6DQ< zSBgiiAkum09KH~GQ>vL7)a^J@0||^usFd=`MW3_){cccU>ickHd5esFgBq{1ceN&k zB`70~Xy6j5&lBjZz9882E(2e^?~gSCKLw_O zM}cv!a7V!tF}FIKsSGp|3oLDUoyqCI7n9%C$!9Scsdu)}4O}qGPJKbAcCibW6(O;O z`*VAI;6Dg5w|jtgZ;}DZum`ARJSVj9B4>=gt2k+lp1}q}#z;M;$B2#;nlVIXjvk$N z9>-LIMj3ugIXHjVL8@+6kH~Yq`kg!*VbGj3IIsT@IQfPX=vznL(9VQmb_!1v2!4^S z9%_V6l_w=3Cto}J@c3Qi@KZY8MnIP=5=f$k0LVedyh)NAYZ7$MZbmA23 z3jHJU5&|IDSZa9P#;Q+aRrpJi77V~_<>my!lMaCdMc6}MkYu)E>}d=0;H6xru);K` z8DJ24eQMzP^aE91tAHOE&RzLkKzy6Pk(7GgOod~%+Sat_O|{U~Z8dXpzY1SvF0Ym4 z#$OjukD&#G)id{->CtSDaV8{yln1bGF0T_mkkFsischK0%WAS45qV5VD${CVm+aHl zB@HSC$%3aZ`w~A5>P^A=RuwyvBscu*xC>9{|Ec$hq22<8WI4-6h$^l&=(qHkHR?;n zP)hqNpwohyt63|!)Exut1-wzMdzmw$LR|p{pb;b&+&_SFq-8G<6rAu5XM3~y2Nnb@ zFkONR><{nAhwu%!*`*J!+Jc$1MnRN`mvmA_bmhGBSGF&r`?xD@H^4Bdclkcf#N@3| z?@|+^kI?FE(%B5sfx1d=^k9r0Xag$RWl;qb$~s!M$%=(hPn5 zTa63e=kS-Kc9g3M(ny{!EjN`)S@^T^ma!ME%;sYFz-+$`<=Vbp@)X*S! zLx#1ydgjZ%ChX-3)4$qed&m>1oxZyv{`s?R#^*b+98{{zQVOYC06hd$+3>6* z$8nbY8dhbV!>ot3E7k<@LT4^7(*CFQJwi-~_2w1$UyKdR1}qRz@W}#EtnP+5$+9c> z)V`=5BUvRB^VK9px2GZ3{w|4Lz`x;_M$RY^R*pPMLjA(2H1>J82nNM{oPZ({skYv8 z^pOPT{@Ei!Is+4&I~&_VBXWpb`wk3PoNnIe&C$gD&p&|*7E&$!`Q2nmNe;RkA52W1 zw3fC|RZyzIeG!840%gIWvgcfPBRjhpTodSlj_QH+uJyA~-GUalj?R^5sk+-rMazhP zf!{6;Uj}X8NjN%rK4I{&Xj;o_L!D=0BmDAgH2>8m?0XD_k-+oc z?#J5%H_Pm{?fv*2Y&&T`eyz0Ks7Bds+nnXDliMc62tO|dgH5m)L5a^=zCY9vGvQ@* z@Nv&f%m@EQeL9S3VEEVHyh(K_;S^{D;`ft`BCpE~*yf%A`#A%)sc9INSY*BFR1v+Y zngMLL8Ii3f1IbnH@>hBgw4ot3Wgvd3(yc_^HdVx@KC-UFis-`Q^IzL|6#NZO0FQZ$ zrHKA4dYOAc?HI>8iYw~uhhf11B}_v>2*H%0V(G^vuK|om^Dpti`zt8PC`8n$6wF7k zYh3O*k3ykZhzfF@%B>^?T=4x|MSMC>vlX$aG|9Wi(_w=X<9%JzY z@E0>uiOFIPQH>Q8E-Gc-V6QTg)3)Myw!c|D@n>EkphUY_{S{4$&{UFT$$to@(*-zU+3pw!)e=w(`JPSgKC{)hg16avmC`u~vK|EqD= zjRbZI~70Qp;agE zU3T7IAn(ceDP4Ceex^RB@$++Bzi{TzLk@UV>e#tS_*rr!fuB`}>yr3Cq#b*|Pd3Uu zUxraK)!qc_ZJuc49DPZkQiKH<)p*o-zr&iaiK;F<0(_K~{G3Ha+ZNY{>~|G86WbP` z8dp-7Kc3~dE6YFDNfz-{aanEAcGifBZ^R>#s}+vg(4c>C2IMze!AnDfgTxBeB)keY zs0Uejv-&Xv(w5gm;V63M52kg;4JxVBTTIA{gE=J20~wVfW#$z`2X{E^j}`HudISLP-}Qfovdy>LN)0H}?cA(tt9CPw=!r z`3Kl4)WpR1+wi@0Xwi1o4}+O8hBR!B8*hk{uW)w|1A^Ol*&1|Vf>biYGsGa&H0EbB#wU4$A@}CcA@;#6X1)RjUhA4mh ze$b*t#6YELYgXs;m(AO^!En&tR4oJzVx$o@ovj$-#^^vW#<=lX2~PYRrkYCc!A5hq zwD!|_(I#pEN4;WqLkq^&0vw8+Q_zx2L|FUTY1k#@o#^5JMqc>){myzVt938R01shs z&;fB?23SV|RxK^ORc^1=e>hu93-@H{>1Im{9pbP^`~Sbn=TAb2#vC}ke14GFclLFI z&LMD(>c==$*Yf$qJN~VF{>(k6%I9?=gMK|dSw25jmL#9oKTRsHR)3afsrqD9z(;_&M;4C#$rkf)SaR+5@=nWwY z9rJ;1Tw>F+ZHgKw;8dwMF**)+$2cy9)~)3`v}x+#J?l6XV6kou;3*M3ix4*Lj>67_LRcj0@4Ik1G^?IlNUT-rt<0o3 zo8NK@aq9h2()p?Eiv5kCNheH!c3W<1Hf4>3JEEgpmPTq-=(qRDguOh}HQ0vFqCj;_ zS>(-1v`<<-Qy)5~@C zU|0};TXQX_I8WEhIWR~&Z7*YyI^9uNhBm74sKnJ#gCt|CN~C|;F6P3+&O;bJo^8-> zJ41IYDK_{E8o624>@3dCjK>>=j6-t=%kymkmM7aR?S>Ti>A4 zmT~r+V4R362M}8q2{F=TBE2b6lMiDEf0L}OP%&1he0WnsjhBWHruJj43HOHD&$J?qW*ZbT zkuqLLHzzJI#x8&YyTfF4C3D$Q)$^h*t57~rQELwFm{g)odt%wcBxn7N7?QX+*vD(n ze@Mw35__$l^>_D>$ao~5hjFgs5Cmeftxj8$Q_CQ2aTl*}3Fj|Yp^tPgcoDw+R|vs+ z1U)$Bj0@-Q0X=qdp|n}>6`opv^Hwg{jRBsxMsI*+?v3jSG{WMY)!sg4MMuFDfGuPd z4=~S*9t@vBdM#hsqGT$6Eawm0Uw3Ac(rtDnz4#1GFZVGIOcC@zx}q^~q`#L;xOz1x zcpPP0;DT33;-!HfLJOD$nt;Cy4|DDiq6v@Vg&|gzlvwRllNlV2f-O)MpiLdXAt|GY zj4jbP-MJz^u#G~SFyFE>gu2YC_hh^QNMPND^sDUj=aBBeQSUjal74o-OC*zqA*q%Q zk|7*qFJ5B&3W1Ot9JYZtvBdp_60t2Q<=2pxz@9R|gxk=`){(m~?1g3K=&-RkjHB(2 zFlr2|G52uywgxV2rt`pJLF<&z;NVo|_l0f_mhq)SXhbjrr|hR8;f{aMBrGNrb2Bsv zPlrH^`|2HGc3!5M@1`=nQC)+Nq-$G!5CuItT+q=T*!sVd&6P78mJd26nd8(~2%ga{ zpgyi}h}gZz;gs90HO|!I9d{6OPLNt-7t0*=gsUIF>m>bX=>V#59K;AU`Wv*pNwu8J zyA0&ib5Oto*Kr&3tl*fQbDcx6o6OZ5y4pkOJ@_A9^$ympB_~ zjENutO|T)gb36r6BD%Z*IjWhX+Rjmz$YCHyEK&h2wl=`VaU~S{!3q(S8z)duF4Kx^ zSWo?>#3d*09S4kZmE_!G|KfHv2XhA{Q| zh)C-IOL$|?DyhPMJukOc;?=0xg8#{mtGy7@Z9kY9!SQl{UTGBKfMY91p|r44nZO_7 z?P;X`ts_URvSlPB5L4ZA!2;x#qzIg)r8l!N1 zy?>(yeGR5DL0_XmzZjsm+=BZcR>?~!T)Kh(5!RTo1Y<+77FLBPc*x;v6HOZe9VSUY^|=S%|PH z$WhlUP4x`hK<63sPr#>T@xPjhLp8gBfoOmV@>?E-4C|fK!YI)}vaw)AqPc&-1_6no zOM=-@-6K2j2TePNuMtT$su3v-_<>%uv~Z2ug@H$}E{QJR2=y^+7uMiR6Mz0S(4LAN zP;dh3f=ThUm<@Hl)*;S-5kg!@mGa)=ChQ4J>ElSJTu{orD&;cdj#2|IZP?crD^&zN zvF&>9-w5Tz@~xO@m7Hmn_DrjmnMV3i7cAq{Sfhf-Ni@vE(-iVHEmE@~I~-#Jw~6M! zxH^JmOT}UfKyeRe!xm6i--V18hZ~>T_=pt@x4}teBNjiZ$AEUAr?1Y#LHARyq!ZVJ z$hDfHrMGmS)!FcD0PP4Qe4+_Laxx4rt#ZLYqSC=`b>(BE9ihCz(oPuQtKcK?);nm> z1|~pz656d{(lD-aBX_KZjawG~tF!ik|Bc2+Q+`_|8`+@x1oVixlN0J2EQ-^NYuc9+ z7tXZ*^bAdeAN?Nk?K*A08&J7*IGPRlX1=_c6)fNO)h5fD$0k1waeA{Ihx&teBvHTQ z8WZ^!)ISS$)6wlTs`KflKpSE*tjR-ka6%zc%?U71Q=Eesf&whMI6>5X??MY~96H4r z8qTXQDO?A(+d%Cgt0#b7o2<5ztZ=dq{MHgv*s#lkAxE`+ocey{zZt*c|K&)@_=O?8 z*`&3310ktY8~M}&eKkfGB(}t?sT52JF@lvgiTX_X_9)gW%NhVos9R7_k1=@#A+!7V z6IxvB8q=gbYUI>VX{QL;)NHAQlR)*sS96yfduYspu^ygFKEVX+Y@E!`j_xd_CdF`^mltEutc{)zG{X6>``tW;0(sd?VsU$aXBO*y`r z^;qb%laROH)5{#zH^jtH?-T(Z36kgsEI6@sY@8(BCnh`Tl%|%t(kSI19hOqufFYCE zJ;~Js+DT=~J@V+`1@5KOx#1*Ncp?5c=Iiv=?RGspb*0Rhp>V}^=X-HM&3)Bu9+B>B zZ=VO$)HOW)FyzKW0Qnb;BamZRR*CrpT2(<;rp^>72Z(ePJJ2~5sM zPjI4V;5121#qt)dgLbk?b-{pR5<@#F&Wj&|va9uG=Ohmb;7llR^6#@1z()+Aq>>uo z2x{F7nMM7tZ)*JX;TM1D4tS5K&n|+h7q(ZMvAf2l;PE`Ay95-<%6LjQw9Kxr3Vsu` z`ounM&ODGLr#KR)JsyaT?u^G$kR=99#zV&IB>&?)&xHtjZ7;@kE7+GYeKAl8y}|?U*w_cYR~;@wCO45wFi25$B&-~4 z>#3ZB4r+&leiST5;~?84!y*l)umvIW*Wa!`TIF-|Gs2DW)?uo-km zK!I&iWn6qyEz;TW7#d`9XMreEm>oDpc?rxHWI^pfHi!%CQTDsIud<8!7JkOCwjlZg zK&VjN@B=m)mcJ;DQ};R3V_0=$jq4R`LhAq;H*@R(L4lxs0^8ya zt*oH|@9-O}AUNQ75h&DX7W2fp(4)y`V54Oatd~t$S`yI+>>xnDXFja~zgG~~pnfei z(XlL7GFJ&7me>ZhAW>qrUE(TTqF9$G;546a9>Eeg79LQz8wjA+w1=cIgVuG|`|Bv( z%hiA?kMiyl#dm}1oT&YWA4nVs&5Q}^>RAaDLExF^KLE0w2(c}?sUOxi+W}p46IWTR zOj&pY)JLmN#DZ&RZYUqre4L-4t`4!qLBuZa5iCz6U8|FR#3bx3sMhEGs<&XmDE$tz zU5%;vHe`Mc*|{7FNS3Y8M%nGGS_j|?P=)R>Pt}53uqXu7vIW9+5pvWv62BDvfSlt& z7BznfY7qC-T#9?DE1?gxlYWXC?X!@+cx`JOh|3dTpm;UC(KwxxR4tiX!~2RL@2+!_rl zrqW0f%2!7I4a(CK@U(p&NBIE4gWi7(Jb{QWu+jf#{nKavJi9Bg*E4b+v!>&RxsN|P z!p^6z4Zc#lfm&PB^_4tQ?d8YQ?f?&o{zI+lrvDI#^Y*iFgtOP^poS2dzF0S!gOw;0P_uHmL*;EX zocLe;En#U^SKJTbQdUP^abLF21xnIcEY_M*30>lj?J zLoee;3>OBQ60OjZp$o?i;-pwI+=5=S=DDc36@!AA`jcTt600bh8idN z4iBs7n*QoLrQ+wHWNDd;iZKOIiR%6erxB~oIcUCxSUq?%$7l2(pT6VUGfH-Qi;wc| ztyRhfr$9wNS_Z&dJeyVghg-0&J8!1cpe_nyBjYdTWn8VdbS~uLLNbqvMy64&vop6X zW@g@%wKF>xX0a7`H%|C=<~@=b7mxLcm~)v9n^;fMg<5t*{hpai7UC6QRHSm=Mdfd3 z%yiXSVKIe>icymfxB^J_4H}JoP*OPSbR;r3{TUm0S zWaNK4Yt-jH{(a%W6PI2hi2qS!}g{6Wv7ajJ3OokJ6HR z@UY{+5c(i~s*9pnDmNWr1`JSi6ZtI0{SY1jl`e_tpfe6gbW?`BiO7PL7)RLAP1!oJ zI=ZQ^PW0gsP4M)25PX~|_sw@L^yG>IfdffLBfJ<~maPHQ)&ju^aMb zR_+_#yE0&hin4X0#1<+pzs*e2ZyY z5y}j<8Vt($1~$u-$cm{#!z%UHqnMWQm0|8~0rHhBkL;T^W6rvp?WIle=JM-WC4IO}a9Lu4`g ze1%I24GHk%HF4a5g1rP*mPR$#WG|Z4ba_^&&d11aBR>0B@DV6wbnLf0C^E`$-w3)m z-s2#T3bmgDH=+OF%K3AZvq+m;A#^9)B?{M@fhT`TEJ0k1uo z$Ln;)+h)Z-Mmq0m_%r+a*YtfHX)ia=bGgP85lUNs!dJ6-+1nXzQ?F6mlJOT?{$Xwu-lp z#TL}Z*Fm@&40Q2h4AadoRO%KOso?UP#~AA~{n>nGf~26bpP0o1=$zV-N4z_*Ps_3< z_R5JF%Y6TjyLXR|vbY}qH)IV9M6zhWs8Nw(i-I-^3K%cpl7K>BLnMF_zze#rm!f7B ztr6%Zn)PuJtF%~AsbZy;)>K2a^%jJZSW-Ymi$WFKw4J!9sEAOb`+c7?&t4Mg=iBe^ z`+9x<`1yLtvw3EonKNh3oH@5S6TLOxJa>mgy64BHjBsE4LSOh}QzpAFmh)mRDMqSa zEfgZF!rxu85fC(_<+R{300_>TRwgHf7XJzm%5$M^r&n}}U%Jkx>ppJR;!egUMp%K= zEA`pDh$J@|{+eX3=o_8ljZWd4+~|~n(Xzn}Q~c2>qoQT!G)x)7XU^-9TQyZ-KWB_T z`&IXkUYM2w(3hF9$mdZg-OP7QOeO~d1UCnV?<7%gY^t}V=MMG>Q}j$9!BljDZ}ePm zxFGoa2c!|69jxQwo~1tOem8qBNp&X+yZXs;AeQtWI3&r^=k#J&10t;n!6<25!oB&M zbHIIBC>t11Y|1E8)4AbG?s*~;#C<_Aq{hSn13Isuk)6#Z|K{Y<>p6BkFWcE=g_Y#W05K~ zV8Zz{5Y?myh?2o8{)W(=xvn3nR@K&S1tM&c-fMBdtU!K}^Y6o0>2Nq?Xg!YqlGxiq zAy04t?Fa|(aODpmhs%Qtd6QTtI#^6EwhWm4v$bibwbIPLQxEKt8R;rvBW^|l|3}hE zlkrg+iv{`Ad|mHK*jvr!xCP-?AIr1N{EZ^%@?D;?g}4mm*bR0M$@K_IbRTK&wvQYF zAB6%Z_*l^$A4@IJnfOq#J7DTD$hdp%0GK6MNy^zMWUIvsWT7R_bbhI-n)mu65)M#_S*4y2h0y`d6Q|PJT(O|MRJp=uM_01G`0GyGhumJ zNJ9Ek;5Kvlsrt`Wb1Fy1U2OE$Y2^HqeoF>5o*5H#+xmx%lOP2Znv1OpcEpH@rDEbs%}4q7(94CKRX@ zt6_rI)Sm5?+)#;V?Ez|$iVBX{GjxVBQ?vIWqAzC^Z@PU%C=o;|^SC@#?I**R_F(7A zl?cq+|1Pt+d?pNVR=`}RPv^b;8?q!9x>T0z=|?W>;i-tu-xnHTnqNxpKjVW7WdB)k zLaFROo+o5q>1-+UFF2AHB|f&m=p6+B=I(wy#SuYf+hnBD?{8r`bXVF}Wd_-=gKWhX z(BK2WDvTvu3ed+G#-O?hgndA0jv$eZ9u?>`dsho2x#lB^B~k}M>XzzU z^R4-vcZly0sgu^4NG2G3QHOX16D_C{qu|PAEZ?KiQ3ArLrd>vfWT)JO>pe&FhH|Fz z-%GT(-3+H#vmc6eVTL(Jlmz%%56b21e=nA2llhEi#xfcXJB4zoS2!J^ZiUn3$B{iFGKKmi zGnT_H1k4x}D3K(YEzEh(#4Uba2274ECNm(#j`qOLB4cEqb+<|QvW~2Wj;zW28;RA;EBJ~0 zge(6`U+D(kw0ZUpNz4s<8E2?K6m38&Su2g6~UhK@9c*0>)F*;2K~D2teu{u z2fKNgOX*nY_Gfb`vB!r~I|qb2#+Emk+bEZvLv4MP|B!9D$xKoh+srr@*5Wj*pZ-&- zaK$>WWUgFS<<&1FDFjN!(fO%f5YX9B`b|UGc&7}u=Zz0ZaP8w3r_7u8J6Xsq;>Y$& ze#-FK`^!qQ!u@SE{w*%c4ZnFt^Bh^go65###ZTm=vnBP}HTqdiA8F6lexJ0{+q%$4 zV;A~x&2h5eNnDsWE0l}z&87|wZez|ft#jr>87=Xn_HeL!rpjCmZA^*m1NZr!4C3>OPK|$1`;CKM{2F#+P&>Tzm ziOL?{J9JaT6h#gc+;ntsH=~YCDKINPy%)G+R-*Y{r0@ zp+3>_T@B@J(eix_<%l}%!4kL!wrdjjnMpDMdLBoXotzd6n3p8Y8I$v4AQ$EJ0;n{p z#A7CY7sH6$I4x(mvP1#re=-p2)YyBFX;5Mqk*w0ei-NwA0U7ACi3{XHR8V4b6~7H< z7~quo?Y!u$NScGr*qE%Ao-#Yp(mFRf2AAg0@;Z*`PYXn+dQH{QqSD_Z6I0tTbnE(q z*^z_3n!_RodxeKPpk$kyn$_==_%E<2%cIL>Qexh%Hq5btWqh*a*<++fi@o~zFCd{! z1;v^uA+P=tD#weR(uTx3u`IBW2aNylZ2h3-Smt)KDc&s;*kIbZD@kU)^H!vfv*gVi z?wb#JqtTe{!O6WA6Ra1%xxC$Zz`>{ncn=J!O15*m%$w(dx|m{w;P)P z(-yjBj>$4~FxtZz=OqzHtaJyQVjH^4d%%r}dGkR49HFo3dF4#sF>9zF%M|gZ$F8q$ zUex<`Z~YsZg}%ob&ERDW3fDk$F^*Sx4&n*1H%Ar~dTJ|^YxK zybvrs^oHyixJNwHBWKzm%pqh|2=#{*4^#}2|6efI-yvbk1aH7RiDgAO^}FvSZDVS| z8~Zzph+Gc+e%-?(@ywBh=VXVo8?!c?(Y(QOu$1tdiKgThn><32ivlRJ7v`p*M&N8FtRDEH1)G6>7s~;HgT#gZZcO=9O@n1r&~{x>2Ke+nJK)t zDJzp3-i#!7JV$e@wV8ekg%FxdFMX~wS^BIq2XEoMWg5SRMwl5CE#;c*cEy<9I{wa* z3VDKl#v&{Eho1qWC|a-b-sXF>zLH>}lHnhwBnRgzT0fvC23Kd+%%r62u1#`~fGuw0 zV&M!GtIdqE@39QaXWceRcKZTbzS2}s&W39@%2SwDLF6DA7Q;P8pKay{eb$-YI^0pr zk4fN4R{d&=`SUKmvPgJ}O+tqG0i_w+=%A+LLP>6BJfVjwv;?uKcuhIxIYeyC7tyjp za|3xcHI**oDKXz zUAN+;wqm&3=DMRBJP28doAVt~>Q?zRiZE7I7`d{5Wl}bR|0f3$Zy-})PIKY^kM*Tq zuC15sLg_z4Uw9oM6@qc~g+QjhkhQqGzOd*=qA%pL4!Y_K+vBP)xDg?k9L>lP?op6V z^M@6pHDG$&W3`4PB=)KB6tR0`u1BAkgbGk-;Px2qB*%#u&`FJ#9~^wYtjB6L;FTv< z?~^oN?y@9W#xzZG3Af682m6`|X@; z0>orepqr%SQ;wC)aL+xwdLD-lnq6Weh`-%3QzR_wcs6;Ek8_?JW*Yul$}^%m3j$ZD zHzJp0=Gpm0a!~GZj3m1kSu0UBLdH1cMvL2l`s9vlcpF=5Npe#i5IjKVncLC*f)yIj z#*opz*n1dZN1M&#?^ss&_6;yf64fn}140X@sV{$6vbke|{`ORJ;>$19)?8oyLpzX@ zUr>qWY7XV81o$otFVkmHwTkZT@sNkci|CcoGk+~4t44ICgn{tVSov;q=DCtJTx3Q5 zYVk~z{@s&WWIG&T{}h+Bd4X&~SY+55m`l?vHbwbfdcmb2O{-Ph-qhD+3av!xO2bz8 zg@FKodq+(v&M(;|xsFLhKl8yknG<|?@FJjq!qXFc8q=W@EG{q(O~&-LC3mVrz4a_D zGkoy#^bAY;c2YDfAvMEg3+xP^r_U8;HyCAx{o)uyroI!uZwJSH!Q=xHS8@+=kO;f* zLv@q=WvWbIUfnAoDCsV1@pzw9B!VG6TV|$J+DaNV6;Q+LfYb(r5MlIr!vlS%vMY@SAG1ZK8G_nW%|&S#y3zrRFC&CQOF~M@Jt&El%3emjT&22|wuW0C*)uOqXDLm~IY?e3 z^YGb9*KJj1;DZ9`D${2I36S&VFpJ>>pX57P$)gf#$Ukr&DT2$$K(DjWQc}Z(ZIaJVGK^x389@TOt^uNCP{|p@5zAse z1@Kg&l32j&o=hS%B`-@`&X!QmpywZtb3X`qugf&=HO^7v(4gxow)LH?szku&?6o;Z zu}Mu}YhkC!iQF-7SiI+wJFd70k3rtU&2y}R3~_=|=YkS*+62M4&)r|iY%zLu`oMVj zOs3r?uwafj?ZS6U_8=*Ak)pwmg)=aV!V$S$owlo_w@929} zr15kVx-__e2iF-x0p`6M)7SpW3vpas92R}2-8?oA6oq#|y9;f@UBfo{h1~W9#f_BqbfD}`r1tl*~mI{JNzYLeA zN72??W@Z` zx(eJR*~;1ccKbi!17?Jg9;MHT=4K(_DJ5p&b^V~5aYjvuXYxd(hOX_?R66hz+ z$D!D{MLgcLiX|#5Hl<`UmCT$u1?4lzuYN9-((xqU4u{B%JaIeiNj#0%^xv_e1}*lc z6>&JVZqfi$)i7S}AzZ7~9FIrYO0arNU?Zj-y*f51vc2mW-;8;lI(^mjU5J;zgA);+ zmt}LeHLA=StrEU28PUE3m$m8%(IQ8KB}iBA-tU4OFz{b0sq~>0^W!SEXGuI0EkXxN ztP^)nz+BVY4Z;5z0EvY?_Gb(4^>i)q{1Wez>@1(oY%kiSWXA8NnPhf&V!A`y+YIwH zyi|}eL^`q20JE>K+}vGc5C8mI{G2@xnb{}v==+n)b2X|dvgeBQ0;HCeHPJ~|-;F(_ zp>z#S`j=NR_R&4_>c!t4stm4zEFn8`=ptVxEhDIOHxk4^D0i%Mttc*~D?`08+x^RK z{jM)Ya&YeKD+6dZzqnkm)o3PiFoYSKl2jE>2=1eU%q{F_jgDwUYZ2j;nD!#(Rhqcm zZKAMEh<7bp^JPvyH0~qf7l*uN&%<^z>0d#avwiq}5>&UEik}@N+sa{1c) z1-F7#kSkIQ-s~qC1$wcE(!IDFu z@ft!2GSMjQ9vY1yF$&t#G8eyQ(Rd${tBiKI1v81pcd(ZHM>NL7H$^2{q zwSA}&Fy9l1Nh!XE$ZEn`Jke~k^p7&emF9XtAYrn30@roMjQ(?_1;q`f=*pM=D^Px- z(GV-mevp{~%1Uf10?IxC<$!{c?Sk_677NNTT|v1d1&VBP&ILZR@D7+lbKdf1D}~Bp z@3NHtPqs4&krEC*6)-I+>UQ=8_A|SkiE`|+_D&oT)Un%H`Nl(SXYXj0^mg{lzW;VR z+klPd+uPYn$ca^suMU7@J9~MPAgR?n%Di>o&PwU5+jiDXwa?tnrlmVfZfCGCZG4t= zVz;vx;g1eU~|p)aI(J3wO>n8=Wrn`&}1K*Ay@~ zO&q4~F1!^`ISb51w*q2wx`kx z4f1!F6=W*0E0T6Jc`0DiS;8*tZ7WK{r0uaEWl*vCcq|Bc$;+mvo4Wjn#pGY}0O90f z)<#v~TH%>&ovvM5tlDM-bE(^=G|7RLHrX?m`(*P>1mwi@3UfBV$71rzoT3!aW-i60 zEk)T~hxyBE8RpgCNZ{mxpeq9Avh6B~nmNA$J~>iR+D>SwlxK*VUBrEcZUQ(FSSrGQ z@&CRI|0RnS-!JyKhpY%06M$Mu>vT(Wwr)~OzsJnSqpncb0gDTD&3c*k6=wQ|E|c;V z7L|@QvIxcYYJD7K_{W9WHY8tbmX}~1SPPii?^~(5HFRWf0dLG1pn)$%Vl%@q!ig(G=(vxSXh#4!)-B5F+*00RcFNU(8-q~eo9(*9VG*x{2zuHe9We<}5DFJpf z_R}Y@adqJ5@2dR$3X?w*no|DiKKgHW%jH-~p_XpS-}T5Gx?4U>cd}b9Q$)6!8x)$n z`s)St_JTum6rI`Ka+Yh97X2@SJDc6(ME=YdvXr6>UTpqIk=uWA^ZeA6BnqWZyLkqx zES_Cm@V@&ko>i#&zf{9VYNT7M`6+Xof#-9tJ`|qE;d98ub0MyIps%R--zwRs!gaol z=NyKrcs`Tv1kXcQj56!J6q>Ghewtu`Z{s;*yD|&mQW<#8*q=-_Mcwcm)$p`d)1y2E@^KC73#2`L^DB8AgPkUF)8?>9R_BJ9@8<_Py*b2EQv%wn6fBcaKm)qsMRYn~isAYPzv0F)?Kf)7{!C z#M^0y=H%$nNs?0VU59*cNBoY97ymTdWDCfZo*Z>}x=FgtV_)`6W(c=gS4&(7e#YmS zMiZIuKUQ>EB02ZkC6e!njhQHFl$`sUcn>f2+~2Xmz_Qt%;IfH&?xF$HCIYb@`b!=1 zdsAK}5BagEhL-wh!};{VSzjI$`^dI!eFWzGs>E3mk%6(Y4>V0c1`$(4S*c)dWu#hv zyf2pwo1eqeBP|6IbQ#VKe6Cd#6LN*8*2lWKNotpQ3*yy7b3z5u zEAg!7KK0a7y=$gb&WO##iBxHhoOdKvY3_e7m|@KLuM^jlA1II@m%X%+y~TW=HaJki z#lZ`_i6ZmSS=_Bx-U*B|NRE8V%x@BNFL5Id%yx!jh1Gc(x`c$?s+yA{ji)!` zH2Ywj+#nU1zY0O3Gcuph;__9J{7TJcM$S=7R82V$NIXv{+l)QjhM(3Knt%L zx+yuZMmRtb(Ycu3`Dh`@3+1<2)W-T0c5x3~$}AsGa}xxCwT(AoF4#e}9m2RG^LMlM zu8|d1%7xf#Jx5$1fM5XRcv^zkcZm#LW#7!8Et|pX?j7bM%=WSJ9i|`1kgi{1SmFlE z(!blyuT?7TyxWb+d0HrlKy!Biy;3Xm+h*>f*0WjhmsQyBa@av5zj7t=Ya6^c%DOA_ z4$YYnDwzA=m&}D9*Lbvgd$e{3`hJ~waX?JzuHkP$i_>?@h1lyK{89>Q%E_vblf5~+ z#o~9m%xw8KF_$@60b*JcuWM*;iLjdkW%w!zW@hh5h>vQQy;)lu8eO{k#^;^t?LaY3 z$ZFPu*#{x4>g~llZaNMfF#aQ_yiEi{(|)@Qt=+7pE#l<~kcDz=s<@{div$&>76Wrv zf&qPkIk&v$>_zjH4mJRk1!f1S3zOjO)#iJ}zY(Aul9#-9Hg@9Ql+e zu(m+xDsxyy6(N#)%!Z6A*lC02Z@ts4AlXu7RjP_px-3a-&Vgv{Vxrt?o%f=(bxycJ z#UHXmuMr)g#CtRYQlru!CRNzyUxy26tTd06vLH7UL_WzPMRx6Cu7%|WG8!6@l%ICl z2GmV1R;dpdp~Nh$bQ`!-8rWnT5Y$%iw_xM~eKwgf`n<=~PuFE?k$vvn7THOq5~RbG z;5bBjC$`N}1|k8U!hjZ@4zY**&fXXs$d*%Kh;r=Naw4}%+i86yM8Q^BT?GG6RjIHR zj`f^5CPcB*nd5~?Ji=}visAu0Np}SEJ<&V7(c;uOVt_g1S5C%PmoD;u`zwYZ&KOQM zS5`)=eJwp_!dhat_#5VW*@PyLbcW;2xzXy}=<(4xUNZowqdD9#iDx}velbG4sD&Jk zjZPSh=auNmLf7-UrbKk~v>W}QHrW-r`4L~5j2pc=?M8owO5#TR(IhIvlrO1%wMhKt z=JuXQBSh;b&N9t3EU~9@I(ji@o?CJRVi@(5!RA-o6cL*;#Ej+p*p$IZci1J;EDq`^ zbVtan;o9?rGbIz2DZXUg&o_UaXvrB!ldju3Io-mNQ|FhZT+S~y)^~Au38?dFJn0X+ zFQZt#7h<^plJS`z!uvqIgbXG-pggi?W_ksS_$czC^G<+7JQBv^O!ARA#q_Qg7EEe& zuB~F<>rau$F>A$CBCnstpfcMThl8Q0cyCRKh=9`@VNTrIAt`rS%?Ia8%|@8+(HA1F z?*u9?Mm(!{fj|649LL96ZuYAR#4hlgNm!`VO!3;&w$EQa(y8 zoEr_QSdc1cm+w*xoTeBM_N*9?TV~%sPcYC929BajFffheN-hSH4yhx8MIUyBxdChm z%qmg7rx$WzX)ZhG+n+g0HVY3<25Y_$s~ z_NbZ9UlYtn{8@b9M!o7DJcNb>*LItqmEa{cKc4};%+H4t1Z|Dxahel8mqa6E#YhIQ z9_S((D9c9-8ou-H(%c!bTm22C&*Kp-Z^bmNy_Y-H+cMXT%;rtAl>~^eG3})wq;waw zmB&(ghWPnNontp_n*dlrRdBv6gC zBikz?m-#);pCXrWuZ4pNPJlW33Vbe3>GsI{?bsgV2pccGKg(nAZG?wD576dLVduo# zM@yTXtwisU*@r;RKw_lv9T3UB*+gZu<=b(C_qBoNTs)-12E7U9%X5j8?<#K1`_bKq zCD5N0Xs%t7WUxX?I88-ZIfuq%r>!zG#GojLJfI>W&7NdoVHQZ78@bBsDbA}oqRKg) zRBz^G*-p2B?Y(p6+MFd`^YatG!46cD>+}UIH*ijqk+7>Nq5GrLb2$<3_yf@ajvNJ( zGmu*oQwfEU<_MZC&z(Dm_^;Fs36M+n$oXLvSHMT-=n13T84CW4_c}K*n`Y(Fa%}j` zCHCqi3B)kR1<)cHF>uOln_F=bZjzIaG2fV zbW%v}BCVJ_%*sirqPR9KbXZo9W80%-csRx{31!Yv%V#(5fGAC)FPxt83xnJ2-@EPKX9suKzqje%HGQD077uPkawi3! ze?~uDms#YMq5|@{4A7deC{Mf>)6qiqRS%j~*V9bOUzh9=JAB3#t*b<16%a6T&1<=+ zcfE)2bOoE>ZXkja;lh$5L$d^%J#A=%SY`Mh%MSPN`eiSD1UXiWF(toJroBLZKX~Q@ zlw}Uks+-VUapu>F%HSStw9O2Bf%QmAn$e-YL0>%Ck=wQO*D;3vj*4l}1$(E+DOHJS z+S%!J7C%Rh0I)4auz|(DPb&r5O1JyaAD33rP`kHi(Mp?%tK7K4tj1~KMr`yvQncUH zdGeznO-nPnT3_sfJ@;Bndw@_>oLqI{+S_-;>^=EO)%%e3J?8ooL2aIx9O{0+RKfq) zpGr42koKW;Z9^&hue}+ABoHln`J&8ci)ZEC+JwxtHDQ_h?^r+T04hjyb6%Z_NT`LP zEw*^(HR>07D#1qiSGr%cLl?=L6hw=}sza!sK=da{R7^xa*H+Sjw=d^ENPC_a-_cfu z99=lR9wcxO9b3E46Xy0P_e)QW?O$ENw*NP6&3;m|rjH(O47cZv3nQ)JMbogdh;lhM z>sV>(PSO@n9aD4IE8!tXuD;;i$Np#)GT1vzzJ6ndHUl42joaMIA59{hA*NMXDdH>|7N)x0(Tu z3sbA(K#(l7Hgl>z+s#S(TxpKeXHy&_^-ANne;6N6$j*)HaGiZs(elM^T%x)8bum-} zfm?<-?HD>&C293z0)_esni2kFUAS67)@{jkk>r-jUu0V?_XmeCGSdqW4)c_UdjcMT ziuea?Ch?Gzmq>ZX^ls(I-k$h{QXY`<*SeQuH1Whwk@9P${FmL!FZWU2+p_Erf37Th zuA9?@dv$2MJKxg-XEOp~D}ZeZ-A5k|g8ddxBOO3>vWCpMr8C+_d zU^=PzJt!C}Z|~qZB9twdi#~ii|GKMcaULx;*t>JOE>!8)JavLy+Pa{V_en}496aYt zp@MCk7833ivyj))er&K$>v!?Pm*t)ph(k zd;0izMH3l->)`lJW|$m|R+~IaRGbltf^NCv3->6V#q8_YBwa0v?V3~EbYD0>?3$eV zcUh?@AJ}f=#|wPzW*BgGS)|X4;C$$8tX=r10(`Co_yVFwh5*L5=JgtF%)PmB{VI!^ z-;1wV&cEuj&HPfIO&wyCj?^|1t+x^o^TzQg)g?cTwNFZiR$cp8ASJmm6A>_X{Ec-# zHDle+6AHNL7TZq+?Mg7ophuzUr9{JQKh*5C%0wke?|2u)0Roa;w0-!Qv6)T2Ik{+c zGiw9u=_TPZH*2YrSS0uM#5A9idlgnckz&WDvruQ8d%=>i5EErOE%$CH<#JjDPZF5m zm|w(5KuyO(u<}^_2q6d|74r&`rP`NmY{Kb}p!VKQ9no{aH2KTsX{(x8cT?#~k9mVp z>CIy0O)i6WGwE(BZSt5VDSbkiXmYQUg)OjOn> z^&TguyY0R-sjhc%{T8@(G`FoYCU@u<-}(cGk##KZM=uGdvw{ROlUWP*}^_>`@@#w2@d`U?qc`yFKjf7x??!uXiKi8E%P-aOd9Ge z$&)uu4|o1uN@^GTW6Px?=*b&rf05-Fz9I|;PSdCiW+iK?&1Ephy_X?av?Ex^nlne- zq=aeqj<6UuJk_Z6JQ`<*Xa}wwVCkR;*x3lh|L6`a#}2K2Dy?-9fL#*kk|TSfbXj+V zQqD+1;?AKtca$jQGe~Lwv*FUdBK}|Ull|&_eXcZr(Py36$}@v^`fupM zJ9mSS4Bq*~C}0C~^61V%h4tJnK$Up?d}ZeMS9DD8My|_j71b5S+A66V7Y7Gdq(>$3 zo?8V!Nu-@*2i3vESgx5=1xiyqvzz=bV48Eu$b=f2M~0PVS{H7xkY*#X!IZ)c*4;-K$%l)jv4Kn7`#l0Dp3F40)RJ?awFFK2!2cv@_=?=Q^4ej6+i-KOvu<(ue z!-;iLpDiP?P9Src#;Bc^X(;9u+V1GyFAAM5`MTy%Uf%evVtG=vORpY_)(@mLH;0YB zahJG$60L1*@wC~Q>7{ExfqRTLMQtMWEt4({xQN=3oyqpFKkmJIGUt7m%uw%qJMYRSWe2rj z9-t!ECgdV45pm&=(OMfcw8Y({-{CD)(ZjR;IA(xJ%XR?djtHfJsDYCvwL{?XHJ2~k6Sk4OX z7P0L{AW8``t%}Yz(|j6DujUg(N4$b)Sye4LMSP@&<}T-GlNzC|X=|A;MtD+LnkQZT zpY46;q`4}Zo^>D9<_5>plX(tr4Rl%-E8l2N_%{n*!e4Rrgv{ zV!*>6gWoggzh3f-cbZ!nSt_*W09JGigqkvt@mE@h20Gqu2M90t@|=g#SPfgeo1stZ&zNgb-DdHt!9E7Uzg4 zr%e@WQ{gj{3en$YI#Z`Q zF|RT}feBmgb68V4#64!i2`dvCE}78VV9ijkVBcS??S&^1e6=E&|EbK&@T?^B?Hly+ z#u!GR^KxPzofoT?{TqbHWPNtB#s7yqJ2*on2Nz!I$d+>{T!1q%E?BPws=4VNUiTz> zI3idmJ=~e>;g#OngU-At3+90&+AG8~WaARYxKy{$?Rf#u_&IcYgQ_IL{?n6K{gjfC-EIAu}9^e8v;?KP1#efw3Fzb>zUVOu{zW3MS^O; zCIP`34Jlg{A;KoF9)mt6%A(jN zMPP0U5g5Z?8|@1hg^JVZGl!%Xrs)IzSd_X%Mheu-%f*1~62fo9{6c#^isEN;!6kKr zSLh-f_qy7Gggfk(RmX=X%7@f`7t{j_KJ!&h7TlM74rvTbo^LUbFC0rlBjpkVxEYBn z_W5vhk1~rdqlzXpE5d&X57~X4-XcLDB4Ly;f&+mH^FFpX$PlaM%^DnaB#w3QXwG#b z9^DPl?tfkKO(+0<;_v?Ob*Bm{YN#+V zi}~H(WhGQ#cX6f`#g>bzRXIZgO#E)DpsSe&<~1W-VlL*LjwAVGID+*o{1#C>8s#g< zXzOeaw&{K>j*X;~g5FQ$&pPw5{CP@n zu>Og1CVw6t4CtS2W*dKMY(&Tt^!x-FWV3m570Z)6jdgcJth~;*uV1vU!?%!8WS)M# z()?H&8xX8>yNbx4Cj_rhK$=XA{F$T8ifA>TKNTh3G)lmub!^-qCLen!=+dRK?o>rR z9~u+|l`L_d#Uz!;t0$|R#cM_*nEP$@Vd+K+(~bO_RWFUy%cnZgtfum{HSQ$+3_?Z2 zo&4-LkshU!(?WyN3wImsBsIHfkV>kRHMW)b2J4EdhFDXm?8*KjYLb_i$<5g!I&*W* zrn$sArCLaj^HMhQG`3t4`^{jR$W3CZhZweOzQ51zvA~}U#L1?=6RcwnGn-z+zz^B9 z%!4*9yyG9=k!E%3>X-nC`~r7U!}ia!NiVAS-KY3%`FFv6*7GkM$N0}?5w2*zsIz?N*Rqla9XM!a2#@m~zDxH3@dc{>B zF^zNWw*K2Xvz6{q{EVmD^p-D50xKREPlXT4mkGe=S-PJ^Fo zqQt*mAVL9&67`D;gk5ClVrOLWmo+CS&-a9V0_{sV{t@^9_MK!^0mG7uOK0 zL|6#1UoUY}LRt!EuaTE)cq}zU0TR}WMh039ae-y z(lDl3M?q6@SUtf2qubQ8U(YjSggqy!+N%ZtRYN=~A z|3n>EA`=xZSgj-`=Q0T7O%!p9nEaD3|M(L{C~k@A85f3Uc0g*aa@|-HMf4=SXg4Rh z-7L!NCM(@dMFowDU|>$a8bBn_=YXUr>5P&NIw>@3NU}4*d+x*^5AKy0=@f~ox}b#H z*#Ij#&g&@R3ipd19Y37c{4vHC&W_IVk(t{0 zyaQ>=L&&`o@H)L|Vw7{CZ}F{scV_VdAJ@L_B}0Wd_E~~Ask3!cNp6<>DDm=3UU7KC zTs|b%6Q3*}g^!U6o5pmjL{w9JSaDIZwc*tN&#gWEjFv85nCr=_yBuEV^h7Mu4kd&y zT7XiUk33Xhz8T0?vHAh_r#TY>dO)P20!b#a$O|AS+oEQVBtja`@e6PyKDLs2Pvjpl z4CDgR5l(h-nLjUva7~-}l~wWEi}#Yjf1;0@u!^&5YvpAHn*P@Kd?$N!ng5Pq=+{y1 z>Nx2tKXc`G`moj29>E7vbMdW*Q?=&zfq0R#p4zqNy0u@~zD7$XR>5SST7uo z#5e~Vrgu7Hyo(ne?g^jj48NPGk^^<*aT&e9pZD;q@f@O>^H#n}rMfq2ybj%Rn~PMg z+2MQ{4d?Rq`^BTf1L+(>teg=dXIyT;EMzBiyWd2r`S_`F@_!&vV-mGehCxGWgR!2K z$i$uT&1UWiO3cwBs(W1Kq!4SWBZ+h|x1Udyy~V?8j&OQ14Yw1qSKM=qHJWjD7if>zF2%wpTMSJ@|q=~f(D)GHok5oZ1dHc z(ZwTcj$*)3u3XSEE_35aQTQJeA49$=+0RCrSMP%kDUssh(%kSr6C;JMZl%BD1`)KX zqPlkCO!qlGP@f4wcE)-m>%Gw|Ligf_#m0D}$?z__e9L|4hb=w#sm9qcxR0F5Ze#JA zxn*oGQ++1-*ApN^awEj1)-=pr;GP_~UaWehzLrv7^B>1z61a=43xar5!g2NWvO2j@ z<}SoWUT@+xTT1LXOa&O5)V@<$Y2JCdmxpr-&#mNb+U~Q#eY?8L+h4nH8|7{E(Y4x8 zrL`2@=ax0|GWzKA{2RMVqMC?=bZto&9LHZdPD{&Ot-MEcqh1^T>a?ixcnECl{7xDh z6$GscHh#G4P}rE42PLvF?iDPUh38^o`Zf~QYqW#KL3*@r{pL_Oc*T9&6$ig`-yRAF zF}JK)$95e#g?bcZ9p6iYD%?TiPL~RVEjdDPW+S{bwp4&M7w|=Fsf^6L z_7j3Fm&(x1%ldPr{Crk_3IUll`cp{D%svNPFIBWx$j>P?=EDM}iXhoXcAh{Gu{Rys z+LF^ur+OwuZiRBQJN|5fROh0;XZTJHfd$E;MHGoWa7D7D&@>CgQoD|K?8lKk*cjk% zBsrABu$O(+nFx93jH=#OGo4u660b9URFTBZqOi-s2HjFWz2uw3EUt8N_L^O&H4f24 zK4(Bf^#SJsZ}!%_-;F5=R3vU7fc1dbWl2>#ZSbh-12mgg`W}r=q!LG23!IAFK5sg& z_SqD?6sDRTX)1HU4RnC(Hcnc4gq{OVD%*0%?g#9hFRmb8xgS z@S3v-ak^Gu=$^D>o{&jWZ~R@Y6|sK<);j(QFhsHFgdvU}E<*M7blkDg7R2WIDixc^ z(6=M2lgv>GaO@G%NTWG&iHh-@zEbPo@6|fS>qRs{k+hxqK6Rn?alrEw@h2$vJQ#qO2$QQTV7+X06~8dVj$SC`L}r~6XeOtEP#z)XYI zu$ezHw3ovxRkXCSeq>Kc1}60mnNK;DxH0l_6JL3-9O?pfvK)`IP>w#Z*qZ~ULbj!! z$SQWWIwNCaO9F`-N5#f^363WU9-*^J&sTIZelSML)mGCJ=$%x$BCY19hNL!EA;qBQI!UwyE&53TE@I zUBDdD9n9~#U@qqS_}iHlyV#f-_okE-e^|0ds5?ybgHQ(MeW7HW&}6Wzs{i{U2z zvD*li=uWIH?pKvAVY=Db-kfUZzUvKYN{<7pP=XJzmIHU_wR)X$+qrY_%Df{>_nPxQ z1w7=oy=Y>Rse1H2Sf7e@d(l5iWPlV59lY-@+Ybxti$9qo(N8xc8%Uy?>(Ij|45d zL;kJS~1AIhvPW$kvV2-wR-0-^s^2 zq)JxwXx?#Q@oz9*K8vrT-TV=WwWCELbtCjV8ABQHxgF=Ps6hXc_;(uswy5OnaE(`v zqzJI!&i;Z$?xtjANS7$F)eMl6VUO++iLB5C@#1OmX>z%g{Y(yjxY5XhiNW?Wf2>Tl zjcumsaS4fvf0r?>zaTxPuiw=%(PnB)@8Usv7BzeqX+ukQov~9!&%)Ye)>8mYBy$mb zXR;*<*3yza6Pds?M~gfmkp~`UJ$%g<)BH)ubhWuNDq;=Ipuh&_nWIiasLe79%0bGy z1$;3ply|W#tQ=ayFF5^xP1b200^D6s719zEH%c2E!z;@N^O0sR*#a=t$vs&$Cnjzw zRF~|I$sWcF+->HA&pO#d7Mno`&hcEyDkpD$%O|1pRGcz*eK&cv=v7=T`ZT?}V%GDB zY38*8uugogq(L452S!OOZx4>*S4D6blNB(>{Jj%jV8DF#H~Z|Ze?u}uzaZ+zeC57= zQ=Y?{XO(bNO@l)0K`rg1<{0h7)E+JyUb_kN1RHkHcEss?YsUsl=okEG?BBl_muv%i z$=SIzvbfsKnS9@ICL`gx6^TQ1F>mJWgyb(7fxPuVj)n0Ieh!I87#dJD+n69l&_%)8(y-cNpQ(oiwV)N<`rC@ZR@9Mv49=79?#Lm_EV#FFGzFgQtW*EzRv zY04_747$55Nq1%j$99|p%qfP5JZWK8K<{a?cjLt-_=4B&6S{kBx23n++~<$oXNad= zQI3K!YgQg$x`M>uDjWBI>(sBH1mm=A5eJDUL~ zyxo}%$U>aWd!_KNuea0lSIRQT zySl6kc|Q-v(tI3iCObR1ymDzuB6C|GCg_%m^58$brkW=)i~!d!n-a@tpju$T{& z9gh-w607%9S=Q`%`(TE$>gMVQDS>`)3smXek!efdb;+BZtWhn_5)-n zP1Kx^k&-O=f-;0EI{bx+9}mo3R3T_6hRR`bzyXpi6E#vCV|-xh{?*Ui_nGqs2{)^V#`9`3pTPLuuaG* z#?svl)oo@f1Q6DiZY>jKYq|c2)YcL(O}k`!*lE-D%azhnV>YMC z5!YA=z&uaqu+7Zu33AUCr*BMvjn#KjHDI3a;7zM}Z5}z@D*jqH*dF5x?f@`?Um7(= zsV%r$|NP`fVnr&9*>ej$X%J9fk$n(S6HqVf2I_`>8KCwOP-h|Rxwk1OsJ}hZ1+{;N zkRDj!wy)T7@pW1@6RVfN&uP(mc@V4!Wi!cn;0QbeMD?Uj@uljs4_g z6SCNefnZHH;1>$;mRwF1z!c4_xEW?1tU0C`+RThS@>BXYSIJK}R6hWd_4p^2LSm^b zXQu_$V9&{qA8Q#yS9MJ6Q%r)mT^8UE@R^3{UeT3SKeCO(DNmFP4?#3KoRR()2P6te<0Sc84@iJJ~zD` zuSwg@RKC2+3x1I=m9GDa`%-AO7{APF3`*%Tg|ed?Qa34(!3-s zUMu%9*Paeem?PKT^ZxmEmXfy{>i7h`p{xwd%5Ll;iQzBVBlMq%fzzLZjPNE1q{wYzF>ie(( z*Y?W0lBm8iPyU%(DOC&-8?AztQ+Rt7ya2iTP2%>@%;c!mt~GG0qq-eMecl?CX#aJs-s=G zGw&V|zY#f)OmmWZWVd;*k6fpTAzgK-2hO*mrz$-<9O4sH@v&eBOLQwKeA{x$eQ()k zuKvwNbgB{7^|kx@EuLB$Y2uc&0^KqTB6N&H?m4B&oma4wi;@+x@tf=E z3HMq})8++Qt4NI$8xjrPC&;u~)4Raj@e%_ME(H7b+(nBbfR*Cm_U|X!l_u>Db{e%^ zIY{a5cfDi>)1TKsf>yPRjTt3Ua^KjPfq_bM0h<;EjAb_AXuy2Gl(cxZZ;A4b7Ypuc zPK@Xl=e3OmR{~2=v|#PbEb@`QMkz|Sa_#S{-mZYW>vEa3HuDvckM8n1;dNPhDbxAs z#g=&@$IrD+`&3`w*=+pZEbgtS+IexaP65VKUMi5 z>LJ-ow8VF13vm`%nmbf7xJ=16XtU}BtTMmFq`?AD<~mB9Ci`ab9RviNoVbOEApZ?pbgRk`w= zvmpMy?3yFlw5!ajk*pfcb3-Ok*?>r!L)^u%(WU2ANt})Ipb_pgV#C8 zp?-4f+~zBOGh8Esue$gT%OYsCufU8a11@{cX|^_#izdTqEw|LNKQtr!>BdUR{Mf#V|?-1(F(7V9qmzE z=_4!DXYpech8rym(enT_I+kc0Uz8XeC@RZB6!6CT5~2ef-l!j-h(y+_I)>QTJVn^(7upNkjeW^o5*Ui}7n-?#W+xQ2KW4bd5(;W>Y* z+EkY7F=Ow=`$1x@>76nxD-AnY#NK3udpTpkUv5^-weAn1VzMgS_#V)psnlg0Y-!NR&EDdP-aNe= ze$#~9tk|S{vkce2tcOao`4e^w$rqbTs0*YD@9<8Pv^oe?5(i??t{^VKO{Da7epTf40@9W>K7ce_s(-oW4=wv#`*1ijZ0x1{_S~k^!oCTiD=%g}T@m%1=#}`!cvuM)~2%a*af&3hq9xlC2#J zl{xxYxLTqh*{;euN!=ia&cQ*Qjqc z&mkAe36ow2J24JyHd#Dbyc;f28D39DRSkz@9{Oa|vS;ndsJS3Lbu#Kbte^~9V;cm) zl37%kAA&ZB{nt^T#8aFzhpTCr1YwO`C42EjAPy6s*GobGRla{izPwY;cc3Edo<|Ew z72&com7Qx8U^yci!;uER9I+Awr%05WhlF*Ba%02niA|trsJJ^GoDrHl=gV(!*C8#n zMr%6>+jCC9Ts?HdgS_7BOz_FCS}fQHid%2KV#&e31mW$?Gs$_p2 z4evFxsR#J7%-$n)W3}4eu7T4z1 z@MDX)l>I)kX>z1xay+h=fC_%e$=wO{v9|m!)ayYlP`lG8iXD23o2VK+okZ1>Y3093 zRQ)B}JBg|%YohAO$wbwH?uL>U%ov3=~&B=j(YEP?$CP#C~xh=tF6TCxv%Be6}@cWKbRqIH}&&?c+H2v*} zsj6s6MhFb)qRF7k!A?Yli{`-YddDVuu@CIcTc0(JC>e9TxFS>)Gta$%$S3mnLUlo$ zaD&)$hzn>pXMceJV=MibN|A;6e&Ug(^1$F?t^B=5^lXe&K3pnK8D$P$C6Y%apjX!X@-=JSYOOK_K!*ZCX4E$U7hm#bnRnc&-}8wGEeU3S zr#`nP^BbNdnoS+MEC?P*+tDR`+bKG=jqK;X~%}?^`nX*8aC-&x=5vURJV~IqSI%T-{z(Q8n2|^~iKo55Yy%LS_$9 zYi=-qrqI!w51dvL3GNcG=E{I^VC&3zqj^lMK{3(F&5w1q8qH0YsE%1pgzcB% zjgIYU6bJq5mWk>m!m61(G${#`x$eiQKATe}E7Cl$LT*8YfPO^6M`6ob0=AMmcYnSe z34zq?ivJfe$#h7b1UWYx4@hVLbGaI$&x6ta@)FvX95ksTT7 zNuBLW);9uKW`@#^c0OT$*3+2IMzYA0In$Q}WmKSwqKVS>zvh6WRtrGf2Wik#XnPrO=D5f+^L`5F{Nk4;16N-C0<0@ylH!&q+`g-Bw0nl0YG$UzvJf!u zRuU<|0yz8!U|Ir+T+ENf;%9rn&+8^Pt>2$l_g4Yly*{)<=GrA5J>8q4pW4IR!CWSW zLyMDXGh}6R|08rHcKV}%PWY|OX7DA8Ou|JBO%8vpV)VozdG&AdTikb{Gsul~wL))h zE0M?so43!7!KTL}n%*7B$ItZC_T{7j`DJd0%3W)x*f(8Eky(YdVc8I}&;E-nBl`Fw zURo=|?VItDkWtyafb=wc{IcQNg*Z1=DE39u&n;wd*HzJy9ntz+kdrni{0+(!Y04*2 zdUGnVVJuG?VUG^Z1ISEwV~-?sM|D)w0~^4SJuARQn$01ay4;+@^g@OrMFbm#p%1qV zeX;eE1YEwZZ2gT5E?ZBi|KFU$fR(rR-IC<(XzDD@Nl>HZ?e8LtN<76IJmKw;x%9{cFRZoR%cBU znpkHxF<#N?y>N;ZxaSb-qtyq@N$@2xMO}1_tfedR>NbEBdGQ{27oz$zf7`K1Jn>_U zLWt^NAtWHJ6iOO_?88)=qVt53wPPS*c+OKqbOX>Ea$2F>skg44P zGX}pag1N|Xg#QErv2g>b1_At&AQ9osTY2RTn4`Bb}cmJ zkN|b`d!Oak9L_I8RVog5-q;~$%iSa$*KC@cy&=ArHil;LIUj#pSr&G&FL@_9k>;&3 z%Pz}FoWUgW$j2*B`wKA|gs=x0-)PZT_DX@=~ayztg!rYzEe$cVJ#D(0v>-8H;X(uWln?ycjUW<#y>^ zAN)EITpb7J9G{+BH{dpEW)Lt2+Kov%$JYG>&JAecz`=qV+r-Vx0^QRRnc-I({i%=`sAR=IewIbPWx%^Lsj$N>P#h>TkBl*OG%6;fdcIT>T5} z=ufHl;wp>J368S$pGmzJ-(kEgIMKfUS?WE~y(fNJaHf6#qtyFe@_s<@3j01}-}h_D zf%V!rnst+?Fj(}R;I&i=n7_Vg*M)}Py*$}c!S6)kPjB^K4$|2dd@tG4^*U3wZROaY z+%HoYFlWh8Fzfy|AALXD!UQO5M# z{#gn~n>h_Q^ss)c-mqu`X5}B{npcRb7n0Cg+KKf-ctViKleK5VrgP0^25 za<_~7ktU*Rs9xDESE7Ej&iyDZ-5)xyZI>*V`q5(dqXzv*B6HlHRIL^4d9Gcq%OxLh zUGOIHQLMflNLl79ky=EV2$(l81qd^{A%P`&7GdVi%HdEowQUl_m9FkwGPg3mZv&k&r>CVn_nSilTeWa$Pcw63&ejuIK zODBkJ&E_)csI zlY(uB`e1qH2XVm@*_w;_z_qW7-8D9bT=;XZzy4vR@@%K;GEYy#sQUA191Do%6UE?956o(c;_UuWI^N%z-cebv+i{Z@BH_ zb0>^-d6rY=8=6DQ6#?u^)wu0}<&tYkb0_11m>cbzy`GKtno|E{`JqO6n`#WN35IWM z-Xqa6&#!dmYA2u5$z14ap>*G5*@axL6El_v=nCb$0J@UQH?<>T#b@iDg-QG#uR@$DsKtboA@HN#@v-=HPAK69;B4{%^}zqWR12aG{TceMLl z^(Z4EvJc$X^Yww7ZaWKOE>YVa>phU*gcav=kB!d||Lk*aly zxlPGwTW#k`>B#`4?$Bq5CG)~^-Cu(m zifkV)ss0%#dd$CEn6HWkv9ezy5VJEUSdGFC!q}b_T*vF<2$AG!9cK;Ui4*f&~t(~d4}casoQN; zU;c@OdQ4_#&A{~={gZ!Zmq3odFX|YLJ>U$f^vQ|Fz^~?GJ;IJx|V<_uH#+teUF?22& z=2YAU+1X4@mU!HHZSk~Q{o`^6*+i{2g>4|)QUCjL z#~XTGn+#L!S!kdl7cp^oJZF;trglFtx0gVd6W6!HD1J!VV#><}P0GJz%3p5zo8Tg& zMjRo=^duOo{Jmg63u>(_by1h0GW-@dUgE$9B}N8}=au`V)Fyj4%T4og&y(f{y`+cJ zFA?4Zx}3w?W&7hjjPG7=DlXdwpKC0iuR7TP!h~U9>fQF#uhUbn9Zg9x%qF>TgfbYw zdIMGJ0*wr{=Nkddi)?Wqa2mzSl7&eW{uWu6bZnO_4@}`_P;c(>i<4W z*+lQMC$1PZ~S%vsa0A_TSivRa8x}6F>DG zmz{tEz?z~tTMDc5F%K3tVFBh}`hF+;ftZ3h{K1xfNAU+~CL1OsYHYe3!8z70wCHVW z1yU+PS2`@hxxw{9jEwV`um~5i4)%$5y|OMfCt3t$db|*FvtMBJisldYE^Yem4V(g9KM42AdDs?%dlC$t){cKm? z*3S(c72vbTvi38e;RbsJ*GjpSrc7E} zE7Ul1loMg%xSg#~`=66WY9BmK4=Yq3Q~TVn83O5Q^$>jZcO^mQPTc~?cIsuUz0qDq z-HW}qg|9iP^cM!X&I)c%!fxg-T(DbyF|uy_W)i_RDFAExFO((2C8$7y|0n9^J>7{B zH9x66Yh(>sjfKUN_&EN0wsb(Pg!8fd^%i~+V+XS@JAMhcgPpVkwRlEUGoZd07l=Ct z<22lN?iU&ZL`9$$nROWy9K=hwVlc1iDc9)!d68b(4!p_fX?dh6OW6D(OvC*R@$iv?5q&@8Y}bFcLx)x^7axS^4@LUnN; z7gL*JvszvN;D*iG{y-X=#Q`H1%@z_DET=aFV39e9jPzyH$cFfAzC{*$Js7gx=~a(= z<%Hl28IGxnzGf!>fnLdZB6m^eJh@GmP70dRu5-33fB=VHJRkIxa7-}>@`@}XY;46N z(8zLBt7K)(C8j4%%Y^Y9GsqkAUfb-MwwDo4%TlMlnqI2Z>l8ylL>czKY)tj>D@T>f zO_iHxx3!Bh_N5H@>Ka)AmlyO+ETVSAaqb;N(*`Hn)r+ly0^8LAjv5zH|7UNr9!ZZn z;3E=L(K!J6RNhqwfChg0UPRaGPv|p13;69^jnH{Q(%fiq*{?NPh=dlbdX#3JY=7Ou zzzm%q+QeoHN-kCGlmHbZ*Nh z%=tb%b@*w7k#x>-{N)9&?xy99$kJu!FJlOL>A3c~sFY|$B>~O?%7O`^QBzZ&)nL2K zi5pWCtdp;PqbVU8_r0>7j&^B3pp;W)FI=Q7b_>t=V4bs*d|lzgq%LWXjpwp>A9Iuf zzodXh=J`cwEX@1J5tDb$C7rq4=Ur37^~0E-X$b=Xf7Bxsuyq!rA5P(AZgB5Wc=?t9 z7YDJ2L@|=Q5=;6Bjh(0J@x+WV*9R9!qhc|mUW0lFsBKNC=-Hj+|q`z29{#EC9QMueJIf@-yUo)K@EbJel9&8w|0c8AS znbkJ^j)Nqe9W(jN*ec%_DT^7+t9p4isORNrG(;z_76&a2qt&vHQfyiQ*qM~-MLHL{ z)=!oVyHZgGJ+!h1*mTefQWYnf{fF~4c6ANsVNKY4Fmk=(bEn=j{{5a`c-$HMDQp~>=d5^kNOS{&py_AvRUHr2&DmAvJL#5b`&E(OE;A%ZoHyII94ZObIqM3E^-cqEBk1EbYYx__zt_|ky}bGexl8D@)P3dv-`GR;eWn?xN^A$6f8&Ia`~ zxWG=iiBm3B-^HNI;vCb=L$W0V3j@-`4@JUecFCRJHrx2=-!CnBKz{x#kUgLBakX?TM=SvoK|JQl1n*lY7V z%fJWOkvSe&TYP0w+BN%r=<==y|3r2y*!Ht01nctDgYx9){_Bbqg*8_@_sM@7U=wg? zyPWob)!&gM|8~2~c)R-BPn=PSbn#yq4w-OHcJma3O_McRHF>r`Sq^;(=%U)8jzX2M z2BGu;g`VA7BTxCTe6&$BBWdVGGcOYkLi1%F=F#nB*pHB8BWsfXUGy0&q* zlf#G;FE%Mh0%;yui?Pr3+j(O$aJ#aJO5ZM~U-dS9U+VNdAUNpDw7xGkeRC8*cb9+D zAWA)bl9H@rJ_to8u}OK-?Y(phzvpa+(XsLZJ#}kWsPC+1Pbm%K)~Fsv;t$;$yLjJ8VEJ{Wsv5e4o)yJqf)*2 zlD=w0@6NRrb>ZPj80P35c%>D%fsG6XKI6oE zez$rLZV`^v?lvu8pfIdN!rv=Yr}$lM#fxPQ(eMsC;6NBswnp&TSHG1WLWRor#U#z8 z_e1_MemVUejD{sV-KXdW2yPdv*r%?R*F^TK*k3X>r*?6u0ON+7A!S|+4h!*tKB$maYmhE=0;-LN|{`dj2@lh z{qVYI3~-cuNCw?%O>Mi9czMaDO7`CVqE<68T^JaTjGZG`4Dr-PsI|_!Ylxy+%e{@B zW;C|&b)^6BorP04;@VXfY-}h~Pn*Z@_$Y6y%#?080*Y#P&qBEj0PKBy72y>T-FI95 z!vu9#mjWznfAq|FZ$|np_{u1<#&%VYg{-iZ_96B=mOO>Ekxp$Edc>NPThijY_fmi= zzPE=sEQTB``NVhSJK|RRR+xlFdFY>Uck@lb_BV4&K;3kr?BN`%x#J54IpmYFDE^jz zzT=`HZ)EP0($Pt-3bElCRca(PxWvHaW$u6uoPl4HZX-Ybsl6x0LLi53_Z+ z$l{yfiQhzaC0M@>gil(Yy?6`LWAn(@q1efcdOX1x;^vmB2+ z_EkbV^79o|vE&e;_c9`9p>x0;ac8Yp_V((y-rKfXD$+SS#SB`0vU_b8Zh4WHKzRPO z>hzuxi|Uo41bbs&^n}=LNydIR3Oz#TQ$C<>@MeOqE!a1X63wh|5Bst+#qO9y=pZSs z1S7Pqtr0g)M|~$KQ@Kfw%vLpyr$jI9n5U(@>jEkpw9;0N7n9OyFD+0k-CFW_<}LSG zEj{(>23wVfhC0L;F0!aF*H$G$oDf&$aHY+W%qj)qe_pXpZGTjsxV_Q;AEy2IVTA+}sTV||J31q&L&o*GV>bC|ASMn5xoEz93RUOkc;aTsPS4L|#5Hxp( zf1{**@vq+DZ$v)rHNA@jz^d4!=4tAJW$4i0W%M4eOUX!wnvzDjyGfOqk~yJo1?N(- zV~U(tPDWwRYF-LkU$%fEp<GUTn zDowSob-tgN_T4jZt>BUtS2iWfoRn53$CS}x;nk*0+K}>7Qq2NWRIcOd5Ji)BMl4N- z@(r?L-x}|i%#&9PrF_#56Lm z{gB^wG@1J&+)^_PC@-VYX3vZ_^+wT3s1Kgx>)F8x$w9c-p`OlIq?&VsO}~2f5%H3_ zdVZl1wq0E)LySokRkf^#w)yQU5M17%_DhkN%uJQ=$tBLI0Ifh%Y!0wI1t)vgEy(rM zW^TyXhPwb)Hc(9%)MduB>%Yot&)@rB@Ws)hnS^F>Np)?RPjh)z`-i_Fk#2qz=^s2yPP9Ci+d^}%p{IeFqzQ;} zv_tvCqULPfU77AqO?#1*oj6!M_GKTU>=vpYiHY^ZeDy<~&1HJPA~yQPZ?ReL$m;Nd zgU+qn&=d6wmfn#c{q^IcD9H-Srzi=N1@@v9A)F&8J2vq11aY?3rDCbdi)K&l>3Xl~ zh(3tr=L&#Iv$TZ952Yw>YBuuZP;PJm-yo_{|4KXCuv_naj9 zTZMe3P$=+sH*(HnNrm>)-W(#zR)?W$pwQ(UjG8Pod%8`}2#`SSl}h9z?9tPM%Nd|B z4i92agz_`wX~;mL|G@wxgQs#y5p61xrs)WJrr=61w<(efaH}<4U!4O=lb~{GVJK68KK%>lVETxhiYowCgbY2oL2$W z_dZfj?;y>8q!EW+;## z7}R#DM?3une%-WBBnY%U?dp0Yd1w@UOKZhoA$CAU-D434j*pQ>^|4W@%|v55Sh&4d zTJqSS-FDTzEW@!&CJo7wJtW49$*ro}P%muYrl{M;2epFzvdV0As7QmqPF>D=2_F6p zG!drX%s!_;(+s_H&Fp_`&;C_iPOGtjQh_O#D+p+-Q|xkL$Y7P{ATc8hmB+XIW&REp zQCwV>f4WmP77lghMXQSH7rv!GlT!Qj+1sjBFCu;TfS0kQCo#1h`dkC|dU`|~xx2I>GbH*3RSbcZ$xMEhE+LCo>E|kyNx#S60lnUn!O3EE9O;(UM(Ft< z8Ya1*H@KX62j|J;xo?#Ms(|V_4UEAHIJQYp<&Qt$FD~?auN2)LLKKoba2q--w;^~( zDV0v}uSVEm$HOoPRqMJF5ULtauc9lb|j;HBOtK54vmwPEj zlX~K3*o8iNTAHp?@9Sr)`lEiXQY#QW9v|c@4>%xKf8wCDbj;)8H?JI7?e(qP($FUY zTh$N~+zJnf+*9cB{iNxHEe)BGdx%E)Qj@QIYeQ!Ia!{;5jecJ|?-0dW+9%NW(6$pE zm3j^Nrcne-x`gkgU7?I=K9c(Aat&TBwaq?B&cLKm)h+)p=aOyYTaY^DMe--tmOev; zzzz(bAormbj6~w)^7`-)d3|y?GZ6pCkuskdoFE6S%N$^aEP-gp2%~S03id`XAYqJ3s)KHepw$ z#2%9Nj%8P#|IKmP6+bw`&=-F#yRs7j8TebnG(6$Hkwu3+VbC&1qa~ocmSzRb^8jrc zH*yv#JA1Nopf7s)dvOVOE&r{`EPtMhAcYXTRjL0GdSlp~fB)Ka@B*ll)hd4y+sWm4EpF7jqxiVmsvq22)m&K%|3>f~T*q>r32#)d{z~B2uAb-F@eM9_ ziSRmEY^>E+v7__VaxO*of_9t-n<=B*NApU~2It^``Ox{rBU|#-2l~BLo?F|Ob8R6_ z`X2K?8}GAZLC}jqkZ-mBSw>;I-T1LdL+mN|{a`zem(Oi;V$)Y$XrQ$XNxxrE!2fV%CIkzY()4 z!o5e%8tPlRpI6MA6An=g|H!-#%Dgk}dB4s}0g|&Sp4>C^7S$#y-$O>uz9|X~OkUc9 z`Fv-H_LcoT0lYK%;f%f`3|;@fgN*181oVHShRBRo&GB8J6DHrO)78D+m)1V#n_kO} zvX*N#Aeu0M+QGF=05lWEQsy+AQK<_!bJ)eB|L+j(Z9O?({ex^n!4-k=CZ^rd%WhN5 z;?%oM20zvULR;LXS3AuD>QZ=IX0mi11Ot8Xlb>n^_GDR{b0t#@EuYS_qh8qHuf>`f z2J&)sR3i-Jhan>gYJiI?wSAXEimB!Zf;hH8n}8HtNyqPGCgp^2+Zgq)5yREH_w$0} zNe9(qSQE-H9_DE+T7$6kq(pc%V?i1VU{{cn?)Snw&P<0Lp%%5{NP`)g770Cy^a7+P z3!M>MnH*X)tn)AI`6Z;Kf~`mPguZH!8J8-+_)@SsPd_)R9G;ecUB^9e#=%ua`l4=s zT^}#~gN^o!@9GzLpzcv^IienKS8qL~w}slp(+aQa7%r^!*HV>@X3+XFtfG3*!$M~U zo6MloWz(lH@FYCvay|(>pCXp<*DseFCQ;M;#c42cE!WF3b7#5wn&wqcX3=pueHccN z`Q5^~00Mtovxh9BsxdE4kChjtcBmUqa_LwKzOt6KCJOqo8N|L*oo%XK4){(YjEtaX zPr>0ygB7O({CaM~tO<~|MZjlae~3jm$03k^p`B1h#~!;mG3{1wA-tE(`neF1J*w%T zY4Ul>#Qf`0gKKjE{lWV*(2GN73i;561HsND$_N@iE(_|wf+!(<0!|NWcLB?XUTs1_!sruZ5sOU?&!r zQb<~tF!1zTQa-l!HUa)zz+l6l??tRl`iB28S6sPy?0up;f!r#7nT%!zb5bMCX!%l;>xTHn^G5v`GADcqB^zHM0O)Zji^06WrA=1NdSHkWR2 zm2R-LW33>vztNiKjo*aMMcgPrhH>1N1VbfHpeS6fq8^ROwubjg#qKC9Ofm;nMU#4< z-c*~TsXz|fs#X2ZL$W!-^X2zBjGE3OI|@tY<%Cx-&_)_yQ>C*&kNjK)YCC&;40k5m z?xV-kbv-X}>I-kXSP8|;QO$feOse+G@&3hJY^?Am;wYJcdkz}IYo-qDo798%YI1Qg zDzvMQH;(@9aok{!V;22%Y-Q(0cH~wWiAmA>S`-Jl(#>9`n?-iz-xO)ex4S;7Oui{I z96l%8+VhETde6O#fErWKk!AC?G~apIz_0$L`Ra9;1?{B}Dhk$9Sepujh6D%8?^1RJ z%Dqk@YU>#sIBWDTF4+LTm!{GX1JN(;xBLVayU zf^n(Xu9@h17lv4i*l@<8&f}-=rEEQW^R?NdQs7tf;To7`nOzmlRZ2tTS|+u}E{7cC zYT8XJ*U5mnJ#siYU) zb_cb(1JjR~(W2OLlt~3_n+@tU8nu;4&xjb99q{35)BSzmFFWdPJBzHrL3heZ6D)Bm z_d`Z`wLROq&3DtMGu7~EXm@KFry9zTlAG;b7^rwfs4%!nKJ|A-D-gB8QH`Nxe24?V zk--rZbinslfe%VJ@vqmShc4mA82J!J9@#8&)`DUAVc(JuzG3F{hH%0LbG~(}Adz&b z&gQ3UPY(wlg|2I>|Hxgqe)LV;MiwKlnhB@tI2rszpQQLPI1Uc%1u4@)iyUPCRbO@l z$vANPdjEzQcWJU=>&tGVS*L3WD@7NMzRU@qBE56uLY}ms%0ArhltjM_SbQSWQ{i?R@8sKsCM?Zf%ZKoox862zN%$7tviv|T72Cjf%MpGwp!%!}(+HiYEd4Y#Z%6WoVF&!*RT{HuWl@|3_jaaE5q+7IDP^n$L1|R1_ zn#4N>X|xA7^2k)zg2X@yLjWz032Ek@PnXS7SWMd`Xq!C}f6`3p7G zw@%habU+fCs!R}p^IFci5{4i{DVFD?g2;EV;~SNyC9WAVjoz^-1(VhDB6mrdTUFTu zwX<9nrGZJ0m4Ql-XrZ@6z336V4jaa3iCdI23y_NqBYDT(r+#vv^`xn0Y$j~vHF9{F zfj+Rx40IXK$oGNvXanuhKszDO#u6yDm-4Fl8V&6tfF6jAFHpWkQnOVBs40`Mm2US7 zW+k_1XD|hA5Wohwar6;0%vJUzn2tS*XfLf#{D}aLX(Ym{l%)4F6ImTlza_P{FhzvG zKAD~&l^fMZ3%IE|tF}=+Y~Hu3J-mlDy$0-$KV+X$cyFh zrqWQoey&yv^%MUOd79;mEL!DSLVE!ZA*yjL;6wY&+--$%ff_FLCuYs;7{U*BZKTsB z>;)d|V#ixVuq)UO-l4oI<%D8+CW2GL?2-KAVcnBRY%j2Tfx2lz;f-|V`F`94k?_^O zz`v2MoO`}oJ1wF-wG$#LyS9`ZiM7M!pTY7^f&7!pKfa~?0Boc8+_l)EHXda6^Jp`V zz2?zm9vjSKy?GSq3K7+}c9b-Ak^FPM{Byee(|;`g`j*N-8dsR67n;Xx^B8L$!_8y0 zX|s`u*KCV)opsNw+Ny{;x%Mh)ruIAX&oKRSko?S-e{v!!D_qr>ud6h6n|3nm*L*+R@U?CGyV@`R7de=Op>3SL0sO>N@jSZ5}Jkqs}}gm`6}Q2qJ%! zaXK963d!I1^BSQloASGV&i`n6*Ma(H-Hlxzg@o> z5i1+vym^y1R#_lg9uVtHY$UQg#cwueaB6zUdK0b8msF3V3K}ZC(NV*rl|>Deh0#$H ztS!;Xu?>|YqLl$Ve-Kto3|uwIS-3-+8G?tRM#|AiU2@5z!`TzXYlXZ6qp-5T*e=i7 zQnNMRSV4?XvsMaH7piLg^v>*<$dBd>X%;8Yj(2D|$yu5o_IZWuDQWL;Xm{Fq6%&I# z4vODHY2=__c6z%^OOX$Z+G7>#G^vi=omJi33p(sktEs>Z8sRU|)BcUTi!y485aPQF zNbVZBd$^~TK#>*entO4!c+^~X`8VwH=TP31VMBP7WS2~~`3t*DLPqA?jo0sW9VuoX zN6W5OmDEmIgE{Ys36%C;@`A`+dXRb^ArO|K;`i}Ok${Ois^icos{zz)I1EmMLsd0b zvBVu$t6%+?aa`-Qx~#VdV)VBRYulE;Wm=y^c4yW7wTExaCj@lbnL8-U+U6Ux+xkP~ zjUIy#^6wA$#{41XZ;M>tM(W_Led`!q-3Ph8FSxa)V3>-SLC@4>F$gOa~lOx0UP z)tuc8@;k=gVyyJZkJwVX)t?89PqO+i?F2wJnMu-Dxd-SwyfjeTt4ghKl>)=%zL4vp zzqh$Q3mdVdvwhy(P{iYS)|7s?&l%&*xq$Zq0ou6c>@Aor(yQ&VeX zUgEQ8sRo;RX@ZG@p<3Xetzr9NxN-b)pl6qL-m)B8?Ej4|bSkA0pka~qwfq(>4e*Yr`Au!+lz5L& zo)yLqSKUagd674aWBZP*Sudv4>m^HUHJ0pVW@_~;a|^cv;ynZI2#Y`1F=*6eRs6*y zr!Hc1A;v;vwU|v#^L#nYmvldYR$!LU94pq#S6x? z+QY)<0T-C^*&;S-KshTWqgT&;AR=A!`a@p7Hg+zU;cu0zptT!$k@jJa`db?O zjcFd&RWi2wnT};Z@{sIa7G65ge%FoI?0I+>bIfvzq{h}|vTFI#^>j&$?iPfOW01isc59D;5rGs+h}*vMSbQ z>8?W*$j02uKr8Z;1_&O2Awe)-{adVZ%xz6KW2fG3h)<~~g_U))DS9tOjWr!MRzu_u zV?${Nw>E+;*XFmYZ@NKOUn{`syXFR<;v?vP9h$F)eD4^fZ_ zzCJ_nV3m4#Dih5%=8BQ0@))Lv%i=2jud5{0&jeoJd6Nhf*)8`ttQ9@=65POkb+uRQ zbG*K#e_~*f>sx4duf5i+E$$wkq(?nKC*2MU_KYkTz7?VV@i}(%>qqAZ`smo-{i7L6 z->l7^taiT46<2bUy!ubp;6A5)$0@@gl=OfFSc+KM@amq+6e*f`QSYc-YBg#h>3n4a zuBYE20&{&4oP-{5qi)2sr}{gC>l@!msTq`t?>Clrf=?SoFkm9bIBKm{mu}dqw>El={(wC+DXJB;Sa2ee0^YP zGhr_LMlj1gr!p-MOI|^yr;d9=V*t6z^jD|xug&fH#_Scbgz&%9tv6z$GNRfp(^*cP zi@0*K(BJo%o^7T_M`EZKS=1)6qgur^4X3y(0+rRl6${vW{*A%q-xM-dP{b57jj%WJ z)Ivc$xLz=CW2H&RA~<6D?e8Cnj^z*7sc(#5BCpRE&8BWE_wcZEReOcwx%~cv1g;wK?GMV0BobYIdcf zvDxEht*%1DZ-u$?9TtLFhSRL;8aD-{KbcWI3+JjUQVoQ%a554mPCSE7pgt8_adB0r zrOFs~3$O}pS09F*Li^Qc&$vb+{Fbz`odThggY82gBj>8O+(o*1M?0cHQ;$lq{z0!{ zfYfq;E~^g#6Nz9d$iX`ifpnw#QjVyU7}dAsXoS`9blIoD3=`{4_0$>!b@5)9-t{LQy&&ZwjVLQr zb#jy<#0xcp(9o+&!EtHSTB;wmoJ#ebe|LGa%n_#R{va9lEmdZ(+Gr5N@5=u`?0mV!Sys^D1DqUN_}QZRAnH22`Ana|=BqdsO}d{#Fvo&@P# z$G@`v)?S1WZ@AW8XuN-=L*Oe`8tU$0(Zv|Fw)j7qVw-8sGrj6-#?ITpv&8{Vtq!JA zDsy-XyG8dP4?nIatHo45mExp@r^Z($ z%5p#T{k;j>0)PD{zM&>&CcWYGLOLHvFr9nU8#kGX^>sA3%kZ-)2rXn-Rje3K7=E2XF>8?p4n~s1nEP! z&dTHm3-$KVzEE1XRKiMF<6$SZC#kv}r@LLAy)F7~c^(~S0xc=Y#UUhsZc(7efqLuh=*J-cmd!%!Qi$8Mf z`S9N#2j#O`wdcAT$&Qx%cx%-U*>3tZ#x3gXAU@RlxZ@rZ*wHO09yKrLxGYo)93kRE_jI!*EtNg z%O6Oz27IQ))Y#qa+$Z54MlI-SyjP=}oe zU!>+a)QrEA9EthCc#a9lC5j5Is>M}v8mFT=wcO3+_6_EJ+iYkAY<8}>cA-Yj_;VTaymX8{#-V9|9w7MyZJo8d?p@)Od%#0096Cd z#vyzg;>yzfTRz)QDB24)gb)*ZR5f%&7-_B;tufQ#H>eibETShZ|BxTHgy@@6*v#|R z3bTCn^l0x&Ch z{1zG7FoqV#a(O#~=B5PM+|-Y?4MCnP)}17s5KOX%^4UvfDBADlIGH<*3lk#|QBe&IVLAkEpB)M|30U7gZhtt1_8WKpgs)O%*_X-L4_<<@g;7LjC_dwpaPzC|mW za4)hAqk;gj+0#f7XfNi`9yRlNH=;Ohy6xIc_plr4zwN z`5&akxej^l70i2tf-e7~19u7HIBvlE%*@0@OPaY&q%C}en+PgC1=QJ-paYJTW9Iup zBv+{~Y>m>VJma^dVj{bZoM>&^bUoss&R_-wbA}~3cmY+wjD;PH_4zN}1M7b!k&xfL z8XWBt%`~{aOWlO_O_PBcf06z-sLR^qh<14ykE4X`;`SpsmQx(knvEK(M7I>_bm=Rt zsRi1I2RX!gu`D(om^u>8CW*Rsz7x~@e2Sj(kIjO{sS1}(@d*Q;}$63k4-4_f+y3pDfG`#lfj zMJpD$eq{}?bh2Ej&Vb&?>V1BDy)eB0G`F+J{B0{DZ2 z*dTJCy#ZZieCNdcD+9{+$(M=g{1R&1e-i>pL81wa4p;T~6?XJkor+J^YnBr# z3^p*9j$0uL5*YkJ-n;R18m*jup(~j2_(It;OYWNeb|3K` z{-Z!!@>7Z%)(i+fQs$*wd1-rAe@PwC9O1-TwOEW9ji33P36R^)Li5+vs+lWsa0RTO zNX4!ZNxpsU_gx!0F}R8kq%zk0;b|-}miR{8RCio0%e8k1+&8E%nX*}XeNaBBMQFT! z7l4^jTvvv-`^Pd^ihr1TKbH6LU}_9gg6myFSjD>jmm%!G-3;LeW(X(SXLX@HgdfmV z{0GwMJn7WG#-{h1=mk=tRWt0^N~97{i{w4#jNo=N456MU3U;vpv}axLPl5#P>N@(B zaD{8s?}SnFr8tIjv6coqcdJwO8+w)0CG`b~5f;Jaf*K``I*MJ6!HW76qmcilkPQ?UE$Vx0SeC|N6uct3o8^0n*o_j-Tn<3F zefd`=!VQUVJ*)#E)af#^y^z|F8Olp|i3@GyK1nwher|;SK{D+Ug+vwo5eWCSCJlo1 zsH;+C51CDpK?Tsj+;MDit_t&lSp04g|6 za-urguvJkwWm(N2qbw`lndDZq$|+j0zM*1utYWnZI)R)}gxor>rz$2ASUsLMEuwxh z0`49DjYi&$h+AT7ig*WJj>qkZ1gAt*Sx8skdZ;uNMee}Q z0(m1B9dOJ{;Ruo%^Imm;F0y|LZ2k}c=Y&wfF+4DzLSGNM(5_h zuCYfbog6(h_C~u}eM@p!C2VVe{QXc5<^Pe1t#KtrnLFX4gJVSk8yhYl9Cud+KV^dW z4$l348LL_54c6(EUNhRH0AC!f{YU-BTp14f4^RwfoNuc<>P%!S&QOo2JU(M%0O3BG zfw+U<_HmI|%eLy&60r@cjO~-A%a|exKEz)?lT$gx*FF6!L(@c;A^#nRUPG)gt3CwL z*JAd8X;T~!Y(nw?B1V%_{G~w7QSor*8jpz7o%bI%nJF%31(-yEJ@O0fkuPUuW#kixtIPp+$XfXIVwFG5C=LI|Ya#r{-197u`1+th9%G?f|WXFW) zKTfy+1RHDZlQi%Aw3D=#X}343qyoOgf1zX8t%1I+i(;xWjcYO8_J+kPmCyIti{#SM z$eCJcTFGH_vnke510IsCM{V0HYZ8(QDVY?bC6yy3 zA+ub6VO{jDHi87g;wCzF)2B2WY_s)zHHT?mk{&&Ayha_b7)`i7xRG{a3uSconx^Lw z(?k*vn4#HJP#T+h+{VVraP0&H59`L{jk<`&9BGNX2&nxcrZS=UFOagyx(Y;Vo!_G8unCDpIi?lSW zf2^Xpl0PJsCx(ZU3Dnu5mVp6)RP#0L-6F;rKi3*RR6Y2l{*V?!=Dp`oU9XY>sD1azBgN-nb%T%7a!R>`er+G~!4}P$$xP)cA#= zG0eQ^grfd7B#NA~)y%wkV6rz$;K!ZChUc$V%V|=M2i~UZJgd0iIqmn=5lh_dU(DiT+p6WjO*R4(_z}5L zyIMpy(#cv5W!FN!wAKLYXm(ZLfyI+GZUk^r=l%=`i%Qp_jv8M2`(^U|!(GYm8jgcq zcu+x5<~D&O%by!i+qok^Ge(5Y53WyLQQfnc7i6S}Q*;#b9b_nw;lDPAT_y(jlH}B! zoNg1GiZ;~;5r!s4=Lh%GaQrEWa%8WDBe_YfMY>4|)z?#9dPN%?zfTN`O((7!Eh*E~ z#bb0QIiW$pEDq(4@34I=a!9;38mPLi4gXweUmM;R$Y^n$+#kn2siB?JC#B1K#kDC% z($^wU-#knLtr#3YaJ9jOZzpnrc5t9iaMMvZb|LF5M9jav3U;*J>K~Yrn5;42Zg_EN z`U%c08ItYXvhfLn0jZ^R&OdgFSox->B!7af3Mzo>=?Y!eUDM-S!3wjvay81>n03tl z8aI~k#loFWu`*0}Ip&V?e^FCx(e~=eRk5ip5H*CuE$SvnleMVHMIrhj%!wCTBoFN) zO{An=VN`jV8JP2iAr56AP-M||Es|$HZC6t$A=9_1#fv{b9<{K~e-SIXP#KY~Aqi2< zy~kpMWcmHMj5{y-=+*oY)e*eZ6-9y$VhJ}*N|a{}+0wjp20!z`;72~+EI+Xoo?iTJ z<}UR-mP}$}hT#E~c=4RJBn!_cSDx-6b6Y^w2>qoU5}xbYmKIEBJ}NDZit0Z~S}fn~ z&susMF_V5J@uIMJ@D+(W1_#t0G3$_vAYZdYf0UodNx8o;yTV_=qSqFtI8WtvzOoS>Wd z{d=w^{*FRas=kNSBl|r5+n6>DR9}9Z`D!z)mbmwwRU4kr`V$n|~8` zaF70u7=y_@8heP(5vIgq@=1MUgWwE3{tc?BHH|r#Ba*c@0CL@C>A{oY>IVeZx(2jR zAn2S7Z?*_b+SME1rE*MG$lRxX^)0l6FUo*5UC=L)X{Rm_>LcVqT0As}LRYJGAWg7| zZtMm|z%4s4IXT$k>c5-eYbA|buTm$6=1)d547-6FhRfY1OC~-;eu7DQ0X3ScalCRJ zE!RHg-dTG8yX2)VdzC*7Wmq~ec8*+Sb691JA}UryF>5WrtW_lU2e?1L@Ji@sRp}yt zX9f?-mlR=F!(=MLbsxvRWx;iVWgFB$p~`!pC&s>|3CWkXZyB~jAiqKN*I2ni&F4fG zH~doS8JZzf{N6{+#N6h3hJQ$#pJd+MAekA|^;oS+vrmF7hKT7MH%_`G2-*s@XGm&c z`USI&n$av4KuCIWMouoYU(J%~tWbL|G;47Uh+`H&hWYMlGfeGnv!rt^pi9v*2-zXC zQ-tWMiLL=4J2dR4BRhOwW)DOklI`X2#c3>TAp>y`i_lAgShn2p$>Y^c8615yQ*djc zAk+`FX@p#sFb3&tHv@+ch*wA%h%a#qZkZ?`UI4Am(06$IGYOc6-itvz zC#_`AOS%28Fo>%;#r^OY4wwpptB+dd1praNd`!f$tu?aD+f|30Dyfs}i=UcV87bU< zn$NuRzji(^GNj|p=TY9H>iOL8LG&K#EqMSLvds1#{WU-JmGpo1r`fJKo*tZc)Erl` z-p8Hedo#=&d#2Cv)Z`qGGe50a6~L?*{I&CY8#{yJ&2O`QpJ%V5PI5TNp1~7*szaq& zJ1}?v9c^-{i|p_B^4(d*fx*j;n&I;-mf^qjIb!v%N=(*dwEJ2!!*ec3qmmar;$Fox z{M7t)sqojA+z9d(;-e05)(*Zd5rL4^5vSR zE+WQ63(TwyS~p3bDahfRjvKci58WfDB9YQegGWg%DoumEiBr`{gYl&Ci zk=Oc$e?4sQC&xIKx^!WhS1oReEXql6sfZeT7fJrw9xe$%5WRtti@D)A+VMjpQwa{l27ALd~VlEHSAtCNYN$177?t%y;M#Ez^y@SjxIYHw(iZ zU3#7T`>3#RD)TlZzgC%V7U&VFd-;R3ymyXY@sJt>6zqmVi1Dwjz0ea&zK- z^rDP#GI2+SvS$vylO-`weM`qOzPd$u=zlNgSLl-0MOt00N`Zr(!Z$*mpagctcS8?v zR}WSHJu`*1dI}vwWeT5d>yetlm+H3J%wS?s9>2+|_H;ZsFEmU@R<3p^J z_>4&5r2XNd6h0WnSG$c2wVB|*y)KK~ss>aG`nIe7Jgqy&8s-{DmJnm-`2sD7TcvKI+sI}; zDG_hW4_iTbD~hhrC9etes#K3#ZRm{vdVSc|RSxvBRM~d{%^t-6H;=c)|NAu@e?G*B z|L@Yz&$ea3DQb|bL7Ajchp@)QK`tvNpNe_|> zcFk5Z29YEjQh~)M$UyK6O*;7Q9S5d}eo&Jys$$+jQH$&YSK&b!E7QqKdXB#>A0?QNw1WHj2-PRq%pi@A#{Jw(Qx-MYRw>Batu90loopv& zw_|&T)6!*XOUxP2c^W-TOX5SRVWu1NFh*(YYQV$5 zm%kWK*zn!LSsV_iXX6}t+Y6-g7cY`C=ddad$gx#YmW3rlH)rY~2z`7U+hmC4VCCud zHYuMd+vKL(Gsr`jJMZc;PjoRG#QGF-FR$9j>zL#^3#b;FkXJuvP&z<~I0)N>O2XU_ zIv}Sw5xqP%(aTKjumN9<5e^S}QfR;UAN>N_G{SyyK)=Y3O}sj~IG_%j{+j(cYpUf4 z!X6?lHol0;Pxw3Gw6P*&mhhkqC0CuoP-fXA16Jq=K{Qnl-bq5uQX#&3X3gwa^5?5O z=Hqbnp)}9O?>HZ4%SQ>-k)w9R3+i;q7Q&Y-6%hMH`^&?wFJ5)Ad|8~O z^V4UkADC})%t*yN^#qs#Y!iRFD(Tw)ZZzfE?-a~e6*8`gUbSK(%eGscbl|IG7?oci zr^3~$Kvx){UZeuRRZr`uS3PAKc=O#<12?8OKmxV%NKme1>e5I$hrOQ@qo4QAl%}4zcv@YC4d&%CF`pvavR?MGvI(q_+F^ewf3DLXGv~NMT zA3WI;m;$Agg3$qN_%GhfCjBD`1<$|&mW*ei3<6&Cv%<@(gqzHdbR}wiGTVyfR<;J6 zcpPk0i|9jSXkq=tijD!Zd?sG(D)7cEpq3Xc@_K6faTcp3?D3k8491mIf`HnQbwBGfoS2l=62=!UTc;wkv5d3OZJH$3)xB3!)sCXf# z4g{6`M`lXBnG6P7yMaj?7^Pzc85xMcvvW)eIQsHuh4VQ&Dq0v0E*=7>rJvn(QOFy- zj4`K&Tm7cs6n9$LEiKV-i)*)Z{7s0VKll7FW}>A;tV#=2e~4+y^s&E}NO9_WpCutM z@+yheniuwQ*@@P)NXuGwAki26o0|PiYp#L=D~kE^z+d9oP`z5RJxba?5$mZpX^XoR zBEszjl|fIb*!bp(13p^t?c72xxmhCVEk2*Y!8vj$x8f_`RC_`!kX77NdeFC}hsETj zSp~sN#0NyaO4K59WHe2TrpfA+nr5q72CFRg`{dvZ=c?VvvZg07`!#S=Fgt0&cYJss zVqWO*0eW~laMuvuc~^-Iaao2m*u4mV0ER#vc>~~a52(FELL)FWM%sQX-0z~Ufjen2 zf%`uWC*i(jtW4xU)*U~vYFLz9>tcazvwu_W1ddEVyj@Zh7)WF0csAm8fpUvDoF4_{ z7NGoxn>hErO8DwOHh55V95~ZHtXH-A5HNR$W-gRP1bJC?h~QDPzUCQwSNhqH1Zwv; zNdg;OkT7tNrB|N4as#E_vi<5`p9 zgH|0S9xpFejrEcY7LWi*tntkH?nJN^)xFUEb|mhI_D-T(y9pL#Lq|^rV-|shK0y6e zJMjN)RHlEy0M-6Y0e`DHx2!ucq9(_;^mic1h??B+5cusWA#5g{b#U$74Vtd1LP%Z5 zuPBe(ZPxALQXwaqz15S;Mgo!e4OR_xgq$$K^%~u+VkD{6yjhQVIS=%a!#*(xzrls@ zc{W+u0K&HgHNw}9q$d}$r+V6D#?{5R;<5+?=m8Sz-Me?AD)AeHE9MzNNF`(?PjQuX zq0bHXI%EZUqAdrmM*fpQ{6}Uhj8Ia*t?7*`ZYh#$v46l^2*zQ5HFW(7M?_`FyNf$g z6#!ja^Nz;~t%SYq*dRMLM_q7_&G%_4K+LYkUx!KP;<`x2mgu5=qv0re6PeZ825lu? zU|ZC`m*6Hv6Ac;P2Y7{y=WrP8myj}g@i9PAYtRM@i8+uY6ZWXcuFd^W(| z9vwj^y$GgC7hHrfsc6#-=zhH)a>9n2a zv^dO-xea<_V8Kq2sj-!QChY!nzYiW|jpt;FWur}baQeqa4xzW?UGe1AIq zyB|I~SMJPSYiu3{YBtL=)P1VMgI2>`izqiQG$>kefanj=ntiHv(IijtXI59)bU=g* zp-oU!?c@NRK0N@t_ta~$lGb}%+`dQwxJZPz@EGkXb|olMbHHA}X8*pr0A~g3DEo&^ z?cb;OHXNynery)AO}0;BKG#a*vcj0Mlusf3m8C?D!_w`tSMCa~4%KQQL?^XsbHOz^ zQEkep@jHiF#6?tJeyX)5;VIV4K()1aY{~n#OOo;%S@!tMAzy&n*G(z&GQU8 z>GG9##j;AGW!(Koh(ri>iR|B4Yok)`X6#-3&o#K?kIn@V5Lctys19~P+SH@$Nx2g% z1i!PcO=S(>23}PSJ9b2kxtoOFu;*RZ0TtRL%Xq5U2XwQ!T!GoUo~ob+a;wJKZLX9y zrAa}*&@|P0x7lK+AQ6$P6_P=2S^9$Y)Kv zF3%0X+(qY$C`|%uwy9;j=0?NOip?0UgIh$G1~cU2%_1fS4YNx@L#`8Y9lQ#ZHn)kR zfniN0Kq+xh_FHdEfiUSvC|u3jNNb+PVA)>E)kAih&<*}kw7w{(_%i~VlvN|YXvf*8 zJFz9{me2B`r*FiX~#*OEZzn%}aO_Ah-GDm7ZDR1p?! z1Xig^+)-fl#yX45VBenFWK%e|rzz@g&I@5{R3V)*ORbQaz0k}u$yvJidDr^mV1jL> z`T!h3c64iObfFV9xT-o>2eN^W?ZLtNq~H4yn^30-Y_k>}j)h^f!s2cTmvKNg4nLt8 z?BxCXWJ44P=SC|BWiQ;%CXHdCcK}Jh3^jZ?F$rff*y7(`s~Tm^*|TV!j$RUb=Z-ex zo8g>AJ%fr?>33dLnWOR24py%M05fZ?GD|$?pwlV z2lp}ZfQtMbU~1n~b&DPh{(lTYVAObBhR1+rmUV!d^GGj@q>H5DiE!41 zP4PiX5U^$U#%`5)}6R%Pk&n1+RI_}xga@3m~-YZEhWYC1D>3qN{%{`pN?&n$jZ|B;#egDQYM*he^TM z{dcl&^>|E}Z25i#niI zpv9k65s~c~-ddC9#-?`b_$yhVZv^WYdT@h`zbNMK#DQ{!;1RdifSPx|?9Xn^5q7I@ z4Muksn^da?9PZ&+R=yC)wHy~o&M!$1BnM8gkrp}7tV6+r{KEEI_UqyWi6VsGRd~PC?M}CGMOnM5@U0$zwqhCzf<}vO?+1h8zn4HB?MtO?uZU z-Dl8AMV-kXD(j=xkkFpRk5wED5idtUndRB3&OcBpV3&q({ogV? zfvRd{5lex?PDtYSMrs;_h+D|eT0s;?Xo+5@Ky}>Vpw1bbB~E~1Ipu?UZ!qed3wGzF zq7&bCZJH7WHWQ!RIabD;k{-8nC#~5Ai!ixTA&(G3q!|elxxhH1S3yjAs7n`pnFxAF zV?yDW&gdFYefk-#Y$i`OoCHJ+0&(BV;7u_hiA=d*7PSKEy}o)2rxog#DwLxOy+R>2 zM=w1?1_MdzhkAIftYc#3ms+u8yU3qkhaOIA1%>lbn+VFn%;q$g;)FBD>OChqwx7KQ zm6d=-m^4KuO)$x8Rdhx9r(4t+`m~Y7x6)G1e|rkcl;eB(OyA3Q^_x@j#T`A-(!}lD z^K(kx_g$IFJ%3=J5^gfl0r9@P=8sX{aAtJ6 z*P_;^9S;hy(0JjLaRN<@u&(mf-9^2NO6GaPCs+rqJymM=8+~+{Jv&NsGNf>67Qf_G z0uRSiO8a=?6QojjpcL3K>Zn52ysY@pk|L+IzhCj6TKk^qt8PIK_84NlYxRP(=nml@ zz0rIE*5`SGYgdwdY{0BZ=5VVd9@O(0va@roK4iA9>1vqTZH>yRThJHdU)FaSn)rkD zpVgi)XXLbg1K<2=YrNN-l4<>X4{W7i{hPH}mM5NxbWAGLzHQZXSv%0n@!{Jg!@_3* z?`rl3S5k4tzY)k=aE`>?-a(L~`1xY1x^uBlsMj28EO_L*;{;s=m23PB&=t;i%Z^c5 z&ohWcv!^FDoSVv)w3U}nd%*R^KL%BJ6*q8phm zZ`-RgjJ~Tt4b&C#)pscpKj=F7x9Bo8% z@50lma70ZP4g37>(d<~t!ExtXl{tOhvbOfw5xHvwmn|HYC#$_&d93h3xSMg+y>l`oSblPGv}34V`)gD<;H#>}hhYsmCC=J?>Yb;uIdn~w)wg~l3YdLB za{3Hm(Usb=`6_pHXmYNx4Jz*_r}5&Zc;*}lfo>~lKE2f(u^N>(GT13q;P0VOk7!M| z@=r$e3d1}s)B}$rgN9<8r6znQgBfFr(&ViScI%^YJ$OsRycYElmpE+(hS85Me8CkU z>TWf*3jWw;X6Q}$ub!X4yZOBmyIvgvU8@o&*S+;qk3NpmI36i43fuYlG_;2!n_8q{ z2_%N8>tVy~dgdILigx=?nUcEw`)OZlO++3wOkI$wb=zOjg=5!1y|HlSOA)~8sm zD|Q%!@2-+d2`Wb6dO`CY!UwFr#qa@oU#6uPVxLE@Zv)J7Q9T6J*Ea+IKGk&))5P8C z2EgZgnH$;uIZNLSJ37=*esE!G5F*XK5A2pP=s-4q`H30B+eL`)9$*y{;eB$60+U4I z3V0u7!j}I)$U7&Rk0&If+drKx^c_ky`}dY=|83_2CZamTbeDcEgeaHaLN23IgfH1Y zheHa7eNHc7S&%ys5j&a>Peq8R7PaWPZW!)1Ek!z@enAxkCVSMW4=2}1AY?laEx6gh z$Tq$Vq;{c(Q6n&l-Ih<}Cv*bR6Wp?a6%y%9YUjs*%fEf(w8GlcVq*(%g90Nt7rFCq z5(EA_4*XSmwwHn>Yy(2M=5_; z{w4#v0U<`M4Tlg2Gc>zNG!c#S3=}0QX;VObfg(kNuSvN4tJq3&qBA)hM#ps@Q8KqhV(~>qfk9Q2_w%Qja~DhIqEqUP6|T13cxn3B5py zJ3yaD> zUY)N&jzyxe9zOvpm8;c~vvu45s|2W`9+0#2V?YIe!Xc?v96A9-nd|mp93rh=@N7dz z`g6nQsWlYl{4`uo{4C*k9!K+!fCH-^;v>sp70xLM=Z4!g@2hWv#%f0lkiIShG=u>wWj8;$UZg2clYqVjzvaBN{znhw4{lHuDR=BqAp1vOIjx1Q!`B@g+T#u2{ zvcf%O4f~8dBb*hzJgyVp^%$8SK10gF!|jOYavN=qlkdiYi{;&C)(J3QRP~1MNftWM zg4=FpH*K-TnqvQ=*eGv&2KkSOg4?5HiZ`6~e@J^5_^7ID@qdz;gaHQ5fI*`~jfxtL zwbWn*MtVbF!b1WBF%wXE*lL_c>qVFWstF`c5;8ds+E%T-Rm*LC&|Yq#tp>C>T{I>9y(L$(R=)@g)W;h=S6hpxvc2=WmsBm zwPa60Nlpn3)u#eKS4!{>D-ar^r_8q$ahtx!ST#YFZ76irPjyjS3i;^1U$PiSnqcEu zN_ihMxWTDXXr$F1HJWXN=2?x-ATQ%!iN#w~s~n!04y|@PG}1c5r3k#(c>8=ct3lxC z;V8avu4ATp7>dSSEX>rB%&Jc6AKc}|^hzH&sK+VE4sXh%!;ipsr@!TUl06WMoMRsg zIrAZl7wB6Q1!EkuqquM-sT>d8I}+}}Z(JvGf;+6lhnD+;Q}Nx@Tf-NMLZOs(7UY@6 z!dnsoT(0FyEXZAf9#v1j@iaX^z965Se&esIN@v1kKVLQgDP^=Q7{=7v?~6m{A=c97 zvkiHm0`SzCx_Ck&v|C{z;>SKE9Fk3={u%r8T&uZtVTNP zZ4q>w89)gSVLp^iLznT8s>6CG2|rg?8y%tZks=rK@GuI*9OCXE3mxPsoy4i|6!RTO zl)B7X=BZlHyT!Uh`vd+rqSY?$yqV4AM0F?*CWM*9XuPR$^RW@aC zWm`XAS$PicTqU~oWv_INx2l;mxSH>tUJc#zi*bYf&`jAB#VZ%|$RC&PwC{<(VLD}h zX*StNJuQ>?9P{v_<^L=6j1~xca4O%V^kiBT-(X4q@2^Z>uF|UqrL%@q`*Y#%IBe1D zoNe~4Xzs?3@5QV4J6r;M4|{{gPv_#Q+Z8qcHvw=^U{Ea{HetK#2y6i~0ae1fM zCG{QZT|YVnrIqKjrN1CmJ&e7?dM(R|oQTl2$O)xxji(t!q7GTOhu3B+!IN#wR}M_9 z+y8ruTIdg?Tq7w^`;yKdkK?IODYRS_T5e<|lP3P{Jkt=6-IlI~a|6}Lb5vu8$kXp` zV>aLVToFK)_h5J}{(eJw_1*XoIYt8x;}Y_;rGN0@|L~v{?UzTipYv(uBdI{TR*TxOYm~)iF)H0$Muv2 zk&uCY+pz-f^f_=J>4DOB^4pC$lr4FKAU>-GCqU!np1^DL373k1`)aZJe`}3wCgjL6 z<04MgsO#vNDUKQ)nrtS}^veg?Ojyjyrq8&5UMy+Yp)6QQj}pd%@nv!6GzMg?pVfA^ zEV)^B88^Mpl6zjJG1B%~VzC{NM|+Loi%n9Lm*IpKzm8#7Xi=Z%ip&^H4eUr;-UQ}u zc|YE*%Y$n7@hFoNQ+qr6p%fzwBl?WTu?&m<_{|)uNvNSo6iR=S{-Ar&36e9FndP+f zzkF%>zR_oz`X9{Mti1OuNKVft%Wj0a%@Tfz_bwlgQq% zlnF$cFb1-!4oUuY3$_wr8Z!j4sTAX-&(;~-_gD5IZ&@YEpSI;A;}HQEa@Y2<;ohPj zuO}25WA?NO>y)1wQp~c<)W%N_nA;lG+M2tIkE`t{G-ffwp{J-{Y&*kbn?&4wyRM}E zes-qnp+YnJ^vDQljk7hjMyiSY=0|HI-51|jlemdhB%8We2Tvr=#y zuT$PSG{SsgEQBs4+bf3L7-r3K6fIW5=S|~vYGWS=7nIA``5r#Q6}-S7U+rQJj<0qa zYu``DT?GsBNfIN|ocat`WSVQKnqr+Yx%rLIy|8>4J36i5GMAj_5WLKH>Mef#F4yqZ z;E>!=WAAcwIm3J6O|-QRp5$)Gh&y3IWG#b2Sm+#H=n9^t2=*ds)cvkS$o*XBSeBU1 z@b38YR@o&HwFHIgEL-$;hQ$`sVZ2xt_m}E^T4qii9t&N;&MS2M8kU<>)?sWW6qu&; zQ;$N^PW%Kgb4LnYolgm1DxJA!j-Bi9oD~}Cna2wC2SlEs4ciW%6pu3F z(YpW~kBJ*kSrK|7;vtF1J7^vZ#v-gv6`y;V$aHH80>*)t>7ntW-<(VExsm11!RIhA zeC};jp@N2oi1#|%(s$7X4jZx}9T6Sy#$@^^8;4;%IK*dkI7Kdr!mhL-vxq)d-q}oQ zDG3GX8I>0WX&Uv@CuxcsL6Z8xeCeH4m+&K+At>R7(&@vbJJN(=RrQB-Hf0f312#RyTSI4eLrNH_pZl-E>w~%DkEz}E9$^j&=lmtZRvN#?oCu7!sFHcLYh1DCl~voZ?Dj)R9mc zUo8t|ztO02W#O~aHJOOp53_=F+K)s+J;oA}=suO}@9@M$CNFsQEuk+((wBEU@2bAA z8HVZ2VmEA1wx5`;M5f!Er^FSMi|9XP3p*{`k`ZpsSajq`Vnf|*rwHuk%gR;RWLWvj z1ZKPlrHDRYVoppGT`tV6oKpdR;Z}zy()gk1fxvfBaE?joTMMVSVBSdl4SZi}{j;)39RX%ibTRqpIpVaQuJO$g)0s z(G9W*W^@Ke(#q1vmRrABM-K#Stq(dKCNMoVf)l7X{V%KC-s@KYz|(^i=rD;4?aE< zsb41@HPgnMX==p#NQ-U|fEaBmSS7)+Kuw=pF(CK=^^(qS17$F5BI&s2lsxW@w~K=< z<2IDyXd(8ac`hT1?PG;2bDmOMHVSSuJby};3E8-MK5(_T6jaLL$05`q8gF8GHCnPH z#HYwlk*}X2WfB<<`vx+Qj7ar(T}ehaO<9QB(dUW&VOgD+Z0A;pB+Uvp$uMm}Hta<| zh_RFmuU(VM$K0S~aJCh$;i!hWwJ6o^Maf_$t!-X+22F*R;ggo1p?uOcwNm8xgT{zcXWODnabqwq z&NH$=q_(X`e!A!e zUlaT~8v>GHx$5EYhpn@Q5BiK(km}Y`Vbu?&!~s=5Vi3#EqEGl(VE6t=5H=o|}eW7CUuwji4E zNi&?!#FxE(@yo`gn|O^^;J=7H?@(5G>cYS#zRGbIRah|5XtbY8x6~Den^J=r;f~Kv zODzCt<>URvo?PqRjGMyBT>~XbFj-uFqu&?_4eJU5ItGB3eSy~m=@vTD{~|7RT&4XM zkt|vaQ^Wd8v%F#JGrZRKx$4*Ihq_=x5z3D9g-~8LULKuc!lu%l6#6Y`qljZ#jwy{Ft~#>gab@#Z16Xq`x4krxS% z>sB%@sZc9XIc|E?tt+cWKl+8wSbGs8zDBm!JPcSYH1p}24=>SpDV)LHhEX-a9QIJX zsK;;omT{YNwamTM-7+Bd!GBZ5Z{9)JpkEv_`tyMLE5<)4s(bqx>3M-iC*oo1L>gHl zM7ds!8>=!*Tf*M*jdH7vihW!tm@eVbRD^BGsZP&{2a>JYus6~6;1If>%2*Rir_W!p zhq{)xPw*OfNW2tj+J_13g^0SSCQ3m%Lz9j$#|Nvfa(zemo=(?7k3HlfTG? zN8KU;UNBz35*EHE!>#YY)7#Fg%z+TQFBBLVeHXZ!*wHj_-O2{9MJ^6|#zSrBYbUUU8;{CK{h2JjLC7#@H2 zCd!%u46ER~r<8;il-#fn#+4E*ot$XlWXtQNupCWD?~SSZ_my=06^dziZO*M)tp}np zJJY7RG@XIdyIUyQrh3ax5kmHrHWlR~wN1H{;!wkS@IzTuYc;)m46a17omPqDPF8Z? z4|qsfRl*!$Ge%gI{DzNk<#sUnM54Kc)B{SNh^VgV-e)WTn!ro+Qiho!4HzvSNPmLm z<#7u}-ur}&M^*LX`Xm61Op`a4$JX2B_2tM6^#HT}m|TCPzf?cO*EVep1Yk4Pq5p&{ zAGHO~3|DTXL-%oO8U0X|O(KI_f`1!kFMKD|Wl!a&jB@NHP;~@7Ltd?$Me5STO6R`W zro^(eh7M{NSQ?@=K4FQ zFbNzd+G6!=I&VxmYhcl+BDS9`T>e&GJlA_5)|XlflKzJ>ew=vp3ETBmoc<0jU=L!h zxmn29bY5k({64VT4|aGuM~KDLCiKOxVOo}>y1u9`s;e=Pfy&}?p$l->NtYHJ+pE@a z(ZzZCb;0T#l1&|jafH8v-~t}nwZ*c2*Dg5<=6!31*;7t%-CN3#mdL4!AEL>L z+!uH78Nv<9MyEuhi&_VOh^z=XSt*3Ja{dx?XQc9p+Fq^ZVTN2jUIEJZ<~W&?IS*J- zRvr)BI{?6=qHe7@GX+;m3?cCl$3D?}1J_?8R`yLkW5qsePF_Zg&xmo_UgqM$=gc|z zH|m?|W8bHzVCbLosfV^sldHrOzp3gk!(J{E+jQK5I-jF$G^KK!Ti)9yl?;*;MVq2O z6M-Va!n>LFc?P9BXv&BWj3dKLK_&piu{2sZ0j^g{*Cpa_BseOZP6UURqm`(Bm8fGb zm7-odDF$&b%lX%50&CP*e)~Jor{xs9@d#B59v|RWUHbP77sS8}gpE?^Fo%AFD$Vj8 z+&06+hq7KFsx4(a8zLQEehOAtc$E3!9LU?pl^~z!=F+MZm5sCl{DKm~U+pz8gED*e z)G&KutmcFsvnJQ7`Oq$mYqFR|*UMr^=1g(7nIB&+)2X@wUuMzCUmK)66k$A7dj>lO z8E=QoH{Rs@&mz+vFzB*b7Q%VW#o9J?`J=nE+_@-P`M{C?xxo8i`0fmMoA(ju%m%zi zi&L3guTgGW5FhjCYyTyyFFD9F6N(Y1C*y3^w;XgoAn^4WD!cERo+MZzOqQsPwI<)+U9*!`rS(RTfG}ocm&9}7Q@UUV3oyh#Jd$-=QUeg?!#?N zJtg=&db-8w0Rs&*$?IzDkNAvy%sk?i8cm< zDvpHS;(Qlp{8;dW-m+fb5ptA8!&X0c7GU=gby%ob0dSZm4XA@FU$f}%C|;&QtKI6C zgXH{fO_5_)NBEVN!@Srk@2J#0uBSD1tuH>eaXDs5p)N^9; z(cAYP%H89MtxAJ{yN23ZJYJ_(U|RYhc3I?J?l%|9z1$6s**7=6+<~O^vGjea|0G?{ zWCduQ`BJuI46Y?kaSLM@Nk$zF803KUOccOm2R!(2xG>U ztChyL|1Uva>OF*LEbY|_+QPRw<=gAb#Z1+&ZHe*Gk=IDqvH`{m@$Ut zK2LM|-Qm`3EvHq>d8tgB=s0)TlX#zNr#i~C-dDAp7Kt0GD`nb>qiKA{=JG|4PJLLWt)(-|U;7Ooui1%O-ZJ+& z87AK?$Eb8|v%V*9-?30%ZCtB8Q|91G?y1pgwlUst+^yYPOF(N(x9`##3sdZS)o-fx zYqx$K)^D2in{NFMv3{M_?@;S^nDsl{`gK{qBdp(%)~{yY8*X*mck%Oy+@3Q+b;Q26 zP_F7ZqPH~3Na%g9=ap!+X2X55Ag1q%z3(2rcd6czaHfD%zV!6ph2k<0U$;6NS3-ON z^N*j5N76+VEp$X(69=FDn^$WY?B+YSOOf1B`kuX=xiL?>Nt(l=j!}bXQxtdRM`Wr{ zh#N^-tlikGY&^bjH!6Ss5p7}G8W5}3iD-$g9d|?>oLNG6SN=i$ZO_9`*AZ~dylilK(+b&-FtFxA33~7k7$e1Drik^ zt=aJt46G-#Cyu#eAGwVu3gFhF{@hl{M`knM*gwk&V<$d*r)6H9$V@tpZ{Cc^d=Wj9 zDO*At?xH^Wze9C@QCg7pj%YWv%aEKZZWNDPC*yZ9w3(Ph_1M5c4(_oM&SX8*!SaCP z*fX%RX3Uh6KI>&v$VYwsbOIdy=`((cnA1Z>-fo@U`*oSx=2rK-Sf5*eLvQ5=U2E1Z z#^8BXoA+w$giEgyh=kwQV(&TZt;6@Sk4vt+-B!L2R6f13BliAC5;>2wxlJ-eM&Ze& zm-JPi5CuxxAeHECBygF87QTwFXkq-=ApvY#q{Q`;6arr7C_<5v9wd#YMXMbpWxTFQ z-X5fZR-49W?1bCXu7ytskDYR8_x+wgZ%hkbs{fhVPq;6(^~B=^v5wT??Q;`du%94D z=$%Li&q#Wt3^h@*~&C<`~=*&LlvYX4M@*gHyLbHir;v&8c6UH-knfce>jG&;aP z`F)e7E2isj#15tEEyoT-C)Ck(ZA**2Pdh)~rseEV5^BYJlsok{lBEM`KJ_wzo{?o* z*Dh_;&~VHhK9mxA4J~iO4jJX2*?Cn1uvhk-Hir5AwY}>)Ooad_bfwGUx1>)E9`l85 ziX1Q0)?=|za6m&oYHwpKdHWQ!^<#pkcEM*!zc#O=KX%F$d*2cMNE`mCpmCo{w$kE7 zkoL&opHhEHiPL@}@(pk(u=}l+GvxsVGXSLErF;AAp8{qDD!?SLNq|bkrXhg!9yI~C zyhnYBKv&?Sdt~Vl3|55nH?-1yUxZ{?nRdQtk_;~AB|r-F_5#lp?ZEP5YB>Zv4hQg)aX4|47J8SOqpk$M{0*$e6wiRg1GcEERLkj7 zgupEM?GE6~6f494subS{(%;i^UL$2ctydHZ>)7=@@cpqjqZ3}y_s|Uej9&Yy2#}nY z)oiZtE%UI#=Bd}qwA*1FXSmrN?o0{2DZI=wP}{(nQ_g8b^Hb^gT>A-*W1fO#{%*oY z4OSpgUCE+YIOV80@|kMnFf9F_oYyNr-mT3#tiS33^z%afdHbxWy$O1#>z;d0C$vZgGG~1aP6N`fu_702_0iu|p%NcS~RFV~4h-XFGdMHv4e~ z-fTboskVHV%qQG;!m5{%9~SA*qP6HJCO$k4$kA*SQ7?;Q}72;-aix4h3*_5dUj zUFFbIWPWLfcu`vpjgA>3tKXBhx%rO#89(Na>wYPTyrjZr+JIJxa6AAtwkvtD44OI) zyj}0Cb$s7%+gl@E`0v=e3t+XMi^QBkpkKY02TWLaP^tsLd67J#}nX60_yYN zkcKXKekRQJotfH} zSM`apPn=K|vMCn{*{^>Z``Bs!ROja1>i3Byn-k=V==vBjQq-qyIi+oR!+u=y4pk{O ziMH>J9dhQK(B1r~>TG6l@*;2bk?j5^YLd%%%p&A3aYrW3)?xo<=-f?bYZo&*)%!n4 zuZuEJ3v;G)FhNe$Ufdn~Bo$D{^jD9)X;E#DEt=6lQKmHbPjg?1YOdvsXr_Rc^RAWy z{j6xu1hnw%38peAe}z!kshH;GM}_a&>lEZ|Jfbac->8b1M2KvaVxLhAdVH5A5B^ch zdDV;G~*%t@zV6QNdqroOxrv(QQ+Yx*NaBB<||Ei#MI z6n{ZqE*Zwp1R4rd}~eVv<@vysL(V)ZD8(ll^97ls&45$0W7c;NQ+9-IsS9I*Uvc zVhZ&!w^l)=&{D-(E$3@OLeSDbrJ)Bj_nAUJ?rbgRZ7pYymV=N~$W;V!972GeUS|q8 zNW!~sYB@0OL5ScuL?F=?A(UzTZzYK#^ecKH@QWtkle<^Q;ix#8Oi<(iu3uq%`Uw*> zfJLBVvZa7#0CxWzNHYhpn}m`HA`3iVdsYI`>+b!$G&TJRy^P%{7%`be!Eci(>9t>FcqJr&DyAmTF&24w-9L^T26PF7GU*t*Xs_=J)V^r%+jsp z0H#0>8Fp!IH?#!c4r%U8rG_4V2T)SkU9U?tpuVev=0A%mrn_segRpQP09SyPx#O<) zBnNfg7DFPc^=&q!nIYPXY$`EgG{F*A%y4Us%{b`jv6$gh!J}GZOq{G)QY=`|7>J`~obToI5w&gIsd!hc=@ihA$dasul zu@eqEf8Uel*#XRbRofyeY%Z0YNVESLU1?|utCbI8hsgJVO6-@El8)i1e0|ls>1{mX z47a2TJCyXzjf65pzFr1*Q=eA)0a*ys!tkP_>M!`Z6X>fY#j>LcAOZ;e6k=CIZgj#1 zDmkL99R_1)?wm3$MD{=Ls>ZAeylTYH1hI^Y31^V9LJ`lA!NhZ}MLY)v5s%`cE*3e< zD2d7tpdZV2YB@}jfw#c$KEb=GRS0psZUu!r-WTNWRZBvXJfMiz;YE`wV9wi6ExN|^ zK&IL#6n=NO#i``8c<2KZp^`t-Ywh2~bH_i$v+;k&GuQ-w9bbZHDBz#s*%*Z9xeC!B z$HXm5xHZWLrg*ezrHeq>mjubzYw0ePI#s`$ur%j z^9)nhR2V5juIq$#6rt3@IV@+jn!i}!OkqK$*hV(*#DV~m7>Y^c@}GXik9{g&G70Nw zm;??@Fi9&{Fxy+TEz>Z0IK|uoui%Z>f+~m46ui=xW^bX}NnX*m6uV;`Dyz3U7mEc_ zlv;aosq#xfNp>qwf^%BnoDuXl9!U|#LGcsDS(zattGz@x$J@=4dW2$}4(D+1Q5qcX zMVz4wPeTb&%J8z5N3_el8zs`xQkrcI z*7npBa*9zOGxLW{HobZo)XR#n>irb|6x*NfvV~mRm;a>D)>O5n(AG6-%Enfr#%#}j zgsA02)$G%}tr1m9ufB=0OQtlxMV8@h>Z|<+g|;12w!TBmFf(S^L&VTINJ1vZI~Oy* z-6=}zouW^no-Pydhpf8eFJfxXm=T_pZR!)@`zOWms^gJW$E8{aPy8n zN=|L#ewi7cusuFuYka~3@d@?DQ%-S-&t|Y%&VkP-Mo84X;}D%lTQr;S&ha#adx`q` zx7zvEKWpa#5>?$+JF;j&0?nWQc>z@2EeVeiP_Kzi4P$B)lzx6%kFa$Kc0BDy&@$~ z*q1xC7pr7xtX=k4KG7f~!Ll91J?WMzE_-qrKjFV20#=e$FLsAd*tHE@>cgsPb96TI zeCpKOWBvAas?zb<+2Po*7TK&s-E&CjqoE~;75AM71B@P@1o`0+8nKwhA3C1 z6whUGufJByiLRjw(CQ89{fbJsbxs^<WWA86Q<}CgxE~j3%L05nLl5Gm-)s>jyVDXDUbv#W7tXmP1MBP zAgcpfQaA%c{ECEb=B7+zE=IA_@e~wkgginYLMKuNpGxi?p$u;LOfj2ebF*kO z@G!JdIij_EkBwUICaw0Hbj3o7Fi7R2o$}VOo}%UK2Wn!n**x!bGerVPE-_Rz>)s~> zRmoY2xU2_237A;MKV_s5QIx>jLKA1|seTVGFq?%XEaum>aGOKl z3v&xTEv7dKQrj}qWm?QGQ|y%x1v62spMdR!4!}w~vH-)GR;$?BVsUjn?`ixEBj9== zc(eFhy{Z8Y6MSxRut`>>#>>hi!%o>aEoX5vtPE(!!Nkz)oep7Upetb);Sa1hnF)3& zPFdy!H-W|cfq!(b!SwK+pdwKk=nK~Fdd*=~A@hqvI1P;5!E7?ov0pfgi4NLV`uJ@xLl^AG zz|g|Yk9KYv%*`!`Qfg?n$WgfY598^Z$ODx#Oen&}Zx%~1tNe+nrBFECac=YiaXl0ToZ(4Je5xGEYZp=(JCt=&H97Ay zb6#dv*|~<#-a3(2slm$|9u^m$h7FJLck&*su|;cqvth&Id})OTCclJ1LgT@j!uGE8 zhKGMf>{fSlcKmX3wdXZg9UqCimNuik`aPS&<_L}`PrGsQeyO8iM?-rR>!rq)a_0@& z46+|E`xtq=f=X}&zniWu6CZ$5jNzAWke<$;Pl&HYBOU>K{O_1L0CE5`6UVi)l%hJUJEal9+-MS*5%akNg*0<1=y zjZ1OPV7OnyNvuI|Pv*SqECIjU0)KF(1^TDhK=DzZxN}k8b>vFG9&@|EzJ?qFuqW$- zX4Y)8!U4Bz@e??HbixYxuDlYiy{+!E|={cLyhO zb&{JSV_(EV_LLXB5l8DN9npE_~7+N~4Z- z8R3(ulF^|uhQ<(A=?=WCa=&|#fI@OtW~ElR12$;MZ|ok3<)EiKFiyq(ZXkA?#LiT) zk0oP|rv%f$_Tn9ZfJ$*^+pIgzU4yh1_KL7LI%7s=J-#8B8{PHZe<%}5y|-5!7#GwR z9c%UW*^I?_IfEv-Hr=@QJSAmC42jDs@1&PaS~9z08O|nLQ=*Rl-2-7Ofe@U{`cGDM z18MWsp_)uQU#>ho!S9knP;zh#x5LZZnNH&q;_!Oj>CTr!4b~fo;qGxDPjIa?K^$)T&fvY|6)2bTXzy#JiW%jYV+JQH3rzUQS@ae0f*=$SIUDgR<7meqN+zF=@fZ{cibaL98rDb;mJS$OSiTgBJ$ zg<^mHfin{jIIk=`clJYrVng3Egsy;3{)ib2BNT*VV|RyB=*9=TTw zS6;+q3m>Uk%~0XE4V(GUAKos1>o)SYxHNk0FuW*OHxwPk_KM34R+UI)H`?q5F^94R zSHGX%(twNr9f8wl`-fZo(rV-w2(Fk4Xr4E<^_%3|dsIq^xwv#bCHj5Fe-D(XlN^=( zW{Kmg@5W?>TkOhss9W-KSR|Cl8^ocpPXW%eXZ3=pW0HNxl$0u)ZC#T4q|DsP5=#4poqq*pG zrl&PHEa3hh-t`v0hTd3q@XWw?K80)^V#b0Wn>+7QNvXlh%5UL?1Yh8Rr#atw*BFI9 z+%QL%rv|RK%AA>{VoQm-A9JF-a$wZr*AE4kMOMy?-s5PqOG1;>vHfpUTsCyt>^yE} zJ7au-S!wx@;(ypRp*qRi?4% z-8l=6Jn1u7sMC3|V*nS?fws+DAz(SXdYSXY-?$bbj_bDcF5j+tw|Ga*?(Yw+p6L{s z-!+6>aTJ!`SZXjmJk#mua)g&TPs-^F`Ak{7gU?eY;bO%y4>|fvUwna9(ObJClY7$s*1j>WecYwT4<)xh zkrCL*Fe9}``HI%|@t0fTjm1>&-=1HfaVSF+^D5~`q&A0Or1lE_npul|ZM75lvJIVL zGw!92@n;9>i9ahX#GjQ$ea7#hDIVYQzJT-k*Ndg|6X1+map#ObE1e`M@>o8$iAe3W z{52b({)v3#yB@X~wlK>N-@Tl85OOxq}WpdGmzL?6nF@9#i;7|UrnrK(__^Bcn{I%Cly&&i5I+(Qy?6dlHI{Nndx#1@B~e2B;U>{UY@cry>6K_%(pAeppy1$^ zCBbjpLu~jdRSELGNmL+P@LJd=IflR19$b5-u9PEH&#ZxZ;*FBuZ+uf#qRI+ym@n$8 z!@wR`1e8qh>*FEWE5g~l02YX^qmWQDOl=DYZ3`uTIu}xtSR-48HqNAHh}VfORHH$h zqUFdoTqOcwm54FCkcXN~fl+j}w?rL)-BLUDb)63DlV zcXI2a8sjq*moZ8_V*X6Gb+M63*+Lj$wPQtR ze49iwezb$|)2hg#MFN6#vUql1{O%vHzE)<$muS61<9(%t5o6=Lp`soK7vBHcn4RlJGzdUlRwu$6dSLv zgbqC33?}wRWn!1LWz{`S`>Hc~y&3l4h`;Y-L6SR8QQ%I<#SrT&!|v&1bZun1v;c^E~&s(&CO~j+~-&^I?zv~k5@}djWmc) z4kb++$IZy9-13#*xfw-0YqMlQ`z-AoN$Kaeq6grEJzbyfaWsUSQ^UvYp~GEg1jdsO zX(M$#$H`4q7y54B3i|onqNxjJcw)ixp35$nv4Fskz$UVHJ>BcgN)3$(%;95x*MG?u zNfnaR6P?E0HqWcl!Ij^>nL^)x?)E#sdk2BCDJz0^elIxjxjVk|y*v3nm+uwJgE>=H z-1(iA!3(B*=jP=rgXaYD|CgS3r3W(kawapdOF}nD=w*S}fI9xlNHx@iXa-IhD8**F-?$hnH)01G z$<^zw72@E^0WiJt>_C-?(?rfXvz{(HEt~S$G?-+TM(a$3Z@CN99jI=t0sVP#xk&um ze&fH0*ZDHT?$BAJ{r zqlHjm?{etXDl=4$#qH$sCetLOUS(XXE=c`eSRQ`8EotH?aw+?U*DZz()9T^H#d67) z8acL}{gp-ztYMas<4pJ;JIC&bQ@qig;cV7vYLS){M9NNvg=9p}!$0LL!$-~1g)eXM zTVLHGc2}##befAP#U~-^)YKhN1OB!&)Ql9f2In*zv%W;Ue(6yEnE91M{pyCfsM6;% z%BEfpzS)v=MXD#l%8Pe&ZuqrLZX>}9ZIEJH!U4Ra5#QVy9FQ6@?3`iY6V6qmFigqP zGJI;tDos{HUkjf|S^0Mfjg!-Rjx%##3HNc);!&+|kG*xi4+z^^eMWh%(xS~rx{Tu^ zlX_ouw=7ZyT9uX1^E)?jX63Op@R=+vOGQ1QgK}%S47^MW<+c}vrJ}VW{V@c2 zvH$VvYU1;odc0(Nz{-&~61?E{p@kjy16Px}fju#v{*8*8bQDu?6RCl3&{DcgZ%qwPG0FSC;H zbB{6}*5IN?p%;dmhlKlvu3i}*SNkk#d0Vw4XZ=#P<<0QKL1EvZ@UlVSHG{(U4GM1@ z6y7{2ylYU{rouRV{};_~;NQLcTgAU}{w?9(0{%V4zsdY7z_d!>+>9VW!C>vf~~njJiD~}ACqvYlj98Qe<;DFE~v16y_uuMb3nWQ z9>SAWyS4QzRC)#v9!i#5%q%n9lBZPV$<)@*Re7>7v}yMhSUEB!$JKn~&cnFl$}M%5 z51GHfhld-Y+W4#Ke}bmr#}I2M;}EFj<~Vj#3L1kVx4+7Lp~2B&{Zl z$lwM@ZNuFJ%7q562p;0d&WOtWAqN&A3`c>|Rfr3TWzM%v)|UDW>%b?2fSVyU@E z)$h_aoI{}4D5oH!&<_~PRLGTk!0;2wJs<*XaX&EM&;!9p9-d%`UsG&s8mR0IGX?7h z*AY5=Msy(Q_f{bgo;$}eB?^KyB`d+rmA4$9mbqm7;a{-+TA1r~7qZ_46}a_x^f&hZby04Sd;k08 zn*2r!;`={hnrkK?6P)-a?ch8VmmT0j-3_yu^Uf$}>vAR0aMRD@zTBfc_KY+>3II?N zlx7SW24uY?9J-IZ)s;P>HFMg~dz2L(Cu%2b*Xq_<xvpGcM*B)u&W} zH+jlxhUcVq?^)2{V2Ecahzp$a;sWTta<_cU*#9>RXirh`EPAo z`y#!CYLD*kcusns+mg30%~oZz9XpI;Mz^PDg{W#4c2n>C3&qb{e!=Xam zvA!&l=>av)sJ}wlp>g>E;w(M+-rQY!^ zmZ}!SySlhYzuqx1-_yFHk9w7;7o`KEHE%SaDkE?LBERF`#N1`7lBk&)LPb&J6jl2) zvS){~(JfPh=akz5HcXPzr7MQWjLl=5q@;9ZV({!>nv#^!gHlqp2YIduCNp(Z<_$}A z-3H%c9&8TfP$bH3wDAjvpqH34%hM!+j0U=|G@^JlvFzl$Op#kDH2U3{dRuO6Qemcc z-{a(rIy4F2|3kw1-C1T@mUiF0iL|VBck7c?bb7^d$(_FLyZYT6xs*yA6^m5`j&&tG z{9(p9D`u%U=enu--7YiERdKb7bFKTDemBPkrL4Q+0u|?8cecJDLvN9|jEWIa$1r}^ zr7?cdTL-MM+|{rUEA>HTrIxOTD>G9o3ww8@2B((af@>_JcN-&N6-Ez8F!H*pUlO7W zTyMg^EV6L6aYTWv>-Utlg;XmgWCS+u@Jp%c8i+NHBTwR`9bGdH<8r{juWxu9= zZQBt}c+EDR<|MFchO%r+y^`ORUj5OFa6);iq%Ta+4&HFL_Hzpgw@j3x%i5sMyxtev zS-?i8U5^R&7Vzhp(I2`wI&GoPn5#aAgo>lnZsN`bGtm*69-X#~7wgSWXXtADI%Ryt z#(6|VuY==QdyOW{DJE|}g0G}co!9lu=nL_@&AgGGy+N%o+?I{%tcAsB-&Kw2g*q}t zDIb}KQeN3#%3NqC$OQ(JuI!I}l;){xrl+CnP38TUS6|N7ESnqrlF3uIQxdPKYI>Vr zZheQGcd@gb&t zzc1W85A9i^+0!8=@B%rl7%SroL^FNtV0+IOQJ13{TCbp54B0h8b^1%{1VD^crDA_B z6Vz(N!maO@QyGmdKI82~LU1`-@jl~E$?s+HXR~O&wdQK+#ii;-T>#%>T)RLpc#>yTw zF6fafS@Jv6k>FP1Du-+y84D5_g750-7;bsHk_R3+8*DFh*$dr1v!+!p7(uC07bf#> zQEHDRvR9$|3`r(EDCWy8{QhUn$I0w; zzpO30s9_JB2*LKUGEJZR-(U^?$pX5#`%=%I@_oLc3q>zfP`?Z|n<>!H$Z`tqA z^ujsJ{DKyLyj`9w;?~|#)F8kRi?ZBghp$njq(ATAj9K-gJVj2ePR{Mng^V_@i=8eT zKydOsYVeV-}W& zu2QA}%e0Uz7DH#z;Z>f6piCcY56`7Rj>DHK)8*-#3Ei{_Y!CPDVHU z>_fUcLu=aMQAwdg;`(tptQGrPn!PQ$CcEp51~>1#p6_W}Ikx`65!cet)coq>FVf74 z54)U+s6sPJyLS~CV5;il&E!~ld9+qawAQGCSO}k$o*Fs?D>|e2ZS3hc@osFgo3GV| zyXOqhlMquRw4I|h!8v;2bXlc515I2rY3egFVeEIbF zUbYo&@i7&=p{W>=iw(SPKZv^maqDSac`?TdD0EJ7!`TAWxw*TD9A2N5n%|I>QgbkL z_{LTTH};!m4Rr(eXh0m9dOg)drp{rp6`ATwXu^sNFbHLb*G{*UhQ1Lln~Cz^4#)FX zyCbWnOTof?U?F-NF3&$^V2o9U9=wF{b-kk(&J;mkp1*L?s_CIKJzjTkPayj@;+ z{a8EC(k3TW9!68MK=1d5bCVYLL^)=*+P)@=cd1ba^{83VmG`HmONLf%kG`(bOz5c`*(&u6}@~`290<#%6Zs%;pt^om}PG7ow_15 zc&k~4flQZ9S%aD>VHp(hS4ddKM0mV}rQ?JrNLYqPc%p=5bcC;!@D*k_KayJR_+0a{ z4iVPv&0moc9AzSAn4X^#NkQ2;t*0zsgB;ct>0WTGz$y2P2PYvyA?~X<;g6P^i}x&b zjnfxrvHNnaK06p0sn1?BKf(%fA)IF4E``FE;?StpP6N0Ny3B5*aecyRjWUs_{+->M z?@Yz1Q4x+S?LN@YbHFJBgUQ=Bsl*w)#RTSJ5a14$R(=0$yFYZ1*~j5}^@CE%9ZA1I z4`tHpOQO|}5EDu7$}%H{n-OLfS%C!Y;cU6Ng3Lp;ZBx%wDNFPgQy8huU#DIrHlEWv zEemc+a~Xsa*MMXi3xDhuPUDY4yrwISyelCt2>*Gd+6EZ#rP)QL1EO5iQ$TvHzf`%L zC^wVnAH;D)KT^&Du-Leg3V5oS7% z{S|G?OIU}|F>jP3BlvUdbZJ{oYFmz!+Is|5JFiGYt7SA3!m+?iYozzE8ndPZ1RUFi z>?CC|N|~#wWw}*7a_ZF^kYPCO?Q8fv*+g49%sGCFPYvtJa3QpD9wJmiSM0Aa? z0_=qln;)r@{CeFu(js*a5H3$GHs%jw@r{WJ=Em7IC3K^{L6SThBpc$cE|XtRos+*S zS5`I6;5U7Bxz%LMxW2+v*P#8-*ZT-I|vxUfD}eKXMaThzWwRfeakB*SU- z4z=nf<0EAB8<9T2y8?dTfQng7%%I|^&F=-)kOC~(-hM&l={RblMzkXMIad+$#g-SV z@pa|q=<1S%2A84J2k}YjW<0h~w>4!eZn;*kKT2%4(-yphQ)^ts%b%g)jVh~K|Bx&i5$+7G8yQD0SYRlL}ty7~xhUoRpUz)X2f`$!q$gDps^jgmb=Js>WWn0gj{vdR$l~j zo=}wCg2QaMZAk1Bd)0BLu835dhX3r*h7|5!&bc;C3qQcZ30Cmwb=lN`&*oRy7q;26g6bc%!$l0&n2`gc=?f09Bn#UpY3u zszNL?CNt7Sx@Y`)ju42O_`HL;JG7cKim>?7YQz~v1q4beAgfkcm*GU661+T7i{A(! zRk+w#?G?H#rqXKfq@v=^Mf}xInvrRt_Xi5)sY2J9g=XMBU-6f&9f_Qd(76LShpL>T z2j?8f_W<^6gUQKn9Cp&Xoi0_?dz~RsO09P7gKPV}%Dgj~*-`Nqvv&@y_Vu3rSZei!>Jv4lhR&omkIFE8P=@!C?aSrliQKe* zh1ovuWHP+b$r94Oy6MmwUdrJ1-$GIM8y}i>bztF43@=ry6{|p^dOrWeCms5gD)GBy z2?y2xR^^Qnr8MByGjw^l$-&4RtCK|> zstAvZ)Ah@fMN$(*(nA*~iez>E5@-z2#@{&_ zOCt4nunZCKBF1Q2?b@JLEBlS6EOxFO?l+!6z;^mcEO*Gd2hRfZ05cRR!hR8{dy7Ql zl6Tl>C5Mw7^N_9xDqK5Noc>Z#QdR`d3IL>FJsfsa$cR3gFrV$gXn34iFsaf+^fB!O^gjOZ+!DKlOJ#kUz zbR=5>AqA+MCPMnI8$ifIZw(-%Nm}PH-# zGK5XepmT&R8?~j72hM|dv}-jlAkM0qU9LFaoJ=14^C6QcS^j zly>h}KFWEs2*^Yjedj5vu8vQi>zx&vtZ$Hpc;nYoC)m)|f6QM|HvPs~8$EVdkNy^YA zLFF=O#_`42RW-6A8lxDf;-%~9+xqurU z5@ed4nKHF#>TRL(20`XEKwv`Vf_e05JD*dE7R>z4X_>YpGnK*loj>BUI*tS7%Fx(B zRYj7yUMfZzT0X@$ZQ6H94`rBWSbe+M5I6bTx)xN&i{~x~Ce!AbX*ZXU_RZ>eaG`e~ zEzeB*`t_upBWc&)ja^cqcJ*0i+K&`ETwU2_^s1qL<0#!()OBXLHN4OKCc?^s!iqOq z+_zOx-4%yS?o)@d#NvY|nb!ETc>=ffg8JN-JTZ=*7qn~BVm#23%>|+M9o*{B%$|-2 zyw+^nddV#(K(BsN$VnFH7jRl_-mQ=~xzQRH6fsHsM(MVeE;Ux~@x ztOS4dGHLpc+xhGHOK_C(sUP0p$g58+DD)g&@elpSQblyaFwZuFz$zAT04cWxN2K+S z(y6F=w@lwA6%>~mZHEzN>*YgPGr6n87(>*eMS+R%Y1fMQHfb4;k*c%t_%Aj3)OJfo zc|sC@M+0vi>#OG%-rFpWtc?Ch)h^z z&}OL-Ficnp`r_+F`_BD1{$86B8X8tpW!j2!uC*sV>?=lGn-&^nrlhWPo@%ZiTxiHD=c!$%$E*zK z_Y0o$_HnjWYy4e3Q?k|=uHq+m7gsvlW5;@XXH=xJ8x>ifLB`NEg;EfnDwscxnMwM5>j0-5t8 z)w>88mx+Y6URYDxz2>@&GO~C=As{tNEhezBWDh=|Xl1$SB^ZL6r?Oc3U0gkvb^myF zVOh?%6$WipoY|>cMiaJd+WG?xik4y>Yf^^Rc<>6pehp=L!QSmR9{CgF5NUfq0qj|R zqkzKv<<5OrY>9b7)>^$?iWZR{%0LT&(^aXDuTd>@jR@U> z9-J%UKr*hxmVd7lox4|c)#%@VgP)kNg~DYZh3ePtZy^ptCj&*wHP*{p9-0Cowz$>Cv%`* zf#|{yEs4W&bLLH~LNT1V0VWGkMHhh%viXdYKyuK+d4jBpS!hQJmu=trvE0bSF4o$G zeBTrt6)s!I<5bTG0yt!>%0y^0=`+4q*& z+qG>iTqV=#w96l!{@_w9E=<&Q8AF2$y)nIhZd})8fKPLRQ$~*pFs;r-zV&asGK^1h>?SKEp1jhUzIyMCK4-9%L4Np9G!~E2meMyi`O@K7T z0_oJ0&P_mQGWX;^$*0yu{CMsu1}|9P!dq<{cQt-FBoVX#Q)_hB&jbm&U`rKf z`&R{gDfNI?7qn{I+L*=?1t|V`beWCR&rH#GnL~~_7&T*qg0Np3p5g?CB+3 ztI6b*-tf|XgN$+Aaj(|sPtmryX6mu}kzBsn@RB0s!c=kmJBqtr!%MKDwk^Y_x77RD zDmhA~`oa_{cc?n-QU~QbtLXyAZ9|hA!b=G%idUo$#ow$Vz>{Ku!qkTFcT|i$!3>Vh z1w@$Kp34mw&5;o+OiayQ^a|P1)r!k51nI;E!U9 zi}bw>y2ub*dl-@~;Kb2~fzfH7RUt#CB{eYESjG-;QciD2G0&F&*LLQnCK~!81g!xn zmip?3&i&^Diq+5Mk|3udh5AA}UPX#F6lcAM$)WSVu}%o({DfaNt5j-1lTZ#9^=gf? zlf+YC5>KoQwKsv&0$5Jr6bvey79?<5kicm{0;dIz&W}W1d0Msb+XV1#;|U$FJNHwq zab{e#3y~6`H6qj?Qlg89-qJ9GS8ZXp#+fO}D%!Nh{8Y0F#kBvjiWI7t z$u{OpHr#|X=!VqcFzYb+Sh~S=jKa*V3Orxdq59bZ?D_&bcRZ@9gqOKCTX=aZtl61| zUB{eprVHhU)rYKcBX|-{?m7qC6q>%HBlwInU~G!7#VI($H;Ki@j`nS2lbQc zf_J#7FBF;j!kL!3FgFf0ioO6`3sb&SUr4d^1yPFaYF15UR#g;|sKhQLU6>kfO;?n0 zSfu7>SZ4%G{}3z90GJq~G$k*)oDP<63s~rbnUH|V90d~^PDU$$T>bwGAc_915z1Xm zzo4a|YN7FC47)0@4xP+gameml*l=hy2O#V)H=5Vx%1Cex=?zvW{PU?exM5gBc}o5F z&Jf%qml_e*yBbVtS5x9M7UC1k3WgM~7Nm4tAaret4S{UYaNSX70d;nY02Sg+O-xFm zhdVd1zbkETrb6GNnN{x9vKo<77bL{kUGGu zPP4OJLlPXAS|H5!R_D3omyLRgj#fo~B)!oZ;i;C8RjNK^s$@RY*>gn9;y1|r_&dOf zY!DMmi6Nz5Bh4C1Lr%jU&bc)Fai1|xLsx`%fNQx!q{e8oBa3qPJg;ds+x`<>muijw zXxOv=91T^a>l-nVeQxhYkSKbi|To;v)^h} z^P<5x^}YFYC|ubs3uw_>6)E$YZM^d;dI$;E#=90Zq&MsVIQtCN3Nl`9|3uFXbyKv= z6ANXVouq+eH(9n>ZP%Zv@2%a(J&PpMW?{I}uwmEqhPr8rX(06T&Rv{_p{4Tl8$^Eq zT0aL`k&uGZW_9W(EUj|Br{T(mJq>>ZI)KVfAIj6qJl^iXQ2LMmP*9qXgpyrAlseq} zLkIbIUNQl#5c^AmK$iabPKSn;rx)HpN4o6cLrFzK@zEH%C1@PM?-!sWJsS*{bb*W6 zu`e`{&Zr9q)gSszCr=idfG-~+0MTkT5%Gma(8B*e-p)Qgs_IPqnHQ1?3EU`Af`UfC z7L9hPv6eVk^TH&&7zo59pa!g4(=_x&VFs`zkZ?(uncG2IU$)(~+HS42U3ax>4O$WN zLX!wC2Cy2$)rhRUak4fjCILd`_kGU2lLTz{_wvV&&xg#p=bn4cbKaiwoagnNMv|nF zty`t{f2ENm8gVRU#H0TzVmL~0E|!*uS9y#JDhArv@J}-4;YG~|GtJk($aO$C4?1sH_hI+Epu=@QLZh9CuB$th7P!+0KE!Mp&&u6JJYAub z@v46@#uHMDdo|t-sYUM?agCrpaI-AJN?f#e!bi}WionKNlLi%IBZOrRU=^H@Jecz^2V&*EU{uSW@kKql~_7f+%p2X59n6KEheesG#5Ov%NK%$t=HgUTnAbL6P=n_G$w*P`pb0D7cN`T@3EI|24(uEj z)v7FdpqA`>>3t;u8m1U04u3>&1suSJTbp~_6I+9hMYwG#?gK02l$n~Z)%%Ij87YWq zzBWEKx&?1^^nPLuy58ej+gw)Tvf9P<@c4#J)v$|JT@nF8*5Y11!=adQ1Vc8hX(}h* zN5-c{v8f+(N%PK$iCzhdPI2K;$ z4(BEYi$?%0=sRn{6-j;3)df(N>Hk!KOC4j@3ymn8R*E&%O43`H1GQ`Z^ORR^PGQe z%*I0qc;WoB!Mx#c{%|nwOgR6H{!wBu@3h{VBrre9T2Q0tNn|A5EZ<;3ilyoXI)E_h zh$i#LQgI6v5M48F!NtS~Z63(3`@YBJzt&jnhVh>2I^jAHO<5YIiJ0Cp5_I5`<^&Ag zgLhH48$NCtd|iuAk9R+!qt|-swt8H~<(OM*4VkhAi;~L$Ko=5;^`i)<0}Lk#f3?M> z6(X6zi>!|w{MdCuP(&MCUZc&z5bPVVBX&xmGe$QUeLq{|Fvg^_HMU2ncnF&#*^h2E z2l0gv%@{|B2!L>d#nsi@CQDq^-tw{2bpnGcy8#dgxWYySstsi?cE&g|z71ErjnO@? zpH4iljVL=LHL@heK4*Uez3{RC3%ho`C%(gv`tw=nnEq3LlIp{t^ub{qjv7>FF@9hI$SG^XSd5-zo0|_Kat~*!;TOmgj)_(_JtQF8);~@fd@9av2nRTZP3-w z`Gv9LQL=##`4rQctPblQCcnal;kV&SloL#HJu5@7#U5i)&Dteymq+ve@g^o#MC0XS9;7f9Ps?->Lt3Zpyy;51J{>Qwp1JIAvcr-JuBJx?`_H@xE@6 z!o5!UC4&$X#J{2c&8CxUf*A0pbT)s)yRiGqvZ>q1#U|C6(nhZORe$(mcJsup;01a5 zcTOS$7}6T<=FVUc2e=Y_e@{3!dA>W4FTh6x`0vLK{-sC=qJ7Xp_3!tSCp=MiN=rC( zE?wwx*S+7L(y9P)PwWh)6bQ;Y5H01@7fXpHT9Zp=$yFdj^-0vrVg6O}v!N*zO6bI7 zpxCoUYbsEScifF~NqqUaT<@tV9y=*SAR8`BHZBIOZxfB8@KO&NMYvEWU0SjI)xbvD z|2rtxWvdV9O%ZDs0`$n?_4{0F5x+Vly=Ct(*z zHJB9HdOGX~7EK7df<^N8r`%eDPJ;HcrTxhK3I%}w zUTHkCl>;oYXgFL1Vsfd!PW4yerT3z@STH=OVDNv9-zEF2%^wV_;w{LZk>ovSOo^ous81gK* zI<}19whVQmOrHdrCabC=f1)!j;!f^8!CY~__}DnOEV5yQVug<2W$}{Hx8_6i9HfZU zE62eAf+egc_aHCnH)uB4b#1R>xjZS|eobe~BbXx-di;*hQ+@OqOns zQ~5@xVIqYNg^N@Lg|WznVS&IIT!#-Q#Dr(jxOlfdQA zU3<#qs!gTe0@rM-*O9Gf!$nRSJr^p*;Mmw0xHEgd%f?%K!sQ~~@BGOCWFlq}NX`ZY zs^Ku>!2(NUeFZO|*p41h=g{m8c+CCJ-z*XJk&Rk(t2Agp1t4LROtC zSa?Rkc3Q!9O8?jsAF=;9Z^WXD)}BaIuq_3)`7&4n+-U_IX}7GyLiWRiFvG?|6mVSv zt~0pC5u7T67_YNMhTomr(&IwpKDLc5Yl(27$N1X(M6E$o`|7qp0N!Af6ACKT_(aar z{c4?!L{WnwMy@-9Tlt+S(h_$#J~2nNCn^ZbBd#t+u<` zMX5ttlRC)HOb8^FDw08fq~HE&gJ}Ptu#E*~ymm7gdC#g<=;ha8qNH-m1)#ilrKec+ zZ_Yk?WkRM@n8}CPR>7*A$E5p#*;X6`ci>W6`}CYTCSV<8)$yVXz^oS7VxRASsp|hC z)kQU$bqTloGX{!0IJh1M&}~ZJC)FBnw|`s@f)hmlOqWBDPSY;=yTQ<1grI$=Hw`LIZ_4Z zN_!|=cn{VgV3*`@;k{OhbF3&?Yg&c^PiJu1xu;l?oMK7#DOLoEK}l&PE3e$F#aEJO zAL)J9!(?Kq3)O^*x_yb|wIGUWCSg9MC* zAoeDjgo%-TG<=r>BzAW!e3uA?g1(U(eX+n5H|`D0&|j1bh?u_kR~kQ+G#A$}ao{S4 zqD4mWaeco-@rw510!wQWAmAxe#U2tLWCBad|o4g=Kxt~&9b518>rv-ok&qbf#V{pQsL!8!h{SJcL`b)<08mJ zgZrnpU9JLvqcvSDcbV|g2~{n}JXI-OJh`-8Z=+S>v~xn0Zy=Zo`Q8EHBSj&QiM)XB zp>!zl8t;sfMqswMj5sESXsM z_nxyt+O7^Ri6ez%#c1+%N5K`o?on2g(Hg($LrKAELX$AAMu>kZ*GP1RE!0Ckn$?2u zGRx6g%TR_(ZZ>!hd+&d%Nhr>SJaC+Z;UqVcQZ_DXs>F6ye5YncUieObZ}FWb%ld}6 zT^h?iY8)&$_|dHWuC9eyM_lbKA20{QvMD~2$vSN_Y+yPK&(><(Fl>Y$J-mvL622Di zL8BW!u;Tp+5AKlS8(I|`2Wwonw|wN3nzN29bRBiI+ZF%la}`^hCOqPt!)X!*^Jvvw z(F(iXBl`PEEm4=Nd!f|WUz4;Fl|lg-8Qq8x=nvzxt}E<11mAeJBbd09TWzjhJ1pEK zcuKIQ03Y@_o2W&ot}fzrtD#e>nng@y5wq96TKG-3hrsE!GnI2)FW}@!n1pBzc<3f> zBSV#@cfYn>LfvakCCS_hnUFMNpFdM;O3DH)7IEwCGxn(@SI>S)a;J$R87p#O$JbfF zdukc*9p~gE)2&L}^0U4Ia`B$`y3rxrzzkZ*+1${#B_-$9hQ8VfM3jlTLuBN7+ctkF z$ZLS{T@2x_ZI{hwrNX52kKFze9nVh^N_~rniu#HC-kc&bZ~}zLpO> zuI|HUB1lu(vSS3k4JL9$VSReh9=YX|H*kF2!CtwkQ%$JWG?v4MjJU6(rXqxQ{taR3 zz;yD^mjJxjEX?zYxI(*S$h&Xd@#soEs?lyUR=JTM96pV+L%GnWbfHi$6&ztJeg#Hk zao-_xW-F%zo(0$aB|4L@pcogqBknItv3(rhlf#K!=Ik<6=G3}R*04&I1KF2%jT*M= zeHkLa>h^k~{%EG4eC)Y38 zoRCR5*A?qG8%s7DEmw}wzZYGxepCJXv5~E3*<(vKSA}#TBxBD>RptZ#tl$VttpEGX z7_Y}DJ6HgHeJ8=hO3k1Al($B~X600{q1~S{ps;{5aD6oE#kyR=5(t6$MO*U>eU3Y+ zGcc9JU6PngTOw?)U!rK>x|fu>RB0f|EJy*^3Fe#p7^Rzy)+_6vB39j0M|T42>RytA zGR^-jyWSV;SrM)lTl8ZR6vb9_Q_Y?GLIB`1Y5v?7lEVuD=iC>PGuR3t>sH#qgt6M* zg~zY$o&NHMHv=ndU;>MfIg9qk9*0!)%z>(qdL&mhsWPm_Ej3n^VKr(<6V@k^iad9R z{C%m4zrXrb)vsX9+$j(+e_De}CiG4JoY-?R@8*f0tLf1iq7=5L>_6jqZ;>}pz%9aO zmu`!{d3mh#Gx5CNkXQH8t^9QnSLwNxB+MVjUkbIS=Dkjo^sS{4h`&_o+Xb7EG9t(1| zy6hFAH3lY9JpPm6)ExL-S`|#cs?frbU|R2MOn%)dF2QXi!akVcC{B^&Btj8x*9i%j zE%LbB5ja2S!Kqn1Pap0iYRSQcBkDWi524UKFYFuP^QPwUH9&O!&o#u(tzr258kptQ zaM|$x1O>Eef05oS(o{T~{xB5+K*Wu{zALwq3>9qdy_HK1b}_OCN=nTI4^W_Vv+C8V zRV>ZzZ*b>giA<{gJ(dNf=6~*DiL4r(krXzPq01yNUo7}sl`_M+%=~<3pvZV|J1K3~ zOV+GCH*V2}-8YI6y!$$_fOk*iR$=K|hSTRUi{bRSqVZLBws)#jphQpp<#POgQT`+= zFK@<3bdkNdt^u`JOUcTJPPLcmlyNT<)*LeLB1`VA{m~TTr8=rtm0`;LGqwKxU$IdE zhE=za1(ak6A2i zv78Hx*<)o$y^?X(e4UJQs*bCy`OaEZi&{yLQ16W!`3CV0P|3F7hzkY!vk!T@w8$0m zMwg{8nk4SD`K;|pJYnOXRt1Z%Dg>|17werSJgyAU_19g_|}6}}_8z^V_r^Z&6v^bOg8QlDe2 zy5YZF-N`ZV;G~KLhBCu|5?8lEPc+lghml^(no|mL=UIv5j}EOXRCbcl^`gn}!++v} zz)`mKJ&5ZRFen>I7QQUdTjbA7{%8$tys=kl2P%D5HHucx4HS~<_~hHxk0{vlRIPs0Da0Wqo5Vh=dhZ8q3V8mnRnX*jXwoiD zRZ>oJE390pi(Iwx$<0&X&9>VTJuSb_22!A(X?hSPdZ&%T0u>E!atLdGIF_pYm}59lgr-<7MGZr+8U*>Z#!G_2Y}HaF2<7@D z@-sxD2woB3p$vq0O)d}b5IOxl5Gzy$q)~f~=Soi+q=vUeYiN>_#iB_pjRY3UqtXz# z}ib)Px`s{hTl zTq{l$nv~N5YJyJsSBCSZVX=92Rd#cGUWSKNB)I63=GksHBI;>4M+@a$oTCnlz%@!m zq)LBDiX`|aQH3yBC#1S5S$AKCXT4kMu)f)T=)Uyw3Y(C5@t-Lvgv^@NluI)d#Tv?+ z6Ub0?xc%xw(!wi@r*kD;w`iJE%G@dGuTMKmnvLmCljZ^w#kZC!pEl6y_VXBrLG{W% z@hQU0wdc)nMX7U!L+WuS_)}(|8SNS6o^tzLBY87;Sx3bg^PPmF0L@xi2?+$eRQ;2W z;ohZ(3oJfeUPidU;?w1EiO$Qw25N@(OjmF@H)h9(J3sb1Ex~EMR#J!T zLlxStJu-7u+y-W6HydyPom?qaFCg2ba*>AN9(H;yn@I!Lj|47$ z1XO+m`oKk1p?Xng=0_C3`S~|~tU-kl27aDnEZj8El1n(GTi9pO3zR=6+}QaYfeWgG zWR;kA{YHo{aiUfKY65FIv~Uv`O^HO%?Bx<&jtyO;P`NX_SRc7v%HwNP;%G zw;ZFn>N{Vse3-pWT^4T__x7xb?B)v26d}U)%my;8=`qpRLVUeb#COIc3H+6l58*r) z_-5!neUGd`0z<6C!o1bkuRYU-1`W#F))LjvcrfD6X_P`ZmiYFI2xNBh8ReP(iPaBC zMy=3~$epk;LGIr-3xw3~_lbP_u+;Jq)rke0OH~Hr@ucFHm|;j*4=P+x7=yWtx+6hZ zwD{eJd!o+6LxxmCiMkg=5iLR6evplBPEMG-C4)yVJvs|*!=bfpu7kbslczU$7=!3tcwUqu&AC>Q?zL@+ zE)=MyH*8|Aq6OK_Ie6{7f)B?RJJ>smf-Y6fHB!x`IQ>Zhr{r1uc{%nWQR zW?FmZu&duSl+`7@R6cM|`e)Rj^V?~(9qc{aW9;*`)+A|#uq}!G>RAwWYV9Gqf2aHV?pZ#>ewo#Ik5>#)d;l@QsX1jr>Ym>r;w<63vlaf_HQm8--05-y|*4@VzuFgdbY>hY%k@hqufujtz9pbWUsu zV!^Fgxz#01E4KeIegqL%Sm0>EpmJjZs1kF#aMOzkY|&XQ*+-#a9&U?H8Z1;Xw`&s6 zXYP*sBg$@3^dvm5X)1*8NzN0(M0*=Wy2Ii(R8TBidRyP;=Jl9|G{HXb8PU1-Ux|E_ zciuBbo0i{Ek~I`*7(Sz%MOOk4Jt8dkvD?ed;+S<&yKW3vK=tGJFL|&liiyfZln<-j zP4o}UdYQTASCl8Lq80rMcTM8%xAF;#zh=JvgpCSu@Zg_n+2M;DhRSButIFQ*>amz@ z>^^S{Zcr|p1Jmq~uS?`qzh|IC)bcdHrN;C~7sG3y6qJHt{3)%eAE%2DX_c>qYCF}U zmuNyNv4KGnmbQPbez%zrS%q@0OE}WcybBN4^|q@uRC!#u7}rvOm@6$45Ut|q>-3Ozt zR@d8HAO?Nu3UyTu`LA4iWO(gc!yP{5GPA>Xe3g*w8ajO4 zOjiPfO(99KCGC!u&2XmP^YMizgBll z3zmJ_@amR)&~EscaYPI&Ubl@r!h2_4Y`lJ`$0+Vb|LS7zsX(GpYc7R>UVB_RdKl$v z8bMHCpeyg9nD+?2yDQCwbc|9AgRiTQhJnC4my+vt^uEKW(*=+T1MCxsRWd#dz9Iir zk#t#T^isttj!dt$o_e5LV*0T}{ewj5*74}ou+P zhqAg|N5_VsPxW8WRBdhkJVg%9?kug@_;2 z%=g5*T=_;#l7HH279evKsff*bch;NP1A1{c&&Q)*yv^!jl60|^nFoH9!qi;PYL!Xu z8SCK?s-AGBx12M-wkNoc210>1>fUO&e3|jpH#J3=e<-f3y2p`LLeALq8amm-H9a;&ON{ni- z;MP_nTGM+8kZO#}v z5(&M9N^v2^i79H?)FV#4q?X?4^4#gbsaV9<}pxe8R%B6;LYqg%$1 z4?ZH)b#Ui37S{8BQDM9c^*6b_QS{3l(P>t~9ZjaeR^L6zut^omGL?{qTwmM74s zoZ{_;vJwTX`sd6~^w4~l-^%M&x+%RvcZ>Y3J|;)7wnO-!H7=w_9jgXUaNsl~l3{fG zbnsMor;IJPt;5H>t=iJA(8Cfkyy4K6C6S+vkTOoAHm?GaGsjbaF039nCxQhd;f7Nb z2^NrfS`uhqDJxi1*3%5D$Ev!x`?<+$TU}X05E)+v%;?SKW;4dIB3!ybNCV&qOqB%F zY$tr@x6`ts-czp9=8W-nXS5IfC2)m-I8)m}BiBJ_^8z{j4^*mt* zD9tUh+*P51i>r6beu!oO%`bt%1`+pIYTt11A9_@p7!|42JZew)18N_=$y;k5Ef|~a zI5{#<=!ZlV_7sg#iBqwkc~WJY}NFyuccFZ(Ec z8&L{V_-57`Mg$l0w$u#bh(F|eLjp>bnmVb+~@P*s#St`6(RPo z#u!%$jarjnYVaM#VErAiDsNT`6tvR?-CE1!85$CR>iZH9mW-_wWck7YBRUd@G`snV z1~u(RoBnm&@e{*rRUE9f7paG0g$RJ+K2 z+5Eed?3FpWZ!)EJQEJty-rw=2;wiV*@GTNG%hz}ZBfh7!{1F(dp_em&!u%pF8WBlm z4YJ!Y=g*FLPpzL+xA~^068wqyX)Rgz7opXLmTEhuQw!qmP(vE!q4sq*8I=4D8~GIT zSuJh`OU+V7O*lhZ!#iX~e825zn9c{=SGEqds3tpfE^2yE7P=}@!)RN7D=FBC?e2C)ZgW}H9o&nG1#KxI~Ac)<7H_A$PCpBi9@7V zn2Z4qxU3bbZ5N(V*7MSaJ#>x|Yf$Sy76A0-l+g3i_S)uDSI1vzxq+5tStTyU=+UW4 z4+MJdieJ)ySw~F?y$$?%;pe{rD_``2e1_mJkQUVp{ZU?!w05ms+HU1i<0W|;o$`u% z7hj~lGF^Tqywbz>`pdG{(aU9su2LQut+ws3Xll2Xny0^S!QoG4Jc=HXhtaSF?>#&Y z>6MyGcsm~H;RlXMD&pLb3jm`}4<}XMq2PX1Z5CY1D?h{5nehW4vCa&kM90pIIF&93o3{OrydxDS z9N$9)+MeTSd`~OA4^jeZ=VCu zWA)_H8U%kZAkKi*lLNR~R0Gmm&kI&>E+wH$y+a$!VHX+@;rq}9c*0Gk3v zQIE0$!qlN887ZUWWAtWQnV%X(Fu;MKK8HfveUZ#=dUQrb?{n0s#&e-SF-J}HwjZl$ z86_yE{dn9iE;k!^EwgU((uhY^l=GNdPNwZ2(g9W5r%H>Q<+CKxn9Hk@^4KF%M4hQY zxwUBx|4w1-KJiXpiwklOZ=JQ%s^3u{JV+bWLn`V2k%9&zNoapP=E4VL44sQHrWo3U zJ7qfxzZKS&@R+VrET>=60M~hIGp?`!QTux$%RBohORvCa6d!f~n#`O(1~nocB_)dm z8K@m=Byex_0%279jrV%}44DdB0-Hj?El^z{P^FIhz*@&Alnd%!aiOXP=56Q!Vrw}X zns3tQ+9+!E^ph0iR$=L2U*=_&TfCw z3qkrH-KZCPASXORb{9G20=1EGq$NSIgg5e_9J^D_Q}7rHH+OiPkvu1a8r(n$27cVa zYi2n%xq|tK3SBvDzBxsz5FB^K3la)GdV$fX&cX>V$RTL2iNO6bA?M;fojjQhF0L7h zuyk#lBgcZir&?Bygiz_jK!x~y=}bB+F7}Y}_sVG6US=(y$`$5>x46(*euNF>h9qBe_%aza%Ciue%Qgd|0;P^(U$Q`4g=R>eSMYPFSq}4YT7!9ujVI8pL|`>OKaxJL$2zeRcqR~ zT1A45hVQa_(ek|qri^!=w(KC$od2PO4g`0I@G!C@Nq>JRvMx!?brBljP;H;yk|ZLF z(;lt3vtm0oZU)Y}XuqE6nSlg<`wJ3vh+`1=6fUdm#|9E6LO$6QUE$ z5=BpySA=%RS7x4iH13xNzzpq>?_K-g?W)@K_xtsp{zVHz_ltBhv?G(hwqxp{k&WfK z*+)z8i!Hh4@7uuXJ7mkSC|T+kl~jZtzk|onvcQwwZ396gmMFP@|RK$B`BVH zD5SNj8zF_{;{XL_aGK8HW!Z<|vnLdOz28tXKv<~hyiBP85vj z<;$%N4BNrjG1{3HEgx=dnglh=&>kkNjVI#11YzSgk$sRvZ0Jk(de%EbjH7gklU`A(j zQq8H=QBTdOh5`0n|MCj+$_Hh&(HWvG_);Z)<8|teR$&f=*as79hF9bG{lC2vDQe_aQ(3A{f=O;U3-)%x&hRhamsqn<>-$>#OFG^%*q8#2W0xnHY($L4dt z!(s-WPD>zG->2z>Aw=WWUblW;YuE1GDiU)LU~1UQh*AuDt}CY9-t zA&SJZhOGEu;x*BdAigNfhL8#aMg^*r_XtA9f|l%8tw>>6-SC!uE!=pl)$+y1SS<#P zN{xgkl@NsuRG4^$g3M~(YSr(7f~M3}T!AGm9lvVc3LKIGC-v?9Q>jdR;Fd`58<^#0tikjRYdE} z#}q;WBnTdB5rrO8>%)o~7r4mKWT~Loo!^4iTca$NkVd3d1K0jJ7idMTqZ9w7N9k-g zIN)etDz)V#X*&X}sT}o$bSg}!z1ERI2AiYyzLz9O_-Rk++OslrtPZLkJ=I7dhw2>-#v^> zeW9Bfc6HL+b@`Z^X5hcx^)8;)f*IKZMoU(Q_moy7=2V=YYZ1cb8~E`_%>ox;l-d5% zY>e}cW}&E*1>!}&riGj=M87Ao#X(Esr})V74P}3l^@+E$HrYUXIn_8KvSij&8n!x3 zN!l%y7!;w+f;Cp~@}gV}w!FUnbq@pisC`ui@Jc9Vz$;1N_|{uRiwUE{$n+bHPob@| z22sQ>IsvgalX|m{0%t-}eo=w<-E}B+4)b{ky#kCBi&LfXG$YrY)#~c@o>~6`qXR|H z)~rv&g@o8~qK}0OxeM|Nq2!U+8lPn0Wry_-#GP3fkV%(S2S>ZwKd!6&s;e!vNd{-H zhqiouUQ}pOaS*88;u}s#Dq=Y3;}Ex!2kb76pB|y|`H3lZg#!5G1ZRGp_w{w3jSH0!pI;fQL$q0L+~a0M#QrZ0vw#FgUcUED>kHM25^U-{ zDS;Vc;9dvynqEEhl5l+P-6p&UqCBnQHS<1Yb<{n0a29UG2an9^L~;2O*!b7%mZHya zQV7t9_t<^o&MdXU)OHFr3~}kt9>8?zXTme#mX-@1NDf|--Q4>h?4@wZ_E-IP=_AY5 zFDa-ymAPR;-Kj0|=NIenzMNkOk#sE=!kO*P%=|(npv>%0tOXiO&=%lb&QOohBz7V) z%~Mie;90sp8Q3Q-U0jpd5aW0rYIi1(8Lso9CR&~GG9u>Z1u}EBwGRu}N;k)z7Z5q$ z_{;6j+`zjEq#jm=v&4LWjOuIn*vcZ{wyI+{MOm7a){mV*oc7xGCj@OM zl^kvRKaj?oNw{owxHvQXos80O<@8We*eBPz^k5MY6`D)XQ{{gP|J(Tg$CBWhX;6FR zAZHIwqJrPc2v%GYTsGZ&_)cVxMbij0jIh&EsV!0}wM8==T(eyxMJT`)p#ZxK1y~H# zQGgxiZlz5WVB4%kwmMXlYR6rX^F?eug;y8{`WK|b71QcYyKr#5ECVe`Gy^9n|EWxL zdc)C8-}82FUE6SU3(*+3$!y{*@z*3&%gqRUc>ssU)gpB*H!p(9lEagI**KqRZpXC1g2tpFRv2W^D@u)i^WkquS2AU+enm|nmnwbPx{NVaXVyM(ZBa^J&0@N3 zQQrZrx=S@NM>P@s4wI_*HL1T_3P)>tsdW8cN~;3I^xRqkQS^Z ziPtzS;+H&$yuLLx^oWOZPuni`3ir*exnNa?Z)h&igo@LJppvjHnr}}kKM}WfQ#SuL zTvly@BYLlwN(gQ18=@zNt9MJD+zCa!>nKCEws`{d)SEkiTPTE>f6Cg|CoGRONtLDM znP+URJ0b$I#PDg(C!B+e^}A0d7~EZk`C^8c>Lz#-=?lk*e`X9Xam^EWms5Lk-3Jhv zQ}9hCsMkmcC9+33-AdfLZ)k#OCN_aB+r)x>KgSl8T~~J>TIiP`w$+TlNdku_hVyV% z<2Kr3 z6b(HhBjs)L&jdvYEAT;ugF>n#BHafRa_vBRD$t6e z;H9*XE`(xm1O-+)uUVm1F@Rq z76u5btec#EcfV}Hox;N9E)c0;IS;Q@ccbaX;$iDHCR%mE95M1yOd877hg{l@A%QIq z|09IVRpOj1^l^#5gSM`A{~>AP5>Wr&&2#y)BBhS7t3X6P?7pnGLrKvYHIC|A7`;;S zeQt87Y41(V?LEv#FvztS5%=Ic$jF}HM8(S9;v4)yDlHz41y0899VT4)zi>npx%m_t z(c5 zg(=l2^0d2M3HmqF5@L;YG#Xly%CttO1N098I+{e{8w&baau2mW;vQApueVOmWBd?j z!GihW^Ux33&Gy#io2RVx(woE_LoUf$k(F`*BO5=GM8}J1KybWMUFg;6^cP?#uSqY7 z?fN~b*sf>!TWWrpu@N2#i#Tu*wXXzSl$t-{x=0^-Ww7EUy^wNicgVNt_G!x6lsjcw zNY&-)*IN+5Vex-5l-OSA<{p*j=6rkmGqjcp<)Q!)I1lGfdX*o*+; z==c2_7@hdx#LIA=M@$QpubK<+C|xd|9`oV-UM{leZpPZ34^Lb)mvxHSB~7kNi;Ul5P5&84l+KC_`Djn%jdo9KE^+y*@< zLm^EDmf$13$YH#W^fkM=;gE4yd#G6sOS$glx;nDD@(+FlBeV!B?nC|zT=8ItDvJ85 zvD1Vn;}ES)Z7)pmL~oj(W+_!Q9D>2_rU}F$s^%Ie6t&M2NuL)@!(op@JfJD(poHb{ z9$weS=V^6YJnr_wiEs?XOs~Drlh7-onfWN!{B{)Do5xk{vVqQJZtco19;-Z@kHwo) z!bzwmKBS3^=yKdQ-l?kaDCiQ;hi=aK6@>HgXN<=-jN;tk{0YIl33^K+p=*Hp4XT_A z)NF)_t^lxmoLR4jmX31}$Fi>5gqs$wnW@~E@4+F+T&C+nLKrXr&d3U9aB)mjh(ES@ z6zasj_YZQtYFO^~Pr^DF5plhEtcqSoymOI&h#2u=rL&n-9c*S%B_EB=x)()s z;aNA+%5f$y-^__iILG=$o2Zhby#DK(wz6wDl1lh=x%nW{!m+699HbZ820O%`U%1(c zp-^SpsC|>NkxH+7K{c{Ig#zyOI+1UC;sN;7O;IeVl4JMWY3}&yvIHW!kGrwji=8nz zCqCaZ4d=$^>jE~k#o+naH(Vol56wWSxFt%w+B6n*lgj`JQ4z|!^M#Vt@O2~_A4GX5 zZ{-Vft><+8zB>{^^-=-C*{|PW1?XFDKBD+VR$W{_7p|oG^CJNM9zaUWQw)*-^8XYi z@`hCw@|7r&-_&>RWg4LC^qt+3P*Ec@k$SDF(N?Zlv7)@Av6=jYOo<-(1_^*p2<_~W zzm2b{bf^4%#8m0yD!)gi-{G%$oO1-K*#-tB{f@?Bs`_4HP$^!=5q7Ql26)A~XqqG+-4n8I@_O7H(3*5TiTSn8l zy}6_5%--uq(`mhPNE@mO97RaISkz%kw`UHOCBQoih!`lDIlzFtQ8HomJ7D?k>241N;TgeE@+Kf+-s4a*(i{-pGPAmu=uM?SGf2EF8!j_Gth@^J} zNgAmcm^^6Jcc}T0EeDU$x9PIwF@J`K|87={sBEjk9XOeyL(!RVaRZq|ksU2lcImh> zNKDl#@o>HzG6=oLwqYX8NisVhu6e%v_ z*l3NTn2thl8{FXO&sT$#@g zsG>GEZ@(S=$qIACr3O^?aP?e9vBE66#~Q`>X#BT~fIS*Lq%9k-hBbbzL2yfj`62fe zIzJuOQQ@WX=MwqDSTq%8Fi!5+4Hf34XnR!|h3j7Q)RCCgf)0Nb`y_AyW9RUv#5T;S zFehIu^kS91WnIGN!a>gPG_dX$CE+14sX9S{ck_2;nc2_!6Ls%skH5X=DEVWRsbjsKQ2}jAh|Npeef@{^&FIg zbU6x@HqTY@gy=J<97UCzXqX9>RynU)iNK@*6|I?9(!M4C58p3%N}RFm5IjT}1ekik zVvN?r$w#@dE0tV)Uf>LesFKBJh#{uXQ@h38hSb#xx{MuyK{2%;K+eg?J&tlSig^WN zvYpGr^R#XUc*f}V*E~sgEG0)_Afm{QE0sHw0hY~K+YgT4MxhGxLNrlU!Br4p*&6e= z--bXZ(5T&qz)CwHbo53m2DP}QjNW9ubp>v;-nydG?YBwu-OZ8v$WFn@X>4M!XGt(#$%h@O3g`ISVOZh}7CxI^SO0q>1U%^{F&y?#uv$tvUi z-Mo{lXd#%$o-Xc0GTIf&J!kK=yr_PI#TcDX{is@#>EE%ojFPp^l+D6w;rfktq#NXd z`LAq3yu5S2ftiD(WR!BR5OJP=Qe0^HD-m%=8h0~vFlsiVr4(zDSt&Q)1u4Xu8zV)Nx9m+{p&?_lj!XjOr~uwbo+}Vg<`Al+j7~8C@T5q4-^h&1}@~>_D_QK zcCG%Bu<%@g+4|QK(C&N(QV0u(@2Q=810TmW5a`|f$4RnY($?OuE{$B*c;mWX8uhlU zdnmpUmm__%;?_-}7j@qkDnFSNupp;VnaU!+FEx2!wGh!SA*CgN~ivrB1RWd zAOhnY?n&w9E;%uHSs`!Xp1FuQQY4qE_pq~%-Z1uUq8P^1*x$Lvf0t-~=Zt@s2$=qx zgO^3U#wB=@!zg~_g*qDL>VH+;*Ao2rs4rxwwzv-tMJEO|^{xo(awKa#H%URiGpNxg z?#sb^oIB>@^HsJl2X=6A+_|IWx7;a=bf-lQ;8c24c(rg0Vabs$vx>1QKBj}dqiAO; z9eb)T#qQ|_ZhiQ=q@6_$F#-(vn(>Hfv`S>;9=WpP)DQtjo-?Zpt9ygDWhZZoP9X;i zCar08a{QD00pC%#vI@m7%6G1cNdo2{`5{f_+1F1Rt zQ1+{XpR%B6IaJ(f&{N}9dR(@9@a<69UO0nUM&%1eU^l^1Ixjfw>db0S z*~d3t-`=h73y?T~^u3lF)QV`u+rI7zr7mkEW;6e-loJExX8%1>vIS?@pH>*3nCTr5 zhqpeD%P1ypx3S>)ckm+g8XzIyd?Do93zzQ;M&)kfgwbZ~!<0xa0slvP zw;q=o&-FkGaCrh*ao4&BM-6;Ft+LQIn1Wj=n=ZW2Q+Fy+YYpm~5Yp=qgzyw<<_xjzZ!uu%U2{-j-=O z8og$;SzMM|O}fJsXQfH^`Bk6evOGTd%G-0AVy5A8XK6Kezw=!M#0`z;bwP8e}G!7x-5P@H^_*w zU8?@2P{+!?!y)P)BdCA0qcN&%l5m;iOD7mv$#V1blUF6Uo|Cfn7y3)Go@k!?14dJU zg~m$)wDDXsfAKj{UZK?g;5|Yq>r4EwcZL5LdPzVDJtrU2!7p1-pcs)uOATD5Ff9sP zYUQ#R8jvz#>YMHkEUSKDFXX@-qO*(N5OVUZ4rN&ah|$iL*zMj$yTXr7qj9`-N`uxo z;Iosox}-6N2g+nFV$VHFUa9$S$UEeE17#}Yg&s@PBBdO&T)ahvV^s<P+1JQ>uWPN$q$d0n2gRz#y`Mt1fn8!xYk*?oa0xIux9lWkXm{;L$~U2Co?X zu0ijJKb>7~zWtE!SH&L&OlV5E@N0a=bwa9XUH3L1shD`Xq#~qG=*Aw%+HWK+bhU(+ zr3?^HJ1;o7 zw~HTxWBC5j&L5G^6VkGHxF+c~Z}-=cE!POe9?{+IgG ztV-~aJ4U`BMzh4l*)fS5CAL(GYq?RVycP22T8q>>%j!WP06#u{O+S-{J@?aX2z{eu z+qUSvLL8o3q)v)-juvr7Ym`pG7HV*AsUVaYO;BNR^-3xD_~)9KC)vT#?_E(S4G|dc ztR_$Dm?CvdmO7FF3h&*cWgR)S)BS1HC#j*_EMY@~qiUz;)M9>IodFIhH@$Xdrs12d zMjrBdO7%ST?sDFV8x-&wM*WWz3uI_))}{p;<(i2wKG=8-7y-tbI3U|8EMKND_?Vm{ zp`F5w3Mr;o@DaHIo#URYMTkn9$7I>xhn4Amuu<-mm@O|a3GI}NWbiS$ZJKVD3>POH zVV>r8!-NHWp9uiI0mGLW^bG<&H&VXCS3&iP1q&AuMCYXWEoGmRS+{2)btD94+9uzy zj`t|e@H%`6$g3go93TlCv<$E5z}kx9czwCutXgdmBh_h)AvdrtHIzSIGsgO<2tOhn z7v+&jwrTx1{Siisi`jZikiI8=!!D?8w+LKESCDp!LZ{Z@ggd+^3 z$7gdn5L5Lwr-ULRU{nFVMU#n(mAc zD^9fp)2OLI`a5uZFCho=obiN9C14tO%=;~y6SddXJ$RP#fHp%o>>I{;<$2XqG)!f0 zx7YT{BX<=T+?U0g<}p@c+-?3Eq9tws{uA|q&7uQKKpy-d#^O^50-Zuza}6wy(=%Bz z@HRq~{hUh3NYSp8yK?<0hRm^!6LPS7RyS{>1p{p!|JP)T=42nbf|wTKX&7gbm8QgD zzvXg=(kIAjsXtZ6l%jU(>JlBl<07)E>=%`91hTTX)gF6fjzCWIfxG+Aw8bwK$7H+H zk1a`Q9T6s$0>Z+QLXhIO&`4I7HXOKa%#3MkfHUq6#etUVrMfg$AC zI5J3Orqwspu>I(L*&Ns?d08)=)@|I|wtl)*omKMuN*VqdoUyr8$bFx6txQV|;qwHh3Q)@XYV;%NHOFm-f+2ZSgHuU3HpqvG;>tPvE z>;Fkd8B+aBrq=K$mWACvnTSUOiuNQY69a5nhT^4Uy~TYrYtYr@LKb;7x~;(lmpcl) zN7kLN23)i@hv4!1ub1&wko+1(%>N-I^=H&_X?Pq+;sbkd{HXWt<_$!ga5ZAvgsWtz zzus*g(%QBO{H^p1-p3E5Sf{ZqfiJTUEfTjj#xS{q13*DRw~&5A#x^(axw!v9(EP&eL#}pJ zAf!M8`~8@S+ZmQt)-N-{GPn%uty-jVAN76JuwTcpDX3bBo`ek|SIj{fQghl1TvQr<0)AO_liV@ZPpr=TBggr>r0ag* zac!9V6snEY^CWMd`r^;KD4U}`;l;P*g$%KBPJkKCpICCX8S}*Ihve;pyu~%ca!tRV zl%c-VfAs`SCbTcWaYIq4;paR=8Xo0uMd)Yp^O87c5bM8s7K`j9u}EqXx}TUg4e~91 z0(jlbCasXB%gu+l3|e*YP{w9KMV2gu$!!NYH&)nZr5m`)&F>(AGAD6<$}K{jWM|x) zF%98ZlHqK*U5-Gpm)3%nT1j<&(Teqw|Gb45Miu$ShFCB+W^)~&+LEQ>YjPPYAgcv^ zy-5=6GU3Pj9ssXpjmk%-6W@ zS~uL(@la!vWNV_pU=E;nh??k@3vF|9Z|ByeDCkV2T2d+`V@9N*Hp=o7k%)3@us7miE8CwpD z?0ZRAQo1cn-L7P)+*H93+(LHCZ(7jzvivf;7+C4_Fz9QI+g`QBZLju@x4j~Q!5=N# zt6=dfRUN+O8#B$LEJ(`;>j`8XtmmA^>Zl7fG}{#HCkWD4_Exgr^e5#FB+g#`!V@+c zJ5}QMMq?KV2+`Nn^RqdXse$RpeH_@DJ@y89(XV75wJt;+anbojqfzubj6FT__c4>d zs=9Yng6fW|#Ivl``qK%y_)wUd-Au517I=MYB9KH~2hC;Pt_`O|xMUQ+;4jVD*~d45 zFBoON&v~R@l9%S}IVrzW4BxXkjYE?3{ue6>M3M*TH>t7LSGsDRZTEVAktrC=KUHXaaciJr9gfTl+Q!TYABf57jkAK?Q$ z7(sP%G}Xy5QHmCdFk6u9o($D`ZpYf(c_Pe>N46zB+#!8H!Q3V*cR3!$YjN^Cl99{;^0zQ_@FJP4=_;t{d zsazDDuFkM~%E8{NF~af$-52C@pnmQ;HRP>L-YLl$?TJL<1J&svo%) z_}KY+jG=tsXU(s2h%#6xkcv)RQWwn;YB|41>BNC7;oExK*Ix|?+_3hc5KICQ_$Yu= zM**CoE?mbI*OdX(`!dfN!K20>)Cg{q@xyGacBtLqj@&E5XB@V!nT+Cfi~upelCGAR zf^;}v^%!@@V?D_ttd^{UbT4aAMX2b}nyzO&(-8wY z^2BbMN$Sknr@}8DM|>5x4r6WFc4B>4hy9eJ%h#X1FKZuOMbT1sdt0_3wKcs5wWYq} zR0Dtv4IUreIS_20pO$WKW%|Zxm^J`VF6PRBCM$-i-L_WN+-htjM+J@?%pPUhS8gpf zys*poFR|aYo+S?wZvw}c|hx`|CZ3YAfGnJ<#r^w-GW7ylZe(O~M4<={tvFF6< zEsd%AGVQ{FW)$XXO^Mja;R22OIXCLElUbk8$M_%&j}F36d=Q4MK^Phvgp+CzU<||u zfhgQ&(CsbKzk{A*+(u4z5Y5U43fdc}&e}k19S?*6MAULeyF=Kbb7W}xVF2MU^z%bG zRG`*X4+bH!S8kA%$X;O`vOBJJvr#&O&cD7dCQ>$EZHzb0*%;@-^{j&HJq3ds@fN&FT4P!FvT*|C z2yRH zvD8#xSvJC0#k5@7toIB{6)VhxKjcIcg3B0k?Nkt0rtCn#A#?%0d##Uqmjg)6@EX=; zmIb7}@Q~!sk*T?6H9ZqG zn}S87r=-nWySg3%lCj-5Tk-Qy<=n`l#oH@47bEg3H`nnOTQ2Sm)tl9M|Fy*yHEt1} z7@QcJJduT|mN08if|~;tf3m4s(O@|-YbL1A@m%f4tVaB9OtQpn5v+a_qJLt1CnyA4 z-9zPAWGtd`ZBD0Fai~hW`=BuW+N@@lSM7P&OAPLUu*+CzG@5dQHU=@ zelCD^jaECV5nXD$vwXRJ9NP?cnX%R#`u1$MoL%#b0tW5Xat2Pjs<@|ufzv8t#t+i8 ztIE0--=`Om=Am7)~nxdU;9-HFXAsXB45B$;h(P7iZ$_eD+nNAI&7{zh-! zlQBAaKzc*3q$m7JFQhla(gjxcxMj!j`CpaB2e-=-`5W_h&FK8an7@9l;;33b+RlHa zmquxtu|75H&Cw-voi^uFYr>BFwF&#D;nBW6ppvSu4JsL*FedHX*{bA?%+!9FD0}ky ztuB6dvenHyU$-Y~pMp_}f0O@PM2CXqsx@HQrwCHJud-<4`{7lw7MH#Jm5Onz5E0_g z+Sl36)@nF!SIKrodEcq`M+Rmbcj=FnD<%T6C9v$v9iqLaM(BTeTFTTT&{bx27oZuZ|&S`P7K?8Euw zeWnL{LSv`~4d5G3pN7eY;~LD|%8leuY9rKI>>hV)u37NIR7;YRA?~ube{GUz60qW0 z-3jKkjme7d2gxQ(4e<}0_>-2Q35;mIxYJ!>c0V^eL5kV~2C(JE3G+`+&rTTdp`;6| zKKVDZaV^rmT9vZjfAG}U`(D!V_cGjN9%}e}Yuc`*wEyZRkM_!|EvE#6rI;kA3J}YY zEgT?1vhc53JqfCf0Dc9y%esjg7%p-Tbj@}|ua977c>q>ZdWo4uVcrsbig4G|wIK~# zW#e_Ms5##_QxRc#%m-eb%~(|aFWTM(KFaD&_@5+`WRSrL5;O`5Dqe#&0&3!bO$d|V zB`_f+!D_(nYuUV6yQ?rmP!kAFA`FjDWxMubYu`$>Tid$3w8e_`mJpf=mvT`TL8(nw zS`Q}Gs8j-^%>Vm4=b1|YwQv8Q7e8iZp66VD=XZYRcR!m8q)Fd%Wy9uQhLO<|DRH%A zW9IJ5Dalxo8O;DaA~(pRi(Gx4!ibNx-ut^XD0B zP11X#K|cW$f=bj4#08y@5g!cGc-VbHcj>V7l!ete5mdi*3UZ0$XO_DdPEZ>BlyU$O z3~zsR<)~(Nd&kn;Bl{w+x{kc5cf#6?8v>p%E|2&Pc#6w1!tMNt23P4n&)crF44uC+*7vpnF1VkYi64glG#eH zTU}#ZNhV=DL_fOiwsPF_K3REgv)jLGDe4gKWB$F(BSmmpmc6Dv&V6Blxa$?b(OO5& z>0QkCHfo_WJrQrtr`WD#+_58-R^~M4;J2DNcO#xjeq^0Vb2EiG+wxkW* zN2hKr_wQMGPIGo-FupX;zm3VVbY9bK7S|&+NUzmO+#D&t)xW2Cv>w+;|F)I6&AF6a zlDT%j>1|kFY5}KN$$W3q$R&adO+dE33&)$4$QHqIAY zw)}47IaJ2-M9+Y#TbrXdyZbH&bLO~L<~O@b&Ri<@A4NT}QkYd&YoCzYh$qfZnqDbq zu^F&fszFh3$KzU>jjkAdcL&%46!2~bI*(x;ds7tx4aA2d*7hTBNA|d;b|2Y4bx#&a zcgDPyG>!<2bgTgWQpY)Gp+VL@2);z46c!$+N!lgZW6xN8^711Fo2o&SsOAy zT8*D-ScGm)HKBlfiv7#3 z8ZhXuN?2#>xXopwT|eSq@(cw<0S;%PI8=a!9?mVR*4yXX;Vi_U=ylN31Uw6)9u~?R zy;Kt%MO!q}?Jsk$^fY^{On=6bOs;5!M04i|3>txKOy4WsPg0GM6xksc+p@ejAjjz|fe{CG&-%rihHD zZQLmBYORH~eJtxs@#eEuLaakxN+-!of~XCrY3uWMzl7OV$cN>M@8(oVW4Z)d?1m3T zyp2_0?;|d;A|I2jt2@VK%^?tb$bYoyO6zSd3 zpUf)C&kRknZY?UdGUCB$(Eae)Rt_u=v}@Ki-mIOG9(PbpIRS&`LsZD1s&%WU80}&< z74GynlBHqL1g&(+7Pp+3X2=)YvoH4dEGr~J^*SboVGq$WbfH~#aiq65I(tY;2G#w% zlQ$j6zh|iSNprXsfQzhb_X`VDSs1=W6C#+zPd;O%4?uP*Z}Wf}`q))Y09ro0-&3z%!%@h-4*qo8oCEnAwu=f9rBbw<8H9PP3V(Y8@Izs7C*ZvLu04Ey97 z&F{XDUSlv(Bd{qL3vBBD(+e*3o69ueI|VcvNT-F*SpTW;`O|g>KELD3N$|Nlb&o?OpeBLQK1wQ)-Z~c4V^K*v%cfjXImwq;U%y}+|V=pAIV#wMa z%OT9erQR>0KWrg{$dYP=G2_O*;c33a$Ij+>V1twBdDSygbS$1q4IAKJz_^BueAcLM zZgT+oaN3DC4NkKb-()N*SJkq?m-`NGwlNt`$g{;{3Bsel>w zo`%JkWmt?EhQ+u}Sd43g#mM@CUX9_rQ!UJsI&`(ewK(}g5TDdt9~ibHx#43O5N@sx zh?R-(#UTsOnC|A z5u_r7S7JZdw%{kh3oO>;W88qTk=aU#Lp- z`&;D8tp#ZZW){yQ%>{5~oR|gX#N5t_8Tc!Um8E&IbH&{CXnPNJpUw%NXWe>kvHeYP z9weDS27DX;&x;2y@0+-OIrIf7z_=E!Z{}B2`}g@q8)rXT`d8{N4B{neAnPS@oQd3+ z6@96fFX1cHj>=4A+wer&7SBFqZ_Hq8th)C&wAgK))u;tcnLNDPdDwoCn%4H9`Z=*x z>&MrF`3?LQP2W>gXU zB23N|k$#UU@3dvT?o0vxqg`4fLRNL$mFdzsq)pKhTTfx8{&4D5CuVM&J8M<{qB)T1 zAzC06Czrjh_b?3DHXXZvE@O}|l(Ql;w0A81{V{Lk1b-H5^O$_BDO6BV(ka`%OqT}cDZ*}#9y)3 zx9^b0PENZT5_jt6xP;7>7i#AR$KtiP$??5mA7^AxUHxr(9k6vhxhtf7Bk#y3hiAA| z%aK!H&Ca(LkXqZnXW0cv*M-~s+n0=uEZ3(H&VpL6{ukmZxS8G@P1nt|0Tqx7fE==f91W8gahVi1VE4kBrQwvW!=?>92Yk z_wn`izVWq&3t-UFQo}(#q55xu;akWBnb&aVy6-W=M>fL+yd)`Z^B`e-Kn(cnE7w0b zM4yd8m-Wyjn+k|^4TwdFbaB1PoTU{8p}r^xb%P+(a}MX13xTGJt^WqqrhnD~mpzvp z4TOk*7drcSCg`Ve!lzO=0X~QtXESWYhxYQ!b&D-eq$3kMM))sRxUE8HHOWRwW~WYh-I{_lthmA7E{yO zj(Qj2Yho)o6c^r3_;RkJeJJr}?b6zZjej0C1e6xVMrl!;uCzF%T1%o@`b0fQu|@|5 zKcL}}=E#X{AQsplSjG&A0FnfG+i)e9C!G0#K{@m57L$I!zAw`^0i|C?q!V~|0PkIU zj#kgJs}8D`>f<fx~F{sYFCIgi6ydW&;qQ3KD0dbjh*?}FgK(B1P7laY&4(xEr zwyhep~}J0kBKS1)<8U7vK}!f01*jJ)$#^&k3oMhHFO zK{XL~W{?FzV(M>iSFeFw!(}aD!u}R~dEv=n__C^BJTX)BMx2mZxB)0y-=nU=&SecW zJTc)%VjJ82Eyj_~otZq>K&&v+WzCZD0xB2n{%>cKI z(3z&4$U7(0yiels^#hElG4DwknmT&1ChySzi4j6ydtT;%zpZ?v`yC^-$!w!lTb`HC z)T@R;8nFW%-0H^SMyp;7!f$WSQRjVum^~ZUTd@ohD0c?GNoWvMtCnZFo|FOfoe|5H zPx_hXyFEoIQo+5_bxFDynYGb7^D4bQLaP?62+jONo3%+~Dj`$@a%9*z1 z?|NB<;raz@lmHj12V-^~k}+vqv5n0}E262^dn|+O6Kj-I#bx!#eiE3@?KFFb{j#cm z9o?qzU+679e{z?^0hIdD`h9hHg=I(Q_xAbhn={sC&SVc9#cOhYZzE)&Cl=`0B8Lm% zjj_NEcwCN^OCA@ZfZP=i<(6gy4&c^eKj3M+y-xj1dn|ccXSikYLg&WEmNLP{8-ms@ zHF@V>IbEZP64|;$LE{Z-@3k3ZWZ0!HfJYCihD3phAd9Qk*R~S$m%z;U*y*$-)U`1a zTHigZxU|R)YzV4t=YSKw_&r_}Ht~Bf{%7r~j_+<1bZ#W)`_FidFTAx2vL1dsF~Zc(x2#cO4IZq`aSBubm8I_;3Z)OR1`jR}*Tdc5RSRpY{2p z7IM9_@rHQ#6ZJh^=WU`0t@?dTwRJ|0td_}m8y{ON>)<0diq?>oBsFC2v~w2uFYOQx zzyiX2c=Lp{C9Ko*#)peIAk6^A*KjjRz!u!N9vO~nkv*jS(lztFHqT=CA9K;2! zEt@d=oO%pj^`~Kj_*;+RPyXms8+Hsg-cYArIwVFfkCn9$&yOo2gIP^uEO+~K*)DZz z%=4O@_g%5+4)Y+>c~EdO}Y#`qi_3P;|;rc7!U7et2MkXbs8RD_avpZ zno>bk^{@Ic4yxyp_1@Sfo9f5rHx%016;z*aDlM`~^P-U_*si#=+%BBm)m%WI&emOR z*t*LMTQ^bIx^cqR^`5T}5<{JDov5j^7-H()PVsFCilym`7ow1&FOeCVZin(V;LMHd zq#9wG=&H4@)pVRBAL23rEw7*_*-363&e}Hdtidf?z5Os|Hkj-9*lFOIs46s#w{3Zz z(p%Wo!Y`)y7x;ZCPzM{s*`=PF4Uu1w@3Hn;D}*aK8&z=y*Y8=oNR2tOXK`fu&3D-D zn?s}gn?qMeROaGH@g3oh3pW#J09hMf>L2tySi*3kq)`^llN=FePJMN8G{3BIM8jPy z51q{Y9=wLATBCYyjxg?P`+&(fb*@8_X_fg(G-g(#8!+6>wBmbNSqL_L!D;&1A$3f3 zaa7O20f7cbeC$0G7YQgzkr@IZ-|7{7HOHb;RQ=*Gd)1tKdm{Jg(T=vtxXqw>=7~E< zgs_|etCwIJOd&l1^&i4Sq#uDNjWw7yN-=GXOC8F1)R^VH@&b(^UHsaRK{f$(uJb@0 z?md>c7bgv0Vgc{djHUk2$Il*zJPfxI6I0 zZ2qG-b1+C#o|zi^A0%~UlRu$fa}0q+)yh7PIXi~HOHVQc-pe~d>5lM=eLmIf!3NkQ ze+u5>&lvtBU?HEnKSBpQMwM5T=t`SOFESf+oY|oHvO#^aLBD8v5I+mG`ORSs(q5#0 zd}=dVdqfPdZZ7?#lO)rvf;BTIS;A&DSvOCIQQ!)?nOxCU*n^l{b5GHgZO@XBh>kQ+m@gCyDG4HbOpl)K)Vm zTE%S0$=1v~F0ql`PXV_{c@aN?6T=-B%B%OHVNGECk zXdiufjH`wChn_XSWgd8W3v*XBq}l#HAE~?LtzG4LLAWo5xGNsbi9rX1-_FF(0SBCS z{z|=kYuA9U)5E1%;Ss2HJffO(i`*cwC%iw4x5eT?pL(lJt4VP(Azz8BUS~{tOLtym z+y)-nT|!=3a!bXCO)?akhCW8mhD#j_7s^ioWq5>DCOj4602ho5pEms+)(FavNh_ag z%HQTJK(aq8&oI?i4qb5nBv&b(I@MFVNUQ&Mjnv8jj$S=}JtAwgfjf;kqt29B=Hl)- zFTVRW?a)Ow6WMhBk3$zAY33E4;Ks!3)ejLGI50*+QX;rTd>lS>vMpNR0%X-75;d}f zZ*&FPdXcVi@h}pE*ahU5J`TIthU+Im!lD%gR(JGT`6?pCuzwoAto_z4UaN+vpCSLY z(A~9l%L-BaO07RINlYkP&Saceg_Ya~tq_OySsr>~;) znUthYAk3I~Y-8$oPLx9z#%*v`L zcv9ZkbKFX@gjzcn9{T66-gMH2VLn8XafC`y;Tr0|y&9lp?X2^S4)m(R@1ncYo#1@) z&veao5fV-o=;dw*+`uG3*TGn&0c)iOtE!|}qwA!HQ*>P~JaMd2gWXz`7pv5eM*<@o ziH3b`w7$Q)G(RIgwv|J=ggevQUXaOzhX@70q@N|hk1dCBgR|B9zSNdF7CJ z3tRfacwfdX_Ou_+l)ZvA&@g^SeA>*4&=?*KwKj?Qj%6*I13TyMYRcitww}HmNkNgd zT~bWqB{@}sb2GC#^@&Kntx7JSU3vjTv{!uzFcGmvmJTgG9s~|npclX}GSx(1GW7NU zaF^2Euu;wx#>22l?|A1dzD$~_`*+NtjUPGZ5VI}5*1NV>H3M?;{ zDP6Kjj(l-M+D+7lzRZ|h6oDQ>(Pr+k=ep;quS(l<^CYna>u-D4sEeiVN)Hcb`+G=* zX;!i?hlnmNrb3x2>nDS3q@Xdp$zC$_BYsal+_a_wX}pDiM&qO0np#s@OS+jlE-9 zPQ{rgC=ltAefcgPh#Xqn)Iz45=v;4K*|K8GS7WVVYhXJ1UD8KM`jfyQ4U*oB3OL(b2=nr<{Xs zInho!08M#ABb^dS-**RIGRjlhqa|I=)U-MibnMVSePtL4sI{(PFHAHCMvjnP?oc7I z!cH}lg0*VWXw7^j>7Zk$JtX^G`WIs+w+&l4oFP|rm!e{_Zj9ydQXEOfSzVkdxzcJL z+K7QWZ$kEZHBYy=$hwY>&gcCFxb`G_-9Z`jK&H&X+co`1JFQP{%g5O^Lj44_CK{s3 zMvtmB<>-5~bDC{mvmjf}G4@CYmjXm{>12G`>||yQx{sTkKJ+4U&nH(eQ1M)@0yB`4 z*$Mwb<5$bXfRuAoo!a8ry2U}?a9Ablk7!+d*-MQ6IHgt3Y|N<@PQ1laLmzv&0mCuxLZZLUE%G<(O}a zw5NW0e>gpR1vt29IVWFA1hl&BAo{(e%|MP@1UP$c9s!}&h^(G!;CK0D5Cf7goUHHO zhM-u(d&?GWpq7}vDA3&*FRD|^c$jiKOCL`}d|}Vs^s}G-^h!M_amRk6a4%c?$a|f~ zG9^Xd1RY$C`>CXjAnE;B#;t5e>vUY{eVM-`kYPsKi*nk9nGS2T0e@u5ZLG_(vgNvQ+e)V;*%4f9=L+PBG`oob}qC_aJopxPxndUvAc${{6n0`)ioyA1BI=B7czN zK(Fc*V&oPg7}%}eL~8YiN&nqjR~z=lo7}KDy|+R_xNvi#MBrSn_VCjR?5>M+aFqrH zh$DMhmzYS#aIm5j^W{H3M49>nhkndVs@b2|fz?Wyj#Rn}4t;}%VzI=~O*EpLh|Ae3 zSe-K9^BUDe2F4)P03DofZ)x7ihN{tYD~)M+i8B?|Ei}~M6Dm^QoGRn5KYmUv-qE2k4(e;SSLMFq|?g}&WQd8AqiF#xv_yX#v$Qo;cUe3bTh98JS z&bmLr@MY0Ib}(u1$ou+8lXd^7^Zf}~A6a|#x)11e_t@j7Bp1H_0w9h7YXDMKhg@BX zc6ioKGt^l-ov~*6M!R=1*qH)(-lpbaMw@A{V%yCcD_C&OMs9{^J09oySu+P!bE}4x zv)|-AFcL$oQg;%00AqJKAxEMW9*1^)X@M^etrAL^yNB%8iI!u0?FC z+FdyM$a~THLA}VP2unS@RMtnKs#PZpzw;Z~5LxK>couxn_AZP1qYog-?TX$4W^>=6 z+q%X-fI)Phuq=PnI)^07Qje(Qp?G7deV;d0ZnP%l8cWoxZcUeAlN+P1C|+Es$-{|$BDfg<)*ohj)$IA6m$I1(2Lh7+(#p@CkO)VT^%S8mVO2t0=xCXJZ8l?wo@tjAL@T%-{1j>u ztzfp%T5q&APkoS;nBtwoN6P(;Ov|WmV-;pvo0El$PcF{@zi%$Lm(aHbJ^qx9twE{f{ zjhvd0)`?JBdv3m(Rgvk6H|47k)vQXdt#t&%o2$`R(Q~C2#FW4CP7t&SC6qzma?_8s zYth0(^IMOf#=c_wTdWUJB#mO#46U2>F`6CvS?KleBkDN|d4SHInoMU|(pMH;@x|k8 zNa|5qykMVu2is@mcwD6_#;XfJ86y-WD3e2vYPn1MsG1-SJOlpg;Q=)Z{4ZdRW`Vh2 zc)YqTgQa#~3ouHljIjJgetb*OI$fIQD-K`&QVq z$gU`m*jAP?)_Kz6v675Ob|N=+*5bN#o7);ef)!*E>xi%X$r%oXMf3fA4vG2eBsfr_W?wZm7AmlV3Waa`i1kMMc++{+2i8#7GW532vX93)&hDG#mCk}MR!QCmvex8z%u6Qk|Y zfHOt~)#vV!Ru}C=J>hw>n(=EV_TZ)`JM*4DGi(+WR(&HXib5oUzRN`1$`x@dun~Av z3db4PlHwH&AaZ3Fze3r_iab}S2$FWNVLZ(S)p*(z>=mpNR?-u{Cl7`FM)k@4_+U~i zN-e8qJdaSmT7H4q^!#?|f46JU?tDXOHCpxebSoB_cD$gs?)?K7Ffr+kwYHE7}{0eL*M4-3&MXy>mRnKPfa1S;E&FUD+)O*E`a2V z`Tt2P98mncURsV1$s=z4UaGWYC+-Vl7{^9hqK-^vK1(r!{m^Y-cp-V0LbqWpE zPsZ++P|h2A8tHFN;R8+_HERM7Tl=SWMC;o`(-RFpDyR?(tPvDQ@keH7IkPU8yAC>VR1}7dr6*ba{TmnN5s(5^D{r89&X<2iTILxi7{~m_+Wo3;S;&!bO ztzni>k}7eWHj@wRP-jhoD75qn!o8gp@qk#h39A?(y|4Iz4v(^4?mnhSamK?m^?so66Xh= zG)Y~9fxJFHR#H^AvqSju$dDXW2V5a^rh;LIS!S*Q(inytkM{Ey<&fGywUa;voW30r z_#9MM>bKxumBGKN9kOos>9;$Sm$w=Q=6om}JOv1P{u5LCzXnSU>12CLvM1qX<$LHU zMrGx<%NaVgBN>U1Ha`1a>^CVNzMY8}grgJbdcG{M4Bq-k?z#WHEOg2JdA^xn&Wqfy z&&w&W_OJP7zJW|Ju5e&6{(#<`#eNSdB0DnW?#U1OaQX`6_O1z|llWDZ-|W&wOkR`dZynOS zBYxFqrO;W}rZqWz7wY4}%u<-jgSEm{9)_z_j~vsxTn6&s1ZO2g2-x&Vave1Mr>EeL zve3wX_HFq=6cggUy@ifk>OovpVbilvnv50k3{+A(;T?>Ch6IS@HZ^=f5|;#dbZm#S zSWKiZj~jG^2rPqZc>zq;PTT*RA9C-DcJqJpg5&&fn}Ckr@*@p;8L43>0jS6SY4DrC z!f2M|h4=uC<=hwyk)(V{#j^7Gf131=5^+H6NNrcA}5vk~Y}JYVB$N#D@uJWm+fv#}_Rm zvzU_z?o;OznIQ)zssE>R012F7hYlO;YMiKMf22=xG*NlP3-zcDt|@#{ic3I+t_Fnh zOqh&kg0^eLkQcC5>nV{0llcK_kCBPWWlw>kK71c)ndN zskK*Dj=#bk_6g?R`kyeK!ie-u(wHT9l@Rs-kdedHzyAlNgo(t~2fKKrU++WlwFAiy zs>^6Zyy`T@pT`fvbl(y6ghW7kOax^9#|9D6Q%v}Iiht7ZElP*4m<>I(I1pDIfF{KP zy9Juu$7(+I$w&KJE9%L+B=#;Ve}h?gYjcVXl0$;vIq|#!9Z_?|KsMLEwZW(*n!jtuMiCVS+8}rsakIAS@}l$i z`8WI83i+kEx>&TOcS$xHqCjtL~{3 zz?JoO^@P)I+J@HnmUccv2}N1t;0|V<1gB6XW~6Gt_7U%CY>%`Yc7?9doC5|neC7hZ z49_JeR5g(}8-*whSi8u*)2l88Zy;3OSH*?up!)9ujXv7F)@#O;rZ0^2-;s|0vWWzR zgl%|gYDZ&M!*rk#tw*znXbcQ* z1aC$X?y-E0-3$Rc9)STG|+)mb+xmfc3IsNDDXWuMenc0B}G_N;T=d1{IM0@ zNZ^=%e#a8BU_Vu(R{lx0#}4(Eb7b#4C2mrhreFSnSuqtX)huvNd^wcgc8{?n!c8Y315)C)t^&KEB?v)Q)zbi!abRg$ve=$Jq7I&Wxdf*N zw!n19+_`#afej{ghHrH-LrD1CU-C)dAd>eb0>_FWf447k9$yOw&=N;ZOz^Fi93R#I z*G0X@a))Wp4HWy%x2KIjMaQO4zO;^VbVmcxu-x+vx7pzj^!Oh9t=_L2?do{nP0&QW zG#Q{7z|OfSd}iYvGMOj)kH;G?;=-6j0pD}(96ik_Zv;g^6jlsGY1sq>tg2^b$_i>^ z!YlH@7~4@Jo?0Lk>Yt+36hU)nvt!-*4DzN%jTIqbhsx#?Ot(;P3z;eDH|VY^eu@dj z&HY#@f}`n;q(8yT(Uh+Ptkr_6IE+_%g^mvrdea8q=JHKw<1d6}IeNJTc~+O;sNC1L zQ(G|y^xccQ-qvR-jOjJ7VeqW_>A70o6n~aESQWAkF&M|H@D+^0T5IbO4v{};h6Qc| zgsmP(w=6IvGQfi%xd-Scd>9o8ZXeNw1jB#9Xflnh9##XCgte6K;lzkQhvufeb$CI5tE|+yUL~Bkw0xuvw|!6lUPB$ ze%j?j2iY$ozviI-ZQtr{#%$H)lXH{%Uv#LJFCvc4&&yV|x(l}#cCjZP)Lv@c`eCFe z7oRj)@=g-aY&N+BI|~WM+1;cwG*=B~ZPo!O6q9>Xu<@+eA=`M!!$nY3<;LWuyy)Eg zB~z^H9i?71sV;va0UO%ktdu(BccT)E70rzpB0^-5JaBxb*o_?ZqfTYJ*N7*9hBNT_=M1JEM(PqIT!_ zChaEHE%9ma1^XBN9|1Y@$T*uHQ~|P-!kX%Yv!b4O9#RH_KH&TLnIaHrA52TT)8dbZ zl~;cc9UktBDShbilWCL9G*irU#63tr%uGxRI>2R^voGZn{=BJtNo=OLHa;ZsC4t{& zyj6Ko)RR^D(b+t3M`ugkOFbWV%A)49LvTvQt*{AQ<^xmSp_$j-1Qt_Xn{eH+9C@!M z^He9=9#N}2f7I(UEJ#G!$D1IdK7OaynIHb`HjaoNLUD&wzaSUs*D(xjsg40OV6(#s z?AA9ZZkGbM;foQBY@O6uyH8#ETVWKu>HH%HYy8pBtldCa0_y!)GkqMV3&93CNU6rSr zoaTkiKPf^Q_+ADPe z_@&b&m3guy^~7}S{MGQK|Nj4>fAp}DR&i!s!#({BAh_-(lB9k2CY*uQm&_cLMgCSK*`yChi zggko59+19LblKeHiBu|IVwDrk$0YM1$AYW7aQY~K*S-@@2$*WZt!eb5FJ2FC zSG$cvy^hp66P$h3Hw)`m1|Up?nK`Se@po0f$lf(fOmc+u7cWA!#UZX^p>WX`9wge* zZ_n|l2_olJcnd2$orBW2@1cJaHa@p_fjc~*;Te#k;X(*)!##o?_GI>=@@_zLCd60t z2P2(_tAD|0ua9)+gMI!AkK~{qP~TXRff`^?7S(Y@?)x%*i<0}>xQ^9Ao(5F?PT9fz z>W_Rng)x4*h;PBumw#A^Dm;Z1ZpMd#OKOapC?e^A8UutR#l0_3bvRy@XIC9i6LpUV zO^-@G7O#_{ita$P$yy@3RG#eR$<$ZdIyi=X0j}A)*;9D4n`;*2IPWY842EY(dmD5; zU)#I1gp`IY;&*(LH{VLuSJdx4x&A>T(MwNvOUX~DBO@i3!5#A347=C=A%3aw7kEh; zn;hk*>pnx3daPyA!j;LsPCwSA%WbkwqHxRAOake82-*FV`TF6I_z9wRLcoh9nE}L8}r)`J4=By;1>H@vz8`iM#gQ~z8BRlu6e1*`$mtDvePHADUXW3;# z65@6-gsH(mL>P$Q(d4jP5cY+Sz$sJflob8ttJhh^-1_Vu2*#?StlL% zTn4Bd_;gpELEit=K4UzmqI?s&;=cvuC)At{<0Rg` zv)SK*&pmNYLBhrK5hz<)jzHwD`a{QQEyZ37JpeyNeqWGhFVC;G2oQzc$_5VNhX*pe z*(u=nsF^&fw&uF6Ejk#@o6fYwUqjdc4E5yv_)tB~YI1&%173)!mD61@!WAj?4w195 zWVRQt0g@Gz9lN&l485xvpH>z!?UUlGXI_hzVW%3$ zofwhs;!lgOHuZJFr2KOJ4KKi=>J4cTe+9<}Ry1e>xwo#ia%d-Tv(%E<=&aiLxRU zZnwr0gjFl2a9`)~%vJC@@h|$?7E_xOR(i!5Hh7-9G@%74E{$V0E2p5u?nR2(mCjw+buJ2`4Z^ce5HBhl_Akqei$? zJ70a5M~?H=BQjM<&+mIsG&SNgv{HPAy57*#o(lk?Hxkke%Lql}%ObQGiTUUbnktfw zUt|*K-%zdQo7yb*6npu_k#~Eel|zSSF&^X=UO5tjul*Vx_2sLb<8ht7;WsEMu9ZJ~ zzm2wH4}XT?x2A{eceH*43xkpV{h_f)J*sFbs8H!HHv17c7y35++oYSmapX|ep3Y<0 zPOQPI6FhSJ+5!Ug2{?xkm1m0eZIU-xuSr?s9bndib;!2oWb~bpwT-0bMHH*7aCl&#|~+YP=UW`~mb?QJ?MpZwBE4pSiTr-APn$@`?T_ z+fw8_6jDcJdQJ0f_iuHL&ZJK160=^V)#^tmiJ(-hSFyd|;>bI_%q?0zbZER@vemrR zLKaU6z;4emt5z_MRcq^F!B)zjiQi(?#_`A54+wve{#klLkQvfUe^_|r$opA)Q&S=# zi|=9K8tr>~5XP%sRA0R&lStj2stTYL9x==F{?xa!_D=mIwK`n=VwaI)?=ZW04-xuo zjTK+kMzO^x`vr?>aavfkJZXy)v&(vdY8DN%&okzv-ne7LPYcKDD(teoF|~&=fa})V z{(Ii)Dz>%IUt*m8G%DQu!6D zoMk>{n~z(~M^HYxE5F2h4h$(KN@_mtG#?G-<8Jw&wR>Wf_n0Rk^Re7~G|PvYrw>fG ze1}7FGE~@)JkIafusjt`yg{&g^>=uep&omI1LV0U_|AfQQ>~mf$%Rw7u{gGR6E)A=@Mt`=;{}F`?3gE;OhvvBD0$#FQYMEz5S|#sAvN&w7xCn;Mhz| zJM6A0$DX_qYHynAIJp&TwLFTh-eO+lMmpp?EsCw~;eq_KAKAy>*yxWqFS;CS2eNMO^XwU-UuNevs$^ueB7L%%J~-uZ={vu4QEw2ZuS~V)pdT6sk|_#2u;0 z$=|X6YD0I3x5ay@@NvznI6Mu$`PLZQE5SLO4ygvb+w5tZ@jV{{+qF}DJJo_@Ets0t zX}6Q!B9tmZC*9vm?<7Ut9{-w5x zD_gn8U+(4JwMPWENWKp_$*2@t@XvS)Vach8oVcrbkF~mu_hv6Ul77E>n(ISS#(Wv9 zNcuy&POWdfH_IdKWyau9!iO5EEIdVod2K6`kyW5 z_p3H3nUwR9f93ZuIsb5)oZqj$r27;(pRpq6_p6!7zD_?@k@Nf2c&A-FtdR2uPL}ig zHGETY{yl}o~j+$vM2}Cw3lQ#`_;qA zMwkb3e!sduReT`PNWZ!(?WtO=8|hacya-u%P6$wn46#)tXT+o`yi(NJJ2j;=Sg9t; zQKS(R?}(VDmV#`sh7*tuG!fMD!DvT5;6)C}_=RVGq(gTif8`%k%Q8F-)6Xj&bQ*OLnrcZ>(3Brq} zz6x7DYa5S|j%(2%J@OQ#)CC*RT0ZiGd|fK1pgt|t;70i>ghBoFzobB`e4Qr+=H8>O zBv`_pyFh&;K@;26IQf`cyzq9~c2);oL51E!eANtt&G3(<16n$Y9L^045X|B^%CWi7EQ^Wv4c_S zHWo@7Z&B*ki6@o1RsX)*Il^e8(i7^|DL!C5Qxu-_DtZ5!usb2_GO<7Q{HPV;>?%q)*OA+(YE(_iqmWWg&k? zAQT7HIk-_evAX*FML)v{5_#ouT5#E`xPAv$!}uQLWUDA9<6+XA|a`p4%+ey5A0q%;o<4`VrC;4I|FQyP) zWNy*XVRG|BTD8wKWmmd`YTEm{%c$n&9A?Pj7pkpJtuOJA`~_w#TIu~LUt7xWw*Oa%^q)F&pw1u?Tg)_mFw|E<^Xjb0z z=SG2b?g%-8J-^IQAJAf=k~3@IxvF0z4ZVe}y4kRK{u;0En}N7|v{fTs!0e^QMj%!X zTYHn*d=bMN{$^T_T~UlYiqKzR?KA#dIM>swBiGY-yxe0gb(bvlgmYs~to&XSQb*n# z_v*#m;FGoNdKx8tA6^u0629?2*PNMjZ|9#b-J3_U`YiJ@%E0cCf!7oF|FTx?tC$vv z+_?^8HdvuXGhn-2z6Rxd`2`qmRo+2Ljk*Pe+ZeTGtfTV>hO0{=Co-GKl>$4|8tFiA z-hLsih}Sf+Xe8XOh~rp3puX8J+XV@?Rjrk7Ophz&E1+sJpn_xewg1-%x}DoxGIu%N z)Mo_ZYXSrEz3tx^tnk;B%TutfyvGKl3sLS#uA){-hzNNFtvT?FS1z|ILnW2V0cPcL zc@IS_weP`0GmCU-b<63=!BcX~W%b~=B6;&JI2DjPmyW2G(|0ndbr^%cve~B-Y>S#@ z?gIbZJAA)-Q~PWB0&j+{^!=*xE;5PS5pP)S4|;27@76Y&#E`CYE_lUtgQB8&<^vYr%MHd4Yf7-Oc`$ z+5Qy`%cf}`^~vvR0R=)lrvckQwBm06zUFhe;P~h=(L6?rqYDU#Na}#%%NB@pb9N`M7y8; z=uFc^#D?%&)-C#y5KrWRpv(7zjx~Xy8_K^FIuoXLP5GD9{Rj1m>i~3N{j^ux7A`z> zn@-Q5adX>(@P(SbZ2?dTkhZ>%z&Zol?VPQGW(q=QKTrzP7#4!9C3sh-UW9mMl#^6Z z9ut@*PHw7xJ56?m)jCc!p>|+nz3zF*;ujbi>UElzOdlRQ`Rfu0$Gx>*2O&UWiBnOzjV5@fLFADkyP zx4gdbdfPoC+pgRU65@Z8Hn+(6_>3B5RzYLdm!PzVCi6#L9Hux1VZGhhn~r;flYjQV z44P^|LA0*#ng`j|9AW9VT4kQXGI1&3fcI)QwUQN{rB@}+x91b39kBw-2lw(!U*ig& zA;~ro1!7C~B^+GfE3ArH_MGYdGO(=L`nsIGsurr5QGvl?mcL?lXoNLqnl=h~7k1sX zezGjosJvHRc3Ivv>u1CD`d5MKt`(VmIqPTfv#UWKD!W57f{_{WD;_>r+vrt$UrzBz z*XX3NILdHUu%miZ|9L$IHz^;zR$5YL(1vak9r(hoShhTre|@HudhZq8$HKmc(&&{{ zHr*fah<}urc5a#`<}6S8`kN2>Ss@O7UZ_)bu*e3!3*$90`HzC;5L!$!yj$*>dT zv1<)-;e#Dm7vy5fz;_5DzngA?HB!L**RY%iT%`#Ig;}Mzj)F0GU}>+Cvrzc1`HjwcrI$4C!f)qDotVa zuRQrI<(g4g{gaeJ5q27dRgHM2^sAdp%cHd_Y-C(mvwrO##=vAmY7mYDlHMK$N_JI` zDlipLT7yp}6Wy6;D%K z{VeUNjyIIb*U^X(18dZkoCMr=5p*DX3wv33#DA+2$Zm2X4wwg*&ukGOt1HZObV8(c zqDz}?h5~4DxIq_qKwT%DYX79u>m3EO2UMOjGz$l!Kvi$LF0e-K1f$5G&G7+jX&Trb zl!yCJCTKpI?~lVN32cRG%dlTG6#&bN8n&C%PkG`%@x=seH>pR{o~q|C@kr$fKatM^ zswvqBy=o7lucnIkCK@@Q=B7PWOLQX#)SFMolZaa?ZkQq#e6wy6-o*IM$_ve}kzsN_B&-bI zaiV&v`jZASEQ|!VM_BwC58;(dbz)@F{j?A#L2}0-NsMfSAphQ_)nctk*if-#N=jqL zwrOLq2zx>oN#qO+WT%>Vw&p1!F|q!?tAiv+a(&op86do~+}n5OvN~%dLntK4 zKDJP-dx_@wp?>&#hBe<)IDd%1q4{ZjX^UQJ9KmYUBt<1znSh;yb{RZ{Jxohccj%E(Mw72FVVdaK%(6nA>z1+j|*hBJH{-Jls18Nx@c6I9G=kyWQ z=vL43E#a~|$@-RTwuF()i;*nlk-JNseH~|@s0?+>QQflB>d$ypr@n7mO`P&6l+oj< zSm3X?BNPyQnzdp9L;2Pdnm87>uGDADoM5^zvh@!#%Y-oE&u5WE7}1S{Uy<;NF3~F* zi3<3FlAN!XC(qYvQO03>M*|tY2!#ija@|cCu0_tFFR8)w>N%PJv{(1F|4yG$lnf$A zpORfUq*nb%JcK*~L81rc-jJSn-w3$hLXuz(W=e)EuX+(zAUb%K`mAams?|mD(mZr6 zX8osj4Ewobhbk10u%1JYPBHnZW&HC=?crHiy5ocs4`S zCq>o*ch=i$zBbbTaZ;Z5{VFG@9{%q{rZ(@CKUe4i;Xn0-5bM9THfQ=(;d*-oK~Y{4 zQA0lAa_fz?@Q%Buk7z1xJyhg>BXo|HGh^D+sUJ6A6wYov>S-EhyIToU%kllHbLJH} z{@230K#7Y2BgG9zH`5B9IKS6^ZRGUAa85;E7T-wT979xq?fRG~!M*De{ah>k?4_UF z8BEW+a)R`e+f-os$(4RGa&QG#%@wsRpX_pt^J=$n}W z_mfjjQfo-We&4f@og@~~pES+JBM1h4lKYE6<#|9(Q0Plp%{okQb50WxhvA^b6(84IYR;;H|vzk!w}Z2kElq6Gt9ziO8o>5 zgn^r4r+I&0&hYo#_pK2=wZLd9Si8AG-}L%E{_5%0_Y0J{T(56I+WN*y=^mA4hrr}h z7TUR~LblZpDQk5VcH=U$Vod9eMd35oR%A?H9&%4#5Y8e(7;lyEQ0RZJ9ci{tHfY^< zwq5pv>Df(uuj^x5y~6i}t%t5Bm+%xaz*@Ph;BVr-rWs4P87ba$9e={3%rn^pzNSgO zr#8Dgd)xaVMM!)qN?fs}X1Rkeu+A>(B7ump5=tBxzr|gHj z_nZ!1f6snc_L;EROV5>w{qkv`nJS>!ixMQ2V5bAG9r>m)X~0m<(OvNtCo%;VJd2`gG zzh;;0vyNHw53KF#=*_gf1({o~+|#~@33!*f=XB>> z#pQi=;Akr1Q}$(dmJ5aSD3UYp9-Jz$orW`{?Pdz%J6Swb>KGGS+qEMriJ}8+*>l=+cJ{(o35g75;&eZY$hY z^Z7%#U0|ZuM;0du4ZS$I>5H>Voi}ViuWU#H!Wj_b;SPg(@3Xk8hdpb)7OxYk;6p8E z;@dU-8NV~JpM3hfjl&=R=@4Q5oO-^t-}5PC$k(nl&19lp$myFmES{D8%Wdl^N8*Jp zLuyELf9Bfq6shUTw2tF=xp=MbZ=f{CLtn6J-B!-3W3)NgJYywWV9E7p61?U~*iBNF z%MxTJCt9n?%oRE3*19YGE#B~V_30ir+N<<|nq%I1vG!~6-rUp1k99>-{W+WW9gNr&(_<3wLQ&%UNt# zt@|OE1n0|P@x-L zuyl~?<^TT)I;>q9LC-a;ov*3jbOc?%p2pfGRv|$R9C;UiJ9FhkcOagjH{eIiTSjf|{UqbuA|;iVqad#sGe0DqMib-?_=zIEv%8Ma92OUOpcs5spo`??I9d)7S$ zKNEw$Uk1MuO(y{a=d3ykK)ow(Yi95Q+NQbYlfmmZGWcAsoZp-rI^x`zPCfeFGJ5V- zI!8vY84+jn;YZg7IEYVSMozPzNZ<3`vxIyXsdwaqSbhf0uq8_jaVtae1D=vBY(r#u z*gp?#Ljcu<=XV9_7gUH8ySToiQlhP|CPv=c6*(p>s4uJ29~cUcGrzv*dpVb+?>!DC zgx$X+gD{5cdz}Vy)j#qrO5`V2>=d4{-(eYs@uyLoLDTuu`a`SnKXFh}pHD=^5yH_O z7@6Tn9HcU2?;vm+e$<;7MQ9}WI8x(d-({4z__Ntjy~vz%j=YgZNk!MJlRbRO`f3T} zwk51D-yW0ol}}k;KF*c(%|6}w4*8xs?fMS+s}9Thjy%o!8s;kjLEuq;sOcp5r1LZL zb^anbJnQV1p>@J<&8wNKCdtv?v$m7VCEy}5dtkQqw{{h+nPAoTT3sVIhxc+VEY8Vt zX0IWs)eyO?gr(Y5Ee4ajzUBxxCSiu>C&^=*@vxW@oiIfNe^DY4mG3MbAA0@L@(B_a z?c|EVMjVzz5a&b#2XqAK8Zre3B$=d)q3=@c?q2(}H+b&7o3y(ma}&q+l!(R;?x?`e zTk;NaJ%vdHOd?=u4zox_9yuS9DX-j7cPi!8ku?}LlBp4|d^$NhXZ-2;eX1D$KIto! z&PRTUc_CW=It=2K(UH+x+|gS|8?{ezV3BO7YM;u-Y1d*S==?f8KQ=wo)=mAy3gnZo z)e01F*9W_hY%c(Ta570|gFC{*B>d9(6;U#V#|I^nU;Evwu8Cp;cu^v@=68%d(l^11 z6?P}yZw#s@_4|!>Q-(Ev6Qv?8<1@n7ZJM|TkL$oQ@?kH}SiCNgFOJBY4Hyc^mqeD} zr?@KNHB20MJXi%*&>d-+=n6@i^ILd%ke8QYbz{piv7owR8_85m^5e;=Z9dNHsK2es-E zBdsi#!N&Xl-9S^VzU#F5A-xya&)~Hi%o~uBs;uJI#fS&MvddN zbf|X%`U`XU)Uy)cs%jD)Ia?N88W&5y8p2_T>k2yuvqVUo&{UqLt=l{yJk6RpdngQL;h~}R% zBH%6hN#`JeK7IZyh-V|4PnYd6KwyE#E)5?4MS}=g*&??OT1N;Qsu4 zt7p%lP4WbPpWP;kE?=VPMmte-k}FfWPyQP)Xkj< zQK2$sv)^dO5(%O{P&H+gHNtaU0KulCwJCVViDF4 zX(AA%p{00#dblkt@_rEkK|%Gcv1wFmMA95zhXM>=IEjE&Sr9gpt?0gd3J1J}v0$Bf z+aFYa9G8Jfl*nTmJ9;+n$pbVkax@4?LQXqa+4PMW=Q&H2>n_YClluucR~#(L>yjMLbak=&;iy__WH#NGIvSklO*qw1$|Rc9VAtk zRWF3wn*U-td6)Maf@+I?zd@7tjS2F8y+hugcE~&YQ5t=J1|zYd?@s{Lj~_b?eXn!q zdj&2R3Hsi=B}w0lQ}lh3CYV}VXOi1XKu&`E_*O^xB_!yp|0hZ7M_Pf`Ng`;-eLWXl z?X#+S6Xc#`YzH_p1)AmV;ZRol@w_tk&*;O`dcwdn9-b&CBDgDe*l}B(3NmWWg~*oi zR+r@U`ifIh{qw>k;nDm^TE0io>$eotk?GM~@UVj!6aq%;2uE&;-JW$&KrdU#I*) zAN=}c-+3L8ZqG&gcpd(OHt@BM*W+=uQ+onPcfWIwUX3ZQ+p zb=)@UYoBKJS+wdfmn$%8coH!px@50m<7BUq;YZ|0ycW2sjI8T9a09Rchs0ry>vwS$ zBd%4b0QOjQ>FATU(P6g9!Jzv7IkJsdOtz6q-$wHOKv1>l_XqSg>P>8;Y0fr!-PuNI zdkF30>t+wV$R7GH6b`5GNN2&nMeE6=FKG^UEC0J$F3G0}`VU%FhY!t^0}g{gV1re) zN!Xl?GO;khpoJ(vW3}WH1IMhHzvGe;3p_2La;~d58DdI9%<;d0 zNICrF>(Q1S!D#(%(vPZ3&pH`?{~vSj0v=^`Eq+fj0~ugs1_>B60xBvxR)Hu21DXUv zq8OYIlc5VY<8oag!U2{ZFv_GRt0*IxG})D`$F5!$j!-wbAoZIVV2?JxA*M1JHBU^Ih%2#P5|4(&T2O z$dx$ZOeEd#@ZdmBN78Q}FhCw@kQ5*v)P9@)44!T#e?$_({|cV|MFVbd1Z^Y{U*A{UwbENug*`7ssg7j(-wa|Ihw|lqBtO9)6;fiS_$Q*OXh%6w{A_EXcDZXU+^Z#u!cC6WVk2V|>l?h$!5c5h z8%o|FYoBhgb>3JbgcNo-2)Fr~lvYh8y%TvRE#IbwjmfuZ!{$7b8-aYA(T6#~;j>*t zZCwy6Ixn(+f3&P$oIZo<%iNPYn{>X-JJyf}VTJsYTSYDeFaIP+D*dhQn&cX!9+giN zZP7*rKN0;+xBUC7Uj9|<>yE{%mk~|X5o_${LVX-nNxg$6g2*V*?~(BpbGd5XfF_f0 zASsnjp6Rmg#v^x5i|ZyVC$EbGCC^9NvV-bn``P@)BhT}4TtDqye?LTh^$BUYVX_sI zftVi2nELWf$G|*WJ#*2w4J#w|H^i~kah5IH`(P=r;ut8c~o7a12sKntg+HKQsg^5VZ-o|eTno817Z)6=` z*%F>F^6EsIi!WFwT`{~SXt;s;?X`{2EYwy={(K>^=g zt=1a_vJL>_dHcHPB)^ibTGlNdT+F2evhr!SZ@-h$CdwwPMpvTzX^orbS9fg@@KKmT z-1Ta7v>IerUGsJ3Vh60vuCV%-%}~?1q_++6Qf=x}DB9s$(JSXr-+3uo_ufttyY%CC zwzD#tqq=MLB~n>grv-61PDM{f=g4pMU%hrdh!;fl8E9GN@Lo^gpZEGUkxaHA+&|Xp zSk=5W%XYd@J1eq56mC*N#@bSydGi;kn>(y6%d#`?elvCV0C%%8?}oW64501PKVAQX z=Z)RKo=_L+pVZWeeMx@i>7P{kDPOBRd`G_0!3Y(Un@%R$ve)E?GSN)^G4u;95!!%- zNCCD|Njyqz_S7Hls*7^x9 zICgiEK{AUD$RO#z7qYQ1*Txi;&rgIz21gyzJVrqwP7Yehm$Pt6>->pwrFH%!`DmFx znXi|~R~25Lc&$v`BnNXMHaODcKKMMNOQ0y@iFBc&Apb>dMQ*E828BX?40?lAcMo%T z8%1o2+&$4@?4Yaep6qCuJ1i?imDq{W(?PgDM@96Oe&Su9_!Y;ZU0=UtJzed3q9!l#D)Sl9%Y?bN~OrAEjq((%U@l&P1f9%;>;XR5$0 zn37%v?gpduEJy3m=UP4=33_Fb=o}8k^rmZ_TgY%}gu1u$^qD$$ibH)#+S{rA^t&?d zkdKbfrM0b23BA?=mMUJDL4yoFs4#>u5pVr<(|&Tv5=*5&c^)o8{q~o31hxD|HCC2u z75bLM_Zxn0qG%o7#L^)H1b50+Ysmrmu6~2xHB~HhI^&rO(1di!W$(PE){<_)ac0v} z(nCt8{py2ZWZ5vKe1CWYn)@kOB+K65-(x4pA3)!(6_ItqzswPC|UV@SkB(Tuu{gRPmHj*SC z>*XtY#%_J77njouwrIp)K}D@HccQw2!Gq7N!~#V3Rpg%}$})6%Y_2az@#-#h%MS!6 ze4QTs>q2dd@KobY{0SSc4TcN|F<00h@21m4bY8Q0YJ-FjsP%ItMD~;1PB%&F{blmY z09*Avw)rW6`VbDY{|HcLz+s#W)M@(d6i`1y*en@TFvENc)eJ3XY)*f7DF#N8n2|AMR{u)Yu1 zwnZo<)!Wx=(`QiSvW!fC(G03+3_vVwMdK8{Y7*&Pb3R|SqEV^{38`#ZuSun~U?P@E z<$D>R%$*otafwx?o$zzf_!q<>=S9otCM%q;ZsCQ*5pwaeY?#n7m;CloM>MB%yt*ds z-bl@$ChiGGBNduS$gx6V_iIp-w#*%#Wt}Z#zB>LIn&8+qW$LmaTI){)>2GCyxQM2_ zYRjT%(Iklvlvne46#`k^QaIefdl;{`TTVg;YdO<$BUd}_85$omg%RNau};s8cvKs) zTj%OySp5v@hPrv_VkYLMsB)ViIOiS3tS;NY^n@LqU1pyG)-{vV9Z$#OCzIGUKm5n2 z!Nu(Flc~WZ{kBaF$Rh|H)?5$x^TWwhnp@pQlF-6_oJc<9ildHy|UVN zM73jj)h%LP?gl>n!c3f9|Jj!v1zYE$|Btywc%N&JxfVrcH`YVoiTaVUoV0Pzflfd4 zC+1lcb;Z8KtyWh|p5T@vI!0Q+8`g5gZsl6E)NP;1II7sGn9)DfE*4+fS@j*;P(+ah zMC%z|tQ5F-gb4`NpG|A^KDiw$6jt!()$CLA^)olJ4ANSUbcwobjvm#l`X1eyXvn&Q z>PzXZjZd}q5C^has$0`vb7`#=>IWEFC1Xs2B5~06sZwaHhR!>3`j@(@k?LDr1|IT; zN1|}Kq-yE8-htu@L7di!lT>FB(rSJM?JlEqsUK3`WJ{wa_?0~SfTC2TrPdGXA8yOg{dn@}SEnfFa{A{k5i|Ti4HT{XqkzYDq*QG9qFd|z-Jcr%-4#$>$ zI(mh?sh08159J%smH1rwD*q9mtJ}QRv{~Ev?ZlkGzvn%RW6z;Lg_<9FQJf{~%frTS5G<>EtU-IUTu4rAWpOJ~{wABBdRT^pWpoXEvdtP2Z^*GnsJ>kbi8zSRY z^*75-(s^Vw75@TI5-Kh*O3>4jmV7SOYnFT=Nd|@ITuIttzt01Rgsmk; zzdH1XAr>XUY|D3b$9KW*G-i91y=pMqckor1ZTVCai9@KDH(<8qg8r_~)NgYV$en7n zK*0QQ8MVhgrh6Pj1ks~oxETX{bLCyk~2`6CaW<^c*;@)w=<`c zN)c$3)$~$iRy|NVV$ck>#K7a?qctZybU{cGD;32NSv z`tsJiD5Vb{ioBN}c|SikU*Z3EyVMNAy=j)^wdHPO^?yWOGFJZ>UsG29`{V{}Hd&wE|{G$}LiUd3{;lQ4SWP$j4&fG+AU^#pVq)zG84o6?v^iTCWvp%8v%~BAfCt zG7uePJ9!E|iNBPuwb;B`%wc3ZVrGl2LK-d};Ejp$R-9~Xx8&%xc`1)k+KY6h$xkdE zj-qekG9&Y`j#^HCH(oY6m($VrkWZYi<2c!L%w;=JMZ;|~=eoU(eGI~C(~n6_Y)O#q zN_tf7m~+iHCJpnh{Q(CGk=wDdEPs`0lCYzre|1*vOFeD1)7|dBJ}++&c3ss$#FBQo z!j*PkCxyQ{sQT69Ehe6OpEzCluaJ(Df!Z^?5T6ue7OVL+kt}DOuZtQSDb(h>sY&INM(I-?Ks92Oh zg(7=Bv%RCTSkGcv&!V)|*1HzYt2nQ2^@DC;AcAVs>2M0=`_*JV zDeP#KY*|_x%Y9Yw#lPDcu{h@WI#s^(5&qMA^bx)}mweH$q-%8l5&XcvE`=iaaY-uf zbo^KVejJfbM;J6Z1$KPz{{TBqD`4s;VTWh6Y=`MM3}Xknc{xD)NaV=lY)eCqVRF=E zBF7N`4atEYvQ!_kV*LAy|zx)OZ}?Aw8bP z=f|LibypHK?)yzTY9#oJNLOKs5f=JEu}UF`L}25>2c#tn49?a&tsH+F>FJZWG7t}D zE(KA@KSq5mLrA;>3CR|lkh~_SQuDt_NOq||uwYiz4p{E;j%3ihCM4|@@$lX#$xx_= z080rf1Ssv=QBw`|Sm}yisg45NB!XP2l)$>AtwvK19)NoMRzG17WQ(;+sK<{k1wno< zv(J~_i|;T9 z<|Dr?Md3ACCI8X%hY$yRk%Q-Xm zGA7d7^yeX_XHt$>?J>_)R*&7kFFICwpYOuH#FOMXFCa4X468%JQExwo0kuqwv`%E1 z-y^e#m?gKz!#$GgaNH+E!(pp+)mblQfZ!DKKf~m8A202G#6(vKy#L9G-V9z!>oQkn z8S`AJHcmWgMnB=wDQ83ty0jTx^FrE;^nApUtLX!jA#i2rVkA>vY~g|BPHW)-YkrR$ zi6uSa3)G{&1a(GOkc@I0m`q?Ll{Wsy7ahmnB9>`!&zUa{jN+bLsRGFt8U@`3e-2-` z(TV5qWuIWk&Ecc(Ej4GCsn$`O%sUhFL|FF4EyUJyVxsNJ!{GqeKx}ZGY(eWv%Way_ z)ivbwGcBYVxcq*GF1eFQKQP#^*FyUBJj18c)6(daTIoz9MIOtMA1lendK>1b&&7RW zKFTE?v&!?A%5zy!xBaBihim%^BAOA1=8b+^puGZUi{q>w_D-NZQkt^f;M*DT+kM2WRRkABOML2@XS9B-m@2^HKK?mCc%XNT#PwMX7lfvGE~%9q#xzH`tK^BRNx4~sDz z*MmCxzVnUL7U5iQ8J4uk-eqQo*%LGHhMj<9=o0TftB?*7W`a=P~vE1&IArWH&P4R5I>C{N!Bj zB{(Phd|qbD0c<=Ir(-Y)bbHr6Op`>-uxC4m>ikp3t%Z5`Us9hus4j!qSvHZ~q<;P- zc$yBB38+$t)`VWE<>PeDtG79(qT~`>qRlr9-o`7a8U^eYxYaCJOf1RR*FZd#kBnEN zzD9GRgTXm=1Q*ay1j60nNWynhI2`=6i3~_^5x@OK`u>?shVj^q4ElihPFmYr9fD+o z)iq(N{-HHZy+iO+?@<`HB z;7AU}1ooM1*AKXK5;xMF&UU#arYga9k;Hqu+QBLa{0ukJCEUnGbfNhx={Ct?jn;5U zu~@KH%oP4g+#8-dPmfyd6h#1~zc;Z+{ecqYZJYx8hi^p+a^HO>gQVK~l@irdj272{ z0UMV4lG2ExjiMJMoe}X?twRNs`99yR{``Or*sg2bWVPJuM!~8tr`)FWe#lRgpQ_x} zW@tA0?;aY#?OfZai5+bzIe>mY85@ChI=Dy$rXGva{Q;zS9IJ-Pt}l4ic8qGBZ}vUI zSjw(1>4E2;pI5716x>W$><0D^eLJ8_SG(12S~E=!Xi$QF=O+ot{6Pqb2~WK=6~3f% zj!iWVL>Fu8`113_foQy_FQ55>#%?_a$>=oB9v~iylP=ECw%PXnGd$`BfR#~y<)Y-MZT!iK^yaL*IXGfteNRc-RKV6{y^Af@L920b2D!MVE=m#diiL~Z1 z2XwI$tsIlH#hQsy+Yr?4D8p*h9Mi4DPh@Ur;3ICPTKVY=%a(%xEgJ!F`=&)rhu(TPdkggbkvhVpwJ zHJ@qV8&_jg>&U<=(HT4?uko_H>2I;F@%VQYv>k2Q&)~wOl<=0Nq$gd#j5+L%2)9-NI>Z%&aP z;rw8H>fq@SHv0eH(AWY6aBT4`t;V*HERjc3U zXapptq{%m-LDg!==kzX5Z5j4Pq^%%!VnN7`M*8CHz5BkaK`*}SA)+l?<42;;+g65 zd+9$;o?jDXd>_VVAh|zsGuE?5*7Hm`XLo`bY8w)A+JrgEGP%6<|H6X)nKh6Ogv+Ck zXoF_-J|(iay`1@W{S#Tw$>(C_2>Ly@oIn^9;3m=yo((NV-J}d7h|qyrEhxmV_bf{9c?J!+ls(#?bqcL$chBj-VjQ#<6Y$J0To#W-uJ$66`% zl*c{9bYBnzK|(nk{($7R(NYiZHd`(Bm$b7ziEmv6DGueak63UgF-c z5UZu$+hwWBvs@=2tyMgd9MQDvoVfGh#CxGyL1D#7f|cULKe;-=iKqB*Noit>OcJ!Q z&>guq-)HR=MWjTV&&RBXKu$qFt`}y@y|!z>L2W8=*l?&^uCq% zYWe0uT84S=b?zeL^WBoihQ2AO?mtvb{pAl=;+^HW3i?fsn~V{ZyJPcVAf85O9qhWx zXeg4?Gtaa#UQkdo|LPY%b~_&Gy{*jg^IOXt|HI$!_#4OX`TVub4{DZ8#HsJC zC7eUHFV)!C^*B%ORF~SlqplP-N_S%VNN`oD_a7bP{n|rj^rwE`?tDqw%RamFUvNGN z1J}H?fE3O)UfIuoVvy$#G1!xzXKshoiBIZd4R5I7BE){4L$bD6x61h06cy@#c+`<< ziCJb~u)gnub_r>O4#Q8Uf&qDw`;o580Sp^Oc3~ghBqaCN!OF`n4XS;*ngQz@ISxzq zYZ{Y?7or}(}sPH}EtlQHZFs%>w` z7MLU2{=vSay?X{6(EyDDoA82<81va_n;As^Kj_W^l|Rc<7}6X zpg_+^8`E?aPOf@fh9) zxQqXB(;tR7E8J1vGg(G=D$iF*@)=)bW)}Ghi`?t8<(|vIZ@UIZ`hv^z+FR_j$jqVP z5m7wy&BH?ndDyJKdHzys6xF!GUT9R2q&;@nFCNPdkFN86MHF*?7Uh6_-9ln?hTbNV zV(4|5KmzU3$D17dHam@_SAPan z!^fV~QK5_3hp(>H(p~|fyOLz=BzaG?Sang!9-@B4qmqUOT8dx!8;cV>Gu?8D5$Z&+ zuOzQ0)|By*+om5=f!@L8*!J-d9x5c#0}sZI>j&{pkIbMb=Y~S}`mATN%ssBqs`;L1 z%)l?by$^8=fY%-;N~ak^!=nryXGfFG=se9S^ws=*2L7%%)1Yi**3huz@dk;r6X5Sdjt9PTlZ*c~HA9rD6l(MOY z*^T+AJO%r6QOoP$a4;fD7+4J0k^|uTHW7rsl z>@a(4*pRmzvNhh2t+8hy_ym6G@E3di;Om)9niF*Jss3ij_W8K={Dc|5Sr@k^ckACnU!Fd>}<2nEW z0XcC}YMc*~Dbm!qGGt+}!$|MLRR3?9i? zv=*mSy~EO(Z+gUnZslmcS%FRP&F%NVH<#M!kgj*zs=JGI`Y2(|Y)8_U_^S1=-Zj7A zE4o{&GF`j%ql6==+x{At}%k zDTh}ND}Z>R1%T@@61)9vNH>dDgG=$8l_e}45iuw+mydg5LU_7W)*onFahbm<((772 zInsOH%JVGBseHH69)#Nr!e~2fb7a(!8$YT{F7p6S=%*1$^|70|E5B)o%8_r)Yf8+VPgulG_H7C>z~Cxgo9Yx5_8o-5pe6`s&%4J#PF zD8;5x>{KlGZ2h2mOcMmME0w!z)P1zqc`^Cjtz9>$X-FJwJ(D>=%fLgCfnh_Dfgu`B zY=)i?AMx#zS-!_7DFtn)vH0>wFu<*<=JRsvW0bx}V0WMc`qW?rt%FlQc!-1DNhEo!J!D8-`j~Z<4!e>@%bO1v=Ht zQTLirlUb=(urF=Yk3(0h)ftIV_ohZ|={p}@Z_mePPbQ=<|JlCWYOk!D<1Y{8T&*26ObE#Bf5z(GD7iTG`&Mr(7ls;lXbL!58Ht&B7x zd2I2-h{{4kK?wC*n3=5^fxgh$qJ`M5+L#NjT9M|7ffIOZg<+%mtt#ZeUaPHok@^B` zCm7v1J8<~+GyIS|V`Gpv-lN6novzMvLK9HXIJ>Eyag<`G+f@~OgS7W9JrZbqn~U9w zgN_Vp9Ji-)TS_TN`~jDLnLwWLa$P;NPy;&=M$Iv){{Bt-900!6H6*_vVZ%gqrFl?h zxq-a73B8HN=p51BX&yHU-X)XP2z?ai^$Lq*iyB#?+4ggvmSdh1zn3LG9kTv)wtls8 znm%y;N95P*%fePz`>Z|&@LYLHM=%9q3Tl!xBuxtgZN*z?_g9mu7*E0^${>$K3q%E_ z2YCQUfJ93+`%aR#Q}ZpQJF&4dUl_`yK4`#vzoVP7<#J6go}Fyac{s@ zE?T?K?32BUZmK76t1EPqCa>D13T8bOUjm)2&}`b#nF+TgKgKLWVdhv_1#z^5(Q!<9 z3MTjysMxE+Xd@RNO8Jg2-bru}}(hQ3IpuUr3?obI`-788~c7lLya>Bku?5V&D zMDIbu!f`*JS(lnDi;`RRI?Mt+I3Yf)e z-7!}S8t904w>+e^Hr;#^M@XC}U9pv%15=wn ziICHe)H9Nw@YUbQfh*kcr&)y7YZCi!#Im8_nwN7?HlI~))IXB7PsV|M+ExW=A1Y}L zKLZZZ_kPR3z|1K&US5iptw#O8Gz%kQ9TwJ~f>AQ*CMLbc1Huc&i~;-wN7RR+m`x~g zCzE+c10Jxu04NDHp(oRIz9Jq6%sY8pz^plG4QY+v3Ho`oEHNLir08u!-cfJAW9Af1 z5m1Q@7V0OYiTBg#9}VD<3`yD=ItRKctKOqGw_D_|q>J$MckM=wsTAGwQZ1V;p9J>8G+=)o9Q?{=oRc>WT(g~Bw9%fdlM0NX1Qdm7OQQa2q=_5G&i%zfFRX~oqZSv0-hmxqS zj(?Jr%zTmlMSmLBVZUMs$yqrYa1ZSBOCQl^Fxls?>2tAkS1tb>9YUWU@K0KwdcGv1 z#WoEQJ}90P*~C8k#EqiG#RWVm`uamxY{*8xc44IN!_dVWinC_T&kCOz={pfRdqZ*d ztohmD(z3vLXe82OU;k?JgL8^0h?Zb(FW{C)?fU|JPl9L zX{ZY`r=mMxK9MeohoB1+5;50pjh4*uLogWD*fREwm`(My3Tr!RKy|;!2?bW0SX29O ztH)fBW*_gsFp_Q#l)Slc5ctmVy1ENC&}Qdd4s}n|W;|^e3w*0Q2%fOcDc>KXm?cdt znV5WmZObnp9@M`ru*+NAhc-%RAsPH!m|B9W;;Uo=)NVM$e>jI7OJ?Fq!L!6&uxDV5 z3NC089;ZWN5T=u%F{Wo<(y^BD+5WQGAe-(dp-NA{Q*(mVCk*3KhoVp4&HEya!<;RokrTr%glRy8p@zr67Wqd@5Jj|9% zAEX)I$@4X_Ixxo73MnzQG&~>ax*^RUQ+$1&<@h41ZHtza2m}+()lQlo4AvoZi+gx$ z$$nWtb@OvF7LTm`?4a24Je=B32i1Qgbr?GrKhFOZePY;KvLmvE1hX$uADVvJymOb3 zCiwa2k}aJcBFMO5QJ19T`4@t}Cz!q>yY8Vn3`0%XxRZwe?%!s;ySopEd|9gru~OfQ z@)UJNEJvWtf&<&+Ek4AtneTtA&T@^e!+~sgWOKF%sqc5Xrje?QK&(L1@`9C9t&*3( z*^906XVIcOul~Z8kCpFGfk&*BQy{F$^CT(X_JD!YBKz&M=>r7oVveYdak>=FiYXo83 z%qj!DW&c&AuvPDBy?t?FU;~5SdJmHVlU?jX5QY?8B<@1@vUoZUDRQqbd-+9mkvpybkDFJIjL0;`Oo+O8hki*T+B^ zuL(4*IF0D;3jO%+SsVeQuF_gkXn;5f{b1QsGk}>EQgq5WT!%)4q1+-^lbnN9>x&%E zUVfpO#l(|lF;ZqR3@sPjk%Ma6B?yY73mQ0;Pf46~uT+MZgdAOH?F=-p98H-f=?G|! zEZ9>Q%`NJ@Wtqd@9PGS_WO%WntN{OHhh8J_ds1pZg4^W9eNf^M1-D5ffS|j{+4&TL z&iR4kE5}6dB@WDPcxb`ax~S)lP8uj(@9(Z3KqPGrku^Oku8USO2Inli=dO{&j}0rqa8 zNb0jf2Ib2#=3uqk>;>n>e0|P?7SuA09E*o8g3JXrFQ4PzEN~))P;na}S3(KBb4mJ$ zB<~6a)x~6O7OL^$E%rK#qkQ-5#44+;@xGM*URpdh`-!tzV+s2Di)CICOxbusR4q5K z$TjK{X%7 zMB=XbG;aYU10gwlbQoHNfJY$X7RY=ph#pS}2&d+jC~{87OGmbTinG+eEn4Q{z71h( zhrl>_(tLHQV2qE}1Vo$ZS6%x#T4j_it`~%6L{3mYiap}J(QM9O50M_p7!QcH9_xOvVTT^; z4jJn{ITf3y=&@=`N3*|#aynFGCTZZx5hB-|@GXBlx};5dTK`#QP|}t>#D6_YBTaK; zd-@^wxP4Wv`p_VfeFO=9|6`k7TdtQh6SSBv6P>g_S=#^kOd8T3pJ~Q#21xs>yB-4EX-9|_j-s&;;IFP}-0EF>HteBw zr^}j(@*~GFjXQXp_Px(UM0hfnqfLP_*P>_3{*1 z`DmCbDjF>XNvW=(S9F??2QV*VDslm~dIu}X5(<|G!lf4RKRL}b!acj8L%sWH@gs+S z*#UpZ31tbpwDxUp<99&(Kx@d4hV9opWApnZ2eeB}D*8e8iG=m{XqT90)q^|>>qR5D zJV%a8&j(_;!=m511HdHq8`pubcW(Is=QfG&+D{|a7=0pajckq!!!@HWFuPoz2NR2s z)gsoRFj@B9yc`2*UwmJ&L+(wc%etB*hVk+{HfI6?-hEOo(BAY;~ zI+vl;AnQFKcf$Z99)3g|*=pqX{{NOu@USJz_()>KR*7mBAn&k&TT9O61aNm~;0ieR z4S=xt8$GM0@$A7Y#A@CpEAIhyPTI>Kw=#cU3jUFUH#7?%YT6uBf5ZfBETlvi7_mz*VyCH&RQ`ZL1iQ#uqu`(}E=Pa|{rejpfN#`~Mq{^f@96ulBoM;9 zVzq-1#{#XG`p5+INayfm8X$uYqe9!3fkY#dSD~A(Gv3aez@~Ow}YGrlx z;JM3YpKBhOYfIoxH64N>=u`ec{8uuX8uk5W0Dbr&S%oVJD7SXDmaLNYQV9Ht{M5J} zZCFeFr)a}^=Ubst8|T-Fmj#q$m0ET!M9s4}TC$4a=C?(ctPg}A2%Tx`6Cy2&{9vl; z5|*?zk2~SN(VQ5StX~O1i=7AJ$tnspQG2(RnvJVu0Iel!&BuEAkp6Dv zITF>YRfK5^qTZoDcc@$S=L0Gz?Ih|0{QKoej^Z0DQ9;G{Cnb#VO$b^VbDq=?Ks6!c zZpr5^apG0(NMH8yYwIF+Ay&-wZp_XUE6~B-wek`kxqX6W849*~H!gBTHpN3;m`_7& zh7|?cg!xnXYQ@9c@5LE;$Xbx;MvT}2! z1opO;C|M2^L3W05(u>OlCH_@77z9eXylXw|gNLj;useuVEbb=ao|>k;)~!CQS#azn zvHaTzgWJAhW?d@3n0Mn5}kGiA}!fs#s4(u+PMK1>|*Qq%kmhp&||DO{qNLSxdnBBvEiva z7OcF;f3Jc=qjxXxD3X7 z^l5BVv(2_J+7Z4Kadak{k_)snstwF&+xCRUS`FRajUM)w#|U?`3XwVvA+=+G3-qnb z8z7Mq|E+~msZ!Kr?UYop!e((<&Yu1S*JIfZEa~;GgPhs=VNqMk{+Cc_l8*#hLJP&u zv)A7jtH`zI*IL|9D~{MAyr=Y@VCzd{Zt-47vPoWdAfe5jcZM>jiCfU3C5%31pn1&f zzob6gs?4=ETPuA27Eme6?PIQy0699>M|93H*;Gy}=&{+if|$5*db}Ik$y4_S z--yk-4<3GM^wzq=PcZ>3m<4;5)*|nhNnuHJUT(+ptk-@17UA#3bCY&okSi7yzQChq^A%)UcY*mUZR0y zUI4eFvPM1iFSXem4cImS4uwUBQX&HDZ8irA;A&ssjpbL7r^DJzCZ%R?aYsrc;(smX zxg%Qb^S=>uRbdfCY#dzCVoYLL{zPZDg@-%+GJ|c0MTFVAr3ovpi?i1%`*mCN!xmbM4aIz4lwv zw&F0<0KR5(3U)rclostfDS9Ns6|wwHcKJ9ABdCO~L(fi!CA?GyeigUHau?Y7W5C5- zJb`9rn#jp@Gp7&$YmYbZ8lLHY&F*~5|Ju^s$7-$3+IYIOR(ehOyKrRFTOWR!qM|<( z$`yTL&v`HyrLH{VyWk=X#stHtWt9H~2{n@zx=nI69ya`0dGFEplH9sUcw@b;x%F-g z?r(OwWBJoqgyJ_VQ4QQv1bM*yM0}_yiW~FnRCm&KHHp(OeP5||pp&HLM6WPCf&Vxb zUz`|_I{mA{ddT?-ysX^-Ym|Y~loXU)*VeH=>Snq_qiy;U*i0mc%H~qIM@%q+QzDY` zp;v(Rj6Zheh6c~Hw;@!%weirfW#@7Rw2N3mSZ9ei8Qe!*2${Zoz5UAiCpcb>Djz4v z(#wv+tBWiC_~5de>U-p#ao3*HcOq_o{eU{#v{sXF3B1GA825fnToG}Ok#Z9iHSsCx zX}9E3#&Qt~FfFk%7T_F9*w6AS_}tH@dv#ws4sXlPkFEBR6MBv}+viw0(rP;YMBL$+ zBmablzwjX+zsv%=t1Faf-Har09(y3tJ8{LRV0}GftX2!ZEkcH;b2vGq&K;(+II}K= z%rnr+SiKL(nY}a#kXP8KYu^?_jUaKt|NNBjdx*#XA^7E7dMfyRcr*#W{|1yF55FBb z|LgF(lO;L@{6>B&1;0P&o}u2ShTnax#L4hma&RRkfD}Dga_~PmM^e9;bfouO@49u2 zBeXoS2{R&vsBs7t&*dLHiF zC*#s8xpZ;HrS)>@4ExfY$rBxpl_jAmk>1&%yh!gS!-b~Dwer-V&eR}=);}PZ-pRQ1 zuw2@1Uz&3fZH2HunNbg|e@yQF+`hZzXJrl_bNnlxQ9j?`^F#h@@CZF%&$_Ec*Gp;- zBe*3it*f)qx`N=s$tC?AB3&M_PFvNv*1bOA3y!Ur7%R;Z#r`o#6*gTGVz{nqnRitd z0cAq{U5@8v+xuIkM)jJVK)y1zG)okK_eHi#3bnwSiG#jZ4*Fhm(39ndgT5nm&|}{2 z`r8Q+^?jt#r^_Y1^a{pA=jYaN%#Y{LCKX-YO>)dj+>;*3OgX<><{_Ua+)J7#gey#e zw`=_`g}DJ%Dgn%THrG(Cc*1E>$K;oruw4%gYXd=SLb~>PoHmr?V*dk z8?Vjgd=;tWed*JBoz@++>!6{r8{F$Xvr1tz3Oj$es$ql!v$8z1Q$}D$H*;d?Dm2%j zw^ud99pT?@aIfkc9vZT$@3in%Ub|ifSa|R=Ea!%j5n`O#P$EGzS=Zz27U*4hW`Yxz zxeje{%|I})xoiwHy<(t=km57pN0w%+2T6e^senPbf=ycW?&0kIG%_X$5B;wR@-?kk z6uaEHA%9wI!9?$KTVs{4fKRKAjkBuyz0YmmFy33b8$KrOX0N{4%S~<}sL$GV&qep0 zMJI*GKr|a@UH&AQWhY>)G-P^dtrj^n$u_)z5bv`#Eyd7YTbQKeW=F|*#lM2>%y?t@ zWluOmzCd#bzF4@J5xbvo;{Uw8;7H{6{Z^m9H`3~CdOsT;rSt?dTP$*7skO^nvnTTV zUT@9ThhXL@TV3bvY$u@0N1`RZwgnC?{|lenypx;iyem57cAM9yzmtfxv#rj1@758! z14mbkcxZ%geq<9)X3LLQ#|yUlDY;s@`+a!H(muNL);+|qVujiB<>~O@rAIffim!_6 z11f#L&rVkcBLS5AFwau3+^Y?I)E*Zb-|3Px1b7lI_{4cy>(Lx(n3x51$tS6G_#9M; zdDix2Sv9JS`tmwoiFx|2#M39T!dGkjKD^v*6(snzJi4Q-w(BZ3JozZUD^^f#R6LN@ z#&o+43Dz&^!1#6|%X@z%$3?+btF<6rR7mp6{nw)}@;Oha8?_;Izi1WyOyc2a!`_%D zhZ5qXTAsNe*Bki*8_Me&Aqk?y@@*SXkf$oed?H)fJIYzXZ^9(Dqtcw~^NuP%z?Z5X zRSdfgy`i%0F1=s1e4{N;K6I0!GOlp8h{WRgGpdSko21mrQ}I9b#Uo$dpG6(&&;&^t zg&xwUo`D)$gdq@&;oli(S@Fw*KVnAw#wCBvWAe4U!{5R!;c#_Y!HgcBq)|~&y_xMY zxo8ZyN1SUG$12|&tI2Y1BMms7PNSDO#5w7Ix@Gts+@Q|7e{*nAWl%2vG++8{m+apq zd-W1+k1pAZ>^Fk^;LcX!Inbw!krj@)W|FVFQi$k&h^6y{Y%D{x059Sz&qm9)M3?O2 z?a`zw$CBv?&4HLj%XhGu3!K|xmuCkKt+?2%e>~joeR(L-*A{io&Em=>iC0z;`e!>Piz+~aK6A%PA1EdXD> zSBzldgAUR_rY?@&?UR8*q|T~saRmq*Mt0Ho+%eIB%rD8x_ji6nldbJFYR4aeR(U__ zFrr}>t6$iUsRy{O*71+6@0gd`KWvBGXt-S@uxJBN)7!?5vc1iIAO77VdrVy>2EPvM zP8bZsqZhNm>?cd@CuM_KCHbsNcp@;$gX^zUUzqeEY(IlCgFnlD)_OhA9==ZJn>@Hs{w@xtNAlWGf9nfd9_x@VY z(Z5-|>GxXA){?!>&9p@0`<;hN)#s(9s&?6Mep{ex_{4t~jwi}A|}w>uA`FiYEV zzrjU7=FG;{Tke^I`I-sWTW+j;Wm^ok%_r-<15nTG$;9*U-CBvX~Fxl0|mo(tC@=MR-7NpvA2ddS#K~#NvefT z%7Hg1k=^1AN@^`TuU6rNQs%EbPf_zc911xa(9qVYP z+uzXExzh^o1)zaL0Fr0DYg&;HtX)XIfsU2uMsL!Ip4j%oT3qAU^}^QaZU6gxvubR2 zIKy|}wKw}>9s0h-zNx;?b@eF!Xa<1uKcoJGFxRXmdwxH#Z#2iG-TrF3346a+tILR+ zll{JL;C`>MpG@xez4m_JNeZf;o#9BwHNX8Vt84XA>!J+57~>;4#Yz4!z29qt>ac_s zmF!LKcebkfFZ^q?cS5)$4SC->%Yeapol}ii%aV>jpZETo^ij0Wde{GELEPEoJRGFJ zpRZJXQQDyED*Jq;-~@H>Tw@8Mn_0wO@6>yJ7#^s`FM(sU!dDlq(oSZ!88~R1QMFfD zQQBUAA9Jy_WFNzj4Laa_O?h}of42tJynn+Q%*vY$Kb>EY{ec_)B}{?o8~(oz{v~zB z{{G}M_M~3k`L;0w-8NU0ElH~T_?b4)mgG8@?2FAVV82sTutt5CAYg{XdE|d>QDw!V z8ugtqTq$X1VgQX0NB}IpMA51pY}IV>hV+bQ{~LPEt{We7T`jvqujGwEb&*6)0dB;! z@_o*Com8gyKsQjnFIv@38`C&&SU9kdW9}+R%D!?2nCP+&bruxHT=Q}5h+V$WwC``( z-5ZkhAl{9`jDBon=nk%U`yR8%cJ~m&~4jE6(buE84LuRK4Ug^X3 z-6-efPBSTSQ;`aK);6>4K5w?2cuWlwze3kdX&bM8oBmV^>Z1c$be&$xbZ}*9Vx6t~uP2u;MCga67@9_G_evV9TAw6;dUM4DEa)QowM6=~G{m6Rd-7W5Ks>z-s{QCmds?L6aeWd63=*`v}Pal7G6q+!!@fP{Fc~)+P4hQHNE^O zcprj`Jr%saA1mJf{}*^y{_Z2;y;dTb{v~+-VRR=jfcOw805-wa8lN4uyC$f3M zo<2`ZXZnPx0RY~w0!Y?wC^-DGcuz_8672!_lzhQOX6=vol62HdbA<|Q_pW({d)R-r z`Id#3oYOr6M2xsEI$iP2eD?mBb#5TiyRw=o+!2u&*naB zC%O>Eg62oAdp91!s_XQY9;zc)T`WV^cA5(R<`jL>AIAg&n;3!OV*A#cJn6Eh?_(iK zJaWn3M4{?SzfT=V^Ll%u-ZX3xEClKLmpnNH%h{E^v@X%8B_5PqWDrAeCmok8P6a%= z@we?JpMoVEMIQY`lp}PGoZYz6=VF8v%TP%Vf^miV3`ChH@~-=_>?=%~qCHvnZGJQ!!K;=}{9B!G zpb+xD?2J}w7Ge-C$Yk0tIV|8bv&x(y{FOZ-@6aE@&TQ$4L7UFP-^A9IG!$brmEhGuw%>kxaQkgnntsHp!ueo{c6flAy$nGi?ZKG#i8$j-ZiA?KFWa{K zEG`YX<5lgSgDq#ph!4CswH3;(72PAkzR+ZZ;z{z%^Lu`b2j^u?w~viq-k8S=m~P3K z;F(lk#*fb2fmefEjg`E#tPp>8i51wA$1m~F!UvVG{3!PFWN3aRF12c*C_trVuSaV3 zQnL3yM;cmbW22!*Rj`Kbb&v3cDeC01G<7oi-v4!dazdGm_ZaqnMinc} zO4BE=TD59`J{j^5ztx4Uwp|GYac4|e(;LZXCy|bva}MhGK9TmExnHmcq5^K;N}dsl z!z}i`?3z`~h1si?=f}zlSM^=Bq8xX7G^uX()E)1`+TuaCC3lXt1W%r$4Z%5cv>o`& z*m|)8ukO=^;ISz)aANSfD*TRc2lQ{X z+J3myHz+l(oVu*3W)@0)3{w4m!~kSA_;`x>3#(JIU%NC|3tU9FOZ2)xK&Sqd#J`)v z6AdJCAVxSdV0ro;bHXKk&k|3MO+FpoqqY7fHI^)b0guFl=7@v3R{W!d zlwgV;W`d8Xc3xLsDbSvuGA&UD|7iHh;M4X&fZ_=>`?4o1uv-|d=H+;7Au@yg zDMm~0KTKPa_TWZWjWvVa4C^^CqvcL@=+!=iZ~4EHK%;8)%Rk9xr@j{Lr4cyY9{zwe z!YNqY?D#3xjhJ*ji18M_{`ic*MB}%KiXKb3Jk-WRCU530Wzh@crW1@09^&L`)U_EM z(Y~0r^HG+-0j2n`&uN;HpD`90mOKwXcGB~g|C7&4VQ;28So@K#0sLHdf}g|1F3Hb{ zydmjER8T##`XqMlEzQoMPlp%m*X-Ok@rKM`=Xmj}xL#zkb22~Oznrj!q4W@bfx`+& zNli0q^4#v$b_TEtFI>YJ($u_+F^m_MvV$?iTq_v^G$OxvE#4 z{!@$a;CqAf%L!)rUCEe#5abF1ro(5j|h`~8VR8}_flxc_+OZ~ zTi(yo@7w%L;@ygRxhZeH2JAE5G%(9eN)s6L#-T~PMd{9nlTM%?=&(L+3k%K_~bfZP#0WH!V zI3UPfLx3>l5MN(@kyW1Oe?73lFiiWeXTViwMONcyWBu4Xzp3AnlRAO=l$$!@vSxV5fJ@axpBC<)R6qhXIQ! zneB)kfj7dFF-TH%i7trOxtam{Vy@eQ>Pj^7n&-5I0UxF}wg8SeS%(2TI5J+E*>KDB<`GZ^~^oavKxqw`y=n}39s^4=9mN)6%>T}?#OuPNoT%i>H zrkOZQuhU^kLUX7XCsBXe5g1tmFJPLwHFkM0itVWidlMSTy8T)f3W+6d>LXLjZzq!4UA)Ma#a05v?!<+G9>2_89B5@73#5j{Jl>47qU;z ziz23w>%_cw-W4+XN$I1n>NhUNO=9RBjixr{8l_!~k(?uKI2d<}qh1sFF{^rwn{l^z zA9XWQ>SA|u%;J88&IJuZx9w;ASKcL##!P(yQn|DdU4WPIr>#H@`5eXm#E3RA zE@EeWGPL#jS`T7fYJwgoPSZeMo|SL&gX+`zF$BL!g*XV*sN3jkDJk4I-8th4|3_^* zhi3#6QjPoV#)WstXum1un#;n@)NK#pDH@j6k~pLOv<2<=Z}}&I?0gEoSNP;m-%L<- zk(kB=!?D*$thTs)3QADm;q^bL2T|C{GHLz*CVnqD-3Qxh?tnp@F=D4Abn#%Ibn6!bKtI zT_nyx@A}`e`I`-%(d&n=-5Q!SzZma;Lp*@*xw~avR@|{_c8(*IQ@CpO3`e+6x2<&u zDcWea&-sG0krqM^r99#c&q@jw55el{ma#-0EFsx@7HCz2vy~GSKYD+({J4|jmxSIw zQ{696)Pd=_H`Yb3yD|Hq#IzdxH0u5)ert7q&gwX-8BzDkhgSE?m!!I1Uj=0{)ct$^ zpw-WAt?uu))%{m!b-yz%3V-J`K};>GmP;f;j!@L=amrVjoBs{JMIxdZ~p{2Q|{NhDP52BGZ;5d@HVcNe&_Zx)X438)!vZaHDBZ_ z9+BR4pOM?xd}@zh2l8}juSn1Z3s$FJqYddhpS(=)gnJ$^!`$;mj{8;&7jMuZ>a}P4 z;(-Qsikr63pPa!i!EbbZRXkeW73f=$Z(K){7P0lY#ujz3MfQgnyll78-LgNHX5lcp z8XtGrAHSB5lgwe}s@@;Cj&@*h69_%qED-7^{UzCTz)K!pH?)@)Rd0*6N2*b^!}_Dl6E z(BQAVi07#JPxcGGgRv5fA|*cI>>*#Oju}If)9~DWT<`wwb{b%L8R{aS}6fTf)PVrNr>GP zs7s37G7Q!CHWs5qUX)MRou|Pk(v?=9OiQkWgo^_s>w<7>CmyoX4N2|+b=o8`sSq~) z6|Jo&4bKkZ$sauLSe)>2ZNCxc=bgsgc_h2tdIx@poB`VZS@S#P#N)SR4wU0w=E2F{ zD$9wPzJ=<=#szpNIW|BovDX?Oz93rco$B9D^t0|btoxP^EdF?-DgIbtia%aU!ts?Q zQvC6kN3Vlsy0qkO*5gb;Qq}{tKs5nNv);&Z$mbr({35!`yn?i^7$?g0$2qow<$ePKf z7C6gU{o}ofHG^08C>LY<*Vk+k;WRh>w!NHiP!q$rNsTHHlJ||pDZMwHh@XG9k{r=tQq%Yll+3bTK_x;nP@A(e~lD-Ll zHw(qcWaC`D$84N8NQ;|J`g(iJV`|7R(@0+e->R2gLL9o^G%o&@u&TIie$Yt_$WXS4 z#J8Aqr1lT}qWw>*KI^pNGSr~CrkP}YE$|tVN;y=wciq)+NQ5Lk@h%}rbg^?;Ui~U8 zQkkc&9Od7FB1&J)=CRZ29~<BwWolbJse*Gh^JSxY8zMBxRn&nnMn zXOr`AzZ}ZtIB-85RMpba?d;*FjMB4R>zlr8IB8SYT%bc)=zt0+GL-fnk2-mBSNTN*SnaX=wA5Yqhz;8+E z7CL`fR<+u7ktj{280%P@G@J1zL~r&~?ZIPDC4&PK@Xg3KX4)H-^tFGx+l({g{CoaW zf`{hxiv_dmED7#0Ss!qGKTx@wGW7C@+B{B^RfK~-oTCS4=<5F<+XIZXZ!gBvMpBQ3 z?OyEpgo)>?ZI(G5pPZOeuFT0^0XeTkfFGG8BsLf$cLEGw1^G4PHDSq|&tx@E+mx`m z0AFI4Blq!?n4g4pfk z6h%QB`We&T{wV0%gEvIIV@wN|_EX!IpO?(2j zEOXQs7JJ3SH9V-Ep^!G`w!W%}d**6ZP(7-z=GNaKs8B(E22@)=mWE>Gh-(D7&Kx!)qIrPaT&awYx$d<`Q7vPXONfHNYstaCAX3^ZBJdmI z*v*v6DaJ+G-o(P&_v7cgxS3o&P4C9YrBghw*TZc(mbT*h;h_3SJ*1*deaJ^f4?MrR zOUKrR3H;W%DdJ;%w2zvU{lanz5QoLblra;u%2EeLoiR;#M@%sz`NCT1RKedEqO&y} zPzO)XBDJ7s632A2R*3I*wim!NtG*4;%G!%LM~z3l%PMf=oM63lUVq6hZpSW1Q=ksL zD6!D`>rY<-V$z_%Q*iQ%T&4q)EAW8cRKF~$1{d{`Y&-Z_GwI=WP+EgdPPS0(STM(@8$rgxZ8J8v}a$ykH& z*8~oq_%-t!a{~>@DyfB#Ur0!v&8khWPAoqz>#|U6V{Pi*2<{q;Wc zbFtmlkN$FDd`ythb>`q0)ojVj{jxIX;XfA@V&S;S-Ylv806c{O2CE=_4X8FA!E1*N zuANZyPL58A-r-WW!3Pt4QANGJo}gMGu03J2@wwEvKrb5TzHin&uE6mXms{KYyPyhe z;j>yG4Cuil6npom++DlO{e7-}| zl6W^BynF1Rjdz{IS#^3eW_1oRsPtL_xvVRCb;tdZYmBTi@z+^O{qLBGd%%aYWpnF2 z;}-CsSYNxEPmBc|*!5-~viHH8t)Wkdi|%BVhdT_~Cl{;aMlyG+D+$e)&!xgeY{_jc z(M?Iv&Y75bltKxde7;&893oHopjPt)A@u-cNIdzK&uRQ!cS{zA`eA<&@(qMtR#x0c zP`4v=y8YaI^W69AcwCnWW=CHjuEXc3yVE<9HXo&GxO{E~R~a0x!aCxdz4a+b{O9@m zB7e*I6O<5&FDsQGT6#TjQKS$^d2fyS#@G6E8HmumR!$|}2iCk9Q^dXgtUk zg3L^OAMtdo41A~65nqIl4^{>o6Yw-R-O3U9RLcluF7I>mW)?bk1uI&}PX#pNx6P1% z&+cG+QU0n1w_`DBgmOskOTDCdGdBfrfM87%J^x1Cajt>sU|yerm0Dth~EMDh>6jKhqxrRrFUwt6ecDhx@p zDT(<3e$sIuh}ZSkdaZwco#Us+w@&g|Le1F2G?>cOwPb1lKQQb|^EIsEk^bmq0X4>o z8nOgxm6yG0|3?Duj505#ifx36-WJ#IbzJ%~-!0GIrZ%O#(7d2e{x{pED)+s>u#Y_ejI#sSVozNPgc9FUG&}VV8{mpS}MD;}dR| z&kn!$KONr*D1CyUoH0J&Blc>V%(&_@tP|GmK~i&fTv$>Z%8^ez>b?e%j;{|4Iq>jOt;mQwx6yVkzBjLH5h@Okat7i-^7_F6!Y?Dehh zCVFinyA5wm;us|)PR6I#QR0pG#mo1dasFX)RAVnqyk~N@;#c zkLKsnzFtlm9x47_)Vugzw2L&rGRH?Snb7Vv+_oH6CFOqg@; z_N{A9;~g?Nx%Pn3M+Tkrt$WMqdOcFtE^s`o5@ zPR)&!WY19r$!;dl+djXFOv2dMPvDi*1#l)j3^X8u^rDR|&EZ(k3o`_<&n`Qn?|myz zfD>fGJNt!??HAtENCQ{9z@s`i4Z%DS@V((RUHmDgJQ5;;V@n%7mdN^71?P%Z>Z)L0H$)X!IGGAaO;fMzL2r~`W$fQu-k!~)I2xgl{ z!*$BM9ULD)^GG_mL`2fUL=eH|g9GM3%iWl!n56v0L+=kJG3nenDrP@U@Y7iC%_ia{ zrrBq(S8Pm>;B&C&AHbssiIv>K16IK<)byP>L;YAPGLjk?G$!iywIgZD>Ywr2s}9S% zYVA(2+g~s3FHP&{y|#_pmTDq9?^4&aosR3b zBUi|mYWp9jI&>YpGN&chOA6&*hr`tQOPi%RW$4MjT)bDHA7k-8-9&}F92vZo z3qYL>s5LU`L=x)P^!e#kJc_k(85>53D-{kq9hZ4~BD!Vt;@`f4?7BGw9iE>BimRWWL#hi1} z9KRFs)bd4_ID*3&)$iCO9Lhs^xf(-5eAU`Z>U6?f_3Ln$8_)y)-kU|BzfOJ5Om{f! z8b9X7v^lR`w|V$m)Y3hh_Ixr6NcnCvRstL*?ddx@BR(oVIEOh^?{ijprwX2iGhynv z>ORqSoONK4KwV`=)vfG^a6xkDGDj*kvBz?<=Vz@T97cWpdI`>j`l}KDK=C@PL7)n< zLbmj#&)C0cue%vtA()MHAg`BTH^Q2s8oLn`sgIGRfpvYBJu~svk2tHWi(jGfnuIu4 zm{#@9h4@JJtqiSpJmWx?3M{Vwo9pfOnA@Lqwv(!o-zQd0XMAub5Kd%r@u$`jg*8tg~#~lJtouZrZcB_Hvj+VYhI=`Z<#uzd}|*{0dnWGs&0vRx06= znvk*Shn3bud9$*D4_}qH2!q`4JSZrSf=4;^%;8&?$s;b0edSEIa`=JzinvUwfQJ?_6VDAiqRaMi;?d>&@nm zvaWuk7PkL*A^Y0tRRp%hd~ipwuhnwY_gkO8B}DqH!0G&Lu3b;i0XfLYk!ptel^G^S zjFdBUqHP=A%!BX6W^0e|v9f)_#0rD~sM$v|e2;ZI_0eCDyjMG&#BMMZ)fe}DM;B{Y zCgg)64;$=d{%QyW(xvZ2^lS~5{o!`2zibw36_r_I|INQbwh7-uzn8L3$`S>CmEzHs zEIUM-LQ0R7Tc^75LfVj8;ZG7+gAze#E!Kp2{f|oZv%&gfT&ND&VrC!38xuoBIer{d zSx_H2k{pvGiHvR@VifVa)Q=bR+5fRE{>;1LpwzW%=)^K&0h_)wupamzt+%T@N!NM@+1m1+42YL-0I6h z7?P8wH3NB!Jb|0sCETQDB?YHH@vVDPI7!6BCL5r}=M;UKNUpU3OHZ2$F{rRg-OVa3 z>MlU_80v$Fch#g`hdTO62B)$^YSa%vzlCnwq%3}wwlGo~Pok@B6Y)Q?KlhloJEk&z z;=zznUYnj_c`7fqx;+R2^V$dsCv_cqOjN;vL(e&V83WJ;R}hn@cel}1G8osFn5vC7 zCz?ymiDtN*XfBi!jc2c(GM1twu@{%Q?*ewgf3@V_>;sL4$Jp-8QNSTShQAci`4_-s zI_{HcC*Ixr(U_)a=A*LN1^Zx*y=u~64H{w;9a4iC&e@LqJt> zx#$3${qvgnS^~H4d(^;Vt}kNcPYPBF~QpzmB9`v}u^5i4dQptMTAP zYSu@mjZnS<>-zKkYg~zO2Xu@Zz&8JL!Pgw&!mXq19(1&Od&}YP(kIe2AOS&{XIv3-Rc8mey zo@liu{LRDTMh1t0@j5>!A_HV~oY2VaSmwo=*mrm|bI$SWeF$D3@v?LA9+95<#cd{axe)5Rf^vam$o2a#a0@xT2iym-Ucw4%E z*TQULoJ~T$yzbESpBUThqtOx_mww`NrzHvx_CnHu+D!45(ZL(UA!mLWE+aG4U1^vf zmvu?jYma4b(8W&);nc;=9Sz=a!0p}dDN=+-RbA2Nfw;VkCPiMX^nc-9Pcp{Xjb z&YP$$IZ9&u+4Y=sN6Md+Y*!0IItQx39) zjAO$P9nF~a8NqY9BVqjrWR^9}k)(I5H#Tqa?l^|a>}TlBBo@rI55a3mCbHekl25~J z_OV&fD&l5V9r9OZgz^X_b6(zlflGf5$la?A`W4jNuA8=1n%^4 zH0T$jf`jqFW9cSB>rwWiX|MmBRCTb0m1<2NtrsM8?I5b^H%sl#5D_<#fT=I-Ij7K$ z%@KV9!0A9+-o3iZ3@!<_FQVU)5lS?VYAzpZ72%ux5-kZ0#*az&HHUtHf2*XnR#QmdT^+Q9y^B77HhX#>7BX`vlepqEIy7N1vTexQes7_ z)}tOhzmzt}g2mF6oh0U-JeOe|{xg44m(zc+Oo?_H-j!Z|T9(v;biJ~$=HH=T+k2Rh zgzbq^tohF)Kw*(AE4{nD|C`fs6sy{re?xTawd`9JG&+BdRdoo9{vmOurEUYjv;yl3 zV(x3C4+tyb%X}*@p=DQ-33HWuT$~^VQ(`+o^yM;P;_q8276fAEKX<#P#~tS~bhz40 zrxUf?HCv%)BXx(W)r^&5KeJJd=T|bHakQ;*$l;c?XCw6mGB+O{I~gxw;=`xM;E+=F)ZtT{ zcR;ft9FetE`-oResHInVQLuWa`e22P)dtzr4ujR|?-4>rJ%>*8U*fk4Q$>aP2S*52 z45!B&LG%g*EGQ6@EFT5piSbJUJv}D^{I{jEcPCml`@h|AvN_owuqS~OcC!G2^3nB- z$?O`D#<5&07Zv3nUn9_LTttDziSr>u12e3B8vf!8DFWRBZ3xl0hF8GvT{1ylG`H^R z2Vh!NM(L?|tWoiheiJ-6)_BCe)>%~=+qq-M*NIj1Yu(0%SPvjHqjh;F{EB?%v7*v9 zU$HJD;DP=mQtFO2j-$L>{fSPOo5860jZAM;%2lPllzP8|-$`jv8f@dYI5Cp(`c!eUCOrv~%XC&Ih4_%X=SmQqa3TV}$ zPt96sl=AQ^Qcja=__6lUl9ZA?OIL@fi>igcDJOLC&;|jkyrvxbQeGs*Q8R&>J2Fg1 zB_8uuuH@qDh9M!k#*cehF zG=;LwQ=uMIE(ACH?r8z|R4TJy-KJj+<~3j#RO93|w#9(n7QG^+4by(g_vP`oI?m~F zKe!s^5|*mUuJ5kFlNrg*L?7>?dQFpmd%w`9o$3jG_0Ss0AV|p}wUQEntsePDqZm^+ z%fAGa6!yTb+$)vy$qjr0&Dx>&yOj9jhV9=_vAQu{l(3a|8l*iaLX*`>c0jFJl zexe1#WSlP)r%k+dWKYvM!P=k-vnm+k718WMof2$hLO$esafptLwrLUM!H$pgEt~!P zOef}=FEKHt%WLZyH#RZT0giApzhxDREy!**1I!A)A!}XjWGdbXXG+ICo(6EKe518 zRd0VvDrNSZNcCaOd>iOEdav3Lm86Omdq93#`*t4bgtd&rFZp`fioqriSi zHZwx7lw|5B8T!dVT(aazmVT10pB(={@E});bHw~elv%m?e_%Z7$rdvddye${Z1N;Eh8Z-l7Kp4C&ch?Iw~$hgpnn@(S0P`+#-(B!00}_S%mmuLjSK8Scb2NbbC~dTy zJV(AXIPtu+AU=os6tHPaa*TR>1z#{e!I#Pe-jy>ulP8LE@WT0qVKAsAFA-{NQCg%s zpJ2CTdCcsIdpiZc9;TPz*WGIjevQ?A(=5Yz`ck$zHGs=*rPe^Zn;NTh$K%b(j;GF# zw@3duu*wukgdRCPJM`LNx0Y!kv+iMW*cUUP^MHJv^ePGYr|jy_p1Ciawx-3YK>g-f zeUmQg{UAj?mh7CM#TRCL*2MQ`TbVkjaLqKe+5|S?PIfuHW!ipO#C@w!tNx(J1M#ws zswYXs(ml<4o6dxm?hi{a0UDb?a|(uGrFXiQV@wqv{5bk^wuncXWHYvr!N6O_M}}`^Uq-?PtV5{OII5Sk zdW_X+HCF`;{%#g6yg-+ljpHmb2Da2oL?mz#@p#HQXAo8(KKORMu!CMq9LYJtcG1-V z8R}vazSsB zT?l>GdT!SW8-iV5jx%PLs^QW23*=EKW9{vm#qvS^J}o8k{NIzGBGku>#(%H3Hp43P zSYtO49$RYXlgv_ z{om0yTR}S(z+zt_0rxjmt@)9oqpww%#X53D3$p=YliK)=lkvzLw^rH3dN+LdJKebK z@$9WlYS0}#zCwnG8S0SuOm~HP_Sc%fr)~At&r@1HV?Hw?42f`Ug&dDP1o;q=RAHvo zEUDZkos9K9_QCHQ)`GF1=2xs~qM042EmDC`(q6VgIe`g8*m$z!UDtJ3 z3|taD*6ZgJ6=F|19`HDWeJa%6m-YK+%O>R;-nR->Mf7`W1{+aql1DuS1!vV^x?7|o zllmTtIgijQ5)kWJ5|u9bl1iyhUP0y>>m7U>5YU10FL~E)U*t?4)uO|r_6%-l`X{~& z+Fguun~=`bnpO}@d;`@Rhy~cSJQA8smO}M`=djjQ z2RK}C-o`E+Air11!gM;+&{xpkvFRVpkLv>biXwGNJ-!`5;2xF}0`kV!eGQA5eo0L` zkzXW9*7m#@GFbl>EtNe)92}9RO5BaMg(ISFpN{-vT;5$XT%Fh){ZvHNB3bmdy3-wp zKV^KIm^dOh5M=fK3aaHZ;k^%rxA~0O*Mjty&WKBt(-N*% zkPpR!IUv(A`tR@oJqy7U{o>pFR!l`fu z419vuBBQzX@A%>1zxd+kPB~nPZ1P+(6NrQ3JOXycYu)jD^+OyZMMSwz%{z{He)mc4 zKVJeCJvI-6?>*v65cw*+cpUcQ!@-8-izjk*o}inHRZ&iI#kjDnc6`j+>^>()DfJ+=x%8(o+!Fa+3n#6P7#&(ps%9zfJI2aZ#6deO=CWBr`!UOghc8QW477M+g z3z4N$*E(c-E-6^+<`;{$NwE@b+bCPR@m3If@u?89^m26tHGaKiCzgBOXrXLCLoA%= zt?%6sIXCZ9t1vslK0OlafVnBm3;37(zK{7{lxMP`h1~h^jvQ454;x=FHGi9RnsqSg zq`Gut8Dc-Z0)2s#K(Vz1TOc4g%_G1hZp@d#(`=sq445%%TJ~J~wP_>m&9-E!K+o#0 zVKJ@1>My{EOiRL|=Wz7?CN98U>=DX&`dmLJh#8kZ#wfKukgHr*eC=tQftLqU%Th*w$8O?dgHIN-}IlGm?W*w-W6FoPR-aQ zp(>1SkMF~&@j_VdVyA+(d61;j)3_Z0*JX;)hZpCtpfjL?`Bv>H>zb(hT>qZhOQNN5 zj;2#`L_0MwTI6J`q?9Ctw1|18B)<+XW*&#wal!So%ahNnT5q&?!uZ~ybFC@m)~p*M z1M>D-#loi)kEBBpQhgBy>@rrl?^TxH?c{D`+r;;Rohnc!z8{G^18;9k^tQ&as_Z=| z0(@Mr`$YG4NF2mY3z4vD$3;nDQ{3h&-Xm6skRR(BqW7SMYDefTM-LqpM95L4L^oR{ zA_p{+%f3Y&Hu*VCik1UHeoh+lqie3T$5*2*U)V58S1%ERY%BV>;+=n)} zlTdA^g?LR%C0_Z4c#Sl~>tZ2ZIYPXy{jK51I1t;4{Qr0^0W|g7@0~%fU~V``U`Cy7 zd0+{@W|erydulI1rWGUwKw%tfob%x(;}E9oII3pJl`yGY@;GReDG`Eji@eQ3W)9E6 zF=fXL_3Yow46=jlW1U4SCX62#yh8ZZRp(pjq%rOvDJiE~%i$se3seK9xg}_+c=(Mtrx>KT zbwv4?N}5^a!p4C0a+ekBhto}FsF(Qnol`!m5^|&7eP22&;>+tK0Gbqydsp|LqATI< z21|q>jt3P5)`CgcOwEnV%ZyC+V5!y9+$1vD8!68KFq!O4Vivh}5zH+r;WSK5`Y+)c ziAbzSQ|MTcrrFpg6qzrCBIxxhhXH1V5K^CrFJeFvg6MHza}->x#$n~hQ05y`+^K5p zUlLuNE2ATrs?!XsZ*o{AiFa>1n0PmzM0NPll@wTk9B9271E(rRUS%GV62uowiZ3Wo za}c#LY@?OllJh?tlhBl$!8`MbQ!wA5O_ml04rFHo?1zlZvncn%oW2$Z05Hq5U99>xe&o z1LTe~*?Y*v47+(TPPo2RPaER5v=pl3YkXAh>W(?*FE$k( zvdRwm?%zqN)l9;a#w}bydDWXQl{sP#yz?Du>USg^FENV_`Cd5MQ3Y)!T?}pd8h@%Q z!M z&K2vOk@m4+=<&dzVWB#!kl3NM3-a2+C*AYEE4Di|V!M;SAxR5cwNCR#oXG{e>(!MZ8Gjw`&SLX-Iq;%E6DMHy)n!;-!xF^TX_Is0KUlWU%k#jaCY>hdv>5Fo%TH)3&P&eH~q>`dk=b{?V{s7 zK0S_`=yu1;HzL!xy{ z6Ps5BwhK70#_DmTyLUUWTscck_%^`=h7})YzV=FFU2aCaLdb=^IB~y5(zl z0Bm`g`Z4K=t8%t6%oYPp^A~C7Feku^1wEuR>2t0nLH6gMbVu9kjR`nXe-=sqULya=2T;^mRH zbQ25}dq{UK<2^3p6@?MUps%R`U7w4|Q)o1IcgQ;Y$LFRXhk}3<9I*?0BrxA#t8RWu zySQ3YtA!=nNfyDD<>S5<^3;qXnuVj|tFrnQjOKwXA$fLL2s6FJ-6H4LLYewiz4Gt7 zm&#_dNa@Bg^A_XdGXfLq@f}ikJ|J_D9N**5B*sVmHi9nj{izBfnD;+$7)6x+yEFetwgH zPypDR&2-Bc8YePDk#+w4cq!5Xrt^Z7o^F%=&_VZtnjDx=b5~QRZlswM5TE~x1c+C= z5>%mgvJ9$&j!aJ2pNjBTuR`=nM{=)o_%6QAaWnrt!+)1wa-HK>(7@|QT<7>c*M_^$ z{1aGUM1Ef?&y(1klJl=ern255%Bw&KlrgLRlmja3Te*k%vE~p&xU>FqT@n`e94#Q* zB=>pS^S0<{v6NQ6256Sm$9#f-_+!v5Gwy(Xn>d8LVLfY0B9z0}f7;=>Z< ze|DEd5#kNPw2~g?LaeAHMC`j_*)8^ki4d_DY3nE*u)DpS*rIsK!|wXE6JqFM6MORg<6g`r-c?Zv{+x;p`YX>6C3qk1x7u%!sR%;4cHuSc85Y%;{<6)4%>HGjU(mS z!->IXrlA08A=bj&{Z_;?j^wz*e zB#Im9{zkh7`*Umv=ok@R+N3F6*+yO2R=cv)$7+aFhT_H2lOlrshF&r~^M3QR!!Dcb zjut)}Y3QFtaWqOwn7I14UlD@hj4zg;#)viw3uS2(DaSiIdVOc)fx+@&Oh3{3fn|>~ zl@cD+Z4o(?6N!3VCKpC7vGnz?J|7B>!G{eq{(;Et&y(Y6rrJ%IAw&W0abG*b^HzXvJ*lM48Gd$Y0OPM1owYRL#* z>|W{hu#rbvh;!2PNJ(sGX(K*Zg2iyE8z1n5uBv`k*aI|d66ZzzXP4euY5l_Tnscl7 z$g`**huZW#37n)azf%h{6O)`Xwk5Yd-*m@MnR%TZKjprE7C+_SFaB9<5RpD5!h#%i zq(lTcnuwj^U0!$eiz9*@_!e8j|55Cef0r-MiU^`(ekKPCjF;c*b_9FJFBUjj&X%2) z6M%8HkB9omqmYYGYXn?N;t248MHd7ae@(FJ3oZ43L0l@0C1R<+^EGX$|M!>8ENfIj z<~kJaLtE=FNxodEmJ<;ODS{nnhqTp+NlCV@_a`I2m?%A7zLeg(vG76<4VXn^s};z; zM_U+1o;LWoIQ6A!acko>3A}~%8KDl4Pz$4qQO}6f7r`H#3#|U5kY36$cw3MVeqhy- zcFBcde?-54#|$k$7Ta2C7S;1Sqr~=cE;mAE9m7XN-}NV5U~cF#y-k>2XsZcvwB=nf zpxDGdrkABQKa%yyqll;eq}$;vSeO}{5I*b({u*zA;F$Wu-yDhpcS!xotDTOf;6?Q( zZ*cK@e*H=0BL{;V#*d$=r7a|~+izGyu%;+??1mXPt&GC3^Nw$Lkuq8RXMx4%E z^E1Nyj5I%(yNSR5Se_?5_sxR>^D{|)M9QqsW4iua)mZOx(9WF0Q)wmHxPf2&kv(VF z8?xQW-lETL`EP@4L?vDy2|OODdn!`3PL230c(N?VX_e;s9tk`r*>pGfOGo$`WDcy- z5muYEFgI^k^T{-=le^ZpvXKX5b-LB+Wb1Usuf)6G%+cuZjx^Pd@Uy(eRs8{PRd;GS zu?YQ@S_6|2Zpx_6CizUc`q@=_Q5=_E3}>f2OdXj;5jsj8)14w-Ws|OHgQPR9=8$wH@|6I zX*OyVY{%xwj!`-R@m$~Wr3Im0<4Y$6hea9}>EeP&;}U%_$*zc+B7x=MW#c$LgtxhA zNEbirbgoChWwm$B~%ofk|}A%feA9glq|f9uC)>*Iumsg^J- z*Fm2f)z@% z)$hHg7O=w{Z^;q6hMnrGOT`gO=KXRyc9^wl>{Gv_U1?P4LwB=-mm6fg;Y17CZ%1%o zG&+ig>fe*R8mcdCHN1TI=K*13QbAozW!0l{T=CqXb@=vg-i_C0ApkQjd1DpjC( zqjVgU^X7PH6;yJSX?GIsf@}ilHbLZZQYr7>N>tYJXxWphlGbEl$@R_j%#5~B_u)wu zLBiE>Z9Mbrg0^1J+h=i-F z`0eDNeyrai2!cvBo@4KK8%&xR?tVR}V zBBt*#M+{-E>Xg>TyE3&Wy;b7WMc_!z*Pz zwIP7&Edw~}%b4aRhS;6H+IE7OEp4)|-9%ehDj^q^wv|^;qK!)RSTB&YBnMLwYe6pf z{tbxBq3Uv;5igu)a^MqtYVBl!KyC)%U-PPrJnp9ZTrB(G<$^QSH|kGHzvPq7Tg)ey z@JTl^-SkAtoG>1390Lsep9L?Jy)N%`Mbvwhx@Z=C+@*%zKzGO(`B~^N+#i7f%{0klSRe5GI@By~O1&=28&7U$sGWolf92IV8XyCZZE-{)V)9lAZ4p zliC6fM@cnWkC0*Fdrs&+tg<*{+a_DtNleo1Q&IGx8=)V>osX>)Q)b9*Tn%SM|dx?at(i@mG0_tepzRn+{}3H0$`_9Z* ziBUI|c%?w~#m7(ZV;2cA)OX;l%*<+$%d#IB_+=*LDHXb6>k~;Cxd)#&`LflRhUp2^ z^GE#a{gu{YuQdxdvrhjhI~rlXiUpTP-OHjANPRUkI<^^M-aX7*pP2?DPJ}+4gZ;`! zb3~x(o~x~KMHjPhgx-AiF}#6)V3MP?+Fo1?p0}`mC6SqC!+pe zbU&B+SEtr5`XXzEOrjj^(xFk0K%=4$3M`fEqtOR7_@BQ668)ge`kcdGr@rKhXT0@C ze%!}frD=)XEyqp}mzOV{&tQpw}>We*xQ`@U2 z3p765*bN-Lo+?F;`K-xrIG_OyQYCDFwc<&@=wI;^e|-&4@K>H_TQ^-6{fSHpOp*(v zm>l&MkUP)aR&HiR9czSq7mJy*ejF+Gnl~ok*qcRa(xFznZV$ru1cM33vizTiJ~ee( zi`~{+C;m9}b?h336CKR8;3})wV@(l9b9Y`_hntLcyRofn_BYSJz-mS;=4yTkZr6b= zLTQ_Sd#y)ArDN!wwL+Gk>@dS+b0HwhM%9<*IwsrZ>f)<`xjMsjbX+X+vO>@+{OSYz z#Xy?;i@E?!3<_X7LaWnh16=5EjHO+ZfT<+}hiz zev9n9<5FIp6@Ni6G(PxAv;PiB+zYP9^!q}>!msML$cz4}jKaYo3YRrlvKptMQf4Wv z!9VbDK#mJ^f7&R}sxQpW5N+;X@CEk%LX=mOv67(PsCRz%M>$CZ`%AHp9%}DLYpBrl z<_<=?bNPEtGv4x5RqNGApvPHu^zv8dNuPovY|l!DEq;~aZSo7@r$e|e;__q`?$3d5 zJhYy*f0=1*eD}nZF)^X9+7LIZ8&P>5%{d1S%@Bno^=`%pS_}e)3FWSq-qYP%`8_;E z7G~MADxaHO}k1EBF;U8hF<5aaVpnv0!^HAEV#LUdU50i?H%dFGRxcIY9j?I<{@rt_lf;Ox5?6!rIxFO0RBCs;A}pe zMyabA1ALUQ|46DJ2;fi8s7Qy`>=7d zkx^n8(pmqPczl?nW{0}&5q1Ne=-!>H9^NHNWF6{9*J8dGD)|J*e(~)1^a(=WZ^_$V zIkYw0;*_vAvuffsaU2iS<-#))gy+PYC*BIT#=~#L*VrxJAuWq^)Z^d1umjG0zT4lr z@GtO6vv80;0T)eHOEVX#z1RGatZUQ%VN#1|96W+5TFjE@ABT!g3DJpQHH!eum8x^B zEm^!c|MmG-EtCjnqpkFr6*@}u)Nw@nwF+|Md;F~-V)}hiSmowf|EHqCmGb2P+yShq zqfJ=lfdqXP(V*rbQf5bw58z71w8?J&_3j{f9I9Go#K*)(spb-yTDA}*3duPYe6ZaB zg8hhx1#+lQW}J*CUihNt-|l0y#Aq{s|1Kw8oRP8#giXCwPZN$a#8- zm5dERSy$elT}S;b%SMVp^jmp*;FtWZ!Shyo)2{Y}Tm>DUQtuR=l@|GTEPbDaS?0li zunq1judb6OT)X{5P$@|TwDf2Ckt`4R{o$!Cj|9v#b)M9r4htV0z;J^m(M zgq5Ot2k3#LE^NMdJJ09;bgnPZtQVGnhn#O^!akYbn-_R6i_GTH>^{-VVPv?*cr5cy zCPwTt?i}w4rsMzV-x4|&_4@tI!9IDhxi|0ap*2H!0?tAHRy=53(2A?^lZiB-)741hSrTRVTi1g8)eWHl)gf?p))0!9B3BwV{{1;PmgF|2Is` z{JUy7H+!sem@l69UA|dAb_CBW^zWMg*HnYcS1r?H0w9(ViA2<>&)7u<3VOag(&6jH z(?x8ffG&nJ8P++gtGsK*Wv5B+n|1Fwu9^9mMQ(ZWV#s7rrYGG0M(q{iNVULC*Ku{S z9OSV_Z0@xjclyT#eT6b9yXJp}<>nT?DdK&EZJv(3rn@QYss4!P%jP2z?F0^$qP^P$ zMb^{cYxotH0{2P_sD8Bp-WhYWUmV|(b2RYm846@D_d`uPOwtS9wB?)o%LFlGBlGH)12D zz?a1wz~9*#T`5VLGfRl59nCHgP>y36N4=%~H-e)R=bxDWWN?V@#W9KaJN{9@0Rrk~ zY(KW7`QHe=BS-N!LQs1%TX}EJ-FwPR0&Qyi_x6PMY>D^di9C9YF2i%cQ=cQB8pORj zVq;WU#^efrbEHwADH@df+{FK2FK+m?JsnfV>)Eo>d`0GB&}zpxci&JB?BaRXaTPqC zV#b?k*NdS~O6loUUpNI7O%&_?>7`-vs;iD~Jc z|1;^4v?m1Bi!BA_b`84(wPl0#HM9t*Pdh_Xt@PCy(L%5)gEL7{o8=mp2?GdyFtE<_ zgi>L>9%-`{-1UI<_wCX%(EX!VdHGyJl8$qx?m>`tL6Au16Uev@f=4Ru<{sF7>78p3 zMt#Ni!ql|*xPGrIw4NMVbYFn#p=6ywim)0^ijWOvXI#0 zS`L{YBlg#3zb6F|TM|MX7LtFD)yG%52Rn_UzS5%*AlG&Y?#4OT@IiY0^>{z!ZD-UA zMf0S7px2M+b7$o@<-a|i?H2BV*oL#pQIdUv8kgI0G=S?ls9@9-xlpZskM+` zN~y!JT?im5)jiS|IXVqq&n_n!gf?$r^aJEDQ{l$C7}H|dO>1jJ$E|*7Ex!4IqZ0Fz zmvO(MVkIGeNXtYmL}a)OWlJKZv=(vb{$vWjp6t$$lal;^%gE zE|cz*z=62^fv#nFOVX|0{y^tK{9(I?L?RjABQ5GbpTQo07!ca~MI<*8h5IV?ZCQdM zV?RRo9_;y!nIDAfqBSg2XiUmDk5;Hk(~o27^nW0ci;MnF6u9CRI+YrDRc(CR>9AdB z^*km1=<(*ld5g#H0rijlaOjw|vo|2`o+!0ggYv}Sa_D3?q1xc_NXDcPR@jCsjoT2c zd+JX~QEf6%e^gwoj`}8Tx13^NUg);ABXCo{`H6&2UDj7i;@Q_bTu|r6*B7S4)nO8z zhHpVd{4G##s?qvhNLCPxaefI**&p5XA}=G^5A5$b5YO(U2M;X4&fBMTb_`<7+o~0? zNQ^W?Gl-w@U-MF~`)X{j#M#h7_ax={>W9oLz5yCaA)yGmh5qNR8b9Y z5r)l4^=Js$&Zm3hWIvM}4wY){G6<|l?R50i)&jRfz<|t}vr;eWLCP?R{y8H2^~dNV ztw;eJz5IxzD*H~~J!IMaps866`_y-%`}YOwFuXxhHSA8`O>I1EmWRnF6!P|*Hs9s_ z7F>_>80u5pbP zVDi1tVwOW?#$9b1&s&-aq3}Xeew)>D*ET6>#=^emeU`qr*TwYg;cb?CyK9>@c6E3Q zxv`q8g`C<}WBwT_+a%}1H$zNQhui97_2F>k9e<;TEFZ`kHgz1bS~)%T1_I?BelZEI zY63W$%A?bB)z5BXN=Eq?jtCY@?C;RI(Go8Yd11O+jS~*CO^wDtJlx8;t8BBnm}_F+ zNV0-C#9gofa8%|F09Xqr*$-uJ`Neps)bZejn*TGpp{`M1nqnGp=CQAcPRmtG`PE;G{YtE4QUURn zBUebJYA)63>On9GH7|wok5Kcvxob^xa}F;;G@RIdG`|r(!W?~4q5ciS1~zx%3$JxZ zW{C~333403rXjg?X?*wM0qfvEv!CFHUBS$lYt&xE;Kdo^^iOpVn?D?kMbnSvpxdP* z0=OWr(Ly2uoY!T!Y*D8zT(lOsU7uUKW2M@3CswM(pmttp(n6DG%n>WiLX*W$wu~uO znqz))&Cdw)Gg5xkb%mIQk{99LZczGaoND}cG`OKkV%Qih&WbD?6)7DTE1e);fmD)n zj3i(>=NNQw#4ymq-VWN^@l@fc3yd9ELY-<5u7iUCk zvucD;#U{Bj#1fJs4Tes@;N^6y!7~D=aV_9EXuxC2M|PJ#F6Ab?gE~hBCT^k-JQ>)n zcbkEg%E01y(8^g)JJ8}i`(+Nvk)>m8$Jia{nNREuzw2y%H_h4`6JR*P+tct(o@;Ip zz9uftbWXNfa?^-ZAx5DswzZWnu-Doi-sZ{m2=~z(Zp&Eyp4&I6IZ`qKI;$CiRCae~ zMa?x(_!nL?8-eJXP@z?8kd1m=L!jhw4H`f&`jP0gXH_2Io~@F{E9`eP^z3&4-{?oI zlJ(}%dJS>z1hPPU^g2GXztSjae+5pCek9ggTcMsbSkkQkmG~H0fF!YE@J*?ordFqscBE;Y;)Apy|><{YbiW!0ytWrb{Mp zMx`oVsHa<`p`sL&_M_i>99ppjs+)+eaiRT^NtT`HyZrKg{gG!GKt+ucCN_!+DqiDK z7Yl)Dyp6A7z9f&HT)f7~yUp-FrO#P;+64I_?!Dw#XoW~?2)+ZILETTw3Gem@L zKi#>LcsrX?jvI2nG4SBqwtDg5vuZn{F0yM&VMa}TGlUz@vQDb?p>7f~ta{D( z>mAkeUO{iWOMP$)hc}L)m<5Q3dZv&Ri~_pUWdKMYfM(chW+&P~psme*)lYe9rCYmE zW)J}{zK1V3WSpcl!5M2FOXex@Ps1k@TKh@mYZ+2c#Rv37J?v{`QZt+}$*@f{TFu)w45>`nrjyQPd z5i=k%`$(khC=4>76pGr>TlmAeuJEbMTCdeSe8-7B!(;uLJ1z{L8Zm!R_|ydCp)LJl z!<(%g!*^5O+iK2l$&bnF=`THT@BKG*T)>-LukF}>5B7AYCJfzH|8DQkH*KwNezW-- z+c`T}*EGj^xh9Np5z=<{5!Xp;fD7lrt|HSR7%=viaFaVS2e;p&%{$T}beb+QhHIp^ zfzFBK!*vkq1Uz-(Zqe*4$+B9U470@RWQ-*l&XU}@u@&-`{5xBLpx46^9`|73qR|Er zy+ZtrLK#?Hl*bySK&pr}u1a1#ki1%xym};Y6*wZVi(S;QSmWcAI)?|o6>H?E7>_*j zhrh)dpW^EDftMeTHLl}o!3|?FVvXy$I{NPGEvf$k#rs_;$z>2<}9XX)dPd2YfP+^(}H;DmC0S#NXWP$+l00gifXatZB zswT_@DHa4s#h0G1>-j%q=3k!h0r3c=4Kx2|mdX70EK3y3ZYMer^MA<9e>;<`Uo_=< z{^b$#f7T=BUmh|4$wv%F&;LPsVz*%69uKsu4>00P&cCcoJ^yl%oPW8oq5?*Q7&V!Z zvQ9ifdKmAOlUq!Q4)}#DVb(wuZDMxI{2mAbeu&oYNT#({EPe%3jQlnsuU{>+Wil+{ zYFBZj%ClpHPgCw9tk2J&+%6&8r_UtY zr-f{v{xY)7>q)YGI)!YXK9g+2C10({_7EZ4AtBp+HQ6o^vRx!=*(TdJCCD~ChHNu{ ztEH>Lwi#oQ*U12jGMtRA$`jLol+_cye;!ce!0ruyKgbn!L%v2?VYYD6 zlVH&Fewk{2Nt~X_CRhq4`w*^9fn(a8vQXA_A3})CM2pmUQqcYoQa}9oTZtqkVjwx8 z&r#FnX>91`IBc%D*$&z!`ZKZAy7)>~X`A}kFFN4F-Yvg^Kg44>l7+ncR?PZrqfO36 z7*gmwuTXh0hC}KQ4fK=kLWHGcsu_grO}vE@|HHhoHPA0Te#PXE5HOeF3rvVHf{Niy{mt;hVIz}Wk_1sPH zQquV>Yq}>gB^&s9!_98(m2%YAOavQDAVtkwcZ_OQ7kXC}!>F{Ww+XjP zL`p+Ka;Pb|HlE?+uX;Bg!Zp*5}qPDscUY zPd#a+Dl*%>yq8oyB{iv9>;a6(}E-;kDK@iE_R-ISD>Mp=$! z-r?=6Im_LSNHoWq@3n$|GLq9l*0sjI4)N(yPp~{GKJC=v(@Xxj_!JOn32K*AKB3(| z9z)L1_{aolEV88C-BE!IwGvYSrZpXnHpi)91JCpEaJE0DwtwfO;2P8a5HG3!y=cksz% zVmEt-ZzpMnmDxsKWw9Yc7|Z!*3{zbnsiN z3)8MHN(=QDkH(u;7rL%4as_8foXLw)kYXs=WG(R`vfY=u!5iD|&|-CEdaxeM+}ROvLdgcP5Pt`oVQ z2+@u8LwhEwu{3wbMPd#Z8Q*cfs2pjoTfa5XkZ68(sCHqN&Z3N}GdH1MxqoI){fdU~ zN%ncnB>cOG5Q6r{&Qci}5H5AQlPYQ}J@07q=`@`T?phOBHLoo?$BD1yCN}qLt-ToI z?)^x@IxI-HTHsSVFp=%+Z}Ani08-&9n*mDx+tS1v$ws`-(X!>E?ZL=iX1Wa*$O?>* zgL+q}!@3HE#XWjjJWSsZYXE#eA4_~WVTV29fO$0ZkyYxke0j~yooN%LFTRyx=tOEd zlN;xM9d9P3$PZ-}CDM^E{1BHq+L7=61}-Jy(K3m6RQOFJ0ff!QS}rWQE^(&dqT3o* zH?XiIS@}iL$-^1))icx^-_T#9rW+Hzad`N>gYX%L2hbn#?C?l4VsK%NpRjp}|}s;Fo`~6(ahTf3X!0myMj~RgO5|H+OZ6dzPd?XOP9B5vh9q< zwrWF7?{4k-WNS?0ZW=4~$|v304}C{9G_hQoc(q*~n|gE4sQ1LJ$x)o(kYq;juj?H_ zy|ERY(h~oo4`%aiY(l~34S=_24d!3wM zu*>Hrw&L#OyKx?-PP#a6T@ zp1=5;Qin==#t9GvPTBzLiR$OLtpD`Tlb`Om;^N^KHIRSxHCb@GA{xMv#{{_Qz=f>; zX+)9Dgo5-o6l8|Awfb3>S4B+sQ&k`3sMkh*5G*RR`ux>ltjd?<&qn$48~O7~{;)`~ zqCpR?epciX%UmmslN!|iI=79A{!(`k>G`N~)iFnd5S{Nrcj)6eI6X-yh7W(B}o%LhCAZe1tHDkL&L})@gr!=tFVUT4`5!bN3OM`YKR< zVKUI8zWm^vN^}00mTg@_(5v|)trAZn`O>)r_MKv4V@^V)uahnKD@^hjk6i z-XQeGE&t`jAnJMQfcmlr8ybIbuGnw%>n8FGOOrJCd@s~1q4=j=zv@fl%vr@Tjg?y zF5N7b&*&!B$)!V=J}H+!qq6vm`f{e-qv?y(p(4Rm5wcs zkCJ#TY6ToieBoHtYF>{{AE9RHK4hsK^vRl@Ij4KMMyGq!^Usu0n_K;g-&lG9i&tW} zw5ZJN1fq4zN5md-3k>8Z(M8TRt33q`+d?Pv$mB^L&+LoHu!8CEfw97D8F8#INAHw{UWc{Rwvma6 zjm%idpIL%nMOZ^3xAw4(S@<``e1>(*)k729+t$fR?(K{FTRkq>-#Y1UHZCW!$lx1N z`g>1zf05wPW#7O;Z;X!WZi_CA-e;PhEcuZEO#Xf@{sI4T01J+uJ%D@9PYl47GJxcH zT^x`&%AG7%<8}ADAf2JRVfipe8pSAtAz%1)z%7z2LK0O$79#nGp5#Mp!=9VTo>82m zJ32kp8fm;(BkhKHvsxoJYGb4{8G z$8Ys?-|h?_cAuHwA(>x6&{9I&AHC5g{XHt3NEK+a zI|zZC@r4=ja_lzNQY{j_Kv#XU&>+43{ug=KPy~zl5YK8H_05|4Oo#ed3km+E3D`jP z!wNOr9?b5TOU9>$uEe)mXR@eN>Gm_*!9}FHj1Lx8{S1XdLV5mf<(Gp)-nZA^No%E0 z�lHL~#m_DX>_F&AmZ&JYAZ=ZwBXG?%vcvj z27o#loRKDd=ETvs!tP2{mtB0BF22?j>+nISlhupofc+dfLjCfak^*sU$2Jj|pqqf( z{~7{ID!By5svk%Xta=ZuhVR8PQYiRd+;TA|09W(7=l5&lq{ymIR+EBDa;e9EYqzpg z_R31DILlw0?Q3|0K}UZlP_fc!(uT+s4H3<;YKT0SfXKCu&@^jGW;AR=WU~#CPDGIj zh+Gx%+0#3QfG!nkQiYkE&}O@Ms4l+DF7^QgcYaex9|;Pst_50FZMLMOoJI`3EleI|6j z4XRK00iLwB2HtZ$A%rThQM>pC-V+giI}^QGF81`0Ky#6oxrwdF3B&*C6$MM9f{_axfi*T$#H*r!SBR&kJ4<>?b=H@#1qZtL0fzGTzV zW!*M?(9Q28WI%;F2|FvXkAuUb#S=)?SY7__Pdlm!$A--a&8U+oU(3~Sl9OSA9t}KI zuHM49*$O=c;j`-2S*`tIzJ`Yd6#^UJE9>MvwIcvM2y04S! z#r0ABh}yv&-4yQ6(nn&KycY>=rlAfz<+n+XYHK{i z#b)&tJ+51DM*o^%=;9k=f%SqBcEq1pK+Iws)>T9rxFozZCnGw|iwJHSHWJy9z*Zd- zwJ9p`ULOBxngi*~iO_y+>Jf9?`sj}mUf|KddZrxn!s6>>+(hZymqiy55+BvT+blX+ zL7TY}of5g;mG~6f6KGoDbB#J}T1_ z8YJC!c&Qg4ULZiUGzkpLU&eH4czi+VVwSWeX<%czSYX;?*++G8m~iejsf+)BS^U-> z^Bf<*JgcvrFawqGz6d7fSaxq$mwt>3L};J7+U}vQ&MG?)DceUEhN!;w^YeQ=7sX6J zv0hb|${t1J5515my%AfH?iJLejabi^fek%pU{vZ1=oPdxG8-&o2A(B8Q+xsZAIDxn z5ntnOtq}02hu>u4eK5rO3a^)a#?nQa@E z`yyorG%R1WpYQ7N99SlZEb#mzibrBm3Xx#l-kw-Fs8gn?``khQ`hw&)iY((Y^chd@`4A^My~$ust# z?p-;#2eB*n*n?~|?6E6f!>$}>SKh6DO_;7q)imAgL3Ic0;veYZU)aSW`&*z0tJ!4 z19<;gfk_b^BQ?J%@?#<`#fi}!)4^mx8AqfsC`FHoN%uHssBgp-ndLq_%){3Es`QCt z#VZo@MqRn>v}~$FEc1bjT-NeovHS3+%vvRw?cM>A4@_R~4vx2~a)05FZ6Gir=*|C$ zgNpLChTWjyGC$n1#%;SCnf1b;Bit=L;{ak zW{3}FNS7YV&3#ej5;QPR%&6-`Wz_v0Jt9Scu-vMXXVbTm@doaVTn-Li@Imaafyx z#n*TVMQT3g?_%O}J~!cs4PrhY9Jp3~ft*Kub1&U4$TpHp^?nR+?a@2Z^_l($p-GS* zzHs1wOx`h!$cau|JtcV@Gz^gi8&Qj_Tn;8Nmz<(vz2!)SiGytlZ)ct}%Pvx!sSaSl zG)q#rtx>mO?=s^C_0e`M$Ej}M!wPlF0ol#e-~Y@{XsbDRjo8C@pBHSg%HUhpu(n`I zB2UUFr@k+CjfO;owqm#X_AGlyY2Zj=+~+06ouR(Hhe1si^9uKMk;%#Nw-Vo4!&RL> zSK4_NKhDM!yX9TYXh|9jw|Ez4dp$p>AOT)Y@bf2Fj&CPJ$xyDYu5N(u_ zyzS+)BGJiQsYx6uv_lI)DMRVu7LUI@)G9r0_ce}_s&s>X-IT8(OG-$xgB|QFOxe~& zX0IW3N|xm3E6$LtXKB{ZJ7eyCBOQnT%78`HwM_du`R-o>jCt=RDT?SQo8dNJgt$VD z<0v8`(r}XraD&yH$4K@pgyw9pqVmwr0?5lEq5yJ#MuZoxTa#hwF%V@^=K|aa1jq$w zrvmI(2hs=DVN7L}ZJ-v@sW6Fc}4vBB|K2=aERfpBOoC8$Ip%re%yh*-KN&S z4v_K$z^+-OmLYU!KB7Z~As+-Y0&Z2dvx{VE=R(0rxU?BgvmY0i*@fg*603dXPC-im% zFIFe}L%E)x$LIKUdC@6w5{u(gS+*me3}e2)_Elx%P;l?<2yGExE=#|Py-jFS$GP_L z_)Q`oSEx3$Ytmq76QI$wbO?AU-}oB6f}z?+02em$3dnJQ49~JZm8+Em$n3~Qjjp0Q zIP*D8xnv)Z<@yU*kL}1N?xD58C_7?-O~92iQ)HAnvJGI)7Etau1Bmg^Sb~tA4MREY z>3RHTP#oL}y)4^m)yv9i?6nDn6&s)4r(P|h?d5f^-8ie9NUN{;Cbi;F2Z15A$S@el za&bBP$=^D)SJ}rSP^*+})j1yeMho2u<}0*G`wVe&DPf-JY@B zS7gS91oVtamy78ta*EyR{1(2&+SLv{cQ?2zR&J9V)k2e1g_-2=M7bl)+3iTiYP{;n zNxWuzrVSI0eiz1+y-}8#;Dajo3LC-|Lc%+|v0m~k|8PFjm2ROQvOR5eAI_vcwWkkx z1w6fANR2!V5gbY{!Ax&_51{(GrPY!Bv=TB@q(xaX?*UCT41w_-xQ*n0pFlM z55Mj>@yEzx!d>I+vP-Q&)SYx>v*lWve`BW-cQ$-TQ> z<+whd*n(^Vken+7>L+&##;=&iU+fkm0VSKjKiH&HMBbn5&hub&5I&jX3x7!IOB=D; z%s-Bc8QVf4BhPki-SY<2dyp99ob)w*Ln{5VemUIXo`237E6tA*M+|*1_vsK@pU=C3 z6IZ8Q?esN{;pOn>{|J6PxLJGd33r+_wSY4EMbzz#XQ8+FMjqhDu5ZC-_~Ax?{!}{n8Hd?x65&yn9*PG4UiU+=u!q?sl@-TPw&_q zx0yPi{t&rZ0=uD7RQWm`ZTj4BA7g^=5UMPMm=|-4(P2uC8Kz)8f}(8 zAkqt?{?JQ%nGEuT!hf$$EybzyXx^?QL#xk1LH)()jjb-###Xb%*y;ky*s4T~t;Si# zR+Gip%3&H?g)VBatNN1o2|+$yRfm2I#^b=h(`g8Mu7q?ke0|1>ZhFW$axq>^)m7pl zgr}dw+ey}1D_5vEDOUEfyIRU&d|}IgYpMm;0DDUyBLUZ+xY=J?9RWX&{p#*Lva2|Z zZ8BJ~DT_6_*=&BhPj5B?|5Snh=Y#P7>lw$%M*xo?;e+YKe-G%+@TIXP|ohzeVv}PA@Mc%9y8qrdqcV^c`k*d-HFI|<_PtE zas!h%$PZdQfgLnG2aKbuTHtrUcTeOMIpQNfxl#VM2*sWZmA=g;%duGUPgifIg#Lux zSJ)jPBf*qmM)9pZ!_-67IETC<)%r}P$xrjgEX4xxj64tWf9N~;GV%jy0%8Git>#%x2SHq8rFcII93lw~$DH8$$Q);n zy&{7DD~hYG3JJYw#@(DQx*pu{b<0-t&5?YRryrzAg6l5|!nsp@4liqHAX$w^ACRS@ zKE=dFpTxIb1uIawzbblfw;t&9Ap^ZXi{du#y?c2Vy4?8LKKVx6ydRLS)p>d#>wo!+ zU;N_82W@{zjXLM1ZOMCkTI4)KPYIj>>q?xM)Yr;CGY@K_UTWx&1z9riA^*a_NYup5 zb%FczDtnudg`7gk{zLv~i`0T=f#8bWd2MO^h_l9%z&PT_%U}eNmO-FcSm$b4tvjH( zn?*Ns5EFJ#i!Mmt7I<7&_q$)59x|8i709fxAX8#Qg-9O)oNerC7I0d*w1BgYOAVZ7 zY$am#FW)>DB7sgfTF#CR`M6!YP585X~=2dH=>GbD}Pa|ew?TC7o94F(1$5Hf6;bJ zme4UxE6H7B(mru5^X)xwFViFmifWCP?NXB@D4JokY>;c6plB~wW`d&UhGq?FC%KS{ zn6*E5%Gx*g-%^X95VeCz2j-jWy ziAGUF#MGre$uXqgCQ4|hYV(=t>fJm_m(Wr8aNQiBp!V)Qy8yCB;$Lbzk;?{EBic0Q zUo~g{h>`|y|j`9&t%z`x0M5?$Ijn+ww#I}H~HrJHy%y?BK83X>nny+1tjMbsO ztv_|cf_NB=>N|t`VknIufIXC z!+(}Xb4M|Iv(5ITRH5DnMo-8UuqF6}T*-gX|GMstCJ1{Tknu{Ne~!vm$aoxv;yq2A zpV(g!kWC_l6OwSaL}b)XI7qA4FA+HHRNs1zQ#!=)6TFJMo8->#1dT8D{z#PCq4SL$ zD_PI6G;f8QC}FtROdxp9K6_ppp~p7@$^h2tY<6Q-ux3Le4VU_K1IcB|?I{u$b+x6< zDl*!&R@{5H=%+)Mcpuf3pVjua2}Zlr)?N&`L)=`me`fGV-Bn|Thd8N70W&ROu`^+z z@q`D^&~Zsm94dd2ifu2+qr%oc*KbD9wJ!zs@lfSo6$kw&_SuJb$6`;)XQa6`e*Zw@n8d>elUP9xl5Cl+{*wH}h{kF683#(WUiAdJaqJrJo-r7;k506MB> z4XAI9AWpd^@KgNxI+5<#<2H6@ST=TaFhg5x`UkO^@iW#YM|3fGsD64Oxlo9p7nZzG zXB*4K?rydDY&f3zv9~0$YT*|1S2sv`5la$PsJIqJ!8m9}l3o}4Jcb9qEFtn};t!8G zJ)yx&X59N;<3;$8IYk|2i+Z~Awx)H4-|w%QD=Y6i-xkDj<{gVHbM{n{>^dFSgA+e0 z<0F6(wd*SUG@rLEb|o!Hgm#rHZ^h^_Gp$2Ja~W2QC(>zsew=>MmvpvSlz(M*)x#5b zj-gtUL73|CO-3KJx)LWmjPqAlJ6CVKpv{y3ued7**-|MdyW}j4t!_Kqb-_j)`8Xhh zlZ=;z`8J*vMjV~J87~rmzW8%+puHIV{Kr&kgynrCEZ-h(6A_A$#igqL4^VxZ8sK_G zQw&+&Uaoj>_B$XOrXh`)z*MUN;})O0K$beSsZa(lkY_u_s(&ArB88|@vf8KRq!^9) zd5yU^AViw>Mw<3Tn)bt36j|N~_l9YKC=q+rSu<#=pKqe}7bp^erks|W*H=r5m+iA= z*`oHVn4ySoA9+96hVqS!kgdprc-|$um7^@W+)ga#dbGnB{ z>I+$|bWo&;*S)}{PZ3|w5AU@D9Uv`C9@e|RcA;{AB=!g>*6zFWtg>_-I1 zVb^!$k0hA!0CF=&OsyJ6A58CFcj9P{@3$*^b6Hq}=ck-k5#Ljg?{a9N)MQf;W$s#( zxvR%Vd{2v(vuO>M4(K{NeD_f`>H1vFNUmA#FRbB5VoR-3YhesU-S}&H!A7+PWzykI zBv3<>qSD@yxwD^4WFpabHIJnT$;jG$k0UsG%-9+AJ;sR8{y(C&9tJGJx>Xx<+!N<` z!bf94FQ;hb+MyXj+kM+@DtadCiJtESDhRZ%{ZGzVk{>KWo-9$)&OIZIrSp(PsCinQ zk9@w`21=NR=}DEU(+qp@aNRNF=_0jk7H9RQhBXo)MD_P5Q7KD z%9^$_)>P~^h}}7u9K}kIs~Xti)7e>W7VIy0r0h=6yeww6U`1$g6uXz ztAwICgV7)`-=PjLZSyz{b+or@goS{z$+XaB@XWXC{Xity#Mh}kwG;Bj!3d5UPZPm$ z^rFj2Pt1(ZxfcyY}Kg9{g=0dTM;ROZ&3e2{0rAj>|Bgvv_#TVqI&pSXY@WR)MfsdBS4- zD>V!9Cp^Q1ORNon^I$o5%;| zE3>_Co~k_w2GWN3j7{NCZS+PbHY@^g1Sm0F`-pMi?RVXS=+3qhD2tolcA2Vaa397t zKER2%SB)#>(O677k@@mwqb0$%&gN>nt6bZqoK=XX+DIj0NI3yRa6I%L4fRQ6&XM4q zpN0n=O{rF5B{C`FQj1Kkk=KC#qf0b6IF}_D1rCubF%5~@ zUyO(^izF-w9U^nFjG*naREB_$GGb`PK`N+w9!iXK(Xa#m!;Ps=?q4s1&*Qx5S~QFU zv1b(L5gO$VS1Hz?B0(NLS7MUhb;}&#$vZ$}W@3or3&?r?H6{oj;ic#b-zlbkF?ClNN>9GG3({foc!_2^o(>S9kd!3Am8#@{NV@phss6&IFei9>7q zc3}jy_iRJ8F(2ZS3U;U?kD3(xC!voq_s6HVv+Zd5EjpHM+T!VL@2BI`jRVNS@%VvV zVfukxCgu+Ig~ZIBxcCC`1UuX8r)ibeQEnHwSx#^Bi8yO0b0?AJEx))rdj!v3Gy0_X z#ht~35#-dbx-K%8hvgbaM8}=#5O%!c7$^4cU+lk@o$z0CCi}0InEk#w;lEZOz5b@z z)TuVY8CEY$|26Si>-g}*-O#enCtjRB0^SBo{*eeFq;@lrY|tg0;39n!r)5Sxs7!3O zv{qyC2#!bMa~YnM#!NPcd)e|NAhquhQA+Fvxt=&kC5f%iIIF1E5gdVKGXV~KhkD)< zcH(%1BdMuxjrVQ+@o+X8WBL?9+`iy&Z>@u;SN8l#&aL_Z?{V&q8VBK6I%vXsoXTva zxRxK4yQ0up-h<>`*`|si9oRY&guVB;t65aJuIE9T_sj)Gv*sG3s-|Ao^D~DFx?fkg zi=Ee8V5Ee7{`wJxyNpirp1YBSyG(dYoCySeFAyN=L8Qh}G<^h1q==*k7`r*xP$C}w zN+AEpEH}P8eXIs#SFE!eM%sHu$%iB5fji>icYqg$!_R7zD4-DR5;MB-LXBMXU7H9c zj|T#E;|b)nKHs54Ib)rIx-ReKp~? zrB%Y&%6=3j|4sjYrb_tp0U`ELn80W`y&-pKzb5JntQa`fk~Q}?Ey5w=jBlV$DtLhk zAdrm9g)TrNb%&$p?0A$QyK%f{w8YZB(?L$BmN4}TO+tW!P+A1>PFhigosDFPy=P?6 zXo3e^+mjZ-v@5O15xPJ=4BCx1d(I?q(OXtzqAnv}o?Gvap~ zxJyQX>d7oK(&!>Ej4t#kh5U}5c@e^Wr$kb{Rf2dQ_e{`TT4;7D0+m99Erc5-utQih4@ z*MXqM#cRIPYIC8kI?ecuv)}8tyR>5rbKVZ0O2WYC?H=T>=S62&zNaZ7-W1={Ew1TZ zbJfGwXi}1`eX4kYVi>&i0%*x;9LPl457(q0#MY9nMeA)JVVm14As@Y7mAIz(3T`my3S8Ak~DLE>q*F<-RtSH+{r z?9o{{lETPrBP$1Le_~tCc23-AQeTFrja_-_%Hjw?*qWR|v-$d9%ZoyX=w7?E9e25! zKL&B6kti7b7R{Wc6_cG@IgABv#2ItKf3q*ljK{M}jxF;yu{Sv`_9kX*nd6@aCnaLb z96uhsFcDkkcr2J{#g=i444vLW*`9Gg>$#B?+(|^684}TEhC}*75+qL$4QkN4 zO{r}h^e4)2g!BnQ4At4N5)o9?jC8LCzNr0-vKk_BFS(F9!)SjjPlHQ{m`g{%hR{r(^jZ zGPoq`2r7L@;1dlV}L|meUgW?e(^X;ek%( zku<#Sz;3y?pkYiv$;Eh{49JC>3-@j=G8!@hw|3x<1qz%H4pJgPKC>SsG~tUktr<(j zS^T?@f0yy^D*g#VNc*F5MTfJ+)%+ZDs*l1~M{=b}uK8J#Ep!}7DP1l9Ca*Cei1~r% zErhw3crbo9XW34XHZX)-hEVbB^|n`q`{|kRs!*vtV_!u&f*IYbD3Gyhc@^s$ET5&# zS`kyY50lG%l=+}xgnnXd3hzssnie|4dP?M(c$;Dm8voca_;}5mjOQKx?dM+)|32nl ze0(KYBf*anJ=cu)W7N5hk6rV~VP({3*4DjRL5Dte-85_p5G4o2u*cWRZ+?H?k(Su9 zv1Av0oY^zB%~6m1sXx{dTmDxb?O!u>L6L`|{Cj)uU-#lrHw#c(uQeHf-tpoh(Yg~YB=Eq2oVg>4s&SNq2!+@PKh|KgiD9og=`AyB> zH%|S{1ilgb|Fb#cu$ja`+0|SrjG(q05$*n6MoTf}wRZn|rX_-<-4}li15Uk4L~AEY z1J!WA#f0p)LhHy!<{m?Y+jif6n<)7Yp;9ly_3#jI5aT%6dsON1RNH|qT#52OWN23k zt^EJCXrI;jdP_pINkVm-8gPtx^c0&q49mX@z=17?3p75 z1PBW0{&Ocp2J&q-zwVT;b!E@#$~Ie-CBIfnq%tCI8+roSQm`D5*)S~!d0ydOrQI#?cx5k^9C;!47S{qAdsBcQKWcf0LtC6r5LPaW7hS z@U4o?Q*cZ&A&Pv*C<^!Iy6*oIBPo6~{HKhxjcxsD)fOie&1#X6a!?!gkx|b`LdJSK znj|nP5i19bs|~x{k2698k*TAp6t2B!@B?Veyluq)8t*+unM?w2!CXvDGth!c8Al{5 zUCJbXu){c>SLw)W8ZgFl&UQBqN9c69d~}|1E_;`EeA8GcVf1y*$ap*x-=*Hmc~@Xu zeT(-9H&YN9Ty9L^`YHm66&NGD2b(U9Anl)|%?v1KxV>-b562j1^5I)eqlwP#HZJ$R z$Z7%J8+Y|1S@uLHhodC}{@Q9KA+eFt?=t35-*9g*|qQ^f%Ln^XJ{57 zlx|z&?QhJN1WW0#PHjuacsrMRyl-L5m>L-o$q+MJQ64Yc2g}OmQWg+(FPa*iIbe`Z zvzYyy<~x>-_4Y3v58dQF7<5oq5hG54mLb}L_l<=F52KKfK~z!SAG*}r@Jv^3~G?4BM*#|M`j#2*cag+llQ9 zcUx1wj58iD+?amc9`!UKkG2)rACBG`b5(w3*k6sBaOk1gGYrhN>RJ&pI7G5wwa zc~0%{@NYNe8cm)xB(bA`UHyjV9`9LA!y}&ijZSa(Qe|Y!=UX$h4ce6XVj*SS>U}@{ zN8^heJWd!GI+?cvt7@XFW-kjFH6Cro;ky47dN-Hk*=SJJkFi2EI*e_Pf<26^e;0Q$ z#F|69`cZ`U6N44fG_O6p52A{e{dG+)9{9KRczSGCA>eV;V3EpG=^nYP@^ z9}FK&b=`L#d%5=$G+F$Ta04h3K(2WacQ48bE^h9QI6XbZ=<;6cistb$+%}L#Cgw6b z-Q0hf(1*^*wFmSY#`E*Mcky_rchVBYbvro}GTNl~ox6@gaOm)2Ecxg(6R7at#`OCK zt{20Aqq2SMBE+P(v#C&$qc_tNicf!&43jnH{M{d|V*Yj+_J+To4N~jXz}?Uya@s^X_aKPe$g%{MGc!1iotYvuZv>P{CJp>VZ2ntXR|JtVR2j zx^#j3$uXv%EBFQKauM}8=lY}523YO>225)uegP-86o6BaO~B|3_op_!W(spQAsh?0 z4tS5UmyCdW=T0H}Uixw5YT0lA4@m(u)LVYcMqw4Q@Ox#i&}F6wtPq{-L8M^Hj zEC-1w)KOJk$_{9BK~v@e%1SdU#_w<;5hsWV~FKCVxerteQGEk z$4yc+g9635pPmMax$4(r;!r#%79wQ^fII<~;}V5W1IuhpO>20Wb+@wUA)Pa| z&|-}f1$#Tv9|J8L@;l1JR}%azkRNqPq7#{MBM&pwVWccyvvk=u_1dmMPSV^lg_-Nf zkP4%7@{RI*JZ;tAo*9EQEMLTe{53C$-<#iICR|c|?pYF~iZVjq%t=BGV@?u!89V3C zJJ8!VM7$#SqWM=TZOl$CIy<@O4)rVr;}Le2)1W4$P7XL^)~BvuPlSuXA1hF*{}rMuW=;h?g^0b5?dS^T;FE zl5oG8+cfLHKF3I@kA1~$)n~}PQS7OY?bGi;H948Yk;8GS%y>mUx9gsXtpDn|+t$eG zh{^>a`fL%Od$$E0k+I=2yS=B;NYCqTJC?c<%>r7(=6;ZX*rnBju}hEc`Y5kM2QJ;n z=`VpxUEYnZQp|XWCA34eUC4Hi7=(TKXAl}?sO$Vyb?Q#72ysTI;R1!^4I862=SbLA zcI$pRQA&5HEvX~_GNdEH#xLkZe{v`A-$%Y@b%G-#xf7piv#>$KwNJ2)PS-H2h;8~D`7MnI4wSIgfh zpxJDNE#StnF$MCmXN-^%=5b(Qe_ z*dv|(dzt};OIRw>`&y&~wdya{z##7qv9F)ueb@C6X?aQLSc$1p{)ZA@vnRD7rCNOj zgA5~0?{AchN)WC7qLg5DV6U8NC_}5%J5((UX>0Hrf1n2_Sv$5cqpJ8FjQ8f)b%KN{ zkHvVqxDKBUibr1={d3HYqOfw`3yC4EP7R*JEq2=+9;h5o(TxGAf)&N7KJ8tr+7 z*xZpAl>xzWYPJ`{yD4$QyL=WOhIhT{rx(Z)K@k*nVt7aV`$NXayo0r@k{eLN#O?0- zfR&|?hY9ahnG=DNY$9?qlAG0#TIk{Hdsm5R5{s{0^D)A=%=%RGEs*Ws#6rz@gOI_u ziVq(ST)Pl&5-j*&&rB}h%8nMchC9;QJ|c~}tDH`W4Ns==o>5eEHRi#@2fw;lN^A=K zm6oD+l0hIi2HL4kJ)OgucSNYiP#>^N85xJ=SYt=tHgH=|^Am|c(+^Bzd7l)%4tM~F zi~YxC*uNjKKUnI0bKxg!cS`}h9^+qKHc5D(Crs7);~H(&U$__hwz>w7@wR$+M7$|C zj_5{b>0D(b+Cf4y%`H|f3`ITVuap&di->A`eK=MM1uF6Fa5%Y&-pmdkPhHe_+ZqaO zk}|4M3bea&yYhSkB5~^b*mdhh-gfeKi=yO7kE_F0*ixc_3$_>MjN#zES7g!SR7mA28m;f@S8=Tq4D@hU9sSC zvU$F&hj8zdL1C2$TeqIV)!-z1zpA-nq;za2rdJ4qd|ev8zU@TUf)cua|p$Pm3>@1`|+G3j;Lw3pb4rd^PCye-BG9pH@( zJil1N)h(H*=b*ydxqLi~#PhFfJ1>{7YnqtWzPE5s^XsAW1GDIG;A!|OYpcqat?IS6 zK941=!UmWs(=bfGEBd3hLB{Tr5erZ3JETFfUw|;wnl`az>@B7hwo7&2Q6Q7VGVA$C z$|s}eN6bA@zc#s}H>C`fvWWyPZj!mpoT3}CVXI?~VEW$Uj05bf+|xk*auf2Gn2?_+ zkUv)-KRaU(@@5YEbzq-{{l<<2>@E6)eBMHjkVFPyyad*9!ra;=B7n~c&Y&ie&D4Sm zc8rh=nURpPc2n@S!?(YS6GN@&$6zBF7&M^aF?}e$ZiGFTl-WROHE_gVaK zJie)KA6+5B>D9j%1l|{^-$zHgBTW)8Z*L^DmmhrVW)r$Vqqmm-MSQK%$_<8ZFa3}B zz;lc|w;L4pb;%HXyNS-HJKiB`@YACA>41D-*oi>)gYX*2_3d#W>+$Dk`%mNubOT5_ z1>6xIvG4}ywm{qi#QzO5WWLjA$d+V699b1iai4}bt8u@qQt*=%nhOG2hmOji{}$kN zd&&8Q*&qI2;JtO*7s2~o^cWi6;_*VqHbg7e$KkzM!yBjrZ=epmy9m@^c3T#_P5H$V z^`8d&Li>qee>>d*`~Pf?gFUeW$Kg-@c#k+ls6FQ+;U(P+G(#7cdM2Q*E5cse7#y~@TVTNvwtfyj!G zHNvWxLVy81OV62|UP~Y`rbVv`nJ(r{&sD1q!bCWYXY`PMBi65{ot^@7>$%w6dM=Qy z=N#F3-bhWF9ua+eStfc>RBU2)^n8#TMRt0B788Q;Xmc<93g2l5pY?w4YTm;GIF4{@ ze&HSn{^-=Pn818&l-jjT$C-w!sKVWZC$j@#P@iGbrW(CuL&-p7UFL48ZOB(=(+{JI zb6FaA$gIy0^520Wjr_s?p_C;Toq>Wak}?xne_>Vh9BZSBOfY1+&P}DjATtwl}zmQGO=yOaCsQ)#Y}LR*Y9phl?3CVa|Hy{Kyxf! zY>;Zzk@tbAmT_Q1A;Lb7Uo{@pr+N}=t~;Ue&#}knc&EPq9VSXUoeg%+#Lq;27Go@7 zt^KjN71-Wxt26qzg4P_hfW0@bZ$8v!yU?QZZu!_%-^rcNA-5*MImY*YS3lLDe(4h` zc1Q#BIw4#uPpZ?x7d9{BpkG}kXGkT4WUi^_1qEf+fk|Pk!{-3AZKmD`sRE`-r4H`M zumyhXkWAJfnX7q|td+`vI`tqS@(`Nx?Eatej4&V_$7c#_3@Vb=O{J_s*WL}sum_FC zjyjos;kUODkjIuKr&FaW0=fgv~%rgG{a}89ZEC-et8ymvjidwJ&@pj`d90z;SSic&wJEe7d5@g@| zHLaWF2+QEk+X^p-0wqz>ZcJa@KUma}RP-q+YEH`F2TtW z8&>$0p&OR0XGu~CqibL z+2btptHQ(a8};Z087b{o*EQtB%WgeJ`@-nKj!Z%nSUZ<&Tr-GK4A5i2`}^6H7TGZ# zSN}z%V|Krej2j?|=aJ7%+jGf&c#G)}oxCl|_^AG%`VQ5bJv~nbN98}N^Dh;oMG)kpY)zu%Uw&aZr-U!D3D(X3{K$hohE8$0?veaV(X!)|>Ehk%reMNj2`0wW^ob~_g10A$EzsFvGb5);s{qn0Xx9ae z4Bl))rooXgZ>v5QxEW=c)oh74AJL+TuNI3DDTmTD{?No(f-2pj+EGS z%y#;-7z!>MX1aqHPt|-xTY?4FPJLn^ zhwqvObGPXodf|LAn7dhaW=FqX3T*#Y{idGHBFl{qAtM48eT&(j@{fOv&Q2C=bx{y;nK>V50EZcl4Ft?9W zE?aY>lYMTJUb*^8J^w;dPfR?Q{R8Uxox_9uDU$y9+-8RiJcm7EmZuM?Sa4;(Sd!CQ zr#eVr8`<~LW#5Z872m1iHU-pA^~}_r=l*?u(`ZCmTgF}`IAD0R%g+^)9-L^Kp zcvZT?Qr~2C**{jFgzx$L^$AHJbS!6Dg|RH(IAXk&M4y%<=+j*Z`t(ic(^8>N-}JsU z-}R83VQ~Ukub(VU(TA63y2W$YLX4NOI2JrhatNa=3#!Wk#|2XL7ZORD7t-K3ygl*l7lQ-GSisRC zpPR&xfP;sC+;5w}BSJXJ&*VIs)%@@oMRnBz7vmBk-9bC3u{Zy38$ za(Iw|IM=*#3)hmUOAuPur^oO$tFlDm!Z<}c2CCATtK)4_ z(4H`gSVk$V7{2^*d^-WOIYyNeD~7poGlm&&T6%jXrW3<8G;%rY%o@hmk_m}@$Y@W- z&y~HRN*z4%K-R+7VG?lY=>!1*%&@3G755Xr)AYWdz6(t@FL91{gtwv{?dZ)+%*&mn%#F3xQ*M_mk>2BoS3gv>MH-gep6qA@P2vt!m zMs$J;7^d}pbq7!&q{EMGfjNUS<^U#Loxh+sTtjW^tl> zB45#Bw!qUr#j;l@2yOK$N4k0wb6f!m+fYM_x|xAPIFLkSQ_XX?o)mw zLQHt9G0xq0YVJOK7aJ+M!w^Ei&7y_%R|TG9`s&o2dYMjlxM{O3c(rV^vN9aX!D;EL z+X7wlvFm0nx7h5u1)6YPr|V`^Wtd6_x^;P%RsOCl8&UeFW%&b2KR-g&YEep5J_d^2 zq1`i5Vzqw}0Udqv<~RfO>!h>}9P|Z>JCDVeq(;{bt4UotHrlC=D*RX*$1m%Om`(p z_BBT3_GoE}nQt{mr$cFnM75aum$_u#4|xQB|!m*B_H$&CMUMBn{tsqwvv-DM^%$ zN5)q^WmLABai&3Xd@Q!bYHzgGx(+I=F<*_uaLw>-D7Nz46!{Lh!Y-g_)NDYTZ!C64 zD%W@qHcp6^5s1!>9U7`ZEYJwEU65@%Ap4DYbT7wpQc?$hpMH>6H@wZI?Nyd9${5~FnV~-VTm5@5eQ5hz~VAIoXfm!vAaFSj2)A~5I6k%UYRi}u=k9u^Q${g ztgmK6Bty{Dcc>(-P12IgNMT;@J|fDw`W4}(^|sLRI7WtAE4+P;je?nFa2~S>(!rd7 zVj5xP-NnXndAm5JRu!0U$ME(zc+k`eh9DtZ_@1D6sI|c!c!uSMJaxryn2J*@wgAr$ zKo&uCv`Q0Lj;%L}Z-{lt3Vf&jnP9f8p=Lyvu&b=0={c-;x9=G)?K!Gy2Lp%-BBfP6 zXXvC5V{106zZ{&2cgDP7>tBD;MmYp}`g5x0R|n`;KcplJ?P8;5vq2n>^=1kEPH!r* zgY@g2;`cY|9q3e@|K(c2ujkTqz;ke%burfWh(>vxi70_2Bo|9^3o&|i2iaLg_|hmL-*cxoc5!$dQUb3v7IQmN4?JlB@sm!c&T z!~6C{Dh8yCU-c=AdeGvGWeg_UQvmA(P(SuAD)I(itb#6 z{VMqcOGE*YU=lXTJ(A{BW3CzRgz}Ovwa%F7AcMGfC*EF=r8ex*r;(Oho0Zz}g3aqk z{l5~_j9nLmFOSwGtlFT)cKt1{eTZ4x=s~l#ZR#&tY3@KTG(6&bmE8~nuB}ybYt<7e zqM33cd}c9X*v7%}=MlDf@kZ5ymtw>sjrb+zDxkT4Js{*?^wq`83v!Q=AWjD?mS=q;r5MdKj(!pe zz!qv%v8WtzL7F6sa65mr=w5{N+c7|=Ww}2j#=d94D3f1;KuBWAb5kcM7dJ_uePN|* z*z1`5dWm05|AoA88b@5eJ_tIv@tbcya?slmOrKu}@4Bg0eMz=POV;TmwOXCp&#ov( zJ|;iO!xMO|>|M(iWQLN}bYMenpbJT|@;}e6O)%-lx$&zj5EY0dPKTUTo7aCHBeGY# zn+XKd{S`Q>*Qu26hqR{o8+l0v>cn{D-j{T*ioaYbyRLmwYyBp`Bo2h=EL=a}HnCoU zF6_$HyTATCMhyO^$P;O`L;GPiPsvw>S>da^r-lX_A8p_DBU`xD72emM+$9-*lOy&~ zYwK4~-gKfV|3KZbr6AVS07OiG@iYA6YuX-3KcVm%QuOD)J-5TZ^V z?5R0PEDkC9v6{e}I>+c&X0ohdG!L;jHce1+gbeP*%F8}E+bb&V%XXmsQz2^x?oVq8bhc{;VElUonlV?XoG1pdK$CzT#XSoZ?;Jz?q;AGe&jMOSo+F%}((^ zmy2RMSMo^AlV5xYx9ujX(N5_TEI;<4-x&++J@wv#c!l>+gwiKfC%kHv10Ngw-F1`z zddnlzQ9r}0BMn%N{N6!Feq4XZid%*SXv{`jSfhUx9DO`Y(d-P2c~g;rk_u{O`aw2ib&%@3O9w;QPOZzu$V{ zi{N|o!G9XQ?G*W6f$yagz9Zgp@p&? z81Ir6Q~Y7fAOg#Bpx)gg?Lz?Lo*P?~U8T}6bvx44gAjz5weqsot&5m0G>fw5@+r9` zvH3#(0Vhj1IEnj`W-M~(&>=q*cchvD+BH7m-4gHk(3jXRjjeUn9MKrEsr#S=MYx0P zpI9dC#f0pI`g7Y>+@&LrG&&H)q-m>?O!l5K9rYtrkhlzf+B1>OOMfs{_)GSbk-RO| zkAerK7q01je`lO$GXQ$u(s~Ccn+H;^jwC|;2X2v_qsbF3cl#y8#rbS$b?W=?2{+>4 ztQA!o9kwNWZDgZ1&ku5pPPL*7@LNWqbJt!mt6H6C3}x|~<4;b;0NN%ZfO@zn~={^gtfyHNU< zE&cmxyy8r=VjW+to#?buv)ioMJf^5$@)3f22OA0qDy9l4s_lGmN)S_@5;?BYMZF~I zdj25vbVhG>o7O(Ku8KNcPBEgj5Dl!v8JXr>UE*Ff&25x;$e?Brxr@M~C0T@MHAb&Z z5u5L$t8gN_T}QDCT^ucQ8^`_CYU5t0o6Qbhorsn1h$|<>j_~3x;tyRk7ZoywI0P62 zBY%XIBw7e)Uc#@~Q#d%<^b9+6oExIyEOzwxj0}x(=Oz#_G|7^e#E}%tJdZ?amsa00vs)TX_Z>K2NM zkd-=K9KNQ&8Hn;n1N$z3J>~f-HnG;(s;erVFF3H);F_u|Yl8M81d1gn6 z`M$)Q_!0zsqqTD)#eb8ss?w>4nU66#5rB^3A-TY_eALom-X-qFbi?+W6oRW1J0@+B zulP9lZuBn9#hSMSn;?+A?$AZmb#r9`#I2BcuVS)$>It}0Zwdd#N_1##-m;s!vc*^P`YBFiv<{tv*xc;8O#y!E<2Axo_k=gD@nI|$kb1-n2x$rnn zWq-&ufAZxA4x!9Qfu0^Md)I9I(cJ3H@j}F9hRfXi^C$yXuFMF^8rD=@!d)8q)i$s zO^MKQo&6Ro5S%bbX19~~D+Xqak`baJ7#(pjyg3-znWGE0xmA0OjLsa8%-oOxWhVx7 z3nQXzT|DZXRYmQPG2Wc^&yF$si^oVj!;=RYAETZ>@n>^tsk%{C@F;3V(W*6Izapf8 zu*hf1m`;F90zTEoIRY9Od!~0(JOD7c~FgatV) z7P|criL~t(ZR$-^yz`w4v)B)#GgIaZl&FK_4s{99PAzKOW55l%+xBI!2GhzV0=8d8 z1(R@LA~E?iJ;-_X`BpKo^%Ma{^msiW4DwqJp`#+VJrpa5jdR0$nOH2!v(sSlyVXfp ze7Ow5n)JJqCf#Xav6#nOSp0RF;odkFFG)Gg3=c4o$P7-0%O#Prr9>7In8f232@*R` zHNSBrW>%O}lh&xsN)QQneM~V8fG;-Nx8Ajy%E{`~M@%?bR1UXb;d zA!@Mu1Xtufu$xY>b!wJ*tK~IF=S*Pm7yPyCi!)j&ZZ18n5g3moDX7kpBn8pNSpZZC# zwu~rY+iETJSkFvjq~t!YQ^$d?zc#9K8L2T4irS9f zyq!efqtPI=gBfQ=&;F%nG5hP}p}P4E4Qr|TA|ePkj0$*|;8V+}4?T)RxoI!dl;+p| z)rzGJ52jN}!j5TP3~f*qjM`jvb8DP|83yasgEyjarDniLLAw_}!-DW~IJi0~RR?>Q zZE2I{io%#m{Azr>f+fSC)k1rX5*ucx@mG6*6T(}P2{K)v1$F`&WqCYdX-*~SnmIvK>lbUU&xhl|Khv^(7D z48TT2&8s5o#8*KQIvheF8IMm=mTNhF;R~ntb>CjwZ3eCz(g;8O^5c4;YxV4G*YjUEi*Q+)NliiV;?w--c zY#j2r5#GetZIop}+@5cytP5{TS*0UgnW@9gRNykqo*aK{5kB3|St+hCW5GGn1OQpC zo_tuW4T)4mFsc?OouI45?v7%Unk?3gG97Qp*kyntc;F47n|WQWATYA0NlgbcafOx=b}j#Tb7qEl&gNd5N? z*1vQ}{r_s!Kgz6swFYQZD+yh0J+M_e$Q3KjOeQamLs|vR(q!m2(2}3A>w(IEzrh3b zVTbr)Fc%MrM&m|uBB-T1^Z+6{H@$4lhlFqcfkwy?m?(`9IV^u1G%J-x7r;~^1GcT! z?MG+l4kgtk2AKX(!hq>kX}!$7iWrz?4tw|#-A`DPsMem7=u0{$=-SZ|;7TS_P1Rj} zC{k9820l_YJ+@93g`rnU)C>TJm|lI_%R}E93%*PFWC(mOlEIj9)U&u8oWIfXg8BQ^ z@AdEv-LO@Q40A{=@6#cx76}MDSWBn8pq6i0wP50m@_h6WX@l5`CtbanpnDn<+QA8IDmGYe`kYi4^nkbmtU5oviNf5wG zT>ZopVYymE=ZF@~)V8GrdWCBG=4(Pid!CdJj5%3`8^sx#yLe8nO@=G54xj_As4;Moo<*`_igWlmvJ#e-($ zQAyQ>Erb+IqhHI_sC_U5q+=?{)Ha8IJH#!ahH+2J76!F6M_X0i`>B46v`OCN>Nojf z&r{}X$c~g0sC25qdd5Dim8!`{vt8GU3{l7m6&Ox?z5zOv(vdDypYZlAz3=ss9Q}E~}q@LO@0J_*T6bv|>@uFZQokWj-jts1f-Tqb6(z z1~r*FfU;ABdQb?Z?$thzcH(0RmvY)OjM4>c?WId(YcE~eQED3a+^FhW)GT!vsI@dk_$@LoYK(Edq)s@)#h{n|Q0^H3^ zkLzA>IdVN;o)T^yg}?{uW8`hdoYdPSWk*VdT)JM^;(DRZp4KU0WwyHReTV|aO!vhY z!act@B@)^ltxCtSTHbf9_Qh7=SXz#|p<)ZyhPqHq1Q5n4J314S#%}eszp#bAKu)}A zZuz-*nnyb7x)&~j1X-C-K-0296OEb3Rvq4H*@Rvyfz!<)4q}PhJ1rOM%o2}xT7J+) zeO59^HJc6JWF6vKR3=sj!JL9G5&mljnd4KrCB(Zm1d7D%^}K2Y3|6r zmDzo?Z0-Cjxn$=*YF~J#h|5E=?|-jDFBqg5n$Uh=1>YdlAlY3FNoH&IH>5#ylkyJ2 zSDVtDXn9hg>u$W*toH(`_Z+GBEVEuAE5&nn2=jx}}3%n$jPrMciLyF9}?$K9BUr>w8lJ0(~gEr<5o zPu!l1)!By7rRAB{)RyO(Q(K-(qhyT8m!7sG@5aau^H>bZZo>UKo?Otk)~|+tBsNiY zRMf^4OqS$y_?$9gz@?cOmU2rk53tnQPa3uLH1v3bpTFDNeVr*_laANwTPy9t%)~KH z+Fj+_uP%5kaYh9f1lA0jL7v3XGX!K`dFFEo1^YM?h;1VD)0$(~Bjd~@9CSW~5egN^ zk84a>mWBP&n6y)tA1Rv*C?aK34JKyU6zC(^wX*3}yjEEjk=YgSaEFb`^|h*&mICW= z*bHnI9@MucP{A@n{`#KiOb7tvR}=Ta*H?C`VaG6iqvEJUov?`HM7L?=2m z{@!Nd?|c(~ZxsBk7W}Q-tk=a*mhk}d9U86kpqTBwp_Nv&DNHy4Y{Y7D0R7sQkMuy zT_`AJH%nRTH-RL#foVe2f+V-!os1-UKhqe2?68K|8%V}SwudG>p{4(=obpHo7C3u` zt20RTV-Q^qS|?IRmXF0w^%1sfCb=`m{o-Vyqa@szC$Y1!p?(q(Qxn~C{QO$kE4$#} z7Ai+rVJm5)_8H46rj%vk$FcTdtn<%+fD3Hk%A)swv&M>vW5&YKJiw*j{~W?KlO?;~ zAaDO^+=q7BS3e%;ob`8n&C%Su2wvo1h=Vy#YvuI{f=sR+W84O_}UMa^os(%8c;8IIp;x zp`--)UgCw#yRllQuSAB_A4N$86{DF2oP8FUBCty>`G$C2p*Qub4_?*kU38|F$m?B8 z3k}vqW-JL#mMIcTK>?$tFYh2!d|F#Iv@sWvg`QP6rbHK{-v&3$F4bj{4WzY4N}a22c0|ikbx-yS?};wnQ*@`tD0RC^ z@ARQHO1#xTzw;GTKR#JVv5M%-5?39^({mgMVUGX^XoxhsMmXCI35v z`sAO9eR2B>2IeL@-uK=W_T~LoG)zsWKl&%@&wT%pe&2S&d!77KOkj^|>k*yT1z~eD zGYA>C7=vpw-(J})<2u=@CL6P-SX))LrVcfwZb}y-6k#!G>CockvXrWIYp7o;q`Ho> zS>|e;g1$CKYJ+cdTeWGk>KW#eoR+AiNNO1suO-{8B}Zx@&kWkzk2jcWRi_GcHA9Ap zfsHl+zOCt`1q(cejyLpmbBLI%!ujSiL_`<)D3jx&i?c}5h5sO83sP8EB8$aWh`3^j z+47)z+UgWi&-&y}1%DFn&>xnb*da|^vNhv-{)yNCh0c)-hdWiyzpxu$S*<))Mel0y z_6L|Z!gt1#BXyW*!KgjKLohzFqnZpLD>i^HL^#5gk zrGI+>p#Ik zp(~D}nQXNxEZox3f^)8}+|-J!gev%~M}OM#BMrx8GzFuRM(@GDZgBibU>x~AzLzn(yk zIf0&&C$MKs$1sgqz|fr2lxS4St2<~1Zz&Qi<*heS0_Rmd>xI9cKTn;_L-1M9FTOtV z<&?Un0{lWRUOxcQH%zF(Dg=f$+e`Aiuob#y1halwgIyJ@qXx@c!^2sop8PzfK0tmS z(RK8UC*QnzrU1wH8$XKJlPQ7ufc!%~O z$ZVoG=6v`?&nhawwo)=)D+#$^7de2M_X^H1X9_R01Cl*9SMox!HyEAT_ZFa(d!Y80zL6u=ZdD?wjj9x*-y|WO)qk$?Ie(yU)A2l zNJ71X9S`Llo?hTd4dxiL3Z{rt?c{KOEOe%kZk4>;nYKfh%#xBaUilC`?=bn;p`C~k z8PC=Lng&1tk=F##-S0pHm@-VZtiWy!+Kc&8HakK#KP!NQ?%;3YE4`DNf7mZq_GY1e z8Qjc7L`F&ykvc?L9s_?CqGPLF-qqnHQK$NFk7~_GXapl_lJP ze~-w3hT`A48|6cdf-N^lWvct7K`d-p!=sZCah>$USSK&rTW0b16d2huUB1~7TPN=| zUcMqvPKlZ?FJZvzbe9v$>L13=Wm5Pg>@@UjMOq${UbL*>Zy*T7>LPkb>L)Wbz%V+I z_rU40n*>e^q=&BNpPm9v#qyyEr>R`xxc_1joCF}JfRjMT(9nvl(>*zH;kLI-<`X6| zUn*E9H#&w+=89M3$tj@~T`bU&jvwftqk$ESt6FWFVU6e;QU@ct^+p+y?DVIZ`CR$X z98nIJe)aD9q!CGXPcb5M=H+F3OBR1mHS->x%goDrbLQpADaX>bNXDYO{LjyPvlKpQ z<^v04p4H3OYj}iTxlh`5HJ8gK-O|e%3_P}mym{;TxHR!YCpxQE5wnC}t%zSNHZP*l zTV+JR)KMoe{fb%RsaBI)J~UzKB=c!D$q36$;^5m2-{ccELs=NHp!?ZvOpA1t;*;c2%RiR<3cm8U16L*H*c-f}P%q`f<7JPS; zxc}eF+1?|eb>bPQHhp&}N37{_C;CN>lbM!FZVm^SxZxH22WA^(nUV5L zqbw^@o`s8UcH)dOw2$sE?W3FFYF-XbS$?|1#GyZfG&-bEO7hgzxgX-5y8TcbEu!^6 zSVwDZ9}Y|FmuwoZ{5+{iNoqzwq`U0KNF>cOqqUyf)^wB(P|6mao83{mPp(|<6xW#2 z?NF8_gq?e{bZipRSzF73XhJ`{gQREEjv<*JwoUu(Y^=2Qcbiz&{BBxnc{H6 zkVqUpOy>>HaNYYdwY0s@t43#ckSXTRZk5N!rEQ?O3Pgv z{->mw49WQC)qcq@4OFp4(T+pYHGAzWoM&k`YYP69U3ydV+je zZxaHZr{JeH=I(&v0EW}xT;vCShN+r{U$;9_k5;Z*?(2YIe%uKheVrM1xHVGQ>Q_HV z6-l;3JWhOuPg{tBP+kmX-K6 z|I!J^(gY|x-lpxY=2Y-3+>sld-(4+6Vo^xl@bccI5aLn=6`XC9EBZtir=@K&KJj)p zdNn`edNsWv)gRd0fyKgtKg%@16QeryZ7xgOM0k$(dT>bZ&-)~NJf^8_m#+;1G`!sI zj+XaPF9`b_5*^=qvDd)ji}+Y6)=(wK_wJ|d!7<@|$D&a@4G6}(TkW|EjIKw!wUydA49_e z<9ic@CwD>%2Q!LOeEk>u1{yGP>un{Vy?9Iz&?&5zpDSb082og9xWrP_JC0+VE~Q!7V1Yhs;hYzq*9ZYg7xJWo~pEKsVW@Y)86HIRSfEV%yU2aHAIx77GPA(t4y3 z{rD-6!f=V53>oC{!v=f0)gO4T*{f5gUJ|TW-M!-2mxH5M9J?+!cEzzy67?wYiv0$O6+`>{DPGm%X~~{ZP<@ZLR-5tn)>0!5!&(e=X}p zvaAH5uQFT~KAT32Yo(YervACqmoQ?~9xmYa)A9QD^BPgLk_yA^1??Fu@d7&BGM6!P z3LraM|I1(e;u7QBylqDgw0)LlY{VZlZR0gHc&IO)8MPO;?X#O(=mcWEgo<>$m&QrN zdO2oam=``aaq*WV(#us=gQz8?J#%w2okVWYTD48;$=e3kj_jM(`3SN!IgGclwrV=0 zT7S+`Gp)daMEXDtR5_qNfkzhiGLTn&$aS5>>pK2B9+r6se(;=5Dn!sR41xTrU4P8V znVqFxl4}ZGaKHQxs0sXvA|2KLKtragmc}gR{+z&?B2nj;R!CHs2O*O>%H8|&X4oQ& zJroh{yiWa*$6`w$JhIqCW5iUB_~ANf>s4tBOQh%dB?1`??0L~DOD&!nSBt;yn$F~m zZ592Oy;h~t0WK!(=}CQ-rRh|6=nlKp?flN4w_4}yNsuwXs|x&MAa&7YnRRNf^hShv zW+G>@84ai@6r@MjN{{lTCp*=J^7F+Vx*J&P4&DBg?vOcQ(w>&-Q!z$rBQLGV z9zBnvgQ(%KX7zb+v|H`NbFVN8H;}f?$4-vsyd4lmrw))}V(*p+ANd$!S4}z^u#=C}B zjLXirFhv}s6aUe%TIN6`=xTIG;5U);@@VPk39c!K2pwmUwcro$Y1AZE6dwD7!x4`Xgm- z^)h#sQxp);wlAo*`Oj!4^P^mJl;xN|x$@IqmXE!RhW%|FWs`9)i;JRl7tHp-Y^&kN zcFKzLsNDz4qyuWZ{&lF$`q!>D@EcED_sA0(vGsh!U3RDs`42mDGQH-gmb3_a!2;}E zyO0B|@^u&0J40E4UIyDx8aTvHG`b(MP;FZWzwv!a!5HS^WuG0av*E*%!`&u+B0 z`?jP+7kh~MyF;zHFcw=~p1;cXfmk<+)$Ek|Ey1)H{789$PFJ>>s3ZkZ-$VXD&L5fO z_trw~m*+(1lUSk~YpQ8ZNe;GGiEKc=;z88;n#^KeCsE&=o$4B)#~{vUIx8@d9IoA# zG4@Z_o=wgb%dfBnvsNr0ZVQcGv3#-(TSedAB42mN(Oy0|<=K>;)Jc0R%a9dKAJ|A} z!!SogK98|kPHf&2JSR$?vmL5aNTWG!5f`cf(s)`$WH)_C{g@ueN}LFw*uUe^f`|RP zNzM&XeuH7)1NqFf?62vNQRgt`IK8{bk+roa!zj1sZA|MFtCPj{v|YxIBX6I*C0Z7n z*ok>(Sm=QDLe+b_s$HdBZ3j|$mDYw3&DV)BQR%MINKJ3l{s#@6jcxnVVE(^Nm*&G6 zk%h}isA$MFp*l!)T;s6ZUCFdO3o%-E)Gj20Ef0U7{-~!daT}f7Mp}+@jn8B=?Gk2q zhx)H$;6eM8@FtQ(hdw0dF$7~C1Y^0g=bMXeHC+BgFQRtR-`d~NHE)s|b?Iw#i2=Iu z-XLi({Yd(D6W?0BkZ-G$O+J=T3YqX=)IOr4-1&cqdl&eqs%!CoCNl{G44gp%M2(UP zTI~2hK_wl~BrpjA0|_(?50Jgoq|Nry<+me|%XFt|nd+)W^UQcO@n(wA(Ymf zH`&&4zy4s>0{x4b<(MHW+R>7iB^?=;OCQ)F6!#)X#x5BTY3!24Pmupw@VS>lr%(U^ zCV*sMH?qcQ81kT))L(8Lhx%FLqj}?_+|9Xu&6*I+n-HDtzEgiNqr|dqw&V(ycWn~z zKKMC9A`LEchs1tsx1CF`%=0rE?q%OGz)KilbHPn^eerm`a)Py1eShcVBkKeAjoUrO zEu^}IwHBsRZWgf>Qtz$LU<}bb{TigXBIt;%kfr~kJhZHN&FB4e=K`WhFOA}76%Ja` z3fafl(sPvI{@Q2Li3@nb$$f|%P7?Agm_>VoA zaPWD=nUj==`;4FBG+=x})`b$*s)?(`i&VTWzekx+;9xBj_mqCPi0~GBg%iNyMj{%l zihz=NnD^`>v;o9q{So6Zj}&tz9`{yX@&SA>5>|VX4(~$keKyfvMY6q`PifEOz0?5S z9LoTvGJxy?cZv3BQ(_Eoh{@}T^#8;hluq!7zvLu}hh{I8pT?ux6nBTf;Pae9EvXB6 zDF2n)b`!tf#@aP?*ueBF%2!N1=9bYTi4>%Dv;@>3-LaQLAREYe!1IYsbyz zwc~p8+A%?{9pmKMQI9kRBHA)Y24vZgSo9Ne(_~!##lAa-Le2opJoxm#hnXubx)5eE zRc()n7JNbGj5!iJ;bUslqFRhFZsm3>s&xJrhlP!gIwBtPN3zET7n#~rUE_dZyL~otDjvMTxDm(; zb-%N)6k=TrL(50S({k5OH+#gW_tMCjcyM%dtdW{5yucWY_b$8$wh!@9GoVBgV_V&= zjpl`Yh_=SedbGyd_^ZD0N?;6iRB$6ula?>~Ia^EGJ+lAnz>IY}`@?^ncRPFhwpnsJ z`=~W)RZ5bq(m2mJbNx+7PrOgtw621E5#89Zk_e^vxHR~YU8Z6UHGezV~QIegsodlQlBCJeNH z{iWSvL-BLA8sqq)yFY#)K`D&3qIF|1!)JNbE zqN-TW^J`uUdG*24lv_QYa)&c?0~cblGZ@D?glp@`B4g8LwiFuErNw?7ug5Voy=t}7 z7JP)GFS%tHf24B?kpf(Ye~3K^D%fyu#}GZ-YsrhsbK;}ASajw}m#_`3<+g_RJ%y2X za^i=W6pbem()LM&ZtIV9q%DCKeXof-rVLW6odZ-R#4`AK)(ExQ$?AD*71CKo!zhOw z369XyhUPm%LrR(a_^62hlx#)}PHSE>q10->CSsH%8WLT-$!Zc`gWGxgXJJLe-di;p zT&k4t9+-OZ*>HNXT9$x!mp0;2OL}9(dq&gm;rKgUuV;=oCcH6+XtSLXTDDW-O7CgovSS1pS?Yx*VD}w=z`^ldx-<^mK$IvJFH;zVs0Kn5 z<{ZF=xjY98WP((`>_1{+7F;(No_Zr~i(RXgeCUd#P#eS+3W~MbRXm*(Zx@T^b1&>_ z{xH{Lk-3KEyJ3x5<6=+Uq=cB4a~Xjf=o_+IhTMaA2GV34ATO0QBN@I+An2cJDc@=qAu4z!ut@GEVQf_`YZ6vc4{N^+}$k%EgW(E*>a>9428f5mC|P)uUV?*JH-hDK5gIBoYq@!cw$upFNdHyLc{<1{p&oaP zEQzm7EEXkixrl`^LUs?@ICe!ZASF9y=O)+tJsh^6EgI^^vvSnZ?Lr8@MK}f(3o3e< zytahbODm|a)NEVjb9n2DNoJd14$PS4^A$9+);73N0T5$F{PFW z4Fx#8UKGlCVksaZcow(C)N&`rOFxn^?0H1Qs_9S4TV-J4khCrN=@KdqOV#+Osoc6$-qmjvy!OjAD%Pmp+V*hH4U8mB38Y%%KAtyPIWSp{`5>OJaZrltDn;UmkSG*3Yk%J<~HX{ zV7TjoFgzPIVUV{92AjDj5-=2eIt;3RmE4!JF;ba@{6xpUnuzH^6+e-Ke`WSESMYxP zK^sCJihNVjPxmrUvgXg8OM42@(plK#Uj$z z1D$|)2Wi-g^;MY*$}>=%82e+qMg>Xm?2x--zQ`rbHlsHX23H+>BZwednzj9xzxve> zZzGcQ6=yTCgIPqz zgvW6|w?httc*DG6;6B(hX(JHg>J^jL-SCo7?kyap+j1w zKrp9fSLk!1l2B}zdUP#J*cg2fa1JeSh6Wjb9fAfst<<=dPqSoS>!Dxce!RFY-@-KY`cUzaE_JqPgjPTT>N464E{aoFr;dUR_~1C8pgKJed0bOFZ6NzJ&Po zQ{x@)^8K&l#eSbEH2D90yyMr|y=FY#_gDADi}mOY))to(%n_Js$@Gt7(_{4H@ zAvlTK$vsWBl}Bh!2%D5L4`R1&-RHY8G~UPhinK!{sHdbCQfYqB{a0)*iSU9`Fvoa5*5sFgdm6>#I%O;xS=g?J25Bf}^QV&B<-V^)| zU~<}(7+)ILfL`298!HxCZM;oZLwUq0)=N4t+PW1^Qrb#1G)A->(on`Z4N3cq#(vIY z(i9(ue1tr8{%(~W_e#nCo9od(#QQ7Y(Y}NGSkDTlKDfhy+o(#F`{sJ0tc1GY`flO~ z^`(Ty2@V213luYj9`eVxF;Y%ea#0dp*2H!!&}IA;n=ri7C@o_er(%_Q2vW-}n&?em zyFe}Dy*iVO3~0;b7sZ|^G2xLl%=TphhB@1lWT+2|*xgDc%yc^>d?0~@31fP_cutiX zKTB12lbV}3z@_dU6iy(IsJTjna2YR0#$TDF0;K>4VFwaiX(RPkV$ zHG>E9?L?s5qvHrmTjR`^Ip%^WO)Q8#2#c)s(10AfA0!C?e>L#2Kqmgqhd6zim!(!` z+pt{KhjN$6b_Fluq@oDeHhyE4B8@6;U<{mR%1<}BcIFIh9asE-`>@th|G|E+k=Zi@Zuc+Sy~1lGOj{E*JKqekc(OkYT6 z(V`6V%Q|-di+IfX3e5Ea2-pQnL}ebN;xTtTVO);5OE$-aA}{yDSHJuqa(H}btPGNe z3=dgmPxOUKXlDGNR&5Zu?9O9B4vafT>`{@J^%pW3OZzH}yFdlER50aGW)Mf?mc9xn z>G<3p($AC0rBNYaOz>H>6$MJVrSESkP{wjgZLh&x46+%Au?db&TL$}w(j-+rXNGBf}tq-SuzshqR;R8ks5`(KEG?p(I)Qs zoewhvuGq$@8JM?q%bySU)9*Yt`IS;VTR$l|*bB_a50~hQ|I98-#(n6r;y!d@el$pT zkT`xtJ|+ThMd;vwFnccr^VpzRdy&>i0?+WLU($GoB#l=SK3`I(VKGS#59H-+$;H@w zB$ySWs2_Cdz9UN}4BP7}EhMe*YqI1*F5jf!=l(?)^uI0>lT(Qz{>}1h44;5$@}$9~ z1YUwAlhh#m0mfX`6<%O{PB1cknrDzULc(Jeh@m9W$;{ce=ALP9$;ps%MMNNEIMA%? zMPa9gGr{ukteM`2YK3y)x6t$+uu|8F*Db7~Wfgb>9z5jX^OP7Do3OL%ktw>8v$c2c z6G2u7atyS;_RtK|!9^Y=9bCqhk2mH$WbLHjFb?tupyf|W8Ioj}pG)PJG2&|?(=^k} zB$k7D9%c0@&qZWs+%kx9`CYz(tPtV0GdsSeywLn@SZ=tD)5t`L%i=3=hjRbvQvV%B zziO#t?r|lTKz*WEtYIT~v#8V^U&XKQa#GR9=B0C+X~UkwY*=5Go+#I66U^$Ch%30$ zDkHu=sQ~zmbdK+XAFyTp5H7RLSe8bo3*7o~9QzUhPSX1YHtAd7$KgokdREL~c{{3; z>qe`2k?BUS$l~D-t4IDOmQN9!j60grlBd=<33OBphS_f8>Jzdmj)Eh`X<>+)_4!dZ zj97t%q1jHuf%YFc&}>d6a6wpLM2p0E``=N8l~rmXEHG6|kZ_YG9ASOPp++=@w{r$A zP>a8R)tH`2k89EafE7(fSBos9XD>?#8^4iS0vT4dN@g%5}MC1R9EHH?$9U6-M+bMrsu?MYa{0q=L>{%sx5=D6AZY(j{drC{l z|N1eQ-~r|VW$x&r31WhBb&Nc4-vJj3}*%SS1_y(gnt&Y*vP0ijQSst-n<*EapoXJ>7Jszpl@jUPTf4 zw3J>igcZvB42s0k(R8PO(tM>R1#ds2yv-S40*a{kR#HMqh4%L_TmrauCvuzo;230Ijq;faQ#OfRV5% zVmpByeee2N?)5qDx;!`E>qs`%N+KY10sjyn9KO}qI7_%hbA41*l0oQYR->lkEa=0L z4K3$lrg8_3!ikz>U`zy7)4wkQssDHW-JiV%uJcp;yYHmgjtlsAf8?dk`TpHAE&uME zf8yU=WPB4Lk@D$AUiH88>E0_r9xv$A{bc~^__12wHxLt6!em%mZL~h-Q?{8%!*e~$ zhYHV3Vqu|Z7W z=`8krAa6d9@lHff=aM#D@}N5wluoOng%vZ97J6S*4&M!D9L9erwgDF{@rNRbQ0ueYHHN;Y^B=KcK8qr}MRduIGP8%Fx){OLz~dzMJ-SCUNZC%V+)o`WBFTL$Fz)B5N38@`c40eh;RsQXzw2NpQJ zFV81ATFbZ9&{bML4iQ{E?~o94iqbo=*LglIIV@Q(NGD3EOK>;k!{n%r%M54{<-Vgp z9-}}O{wL1~;7ChM_M#fN<70#0usod{qTd?}zuVu>skdWj%$e|W;{4uY%oOecsJo(W za(}v`bIv;Zr6n9<0^ct!;TD#xm6ni$=k#-Z(5v%6-ESmn+)~O#rq!_aZCcHp{CGmX z%YAb$Kdg!W#z%==F%;+EMQ(+aCfONRQYf)AZu(g5jCWS{+ZjC|<^S={ur|i+YSFV( z)ZU2tUB(*e%H$N(-gune`t6PGjeUDV%zAL??lm?_nSr|_SFL~Y(U+t1aT!+*XqDu{ z{Wi!GW|QQl5Tk1T_8QlfvQ8{S-Prv}Jc*y=9?9(g)Tq6gT~fuL z=zhwdSUMk;>cX3ewX2dh&c03{vR(^$efAWg!fIKjZJ+6vjdn9kz zruC;#U4>nd_@K(s`sC*yyN|_s0;9sTs8jvuD25^Y6RXm8=N#+I6dfj_tO{6|HdIsgIKWPc{nC z30Wh!^4t+@`|^cG@CI%PT)7nnP`wL_NO}-cXoAi~NpFt>!tPiBvcT zRk)EqnlMrJd~E(ebFz#c3?p#xZ7{FCuxllbdA+gOqYk|zFNSuJ!s~TE(c+YW7SAWuU+|68 zM8Vb@`G6ROlU|B+3=Nj-kUsTB@18?O6d3j#dS__!xjg~gA%jFGjm zs`n{ii^YMhuYCXcj$E73 zj}qbFRjjx%Vb)u{i^p%jiSk}<;@`cI!W@-z59G}+iWavS3r12Z&?eHp^vJw)yCcw5 zZuh=wc%@^J8;P49VR&-QE^}3vwe=OlF`T{yc`;#T0=*rc2S%Jcf;|38dBTl@)?Br( zRSb%jbxnG$13v2{jtE_x{qbP6$B2{U32#4Xyw$shBWiA|I6J;MR`O=I(YQuaf4oQm zMnig!<5e0PDGZD8q&z;tQv#l#&?xI&P-^^njNk@S-_WSS@*$BwKh`5uy@#rFBcAJDH!J(fI@kV% zT(~H02txvVzQ2VDS?+cah4O_PXe^g!G#I+0ud#_{V`KUn%cL<{5ckx-g)>2TN29N- zJA5TEZt)|yoQIc~Uq{x~R|@BAGvTUmME1o?4VhaR{a^TGq>->;3tkNI*!VE@*>&i^ z*&8I@7WoFJ_5%+R@fTyEugPmJ!{~?_u4KVhS^-!qWqah4O`QX1OQv7>15AEP7>?g$)HJ>S(p?EJzmcPtbDz~6&Ty`{lOzfv`xJDzcR)sXdlUg8#ytsHjfo!T2iS=JtpG_>*iWQbVn zYR{iYv76C2%*H>PR`ubRIJksdV-4Dl{5Br9M#+dg{U-QaKaH^EZ`|mk@LxLY* z_mFaFeWdMd4)j&U98A&{`J(8p$b+B}RXrxR%dT+Zbph+Gci|EfudIFt>o^+>IB17V z;SGxfb+Aw_kB#5lw3U5)o|0Yd9?o>JZzXo*7?Wnc?A?FpEq(vcVpnuQ`l0tb(uCce zo*rG1G3mA16G&aKNSq#BKu$hPZ!zIJt9Nm1ycS>OG`v({ zSFzN^5U5SYv(T+C_C#9Jqh;MO_fPb)V_1^FI7S+X=h-U~T=xdzjN-+mhuWah1oE7; zOCRGMdFd|i%Tdpz5)ui+I4E+UC(`1KG&m#g5Oy7s(&GzsEkA%siFZHq7inj&MKa;KN->e6=)b4sS0z1Xx^M6{gD_#xoo?U{XKu z!nM3@w#{8XJhsxFS2qO9k8VAXRl7^8X~%jjIzrV*9Ej>P^wCqf-Gs}yFWJxys-cM& zXz202h9rcrxTQ%VAfrJ}w$K*9l6}2df4Sj3C>lRT1ddj}CDbW6UVc2K`?s=v{`K? zdALOTX7fkdJM|6kkEKmPFhs@qaSrx8G6PRl-?tUS+Nb<)yJIhGBJsLi&f2hsu(i=`5iH2B`dZ0_2$>HBs z8(%%bak9m~UFu2v>QHCLNbmj@vdqYX0I9l(>JZq@wymvSjRI$IMXHFAJ;Y+=7!hD% zGXd)W>n;u}fTe9TK=kXL$f?v-cg4rYvhJT{6K;TsI3i7U1gz5s8$iOxi+Q#-?||M& z0s?AD>Yi)*3Mf?(7N3q5BH_jg?RsPFOO(>)9)z3)(xZVR^V#D@CM*fqxOO$TL@Y_? zJ2A)g+_dZ!ejn#s;3zgGk)Gk&x~u3Czr<8+qxf4!!&|ipr$|H&81agkdP}5Dqj>sX z1g#u+J%%w zyispZ4c_548$^mECi@xvD-TXo7CsKh!}T(hD<^*Vq%C+EGyCSsG4NExt2n^N-SY%T z;odxYeNmQ`Ufd&#grA&w3saY=#RNI1zHf^#2}tK_zX!y$=-y0bGtYVZUr3D9T=Tblp!xuHio{$lLf`CF3~KhoP`Rk*I72q7ZDv z{oSTI$POE8hXd2gG<;Bd=v&fogMR!ZGu$hSr>*^4B6$xVgLgR&c#-f{0ddshSW|<; z^uLPg8E}g?hwrLBHHl`|eu4L?buzyuN)uz8IGq=n3cayv8*7km%Ql;M9;5J#Jq`23 zdbs0abDFRxz5Z`29omFL*c4CNC3f4OvfepSFj<$TH^-LQ>AY2&u#*qoU4KAZ7X%0n z`x>B?FAQtl-%@S1T)Zx0Eu2;~|04hXdTwj^=d`r4sa=+!0If!;wt#|J4`XRQqHMEP z`WlVw0;C3WYVX1@{<=Lv1GL$vs~RTO4bS(z5*(z~K*wQPDr0I*-(|)gcZq=<5gQ$(#M==O(LPKmhLtfNq_T9R^!8x%mr4NETAWMBv ztoghG8W^%=)Ol2wx&UofOw0eYnh);L!-v~{s@55RFWjY{2D06&V56?vtp>QhmX{|Q z;1<_PDStPBW`{j( z98tNeg%)?Xw%-gMy#Aebf2ZRB-onLQzzMp^aQfGw)iz7IJ_mEX*e~!hpDkj=}YC%lMKW;C|u2 zbl_BK=nHIEPN8fnr3x@XsuhA=uw%?rJ!0rnL0(45%$<`UHqG`MV)xtI#pyx96gBiC zLvk?}DGs5OS!{c$?B??N2}GVTvNpooI3n7DHwaJpiev-pB6Y${Ps|--T5LtJneHO| z{fi9m_h)0gTVgb+ni-5E)NLKr;%@`2vIhPtb6G!8qz2sc<;izRjYME{98b0zC)EIu zENqRec9U4sn!OH9mHav-72dbSLtBkCK=+LPEAmt>!ymLFPdq`V92IoE>14hrSk+tHux>%U*HE$qy24 zYnK~bq0!A^P!lMI3h%0w!PqI%j)gCGgw9A$cJS+w@OE2;J*O_MV~zEw(`rSEugF9dU-X7tIts0B zPRq_$^a5o>x35d9Il)UsHjYCoWWh{l4nZ21q{|o{NAWOU3m&0{*L+@TTw#8Jhzc^& zWy%RaKhI93<}{m_GGr~LT1pi2%5KHx0#)7cjwi%DMQq#^dq!7<#=Ekn>nAd4b!qu( z&IgS4KEY7H$PUzpGX#f)#?RH_k&OWcJN`s-f`w&FP67+}d??_91U%r5`^g@GKHr2_bq}90dyMYZ9|(&esswX zCjorq2XUbYXWY=1!d@PhD^GH^XYn_fqBkf<5Ox2?KV!?F;5a$EC)JlVZAl3ZJ!nKz zl-EUBQ-hJhcebsqtf@qMwyTtE%nn?}CdExKh=?v0c! z_K-XGpb;9RdM|6jd?DFC@fS@0X;G2B(r`KzF#w`i2NFgi67<9t61og2R+sNcg=>?e zKG%1o@>G%Ww82ai3;W50$Cjl-Hb*wRh24d|TR+Ra&~f~uUrU1lSLEHX(Xbo)1YGT7 z>2<-W=B52_-u;|mBoX$+$RLJX^DQXZ&{v`*z4{a`jfXz)H7$QzFN1B5-m1+&h&EdJ z^SLN3m(jVszQ*Mrirg^Ni2{V%y;0b%mb_TjDN#)F{x|{2jttSQ|4pCeDaCY13%sEP zj!WnV9x~hoGGZiu@XoQ!6yGA31k5Nqrp+Zr!>)H3si;?D&L1-gNF>_yR*5%JftX}U zG)!_5-)XHtJnK_s%QsUhcm~G0F*ZbLnPth<$WZ>~`nLdxrNiQb%rYg?Lr zDvvJ)jTewtFe1~%{s$Pad-O#fhE8x?)60d;OD0k`*BXD%l1)OvaizM&cze-oo1+;? zK(wHDWHCN~a#S79!O)v!}YCw5Kgz0jBZx1DZD&g4i7;i&z#Lz`n ztiFH!=={1dH7^C->(jW{=hoTTK0?(L!E>nqMrJ$gPlV%cy{RP9<_KQO&?eW4eugDy zkfabego+`K;T#u+2d%cKGRcgG?e(D;4sXBB1j-JG7H*^)8mG>WlEZK(YDGc8Ikcx!J9U%e3 zR#i_n0In#ER6E@(5`B*|`;H{~M&;Gl`EOJ)kAmG&7)eIfF{LHOPmwP$*)V`d0738& zavvlpTeI{i5eaJLlskXa4<>uIMm;#ub4kCBCz~Bxqb_-aQPXB9y|mQ0TI3>%zr4j% z=U!-h>B(NK@jY2!;da3IUR-Xfi3BIs_{aqva<`9WaB4*jbk`GkCd&kuX$V`1zRZ(- zzbBk9&tS*TjiqnJM-$5dL^X%?A$k)#=4dWgdR$zmZbdt!4?2l#?MO7dmwmwTR`XNA zSJ`2q0-*z(#zF~%BUDoFWAdvDK9Mt69jtusCe+VL=gD{VR!5+FWN|0gOm6&5PQ9ep zd(cW|d}+P6*npH?ibSx@PCg+zvC)jL?C8pRJ-k=MpJhiPx7k8hp@Q{)>i+Oqgg#iN+#=?)k)8|QRs)_3Y3l-4(n)^||UseXvoci;J1Uy6^@rzx#(%LTN) z`_I+-9?DXHVH&d7g`L|4wZ7M%3;YW+E(E;sEpw5J+Spp;(OU=smo%7GdS3~rtLUYf ze~WAi{w*>sq<6y!K3YoxI0Vheq>e`Yj}tYNH4XBy-9_uSSqhSp+KPXgNaL*X63Z(y zA+dZDc?)74*yU?i-NgB(JyZ4QhFOwDyNVC(g#vql`F7<$Iz}l5h<@Zz)on;nPBO1m zw@nOXS~rFzo7PidD))OzNKh>Y@>cDIF_U(&DZ<+^5D6TK2A<+zkDQ*kb{hRfPG?tM zk7zGEG?sswQ!q9;uVZ+mXM`{){H~6<^HA|=FO=E~xK&9tHfp$&cJ%!$XRn9{(KBw1 z#&FbD^1oOPUwq;1E0L>i*Z1FEl|3;uDDHpU*ShK>(H5S*POBv~8W)wW0@?_7(gqCx zrP+oT8DikMXiV_Sr48lae0mLynN%@(yF>H<2 z3K$Omb6l#TwE~;uhxb3F@X(>f@(wU)ZC!<`bu=gP-b87xxI6e|yZqB1q+jyiS`qBHcC4knN!6tnHPbrbe=FoyrmX9S7vNVsc6 zWm?P`1%)mC$LWaWa8y3j7y!L}C143A(Xa-NL{5J-I5=|JuhojMlwl9g_8$!m&L-=4 zjmBXuwP0KH#)5>mGpok%2Hg=OC8Y5ToF9!a-N%5Hd$j8#~u# zt4Q50AA0M_S0mwW8_|_0DHm@pH7MLV zEZ?p~(y@w^4(zTEPuf+xOL2Uno9&@to8~v;MYL}~c|s>&5*RPDU@REe0}%QKK=>N7 zij#CtB{+g{th#MN==YM|mz~R|b;-Tpl@|Y2nPYge%ea@C`bUE5ts15u)Sk(+$7b0X z>id&+RXu2*7#bPNBb)Ex^|q<231GW0U;$}opr`#>QCM=%*wua&-@GKULqLag!b)Aw?H(~?vo-@3ylp!Q0%GEcJXM>+ z19X*msfhmOFQUJJWQz*tnEb(kX|U2WyZ<8LC6I6;elAs)X_*ssPHWo6 zD18{0|8Ndr!tJ34^kNAuR`U>wr;6E;)1xa#3fOdUhx@OhU1-0LH-NlDti-*$W4WV| z#Z>xLA-0N?dr``H5w2SLgZ9sh9`*ElYf<^plob_khbq;I2zGG$#b%qFNHj5Nm)Gy& z!pg#l-2;(f&Nuv;&de@aBX4R!5z?F8s3R!ShR|dUvome7tjmpG;|xTUK53WG!b`Y` zo8?9Ip~@fZLGWU)e1{gDFUr&E`&hn(4qBCM05au%(^~ze%pD=tZI7?j)?GxS@_p0V zl_Od1@%RU_cYrV6E^12zO@$aY^tOKls9N-Y5&#qDS%C~17xjTGQx@n^;(o2BfwHVR zEw*Q<&9;Sb;jVI??BE~UQnpVL5f$Th7=X)&1_LYqXyhQeTUfZt_h4e>!7;9`i-CW~ zH>jU9ec(b{aeL%c*4mpQr*76Zeu`>ch{N|eN zNVk5PG@=9L5%ZW7e(NJ?4O=JSB%X@aE(9e=siL)a@g;J4g0|slAlWXuG`%(3-xh`f zJ?Cg3Zn|E)eWuU9H9W}IvepqRh*wSZObj`0?|4rn+^4(;?Zx%_!R$aA$CNe~$}Rst z8aXvM{8fGbq!Yxz+f{K5frSqy^cx(Z9CfjkhW3JcP(f_+{l3#{JEW}^9Zg#Ju-MTw zh9~IZ?T+x)Xz^k10qq4j9H}8>c=9rWUXyu;YrAa8HpqRWD>l;}IepREvD>pZyglXQ zd&xL!kSD|=#fKfca(o9XPvPJD3d0tuxUebrr@t_m@e=NzrGb#4J3G`?ah-I0mM$a4 zL`;T?jC;G{@q8{@1$wJ5)VB5?jxZ;_5*LJ9QR4cai_{Nx__xCmh;RVeU~`x@TD@Hs zf8VdE&(IVtF$`dM-;NlXV3>g;v0QGnhvWAv!aNcNn({QW7BTmZ&^6#Ez!VH^t1tE z(o5WvXCBa1L($?#ke4|f2Rc%{9H~dy-0;EvZlaO5I-Zvvnb$unO^5m=OQ)E8#5=7M z!%~D#OJU1}{X68t+sg6Xz-kU(q>Op6%42>*TN!i5m621E!xyoFEoJwiuRh01yiNi~ zRZCr!9g;^l-0C>sfXtvC>GmB2EYX-W`usb!xjhVowHX$b!Z36wtyjYzbN``?pP^Jt z)Qk5P&NqICrX(KP0xpO*k6fGYT%Ug+Xo98M2P~pT32foIg^j~Y6~pEi8Fwl%EvNDp zr6s5siG*dd@m103uyWYxo2B$-Rv`U|8s&2$$+cc_MDcW_+4~525!kFm>wAmn+xXV& z((_&&9Pi{Y3G9`pC7bSck3QeSdXCo40Zbipw{CA^Xgb<>gFJ8MZjGBS3%WgW10HgYb;ftM~u7G=T2iGpCB&s{94M<);Oddx;h&top3;5 zY72QDQw%c5Bhvw^)G1p}%zxZh3dNo#f3%vfAjnow09@^x{7|L}*R`4oy8}FEzl%SU z>f3LmNeV^(J28UV)uI$o#%$l@8*Q@(m8wdsE#pC=o2_Zu!vR%br_u-vj+{av;Nyvi z!0&qxuw?Q;Gm|1ggmOJ#J_qq>Y*rjOqTnCoUl8*ji;U~Sn3ogrWqBQF?YJ7Y=`QvR z;#+JWWvF|2V_L;%wW2%YIIq2xPho}#$<@#w_?473k2&isyB$77&8oa$-L3l37NxI;r+&N?Nl(_Qagpe6qOFtcR)f@y)eO^VC|Zm$H&($ zzp6U?s4yg`q{5rXtMDb}?HnFOGU!z|s7@6p>hEcPllEm%Xf?9%1;WSEv~@o-dsTt) z1i8z74BSYWjmds7*AaD(&}N9~K`VUeE{T<(P`1#mcv1?7hFf@2jDpE(9@}oSZB6qw zw$x6vM#iFm--|tjUZpo$JDI04R(Z=?496hNyEDXU!hnOy< zF0_7W>#hY7o)5d5C)&EP{1O899|z=fv$0Wq?lsn_&z(jkpK?>)>1oF+H4c$l=2$gS z?X`W(jVV>(i%fYyxX{3{_C4a`4!v$wCSka4XxuNqMH#i1ujsc1(pIIz>nWbkE5=NR z+Jrbr2t!7iBUyu39o*1a95d)7x#tCUvMf9RAg6=;PFz(?7zzXiB#+_eY{Aspz;hjG zwZ&UGAhenVl&`IC@joV&I6rId<+E=+3ykFK4&HbHgV@VuvK~|By~?z=#+pW%`YLnT zJeFMU!YuoHl>Eq>IK|qxGNgaMufT=-3YdKb=!-2WRx?P)SajT7`Y*Z%BTQ3;w{MEt zZ&a}qjz}g3#X2YN(Q5LDxfxRLXiXszi-D_UZLHa6u8kGybFc9YK1+^UhsepjUeDD2!pC(hzXhx%d!l8Xd`MiQ zatQ(rz|QeTz2XZpIZxT2tk9sd*>SC8vm~TY^;u;LdgFSOKMs)`u49QKA6##b-D$6L z#BLXj&~Y(k-_7-0l=(YNcfY36$k|?PgK#cTZ&=FuRP^r~pW=7ziOL1dj_aml)_&E= zH}o_5zU>qFPe15*19c&)!QGKJ9UuKliN7SJyx*1VUE~DHUTI+e?Oil$6$*|OdEj(7 z^=QZy8eElalkr?P-FhAR2P&5h&kI=lETM&dP(MS*3J9xr#~UC0s$DkUdImYY>H$0P z>{KJUl6F@xflAEI=%>qf(jUEVZ+3i@4j&kL@{Q){_G|gt;pB_=&m4s|k`_eH-m`Y} z_IvnY+FP|2AOdvM`T{OqmDcMXA)tAzn!PlY}^R^b*8w*84PIA6RL*Fu+} zC(8~gCF(#omT{`InT6vf3N772n^r0g;~3~#TF(PQMH{ckk2duq%h)YHdeo2c#`E$c z^Y2n@g0WS8Oi@3sQSo(&{2$Gq*dkdvm}b=6O)@?S-Oeyt(z04MV@y+GWSO9$$h{yw zWXR@#^@yndT&&Nbh%?icGftn@sxKr zdpkPMsqdtGi!DR&o8ue?GK}tza0{KAA--LQqeG~s#U8M${cP6UFE#NlF>6jRYa&du z8Goc^bw$QjsAF)Pr0}`88d^wk`q1fRO24wVen7Nq|1m^`G6PT?Zk#o52xGz@TZ7Q{z@m zkwj^CPBrI(fttNpJ*keqf0)rGqJ{j5>4u&+;u-vh-T}cD&GoPRgE8liNx%cr+CPDES0w&1B0nvIRB!m}65uo1AH45C!%cCH9_p-}nXT z<#y6nhWgb(!hP`gL(-y+>SGk9=ND0h~-92qxUe5WcCY+}nRDuQ#W1f;p9+k*VbH zDKa)$?ZAOIOH`awOsyQiM%tNkr%U|Nb=&y9__h)phlC1}kfKP!SI?7q$}mPftL8~7 zd79Mj%8gS3@HUm)_*(y;=KMeLoLC{$hb|-L=8a1Y_%k0Yc~S~UTvUu2 z2#h*FthF^^6mTs@}Fs_qiEEb2ID8x|{vvN+r)uT*8oA0!ju_L@FO*Sm}dE!A5;Q3 zSXQ33lT2+O6newK9_;IapAi(9V7&Xh3C8|E@Ohb_wpcDQbZwla3LO z0DM<>{s_DYVdNfNLQt(03-vX3;h$j4`?48uT7pA+_o3Llw54jzOgQGPp`lf4Zny2o zq+&32M;0IY^r^^`@VeF~PmJLsa;x#};yRih)%IL?u>?w>}7WcbIP5DehZ6OtfGWbEnt9hIy_C&pS3@g3YsHI=n#k&5*CkjtIds5z6;=mKOi?td-tpNLg zQ@`J3ESk*(6J)!l(D>+XzWN^*VJz%1QX~IkG5;gNPb&U0^hhBqQT%esQz(zh`(An~ zTp$I^|1C8*K}upu?u6?6ZeA1DdkHHtEiD>;)JTcbL94OH;KPjWy*GvqC&X=Nr&LwG zB+ps#55!Vwr7JkvihvLtR${#MCuXA6xbt~6A(7Sh*n)%p+)Blc5s}q*+y49q8J(W4`;SG}WauPN&15oOGcsl|q@I|P*^xhVvFZswn|tY)F!as-kzzgw zA|>SeNYJ@m!grd*@q+7))r!t0fk*6fR#UN5f}-zZA{q04yvqmvIT;ci+ArD)g8vit z+ar+REbKpwq#mamsTVCn?R@|O5DREakAMy%DlrsWjW6f3ssoyFNo_uN;R7~_Xnxp= zXx>IjFXEb$&(rKM-w9zfBT)>PgGGN-bMP!vp)R*HQExRtdNJtd&O+l7vk3=H=wSov zL^iU;kb_gW0;84Pw!nCBvfBI>hZTI96pO|Z>zPR;a`J>o%r~FOX8hd`*|LFc#;Rh5 zqBgKGhXe~O7K^NWla}HC%o?T@B=Hs!yt8~lU#$Fs>P-2B^PWxk!Xy(Gtb`>@JJ{+b z?~U-Y`r-`oC0l?m-g-8^z-TZF3mN6sq6mDhWnAVF;{5|knWVC#I7vO_MLqcjAO}&2 zwp}n8#n&`BjKUK?{eaqV&AA6uF9#H))ugw#NlWuQ#xDrO&%=IZpUELJUd3Wc^zJn? zQUF@3{V$+aj!@7iPoyygTk_z1lk)!$=c<7E2Zj$Hl-d8Runr`Z_*A&9c){fA%E>Z> z&@gqZ8XFPPuyqnA*Yu2`(=$VEQ;lvO7O}uk;}p}nKrK!Ab%tN^8F?t55HDm+m8Nyu zi38*9q30RVIV`j~k8}F?EABOxwT;S&OP=Gl&2rd}!MsCtT<3?(?6o+qj;j#FvNIAK zY=53|YtKpHZPlUOGCds}*;=M&$On`Oo=f(>VzmZxS%hAkp581b>M6mY5-9L*=|p4- zw91hxoS(6q-{qGqod{eP?)Vn7Vi4Zo?wLv|Gw@{Yh*?S-utnytj z3$Yc;;1~88-(YW*#8=!K(>GDXc#5uKx{yfYOJiaFpFYCZKR-%6)AsO!L6-FC_r_O= z{699`3Asbtvu5wf_|mOZC5N+72q?<7Jvb&ddl{OTR#>lFL}0!zETl>x;%E?0AboUn zIH6cPdWyaqDOz9dE~IN_&gBFLs`988njGlu;Kt0Oew$##qxy43T3lG&RmZmhy!OaK zNG{&)s>u=1(u*V&m8wH_SzS1?2MP>bQe>76(_r+iT@9Ry3U+B6g^hPbr z7tkiy%+(qDlfidOAF0pljaBx}?Hd_Jo*fqMZG!vR%Zw>s04uZa?JFZIW#r?ml<65J zA3odJpAVmDVnH%bbEW#c@ZmQJ9$Y4%a!>7B;EJIqGDUFk0^{B5)JRC9(4_VqYPNx+ zSM*cH|8Zfz@td_Sc-@upV_#2x5HUj5PbnM9$6#8pXLhQ+xKS;$KQL6z;Ke4^lhi9A z@1lN**xHgs^-e1Dv(UH#E{)|Jb3ZK1LR8kJJTEcs2-21rdR)b`IY_3?_awzl`W@G=YAYSA#lV7zI$O6G`S()3A!)%m! zAJm7J8m@=wshPxPp%29}djLt4^$1C0N-pYyMQ2 z<0{g-%O@M9*QoWy-FqlU?0?TpYL+i}tVf-#6XN|{LM-7WRxNtts>IOye zJ_y()#y27hH~C1gDC=V7*s2~NDqgNz`<|F2_f$Q=(eOQgZ`A`M}`yX)QFr%;GOAPPc&yqbpON#L64h5 zVYP~q>B2Y58FE)=2bYJw+U$SY9(2@|J+1p&g~o6iZL?^Mc^Wl>3hOj_mamG|Xb(Nb zS9KamIxL|%kABW1jv}H)lG7^Wrmk$8)nq~vWH$M&z9#SKYx0gnlSDdHP39(=Y#T5@ ztI5Q9U^bcA*W`%4Cesp4eqx=O?_aH;oKp5QXZQv+_YN4#Sl|((;|C)0dL&x*h-CLh zLm)?|@$rv8fj=Ta?`lw8?q9l1FdjR~<=*(*sowaXq>wlY3^yN2g5IB=>5c0vr^2ab z>Cf!sePmAxKiovtPOf~sI|=uRDr8G!5BA}c;&8|ASZR{c91__bKhY#XT;D#!E+Rab zQ*V@8rr4p4O6JQfGOolBnx(Ibrv%4Kr)*tSHciT26wB{D`NpLu#&zNUIbD@iFpJb+ z3Y`unbgbT_?ysTEvAN5PZU}yCgQC^#<)q6yuUtIzl)gbon(+Xtg!A9)tlkYrW!Uu@ z#0&oPGHt5N#6shSeq{!6TmVgmYUP+JF|*LnC;_lzd5JuN_b$;?<7U=~P|BU$__7pMV%l$LLs`020-t~@1TW@(zOIjyuwZ)8$NoLl8 zaWRd(9771UP4WK)j&y17AoNh=nk^~PRCKwsB~P7NEqQL3s(4GDhY5lVIM)u+8@y?F z7cR=4~(+zYdD4$SBwq|7;Rr=J6NLLe*f z7NaF`ImjN92=GpDZFL3_a>r#VO_R*TkJB<;9#){%k1in-;rpX8Kiwc zj8srcAvQ?dW~XuDgI?Kw35~$UD@`JJ0S=M+MH~^c5m!^ENnEcpNL7g$~jn78&tH ztn=AUA@a@9?C2URM$>z~-+!QY_>_u+C#Q6#uKD{nVaVovq*D(wh)H5fZd{xmO<% zX?8^3>2)#;Nydtm4J7j` z=qq!Vl)_%i!jL~w0}pPxIvF|ZTwbD&aJ(X4FqtHYko1sGPA~^nc2fkXk5oxt*YeK+ zl-ei&)nx*eDh`MLHcSFfu6TtYVCzzyuNW$zlVVEY?L0XCq2E|ytmNQeMZPK%QD|KC z-pRP+l9CGlckNw8d%8Gez9M*xE^|g*pVnT=ilK`E@YCQUTR`HKANn+8@ggXcOo~OL zE(G7d-JUczpfz(o2jI_j0r*@pkFp|aU+M=RQq2_FLoq5-Y{3Y8)t%c|5ct1-IO#Rn zsN}YC!~KS)EbV1mFE#j6YD}JRiXAH^1D`2eDp%>H6W){~T?{;o&mQlMTVIcU#3>F# zH}kg0oAo!=M>TO-#z7$8l7iwpL zost)-Xm&~V#6>Gy^Noq{xupMe&M!2sRA1FOoA@L6Eap7qGMa|TvnMB-R&}as`Q@?P zoT<02NH32gj&PUEH@0z}h{j9|f_5?E=}}jF_#%wiVR4qH^V!CyON@j(ww3IjvL;~z zlJrPADAjM(o^`K|Wv+(8VtS@5n5Z6_cCx`n^P%hTQt|oS;j6S~XXB54r42jXX*PHy zQvFoh#y{TM@YWD6KG^l!<7pjkll(PFFr*Q>eVT$~_%sE`v1tOws@F{c+Bx_mACM^m zjGU>|))5sPUkbNQitkclmJo)i+jo4$XK;6k7I-43C0zb(b(yy)mb7`sEs40xP21TB zmELBUN9`eTwh{jrc@$~Yl+#SFuVGb|-iY5m#>x#|vT+>1QHAe;UPmKlv3VHTidVU$ zRr!y1IUd8^p4eP_be^Ob;jD|!OJDv?q95qDloVnIVKmL>>_QU8*%j!m%d|Jou#1SG z+q#5Ytv7E$CWZ{arZ4No0wuy-%_i_UwTBQX!k-}%%jQdo;kjIzQlah!sd1T`tV!1G zU8)3+b5Cj zR-ciuWUCShL5AxDFGzFO*EzF0?%*A!Vyi|ZD$6^!yA9U?Gs}o7e3840!Ugh3-^Wy_ zhwkyWxvS29oMt}ORN-a{r&YauTh*Sby1NG1BP}WTkNbL7T^g-OfO~VZ^A?*Ik1~-V z!2ULoH3K%mi>7zQTPNfF-x$~P!1&th19@ZXyyX^dl7wpJA3@f-lk7eYVC~sg2$!If zkYj}hYa`!>E5^&Jn(m35asl0?lj@g5(^o8s&RAhacCes8hMink62&rBVn@--!rDE^ z_X-N+26IW_eCEQX&@D^qw4=dyK+EesaUwd~6AAaaqHEGimiu%c zGyGto%)U!4q@E>FciN;~OQLhqQuIBni5z0UJV12{ERH(V;xKWupwP(ul!_Ew#6mVv zsFnu-0j8(mjXTm@8#3DALgCVL)#^wwM!(M$t0Em4g_={sYYw?KX96@U>bygq^YrHG zcO`PCigQuDU#P&6=-NdbXsRFMzuHbJ8G+Dmk$0(E-0&rvjQ^aB#9n>{yTyT(_wbW$ zz1YK^PuKCi+EY@xK6*FjkoL@}x&S8Bg9v1`5z&a~O?F_-ZS(GL_K&ftNKc2}nlU*l+6e4L7*-&cL>9e8o znwPWwlhc0%FpH0Ylgm9W5$C%(XbM$Y$Vo z6ZB>wH*SQ9=6I~jSu7{BB~R%%V)HZ6Ztm4aE%c^Hz&O&voL(@rI4uT7tM ztR?4|JdDojjm!xnaMOGjo|eVI?@M9<_0C)-Dm9lEiE)>B4a)-V?V1s@*RkvrBl&1=yS6IZ^X_n46e$M5HH0tJ%PJy)4tWyK=B^wo}`%AJH3`P7s_z z!8fF^7RYK7djS++v>opLfw%D>H{Y%#gxkM6{`T+0CT~Dh!%T*HPqsS_Hk@|qe{1L% z>-ZZnT<+nV6Vx?XRSEfO;aQG+B%86x8}(KQtgG*wjE6dl;wwoCIp2{;O)?C+5Ua@a z`nw%Ra40GxD|+RxK{+r9w^Y`x0MYk&_a`7|#Ef5J1a-G>7w8)S?mQ4o=rcF!`@Q=T z^^Ox&)N!29b6+9Y#U^Y(&mD4P?M9$>Zj@0S0C10FF|u+(N&Yp-3H1Z4#*_+eHM_nO z*u8k8w`4lHfIZZOA?_~-9Vvi^dQHIhc>}Hl1PREyV5gW&ZveNq^w1#vO#26n1hLm3 z{cOAJbsS`Tt(9|_yqQI%s2MV2fi`2kaQwvVe(C!nQ8Od}T3e~C@AMa`V)Gu1xxZgj zVm!@j>@}svW8%IW>TQ3N*S^Neyut-sHE8RwaVu>tAePGazb8j9K7@x$lGDdFVcp)F zXyz~;aN!nS#j4AW(dMx&q?XRu+sIHsKeNf<9hi!+Gh1aHdHuN9qx z6{Z)|ERez6udM!M5R#ES%NhvndAzNq=4gHkC8JR(9l>nVYJkMJplQCsis4nQ;D4W7 z#ci?4b=hH;RwM4MzGl<)B+`_j&KKOrBOhc&NvYZrc|TJ!@vveBsim%Xjrb}L*HTu@ z*Em{PF_Df;griY8d)enyAp#Nk5+|TNx#-BrxXLM*#zCNR3g(}mQ!q9!!}lt;E_(|@ zp^ZrhQA}%%lwW^>VgBZeOi>q!X92mk3>HynP8so&3XR`=SCJ`M6E*I>;fFmk1k%Nx z1&;m3`d0*wG;PEn;K-NUh6NrgNdswnl)f^}7MnW|4j*usro0dSN-Rk-EjZ{q+zHZZ z4?)h_#pa9f#e|(s-xwDIhas$-T|;D2T>XMB52SaJpCv)#Jid@ys~OGMec^PiM&eq; zrf0x;_7NAA4QW5Kpb3cq|3yZ}*^}mOec)c--x=c`-2~kuBCys!_4Zz`|;?9gTWulq`x{h++8>+9*tG>Xe z^ri4gUuM#aK72}FCI6(a@m60uJ;}bB6MYetF~D5Ig~jCzFEO6|j+*DHa2BQ^9Fpm! z#%A-;c?SyTiG^MX2%hc>d9<2tM(QJyQm2f#Ec2hDcGD*oYO(3H_RIr!;q2;YnNg>t z4SXs-hm{?3*J&ffTvjb^(rKQXFjFtcuu|87$Y^dxe7egQ&d_QfRIAv-GU!-z;kMI~ zZ7T%R_IU`-C);a=Od`ju**4~7TwH52rFEJn#*ha(gmTWqUYX9($bPK~kGJV~xn`1@ z%@m2cxVT~7DP(i3Sw;nXv!o{AGtxPypYpJn8@M}Kyq9CPW*>_vmY0cr7@^o|>iNY* z4qatzHKxJfWo9zN=pePtK>y5)7Bh=z1>~G`Z*2cQUv`ydvLcer3odf?U+b%{Nb;j{+HlaR|aI`MJ+n z@pH&gdksG#mB&1>%44y4oy#5iyiP1rBH<$*x-7yz9kVw8o0R}ei~gF9Vg;QTpDZU8 zkth{!(T7_?hw;h|=ljw@F7gg7qVpBar?NHC)?vJ&6qJt-Q#A0rC7^inCV_q8XF_17n~ld-b+(UV;V_JU0%`}XTcEb_ zwGY&n5N6e0JrWce>v=Ewk!rwMFG!sX2(`4n=1cWP7J8py_C^Wv1sCOVzuNJP~O>*Bu z?fH;CAtnUtf6>@79HJx!<$u_FuEaw4RljJf(jhM%ZbSFVZD>jIK17;7?m|i4MIYWW z(?ba+0nkP#fGAY5LcuyrEr;Cnqb!a=?CKr3QLo>Be}W|lyE+I7Ar3{rV)G<8lLVw z3Ex6f9>dF%jxh$lvgf>bh$oSq6Qr~<^`NkH{n|(JIFoQ>3HSg(Ccst7RU=nFt8N*= zDT#P%BI#1Xs|%c)PoGTC3+z%UcJX*&kH}%DAYSR{W zF9v@LjBlE4gD7)cwG(7(7i6-+S=E2v)wik@eHVWOvg>h8o##Rh@7os)u+sWAFtD?n zuvqN3k_K8WB0Lu%zk>#D#hy_uFN-dhyseDZzA%W~H;Z!FbkZ~xBt!CFnF&^#@+ z$gav@f^o8aySy>)WhR5IA3XS;7pd>cL8uDKdOLre_Fi?G+K{x2E2_!1I2SJsNh|R zt?O27>ISYu!#T))kBN`$MwW#*8e0D$X{)LrD8x)XKTA$BG6uUX8lv3UZZr=vFSG;O z%kg4+Iaa90BdI3!$TvaD&r&OujB|^cjQC#$>~EpdNnEYZbJgX#xT)MYa8#Nn&#jHf zbu*`VnapJ_o5O56&ulu+t;TB73o%(UuPw}*UX-<HnXHKF}Mv1salT9p3hWe^!#Z0UdYp#SOhy~;3^@~20XKL~e3Qs1NR zLHBb+>3(`e_p`6i_|F$j-4AXj^hXe2q7S3}$xkm`eus`fK@XDm7W{(v#tF7QFtpA+ zrFq7b{<@z_PBe`TeNmrI7~K^MyhkEuoXh7#&Wu}CpdVRajB{FbozXOF3p#Bj3yc-C zNo%xO=k_(v@S*6rJo!G3^w6{ix_K9hk8kcwPKd(avH|=wOCVbOTq!Ewswr!NH{f-N z@MrFL$?-ZjGnbsuaOJk>+zICL=Dbooijys6_7TrdudYaMr4Vvac3(b!J>LAx9I7Iv z6W3S0(X8BlC2hs?J+KokesQtJab>Idu}waV0P!BtHpdAD|2Os={6riB|82tO`*EzP zmqPeFStjz${#KhY3jwP*e6OVtP2&)i?=n(pC(<)StDV>X=?4U$;ySWj=54`fN)X;% ztNA-^R)t$_!K+{!_lgsv_#v_o{USWZ3vqyxV+XPooK6!K_i^#}Q7)s(k<$md#UDn* zv3O}2mr0NS)Bc?ZvkCJ+lkdI`(5%yW9A6Wsv$k%OykL(_NKtz%IjD(%FUT1j3M8Lp zTF>mEyqdJot>@w&X{Ew{__iWMP&$o{|2oU@l8w!i-^pPW7C z%$dtGGtbOC^UQM@#`Ks%w5Wf*{xhqBLbXsKbhFG7)FmdDXw>DKWMkF^vE8J)+$bNY z%dJK(s;Eg!`eFAoG|)!<3D`r@)EmQP8;};P6?rfBhN%BhxgU-CH*~o-0vUL+*|)bC(9XIMzxy$@-G3S40V++wJOBR4F?BOG8X)@YI!|qlL zalu=9K-$f0u|FYfCoQ%QU?U68Y-2MnIS|K8@sz~8f|$wq%7CyZXB=_nwW(wqLK*t^ zw@M+;=q=pET3KIoc4pr17cJC(1R9v5`Kh+}Ku)YD>ikj;Ok@BrV9R;N7*xZTF&JCn z60<~N;7&d>QEcGG5&=v+9SvF&oyl%qq|S!Wkbhba$Q%yzMA8uJt?7wl=NeW8!Pr!1 zV^%zHQg(DMjqZk1T)o(D%E_mfUe~HWdSSe!3Q0I289)u zm60x1^R+86UyIleJ3qU)bGH^OF_=pQ_c$8^RKLK7hSO|_pRZ2d-6BJb-plN5RQjL7Oup5(eL*)*5eC7|FLwW+(>EGZZ($v=@=#7o%_FXd^aCwJEd zyewx#&OLKH^qUYsToF3R`~3p_OZwCpoW_7u{pCya7u{tpab~Z{@lM$jXrl(ETqb>RYcL0L7S4H%H8>D29CRS#N{EmOYkrlZZhT5CJqs5rYaEp!;VeZ%HY*6q~F$`1u2LoER6oq!fLrS;Rd_MU>tca&HuSgM0OR z2U#qovM8?;(H0Cv2i~43hN4$;!-ZW=&7~cXC1XL4Zn3|DY_+L4_lit`UsarYITI0IyrPne)(AFJ#UjoS zRqZpdl}XQ>iwta0*t%emSSlz7+YM~Z_~T4VF%8dHS5|(wD+E^fdusxJVRp!AJbeJZ z1g4Dl<&d{DXTJeLkw{gV+^bJc#R}1?u)>{!q4ohLK#|?d;2;emi!M5wb8eHk62@HM z+VRNobM*a&NBA4sFU-pGp4ZSA#3ExWyY^<$zc2;h@)81YB9^gi zLb$<|g7BI%MPx57A|m2!B9t*zNoF((g%<1`?`)g|G{N3mec27Y0YR7W0e-{o?agJ| zA#V=qWz?g4F0tihi-3+4LzM&33Fo>)1VgK83+>Si%^999E1`I2W5Dm<+eh>RD>RfBFesL#!4tP=xod$;@53fwP{O9C z2^^w&qTtw1YT&^1$8?~2i}e`-iZ!AQQz~uPb0MCT_aaGy^>4ZO5cTheVco{q@#xpT z#+WN>)9;4r?-q3-!02>uAFmqGE^s*Gfw!u_&rw3_#$KHn^KupVR|)(m9%xsAyCqP- zGxBt(z~?1Ue9Rev16ANpCGh9*z`-i8MFPJU4;-KZ{RBqV8fgcqkZ(!I-N)0B5tsz1 zASmLP!>56wf|O$nq+CASKuDPuD)sDlW$DZeV1v#-5sh_Pf^ooEE2Bcrj39awJBtrq zMHMR5+l*+A%r=901(z5avSdH-3ADU9#>|14!46D@<-3A;=OARyG|*z|gO>KhN2oz7 zN@S7)x1}_)+nn*u0Au2hyhy(EkkD2VyEOiFlHPg{vB4i2sp7%1T0|Pm*X}!oC@Omf zM2b4`FNL*JM)x-*upa=jx)pZ23D0_Grezw}rCilqcX2gv{gCTdTw4#$w7kas3huA} znR#qb(w{Zy`9D6Us2HjI+RV6V+|vhT*ar+6xJNq>K$XLPB|_NYnU2nBcB?k5Ka<9j zcon3d(`mKnSG{r~YOq+;e43q@PZQ)@xX4D=t;iI4bYnSx_IRvYu(Dw8Zy0qt=5#&y z0TBXMFDQzwC0)T{S1R^QgNSOgSJ$dUYv8EXp#*c)##M>baZE`ie+)N+2wpf(8>WvJl@@EyYG zslevZe_9xyYs8!+{>2cK2FeRW5?J6=(!kE94e}A8n8%b*@S%aJ@Hv(p_$)|R2;d8q_OliI&e`*99LZ|L8 zj3{BERO(T{R%QApFmU}N79{%O0{D=|N@)(d$O^!!8;F4#Rb1qoap0WoJxRbtt~Vhg zI0>@IsP>-z5cMQM)MLoL&KP{GC?@mDV};P*2oRj#%2+S!!?|-EGZf_DG@DF2dk^k$R{v4qDi*>ak6h7HL@|qxq`jcHINWA@IQsf!%@To4#Q$ zZb?zWGk8R9C$LrxBACkM4sB#-2^!mm@H{+j^0J(55Pka6iD(r@07>G}&*dd1!*5X9 zaeCVrqP}Zorx!OEC7BvLMLFBpk`#R*PA`2B|r*LA$zhXF{H*87f5maFo2jv|Ha)&{YXR2&D$GL4su&cOATqbOBmpVpF9n27d4WTZ?|MJ`f{e%rlv>T>@#SR)n~ zAS_zABE6Npg{6acoYpAXX+d2X70ddYs+dm2^4dC-ICO`SNbYEb7PEA;%DmOlDwKXl zYr6WCC8(oS*fbrja2EN6SmGD?9!tlP_0JrdX<5(pELQ>9TCAz5{Ga(}=^v1?ehqP- z;A-Uh8P_tdm0at&e#q6r^=+=ZxSr-ptY=mhsDv#|S*QN(pKXvVU+OR2yl1Gp-FTBl zE$I(@<_yFngD*dW3?7$62GJyha| z%co=sq0v=h@b^oydEsrMahoJJ*zIEiQ$F>dgGI|%{I0;Nlj* z{D@uw``xUMW}?KgT>LF!)j=`SU;3vpeC>Qt_TFP3eiHux>4ew_IWSim3~AXj={G?e zL*crZ?*)AI4*nHCq9+%M*OfopHlC5Q+9V*g0{?8F z${>c27i}3BF4|u(pl%$S&S@pi7dz0TV7lAw#Jv(Mj%n7GcZ34NQ-NkYhyLood^sCyP5cppQRG_IsZg7%N--yavw9|b^IpeltV+YyQi{gt`Ye@x%n zE$QG`BOXliAzIryPBr|aC7j{E|-9MW%%SvR3?Wl84*sm?OA-k#B4j_JzrTGrn zw5xdygaS_gVYH0H-l*0@|09;Prae9fQmpX0F%z=QyNlA%WbGKNmxBv!pvF>@vl@ zs9);qQ&!ph=T4cz*heeDDplq_W1tN?E=pBAV&|iDtCe@{nrbv(oyHew(id2p5>09f zd5y zebFseV=Ao*KZ~{@_L}$V^S>o0jfq^wpCy;giCiuwms%NE*`&k5T5M`oAOfE*Bn0_s zyHFuYiSADzH!(UJ6xeZm-?WFp1mtsYr1&6}@b&;X&-0B6xjY{IF^EJJjkfNXdg$|+ z7XL7@s;38%KScLq5K+H7IY?uUh5qcDeNh$lNlB$&Pkfc07#&?{5+;8Ui;>+pBfH2G zs#)ScunP+<@!Id%Q)@YEy$4b6O;B5jDl0>Rde{szYP;5ai|4M^Qka3+1|8)R>OyCF`7Ef3{;$Zjb;XBb*L>@V;0}DDmq3{v) zkQoXe6&SsK^VF?DMCzT(8tod{?i*wX;h<%??1@FI|uN zQ3q8BU5Tv<24?uXMiXFzB>aM8MdIhilGbRm)}IdfL@5oU)T~&R#+C_N=^j$MP*E3i z#GYWAH1si#J_K?wAkHq7G1Ml>FxcrZfK(7l^KM0WPc`or9#r#ABA(H_yW-88`m8js ze9@bqgRJ)V#Vi-A=5<+gebX$=2H>+!U$!r<@F(MSCDD<(6nn)k4WUbAUS^IhCU5yw zd=hz`STA7t3-n1_0{WEME5c=c6(;%&W00{c$bU|n)_;Yn!9OpO8rYH%RV+Qtm1Uj<^fl;NI8hOjYqnei6R|1zpyOlcuC z2Ewn%Ks8R86bARV`leq)0g`>2uQFr_vFx(q?5nkRmB?nAEuYJ{DGre261YJxAZStO zTmg51X?GKVyV6vh_?8r?Kl0OLPKPlG(H_{x)7rICM(x@$d?_^R{|@xRPck7Uukoe zxO=G9NcJ4Nv=rPomxPM@!gFj;vyhj4+8}I|cqljr{#eRXqnPhdOk7mbFz0ovlxzs- zR`95V?40*w_02FkHdQ_&JTvaE20@78r~61~5N>Tl(>edz8iIrwq*dCnWQ_8z)S&%j z3I#%fi6sR05&YOcAk0>yrYq9A|IUjk*CqmRH{^(D+ln-({Rn&K9;Dm4u)@QL5(9Q~ zgp~Q!klA2Sk7~R9*F%L?vDbk_yIW z*|9|n!_%TDpoA*MniIKx=Xk_PzbQYyAJ4Mr^LdIbQQ(JC_E!c&62$FO)1ju28iu&7 za!lAo18TO{Q+I1)Tf&(w`G19A+KW*XNYDY0{G+r|dp?FzG)n}}EXuBr$dJNlWw;3` znq<@`MqdonzmF=odP`b;)%b-)uvO4rSddm!or`TNZTao1&%v1nQWl{q7J*d*qMX)G zD-ccSVhI10X~CWXGlqk`tP#VZVju{ByvC|~qO)D18W5e0!jX%^K}Y@UU~y)2)g=UF zIbSNy@}MmxY%?92z!;{jcY|>35ANc&1jiOCmj0OWIqWDzfyBA3v3cc(sD~H30>z`F ztCn^ak4|TV275-Xxt)D>uuWeQEgoB`EzGQTzO*K*nu7IeGY4BC$%B%7O0jFrg>q7e zBncl8mxN2RCKC}#fFeMO&l0wE@z~SFqXTP3r!QKt#zt9KfIPGPoZHLTY>Q-JU{zXa za93ZU-&LixZ@Zmr9y@V*p|D}K_O0tFh$iLDFo;ppk%yHNHD4%kegt4sizi-83#W5x zB`|aqPm~+YoiVj=niKKHt#T75C$nw14Lpb43oSn+e7^*T(!)hj)j_t(>h02@;`0!< zmghYN19`Ui8LVQzBYkCblugB_yW$;c#B@kZduTSsWXzb@86jtf>R9Retkn~?W>J8G z#3j)k9O4+!k-y~7o#-xl%fJ-J>PxoDj7#(-Ao&tWkm-C0vk|kiNHjQ%&z0g#5=oRA|z+gwt!Mx+alY>A<=j?wO^_%_wu72s-zWjr0Hzn$|kVCi3C80H03HY7c7iMvO zmyE~*&;wUEs~%KcwxVdOj2u&u@O{zL_9dFF$wkGMq#_L;au1Y2(>ksxQUO~-ZtW*C zO!e{;pK4w0C(|@Tso}BU-%@klN!_tkSl+A}sRy0gi?hDnCX>LT)PqYj_rOQfYSO-l zrV0!TnyW@PzPTzbQ?hVG`wdQmK500zkphxfqS!ye z#2IH%`=X)nT`WU`{uF9j%sp>+=m$&X{%)813DQ{jP__{hp&G}b5Ap$Tn&_517v^PEjrsMnN&J9#Z}HjU?%jOF;a z`y5H}uCr-~nPNFnDxFPH&LWHg>;-e3O-FfsWt>^ahrCFVcU2r~!R-Js!#}uXc1obv z=esn}JJ&Y}AXPpu_0Q*N$w#IV0rqiu8D+ja#7nS#BXne=N@6XzgB;w>Cck=3Dfkwz z)16IAcm;Oktu5WR@GO9cDGaG?e?ZCwkeOs-D{y}ebfe6?edJ9o2lD#LXcM3>p*dbT z-+VbLFJsJ?4|x$#jXpE-SAF(PikhbSjEpSZuMkfwdqOmJw(uwrE~B71&ZbT3HKpL& zyx!<+`aZ8$35jk4iXsDv?%{E^ z0*EMuU!fY3mgWxk1l-Z{Q;W*`WjQm_iJZ}w-Akt`$K%Z-dc zP)qlnJW~btSG)TH>F#W^yDvx#j?u4VlTh$2hqSMZG+)kB5Itdb;&&*q{ERkxf?c_# z`#8NK{qaxkQmBd7@2giCfC_WOwd*U$f~#^mcuC+#Qr0UdrAl=N(#V$X$B8Fd|F_C3 zo^_*ojc4uW^_6qYti8M#qhz6($Q%~s{Sy`PO7jhsVy@y@ikWPt=s!yO4_ABtYcX$3dp*Cw`Uj)F^y2PDo{{4o6g+jFy!v@Pf;<<*79n71W%Ak()3yLN_cBwBhqH)i}F&_7ZfCs z3t5+vqqH3(w|4?3bDT5Y$J%qeIetqUqwUz`CJWdGr?9EqlF{sbq}lz$g51@Pf+=h5 zEhW~Hg53IJEf)p)u459RdrfD|tMM)yK+Lh0OmM)BdAbzm!!^A4ha$BYh7lI(fn^eQ zlwxPFeZOQB!Y%HJmV+(3$bIno@ucsjk_5zhR+b6Z<@jvmhRNUUNS=x^A;c_Y}H zUO!w359G8jSx>aoH#scxA8*Of{LKZo_y@*XK2jb$?O0o)?L&y!Rglft7~r?J6e(AD zM-k>X2H@b9o2`LUcl$~Lr^(K?#9pytED$j zgp}W9gCOb_wMF7dCMl5vFtj3j0)3bJ1_b&p#cK);LPaL$77TE%`yMaGJSK#6p#G8E zaK--Br7hsZl(j`tamV+khbvU&C$#L8M0J-qx9udjrP4}wx9l)75;g_`CV~mylLiiU zq)3CM7F^CCqtq+--ZIPD(r!c_FR$Oimt;!IPUp7X$+^K#CF{Xq$9Bnml|DUOuriVQ zbH-*;>cjFHPraMe-Dc{Lq`r~VKo*0SY5;FYg1%)n>fl_ri7bq8fi#A^@iYLEoK>n2 zcP-PcpvQj|Oj(l^xq~MgPc_U$wt`#M%$s~$!KfAG!IR^h5C4;_g@5~Z?!l9eHEF@9 zW9^l}-r{;Y_V}5MBZGpyx7VjPwBN;x92aj^(L(bcjlhw4R67~2&Irxhh&5mOx_)y@ zI*3zVknL=|n%*iH;G14B*>^)hzAqnf{A&twe0enTEi^pPw1-8cQk0G2xh9A)lpg|*o=az!W&c;8=J>S{*d%0ikZ2X-Mb}a}n&)UM<=l}Cm6r2jxZ|?q;;Ahl^2RS33U&Zt3pNUGE8s2{J z5oR`(lybW7R;g3`3(SenR;uQzVEv<(`oSFK*K<_&Xm=5@RQ9VpG7@`=>xYC}RZ9TC zC6YzY?GmIKfS{2QAIngiy9cZMF@rBTI>SB8gNQRop8w#HJOv1y$AU}!m*u}8`==En zoG%umVm+hVRCmMZdvs+|_p^KrBHO_Ag2t>wvyI_j{8`|7i>9_o&ZgIqDAD{6vgkH$ z6wEyxbv8Z1LwNd;V9yZeI*n&`N*mZPZObOJNWHpsxz`KNBl4YXw@RQ_-C}{aYtTwo*z;+orrBlx>7e zY5akjz#hf7wI)xv$!@%#2N<7gL5_!4NZ@O-ON=5ii|)l+*maTn;U!p{a=M%3Q}8v} zd`3g=w=nBLn7pyv5pWRO9Zt79V61`!yeEcS+{)z{a$WcCz%9UB&N0yz!{;^d zQH2{uP=@g@(&p8saDzU5DE(92@s~d2_F)xt}43 z2-E}a?=z}h2z}KfDxk-t-S+6U2(7}>+o^aLa@@2k`t9AqlSpD`7{VAQK261e%oz-g z&tPZ>4tZYtbNH$owX)W*<1_8E_P^V5J`3AWCNk@? zC2VU}{61{05qtmeKcDE%;bG4h^Wm8>e}0TF%0b}pKXZnUXa^?aO)Z$iyNnj4eKBWe zD2wek!=Ni3M}cw$TB-ltJJT`(ZKhJLA9Ed$XB23j;yTE69~wK}FK1dhxK420gv!@G zu8E|-lPd@HaLX{uuwhDzNBs;l{!&tHY3UjEVZ#Ot8#Zu|WALzHL!7Q*L(Q+lhJDR< zV0#VK?wwq3a=pX#G1ou2`nXcD-Y}Fai)$R$1g^`tzQI+%g(y~d_N3YjZ{}l9{yUdi z2{~IqEYp%ySKOL_5jauZ;)24$9}(&Lx3v=}J9y-y2<*;P;l+g(T^4(c$h99nhcUE5gSvtJ#RO2jVeImZC((p-<8q7h}C0S z8SWMn49ee_Tz*Zf))74942{E*wf2YhlMc?Oda>Pc!BNr#KX9h*f`f+_gK|fEkDZ7b zpq1c}puNY%Tl=ZZP)R0IZ(2yOyOW6WK+;y*h`5-w3+owPB zFI2g4#fsAzeb8E-%g5^9x|kED;_OgKHf!`m+JxH$G=eCSCK>Ti_zH6rEnghzm?E8b zN*;K!9w&LA`-|`LY}(GUM4eFR_V0=F9^Ww0f|jFVhJY!#qlZbsrvZ|gzVroAvg*;j z9CYi;jW5H*O=p#NBV$57ol7VO@Y>#LeHo1|L7$+`BtoEOma&7hr231j&1d@0J`*5q z`pat!V3(23gj4G@AWg2QnO@Bov3jmGlU`#amBl!o)Ev~NnZ|b0ddd=IjHN3+MM$fd zmU6nzW;I35dni&@hPi3ce_Vv5D?ndB$yz#V_C?|cXS_b|-9CKlx^14S=+*j4eAjc^ z^sX%5nMR+)j-ez!WS#Y$6f7qed-Y4;H3|~^46a=a364Jp%Khigr%jCh7ncUKDY;BW z!;=nl#`;!C9osGX^8g<2*hk1-y6WNI(6K)P;Q~t`aS4e< z$YzSOsSqO$kqE&Rnu_yAd$;|>0S=>rA6T^m!PiqR5OF}hNddv#whJr)BfHl_Wz5_S zACQ-&{e#RzaUh6UTyQt3VY|tzS(b$ivf~jHz{H`5SADlmE zW0o?FKGGgm93M|4$xS+0ypmPr! zGtZNRMz4;JIEIW>QyY<;Kj_f!Ay6ElCk~brewHTIb0gdOfg0Sc*6pHZWc!M#iaM+cqOua^A( zBz82V<*@ZjFk&hCdHuqrm$Zaydev!~6%;{TA?i!rV#N(uGA$($6ny>kpZxZQ(;^_} zT=$G%P2>0Z4Husd_T1xKCo4RMYa7l{higl@wX)@lnhFK&uNg~eE6p1V`*kc#WWvmN zkHx}daWli3VqqdZWrp1w3lmvfGpr^ShV(@&>_#)J;q)$sq;p-Hg8S$EHk_`JkjB?| zuC5*L%~j|Vv-QLIw<0y&hb{V?24y6m*6PuF&u5sH^@!|9Pq5duEKi$vxCr53#`CiC zj_<&$$NgldP3z0wvHZTA{lSyAWxn9a33cDm_RrC0ysSifOod-o_Cy(4Mpe|~TEyt{-us)Rbbkr`qMu__f>Ai~3DdkM?xq7XLM3#9tE+8HvZUKBX(Xi~Sh* z1xbZ{%igBrs|FeMN1q3?uFN3M{0}4IrEE1KhHIS!JvPTv?QLUJ=!*&FWZBr@v&9rk znFw$xTTJduvx!;JG33>b&$XBo4SUaf!mbHKF=Ts00E!&sNZScG2XwSZar|B_ytYJ2lXjO3%B5|A%( z4tHa~yH6wnua5qS!8lzgG)ZT^=gEk-kcMv;$v4B$xA}Dhxj$#szafyBGbeIM1YY^B zp4~q%25(LGBXFI}4oHT-N55Xczma5#`Nw6>*Pov!^N)`1yIsHNBS=2?QJ!7;nAkJl zfDKsf3Rap-X7ndW7K2OV94Sxfid|z!5n|GC6#Nihrv8Tm_?;@Vd9X&VpLkoS2bXlu znF0n1-fT5r9@8Iw3UGf!34oi4WzcZhF|eb`yGO8N8sTy5fSm%T2JAS3{;~)i$JDKn zvlRRQ?Auug)r5Ks!2&mCsXsWE3}Oh<4`0Rq62|BH;G|t}GF~Rag_P;g?uR#*3f5*&fVi>hCNQY&h&)45nZok3L~)gy%e7 z0&iD=55xj}1CBo+6|wnbIZk=bDz**u2c+xc)(U>~QhaqZ>xX)w3>X(`!JKT1ppXA( z!{3ktj}DQDr-woo5Qw5*RY%|U?w9+M zl9-nx>P0e$zP;#4NiVje6LW#!9F3fo9g7C-37;@2nbAnUasLuAnrQXs;YWOF5R>~ku0sCWj0r9#CaZ;685)ELSC^Jfhr zws?kQBlb)fLN<#zmd>3O0lg@;4!I-6&_8j0&x3qk1ScI#!bU zFmvboPOvAL0iy*gL@Rd!twmLr%avrys^D&liwB_yE}a8)LJl zWPDh?8ILe021rbV`IBRQ*No})#Spw7dWXYL10Lg+f%byhe!n2-8{Mxp$%oRZ4P;)o zf^GU$7pQG|HaBKSIb0Qb*F4Y4G)s{$(jbX1C+PxNmgI{Jx5Sr2Nnd0YPJHP!zff1| zY@YkDSzVw%V}8-M{?{z*|2{i$mgNnuN4P%XigHQJDu%@G-cMAQ(tI#f@z0%P8r|UqyAGZbD2B?D8WGFj0hGvU_qiX$po&>NY{0_0s zi=7nTEdulF(ds4ZuiUMjcDhfpl^gZnSf^?8kM~Wv>-wU{ zJFLDTX3&SH^-V}ylF!S`B~g5eyX`qA{96nbaDpbG{7pKjBShUVWZLo1^2)nDyZuVN+2u-y|cqmS=WhTQdaQii0U3<*%rdPA%Xl~)HFLYT}b_+TW&Hw64n53Iyy z2!?PXDO;?~#rCh3zv%z4{EV}fZ%r=0O21Mzl-QH!nyT0BIvR!2QH#T0?q0xJI? z1yP!2WxEs$PfS(nNdZY`^lPV=w)gLguWP48=bf#cZdR#LH?nDirKvpnI@ucvsE*(o zo5i25Sr?FY%aCR&xD?Ta+I0O(Jk5*DiTkh^ss41ymz)Cb)kl64js}d0=xtxh z2GLv*Q~t+T_o`|$^xySM_mY|Jed0^Hu72rW|GAk?cODid1Ng~Q5zF-%^Q)q$hJ2_Z zbk{L(B%_6rA*5EVU9U7s6q}km88&QsiGUStOB>^sO|Q%-LYe6=13a|aVZA~@vqzu8 zJrRA+8PT;^^zml&f&HQ%JR|z8vFM*Kmb&iI-<7*igX3WY8Uy?yvpJ9cP>v}N!=8MR zNG%<)DsO$tXb`@^rTkI9Z$CD_K`5}V5R1#28M0)(mNU!J!F7sj)Z|%~NpxcJbqQf= z{u4{E2^6Tp%u!fW-8nRJED1Fo<59O!s!WP)CxboTajp}C{7^(UU9BjhW8Z*5ZUa-o zDzfa8MqI@PLYDE~c(B0=*%e9&->}w6RlMHDvk~0=BD8jL z30{k(FsYCYXDvkJos$ZR{2)1p=!jc^&;a;rAnU#jwCbN`ER^uSPje}0^z;+#d{-7) ze1-8Afxf&%+GUH;F3leZ{;B3lE`5Cxyxo6eJxES}VRHIS|2h57NUz@~_QzM=gdjYu zQcA=WJra;lVcb#+%QO2GenG^prnh(?SN3NIc~VC?>LUgbgk{uaIcy-eFa~i%q)<3N&grU9 z1@1%&7J{h_bohrZCi^my|4C_(w|H2uYWM7B^haa|``}0gnT(|_HM(R7F$LCQXy(taSoGfJnM{PMvNiP)x+nuaNA@3o z#4wXI61)2?_@rM5mk-On-jIGy(M0|a`mX@-3|9ZteOxy8*gHIH=*n<B4ESMjoVMT#gHP8CNx_!OFb&27_1%@ zQVdUmbeaAZ;v|A{aY#?d@v{NxVgn%6pT^W?eke6QASD-rR3B?VG9n3*U(Am~@{oEI zNR+eXu(D9&sa>YeJG1zeiQ< z!1xKl24G@~((#ZWrSzwMfDfz)Tdc}L>swD4s{-=1zkp5|blEIR?v=AF59H0Vl=0la zWx0Ho?T??_|2YL?|UT$e(ce2Z%vX*jk|9r6F) zpAsh?Afm(w5)U0VJX1Cl&{ymxy3(JZ(Y4ulQI9Q+8uoAFFX7qQ`m%1f811@m)#<2M zyc0urC6B3nH*BH!DJJ<<3SFkX(-d7ZsVclYn=}_OEVNmZM98OFHaE5^!<0=m7Dr}% z_jGjOqPWEkfrpdWaGj+4RAipYC&|u$R4y~snevwE{KQDGEh&Lkm>Jz))p9Uq#t1Q_ zIFyM^m7*`(Ks9CZu>+-cmU^*?xJPUvhOA+6?s^OxbVWAZax=@Z@JCTvY2rwj(?2_+ z1>asqFpjvDMVafwicxh{RaIrJP1x-W)=_scT*{8-@ABET+%AeDx_HiswKPnmrl$$4 z%?*CMUGI1VJUa@#BfO<`1Xt1!Z`WZSX?C{JO}dx!)mm34)-CiO5SzFh&M|T4B*Q*N z!$#yN1Mo-gP(=bc^YAYbr4m!2wHPp%q|cS&MCkx{MrgR(fofW6i{|PtdE6#Q7F{vwRZ}Aq#pm_ zWf_pet=Ku5;=Cl-6@t&;Lv5~p-w%`8@fm6JdVGsj>)MLsraZTarp!`JIa3lGl$Lnc zmn-I)x;Pq?78N6wf(^>#9@dp@ddcn7fI7WFbH1BpHYbKVCh2KpB3ZQgE@c224p6ll zZQ4+Nf;+6i0~U-_Gk=qaR%OEy%9WEkm_hws`9QFNE3uuhfwR;vctm6sf@`x}_~ylh zFqRifGLa7e0mUd7-t+XgQHRkG6PG~4+~ACR#1yPL)=410G5)2!T!_Hl_=9+h`Od*b z$3AV2E&Aph*+8#A&rdrD61;1Sv#QZ_YpV7}v~CjPk|A0t12ju3pR68S4D_ndIAi1` z&LX8?qkpts@E2J`{f`^Iw#<|>%KY1?er0}531Spe1C_-o8Z{MnBAYQ)|_45!`h5ELv!AeB(~$ zl>5fZ436hT2FEj7IG$sK3R z3YWcFp`~Lv+20oROw`I=m2QOT18U8-#Y}7d%egSE_01`~2Ht{Jh*M z8y;71%~*~`wc@cJudc$cQQ?k+ZCN~S%i@}KGh)R#=_oHLXl3$tiui#LZ337Okue&Ivxt zZ}5RKOR-j>oZfLn6?1xL98onS`F*NwULKrTz2H$Xs=Y#0l6&bI{EpncAKt+qW z&NV{qVcSq~p?MJNPXfz=Tj1W+w}LQM6xl-MuF#^)s%3Muarn)A_;(KRDJEiB+FjuAjET6gzQ_Hv1Q}kKo~Dt- zGt&kl%KEQDqyDFLC;0OfB(AIyB&JUV`;5cS$%(_yEY5xW7`De9`|`P9lyb#hH&gIv z6qQk9HVGdZ`=B(*joCgKV_r>uk<-K~a8QQ0!=m5jnPt((%{yU;sC;Gq5h6?btTxSi z6+;oZ@y*1nwRsD8Q`68f!J6dRsFeC3jwK9JW}`izfLW`{617ru(e*~Ht}*7KT$zh< zq+Uf2t9sR@duJF$UO|z}Op0v&@%Q3$)6?b5P1xJkuw|LT+M-r%=Av3tCBu{i(AytU z`LTxP8de7j?Mu1}9ad{7UF+;G`H`fB233LU+8I(t@*nw!XWR7=EGFUEll3r|-DQY5 zNM5C?F^X@JTVRRJG-aNwfJS<}(iWJ`2Y+*+I3M&F0ETC0>4RmF660sCWtVD0lF#bC z&h^7^BXI(9;bSf8Oc&@Mn0*HH$b$$mTs}j;{SL^M@~iY$Ww4e{);Amg&Fd!XJHx86 z!sQSQ-D_Fak}J=%B8~%h+WLrL2=(Zzh$UH6kcC!qRjB0Ju989v?WZj&)#_&86&+jp zdMYgy>@3Xx9IMwQGeRY$plFBIX+FeDQTR70!JL)#1(D3EYT?OsxerOpB4CCy0efg5 zSnWWwqeYoa=*`&+TU9GB(DiSKj*NdeB^V2u7mN~YM>V4C5J#^?j+`QUdrulDu~Mr) z1hU43fs--0?P{fK<5JlC1~Lr?J^IMJo)|u#IZBgG6OB=Ng<$jY2hCA>s5oA3{?TO` zkg*d~9PHh6p#h%$)=g*hn6yWGR!#R@WQL`Y)VsZ=dxrTAKB<$H#hAEn{namjc}dQJ z6Q3M7X*%?tI&a>*5p~63TVdSLq#Alx8AI<5DeWDHP z$-kjt1HV#IL&KxylR>1DUW8?lNSnh3BU-$Y8PQt2+WJ6%Xo+p)*Wwr34s{Y*9Rf3= zp?U9x{0GCfwZYX5HcNPHgR^lU10)z7T=&iB#MgEfqp(oOMj~=^YpLAkw9b{=tX8kw zX0-a`Hnp``ZdbQ%klW?0TjVyWb*J3UZ+%a0qg#*3ZFnmO>XwM3)giaE)=Atvb3jM$ zN_o=1)1ywZ2oN6dra>YejCoA$sQ1;ANCR!=hmjS6rzYVjn;GE&66?#2&^!WnO5|tw z(H9aZstK&$Y!>2L2_v5#=bxsP_T}$do}bem)NR3@adlT{?H>Jwkb%8uyUcr!!Baw0 zIPVw7?J^-N>>UJxo7j8K%vs{ob(4FRy_dy~_HmyPpIrdnRX25%ux#<{cp#QeT!D_vxH+Ugr*hGi{a ze`i~v+14r9&>hJFXW)xWVfC0$v}u2OMGRr(ptNO=*}u?yDYo!hhnATVE_7(+$E==X z*3zTar9HAgjadEfGpQtR`@5uUi=0>&G2_v?Xd>F>A>qKCi7$#d=rvW?p$ z<2Kp28H-4fT12{vJVxML0EtXqn(Xwe>MTPR%RRjeHG((GWV_R66@3oTo z;qv)RcIh77dfSPpa@Q2>^2m9SR^At0+c!HwAK*15lH?Db_QHOyn)OeVEJnG^B1Te= ziG_G~kI$ji-HP}?TJVi%WQcC@umCK&Roh~xQKEI6m(Ipm#J2Kf9)xzWg@9_+F&S)j z?^|?WmA?23Hs9rQQHTm5%eEUE{bk1@PW+9vI4+pSY;=UDBj{dL zM6sytVxe%<4)Km9OXVpLQM<`JGp=5~=>$ybaCt6Spt5Js*TH-XP77(|rnWUhh`aa) zk4xN#h|629kuty=)`GDq2n~BAR-3XT;!sNemPAeQUS&j`Cs7r*EBdsNuJ{w3A13l`HvzRYOdUC}zP_n`XtNA=MqAHiMH z98tmB5^30H5!|PO|HlZX`EK;*YUPW!+z|XA3t`?~yKew?*EYj~=89+3WY)i~@Ap1Q`%;MUlslRVvQEP&=WS2H`S2z7v`vWQ#MXR;l7(mo0c2 zOuq(9S9o5jf9G7)HgXip{$YV$(-hx7c&D@EsQGP1qJ2e~hQU;dixIKxFmD(0736rj zb6p-7fMm!ab_CUpySIz$>{jt^;hfQ<{V6;XNA=QvEh*C&wY`|%-aDsSuPYTVbp{do zVWTR!gYmUqO@Fr?RpZP2yfg9nQT2IRzt2yZpV?QIVcz9coIaho^J1G>_NqQ&^DHc6q{L?dg0 z^~bC$RziaaQ3Kxex}4K@1g^c*e>;za$=gcnW&U}wv`PbLnWUXYwW$Ji*K?m#291`8 z2<-s&rW8Q0-c-vHWJg4Hh%32A%%byiEG1LXHmLp{_(dNPD9;Rd40wl{G>uozJ>9 zNQ|(jf1yJ1j)zy423F@TwfhHYPQ@yPh0te?gJmC?lgb(N5B{;BcKcW;#rBUdpizy} z=6OOm({tmN%b~d^VL`#5R}|S2D$3T}lS6E^-MOJ6D97wj5!MhUhKlC0&V-6?ZE=rn zE?TC!uL>1;HTSilip4K8S~%pmOLG_C7Px$exSA>e9Ss}H?!s_Iu2yqXcvWdmM`+&I zVEfXLyD(Iit(DEtY+2eo>|*q^*oHLQt_&0mv1{|j`iJG8@_j=~HSEr7PJFVD)XGXV z+h?H^ZN_J|&@`LoG<61d`vw?N4y2O|-G#-$9cnr3vQb#RzhL!`m?!FI(>LKY!@>)( z)V(xZur=h)4v&4OtE30eE&UAKpCxN|cBd^DLv?nuwO4lq?(kT*OHya!N`AGniFDV{ zWO9aQc;0VnWpWfYl%4C6^)cdLZxLU1Yc&Pof}u_Cu9=Fb3R-~;v)bLAqbP~7(AKf| zWn)!>)ZV~#>HgHtl#F1fZJH3M`^Y2jO|mGFEZk&~+v0EqSeh;i^k(4Qsd>hTu{`<5 zDxI2P;rZ4Udtu{l<}5736chqRo7gwXo)+x1=l@~#4i2XpMW4GiORuX}^DK+?@Pubg zB{zc{Jn5vw+4Doif~Ny2!n5b=-xucA?D_bE%s*K-G_=YUT$L%j!vUQ*LyDkRRBOrE z;nDvvjc6<8W0)QRN^E@D#d#Rft_Cf`w(CRg8I5oHmeO6?jdRI+RCPs_K21z?)c3Kb zIYM=Fu@vr}5lIza3+35F8J^SWA=0@-Dh$DlF_*`aCKoT!DSP11@dho()|ianue9<6w8Xxdz@_|_A}iaZZZyS1fwS@X1ITJhr0 zw8i=Rd}Fl?Q~m0SkQHj3gVs}XX>ZDAi?th$hwM07MIoMPA!kSUyQNUA;hU*&p(V9T zv*pTQWG!!=F>tA7%M00tYcuj}p&7%OIC@e$(OJyz@r~CoDPS?SLoz%C1!AM{nDm_A z9^|a92>P3Lp`j@&c&c#qPk`uJt$04zV(d^B0o!(&J;Dn;$n?$X3oqy^CpS~XswwJ^ z(69F?O#JEur}%U8t6_(!`3naJ{ApGLE~9|cm8?{qrK*he+7N@;ktl$H6#Ufc|GTjX zqQ8XVhRfpOC^P4rG4vCzkc%@>j~i6%5Vd0V8#%M>d>w`qDGVmIh1LRy zse~;WHEh@_#x`muhl27{6)=I5OMLyN*WH%b@%W_g8k_N?<8i?!;&-J>=2|g&Dz0Uh z;anh@b2!(anaT`iPq8q2iiB!O5eLXQTi{9=;q-Er3rT9=n5l7S>dUd2w2KdA*)cc3G>ERPD{VNfEFoMGE}oFzx#D_{em)s%=8^GL z;i3t_Lx)18eW47z!+=~Rc43oA2IzgSH0K}x2N9?Ky=`e0{mUgYE&5NUz`}lvAM_7a zWm){GICl-M8jE9UWdS9*iE%uc{A!HHZ1$KC4{-Q&vCP%O!y$PPP4FIh&^_{d)KDBl zP$&zrNJOsbe7kXCV``NO$zUq$qf(mt6J{tjUl0L=8y!r0ZEAbxH47ZEu%l`5{?|Cr zAP;%K>z(pHQK_9PF{(Hr=jix`?Or32=9KZ+GW0r^AH(~;VJ#Kb>pWKf5LB`7`ri1a z|8QPgByCJvaF>|uaI!2p@;_gOzH(k02f~YBh%5}-REfNr*rw(q07wJ?-~T7&UluE0 zRs~lGb3nA#RH;`(bQgnr*{H5`skCyYiJd{)3KO`YF0%Qb zUJ$LrUz}foCG*EZY<}q<8}FQ;%Xrf7M4CB{2{CM9!WaCrW1sDv~(_w{`Ob*EbN=&J0^(qIaT_A0+yz78(RU7zKA+D zwXw)xDZ-f9;=4h`#?CX^XtFW0T_7`CwzN{zr|QkB)6!uuDVNkK@>^Km+~;oXB2XJ4b{%c9|=$_ltM2F zP^bEQm$sa9-AMlx!BbxXN0s%uYO8-@@YHGGs7kr6I>kRScq;0%w^XHGSDgy$3JWNG z-75qlp|6hQ?~-QHIu_-Ek8<8TIRb6h&xn9NbE!f&*5Wz+ zkDbF%^~HA46o;jWVD&rI99PU9+sT}+|7Bqx=gHX;F6YUU&A9v2oy}y_Aj727G;~_jZ9t{und-e1hajwe&iV6%Ck*lZ!*0rA{`OR zt~9%;4rj_)seM%JGfCUGyE*60)Gy}91(^`&_H1lXfl`?HwE8o7M<7lg!+}|qUjH3q zv|%-^+%7#mF@qZ6trqXM{2Gt;XkEq6QfY{jIh!2nfwK%M zGh-_w%JQ-V#T0b?6Kb#3R~R|ar-PXnEUb!8N*u)PjJsFf^lK|Q>c$DH2`~Ob$t=NQ zRI^3iyVc=U*`b>E*em%D(GS;);UWFY8(962=Ln@EYw12D3PsFemaxZWG<6ElIh%UP zFFdpF#Gl8!IpM&Z?!WO`>(Sr2n<>GN^z`Mz0rP?ltf`pbF%PwyYYywbyb6Y&ah`ZS z-tM)dugF%5&HHg|C~|^Ub~yOqm-=y!7;`$vw$1^3*8tv7O&L&RPltFHsxFLqr+&ks zJ~?PV*XyGwuZ^6%xl(8t$DmQs5Jo z@6oR3hfB?>TBRd~g^T)5yfbF^1XlGcnuSv*GHRk0FU;KaV2QadnB8g6AK2TX%GAq( zQY#zJ>cEO=2J^kbek`!;mV3h%@X)n2{4vM<`=b}(`5zkQaanN28C5cq7{?He2iPP(#+ z@g5|u_g+pqj4pBO-qm!CNB=K`edT-zQ7ey>`g)Y=O<*Bcbx@;dM7X5y#QS5S6MCxk zS5R7C@ znr38W8ew6)i$#(pUG6VY(O}`K(BA5F_gRe(TDB1=g~JU7`JJ$@(zzc6-@|I<)sa`dV^p*+rDb-FTb40e06~yF~T9qu7O*dgi>G zZ{xL;{4D=a?5Ie>*FBZBR>YzsSIA-0-y~|&X^05sM>;c#{pA@jaofM@;V$0uSpeby5ZXjn*`}pm!8KEBj!-SyW|;RT%+nw z6YG?lTyuSJzR2LHa={(TqE|wAkyIO|=$mXHlg;}W^M!*c8T-m>#%lZUe5&ulp@O#1 zj&pW7>CU5*kYOsL#T32cnzGX7b4pWgWWz|qL*aL8^*zM77@l2Vk}%*G$3fz-MlQfrN!V7q_3!d090cH|r_L;I7W(*|n$4T{Zo9Q6p7B)2=8G&5J{uzDVSwimj${IN#X|0M4&uz#LRp}e=0G;68?!-~=26>*2qh8i! z(Y3IZ%FaTm8-(nFV#wSXwG59}BHi+MZx!nFIm&&E#HHy{(Y;HqLay_u0Fq+jv#` zmwoz__aIif{x9O*20qH_O8lQBLo&d?3=%YI1eB<>K^qD0gBl2vfDo9FlEFp5ZPli! z-73rgRzYw=VR)P^wzk!(tyJ2&)^=${#a3woG!un|s8pj;ML~OMunj^XNMwHBbMG@R zfoR*$fB&D=51EYox@@T|07}(*C-i`A#4QhLuv4H2c8m|59 z`9WHZ;u5chO*F|F4?SoXWc6s-(!8sg$hAwSqy$S^axvOSF0M3^i_1lFafwJS{5R<> z+mkF6d9-?(XgBu6><>M;-?s*`%Bg#`26IgJmH+N~!3)~Wu+k0Tkq^Wc}1wFK5>c?h!)$Fs%t1s!sy7fzWEW3nu zB(ks~Zf$zcS=@@;IOc5C6M-l+?axiiOR?eX_M7^_`r&FmO^YiR`E^1o1fWQc1jXWc zJD7BIp|e(!8=Dw>C*JFx@Z7V$>BJj-S^OPlvJy%f&x|cwf*<4c)F=M?KujQ91Dc^I{iP!noX~7wkg$MaM;bh3aUFA~Ow&8T7 zMJB$^#rO!l({#XD{7!kS@a^>ZNXeb*86xzfep}|dX3<~gabsDI1yotMfY#M7=tY{_ zqmIyvX^rz_k6!pK4z^GeX>hj%>Yb`ARkS%(l=<4~`Qf1HPGqAO$go!w_*N8#O3_!r zcjRv&YGQE(7RK4W*2Qipca7z~Pl<&!(uUZqtTJB<-1SMSg!i0r!Ik!F!5N zCG>|IgDujcQ{tb7257++&AC+7`?OJ3C_>IktN>x%VhdfCb1kOx^2j+!rqVd9i9qKP z(7c9QL~)Kah9Qequ)}lD;|v=!wTj}tO((N`N0xkDtAVcdtofR7*xDiF+N47W*5Ki; zcGB7Rkr1=!6}tkg%sXC_@+z|@s zo$%nDY6|$?GNjE=`8!c{Gvty$+)vBLUSm%#-^Q@0G zYHi%PR(65>in-TzS0BEFcn_NTMXR!i@JW7mS+uff{NN>nVkC7a$^Y=jBm;Mad88(|i*C1^+c@H#K}r@ZDT3oytE7R^RR9-URh zRw^Nmxg9)vOGjH~U(aNxwwsr3oPdY^A^JAaAYJ; z4C>K@mt0+)+2bd6&^rF1W)@3 z{9iHBo94xz;4_-PM4I;tPimStC)q^mY?LoapNwq#R8PUz{!M?vVp*kZ`5S^<%>ix( z%lCprn}Ov!0n3Nfy{~5Z78;iCy6!BW&#-)>49jmcdY7gx}MU}STXaPP0VoRLHZdhpUgER0v{tYujF67o?>2C zgGcYInIZx8jl~wL!i(+ckCDV9AV3mQ0nZer4UzLWLDw?c7msaGCt#s-OMEiO9J`MD zDwMI@i49#dtkP@=JU+~^8QX_gMS;0SsE-Tu3evxFF&EIXYUMabXzKA^Wyp-P zLf6*K$C&if|J?gmf&ybYKlCu4qi0YjF?y;)a19n*Scpx85k<jUz!VCzQt2yT5|J_1`?(p{QY$0P1-_Ga zy{=(rg*OTKR??j{=kdtNY(yWE5hHCPOss#CtT2Hf<(ZT9kY|s}GrDqG6WV+IUKbD} z+BpZY%Jr1<;olrtzTZ1L5#Hn}ui8b*I4{l=k7HuHIS_=?dH8IExSmApAjI$Gn2w1> zURP|1nk7Cz#a3=I5sA3`OfoJ%6H+ceCF1h4ZI0eLwstCBVS*>;IxxK2oU~;=Pqqd& zEvo3;>5lbJE}QNce8+Uh1pYn4_Ye5@693NQ_Xz%#^6ygqz09*V{x$ONL;fA(pO@#S z_Z9Fi z<=nWcI4&L$pFd8>-|%^+A^y@DZHqNzM z-TZBVs+N!x$4N2WA|}=}=J{R|?Rgp=X0gopT1nhtUU}+bp{Y$T zzF^~Q9B5)y58M9xY!b60A9kq3`3QRSsh9{qsok+7%Qr#IaK?Wa{C^my^eE2%RXebS z-^&Qt!)>PW4!#~XPddz#ePq|5Io*-o=*{SdlxGYgsPOZV<%bc-ZJ`3z>3sVY->lP8 zBD#EwFWeZqh7_r>`8z5i%iFxs@bjMX`8(EmSlm(|-o&|q`Mm+(;p>B(KBB{3Q)jOAZ74*tL!f_hdltp{U zV|8nMC4FN5Sk-2gEuP={p#+K&x5Zf1+UWANR&#N@IyN1Gvp(v-SIw*BWNITrEqd;# z|9)Rv=)Bl;FFKaBngJ+Ov(-yGs2jEB}=q&1}9hC-*6rk8IF3Tf`QB<;tPh| z(<#zET8iov=7G5Wm?#x=PTl@?ogZb?InR`h&GJ?U)cdoNBhR)@tt0E!{09UIm%wQ} zh0XQIw=92$iHI@As@i8;NB&bWm7fY|a!B^wvvJC{N!pQVZTV?2mA_`%k>q9C!(i`h zLqhpAvQdbcR>HfJ>gbGM+|DGJYgU2<>l>VMh*^)CSoGy|sc{BE0{W ze~zv4&U#5J;n^i*qvq+BWjtKtg)Q^qR-oaN%*#?=*xYNbKq21i2KnH>c&{7nZ|d2Z zdagoLF>E`)UIw2@G)tJEKI%X_>A|uE!Ao$+3JJvN~MXU zz0#VSs6;j)?n=EdqsE^xkTS66)=PdN^_(;rP%oEj?sK&K3grt2D*2Pt1yxB@{ttdb z^c_sff0{OrspC~CmekYm3X`+?No`WCm{0uQ?Jr3d)vw@EC94csqOoZ?oXM$n+5=H# z!mM_p1CEAU#SA5qnCQ7j>|wA;z~^4}VL+FS`wz-iRL|g%Vn1jz+j^gDYg~=All%{O zT@QQ6(CWM^r^|D*OzM&GdUDC-s*~kaF1muv*3P=y)yw@d&|l6M?Jhy?d6}+`o9$`% z1K$aoZHV?dzjv*;rsPK_d9?!z=6r?GNd*>6@1(-gMwr0(BrQ6<#W(5mo=AksHMPn0 znlx%%_3&}|c}tv_&=O>!#2VFU-O!1}Xy5Ij@i;DUBOLbHu zn^X|)<-5HQt`L8i*PH&*D>iC98TN7`?+x)h)!L4-;m121v8&c*<1H*t(#GQQ3ums-uBi{wLC!W}7a#|O66hQqw~tVNU#(9d zX)?L9%%_H5zLnK?k~5TBN)8RLBU+U||Innd*XfeH=W^(>&c(uRrn7HTxR>6+)w9*5 zl;{=+K);~;s>2O*oIdZZIr)f0$-%^i9DvhnMnHy1?Y*8uEazDL3iO{($5!!{idHpX z+~n6HHjjUsHK!n|sk~kPj+FoJp3M5|r9L9Us{5%E_dlS2&MD+fqh3D!-jT(5l=P43 zR`tG6ML+s{P9 zht(ycAv#HK|BGgrV=IYe;DfeLL;!I0e?9R;A5Ua7l+~JFfLIhU&Hs*_AyV_Ck)bbX zWH>Iv$nfWq%I#B)496ojJ+vH{{PT8(xgu%(|H;nq3v%%GWM@cpH}&Bg80=_!!v$mX z2F--;)bAAa{y%|lC83l*9loS|`B&llGm*{xU%)rUo-*(~Jt_%b^dCfRFe#5}Q87f8 zq01_ihWQAjC6(U6 z=mkTIWHsMM;m?7-c$ZAZ%0x_r{wzG7WBfAjV$9A+ z1qr>KiiH8D995m6@6Z|gas11>H-Lc-Z7e2Rvu@)kR7mW8<{ZP+yO)o)u0b&+Z6zBz zPY;`hhM&=pw9jk?obecDB=w`T z%xReRANE4Bu)I2kzk3h0)W=h7#yztwqyJ#--bgNZGOro5fikX0bs4fWsWk}at%P`rZZz|o1hft%rPmMv5<0060V*i~!taj7GF6mp)>ke|mpv4ucXeV-|G`ti##x4xD+r zFvyczjc4^pRs#GJ19t0mUU(W}G>dv1@hqyA-kY*UHXizjM@xE-Y#fz!=+E*t=(S1- zsfI^Gwl6p3W^qV78cueFCaufHxfbJ$PeNnXP0pH7A#N5YPlrCYZgTd73URYInFtlG zo18PDA_op+PM7U`<#|9l_?C1qrwdJeqkho7%$hEdH5rVPJA3^S$rN%EVM3OAWeDdP zd!il(GAca~`c4mozS9Ho*aOMaqtJ@5IYe=#Z(zi#Wf}~68uoHC7LU!3qG3ryTi_cI z?#-gq%&yOBuMv&QVi`VGo9MHrJAF-yMlBr_NR*N_Oikf>~#-xAn4Z4u(UeTsXIFw>0SppN}F+ zTa1lC+hE(G{hf;s1*STUjgyw2Wg~p(%kydaVd!tBxp1~Fs^wMsKFiFI<1a)UPk^N|{iK zft5%ft$r&h!sc+-sQdCbr8_ss1H$wQ@eN%Oxf>~AP^5%GuZ}#p6PF%hr3{@-2+e9W z@(PKLfz|9C2z-v&m3`wv=f*0Bqj&36AJQjwpub~tIoiq44s}qU)6a~3vell`P>5GTi)zB;K?AlML@&Jl z42V8)MNbgji<1H~<0wvn^vHJ1IxiBCVmtHi;H$M0C~>8<1Kna~98ibls2wPj@8eLB zP!IH%O^YsAdO;wu6sqM?(@&!KVwnF-~D@jXM|hvig(EHd>{0^4a~kf{|{tnzYEGKR?2WVmJf~(@t>{ zo9PW*=DRL`(Zx$IsZK0n`kiVUN#1t1bd^Qkt(4aYtG^EUeD_HKofD@$09O( zjNZ=0!97~FH&)e3CkLZ*TBV<;-B0+SuLK)lv0~rvYgtsV^ww%gN*F$-{(K?>#$vv7 zdLjfyT!f=l_)2&her{+h4nG)eNdOD+{JBMk+=?_I1ZWjm$6j98!MGCP{Wu*|*9Nde z{#ba=@V*#Yy9EW-XuVy;!kXZI-{yQn(C5ny6-1T|$MUj%CG=zI*j zVLQ|@&B}x?v&Q(shr@pnC&Zk3H>@ZA{r7`xZbtVNR(pwdhy2h2N|BqhSiY;)tYGZu_w!i{(XJv z&B7~TY>N$vau_9*F++IbrGDCv@lTBHXSg~0WV^yYb>5oRJ6 z2xfRSL>B1b7HDQ7Jzm?sq?>HYHeLkg)vLH)V{m(0O|0+*L5x+Wbi9FCvGQTQ?MoH} z)UU_ch#RVn1%^f5+aI0WmGfrwTx`gr3y8&!(fJ;+Ftc7g`U{@TBORr&T)`nvi|4c; ztVVs6c5M5A@bB9_Dr*Jt2)=$9OWOY=e|qz0*RDf9zMy}mNDhOXpf$cYj`;-S;!B)Q zZ8${T?esj;;d$oe(vO-HJZ{rpT&2#Z8&R`(p83f0Ol$J-p#t)ipZzBFq_y-V>X$lW zQZ+&#lZ}WOyB)V$o+|QuOl;l0$!^gw>gixAj#1=fXEC-r6Byp@LT*)G3b{EqTlMgsj4)5a=S zPz`v6OHY{S)Gk%aZp83HJEq$UZ8Hg)UXDl$8>Mnw@LjMya`od-I}W{lm_2fJ-|uO7 zlogL${jfatG<=sI(0w9DYukO}E*o0Jjlk;nC`EitOKzT8`bthy>G2asSdN=-Szm#3 z9BTD_b&Vg1x73FlHI;=PEz?~R2ym~?$lVt6?-90%bvyoRUYWy1o1hrJ-RRy|#B*U&!pRx1a3t35q$O>|BhVTj658SKm126AFt z`lhcnXlamoD&OEF80guW9h;r?)fXdxw<4znd-o45RBlV%!l z9PjK){FW(wot6U{JVFjzylVn#@PA2+EQxdIw8pf*D$n#moSS-{V=dLty{RC}u|byA zcbiip`x4Z`Oy*w1)G~d3ag#NEfy?Y?2HzrwZ^(qlMjFxCIfTj)x8Bq6gkWD1XCC24 zje45v5ipPXx5)Xnf@cO}5JN_*8gYF2Rz1&xv*C#SJ2-Oun`9z5Phq#QBcR6Y0jU0C zrN=o8!!2TjvN1aUaiYmfYd--%DSKr+K+&*>GIj0zUA{PK7wN02u{ch!fXOWx5!I@5 z;@E@)l=}EMEIBEbt2V0J36__$e4ibVeq1^reUVNV`>rqmCSB}ne8uui2PXEcX^|J$ zp1oFTP)jZgo_oaQ!U}J+7-_gg{2K`-gR%HQ8%a$>j99wOdrX@rot}G^@)e6V&l+)0 zmzM7`Ef>G7gA$);CsaFzht``-?L$yJ=e#*JI=|8ElhRkrPO(lQEm|ny_QP8$0c0>y zYHz~24QFk_%^F3qF5H~nSF#DOCciaD_?erqbI~s?rZm4%LOP-R1Kc)#YHqa|Vv>t= zz7kh0>vZ_lvzkb(#r5^o=)8?xu zj_UyKdjIFA@g0^ZU=!JvC(lcs7B$^&ryIY4?Vs~%_CVhMiM;vs zT)m2)5;Wke*ya9<^87JW`9G02e@GTCBX9oC!J4_#>w~UL5_)ujhM1UiM(*w|f*dO{ zGYq4(^p4d>XNN_kkvNN4eMxwf2(_@xT5|>4ZBbvm(khTC6B4|e__>58=E+6Gv|)=P zYqThGBbP7{V2YUxQW|TI5n3aP{1{1hMlC5_qr$p)=sH_ESo_yRqK1SnMie>Myu8AQ zB2%*IJ)Q=^>7+RFC*9kXVTkBJ%!9b?e#LHi#%}~kJGg)oXN|D7ok$<)|L;&mN?n8G zQAUfzSYI4cf=7S%#*>1_E6;emywf@lN869qRw0J=Ca)x8xW(T|dJ>&Kqk|W|W%*0{ zE$Zb9co*kdj$dcB%Z+K|i_#@ELvP{jiARD6vR@31GJ@<&3=orY?59P5EOP95!fqS* ziyZr+4+S6{TzY-w&ZSo_%7fzgau#1oZQR^gg``M3)I$Th3-v<|i|!5EtdjmP_{Ert zap@F~PJ~Jw6t`Mn>9i9D0)WVAWMmA$wkdOqk%3$o|4oQ@4Gij?NOf?xnA4%1Hay?j z4VDxS)E50v@#1ZGcB~OSU$HOd9@&(zZT(;8wx@kLIx+Vrea0~{_n#o=SQCO4@#Q#O z4oU*}PQ)q!PMDZ`O|^Qi0vgvBvZPJkE(f)Xn*!BAwSnhCtdKNwtLg}<5^N8Qa7A_m z`K5KSZ%TD0INe#?QZ0?B40_sb;dO^DS5rTcEtAAYFi4n8-q%5A?^g*`uac%MG z;A}NQTC3{7O~Lpv7Iy{%#e1q%KF?+3j9VDiUb^w3RC7W6NCLI$uYO%B<{YbQo3d~4 zFtVc{RaUj#p0;?dwXTA{mcSXW9K}OgO&Oujgp>sj>nS#H_}db?WU_N<|3$>X^JOp2 zmH03&$4E5#-56%dbDw)d?!4GoT{%o|n+xiDDIE+(%V6QZ&+17QF@&qDTUdS_!FbEidHQDbC~O5epED zf9NV)Z4#t!kq{WGU-2|J1wUsI&L;dH%ntMVx_OuU<@o?eu0j{cJplVkPs7hNN%K;| zyjCs-O&NK&PP&-|e^BgU?Q!HNv^?CvocBeY-(zccCazR!H;oD^RRefx-OJQ9wmbRaF=*F9K1)10(bv zDn*rbv0kD9^}W@j+HlvoMJy)T&ykn^$x9+gpJ+p--%Z#o z12m9k0Yo|s(<(+_tKSL_#c^z`X(l>^3zyAC`@uVD3K0Rak|%3Ps22WutR@*|SRxvv z5>91WcvR08w(E->$I&J<#>&S9V&y|&i4L;b5~%lu?+72AFJ*qhDvGZbF^ZSEPh%gX zHuVNR{^z54hlIS#t!!~Va{DN@iRIW#Z??+a^}>Q%FLpSqoZpo;!aF$T5i5$7#7%)tT;)8ire9RhXq~`x12$?HJ7pdhQ3o z1FEf^`?6m|VDxacY=I@R*YaYc%;l=QP>A&=$};kNNM0i<5VeSnD*1{Y;5mD;?y5N# z*Tl*T<#jA3CcF}c=M%ib>oIAGRjqtk1-ccI*T3R*tUSQoVwbvdH*4yD5(~TV4uU&) z*1%dz0BqM2(Nixc4oSi^0-HPW8S1-)`*ZFUn5n}8_oq+$Y1bGRcl#abguWR0G73ef)NK003V57*cu6JmnB!2WRbved*_PMd) zNiHrKA|fprDlD!j5b;k%J||xPTD3;=Xb^n-y{uY7pB9KuA_UO6K6Oyp12pGPQ*BUp z7hA^u?c&_0f zz9XUjCUGLa#`}(hM-v;}+Et@==buQZtse=wa``HUhA;93i|`l*)>ZCct=cF--3U8m z%Ob6Qn}8d>93ela(F7ANN*<-cMO~pGTc1_mx4sW%?k$Lult(lP?Cboft`4G!4R5w2 z2Be?ng+`>A>?4z(Yr@y6vsOYA9@WOY(8|_z*Y#Ulm1ua80fsLee_j4k_o80ozbWGV z*)GKUA6e(D{3ZcA-X}TjYhXRV29*7mD+Q!#Wx+9zWGI zgn@{yCrC=^GaC9gX=qOUP<8V#Fg7Wym-~!0zY}uJamOF@GV<3}%xHPNsB}@dO?Jj7 zyC_ZeN{-HB0W8qfd%)fbAFD5ktsoDUwA;b%0A;4z43NK*s8}{^deQqbu%`-K;6h^joNkzU6W!I zVZFWBg0``lMXF57k)&%JpS9|Tl#}g?DVJSNoqOOc0lw@994d=YE)wu-I2x!us!e!% zo%5q;JqN752C4%XWYZkw2%8sBo0Db2f9j?*rM<}E5mpmQf!J*YqQBg&3Vx2_XSr+S zTWjaz?_K1p9PVjoV7g@Nj0Fpdv#o{0ix(ELq4CtsL8EgRm!x8m?-I5I&%SGH@7*>1 zIT&lukj)(jn!=)YVsAmrW6fpfi&jSD8*Z*Bhl6UPoU$lpmUAC-SuaWA&ZR|(rG@HF z*jNVf6qy2t>+x`sE8&#6= zNfOdl^l??nv-;Oe$VYwvo!S~X!N}P*$dq258Y(oq;InMilnmN`$q9f}3F;4lB z?FC#Fxu0wcklZ0l>vZ(}glq}>gK9m!Fp{UT7(&@02|yh{D|JkbleG+tu;vbrO)Wx$ z$%xODwGA z;5(Rphby*JlE_`TkqbS#Dcne1D9!*{6_?3cICLc9%*K({xZ5tRQXgf5~ji9lhWo?1U5 z_ct-t(l@fWHL!Ra0ThZ~lKp!!o8#1X#PcnQBAbk)P$p=1b|eK?W+Vj{+~w*Y0-#br zM*KYdl=o*7TL0T(f3+pZ-tH@St+)E;M0(DBT;j?F;KVaSBp;xO6x@tJxRpn?kXhJM zgv=rk{w-g%Kv?#z2!y|Ok%nW;`E1l@uGZYr(My)QZ0c!N<<3;=m&B$HBXGbss+Gf3 zh1vZ|Y}v5LpZ7;AyAF+(?WNu?WULSk0*iQ7U&5pIX~cXOTHL{vzP294>%Llz^pZrN zJWbIom2PFt9=kksL*alVeUAFq4j#H_I`I^W_y3w zmuyeM%h~fNkrs7TX|RVQR%3g2h|vD3!<(px(o6$IbDd*op8Ik<*U30+-7ME;t|`SX zka!y5@jzPfM1X}_JhpB##U#v=wgHV^+{sBOu976~9$dFi-XRYleB|BjrxNzpQ6HXy zAG0NE8AD<`Fp_L}y-T^Db7LpY&7(BJ0PI<*4-7*)M5J#OuEpnJ(Smq5GI6aV+&6(- zQa@gFNUurKGv0JU%S4YcP*Oj*z~D41S#(-pC)2fdFF5qfTaFC+B`HH0gP?}Gt6s9+ zo096=6idb@o^IOGT_%YiUCR1_4dINE7x!G!jL(!$5AoRfsUfcVghfeqouAQQt0{A4 z*SbN|o;}`o-b|18p`I%x%L~BO?=#AO?NiGmpO6K^BR@A07%tMK7B)n*3Yr!Ed^L}E zs}C40;$ITV^Ds1$C&#!#!FXwb1@~)2CRj7$fJ3%7_bQ1MXl=K4pZHsljOq`*ohqu~ zNj^K{5qAU$b{-r~qLsG$h$`EbfaJxhTs2rM5qh$!t6EacyCv+YSTZue^DLCVowl_f z{G2u0n|Os52)_t3AuL%2ru*LTLUV{*PqaZo0#Fa+ z-59>mPOgENVXpw??3EWy`CTA z=X7{hui=aCs7g9|gLZSa1149-NWza=GVwF!&7)30fWFIs$(oPJTxU)j$y?GOVc>47 z+F3jR{^~lSi;!}}o~~QQ=7rnMdDWNgY4|eRc%B#w7)a~*$wCN!iYN%cTuM7SZWhwc z;;hmaIrFBTcrO(o>oJ4*nRiZNn$*T_N63ve=Wfl^P7SDMi3DTi>SEZV6TDg?rDX08 zPIC^oegeH(FQLeh=VWoOa&w(LN2bEVENjYo=YwRS2s(+Hu@L^Dub~na(T}oIln{Jh zb@+LJ3kJi=3snnZ`z9?fa~6+7Ha<%95ljgbsZ}g*Y6zqVru07ingfuWk8+y8Kj&DATJCoU-XAExvX}i&N4q zp8PW{BEv*P%*?kC#KYHi*Mz!px-C(_V+PqPv#r<9Xsh%6)aZUGZ4n9dMCpq!|22}x zUQ}oiHqkM@aMRtaM|-w)+B#8844|ANT(uAJ&P-s+CZ|tgmCn0+LfuW7{l?zQn1ec_ z-<9cpN7HXovz0+D_5Q}bm(}XU%15*9DC%bI<*%VnK{-b?wV8=1ftVd^x`5gQxw^%w z>T?UYalYqS;1Un_Ug&wYNuQ((bx7|ffx+I8DAL+&L+;n5U^w7}(A##2R+_TD*k@=9%OLq`V_Mjjhw?vko zc5rnjw!pJhU2qf*>#nsAv53k|^pAT6v; z&U<{uyu%~v^VOGW&hRNg!o*?xD7?uM*??!&cVl~3pP$+nYIv$@p{^RNQCIg=(N8oz zXuXk|cUx_}p4BK*BX_$T;afIrMgo&Grj+mML#$^R9i(*Fb6e!WU0E1Y$}0q7@<4xA zKhwp;{#sr^ZU68C>^Y>(K8BK!0*N5T+MIWR&Q8%qiZ@x!d)XWY*5?o*OP15~?3~lw z5+JT#iM^E}TN8v}sca4~jQ#(D?Lzz>M>1`=z}1ZlJl{)_Dvdvwy2HAspQZ7M0oWMj z${54UGshsvlraYBKUY{BbL?RNX;`4aNqe21IiVEE)%a$;q49aT#^-NJ@0K5Y<_PpW zi(QUbxe7E#)>HX){(`mQ zI&4bXiF<_^r_)q<^7=Y8gKR<~X2@G>p(bwYq+Cg_fnrHuJdt$fv%fF02*T`2%mx#L zy>}7m1$I6QDJ&vCq=~i=HaR)dU$xDhtV(onPhHYS2oHdxb|ijYVfi$eO^ld!SO_3Tk`=!jhrm; zG@R65$~^aU@a1?@o@e!+`4Z#Yq!fI-!&>0XdBf8n2_FcSLi)O<6DNv4hRXV0UowG_ zc)lgdyLy5Ydg`6}_z+&Yada)qGjm!}N6Ns34N1ER}VXRUx&R7fiD(jEEWaMKYB>;+i45S1=$F~6~I7>%tG8~56 zvqrn)PjcpLTeVD&f&d{>ew^2H&$E2790-=A+!ONSc4y8;GWx%z~b1(|zx zeIh^{!JzuXEE{sk{8=cx`(rT?Ipl3RBznt1_I{1i1Y;<3Mh<0#KLQGpxzlCLGQAMF z`W#lo%Y94Wj^o;`$%dgRf`60&0?%(6l?2zypD~oH$~*Uw}2$YB3Jr ztb+VIt!psp02kG0C`A4 zbf86C4(15TV#J!$)Qu>m@gp=F+*nivUWBI_oLE|>N8vT2D2+_?dKX<`IlUSYmJZWM zfC73<R1>P%7*qp68{-9lqP$iwD!dqVv&3 z5m>z$mA#0=MP)q9&>Y=J(n!D_FV`(lI#ew~o*_f7#Jw>RXB6kjJ{-@LFq^DP5S&d`&gPLVh@fiKT?VM0)$i~?0PDF& zcxZqNk;`e)Wp~H}8pLMR)1bHDJU7_lY50Y_@PIR(dmiK~cw;U~26sGb8svQj{w&q_ zb9)MZz9K7kG<2ijk6>&dR*C%joEfPti`(C!&kMe2ZVkRgZkbkKxY$BIVR^<^yFHVu z-6!5_`ipb?oX(}^>*Ni@{Do&AshM#R00k_Mx(GpqF?QARSWS=g{sVropfg5fLSwa+|y`fZW7a4alGKB?-uf42OHR=P3`3x8$>*yvEhEc2sTKYYfZIPcNuI5-zk`|D4fCq z_I;gh1RigpS*0o@Af3`3IV9Wxl|Rj1FZM%th!nwFEI^$|sNH0YA%K`go;0DeKZMkCM8D+%>w?wl=Q1 zGl$y87m9yxbH$*nl`HZc;Q@M{MUwT|%}}VF;#?UY2mr?`I)S4nUL&23ICEOf!)*d)%K< zg$B=RPIAPc)cgOG$LllWYb;OMEfw)055M#B+~H!hMAXTaK1Fv zQ#^oQ!;@uH2z`t$H{mAudb9CrQ!i>{uU^3W;}rZHf63A@kfvG0IuoYwkWlv z%gfJr{IA9Xa9b~L%93r-hp1-Dy{NGdA2r(5-F0kV zeVo?cgd~ZZc0Xylsxv5F_3az1-6M=pTRxa@`n-P*+H7%f=u_L zWhOrH?OK7is2=4VPJbxwev_pIJn3X~;;hn4lrSy;(#{oD|IB8tGR=J6G&4+^8Lahx z$!5G%M<D z$wG!XM?mfGO)SlGA@GRg+7h!7J)|9R@rmSiK2QXHQ}ME!GQKQlPoTQl-@&cRmAHMJ zAZ|w>F}q;pa+hOXh|DxlXUNc$@$Q^Gkro)cwm61xqYrI5Ex0`#cR_pzmZ1Jrg+(`wnq9sjX4@T7syqconh{J}llfodlq+T_0ISgw(0t zSakurt-8P%2qV5|#bA8SE{2p9_3uS=OaD>7cCu5~>miB5(-u`F--#-4DcVoe5CpIO zm2Mtg4fi#4FY0%F<;`IU3(a5i6&sbqcBCtH;Pf;eJ}=0EEFD1smbI>&CTnNipcNZ_ z5m3drHXsrQg{IWI%rgwv|A29l=b5SmynNO3R_~muM)FHiQ37tBn=_|T+>Vdn&I5(h zCKk2oz~5n(&Bc~Jp*Ar*H|$<+El~opQ+NvBHtt^XG7R4*4%KBIV;v$CgXU8gM)IHq(82rq~UlS3iyZzkQ ztQiF7_Smj|4m4wr>|l4@{S`;39LZ-Rf;EOQR`x;Y9B%W4>Ko8$VP3UHYpa>h0J{Hw!*#S>bX5g%`i1(3-*)RsuFEat<{-ftdWxFX?W=RK?YMr z)d{+)+pg-)tctp(m_4^geZX<4C(=8p>QR)*>Q<2{dItU_$6?zC0mR~&7YU;Yz zc%t8{N96138>HwX^4BgBedI=ds04^1T*Cma`leK}iTCX{Cy;fBSTE%-7+ZZCHRJlP zthZeuzBR*$2kXMn#!TR?P&Irb2%r}A1- zs^8x%SE20C91DBr1E0uwf*0dv`#>>Xj4m0P@nZZ0&YgqB_G0`SzvO7~p3?io9#zJW zgncg;=g0%6?Ur|SYx!5wfNA-$ZY_V$Zuyyyb<389E`T`?(|BSCuk}B?g+USVMMo=c z{~Vx^Wx@LQ?8xG3Y!h&)+O-AYqr>CP>bqS+Bd-KF2La9`Z#w3q9IOJAW6fEP$6Xk& z%E(Vpw#UIA$xaRa1HPug(k3qe%gK{ASVV}+ShbgFvws%=cZMo(a*P}}m2UjuZjiY@ z-FUQH<6=B7jX!J}=N8_9hiEi*7t=?iuOrM>S#PB9RXea&9V7;gr+lYGqk-%Py?FFg zOAs3M>kpEgO)u+iv06Q0T`O&b;@13?mT6UQID+*1GDBX&oY}syNZ*fn%5kT>nYJul zSo2ED`kMNOE++!8qt@4gl zf^Wr=-T3v6v6uVOhk{7J^lP7FsI&=2O9zFNmA}$P74Y7)> zt97siox#3FH@J94vazL;rJ*mIh7OfdCGvu%TEq$9!i#*M^ncU~;FYk)NWUa7vhnAB zJoQjL_3T;aCpUk6U`W`ces|d?lu7h5Q*Parb(x2``uH!5Ri8ufiikC)6{@lFNVHil ziS;A=;!bsxKvlKt+RPcXZ~-Qfc;SwGtJ`mLen$@9nt525!N`4Iyfm(r{lfWo=O-Lc zx4_9=&I94%nk#Q1QNa29(kH4JZ|=%F5GP!whfK)1YV{#p1SfF&z$7oCe2g{j02#2j zGU0_rmyotxPHs8x#B*c#-;iePjzu?QQiqZ*Nice`lr8BTM4v zg>@Y-Pj}Qc?wc-?eSF`kgzOuT^HHAAVZ5S<0b>O@!oEge9G4$RZmNo+vp1FcGNXxC zOzGG&U7Ky!;?<%4n}+e@mTYiE-^Avb(EVe5Cp-;5rEOauLhQ1QYOF`1R_y>7n^p0j zP9>_NH$PurqP84k#BFRIe9w^#PODp)c!2b{Sr1B%#iMUw)ZpJ3FZVv`e2`;xdcNxD zFU{c1f{pkN>6&Y9722iYTErNgK0@TR)^@SWgDVUuuaud;1p|^Abxejp_g(UA41-+# zC7}nLa*ZzB#U=Tt%;-^4{T2^a5DDl2K%}2Darrfmvnp>SL}Lc zP?C?}g*NUEq;2eVR0N?B|KM(0@@|pdrh-jPal^Lk|_ZEi#4`ovuBwPWyuD`0HNHb`hSwh(#V zr-~BWyqEaZ$@de?`&h*cc`xJF_JeW1oY#(M?uH$(tj4HddYyb%54e*?1rrDr9`Du4 zL;0`X@mvdEIVO6^rz(T<)-|v-kO!vr1YO%}^^>-0)z@y5P!V$9_>9!oWBTbHwGugV zHFoXNqeJxBZGb2G{&NHTaeYq%d{Ec62Z%Api{D^`{TFb5y(m_lk%v6opV)@4c&0$q zzt5bm*L*baTXnb*U=ZD`mUPOhov@^cO)k|II!!d3*S(@atW0w4sZ|2F(@aZp7J7hmmbg?X$xU?qg)N zqQ_BJ{z=~*#?S8xUs3lYw6A`A-DW;wu`+hA`a&aw6+!Vh9wG9!jG$OJL1C#76zftC zZWBsESkmZv7)aP6#BP@r zvtOz+pl4&~@!tO&0{p11CkQ^EYbPQ2=GO#*;lUa}FSKa@MaDV8{gfBf)uCIs*piik zzsNI;nlD8#z=z1;;T!g{eCUNiRJmT%jrb7j(08Afm?>P^yB?F*WbY7&9Cw`WX^8R# z8d4K1eak8sc+{%^gA?ci_X`T`CgaH87fvs=KlcKX+X{`dAX~`JPOv< z&&417St_@v;tizRp0iK8wnW4G@CAv&zY-mPPTR_B93d~B=e25#DLZ8AC&cef3u_F# zBZt4JMfx=mnyUd7$IL#panR|+hBhtP5`FXWlxP1Dokz7GkR))NBO`_PP}%s@MKqX`7T2G6SIf| zd?8Yv*z}=M|0e8IiFf?u-}o=mSi-gGH2;ai?q=e1=3R$i?8$(7b(E+iya-!rRQ!(| zVi+ybu8?uO96Qx8QJUa#OZvgVmVXyXT|(z3!flE0-bA=HppLP)K>JV618u-_>3JMU z+J+^C8Rkno>#(pGDXcNS(^wAvr1Hl~NulUNKh#G?57bc8@A}hq`+xX?qpr2z_Z>HF z5P%0n#9tfKT-sIs&eA`icImk3F?kieS&`I0zS#-@1gsoz@PLRb)UQA-L}a`|zyOEa zaZ{8a0uIOZa#m|0E|Mj+_Nd+z+bwC!l=L6$sW4ME=g$YP3Uecb15HrMwn`wv4nZ*j zMaY9oDBSx)_^Ablp51#&2Y2B;@IdlMv^z`+@moY*#XESee44^|cU_xW#{T_Gu zHPht_p{kudJNFJWD1Jn7~FQw&%3uEUzPQtQ5MNGw1$4)Ff51riPRuD*==8aab zwVX->P#TV{yN%MZSiVr(`<@qS>#Zx{5g|rbA5UyyIk@~_Hqgag#^3dLc4$Ck|0kwA z57i1{9_v}uc|U+3mC>3>{lTdZ1wG?hlvbW+QNq=Kk|Y}97V9PscVf^`#)<0ynFqsP zW{{8UNe=Q0k*cmNb%j09Z`cF90lZM^cV?jX>w$jKppS*)7z4|Zpi6wf!NKY@`#lcz zmsd_D*7-eVH<*W6>W`TZ1rL({v3|1atz1Sd7NdO_e05^baE57ni*{$h^m>auGWf35 zp;WGKhm$N2T$qH< zlk6!^k+r$>xl@VX$!Z|HX}=CV1Z>x}q<=SU1wXT`d(UX=jV-h#7aCjJsyp~1FqPrX z_afxGnlPdqKe0KiJclRJ%{d6Hy;dGyI-~PDXCttW%{ewZka(H<2;7DnAa*%i;1k^WZTj7NZdjiSzy0*Q->Y*=b2DG=R8g$Qm#2xIRgdT($e?&P# zLr7>78YqAAwn!ep`P;X+PHdEqPIe$4hxJF2Fxa2eCv{Ryt*zd$P!BefeWNc@_mkm) zkZMvF;qVKmjgFFZM3-qT&j%jOVn9n0CF1|SgWODWo$B{ad5k`_i>NS~w7Ub574Gct zWw9!+YWg4HYjM)5>QGP1cb;9eTb_03?b{Bsa7;aZ=W1#Ki_Td=kewm?G|TGYs}w@EE>lZ&w$Et(aNdOSq$AB4Sq3RIafAQyz&O~ zaijUTNj}tc8G;?d853a6<6vY@!m7OqpMt?LgoSaT3&eeuc#0SXPQgd?2MK*jSQR%y zF$-f;ofH|5&j&?bks{jyDrAZ*l;eCZ^G_}#>!+DX$TWWXLxR>d&^rP_sR$SnRHF}S zR!36I9t|JRm)xW!Uy6QZ)V~^k*y7zJUkG}JG{|%uR<1cFqRy*y(*tRGxNiE*14tPp zW{=af{zqwD;&sL<@Nbj40kze>8zXQj=Y#^CVl#&$yTOr83|*4`huysop-vTrw!}x> z)&99|ERMj_T7id+ivZhYR{tf1G3RqQqTYuaqWYU~S!2`#ztrGdNU#aAH9A)%UyJz` zRhU3|03V$tCSOY}HKXbVH<22-3GuO$)jYbQwb(+!Tj1W)8JoBkb3%F{O2MVKtha_BsTzp< zV=)S}8g=P=ESg_JGLx;#*BRbVyoChj&UZS;-{}hH#mlwO!g@VcnKoIRvzZ$j32k=4|svU8fAL*Pd=R8M7#@1@1AYP!?W!^>UR3f6k= z-<~1$WKK!iD*$Ics}66WcIhiZHvE_d1I+Q>aA92m)T{p7x*|SeF;V!azim2|&}rR{ zZ_~Vyepvq$8&2*u;&0zq(Ry_Go6>( z^9cP~ye+52T8L6P%i4M3jSF9ll_!SDOfKD`=hf<&+=|sSPji~E1@*TO1!(fiv03if zYB?ji+jf_3n=Ai&y7tYs6l~V{Q_SLy*B~OrW~x; zv(i9fDhNa+pqJ#|AdcUDy@Ry``BU*h;8rHNXRIUmKL?S|lBEN08P-{E7Qu%o1FX;k z^u4qABC9{ULN?BW0o5s@^d0WvQzWJ-Z^pHW7~V%`x?pk7&Sn~;P0$=LUtiLR{S*CB_#4@osdULFo z)tbR->D?lN`24kT=UM?}^gMgZKxfa`A+*O>*~JLnyd2p{wn)CKA%sdYR|dnX6sFmt ze7*`>B%dlyc>Fr40b3*w^mo++oHSb`Z)(*?Hz11=3+Zk<^z2Tb(ACoX(WiAfyT?vv zWOj-$?Jj!F+&^dcH{qY`?>*wgpFPQaCo(3f1|$6BNXoGs+citO9ea~*?nJxdgcNsV zIMl?mI^NmX?RO`?553R!)%2D1k&E$9^Yn&fG0uP=?=#M$%Y%}fvhxohQu18;1s+~O zHUCfcxyGp%*1}sGDAbP}CT#;a6q2VvkaHP_i z#z`v=&;Qdon8HciI33ThxFxnAtLbFU7I|d7Ou&8}qOgUKAKM|fCP>0|&*bgwJ~5;f zA(Xi|W%TGgN|!PB-{r<0$l0l$*};s67B?0N`=wl|a%0o&Gc%gQ@k#z~3PhS+v3V|1 z!|x|7yp_i~EDR==ib0W_W0l%a#3R8Ka<10HUGrO7Z`z+@RA?r+f>=}Adbx-BiYiTl zE8NFd468hAWH*UYt^YnF5y8O+PR|o_HtFnZo%%}}Ji4EyGg5tAYCA_w;49U3j~I&^}elDCMrw&J8qJU-s#X?wo%UQEn{yI!2;P)p@c!Nb=%)Ik1d zM6v&*_One~S+;1dI{qSTBggY!`DA6&T1@5xQ=#dt9nXh5Z!#L!S(}wU^m(7JB)A*K zd+=yO;L*sgd^VHz(cfifIHlVYpNAXJ5^cNb^p0e_#-F#_d1l=fu%>>IR9x5@rq8yC zbu;wYrZ21mA&;47n|}D8PcqM0PMuGR3)U!PY;NI&mmng>bWpS2)mRc)yP_qKz2pHT zhF#l%gwCxVTk7U88MP2W8ZAwPBg<@Qgl?(JF!89Tj!A2Nj&Ljy%xNZ#EupdYDLj`b zt0J;-BeK!2RXfL&oV~GG`RZ;Or-Z7MMwfTmoajlEB|-IzH#CMMbyBHQ?k(Qds+f5z zCXIclY#$P^s(L?57L^+7dd&J{oV%)1?t05z(VM%-?=hI_$#73!sB?UMGRbjHAi!zm z50hUb;uF$?iPp%+c&&JIMSd1xwJQoFq!TjsTJ>GZSfvPl>#x_#Qn!+|38=e{8hS_q zt8?x7d`{2jtu{TMSXI87OOy79Gd!IP0yBQwKI{G z!^LiErFkwUM}|KVjYFvfE9729DzFvaaYR-dQn%^*4>{_@8KCZYzS(BxJAZyEp=tHw zY18vcaElp>fRB(}L3@MHoVr3o2H#@L$ZhE?YwS|11sdTln-dwULyI1IT@P0qAEppq zug`EzZ=rh2yQ1?kPT2>}Md$BlLNDAP+$s7#@jRD6m`H?Ts48BR4c3R?9b9o<6eSS$ z7x#UnH&`T2DBCt)JTwCN?}yA>2;~s5JH+3I*15Lj@s#VAP*XlM9wO2f^!~bN-EHQ; zBO)EKm~{H)?+bn1zRMm&O*yro7`xlD!V3wvP<5D)$jkcN?SxP`3DuiD^2LT1V{;CI z30%C`2ZZ5W<|NxoKskQT0OhvJQ!czXpytGdL3BuT&Msrmw%tW%;fG>XZR#rC09U5` z8Jf9=kLXFKxFYD0l`Eva7JEeU2XNY;#P?jH>u5SxN(7J4_?-uA1yJ_y%F#dG(vqnj&6WvRdI)o=mKeZjG55__`+LhxdA zrdZkbPD$@Dpo&&Zj8~M&Bs8Uf!`7x?XN9$YkrMVnE21|0pnZz3`k;M6Ub7-UH9gml z=)q#)`qZe-7rAnxv@`*tA$g2m#VB9Jhe9j`m=NRcozy;Z@7a%mfm zU%6Vwz#cqF&06IAX3hyrn+dLgx1Se<4tUFcF2izWp1KEYF;Zm}yFYmf>;3)Dug5aI z9w#QT9;2)d^{rQ>Qyh3rfYf)`s>uMUp9aXCX+Spe)du9#eAR$_QeFed8+6Og9s%h! z@96cy9ss$H_zCuMOERd8RNMB=mO+Lmg8X4G8j=ueI(>T~O!XPL$9wAbZ_kUx3n+V;XxxT;FzwPziC~^JISl=7ZT;IDX^bgnf0&ZxZvcAOmK4X3Vvj6nIviN17eB2lkqQui-eC4>UfL@Lv$d*;yn^AiU@n# z2#O~0ILXb2;IGB=Ez#huVqGMBwU~rT@JF{?VXuXv6vxN=yOw&81Lo)~F-?;HO+s;U z{VA*=#`bJAhdRP^;M~%cC{@Q#&j2u;hT9=Z0z zUW{-@hz|$)PKR!i{Jt2?b|bpTAu*=$oesYrtw{#hlXzCgW)r;cn%Jl{wL$e2+GX4_ zpc<#|MCd|1_s?jhS+{bcdn=rsu~F-S+8@0>UpdXys<7Q0!rD{eR~IZq!fyDak$t zExy9(+Y`D#EaKyO{#c}ySG@KrW>MsSp9uFS(^dT^FX8&7nMz_FA+BH48N~A+v$e0 zJt{(s49?b$syRCqzfp6x<%YAJXgJ%^!r7L{@jrj31~W(orYuZ{)$G#oHI4f$f;sg| zFKhdID}4k5FZP<24nxwq0)Vg{q8h>PM;DUoz~2;XZeMkm5dPiF0rYZdtKe z!<#FMNCYRNs}%bPhbWf13(S~_84Sj;ZuKMLK{Blchvr;h>nSv1tQZQu+DNAHHQ&C6 z_W!foL%n7|v6+SHBIjUqtMHyQ1@{qkwV6YNf4}ru?oVU3X^QE@fKQKy`+R3>dzr^ zv0RI_+$mcqN~Q(hG966KsXIt98g>U~xBpF@pY&g8zu>dmXTKPQa~$)nMB?sl2uS~0 z|AlzIDY6sKw=Q!#U%70QBNP$>T!k>HMNJXbDLLh_Q4dt^LQ5hDrmiXX927xNL)>g^ zEgu?^E|DaQH|SCeOeq$cLoC#Zu)_hmse%8X!*=3o*QyVj^{}MF zs;*G)=1HTn_#XcEm3NGCgy+dL5s9gVvPD00l8@-ter#IfLwL^^^iwrUKFeBG|Zl) zsp z_lPWq8cIJ&>0fc(`tjE}>NX94VcD$~AV0;EV6(Ujh_}EF(JdEYZWyf?A@_N_0y@=$ z6snUrFm;_!Ymq8U(YM%D??A5W#3%IkJLmwz|9o_*6@VYh0Hm-8V>^vTfuIspcUT0X zM-KFc2yGG7p^)A!UwJeJB{K%RutxX3&FXNlvF7V-;%UE1z}1YSn^+O5P-^; z*kT07qP7r-xu+o~z7uqAwIy)V<<6cb4z{9I-YY^le_KxyxTM&PlAS*PUOb`0d(l68 z)c9R6Aus@^!ynNVeLOyuKCrL2(=92+LEb-$>;mhIJW0BYv=7rjd_K%D?Lj6-c(r&w z)Fxi1nSZAltGrO+(U*@9`CvIX-+^7Mcqf+^Y1ViY)|XcKaA8);$JNHm3uT(|@)71^ zsQJ)GYrMS3{2FCGhRX+bz47vK@-6Xt>2Vz&ZOZ7wY%8RtJJlu$pgLvrzU1#m`3>VI z(UjUqS*^S>t)%lsksxVz-M5f%v!6kiTEZ`$RG+-2Er&Szu_UW3QI9~QbabE)LI3NW zYVY^j=kHI4rha))VqPc?2F&ufTI(X@PQ^h zpaq#4R4wd_5de0#T2;aN-Z_+28!FY!Wt~}_$#_p=O9j<*(-?@K*_^=FW;3*mIy?{+ z!^pSPPyY)e%Iy@^5zOk;pBmF7K3@#BT}mRb=R6 zhtS8J>Kc>4LRYw zvur(rZmy>*TB}~7SGL;QO7lh19^73I7rI5bDw7AslwOd$$5B3VxDXI{ym*uwpWd<} zVqU^Yi3E)U%YQ5}$iZnSKNEwTe9NFC)TgrG_Ob%&wtUI(;&)f$vuCp*(LOQvHHlYc z^7`gT`D%MZgmXtWN=w$Hp|!GBm^}^NZvfAJ52)M8uPjLF7+*mQC==a!y9vFVzJ%)W z8-2TIy*s!*iV>1FO=_I{Nus%OVipE|k+_@lI6)tM_V`GRZJ%op?;M7BG9?}VQhOThc#514cYq*C}P_5r9A z&`|5+h%}7qTt-SDNME@(?6F6bw7wD{`8>C;jl;Ieb<6tkeM5QDO19dNT6i~F%{*ph=_*h2DAmCgb4Mj^JzkCDyGqhv{3HtN zeD}Ay*H6FiX%j_B1mDw@`=Qt6w0gvDBYDrAlhOVv^Dg7kX;4@HHRFlrrbn3^)^$A& zYr}9R!VHpjQ1Vlqhw}!Qk}}!;f5g2Be3aGo@IRB8gaHO-(5O*aqF_x8Y9KD)pk$jQ z2!RPpf@QOYN^tCG5l;$ z3IQVX|DO9ivm}6R-_QGhfA}%;EcZG0-gECg_uR8y!9)3n1^RF<#STh-)f*!*5t1($ zW_h5m)yp`aXgeqkT77(VS3Ko{BJHcK9|kM4`sLJ?irK3A8kLF`ZZGIpxABq|z&VKq zF7`)efu(_SX(I?Gc9uEM88 z(w<{$Q|-B$_Pk9u0FFUPENeS$GHby`kXmx|ULIa1haZ@LFQ`Y4hu$GZTl)P|4f-$X zV6A$b7SL(xe$gd*{s+x_t>;e+u^z8(gH?~=?0+&?XN)-2V7c|z7?aCj?Vor>SJHCW ztdaJIu9e9y4j*FjZSqGgkEAgh)y5&jRGZkXoU#`qh<^KTU5dpeG8=MFte)gpx5 zphfxGh+B9U61(K8sem;5b4kzsfSxHe!f+lmc2?tMzeTuC{Om=d5P6tMs`Dfes58FZ zgrIn6dT4ni-%BEXp(%DWZO<@;xGXbvT) zKD_QWC5Pbs5*2844(26de_JOWK6Qs!9+r8@tu5W1ZFFeEk5&q!xCcX=2Y#0t_n~!j z&zWGWd*pn56o2QT*^MBYj^lo&~Ql*%dD78i+gx$ zSqn6CDe~#%BA*`lyg5kN`V5IUTeW-vH31h1d6d&;8a9?Efm^wwuBlcVo=Z@@k(Oa2 zR*e!OGN7K|m36H0v<&1CCXLs2I&JESN3dpmO#b-iW71f}pXB)UybyYJ;EI%dhP97y zPm*_GQ-d=xt8z2~UCjGqy&gRJ7+d*fwdyHz=bDrkt{A4Sft4d}TdbmpUc)KJD$3+S zy$uPERRrWZGN~?BAruH}sp;m=O!MbP^XDe{QQlX+Y$Fxvj%O2H?ju=kukn3u(&dVV z$US#aE>^L~{A#KGS=l5%{EO+p$8y!C4NGlm5={`HUgVzpd8*c3irnX(2j%ig^UX*h zdmH$}I(Y29KOtb2&y5XJ>I&#<%%&WGH6Ln?{-afg<1gp&N>qW{$s@dGwY`|5^U?gR z)phcm?1QBX564s1H3CoX>^fSKwm7dCJ4`no0NCGuEWT$LNr>!Lp(dBMJ*{B9xSAsQZl++^?kIPD;Qn zx8Q!mgiF-uEp-9<8&G#o=z)@xF*0I7PmI*t!AbqdI>E0TI_s0hS*JtJhQ|dtk7?vU z#7~W!M<5Rtavso>LR%ZJ=29bPg}eqikNoz(L{4Q2?zJhnBNK2%L@aPCO}H944H`MO zkMDt;Q_Pn$gQvkx{Z0QFYM%I&pyu&zs2NGPBujZVSQ9D{&}h`mUuG)M77BryC(Zue zZ@w5Eml;)wxuQ=)*P3vyGT~ezuv8=FzHOGfC({0Z!|S%o5cn_9Roe@VcYa%=vSI+VuwOJL}YKowv(7@0Uhsjf2a^VD3pXcRAVEbXZ~ zU3*$(4qCZ6Xk%s2u8~2z-vnzJt3$oZb9E#x{NvPI;3rOZx0>awL#H}$t2K!9mwc|s zGl=Ve2stu754naqo0deDOrY^&Mu=o%rZIl1mXHUKmSZJ?t5)*|;0F0bfiSuW(Pfq~ zJEv*M1!&U5MF7Eh-_qfpW<7VuyCPws{^}Tv1t&)=#X8vYgw*nPd3%5Ey%!6i)AUXY z-4VSb$J#4dTGjJ^G^I(deC*1Koag)Z`uvBMUa~yXSJg3ZsCbxFb+(mWV2_n*$-5<^ zmt+c+H^ob5wr7d1e^ytTVC_sM>L4sEYt*EtnB9_GmQ(%#lEKnRdf1Xn!;C7WI%Qnu z&&&_*A-{QvHs-{`deE5G#&KTr4CsrFFj2TZ8BN#?K_7{ATqa zPeqjmcI#B%H;|kpB!kN0OuzrCG-KnFdWv)tJL&O}-Mne}a9hLJ8rYstn=G-PUoH{7 z28nfZLuR~kX1jxqVtvq7F^B{BnJ6q^SSp4gWU3((u36#ilM@1UgYRjUMF)Q?{=nI| z0tc5wCUvQ`^i;k?!jr0hDD`Wfx$|~f0~4Nv+|fy8G$~$m6KRT?Ue=2^c&V{iXu;xu zQGIKEwWbA&yVHWcp~cXGO!XReehC4ZRb^tOo4<0%Oyc0Dmzg+d=#!)#twzPLz7=^5 zIDt81SU>PDR-tDE=&?%Cr#Z9te*n?3^d|%L*|mODxN%=(&IILsB6SFxK2jPT-hTw(#v~GrPeo{$6DA`{YB@SW z6;qu${$PGZKFmyUt?~ku?R^uac6eyuqG0-D1WOF+;@H~Tt%x6K$-%^-H*^@_3Kqg*zauOveWpC znk{jz!!)AWtg3#CAVMwwmAR0hc3Og~{&657xQ`d-#ES>E6&F}OW-Fq?Pwo%CmGUps ztg|b!@)2GH)Q|BnN3)|`(<@r~V1NUSG`AkSg>`XYk$USEbkOuE5? zUT@i2#Sxx$z*yo6#UQh!=u>a!Gntp<5?)yt6P$4)g(_{chDSp8rBT( z3mb)sdRj0jhR(X;XuMVlcP0J`UX9K>wzCP1*D~Sg(ts+J^yXXDtH04uYC_REwMKwX zaWVKt$yDR|028S1=n=@LqfY!z|3ySMq{&FGEAuxSI69EvqsW$USvZ|MdJBiF8g=3q zLQu7vF!E?ERd16dg5+*2oodV#zYsB7I6HLAo-|vySAV&IFIgI)(y3hr_>rFF7^@yn z^h{1RrnuJP46Gp*8Qy#nD;YIY^J~aUc5D8`I+%_8nwiXRlxCCG`=Sd*7b$&4U!d6$mUpq>>eDmQgpuflAJ{C=G~5f&Po?|pRz$K+_zF@WG!>Xnz7#~c_ocul@2 z$rx*9cAUuS^8WdUhmxJB&j~9Rh_mnyv(+DD zrs}Ot?fSYY@7G&Qg)2_R@3e`xP!i2suGlhJN|^vMS(XeJB~>nYa}xSH^1HI1$jS65 z+SQ*54_R%VXzk){mJ_oDT9e08_4A*lHk-3eX^Ge0!dl{mMA7sx8?hQngjxK7 zx(hjW)pfEf)m3Ulo%5Qop`>IJ-oP)chk(hXk76-!KqMG6_|Je$H5khV-R7kK;4L(a*4{6TPCA^G>((wZn}Kix z!Z-g*%aTbis_}J z=gc%F1w0ex%nZc>`B9dw?Cg!5zFiA$T7hIwOtvL-FAPwA)Y!($DVVh=hlG@yM7B|} zcM-oem*Ms8Xc$VYlRlW!VLF~*;zePBNwqBL?ZFQyiw{EwYFD=K*@zJe-y1#a(6Yrw zQ0e_(t9lu0egkLC;Ds&kEgvjls?6Zyb^Bz7Zl`m4uBzL=BVwm6{0a%0b;1f@jt}Af z+mFYgUxR(K7d3hf0vwR$CD*1tcnSe;ZydPm)VmC4sc+VyrQd@qNQ|D}4bHy6GwzO8 zG}g@Z!2Y2Awhtyi)0=>=d}=T=UcQJ39}}nMZ)A_CO)~H0b-r?8-X{w4zE!=4xuwax z(~yZW*=mHBJ>4cV|2%1M7UlS;KN9n{;#{~rl}&G?u8G|a3O(xjPI_G*;Ed4p`YO<8 z3y%1rO7qDNx7-t21_Rw2McM5Ai~`hy$s`vW-W5jm)cooId+Um0`m~d06xT%- z*ZC@(!9l+2ne%hh6CCL1yoc1(YLIwTWU4z)Ko)xLgpb0j)u?xVqG^R*Wi*-g$`FYQ zqh;vb2O0P&RJ`N5t9VJcCoYVI<~}f7_JNCKA80VaLrFw)K=76oh^Wz+Sa#l$GEV(< zR!X8l{Y-x_)+h!CgE8aJ?=ZaK>?|=!Pq5^DI3tpL?jxc3sZ?_be20iP`AGKbw!$~r zUa6J3YeZj#h_FBF#|j&c>7fiQk&*Xd5Qh~y=WFdi=HC@icOGJ?1o!G-Vk|&U8R3w) z)mGKr_rJ@{e&?C}zCijtQ15>anUoq~4z5PC)!!f1`&=twCsLiI#q<~d5XrKkkKLA0 zsOo2aE=fSdadS%8RzpUM+HetZ%8T4~l4KAN?GT*3TRl0Kxv^2*_ibT_Jk1;FlyC|2 zosyx()3R3XWnB}{sq5x7r^z%E>@qXrTo9Jvb&_c&lN>k1V}IYcN@u!>vHTmp6IwFN z8yPP#+{f!gIppgY8=s$B4UbZ*{=Ulkc2NZ=kCf&G)Wi1+$vK3@0W6HleVmyDqDjqx zpL%ckGmc&TP@>b7KL$r;1{?F-zz)Hu^d=P`Knqv0;31uA$FIH^+|eJILqMKY^Axgh zMmN-_=8GGNy}L$j|2nfn)at==X~xN!B19WgqgHJl>q@0cQAS1@W{rOgN;5Zm`8@Pwl2kzetTm8x}8n)Um9Jb36-!8gb@XfG6b^m^E z`oMkjmq|=Be2fue=xQ(g;^7(Djk3exuNjv%?bXp(c(Nuq|co zu*KM6q`k&u#@+2W$$R2IA>JuNy;boo^+ZtU^>YwHomyv9Ue91t(1jG#1g_q_b21Lgja>eJIFOi+QG#9tOlHxi83KXero=>y)Uw|U9@YsBm$0LG0=4oo5E%8Qq z(9IYJLcQWc8{BRYH+x=nByRFlm!0h8(hY) zSXKkfwA#EJlWR^5pTU($_^)MRWO6YHmKrWp+nyy%sNr`8YB50j^hGwctJV3>Nu1hj z^ROq<)>zgFxX6ai>@tL^O?Ii?f#B9(Bq-d1bcugfv=Ag2uzX(A0m z=Pp(fZenE$jtGc^x0JtY#YZM?h$OQt;iGl(epFo(xqTRx>Rsxm%UD%g)q`}Aui4}i z;dHyyPF|gcUpM_TXl+-32I|IHe6Mb!jN<=!8^Om~H!^SW1-u?9QpFKQe@$UW+BPE(R3TKBAK5W;MbD?=d2a+oAr1?^6}b3Omxc5k^TD0 zTn%4IWKpf9`Cr{}AgjkN<^U@jY0j71sL>Lpk^$*4Qv+5zQK6OlzJyIu_M@kOv zBjbmuz4U)d{Hn-!m--{@Ka`b7Q_tA7FeV|76#5OdCNd5YRM2(X>zK`Z<7WkEp1xE+ zyDOb*pghpkn`}6Gh|GJ!>u!II?%?7Ixe61UlHDrt-qMf7vX(;MMDcawz1Gf`B1?(k z7Jd*nf&P@xB5K+O-o2KaihT_bBzmc3Dn}KR?`D4>yFrb_A+$2m?_oIT_*u^&AhA-c zeC2*~WkJTLxmNdCO)PLdX@`F`P02mx+=U*1pr>YKzI0bty#1`E{l!g3&t3TK4hly7+;t0KF5Ps{epwKb8RA0X5;rBGeY?mP@z^?Vd#V zWC#afi8#{d)x#WqgV}Rr@@P8YOTw1C(K~4d?%lChI62skd{EqY;zsLSR< zG=Vk@Xt1lyz3JxM6XM5|5L}Lzxu$U`lMsCB%srg_tF}y+mj~GOoLwC9Xf1JPx$>3a0L&g7Ff&B%vzDaH_drCkCJKTAj1}Fn`+?o zD4EJ89elmI026Q*#N326h6)(NEH#>A&BNIDl&kqKpV63XQQ z<=u$Y9MqozWt|D-X}UN)QvS3r=4m+tLI=~@s;-%+$)Lt}fwpq0C8x$F>ljT8ef=#y zUs&~|Ojst1AJtV;89qNuYNxKo-(?n6HUZGHxKh1z@f^uyu-VYTo6tY0DR+uj-gb1j zIjVwd1IDeiKmdm4j|wjt6Dtj9=%rIN^wJ`2r-SW}6GX5!&y@Nm>QZ;l+-zap6U z!(ApxmWcH|TWKBpx2MCo$b>W4gmaF-IYZ#Im~av&&djRxy~A2xp##HGjFyNo@x480 z{MCxXGDN*R^>enZXIwB^P=LBETEu+QF)d;ymjdxV2O%>uO?a+J*{PTYb>9aGx^142 z!KH4WnQdL#xJ26cH^b^HVO$ProFU=hS8SVv88D{jiWRM-ZG6935WR=BhtX%@9}J17 zG|*@Z&(4jR8J*h7^X#Hpof9h`r9t6b&p#{V5&>5Jhbd+z_y$Vdp6zB9!PBk&Nx zZIFMj-TyP=GGj2rAb<0b{n2AiV?7yn9qX^X>=l)Lsm$yz~+VCmE7Cqo>c8h_FzoE;0C#_o1kWZ+2OZcoYXDeR(u zVG`X^)iqtVDI#~9ZE$RrR^S^TtuVILm<~Ni3T^NWojg!yb3G%`HkG$6!7X)@56-ZL zaQCtQUAV2(K`Q@KPDVJQ+fNSYvs{Eq?cOgh=83jwtfNTm0VXa^ceQKK0vi z-SC}GpTz(n+ccf=_YAmWDL-tXO?CXT zi}`25s5U+|Ildsa7f} z{hIDynMvtq=;966Bi|rCsv1*iqMa|5g6^=WqXy^3UHzu`kL$-?a*Bv(G@oqLY)) zPk_p&dXh>$-?W4ztC?6&w3ix=rbYd1!5lKVmJ>;m%Yx)(!@t_G?Q`mo|>gdZE|UDr}yc5KnXVCx3mH98f#=&yYDl3i}E#ii|Eb0HoKd(h!77 zlmKpV4x_;~Ym%Bo$ijd0IlG*6B`yHUBEkMq{0~-5>(VWqVic0jb9K;-ePm}dwl1S9 zvlsTAmpOW_cfNDv+wB?8*(usgLI=avKFG&Q@4QSOFMAs{{i@wH@@+~OMH(Lsub`?h zj)a45KDo*_I(RX?n8G~53QOCJEc^+REID0LNXFeqN}UVOoY#v46+XxO zJ{knwZhwU{IhFrwjG-(TY>>Fmu|nY{KB* zP$Gn0gt4hOw_8yyV^?f`cIvuDnw)UH$q5e=E^~-*nM+PvSF8G@IJu|LziO;u;B;z? z9OE<13|sRp*Ek3MNrukN&;`8nGZ_z5QXPg(M!DhdB+M9KlDm1m7k*oly7}KE&*%0g zYp*jMZf`Ug$qb}y86sKW4?47BH$1@&WDr6)6n0>?2^@l*c?OiavniDC{G07(mBZIs3CzP&#lt?e)(zT~{^z2+u%L+|YUFxiX zqQ($a)4b8M3xaj^mFhfcwdL}5d42D?J@EaUgRw8L#4@X9?NjaLhvOKN>=W_kvsiDK ziB}{6>9T@wxx|bRi|2FDW7n#q%k^km$yN5L3%(8kT~^S(jQ&Kb_A2{gnEOUo{cv#~ z!vOAwl($#}PxBo#)W`y9S%NhF;NXrWaIyF1@D1)&v-Xk`89#CO6@Lc^pl}M`$jX z-7q#eQC9kbi$Nh6laGH7pdVmD&6#awh3?edPYO_Ez1CJ6 zUB*F%v|^dXST&qS5Gfb(vClCH$J(ox+6f%tTC z5YcPT)%xAwn14fh1GgkdZ%>6Tdos3#mulVM6jA9;(JEbI8$ucnN?lAzz2sI;d{6Pk z8OAO?abp{99&l+r=TNyWDli93_(MUv@CMatEQSy@>h?y#g4+~!%6r)Z(65MqPPwmx z3C^+|Csjy}byl+?xvAdzJ5m2!6t9wKlfk8AcypB`Kxw z*=P}}*QknFOmcKqV~5J?{{7F;Pl+T;}?5iLPnwsf!T$bHr246mg9mc2O)XTryk({L&U~JL98R=dz#;rw|F14{V=r7 z9(vp6Bj9+;J3RDF>+rN};v&@Owl!oN`728&%<4z;ya|G$Cto(KNTao%ZL~+)Uif@?5@=QyZ#eCZGp^6BQU9DGmOjDD(HQJmOusCh zkjs>SXw{G2w*rxIE;WyVCpJ|ZCgoLKT0f;EIk|llJ*HbO`AKxWIa41rEnSHVUf9yD zbQg{?N5P-ov$xef^2>kRQ}0#noTcl%`c4dx?z)X7f&Qyu4B8RdXZ=J;$*5tmRhfmt zq}19rIb7n3m9QtHh&)fe=nyHyBOISuICCV5Ie+wufXnl-7vVW;E)a7)Au3=c5**(t zl4tlbH@9b)w=z6o8K7`Ab|+q5^wBS}iO?hwAiFDUfhT0?kF*5BlVz~M2#J=zxX#QJ$13mco(MU zq}jMVIUC<)HqMjT_^$8WhTcX=wz*%)iA}V8<{kK8v(+Mj!ow0gCD=K7VKxMwFkq9s zwWj6r)tu7871_odPLttTO8uZ3G+{O8X+8=d!(rjC8avXNx9|#$yQle|@(O#n4%vrE zYO!N=NxxNoPJ2dMa1e(3H*5Mm`n$4@CJSHqsc}Zrci{^Ukd(!RUA?bH8sEX;_Pb4u zh+#T{xjY?REgy`N4-Oi=T}e63&6F>hIyJ-OB=}3LE1o4LGnMn;tvdD zg)oq0i7Iu4Gh!u9%Gqisi@u`AV$RClVCBk6xyA|0Sh}V5XjUq9g6khRVQt5;GcZ3_WHQ7Tg|0-y<6=-c9S3l z6V06lKZIJNcbISpTcyS9pIO#Y2Pd*w+nzZ5xSJaKC&;T>1pqi#M_gI}y>QB=gw?vK`mxNjnCDD&x(;b-m%$S6}A5XI(cOZa?1$IQ3(%uY|3fHVm+<%dRWu&sy=_ z@cBjthxwLyJ(2x%Sk83`G0R^sVf+$SGhUnT)8Lnl>s_N4Q&coUW))Mg)Db`J=eidj zz0A9;#1egcG?L0~qZfG_FEJ%4QxcMts?LUcX{HvV+}<64G3^jA8mC(@J`*cp_{M36 zeCt`*z`73fN^7-920-WNX0y8UdH@pmpkP3c#}MvMpRtF7-c|lX0wZ{l#D^~S8V7xt zH+ww~`49Oz8=Xe)b_eTCue86dM!g&CKvZ!h9GovBI8<;zifJm4Xzl9PU#69)mt1pZ zFy~~W_QFVXsK1Zkd9Z`h(x;*N;O#|-fIQ(4`q5K-rH;)r*@SMeG=Ey3!~A;6d<~KB z4f20isH0h|Ll8lfZrK6m^8`0k7@3n8)49n{b53SV#nytvVgW8PkBAw_tHkW9+HkwZnsBqX=kW1X z_3_9QH~UNTZIYYS`xpFhENh*xgWJ-IE;*^FUgBnbdgr2w_n}yF@Y*`r4#(y?@-gh% z$5&ySlRVZ@UiKH^&!E@Bo*`vSuqmeZmBpc{G!6}MO*F}tDNoC5tTx{?__G(d5Vnl8 ziEw7`k%p3Oqr}_=b40#1y7Cm`@hJ;tqPKA(qtP%oxji%lWj$58!XEj9X}|nU+Zvea ziLF744?5T&G$*!-V-b_tK08}`ZX1qt?h7XhG2{Ib447%Np_$b*224FukT!te2P+Py zh6~O}n4b(*v4o{P!@SqrPnK{$HBJ)0%ubff4rd7OqsQaF_Eo!rSteTqW02&I z^n74Ha!ZcCcr9N+i_)ru>r3ZlIaW?v_oWm_~LY2l}hkQdmQ{afy2}_&LM_V-eDwQN!JR zH&d=HClt#eqZOs8%{9eBE(Z}NMhm97*} zu^gb`^QJ+~O@WFy$FVzLGZ`5ZRhJ2nSzVGlfV3tgGLhT?OHzeZ6>YRIZT^67LAKyo zYg9gK7)s`YvoKyk+JIyvE4}~;TR?rS5V=aCJAcuBgqo>0Ew$h$%#gydVzd@)BqDE= z9}!vclWqRwm_Nt@aGf>DAzHN+bWN;(4a;Z=2(w@uOEdr4CATE|ExH0KNY8&B*-M&J#t-m)?FO* zZ+w8Mzjz&seAWHViSu^x`_B>LJVY!VI<2 z4{qBsame6Oiw8V+96=U>h`_V*6A_9aCOB5FmsD-2@qo?KvVqD7hR798w@j>8jg3+P zE%f=Hz=7SVvm^xr*f?@~6_A}Z~(=os>w z7VE3v81yYmB(X=~nzZ`-%{mwNs))bYtmcu#2c8xQRbp1NHPRwl_?Z5itj6DD)^S_v zlPlmABoEO3d|?`@UKsfvb8C$`y3c4#%jo`+D^e=R&<5A~s;r@H+)%8Cwu+%`+^|}l zi3%8nb%9!SzIN7?q0PyU$^)&3vDr}OYGcE4h0(D}S1*L#lyqgH^Fsy*ozQQtMCb@NSW z-K`?6`=%_z`QOyb5ZV99E8eoKO4z(#SW1dbX27gEjjK*=Nz$KbB1JGa z7Gy{m(BCZTm={YjRu%W5vtcq4Ar3G0uJ-4wD$ZW*AGoUcEZKq5x0kl!T#oEHoHP+$ z=ZM%EGf&AOH&G;FrwxnvT9fRVhz(}%U;n!@wn~j(gph7SByJZQ8BF&JjDXiy?VWcf zvXyx*m~*DfJc1Jo6aS1|{`&fO?$x)VU*y=CUcZFlNHm6OX6R~?2%x^u0W6wvuBqy* zRVDon$D10vYz^NvdQG7wqij?G`~eyiB(YhfiqxSOw%>LnZk(;#O(yHflEM*hTVo>~ zKEvoG0=6@eC^@#Z`8#Z$7mJGm)$!X|H63C?&=H7F&TDGyu+3;V+vrt~^$wMcc00C( zHWHO@OFml^vKkSegq9Y#ZNdD*Wd+$8glwNsFiOH2Tp_mfXB%18mm}Pct@_J*k5HUj9i=FCY zLhc~JXYJldM%#Qvz{F}BjJPkeBKAZ2)3nr|E ztS|SqdhR$=c4R_W^xfp!w(!hI#Zlk-dG57hV`dyhQBl$vsj!oIVV{~aoG75EJR3U; z8FR;WKqKZ?%9!v#m=glx??VA!%Q}Ko3L-wcDRUfW$k7_F$W#_?8i-Zq5 z+)6aY?+B8_w$c;2iA#+0+MS`}Lp&>M9EY9EOxrW;2>pE&28iM-E_6p3I4l0J+_^Zyw-(dB9WF%VYU zugM5r9y;;4r}-|qEw*1%Vh;`uojBoXUZNjlTvL(}>_?c@hHtMfc3e~9Xt>#^+OC^Z z92&C<=5RaN&pevtY4d+*qY0R3SM7_G+7s5OByT-kIJfWKXl{ILSpE;qC~kYdW-cXw z+1sC0PhNC5u0F_3?p;CwSpV82*v+9+PFYuL5y9#K*LZ{HVSRGO>T3Hn0ei4N9s{9u z8O?78_Z6;d&pdx!Xd{W;(W;ld6xIhn`sKrcq|pjDp1zB+mO&O3Kz9I`M~TyRF3#Og>Um3g%PAbv`ZGr{L0U8E5YPo0B6Sut@y>e`I+!C zGAEl^r0B>&DA9dVnnOtxb${RWp61WFRW08bXZzIim30-Q+WgEj-QT6bgyJLT{qZx; z?92`pc&Ih-dM2>+n00S7N#@F~%4_ z>U1Tp(k04_@kOUAkxdCt?OVLw_!;&Rplc=o+9$h$AxQ!~8ihkW3L$)CxrwxKxMJFTkspp1F#rHRRF5l?+!8+Mldnhk& zdUUwVmww(iP*=NGJz9y{+PA{Vvt=3WS&x=++gc|N)uprb`VCzxcX8rg)a{j-G=FAl z=Fb;DJImf&ol!=xRPJ5M#g%2mkaB&Z2F&73maN=7@t5bC4~NN58{x`y#j!heZX_Os zuaxGfZ_L6oQ?A&}X1B&N8&o8^_C_ws80bu3qtU()(GlE*a6l(5b@>h&3^Mh`NV z>)w(|S*~3r(pK+{ize8J?kp-}iBMZ!${M{Ij;Q|Tx;*e%H=RELb@>9}1~J_UsO*Ij z)mu#SQoOB2zs&r&R){SXS~Ae#X$cAoAgZt&Ps_Ksj)$a^q7NoB!hE*`%-d@;?n6R_ z@@}LtYp;egTU944#Hf5P#@uzw34P1=Jj;y)3dhA#?^DWbS|RUC5@|J6MX zu24&mb+*2gcv2UNiG+H=%}?nlf;YAK<65;`87>{wUSZ5HGTQoA`tnI7NibnkSg^2BX;afy| zhtNu1(cBeBf4m{rHt&Lky{c-k{z|6}24k5`Ak(NRAT_wO2~T69Bd78Rxw{WkwUZR)uqP1l)B>l&C$<=Jii zPw*-EAO1gJ3(uCcG{jLN0Mvdd2!8ZIw(buMl{v@Of;ZzT@(s`DJxbRNn1vz|k@QSo z5N78527N*i4X>xUKa=XwfF5_TiBF9C!XehUyM8V&^|-5&+r%*qNmW3-dxsuwtyS89 zE0c_%@ot;{^9;|^JF+p45!uJ*(T}tF*%wBfC4>G@c-qE5O=8r+;C4OkI5gf>KQ5p? zBLElU{%Rk74B3)mrA2g=pECK8698)E_RN>B;m&YwX6%i!&Ca?t6b+Y_MM^8FRSmiq zl#kDaZHwt$P(F>7YF8T|^fO9_6~0~Rh#on}WJ*pTRJ=*wa&wJh79fk0f0{nza0;t6 z$_EMu+Wfe*2I<2i{36_pEJKWoytb8Fq={H{qrokARwHLNfy#FqT%pd4;0#PIiGEoh zFDLnor1>EVDr?(@B1UY%jjOo8Pr6g)15+!C;cA_5W_q|;J9SIJSU~M2{!nN`u27ZN z=LuC2q7v$K1P5sN!9KtTGJ+{=4tf$C`U72wlR2jnlRs~K`^of33pqhASUL_ztjgu(&&C=tl+1@8&!_b-mww)sQm41#W_u(=((X|uKAbX z4_~crTr-Zy-Z}N&8ufQ#FA|}5BIv0fB^DHAybEo}YxhJ-I?>)%t3v(2E#>>ysNYdu zLbg-{jEZawoGYfPGvr&u*guk2l5eP2{d7VWV1}rU+#|q-VUZ#FY+lA}_M!f7az+e4 z^@o4Pid-l5yz(G%V-`#u=}pDXrUSMf*s|tFL+bpAd_k+Tg#zc0aqckz9C6C3g=c?U z;D`M$7}2O2gm_rj<9|l#(Spdep`%5fJDMpQ-Jcb%y6fgO9hYF( z`Q5^AF28&DE#UV+lK=9&7_di*oSqjeyP_Ys`tIQ3c;e!iz6b}7h5l&|{z=Gi#Q#`8 z?PmoURcmCD?k@_p7KLuRi!;%hU^6j*Ugan>4j&^a2!Rf$;cy?;Ce5LlB&b>%okgrD zZ|G?5ymNS$OLJ4_Y>AE4K47gpMButr7U@~%9gY{q3*VOWwLTEOzq;(K`#F>k_Pn@J zP~%+P)X7v|<@BZCg#P9!Ssm7oCycU(Vi}wlmqs~Xi&cnN!9LGa>^a-5@wq8|d`N~w z1_)BYGsPp$ztAoQMh}w=OsgIkJx)Ew$G)0rq{47^A z+RL#mJdGg7uEN;RCjTGY`Q-PXr(0zOBwFRm|a z8yYKIpZQzQ(tkNhy)>mXTlVU%pdPIZAVl8N;Zyjp_NyX0@LU zZ3_q26-F~(e|KisQ8L_^T%bG5`?m134#$b1v2f$7g{_YDk?&nNV9hO#?a}qUIJr6A zHHxp0xLb6bZnZ_8zwh=3KX(*gK?OIAGGfs-cj5Z*tPQ$f;C-E=bw%v%(#5}|YtiU7 z4+yOs!^i8xRc`5=gO&5@is%Kd7sk=KSoEzvj%~CY=$T);Xz*c&e;?RnI5QnP3fJ>N zG_&aWqIC`=DIL+a-gr;~3OuaOtp3XEFFE|%sirL&>+d*WHZSwZ*o*reMB>%35e8bY zXL&FGlf!>VdX;HJldz{`mt{EosweCf|9Etl15IiV*c*?(^O3{9vnT9-{NZmGIQ$!X zw3~r?_)opAZguR6JeRru!zZGxy&ZoB+h*%m_WR=@hyMUIv`XubGs2Cpg5TE6|H=M} z-{IezR!O*Oos6u*zYCm4qivavgL-mC9q_ro@BH~cu@zbeq*<>XnZ^T9W=Q$y238w+ZTj=QZK+&^_w!pF8{;Opv_+xv6md zifGx#uRrFf+Lr?P#J2ax3l4jLym9>R8GGHt6v(-+zVW(@j&7xZ)U9k=_TxN9)vgrC zV;4XAu?%?+kSzuO+$ktdZ{>=%(c5?K&deON$|+MS9k8Qnqho92rN961y?;cbPRAz5 z0|;W$^>rLHPB86`6&_s?>s3HDetJdUw!`Z9Ex zqaV4iOHW%9c3%s2>kTu$A+2MQQ#zVu!M=Bk`yT0W57>>w{sE1Vhxh(t_=%o1?3mTu zVlFz}`a}(rmOcI*YZj)}AZub5HVUnM=+ExHke1BsQv1(AW#rjAmQ6X50)Cw4w`M*% zz%`L+8@cEAZ@+tqU>jJQbQR%gZkf?LX{!)xp0{N=KJD9PzZw!j#@hR?{PddFAkDI1 z`xvc`KONZ)R@;uSh_^U4Mnd0v=g#(M)Z^G>pXBO$u<%nyaHFFwy0NdL!s&?GYelo( zFMY;U4cNZ1FQaMbP>O_K*`aE%AGFjn3mqgb86Ygoc z(jRncIU)5VHf^^(_`nqI*|U#n|D8m`P5x7CkPuH|5BQ()Z&De|YvO#87SBUMxo)aC z+0dV`5!(K@Td0YBYV!chG8(cYXIE<9J%g%4dX!-YY)#Hw;tnY@WQt8X`9uGt^q zpWO%ujH6b>S@qEfEh@qS=`UO%i4`mEPqWAntfdGMV(c!=Rn^}VM&J9&tTjL8fEKIB za}WGQkK{cbcH;H1l}${Krtd$Pmcb{s@jtzw`ur-9a-XxWZA1^jsyl19*kaU^iS6l zk1!E>iHXpmg3!T&(DCCmLM>iA#fTHQ;f>xYtkxJKFm9W4YS^a>Li*3jQ^2ml?@|5H zd_yH)F)NYw->uQ`v#aUCoq{~+1+mKoRp~uhZuVr6*^}F)C$~yZR#>&&nHYk|#JrdW zq(|XSfn!sjeS^`Rn9C{tw940_uWKBONb!NpF6@7t>emG{3N7g`_*K7hrSOu#zno98 zZhZjg2^XY;73Ne;i-MOZth z3aaUF=CI|7^(qGs91lmFePW5aO*Q^Na^3SY0}af5lq-67at1JGeu^BS0Dd$7G@9fe`C_3mbZcq)}Tlnp&4DVilutQ zR?vl$1Q4hhD$Nfn`2h89d~c#@`j_^RA2@YhgBA!K5)nfE;JRV5qEB*SQkiJEndRrE zk+4hMIDXa&F&oNNeHNq(0v1pMXD6uFoZ0^k{o3PCqhFQGSUGB{X<0pIl;C$Q2Ws0& z^h?3qNU<{jO4RQz6&le!gyDe8cy)E+andj0`WgF$I^#7fluIJ5&%_2hBa|fxO}M|uZb4=8COrsN}w3C7ZJG8 z5t*Hb0Q|KwdT2Sz&m5*i-5Ob+YxQZ?#eN5fE;sl<$kEuSugbGv{{tfj5^vc(ew+rOi zNyzq??SKh+P#Wa^K-MzyfVyv)v^GKjfceGR{DNp z8rk{P${yWvgJ1PG80D=oR_SXo3!dGt4~()eYxE zDjB&xnInv$v_d=)a*iZw4#Z9SB<_k8tFB0-A7IQB1PM$XpDsN*T>_7}nhxg3qI~lr zN><&aUgMY7;6U>h599p|V*wI`=r=VQHbOs&B}aW`%r=3xF*5ym(_U%XY)RD&{}$M) zGqnoB%}7i%{LSejF;kGS6OIPRKyt=xOHD}WV@%*C7>i^>&e9DTHuAmp49Nihm~!gT z-lE3DS$wI$de_N1NngWyzKTNz>uvXnMP3=h+A#j#D}N)iC!oGwoLX7)>z-Lf#?bAn z(F9{$6St|K}9wC*D}%JmLZZ zi`C5WO#m^cIxNlN&1~MVx#33~p zI1uUqvNfLptQyq}5UQ6Z*?EA-@sM$dRw(r|sS|~fOqT_^ex=^m&-RJv`|J7<94x;^ z<6c6Y)yc+W(wB!AU}Iq}{xM%MNemy{JL9;lQ#9>|lG6T@Hm^g8&8tC!cPYXhb|XoQ zFFYnHmflEs1MwZg)B1B{j_x!zN=QG%m<05b2Rf!7kBO+Bd;{;Ai1w#05VwY^Y?dfY z4NgH!zMKGF2-R`CS0G_-HI~YWK&(CjpOLEUS^MATqT6<su^v%EkT{XZ19xp_PFzb+DVyh>H@QUcDRx8Lu6&W(DaNj7`;g}M@NL=Ud1)Qq zY+at04jSi#j>Q|?VeKd4z1jDt2G8snm~)wcZ^k$IX2aj7&F{9~9QOC;>%pFvHnO_| zA%CL@{^oGiG0*oAH~Kr3Xf;PZu@}1rR1;jmN$4b!GZiFb)uv8Y z8b2Thl)_Rmsj(oO>oykQhw8KkTm!gHe2y_q`ec;RC%s&1fJ#)10arNJoLN_K}rNiRe z6PA*MYE9Wpt}Y&!TCC>$@w_zMeSGVJ7CVXrJAjXyI#SlBCOCB-;Q z;bSj!#qTx7U)B7-EQ7v0?d01CI{$yP+vaKo{W%h5!WP+_52vF zd2hm2Zo|fk3_D`%SAq^oY0h=r8E|wGolSNOGFfpyC65M+5 z>)b`Abxe*-+cQ}vZKp)xmszz9&4^^VQ11@lYZM_oVEfsN-ax0M+^ZiGDnRF`I}lL6 zl?MV^ENj!MX!r?tbJ9Z33*}4VKYcy1k^-(Hf0ad5>ilxRb?)g`l%2ir->)d}HN`l$ z#!AN#yiN|w|0ZP1PcRGQ7;%am9ISv=?T4M3VR}5$&X-JqDaN3wSUGU`$!W`+&Xv6| z5!-mqH70u}fmdtL<{n~2a{$%hKar@3 zIk`Y;C2&lwH@+~}N~y;XFSVt$+_>`RiyO%oGV9qaDdIp(EDU@fjocU0}rUWz^|Dv1~|6OD+5_e9b zEOiE#*VY%Qi>^%Z+zWW#i~q4V;SZTeyk?jMjsspb72!gpG>_{%RVji7xKIh8FXkz$ zOWms~gksdxuAWZ9Ojo=>HOpk>t>oe$JI7q&pYQ~*xVw~*2@$({9aoO@LpT1*>YJ=8 zS+8uZN7=@%{b1DHj{lYTmhbk4vpa2k%Wv&F5#Qek-kTQVe{h}zt!yiHWB!l-uai6d z>0D>~EMoQbF(av5#V5S~e;?oS*RDi-%eyboSl06af7acJfD54|L|YidX_;9iLdHS~ zHLyU|PBJ_t^dlMH@^UlkWG0e2VM(sy5GvnVK`Qyw$ET+YZAlzk{gounO8W}QVrKWR z%t{{7#T#as=1l6V2T!DhwhWmsi{N?yl?rXya1I^O@fe;Jd10y-vTUSpKkEKC5$&?j zgjZ)(R`xqE&=+_A(XNIwh>$2krJz@d?<0KI*weV#tDk z1vyQ;OIZ{dxIr~~33-8Ifid0rjD3|~uV+uocoFf`;$VV|!!3c~Jk1XP(uj%A6wwOO z6A%$rEFd|f)b9pcByZ7I(%%uzA62d9B+Jr39M;y+NSP^N+Oz*|{-oEHY+$mg+~nss>W1iOX!?^<+3HH!>b%vI z4yeO}63rj38!|;2G9^zpaFR4|QVtCwidtT^+LSEYM>oir;cD-t@n@W`DI&OQj>@D5 zvxF3ZQX=`m_&>wv3VuoES2fWlH|b!LNC5N+-W;p$!6sk-gmsQcVAdgKaBTqlP%*O= zwP=PzoRhlRUs7kWei-W>!6q&G$Kk8i@R8+N2Q$4u^i#xIg9Eq+V8F2=$(^uL zgZe(G?y`hD7<7^h znmB%y=OhM8WKz@n%5?tAJweR7bz%Powdrz^WMY)P7I{Zn9**ZP*K7&E zBsxynH6UWM(V_C6>k^6I7FF^krC&ZgxAq`3rT9uoDf z0SPgyb}+hn_AZy;Pk%MWN|}cD4a!$-^u3Q1uT(;$qmlTPSu(?T-}nCP;0UR01Ho_N z!F6U1#dvT-Jh)ahT`4VRikVDfMzX=c({Knf%!=L+Q2#(uEKruEL*Xk#Ai}e5l&Phq zJSM+dmX0scbg)Eri^?cG>s7q#)y2n=h~COEi~i*7jBaB3XY=`vZ<>U(B0BwFmldGYuZ)nq}rBZk{8|H)Tj9+k-C^d_J-Jzvf>T@X7xQ z|9TtVLS}sSt!F3rSA9NMvD^uf;CS#b=;a_YGmi;t?hc;j`vv9Qb_fG??f7Bl4#B|V z^g@u?(rnncaA}TF?hcm@6!+cI+(cv)f{ z>Nc4X^l|l-!0$l6i=Vx6H}4j$DSPdeKEy#SqT^eNIJXXeyoIwyl{D*fe0vEK3t>>n!nKb@pjkeglBcBcZRVLO-;Y2 z`5ak@4uk*>p?>^9Ea*0+3KGZBi>x(PthrDLPw9BxZfsvg+M!C5=gc)0dWpws?C{*% z%404`nU@yL?nC2KlqHLy&6m_7qo|%N$VcAk#=b%LHYAYP3$ztG$-QPowYb4$lfi?7 zp66;WvLX|oo5XqW(lyCzjsKD_#y?1!Y%HHG+1C|4gDC>RbC{Eol6~V!*JAxB4WPF~{lK+z^1}h>XvMR5>)I!UYIQMSxW( z6|wB0RItd5&mXQ$P^w|-(Y_X?%F~o;IQebRVd!oD{rLaCUiQEO~wwL-)7^2US!(DYrJp7*#{@}l2+C%u1hUL zfgnNFIf>%}u^_tF>1ZXi%Nn6ws3VX_U5#7e%L1b2BJe}y&-RhEV(L)~4LwdzY zhh7~SljzkzwYiV(Rb)m%xRkXqJk-X;A!4VzC;>aKhLKq&DEq8|(=YshOjH+$pcrwk z4uVkKD`SY6*~gK{Yoxorauak#M<{Wc4&|3ow z)$VTUSgzGTPqSE*^yK)ikT8v7%nyp>N4=H$;H#(jU`$(i8Ne&ePbSC@=d|*Gc|TQt z)SW31GRJz>8HklnH;d0Se{PhYdfbR^GVkl;M-`=@e87EoD3QCHgK%4u7;3+5a`WhaF?_9-S(P7_tmz3$nA6q?X05v&_Rk-9{y*VT? zs&mb1nH<~dIeNS0H8vUMPqzL6MAKMx?6anTI*^~?9NxM zOE}bQn;N*6kv~WNoFRYu$sZSgEPAgsiAZ-b{*ZM?BUpD3V-_BQTNYl0NluoHwie!` zVQO+Olblp&a#Ar|qztFzrVDcZpSom_=~xHcZ(S zaw`mvUj9ka@JRAMb_&w4I{NoEM*;Ogu?(-)nh*jl5gFYKf%ZONwDqYcBoW8+C7Ye+ zj*VPmh3Z-PhP=iS^~fMS`l!rKR;7qG21ny9mO^ImDe?`HA#agbwaynh45^WPr2W3rlq zr7<)I@`clzWZiv(=_<4esr;tDXfmQL0USm_SoZNEXRK6DZ(m`q*~{!giWpk(&qiS!Uha1cDx-tP0de z0Vad=>`dudML@d7U-QxxUl@p0=qas!FCRE$c4|c2Ke#6%;)NC})EW)@3e27@*tgtD zY@LcLG;9QX`V!bz#460KY>xh*fYPSP?xcaqnMOdFNv2(SrC!zZie&|kkrnu5zT%Tu z#c;Yx&>(1ifwm~G7-&<&>dScKQUmp`Q)TmOZv3rk`JYqsLiS_q9;%?o-yM#R-{{41 z2+15>oHrkVH1XnHHXbeQwfr0&k<+r6(};U{pQRrnW+jaFy!SBHNf+<|k0le!DuN)G zfxS*U_P1YQu6D@Bm_HMZ;R5axHtJR9nv3%!8+8+Ytx4F8Wo|3Ojp#FK)j8HzI-uBT z>pfa%)vJEXRieiCa&(QNph@3V68$Oo_x*V^3AZ*4Zpeh20Gog(1k;!p_@cE@orJe= zOv-w{@D%V62WI)ooefuuOpp!LsN8E5Z4XbH-c~V_W6e}7Izs#1s>w#j%bnXPF*+;w zE-#r9GI%gsWY(IA&0CtJHc2lqr@s+l`08_50G0^uBEu7@9mp92`;84@3E$=pMV;C% z9Exj4K(`ai;8X3-kKTyHEu?G>!H}{y^bcJt_coNz7=CD9vojMFVwa8!!XC? zh%AZ-DF13u}Ls%gvpA2A)b{hpzqRo`yUmUVTPN`b*P*^I+-S6Z>n(X0 z?ey{}{XR$Ee=Dj#nV4fNa1PyQI5#=oGRCZqWUn^kkrKR%XnpOOqPXczQ03mEr@Jsl zv$g-jX!ErNziC`W-JL@W~CdqfzgZf(SAMbjm)?^@=Lholbq>vb@- zX_O-#BgZ&W9T1j#v&b!NfzUb^%-W%Vnlu)}WX|`PDUu^}k-Hs2=rtC*L$TqJF|QCW z$J6pZ^uC%w9jtec>ux*||Gn&0hBZ^jqDp9cf_I8h(;9gz{D{E`+bR&+Dq1cN``KVP z5@Rd)@4=AN^}dkp-_EaqIiZB_l7?F z{0ob_6UFTf7r{O1c2vqN7$M^JGa@O#A7Dj6JD8BhIbpG3a}z>Mi{quu)}awbta#@* zB6d7RiptIQ)IO3}CbFJ#&;#^bPl15U^pn7zYJF*W_(2+gan!P#&;(Yb$74^$$4}+S z*+x8e(s*PT+kD&RH1yKCCnupMyHRqpg?hdZPx0>&)9u_Q5)a}=?m`uXi@jEK7U}p6 z!ok0b>g=4*GVGfsiqdzYD1FULhIX5!@>+ayI;}nbK{~By{9i($v~3p#ZM%q(=gT3` zq?u7m+cfxj1Ysw_bFKVsJB>{N)msdjs`jdV>|T*>AS>a>)R?Kw_vHTu!D{siyO=E4{{Nk z(%4`ua95io9_OMWeRR+(_i!ijId;)WIPP*vTPbv-s;ixB<(=x!yn{LC)BlgMcY%+p zx)%RuGD9*ZBQrq6pi!fu(gqa`%41LoVGl1~(CPjgFFkhCFy?N!~>5IyzM(3|DPFm0$#OJ4Do3fOJU^6J<_ z>J55C?X>eyvi^Z=r5ax4gBplb3$z4Q2aht)l^RxSa3uLsK>dL-0;n=^U}aR*y0t!9 zyU-rh+5BxG&Y(RiyTUJYdz~~!D1WI8=R2#%AM)@Nh%mov4~zo{739TxR}9$E6YrfA z%!yo3d*Iy-j@tj_onAz-SR>e9J@&!zgeF8Ny3rXP7TtH!dc(aM`qA-3^cpYW3>}dn zYAK-tg{rW^n8!-F(qayYG4_0C@D%~Q%ExPiFm9zgRpAl39MnmxN-<=8mTAz@$cX3+ z3lHjsi^uRbE%Mc@HoO^VPaGc95BW@TnaHlWU#?5D)e-${U;GS0!J@8B7X2^%ct1sV zszY2;=SH^-;e=I4y=p&9gL2yUFKU!Q{f|7X&y6)nC~h;77c%ObjmUj!*hC%03g#v; zPOnj8B5FkS$yj;J02*V<-Nu}C*kT6>)4E4}M1+;bRZAU~nFe0dX}+dXV4%iafShU7 z6!JsOvIOB5Oe&Ogi8^W0uKuJ+?}Rf0(@30Z%z1?K{2gP?gXD?ICNWt{;R3dOX7tXv z)Odn@U>1d&TGx!0;dy-Px@Bj?c0$3c+dn*>sI;`k_((0G@fk)@*etru2yU8c6y5ez z802S&e@f(x+OhwDX?XUJdXPMOTHX<%jY*S;UUvBG;HHAt*9%_VyFRNc>pcVD&pV&t z^u~15bK z@s*IY1`iPW1sp2n&>czCl$mqQq6HETzs-qVLv*LZm^s%dTELOWft)3FIg7>4CHSnh zIMZUmXMIf{GLTR#HjY_Uzdyj#Mn$kk#;oAuX46!j8o>>*;G?0$3sM9;))9Qv8R`f= z>0Cl2CZ|*7iBFi|40ECx%;hu)=82nP(@hk|yE3E_hgdlou^2g;d9Xt^A~?M{I0AzH z{8)La0A+Y=nkA+|>hKZ<7ElVYm{g>`diXdYm`6Aw)zNzB`g6_TfyRlB@JMZ21On_q ze$FHTsD1BYrqDmT%?t*QG_(Gd*vt^Ju~^e0stc*R_S5S`TEvwoS_ELU$xyG5%69do z2O1}(R$s0jwW?n`P`wRCO(AEJep+2cZq)dhBzIM}K0;qiX`Df7VFiKAWy5_PV8lvu z)Xn_uM?$$NqHBHXfRD;ya2p$zIwI2>8>TxV*G3!ea7WO_P7M_2EFTwbm?4HHWg!$w z$WGeA=O&g)a?=a(R)ohnQ!wqym?c;#4n;mL(9R3(e2)CtIrY?lX1cw)G@=C@Oq?Jm_Avw3yFW3)UcUod_v6%n2 zZ1qp9K17Mey*fQ{#yI*aCwIzOEtl4Ljqm_2ir`Fhy`XbR5*J(L7EkOQYX1G~M~$LE z782)z)ML+yh{w0NO|v22+9?c$Z}aa9cKS94Pkw8+-0JH@^7>m_G|%zyM)~|P5ei+n z({#V>+HHEj9~=LD$+}cZo>q}JO{(sL0r?{c3(tk&2*FO9G{a&*{%R7C_HbaWd`^IY z8Qy*mg>Yfjb53g=Cl^Y)a-Gx1hCCc?pCT@PZ@^$c2;3gi-q-;bar38=C}shwzQEF( z!mm|b`Ti*t*l^PDA-~Z)*f8)j3+IMd3P42Q9(`G)YVal+9cZMW9UgEc6da%g2lNQ_ zCd3J-pcho|d4-s`c%nNJNzTQLN-c&dznUw6JJ}(W{$O$Gn-}Pn1*#rk9VSH+gIR~4 z+J$swHkc|~_M9?8weM`U9_Pr>Vwx5htME5d*HYBfSmu@q<9~LBhH>ty@&P1;yP*4gHlfimO4gEl+v9|9)6{iSvVs$ zbBdJ|BWCBq(3ldL;YVy&U7Ynl)K;b@^Ai=_5$$#R*2%r~^$;lVbB+f#Y5u3twVCLd*reM|cn|U#gT7`%S7e*WM(!v2~sRQZ~CQwQw?j@#U ztZAZji$g~(6ubIJpL9z5AaZn>5ycta{T{fS)2#u5Gx+<^J54ErTL25b%4{GzRV0s0Jh>O zka4l59I7TOc@q^!>tB*nbmk&jz~~K6&5VLp%}C%q+4NJU|EW7PIi)l?b<^vRQ`Ot_ zG(odGE$^%>EDX}3sM=+?)ubnBRoO84LhLk+k+G;}E@fji&E=X&HkxK|Vci-{A+BRh zLShL01diHoydZa&6sTC!0=cS7v+C*8x3|#|jN7TZ7lOW1lLd=-Hb9rvz6ohn2?+*v z+n=6p{OCq%Q4hUAAG*}dFYw2r#qNs*8;wX~XKv1Dnstj2BQlKe$fx8I z)OI>~shdI8UFs9#Ux}wyrvOINnbWayl%W9_dDj^fv6uywW`RoZ*@E}iV~ZTzvp#E2 z);6pXIAzp7N79!)v8Fs3rE1iaHw2j6)~2%y28I-Z!0aP>ajeO~OGckUY*q-d`5ZGt z?^ZwGKe{IgSZP#0(iwczqBI{jf~2F_$PDfAt=l4@IA?*Fk#URYUu*h)uvsiFr2ve3=Q#Kuof5SFdndXUKXJ%?! z>>LStq7yns#`a%odllPQTZ{;^cyqmGAHoM^v!jeNOE*e-y|a>SBqDobO@10-Z!CuN z7$Qs95rz=F5fbihsM#v0AL}>}jQV5?uoz6r>8cKhZTepnYf&)%BS-%9Qxl>8(?-*qGBNlFl}b?k+LwH%byuo%eZ|hHE;B zIDI$nWSDl^-4B@uc@s&qfqf?33KaV5(}@I~VtaHzgfVSojJ{Deonf(aelhDznIFRc1-3+9q{i9hu_kYFLcV>eOvrx|T+}mirQs=0s#&NNw-bwY*3zWX$D!>3)`7 zB8b(B;X)L$@HibM{vn=MSxaGH&OiMd6SqU<5Gup|{M!@@1bf2gMoafOW3d?^l-k4K zf?5aYPm2vy-FBI}ef_cmDT6Pd`gkY&fIfXWD@Eq3@|yb+-8s~#517p8szprfJ>28J zo!@1r(i1BsE4`jI>0jvN4OSr zs`)O99jUcft!xkk+h<;(TOC5~agsCJZaQxBB$>xhN#ErO?D925nO+%&`5iZw=PR*0 zm^8y38A7tic-Ew$5w~$|+=Zr#$DYUq+JVDuz8xo1llhKDgqh|}%d9ed1d|27eD3iz ziBLfo&NSaPLY{8P|6*c)WPOvxH`BBe5l%yx;(OvXk}cI~q)D1nvK+_H(p_3+b;-Dv zzKiWXzc5jD2SaX#QRt>yZo^L>@jxeFfW#H(Yq`POGS%CRYk#n>8NRX$gJ}|9{8c*P z3fuuV@ivzhf7-YPi}|<7qU385&8Imua4fP6#k#h!K12I?zERmxj9%u~I{<2#$9!AP zWM5OGl*TiP$c(3H*m|8LHxMB6Ok8)CmMM{NlZf|jwaKe#)Kl`giFQ7TI3zAn<_v6N z2pO2h-+}&m)v_@7saOP(r-jszNt%)u?@=W=% zkS~#F1lmc~Mif`pbMnOJkjW;YsrodFZ_;J$Y}W?P79Jfm!L)}66y$RdOQ${=|8YX7 zN$S)z8b@FzN$#I>mRqDmQgP94o}`V_v>pMONII&1^9T#ocK5rnAkpc{Ige0cPO`_w zW+KE|?oq#5W{u#^Y-jy>=JmNM@0EXv$nP}u&Ih@84Ms9`eV9teNz?#`k}a1+n@TMA zBkHNFK%WxJlqvK_uXRLD7n`d(CwXN-C28g%QTA7<+i*UT0oS8k=#6%Ih`iu6eZ~ZU zHq3O!J<@H_t7v$@+lmtVd+m(T9$~-0DplU3?d5TCC%he56NV*bi}`)5%1fS=95Lt0 z;T8@u(i^=a&l$P6&aLV{2O46Fz(blGDiTUtKA9dLqRWzaR_w_ZLLhk6_izD{Kzv7; zM49;}`~L5OrDo=;AukK4d`)t;vv{Hc!(4&k-rw3VeE82Ah8f!UA&!@T$DErTSm+OX zE7VUl)ZE5GzdZ&~>d81bcp$GL(|KIkKNfAVyzU#|Bg+iYCAI=h72J#6!%V?bZ>X)q z#B;0TuwL=qSIfg$fQKHvM~}E}*+Y03X~RnhzO$q|z$yq&@fKOW?HH1PPDH=8-+@kQ zw!0>uRF2VRB$LRW5UMu5_dH8F2{tgweHEZ{#*Cy;{^<9Pkpy@E8?vFvu!X(x2P(wIZ2Ai8uxN|#2` zC46idXY4cfN2xekpltQ|B^Z*|Jn9=ZjSY+ZuCy=E8wnk0b4F&8pE@?B9WMo1H%nA! ziJ~(O^9tHCoYa3_O8q0KKVR2>X@C7haqeL)`GytZb}W$@$tF^vB*Uu?mwBqZRO4Uq zxWPEKYEr~sUym9SgBXCJ`9q1sSeyVp5~9VkD-rXqiRE@_`n6Ys8?cJt(jsaf2HOFgMcGN%j8KkI)6qRw_e#ADgnJzdmcOM}c^UYGE{^zDn0L zftsksswC;iFn9s!{b2eHVKl$$* z{UkLTdaq6$>sz-5zKLMT`8#we%P&Qe$_}ire!mpAc>>00N+v$<(@r!cd`$>~*&bcdls6XfKfP=|os~)i5 zUa?VUkAud4@w}%g+nHyxyTU@smVHLLaG(e?CqQ7ZGoZ zyMkp7ZQJwr$FWL&KzTErJ}j#c0FwVjf)@TC09;v;3cR!M(TQB80k`}z4YXyK0I-!8 z2(X&|sev^pERNly`B-Rw{=X?**IlANLZsXx2M$D9^|eBzrTj}=VNoi{RnL0IKGTDF z;3xk8Vsa#dG|nUj*0svN91IR|+u)YC4*D1n!rHcR)a2@$$mHNl5CGXR#Pt5j<&hPl z2d6RYh+Lh5A%zFSmIgg>u{*yDUQVyFqup%df$c&lq1AK2W6@8MUGJBOxe^1c%5p~m zS9ypzA%+qM)NoKNDc-Jd3Ipfv3j;ygmyq_gPEY}EYhf&-Pj}Q>%v5+l7aQ8^)j%ClDLNi|}lw~~{7WeyJrLa88 zlt;VB#1QlTUKY1iVutmz596T^04?-y#^&`n~F)Z+tuGDNqF_H zZoNbY25YU4sLsD#kLmYe0{B&_cNvTw2J(O9vectS(u%p#i;-X5)Y?24rP}HIgw#ow zbc9WSeBON`(YVHs86DgA`;^BQRkQm^NLhacpWngT!J!@)uZ__E)3E(C0pbvN0;rnq zoea)ikAx4-Q4S!-gyl!qw1S`4V%Sn}XNv>p>mV z^MA0au>lLP26y=Ee=}JS_o7m$5^jo=A<5lg)4P7mh$~vENoyVgk-vUKhocb7VcUpU z+@NQPbmZUJ5MQj}irhpZ_nym!1fP7tz}ION5~J=}+0F1u-{H*uy&RLG$P)wR%iqEL z3XN%x`utBak$tNE?c<5MJazxy?b8@b=n1t?{*_S3i~hz>={QSP^TbIU@=&|d3>y9y(Qx-(7Gdrw)kpX7T z;l^W)%Pwqbb5EV3`&LfhI_TTsP^EfpoAiy$n%Qu!B)yvBH6s4_cWq|?ZTsze^<1KR zHJ)f(mfzB@>&Sy)s7qAnN_wf}E~$jvy;OqKc2C?DeIpTbUtw3`d)0?kj3xL8_DWwa zviovoU7|ey9k|ljKdom=7b8%Mcv9WsZy(`E4npD zgbyMW7XF6?TQ4!XbCtvgOGHFCH&rWW^};%=N|N6Yu`-z3c^_L`jBp9jHQUpu#H{b5Zw_;$@6}A(4q1RZDOM=+d@<~%fOm^@i*zn;ciG?tYR+`C%|^9}bePNj z>;A{72u{{#5L+ZhZjM8bESuATJz)skF*H;ebDzoVP0+oEk*aR5T?e999ik5HQvcPX zQK?6aWAX}iw|75rL*Jm&N3Z`%@-bZcmjUAS>e?s&nT)l*UER8ks!G{_I(azm8BQdp zHWSWC^Q^p1%^v<({{uY?`p=Ooy+4SaP@PUsI@9OUM=eqH2z>)eupVLEKlmtCm;DR$ z$0<9evpA10@d_R-f7I19(t@K+@i^=0c(3PV(_CEG67)0|Pt)?<>EsN?wH(Ah z5c){>&%#Gm`{3@=E#lnnhM6uIN6N;i4jELLSM2Z35xdL*_t~M47&x}#7;*u9ooD4w z5t8Bms&cti<$pRqclMzo!!rdTu!Jf9%|{l+nkxQHp&ttEd@W;4AC-hv?DE^UUi<8-8Pkd*G-{&Zo$8ZR~lf^n?gzR7Z;xA2olV3EA}mqH z{lFx}Xs1stgkICfhuyy*j+UVZ@^-&I1i=Og>tz=QFFuZ18!~amTKr z@y=xIyT3ao{=}E1S+RJB!Eij^oO52rteRPub$}sH=*nkOZiB zs=QT>xkUEhRN|i;PdD0?*(w8TK%7rhX}2g8&=)&}furT{Ugl19c%Nw1bA?sUSEZhdq@Ib%da|X*pUU2H+mHe_Nv44JjSW*s zj6N|uiXfaJq=w_wJO9)>5kS>+zX6Q&!|(n>9umcdhnsn5wV>yB>VW^D=t9YBtF}^w zQ8WWTA2E4Wkw3D=5beGVWo;0R^5F7O#R$@($NWgOCHK&hPPhMZN4F5VFNx|0gBY|} zci+XDAaYXGYw|4mhA;3Tp~rTaomRZ0m6-%eGEW5d_@?#7N}Oz;{p!R|K!^2Re#{h$ zojL?3)NgO)vUz6pe)8;ARH?5F#dt1=@2z(#txmYykt#GEN`to0*u|wSH14HaT4*fC zmdHWt-_i5S-ia@YJ{qgkcF-~_ETrMIbgSM)-E=(++q2pxU`&9uQ8Jm&`XK{ z-iWvhTH_^1-YTnb`7Xo+-uL2kPdX1|3jY@I}o6>$CX(i;RUyv)MFqBs!g zTTP}W^Td1!dShwyXaL!sumWaiifgCu#cAn*p5>%qxgq=3jxnxn(bgPSn~)PJ!UmS0 ztUr3CJCsfZuAoj3A>D=RL;^t!e9VNqmou3<%+xozIMVL&HPy&W&+#^{J}Yre;2 znUx)rPQ){%yj8e)q-2vxIF~QJwKM(JH(cwZA7{9T(&A#IH~qWe(Vh&?|8Iu39CO*` zp;i}SMNVs6x3;?Ae7ll_fnGffx?nd3qap)9tiECe=8N#+PzblNVye9@?h!3Fj&Qat z7{Rddg*oWk{6@>&n>Y@lAG?|}NLY=*-`{*~AG@=5w*4)QS9!2KbNZS~oY5^VvyG}r z^Pbhw(kL&QOVV1_ZaQBsT+vQ6AhcV^3tnShNJUr%jL z^4jaR$YgJ|MMEu2g03^Iqr`Ph{CwYLZzj!1A3t)nedKP=;7+%W(^^T|HP_H|M}{LG z`?XH(>I)=fjU!+4>X3q;0M? z0z8Gv)v~+{*-dy62mQJT^b3bPYa)LRc4?5}h)K+@{8DbH~r)mcMF)Y&sH(W9zXsTZ$09 zS&)P>txwGzIM`KG5|xf{5|yYex&phFUnrHChpH;_KjW3eIzzcdVy+U8T6v|17V|*D z-Zb50Il_nQD8Wm+1xnIG>E0z)8#aOKcc{xp!OK`P;?0+IK=s-A_5Q$7v(q=NL&haN zyB*cE#$9)0M%;m;%Mi5133O@CPPw2N9sdp4jQCs;uc?f94f)%EePGXuudjuoPpt9X zE9kre^0PyHG;Ay4Q!Mkzz6lXH>bAWBl2 zfZQj7xt8>1XJPacXXFSW6s>hP$AgTj)X!UQ{%7F%0FtSa9yqPj^LMdpC@(Uf&le(R z5zPRUL^J*#WjV%*Y=T)}9Ekm3p*O#kV`zCsonKulBS!@w0GHt&q|?zQeh42c7a{3t z4?N0wD0GY#WC-C}1#pf%!@riP{)NpL`_q`E#_6v^&#V1aM zHra=ka;reGfAY@AMOD-vtM_ySJq}j~l~sj&o3~WD+Ssx`uq8@l?E0>Cf>Hh21J6^J zz_-pnmt!Q*vtn|squ?1BW5j$CX0zrU3CAG&|NKzx*(~4MH?QP%O#6qFKZTgtx=eps z7)4J9$sL)WGg^?c+~91U0p{M;;dVO2&^a#WtN_Mp)e-_9v>I-%@v~GX*S;c^i}$<; z&p&=UrR|65XlmPkda}Rm76>k;vl0oUN8PCTSFo%c>Ut8R2XY3eL;6T`^kW6@$4XUm zwJ`Ii1I~H#&`)?PV-fY7Q>J=D4NDx;H3=Oa+pS3vYsxLl-GbMBn^*c7=V+F2{&C;t z+%q}h3igDN9j$x+jvUwfQ=`3}Wrqu=1-38yh+|`)i`8F^O-fh%2mpv47&p)(fqty? zEjg3aL?$T_;T#aRr2{Uc%Eex=z+p=Ria|9jI_L>m#S3um+W(0_W%L!?F45gS+GUYV z|EZ0)VBlzjk2SPwHvw{K;%YgUQ`=^FA69uh6-(~^hNsvKUo@!U+SGJuU96$Xbjn_^t;L;w!IsHg5edvC69i&C3hX$UeVYq8=s-_uhbXe4>15>&N;F*Id$HON z1uUb}CnyS-)7)Ua`oq{7@Nt7C(ErYigL9JR|UN_Toz|7FQpJ0sHMcuOn#;ERX?F0 zu=79~Unkyp+Ix-Q$nJfr~6-f z6&&PkeySNxKCl)LI@XMRRX&%BWvGOcx2yK)s+*hSoIpY zPRxtERzPs8)sz!6*UBYN-^t}qR`Js@q>k6b!NwJ1$5H!d>K(V2}N&&ScHRg01Lsy11G*kIhD6 zh0lIs!~eD(JJb&UE~f}|9@UsO?!2NnO5+ZILTg6}=%5V6$CmnG#DVyp8BJw!v% zt+_N5-6xSNBi9K&;4Is&hS3yg>@tjqkmA%iutB49(Wm4bmRu)iNRMeBY!v8PN!ljA z;Q@eP!XEW;=8=RQIK^7$DF})^7V#9kFH5|lZgQo{pDMy7FIn=!OUR#{`^g5JTlV90 zjsQjE2hG*{)iV$2EL{NL57+hqfI3qA>{s7;M)yBfx>uGxEj_p;fF+&_81|Q&9%e@xGOp3#8ySnq+0y|d> zVe`ikObiPIJ-%uE>?q_BVe4Raux|I}Lle+5_ zj=Xnuc1v@WCx4Y&h4@C(!;r~|<>YB_t635kV{48Okn0IOME$P)+4A2;tl0eDu5gL=fj`nDzJw6qpg=dNja z(>&>W@!dF5$ulFPc$vF;mb|R<*R-gXH|spSTo@l7?ahl!;O)7qukgKi^I3K2HRvuU zhoGy}zQX{kem|EswA9~6;v#{J&6rE5eZkuOoAt8S^=5@sD_5g`#PQJX+brok-C=LR zZlrT{XU_Enx3t%#&DAi&>p;*LE@I({g8r@n&~>@Xkcsf%AJpZNKtUKpv12R=*tIsfFV)K4Ud2t>Nfg{CHbFBT3D$?{hR zI2~CMdPQnL%R>|k@-Vp~YC{h$uym#B@Uuc8lM^+YnDrpyH1SuFj3haFk@)pytE|ga z%YP3{HH=5nC33HLr2Ze)6jFYiEOGA2q7LSirWFE#e zZ*Ap>l&yz4+FuDm?~%?VCdko6;9|#yXP%a%>vD>#&`QpvmG0!LeLvB!L}{q5;+1vS zVU~^hsnanQ0*DWX$=km#I{^j}C<=EBJw~Tug@k;9DwD3wO6gis&}{#uJdu`A7f9Fh z9M$cWnA@C}(&_nglAR{Qk5^q_RVDVEvck$CLHp1X>;u}msav2utZD8?x|LP6I~PsY z^Lk9>{#?&17C>Ux0Nd|Zqx7WY$W0CtB7bwO;MzI%Ea$0Mdvcb~$I3i8%hchQx$YTi z&9z|C{<$8mTk4-{K`LkcP#ahf9TwmL7$Ax!gJG+CALHC#avQ4lrK+A;=(uMcfK4jt z`IZ;fXX?FQF@mz&I2r7m#bUo1eVoFWx3#Tze8JvRTK+9P)AIj}N_B7xOG2+=Yre`c zs5sd8s%|hmr0(e4_}9hU0h2aJgjR+o{GGNW(FZPU=HE1dhlvx?eK%asQvSa!q+XLw z^hOhju#dqJ#!j6hV<7H=H5}Z>z3Rlz=)Nt*)mzkZhZ3w`bQ|`&-?&XAqy#sfT(?M# z)LrdjtY;#)ixn;97~G0?jb8yxVj2SL%+1#ZpIazOQ z?&|JtG<5cTWemGsSOAN))k7)`0-`bWQz0hrtAPoAvgd!OjPmzh_)h|pv9 zqPxtZ@YO%&rjtHl!6Nu4S-$`S;e}se#EPNrixo^@vEr`J90)q#&)o8Y)- zVQbetYS{FFH9`Hd9=cN2!$+-y*8{Ksn6}GYl9M8%BSaDIJv+!lh?i$+A7!A>xaKg- z>W@zt&xeA-H|s#%CAEv_r5)OE$orynhB!-xHe81#OpT6DaGGGrCzpMmn3oiIGJ5(r z8y{3_z<3EV=Er5sFMrIK$p^nA8{4>IzZwg_V6A0K0`%{{Ts!b39}3U9W`*-j`^1O3 z(ekHG=aaO86v`kGc44+98H#=l{~;_4aAIlebUs3X`dn(XV+NR%6ydDwG=N{2sop?9Ax-%Fi9d z(N&ky;5-Xg*{#^+S|~>Wv(qYTA?N-T1pKHyeS`Gbd=&FFOUi~WPFvl1s_;RLts)5s z#_pZ2M=4ebq9i4Z>b&Fg#M%alQ6bQ?v+7-Etnz4kb9=0V0k+Wwm~LH~m5GctkRt1} z#0sza;JRapd4jq|gDd*W$TSR;`9U+LJyJ$+B4vzq2dyo$D z=Fl^izA%X$sEaDflf9)Defo(ko}l2xo-kM)y{r25Ar?WgJ3C&TkMryLc}I`IeqIAY z_l9RzRN)0>Zm&>R+<7cPilg4T>?-vMlA~Kod$XZ0%^vD-ZCAHbhnQSQ9?!%$HMjPd z2#COfB8qoFaV?y0bB5||ZY{;a!GczST3xo0ZZTX$|IN>sxBlockx$Jo94hHIM^q-R zhEPjPP%bK^Mv4lb*^g^%EbucXk&_|%HNOMVWb|twO*JIKGPhHQFno&(0{_{~;fjr| zpB4-hd(~c{rmT8d)#5e$=QY+Yc?QI*=V0`J+{O1Iww%I1gXSeUBSA#A*N$++O2o&+ ztFC*PPfOed@8@UKWy^?+(!Efo*AmeY^>;=hvJYp3QUr<%KeG!BdlB=`IbMOVbV{kKX;>(h@iw4d`>6m5c!RnhQx&H=rM>~cEmb)W=mNx9Zo-@#jrp3`6LM~#n*1PXa znGY z#EW2EUY*9PmAsM|rDMjGeZtUJarh>Z6}Bz&F$%;3j11M%Hr+9nq1^ z2az3S{a!P&4@q8mxiN~+$j-Mwf@DJTvWTc8V+r-kn2iYqe}J4+m;5$mhH?jHNHz&Z z7Uod(n6xXa{`v>4#j;^FEsC{7jq3hQ|JOo#i(@`HTN2@`D$E);TLVYpGs4o- zpU%#89ey6VkwY}HkioS`BS%TjbqJ?=X{5xHpJ6pJLCvrl0Y7Bmihz<7ZxEaPEEn!K zvYDZ1?)O~S(Ij7_nW6^|RYMH*ske3@?nyGh|N0Rt6mw;}4w3c+z4_vew!W$^r{?HM zI*JEGm-LpbNatZYpWnWo$34<5uIh1H?hSOUSiJU_I9K}a-O3a}m8#~JEEtC#>@F_D zaESD^BkFP%GUGqr!03Tf>&-Ij- z542=6yc$S)_&IiCNt_a>_l8FbaoE#yW|Edoti*S%&I0x%$JJb8v zW~^Ct+4ISrPB1iS1YM37o6%~oL4s@bt@|WdgxOBJENslwjT)~Sfgm?pHlA1(6Du%$ z1EH1`lJN|R*wI`wRpsNuOC?6l45Q{oqb6k3%r$Bj3~-4YYe)jM9ESx7+F=ew(`ZzC zIy0nSB$P20%91x0dev@}1{E=^UKfs6lccR#g`FiVdV?@EdzvxXgWeP{kB4NJ&GFE4HAuVa?_{q@D|(OUnlidceesf z`w75MVy17cTral7=R0aR#?nKokW*athvXv>nBCeiKHJscZ)}+Az{!*~@zRsl8aWRg zct`P642(T2cq(&5?*J!V1tMGWiA51S4lHnzx^+^qH+&9k764Ii#OU%K5Tw2{@a-|% zRs3GHU=S`Y3Ri2=o!4AS^0Wr!xj7{~Na!kIyFRbcIV6!E|C3#)3PMM(<+^ky zHkhjC2{szXsqBm2jZ7E4mDXHXhfB}1Z{kF}RRBCZDh>sFi2qt(C^q~;|ox(GvQZJZuh(L|pdYH@* za`+*dTar?B2j|AI>*=cQ-tygnt*lqDe1E;Cx;qyO4|!k~&Na&y4A^+{vU`mEPQT~= z8>#n&o@lG39MHQ~7Us8qpciYVTn|M=nrgF2d%~p(MIo3Bt_e(Isk+JqXZyAMw|A+v zT6=XGLTrRtuk%FUFYDFMnb=ql?_<>w&QKEx>JT5IUZPzQ-Zc!9mAMjihS|B^Sv+@G z zG?+fk8K6&Rft&~E)11Nd>FM9>r%!VR)2A5b{$KPdjU?&QPr%dz^eK&`(x)4j=tjOk zp9&js3_{nOK&a&H>c6Q2Is_v3GqMqt2-Vfz>1<>>4Xj*iMu2Dk`6%z@d~E&sp!3lR zGh?j*OM)WC2p|@8sv}q{zZDM%A`({^Bd~BUZ zjg>Yidxn(7s?RQ{(oqbEM7d6K6oPK&3wtexhLJ9wTVf#~o?HE-g)o|@V{fUS4ATN| z2pvHVoz6uC8@@2!ExCfHIP93{!3uA5wP7L6Suq|Jg%8jaf?gGn?ZQP8_2?Kgn}5)# z?`bJ{3J)h5-i0134HZAiJRN6nR48=%s&$%!%3t@>`K_4Yi7^n+&oUKsy4p!83VmEa(;R7Pzz z`Ir7CVT<=~wAN7;$HJn?u&rIJp4VBNlFN;mmgDR7I^SHDuQ3!@U`D|F8fE;)b)Hc? zx*77iY$A>_&3OE5SJy5EN+JT%GtbbG=pCz!e$(%Wev?GEo4@`!>ht29C89jDi8I}d zE{BzI(6rPwQ;{(~~=w*C@KSDZ)U%RKeG zz8=f1+hf$kWQQJ0$Ald)&v$^3-nqcdXi` z|4vj}^xx^~xBLZsqP?N(3X@ifBdRWEEc)4Wb-OeNsk=n~9jj{e-#k^R|7NQ){)%9F zAE+QXL`=F;K)aF327@+_cFcQP`Th5xmAWkAtV%sX-7O_hXxYseBq#ID6NO3Wa7%va z7C}%+9)lh97%v|lkBya$9rXBZ{dgkd8ua)z9!EQ;;}jIwVb!h0m>YSlSFuf`iP-}I zT+^yzce#m_=r&x+iQsXGS&}1W9JwiG9KtE8O&|g6L;_rETJ?WGF+`%%I&?%jnc754 zo%o)JVEk(0O<3(oXzZk3{qO5}VbQK@4?yOo2o9sS92UBhb)N^UMq@#>2sfdsR72#e-gb@9YtF*&MC1NmFcVmwL85oE) ztpY26V>i%BBJ!lV9hME7DX3l@t39N46DdYyXNZ5h(MHBf8`WH@jz1PF-KxsCij_XA ziuGTQx|Y95y7%s%_KTSY8I@QD=o))RB>+i&h58*FDv?&<0Eh!1xhN5Hj8?5hboF?nI zC4F*6hgk_CYN{zTMmH@$o@WE?bqcaLt@3#~ z+L3Qc$BTzg5sGHo-3T+5cF@M(ARK!Uh%d+r{3niyiop)FvoxP_b?(Y-wzR zUF`Q#tY$j-50kx;_F>ad+=YS^DGw6Z`b-un9- zkrC1QN5pd3%0jjAQ!q=GeRGi#r}yYjBg>)<{L3rY zLnt}~hrAgQWtC{E)PkGwC9DG*;;%zCaS?Nf0AK;V63lm#{`;)DQU1nOOUDcK@`*)_n{STV5sI)q|$T;BGe)GtCO z5-ml!ybq%EAaeAZA$8>b&l6VJ@m5)}>* z034L>TX!!HjE}$^)e!`+KMe*{gm^k-T#-b1ME@a_=T0{*zf&Su&-v5=>la2a` z-uu(7Ct}YUs$D=Y)RjDmZXJs~wJ}bQv)1aH;A;Bbgri7&WMV=rx=w#{qkMCcg(@dw z(b7Os*tagqn?^|lbXJ|y8vkmmj-gf^YiFVR3GU-W6@$m+OU?Ry^WtMoa@X#s_}-8R zzdRwt^e@C%JUi4=828JH`vek~{B}fR3oH*ucF;RWiiw!d)$i$a+-EgmPsax{F_R-M zSmL=>+Ek5*6y}LsX)QJK9K}+26PvKmjf7N&bs3Zh%Tx$VQT**>0f@Ar-N!MRIfBIp;3MA1KP3wfiPus>!dRZKK*&=KgvR|S@OBAIBXc2uf& z4`U}p8FHWyL7t1LZm#4J$X}gb=XS(z)N$m`vO~`gE=2m>_}IX>WNin(^`C0{w$&D) z<{dsA%Gu07P^BBhS=eLbpkByEZkD5_0m0f0k8t4T8Z)$l3Hh=)Y?Bi*5LcgN?kZHa zSmF{WixddW!QRL<0ul3M`1A@iEoyk@=ZT{`Ia)A+C9RB$+ctF`NW^Vk9e0^4a7`t1 z!ke;+=N#s9^C3m3s6eLG8~?q!8;2tKXdEAru3c-(EbCkCl2%m#i8Hw*4H73XfvE6SFRQ7l zsr3%YXl{KNA0G?)jB3$M6I3Ns+bX+YYXAOER_Pa>heM%|6nrfFqc;iJp+og^jquo== z)ixsKS7+EohrzFlSjek>_&)GBrEHxaPe`j};rosJFIHDKUcGJ?8K`T`QQ&rJT{o&H zQ|kKTjbAKMD<^@vE2Y#QGENyNI3ap5q>{GaQ=MYN3lm&XDJB@l5I=Ngj0b+PS&NK? z*+>qW7rL7l<{At0(612-r+MLM(WRAyniozn7T(lZBBC1S649wW4WfxX&?p^v{zD0J z_5j$!p`KZTs^Eb!a(Oe2HUD@jm$3()E8$WtuTK4h`xDL|31#I zI@Um6U)-o4Y~UB|*SSWGTm9n)ex!PG7HCn1m7heFhm%#y&__qF3Z-;VLHo~UUx1c!EAULY6;P+#3j9-UWolAx zYX{xlBa_H>%pjgJM9w_(ewkZ}qlc{$E7tpON-ZC|U)Dvkt6$~Xynn{v0%N#UITa8F z_m7s#OJy$a7a*&PSdOu>T6KIjZ_B2r=b&FDNyX3kyHLw~p5jUvGtDps4u;7>f*{u% zYNXR8jKQ}n2?}eU%c%vkQw#RbQi{Eoa9~t8BDGvn*W6#sGONXtA)S4xeHq-bX`IV< zHiLJqQiMveQkq?gl1S%|83hU2pEAoxi)Wi@I$IVpmFul+X8+`Ji!hu6dgq6Br*ZaR zE&T{csh^xVsLyn}TS;PJu@tde7YV#I?9TKlvd(sIBKC$vUxVlfoKnyd*Gu_+`b1E& z6!oVRwdzv`5MCu~I{0u(llJ@Cl$LgV$@^m|-~TG*J)f^V@F=r3K-P1B2pK}MpG~!U zd1F++q{{fj>@k9^;wN%}kS=%^R$2?k+MVi2Hd^$*WhbJVk^~a1(N%DfdIKBv&xgGd z7bjM>SoPkDn_W?EbMYdx2zl*|X3xFG;RQ#!ho2jyf&ipJMfXI@1bdp z=k#l-`9-NYI$g@OlC-2$tg7QFr4vo%;=3)twXT?jGw`ms5V2Y>;-o9JgRW_O3T)EkDOK8NImM^hpeFpqq6tY zG(8qE_W2pjMPC-Q0;^y~O+zD9W zw)%nkb3vr3Ky6%AjcCn`3ck|S%Z08!O^QYZ)#&GP!4Ox;5=2&Fclz{7dL6jMiA~d1 zOx_|}>!vCX?~GuV5EvKNjZw!Qw8obyMbG}&8X$cLsjfeyNkNkOb{LT^LP40YqK{qf zq`}gyHqckI-ni|uZwux2CUpXqO5nL0ct&5INY|h*AL2K9%K=>d73*qiGR3YFD*?<5 ztQ5Nrb-~_$C2Dud7#7hnViysI;PvnYzRl68R3jgTV$m^jX$D&pOEHMOFAa7#F6nPN zWUU0d1iCRp_JAUoBb<>e(j>l%)^8P)@yJ${vl+AD=*t_Vcd}aKLW5E+0Ok3$vTW45 z4_NS#MRzBO&4tn#Sae0Q-(HrpM%N)1x(>OZjeOtOO{5DKdJw>0E^uo3R0g_3Rx?Ja zBEZJm*SwnEa(v88<2XB=iJH4;oi3z<7af)zXA?>kwm#J-mp* z(a8>9(+;YMzAQ(aBk~R1mnVjvprEWN)=(x9BMVxmO0Y*gIl)&rCJ)Mn3dKzMNTotbGyg*G$R_Q_qcK1Tb{=ZscomsLfqyI4~#WC_xk zR`n62vl+dO^7CY~oGE<>K5INDPxSO$&8P8UW^^eJnp(}$XMMpgqx4zI*|o&997JO0 zz$uH2VTU?+h&jJyD;b7I^OaBumn2qBjS1AYBOF5Zzg7JgQj9?WGwZj;FELA|8o^hj zq@IMM*oA|%CPI##f-&Z^*OGYG?FOC(}hVV~UyE|EKJ@I_D*d_8zC=Jt6SOWgS!fj39Aj% zW$v7ZUGzCfQ9y7VSfsNRQ+ZO>0-c;l1Y~!k%9pPJ}x9oNNCYz@0K6C`% zbPOK5yp(T#1ZSaO3znb2XTwmv!#eLBwM1I2Rde8#98`|iL3oQCicc38hJG1&FHjP1T_0OxX zpm&d%Ptt^J$1BV^Tcfvh2|6|WvEWM~wU#$5_Ad2~$h%5k8bD;MAr>GXSh&}(p6y{s z4?oBUEd3k~##Y39vqNf?+oiQ{JJigBl!$DyFpiuF>FTw2i-1GF|G_ZXJExeqLm-Mp z2d3t?cx9-N#fDRT90y7S6w^m!x@p;Ih##`{IE@}iajJk@AOb^2@qCB+shH%)$`+~1 z8ICN-2a2`$P}E`HW7&%ebCVNAy%itXDM>f*vUvbg+{IV8#U=>blR4hmq(^gO%oa-QLI@}8Qe1Wogm@|DCi2Od z-{BK0?17e@B&&Mh|G6rSQ>3altWHm8k-TGkxUSaTZAGhXwC8)JnY3no|(aw`YFN<5c? zd9v+lEP_W7h#Aa+aN>m4m}W8JHisi7F{B->vXY5LzCxrjgvoyqUimutFx3CyXNCGh zD?w@a9TrE5G|L67BxdT2s{gQxm5i~B7 z2GfnHZhi!8MeSKe!d9n zJ^&vfC=&siWq=&<1|t5*el2CQ?Bs0oAg`9qAz0+ID)rxj$Fd|(CX#|xp7@z&k(FK4 zZ63osYmUx!`o~CECl$rNMCUo3(`Tkln%kf1^xT0|r)iUNBInwvPCMd$(}&M3DW$D6 z&*39xCfI~eJ&`s2g@$94O{pQ2vJ!QZ*fdi(i3J9cI9wz)t@!f9rbRljDZkp~)pS}t zA~Nw%HDDEw$Eio% zHUy7T*<~I!)BY&rf)!&92NYzWtYE? zZ)&g)!q75A(WW^CyX(^CnJY=_h#SS-(VdCFmX$-75v^%$!r>r9%C7jZNmbb^Pg}dj zPfBse3Rj)y=EgN1M_oE$IJy?r5boBpNF?C`CKA~(Z-!Ay%wf-(Q5;FAG55J3m_14) z7+9utoBWlnYj#%h$~>CigMI}9x!pJYC=bZbBBkqODF$=$KaAdjG1NW`_;C2nfo8#A z!d;N8bGnqO?}Jc$2aRa{+r->#`y?%J)K{`of(R06q2To^(hFm(rEQTTs4B>VRHcK$ zWm>(dnLpqV?w8Pl+4dN-!5((iCwy*= zUC=Uv_Y?mR6~sJx8wh4Mc!_2^MZ9aw>}n}?kM?DDHTw!)pIGLZ>wBc*> ze&rA%0mjdgC&QMVwpQGxnYDDY>(>n+tT%qWCiAoAmCis{B-{5QX7I6+w2=A=N@xNw zx#Q;s-iVxSmic2mt=kp&MSM<;`?W zs{}Ezu~$(NL{+|5iMqDF1UFA&PNrk@@7q9q`#e10db9hy^{1tuR_QK@COpeNlmkgi z^l;CbgNK$UAFo5vMCvf1J|a~{k2@ooffCSj^PEJSD4_`*CA3@Sd=}{|7rL!5p`xwL zKkp^*#F~5^B~*A)D@y1iQ^k8$EZm6_`twQPj2Q-O>AVb8JmPN0cuD>50KTkr05*>6r_q;`iXcxH9YQXY@!!lgu{NB>C_PY|7xhIuj zfG-HoFBH-+T#4QBx%orej->%S9p?AC@T`j1Jp72OD%8GH@c9O+koAd0>AxPN8B30r1e^_qM!sUa_% zab;^a26w=nNRtwculs4alYq1AUoY`?2-k%97)u%DXMTFY`|qd6TNWVyZ`&F|YdDSiGpEQaoFh{Vbl1 zLVQf>`wn?u=5-A%Ph3rT5vr#@54Tz4-Q<)^R+brS^uQQd&jhq}`AqO=2aqZytah63 zK9MrCI9qnMev;8V=cN2iZ~WNVJm+6>IYeLfwGi{MHM-B&`iWcSkVJniS-fd!Yo2qW zRb@1Ow5B(*klwuHUu+dR`5ZBO&P z*vg(ko+@t6!PXS(5h&)3A1pok z4qP-Ine|Lz^qT}|`)01ATgxnZ*F-vKev8#S88#$(c`UexaO69&z%=LViMD&@(dwMT z>>3b}S-RH<9x&TDc^JVpvW-D7@CWCdkbKYTUGhSjAH+vsrE7NPx5+ZCBe2v&oJye{NQ*Oa zHDh2nXW;(LQ7rjTnnMs{ej_ADajS`sUWtT$fz3Hf$^wCw(v$hs`6_M~S4$=m!$s&(Fu7>KAJ$@*K9X8&@e$rh zN5Md=TP+osF41vgGx;qT<+JT7Gpnfc*vnR(W>$#wyeeIEz^*FdAwbR&Kf#qADmU01 zYkmn6NVu)7-o`tic1EH?7n9z^id-Di%he&;CdjX|f%6?dmz-ghxpWKT?LeVFGR7>< z4HRZa@^mkpybwb>3$(A@Mem|ZSV~KB(ZQSTS_`jPFq>f+Zm}p%;ZL%!vbdXMpt_;L zoLO<|Jjo4cf0k!+BK0*)d)!5omT=a*5)8VZMt?S!I>vWa(`Tu)#E6&LOtkOO!wLExHFmC&-m1+!A6~kZfs> zb{Otek52&%{~v8{10Gd%E&S(WAOnm{!0@4`r>o@loEup9O8ZRTy5a=0+|n&%)q;eWm+=WmaBkf5bM zo-bCu?mO5oZtT$|i~($Ai;#X$o_A-Yvr&_?I8!sSyb_ZveNnmk z$;O^2@R*?;U|uqx3w>P|OOY#vG3kWWHlO3W6#6FdnZ*IE)Q1H0znEM;)C(_ln=esn z1d&ftpXeF7k9~y??D94->Jn=(@HWUvxC2h9&w+|DH}sy>JcUJlxpMaDDaMR9 zW&~!C3b8n|t$31_CW7x5PL3MIQdjIR>3n&*wm*mi!vMqaoR`^bLIV=K*1gmiZ4nnj zSCA{GJd;&NX4+Jq9$GLt>NCoxG%dkjbCKk)4-6A&D(Cwwx+#*Y?|C$jXho_xwmv2| zlg*5zWIb=i?E7oML0BPFcUH6($|8vk477sGoum_jxg(v>xbKP#3~5w4li9*vv5$CO zd%Uhq7i~bfKxEA|@zCAYvL%YxL|uyqR&(C+5Mb{8jVsPS6Db1TEs5(rvwt&(pPWeK>V+CK#gENoVpZIyGaEY~h| z$y9B(o=X&j9@(p>?XP~yAs^Z_DIH(=)u|lDW^ty(aM?vRb>f_=6EY#D6ySzeH+oMq8{P*VUit7duTnl-ck*F=ANMqm^R`G z=#HFHURwMF;;FY0wR(ju8&l!n)tqmc$p5~to`1l$hK(KVCJ7s!l~y3hgQMu~*KEU02pWDr->nj*46 zDfLk_IGPcJR+PG=nv?_$l}V+8!n2dHq$_r$z6>=J4IFjx->GoGCA)2$36#K- zg7}d}XJO=fo3u`*BI@`LkN}iQxp}tbufRxOG?49xPRmv4dd^7e`n6;)@1ua$34qqTm?0 zbVpNOT5c}6u=K>}4oP>q*UT}`xBSgv&Z8x_BhTRuOvvKTAk*a*QKXNhEER2gwtBoq zU^E?cJB|SrF``ggx~^k&is2!YJBRqi2v9!bmyYHs#k+o(*;ll z+EZ^wnN?!KQ|uA%2?`m5AIE6=Wf(J zZ9G%${_Z}KdwJ}x+6UeRwGn@BxMb?n{*blH0U7Ghevv-bkqHs1uMW;h#@KCsq_$br zo3BIX%F%P;t9m9Z9F+i-Y;LVkvqITx@Dd0mCeR6iAHXs;01ck6TIXJetg!ka!VDmf z3==2Grc5x6xemi^kltuG!p_Lm9EbMmRmd8b4_M;u5JF62vjC9#NA`eK%eML&lObi7 zT z`9cIYAa|mAlOc^yvM@?_jzb=3f2w{dN^vi)B5|ZYfaVfd(JN5lM^6`9;b{pg{8g3` zeW3RIyaWJZ#z+J3yBh|~S>K%lHt+@DV>gi2-@yEY1};iyU@sCWtAQ^JY~V)&82gBrhP^-$}t7ZQfHFUd~cCyjSB3S{z2flYLTKI#W{aj`zq-8eZpvP0KS`#i%SPFhH}J`o{< zT4{fh$7_j{P=i=hI(V(F!U8!BO+89H%YZkO@B|YQkb^A}earxm6PF>7)^(=0%R~CP z``#2dEm50>cuIQQ_rAg%uxJbyP%LtE?&p5e91N-wvNP6Z<%*rZ^c4)X<{!h&7qavp+1q+@du z&w<>mz%=`wU27kXag=@Kv$pUj-K=}HF}h)h89cgaNaL9`gF=U+=6S(4o2KZ!6Gx8E ze)(V6JQwwEp8SN(bM*TD-FXl2V{M+xtQN?Yq>tC?#0E-B!4P0H_WER5UE-?aVU?u5 zA!JWXJoE`10RoVN*H@l+o?OXy_IdJ1*1+>5QafNwbNWwo*||uQG&BA@=?!7x3>Zte zIHb9)!lfAt-BLEc~(rEPF}~6#xiwqjg$A|?D5!g zh4Cb;s&nbAmkdF|WH1aFgOI1sW2!>@)7e7lHkII_P3F$x>dGrUS@2|}Ej zFO;b_>6qCOI*0e^y_6QGeH3m46!oXnP9mQR2;y=*$vx%=5Uhnpu!|fj=10V0$|AI- zOVg>NnXzuqu{GBacMvZ3BcW8=T&d_lPJ0##rJ7aIqV#@T;H%ufzZ z9Nw}%@1Q2nG50r0*oMs|(dwG!mV^z~l5PvyhG0JBROg2>N%7nY12|>9{a`C>h#?vk z?0P$kZxNgJ{)?aadiRwfczcesjTIsVhNeEtWi8Rr?X1`AnRR66U#r)~CLcGhw17=7 z4$ut)@g0sm*cONzTi|&?*9g7_!{a@nS%dcoHmc7H4PHG(m-jUGJP*;Mq1|Hn+UgmeyguQ!= zs&=1HTf3ISYUMm{)a?#q*IIJG*Hp4cR9!zI_AGEqr+p$F*`@J;lsG|&LzHOq?$$@x zdR>q-Ks{DLeXL8t(-dS_hpAeXS%ugkvP<^(qHCw9?c-%X2%*SPfAkvJ4~JB{zV1=` zxN6ef8dI`0CY$}-d^cD-IcfEc7KYgnKR+~*0oimn@Q6cmgy5XptrN?Z+SzPls4Ia$ z6mF?v^F33WRwOBG%{>R$KWj*cJ_*ki1fl^P!ME2bmRNd05@am^g9RZI_k(?bX!V=GYt+YS`WQ zRW^&=O<*pLHctJUUhw_R)tc*ROk&~KYFG#?NcDBgq+R5st3=k2WyP;9Azzfkf z@4l^Xh)@3ku|*++6|^>-uTSl^3`akT2C89!G&>FZ==98Sy8;pba1Jv7#d(lD?uIpX zLlGWQA3kA)4txs3Q2|?Z6qf=m_3)|xVlT_k{(P0S;IDJNATvycH6B}s;B{JubLPyc zayVZy6XyeniJ5Zx2ZmWEHk`KDE83O@3FiRlfun#hd(bpS$vztP;Q+xl1YDK(QeX@_ zzk^vtf<*;|?qu{8W;s%FGz?j7RT&95+5i-fh(Fs`2c0PITfsNYb)3v;6848pY|XUsA@+&hBk12>b_{8#TA{F zCzJB~zhU_#$E&)HfJ-u!dnf5WhUX<)o%FQ3zp)%J$T?n9CgsLRIrMa(J!7dH4oOX8 z&BJs|qMORpUuvD#>T6O_NuNHdAOB(uL)flQ`U1Rc?%Kfw3O9#yss)H^Wqlf$`%D1O~SG)S;6W3}Es1W1g8$h>bl3 z8vF2jBaF@Ai2@LNR4Z4}33$mLtMRsAj8lfT&i7eO#yIm6U?QtUpIQrXCjfnt0hkX; zPc2+SPzuy|-Udu~1qiK8S}7Q}vY#8*9n6vr)@@Cvu)J@uUT=Z>6^x}^`gJ?_Y7fO> zs`rHIc9YW2yG`78`bz2BowQner(h%HK4fL7V6=~wFk13|oMW6}DT2p_HPqw!x=p>J zuMO&;T)l_vXgIOy-G(`wQ0!A=zVz&4X{;H|Y*WYEAQXV0yIBq)v1sY1!!+y|IqK`W z;!|ohR~BC~D@bsF$7^Eiuh+a`;F_14EplKP-um!T9JLX9t1(l-Lm~)&-Kc9=J;)qm zENRg9M_Rq65V>yD-_c-$NbJp0)KpPyRl)5fVTp^+%?gxS*l%Ca|0uj5nMdsb7eQxQ zb&MjcjIAF@(I+;@cuVS06f`Ion;l2}gX$WLNct;4PmtQ;=?)Ip?}qWNQ>=n?0dKuo zfFh}Z-rbgZ1e-1tZU@z}Q&d`4Z!XLX^`@+zWEN(auaMu$(@L?6>o*KNpA>YPuf%V$ zHyEbtesnrfBc3-8>NmquOB#%lhS;6C2AeWp>U;3sIH;E(;j)f+?+vzN6O#5@L%33#D zej*8%HE{Qty$~cu9otU)TfjK}AxrbTeZi6Sk`O7^kIB)L+6IW*$P9?Ylq7lQvYtL5 zPbck_^OUEn?Wf!1>2SZZtymw5wL7^F*8mObz?C0HTfG-&hP`xO^q(%8R_?zrt=+QX zUKi_esXwiD51&x}2qSGP)*N7`_@u5GT7PS1a8Qw_do`Yk>E?M)w>u=KQ1kHm&g}Z$ zA?x(J_mHWtChgQgb@R>V#0UAH+AeLh<~*O(=0R1^2d=fn&Zk5BCW9k-FnRkma$&El zvJ!FUcxh*ZZYMIdetk4E=$wl(iFV%y3a9G2k4;0o1EX-TT+OET$XLIl_Gzo%W9T=O zeOrOieHjZ3BEgE#;R~-VhK1=_h;Um<>0B$4OT2q68Q+%>sAJ%~<_q<= z-Vj{E#D%@gVst9=hcV$xC-rXec+&%U&DGez9+i2R+Uz40_mu4XA?qe$*t6fCUA;1^ z)%{dEH_x@anXYg44QuC&BcCHot(eeT0UGtuzp5XPW2S&9fy-F3SJbY--7o;bt3n&m zw!sCZYRe6_%3dK0OZEt7T0lbD&fNk_ctM1{m<5VIUC9G#+87r(?6G1%`6BYTQNXMO ziX6(lPu;<`uasbt*6kb2DYp*$cJ$l&Hr>A6WZh=kx7Ts@RYuol+B&ENVoPm>5D%ja zMw@QFz(yTf5xzUFNIhaJ+i^um_UQx*S6;!=6*+;F___WN%k!@u>%0HSv99pQW_y98 znG7anpHCe?GJ_8XC%VVG<D_7kPwr^v|J`eNN$MA}19t zUoj^0X;kskKL$;lQV&v#9GqM8NYg|_Gj9~{@YoT5v@!w3hq_ku!-8eUDFMRbOqNW! z`BK7+hrgcOoH836)SLA>IeTgB#miz!&xdc+foTqvsg5FjToDDQlpc#eoA;nhPRVv= z1}@k+%7wYb0qY#z2l#APIUma>+l9Im;-o|evD&5nm@7lrp}uimhIB|hH%_k5zg*+k z@8hKdu-||oLBC@;9%C9mIiA(=@w{e@=VK<%n(jXm9Lesy?zVJuK?XJ;sB<<+)Ylxs zAweY`@~OXh?E$|@d?Rb5jL!mt>3imq5jeP(KqN;|=ZX)2>$PZtPPR+ubO$yCFjK?^h(ua?CCVzH#BG%nMcd^rew>iW)T)Kk^BDQ&}>o?y?~6QumLL}#`?N1z`P%@#`;kB6S@VGs~| zd!+e-4Tz#E6opavuJ~R*Y#B`yFvptuy@a4qS5~$6Bd9IvJ0rz-QHXl21QeoPhzAMa z+ajT4UlE%AB!bPS!_&qJUB6b-^=al{Pmv?=F1~2kyv`Zs$Z`zx95uXqz~qi$7<5$a z!RKDHdrxM=F{|D}`XC;nePqvC`5L*Hp$83oP_p)~P`3UR+sG!IUwwtXM&j2SuzIXwG zdymI(hjXfhVK$G2zQDhb95;9xCEE&7c!$$4!(f%LSM=t9#6e-qf%vkU1v0m)q;nQz z7EnPPGDAxeVB$iF!ZYLLz!a_iiO?OdqRrn&xJ}aem7I7Og}vWR@B$PtsPy-=dJiOt zD*u@&LQT|lVJ)`u;c6q;5wnST0l0;Z#-+6S64_}7M6aLE5iO5?H3k}#1~3HR6RMW# z629!RzMRzmWs3b}fG^G9K4G`8R~#(o!24OK?y)V|H;&XnPlsBQIT}N+CrNDYzznOE z1OD-~`E<0++X2yrnCw83YGYRHZY@RiBHbDzl{03Xl9%j_2KPjRyQ9Hfi|7oQeJNYJ zoH~3eio`Z_V3G{TuQ9~|^{3GvMk|mFia7W{?Rs6TLl?`CVug0GCn*+RiQY16CA4C_ z%zR0k8)0DPIlDR!;-lZbNc1~rF`Vyq&u)z!kjP}yajTet8|tmh<$-i|rkFUXZ_ zzld4ky{B#h+9u-gR_zi?yL`A*D6YI|p`e6&9Bj@BIm{#?CQcRdbD>im9j0yY(lEI5 z_C;QY*$x+j3x1;?0~_u+=Z#!^ro^nyMh9AqW_4eSXW9B`nr>g19-fwLS=^+y=qE>b z=cXn666V6qvNwp4#iY@~@`+fjS8Kk%T)qFNi#czwcjstZ*+xiRBy?v^Lo;GwXW1iq zB_lo7;aMfvBc_)w64Et@yCYQ&utyZU)Vq0;$ z0@&+2ab7~aaO6`XfL(F<|1JX9KQ8-cwf%?H*8d>_m=*bJ!pynx$X_qTB7Y67kT~7! zq|@eIjwWxP#PPZy_Sfip2E_hKu%x=lg+3{qJQ;8{-9y+!oXj!W#q`^;7aG0QyoLk&bGjJ z{5mqTVeWlCi!?4dFMAHVi_c+9Jrad%^CdGb52QAYEtoai^Lp?-TqZR10TMtxaN}uN zb2X$xc)UA2EiEzzXC(JCgkA!CTm((ifEKu@$n(MKw{263{aI&YrWAE!QIl2#vaQNK zyQb%w?3#j~QInV@4@~^y3_X__+Lw7j;vb3M_L2bm*B#`K&ilHP6yZp=ofHerc4S7D zWzA@b4%#empBAXVu)zn9t2|f0j1w`Cn;w-vSdgpJ?BFZH!?gTuQ0lo49+qv0->KL> zARZOFezCwlED4i>r_0pU)L`QQLJLm(w&nDKs2>(;i7V@+@|-iC5|`!Pbtwd^BpJ(S zPM(n(bTp?mCC@7IydUh2O})tXVsXe9WU`{zkkbAI!N*$=j%ZAv=@6DXT@tBk<~5s0 zVEFhI%_RhmQA9G(#R&z)uPCvwmazy%`D8slVKQ(&DZxv4u~D?tC|Yh5tq|*P0(|?D zjiNwX(Rw*cnu>03D%ybiSL5?dMRi=8iZ+VhLv3~^DwxA+5!0i)pbd&cU77tfQ?uAI zAjPj~@}86doP(OEdi&|1ojgT`+j3w;hl|CdV)hYFrbV$V%vKVnwyWB&%B(fPH z39aja$WmR_XE=pVRwog`$rm2J;OL1Z#oJI~9X>8A-1uZQj`!f&>duk;&<3}+t2Frr zL)&Alxt1=~GvNOI3mXa!wzJ0R;O}k48Tx=tOHz+Q*o7UJmzNpdE$Ssi(Up~A7M7CQ zVFtH|t4W);X~&Tr5E%{F&iO@aT;Jv;_zPNNqpDs#-=aw;`6e|yEw#K1t<#rZwrFMs zgpy0XPGEG@hcW~Rp=fXmyi~c`1qzU%7eH6vbo|1=v-`(lc#4R7oBGFTF-CSb{G6t- z^fQCo>2kyIz%2KZB6#n;#st@YQ~IgO7I{_6>8n z>Xwpdsk!6K@ybh&pWok^!(&FjlvSs84}-I+Nh14>*!@`|waQ9rhSK@YP&ti7xYlmH zklXN*A1w+m`3{tg@%+zK@jq%~k<8-xu>YwdDC&WNPt|5Ih{uYU6>uK%~bCkW(aOQ2y|%pFkEC7t^fiqtG}l%DLB2g z(1*z(1~g*7yiASwyfuGjulva~p$5Oo80l(9vFAKG)xs6Dghy4lY_TykJa4ISBO$$|0VdAAcEctte3T%EzJSx=|C!NZ4ZR|nj z_PX%K`QhrhqRU7{oKsQ8&>}QwrXt@<3yu((x-J>Cm`oHvksj7cxMh4HbE35$vPj0Q z#zu#+(Wzb)e*p;4IzkB@Rw;u%iu!M_;f`k_$a;?mXT{uZj#hw9Hg<~1hpkTfZaBiVzp%DUKn$B=P7gb<)4~k`XCsN)_}(Z+4wZEvYf0atwxrX71(y{j!If30gJ0CxQP9>LS!QpBU8u{p7ZBb` z{8S(6FE~yLmULxdKH%*h=T*>n_d9Y|a?^1!1Q8v+tbD>HRb>`?HzgFth%gU$w5XzISq9aeeQ#fra(G`GL>Z_ud-t*7p_! z3hH~O1U&VwA|6rquUN2wYR&dqZGCeebfsW%a#PfwA?yw*@Y)@0}SK zUf+8UJ?*WNR18(Lq_=KWXF1)qfJO`#ovANH+|9{!YefD16~0fK3G+4l1v+B|-6{kfs?BzVR7=OV89a~A~%)%Ok!q}=p! zLGwYr*>D0WUEgE{{Mh8mUl0>b5 zttrG1@f`AEYnomppPk+KKQZ0`&f%<#ZwZuh`19K~_kI92au+?P`@FfUixDKyUc&sw zG8dO=V$%q2QTMV|LNN(4`#EChSqQ1KgQzN6ESB5uys8sc@)9ppfJI0B;hR?M|JT`*rgytpvLlN# z`#wZoh6vaj1yT9b&qNE>Ugr0RUE+P(F7W{^72Em*bW#s8wGgDy7s@PMb(_{$>&;G~ zwnkA{YZ6iY;wio7J#FsBM>tTUL25Y_4I*B1>wN<|u$4yh`JhZriHos*=$y`71*qyi z5OIS~J@Gq4Z2Sl}PSbrGs{7W~xR^U>v#hOgDL1~7VZBtmkw`!QEdof8YhZ-l* z4Z<}f^M?BEJS~f)3F~)Qt9=prLn6xz%%o2JMps)O`{IE;);vsN9yn7tv*~fH2GKd= zXYyOARR0b)PSTGS>Pi7|sZ`!brH!lP2k8M;2o}OCl7U2@kcZJHq>MU+DpaEwcf(2= z@{_ZN?#CLtogzN{m-pPO^VPzFBsE46JoUoKq8+-*u4zj5pN`aMg)UKzn zRlCi^UBg$_Ct>eapL%#FamI*UaLUY8U*i+c`M_=d!L{}A&+Kk!{x4NG2%kj-u@;3e za@%cAr2-KtZ~3emen|}pjZaQ!{QYFR@x(qSH2$^EYW&;SKFEL{qXMgOXKmA`b^rQ- zjX%QD#zr2DH9oX<%cp(%J_BQ_KRNPIcH`6HjekZByQv{z!qU9T;5B`E82mn*kN_Zi+sToIDaE)I zWdH7eTHPH=&jw=pWkw9sAK$FgRDJnVusq5LwVzNuAlZgCZ-b4wx4`VP_h9hee@ymO z2E7hWv1STB*r%3Z82}wFCKOv`>Ne;-QWIg{eT|=D9C<*kiwd`~OMQ)N!ldoak53w& z|41dqa-?!TW(b*Yq#C$x4i@54Qap;J8Pjv0x`ICXNn9eH6qa8EnqZ{RBOe9(LfPXY zF;)}z>)6lwAonM=CApY&@Tg#}culJ~x1>rT?^XK{jTtSQ&wEj?+Sv6*Y9TmM0dh91 ztDOGpu}}S#9jz!)ow-P7B(g zaj{5Ou*LL%V4mvv2Q0gCcf(KlG_=W)4Sf2XMXwePv!0q}11ix?)<7dOdO@mRirL8VTJXzqE;FNY1HSsFMr;92cx2u>Q zt0DtWI#hHUTvUbU!w5V>#E&EH*~RI;+Af}22dB#AjnOD< zw1Ddns3ZICj;17d9Y~lXO;tZq@3Ai+4)iij0Lrhdg0DK|cURj4BtH zc*!ZV?!MF(v!r2B>JcBh`E6>|x2)ZFU*Bo8p}L-Ao4V7LjGz+1F0vg4iM$Jhx`MJ7 zO1Bw+2;N3azvO-q+p9%$JOVLT^_t7T$lp% zBlg3cnZamFeZtdXcon=)Lz2Lzj9>&Czt#z2p@H-aon5N&V@59(3LUP64o^tw3ME#C z%%cXiW0Wy9sVAIuAYV&_j`BsiY0-V>Q^mrnC-wIN!KI!faG2(yMH9Q#5bSi}FaI{h zUXwH7>Mkd_Zc9F}ANvk0bZZ zU5X(mq5ugf=`1%iJ#Ox=AT++rSgL;}<{)d*qtg*qUD+?F2?|&A3pS{fGxtkLL$eng zgFG=btsh>W%!_dl9Qqb;Urzs0Kkz9JadegMHuSf0Y$B^(HVdkf&M%llMwRt(~s z{Zp`L(Z;l@7sDv~=LyIH^NGb&BSIXZ8gq_^8~=@aHs)?DQ&Byubxq7o9fqpjJ^t%4 zAKHUu!2#SnGc_1ch@6UF>|y&0tI(p)m|gam+U)Tp4g=F#Nb}0dSUWni8{w-8+=Cvau@LMSZ6I#}aSNGFw}LnqUX@Eo4eqeDhxfxOieJ+mb@-C8apRzl=^qYLB9j@-Ot*nf2 zK9y-htHxY@g&ReRPQT>Fr}h}Je*GFyvd3EdyAYv4hkD{Zsl z{_cMJ)k!Xx+~ZW$l7lR>9yfzO_sJnPa&_q#W$BoP8p3Fb`H3h3RdDTFcXf zC^tQ{kMM;1AuO>Z>d~@ChnZ`(;pJr>^iLq4@+>TvZBx(l?qa-^okZ@sHs?%pT9em> zpvsZIJUGO^9HY=NloTcIL3I(oii67WLj!V*qQkU}7G%{-!u;K`SV#L9Id*?@Dm2 zEh>@-huP+O2MNv3uDM>TWA1_~6?quOt!G!i!{gCq?k9_ZuBEXT3whDC3{hRyd1Jk! z#z=@2EcAP1q&ZkG&NcQ2&ZtF7DIuuVTwOv@X*`fs**1lno*6s_<@ z{Q-tRTXt9`IXh__q-xJsX8(N2WP#7)QBow3Q#z7h29Jx6%I8xCZyrWsIzr6Pc*`sG zE*K^DX!7(K$33i6+#C2(+owto(Ivs>u#+>BbRCmWLAzFNysJ_*GLjSqyJv z=iG%_gmC?|%kwg~zcKRP_{qgl?ZWI|e#XMU|4^#N0R+q$7uodgvmSQZurEq7TK z2A}Xa6*x0rLlJ31hxqJKCzv4ZM;EX z8y9nMS@YQD{UU~1dxZ}0H>m#H^?^^6{UK$Akt$c$63j#gg##$kSr8+c7B{kyGO%7* z!^gpk{c!p)e(2=7ex|97$bk3)#1TMf*{!9Er|D5HRFT%5?1b0^VdA9SCqZ?6>c#Ey zxr=imcrhUg&s|@ElE9}VI%H*K#Mzc+jl_y6YCG=z-yUz}|7N^>5C8uf@1K7BspFl- zWPJK~t2)O3e;kDtI@Ee7CH9x`gF*+R*H&@Kw#Gs*up*0$Bft+eN4~QdrwqxAB&`C5x)P$Il)0b6R)f7kdInM!m4YPjC zRVn=N3j!szVR+rra-)XyhKp6(?}h$`?w4#3IFiB__#lN2tCJ9zVkGwh->Fk%RAWM* z(qn1eBu$`=v&8}wL%zB`EFsi5=<;yQDrl(@LZPqAFmFD|NTaWDqT!Xg_fh^mBLAXy zP3B>+Pd_mahBuDYk5w~tb$G#I^$o6jx83{{>x6;ToY2N>9UC}XP1)H){Pc}e^z9UN zncUh+Wa)=BQR-TlDF1};!li22(+q@bGMq+u;rv*By+vziXW?A+_u;@56ZIE;El~f% zHMA*TYG0SHe0T#_GSh0mex0r&*enoYx_>6x(xj6RxuQ}-&uqR2226>@^6C*8)+KfH z?-xp_GNvY$5AMyY25cvBJ+1Ix6<)AZ%@^K?Xy}Jw#+>R_!R|efN5QGA<64)P$&Kn_ zZV6&anALPuf2-bZ;RVx#(khx_RA;L@>9!83Xs^}guG@j>ekzR~haLtIL?zbBF`L1~ z5IfB7i&j{Sl6vJRGl!dTGTx}sai`oImG=e1>D1v6yg+fk;P8=;zGK>C^ ziwlH#4Kt6bx3pHqpyo}CCHK}5eUWnM?B0+k`D*sZpr#BpnIbwx5=eq6nYv7-gdM}- zexuMCK6N=7y&M=io9^1&HFp3oiOGxB9P}CwitaBQ7GaXwa#+CUv^Fm6QMUta7Rp~5 z3FuIcJrX&6)J_4aZVRZ$>~!YtB|yY~r&$n@tqPMYh*(IAHbm?dh&cCw1rgaABGP{^ z5OKUxBEJbZ=psEmy-2hsGxL=KDDhc+6JS6GVo_k5yPjs6Wb+Bu?SsII23GmKvJJoR zBtiL;^>*u^llq4ZwV$VtL+n0IRX>jQYN-8TKh%owLRHv(w4nCRr|Dz7hq^#HJq#^? zsy<$kS3NB-T6XixGXxJ#GphAIK0WlKXiZ+Vi@3Dx{855Zi79Rt<+Cu8bE|U$E^^xi z3A>$7h`~yp8%qo1Z?zQQag$5%*n)zUMs;pe^$fLx`oat5sBQW>S8dT(S?WuyrOx>( z0_|#Ff@|OaV>U6!L>^E_`sKw*C@6_d+yPF1J_bi5KQkm^5M zU2YyU?m^9h7%N;@&{~)aA&XFDzVjnuPVr;W7cOFuhtwlHh(px<6LhEKDA?S!4|o#4 zE6qv~`WU04FqCp(eyIc+*WFTy-I|wg_Hc;Gxj1SIFIo#{BoWg&yFz^h07MmIV%XJ3 zOqk0^uLwB^3iJ8rs23k+caf=R0v+jmls0L>tn2Zt&)qZ`^N>kqK{h2xhF9UgO%0;3 z(3Cyut-YYpvAw~StIHZ|uTz0umO?6Hd4UHpx% z%?<5y);_H_-H(1F08M32A3TdN;l9}If9u;ixz$LT;CrVnEG^Zmo;x!Iu= z*>c1s0q$gn9_(*N&$iYX&(+WdeO_N_dFH3-J6zZ3oyW|w^r@JU@t)Spg zwYp88kg|k&soM2Yk#a&rOt&>s zt4W$rm(i#`Y~NcNahq%B=j@aAAW=Rb=DOXr($L+GXn7#7Ud*m@>hC6%oyZ)r{3*ip zqa?VCopdw-Q$eh_WUc;ZrhrM{m7Dg((!J=aK3P-wKdGwv?xDIGF&0G35#LtUX-o{3 z_bND!EiTENDHJDGo6*+2DVMwqYBRo9+R zoWHMib7}_rl;bg(=YMAb^)ei?2K~AwM}$DV+-@pc?Kx{Tweo_d?zEd)p_|&QoAReD z6Zdw=5#5_F(^y61J3>e4=v5j%N_Aqh_u#R7Dw`A*KL12P70Z5QL7|r|*bix&yYdGj zot)z=w(;P4c1vEBGcb|?@U?%UYIqddmuwA5=m~@tYtw)0dBEn{Ae$==Z!v=2(mX@) z1{v`6=dHP&&#c}VI}F0%1G4jP>}1lk_D;5c0eh&TcD~+8&5zqi;E_MbfpAakb{n@= zR9=}3T}j{HnG9>J9gH<{W36;9ZWtyb@~I`QItq;5nG@AEnUk=*QB#vS4Px7TN?*uPWzkyEydK~`m;iCuw@i#Ax z4BESv>X8NmN0C1NpVT0PYlgXoeEEig;#pZg3M_#oz9_@HhLW|#gt4$-KGbO8tG zFj5I^;|%0Q*Jk5IMewXXEE6?>6}Zi!EU^SQBwXTJ;F@FhklIjcQ8j<$LFCd;XEQI! zrWO#6#;p%t5}R~u+==rwNS(%2KVgctV-+S-q{$;|gID+mi#`Od0SQ7?pSm9NDQrp% zw5Q-=*c%H4VpSsN1bUh>=I8tHch-)-{3%Nv2>g+CFYEJ4;#7+Y=AX^i+tmTfP1)Zl?{jNj=ou|$B z7K&NMPQ%WgudYCm<+1Jg17;qt>vq;N=4j@&amqcnIESd1fxir(mdsP-j6X zjs^K*tx`G7ZdgmXw73N-r+$5YQgD?2N+An`+7Vd*k6R1!3BZe5PK4#FocdKF`o=&2 zL^7Zv!_I`$jj?^JaQ1pJ-qH6B=TX&vIWrkOu=-vMan z>#g6}RO0N`B?RjaFY*<1~9AP+NW_iRVyrTZ$+$Fu+%mPVA5OuMo7jOu~1gguq&*r3m@O zLmmGJ;JTa49!W`C7ez-sV4ahiSOGIg=;kdFy19N-obal@8#Zxh>#W7eRh<`sIED6z zCWmLuVcZ#^mc?p+Ry4X_p3LXT5LpGss~B`8j3jh0MICvQj+3UB<5gI%a?N^`+FaLFyX-@@ z=ovX=N5^h&(YI;()+Rgj%zXPTVYik>YG=O9G6%Bxgk36ZC2Q(p=eIJV*v_A$*3xqk z{~qk^jdp&XGe>X!xvj-BlGT`x^yb%iDqHoe(vw0*jk&pk6Q;8Zh5n9(@QCegx$a#= zO{n@LJ*I)-_$;R}i$pm(T_zX3ov^M>DhmvPY$D6}@!U%=R;a%_h2*WF{i%^5^>?Qx z1yV!%2mfS?WSfDZK}|W-KLi`N0Mv(?F-#K8Wc*a#VxiPt7G0FSOtQ17*pxDr)QWX!+u#SJr5?A% zvLScNz${GbubGo_wYeQih8>PytV8XjRW1BY7gS;{aM)khDyADXo+P|;sQ&1&CMT4a`mVU( ze(suE2lRi%F=nkH>84|&*Yp~wf+^QIemF9QhUeli zCvYHS3d^V3PEdV3bK0q87rn>JYYX-;LQxuzzlXm?AFDY*fguidUJ@DS({wG^O7aA-i zsU%s$O48?gTHLeSo4pySB}7W|lsE&f&*dfu&tyShv{Xq#bFCDl??_pkIfzr)+IQZH zlJ4$w9hbDor!3fLW@vbMpKsYmS+ ztI{F|u1teD>gA0~ZPm}l`_#92hB8yAefk5_LUvA#Rb zb>Mf~6TYLoPzqSyoH38(txMNlhI#&6HBSn$vKSe0D9DN_gL6tBegqf{6DX*ZN;gv}3yMzz4uIZ6wd+6pDct7#9hQ+5CYh15d}7(Tj=X;iwH#98r50`T zDWBk`HkSUYvZs2GrN~fts3Wh{BL_k)$0yAl>TieQ^=#GkY*nxFsIw8OAxr?SHg008 zG(%R2;3=|9*j-0MS|9+h$a;}5wIQUZVqn%6mO;K}YOJ&`hjrSQ@5)MHY20Eoig}bZ z*9eZ}29NKOKWVcRnTbB?-28j#zwkZo`@6XB2gN!fM`@UR4MtohVGR8(W9AOzoGC5B zxVhnbn9LtCR>4E{?}k{?n_nc!ZjhumR|{OpL{F9k7V52s^hDEl_)NRz-yb|3%_U!N zg|40^4z(po>CdRUBvyCug1Wz%PDiiY4;nU{; zSGb{As)IFbfVje{wA}9iZ9X~3+7!;Vqyjd!(2Q^z61E-Z{Rb`=bktYf5BoO9C}`%G z+O?4_1DkwHWTH7dyu`VP+=M=j$13!P2_^~>M|7Pd*rBmm0x@CZZ~uI{l4W=0(&*Z` zpzBglF8>{}Imd{gtDVkaT~E>|O!fNf01^5f>RpFmZb^#nY)iIBB83N*6_hUc+@DK( zzmreE$D^ZbrzN!YA^YIMwgjhR7>v#vZ=S4Fv%--zrsbm)Z1+4zb>7k}LjORrUumYA zuH9x@DSy@FKp-G9nk-yJS!q(Xdo^ap)s~SBUgcIEszlQztw36G2pO!NOQ$(TP6t`( z=pyVo+STRQ8vt!=$nxhcKwiK#VU6z}9FvCW142Yx2?qoOr?x#4&%g6JC$ieSsow&P-et3$xqc*JseE>-`%4P#_>dEJSW zz+nES1|`_PmHjM9CRU(PB8B{o#TH=F>k;ZI={nj9ed%~3U> zU3_DXBn9`1g+t1Xg6sB)*UHD=8UxPeS=~*dy%La^8!np0PRBy5gD5oM@Fs7&lz4Gb zVN$bX;$6YL;iN5MP}6Fc+YdfIsUJ*? zA=0TDk-{N^NDuuZeo$<|K-V(YEp4+GU#4^m@GRTAe`{z8M)xNnq=PlTCicYSb?B%F zZJZ{X7(3k~YL+=B$x}2!1mPGm>H(*9+1%pQ}R3sE^^R(x{Z4NE^YuaIVhIS=!voa z@S&#HATcXc8FQFNw8huW4)^?W*CH6>GIia}bCJ?P=cdO=)`_%RNqCkTquODa9LKAa zj)-~gVS-5ul_mK#+ls7MQG=6|N0!VYhOJNR@}d{(HK2{HqD_PIiZcS2hKn7sASb@s zTxu&<`CpZgj6^CNFK*7?`U7CGX<9TeBD!u`ZBNb)N?dA{sIi-&0T7|-XncV0En`g0 zA6A$+m-~#3>Bhzk)s2qaAi;O5v2nbyG1J&M$=EohrnP8ta*Q{i4w)w(i;tH8_S?BS zeRS55tk#_Nvn?mV4Z(3Fxkoz6^!q9>K>l}N$T~NH*P7~>a8TAs)sX!|2;pv#5sR|O zj(u2Kp{_+h!eMB$uMY{GjtYQWIJmqIV3Xid>S% z)Zfi_H+xn&$u!eVBuMp0#XpN~_`#vnq{w{vD0ry^Q*52(N|qW69Ng);S2-e6JlV0@ z_ETQoANkbCi?>;A{U2f_!sx1#nCVzC6W@&#$6_W5Xx8!ohf* zor9nQ%`^^49jcN*JM`=dHjTt$dWksLc>fu#Oo|Aqhz{0?P?rEs!3pLnup_oc|819f zsK1Oqsq>rM*_GU<3*3EUxP%m^>FT~=PU6X=V_=%D?y_ES&;ohHPV6hIUw;u2x{63) zdBm%$Utkp}w!a>YaGb9_bv*%h7=KtgImIe*748a&l?*EPCq+_;;VA6d3y{MMR@C6q z4BD15g1IRoX(ZW^9jlks2nx3I_qxmxu~?I<9mLS-Ge07Ew1k;#^7dR1X>u3);q1}K zFnhQUa{K9#Ci_T~$mg+0lT$o1f|t>sc$~?rq>~am$8bt=@JNoxP^*SAU3Q$w*;GyM z`39vxn#7sxiTpt+%;V*w>oS-4y;tOUSPzOEhlTzz29e|vc~KMQ>5WQlJ%UY!~M;X!az7K z zPz?w=GKqEKcAs>>+mpHn5Fv!xA|=s{9T=bbhUbGo0pzKA5t2-h%Ll>tB2)M-wWAEJ z({0iLDVc5(tFYKX>5)?U$Ni;wErGf8nBMhiMh4o@0w2|So8|h!Q6fPHU3nbQ7l;0l z8G1KUOwq*d!&B!BzN3-6NR3Kcy?u0*Wt9r0v(GTk(!QnSu`6RbV8JglZt1^o`S zWkw?Zq?VQewU9AZjO)ul;B7xkMrTK!`b%w){X4Ff|70^y!h|5^ZpttX^BDjmh5;qhfuW zl_JN|JCb2%U{x<+2gXRFL;(@T!I}U#F{J$^eR;E-0kNJ@J9rnV6%U+2;H#Mem4O;g z1j1IJkvu4XX!iIsD^xnlZB8JtwwIVaE= zic%FDjJdBM+TnB#AbU)>^t?MWwysFXM9CPFl5q+NlQ77qQm}f32EDjEI^BZpmlo)S z#7!#UNVkPzk4al`M+kZ;M$~3XMfmFuLdz3^P8I*x>F7$ccx=r|qj0>r-=bDJFQr%Z znMs~bIa$z!fcs2x*`pCDbu|~IH_b{ni!zK^8D>lDjQz9*LO=PG288Hf%91@Pq*9;l z;Jo&!g+QFpYX;kPCGYdXV;6Oco$6yasN$|q~Ruv3r)L5%6-r-Yb4=~Fj-NksoA2{&dg>F}fl zTpr()4TYNqdFD=Di)#g%y8}|ESA?--)HA)~wHJxV0$wE&H)O1_WS=@NG9*cY`?N3o zxyec_!D&NUsOoK%rFFd>6vZup&`JDaU&>nYa6{P?8K z$B=t|a@1htV-Vft1PnBDjJg9xUAs|t$f!GN)V*rdb$He|0=L^^H3YSjNm3X#HTR3s z>M1o^T4Tg@Cp@_#)_B^d{&EG=gtM3h#VhDNt2L~C6DB9aVV@$Y#2F}8k1VX zADeYY?YQEh*`moiA-;I8R$y7Go?~|j&-EChDv3|<3$F3eb)L0GXD?@FKldj)UM8jX zND4~q6!26z!DX2X$tmIWwFGw_h&6}g2pBVxlIt{T zT9F=c1cFMyDg-?vw_H-vPv0D&P(0D&)9Ohim(l5A+SD8c`on}pXKqyo^Th12#v_5L z{)u1OKdjIlJK;jXX*XH{;0ks4`*@%q?3M{X4kWk!vIDN$s<#;hg5L85M8Gb zn_yXFWath_S8=G#t8;9&dJiQD8~f+2Xaz8`1AO$+i6&i>G%R{*-0Z7NpXmGqwj$P8QTbiR7_N7@LAVDM`IK`zp>2xNgD9>jZpDa9) z!kq4&bHUfNlyJOtKGEQ%nbi)cSk_ckJIq_H zPX9dN>%nvcsex>Jx=LHnLzze#kaUQ(+5!iI2z8EEYxqVEz#<0+lS_*|twRwX!X@xo z9L#s6XSL?dPG5V4IXfe3HX-0wkBUVpEyvoQjG>?V8X?H=aJWM%6Wh*PzNc%oNT&fo zx@n8lt-Z8W$~+Uc_M&2z> z;Bb{!FDe;He3BufyhVMCt%U3f2mOyMF!>mqKD11YqS;EryHn~xIJiqaNRXY6XkyoV@L2L$8b~IKb_$TZ2fo~DNG~U)@vDetfST?#nYW1Rw#~yJH zHr)1zpOUl28u4&jwKiBrJezoj1v0EX{vox~mRctam--((ACI-VF3>dStw+WFIvBEkEz5zZ(%)x-pW#PX$hWpdtZkHL(3tIvyhi=P5k*a}BT!hLQ2X2)oK@uDQ_FROG7P zbWu_?$L&3@o{bkNXKZVn>Q_9FLzg2#3pV0MFUO2dq7eG`j3gEKDT`Dz7O)(vMD3s% zdyCc6&`}OuI~2q5uy>d*T;!shOZ`GH63l6F23XiA9@|_rzNvV8bJ1l@#g~~ynMQG@ zSv1Kgo@5qHHi{>U+M#$#tX?hkRTJL6I4Qi2z``uV<%sdsbjVR-u-RtRWEeG^YBl4H znoOf+l2J1mFL$O;qwFP4GX)Z7w&s^-V>{?HXTvhPnrCZ%dA7wb+nlO)_92Z*wiZT+ zM~=`Mgh6@VQtoQ66+k1rz@?CUX``1fcI)U1JS8YlV5EwINHw?!uzW1Sy*RsH)p?3( zVaWi6@GKGf_|z;c#ck`|s?MKsBP%NXh($3+h+z~#iS-#plO)tS_?`!o^@AzuTQbk| z#-LRw8fF+~$|xEi^RJOkRG@_BG_c1Q+rXbO=>%^jqmA}vnXaD8r*?Y<$I5s=V+9j< zoJsx60E19d`AYM#`{`(<(6)~))6ZoJjDmCMdOpTcf3640&?gO zU+#UspX-n}FI%S^XC`TzC}8oy!|8L3H<41i;@{s)%lZuxOO{osA8Y#4NHPi>Y`T?g zi0!pSC&VE29jh?U>l8!RM%R((O}!-(fEz@*YKDTeh|vGpuB$N5%BBjuuJ^4r05=EA zHs39u45oViz)jMKU=%$xmN+QlSu+jE`;XG?9;XP+ zFG67wdx~GgmqpCfXvB z>CQq$XOOQY%csuZrg))|NRufwC;?+pY?d>!+$eQ`uFvnZzYeHdVVGvo&`>7l8JLSZkFO; zU>5;W%vsEzD>-nd{UbQaOfIz*JwmsC@N4ur3!KeGuBKToYD=aZ-7l9SY84enKBtvK zqY@i@Mm`#Dw?~au8^H>@(S?*{93oSfMB$#f4tHZVFw$D=B71APO8JEahh=IJLPJ{P zj6`Sx6vALS=8A;S7SvjVy#OUB{%QI1`;5~>G$q(<~u!K0lW6IEP#5Set%-~A`*ZTCo-}Mw=#8B>Es)`UV zA;cwB9mexU5VN$?WQL-&bx7i}=#2X2lP3bpiC2Cht`#UFtwGSZDZMC&{a70Nv0N)? zV|R06KUTzkEROxik1K!q5qmh+ei*xV@qoJ<1hi zJY$FqR7S}V8K@rRGC7#j#4}S4fv67|M3>pEI(ITsj*IxN-rUs=2+Blnla}!QQUhjt zMXV$8+NjcVJ*7-UH^0YL=)W0DdBD9ER(;&H@@1II{E9vR~x zdyM_`g*C~$FP!9tpWBlxZ$3H6J7b`9?q~nvBxlnBb??t(emXYVlm*^-VcX7F+w$g< zZ7+_sz3HE{js95{xZe&r>dUaEAVvCMFSDI`OM0>E!d`rX$XR+X$(v91VneJKy$}D3 zGcZYJpy6i&WO^!KR$p*`eZ-5;a_Dm7uO7~3Oe6nX#Vm+(*Cp{Bl*xKjm z(yezMj&)1Z)fQ0fxv=4{#Tu43pKSP0tl_`z_^c_3w>nK)T^DaPZiU0B1qq1)IqI8Y zPY5b2(bVV@JFC0pe2RI6S%H_oBkPr{gJN0Mo5F_jyua47S;&ps)_qkJV83k?0Yu~R zz;Kbq_LZqe5JP~Y<=s0|Aro)05Pu24l2Ej<-l1|1HQ(6c(ac%f5;XbC?3k_yw)^4Apf;}xoD zjE)r-cH9c{f!i8hV90&ik~3%Na9%<-eV8H;CZXr)?*-Ew{Bp<)d05B9uoOhST0K0P*-g~1*{3liYP`9dl8LPsP_q>5vtn@qZjt>6>)b94>~KL-TfJ0_qx5c za~L5Ey-{_-7FRb_9a2xheQ2&2!Is+g#>e1YVfs^1MnJZ4{K?peBSQC?*U>5;@AHRWXg)B4hw7;nIPSo$W@n)}yT#Z0)hy8;S?-ngAsz zl#BI(6)U!077i*@l%SD$zt38GPbOS!?eCnv{~SM(nb~_?p0(Dqp7pHf+7az2O29Wr zntX`SJ7rIV>odf1_&>E##jh~!obX`5YP<2SwvIHbay=9CZL4vG#0U11+5Hr8a>3-e z;Xi2Fu3S&yl4#iqf5B=~JhXnsD|XpELtl)xa_p0fWuzk;F^7){eMVe`mjl2tc&%~>KjDdv} z^CXdTp7@q0+As$`YbF?y=XuS@8j8tKCMzr)_*^X9-3wZc4iCq3_Q&EjaS_x(;jp*J zZ6VvDL`;+*aad(>&Crw`tKEE+`e%C7@#O|+xn?H<7;uPo>UQj}3n)*C-^fp5+GEo3s^gVW%4i(0-voAL?7Bvv#R=~fP zu+QM1j>D@FQr3(5e|){G{!xkgrgBjI6{|$Aq1VJhag(}Z=|K${^p^GSrmSKaMPO8e zT_^ZktIaoa&|D!EpP1C=PwHr{1Duq8@K<=3P;4lSF>F0W+cOIFx*!3?HWd~qHmhDh zA)D{od-R0_C0A(ZA33Jfe}Qu{qZ%I>-$$=?jqfz+>)`o`i$&@tb;A+n=eJ4qcV6q& z_vYt8Dtq&@$~4sAbj=T*nr+%sGo@G`3gSOb{7DHbW^*P7)V0ThU$7^Ac&J)VDa9fL z;E{3Z{UirKrEu;}2~x0aVF*u4sLrT6yY{S3RmV2s=Zu zRuZb^va@x?8C9Ba-NEil5U#Dd7elyc2AvQ!G2_91I_Q-6**?LrP?18J;%|>W%FI`; z89$}%Ho?q-H5?Jqj{JGo72h5GYew4Y8h(oo5^-op+dKZY4>)f+9e>}jlQZzrYSqYz zhv-8nm49H^UQ^JHr%9bWggo!&alyWDL0Kmht(u3@4(7CJQmB;Q(Y3`>CdU9Y2mMV} zwfeSx78Jh99OwN---Q)c_9COqnjPR8hiPi|q6aw_tDVUm2zC(3p~1x{2Y0M8#crt$ z6L~-d|0LHcPQepIBwJIf9zHvRvq-FxtZbsgTjTt(DoS&81DwCU?3O-*AeZ)+*srFG zco;G9zUU_s8JkF6&%0$J?*J8D*b#)goiu47ZP?3cA6*xSuJJ%zOk9}w6_drr(crn> z`LMACpSB%HiylawdpcD?@BftJP;)-NBBui41I4 z>+G8%3$GO!7Ky%zGhO3Xo4jJjB~1si&io%!FVr@x)}GYq+}r^ak9n=+1H~`B zAE!h=CU7{d9%kyJ1Tp(0Fk({Hj8+;W<{KwI&4=1BdW@9PTlS(yKxz%tVXE6{faNVH zu$Bw98E`?lNqb|ZXuB9T4Mj=?jCBqDfEIx!qP%oTud0_MS`oYif51BWcxQ*{x9v(8~oPjFOio*vO??U zZeUY})<^n6r#^4PlAQM)rdX#gMuZgOcHF@}X`ppBN!JDu<2p?a?Nl%_p^zxc(hPAJ zu0~zRUZsw^Q)PYH3SdlyArH=#fG=#zgSO;&t#iKDRCG5vTR`I4BU^3^jEDpqhdbqQ zJqcuUs&@SCpn8^?y~*8u3`h34f1m90(fbe>=GeQDM$df_5iL(yWu7t)4Hm~F6S=P- z5{MlKKy0pn!q`#nw5%m7Zm%=&HooI3p7nBQc*vCtLd zwZzeYww()456xzS0wddU1D>{CHhU%a19B$p=qNzW`A!G!n88q6Bd#MIwd%*f zU^jNgvbf!Ks>Sk)+|HY5$?I?a9dtVHI8;gMQfB6uLU>gfO46!{ z{R=_p1JIK&$AgUbR9(%e_s#u|IU!Pij@)6HCbsucqu`t&`;l+ie_@C4^269WJl|8| zK0n${7b5L$2vg*3r!)|IPEOyJvg~Fdxx%^XE@$X2y(=u}Jlm+hu4-;~gvhO6v!Zk*gHk^iBXvNwt*Y9p~j@!V2(RtvJ@G#fb^;!w6D z+Lni*-2C8Ni1hYQ%FGOccZLZ`-}0wLFQW^}9*y3Bswh(MJt~`57wPHhFq#k@%v|8!}rW2Nn@y=2t9IOXMrQF8T>y&%a{MnZCIv%nvNw?^}M$MKgLY zXzcJcq%Xi!j7NdUUiS`vgq6(g=6jV@f=-7LRB(mLpZT1NY|#?BRm4R_GX8Ce%JNn{X_XGGjO) zk;?WbYf7EUR`qI692(Zd(g>2_ZZ-F+qCeOHSUEuwc0&@z{e($~?8YM3Zp1#Wc&|tm zI8TcG1)Ho&g@fM-?Pv|uz7JsT8w1gf^6YzBo6DGAhMG1xhAIns#C9o; z5PWx!Dt)0NYlqAP{|Lbq7gedmHit#a3D;kw9+)h`g%0)kV_h=aEH`q5ff{&)T|V)p zuKUcyD-!n+n@QqWKyY_;W*Rc9wPJO;mdiZO{FpS8A9@Z%N8bwdt1aeLmc07W&2nSO zkx2ao5~+Wn{LwM{GoH-3`xm}gzb98vJa+7p_sB=qlefr6k08x!jhNuvyfIR`xh>ZT1{ z_e17`V@cnyy6#KAMtckAu20D52&Qx)K`5bCk+c;l_=gD(h@8VS+St~&o6*L5g4`mN zF-99*b#?kEEut6pIq)Ul ztOnH{O%Pdb(fa7h%<2Ka!PvlRSl5Bhu$O8sRXv#GT5m)jW=a7>$o|+c>Nx&2my(A` zy(0@oDg#8bIQM-@dhug%FW#h5q<@aoPw9VBz?zaI0x!*SMc~4v9At0vO9mwuss9Ok z8=1@h&GwIA&-2N7M}evT1NJ;eX#b8ODgQI=3-2v6B%Vvh$8qXZ`NY^TH(8dBD@5#F zQGXdm_YgOzr!}+VN#8W$Quq9aA9<1^*Q-^}B4>+R4yaPaURpOvPs zf5PK)Zf>^g@!9#P@%a4zb&~Gr|8bYgc?-{X$2L zcWJV(>k%j8ckX2T;o!-@Fi}s%?cP+x<}we*3Flf845iI%6u8U`Tw|w=C=bpW;*R6C z&3f>5=3$2ZR5(^>w^4fL`EKa~u4QJ_8FuDB8ne$pd(fCS3+#s*v)%Ssib#k=tfezz zG-L5p;upK9$XVG>3~fQP(*a}MbJ~dM!G13vSRKol7MdQ+zI`!UipMFHxUq2Xj;7&Ls|N0=<&k)!*{!zmY=)g&7;McCm zov{t-H5{se`cRPV-mYOQ`-NO{Pxz*dC<)H&VP6!$cxr1$G(JK%8 zLBI#z=U}TfCOG40uDfuGZR<*~qB_;7%tow(TTtity3gQgVce1Jgw?TKt1f=jMqux; zdune4bK1(Buo(GqOAeFL=~A*f^+ZVUUE+!wX60{Y3wg@BBzDr06O1^I>6ozfvLvp7 zSd>D{*I5_)wM`-Hr^t8?Yinwc!o4ww%ZK=8j>@%4a_v$5t&;xss64AA&mJ|{Dj95# z%C}1L?NLLlk|Fk}LaU_E9yQD=8D@_vvPz2VQ6sIAk@l!!tEAW-HQFi}Z9+@}qUh}| zu;%$O)3fGfneY%qhDeSJVa+SF<_)vv6WJIRbDI_QDK`G?(#t;l5YUU z)7K{+{L|>y$Nx^ixH4RS_PTi(iCftrSqWB#?Ea>~SvK0d?g`lq`GP?z8yi zNQU|%jiY6YUD=wwYT@MoS=@kog1HpO>8~^ zM#S?+LSwgFltxmE(RNv@GvS%|bh29%%B2fm@)_JzBqEqP3vUph7sfb#b}mZPm%X8yYHPR8hC3hna*F&NO}v{USDLTt46nuIHal1O@rLuttE3Q?c92c{9Up@ z>gVDuL5K`>iyR#&-ES@IffJ890a|O_KZoxlrUW7<)dj(ZItdhCmoIqX_~6^r<`&UV z7h7d(A(Uln$=%UAy5oR($wPIaBk!Mj7V8}yAd}6@HT5C{Z+v^VE=)^d)uU5xM(CY4 zs=Nha`G5mtwHhjuIj&G>V@091(nx`5a#iOo#=JTD^)UT$B}; z&*tT63Bu#J@`lxl+qCQuk3-Rn&VK)5(rPVYW>pN}GmpEnHTPIMrX@N|ybE|x)4LoUSk{#H*MEbrFOk13O|qw(m&o6iCfVoBOXP1$lkENGCGxkW=^p)E{GVIGfSJ@Y2#Y0 z$m2w@6CMydfnD<^=c?T|YH@`&NTp+57lHOG%kpsIbnRHYQR>OBmwf?Fwj%C)oT!|4oD_1Rt^`1DT zJ-q||0zVRl3yd;dKfX(BYZ{cTKd&cjJ@l#S5;X^7Sm}MHeqN}~$;hT0HaH9Rr;0{h zW>qIcBuKO~-fx0Lr(3-cAroQ#skbtd&Dr21C{K7g1m~t?FRKp&>Y?6a618|rJK~#0 zkxO^W0@RYRJ~ z^IIxTYc4;nrQ-DF^3$D)A>9g2)@>CzRU@0ri&`p1G?$NPsW`8>{5+>(WVeC~bc~i*%PSusl;j5M}n89lyUTICH>q- zP1oDY-nm%6U6k}z79RIr^4nyPVfXiR;h9iPmQwCgBulRo_Ey{ACB4FDB^L%8684OO zUt-S~Oe(;8iDdv=$EGC!QdXEyPU?3en8x>GT|@e`(464RRC`@$T_lepyyZMXehrsC zae^3&>}@a3@xjtjzCLY=SA^H!qmh5m!tsd~B(%S@;7@Mh)I(c1(d)p4;nmB!V3-Q~ zgW&?w@842UAnfnYmb-%H&ONn#SzuwC=3I=@O9rDp5@~NGc1MWoFUnE9U_SIxVU>rm zd_bKn%3p1fBfFrgP{PL%YkQdfbe0Mon!NMOHEFW>YU_mXshc0;B<+}pm-q#uAGOor zID4o&_iLm;j16apQQj;#y#&{%-JoU-gB65n8=^LRmFAl)Ve_VF*;RB`Q5Vy!t%L10 z*=J~2*9$jOr@5Ky^R&Gb59F5e@lX^R+ZMkW8S6f9^MS@ni!KZ30ba`9 ztzMo5m8#CQH(x65duqnn^5R|f4386X_ya4G_>F~aLYYSp$eL@Pq?U-EB^xRBaw4{i z(KPR`vAGurH&#AUMkzsvP@~kS`Er-!Li?ngNGXx@b>)41v2QJSVF-lGN7RNFM(Que zf+Ou^S(-5uYP{hGaw@sD*Ro}6D31A0kjVV*#+9eVJmugrV)kp_TV8=9!PwN92={p8Ql{E6hWEPRnE zi}h+*C@g0zy(@T*c_Tsd zny%)xRetpp7B?w)tUFK|=pOorEGvG(p`NsmIf>7oorgPJYOVTd9T5rBh5s)1J6Us9 zq*zsKb7@08yqECl29&R9=|bI-zgC62we)0iOH-sJ`a@o#PNSG~*WG=OyFmRAB0=p@ zNAce7BPD_yjp(%b6VMl4dwf8Gn$0ihz4Z(GrL8*)+Cp1qNrLQHPsiUogs5UvH+M`G4ZlagBP{^z0q4+6th{U9jLFcR_Szk0z=2aa0? zR->kMYvK@}!|Mc7594zvbW%Gd-g<-rEYRVc5`Q7ZyE`Q=!50)nlptZ>$SH9g_5RN( z@f$iN4(ovsUr9+((C%WE)8s?RmXL}ImeCtweI3hom|Wdc+}alI4~hK4GTe3rsh^FohbZO!X zG6+zz^KIJFU}{colltH;G2kO8R24B2hQ26ERwj~aOpPZHLr5RGaGy`l?V(+v^n1~y z2*-!)w@^LG5@^!`JzWIUStu(Rb{5J4@*z_c77pUEq=M>%2DVD2_8e#WkFv%Dxqzj{ zQxY`&P)%_e4gF7PqK}}-{VpIfFj%_($H)&_uefl&f5XO&S=mwXEMm%3nluk)iu(X2 zng6RXcZd6+0Y}uCV*BxpV(yNk{E=JR5Z7=2fpXC(6@PSxr&L5P^jL~m1O%~F-D6>{ zmZVd%2Z~B*H!7v0MqF+*O6j4?kDyS(z8JeluAx#b`SDjL*RL7 zQjtyHKB$Oz7jh}i^WtD8yCUHys8)rK7ecg#DcPfTcXGopH1R#Ya;06m0xYtgU#9=w zrT^Ze|1Q^mAJl(;#ot=%`QPxN8gJPjx1N8Tuc#~5H9g4}6B`2Z0?+iu(9fZ${hhG^ zYbeO54p1D&296>2wN;v>h7=qR){^>qj&)KJ& zNOM$Ef0Fh@g?s>(6@5j2>2F21@kRaT?c!wVtW^B4qC4cTB;j$Q9efR|6zSG^Mzk~4 zjve5mJ!3uBJ5|K_@IWg<^u?_;znWc&M_Nc5N|1+n0y;sWmIV)xHIKQ~6NL-y+&!SLB zcUHD`ds-UGWD@X%gSf0*&ns)?M*Vk-{`-pjjqc#D6Wz_<8f)b?KI%}g`@+^rC9hZR z;;#z+jf^4dxMl%KdsMP4^1n}=H98ds*xvjFfv`*>{3rn-Q<$0e`>;k@NSAJF)dFW@ zml)BVEA2JjJxomRf#SZ2F5+CZ;mR%{sce&_vhM0bIm<|o#CJ~jJ$92EEk^Qp`^l19 zl6Om)HeEyJOEsfLv6spub^+ilUCwV$7UkovjJRA%Xc6K?(vZ8=M$wkEd7jtia{5!l z&SA()1;vxvteT^qniX^I-qb*dtg}?`RDDDw8Z&UUrvvn^%2hl0w5xKuYS~qC;Ctv&m4q&4`yfKz z-TM*W7M(#^|o-A(A6%{o6KjGcUgIOOS+EspAY|=T@Y=q7=QmTua7us7O@f)z0(FX%BAw`mq7&8L4o~}s5!e_;;E0Xpt!SD zb;z|LfIW0H&v#hobt9>Ai+7TQ`s<5pzMrFQ=$myyUvLgm<@Z*gkna?~_t9_3k7%=+fC|4oV+-quhFW~b>`%q-9I9HxiDFI4(k8y@XCeT>^t^{yk*+~TYGp|5 z)hrUj2k`#dBt!Jbt#Q5=XA1FXaqll|vkYWD*Mb$An-|u!F&BobF?Vr1d$B~SN8m^) zq9o+lDR4nze#+@bz)B>G!H_ZbMp8~_v~m$qPwLNiIVlP5+*dtSD0bdK)oU?XfS-R> zFeQ7@a@}f~`&B&=iqu-aGMOYT#Am$v$;8+2R!)#^p0K%PQJ_J&%z zsORy5=P!|_$)ix2qc+kWKo6B%Ww@Mm13T8^g+{PrVPo!XY~4s-Ov^T@p9jH>=hxCg z$}GXO-RKxVuMO&vv!LzT{baRv;N)n-h}K>xhY5%M_%IWZ$m=WG1uo2(z%Lugtgy#L za*rZ`9MtVia#D-1P`!=UiM>=9GN(ySBAF^Sh>5EM zO}37+7fMNupPEjZrA^4z{xKwAp-)W^NSXu^U}!1!Ht{-}P97P>9j*{LpGbJ-o=&)cfwP^F8?E*RZ9z;2sDL{$FIrz~@hI z{e`<82NW*;0SN%pi9H12r%tTvEX5w>d}JGSLB6>;tS+q6_9(wfX&{aJC3K>ms|So1 z|*E^;uv~U}f zqht0DfM$!Fz7O*oe^kyzJD~2}o90P*@P!bxGWb+e3x(OE#5k@_xGHmC>g`whp9YD< za_E%5YatJ4BNLa5Hsd*6OavA|k=^)?1<%(s*W|XZ&P}H{+m>Onb8)&w_JRZkg&PEU zC+DAR)eg0EeiD|nvDeJJyTO`rA^RFm)a*X{P9aOq^JPDT|`INoWLB;4byVyTUW}$iElRPk+M+un~@}-K87hevJjZWD&^tZNJ zoVa(Rs*u@PwSzi#c6`-FKI5x|UDb279vzmMtMATBnya6%R^E}BL@o6CA|<7B+^Npl z^SNl1aegDJqPTKKIzgyxVX|>8Za7(-N6LaD{Bq_pONSus8 zgqBFeoT%I(8d6lj=l)i5du~!&7MYk1?J0gXczcPzr=av^^|P@iytYE)wk$a2cUonsqcA3^r^M9?Q1B~y6eyO9*C2KRUczQ;lygR z-M5{AV=1TZ8O4T94j41GS>S*|vt^$?Y*pn}{m#KvgHly2X~mJ$1sHf`1H)Oth(S^G z$xcdBWR&j7&Mj6{rEd9X8!;2(dERhkf5Qz)Lf%R!yX0RD$ZWpGe)SG9&J)B4jF7wO zZtx5P*QUMlISTekZ)Xy4JclfTHTu;y^iX2cruU1zNgp<{QIsE=&O*v@CJ{$H6rlfw zyIPq|xdg&Di_3YFY#g&Ud#vYGSiKrM5U&eLGq2pvs=*){rt@+vj%|ILs~$9IuRi<( z&cbCB4A+{ifhrqfv!VzowB97_FNPato$%XZj&_d^tDAO$zdAgky6|JZZejbr>@>YX zGmJ#o#$IBb_afBIeHt{IxcNtN3_2QKJ1{6=$9EMa;X4-zn!F(AP5q$SqWc!{tKo9> zA=+ybOz)KXc->|{!Ys!rmcys;yX;sZ=+#jptbQ_t2zsOmC^cF5Opz0>=Dv+~-lbg6 zeRv?QIlh^B!zLM1Lw(ppBSLk-nmv$$@ZVQXexu?7S!&SOnbKZ-e)>X93N8v{z zmov9`jM6llWjDzoVm-f|v0F{c`K#WmClPG89Muf|J)X9gk#&88#Dh-(@?4fY|32L!i z`W-2v{9+wyu7e^T873fAb+k7L8zucK7zxU1u(rq$-Lx6c3I1w>O|u2T|LCrKEnCCs z)>*lOx^^#h;ju8CvM)ENQQYGsCGIce&AFIwfzM%Bb9=iwhEnXY4i%IyoDsV@x)!zt z03fWc9Nv?RTAB)Q;+jKc)ceAe1=NG{$9XZt)oo3(Y3gjRs@v zLZ@sS2K0}BL=|;x$ap`408pCE%0f(j3Hr6ARC>6)fMOHgEu@JP83+ zo)cOkyO;c|w+fe{E_{ga2zaZD+VqupWDAGKMnbMB3?zLq@#g#4)=rRWhaHTz`oq?Q z?dr~V4@eC#N9Fx89v}K5LGuqx&Mw~N+$ME0}>LXed9r?`vm$asy$E!vLkVIy`};_#Kd zXg^bBXVehYAhIpAJA0A7%S2_k7-{RIhdMUd_I()5mAw*5i;VN0wuaSz-!6wot5cq@ zvqa6hgB{km-q#SWhffm`!1l0u`(7!t-kGpnxc-#*tdW=MsIH8EJaOv3h4omp6=VN= zdp&EQdiBx%(zq6H5kCsjdExd!fYfbj$UZ0uKn~Add==xgCvA*AvjaGNlN*L(-9^eM zI^5D;wq@CQn!9G-&MAeI*;0sYEbMiCfA!pB&?cI@umNn>gy{-3c&SI21g*v02Tz-E zH0?~m$Gg+cWH)7!xyPvuTpF(lOcn(PG^A1_V3|$@+r2k(v1ntbh`BbanY(1jfhku| z&69v?gFIS4SVHF>{kEpuM!ss@C#Q?r`XGR6`7KOnUp79e!$!sAnXm|5&;I@)y@6kn z9;hnEnw%trb!qUTzaD_RYe}_Q@;5m@G-*DEuSJsr4FlcZlXNkJxmR_S>CIPW2?>gI zpBxFqB)>v^c8i%Vy}2f7;k_PNGc%Tqa&Rik1o5oJb7jHaK)1wJ!^f6wLj#c3j5PvF+ZHB-DHQ3}E^e>UX9NPHs|hj@@s*wYcFOLEN0t$6 zm+$({aEHBt`@fnhH8#gX?G1VH$So`vyLFKi{%-*$tX`Hy>e%^nTC~fWqebk6JNaJs zB!5)BWms>iN)oAfq*-d4s;HLNv$3hI*W1ccwdD2#K@D>YFg77^W&$ZZh0 zNi$jY#kpya<{3e(1zt180?}P{qT(Z}WY*uHXz}O<_IxnqdEaQ5{>VL6qmD-sS&r+6 z(3uE6AQBTKGJyMo8qWAJMmWZb{KjhBVNH71imb326+ymu>y+IkhlQGZ9O@RLQ?41x zfW;tIOFJds%G3E5{N88p#r3L>b8$*b>L_lq`wO-rMJ68BgyVH$?Tg2ce`<^rd&TPM z+?djmQlblO!W&I^I#cLd6uRt)g)()ahSU|f%4vz+t{^(ic>6-ZKM`_a^`J>FEVNqi z7E9K+8(Tp##kMz`S7T2{)~-*($cfQ;0bj%MiIqQ*l?Nk2G(!~$o>BXE_Lo$Qte-5c zJq2EQG07M^=YFjbI5%l=A#!8QhN>5v41yB-Ggl(6A~Fc7kzb1Ql1Q$WOAkqst6lIu za{Cs#j!xK!tbpXEx25|$qkE1=@+~bjw95utT4Jbv2wx3PvZ-B5@u=)mC$VqDcyX|( zL9{uxy&qxNf)cn)qI(g<>_>8FTG}PW{*gdpEs+zMgWH~gosB0XyL%Ea^)XC>91WYo zj&^CG1QN{Iq=hDWAle2{ez&^q`>-Ca43$a2@eEFdGbX-D^Au_Z-Ee`!q+pY}nhlk> z%mw5!XBKg=;H{SKPCZwoyZhA@J-*=jx^cXn3sNmn0Lg)~WS4wO&c$7L<_JHjjy|I& zYwiJFe^G@ioe+j_$qj~){De4v|N1!Caqp6p`7E$qQ(*gBIfuM|3xRGO^J7&oQ zTh$LZAy_dJzz`P4{!hVP95PW9u5LId31jgq-K1^@SrRCFTwjs?cdFlsoQU#Eq-x}k ziNJX@XJm$HI$ct%#9kt&7eEYmZrvfh4|zvRoc=1L-?=r+O9mKFXA9~r(da=~Sj}h= zc@gpP6fdx}aV)Yu9eu+kax=QLs4UP>IU*`eN6PG#9efIAJ=4h-#AUygySRyhb3%J4 zDr-4+!2CeSmerk+!=2(aZoIL~1&ArJasS&_g3Ur;j6#Uxn2Sduzr|q;R`Z#2(P`JH zj`Ou>@*sm%Vb!%U>F-#Z!&#fM$cHl~T`R@A8*F`93=uY5ye(p2jGpE2n-G$#Gv z&)7Kqi^inA!@6$EVKZDTrQyS6xY$09O8+m$r1!mJFtJ*FKcwY*LPfuMj*E}q5IB-x z@5*s80uT>lO!~~*;uxZhNiXgB4~Nn4=X>->`2 z{v+2gae{;f3{A*t=wD->ZJi|?k#YP=kFNHUjE`55_b21^88qyI~7G?r>aQZ0L5^sMmrUwy;`3Y?bWBGXE~4b398qPB`3d)&^ThM z*E%=(trW{aSB13eQtKyI^2PdZIXx}n2R%1czDx;{LrUFCyS6D<7OcTNKiZb(0`wz! zwOHD4Ds#s>V~SMu5TgC+C)VYcwHIHm-8U~E?JRDfP*~k|vG`&T*L82$lyVcCHBWjM zTjCXRKB(J!k)xooBS<+^nc1b1wa~5p0@Y1DWI2QGy`DCSh1q-=)$C=L^S5AYbah(W zhpC}v`ITMq6Dh(>moVpF&|nx#jI)p2{uJ6559?X}($L$H&96L*c%sl=66k{P;S<_ehQDA9904$#tEGl@$O!kGTE>N`EM+gAO;fUgU{RxO zqob{(!)n#9_Qu=PK=&MlG34N4um^}sqgf|)OQ+m(MAR1M8ylZtB zi=7&=GGHP{RN=zq#;1s$o}B7KI?z#% zGtQb}%m)-|xA+*5M!gCCh!(uu>8Cx6)2>L?`%CWhvqfQdg;q#n;P+Uoar;@g>lG%s z+T^9Mx1j*2eIb{NRC`$<$O{i_yMoKYuJ~|*j@cE2QSMNk^?PyZB%u`<6bMy2r_&edSGV>ug!Mz}w)5dQLj*lH zq^R7B_v`e(z1&BCJD`4Y3H)n&PV|NV`J}!>xffpf^K$~SFq<0G?a82y?*g^l19g`Q zX;1}30ToW$OdLwLq! zM)v}5&GjWuX1lBt>MYqmhu7s#U=lo#UYY-yY*lXM1H$zeyS-}F!Ao@MY7yqsRejnE z%bAMFI&!qVZR?jrra*)cXxovVCedX()roiMyTjtvo3e?@iZ2`a0NRVwkR;fjF8+M} zx`pwnZ$9U17z19BM#6t<$lnqPl|=Uk2fs zA`C1bE6Qi|RUMsmnU+TKUAWbY9Xhi``*f!uqPejgevMuXlkD z%u;=i7xKpA0iGD?b!!Icp}ONd2L+>^vgC0NN{n;;!uTJk-q5E$Pn=X#x>tP8AyBhX z#enW)in;sz!8ZjJBwez%&%b}R-scE6WOTh8|3dL2z}{HCBoZYXQ5%J<0S*CKCg-%5 z6EBQgLo@bhQ;$JRgYvy*L#d+d+-t~T97Wcwzm4Kg9zUHBxFS~L{u_q@SM zRW8b^Y@`t2VQN2sh|lLa`nO-5!6)~#1yFD!!I3+42^P-#r4{l!pOFg_^oO>K8qR% zQ-ajzO(svKpdyQ;JKqh5LH4G42zHWG8zE-&N^=m9@^?adc zAIEof-<)G5z$3IQK0K`QR|@NZO!;?D$sriD+?mW?v;fHTo4Pf}iOxJS1G>V&ymmIT zIuUNkuO1r6q(Uy$c}$|NC}{|P#{vv}vy}W^=?%x8e-{u%hPOA#A`3B#rJDukF3m5r ziWoD>yU20zRkDbxQr7Q$AJrOD&wf)!YzYE;Caz`S7P}&h6ub> zW9;(Fg&i@@+ro}XXd;Q{-|CdDrGaOy%C(|673boXZ8FP05E&6`RJ$m%Ez(l=h=K@sRH@vp+@(D0o#pfl>h8EV^j6^d$T>q7k@(5 z6gIqUcXbU(2b!M|EX!r5o(-R)v%BcBOZ9U(4*EfEx}N{$X(=zyQ&-}e!lwS|QF?nb zhAk1WqI;^on!47jJ?FYh{{u!N(qBlHIM?9@C(d;wpMWIcT&J+t71t3@h9mM>?IpGc zQIRl5{ROLpdgVzh8VN+BcB1Mw0<+b|0*XBAA|Km>+$UW$e>zH6qWIIMxF>t5slP;B zGlRv_$$1W!<|6MJL{@X%KZ4ImC~Z&-q5wxh=e&; zPoJD?3`qsP>*Xd1s?P5SFM}j-0=78tig}t>6n@a^B^ij|eLB?_;zgOTtkg4zJ&5Om zS13ozQs5Idb*)LJ0b!@Wc&7wk@sd0?3FQMi-EUGMp;7y}*`0r7!`2@E?$DZ(U*bM~ zM8~fGy6~GhcFm&vkz4!wi~8+9aO`5jR0Zm2<-?7`0NiX15-^1{eKN9z^UqI>odOFY|Jr;#^@u#7c3f6aG-C!Sz0-rV3K*Wd#}*Z7HjMo{#pVK+h14{_DVwC=CY2+`3o?avJW&I zts$I3|NFMYGTq^Z`N=H{0`0fYB@)A|fK+S1tF6WNPqS{Grs93KB8<{S0yU0|3_EYv!B~l$E$T#T-h8?j#sBr-XA$C_(^6U{@hh5<_ zYO4{WFF66_@b1v?hJG%TkI>ZO);XDpim_o%SvI#D&I*xc)~$!ktDBxn@rA{zZgUtZ zXI5A}Wabgcje*e>%<98Jr@WFITe*Kkxe2-ft5P_Y^Qzn*;Kr6t3}^7`e75_*hAA%)Hmaw&t_5mU4iQ@H-E!qF6Ei3$Yn|G2F(Mvlj3ge97pj{c<@lb;(Ur(Smt zsk`VzVi#~(eHi$FP8)}b5V=ZBs(PqS(ZEu@kY@A+9ZwMhT$<*^8FSuGBek>htR^uK~m_xgHsFuOfT63|S;BEaZZwZWN@c+#4V6T$Hb{ zDdfIK2DNOhR!x@dOG1z=bty37`;Kq|`j7tYn2Th|gBZHfj666=KM3flua&WiqlNpQ z@Y|>j8uW?Qhpr~=yzx5sM0;SZ_Bo97BgjTZeR_RL-8NaI{nvcSqUQWU-r71hVn715 ztmz)bWGiM)6SY5wsD2KK?_LITz?{=g7c8DUm91H#cU;S0lJHa!0=Tm(FKO4PfJNFS0p1EA(y0VSFP?Jc`8g3GHHoi&=H2-+D;|!L{ zJuhJ1bVc)EJPKk{^z!k-LXz^L;f!eGj-azx%Hyo-6I0%ev_AMugHo3QF5R@s!*KcV#X6>9TWDS#pRcy;>u80Q<+ygROzYIh1Q(vms- zj$x&`!+KY<#SCk2*RZw-{^${!ro?3#n1wx2aszM{%R;m-mSqV)C!m_I&f;7R;!}CX zdq)2h5XYz?fcU`1E>z2`?+L2q%Vrz!U4v@!)^?<2yU-r*FX(NrZ~Gz*yOp5hNV}?R zyxivXFmE5pFddl?^=)|y=f3_7!@0Ne$v!hO!Zgs_$O!eFlW@+nEc>#AjbI2jn z;gm|KAYoF~voCW5k_BmaM3?|>l+`F8@IAJKl3Y!nePffcXL80~9c}F&R=#4ycPJXG z@`Wg+VKOUsI%?MYV<)p+HD$YD8G;>HdUH6HAfKQB`)W{q4;l}+jk^jFBz1^CnQpE$ zL+jH_0pQR8q}yu%Aw_*ArYM#A47^A@GKsTH-Xyt0Ky?hwyNXs4_Y{55bE?$Z7Z4ll z^lE#uKh~4U`>K?cm5g3UrL-W%WC1!?y_cuYFz$OIiJ2mzm^M!o!Lw{W zOVBWO)~qYeN>T4Udw50dP^omNqPEtJ`ZMlpqW(zCpF)ZG1B+L!+E3IZl}-9DsA(&J z?g(ny+s^{anW(p6@UL~eJB|TWB+bo9~R)t{dQ5TQUE0DcmlQ+bP=7;vy(JnMsC>r zRRXYmrx?Ii$mclp%A3@?d|lYy%sfB=f1d==_Nx*Q$U=kh^3^SP)|2<# zjzC?Q7f9f>@W{wPgwBh=haAZm#==|)!)_uQ)z(dY##G#|PNSkoiN?thN9l^7N|y$Z z{HEw+;pn@?I?L3o+dYREP7B=Hd(;WKTL}Q9#Z1VMM9d`7n2<45a1}}FwQhN$+T#^n z(kaf>L!?uK#Pl>FokFgasQE)(bBykgnxo^9Vv%W$q`!EiC>|LWj}*ou9NL_N1W{rN z`n&wmO&&C(&83OTp2Vw|2EM+woM^_&8QIwP?l_w=tW^!cY(y>I- zQmx*Unp(AW#cs9z>Xa^+i5eH_4s(SJTpd7o4d)~HQD`DH8^~+xw%j$5F0#0^zb&_l zhz4DnNd}!T;z9M%A#He|Y?(URZR2OOA!AR%#yLRecI~FFPatt(1Xt^>^{h+H!;K(U zX3dOXaPkQ1@>Yg@byMqWH3WOqMY<`2(Tt)yMqjojc^^rB`+N_Fx*?lJmrixOW(hGq zw#xG%&{jD<1zKUNO&z8BV6S>!0#OgGo2TmzcI)bim%5CS0AUDhT?`koE#XlZrQG-= zNqSIv&egRg<8XrCrZVpQYJi?>O(I0MC7V{5EUB5Lu~Sd9bT!25>fl}F0xK@nAc0d= zm=OOy(+5Ip`pow>T%p&@VfLrnl1)Rpr7?+?ZtQAlh}Y6EucgCpcDFG}PN^H4nrLir zS7U`;IfkJiPP;I54Ed=@IKz+K%2R{9!Gqy{X zelOKXvuVLz*=y z>IQ7i;eb_>D4q64M2|DgW07r8GF>@qnHdd$yiWP z&S(nswjhB$+d`^zO@vg4Qh^Rc&32cr+pXfkr6+i$1FAs_;B+`Z8FE*{0(`Lt{69nO zJJl^(8XSRc>~-EMz2C2a~1lSiN}I^Y`U?zZ+_RPCzptt$oJ1bhCG{yJA7L zj<1H)CancUdH;2MZ(*>3Pw^!}L7 zxQV+F^@%ygm>s>aZr*L<#m={a-3AunD2?WoWOkct)LPJk`+1&(XL!F&axCwuYH`B!=Fv;J-T!eE}35*g~`yO_Au2}FdZk?QchZk)U zkL*9!z*uTk+yHMv$v7`(eO=x*qlc?{18*u%5BFUWlXmIh#@E!XV5ZfN6U`h>qgU*< zbl|fjjb3i|mg;hmwyCkSBcAD`ZXGS&2gUy+M^-nLF4Pb%L^4R`Caj)3UqkBJbQz~p6Z>Oj5cv@>R~T%fh{nN8TI3JrZFu-XYv{LJu>Wj676y98#+LHh7Rb)mb;A& zNN#MvA&vb?8XNbI8f$eM>y_NtRwUis7NovN^+>dICW{W!*prueb9RI= z`ra^jvNyS<^A2gLzxsZnr9*M;aBX}ZI(TUL>hwe#M;=<(ZR{_}06lz2W4Y?BYHw)W zqoYoD8|aV7DuMZR2RBfsSMBaZ8;1;P`fFxlE<*~JXlBsC&EPpW;mB<)f7P^6ncT)( z=N&vT!&L7hx3R-*qcpjVyANq2U;Xh?Z$1tgi_aa)R>X^mu}tXRhA`}vLD7alf#D;C z5{r+orb{m6gV6n+Q(9A`SrRw)bJ1FEg!YiX{TS#j9<7P+u|g`TFz*NzN~s|H>LxA6 zOwQoJVZuTlHs>*WA2Q^I02~6E!QjVfl zSCwM5cZ5v*NM4DFK@soy7-p&#nvWqG7`rUr{Tyt7OS*vyd3Bq`^-N$1s-H>2n2C?K zJ0%wJE%H;xBGzD&9bH2~zv{Yg>2SJz7$6gDNHrS9dpRGy@kz1KhcEU}QZczQOAG%D z6C~k!Kht$bYDl!UDjSXf?`;{k+S!uDc^8pD4RuwU- zO==(|Tx)#g4vcZ9U=+(GwS-I)`T#xS5^c(MipGInAQWzV#NXh|b5TlkY5`p+^7dpz z;z*q{qu&dp;Cu7uLe6zqG_BtihDKs}E@*0eSR(b&`PeiDL$wAS0`##Mq zZmdx~fz^TM!L>?Deg$us*YWm3VF3vWf<6*E53%*g;ve?eCB%=w?!zg`=U*ZJ#_(?{ z|K{M-C(R5=Cddy(Q<55Hv^ZaXZSj}S?Si~pQJK3E486Kf95Z58LcHQH}Qtzm2&xQm<+4<&;-vQB?E% zhOtu%Y44ySA8%@uKWe4oP z*yn1Ci*?uy=u#PWAz)y?yAOkmzFw85siNES+XrIrduAH%FpJh45;I%5+U3kxHlTk7 zHk3;RYp`37cI3~yuK4cgUo+BH*I?72FR1J7j<$Ew+CIQ0z0>jc4LdmlFRfP3A&SKa zgH7Z32Zrr61?^a^{YoA}Zg=yzU|+aETjBqhhlUi@q)DMDzoTo5r%aB)|K!M7P_2HT zp9MYZXf#OwB3L&I1P6mPO&%T$)_5K!gH@tI=nmEy`dI=jqqo5{YuVuN$QoDq<4lVO;RF+`(W-hm~P0)RJ-7QDniS+- z82l;E1$_UmF!+TA>La8MpVQ}?&CnRiA9;q>F8}9e=;m{}&ycYs^=2rB`ug8BL%j^t zN0_0S)ut`B8wN%Ha2QVjK7 z@vQQ>1sl%Md^5aIQ0=VFz`6sgQehR|CPAM*+HBNSqLAhT)lQ7@iATCJDo1A6WEeLvOAnv;Yhyxk>CO_}-w3 z?~2E%;c_oYMyBnOg<&57@VOSAP0sV82vQ_G>ZybwthV610=!N(G94jCroX;aW)C(6 zp&1?CPy2*cq?#DB;M<3%3W*tBP^U~57U3|arr*qB_KfM>EM^Dr^Ix-=U3t)8w8iXS z#_Pdoi`g|l;Gj6fV)nsFM;=DC-B+&)m#8n{LGi?3rZp#8E6kD4zC7Pp|KdB^&^JEw zYI{t6eCE_>+f-HZT4J4g+r?NCO^r{#IzD}>%I5{GFqhp-f}gM_?G+OwcfrmKg(3r) z@}$M;IB0w&vRDVgdVHjUx5?+u^;r6lNP}bY1&U{0)s7}d%fd@ybXmE_4!dX`1`6_J zVoiUe%W=#2GzQumTnxN*0GWSvdL0)7=kee$Bl-jFxT7f~vAiH(Vl>>S)b+ASkbip? z&S%Sb&NSmO$S0)+(KvG@Typ~T4nF{H4CoAG6Je-UEX(V^&){m8dzyVg;|U2z?8k{R%Wx>ncQhj z+AXG*otP=sa*M~$p~LO`IP4b%#BT#4w^`wJGh$_w1F@>5s9WxIf$&Qq{ux%9{Wd`A zwp<`Tv z&7Il3Wxt)Q_tDay#z4Wowgah)Kc9E54y?EC?t<0gY3um!m&wJrKgR_d2iq*nti{3B zpKv_gc!h3JLV>v3ec?7@TF`{te3$+&nu`+UteJE!FC2r5{|-YYzB=z?U_mG0<>q z^po7^$3$=2q$a%oX*|>zh_z=1hbE1qdw2N%hoe)_ufE52XLu}4uX8E zw3IE&{!1tloH>NmtM&HA@pc+T2-YvQ`rK&MPt5{=SfNS58Lyc7TlJJ?UEzu-g;j9n z7PJn`1?|XGz>%#T)y}XbP6^H)wWv>=^lk&_eD>u_%FGuK(duASyDi#jEE-EDN7P<-8IC1fh>P#udcBocuTwDg&}bj&qc=tOwfgH}*Xlgx zlXF4Sbn(y3sd3RWV%90c&a|?vw61m9e9$_LGwUQZYm=G*0Mq6GZ;jl|$)Y6I=%s(K zMqZV4S))v=m%B!3hh3voiEM+HQo6fFniQ}`X;70)E46El(%G`Y5Fw{bS|bq$f^+1@ zC?Pyd=iToPkZ#OoxF1D(wx6W6{I^4NauPl%g%-u1R-g&qwx&4 zXD4f=>~KICpVa$G%l`}~ithcj?!DXe{*1%nU<^NVeCMK5=EH57*4=hcsgrtN;Q1aSWDgL%{fIt<3@**#boG)pODKj@R*FYLL2s zxjs@2x${oa#~zVdI86&S6T>CCKQDV}6G$okMDwOqyV3q%hUI2WAty2~>$mQ=+caLK zt%qB+DuV^>WMbRVS%9C}JDtL3gxVT=akH;gKbGCm*cr>>6zx=EvZkZ`(~{TU{5$A$ z-f?nb-HDHpe3ESpz;k24=>F8XneycK=m!`|5{iEV=wH-Ak^gn*PjI3C{vpsWJQ#Ym z1d{|t>%cq4r}}%kn$hJR?tO+vS6A1oNsD$SeT%lWGwBJ!8CI+5+YM_NIkGotS}oo} z_3zaMjc(sb5zdlg@?E}D(8x$^6$<}$M91t6bUU=JImZv4|14>GYTMUNE_t$EiCuT zTE(s@NPkMcAW&dT=fCsLJ1Gs9YsYDOQ?=@Iu_#3Bjyk=rM9us({=Lc$`2pP$?P4Hp zlX^T43+pZi>U+hqFX2GlgBH3Rs9%6L&>1&q6pK+zpY56~BA#&r%vz>OasW#QuHe2{A_Oz!>pSzJ=D!c#d0*$bz&XYE6Am z{prjK*9=gy_}wduC>DRBUmNkz!jW67;Uft{f&tE@#=5V)!DTL$X&LMbT=$8xCeYg)+BGUqdDaxu*&-Nz?LJ~lv z%ZuYYSZiHi&GV}OxFeBAvTCh)0o8h(3FzzcO*IT76|Z1|l3-$dwl%|VkHUcl+v6Z@n;YB(# zuRSe?N$Ls|@H)zDGPt%nGYh9#rTNXJrxT~Qbcis`I@FuGom%$z>-MQiNk*4Qhp(y2nKO0TxY)>&h( z=fYp*2U-5ws8h<`Jcl;K!O^M^KGupZqHiZE+nT_H6TXN`&fPosHL+Re|Mj3~D$|P> z6?@9Cx`BN@k-WPP@=LAj2Uc%TS7W7HC&R7t^9Of)s2-7tO0gKRZRrKepR??lmqF%F zC+*;t-(U%P-Sp1*c)8(=H!Fu>771w{pN0x4U1-dvcsMuNpk0z?thM*l`|3xA)rtn~ zX-a-XnH}{bc658XbnhCA2&r(!4N=WNhkuINvzxWvJZ19E*KZ!>GcWU0_SM>_OAW;j zRlj^X@v=zWyizbGSM~8;-kW&YU#0L+UhY5Et+_y6O8mq;_0(0gif7kb@{Y(2*YJwl zLHEE9_l{w@WTJKKhu^-ZPa$o%N-HLS@LJ~FPS=b?v7Z|@KdfRBiRu)=H@h|T^+;C< z#|yP9@@GQ0i*&O!NzEPt!8~G5xuGY{Oe&Y?J_zE`JsNTA(C$0mH2_Pn3xaXSXA$y+ zB*BEScw#R}T6GW%d+7qR>=MBL=lFABtF6BG3G2Y5ocLHDGhbs=3ydJXD5{EAl1sMS zEph>$G|wY1f$c{Kd!+JU@68<5S67;$I@P*`kYUxRe6lg-W#3gm+URG z{A%BupPCfIL(Lm#lh;$!?WwQ(#&~4ZJ&L_QEiC|I4H-tEJQBZ$+uTl6Z<8XJ_?hSF zS9xld`|6Lpl2s7yfS}p3CrA(~INOkG&z6nR8#_Z>*&hsoIHdjr|D7p$+|WtR(HYte z(@DsqZ{2YqUf-jhL2g!ep2B?aYABh0Z`GUeMLA-08Wpyi%=_u-%)3s}qUNw`opE#2 zvX6vMny!9*6X6BsUnY|=`!e<68EkrIT(LTxt>la=Qoqo}3)NTs5TI{R&+?NlfAI$| zV77^KlI0!*VLB$NlsA9h@yl}i)f)_@J$=h#Zjcha2YN+sB8bM(#NLdy1=O|7N~|Bt zp^qP$J#Kpd9qh822aq3bKTiMZp@qIVtebP<9-IXn^qVD6F&PGtIp| z2k{;!=3p>ftDtUNEV389%Hj+EvZ1zS=M#KKByuuAkIe0(#4WUI|o+G7F>ZaSL0LJeu**w~s_rF0>RuTye&^ zjr@^pstD|mhXxvsF~N^utkfz~>J-s+i^`T~I*L*^^|TJAVARvFVp=^-URMqZ35n<` zwpJCqvf zZJif8n#cSY6^Nu+KMcU7;r~A;%V*NvR*QiG-oD4u&@j6?u;7Q(J}Wdm01J$=>8p9# zNI`tQrC_n2Z$7?Z0<0?brut%Iq(Y>h6j(Rvph85wiRH7L{~vp2AKzqkHvY5?ZGcJw zR;+?j6%_BRUFYLK8bGB`o=_#+i_;A^eC7+AY`#uWQBhIL z%i1akh)jzzt;*)9sS3)VXeGbzbnpL>LsYDoHekZt|wsy3@Rv z?({=zYZWS3l<6n3z{8Vly=f1AbfGtWgEqb~YWr;ONk(ap*@9=Ht+fA{P{U9IF};CptKUd!#72m5MsQ$faJ%Ec`zE8Q9bHo*?)2v9s~=yhgJ!7j&%pb{ zKJD7VS-*V{F911!A0@nvNw36-r>|c)W0ECE203o-RP!4NGFHIjxh2NqUoZP8|# z!hucF*kPn|VfuXX_;{0NCtwL&>Y3&A{!B|>1sQ6E2$i;|IkP*GflrXZbf6q_o2e&E z!QzC1gS#yFoGCakp`fFSf*Fc59n$r8w{&#<-swknouMGtrQr62f=_i(FkNN!6yil? zXOk4w&TL-WMZrw<9a16+-UBTiD|qb@1to%O8pOd+KrL44!h}-s_ynwwYQiodR;YJk zA+ywq+|lv(dr#{$OQM~jELTtP)a2qm2{B!|l|xD(HSJW6{Wxc600Nk)uqnbUat!h5 zblE9%XdiZ;>seSFlp{O+>U*3q(9RLfk*HJ<>%M)faIsK(^MLv`9fan@-ye*Y!Tu3b zQv$(keTxc~kjeZ+FwE0*k`oDu!xwHyHJRae%8Ge`T(sQmf9?)16;Ca9^*azJ!WRC9 z#|$+ljE|2tmS2#r5@R0_%i7K&YE|Q#>7Nh|&!=~_zLA{S^+Iumbvh}no&23{YbcqqV`4nnoOit9uRtU zgJgJnUVemYEBI^HPlrv?OZZf-UP4`*1is`*VHHiprLc}3kCpOf=|IM4hNhQO2VeKA z1`5Kj{Cl8lfT*13qT z6s(($ppHuhIY*s2q&l7zV9#~$@0KadHjm3-RdQapF9U`W;j zsa}b-m%wP*&yodmBh()ikV;@>2({-DfigVwXALr3BB-dlx^v!XvV{CzOX;v9ktE^&p%yiZLOufMQ@deH>3p`F+iuwMe*Z6dZI!W$_ z_tqF^^lfe2(5teSUibG-N?i9}2dgvU>n?Z`^5&qPNP2ADE$kq>Sa+mvX5Fvf5MTH8 z8#}N29<`uH!nzkY;Oi1;`O8 zvlg&#t?FRyp=ixQ&TMH7Fdgu-Q)OyahEwSNQJ6DSCNC-fok5Og&2EM z!+tC&k5=`lS$Hdy^?C+H*~%1My5%|fDOFCjtNeinVhmPwZg)%*!XrSL6{Dvh54r~a ztYQyruG-Ynrjz_Sd5j2WHMn&O0@1}As(J^T51BfmG|6dgi%RcRJ*DfaZcEA!MMe?i zaiVp(JysN@<1+~oeCJsxp9F~x87i@eT)FS}~ z)qNQV#w1l{czl-H@v`jeZZ-eIZ=!5RB#UT=#CpSk(%4g~YA#2*>=Q2Dp{`oY$qMZ7 z2ATp*kzSS1AE2bQ2vb7k&6-XC6*bc|)Pv-r{Re=Jbj%!yU22}g9En{96*b$ah;WDI zNKB~HN1_?Y^waA)ABoNCXKC>xu}hto6h9J8>NI|c`Q%A_a=n=-fZv~NF1G}FDUOd; zy%5Jo+Wk*J-5{g+bj!^RxF-P!(&$FUtie6jkRksBzXe-obPzLIR|L`zm6QLydY9UF zyZ~q5Y>k#lpqfrQ#F%sl_H0(?Ag-6s8+h7s4F@4yyi$Fe=0xdaZC&D98S*_!0CO_F zl4dmQYh*Q7qF$`y2!P3pgPQSgH* zG~m0!zB)<%=)0dNq&w8C0g$Eyy=rix?rKKe^?R#)hgH4HzUrE}>PE@b1|#OwD0v6K zr{mq9*^uV&ZomX*+#v55&+KGt1HasrZY(!}qB#Jiv=nHTi|ti?S?v-CF&Ep~7?7O% zng)_x0LjwVI|IpDRj6;J9k5*~%%f2~-qwRp4~azDIzZ!-OamH;*Nc5$fvWV4m9=J^ z1LSy=E33FJc4eJ{{6gA)koG%YSsFevbac?J@2kN=4>%XGNaKj$Q_-{FrT~$?^nv;r zu+wqJzo+>|`;Nz7QUb|_HJsW9t4$5~zD?gXZRTLL+Xt&Pwq^&{>NUfjOqIUYdCgi? zAAP;(JHAc*m6q%~exGXOhg|%1eA;(SoakYG@$;1ba{N4*d&3;2GQCVVQ>)b)!d+@E z4e4bvN-`bBQ3QW8Krt~wFyVZ~b+m=`{<^anu+3lL8sR1&CsMiLqmNT)x^)CfEpg&7~$lCCTSq zG!+wa23v3HK$Awwaj?FKCR33Ja~nz);%!LoY8IZu%^d_(M9}MAd@J8-7W!d=bU#RY zE9s}DQedfYxUhb{)qd4yJ;$966#2<>L2MF8SG8p7z^-z`{m*-FLdC1qujEsL z>+xjUK1hO!e(^~ zUu6?(p+e+y-9dvq$)~LT1Plt*p~X(Y)~t@5#VwfofKcY51jzNaRb5sp*pGz|Uf<@h z4g?!KWy+!FqOY3I|Hg31Ki*cx@VSMy0}ZlE`~Hfht~am&2mJPFlJhIabSb=>ko`N= zZ69?b@v_ruOM&g%d*H)<`@<#CGrsm7n0%4EC-Mz(PQVt$uWU;Bo&$?e-ijO~$! z%G9J&B-MH>;aspaQ?n5;DBIY?uuu7|X;-O<7i$*KkR&=Y#w#y&$J)hMP#`rq?NtVz z0?i;>%f-r?wW|kkP!YE1FI)r$Rc;90${BIj+&b71=w4qiIH_d`%WpW){ElT4x`9Bw zSS^Q(>*P@5Wx>_2CV&zo6*+gWn$Oi39yOd@*DE#P^#kUW4dQQVo&0X~GSsE1QtB_$ zP^=(#1u)e^`jt%@ebPI2{~07M7H%jYB}WtV;6?=b!d(X1tF9x6uI8!AUFz!FAVNh4 zpicJaW6Nb_F78+HK#2TE?Cv*-080&kjNw?HQX~0x>X53fdnEu`=6A1P$i-+YM0_c$6sU-@FS|xx3up~NPYy%ELHdLN!eMqus zKXL{2IBk*Q&bNl`YbG!HMJ5N5=9pA0qaUO_XvYM9Mcg$fHl>-eQavlDc z5|_T){0l3;tGE&snSLG)yQr@I_%{Swm~hv*Dwba@j7r+0!l>Z+_XwY(rqI7!=e>zX zZ)(VZYCh7HAkjfIvgrods5hPhT70cKPIMDy7bv{I`naMDscsb?9$)*Ss2Sj!3^O*s z^`FNEcrF7hWq`p=$)+xZHbM$~ zXcje8GE0zFs5)IuZ_?a^_2KIkG-IU=sjuoI$#l9)GM%24g^|?CVUgs@Q;Fy-0i*l5 zUmyuliB+ta6J9TVH4(@i>`PBV*xBG(6qN-FtPz`M*w30TdoWYAXyL%!z_a^~bGVVB zfwh=nL<4Koz~6{~z`Zzwr?Gjz34>@h<{aj|vh&6SH#t>zd(zwVq;LL{nY2?<1jyb6 zKmAVaXZtKt6vgm8#&*TK5oHxCaH&T6K#XjJz%}Exuu~@5ZfL~a&Zp=PxF%ZnXLok()Z)2#u zF*HfI61WUvkXL2PC0AF9>@9clyZ~5nvs$^6xk<2#J%LXw-$tvv&YH9tXB%n7w+$24 zy^P*nR_9%JgZp@2vwP$oITqN}bMwh*KUH50Y}%SqJ@v6n55=(@y7ZL2LpE@_XaFHF zMwZQ?q6*e8GJ{?8Zkj!P$WCc^gEZXa9@!*JsBXAU8ve^JL8;R4MBVV$05LaE${uUd zZfjl7^)xKJZ=k8Fk9XU`Uh@$g&c^t$B2;!$BsDa*B2;vf%&)Xnc#1kTPJgzlLO#)7 z+61!E$6!IP{ZI~yCYKEZn1WR>7o3<1N}iRA ztc7?brAID<4HY_|sY)=ga8K&DV0=)l_+n`+tnz4hRHToV^l0Bc2|3@7^MXDAAG24d zNkB-sw{?7z5^EBem;{34Ruy->YEha^81gQ%AUSyJzD*7nC3)X-k8BJ(?}BIeQe@l3 z8R1DDkqxg2y13rNv`iN5)7`QVCx`;v=>9HGOIL;EHhYH`2Y@WutwOEVc<U}J!z_(%kh{5E{dP8Gw1wtJR{3su z6%8n~Br~5G=a{HIc}G@Dg^QbzScIyZhI|7XPhi68W_HN0W@m%f>Qi#+v>m82HlTf? z_}Mn8i{HaR9urXSp}?1#uA;O4dpKuu(E!#>e(65*({8{`ySjxpQft^iL-3@2F7U(+ z%kvH{%UsPyemb+EOaAJ>v$FQWUtPr^l_pN4iH>W`5IAfIhk0+PT!{~6`5tw((YeoN z0T9@+23RkFqbVl_e%FeMEWpAM6e-X~qD)yG!U}HZaW$Ayu{uKzS>mbWS5tq)qBO{& z5LP?T<}PX@tacxqlZur(6Ib6+q^2b^?Uy1-9?-%xCF?BXjD9JL19`yWDE;KSk7aRO zYSLG-I7*#xhAfUp`S@)wN+)*xFn+zR@mT!&=LFU_BIf^s9+qamWB^C->*gNsAkDxx z`aH6JWh@}_nDRBOn4Rf^Jao#kNs8FYPZfvGZbovBeFu!xnF(qkbI7kn?HuvfAO9aUaOXW7TbnKHSY`AhDN;& z(2~eYs+wgR8r2rw(6qXdk;rq4S83&UqH8_IK`?-#W;0S_H;q`3@cfi*Cg zJ%FTa{*a=1V#!=i7TxAhaT5kah1NG#(Y%!U;5@BBbI4@M2)L(X;5LfGhWoy8#kz-f>q!1gC3j zBn(2zL~G(}Mhr3hFVle#K4xe@DRBv*>(aLr2BFt+E5&znO-k&f>r*+j1Ew`@1f~u7 zfP@#3bbJKb8kZ4_wMT$*#EgK@fV)IRihNjP18VQfj2nyKv02f;j^OnkqTsa&F<1#U zMSXC_>w+DcaY#s24{@DXV?8o^`(4=iAkD8;`-qh|qJ3 zZZ%INkq{=hNf?}|p91qjA90%qSLzY8bGfDnq55{@yrniJo5>ohFUe3Qp3avJxosw9 zQ~gF(c?)LD|Ixy3-dm^NG6*_jq&yCdtg=Q{^c*Sct|RiH+qqn3&3q?B{Ssx-h)Rr= zRDF>@39%A39zv&h>#K%@r{zay4iDB1g1INa3qc256V=ySW!~+i$c_;#A4siDYH@#9 z?Q^X0W2~b5uyYA0yIno^8Rr+_*nMZqjfsW6R$R2Jo(dQ&8sjaxGOz^;%KD;nlGOcI z^}E*it{F)Gdc zj;BGk?VOA>yQ*(=)=kk_6&AO;h5r-{#VwMMBGZq3zdEd$gE(N(IaLH}oHLWKBH^(! z)fv!KRO!iMe)2qm8SD&+Br<2Zx_8MTp$g){RCE8(o*f|*BLWmyGu3}lPP6DDE(KO= zqk%qRD23N`+<-qa7j~yqeSSwTZI`%52f85)Mb7q=dfpr$@=1v^?7TQ&ySZy zDASsq9(G7vp6;FHtU8Y*ttkXb8AmTE*6nyAj}ND>3Oix@3G7&+^8O42i>p++ zccwG2U5i*dXd2c-=%0_?*20rsnvzGPN{Ab7e0lRT^o;y2ZyENFHf@^A!s5~>&S)5~ z1+y4^wFfsI??a{1O>;6KzeHY4&Trp>))m@1Hu=Aeig{H{w zq{yUp8XfWu(8;&%Vdvev6Dof}tbQh_A!RELE0I)bFAJX;xC#Lx#;@5I&2Ax?mfP!} zkN3uwQ?khR0@$5$9t{uJm;E`%EqB6PCxL6{L(0%a2k$JmTTY z@JeNPThtW{Ps{nHoF#%8*AUh<-`OwbHYGts$MyFs@82-}!z!fRP%Qa$peYtDx)O&- z7n#N#SQ@6oys3%8#KKoe{wnW*xg@@75u-%W_2M}e$dq#GJPHkIlM)T?kqtvgtUlyG zjwHP+cI6dk%&A6nKO_Z0+uJyM7V@zFLfWV9${u(=VY&ci98ABfyP z>M8M4NZwjnkeXjeOWH1@VkYtxBQnj!))jz42gLwuzcU=3&ISrDR>!rVMh-5cNbrwhsOPA!m3N42L)zpG z!O3hfAh%7|{`MxvPL~krq%jIq&+kbQF~|TR=ePRRyyx_F<*~E_gz%bW>gz}3xb9XD zz6xG2#)ac+@PaTY1#7S4f;HV~N1{MjlS`hMQKYo6iWcGo(Iej$YW0T}qXg{n6$CPiXyd3sg)(lNL4ePFIc{s{XvEh*pRM`e&9 zX#c;FGAoNyF=a~2pFw4q#b}8)uWCf;0@^H`ZjGBk-uRGjRZpT()rE>z2Zn`xj|!B% z1Yv@Cn3Y{(Ua$+Lp}^WuV3oRMub4*Eh2~DCkxzx`1UWrHFsO+B|%oiSw6+Hmn2tH{+aP#2oChW)Uz)y_WL*yEw8OW}N6aRFj`b!F1xx@+9NcdYRl6U__X<-jua z7HM$Jnw-T_w8&DJg$ZtQDbGeDV^7ySUf?d7{QeDE#;$k4!OWNd-P5*)y;Xko+~2`e zoguXeS-txB4`ydJtM}K4c*7{wAPrq=spb-GJ?8N6SKlGFJ?7mc zBe0EIGEh#7f;ydliMAUbJt)XZ?Ecz5;#*>`8FsIaGdg{N+p=pB)D&9vW$T)gt%H7b z`>Smz4%)&54=6%@-447>YMa32cYc|=M8{<4FXRNPx&Z$pi9|V=8dG94fj;jWITJ`v zY*|>&2RO%yjMBd?w)j6{@qcAbfY|V<->i?T!=`J0ZogB@c;Ii|i^X8@#1kMSx!HUsKc z=z*)`Z>^ud>dRJx+;*~&;o6&6c7jCQL&~=)Q=-pHIYiTqqtt6p=$rfI==0K6*tgiP zewHNpa*=zOXI7)S&lI{m`n)tP#v7{86iTCzJfl#RDKwCS1#Ugdymwzy%Bv~nRrmVZ zYbfi8q?s>C=42Lc4t{z-&3zuv5YP}f=YGLKH|pQoHfpiDnjc|p;;+W@wdPgbPSsgq z-Jsp9pw-c`U;S_mQ3D^+*UamnQ>;>u10(W64y;FuR2doZlJeE+!hHfkgenc3Y1&%y zfHWO%Y8$d!wUZOcjdc@EiNORCt@l3G)$*o#s)lLd=3L~NM{UHCMwXdI2G9sLsH7^V zn_yV>6yRv{l!R(W@I4&9R{qxB#NW^Zx%}nDbp1kp(0k~C3ciSVwZz|0E2SOzPdgfF zXUI2zCiH-`tX}vd4hN=Y@#d6T-P=au2%zF^mX%mizB&55^zK*xBa17S23OFd%lVER zyaj?T?8`?`K7xO_{2R`{q5K=jzyACa3y9UMrv{r^0Vo4je)YT8nbO9g_GaAmE(UT* z9D|?SV4n_MxWv*RYwZXntKXscFcVjAeR4<>jX#zCF&O%>{v55=&`KQ7-oMA-+5EWu zE%tCA1TFt|eAFTT9t~>E=idna?E*`D&=w2gS>C)hH-Je>5B?0^1e~Aytc25BtP3YW*oL2qeevL5(#U3u^q2>-;GzF=r_;2PV4sPg0rMGjb-B9a{Is#3#-Z2>d>t9H(Y zfX)lgd=stML0N&Hftxg1AwtJcj(bDlP{3ZlxSLXRfS$b_v?)UWEnn*0+#p;^S!K#J zIa76er5nNmVvjc7l1Y;CmgJOmaP38H-b1rdPi#`yNC_I1sT@J4 zqD3GhECwOv+k|wP#C2E~3UJvpL#vcohag)nfgFIb{vrqvdjw9O)5>o%(ZACXm7 z!3^uokZ(2Aq*!`A3K{iSR8vCk#Sbtc%gwdEF?3M~yI{D1Z1e^CWTK*GW5gZjGGD2&|D+Azza%vdgdvZp!mDEyN$Ud43OXLB;G|1m(@ zXrL(?*jzD2bFPiJs|nTVS068CmetKbpsl+wMCJFYcC8Vc8=~@%y5nhCj%`>oqv-Wk zuW{E(bOxa=19cG(k-qAkl|8lS?Cjo@Yfq>%8=$6zk^^-B8=wMbc3w&a{t7bo7>0mO#(*ao)Xl!SrzKf)#_6Hxm@L3 zB_eA*K+Ua7Xx~W;)Cw#?s;C|4S}qYdA2T_4t1~G)kBE~sq2gukJNil~WK_lj&#x}V zVhre6`Id$r_u}6OGmujr0#Ol?<>&uXwG4N-v#bZ^(JJb#r07g+ z=Ttx#01QL-Opqm9hOgbHR{7m5Tv+=pswR1^SI}GUu6>2Brpo5sx>n%Qm`b`nPk=iu z>TD0LgHoI2gj{%&>jN`JRPlF%iiHHslv}aC8vGfx+NPkoKfl6rD@mBA-!a`$k@YT2 z!dA6xi;$xG8j3tw?}_6W;YkWO&=PvCNYek&x2sG&D5Yq*o|ZvzF(SS)$qpN$MxmJo zqC3O$2BKRL{6n49<;&7|ZTxIgC}Q=M7Ki~W4tV@=5xK*(Kmk#CcToUzY!$eMB)ud8 zN>r{dN#rPN+uNTHdDFXYPB+FH>7KIQi-+GxpUc)?$nAp<@W4_6J>UmCZaE8F=+Z3= zNu>=U5?!bs(PPg1sV`lNK8szUUPN6gbpF)mkq7c!!aA9JLc%tW!};nJ+>Auzg)&;* zU?v^2k{0eMRz^@lsq!6J00}J348`(S)~!^X-nobv^k|LTAswcDXmqYffH4`4T9--1 zjKu!`!GZ~nIiNEG?GSM!qFC1JuvP{i-pbc6)4d+y!=0MYNv*nUV#r}lR610}`q&(% zc539WKYScv83(!QOI5#4O>`QE(fgQ55=~%Ed_gXhU@>K?`9ZS^dc~?f>ge6pj16?ipDk!pEnH>u%}5{P%n@n^ii8CMR7in=nW>!`0!^8DTE6S;hog)zSo3; zEVd13=h%SOc&`SuA*q#4v91BgM(Qpz34@dhXbD6~AQJ)3^Xxj$m^z06XOAQ6RZM*7OEQ6P!j z;RH^i*vADtf!$Ih+n_CdWI>*q$(0;d;y8E>^{k!}oCFE~?XJj)Xb5#|5vO$!=LvL* zx4FFU1ghjPK|2!ZW3E%wX~}t$oq=w|r;YT?J2l`8T^dOtq8N`e1E=bPhtUXhhTCe0 zIIVS-4u4X$A4lUPsp<+Wj2G&ID2r0vC}pCgRQ;1;1+K`o=qHJKoa~+G3OKE=BPZ)I z++xNMx|D&2M!Mv$pS-f|R+1T!-$^{(QBKC;40#xopCYKUolCDsUpgv%$w*wW+n0<@ zuem)v$zA)AtW>ghp3}W}8((V{rYB*M=&s!$&wF_f2CA%a44ptEed`MdLh@#5Jvq}< z{>2i-0D`w&7S3I}NQx&BWh5!k9jq*0s&2BsKu{)?=qM%y1UPw9RX$C)l5wu3h3QKQ z(rGP;atyyzim1=>NCb1a?(l@f4lj^OSRCs9Xwmc$xZ3V?0%e(pg+}inH@$a^(_Nbl zjMNvUCxyp))IR7S8$VA}_5Z_#B1ZnA;Q%k7&~c8@fnOL0VLAo!T(Rj$SBax9WPnz$ zgux4|Va9&XQ$%eE9|d9`Za)HIKfdBWgV@KY_kR%kZ$j){7yaiDyXMJbK|Bl4C$D!~ifmfID4?fr;t_q$d9{z}|b|Q31C32>|x4qX6vjhzt%xvDst( zGk|R?`agjEw^8ihhX3aPoA&rI0Cq7AcLlK9AL|le%WQxhe++;XaBadASBSQW>V|v& z7vTDjoTGy4`3x{}H{g2s6~5f}fAIBh!&mjN{~W#^dE^-IHIRn8g0EYo(vb*pybWJP z$AB-P=qIXPzy4pq)m`Tw6|Q#v3AkDgTp@xHg|mgRRl0<@;KEyG#NFX(PDsYB>Zf&Rfylk_UEu2|5$g(F-a?5$MuggF z1a7>hWhP;Rq(9+bOJ6e#?4hZ7KGz)gqH32gvU7Wsx6Gn5O}h6uB_Z+8L893N7bb-K zy9hA@B3{3jLqN#CZX#_-gTy6b2o_7eHmK$S5!u_dll6CO#Gg-F8MmmN1yY6B=SxJy1 z-5|!$dFW=z8W^Tv>NV4Zjx#2oq)Nb+0EUQ2RI26VWU(#DkO;b3EU)g-miitTu^3-3 zR$suvL_+pv2U*WO-ixYEj?G_>Zyr8Mc9OWra5Q>oFOkg(_fhed*dd>OW|E^*Aovl& z`e@KOG7x;FQ!V&wAu-w-F)(#CBq>@z0z=>j*qibV0+cuu&&Be<*^t)E%UD3%^mlt< zLMsMcCJv^nAyr;0_oasjc$xpa9q7>X>b0u5GMe zqSZ+z*xo(}ZP5m)KW-IcBy_Et2}j1#Z6wUuW!Mk;HhK$PWW718!9Pobr(*qyPivh7 z(gx@=@wvcL6<6cNca8ikOXMJU+2cVYL9Fy~ z|C&Hn!>o}WO!Q5Rt3HG)!&Bv&&r&!g{fU}gtmq7ZlpGqP&4HQKUf;^vqk0Y;$+@oA zdKDccJJ>p~^Ku#vw%S$6iD|~9THXB)yA9vb9qr|*GPC5II?;%{;@|x^hLxeT1cgYr zBxz|<0fPC1L*6WzD03Sl3=H0RyJNoR64v845Q&8KxVF-zhS{z6r1iI%goXWK&i;h< zkJa=KG;#O<|M^>cfa&UVRR`d%t)X|HdK2+SG&&fjzlze0xpPU8Ark+d{ob8qy%96&2niJH+LLh z%=vkI+CWS=WmNq0TaKvTga?jllBQ1D?Hv@G{n|;bB1ShD~G`*-* zF4V*W*dKhB2@VYT?nW+Vy$vGsh+2ws-|Jq_tVa0qLCP-|VdBOKG+E2^vTL8Gt$=}a zuf13C{R^(k@T-$`Es3FG<7-<$Y?XNA$|>*=v>#EH^`_u*`(0_p%=%K<2=0=>FNh)q zU7{yE4uqId?@QNjaQE@3ZT)+i_{Q42m^%b{YAJ@z5F;t!vE0rcLg72efvC3A3`Vun zLZi~H4I-sB_C}?ZS?cFo81|ki*hZhK+i&N}Gnltx#o+OD)~+hJ&;+lsrKRe?^IAP2 zI9SUSODhMeA@Mdy(wQmgMx+fJfmhVo&3ssyX7U$EGpjl`BckH6oTzmnl2G&sCt_qQ zCd|Q)^HUCrYH&cFCPN67^ml=Ah$$rMsgOik%{QN|mW zHLt%CBV1l~Pa*z1M&j|B@dDzI-$j97E@85~B2kWxRH{{gm%5tlLB+@bNf}ZL| zR8vE<;Ge)IV-Ge7J&EiF3PIf4Tp+wfq1C86pDoS zI~@&G9)8uQ2d68;YKxxFnNTm^f|UQpEbVeE5z|a>-eL~{x+RBHUV*Eshp3{{c@_|N zFFT!tc4-i3-l>WS;(x}d%rJpRCZ=2G3ku@+j#y99x`9^Jdh*%w?PSD?%tLQy%N=5U z5EvmEW2puGdJ$nKE9;F$k*+TK4;vtiNlRF}IXYwwIh}|a0!^|FMMjL^`$0`$B(qpF?x7IzIBpfeC*U~oQOHj}hICVnw^Q@eu9P_rt z`>VR=&GekS{m}YIs&}Tx{j2qqTD+Zn)ecNy@{Q8xJ(Jscd)1G~?VLsLs1(GeLm$++ zqBJw?rJUu+xuSQP_%5qJ2Zb1UNokfW&19tBq{g3~aI!m{1I-agMwrj%5;`vpY}Jc3 zx#c)6GYGPE^#!ExI-A^FnAc)V)?QNKycP#uMj`4gSj$*EdxKNr7d*Z^I8;*%q`p_3 zKS!24U4#zQonz z!-}*#b3GG7)3}Z&ny07n^tAH!@c90`!*USOL}*$jVIWubbleb{HX`l=X5#fhKnNb+ z3js>{5n!ev)dRqZ_x7ucB=9#L*aLM0dD|qMBKB}jBffHZdP7Q<3_Uw@LPlE z0RO8EW#RER5gbPCcovdxJb5_q#*|gS_PV&OgZ>5l6MsmMA)7LeFI2kNt4rwTiJ<}E@yw0!xzxfZFppvF2`g$hOJkA&TU={|BRBnwV zV43{WCowS)`bJoSvhdiO8d3yoREVvNpwG^NO_-Mz9`CF#8sShmr*#9OveXbhD_y{r zI`}XhB4<2_C&3%h_-+c`n2D>(JK_O;`#=X#oo*k2{58TR5U)6RU1owz${IDs%EtNZ z8fyVvFcI>%z~ZO+)%6@W)Zq@vTVK^9xR4AU%X|{|aD2KNCmT$cpVFj`E8GWbs$TT* zOK@G8ISbFv8V+_3`8O}mM z&f}a@J6e*hpbo%KLYpHK)nrSBc%qtP6oiIMD5zaZdef+C;Jy^py1kA?im{O}GMrVn z3~(d^ELE%JEnpqXnQ0y6O)C(N6W~kH3w#myu9XjHb<^slY!kkLRS=`+CRNV(;6zPhvxQyNma}g!<2P z@&2y~_3ue|PxpjV>X0G`RuT{R%6xUP6a%EOmT6QCA}G*eD-mEKD%^@BA?i0`gz(t@ zsy{q@T#}Hbbglw~2jeiX)!~eBCutTb%V2@V4td4`AYKRrd%MJZN33%Q8$dvIwfzL!9oaJT$pQQc6oa4SX=7S&fuCa~xi0 zPQtvwj`xmEKbTTGX*u$z7lq6mW(X6c$j5*CVH9MxsK51aSO(;g9KeTIs3C zShhh_XM~0(ALf!&Bvn1u5Tzs9@;+0MjLm>-8@neUYX}PswCCXhDnLsrBbWLmc@Au# zrN~s5ERGGdS6T*WZ$l#Rl$LJpi39EUo7DN&$%06`d-!Jq?N_a4K}0SBa>`k0;I*gz z+@o?HXF13;yC9uB?gnNhECI`Lf4jSgn8A;GN@iywOH=;4~38Yx}me`a3>l z(UNKw_9FLA{T;i_54ZmDclp5~nFe8&op3J^Dm})5bP7bPF77U8M+IYr03-K}n3*dZK!c5MPK3%2HVU{yH=2C+)e zEAeQOQ((EdJTI`4!jm==0|rzIzWnQT#$LWJ?aFYfPB4RLWDuj(Qx!6Z#>ffQxG`2z zBrR`V7BrLtF~dJ2$1zk>s+KtWAhQu5z%sS+C00{f-ngJ+q^|f#<$f{bs!$YfP$eeG z^ViI~gmqOTyRj7A)NAx?qiN*2NOZA@P7ftpmkV_(LO5Lf1vi#NOTcC(X^V}m&7C4I z!4!g?p}oF-F%|g$*q&+g^X%tRC8~-V%-X=&+7(MA!vpbxwf0n82z~8Ur%uEe7as~_ zgvSfstM?tBL@*t_f!Pr!KMB3;kKEKCHPy#E z+>2MSADm$t-g=zF(eitKdZ(oaGMD;}=dn0q*GeG0|BW@v`KNjtePf_ zDCvcBAsiVO({u~M*>@)BRHu-3RE_6(ZcVk@5$K_@wS>4iN61a;m8p-A)3RefHuE~8 zX5k1&;1q$wS*&{Gc;aSlX}MKIH+qzh@i3A7XCrJ|?7Twmhn%{|1&EnL3({j3M31}$ znHZNAW=49mFkE|rTW|O}*%91I%EwLWIi{^S6C3lho1_Tw`ZGydJU!D9aR#TSvsRdG zb|mdF zb&>agdvPs=8+=W28DNu8V(lWvV@Z9@hhQ&9HwOri8F71l>xL;2g?6)m(*6eoSvRYx z4+`ewb_-mf!x+Cy`HImnJry(fV`U1JqVjNi)|3x1QgJ^IR`1ebjCZLIZp6u1$UZ8J+?1HoWQoO?7X13uind+4ALP!O@8j)Wq!@R@<3M6bK&=JUo)UuO4QA`X(1-C zno87Zd`)Qz7mdJX09QEq+TX8+iXRvGST=f6nm}>AEY8kuGzrbo3ArgvxONf5r(*55 zD-oIUN39-A+l;;ZR)c0WMX=(91d5g?s_Lo`RIZw|DBq1B|#`6i&3buAW zHG6YD$eWs3C6SD30HNHe>49$0i;+1P8|>1N40ovC{*QpM5Nx|-;`|e$4X8h;X%wPd z?ozXVCuP{keW=9kTT^0b-b$kk2`%Z@a{&{=9~*p@_usu7dF9P<+U!GObigtIJbEim zu*V#iP<30&iNk_N_s{xH_;JVj_GW!qEVeyO)lNouno`+qvc1@N?`ljZ_$$0%v>f&m zbye`)7_&1!LfqH>jGC91oTFxDiE7uJJ0a7p%S8q?JzevK zcq&w6%8`PJU3j-v6XjM6w;$YW9-M96A#A{-n1m7Q_#{Bex|}ql5C=0wS*3{sa~+HP z(?!@jVH5fahtL~+R-9o-7luK2_)bKUMuT{uR}K;{!Lyl^@c=`Vj?#R$3g3*A+r&{4 zx;>e_6Ny?VH6Cy9m%L>IV#@1#p3`uH#xJkH8R#LscgrhCud+Lqp+kmcTQz&wVwzMDvLgEbp&2b*$ zauWm875s?{1_?)sXtoX;1}y`=lN*xA$3O%jZ5w=h>IMj-3C&(z)}0^>`)o1^uvGjr zxhA7?GYuboh#%-G?OT15 zA{SS*_JgYKoNbr7iF!6&VzWU0jtfLI38CV(*z$=Z<{Ealmz*FqpB7qv%jFQfzR{8M zhEU1{?8aQzun%O>WvNMd(Q*C*1k+5ZngB)d0+$9?@_CqvKtK!RfJgwzUrh!rV7v9s zY%CrxvWR7SBJ4V;#R<7t1x#YOSc03H{!JJaA~X61Dt0h5XJ2|Z%tG0J{?2(@sne| z7(B(@MV>W?lpLeHPl#={Mdk6Fjgr7-Hfcv5dAadV;Ly=sF9!KbY*?|ocoL*3mJc1B z(0&XD2{E>0>Iii)TsQ6Y5c-SzJsKHm6=ncX-SVcos{jOzl)YH`s`g4!Ei;MFxCLL|X4`k9e z%azl?q-)H_RZGqTW4QXvVis1kjvh@$hEgQQS1ZPVOKQK1nk;g1KWI7-sdnI8MC%qg zxg25>BG;(OZH1>GAd-j+=B8VB2;Q}k?$l{8padxu{u}~|IPn)n`a|^#$sgkZYGl+RQn4Ei;2?x+=8bTax@#q*VtxLIq~N-n*g!<0(?y7>2A0?t zi>#&yFEcKHO-)$wFNAyEnxxx#PzeN(T+k%5=j(P{-j%H6j zgL{N-s!4-AVTN^1i67Xxjs`gDJd{u;ojO-ir}HJ0)o}^g((S$BJB9dT8Jab4m6ZwU z*F5Y4;aE>7i$araQDmTWEN#LBvi2dq)hr<0dcG~rl#2F^ME%h^&dBk!Asbyz=y=)^ zTClg>(ki>9z?4q?j#eL)>VBmx!YqmMnOL%mQ)`mRQ;5d>i4THz!~`(KVqV zXPWq-s@H!ZaDiLb43vF^=!t;XT_B8tOyUOmqa_~BQtXbA_jdfn3=_MvZl|DN6He1A z$YTH!!v2>yfXvz5)-|U@x?jS5Jz#cniZ%)!dncx9ThxA5 zOlxBqxNfBS-)SV(H1hX^Mr39%;&2%Ic0-Mz_AOOkGXX{)o0i!)5`dU^0bRK1zZ9?f zqN!?!3rKL&mwtrw{RgzHXpl?QFFN-U8;DCSlh(j~rRt}hiy$^4Vldvwj;btxd!7>) zYHO2qVW}9>X{ z=askVYD9+KXN|to)PyE5wu+bNsu($47u$S1MhcUL6Vd!|#py@%D~NF3qb zKLq@7nD6OoOv3&X_x}0Rv;NP$|KD@(|M9n6>;Iv9zx8unH^D><`Y2-j%$Ci*OSP8ri$Ra&W9kx;Mk_qCZ&GiK?N8$wdorFNHWpw0_IB9Ct>RvIv z3f_?6P?^XoXmqJ#Nnxg*fuU!l-;P4xl<7jqO*$3gKE?Inpi2EG?f`}TLq+{*i9$tL zqRX+RWTroL0s2e{K9U?N%q2ZdsBi=Vs!(CRH4^i&(Fr}r8hvJ;ZWMzla5PN^f6Rz~ z%!qH0!F03_UrBdD2I60jmfqGZSL_}4u{6tF~1-A`N$;Kt@~<#w~et@^$fWh@?mKlHIW`cSCsFJ zaABg6ssv{g%Lr9TXQW=6A~ETDlG&hx^|^Y&Habb;aIp-;s=sdnkfQ5+D1$D} zV0v7ts0Ty6L$jRJ?_D}UolJYWF+06QjEa*R-I9ECrDZz8Vhw73Jwpazdq&P+knmge z05;M$l$ncoC)bvn9z5mzURofzu5v?@<@=4hM$ z8;7+m0cJ#yQq_HoaCTn|787nBVZw6BU5ti)j~vataOs^#v%eOQ z{eh$T+1r9_?X}6aNAoEP_0FUD)1V{PW^9+Ekqn)kNAnjPhJWa2CSTOWPJMI4Xl_1o zG(YNcG}j$5nzi88E=PmyscCHV0G^!$mj3Mr;7r*$ZzXir!96r@LRDhQCw4%!|Tmn>{NRw~8emKDboi;ggPs5AHqnh=7Fw5%-?^ z@;kft7-VsjitPy%KL9Nx`UM@cqFWdNyT|wQ|A~o2heOdZD<<~1tg9YnXAa_WdC6&~ zpPu~x+nXrqD~(Z(;!Sks{|Gh}NzBtyj2445?Ez-W99ILgNrmr8cNRJ}UGmA9fzY`W|(L(37Rd0852a`eA zpi}h^Fjf@Tw5I8R({Lx!0G=2Sxl`<>zeT`Wm9j|9+5TZOl zh9vEPnY%r8vn z&ay5?qDS)iWV_UAyA;|6gs%w6TEwf(G=*=NdVj1&y2I!Q$vLP^-Ma$nA<$kXD0!`U zo1tagbXKPQ$HvlOnff583QXL=UQ@`hqt8Vvt$%%&&Ms$vIOrgOPiZuip z)e!|dg)o^X7ay)y{g^PFA>?P!lIRMhbIiNTCJSw!8)(i|Nl4?%+br)AZj`y^M!9S$ zdBP5%fkXqt4USasioTBhO()kKs*4~-_2@gLnP=4D#t}(SO6-SmgKCy&t@roIQb*QSh4tw*a z%Msg?o^~9W7kSjhmNWutu`M}|J32RT3M(7;L9`B=!+EkDTOZJK&^;mT7sBE=*+=nR zl)dYC?V_zo5@-pV_V~omj4|~@ry5JgbPzFJ*FXj%w1oRb z;Y!>uI&Sc8yQS|9-u1T}7roHxuF_sXeO)(C%tkONffO^{=nUJ{WGhRr@`ytG{fAK# z)aM2paw8EfrO;wx@#xp=6z50NgX;{_1p%ht8!J?a;ZwkiPBDDmE|P&up7Eo^@M#vI z$0Jw`*sOrqfBRLoIkV7RN5=4xX^P1Ns{KBk0Y)AEgBkT#NjUurB`l+|i+LiwM7>=p zMH+IMn>Uai_(CtWE+s91KuA9Z1IJc|#|>BagCtEOnneWvu%=k|!xTcTHL6pju|j8V zq?|yrx%W*W4Xv;3l7W~1%2_pGVi~3kV)6PFeoTb5ZL7>JQ%efJiTXsCht?W zsGYw@a)Pe0ROee%V`bqaRHmm4`tK9!PP@id5~`~0Njl=JCK7D7#D=tratv8)U${~4 zba#krqBvY=U&ZpU4p+pY7iGv?I|36!jK!Onm(axT$&1;k3HRh=9>~5OtBIKjO)NRQ ziERDgUo|m3p^2X#-ozLEw3puzqd*>#Qzz>7%G_9BUueuBX;TOxEFAik)Z=g-FR`cQ zI-?h9J4#j;PrsP-EiQ8Ehz+bxFx5_EpKZ1cue~J@)rc*`NigmeXrSvLI*>HP^dbVn z=1HVL1P<|i6TJbc(+wha(rlouYERU*O0L6(0_UFIk2}J%(#sl>YFLHvtuCIm^Nno8 zVzttc*7gwwln#jVhSZy6od^wd!$4G01A{jVa;Q1@I*5X5C{Cm5VM^70K#GPL6m4== z1!FBg)KU0RyYN@zOv_TZZ^iJ0!nbr3zTGaop2EWZY%r?glwTCu_P(X~XMXY3{ z`o$;&%Z8tdGwM8O!VA?P1}2)!7#8nT?tDm!$}zf}BcU8+RR2?Xm91a>eWYnZ`?(%m zmm2qfO?=*0%IE9y&nG?~B+n%b!G-F9#OD{wbJKNg!t?N50(%XqvJ3VeG$aYUsW;f2 z@Ld9-YUPzIQb*g)*hu_Ik63?yR|SrcFTyU`IPBYD$LYokG=VxxaG0iR`8W< zhBqy6D!x^IHc+K9MG#dljWN7M{R4-m0!9WZ7}VEBst^ciH1()4k%)wf_k@f0;LL^1 zjYvYclF$bzrXI5p)5Am7ucxt;gBsHcJaI>YRv=b7=5J{Zv8qZafBUh^>(!l_P=4&O z%j?A+lTg0jvC3;dg4oFS)+UVH%ul@uYZH6_b{FqACcJ;9i}$Z3yuT;my=h+Pfn6u} z68nO`@)7H(qKkrA>h>!@BU@DOWzKlP%ep8yT%7<~rC>0j#l8sz&7Lp->5emJ08aEZ zdlq*rfIa`_gz>+f@LKdeXbuuge2g!6ruyz(404DhTl88g-qE>gFrx{N%~o~#a}4p; z8Fx2 zNO@$&F;kp}*>FKS9k3_g>;=bVQt0H@2GCI&E)wNg^Bdm1dzWBAh6D=5(c=wLx_JURaSIy0$fsW>O{%@N*y;F1R{{7}`GYV~Sjc@*2U&#E@y+t@I zSmT|MzEN`K5LTpDDG@ccsH?MhovIfsK@WRa8$(}$b?V$kc0wD4KctQ8^h`R9V{}3r z!+uB`1CHIssa>`aY@MEPjv)RBXC>G?T)d*RBs_MgTBae!J2ty2E#%grUSVWbif4@j z&o#@p(i@cXL|md#*`c(Sr4Esnj1Ct+>Q}2JYZ^JJ!oC%_RS(s%#ZVZIG9eUDM~=() zl0kJv#EaeZF0~Ll^I-KJv9kBo@uXS(VG39WKh#|$w~qRAdBla1ufBv1rQ={-uGhCB zVWL?!dy1va{{7 zYfRZS%-AX%LB?2OqI%c47uQflatUe5asO|`wW@d{&Wo}TP1@Zci-jP)p{R_DSA{2S z)Hd(AEQ7nUd&QMDMfp6_IZB{ZjOuPa82dM ze-4##?m^yfBsLer+obM2`CznV5(8xa7PW4qM8_89)WN%xe^Rulr6in`Y3vQvUd3mq zb~1m%wIlc|?6yDjyacujJupW8zIr8p)yt2N&N^H;6j!%v%%UhdIg@vch zcX@S6&)FxIn)KDsSR>RKaB5a|%T}g?N&Z?@fi-ckdYdEAEBd_jt6dCA*+QL^i?C94 zgjCx5pPwOvsQf-n?Em03cq}9ACuN{F& zlueO9&x3G{CrReo=p3L=r^xcF9>0bR+n7PP=k%s}vpQ5j*5O-NK5{wg z(z2<-3op>CFTcEZXe8u@<4qxuTWFN4rGS@$iN+0O60&f9)hL3rp5!)TLgj=7jdE9KxF7+1H-x_0GU}->Ou)(@({p$0p0QJN0 zR^aCbPIO+pHz*KsClo=FbR|BUDI}PUE&ndP{Jxcbb=N&+?fdGr?|5FIpT`&eEb%WY zUa6kBTUNbUR()eWM}GVWz3`{X3^j}&b@{_k+#Sn5aWKno_Vh9&$_ZTLtJN`FsxfDR z)4LX!X))G8Yg5JIUlLdD6_7a7>tX#;wkXsqGC4d7dqBVXi7foK+U>l$Q@=`$T;hIl zRJI=!LAvmbl^_GYnO1i2OORM)4hh=vc`ps?=F~ZuFv#;h9)s=eV9os!M_6h-BRo`@ z^->lek+Un4q}@{W6T1hYn@ahv7FUW-Br<3$pX)O*Dg7(H!kQ8z5zqekb)o4wDv3)V zG?-@J)NU?2P0R^VI8}ROrv&Q;X);dezl8Ea|EacEc_IGd<@00ZYhG%jltbHVXNXF} z6@ErY)Ky8ELOqf`Y)urxKptY7Q|!u{GDx>TFe^Nd7F_@)#*AH)jeBgr+uvUbtcvZr zrz$OXa+cWVEZx9f>q~RT?J->6F?qhpt_wZ-%I^$~8vDKFu;2fEfBZcT6IizRZTWt> zdiO3;_zD3k4QnVG-hsSXM{%7l7+M-CZjy*g?!|XAcO;NgM_69(g8ZstF3Mf17{4o< zVknf0vRTb6!8b^vckEI#@C5|}ddkASZ9*Ju!ot?djihk(Ny*190U<5O54=DC8`Kt~ zoPjeiSPia&NWPc8bXXhG1P9j*Qga|oq*OLq^9#MRhPrj4J)FqJO=_xo`nK32$v#8k zW2PIUFFjAEI*uR}^q7}D)pn_r-O&4ScnIX+^(!S& z0YES0A2pI?LKx! z-0alJD9ot&~KrOg|7(p{TJC5dj)z}Z=2-JTuxJt>4#AGFFO}8Ym_UnST#ktSHHN~JHgm49=6S+P?*i~cPFBZno^eNXH zG+n07=bND7hI0*y{(tPfdwi7DwfH?DLo&d?3>q4z}y5KRBtfT*zECo_O3 zLvXLNh6JM12Ps#L=2&oeL`tXrqF5UOk;De@0w0_4z2rz)r+yqkkx|fIV~bALPdDT9 zYLx}@2L@P(fHV+&Qsj4$`-cnuZcuYT>)1>3MXVS9OCk!~FK0r%Ux`o;L%(y2qIYn` zjOMcX1S-~t2t}s~&iz7)B1r2I+CBw$U;+Edn03*VU0`5LX97j19mw2_wxDJ1wuK;6hj(B`4$s%9@S z^P|YzS}iy+1Q4^S_ar!t9*LfRf;^}K2VziQKg=v}{oPYv$L7}C@*S(yNO&Gwlj~^i z$932IqF)Ls3PJxc*nx>=0J{Bz^VQaogl7+Q1d9lQwL_TEv%VicUB|lB!@>k}qsbd; zPS;W1psQwh=4IHB!dauuV%0g3zhJBI#EDFuxBq79c&H<1i-~{HF%||Pb0W}T# zcN*V(r^+VYbu=Gw8ZbSbXNmBcpN6t;YGh1WTtTe)mp+f$^=*|~T;Yc2wdj+x=Eg+z zIpa)8BwMT&eh*#eW>IzOa>?tLB}K+)?-g=mKD!cCCgspTsA&|GQVzUGBg0*{5;Ha_ zN%Gku`&UKX{s@Hl9bJODl;6L>kBpK+x7^26Qu_R8;L+QZOu3Xp1@f|#JUo>y!_%3D zIG0gF{z;(n4S8}!Ia4h92xF?B)QRUENA!uGndZn zxj!}#y74x@dl-v%GUp0yFb1gbBVw-d!I0f{w%7Ab-S{fYMwJ4S%AJm~ zi^aK2fF`;j;gDpTP{26CeZnaqtA~>kFgT=$w6QE1l_XFqQtP`G=wOSCr`%yVaT{jE zJAcqrwEg6|h9_jbzVf;AH8g)1D9~E{P+fA874)=w(uxLU$%=1<9(q^gW^vs3_Zx z%?EVlF_--PF_(Ngv7{Wd`++Wj2P9PW>)!`svQ8rB=i*`3qnW1!3-PM240{rWpOU8Yj+KTen5 zGDB?(Nu<83)8&9mb=~frE+3)c?wl_Fc?p&NCr+1lieosZZlRiXhVUrgF{SeE*JT_D zWA99`-%-1!C_}I6<8@``Nz5n3* zx5W4MSHC;HpEKkr_`aBiyTkXL7j=v8$C}{wC;R(q7P3%Po%TP#_MS5B?y)_<0Cj>} z>^l>v`@9Vu*#6_sy2190L$O_K0^|@mavsw!L@4_0J(Rb9w`y-3sTzV%E{J%K22}P| zMnpjOb?$J}F!lTlF++7>&5Aj+`!Ip4y5n6+OHxh|3`L8)<5lbwZHnB(8cMyXgcFYY ziW!lvI`BMT?^0tZQa3KIU2AaZwdRWWr_%@|I#&cDiQh$%A%`%$B;2T*xR9q>Uf(9- ziqAd58WlcoB z*j}h!K3OxT^6N)e6a0!H6vu}0S5|K@smAtcPoVxRQk+tfw z*ztzkMa}Q>cbuBU``hZWK;z`KhFdfDU6uc|v6jY5GfM_>sF&u>o}%mn+c<1TKOUz_0K#vZ%k`Uw+~{;z?wb>-2fm684JfYfr{ z(ON4teH{akE*TXE(uvm`0;Fq7FZe$P(jQhFZCd-j_w9gGPx&KbQl9DS7=UzXejG@< zMjryC^Z%^=&)sfomLF|e?+pBQK>9W1j|`;KOkc+Uq@n&ekp42t011Cd*ta9(dH;zB z3%()G`?4x=t2%m~_jz`iU&G9Zeu-T0UGu!(rVDiBdB5#PDIIy<1Lmir<#|8f6d7e_ z|NC;SI7)WO^WMjlIBK5v3gd8fXrA{`5-Y(N!Y1Zn}Udn5ouHCnGLY!}eJ+A;GK`ro&uIqv@H=4-7wUDRiZ9=RJ4qgWI6 zP(AJhI>>ifR~OKHF+NIgV;v$cpc{V(xJbe(%8nQ2>ia3X8cfp3DBGIfP(K*X;$xe0 zm>($H=37kTdKyodhM%wBZ5m6un?}!sX?$AI-85ER^}jNWD2*pfV>VyE+cbK#b+Z~* z{-AR;&gym=r~L0sqi#-@X}rYO?=}s>ARUfWGstfeN22`|4py!M)k2a!71VjsVTN6DG0* zL5Dc_THF`9IQag4wsbf1$PT_0NzXadeynr5IQY&HC}_FJ;SRnD-DMow-Brib-Ks;o z8@>OSy8E3-=0$dKvh6y)g@ldYJi9rEcGq7UbYSk(jr(%K?5;etyZ<_-?oP*KuM03Q zk`4aNz}zf1yTsY;nsqF*`v>N`UAjAPY~9^-Xm{ab>h8%yyCaJ75oae6&Pa7U!5vIz zAMC>0x>tBjR(N&Rq}@;RHq?Tphmm@ui2%vkB&l!X5$0a(g(P51`jnEU&yhQ6F;h3C z9_lFd42RQ^N|kk#IvtjYQYI9K1d(W$sH}N7kBjn}0W!33o-?cYzp|6dvL2hdk2N7n zo)Mk|Cq(m;NCB6Fk3>>2{zz@=Iu}ajUXyM+h^)gUO>E=Bo_t{U)7S(Q6`Fu>y9AN^ zdk~-uCpurKEl{YQq=^pe4|U;uTPT7vLiw0{TXJ-w82BQLP;Qp4vUVhZ1iAxG7ZF!xU}5{|CcA!S){`w)>8bvR^yLA)-G;1ea1YllAKSEg64+z9vD}S{01V_z%6|mCP_sd`FzH0tP?w7wNpG)L^ z3HEK>C#JBG`{l27-+cWnf8!%Y%!ci6WC~$5((Cin5REvhPgCRndV-_+R~1sOF7hkg z@~@<|$ggy3zmgV=T2K&ggqK)vNqmU5yH-pkXjHJPv(35`hx(c!*Xbck?oI)z$V)_Q ztewXtUIPLwY&-C$CIob3lnGAt46upjXJDU`p%(I7lRq#zc2M=Gf%sd*Lko~$NY3cLP>8s65tYtGD5@oc)#Pt4!AQS`I(XYtm^!MggdOyAFijLKS+&d zsP-831SKH_6LfVl5#M+%sW?+?d zDHeD$T%B2(cV9w7lBGEw3So_TF?LYdMPx;eOwFhtm6^o9$keRJ)PYJgSY;Ps>#w{# zk+C^bP{gQywX!_!IsNf4_T(__uKamVEy?WObGppOEps)~(M8uDt>{IZ>80D^MHd{c z=vTvOaH4MVj)ZcIkX2Bxzr(tbK=^=1ClF@U)ly#J)S(owqU7)ivHxIMr!?KpL%24* zX>+{naOLHcjgA?tT>6uwu=>+wf>O}zPx&54Tk&LC#qMuEC6Ym}fCQGa~vCEf~2n4Czi$2BqRQ5npx%j?T{UBfmRGYI^Sjv9nT|Cx+; z6q^LN3}d_r5g@)DHV4$DG-YFP93q&@XqWDRP*4KFX^YOE>d#H;R{2yXmgXbfh3QIg z?lyEluij9h-ka2w{dRZwG55OqP&Z#$<}*ye6A}tGBJPO?cr_rDh1}g&)AJTS;ttC% zbuBozWeIrKX$uVd0Fy_UQ9_z(*Q}`ao5EJd8>tenAN7{-G$~PSsU7jR2-WhpiZ%Nl zSt)-TTx4Oje}{T+3%F>S(B3|QnD!e}S0WKNjjDX%48&DV44Qv|R8K_rIvM=jmW786 zi!m{VnSztr%S!Br@E;4xpmOfS0d2^3ti=fu8Y!ukD4`XRl6jGmhg8*Oc7PaHi?3JJ zEQ<43p)JYDQ&S;!z3H4tlcNO{>Wo|W$NH=xAicjj;-43<6t*2ktfNfzP6_B^&yS`>r#;~29Q)g9}GnUy%>sVcM}W+-aD+~DJj_zu`5lSwzM zPX;;1K@kjQ7W@pKMMC%&uLk&gWO??W4RWi0-K%ZOf&W!vt-9!D4ga1)_U4P)N~~)9 zd*V=U6R49|Ia<)7hFH5}THl8jsW%{#qzuxrcF_*ET;7S%qDb?`y>vIKYHk1+b_Y}n zBbvmm9wRmX76FUDk%JgN8bN4+$dTKqL9*pW3N{iaOjXN_F;RZ1Hwzt~?#IXvrB@v< ztV@#U@GaXYzRjHQ6z`P13hSBZtXq^koE)_OT= z#THqT-<5f$M9R04bB>rRB%8adhrp1il>lo8Yr72}q=1S}6Kx&ppA(6P0@xxm(yC8a zH^UrT^*TfxU0V}&g!g-?<;h!9aXCp7Z|(T%dCf_5iw16|K_a3cBCN$E)U2k=1GcS2tvt<=*)z;*# zO}n(w`6k#($@Lgt)PDJTQ3d>STO2SXow&puqcBpH#ty(P+nt@Nht zuR2tQ`|B96gCbSwd#_l(uL!7zP*n0ZKW9o-@Zy{&WQzs|<&2#P%q=WxTN`%*z~m6bgy0D{*D64z)Z5GJuN)8S+RNA9dLzuSeV()ctP*x z8G4W@~Bs6GrzA6g;VkN)@%ai_w@SfAGF)PXu(k=K;rIGZdG6(H-q>faH4R8BU0&N&J9 z0CQ{I_M`aIW?w^9qrSrgK12tsUD=^f@@$K}bNg?q?&H3ML>J6uCn4{ySe+~nfzS25=-N6=N)V`9_D z4qy+Hr}9jPr|SFiH2Zo$m&Fs;r$TPpE7a{oT@&KvsqD+^GS5V~8p(~x}Hyy>n|8hW`DwV+60J;n6E`?Ux&1~ps>XI|1hjsP>?)<=BK>XjQ zo@1{bXB2+C%sTp8v1Nd%M z;Y|Uju2@;xpevqlS6p9qeCc}LsE??QN9zuC$_|LSX26PYV5bS`j{ge-stWzs(a)!Dtw^&nSPYUn?90>OeLS2_|K-|(Va+gPHd>ooJ!_rHbm$g{n$_u2AKCl8-xnp1yXaK@=0X zT&zrXs=WkghxF>)1BJ0rrbw$YFol3@L9gI&D5fq4I$ELA8oXf9Hhn0CjxS3pZB1rY zGcNiHqP19FhYxZ})p}lhQzA}m&iKk)%rXoO7J}M|mmJ!lCf5i#Fd-`3o6UJ{`7;e^ zH;1^KooY2+S_13|;++;hii_17@SBYN_>NZsef&9L5Y3?*|3Rjt4;ynn7eX}L#p(?B zWdLfmstFE(vgQEBwlW;f5!)Z%y25}gLnKKmFc7rCMdV!l$<_U9E)|+N)FO~5rt8Vp zV7!M&V03Y8`o%b4#HJ5cudI`F%S50J9j`ulTHD#S$yU3QX2>MHl~;%kNfWk_%e61{ zuJb!vIn%s3MY7#3HC4$%$E}yDrp|{QGDQYr)r$SoIA_&6b0qacIMX3ytvSukmF%#3 zC9mgw*W_Lz_&SkjsNppSlXo?r5t@9?U!gS*HYs`tE5|5#{2v|zo?^xU9^?q-*lH+YHD zQ1*SeqV;94ZSc@Hm>innwph?ToZ_ULxKNTT*k!3Lg{#x;@8jf~eLvkMoRD}-zA!}i zD*Vr>{e*0PcJhbtqE={IBs8B9oiFhVYPNO!f4AoE6jpzxjE-wy4(0=wX?$F3`4?If zp7OmnZG-hzq-0fXQ?hlS#+j5`?O$Q72{)!j3YL+$wz=1^lKS9)QIT>|xYk3jmZ+;v z)Qk5?^TXDGoRU@3{Z)HCmB~oRH^iYmj%?Rhnd%p z?6T`98})yx=UQmLTc+PNoB7-Cv;fzys{KvFN}7YjnP?1@ai?9P2IzpJp30x=PL+hG zZqhY-+BHdSP7f{m-A;lK2$aU?!Y#o8q)oNk*<^ExLv(S{Skm?yyZGt6t7)$O$(O@^ zvL|?c)c>Xab&36JlCIHaw{xG}PBWln{xt;(5JW;da77xBurL*~2FJedsgexEm2Zan z3@d30rPQpg{4Cg`W{p)aFB)pJ${#9AtxiJOVF|){Ds|-Xf`@AG)-GR_ncKVRDk{ql zBsqaE)B8ZyeAsn^W1e|C1=s~khLzL>^F)AC)>Acec**RqXJ~S;$3oRI%dPh7D|l`B zpYr(^dhWeYp1GygWtT4mO`30t`YXj3^clNse`%s%NlraUgvp?_Q)AG-&_BPFuH}8yS3fjMv$}ewQ*GQ)Io>mf9HABj_0+`Not>bQ? zZ;*&)w|&h`OrW%0W9tqM{WCdZB)9dXNuJ8*cspeKuwPa189Fa#%0O7N_$4ll>lTDd zGp$}#%vmFc;4`Rhn}1dmjb1EAV~NnFS4A%5jp}P>MBhg}dHPFrdPigRi18=E0#^;9 zEL^ZxB}vG=sC+dw10u}$jfimRWdyz0U3`yM2zTTjCsb=7zjUw^w_)ejA=8-K(!wk{ zVZliw;tID;Tn`OAkK;Q&?`J4UqvJRqxGYQ~UR4I|t2<;mPs<&JtEbE=tYcPjN7dip z=Q}2}m#TU~X%s_}>{3sDBomUa=HS;8y2PH)oozB9-N|i=_!MV#H1s>&kOni2d_2&A zIhXRtfP2ekWY!nSR~RV~3r)WyVbbB2+mAfsVd7qHuk>7I9G*iclkvoWS*Y@4rX=x( z4-A*DmrMAH#M!0Wv-8gvAN`AEW(D(QlgT3el?liqJ+V&?k`>KlU=r4vd;dSV*=UrJ zTCQv}mFW~?Dp%<}wnP0$zS>iH{^EqG7|)BlP1`O41IG6=IxlB+?+b)hr`;F0D9wOmXQQlv{ke$YDm_vpcrP<$B&xRNr$Z zF9uR-@hth}Hy4TY&fEMfY)80dc$byXSD#|wvO}WI{H`Uw6u}?pE8&ATh#=I!Ejrt) ze&g1h3RirI)1+=g?kzCR*$cG%>q$VBZ56EZRj*gz8xq~nn|u4Jxevk+iOxVRi}V0lvWRz3LAu7j8LL(FWWW5_zn{7ZeK zT)}g!f`z`(7thL_AIgxI=;D{1MX#IHCS;k?_})F#n$XCw7$W0faL5%0 z=O?!|jbXELl6i(r41{`1*|#W5&WX@7fQYcxYWlxq-fheYX`_D!oSuj}VE_D2(H$c_ z9tKy)z?ebG&n-^TeJC;tZlN4cgYw;)-M{4l^4br;us(wByLFpC6l=|0W2Jp*aO$G3&!Lx0+4+riA3w)yoPrp>)E`?vr z(qJzZ!8+5QBXzn5yF@uMV87gey^ykrV4p^`nxle!;S?L}>1xw^2J9Z%kbYD7jD!8a zt^}}OIXD6Ab6X|@$wZtdS1dd~dSw3sZif*lpC8$CrKOcCu1M%1q8_11%9(P#4$ZVe zm{zS5Q6wypLM28y`vGcCtL8TlCi7syfljVGDv^o1-8t8 zTnY%GQV;)w0xuHcD6v3`X@TpdL(ToL4Z$0le+#Pnc1G8(96fYbkZ^}u@NpZrhy}vA zsN)!NECd;!kJf`{%fCRRE*lZxC5*#sYIDnSsK5VRJcZ^nAuTiN80#QY242;nUZf0G zBtr+8_??nieEF+wF~HcI94T2q3=wNKSETvAHcw?AV9pwKQUb_8&gq`2f6!1_pVHAZ zt4^0S+l;)t-oIY!{!3P<5jWymvze>%IXpzPAX0Xp5lNajlmYd%rl>1k8{D)+Bq1Uc z>APM8CnD-0osW8c-7jT!)O`RCn@@v;4(j=tcUu$M<-eg4l3(W`g>}WE}(Wa zx`gJ{hhOcB!KRkp#H)bHdt(=h(bbcNlY+)S@0p~gzfl|v(r9aOKM=`S&ooVTp?kCO z%}T_*b!Jq(WK{lt%ET6`Uwt7&;h}Nk=q295T9mqw4_dhVkQTO>7GRkjD%oyfGA+bH zm9_>|HG~m(in8cBrWWhhIkguLnOd?vwH7_K(sfL260%)0wH`r_4S^O6({%V7vrSK3 z)0TLby#R!@1p?S+g~=I%6oqJ^NDay>5Q+F*lbZia*8h9?jv;#`jBOuKd)uE`=r$tS z9pq?4gBie73k8^@Bzi4Oc1E)Lg!VKK01H6B$Nw%@e~zLv-#{3vV+s5lmIei9Q$U!&8~iNAIe(ngl_ z=64K*efqOq1Sdd{or8d{#&nXGW+Gs64D4zrHYyFoFhp=g`iNpR&sm?RO?rY(nTn-% zaK%hy@0A-^TRW7hr}8zv)KvYLx?4=CZyyN7wShHxI8 zVWqIjry!Z-mNW#OH#*&ErA%V!L!Vo^X>tit?i5|_gm8TZ{7;{*<(7#Hy%Cmd0&#@j z((Ze6Tb^QWo##!0U|hWp&6g|M3zYb7E0{uXIK6^*R?IoW5xlM9RS}#xfm4eFO$%t~%=-W6LU!Y@Fz)f$~7FgvqB{THI$Qzwm^P$v?f+p8QInU{8K3kB3aY@!a_2t=zQiTyGJ! zoKyB41b6ydxtZCy8IS2N1jw4QmV`@Y$76+=h!bMH6}=teEy8DY^)@iDO1^TNDpo~% zwAVDmO;2md zm#|JPEH~$er!vaYLa_d@LYB_IwDhJ&ALk5=y)N7U3`%^Uu{*pNk*rfowFSUZwUH2$ zL=g8Pj4aE9FIWesk3|6S%o#QfEeWWlXEP6il$9XTY^e9ImcF9}ORGzkmSLGOka^gw z^U%Kt#w}GdX;bWe)~TQJlmO5_oZT@^BdHi{&2%;&hcmWY-Mq%2cc`y;&F%|*D#Gp( z@TR#LYKmdCb-lyoWP#ORRy=CfJ?LThTZyJ4=xrx9>p0;@cY;jY^lZ`W z{Z`of!XmNr!FD54wjHdeF=0^;f6da$U3|VwfUdZ#kGWipM~uX-E)n*q&i`>2&Fy+h ztq!OkN(GpO|Grh!bfU{0XE*V2M>9W%=)-+lW3mwP6MI)8{TiLumSTiyEWnlj*7#z! z-`ukddC}S|=tOvSnk#ggHOB25G`#mcK3A|)Vug>>IbCa--tSR!okb2&jG|=mv zPb)r3swQ1tEWaa`A2w!P$PdNrQ;F1X`(Y#?Go=@!AY~@!$98FXyclJK=VWnie?VQ; zlOjUMxA4W-E!63!i4<7HQ+W1dp8m*FG}(O_FrpY5W#zG~R6Bg@&X#RC#5r$m` z7GYJB`8lesYe-eM8FN9t6U3drRJlNYG>v)wiY|2mjT>{B&y+3d93lNxjh6Ci;MFVz zZDV*RO$T_XX8jgIE{1?r6QvA{i+q@V)Wiu+N41_if}KST2!>c}(KcQ#s^VS)w6;-R zoASWs7ROgGJTge;DjbY~#0vc+kPsoOKqB}Ob`YdRoC-I+r7FGJk5^fG7{Nt!urzdBz0lf?s!*%sR;X+Fv^3y^+7!ly66%<6r9eWa74W=>%z&5*4KhM` zvph+iDmw~l;gu#dlvORNoM=?$ryk_S#zMwLfWFfcma?mLBt}U@{D!g=7Y3rUiHxAs z{URdRLUO7bF|P8ZgnCOLiA}18;8S7^SddnOv*kJ~DS~88EHXJLw}>9EP@VJ&gTj;! zsnFA}GVsof_kiH?IvMd+HRYcOeFliectToDujHti-%2-tq+x?j-QAcmoIk8MWe4yQ`D zyS|gI!{up?;F!2&T9g=(cqVD^j(|$r!W9eQv42ORiISeqR@y^4hJL}J)@?DnMj07*nStp zl8ZRqdLCV?Zhrw;L+9q5eTqRUjYjUGaGPt!>{wRSCohc^*;zW%6CNBMJCVCqj{+pp zFx*m>TAD?X=Iv#!(n0d@PFcUwVe;@M)i7?;esDMhm5!E|Ys%6}C(6U~W$w~DAP*0L!{M9gZ@BiCLVpC0dh0_sFrae&-^c$4`M-ewzvKUl{C}PQ>-lfy zFyzf5%aL6hJU^_Gf~U)${xlgG?X_F1b~RtfxF^>y!Q6p|Rnlu}nX_~S55g9X>0o#J zL71LnHN_W0?pD%HZn_<=c5cfKR=snhb7Jj;>WlB4Hb2GcHMA&P#3anJxl18*(7SDRgAj)f+WY!RhLY(E)Z7+H-EruM z7U~gwF2lgULN0yV;d3Euy~5>79a!KtUoEG_U!*{^MdbfbsVbiP^6pK&QeCq z_DuZe?#l=s=DM<(l8*l@GyI15&%)VX=?I?4flDf3U5!Alm#TSY61Vx?S)6g5p`Ei# zXy-!$J3BFp6xXyOb-k&l0{}A`SwV>*>{Snd3icd})c226>iAp(%2d0)kxzK&o#dO>sKA$Ys}5IVt1 z8Yh9y>T=xG9$BzldbalnuZb#?@$|qTG71iat9qN3k zba>3#V~yc?=U>fMFI2T}=|e|0My>=^Mm*&lE#3omzycAOyW(>>fhi;oJ(tlPA%^F? z50mT|o=`b)uCP*lgF}OI{NB*HN=&p4LDz0{ro!pURxwc-yFvLRapmhup_^uW zHP#ilpLJA1nUoejgL`ATTF|B5xT3NQbwvu-dmVZDG-}lO+tDr> z=dDt2%T!uzSC28-j_}iO=nhs6*tdvA2zUbHno@GTEV? zHQcKaY_z0y2sY4K77~T~LWUuxLf)=&F^0aH^v-SgQK8DjgiTqfBlJw@m*-7L_54LQ-qN1j+$-A%ka!PfiVe?b~x#r zO6rHqj~>*GeAcXu8yJymZd{avJg8Zyw7G>cj0L&zI(g*PAc|AMYnS+4XNh0iC3;gr zq}JF-xmZ%hLwDr<+ogX`Q=jrV#qRNN`MNME0@G-LOTCI{U9`>K-y67&ds9AL>KR&K zP9j8qK=8`gMul4jCkUe^fW~ARr!`~?WsY(6dCu1U2n08d$JxI=d14Bp;ymX~d_?kG zs$iG#vb8qVJ4)rJ;Z8hsQ2-(;evVjT7`AxTg*al!^7g`xPjvliIPO+rbY#6uS#e}T znilMZj7!z7#N14zzpscbHhPj4d{c-U5naBH?}gT;>hNkF)bDpPlWSdt>Zi>>>Xrt2 z+`^2pSGZ}@Sd4$!;>ci9hplUbd6A`GY*x1e^r^Hei&vi_f2VZO zn1q|0P2xnSl_y4DgYZP%0_Me|*z8PVq;~urp?-5)MC}?6Q-M=wNqf#zZ}6v4f1m1- zJ_uCjBmYN$I~EJWC;q)phgY}|z-;M&1V7QMYMRxH+&lT!uOJr|0JVL*NGxP0dA zU7LiNn2x}r?td2}!+yg``UHDfDGEWoD^(Po@>(2S|NV3u%i*bfQ{GlB z(-ki|4@E*u*NjG2@v5$hL@6=iF8)76v(eQ&OZ5qK4TfeF zs-OSMKINpSAka zs*+h&uJu%I6-(B}gQnexeyuKhXJ4%86@C!=(tj@(G51!GTV1IiFPF!{Kk~NfT^gy= ze;wLJy55n7i!)nWtfQ@{%tbx%n>LIe-{G-Fm#p?LtJbCmrn+5kps9yd_>`A%o3+cIbF*h{7t4P0E-uO{niw1pn9}w9vz5bg)}T3%6F)ssfA}>yw*Dm zKK%4E{7NPHu-mURB{Axamn_xo2eJ0t!D?V>Af;74=E{>Ml`f#TP|+Bg59U?%CiO~} z*e^e|U&;n8U24DltNrqq@^Xd!a<%=kikF3I??(m+Z!QdPa@tt<>u#~IBz;g&I&#MXTm_HrH_2 zs4nOj)pZn;QAzQRQ9X2G$EXsTIeb)Vv7Q{G8cB5-)hs^aqxvc048+2DG@Co{>AINVoiUeQM)Z{^I324 zaidCbrM#Ds88oF>{HF``Ptva=$QlVK<3D}Af^}P5s6PDA(1mNE3q5SQ5bc&OY<)9M z7vyx>qfe(H^9?!ZV}G8dKke<`BbXL${JP7@^wb97k>USe>sZ={kkZ*OUm%aH+6q1` zeU6($He8z#(Wk9dwTij;M!P*#7B+9@P*&Gooy%^K^S?%)&(+vz$;sdBGM^U_hbic0 z>&i>j7qfeKySOdS&kp$G?D1j2`v{ew4gEEfY;W{7v!#UbQ|~+}yC9T$aCMWIbJ-z7 z3_(Z-J{c!9k{= zaNKsm6#A}dvrj^_U4BBY?+|X>R2Xh5q;*!PS|lysO`Db5J(U~zq2g8P2g|zG`BI4) z*h_p0Nf4`d;}q0E7-k%AX!FhdB$U||d7xU_#+Tr}c|4fnHhsQ^!qB#gSEV-s_D3Fg zC|-6x4>fvb)%R8K92{{3Zy?)5{HL>_!R!Yx-i|fM?Rmo-vCNu9<0^wkF~OE#g*(*v zRd$>O9RhLwezUZ3#@GIYzYUY38%CXrQuZG5csK3b>v!1JLy78o6RV9otO?atT;`c7 zK@G~g1Zr#4cQMY50`5D@gz||G$niJ~XNLOnn_LaIF2qL5g;{ZAc3SmmGSX*W(O4Ld zP}0=afrYFeylt&qofE83u<*8}6-n0B_<>;-+*X87X}cDj(Y)i zb1!`X+yg@|vwG*xU1oKB=d6t4cvG=@;8FbCv|W(3scgWFgfe48MJ77cmvSDrc;U0G zb=D>@X=IkG%ssW)9C;|8+MjE$NVUE~=`Yi3r52`nx z?;J$EL%2{G!L)8hQ16g4RJ#9bx4$MZfoeG=L{;A9_NDLdV)&7p7Kq)6;K7B^2=a!_ zPlv@?X6L;|mK|wDqnh5p^^dzN$$kaIaREvV?7u*|^iT5Hs9u+1ag+bWpmB#XBiu5w zvsp~{u!6&pe+V9htE_46>}jsrgFU&fPPGlm!ndq;;LTi|z+0=2p3tZK1xMPV1*_F( znNBW(LChGjex-=WsOyel@!ckr%749=Kdr1<$nuNS*wEWw0bu$gtFlbhGJ-ODl`qqb*C*1OH`LbgVhFdb(Mgre2 z5MYQ10h?;o#@QTyPK9}iKc5Niv95eAa|TrTbwd2Ir1Gwswir$-2}^Qu=aSe);;v$C zc8v>$nuZtv+Tp2ujKf3+xBL`nHc2QpV)SY`n%aIqq#%vbx2y`cX`%PPLd^X-BFJq} zLm$&e(?~q;cI@CvNWsWp+K?6xY3Fp#BieW>p^b)n zX#-0wNbZB;Yp1OK%oulr4c593N;YzU`1vE-x89L(3aa_=jL`>0exW8ExrROxhwCFz z{eT*t7w?xS6Z-VEHq<-xNoZtGYR#{;E$7(b)*jXSUYt}Az4XBxR%n2f)ra74ryPRn zZ$cYnu90-P9VQ&(pobd9X)0*j|3%qW+f)k7wpFs#D&OWSZ}3!=!#K(7e-4M!h$HkR zyA$vwF+wU?9kAb(os1X9=Ui$gv6x%c!Nn}*gR+>pW-+684^(|nFCNQ!{^%DS>zUTt zxt@W!UDopvQC1#xJ;(k^Ksw5}L>tlvjnvn6z;Gu#0-Na19lrV3y1BuOkG(v^;~`9G)KuZXaSgTJK1_Jk!Pl&?GHI#B`L1 z2o35AHa^r~>`0KHXN5t66s$D`3A*0(SURj1v+Iu~s96>RfV-J%zH zt7^Y8VUYtMzJ0KEp<2*yIyaWZ0rl*!Sy~ALnz*!s;ZWH+w|wpw%VNlvY``bybS#+q z7X?_0G`)v8^UPUjFNgXUD9KuUzn@u)O|rSR%I4ya*<1;CPBoN$DoYXTd&J_2C#8$x z)+ldSIfCbk!KjCmpiGmT&&8a4ssUcY3EJG>yb{?2BNX#ry~`N%MDt1nE$R-gm*xQ8 zcqEGQm&eT#{N|6c1P$u(iLwL@zJf+i)vJ058r0oaBrL&SzA#G=XX7gVw3@CQ2*J7a zOCaAq&$P#k0$<#Z=k%SGBK+Mn9SskS0YXB!AkT}dq0x_7ZPwq_E5GN?GwE!HP``cq zKD0K3-*ybC+xPyEx04A{fBd@~;ha)vR0gWww$OR^TA9^70$L|>!}!!royY}S<=F1f z%0L9Xz^Nb&d+4M{4{pN5&mZAb3plnpHhWrQoDkAClMCFj33et?q#<6A%YU$g_uhom z;#SLl5G<IGxVTj25)xWzV@ z1PeJyL07oe$&1h)$w?#gC3B78JG1L*+nnLHfwO-+{ISCDN2$OsEt=7z_CT_=w)SIZ zZDUW=FUiCmaSs_+q$G+7ZgWz`=?hr(*=r$tVwWo&Vc43My*rTYZ^ywy;+XKA0Tv}o zp)dFzUN?N|jm_{yX%cX*NNv~eym4+8iw@{0883+bNiC(~TZ5vym zpv`w>`ALNc@GqrL0bUz`id@N0`7Qzkjc#r3ACc0zE?x~M15dcgYxVbiHLEEyj5niQ z)>_&PJva5nc&8j@^y$>s$EE8bNypquO zr0}O+nRky!5`{-dE4eP;1Xt*j`09(sQCrK1a!lCNRR(u#>L*wXdI-e}*S2P_EdoV= ziJ*qn`u4%ve>=w|?a_-oo&?@pad#rxZ{MH=TtlmD?tQ1n@e0bMqG~#=ET7N4g zr^l>5z8u-~PKcT2w7@ProLb*UEL%-|p)->-#zVW?dNm+{-HhIi6~zP#qw0 z>ucvJPf#acTD!JQ*rs-CTTY4luGeLJCHSSbhpzMOH!*?rDEe7FOnqragO5e%P4#PB zRzJp}QGn*D$h7+C0bT2gBvV5VB#*&S9BagW zESBy~(t#Y-U-Rjf$C6rOH5|NoG7GS;4ssV|592xXp4no^qyGqo7Tt;tvSvOo`SEE_gb6z?%WV@?xy#V z8#uw;^f_|3%i8B_n^jNKT&aC+q0`aqgicQ0PK}Z8w?@##Q2c#?_{g20H95FMDUR(s ziHOVfeor&H9_?~KZju6UFx~1wAz2$b0p!_hz&PyY$J0!%OMPEsXPQmfw7Y9LuX^eH(H-k<4t;64FZxz{oK z)O-u<%`;^g(!mJ^_(tyn$6 z7;r9bcH=JHuBzl)2>)POiuX5XKAp}!fiqNn409=;gY>}DiJZBgJuGjo7bbR{J7Ep| zP!KQ6AxmbHlXG=7`zX?DTqFsmPP2ApYy9X(N*Xqj&?nZHgIy9${oATFjwq0yw<8nU zacj%D#)Vv4zB#)$P{PG|?tVJ+a8wjUCt-S9T&Q08M<4MqXe;v; zt8u>)DFxY?0Z;O3K@*qNE8?z`#jFFV+sTBWPtWlJ5V2RxC@w5g^LBd^Qa@dKo}K!M zfNI0FoL&Y0bCcp)s03NECgtENmwsC9Tme6Q;X~_*NLaGF@2E&2|0+Il42-2f{!#b zw;w$L$i&XYH2&^On%lUrm@)hX&Fv7w%;dw&SoPsjZxXiBo78fCu}23ZTMSW|D%o@{ zM>}ao!!UxqD{>s6;~7_TKL*4X#uQ9W92K*{b>la`gRz?6nj|FAPLEU zVO?&9)jLLNn@#FT)O?It&pg-35f5jWY9;ynt{F}fb;8bXAy@q|nJVjSC$>3G)%TfQ z9g6X7A92^RC(f9|EeS!?5ox_ITeCQ7$qiL~HN@#yly!&pbUqmeoL*%voLju^=Nu~M z0~TXl+G6?D!Y@BIBONbC+flOY#L__&N))`D`z)p?Gt$-X2NAGo%cSUCNj1Gkpg7o{ z{Woqe;{z&}F=7C+QQcFGL3mQxMWx8e1~5>`!p%_UjlERc2-c?a?0h+Mv5zDtz+7er@p*IA_=g~Ml1*7_pL zODpJCR;l}hVYiDf)Ww5arJ47n8GhHf@!}U|=MK%tgF}F_s1%r0lws$9Xi~g>)kx(R z_6^}@$aSmdg7u~BzBy$v&%>*$Q`G74Qm0XhU!ll#o`-9z$0XVGA$&_a^KUP*?&Q`T zz1vw78>%WV&`Alb%|!@L2%+F1Y_2v|6rA8X2kjyQ+mjUlpu*<}CD$b-m}X7{)G{L1)Km!;vl zD_Ub~v$V2RJs>Jje>)NwPvt+EJQhoJ{s!_>9F!}e^%jKZvGD;I>gPZ9JIWlTit;S= zXP_WaC#((Hpk^(!ev!){*~PN((4KW=jKA_(<4T2CE zi=`gDin&8-?f%#zH{V|yKEflu`6o$Z;*E8=)JT8dAgq+o2+N^8-n+cN*5O9)1j4Bsj1-i3ckMaE3|YDSpH40@Q7YN|lI9`M*tEhXa`$WD(tHv|zOkD@-%d zUzO6Jnv1M50O~L1lV8>G7jVnmq*}q%MQIFvNNf~`a_1s>R z@iMn@xa*^@-64Y=s2ks`R=%hk_b7jABneM57D7XNa(VgCuaLm7tUS4IKxd90nSa$4@jgGb^Ty{ zdt(uvr`~$y*UlRmGXZLIVS{ked+P8Xs zx_Yb=&KT4e0qsPy}k%jkk&~N{R>eiOIr4(oD|G1)c;<2 z%Jm%8$|kCzi+Tu^5xG3;EXkHyDLer)(iTn|L8J>9`4?DLlO(44+`Rq1LZikV}n)uKC!OUA)ZyL z@F+T-hFId4VMc2IFzUQqRHBm^jJjMNLCW^0_K7-5kkXDeHJZt5t_5SwEY+JiiDIb34P1;H>W@yZF`s+LG<9-*N;|9PG;1aiVRsxPS}?>^(xx|ZR$S+6XU zn!3K3N>TI?A-v=DR9LoNAqry!7m%gR0>{JzvErvNx`M(k{yRG^R_4LWtLw= z+ifp%K>vHCqL;nSW1sASz$HuTN9}bst9+wexdMnSMLCOcw99&MG(%HsFL83DyNQp( z@A+cw1?1K|DUeIp&6gYX<@?1&Aeic9n(& zq~71q+BViR<>`Eih3qTBV0_P$%6+kCqBR5XTT=FWrNR~tbMp_T(B^i9N z&C)06>*KuIgqHE_6`P{AM4uGUW@GfzdP<(tn&9@W@yweEfS}lOT)^$#+xQ}Zs0td& zdPoel3Gfs>E@M;$E%9nTBA-2&N4Z(Od<9!Q_YdPSHe)hNFk_-xO;icUK-F2&XsYl| zqMzPesQJQJK=NG;pxuDFJ6(1=p^o&A-VBCB11ar4Bn`}W{$+3lXLMX5G zTsLwvgx4D<1C74a$N;XF!ID7oL^F(=%`k41>Fhwtu$kZ~EP! zovR~su1x1TBI$=*D(F1?x}x7$Fh}}mH+`hh$M;~)tY64)*<9uQI@8$rQYV{Ni+Sik zU89GehWpXx!dSp%{X#YeL1VKxDKbR~xG{SRHOH3@O02bw<>7uMOj+vyrWt*(jcV#{ z5|7jEk2S>K;|Ig2cS3xuUGTA8ai~AYQ+(pz0QKt`0Z{**^z<(=b6l5UBe>=P=C+8c zGg06BzKF6Tp)FS4vmf59nD zPJIa%W=Bu@>^wONM$3-lw8_0vX7^Md{}NB-???08tm@XE*c4BO~R8(mVnx&~q;S0^k3@^3rEzeMZ@3L3aisi$?lE%8F~>c%UaOvSTg zO>(J&1+8sN=Kl4QzjABcMlPO-vs`lzRM5pV6MUy&N7;F$%LEA$A{_nXF|OMt!cp2~ zoe_@y^b2$QuKgsnPx(guw^9BcD3*JYy`teWwbo19E^XUt?#ebh*~PO)(#ewOnsluy z^LSvw+3Zy>GM&Jm2C*5dVlQX%;Tc^^hD?%!4dY8du`bMB6NnXgp$W<@gXPjL-Xj4s4!JNdQk=b9kVLlO;*OM5+Q8&h$wqTwkYDA( zP!jtAF~Ez*S^J@YPwJJMETd#)o1V4rGA*X1L+&zX5$m|)0{h4Q=BniAO&^iJNFN!C zrJh`suKpuqzob=K*&7027><=_=UDDP$vfHK9NgX4TUu0xg+a3Q6 zS0#I7H&ZoEIfpE2Hv{Q%L0c$omA`4=Ed|VVTW=q3=MHnHlPG(uq~zi{vE5oMukCg{ zkH+(Q?OVqE-)Snyf^y}h+778U55y2*mHcWt5E^Xm^G0xzfQ=&A25B->5qyocWyqTZ zkbbxEw$*82mFC+ryKioIzw55%MGG+=hb3@EXYl~`;#L(<$)6t`WgodhqikHZrNf4u zzWzv9TZHLp9BY61w%$F5kCv{7yeV5JVVF7obbFkiF3Mo9=yA4-wY%)ADa`9=`|9({ z?Lo>V+TQv1u-sywe)!gU;gQZkez_%Kki!!X3Nh4*6s)#>esOfvMi@7Iy~Zw3Ys&Y= z*hB?aL-)rnuYVTFTS>8(fZ;IA)t@~l2{diusqyvr7t3Vbzr z$}wX%7Yoi~YxKnxcQ13`uvfc4-ClBnTob5Mvi73YhnmBQe-YC6Xl^?3?C=i67)A{x z79OJTlC>3olDm%sQ*C|wPSUYkh!)xa1%dSFu)h}HH}ZY-zHL)ZUVU)2ta6+`w+>d! z?&}D36Hg`$&ngp7=KlM;izg$aLQ0(L3iTGd&_5|IMZM5@y3|x2nW8OZwoXX z^({m!6Lc+9+bT855KYmy5A-sT@f{)1%VKt#_NYdgiD<^>_XbZ8Ge;D6st{I-=t%equpAw^tUIpz)oUVzB5;g+9XVHM>uW-`#%}sD0O(nI!4^5Tb7BpEAG=? zRr`WGX4LuJXj)JJ8#S<7UCf@>S{9w?yr{I%6R$jn%3?<{!FIgvfe$q*tusaGqk~!U zi^O`icGmQ$PKl0jqZ<;P5Tn<2E=UPQktJFzb!r$$iW192!7M5prq-{A25a-4GZ;DmMkc9&+R8w($i@rcbNkSJ0GdPE%-KH7JCZbvg+{jOJ^Xc~BGX-cPwkh_}(h99AU zR=a_zi4AP{Ll+w(Mv$(E_G(Y0>j<{|bqveUuAW9w(=mmbt_=`PQxur4a3)s>Z$#){ zY%nlYfAKhsSv>yka?rc+v_vYgH8Pk&o7KB7+4{X1z&Z`-FqOR6F~yBfx~=r9#7f|h z7y=AVsD$z~^teW_lf(u~p0=q~|f3 z&(V|bMi=W+64Z-(i}-?1k%*M-;>G=_Xb+8jl~xlG!~2TK!MA&Q!a65VN&0X}q5!xM zJa~Myp?;A`PAe7T($vUASM%wTXf^2OtH+lV>K{3&xi7Ez!ugUMndCx1W9@EwM9>~Y zMGw-OCWcwpxFlj!@Dkr0atyVixKjUpIy;y$ne zs;-3)P&W@EfRo+Y?%p{&%a&dEBQL|q+pJR%QvTG*|=BO?A`pVnzK0&?C zAWt+U&L-+yVk13^${fwf#b&Z^p-*D6&ET(egR-zt?pt0)$>sr!t|>Q872%>LLqtrm z`Y%f|FuBVK-`9>M)Pz04$5i{!BNe_^()OVLJ5 zcS*J2M!K~o;1JYi?TdsEQUwS3E(@K?cnTR~6y=6GTLx)HQ#ah1)I5Z6Eo$^TfGgzI zJ)KX}G((-L)pw^BVzScK{DvY(8Z?5KFI0+)^9(g*0`8*XLUJX(eg{pr`i2HiwnzEV z7qYT55!2Zfn=g*~J=jCR+Db&3(vhMge*x7X9HGb=xwbOI-x@e#P7!g*7!!pnG^Kat zknMjO$TcOBicEN_b9k$#HYqy89T|oGKXO`Ric>wmwyz_S5*<6NI5IUoGBqPIH8V0b zD>8LpWa^;E)WMOd7pv5Y$wW-B*LFq{URx}=|Wwr z#>ha8S;^50=5;Bkf#07-RXGwHS%ks0fGe)&5a%xaYyRS1`q$&S{q=*@{q?VVR(IC5 zSLmlguQsV&-dsmKM8YO1Wsj9o5?(X|ebr{%izbQH$iJUuF~?xQ%DExyZtPByd|0!b zhTTez7kk^)+%KG=J@T$MxDQUfG}GmfVaIKo6`!ddFpETY_K%w2c3mJ$|fqhwPQ(AVhp| zcjyXgiXhk;ovBV_Jlt2?R3B>PgxWh=xk*~_P!e7Q+Kn|81_D?Mwjtuy>KXP}WUv~; z#Z=7Sq#liWmH1~HWsMzyDp5LN3(CrpM5bG;K9?{lVzu$oYoaHD{gAw#A#Z%M7pwg< zJDl21zlFkFp1&5hQCzIFKs~fEyFr*?E)O~UKdH`yRE`23D&1YN*W^NTOtM9 za?(AO67-=84F^dVo7n<&-5`Z8w4l zvAt`11p7n_8p9udt*-pdKE7j3E;5M!S_&l*W+k9Xkm8nk)sH%Q^g^Oj;h7-L5*|?6 zq2)+~6IntdyC?_a&GBn?o$RL;H^+%wBlfdthHS?HvOPN1 ztp*L0DEJ9RsS~fi_F#ZZ)-z!Ci4;(hp9lR$z zN&}tq<>poNr|%d!?9Fj?OlU`xiu&zBOs)S8JUM);&|C z+K(Xm#Bg3_Qqjczd07w`=0&2wCP9ht!C2_$#cYNf{v6+a$JG=h?1$>HZrKhrE!GL; zc!x3F-=cW83R(#yrLzSuM{V2%tjEc25ime7nY35!o7rX3LS--=W!BJUZ3Up`ZFC3w z=N=pe-3*>F_n@2y!4tv<_XPhx_TD`{s_I<)o+LvUU|hW7=kV8bfi59Gk}##;tD|UfQDA7F+CDX|M)C z2^yLA`>eI+5-#mI=l#8(-#;&(4?BDIy5FAl+#fGSK<-d>=b%tVXa7+D&g@WDXJ&{9 z;WCDE^)k)D(sMe!WGhUeL+m?XxktVF@FCm-^0MPVegX%jTpW~m7G0=FX6U0+6RXJM z1?7Ydm^(8r-UUW&M7Kh&|7^5V>}9zC`(P9MD;Q>igZJ?Ws7|~_>C2grFz5=)6)lT< z5V^QI!p)>_d&Ao=ly2b#;ou@zH8gh+Q!J~Y|3$m^`+;~^{ zf63u~nV?Dl*8j23&}Pd0{~YfBA&2`v2LA6k-1p!5FF4#osrYyt?gdilSPu7p*OB>@ z{bnD|RNdd!=rsrRf5G2gj%M}=_}g0>V2y16cnaqdRiolV;e2E;Lx~G;3Wgf+^CUjN zbhoILVm*a9*L2}r8j+U6#P*+);6tDLfN-ug6T3&h<_IOfMiA{JN4dJju)YhOQis+4 z`%Nj>Pi?xCVSP_GtZ%R33BfvbSrwy&1yTF5W`NtX{OLSxPl~6Voy@Z?HtN!$bplcNVq`yJ!l@))mg}8H3PC5ym5aZ zprd}MHQ#0~ciP*@VGXrintA4lUqrx5DVbzAX`0VtA1>P6-uHESjYm(G&u!ItSVXJN zuj<}J){e=G!%Up_i-E41*z|l5yi-^phYIgkcW8at}qM zZLQOzX&b>7+q3-?P>)G!8C*nUVtE>G1bamM2KLCl%@t?E(L@DCO2!Vd_qS)~QX1Z) z@G9HObK%Ro+R$TF)rrgoZ_t@_YuyYq*}eX$?wy?|pm~=9-3q8nkd3*L0)y{wUrrFV zrX)cZ>!b-z(l(Q%%216B6>9cmK2>wZw0gem@8=fx=0Gmm7mo`^u{~R+Ud@F@6DzD~ z4}vh^Hp&NprO zmP?GW1V^{`izX}P3n!N;^}-pSf}hTT^A6_;F~z}T5G`#71Z%KI{qRowC=07cpMk2H z*v-h}#1gotxHWuEwY_MhLmOOtF1tx}KEW(VInPiqP%`z6ygv{2$?z|~Bu)gfz|{PQ z@>u~}^20hE%mEjUsYe|U(*VsYg=uL4X4Px3^7N5UEuze?EPzv1OW={!cAQ1ciSBCQT+-j!IGvuM(u`{ zwpw5{42;eSk~I$qsPO$9!viYMjr0k9KD)C3b{nLc<}CmA$-%-Q2&kvgozOD^(a7fT zs6J@$VDIB7Fw`UBhz!xNrLRJq;_7s_mG{X2YMOZB+WW&z(5qd6Xlp)uuzqB~r2>I; zzK~xC-vnO>j6-j?qC13c>{4^@HQP=|)GAyi2&j+E&Sl#PC5RO9_jrQkelIQx7r~XR zu~&_>ugEcSmKu285KTJUYwvN>#_?0PL)|^X?W$2%KF$I-SGw8K#5*DK%5*90fnTn9 zQ$iv_lf%%(Q#GQ1QHCEJYqfjuM{$!oT!G(hdsqBo$G%lKH|pVQ!B@va>mnLq z3dB#h;&gJ%cEMw}mXB2T2u53p*913pL|X0IJ?bnreC!raTWOyR&~^I~Yo%!J;>{rk zZQnsNwHbiqKNQ(-uY8|rDu8s9F)~NOG0>wFek8M8^oCl)rb~?%6|^hdwH`TFPtB`1ZN%B_OR=!V&!?bx>k$V%f+n514+}49gUd$T$~h%FZIWldT|9908K@w zI#!-5WiK{mGkceH`d?Kgav-ch^zs2EQs8AxMZo&DptvI~z8eywfAxtlwl< z*!1ZMx+!d)(IBrHA&7LVLGzOW%XAn)f8oFD2HDIM3b~ZJjgc{8Ea+mhda$O6EyJQ$ z_^vprfZrGsWT{8WNIU@P0=BdVGemL>vlz}(mBKI*`~y7#bq0OW1}kidZt2vg1itIV zGTh6D1eZmxKc0oIbu%`+1iWKqs_!##&MhLKY%{P*gR&uP1UYD;KC_*CPq5dp)#o%g zCMqJvb0BJRg=BqdLZF@M%106u+et_kq#}bzSk+?ih^`HSFGOBz1rQ1ZPi*PKf0gbg z0Il@sY=NHBazt3$ho8BMTJ(Rr?|_vrWu$AtG-9&`{bTO!OK6O z6(B_5_ln%H)ALr$N9nW7yLgUh^;G5#XiX%nu2?}r&XNfXy9Trx--P0q5W?$xxPbQL zG#KWYB!n40K#GfejmsIB1I{#Wx=Mgq4URwLhJHDGmJmVl zMF=23j{2~i(&vSP%-vj(8`(Qgt5KvOxT;wWd+#;*J)e5b-U}$3>d7+)MX;~@YEgW< zSp6cK%5}_0akU^3Bd@NNJ)0{Vf#}DBV(tc`S*Bm`*ktH$>8N0*|2zW&0**|z`id?m zd|!>HN+Vx$8aYE`3cVWn6fpyhARtS|ER>mm^dU@PUrt-}2Dhu&7e0vy12FqlvrsYH zi!X_E&8rh6*QxkF;i=f!;M{c4Sj9d{e?Y3+v-1VPeG&B=P)dUqCqCw7^AY6!ZnDbh z*YHoa)E{Uhfj_?aFbkN#Mwzx)Nj@_YP#FkcWrXb+qiMiy)pvxMR`qL^K2iRTqsj-n zIZ$efeC5&snW*i!pX@~~3F3(O*??~(ghC%ppl<7Czjbqtx_WMcoN_)~!G}7Bs-oAL z9+3R1;(ASPsLT1=p1t=&p$B@6Z+qJK_HXJvK3Pwk4ueT1B*SXY)ofcsInFHFE!S>) z->EbdTQ(b#k<*_b8m+pV6RDb5bz`i$aaP>~t8S82H`%J2YSjg-x~q(;$`fPyX;qa4 z(4g}}eXTkE_7WWtIGA()k6cZss=+tl)$S^*ZiVVNvpe4I9+7+G5l+`N7k&ZKsXiUe zAE8JMQ6+s-^Ev6&s@P;0eaRQh=K^(}$hD`mMJ0X0{@hv`p1P3K)IeI-}w?L)nG z7pR?t^|?40z)@}R5vmXFk(G+Q!eyso-@%RbntQ(Qst*2!ukl|A6cUftyZ9AQ*NzpB z*39RvQ$D5s8Tw~HUFrOtsQ)@uy|qXXJ&jw8WG@SeAe%o3W#-}p-MG>0Z`fdX&4@1r z$|Q6d)f@4wq*ev$wQww0UCX3uI@^VF6v@wqtM5KSMh{+u<4doxcLiVh z{1GA{@W41?(@8{9Svn4~Zlv*7AhXyHk8#`7PyYdI*FFpc(KX-BQAfB`_NvqLFnW*? zYwL!&Y;WnhX4HUDL|bPE)Q_e*syg(a1+Yp+IT(Tb$N+ZZ<-UZ^SY`UHk{rTjTP1l` zNxoGw!YUa_cB`b&Dj98+jIm0_StS#!l1Wy{WUFMVRT8jDt};$|0AaZ3t+1zEWp47C zI7cRs_CD1h6p#rpt|zA@OiFv7kj&)4SRyT9O!7U(nQ_<^opL~@6(*DHX`|BKM<(B+ zt43&8F+%6*vrnzQ~z545i5L`_Jm-R={QNW3#z6QO?T=`$zD zM`E;fLO^MiEu*UDEJj+#M(T?2w?IXq6I3KqI7#Olr}Itx7x_l%d?R(f)BZ)i$vPiG zUE2L5>%;>^d7FVk$dK=~e~~Xw=gZgmet3d>Bt~0v1M1cjq{}$-bv+2YY44(BK4%xZ z(6(0a{Pj7=M%_VJoPZKchrx~fUKsuwd8b8(zDN9&A* zI^!>45%t=iuL;ixEYBQ8wF~1A$u7DLpqe;hYR@hNMr#I&08P%J@L0^(@M-37JN-AO zKJf#*^8sp0+zjTg)68>e_(s*eDSSiIXL!fVsD;dt5^@xs-#N~2rpGV0qnGA1C5G)- zfBJz>5lXo=+HM*%<&*h=1x^tziL@dH(>Fz=e^NE|Co*%(q-9RJ*{{<1gdL-84~VSn zvR%d5^L%%=2(BPVq-xF)5rezE?_{P>m?NN^uT+Z zm@@)rzJ8xJUuWIZd%ox?&T<1*thE-GU4!>bf9*I;~Ahlyt z+{0?7VFsrE_Q27CtGpWa$=bon@^Zy7t@sSkKuc=>fk1IIz{=ebcTo!t<0g+Jv#bTx zn^mPUTqlCRd*SvXF!G?6C1+QVhIvl$zTwm4bjhb{p(Z=et5MUz3^gI^zG!#nS9Fuz zlK$h*neNJNQFw}>lK8_oKO^2}GC(jq;!TYk=%hL)RG%Z)(Q1VI)$=6~W4NXb;}g>x ztMSiJy9sB5E`6pwUQW*#A>cKFA^6YX|6ArImwY4$BO05>H7{BHjsKZ>$#n9cxVGQz z)2aUr^O6q{_Zah%?>77&GB2qmgwDS+FB$9P`5_xcB#xM%^foWa)ftlJCAkmxNt%~@ zNkkh~_g|Tpyl1i`%u9awC7Y?YdC3-&%^Tykx!r&KY}-5=fuWyoBpZy>WN|)*s?Mv%TDV z@{@yKo3|Au;LIb)r;J)+@ZE!LrC;CmlOI^_UWjtor zv!AYSFI@r8;~}7Q(OX+wlOAXK>LH$UkOA0R=L%}v+c>0%>2r)jet2b)*D4oC%3LF(14t(~ z$T_n<5$g;Amiud}WAnISWIXLzG8*;p#S%2`2A&v`uflRIAvPNZ&=ve#)z0DKf+4qC zK%^FyeF$sncKE$9?ek5I7%mds(Q0BbMEMRijgi+m@hRK0WDXNviRpmBulpCZ#HzFv zPbS9IgCNt0dx_g{I&6@9edC=Vo@HVB{darn{xdg%Sv(IsHNypkV>xZ4+G)nX^>?y5 znQ_3Q)L?%sqv-6TTrxCRm6t@`dhvY-@lGG*cZekpYK=q4Gj@r0**?R;+!`=7S`@+;^iW@M(;>wL$e>3;#Nzofn6u2P=4)PAQax%6D7l~9MR(2O* zD~AoiRYa`vE&>~jI@1I;IB(S_@f!6tOK4#v2zRNxp-e8y$nDxV;fEU%gsX!a$e(Cy zkHT!rWp4M^U+>`E$niZ26-D;BAC?c(bX3F`v9PkrUg2)y_Or^iNnAbc{Fko!7@Pc# zmHh_a1Rga96w!|ShB!%WBke)#k9-xLts}$uSjjV3NgpIU@}@as&+s+2(1GAnJk;bE z3q|T6oRz};-KPF93*>Sa;a}C?pn$|0pky?yV6w4w+-IPr-F|*ZyuQ5%9#B3<;}fqz z#iz?YWf`xnU%k>5x#~puPEO>zh+5hzR*I_Xw&1o)ABDk?xf!yINxi+Ejs=1e%|W@( z5_D#pniE0ZFi0(~mMy}=6>v|(qKhSU`cxf4 z>ud5Jt=8{n1a}E+sgyPVeOTV^t*WU8_I*)HboTtJyZz{#-~Igkn8 zB=!ABTGobXnrr!Ja{}nlW3VW>*NfsIPkVMflVh!fVt1=Qt~0InqrG8aYU}3e#nU(- z+ab!0G{w=batbH-c0*(fP80rI8U_DmAI%y_G1WZO%gU(lOIr?6DHHAdbLRWOwE4bC za;6x0;3Qawgd_}uI)@}A1c-`J zil(sFD)olEa}GRePXvveU{9Q6l}>7&IJv2Ga`VJ1no6&*CkCw2fIaaltMn>+;%uvQ zwmtD0tMnRs;(V)ge)GfyO{EK(Ctg?ARC=AgHDweXVm%w_hc;w886*b&(pm6$Zj-%b z?*dDNbZpOiR5&BS}>;c*nZUds`o80O>Dg$l_ zX`Z%Uqx*tsDBLW>>T+tz9-N7D1aZ~0$$siK258NC1l8>-^js=`YR!6F`6p_uEnb7( z!cW;9QxBDuY%C!`02I z4_E6Ei|yTF(h^*W`j!4J@#`YXNo!>%qvDZ;LbTRRyPWNdFb0IHrhetg4@C&ZC+S$J zoAfi2>6egxSL8yI-Y=0J2gI53r!<$HJnr_ecie`sXWaL~?s0c&9+Oz=>6M`ye?4J0 zwj`^WIkUO;uL9P+I?cN8u#;Md*N;M zcVGQ<)}`CTt<+r8f#x#LxWX0gabs5v8dt*K@>SWRt{vA$LI@b|RvLT+Qrm;+$`$|T%fj|#T;F@aps_;zKw9GG((`U#9 ze4gcP_MTRMxPEbVl?gM8yYrcW8S2+0>q+#jnIk!8;8vOVK=MW)2c z{({3@SvWsyqt+(MgwL;E`IiSHBSYCUHFHaF`yb)nQNWx=^#Aaw&=|SVt$jL%N$q8O zW+p0;Kxt<6Muz%1#a{`i1 zV@{&$C` zl9rw<9|!O;ESWr!fqY!z#(viwI=gcsYmc6{T(xy7wsNXizxS;gT$09 zFP420pDWk2A<^Qu>SHQU2lXOQ+}_T*f{c*&{yHF3mlZkKaAel3Swq4zW90-i zxRWz1#_gyxsSRU3iQjm{Ywyy)-UBSl`hqGT)rq~O6?vwrfQ%9 zL#jgvt7WgC_D6qiEc0jS3%_VLMiB(KZ7?N{>E2*YlKz>(&b8=v*w&L zn+T}ot^Yhf(l=DlQBPX^O4KNd>OVg_a(=8dv$%E1xxVKnok_1>Krc&{Ek}N52GohOm9nz-}T)(gUe0OI1|T?UG56LPg!#S$*!{G_Csd% zO0EX7xNmg@f72_+2eOxs%JE>Y9HJlID@RhfL0XXeUZ)yoO$31G4IztK1V$FUdOe<5 zC2*|VXm|ste4kEYIVtj5_7hGJiE;dj1qpt)R^x*FuYA3_N{m5G$kTut`21wR;0Px9 zbj~!Q*cNnNJzFLVPKMW4nD~Ebg|9LQ-i|jw{9#gr%;#i|m?$T-MLly%UroiI^|-!H zor7AvI(bmhG)O3J$k_TjN@fX1R3#qSwsY=3bohDMu!N2JN5N~wtxNkb0iFG_UMAv< zZ=!J^$c_U$5^b#wLHgz zf^>`xbA8pBuc4R~jpl~IC zh#b{5AWC^4mq5CLoxaVZGku%KT#sh$ASW+&*+?w54r__-IWnR1pgzirQfo@h*bL>M zma+ke61^n{C`4i18cm96D-gJaS*V>zzv; z6~D?De7V$RH+~XVoj1x=1h(O8tT;OJ9+P>1WcEwu7gL!}J38~iKmSN-M!0~15@uQI zj#TE4_}Hr(cX7#(SvY6vImx^rmAU2U%#WDN=yl_)Rx)3b$}C>Kdeywi^w}?&uaV6C z6PY7l?UnIalM%;AE>$EMKL|N95x!ba>hGA;0d}cBt2OmAAmpN|i)Eq|1j+JW6kgLZ z$5*xzbLYK8r0Q0~UYp?RJXM!St9$_Ld8+k4`i>HA`3&jz+Eu@<7~$Oe*eU^T!IGXq;o#}e zCyrO~|Hd{z*+DEz=h%OoQ-G_rVUyj~Q2N>V!q|E4)nit;$Btie5ruwi3O!2IkbKt4 zZfcLVd8+Xv(WBntN&@ErctThKJv*B(0%&R97sloeHV-T!X*Cz+cr@dK@31)qrl0$v zw!QC^HcE9CC>cQ|@I{GB;P;IRz4@}wDRTg~5nQ2wK0qyuh>YQ=jd#bxSx;r)_jW6+ zx#1<=ULX9!OLEda6umXJDrZIi)qTcR`Ikzmu~qIB=d5;*9lSVS0$JH@HTKQk;q6jn zK=IA)6&}KcT(~&%m*}ZAznr$b-I`Y}%R5b?KU!#lJAfTAgFj=5rsII@&8|x`Fy+u` z@U(!`Y-grgDm44w-Vuwu?kkOu@`6qgL||{VuN2N$(Bmiihq~@>dIhD;DVG|!QOe(W zo&BYbnJP*-0UBG8l+0Djmn9EZZ{{9767dWXL7b)o>WV~*5fFPiLHOt+1jVZk<`+Fm z!~6c4Z1^p-Lroi+BX@FoBfW=hf^c%uq@59r8BqPf@T7zzG)Rj$(qtTZR_?+#2U9Oj zDxSMgLKeKP7CvOij2fDbRg41P(RJN@oVu`N5P6B{JTZ@xow`uT4>@(^J9P~(!!XK_ z)0QS@ipvSp1|yMy-BL9+9)HpE{%^q^NqHR{=BM8j^=#NO-Rik-3LqrvLu4Q(I=Gu5 zU*r#+sF@^~E}~?O?UTPTuF3N6&b;Wei*}nGB-=;7ZRc%J7W7GYcC&xYXOVO2KfiWG zpZd?gyUG*0a%cVFe#_j?WORBj+Fk$oc@Th~*F{D>m(h84{paUX=VzUH$?PYY>`VJ6 zGiFWbd=U7a*}QeGAU43thJBB4^3!&w^bmhuKbSAjv&~T}&JJA)k%4*g6m8Dpua?t! zL9Fb-VBSB(J;EG&Gmn4%iCFx7*b&{r~lC)Q@2h}*f z=(E(gfXaO%`_zv|;3Z4OMqr=4?i;LAM4a|Mw+NSZK)na0BB#9e72le6rX~7YDV!M| zXkM~>jW%Bizovfo5cuY=7Lm#%KyCeMA+G^7j2MPEK{s079!tk2BD+1oZ#rrsC6Vvp z9%ki1*kgBr0mB~4w{>q2>3;>W*{Z?O?yS{-5~a!?>4`V*f;GBZe$8qHiz$@1DZC+h zT)E9p&u22AXJ^XbWH_&gbg*!VcJ>DTc-Pig<+ExO?a0v?!Cy{m^HzOWuV0ef=e;3< zQR1R*9I$aq{S0J{usU4wMZ3Y7&veiUIj{9AGUDe)2F6O_gxdiQ{iEcQc(4oTBtI^M zoa8ht3idc3^38`jsFuv8GlGRhkLY~;%;)LB98oi%VD~g#aJ&pkW6ABV9&R89MW$QQ z18F`f4!v}~bN0dmI{Q+6R$F$4pcr)G>*+&YvN&zXg=rgKV?~?S!_j#;6X%l_VVR6{)4v&a-`y-=uyp^kdNT5EQ>1ioY`3@`m@Jp=OkXYH< zZDnt-22df~uSRM#XHGL#fJ)s;vPOUeLjU2Ww9cV6iI<=57N(A39{dmq_8d^IzX_Lv zX`P668g+tZbaTh9d?&Jc?8?_8 z-zA__W6P=~aH|?$T?NDQeNgA~$b_r}|9;D_)(K<^2kgqd%K<_JGiE9;@Xyxl@Ge#>9 z#$l#gWrS&YHdb~Ygah1DCV^S$QqO*#!!g*RzQ|>8czj4)9|X$$AXj)o!o5hcHsV7z zz4L%@pg`XX5J{a9Ia{m*krjjp9z87d)#~_=cgO+nilE0sT6h&3WATyZtbR3SBi9J? z0c0`bDzP)f5rZE-7j81}J+8gAU_vQkMq{*A9m-Sn3z-Nl8aV@2LBfx?Y?fgC<{E12 zQ4a$ZlkQhMx?{V}Gz(I+;FF0VEHQp$L4E%QTkeHZIc8Rz8MNujfGsm{@R2CNH7^1(- z(f(3N+``stKklXBGh)!va@Kb_?_WRdloJi}Q(*-gXghbUKb8+z4MlmL`C zG!Q+(7c6iAcJM$TfqH0{<{DzSk7FD58)w}wCb>0m^f}!K>=5Es_E?aAi#+WUjP9Lt zG8^_i%itYyWeYK~T@Za3w62pVQoc36;zRVvxxRG`y!h5Urhj^t1;Q0}Tfx@wrIVv7 zBYd7bM#>{k9)2Fa#vfBY^hHOOu$VvV=#gIsJ3f^^pLd9ZO8hvA>2&Bohv-Xz393Qi zPok<%_|2#q7=B$UYUih~Q5?F4j&x|r%#r2GCK3US%mE;g>g!wcbLo*98Xl^9A`f4q zgb)nl`GWM@m=}zX~z=&NcmgB%cR(2QFW?s&0Hp1THO^@r}!F$h7Nt) zaRoWIl$=?kZ;Wwa^b5oU!!<64fS;VQ~rF^A#5aSIEOaE9n${SWc~41Fu$3fD{vS5oo3R7uI6ScDUHg{qTO>!Q3>#^sbZ|Lm@eCQ?4fu^3BN-R&Ni`W zeP_D<6b!gF@qgD10oRAl-!J+55&!q|U*6^a2mD7LKwzO7KZ|haE#gkB9ODSC4jlO4 zy$6>*`BwP|u8pnFk3rGBV-+)DP6uZkkgp;e#J%`-_3cjZ%Q8=fHm?{gE`YkJ0S(J) zYKaf2fBOMKqb7{gI9yKgi=E=EG83|sQ7~7P6^ImX55$^d@{{_SPOeW z_%9BGa5Vo>S*-LF>~B4iX`gA=;NHz$@OHu0*3UCB>Lwg$@h3}58)V#*TK%Q)f&Z%zCXo&r<Y=1gik_QNRKZk-&?m-|f2JEurZpzb+rC$KOrjWg1FCC~ z$)MG{7Ejm8p+)7dAZ16;4@xWJo-IsfWq%d|9BM@+NJK| za!>eDent+Y_v!gojA9AQK$o^%K$k#p`kbgwxd+q3A@BgZRpyNA)wo8xgNcwU zSzMz%ONGa{M$`L7N+pY2jQ9agniR47+5PYhNCi=%0;}P3`}C?HvC%ytw4L$o#PZR$ zyw(C?6G)CYYFR0WQ4Ma4)b-c)VWz!e$a1EHLRcv`yu7c!k@GQbFbQ>KIz zNk#x2`Fk8kr|5MeJNqriA+0I1{SITJq^)NQ)jd))+unf#2&!YJdDKkM0&3$hr;K27 z?8D~drb>SA*pgdPB~2WOD(V3;b)F(!-EI(|rOt2?o!y(72qCmktU9c442114dRo)- zRMzdNn`(E8j?tPhnhsYdbgfm+Ft9YBaz*aZxumANTfnG>oQn86+ab@0*-&ny75@Tf!8ilieE#0J)ovBXuO+SEB8TiLC{z$4;F6= z_h;H_YSd)7EW82sA46g)zKOp#u^)fC)kBb{p)rCRcdOr@rs0vWQDp}tEb-VHpj^jQ zn)j>~UB{GVtOmmSV-@11g4PGprdBml*9^dbt3sSv_WJzzetZQ~mFK30$!;im3$OaG+J*LPca8md z%v}VMQ}Hg~da&=sLEm~SDn;HbuPFW^@-f@?6lGJ(ZRdC}a-|8e=x`*kWJdQ6V~M zIP$$yyee>l6t}|m;<#n}D(?g-xe5%{l!@+>Ae`*xBj5glYu7k^i7k_z=7ndXNsc88 zG33{r99&(AyZfuyjkp}=4vbyl)h5U~n9sP_^ik@wcR2~WnDz4|KEujxd!=}@lCaX^ zetG^<<9->nr1QIlS{36db<)is58|2|#z~I~N10k^Zoy!ZiWte6GHz=So5=K`c+lN< zSwGv|IP#?H*a#l=B@a~8-l?0=Iive# z<8cAG<>Tt6Zz91FpC$R2~?$T>Wb)j}{Dt(t4>irGZ<$-qGgjNOWBtg=nTJ6E5K51{F@ zm!O+*mo@7?ld<6oKiK)Ixmtq2)uiLHKBJusV#FAR|HpOSrx(P>dD!@#&ft* z?STt9T)%eR{pS+^0Wx^jc%hj@fh8tPB%Ub;aag5BJzYEq4f%9&^B z3hY_$7vO8CY|pTYJZ;_bO2C@+iuz|Uxn{i|TQ(tH0qbm!m@}SX)f5)gjIpMV9yWcP zRlCM2YbxHh;v$4`Z!aAsfyI9#yn!cvixb$g-(a;11CLU$_$tOwzg00#eUod>s+byG zJvBRWojq`oh7OSl$-Ysj?R8AC#Qc>Oh+{a`NUhc#Sk37+h=VZuRp&@?(~m@LIDx zcC|k+BR&I`E>$;EMd3+&}?dkL-D7gy`Je}ZXTjz2LWi_8YpGxKlD;GryY%(rH_=R05qkf{`k|AT*D#i=Xs%p&{*(pjpcyc_KY2k`ZJo6+4iJ6-M9+a z7M^ThKK5o024npoA3FbHx8kaq<7YDdfs9veb=xO_YI=)r_C&}=MV%iAZP5y;J&O=4 z_RH3l?oI$OX0_I$1Qn|HDY&+mJyjE1B{2*$BBRGv`Xd)W^`87twhIq++tuVtSTM#Y zr9GYbwuS>1PBuw9MHbsQj{YwWgitAlY%o5qh4c@(ap)(P5nUO5I=IOQ%2b5McoYjrv@|TNe^Kxo!30LgASmQ!Q83<+q6XHW2(Xx(6 zc6`YDyus56F4x)r_-)PCnWwAbuE0I!b=CT!kOnoUKR%>u=L4=_CQWN1&&a%t)AWXY zXz#g1vSM~X_#5In3VA?0(l0(_G8i5KL5lDyfjw(wPlooy6&e=IJz4nHlUOa4J)C=C zo4Vkm^N{FOegV3ry_nU_@yqoR-ID=d@w%QPPVV5@E>n9O|3^z zE_&+tlcf=0hv0}q?lO~bTJWbM9>G7K(+$n{Tm2Q-b-RTf7#`rT0((Xria(W+P?pBD z!7Jj%RT{zV(RJU@p8%Yq9P3R0Rg-B`dZvlT$%JZaPvL4^lNRvk+UgP+{i)g{=HnzxeOQ%}gq($rjFE(ZF;(tC!eOKP)^#2$%<0&PxY`kJ zuucd!2FgC%p}y}i!i|GN)1LuOe-<3wpC8RUL4WYKto{^8&BLkEZkI^o078O1V#V(gi4`&- z5euu?SzJO9eC$tVd=35bRWPm5M?OdlR%G2zG(k6r z>_b(nT&stPNBqlbNLqEXnSjeDBo-uKCIEJqEJ**pvLHLvH;0HKgR+X%uJP0@OJj6) z9+;6l%GDwCIlO=a1m?kbT$odw2oZtWT?Qy1DxDYU7f=s~d3NnqM<+N@F5};p`$n&F zXaaacT>Zl93V;Yj_vDwHmBja|%8X8CafiqsX;wxeXOhTRqn z+>waPQA>Vtpgju*V|dVpZ!A2^92T;l==7%^DrWYm4pKjX2b7Ze3wYV4Z zfat_(`FQkGlLBADd~9$^A69?)y6!EWmc_|mrbU=o`dpEtPQQ!>%W_~xQNblrfo3C_ z7+k@plFe^)D)<+D|5R2z)qHSgvhcOZ!oB(~eSYOKr_auWbtMapq7W?q#DwXPB)ap= znwc;?b2;kWM7w#~^;6LQy~Lb%jQ;P;`GQ1wC#Z?=&O`|{6B22noA!lDVwokriTIJq zkk;{{$BN5nb;rpir6>aDO6P;Hk`NwyxpQ?kb43#cJdsUS;MmG_pO}=^{SxxUz_&1sg=79z!dvW%0Dwvb3 z;21TDr^e6FotT&2i4QL7H50lMLrz>rq0^6=^g4cUOdTWDn^z|0dq zI`UO4Sx4{5NGxepdIh=1R4_(OO;#`h_>~ZM0Y?%NuSHH*#AknUTDM<#^pq5;%w$c+ zTiy*$HDl7NS=YN7u-|GptYvI^(d3NesM;|A9XwZg2N6yup&^deI7X=%5EUF#P8rH7 zo~%kQIrLtW@{R$k^Y`fVJm>qr%f|(ZgG)Mu;S{(DhnG|5$$BmR2h$aL$O+*ipvo|^ zFVXm(u{IKDCaKOunhYy+hFsmzV~dYZE6%X1#9f-0eG4in(v*a<7hTa(52;^u!zNBhno3GOP7j8LY^qw3uV$wLi92S zYomwf9BZSOKe6>eo^5OWJTsa$ibcarYvTg`sCnlj4O+iYUNcGuQ*1e}vGro#f4#MF z1%IrK_4>I+Kb!RPHlFHN`G|0QO&fp8kJ$QcJnO8DEt3A?D?FPvKE+f07JPDMY<-t} z-zfSe3`;+ie(vL`-aYRS-FAb+STA~bHf=np6Z7206J3Eoccd+lX=y-XZz*M#$o z^|A(Ozt_t8pyq|wtE+ziGH$PxWiubH&>z;zYNkrW*2@|vd@P*9du+Xzr@Dgv#n#Iv zQRDTiY%le_QL>k1BdQxRAR*T44S2fFutC0_#H+ntb~tVHQN{636MKLEOk5x7Q=+C) zOZ|&}GPxoHV(aCwsBgGY&Rpx2g1Y